1 Variables

2 root

	var	symbol	documentation	type	units	eqs
10	$F_{N,A}$	F	basic directed graph incidence matrix	network		
7	Δt	t_interval	time interval	frame	s	5
9	Δ	pulse	pulse of length time interval	frame		7
4	t	t	time	frame	s	
5	t^o	to	time zero	frame	s	3
6	t^e	te	time end	frame	s	4
3	0	zero	numerical value zero	constant		2
8	0.5	onehalf	numerical one half	constant		6
1	#	value	numerical value	constant		
2	1	one	numerical one	constant		1

3 physical

	var	symbol	documentation	type	units	eqs
14	r_{zN}	r_z	z-direction	frame	m	10
11	ℓ_N	1	length	frame	m	
12	r_{xN}	r_x	x-direction	frame	m	8
13	r_{yN}	r_y	y-direction	frame	m	9
17	S_N	S	fundamental state - entropy	state	$kg m^2 K^{-1} s^{-2}$	
23	A_N	A	Helmholts energy	state	kgm^2s^{-2}	17
16	U_N	U	fundamental state - internal energy	state	kgm^2s^{-2}	
24	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	18
22	H_N	Н	Enthalpy	state	kgm^2s^{-2}	15
18	$n_{N,S}$	n	fundamental state - molar mass	state	mol	
15	V_N	V	fundamental state - volume	state	m^3	11
25	C_N	С	fundamental state - charge	state	As	
33	B_N	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	24
32	A^v	Av	Avogadro number	constant	mol^{-1}	
34	R_N	R	Gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-1}$	2 25
21	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	14
19	T_N	Т	temperature	effort	K	16
20	p_N	p	pressure	effort	$kg m^{-1} s^{-2}$	13
35	$U^e{}_N$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	26
27	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	19
29	v_{zN}	v_z	velocity in z-direction	secondaryState	ms^{-1}	21
28	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	20

4 material

	var	symbol	documentation	type	units	eqs
46	k_{zN}^c	kc_z	convective mass conductivity in z-direction	property	$m^{-1} s$	37
26	λ_S	Mm	species' molecular mass	property	$kg mol^{-1}$	
42	$k_{yN,S}^d$	kd_y	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	33
39	k_{yN}^q	kq_y	thermal conductivity in y-direction	property	$kg K^{-1} s^{-3}$	30
38	k_{xN}^q	kq_x	thermal conductivity in x-direction	property	$kg K^{-1} s^{-3}$	29
44	k_{xN}^c	kc_x	convective mass conductivity in x-direction	property	$m^{-1} s$	35
37	C_{vN}	Cv	total heat capacity at constant volume	property	$kg m^2 K^{-1} s^{-2}$	28
43	$k_{zN,S}^d$	kd_z	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	34
40	k_{zN}^q	kq_z	thermal conductivity in z-direction	property	$kg K^{-1} s^{-3}$	31
36	C_{pN}	Ср	total heat capacity at constant pressure	property	$kg m^2 K^{-1} s^{-2}$	27
45	k_{yN}^c	kc_y	convective mass conductivity in y-direction	property	$m^{-1} s$	36
41	$k_{xN,S}^d$	kd_x	diffusional mass conductivity in x-direction	property	$kg^{-1} m^{-4} mol^2 s$	32

5 macroscopic

	var	symbol	documentation	type	units	eqs
31	m_N	m	mass	secondaryState	kg	23

6 material-macroscopic

	var	symbol	documentation	type	units	eqs
30	$-\lambda_S$	_Mm	link variable Mm to interface material »> macroscopic	get	$kgmol^{-1}$	22

7 Equations

8 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical one	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	$t^o := \operatorname{Instantiate}(t, 0)$	time zero	root
4	$t^e := \text{Instantiate}(t, \#)$	time end	root
5	$\Delta t := \operatorname{Instantiate}(t, \#)$	time interval	root
6	0.5 := Instantiate(#, #)	numerical one half	root
7	$\Delta := \operatorname{sign}(t - t^{o}) - \operatorname{sign}(t - (t^{o} - \Delta t))$	pulse of length time interval	root
8	$r_{xN} := \text{Instantiate}(\ell_N, \#)$	x-direction	physical
9	$r_{yN} := \text{Instantiate}(\ell_N, \#)$	y-direction	physical
10	$r_{zN} := \text{Instantiate}(\ell_N, \#)$	z-direction	physical
11	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
13	$p_N := \frac{\partial U_N}{\partial V_N}$	pressure	physical
14	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	physical
15	$H_N := U_N - p_N \cdot V_N$	Enthalpy	physical
16	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
17	$A_N := U_N - T_N \cdot S_N$	Helmholts energy	physical

Continued on next page

no	equation	documentation	layer
18	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
19	$v_{xN} := (t)^{-1} \cdot r_{xN}$	velocity in x-direction	physical
20	$v_{yN} := (t)^{-1} \cdot r_{yN}$	velocity in y-direction	physical
21	$v_{zN} := (t)^{-1} \cdot r_{zN}$	velocity in z-direction	physical
23	$m_N := _\lambda_S \star n_{N,S}$	mass	macroscopic
24	$B_N := \operatorname{Instantiate}(S_N, \#)$	Boltzmann constant	physical
25	$R_N := A^v \cdot B_N$	Gas constant	physical
26	$U^e_N := (C_N)^{-1} \cdot U_N$	electrical potential – voltage	physical
27	$C_{pN} := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
28	$C_{vN} := rac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
29	$k_{xN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{xN}$	thermal conductivity in x-direction	material
30	$k_{yN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{yN}$	thermal conductivity in y-direction	material
31	$k_{zN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{zN}$	thermal conductivity in z-direction	material
32	$k_{xN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{xN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in x-direction	material
33	$k_{yN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{yN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in y- direction	material
34	$k_{zN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in z- direction	material

Continued on next page

no	equation	documentation	layer
35	$k_{xN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convective mass conductivity in x-direction	material
36	$k_{yN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN}$	convective mass conductivity in y-direction	material
37	$k_{zN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convective mass conductivity in z-direction	material

9 Interface Link Equation

no	equation	documentation	layer
22	$_{-}\lambda_{S}:=\lambda_{S}$	interface equation	material -> macro- scopic