Geometria diferencial Curs 2017–18

Superfícies: Primera forma fonamental.

Exercici 1: Determineu els coeficients de la primera forma fonamental del pla xy de \mathbb{R}^3 quan es considera aquest pla parametritzat per les coordenades polars.

Solució:

Tenint en compte que la parametrització en polars del pla z=0 vindrà determinada per

$$\varphi(r,\theta) = (r \cos(\theta), r \sin(\theta), 0)$$

la base de l'espai tangent serà

$$\varphi_r = (\cos(\theta), \sin(\theta), 0), \quad \varphi_\theta = (-r \sin(\theta), r \cos(\theta), 0)$$

Fent els productes escalars corresponents

$$E = 1$$
$$G = r^2$$
$$F = 0$$

I posat en forma de matriu simètrica

$$\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

Exercici 2: Donat $(u, v) \in \mathbb{R}^2$ considereu $\varphi(u, v) = p \in \mathbb{R}^3$, on p és el punt d'intersecció de la recta que passa per (u, v, 0) i el pol nord de l'esfera unitat (0, 0, 1) tal i com es representa en l'esquema següent

Es diu que φ (o la seva inversa) és la projecció estereogràfica de l'esfera sobre el pla.

- (a) Demostreu que la projecció estereogràfica és una parametrització regular de l'esfera.
- (b) Calculeu els coeficients de la primera forma fonamental de l'esfera respecte la parametrització determinada per la projecció estereogràfica.
- (c) Comproveu que la projecció estereogràfica conserva els angles (l'angle entre dues corbes, o vectors, de \mathbb{R}^2 és el mateix que hi ha entre les seves imatges sobre l'esfera).

Solució:

Per tal de fer els càlculs de l'exercici caldrà explicitar, en primer lloc, l'expressió de φ . Considerem, doncs, un punt qualsevol (u, v, 0) del pla z = 0. La recta que passa per aquest punt i el pol nord de l'esfera (0, 0, 1) es pot parametritzar com

$$(0,0,1) + \lambda (u,v,-1)$$

i els punts sobre l'esfera seran aquells que compleixin

$$(\lambda u)^2 + (\lambda v)^2 + (1 - \lambda)^2 = 1$$

Com que l'equació anterior es pot posar com

$$\lambda^2 (u^2 + v^2 + 1) - 2\lambda = 0.$$

si es descarta la solució $\lambda=0$ que correspon al pol nord, el punt $\varphi(u,v)$ haurà de ser el que correspongui a $\lambda=\frac{2}{u^2+v^2+1}$. Resumint, l'expressió de φ serà

$$\varphi(u,v) = \left(\frac{2\,u}{u^2+v^2+1}, \frac{2\,v}{u^2+v^2+1}, \frac{u^2+v^2-1}{u^2+v^2+1}\right)$$

(Noteu que φ està definida en tot el pla i que quan (u, v) va cap ∞ és quan els seus valors tendeixen al pol nord (0, 0, 1). En particular, φ parametritza l'esfera menys el pol nord).

(a) Fent quatre calculets:

$$\varphi_u = \left(\frac{2(-u^2 + v^2 + 1)}{(u^2 + v^2 + 1)^2}, \frac{-4uv}{(u^2 + v^2 + 1)^2}, \frac{4u}{(u^2 + v^2 + 1)^2}\right)$$

$$\varphi_v = \left(\frac{-4 u v}{(u^2 + v^2 + 1)^2}, \frac{2 (u^2 - v^2 + 1)}{(u^2 + v^2 + 1)^2}, \frac{4 v}{(u^2 + v^2 + 1)^2}\right)$$

Veurem a l'apartat següent que la primera forma fonamental és no degenerada i, per tant, φ és regular.

(b) Fent els productes escalars corresponents (i més calculets):

$$E = \langle \varphi_u, \varphi_u \rangle = \frac{4}{(u^2 + v^2 + 1)^2}$$
$$F = \langle \varphi_u, \varphi_v \rangle = 0$$
$$G = \langle \varphi_v, \varphi_v \rangle = \frac{4}{(u^2 + v^2 + 1)^2}$$

i en forma matricial

$$\begin{pmatrix} \frac{4}{(u^2+v^2+1)^2} & 0\\ 0 & \frac{4}{(u^2+v^2+1)^2} \end{pmatrix} = \frac{4}{(u^2+v^2+1)^2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Que, clarament, és no degenerada.

(c) L'expressió de la primera forma fonamental deixa clar que les mesures d'angles coincideixen.

Exercici 3: Considereu la parametrització de l'esfera (llevat dels dos pols i un meridià) donada per la longitud u i la latitud v:

$$\varphi: (-\pi, \pi) \times (-\pi/2, \pi/2) \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (\cos(u) \cos(v), \sin(u) \cos(v), \sin(v))$$

2

- (a) Comproveu que és una parametrització regular i determineu els coeficients de la primera forma fonamental respecte aquesta parametrització.
- (b) Donades les corbes $\alpha_1(t) = \varphi(t,0)$, $\alpha_2(t) = \varphi(\pi/4,t)$ i $\alpha_3(t) = \varphi(t,t)$ (en tots tres casos $t \in [0,\pi/4]$), calculeu (aproximant, si cal) l'àrea del triangle que determinen, les llargades de cada un dels segments i els angles que formen.

(c) Feu els mateixos càlculs que abans substituint la corba α_3 per l'arc de circumferència que s'obté tallant l'esfera amb el pla y=z (que també apareix a l'esquema anterior), determinant prèviament els nous punts de tall entre les corbes (en aquest cas, la tercera corba talla el meridià en un punt de latitud més baixa que abans).

Solució:

(a) Calculant les derivades

$$\varphi_u = (-\sin(u) \cos(v), \cos(u) \cos(v), 0)$$

$$\varphi_v = (-\cos(u) \sin(v), -\sin(u) \sin(v), \cos(v))$$

Fent els productes escalars corresponents:

$$E = \langle \varphi_u, \varphi_u \rangle = \cos^2(v)$$
$$F = \langle \varphi_u, \varphi_v \rangle = 0$$
$$G = \langle \varphi_v, \varphi_v \rangle = 1$$

Com que el domini per a les v no conté els valors $\pm \pi/2$ (que són els que anul·larien el determinant) la primera forma fonamental és no degenerada i la parametrització és regular.

(b) L'element d'àrea de l'esfera, respecte aquesta parametrització, serà

$$\cos(v) du dv$$

(Noteu que $\cos(v) > 0$ en el domini que s'està considerant). Així, l'àrea T del triangle es pot calcular amb la integral

$$T = \int_0^{\pi/4} \int_0^u \cos(v) \, dv \, du$$

Aquesta integració és immediata i dóna

$$T = \int_0^{\pi/4} \sin(u) \, dv = 1 - \frac{\sqrt{2}}{2} \approx 0.292893218813452$$

Per a calcular les longituds notem, en primer lloc, que es compleix

$$\alpha_1' = \varphi_u \ (= (1, 0))$$
 $\alpha_2' = \varphi_v \ (= (0, 1))$
 $\alpha_3' = \varphi_u + \varphi_v \ (= (1, 1))$

al llarg del seu recorregut. De forma que les velocitats d'aquestes tres corbes seran

$$|{\alpha_1}'| = \cos(0) = 1$$

(recordeu que α_1 correspon a v=0)

$$|\alpha_2'| = 1$$
$$|\alpha_3'| = \sqrt{\cos^2(t) + 1}$$

A partir d'aquí les llargades respectives $\ell_1,\,\ell_2$ i ℓ_3 seran

$$\ell_1 = \Delta t = \frac{\pi}{4}$$
$$\ell_2 = \Delta t = \frac{\pi}{4}$$

 $(\alpha_1 i \alpha_2 \text{ estan parametritzades per l'arc}).$

$$\ell_3 = \int_0^{\pi/4} \sqrt{\cos^2(t) + 1} \, dt \approx 1.058095501392563$$

(No hi ha expressió elemental per a la integral corresponent a ℓ_3).

Siguin θ_{12} , θ_{23} i θ_{13} els angles que formen, respectivament, α_1 i α_2 , α_2 i α_3 , i α_1 i α_3 . Aleshores

$$\cos(\theta_{12}) = \langle \varphi_u, \varphi_v \rangle = 0 \Longrightarrow \theta_{12} = \frac{\pi}{2}$$

 $(\alpha_1' \text{ i } \alpha_2' \text{ són unitaris})$

$$\cos(\theta_{13}) = \frac{\langle \varphi_u, \varphi_u + \varphi_v \rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Longrightarrow \theta_{13} = \frac{\pi}{4}$$

(recordeu que en aquest cas la intersecció es produeix en el punt amb 0=t=u=v)

$$\cos(\theta_{23}) = \frac{\langle \varphi_v, \varphi_u + \varphi_v \rangle}{\sqrt{3/2}} = \sqrt{2/3} \Longrightarrow \theta_{23} \approx 0.615479708670387$$

(el punt de tall correspon a $\pi/4=t=u=v,$ per tant $|\alpha_3'|=\sqrt{\cos^2(\pi/4)+1}=\sqrt{1+\frac{1}{2}}$)

(c) El recorregut del pla y=z sobre l'esfera es pot parametritzar com

$$\alpha_4(t) = \left(\cos(t), \frac{\sqrt{2}}{2}\sin(t), \frac{\sqrt{2}}{2}\sin(t)\right)$$

però d'aquesta forma el paràmetre t no té relació directa amb les coordenades (u,v) de l'esfera corresponents a la longitud i latitud. Si interessa relacionar la corba amb la parametrització de l'esfera serà millor considerar

$$\alpha_4(u) = \varphi(u, v)$$
, amb $v = \arctan(\sin(u))$

(que és el resultat d'imposar y = z en l'expressió de $\varphi(u, v)$).

En qualsevol cas, és clar que el punt de tall de α_1 amb α_4 és (1,0,0) i el de α_2 amb α_4 és $(1/\sqrt{3},1/\sqrt{3},1/\sqrt{3})$ (ja que el meridià $u=\pi/4$ està sobre el pla x=y).

Tenint en compte la parametrització de α_4 en termes de la longitud u, l'àrea T_2 del triangle que delimiten α_1 , α_2 i α_4 es calcularà amb la integral

$$T_2 = \int_0^{\pi/4} \int_0^{\arctan(\sin(u))} \cos(v) \, dv \, du$$

que no és tan difícil com sembla ja que es pot deixar com

$$T_2 = \int_0^{\pi/4} \frac{\sin(u)}{\sqrt{1 + \sin^2(u)}} \, du$$

(l'únic truc que hi ha aquí és recordar que $\sin(\arctan(a)) = \frac{a}{\sqrt{1+a^2}}$ per a qualsevol valor a) i aquesta integral és gairebé immediata (teniu en compte que $1+\sin^2(u)=2-\cos^2(u)$). S'obté, finalment,

$$T_2 = \frac{\pi}{12}$$

Respecte la llargada dels segments corresponents a aquest segon triangle es té:

- El segment corresponent a α_1 és el mateix que abans i té llargada $\pi/4$
- El segment corresponent a α_2 arribarà fins un valor t=v del paràmetre (arc) que correspon a $\frac{1}{\sqrt{3}}=z=\sin(t)$ de forma que la llargada serà $\arcsin(1/\sqrt{3})\approx 0.615479708670387$.
- Com que la parametrització de α_4 donada per $\alpha_4(t) = \left(\cos(t), \frac{\sqrt{2}}{2}\sin(t), \frac{\sqrt{2}}{2}\sin(t)\right)$ compleix

$$\alpha_4'(t) = \left(-\sin(t), \frac{\sqrt{2}}{2}\cos(t), \frac{\sqrt{2}}{2}\cos(t)\right)$$

és clar que $|\alpha_4'|=1$ i, per tant, el paràmetre t correspon a la llargada d'aquesta corba. Com que el punt inicial correspon a t=0 i el punt final correspon a $\frac{1}{\sqrt{3}}=x=\cos(t)$ la llargada d'aquest segment serà $\arccos(1/\sqrt{3})\approx 0.955316618124509$.

Finalment, per a calcular els angles entre aquestes tres corbes caldrà tenir en compte:

- L'angle θ_{12} entre α_1 i α_2 és el mateix que abans $(\pi/2)$.
- El punt de tall entre α_1 i α_4 és (1,0,0) i els vectors tangents són, respectivament, $\alpha_1' = (0,1,0)$ i $\alpha_4' = (0,\sqrt{2}/2,\sqrt{2}/2)$ (tots dos unitaris) de forma que l'angle θ_{14} entre aquestes dues corbes complirà $\cos(\theta_{14}) = \sqrt{2}/2$ i, per tant, $\theta_{14} = \pi/4$.
- El punt de tall entre α_2 i α_4 és $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$. Això determina que els vectors tangents siguin

$$\alpha_2' = \varphi_u = \left(-\frac{\sqrt{2}}{2}\sin(v), -\frac{\sqrt{2}}{2}\sin(v), \cos(v)\right)$$

(però estem en un punt on $1/\sqrt{3} = z = \sin(v)$)

$$= \left(-\frac{1}{2}\sqrt{\frac{2}{3}}, -\frac{1}{2}\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$$

$$\alpha_4' = \left(-\sin(t), \frac{\sqrt{2}}{2}\cos(t), \frac{\sqrt{2}}{2}\cos(t)\right)$$

(i estem en un punt on $1/\sqrt{3} = x = \cos(t)$)

$$= \left(-\sqrt{\frac{2}{3}}, \frac{1}{2}\sqrt{\frac{2}{3}}, \frac{1}{2}\sqrt{\frac{2}{3}}\right)$$

Com que els vectors són unitaris,

$$\cos(\theta_{24}) = \frac{1}{2} \times \frac{2}{3} - \frac{1}{4} \times \frac{2}{3} + \frac{1}{2} \times \frac{2}{3} = \frac{1}{2}.$$

I per tant $\theta_{24} = \pi/3$.

