Lower bounds analysis for quantum linear algebras

邵长鹏

中科院数学院—数学机械化重点实验室 Based on joint works with Ashley Montanaro and Nikhil Mande

> 2024 年 5 月 22 日 清华大学

• 量子线性代数在量子算法设计和量子优势探索方面起到了重要作用。

- 量子线性代数在量子算法设计和量子优势探索方面起到了重要作用。
- 哈密顿模拟问题:制备 $|e^{iAt}b\rangle$ 。能够体现量子优势的一个重要问题。

- 量子线性代数在量子算法设计和量子优势探索方面起到了重要作用。
- 哈密顿模拟问题:制备 $|e^{iAt}b\rangle$ 。能够体现量子优势的一个重要问题。
- 求解线性方程组的 HHL 算法:制备 $|A^{-1}b\rangle$ 。极大促进了量子线性代数的发展 (包括应用),如

机器学习,例如推荐系统:制备 $|A_{\geq \delta}i\rangle$

微分方程组求解: 制备 $|e^{At}b\rangle$

- 量子线性代数在量子算法设计和量子优势探索方面起到了重要作用。
- 哈密顿模拟问题:制备 $|e^{iAt}b\rangle$ 。能够体现量子优势的一个重要问题。
- 求解线性方程组的 HHL 算法:制备 $|A^{-1}b\rangle$ 。极大促进了量子线性代数的发展 (包括应用),如 机器学习,例如推荐系统:制备 $|A_{\geq \delta}i\rangle$ 微分方程组求解:制备 $|e^{At}b\rangle$
- 这些问题都可以简述成矩阵函数的语言: 给定函数 f(x), 矩阵 A, 态 $|b\rangle$, 制备 $|f(A)b\rangle$ 。

- 量子线性代数在量子算法设计和量子优势探索方面起到了重要作用。
- 哈密顿模拟问题:制备 $|e^{iAt}b\rangle$ 。能够体现量子优势的一个重要问题。
- 求解线性方程组的 HHL 算法:制备 $|A^{-1}b\rangle$ 。极大促进了量子线性代数的发展 (包括应用),如 机器学习,例如推荐系统:制备 $|A_{\geq \delta}i\rangle$ 微分方程组求解:制备 $|e^{At}b\rangle$
- 这些问题都可以简述成矩阵函数的语言: 给定函数 f(x), 矩阵 A, 态 $|b\rangle$, 制备 $|f(A)b\rangle$ 。
- 量子奇异值变换可有效用来制备 $|f(A)b\rangle$ 。

量子奇异值变换 (Gilyén, Su, Low, Wiebe STOC 2019)

给定矩阵 A 和酉矩阵

$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$

设 f 是在 [-1,1] 上有界的一个多项式,则存在量子电路实现

$$\widetilde{U} = \begin{pmatrix} f(A/\alpha) & * \\ * & * \end{pmatrix}$$

这个量子电路使用了 $O(\deg(f))$ 次 U。

量子奇异值变换 (QSVT)

• 如果 f 不是多项式,则可以考虑其多项式逼近。

量子奇异值变换 (QSVT)

- 如果 f 不是多项式,则可以考虑其多项式逼近。
- 直接应用: 制备 $|f(A/\alpha)b\rangle$ 。如 $f(x) = x^{-1}$,则对应于求解线性方程组 $f(x) = e^{ixt}$,则对应于哈密顿模拟

量子奇异值变换 (QSVT)

- 如果 f 不是多项式,则可以考虑其多项式逼近。
- 直接应用:制备 $|f(A/\alpha)b\rangle$ 。如 $f(x) = x^{-1}$,则对应于求解线性方程组 $f(x) = e^{ixt}$,则对应于哈密顿模拟
- 很多时候得到的量子算法最优,复杂度为 $O(\deg_{\varepsilon}(f))$,这里逼近次数 (approximate degree)

$$\deg_{\varepsilon}(f) = \min\{d: |f(x) - g(x)| \le \varepsilon, \forall x \in [-1, 1],$$

$$g(x) \ \text{是一个次数为 } d \ \text{的多项式}\}.$$

QSVT 的复杂度下界为 $\Omega(\max_{x \in [-1,1]} |f'(x)|)$ 。

块嵌入 (block-encoding)

需要假定
$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$
, 称为 A 的块嵌入 (block-encoding)。在一些情形下存在有效构造方式:

块嵌入 (block-encoding)

需要假定
$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$
, 称为 A 的块嵌入 (block-encoding)。在一些情形下存在

有效构造方式:

- A 是稀疏的 (这时 $\alpha = s||A||_{\max}$)
- A 是密度矩阵或是 POVM 算子 (这时 $\alpha = 1$)
- A 存储在 QRAM 数据结构中 (这时 $\alpha = \|A\|_F$) 若经典情形下使用类似数据结构,则存在多项式时间算法"计算" $f(A/\alpha)b$ [Tang STOC 2018] \Rightarrow 无指数量子加速!
- 通过块嵌入的线性组合或乘法运算来构造新的块嵌入

本报告内容:矩阵函数的复杂度下界的一些新的结果和方法

- ① 量子奇异值变换的最优性 [with A. Montanaro, arXiv:2311.06999, STOC 2024]
- ② 量子通信复杂度下的量子奇异值变换 [with A. Montanaro, arXiv:2210.01601, QIP 2023]
- ③ 量子查询复杂度和量子通信复杂度的关联 [with N. Mande, arXiv:2402.15686]

矩阵函数

定义

设 A 是一个 $\overline{\mathbb{D}}$ 矩阵,特征值分解为 $A = UDU^T$ 。设 f(x) 是一个在 D 上有定义的函数,则¹

$$f(A) := Uf(D) U^{T}$$

其中若 $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,则 $f(D) = \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n))$

例

- $\mathfrak{G} f = x^k$, $\mathfrak{M} f(A) = A^k$
- $\mathfrak{L} f = e^x$, $\mathfrak{M} f(A) = e^A$
- $\mathfrak{L} f = 1/x$, $\mathfrak{M} f(A) = A^{-1}$

¹Nicholas Higham, Functions of Matrices: Theory and Computations. SIAM: 2008 (1986) (1986) (1986) (1986)

在量子计算领域,一个非常重要的函数是 $f(x) = e^{ixt}$,则

$$f(A) = e^{iAt}.$$

对应于哈密顿模拟问题,是量子计算领域最基本也是最重要的问题之一。

在量子计算领域,一个非常重要的函数是 $f(x) = e^{ixt}$,则

$$f(A) = e^{iAt}.$$

对应于哈密顿模拟问题,是量子计算领域最基本也是最重要的问题之一。

定理 (Low & Chuang, 2017)

假定 A 稀疏, $\|A\| \leq 1$,则计算 $e^{iAt}|\psi\rangle$ 的量子复杂度为

$$\Theta\left(t + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right).$$

在量子计算领域,一个非常重要的函数是 $f(x) = e^{ixt}$,则

$$f(A) = e^{iAt}.$$

对应于哈密顿模拟问题,是量子计算领域最基本也是最重要的问题之一。

定理 (Low & Chuang, 2017)

假定 A 稀疏, $\|A\| \le 1$,则计算 $e^{iAt}|\psi\rangle$ 的量子复杂度为

$$\Theta\left(t + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right).$$

该问题是 BQP-完全问题 (也即能够在量子计算机上有效解决的最困难的一类问题)

• 另外一个 BQP-完全问题是计算 $A^{-1}|b\rangle$ 。对应于求解线性方程组,这里的 f(x)=1/x [Harrow, Hassidim, Lloyd 2008]

- 另外一个 BQP-完全问题是计算 $A^{-1}|b\rangle$ 。对应于求解线性方程组,这里的 f(x)=1/x [Harrow, Hassidim, Lloyd 2008]
- 假定 A 是稀疏的,则量子算法的复杂度为 $\widetilde{\Theta}(\kappa)$,其中 κ 为 A 的条件数 [Ambainis 2010]

- 另外一个 BQP-完全问题是计算 $A^{-1}|b\rangle$ 。对应于求解线性方程组,这里的 f(x)=1/x [Harrow, Hassidim, Lloyd 2008]
- 假定 A 是稀疏的,则量子算法的复杂度为 $\Theta(\kappa)$,其中 κ 为 A 的条件数 [Ambainis 2010]
- 这些问题都可以使用量子奇异值变换求解,且所得到的量子算法最优。那一般情形下呢?

矩阵函数问题

问题

设 A 是一个稀疏的厄米矩阵, $||A|| \le 1$,设 $f: [-1,1] \to [-1,1]$ 是一个函数,对任意给定的两个指标 i,j,研究计算 $f(A)_{i,j} \pm \varepsilon$ 的复杂度,尤其是<mark>复杂度下界</mark>。

矩阵函数问题

问题

设 A 是一个稀疏的厄米矩阵, $||A|| \le 1$,设 $f: [-1,1] \to [-1,1]$ 是一个函数,对任意给定的两个指标 i,j,研究计算 $f(A)_{i,j} \pm \varepsilon$ 的复杂度,尤其是<mark>复杂度下界</mark>。

定义 (查询复杂度 (query complexity))

