Theorem 6.1. Given a Set Cover instance (U, \mathcal{F}, k) , the minimum possible size of a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ that covers U can be found in time $2^{|U|}(|U| + |\mathcal{F}|)^{\mathcal{O}(1)}$.

Proof. Let $\mathcal{F} = \{F_1, F_2, \dots, F_{|\mathcal{F}|}\}$. We define the dynamic-programming table as follows: for every subset $X \subseteq U$ and for every integer $0 \le j \le |\mathcal{F}|$, we define T[X,j] as the minimum possible size of a subset $\mathcal{F}' \subseteq \{F_1, F_2, \dots, F_j\}$ that covers X. (Henceforth, we call such a family \mathcal{F}' a valid candidate for the entry T[X,j].) If no such subset \mathcal{F}' exists (i.e., if $X \nsubseteq \bigcup_{i=1}^j F_i$), then $T[X,j] = +\infty$.

In our dynamic-programming algorithm, we compute all $2^{|U|}(|\mathcal{F}|+1)$ values T[X,j]. To achieve this goal, we need to show (a) base cases, in our case values T[X,j] for j=0; (b) recursive computations, in our case how to compute the value T[X,j] knowing values T[X',j'] for j' < j.

For the base case, observe that $T[\emptyset, 0] = 0$ while $T[X, 0] = +\infty$ for $X \neq \emptyset$. For the recursive computations, let $X \subseteq U$ and $0 < j \le |\mathcal{F}|$; we show that

$$T[X,j] = \min(T[X,j-1], 1 + T[X \setminus F_j, j-1]). \tag{6.1}$$

We prove (6.1) by showing inequalities in both directions. In one direction, let $\mathcal{F}' \subseteq \{F_1, F_2, \ldots, F_j\}$ be a family of minimum size that covers X. We distinguish two cases. If $F_j \notin \mathcal{F}'$, then note that \mathcal{F}' is also a valid candidate for the entry T[X, j-1] (i.e., $\mathcal{F}' \subseteq \{F_1, F_2, \ldots, F_{j-1}\}$ and \mathcal{F}' covers X). If $F_j \in \mathcal{F}'$, then $\mathcal{F}' \setminus \{F_j\}$ is a valid candidate for the entry $T[X \setminus F_j, j-1]$. In the other direction, observe that any valid candidate \mathcal{F}' for the entry T[X, j-1] is also a valid candidate for T[X, j] and, moreover, for every valid candidate \mathcal{F}' for $T[X \setminus F_j, j-1]$, the family $\mathcal{F}' \cup \{F_j\}$ is a valid candidate for T[X, j]. This finishes the proof of (6.1).

By using (6.1), we compute all values T[X,j] for $X \subseteq U$ and $0 \le j \le |\mathcal{F}|$ within the promised time bound. Finally, observe that $T[U,|\mathcal{F}|]$ is the answer we are looking for: the minimum size of a family $\mathcal{F}' \subseteq \{F_1,F_2,\ldots,F_{|\mathcal{F}|}\} = \mathcal{F}$ that covers U.

We remark that, although the dynamic-programming algorithm of Theorem 6.1 is very simple, we suspect that the exponential dependency on |U|, that is, the term $2^{|U|}$, is optimal. However, there is no known reduction that supports this claim with the Strong Exponential Time Hypothesis (discussed in Chapter 14).

6.1.2 Steiner Tree

Let G be an undirected graph on n vertices and $K \subseteq V(G)$ be a set of terminals. A Steiner tree for K in G is a connected subgraph H of G containing K, that is, $K \subseteq V(H)$. As we will always look for a Steiner tree of minimum

132 6 Miscellaneous

possible size or weight, without loss of generality, we may assume that we focus only on subgraphs H of G that are trees. The vertices of $V(H) \setminus K$ are called Steiner vertices of H. In the (weighted) STEINER TREE problem, we are given an undirected graph G, a weight function $\mathbf{w} \colon E(G) \to \mathbb{R}_{>0}$ and a subset of terminals $K \subseteq V(G)$, and the goal is to find a Steiner tree H for K in G whose weight $\mathbf{w}(H) = \sum_{e \in E(H)} \mathbf{w}(e)$ is minimized. Observe that if the graph G is unweighted (i.e., $\mathbf{w}(e) = 1$ for every $e \in E(G)$), then we in fact optimize the number of edges of H, and we may equivalently optimize the number of Steiner vertices of H.

