Certified AI Practitioner Week 01 Call 02 - How Good Is Your Model?

Learning Objectives

- Explain key model evaluation metrics: accuracy, precision, recall, and F1 score
- Interpret a confusion matrix
- Understand why accuracy alone can be misleading
- Relate evaluation metrics to real-world decision-making
- Use scikit-learn to compute and visualize metrics from a model

What is Kaggle?

Kaggle is an online platform for data science competitions, learning, and collaboration.

It offers real-world datasets, tutorials, and challenges that help you build and test machine learning skills in a hands-on way.

The Titanic dataset is one of the most popular beginner datasets on Kaggle.

It's based on the 1912 sinking of the Titanic, where the goal is to predict whether a passenger survived, using information like:

- Age
- Sex
- Passenger class
- Family onboard
- Fare paid
- Port of embarkation

Problem Setup

We will treat this as a binary classification problem:

- 0 = Did not survive
- 1 = Survived

This dataset is **imperfect and slightly imbalanced**, making it great for learning about:

- Why accuracy can be misleading
- How to use metrics like precision and recall
- How to interpret a confusion matrix

Load and Preview the Titanic Dataset

Let's load the Titanic dataset and take a quick look at the structure.

```
In [1]: import pandas as pd

# Load Titanic training dataset from Local CSV

df_train = pd.read_csv("train.csv")

df_test = pd.read_csv("test.csv")

df = pd.concat([df_train, df_test]).reset_index(drop=True)

# Preview the first few rows

df.head()
```

Out[1]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [2]: # Check column names and data types
 df.info()

Check missing values
df.isnull().sum()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1309 entries, 0 to 1308 Data columns (total 12 columns): Column Non-Null Count Dtype ----------PassengerId 1309 non-null int64 Survived 891 non-null float64 1309 non-null int64 Pclass Name 1309 non-null object Sex 1309 non-null object Age 1046 non-null float64 SibSp 1309 non-null int64 Parch 1309 non-null int64 Ticket 1309 non-null object Fare 1308 non-null float64 10 Cabin 295 non-null object 11 Embarked 1307 non-null object dtypes: float64(3), int64(4), object(5) memory usage: 122.8+ KB PassengerId Out[2]: Survived 418 Pclass 0 Name 0 Sex 263 Age SibSp 0 Parch 0 Ticket Fare 1 Cabin 1014 Embarked 2 dtype: int64

Clean and Prepare the Titanic Data

To keep things simple, we will:

- Use a small number of helpful features
- Handle missing values in Age and Embarked

• Convert text columns like Sex and Embarked to numbers

```
In [3]: # Select useful columns for this example
    cols = ["Survived", "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
    df = df[cols]

# Drop rows with missing values (for now, keep it simple)
    df = df.dropna()

# Encode 'Sex' as 0 = male, 1 = female
    df["Sex"] = df["Sex"].map({"male": 0, "female": 1})

# Encode 'Embarked' as 0 = S, 1 = C, 2 = Q
    df["Embarked"] = df["Embarked"].map({"S": 0, "C": 1, "Q": 2})

# Final preview of the cleaned dataset
    df.head()
```

Out[3]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0.0	3	0	22.0	1	0	7.2500	0
	1	1.0	1	1	38.0	1	0	71.2833	1
	2	1.0	3	1	26.0	0	0	7.9250	0
	3	1.0	1	1	35.0	1	0	53.1000	0
	4	0.0	3	0	35.0	0	0	8.0500	0

Prepare the Data for Modeling

We'll now:

- Separate features (X) and target (y)
- Split into training and testing sets
- Scale numeric features to help the model perform better

```
In [4]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

# Separate features and target
X = df.drop("Survived", axis=1)
y = df["Survived"]

# Split into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Scale the features (helps many ML models work better)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fransform(X_test)
```

Train a Decision Tree Model

We'll start with a simple Decision Tree to:

- See how a basic model performs
- Interpret its decisions visually

Evaluate the Decision Tree

We'll now:

- Make predictions on the test set
- Calculate key evaluation metrics
- Visualize the confusion matrix

```
import matplotlib.pyplot as plt
 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, confusion
 # Predict and evaluate
 y_pred_dt = dt_model.predict(X_test_scaled)
 # Metrics
 print("Accuracy:", accuracy_score(y_test, y_pred_dt))
 print("Precision:", precision_score(y_test, y_pred_dt))
 print("Recall:", recall_score(y_test, y_pred_dt))
 print("F1 Score:", f1_score(y_test, y_pred_dt))
 # Classification report
 print("\nClassification Report:\n")
 print(classification_report(y_test, y_pred_dt))
Accuracy: 0.7202797202797203
Precision: 0.7017543859649122
Recall: 0.6349206349206349
Classification Report:
             precision recall f1-score support
        0.0
                  0.73
                           0.79
                                     0.76
                                                 80
                  0.70
        1.0
                           0.63
                                     0.67
                                                 63
                                     0.72
                                                143
   accuracy
  macro avg
                  0.72
                           0.71
                                     0.71
                                                143
weighted avg
                  0.72
                           0.72
                                     0.72
                                                143
```

Understanding Classification Metrics

After training a model, we use evaluation metrics to understand how well it's performing — especially on **binary classification** tasks like predicting survival.

Accuracy

- The **overall percentage** of correct predictions.
- Useful when classes are balanced but can be **misleading** if one class dominates.

Precision

- Of all the passengers the model **predicted as survived**, how many **actually survived**?
- Helps reduce false positives.
- Important when predicting something **positive but rare** (e.g., fraud, disease, survival).

Recall

- Of all passengers who **actually survived**, how many did the model **correctly identify**?
- Helps reduce false negatives.
- Important when **missing a positive case** would be costly or dangerous.

F1 Score

- The harmonic mean of precision and recall.
- A balanced metric when both false positives and false negatives matter.
- Especially helpful in **imbalanced datasets**.

Classification Report Breakdown

Term	Meaning
precision	How many predicted positives were actually correct
recall	How many actual positives were correctly identified
f1-score	Balance between precision and recall
support	The number of actual samples in each class
accuracy	Overall % of correct predictions (both classes combined)
macro avg	Unweighted average of metrics across both classes
weighted avg	Average of metrics weighted by support (accounts for class imbalance)

Example:

- Class 0 = Did not survive
- Class 1 = Survived
- If recall is low for Class 1, the model is **missing survivors**, which could be critical in real-life decision-making.

```
ax=axes[1], cmap="Greens", values_format='.2f'
)
axes[1].set_title("Normalized Confusion Matrix")

plt.tight_layout()
plt.show()
```


Understanding the Confusion Matrix

A **confusion matrix** is a table that shows how well our classification model performed. It compares the model's predictions to the actual outcomes.

Raw Confusion Matrix

This version shows the **actual number of predictions** in each category.

	Predicted: No	Predicted: Yes		
Actual: No	True Negative	False Positive		
Actual: Yes	False Negative	True Positive		

- True Negative (TN): Model predicted No, and it was actually No
- True Positive (TP): Model predicted Yes, and it was actually Yes
- False Positive (FP): Model predicted Yes, but it was actually No

Example: predicted someone survived when they didn't

• False Negative (FN): Model predicted No, but it was actually Yes

Example: predicted someone did not survive, but they actually did

Normalized Confusion Matrix

A normalized matrix shows the proportion of correct/incorrect predictions for each actual class.

Each row sums to 1, and each cell represents a percentage of true class predictions.

- Helps us see **recall** per class:
 - For class 1, how many were correctly identified?
 - For class 0, how many were misclassified?

Why Both Are Useful

- The raw matrix helps us understand volume: "How many people were misclassified?"
- The **normalized matrix** helps us compare model behavior across classes: "How well did the model do *per group*?"