设 $A = (A_{i,j})_{n \times n}$ 是一个稀疏的厄米矩阵,给定两个 Oracle

其中 $p_{i,j}$ 是第 i 行第 j 个非零元素的位置。查询复杂度定义为逼近 $f(A)_{i,j}$ 所使用的 $\mathcal{O}_1, \mathcal{O}_2$ 的最少个数。

量子算法

定理 (基于量子奇异值变换)

假定 $\|A\| \leq 1-\delta$,这里 $\delta>0$ 。对任意 $|x\rangle,|y\rangle$,存在量子算法计算 $\langle x|f(A)|y\rangle\pm\varepsilon$,其复杂度为

$$O(\frac{C}{\varepsilon}\widetilde{\deg}_{\varepsilon}(f))$$

其中 $C = \frac{s}{\delta} \log(\frac{s}{\varepsilon} \widetilde{\deg}_{\varepsilon}(f))$, 这里 s 为稀疏度(即每行/列非零元素个数 $\leq s$)。

注: 假定 $||A|| \le 1 - \delta$ 是希望得到如下的 block-encoding

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix}$$

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

由于稀疏性,复杂度为 $O(s^{d-1})$

• 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

- 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- 该问题是 BQP-完全问题 [Janzing & Wocjan, 2007]

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

- 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- 该问题是 BQP-完全问题 [Janzing & Wocjan, 2007]
- 我们的结果: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

- 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- 该问题是 BQP-完全问题 [Janzing & Wocjan, 2007]
- 我们的结果: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

由于稀疏性,复杂度为 $O(s^{d-1})$

- 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- 该问题是 BQP-完全问题 [Janzing & Wocjan, 2007]
- 我们的结果: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

量子算法:

• 复杂度上界 $O(s\sqrt{d}/\varepsilon)$ [Gilyén, Su, Low, Wiebe, 2018]

经典算法:

• 设 A 的稀疏度为 s。按定义

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

由于稀疏性,复杂度为 $O(s^{d-1})$

- 对于 x^d ,存在次数为 $\Theta(\sqrt{d})$ 的逼近多项式,因此结果可改进到 $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- 该问题是 BQP-完全问题 [Janzing & Wocjan, 2007]
- 我们的结果: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

量子算法:

Lower bounds analysis for quantum linear algebras

- 复杂度上界 $O(s\sqrt{d}/\varepsilon)$ [Gilyén, Su, Low, Wiebe, 2018]
- 我们的结果: 复杂度下界 $\Omega(\sqrt{d})$

12 / 37

一般性结果

设 f 连续,A 稀疏厄米,则计算 $f(A)_{i,j} \pm \varepsilon$ 的复杂度如下

	量子算法	经典算法
复杂度上界	O(sd/arepsilon)	$O(s^{d-1})$
复杂度下界	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

其中 $d = \widetilde{\deg}_{\varepsilon}(f)$ 。

关键定理

定理

设 $f(x):[-1,1] \to [-1,1]$ 是连续函数,设 $f_{\text{odd}}(x), f_{\text{even}}(x)$ 是奇、偶部分。则

- 存在对称的三对角阵 A 满足 $\|A\| \le 1$ 使得 $f(A)_{1,n} = \varepsilon$, 其中 $n = \widetilde{\deg}_{\varepsilon}(f_{\mathrm{odd}}) + O(1)$
- 存在对称的三对角阵 A 满足 $\|A\| \le 1$ 使得 $f(A)_{2,n-1} = \varepsilon$, 其中 $n = \widetilde{\deg}_{\varepsilon}(f_{\mathrm{even}}) + O(1)$

证明:线性半无限规划问题 + 对偶多项式方法 + 三对角阵的性质。

奇偶性判定问题 (Parity problem): 给定 $x_1, \ldots, x_n \in \{0, 1\}$, 计算 $x_1 \oplus \cdots \oplus x_n$ 。经 典/量子算法复杂度都为 $\Theta(n)$

奇偶性判定问题(Parity problem): 给定 $x_1, \ldots, x_n \in \{0,1\}$,计算 $x_1 \oplus \cdots \oplus x_n$ 。经 典/量子算法复杂度都为 $\Theta(n)$

构造带权图G:

- 顶点: (i,t), 其中 $i \in \{0,1,\ldots,n\}, t \in \{0,1\}$
- **边**: (i-1,t) 和 $(i,t \oplus x_i)$ 之间存在一条边

例如 $(x_1, x_2, x_3, x_4) = (0, 1, 1, 0)$, 则 G 为

本质上, G 由两条道路构成

$$(0,0) - (1,x_0) - (2,x_0 \oplus x_1) - \dots - (n,x_0 \oplus \dots \oplus x_{n-1})$$

$$(0,1) - (1,1 \oplus x_0) - (2,1 \oplus x_0 \oplus x_1) - \dots - (n,1 \oplus x_0 \oplus \dots \oplus x_{n-1})$$

