Logical Aspects of Artificial Intelligence: Knowledge Logics

Stéphane Demri demri@lsv.fr https://cv.archives-ouvertes.fr/stephane-demri

September 14th, 2022

What is in this part of the course?

Introduction to Description Logics and Temporal Logics for Multi-Agent Systems

- Today: Introduction to description logics (DLs).
- ▶ 21/09, 28/09: Introduction (Part II), Tableaux calculi.
- 05/10, 12/10, 26/10: Introduction to alternating-time temporal logics, concurrent game structures, complexity of ATL⁺, reasoning with resources, other variants and fragments.
- No lecture on October 19th.

What is in this part of the course?

Introduction to Description Logics and Temporal Logics for Multi-Agent Systems

- Today: Introduction to description logics (DLs).
- ▶ 21/09, 28/09: Introduction (Part II), Tableaux calculi.
- 05/10, 12/10, 26/10: Introduction to alternating-time temporal logics, concurrent game structures, complexity of ATL⁺, reasoning with resources, other variants and fragments.
- No lecture on October 19th.
- Exam during the week including Nov 9th (to be confirmed).
- ► Final grade: 20% participation+TDs 80% exam

Current organisation of sessions

- ► Today: 1h (L) + 10min (B) + 1h (L) + 10min (B) + 1h30 (TDs).
- Next sessions: 30min (corrections TD) + 1h (L) + 10min (B) + 1h (L) + 10min (B) + 1h10 (TD).

What can you expect to learn?

- ▶ Basics of description logics including ALC as well as alternating-time temporal logic ATL and variants.
- ► Tableaux for ALC, model-checking techniques for ATL-like logics.
- Complexity, decidability, expressive power results for logics dedicated to knowledge representation.

Background

- 1. Necessary background
 - Basics of first-order logic.
 - Basics of complexity theory.
- 2. Optional background
 - Basics of modal logics, temporal logics
 - Sequent-style proof systems.
 - Basics of model-checking, verification.

Course material

▶ Slides, exercises and corrections available on

▶ Do not hesitate to contact me (demri@lsv.fr).

Material mainly based on the following documents

- F. Baader, I. Horrocks, C. Lutz and U. Sattler. An introduction to Description Logic. Cambridge University Press, 2017.
- ► Ivan Varzinczak's slides (ESSLLI'18)
- ▶ Ulrike Sattler & Thomas Schneider's slides (ESSLLI'15).
- Stefan Borgwardt's slides 2018.
- S. Demri, V. Goranko, M. Lange.
 Temporal Logics in Computer Science.
 Cambridge University Press, 2016.

Other (online) ressources

Description Logic Complexity Navigator by Evgeny Zolin.

```
http://www.cs.man.ac.uk/~ezolin/dl/
```

Proceedings of the Description Logic Workshops

```
http://dl.kr.org/workshops/
```

- ▶ See also the proceedings of the international conferences:
 - ► Int. Joint Conference on Artificial Intelligence. (IJCAI)
 - European Conference on Artificial Intelligence. (ECAI)
 - Int. Conference on Principles of Knowledge Representation and Reasoning. (KR)

Plan of the lecture

- Knowledge representation.
- ▶ Basic description logic ALC.
- ightharpoonup Several extensions of \mathcal{ALC} .
- Exercises session.

Knowledge Representation

DLs: where they come from

First-order logic is not always the most natural language.

$$\forall x \exists y \forall z ((P(x,y) \land Q(y,z) \Rightarrow (\neg Q(a,y) \lor P(x,z))))$$
$$\forall x (Teacher(x) \Leftrightarrow (Person(x) \land \exists y (Teaches(x,y) \land Course(y))))$$

DLs: where they come from

First-order logic is not always the most natural language.

$$\forall x \exists y \forall z ((P(x,y) \land Q(y,z) \Rightarrow (\neg Q(a,y) \lor P(x,z))))$$
$$\forall x (Teacher(x) \Leftrightarrow (Person(x) \land \exists y (Teaches(x,y) \land Course(y))))$$

► How to design user-friendly languages for knowledge representation?

DLs: where they come from

First-order logic is not always the most natural language.

$$\forall x \exists y \forall z ((P(x,y) \land Q(y,z) \Rightarrow (\neg Q(a,y) \lor P(x,z))))$$
$$\forall x (Teacher(x) \Leftrightarrow (Person(x) \land \exists y (Teaches(x,y) \land Course(y))))$$

- How to design user-friendly languages for knowledge representation?
- Concept definition from Description Logics.

Teacher \equiv Person \sqcap \exists Teaches.Course

Reasoning about ...

► Knowledge Epistemic Logics

Rules and obligations
Deontic Logics

► Programs Hoare Logics

► Time Temporal Logics

but also separation logics, many-valued logics, non-monotonic logics, etc.

Ontologies

- Formal specification of some domain with concepts, objects, relationships between concepts, objects, etc.
- Backbone of ontologies includes:
 - taxonomy (classification of objects),
 - axioms (to constrain the models of the defined terms).

Ontologies

- Formal specification of some domain with concepts, objects, relationships between concepts, objects, etc.
- Backbone of ontologies includes:
 - taxonomy (classification of objects),
 - axioms (to constrain the models of the defined terms).
- Classification of medical terms: diseases, body parts, drugs, etc.
- Well-known ontologies:
 - Medical ontology SNOMED-CT formalised with description logic $\mathcal{EL}++$.
 - ► NCI Thesaurus (National Cancer Institute, USA).
 - Gene ontology (world largest source of information on the functions of genes).

Ontologies

- Formal specification of some domain with concepts, objects, relationships between concepts, objects, etc.
- Backbone of ontologies includes:
 - taxonomy (classification of objects),
 - axioms (to constrain the models of the defined terms).
- Classification of medical terms: diseases, body parts, drugs, etc.
- Well-known ontologies:
 - Medical ontology SNOMED-CT formalised with description logic EL ++.
 - ▶ NCI Thesaurus (National Cancer Institute, USA).
 - Gene ontology (world largest source of information on the functions of genes).
- ► Free ontology editor Protégé

```
http://protege.stanford.edu/
```

The classical student ontology

- Natural language specification:
 - Employed students are students and employees.
 - Students are not taxpayers.
 - Employed students are taxpayers.
 - Employed students who are parents are not taxpayers.
 - To work for is to be employed by.
 - John is an employed student, John works for IBM.
- Classes/relations/individuals.

