Singular value decomposition

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Definition of SVD
- 2 Truncated SVD
- 3 Applications of SVD
- 4 Recommendation system with SVD

SVD decomposition

Every matrix $X \in \mathbb{R}^{N \times D}$, rank X = R, can be decomposed into the product of three matrices:

$$X = U\Sigma V^T$$

where

- $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$
- $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}, \ \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_R \ge 0$
- $U^TU = I$, $V^TV = I$, where $I \in \mathbb{R}^{R \times R}$ is identity matrix.

Equivalent:

$$X = \sum_{i=1}^{R} u_i \sigma_i v_i^T$$

where u_i - i-th column of U and v_i^T - i-th row of V^T .

Interpretation of SVD

For X_{ii} let i denote objects and j denote properties.

- ullet Columns of U orthonormal basis of columns of X
- Rows of V^T orthonormal basis of rows of X
- Σ scaling.
- Efficient representations of low-rank matrix!

Interpretation of SVD

For X_{ii} let i denote objects and j denote properties.

- Rows of U are normalized coordinates of rows in V^T
- $\Sigma = diag\{\sigma_1, ... \sigma_R\}$ shows the magnitudes of presence of each row from V^T .

Finding V

$$X^{T}X = \left(U\Sigma V^{T}\right)^{T}U\Sigma V^{T} = \left(V\Sigma U^{T}\right)U\Sigma V^{T} = V\Sigma^{2}V^{T}$$

It follows that1

$$X^T X V = V \Sigma^2 V^T V = V \Sigma^2 \tag{1}$$

So V consists of eigenvectors of X^TX with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$ - these are top R principal components!

¹Singular values for matrix X are square roots of eigenvalues of X^TX . From (1) it follows that $\sigma_1, ... \sigma_R$ are singular values of X.

Finding *U*

$$XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$

It follows that

$$XX^TU = U\Sigma^2U^TU = U\Sigma^2.$$

So U consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

SVD: existence & uniqueness

Theorem 1

For any matrix $X \in \mathbb{R}^{N \times D}$ SVD decomposition exists.

Theorem 2

SVD decomposition is unique up to sign $<=> X^T X \in \mathbb{R}^{D \times D}$ has a set of D unique eigenvalues.

Unique up to sign means that we can always simultaneously change signs of u_i and v_i^T for $\forall i = 1, 2, ...R$.

Table of Contents

- Definition of SVD
- 2 Truncated SVD
- Applications of SVD
- 4 Recommendation system with SVD

Truncated SVD decomposition

- Truncation: remove least important columns of U and rows of V^T .
- Importance measures by $\sigma_1, \sigma_2, ... \sigma_R$.
- So replace

$$\mathsf{diag}\{\sigma_1,\sigma_2,...\sigma_K,\sigma_{K+1},...\sigma_R\} \longrightarrow \mathsf{diag}\{\sigma_1,\sigma_2,...\sigma_K,0,0,..0\}$$

Truncated SVD decomposition

Simplification to rank $K \leq R$:

$$X_K = U_K \Sigma_K V_K \approx X$$

$$\begin{split} \Sigma &= \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K \end{split}$$

Properties of truncated SVD decomposition

Frobenius norm of matrix

$$||X||_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$$

• For matrix X and its approximation \widehat{X} we can measure

approximation error =
$$\|\widehat{X} - X\|_F^2$$

Theorem 3

Suppose $X \in \mathbb{R}^{N \times D}$, is approximated with $\widehat{X}_K = U_K \Sigma_K V_K$. Then:

- \bullet rank $X_K = K$.
- $X_K = \arg\min_{B: \operatorname{rank} B < K} \|X B\|_F^2$

Which K to choose for approximation?