本质上, G 由两条道路构成

$$(0,0) - (1,x_0) - (2,x_0 \oplus x_1) - \dots - (n,x_0 \oplus \dots \oplus x_{n-1})$$

$$(0,1) - (1,1 \oplus x_0) - (2,1 \oplus x_0 \oplus x_1) - \dots - (n,1 \oplus x_0 \oplus \dots \oplus x_{n-1})$$

设 A 是图的邻接矩阵 (本质上是两个三对角型矩阵),则

量子算法的复杂度下界

本质上,G由两条道路构成

$$(0,0) - (1,x_0) - (2,x_0 \oplus x_1) - \dots - (n,x_0 \oplus \dots \oplus x_{n-1})$$

$$(0,1) - (1,1 \oplus x_0) - (2,1 \oplus x_0 \oplus x_1) - \dots - (n,1 \oplus x_0 \oplus \dots \oplus x_{n-1})$$

设 A 是图的邻接矩阵 (本质上是两个三对角型矩阵),则

Forrelation 问题 (Aaronson & Ambainis, 2015):

给定
$$g_1, g_2: \{0, 1\}^n \to \{\pm 1\}, \Leftrightarrow D_i = \operatorname{diag}(g_i(x): x \in \{0, 1\}^n), H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
。设

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} f(x) g(y).$$

目标是计算 $\Phi(g_1, g_2) \pm 1/3$

Forrelation 问题 (Aaronson & Ambainis, 2015):

给定
$$g_1, g_2: \{0, 1\}^n \to \{\pm 1\}, \Leftrightarrow D_i = \operatorname{diag}(g_i(x): x \in \{0, 1\}^n), H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
。设

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} f(x) g(y).$$

目标是计算 $\Phi(g_1, g_2) \pm 1/3$

关于该问题, 经典算法的复杂度下界为 $\Omega(\sqrt{2^n}/n)$, 量子算法的复杂度上界为 O(1)

Feynman 的 Clock 构造法

设
$$U = U_{N-1} \cdots U_2 U_1$$
 是一个酉算子,令

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} & & & \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} & & \\ & b_2 U_2 & \ddots & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

Feynman 的 Clock 构造法

设 $U = U_{N-1} \cdots U_2 U_1$ 是一个酉算子,令

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} & & & \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} & & \\ & b_2 U_2 & \ddots & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

设 $|\psi_t\rangle := |t\rangle \otimes U_t \cdots U_1|0\rangle$,则

$$A|\psi_t\rangle = b_{t-1}|\psi_{t-1}\rangle + b_{t+1}|\psi_{t+1}\rangle$$

因此在子空间 $\{|\psi_t\rangle: t=0,1,\ldots,N-1\}$ 中, A 是一个三对角阵

在 Forrelation 问题中,
$$U = H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n}$$
,为确保 A 的稀疏性,视
$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

在 Forrelation 问题中,
$$U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$$
,为确保 A 的稀疏性,视 $H^{\otimes n}=(H\otimes I\otimes\cdots\otimes I)(I\otimes H\otimes\cdots\otimes I)\cdots(I\otimes I\otimes\cdots\otimes H)$ 这时 $N=3n+2$,
$$|\psi_0\rangle \ = \ |0\rangle\otimes|0\rangle \\ |\psi_{N-1}\rangle \ = \ |N-1\rangle\otimes H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}|0\rangle$$

在 Forrelation 问题中, $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$,为确保 A 的稀疏性,视 $H^{\otimes n}=(H\otimes I\otimes\cdots\otimes I)(I\otimes H\otimes\cdots\otimes I)\cdots(I\otimes I\otimes\cdots\otimes H)$ 这时 N=3n+2, $|\psi_0\rangle\ =\ |0\rangle\otimes|0\rangle \\ |\psi_{N-1}\rangle\ =\ |N-1\rangle\otimes H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}|0\rangle$ 令 $|\phi_{N-1}\rangle=|N-1\rangle\otimes|0\rangle$,则 $\langle\phi_{N-1}|f(A)|\psi_0\rangle\ =\ \langle\psi_{N-1}|f(A)|\psi_0\rangle\cdot\Phi(g_1,g_2)$

