STAT2401: Assignment 1

Question 1:

#Line of code below, is to include only non-NA values
LegalAdv = LegalAdv[!is.na(LegalAdv\$AdvExp6),]

Question 2:

The first plot shows AdvExp6 on x-axis and NewPI on y-axis ranging from 0 to 260, and 0 to 50 respectively. From the plot we can see that NewPI vs AdvExp6 the data is scattered little bit more in between \$0 to \$160. From \$160 onwards there are comparatively less data points. This could indicate that on further increase of expenditure on advertising crossing the \$160 threshold, there may not be a significant rise in PI cases.

The second plot shows AdvExp6 on x-axis and NewWC on y-axis ranging from 0 to 260, and 0 to 50 respectively. From the plot we can see that NewWC vs AdvExp6 the data is scattered little bit more in between \$0 to \$170. From \$170 onwards there are comparatively less data points. This could indicate that on further increase of expenditure on advertising crossing the \$170 threshold, there may not be a 40-unit rise in WC cases.

Question 3:

Consider the model1 as NewPI = $\beta_0 + \beta_1$ AdvExp6 + ϵ where ϵ is a normal random variable. After fitting, the estimates are $\widehat{\beta 0} = 9.8214$, $\widehat{\beta 1} = 0.1182$ and the fitted line is: $\widehat{NewPI} = 9.8214 + 0.1182$ AdvExp6

Consider the model2 as NewWC = $\beta'_0 + \beta'_1 Adv Exp6 + \epsilon'$ where ϵ is a normal random var After fitting, the estimates are $\beta'_0 = 34.349974$, $\beta'_1 = -0.006284$ and the fitted line is: $N\widehat{ewWC} = 34.349974 - 0.006284 Adv Exp6$

Question 4:

From the above fitted lines it can be inferred as follows:

AdvExp6 has a positive impact on NewPI. This is due to the postive value of $\widehat{\beta}1 = 0.1182$. This indicates a positive relationship between the two. Therefore on increase of \$1000 AdvExp, the NewWC increases by \$8 approximately.

AdvExp6 has a negative impact on NewWC. This is due to the negative value of $\widehat{\beta'1} = -0.006284$. This indicates a negative relationship between the two. Therefore, an increase of \$1000 AdvExp, the NewWC decreases by \$6 approximately.

Question 5:

We do not want to print the entire summary of the model. So, we use the below code to print only the coefficients. We are interested in the t-test and getting the p-values for determining statistical significance between AdvExp6 and the output variables – NewPI and NewWC

```
> summary(model1)$coefficient
             Estimate Std. Error
                                   t value
                                              Pr(>|t|)
(Intercept) 9.8213652 6.30502661 1.557704 0.127181173
            0.1181839 0.03564751 3.315349 0.001953163
AdvExp6
> summary(model2)$coefficient
                                        t value
                Estimate Std. Error
                                                    Pr(>|t|)
                                      5.7545647
(Intercept) 34.349974128 5.96916985
                                                1.045975e-06
            -0.006283724 0.03374864 -0.1861919 8.532353e-01
AdvExp6
```

Question 6:

From the test outcomes of question 5

 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

In this test we are looking at testing whether $AdvExp6(\beta_1)$ is contributing towards a change in NewPI.

We can look the *p*-value from the output.

The *p*-value is $0.001953163 < 0.05 = \alpha$, so the model **is** statistically significant at the level $\frac{50}{6}$

Looking at the t-value we can see that 3.315349 > 0.05 so the model 1 is statistically significant at the level 5%.

Also, H_0 : $\beta'_1 = 0$ vs H_1 : $\beta'_1 \neq 0$,

In this test we are looking at testing whether $AdvExp6(\beta'_1)$ is contributing towards a change in NewWC.

We can look the *p*-value from the output.

The *p*-value is **8.532353e-01**> $0.05 = \alpha$, so the model2 is **NOT** statistically significant at the level 5%

Looking at the t-value we can see that -0.1861919 < 0.05 so the model **is NOT** statistically significant at the level 5%.

Therefore, it can be concluded that only NewPI is statistically linearly related to cumulative 6-month advertising expenditures,

Question 7:

For Model1, the 95% CI of β_1 is given by [0.04613762, 0.1902302]. 0 is **excluded.**

For Model2, the 95% CI of β'_1 is given by [-0.07449226 0.06192481]. 0 is **included.**

Question 8:

Upon entering 170 into the 95% CI for the AdvExp6 variable the fitted value is 29.91263. Therefore, it can be inferred that upon spending 170\$ into advertising, the predicted value of **NewPI** is \$29 approximately with the 95% CI being [27.3048, 32.52047].

Upon entering 170 into the 95% CI for the AdvExp6 variable the fitted value is 33.28174. Therefore, it can be inferred that upon spending 170\$ into advertising, the predicted value of **NewWC** is \$36 approximately with the 95% CI being [30.81282, 35.75067].

Question 9:

We can find R^2 (Residual sum of squares) from the summary of the model1. We know that R^2 is equal to r^2 (correlation coefficient). Therefore, r = sqrt(R)

```
> summary(model1)$r.squared
[1] 0.2155561
> sqrt(summary(model1)$r.squared)
[1] 0.4642802
> summary(model2)$r.squared
[1] 0.0008659354
```

> sqrt(summary(model2)\$r.squared)
[1] 0.02942678

Question 10:

From question 9 we get the R² for model1 is 0.215, and so just under 21.5% of the variability in expenditure is explained by a linear regression on (NewPI) new personal injury cases, R² for model2 is 0.008, and so the variability in expenditure explained by a linear regression on (NewWC) workers' compensation cases is very **low**. As the number of model2 is near 0, it has **no effect** on the variability in responses or we may need more data for model2.

Question 11:

STAT2401: Assignment 1

Based on the above analysis, the court can give the following verdict:

"Partner A has wrongly sued Partner B in the hope of equal contribution towards advertising expenditure. The graphs and R^2 values indicate that there is negligible (less than 0.8%) influence of advertising on workers' compensation cases when compared to the 21.5% influence over personal injury cases. The verdict should be given in favour of Partner B. Partner A, alone should pay for the advertising expenditure."