

2021.02.08

# Representación binaria de la información

Juan Zamorano Alejandro Alonso

<u>izamora@datsi.fi.upm.es</u> Juan Antonio de la Puente juan.de.la.puente@upm.es> alejandro.alonso@upm.es





## Conceptos básicos

- En un computador toda la información se presenta en forma digital
  - ▶ Unidad básica: bit (binary digit): 0 ó 1
  - ▶ Unidad de almacenamiento: byte (u octeto) = 8 bits
  - Capacidad de almacenamiento: se mide en bytes
    - los multiplicadores son potencias de 2 (a veces de 10)

- ejemplo: 64 KiB, 32 MiB, 128 GiB

64 KiB = 64 kB 32 MiB = 32 MB 128 GiB = 128 GB

| Binari          | ios (IEC) | Decimales (SI)          |           |  |  |  |
|-----------------|-----------|-------------------------|-----------|--|--|--|
| Valor           | Prefijo   | Valor                   | Prefijo   |  |  |  |
| 210             | kibi (Ki) | 103                     | kilo (k)  |  |  |  |
| 2 <sup>20</sup> | mebi (Mi) | 106                     | mega (M)  |  |  |  |
| 230             | gibi (Gi) | 109                     | giga (G)  |  |  |  |
| 2 <sup>40</sup> | tebi (Ti) | 1012                    | tera (T)  |  |  |  |
| <sub>2</sub> 50 | pebi (Pi) | <b>10</b> <sup>15</sup> | peta (P)  |  |  |  |
| <sub>2</sub> 60 | exbi (Ei) | 10 <sup>18</sup>        | exa (E)   |  |  |  |
| <sub>2</sub> 70 | zebi (Zi) | 1021                    | zetta (Z) |  |  |  |
| 2 <sup>80</sup> | yobi (Yi) | 1024                    | yotta (Y) |  |  |  |

## Notación hexadecimal

# Los contenidos binarios largos

se ven mejor agrupando los bits de cuatro en cuatro:

| Binario | Hexadecimal | Binario | Hexadecimal |
|---------|-------------|---------|-------------|
| 0000    | 0           | 1000    | 8           |
| 0001    | 1           | 1001    | 9           |
| 0010    | 2           | 1010    | Α           |
| 0011    | 3           | 1011    | В           |
| 0100    | 4           | 1100    | С           |
| 0101    | 5           | 1101    | D           |
| 0110    | 6           | 1110    | E           |
| 0111    | 7           | 1111    | F           |

## Representación de números en binario

- Precisión arbitraria: los bits que sean necesarios
- operaciones aritméticas con grandes números («bignum arithmetic»)
- Precisión limitada: formatos con un número fijo de bits
- representación de enteros y racionales, con una precisión
   (número de bits) y un rango (números máximo y mínimo) fijos:



### Representación de números enteros

• Se suele utilizar un formato de coma fija (la «coma» se supone situada inmediatamente a la derecha del bms)

#### Números sin signo

- Enteros no negativos
- Máximo: **2**<sup>n</sup>  **1** (1111...11)
- Mínimo: 0 (0000...00)



#### Números con signo:

- bMs se usa como bit de signo: S(S = 0: positivo, S = 1: negativo)
- Máximo: **2**<sup>n-1</sup>  **1** (**0**111...11)
- Mínimo: según convenio usado para los números negativos



## Convenios para representar enteros negativos

- Signo y magnitud: Obvio, pero por motivos de diseño de circuitos para sumar y restar se prefieren:
- Complemento a 1:  $rep(N) + rep(-N) = 2^n 1$ 
  - A efectos prácticos, basta cambiar los 0 por 1 y 1 por 0 en rep(N)
  - Mínimo representable:  $100...0 = \text{rep}(-2^n-1 + 1)$
  - Dos representaciones para «cero»: +0 (0...0) y −0 (1...1)
- Complemento a 2 (más frecuente): rep(N) + rep(-N) = 2<sup>n</sup>
- A efectos prácticos, se hace el complemento a 1 y luego se le suma una unidad
- Mínimo representable:  $100...0 = rep(-2^n-1)$
- Un solo «cero» y un negativo más.

