

Boas Meier, Niklas Tanner, Lukas Mettler, Tobias Heller HSLU, Informatik Department, Switzerland boas.meier@stud.hslu.ch, niklas.tanner@stud.hslu.ch, lukas.mettler@hslu.ch, tobias.heller@stud.hslu.ch

#### Code:

https://gitlab.enterpriselab.ch/IoT-I BA IOT/iot-i ba iot h21/i-ba-iot-h2101/group01

# **Abstract**

Nowadays more and more devices get connected to the cloud. The connectivity to the cloud not only increases the customer value but also reduces the maintenance costs for the operator. This work proposes a proof-of-concept for a scalable smart door lock solution with a comprehensive architecture based on the state-of-the-art IoT messaging protocol MQTT. The smart door look provides a smart card support for locally unlocking the door over RFID. Furthermore, the App allows remote monitoring, locking, and unlocking over a telegram bot or a web interface. A building equipped with the smart door lock consists of multiple Arduinos – one for each door lock – which are connected over SPI to a RFID Card Reader. Further the building contains one Raspberry Pi to which all the Arduinos are wirelessly connected to, and which acts as a gateway to the cloud. The cloud consists of a REST API, a Key-Value Database, a Frontend and an Elastic Stack for centralized logging and monitoring.

# **Contents**

| 1. Introduction                                              | 1  |
|--------------------------------------------------------------|----|
| 2. Related Work                                              | 2  |
| 3. System Design and Implementation                          | 3  |
| 3.1 System Overview                                          | 3  |
| 3.2 System Architecture                                      | 4  |
| 3.3 Software Architecture Layers & Modules                   | 5  |
| 3.4 System Implementation / Functional Software Architecture | 7  |
| 4. Evaluation/Experiments/Results/Discussion                 | 9  |
| 5. Application(s)                                            | 10 |
| 6. Conclusion                                                | 10 |
| 7. Contributions / Acknowledgments                           | 11 |
| 8. Major Milestones & Deliverables                           | 12 |
| 8.1 Team and Roles                                           | 12 |
| 8.2 Project Planning, Timelines, Milestones & Deliverables   | 12 |
| 10. References / Biography                                   | 13 |
| 10.1. References                                             | 13 |
| 10.2. List of figures                                        | 13 |
| 10.2. Table directory                                        | 14 |
| 11. Appendix                                                 | 15 |
| 11.1. Additional documentation of modules                    | 15 |
| 11.2. Detailed definitions of public interfaces              | 19 |
| 11.3. Detailed definitions of modules                        | 22 |

# 1. Introduction

"You've forgotten your keys and now you're standing in front of the locked front door. All your roommates are out of the house, and you have no other choice than waiting for the arrival of one of them. What a pity! Especially when you have to change your clothes for the very important job interview."

With the Smart Door Lock you will never have to wait at the doorsteps of your own flat. It allows remote opening of the door. It is not only a convenient way of opening a door with doorbell functionality but also provides additional security features. If someone is strolling around in front of your door a built-in movement sensor will detect this and alert you on your mobile phone. If this person happened to be a burglar who breaks into your house there will be an alarm triggered and optionally the police is being informed.

From a technical standpoint this is achieved with an Arduino Controller which has an NFC Reader, a movement sensor, a door sensor, and various status LEDs connected. Multiple Arduinos in a building are continuously pushing the state, the events, and logs to the gateway over MQTT.

The gateway then analyses the data and performs the correct action. For example, logs are pushed to the logging tool Elastic Stack where they get visualized. In case of state changes these will be forwarded to the backend, where the data is stored in a Key-Value Database and available through a REST-API. If there is an event like someone is ringing the doorbell, the gateway will play a sound and forward the event to the backend. The backend will then forward this action to the mobile phone of the user where there is a message prompted to open the door.

# 2. Related Work

In this section are other approaches for smart door locks described and analyzed.

#### **Blockchain based Smart Door Lock system**

The paper Blockchain bases Smart Door Lock system (Han et al., 2017) proposes a Smart Door Lock which guarantees authentication, non-repudiation and data integrity. Further it proposes an in- and outdoor intrusion detection algorithm based on PIR and ultrasonic sensors, which broadcasts detected intrusions to the blockchain network. The principle of the intrusion detection is more advanced than to one used in this work but in general very similar.

#### **NFC based Smart Door Lock system**

The paper of Jose Pacheco et al. proposes a low-cost NFC Door Lock for a smart Home System (Pacheco & Miranda, 2020). Therefore, an Arduino Mega Board in combination with an PN532 NFC module is used. The door is visualized with software written in Unity. The hardware used in the paper is mostly the same as the one used in this work. Whereas the Arduino Mega Board has more power and memory than the Arduino Uno Wifi Rev 2 used in this project. The paper proposes only simple lock and unlock functionality. Therefore, the Arduino Mega seems an overkill. For this use case a smaller microcontroller would be a good fit. For example, an ARM Cortex M0+ which costs less than 1.- CHF¹.

<sup>&</sup>lt;sup>1</sup> ARM Cortex M0+: <a href="https://www.reichelt.com/ch/de/raspberry-pi-rp2040-arm-cortex-m0--rpi-rp2040-p306486.html?PROVID=2808&gclid=Cj0KCQiA15yNBhDTARIsAGnwe0VdK8LDbG4Gkut0p0rDRzPXUgEf4-xtC1fsCFsZxDe1kOflnJ3MFsEaAjpXEALw\_wcB (2021-12-01)</a>

# 3. System Design and Implementation

This section covers the system and software architecture and introduces the individual components with their dependencies.

