Projeto Computacional de Oscilações e Ondas - Junho de 2020

Duarte Marques - ist196523

Movimento de um sistema sujeito a damping

1. Apresentação do problema e equações do movimento

Na figura seguinte, está representado o sistema físico cujo comportamento será analisado no presente trabalho.

Figura 1: Sistema com três massas e quatro molas, sujeito a *damping*, devido à ação de c_{v1} e c_{v2} (imagem retirada de https://www.efunda.com/formulae/vibrations/mdof_eom.cfm).

Este problema apresenta três graus de liberdade. Sejam k_1 , k_2 , k_3 e k_4 as constantes das molas, m_1 , m_2 e m_3 os valores das massas e c_{v_1} e c_{v_2} os coeficientes de viscosidade (tal como surge na Figura 1). Sejam, também, respetivamente, x_1 , x_2 e x_3 as posições das massas 1, 2 e 3 relativamente aos respetivos equilíbrios e $f_1(t)$, $f_2(t)$ e $f_3(t)$ as intensidades das forças externas atuantes nas respetivas massas. As equações do movimento são dadas por:

$$\begin{split} m_1\ddot{x}_1 + c_{v1}\dot{x}_1 + \left(k_1 + k_2 + k_4\right)x_1 - k_2x_2 - k_4x_3 &= f_1\text{ (t)}\\ m_2\ddot{x}_2 + c_{v2}\dot{x}_2 - c_{v2}\dot{x}_3 + \left(k_2 + k_3\right)x_2 - k_2x_1 - k_3x_3 &= f_2\text{ (t)}\\ m_3\ddot{x}_3 + c_{v2}\dot{x}_3 - c_{v2}\dot{x}_2 + \left(k_3 + k_4\right)x_3 - k_3x_2 - k_4x_1 &= f_3\text{ (t)} \end{split}$$

Em notação matricial, tem-se:

$$\begin{split} & \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}}_1 \\ \ddot{\mathbf{x}}_2 \\ \ddot{\mathbf{x}}_3 \end{bmatrix} + \begin{bmatrix} c_{v_1} & 0 & 0 \\ 0 & c_{v_2} & -c_{v_2} \\ 0 & -c_{v_2} & c_{v_2} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix} + \begin{bmatrix} k_1 + k_2 + k_4 & -k_2 & -k_4 \\ -k_2 & k_1 + k_2 & -k_3 \\ -k_4 & -k_3 & k_3 + k_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} f_1 & (t) \\ f_2 & (t) \\ f_3 & (t) \end{bmatrix} \end{aligned}$$

2. Cálculos computacionais e plot de gráficos

Propondo a solução $X(t) = X_0 e^{i\omega t}$ (em que X_0 é o vetor com os valores (complexos) das amplitudes) e, na ausência de forças externas (F = 0), fica-se com um problema de valores próprios complexos:

$$(-\omega^2 M + i\omega C + K) X_0 e^{i\omega t} = 0$$

Os valores próprios podem ser obtidos resolvendo computacionalmente a seguinte equação:

$$det (-\omega^2 M + i\omega C + K) = 0$$

(sendo o número de valores próprios, usualmente, igual ao número de graus de liberdade).

De modo a que se obtenham resultados algebricamente mais eficientes de tratar, analisar-se-á o problema considerando, sem perdas de generalidade, $m_1 = m_2 = m_3 = 1$, $k_1 = k_2 = k_3 = 1$ e $c_1 = c_2 = c_3 = 1$.

Recorrendo ao Wolfram Mathematica, obtêm-se as seguintes frequências próprias do movimento do sistema:

WOLFRAM MATHEMATICA STUDENT EDITION

```
 \begin{split} & \text{In}[49] \text{:= N[sol]} \\ & \text{Out}[49] \text{:= } \left\{ \left\{ \text{w} \rightarrow -1.94252 + 0.467801 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow -0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0. +1.69067 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 1.94252 + 0.467801 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 + 0.186864 \, \text{i} \right\} \text{, } \left\{ \text{w} \rightarrow 0.639967 +
```

Destas, há apenas que considerar ω_1 = 1.69067 i, ω_2 = 0.639967 + 0.186864 i e ω_3 = 1.94252 + 0.467801 i; os dois outros valores próprios obtidos diferem de ω_2 ou ω_3 apenas nas respetivas partes reais, as quais são simétricas da parte real de ω_2 ou da parte real de ω_3 . Uma vez que se representarão graficamente em separado partes reais e imaginárias, estes valores conduziriam a resultados e interpretações análogas.

Da equação ($-\omega^2 M + i\omega C + K$) $X_0 e^{i\omega t} = 0$, afere-se que os vetores X_0 são os vetores próprios correspondentes às frequências próprias $\omega_{(i)}$ (i = 1,2,3). Ora, recorrendo de novo ao *Wolfram Mathematica*, obtêm-se os seguintes vetores próprios, em função da variável livre $a_1^{(i)}$:

$$\mathsf{X_{0}^{(i)}} = \begin{pmatrix} a_{1}^{(i)} \\ \frac{-a_{1}^{(i)}(5i - 5\omega_{(i)} - 3i\omega_{(i)}^{2} + \omega_{(i)}^{3})}{-3i + 2\omega_{(i)}} \\ \frac{-a_{1}^{(i)}(4i - 4\omega_{(i)} - 2i\omega_{(i)}^{2} + \omega_{(i)}^{3})}{-3i + 2\omega_{(i)}} \end{pmatrix} = \begin{pmatrix} a_{1}^{(i)} \\ a_{2}^{(i)} \\ a_{3}^{(i)} \end{pmatrix},$$

para cada frequência própria $\omega_{(i)}$. Atribuir-se-á, para cada vetor, o valor 1 à variável livre $a_1^{(i)}$. Deste modo, poder-se-á passar à representação gráfica das soluções das equações do movimento dos corpos, dadas por:

$$X^{(i)}(t) = X_0^{(i)} e^{i\omega_{(i)}t} = \begin{pmatrix} e^{i\omega_{(i)}t} \\ a_2^{(i)} e^{i\omega_{(i)}t} \\ a_3^{(i)} e^{i\omega_{(i)}t} \end{pmatrix}, \quad i = 1, 2, 3$$

A representação gráfica da parte real de cada equação é feita separadamente da respetiva parte imaginária.

3. Análise dos resultados e conclusão

Verifica-se que i = 1 corresponde a uma situação de *overdamping*, na qual o movimento das massas acaba por cessar, sem qualquer oscilação. Isto deve-se ao facto de os expoentes de $e^{i\omega_{(i)}t}$ serem números reais negativos (daí os gráficos das partes imaginárias serem funções nulas).

Para i = 2 e i = 3, têm-se situações de *underdamping*, nas quais as massas passam pelas respetivas posições de equilíbrio um número infinito de vezes, embora com amplitudes de oscilação exponencialmente decrescentes com o tempo.

A aproximação ao zero das funções dá-se mais rapidamente para i = 1, seguida de i = 2 e, por fim, para i = 3. Isto traduz o facto de as partes imaginárias das soluções $\omega_{(i)}$ estarem associadas aos efeitos de *damping*.

Por outro lado, visto que as partes reais das soluções $\omega_{(i)}$ traduzem o desfasamento entre o movimento das massas, o desfasamento entre os gráficos das três massas aumenta com i, pois aumenta também com i a parte real de $\omega_{(i)}$.

O movimento geral de cada massa será descrito algebricamente por uma combinação linear das três situações apresentadas, com coeficientes que dependerão das condições iniciais.