Nota: rep(N) = representación de N

Para n = 8 (8 bits) en Complemento a uno

| Valores de 8 bits | Interpretado en Complemento a uno en decimal | Interpretado<br>como Entero<br>sin signo en<br>decimal |
|-------------------|----------------------------------------------|--------------------------------------------------------|
| 00000000          | 0                                            | 0                                                      |
| 0000001           | 1                                            | 1                                                      |
| 0000010           | 2                                            | 2                                                      |
| •••               |                                              |                                                        |
| 01111110          | 126                                          | 126                                                    |
| 01111111          | 127                                          | 127                                                    |
| 10000000          | -127                                         | 128                                                    |
| 10000001          | -126                                         | 129                                                    |
| 10000010          | -125                                         | 130                                                    |
| •••               |                                              |                                                        |
| 11111101          | -2                                           | 253                                                    |
| 11111110          | -1                                           | 254                                                    |
| 11111111          | -0                                           | 255                                                    |

Para n = 8 (8 bits) en Complemento a dos

| Valores<br>de 8 bits | Interpretado en Complemento a dos en decimal | Interpretado<br>como Entero<br>sin signo en<br>decimal |
|----------------------|----------------------------------------------|--------------------------------------------------------|
| 00000000             | 0                                            | 0                                                      |
| 0000001              | 1                                            | 1                                                      |
| 0000010              | 2                                            | 2                                                      |
|                      |                                              |                                                        |
| 01111110             | 126                                          | 126                                                    |
| 01111111             | 127                                          | 127                                                    |
| 10000000             | -128                                         | 128                                                    |
| 10000001             | -127                                         | 129                                                    |
| 10000010             | -126                                         | 130                                                    |
|                      |                                              |                                                        |
| 11111101             | -3                                           | 253                                                    |
| 11111110             | -2                                           | 254                                                    |
| 11111111             | -1                                           | 255                                                    |

#### Formatos de coma flotante: la norma IEEE 754



(a) precisión sencilla



Número representado:

$$N = \pm 1, M \times 2^{E}$$

- S (signo): convenio de signo y magnitud
- *M (mantisa)*: normalización fraccionaria, omitiendo el bMs (= 1)
- *E (exponente),* con exceso de  $2^{e-1} 1$ : *E = C 2^{e-1} + 1* 
  - siendo e el número de bits de la característica (C)

prec simple: e = 8, prec. doble: e=11

• es decir, E = C - 127 (prec. simple), E = C-1023 (prec. doble)

## Ejemplo de representación en IEEE 754

Representación de  $(-1983,78125)_{(10)}$  en el formato de precisión sencilla

1) Conversión a binario:

$$(1983,78125)_{(10)} = (7BF,C8)_{(16)} = (0111\ 1011\ 1111,1100\ 1000)_{(2)}$$

- 3) Ya sabemos:
- $\rightarrow$  Signo: N = 1
- $\rightarrow$  Mantisa: M = 111011111111001000...
- Exponente: E = 10

Falta calcular la característica, C

4) 
$$E = C - 2^{e-1} + 1 = C - 2^{7} + 1 = C - 127$$
  
Luego  $C = 10 + 127 = 137 = (89)_{(16)} = (10001001)_{(2)}$   
31 30 23 22 0  
Resultado: 100 0100 1 111 0111 1111 1001 0000 0000 (0xC4F7F900)

**Ejercicio:** ¿Qué número es el representado por 0x44FB8000? □ ¿Cómo se almacena en la memoria en los bytes d a d + 3?

## **Extremismo (Endianness)**

#### • En almacenamiento:

Si un dato codificado en k bytes se ha de almacenar en una sucesión de k direcciones de una RAM (d , d + 1...d + k – 1), ¿en qué orden se hace?

- Convenio extremista menor (little-endian): el byte menos significativo en d, el siguiente en d + 1...
- Convenio extremista mayor (big-endian): el byte más significativo en d, el siguiente en d + 1...

#### Codificación de caracteres: ASCII

```
«American Standard Code for Information Interchange», ≈ 1960
Estándares ISO/IEC 646 y Ecma-6
Código de 7 bits (2^7 = 128 codificaciones)
 • 0000000 a 0011111 (0x00 a 0x1F):
  32 caracteres de control («Conjunto CO», estándar ISO/IEC 6429):
   0x00, NUL: carácter nulo (fin de cadena)
0x0A, LF (line feed): nueva línea
   0x0D, CR (carriage return): retorno 0x1B, ESC
(escape)
 • 0100000 a 1111110 (0x20 a 0x7E):
 95 caracteres imprimibles (incluido el espacio, 0x20):
             !"#$%&'()*+,-./0123456789:;<=>?@
            ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_
            abcdefghijklmnopqrstuvwxyz{|}~
```