#### 3.1 System Overview

The presented system is working in a distributed way. On the direct control level for a particular door there is a MCU with sensors and actuators installed. For each building all the door locks are connected to an edge device which is working as a gateway. All the gateways for the different buildings are then connected to a common cloud. In the cloud the data is further aggregated, presented, and stored (see Figure 1).



Figure 1: System Overview

## 3.2 System Architecture

The system architecture is divided in five levels as shown in Figure 2: System Architecture. The following Table 1 lists all the levels and their description.



Figure 2: System Architecture

| Level                                 | Description                                                      |  |
|---------------------------------------|------------------------------------------------------------------|--|
| Level 0 - Field                       | Consists of all the sensors and actuators.                       |  |
| Level 1 - Direct Control              | Contains MCUs which deliver the needed real time                 |  |
|                                       | capabilities for controlling the field level.                    |  |
|                                       | The sensors and actuators are controlled over GPIO and SPI.      |  |
|                                       | SPI is chosen because of its speed, the short distance and       |  |
|                                       | because only one card reader is connected.                       |  |
| Level 2 - Supervisory and Aggregation | Acts as a single point of entry to the building. This comes with |  |
|                                       | various security benefits for example there is only one          |  |
|                                       | connection to the cloud which needs to be monitored.             |  |
|                                       | Controls all the MCUs, aggregates data and is backed with        |  |
|                                       | more processing power and storage than level 1.                  |  |
|                                       | Communication with MCUs is over MQTT because of its small        |  |
|                                       | code footprint and low network bandwidth.                        |  |
| Level 3 - Device Management           | Manages all the devices installed on the different sites.        |  |
|                                       | Centralizes all the logs and monitors the status of the          |  |
|                                       | different sites.                                                 |  |
|                                       | Offers a REST API for commanding the devices.                    |  |
| Level 4 - User Interface              | User interface built upon the REST API.                          |  |

**Table 1: System Architecture Level Overview** 

## 3.3 Software Architecture Layers & Modules

On the Arduino there is the single <code>DoorControllerFirmware</code> running, which interacts with the sensors and the <code>EdgeAgent</code> via MQTT. The <code>EdgeAgent</code> communicates with the <code>DoorLockCloudAPI</code> via MQTT and stores its own logs and the logs of the Arduino on the disk. These files are read by <code>Filebeat</code>, which pushes those logs via HTTP into Elasticsearch. <code>Elasticsearch</code> therefore stores the indexed log messages and <code>Kibana</code> visualizes the data stored within <code>Elasticsearch</code>. The <code>DoorlockFrontend</code> is an UI built upon the <code>DoorlockCloudApi</code>. The <code>DoorlockApp</code> is composed of a <code>Telegram</code> Integration and the possibility to access the <code>DoorlockFrontend</code> via the browser.



Figure 3: Smart Door Lock Software Architecture

Computer Science and Information Technology

| Component              | Description                                                                                                                                   | Technology                 | Environment                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| DoorControllerFirmware | Handles sensors and actuators connected to the MCU (Arduino) and communicates with Edge                                                       | C / C++                    | MCU (Arduino)                 |
|                        | Device (Raspberry Pi).                                                                                                                        |                            |                               |
| Edgeagent              | Implements HTTP Client and MQTT Client to communicate with cloud and MCU (Arduino). Delivers commands from cloud to specific MCU (Arduino).   | Python                     | Edge Device (Raspberry<br>Pi) |
| Gateway-MQTT-Broker    | Is an MQTT-Broker only accessible from within the local network of the site and manages topics of the MCU and the Edge Device.                | EMQX                       | Edge Device (Raspberry<br>Pi) |
| Filebeat               | Log shipper service which aggregates logs and sends them to Elasticsearch database.                                                           | Golang                     | Edge Device (Raspberry Pi)    |
| Cloud-MQTT-Broker      | Is accessible from the internet and manages topics of the Edge Device and the Cloud.                                                          | EMQX                       | Cloud (Laptop)                |
| DoorlockCloudApi       | MQTT Interface for the Edge<br>Devices to establish a<br>connection to the cloud and<br>the REST-API for customers<br>to control a door lock. | Python /<br>Flask          | Cloud (Laptop)                |
| DoorlockDatabase       | Stores information about the devices and their events and actions.                                                                            | Redis                      | Cloud (Laptop)                |
| ElasticsearchDatabase  | Database to store and query log messages.                                                                                                     | Java                       | Cloud (Laptop)                |
| KibanaDashboard        | GUI for Elasticsearch.                                                                                                                        | TypeScript /<br>JavaScript | Cloud (Laptop)                |
| DoorlockFrontend       | GUI for interacting with theDoorlockCloudApi.                                                                                                 | JS-<br>Framework           | Cloud (Laptop)                |
| DoorlockApp            | Receives push messages and emulates an NFC card for unlocking the door locally.                                                               | Telegram<br>Push           | Mobile                        |

Table 2: Smart Door Lock component overview

A detailed description of all the public interfaces of the components can be found in the section Detailed definitions of public interfaces.

