CHALLENGES AND OPPORTUNITIES IN FORENSIC ANALYSIS FOR STATE-OF-THE-ART AND FUTURE VEHICLES

KEVIN GOMEZ BUQUERIN
TECHNICAL UNIVERSITY INGOLSTADT
AUDI AG

WHO AM I

- Kevin Gomez Buquerin
- Incident responder at Audi AG
- Master student at the technical university Ingolstadt
- B.Sc. in computer science for automotive and avionic systems
- Security research for real-time operating systems

WHY DO WE CARE?

- Change of burden of proof
- More mobility services
 - Updates over the air
 - Telematic services
 - Smart home connection
- Increased attack surface Increased interest of researches/attackers
- Introduce general IT problems to vehicles

FORENSIC ANALYSIS (1)

FORENSIC ANALYSIS (2)

- Requirements for forensic analysis:
 - Acceptance

Reproducibility

Functionality

Integrity

Robustness

Consistency

Relevant for automotive forensics

ACCEPTANCE

Good

- Standardised interface is used to acquire data (such as OBD)
- Test-analysis
 were performed
 successfully

Bad

No plan

FUNCTIONALITY

Good

- Know what you expect
- Try it first!

Bad

- Conclusions without valid results
- Wrong interpretation

ROBUSTNESS

Good

- Adaptable on different interfaces and interface versions
- Usable for several protocols
- Usable for different models of different OEMs

Bad

- Only works for one OEM
- Only usable with one specific interface on one specific protocol

REPRODUCIBILITY

Good

- Standardised interfaces
- Standardised toolsets

Bad

Data only acquirable with the right tools

INTEGRITY

Good

- Make copies of memory images
- For court relevant actions: Work in pairs
- Integrityprotection on log data

Bad

Work on original data

CONSISTENCY

Good

- UDS Data
 Identifier *0xf19a*:
 Calibration repair
 shop code
 changed
- UDS Data
 Identifier *0xf189*:
 ECU software
 version number
 changed

Bad

Some error code
 was thrown
 which indicates
 possible
 modification

RESEARCH CHALLENGES (1)

1. Complexity problem (complex systems and extensive processing of data representations)

```
▼ Unified Diagnostic Service
Service Identifier: 0x62 (Read Data By Identifier Positive Response)
Supress Response: False (0x00)
Data Identifier: 0x2a2f (Data Identifier 1)(Vehicle Manufacturer Specific)
Data Identifier MSB: 0x2a (Data Identifier 1 MSB)
Data Identifier LSB: 0x2f (Data Identifier 1 LSB)
Data Record String:
```

```
▼ Unified Diagnostic Service
Service Identifier: 0x62 (Read Data By Identifier Positive Response)
Supress Response: False (0x00)
Data Identifier: 0x2a2f (Data Identifier 1)(Vehicle Manufacturer Specific)
Data Identifier MSB: 0x2a (Data Identifier 1 MSB)
Data Identifier LSB: 0x2f (Data Identifier 1 LSB)
Data Record String:
```

```
▼ Unified Diagnostic Service

Service Identifier: 0x62 (Read Data By Identifier Positive Response)

Supress Response: False (0x00)

Data Identifier: 0x2a2f (Data Identifier 1)(Vehicle Manufacturer Specific)

Data Identifier MSB: 0x2a (Data Identifier 1 MSB)

Data Identifier LSB: 0x2f (Data Identifier 1 LSB)

Data Record String:
```

RESEARCH CHALLENGES (2)

- 2. Diversity problem (big volumes must be separated into smaller chunks)
 - Not relevant since ECU memory is very small compared to personal computers

RESEARCH CHALLENGES (3)

- 3. Consistency and correlation (multiple data sources need to be correlated)
 - There are a lot of ECUs within a vehicle. Therefore several different data sources are applicable

RESEARCH CHALLENGES (4)

- Quantity or volume problem (there is a lot of data to analyse)
 - Despite the limited storage power of single ECUs, the number of ECUs do increase the quantity of volume to handle analyse

RESEARCH CHALLENGES (5)

- 5. Unified time-lining problem (many sources lead to problems with correlating timestamps, etc.)
 - Different interpretation of time over different ECUs.
 Assorted characteristics of precisions

Usability in court is key!

