Text Summarization

Text summarization refers to the task of compressing a relatively large amount of text data or a long text article into a more concise form for easy digestion. It is obviously very important for text data access, where it can help users see the main content or points in the text data without having to read all the text. Summarization of search engine results is a good example of such an application. However, summarization can also be useful for text data analysis as it can help reduce the amount of text to be processed, thus improving the efficiency of any analysis algorithm.

However, summarization is a non-trivial task. Given a large document, how can we convey the important points in only a few sentences? And what do we mean by "document" and "important"? Although it is easy for a human to recognize a good summary, it is not as straightforward to define the process. In short, for any text summarization application, we'd like a semantic compression of text; that is, we would like to convey essentially the same amount of information in less space. The output should be fluent, readable language. In general, we need a purpose for summarization although it is often hard to define one. Once we know a purpose, we can start to formulate how to approach the task, and the problem itself becomes a little easier to evaluate.

In one concrete example, consider a news summary. If our input is a collection of news articles from one day, a potentially valid output is a list of headlines. Of course, this wouldn't be the entire list of headlines, but only those headlines that would interest a user. For a different angle, consider a news summarization task where the input is one text news article and the output should be one paragraph explaining what the article talks about in a readable format. Each task will require a different solution.

Summarizing retrieval results is also of particular interest. On a search engine result page, how can we help the user click on a relevant link? A common strategy is to highlight words matching the query in a short snippet. An alternative approach would be to take a few sentences to summarize each result and display the short

summaries on the results page. Using summaries in this way could give the user a better idea of what information the document contains before he or she decides to read it.

Opinion summarization is useful for both businesses and shoppers. Summarizing all reviews of a product lets the business know whether the buyers are satisfied (and why). The review summaries also let the shoppers make comparisons between different products when searching online. Reviews can be further broken down into summaries of positive reviews and summaries of negative reviews. An even more granular approach described in Wang et al. [2010] and Wang et al. [2011] and further discussed in Chapter 18 uses topic models to summarize product reviews relating to different aspects. For hotel reviews, this could correspond to service, location, price, and value. Although the output in these two works is not a human-readable summary, we could imagine a system that is able to summarize all the hotel reviews in English (or any other language) for the user.

In this chapter, we overview two main paradigms of summarization techniques and investigate their different applications.

16.1 Overview of Text Summarization Techniques There are two main methods in text summarization. The

There are two main methods in text summarization. The first is **selection-based** or **extractive summarization**. With this method, a summary consists of a sequence of sentences selected from the original documents. No new sentences are written, hence the summary is *extracted*. The second method is **generation-based** or abstractive summarization. Here, a summary may contain new sentences not in any of the original documents. One method that we explore here is using a language model. Previously in this book, we've used language models to calculate the likelihood of some text; in this chapter, we will show how to use a language model in reverse to generate sentences. We also briefly touch on the field of **natural language generation** in our discussion of abstractive techniques.

Following the pattern of previous chapters, we then move on to evaluation of text summarization. The two methods each have evaluation metrics that are particularly focused towards their respective implementation, but it is possible to use (e.g.) an abstractive evaluation metric on a summary generated by an extractive algorithm. Finally, we look into some applications of text summarization and see how they are implemented in real-world systems.

Text summarization is a broad field and we only touch on the core concepts in this chapter. For further reading, we recommend that the reader start with Das and Martins [2007], which provides a systematic overview of the field and contains much of the content from this chapter in an expanded form.

16.2

Extractive Text Summarization

Information retrieval-based techniques use the notion of sentence vectors and similarity functions in order to create a summarization text. A sentence vector is equivalent in structure to a document vector, albeit based on a smaller number of words. Below, we will outline a basic information retrieval-based summarization system.

- 1. Split the document to be summarized into sections or passages.
- 2. For each passage, "compress" its sentences into a smaller number of relevant (yet not redundant) sentences.

This strategy retains coherency since the sentences in the summary are mostly in the same order as they were in the original document.

Step one is portrayed in Figure 16.1. The sentences in the document are traversed in order and a normalized, symmetric similarity measure (see Chapter 14) is applied on adjacent pairs of sentences. The plot on the right-hand side of the figure shows the change in similarity between the sentences. We can inspect these changes to segment the document into passages when the similarity is low, i.e., a shift in topic occurs. An alternative approach to this segmentation is to simply use paragraphs if the document being operated on contains that information, although most of the time this is not the case. This rudimentary partitioning strategy is a task in

Figure 16.1 Segmenting a document into passages with a similarity-based discourse analysis.

Figure 16.2 Text summarization using maximum marginal relevance to select one sentence from each passage as a summary.

discourse analysis (a subfield of NLP). Discourse analysis deals with sequences of sentences as opposed to only one sentence.

Now that we have our passages, how can we remove redundancy and increase diversity in the resulting summarization during step two? The technique **maximal marginal relevance** (MMR) reranking can be applied to our problem. Essentially, this algorithm greedily reranks each sentence in the current passage, outputting only the top few as a summary. Figure 16.2 shows the output of the algorithm when we only select one sentence from each passage.

The MMR algorithm is as follows. Assume we are given an original list R and a profile p to construct the set of selected sentences S (where $|S| \ll |R|$). R is a partitioned chunk of sentences in the document we wish to summarize. The profile p determines what is exactly meant by "relevance." Originally, the MMR formula was applied to documents returned from an information retrieval system (hence the term reranking). Documents were selected based on their marginal relevance to a query (which is our variable p) in addition to non-redundancy to already-selected documents. Since our task deals with sentence retrieval, p can be a user profile (text about the user), the entire document itself, or it could even be a query formulated by the user.

According to marginal relevance, the next sentence s_i to be added into the selected list S is defined as

$$s_i = \arg\max_{s \in R \setminus S} \left\{ (1 - \lambda) \cdot \sin_1(s, p) - \lambda \cdot \arg\max_{s_j \in S} \sin_2(s, s_j) \right\}. \tag{16.1}$$

The $R \setminus S$ notation may be read as "R set minus S", i.e., all the elements in R that are not in S. The MMR formulation uses $\lambda \in [0, 1]$ to control relevance versus redundancy; the positive relevance score is discounted by the amount of redundancy (similarity) to the already-selected sentences. Again, the two similarity metrics may be any normalized, symmetric measures. The simplest instantiation for the similarity metric would be cosine similarity, and this is in fact the measure used in Carbonell and Goldstein [1998].

The algorithm may be terminated once an appropriate number of words or sentences is in S, or if the score $\sin_1(s, p)$ is below some threshold. Furthermore, the similarity functions may be tweaked as well. Could you think of a way to include sentence position in the similarity function? That is, if a sentence is far away (dissimilar) from the candidate sentence, we could subtract from the similarity score. Even better, we could interpolate the two values into a new similarity score such as

$$sim(s, s') = \alpha \cdot sim_{cosine}(s, s') + (1 - \alpha) \cdot \left(1 - \frac{d(s, s')}{\max d(s, \cdot)}\right), \quad (16.2)$$

where $\alpha \in [0, 1]$ controls the weight between the regular cosine similarity and the distance measure, and $d(\cdot, \cdot)$ is the number of sentences between the two parameters. Note the "one minus" in front of the distance calculation, since a smaller distance implies a greater similarity.

Of course, λ in the MMR formula is also able to be set. In fact, for multi-document summarization, Das and Martins [2007] suggests starting out with $\lambda=0.3$ and then slowly increasing to $\lambda=0.7$. The reasoning behind this is to first emphasize novelty and then default to relevance. This should remind you of the exploration-exploitation tradeoff discussed in Chapter 11.

Abstractive Text Summarization An abstractive summary creates sentences

An abstractive summary creates sentences that did not exist in the original document or documents. Instead of a document vector, we will use a language model to represent the original text. Unlike the document vector, our language model gives us a principled way in which to generate text. Imagine we tokenized our document with unigram words. In our language model, we would have a parameter representing the probability of each word occurring. To create our own text, we will draw words from this probability distribution.

Figure 16.3 Drawing words from a unigram language model.

Say we have the unigram language model θ estimated on a document we wish to summarize. We wish to draw words w_1, w_2, w_3, \ldots from θ that will comprise our summary. We want the word w_i to occur in our summary with about the same probability it occurred in the original document—this is how our generated text will approximate the longer document. Figure 16.3 depicts how we can accomplish this task. First, we create a list of all our parameters and incrementally sum their probabilities; this will allow us to use a random number on [0,1] to choose a word w_i . Simply, we get a uniform random floating point number between zero and one. Then, we iterate through the words in our vocabulary, summing their probabilities until we get to the random number. We output the term and repeat the process.

In the example, imagine we have the following values:

$$p(\text{cat})$$
 0.010
 $p(\text{cat}) + p(\text{dog})$ 0.018
 $p(\text{cat}) + p(\text{dog}) + p(\text{a})$ 0.038
 \vdots \vdots \vdots \vdots \vdots 1.0

Say we generate a random number x_1 using a uniform distribution on [0, 1]. This is denoted as $x_1 \sim \mathcal{U}(0, 1)$. Now imagine that $x_1 = 0.032$. We go to the cumulative point 0.032 in our distribution and output "a". We can repeat this process until our summary is of a certain length or until we generate an end-of-sentence token </s>.

At this point, you may be thinking that the text we generate will not make any sense—that is certainly true if we use a unigram language model since each word is generated independently without regard to its context. If more fluent language is required, we can use an n-gram language model, where n > 1. Instead of each word being independently generated, the new word will depend on the previous n - 1

words. The generation will work the same way as in the unigram case: say we have the word w_i and wish to generate w_{i+1} with a bigram language model. Our bigram language model gives us a distribution of words that occur after w_i and we draw the next word from there in the same way depicted in Figure 16.3.

The sentence generation from a bigram language model proceeds as follows: start with (e.g.) *The*. Then, pick from the distribution $p(w \mid \text{The})$ using the cumulative sum technique. The next selected word could be *cat*. Then, we use the distribution $p(w \mid \text{cat})$ to find the next w, and so on. While the unigram model only had one "sum table" (Figure 16.3), the bigram case needs V tables, one for each w' in $p(w \mid w')$.

Typically, the n-value will be around three to five depending on how much original data there is. We saw what happened when n is too small; we get a jumble of words that don't make sense together. But we have another problem if n is too large. Consider the extreme case where n=20. Then, given 19 words, we wish to generate the next one using our 20-gram language model. It's very unlikely that those 19 words occurred more than once in our original document. That means there would only be one choice for the 20th word. Because of this, we would just be reproducing the original document, which is not a very good summary. In practice, we would like to choose an n-gram value that is large enough to produce coherent text yet small enough to not simply reproduce the corpus.

There is one major disadvantage to this abstractive summarization method. Due to its nature, a given word only depends on the n surrounding words. That is, there will be no long-range dependencies in our generated text. For example, consider the following sentence generated from a trigram language model:

They imposed a gradual smoking ban on virtually all corn seeds planted are hybrids.

All groups of three words make sense, but as a whole the sentence is incomprehensible; it seems the writer changed the topic from a smoking ban to hybrid crops mid-sentence. In special cases, when we restrict the length of a summary to a few words when summarizing highly redundant text, such a strategy appears to be effective as shown in the micropinion summarization method described in Ganesan et al. [2012].

16.3.1 Advanced Abstractive Methods

Some advanced abstractive methods rely more heavily on natural language processing to build a model of the document to summarize. **Named entity recognition** can be used to extract people, places, or businesses from the text. **Dependency parsers** and other syntactic techniques can be used to find the relation between the entities

and the actions they perform. Once these actors and roles are discovered, they are stored in some internal representation. To generate the actual text, some representations are chosen from the parsed collection, and English sentences are created based on them; this is called **realization**.

