Instruction Specifications for the Simple Computer

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1*$	N, Z
AND	0001000	AND	RD, RA, RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR	RD, RA, RB	$R[DR] \leftarrow R[SA] \vee R[SB]^*$	N, Z
Exclusive OR	0001010	XOR	RD, RA, RB	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]}^*$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	
Load Immediate	1001100	LDI	RD, OP	$R[DR] \leftarrow \operatorname{zf} OP^*$	
Add Immediate	1000010	ADI	RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP^*$	N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$	
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$	
Branch on Zero	1100000	BRZ	RA,AD	if $(R[SA] = 0) PC \leftarrow PC + se AD$ if $(R[SA] \neq 0) PC \leftarrow PC + 1$, N, Z
Branch on Negative	1100001	BRN	RA,AD	if $(R[SA] < 0) PC \leftarrow PC + se AD$ if $(R[SA] \ge 0) PC \leftarrow PC + 1$, N, Z
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]^*$	

^{*} For all of these instructions, PC ← PC + 1 is also executed to prepare for the next cycle.

(c) Jump and branch

Ex: A computer has a 32-bit instruction word broken into fields as follows: opcode (6-bits), two register file address fields (5-bits each), and one immediate operand / register file address field (16-bits).

(a) What is the maximum number of operations that can be specified?

(b) How many registers can be addressed?

(c) What is the range of unsigned immediate operands that can be provided?

(d) What is the range of signed immediate operands that can be provided, assuming that the operands are in 2's complement representation and that bit 15 is the sign bit?

opcode regaddress/ regaddress/ immediate / regaddress

a) Number of operations: 2 #ofoprace bits

=26=64 b) Number of registers: 2# of reg. address bits

 $=2^{5}=32$

c) unsigned immediate range $\Rightarrow 0 \Leftrightarrow (2^{16}1)$ 0 $\Leftrightarrow 6553)$

d) signed immediate range \Rightarrow - $(2^{17}+1) \leftrightarrow 2^{15}$ -32768 \leftrightarrow 32767 CH: The single-cycle computer in figure executative to llowing instructions described by the register transfers:

(a) Complete the following table, giving the binary instruction decoder outputs during execution of each

of the Instruction	S	 			1	1	ı			JB
Instruction Register Transfer	DA	AA	BA	MB	FS	MD	RW	Nico	PL	JB BC
other R[O] < AFJ (F) R[S]	000	444	011	0	1010	0	1	Ò	0	90
PEIJ -M [RE4]	001	100	**	0	0000	1	1	0	0	%
R[2]←P[5]+2	00	101	XXX	1	0010	0	1	0	0	%
R[3] < sl R[6]	OM	XXX	110	Ô	(410	0	1	0	0	0/
if $(RI4J=0)$ PC \leftarrow PC+seAD else PC \leftarrow PC+1	***	100	**		000	0	0	0	1	0/6
	I									

(b) Complete the following Holble, giving the instruction in binary for the single-cycle computer that executes the register transfer (if any field is not wed, give it the value 0)

CAT ONLY THEIR IS NOT COLD TO STATE OF								
Instruction pegister-Transfer	Opcode	DR	\$A	SB or Operand				
Section P[0] ← P[7]+ P[6]	0000040	000	111	110				
December REIJ - RESJ-1	0000110	001	101	.000				
R[2] < SI R[4]	0001110	010	000	100				
£ 2[3] ← P[3]	0001011	011	OH	000				
of RE43 - RE27 VR	1001 000	100	010	OOL				