

HYBRID STEPPING MOTORS

General Introduction to Stepping Motor	A-2
General Structure and Operating Principles of Stepping Motor	A-3
Explanation to Acceleration of Stepping Motor	A-4
Reduction of Vibration and Noise	A-5
Shaft Configuration	
Connection Configuration	A-7
Wiring Diagram & Drive Sequence Model	A-8
Hybrid Stepping Motor Series	A-9
14HA SERİES 0.9°	
17HA SERIES 0.9°	A-12
11HS SERIES 1.8°	A-15
14HY SERIES 1.8°	
16HS SERIES 1.8°	A-21
16HY SERIES 1.8°	
17HD SERIES 1.8°	A-24
17HDN SERIES 1.8°	A-26
23HS SERIES 1.8°	A-35
23HM SERIES 1.8°	
23HY SERIES 1.8°	
24HS SERIES 1.8°	A-51
34HD SERIES 1.8°	
34HY SERIES 1.8°	A-62
17HE SERIES 3.6°	A-67
10HF SERIES 3.75°	A-69
24HC SERIES 1.2°	A-70
34HC SERIES 1.2°	
Digital Linear Actuator (External Nut)	A-74
Digital Linear Actuator (Internal Nut)	
23 Integrated Stepping Motor	A-78

General Introduction to Stepping Motor

Stepping Motors are highly precise, digitally controlled motors that are able to provide reliable operation without using detectors to sense or indicate position. The operation of the motors is controlled through electrical pulses. The direction of current flowing through the windings of the motor are switched with each pulse. The electrical pulse is converted into shaft rotation in steps of a fixed angle. Together with the driver it constitutes an open loop controlling system, which is of low cost and simple to construct.

1 Precise Position Control

The specified number of pulses determines the output degree(s) generated.

2 Linear Speed Selection

The running speed is linearly variable and determined by the frequency of the pulses.

3 Forward & Reverse, Pause and Holding Function

The forward & reverse rotation is controlled by the polarity. There is still Holding torque even while the motor rotor is being locked. There is still current flowing through the motor winding, but no pulse signal creating rotation from the outside controller.

4 Low Speed Feature

Low frequency pulses being input, a stepping motor can operate at very low rotating speeds. This can be done without a speed reduction gearbox and there by save power and maintain precision.

5 Long Life

The brushless design provides stepping motors with a very long life. In fact, the stepping motor life is determined by the life of the bearings.

Stepping motors are widely being used in many types of digitally controller motion control applications, such as printers, intelligent (performance) stage lighting, office, bank and industrial equipment, medical, packaging, textile, aerospace, robotics and automotive.

General Structure and Operating Principles of Sepping Motor

1 Basic Structure

2 Operating Principles

The driver's internal logic circuit generates a series of pulses in a specified order that drive the stepping motor windings, causing the rotor to rotate forward, reverse, or lock in position. For example: a 1.8 degree stepping motor normally is designed with two types of windings, i.e. 2 phase (bipolar) or 4 phase (unipolar).

A C B D

2 phase stepping motor with bipolar driver

When energizing its coils by special sequence, this motor will rotate 1.8 degree per step. On average, a 2 phase stepping motor provides, 40% more holding torque than a 4 phase stepping motor, because 100% of the winding is used in a bipolar drive.

4 phase stepping motor with unipolar driver

This is brief introduction to stepping motor operating principles. Various conditions and applications may need customized designs which MOONS' can provide.

Explanation to Acceleration of Stepping Motor

1 Type of Load

A. Torque load (Tf)

Tf = G • r G: weight r: radius

B. Inertia load (TJ)

TJ = J * dw/dt

 $J = M * (R_1^2 + R_2^2) / 2 (Kg * cm)$

M: mass

R1: outside radius R2: inside radius

dw/dt: angle acceleration

2 Explanation of the Dynamic Torque Curve

The dynamic torque curve is an important aspect of stepping motor's output performance.

The followings are some keyword explanations.

Keyword Explanation

 Working Frequency Point express the stepping motors rotational speed value at this point Units Hz

n = q * Hz / (360 * D)

n: rev/sec

Hz: the frequency value at this point

D: the subdividing value of motor driver

q: the step angle of stepping motor

E.g.: 1.8° stepping motor, in the condition of I/2 subdividing (each step 0.9°) runs at 500Hz its speed is 1.25r/s.

- 2 Start/Stop Region: the region in which a stepping motor can be directly started or stopped.
- 3 Slew Range: the motor cannot be started directly in this area. It must be started in the start/stop region first and then accelerated to this area. In this area, the motor can not be directly stopped, either Otherwise this will lead to losing-step. The motor must be decelerated back to the start/stop region before it can be stopped.
- 4 Maximum starting frequency point at this point, the stepping motor can reach its maximum starting speed under unloaded condition.
- 5 Maximum running frequency point at this point the stepping motor can reach its maximum running speed under an unloaded condition.
- 6 Pull-in Torque: the maximum dynamic torque value that a stepping motor can load directly at the particular operating frequency point.
- Pull-out Torque: the maximum dynamic torque value that a stepping motor can load at the particular operating frequency point when the motor has been started. Because of the inertia of rotation the Pull-Out. Torque is always larger than the Pull-In Torque.

3 Control of Acceleration and Deceleration

How to accelerate or decelerate in the shortest time is the most important when the system's operating frequency point is in the slew range of the dynamic torque curve graph.

It is shown by the following graph: the dynamic torque's performance of stepping motor will always keep a horizontal straight line in low speed. But in high speed, the curve will slope down quickly influenced by the inductance.

A. Generally TJ = 70%Tm

B. $tr = 1.8 * 10^{-5} * J * q * (F1-F0)/(TJ-TL)$

C. F(t) = (F1-F0) * t/tr + F0, 0 < t < tr

A. Generally TJ0 = 10%Tm0, TJ1 = 70%Tm1,

TL = 60%Tm1

B. tr = F4 * In [(TJ0-TL)/(TJ1-TL)]

C. $F(t) = F2 * [1 - e^{-(-t/F4)}] + F0, 0 < t < tr$

F2 = (TL-TJ0) * (F1-F0)/(FJ1-TJ0)

 $F4 = 1.8 * 10^{-5} * J * q * F2/(TJ0-TL)$

Note: J is the torque inertia of motor rotor plus its load q is the angle of each step, it equals to the step angle of stepping motor when motor runs in full step. As for the control of deceleration, it can be realized by turning the accelerate pulse frequency above-mentioned.

Reduction of Vibration and Noise

In a non-loading condition, stepping motors may appear to have vibration or even lose steps when the motor is running at or close to resonant frequency.

Solutions for These Conditions

A. Having the motor operate outside of this range.

B. By adopting the micro-step driving method, you can divide one step into multiple steps thereby reducing the vibration, Micro-step is used for increasing a motor's step resolution. This is accomplished by controlling the motor's phase current ratio. Micro-step does not increase step accuracy. However it will allow a motor to run more smoothly and with less noise When the motor runs in half step mode the motor torque will be 15% less than running in full step mode If the motor is controlled by sine wave current the motor torque will be reduced by 30%.

Shaft Configuration

Gear

Plastic Pulley

Single Flat

Double Flat

Key Way

Knurl

Hobbed Gear

Hollow Shaft

Dowel

Worm Shaft

Note:

The styles above are in normal way.

Other special shafts can be customized.

Connection Configuration

Lead Wire

Lead Wire with Connector

16HY7 Male: JST S11B-ER (LF)(SN) Female: JST ZHR-11

16HY Male: JST S6B-PH-K (LF)(SN) Female: JST PHR-6

17HD Male: Molex 89401-1160 Female: Molex 87369-1100

23HY Male: JST S6B-FH (LF)(SN) Female: JST PHR-6

23HS Male: JST S11B-XH-A-1 (LF)(SN) Female: JST-XHP-11

23HS Male: JST S6B-XH-A-1 (LF)(SN) Female: JST-XHP-6

Note:

The styles above are in normal way.