• 1111111 (0x7F): DEL (delete): borrar

## Codificaciones ASCII de caracteres imprimibles

| Hex. | Dec. |          | Hex. | Dec. |   | Hex. | Dec. |   | Hex. | Dec. |   | Hex. | Dec. |   | Hex. | Dec. |         |
|------|------|----------|------|------|---|------|------|---|------|------|---|------|------|---|------|------|---------|
| 20   | 032  |          | 30   | 048  | 0 | 40   | 064  | @ | 50   | 080  | P | 60   | 096  | ( | 70   | 112  | p       |
| 21   | 033  | !        | 31   | 049  | 1 | 41   | 065  | A | 51   | 081  | Q | 61   | 097  | a | 71   | 113  | q       |
| 22   | 034  | **       | 32   | 050  | 2 | 42   | 066  | В | 52   | 082  | R | 62   | 098  | b | 72   | 114  | r       |
| 23   | 035  | #        | 33   | 051  | 3 | 43   | 067  | C | 53   | 083  | S | 63   | 099  | c | 73   | 115  | S       |
| 24   | 036  | \$       | 34   | 052  | 4 | 44   | 068  | D | 54   | 084  | T | 64   | 100  | d | 74   | 116  | t       |
| 25   | 037  | <b>%</b> | 35   | 053  | 5 | 45   | 069  | Е | 55   | 085  | U | 65   | 101  | e | 75   | 117  | u       |
| 26   | 038  | &        | 36   | 054  | 6 | 46   | 070  | F | 56   | 086  | V | 66   | 102  | f | 76   | 118  | V       |
| 27   | 039  | ,        | 37   | 055  | 7 | 47   | 071  | G | 57   | 087  | W | 67   | 103  | g | 77   | 119  | W       |
| 28   | 040  | (        | 38   | 056  | 8 | 48   | 072  | Н | 58   | 088  | X | 68   | 104  | h | 78   | 120  | X       |
| 29   | 041  | )        | 39   | 057  | 9 | 49   | 073  | I | 59   | 089  | Y | 69   | 105  | i | 79   | 121  | у       |
| 2A   | 042  | *        | 3A   | 058  | : | 4A   | 074  | J | 5A   | 090  | Z | 6A   | 106  | j | 7A   | 122  | Z       |
| 2B   | 043  | +        | 3B   | 059  | • | 4B   | 075  | K | 5B   | 091  | [ | 6B   | 107  | k | 7B   | 123  | {       |
| 2C   | 044  | ,        | 3C   | 060  | < | 4C   | 076  | L | 5C   | 092  | \ | 6C   | 108  | 1 | 7C   | 124  |         |
| 2D   | 045  | -        | 3D   | 061  | = | 4D   | 077  | M | 5D   | 093  | ] | 6D   | 109  | m | 7D   | 125  | }       |
| 2E   | 046  |          | 3E   | 062  | > | 4E   | 078  | N | 5E   | 094  | ^ | 6E   | 110  | n | 7E   | 126  | ~       |
| 2F   | 047  | /        | 3F   | 063  | ? | 4F   | 079  | О | 5F   | 095  | _ | 6F   | 111  | o | 7F   | 127  | <d></d> |

12

#### Otros códigos de caracteres

#### La mayoría, extensiones a 8 bits:

- Windows-1252 («occidental»), Windows-1251 («cirílico»)...
- MacOS Roman, MacOS Arabic... IBM CP 850, CP 858...
- EBCDIC, incompatible con ASCII. Utilizado en «mainframes».
- GSM 03.38: código de 7 bits para el SMS de telefonía móvil
- •
- Estándar ISO/IEC 8859 (1985-2001):
  - 16 «partes» (códigos) que comparten las codificaciones ASCII
  - ISO 8859-1 (o «Latin-1»), para europa occidental
  - **...**
  - ISO 8859-15 (o «Latin-9»), revisión de 8859-1: introduce € y otros caracteres la parte más comúnmente utilizada

#### ...ISO 8859-15...

0x00 a 0x7F ≡ ASCII 0x80 a 0x9F: caracteres de control («Conjunto C1»)



