Physics-Based Methods for Distinguishing Attacks from Faults

Gregory Provan, Riccardo Orizio

University College Cork

September 2017

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Motivation

- Cyber-Physical Systems (CPSs) are of great interest due to the wide application area where their model can be used.
- System security and attacks detection can be studied through CPS models.
- **3** Goal: Detect and distinguish attacks from faults on a complex system using CPS models.

Motivation

- Cyber-Physical Systems (CPSs) are of great interest due to the wide application area where their model can be used.
- System security and attacks detection can be studied through CPS models.
- **3** Goal: Detect and distinguish attacks from faults on a complex system using CPS models.

Motivation

- Cyber-Physical Systems (CPSs) are of great interest due to the wide application area where their model can be used.
- System security and attacks detection can be studied through CPS models.
- **3** Goal: Detect and distinguish attacks from faults on a complex system using CPS models.

Contributions

- Method for distinguishing attacks from faults in an observed-based framework.
- Physics-based methods can be effective, but they cannot deal with every kind of attack.
- Obemonstrate approach on hydraulic benchmark system.

Contributions

- Method for distinguishing attacks from faults in an observed-based framework.
- Physics-based methods can be effective, but they cannot deal with every kind of attack.
- Obemonstrate approach on hydraulic benchmark system.

Contributions

- Method for distinguishing attacks from faults in an observed-based framework.
- Physics-based methods can be effective, but they cannot deal with every kind of attack.
- Obemonstrate approach on hydraulic benchmark system.

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Preliminaries

• CPS model is an instance of a hybrid system, which can operate in different behaviours, called modes.

$$Modes: \begin{cases} y_{m_1} = g_1(x) \\ \dots \\ y_{m_i} = g_i(x) \end{cases}$$

- e.g. a drone has many operating modes
 - take-off, landing, wandering, surface mapping, ...
- The set of modes include also faults/attacks behaviour.

Preliminaries

• CPS model is an instance of a hybrid system, which can operate in different behaviours, called modes.

$$Modes: \begin{cases} y_{m_1} = g_1(x) \\ \dots \\ y_{m_i} = g_i(x) \end{cases}$$

- e.g. a drone has many operating modes
 - take-off, landing, wandering, surface mapping, ...
- The set of modes include also faults/attacks behaviour.

Preliminaries

• CPS model is an instance of a hybrid system, which can operate in different behaviours, called modes.

$$Modes: \begin{cases} y_{m_1} = g_1(x) \\ \dots \\ y_{m_i} = g_i(x) \end{cases}$$

- e.g. a drone has many operating modes
 - take-off, landing, wandering, surface mapping, ...
- The set of modes include also faults/attacks behaviour.

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Nominal Model

Nominal Model

$$\begin{split} \frac{\delta h_1}{\delta t} &= q_0 - q_1 = \frac{q_0 - k_1 sign(h_1, h_2) \sqrt{|h_1 - h_2|}}{A_1} \\ \frac{\delta h_2}{\delta t} &= \frac{k_1 sign(h_1, h_2) \sqrt{|h_1 - h_2|} - k_2 \sqrt{h_2}}{A_2} \\ \frac{\delta h_3}{\delta t} &= \frac{k_2 sign(h_2, h_3) \sqrt{|h_2 - h_3|} - k_3 \sqrt{h_3}}{A_3} \end{split}$$

Nominal Model

$$\begin{split} \frac{\delta h_1}{\delta t} &= q_0 - q_1 = \frac{q_0 - k_1 sign(h_1, h_2) \sqrt{|h_1 - h_2|}}{A_1} \\ \frac{\delta h_2}{\delta t} &= \frac{k_1 sign(h_1, h_2) \sqrt{|h_1 - h_2|} - k_2 \sqrt{h_2}}{A_2} \\ \frac{\delta h_3}{\delta t} &= \frac{k_2 sign(h_2, h_3) \sqrt{|h_2 - h_3|} - k_3 \sqrt{h_3}}{A_3} \end{split}$$

Input: $u = \{q_0, v_1, v_2, v_3\}$ Output: $y = \{p_1, p_2, p_3\}$

Control Model

• Nominal system model:

$$\begin{array}{rcl} x_{k+1} & = & A_{\gamma} x_k + B_{\gamma} u_k + w_k \\ y_k & = & C_{\gamma} x_k + v_k \end{array}$$

