~	N 68 - 298	386
8	(ACCESSION NUMBER)	(THRU)
5 ₹	49	/
	(PAGES)	(CÓDE)
ACILITY	(PAGE) TMX-52460 (NASA CR OR TMX OR AD NUMBER)	22
¥	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

NAC: NEUTRON ACTIVATION CODE

by Suzanne T. Weinstein Lewis Research Center Cleveland, Ohio

GPO	PRICE	2 _	 	
OOFT	I DDICE/C\	æ		

Hard copy (HC)

Microfiche (MF) ____

ff 653 July 65

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. - 1968

ABSTRACT

NAC is a computer code designed to predict the neutron-induced gamma ray radioactivity for a wide variety of composite materials. This code is a subset of the NAP code, and the code output has been altered to provide convenient analysis by experimenters. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. The code also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gammaray source strength, and the absorbed dose rate at 1 meter from an unshielded point source. The induced activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated.

NAC: NEUTRON ACTIVATION CODE

by Suzanne T. Weinstein Lewis Research Center Cleveland, Ohio NAC: NEUTRON ACTIVATION CODE

by Suzanne T. Weinstein Lewis Research Center

SUMMARY

NAC is a computer program designed to predict the neutron-induced gamma ray radioactivity for a wide variety of composite materials. The unshielded induced radioactivity is calculated as a function of neutron exposure and decay times. The effects of cyclic exposure to a neutron flux and target atom burn-up can also be calculated.

NAC, a subset of NAP, provides fewer computational options than NAP and the output has been altered to provide for more convenient analysis by experimenters. The NAC output includes the input data, a list of all reactions for each constituent element, and the end of irradiation disintegration rates for each reaction. The code also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma ray source strength, and the absorbed dose rate at one meter from an unshielded point source. A breakdown of the above data as a function of gamma energy for each product isotope is available as an option.

INTRODUCTION

NAC is a computer code written to provide a means of rapid analysis of the neutron-induced gamma ray radioactivity for a wide variety of composite materials. The code is a simplified version of the NAP program (see ref. 1). NAP was written to calculate the induced activity and unshielded gamma dose as a function of time, space, and gamma energy. NAP was designed to use the neutron spectrum output from a transport code and to provide input data for a gamma shielding code. NAP is highly versatile and well suited to this type of activation calculation. However, the detailed calculations available with NAP are not warranted in experimental situations in which knowledge of the neutron spectrum is limited and the activation information required is minimal. Such a situation would occur

when the knowledge of the post-irradiation activation hazards of an experimental capsule, to be irradiated in a test reactor, is desired.

NAC was written to provide this type of activation calculation, and the code output has been designed to provide for convenient analysis by experimenters. The output consists of two sections. The first contains the input data (material composition, neutron fluxes, irradiation time, a list of the reactions considered for each element, the end of irradiation disintegration rates (dis/sec) for each reaction, and the fraction of the activity produced by each neutron energy group. The second section is a product isotope inventory containing the product name, disintegration rate (mCi), gamma source strength (MeV/sec), and the absorbed dose rate (m rads (C)/hr) at one meter from an unshielded point source. A breakdown of the above data as a function of gamma energy for each product isotope is available as an option. This output section also includes the decay time considered and totals of the inventory data. Simple scanning of the output will pin-point the product (s) which presents the greatest hazard and the reaction (s) which produces this product (see Appendix C).

The induced activity is calculated as a function of the duration of neutron exposure and the decay times. The effects of cyclic neutron exposure and of target atom burn-up can also be evaluated. The activity is calculated perunit volume, per-unit mass, or for the total mass of the composite material, depending on the input specification.

ACTIVATION EQUATIONS

The build-up and decay of neutron-induced radioactivity are calculated from the equations given below which have been derived from the basic activation equations (see ref. 2). In each of the equations listed below, the term $\sigma\varphi$ represents a summation over the entire neutron energy range and is independent of time.

For an irradiation time t_1 , with zero decay time, where target atom burn-up is ignored, the induced activities are:

for the parent

$$S_1(t_1) = N\sigma\varphi\left(1 - e^{-\lambda_1 t_1}\right)$$

for the daughter

$$S_{2}(t_{1}) = \frac{N\sigma\varphi}{(\lambda_{2} - \lambda_{1})} \left[\lambda_{2} \left(1 - e^{-\lambda_{1}t_{1}}\right) - \lambda_{1}\left(1 - e^{-\lambda_{2}t_{1}}\right)\right]$$
(1)

for the granddaughter

$$\begin{split} \mathbf{S_3(t_1)} = & \frac{\mathbf{N}\sigma\varphi}{(\lambda_2 - \lambda_1)} \left[(\lambda_2 - \lambda_1) \left(1 - \mathrm{e}^{-\lambda_3 t_1} \right) - \frac{\lambda_2 \lambda_3}{(\lambda_3 - \lambda_1)} \left(\mathrm{e}^{-\lambda_1 t_1} - \mathrm{e}^{-\lambda_3 t_1} \right) \right. \\ & \left. + \frac{\lambda_1 \lambda_3}{(\lambda_3 - \lambda_2)} \left(\mathrm{e}^{-\lambda_2 t_1} - \mathrm{e}^{-\lambda_3 t_1} \right) \right] \end{split}$$

where S_1 , S_2 , S_3 are the disintegration rates (dis/sec), N is the initial number of target atoms (number), σ is the activation cross section (cm²/neutron), φ is the neutron flux (neutrons/cm²-sec), λ_1 , λ_2 , λ_3 are the decay constants for the parent, daughter, and granddaughter, respectively (sec⁻¹).

For a neutron irradiation time t_1 followed by a decay time t_2 , the induced activities are

$$S_{1}(t_{1}, t_{2}) = S_{1}(t_{1})e^{-\lambda_{1}t_{2}}$$

$$S_{2}(t_{1}, t_{2}) = S_{2}(t_{1})e^{-\lambda_{2}t_{2}} + \frac{\lambda_{2}S_{1}(t_{1})}{(\lambda_{2} - \lambda_{1})} \left(e^{-\lambda_{1}t_{2}} - e^{-\lambda_{2}t_{2}}\right)$$

$$S_{3}(t_{1}, t_{2}) = S_{3}(t_{1})e^{-\lambda_{3}t_{2}} + \frac{\lambda_{3}S_{2}(t_{1})}{\lambda_{3} - \lambda_{2}} \left(e^{-\lambda_{2}t_{2}} - e^{-\lambda_{3}t_{2}}\right)$$

$$+ \frac{\lambda_{2}\lambda_{3}S_{1}(t_{1})}{(\lambda_{2} - \lambda_{1})} \left(\frac{e^{-\lambda_{1}t_{2}} - e^{-\lambda_{3}t_{2}}}{\lambda_{3} - \lambda_{1}} - \frac{e^{-\lambda_{2}t_{2}} - e^{-\lambda_{3}t_{2}}}{\lambda_{3} - \lambda_{2}}\right)$$

For a cyclic neutron exposure, with zero decay time following the end of the last exposure, the induced activities, adjusted for target atom burnup, are:

$$S_{1} = \frac{N\sigma\varphi\lambda_{1}}{\lambda_{1} - \sigma\varphi} \left(e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}t_{1}} \right) \underbrace{ \begin{bmatrix} e^{-n\sigma\varphi t_{1}} - e^{-n\lambda_{1}(t_{1} + t_{0})} \\ e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})} \end{bmatrix} }_{e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})} }$$

$$S_{2} = \frac{N\sigma\varphi\lambda_{1}\lambda_{2}}{\lambda_{1} - \sigma\varphi} \left(\frac{e^{-\sigma\varphi t_{1}} - e^{-\lambda_{2}t_{1}}}{\lambda_{2} - \lambda_{1}} \right) \underbrace{ \begin{bmatrix} e^{-n\sigma\varphi t_{1}} - e^{-n\lambda_{1}(t_{1} + t_{0})} \\ e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})} \end{bmatrix} }_{e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})} }$$

$$S_{3} = \frac{N\sigma\varphi\lambda_{1}\lambda_{2}\lambda_{3}}{\lambda_{1} - \sigma\varphi} \underbrace{ \begin{bmatrix} \frac{1}{\lambda_{2} - \sigma\varphi} \left(\frac{e^{-\sigma\varphi t_{1}} - e^{-\lambda_{3}t_{1}}}{\lambda_{3} - \sigma\varphi} - \frac{e^{-\lambda_{2}t_{1}} - e^{-\lambda_{3}t_{1}}}{\lambda_{3} - \lambda_{2}} \right) - \underbrace{ \begin{bmatrix} \frac{1}{\lambda_{2} - \lambda_{1}} \\ \frac{1}{\lambda_{2} - \lambda_{1}} \\ \frac{1}{\lambda_{3} - \lambda_{1}} - \frac{e^{-\lambda_{2}t_{1}} - e^{\lambda_{3}t_{1}}}{\lambda_{3} - \lambda_{2}} \end{bmatrix} \underbrace{ \begin{bmatrix} e^{-n\sigma\varphi t_{1}} - e^{-n\lambda_{1}(t_{1} + t_{0})} \\ e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})} \end{bmatrix} }_{e^{-\sigma\varphi t_{1}} - e^{-\lambda_{1}(t_{1} + t_{0})}$$

where n is the number of cycles, t_1 is the irradiation time per cycle, and t_0 is the non-irradiation time per cycle. Note that equations (3) calculate the end-of-exposure activity for n cycles (n irradiation and (n-1) non-irradiation periods) with burn-up. The results of these equations are then used in equations (2) to calculate the activity after decay periods following cyclic exposure. See sketch (a).

The above equations yield the disintegration rates in disintegrations per second which are then converted to the desired output quantities. The gamma ray source strength (MeV/sec) is obtained by multiplying the disintegration rate by the appropriate gamma ray energies and the fraction of gamma rays emitted at each energy per disintegration. The absorbed dose rate \dot{D} in m rads (C)/hr at one meter from an unshielded point source is calculated from

$$\dot{D} = \frac{K}{4\pi R^2} S(MeV/sec) = 1.285 \times 10^{-8} S$$
 (4)

where K is an energy flux to dose conversion factor, R is the distance from the source (1 m), and S is the source strength. K consists of a unit conversion factor and the mass energy absorption coefficient for carbon, which was arbitrarily selected as the 1 MeV value (0.0280 cm 2 /g). See reference 2. Appendix A is a complete FORTRAN listing of the NAC code.

PROGRAM DESCRIPTION

The NAC data library (see appendix B) contains the activation constants for 71 naturally occurring elements with a total of 251 reactions producing 226 radioactive isotopes. For each material to be analyzed, up to 20 different elements may be specified. Provision has been made for the analysis of as many different materials, per computer run, as desired. For each analysis, up to 20 decay time intervals may be specified. The NAC data library contains the data listed below for 71 naturally occurring elements.

- (1) target element names
- (2) isotopic reaction
- (3) activation cross sections (cm^2/g)
- (4) decay constants (min⁻¹)
- (5) atomic densities (atoms/g)
- (6) product isotope name
- (7) decay gamma energies (MeV)
- (8) fraction of gammas at a given energy

The elements required for a material analysis are identified, during input, by their atomic number (Z) and are listed in the data library in order of increasing Z. If an element not present in the data library is specified during input, the code will write a message identifying the element in question and then will eliminate it from the calculation. Data input for each material must also include the material density or mass, the weight fractions of the constituent elements, the irradiation and decay time, and the neutron flux in the four energy groups listed below:

```
Group 1 0.82 MeV < E

Group 2 5.5 KeV < E < 0.82 MeV

Group 3 1.1 eV < E < 5.5 KeV

Group 4 E < 1.1 eV
```

The cross sections, taken from references 1 and 3, have been averaged as follows: for $0 \le E \le 0.2$ eV, a Maxwellian distribution was used; for 0.2 eV $\le E \le 0.82$ MeV, a 1/E distribution was used; and for E > 0.82 MeV, the U^{235} fission spectrum was used.

PROGRAM OUTPUT

The program output contains the following data in the order listed. Appendix C contains the output for 3 sample problems.

- item 1: information provided by the user to identify each material;
- item 2: the neutron flux in order of decreasing energy and the irradiation time, if the cycling option is used this is the irradiation time per cycle
- item 3: messages, if any, for elements requested which are not present in the library.
- item 4: element name and weight fraction
- item 5: list of reactions for the element; each followed by the disintegration rates (dis/sec) for the parent, daughter, and grand-daughter at zero decay time; and the fraction of induced activity due to each neutron group in order of decreasing energy.

Items 4 and 5 are repeated for all elements in a given material. The above information appears only once for each material. The following information is repeated for each decay time.

- item 6: the time after irradiation in minutes and the units in which the output is calculated: per-gram, per-cubic centimeter, or for the total mass.
- item 7: the product isotope name and total disintegration rate, source strength, and absorbed dose rate.

The following three lines appear if the breakdown of the activity as a function of gamma energy is desired.

- item 8: the gamma ray energies
- item 9: the absorbed dose rate at each gamma energy
- ite m 10: the source strength at each gamma energy.

The last item (11) appears regardless of the options used:

11: the total material disintegration rate, source strength, and absorbed dose rate.

Items 6 through 11 are repeated for each time after irradiation. Those product activities which are zero (less than 10^{-38}) are not printed out.

PROGRAM LIMITATIONS

Each composite material may consist of up to 20 different elements and up to 20 different decay times may be included. The number of different materials that can be analyzed during a single computer "run" is limited only by the machine time available. All reactions for each element for which cross sections were available are included in the NAC library. These include the (n, γ) , (n, p), (n, α) , and (n, 2n) reactions; the formation of excited states and isometric states are also included. The activity for each reaction is traced through the first three generations or until a stable product is formed. However, there are some exclusions: reactions which have products having half-lives less than about one minute and products which are not gamma emitters. The dose rate contributions of alpha and beta particles are not included.

INPUT PREPARATION

Each ''data link'' consists of one material to be analyzed. The library data deck must preced the first data link (see sketch (b)). The number of data links that can be processed per computer run is not limited; but all the cards listed below must be present for each link.

Card no.	Columns	Data
1	FORMAT (12A6)	
	1-72	any information desired by user to
2	FORMAT (2213)	identify the material
	3	= 1, if the gamma energy breakdown is not desired
		= 2, if the gamma energy breakdown is desired
	5,6	the number of elements desired;
	7-66	the Z value for each element desired;
3	FORMAT (8F10.4)	
	1-10	= 1.0, for output per gram = density (g/cm ³) for output per cm ³ = - mass, for output per total mass
	11-80	the weight fraction of each element in the same order as the Z values on card 2
4	FORMAT (4E10, 4)	
	1-40	neutron flux in order of decreasing in energy;
5	FORMAT (I3, 2E10.4, I3)	
	1-3	number of reactor cycles; columns are left blank if cycling is not desired
	4-13	irradiation time in minutes (if cycling is desired, the irradiation time per cycle)
	14-23	non-irradiation time per cycle in minutes; columns are left blank if cycling is not desired
	24-26	the number of decay times desired
6	FORMAT (8E10.4)	
	1-80	the decay times in minutes from the end of irradiation (from the end of the last exposure for cycling)

Note that card five must be used with or without cycling. Normal (non-cyclic) calculations (equations (1)) do not include target atom burn-up. Calculation of target burn-up without cycling may be obtained by setting the number of cycles to 1 and the non-irradiation time per cycle to zero on card 5.