Com observació final, noteu que la suma dels tres angles del triangle val $13 \pi/12$ i aquest valor supera π en $\pi/12$ que (per casualitat?) és exactament el valor de l'àrea T_2 .

Exercici 4: Sigui $\alpha: I \to \mathbb{R}^3$ una corba parametritzada per l'arc tal que $|\alpha(t)| = 1 \ \forall t \in I$ (el recorregut d' α està sobre l'esfera unitat). Considereu la superfície parametritzada per

$$\varphi(u,v) = u \,\alpha(v)\,,$$

 $u > 0, v \in I$.

- (a) Calculeu-ne la primera forma fonamental.
- (b) Demostreu que és localment isomètrica al pla.

Solució:

(a) Tenint en compte la definició de φ

$$\varphi_u = \alpha(v)$$
$$\varphi_v = u \, \alpha'(v)$$

Per a calcular els coeficients de la primera forma fonamental caldrà tenir en compte

- (1) $\langle \alpha(v), \alpha(v) \rangle = |\alpha(v)|^2 = 1$.
- (2) Com a conseqüència de l'anterior (derivant la igualtat), $\langle \alpha'(v), \alpha(v) \rangle = 0$.

Aleshores,

$$E = \langle \varphi_u, \varphi_u \rangle = 1$$

$$F = \langle \varphi_u, \varphi_v \rangle = \langle \alpha(v), u \, \alpha'(v) \rangle = 0$$

$$G = \langle \varphi_v, \varphi_v \rangle = \langle u \, \alpha'(v), u \, \alpha'(v) \rangle = u^2$$

(b) Si es recorda l'expressió de la primera forma fonamental del pla en coordenades polars es veu que és equivalent a la d'aquesta superfície, on el paper del mòdul el fa la coordenada u i el de l'argument la coordenada v.

Dit d'una altra manera, la transformació que fa correspondre al punt $p = u \alpha(v)$ (de paràmetres (u, v)) el punt del pla donat per $(u \cos(v), u \sin(v), 0)$ és una isometria local.

Exercici 5: Calculeu l'expressió de la primera forma fonamental de les superfícies parametritzades per:

- (a) $\varphi(u,v) = (u\cos(v), u\sin(v), u^2)$
- (b) $\varphi(u, v) = (u \cosh(v), u \sinh(v), u^2)$
- (c) $\varphi(u,v) = (a \sinh(u) \cos(v), b \sinh(u) \sin(v), c \cosh(u))$ (on a, b i c són constants).

Solució:

(a)

$$\varphi_u = (\cos(v), \sin(v), 2u)$$

$$\varphi_v = (-u \sin(v), u \cos(v), 0)$$

de forma que

$$E = 1 + 4u^2$$
$$F = 0$$
$$G = u^2$$

(b)

$$\varphi_u = (\cosh(v), \sinh(v), 2u)$$

$$\varphi_v = (u \sinh(v), u \cosh(v), 0)$$

de forma que

$$\begin{split} E &= \cosh^2(v) + \sinh^2(v) + 4 \, u^2 = \cosh(2 \, v) + 4 \, u^2 \\ F &= 2 \, u \, \cosh(v) \, \sinh(v) = u \, \sinh(2 \, v) \\ G &= u^2 \, (\sinh^2(v) + \cosh^2(v)) = u^2 \, \cosh(2 \, v) \end{split}$$

(c)

$$\varphi_u = (a \cosh(u) \cos(v), b \cosh(u) \sin(v), c \sinh(u))$$

$$\varphi_v = (-a \sinh(u) \sin(v), b \sinh(u) \cos(v), 0)$$

de forma que

$$\begin{split} E &= a^2 \, \cosh^2(u) \, \cos^2(v) + b^2 \, \cosh^2(u) \, \sin^2(v) + c^2 \, \sinh^2(u) \\ F &= (b^2 - a^2) \, \cosh(u) \, \sinh(u) \, \sin(v) \, \cos(v) \\ G &= a^2 \, \sinh^2(u) \, \sin^2(v) + b^2 \, \sinh^2(u) \, \cos^2(v) \end{split}$$