Runtime Monitoring for Hennessy-Milner Logic with Recursion over Systems with Data

Ongoing Work

Léo Exibard

Thursday, June 30th, 2022

Logic Colloquium 2022, Reykjavík

Context

Formal Verification

Ensure a system satisfies a property

Non-terminating Systems

System Trace
$$ab\cdots \in A^{\omega}$$

Property of the system o branching time modal logic

Example

The first token does not appear again:

$$\bigwedge_{a \in A} [a] \max X. \left([a] ff \land \bigwedge_{b \neq a} [b] X \right)$$

Runtime Monitoring

→ Check whether the property holds along the execution

1

Runtime Monitoring

Monitor

Processes trace to raise a verdict:

- Satisfaction yes
- Violation no

Irrevocability

Once produced, a verdict cannot change

Questions

- What properties are monitorable (for a given monitor model)?
- How to synthesise monitors from formulas?

Hennessy-Milner Logic with Recursion

Syntax

$$\phi, \psi \in \mathit{recHML} := \mathsf{tt} \qquad |\ \langle \mathsf{a} \rangle \phi \ |\ \phi \lor \psi \qquad |\ \mathit{min}\ \mathsf{X}.\phi \ |\ \mathsf{X}$$

$$|\ \mathsf{ff} \qquad |\ [\mathsf{a}]\phi \ |\ \phi \land \psi \qquad |\ \mathit{max}\ \mathsf{X}.\phi$$

Recursion: Fixpoints

- min: least fixpoint
- max: greatest fixpoint

Branching Time

Models = processes

Monitoring recHML

Monitors

$$m, n \in Mon ::= v \in Vrd$$
 | $a.m \mid m+n \mid rec X.m \mid X$
 $v \in Vrd ::= end \mid no \mid yes$

Monitorable Fragments

```
\phi, \psi \in \mathit{sHML} ::= \mathsf{tt} \quad | \ \mathsf{ff} \ | \ [\mathsf{a}] \phi \quad | \ \phi \land \psi \ | \ \mathit{max} \ X.\phi \quad | \ X \ (\mathsf{violation}) \phi, \psi \in \mathit{cHML} ::= \mathsf{tt} \quad | \ \mathsf{ff} \ | \ \langle \mathsf{a} \rangle \phi \quad | \ \phi \lor \psi \ | \ \mathit{min} \ X.\phi \quad | \ X \ (\mathsf{satisfaction})
```

Monitor Synthesis

- Compositional (Francalanza, Aceto, and Ingólfsdóttir 2015)
- Monitors can be determinised (Aceto et al. 2020)

Temporal Logics over Systems with Data

Data Domains

Infinite set with decidable theory: $(\mathbb{N},=)$, $(\mathbb{Q},<)$, $(\Sigma^*,<_{\mathsf{prec}})$

Linear Time

• Freeze LTL • $FO^2[<, \sim]$ • etc (see Demri and Quaas 2021) **Branching Time**

Modal μ -calculus with:

- Freeze (Jurdzinski and Lazic 2007)
- Quantifiers (partly inspired from Groote and Mateescu 1998)

$$b(\star)$$
: quantifier-free FO formula

$$Ex: \forall x \ [\star = x] \ \text{max} \ X. ([\star = x] \text{ff} \land [\star \neq x] X(x))$$

Monitoring with Data

Monitors

$$m, n \in Mon ::= v \in Vrd \mid b(\star).m \mid guess \times m \mid m+n \mid rec \times (\vec{v}).m \mid X(\vec{v})$$

 $v \in Vrd ::= end \mid no \mid yes$

Evaluating non-determinism

Run monitors in parallel

The 'guess' construct (Apt and Plotkin 1986)

- → Guess the satisfaction (resp. violation) witness
 - → Equality: accumulate forbidden values
 - → Richer theories: accumulate constraints

Register Automata

Data-free setting: recHML $\equiv \omega$ -regular

Register Automata (Kaminski and Francez 1994)

Finite automata with a finite set

R of registers

- Store data
- Test register content

Transitions $q \xrightarrow{\phi,A,G} q'$

- $\varphi \in \mathrm{QF}(R,\star)$: test
- $A \subseteq R$: assignment
- $G \subseteq R$: guessing

$$\forall x \ [\star = x] \ \mathsf{max} \ X. \Big([\star = x] \mathsf{ff} \land [\star \neq x] X(x) \Big)$$

recHML and Register Automata

Theorem (work in progress)

recHML and register automata are equi-expressive. More precisely:

- $recHML \equiv alternating RA$
- sHML ≡ non-deterministic RA
- cHML ≡ universal RA
- $sHML^{nf} \equiv deterministic RA (in particular, no guessing)$

Consequences

Strict hierarchy between fragments

- → In particular, sHMLnf is not a normal form
- → Monitors do not determinise (need for parallelism)

Undecidability Results

- (semantic) membership to a fragment is undecidable
- Monitorability is undecidable

Non-maximality

The data values in the first block are pairwise distinct:

$$\{d_0 \dots d_n \# \dots \mid \forall 0 \leq i < j \leq n, d_i \neq d_j\}$$

→ Violations can be detected by a NRA, not by a URA.

Conclusion

- Monitor synthesis extends to systems with data
- However, the logic is not as well-behaved...
- Leverage correspondence with register automata

Future Work

- Maximal fragments
- Fragments with efficient monitors
- First-order formulas in modalities
- How to evaluate accumulated constraints?