Programme n°11

ELECTROCINETIQUE

EL4 Régime transitoire du second ordre (Cours et exercices)

ATTENTION: L'OSCILLATEUR MECANIQUE SERA VU PLUS TARD

EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes (Cours uniquement)

- Régime sinusoïdal permanent
- Représentation d'une grandeur sinusoïdale
- Valeurs instantanées
- Représentation vectorielle
- Représentation complexe
- Régime sinusoïdal permanent
- Dipôles idéaux R, L et C
- Utilisation des impédances complexes
- Associations de deux impédances
- → Association série
- → Association parallèle
- Modèle générateur
- → Générateur de tension
- → Générateur de courant
- → Passage d'un modèle à l'autre
 le sinusoïdal
 → Diviseur de tension
- Les diviseurs en régime sinusoïdal
- → Diviseur de courant
- → Exemples

	-1
Régime sinusoïdal forcé, impédances complexes.	Établir et connaître l'impédance d'une résistance,
	d'un condensateur, d'une bobine en régime
	harmonique.
Association de deux impédances.	Remplacer une association série ou parallèle de
	deux impédances par une impédance équivalente.

CHIME

C2. Evolution d'un système chimique, équilibre en solution aqueuse (Cours et exercices)

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique

- Réactions possibles, réactions probables
- Objet de la cinétique chimique
- Vitesse d'une réaction
- Première approche
- Exemple
- Cas général
- Facteurs de la cinétique des réactions La température
 - Les concentrations
 - L'état physique des réactifs

TP

Observation de la charge et décharges d'un condensateur