Ejemplo comparación de resultados predictores in sillico

Cambio de estudio NCKAP1 c.253C>T (chr2:183003310 C/T, COSV62941240 o NM_013436.5:c.253C>T)

Exón 4 e intrones adyacentes:

El cambio se encuentra en el exón 4(la primera **c** en color verde).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice	sites, direc	t stran	d -			Donor splice	sites,	direct	stran	d		
	pos 5'->3' 394	phase 0	strand +	confidence 0.83	5' exon intron 3' GGAATTTAAG^GTATGTATTT			5'->3' 394	phase 0	strand +	confidence 0.83	5' exon intron 3' GGAATTTAAG^GTATGTATTT
Donor splice	sites, compl		trand			Donor splice	sites,	comple	ment s	trand		
pos 3'->5' 522	pos 5'->3' 74	phase 1		confidence 0.00	5' exon intron 3' AACAAATAAG^GTATGTGTTA	pos 3'->5' 522	pos	5'->3' 74	phase 1	strand -	confidence 0.00	5' exon intron 3' AACAAATAAG^GTATGTGTTA
Acceptor spli	ce sites, di		rand			Acceptor spli	ce sit	es, dir	ect st	rand		
	pos 5'->3' 65 300 306	phase 0 0 0	strand + + +	confidence 0.00 0.85 0.17	5' intron exon 3' TCCTTAATAG^TAGCGCAATT GTTTTTACAG^CAACAGCTTG ACAGCAACAG^CTTGCACAAC		·	5'->3' 65 300 306	phase 0 0	strand + + +	confidence 0.00 0.82 0.16	5' intron exon 3' TCCTTAATAG^TAGCGCAATT GTTTTTACAG^CAACAGCTTG ACAGCAACAG^CTTGCACAAT
Acceptor spli pos 3'->5' 316	ce sites, co pos 5'->3' 280			-	5' intron exon 3' CTTTCTGTAG^TTGTGCAAGC	Acceptor spli						

Desaparece el sitio *acceptor* de la hebra complementaria. Este se encuentra dentro del exón, coincidiendo con la posición de interés. Como no participa en el proceso de *splicing* normal, es probable que la mutación no esté afectando al *splicing*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.15.54.26305.0:

Donor site predictions for 85.53.15.54.26355.0:

Start	End	Score	Exon	Intron				Exon Intron
387	401	1.00	atttaa	g gt atgtat	387	401	1.00	atttaag gt atgtat

Acceptor site predictions for 85.53.15.54.26305.0:

Acceptor site predictions for 85.53.15.54.26355.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
31	71	0.77	tttttttcctaac	actttc ag attttccttaatagtagcgc	31	71	0.77	tttttttcctaaca	actttc ag attttccttaatagtagcgc
45	85	0.66	ctttcagattttc	cttaat ag tagcgcaatttggtactaat	45	85	0.66	ctttcagattttc	ttaat ag tagcgcaatttggtactaat
86	126	0.90	atgctttgatttg	ttttat ag cctcacactgtcagttgctg	86	126	0.90	atgctttgatttgt	tttat ag cctcacactgtcagttgctg
280	320	0.92	attctaattttgt	ttttac ag caacagcttgcacaactaca	280	320	0.89	attctaattttgtt	tttac ag caacagcttgcacaattaca
356	396	0.85	tatattacttcac	atttgt ag atgttatggaatttaaggta	356	396	0.85	tatattacttcaca	atttgt ag atgttatggaatttaaggta

No hay cambios.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
cacaa(c/t)tacag	actaca	attaca	28703	66%

CRYP-SKIP

Results for sequence wt

No hay efecto de la mutación en el splicing.