Main ingredients in formal ontologies

- Model of the world with classes within a domain, relationships between classes and instantiations of classes.
- Formal: abstract model of some domain with (mathematical) semantics and reasoning tasks.

Main ingredients in formal ontologies

- Model of the world with classes within a domain, relationships between classes and instantiations of classes.
- Formal: abstract model of some domain with (mathematical) semantics and reasoning tasks.
- Classes or concepts: classes of objects with the domain of interest. (Employed student, Parent, Course)
- Relations or roles: relationships between concepts. (being employed by, sibling-of)
- Instances of classes and relations.
 - John is an employed student.
 - Mary works for IBM.

Early KR formalisms

- Graphical formalisms easier to grasp and supposedly close to how knowledge is represented by human beings.
- Large variety of semantical networks.
- Often, lack of formal semantics (see tentatives with the knowledge representation system KL-ONE).

Knowledge graph

© Stefan Borgwardt 2018

Example of concept hierarchy / taxonomy

© Stefan Borgwardt 2018

► How to define ontologies and to reason on it?

- ► How to define ontologies and to reason on it?
- ▶ How to relate distinct ontologies?

- ► How to define ontologies and to reason on it?
- ► How to relate distinct ontologies?
- How to repair faulty ontologies ?

- ► How to define ontologies and to reason on it?
- ▶ How to relate distinct ontologies?
- How to repair faulty ontologies ?
- How to add new concepts or axioms without affecting the old inferences?

Why description logics?

- Formal languages for concepts, relations and instances.
- DLs have all one needs to formalise ontologies.
- Computational properties.
 - Acceptable trade-off between expressivity and complexity.
 - Decidability and often tractability.
 - Implementation in tools of the main reasoning tasks.

Why description logics?

- Formal languages for concepts, relations and instances.
- DLs have all one needs to formalise ontologies.
- Computational properties.
 - Acceptable trade-off between expressivity and complexity.
 - Decidability and often tractability.
 - Implementation in tools of the main reasoning tasks.
- A remarkable suite of languages and tools. See e.g.,
 - OWL: Web Ontology Language.
 - Protégé: ontology editor.
 - FaCT++: DL reasoner supporting OWL DL.

Description logics and knowledge representation

Description logics is a subfield of "Knowledge representation", itself a subfield of "Artificial intelligence".

Description logics and knowledge representation

- Description logics is a subfield of "Knowledge representation", itself a subfield of "Artificial intelligence".
- Description logic(s):
 - a research field,
 - a family of knowledge representation languages,
 - a member of the family.

Description logics and knowledge representation

- Description logics is a subfield of "Knowledge representation", itself a subfield of "Artificial intelligence".
- Description logic(s):
 - a research field,
 - a family of knowledge representation languages,
 - a member of the family.
- Well-defined syntax with formal semantics, decision problems, algorithms, etc.

Basic Description Logic \mathcal{ALC}

DLs: the core

Concept language.

Person ∏∃Teaches.Course

DLs: the core

Concept language.

Person ∏∃Teaches.Course

- Syntactic ingredients of the concept language:
 - ► Concept names for sets of elements, e.g. Person.
 - ▶ Role names interpreted by binary relations between objects, e.g. EmployedBy.
 - ▶ Concept constructors to build complex concepts, e.g. \neg , \Box , \Box , \exists .

DLs: the core

Concept language.

Person ∏∃Teaches.Course

- Syntactic ingredients of the concept language:
 - ► Concept names for sets of elements, e.g. Person.
 - Role names interpreted by binary relations between objects, e.g. EmployedBy.
 - Concept constructors to build complex concepts, e.g. ¬, □, □, ∃.
- Basic terminology stored in a TBox.
- Facts about individuals stored in an ABox.

(do not worry, you will learn the new terminology)

Basic elements of the language

Concept names.

$$N_{\boldsymbol{C}} \stackrel{\text{def}}{=} \{A_1, A_2, B_1, B_2, \ldots\}$$

Examples: Parent, Sister, Student, Animal

Basic elements of the language

Concept names.

$$N_{\mathbf{C}} \stackrel{\text{def}}{=} \{A_1, A_2, B_1, B_2, \ldots\}$$

Examples: Parent, Sister, Student, Animal

Role names.

$$N_{\textbf{R}} \stackrel{\text{def}}{=} \{r_1, r_2, s_1, s_2, \ldots\}$$

Examples: EmployedBy, MotherOf

Basic elements of the language

Concept names.

$$N_{\mathbf{C}} \stackrel{\text{def}}{=} \{A_1, A_2, B_1, B_2, \ldots\}$$

Examples: Parent, Sister, Student, Animal

Role names.

$$N_{\mathbf{R}} \stackrel{\text{def}}{=} \{ r_1, r_2, s_1, s_2, \ldots \}$$

Examples: EmployedBy, MotherOf

Individual names.

$$N_{I} \stackrel{\text{def}}{=} \{a_1, a_2, b_1, b_2, \ldots\}$$

Examples: Mary, Alice, John, Felix

Boolean constructors and role restrictions

- Boolean constructors.
 - Concept negation ¬
 - **▶** Concept conjunction □
 - Concept disjunction

(class complement)

(class intersection)

(class union)

Boolean constructors and role restrictions

- Boolean constructors.
 - ► Concept negation ¬ (class complement)
 - ► Concept conjunction

 (class intersection)
 - ► Concept disjunction

 (class union)
- Role restrictions.
 - Existential restriction ∃ (at least one related individual)
 - ► Value restriction ∀ (all related individuals)
- Many more constructors exist, see forthcoming ALC extensions.

Boolean constructors and role restrictions

- Boolean constructors.
 - ▶ Concept negation ¬

(class complement)

Concept conjunction

(class intersection)

Concept disjunction

(class union)

- Role restrictions.
 - ► Existential restriction ∃ (at least one related individual)
 - Value restriction ∀

(all related individuals)

- Many more constructors exist, see forthcoming ALC extensions.
- Correspondence with modal language:

$$\neg, \sqcap, \sqcup, \exists, \forall \approx \neg, \land, \lor, \diamondsuit, \Box$$

Correspondence with temporal language:

$$\neg, \sqcap, \sqcup, \exists, \forall \approx \neg, \land, \lor, \mathsf{EX}, \mathsf{AX}$$

Complex concepts in ALC

- ► ALC: Attributive concept Language with Complements.
- Complex concepts.

```
C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C, where A \in N_{\mathbf{C}} and r \in N_{\mathbf{R}}.
```

- Examples of complex concepts:
 - ► Student □¬∃Pays.Tax
 - ► ∃MotherOf.(∃MotherOf.A)

Complex concepts in \mathcal{ALC}

- ► ALC: Attributive concept Language with Complements.
- Complex concepts.

$$C := \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$
, where $A \in N_{\mathbf{C}}$ and $r \in N_{\mathbf{R}}$.