APPENDIX A A COMPLETE FORTRAN LISTING OF THE NAC CODE

```
INTEGER OPT, Z(21), PA(251), PB(251), PC(251)
      REAL LA(251), LB(251), LC(251)
      DIMENSION ELEM(2,71), REAC(5,251), SIGMA(4,251), ISO(2,226), NE(226),
     AEGAM(7,226), FRAC(7,226), IE(71), IDEL(71), AD(71), NAME(12), WTF(20),
     BPHI(4),T(20),FN(4),PROD(50,20),IP(50),SF(4),SFX(4),S(7),R(7),DF(4)
     C, DFN(4)
С
C
      READ IN DATA LIBRARY
C
      READ (5,100)((ELEM(I,K),I=1,2),K=1,71)
  100 FORMAT (12A6)
      READ (5,101) (IE(J), IDEL(J), J=1,71)
  101 FORMAT (2014)
      READ (5,102) (AD(J),J=1,71)
  102 -FORMAT (8E10.4)
      READ (5,103) ((REAC(I,J),I=1,5),(SIGMA(I,J),I=1,4),PA(J),LA(J),
     APB(J), LB(J), PC(J), LC(J), J=1, 251)
  103 FORMAT (5A6,4E10.4/I4,E9.4,I4,E9.4,I4,E9.4)
      READ (5,104) ((ISD(I,J),I=1,2),NE(J),(EGAM(I,J),FRAC(I,J),I=1,7),
     AJ=1,226)
  104 FORMAT (A3,A4,I3,14F5,2)
С
С
      READ IN MATERIAL DATA
C
 9999 READ (5,100) (NAME(L),L=1,12)
      READ (5,105) OPT,JJ,(Z(J),J=1,JJ)
  105 FORMAT (2213)
      READ (5,106) WT, (WTF(J),J=1,JJ)
  106 FORMAT (8F10.4)
      READ (5,107) (PHI(I), I=1,4), IN, T1, T2, LL, (T(L), L=1, LL)
  107 FURMAT (4E10.4/I3,2E10.4,I3/(8E10.4))
      TN=FLOAT(IN)
      WRITE (6,200)
  200 FORMAT (1H1,2X)
С
C
      WRITE INPUT DATA--MATERIAL IDENTIFICATION INFORMATION, NEUTRON
C
                         FLUX, IRRADIATION TIME OR NUMBER OF CYCLES AND
C
                         IRRADIATION TIME PER CYCLE
C
      WRITE (6,201) (NAME(L),L=1,12)
  201 FORMAT (1H ,29X,12A6///2X)
      IF (TN.NE.O.) GO TO 1
      WRITE (6,202) (PHI(I), I=1,4),T1
  202 FORMAT (13H NEUTRON FLUX, 4(5x, 1PE10.3), 20x, 16HIRRADIATION TIME,
     A 1PE12.3,4H MIN//2X)
      GO TO 2
    1 WRITE (6,203) (PHI(I), I=1,4), IN, T1
  203 FORMAT (13H NEUTRON FLUX,4(5X,1PE10.3),10X,14,7H CYCLES,5X,
     A16HIRRADIATION TIME, 1PE10.3,4H MIN//2X)
C
С
      CONVERT INPUT Z TO KEY TO REACTION INDEXING PARAMETERS
С
С
      TRAP ELEMENTS REQUESTED, BUT NOT IN THE LIBRARY, WRITE MESSAGE
C
    2 DD 1000 J=1.JJ
```

```
M=Z(J)
      IF (M.LT.9.OR.M.EQ.10.OR.M.EQ.39.OR.M.EQ.43.OR.M.EQ.61.OR.M.EQ.68.
     ADR.M.EQ.76.OR.M.EQ.82.OR.M.GE.84.AND.M.LE.89.OR.M.GT.92) GO TO 11
      IF (M.NE.9) GO TO 3
      Z(J)=1
      GO TO 1000
    3 IF (M.GT.39) GO TO 4
      Z(J)=Z(J)=9
      GO TO 1000
    4 IF (M.GT.43) GO TO 5
      Z(J) = Z(J) - 10
      GO TO 1000
    5 IF (M.GT.61) GO TO 6
      Z(J)=Z(J)-11
      GO TO 1000
    6 IF (M.GT.68) GO TO 7
      Z(J)=Z(J)-12
      GO TO 1000
    7 IF (M.GT.76) GO TO 8
      Z(J)=Z(J)-13
      GO TO 1000
    8 IF (M.GT.82) GO TO 9
      Z(J)=Z(J)-14
      GO TO 1000
    9 IF (M.NE.83) GO TO 10
      Z(J) = 68
      GO TO 1000
   10 Z(J)=Z(J)-21
      GO TO 1000
   11 WRITE (6,204) M
  204 FORMAT (37H ELEMENT IS NOT LISTED IN LIBRARY Z=,13//2X)
      Z(J)=0
 1000 CONTINUE
C
C
      BEGIN CALCULATION OF END OF IRRADIATION DISINTEGRATION RATES
C
      N=0
      WRITE (6,205)
  205 FORMAT(5X,7HELEMENT,11X,15HWEIGHT FRACTION13X,22HDPS AT ZERO DECAY
     A TIME, 17X, 35HACTIVITY FRACTION PER NEUTRON GROUP/2X)
      DO 1012 J=1,JJ
      M=Z(J)
      IF (M.EO.O) GO TO 1012
      KK=IE(M)
      KKK=IDEL(M)+KK-1
      PERC=ABS(WT*WTF(J))
C
C
      WRITE ELEMENT NAME AND WEIGHT FRACTION
      WRITE (6,206) (ELEM(I,M),I=1,2),WTF(J)
  206 FORMAT (2X/5X,2A6,10X,0PF8.5//2X)
      DO 1011 K=KK,KKK
      TOT=0.
      DO 1002 I=1,4
      FN(I)=PHI(I)*SIGMA(I,K)
      DFN(I)=FN(I)
 1002 TOT=TOT+FN(I)
      IF (TN.NE.O.) GO TO 20
      ACTIVATION WITHOUT CYCLING AND BURN-UP
```

```
С
      A=PERC*TOT
      AL=LA(K)
      ALX=EXP(-AL*T1)
      IPA=PA(K)
C
Ç
      CALCULATE PARENT POST-IRRADIATION ACTIVITY (DIS/SEC)
С
      S1=A*(1.-ALX)
      IF (PB(K).EQ.0) GD TO 12
      BL=LB(K)
      BLX=EXP(-BL*T1)
      IPB=PB(K)
C
C
      CALCULATE DAUGHTER POST-IRRADIATION ACTIVITY (DIS/SEC)
C
      S2=A*(BL*(1.-ALX)-AL*(1.-BLX))/(BL-AL)
      IF (PC(K).EQ.O) GO TO 13
      CL=LC(K)
      CLX=EXP(-CL*T1)
      IPC=PC(K)
C
C
      CALCULATE GRAND DAUGHTER POST-IRRADIATION ACTIVITY (DIS/SEC)
C
      S3=A*((BL-AL)*(2.-CLX)-BL*CL*(ALX-CLX)/(CL-AL)+AL*CL*(BLX-CLX)
     A/(CL-BL))/(BL-AL)
      GO TO 14
   12 IPB=0
      S2=0.
   13 IPC=0
      S3=0.
С
C
      CALCULATE NEUTRON GROUP ACTIVITY FRACTIONS
С
С
      WRITE REACTION, POST-IRRADIATION DISINTEGRATION RATES, AND NEUTRON
C
      GROUP ACTIVITY FRACTIONS
   14 DO 1003 I=1,4
 1003 DF(I)=DFN(I)/TOT
      WRITE (6,207) (REAC(I,K), I=1,5), S1, S2, S3, (DF(I), I=1,4)
  207 FORMAT (10x,5A6,3(5x,1PE10.3),4(5x,0PF6.4))
C
      CALCULATE DISINTEGRATION RATES FOR REQUIRED DECAY TIMES
C
      DO 1007 L=1,LL
      IF (T(L).GT.O.) GO TO 15
      AT=S1
      BT=S2
      CT=S3
      GO TO 16
   15 ALT=EXP(-AL*T(L))
      AT=S1*ALT
      IF (IPB.E0.0) GO TO 16
      BLT=EXP(-BL*T(L))
      BT=S2*BLT+BL*S1*(ALT-BLT)/(BL-AL)
      IF (IPC.EQ.O) GO TO 16
      CLT=EXP(-CL*T(L))
      CT=S3*CLT+CL*S2*(BLT-CLT)/(CL-BL)+CL*BL*S1*((ALT-CLT)/(CL-AL)
     A-(BLT-CLT)/(CL-BL))/(BL-AL)
С
```

```
INCLUDE PARENT, DAUGHTER, GRAND DAUGHTER DISINTEGRATIONS RATES IN
C
C
      PRODUCT ISOTOPE ARRAY--(1) IF ISOTOPE IS ALREADY PRESENT, ADD TO
C
      TOTAL, (2) IF NEW ISOTOPE, INCLUDE IT IN ARRAY
   16 IF (N.NE.O) GO TO 17
      PROD(1,1)=AT
      IP(1)=IPA
      N=1
      GO TO 18
   17 DO 1004 NN=1.N
      IF (IPA.NE.IP(NN)) GO TO 1004
      PROD(NN.L)=PROD(NN.L)+AT
      GO TO 18
 1004 CONTINUE
      N=N+1
      PROD(N.L)=AT
      IP(N)=IPA
   18 IF (IPB.EQ.O) GO TO 1007
      DO 1005 NN=1.N
      IF (IPB.NE.IP(NN)) GO TO 1005
      PROD(NN,L)=PROD(NN,L)+BT
     .GO TO 19
 1005 CONTINUE
      N=N+1
      PROD(N.L)=BT
      IP(N)=IPB
   19 IF (IPC.EQ.O) GO TO 1007
      DO 1006 NN=1,N
      IF (IPC.NE.IP(NN)) GO TO 1006
      PROD(NN,L)=PROD(NN,L)+CT
      GO TO 1007
 1006 CONTINUE
      N=N+1
      PROD(N.L)=CT
      IP(N) = IPC
 1007 CONTINUE
      GO TO 1011
C
      ACTIVATION CALCULATION FOR CYCLING AND BURN-UP
C
   20 AL=LA(K)
      ALX=EXP(-AL*T1)
      TOT=0.
      IPA=PA(K)
      S1=0.
      DO 1008 I=1,4
      SF(I)=60.*FN(I)/AD(M)
      SFX(I)=EXP(-SF(I)*T1)
      IF ((SFX(I)-ALX).NE.O.) GO TO 21
      ALC=TN
      DFN(I)=FN(I)*T1*ALC
      GO TO 1008
C
C
      CALCULATE PARENT POST-IRRADIATION ACTIVITY (DIS/SEC)
   21 ALC=(SFX(I)**TN-EXP(-TN*AL*(T1+T2)))/(SFX(I)-EXP(-AL*(T1+T2)))
      DFN(I)=FN(I)*(SFX(I)-ALX)/(AL-SF(I))*ALC
 1008 TOT=TOT+DFN(I)
      S1=TOT*PERC*AL
      IF (PB(K).EQ.O) GO TO 22
```

```
IPB=P8(K)
      BL=LB(K)
      BLX=EXP(-BL*T1)
      S2=0.
С
С
      CALCULATE DAUGHTER POST-IRRADIATION ACTIVITY (DIS/SEC)
      DO 1009 I=1.4
 1009 S2=S2+FN(I)*((SFX(I)-BLX)/(BL-SF(I))-(ALX-BLX)/(BL-AL))/(AL-SF(I))
      S2=S2*PERC*AL*BL*ALC
      IF (PC(K).EQ.O) GO TO 23
      IPC=PC(K)
      CL=LC(K)
      CLX=EXP(-CL*T1)
      S3=0.
C
C
      CALCULATE GRAND DAUGHTER POST-IRRADIATION ACTIVITY (DIS/SEC)
C
      DO 1010 I=1,4
 1010 S3=S3+FN([)*(((SFX([)-CLX)/(CL-SF([))-(BLX-CLX)/(CL-BL)))/(BL-SF([)
     A)-((ALX-CLX)/(CL-AL)-(BLX-CLX)/(CL-BL))/(BL-AL))
      S3=S3*PERC*AL*BL*CL*ALC
      GO TO 14
   22 IPB=0
      S2=0.
   23 IPC=0
      S3=0.
      GO TO 14
C
C
      GO BACK AND CALCULATE ACTIVITY AFTER DECAY TIMES AND INCLUDE IN
C
      PRODUCT ISOTOPE ARRAY
 1011 CONTINUE
 1012 CONTINUE
      NEND=N
      DO 1015 L=1.LL
      WRITE (6,200)
      CTT=O.
      RTT=0.
      STT=0.
      IF (ABS(WT-1.).LT..00001) GO TO 24
      IF (WT.LT.O.) GO TO 25
C
C
      WRITE THE DECAY TIME AND UNITS FOR CALCULATION
C
      WRITE (6,208) T(L)
  208 FORMAT (23H TIME AFTER IRRADIATION, 1PE12.4, 4H MIN, 20X, 31HALL OUTPU
     AT PER CUBIC CENTIMETER//2X)
      GD TD 26
   24 WRITE (6,209) T(L)
  209 FORMAT (23H TIME AFTER IRRADIATION, 1PE12.4, 4H MIN, 20X, 19HALL OUTPU
     AT PER GRAM//2X)
      GO TO 26
   25 WRITE (6,210) T(L)
  210 FORMAT (23H TIME AFTER IRRADIATION, 1PE12.4, 4H MIN, 20X, 25HALL OUTPU
     AT FOR TOTAL MASS//2X)
C
C
      CALCULATE DISINTEGRATION RATES (MCI). SOURCE STRENGTHS (MEV/SEC).
C
      DOSE RATES (MR(C)/HR), AND TOTALS
```

```
26 DO 1014 N=1.NEND
     K=[P(N)
     NN=NE(K)
      IF (PROD(N,L).EQ.O.) GO TO 1014
      RT=O.
      ST=0.
      P=PROD(N,L)
      CT=P/3.7E7
      DO 1013 I=1,NN
      S(I)=FRAC(I,K)+EGAM(I,K)+P
      R(I)=S(I)*1.285E-8
      ST=ST+S(I)
 1013 RT=RT+R(I)
C
      WRITE PRODUCT ISOTOPE INVENTORY
C
C
      WRITE (6,211) (ISO(M,K),M=1,2),CT,RT,ST
  211 FORMAT (5X,A3,A4,10X,1PE10.4,12H MILLICURIES,5X,1PE10.4,14H MR/HR
     AAT 1 M ,5X,1PE10.4,8H MEV/SEC/2X)
     -IF (OPT.EQ.1) GO TO 27
      WRITE (6,212) (EGAM(I,K), I=1,NN)
  212 FORMAT (12X,13HGAMMA ENERGY ,7(5X,0PF10.4))
      WRITE (6,213) (R(I),I=1,NN)
  213 FORMAT (12X,13HMR/HR AT 1 M ,7(5X,1PE10.4))
      WRITE (6,214) (S(I),I=1,NN)
                                   ,7(5X,1PE10.4)/2X)
  214 FORMAT (12X.13HMEV/SEC
   27 CTT=CTT+CT
      RTT=RTT+RT
      STT=STT+ST
 1014 CONTINUE
      WRITE (6,215) CTT,RTT,STT
  215 FORMAT (2X/24H TOTAL MATERIAL ACTIVITY, 10X, 1PE10.4, 12H MILLICURIES,
     A5X,1PE10.4,14H MR/HR AT 1 M ,5X,1PE10.4,8H MEV/SEC)
 1015 CONTINUE
      GO TO 9999
      END
```

APPENDIX B

DATA LIBRARY LISTING

The NAC data library is listed below in three sections. The first section contains the target element names, atomic densities, and reaction indices. The second section contains the individual reactions and reaction parameters. The third section contains the product isotopes and gamma energy yields.

