Sebastian Prokop, 320728, grupa 4, projekt 1, zadanie 52

Wstęp

Formuła całkowa jaką jest metoda trójkątów rzędu czwartego to sposób na wyznaczanie przybliżonej wartości całki podwójnej na określonym obszarze skończonym. Jednym z rodzajów funkcji dwóch zmiennych są wielomiany stopnia n - w sekcji $Testy \ poprawności$ scharakteryzowane formalnie. Dla tych rzędu mniejszego niż 4 metoda jest dokładna, nastomiast dla rzędów większych niż 3, znana jest teoretyczna maksymalna wartość błędu.

Raport ten potwierdza teoretyczne założenia dotyczące rzędu i dokładności badanej metody i omawia własności numeryczne jej implementacji. Jak się okazuje, choć metoda jest dokładna dla odpowiednich rzędów, w implementacji mogą pojawiać się drobne błędy w zależności od doboru parametru n.

Opis formuły całkowej $S_{SWK}(f)$

Opisywana metoda opiera się na podziale obszaru na trójkąty i obliczaniu wartości funkcji w siedmiu charakterystycznych miejscach każdego trójkąta z odpowiednimi wagami. Są to wierzchołki, środki boków i środek trójkąta, oznaczane kolejno: $p_0, p_1, p_2, p_{01}, p_{02}, p_{12}, p_{012}$, gdzie:

$$p_{01} = \frac{1}{2}(p_0 + p_1), \ p_{02} = \frac{1}{2}(p_0 + p_2), \ p_{12} = \frac{1}{2}(p_1 + p_2), \ p_{012} = \frac{1}{3}(p_0 + p_1 + p_2),$$

Wartość całki S na trójkącie jest przybliżana za pomocą wzoru:

$$S = \frac{P}{60}(27f(p_{012} + 3(f(p_0) + f(p_1) + f(p_2)) + 8(f(p_{01}) + f(p_{02}) + f(p_{12})),$$

gdzie P jest polem trójkąta. W związku z tym wartosć całki przy podziale obszaru na t trójkątów przystających jest przybliżana sumą po wszystkich trójkątach:

$$\sum_{i=1}^{t} S_i.$$

Opis funkcji

Zeby skorzystać z omawianej metody trójkątów, podzielimy zadany obszar na trójkąty przystające. Obszar, o którym mowa jest określony następująco:

$$D = \{(x, y) \in R^2 : |x| + |y| \le 1\}.$$

Jest to romb o środku w punkcie (0,0) i boku długości $\sqrt{2}$. Jest on dzielony na $4n^2$ trójkątów przystających, poprzez podział boków na n odcinków, nasępnie podział rombu na n^2 kwadratów i ostatecznie podział każdego małego kwadratu na 4 trójkąty poprzez poprowadzenie przekątnych. Moment w trakcie podziału przedstawia rysunek po prawej.

Testy poprawności i precyzji

Żeby sprawdzić, czy formuła jest faktycznie czwartego rzędu, należy sprawdzić wielomiany stanowiące bazę przestrzeni wielomianów stopnia mniejszego niż 4, gdzie przestrzeń wielomianów stopnia n jest określana jako:

$$W_n = \{ p : p(x, y) = \sum_{0 \le q+r \le n} a_{qr} x^q y^r, a_{qr} \in R \}$$

Wszystkie wielomiany stopnia mniejszego niż 4 będą kombinacją liniową wektorów z bazy, co w połączeniu z własnościami całki oznaza, że wystarczy policzyć całki z bazy.

