Energy Institute Bengaluru, Centre of RGIPT

Assignment 3, Soft Computing Lab

Note: Use any programming language to implement the following.

Problem: Optimal Design of Life Testing Experiments under Progressive Censoring using Genetic Algorithms

Suppose n units are placed on a life test and the experiment is designed to continue until exactly m failures are observed (m < n). At the time of each observed failure X_i , a pre-specified number of surviving units are randomly removed (censored) from the test. The number of units removed at the time of the i-th failure is denoted by R_i , for i = 1, 2, ..., m. For fixed n and m, this leads to the censoring scheme $R = (R_1, R_2, ..., R_m)$ satisfying $\sum_{i=1}^m R_i = n - m$. This ensures that all n units are either observed to fail or are censored during the test. Let (X_i, R_i) denotes the observed data from this life testing experiment and assume the lifetimes follow an Weibull distribution with parameter α and λ . Then the expected Fisher information matrix representing the information about $\theta = (\alpha, \lambda)$ in the observed data can be obtained as given below:

$$I(\boldsymbol{\theta},;R_1,\ldots,R_m) = \begin{bmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{bmatrix}$$

with individual elements defined as:

$$I_{11} = \frac{1}{\alpha^2} \sum_{i=1}^m \sum_{k=1}^i \frac{\sigma_{i-1} a_{k,i}}{\gamma_k} \int_0^\infty \left(1 + \ln \left(\frac{z}{\gamma_k} \right) \right)^2 e^{-z} dz$$

$$I_{22} = \left(\frac{\alpha}{\lambda} \right)^2 \sum_{i=1}^m \sum_{k=1}^i \frac{\sigma_{i-1} a_{k,i}}{\gamma_k}$$

$$I_{12} = I_{21} = \frac{1}{\lambda} \sum_{i=1}^m \sum_{k=1}^i \frac{\sigma_{i-1} a_{k,i}}{\gamma_k} \int_0^\infty \left(1 + \ln \left(\frac{z}{\gamma_k} \right) \right) e^{-z} dz$$

where

•
$$\gamma_r = m - r + 1 + \sum_{i=r}^m R_i$$
, for $r = 1, 2, ..., m$

•
$$\sigma_{r-1} = \prod_{i=1}^r \gamma_i$$

•
$$a_{i,r} = \prod_{\substack{j=1 \ j \neq i}}^{r} \frac{1}{\gamma_j - \gamma_i}$$
, with $a_{1,1} = 1$

Design Goal: Find the optimal values R_1, R_2, \ldots, R_m such that the information obtained from the test is maximized. Mathematically, the aim is to

$$\max_{R_1,\ldots,R_m} det[I(\theta;R_1,\ldots,R_m)]$$

subject to

$$R_i \in \mathbb{Z}_{\geq 0}$$
, for $i = 1, 2, \dots, m$ and $\sum_{i=1}^m R_i = n - m$

Input: n = 15, m = 5 and $(\alpha, \lambda) = (2, 1)$.