在 Forrelation 问题中, $U = H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n}$, 为确保 A 的稀疏性, 视 $H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$ 这时 N = 3n + 2. $|\psi_0\rangle = |0\rangle \otimes |0\rangle$ $|\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$ $\langle \phi | \phi_{N-1} \rangle = |N-1\rangle \otimes |0\rangle$. 则 $\langle \phi_{N-1} | f(A) | \psi_0 \rangle = \langle \psi_{N-1} | f(A) | \psi_0 \rangle \cdot \Phi(q_1, q_2)$ f(A) 的一个分量

第一部分总结

• 对于矩阵函数问题, 我们有

	量子算法	经典算法
复杂度上界	O(sd/arepsilon)	$O(s^{d-1})$
复杂度下界	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- 关于逼近次数 d, 证明了量子算法的最优性
- 对于矩阵函数问题,证明了量子和经典算法的差距是指数级
- 对精度 ε 的下界估计, $\Omega(1/\varepsilon)$?

通信复杂度 (communication complexity)

- 由姚期智先生提出,在很多领域有着重要应用,尤其是在复杂度下界证明方面。
- 问题: Alice 有 $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$, Bob 有 $y = (y_1, \ldots, y_n) \in \{0, 1\}^n$, 目标是计算 f(x, y)。

• 通信复杂度:= 计算 f(x,y) 所传递的比特数。

通信复杂度

局部计算代价 (也即 Alice 或 Bob 本身计算的代价) 不计入通信复杂度中。

在量子情形下,也有类似的定义,这时传递的是量子信息 (如量子态),量子通信复杂度指代的是量子比特的传递个数。

例 (正交性问题, Disjointness problem)

Alice 有 (x_1,\ldots,x_n) , Bob 有 (y_1,\ldots,y_n) , 目标是判定是否存在 i 使得 $x_i=y_i=1$.

经典 vs 量子 $=\Theta(n)$ vs $\Theta(\sqrt{n})$

通信复杂度: multi-player case

Multi-player 情形: 设 $i \in \{1, ..., s\}$, player P_i 有矩阵 $A_i \in \mathbb{R}^{m_i \times n}$ 和向量 $b_i \in \mathbb{R}^{m_i}$,

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_s \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_s \end{pmatrix}.$$

Coordinator model

假定存在 coordinator C 可与 player P_i 双向交流

目标: 给定函数 f(x), coordinator C 输出量子态 $|f(A)b\rangle \pm \varepsilon$ 。

主要结果

定理 (QSVT w.r.t. communication complexity)

In the quantum coordinator model, there is a quantum protocol for the referee to use

$$\widetilde{U} = \begin{pmatrix} f(A/\alpha) & * \\ * & * \end{pmatrix}$$

once with $O(sd\log n)$ qubits communication, where $d=\widetilde{\deg}_{arepsilon}(f)$ and

$$\alpha = \sqrt{\sum_{i=1}^{s} ||A_i||^2} = O(\sqrt{s}||A||).$$

证明简述: LCU 方法回顾

给定酉矩阵 U_1,\ldots,U_s 和正实数 α_1,\ldots,α_s , 目标是实现 $\sum \alpha_i U_i |\psi\rangle$.

• 初始态, 令 $\alpha = \sum_i \alpha_i$ 和 $V|0\rangle = \frac{1}{\sqrt{\alpha}} \sum_{i=1}^s \sqrt{\alpha_i} |i\rangle$. 制备

$$\frac{1}{\sqrt{\alpha}} \sum_{i=1}^{s} \sqrt{\alpha_i} |i\rangle |\psi\rangle.$$

• 受控作用 $\sum_i |i\rangle\langle i|\otimes U_i$

$$\frac{1}{\sqrt{\alpha}} \sum_{i=1}^{s} \sqrt{\alpha_i} |i\rangle U_i |\psi\rangle.$$

使用 V⁻¹

$$\frac{1}{\alpha} \sum_{i=1}^{s} \alpha_i |0\rangle U_i |\psi\rangle + |\bot\rangle.$$

证明简述

①
$$P_i$$
 构造 $U_i = \begin{pmatrix} A_i/\|A_i\| & * \\ * & * \end{pmatrix}$,回顾 $A = \begin{pmatrix} A_1 \\ \vdots \\ A_s \end{pmatrix}$

② 利用 LCU 方法来构造 A 的 block-encoding,也即实现 $\sum_i \|A_i\| |i\rangle \otimes U_i$:

$$U = \left(\sum_{i=1}^{s} |i\rangle\langle i| \otimes U_i\right) (V \otimes I_2 \otimes I_n)$$

其中
$$V|0\rangle = \frac{1}{\alpha} \sum_{i=1}^{s} ||A_i|| |i\rangle$$
.