Exon length (bp)	93
PESS (<=-2.62) density	3.23
NN 5'ss score density	0.00
SF2/ASF score density	3.02
FAS-ESS (hex2) density	1.08
EIE score density	723.59
Probability of cryptic splice site activation (PcR-E)	0.16

Significant alteration of ESE / ESS motifs ratio (-7)

>wt ttctaattttgtttttacagCAACAGCTTGCACAACTACAGAAAGAAAAATCAGAGATTCTGAAAAAATCTGGCATTATAT TACTTCACATTTGTAGATGTTATGGAATTTAAGgtatgta

Alteration of auxiliary sequences

Human Splicing Finder

Algorithm/Matix	position	sequence
Sironi_motif1 (ESS Site Broken)	chr2:183003310	CTACAGAA
RESCUE ESE (ESE Site Broken)	chr2:183003311	ACTACA
RESCUE ESE (ESE Site Broken)	chr2:183003312	AACTAC
ESE_SC35 (ESE Site Broken)	chr2:183003312	AACTACAG
EIE (ESE Site Broken)	chr2:183003313	CAACTA
RESCUE ESE (ESE Site Broken)	chr2:183003314	ACAACT
EIE (ESE Site Broken)	chr2:183003314	ACAACT
ESE_9G8 (ESE Site Broken)	chr2:183003315	CACAAC
EIE (ESE Site Broken)	chr2:183003315	CACAAC

SVM-BPfinder

seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off ppt_len ppt_scr svm_s	cr			seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off ppt_len ppt_scr	svm_scr	r		
wt	48	236	tagtaaaat	-0.655994023546 0.502164502165 8	16	30	0.080198403	mut	48	236	tagtaaaat	-0.655994023546 0.502164502165	8	16	30	0.080198403
wt	48	231	aaattaaat	-3.05381608375 0.504424778761 3	16	30	-0.54144067	mut	48	231	aaattaaat	-3.05381608375 0.504424778761	3	16	30	-0.54144067
wt	48	230	aattaaata	-1.5801248805 0.506666666667 2	16	30	0.099601493	mut	48	230	aattaaata	-1.5801248805 0.506666666667	2	16	30	0.099601493
wt	48	211	ctatgagca	-1.20461780604 0.490291262136 7	20	32	-0.056518457	mut	48	211	ctatgagca	-1.20461780604 0.490291262136	7	20	32	-0.056518457
wt	48	197	ttctaattt	1.0553543152 0.489583333333 1	12	25	1.1427179	mut	48	197	ttctaattt	1.0553543152 0.489583333333	1	12	25	1.1427179
wt	48	186	tttttacag	-2.47574195632 0.469613259669 63	15	22	-4.1987664	mut	48	186	tttttacag	-2.47574195632 0.469613259669	63	15	22	-4.1987664
wt	48	150	aaatcagag	-2.93352639442 0.496551724138 27	15	22	-2.0905707	mut	48	165	caattacag	-0.324115538156 0.46875 42	15	22	-2.027	^{'3171}
wt	48	140	ttctgaaaa	0.10046204897 0.503703703704 17	15	22	-0.26732782	mut	48	150	aaatcagag	-2.93352639442 0.496551724138	27	15	22	-2.0905707
wt	48	126	gcattatat	-2.74496552013 0.512396694215 3	15	22	-0.49246314	mut	48	140	ttctgaaaa	0.10046204897 0.503703703704	17	15	22	-0.26732782
wt	48	121	atattactt	-1.82934800956 0.508620689655 1	12	18	-0.045841859	mut	48	126	gcattatat	-2.74496552013 0.512396694215	3	15	22	-0.49246314
wt	48	116	acttcacat	-1.16577152797 0.495495495495 32	6	13	-1.7990865	mut	48	121	atattactt	-1.82934800956 0.508620689655	1	12	18	-0.045841859
wt	48	101	atgttatgg	-2.61285848179 0.489583333333 17	6	13	-1.4181241	mut	48	116	acttcacat	-1.16577152797 0.495495495495	32	6	13	-1.7990865
wt	48	92	aatttaagg	-4.20751026383 0.494252873563 8	6	13	-1.4713127	mut	48	101	atgttatgg	-2.61285848179 0.489583333333	17	6	13	-1.4181241
wt	48	91	atttaaggt	-2.42222900354 0.5 7 6	13	-0.707	1362	mut	48	92	aatttaagg	-4.20751026383 0.494252873563	8	6	13	-1.4713127
wt	48	78	attttaata	-5.1666216293 0.493150684932 37	8	14	-3.6735416	mut	48	91	atttaaggt	-2.42222900354 0.5 7	6	13	-0.707	1362
wt	48	77	ttttaatat	-0.636668955298 0.5 36 8	14	-1.834		mut	48	78	attttaata	-5.1666216293 0.493150684932	37	8	14	-3.6735416
wt	48	70	atataatat	-1.2551519652 0.507692307692 29	8	14	-1.6309332	mut	48	77	ttttaatat	-0.636668955298 0.5 36	8	14	-1.834	3405
wt	48	64	tatttaaca	-3.21777038232 0.491525423729 23	8	14	-2.0248226	mut	48	70	atataatat	-1.2551519652 0.507692307692	29	8	14	-1.6309332
wt	48	63	atttaacac	0.525200512851 0.5 22 8	14	-0.493	23721	mut	48	64	tatttaaca	-3.21777038232 0.491525423729	23	8	14	-2.0248226
wt	48	56	acttcagaa	-3.30341226882 0.470588235294 15	8	14	-1.5587309	mut	48	63	atttaacac	0.525200512851 0.5 22	8	14	-0.493	23721
wt	48	44	gatttaaat	-3.7270233635 0.512820512821 3	8	14	-0.95137506	mut	48	56	acttcagaa	-3.30341226882 0.470588235294		8	14	-1.5587309
wt	48	43	atttaaatg	-1.42149293897 0.526315789474 2	8	14	0.019005971	mut	48	44	gatttaaat	-3.7270233635 0.512820512821	3	8	14	-0.95137506
wt	48	36	tgtttatta	-3.73990524016 0.516129032258 14	10	13	-1.6609478	mut	48	43	atttaaatg	-1.42149293897 0.526315789474	2	8	14	0.019005971
wt	48	33	ttattaatt	-3.32242127387 0.5 11 10	13	-1.312	7973	mut	48	36	tgtttatta	-3.73990524016 0.516129032258	14	10	13	-1.6609478
wt	48	32	tattaattg	0.196622193144 0.518518518519 10	10	13	0.13435381	mut	48	33	ttattaatt	-3.32242127387 0.5 11	10	13	-1.312	7973
wt	48	24	gtgtgaatt	-0.955994067854 0.526315789474 2	10	13	0.19195493	mut	48	32	tattaattg	0.196622193144 0.518518518519	10	10	13	0.13435381
								mut	48	24	gtgtgaatt	-0.955994067854 0.526315789474	2	10	13	0.19195493

