

#### Mathematical Methods in Finance

# Lecture 11: Beyond Black-Scholes-Merton: Stochastic Volatility

#### Fall 2013

Copyright © 2013 LI, Chenxu

#### Overview

- ► Empirical evidence for the Black-Scholes model: historical and implied
- ► Possible explanations
- ► Derivative valuation under stochastic volatility models



#### **Empirical Evidence**

Is the Black-Scholes model an accurate description of the financial world?

Historical (underlying asset)

- ► distribution of returns (check lognormal assumption)
- ▶ time series properties of returns (check independence and constant volatility assumptions)

#### Implied (option)

 implied volatility (check dependence on strike and maturity; check change over time)



3

#### S&P500 Prices:1985-2007





#### Daily S&P500 Ln-Returns: 1985-2007





5

## Non-Normality of Ln-Returns



- ▶ Daily mean of Ln-returns: 0.04%
- ▶ Daily standard deviation of Ln-returns: 1.1%
- ► Daily Ln-return on 10/19/87: -22.9%
- ▶ Under normality,  $\mathbb{P}(X \le -22.9\%) = N(-20.9) \approx 10^{-96}$  (every  $10^{93}$  years)



## Non-Normality of Ln-Returns



- ▶ 10/13/1989,  $\mathbb{P}(X \le -6.31\%) = N(-5.8) \approx 10^{-9}$  (every 1,000,000 years)
- Extreme movements are much more common than log-normal assumption suggests!



7

## Non-Normality of Ln-Returns: Data versus Simulation





$$\mathsf{Kurtosis}(X) = \frac{E[(X - \bar{X})^4]}{\sigma^4} - 3.$$

Kurtosis is one measure of "fat tails", or the probability of extreme events.

Kurtosis(normal random variable) = 0.

Sample Kurtosis(S&P500 Ln-returns) = 45.

Is this statistically significant?



9

#### Autocorrelation of Ln-Returns

Given a time series of Ln-returns  $R_1, R_2, ..., R_n$ , define the autocorrelation with a lag of k by

$$C(k) = \frac{E[(R_i - \bar{R})(R_{i-k} - \bar{R})]}{\sigma_R^2}$$

| Time        | Price           | Ln-Return<br>Lag ()                                             | Ln-Return<br>Lag 1 | Ln-Return<br>Lag 2 |
|-------------|-----------------|-----------------------------------------------------------------|--------------------|--------------------|
| 0           | $S_0$           |                                                                 |                    |                    |
| $\Delta t$  | $S_{\Delta t}$  | $R_1 = \ln\left(\frac{S_{\Delta t}}{S_0}\right)$                |                    |                    |
| $2\Delta t$ | $S_{2\Delta t}$ | $R_2 = \ln\left(\frac{S_{2\Delta t}}{S_{\Delta t}}\right)$      | $R_1$              |                    |
| $3\Delta t$ | $S_{3\Delta t}$ | $R_3 = \ln\left(\frac{S_{3\Delta t}}{S_{2\Delta t}}\right)$     | $R_2$              | $R_1$              |
| ÷           | :               | :                                                               | :                  | į:                 |
| $n\Delta t$ | $S_{n\Delta t}$ | $R_n = \ln\left(\frac{S_{n\Delta t}}{S_{(n-1)\Delta t}}\right)$ | $R_{n-1}$          | $R_{n-2}$          |



#### Autocorrelation of Ln-Returns

Under Black-Scholes assumptions,

$$R_i = \ln\left(\frac{S_{i\Delta t}}{S_{(i-1)\Delta t}}\right) = (\mu - \sigma^2/2)\Delta t + \sigma\sqrt{\Delta t}Z_i,$$

where  $Z_1,Z_2,...$  are independent N(0,1) random variables. Thus,  $R_1,R_2,...$ should be independent, and

$$C(k) = 0 \quad \text{for } k \ge 1.$$



11

#### Autocorrelation of Ln-Returns





## Autocorrelation of S&P500 Squared Ln-Returns



Autocorrelation of squared Ln-returns is hightly significant, even at a 20-day lag.