- Examples of complex concepts:
 - ► Student П¬∃Pays.Tax
 - ► ∃MotherOf.(∃MotherOf.A)
- Syntax errors in

$$ightharpoonup C \Rightarrow D \stackrel{\mathsf{def}}{=} \neg C \sqcup D.$$
 (as in pro

Interpretation

Concept name/role/individual

 \approx

unary predicate/binary predicate/constant

Interpretation

Concept name/role/individual

 \approx

unary predicate/binary predicate/constant

▶ Interpretation $\mathcal{I} \stackrel{\mathsf{def}}{=} (\Delta^{\mathcal{I}}, \mathcal{I})$ (usual notation from the literature)

- \blacktriangleright $\Delta^{\mathcal{I}}$: non-empty set (the **domain**).
- ▶ .¹: interpretation function such that

$$\mathbf{A}^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \quad \mathbf{r}^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \quad \mathbf{a}^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

Interpretation

Concept name/role/individual

 \approx

unary predicate/binary predicate/constant

- ▶ Interpretation $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \mathcal{I})$ (usual notation from the literature)
- \triangleright $\Delta^{\mathcal{I}}$: non-empty set (the **domain**).
- ▶ .¹: interpretation function such that

$$\mathbf{A}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \quad \mathbf{r}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \quad \mathbf{a}^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

- ▶ A priori, $\Delta^{\mathcal{I}}$ is arbitrary (not necessarily finite).
- I can be viewed as a first-order model for unary and binary predicate symbols and constants.

Semantics for complex concepts

$$\mathcal{R}(\mathfrak{a}) \stackrel{\mathsf{def}}{=} \{ \mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in \mathcal{R} \}$$

Semantics for complex concepts

$$\mathcal{R}(\mathfrak{a})\stackrel{\mathsf{def}}{=}\{\mathfrak{b}\mid (\mathfrak{a},\mathfrak{b})\in\mathcal{R}\}$$

▶ In modal logic lingua, $\mathfrak{a} \in C^{\mathcal{I}}$ corresponds to $\mathcal{I}, \mathfrak{a} \models C$.

(standard duality applie
$$(\exists r.C)^{\mathcal{I}} = (\neg \forall r. \neg C)^{\mathcal{I}})$$

Graphical representation

- ▶ Teaches^{\mathcal{I}} = {(\mathfrak{a} , C1),(\mathfrak{a} , C2),(\mathfrak{b} , \mathfrak{b})}.
- ightharpoonup Person^{\mathcal{I}} = { $\mathfrak{a},\mathfrak{b}$ }, Course^{\mathcal{I}} = { $\mathcal{C}1,\mathcal{C}2,\mathfrak{b}$ }.

Graphical representation

- ▶ Teaches^{\mathcal{I}} = {(\mathfrak{a} , C1),(\mathfrak{a} , C2),(\mathfrak{b} , \mathfrak{b})}.
- ightharpoonup Person $^{\mathcal{I}} = \{\mathfrak{a}, \mathfrak{b}\}$, Course $^{\mathcal{I}} = \{C1, C2, \mathfrak{b}\}$.
- $ightharpoonup \mathfrak{a} \in (\forall \texttt{Teaches.Course})^{\mathcal{I}}.$

why?)

Another example

© Stefan Borgwardt 2018

- ▶ $(\exists \text{child.} \top)^{\mathcal{I}} = \{d, e, f, g\}.$
- lackbox (Female \sqcap \exists child. \top) $^{\mathcal{I}} = \{m{e}, m{g}\}.$
- ▶ $(\exists child.Mary)^{\mathcal{I}} = \{d, e\}.$

⚠ Herein, Mary understood as a concept name (on this slide).

Concept satisfiability problem

Concept satisfiability problem:

Input: A (complex) concept C in ALC.

Question: Is there an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ such

that $C^{\mathcal{I}} \neq \emptyset$?

► This corresponds to the standard formulation for the satisfiability problem.

(in modal logics, temporal logics, etc.).

Concept satisfiability problem

Concept satisfiability problem:

Input: A (complex) concept C in ALC.

Question: Is there an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ such

that $C^{\mathcal{I}} \neq \emptyset$?

This corresponds to the standard formulation for the satisfiability problem.

(in modal logics, temporal logics, etc.).

- ► The concept satisfiability problem for ALC is PSPACE-complete.
- ► ALC has the finite interpretation property: every satisfiable concept has an interpretation with a finite domain.

Statements

- Concept inclusion.
 Teachers are persons. Employed students are employees.
- Concept and role membership.
 Mary is a student. Alice is a teacher.
 Laura teaches the course "Automata Theory".

Statements

- Concept inclusion.
 Teachers are persons. Employed students are employees.
- Concept and role membership. Mary is a student. Alice is a teacher. Laura teaches the course "Automata Theory".
- Statements are not concepts and express properties of concepts, roles and individuals.

General concept inclusion (GCI)

Expressions of the form

$$C \sqsubseteq D$$

are called general concept inclusions.

- Intuitive meaning:
 - D subsumes C.
 - C is more specific than D.

General concept inclusion (GCI)

Expressions of the form

$$C \sqsubseteq D$$

are called general concept inclusions.

- Intuitive meaning:
 - D subsumes C.
 - C is more specific than D.
- ► Example: Employee

 ∃WorksFor. T

General concept inclusion (GCI)

Expressions of the form

$$C \sqsubseteq D$$

are called general concept inclusions.

- Intuitive meaning:
 - D subsumes C.
 - C is more specific than D.
- ► Example: Employee

 ∃WorksFor.T
- ▶ Satisfaction relation: $\mathcal{I} \models C \sqsubseteq D \stackrel{\text{def}}{\Leftrightarrow} C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- $ightharpoonup C \sqsubseteq D$ understood as a global statement about \mathcal{I} .

