UNIT-V-S3

Introduction to reactions involving substitution

Substitution reaction

A substitution reaction is a chemical reaction in which the functional group attached to a compound is replaced by another group (nucleophile or electrophile).

Nucleophilic reactions

What does the term "nucleophilic substitution" imply?

- •A nucleophile is an electron rich species that will react with an electron poor species
- •A substitution implies that one group replaces another.

Nucleophilic substitution reactions occur when an electron rich species, the **nucleophile**, reacts at an electrophilic saturated **C** atom attached to an electronegative group, the **leaving group**, that can be displaced as shown by the general scheme:

$$\mathbf{N}\mathbf{u}^{-} \quad \begin{array}{ccc} & |\delta^{+} | \delta^{-} \\ & -|C^{-} | \mathbf{L}\mathbf{G} \end{array} & \longrightarrow \quad \begin{array}{ccc} & |C^{-} | \mathbf{N}\mathbf{u} \\ & |C^{-} | \mathbf{N}\mathbf{u} \end{array} & \mathbf{L}\mathbf{G}^{-} \end{array}$$

The electrophilic C can be recognized by looking for the polar σ bond due to the presence of an electronegative substituent (esp. C-Cl, C-Br, C-I and C-O)

Nucleophilic substitution reactions are an important class of reactions that allow the interconversion of functional groups.

Of particular importance are the reactions of alkyl halides (**R-X**) and alcohols (**R-OH**)

For alcohols, the range of substitution reactions possible can be increased by utilizing the tosylates (**R-OTs**), an alternative method of converting the **-OH** to a better leaving group.

Nucleophilic Substitution -

- Nucleophile (non bonding electron) attack the partial positive charge carbon (nucleus)
- Chloride (halogen) leaving group and substituted by nucleophile
- Nucleophile replace/substitute the halogen

Mechanism of Nucleophilic Substitution (S,1 and S,2)

- S Substitution Nucleophilic Unimolecular
- S_N1 2 steps, unimolecular (first order)
- 1st step slow/rds, Carbocation formation
- 2nd step fast, Nucleophilic attack carbocation
- Rate = k [substrate], First order overall
- Rate depend on conc substrate NOT conc nucleophile
- Nature of the nucleophile doesn't affect the rate

Click HERE for more info

Stable Intermediate Carbocation

- S_N1 produce intermediate carbocation
- · Carbocation positive charged on carbon
- Carbocation formation sp2 hybrid (Trigonal Planar)
- Nucleophile attack from both sides
- Racemic Mixture

SN¹ mechanism with an example

 S_N^{-1} indicates a **substitution**, **nucleophilic**, **unimolecular** reaction, described by the expression rate = k [**R-LG**]. This implies that the rate determining step of the mechanism depends on the decomposition of a single molecular species.

This pathway is a multi-step process with the following characteristics:

$$\mathbf{N}\mathbf{u}$$
 + \mathbf{c} - $\mathbf{N}\mathbf{u}$ - \mathbf{c} -

step 1: slow loss of the leaving group, **LG**, to generate a <u>carbocation</u> intermediate, then

step 2 : rapid attack of a nucleophile on the electrophilic carbocation to form a new s bond

Reaction Coordinate

S_N1 reaction

IB examples for S_N1 and S_N2 reactions

S_N1 reaction, Hydrolysis of 2 -Bromo 2- Methylpropane with warm aq dil NaOH

Tertiary - S_N1

- 2 steps mechanism
- 1st step, slow/rds, Heterolysis (breaking C-Br bond) forming carbocation
- 2nd step, fast, nucleophile OH- reacts with carbocation

Click HERE to view

S_N² mechanism

S_N2 indicates a *substitution*, *nucleophilic*, *bimolecular* reaction, described by the expression rate = k [Nu][R-LG].

This implies that the rate determining step involves an interaction between two species, the nucleophile and the organic substrate.

This pathway is a concerted process (single step) as shown by the following reaction coordinate diagrams, where there is simultaneous attack of the nucleophile and displacement of the leaving group.

$$\mathbf{N}\mathbf{u} = \begin{bmatrix} \delta + \delta - & & \\ -C - \mathbf{L}\mathbf{G} & & \\ & & \end{bmatrix}$$

The nucleophile attacks at the carbon with the partial positive charge as a result of the polar s bond to the electronegative atoms in the leaving group.

Single step reactions have no intermediates and a single transition state (TS). In an S_N^2 there is simultaneous formation of the carbon-nucleophile bond and breaking of the carbon-leaving group bond, hence the reaction proceeds via a TS in which the central C is partially bonded to five groups.

Reaction Coordinate

Substitution Nucleophilic Bimolecular

- 1 step mechanism, Bimolecular collision
- Rate = k[substrate][nucleophile], Second order overall
- Rate depend on conc of substrate and nucleophile
- Bond making/breaking occur together result in trigonal bipyramidal shape
- Inverted configuration (backside attack by Nucleophile)

S_N2 reaction, Hydrolysis of Bromoethane with warm aq NaOH

- Primary S_N2
- One step mechanism
- Bond making/breaking simultaneous in transition state

Factor affecting rate of Nucleophilic Substitution (S_N1/S_N2)

- 1. Nature of Halogen
- Bond length increase, Bond strength decrease from CI to I, easier for nucleophile to attack by S_N2
- 2. Nature of Halogenoalkane
- Tertiary $(S_N 1)$ faster than Primary $(S_N 2)$ Formation Carbocation $(S_N 1)$ faster than formation of transition state $(S_N 2)$
- 3. Nature of Nucleophile
- Negatively charged more reactive than neutral nucleophile

