Preuve par résolution

- Procédure générale pour faire de l'inférence
 - modus ponens et l'instantiation universelle sont des cas particuliers
- Cette procédure est correcte et complète (sous certaine condition, à voir plus tard)
- On aura besoin des outils suivants :
 - la substitution
 - l'unification
 - la transformation sous forme normale conjonctive

Mettre une formule sous forme normale conjonctive

1. Élimination de l'implication

• Utiliser l'équivalence $\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$ pour enlever toutes les implications de la formule

2. Réduire la portée de ¬

♦ Utiliser les **lois de Morgan**, c-à-d.

```
i. \neg (f_1 \lor f_2) \equiv \neg f_1 \land \neg f_2

ii. \neg (f_1 \land f_2) \equiv \neg f_1 \lor \neg f_2

iii. \neg \neg f \equiv f,
```

de sorte que - est toujours suivi d'un prédicat

3. Standardiser les variables

 renommer les variables de telle sorte qu'aucune paire de quantificateurs ne porte sur la même variable

Mettre une formule sous forme normale conjonctive

4. Éliminer les quantificateurs existentiels

- chaque quantificateur existentiel est éliminé, en remplaçant sa variable par une fonction des quantificateurs universels englobants
 - » ex. : $\forall x \forall y \exists z p(x, y, z)$ est remplacé par $\forall x \forall y p(x, y, f(x,y))$
 - » on appelle ces fonctions (ex. f(x,y) ci-haut) des fonctions de Skolem
 - » le symbole de la fonction doit être unique (ne pas utiliser f à chaque fois)
 - » si aucun argument, on utilise une constante unique
 - ex. : $\exists x \ g(x)$ devient g(a) (où a n'est pas une constante déjà définie)

5. Mettre en forme prénexe

- mettre tous les quantificateurs universels en tête
- 6. Distribuer les disjonctions dans les conjonctions
 - → mettre sous forme de conjonction (∧) de disjonctions (v) de littéraux, en utilisant les équivalences de distributivité :

$$f_1 \vee (f_2 \wedge f_3) \equiv (f_1 \vee f_2) \wedge (f_1 \vee f_3)$$

Mettre une formule sous forme normale conjonctive

- 7. Éliminer les symboles de quantificateurs universels
 - on ne laisse que les variables
- **8.** Éliminer les conjonctions (^)
 - on génère des clauses séparées (sur des lignes différentes)
- 9. Standardiser les variables à part
 - renommer les variables de telle sorte que deux clauses différentes n'aient pas les mêmes variables

Exemple

- 1. Marcus est une personne.
- 2. Marcus est un pompéien.
- 3. Tous les pompéiens sont des romains.
- 4. César est un dirigeant.
- 5. Tout le monde est loyal à quelqu'un.
- 6. Tous les romains sont loyaux à César ou le haïssent.
- 7. Les seuls dirigeants qu'une personne essaie d'assassiner sont ceux auxquels elle n'est pas loyal
- 8. Marcus a essayer d'assassiner César.

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \forall x pompeien(x) \rightarrow romain(x)
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x romain(x) → loyal(x,Cesar) \lor hait(x,Cesar)
- 7. \forall x \forall y personne(x) \land dirigeant(y) \land assassiner(x,y) $\rightarrow \neg$ loyal(x,y)
- 8. assassiner(Marcus,Cesar)

Etape 1 : éliminer l'implication

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \forall x pompeien(x) \rightarrow romain(x)
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x romain(x)→ loyal(x,Cesar) \lor hait(x,Cesar)
- 7. $\forall x \forall y \ personne(x) \land dirigeant(y) \land assassiner(x,y)) \rightarrow \neg \ loyal(x,y)$
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x \neg pompeien(x) \lor romain(x)$
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. $\forall x \neg romain(x) \lor loyal(x,Cesar) \lor hait(x,Cesar)$
- 7. $\forall x \forall y \neg (personne(x) \land dirigeant(y) \land assassiner(x,y)) \lor \neg loyal(x,y))$
- 8. assassiner(Marcus,Cesar)

Etape 2 : réduire la porte de ¬

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x \neg pompeien(x) \lor romain(x)$
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x ¬ romain(x) ∨ loyal(x,Cesar) ∨ hait(x,Cesar)
- 7. $\forall x \forall y \neg (personne(x) \land dirigeant(y) \land assassiner(x,y)) \lor \neg loyal(x,y))$
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x \neg pompeien(x) \lor romain(x)$
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x ¬ romain(x) ∨ loyal(x,Cesar) ∨ hait(x,Cesar)
- 7. $\forall x \forall y \neg personne(x) \lor \neg dirigeant(y) \lor$
 - \neg assassiner(x,y) $\lor \neg$ loyal(x,y)
- 8. assassiner(Marcus,Cesar)

Etape 3 : standardiser les variables

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x \neg pompeien(x) \lor romain(x)$
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x ¬ romain(x) ∨ loyal(x,Cesar) ∨ hait(x,Cesar)
- 7. $\forall x \forall y \neg personne(x) \lor \neg dirigeant(y) \lor \neg assassiner(x,y) \lor \neg loyal(x,y)$
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 \exists x3 loyal(x2,x3)$
- 6. $\forall x4 \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)$
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

Etape 4 : éliminer les quantificateurs existentiels

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 \exists x3 loyal(x2,x3)$
- 6. ∀ x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 loyal(x2, f1(x2))$
- 6. $\forall x4 \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)$
- 7. $\forall x5 \ \forall x6 \ \neg personne(x5) \ \lor \ \neg dirigeant(x6) \ \lor \ \neg assassiner(x5,x6) \ \lor \ \neg loyal(x5,x6)$
- 8. assassiner(Marcus,Cesar)

Etape 5 : mettre les formules en forme prénexe

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. \forall x2 loyal(x2, f1(x2))
- 6. ∀ x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus, Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 loyal(x2, f1(x2))$
- 6. \forall x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. $\forall x5 \ \forall x6 \ \neg personne(x5) \ \lor \ \neg dirigeant(x6) \ \lor \ \neg assassiner(x5,x6) \ \lor \ \neg loyal(x5,x6)$
- 8. assassiner(Marcus,Cesar)

Etape 6 : distribuer les disjonctions dans les conjonctions

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 loyal(x2, f1(x2))$
- 6. ∀ x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 loyal(x2, f1(x2))$
- 6. \forall x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

Etape 7 : éliminer les quantificateurs universels

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. $\forall x1 \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. $\forall x2 loyal(x2, f1(x2))$
- 6. ∀ x4 ¬ romain(x4) ∨ loyal(x4,Cesar) ∨ hait(x4,Cesar)
- 7. \forall x5 \forall x6 \neg personne(x5) \lor \neg dirigeant(x6) \lor \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) $\lor \neg$ assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

Etape 8 : éliminer les conjonctions

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. ¬ personne(x5) ∨ ¬ dirigeant(x6) ∨ ¬ assassiner(x5,x6) ∨ ¬ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- $3. \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. ¬ personne(x5) \lor ¬ dirigeant(x6) \lor
 - \neg assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

Etape 9 : standardiser les variables

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. ¬ personne(x5) ∨ ¬ dirigeant(x6) ∨ ¬ assassiner(x5,x6) ∨ ¬ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- $3. \neg pompeien(x1) \lor romain(x1)$
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) \lor
 - \neg assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)