#### **Exercise 1**

a) From the tabulation, it looks like 4 cylinder cars may be more fuel efficient than 6 cylinders. Sedans might be more efficient than sports cars at least for 4 cylinders. There does not appear to be a big difference across origin. We also see that the data is not balanced, so we will need to use proc glm.

|           |        |        |       | IPG<br>ghwa | y) |
|-----------|--------|--------|-------|-------------|----|
|           |        |        | Mean  | Std         | N  |
| Cylinders | Origin | Type   |       |             |    |
| 4         | Asia   | Sedan  | 33.35 | 4.27        | 49 |
|           |        | Sports | 27.88 | 3.18        | 8  |
|           | USA    | Sedan  | 32.69 | 3.31        | 29 |
| 6         | Asia   | Sedan  | 26.56 | 1.84        | 41 |
|           |        | Sports | 26.33 | 1.51        | 6  |
|           | USA    | Sedan  | 27.27 | 2.90        | 45 |
|           |        | Sports | 27.00 | 2.83        | 2  |

b) In the main effects model, we see that Cylinders and Type are significant but Origin is not.

Dependent Variable: MPG\_Highway MPG

(Highway)

| Source    | DF | Type I SS   | Mean Square | F Value | Pr > F |
|-----------|----|-------------|-------------|---------|--------|
| Cylinders | 1  | 1470.787732 | 1470.787732 | 137.50  | <.0001 |
| Origin    | 1  | 8.564346    | 8.564346    | 0.80    | 0.3721 |
| Type      | 1  | 108.057489  | 108.057489  | 10.10   | 0.0018 |

| Source    | DF | Type III SS | Mean Square | F Value | Pr > F |
|-----------|----|-------------|-------------|---------|--------|
| Cylinders | 1  | 1453.170429 | 1453.170429 | 135.85  | <.0001 |
| Origin    | 1  | 0.841224    | 0.841224    | 0.08    | 0.7795 |
| Type      | 1  | 108.057489  | 108.057489  | 10.10   | 0.0018 |

Removing Origin we get our best main effects model. The model is highly significant, both Cylinders and Type are highly significant, and the model describes 45.7% of the variation in highway fuel efficiency.

Dependent Variable: MPG\_Highway MPG

(Highway)

| Source                 | DF  | Sum of<br>Squares | Mean Square | F Value | Pr > F |
|------------------------|-----|-------------------|-------------|---------|--------|
| Model                  | 2   | 1586.568342       | 793.284171  | 74.55   | <.0001 |
| Error                  | 177 | 1883.492769       | 10.641202   |         |        |
| <b>Corrected Total</b> | 179 | 3470.061111       |             |         |        |

| R-Square | Coeff Var | Root MSE | MPG_Highway Mean |
|----------|-----------|----------|------------------|
| 0.457216 | 11.01023  | 3.262086 | 29.62778         |

| Source    | DF | Type I SS   | Mean Square | F Value | Pr > F |
|-----------|----|-------------|-------------|---------|--------|
| Cylinders | 1  | 1470.787732 | 1470.787732 | 138.22  | <.0001 |
| Type      | 1  | 115.780611  | 115.780611  | 10.88   | 0.0012 |

| Source    | DF | Type III SS | Mean Square | F Value | Pr > F |
|-----------|----|-------------|-------------|---------|--------|
| Cylinders | 1  | 1481.993512 | 1481.993512 | 139.27  | <.0001 |
| Type      | 1  | 115.780611  | 115.780611  | 10.88   | 0.0012 |

c) The Cylinders\*Type interaction is also significant when added to the model, so the final model has Cylinders, Type, and their interaction. The model is highly significant as are the three terms. The model describes 48.14% of the variation in fuel efficiency.

Dependent Variable: MPG\_Highway MPG

(Highway)

| Source                 | DF  | Sum of<br>Squares | Mean Square | F Value | Pr > F |
|------------------------|-----|-------------------|-------------|---------|--------|
| Model                  | 3   | 1670.425229       | 556.808410  | 54.45   | <.0001 |
| Error                  | 176 | 1799.635883       | 10.225204   |         |        |
| <b>Corrected Total</b> | 179 | 3470.061111       |             |         |        |

| R-Square | Coeff Var | Root MSE | MPG_Highway Mean |
|----------|-----------|----------|------------------|
| 0.481382 | 10.79287  | 3.197687 | 29.62778         |

| Source         | DF | Type I SS   | Mean Square | F Value | Pr > F |
|----------------|----|-------------|-------------|---------|--------|
| Cylinders      | 1  | 1470.787732 | 1470.787732 | 143.84  | <.0001 |
| Type           | 1  | 115.780611  | 115.780611  | 11.32   | 0.0009 |
| Cylinders*Type | 1  | 83.856886   | 83.856886   | 8.20    | 0.0047 |

| Source         | DF | Type III SS | Mean Square | F Value | Pr > F |
|----------------|----|-------------|-------------|---------|--------|
| Cylinders      | 1  | 207.5516175 | 207.5516175 | 20.30   | <.0001 |
| Type           | 1  | 116.6363540 | 116.6363540 | 11.41   | 0.0009 |
| Cylinders*Type | 1  | 83.8568863  | 83.8568863  | 8.20    | 0.0047 |

