Assumption				Implications			Assessment			
Name	Mathematical Representation	Description		•			Evidence – Tool	How to Use	Mitigation	
MLR1 (Gauss-Markov 1)	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$	Linearity in Coefficients. Weak assumption.	β	$E \hat{\sigma}^2 = \sigma^2$			The model is linear. Input variables can be of any form: log, polynomial, etc. only coefficients are assumed to be linear.			
MLR2 (Gauss-Markov 2)		Random sample of data. Independent and Identically Distributed (iid). Strong.	Consistent. For large samples, eta				Discern from sampling technique as described by researcher. Check resid_v_leverage	Look for outliers with influence and leverage. Cook's distance lines.	Look hard at those points. Exclude carefully with strong evidence of errant data only.	
MLR3 (Gauss-Markov 3)	There is no $x_i = \delta_0 + \delta_1 x_j$	No perfect co-linearity. Weak assumption.					VIF Variance Inflation Factor $VIF_{j} = \frac{1}{1-R^{2}}$ vif(model)	If VIF is close to 1, you have multi-colinearity.	Remove one of the variables from the model.	
MLR4	$E(u x_1, x_2, \dots, x_k) = 0$	Zero conditional mean for	nsis	(TOE)		-				
(Gauss-Markov 4)		errors. A strong assumption.	OLS Estimators Co	Best Linear Unbiased Estimators (BLUE).						
MLR4'	$Cov(u_i, x_i) = 0$, all x	All X uncorrelated with error.			$){\sim}t_{n-k-1}$	can conduct t-tests, etc.	Residuals v. Fitted values. Scale-location plot. plot(model1) gives both	Show that exogeneity is realistic. This preserves consistency of estimators. $\lim_{n\to\infty} \hat{\beta} = \beta$	Claim an assumption of exogeneity and that model is associative and not causal. Just looking gor best fit line.	
MLR5 (Gauss-Markov 5)	$var(u x_1, x_2,, x_k) = \sigma^2$	Homoskedasticity of errors. Constant error variance across all x. A strong assumption.		inear Unbia	$a_{H_0})/se(\beta_j)$	an conduct	Residuals v. Fitted values. Scale-location plot. plot(model1) gives both	R v FV: look for different width of bands as a function of x. BP: Regresses residuals on Xs	Use White standard errors, which are robust to homoskedasticity.	
					$N(\beta_j, Var(\beta_j) , \beta_j \sim N(\beta_j, Var(\beta_j) t_{af} = 0$	ne OLS coefficients are normally distributed, so you not the values of the coefficients.	Breusch-Pagan Test bptest(model1)	and does F-test on model.	coeftest(model3, vcov = vcovHC)	
				OLS Estimators			White Test	White: regresses error residuals on fitted values.	(se.model1 = sqrt(diag(vcovHC(model1))))	
MLR6 CLM (Classical Linear Model)	$u_i x \sim N(0,\sigma^2)$	Errors are normally distributed.					Hist(residuals) Q-Q plot – look for perfect diagonal line, no tails Shapiro-Wilk test of normality of residuals	hist(model3\$residuals) shapiro.test(model1\$residuals)	Large data set: rely on asymptotics of OLS est. Need 1-5. Small data sets: transform skewed variable, try x^2. If resi_v_fitted shows curvature have zcm violation too. Bootstrap errors.	