Rysunek 1: Obszar w trakcie podziału. Każdy z n^2 kwadratów (n=4) jest dzielony na 4 trójkąty

Badany obszar jest symetryczny względem obu osi, przez co całki z funkcji nieparzystych będą równe zero. Niezerowy wynik z wzoru

$$\iint_D f(x,y) \, dx \, dy$$

otrzymamy dla 1, x^2 , y^2 :

$$\iint_{D} 1 \, dx \, dy = 2 \quad , \quad \iint_{D} x^2 \, dx \, dy = \iint_{D} y^2 \, dx \, dy = \frac{1}{3}$$

Wyniki działania funkcji dla n=1 faktycznie dają dokładnie takie wartości, natomiast dla pozostałych wektorów z bazy (wszystkie wymienione w teście pierwszym) zwraca zera.

Kolejne testy dotyczą błędu przy wielomianach stopni wyższych niż trzeci. Jego wartość można ograniczyć zgodnie ze wzorem:

$$|I(f) - S(f)| = \mathcal{O}(n^{-4}),$$

gdzie I(f) to dokładna wartość a S(f) przybliżona. Wzór tyczy się podziału trójkątnego obszaru na n^2 trójkątów. W przypadku omawianego zadania są 4 obszary trójkąte i podział na $4n^2$ trójkątów, dlatego nadal możemy posługiwać się tym wzorem. Tabela poniżej przedstawia wyniki obliczeń wykonane na kilku przykładowych funkcjach na potrzeby sprawdzenia jego poprawności.

Wzór funkcji	Poprawny	Programu	Blad	$\mathbf{Stosunek}$
$-x^4$	$\frac{2}{15}$	0.13333	1.1111e-10	0.011111
$x^2 \times y^2$	$\frac{\widetilde{1}}{45}$	0.022222	5.5556e-11	0.0055556
x^5	0	2.0956e-16	2.0956e-16	2.0956e-08
$x^4 + y^4 + 2xy + 1$	$\frac{34}{15}$	2.2667	2.2222e-10	0.022222

Tabela 1: Porównanie błędu z maksymalnym teoretycznym dla przykładowych funkcji

Kolumna Stosunek to iloraz błędu i maksymalnego teoretycznego błędu. Wszystkie wartości zostały wyliczone dla n=100. Jeżeli stosunek jest mniejszy niż 1 znaczy to, że błąd był mniejszy niż maksymalny teoretyczny. Do sprawdzenia jak wygląda podobna tabela dla różnych wartości n służy test3. Niezależnie od funkcji i parametru, stosunek zawsze wychodzi mniejszy niż 1.

Testy numeryczne

Pierwsza kwestia, którą warto omwówić w kontekście poprawności numerycznej jest czas działania i zależność czasu liczenia od parametru n i funkcji f. Poniższa tabela przedstawia przykładowe funkcje i czasy obliczeń dla rónych n (więcej w test5). Jak widać największy wpływ na czas obliczeń ma wzór funkcji - czy jest skomplikowany, czy nie wymaga wielu obliczeń.

Wzór funkcji	n=5	$\mathbf{n}=50$	n = 500	n = 5000
1	8.8360e-04	4.4750e-04	0.0062	0.7753
$x \times y$	6.5170 e-04	4.4800 e - 04	0.0074	0.0074
$x^4 + y^4 + 2xy + 1$	8.7200 e-04	114.0e-04	0.3780	35.2911

Tabela 2: Porównanie czasu obliczeń dla różnych funkcji i wartości n.

Druga kwestia na którą warto zwrócić uwagę, to błędy precyzji obliczeń. Gdyby dla policzenia wielomianu stopnia drugiego użyć n takiego, że któreś punkty będą miały współrzędne, których zapis ma nieskończone rozwinięcie, to liczona będzie wartość bardzo bliska ale nie dokładnie w poprawnym puknkcie. Tak więc dla f(x,y) = xy i n = 10 wynik działania funkcji zamiast 0 wynosi około 10^{-17} .

Funkcje inne niż wielomianowe

Do badania dokładności przybliżania funkcji innych niż wielomianowe służy *test5*. Metoda trójkątów czwartego rzędu okazuje się być dobrą metodą przybliżania całek podwójnych.