For a pair of vertices $u, v \in V(G)$, by $\operatorname{dist}(u, v)$ we denote the cost of a shortest path between u and v in G (i.e., a path of minimum total weight). Let us remind the reader that, for any two vertices u, v, the value $\operatorname{dist}(u, v)$ is computable in polynomial time, say by making use of Dijkstra's algorithm.

The goal of this section is to design a dynamic-programming algorithm for STEINER TREE with running time $3^{|K|}n^{\mathcal{O}(1)}$, where n = |V(G)|.

We first perform some preprocessing steps. First, assume |K| > 1, as otherwise the input instance is trivial. Second, without loss of generality, we may assume that G is connected: a Steiner tree for K exists in G only if all terminals of K belong to the same connected component of G and, if this is the case, then we may focus only on this particular connected component. This assumption ensures that, whenever we talk about some minimum weight Steiner tree or a shortest path, such a tree or path exists in G (i.e., we do not minimize over an empty set). Third, we may assume that each terminal in K is of degree exactly 1 in G and its sole neighbor is not a terminal. To achieve this property, for every terminal $t \in K$, we attach a new neighbor t' of degree 1, that is, we create a new vertex t' and an edge tt' of some fixed weight, say 1. Observe that, if |K| > 1, then the Steiner trees in the original graph are in one-to-one correspondence with the Steiner trees in the modified graphs.

We start with defining a table for dynamic programming. For every nonempty subset $D \subseteq K$ and every vertex $v \in V(G) \setminus K$, let T[D, v] be the minimum possible weight of a Steiner tree for $D \cup \{v\}$ in G.

The intuitive idea is as follows: for every subset of terminals D, and for every vertex $v \in V(G) \setminus K$, we consider the possibility that in the optimal Steiner tree H for K, there is a subtree of H that contains D and is attached to the rest of the tree H through the vertex v. For |D| > 1, such a subtree decomposes into two smaller subtrees rooted at some vertex u (possibly u = v), and a shortest path between v and u. We are able to build such subtrees for larger and larger sets D through the dynamic-programming algorithm, filling up the table T[D, v].

The base case for computing the values T[D, v] is where |D| = 1. Observe that, if $D = \{t\}$, then a Steiner tree of minimum weight for $D \cup \{v\} = \{v, t\}$

is a shortest path between v and t in the graph G. Consequently, we can fill in $T[\{t\}, v] = \operatorname{dist}(t, v)$ for every $t \in K$ and $v \in V(G) \setminus K$.

In the next lemma, we show a recursive formula for computing the values T[D,v] for larger sets D.

Lemma 6.2. For every $D \subseteq K$ of size at least 2, and every $v \in V(G) \setminus K$, the following holds

$$T[D, v] = \min_{\substack{u \in V(G) \setminus K \\ \emptyset \neq D' \subsetneq D}} \left\{ T[D', u] + T[D \setminus D', u] + \operatorname{dist}(v, u) \right\}. \tag{6.2}$$

Proof. We prove (6.2) by showing inequalities in both directions.

In one direction, fix $u \in V(G)$ and $\emptyset \neq D' \subsetneq D$. Let H_1 be the tree witnessing the value T[D', u], that is, H_1 is a Steiner tree for $D' \cup \{u\}$ in G of minimum possible weight. Similarly, define H_2 for the value $T[D \setminus D', u]$. Moreover, let P be a shortest path between v and u in G. Observe that $H_1 \cup H_2 \cup P$ is a connected subgraph of G that contains $D \cup \{v\}$ and is of weight

$$\mathbf{w}(H_1 \cup H_2 \cup P) \le \mathbf{w}(H_1) + \mathbf{w}(H_2) + \mathbf{w}(P) = T[D', u] + T[D \setminus D', u] + \operatorname{dist}(v, u).$$