Such realization systems have much more fine-grained control over the generated text than the basic abstractive language model generator described above. A templated document structure may exist (such as intro \rightarrow paragraph $1\rightarrow$ paragraph $2\rightarrow$ conclusion), and the structures are chosen to fill each spot. This control over text summarization and layout enables an easily-readable summary since it has a natural topical flow. In this environment, it would be possible to merge similar sentences with conjunctions such as *and* or *but*, depending on the context. To make the summary sound even more natural, pronouns can be used instead of entity names if the entity name has already been mentioned. Below are examples of these two operations:

Gold prices fell today. Silver prices fell today. \rightarrow Gold and silver prices fell today. Company A lost 9.43% today. Company A was the biggest mover. \rightarrow Company A lost 9.43% today. It was the biggest mover.

Even better would be

Company A was today's biggest mover, losing 9.43%.

These operations are possible since the entities are stored in a structured format. For more on advanced natural language generation, we suggest Reiter and Dale [2000], which has a focus on practicality and implementation.

16.4

Evaluation of Text Summarization

In extractive summarization, representative sentences were selected from passages in the text and output as a summary. This solution is modeled as an information retrieval problem, and we can evaluate it as such. Redundancy is a critical issue, and the MMR technique we discussed attempts to alleviate it. When doing our evaluation, we should consider redundant sentences to be irrelevant, since the user does not want to read the same information twice. For a more detailed explanation of IR evaluation measures, please consult Chapter 9.

For full output scoring, we should prefer IR evaluation metrics that do not take into account result position. Although our summary is generated by ranked sentences per passage, the entire output is not a ranked list since the original document is composed of multiple passages. Therefore we can use precision, recall, and F_1 score.

It is possible to rank the passage scoring retrieval function using position-dependent metrics such as average precision or NDCG, but with the final output this is not feasible. Thus we need to decide whether to evaluate the passage scoring or the entire output (or both). Entire output scoring is likely more useful for actual users, while passage scoring could be useful for researchers to fine-tune their methods.

In abstractive summarization, we can't use the IR measures since we don't have a fixed set of candidate sentences. How can we compute recall if we don't know the total number of relevant sentences? There is also no intermediate ranking stage, so we also can't use average precision or NDCG (and again, we don't even know the complete set of correct sentences).

A laborious yet accurate evaluation would have human annotators create a gold standard summary. This "perfect" summary would be compared with the generated one, and some measure (e.g., ROUGE) would be used to quantify the difference. For the comparison measure, we have many possibilities—any measure that can compare two groups of text would be potentially applicable. For example, we can use the cosine similarity between the gold standard and generated summary. Of course, this has the downside that fluency is completed ignored (using unigram words). An alternative means would be to learn an *n*-gram language model over the gold standard summary, and then calculate the log-likelihood of the generated summary. This can ensure a basic level of fluency at the *n*-gram level, while also producing an interpretable result. Other comparisons between two probability distributions would also be applicable, such as KL-divergence.

The overall effectiveness of a summary can be tested if users read a summary and then answer questions about the original text. Was the summary able to capture the important information that the evaluator needs? If the original text was an entire textbook chapter, could the user read a three-paragraph summary and obtain sufficient information to answer the provided exercises? This is the only metric that can be used for both extractive and abstractive measures. Using a language model to score an extractive summary vs. an abstractive one would likely be biased towards the extractive one since this method contains phrases directly from the original text, giving it a very high likelihood.

16.5

Applications of Text Summarization

At the beginning of the chapter, we've already touched on a few summarization applications; we mentioned news articles, retrieval results, and opinion summarization. Summarization saves users time from manually reading the entire corpus while simultaneously enhancing preexisting data with summary "annotations."

The aspect opinion analysis mentioned earlier segments portions of user reviews into speaking about a particular topic. We can use this topic analysis to collect passages of text into a large group of comments on one aspect. Instead of describing this aspect with sorted unigram words, we could run a summarizer on each topic, generating readable text as output. These two methods complement each other, since the first step finds what aspects the users are interested in, while the second step conveys the information.

A theme in this book is the union of both structured and unstructured data, mentioned much more in detail in Chapter 19. Summarization is an excellent example of this application. For example, consider a financial summarizer with text reports from the Securities and Exchange Commission (SEC) as well as raw stock market data. Summarizing both these data sources in one location would be very valuable for (e.g.) mutual fund managers or other financial workers. Being able to summarize (in text) a huge amount of structured trading data could reveal patterns that humans would otherwise be unaware of—this is an example of **knowledge discovery**.

E-discovery (electronic discovery) is the process of finding relevant information in litigation (lawsuits and court cases). Lawyers rely on e-discovery to sift through vast amounts of textual information to build their case. The Enron email dataset is a well-known corpus in this field. Summarizing email correspondence between two people or a department lets investigators quickly decide whether they'd like to dig deeper in a particular area or try another approach. In this way, summarization and search are coupled; search allows a subset of data to be selected that is relevant to a query, and the summarization can take the search results and quickly explain them to the user. Finally, linking email correspondence together (from sender to receivers) is a structured complement to the unstructured text content of the email itself.

Perhaps of more interest to those reading this book is the ability to summarize research from a given field. Given proceedings from a conference, could we have a summarizer explain the main trends and common approaches? What was most novel compared to previous conferences? When writing your own paper, can you write everything except the introduction and related work? The introduction is an overview summary of your paper. Related work is mostly a summary of papers similar to yours.

^{1.} https://www.cs.cmu.edu/~./enron/

Bibliographic Notes and Further Reading

As mentioned in this chapter, Das and Martins [2007] is a comprehensive survey on summarization techniques. Additionally, Nenkova and McKeown [2012] is a valuable read. For applications, latent aspect rating analysis [Wang et al. 2010], [Wang et al. 2011] is a form of summarization applied to product reviews. We mention this particular application in more detail in Chapter 18. A typical extractive summarizer is presented in Radev et al. [2004], a typical abstractive summarizer is presented in Ganesan et al. [2010], and evaluation suggestions are presented in Steinberger and Jezek [2009]. The MMR algorithm was originally described in Carbonell and Goldstein [1998]. For advanced NLG (natural language generation) techniques, a good starting point is Reiter and Dale [2000].

Exercises

- **16.1.** Do you think one summarization method (extractive or abstractive) would perform better on a small dataset? How about a large dataset? Justify your reasoning.
- **16.2.** Explain how you can improve the passage detection by looking beyond only the adjacent sentences. How would you implement this?
- 16.3. Write a basic passage segmenter in MeTA. As input, take a document and extract the sentences into a vector with a built-in tokenizer. Segment the vector into passages using a similarity algorithm.
- 16.4. Now that you have a document segmented into passages, use META to set up a search engine over each passage, where you treat passages as individual documents. Ensure that you have enough sentences per passage. You many need to tweak your previous answer to achieve this.
- 16.5. With your passage search engine, find a representative sentence from each passage to create a summary for the original document.
- 16.6. Use MeTA's language model to learn a distribution of words over a document you wish to summarize.
- 16.7. Add a generate function to the language model. It should take a context (n-1 terms) and generate the n^{th} term. Use the calculation described in this chapter to generate the next word.
- 16.8. Summarize the input document using the generator. Experiment with different stopping criteria. Which seems to work the best?

- **16.9.** Create some simple post-processing rules for natural language generation realization. The examples we gave in the text were sentence joining and pronoun insertion. What else can you think of?
- **16.10.** Explain how we can combine text summarization and topic modeling to create a powerful exploratory text mining application.
- **16.11.** What can we accomplish by interpolating a language model distribution for an abstractive summarizer with another probability distribution, perhaps from existing summaries?

References

- C. C. Aggarwal. 2015. *Data Mining The Textbook*. Springer. DOI: 10.1007/978-3-319-14142-8. 296
- C. C. Aggarwal and C. Zhai, editors. 2012. *Mining Text Data*. Springer. DOI: 10.1007/978-1-4614-3223-4. 296, 315
- J. Allen. 1995. *Natural Language Understanding*. 2nd ed. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA. 54
- G. Amati and C. J. Van Rijsbergen. October 2002. Probabilistic models of information retrieval based on measuring the divergence from randomness. *ACM Trans. Inf. Syst.*, 20(4):357–389. DOI: 10.1145/582415.582416. 87, 88, 90, 111
- A. U. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. 2009. On smoothing and inference for topic models. In *UAI 2009, Proc. of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada*, June 18-21, 2009, pp. 27–34. 385
- R. A. Baeza-Yates and B. A. Ribeiro-Neto. 2011. *Modern Information Retrieval the concepts and technology behind search*. 2nd ed. Pearson Education Ltd., Harlow, UK. http://www.mir2ed.org/. xvii, 18, 19
- Y. Bar-Hillel, *The Present Status of Automatic Translation of Languages*, in Advances in Computers, vol. 1 (1960), pp. 91–163.
- R. Belew. 2008. Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW. Cambridge University Press. 18
- N. J. Belkin and W. B. Croft. 1992. Information filtering and information retrieval: Two sides of the same coin? *Commun. ACM*, 35(12):29–38. DOI: 10.1145/138859.138861.
- C. M. Bishop. 2006. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer-Verlag New York, Inc., Secaucus, NJ. 19, 37, 312, 385, 462
- D. M. Blei, A. Y. Ng, and M. I. Jordan. March 2003. Latent Dirichlet Allocation. *J. of Mach. Learn. Res.*, 3:993–1022. 385

- J. S. Breese, D. Heckerman, and C. Kadie. 1998. Empirical analysis of predictive algorithms for collaborative filtering. In Proc. of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI'98, Morgan Kaufmann Publishers Inc. pp. 43-52, San Francisco, CA. http://dl.acm.org/citation.cfm?id=2074094 .2074100. 235
- P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. 1992. Classbased N-gram Models of Natural Language. Comput. Linguist., 18(4):467-479. 273, 288, 290, 291
- C. Buckley. 1994. Automatic query expansion using smart: Trec 3. In Proc. of The third Text REtrieval Conference (TREC-3, pp. 69-80. 144
- S. Büttcher, C. Clarke, and G. V. Cormack. 2010. Information Retrieval: Implementing and Evaluating Search Engines. The MIT Press. xvii, 18, 165
- F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso. 2011. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Trans. Web, 5(1):2:1-2:33. DOI: 10.1145/1921591.1921593. 235
- C. Campbell and Y. Ying. 2011. Learning with Support Vector Machines. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers. DOI: 10.2200/S00324ED1V01Y201102AIM010. 311
- J. Carbonell and J. Goldstein. 1998. The Use of MMR, Diversity-based Reranking for Reordering Documents and Producing Summaries. In Proc. of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '98,ACM, pp. 335-336, New York. DOI: doi=10.1.1.188.3982 321, 327
- C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1-27:27. 58
- J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei. 2009. Reading Tea Leaves: How Humans Interpret Topic Models. In Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, Curran Associates, Inc. 22, pp. 288–296. 272, 383, 384, 385, 410
- K. W. Church and P. Hanks. 1990. Word association norms, mutual information, and lexicography. Comput. Linguist., 16(1):22-29. http://dl.acm.org/citation .cfm?id=89086.89095.273
- T. Cover and J. Thomas. 1991. Elements of Information Theory. New York: Wiley. DOI: DOI: 10.1002/047174882X 37, 473
- B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval in Practice, 1st ed., Addison-Wesley Publishing Company. xvii, 18, 165

