12. týden – DALŠÍ BIOSIGNÁLY

Signály oka

- VEP, ERP
- Elektrookulogram

Signály žaludku

- elektrická aktivita žaludku
- elektrogastrogram EGG
- parametrické spektrum

Plicní fukce

- Plicní objemy
- Plicní kapacity
- Spirometrie

ELEKTRORETINOGRAM (ERG)

- Fotopický čípky, světlo
- Skotopický tyčinky, tma
- Napětí mezi rohovkou a sítnicí 0.4-1 mV
- dyslektik nečte hezky postupně, ale vrací se v textu a přeskakuje slova/řádky

- Využití: Polysomnografie

Hodnocení funkčnosti okohybných svalů

Hodnocení asymetrie

Psychiatrická a psychofyzilogická yšetření

Charakteristické oční pohyby při čtení

NYSTAGMOGRAFIE – zaznamenávání vychýlení očních bulbů při nystagmu (mrkání, škubání)

- Nystagmus = rytmický konjugovaný kmitavý pohyb očních bulbů
 - Nervová vada, která způsobuje nekontrolované, rychlé a trhavé pohyby očí, většinou ze strany na stranu, nahoru dolů nebo krouživý pohyb
 - o Forma horizontální, vertikální, diagonální

Žaludek

činnost žaludku souvisí s elektrickou aktivitou, vzniká ve třech částech

Potíže trávicího traktu

- gastroparéza
 - porucha vyprazdňování žaludku
 - doprovází nevolností, zvracením
 - dobré se vyhýbat tučným jídlům a přebytkům vlákniny
- reflux = návrat žaludeční šťáv do jícnu
- nauzea žaludeční nevolnost, pocit na zvracení
- žaludeční vřed monitorování pomocí pH metru
- syndrom dráždivého střeva nejčastější ze stresu

ELEKTROGASTROGRAM (EGG)

- bipolární svody elektrody na břišní stěně (není přesně definováno umístění elektrod), fs = 5 Hz
- 3 cpm základní frekvence
- zaznamenává bioelektrické potenciály žaludku, pohyby vegetativního systému a hladkého svalstva, projeví se tračník, dvanáctník, tenké střevo...
- experimentální význam výzkum v souvislosti s diabetem
- cpm = cykly za minutu

	složení EGG	frekvence	frekvence
		[Hz]	[cpm]
signál	gastrické pomalé vlny	0,008 - 0,165	0,5 - 9,9
	-normální EGG	0.04 - 0.06	2,4-3,6
	-bradygastrie	0,008 - 0,040	0,5-2,4
	-tachygastrie	0,040 - 0,165	3,6 – 9,9
šum	dech	0,20-0,40	12 - 24
	tenké střevo	0,13 - 0,20	8 – 12
	EKG	1,0-1,3	60 - 80
	pohybové artefakty	v celém rozsahu	v celém
			rozsahu

signály: (na lačno dominantní 3 Hz, po jídle se zmenší amplituda a frekvence)

- používá se 30 bodový klouzavý průměr pro vyhodnocení v časové oblasti
- decimovaný EGG signál

Odhad řádu AR modelu

- · AIC
 - AIC(k)=NIn(MSE(k))+2*k;
 - · Tendence nadhodnocení řádu
- MDL
 - MDL(k)= N* ln(MSE(k))+k*ln(N);
 - · Statisticky konsistentní

kritérium alfa

2ln(ln(N))

AIC (Akaike Information Criterion) In(N) MDL (Minimum Description Length Error) ln(ln(N))

HQ (Hannan Quinn Criterion)

PHI (Pukkila Criterion)

PLICNÍ FUNKCE

Anatomie a funkce plic

- jedny z největších orgánu v těle
- dochází zde k okysličení krve
- vnější a vnitřní respirace
- na úrovni alveol = výměna krevních plynů
- párový orgán, pravá 3 laloky, levá 2 laloky (kvůli srdci)
- dutina ústní/nosní→hltan→hrtan→průdušnice→průduška→průdušinka→plicní sklípky

základní funkce - dodávat tělu kyslík

SPIROMETRIE

- základní funkční vyšetření plic
- diagnostika plicních onemocnění a monitorování jejich průběhu
- popisuje: plicní objemy
 - 4 objemy
 - 4 kapacity součet dvou či více plicních objemů <u>plicní ventilaci – výměna vzduchu mezi plícemi a atmosférou</u>

plicní objemy

- dechový objem (Tidal Volume TV)
 - ~0.5 I klidový
 - objem vzduchu vyměňovaný při normálním klidovém dýchání

inspirační rezervní objem (IRV)

- objem vzduchu, který může být ještě vdechnut na konci běžného klidového nádechu
- ~2-3 l

expirační rezervní objem (ERV)

- objem vzduchu, který může být ještě vydechnut na konci běžného klidového výdechu
- ~1 l stejná pro muže a ženy

reziduální objem (RV)

- objem vzduchu, který se z plic nikdy nevydechne
- ~1.1-1.2 l

kapacity

vitální kapacita (VC)

- maximální objem vzduchu, který lze vyměnit
- VC = IRV + TV + ERV

inspirační kapacita (IC)

- maximální objem vzduchu, který lze nadechnout
- IC = IRV + TV

funkční reziduální kapacita (FRC)

- objem, který při běžném dýchání zůstává nevydechnutý
- FRC = ERV + RV

celková kapacita plic (TLC)

- celkový objem plic
- TLC = IRV+ TV+ERV+RV

Spirometrie – laborka

- numerická integrace
- z proudění vypočítáme objem
- FVC = usilovná vitální kapacita
 - vydechnuto úsilím
 - většinou FVC ustáleno <3 sekundy u obstrukčních poruchy bývá interval prodloužen

křivka objem-čas

Poškození plic a dýchacího traktu

obstrukční porucha plicní ventilace

- omezení průchodnosti, např. dlouhé výdechy, kapacita v pořádku
- zúžení horních dýchacích cest = nádechová dušnost
- zúžení dolních dýchacích cest = výdechová dušnost
- diagnóza dle spirometrie VC normální, snížená FEV1 patologie je cokoliv pod 80 %
- astma, cizí těleso v dýchacích cestách, nádor, struma

restrikční porucha plicní ventilace

- omezení plicní kapacity, dýchání rychlé
- diagnóza dle spirometrie VC snížená (patologie pod 80 %) FEV1 často> 80 %
- stav po resekci plíce, pneumotorax, porucha dýchacích svalů