Other special connectors can be customized.

Wiring Diagram & Drive Sequence Model

Bipolar - 4 Lead Wire

WIRING DIAGRAM

DRIVE SEQUENCE MODEL

BI-POLAR FULL STEP

W

CW(CLOCKWISE)&CCW(COUNTER CLOCKWISE) ROTATION WHEN SEEN FROM THE FLANGE SIDE OF THE MOTOR

Unipolar - 6 Lead Wire

WIRING DIAGRAM

DRIVE SEQUENCE MODEL

UNI-POLAR FULL STEP

	STEP	А	В	С	D	0	М	
	1	_	_			+	+	CCW
	2		_	_		+	+	
	3			_	_	+	+	
CW	4	_			_	+	+	

CW(CLOCKWISE)&CCW(COUNTER CLOCKWISE) ROTATION WHEN SEEN FROM THE FLANGE SIDE OF THE MOTOR

8 Lead Wire Serie

	1. BI-POLAR FULL STEP											
	STEP	Α	В	С	D							
	1	+	+	_	_	CCW						
	2	_	+	+	_	Ī						
	3	_	ı	+	+							
CW	4	+	_	_	+							

3. UNI-POLAR

2. UNI-POLAR FULL STEP

	STEP	Α	В	С	D	0	М	
	1	_	_			+	+	CCW
	2		_	-		+	+	Ī
	3			-		+	+	
CW	4	_				+	+	

CW(CLOCKWISE)&CCW(COUNTER CLOCKWISE) ROTATION WHEN SEEN FROM THE FLANGE SIDE OF THE MOTOR

Hybrid Stepping Motor Series

Model Numbering System

17 H D 0 0 01 - 01

- 1. Size: Motor outside diameter in tenths of an inch (Ex: size 17 = 1.7")
- 2. Type of Stepping Motor: "H" means Hybrid Stepping Motor
- 3. Type of Step Angle:
 - Y: Step angle 1.8°, stator with 8 polar, small rotor
 - M: Step angle 1.8°, stator with 8 polar, middle rotor
 - S: Step angle 1.8°, stator with 8 polar, large rotor
 - A: Step angle 0.9°, stator with 8 polar
 - B: Step angle 0.72°
 - C: Step angle 1.2°
 - D: Step angle 1.8°, stator with 8 polar, teeth distributing asymmetrically
 - E: Step angle 3.6°, stator with 8 polar
 - F: Step angle 3.75°, stator with 8 polar
- 4. Length of stator core
- 5. Type of lead wires:
 - "0" indicates connector only
 - "4, 5, 6, 8" indicates number of lead wires
- 6. Electric variation: variety of current, torque, etc.
- 7. Mechanical variation: variety of shaft, lead wires, screws, etc.

14HA SERIES 0.9°

Key Features

- High Accuracy
- Low Inertia
- Small Size

26±0.1 (1.024±0.004) □35.3Max. (□1.39Max.)

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
14HA0001N	23	18	0.4	100	14.16	10	1.42	14	0.08
14HA0004N	6.6	6	0.6	85	12.04	10	1.42	14	0.08

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current		Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²	
14HA0005N	6.6	2.7	0.6	70	9.92	10	1.42	14	0.08	
14HA0006N	23	9	0.4	90	12.75	10	1.42	14	0.08	

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

				0.012 1968-0.0005)	L Max.		26±0.1 (1.024±0.004)
Model	L	Mass		Ø5-0.012 (Ø0.1968			
Number	mm (in.)	kg (lb.)	002)				
14HA0**N	28 (1.10)	0.16 (0.35)	Ø22-0.052			+ +	
			\$22-0 (\$0.866-	†			
						4-M3	- -
					_2 _1	Danth 2 5Min	1357911
				24±0.5	(0.08) (0.	39) JST S11B-ZR(LF)(SN)	21.3
				(0.95±0.02	<u>2</u>)	mm (inah)	

mm (inch)

14HA0001N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

Pulse rate [pps]

14HA0004N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

14HA0005N

Conditions: Uni-polar Constant Current Drive IC: AMA MSU3040M Mode:Full Step

14HA0006N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HA SERIES 0.9°

Key Features

- High Accuracy
- Low Noise
- Smooth Movement

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HA0403-44N	8	11	0.43	90	12.75	8	1.13	20	0.11
17HA4401-05N	3.1	3.6	0.87	180	25.50	12	1.70	38	0.21
17HA4402-16N	20	23	0.5	220	31.16	12	1.70	38	0.21
17HA7402-06	6.6	7	0.65	70	9.92	5	0.71	15	0.08

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HA0601N	8	4	0.43	50	7.08	8	1.13	20	0.11
17HA4605N	3.1	2.3	0.87	160	22.66	12	1.70	38	0.21
17HA4606N	20	13	0.5	200	28.33	12	1.70	38	0.21
17HA7602	6.6	2.9	0.65	30	4.25	5	0.71	15	0.08

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass		
Number	mm (in.)	kg (lb.)		
17HA0**N	28 (1.10)	0.19 (0.42)		
17HA4**N	34.3 (1.35)	0.23 (0.51)		
17HA7**	20 (0.79)	0.12 (0.26)		

out torque [oz.in]

Dynamic Torque Curves

17HA0403-44N

Pull out torque [mN.m]

Pulse rate [pps]

17HA4401-05N

3000

Pulse rate [pps]

5000

6000

17HA4402-16N

17HA7402-06

1000

2000

Pull out torque [mN.m]

50

0

17HA0601N

17HA4605N

Conditions: Uni-polar Constant Current Driver

17HA4606N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

17HA7602

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

11HS SERIES 1.8°

Key Features

- High Accuracy
- Low Inertia
- Small Size

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
11HS1005	40	27.8	0.25	55	7.79	5	0.71	9	0.05
11HS1006	5.6	4.3	0.67	60	8.50	5	0.71	9	0.05
11HS1007	10.4	7.6	0.5	50	7.08	5	0.71	9	0.05
11HS1008	2.5	2.2	1	55	7.79	5	0.71	9	0.05
11HS3005	6.8	6.0	0.67	90	12.75	6	0.85	12	0.07
11HS5005	12	12	0.5	100	14.16	8	1.13	18	010
11HS5007	51.8	30.7	0.25	95	13.46	8	1.13	18	010
11HS5008	3.5	2.3	1	100	14.16	8	1.13	18	010
11HS5009	9.2	5.4	0.67	110	15.58	8	1.13	18	010

Uni-polar

Model	Resistance Inductance per Phase per Phase		Rated Holding Current Torque		Detent Torque		Rotor Inertia		
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in ²
11HS1003	2.8	1.3	0.95	48	6.80	5	0.71	9	0.05
11HS1009	40	12	0.25	32	4.53	5	0.71	9	0.05
11HS1010	9.4	3	0.5	32	4.53	5	0.71	9	0.05
11HS3002-01	3.4	1.6	0.95	65	9.21	6	0.85	12	0.07
11HS5002-01	4.6	2.3	0.95	90	12.75	8	1.13	18	0.10
11HS5003	12	6.3	0.5	80	11.33	8	1.13	18	0.10
11HS5010	2.6	0.9	1	70	9.92	8	1.13	18	0.10

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass			
Number	mm (in.)	kg (lb.)			
11HS1**	31 (1.21)	0.10 (0.22)			
11HS3**	40 (1.56)	0.15 (0.33)			
11HS5**	51 (2.01)	0.20 (0.44)			

11HS1005

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 0.25A(Peak) 12V ■0.25A(Peak) 24V Speed [r/min] 0 [oz.in] Pull out torque [mN.m] 10 60 Pull out torque 40 20 0 500 0 1000 1500 2000 2500 3000 Pulse rate [pps]

