20CS2032L - MACHINE LEARNING TECHNIQUES

URK22AI1067

EXERCISE	5. MULTIPLE LAYER PRCEPTRON
DATE	30.08.2024

AIM:

To design and implement feed forward multiple layer perceptron (MLP) trained using backpropagation algorithm to classify the given dataset.

DESCRIPTION:

A MLP is a class of feedforward artificial neural network trained using backpropagation algorithms. The architecture uses, at least, three layers of nodes: an input layer, a hidden layer and an output layer.

Algorithm:

Step 1: Select the number of input, hidden and output nodes

Step 2: Initialize the network and set the required hyperparameters like initial weights, hidden nodes, learning rate, etc.

Step 3: Read a pattern, calculate the output of nodes in the successive layers

Step 4: Calculate the error E, at the output node.

Step 5: Propagate the error and adapt weights based on error derivatives

Step 6: Continue from step 3 for the required number of epochs.

Step 7: Evaluate the performance of the model using metrics and plot the hyperplane.

Calculation metrics:

Accuracy: Measures the proportion of correct predictions among the total predictions.

$$\label{eq:accuracy} \text{Accuracy} = \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

TP = True Positives

TN = True Negatives

FP = False Positives

FN = False Negatives

Precision: Measures the proportion of true positive predictions among all positive predictions.

$$\text{Precision} = \frac{\textit{TP}}{\textit{TP} + \textit{FP}}$$

Recall (Sensitivity): Measures the proportion of true positives among all actual positives.

$$\text{Recall} = \frac{TP}{TP + FN}$$

F1 Score: The harmonic mean of precision and recall, providing a balance between the two.

$$ext{F1 Score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

SOURCE CODE:

1. Implement MLP to classify the given data set and analyse the performance of the classifier.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import classification_report, accuracy_score

data = load_iris()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

mlp = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, learning_rate_init=0.01)

mlp.fit(X_train, y_train)

 $y_pred = mlp.predict(X_test)$

print("Accuracy:", accuracy_score(y_test, y_pred))

print(classification_report(y_test, y_pred))

Output:

Accuracy: 1.0				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	10
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

2. Implement MLP for regression task.

import numpy as np

from sklearn.datasets import fetch_california_housing

 $from \ sklearn.model_selection \ import \ train_test_split$

from sklearn.neural_network import MLPRegressor

from sklearn.metrics import mean_squared_error

data = fetch_california_housing()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

mlp_regressor = MLPRegressor(hidden_layer_sizes=(10, 10), max_iter=1000, learning_rate_init=0.01)

mlp_regressor.fit(X_train, y_train)

y_pred = mlp_regressor.predict(X_test)

Evaluate performance

mse = mean_squared_error(y_test, y_pred)

print("Mean Squared Error:", mse)

Output:

Mean Squared Error: 0.6832276841927444

3. Improve the performance of the model by adjusting the hyperparameters such as number of hidden nodes, learning rate parameter, momentum etc.

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'hidden_layer_sizes': [(10,), (20,), (10, 10)],
    'learning_rate_init': [0.001, 0.01, 0.1],
    'momentum': [0.9, 0.95, 0.99]
}

grid_search = GridSearchCV(MLPRegressor(max_iter=1000), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("Best parameters:", grid_search.best_params_)
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)
mse_best = mean_squared_error(y_test, y_pred_best)
print("Mean Squared Error with best parameters:", mse_best)
```

Output:

```
Best parameters: {'hidden_layer_sizes': (10,), 'learning_rate_init': 0.1, 'momentum': 0.99}
Mean Squared Error with best parameters: 0.8751337363673857
```

4. Implement SVM to classify the given data set and analyse the performance of the classifier.

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
svm_classifier = svm.SVC(kernel='rbf', C=1.0, gamma='scale')
svm_classifier.fit(X_train, y_train)
y_pred = svm_classifier.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

Output:

```
Accuracy: 1.0
               precision
                            recall f1-score
                                                support
           0
                   1.00
                              1.00
                                         1.00
                                                     10
                    1.00
                              1.00
                                         1.00
                    1.00
                              1.00
                                         1.00
                                         1.00
                                                      30
    accuracy
   macro avg
                    1.00
                              1.00
                                         1.00
                                                      30
weighted avg
                    1.00
                              1.00
                                         1.00
                                                      30
```

5. Implement SVM for regression task.

```
from sklearn import svm
```

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

data = fetch_california_housing()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

svm_regressor = svm.SVR(kernel='rbf', C=1.0, gamma='scale')

svm_regressor.fit(X_train, y_train)

y_pred = svm_regressor.predict(X_test)

mse_svm = mean_squared_error(y_test, y_pred)

print("Mean Squared Error for SVM:", mse_svm)

Output:

Mean Squared Error for SVM: 1.3320115421348744

6. Improve the performance of the model by adjusting the hyperparameters such as number of hidden nodes, learning rate parameter, momentum etc.

from sklearn import svm

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.metrics import mean_squared_error

data = fetch_california_housing()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

param grid = {

'C': [0.1, 1, 10],

'gamma': ['scale', 'auto'],

'kernel': ['linear', 'rbf', 'poly']

```
grid_search = GridSearchCV(svm.SVR(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("Best parameters:", grid_search.best_params_)
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)
mse_best = mean_squared_error(y_test, y_pred_best)
print("Mean Squared Error with best parameters:", mse_best)

Output:

Mean Squared Error: 0.012750063504026138

Mean Squared Error: 48378.798164496344

Mean Squared Error Erro
```

RESULT:

The above multiple layer perceptron is successfully executed.