| Hex. | Dec. |          | Hex.       | Dec. |       | Hex. | Dec. |   | Hex. | Dec. |   | Hex. | Dec. |   | Hex. | Dec. |   |
|------|------|----------|------------|------|-------|------|------|---|------|------|---|------|------|---|------|------|---|
| A0   | 160  | NBSP     | B0         | 176  | 0     | CO   | 192  | À | D0   | 208  | Đ | E0   | 224  | à | F0   | 240  | ð |
| A1   | 161  | i        | B1         | 177  | ±     | C1   | 193  | Á | D1   | 209  | Ñ | E1   | 225  | á | F1   | 241  | ñ |
| A2   | 162  | ¢        | B2         | 178  | 2     | C2   | 194  | Â | D2   | 210  | Ò | E2   | 226  | â | F2   | 242  | ò |
| A3   | 163  | £        | <b>B</b> 3 | 179  | 3     | C3   | 195  | Ã | D3   | 211  | Ó | E3   | 227  | ã | F3   | 243  | ó |
| A4   | 164  | €        | B4         | 180  | Ž     | C4   | 196  | Ä | D4   | 212  | Ô | E4   | 228  | ä | F4   | 244  | ô |
| A5   | 165  | ¥        | B5         | 181  | $\mu$ | C5   | 197  | Å | D5   | 213  | Õ | E5   | 229  | å | F5   | 245  | õ |
| A6   | 166  | Š        | B6         | 182  | ¶     | C6   | 198  | Æ | D6   | 214  | Ö | E6   | 230  | æ | F6   | 246  | ö |
| A7   | 167  | §        | B7         | 183  | • :   | C7   | 199  | Ç | D7   | 215  | X | E7   | 231  | Ç | F7   | 247  | ÷ |
| A8   | 168  | š        | B8         | 184  | ž     | C8   | 200  | È | D8   | 216  | Ø | E8   | 232  | è | F8   | 248  | Ø |
| A9   | 169  | 0        | B9         | 185  | 1     | C9   | 201  | É | D9   | 217  | Ù | E9   | 233  | é | F9   | 249  | ù |
| AA   | 170  | <u>a</u> | BA         | 186  | 0     | CA   | 202  | Ê | DA   | 218  | Ú | EA   | 234  | ê | FA   | 250  | ú |
| AB   | 171  | <<       | BB         | 187  | >>    | CB   | 203  | Ë | DB   | 219  | Û | EB   | 235  | ë | FB   | 251  | û |
| AC   | 172  | $\neg$   | BC         | 188  | Œ     | CC   | 204  | Ì | DC   | 220  | Ü | EC   | 236  | ì | FC   | 252  | ü |
| AD   | 173  | -        | BD         | 189  | œ     | CD   | 205  | ĺ | DD   | 221  | Ý | ED   | 237  | ĺ | FD   | 253  | ý |
| AE   | 174  | ®        | BE         | 190  | Ÿ     | CE   | 206  | Î | DE   | 222  | Þ | EE   | 238  | î | FE   | 254  | þ |
| AF   | 175  | la di    | BF         | 191  | i     | CF   | 207  | Ϊ | DF   | 223  | ß | EF   | 239  | Ϊ | FF   | 255  | ÿ |

#### **Unicode**

Código universal para todas las lenguas. ISO/IEC 10646 Importante para la internacionalización del software (i18n)



Define puntos de código: números naturales asociados a los distintos caracteres.

- Unicode 1.1 (1991): Plano básico multilingüe (BMP)
  - $2^{16} = 65.536$  puntos de código (U+0000 a U+FFFF)
- Unicode 6.2 (2012): 17 planos ~ 17 × 2<sup>16</sup> = 1.114.112 (110.182 caracteres definidos)

Se puede materializar mediante varias formas de codificación:

- UCS-2 (dos bytes, sólo el BMP) y UTF-16 (dos o cuatro bytes)
- UCS-4: Codifica todos los puntos de código en cuatro bytes
- UTF-8: Actualmente, la forma más usada

#### **UTF-8**

- A diferencia de otras formas, es compatible con ASCII:
   los primeros 128 puntos de código se codifican en un solo byte.
- Código de longitud variable: los puntos del BMP mayores que U+007F se codifican con dos o tres bytes. Los otros planos requieren hasta seis bytes.
- Ejemplos:

| Carácter | Punto de código | Codificación UTF-8             |
|----------|-----------------|--------------------------------|
| E        | U+0045          | 0x45<br>(un byte)              |
| ñ        | U+00F1          | 0xC3 0xB1<br>(dos bytes)       |
| €        | U+20AC          | 0xE2 0x82 0xAC<br>(tres bytes) |
| Pts      | U+20A7          | 0xE2 0x82 0xA7<br>(tres bytes) |

## Resumen

- Unidades digitales: bit, byte
  - ▶ múltiplos KiB, MiB, GiB / KB, MB, GB
- Representación binaria
  - notación hexadecimal
- Codificación de números
  - enteros
    - negativos en complemento a 2
  - ▶ reales
    - signo, exponente y mantisa
    - IEEE 754
- Codificación de caracteres
  - ▶ ASCII
  - ► ISO-8859-15
  - ▶ Unicode / UTF-8