### 3.4 System Implementation / Functional Software Architecture

These following major operations are supported by the system. Depending on the complexity of the operation a different number of components are involved.

| # | Operation                             | Triggered by             | Comments                      |
|---|---------------------------------------|--------------------------|-------------------------------|
| 1 | Local unlock                          | Swipe of RFID Card       | -                             |
| 2 | Remote unlock                         | Call to REST API         | -                             |
| 3 | Remote lock                           | Call to REST API         | Is a suboperation of #4       |
| 4 | Doorbell ring and mobile phone unlock | Pressing of the doorbell | -                             |
| 5 | Intrusion detection                   | Door sensor gets opened  | -                             |
|   |                                       | without unlock           |                               |
| 6 | Suspicious activity detection         | Movement detected by     | Decision whether it is a      |
|   |                                       | sensor with no           | suspicious activity or not is |
|   |                                       | subsequent unlock        | done on the edge-agent        |
| 7 | Monitoring and Logging                | Continuously by each     | -                             |
|   |                                       | component                |                               |

**Table 3: Use Cases of Smart Door Lock** 

As an example, two of the most used operations are described in the following paragraphs. All the other operations work in a very similar manner.

#### 3.4.1. Local unlock operation

One of the base operations is the local unlock (Figure 4). In this operation a user presents his RFID Card to the card reader. Depending on if this card has access, the door will be unlocked or not and the respective LED (green or red) will light up. 10 seconds after an unlock, the door lock will automatically lock again. This state changes are propagated via the Edge Agent to the Cloud API.



Figure 4: Sequence diagram of local unlock operation

Computer Science and Information Technology

#### 3.4.2. Doorbell ring and mobile phone unlock operation

One of the most important operations is the doorbell function (Figure 5). A visitor can push the doorbell and the speaker will play a ring sound. The event will be forwarded to the resident's mobile phone where he can unlock the door. If the unlock action is triggered this will cause the Arduino to unlock the door.



Figure 5: Sequence diagram of doorbell ring and mobile phone unlock operation

Remarks: The subsequent unlock, lock and updating of the lock state is not shown due to simplicity.

# 4. Evaluation/Experiments/Results/Discussion

The following Table 4 shows all the performed system tests to verify the operations (see Table 3) of the Smart Door Lock.

| #      | Testcase                           | Expected behaviour           | Actual behaviour         |
|--------|------------------------------------|------------------------------|--------------------------|
|        | Local unlock operation             |                              |                          |
| 1.1.1. | Present authorized NFC tag to card | Door unlocks and green led   | Door unlocks and green   |
|        | reader.                            | acknowledges authorized      | led acknowledges         |
|        |                                    | NFC tag.                     | authorized NFC tag.      |
| 1.1.2. | Open the door.                     | Door opened shown in UI.     | Door opened shown in     |
|        |                                    |                              | UI.                      |
| 1.1.3. | Shut the door.                     | Door closed shown in UI.     | Door closed shown in UI. |
| 1.2    | Present unauthorized NFC tag to    | Door stays locked and red    | Door stays locked and    |
|        | card reader                        | led acknowledges             | red led acknowledges     |
|        |                                    | unauthorized NFC tag.        | unauthorized NFC tag.    |
|        | Remote unlock operation            |                              |                          |
| 2.1    | Press unlock button of UI          | Door lock unlocks.           | Door lock unlocks.       |
|        | Rem                                | ote lock operation           |                          |
| 3.1    | Press lock button of UI            | Door lock locks.             | Door lock locks.         |
|        | Doorbell ring and                  | mobile phone unlock operatio | n                        |
| 4.1    | Press doorbell button of Arduino   | Doorbell rings and door is   | Doorbell rings and door  |
|        | and unlock door over telegram      | unlocked as soon as          | is unlocked as soon as   |
|        | app on mobile phone.               | telegram app approves        | telegram app approves    |
|        |                                    | unlock.                      | unlock.                  |
|        | Int                                | rusion detection             |                          |
| 5.1    | Open door despite it is locked     | Gateway sounds an alarm.     | Gateway sounds an        |
|        |                                    | User is notified on mobile.  | alarm. User is notified  |
|        |                                    |                              | on mobile.               |
|        | Suspicious activity detection      |                              |                          |
| 6.1    | 1 min movement in front of door    | User is notified on mobile.  | User is notified on      |
|        | without lock or unlock requests    |                              | mobile.                  |
|        |                                    | itoring and logging          |                          |
| 7.1    | Check Kibana                       | Logs of backend, gateway     | Logs of backend,         |
|        |                                    | and door controller are      | gateway and door         |
|        |                                    | visible.                     | controller are visible.  |

**Table 4: Test protocol of Smart Door Lock** 

Tests successfully passed on 17<sup>th</sup> of December 2021. (Boas Meier, Tobias Heller)

# 5. Application(s)

The presented system allows multiple applications. One could be a simple door lock where no physical key is needed but instead a RFID Card or a smartphone is sufficient.

Additional applications are in the field of a doorbell functionality which also allows unlocking the door remotely without opening the door physically from inside. The most advanced use case for the Smart Door Lock is related to security. Two main features make this system especially useful in this case. First there is an intrusion detection where a door sensor is detecting a break in. The system afterwards sends a push notification to the user and an alarm sound is played to scare off the potential burglar.

To prevent this from happening there is a second functionality which is called "suspicious activity detection". A motion detector checks what is happening in front of the door. If the custom algorithm is detecting suspicious movements or repeated swiping of an unauthorized card a notification is sent to the user.

The lock and door states can be checked from all over the world over the web interface, just an internet connection is needed. There is no need to lend the keys to somebody, the locks can always be opened over the web interface.

