1

INTEGRATION AND DIFFERENCIATION 2

CONTENT	Page
Power rule & Chain rule	2
	3
Tangents to the curve	4
Stationary points on the curve	5
-D 1st derivative	
-D Turning points -D MAX/MIN/POI	
Second derivative	7
-D concavity	
-O POI	
-D nature of stationary points	
How the curve, 1st and 2nd devivative	9
relate (sketched)	
J	10
Sketching cubic graphs Optimisation Modelling	13
- Maximising & minimising	
-> maximising & minimising -> types of optimisation	<u> </u> S
(cost/time/distance/area/volume)	
profit)	
Definite integrals (Anea/Volume)	17
-Dabove x-axis	
To below x -axis	
-o between two functions	
- between function and y-axis	
O rotated around oc-axis 360°	
-b rotated around y-axis 360°	
J	

POWER RULE

then
$$f'(z) = n \times f(z)^{n-1}$$

REVERSE POWER RULE

$$if \int f(x) dx$$

then
$$f(x)^{n+1}$$

CHAIN RULL

If
$$g(x) = (f(x))^N$$

then
$$g'(x) = n \left(f(x)\right)^{n-1} \times f'(x)$$

REVERSE CHAIN RULE

If
$$\left(f(x)\right)^n dx$$

then
$$(f(x))^{h+1}$$
 + $(n+1) \times (f'(x))$

EXAMPLE 1

Calculate the values of a and b if $f(x) = qx^2 + bx + 5$ has a tangent at x = -1 which is defined by the equation y = -7x + 3

ANSWER:

$$a = 5 p = 5$$

There are two unknowns, therefore we need two equations

Mtangent = -7

Mtangent = f'(x)

The gradient of the tangent
is equal to the first
derivative of the curve

$$f'(x) = ?$$

$$f(x) = q_{1}(x^{2} + bx + 5)$$

$$\frac{1}{12} \cdot \frac{1}{12} = \frac{1}{12}$$

$$x = -1$$

$$-7 = -2q + b$$

$$b = 2a - 7 \dots 0$$

$$2int x = -1 + bq + angust + curlers + bq$$

at point x=-1, the tangent touches the curve y=?Sub x=-1 into tangent

$$y = -7(-1)+3$$
= 10

: (-1;10) is a point on the curve

sub (-1;10)into f(x)

$$10 = 9(-1)^{2} + b(-1) + 5$$

 $10 = 9 - b + 5$
 $10 = 9 - b + 5$

$$29 - 7 = 9 - 5$$

$$q = 2$$

$$b = 2(2) - 7$$

$$= 4 - 7$$

$$= -3$$

EXAMPLE 2

Determine the gradient of the tangent of the graph of $f(x) = -3x^3 - 4x + 5$ at x = -1

Answer

$$f'(x) = -9x^{2} - 4$$
sub $x = -1$

$$f'(-1) = -9(-1)^{2} - 4$$

$$= -13$$

OTHER NOTES ON TANGENTS

NORMAL TO THE CURVE: Perpendicular to tangent ... mxm2 = -1

STATIONARY POINTSON THE CURVE

Stationary points are the turning points of the curve

To determine stationary points without sketching:

this results in three possibilities:

Monthon & conscring

local minimum

localmaximum

point of inflection

To determine which of the three it is, one method is to construct a table

EXAMPLE 3

Determine the local min, max and point of inflection of $f(x) = x^3 + 3x^2 - 9x - 27$ using the first derivative only

Answer: Steps: 1) find f'(x) =0

- construct a table to determine the nature of the stationary points.
- 3 midpoint stationary points is poI

$$(1) = \chi^{3} + 3\chi^{2} - 9\chi - 27$$

$$f'(x) = 3x^2 + 6x - 9$$

$$3x^2 + 6x - 9 = 0$$

$$\chi^2 + 2\chi - 3 = 0$$

$$(x+3)(x-1)=0$$

$$x = -3$$
 or $x = 1$

& any value below and

oc-value,	: X=-4	x = -3	x = -2	(choos
Gradient:	f'(-4) = 15	f'(-3)=0	f'(-2) = -9	
	positive	S.P	negative	

$$x - value_2$$
: $x = 0$ $x = 1$ $x = 2$
Gradient: $f'(0) = -9$ $f'(1) = 0$ $f'(2) = 15$
regative positive