Concept equivalence

 $ightharpoonup C \sqsubseteq D$ and $D \sqsubseteq C$ abbreviated by

$$C \equiv D$$

called concept equivalence.

- ▶ Satisfaction relation: $\mathcal{I} \models C \equiv D \stackrel{\text{def}}{\Leftrightarrow} C^{\mathcal{I}} = D^{\mathcal{I}}$.
- ▶ $T \equiv (\neg Student \sqcup Student)$.

Concept equivalence

 $ightharpoonup C \sqsubseteq D$ and $D \sqsubseteq C$ abbreviated by

$$C \equiv D$$

called concept equivalence.

- ▶ Satisfaction relation: $\mathcal{I} \models C \equiv D \stackrel{\text{def}}{\Leftrightarrow} C^{\mathcal{I}} = D^{\mathcal{I}}$.
- ▶ $T \equiv (\neg Student \sqcup Student)$.
- ▶ Concept definition ($A \in N_{\mathbf{C}}$ is a concept name)

$$A \equiv C$$

Subsumption problem

Subsumption problem:

Input: A GCI $C \sqsubseteq D$ with $C, D \in \mathcal{ALC}$.

Question: Is it the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models C \sqsubseteq D$?

Subsumption problem

Subsumption problem:

Input: A GCI $C \sqsubseteq D$ with $C, D \in \mathcal{ALC}$.

Question: Is it the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models C \sqsubseteq D$?

▶ $C \sqsubseteq D$ is "not valid" iff $C \sqcap \neg D$ is satisfiable.

Subsumption problem

Subsumption problem:

Input: A GCI $C \sqsubseteq D$ with $C, D \in \mathcal{ALC}$.

Question: Is it the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models C \sqsubseteq D$?

- ▶ $C \sqsubseteq D$ is "not valid" iff $C \sqcap \neg D$ is satisfiable.
- ► As coPSPACE =PSPACE, the subsumption problem for ALC is PSPACE-complete too.

Assertions

► Concept assertion: stating that an individual is an instance of a concept.

a : C

Assertions

Concept assertion: stating that an individual is an instance of a concept.

a : C

Satisfaction relation: $\mathcal{I} \models a : C \stackrel{\text{def}}{\Leftrightarrow} a^{\mathcal{I}} \in C^{\mathcal{I}}$. \(\text{\Lambda}\) In \mathcal{ALC} , a does not occur in concepts!

Assertions

Concept assertion: stating that an individual is an instance of a concept.

a : C

- Satisfaction relation: $\mathcal{I} \models a : C \stackrel{\text{def}}{\Leftrightarrow} a^{\mathcal{I}} \in C^{\mathcal{I}}$. \(\text{\Lambda}\) In \mathcal{ALC} , a does not occur in concepts!
- ▶ Role assertion: two individuals are in a relation.

- ▶ Satisfaction relation: $\mathcal{I} \models (a, b) : r \stackrel{\text{def}}{\Leftrightarrow} (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$.
- Examples:
 - ► Alice: Student $\sqcap \neg \exists Pays.Tax$.
 - ► (Laura, CNRS): WorksFor.

The validity problem

Validity problem:

Input: A statement α in ALC.

Question: Is the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models \alpha$?

▶ Validity of α is written $\models \alpha$.

The validity problem

Validity problem:

Input: A statement α in ALC.

Question: Is the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models \alpha$?

▶ Validity of α is written $\models \alpha$.

▶ Validity of $\top \sqsubseteq C$ corresponds to the usual notion of validity for C, i.e. for all interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, we have $C^{\mathcal{I}} = \Delta^{\mathcal{I}}$.

The validity problem

Validity problem:

Input: A statement α in ALC.

Question: Is the case that for all interpretations \mathcal{I} , we

have $\mathcal{I} \models \alpha$?

- ▶ Validity of α is written $\models \alpha$.
- ▶ Validity of $\top \sqsubseteq C$ corresponds to the usual notion of validity for C, i.e. for all interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, we have $C^{\mathcal{I}} = \Delta^{\mathcal{I}}$.
- Examples of valid statements:
 - $\blacktriangleright \models \forall r.(C \sqcap D) \sqsubseteq \forall r.C.$
 - ightharpoonup $\models a: C \sqcup \neg C$.
 - $\blacktriangleright \vdash \top \sqsubseteq (\neg(C \sqcap D) \sqcup (C \sqcup D)).$
- ▶ The validity problem for ALC is PSPACE-complete.

What is a knowledge base (a.k.a. ontology)?

- **Terminological Box** (**TBox**) \mathcal{T} : finite collection of GCIs.
 - I.e., a finite set of concept inclusions.
 - This provides definitions of concepts (a terminology).

What is a knowledge base (a.k.a. ontology)?

- **Terminological Box** (**TBox**) \mathcal{T} : finite collection of GCIs.
 - I.e., a finite set of concept inclusions.
 - This provides definitions of concepts (a terminology).
- **Assertional** Box (**ABox**) A: finite collection of assertions.
 - I.e., a finite set of concept and role assertions.
 - ▶ This provides a partial view on the interpretations and can be understood as a $_{\Lambda}$ finite database.

incomplete

What is a knowledge base (a.k.a. ontology)?

- **Terminological Box** (**TBox**) \mathcal{T} : finite collection of GCIs.
 - I.e., a finite set of concept inclusions.
 - This provides definitions of concepts (a terminology).
- **Assertional** Box (**ABox**) A: finite collection of assertions.
 - I.e., a finite set of concept and role assertions.
 - ▶ This provides a partial view on the interpretations and can be understood as a $_{\Lambda}$ finite database.

- **Knowledge base** \mathcal{K} is a pair $(\mathcal{T}, \mathcal{A})$.
- Knowledge bases are also called ontologies.

