DDOSvoid's Blog

burnside引理和polya定理

简介

burnside引理

置换

有限集合到自身的双射成为置换,集合 $S=\{a_1,a_2,\cdots,a_n\}$ 上的置换可以表示为 $f=\begin{pmatrix}a_1\ a_2\ \dots\ a_n\\a_{p_1}\ a_{p_2}\ \dots\ a_{p_n}\end{pmatrix}$, $f(a_k)=a_{p_k}$

两个置换的合成 $(g \circ f)(k) = g(f(k))$

简单来说,置换群就是群中的所有元素都是置换的群

着色

设 c 为 S 的一种着色, a_1,a_2,\cdots,a_n 的着色分别为 $c(a_1),c(a_2),\cdots,c(a_n)$

着色与置换的合成 $(f \times c)(a_{p_k}) = c(a_k)$, $(f \times c)(a_k) = c(f^{-1}(a_k))$, 容易得到 $(g \circ f) \times c = g \times (f \times c)$

置换与着色的关系

如果存在 $f \in G$, $f \times c_1 = c_2$ 则称 c_1 与 c_2 等价

等价关系的性质:

1. 自反性: $\forall c \in C, c \sim c$

2. 对称性: $\forall c_1, c_2 \in C$, 如果 $c_1 \sim c_2$, 则 $c_2 \sim c_1$

3. 传递性: $\forall c_1,c_2,c_3\in C$, 如果 $c_1\sim c_2$, $c_2\sim c_3$, 则 $c_1\sim c_3$

定义: $G(c) = \{f | f \in G, f \times c = c\}$ 为使着色 c 保持不变的 G 中所有置换的集合

定义: $C(f) = \{c | c \in C, f \times c = c\}$ 为在 f 的作用下,保持不变的 C 中所有着色的集合

定理:对于每一种着色 c , G(c) 是置换群,对于 G 中的置换 g 和 f , $g\times c=f\times c$ 当且仅 当 $f^{-1}\circ g\in G(c)$

推论: 设 c 为 C 中的一种着色,则与 c 等价的着色数为 $\frac{|G|}{|G(c)|}$

证明:

设 f 是 G 中的置换,则满足 $g\times c=f\times c$ 的 g 实际上是 $\{f\circ h|h\in G(c)\}$ 中元素,根据消去率, $f\circ h$ 两两不相同,所以 g 的个数为 |G(c)|。也就是说,对于每个置换 f,恰有|G(c)| 的置换作用在 c 上和 f 的效果相同,所以与 c 的等价的着色的个数为 $\frac{|G|}{|G(c)|}$

我们按照 c 的等价关系可以将 c 划分成若干个等价类

所以我们定义 A(c) 表示 c 所在的等价类

burnside引理

令 L 为等价类的个数,则 $L=rac{1}{|G|}\sum_{f\in G}C(f)$

polya定理

当颜色数为 m 时,即每个对象可以染 m 种颜色中的任意一种, $C(f)=m^{d(f)}$,其中 d(f) 为 f 的循环个数

几种特殊置换的循环个数

1. $p_i = i + k$,循环个数为(n, k)

例题

1. 简要题意:给定 n 和 m,求有多少本质不同的序列 a_i ,满足 $0 \le a_i < m$,且 a_i 可以 重复循环左移任意次以及整体重复加任意次,对于 $k \in [1,n]$ 计算答案

$$n,m \leq 10^5$$

简要题解:注意到本质不同等价于求有多少长度为 n,每一位的大小为 [0,m-1] 且和模 m 为 0 的圆环,我们首先不考虑最后一个条件,那么这显然是一个 burnside 定理的题 目,我们有 n 个置换 f,第 k 个置换满足 $p_i=i+k$,且第 k 个置换有 (n,k) 个循环,每个循环的大小都是 $\frac{n}{(n,k)}$,同时数字大小为 [0,m-1] 相当于有 m 种颜色,那么我们可以得到对于长度为 n 的环,答案为 $\sum_{i=1}^n m^{(n,i)}$

