Wahrscheinlichkeit

Ergebnismenge: $\Omega = \{ \text{ Alle m\"{o}glichen Ergebnisse } \} \text{ z.B. } \{ \text{ Kopf, Zahl } \}$

Elementarereignis: Ein Element aus der Ergebnismenge Ω z.B. Kopf

Ereignis (A): Menge der Elementarereignisse für ein Ereignis, aus der Ergebnismenge. Kann mehrere Elementarereignisse umfassen: z.B. { Kopf } oder { Kopf, Zahl }

Kombinatorik: Bei einem n-stufigen Zufallsversuch gibt es $k_1 * k_2 * ... kn$ Möglichkeiten.

Wie viele Möglichkeiten gibt es in einer Klasse mit 24 Schülern einen Klassensprecher und dann einen Klassensprecherstellvertreter zu wählen?

$$k_1 = 24$$

$$k_2 = 23$$

Antwort: $k_1 * k_2 = 24 * 23 = 552$ Möglichkeiten.

Ein Literaturclub verleiht Preise an 3 Schriftsteller. Es sind außerdem 5 Politiker und 8 Funktionäre anwesend. Wie viele Möglichkeiten gibt es die Sitzordnung aufzustellen, wenn Politiker, Funktionäre und Schriftsteller jeweils nebeneinander sitzen sollen?

3! (Schriftsteller) * 5! (Politiker) * 8! (Funktionäre) * 3! (Möglichkeiten, die Blöcke anzureihen)

Permutationen (Möglichkeiten zur Anordnung von n Elementarereignissen ohne Wiederholung): n!

Laplace'sche Wahrscheinlichkeit: $P(A) = \frac{Anzahl der Günstigen}{Anzahl der Möglichen}$

Wahrscheinlichkeit der Ergebnismenge ist 1: $P(\Omega) = 1$

Mathematisches "oder": $P(A_1 \lor A_2) = P(A_1 oder A_2) = P(A_1) + P(A_2)$

Mathematisches "**und**": $P(A_1 \lor A_2) = P(A_1 und A_2) = P(A_1) * P(A_2)$

Eine **diskrete Zufallsvariable** (X) kann nur vordefinierte Werte aus Ω annehmen.

Erwartungswert (arithmetisches Mittel in der Statistik):

$$E(X) = \mu = f(0) * P(0) + f(1) * P(1) + ... + f(n) * P(n)$$

Varianz: $V = \sigma^2 = (f(0)^2 * P(0) + f(1)^2 * P(1) + ... + f(n)^2 * P(n)) - E(X)$

Standardabweichung: $\sigma = \sqrt{V} = \sqrt{(f(0)^2 * P(0) + f(1)^2 * P(1) + ... + f(n)^2 * P(n)) - E(X)}$

Bernoulli-Experiment: Ein Zufallsversuch, bei dem nur zwei Ereignisse mit jeweils fixen Wahrscheinlichkeiten p und 1-p eintreten können. Mittels Baumdiagramm darstellbar.

Binomialkoeffizient: Gibt die Anzahl der Möglichkeiten an, aus n Objekten genau k auszuwählen, **wenn es auf die Reihenfolge nicht ankommt.** Im Baumdiagramm eines n -stufigen Bernoulli -Experiments gibt es die Anzahl der Pfade an, die zu genau k Erfolgen führen:

n= *Anzahl der Versuche*

k = Anzahl der Versuche die ich positiv haben will

$$\binom{n}{k} = \frac{n!}{k! * (n-k)!}$$

Binomialverteilung:

- 1. Es darf nur zwei Ausgänge pro Experiment/Pfad geben.
- 2. Die Wahrscheinlichkeiten müssen für jedes Experiment gleich bleiben.

p=*G*ünstige Wahrscheinlichkeit

(1-p)= *Ungünstige Wahrscheinlichkeit*

Binomial verteilung: $P(X=k) = {n \choose k} * p^k * (1-p)^{n-k}$

Erwartungswert in der Binomialverteilung: $E(X) = \mu = n * p$

Varianz in der Binomialverteilung: $V(X) = \sigma^2 = n * p * (1-p)$

Standardabweichung in der Binomialverteilung $\sigma = \sqrt{V(X)} = \sqrt{n * p * (1-p)}$