Section I contains the name of each element present in the data library, in order of increasing Z, on the first 12 cards. The next 8 cards contain one pair of reaction indices for each element. The first index identifies the first reaction for an element in the reaction table listed in Section II and the second index is the number of reactions for a given element. For example, the first two pair on the first card:

- 1 first reaction for fluorine
- 3 -three fluorine reactions
- 4 first reaction for sodium
- 4 four sodium reactions

The final nine cards contain the atomic density (atoms per gram) of each element in order of increasing Z.

SECTION I ELEMENT NAMES, REACTION INDICES, ATOMIC DENSITIES (ATOMS/GRAMS)

FLUORINE	SODIUM	MAGNESIUM	ALUMINUM	SILICON	PHOSPHORUS	
SULFUR	CHLORINE	ARGON	POTASSIUM	CALCIUM	SCANDIUM	
TITANIUM	VANADIUM	CHROMIUM	MANGANESE .		COBALT	
NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	
SELENIUM	BROMINE	KRYPTON	RUBIDIUM	STRONTIUM	ZIRCONIUM	
NIOBIUM	MOLYBDENUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	
CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	
XENON	CESTUM	BARIUM	LANTHANUM	CERIUM	PRASEODYMIL	JM
NEODYMIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPRUSIUM	
HOLMIUM	THULIUM	YTTERBIUM	LUTIUM	HAFNIUM	TANTALUM	
TUNGSTEN	RHENIUM	IRIDIUM	PLATINUM	COLD	MERCURY	
THALLIUM	BISMUTH	THORIUM	PROTACTINIU			
1 31	4 4 8	21 10 41 14	4 4 18	2 2 2 22	3 25	1 26 4
1	3 4 37	5 42 3 49		3 51 4 55		7 68 5
73 8 8		8 93 3 96	5 5 101	5 106 6 112	4 116	4 120 6
126 2 12	8 7 135	2 137 1 139		5 146 7 153	3 156	5 161 6
167 7 17	4 4 178	5 183 4 18	7 5 192	1 193 3 196	1 197	3 200 2 3 218 2
202 3 20	5 2 207	1 208 2 210	0 1 211	1 212 1 213	2 215	3 218 2
220 3 22	3 2 2 2 2 5	3 2 2 8 4 2 3 2	2 4 236	4 240 2 242	1 243	2 245 1
246 6				•	•	•
3.164E22	2.615E22	2.477E22 2.23	33E22 2.145	E22 1.945E22	1.879E22	1.699E22
1.508E22	1.540E22	1.503E22 1.34	40E22 1.258	E22 1.181E22	1.158E22	1.097E22
1.079E22	1.022E22	1.026E22 9.47	71E21 9.215	E21 8.644E21	8.298E21	8.042E21
7.630E21	7.539E21	7.184E21 7.0	50E21 6.885	E21 -6.604E21	6.488E21	6.279E21
5.926E21	5.856E21	5.641F21 5.58	85E21 5.359	E21 5.247E21	5.079E21	4.948E21
4.720E21	4.747E21	4.579E21 4.5	33E21 4.386	E21 4.341E21	4.304E21	4.278E21
4.181E21	4.000E21	3.964E21 3.84	41E21 3.782	E21 3.703E21	3.653E21	3.555E21
3.481E21	3.626E21	3.375E21 3.3	29E21 3.273	E21 3.235F21	3.118E21	3.088E21
3.058E21	3.003E21	2.945F21 2.8	78 F21 2_591	F21 2.570F21	2.529F21	

Section II consists of two cards for each of the 251 reactions. The first card contains the reaction, followed by the activation cross sections (cm^2/g) for the four neutron groups in order of decreasing energy. Blanks indicate that the particular cross section is zero or unknown. The second card contains up to three pairs of numbers, each pair corresponding to a radioactive isotope. The first number of each pair is an index which identifies the product isotope (Section III). The second number of the pair is the isotope decay constant (min^{-1}) .

For example for the first three reactions:

product isotope 3 is F^{20} product isotope 2 is O^{19} product isotope 1 is N^{16}

SECTION II REACTION. CROSS SECTIONS (CM 2/GRAM), PRODUCT ISOTOPE INDEX, DECAY CONSTANT (MIN -1)

F 19 (N,G) F 20	2.286-6	9.130-5	3.393-5	2.814-4
3 3.707+0 F 19 (N,P) () 19	7.581-5	•		
2 1.435+0 F 19 (N,A) N 16 1 5.635+0	3.786-4			
NA 23 (N,G) NA 24 6 7.702-4	1.602-6	2.689-5	4.851-4	1.124-3
NA 23 (N+P) NF 23 4 1.019+0	3.927-5			
NA 23 (N,A) F 20 3 3.707+0	1.749-5			
NA 23 (N,2N) NA 22 5 5.059-7	1.649-7			
MG 24 (N,P) NA 24 6 7.702-4	4.279-3			
MG 26 (N ₂ G) MG 27 7 7.374-2	1.678-8		2.348-6	
AL 27 (N+6) AL 28 9 3.000-1	8.262-6	6.394-4	1.822-4	4.212-3
AL 27 (N,P) MG 27 7 7.374-2	1.200-4			
ΔL 27 (N, Δ) NΔ 24 6 7,702-4	2.552 - 5			
Λ <u>L</u> 27 (N,2N) Δ <u>L</u> 26 8 1.635-12	5.192-4			
SI 28 (M,P) AL 28 9 3.000-1	2.295-4			
ST 29 (M,P) AL 29 10 1.035-1	2.703-6			
SI 30 (M.G) SI 31 11 4.077-3	3.288-9	5.656-8	2.499-6	5.469-4
SI 30 (N•A) ωG 27 7 7•3/4~2	8.042-6			
P 31 (N+P) ST 31 11 4.077+3	7.455-4			
P 31 (N+A) AL 28 9 3.000-1	6.866-5 2.409-6			
S 34 (N,A) SI 31 11 4.077-3 S 36 (N,S) S 37		2 627 10	1 707 0	3 500 7
12 1.375-1 CL 35 (M.2M) CL 34M	2.549-11 9.585-6	3.527-10	1.484-8	3.598-7
13 2.139-2 CL 37 (M.G) CL 38	•	1.416-6	4 162-b	1
14 1.858-2 CL 37 (N.P) S 37	2.924-8	1.410-0	N • 1 93-9	1.443-3
12 1.375-1 Δ 40 (%,6) // 41	6.474-7	7.220-6	3.182-4	7.358-3
15 6.301-3 K 39 (M.6) K 40	2.119-7		9.671-5	
17 1.039-13 K 39 (N.2N) K 38	3.830+7	<i>t.</i> ● 1 7 T U) • ((1 =)	
The state of the s	3 • 0 50m f			

14 0 002-2				
16 9.002-2 K 41 (N.G.) K 42 18 9.242-4	1.052-7	1.090-6	4.8()4-5	1.110-4
K 41 (N,A) CL 38 14 1.858-2	8.821-6			
CA 42 (N,P) K 42 18 9.242-4	5.679-5			
CA 46 (N,G) CA 47-SC 47 19 1.024-4 24 1.416-4	7.832-12	8.720-11	3.845-9	1.331-7
CA 48 (N,G) CA 49 20 7.877-3	2.331-9	2.406-8	9.752-7	2.457-5
SC 45 (N ₁ G) SC 46 23 5 ₁ 729-6	2.259-5	2.353-4	1.038-2	2.399-2
SC 45 (N,A) K 42 18 9,242-4	4.958-6			
SC 45 (N,2N) SC 44MSC 44 21 2.003-4 22 2.962-3	4.336-7			
SC 45 (N,2N) SC 44 22 2.962-3	5.577-7			
TI 46 (N,P) SC 46 23 5.729-6	1.589-5			
TI 47 (N.P) SC 47 24 1.416-4	3.400-5			
TI 48 (N,P) SC 48	4.312-7			
TI 50 (N,G) TI 51 26 1.197-2	5.344-9	7.403-8	3.265-6	7.551-5
TI 50 (N,A) CA 47SC 47 19 1.024-4 24 1.416-4	1.344-10			
V 51 (N,G) V 52 27 1.844-1		3.966-4	1.843-3	4.266-2
V 51 (N,P) 11 51 26 1.197-2	3.560-7			
V 51 (N+Λ) SC 48 25 2.626-4	1.957-7			
CR 50 (N.G) CR 51 29 1.733-5	8.222-7	8.500-6	3.747-4	8.670-3
CR 50 (M+2M) CR 49 28 1+650-2	3.646-9			
CR 52 (N.P) V 52 27 1.844-1	2.772-5			
MN 55 (N,G) MN 56 31 4.501-3	2.505-5	3.74()-4	9.454-3	1.199-1
MN 55 (M, Δ) V 52 27 1.844-1	2.128-5		·	
Mpi 55 (M,2N) MN 54 30 1.534-6	6.554-6			
FE 54 (N,P) MM 54 30 1.534-6	8.216-5			
FE 54 (N,A) CR 51 29 1.733-5	2.332-7			
FF 56 (M.P) MN 56 31 4.501-3	1.698-5			
FE 58 (N.G.) FE 59 32 1.066-5	2.567-9	2.661-8		
CI) 59 (N,G) CD 60MCI) 60 36 6.602-2 37 2.502-7	1.244-5	2.116-4		
CO 59 (N+G) CO 60 37 2.502-7	1.346-5	1.222-4	8.015-3	1.641-1
CD 59 (M.P.) FE 59	3.443-4			

32	1.066-5				
	(N,A) MN 56	1.162-6			
31	4.501-3				
CO 59	(N,2N) CO 58MCH 58	9.577-7			
34	1.284-3 35 6.665-6				
CO 59	(N,2N) CO 58'	9.577 - 7			
35	6.665-6				
NI 58	(N,P) CO 58MCO 58	9.038-5			
34	1.284-3 35 6.665-6				
	(N,P) CO 58	9.119-4			
	6.665-6				
	(N,NP) CO 57	2.973-4			
	1.783-6	/ 3 F D = 0			
	(N+2N) NI 57	4.358+8			
38		1 2/2 5			
37	(N,P) CO 60 2.502-7	1.342-5			
	(N,A) FE 59	5.257-8			
	1.066-5	J • & J ₹ = 0			
	(N,G) NI 65	1.386-8	1.436-7	6.333-6	1.464-4
39	4.444-3	1.530	10/2/1/		
	(N.G) CU 64	6.810-6	1.688-4	3.418-4	4.717-3
41					
CU 63	(N,A) CO 60	4.718-6			
37	2.502-7				
CH 63	(N,2N) CU 62	1.501-6			
4()	6.974-2				
CU 65	(N,G) CU 66	1.180-5	5.629-5	5.602-4	4.355-3
	1.359-1				
	(N,2N) CU 64	1.189-6			
41	8.887-4	1 504 3	•		1 700 2
	(N+G) ZN 65	1.596-7	1.008-0	7.347-5	1.700-3
45		2 154_6			
	(M,P) CU 64 8.887-4	3.156-5			
	(m, 2M) 7M 63	1.740-7			
44	•	1.			
	(N+P) CH 66	8 • 372-6			
	1.359-1				
	(N,P) CH 67	1.014-7			
43	1.904-4		•		
/N: 68	(M+G) ZN 69M	5.394-9	1.332-7	5.881-6	2.083-4
46	8.252-4				
7∾ 68	(M,A) NI 65	3.421-8			
39	4.444-3				
	(M+G) ZN 71	1.569-10	3.889-9	1.714-7	3.963-6
47		1 007 6	. 107 5	2 - 20 /	6 0/0 3
	(M,G) GA 70	1.087-5	6.186-5	2.529-4	5.848-3
49 CA 40	3.285-2	1.166-6			
46	(N.P) 7N 69M 8.252-4	1 • 100-0			
	(N.2M) GA 68	3.107-6			
48		J#101 0			
	(N.G) GA 72		6.420-5	5.972-4	1.381-2
50	8.622-4				
	(M,P) GA 70	5.924-5		•	
49	3.285-2				
GE 70	(N,2N) GE 69	4.251-7			
52					
GE 72	(N.P) GA 72	2.271-8			

5 ()	3.622-4					
	(N.P) GA	13	2.381-5			
51	2.407-3					
1.5 14	(N,A) 7N	71	1.222-5			
47	3.15/-1					
GF 76	(m,G) GF	77AS 7/	8.357-10	4.091-8	1.768-6	4.088-5
47 47	1.050+3	5x 2.462-4				
CD 76	(6,G) GH	77MAS 71	7.187-10	3.518-8	1.520-6	3.516-5
53	7.702-2	5x 2.462-4				
CH 76		118GH17AS77	1.170-10	4.730-9	2.480-7	4.620-6
74.	7.702-2	55 1.050-3 58	2.962-4	1 (1)	1 100.3	2.776-2
	(M,G) AS	76	1.809-5	1.616-4	1.199-3	2 • 1 10 - 2
57	•	23	1.733-7			
20 72	(₩•A) GA ₩•A22-4	17	1. • () (
	(4 · 2 M) AS	7.6	1.816-6			
	2.676-5	, , ,	2.0			
	(M.G) SF	75	1.195-6	3.460-6	5.495-5	1.386-3
60	3.484-6					
5- 77	(10,P) AS	71	A.455-A			
5 8	2.985-4					A 1875 I
	(M,G) SE	8] In		8.086-8	3.961-6	9.153-5
	1.220-2	01 - CL02 - D001			3.841-5	1.738-3
_		83MSF83BR83	5.023-3		3 • △ 4 1 = 3	1.01.31.3
- 62 - Ci. 129	•	63 2.773-2 67 8388 83	う・いとうこう		1.384-4	3.043-3
763	2.773-2	67 5.023-3				
	(m,G) KR			2.640-4	1.124-3	2.544-2
הא						
KW /0	(~ , A) AS	76	4.882-7			
57	4.360-4					
	(14·G) 경R	82	6.675-6	1.568-3	8.602-3	9.850-3
nh	3.2114-4					
-	(··· • A) AS	78	1.027-4			
59	7.617-3		1 1 1 1			
,		2 ×110==K2 K1) - 65 - 5.939=2	1.524-6			
- 64 - 27 75	(11.(1) KP		3.831-9	3.962-8	1.756-6	4.114()-5
	3 348-6					-
	(K , (') F	×1	7.054-8	2.300-5	6.118-4	1.246-2
	6.41 = 12					
+12 ×4	. (0°+16) KH	الدائم الم	2.231-6	3.301-4	4.444-4	6.744-5
	7.525-3					
		おびミーー大元 より	4.512-6	1.407-3	2.109-3	2.662-4
	=	71 1.238-7		1 064 2	1 550_1	1.472-4
	. (n,G) ⊀⊬.	X 5	1.014-6	1.046-3	1.0000	1 • - 1 > - 4
	- 1•235-7 - (⊶6) KR	u /		5 . 403-x	2.603-6	6.015-5
	H ■ HH) — K					
	(i , ii) EK	» 6	1.524-7	4.459-5	2.198-4	3.717-3
14						
वस प्र	(M,2M) R	स <u>.</u> 84	3.686-6			
7 4	1.454-5					
	((m • ()) RH	НÀ	4.654-6	2.559-5	1.285-5	1.892-4
	3.244-2		1 200			
	7 (M • 2 ×) RR	×0	1./03-6			
	~ 530-5 ・ (**•6) - 58	ایز اج _{ارت}	4.124-10	4.246-9	1.872-7	5.952-6
	4. 4.4	· · · · ·	- 1/ · 1/1	• • • • • • •	<u> </u>	
	-	おりェー・イス おり	3.081-9	3.814-8	1.685-6	6.033-5
			- · ·	<u>.</u> .		