• Observer model:

$$\begin{array}{rcl} \hat{x}_{k+1} & = & A_{\gamma}\hat{x}_k + B_{\gamma}u_k + L_{\gamma}(y_k - C_{\gamma}\hat{x}_k) \\ \hat{y}_k & = & C_{\gamma}\hat{x}_k + v_k \\ r_k & = & y_k - C_{\gamma}\hat{x}_k \\ u_k & = & -K_{\gamma}\hat{x}_k \end{array}$$

Control Model

• Nominal system model:

$$x_{k+1} = A_{\gamma}x_k + B_{\gamma}u_k + w_k$$

$$y_k = C_{\gamma}x_k + v_k$$

• Observer model:

$$\begin{array}{rcl} \hat{x}_{k+1} & = & A_{\gamma}\hat{x}_{k} + B_{\gamma}u_{k} + L_{\gamma}(y_{k} - C_{\gamma}\hat{x}_{k}) \\ \hat{y}_{k} & = & C_{\gamma}\hat{x}_{k} + v_{k} \\ r_{k} & = & y_{k} - C_{\gamma}\hat{x}_{k} \\ u_{k} & = & -K_{\gamma}\hat{x}_{k} \end{array}$$

External perturbation

• Faults influence:

$$\begin{array}{rcl} x_{k+1} & = & A_{\gamma}x_k + B_{\gamma}u_k + \frac{B_ff_k}{f_k} + w_k \\ y_k & = & C_{\gamma}x_k + \frac{C_ff_k}{f_k} + v_k \end{array}$$

• Attacks influence:

$$x_{k+1} = A_{\gamma}x_k + B_{\gamma}u_k + B_{\boldsymbol{a}}a_k + w_k$$

$$y_k = C_{\gamma}x_k + D_{\boldsymbol{a}}a_k + v_k$$

External perturbation

• Faults influence:

$$x_{k+1} = A_{\gamma}x_k + B_{\gamma}u_k + \mathbf{B}_{\mathbf{f}}\mathbf{f}_k + w_k$$

$$y_k = C_{\gamma}x_k + \mathbf{C}_{\mathbf{f}}\mathbf{f}_k + v_k$$

• Attacks influence:

$$\begin{array}{rcl} x_{k+1} & = & A_{\gamma}x_k + B_{\gamma}u_k + \frac{B_aa_k}{a_k} + w_k \\ y_k & = & C_{\gamma}x_k + \frac{D_aa_k}{a_k} + v_k \end{array}$$

External perturbation

• Faults influence:

$$x_{k+1} = A_{\gamma}x_k + B_{\gamma}u_k + B_{f}f_k + w_k$$

$$y_k = C_{\gamma}x_k + C_{f}f_k + v_k$$

• Attacks influence:

$$x_{k+1} = A_{\gamma}x_k + B_{\gamma}u_k + B_{\boldsymbol{a}}a_k + w_k$$

$$y_k = C_{\gamma}x_k + D_{\boldsymbol{a}}a_k + v_k$$

 f_k and a_k are the fault and attack vector respectively.

Fault Model

- Valve faults, leaks, sensor faults, etc..
- Valve setting: $V_i \in [0, 1]$
 - $V_i = 0$ is closed; $V_i = 1$ is open
- Additive model:

$$v_i = \begin{cases} \max\{0, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} \le 0\\ \min\{1, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} > 0 \end{cases}$$

where $\Delta_{v_i} \in [-1, 1]$

Fault Model

- Valve faults, leaks, sensor faults, etc..
- Valve setting: $V_i \in [0, 1]$
 - $V_i = 0$ is closed; $V_i = 1$ is open
- Additive model:

$$v_i = \begin{cases} \max\{0, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} \le 0\\ \min\{1, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} > 0 \end{cases}$$

where $\Delta_{v_i} \in [-1, 1]$

Fault Model

- Valve faults, leaks, sensor faults, etc..
- Valve setting: $V_i \in [0, 1]$
 - $V_i = 0$ is closed; $V_i = 1$ is open
- Additive model:

$$v_i = \begin{cases} \max\{0, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} \le 0\\ \min\{1, v_i + \Delta_{v_i}\}, & \text{if } \Delta_{v_i} > 0 \end{cases}$$

where $\Delta_{v_i} \in [-1, 1]$

Attacks Model

- The attacker cannot monitor the system, only data injection.
- Sensor: fake sensor reading in $[0, p_i^{max}]$
- Actuator: fake actuator position in [0, 1]

Attacks Model

- The attacker cannot monitor the system, only data injection.
- Sensor: fake sensor reading in $[0, p_i^{max}]$
- Actuator: fake actuator position in [0, 1]