 $\label{eq:big} \mbox{Big move today} \Rightarrow \mbox{Big move tomorrow} \\ \Rightarrow \mbox{volatility clustering!}$ 



13

## Implied Volatility Smile





### Implied Volatility Smile

- Option prices are often expressed in units of Black-Scholes implied volatility.
- ► Under the Blask-Scholes model, implied volatility should be constant as a function of strike price and maturity.
- ► Non-constant implied volatilities are direct evidence that the market does not price options with the Black-Sholes model.



15

## S&P500 ATM Implied Volatility: 1990-2005





#### Change in Implied Volatility vs. Ln-Returns



The change in Implied volatility decreases when Ln-returns increases.



17

### **Empirical Evidence**

- ► Ln-returns exhibit fatter tails that the normal distribution suggests
- Autocorrelation of squared Ln-returns implies dependence (volatility clustering)
- ► Downward sloping implied volatility curve (after 1987)
- ► Implied volatility changes over time
- ► Implied volatility changes are correlated with Ln-returns

What models are consistent with this?

(1) and (3) 
$$\Rightarrow$$
 jumps (1), (2), (3), (4), and (5)  $\Rightarrow$  stochastic volatility



# Equity Volatility Outlook 2008





19

## Stochastic Volatility Models

So based on the empirical evidences, one of the directions is to generalize the Black-Scholes model by adding stochastic volatility.

Why not model volatility in the same way a stock price is modeled (i.e., log-normal distribution)?

Properties of a stochastic volatility model:

- ▶ Mean-reversion (long-run volatility parameter  $\sqrt{\theta}$ )
- ▶ Speed of mean-reversion  $(\kappa)$
- ▶ Volatility of variance  $(\sigma_v)$
- Correlation of variance and stock processes (ρ)



#### Heston (1993) Model

$$\frac{dS_t}{S_t} = \mu dt + \sqrt{V_t} dW_t^1$$
$$dV_t = \kappa (\theta - V_t) dt + \sigma_v \sqrt{V_t} dW_t^2$$

 $S_t = \text{stock price at time } t \quad V_t = \text{variance at time } t$ 





21

## Formal Stochastic Volatility Model



- ▶ Long-run variance  $\theta$  (long-run volatility  $\sqrt{\theta}$ )
- ▶ Speed of mean reversion  $\kappa$
- ▶ Volatility of variance  $\sigma_v$
- lacktriangledown  $\sqrt{V_t}$  term guarantees positive variance (in the limit as  $\Delta t 
  ightarrow 0$ )



#### Mean Reversion Rate



$$\sigma_V = 0 \quad V_0 > \theta$$



23

## Mean Reversion Rate



$$\sigma_V = 0 \quad V_0 < \theta$$



## Market Incompleteness

The stochastic volatility model is an incomplete market.



- Options cannot be replicated by dynamic trading of a stock and bond
- Can hedge volatility risk by trading options
- "Less" incomplete than jump models

How to price an option under a stochastic volatility model?



25

### Review from Black-Sholes-Merton: An Understanding

We assume that real world dynamics of the underlying asset is

$$\frac{dS(t)}{S(t)} = \mu dt + \sigma dW^{P}(t).$$

For a call option with maturity T and strike K, its price v(t,S(t)) satisfies

$$dv(t, S(t)) = \frac{\partial v}{\partial t}dt + \frac{\partial v}{\partial x}dS(t) + \frac{1}{2}\frac{\partial^2 v}{\partial x^2}d[S, S](t)$$
$$= \frac{\partial v}{\partial t}dt + \frac{\partial v}{\partial x}[\mu S(t)dt + \sigma S(t)dW^P(t)] + \frac{1}{2}\frac{\partial^2 v}{\partial x^2}\sigma^2 S(t)^2 dt.$$



## Review from Black-Sholes-Merton: An Understanding

By the Black-Scholes-Merton equation, the above equation deduce to

$$dv(t,S(t)) = \left(rv(t,S(t)) - rS(t)\frac{\partial v}{\partial x}\right)dt + \frac{\partial v}{\partial x}[\mu S(t)dt + \sigma S(t)dW^P(t)].$$

Thus,

$$dv(t,S(t)) - rv(t,S(t))dt = \frac{\partial v}{\partial x}\sigma S(t) \left(\frac{\mu - r}{\sigma}dt + dW^P(t)\right), \quad (1)$$

which is equivalent to

$$\frac{dv(t,S(t))}{v(t,S(t))} - rdt = \frac{\frac{\partial v}{\partial x}\sigma S(t)}{v(t,S(t))} \left(\frac{\mu - r}{\sigma}dt + dW^{P}(t)\right). \tag{2}$$

The term  $\frac{dv(t,S(t))}{v(t,S(t))}-rdt$  can be understood as an **excess return**.



