강의계획서

출력일시 : 2024-01-31 13:26:01

1. 교과목 정보

개설연도-학기	2024년	1학기	개설학과		산업인공지능학과		
교과목번호-분반번호	8884006	01	교과목명		딥러닝 실제		
이수구분	전공공 <mark>통</mark>		학점/시수		3-3-0		
강의시간/강의실	화 11 ,12 ,13 [E10-교육318]						
수업방식							
강의언어			담당교수 전명근(전임교원)				
전화	010-5491-2389)	E-mail		mgchun@chungbuk.ac.kr		
강의정원			학과전화 043-261-3		-3225		
선수과목			수강대상 통합(건학년)		학년)		
공학인증관련정보	인증영역		이론시수	실습시수		설계시수	
강의 맛보기			·				

2. 교과목 개요

강의개요	본강의에서는 인공지능시스템의 기본이 되는 신경회로망 및 딥러닝에 대해서 배운다. 특히, 파이썬과 텐서플로우를 이용한 구현 실습을 병행한다.					
학습목표	- 파이썬과 텐서플로우를 이용한 딥러닝 시스템의 구현					
문제해결방법	파이썬을 이용한 실습					
	강의	토의/토론	실험/실습	현장학습	개별/팀별 발표	기타
ᄉᅅᄭᅒᄖᄖ	70%	0%	30%	0%	0%	0%
수업진행방법	이론설명후 실습병행 상세정보 대면/비대면 병행 수업 (최소 6회는 대면으로 진행 예정)					
	중간고사	기말고사	출석	퀴즈	과제	기타
	40%	40%	10%	0%	10%	0%
평가방법	상세정보	중간고사: 40% 기말고사: 40% 리포트: 10% 출석: 10%				
프로그램 학 습 성과 의 평가	1. 프로그램 교육목표와의 연관성: PEO-1(상), PEO-2(중) 2. 프로그램 학습성과와의 연관성: PO-1(하), PO-3(중), PO-4(상) 3. 영역별 기여도 : 전문교양(0%), MSC(0%), 전공(100%)					
교재 및 참고문헌	1. 부교재 : 딥러닝 실제, 전명근, , 1800 2. 주교재 : 밑바닥 부터 시작하는 딥러닝, 사이토 고키, 한빛미디어, 2017 3. 부교재 : 핸즈온 머신러닝, 오렐리앙 제롱, 한빛미디어, 2020					
핵심역량과 연계성						

3. 주별 강의계획

주차	수업내용	교재범위 및 과제물	비고
1	강의 소개 및 최신 기술동향 (아나콘다, 스타이더 개발 환경 실습)		
2	파이썬 1 (파이썬 프로그래밍 자료구조 실습)		
3	파이썬 2 (파이썬 프로그래밍 알고리즘 실습)		
4	퍼셉트론 1 (퍼셉트론 기본 게이트 구현 실습)		
5	퍼셉트론 2 (다층 퍼셉트론 구현 실습)	다층 퍼셉트론을 이용한 전가산기 구현	
6	신경망 1 (활성화 함수 구현 실습)	-	

강의계획서

출력일시: 2024-01-31 13:26:01

$\overline{}$			024 01 31 13:20:01
7	신경망 2, 중간고사 (신경회로망 전방향 실행 실습)		
8	신경망학습 1 (단층 신결회로망 실습)		
9	신경망학습 2 (다층 신경회로망 구현 실습)	다층신경망을 이용한 MNIST 분류기 구현	
10	오차역전파법 1 (오차역전파 모듈 구현 실습)		
11	오차역전파법 2 (다층회로망에서의 오차역전파 구현 실습)		
12	학습관련 기법들 (딥러닝 매개변수 학습법 구현 실습)		
13	합성곱 신경망(CNN) 1 (합성곱 신경망 구현 영상 실습)		
14	합성곱 신경망(CNN) 2 (합성곱 신경망 응용 인식 실습)	CNN 을 이용한 MNIST 분류기 구현	
15	딥러닝, 기말고사 (VGG, GoogLeNet, ResNet 구현 실습)		
16			
17			
18			
19			
20			
21			
22			

4. 장애학생을 위한 학습 및 평가지원 사항

학습지원: 강의 파일 제공, 대필 도우미 및 속기 지원 허락, 강의 녹음 허락, 과제 제출 기간 연장 (시각, 손사용 불편 학생), 보조기구 사용 가능 등 평가지원: 영어교과 듣기 시험 대체(청각강애학생), 장애종류 및 정도에 따라 시험 시간 1.5배 ~ 1.7배 연장, 별도 시험장소 및 시험지 제공, 필요한 경우 학습기자재 사용을 허용

5. 수강에 특별히 참고하여야 할 사항

- 1) 장애학생은 과제물 제출 시나 중간, 기말고사 시에 추가시간을 배려할 수 있으며, 도우미 학생이 필요할 경우 별도의 방법으로 시험에 응시 가능함. 2) 시험 중 부정행위를 한 자는 학사운영규정 제99조에 의거 징계 처분을 받을 수 있으며 학내의 학업 정직성이 존중될 수 있도록 수강생들은 적극 협조하여 주시기 바람. 3) 주로 ecampus에 동영상을 올리는 방식으로 진행하나, 진도점검을 위해 zoom 강의도 병행예정