# 6. Conclusion

In this project the team has been able to develop a working prototype of a Smart Door Lock with additional security features. Multiple hardware components like an Arduino Uno, Raspberry Pi, Motion sensors and more were selected and implemented. Additionally, these parts were connected through intelligent software using the MQTT protocol and monitored with the Elastic Stack. The provided functionality was evaluated with successful experiments.

If the project were to be continued additional effort would be used to create a better mobile app, add a camera as a security feature and introduce an identity and access management system. Furthermore, additional investments in the security architecture and a concept for zero-touch deployment models would improve the existing prototype.

# 7. Contributions / Acknowledgments

In the beginning the whole team was working on the idea generation for a project. After a few ideas were presented, the team decided on the smart door lock project.

After that all the members of the team contributed to the software architecture and worked on the project proposal. As described in 8.1 Team and Roles the components were distributed to the team members. In the following paragraphs the contributions of each team member are described.

#### **Boas Meier**

He was mainly responsible for the evaluation and wiring of the hardware as well as for the implementation of the firmware in C/C++. Furthermore, he supported Tobias Heller in the development of the edge agent. Other than that, he was the main driver of the system design.

#### **Niklas Tanner**

He worked on the mobile notification system (telegram bot) and made a Python-implementation which has been used within the backend. He also evaluated and developed the Angular frontend from scratch displaying the doors and related event-information using the backends' REST-API.

#### **Lukas Mettler**

He worked mainly on the logging and monitoring components. This consists entirely of the Elastic Stack. This includes a total of four components. Two log shippers (Filebeat), one configured on the edge device and one in the cloud. Elasticsearch for processing and indexing the logs and Kibana for visualization.

#### **Tobias Heller**

He was mainly working on the backend and gateway implementation. He evaluated the database system and built the backend REST-API in Python. Additionally, together with Boas Meier he worked on the definitions and the implementation of the messaging system with MQTT. Here and there he helped Niklas with the telegram bot, mainly for the integration into the backend.

# 8. Major Milestones & Deliverables

#### 8.1 Team and Roles

Since we did work in an agile manner, we didn't have work packages but instead used single tasks which got distributed and were managed on Gitlab $^2$ . The following table shows which team members contributed mostly to a certain module.

| TEAM    | PROJECT MODULES        | CONTRIBUTORS                 |
|---------|------------------------|------------------------------|
|         | DoorControllerFirmware | Boas Meier                   |
|         | Edgeagent              | Boas Meier, Tobias Heller    |
|         | Filebeat               | Lukas Mettler                |
| P 1     | DoorlockCloudApi       | Tobias Heller                |
| GROUP 1 | DoorlockDatabase       | Tobias Heller                |
| GR      | ElasticSearchDatabase  | Lukas Mettler                |
|         | KibanaDashboard        | Lukas Mettler                |
|         | DoorlockFrontend       | Niklas Tanner                |
|         | DoorlockApp            | Niklas Tanner, Tobias Heller |

Table 5: Project modules and the main contributors

### 8.2 Project Planning, Timelines, Milestones & Deliverables



**Figure 6: Timeline and Milestones** 

| Date       | Milestone                       | Deliverable                 | Responsible    |
|------------|---------------------------------|-----------------------------|----------------|
| 24.09.2021 | Project kickoff                 | -                           |                |
| 01.10.2021 | Team chosen                     | Mail with team members      | Boas Meier     |
| 08.10.2021 | Project proposal                | Project proposal document   | All            |
| 15.10.2021 | Project proposal review         | Project proposal feedback   | Angela Nicoara |
| 26.11.2021 | Project breakthrough (80% done) | 80% of code and report done | All            |
| 26.12.2021 | Report and Demo Submission      | Final report and code       | All            |

Table 6: Milestones and the deliverables

<sup>&</sup>lt;sup>2</sup> Tasks in Gitlab: <a href="https://gitlab.enterpriselab.ch/loT-I">https://gitlab.enterpriselab.ch/loT-I</a> BA IOT/iot-i ba iot h21/i-ba-iot-h2101/group01/-/issues?scope=all&state=all

# 10. References / Biography

### 10.1. References

Han, D., Kim, H., & Jang, J. (2017). Blockchain based smart door lock system. *2017 International Conference on Information and Communication Technology Convergence (ICTC)*, 1165–1167. https://doi.org/10.1109/ICTC.2017.8190886

Pacheco, J., & Miranda, K. (2020). Design of a low-cost NFC Door Lock for a Smart Home System. 2020

IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 1–5.

https://doi.org/10.1109/IEMTRONICS51293.2020.9216409

## 10.2. List of figures

| Figure 1: System Overview                                                     | 3 |
|-------------------------------------------------------------------------------|---|
| Figure 2: System Architecture                                                 |   |
| Figure 3: Smart Door Lock Software Architecture                               |   |
| Figure 4: Sequence diagram of local unlock operation                          |   |
| Figure 5: Sequence diagram of doorbell ring and mobile phone unlock operation |   |
| Figure 6: Timeline and Milestones                                             |   |
| Figure 7: Schematics of DoorController                                        |   |
| Figure 8: SW-Architecture EdgeAgent                                           |   |
| Figure 9: Telegram Bot example                                                |   |