MORE CHALLENGES

- Tamper-proof extraction of data
- Storage is very small
- GDPR
- Limited processing power
- Accessibility located at the customer
- Legal basis
- Multiple vendors and suppliers of automotive subsystems

FORENSIC ANALYSIS ON MODERN VEHICLES (1)

1006	79.408035	192.168.88.249	192.168.88.238	UDS	73	Read Data By Identif
1008	79.427141	192.168.88.238	192.168.88.249	UDS	69	Read Data by Identif
1009	79.427496	192.168.88.249	192.168.88.238	D0IP_2012	67	Diagnostic Message F
1010	79.427731	192.168.88.249	192.168.88.238	UDS	72	Read Data By Identif
1012	79.452597	192.168.88.238	192.168.88.249	UDS	69	Read Data by Identif
1013	79.453027	192.168.88.249	192.168.88.238	D0IP_2012	67	Diagnostic Message F
1014	79.453539	192.168.88.249	192.168.88.238	UDS	69	Read Data by Identif

- ▶ Frame 1006: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on interface 0
- ▶ Ethernet II, Src:

Dst:

- ▶ Internet Protocol Version 4, Src: 192.168.88.249, Dst: 192.168.88.238
- ▶ Transmission Control Protocol, Src Port: 13400, Dst Port: 64014, Seq: 314, Ack: 197, Len: 19
- ▼ Diagnostics over Internet Protocol

Protocol Version: 0x02 (D0IP_2012)

Protocol Version Inverse: 0xfd

Message Type: 0x8001 (Diagnostic Message)

Message Length: 11

Diagnostic Message Source Address:
Diagnostic Message Target Address:

▼ Unified Diagnostic Service

Service Identifier: 0x62 (Read Data By Identifier Positive Response)

Supress Response: True (0x80)

Data Identifier: 0xf189 (Data Identifier 1) (Vehicle Manufacturer ECU Software Version Number Data Identifier

Data Identifier MSB: 0xf1 (Data Identifier 1 msb)
Data Identifier LSB: 0x89 (Data Identifier 1 LSB)

Data Record String:

FORENSIC ANALYSIS ON MODERN VEHICLES (2)

1594	157.362790	192.168.88.249	192.168.88.238	UDS	91	Read Data By Ident
1596	157.364251	192.168.88.238	192.168.88.249	UDS	69	Read Data by Ident
1597	157.364594	192.168.88.249	192.168.88.238	D0IP_2012	67	Diagnostic Message
1598	157.373142	192.168.88.249	192.168.88.238	UDS	75	Read Data By Ident
1601	157.637535	192.168.88.238	192.168.88.249	UDS	68	Diagnostic Session
1602	157.638107	192.168.88.249	192.168.88.238	D0IP_2012	67	Diagnostic Message
1603	157.649016	192.168.88.249	192.168.88.238	UDS	72	Diagnostic Session

Dst:

- ▶ Frame 1594: 91 bytes on wire (728 bits), 91 bytes captured (728 bits) on interface 0
- ▶ Ethernet II, Src:
- ▶ Internet Protocol Version 4, Src: 192.168.88.249, Dst: 192.168.88.238
- ▶ Transmission Control Protocol, Src Port: 13400, Dst Port: 64037, Seq: 109, Ack: 99, Len: 37
- ▼ Diagnostics over Internet Protocol

Protocol Version: 0x02 (D0IP_2012)

Protocol Version Inverse: 0xfd

Message Type: 0x8001 (Diagnostic Message)

Message Length: 29

Diagnostic Message Source Address:
Diagnostic Message Target Address:

▼ Unified Diagnostic Service

Service Identifier: 0x62 (Read Data By Identifier Positive Response)

Supress Response: True (0x80)

Data Identifier: 0xf19e (Data Identifier 1)(ODX File Data Identifier)

Data Identifier MSB: 0xf1 (Data Identifier 1 MSB)
Data Identifier LSB: 0x9e (Data Identifier 1 LSB)

Data Record String: (EV_ThermContr)

FORENSIC ANALYSIS ON MODERN VEHICLES (3)

	1044	80.297394	192.168.88.249	192.168.88.238	UDS	75	Read Data By	Identifier	Positive	Re			
	1048	80.324340	192.168.88.249	192.168.88.238	UDS	75	Read Data By	Identifier	Positive	Re			
	1052	80.345281	192.168.88.249	192.168.88.238	UDS	73	Read Data By	Identifier	Positive	Re			
	1056	80.413411	192.168.88.249	192.168.88.238	UDS	518	Read Data By	Identifier	Positive	Re			
	1060	80.503640	192.168.88.249	192.168.88.238	UDS	80	Read Data By	Identifier	Positive	Re			
	1064	1 00 526060	102 160 00 240	102 160 00 220	LIDC	01	Dood Data Di	Tdontifion	Danitius	Da			
•	Frame 1044:	75 bytes on	wire (600 bits), 75 by	vtes captured (600 b)	its) on interfa								
•	Ethernet II,	Ethernet II, Src: Dst:											
•	Internet Protocol Version 4, Src: 192.168.88.249, Dst: 192.168.88.238												
•	Transmission Control Protocol, Src Port: 13400, Dst Port: 64014, Seq: 673, Ack: 332, Len: 21												
•	Diagnostics	over Interne	et Protocol										
	Protocol	Version: 0x02	2 (DOTP 2012)				Protocol Version: 0x02 (DOIP 2012)						

