Basic Concepts in Number Theory and Finite Fields

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-17/

- 1. The Euclidean Algorithm for GCD
- 2. Modular Arithmetic
- 3. Groups, Rings, and Fields
- 4. Galois Fields GF(p)
- 5. Polynomial Arithmetic

These slides are partly based on Lawrie Brown's slides supplied with William Stalling's book "Cryptography and Network Security: Principles and Practice," 7th Ed, 2017.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Euclid's Algorithm

□ Goal: To find greatest common divisor

Example: gcd(10,25)=5 using long division

10) 25 (2

20

5)10 (2

10

00

Test: What is GCD of 12 and 105?

Euclid's Algorithm: Tabular Method

		10	25	
q_i	r_i	u_i	v_i	_
0	25	0	1	- 1
0	10	1	0	2
2	5	-2	1	3
2	0	5	-2	

Write the first 2 rows. Set
$$i = 2$$
.

- Divide r_{i-1} by r_i , write quotient q_{i+1} on the next row
- Fill out the remaining entries in the new bottom row:
- a. Multiply r_i by q_{i+1} and subtract from r_{i-1}
- b. Multiply u_i by q_{i+1} and subtract from u_{i-1}
- c. Multiply v_i by q_{i+1} and subtract from previous v_{i-1}

$$\square r_i = u_i x + v_i y$$

$$\Box u_i = u_{i-2} - q_i u_{i-1}$$

$$\square$$
 Finally, If $r_i = 0$, $gcd(x,y) = r_{i-1}$

Euclid's Algorithm Tabular Method (Cont)

□ Example 2: Fill in the blanks

		8	15
q_i	r_i	u_i	v_i
0	15	0	1
0	8	1	0
-	_	-	_
_	_	_	_
_	_	_	_

Tabular Method (Cont)

□ Example 2: Fill in the blanks

- \bigcirc GCD(8,15) = 1
- □ If gcd(x, y) = 1, 1=2*8-1*15 or 2*8 = 1+1*15
- $2*8 \mod 15 = (1+1*15) \mod 15 = 1 \Rightarrow \text{Inverse of } 8 = 2 \mod 15$
- □ In general, $u_i x + v_i y = 1 \Rightarrow x^{-1} \mod y = u_i$ ⇒ u_i is the inverse of x in " $\mod y$ " arithmetic.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Homework 4A

- □ Find the multiplicative inverse of 5678 mod 8765
- □ Do it on your own. Do not submit.
- □ Answer: 2527

Modular Arithmetic

- \square $xy \mod m = (x \mod m) (y \mod m) \mod m$
- \square $(x-y) \mod m = ((x \mod m) (y \mod m)) \mod m$

- □ 125 mod 187 = 125
- $(225+285) \mod 187 = (225 \mod 187) + (285 \mod 187)$ = 38+98 = 136
- \square 125² mod 187 = 15625 mod 187 = 104
- $125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187$ $= 104^2 \mod 187 = 10816 \mod 187 = 157$
- \square 1256 mod 187 = 1254+2 mod 187 = (157×104) mod 187 = 59

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Modular Arithmetic Operations

- \square Z = Set of all integers = {..., -2, -1, 0, 1, 2, ...}
- Z_n = Set of all non-negative integers less than n = $\{0, 1, 2, ..., n-1\}$
- $\mathbb{Z}_2 = \{0, 1\}$
- $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- ightharpoonup Addition, Subtraction, Multiplication, and division can all be defined in Z_n
- For Example:
 - > (5+7) mod 8 = 4
 - > (4-5) mod 8 = 7
 - > (5×7) mod 8 = 3
 - > (3/7) mod 8 = 5
 - $> (5*5) \mod 8 = 1$

Modular Arithmetic Properties

Property	Expression
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws	$(w \times x) \mod n = (x \times w) \mod n$
Associative laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
Identities	$(1 \times w) \mod n = w \mod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Homework 4B

