### COMP9020 19T1 Week 10 **Course Review**



### **Course Review**

Goal: for you to become a competent computer scientist.

Requires an understanding of fundamental concepts:

- number-, set-, relation- and graph theory
- logic and proofs, recursion and induction
- order of growth of functions
- combinatorics and probability

In CS/CE these are used to:

- formalise problem specifications and requirements
- develop abstract solutions (algorithms)
- analyse and prove properties of your programs

#### Examples:

Concept

graphs

O (big-Oh)

trees

logic and proofs

properties of relations

alphabets and words

probability, expectation

- The University Course Timetabling Problem  $(\rightarrow PDF)$
- COMP9801 (Extended Design and Analysis of Algorithms)

Course Review

Used for

search trees

string algorithms

randomised algorithms

correctness of algorithms

efficiency of algorithms & data structures

reachability in graphs shortest path problems

• COMP9024 – Data Structures and Algorithms (19T3)



#### Course Review

COMP9024 – Data Structures and Algorithms (19T3)

| Concept                  | Used for                                   |
|--------------------------|--------------------------------------------|
| logic and proofs         | correctness of algorithms                  |
| properties of relations  | reachability in graphs                     |
| graphs                   | shortest path problems                     |
| trees                    | search trees                               |
| $\mathcal{O}$ (big-Oh)   | efficiency of algorithms & data structures |
| alphabets and words      | string algorithms                          |
| probability, expectation | randomised algorithms                      |

By acquiring knowledge and enhancing your problem-solving skills,

### NB

"universitas" (Lat.) = sum of all things, a whole

you're preparing yourself for the future

### **Assessment Summary**

- 1 quiz mark max. mark 20
- 2 mid-term test max. mark 20
- final exam max. mark 60

#### NB

Your overall **Score** for this course will be the *maximum* of

- ullet quiz mark + mid-term + exam
- quiz mark + 80\*(exam/60)
- mid-term + 80\*(exam/60)
- 100\*(exam/60)

#### NB

To pass the course, your overall Score must be 50 or higher **and** your mark for the final exam must be 25 or higher.

$$\mathsf{Exam} \geq 25.0 \Rightarrow \mathsf{Grade} \triangleq \mathsf{Score}$$

Exam 
$$< 25.0 \Rightarrow \text{Grade} = 100*(\text{Exam}/60)$$

### xam/60)

### **Final Exam**

Friday, 10 May, 1:45pm — Scientia, Leighton Hall

- 6 multiple-choice questions plus 5 open questions
- Covers all of the contents of this course
- Each multiple-choice question is worth 4 marks ( $6 \times 4 = 24$ ) Each open question is worth between 7 and 8 marks Total exam marks = 60
- Answer the multiple-choice questions directly in the exam paper. Multiple-choice questions may have more than one correct answer.
- Write your answers to the open question in an Examination Answer Booklet.
- Time allowed 120 minutes + 10 minutes reading time
- Closed book. One handwritten A4-sized sheet (double-sided is ok) of your own notes

### **Final Exam**

Goal: to check whether you are a competent computer scientist.

Requires you to demonstrate:

- understanding of mathematical concepts
- ability to apply these concepts and explain how they work

Lectures, study of problem sets and quizzes have built you up to this point.

Instructions & Prac Exams on course webpage (→ Exams)



### **Revision Strategy**

- Re-read lecture slides
- Read the corresponding chapters in the book (R & W)
- Review/solve problem sets
- Solve more problems from the book
- Attempt prac exam on course webpage

(Applying mathematical concepts to solve problems is a skill that improves with practice)

• Fun Quiz in today's lecture

### NB

900

- Extra pre-exam tutorial Mon, 6 May, 5-6pm, OMB G31
- 2 Extra pre-exam consultation Wed, 8 May, 1–2pm

### **Supplementary Exam**

If you attend an exam

- you make a statement that you are "fit and healthy enough"
- it is your only chance to pass (i.e. no second chances)

Supplementary exam available to students who

- do not attend the final exam and
- apply formally for special consideration
  - with a documented and accepted reason for not attending

#### NB

"Compassion Supp" available to students who do not meet the requirements to pass the course but achieve an overall **Score** >47. Must score >50 in the supp to pass with an overall mark of 50.



### **Assessment**

Assessment is about determining how well you understand the syllabus of this course.

If you can't demonstrate your understanding, you don't pass.

In particular, I can't pass people just because ...

- please, please, ... my family/friends will be ashamed of me
- please, please, ... I tried really hard in this course
- please, please, ... I'll be excluded if I fail COMP9020
- please, please, ... this is my final course to graduate
- etc. etc.

(Failure is a fact of life. For example, my scientific papers or project proposals get rejected sometimes too)



## Assessment (cont'd)

Of course, assessment isn't a "one-way street" ...

- I get to assess you in the final exam
- you get to assess me in UNSW's MyExperience Evaluation
  - go to https://myexperience.unsw.edu.au/
  - login using zID@ad.unsw.edu.au and your zPass

Response rate (as of Monday): 47.4%



#### Please fill it out ...

- give me some feedback on how you might like the course to run in the future
- even if that is "Exactly the same. It was perfect this time."

### So What Was The Real Point?

The aim was for you to become a better computer scientist

- more confident in your own ability to use formal methods
- with a set of mathematical tools to draw on
- able to choose the right tool and analyse/justify your choices
- ultimately, enjoying solving problems in computer science

# **Finally**

# That's All Folks

Good Luck with the exam and with your future computing studies





13