### Internet of Things (IOT)

Smart Door Lock

# **Lucerne University of Applied Sciences**

Computer Science and Information Technology

## 10.2. Table directory

| Table 1: System Architecture Level Overview          | 4  |
|------------------------------------------------------|----|
| Table 2: Smart Door Lock component overview          |    |
| Table 3: Use Cases of Smart Door Lock                | 7  |
| Table 4: Test protocol of Smart Door Lock            | 9  |
| Table 5: Project modules and the main contributors   | 12 |
| Table 6: Milestones and the deliverables             | 12 |
| Table 7: Circuit component description               | 15 |
| Table 8: Public interfaces of DoorControllerFirmware | 19 |
| Table 9: Public interfaces of EdgeAgent              | 19 |
| Table 10: Public interfaces of Filebeat              | 19 |
| Table 11: Public interfaces of DoorLockCloudApi      | 20 |
| Table 12: Public interfaces of DoorLockDatabase      | 20 |
| Table 13: Public interfaces of ElasticSearchDatabase | 20 |
| Table 14: Public interfaces of KibanaDashboard       | 21 |
| Table 15: Public interfaces of DoorLockFrontend      | 21 |
| Table 16: Public interfaces of Doorl ockApp          | 21 |

# **Appendix**

### 11.1. Additional documentation of modules

#### 11.1.1. DoorController

Figure 7 shows the schematics of the DoorController and the Gateway. The description of the different components is in Table 7.



Figure 7: Schematics of DoorController

| Identifier | Description                                                         |
|------------|---------------------------------------------------------------------|
| LED1 green | Doorlock mock. On if the door is locked.                            |
| LED2 red   | On for 1s if NFC tag isn't valid and access isn't granted.          |
| LED3 green | On for 1s if NFC tag is valid and access is granted.                |
| BTN1       | Doorbell. Normally closed. Triggers on falling edge.                |
| SW1        | Doorswitch. Triggers on rising and falling edge.                    |
| U1         | Arduino Uno Wifi Rev 2.                                             |
| U2         | Motion Sensor.                                                      |
| U3         | PN532 breakout board.                                               |
| U4         | Raspberry Pi 4.                                                     |
| SP1        | Piezo speaker. Rings when doorbell is pressed and acts as an alarm. |

**Table 7: Circuit component description** 

#### 11.1.2. Edge Agent

The following figure shows the inner workings of the EdgeAgent Code.



Figure 8: SW-Architecture EdgeAgent

**Smart Door Lock** 

Computer Science and Information Technology

#### 11.1.3. DoorLockFrontend

The frontend is provided by a simple Angular WebApp. It contains three modules: App-Component, Doorlist-Component and Doorlock-Service. The App-Component represents a simple webpage, without any further content, except the Doorlist-Component. This sends GET or POST requests to the backend to receive a list of doors or to send actions for a single door.

A GET request could look like this: http://localhost:5004/doorlocks/iotlab

The backend then returns a list of doors as a JSON.

For each door another GET request is being done, to retrieve the device's specific event and action entries. These entries represent different events, for example "intrusion". These events are displayed by an inner table within the main table. It can be accessed by clicking on the target device.

Additionally, the GUI allows for execution of actions like "unlock" or "lock".

A POST request could look like this: http://localhost:5004/doorlocks/iotlab/1/action

The 1 in the URL is the id of the door, where the action should be executed. The body of a request to unlock the door could look like this:

```
{
    "action": "unlock"
}
```

If an error occurs and an error-code is replied, a small notification-window shows up, stating that an error occurred. The error-details are also logged in the console of the browser.

Otherwise, the list refreshes itself every 5 seconds to stay up to date. Buttons are displayed depending on the current state of the referring door. If the door is locked the button shows "Unlock" and otherwise "Lock" is displayed. The POST-request also changes accordingly.

#### 11.1.4. DoorLockApp

The DoorLockApp is implemented using a Telegram Bot. Telegram is a messenger app developed by Telegram Messenger Inc. and Telegram FZ LLC. It provides the possibility to create and develop custom bots. These bots can be created using the "BotFather" and are accessed by a token. In this project the Python package "python-telegram-bot" is being used. It provides a variety of features including simple sending and reading messages up to handling whole conversations with states.

The bot is being triggered via the Cloud API if e.g., someone is ringing and sends a message into a group chat, asking if it should open the door. The message contains a custom keyboard with the two buttons "yes" and "no" which contain callback-information. This callback is used to determine further steps within the telegram bot. E.g., if you press "yes" the bot responds with a confirmation that he'll open the door.



Figure 9: Telegram Bot example

Only one telegram-bot at a time can run. Otherwise, a conflict occurs, because only one bot can pull updates from the telegram servers at the same time. The bot also must run in a separate thread. But the python-package "python-telegram-bot" takes care of this problem as it performs as a wrapper and outsources the listening process automatically to another thread.

# 11.2. Detailed definitions of public interfaces

| DoorControllerFirmware – Public Interfaces |                                                                    |  |
|--------------------------------------------|--------------------------------------------------------------------|--|
| Interface                                  | Description                                                        |  |
| Provides                                   |                                                                    |  |
| CardReaderHMI                              | Provides a green and red LED to indicate whether access is granted |  |
|                                            | or not.                                                            |  |
| MQTT Doorlock Action                       | Provides an MQTT Interface for executing actions like unlock and   |  |
|                                            | lock of the doorlock.                                              |  |
| Uses                                       |                                                                    |  |
| EdgeAgent                                  | Used for transmitting state, logs, and events to the gateway.      |  |