3 QSVT 的量子电路形如:

$$\widetilde{U} = W_0 U W_1 U^{\dagger} W_2 U W_3 U^{\dagger} \cdots W_d U$$

应用:线性回归问题 (取 $f(x) \approx 1/x$)

推论

求解线性回归问题的量子通信复杂度为 $\widetilde{O}(s^{1.5}\kappa)$,其中 κ 是矩阵 A 的条件数。

应用: 线性回归问题 (取 $f(x) \approx 1/x$)

推论

求解线性回归问题的量子通信复杂度为 $\widetilde{O}(s^{1.5}\kappa)$,其中 κ 是矩阵 A 的条件数。

注:由量子奇异值变换,求解线性回归问题的时间/查询复杂度为 $\widetilde{O}(T_A\alpha/\sigma_{\min})$,其中 σ_{\min} 是最小非零奇异值, T_A 是构造 block-encoding

$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$

的代价。在通信复杂度情形下,其实有 $T_A = O((s/\sigma_{\min})\log n)$, $\alpha = O(\sqrt{s}\sigma_{\max})$ 。

应用:线性回归问题(取 $f(x) \approx 1/x$)

推论

求解线性回归问题的量子通信复杂度为 $\widetilde{O}(s^{1.5}\kappa)$,其中 κ 是矩阵 A 的条件数。

注:由量子奇异值变换,求解线性回归问题的时间/查询复杂度为 $\widetilde{O}(T_A\alpha/\sigma_{\min})$,其中 σ_{\min} 是最小非零奇异值, T_A 是构造 block-encoding

$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$

的代价。在通信复杂度情形下,其实有 $T_A = O((s/\sigma_{\min})\log n)$, $\alpha = O(\sqrt{s}\sigma_{\max})$ 。

一个好处:对于 QSVT, "Block-encoding 假定"在量子通信复杂度下很容易实现。

• 查询复杂度 (布尔函数情形): 给定布尔函数 f 和一个布尔输入 $x = (x_1, \ldots, x_n)$, 目标是计算 f(x)。假定只有一个 Oracle $O: i \to x_i$ 。需要调用多少次 O。

- 查询复杂度 (布尔函数情形): 给定布尔函数 f 和一个布尔输入 $x = (x_1, \ldots, x_n)$,目标是计算 f(x)。假定只有一个 Oracle $O: i \to x_i$ 。需要调用多少次 O。
- 通信复杂度: Alice 有 $x = (x_1, ..., x_n)$, Bob 有 $y = (y_1, ..., y_n)$, 目标是计算 f(x, y)。

- 查询复杂度 (布尔函数情形): 给定布尔函数 f 和一个布尔输入 $x = (x_1, \ldots, x_n)$, 目标是计算 f(x)。假定只有一个 Oracle $O: i \to x_i$ 。需要调用多少次 O。
- 通信复杂度: Alice 有 $x = (x_1, ..., x_n)$, Bob 有 $y = (y_1, ..., y_n)$, 目标是计算 f(x, y)。
- Buhrman, Cleve, Wigderson [STOC '98]: 设 $g: \{0,1\}^n \to \{0,1\}$, *是一个二元运算 (例如 \oplus , \wedge), 令 f(x,y) := g(x * y)。 如果存在一个查询复杂度为 T 的量子算法可计算 g,则存在一个量子通信方案,其通信复杂度为 $C = T(2\log n + 4)$,可计算 f。

- 查询复杂度 (布尔函数情形): 给定布尔函数 f 和一个布尔输入 $x = (x_1, \ldots, x_n)$, 目标是计算 f(x)。假定只有一个 Oracle $O: i \to x_i$ 。需要调用多少次 O。
- 通信复杂度: Alice 有 $x = (x_1, ..., x_n)$, Bob 有 $y = (y_1, ..., y_n)$, 目标是计算 f(x, y)。
- Buhrman, Cleve, Wigderson [STOC '98]: 设 $g: \{0,1\}^n \to \{0,1\}$, *是一个二元运算 (例如 \oplus , \wedge), 令 f(x,y) := g(x * y)。 如果存在一个查询复杂度为 T 的量子算法可计算 g,则存在一个量子通信方案,其通信复杂度为 $C = T(2\log n + 4)$,可计算 f。
- 这一结果的价值是两方面的:
 - 1. 可用量子查询算法来设计量子通信方案;
 - 2. 可用量子通信复杂度来估计量子查询复杂度的下界。

搜索问题 (查询复杂度): 计算布尔函数 $x_1 \vee \cdots \vee x_n$ 。

搜索问题 (查询复杂度): 计算布尔函数 $x_1 \vee \cdots \vee x_n$ 。

正交性问题 (通信复杂度): Alice 有 $(x_1, ..., x_n)$, Bob 有 $(y_1, ..., y_n)$, 目标是判定是 否存在 i 使得 $x_i = y_i = 1$ 。也即计算布尔函数 $(x_1 \wedge y_1) \vee \cdots \vee (x_n \wedge y_n)$ 。

