

Statistische Modellierung III -Regression mit Zähldaten-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Setup

- Betrachten nun Zielvariablen Y, die die Anzahl von Ereignissen innerhalb einer festen Zeitperiode (z.B. die Anzahl der Migräneanfälle in drei Monaten) wiedergeben
- Y kann im Prinzip alle ganzzahligen Werte $0, 1, 2, \ldots$ annehmen
- Oft ist es praktikabel von einer unbeschränkten Zahl von Ereignissen auszugehen, auch wenn sie in der Praxis immer beschränkt ist, denn das Festlegen der Schranke kann schwierig sein
- Bei einer großen Zahl von Ereignissen ist Y oft gut durch die Normalverteilung (z.B. als Approximation der Binomialverteilung) zu beschreiben
- Bei kleineren Ereigniswahrscheinlichkeiten ist die Poisson-Verteilung oft das bessere Verteilungsmodell

Log-Lineares Poissonmodell

Verteilungsmodell

- Wir betrachten wie bisher den Erwartungswert $\lambda_i = E(Y_i|\mathbf{x}_i)$
- Wie bisher sei $\eta_i = \mathbf{x}_i \beta = x_{i1} \beta_1 + \ldots + x_{ik} \beta_k$; $x_{i1} = 1$ der lineare Prädiktor
- Nehmen nun $Y_i \sim Pois(\lambda_i)$ an (also auch $\lambda_i = E(Y_i|\mathbf{x}_i)$)
- Dies führt zum Log-Likelihood-Kern

$$I(\lambda_i) = Y_i \log(\lambda_i) - \lambda_i$$

• Unter der Annahmen einer Poissonverteilung ist die Varianzfunktion die Identität, denn $Var(Y_i) = \lambda_i$

Verteilungsmodell

- Die Dichte der Poissonverteilung wird oft um einen Dispersionsparameter und um Gewichte erweitert
- In diesem Fall ist der Log-Likelihood-Kern

$$I(\lambda_i, \phi) = \phi^{-1} \{ Y_i \log \lambda_i - \lambda_i \} \omega_i$$

Es folgt

$$E(Y_i) = \lambda_i$$
 und $Var(Y_i) = \phi \lambda_i / \omega_i$

Schätzung der Regressionskoeffizienten

• Bestimmen den MLE für β duch Maximierung von

$$I(\beta) = \sum_{i=1}^{n} I_i(\beta, \phi) = \sum_{i=1}^{n} \phi^{-1} \{ Y_i \mathbf{x}_i \beta - e^{\mathbf{x}_i \beta} \} \omega_i$$

 Wir bestimmen also mit dem Fisher-Scoring-Algorithmus die Lösung des Gleichungssystems

$$\phi \mathbf{s}(\beta) = \sum_{i=1}^{n} \mathbf{x}_{i}^{T} \{ Y_{i} - e^{\mathbf{x}_{i}\beta} \} \omega_{i} = \mathbf{0}$$

Die Fisher-Information

$$\mathbf{F}(\beta,\phi) = \phi^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{x}_{i} e^{\mathbf{x}_{i} \beta} \omega_{i}$$

ist invertierbar, falls Rang(\mathbf{X}) = k und $\omega_i > 0$ für alle $i = 1, \ldots, n$

Überdispersion

- Meist wird $\phi=1$ angenommen
- Bei gruppierten Daten kann die Varianz innerhalb einer Gruppe G_l durch die empirische Varianz $(n_l-1)^{-1}\sum_{i\in G_l}(Y_i-\bar{Y}_l)^2$ abgeschätzt werden
- Oft beobachtet man, dass die empirische Varianz größer ist als die theoretische $v(\lambda_i)$ bei $\phi=1$
- In diesem Fall ist ein Modell mit Dispersion $\phi \neq 1$ sinnvoll, wobei ϕ aus den Daten geschätzt wird
- Man unterscheidet zwei Fälle:
 - Überdispersion: $\phi > 1$
 - Unterdispersion: $\phi < 1$.