- D. Das and A. F. T. Martins. 2007. A Survey on Automatic Text Summarization. Technical report, Literature Survey for the Language and Statistics II course at Carnegie Mellon University. 318, 321, 327
- R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res., 9:1871-1874. 58
- H. Fang, T. Tao, and C. Zhai. 2004. A formal study of information retrieval heuristics. In Proc. of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '04, ACM, pp. 49–56, New York. DOI: 10.1145/1008992.1009004.129
- H. Fang, T. Tao, and C. Zhai. April 2011. Diagnostic evaluation of information retrieval models. ACM Trans. Inf. Syst., 29(2):7:1-7:42. DOI: 10.1145/1961209.1961210. 88, 90, 129
- R. Feldman and J. Sanger. 2007. The Text Mining Handbook Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press. 18
- E. A. Fox, M. A. Gonçalves, and R. Shen. 2012. Theoretical Foundations for Digital Libraries: The 5S (Societies, Scenarios, Spaces, Structures, Streams) Approach. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers. DOI: 10.2200/S00434ED1V01Y201207ICR022. 80
- W. B. Frakes and R. A. Baeza-Yates, editors. 1992. Information Retrieval: Data Structures & Algorithms. Prentice-Hall, 18
- K. Ganesan, C. Zhai, and J. Han. 2010. Opinosis: A graph-based approach to abstractive summarization of highly redundant opinions. In Proc. of the 23rd International Conference on Computational Linguistics, COLING '10, Association for Computational Linguistics, pp. 340–348, Stroudsburg, PA. 327
- K. Ganesan, C. Zhai, and E. Viegas. 2012. Micropinion generation: an unsupervised approach to generating ultra-concise summaries of opinions. In Proc. of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages 869-878. DOI: 10.1145/2187836.2187954 323
- J. Gantz, and D. Reinsel. 2012. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East, IDC Report, December, 2012. 3
- A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 1995. Bayesian Data Analysis. Chapman & Hall. 37
- S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The Google file system. In Proc. of the nineteenth ACM symposium on Operating systems principles (SOSP '03). ACM, New York, 29-43. 195
- M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp. 2004. Streams, structures, spaces, scenarios, societies (5s): A formal model for digital libraries. ACM Trans. Inf. Syst., 22(2):270-312. DOI: 10.1145/984321.984325. 84

- D. A. Grossman and O. Frieder. Kluwer, 2004. *Information Retrieval Algorithms and Heuristics, Second Edition*, vol. 15 of *The Kluwer International Series on Information Retrieval*. DOI: 10.1007/978-1-4020-3005-5. 18
- G. Hamerly and C. Elkan. 2003. Learning the k in k-means. In *Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS December 8-13, 2003*, Vancouver and Whistler, British Columbia, Canada], pp. 281–288. DOI: doi=10.1.1.9.3574 295
- J. Han. 2005. *Data Mining: Concepts and Techniques*. Morgan Kaufmann Publishers Inc., San Francisco, CA. 296
- D. Harman. 2011. *Information Retrieval Evaluation*. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers. DOI: 10.1145/215206.215351 168, 188
- M. A. Hearst. 2009. *Search User Interfaces*. 1st ed. Cambridge University Press, New York. 19, 85
- J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating Collaborative Filtering Recommender Systems. *ACM Trans. Inf. Syst.*, 22(1):5–53. DOI: 10.1145/963770.963772 235
- J. L. Hodges and E. L. Lehmann. 1970. *Basic Concepts of Probability and Statistics*. Holden Day, San Francisco. 36
- T. Hofmann. 1999. Probabilistic Latent Semantic Analysis. In *Proc. of the Fifteenth Conference on Uncertainty in Artificial Intelligence*, UAI'99, Morgan Kaufmann Publishers Inc., pp. 289–296, San Francisco, CA. DOI: 10.1145/312624.312649 370, 385
- A. Huang. 2008. Similarity Measures for Text Document Clustering. In *Proc. of the Sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008)*, Christchurch, New Zealand, pages 49–56. 280
- F. Jelinek. 1997. *Statistical Methods for Speech Recognition*. MIT Press, Cambridge, MA. 30, 54
- J. Jiang. 2012. Information extraction from text, In Charu C. Aggarwal and ChengXiang Zhai (Eds.), Mining Text Data, Springer, pp. 11–41. 19, 55
- S. Jiang and C. Zhai. 2014. Random walks on adjacency graphs for mining lexical relations from big text data. In *2014 IEEE International Conference on Big Data, Big Data 2014*, Washington, DC, USA, October 27-30, pages 549–554. DOI: 10.1109/BigData.2014.7004272. 273
- Y. Jo and A. H. Oh. 2011. Aspect and sentiment unification model for online review analysis. In *Proceedings of the Fourth ACM International Conference on Web Search and Data Mining*, WSDM '11, ACM, pp. 815–824, New York. DOI: 10.1145/1935826.1935932.410

- T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search. ACM Trans. Inf. Syst., 25(2). DOI: 10.1145/1229179.1229181. 144
- D. Jurafsky and J. H. Martin. 2009. Speech and Language Processing. 2nd ed. Prentice-Hall, Inc., Upper Saddle River, NJ. 19, 54
- D. Kelly. 2009. Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends in Information Retrieval, 3(1-2):1-224. DOI: 10.1561/1500000012 168, 188
- D. Kelly and J. Teevan. 2003. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum, 37(2):18-28. DOI: 10.1145/959258.959260. 144
- H. D. Kim, M. Castellanos, M. Hsu, C. Zhai, T. Rietz, and D. Diermeier. 2013. Mining causal topics in text data: iterative topic modeling with time series feedback. In Proc. of the 22nd ACM international conference on Conference on information and knowledge management, CIKM '13, ACM pages 885-890, New York, NY. DOI: 10.1145/2505515.2505612.435,438,439,440
- J. M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604-632. DOI: 10.1145/324133.324140. 216
- J. M. Kleinberg. 2002. An impossibility theorem for clustering. In Advances in Neural Information Processing Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British Columbia, Canada], pp. 446-453. http://papers.nips.cc/paper/2340-an-impossibility-theorem-for-clustering. 296
- D. Koller and N. Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press. 385
- J. Lafferty and C. Zhai. 2003. Probabilistic relevance models based on document and query generation. In W. Bruce Croft and John Lafferty, editors, Language Modeling and Information Retrieval. Kluwer Academic Publishers. DOI: 10.1007/978-94-017-0171-6_1 87, 113
- D. Lin. 1999. Automatic identification of non-compositional phrases. In Proc. of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL '99, Association for Computational Linguistics, pages 317-324, Stroudsburg, PA. DOI: 10.3115/1034678.1034730. 273, 291
- J.Lin and C. Dyer. 2010. Data-Intensive Text Processing with MapReduce. Morgan and Claypool Publishers. DOI: 10.2200/S00274ED1V01Y201006HLT007. 198, 216
- Bing Liu. 2012. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers. DOI: 10.2200/ S00416ED1V01Y201204HLT016.410
- T.-Y. Liu. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr., 3(3):225-331. DOI: 10.1561/1500000016. 216

- Y. Lv and C. Zhai. 2009. A comparative study of methods for estimating query language models with pseudo feedback. In Proc. of the 18th ACM Conference on Information and Knowledge Management, CIKM '09, ACM, pp. 1895-1898, New York. DOI: 10.1145/1645953.1646259.144
- Y. Lv and C. Zhai. 2010. Positional relevance model for pseudo-relevance feedback. In Proc. of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '10, ACM, pages 579-586, New York. DOI: 10.1145/ 1835449.1835546.144
- Y. Lv and C. Zhai. 2011. Lower-bounding Term Frequency Normalization. In Proc. of the 20th ACM International Conference on Information and Knowledge Management, CIKM '11, pp. 7–16. DOI: 10.1145/2063576.2063584 88, 110
- P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N. Good, L.L. Jordan, and J. Pal. 2003. How much information? http://www2.sims.berkeley.edu/research/projects/ how-much-info-2003. 3
- C. D. Manning and H. Schütze. 1999. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA. 19, 54, 273
- C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press, New York. xvii, 18, 165, 315
- M. E. Maron and J. L. Kuhns. 1960. On relevance, probabilistic indexing and information retrieval. Journal of the ACM, 7:216-244. DOI: 10.1145/321033.321035 87
- S. Massung and C. Zhai. 2015. SyntacticDiff: Operator-Based Transformation for Comparative Text Mining. In Proc. of the 3rd IEEE International Conference on Big Data, pp. 571-580. 306
- S. Massung and C. Zhai. 2016. Non-Native Text Analysis: A Survey. The Journal of Natural Language Engineering, 22(2):163-186. DOI: 10.1017/S1351324915000303 306
- S. Massung, C. Zhai, and J.Hockenmaier. 2013. Structural Parse Tree Features for Text Representation. In IEEE Seventh International Conference on Semantic Computing, pp. 9-13. DOI: 10.1109/ICSC.2013.13 305
- J. D. McAuliffe and D. M. Blei. 2008. Supervised topic models. In J.C. Platt, D. Koller, Y. Singer, and S.T. Roweis, eds., Advances in Neural Information Processing Systems 20, pages 121–128. Curran Associates, Inc. 386
- G. J. McLachlan and T. Krishnan. 2008. The EM algorithm and extensions. 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ., Wiley. http://gso.gbv.de/DB=2.1/ CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+52983362X&sourceid=fbw_ bibsonomy. DOI: 10.1002/9780470191613 466
- Q. Mei. 2009. Contextual text mining. Ph.D. Dissertation, University of Illinois at Urbana-Champaign. 440

- O. Mei and C. Zhai. 2006. A mixture model for contextual text mining. In *Proceedings* of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, ACM, pp. 649-655, New York. DOI: 10.1145/1150402.1150482. 423, 440
- Q. Mei, D. Xin, H. Cheng, J. Han, and C. Zhai. 2006. Generating semantic annotations for frequent patterns with context analysis. In Proc. of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, ACM, pp. 337–346, New York. DOI: 10.1145/1150402.1150441. 417
- Q. Mei, C. Liu, H. Su, and C. Zhai. 2006. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In Proc. of the 15th international conference on World Wide Web (WWW '06). ACM. New York, 533-542. DOI: 10.1145/1135777 .1135857.425,426
- Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. 2007a. Topic sentiment mixture: Modeling facets and opinions in weblogs. In Proc. of the 16th International Conference on World Wide Web, WWW '07, ACM, pp. 171-180, New York. DOI: 10.1145/1242572.1242596.410
- Q. Mei, X. Shen, and C. Zhai. 2007b. Automatic labeling of multinomial topic models. In Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, August 12-15, 2007, pp. 490-499. DOI: 10.1145/1281192.1281246.278
- Q. Mei, D. Cai, D. Zhang, and C. Zhai. 2008. Topic modeling with network regularization. In Proceedings of the 17th International Conference on World Wide Web, WWW '08, ACM, pp. 101-110, New York. DOI: 10.1145/1367497.1367512. 431, 432, 440
- T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. 2010. Recurrent neural network based language model. In INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pp. 1045-1048. http://www.isca-speech.org/archive/ interspeech_2010/i10_1045.html. 292
- T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, NV, pp. 3111-3119. 273, 292, 293
- T. M. Mitchell. 1997. Machine learning. McGraw Hill Series in Computer Science. McGraw-Hill. 19, 37, 315
- M.-F. Moens. 2006. Information Extraction: Algorithms and Prospects in a Retrieval Context (The Information Retrieval Series). Springer-Verlag New York, Inc., Secaucus, NJ. DOI: 10.1007/978-1-4020-4993-4. 55