The following differences of least squares means tell us that 4 cylinder cars are expected to be 3.77 mpg more efficient than 6 cylinders with a confidence interval of (2.12, 5.43). Sedans are 2.83 mpg more efficient than sports cars with a confidence interval of (1.18, 4.48), and 4 cylinder sedans are significantly more fuel efficient than the other types of cars.

Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

|           | MPG Highway | H0:LSMean | 1=LSMean2 |
|-----------|-------------|-----------|-----------|
| Cylinders | LSMEAN      | t Value   | Pr >  t   |
| 4         | 30.4887821  | 4.51      | <.0001    |
| 6         | 26.7151163  |           |           |

| Le | <b>Least Squares Means for Effect Cylinders</b> |                                |                                                                  |          |  |  |  |
|----|-------------------------------------------------|--------------------------------|------------------------------------------------------------------|----------|--|--|--|
| i  | j                                               | Difference<br>Between<br>Means | Simultaneous 95%<br>Confidence Limits for<br>LSMean(i)-LSMean(j) |          |  |  |  |
| 1  | 2                                               | 3.773666                       | 2.120634                                                         | 5.426697 |  |  |  |

### Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

|        | MPG Highway | H0:LSMean | 1=LSMean2 |
|--------|-------------|-----------|-----------|
| Type   | LSMEAN      | t Value   | Pr >  t   |
| Sedan  | 30.0163983  | 3.38      | 0.0009    |
| Sports | 27.1875000  |           |           |

| Least Squares Means for Effect Type |   |                       |                                           |          |  |  |
|-------------------------------------|---|-----------------------|-------------------------------------------|----------|--|--|
|                                     |   | Difference<br>Between | Simultaneous 95%<br>Confidence Limits for |          |  |  |
| i                                   | j | Means                 | LSMean(i)-LSMean(j)                       |          |  |  |
| 1                                   | 2 | 2.828898              | 1.175867                                  | 4.481930 |  |  |

## Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

| Cylinders | Туре   | MPG_Highway<br>LSMEAN | LSMEAN<br>Number |
|-----------|--------|-----------------------|------------------|
| 4         | Sedan  | 33.1025641            | 1                |
| 4         | Sports | 27.8750000            | 2                |
| 6         | Sedan  | 26.9302326            | 3                |
| 6         | Sports | 26.5000000            | 4                |

| Least Squares Means for Effect<br>Cylinders*Type |   |                                                                                           |           |          |  |  |  |  |
|--------------------------------------------------|---|-------------------------------------------------------------------------------------------|-----------|----------|--|--|--|--|
| i                                                | j | Difference Between Means Means Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j) |           |          |  |  |  |  |
| 1                                                | 2 | 5.227564                                                                                  | 2.148489  | 8.306639 |  |  |  |  |
| 1                                                | 3 | 6.172332                                                                                  | 4.875485  | 7.469178 |  |  |  |  |
| 1                                                | 4 | 6.602564                                                                                  | 3.523489  | 9.681639 |  |  |  |  |
| 2                                                | 3 | 0.944767                                                                                  | -2.120956 | 4.010491 |  |  |  |  |
| 2                                                | 4 | 1.375000                                                                                  | -2.771993 | 5.521993 |  |  |  |  |
| 3                                                | 4 | 0.430233                                                                                  | -2.635491 | 3.495956 |  |  |  |  |

#### **Exercise 2**

a) The following diagnostics for the log-cirrhosis rate linear regression indicate that the first observation with a large Cook's distance is unduly influential and so we will remove it and refit the model. After doing so, diagnostics for the model (shown in part b) look fine.

Model: MODEL1
Dependent Variable: logcir



b) For the final model, we see that the ANOVA test is significant, so the model is better than an error only model. The model describes 64.4% of the variation in log cirrhosis death rates. The intercept and alcohol terms are both significant. The coefficient of .1578 for alcohol tells us that the expected cirrhosis death rate would be multiplied by e<sup>.1578</sup> = 1.171 when the alcohol consumption level increases by 1, so again we see an increase in cirrhosis related death rate as alcohol consumption increases. For 0 alcohol consumption the model would predict a cirrhosis rate of e<sup>.7536</sup> = 2.125.

We see no remaining issues in the diagnostics. While the distribution of residuals was acceptable in the regular linear model, they look even better in this case. We cannot compare the R<sup>2</sup> values directly because the responses are different, but they are fairly similar in magnitude so we still explain a pretty good amount of the variation in cirrhosis related death rates. This model also has the benefit of always predicting non-negative values. This model appears to be slightly better than the regular linear model.