76	9.903-3 78 7.618-5				
	(N,G) SR 85	3.493-9	4.243-8	1.872-6	6.628-5
78	7.618-5	÷			
	(N,G) SR 87M	8.522-8	8.799-7	3.885-5	8.982-4
79 70 90	4.120-3 (N,2N) ZR 89	7.668-7			
84	1.453-4				
ZR 94	(N.G) ZR 95NB95MNB95		4.674-7	5.934-9	1.397-6
85	7.382-6 90 1.283-4 91	1.372-5			
ZR 94 85	(N,G) ZR 95NB 95 7.382-6 91 1.372-5		2.291-5	2.909-7	6.848-5
	(N+A) SR 91Y 91MY 91	2.321-10			
80	1.195-3 82 1.378-2 83	8.242-6			
ZR 94	(N.A) SR 91Y 91	1.613-10			
81	1.195-3 83 8.242-6	7 024 0		2 025 7	1 /// 5
7K 96	(N,G) ZR 97NH 97 6.796-4 92 9.614-3	7.836-8	6.549-6	2.935-7	1.446-5
	(N.G) NB 94MNB 94	1.545-5	3.927-3	4.655-3	5.992-3
88	1.050-1 89 6.301-11				
	(N,2N) NH 92	3.977-8	,		
87 ⊯u 92	4.813-5 (N.G) MO 93M	5.400-8	2.298-5	1.516-6	4.000-5
93	1.650-3	J. 700 6	2 • 2 30 · 3	1.010 0	→ • (7(7)
MH 92	(M,P) NR 92	1.319-6			
87	4.814-5				
MH 92 84	(N,A) ZR 89 1.462-4	1.695-8			
	(N,P) NB 95	9.858-8			
91	1.375-5				
	(N,P) NB 97	1.744-5			
92 MH 09	9.367-3 (N.G) MD 99	6.686-6	2.853-4	6.334-3	6.110-4
94	1.724-4	0.000-0	2.6033-4	0.334-3	0.110-4
	(M+G) PU10110101	5.118-8	2.233-5	3.367-5	9.706-5
95	4.621-2 96 4.951-2				
97	(N,G) RU103 1.222-5	3.400-6	6.265-4	3.443-3	2.192-3
	(N+G) RU105RH105	4.390-6	2.794-4	1.813-3	6.136-4
47					
	(M+G) RH105MRH105	3.306-6	4.075-4	4.224-3	8.950-2
99	1.575-1 100 3.224-4 (N.G) PD103	1.722-8	6.760-6	1.837-5	1.742-4
	2.876-5	1.7220	0. 1000	1.6031-3	1.01-7
	(M.G) PD109M	2.244-7	7.878-5	4.777-4	2.181-3
103					
PO110 104	(N,G) PD111-AG111M-AG111 3.150-2 107 5.776-1 108	2.438-7 6.418-5	1.150-4	3.036-3	1.285-4
	(%,G) AG108	1.534-5	2.342-3	1.457-2	7.142-2
105	2.88-1	_ • · ·			
	(M, 2N) AG106M	2.421-8			
104	5.728-5 (N.G) AG110M	3.597-7	5.848-5	3.801-5	4.746-3
106		., • > / / /	3. (************************************	3.001	1 • 1 - 17
AG109	(N,P) PD109M	3.084-8			
103					
ΔG109 105	(M,2M) AG108 2.888-1	4.537-4		*	
	(M,G) CD107	2.040-8	9.100-6	1.933-5	5.252-5
109	1.724-3				
CD110	(M,G) CO111M	2.075-7	1.006-4	5.933-4	1.067-4

110 1.386-2				,
CD114 (N.G)CD115M-CD115-IN115M	4.357-7	2.089-4	1.133-3	1.378-3
111 1.130-5 112 2.179-4 117	2.567-3			
CD114 (N.G) CD115IN115M 112 2.179-4 117 2.567-3	5.458-8	2.662-5	1.495-4	1.752-4
CD116 (N.G)CD117M-CD117-IN117M	1.269-7	6.186-5	1.451-4	4.895-4
113 3.983-3 114 1.386-2 119	6.080-3			
CD116(M,2N)CD115M-CD115-IN115M	3.410-8			
111 1.130-5 112 2.179-4 117	2.567-3			
CD116 (N+2N)CD115IN115M	3.399-8			
112 2.179-4 117 2.567-3	2 (10 7	6 307 6	2 420 2	0 (180-3
IN113 (N,G) IN114MIN114	2.610-7	4.196-5	2.478-3	9.488-3
115 9.627-6 116 5.776-1 1N113 (N.G) IN114	9.329-9	1.496-6	8.888-5	3.569-4
116 5.776-1	9 5 5 6 7 7	14770	. •	
IN115 (M.G) IN116M	1.355-5	1.199-3	2.432-1	6.256-1
118 1.286-2				
14115 (N,P) CD115IM115H	2.014-5			
112 2.179-4 117 2.567-3				
IMI15 (N, 2M) IMI14MIMI14	1.130-6			
115 9.627-6 116 5.776-1	0.001.0	1 200	2 500 5	
SM112 (N.G) SM113 120 -4.077-6	2.885-8	1.220-5	3.500-5	5.034-5
SN122 (M•G) SN123	9.499-8	4.304-5	8.457-5	3.064-5
121 1.754-2	7 4 7 7 1.	- J.		5 •001 5
SM124 (N.G) SM125SH125	1.205-7	5.248-5	4.757-5	4.875-5
122 7.146-2 128 4.881-7				
SB121 (M,G) SB122M	1.690-7	4.857-5	2.761-4	4.320-4
124 1.980-1				
SB121 (M+G) SB122	4.900-6	1.410-3	8.676-3	1.252-2
125 1.724-4 SB121 (N.2N) SB120	2.041-6			
123 8.301-5	V. • (1 → 1) (1			
SB 123 (M,G) SB124MSB124	2.001-8	7.850-6	6.233-5	1.017-5
126 3.300-2 127 8.023-6				
SR123 (M,G) SR124	8.334-7	3.284-4	2.110-3	4.249-3
127 8.023-6				
SH123 (M+2N) SH122	2.020-6			
125 1.724-4 16122 (0.6) 161236	4.832-8	1.724-5	9.843-5	1.026-4
129 4.621-6	4.637-6	1.1/4-1	9.045-7	1.070-4
1F124 (M.G) TF125M	7.835-8	3.496-5	1.4(15-4	1.188-3
130 8.291-6				
TH126 (M,G) TH127MTH127	2.105-8	1.104-5	5.325-5	6.389-5
131 4.560-6 132 1.229-3			•	
16126 (M,G) Te127		9.744-5	4.634-4	5.674-4
132 1.229-3 16128 (N.G) 16129Mfe129	1.113-8	6 404-4	8.313-6	1.809-5
133 1.429-5 134 1.034-2	1.113-0	7.406 −6	v • 313-4	1 • 009-)
16128 (M.G) TE129	9.982-7	4.938-5	7.198-5	1.568-4
134 1.034-2	-	•		
1F130 (N,G) TF131I 131	4.552-7	1.065-4	1.617-4	2.886-4
135 2.795-2 140 5.924-5				
J 127 (M+G) J 128	5.530-6	1.586-3	6.754-3	2.050-2.
138 2.783-2 1.127 (N. D. TEL27	7 047 0			
T 127 (N+P) TE127 132 1+229-3	7.067-9			
1 127 (N•Δ) SH124	5.099-10			
127 8.023-6	- •			
J 127 (N, 2M) I 126	4.476-6			

137	3.629-5				
	(N,G) XE125I 125		6.232-7	4.313-5	2.618-4
141	6.418-4 136 8.013-6				
XE128	(N,G) XE129M	1.213-8	5.825-6	3.378-5	1.487-4
	5.332-5				
	(N,G) XE133 ·	3.333-7	1.055-4	2.507-4	2.081-4
	9.145-5				0.070 5
	(N,G) XE135		1, 084-5	8.916-6	8.079-5
	1.269-3		1 121 1	2 017-4	4.904-5
	(N _• G) XE137CS137 1.777-1 149 4.951-8	•	6.636-6	2.017-6	4.704-5
	(N,G) CS134	5.815-6	1.332-3	2.113-2	9.470-2
	5.975-7	2.012.0	1.5552. 5	2.113 2	24110 /2
	(N.P) XE133	6.146-8			
	9.145-5				
	(N,A) I 130	7.110-9			
139	9.242-4				
	(N,2N) CS132	4.755-6			
	7.429-5			F (30 /	1 700 5
	(N,G) RA133MBA133	1.021-8	1.910-8	5.538-6	1.702-5
	1.758-7 152 2.962-4	2 227-0			
	(N,P) CS132 7.764-5	2.237-8			
	(N,G) BA135M	4.494-7	1 - 767-5	4.911-4	1.709-4
153	4.030-4	1.0.7.7.7	10 (0)		
	(N,P) CS136	5.263-10			
148					
84138	(N,P) CS138	3.360-6			
150					
	(N,G) LA140	8.950 -7	2.533-4	8.192-3	3.099-2
154	2.876-4	1 200 0		•	
	(N,2N) CE137MCE137	1.300-8			
. 155 CELAN	3.398-4 156 1.327-3 (N.G) CF141		1.112-5	3.892-5	9.476-4
	1.459-5		1.112	3.1172 3	7. 4.10 4
	(N,G) CE143		9.522-6	2.025-5	3.593-4
158	3.501-4				
PK141	(N,G) PR142	8.822 -7	2.448-4	2.149-3	3.884-2
159	-				
	(№,6) MD147PM147	1.671-8	4.037-6	4.913-4	6.523-4
160	4.359-5 163 5.023-7 (N.G) NI)149PM149	1.328-7	2.396-5	4.913-4	6.523-4
161		1 • 25 0 - 1	2 • 3 • 0 = 0	4 6 713 - 4	0.0225-4
	(M,G) ND151PM151	6.499-8	1.174-5	2.362-5	2.817-4
1.62	5.776-2 165 4.126-4				
SM152	(N,G) SM153	6.144-7	1.826-4	1.603-2	1.200-1
166	2.458-4				
	(N,G) SM155	2.734-7	5.343-5	4.784-4	3.624-3
167	3.150-2		1 202 2	. 220 1	0 6 1 1 1 0
EU151	(M,G) EU152M	1.968-4	1.292-2	5.228-1	9.541+0
168 EU151	1.064-7	4.380-5	2.874-3	1.157-1	2.121+0
169	(N.G) EU152 1.242-3	→• 3000 · 7	2.014.3	1 • 3.27	7 - 12 1 (0)
	(N.G) EU154		3.809-3	2.347-1	7.691-1
170	8.242-8			-	
60158	(N,G) GD159	8.172-7	1.402-4	2.636-3	3.062-3
171	6.418-4				
	(M,G) GD161	7.196-7	1.204-4	2.357-3	5.069-4
172	1.873-1	2 200 5	4 700 0	. 125 2	1 601 1
14159	(N,G) TR160	2.208-5	4.720-3	6.125-2	1.401-1

173	6.665-6				
	+ (N+G) DY165MDY165	3.320-5	1.623-3	6.807-2	1.679+0
174	5.545-1 175 4.916-3	1 220- 5	4 407-4	2.968-2	4 715-1
175	(N.G) DY165 4.916-3	1.328-5	6.497-4	Z•900-Z	6.715-1
	5 (N+G) HO166M	1.006-5	2.316-3	5.114-2	1.907-1
176 TM169	1.100-6 (N,G) TM170	1.435-5	2.364-3	4.290-2	3.638-1
177		16437 2	2.504.3		J.030 1
	R (N+G) YB169	1.655-6	4.160-5	1.861-3	4.294-2
	1.554-5 5 (N.G) LU176M	2.111-5	4.153-3	1.857-1	9.441-2
179	3.122-3				
180	5 (N.G) LU177 7.183-5	5,698-6	4.539-4	2.290-2	2.708-1
	+ (N+G) HF175	1.447-7	7.097-6	3.483-4	7.316-3
181 HE179	6.863-6 (N,G) HF180M	4.650-7	5.412-6	1.796-2	8.438-3
182	2.100-3	4.030-1	J•41Z=0	1.70-2	0.430-3
) (N+G) HF181	7.594-6	1.994-4	3.128-3	1.344-2
	1.119-5 L (N.G) TA182	1.216-5	2.454-3	8.288-2	5.618-2
1 85	4.077-6				
	L (N,2N) TA180M 1.417-3	4.497-6			
	4 (N+G) N 185	7.966-7	2.065-4	1.332-3	1.612-3
187 W 184	6.245-6 5 (N.G) W187	4.583-6	1.406-4	1.691-3	2.617-2
188		4.000-0	1.408-4	1.091-3	Z • 01 1 – Z
	5 (N,P) TA186	6.602-10			
186 RE189	6.601÷2 5 (N,G) RE186	5.232-6	1.854-3	4.079-2	1.002-1
189	5.291-6				
	7 (N,G) RE188 6.932-4	4.204-6	9.999-4	1.770-2	1.079-1
IR191	1 (N,G) IR192MIR192	7.312-6	6.398-4	1.694-2	2.483-1
191 18191	4.881-1 192 6.478-6 1 (m.G) IR192	1.968-5	1.724-3	4.565-2	6.555-1
192	6.478-6				
14193 143	3 (N,G) IR194 6.080-4	6.633-4	1.448-1	3.297+1	2.014-1
	2 (N+G) PT193M	2.614-9	6.883-7	1.053-5	1.586-4
194 PT194	1.118-4 5 (N.G) PT197	7.844-5	4.025-7	1.118-4	6.176-4
195		/ 6 0 4 4 − ,2	→• 023-1	1.110-4	0.110-4
	8 (N,G) PT199AU199		7.279-5	6.884-4	7.140-4
	2.311-2 199 1.537-4 9 8 (M.2N) PT197	1.646-3			
195					
	7 (N,G) AU198 1.782-4	5.731-6	1.210-3	1.689-2	2.427-1
Δ1)]9	7 (N,P) PT197	3.293-6			
	5•415-4 7 (Ν•Δ) IR194	6.431-11			
193	6.080-4	₩ ₩₩₩₩₩₩₩₩			
	7 (N,2N) AU196 7.788-5	1.824-5			
HG196	6 (N,G) HG197MHG197	4.384-7	8.719-6	7.423-5	1.802-3
	4.814-4 202 1.777-4 R (N,G) HG199M				
1111 1 47	· 10001 7017710 .	3.824-1	9.261-5	∠•∪81=4	4 • 545±6