- I. J. Myung. 2003. Tutorial on maximum likelihood estimation. *J. Math. Psychol.*, 47(1):90–100. DOI: 10.1016/S0022-2496(02)00028-7. 36
- A. Nenkova and K. McKeown. 2012. A survey of text summarization techniques. In Charu C. Aggarwal and C. Zhai, eds, *Mining Text Data*, pp. 43–76. Springer US. DOI: 10.1007/978-1-4614-3223-4 3. 327
- L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf. 216
- B. Pang and L. Lee. 2008. Opinion Mining and Sentiment Analysis. *Foundations and Trends in Information Retrieval*, 2(1-2):1–135. DOI: 10.1561/1500000011 409, 410
- J. M. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In *Proc. of the 21st Annual International ACM SIGIR Conference on Research* and Development in Information Retrieval, SIGIR '98, ACM, pp. 275–281, New York, NY. DOI: 10.1145/290941.291008. 87, 90, 128, 427
- J. R. Quinlan. 1986. Induction of Decision Trees. *Machine Learning*, 1(1):81–106. DOI: 10.1007/BF00116251. 301
- D. R. Radev, H. Jing, M. Styś, and D. Tam. 2004. Centroid-based summarization of multiple documents. *Information Processing & Management*, 40(6):919–938. DOI: 10.1016/j.ipm.2003.10.006. 327
- D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. 2009. Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In *Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 Volume 1*, EMNLP '09, Association for Computational Linguistics, pages 248–256, Stroudsburg, PA. 386
- E. Reiter and R. Dale. 2000. *Building Natural Language Generation Systems*. Cambridge University Press, New York. 324, 327
- F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. 2010. *Recommender Systems Handbook*. 1st ed. Springer-Verlag New York, Inc. DOI: 10.1007/978-0-387-85820-3 235
- C. J. Van Rijsbergen. 1979. *Information Retrieval*. 2nd ed. Butterworth-Heinemann, Newton, MA.
- S. Robertson and K. Sparck Jones. 1976. Relevance weighting of search terms. *Journal of the American Society for Information Science*, 27:129–146. 87
- S. E. Robertson. 1997. Readings in Information Retrieval. In *The Probability Ranking Principle in IR*, San Francisco, CA, Morgan Kaufmann Publishers Inc. pp. 281–286. 84, 85
- S. Robertson and H. Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. *Found. Trends Inf. Retr.*, 3(4):333–389. DOI: 10.1561/1500000019. 88, 89, 129

- S. Robertson, H. Zaragoza, and M. Taylor. 2004. Simple BM25 Extension to Multiple Weighted Fields. In Proc. of the Thirteenth ACM International Conference on Information and Knowledge Management, CIKM '04, pp. 42-49. DOI: 10.1145/ 1031171.1031181 110
- C. Roe. 2012. The growth of unstructured data: what to do with all those zettabytes? http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to -do-with-all-those-zettabytes/. 3
- R. Rosenfeld. 2000. Two decades of statistical language modeling: Where do we go from here. In Proceedings of the IEEE. 54
- G. Salton. 1989. Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by Computer. Addison-Wesley. 18
- G. Salton and M. McGill. 1983. Introduction to Modern Information Retrieval. McGraw-Hill. 18
- G. Salton, A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing. Commun. ACM, 18(11):613-620. 87
- G. Salton and C. Buckley. 1990. Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41:288–297. 144
- M. Sanderson. 2010. Test Collection Based Evaluation of Information Retrieval Systems. Foundations and Trends in Information Retrieval, 4(4):247-375. 168, 188
- M. Sanderson and W. B. Croft. 2012. The history of information retrieval research. Proc. of the IEEE, 100(Centennial-Issue):1444-1451, 2012. DOI: 10.1109/JPROC.2012. 2189916.85
- S. Sarawagi. 2008. Information extraction. Found. Trends databases, 1(3):261-377. DOI: 10.1561/1900000003.19,55
- F. Sebastiani. 2002. Machine learning in automated text categorization. ACM Comput. Surv., 34(1):1-47. DOI: 10.1145/505282.505283. 315
- G. Shani and A. Gunawardana. 2011. Evaluating Recommendation Systems. In Recommender Systems Handbook, 2nd ed., pp. 257-297. Springer, New York, NY. DOI: 10.1007/978-0-387-85820-3 8. 235
- F. Silvestri. 2010. Mining query logs: Turning search usage data into knowledge. Found. Trends Inf. Retr., 4:1-174. DOI: 10.1561/1500000013 144
- A. Singhal, C. Buckley, and Mandar Mitra. 1996. Pivoted document length normalization. In Proc. of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '96,ACM, pp. 21–29, New York. DOI: 10.1145/243199.243206.89, 106, 128
- N. Smith. 2010. Text-driven forecasting. http://www.cs.cmu.edu/ñasmith/papers/ smith.whitepaper10.pdf. 440

- Mark D. Smucker, James Allan, and Ben Carterette. 2007. A Comparison of Statistical Significance Tests for Information Retrieval Evaluation. In *Proc. of the Sixteenth ACM Conference on Conference on Information and Knowledge Management*, CIKM '07, ACM, pp. 623–632, New York. DOI: 10.1145/1321440.1321528. 185
- K. Sparck Jones and P. Willett, eds. 1997. *Readings in Information Retrieval*. San Francisco, CA, Morgan Kaufmann Publishers Inc. 18, 85, 188
- N. Spirin and J. Han. May 2012. Survey on Web Spam Detection: Principles and Algorithms. *SIGKDD Explor. Newsl.*, 13(2):50–64. DOI: 10.1145/2207243.2207252.
- E. Stamatatos. 2009. A Survey of Modern Authorship Attribution Methods. *J. Am. Soc. Inf. Sci. Technol.*, 60(3):538–556. DOI: 10.1002/asi.v60:3 305
- M. Steinbach, G. Karypis, and V. Kumar. 2000. A comparison of document clustering techniques. In *KDD Workshop on Text Mining*. 296
- J. Steinberger and K. Jezek. 2009. Evaluation measures for text summarization. *Computing and Informatics*, 28(2):251–275. 327
- M. Steyvers and T. Griffiths. 2007. Probabilistic topic models. *Handbook of Latent Semantic Analysis*, 427(7):424–440. 385, 386
- Y. Sun and J. Han. 2012. Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan & Claypool Publishers. DOI: 10.2200/S00433ED1V01 Y201207DMK005, 440
- I. Titov and R. McDonald. 2008. Modeling online reviews with multi-grain topic models. In *Proc. of the 17th International Conference on World Wide Web*, WWW '08, ACM, pp. 111–120, New York. DOI: 10.1145/1367497.1367513. 410
- H. Turtle and W. B. Croft. 1990. Inference networks for document retrieval. In *Proc. of* the 13th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '90, ACM, pp. 1–24, New York. DOI: 10.1145/96749 .98006. 88
- Princeton University. 2010. About wordnet. http://wordnet.princeton.edu. 395
- C. J. van Rijsbergen. 1979. Information Retrieval. Butterworths. 18
- H. Wang, Yue Lu, and C. Zhai. 2010. Latent Aspect Rating Analysis on Review Text Data: A Rating Regression Approach. In *Proc. of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '10, ACM, pp. 783–792, New York. DOI: 10.1145/1835804.1835903. 318, 327, 405, 406, 407, 408, 409, 410
- H. Wang, Y. Lu, and C. Zhai. 2011. Latent Aspect Rating Analysis Without Aspect Keyword Supervision. In *Proc. of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '11, ACM, pp. 618–626, New York. DOI: 10.1145/2020408.2020505. 318, 327, 405, 410

- J. Weizenbaum. 1966. ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine, Communications of the ACM 9 (1): 36-45, DOI: 10.1145/265153.365168. 44
- J. S. Whissell and C. L. A. Clarke. 2013. Effective Measures for Inter-document Similarity. In Proc. of the 22nd ACM International Conference on Conference on Information & Knowledge Management, CIKM '13, ACM, pages 1361-1370, New York. DOI: 10.1145/2505515.2505526.279
- R. W. White and R. A. Roth. 2009. Exploratory Search: Beyond the Query-Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers. DOI: 10.2200/S00174ED1V01Y200901ICR003. 85
- R. W. White, B. Kules, S. M. Drucker, and m.c. schraefel. 2006. Introduction. Commun. ACM, 49(4):36–39. DOI: 10.1145/1121949.1121978. 85
- I. H. Witten, A. Moffat, and T. C. Bell. 1999. Managing Gigabytes (2Nd Ed.): Compressing and Indexing Documents and Images. Morgan Kaufmann Publishers Inc., San Francisco, CA. 18, 165
- C.F J. Wu. 1983. On the convergence properties of the EM algorithm. Ann. of stat., 95-103.368
- J. Xu and W. B. Croft. 1996. Query expansion using local and global document analysis. In Proc. of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '96, ACM, pp. 4-11, New York. DOI: 10.1145/243199.243202.144
- Y. Yang. 1999. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1:67-88. 315
- C. Zhai. 1997. Exploiting context to identify lexical atoms—a statistical view of linguistic context. In Proc. of the International and Interdisciplinary Conference on Modelling and Using Context (CONTEXT-97), pages 119-129. Rio de Janeiro, Brazil. 273, 291
- C. Zhai. 2008. Statistical Language Models for Information Retrieval. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers. DOI: 10.2200/ S00158ED1V01Y200811HLT001.55,87,128,129
- C. Zhai and J. Lafferty. 2001. Model-based Feedback in the Language Modeling Approach to Information Retrieval. In Proceedings of the Tenth International Conference on Information and Knowledge Management, CIKM '01, ACM, pp. 403-410, New York. DOI: 10.1145/502585.502654.143, 466, 473
- C. Zhai and J. Lafferty. 2004. A Study of Smoothing Methods for Language Models Applied to Information Retrieval. ACM Trans. Inf. Syst., 22(2):179-214. 475
- C. Zhai, P. Jansen, E. Stoica, N. Grot, and D. A. Evans. 1998. Threshold Calibration in CLARIT Adaptive Filtering. In *Proc. of Seventh Text REtrieval Conference (TREC-7)*, pp. 149-156. 227

- C. Zhai, P. Jansen, and D. A. Evans. 2000. Exploration of a heuristic approach to threshold learning in adaptive filtering. In *SIGIR*, ACM, pp. 360–362. DOI: 10.1145/345508.345652. 235
- C. Zhai, A. Velivelli, and B. Yu. 2004. A cross-collection mixture model for comparative text mining. In *Proc. of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '04, ACM, pp. 743–748, New York. DOI: 10.1145/1014052.1014150. 423
- D. Zhang, C. Zhai, J. Han, A. Srivastava, and N. Oza. 2009. Topic modeling for OLAP on multidimensional text databases: topic cube and its applications. *Stat. Anal. Data Min.* 2, 5–6 (December 2009), 378–395. DOI: 10.1002/sam.v2.5/6. 440
- J. Zhu, A. Ahmed, and E. P. Xing. 2009. Medlda: Maximum margin supervised topic models for regression and classification. In *Proc. of the 26th Annual International Conference on Machine Learning*, ICML '09, ACM, pp. 1257–1264, New York. DOI: 10.1145/1553374.1553535. 386
- G. K. Zipf. 1949. *Human Behavior and the Principle of Least-Effort*. Cambridge, MA, Addison-Wesley, 162

