Towards the Compression of First-Order Resolution Proofs by Lowering Unit Clauses

J. Gorzny¹ B. Woltzenlogel Paleo²

¹University of Victoria

²Vienna University of Technology

6 August 2015

Our Goal

Lifting propositional proof compression algorithms to first-order logic.

This work: LowerUnits

Proof Compression Motivation

 The best, most efficient provers, do not generate the best, least redundant proofs.

 Many compression algorithms for propositional proofs; few for first-order proofs.

A Propositional Proof

LowerUnits

Definition (Unit)

A unit clause is a subproof with a conclusion clause (final clause) having exactly 1 literal

Theorem

A unit clause can always be lowered

Compression is achieved by delaying resolution with unit clause subproofs.

Two Traversals

- † Collect units with more than one resolvent
- ullet Delete units and reintroduce them at the bottom of the proof

5/16

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c

$$a, \bar{b}$$

$$a, \bar{b}$$

$$a, \bar{b}$$

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, b a, \bar{b} a, \bar{b} a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{c} a, \bar{c}

8/16

Definition (Pre-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *pre-deletion unifiability* property in ψ if I_1, \ldots, I_n and \bar{I} are unifiable.

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_1$$
: $r(Y)$, $p(X, q(Y, b))$, $p(X, Y) \vdash \eta_2$: $\vdash p(U, V)$
 η_4 : $\vdash r(W) \qquad \eta_3$: $r(V)$, $p(U, q(V, b)) \vdash \eta_5$: $p(U, q(W, b)) \vdash \chi$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\downarrow$$

$$\eta'_4: \vdash r(W)$$
 $\eta'_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$

$$\eta_1$$
: $r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_2$: $\vdash p(U, V)$
 η_4 : $\vdash r(W) \qquad \eta_3$: $r(V), p(U, q(V, b)) \vdash \eta_5$: $p(U, q(W, b)) \vdash \eta_5$

Definition (Post-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *post-deletion unifiability* property in ψ if $I_1^{\dagger\downarrow}, \ldots, I_n^{\dagger\downarrow}$ and $\overline{I^{\dagger}}$ are unifiable, where I^{\dagger} is the literal in $\psi' = \psi \setminus \{\eta\}$ corresponding to I in ψ , and $I^{\dagger\downarrow}$ is the descendant of I^{\dagger} in the roof of ψ' .

First-Order Lower Units Challenges

- Deletion changes literals
- Unit collection depends on whether contraction is possible after propagation down the proof

Deletion of units require knowledge of proof after deletion, and deletion depends on what will be lowered.

- $O(n^2)$ solution to have full knowledge
- Difficult bookkeeping required for implementation

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal) Easier to implement

Doesn't always compress (returns original proof sometimes)

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

$$\eta_1$$
: $\vdash p(a)$
 η_4 : $r(X), p(V) \vdash q(Y), t(Z)$ η_3 : $p(a) \vdash q(X), r(Y), t(Z)$
 η'_5 : $p(V), p(a) \vdash q(X), t(Z)$
 $\{V \to a\}$
 η_7 : $q(X), p(a) \vdash t(Z)$ η_6 : $\vdash q(X), t(Z)$
 η_9 : $t(Z) \vdash \eta_8$: $p(a) \vdash t(Z)$
 η_{10} : $p(a) \vdash \eta_{10}$: $p(a) \vdash \eta_{10}$

$$\eta_1$$
: $\vdash p(a)$

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
 - 2280 initial problems (1032 known unsatisfiable)
 - SPASS asked to use only resolution and contraction rules
 - 300s timeout
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Time to generate proofs: \approx 40 minutes Time to compress proofs: \approx 5 seconds

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
 - 2280 initial problems (1032 known unsatisfiable)
 - SPASS asked to use only resolution and contraction rules
 - 300s timeout
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Time to generate proofs: \approx 40 minutes Time to compress proofs: \approx 5 seconds

Results

Original Proof Length Compressed Proof Length Cumulative Proof Length 1000 -Number of Proofs (sorted by input length)

CADE15

Results

Higher compression in longer proofs: 13/18 proofs with length \geq 30 nodes successfully compressed.

Total compression ratio 11.3%: 4429 vs. 3929 nodes. 18.4% for 100 longest proofs.

Only 14/308 proofs failed to satisfy the post-deletion unifiability property

Conclusion

- Simple First-Order Lower Units is a quick algorithm for first-order proof compression
- Future work:
 - Explore other proof compression algorithms, e.g. Recycle Pivots with Intersection
 - Explore ways of dealing with the post-deletion property quickly

Thank you for your attention.

Any questions?

- Source code: https://github.com/jgorzny/Skeptik
- Data: http://www.math.uvic.ca/~jgorzny/data/