Model: MODEL1

Dependent Variable: logcir

| Analysis of Variance                           |    |         |         |       |        |  |
|------------------------------------------------|----|---------|---------|-------|--------|--|
| Source Sum of Mean Squares Square F Value Pr > |    |         |         |       |        |  |
| Model                                          | 1  | 4.07318 | 4.07318 | 21.69 | 0.0006 |  |
| Error                                          | 12 | 2.25370 | 0.18781 |       |        |  |
| <b>Corrected Total</b>                         | 13 | 6.32689 |         |       |        |  |

| Root MSE              | 0.43337  | R-Square | 0.6438 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 1.98775  | Adj R-Sq | 0.6141 |
| Coeff Var             | 21.80194 |          |        |

| Parameter Estimates                             |   |         |         |      |         |  |  |  |
|-------------------------------------------------|---|---------|---------|------|---------|--|--|--|
| Variable DF Parameter Standard Error t Value Pr |   |         |         |      | Pr >  t |  |  |  |
| Intercept                                       | 1 | 0.75356 |         | 2.61 | 0.0230  |  |  |  |
| alcohol                                         | 1 | 0.15780 | 0.03388 | 4.66 | 0.0006  |  |  |  |

Model: MODEL1
Dependent Variable: logcir



#### **Exercise 3**

a) First we check the diagnostics for run400 as a function of run100. There is one Cook's distance which is a fair amount larger than the others, so we should remove that observation.

Model: MODEL1
Dependent Variable: run400



After removing the observation, we get the following model. The model is significantly better than error, describes 53.85% of the variation in 400 meter dash time, and predicts that for a 1 second increase in 100 meter dash time we would expect a 3.23 second increase in 400 meter dash time.

Model: MODEL1
Dependent Variable: run400

| Analysis of Variance                   |    |          |          |       |        |  |
|----------------------------------------|----|----------|----------|-------|--------|--|
| Source Sum of Mean Square F Value Pr > |    |          |          |       |        |  |
| Model                                  | 1  | 24.50471 | 24.50471 | 36.17 | <.0001 |  |
| Error                                  | 31 | 21.00171 | 0.67747  |       |        |  |
| <b>Corrected Total</b>                 | 32 | 45.50642 |          |       |        |  |

| Root MSE              | 0.82309  | R-Square | 0.5385 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 49.37545 | Adj R-Sq | 0.5236 |
| Coeff Var             | 1.66700  |          |        |

| Parameter Estimates                             |   |          |         |      |        |  |  |  |
|-------------------------------------------------|---|----------|---------|------|--------|--|--|--|
| Variable DF Parameter Standard Error t Value Pr |   |          |         |      |        |  |  |  |
| Intercept                                       | 1 | 13.05278 | 6.04118 | 2.16 | 0.0386 |  |  |  |
| run100                                          | 1 | 3.23103  | 0.53723 | 6.01 | <.0001 |  |  |  |

Model: MODEL1
Dependent Variable: run400



b) Using the 1500 meter time as the predictor, there are no significant issues in the diagnostics, so there is no need to refit. The model is significantly better than error, describes 30.74% of the variation in 400 meter dash time, and predicts that for a 1 second increase in 1500 meter dash time we would expect a .04836 second increase in 400 meter dash time.

# Model: MODEL1 Dependent Variable: run400

| Analysis of Variance                        |    |          |          |       |                      |  |
|---------------------------------------------|----|----------|----------|-------|----------------------|--|
| Source Sum of Mean Squares Square F Value P |    |          |          |       | <b>Pr</b> > <b>F</b> |  |
| Model                                       | 1  | 14.01932 | 14.01932 | 14.20 | 0.0007               |  |
| Error                                       | 32 | 31.58368 | 0.98699  |       |                      |  |
| <b>Corrected Total</b>                      | 33 | 45.60300 |          |       |                      |  |

| Root MSE              | 0.99347  | R-Square | 0.3074 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 49.36618 | Adj R-Sq | 0.2858 |
| Coeff Var             | 2.01246  |          |        |

| Parameter Estimates |    |                       |         |         |         |  |  |
|---------------------|----|-----------------------|---------|---------|---------|--|--|
| Variable            | DF | Parameter<br>Estimate |         | t Value | Pr >  t |  |  |
| Intercept           | 1  | 36.00985              | 3.54798 | 10.15   | <.0001  |  |  |
| run1500             | 1  | 0.04836               | 0.01283 | 3.77    | 0.0007  |  |  |

Model: MODEL1
Dependent Variable: run400



c) Neither model has issues in the diagnostics, so we would choose the model based on 100 meter dash time because it has a better R<sup>2</sup> value, predicting almost 54% of the variation while the 1500 meter model describes less than 31% of the variation.