Index

Absolute discounting, 130 Abstractive text summarization, 318, 321–324	Art retrieval models, 111 Aspect opinion analysis, 325–326 Associations, word. <i>See</i> Word association
Access modes, 73–76	mining
Accuracy in search engine evaluation, 168	Authority pages in web searches, 202, 207
Ad hoc information needs, 8–9	Automatic evaluation in text clustering, 294
Ad hoc retrieval, 75–76	AVA (all-vs-all) method, 313
Add-1 smoothing, 130, 464	Average-link document clustering, 282
Adjacency matrices, 207–208	Average precision
Advertising, opinion mining for, 393	ranked lists evaluation, 175, 177–180
Agglomerative clustering, 277, 280–282, 290	search engine evaluation, 184
Aggregating	Axiomatic thinking, 88
opinions, 393	-
scores, 234	Background models
All-vs-all (AVA) method, 313	mining topics from text, 345-351
Ambiguity	mixture model estimation, 351-353
full structure parsing, 43	PLSA, 370-372
LARA, 406	Background words
NLP, 40-41, 44	mixture models, 141, 351-353
one-vs-all method, 313	PLSA, 368-369, 372
text retrieval vs. database retrieval, 80	Bag-of-words
topics, 335, 337	frequency analysis, 69
Analyzers in MeTA toolkit, 61–64, 453	paradigmatic relations, 256
analyzers::filters namespace, 64	text information systems, 10
analyzers::tokenizers namespace, 64	text representation, 88-90
Anaphora resolution in natural language	vector space model, 93, 109
processing, 41	web searches, 215
Anchor text in web searches, 201	Bar-Hillel report, 42
Architecture	Baseline accuracy in text categorization, 314
GFS, 194-195	Bayes, Thomas, 25
MeTA toolkit, 60–61	Bayes' rule
unified systems, 452–453	EM algorithm, 361-363, 373-374

Bayes' rule (continued)	Bitwise compression, 159–160
formula, 25–26	Blind feedback, 133, 135
LDA, 383	Block compression, 161–162
Bayesian inference	Block world project, 42
EM algorithm, 361–362	BM25 model
PLSA, 379, 382	description, 88
Bayesian parameter estimation	document clustering, 279
formula, 458	document length normalization, 108-109
overfitting problem, 28–30	link analysis, 201
unigram language model, 341, 359	Okapi, 89, 108
Bayesian smoothing, 125	popularity, 90
Bayesian statistics	probabilistic retrieval models, 111
binomial estimation and beta distribu-	BM25-F model, 109
tion, 457-459	BM25 score
Dirichlet distribution, 461-463	paradigmatic relations, 258–261
LDA, 382	syntagmatic relations, 270
multinomial distribution, 460-461	web search ranking, 210
multinomial parameters, 463-464	BM25 TF transformation
Naive Bayes algorithm, 309–312	description, 104-105
pseudo counts, smoothing, and setting	paradigmatic relations, 258–259
hyperparameters, 459–460	BM25+ model, 88, 110
Berkeley study, 3	Breadth-first crawler searches, 193
Bernoulli distribution, 26	Breakeven point precision, 189
Beta distribution, 457-459	Brown clustering, 278, 288–291
Beta-gamma threshold learning, 227-228	Browsing
Bias, clustering, 276	multimode interactive access, 76-78
Big text data, 5-6	pull access mode, 73-75
Bigram language model	support for, 445
abstractive summarization, 323	text information systems, 9
Brown clustering, 290	web searches, 214
Bigrams	word associations, 252
frequency analysis, 68	Business intelligence
sentiment classification, 394-395	opinion mining, 393
text categorization, 305	text data analysis, 243
words tokenizers, 149	
Binary classification	C++ language, 16, 58
content-based recommendation, 223	Caching
text categorization, 303	DBLRU, 164-165
Binary hidden variables in EM algorithm,	LRU, 163-164
362–364, 366, 368, 467	MeTA toolkit, 60
Binary logistic regression, 397	search engine implementation, 148,
Binomial distribution, 26–27	162-165
Binomial estimation, 457-459	Categories
Bit vector representation, 93-97	categorical distributions, 460–461

sentiment classification, 394, 396–397	vector space retrieval models, 99, 109
text information systems, 11–12	Compact clusters, 281
Causal topic mining, 433–437	Compare operator, 450, 452
Centroid vectors, 136–137	Complete data for EM algorithm, 467–468
Centroids in document clustering, 282–284	Complete link document clustering, 281–
CG (cumulative gain) in NDCG, 181–182	282
=	
character_tokenizer tokenizer, 61	Component models
Citations, 202	background language models, 345, 347–350
Classes	
Brown clustering, 289	CPLSA, 421
categories, 11–12	description, 143
sentiment, 393–396	EM algorithm, 359
Classification	mixture models, 355–356, 358–359
machine learning, 34–36	PLSA, 370–373
NLP, 43–44	Compression
Classifiers in text categorization, 302–303	bitwise, 159–160
classify command, 57	block, 161–162
Cleaning HTML files, 218–219	overview, 158–159
Clickthroughs	search engines, 148
probabilistic retrieval model, 111–113	text representation, 48–49
web searches, 201	Compression ratio, 160–161
Clustering bias, 276	Concepts in vector space model, 92
Clusters and clustering	Conceptual framework in text information
joint analysis, 416	systems, 10–13
sentiment classification, 395	Conditional entropy
text. See Text clustering	information theory, 33
Coherence in text clustering, 294–295	syntagmatic relations, 261–264, 270
Coin flips, binomial distribution for, 26–27	Conditional probabilities
Cold start problem, 230	Bayes' rule, 25–26
Collaborative filtering, 221, 229–233	overview, 23–25
Collapsed Gibbs sampling, 383	Configuration files, 57–58
Collect function, 197	Confusion matrices, 314–315
Collection language model	Constraints in PLSA, 373
KL-divergence, 474	Content analysis modules, 10-11
smoothing methods, 121-126	Content-based filtering, 221–229
Common form of retrieval models, 88-90	Content in opinion mining, 390-392
Common sense knowledge in NLP, 40	Context
Common words	Brown clustering, 290
background language model, 346-347,	non-text data, 249
350-351	opinion mining, 390-392
feedback, 141, 143	paradigmatic relations, 253-258
filtering, 54	social networks as, 428-433
mixture models, 352-353, 355-356	syntagmatic relations, 261–262
unigram language model, 345–346	text mining, 417-419

Context (continued)	Data mining
time series, 433–439	joint analysis, 413–415
Context variables in topic analysis, 330	probabilistic retrieval model algorithms,
Contextual Probabilistic Latent Semantic	117
Analysis (CPLSA), 419–428	text data analysis, 245–246
Continuous distributions	Data types in text analysis, 449–450
Bayesian parameter estimation, 28	Data-User-Service Triangle, 213–214
description, 22	Database retrieval, 80–82
Co-occurrences in mutual information,	DBLRU (Double Barrel Least-Recently Used)
267–268	caches, 164–165
Corpus input formats in MeTA toolkit,	DCG (discounted cumulative gain), 182-
60-61	183
corpusname.dat file, 60	Decision boundaries for linear classifiers,
corpusname.dat.gz file, 60	311-312
corpusname.dat.labels file, 60	Decision modules in content-based
corpusname.dat.labels.gz file, 60	filtering, 225
Correlations	Decision support, opinion mining for, 393
mutual information, 270	Deep analysis in natural language
syntagmatic relations, 253–254	processing, 43–45
text-based forecasting, 248	Delta bitwise compression, 160
time series context, 437	Dendrograms, 280–281
Cosine similarity	Denial of service from crawlers, 193
document clustering, 279-280	Dependency parsers, 323
extractive summarization, 321	Dependent random variables, 25
text summarization, 325	Design philosophy, MeTA, 58–59
vector measurement, 222, 232	Development sets for text categorization,
Coverage	314
CPLSA, 420-422, 425-426	Dirichlet distribution, 461-463
LDA, 380-381	Dirichlet prior smoothing
topic analysis, 332-333	KL-divergence, 475
CPLSA (Contextual Probabilistic Latent	probabilistic retrieval models, 125-127
Semantic Analysis), 419–428	Disaster response, 243-244
Cranfield evaluation methodology, 168-170	Discounted cumulative gain (DCG), 182-183
Crawlers	Discourse analysis in NLP, 40
domains, 218	Discrete distributions
dynamic content, 217	Bayesian parameter estimation, 29
languages for, 216-217	description, 22
web searches, 192–194	Discriminative classifiers, 302
Cross validation in text categorization, 314	Distances in clusters, 281
Cumulative gain (CG) in NDCG, 181-182	Distinguishing categories, 301–302
Current technology, 5	Divergence-from-randomness models, 87,
	111
Data-driven social science research, opinion	Divisive clustering, 277
mining for, 393	Document-at-a-time ranking, 155

Document clustering, 277	Eliza project, 42, 44–45
agglomerative hierarchical, 280–282	EM algorithm. See Expectation-
K-means, 282–284	maximization (EM) algorithm
overview, 279–280	Email counts, 3
Document frequency	Emotion analysis, 394
bag-of-words representation, 89	Empirically defined problems, 82
vector space model, 99-100	Enron email dataset, 326
Document IDs	Entity-relation re-creation, 47
compression, 158-159	Entropy
inverted indexes, 152	information theory, 31-33
tokenizers, 149	KL-divergence, 139, 474
Document language model, 118–123	mutual information, 264-265
Document length	PMI, 288
bag-of-words representation, 89	skewed distributions, 158
vector space model, 105-108	syntagmatic relations, 261–264, 270
Documents	Evaluation, search engine. See Search
filters, 155–156	engine evaluation
ranking vs. selecting, 82–84	Events
tokenizing, 148–150	CPLSA, 426-427
vectors, 92–96	probability, 21–23
views in multimode interactive access, 77	Exhaustivity in sentiment classification, 396
Domains, crawling, 218	Expectation-maximization (EM) algorithm
Dot products	CPLSA, 422
document length normalization, 109	general procedure, 469-471
linear classifiers, 311	incomplete vs. complete data, 467–468
paradigmatic relations, 257–258	<i>K</i> -means, 282–283
vector space model, 93-95, 98	KL-divergence, 476
Double Barrel Least-Recently Used (DBLRU)	lower bound of likelihood, 468-469
caches, 164–165	MAP estimate, 378-379
Dynamic coefficient interpolation in	mining topics from text, 359-368
smoothing methods, 125	mixture unigram language model, 466
Dynamically generated content and	MLE, 466-467
crawlers, 217	network supervised topic models, 431
	overview, 465–466
E step in EM algorithm, 362-368, 373-377,	PLSA, 373-377
465, 469	Expected overlap of words in paradigmatic
E-discovery (electronic discovery), 326	relations, 257–258
Edit features in text categorization, 306	Expected value in Beta distribution, 458
Effectiveness in search engine evaluation,	Exploration-exploitation tradeoff in
168	content-based filtering, 227
Efficiency	Extractive summarization, 318–321
database data retrieval, 81–82	,
search engine evaluation, 168	F measure
Electronic discovery (E-discovery), 326	ranked lists evaluation, 179
V : V !	,

