1 The table shows some values of x and y that satisfy the equation $y = a \cos x^{\circ} + b$

x	0	30	60	90	120	150	180
y	3	$1+\sqrt{3}$	2	1	0	$1-\sqrt{3}$	-1

Find the value of y when x = 45

(Total for Question 1 is 4 marks)

2 The diagram shows a rectangle, ABDE, and two congruent triangles, AFE and BCD.

area of rectangle ABDE = area of triangle AFE + area of triangle BCD

$$AB : AE = 1 : 3$$

Work out the length of AE.

.....(

(Total for Question 2 is 4 marks)

3 Here is a triangle *ABC*.

Work out the value of $\sin ABC$

Give your answer in the form $\frac{m}{n}$ where m and n are integers.

(Total for Question 3 is 4 marks)

4 Here is triangle *ABC*.

Find the size of angle *ABC*. You must show all your working.

(Total for Question 4 is 4 marks)

5 Here is a triangle *XYZ*.

The perimeter of the triangle is k cm.

Given that x = y - 1 find the value of k. Show your working clearly. 6

The area of triangle ABC is $18\sqrt{2}$ m².

Calculate the value of *x*.

(Total for Question 6 is 5 marks)

7 The diagram shows a hexagon ABCDEF.

ABEF and CBED are congruent parallelograms where AB = BC = x cm. P is the point on AF and Q is the point on CD such that BP = BQ = 10 cm.

Given that angle $ABC = 30^{\circ}$,

prove that
$$\cos PBQ = 1 - \frac{(2 - \sqrt{3})}{200}x^2$$

8 *ABC* is a triangle.

D is the point on BC such that angle BAD = angle $DAC = x^{\circ}$

Prove that
$$\frac{AB}{BD} = \frac{AC}{DC}$$