搜索问题 (查询复杂度): 计算布尔函数 $x_1 \vee \cdots \vee x_n$ 。

正交性问题 (通信复杂度): Alice 有 $(x_1, ..., x_n)$, Bob 有 $(y_1, ..., y_n)$, 目标是判定是 否存在 i 使得 $x_i = y_i = 1$ 。也即计算布尔函数 $(x_1 \wedge y_1) \vee \cdots \vee (x_n \wedge y_n)$ 。

利用 Grover 算法可得到一个量子通信方案求解正交性问题,复杂度为 $O(\sqrt{n}\log n)$,可改进到 $O(\sqrt{n})$ [Aaronson, Ambainis FOCS '03]。

搜索问题 (查询复杂度): 计算布尔函数 $x_1 \vee \cdots \vee x_n$ 。

正交性问题 (通信复杂度): Alice 有 $(x_1, ..., x_n)$, Bob 有 $(y_1, ..., y_n)$, 目标是判定是 否存在 i 使得 $x_i = y_i = 1$ 。也即计算布尔函数 $(x_1 \wedge y_1) \vee \cdots \vee (x_n \wedge y_n)$ 。

利用 Grover 算法可得到一个量子通信方案求解正交性问题,复杂度为 $O(\sqrt{n}\log n)$,可改进到 $O(\sqrt{n})$ [Aaronson, Ambainis FOCS '03]。

正交性问题的通信复杂度下界为 $\Omega(\sqrt{n})$, 因此可得到搜索问题的查询复杂度下界为 $\Omega(\sqrt{n}/\log n)$, 可改进到 $\Omega(\sqrt{n})$ [Razborov, 2003]。

量子查询算法

设 A 是一个矩阵, 且存在酉矩阵满足

$$U = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$

一个查询复杂度为 T 的量子算法形如:

$$W_1 \widetilde{U} W_2 \widetilde{U} W_3 \widetilde{U} \cdots W_T \widetilde{U} W_{T+1},$$

其中 W_i 是与 U 无关的酉矩阵, $\widetilde{U} \in \{U, U^{-1}, cU, cU^{-1}\}.$

定理(关于矩阵)

设 Alice 和 Bob 分别有矩阵
$$A_1,A_2$$
 和酉矩阵 $U_1=egin{pmatrix} A_1/\alpha_1 & * \\ * & * \end{pmatrix}$,

$$U_2=egin{pmatrix} A_2/lpha_2 & * \ * & * \end{pmatrix}$$
.令 $A=egin{pmatrix} A_1 \ A_2 \end{pmatrix}\in\mathbb{C}^{m imes n}$,则存在一个量子通信方案可让 Alice 和 Bob 使用酉矩阵 $U=egin{pmatrix} A/\sqrt{lpha_1^2+lpha_2^2} & * \ * & * \end{pmatrix}$ 。调用一次的量子通信复杂度为

和
$$Bob$$
 使用酉矩阵 $U=egin{pmatrix} A/\sqrt{\alpha_1^2+\alpha_2^2} & * \ * & * \end{pmatrix}$ 。调用一次的量子通信复杂度为 $O(\log(mn))$ 。

定理(关于向量)

设 Alice 和 Bob 分别有向量 b_1, b_2 和酉矩阵 W_1, W_2 可制备 $|b_1\rangle, |b_2\rangle$. 令

$$b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \mathbb{C}^m$$
,则存在一个量子通信方案可让 Alice 和 Bob 使用酉矩阵 W 可制

备 $|b\rangle$, 调用一次的量子通信复杂度为 $O(\log(m))$.

定理

假定同上,如果存在一个查询复杂度为 T 的量子算法求解矩阵-向量 A,b 的问题,则存在一个量子通信方案解决同一问题,其复杂度为 $O(T\log(mn))$ 。

定理

假定同上,如果存在一个查询复杂度为 T 的量子算法求解矩阵-向量 A,b 的问题,则存在一个量子通信方案解决同一问题,其复杂度为 $O(T\log(mn))$ 。

一个特殊情况: Alice 有 A, Bob 有 b. 这时算法

$$W_1 \widetilde{U} W_2 \widetilde{U} W_3 \widetilde{U} \cdots W_T \widetilde{U} W_{T+1}$$

