Modelos de Computação CC1004

2015/2016

Resolução de algumas questões

1. Sejam K, M e L linguagens de alfabeto $\Sigma = \{a, b\}$, com $K = \{x \mid x \in \Sigma^* \text{ e tem número ímpar de b's}\}$, $\mathbf{M} = \{x \mid x \in \Sigma^* \text{ e tem abb como subpalavra}\} \text{ e } \mathbf{L} = \mathbf{K} \cap \mathbf{M} = \{x \mid x \in \mathbf{K} \text{ e } x \in \mathbf{M}\}.$

- a) Desenhe o AFD mínimo que aceita K.
- **b)** Defina **K** por uma expressão regular (abreviada).

 $(a + ba^*b)^*ba^*$

c) Indique uma expressão regular (abreviada) que descreva a linguagem L.

$$(a+ba^{\star}b)^{\star}ba^{\star}abb(a+ba^{\star}b)^{\star} + (a+ba^{\star}b)^{\star}abb(a+ba^{\star}b)^{\star}ba^{\star}$$

d) Apresente as regras (de produção) de uma GIC G que gere L, com símbolo inicial A, e descreva informalmente $\mathcal{L}_X = \{ w \mid X \Rightarrow_G^{\star} w \text{ e } w \in \Sigma^{\star} \}$, para cada variável X de G, com exceção de A.

$$A \rightarrow Z \mathbf{b} X \mathbf{a} \mathbf{b} \mathbf{b} Z \mid Z \mathbf{a} \mathbf{b} \mathbf{b} Z \mathbf{b} X$$

$$Z \rightarrow \varepsilon \mid \mathbf{a}Z \mid \mathbf{b}X\mathbf{b}Z$$

$$X \rightarrow \varepsilon \mid aX$$

 \mathcal{L}_Z é formada pelas palavras de Σ^* com número par de b's. \mathcal{L}_X é constituída pelas palavras de Σ^\star que não têm b's.

e) Desenhe o diagrama do AFD mínimo que reconhece M e descreva $\mathcal{L}_s = \{x \mid x \in \Sigma^* \ e \ \hat{\delta}(s_0, x) = s\}$ por uma expressão regular (abreviada), para cada estado s, sendo s_0 o estado inicial.

 $egin{array}{lll} \mathcal{L}_{s_0}:& \mathsf{b}^\star \ \mathcal{L}_{s_1}:& \mathsf{b}^\star \mathsf{a}(\mathsf{a}+\mathsf{b}\mathsf{a})^\star \ \mathcal{L}_{s_2}:& \mathsf{b}^\star \mathsf{a}(\mathsf{a}+\mathsf{b}\mathsf{a})^\star \mathsf{b} \ \mathcal{L}_{s_3}:& \mathsf{b}^\star \mathsf{a}(\mathsf{a}+\mathsf{b}\mathsf{a})^\star \mathsf{b}\mathsf{b}(\mathsf{a}+\mathsf{b})^\star \equiv (\mathsf{a}+\mathsf{b})^\star \mathsf{a}\mathsf{b}\mathsf{b}(\mathsf{a}+\mathsf{b})^\star \end{array}$

f) Da análise da construção do AFD produto, pode-se concluir que o AFD mínimo que reconhece L estados e exatamente ит tem no máximo oito estados finais/estado final. Complete a frase e justifique abaixo sucintamente as respostas, enunciando os resultados que as suportam.

O conjunto de estados do AFD produto é o produto cartesiano dos conjuntos de estados dos dois AFDs (segundo a construção geral, sem descartar os estados não acessíveis do inicial). Assim, existe um AFD que reconhece L e que tem $2 \times 4 = 8$ estados. Logo, o AFD mínimo tem no máximo oito estados.

Para reconhecer $K \cap M$, o conjunto de estados finais do AFD produto é $\{(q_1, s_3)\}$ e, assim, tem um só elemento. Como $L = K \cap M \neq \emptyset$, as palavras de L levam tal AFD do seu estado inicial (q_0, s_0) ao estado (q_1, s_3) . Qualquer que seja o AFD A que reconheça L, tem-se $\mathcal{C}_x \subseteq [x]$, sendo \mathcal{C}_x e [x] as classes de x para R_A e R_L , segundo a notação dada nas aulas, o que implica que o AFD mínimo tem exatamente um estado final.

g) Por aplicação do corolário do teorema de Myhill-Nerode, determine o AFD mínimo que reconhece L. (Em alternativa pode indicar um AFD que reconhece L, justificar a sua correção e minimizá-lo pelo algoritmo de Moore). Em ambos os casos, deve **justificar detalhadamente** os passos da construção.

[Resposta omitida.]