Attacks Model

- The attacker cannot monitor the system, only data injection.
- Sensor: fake sensor reading in $[0, p_i^{max}]$
- Actuator: fake actuator position in [0, 1]

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Fault or Attack

- Our system runs over different modes, each of which has a physical model ψ_i , creating the behaviour ξ_i having measurement \hat{y}_i .
- Mode estimation: closest mode to anomalous observation \widetilde{y}_i

$$\psi^* = arg \min_{\psi_i \in \Psi} ||\widetilde{y}_i - \hat{y}_i|| = arg \min_{\psi_i \in \Psi} r_i$$

- Mode identifiability:
 - distinguishable behaviour $\xi_i \ \forall j \neq i$
 - activated residual $r_i > \delta$ if system is in mode ψ_i

Fault or Attack

- Our system runs over different modes, each of which has a physical model ψ_i , creating the behaviour ξ_i having measurement $\hat{y_i}$.
- Mode estimation: closest mode to anomalous observation \widetilde{y}_i

$$\psi^* = arg \min_{\psi_i \in \Psi} ||\widetilde{y}_i - \hat{y}_i|| = arg \min_{\psi_i \in \Psi} r_i$$

- Mode identifiability:
 - distinguishable behaviour $\xi_i \ \forall j \neq i$
 - activated residual $r_i > \delta$ if system is in mode ψ_i

Fault or Attack

- Our system runs over different modes, each of which has a physical model ψ_i , creating the behaviour ξ_i having measurement $\hat{y_i}$.
- Mode estimation: closest mode to anomalous observation \widetilde{y}_i

$$\psi^* = arg \min_{\psi_i \in \Psi} ||\widetilde{y}_i - \hat{y}_i|| = arg \min_{\psi_i \in \Psi} r_i$$

- Mode identifiability:
 - distinguishable behaviour $\xi_i \ \forall j \neq i$
 - activated residual $r_i > \delta$ if system is in mode ψ_i

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Experiments

- Three types of tests:
 - Sensors attacks
 - Actuators attacks
 - Multiple components attacks
- Experimental environment:
 - Time domain: [0, 50] seconds
 - Sensor data gathered every 2 seconds
 - Nominal setting: $v_1 = v_2 = v_3 = 0.5$

Experiments

- Three types of tests:
 - Sensors attacks
 - Actuators attacks
 - Multiple components attacks
- Experimental environment:
 - Time domain: [0, 50] seconds
 - Sensor data gathered every 2 seconds
 - Nominal setting: $v_1 = v_2 = v_3 = 0.5$

Attacks on Sensors

Injected data on the second sensor of our system

Attack identified through first derivative comparison:

$$\dot{y}_k = -\dot{r}_k$$

Attacks on Actuators

System complexity makes identifiability harder when the actuators are under attack, creating false positives.

Test	Valve 1	Valve 2	Valve 3
155	✓	X	X
355	✓	X	X
755	✓	X	X
955	✓	X	X
515	X	✓	X
535	X	✓	X
575	X	✓	X
595	X	✓	X
551			✓
553			✓
557			✓
559			✓
158	✓	X	✓
544	X	✓	✓
658	✓	X	✓
745	✓	✓	X
958	✓	X	✓
247	✓	✓	✓
638	√	✓	✓

Multi Attacks and Results

Sensors problems correctly detected and identified. Actuators errors detected.

Test	Valve 1	Valve 2	Valve 3	Sensor
s1_325		✓	X	1
$s2_{-}553$	X		✓	2
$s3_{-}148$	✓	✓		3
s12_558			✓	1-2
$s23_647$	✓			2-3
s31_348		✓		1-3
s123_666				1-2-3

Outline

- Introduction
- 2 Approach
- 3 Three Tanks system example
- 4 Fault or Attack
- 5 Experimental Results
- 6 Summary and Conclusions

Summary and Future Work

- Showed a security system approach based on Cyber-Physical Systems.
- Distinguishing attacks from faults is difficult when the system has few sensors.
- Future work
 - Deeper studies on the synergies of the system and between sensors' data.
 - Optimize the number of sensors in the system.

Summary and Future Work

- Showed a security system approach based on Cyber-Physical Systems.
- Distinguishing attacks from faults is difficult when the system has few sensors.
- Future work
 - Deeper studies on the synergies of the system and between sensors' data.
 - Optimize the number of sensors in the system.

Summary and Future Work

- Showed a security system approach based on Cyber-Physical Systems.
- Distinguishing attacks from faults is difficult when the system has few sensors.
- Future work
 - Deeper studies on the synergies of the system and between sensors' data.
 - Optimize the number of sensors in the system.

