

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A glass composition for an emissive display, comprising the constituents below, in the following proportions by weight :

SiO_2 67 - 75 %

Al_2O_3 0.5 - 1 %

ZrO_2 2 - 7 %

Na_2O ~~2 - 9~~ 2 - 4 %

K_2O 4 - 11 %

MgO 0 - 5 %

CaO 5 - 10 %

SrO 5 - 12 %

BaO 0 - 3 %

B_2O_3 0 - 3 %

Li_2O 0 - 2 %

with the relationships :

$\text{Na}_2\text{O} + \text{K}_2\text{O} > 10\%$

$\text{MgO} + \text{CaO} + \text{SrO} + \text{BaO}$ is greater than 12 % and less than or equal to 18%,

and said composition having a thermal expansion coefficient between 80 and 90 $\times 10^{-7}/^\circ\text{C}$.

Claim 2 (Currently Amended): The glass composition as claimed in claim 1, wherein the sum of the MgO , CaO , SrO and BaO contents is greater than or equal to 15 % ~~and less than or equal to 18%~~.

Claim 3 (Previously Presented): The glass composition as claimed in claim 1, wherein the sum of the Na₂O and K₂O contents is between 10 and 15 %.

Claim 4 (Previously Presented): The glass composition as claimed in claim 1, wherein the weight ratio of the Na₂O content to the K₂O content is less than or equal to 0.7.

Claim 5 (Previously Presented): The glass composition as claimed in claim 1, wherein the SiO₂ content is less than 71 %.

Claim 6 (Previously Presented): The glass composition as claimed in claim 1, wherein the sum of the Al₂O₃ and ZrO₂ contents is less than or equal to 6 %.

Claim 7 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass comprises the composition comprising the constituents below in the following proportions by weight :

SiO₂ 67 - 75 %

Al₂O₃ 0.5 - 1 %

ZrO₂ 2 - 5 %

Na₂O 2 - 4 %

K₂O 7 - 11 %

MgO 0 - 2 %

CaO 6 - 10 %

SrO 6 - 12 %

BaO 0 - 2 %

B₂O₃ 0 - 3 %

Li_2O 0 - 2 %.

Claim 8 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a strain point of greater than 570°C.

Claim 9 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a liquidus temperature T_{liq} of at most 1180°C.

Claim 10 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a viscosity corresponding to $\log\eta = 3.5$ at a temperature at least equal to 1160°C.

Claim 11 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a viscosity corresponding to $\log\eta = 2$ at a temperature not exceeding 1560°C.

Claim 12 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a density at 25°C of less than 3.

Claims 13-14 (Canceled)

Claim 15 (Previously Presented): The glass composition as claimed in claim 1, wherein the thermal expansion coefficient is less than $85 \times 10^{-7}/^\circ\text{C}$.

Claim 16 (Previously Presented): The glass composition as claimed in claim 1, wherein the thermal expansion coefficient is between 81 and $84 \times 10^{-7}/^{\circ}\text{C}$.

Claim 17 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a strain point of greater than 580°C .

Claim 18 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a liquidus temperature T_{liq} of between 1130 and 1170°C .

Claim 19 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a viscosity corresponding to $\log\eta = 3.5$ at a temperature between 1160 and 1200°C .

Claim 20 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a viscosity corresponding to $\log\eta = 2$ at a temperature not exceeding 1550°C .

Claim 21 (Previously Presented): The glass composition as claimed in claim 1, wherein the glass composition has a density at 25°C of around 2.7.

Claims 22-26 (Cancelled)

Claim 27 (Currently Amended): A glass composition for an emissive display, comprising the constituents below, in the following proportions by weight :

SiO_2 67.5 - 75 %

Al ₂ O ₃	0.5 - 1 %
ZrO ₂	2 - 7 %
Na ₂ O	2 - 9 <u>2 - 4</u> %
K ₂ O	4 - 11 %
MgO	0 - 5 %
CaO	5 - 10 %
SrO	5 - 12 %
BaO	0 - 3 %
B ₂ O ₃	0 - 3 %
Li ₂ O	0 - 2 %

with the relationships :

Na₂O + K₂O > 10 %

MgO + CaO + SrO + BaO is greater than 12 % and less than or equal to 18%,
and said composition having a thermal expansion coefficient between 80 and 90 ×
10⁻⁷/°C, wherein the glass has a viscosity corresponding to log η = 3.5 at a temperature at
least equal to 1160°C.

Claim 28 (Currently Amended): A glass composition for an emissive display,
comprising the constituents below, in the following proportions by weight :

SiO ₂	67.5 - 75 %
Al ₂ O ₃	0.5 - 1 %
ZrO ₂	2 - 7 %
Na ₂ O	2 - 9 <u>2 - 4</u> %
K ₂ O	4 - 11 %
MgO	0 - 5 %

CaO 5 ~ 10 %

SrO 5 ~ 12 %

BaO 0 ~ 3 %

B₂O₃ 0 ~ 3 %

Li₂O 0 ~ 2 %

with the relationships :

Na₂O + K₂O > 10 %

MgO + CaO + SrO + BaO is greater than 12 % and less than or equal to 18%,

and said composition having a thermal expansion coefficient between 80 and 90 ×

10⁻⁷/°C, wherein the glass has a viscosity corresponding to log η = 2 at a temperature not exceeding 1560°C.

Claims 29-36 (Cancelled)

Claim 37 (New): The glass composition according to claim 1, providing a degree of yellowing (b*) of glass of at most 2.

Claim 38 (New): The glass composition according to claim 7, providing a degree of yellowing (b*) of glass of at most 2.

Claim 39 (New): The glass composition according to claim 27, providing a degree of yellowing (b*) of glass of at most 2.

Claim 40 (New): The glass composition according to claim 28, providing a degree of yellowing (b*) of glass of at most 2.