11HS1006

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

11HS1007

11HS1008

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 1.0A(Peak) 12V Speed [r/min] ■1.0A(Peak) 24V 1000 2000 500 1500 80 Pull out torque [oz.in] Pull out torque [mN.m] 10 60 40 20 0 0 1000 2000 4000 5000 6000 7000 Pulse rate [pps]

11HS3005

11HS5005

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

11HS5007

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

11HS5008

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

11HS5009

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

11HS1003

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

11HS1009

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

11HS1010

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

11HS3002-01

7000 8000 9000

11HS5002-01

Conditions:Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.95A(Peak) 12V ■0.95A(Peak) 24V Speed [r/min] 1500 500 1000 100 Pull out torque [oz.in] Pull out torque [mN.m] 12 10 60 20 0 1000 2000 3000 4000 5000

Pulse rate [pps]

11HS5003

1000 2000 3000 4000 5000 6000

Pulse rate [pps]

Pull out torque [mN.m]

60

20

0

Conditions:Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.5A(Peak) 12V 0.5A(Peak) 24V Speed [r/min] 0 200 400 600 1000 1200 100 Pull out torque [mN.m] Pull out torque [oz.in] 12 80 10 60 40 20 0 0 Pulse rate [pps]

11HS5010

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 1.0A(Peak) 12V ■1.0A(Peak) 24V Speed [r/min] 1000 500 1500 2000 2500 100 Pull out torque [oz.in] Pull out torque [mN.m] 12 75 10 50 2 4000 5000 6000 7000 Pulse rate [pps]

HB MOTOR

14HY SERIES 1.8°

Key Features

- Low Inertia
- Small Size
- High Acceleration

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
14HY5010	9	8	0.4	60	8.50	10	1.42	12	0.07
14HY8002	5.5	5	0.85	100	14.16	15	2.12	20	0.11

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
14HY5011	9	4.2	0.4	45	6.37	10	1.42	12	0.07
14HY8001	2.7	1.4	1.2	80	11.33	15	2.12	20	0.11

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

			12 68-0.0005	L Max.	26±0.1 (1.024±0.004)
Model	L	Mass	ø5-0.012 (ø0.1968		
Number	mm (in.)	kg (lb.)	200.	1	0x 0
14HY5**	26 (1.01)	0.15 (0.33)	Ø22-0.052 Ø0.866-0.002)	+	26±0.1 1.024±0.0 1035.3Mq (CII. 39Mq
14HY8**	37 (1.44)	0.21 (0.46)	\$22-6 (\$0.866		(1.02) 2 1.02 2
			24±0.5 (0.95±0.02)	(0.08)	(0.00)
					mm (inch)

14HY5010

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 0.4A(Peak) 12V 0.4A(Peak) 24V Speed [r/min] 0 250 750 1500 100 Pull out torque [oz.in] Pull out torque [mN.m] 12 80 10 60 8 6 40 20 0 0 1000 2000 3000 4000 5000

Pulse rate [pps]

14HY8002

IC: AMA MS3540M Mode:Full Step - - - 0.85A(Peak) 12V 0.85A(Peak) 24V Speed [r/min] 0 250 500 750 1250 1000 100 Pull out torque [mN.m] Pull out torque [oz.in] 12 10 60 40 20 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Pulse rate [pps]

Conditions: Bi-polar Constant Current Driver

14HY5011

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.4A(Peak) 12V ■0.4A(Peak) 24V Speed [r/min] Pull out torque [mN.m] Pull out torque [oz.in] 12 10 8 6 20 0 0 1000 Pulse rate [pps]

14HY8001

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 1.2A(Peak) 12V ■1.2A(Peak) 24V Speed [r/min] 0 500 1000 1500 2000 2500 100 Pull out torque [oz.in] Pull out torque [mN.m] 10 60 40 20 2000 3000 4000 5000 6000 7000 8000 9000 Pulse rate [pps]

HB MOTOR

16HS SERIES 1.8°

Key Features

- High Torque
- High Accuracy
- Smooth Movement

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase		Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
16HS4401N	7	9.6	0.65	200	28.33	15	2.12	30	0.17

Uni-polar

Model Number		Inductance per Phase		Holding Torque		Detent Torque		Rotor Inertia	
	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
16HS4601N	7	5.6	0.65	150	21.25	15	2.12	30	0.17

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

Model	L	Mass		
Number	mm (in.)	kg (lb.)		
16HS4**N	36 (1.40)	0.21 (0.46)		

Dynamic Torque Curves

16HS4401N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

16HS4601N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

16HY SERIES 1.8°

Key Features

- High Accuracy
- Low Inertia
- High Acceleration

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Detent Torque Torque		Ro Ine			
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
16HY0016	39	50	0.3	150	21.25	12	1.70	20	0.11
16HY1005-04	9.8	18	0.5	200	28.33	18	2.55	24	0.13
16HY7010	14	12.2	0.5	80	11.33	5	0.71	11	0.06

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase			Holding Detent Torque Torque			Ro Ine	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
16HY0017	39	23.5	0.3	100	14.16	12	1.70	20	0.11
16HY1006	10.2	10.7	0.5	160	22.66	18	2.55	24	0.13
16HY7006-06	13.3	6.4	0.5	60	8.50	5	0.71	11	0.06

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass
Number	mm (in.)	kg (lb.)
16HY0**	33.3 (1.30)	0.18 (0.40)
16HY1**	38 (1.48)	0.2 (0.44)
16HY7**	20 (0.78)	0.12 (0.26)

16HY0016

16HY1005-04

16HY7010

16HY0017

16HY1006

16HY7006-06

17HD SERIES 1.8°

Key Features

- High Torque
- Low Noise
- Small Size

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HD0013	30	27	0.4	260	36.83	12	1.70	38	0.21
17HD1004-01	25	50	0.5	400	56.66	15	2.12	57	0.31
17HD3005-10	30	45	0.4	460	65.16	25	3.54	82	0.45
17HD5003-10	24	36	0.4	180	25.50	5	0.71	20	0.11

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

Model	L	Mass		
Number	mm (in.)	kg (lb.)		
17HD0**	33.3 (1.30)	0.21 (0.46)		
17HD1**	39.3 (1.53)	0.28 (0.62)		
17HD3**	47.3 (1.84)	0.36 (0.79)		
17HD5**	25.3 (0.99)	0.15 (0.33)		

17HD0013

Pull out torque [mN.m]

0

17HD1004-01

17HD3005-10

500

750

Pulse rate [pps]