·· + / local min

POI Point of inflection

$$\frac{-3+1}{2} = -1$$

$$f(-1) = -16$$

 $\frac{-3+1}{2} = -1$ f(-1) = -16 $\frac{1}{2}$ $\frac{$

(1;0)

THE SECOND DERIVATIVE

A nother way to determine the nature of stationary points on the curve is making use of the properties of the second derivative

EXAMPLE 4

Use the first and second derivative to find

a the local max and min

6 the point of inflection

where the curve is concave up or concave down.

$$f(x) = x^3 + 3x^2 - 9x - 27 \qquad \text{D Same curve}$$
as above

Answer: $f(x) = x^3 + 3x^2 - 9x - 27$ $f'(z) = 2x^2 + 6x - 9$ — 1st derivative f''(x) = 6x + 6 — 2 2nd derivative

$$\therefore x = -3 \text{ or } x = 1 \qquad \text{os in example 3}$$

for local min f''(x) 70 : positive for local max f''(x) <0 : negative for POT f''(q) = 0

$$f''(-3) = -12$$
 : negative : local max $f''(1) = 12$: positive : local min f

POT:
$$f''(x) = 0$$

$$6x + 6 = 0$$

$$x = -1$$

CONCAVITY

local max is concave down

 \cdot at x = -3

localmin is concave up

: at x = 1

SUMMARY OF FIRST AND SECOND DERIVATIVE:

HOW THE CURVE, 1st and 2nd DEKIVATIVES
RELATE TO EACH OTHER

$$f(x) = x^{3} + 3x^{2} - 9x - 27$$

$$f'(x) = 2x^{2} + 6x - 9$$

$$f''(x) = 6x + 6$$

f(x): >c-intercepts are the same as the x's

of the stationary points

i >c of turning point is x of f(x) POI

f'(x): x-intercept at f(x) POI and f'(x) turning point

f"(x): x-intercept at f(x) POT and f(x) turning point

: where it is negative (under x-axis), f(x) is

concavedown and f'(x) has a negative gradient

: where it is positive (above x-axis), f(x) is concave

up and f'(x) has a positive y radient

STEPS: 1 y-int, letx=0

2 x-ints), let y = 0 and use cither

-D factor theorem

-D two bracket method

()() Lu use calculator tables to find first factor

- 3 Stationary points

 let f(x) =0

 sub x's into f(x) to find corresponding
 y's
- use a table | 2nd derivative test |
 by inspection to test for max/min $\max: f''(x) < 0$ $\min f''(x) > 0$
- Solve for a Suba into f(x) to find correspondingly.

EXAMPLE 5

Sketch the following

$$f(x) = x^3 + 3x^2 - 9x - 27$$
 D same curve as above

Answer: - > Working only. See sketch apove

① y-int, let
$$x = 0$$

 $y = -27$
:. $(0; -27)$

2 x-int(s), let y=0

$$x^3 + 3x^2 - 9x - 27$$

(x+3) is factor -o from tables mode on calculator

$$(x+3)(x^{2}+0x-9)$$

 $(x+3)(x^{2}-9)$
 $(x+3)(x-3)(x-3)$

LD can get all x-Ints
from here,
but required to
prove for exams.

$$\therefore \quad \chi = \pm 3$$

$$f(x) = 3x^{2} + 6$$

$$3x^{2} + 6x - 9 = 0$$

$$3(x^{2} + 2x - 3) = 0$$

$$(x - 1)(x + 3) = 0$$

$$x = 1 \text{ or } x = -3$$

$$f(1) = -32$$

 $f(-3) = 0$

$$-5.8's: (1;-32) \notin (-3;6)$$

(4) Max/min:

$$f''(x) = 6x+6$$

 $f''(1) = 6(1)+6 = 12$ in posi Min
 $f''(-3) = 6(-3)+6 = -12$ in eq i max

POI:

$$f''(x) = 0$$

 $6x+6 = 0$
 $x = -1$
 $5ub x = -1$
 $f(-1) = -16$

NOTE

then:
$$f(x) = dy$$

$$f(x) = d^2y$$

$$dx^2$$

STEPS 1) Drawasketch of the problem

2) Find a formula to use eg.
$$V = 2x^3 - 6x$$

3) for max/min $f'(x) = 0$

eg: if
$$V = 2x^2 - 6x$$

$$V' = 6x^2 - 6$$

$$6x^2 - 6 = 0$$

$$x^2 = 1$$

$$\chi = \pm \int$$
 $\chi = \pm \int$

4) to determine which is max/min sub oc's into f "(x)

eg
$$V' = 6x^2 - 6$$

 $V'' = 12x$

$$SUB SC = 1$$

$$V^{\parallel} = 12$$

the minimum volume Subx =-1

V" = -12 : regative

: x = - 1 will find the maximum volume

5 Sub correct x back into original formula to find max/min

eg: formaximum volume: x = -1

for minimum volume: x = 1

- Maximise Volume / area / profit
- Minimise grea/ volume / cost/ distance / time (2)

NOTES ON DISTANCE / SPEED / TIME QUESTIONS

S(t) = displacement over time S'(t) = Velocity over time S''(t) = acceleration

s"(t) = acceleration

average velocity: s(tz) - s(t1) travelled (change in

t2 - t1

displacement)

average velocity is the rate of change of

displacement

total time taken

Considering an object P, in motion along a straight line from a fixed point of origin O

· The distance P travels accumulates over time, no matter what direction it travels in

The speed S of P is how fast it is travelling.
The displacement s of P is the position relative to 0 The velocity is the rate of change of the displaument.

The acceleration a is the rate of change of velocity.

DEFINITE INTEGRALS

These are integrals that specify definite points to work with

General rule:

Area =
$$\int_{a}^{b} f(x) dx = f(b) - f(q)$$

Example 6

Itraight line and the x-axis

find the area of the shaded region.

Integral at x=2minus integral at x=1

Answer

$$\int_{1}^{2} (2x) dx = \int_{1}^{2} (2) - \int_{1}^{2} (1) \cdot \int_{1}^{2} (x) = x^{2}$$

$$= \left[x^{2} \right]_{1}^{2} = (2)^{2} - (1)^{2} - v \text{ this is how it is set}$$

$$= 3 \text{ units}^{2}$$
out in your

A area is below the x-axis here, therefore the integral is negative

Find the area of the shaded region $f(x) = x^2 - 6x$

Answer

Area =
$$-\int_0^b (x^2 - 6x) dx$$

$$\int -(x) = -\left(\frac{1}{3}x^3 - 3x^2\right) = -\frac{1}{3}x^3 + 3x^2$$

$$= \left[-\frac{1}{3}x^3 + 3x^2\right]_0^6$$

$$= \left(-\frac{1}{3}(6)^{2} + 3(6)^{2}\right) - \left(-\frac{1}{3}(0)^{3} + 3(0)^{2}\right)$$

 $f(x) = \chi^3 - \chi^2 - 7x$ Find the total area between the x-axis and the curve

Answer:

Steps 1) Sketch and shade

) add the areas toget total area

$$x = -1$$
 or o or 2

x = -1 or o or 2 Dusing tables mode

on calculator

$$= \left[\frac{1}{4} \chi^{\mu} - \frac{1}{3} \chi^3 - \chi^2 \right]_{-1}^{0}$$

$$= \left[\frac{1}{4} \chi^{\mu} - \frac{1}{3} \chi^3 - \chi^2 \right]_{-1}^{0}$$

$$= \left(\frac{1}{4}(0)^{4} - \frac{1}{3}(0)^{3} - (0)^{2}\right) - \left(\frac{1}{4}(-1)^{4} - \frac{1}{3}(-1)^{3} - (-1)^{2}\right)$$

