Q1. (10 points) Is $4^{1536} \equiv 9^{4824} \mod 35$

First note that $35 = 5 \times 7$, i.e. a product of two primes. We know that $x^4 \equiv 1 \mod 5$ and $x^6 \equiv 1 \mod 7$ by fermat's little theorem.

This implies that $(x^4)^6 \equiv 1 \mod 5$ and $(x^6)^4 \equiv 1 \mod 7$. Or in other words 5, divides x^{24} -1 and so does 7. Since 5 and 7 are both primes, and they divide the same number x^{24} -1, then it must be the case that 5 x 7 = 35 also divides x^{24} -1. In other words, we have x^{24} -1 $\equiv 0 \mod 35$ or $x^{24} \equiv 1 \mod 35$

We can now apply this to check if the problem statement is true.

$$4^{1536} = (4^{24})^{64} \equiv (1)^{64} \equiv 1 \mod 35$$

 $9^{4824} = (9^{24})^{201} \equiv (1)^{201} \equiv 1 \mod 35$

Thus, both the numbers have the same remainder mod 35, and therefore the statement is true.

Q2. (10 points) Solve $x^{86} \equiv 6 \mod 29$

Since 29 is prime, we can again apply fermat's theorem to solve the problem. That is, $x^{28}\equiv 1 \mod 29$. This implies that $x^{86}\equiv (x^{28})^3 x^2\equiv x^2 \mod 29$

So, we have to solve the equation $x^2 \equiv 6 \mod 29$. This implies that $x^2 = 29t + 6$, i.e., we are looking for an integer multiple of 29, t, such that we get a square when we add to 29t. This is true for t=2, since 29x2+6 = 58+6 = 64. This implies that x=8 is a solution to the above equation.

Q3. (10 points) Prove that $gcd(F_{n+1},F_n)=1$, for $n\geq 1$, where F_n is the n-th Fibonacci element.

From the gcd theorem (Euclid's rule on pg 20 in the book), we have gcd(x,y) = gcd(x-y,y). Therefore, $gcd(F_{n+1}, F_n) = gcd(F_{n+1} - F_n, F_n)$

But F_{n+1} - $F_n = (F_n + F_{n-1})$ - $F_n = F_{n-1}$. We substitute this into the equation above to get $gcd(F_{n+1}, F_n) = gcd(F_{n+1} - F_n, F_n) = gcd(F_n, F_{n-1})$

Repeating this multiple times we get

 $gcd(F_{n+1}, F_n) = gcd(F_n, F_{n-1}) = gcd(F_{n-1}, F_{n-2}) = \dots = gcd(F_2, F_1)$

But, we know that $F_1=1$, $F_2=1$, which implies that $gcd(F_2, F_1)=1$.

Therefore, $gcd(F_{n+1}, F_n) = 1$

Q4. (10 points) Assume that the cost to multiply a n-bit integer with a m-bit integer is O(nm). Given integers x and y with n-bits and m-bits, respectively, give an efficient algorithm to compute x^y . Show that the method is correct, and analyze its running time.

Approach 1: Iterative

iterative (x, y)
if y = Ø: return 1
product = X
for (i = 1; i < y; i++):
 product = product * X
return product</pre>

For the purposes of both the iterative and the recursive algorithms:

- X is n bits long - y is m bits long
- the value of y is 2^{m-1}. In other words, the value of y is 1 followed by some number of zeroes (in binary): 10, 100, 1000, etc...

 This allows us to avoid the 'y is odd' case in the recursive algorithm, and makes calculations easier.

Also, we know that the time to multiply an n-bit number by an m-bit number is $O(n \cdot m)$, and the number of bits in the product is O(n+m).

			resulting # of bits in pro	oduct
1	n²	n²	2 n	
2	n3	2n2	3n	
3	n4	3 n2	4 и	
4	n ^s	4 n2	5 n	
5	n² n³ n⁴ n⁵ n6	5 n2	6 и	

The total time is the sum of times of all steps. This algorithm will perform y-1 steps. Each individual step can be expressed as $i \times n^2$ where i is the step number. Therefore, the total time is: $\sum_{i=1}^{y-1} i \cdot n^2 = n^2 \cdot \sum_{i=1}^{y-1} = n^2 \cdot \frac{y(y-1)}{2} \approx n^2 y^2$ $y = 2^{m-1}$ $n^2 y^2 = n^2 \cdot (2^{m-1})^2 = n^2 \cdot 2^{m-2}$

$$O(2^{2m} \cdot n^2)$$

Approach 2: Recursive

step#	value	time	resulting # of bits	in	product (z)
1	X ²	n²	2n		
2	x4	4n2	411		
3	X8	16 n2	8 n		
4	x ² x ⁴ x ⁸ x ¹⁶ x ³²	64 n2	16 n		
5	X32	256 n2	32n		
		/	1		

The total running time will be the sum of the times of all steps. We know that this recursive algorithm will perform $\log_2 y$ steps. Each individual step can be expressed as $2^{2(i-1)}$, n^2 , where i is the step number. Thus, the total running time can be expressed as: $\log_2 y$ $2^{(i-1)}$ $\sum_{i=1}^{2} 2^{n^2}$

$$y = 2^{m-1}$$

$$\sum_{i=1}^{\log_2 y} = \sum_{i=1}^{\log_2 2^{m-1}} = \sum_{i=1}^{m-1}$$

$$\sum_{i=1}^{m-1} 2^{2(i-1)} \cdot n^2 = n^2 \cdot \sum_{i=1}^{m-1} 2^{2(i-1)} = n^2 \cdot \left(2^0 + 2^2 + 2^4 + 2^{6} + 2^{2m-4}\right)$$

$$= n^2 \cdot \left(2^0 + 2^2 + 2^4 + 2^6 + 2^8 + 2^{2m-4}\right) \cdot \left(\frac{2^2 - 1}{2^2 - 1}\right) =$$

$$= n^2 \cdot \left[\frac{(2^2 + 2^4 + 2^6 + 2^8 + 2^{2m-4} + 2^{2m-2}) - (2^0 + 2^4 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^2 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^4 + 2^6 + 2^6 + 2^4 + 2^6 + 2$$