作者: 张陈成

学号: 023071910029

K-理论笔记

 K_1

1 环的 Bass-Whitehead 群

定义 1. 仿照定义 ??, 记有限生成 R-投射模的自同构为序对 $(P,f):=P\stackrel{f}{\to}P$. 记

1. 记商关系
$$\langle P,f\rangle=\langle P',f'\rangle$$
 当且仅当存在同构 φ 使得有交换图 $\begin{pmatrix} P & \xrightarrow{\varphi} & P' \\ f \downarrow & & \downarrow f' \\ P & \xrightarrow{\varphi} & P' \end{pmatrix}$

2.b. 记商关系 $[P, f \circ g] = [P, f] + [P, g]$.

记有限生成 R-投射模的自同构为序对 (P,f) 在商关系 [.] 下生成的交换群为 $K_1(R)$

注 1. $\langle P, f \rangle \mapsto [P, f]$ 是良定义的商映射.

命题 1. 若存在 $f \in Aut_R(P)$ 以及不相等的自然数 m 与 n, 使得 $f^m(P) \simeq f^n(P)$, 则 [P, f] = 0.

命题 2. 任取 $[P, f] \in K_1(R)$, 则逆元为 $[P, f] + [P, f^{-1}] = [P, id_P] = 0$.

定义 2 $(GL_n(-))$ 与 $E_n(-)$). 记 R 为环, $M_n(R)$ 为 n-阶矩阵环. 记一般线性群 $GL_n(R) := M_n(R)^{\times}$, 初等因子群 $E_n(R)$ 由形如 $I + rE_{i,j} \in M_n(R)$ 的初等因子生成.

定义 3 (交换子). 记群 G 中的交换子为映射 $[\cdot,\cdot]:G\times G\to G,\quad (a,b)\mapsto aba^{-1}b^{-1}.$

命题 3. 有以下论断.

- 1. 对 $n \geq 3$, 有 $[E_n(R), E_n(R)] = E_n(R)$. 一般地, 初等矩阵是交换子.
- 2. $GL_n(R)$ 中对角为 1 的上三角矩阵属于 $E_n(R)$.

3. 对任意
$$X \in GL_n(R)$$
, 有 $\begin{pmatrix} X \\ X^{-1} \end{pmatrix} \in E_{2n}(R)$.

4.
$$\begin{pmatrix} [GL_n(R), GL_n(R)] \\ I \end{pmatrix} \subseteq E_{2n}(R)$$
.

证明. 依次证明如下.

1. 注意到 $1 + xE_{i,j} = [1 + xE_{i,k}, 1 + E_{k,j}].$

2. 依照
$$\begin{pmatrix} 1 & v^T \\ & U \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0}^T \\ & U \end{pmatrix} \begin{pmatrix} 1 & v^T \\ & I \end{pmatrix}$$
 归纳,一切对角为 1 的上三角矩阵均在 E_n 中.

3. 对任意 $X \in GL_n(R)$, 有

$$\begin{pmatrix} X & \\ & X^{-1} \end{pmatrix} = \begin{pmatrix} I & X-I \\ & I \end{pmatrix} \begin{pmatrix} I & \\ I & I \end{pmatrix} \begin{pmatrix} I & X^{-1}-I \\ & I \end{pmatrix} \begin{pmatrix} I \\ -X & I \end{pmatrix}.$$

4. 对任意 $X,Y \in GL_n(R)$, 有等式

$$\begin{pmatrix} [X,Y] & \\ & I \end{pmatrix} = \begin{pmatrix} X & \\ & X^{-1} \end{pmatrix} \begin{pmatrix} Y & \\ & Y^{-1} \end{pmatrix} \begin{pmatrix} X^{-1}Y^{-1} & \\ & YX \end{pmatrix}.$$

定义 4 (稳定线性群). 依照 $GL_n(R) \hookrightarrow GL_{n+1}(R)$, $X \mapsto \begin{pmatrix} X \\ 1 \end{pmatrix}$ 给出极限

$$GL(R): = \varinjlim GL_m(R) \qquad \qquad \int_{\iota_{n+1}} GL_n(R) \qquad .$$

记稳定线性群与稳定初等因子群分别为

$$GL(R) := \bigcup_{n \in \mathbb{N}_+} \iota_n(GL_n(R)), \quad E_n(R) := \bigcup_{n \in \mathbb{N}_+} \iota_n(E_n(R)).$$

命题 4. 有群的短正合列 $1 \to E(R) \to GL(R) \to K_1(R) \to 1$.

证明. GL(R) 到 $K_1(R)$ 的典范态射由极限诱导如下

$$f \longmapsto [R^n, f]$$

$$GL_n(R) \xrightarrow{[R^n, -]} K_1(R) .$$

$$GL_{n+m}(R)$$

$$GL_{n+m}(R)$$

由于 $K_1(R)$ 交换, 从而可将 GL(R) 到 $K_1(R)$ 的态射分解如下.

此处 $[GL(R),GL(R)] = \bigcup [GL_n(R),GL_n(R)] = \bigcup E_n(R) = E(R)$. 往证 $\frac{GL(R)}{E(R)} \underset{\varphi}{\simeq} K_1(R)$. 换言之, 对任意有限生成投射模 P, $[\operatorname{Aut}(P)] \to \frac{GL(R)}{E(R)} \overset{\varphi}{\to} K_1(R)$, $f \mapsto [P,f]$ 是同构.

对任意有限生成投射模的自同构 (P,f), 取同构 $\sigma: P \oplus Q \simeq R^n$. 兹断言以下复合的恒等映射良定义, 即无关乎 Q, n 与 σ 之选取.

$$\begin{array}{ccc} P & \longleftarrow & P \oplus Q & \stackrel{\sigma}{\longrightarrow} R^n \\ & \downarrow^f & & \downarrow^{f \oplus g} & & \downarrow^{\sigma(f \oplus g)\sigma^{-1}} & \Longrightarrow [P,f]. \\ P & \longleftarrow & P \oplus Q & \stackrel{\sigma}{\longrightarrow} R^n \end{array}$$

以上交换图中,直线单箭头均为同构.

- 由于 $K_1(R)$ 交換, 故 $\varphi\Big(\sigma(f\oplus g)\sigma^{-1}\Big)=\varphi(\sigma)\varphi(\sigma^{-1})\varphi(f\oplus g)=\varphi(f\oplus g).$
- 若将 Q 替换作 $Q \oplus R^k$, 并考虑 $P \oplus Q \oplus R^k$ 的自同构 $f \oplus g \oplus \mathrm{id}_{R^k}$, 则像不变. 结合命题 ?? 知像与 Q, n 之选取无关.

注 2. $K_1(R) = \frac{GL(R)}{[GL(R), GL(R)]} = H_1(GL(R), \mathbb{Z})$ 无非稳定线性群的交换化.

命题 5 $(K_1(-))$ 的函子性). $K_1: \text{Ring} \to \text{Ab}$ 为 (协变) 函子.

命题 6. 对环 R 与任意正整数 m, n, 有同构 $K_1(M_n(R)) \simeq K_1(M_m(R))$.

证明. Morita 等价给出相同的 K_1 群. 实际上, $GL(M_n(R)) = GL(GL_n(R)) = GL(R)$, 再对两端交换化即可.

命题 7. $K_1(R \times S) \simeq K_1(R) \oplus K_1(S)$. 证明同上.