27

#### Review from Black-Sholes-Merton: An Understanding

Integrating both sides of (1) and taking conditional expectation  $E_t$ ,

$$E_t v(t + \Delta, S(t + \Delta)) - v(t, S(t)) - \int_t^{t+\Delta} r E_t v(u, S(u)) du$$
$$= \int_t^{t+\Delta} E_t \left(\frac{\partial v}{\partial x} S(u)\right) (\mu - r) du.$$

Thus,

$$\frac{1}{\Delta} \left[ E_t v(t + \Delta, S(t + \Delta)) - v(t, S(t)) \right] - \frac{1}{\Delta} \int_t^{t+\Delta} r E_t v(u, S(u)) du$$

$$= \frac{1}{\Delta} \int_t^{t+\Delta} E_t \left( \frac{\partial v}{\partial x} S(u) \right) (\mu - r) du.$$

Let  $\Delta \to 0$ ,

$$\lim_{\Delta \to 0} \frac{1}{\Delta} \frac{E_t v(t + \Delta, S(t + \Delta)) - v(t, S(t))}{v(t, S(t))} - r = \frac{\frac{\partial v}{\partial x} \sigma S(t)}{v(t, S(t))} \frac{\mu - r}{\sigma}$$
 (3)



#### Market Price of Risk: the Black-Sholes-Merton Case

The Sharpe Ratio or the **market price of risk** of the underlying asset is

$$\lambda = \frac{\mu - r}{\sigma}$$
.

Here, if we view

$$\frac{1}{\Delta} \frac{E_t v(t + \Delta, S(t + \Delta)) - v(t, S(t))}{v(t, S(t))}$$

as an expected return per time, (3) can be interpreted as a "CAPM" type result. Here  $\frac{\partial v}{\partial x}S(t)$  plays a role as the "beta".

The LHS of (3) is an instantenous excess return. We can somehow regard  $\frac{\partial v}{\partial x}\sigma S(t)\over v(t,S(t))$  as a percentage of "Brownian risk corresponding to  $W^P(t)$ " and  $\frac{\mu-r}{\sigma}$  is the excess premium per unit of  $dW^P(t)$ .



29

# A Mathematical Characterization of Market Price of Risk

We have

$$\frac{dS(t)}{S(t)} = \mu dt + \sigma dW^{P}(t) = rdt + \sigma \left(\frac{\mu - r}{\sigma} dt + dW^{P}(t)\right).$$

No-arbitrage argument yields the risk-neutral probability measure, under which the dynamics of the underlying asset is written as

$$\frac{dS(t)}{S(t)} = rdt + \sigma dW^{Q}(t).$$

By the Girsanov theorem,  $W^Q(t)$  can be constructed through

$$W^{Q}(t) = \lambda t + W^{P}(t) = \frac{\mu - r}{\sigma}t + W^{P}(t).$$

So, the market price of risk is exactly the "drift" in the Girsanov change of measure.



#### Stochastic Volatility Model

By analogy, we work on the stochastic volatility case in which the market with the underlying asset and a money market account is incomplete.

First, we assume the model under the physical probability measure as

$$\frac{dS(t)}{S(t)} = \mu dt + \sigma(t) dW_1^P(t),$$

$$d\sigma(t) = a(\sigma(t)) dt + b(\sigma(t)) \left[ \rho dW_1^P(t) + \sqrt{1 - \rho^2} dW_2^P(t) \right],$$

where the  $(W_1^P(t),W_2^P(t))$  is a two-dimensional standard Brownian motion.



31

#### Construction of Replicating Portfolio

There are underlying asset S(t), a kind of asset  $V_1(t)$  solely depending on volatility (e.g., a variance swap or a delta-hedged portfolio) and a money market account for us to replicate an option (with maturity T and strike K) with value V(t).