Comparison between $S_{\rm N}1$ and $S_{\rm N}2$ reaction mechanism

S _N 2 reaction mechanism	S _N 1 reaction mechanism		
One step mechanism	Two step mechanism		
Bimolecular reaction	Unimolecular reaction		
Product formation takes place by TS	Product formation takes place by carbocation intermediate		
No carbocation rearrangement	Carbocation rearrangement		
Reaction is favoured by polar aprotic solvents	Reaction is favoured by polar protic solvents		
Given mainly by methyl halides	Given mainly by tertiary alkyl halides		
Reactivity of RX; $CH_3X > 1 ^\circ > 2^\circ > 3^\circ$	Reactivity of RX; 3° > 2° > 1°> methyl		
Mechanism is favoured when nucleophile is an anion	Mechanism is favoured when nucleophile is neutral		
Reaction velocity depends on the concentration	Reaction velocity is independent of the concentration		
of nucleophile. i.e mechanism is favored by	of nucleophile.		
high concentration of nucleophile			
Inversion of configuration	Racemisation		

Electrophilic substitution

Electrophilic substitution reaction:

Electrophile: Electron loving (positively charged species)

An electrophilic substitution reaction is a chemical reaction in which the functional group attached to a compound is replaced by an electrophile.

Types of Electrophilic Substitution Reactions

- 1. Electrophilic aliphatic substitution reactions
- 2. Electrophilic aromatic substitution

1. Electrophilic aliphatic substitution reactions

In electrophilic aliphatic substitution reactions, an electrophile replaces the functional group (generally hydrogen) in an aliphatic compound.

Ex: Halogenation of ketone, Nitrosation

2. Electrophilic Aromatic Substitution Reaction

In electrophilic aromatic substitution reactions, an atom attached to an aromatic ring is replaced with an electrophile.

Ex: Aromatic nitrations, aromatic sulphonation, and Friedel-Crafts reactions.

Mechanism of Electrophilic substitution reactions

Step 1: Generation of Electrophile

Anhydrous aluminium chloride is a very useful Lewis acid in the generation of electrophile for the chlorination, alkylation, and acylation of an aromatic ring.

$$CI - CI + AICI_3$$
 $\longrightarrow CI + [AICI_4]^{\cdot}$
 $CH_3 - CI + AICI_3$ $\longrightarrow CH_3 + [AICI_4]^{\cdot}$
 $CH_3 - C - CI + AICI_3$ $\longrightarrow CH_3 - C + [AICI_4]^{\cdot}$
 $CH_3 - C - CI + AICI_3$ $\longrightarrow CH_3 - C + [AICI_4]^{\cdot}$

Step 2: Formation of Carbocation

The electrophile attacks the aromatic ring, forming a sigma complex or an arenium ion.

Step 3: Removal of Proton

The sigma complex releases a proton from the sp³ hybridized carbon when it is attacked by the $[AICI_{\Lambda}]^-$

Thus, the electrophile replaces the hydrogen atom in the benzene ring.

Mechanism

The Mechanism of Electrophilic Aromatic Substitution

Steps1. Addition of the electrophile-Making the C-E bond

Sigma Complex

Resonance stabilized Arenium ion

Step 2. Proton transfer-Restoring Aromaticity

bromobenzene

AlBr₃

Electrophilic substitution mechanism

1. Formation of the electrophile

$$Br \longrightarrow Br \longrightarrow Br \longrightarrow Br \longrightarrow AlBr_3$$

2. Electrophilic attack on benzene

Different electrophilic substitution reactions of benzene

Types of reaction	Reagent used	Electrophile generated (E ⁺)	Product formed
Halogenation (Chlorination)	Cl ₂ + FeCl ₃ /AlCl ₃	Cl ⁺	Chlorobenzene
Bromination	Br ₂ + FeBr ₃	Br^+	Bromobenzene
Nitration	Conc. HNO ₃ + H ₂ SO ₄	NO ₂ ⁺	Nitrobenzene
Sulphonation	Fuming H ₂ SO ₄ (H2SO4 + SO3)	SO ₃	Benzene sulphonic acid
Friedel-Crafts alkylation	R-Cl + FeCl ₃	R ⁺	Alkyl benzene
Friedel-Crafts acylation	R-COCl+ FeCl ₃	RCO ⁺	Alkyl phenyl ketone

Free radical

unpaired electron

CH₃:CH₃ ethane (covalent bond) CH₃: Li ⊕
methyl anion
(ionic bond)

CH₃ AlCl₄ methyl cation

methyl cation (ionic bond)

CH₃* methyl radical (neutral species)

inversion of methyl radical

Free radical Substitution reaction

Free radical substitution

chlorination of methane

i.e. homolytic breaking of covalent bonds

Overall reaction equation

$$CH_4 + Cl_2 \longrightarrow CH_3CI + HCI$$

Conditions

ultra violet light excess methane to reduce further substitution

Mechanism of free radical reaction

Free radical substitution mechanism

ultra-violet
$$Cl_2 \longrightarrow Cl + Cl$$
 initiation step

 $CH_4 + Cl \longrightarrow CH_3 + HCl$ $\frac{two}{propagation}$
 $CH_3 + Cl_2 \longrightarrow CH_3Cl + Cl \longrightarrow Steps$
 $CH_3 + Cl \longrightarrow CH_3Cl$ termination step

 $CH_3 + CH_3 \longrightarrow CH_3CH_3$ $\frac{minor}{termination}$