F measure (continued)	Frequency transformation in paradigmatic
set retrieval evaluation, 172–173	relations, 258–259
F-test for time series context, 437	Full structure parsing, 43
F ₁ score	C manna almonithms 204
text categorization, 314	G-means algorithm, 294
text summarization, 324	Gain in search engine evaluation, 181–183
Fault tolerance in Google File System,	Gamma bitwise compression, 160
195	Gamma function, 457
Feature generation for tokenizers, 150	Gaussian distribution, 22, 404–405
Features for text categorization, 304–307	General EM algorithm, 431
Feedback	Generation-based text summarization, 318
content-based filtering, 225	Generative classifiers, 309
KL-divergence, 475–476	Generative models
language models, 138–144	background language model, 346–347,
overview, 133–135	349
search engines, 147, 157–158	CPLSA, 419, 421
vector space model, 135–138	description, 30, 36, 50
web searches, 201	LARA, 403, 405–406
Feedback documents in unigram language	LDA, 381
model, 466	log-likelihood functions, 343–344, 384
Feelings. See Sentiment analysis	mining topics from text, 347
fetch_docs function, 154	<i>n</i> -gram models, 289
file_corpus input format, 60	network supervised topic models, 428-
Files in Google File System, 194–195	430
Filter chains for tokenization, 61–64	PLSA, 370-371, 380
Filters	topics, 338–340
content-based, 221–229	unigram language model, 341
documents, 155–156	Geographical networks, 428
recommender systems. See Recommender systems	Geometric mean average precision (gMAP), 179
text information systems, 11	GFS (Google File System), 194–195
unigram language models, 54	Gibbs sampling, 383
Focused crawling, 193	Google File System (GFS), 194–195
forward_index indexes, 60-61	Google PageRank, 202–206
Forward indexes	Grammar learning, 252
description, 153	Grammatical parse trees, 305–307
k-nearest neighbors algorithm, 308	Granger test, 434, 437
Frame of reference encoding, 162	Graph mining, 49
Frequency and frequency counts	gz_corpus input format, 60
bag-of-words representation, 89–90	82_002 Pag impactormac, 00
MapReduce, 197	Hidden variables
META analyses, 68–70	EM algorithm, 362–364, 366, 368, 373–
term, 97–98	376, 465, 467
vector space model, 99–100	LARA, 403
. ettor space moder, 33 100	2.2019 100

Inverse document frequency (IDF)	retrieval, 473–474
(continued)	Knowledge acquisition in text information
vector space model, 99–101	systems, 8–9
Inverse user frequency (IUF), 232	Knowledge discovery in text summarization,
inverted_index indexes, 60	326
Inverted index chunks, 156-157	Knowledge Graph, 215
Inverted indexes	Knowledge provenance in unified systems,
compression, 158	447
k-nearest neighbors algorithm, 308	Known item searches in ranked lists
MapReduce, 198–199	evaluation, 179
search engines, 150–153	Kolmogorov axioms, 22-23
IR (information retrieval) systems, 6	Kullback-Leibler divergence retrieval
evaluation metrics, 324–325	model. See KL-divergence
implementation. See Search engine	
implementation	Lagrange Multiplier approach
text data access, 79	EM algorithm, 467, 470
Iterative algorithms for PageRank, 205–206	unigram language model, 344
Iterative Causal Topic Modeling, 434–435	Language models
IUF (inverse user frequency), 232	feedback in, 138–144
	in probabilistic retrieval model, 87, 111,
Jaccard similarity, 280	117
Jelinek-Mercer smoothing, 123–126	Latent Aspect Rating Analysis (LARA),
Joint analysis of text and structured data,	400-409
413	Latent Dirichlet Allocation (LDA), 377-
contextual text mining, 417-419	383
CPLSA, 419–428	Latent Rating Regression, 402–405
introduction, 413-415	Lazy learners in text categorization, 302
social networks as context, 428–433	Learners
time series context, 433–439	search engines, 147
Joint distributions for mutual information,	text categorization, 302
266-268	Learning modules in content-based
Joint probabilities, 23–25	filtering, 224–225
	Least-Recently Used (LRU) caches, 163–164
K-means document clustering, 282–284	length_filter filter, 61
K-nearest neighbors (k-NN) algorithm,	Length normalization
307–309	document length, 105–108
Kernel trick for linear classifiers, 312	query likelihood retrieval model, 122
Key-value pairs in MapReduce, 195–198	Lexical analysis in NLP, 39–40
KL-divergence	Lexicons for inverted indexes, 150–152
Dirichlet prior smoothing, 475	LIBLINEAR algorithm, 58
EM algorithm, 468	libsvm_analyzer analyzer, 62
feedback, 139–140	libsvm_corpus file, 61
mutual information, 266	LIBSVM package, 58, 64
query model, 475–476	Lifelong learning in web searches, 213

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADVICE A DECEMBER OF A SECOND
Likelihood and likelihood function	LRU (Least-Recently Used) caches, 163–164
background language model, 349–351	Lucene search engine toolkit, 64
EM algorithm, 362-363, 367-368, 376,	
465–469	M step
LARA, 405	EM algorithm, 361–368, 373–377, 465,
LDA, 378, 381–382	469-470
marginal, 28	MAP estimate, 379
mixture model behavior, 354–357	network supervised topic models, 431
MLE, 27	Machine-generated data, 6
network supervised topic models, 428-	Machine learning
431	overview, 34-36
PLSA, 372-374	sentiment classification methods, 396
unigram language model, 342-344	statistical, 10
line_corpus input format, 60	text categorization, 301
Linear classifiers in text categorization,	web search algorithms, 201
311-313	web search ranking, 208–212
Linear interpolation in Jelinek-Mercer	Machine translation, 42, 44-45
smoothing, 124	Magazine output, 3
Linearly separable data points in linear	Manual evaluation for text clustering, 294
classifiers, 312	map function, 195–198
Link analysis	MAP (Maximum a Posteriori) estimate
HITS, 206-208	Bayesian parameter estimation, 29
overview, 200-202	LARA, 404-405
PageRank, 202-206	PLSA, 378-379
list_filter filter, 62	word association mining, 271-273
Local maxima, 360, 363, 367–368, 465	MAP (mean average precision), 178–180
Log-likelihood function	Map Reduce paradigm, 157
EM algorithm, 365–366, 466–467	MapReduce framework, 194–200
feedback, 142–143	Maps in multimode interactive access,
unigram language model, 343–344	76–77
Logarithm transformation, 103–104	Marginal probabilities
Logarithms in probabilistic retrieval model,	Bayesian parameter estimation, 29
118, 122	mutual information, 267
Logic-based approach in NLP, 42	Market research, opinion mining for, 393
Logical predicates in NLP, 49–50	Massung, Sean, biography, 490
Logistic regression in sentiment classifica-	Matrices
tion, 396–400	adjacency, 207–208
Long-range jumps in multimode interactive	PageRank, 204–208
access, 77	text categorization, 314–315
Long-term needs in push access mode, 75	transition, 204
Low-level lexical features in text categoriza-	Matrix multiplication in PageRank, 205
tion, 305	Maximal marginal relevance (MMR)
Lower bound of likelihood in EM algorithm,	reranking
468–469	extractive summarization, 320–321
100 105	Charactive building 120 521

0, 59–60
orization, 314–315
ion, 61–64
l system, 453–455
tion algorithms, 307
al text mining, 417
from, 428
analysis, 249
lysis, 330
al, 417–419
For, 4–5
ysis, 413–419
See Opinion mining; Sentiment
ysis
stic retrieval model, 117
5-250
54
lysis, 330-331
ociation. See Word association
•
ing
ing cs from text, 340
cs from text, 340
•
cs from text, 340 nd language model, 345–351 on-maximization, 359–368
cs from text, 340 nd language model, 345–351
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 tysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 ithm, 466 n, 351–353
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 ithm, 466 n, 351–353 , 140–142, 157
cs from text, 340 nd language model, 345–351 on-maximization, 359–368 ysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 ithm, 466 n, 351–353 , 140–142, 157 opics from text, 346–351
nd language model, 345–351 con-maximization, 359–368 lysis, 416 model behavior, 353–359 model estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466 m, 351–353 m, 140–142, 157 lopics from text, 346–351 aximum likelihood estimation
nd language model, 345–351 con-maximization, 359–368 lysis, 416 model behavior, 353–359 model estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466 m, 351–353 m, 140–142, 157 opics from text, 346–351 aximum likelihood estimation E)
nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466 n, 351–353 lithm, 466 n, 351–357 opics from text, 346–351 aximum likelihood estimation E) mal marginal relevance)
nd language model, 345–351 on-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466 n, 351–353 , 140–142, 157 opics from text, 346–351 aximum likelihood estimation E) mal marginal relevance) nking
nd language model, 345–351 con-maximization, 359–368 lysis, 416 model behavior, 353–359 model estimation, 351–353 language model, 341–345 dels 353–359 lithm, 466 n, 351–353
nd language model, 345–351 con-maximization, 359–368 lysis, 416 nodel behavior, 353–359 nodel estimation, 351–353 language model, 341–345 dels 353–359 ithm, 466 n, 351–353 , 140–142, 157 opics from text, 346–351 aximum likelihood estimation E) mal marginal relevance) nking summarization, 320–321 lysis, 333

Modification in NLP, 41 text information systems, 43-45 Modules in content-based filtering, 224-226 text representation, 46-50 Navigating maps in multimode interactive MRR (mean reciprocal rank), 180 Multiclass classification access, 77 linear classifiers, 313 Navigational queries, 200 NDCG (normalized discounted cumulative text categorization, 303 Multi-level judgments in search engine gain), 181-183 evaluation, 180–183 NDCG@k score, 189 Multimode interactive access, 76-78 Nearest-centroid classifiers, 309 Multinomial distributions Negative feedback documents, 136-138 Bayesian estimate, 463-464 Negative feelings, 390-394 generalized, 460-461 NetPLSA model, 430-433 LDA, 380 Network supervised topic models, 428-433 Multinomial parameters in Bayesian Neural language model, 291-294 estimate, 463-464 News summaries, 317 Multiple-level sentiment analysis, 397-398 Newspaper output, 3 Multiple occurrences in vector space model, ngram_pos_analyzer analyzer, 62 103-104 ngram_word_analyzer analyzer, 62 Multiple queries in ranked lists evaluation, NLP. See Natural language processing (NLP) 178-180 NLTK toolkit, 64 Multivariate Gaussian distribution, 404-405 no_evict_cache caches, 60 Mutual information Nodes in word associations, 252 information theory, 33-34 Non-text data syntagmatic relations, 264-271 context, 249 text clustering, 278 predictive analysis, 249 vs. text, 244-246 n-fold cross validation, 314 Normalization *n*-gram language models document length, 105-108 abstractive summarization, 322-323 PageRank, 206 frequency analysis, 68-69 query likelihood retrieval model, 122 sentiment classification, 394-395 term clustering, 286 term clustering, 288-291 topic analysis, 333 vector space model, 109 Normalized discounted cumulative gain Naive Bayes algorithm, 309-312 (NDCG), 181-183 Named entity recognition, 323 Normalized ratings in collaborative Natural language, mining knowledge about, filtering, 230-231 Normalized similarity algorithm, 279 Natural language generation in text summarization, 323-324 Objective statements vs. subjective, 389-390 Observed world, mining knowledge about, Natural language processing (NLP) history and state of the art, 42-43 247-248 pipeline, 306-307 Observers, mining knowledge about, 248 sentiment classification, 395 Office documents, 3 statistical language models, 50-54 Okapi BM25 model, 89, 108 tasks, 39-41 One-vs-all (OVA) method, 313