中 Alice 可调用 \widetilde{U} , Bob 可调用 W_i 。

求解线性方程组: $A\mathbf{x} = b$. 关于该问题, 其查询复杂度下界为 $\Omega(\kappa)$, 其中 κ 是 A 的条件数。

求解线性方程组: $A\mathbf{x} = b$. 关于该问题, 其查询复杂度下界为 $\Omega(\kappa)$, 其中 κ 是 A 的条件数。

考虑正交性问题: Alice 有 (x_1,\ldots,x_n) , Bob 有 (y_1,\ldots,y_n) , 目标是判定是否存在 i 使得 $x_i=y_i=1$ 。

求解线性方程组: $A\mathbf{x} = b$. 关于该问题, 其查询复杂度下界为 $\Omega(\kappa)$, 其中 κ 是 A 的条件数。

考虑正交性问题: Alice 有 $(x_1, ..., x_n)$, Bob 有 $(y_1, ..., y_n)$, 目标是判定是否存在 i 使得 $x_i = y_i = 1$ 。

构造 A, b: A 是对角阵: $A_{ii} = \begin{cases} 1/\sqrt{n} & x_i = 1\\ 1 & x_i = 0 \end{cases}$, b 是向量 $(y_1, \dots, y_n)^T$ 。则方程解为

$$x_i = \begin{cases} \sqrt{n} & x_i = y_i = 1\\ 1 & x_i = 0, y_i = 1\\ 0 & y_i = 0 \end{cases}$$

求解线性方程组: $A\mathbf{x} = b$. 关于该问题, 其查询复杂度下界为 $\Omega(\kappa)$, 其中 κ 是 A 的条件数。

考虑正交性问题: Alice 有 $(x_1,...,x_n)$, Bob 有 $(y_1,...,y_n)$, 目标是判定是否存在 i 使得 $x_i = y_i = 1$ 。

构造 A, b: A 是对角阵: $A_{ii} = \begin{cases} 1/\sqrt{n} & x_i = 1 \\ 1 & x_i = 0 \end{cases}$, b 是向量 $(y_1, \dots, y_n)^T$ 。则方程解为

$$x_i = \begin{cases} \sqrt{n} & x_i = y_i = 1\\ 1 & x_i = 0, y_i = 1\\ 0 & y_i = 0 \end{cases}$$

如果可得到解的量子态,则观测时将以概率 $\approx 1/2$ 得到 i 满足 $x_i = y_i = 1$. 这时 $\kappa = \sqrt{n}$. 因此,求解线性方程组的查询复杂度下界为 $\Omega(\kappa/\log n)$ 。

一些例子: 矩阵指数

给定矩阵 A 满足 $||A|| \le 1$, 计算 $e^{At}b$ 。复杂度上界为 $O(e^t)$ 。

一些例子: 矩阵指数

给定矩阵 A 满足 $||A|| \le 1$,计算 $e^{At}b$ 。复杂度上界为 $O(e^t)$ 。 根据正交性问题,构造 A,b: A 是对角阵,把 x 放在对角线上。b 还是向量 $(y_1,\ldots,y_n)^T$ 。取 $t=\frac{1}{2}\ln(n)$ 。则

$$(e^{At}b)_i = \begin{cases} e^t & x_i = y_i = 1\\ 1 & x_i = 0, y_i = 1\\ 0 & y_i = 0 \end{cases}$$

一些例子: 矩阵指数

给定矩阵 A 满足 $\|A\| \le 1$,计算 $e^{At}b$ 。复杂度上界为 $O(e^t)$ 。 根据正交性问题,构造 A,b: A 是对角阵,把 x 放在对角线上。b 还是向量 $(y_1,\ldots,y_n)^T$ 。取 $t=\frac{1}{2}\ln(n)$ 。则

$$(e^{At}b)_i = \begin{cases} e^t & x_i = y_i = 1\\ 1 & x_i = 0, y_i = 1\\ 0 & y_i = 0 \end{cases}$$

如果有 $e^{At}b$ 的量子态,则观测时将以概率 $\approx 1/2$ 得到 i 满足 $x_i = y_i = 1$. 这时 $e^t = \sqrt{n}$. 因此,计算 e^{At} 的查询复杂度下界为 $\Omega(e^t/\log n)$ 。

第二部分总结

- 给出了量子通信复杂度模型下的 QSVT 的实现方案⇒有望从通信复杂度角度得到更多关于量子优势的发现
- 关于矩阵函数,建立了量子查询复杂度和通信复杂度的关系⇒提供了证明量子查询复杂度的一个新方法

第二部分总结

- 给出了量子通信复杂度模型下的 QSVT 的实现方案⇒有望从通信复杂度角度得到更多关于量子优势的发现
- 关于矩阵函数,建立了量子查询复杂度和通信复杂度的关系⇒提供了证明量子查询复杂度的一个新方法

非常感谢!