Überdispersion

- Überdispersion häufig, Unterdispersion eher selten
- Mögliche Gründe für Überdispersion:
 - Unbeobachtete Heterogenität: λ_i variiert innerhalb der Gruppe durch unbeobachtete Kovariablen
 - Positive Korrelation: Beobachtungseinheiten gehören (unbeobachteten) Clustern an (z.B. Familien), innerhalb denen sie sich ähnlicher sind als zwischen den Clustern. Das bewirkt eine positive Korrelation zwischen Beobachtungen Y_i des selben Clusters

Schätzung des Dispersionsparameters

• Im Fall von Einzelbeobachtungen:

$$\hat{\phi} = \frac{1}{n-k} \sum_{i=1}^{n} \frac{(Y_i - \hat{\lambda}_i)^2}{\hat{\lambda}_i}.$$

• Bei gruppierten Daten ($\omega_i = n_I$):

$$\hat{\phi} = \frac{1}{m-k} \sum_{l=1}^{m} \frac{(\bar{Y}_l - \hat{\lambda}_l)^2}{\hat{\lambda}_l} n_l.$$

Datenbeispiel

- Anzahl Zitate von Patenten und welche Faktoren diese Beeinflussen
- Daten von Insgesamt n = 4866 Patenten
- Zielvariable: Zahl der Zitate eines Patents
- Kovariablen (unter Anderem):
 - Jahr der Patenterteilung
 - Anzahl der Länder für die der Patentschutz gilt
 - etc.

Datenbeispiel

Variable	Beschreibung	Mittelwert/Häufigkeit in %	Std-abw.	Min/Max
einspruch	Einspruch gegen das Patent $1 = Ja$ $0 = Nein$	41.49 58.51		
biopharm	Patent aus der Biotech-/ Pharma-Branche $1 = \mathbf{Ja}$ $0 = \mathbf{Nein}$	44.31 55.69		
uszw	US Zwillingspatent $1 = Ja$ $0 = Nein$	60.85 39.15		
patus	Patentinhaber aus USA $1 = Ja$ $0 = Nein$	33.74 66.26		
patdsg	Patentinhaber aus GER, CH, UK $1=\mathrm{Ja}$ $0=\mathrm{Nein}$	23.49 76.51		
azit	Anzahl der Zitationen	1.64	2.74	0/40
aland	Anzahl der Länder für Patentschutz	7.8	4.12	1/17
ansp	Anzahl Patentansprüche	13.13	12.09	1/355

Datenbeispiel

- Beobachtungen mit ansp>60 ausgeschlossen, da sie das Resultat stark beeinflussen
- Es bleiben n = 4832 Patente
- Betrachten Poisson-Modell mit $\phi=1$ und mit $\phi\neq 1$ (Ergebnisse auf kommenden Folien)
- Dispersionsparameter im zweiten Modell wird geschätzt durch

$$\hat{\phi} = \frac{1}{n-k} \sum_{i=1}^{n} (Y_i - \hat{\lambda}_i)^2 / \hat{\lambda}_i = 3.616$$

Ergebnisse im Modell mit $\phi = 1$

Variable	Koeffizient	Std-abw.	t-Wert	p-Wert
Konstante	0.176	0.032	5.53	< 0.001
jahrc	-0.075	0.003	-25.86	< 0.001
alandc	-0.025	0.004	-6.12	< 0.001
anspc	0.020	0.001	17.12	< 0.001
biopharm	0.294	0.031	9.41	< 0.001
uszw	-0.043	0.025	-1.77	0.077
patus	0.018	0.026	0.69	0.491
patdsg	-0.230	0.031	-7.31	< 0.001
einspruch	0.404	0.024	16.55	< 0.001

Ergebnisse im Modell mit $\phi \neq 1$

Variable	Koeffizient	Std-abw.	t-Wert	p-Wert
Konstante	0.176	0.060	2.91	0.004
jahrc	-0.075	0.005	-13.60	< 0.001
alandc	-0.025	0.008	-3.22	0.001
anspc	0.020	0.002	9.01	< 0.001
biopharm	0.294	0.059	4.95	< 0.001
uszw	-0.043	0.047	-0.93	0.353
patus	0.018	0.050	0.36	0.717
patdsg	-0.230	0.060	-3.84	< 0.001
einspruch	0.404	0.046	8.70	< 0.001

Bemerkung zu den Ergebnissen

- Regressionskoeffizienten ändern sich zwischen den Modellen nicht
- ullet Grund: Hatten gesehen dass MLE nicht von ϕ abhängen
- Standardabweichungen ändern sich, da die Fisher Matrix invers-proportional zu ϕ ist
- Änderung um Faktor $\sqrt{3.616} = 1.9$
- Teststatistiken und p-Werte ändern sich entsprechend mit