1000

1250

17HD5003-10

17HDN SERIES 1.8°

Key Features

- High Torque
- High Accuracy
- Smooth Movement

General Specifications

Bi-polar

Model	Resistance per Phase	Inductance per Phase			<u> </u>		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²	
17HD2011N	1.9	4	1.5	380	53.82	15	2.12	57	0.31	
17HD2015N	18	35	0.5	420	59.49	15	2.12	57	0.31	
17HD2018N	6	14	0.85	400	56.66	15	2.12	57	0.31	
17HD2022N	16	32.0	0.50	330	46.74	15	2.12	57	0.31	
17HD2023N	3.5	5	1	300	42.49	15	2.12	57	0.31	
17HD2024N	4.1	8.5	1	390	55.24	15	2.12	57	0.31	
17HD2025N	66	116	0.25	370	52.41	15	2.12	57	0.31	
17HD2026N	4.4	10	1	390	55.24	15	2.12	57	0.31	
17HD2027N	71.4	140	0.25	380	53.82	15	2.12	57	0.31	
17HD2028N	60	120	0.28	400	56.66	15	2.12	57	0.31	
17HD4005-01N	7.4	11.0	0.60	200	28.33	12	1.70	38	0.21	
17HD4022-01N	3.0	4.2	1.10	210	29.75	12	1.70	38	0.21	
17HD4024N	15	20.0	0.50	240	33.99	12	1.70	38	0.21	
17HD4025N	54	78.0	0.25	230	32.58	12	1.70	38	0.21	
17HD4026N	80	89.0	0.22	220	31.16	12	1.70	38	0.21	
17HD4027N	48	60.0	0.28	220	31.16	12	1.70	38	0.21	
17HD6012N	2.4	4.5	1.5	490	69.41	25	3.54	82	0.45	
17HD6016N	5.0	8.4	1	460	65.25	25	3.54	82	0.45	
17HD6017N	7.5	14	0.8	490	69.41	25	3.54	82	0.45	
17HD6018N	14	23	0.57	460	65.25	25	3.54	82	0.45	
17HD6019N	80	130	0.25	460	65.25	25	3.54	82	0.45	
17HD6020N	20	35	0.5	490	69.41	25	3.54	82	0.45	
17HD6021N	58	104	0.3	460	65.25	25	3.54	82	0.45	
17HDB001N	2.3	4.6	1.5	630	89.24	30	4.25	123	0.68	
17HDB002N	1.6	3	2	650	92.07	30	4.25	123	0.68	

HB MOTOR

Uni-polar

Model	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm±10%	mH±20%	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HD2032N	1.8	1.7	1.6	290	41.08	15	2.12	57	0.31
17HD2033N	7.5	6.9	0.8	290	41.08	15	2.12	57	0.31
17HD4028N	8.3	5.8	0.67	167	23.65	12	1.70	38	0.21
17HD4029N	3	2.1	1.1	167	23.65	12	1.70	38	0.21
17HD4030N	2.4	2	1.2	190	26.91	12	1.70	38	0.21
17HD4031N	4.2	2.2	0.95	160	22.66	12	1.70	38	0.21
17HD4032N	24	13	0.4	160	22.66	12	1.70	38	0.21
17HD4033N	38.5	21	0.31	160	22.66	12	1.70	38	0.21
17HD6022N	3.3	2.8	1.2	360	55.99	25	3.54	82	0.45
17HD6023N	4.6	4	1.1	320	45.33	25	3.54	82	0.45
17HD6024N	30	21.6	0.4	320	45.33	25	3.54	82	0.45
17HD6025N	7.5	7.3	0.85	350	49.58	25	3.54	82	0.45
17HD6026N	2.4	2.2	1.4	422	59.77	25	3.54	82	0.45
17HDB003N	2.3	2.4	1.7	450	63.74	30	4.25	123	0.68
17HDB004N	1.6	1.6	2	450	63.74	30	4.25	123	0.68

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass		
Number	mm (in.)	kg (lb.)		
17HD2**N	39.8 (1.57)	0.28 (0.62)		
17HD4**N	34.3 (1.35).	0.21 (0.46)		
17HD6**N	48.3 (1.90)	0.36 (0.79)		
17HDB**N	62.8 (2.47)	0.60 (1.32)		

Dynamic Torque Curves

17HD2011N

17HD2015N

17HD2018N

17HD2022N

17HD2023N

17HD2024N

17HD2025N

17HD2026N

17HD2027N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HD2028N

Pulse rate [pps]

17HD4005-01N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HD4022-01N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

Mode:Full Step

17HD4024N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HD4025N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HD4026N

200

150

100

50

Pull out torque [mN.m]

Conditions: Bi-polar Constant Current Driver
IC: AMA MS3540M
Mode:Full Step

Speed [r/min]
0.22A(Peak) 12V
0.22A(Peak) 24V
0 400 600 800

Pulse rate [pps]

17HD4027N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 0.28A(Peak) 12V 0.28A(Peak) 24V Speed [r/min] 0 200 400 600 1000 1200 200 Pull out torque [mN.m] Pull out torque [oz.in] 100 10 50 0 0 1000 2000 3000 4000 Pulse rate [pps]

17HD6012N

17HD6016N

17HD6017N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - - 0.8A(Peak) 12V 0.8A(Peak) 24V Speed [r/min] 100 200 0 300 500 600 500 Pull out torque [oz.in] Pull out torque [mN.m] 60 300 40 200 100 0 0 Pulse rate [pps]

17HD6018N

17HD6019N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

Mode:Full Step

17HD6020N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HD6021N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

17HDB001N

Conditions: Bi-polar Constant Current Driver

IC: AMA MS3540M Mode:Full Step

17HDB002N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

Mode:Full Step

17HD2032N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

Mode:Full Step

17HD2033N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

17HD4028N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HD4029N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HD4030N

Conditions:Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Steo

17HD4031N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HD4032N

17HD4033N

Pull out torque [mN.m]

0

Conditions: Uni-polar Constant Current Driver

1000

Pulse rate [pps]

1500

2000

17HD6022N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HD6022N

500

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

17HD6024N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

17HD6025N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

17HD6026N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

17HDB003N

17HDB004N

23HS SERIES 1.8°

Key Features

- High Torque
- High Accuracy
- Smooth Movement

General Specifications

Bi-polar

Model	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
23HS0402-02	1.2	2.3	2.1	500	70.82	22	3.12	135	0.74
23HS0403-02	2.8	7	1.3	500	70.82	22	3.12	135	0.74
23HS0404-01	0.75	1.75	2.5	500	70.82	22	3.12	135	0.74
23HS0406	1.6	4.3	1.5	500	70.82	22	3.12	135	0.74
23HS0411	0.65	1.3	2	390	55.22	22	3.12	135	0.74
23HS0412	11.4	22.4	0.71	480	67.97	22	3.12	135	0.74
23HS0413	4.3	10	1	500	70.82	22	3.12	135	0.74
23HS1407	2.7	7	1.5	850	120.40	32	4.53	220	1.21
23HS1408	1.5	3.7	2	850	120.40	32	4.53	220	1.21
23HS2403	2	6.4	2	1100	155.81	40	5.66	260	1.43
23HS2409-01	0.85	2.7	3	1000	141.64	40	5.66	260	1.43
23HS2416-03	1.0	3.1	2.6	1000	141.64	40	5.66	260	1.43
23HS2420-01	1.54	4.6	1.8	900	127.48	40	5.66	260	1.43
23HS2428	0.62	2	2.8	900	127.48	40	5.66	260	1.43
23HS2434	14	43	0.7	1000	141.64	40	5.66	260	1.43
23HS2438	5.6	20.4	1.15	1100	155.81	40	5.66	260	1.43
23HS2443	3.4	9.2	1.5	1000	141.64	40	5.66	260	1.43
23HS3409	1	3.36	3	1650	233.71	70	9.91	460	2.53
23HS3431-02	1.2	4	2.8	1650	233.71	70	9.91	460	2.53
23HS3432-02	2	7.5	2.1	1650	233.71	70	9.91	460	2.53
23HS3434	4.2	17	1.4	1650	233.71	70	9.91	460	2.53
23HS3442	7.9	27	1	1500	212.46	70	9.91	460	2.53
23HS3443	17.2	62	0.7	1650	233.71	70	9.91	460	2.53
23HS4401-09	1.0	2.4	2.4	700	99.15	28	3.96	180	0.99
23HS4402	0.65	1.6	3	700	99.15	28	3.96	180	0.99
23HS4404	1.7	4.2	2.1	750	106.23	28	3.96	180	0.99
23HS5402-08	0.5	1.8	6	2700	382.44	120	17.00	750	4.13
23HS5408	2	7.2	3	2700	382.44	120	17.00	750	4.13

