

THEME: DATA AND PROBABILITY

TOPIC: PROBABILITY

KAZIBA STEPHEN

13th January 2025

Competency

• The learner applies their understanding of probability to solve a wide range of problems.

LEARNING OUTCOMES

- By the end of this lesson you should be able to
- Understand the terms random, experiment, outcome, sample space, event and probability.
- Construct the probability space.

KEY WORDS

- . Random
- Experiment
- Outcome,
- . Sample space,
- Event
- Probability

Have you ever used these words in daily life?

- Likely
- Probably
- Maybe
- Hopefully
- By chance
- Certainly
- Surely
- > Random

Discussion Question:

Under what circumstances have you used these words? Think about a situation and share with us or type in the chat

Scenario

You are at a school sports day, and the final 100-metre race is about to begin. One of the participants, Alex, is a well-known sprinter and has won all his previous races this year. Based on his performance, many believe Alex is almost guaranteed to win this race.

However, there is still a small chance (about 5%) that Alex might lose due to a false start, an injury, or another unexpected factor.

Task:

 Would you place your bet on Alex winning, or would you bet on the unlikely chance of someone else winning?

Scenario

In a football match, Team A has been dominating possession and creating numerous chances. By the 85th minute, they are leading 3-0 against Team B. Statistically, Team A has a 95% chance of winning, while Team B has only a 5% chance of making a comeback and either drawing or winning the match.

Question:

As a fan of Team B, would you still believe in the possibility of a comeback, or would you accept that the match is essentially decided?

Cydney is a poultry farmer who raises local chicken but has observed that 8 out of every 10 customers to her farm ask for broilers. Advice Cydney on what to do

why is probability essential:

Activity: Tossing a Coin

- Get a coin of either 100, 500, 200, 1000 or 50 shillings.
- Toss the coin and let it land on a flat surface.
- Observe which side the coin lands on (heads or tails).
- Toss the coin again and take note of the side it lands on.
- Repeat the experiment several times and record your observations in a table.

Task

- What are the possible sides a coin can land on?
- What are the chances of the coin landing on each side?
- Do the results of your coin tosses reflect the expected chances for each side? Why or why not?
- How does increasing the number of tosses affect the chances you observe for each side?

Toss Number	Side the Coin Landed On	

KEY TERMS

- Probability is the study of chance, or the likelihood of an event occurring.
- While probability provides a theoretical prediction, it doesn't always reflect what happens in practice due to the element of chance.
- Random refers to an event or process that occurs without any predictable pattern or cause. In a random process, the outcome is uncertain and can vary each time the process is repeated.
- An experiment is a process or action performed to observe one or more outcomes.
 Example:
- Tossing a coin
- Rolling a dice.
- Picking a card from a deck

GENERATING SAMPLE SPACES

PAYTABLE	
NUMBERS: (COLT HOMES)	486
000 - EVEN: me tone	12
TWINELESS AND AND	-510
MANGES CONTRACTOR OF THE	- 100
SECTORS: (A DECEMBER)	16
LOWING (STREET	ı2
LOW/HIGH COLORS: Low/Holey	18
DOZDAS (10) (10-10-10-10-10-1	
COLORS:	18

HISTORY					
#2357	11	#2352	12		
£2356	-6	#2351	.19		
#2355	31	#2350	7		
#2354	17	#2349	30		
#2353		#2348	24		

STATISTICS					
20784					
A: 23	B: 18	C 24			
D: 20	E 14	P: 16			
TWING					
11: 6	22: 2	33. 2			
	NAME OF TAXABLE PARTY.				
2090: 5	High: 64	LOW: \$1			
	040346				
1-12: 36	19-24: 42	25-36: 37			
MENONS					
12 4 21: 12	10 x 31: 2	23 x 32: 11			
COLUMN					
GREEK 5	NER 68	8LMX: 47			

CURRENT DRAW 2358

Sample space

- A set of all possible outcomes of a statistical experiment is called a sample space, S or possibility space
- An event is a single result of an experiment. It is any subset of the sample space

• PROBABILITY =
$$\frac{Number\ of\ events}{Number\ of\ sample\ spaces}$$

• PROBABILITY =
$$\frac{number\ of\ favourable\ outcomes}{total\ number\ of\ equally\ likely\ outcomes}$$

- A favourable outcome refers to the event in question actually happening.
- Outcome is a possible result in a probability experiment.
- The total number of possible outcomes refers to all the different types of outcome one can get in a particular situation.

Decreasingly likely

Increasingly likely

Impossible	Unlikely	Equal chance	Likely	Certain
0	1 	1 1 —	3 —	1
	4	2	4	
	(= 0.25)	(= 0.5)	(= 0.75)	

Two coins are tossed .Obtain the sample space by using a table and a tree

diagram.

• Two dices are tossed. Use a table to come up with a sample space of the numbers

that show up.

When the two spinners are spun ,Write down the sample space

Exercise

- 1. A die and a coin are tossed together.
 - a) Obtain the sample space by using a table.
 - b) Let E be the event that a head and a 1 show up. Identify the subset corresponding to E and calculate P(E)
- 2. Two coins are tossed together.
- a) Write down the sample space for the two coins.
- b) Let A be the event that at least one head shows up. Identify the subset corresponding to A and find P(A).
- 3. A die is rolled, and a spinner with four equal sections labeled 1, 2, 3, and 4 is spun.
- a) Write down the sample space for the die roll and spinner outcome.
- b) Let G be the event that the sum of the die roll and spinner result is 5. Identify G
- 4. Three coins are tossed together.
- a) Write down the sample space for the three coins.
- b) Let H be the event that all three coins show heads. Identify H

Suggest suitable sample spaces, and identify the subset corresponding to the event E, for the following situations:

- A coin, which can show heads (H) or tails (T), is tossed three times; E is the event that the coin shows heads twice.
- 2. A game of football is played; E is the event that the match is drawn.
- A couple has two children; E is the event that both are girls.