203	1.650-2				
HG200	(N,P) AU200	6.682-7			
200	1.444-2				
HG202	(N,G) HG203	8.949-5	2.181-6	2.008-5	3.393-3
204	1.024-5				
TL203	(N,P) HG203	1.739-9			
204	1.024-5		• *		
TL203	(N,2N) TL202	1.112-6			
205	4.006-5				
BT209	(N+G) B1210PU210		3.047-6	2.088-4	4.401-5
506	9.627-5 207 3.483-6				
TH232	(N,G) TH233PA233U233	4.535-6	8.604-4	4.838-3	1.564-2
213	3.136-2 216 1.777-5 218	1.772-8			
TH232	(M,2N) TH231PA231	5.904-5			
211	4.501-4 214 3.916-11				
PA231	(N,G) PA232U232TH228	2.929-6	9.335-4	1.283-1	4.190-1
215	3.667-4 217 1.772-8 209	6.863-7			
11 234	(N,G) U235TH231PA231	5.726-9	5.179-8	3.755-7	8.775-6
	1.904-15 211 4.501-4 214	· - ·			
	(N,2N)U233TH229RA225	4.700-11			
	8.069-12 210 1.795-9 208	3.239-5			
	(N,G) U 236TH232	9 . 998 -7	1.645-5	3.549-4	1.451-3
	4.847-14 212 9.431-17	•			
	(N,2N) U 234	2.664-7			
	5.291-11				
	(N+G) U239NP239PU239		8.644-4	6.482-3	5.449-3
	2.949-2 225 2.038-4 226	•			
_	(M, 2M) U237NP237PA233	5 • 404-5			
222	7.131-5 224 5.975-13.216	1.772-8			

Section III consists of one card for each of the 226 radioactive product isotopes. Each card contains the isotope name followed by the number of gamma rays emitted. The remainder of the card contains up to seven pairs of numbers. Each pair consists of a gamma ray energy (MeV) followed by the fraction of gamma rays emitted at that energy per disintegration. A few isotopes emit gammas at more than seven energies. In these cases, the lowest energy groups are averaged into a single gamma energy.

SECTION III PRODUCT ISOTUPE NAME, NUMBER OF GAMMAS, GAMMA ENERGY (MEV), FRACTION OF GAMMAS AT A GIVEN ENERGY

```
N 16
         3 7.1 .08
                      6.13 .99
                                 2.15 .01
0 19
         4 1.44 .03
                      1.37 .56
                                . 2
                                    •97
                                          •112 •03
F 20
         1 1.63 1.
NE 23
         2 1.65 .03
                      .44 .97
NA 22
         1 1.28 1.0
NA 24
         2 2.75 1.
                      1.37 1.0
MG 27
         3 1.02 .43
                      .834 1.
                                 1.75 .01
AL 26
         3 2.96 .003 1.83 .997 1.12 .04
AL 28
         1 1.78 1.
AL 29
         2 2.43 .062 1.28 .938
SI 31
         1 1.27 .001
5 37
         1 3.09 .9
CL 34M
         5 .145 1.
                      4.1 .009 3.3 .24 2.13 .751 1.16 .24
CL 38
         2 2.16 .47
                      1.6
                           •31
Δ 41
         1 .29 .01
K 38
         1 2.16 1.
K 40
         1 1.46 .1
K 42
         2 1.53 .18
                      •32
                           •01
CA 47
         3 1.3 .93
                      .81
                          •07
                                 • 5
                                      .07
CA 49
         3 4.68 .01
                      4.05 .1
                                 3.1
                                      .89
SC 44M
         1 .. 27 1.
SC 44
         4 2.69 .002 2.28 .002 1.5
                                     .01 1.14 .03
SC 46
         2 1.12 1.
                      .89 1.
SC 47
         1 .16 .7
SC 48
                                 .99 1.
         3 1.31 1.
                      1.04 1.
TI 51
         3 .93
                •048 •61 •014 •322 •952
V 52
         1 1.44 1.
CR 49
                      • () 9
                           .35
                                 .06
         3 .15
                •14
                                     •15
CR 51
         3 .65
                •()1
                      •33
                           •01
                                • 32
                                      .()9
MN 54
         1 .835 1.
MN 56
         7 3.39 .002 2.96 .004 2.66 .007 2.52 .012 2.12 .153 1.81 .296 .845 1.
FF 59
          3 1.29 .43 1.1 .57 .2 .03
CO 57
         2 .707 .002 .136 .998
CO 58M
         1 .025 1.
CO 58
          3 1.65 .005 .81 .016 .805 .995
CO 60M
          1 .059 1.
06.00
         2 1.33 1.
                      1.17 1.
MI 57
                .14
          3 1.9
                      1.37 .86
                                 .127 .14
MI 65
                                .37
          3 1.46 .29
                                     • 3
                      1.1 .14
CH 62
          3 1.17 .005 1.13 .001 .88 .003
CU 64
         1 1.34 .42
                      .83 .002
.184 .45
CH 66
          2 1.04 .09
                                •093 •35
CH 67
         3 .388 .01
7N 63
         2 .97 .086 .67 .113
7N 65
         1 1.11 .44
7 % 69M
         1 . 438 1.
ZN 71
         1 .51
                1.
         4 1.88 .04
GA 68
                                           •81 •06
                     1.24 .03 1.07 .98
GA 70
         3 1.21 .001 1.04 .004 .174 .001
                      2.4 .72
.74 .06
GA 72
                                1.88 .25
          7 3.05 .01
                                           1.04 .22
                                                      .835 1.
                                                                 •63
                                                                           .39
                                                                      .34
                                                                                • ()4
GA 73
         4 1.04 .01
                                •31 1.
                                            •054 •14
GF 69
          7 2.04 .01
                      1.65 .01
                                1.33 .04
                                                      . 86
                                                                 •58
                                           1.1 .39
                                                           .18
                                                                      .15
                                                                           .19
                                                                                • 1
GE 77M
         1 .215 1.
```

```
GE 77M
         1 .159 1.
                               1.5 .07 1.08 .23 .709 .4
         7 2.32 .01
                                                                          .153 1.
GE 77
                      1.96 .04
                                                               .416 .82
                 .003 1.83 .003 1.61 .003 1.2 .003 1. .003 .635 .006 .596 .154
AS 74
         7 2.2
                                          .648 .03
AS 76
         5 2.06 .02
                      1.41 .01
                                1.21 .12
                                                     .561 .37
AS 77
                                     .003 .086 .001
         4 .525 .008 .245 .025
                                •16
                                                                          .27
                                1.82 .07
AS 78
                      2.24 .01
                                          1.31 .19
                                                     .83
                                                          .08
                                                               .695 .54
                                                                               .06
         7 2.65 .01
                                                     .264 1.
SE 75
         7 .77
                      .628 .01
                                .427 .02
                                          .273 1.4
                                                                .199 .08
                                                                          .129 r.33
                 .02
SE 81M
         1 .103 1.
SE 83M
         4 2.02 .35
                                .65
                                     .18
                                           .35 .11
                      1.01 .88
SE 83
                                1.31 .1
                                          1.06 .1
         7 2.29 .1
                                                     .833 .1
                                                                .524 .1
                                                                          .358 -1
                      1.88 .1
                      .037 1.
BR 80M
         2 .049 1.
         1 .62
BR 80
                 .13
BR 82
         7 1.32 .09
                      1.04 .1
                                .828 .09
                                          .777 .27
                                                     .698 .1
                                                                .619 .14
                                                                          .554 .31
BR 83
         2 .087 .2
                      .046 1.
KR 79
         7 .3
                 .05
                      .217 .2
                                .201 .2
                                           .181 .2
                                                     .136 .2
                                                                .084 .2
                                                                          .045 .2
KR 81
         1 .012 1.
KR 85M
         1 .15
                1.
KR 85
         1 .514 .007
KR 87
         4 2.57 .22
                      2.05 .03
                                .847 .13
                                           .403 .65
                 .008 1.01 .005 .88
RB 84
         3 1.9
                                     .74
RB 86
         1 1.08 .09
         7 4.87 .003 3.24 .02
RB 88
                                2.68 .03 2.11 .01 1.84 .23 1.39 .01
                                                                          .899 .15
SR 85M
         2 .232 .012 .225 .988
         1.15
SR 85M
                1.
SR 85
         1 .513 1.
SR 87M
         1 .388 1.
SK 91
         2 1.03 .508 .748 .492
SR 91
         2 1.41 .171 .93 .073
Y 91M
         1 .551 1.
Y 91
         1 1.19 .002
7R 89
         1 .913 1.
ZR 95
         2 .76 .439 .726 .561
         4 1.72 .1
                                           .747 1.
7R 97
                      1.15 .6
                                1.02 .3
         3 1.83 .02
                                •9
                      .93
                           .01
NB 92
                                    •98
NR 94M
         1 .042 1.
NR 94
         2 .874 1.
                      • 7
                           1.
NB 95M
         1 .231 1.
NA 95
         1 .765 1.
NR 97
          2 1.02 .01
                      .665 .99
MO 93M
          3 1.48 1.
                      .685 1.
                                 .254 1.
                 • () 4
M() 99
          4 .78
                      .74
                                 .372 .01
                                           .181 .04
                           • 1
M0101
         7 2.08 .16
                      1.56 .11
                                1.38 .19
                                          1.02 .41
                                                     .704 .2
                                                                .591 .46
                                                                          .191 .27
                 .01
                                          .385 .02
          5 .72
                                                     •307 •91
TC101
                      .635 .01
                                 .545 .08
RU103
          7 .61
                 .065 .555 .005 .498 .885 .44 .005 .362 .003 .297 .004 .053 .015
RU105
          7 1.35 .001 .966 .03 .874 .043 .726 .48 .67 .15 .475 .26 .318 .14
RH105M
         1.13
                l •
          1 .319 1.
RH105
P0103
          4 .538 .001 .36
                           .001 .095 .1
                                           .()4
                                                . 9
PD109M
          1 .19
                1.
                 •0R
          4 1.4
                           .01
                                 •6
                                           .377 .05
PD111
                      .81
                                      .13
                                      .48
          7 1.55 .296 1.05 .6
                                 .82
                                                                .513 .86
AG106M
                                           •72 •49
                                                     .612 .23
                                                                          •41
                                                                                .67
          3 .633 .019 .617 .01
                                 .433 .03
46108
                 • 4
                      .937 .34
AG110M
          7 1.5
                                .885 .72
                                           .764 .3
                                                     .706 .37
                                                               .656 .93
                                                                          .619 .1
          1 .065 1.
AG111M
4G111
          3 -342 .061 .247 .012 .095 .001
CD107
          2 .846 .004 .093 1.
                           .29
          2 .247 .94
                      •15
CD111M
                •01
          3 1.3
                      •935 •023 •485 •003
CD115m
          6 .523 .24
                      •49 •122 •263 •002 •26 •017 •23 •006 •033 •002
CD115
CD117™
          2 1.27 1.
                      .28
                           1.
```

```
CD117
         1 .425 1.
                      .556 .04
         3 .722 .04
                                 .192 .96
IN114M
                .002
IN114
         1 1.3
         1 .335 1.
IN115M
                      1.49 .1
                                 1.27 .83
IN116M
         7 2.09 .19
                                          1.09 .57 .82
                                                           .15
                                                                 .406 .4
                                                                            .137 .06
                      .315 .04
         3 .822 .04
                                 .161 .23
IN117M
SN113
         2 .393 1.
                      .255 0.02
SN123
         1 .153 1.
SN125
         4 1.39 .019 1.07 .003 .64
                                      .003 .326 .997
                      1.04 1.
         4 1.18 1.
SB120
                                 .199 1.
                                           .089 .9
         2 .075 1.
                      .061 l.
SB122M
SB122
         4 1.26 .007 1.14 .008 .69 .031 .564 .679
SH124M
         1 .018 1.
                      1.69 .52
SB124
         7 2.09 .07
                                                      1.05 .04
                                                                 .722 .14
                                                                            .645 .99
                                 1.37 .04
                                           1.32 .03
SB125
         7 .668 .02
                      .633 .11
                                 .598 .24
                                           .462 .41
                                                      .176 .07
                                                                 •11 •21
                                                                           .035 .76
         2 .159 1.
                      .089 1.
TE123M
                      .035 1.
TE125M
         2 .11 1.
TE127M
         1 .089 .98
         5 .418 .008 .36
TE127
                           .001 .203 .001 .145 .001 .059 .005
TE129M
         1 .106 1.
         4 1.12 .1
TE129
                      1.08 .007 .44
                                      .09
                                           .027 .71
TE131
         5 1.13 .1
                      .92
                           .05 .6
                                      .05
                                           .454 .2
                                                      .145 .8
I 125
         1 .035 1.
         3 .86
                 .023 .48
I 126
                           .114 .386 .773
1 128
         4 .98
                 .009 .75
                            .004 .53
                                      .009 .45
                                                 •16
                                           •53
                                                           .235
I 130
         5 1.15 .235 .74
                           .765 .66
                                      1.
                                                1.
                                                      .41
I 131
         5 .724 .028 .638 .091 .364 .81
                                           .284 .055 .08
                                                           .055
                      .188 .25
                                 .113 .25
XE125
         5 .242 .5
                                           .075 .025 .055 .5
         2 :196 1.
XE129M
                      .04
                           1.
X∺133
         1 .081 1.
         3 .61
                 .005 .36
XE135
                            •01
                                 .25
XE137
                 0.
         1 ().
CS132
         3 1.2
                 .006 1.08 .006 .673 .99
                                                                            .475 .04
CS134
         7 1.37 .05
                      1.17 .03
                                 1.04 .06
                                            .797 .84
                                                      .605 .98
                                                                 .569 .26
                      1.07 .84
                                            .337 .59
                                                      .27
CS136
         7 1.26 .21
                                 .83 1.
                                                                            .152 .19
                                                            .22
                                                                      •26
                                                                 .17
08137
         1 .662 .92
         7 2.63 .1
CS138
                      2.21 .18
                                 1.01 .25
                                            .87
                                                 . ()4
                                                      .463 .31
                                                                 .426 .76
                                                                            .139 .04
RA133M
         2 .276 1.
                      .012 1.
84133
         7 .38
                      .355 .6
                                 .302 .17
                 •06
                                            .274 .05
                                                      16
                                                            •02
                                                                 •081 1.08 •053 •11
BA135M
         1
           ·268 1·
                 .01
                      2.5
                                                      .49
LA140
         7 3.
                                            .815 .46
                                                                 .438 .06
                                                                            .328 .4
                            •01
                                 1.6 1.
                                                            • 5
CE137M
         1 .255 1.
           •445 •03
CE137
         2
                      .01
                           l.
CE141
         1 .145 .7
CE143
          4
           .722 .09
                                 .351 .08
                                            .294 .43
                      •668 •01
PR142
           1.57 .04
         1
ND147
          7
           •688 •02
                      .532 .13
                                 .441 .02
                                            .321 .02
                                                      ·198 ·02
                                                                 .121 .02
                                                                            .091 .85
NI)149
          7 .266 .1
                      .24 .31
                                 .211 .44
                                           .192 .055 .124 .06
                                                                 .114 .43
                                                                            • 1
                                                                                .15
ND151
          7 2.17 .1
                      1.13 .1
                                 .738 .1
                                            .256 .28
                                                      .117 1.
                                                                 •11
                                                                      .17
                                                                            .085 .13
PM147
          1 •121 •001
PM149
           .85
                 .002 .582 .002 .286 .03
          3
PM151
          7
                      .578 .181 .368 .271 .241 .342 .166 .573 .108 .139 .041 .084
           .832 .04
SM153
           .609 .001 .531 .001 .173 .001 .103 .81 .07 .32
SM155
          3
           .246 .04
                      .142 .01
                                 .104 .96
EU152M
                      1.29 .015 1.1
          7 1.41 .25
                                      .315 .965 .14
                                                      .869 .035 .779 .13
                                                                            .355 .545
EU152
          5 1.39 .003 1.32 .008 .972 .004 .963 .025 .344 .02
                                 .997 .11 .874 .15
EU154
          7 1.28 .4
                      1.01 .19
                                                      .724 .28
                                                                 .593 .06
                                                                            .123 .75
           •58
                                 .305 .001 .225 .003 .076 .003 .058 .24
GD159
                 •001 •363 •12
GD161
           •531 •035 •361 •6
                                 .315 .24 .284 .11
                                                     •165 •08
                                                                            .057 .83
                                                                 •102 •14
          7 1.27 .105 1.18 .207 .966 .338 .879 .34
TR160
                                                      .299 .2R
                                                                 .197 .08
                                                                            .087 .12
```

```
DY165M
         1 .108 1.
         5 .715 .007 .634 .007 .362 .014 .28 .007 .095 .156
DY165
                                                       .28
                                                                  .184 .98
                                                                             .081 1.
                                 .751 .144 .711 .58
                                                            •31
H0166M
         7 .83
                 ·106 ·81 ·6
TM170
         1 .084 .24
                                                            .59
         7 .308 .11
                      .198 .49
                                 .177 .34
                                            .131 .25
                                                       .11
                                                                  .094 .15
                                                                             .063 .55
YB169
LU176M
         1 .089 1.
                                            .113 .058 .072 .001
                           .002 .208 .11
LU177
         5 .321 .002 .25
         6 .432 .015 .343 .985 .319 .002 .229 .01
                                                       .114 .01
                                                                  .089 .135
HF175
                                            .215 .82
                      .444 .8
                                 .332 .93
                                                       .093 .16
                                                                  .058 .47
HF180M
         6 .501 .16
                                                                             -136 -15
         7 .615 .003 .482 .83
                                 .476 .02
                                           ..346 .14
                                                       .217 .005
                                                                 .137 .04
HF181
         2 .102 .004 .093 .23
TA180M
         7 1.23 .11
                      1.22 .28
                                 1.19 .15
                                            .222 .13
                                                       .122 .33
                                                                  • 1
                                                                       .56
                                                                             .068 .34
TA182
                                                                  • 2
                                                                             .125 .25
TA186
         7 1.1
                 • 1
                      .94 .15
                                 .73 .75
                                            .51 1.
                                                       • 3
                                                            .25
                                                                       1.
         1 0.56 .024
W 185
                                 .479 .3
                                            .134 .31
                                                       .114 .01
                                                                  .072 .3
W 187
         6 •721 •01
                      •686 •3
RE186
         3 .768 .001 .137 .202 .123 .002
                     1.78 .001 1.67 .001 1.13 .01
RE188
         6 1.96 .01
                                                       .633 .01
                                                                  .155 .2
         1 .058 1.
IR192M
         7 .79
                           .532 .485 .001 .417 .048 .375 .038 .302 1.8
                                                                             .127 .097
IR192
                 .01
                      - 6
IR194
         7 .994 .002 .939 .014 .645 .027 .622 .01
                                                       .328 .252 .301 .01
                                                                             .294 .033
         2 .135 1.
PT193M
                      .013 1.
                      .191 .09
                                 .077 .99
PT197
           .279 .01
         7 .96
                      .79
                                 .475 .1
                                            .318 .1
                                                       .246 .1
                                                                  .197 .1
                                                                             .074 .1
PT199
                 • 1
                            • 1
                                 .333 .263
AU196
         3 .426 .06
                      .356 .94
                                 .412 1.
         3 1.09 .002
                      .675 .011
AU198
                      .158 .77
                                 .05
         3 .208 .16
AU199
                                      •08
AU200
         3 1.6
                 .01
                      1.23 .24
                                 .368 .29
         2 .164 .97
                      .133 .97
HG197M
         2 .191 .02
                      .077 1.
HG197
         2 .368 1.
HG199M
                      .159 1.
         1 .279 1.
HG203
         3 .965 .002 .573 .002 .44 .996
TL202
BI210
         10.
                 0.
         1 .804 .001
P0210
          1 .04
                 •63
RA225
                • 5
         4 .214
                      .167 .01
                                 ·132 ·029 ·085 ·29
TH228
TH229
          2 .2
                 • 75
                      .148 .25
         5 .163 .02
                      .069 .2
                                            .018 .2
TH231
                                  .025 .13
                 . 2
                       .059 1.
          2 .79
TH232
         5 .67
                 .003 .453 .01
                                 .195 .01 .057 .01
                                                       .029 .02
TH233
                                                                  .01
                 •2
                                            .044 .2
                      .074 .2
                                 .053 .2
                                                       .028 .2
PA231
         6 .3
                                                                        • 2
          5 .584 .2
                       .455 .2
                                 .389 .2
                                            .109 .2
                                                       .047 .2
PA232
                                                       .016 .2
          5 .476 .2
                       .341 .2
                                  .313 .85
                                            .272 .2
PA233
U 232
         5 .33
                 .06
                       .268 .001 .131 .001 .13 .001
                                                      .058 .002
11 233
          2 .056 .001
                      .043 .01
                           •.28
U 234
          2 .117 .003
                      •05
                       .289 .07
                                                                  .109 .05
                                                                             .093 .09
U 235
          7 .367 .04
                                 .177 .55
                                            .165 .04
                                                       .146 .12
U 236
          1 .05
                 .27
U 237
          7 .644 .2
                       .371 .2
                                  .367 .2
                                            .267 .2
                                                       .06
                                                             • 2
                                                                  .033 .2
                                                                             .026 .2
          1 .074 1.
U 239
NP237
          6 .2
                 .003 .175 .001 .15 .008 .087 .14
                                                       .057 .2
                                                                  .029 .14
                                            .102 .1
NP239
          5 •94
                 • 1
                       •925 •1
                                 .871 .1
                                                       .044 .1
PU239
                       .051 .11
          3 .124 .15
                                 .013 .17
```