Theorem 4

For any matrix X and its SVD decomposition $X = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ... \sigma_R\}$:

$$||X||_F^2 = \sum_{i=1}^R \sigma_i^2$$

- Suppose $X = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ... \sigma_R\}$
- Approximation $\widehat{X}_K = U \Sigma_K V^T$, $\Sigma_K = diag\{\sigma_1, ..., \sigma_K, 0, 0, ..., 0\}$.
- Then error $X \hat{X}_K = U \tilde{\Sigma} V^T$, where $\tilde{\Sigma} = diag\{0, 0, ..., \sigma_{K+1}, ..., \sigma_R\}$, so

$$\left\|X - \widehat{X}_K\right\|_F^2 = \sum_{i=K+1}^R \sigma_i^2$$

Which K to choose for approximation?

Using theorem 4, we can select K giving relative error below some threshold t:

$$K = \arg\min_{K} \left\{ \frac{\left\| X - \widehat{X}_{K} \right\|_{F}^{2}}{\left\| X \right\|_{F}^{2}} = \frac{\sum_{i=K+1}^{R} \sigma_{i}^{2}}{\sum_{i=1}^{R} \sigma_{i}^{2}} < t \right\}$$

Table of Contents

- Definition of SVD
- 2 Truncated SVD
- 3 Applications of SVD
- 4 Recommendation system with SVD

Dimensionality reduction

- ullet rows of U give truncated representation of rows of X.
- $x_n \in \mathbb{R}^D \longrightarrow u_n \in \mathbb{R}^K$, $K \leq D$.

Memory efficiency

Storage costs of $X \in \mathbb{R}^{\textit{N} \times \textit{D}}$, assuming $\textit{N} \geq \textit{D}$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements
original X	?
fully SVD decomposed	?
truncated SVD to rank K	?

Performance efficiency

- Multiplication Xq
 - X normalized documents representation
 - q normalized search query

representation of X	Xq complexity
original X	?
truncated SVD to rank K	?

Finding similar objects and similar features

- Similar objects have co-appearing features.
- Similar features co-appear in objects.
- Example: text analysis.
 - LSA gives compact representations, invariant to synonyms
 - can compare documents
 - can compare words

Table of Contents

- Applications of SVD
- Recommendation system with SVD

Example

	Terminator	Gladiator	Rambo	Titanic	Love story	A walk to remember
Andrew	4	5	5	0	0	0
Andrew John	4	5 4	5 5	0	0	0
John	4	4	5	0	0	0
John Matthew	4 5	4 5	5 4	0	0	0

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = \text{diag}\{(14. \ 13.7 \ 1.2 \ 0.6 \ 0.6 \ 0.5)]$$

$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Example (excluded insignificant concepts)

$$U_2 = egin{pmatrix} 0. & 0.6 \ 0. & 0.5 \ 0. & 0.6 \ 0.6 & 0. \ 0.6 & 0. \ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \text{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) action movie / romantic movie
- patterns among people (along i) boys / girls

Dimensionality reduction case: patterns along j axis.

Applications

• Example: new movie rating by new person

$$x = (5 \ 0 \ 0 \ 0 \ 0 \ 0)$$

• Dimensionality reduction: map x into concept space:

$$y = V_2^T x = (0 \ 2.7)$$

• **Recommendation system:** map y back to original movies space:

$$\hat{x} = yV_2^T = \begin{pmatrix} 1.5 & 1.6 & 1.6 & 0 & 0 \end{pmatrix}$$

Summary

- SVD decomposition $X = U\Sigma V^T$, $U^TU = I$, $V^TV = I$, $\Sigma = \text{diag}\{\sigma_1, ... \sigma_R\}$ exists $\forall X$.
- Reduced SVD decomposition of order K solves:

$$X_K = \arg\min_{B: \operatorname{rank} B \le K} \|X - B\|_F^2$$

- SVD (reduced SVD) extracts structure of large matrices with small (close to small) rank
 - gives intuitive representation
 - efficient representations
 - fast matrix multiplications
- Helpful in recommendation engines
 - pitfall: treats 0 (no vote) as real vote.