我们现在考虑和模 m 为 0 这个条件,我们不妨设环大小为 d,环个数为 $\frac{n}{d}$,第 i 个环的 颜 色 为 a_i , 那 a 我 们 必 须 有 $d\sum_{i=1}^{\frac{n}{d}}a_i\equiv 0 \pmod{m}$, 这 个 东 西 等 价 于 $\sum_{i=1}^{\frac{n}{d}}a_i\equiv 0 \pmod{\frac{m}{(m,d)}}$, 我 们 知 道 a_i 在 [0,m-1] 内 均 匀 取 值 , 那 a $a_i\equiv k \pmod{m}$,其中 $a_i\equiv k \pmod{m}$,这个东西占总数的比列就是 $a_i\equiv k \pmod{m}$,那么原式就是 $a_i\equiv k \pmod{m}$,那么原式就是 $a_i\equiv k \pmod{m}$,这个东西我们化简一下可以得到 $a_i\equiv k \pmod{m}$,那么原式就是 $a_i\equiv k \pmod{m}$,这个东西我们化简一下可以得到 $a_i\equiv k \pmod{m}$,那么原式就是 $a_i\equiv k \pmod{m}$,这个东西我们化简一下可以得到 $a_i\equiv k \pmod{m}$,

时间复杂度 $O(n \log n)$

2022杭电多校6 K Find different

2. 简要题意:给定 n, m,求有多少本质不同的序列 a_i ,每个位置可以填 [1, m],现在还有 k 个序列变换的方法,第 i 个方法给定一个 b_i ,保证所有 b_i 互不相同且 $b_i \leq \lfloor \frac{n}{2} \rfloor$,第 i 种方法表示交换 $[1, b_i]$ 和 $[n - b_i + 1, n]$ 的元素,交换顺序为 i 和 n - i + 1 交换,两个序列本质不同定义为不能通过使用若干次变换方法变得相同

$$n, m \le 10^9, k \le 10^5$$

简要题意:考虑 burnside,注意到有 2^k 个置换,另外我们注意到将 b_i 差分后不影响置换的个数,差分后我们发现不同的交换方法叠加到一起不会相互影响,那么我们直接维护 $m^{n-\sum t_i}, t_i$ 表示选择的 b_i

CF 1065E Side Transmutations

3. 简要题意:求有多少个长度为 n 的循环同构的序列,每个位置最多只有三种颜色,红绿蓝,要求绿色不能出现超过 k 次,且相邻的位置颜色不能相同

$$n, k \le 10^6$$

简要题解: 首先我们知道答案就是这个式子 $\frac{1}{n}\sum_{i=1}^n\sum_{j=0}^{\lfloor\frac{m(i,n)}{n}\rfloor}f((i,n),j)$ 其中 f(n,m) 表示大小为 n 的环染色,其中绿色的个数为 m

首先我们考虑如何计算 f(n,m)

首先我们考虑绿色不放在 1 或 n 的位置,那么两个绿色之间有且仅有两种填法,那么答案 就是 $2^m \binom{n-m}{m}$

然后我们考虑将绿色放在 1 或 n 的位置,容易知道这两种情况的方案数相同,下面仅考虑放在 1 的情况,容易得到答案是 $2^{m-1}\binom{n-m-1}{m-1}$,注意这个东西还要乘个 2

那么
$$f(n,m) = 2^m (\binom{n-m}{m} + \binom{n-m-1}{m-1})$$

我们考虑化简总的答案,容易得到 $\frac{1}{n}\sum_{d|n}\varphi(\frac{n}{d})\sum_{i=0}^{\lfloor\frac{m(i,n)}{n}\rfloor}f(d,i)$

我们直接枚举约数然后 O(n) 计算即可

2021杭电多校1 K Necklace of Beads

------ 本文结束 **▶** 感谢阅读 -------

Tech # burnside引理和polya定理

< 2021牛客多校1 J Journey among Railway Stations

Luogu P4980 【模板】Pólya 定理 >

© 2020 – 2022 **DDOSvoid**

▲ 1.8m | ● 27:07

9093 | • 17890

由 Hexo & NexT.Gemini 强力驱动