APPENDIX C

SAMPLE PROBLEMS

The input data and the code output are presented below for three sample problems. These problems will include all of the features available in NAC. The three materials were analyzed in a single computer run and execution time was 0.14 minutes.

Each of the problems will use the same neutron flux:

Group 1 3.0×10^{12}

Group 2 1.5×10^{13}

Group 3 2.7×10¹³

Group 4 4.0×10¹³

Sample problem I: Aluminum 6063

Calculate the induced activity per gram for an irradiation period of 10 days with decay times of 0, 1 hour, 1 day, and 10 days

Composition (weight fraction):

Aluminum	. 9765
Magnesium	. 009
Silicon	. 006
Iron	. 0035
Copper	. 001
Manganese	. 001
Chromium	. 001
Zinc	. 001
Titanium	. 001

Sample problem II: Stainless Steel 304L

Calculate the induced activity per cm³ for an irradiation of 10 days with zero decay time. Perform gamma energy breakdown.

Density:

7.75 gram per-cubic centimeter

Composition (weight fraction):

Iron

. 6412

Chromium

. 200

Nickel

. 12

Manganese

. 02

Silicon

.01

Carbon

.008

Sample problem III: Experimental capsule

Calculate the induced activity for a total mass of 653.0 grams for an exposure of 5 cycles consisting of 10 days irradiation and 2 days non-irradiation with zero decay time.

Composition (weight fraction):

Tungsten

. 151

Tantalum

.0583

Nickel

. 495

Iron

. 0743

Chromium

. 0942

Aluminum

. 127

į
FORMAT
CARD
THE
ILLUSTRATING
TA FOR THE THREE SAMPLE PROBLEMS,
SAMPLE
THREE
THE
FOR
DATA
INPUT

01 13 2.7E+13 4.0E+13 +1 1.44E+3 1.44E+4 +1 1.44E+3 1.44E+4 STAINLE SS STEEL 304 L 14 6 .20 .12 .02 13 2.7E+13 4.0E+13 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942	3A M. L.E. F.K.UB L.E.M. I. ALUM INUM 6063 1 9 13 12 14 26 29 25 24 30 22 1 0 3765	900	ر د د	[00	
13 2.7E+13 4.0E+13 4	.001			i))	•
# +1 1.44E+3 1.44E+4 STAINLE SS STEEL 304 L 14 6 12	OE+12 1.5E+13 2.7E+13	+13			
+1 1.44E+3 1.44E+4 STAINLE SS STEEL 304 L 14 6 .20 .12 .02 .01 .0 15 2.7E+13 4.0E+13 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1 13 2.7E+13 4.0E+13	5+4				
STAINLE SS STEEL 304 L 14 6 .20 .12 .02 .01 .0 13 2.7E+13 4.0E+13 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1	6.0E+1 1.44E+3 1.44				
STAINLE SS STEEL 304 L 14 6 12 .20 .12 .02 .01 .0 13 2.7E+13 4.0E+13 1 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1 13 2.7E+13 4.0E+13					
14 6 .20 .12 .02 .01 .0 13 2.7E+13 4.0E+13 1 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1	PROBLEM II STAINLESS STEEL				
12201202010 13 2.7E+13 4.0E+13 1	6 26 24 28 25 14				
13 2.7E+13 4.0E+13 1 EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 13 2.7E+13 4.0E+13	.6412 .2	.12	.02	1.0.	.008
EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1	1.5E+13 2.7E+13 4.	\vdash			
EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1	田 十				
EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1	O, OE+O				
EXPERIMENTAL CAPSULE 24 13 51 .0583 .495 .0743 .0942 .1 13 2.7E+13 4.0E+13					
6 74 73 28 26 24 13 -653151 .0583 .495 .0743 .0942 .1 3.0E+12 1.5E+13 2.7E+13 4.0E+13	PLE PROBLEM III EXPERIMENTAL CAPSU	н			-
-653151 .0583 .495 .0743 .0942 .1 3.0E+12 1.5E+13 2.7E+13 4.0E+13	6 74 73 28 26 24				
3.0E+12 1.5E+13 2.7E+13 4.0E+	.151 .0583	. 95	07 43	4	.127
. FC C	1.5E+13 2.7E+13 4.	+13		-	
1.445+4 Z.885+	5 1.44E+4 2.88E+3 1				

SAPLE FECBLEP I ALUMINUP 6063

Z Z	ROUP		0.9206 0. 0.	•	0.9697	0.9969		0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.9412 0.00 0.9159 0.	0.9484
1.440E 04 MIN	R NEUTRCN (0.0269 0. 0. 0.	ô	0.0283	0. 0. 0.0031		0.0015 0.0015	0.0460 0.0795	0.0505
I RRADIATION TIME	ACIIVITY FRACTICA PER NEUTRON GROUP		C. 0524 C. C.	٠	6 100 ° 3	 		00000	C. C126 C. 00044 C. C.	
I ARAD I	ACLIVITY		10000	0000	00000	0000		1.4440 1.4440 0.4440 0.4440	0	00 10 10
13	ž		2233	• •	້ຳ			2020	,,,,,	•••
4.000E 13	iles af ZERC CECAY TIME			• c	•				00000	0
2-710F ++	DES AF 2		1.78/+ 11 3.51-+ 08 7.47/+ 0/ 2.40/+ 01	1.152+ 08	2.01vF 07	4.131 F 06 4.865 F 04 1.317 F 08 1.444 U5		1.88. U4 5.40. U2 1.78. U5 1.07. U5	2.00% Ub 5.09% Ub 4.50% U3 1.90% UB 3.56/ U3	5.057+ UV 6.38+ U4 4.294+ U2
1.5CCE 13	CTICA	J.		·			ن س			
3.0COE 12	NFIGHT FRACTICA	35925*3	(N.G.) AL 2E (N.P.) PG 27 (N.A.) NA 24 (N.2N.) AL 26	C. (CSCC N.P.) NA 24	(N.G) PG 27	(N.P.) AL 26 (N.P.) AL 25 (N.G.) SI 31 (N.A.) MG 27	25603-2	(A.P) PN 54 (N.A) CR 51 (N.P) PN 56 (N.G) FF 55	(h.6) CL (4 (h.a) CO 6C (h.2n) Cl (2 (h.6) CL (4 (h.2n) Cl (4	(N.E) PN 96 (N.A) V 97 (N.ZN) PN 94 C.CCICC
NEUTECN FILX	FL FP FN T	ALL PINLM	AL 27 6	ž 4	PG 26 0	20 15 50 15	IRCA	7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CL 63 C CL 63 C CL 63 C CL 63 C CL 65 C CL 65 C	T T T T T T T T T T T T T T T T T T T

CR SC (N.G) CR 51	7.88.r	•0	•	00000	0.000	0.0283	0.9713
CR #C (N.2N) CR 45	1.02.4		• •	1.1100	•	•	c.
CR 52 (N.P.) V 52	8.31n+ 04	•0	•	1.1000	្វ	•	ċ.
231VC C.CC1CC							
2N E4 (N.G) ZN E5	1.957+ Uh	0.	• •	0,,,,0	C.0004	0.0283	0.9713
2N 64 (N.P) CL 64	9.46at U4	•	• •	1.3200	ບໍ	. 0	ċ
2N 64 (N.2N) ZN 63	5.2231 02	•0	• •	1.2000	ئ	•	•
ZN 66 (N.P) CU EE	2.51/1 04	••	••	1.1300	ပံ	ċ	•
2h 67 (N.P) CL 67	2.845+ 02	•0	•	1.3000	•	ċ	ċ
ZN 66 (N.G) ZN 65F	8.4911 06	°.	• •	0.1200	C.0002	0.0187	0.9811
ZN 68 (N.A) NI 65	1.02nt 02	•0	• • •	1.0000	.	ċ	ę.
ZN 7C (N.G) ZN 71	1.63/1 05	ċ	••	C. 2400	C. 0n04	0.0284	0.9713
1114NILM C.CCICC							
46 (N.P) SC	3.77% 03	•0	•	1.0000	•	ċ	•
11 47 (N.P) SC 47	8.877+ 04	•	••	1.0000	ບໍ	ċ	ċ
46 (N.P) SC	1.266+ 03	•0	•0	1.2200	ະ	c.	•
5C (N.G) 11	3.11.4 Uh	•0	·,	00000	C.0004	0.0283	0.9713
11 EC (N.A) CA 47SC 47	3.10++-01	2.069E-01	•• •	100	:	ċ	•