- □ Determine 125¹⁰⁷ mod 187
- □ Do it on your own. Do not submit.
- □ Answer: 5

Group

- □ **Group**: A set of elements that is closed with respect to some operation.
- \Box Closed \Rightarrow The result of the operation is also in the set
- □ The operation obeys:
 - > Obeys associative law: (a.b).c = a.(b.c)
 - > Has identity e: e.a = a.e = a
 - > Has inverses a^{-1} : $a.a^{-1} = e$
- □ **Abelian Group**: The operation is commutative

$$a.b = b.a$$

 \square Example: Z_8 , + modular addition, identity =0

Cyclic Group

- □ Exponentiation: Repeated application of operator
 - > example: $a^3 = a.a.a$
- □ Cyclic Group: Every element is a power of some fixed element, i.e.,

b = a^k for some a and every b in group a is said to be a generator of the group

- □ Example: {1, 2, 4, 8} with **mod 12** multiplication, the generator is 2.
- \square 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=4, 2⁵=8

Ring

□ Ring:

- 1. A group with two operations: addition and multiplication
- 2. The group is Abelian with respect to addition: a+b=b+a
- 3. Multiplication and additions are both associative:

$$a+(b+c)=(a+b)+c$$

 $a.(b.c)=(a.b).c$

1. Multiplication distributes over addition

$$a.(b+c)=a.b+a.c$$

 $(a+b).c = a.c + b.c$

□ Commutative Ring: Multiplication is commutative, i.e.,

$$a.b = b.a$$

■ Integral Domain: multiplication operation has an identity and no zero divisors

Ref: http://en.wikipedia.org/wiki/Ring %28mathematics%29

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Homework 4C

 \Box Consider the set $S = \{a, b, c\}$ with addition and multiplication defined by the following tables:

	a			_	×	$\mid a \mid$	b	c
a	a	b	c		\overline{a}	\overline{a}	b	\overline{c}
b	b	a	c		b	$egin{array}{c} a \ b \end{array}$	b	b
c	c	c	a		c	c	b	c

□ Is S a ring? Justify your answer.

Field

□ Field: An integral domain in which each element has a multiplicative inverse.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Finite Fields or Galois Fields

- □ Finite Field: A field with finite number of elements
- □ Also known as Galois Field
- □ The number of elements is always a power of a prime number. Hence, denoted as $GF(p^n)$
- □ GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- \square Can do addition, subtraction, multiplication, and division without leaving the field GF(p)
- □ GF(2) = Mod 2 arithmetic GF(8) = Mod 8 arithmetic
- \Box There is no GF(6) since 6 is not a power of a prime.

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum a_i x^i$$

- 1. Ordinary polynomial arithmetic:
 - > Add, subtract, multiply, divide polynomials,
 - Find remainders, quotient.
 - > Some polynomials have no factors and are prime.
- 2. Polynomial arithmetic with mod p coefficients
- Polynomial arithmetic with **mod** p coefficients and **mod** m(x) operations, where m(x) is a nth degree polynomial = $GF(p^n)$

Polynomial Arithmetic with Mod 2 Coefficients

□ All coefficients are 0 or 1, e.g.,

let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + x^2$

$$(x^2 + x + 1) \times (x^3 + x^2) \over x^5 + x^4 + x^3 + x^2}$$

$$(x^2 + x + 1) \times (x^3 + x^2) / (x^3 + x^4) / (x^3 + x^2) / (x^3 + x^4) / (x^3$$

- - > r(x) = remainder = $f(x) \mod g(x)$
 - \rightarrow if no remainder, say g(x) divides f(x)
 - \rightarrow if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- □ Arithmetic modulo an irreducible polynomial forms a finite field
- □ Can use Euclid's algorithm to find gcd and inverses.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Example GF(2³)

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x+1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	x	1	0

(b) Multiplication

		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
100	x^2	0	x ²	x+1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^{2} + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^{2} + x$	x ²	x + 1

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Computational Example in GF(2n)