Table 8: Public interfaces of DoorControllerFirmware

| EdgeAgent – Public Interfaces |                                                                       |  |
|-------------------------------|-----------------------------------------------------------------------|--|
| Interface                     | Description                                                           |  |
| Provides                      |                                                                       |  |
| MQTT Doorlock Action          | Provides an MQTT Interface for executing actions like unlock and lock |  |
|                               | of a door lock for the provided site.                                 |  |
| MQTT Telemetry                | Stores telemetry like logs.                                           |  |
| MQTT Doorlock State           | Provides an MQTT Interface for updating the state of a door lock.     |  |
| MQTT Doorlock Event           | Provides an MQTT Interface for handling events of a door lock like    |  |
|                               | ring, intrusion.                                                      |  |
| Uses                          |                                                                       |  |
| DoorLockCloudAPI              | Used for transmitting state and events to the cloud.                  |  |
| DoorControllerFirmware        | Used for transmitting actions and receiving events and state updates  |  |
|                               | from the door controller devices.                                     |  |

Table 9: Public interfaces of EdgeAgent

| FileBeat – Public Interfaces |                                                                                                                                                                                                   |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Interface                    | Description                                                                                                                                                                                       |  |  |
| Provides                     |                                                                                                                                                                                                   |  |  |
| Logs collection and shipping | Collects all Logfiles defined in the configuration and sends them t the selected output.  Inputs: Logfiles from directory /var/log/*  Dockerlogs of all running containers  Output: elasticsearch |  |  |
| Uses                         |                                                                                                                                                                                                   |  |  |
| Edgeagent logs               | Filesystem and Docker logs of the Edgeagent.                                                                                                                                                      |  |  |
| DoorController logs          | Filesystem logs of the DoorController.                                                                                                                                                            |  |  |
| Linux Filesystem logs        | Filesystem logs for monitoring the Edge Device.                                                                                                                                                   |  |  |

**Table 10: Public interfaces of Filebeat** 

| DoorLockCloudAPI – Public Interfaces |                                                                      |  |  |  |
|--------------------------------------|----------------------------------------------------------------------|--|--|--|
| Interface Description                |                                                                      |  |  |  |
| Provides                             |                                                                      |  |  |  |
| Doorlock State API                   | Reads the state of the door locks.                                   |  |  |  |
| Doorlock Action API                  | Allows the execution of actions e.g., unlock or lock for door locks. |  |  |  |
| Doorlock Name API                    | Allows the updating and creating of names for door locks.            |  |  |  |
| MQTT Doorlock State                  | Provides an MQTT Interface for updating the state of a door lock     |  |  |  |
| MQTT Doorlock Event                  | Provides an MQTT Interface for handling events of a door lock like   |  |  |  |
|                                      | ring, intrusion.                                                     |  |  |  |
| Uses                                 |                                                                      |  |  |  |
| Telegram API                         | Used for transmitting messages to the phone via telegram.            |  |  |  |
| Edgeagent                            | Used for receiving the actions to the gateway.                       |  |  |  |
| DoorLock Database                    | Used for storing the state of the door locks.                        |  |  |  |

Table 11: Public interfaces of DoorLockCloudApi

| DoorLockDatabase- Public Interfaces                     |                                                     |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Interface Description                                   |                                                     |  |  |  |
| Provides                                                |                                                     |  |  |  |
| Doorlock Lock State                                     | Store and read the state of the lock.               |  |  |  |
| Doorlock Door State                                     | ck Door State Store and read the state of the door. |  |  |  |
| Doorlock Name Store and read the name of the door lock. |                                                     |  |  |  |
| Uses                                                    |                                                     |  |  |  |
| -                                                       | -                                                   |  |  |  |

Table 12: Public interfaces of DoorLockDatabase

| ElasticSearchDatabase – Public Interfaces                                                                                                                     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Interface Description                                                                                                                                         |  |  |  |  |
| Provides                                                                                                                                                      |  |  |  |  |
| Indexed logs from all log shippers indexing makes it possible to run queries against the data and you can use aggregations to retrieve summaries of the data. |  |  |  |  |
| Uses                                                                                                                                                          |  |  |  |  |
| Filebeat collects the raw data and sends it to elasticsearch.                                                                                                 |  |  |  |  |

Table 13: Public interfaces of ElasticSearchDatabase

Computer Science and Information Technology

| KibanaDashboard – Public Interfaces |                                                                                                                                         |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Interface                           | Description                                                                                                                             |  |  |  |
| Provides                            |                                                                                                                                         |  |  |  |
| Log visualization                   | Kibana provides a user interface where all log data can be visualized, dashboards can be created, and the Elastic Stack can be managed. |  |  |  |
| Uses                                |                                                                                                                                         |  |  |  |
| Elasticsearch                       | Takes the indexed logs from elasticsearch.                                                                                              |  |  |  |

Table 14: Public interfaces of KibanaDashboard

| DoorLockFrontend – Public Interfaces                              |                                                                  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| Interface Description                                             |                                                                  |  |  |  |
| Provides                                                          |                                                                  |  |  |  |
| UI                                                                | Visual representation of door locks and enables the execution of |  |  |  |
| the actions unlock and lock.                                      |                                                                  |  |  |  |
| For each door all passed events such as "intrusion" can be checke |                                                                  |  |  |  |
| Uses                                                              |                                                                  |  |  |  |
| DoorLockCloudAPI                                                  | Used for receiving the door locks and transmitting the actions.  |  |  |  |