Uni-polar

Model	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
23HS0602-02	5.7	6.0	1	390	55.22	22	3.12	135	0.74
23HS0603	1.4	1.6	2	400	56.64	22	3.12	135	0.74
23HS0605	4.9	6.0	1	400	56.64	22	3.12	135	0.74
23HS0609	0.6	0.6	3	380	53.81	22	3.12	135	0.74
23HS0611	2.2	2.2	1.5	380	53.81	22	3.12	135	0.74
23HS1602	1.65	2.47	2.1	700	99.12	32	4.53	260	1.43
23HS1604	6.3	12	1.0	680	96.29	32	4.53	220	1.21
23HS1605	2.75	3.7	1.5	660	93.46	32	4.53	220	1.21
23HS1606	1	1.4	2.7	700	99.12	32	4.53	260	1.43
23HS2602-03	0.75	1.12	3	800	113.31	40	5.66	260	1.43
23HS2603-06	1.8	2.7	2	800	113.31	40	5.66	260	1.43
23HS2611-03	7.4	12.5	1	850	120.40	40	5.66	260	1.43
23HS2619	3.4	5.5	1.5	800	113.31	40	5.66	260	1.43
23HS3604-02	4.1	7.6	1.5	1300	184.14	70	9.91	460	2.53
23HS3605-06	2.25	4.6	2	1200	169.97	70	9.91	460	2.53
23HS3606-04	1	2.1	3	1200	169.97	70	9.91	460	2.53
23HS3607-01	8.6	17	1	1200	169.97	70	9.91	460	2.53
23HS5604	1	1.8	4.3	2000	283.29	120	17.00	760	4.13

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass		
Number	mm (in.)	kg (lb.)		
23HS0**	41 (1.61) .	0.42 (0.93)		
23HS1**	50 (1.97)	0.55 (1.21)		
23HS2**	54 (2.13) .	0.60 (1.32)		
23HS3**	76 (2.99) .	1.00 (2.20)		
23HS4**	45 (1.77) .	0.48 (1.06)		
23HS5**	111 (4.37) .	1.50 (3.30)		

23HS0402-02

IC: AMA MS3540M Mode: Full Step

23HS0403-02

Pulse rate [pps]

23HS0404-01

Pulse rate [pps]

23HS0406

23HS0411

23HS0412

23HS0413

23HS1407

23HS1408

23HS2403

23HS2409-01

23HS2416-03

23HS2420-01

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

23HS2428

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

23HS3434

Pull out torque [mN.m]

Pulse rate [pps]

23HS2438

23HS3443

23HS3409

23HS3431-02

23HS3432-02

23HS3434

23HS3442

23HS3443

23HS4401-09

23HS4402

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

23HS4404

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

23HS5402-08

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step

23HS5408

Conditions:Bi-polar Constant Current Driver IC: AMA MS3540M

23HS0602-02

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

23HS0603

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

23HS0605

23HS0609

23HS0611

23HS1602

23HS1604

23HS1605

23HS1606

23HS2602-03

23HS2603-06

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

23HS2611-03

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

23HS2619

Conditions: Uni-polar Constant Current Driver
IC: AMA MSU3040M

23HS3604-02

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step

23HS3605-06

23HS3606-04

23HS3607-01

Pulse rate [pps]

23HS5604

HB MOTOR

23HM SERIES 1.8°

Key Features

- Low Noise
- Low Inertia
- High Acceleration

General Specifications

Bi-polar

Model	Resistance per Phase	Inductance per Phase	Rated Current		ding que	Det Tor	ent que	Ro Ine	tor rtia
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
23HM0401-01	1.8	3.2	1.5	420	59.49	25	3.54	100	0.55
23HM0402-01	0.85	1.5	2.2	420	59.49	25	3.54	100	0.55
23HM1402-01	2.6	5.6	1.5	650	92.07	45	6.37	175	0.96
23HM1403-01	1.2	2.6	2.2	650	92.07	45	6.37	175	0.96
23HM2403-01	1.4	3.1	2.2	900	127.48	52	7.37	210	1.16
23HM2404-01	0.7	1.4	3.1	900	127.48	52	7.37	210	1.16
23HM4401-01	1.7	4.7	2.2	1250	177.05	88	1246	360	1.98
23HM4402-01	0.85	2.4	3.1	1250	177.05	88	12.46	360	1.98

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

Model	L	Mass
Number	mm (in.)	kg (lb.)
23HM0**	40 (1.56)	0.36 (0.79)
23HM1**	51 (1.99)	0.52 (1.14)
23HM2**	55 (2.15)	0.60 (1.32)
23HM4**	76 (2.96)	0.90 (1.98)

Pull out torque [mN.m]

Dynamic Torque Curves

23HM0401-01

23HM0402-01

23HM1402-01

4000

Pulse rate [pps]

5000

6000

7000

23HM1403-01

23HM2403-01

1000

2000

3000

23HM2404-01

23HM4401-01

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

23HM4402-01

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M

23HY SERIES 1.8°

Key Features

- High Accuracy
- Low Inertia
- High Acceleration

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current		ding que	Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
23HY0407-01	1.5	2.5	1.5	350	49.58	18	2.55	55	0.30
23HY0414	3.5	6.4	1	350	49.58	18	2.55	55	0.30
23HY1411	4.5	12.2	1	630	89.24	35	4.96	120	0.66
23HY1413-01	2.5	5.4	1.4	630	89.24	35	4.96	120	0.66
23HY2416	7	14.5	1	730	103.40	42	5.95	145	0.80
23HY2417	3	6.4	1.5	730	103.40	42	5.95	145	0.80

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current			Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
23HY0601	1.5	1.5	1.5	300	42.49	18	2.55	55	0.30
23HY0602	3.6	3.6	1	300	42.29	18	2.55	55	0.30
23HY1602	2.5	3.5	1.4	500	70.82	35	4.96	120	0.66
23HY1615-08	5	6.5	1	500	70.82	35	4.96	120	0.66
23HY2602	2.5	3	1.6	600	84.99	42	5.95	145	0.80
23HY2609	7	8.5	1	600	84.99	42	5.95	145	0.80

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

Model	L	Mass
Number	mm (in.)	kg (lb.)
23HY0**	40 (1.56)	0.36 (0.79)
23HY1**	51 (1.99)	0.52 (1.14)
23HY2**	55 (2.15)	0.60 (1.32)

Pull out torque [oz.in]

5000

Dynamic Torque Curves

23HY0407-01

Pull out torque [mN.m]

Pulse rate [pps]

23HY0414

Pull out torque [mN.m]

100

0

Pulse rate [pps]

2000

23HY1411

Conditions: Bi-polar Constant Current Driver

Pulse rate [pps]

0

23HY1413-01

1000

23HY2416

0

23HY2417

23HY0601

400

300

200

100

600

200

0

0

500

Pull out torque [mN.m]

0

Pull out torque [mN.m]

4000

Pulse rate [pps]

6000

8000

23HY0602

IC: AMA MSU3040M Mode:Full Step - - 1.0A(Peak) 24V ■1.0A(Peak) 36V Speed [r/min] 0 500 1000 1500 400 Pull out torque [mN.m] Pull out torque [oz.in] 300 200 100 0 1000 2000 3000 4000 5000

Pulse rate [pps]

Conditions: Uni-polar Constant Current Driver

23HY1602

2000

Conditions: Uni-polar Constant Current Driver
IC: AMA MSU3040M
Mode:Full Step

- - 1.4A(Peak) 24V
Speed [r/min]

0 300 600 900

- 1.4A(Peak) 36V
0 900

- 20 Ino

2000

Pulse rate [pps]

2500

3000

3500

23HY1615-08

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 1.0A(Peak) 24V ■1.0A(Peak) 36V Speed [r/min] 200 400 600 800 600 Pull out torque [mN.m] Pull out torque [oz.in] 400 200 0 0 Pulse rate [pps]

23HY2602

1000

1500

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 1.6A(Peak) 24V 1.6A(Peak) 36V Speed [r/min] 400 600 1200 1000 Pull out torque [mN.m] Pull out torque [oz.in] 800 100 600 400 200 0 1000 0 2000 3000 4000 Pulse rate [pps]