Operators in text analysis systems, 448–452	network supervised topic models, 429
Opinion analysis in text summarization,	PLSA, 372–373, 379–380
325-326	probabilistic models, 30–31
Opinion holders, 390–392	ranking, 209–211
Opinion mining	statistical language models, 51–52
evaluation, 409–410	topic analysis, 338–339
LARA, 400–409	unigram language models, 52
overview, 389-392	Parsing
sentiment classification. See Sentiment	MeTA toolkit, 67–68
analysis	NLP, 43
Opinion summarization, 318	web content, 216
Optimization in web searches, 191	Part-of-speech (POS) tags
Ordinal regression, 394, 396–400	META toolkit, 67
Organization in text information systems, 8	NLP, 47
OVA (one-vs-all) method, 313	sentiment classification, 395
Over-constrained queries, 84	Partitioning
Overfitting problem	Brown clustering, 289
Bayesian parameter estimation, 28, 30	extractive summarization, 319–320
sentiment classification, 395	text data, 417–419
vector space model, 138	Patterns
Overlap of words in paradigmatic relations,	contextual text mining, 417–419
257–258	CPLSA, 425–426
237 230	joint analysis, 417
<i>p</i> -values in search engine evaluation,	NLP, 45
185–186	sentiment classification, 395
PageRank technique, 202–206	Pdf (probability density function)
Paradigmatic relations	Beta distribution, 457
Brown clustering, 290	Dirichlet distribution, 461
discovering, 252–260	multinomial distribution, 461
overview, 251–252	Pearson correlation
Parallel crawling, 193	collaborative filtering, 222, 231–232
Parallel indexing and searching, 192	time series context, 437
Parameters	
	Perceptron classifiers, 312–313 Personalization in web searches, 212, 215
background language model, 350–351	
Bayesian parameter estimation, 28–30,	Personalized PageRank, 206
341, 359, 458, 463–464	Perspective in text data analysis, 246–247
Beta distribution, 458–460	Pivoted length normalization, 89, 107–108
Dirichlet distribution, 461–463	PL2 model, 90
EM algorithm, 363, 465	PLSA (probabilistic latent semantic
feedback, 142–144	analysis)
LARA, 404–405	CPLSA, 419–428
LDA, 380-381	extension, 377–383
mixture model estimation, 352	overview, 368–377
MLE. See Maximum likelihood	Pointwise Mutual Information (PMI), 278,
estimation (MLE)	287-288

Polarity analysis in sentiment classification,	Bayesian parameter estimation, 28-30
394	binomial distribution, 26-27
Policy design, opinion mining for, 393	EM algorithm, 362–366
Pooling in search engine evaluation, 186-	joint and conditional probabilities, 23-25
187	KL-divergence, 474
Porter2 English Stemmer, 66–67	LARA, 403
porter2_stemmer filter, 62	maximum likelihood parameter
POS (part-of-speech) tags	estimation, 27–28
META toolkit, 67	mixture model behavior, 354-358
NLP, 47	mutual information, 266-270
sentiment classification, 395	Naive Bayes algorithm, 310
Positive feelings, 390–394	PageRank, 202–206
Posterior distribution, 28	paradigmatic relations, 257–258
Posterior probability in Bayesian parameter	PLSA, 368-377, 380
estimation, 29	probabilistic models and applications,
Postings files for inverted indexes, 150–152	30-31
Power iteration for PageRank, 205	syntagmatic relations, 262-263
Practitioners reader category, 17	term clustering, 286–289
Pragmatic analysis in NLP, 39–40	topics, 336–339
Precision	unigram language model, 342–344
search engine evaluation, 184	web search ranking, 209–211
set retrieval evaluation, 170–178	Probability density function (pdf)
Precision-recall curves in ranked lists	Beta distribution, 457
evaluation, 174–176	Dirichlet distribution, 461
Predictive analysis for non-text data, 249	multinomial distribution, 461
Predictors features in joint analysis, 413-	Probability distributions
416	overview, 21–23
Presupposition in NLP, 41	statistical language models, 50-54
Prior probability in Bayesian parameter	Probability ranking principle, 84
estimation, 29	Probability space, 21–23
Probabilistic inference, 88	Producer-initiated recommendations, 75
Probabilistic latent semantic analysis	Product reviews in opinion mining, 391-392
(PLSA)	profile command, 65–66
CPLSA, 419-428	Properties
extension, 377–383	inferring knowledge about, 248
overview, 368-377	text categorization for, 300
Probabilistic retrieval models	Proximity heuristics for inverted indexes,
description, 87-88	151
overview, 110–112	Pseudo counts
query likelihood retrieval model, 114–118	Bayesian statistics, 459–460
Probability and statistics	LDA, 381
abstractive summarization, 322	multinomial distribution, 463
background language model, 346-349	PLSA, 379, 381
basics, 21–23	smoothing techniques, 128, 286
Bayes' rule, 25–26	Pseudo data in LDA, 378

Pseudo feedback, 133, 135, 142, 157–158	Rankers for search engines, 147
Pseudo-segments for mutual information,	Ranking
269-270	extractive summarization, 320
Pull access mode, 8–9, 73–76	probabilistic retrieval model. See
Push access mode, 8–9, 73–76	Probabilistic retrieval models
Python language	vs. selection, 82–84
cleaning HTML files, 218	text analysis operator, 450–451
crawlers, 217	text data access, 78
	vector space model. See Vector space (VS)
Q-function, 465, 469–471	retrieval models
Queries	web searches, 201, 208–212
multimode interactive access, 77	Ratings
navigational, 200	collaborative filtering, 230–231
text information systems, 9	LARA, 400-409
text retrieval vs. database retrieval, 80	sentiment classification, 396–399
Query expansion	Real world properties, inferring knowledge
vector space model, 135	about, 248
word associations, 252	Realization in abstractive summarization,
Query likelihood retrieval model, 90, 113	324
document language model, 118-123	Recall in set retrieval evaluation, 170–178
feedback, 139	Reciprocal ranks, 179–180
KL-divergence, 475-476	Recommendations in text information
overview, 114-118	systems, 11
smoothing methods, 123-128	Recommender systems
Query vectors, 92-98, 135-137	collaborative filtering, 229–233
	content-based recommendation, 222-
Random access decoding in compression,	229
158	evaluating, 233–235
Random numbers in abstractive summa-	overview, 221–222
rization, 322	reduce function, 198
Random observations in search engine	Redundancy
evaluation, 186	MMR reranking, 333
Random surfers in PageRank, 202–204	text summarization, 320-321, 324
Random variables	vector space retrieval models, 92
Bayesian parameter estimation, 28	Regression
dependent, 25	LARA, 402–405
entropy of, 158, 262–263, 270	machine learning, 34–35
information theory, 31-34	sentiment classification, 394, 396-400
PMI, 287	text categorization, 303-304
probabilistic retrieval models, 87, 111,	web search ranking, 209–211
113	Regularizers in network supervised topic
probability distributions, 22	models, 429–431
Ranked lists evaluation	Relevance and relevance judgments
multiple queries, 178-180	Cranfield evaluation methodology,
overview, 174–178	168-169

description, 133	Scikit Learn toolkit, 64
document ranking, 83	score_term function, 154
document selection, 83	Scorers
extractive summarization, 321	
	document-at-a-time ranking, 155
probabilistic retrieval models, 110–112	filtering documents, 155–156
search engine evaluation, 181–184,	index sharding, 156–157
186–187	search engines, 147, 153–157
set retrieval evaluation, 171–172	term-at-a-time ranking, 154–155
text data access, 79	Scoring functions
vector space model, 92	KL-divergence, 474
web search ranking, 209–211	topic analysis, 332
Relevant text data, 5–6	SDI (selective dissemination of informa-
Relevant word counts in EM algorithm,	tion), 75
364-365, 376-377	Search engine evaluation
Repeated crawling, 193	Cranfield evaluation methodology,
Representative documents in search engine	168-170
evaluation, 183	measurements, 168
reset command, 57–59	multi-level judgments, 180–183
Retrieval models	practical issues, 183–186
common form, 88–90	purpose, 167–168
overview, 87-88	ranked lists, 174–180
probabilistic. See Probabilistic retrieval	set retrieval, 170–173
models	Search engine implementation
vector space. See Vector space (VS)	caching, 162–165
retrieval models	compression, 158–162
Reviews	feedback implementation, 157-158
LARA, 400-409	indexes, 150-153
opinion mining, 391–392	overview, 147-148
sentiment classification, 394	scorers, 153–157
text summarization, 318	tokenizers, 148–150
RMSE (root-mean squared error), 233	Search engine queries
robots.txt file, 193	pull access mode, 74–75
Rocchio feedback	text data access, 78–79
forward indexes, 157	Search engine toolkits, 64
vector space model, 135–138	Searches
Root-mean squared error (RMSE), 233	text information systems, 11
Ruby language	web. See Web searches
cleaning html files, 218–219	Segmentation in LARA, 405
crawlers, 217	Select operator, 449–451, 455
Rule-based text categorization, 301	Selection
Rule based text categorization, 301	vs. ranking, 82–84
Scalability in web searches 101 102	text data access, 78
Scalability in web searches, 191–192 Scanning inverted indexes, 152	Selection-based text summarization, 318
	Selective dissemination of information
Scientific research, text data analysis for,	
243	(SDI), 75

Semantic analysis in NLP, 39–40, 43, 47	Bayesian statistics, 459–460
Semantically related terms in clustering,	KL-divergence, 474–475
187, 285–287	maximum likelihood estimation, 119-
Sensors	128
humans as, 244–246	multinomial distribution, 463-464
joint analysis, 413–415	Naive Bayes algorithm, 310
opinion mining. See Opinion mining	unigram language models, 53
Sentence vectors in extractive summariza-	Social media in text data analysis, 243
tion, 319	Social networks as context, 428-433
Sentiment analysis, 389	Social science research, opinion mining for,
classification, 393-396	393
evaluation, 409–410	Soft rules in text categorization, 301
NLP, 43	Spam in web searches, 191–192
ordinal regression, 396-400	Sparse Beta, 459
text categorization, 304	Sparse data in Naive Bayes algorithm,
Separation in text clustering, 294-295	309-311
Sequences of words in NLP, 46-47	Sparse priors in Dirichlet distribution,
Set retrieval evaluation	461-462
description, 170	Spatiotemporal patterns in CPLSA, 425-426
F measure, 172–173	Specificity in sentiment classification, 396
precision and recall, 170–173	Speech acts in NLP, 47-48
Shadow analysis in NLP, 48	Speech recognition
Shallow analysis in NLP, 43–45	applications, 42
Short-range walks in multimode interactive	statistical language models, 51
access, 77	Spiders for web searches, 192–194
Short-term needs in pull access mode, 75	Split counts in EM algorithm, 374–375
Sign tests in search engine evaluation, 185	Split operator for text analysis, 449–452, 455
Signed-rank tests in search engine	Stanford NLP toolkit, 64
evaluation, 185	State-of-the-art support vector machines
Significance tests in search engine	(SVM) classifiers, 311–312
evaluation, 183–186	Statistical language models
Similarity algorithm for clustering, 276	NLP, 45
Similarity in clustering	overview, 50-54
Similarity functions and measures	Statistical machine learning
extractive summarization, 319, 321	NLP, 42-43
paradigmatic relations, 256–259	text information systems, 10
vector space model, 92, 109	Statistical significance tests in search
description, 277	engine evaluation, 183–186
document clustering, 279-281	Statistics. See Probability and statistics
term clustering, 285	Stemmed words in vector space model, 109
Single-link document clustering, 281–282	Stemming process in MeTA toolkit, 66-67
Skip-gram neural language model, 292–293	Sticky phrases in Brown clustering, 291
sLDA (supervised LDA), 387	Stop word removal
Smoothing techniques	feedback, 141
Add-1, 130, 464	frequency analysis, 69