A knowledge base \mathcal{K}_{\star}

ightharpoonup TBox \mathcal{T} :

```
Course ☐ ¬Person

Teacher ☐ Person □∃Teaches.Course

∃Teaches.T ☐ Person

Student ☐ Person □∃Attends.Course

∃Attends.T □ Person
```

A knowledge base \mathcal{K}_{\star}

ightharpoonup TBox \mathcal{T} :

Course ☐ ¬Person

Teacher ☐ Person □∃Teaches.Course

∃Teaches.T ☐ Person

Student ☐ Person □∃Attends.Course

∃Attends.T □ Person

► ABox A:

Mary: Person CS600: Course

Alice: Person∏Teacher

(Alice, CS600): Teaches (Mary, CS600): Attends

Consequences from knowledge bases

- ▶ Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$.
 - $ightharpoonup \mathcal{I} \models \mathcal{A} \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } \alpha \in \mathcal{A}, \text{ we have } \mathcal{I} \models \alpha.$
 - $ightharpoonup \mathcal{I} \models \mathcal{T} \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } \alpha \in \mathcal{T}, \text{ we have } \mathcal{I} \models \alpha.$
 - $\blacktriangleright \ \mathcal{I} \models \mathcal{K} \stackrel{\mathsf{def}}{\Leftrightarrow} \mathcal{I} \models \mathcal{A} \text{ and } \mathcal{I} \models \mathcal{T}.$
- $\triangleright \mathcal{K} \models \alpha \stackrel{\text{def}}{\Leftrightarrow}$ for all interpretations \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$, we have $\mathcal{I} \models \alpha$.

Consequences from knowledge bases

- ▶ Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$.
 - $ightharpoonup \mathcal{I} \models \mathcal{A} \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } \alpha \in \mathcal{A}, \text{ we have } \mathcal{I} \models \alpha.$
 - $ightharpoonup \mathcal{I} \models \mathcal{T} \stackrel{\mathsf{def}}{\Leftrightarrow} \mathsf{for} \; \mathsf{all} \; \alpha \in \mathcal{T}, \mathsf{we} \; \mathsf{have} \; \mathcal{I} \models \alpha.$
 - $ightharpoonup \mathcal{I} \models \mathcal{K} \stackrel{\mathsf{def}}{\Leftrightarrow} \mathcal{I} \models \mathcal{A} \text{ and } \mathcal{I} \models \mathcal{T}.$
- $ightharpoonup \mathcal{K} \models \alpha \stackrel{\text{def}}{\Leftrightarrow}$ for all interpretations \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$, we have $\mathcal{I} \models \alpha$.
- $ightharpoonup \mathcal{K}_{\star} \models \texttt{CS600} : \neg \texttt{Person} \ \mathsf{and} \ \mathcal{K}_{\star} \models \texttt{Alice} : \texttt{Teacher}.$

- \blacktriangleright \mathcal{K} is **consistent** $\stackrel{\text{def}}{\Leftrightarrow}$ there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$.
- ▶ C is **satisfiable with respect to** $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow}$ there is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $C^{\mathcal{I}} \neq \emptyset$.

- $ightharpoonup \mathcal{K}$ is **consistent** $\stackrel{\text{def}}{\Leftrightarrow}$ there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$.
- ▶ C is satisfiable with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow}$ there is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $C^{\mathcal{I}} \neq \emptyset$.
- ightharpoonup C is subsumed by D with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{K} \models C \sqsubseteq D$.

- $ightharpoonup \mathcal{K}$ is **consistent** $\stackrel{\text{def}}{\Leftrightarrow}$ there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$.
- ▶ C is **satisfiable with respect to** $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow}$ there is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $C^{\mathcal{I}} \neq \emptyset$.
- ▶ C is subsumed by D with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{K} \models C \sqsubseteq D$.
- ▶ C and D are equivalent with respect to $K \stackrel{\text{def}}{\Leftrightarrow} T \models C \equiv D$.
- ▶ a is an instance of C with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{K} \models a : C$.

- $ightharpoonup \mathcal{K}$ is **consistent** $\stackrel{\text{def}}{\Leftrightarrow}$ there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$.
- ▶ C is satisfiable with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow}$ there is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $C^{\mathcal{I}} \neq \emptyset$.
- ▶ C is subsumed by D with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{K} \models C \sqsubseteq D$.
- ▶ C and D are equivalent with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{T} \models C \equiv D$.
- ▶ a is an instance of C with respect to $\mathcal{K} \stackrel{\text{def}}{\Leftrightarrow} \mathcal{K} \models a : C$.
- ▶ $\mathcal{K} \models C \sqsubseteq D$ also written $C \sqsubseteq_{\mathcal{K}} D$. $\mathcal{K} \models C \equiv D$ also written $C \equiv_{\mathcal{K}} D$.

Subsumption problem w.r.t a TBox

- $\mathcal{T} \models C \sqsubseteq D \stackrel{\text{def}}{\Leftrightarrow} \text{ for all interpretations } \mathcal{I},$ $\mathcal{I} \models \mathcal{T} \text{ implies } \mathcal{I} \models C \sqsubseteq D.$
- $ightharpoonup \mathcal{T} \models \mathcal{C} \sqsubseteq \mathcal{D}$ also written $\mathcal{C} \sqsubseteq_{\mathcal{T}} \mathcal{D}$.
- ► Subsumption problem w.r.t. a TBox:

Input: TBox \mathcal{T} , concepts C, D

Question: Does $\mathcal{T} \models C \sqsubseteq D$?

▶ C and D are equivalent w.r.t. \mathcal{K} iff C is subsumed by D w.r.t. \mathcal{K} and D is subsumed by C w.r.t. \mathcal{K} .

- ▶ C and D are equivalent w.r.t. \mathcal{K} iff C is subsumed by D w.r.t. \mathcal{K} and D is subsumed by C w.r.t. \mathcal{K} .
- ▶ $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqcap \neg D$ is not satisfiable w.r.t. \mathcal{K} .

- ▶ C and D are equivalent w.r.t. \mathcal{K} iff C is subsumed by D w.r.t. \mathcal{K} and D is subsumed by C w.r.t. \mathcal{K} .
- ▶ $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqcap \neg D$ is not satisfiable w.r.t. \mathcal{K} .
- ▶ *C* is satisfiable w.r.t. \mathcal{K} iff $C \not\sqsubseteq_{\mathcal{K}} \bot$.

