§1. Limita posloupnosti

Určete několik prvních členů posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}.$ nak
reslete její graf a určete, jak Př: se posloupnost chová pro vzrůstající n:

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost, $A \in \mathbb{R}$ číslo. Řekneme, že posloupnost $\{a_n\}_{n=1}^{\infty} m \acute{a}$ limitu rovnu číslu A, jestliže $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in N : \forall n \geq n_0 : |a_n - A| < \epsilon$, zapisujeme $\lim_{n\to\infty} a_n = A.$

Pozn: $|a_n - A| < s \Leftrightarrow a_n \in (A - s; A + s)$

Má-li posloupnost limitu, pak se nazývá konvergentní, v opačném případě divergentní. Def:

V.1.1.: Každá posloupnost má nejvýše jednu limitu.

[Dk: Sporem: Nechť má posloup
nsost $\{a_n\}_{n=1}^\infty$ limitu A a $B,\,A < B.$

Položme $\epsilon = \frac{B-A}{2}$. Musí platit: $a_n \in (A-\epsilon;A+\epsilon) \cap a_n \in (B-\epsilon;B+\epsilon) \Rightarrow a_n \in \emptyset$, což je spor.]

V.1.2.: Každá konvergentní posloupnost je omezená.

Obrácení předchozí věty neplatí: $\{(-1)^n\}_{n=1}^{\infty}$. Př:

Důsledek: Jestliže posloupnost není omezená, pak je divergentní. Pozn:

Určete limitu posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$, hypotéza z předchozího příkladu: Máme dokázat: Př:

$$\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |a_n - A| < \epsilon$$

$$|a_n - A| < \epsilon \Leftrightarrow |\frac{n+n}{n} - 1| < \epsilon \Leftrightarrow |\frac{1}{n}| < s\epsilon \Leftrightarrow \frac{1}{n} < \epsilon, \text{ neboť } n \in \mathbb{N} \Leftrightarrow \frac{1}{\epsilon} < n \Rightarrow n_0 = \left[\frac{1}{\epsilon}\right] + 1.$$

V.1.3.: Každá nekonečná posloupnost vybraná z konvergentní posloupnosti je konvergentní a má stejnou limitu.

Pokud lze vybrat z posloupnosti $\{a_n\}_{n=1}^{\infty}$ dvě konvergentní posloupnosti s různou limitou, je posloupnost $\{a_n\}_{n=1}^{\infty}$ divergentní. (např.: $\{(-1)^n\}_{n=1}^{\infty}$) Pozn:

V.1.4.: Nechť $\{a_n\}_{n=1}^\infty$ a $\{b_n\}_{n=1}^\infty$ jsou posloupnosti takové, že $\forall n\in\mathbb{N}:0\leq a_n\leq b_n$ $\lim_{n\to\infty} b_n = 0$, pak $\lim_{n\to\infty} a_n = 0$

[Dk: $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : b_n < \epsilon \Rightarrow \forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : 0 \leq a_n \leq b_n < \epsilon$]

Pozn: Předpoklady předchozí věty lze zeslabit, nerovnosti nemusejí platit pro konečný počet členů posloupnosti.

V.1.5.: <u>Věta o třech limitách:</u>

Nechť $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ a $\{c_n\}_{n=1}^{\infty}$ jsou tři posloupnosti takové, že $\exists n_0 : \forall n > n_0 : a_n \leq b_n \leq c_n \cap \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A$. Pak $\lim_{n \to \infty} b_n = A$.

Př:

1. $\{1\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n : a_n = 1 \Rightarrow \lim_{n \to \infty} 1 = 1.$

2. $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n > \frac{1}{\epsilon} : 0 < a_n = \frac{1}{n} < \frac{1}{1/\epsilon} = 0 + \epsilon \implies \lim_{n \to \infty} \frac{1}{n} = 0.$

3. $\left\{1 + (-1)^{n+1} \frac{1}{n}\right\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n > \frac{1}{\epsilon} : 1 - \epsilon = 1 - \frac{1}{1/\epsilon} = 1 - \frac{1}{n} \le 1 + (-1)^n \frac{1}{n} = a_n = 1 + (-1)^n \frac{1}{n} \le 1 + \frac{1}{n} < \frac{1}{1/\epsilon} = 1 + \epsilon \implies \lim_{n \to \infty} \frac{1}{n} = 0.$

4. $\{(-1)^n\}_{n=1}^{\infty}$ Na sudých členech $\lim_{n \to \infty} (-1)^{2n} = \lim_{n \to \infty} 1 = 1$. Na lichých členech $\lim_{n \to \infty} (-1)^{2n+1} = \lim_{n \to \infty} -1 = -1$.

Diverguje!

V.1.6.: Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě posloupnosti. Nechť $\lim_{n\to\infty}a_n=A\lim_{n\to\infty}b_n=B$ a nechť $c\in\mathbb{R}$:

(a) $\lim_{n\to\infty} (a_n + b_n) = A + B$

(b) $\lim_{n\to\infty} (a_n - b_n) = A - B$

(c) $\lim_{n\to\infty} (c \cdot a_n) = c \cdot A$

(d) $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$

(e) $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{A}{B} \ (\forall n \in \mathbb{N} : b_n \neq 0; B \neq 0)$

Př: : Vypočítejte:

$$\lim_{n \to \infty} \left(\frac{n+1}{n} \right) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} = 1 + 0 = 0$$

Pozn: Konvergence AP a GP:

(a) AP je konvergentní $\Leftrightarrow d = 0$

(b) GP je konvergentní $\Leftrightarrow q \in (-1,1) \cap a_1 = 0$.

Pozn: Kromě limit zavedených v 1. definici tohoto paragrafu (tyto limity nazýváme $vlastní\ limity$) existují i tzv. $nevlastní\ limity \pm \infty$.

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost. Řekněme, že posloupnost $\{a_n\}_{n=1}^{\infty}$:

(a) Má nevlastní limitu $+\infty$ (diverguje k $+\infty$?) $\Leftrightarrow \forall K \in \mathbb{R} : \exists n_0 \in \mathbb{N} : \forall n \geq n_0, n \in \mathbb{N} : a_n > K$. Zapisujeme $\lim a_n = \infty$.

(b) Má nevlastní limitu + ∞ (diverguje k + ∞ ?) $\Leftrightarrow \forall K \in \mathbb{R} : \exists n_0 \in \mathbb{N} : \forall n \geq n_0, n \in \mathbb{N} : a_n < K$. Zapisujeme $\lim a_n = -\infty$.

Pozn: Nechť $R(x)=\frac{P(x)}{Q(x)}=\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0}{b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0}$ je racionální lomaná funkce. Pak platí:

(a)
$$st\ P(x) > st\ Q(x) \Rightarrow \lim_{n \to \infty} R(n) = \pm \infty$$

(b)
$$st\ P(x) = st\ Q(x) \Rightarrow \lim_{n\to\infty} R(n) = \frac{a_n}{b_n}$$

(c)
$$st\ P(x) < st\ Q(x) \Rightarrow \lim_{n \to \infty} R(n) = 0$$

V.1.7.: Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě posloupnosti takové, želim $_{n\to\infty}a_n=0$ a $\{b_n\}_{n=1}^{\infty}$ je omezená. Pak lim $(a_nb_n)=0$.

Př: $\lim_{n\to\infty}\left(\frac{(n+1)^2}{2n^2}\right)=\lim_{n\to\infty}\left(\frac{n^2+2n+1}{2n^2}\right)=\frac{1}{2}$

Př: $\lim_{n\to\infty}(2n^2-3)=+\infty$