NB: No pressuposto de que os AFDs indicados em 1a) e 1e) estavam corretos, para a resposta alternativa, bastaria construir o AFD produto, seguindo o método dado nas aulas, e aplicar o algoritmo de Moore para minimizar esse AFD.

2. Seja A o AFND- ε representado pelo diagrama de transição seguinte.

a) Indique o conjunto de estados em que A pode estar após consumir bbaab. $\{s_1, s_3, s_4, s_5\}$

b) Desenhe o diagrama de transição do AFD equivalente, que se obtém pelo método de conversão (baseado em subconjuntos). Deve **obrigatoriamente manter as designações dos estados do AFD como conjuntos**.

[Resposta omitida.]

NB: O estado inicial do AFD é o $Fecho_{\varepsilon}(s_1)=\{s_1,s_3,s_4,s_5\}$. O AFD tem outros dois estados: $\{s_1,s_2,s_3,s_4,s_5\}$ e $\{s_3,s_4,s_5\}$. Este último é o único que não é final. Os estados finais e o estado inicial têm de ser assinalados sempre. É também importante compreender que a resposta à alínea 2a) não pode ser inconsistente com o que se conclui da alínea 2b). De facto, as designações dos estados do AFD correspondem exatamente ao conjunto de estados em que o AFND- ε podia estar nas mesmas circunstâncias. É nisso que se baseia a correção do método de conversão dado!

- **3.** Sejam $r = ((a + b)^*)$ e $s = ((aa) + (\emptyset^*))$ expressões regulares sobre $\Sigma = \{a, b\}$.
- a) Desenhe os diagramas de transição dos autómatos finitos que resultam da aplicação do método de Thompson às expressões regulares r e s, segundo a construção dada nas aulas.

b) Usando a definição indutiva de expressão regular sobre Σ e de linguagem que a expressão descreve, prove que $\mathcal{L}((rs)) = \Sigma^*$. Apresente os passos intermédios.

Usando a definição referida, tem-se:

$$\mathcal{L}((rs)) = \mathcal{L}(r)\mathcal{L}(s).$$

$$\mathcal{L}(r) = (\mathcal{L}((\mathtt{a} + \mathtt{b})))^* = (\mathcal{L}(\mathtt{a}) \cup \mathcal{L}(\mathtt{b}))^* = (\{\mathtt{a}\} \cup \{\mathtt{b}\})^* = \{\mathtt{a},\mathtt{b}\}^*, \text{ ou seja, } \mathcal{L}(r) = \Sigma^*.$$

$$\mathcal{L}(s) = \mathcal{L}((\mathtt{aa})) \cup \mathcal{L}((\emptyset^\star)) = \mathcal{L}(\mathtt{a})\mathcal{L}(\mathtt{a}) \cup (\mathcal{L}(\emptyset))^\star = \{\mathtt{aa}\} \cup \emptyset^\star.$$

Por definição de fecho de Kleene, $\emptyset^* = \{\varepsilon\}$. Logo, $\mathcal{L}(s) = \{aa\} \cup \{\varepsilon\} = \{\varepsilon, aa\}$.

Como $\varepsilon \in \mathcal{L}(s)$, então $\mathcal{L}(r) \subseteq \mathcal{L}(r)\mathcal{L}(s)$. Ou seja, $\Sigma^\star \subseteq \mathcal{L}(r)\mathcal{L}(s)$. Portanto, $\mathcal{L}(r)\mathcal{L}(s) = \Sigma^\star$, pois, por definição de linguagem de alfabeto Σ , tem-se $\mathcal{L}(r)\mathcal{L}(s) \subseteq \Sigma^\star$.

4. Seja $G = (\{S, X, Y\}, \{a, b\}, P, S)$, com P dado por:

$$S \ \to \ \mathtt{aa} YY \ | \ \mathtt{b} SX \ | \ \mathtt{ba} X \ | \ \mathtt{a}$$

$$X \rightarrow \varepsilon \mid \mathbf{b}X$$

$$Y \rightarrow aYY \mid b$$

a) Diga, justificando, se aabbb $\in \mathcal{L}(G)$.

aabbb $\notin \mathcal{L}(G)$ porque para tentar derivar a palavra seria necessário aplicar a regra $S \to aaYY$. A seguir, como não se pode introduzir mais a's, só se pode usar a regra $Y \to b$, mas a palavra que se obteria seria aabb.

- **b**) Prove que G é ambígua.
 - Por exemplo, a palavra ba tem mais do que uma árvore de derivação:

c) Apresente a noção de GIC na forma normal de Chomsky.