- ▶ C and D are equivalent w.r.t. \mathcal{K} iff C is subsumed by D w.r.t. \mathcal{K} and D is subsumed by C w.r.t. \mathcal{K} .
- ▶ $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqcap \neg D$ is not satisfiable w.r.t. \mathcal{K} .
- ▶ *C* is satisfiable w.r.t. \mathcal{K} iff $C \not\sqsubseteq_{\mathcal{K}} \bot$.
- ▶ *C* is satisfiable w.r.t. \mathcal{K} iff $(\mathcal{T}, \mathcal{A} \cup \{b : C\})$ is consistent. (*b* is fresh)

- ▶ C and D are equivalent w.r.t. \mathcal{K} iff C is subsumed by D w.r.t. \mathcal{K} and D is subsumed by C w.r.t. \mathcal{K} .
- ▶ $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqcap \neg D$ is not satisfiable w.r.t. \mathcal{K} .
- ▶ *C* is satisfiable w.r.t. \mathcal{K} iff $C \not\sqsubseteq_{\mathcal{K}} \bot$.
- ▶ C is satisfiable w.r.t. K iff $(T, A \cup \{b : C\})$ is consistent. (b is fresh)
- ▶ $\mathcal{K} \models a : C$ iff $(\mathcal{T}, \mathcal{A} \cup \{a : \neg C\})$ is not consistent.

(this works fine because \neg admitted in \mathcal{ALC})

C is satisfiable w.r.t. \mathcal{K} iff $(\mathcal{T}, \mathcal{A} \cup \{b : C\})$ is consistent

- ▶ Suppose that C is satisfiable w.r.t. K.
 - ▶ There is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $\mathbf{C}^{\mathcal{I}} \neq \emptyset$, say $\mathfrak{a} \in \mathbf{C}^{\mathcal{I}}$.
 - Let \mathcal{I}' be the variant of \mathcal{I} such that $\boldsymbol{b}^{\mathcal{I}'} \stackrel{\text{def}}{=} \mathfrak{a}$.

C is satisfiable w.r.t. \mathcal{K} iff $(\mathcal{T}, \mathcal{A} \cup \{b : C\})$ is consistent

- Suppose that C is satisfiable w.r.t. K.
 - ▶ There is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $C^{\mathcal{I}} \neq \emptyset$, say $\mathfrak{a} \in C^{\mathcal{I}}$.
 - Let \mathcal{I}' be the variant of \mathcal{I} such that $\boldsymbol{b}^{\mathcal{I}'} \stackrel{\text{def}}{=} \mathfrak{a}$.
 - ▶ As b does not appear in K and C, we have $I' \models K$.
 - ▶ Furthermore, $\mathcal{I}' \models b : C$ as $C^{\mathcal{I}} = C^{\mathcal{I}'}$.

${\it C}$ is satisfiable w.r.t. ${\it K}$ iff $({\it T}, {\it A} \cup \{b: {\it C}\})$ is consistent

- Suppose that C is satisfiable w.r.t. K.
 - ▶ There is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $\mathbf{C}^{\mathcal{I}} \neq \emptyset$, say $\mathfrak{a} \in \mathbf{C}^{\mathcal{I}}$.
 - Let \mathcal{I}' be the variant of \mathcal{I} such that $\boldsymbol{b}^{\mathcal{I}'} \stackrel{\text{def}}{=} \mathfrak{a}$.
 - As b does not appear in K and C, we have $I' \models K$.
 - ▶ Furthermore, $\mathcal{I}' \models b : C$ as $C^{\mathcal{I}} = C^{\mathcal{I}'}$.
 - ▶ Consequently, $\mathcal{I}' \models (\mathcal{T}, \mathcal{A} \cup \{b : C\})$.

C is satisfiable w.r.t. K iff $(T, A \cup \{b : C\})$ is consistent

- Suppose that C is satisfiable w.r.t. K.
 - ▶ There is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $\mathbf{C}^{\mathcal{I}} \neq \emptyset$, say $\mathfrak{a} \in \mathbf{C}^{\mathcal{I}}$.
 - Let \mathcal{I}' be the variant of \mathcal{I} such that $\boldsymbol{b}^{\mathcal{I}'} \stackrel{\text{def}}{=} \mathfrak{a}$.
 - ▶ As *b* does not appear in \mathcal{K} and C, we have $\mathcal{I}' \models \mathcal{K}$.
 - ▶ Furthermore, $\mathcal{I}' \models b : C$ as $C^{\mathcal{I}} = C^{\mathcal{I}'}$.
 - ▶ Consequently, $\mathcal{I}' \models (\mathcal{T}, \mathcal{A} \cup \{b : C\})$.
- ▶ Now, suppose that $(\mathcal{T}, \mathcal{A} \cup \{b : C\})$ is consistent.
 - ▶ There is \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$, $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \models b : C$.
 - ► Consequently, $b^{\mathcal{I}} \in C^{\mathcal{I}}$.
 - ▶ So, there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $\mathbf{C}^{\mathcal{I}}$ is non-empty.

Classification

- Deduce implicit knowledge from the explicitly represented knowledge.
- ▶ For all A, B in K, check whether $A \sqsubseteq_K B$.
- For all A in K, check whether A is satisfiable w.r.t. K. If not for some B, a modelling error is probable.
- ▶ For all a and C in K, check whether $K \models a : C$.

Classification

- Deduce implicit knowledge from the explicitly represented knowledge.
- ▶ For all A, B in K, check whether $A \sqsubseteq_K B$.
- For all A in K, check whether A is satisfiable w.r.t. K. If not for some B, a modelling error is probable.
- ▶ For all a and C in K, check whether $K \models a : C$.
- Classifying a knowledge base K.
 - 1. Check whether K is consistent, if yes, go 2.
 - 2. For each pair A, B of concept names (plus \top , \bot), check whether $\mathcal{K} \models A \sqsubseteq B$.
 - 3. For all individual names a and concepts C in K, check whether $K \models a : C$.

leading to K's **inferred class hierarchy**.

Complexity results for \mathcal{ALC}

 Concept satisfiability and subsumption problems are PSPACE-complete. (no knowledge base involved)

Complexity results for ALC

- Concept satisfiability and subsumption problems are PSPACE-complete. (no knowledge base involved)
- Knowlegde base consistency problem is EXPTIME-complete.

$$NP \subseteq PSPACE \subseteq EXPTIME \subset 2EXPTIME \subseteq N2EXPTIME$$

▶ Recall that $C \sqsubseteq_{\mathcal{K}} D$ iff $(\mathcal{T}, \mathcal{A} \cup \{b : C \sqcap \neg D\})$ is not consistent.

