Introdução

Essas notas são uma transcrição das aulas de Introdução à Dinâmica Complexa ministrada pelo programa de Mestrado e Doutorado do IMPA pela professora Luna Lomonaco. Não sou o autor, só fiz a transcrição. Todos os direitos e ideias sobre a organização são da professora. Também não participei no dia, sendo essas notas feitas em cima dos videos no Youtube presentes no canal do IMPA.

Cada seção numerada equivale a um dos videos publicados no canal.

Os assuntos dessas notas supõem um conhecimento mínimo de Análise Complexa e de conceitos de Topologia Geral.

1. Introdução

2. Revisão de Análise Complexa I

3. Revisão de análise Complexa II

4. Teoria Local

Estamos considerando sistemas dinâmicos gerados por iterações de funções holomorfas Então, dada uma função $f:U\to U$ holomorfa e para cada $z\in U$ consideramos a órbita de z como o conjunto

$$\{z_n\} = \{z, f(z), f(f(z)), \ldots\} = \{f^n(z) | n \in \mathbb{N}\}\$$

A primeira pergunta que queremos responder é: o que acontece com a orbita de z? Em particular: Será que z_n converge?

Seja $a \in U$ tal que f(a) = a, chamamos a de Ponto Fixo e, nesse caso, $a_n = \{a\}$. Os pontos fixos são importantes em dinâmica pois, sendo f contínua, os únicos pontos onde a órbita pode convergir são pontos fixos. Mostramos com:

$$a = \lim_{n \to \infty} f^{n+1}(z) = \lim_{n \to \infty} f(f^n(z)) = f(\lim_{n \to \infty} f^n(z)) = f(a)$$

Definimos $\lambda = f'(a)$ como o multiplicador de ponto fixo (ou multiplicador de f em a). O valor absoluto $|\lambda|$ determina o comportamento do sistema perto de a.

Conjugações holomorfas

Seja $f:U\to U$ e $g:V\to V$ duas funções holomorfas, dizemos que f e g são biholomorficamente/conformemente conjugadas se existe $\phi:U\to V$ biholomorfa tal que o diagrama

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} & U \\ \downarrow^{\phi} & & \downarrow^{\phi} \\ V & \stackrel{g}{\longrightarrow} & V \end{array}$$

comuta.

Ou seja, $\phi \circ f = g \circ \phi$.

Nestes casos, não distinguimos f e g, pois se comporta como o mesmo sistema. A estrategia se torna então tentar achar funções fáceis conjugadas à função que gera nosso sistema, principalmente perto de pontos fixos.

Percebemos as seguintes propriedades:

1. Se p é fixo para f, ou seja f(p) = p, e ϕ é a conjugação entre f e g. Então $\phi(p)$ é fixo para g, ou seja $g(\phi(p)) = \phi(p)$

Pois $\phi \circ f = g \circ \phi$ escreve-se como $\phi(f(p)) = g(\phi(p))$ e com $\phi(f(p)) = \phi(p)$, $\phi(p) = g(\phi(p))$

De $\phi \circ f = g \circ \phi$ tira-se que $f = \phi^{-1} \circ g \circ \phi$ e, pela regra da cadeia

$$f'(p) = \phi_{|g(\phi(p))}^{-1} \circ g'_{|\phi(p)} \circ \phi'(p) = \frac{1}{\phi'(\phi^{-1}(g(\phi(p))))} \circ g'_{|\phi(p)} \circ \phi'(p) = \frac{1}{\phi'(p)} \circ g'_{|\phi(p)} \circ \phi'(p) = g'(\phi(p))$$

Em particular, a conjugação ϕ mapeia pontos críticos em pontos críticos.

2. Se f'(p)=0e ϕ é a conjugação entre fe g,então $f'(\phi(p))=0$

Pois, sendo $\phi \circ f = g \circ \phi$ e $f'(p) = \phi_{|g(\phi(p))}^{-1} \circ g'_{|\phi(p)} \circ \phi'(p) = 0$. Como ϕ é biholomorfa em $U, \phi'(z) \neq 0$ para todo $z \in U$. Logo o único termo que pode zerar é g'.

Perto dos pontos fixos, podemos conjugar f com funções fáceis que dependem do multiplicador. Em particular:

- Se $\lambda \neq 0$ e $|\lambda| \neq 1$, vale o Teorema de König, que diz que: Se f for holomorfa, com f(p) = p e $f'(p) = \lambda$, então existe vizinhança V(p) onde f é conjugada conformemente com sua parte linear, o mapa $g(z) = \lambda z$
- Se $\lambda=0$, vale o Teorema de Böttcher: Seja f holomorfa, f(p)=p e f'(p)=0. Seja K a multiplicidade de p como ponto crítico (ou seja, perto de p podemos escrever $f(z)=f(p)+\frac{D^kf(p)(z-p)^k}{k!}+\ldots$). Então existe vizinhança aberta de p e ϕ biholomorfa conjugando f em V a $g(z)=z^k$.
- Se $|\lambda| = 1$, temos dois casos

- Se
$$\lambda = e^{\frac{2\pi p}{\hbar}}$$