3.1812E 11 MEV/SEC	4.7969E JA 4EVISEC	7.8400E UN MEVISEC	6.3853E UI MEVISEC	6.5746E J. NEVISEC	1.6722E US MEV/SEC	1.6056E J4 MEV/SEC	3.0438E JO MEVISEC	8.9643E JY MEVIDEG	1.2725E J / 4EV/SEC	1.1287E J& WEVISEC	1.2726E JJ MEV/SEC	4.3319E JI MEV/SEC	1.8121E J7 4EV/SEC	2.1168E un 4EV/SEC	6.7269E-14 4EV/SEC	9.5586E JS MEV/SEC	8.3066E JI MEV/SEC	3.3932E JL 4EV/SEC	3.7198E Un 4EVISEC	7.0650E JI MEVISEC	8.3235E J4 MEV/SEC	7.5874E J1 MEV/SEC	9.9371E J 1 MEV/SEC	4.2222E J4 4EV/SEC	1.1186E ua MEV/SEC	4.0441E-JI MEV/SEC
4. un 78 F 34 MR/FR AT 1 M	6.1040F 33 MP/FR #T 1 M	1.00 745 01 PR/HF AT 1 M	8-7-516-37, PR/FF FT 1 M	8.4+84£-04 PR/FR AT 1 M	2.1+67+-03 PR/HF AT 1 H	2. un d4F-114 #R/FR AT 1 M	3. 5113E-32 MR/FR AT 1 M	ILISTYF 32 MR/FR AT 1 M	LassZF-31 MR/HR AT 1 M	1. 40 UKF DO MEZER AT 1 M	1.0153E-JO MR/HR AT 1 M	5.3365F-37 PR/HR AT 1 M	2. 1/ USF-UL PE/HF AT 1 M	2. 7.01 F-34 MR/FR AT 1 M	8. 6. 4UF-03 MR/FR AT 1 M	1.27 83F-02 PR/HR AT 1 M	1.0074F-00 #R/FR AT 1 M	4.3.03F-17 MR/FR AT 1 M	4. PHUDE-UZ MRZER AT I M	9-11 36 F-37 MR/HE AT 1 M	1.1396F-13 MR/FR #T 1 M	9.7-9KF-US MR/FR AT 1 M	1.74.09F-14 MR/HR ET 1 M	5-4/35E-US MR/HE AT 1 M	1.4474F-32 PR/FR AT 1 M	S. 1466F-34 PR/FR AT 3 M
4.E302E C3 PILLICLRIES	1.CC45E CI PILLICUFIES	5.143CE CC PILLICIFIES	5.1864F-(7 PILLICLFIES	1.215CF-C3 PILLICLFIES	3.55EFF CO PILLICIFIES	5.21CCE-C4 PILLICLFIES	Salaise of Millicipies	1.366FF C2 PILLICLATES	Zafeste-ci Millicifies	5.42CE CC PILLICIFIES	1.375EE-CE PILLICLFIES	1.217CE-C4 PILLICLFIES	5-1414E CC PILLICIPIES	3-5730E-C3 PILLICLFIES	2.9562F-C7 PILLICLFIES	5.2854E-02 MILLICLFIES	1.41(E-CS PILLICLATES	7.6917E-CE PILLICUFIES	2.2553E-CL PILLICUFIES	2.1736E-CE PILLICLFIES	4.411CE-C3 PILLICLFIES	1.02C2E-C4 PILLICLFIES	2.358CE-C3 MILLICLATES	3.4165E-CS PILLICLFIES	6.4C45E-C2 PILLICLFIES	B.4C31E-CS PILLICLFIES
46.28	FG 27	NA 24	AL 26	52 W	13 13	4. Z.	CR 41	MN 56	FE 95	Cu (4	נפ ונ	co 62	tu te	75 7	CR 15	2N 65	Zh (3	co 63	72 CCF	N 65	ZN 71	¥7 35	£7 J5	97 JS	11 53	CA 47

ALL CUTFUT PER GRAM

-

TIME AFTER IRRACIATION C.

3.7833E 11 PEV/SEC

4.2212E 03 MK/HK AT 1 M

4.555CE C3 PILLICHMIFS

TCTAL METERIAL ACTIVITY

W SEC	ev/sec	MEV/SEC	MEV/SEC	4EV/SEC	V/SEC	W/SeC	4EV/SEC	W SEC	V/SEC.	MEV/SEC	4EV/seC	WSEC	HEV/SEC	MEV/SEC	#EV/SEC	MEVISEC	MEVISEC	MEV/SEC	4EV/SEC	ME V/ SEC	VISEC	V/SeC	HEVISEC	VISEC	v/sec	V/ NEC
4.8449E J1 MEV/SEC	5.7473E UN MEV/SEC	7.485 SE UN MI	6.3853E JI MI	1.321 GE 32 46	1.3093E US MEV/SEC	1.6095E J+ 4EV/SEC	3.0406E 30 46	6.8427E UY 4EV/SEC	1.2717E J 7 MEV/SEC	1.0701E UB ME	1.2726E JZ 4E	6.5580E-J1 4EV/SEC	5.2114E 13 4E	3.3162E 34 ME	2.4995E-J1 4E	9.5575E J3 NE	2.6155E JI ME	3.3546E JA ME	3.5401E JA 4E	5.4115E JA ME	5.1231E-34 MEVISEC	7.5848E U & MEV/SEC	5.8531E J+ ME	4.1562E JS 4EV/SEC	5.4548E JS, MEV/SEC	4.0193E-JI MEV/SEC
6-2738F-US PRIPE AT I M	7.1053F-02 PR/PR #T 1 M	9.0194+ 3.3 PR/FR AT 1 M	8. 1516-07 FR/FF AT 1 M	1.6,754-30 PR/FF AT 1 M	1.6+25F-3+ PR/FR AT 1 M	2-U-82F-34 PR/FR AT 1 M	3. v.172E-32 #F/HF AT 1 M	8. 7-29E 31 PR/FR AT 1 M	1.6542F-01 MR/FR AT 1 M	1.4751E uo PR/HE AT 1 M	1.6452F-30 PR/FF AT 1 M	8-4/45F-14 MR/FR AT 1 M	6-5-66E-35 MR/FR AT 1 M	4-2014F-38 PR/HF AT 1 M	3.2119F-39 PR/FF AT 1 M	1.2281F-02 PR/FR AT 1 M	3. 4609F-37 MR/FR AT 1 M	4-41 J7F-37 PR/FR AT 1 M	4-5-91F-32 #R/FR AT 1 M	6. v. 37t-37 PR/FR AT 1 M	6.7432F-12 #R/FR AT 1 M	9.7.04F-35 #F/FF AT 1 M	1. Jable-14 PR/FR AT 1 M	5. 3+ 37 F-105 MR/FR AT 1 M	7. 11.1 94F-U3 PR/HF FT 1 M	5. In 48F-39 PR/FF AT 1 M
	PILLICLFIES 7.44	MILICLETES 9.04	PILLICIFIES 8.235	PILLICLFIES 1.67	MILLICLFIES 1.642	PILLICLFIES 2.um	PILLICLFIES 3.vi	PILLICLFIES 8.7.7	PILLICLFIES 1.634	PILLICUFIES 1. 475	MILLICLFIES 1.645		PILLICLFIES 6,546								PILLICLFIES 6.743		MILLICLFIES 1.756	PILLICLFIES 5.3+J		
7.3564F-C5 MILLICLFIES).2C4CE-C1 PIL	4.51C7F CC PIL	5.1EE4E-(7 PIL	;. e 421E-(e PII	2.7863E CC MIL	5.2C55E-C4 PIL	2.125CE CO PIL	1.C423E C2 PIL	2.8525E-01 PTL	5.139CE CC PIL	1.3757E-C6 PIL	1.6537E-C6 MILLICLFIES	1.47666-(3 411	6.2242E-CE PILLICUFIES	1.CSESE-C7 PILLICLFIES	5.2889E-C2 PILLICLFIES	4.422E-C6 PILLICLFIES	7. ECC2F-CE PILLICIFIES	2.1645F-(1 PILLICIFIES	2.1246E-C6 PILLICLFIES	2.715CE-11 PIL	1.01996-04 PILLICLFIES	2.3777E-C3 MIL	3.2631F-05 PIL	4.(GE3E-C2 PILLICLFIES	6.2517E-CS MILLICLFIES
A1 . E	22.04	A 24	91 18	AL 25	15 15	4. V4	(R 51	FN SE	FF 45	CU 64	27 03	CU 62	cu te	74 P	(R 45	2N 65	2N (3	co es	7N 65M	N1 65	2h 11	97 JS	17 35	37 25	11 11	[b 4]

ALL CUTFUT PEK GKAN

TIME DETER TRRACTATION 6.CCCCE CI PIP

7.1230E 09 MEV/SEC

9.9267E 01 MK/HK AT 1 M

1.2CCZE CZ PILLIGUALES

TCTAL MATERIAL ACTIVITY

		1 M 6.3853E JA MEV/SEC	1 M 4.7161E 32 MEV/SEC	1 M 1.6061E 34 MEV/SEC	1 M 2.9668E un MEVISEC	1 M 1.373GE 07 4EV/SEC	1 M 1.2532E J7 MEVINEC	1 M 3.1392E J WEVISEC	1 M 1.2721E JJ WEVISEC	1 M 3.2243E-11 MEV/SEC	1 M 9.5316E 3.3 MEV/SEC	1 M 7.4908E-11 MEV/SEC	1 M 2.5795E JA WEVISEC	I M 1.1336E JA MEVINEC	1 M 1.1746E-J1 MEV/SEC] M 7.5250E U. 4EV/SEC	1 M 8.1042E 30 MEV/SEC	1 M 2.8927E US MEV/SEC	1 M 3.6546E-JZ MEV/SEC	I M 3.4896E-JA 4EV/SEC	N L IN COLUMN AT 1 M REVIEW OF ASSET
5.1864-C7 1.CC36F-C2 7.CC34F-C1 7.CC34F-C1 1.5C13E-C4 1.5C13E-C1 1.3153F-C6 1.3153F-C6 1.3153F-C6 1.3153F-C6 1.3153F-C6 1.3153F-C6 1.32328-11 5.6432F-C6 1.32328-11 5.6432F-C6 1.32328-11 5.746E-C2 1.75546-		PR/FF 2T	PR/FF AT	WR/FR AT		PR/FR AT	MR/FR AT	MR/HR AT		MR/FR AT	PR/FF AT	PR/FF AT		PR/FR AT	PR/HR AT	PR/18 AT	PR/FF AT	PR/FF AT	10	4.4842F-31 PR/FF AT	
	וינינים בר עורורינים בי	S.18E4F-C7 MILLICLFIES	1.CC3dF-C2 MILLICLFIES	5.15E5E-C4 PILLICLFIES	2.0767E CC MILLICLRIES	2.0534E-01 PILLICLFIES	2.ESIEF-CI PILLICLETES	1.5075F CC PILLICUFIES	1.3753E-CE MILLICLFIES	1.41876-17 PILLICLFIES	5.2746E-C2 PILLICLFIES	1.2722E-17 PILLICLFIES	5.6472E-C6 PILLICLFIES	6.5545E-C2 PILLICLFIES	4.6118F-CS PILLICLFIES	1.CIIEE-C4 PILLICLEIES	1.5556E-C3 PILLICIPLES	2.34CEE-CS PILLICLETES	2.745EE-CS PILLICLFIES	7.2511E-CS PILLICIPLES	

ALL CUTFUT PER GRAM

TIME BETER IRRACIATION 1.44CCE C3 MIN

1.4232E 07 MEV/SEC

1.8314E-01 MK/HK AT 1 M

1.5613E CC PILLICIMIES

TCTAL MATERIAL ACTIVITY

1.1557E J+ MEV/SEC	6.3853E 31 MEV/SEC	5.3256E-21 MEV/SEC	1.5745E J4 MEV/SEC	2.3716E un MEVIDEC	6.3676E-19 4EV/3EC	1.3915E 37 4EV/SEC	3.1247E 32 MEVISEC	1.2680E JZ MEVISEC	5.2914E US MEVISEC	2.1871E JU MEV/SEC	2.5695E JA MEVINEC	1.1404E-20 4EV/SEC	6.9866E JA MEVINEC	1.2934E JA MEN/SEC	9.6222E JI MEVINEC	9.2561E-37 4EV/SEC
E	x	x	E -	II.	×	I	*	X	x	E	I	E	I	E -	¥ ~	I
F #1	, AT	14	7 A T	. AT	1 A T	14	14	10	14 5	. AT	14	14	14	TA .	T4	F
# P/ F	*R/F	PR/F	VR/F	FR/H	FR/FI	HR/F	MR/F	¥ 7. F	PR/+F	¥R/F	PR/F	#R/+F	WR/F	MR/FF	PR/H	#R/+ F
1.3134F-1+ #R/FR #T 1	Bezuble-ut PRZFR #T 1	6.8+34F-79 PR/FF AT 1	2.3/37 F- 114 PRIFR AT	3.0+75r-02 PR/HF AT 1	8.1+24F-71 #R/FR #T	1-4125F-11 MR/FR AT	4-41 52 F-40 MR/FF AT	1.3/94F-Un PR/FR AT	1.14391-12 MR/FR AT 1	2. ht U5F-U4 PR/FR BT 1	3. 1.186-17 PR/FF AT	1.4354F-14 #R/FR AT	8. 31 77 F-13 #R/ F. AT	1.5020F-J5 MR/FP AT	1.2.65F-Ja MR/HA AT	1. in 94F-11 WR/FF AT]
7.8435F-C5 PILLICLFIES	Salfete-ca alleletes	1.13336-25 MILLICLFIES	5.CSETE-C4 PILLICLFIES	D. EECSE CC PILLICIFIES	S.7CEEE-27 PILLICLFIES	2.4E37E-CL PILLICLFIES	1.5CCEE-CS MILLICIFIES	1.37(8E-CE PILLICLFIES	5.1417E-C2 PILLICLFIES	4.557EE-C7 PILLICLFIES	1.5EFFE-CE PILLICUFIES	4.4772E-34 PILLICLFIES	S.3543F-CS PILLICLFIES	3.1211E-C4 PILLICLFIES	7.7EEZE-C7 PILLICLFIES	1.5223E-(S PILLICLFIES
NA 24 7.84											2N 65M 1.5E					
٩	92 18	13	7: 4	CR 13	9. 24) i JJ	כט נג	נס ונ	57 NZ	co es	Z		3 7 35	£7 38	37 38	[7 V]