$$= 0 - \left(-\frac{5}{12}\right)$$

3 regative area =
$$-\int_0^2 (x^3 - x^2 - 2x) dx$$

$$= \left[-\frac{1}{4} \chi^{\mu} + \frac{1}{3} \chi^3 + \chi^2 \right]_0^2$$

$$= \left(-\frac{1}{4}(2)^{4} + \frac{1}{3}(2)^{3} + (2)^{2}\right) - (0)$$

$$=\frac{8}{3}-0$$

$$=\frac{8}{3}$$
 units²

$$\frac{5}{12} + \frac{8}{3} = 3\frac{1}{12} \text{ units}^2$$

$$f(x) = \chi^2$$
$$g(x) = x$$

area between >> two functions

Find the area between g(x) and f(x)

here

Answer: Steps: (1) find x-int(s) and y-int(s)

2) find limits by letting

f(x) = g(x)

and solving for x-coordinates

to skutch

3) Write integral and solve

NOTE: Always Top function

minus BOTTOM function.

$$\chi^{l} = \chi$$

$$\chi^2 - \iota = 6$$

$$\chi(\chi-1)=0$$

$$x = 0$$
 or $x = 1$
top-bottom

 $\int_{\Omega} \left(g(x) - f(x) \right) dx = Area$

$$\left[\begin{array}{cccc} \frac{1}{2}\chi^2 - \frac{1}{3}\chi^3 \end{array}\right]_0$$

$$= \left(\frac{1}{6}\right) - \left(0\right) = \frac{1}{6} \text{ units}^2$$

NOTE: muthod for

area between the curve

$$f(x) = x - 1$$

find the area between the line and the y-axis y = 0 to y = 4

Answer Steps: 1 isolate & (make x the

Subject

find Area in usual way Sketching but now the integral will he will

be with respect to y

ie: Sa frydy

$$f(x) = x-1$$

$$y = x-1$$

$$z = y+1$$

$$= \left[\frac{1}{2}y^2 + y\right]^4$$

$$= 0 + \left(\frac{1}{2}(4)^2 + (4)\right)$$

 $= 12 \text{ units}^2$

Determine the volume of the solid obtained by rotating the region bound by f(x) = x2-4x+5, X=1 and X=4- D see Sketch on p. 25

NOTE: FOR revolution around x-axis:

Answer Steps 1) expand brackets

integrate with x-values

(1) expand f(x):

$$(x^2 - 4x + 5)^2 = (x^2 - 4x + 5)(x^2 - 4x + 5)$$

$$x^4 - 8x^3 + 26x^2 - 40x + 25$$

2 Integrate:

can take II to the side $\int_{1}^{4} (x^{2} - 4x + 5)^{2} I dx$ $\int_{1}^{4} (x^{2} - 4x + 5)^{2} I dx$

$$= \pi \times \int_{1}^{4} (x^{2} - 4x + 5)^{2} dx$$

 $= \pi \times \int_{1}^{4} (x^{4} - 8x^{3} + 26x^{2} - 40x + 25) dx$

$$= 17 \times \left[\frac{\chi}{5} - 2\chi^4 - \frac{26}{3}\chi^3 - 20\chi^2 + 25\chi \right]_{1}^{4}$$

= T x (f4)-f(1)) D calculator work.

$$-15\frac{9}{15} \times T = 15\frac{9}{15} \text{ Trunits}^{3}$$

EXAMPLE 12

$$f(x) = x^3$$

find the volume Obtained by rotating around the
y-axis within the limits $y = 0$ and $y = 4$

o see sketch

ANSWER Step D make x the on p 25

Subject

2 find

 $\int_{a}^{b} (f(y))^{2} \Pi dy$

$$y = x^3$$

2 expand:

$$(3/y)^{2} = (y/3)^{2} = y\frac{2}{3}$$

integrate:

$$= \pi \times \left[\begin{array}{c} \frac{3}{5} & \frac{5}{3} \\ \frac{5}{3} & \frac{3}{3} \end{array}\right]^{4}$$

$$= T \times (\frac{3}{5}(4)^{\frac{5}{4}}) - 0$$

Example 11: $f(x) = x^2 - 4x + 5$ x = 1; x = 4

Sketch when rotated 360°

Example 12

Sketch with limity y=4 y=0

30 sketch of revolution