Thus

$$T[D, v] \le \min_{\substack{u \in V(G) \setminus K \\ \emptyset \ne D' \subseteq D}} \left\{ T[D', u] + T[D \setminus D', u] + \operatorname{dist}(v, u) \right\}.$$

In the opposite direction, let H be a Steiner tree for $D \cup \{v\}$ in G of minimum possible weight. Let us root the tree H in the vertex v, and let u_0 be the vertex of H that has at least two children and, among such vertices, is closest to the root. An existence of such a vertex follows from the assumptions that $|D| \geq 2$ and that every terminal vertex is of degree 1. Moreover, since every terminal of K is of degree 1 in G, we have $u_0 \notin K$. Let u_1 be an arbitrarily chosen child of u_0 in the tree H. We decompose H into the following three edge-disjoint subgraphs:

- 1. P is the path between u_0 and v in H;
- 2. H_1 is the subtree of H rooted at u_1 , together with the edge u_0u_1 ;
- 3. H_2 consists of the remaining edges of H, that is, the entire subtree of H rooted at u_0 , except for the descendants of u_1 (that are contained in H_1). See Fig. 6.1.

Let $D' = V(H_1) \cap K$ be the terminals in the tree H_1 . Since every terminal is of degree 1 in G, we have $D \setminus D' = V(H_2) \cap K$. Observe that, as H is of minimum possible weight, $D' \neq \emptyset$, as otherwise $H \setminus H_1$ is a Steiner tree for $D \cup \{v\}$ in G. Similarly, we have $D' \subsetneq D$ as otherwise $H \setminus H_2$ is a Steiner tree for $D \cup \{v\}$ in G. Furthermore, note that from the optimality of H it follows that $\mathbf{w}(H_1) = T[D', u_0]$, $\mathbf{w}(H_2) = T[D \setminus D', u_0]$ and, moreover, P is a shortest path between u_0 and v. Consequently,

134 6 Miscellaneous

Fig. 6.1: Decomposition of H

$$T[D, v] = \mathbf{w}(H) = T[D', u_0] + T[D \setminus D', u_0] + \operatorname{dist}(v, u_0)$$

$$\geq \min_{\substack{u \in V(G) \setminus K \\ \emptyset \neq D' \subsetneq D}} \left\{ T[D', u] + T[D \setminus D', u] + \operatorname{dist}(v, u) \right\}.$$

This finishes the proof of the lemma.

With the insight of Lemma 6.2, we can now prove the main result of this section.

Theorem 6.3. Steiner Tree can be solved in time $3^{|K|}n^{\mathcal{O}(1)}$.

Proof. Let (G, w, K) be an instance of STEINER TREE after the preprocessing steps have been performed. We compute all values of T[D, v] in the increasing order of the cardinality of the set D. As discussed earlier, in the base case we have $T[\{t\}, v] = \operatorname{dist}(t, v)$ for every $t \in K$ and $v \in V(G) \setminus K$. For larger sets D, we compute T[D, v] using (6.2); note that in this formula we use values of T[D', u] and $T[D \setminus D', u]$, and both D' and $D \setminus D'$ are proper subsets of D. In this manner, a fixed value T[D, v] can be computed in time $2^{|D|}n^{\mathcal{O}(1)}$. Consequently, all values T[D, v] are computed in time

$$\sum_{v \in V(G) \backslash K} \sum_{D \subseteq K} 2^{|D|} n^{\mathcal{O}(1)} \le n \sum_{j=2}^{|K|} \binom{|K|}{j} 2^{j} n^{\mathcal{O}(1)} = 3^{|K|} n^{\mathcal{O}(1)}.$$

Finally, observe that, if the preprocessing steps have been performed, then any Steiner tree for K in V(G) needs to contain at least one Steiner point and, consequently, the minimum possible weight of such a Steiner tree equals $\min_{v \in V(G) \setminus K} T[K, v]$.

We will see in Section 10.1.2 how the result of Theorem 6.3 can be improved.