23HY2609

Conditions:Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 1.0A(Peak) 24V ■1.0A(Peak) 36V Speed [r/min] 0 500 1000 1500 1000 Pull out torque [mN.m] Pull out torque [oz.in] 120 600 80 400 40 200 0 0 Pulse rate [pps]

24HS SERIES 1.8°

Key Features

- High Torque
- High Accuracy
- Smooth Movement

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Hold Tord			ent que	Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
24HS1402N	0.73	1.6	2.8	1060	150	40	5.66	280	1.54
24HS1403N	2.92	6.4	1.4	1060	150	40	5.66	280	1.54
24HS1404N	0.35	0.8	4	880	125	40	5.66	280	1.54
24HS2401-03N	1.1	3.4	2.8	1600	227	90	12.75	450	2.48
24HS2402N	0.43	1.1	4	1250	177	90	12.75	450	2.48
24HS2404N	4	13	1.4	1600	227	90	12.75	450	2.48
24HS3401N	1.1	3.5	2.8	1950	276	95	13.46	560	3.08
24HS3403N	4.4	14	1.4	1950	276	95	13.46	560	3.08
24HS5401N	0.65	2.4	4	2500	354	100	14.16	900	4.95
24HS5402N	1.49	6.5	2.8	2700	382	100	14.16	900	4.95
24HS5403N	5.96	25	1.4	2700	382	100	14.16	900	4.95

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque			tent que	Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
24HS1601N	5.7	6.8	1	740	105	40	5.66	280	1.54
24HS1603N	0.74	0.8	2.8	740	105	40	5.66	280	1.54
24HS1604N	1.46	1.8	2	740	105	40	5.66	280	1.54
24HS2601N	0.9	1.32	3	1130	160	90	12.75	450	2.48
24HS2602N	1.9	3	2	1130	160	90	12.75	450	2.48
24HS2607N	6.9	10.7	1	1100	156	90	12.75	450	2.48
24HS3601N	2.2	3.5	2	1500	212	95	13.46	560	3.08
24HS5601N	1.3	2.4	3	2100	297	100	14.16	900	4.95
24HS5602N	2.8	5.9	2	2100	297	100	14.16	900	4.95
24HS5604N	10	19.5	1	2100	297	100	14.16	900	4.95

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

			20.6±0.5 (0.81±0.02)		L±1 (L±0.04)	$\begin{array}{c c} & 47.14 \pm 0.35 \\ \hline & (1.856 \pm 0.013) \\ \end{array} \begin{array}{c} & 4 - \emptyset 4.52 \pm 0.1 \\ & (4 - \emptyset 0.178 \pm 0.004) \end{array}$
Model	L	Mass	5-0.012 0.0005)			
Number	mm (in.)	kg (lb.)	1 1 1 1 1 1 1 1 1			0.04
24HS1**	44 (1.73)	0.60 (1.32)	\$38.1±0.05 (\$1.50±0.002) \$6.3 (\$0.25			47.14t0.35 (1.856±0.013) (1.850±0.013)
24HS2**	54 (2.13)	0.83 (1.83)	(81.5			
24HS3**	65 (2.56)	1.05 (2.31)	•			
24HS5**	85 (3.35)	1.40 (3.09)	1.5 (0.06)			□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
			(0.28)	300±10 8 (11.8±0.4) (0.31)	AWG22 UL1007 (1.02)
					m	nm (inch)

Dynamic Torque Curves

24HS1402N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 2.8A(Peak) 24V 2.8A(Peak) 36V Speed [r/min] 0 2500 500 1000 1500 2000 1000 Pull out torque [mN.m] Pull out torque [oz.in] 800 600 400 200 0 0 2000 Pulse rate [pps]

24HS1403N

24HS1404N

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 4.0A(Peak) 24V Speed [r/min] ■4.0A(Peak) 36V 500 1000 1500 2000 2500 1000 Pull out torque [mN.m] Pull out torque [oz.in] 600 400 200 0 2000 Pulse rate [pps]

24HS2401-03N

24HS2402N

24HS2404N

Pull out torque [mN.m]

0

Pulse rate [pps]

6000

24HS3401N

24HS3403N

1000

24HS5401N

24HS5402N

24HS5403N

24HS1601N

24HS1603N

24HS1604N

24HS2601N

24HS2602N

24HS2607N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

24HS3601N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

24HS5601N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

24HS5602N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

24HS5604N

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M

34HD SERIES 1.8°

Key Features

- High Torque
- High Accuracy
- Smooth Movement

General Specifications

Bi-polar

Model	Resistance per Phase	Inductance per Phase	Rated Current		ding que		ent que		tor rtia
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
34HD0401	4.4	29.6	1.4	2800	396.60	150	21.25	1100	6.05
34HD0402	2	13.2	2.1	2800	396.60	150	21.25	1100	6.05
34HD0403	0.96	5.8	3.18	2800	396.60	150	21.25	1100	6.05
34HD0404	0.24	1.45	6.3	2800	396.60	150	21.25	1100	6.05
34HD1401	6.6	56	1.4	5600	793.20	250	35.41	1850	10.18
34HD1402	3	24	2.1	5600	793.20	250	35.41	1850	10.18
34HD1403	1.32	10.8	3.18	5600	793.20	250	35.41	1850	10.18
34HD1404	0.33	2.7	6.3	5600	793.20	250	35.41	1850	10.18
34HD2401	7.6	70.4	1.4	8400	1189.80	350	49.58	2750	15.13
34HD2402	1.94	17.6	2.8	8400	1189.80	350	49.58	2750	15.13
34HD2403	0.49	4.4	5.6	8400	1189.80	350	49.58	2750	15.13

Uni-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current		ding que	Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
34HD0601	2.2	7.4	2	2100	297.45	150	21.25	1100	6.05
34HD0602	1	3.3	3	2100	297.45	150	21.25	1100	6.05
34HD0603	0.48	1.45	4.5	2100	297.45	150	21.25	1100	6.05
34HD1601	3.3	14	2	4300	609.07	250	35.41	1850	10.18
34HD1602	1.5	6	3	4300	609.07	250	35.41	1850	10.18
34HD1603	0.66	2.7	4.5	4300	609.07	250	35.41	1850	10.18
34HD2601	3.8	17.6	2	6400	906.52	350	49.58	2750	15.13
34HD2602	0.97	4.4	4	6400	906.52	350	49.58	2750	15.13

8-Leadwire Motors

Model Number	Type of Polar	Resistance per Phase	Inductance per Phase	Rated Current		ding rque	Detent Torque		Rotor Inertia		
Number	Polar	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²	
34HD0801	Bi-polar Parallel	0.24	1.4	6.3	3100	439.09	150	21.25	1100	6.05	
	Bi-polar Series	0.96	5.6	3.18	3100	439.09	150	21.25	1100	6.05	
	Unipolar	0.48	1.4	4.5	2200	311.61	150	21.25	1100	6.05	
	Bi-polar Parallel	0.33	2.7	6.3	6200	878.19	250	35.41	1850	10.18	
34HD1801	Bi-polar Series	1.32	10.8	3.18	6200	878.19	250	35.41	1850	10.18	
	Unipolar	0.66	2.7	4.5	4400	623.23	250	35.41	1850	10.18	

8-Leadwire Motors

Model Number	Type of Polar	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque		Detent Torque		Rotor Inertia	
Number	Polar	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
34HD2801	Bi-polar Parallel	0.49	4.4	5.6	9300	1317.28	350	49.58	2750	15.13
	Bi-polar Series	1.94	17.6	2.8	9300	1317.28	350	49.58	2750	15.13
	Unipolar	0.97	4.4	4	6600	934.84	350	49.58	2750	15.13