Table 15: Public interfaces of DoorLockFrontend

| DoorLockApp – Public Interfaces |                                                                   |  |  |  |
|---------------------------------|-------------------------------------------------------------------|--|--|--|
| Interface Description           |                                                                   |  |  |  |
| Provides                        |                                                                   |  |  |  |
| Telegram API                    | Used for transmitting messages to the phone via telegram.         |  |  |  |
| RFID Emulator                   | D Emulator Used to emulate RFID Cards to unlock the door locally. |  |  |  |
| Uses                            |                                                                   |  |  |  |
| DoorLockCloudAPI                | Used for receiving events and triggering actions.                 |  |  |  |

Table 16: Public interfaces of DoorLockApp

# 11.3. Detailed definitions of modules

## 11.3.1. DoorControllerFirmware

#### **MQTT Interfaces for DoorControllerFirmware**

| Message               | MQTT-Topic                       | Payload | Example | Comments                  |
|-----------------------|----------------------------------|---------|---------|---------------------------|
|                       | Action                           |         |         |                           |
| Unlock Door<br>Action | gateway/[deviceId]/action/unlock | -       | -       | Unlocks the specific door |
| Lock Door<br>Action   | gateway/[deviceId]/action/lock   | -       | -       | Locks the specific door   |

### 11.3.2. EdgeAgent

#### **MQTT Interfaces for Edge Agent**

| Message            | MQTT-Topic                         | Payload                                                       | Example                                                           | Comments                                                                                                |  |  |
|--------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
|                    | Event                              |                                                               |                                                                   |                                                                                                         |  |  |
| Intrusion<br>Event | gateway/[deviceId]/event/intrusion | -                                                             | -                                                                 | Gets sent if door switch gets opened without unlock.                                                    |  |  |
| Movement           | gateway/[device]/event/movement    | -                                                             | -                                                                 | Gets sent if someone is standing in front of the door.                                                  |  |  |
| Ring Event         | gateway/[deviceId]/event/ring      | -                                                             | -                                                                 | Unlocks the specific door                                                                               |  |  |
| Card Event         | gateway/[deviceId]/event/card      | {     "authorize     d":     "value"     "uid":     "value" } | {     "authorized"     : false,     "uid": "01     02 03 04 05" } | Gets sent if a card is swiped in front of the card reader. Possible values for authorized (true, false) |  |  |
|                    | State                              |                                                               |                                                                   |                                                                                                         |  |  |
| Door State         | gateway/[deviceid]/state/door      | {     "doorStat     e":     "value"                           | {   "doorState":   "open" }                                       | Gets sent if<br>the status<br>of the Door<br>changes.                                                   |  |  |

Computer Science and Information Technology

|                |                                   | }                                                                                                 |                                                                                                                                                         | Possible values: "open", "closed"                                                                       |
|----------------|-----------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Lock State     | gateway/[deviceid]/state/lock     | { "lockState ": "value" }                                                                         | { "lockState": "locked" }                                                                                                                               | Gets sent if<br>the status<br>of the lock<br>changes.<br>Possible<br>values:<br>"locked",<br>"unlocked" |
|                | Telemetry                         |                                                                                                   |                                                                                                                                                         |                                                                                                         |
| Log<br>Message | gateway/[deviceid]/telemetry/logs | {   "timestam   p":   "value",   "lvl":   "value",   "deviceid"   : "value",   "msg":   "value" } | {     "timestamp"     : "2021-10-     18T20:47:53     ",     "IVI":     "INFO",     "deviceid": "     1234",     "msg":     "Motion     detected"     } | Gets sent if something gets logged in the firmware.                                                     |

#### Smart Door Lock

## 11.3.3. Doorlock Cloud API

#### **REST Interfaces**

The following APIs are available through http on the Port 5004.

| Function                                              | Method             | Endpoint                              | Return                                 | Example                                                                                                                                                                                                                          |  |
|-------------------------------------------------------|--------------------|---------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                       | Doorlock State API |                                       |                                        |                                                                                                                                                                                                                                  |  |
| All doorlocks for Site.                               | GET                | /doorlocks/[siteId]                   | List of all doorlocks for this siteld. | GET /doorlocks/iotlab [                                                                                                                                                                                                          |  |
| One<br>Doorlock<br>with siteld<br>and<br>deviceld.    | GET                | /doorlocks/[siteId]/[deviceId]        | One doorlock<br>object.                | /doorlocks/iotlab/1 {     "doorState": "open",     "lockState": "unlocked",     "name": "Main Entrance [1]" }                                                                                                                    |  |
|                                                       | <u> </u>           | Doorloc                               | k Action API                           | , ,                                                                                                                                                                                                                              |  |
| Execute an action for a doorlock.  [«unlock», «lock»] | POST               | /doorlocks/[siteId]/[deviceId]/action | 200 or 404                             | /doorlocks/iotlab/1/action {     "action": "unlock" }                                                                                                                                                                            |  |
| Get all actions for this doorlock.                    | GET                | /doorlocks/[siteId]/[deviceId]/action | 200 or 404                             | [     "action": "unlock",     "datetime": "2021-11- 19T09:30:06.003832",     "message": "",     "source": "api"     },     {         "action": "lock",         "datetime": "2021-11- 19T10:34:27.570701",         "message": "", |  |

|                                            |                   |                                      |             | "source": "api"<br>}<br>]                                                                                                                                                                                                         |  |  |
|--------------------------------------------|-------------------|--------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                            |                   | Doorloo                              | k Event API |                                                                                                                                                                                                                                   |  |  |
| Get all events for this doorlock.          | GET               | /doorlocks/[siteId]/[deviceId]/event | 200 or 404  | [     "datetime": "2021-11- 22T09:21:39.891565",     "event": "suspiciousactivity",     "message": ""     },     {         "datetime": "2021-11- 22T09:21:49.155834",         "event": "intrusion",         "message": ""     } ] |  |  |
|                                            | Doorlock Name API |                                      |             |                                                                                                                                                                                                                                   |  |  |
| Updates or creates the name of a doorlock. | PUT               | /doorlocks/[siteId]/[deviceId]       | 200 or 400  | /doorlocks/iotlab/1 {   "name": "Main Entrance" }                                                                                                                                                                                 |  |  |