Business Example (Titanic)

- False Positives (FP) = Predicting someone survived who didn't → may create false confidence
- False Negatives (FN) = Predicting someone died who actually survived → may hide success
- Which is worse depends on the context that's why understanding **precision and recall** matters.

Visualize the Decision Tree

This helps us understand how the model makes decisions.

Decision Tree ($\max depth = 2$)

Interpreting the Decision Tree (Depth = 2)

- The tree makes decisions by splitting the data based on the most informative features.
- The first split separates the population into two broad groups with different survival patterns.
- Each additional split adds more context and refining the prediction based on subgroup characteristics.
- The leaf nodes show the model's final decision based on the majority class in that group.
- Darker colors indicate more confident predictions (i.e., lower impurity).

This visualization helps us see how the model learns simple rules from the data to make predictions.

Decision Tree (max depth = 3)

Train a Random Forest Model

Random Forest = many decision trees working together (ensemble).

- Typically performs better
- Less likely to overfit

Evaluate the Random Forest

Let's compare performance with our earlier model.

```
In [11]: y_pred_rf = rf_model.predict(X_test_scaled)

print("Accuracy:", accuracy_score(y_test, y_pred_rf))
print("Precision:", precision_score(y_test, y_pred_rf))
print("Recall:", recall_score(y_test, y_pred_rf))
print("F1 Score:", f1_score(y_test, y_pred_rf))

# Classification report
print("\nClassification Report:\n")
print(classification_report(y_test, y_pred_rf))

# Raw confusion matrix
cm_rf = confusion_matrix(y_test, y_pred_rf)

# Normalized confusion matrix (by true labels - rows sum to 1)
cm_rf_norm = confusion_matrix(y_test, y_pred_rf, normalize="true")
```

Accuracy: 0.7832167832167832 Precision: 0.766666666666667 Recall: 0.7301587301587301 F1 Score: 0.7479674796747967

Classification Report:

	precision	recall	f1-score	support
0.0	0.80	0.82	0.81	80
1.0	0.77	0.73	0.75	63
accuracy			0.78	143
macro avg	0.78	0.78	0.78	143
weighted avg	0.78	0.78	0.78	143

Metrics in the Real World: Gun Detection on Facebook Marketplace

In our example, we're using machine learning to predict whether a post on Facebook Marketplace contains a **gun listing** that should be removed.

This is a **binary classification** problem:

- 1 = Gun detected (remove the post)
- 0 = No gun (safe to keep)

Let's break down what each metric tells us — and how it affects real decisions:

Metric Meanings in Context

Metric	Real-World Meaning	Risk of Optimizing Alone
Accuracy	% of correct decisions (keep/remove) overall	May look good even if guns slip through
Precision	Of all flagged posts, how many actually contain guns?	High precision = fewer false removals
Recall	Of all real gun listings, how many did we catch?	High recall = fewer guns slip through
F1 Score	Balances catching guns and not removing safe posts	Useful when both errors matter

Mistakes Have Real Consequences:

Error Type	What Happens				
False Positive (FP)	We flag/remove a non-gun item (hurts user trust)				
False Negative (FN)	We miss a real gun listing (major policy + safety risk)				

So Which Metric Matters Most?

- If your **goal is safety and compliance**, **recall** is crucial better to review too many than let guns through.
- If your **goal is avoiding user complaints**, **precision** becomes more important avoid flagging innocent items.
- Most platforms balance both with the **F1 Score**, and fine-tune thresholds based on business risk.

Key Question for Every ML System:

"Which mistake is worse — a false positive or a false negative?"

In this case: missing a gun (false negative) is usually worse.

Wrap-Up & Takeaways

• Accuracy is not always enough

- Precision and recall help us understand **types of mistakes**
- F1 score balances both
- Confusion matrix shows what went wrong
- In the real world, different metrics matter depending on the **problem**