To replicate an option, we use  $\Delta(t)$  shares of the underlying asset with price S(t),  $\Delta_1(t)$  shares of an arbitrary asset with value  $V_1(t)$ . And put the rest in money market account. The change of the a self-financing replicating portfolio value satisfies

$$d\Pi(t) = \Delta(t)dS(t) + \Delta_1(t)dV_1(t) + r(\Pi(t) - \Delta(t)S(t) - \Delta_1(t)V_1(t))dt.$$
(4)



#### Construction of Replicating Portfolio

We can assume that  $\Pi(t)=v(t,S(t),\sigma(t))$  for some smooth function v(t,x,y) and  $V_1(t)=v_1(t,\sigma(t))$  for some smooth function v(t,y). Using the Ito formula on  $v(t,S(t),\sigma(t))$ ,

$$\begin{split} dv(t,S(t),\sigma(t)) &= \frac{\partial v}{\partial t} dt + \frac{\partial v}{\partial x} dS\left(t\right) + \frac{\partial v}{\partial y} d\sigma\left(t\right) \\ &+ \frac{1}{2} \frac{\partial^2 v}{\partial x^2} d\left[S,S\right]\left(t\right) + \frac{1}{2} \frac{\partial^2 v}{\partial y^2} d\left[\sigma,\sigma\right]\left(t\right) + \frac{\partial^2 v}{\partial x \partial y} d\left[S,\sigma\right]\left(t\right) \\ &= \left(\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} \mu S\left(t\right) + \frac{\partial v}{\partial y} a\left(\sigma\left(t\right)\right) + \frac{1}{2} \frac{\partial^2 v}{\partial x^2} \sigma^2\left(t\right) S^2\left(t\right) \right. \\ &+ \frac{1}{2} \frac{\partial^2 v}{\partial y^2} \left(b^2\left(\sigma\left(t\right)\right)\right) + \frac{\partial^2 v}{\partial x \partial y} S(t) \sigma\left(t\right) b\left(\sigma\left(t\right)\right) \rho\right) dt \\ &+ \left(\frac{\partial v}{\partial x} \sigma\left(t\right) S\left(t\right) + \frac{\partial v}{\partial y} b\left(\sigma\left(t\right)\right) \rho\right) dW_1^P\left(t\right) + \frac{\partial v}{\partial y} b\left(\sigma\left(t\right)\right) \sqrt{1 - \rho^2} dW_2^P\left(t\right). \end{split}$$



33

#### Construction of Replicating Portfolio

On the other hand, from (4), we also use Ito formula

$$\begin{split} d\Pi(t) &= \Delta(t)[\mu S(t)dt + \sigma(t)S(t)dW_1^P(t)] + \Delta_1(t)dv_1(t,\sigma(t)) \\ &+ r(v(t,S(t),\sigma(t)) - \Delta(t)S(t) - \Delta_1(t)v_1(t,\sigma(t)))dt \\ &= \left(\Delta(t)\mu S(t) + \Delta_1(t)\left(\frac{\partial v_1}{\partial t} + \frac{\partial v_1}{\partial y}a\left(\sigma(t)\right) + \frac{1}{2}\frac{\partial^2 v_1}{\partial y^2}b^2\left(\sigma(t)\right)\right) \\ &+ r(v(t,S(t),\sigma(t)) - \Delta(t)S(t) - \Delta_1(t)v_1(t,\sigma(t))))dt \\ &+ \left(\Delta(t)\sigma(t)S(t) + \Delta_1(t)\frac{\partial v_1}{\partial y}b\left(\sigma(t)\right)\rho\right)dW_1^P(t) \\ &+ \Delta_1(t)\frac{\partial v_1}{\partial y}b\left(\sigma(t)\right)\sqrt{1-\rho^2}dW_2^P(t)\,. \end{split}$$

Then, replication requires to equate the above two equations.