Digression: closed world / open world assumptions

- Standard semantics for K = (T, A) makes an **Open World Assumption** (OWA).
 - No assumption that all information is known about all individuals in a domain.
 - ► Elements in the interpretation domain may not correspond to interpretations of individual names.
- Closed World Assumption (CWA) enforces that the only elements in the domain are named elements (by individual names).
- Standard databases make the CWA: facts that are not explicitly stated are false.

Several Extensions of \mathcal{ALC} (Part I)

Extensions: a feature of DLs

- Concepts/assertions in ALC have a limited expressive power.
 - How to express simple arithmetical constraints such as "Alice teaches at least three courses"?
 - ► How to enforce constraints between roles? For instance, $r^{\mathcal{I}} = (s^{\mathcal{I}})^{-1}$ or $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$.

Extensions: a feature of DLs

- Concepts/assertions in ALC have a limited expressive power.
 - How to express simple arithmetical constraints such as "Alice teaches at least three courses"?
 - ► How to enforce constraints between roles? For instance, $r^{\mathcal{I}} = (s^{\mathcal{I}})^{-1}$ or $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$.
- ► The expressive power of ALC concepts can be characterised precisely, thanks to the notion of bisimulation (not presented today).
- Trade-off between the expressive power and the computational properties of the extensions.

Extensions: a feature of DLs

- Concepts/assertions in ALC have a limited expressive power.
 - How to express simple arithmetical constraints such as "Alice teaches at least three courses"?
 - ► How to enforce constraints between roles? For instance, $r^{\mathcal{I}} = (s^{\mathcal{I}})^{-1}$ or $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$.
- ► The expressive power of ALC concepts can be characterised precisely, thanks to the notion of bisimulation (not presented today).
- Trade-off between the expressive power and the computational properties of the extensions.
 - ▶ In the other direction: study of \mathcal{ALC} fragments to reduce the complexity while preserving the expression of interesting properties, see e.g. \mathcal{EL} , \mathcal{FL}_0 or DL-Lite.

Inverse roles

Course $\sqsubseteq \neg Person$

Teacher \sqsubseteq Person \sqcap \exists Teaches.Course

 $\exists Teaches.T \sqsubseteq Person$

Student \sqsubseteq Person \sqcap \exists Attends.Course

∃Attends.T ⊑ Person

Inverse roles

Course ☐ ¬Person _

Teacher \sqsubseteq Person \sqcap \exists Teaches.Course

 $\exists Teaches. T \sqsubseteq Person$

Student \sqsubseteq Person \sqcap \exists Attends.Course

 $\exists Attends.T \sqsubseteq Person$ Professor \sqsubseteq Teacher

Course $\sqsubseteq \forall TaughtBy. \neg Professor$

Inverse roles

Course ☐ ¬Person

Teacher ☐ Person □ ∃Teaches.Course

∃Teaches.T ☐ Person

Student ☐ Person □ ∃Attends.Course

∃Attends.T ☐ Person

Professor ☐ Teacher

Course ☐ ∀TaughtBy.¬Professor

Extending N_R with inverse roles:

$$N_{\mathbf{R}} \cup \{r^- \mid r \in N_{\mathbf{R}}\}$$

▶ Given
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}), (r^{-})^{\mathcal{I}} \stackrel{\text{def}}{=} (r^{\mathcal{I}})^{-1}$$
 where
$$\mathcal{R}^{-1} \stackrel{\text{def}}{=} \{(\mathfrak{b}, \mathfrak{a}) \mid (\mathfrak{a}, \mathfrak{b}) \in \mathcal{R}\}$$

Back to the previous example.

```
Professor ⊑ Teacher
Course ⊑ ∀Teaches<sup>-</sup>.¬Professor
```

Back to the previous example.

```
Professor ⊑ Teacher
Course ⊑ ∀Teaches<sup>-</sup>.¬Professor
```

▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{I}$ is defined as \mathfrak{L} except that inverse roles are added. \wedge Symbol ' \mathcal{I} ' overloaded here

Back to the previous example.

```
Professor ☐ Teacher

Course ☐ ∀Teaches-.¬Professor
```

▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{I}$ is defined as \mathfrak{L} except that inverse roles are added. \triangle Symbol ' \mathcal{I} ' overloaded here

```
(Name accumulation of symbol \mathfrak{L}.)
```

Back to the previous example.

```
Professor ☐ Teacher

Course ☐ ∀Teaches-.¬Professor
```

▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{I}$ is defined as \mathfrak{L} except that inverse roles are added. \wedge Symbol ' \mathcal{I} ' overloaded here

```
(Name accumulation of symbol \mathfrak{L}.)
```

► Concept satisfiability for ALCI remains PSPACE-complete and knowledge consistency remains EXPTIME-complete.

▶ How to express in \mathcal{ALC} that a student attends to at least three courses?

► How to express in ALC that a student attends to at least three courses?

```
Student \sqsubseteq \existsAttends.(Course \sqcap A)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap B)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap \neg B)

(Why isn't it satisfactory?)
```

► How to express in ALC that a student attends to at least three courses?

```
Student \sqsubseteq \existsAttends.(Course \sqcap A)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap B)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap \neg B)

(Why isn't it satisfactory?)
```

How to express in ALC that a student attends to at most 10 courses?

► How to express in ALC that a student attends to at least three courses?

```
Student \sqsubseteq \existsAttends.(Course \sqcap A)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap B)

Student \sqsubseteq \existsAttends.(Course \sqcap \neg A \sqcap \neg B)

(Why isn't it satisfactory?)
```

- How to express in ALC that a student attends to at most 10 courses?
- ► There is no concept C in \mathcal{ALC} such that for all interpretations \mathcal{I} , for all $\mathfrak{a} \in \Delta^{\mathcal{I}}$,

$$\mathfrak{a} \in C^{\mathcal{I}} \text{ iff card}(\{\mathfrak{b} \mid (\mathfrak{a},\mathfrak{b}) \in \text{Attends}^{\mathcal{I}}\}) \geq 3$$

(Unqualified) number restriction

- Extending the concepts with **number restrictions** ($\leq n r$) and ($\geq m r$).
- ► Given $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$,

$$(\leq n \, r)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \text{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}\}) \leq n \}$$

$$(\geq m \ r)^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{\mathfrak{a} \in \Delta^{\mathcal{I}} \mid \mathsf{card}(\{\mathfrak{b} \mid (\mathfrak{a},\mathfrak{b}) \in r^{\mathcal{I}}\}) \geq m\}$$

(Unqualified) number restriction

- Extending the concepts with **number restrictions** ($\leq n r$) and ($\geq m r$).
- ▶ Given $\mathcal{I} \stackrel{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$,

$$(\leq n \, r)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}\}) \leq n \}$$

$$(> m \, r)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}\}) > m \}$$

- ▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{N}$ is defined as \mathfrak{L} except that (unqualified) number restrictions are added.
- ▶ In \mathcal{ALCN} , (≥ 3 Attends) \sqcap (≤ 10 Attends) does the job.