Motor Wiring Diagram -> Page A-8

Mechanical Dimension

Model	L	Mass
Number	mm (in.)	kg (lb.)
34HD0**	66.5 (2.59)	1.6 (3.52)
34HD1**	96 (3.74)	2.7 (5.94)
34HD2**	125.5 (4.89)	3.8 (8.36)
OTTIBL	120.0 (1.00)	0.0 (0.00)

Dynamic Torque Curves

34HD0401 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD0402 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD0403 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD0404 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD1401 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD1402 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M

IC: AMA MS7080N Mode:Full Step

34HD1403 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M

IC: AMA MS7080M Mode:Full Step

34HD1404 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver

IC: AMA MS7080M Mode:Full Step

34HD2401 Bi-polar series

Conditions: Bi-polar Constant Current Driver

IC: AMA MS7080M Mode:Full Step

34HD2402 Bi-polar series

Conditions: Bi-polar Constant Current Driver

IC: AMA MS7080M

34HD2403 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD0601 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD0602 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M

34HD0603 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD1601 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD1602 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD1603 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD2601 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M

34HD2602 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M

34HD0801 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver

Pulse rate [pps]

34HD0801 Bi-polar series

Conditions: Bi-polar Constant Current Driver

34HD0801 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD1801 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD1801 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD1801 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA AMA MSU8080M Mode:Full Step

34HD2801 Bi-polar parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD2801 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HD2801 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

34HY SERIES 1.8°

Key Features

- Low Noise
- Low Inertia
- High Acceleration

General Specifications

8-Leadwire Motors

Model	Types of	Resistance per Phase	Inductance per Phase	Rated Current	Hold Tord			ent que		tor rtia
Number	Connection	ohm	mH	А	mN.m	oz-in	mN.m	oz-in	g.cm ²	oz-in²
	Bi-polar Parallel	2.3	18	1.8	2300	326	120	16.99	560	3.08
34HY0809	Bi-polar Series	9.2	72	0.9	2300	326	120	16.99	560	3.08
	Unipolar	4.6	18	1.3	1800	255	120	16.99	560	3.08
	Bi-polar Parallel	0.6	3.6	4.2	2300	326	120	16.99	560	3.08
34HY0810	Bi-polar Series	2.4	14.4	2.1	2300	326	120	16.99	560	3.08
	Unipolar	1.2	3.6	3.0	1800	255	120	16.99	560	3.08
	Bi-polar Parallel	0.3	2.4	5.6	4000	566	210	29.74	1200	6.60
34HY1801-10	Bi-polar Series	1.2	9.6	2.8	4000	566	210	29.74	1200	6.60
	Unipolar	0.6	2.4	4	3100	439	210	29.74	1200	6.60
	Bi-polar Parallel	0.8	6.7	3.9	4600	651	210	29.74	1200	6.60
34HY1803	Bi-polar Series	3.2	26.8	1.9	4600	651	210	29.74	1200	6.60
	Unipolar	1.6	6.7	2.8	3500	496	210	29.74	1200	6.60
	Bi-polar Parallel	0.47	4.0	8.4	7800	1104	180	25.49	2100	11.55
34HY2801	Bi-polar Series	1.88	16	4.2	7800	1104	180	25.49	2100	11.55
	Unipolar	0.94	4.0	6	6000	850	180	25.49	2100	11.55
	Bi-polar Parallel	0.19	1.6	9.4	5600	793	180	25.49	2100	11.55
34HY2802	Bi-polar Series	0.76	6.0	4.7	5600	793	180	25.49	2100	11.55
	Unipolar	0.38	1.5	6.7	4300	609	180	25.49	2100	11.55

HB MOTOR

Motor Wiring Diagram -> Page A-8

Mechanical Dimension

Dynamic Torque Curves

Pull out torque [mN.m]

2500

500

0

1000

34HY0809 Bi-polar Parallel

Conditions: Bi-polar Constant Current Driver

IC: AMA MS7080M Mode:Full Step -1.8A(Peak) 48V 1.8A(Peak) 60V Speed [r/min] 400 out torque [oz.in] 300 2000 1500 1000

4000

5000

34HY0809 Bi-polar series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HY0809 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

Pulse rate [pps]

34HY0810 Bi-polar Parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

3000

2500

2000

1500 1000 500

0

1000

Pull out torque [mN.m]

34HY0810 Bi-polar series

Conditions: Bi-polar Constant Current Driver

IC: AMA MS7080M Mode:Full Step - 2.1A(Peak) 48V Speed [r/min] 2.1A(Peak) 60V - 250 500 750 1000 1250 1500 - 300 9nbu on the product of the pr

5000

34HY0810 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

34HY1801-10 Bi-polar Parallel

Pulse rate [pps]

Conditions: Bi-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

34HY1801-10 Bi-polar Series

Conditions: Bi-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

34HY1801-10 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M

34HY1803 Bi-polar Parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M

34HY1803 Bi-polar Series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step

34HY1803 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M

34HY2801 Bi-polar Parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M

34HY2801 Bi-polar Series

Conditions: Bi-polar Constant Current Driver
IC: AMA MS7080M

34HY2801 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M

34HY2802 Bi-polar Parallel

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M

Pull out torque [mN.m]

Dynamic Torque Curves

1000

2000

0

34HY2802 Bi-polar Series

Conditions: Bi-polar Constant Current Driver IC: AMA MS7080M Mode:Full Step - - 4.7A(Peak) 48V 4.7A(Peak) 60V Speed [r/min] 500 1500 6000 800 Pull out torque [oz.in] 5000 600 4000 3000 400 2000 200 1000 0

4000

3000

Pulse rate [pps]

5000

6000

34HY2802 Uni-polar

Conditions: Uni-polar Constant Current Driver IC: AMA MSU8080M Mode:Full Step

17HE SERIES 3.6°

Key Features

- Low Inertia
- Low Noise
- High Acceleration

General Specifications

Bi-polar

Model Number	Resistance Inductance per Phase per Phase				Det Tor	ent que	Ro Ine		
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HE1401-01	12	9.4	0.58	80	11.33	15	2.12	20	0.11
17HE1402-01	150	100	0.16	80	11.33	15	2.12	20	0.11
17HE1403-01	0.85	0.7	2.5	90	12.74	15	2.12	20	0.11

Uni-polar

Model Number	Resistance per Phase					ent que	Ro Ine		
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
17HE1603-02	75	35	0.2	60	8.50	15	2.12	20	0.11
17HE1604-01	50	25	0.25	60	8.50	15	2.12	20	0.11
17HE1606-02	12	5.5	0.58	60	8.50	15	2.12	20	0.11

Motor Wiring Diagram —> Page A-8

Mechanical Dimension

			0 -0.012 1968-8.0005)	L Max.	-	31±0.1 (1.220±0.004)
Model	L	Mass	Ø 5.			
Number	mm (in.)	kg (lb.)	Ø 2 2 - 0.052 (Ø 0.866-8.002)			
17HE**	34.3 (1.35)	0.2 (0.44)	22_0			
			24±0.5 (0.95±0.02	2 (0.08)		4-M3 Depth 4.5Min. (Depth 0.18Min.) AWG26 UL1007

mm (inch)

17HE1401-01

Pull out torque [mN.m]

100

60

40

20

0

Pull out torque [mN.m]

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 0.58A(Peak) 12V 0.58A(Peak) 24V Speed [r/min] Ω 200 400 600 800 100 out torque [oz.in] 12 10 60 40 Pull 20

Pulse rate [pps]

17HE1402-01

1500

Pulse rate [pps]

2000

3000

2500

Conditions: Bi-polar Constant Current Driver

17HE1403-01

Conditions: Bi-polar Constant Current Driver IC: AMA MS3540M Mode:Full Step - - 2.5A(Peak) 12V 2.5A(Peak) 24V Speed [r/min] 0 1000 500 1500 14 torque [oz.in] 12 10 ont Pull 0 1000

Pulse rate [pps]

17HE1603-02

500

0

1000

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.2A(Peak) 12V 0.2A(Peak) 24V Speed [r/min] 0 200 400 600 100 Pull out torque [mN.m] Pull out torque [oz.in] 12 80 10 60 40 20 0 0 1200 2000 Pulse rate [pps]

17HE1604-01

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.25A(Peak) 12V 0.25A(Peak) 24V Speed [r/min] 0 500 14 Pull out torque [mN.m] Ξ. 12 out torque [oz. 80 10 60 40 Pull 20 0 500 1000 1500 2000 0 Pulse rate [pps]

17HE1606-02

Conditions: Uni-polar Constant Current Driver IC: AMA MSU3040M Mode:Full Step - - 0.58A(Peak) 12V 0.58A(Peak) 24V Speed [r/min] 1200 n 400 800 100 Pull out torque [mN.m] Pull out torque [oz.in] 12 10 60 8 6 40 4 20 2 0 0 Pulse rate [pps]

HB MOTOR

10HF SERIES 3.75°

Key Features

- Low Inertia
- Low Noise
- Small Size

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase		Holding Torque		Detent Torque		Rotor Inertia	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
10HF7402-02	84	21	0.143	12	1.70	3	0.42	2	0.01

Uni-polar

Model Number		stance Inductance Rated Holding Phase per Phase Current Torque		Det Tore	ent que	Rotor Inertia			
Nulliber	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in ²
10HF7602-03	42	4.5	0.2	8	1.13	3	0.42	2	0.01

Motor Wiring Diagram --> Page A-8

Mechanical Dimension

Dynamic Torque Curves

10HF7402-02

10HF7602-03

24HC SERIES 1.2°

Key Features

- 3-phase Motor
- Low Noise
- Smooth Movement
- Low Vibration

General Specifications

Bi-polar

Model Number	Resistance per Phase				ent que	Ro Ine			
Nulliber	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
24HC2301	0.32	0.76	5.8	900	127.48	40	5.67	260	1.43
24HC3301	0.45	1.30	5.8	1500	212.46	70	9.92	460	2.53
24HC4301	6	10.2	1.5	540	76.49	25	3.54	180	0.99

Mechanical Dimension

Model	L	Mass
Number	mm (in.)	kg (lb.)
24HC2**	54.5 (2.13)	0.8 (1.76)
24HC3**	76.5 (2.98)	1.3 (2.86)
24HC4**	45.5 (1.77)	0.5 (1.10)

Wrie Diagram and Drive Sequence model

Dri	ve Seq	uenc	ce m	odel							
Wh	When seen from the flange side of the motor										
	STEP	Α	В	С							
	1	+	_								
	2		_	+							
	3			+							
	4		+								
	5		+								
	6 + - cw										
C	CW(CLOCKWISE) ROTATION										

3-PHASE

Dynamic Torque Curves

24HC2301 Conditions: 3-Phase Constant Current Driver IC: AMA 3MS5860M Mode:Half Step - - 5.8A(Peak) 24V ■5.8A(Peak) 36V Speed [r/min] 1500 1000 Pull out torque [oz.in] 800 400

9000

Pulse rate [pps]

15000

24HC4301

3000

6000

Pull out torque [mN.m]

0

34HC SERIES 1.2°

Key Features

- 3-phase Motor
- Low Noise
- Smooth Movement
- Low Vibration

General Specifications

Bi-polar

Model Number	Resistance per Phase	Inductance per Phase	Rated Current	Holding Torque			ent que	Ro Ine	
Number	ohm	mH	А	mNm	oz-in	mNm	oz-in	g.cm ²	oz-in²
34HC0301	1.8	11.5	3.0	2000	283.29	100	14.16	1100	6.05
34HC1301	4.6	39.0	2.0	4000	566.57	150	21.25	1850	10.18
34HC2301	1.2	10.5	5.2	6000	849.86	200	28.33	2750	15.13

Mechanical Dimension

			(1.	0.2±0.5 .19±0.02) 7000 1000	L±1 (L±0.04)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Model	L	Mass	00				⊗ ⊗ ∀
Number	mm (in.)	kg (lb.)	\$73.025±0.025 (\$2.875±0.001)	(ø0.4			AX X 08.2
34HC0**	66.5 (2.59)	1.6 (3.52)	8754	+		† †	
34HC1**	96.0 (3.74)	2.7 (5.94)	Ø73 (Ø2.			+	
34HC2**	125.5 (4.89)	3.8 (8.36)		2 (0.08)10			
				(0.3		#	
							AWG22 UL1007
							mm (inch)

Wrie Diagram and Drive Sequence model

34HC0301

34HC1301

Pull out torque [mN.m]

Pulse rate [pps]

34HC2301

Digital Linear Actuator (External Nut)

Description

Conversion of rotary to linear motion inside a linear actuator is accomplished through a threaded nut and lead screw. The external shaft is threaded. In order to generate linear motion the lead screw must rotating together with rotor, and the shaft threads engages the nut resulting in linear motion. Changing the direction of rotation combination determines the linear travel per step of the nut. The travel length and speed can be digital controlled by the input of data pulses. Moons DLA 16HY0416-02N, is designed as travel of 0.004mm per step and can be accurately controlled to drive 40mm movement by a 10K data pulses input. Application: Various zoom controls, X-Y stages, as well as other linear motion control applications.

General Specifications

Model Number	Number of leads	Step Distance		Rated Current	Resistance per Phase	Inductance per Phase	Rotor Inertia		Motor Mass	
		mm	inch	A	ohm	mH	g.cm²	oz-in²	kg	lb.
17HD0007-34	4	0.01	0.0004	0.4	35	44	38	0.21	0.20	0.44
17HD2405-20N	4	0.015	0.0006	0.5	25	45	57	0.31	0.24	0.53
17HD4001-15N	4	0.04	0.0016	0.4	30	45	38	0.21	0.20	0.44

Mechanical Dimension

17HD4001-15N

Speed Vs Thrust 17HD2405-20N 0.5A/24V

Speed Vs Thrust 17HD4001-15N 0.4A/24V

Digital Linear Actuator (Internal Nut)

Description

Conversion of rotary to linear motion inside a linear actuator is accomplished through a threaded nut and lead screw. The inside of the rotor is threaded and the shaft is replaced by a lead screw. In order to generate linear motion the lead screw must be prevented from rotation. As the rotor turns the internal threads engage the lead screw resulting in linear motion. Changing the direction of rotation reverses the direction of linear motion. The motors rotary step angle. The thread pith of the rotor nut and lead screw combination determine the linear travel per step of the motor. The travel length and speed can be digital controlled by the input of data pulses. Moons DLA 11 HS1002-04, is designed as travel of 0.0035mm per step and can be accurately controlled to drive 35mm movement by a 10K data pulses input.

Accomplishing the conversion of rotary to linear motion inside the rotor greatly simplifies the process of delivering linear motion for many applications. Because the linear actuator is self-contained, the requirements for external components such as belts and pulleys are greatly reduced or eliminated. Fewer components make the design process easier, reduce overall system cost and size and improve product reliability. Application: Various valve intelligent controls, Telecommunication Tuning, as vell as other linear motion control applications.

General Specifications

Model Number	Number of leads	Step Distance		Current Phase	Resistance per Phase	Inductance per Phase	Rotor Inertia		Motor Mass	
		mm	inch	Α	ohm	mH	g.cm²	oz-in²	kg	lb.
16HY7001-52	4	0.1270	0.0050	0.48	25	26	11	0.06	0.1	0.22
11HS1002-14	4	0.0035	0.0001	0.7	4.8	3.4	9	0.05	0.12	0.26

Mechanical Dimension

Speed Vs Thrust 11HS1002-14 0.7A/24V