El único cambio que hay es la aparición de un BP en la secuencia mutante, pero tiene una punutación negativa, por lo que no se tendrá en cuenta.

Variant Effect Predictor tool

ENST00000360982.2:c.253C>T	2:183003310- 183003310 A	synonymous_variant	NCKAP1	ENSG00000061676	Transcript	ENST00000360982.2	protein_coding	4/32	1012	253	85	L	CTA/TTA	rs1327765186, COSV62941240
ENST00000360982.2:c.253C>T	2:183003310- A 183003310	synonymous_variant	NCKAP1	ENSG00000061676	Transcript	ENST00000361354.9	protein_coding	3/31	593	235	79	L	CTA/TTA	rs1327765186, COSV62941240
ENST00000360982.2:c.253C>T	2:183003310- A 183003310	regulatory_region_variant	-	-	RegulatoryFeature	ENSR00001041848	promoter_flanking_region	-	-	-	-	-	-	rs1327765186, COSV62941240

ESEfinder

Aparecen dos predicciones con puntuaciones positivas para las matrices de 3'SS (292, 307):

292 (-304) tttttacagCAACAGCTTGCACAACTACAG -11.51300	292 (-304)	5.17230	292 (-304) tttttacagCAACAGCTTGCACAACTACAG -11.89950	292 (-304) tttttacagCAACAGCTTGCACAACTACAG	4.80680
307 (-289) CTTGCACAACTACAGAAAGAAAAATCAGAG -21.38000	307 (-289) CTTGCACAACTACAGAAAGAAAAATCAGAG	4.29130	307 (-289) CTTGCACAACTACAGAAAGAAAAATCAGAG -18.40890	307 (-289) CTTGCACAACTACAGAAAGAAAAATCAGAG	4.25190

Cuando buscamos el resultado equivalente para la secuencia mutante, las puntuaciones no se ven a penas alteradas:

292 (-304) ttttttacagCAACAGCTTGCACAATTACAG -11.71270	292 (-304) tttttacagCAACAGCTTGCACAATTACAG	4.57560 292 tttttacagCAACAGCTTGCACAATTACAG	3-12.22930	292 (-304) tttttacagCAACAGCTTGCACAATTACAG 4.22060
307 (-289) CTTGCACAATTACAGAAAGAAAAATCAGAG -21.89020	307 (-289) CTTGCACAATTACAGAAAGAAAAATCAGAG	4.40020 307 CTTGCACAATTACAGAAAGAAAAATCAGAG -:	18.86120 (307 (-289) CTTGCACAATTACAGAAAGAAAAATCAGAG 4.28240

Por lo tanto, no hay cambios en los sitios de splicing.

En cuanto a las ESE, para los resultados donde se encuentra la posición de interés, solo se obtienen dos resultados con puntuaciones positivas en más de una matriz (311 y 316):

310 (-286)	GCACAAC	-5.46651	310 (-286)	GCACAAC	-7.32534	310 (-286)	GCACAACT	-1.24892	310 (-286)	GCACAAC	2.40960
311 (-285)	CACAACT	1.61160	311 (-285)	CACAACT	1.13438	311 (-285)	CACAACTA	0.44184	311 (-285)	CACAACT	-2.95094
312 (-284)	ACAACTA	-1.72320	312 (-284)	ACAACTA	-2.07160	312 (-284)	ACAACTAC	-6.05761	312 (-284)	ACAACTA	-2.43550
313 (-283)	CAACTAC	-1.78575	313 (-283)	CAACTAC	-4.02258	313 (-283)	CAACTACA	-0.07876	313 (-283)	CAACTAC	2.04480
314 (-282)	AACTACA	-2.95702	314 (-282)	AACTACA	-3.46843	314 (-282)	AACTACAG	2.61237	314 (-282)	AACTACA	-4.45947
315 (-281)	ACTACAG	-2.69876	315 (-281)	ACTACAG	-3.25609	315 (-281)	ACTACAGA	-4.65026	315 (-281)	ACTACAG	0.35368
316 (-280)	CTACAGA	0.88451	316 (-280)	CTACAGA	-0.36073	316 (-280)	CTACAGAA	-0.09595	316 (-280)	CTACAGA	3.27392

Si buscamos las predicciones equivalentes para la secuencia mutante, se observa que las puntuaciones se mantienen parecidas.

310 (-286)	GCACAAT	-5.47194	310 (-286)	GCACAAT	-4.26981	310 (-286)	GCACAATT	-0.60448	310 (-286)	GCACAAT	0.87050
311 (-285)	CACAATT	1.59209	311 (-285)	CACAATT	1.71559	311 (-285)	CACAATTA	-1.28718	311 (-285)	CACAATT	-4.66787
312 (-284)	ACAATTA	-4.59532	312 (-284)	ACAATTA	-3.53499	312 (-284)	ACAATTAC	-6.81685	312 (-284)	ACAATTA	-0.94425
313 (-283)	CAATTAC	-5.47990	313 (-283)	CAATTAC	-3.04051	313 (-283)	CAATTACA	-0.30960	313 (-283)	CAATTAC	-0.33983
314 (-282)	AATTACA	-5.77845	314 (-282)	AATTACA	-5.02588	314 (-282)	AATTACAG	2.04343	314 (-282)	AATTACA	-3.11119
315 (-281)	ATTACAG	-2.65316	315 (-281)	ATTACAG	-2.44998	315 (-281)	ATTACAGA	-3.26186	315 (-281)	ATTACAG	0.04162
316 (-280)	TTACAGA	-3.31121	316 (-280)	TTACAGA	-2.22054	316 (-280)	TTACAGAA	-0.11708	316 (-280)	TTACAGA	3.63061

Por lo tanto, no hay cambios en el splicing.

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	2	1	0	21	296.6577	16	-19.5984	3	22	37	647.2721	36	43.5254	40	98	0.41
mut	2	1	0	21	296.6577	16	-19.7104	2	19	34	571.3015	32	39.2206	40	87	0.46

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP

>wt

>wt