ALL CUTFUT PER WAAM

TIME AFIFE IRRAFIATION 3.44CCE C4 MIN

304
STEEL
ESS
STAIN
=
FFCBLEP
SAPFLE

NEUTECN FLUX 3.CCCE	12 1.5CCE 13	2. (10)	4.000E 13		4 K A D I	IARADIATICN TIME	1.440E 04 MIN	NIN .
FLEMENT IS NOT LISTED IN LIBRARY	LIBRARY 7= &							
FLEPFAT	HEIGHT FRACTICA	A Com	ZERC CECAY TIME		ACLIVITY	ACLIVITY FRACTION PER NEUTRCN GROUP	R NEUTRCA (ROUP
IRCA	02177.0							
Na (0 . V)	3	2.670r UZ	ċ	·	1.1000	ខ	c	•
(N.A) CR	·		· c	••	1.3000	វ,	٠,	•
56 (N.P) PN 56 (N.C) FF	\$ 5. 5.	2.531+ UN 1.521+ 10	••	•••	0.000	 	0.0015	0.9985
CFRCMIUM	33332*3							
5C (N.G) CR	5	1.22/+ 11	• 0	0.	0.1443	¢200°-2	0.0283	n.9713
CR 5C (N-2N) CR 45	υ, -	1.69r J4 1.28yr J8	•••	•••	1.1.00	ಕರ		••
	1.12066							
)) (d.M) 35	85))49,	2.527 UB	2.18EE C7	•	1.000	•	•	•
56 (N.P) CO	, u	2.324F UN	c	• •	1.3440	•	ċ	ė
SE CN. NO SE	F- (-	2.105F 07 1.20F 05	• • • •	• •	1.1.00	• •	• e	: c
er in.Pl co		1.3476 05	• •	•	1.0000	. .	•	.
NI 65 (N.A) FE 5 NI 64 (N.G) NI 6	טי עי	2.08/F U4 5.60/F U9	•• • •	•••	0.000	C.0004	n. 0284	0.9713
PANCANESE	ניניפננ							
	9		• 0	• •	00000	C.0011	0.0505	0.9484
MN 65 (N.2N) N 52 MN 65 (N.2N) MN	4	6.65er 04	••	•••	1.3000	::	i d	• •
S.H. HCCA	כ•נופננ							
4	u C	71. 4455 3	ć	Ę	Control	ć	ć	ď
SIZE (N.P.) AL Z		6.28.t US	• •		1.0000		• •	
15 (9.N) JE			• 0	• 0	00000	. 0000	n. 0031	0.9969
3C (N.A) PG	<u></u>	1.87)+ 06	•0	•0	1.1000	•	•0	•

2 <u></u> 2		5	6. MR CR 45	O I I	43 i O)	9 E	3 E C	PE C. IV	75 2
GAMPA FNFRGY 2.8784E-C1 MRJFR AT 1 M 2.8784E-C1 MFV/SEC 2.24CCE (7.33024E C3.M1111CLF1E	GAMMA FNFRGY MR/FR AT 1 M MEV/SEC 2.1191F	GAPPA FNERGY MR/FR AT 1 M MFV/SEC 4.1114E	GAMPA ENFRGY MR/FR AT 1 M MEV/SEC 4.5E21E	GEMPA ENERGY MRZER AT 1 M MEVZEC 3.7512E	GAMMA ENERGY MR/FR A1 1 M MEV/SEC 6.E151E	GAPPA ENERGY MR/FR AT 1 P MEV/SEC 6.EE41F	CAPPA ENEKCY MR/FF AT 1 M MEV/SEC 5.6626E	GAPPA FNERGY MR/FR AT 1 M MEV/SEC 3.246EF	GAMMA FNFRGY MRJFR AT 1 M MEVISEC 2.6353F
C.835C 2.8784E-C1 2.24CE (7	C.65CC 1.02CS C1 7.5446 CE C4 PILLICUFIE	3,35CC 6,62116 C1 5,31616 C5 : C2 MILICIFIES	GY 1.25CC M 1.6643E C2 6.4362F C5 4.56216-C4 MILLICLETES	C-15CC 4-575CE-C6 2-54C3E C2 CC PILLICLRIES	1.55666 (8 1.55666 (8 1.55666 (8	C.C25C E.1C(6E-C2 C.3C4CE (6	CV 2.7CGE-C2 H 2.7CGE-C2 2.1C14E CE 5.1C14E CE	GY C.7C7C H 3.82C3E-C4 2.573CE (4 2.573CE (4	GY 4.1C58E-C4 A 4.1C58E-C4 3.1557E C4 2.6352E-C3 MILLICLFIES
6. 35.24F-31	0. 11.00 5.1824- JO 4.0334- JB	2.410u 1.1924- u2 5.2834- 39 2.4717E 02	1.125h - u2 9.538h - u2 9.538h - u9 1.1198 - u3	0. u4.00 6.862> F-06 5.3405 F- 07 2.3405 E-07	8. 1.1 On F-32	2.5+10F 0J	0. N. UD 4.241×1-U2 3.3011 F U6 3.1153F-02	0.110U 3.6671 F-02 2.8538 F 06 2.7266F-31	1.100 1.818~r-03 1.415*r U5 4.1/54F13
FR/FR &T 1 M	0.2200 4.5233F 01 3.5201E 09 PR/FR AT 1	2.6600 1.8760F 02 1.4600E 10 MR/HR AT 1 M	0.2000 1.1729E 00 9.1273E (7 MR/FR AT 1 M	0.0600 1.9607E-06 1.5259F 02 MR/FF AT 1 M	PR/FF AT 1 M	MR/HR AT 1 M	0.8050 2.6216F 00 2.0402E CE WR/FF AT 1 M	PR/HR AT 1 M	0.1270 2.7444E-65 2.1357E 63 PR/FR AT 1 M
4.7175E JY MEV/SEC	1.3895E 17 4EV/2EG	2.5200 2.0468E 02 3.70dl 2.3711E 10 2.3432 1.4068E 10 MEV/SEC	1.0427E 34 MEV/SEC	1.9986E JO NEV/SEC	6.3040E Jn MEV/SEG	2.0942E Un MEV/SEC	2.8835E JO WEV/SEC	1.7561E JN MEVINEG	3.3664E J. #EV/SEC
ر پو	y E G	2.1200 3.20dlE 03 2.5432E 11 EVSEC	S E C	ve c	S E C	v E C	sec		, E.C.
		1.8100 5.3980E 03 4.2CC8E 11				·			
		n.8450 8.5137E 03 6.6255E 11					٠		

ALL CUTFUT PER LIBIC CENTINEIER

4

TIME BETER TRRBETATION C.

		1.5154F CZ PILLICLFIES	4. 45 dot 31	4. VAIGUE 31 MR/FE AT 1 M	3.860CE JY WEVINEC
~	GAPPA ENERGY MR/FR AT 1 M MEV/SEC 1.4421	1.46(C M 7.05(7E C1 2.3741E C 1.4421E CC PILLICLFIES	1.10% t 01 8.635# 08 1.205r 13	7.9977E OO 6.2239E OB MR/HR AT 1 M	9.4979E JI MEVISEG
	CAPPA ENERGY MR/FR AT 3 M MFV/SEC 1.65E	67 1.72CG (C H 1.72CG (C 5.4515F (1 1.65EFF-C7 MILLICIFIES	1.19125-32	1. 1.12F-32 WR/HF BT 1 M	8.4922E J. MEV/SEC
	GAMPA ENERGY PRIFF AT 1 M MFV/SEC 4.554	GV 2.443CC H 1.2167E-C3 5.4462E (4 4.5544E C1 PILLICLEES	1.7400 9.69541-03 7.54541 05 2.77545-05	1.2400 54-03 54-05 2.1154F-32 PR/FR AT 1 M	2.1599E JO 4EV/3EC
	GAMPA ENERGY MRJFR AT 1 M MENSEC 5.0:34	GY 1.27CC H 2.7754E-(2 5.0134E-C2 PILLICLFIES	3. 1497 E-17	3.4497E-17 MR/FR AT 1 M	2.4122E .10 4EV/SEC
	GAMPA ENERGY MR/FR AT 1 M MEV/SFC	1.0538E-C2 6.2006	0.8440 2.0034F-02 1.5594F-06	1.7500 4.2046F-04 3.2721E C4	
	TETAL METERIAL ACTIVITY	2.5124E C4	2.5124E C4 PILLIGIMIFS	1.8209E 04 AK/HK AT 1 M	14 AT 1 M 1.4170E 12 MEV/SEC

SAMPLE FACELEM III EXPERIMENTAL CAFSULE

IRRADIATICN TIME 1.440E 04 MIN	TRCN GROUP		.73 0.622 <i>7</i> :18 0.9563 n.		0.4970 0.4970 0.4970		000	600		0. 0. 0. 15 0.9985		•	69 0.9206 0.
ICN TIME	PER NEUT		0.3473 7.0418 0.		0.4949		000	ં ં ં	0.0284	0. 0. 0.	0.0283		n. 0269 n. 0.
IRRADIATI	ACIIVITY FRACTICN PER NEUTRCN GROUP		0.0299 0.0019 0.		0.0182 0.		:::	ಕರಕ	C. 0004		C. 0004	:	0.0524 C. C.
, GYGLES	ACT I VI TY		0.000		0.52400		1.11.11.00	1.000	00000	1.0000	0 1		1.00.0
			650		•••		•••	•••	• •	2727	• • •	•	•••
4.000E 15	ZERC CECAY TIME				••0		7.605E 09 0. 0.	• • • • • • •	ċ		 .	•	••••
2. 10 UF 13	A SAU		3.57++ 12 1.077+ 14 1.95++ u5		- 4.27/+ 13 5.13n+ Ub		8-76-+ 10 3-25/+ 11 3-43+ 10	4.19h 07 2.32h 08 2.59h 07	1.9491 12	1.241+ 09 5.244+ 07 5.477+ 04 5.31++ 11	1.455+ 13 6.724+ U5 6.11-		1.514+ 13 2.985+ 10 6.344+ 09
; 1.5CCE 13	BEIGHT FRACTICE	0.15100		161611		13656.	35 00-		0.67430		C.(542f	6-12766	
3.CCCE 12	₽€ 1 GF		(N.G) b 185 (N.G) b167 (N.P) 1A186		(N.G) 1A182 (N.2N) TA18CP		W. W.	(N.2N) NI 57 (N.P) CC EC (N.A) FE 55		(N.P) PN 54 (N.P) PN 54 (N.P) PN 56 (N.G) FE 55	(N-G) CR 51 (N-2N) CR 45		(h, G) AL 28 (h, P) PG 27 (h, A) NA 24
NEUTFCN FILX	REFFERT	TUNCSTEN	* * * * * * * * * * * * * * * * * * *	TANTALUM	141£1 TA1£1	N ICKEI	Z Z Z	N I E	4		CHRCM ILM CR SC CR SC	y =	AL 27

IF ME MASS	4.8105E 1 . MEV/SEC	4.5345E 1.3 MEV/SEC	3.1535E JS MEV/SEC	3.4375E 1 5 MEV/SEC	1.1195E U/ MEV/SEC	2.1910E JY WEW/SEC	2.7400E 11 MEV/SEC	4.7160E 34 4EV/SEC	6.1343E J 7 MEV/SEC	5.7999E JB MEVINEC	6.3114E 11 4 FV/SEC	1.3416E 1.2 MEV/SEC	1.0352E JY MEVINEC	5.6155E 11 MEV/SEC	4.3810E JY WEVINEC	4.1375E U4 4EV/SEC	7.3662E JY MEVISEC	2.7015E 13 WEV/3EG	3.8516E IU MEV/SEC	2.6158E 1 U MEV/SEC	2.5496E J+ MEV/SEC	18 AT 1 M 1.4468E 14 MEV/SEC
ALL CUTFUT FCK LISTAL MASS	6-1315F 37 PR/FR AT 3 M	5. n. 09F 05 PR/FR AT 1 M	4.0522F-34 PF/FR FT 1 M	4.41 72 E 35 PR/FR AT 1 M	1.4386-31 PR/FR AT 1 M	2. ALISSE UL PRZER AT 1 M	3.52 USF US PRZHE BT 1 M	6. WALLE DE MRZER AT 1 M	7.80 20 E-31 PR/HR AT 1 M	7. 6329F JJ MR/FR AT 1 M	B. II UIF US PRZER AT 1 M	1. 7/39F 34 PR/FF FT 1 M	1. 4502F JI PRZFF AT 1 M	7.2164E 35 MR/FR AT 1 M	Son Joh JI MAZER ET I M	5.4172E-34 MR/FF AT 1 M	Stansof ul PR/FR AT 1 M	3.4715E US PR/FF AT 1 M	4. Ve 33F 17 PR/FF AT 1 M	3.4513F 12 MR/FR AT 1 M	3.1102F-34 PR/FR FT 3 M	HILINMIES 1.4092E CE MATHR AT 1 H
RRACIATION C. MIN	S. ET37E C4 PILLICUSIES	2.9111E CE PILLICLFIES	5.2762F-C3 PILLICLFIES	1.15ece ce pillicipies	J. 2681E CL PILLICLETES	2.2667E C3 PILLICLEIES	S*CCESE C3 PILLICLETES	S.254CE CZ PILLICLFIES	1.134CE CC PILLICLEIES	6.27CZE CO PILLICLEIES	1.4342E C4 PILLICLFIES	5.2671E C4 PILLICLFIES	3.35C7E CL PILLICLFIES	3.5321E CS PILLICLETES	telite (1 PILLICLETES	1.8164E-C2 PILLICLFIES .	1.3625F C2 PILLICLFIES	4.1019E OF PILLIGLETES	B.CESCE C? MILLICLFIES	1.714CE CZ PILLICLFIES	3.66EE-C4 PILLICLIES	JAL ACTIVITY 5.C475E C6 PILL HAMALES
TIME AFIER IRRACIAT	31.4	187 W	14166	18162	141 ECH	K35 UJ	3; 0)	£3 00	E IN	נט ונ	5, 34) [V	7 . 7	CR 91	* **	CR 15	7 2	A. 78	F. 0 4	45 44	91 18	TOTAL MITERIAL

REFERENCES

- 1. Klopp, David A.: Prediction of Neutron Induced Activation. Vol. I: NAP Code Manual. Rep. IITRI-A6088-21, vol. 1, IIT Research Inst. (NASA CR-89654), Jan. 31, 1966.
 - Klopp, David A.: Prediction of Neutron Induced Activation. Vol. II: NAP, Physical Models and Experimental Validation. Rep. IITRI-A6088-22, vol. 2, IIT Research Inst. (NASA CR-89958), Jan. 31, 1966.
 - Klopp, David A.: Prediction of Neutron Induced Activation. Vol. III: NAP Cross Section Library. Rep. IITRI-A6088-23, vol. 3, IIT Research Inst., Jan. 31, 1966.
 - Klopp, David A.: Prediction of Neutron Induced Activation. Vol. IV: NAP Gamma Radiation Library. Rep. IITRI-A6088-24, vol. 4, IIT Research Inst., Jan. 31, 1966.
- 2. Etherington, Harold, ed.: Nuclear Engineering Handbook. McGraw-Hill Book Co., Inc., 1958.
- 3. Heiser, P. C.; and Ricks, L. O.: Activation Source Strength Program. ACT-II. Rep. WANL-TNR-063 (Add. 1), Westinghouse Elec. Corp., 1962.