

材料力学 (Mechanics of Materials) 压杆稳定性问题

戴兆贺

北京大学工学院

2024-04-25

欧拉临界力

$$\mathcal{P}_{\rm cr} = \frac{\pi^2 E I_z}{(\mu \ell)^2}$$

- □ 长度折算系数: 具体数值依赖于具体的载荷情况和约束条件
- $lacksymbol{\square}$ 线性理论: $P=P_{\mathrm{cr}}$ 后,细长杆的最大挠度为任意值
- \square 非线性理论: $P > P_{cr}$ 后,存在"两个"稳定解答

Size and Shape in Biology

T. McMahon, Science (1973) 125 $\longleftrightarrow D$ 116 m 100 $mg \sim \rho g \times D^2 \times \ell$ 93 m $(mg)_{\rm cr} \sim {EI_z \over (\mu\ell)^2}$ 75 m $\ell_{\rm cr} pprox 0.8 \left(\frac{E}{
ho}\right)^{1/3} D^{2/3}$ G. Greenhill 30 m (1881)10 m

The Tesla tree?

树木能长多高?

10 < E < 12 GPa $500 < \rho < 1000 \text{ kg/m}^2$

Fabian Brau

动物骨骼的尺寸和形状?

失稳准则: $Mg \sim rac{ED^4}{\ell^2}$

骨骼/体重关系: $\rho D^2 \ell \sim \phi M$

$$D \sim \phi^{1/4} \left(\frac{g}{E\rho^2}\right)^{1/8} M^{3/8}$$

$$\ell \sim \phi^{1/2} \left(\frac{E}{g\rho^2}\right)^{1/4} M^{1/4}$$

标度关系

Elephant $\phi \sim 20\%$ Rat $\phi \sim 5\%$

重量 (kg)

"强度准则"导致显著不同的骨骼/体重比 (Square-cube law)

其他案例

$$\ell \propto D^{3/2}$$

$$\lambda \sim (EI_z/\rho g)^{1/4}$$

2D problem: A far from the threshold problem

☐ First consider a thick solid (near-threshold approach):

$$w(r,\theta) = \widetilde{w}(r) + w^{(1)}(r)\cos m\theta + \dots$$

$$N_{ij}(r,\theta) = \widetilde{N}_{ij}(r) + N_{ij}^{(1)}(r)\cos m\theta + \dots$$

To solve eigenvalue problem with $\,\widetilde{f}\gg f^{(1)}\,$ (cf. Euler buckling) The base

☐ But for an ultrathin solid, the state is far from threshold:

$$m \to \infty \text{ as } t \to 0, \ \mathcal{U}_b/\mathcal{U}_s \to 0 \ \text{(many wrinkles in 3D)}$$

$$m \times w^{(1)}(r) = \mathcal{O}(1)$$
 so that $(\partial w/\partial \theta)^2 = \mathcal{O}(1)$

Tension field theory

□ What happened in the wrinkled region? $(R_w < r \le R)$

$$\begin{split} w(r,\theta) &= \widetilde{w}(r) + \frac{w^{(1)}(r)}{m} \cos m\theta + \dots \\ &\Rightarrow \widetilde{N}_{\theta\theta} = N_{\theta\theta}^{(1)} = 0 \\ N_{ij}(r,\theta) &= \widetilde{N}_{ij}(r) + \frac{N_{ij}^{(1)}(r)}{m} \cos m\theta + \dots \end{split}$$

Only to solve the mean (axisymmetric) shape with $\,N_{rr}\gg N_{ heta heta}$

The hoop stress state is relieved completely by wrinkling: Equivalent to $h/R \gg \mathcal{K}^{-1/2}$

Thanks!