Car

Author: Shihan Ran, 15307130424

Environment: Mac OS

Problem 1: Warmup

1a. Question

Suppose we have a sensor reading for the second timestep, $D_2=0$. Compute the posterior distribution $P(C_2=1\mid D_2=0)$.

1a. Answer

Here's what the Bayesian network (it's an HMM, in fact) looks like:

So the posterior distribution can be computed like following:

$$P(C_{2} = 1 \mid D_{2} = 0) = \frac{P(C_{2} = 1, D_{2} = 0)}{P(D_{2} = 0)}$$

$$= \frac{P(D_{2} = 0 \mid C_{2} = 1) * P(C_{2} = 1)}{P(D_{2} = 0)}$$

$$= \frac{P(D_{2} = 0 \mid C_{2} = 1) * P(C_{2} = 1)}{\sum_{C_{2}} P(D_{2} = 0 \mid C_{2}) P(C_{2})}$$

$$= \frac{P(D_{2} = 0 \mid C_{2} = 1) * \left[\sum_{C_{1}} P(C_{2} = 1 \mid C_{1}) P(C_{1})\right]}{\sum_{C_{2}} P(D_{2} = 0 \mid C_{2}) P(C_{2})}$$

$$= \frac{\eta * \left[\epsilon * 0.5 + (1 - \epsilon) * 0.5\right]}{(1 - \eta) * \left[\epsilon * 0.5 + (1 - \epsilon) * 0.5\right] + \eta * \left[\epsilon * 0.5 + (1 - \epsilon) * 0.5\right]}$$

$$= \frac{\eta * 0.5}{0.5}$$

$$= \eta$$

1b. Question

Suppose a time step has elapsed and we got another sensor reading $D_3=1$, but we are still interested in C_2 . Compute the posterior distribution $P(C_2=1\mid D_2=0,D_3=1)$.

1b. Answer

$$\begin{split} P(C_2 \mid D_2 = 0, D_3 = 1) &\propto \sum_{C_1, C_3} P(C_1) P(C_2 \mid C_1) P(D_2 = 0 \mid C_2) P(C_3 \mid C_2) P(D_3 = 1 \mid C_3) \\ &\propto P(D_2 = 0 \mid C_2) \big[\sum_{C_1} P(C_1) P(C_2 \mid C_1) \big] \big[\sum_{C_3} P(C_3 \mid C_2) P(D_3 = 1 \mid C_3) \big] \end{split}$$

$$P(C_2 = 1 \mid D_2 = 0, D_3 = 1) \propto \eta [0.5(\epsilon + 1 - \epsilon)] [(1 - \epsilon)(1 - \eta) + \epsilon \eta]$$

$$P(C_2 = 0 \mid D_2 = 0, D_3 = 1) \propto (1 - \eta) [0.5(\epsilon + 1 - \epsilon)] [(1 - \epsilon)\eta + \epsilon(1 - \eta)]$$

$$P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = \frac{P(C_2 = 1 \mid D_2 = 0, D_3 = 1)}{P(C_2 = 1 \mid D_2 = 0, D_3 = 1) + P(C_2 = 0 \mid D_2 = 0, D_3 = 1)}$$

$$= \frac{\eta[(1 - \epsilon)(1 - \eta) + \epsilon \eta]}{\eta[(1 - \epsilon)(1 - \eta) + \epsilon \eta] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]}$$

1c. Question

c. / [3 points] Suppose $\epsilon=0.1$ and $\eta=0.2$.

i. Compute and compare the probabilities $\mathbb{P}(C_2=1 \mid D_2=0)$ and $\mathbb{P}(C_2=1 \mid D_2=0, D_3=1)$. Give numbers, round your answer to 4 significant digits.

ii. How did adding the second sensor reading $D_3=1\,$ change the result? Explain your intuition in terms of the car positions with respect to the observations.

iii. What would you have to set ϵ while keeping $\eta=0.2$ so that $\mathbb{P}(C_2=1\mid D_2=0)=\mathbb{P}(C_2=1\mid D_2=0,D_3=1)$? Explain your intuition in terms of the car positions with respect to the observations.

1c. Answer

i.

$$P(C_2 = 1 \mid D_2 = 0) = \eta = 0.2000$$

 $P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = 0.4157$

ii.

From our results, we know $P(C_2=1\mid D_2=0) < P(C_2=1\mid D_2=0,D_3=1)$. We can draw the conclusion that adding the second sensor $D_3=1$ increased the probability of $P(C_2)=1$. The position of a car observed at time step t is also related to the position of the car at time step t+1. So the observation of $D_3=1$ increased the probability of $C_2=1$.

iii.

Set $\epsilon=0$. Hence $P(C_t\mid C_{t-1})=1, when <math>C_t=C_{t-1}$. Thus the value of D_3 is only related to D_3 with parameter η , and we don't need to consider the transition probability of $P(C_3\mid C_2)$.

You can also derive the above conclusion from the formula.

PROBLEM 2: Emission probabilities

2a. Check my Code.

PROBLEM 3: Transition probabilities

3a. Check my Code.

PROBLEM 4: LEARNING TO PLAY BLACKJACK

4a. Check my Code.