

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 2. Laborübung: "Filter" "Transiente Vorgänge und Frequenzverhalten" b) Messungen

Gruppennr.: 10 Datum der Laborübung: 19.05.2017

Matr. Nr.	Kennzahl	Name
1609418	033 535	GEISELBRECHTINGER Max
1625753	033 535	HAAR Martin

Kontrolle		
Verhalten eines Filters 1. Ordnung		
Verhalten eines RL-Filters		
Dynamisches System 2. Ordnung		

- 1 RC-Tiefpass
- 2 RL-Hochpass
- 3 RLC-Tiefpass

3.1 Aufgabenstellung

In diesem Beispiel war ein RLC-Tiefpass aufzubauen und mit drei verschiednen Widerständen jeweils die Sprungantwort und das Bodediagramm zu messen.

3.2 Schaltung

Abbildung 1: RLC-Glied Messschaltung.

Der Widerstand R, wird im laufe der Messungen zweimal ersetzt, einmal durch 180Ω und einmal durch $1k\Omega$.

Hier handelt es sich um einen Tiefpass zweiter Ordnung, dies ist daran zu erkennen dass, der Schaltkreis zwei frequenzabhängige Bauelemente (L und C) enthält. Während die Impedanz der Spule im seriellen Zweig mit steigender Frequenz größer wird, so wird die Impedanz des Kondensators im Parallelzweig kleiner.

Bei sehr niedrigen Frequenzen (10 - 1000Hz) ist der Blindwiderstand des Kondesantors größer 1500Ω , whrend die Spule einen Blindwiderstand von kleiner 1Ω hat. An dem Verhältnismäßig großen Widerstand im Parallelzweig fällt daher sehr wenig Spannung ab und der Tiefpass hat eine sehr geringe Dämpfung. Steigt nun die Frequenz, ändern sich auch die Blindwiderstände und der Spannungsabfall am Kondensator wird immer größer, was zu einer größeren Dämpfung führt.

3.3 Sprungantwort $R = 22\Omega$

Abbildung 2: Sprungantwort mit $R=22\Omega$

Bereits in der Sprungantwort ist zu erkennen, dass das System mit einem Widerstand von nur 22Ω überschwingen wird, da die Ausgangsspannung an den Flaken stark überschwingt. Die Schwingungen an der Eingangsspannung werden durch die Spule in der Schaltung verursacht.

3.4 Bodediagramm $R = 22\Omega$

Abbildung 3: Bode Diagramm RLC-Tiefpass, $R=22\Omega$, Amplitudengang

Abbildung 4: Bode Diagramm RLC-Tiefpass, $R=22\Omega$, Phasengang

Da es sich bei dieser Messung um einen Tiefpass handelt is die Dämpfung bis zur Grenzfrequenz 0dB und das Eingangsignal wird unverändert durchgelassen. Wie bereits in der Sprungantwort festgestellt schwingt das Filter genau bei der Grenzfrequenz, das heißt die Ausgangsspannung ist größer als die Eingangspannung. Danach beginnt das Fiter mit -40dB/Dec zu dämpfen. Die Phase dreht von 0° auf -180° , genau bei der Grenzfrequenz ist die Phase auf -90° .

Die letzten 5 Messpunkte sind sehr ungenau, da das Ausgangssignal bereits so stark gedämpft ist, dass keine genauen Messungen mehr durchgeführt werden konnten.

Die genaue Grenzfrequenz sollte mittels Variation der Frequenz festgestellt werden. Die Frequenz am Funktionsgenerator wird so lange erhöht bis die Phasenverschiebung genau -90° beträgt.

Ermittelte Grenzfrequenz: $f_0 = 15580Hz$

Berechnete Grenzfrequenz: $f_0=\frac{1}{2\pi*\sqrt{LC}}=\frac{1}{2\pi*\sqrt{100nF*1mH}}=15916Hz$

Unterschied zwischen berechneter/gemessener Werte: 2,11%

3.5 Sprungantwort $R = 180\Omega$

Abbildung 5: Sprungantwort mit $R=180\Omega$

Mit dem größeren Widerstand, steigt die Ausgangsspannung reltativ schnell an, es kommt jedoch nicht zu überschwingungen \Rightarrow Filter kritischer Dämpfung.

3.6 Bodediagramm $R = 180\Omega$

Abbildung 6: Bode Diagramm RLC-Tiefpass, $R=180\Omega$, Amplitudengang

Abbildung 7: Bode Diagramm RLC-Tiefpass, $R=180\Omega$, Phasengang

Da es sich hier um ein Filter kritischer Dämpfung handelt, beginnt die Dämpfung, kurz vor der Grenzfrequenz. Bei genau -90° Phasenverschiebung, dämpft das Filter mit -5dB. Ab der Grenzfrequenz wird mit -40dB/Dec gedämpft.

3.7 Sprungantwort $R = 1k\Omega$

Abbildung 8: Sprungantwort mit $R=1k\Omega$

Mit einem sehr großen Widerstand von $R=1k\Omega$ ist die Zeitkonstante τ sehr groß, d.h. das Filter braucht sehr lange bis die Dämpfung erreicht wird.

3.8 Bodediagramm $R = 1k\Omega$

Abbildung 9: Bode Diagramm RLC-Tiefpass, $R = 1k\Omega$, Amplitudengang

Abbildung 10: Bode Diagramm RLC-Tiefpass, $R = 1k\Omega$, Phasengang

Dieses schlechte Dämpfungsverhalten, welches bereits in der Sprunganwort zu erkenne war, zeichnet sich auch im Bodediagramm ab. Das Filter beginnt bereits sehr früh zu dämpfen, jedoch beträgt die Filtersteilheit nur -20dB/Dec. Dies liegt daran, dass nur der RC-Teil aktiv ist. Die Grenzfrequenz des RL-Teils liegt weit darüber, bei ca. 150kHz. Dieser Knick ist allerdings im Amplitudengang nur mehr sehr schlecht zu erkennen, da bei dieser hohen Frequenz das Ausgangsegnal beretis so stark gedämpft wrude, dass keine vernüftigen Messergebnisse mehr aufgenommen werden konnten. Im Phasengang, ist die Drehung von -90° auf -180° bei ca. 150kHz zu erkennen.

Grenzfrequenz des RC-Teiles: $f_g=\frac{1}{2\pi RC}=\frac{1}{2\pi*1k\Omega*100nF}=1591Hz$

Grenzfrequenz des LC-Teiles: $f_g=rac{R}{2\pi L}=rac{1k\Omega}{2\pi*1mH}=159155Hz$

3.9 Pol- Nullstellendiagramm

3.10 Vergleich: Messung und Simulationen

Die Messungen stimmen bis auf kleine Bauteil- und Messungenauigkeiten mit den Simulationen überein.

Die Messungen von der Ausgangssingale in seine sehr Hochfrequenten Bereich ($>100\,kHz$) sind im Vergleich zu den Simulationen sehr ungenau, da das Signal bereits zu stark gedämpft ist.