### **MQTT Interfaces**

| Message                          | MQTT-Topic                                                 | Payload                                                    | Example                                                                   | Comments                                                                                                |
|----------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                  | MQTT Doorlock Ev                                           | ent                                                        |                                                                           |                                                                                                         |
| Intrusion<br>Event               | [siteId]/doorlocks/[deviceid]/event/intrusion              | -                                                          | -                                                                         | Gets sent if<br>door switch<br>gets<br>opened<br>without<br>unlock.                                     |
| Suspiciou<br>s Activity<br>Event | [siteId]/doorlocks/[deviceid]/event/<br>suspiciousactivity | -                                                          | -                                                                         | Gets sent if someone is standing in front of the door for too long.                                     |
| Ring<br>Event                    | [siteId]/doorlocks/[deviceid]/event/ring                   | -                                                          | -                                                                         | Gets sent if someone rings the doorbell.                                                                |
| Moveme<br>nt                     | [siteId]/doorlocks/[device]/event/moveme nt                | -                                                          | -                                                                         | Gets sent if someone is standing in front of the door.                                                  |
| Card<br>Event                    | [siteId]/doorlocks/[deviceId]/event/card                   | {     "authorized     ": "value"     "uid" :     "value" } | {     "authorize     d": false,     "uid": "01     02 03 04     05"     } | Gets sent if a card is swiped in front of the card reader. Possible values for authorized (true, false) |
|                                  | MQTT Doorlock St                                           | ate                                                        | 1                                                                         | ,                                                                                                       |
| Door<br>State                    | [siteId]/doorlocks/[deviceid]/state/door                   | {   "doorState"   : "value" }                              | {     "doorState     ": "open" }                                          | Gets sent if<br>the status<br>of the Door<br>changes.<br>Possible<br>values:<br>"open",<br>"closed"     |
| Lock<br>State                    | [siteId]/doorlocks/[deviceid]/state/lock                   | {   "lockState":   "value"                                 | {   "lockState"   : "locked"                                              | Gets sent if<br>the status                                                                              |

### Internet of Things (IOT)

Smart Door Lock

#### **Lucerne University of Applied Sciences**

Computer Science and Information Technology

|  | } | } | of the lock |  |
|--|---|---|-------------|--|
|  |   |   | changes.    |  |
|  |   |   | Possible    |  |
|  |   |   | values:     |  |
|  |   |   | "locked",   |  |
|  |   |   | "unlocked"  |  |

### 11.3.4. DoorlockDatabase

This data is stored in the Key-Value Database Redis.

| Data       | Key                                               | Value                                                                                      | Example                                                                                             | Comments                                                 |
|------------|---------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|            | Doorlock Door Sta                                 | ate                                                                                        |                                                                                                     |                                                          |
| Door State | [siteId]:doorlocks:[deviceid]:state:door          | {   "doorState"   : "value" }                                                              | {   "doorState   ": "open" }                                                                        | Possible values: "open", "closed"                        |
|            | Doorlock Lock Sta                                 | ite                                                                                        |                                                                                                     |                                                          |
| Lock State | [siteId]:doorlocks:[deviceid]:state:lock          | {   "lockState":   "value" }                                                               | {   "lockState"   : "locked" }                                                                      | Possible values: "locked", "unlocked"                    |
|            | Doorlock Name                                     | }                                                                                          |                                                                                                     |                                                          |
| Name       | [siteId]:doorlocks:[deviceid]:name                | { "name": "value" }                                                                        | {   "name":   "Main   Entrance" }                                                                   | Any String possible.                                     |
|            | Doorlock Action                                   | 1                                                                                          |                                                                                                     |                                                          |
| Action     | [siteId]:doorlocks:[deviceid]:action:[times tamp] | {     "action": "value",  "datetime": "isostring",  "message": "",     "source": "value" } | {     "action":     "unlock",  "datetime"     : "2021-11- 19T09:30:0 6.003832",  "message":     "", | Possible values for source: "api", "telegram", "unknown. |
|            | Doorlock Event                                    | ,                                                                                          | "source":<br>"api"<br>}                                                                             |                                                          |

### Internet of Things (IOT)

Smart Door Lock

### **Lucerne University of Applied Sciences**

Computer Science and Information Technology

| Event | [siteId]:doorlocks:[deviceid]:event:[timest | {            | {           | - |
|-------|---------------------------------------------|--------------|-------------|---|
|       | amp]                                        | "event":     | "event":    |   |
|       |                                             | "value",     | "intrusion" |   |
|       |                                             |              | ,           |   |
|       |                                             | "datetime":  |             |   |
|       |                                             | "isostring", | "datetime"  |   |
|       |                                             |              | : "2021-11- |   |
|       |                                             | "message":   | 19T09:30:0  |   |
|       |                                             | "",          | 6.003832",  |   |
|       |                                             | }            |             |   |
|       |                                             |              | "message":  |   |
|       |                                             |              |             |   |
|       |                                             |              | }           |   |
|       |                                             |              |             |   |