

WORKSHOP

Bioinformatics & Stitch in Biomolecular Sciences

Module III
Introduction to Differential Splicing Analysis

Board of European Students of Technology

Paulo Caldas, PhD p.caldas@fct.unl.pt cOmics Lab

EXPERIMENTAL VS. COMPUTATIONAL BIOLOGY

Paulo Caldas, PhD p.caldas@fct.unl.pt cOmics Lab

TRANSCRIPTION & TRANSLATION

Central Dogma of Biology

The flow of genetic information is more complex than initially thought ...

- Reverse Transcription (virus)
- Non-coding RNAs (regulatory functions)
- Alternative Splicing
- (...)

TRANSCRIPTION & SPLICING

GENE NUMBER VS. COMPLEXITY

Alternative Splicing Gilbert, 1978

ALTERNATIVE SPLICING

The human genome has aprox. 20.000 genes But generates more than 100.000 different proteins ...

Alternative Splicing Gilbert, 1978

TYPES OF ALTERNATIVE SPLICING

TISSUE SPECIFIC ALTERNATIVE SPLICING

Alternative splicing can result in proteins with tissue-specific functions in muscles, neurons, or liver cells, contributing to the complexity and adaptability of biological processes in multicellular organisms.

TISSUE SPECIFIC ALTERNATIVE SPLICING

Tropomyosin Alternative Splicing

In skeletal muscles: isoforms that regulate actin-myosin interactions for muscle contraction. In smooth muscles and non-muscle cells: isoforms that contribute to cytoskeletal stability and cell motility.

ALTERNATIVE SPLICING: RECORD HOLDER!

Dscam Gene in Drosophila

Involved in adhesion between neurons

Contains 4 clusters of exons that are spliced a mutually exclusive fashion

If all combinations of these exons are used in alternative splicing, the Dscam gene can produce **38,016** different proteins!

ALTERNATIVE SPLICING IN CANCER

Bernard, A. et. al., Cancers. 2022

Resistance to Apoptosis

<u>Caspase-3</u>: Alternative splicing generates caspase-3s, an anti-apoptotic isoform lacking a catalytic site, inhibiting apoptosis.

<u>Bcl-2</u>: Splicing produces anti-apoptotic Bcl-XL, common in cancers, contributing to chemotherapy resistance.

Enhanced Angiogenesis

<u>VEGF-A</u>: Alternative splicing increases proangiogenic isoforms leading to increased tumor growth.

Metabolism Regulation:

Cancer cells often shift to aerobic glycolysis facilitated by AS of metabolic genes.

ALTERNATIVE SPLICING IN VERTEBRATE DEVELOPMENT

AS is essential for tissue-specific functions and complex developmental processes

leads to diverse protein isoforms essential for different developmental stages and tissues

Anouk M., et al,. Development, 2022.

REGULATION OF ALTERNATIVE SPLICING

Several RNA elements recognize splice sites in a cell-type, condition or species- dependent manner

The combination/presence/absence of these elements in each context modulates the final mRNA product.

Key Points About Alternative Splicing

Increases Protein Diversity

A single gene produces multiple protein isoforms (functional versatility)

Regulates Gene Expression

Influences mRNA stability, export, and translation efficiency

Crucial for Development and Adaptation

Correct cell differentiation and response to environmental changes.

Linked to Diseases

AS dysregulation can result in disease-associated isoforms, making it a potential therapeutic target.

DIFFERENTIAL SPLICING ANALYSIS

Differential Gene Expression

Significant change in gene expression between two conditions (i.e. quantity of mRNA transcribed from a gene)

32000

34000

36000

30000

VS.

Differential Splicing

Significant change in the expression of all isoforms relative to the total gene expression between two conditions

DIFFERENTIAL SPLICING ANALYSIS

VS.

Differential Gene Expression

Significant change in gene expression between two conditions (i.e. quantity of mRNA transcribed from a gene)

<u>Differential Splicing</u>

Significant change in the expression of all isoforms relative to the total gene expression between two conditions

Which isoforms are more/less expressed in two different conditions

Which exons are being in/excluded from the final product?

DIFFERENTIAL SPLICING ANALYSIS

Isoform-Centred Approach

How much of the gene's expression if from each transcript?

Event-Centred Approach

What is the proportion of transcripts that include a given exon?

DIFFERENTIAL SPLICING ANALYSIS WORKFLOW

VAST-TOOLS WORKFLOW

RNA-Seq data (FASTQ)

OUTPUT
Table with PSI values for each exon/intron in the DB

ratio of normalized read counts of exon/intron inclusion relative to the total reads for that event

Varies between 0 and 1

Ascensão-Ferreira, M. et al,. RNA 2024

HANDS-ON: DIFFERENTIAL SPLICING ANALYSIS

https://github.com/vastgroup/vast-tools

VAST-TOOLS WORKFLOW

RNA-Seq data (FASTQ)

vast-tools align output

GENE	EVENT	COORD	LENGTH	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	
EPN1	HsaEX0022820	chr19:56200663- 56200737	75	S	11.33	11.33	35.89	12.66	87.17	
SUGP2	HsaEX0062842	chr19:19104457- 19104549	93	S	19.54	18.02	11.93	7.85	22.22	
APLP2	HsaEX0005151	chr11:130007151- 130007186	36	S	88.68	94.33	69.53	87.48	11.50	
PSAP	HsaEX0050522	chr10:73583645- 73583653	9	MIC	94.02	96.51	58.55	93.72	91.46	
INTS10	HsaEX0031861	chr8:19706673- 19706750	78	S	84.27	75.44	50.91	77.14	18.92	

vast-tools diff output

GENE	EVENT	BRAIN	LIVER	dPSI	MV[dPsi]
LAS1L	HsaEX0035417	0.970019	0.987019	-0.017000	0.00
KRIT1	HsaEX0035028	0.988664	0.983987	0.004676	0.03
LAP3	HsaEX0035326	0.926628	0.985192	-0.058563	0.00
CD99	HsaEX0013932	0.736958	0.962170	-0.225211	0.07
SPATA20	HsaEX0061239	0.988164	0.982821	0.005343	0.04
***	in a	to the	-		

HANDS-ON: DIFFERENTIAL SPLICING & PYTHON

You should have Anaconda Installed (!)

Download Files & Open the Jupyter Notebook

BUT FIRST ... COFFEE ...