GIC em que as regras são da forma $A \to BC$ ou $A \to a$, com B,C variáveis e $a \in \Sigma$, quaisquer.

d) Por conversão de G, determine uma GIC G' equivalente a G mas sem variáveis que gerem ε . A seguir, converta G' à forma normal de Chomsky.

$$X \rightarrow BS \mid BX$$
 $X \rightarrow SX$

$$egin{array}{lll} Y &
ightarrow & AW & | & \mathbf{b} & & & & M &
ightarrow & AX \ A &
ightarrow & \mathbf{a} & & & W &
ightarrow & YY \end{array}$$

 $B \rightarrow b$

(Continua)

- **5.** Considere a linguagem $L = \{y \mid y \text{ \'e cap\'eua}\} \cap \{y \mid y \text{ tem n\'umero \'impar de b's ou começa por c}\}$, de alfabeto $\Sigma = \{a, b, c\}$.
- a) Use o lema da repetição ou o teorema de Myhill-Nerode para provar que L não é regular.

Prova pelo Lema da Repetição: Dado n>0, se tomarmos $z=\mathtt{c}^n\mathtt{b}\mathtt{c}^n$, temos $z\in L$ e $|z|\geq n$ e, sendo $u,v,w\in \Sigma^\star$ quaisquer, com z=uvw e $|uv|\leq n$ e $v\neq \varepsilon$, o prefixo uv está à esquerda de \mathtt{b} em z. Assim, para i=0, a palavra uv^iw não pertence a L, pois $uv^0w=uw=\mathtt{c}^{n-|v|}\mathtt{b}\mathtt{c}^n$ e não é capícua, dado que $|v|\geq 1$. Isto significa que L não satisfaz a condição do lema da repetição para linguagens regulares. Portanto, não é regular.

Prova pelo teorema de Myhill-Nerode: Tem-se $(c^n, c^m) \notin R_L$, quaisquer que sejam n e m tais que 0 < m < n, pois para $z = bc^n$ tem-se $c^n z \in L$ mas $c^m z \notin L$. Tal significa que as classes de equivalência das palavras c^k , com k > 0, são disjuntas duas. Portanto, o conjunto das classes de equivalência de R_L é infinito, dado que inclui $\{[c^k] \mid k > 0\}$.

b) Indique uma GIC G não ambígua que gere L e represente a(s) árvore(s) de derivação de chachcabc.

As regras são:

$$S \rightarrow cQc \mid c$$

$$S \rightarrow bTb \mid aTa \mid b$$

$$T \rightarrow \mathbf{b} \mid \mathbf{b} T \mathbf{b} \mid \mathbf{a} T \mathbf{a} \mid \mathbf{c} T \mathbf{c}$$

$$Q \rightarrow \varepsilon \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c}$$

$$Q \ o \ \mathrm{b}Q\mathrm{b} \ | \ \mathrm{a}Q\mathrm{a} \ | \ \mathrm{c}Q\mathrm{c}$$

O símbolo inicial é S.

A única árvore de derivação para cbacbcabc é:

c) Explique como é que garantiu a não ambiguidade de G.

Adaptámos a GIC dada nas aulas para a linguagem das capícuas (que era uma GIC não ambígua). Para não introduzir ambiguidade, as regras para S separam as capícuas que começam por c das capícuas que começam por a ou b. Estas últimas têm comprimento ímpar e o símbolo b no meio, enquanto que as começam por c podem ter comprimento par ou ímpar (e qualquer símbolo no meio se tiverem comprimento ímpar).

A variável T gera as capícuas da forma $w \mathbf{b} w^R$, com $w \in \Sigma^\star$.

A variável Q gera as capícuas de alfabeto Σ , i.e., as palavras da forma wtw^R , com $w \in \Sigma^*$ e $t \in \Sigma \cup \{\varepsilon\}$.

Resolva apenas uma das alíneas d), e), e f)

- d) Apresente um autómato de pilha que reconheça a linguagem $L \cap \{y \mid y \text{ tem número ímpar de b's}\}$. Pode escolher o critério de aceitação (ou pilha vazia ou estados finais), mas deve indicar a sua opção. **Indique sucintamente a interpretação de cada estado e as ideias principais subjacentes**.
- e) Prove que a linguagem $L \cap \{x \mid x \text{ tem igual número de a's e c's} \}$ não satisfaz a condição do lema da repetição para LICs para nenhum n > 0.
- f) Apresente uma máquina de Turing que reconheça a linguagem $L \cap \{x \mid x \text{ tem igual número de a's e c's}\}$. O símbolo branco é e a máquina pode destruir a palavra. Descreva **as ideias principais** do algoritmo.

Use o verso da folha para responder à questão.

[Resposta omitida.]

(Fim)