京都府の人口予測

奥村 真善美 大阪大学 情報科学研究科 情報基礎数学専攻

数理モデルの過程

以下の表は京都府の人口の推移を表したものである.

年(10月1日)	人口(人)
平成2年	2602460
平成3年	2606196
平成4年	2612619
平成5年	2614955
平成6年	2619007
平成7年	2629592
平成8年	2633334
平成9年	2636750
平成10年	2641787
平成11年	2643580

時間をt, 人口をN = N(t)とし, マルサスモデル

$$\frac{dN}{dt} = \gamma N$$

に従い、平成2年をt=0とする.

マルサスモデル

「ある短い時間区間における出生数と死亡数は時間区間と人口の大きさに比例する.」 Δt を時間区間, α , β を比例定数とすると,

出生数 =
$$\alpha \Delta t N$$
, 死亡数 = $\beta \Delta t N$

となる. Δt 内の人口の増減 $N(t + \Delta t) - N(t)$ を ΔN とおくと,

$$\Delta N = \alpha \Delta t N - \beta \Delta t N = (\alpha - \beta) \Delta t N.$$

両辺を Δt で割ると,

$$\frac{\Delta N}{\Delta t} = (\alpha - \beta)N$$

となる. $\Delta t \rightarrow 0$ とすると,

$$\lim_{\Delta t \to 0} \frac{\Delta N}{\Delta t} = \lim_{\Delta t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t} = \frac{dN}{dt}.$$

さらに, $\gamma := \alpha - \beta$ とおくと,

$$\frac{dN}{dt} = \gamma N.$$

京都府の人口を表す関数を求める.

$$\frac{dN}{dt} = \gamma N$$

より,

$$\frac{1}{N}\frac{dN}{dt} = \gamma$$

である. 両辺をtで積分する.

$$\int \frac{1}{N} \frac{dN}{dt} dt = \int \gamma dt$$

$$\int \frac{1}{N} dN = \gamma \int dt$$

$$\log |N| = \gamma t + C_1$$

$$|N| = e^{\gamma t + C_1}$$

$$N = \pm e^{C_1} \cdot e^{\gamma t}.$$

ここで, $C := \pm e^{C_1}$ とおくと, $N(t) = Ce^{\gamma t}$ が得られる.

平成2年の人口は2602460人であったので, N(0) = 2602460である.

$$N(t) = Ce^{\gamma t}$$

であったので, C=2602460である. よって, $N(t)=2602460e^{\gamma t}$ が成立. $N_0:=C=2602460$ とする.

$$N(t) = N_0 \cdot e^{\gamma t}$$

$$e^{\gamma t} = \frac{N(t)}{N_0}$$

$$\gamma t = \log\left(\frac{N(t)}{N_0}\right)$$

$$\gamma = \frac{\log\left(\frac{N(t)}{N_0}\right)}{t}$$

である. 平成3年の人口は2606196人であったので, N(1)=2606196である. よって, $\gamma=1.43\times 10^{-3}$ が得られる. 以上より,

$$N(t) = 2602460e^{1.43 \times 10^{-3}t}$$

が得られた.

京都府の人口予測 6/7

京都府の人口を表す関数は

$$N(t) = 2602460e^{1.43 \times 10^{-3}t} \tag{1}$$

であった. この関数をもとにして, 京都府の人口を予測し, 実際のデータと比較する.

年(10月1日)	人口(×10 ⁴)	理論値(×10 ⁴)
平成4年	261	261
平成5年	261	261
平成6年	262	262
平成7年	263	262
平成8年	263	262
平成9年	264	263
平成10年	264	263
平成11年	264	264
:	:	:
平成18年	265	266
平成19年	264	267
平成20年	264	267
平成21年	264	267

考察

- 表ではしばらくの間一致していることがわかるが、平成19年あたりから差が大きくなってきている.
- 仮定を振り返ると、マルサスモデル は人口が未来に向かって際限なく増加 すると予測している.
- しかし,食糧資源の不足,人口の過密,工 ネルギーの供給不足,その他環境的要 因など人口増加を抑制するものは多く ある.
- そこで, これらの要因をもとに, 新たな モデルを作り考える必要がある.