- Since coefficients are 0 or 1, any polynomial can be represented as a bit string
- In GF(2³), (x^2+1) is 101_2 & (x^2+x+1) is 111_2
- Addition:

$$(x^2+1)+(x^2+x+1)=x$$

- $> 101 \oplus 111 = 010_2$
- Multiplication:

$$(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$$
$$= x^3 + x + x^2 + 1 = x^3 + x^2 + x + 1$$

- > 011.101 = 1111₂
- \square Polynomial modulo reduction (get q(x) & r(x)) is

$$(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$$

 $1111 \mod 1011 = 1111 \oplus 1011 = 0100_2$ Iniversity in St. Louis $\frac{\text{http://www.cse.wustl.edu/~jain/cse571-17/}}{\text{Iniversity in St. Louis}}$

Homework 4D

□ Determine the gcd of the following pairs of polynomials over GF(11)

$$5x^3+2x^2-5x-2$$
 and $5x^5+2x^4+6x^2+9x$

Using a Generator

- A **generator** g is an element whose powers generate all non-zero elements in F $F=\{0, g^0, g^1, ..., g^{q-2}\}$
- □ Can create generator from **root** of the irreducible polynomial then adding exponents of generator

Summary

- 1. Euclid's tabular method allows finding gcd and inverses
- 2. Group is a set of element and an operation that satisfies closure, associativity, identity, and inverses
- 3. Abelian group: Operation is commutative
- 4. Rings have two operations: addition and multiplication
- 5. Fields: Commutative rings that have multiplicative identity and inverses
- 6. Finite Fields or Galois Fields have pⁿ elements where p is prime
- 7. Polynomials with coefficients in $GF(2^n)$ also form a field.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Lab 4: Brute Force Password Cracking

Goal: Find user passwords from the password file.

This lab consists of using the following two tools:

- 1. Password dump Pwdump7 to retrieve the password file, http://www.openwall.com/passwords/microsoft-windows-nt-2000-xp-2003-vista-7#pwdump
- 2. John the ripper V1.8, Brute force password cracker to decode the entry http://www.openwall.com/john/

Throughout the lab, please note down the commands as indicated so that you can submit them as the solution.

- Remote desktop via VPN to CSE571XPS
- Use the common student account

Step 1: Get the Password File

- Read about pwdump
- Remote access the student account on CSE571XPS, open Command Prompt
- □ CD to c:/
- Run pwdump7 -h to get some help
- Run pwdump7 with appropriate parameters to get the hash file from CSE571XPS. Note down the command you used.
- □ Open the hash file obtained in notepad. Delete all lines except the one with your last name.
- Save the file as c:\john180\run\<your_last_name>.txt
- Delete the original full hash file that you downloaded

Step 2: Find Your Password

- □ CD to c:\john180\run
- □ Delete john.pot and john.log, if present.
- Run John to get help and read all the options
- Run John with the file you created in step 1
 - > Your password is CseXXXX where X is a decimal digit [0-9].
 - Use correct options to search only for the specified pattern.(Otherwise, John will take very long)
 - > If John takes more than one minute to finish then you have not chosen the correct options
- □ After John finishes. Note down the contents of john.pot file and submit. Delete your hash file, john.pot, and john.log

Washington University in St. Louis

3. Change Your Password

- Logout from the common student account and close your remote desktop connection
- Start a new remote desktop connection using your last name as username and the password you obtained in Step 2.
- □ Change your password to a stronger password of your choice. Do this from your own account (not the common student account).
- Note the time and date you change the password. Submit the time as answer.
- Logout and close your remote desktop connection

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

Related Modules

CSE571S: Network Security (Spring 2017),

http://www.cse.wustl.edu/~jain/cse571-17/index.html

CSE473S: Introduction to Computer Networks (Fall 2016),

http://www.cse.wustl.edu/~jain/cse473-16/index.html

Wireless and Mobile Networking (Spring 2016),

http://www.cse.wustl.edu/~jain/cse574-16/index.html

CSE571S: Network Security (Fall 2014),

http://www.cse.wustl.edu/~jain/cse571-14/index.html

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/