Protocol Version: 0x02 (D0IP_2012)
Protocol Version Inverse: 0xfd

Message Type: 0x8001 (Diagnostic Message)

Message Length: 13

Diagnostic Message Source Address:
Diagnostic Message Target Address:

▼ Unified Diagnostic Service

Service Identifier: 0x62 (Read Data By Identifier Positive Response)

Supress Response: True (0x80)

Data Identifier: 0xf19a (Data Identifier 1 (Calibration Repair Shop Code Or Calibration Equipment Serial Number Data Identifier)

Data Identifier MSB: 0xf1 (Data Identifier 1 MSB)
Data Identifier LSB: 0x9a (Data Identifier 1 LSB)

Data Record String:

FORENSIC ANALYSIS ON MODERN VEHICLES (3)

1850	166.279147	192.168.88.249	192.168.88.238	UDS	73 Read Data By Identifier P
1852	166.334229	192.168.88.238	192.168.88.249	UDS	69 Read Data by Identifier
1853	166.334380	192.168.88.249	192.168.88.238	D0IP_2012	67 Diagnostic Message Positi
1854	166.340480	192.168.88.249	192.168.88.238	UDS	69 Read Data by Identifier N
1856	166.503532	192.168.88.249	192.168.88.238	UDS	73 Read Data By Identifier P
1859	166.566379	192.168.88.238	192.168.88.249	UDS	69 Read Data by Identifier
1860	166.567745	192.168.88.249	192.168.88.238	D0IP_2012	67 Diagnostic Message Positi
1861	166.574303	192.168.88.249	192.168.88.238	UDS	69 Read Data by Identifier N
1863	166.724645	192.168.88.249	192.168.88.238	UDS	73 Read Data By Identifier P
1065	166 772547	102 160 00 220	100 160 00 040	IIDC	CO Dood Doto by Idontifion

Dst:

- ▶ Frame 1850: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on interface 0
- ▶ Ethernet II, Src:
- ▶ Internet Protocol Version 4, Src: 192.168.88.249, Dst: 192.168.88.238
- ▶ Transmission Control Protocol, Src Port: 13400, Dst Port: 64037, Seq: 2207, Ack: 838, Len: 19
- ▼ Diagnostics over Internet Protocol

Protocol Version: 0x02 (D0IP_2012)
Protocol Version Inverse: 0xfd

Message Type: 0x8001 (Diagnostic Message)

Message Length: 11

Diagnostic Message Source Address:
Diagnostic Message Target Address:

▼ Unified Diagnostic Service

Service Identifier: 0x62 (Read Data By Identifier Positive Response)

Supress Response: False (0x00)

Data Identifier: 0x6506 (Data Identifier 1) (Vehicle Manufacturer Specific)

Data Identifier MSB: 0x65 (Data Identifier 1 MSB)
Data Identifier LSB: 0x06 (Data Identifier 1 LSB)

Data Record String:

FURTHER SOURCES IN MODERN VEHICLES

- Presence of OBD trouble codes
- OEM backend
- Smartphone data
- Dash-Cams
- Embedded forensic on controller themselves

Problem: No EDR or dedicated storage for forensic data

OPPORTUNITIES (1)

 Static memory for micro controllers - Memory maps can be created

(!) ASLR become more and more a thing

OPPORTUNITIES (2)

 Limited memory (depending on the device) and increasing processing power increases (automotive ethernet)

OPPORTUNITIES (3)

- A lot of data sources
 - ▶ E.g. a standard diagnostic trace create ~3900 unique packets over ~8 minutes

Measurement	<u>Captured</u>	<u>Displayed</u>
Packets	3883	3883 (100.0%)
Time span, s	466.703	466.703
Average pps	8.3	8.3
Average packet size, B	81	81
Bytes	316143	316143 (100.0%)
Average bytes/s	677	677
Average bits/s	5419	5419

Need for EDRs by 2022 in Europe

OPPORTUNITIES (4)

- Embedded forensic techniques well established
- Increasing similarities to general computer systems
- Hypervisor-based controller

OPEN QUESTIONS

- Who should gather, store, and analyse the data?
- Involvement of the driver if an incident occurs?
- Standardised storage system over all OEMs for relevant data?
- Event-based or store everything?

Thank you for your attention!

