

STATISTICS

Statistics is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

STATISTICS

Statistics is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called data.

STATISTICS

Statistics is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called **data**. It assigns **probabilities** to each possible future state of system based on data.

STATISTICS

Statistics is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called **data**. It assigns **probabilities** to each possible future state of system based on data. It also assigns probabilities to the **possibility of wrong prediction**.

We throw a coin 10 times with the following outcome:

$$\{H,H,H,T,H,T,H,H,H,T\},$$

H for 'heads', *T* for 'tails'.

We throw a coin 10 times with the following outcome:

$$\{H, H, H, T, H, T, H, H, H, T\},\$$

H for 'heads', *T* for 'tails'. We can ask two questions:

We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

H for 'heads', *T* for 'tails'. We can ask two questions:

• What is the probability that the **next toss** will come out 'heads'/'tails'?

We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

H for 'heads', *T* for 'tails'. We can ask two questions:

What is the probability that the next toss will come out 'heads'/'tails'?

• Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error* α ?

We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

H for 'heads', *T* for 'tails'. We can ask two questions:

- What is the probability that the next toss will come out 'heads'/'tails'?
 - We got 7 heads out of 10 tosses, so the probability for the next toss being heads is 7/10.
- Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error* α ?

We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

H for 'heads', *T* for 'tails'. We can ask two questions:

- What is the probability that the next toss will come out 'heads'/'tails'?
 - We got 7 heads out of 10 tosses, so the probability for the next toss being heads is 7/10.
- Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error* α ?
 - No, for $\alpha = 0.05$.
 - Yes, for $\alpha = 0.2$.

CONTENTS

Data

Types of Data

DATA

WHAT DO WE MEAN BY DATA?

DATA

Two sets (called *inputs* and *outputs*) describing the studied system.

EXAMPLE - JUNCTIONS

For a year, we keep track of the number of traffic accidents per day on road junctions across the city to determine which should be first replaced by roundabouts.

EXAMPLE - JUNCTIONS

For a year, we keep track of the number of traffic accidents per day on road junctions across the city to determine which should be first replaced by roundabouts.

An **input** is a day in a year.

EXAMPLE - JUNCTIONS

For a year, we keep track of the number of traffic accidents per day on road junctions across the city to determine which should be first replaced by roundabouts.

An input is a day in a year.

An **output** is the number of traffic accidents in a given day.

EXAMPLE - FIRST BABY

We study the age that women bear children for the first time across Europe.

EXAMPLE - FIRST BABY

We study the age that women bear children for the first time across Europe. An **input** would be a name of a European country.

An **output** is the average age of a first-time mother in that country.

DISCRETE DATA

We call a data **discrete** if the set of *inputs* (and therefore also that of *outputs*) is **countable**.

DISCRETE DATA

We call a data **discrete** if the set of *inputs* (and therefore also that of *outputs*) is **countable**.

Both previous examples feature discrete data.

There are only finitely many junctions in a city.

DISCRETE DATA

We call a data **discrete** if the set of *inputs* (and therefore also that of *outputs*) is **countable**.

Both previous examples feature discrete data.

- There are only finitely many junctions in a city.
- There are only finitely many countries on a continent.

CONTINUOUS DATA

We call a data **continuous** if the set of inputs is **uncountable**. In this case, the data is actually a **function**: set of inputs \rightarrow set of outputs.

CONTINUOUS DATA

We call a data **continuous** if the set of inputs is **uncountable**. In this case, the data is actually a **function**: set of inputs \rightarrow set of outputs.

More often than not, the inputs in a continuous data are moments in time or coordinates in space.

• We study the number of trains in a railway station at any given time.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.
 - − The data is a function $f : [0, 24] \rightarrow \mathbb{N}$.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.
 - − The data is a function $f : [0, 24] \rightarrow \mathbb{N}$.
- Another example is the density of air per cubic meter.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.
 - − The data is a function $f : [0, 24] \rightarrow \mathbb{N}$.
- Another example is the density of air per cubic meter.
 - Input: Coordinates of a unit cube in space.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.
 - − The data is a function $f : [0, 24] \rightarrow \mathbb{N}$.
- Another example is the density of air per cubic meter.
 - Input: Coordinates of a unit cube in space.
 - Output: The combined weight of air molecules.

- We study the number of trains in a railway station at any given time.
 - Input: time (of day);
 - Output: number of trains in the station.
 - The data is a function $f:[0,24] \to \mathbb{N}$.
- Another example is the density of air per cubic meter.
 - Input: Coordinates of a unit cube in space.
 - Output: The combined weight of air molecules.
 - The data is a function $f: \mathbb{R}^3 \to \mathbb{R}$.