Thus, we should find the following two equations for the replicating strategy  $(\Delta(t), \Delta_1(t))$  as

$$\frac{\partial v}{\partial x}\sigma(t) S(t) + \frac{\partial v}{\partial y}b(\sigma(t)) \rho = \Delta(t)\sigma(t)S(t) + \Delta_1(t)\frac{\partial v_1}{\partial y}b(\sigma(t)) \rho,$$

$$\frac{\partial v}{\partial y}b(\sigma(t)) \sqrt{1-\rho^2} = \Delta_1(t)\frac{\partial v_1}{\partial y}b(\sigma(t)) \sqrt{1-\rho^2}.$$

Solving this equation system, we obtain the following replicating strategy

$$\Delta_1(t) = \frac{\partial v}{\partial y}(t, S(t), \sigma(t)) / \frac{\partial v_1}{\partial y}(t, \sigma(t))$$

and

$$\Delta(t) = \frac{\partial v}{\partial x}(t, S(t), \sigma(t)).$$



35

#### PDE for Option Pricing

Equate the above two equations of  $d\Pi(t)$  and  $dv(t,S(t),\sigma(t))$ , we can also get a PDE:

$$=\frac{\frac{\partial v}{\partial t} + \frac{1}{2}x^{2}y^{2}\frac{\partial^{2}v}{\partial x^{2}} + \frac{1}{2}b^{2}\left(y\right)\frac{\partial^{2}v}{\partial y^{2}} + \rho b\left(y\right)xy\frac{\partial^{2}v}{\partial x\partial y} + rx\frac{\partial v}{\partial x} + a\left(y\right)\frac{\partial v}{\partial y} - rv}{\frac{\partial v}{\partial y}}$$

$$=\frac{\frac{\partial v_{1}}{\partial t} + \frac{1}{2}b^{2}\left(y\right)\frac{\partial^{2}v_{1}}{\partial y^{2}} + a\left(y\right)\frac{\partial v_{1}}{\partial y} - rv_{1}}{\frac{\partial v_{1}}{\partial y}}.$$

Note that the RHS is only a function on the independent variable t and y. And if you have  $\frac{\partial v}{\partial x}=0$ , the left-hand side reduced to the right-hand side. We assume such a function to be

$$f(t,y) = \frac{\frac{\partial v_1}{\partial t} + \frac{1}{2}b^2(y)\frac{\partial^2 v_1}{\partial y^2} + a(y)\frac{\partial v_1}{\partial y} - rv_1}{\frac{\partial v_1}{\partial y}}.$$



So, we have

$$\frac{\partial v}{\partial t} + \frac{1}{2}x^{2}y^{2}\frac{\partial^{2}v}{\partial x^{2}} + \frac{1}{2}b^{2}(y)\frac{\partial^{2}v}{\partial y^{2}} + \rho b(y)xy\frac{\partial^{2}v}{\partial x\partial y} + rx\frac{\partial v}{\partial x} + a(y)\frac{\partial v}{\partial y} - f(t,y)\frac{\partial v}{\partial y} - rv = 0$$
(5)

and

$$\frac{\partial v_1}{\partial t} + \frac{1}{2}b^2(y)\frac{\partial^2 v_1}{\partial y^2} + a(y)\frac{\partial v_1}{\partial y} - f(t,y)\frac{\partial v_1}{\partial y} - rv_1 = 0.$$
 (6)

- ▶ These PDEs are obtained from the replication procedure.
- ▶ Note that for option valuation, f(t, y) has to be pre-specified as part of the real world model.



37

### Feymann-Kac Representation for Option Pricing

For pricing an option with maturity T and payoff function P(x), we impose the terminal condition v(T,x,y)=P(x). We have

$$v(t, S(t), \sigma(t)) = e^{-r(T-t)} E_t^Q P(S(T)).$$

Here, Q is the risk neutral measure under which the dynamics of  $(S(t),\sigma(t))$  follows that

$$\begin{split} \frac{dS(t)}{S(t)} &= rdt + \sigma(t)dW_1^Q(t), \\ d\sigma(t) &= \left[a(\sigma(t)) - f(t,\sigma(t))\right]dt + b(\sigma(t))\left[\rho dW_1^Q(t) + \sqrt{1-\rho^2}dW_2^Q(t)\right], \end{split}$$

where  $(W_1^Q(t),W_2^Q(t))$  is a two-dimensional standard Brownian motion under the martingale pricing measure Q. This can be shown in a similar way to the one-dimensional case discussed in Lecture 9. How to obtain such a Q from P?