Qualified number restriction

- ▶ Generalising the number restrictions ($\sim n r$).
- ▶ Qualified number restrictions: $(\leq n \ r \cdot C)$, $(\geq m \ r \cdot C)$.
- ▶ Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$,

$$(\leq n \, r \cdot C)^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \mathsf{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \, \mathsf{and} \, \mathfrak{b} \in C^{\mathcal{I}}\}) \leq n \}$$

$$(\geq m \, r \cdot C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \text{ and } \mathfrak{b} \in C^{\mathcal{I}}\}) \geq m \}$$

Qualified number restriction

- ▶ Generalising the number restrictions ($\sim n r$).
- ▶ Qualified number restrictions: $(\leq n \ r \cdot C)$, $(\geq m \ r \cdot C)$.
- Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$,

$$(\leq n \, r \cdot C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \text{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \text{ and } \mathfrak{b} \in C^{\mathcal{I}}\}) \leq n \}$$

$$(\geq m \, r \cdot C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \text{ and } \mathfrak{b} \in C^{\mathcal{I}}\}) \geq m \}$$

- $ightharpoonup (\sim n r) = (\sim n r \cdot \top).$
- ▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{Q}$ is defined as \mathfrak{L} except that qualified number restrictions are added.

Qualified number restriction

- ▶ Generalising the number restrictions ($\sim n r$).
- ▶ Qualified number restrictions: $(\leq n \ r \cdot C)$, $(\geq m \ r \cdot C)$.
- 7.7.

► Given
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}),$$

$$(\leq n \, r \cdot C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \text{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \text{ and } \mathfrak{b} \in C^{\mathcal{I}}\}) \leq n \}$$

$$(\geq m \, r \cdot C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{ \mathfrak{a} \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{\mathfrak{b} \mid (\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}} \text{ and } \mathfrak{b} \in C^{\mathcal{I}}\}) \geq m \}$$

- $ightharpoonup (\sim n r) = (\sim n r \cdot \top).$
- Given a logic £, £Q is defined as £ except that qualified number restrictions are added.
- ► Concept satisfiability for ALCIQ is PSPACE-complete and knowledge base consistency is EXPTIME-complete.

Recapitulation

Recapitulation: concept and role constructors

Name	Syntax	Semantics			
Тор	Т	$\Delta^{\mathcal{I}}$			
Bottom		Ø			
Conjunction	$C \sqcap D$	$\mathcal{C}^{\mathcal{I}}\cap \mathcal{D}^{\mathcal{I}}$			
Disjunction	$C \sqcup D$	$\mathcal{C}^{\mathcal{I}} \cup \mathcal{D}^{\mathcal{I}}$			
Negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$			
Existential restr.	∃r.C	$\{\mathfrak{a}\in\Delta^\mathcal{I}\mid \mathit{r}^\mathcal{I}(\mathfrak{a})\cap\mathit{C}^\mathcal{I} eq\emptyset\}$			
Value restr.	∀r.C	$\{\mathfrak{a}\in\Delta^\mathcal{I}\mid r^\mathcal{I}(\mathfrak{a})\subseteq C^\mathcal{I}\}$			
Unqual. nb. restr.	$(\leq n r)$	$\{\mathfrak{a} \in \Delta^{\mathcal{I}} \mid card(\{\mathfrak{b} \mid (\mathfrak{a},\mathfrak{b}) \in r^{\mathcal{I}}\}) \leq n\}$			
Qual. nb. restr.	$(\leq n r \cdot C)$	$\{\mathfrak{a}\in\Delta^{\mathcal{I}}\mid \operatorname{card}(\{\mathfrak{b}\in\mathcal{C}^{\mathcal{I}}\mid (\mathfrak{a},\mathfrak{b})\in r^{\mathcal{I}}\})\leq n\}$			
Nominal*	{ a }	$\{a^{\mathcal{I}}\}$			
Role value map*	r⊑s	$\{\mathfrak{a}\in\Delta^{\mathcal{I}}\mid r^{\mathcal{I}}(\mathfrak{a})\subseteq \mathcal{S}^{\mathcal{I}}(\mathfrak{a})\}$			
Inverse role	r ⁻	$\{(\mathfrak{b},\mathfrak{a})\mid (\mathfrak{a},\mathfrak{b})\in r^{\mathcal{I}}\}$			
Role composition*	r∘s	$\{(\mathfrak{a},\mathfrak{b})\mid\exists\ \mathfrak{a}'\ (\mathfrak{a},\mathfrak{a}')\in r^{\mathcal{I}}\ \mathrm{and}\ (\mathfrak{a}',\mathfrak{b})\in s^{\mathcal{I}}\}$			

^{*:} See next lecture

Recapitulation: Terminological and assertional axioms

Name	Syntax	Semantics
General concept inclusion	$C \sqsubseteq D$	$\mathcal{C}^\mathcal{I} \subseteq \mathcal{D}^\mathcal{I}$
Concept definition	$A \equiv C$	$A^{\mathcal{I}}=C^{\mathcal{I}}$
Role inclusion*	$r \sqsubseteq s$	$r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
Role transitivity*	Trans(r)	$r^{\mathcal{I}}$ is transitive
Concept assertion	a : C	$oldsymbol{a}^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}}$
Role assertion	(a, b) : r	$(a^{\mathcal{I}},b^{\mathcal{I}})\in r^{\mathcal{I}}$

^{*:} See next lecture

Conclusion

- Today lecture: Introduction to description logics
 - Getting familiar with DL terminology.
 - Playing with syntax and decision problems.
- Next week lecture: Introduction and Properties.
 - Extensions of ALC (Part II).
 - Relationships with first-order logic.
 - Tree model property.