

- [1] https://www.sube.gob.ar/
- [2] https://www.digitalcourage.de/
- [3] https://noalvotoelectronico.com/
- [4] https://twitter.com/Envido32
- [5] https://youtu.be/E Nsf0uU8IY
- [6] https://www.ohwr.org/documents/294
- [7] https://en.wikipedia.org/wiki/Boost converter
- [8] https://en.wikipedia.org/wiki/Nine-volt_battery
- [9] https://en.wikipedia.org/wiki/Pulse-width_modulation
- [10] https://en.wikipedia.org/wiki/555_timer_IC

¡ATENCIÓN!

Este dispositivo tiene una salida en ALTO VOLTAJE. Puede ocasionar daños en el organismo o incluso la muerte si se aplica la descarga sobre el cuerpo. Debe manipularse adecuadamente. No utilizar sin protección adecuada.

RFID Zapper

RFID Zapper sirve para quemar, dejando fuera de funcionamiento de forma irreversible los chips tipo RFID como el que se encuentran en llaves de puertas electrónicas, tarjetas de transporte público [1], pasaportes [2], boletas de voto electrónico [3], etc. No deja marca visible en absoluto ni emite ruido alguno.

Este dispositivo debe utilizarse SOLO con fines didácticos o de pruebas. El mal uso del mismo puede ocasionar serios daños en dispositivos electrónicos.

Licencia

RFID Zapper es un proyecto libre realizado por *Manolo Envido [4]*, basado en el diseño presentado en la serie de videos de *The Post Apocalyptic Inventor [5]*.

Libre para utilizar, modificar, compartir y demás bajo los términos de la licencia <u>CERN Open</u> <u>Hardware Licence v1.2</u> [6].

http://git.io/v5DJb

Principio de funcionamiento

Se trata de un circuito elevador de tensión alimentado por una batería alcalina de 9v. Este elevador carga el capacitor y luego al cerrar el segundo interruptor se descarga el capacitor a través de la antena RFID. Esto genera un pulso electromagnético que al ser captado por un chip RFID lo utilizara como alimentación. Al ser un pulso de alta intensidad (y corta duración) la energía absorbida por el chip sera más alta que la soportada por el integrado probocándole un daño irreparable de forma totalmente silenciosa e invisible.

El circuito elevador de tensión es del tipo <u>boost</u> [7] alimentado por una <u>batería</u> <u>alcalina de 9v</u> [8]. Este circuito es controlado por un <u>PWM</u> [9] básico realizado con el <u>Timer 555</u> [10] y controlado por el potenciómetro, se recomienda evitar un ciclo de trabajo del PWM mayor al 50% para evitar daños a la batería. Una vez cargado el capacitor el circuito de feedback enciende el LED y desactiva el Timer 555.

Lista de materiales

Description	Part	References	Value	Footprint	Quantity Per PCB
Bornier	2x1	SW_SPST1 SW_SPST2 BT1	_	Bornier	3
Switch	DPDT	SW_SPST1 SW_SPST2	_	Bornier	1
Battery Cell	Baterry9v	BT1	Alkaline 9v	Bornier	1
Timer 555 IC	NE555	U1	NE555	DIP 8 W7.62mm	1
Capacitor	Ceramic	C1	100nF	Disc 4.3mm W1.9mm P5.00mm	1
Capacitor	Ceramic	C2	10nF	Disc 4.3mm W1.9mm P5.00mm	1
Capacitor	Polarised	C3	120uF 400v	Radial D18.0mm P7.50mm	1
LED	Generic	DL1	Any colour	LED 3.0mm	1
Diode	Ultra Fast Recovery Rectifier	D3	RG4	P10.16mm	1
Diode	Generic	D1 D2	1N4148	P10.16mm	2
Diode	Zenner v5.1	DZ1	1N4733A	P10.16mm	1
PowerMESH MOSFET	N-CHANNEL 900V 4ohm 3.5 A	Q2	P3NB90 FP IRF3205	TO-220	1
Inductor	With Iron Core	L1	100uH	Toroid 5x10mm	1
Small Signal Transistor	NPN 45V Vce 0.1A lc	Q1	BC549	TO-92	1
Resistor	Generic	R1 R6	330ohm 1/8w	L3.6mm D1.6mm P7.62mm	2
Resistor	Generic	R3 R9	150kohm 1/8w	L3.6mm D1.6mm P7.62mm	2
Resistor	Generic	R8	10Mohm 1/8w	L3.6mm D1.6mm P7.62mm	1
Potentionmeter	Trimmer	R2	500kohm 1/8w	РОТ	1