 $V_1(t)=v_1(t,\sigma(t))$  plays a role as the "Delta-hedged" option. Now, let us look at the excess return of such an asset. Use Ito Formula on  $dv_1(t,\sigma(t))$ , and apply

$$\frac{\partial v_1}{\partial t} + \frac{1}{2}b^2(y)\frac{\partial^2 v_1}{\partial y^2} + a(y)\frac{\partial v_1}{\partial y} - f(t,y)\frac{\partial v_1}{\partial y} - rv_1 = 0.$$

We have

$$dv_{1}(t,\sigma(t)) - rv_{1}(t,\sigma(t))dt = b\left(\sigma\left(t\right)\right)\frac{\partial v_{1}}{\partial y}\left[\frac{f(t,\sigma\left(t\right))}{b\left(\sigma\left(t\right)\right)}dt + dW_{v}^{P}(t)\right],$$

where

$$W_v^P(t) = \rho W_1^P(t) + \sqrt{1 - \rho^2} W_2^P(t)$$

represent a Brownian motion driving the volatility process.



39

#### MPR and MPVR

Analogy to (3), we have

$$\lim_{\Delta \to 0} \frac{1}{\Delta} \frac{E_t v_1(t + \Delta, \sigma(t + \Delta)) - v_1(t, \sigma(t))}{v_1(t, \sigma(t))} - r = \frac{b\left(\sigma\left(t\right)\right) \frac{\partial v_1}{\partial y}}{v_1(t, \sigma(t))} \frac{f(t, \sigma\left(t\right))}{b\left(\sigma\left(t\right)\right)}.$$

- ► This is an analog to the CAPM as many people claimed.
- ► The LHS is an instantaneous excess return.
- ▶ We can somehow regard  $\frac{b\left(\sigma\left(t\right)\right)\frac{\partial v_{1}}{\partial y}}{v_{1}(t,\sigma(t))}$  as a percentage of "Brownian risk corresponding to  $W_{v}^{P}(t)$ " and  $\frac{f(t,\sigma\left(t\right))}{b\left(\sigma\left(t\right)\right)}$  as the excess risk premium per unit of  $dW_{v}^{P}(t)$ .



#### MPR and MPVR

Now, we look at the excess return of the option. Based on Ito formula and the pricing equation (5), we can get

$$dv(t, S(t), \sigma(t)) - rv(t, S(t), \sigma(t))dt$$

$$= \sigma(t) S(t) \frac{\partial v}{\partial x} \left[ \frac{\mu - r}{\sigma(t)} dt + dW_1^P(t) \right] + b(\sigma(t)) \frac{\partial v_1}{\partial y} \left[ \frac{f(t, \sigma(t))}{b(\sigma(t))} dt + dW_v^P(t) \right].$$

Thus,

$$\lim_{\Delta \to 0} \frac{1}{\Delta} \frac{E_t v(t + \Delta, S(t + \Delta), \sigma(t + \Delta)) - v(t, S(t), \sigma(t))}{v(t, S(t), \sigma(t))} - r = \frac{S(t) \frac{\partial v}{\partial x}}{v(t, S(t), \sigma(t))} (\mu - r) + \frac{b(\sigma(t)) \frac{\partial v_1}{\partial y}}{v(t, S(t), \sigma(t))} \frac{f(t, \sigma(t))}{b(\sigma(t))}.$$

Similar to our previous discussion, we can give the above equation a very interesting economics interpretation from excess returns.



41

#### MPR and MPVR

Now, we formally call

$$\lambda_1(t) = \frac{\mu - r}{\sigma(t)}, \quad \lambda_2(t) = \frac{f(t, \sigma(t))}{b(\sigma(t))}$$

as the market price of risk.

- ▶ We can call  $\lambda_1(t)$  the market price of return risk (MPR) and call  $\lambda_2(t)$  the market price of volatility risk (MPVR).
- ► Again, note that these two items render the drifts in the Girsanov change of measure (from the physical measure *P* to the risk-neutral measure *Q*).



Similar to previous discussion in one-dimensional case, we just need to find two drifts such that

$$\frac{\mu - r}{\sigma(t)} dt + dW_1^P(t) = \gamma_1(t) dt + dW_1^P(t) 
\frac{f(t, \sigma(t))}{b(\sigma(t))} dt + dW_v^P(t) = \rho \left[ \gamma_1(t) dt + dW_1^P(t) \right] 
+ \sqrt{1 - \rho^2} \left[ \gamma_2(t) dt + dW_2^P(t) \right],$$

i.e.,

$$\gamma_1(t) = \frac{\mu - r}{\sigma(t)},$$

$$\rho \gamma_1(t) + \sqrt{1 - \rho^2} \gamma_2(t) = \frac{f(t, \sigma(t))}{b(\sigma(t))}.$$