MeTA toolkit, 62, 66	Targets in opinion mining, 390–392
mixture models, 352	Temporal trends in CPLSA, 424–425
vector space model, 99, 109	Term-at-a-time ranking, 154–155
Story understanding, 42	Term clustering, 278
Structured data	<i>n</i> -gram class language models, 288–291
databases, 80	neural language model, 291–294
joint analysis with text. See Joint analysis	overview, 284–285
of text and structured data	Pointwise Mutual Information, 287–288
Student reader category, 16	semantically related terms, 285–287
Stylistic analysis in NLP, 49	Term frequency (TF)
Subjective sensors	bag-of-words representation, 89
humans as, 244–246	vector space model, 97–98
opinion mining. See Opinion mining	Term IDs
Subjective statements vs. objective, 389–390	inverted indexes, 151-152
Sublinear transformation	tokenizers, 149–150
term frequency, 258-259	Term vectors, 92
vector space model, 103-104	Terms, topics as, 332–335
Summarization. See Text summarization	Terrier search engine toolkit, 64
Supervised LDA (sLDA), 387	Test collections in Cranfield evaluation
Supervised machine learning, 34	methodology, 168-169
SVM (state-of-the-art support vector	Testing data
machines) classifiers, 311–312	machine learning, 35
Symbolic approach in NLP, 42	text categorization, 303
Symmetric Beta, 459	Text
Symmetric probabilities in information	joint analysis with structured data. See
theory, 32	Joint analysis of text and structured
Symmetry in document clustering, 279–280	data
Synonyms	mining. See Mining; Mining topics from
vector space model, 92	text
word association, 252	usefulness, 3–4
Syntactic ambiguity in NLP, 41	Text annotation. See Text categorization
Syntactic analysis in NLP, 39–40, 47	Text-based prediction, 300
Syntactic structures in NLP, 49	Text categorization
SyntacticDiff method, 306	classification algorithms overview, 307
Syntagmatic relations, 251–252	evaluation, 313–315
Brown clustering, 290–291	features, 304–307
discovering, 253–254, 260–264	introduction, 299-301
mutual information, 264–271	<i>k</i> -nearest neighbors algorithm, 307–309
System architecture in unified systems,	linear classifiers, 311–313
452–453	machine learning, 35
	methods, 300–302
Tags, POS	Naive Bayes, 309–311
MeTA toolkit, 67	problem, 302–304
NLP, 47	Text clustering, 12
sentiment classification, 395	document, 279–284

Text clustering (continued)	vector space model, 97–98
evaluation, 294–296	TF-IDF weighting
overview, 275–276	Dirichlet prior smoothing, 128
techniques, 277–279	probabilistic retrieval model, 122–123
term, 284–294	topic analysis, 333
Text data access, 73	vector space model, 100–103
access modes, 73-76	TF transformation, 102–105
document selection vs. document	TF weighting, 125–126
ranking, 82–84	Themes in CPLSA, 420–422
multimode interactive, 76–78	Therapist application, 44–45
text retrieval vs. database retrieval, 80–82	Thesaurus discovery in NLP, 49
text retrieval overview, 78–80	Threshold settings in content-based
Text data analysis overview, 241–242	filtering, 222, 224–227
applications, 242–244	Tight clusters, 281
humans as subjective sensors, 244–246	Time series context in topic analysis,
operators, 448–452	433-439
text information systems, 8	TISs (text information systems)
text mining tasks, 246–250	conceptual framework, 10–13
Text data understanding. See Natural	functions, 7–10
language processing (NLP)	NLP, 43-45
Text information systems (TISs)	Tokenization
conceptual framework, 10–13	META toolkit, 61–64, 453
functions, 7–10	search engines, 147–150
NLP, 43–45	Topic analysis
Text management and analysis in unified	evaluation, 383–384
systems. See Unified systems	LDA, 377–383
Text organization in text information	mining topics from text. See Mining
systems, 8	topics from text. See Willing
Text representation in NLP, 46–50	model summary, 384–385
Text retrieval (TR)	overview, 329–331
vs. database retrieval, 80–82	
	PLSA, 368–377 social networks as context, 428–433
demand for, 4–5	text information systems, 12
overview, 78–80	· · · · · · · · · · · · · · · · · · ·
Text summarization, 12	time series context, 433–439
abstractive, 321–324	topics as terms, 332–335
applications, 325–326	topics as word distributions, 335–340
evaluation, 324–325	Topic coherence in time series context, 436
extractive, 319–321	Topic coverage
overview, 317–318	CPLSA, 420–422, 425–426
techniques, 318	LDA, 380–381
TextObject data type operators, 449, 454	Topic maps in multimode interactive
TextObjectSequence data type operators,	access, 76–77
449, 454	TopicExtraction operator, 450
TF (term frequency)	TR (text retrieval)
bag-of-words representation, 89	vs. database retrieval, 80–82

demand for, 4–5	Unimodel Beta, 459
overview, 78-80	Union operator, 449–450
Training and training data	University of California Berkeley study, 3
classification algorithms, 307-309	Unseen words
collaborative filtering, 229–230	document language model, 119–120,
content-based recommendation, 227-	122-123
228	KL-divergence, 474
linear classifiers, 311–313	Naive Bayes algorithm, 310–311
machine learning, 34–36	smoothing, 124, 285-287
Naive Bayes, 309–310	statistical language models, 52
NLP, 42–43, 45	Unstructured text access, 80
ordinal regression, 398–399	Unsupervised clustering algorithms, 275,
text categorization, 299–303, 311–314	278
web search ranking, 209–210, 212	Unsupervised machine learning, 34, 36
Transformations	URLs and crawlers, 193
frequency, 258-259	Usability in search engine evaluation, 168
vector space model, 103-104	Utility
Transition matrices in PageRank, 204	content-based filtering, 224–228
Translation, machine, 42, 44–45	text clustering, 294
TREC filtering tasks, 228	
tree_analyzer analyzer, 62	Valence scoring, 411
Trends in web searches, 215–216	Variable byte encoding, 161
Trigrams in frequency analysis, 69	Variables
Twitter searches, 83	context, 330
Two-component mixture model, 356	contextual text mining, 419
	CPLSA, 422
Unary bitwise compression, 159–160	EM algorithm, 362-364, 366, 368, 373-
Under-constrained queries, 84	376, 465, 467
Unified systems	LARA, 403
MeTA as, 453–455	random. See Random variables
overview, 445-448	vByte encoding, 161
system architecture, 452–453	Vector space (VS) retrieval models, 87
text analysis operators, 448–452	bit vector representation, 94-97
Uniform priors in Dirichlet distribution,	content-based filtering, 225–226
461	document length normalization, 105-108
Unigram language models, 51–54	feedback, 135-138
EM algorithm, 466	improved instantiation, 97-102
LDA, 381	improvement possibilities, 108-110
mining topics from text, 341-345	instantiation, 93–95
PLSA, 370	overview, 90-92
Unigrams	paradigmatic relations, 256–258
abstractive summarization, 321–323	summary, 110
frequency analysis, 68	TF transformation, 102–105
sentiment classification, 394	Vectors
words tokenizers, 149	collaborative filtering, 222

Vectors (continued)	text categorization rules, 301
neural language model, 292	topics, 333, 335-336
Versions, MeTA toolkit, 59	vector space model, 92, 99-103
Vertical search engines, 212	Weka toolkit, 64
Video data mining, 245	whitespace_tokenizer command, 149
Views	Whitespace tokenizers, 149
CPLSA, 420–422	Wilcoxon signed-rank test, 185
multimode interactive access, 77	Word association mining
Visualization in text information systems,	evaluation, 271–273
12-13	general idea of, 252–254
VS retrieval models. See Vector space (VS)	overview, 251-252
retrieval models	paradigmatic relations discovery, 254–260
Web searches	syntagmatic relations discovery, 260-271
crawlers, 192–194	Word counts
future of, 212–216	EM algorithm, 364-365, 376-377
indexing, 194-200	MapReduce, 195–198
link analysis, 200–208	vector space model, 103-104
overview, 191-192	Word distributions
ranking, 208–212	CPLSA, 424-425
Weighted k-nearest neighbors algorithm,	LARA, 405
309	topics as, 335–340
WeightedTextObjectSequence data type,	Word embedding in term clustering, 291-
449	294
WeightedTextObjectSet data type,	Word-level ambiguity in NLP, 41
449	Word relations, 251–252
Weights	Word segmentation in NLP, 46
collaborative filtering, 231	Word sense disambiguation in NLP, 43
Dirichlet prior smoothing, 127-128	Word valence scoring, 411
document clustering, 279-280	Word vectors in text clustering, 278
LARA, 401-409	word2vec skip-gram, 293
linear classifiers, 313	WordNet ontology, 294
mutual information, 269–270	
NetPLSA model, 430	Zhai, ChengXiang, biography, 489
network supervised topic models, 431	Zipf's law
paradigmatic relations, 258–261	caching, 163
query likelihood retrieval model, 121–123	frequency analysis, 69–70

Authors' Biographies

ChengXiang Zhai

ChengXiang Zhai is a Professor of Computer Science and Willett Faculty Scholar at the University of Illinois at Urbana–Champaign, where he is also affiliated with the Graduate School of Library and Information Science, Institute for Genomic Biology, and Department of Statistics. He received a Ph.D. in Computer Science from Nanjing University in 1990, and a Ph.D. in Language and Information Technologies from Carnegie Mellon University in 2002. He worked at Clairvoyance Corp. as a Research Scientist and then Senior Research Scientist from 1997–2000. His research interests include information retrieval, text mining, natural language processing, machine learning, biomed-

ical and health informatics, and intelligent education information systems. He has published over 200 research papers in major conferences and journals. He served as an Associate Editor for *Information Processing and Management*, as an Associate Editor of *ACM Transactions on Information Systems*, and on the editorial board of *Information Retrieval Journal*. He was a conference program co-chair of ACM CIKM 2004, NAACL HLT 2007, ACM SIGIR 2009, ECIR 2014, ICTIR 2015, and WWW 2015, and conference general co-chair for ACM CIKM 2016. He is an ACM Distinguished Scientist and a recipient of multiple awards, including the ACM SIGIR 2004 Best Paper Award, the ACM SIGIR 2014 Test of Time Paper Award, Alfred P. Sloan Research Fellowship, IBM Faculty Award, HP Innovation Research Program Award, Microsoft Beyond Search Research Award, and the Presidential Early Career Award for Scientists and Engineers (PECASE).

Sean Massung

Sean Massung is a Ph.D. candidate in computer science at the University of Illinois at Urbana–Champaign, where he also received both his B.S. and M.S. degrees. He is a co-founder of MeTA and uses it in all of his research. He has been instructor for CS 225: Data Structures and Programming Principles, CS 410: Text Information Systems, and CS 591txt: Text Mining Seminar. He is included in the 2014 List of Teachers Ranked as Excellent at the University of Illinois and has received an Outstanding Teaching Assistant Award and CS@Illinois Outstanding Research Project Award. He has given talks at Jump Labs Champaign and at UIUC for Data and Information Systems Seminar, Intro to Big Data, and Teaching Assistant

Seminar. His research interests include text mining applications in information retrieval, natural language processing, and education.