43

#### The Girsanov Theorem: Multi-dimensional Case

**Theorem.** Let  $W(t)=(W_1(t),...,W_d(t),0\leq t\leq T$  be a d-dimensional Brownian motion on a probability space  $(\Omega,\mathcal{F},\mathbb{P})$ , and let  $\{\mathcal{F}(t);\ 0\leq t\leq T\}$  be a filtration for this Brownian motion. Let  $\Theta=(\Theta_1(t),...,\Theta_d(t))$  is a d-dimensional adapted process. Define

$$Z(t) = \exp\left(-\int_0^t \Theta(u) \dot{d}W(u) - \frac{1}{2} \int_0^t \|\Theta(u)\|^2 du\right),\,$$

and

$$\widetilde{W}(t) = W(t) + \int_0^t \Theta(u) du.$$

Assume that

$$\mathbb{E} \int_0^T \|\Theta(u)\|^2 Z^2(u) du < \infty.$$

Then under the probability measure  $\widetilde{\mathbb{P}}(A)=\int_A Z(\omega)d\widetilde{\mathbb{P}}(\omega), \ \forall A\in\mathcal{F}$ , the process  $\widetilde{W}(t),\ 0\leq t\leq T$  is a Brownian motion.



#### MPR and MPVR under Girsanov Theorem

Thus, we can construct the probability measure Q through

$$\frac{dQ}{dP}\Big|_{\mathcal{F}_t} = \exp\left(\int_0^t \gamma_1(s)dW_1^P(s) + \int_0^t \gamma_2(s)dW_2^P(s) - \frac{1}{2}\int_0^t \gamma_1(s)^2 ds - \frac{1}{2}\int_0^t \gamma_2(s)^2 ds\right).$$

So, under Q,

$$W_1^Q(t) = \int_0^t \gamma_1(s)ds + W_1^P(t),$$
  
$$W_2^Q(t) = \int_0^t \gamma_2(s)ds + W_2^P(t),$$

is a standard two-dimensional Brownian motion.



45

#### MPR and MPVR under Girsanov Theorem

Now, we can see that under Q, the original model can be expressed as

$$\begin{split} \frac{dS(t)}{S(t)} &= rdt + \sigma(t)dW_1^Q(t), \\ d\sigma(t) &= \left[a(\sigma(t)) - f(t,\sigma(t))\right]dt + b(\sigma(t))\left[\rho dW_1^Q(t) + \sqrt{1 - \rho^2}dW_2^Q(t)\right], \end{split}$$

#### Further tasks:

- ▶ find a closed-form formula for option pricing, or,
- numerically evaluate the option price
- then, calibrate the model (find proper value of parameters) by fitting the formula to option price data



#### Risk-Neutral Distribution and Implied Volatility

Possible calibration results for the Heston SV model:

$$r = 3\%, S_0 = 100, \sqrt{V_0} = \sqrt{\theta} = 23\%, \kappa = 4, \sigma_V = 0.8, \rho = -60\%, T = 0.25$$





47

## Risk-Neutral Distribution and Implied Volatility

$$r = 3\%, S_0 = 100, \sqrt{V_0} = \sqrt{\theta} = 23\%, \kappa = 4, \sigma_V = 0.8, \rho = 0\%, T = 0.25$$



## Risk-Neutral Distribution and Implied Volatility

$$r = 3\%, S_0 = 100, \sqrt{V_0} = \sqrt{\theta} = 23\%, \kappa = 4, \sigma_V = 0.8, \rho = 60\%, T = 0.25$$





49

## Results of Fitting



$$S_0 = 100$$
  $\sqrt{V_0} = 21.38\%$   $\sqrt{\theta} = 26.15\%$   $\kappa = 19.66$   $r = 5\%$   $\sigma_V = 4.25$   $\rho = -44.55\%$ 

## Results of Fitting

$$S_0 = 100$$
  $\sqrt{V_0} = 21.38\%$   $\sqrt{\theta} = 26.15\%$   $\kappa = 19.66$   $r = 5\%$   $\sigma_V = 4.25$   $\rho = -44.55\%$ 

#### Resulting Sample Path:



