Measurement and Calculation

Name:	_	Section	on: 2AL	Date performed	://
Lab station:					
Low-precision	on method				
(Q-1) Measure heig	ht and diameter o	of the cyl	inder using a r	meter stick.	
$h_{\text{low}} = (\underline{}$	±) cm	$d_{\text{low}} = (\underline{}$	±) cm
(Q-2) Calculate the	cylinder's volume	e, includi	ng uncertainty	7.	
	T 7			, 3	
(-)	•		±		
(Q-3) Measure the	mass of the cylind	ler using	a spring scale.		
	$m_{\mathrm{low}} = (_$		_±	_) g	
(Q-4) Calculate the	cylinder's density	, includi	ng uncertainty	·,	

$$\rho_{\rm low} = (\underline{} \pm \underline{}) \, {\rm g/cm^3}$$

High-precision method

(Q-1) Measure height and diameter of the cylinder using micrometer calipers.

$$h_{\text{high}} = (\underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}) \text{ cm} \qquad d_{\text{high}} = (\underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}) \text{ cm}$$

(Q-2) Calculate the cylinder's volume, including uncertainty.

(Q-3) Measure the mass of the cylinder using the electronic balance.

(Q-4) Calculate the cylinder's density, including uncertainty.

$$\rho_{\rm high} = (\underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}) \, {\rm g/cm^3}$$

Compare low and high precision

$$\rho_{low} = (\underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}) \, g/cm^3 \qquad \rho_{high} = (\underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}) \, g/cm^3$$

$$Discrepancy = |\rho_{low} - \rho_{high}| = \underline{\hspace{1cm}} g/cm^3$$

$$Tolerance = 2(\delta\rho_{low} + \delta\rho_{high}) = \underline{\hspace{1cm}} g/cm^3$$

Do the values agree? Explain.

Exercises

A measurement which is both precise and accurate:

- (A) cannot occur.
- (B) is made using an instrument capable of giving a reading with a small uncertainty which has been properly calibrated and is being properly used so as to give correct results.
- (C) is made using an instrument capable of giving a reading with a small uncertainty which nevertheless is giving an incorrect result because it is not calibrated properly or is being misused.
- (D) is made using an instrument which is not capable of giving a reading with a small uncertainty, but is nevertheless giving correct results (within uncertainty) because it is calibrated correctly and is being properly used.
- (E) is made using an instrument which is not capable of giving a reading with a small uncertainty and is also giving an incorrect result because it is not calibrated properly or is being misused.

A measurement which is both precise and inaccurate: (same choices as above)

A measurement which is both imprecise and accurate: (same choices as above)

A measurement which is both imprecise and inaccurate: (same choices as above)

For each of the following numbers, indicate how many significant figures it has and underline the significant figures.

- 5.27
- 527
- 5.270
- \bullet 0.00527
- 52700

How would you write "52700" if you wanted to make it clear that it had 4 significant figures?

If you add 712.3 and 5.28, your calculator says 717.58. Which of the following is the correctly rounded result?

- (A) 717.58
- (B) 717.5
- (C) 717.6
- (D) 718
- (E) 720

Which rule did you use?

If you multiply 712.3 and 5.28, your calculator says 3760.944. Which of the following is the correctly rounded result?

- (A) 3760.94
- (B) 3760.9
- (C) 3761
- (D) 3.760×10^3
- (E) 3.76×10^3

Which rule did you use?

A cube has a side length $a = (3.7 \pm 0.3)$ cm. Its volume (given by a^3) is (show calculation):

- (A) $(50.653 \pm 0.027) \,\mathrm{cm}^3$
- (B) $(50.7 \pm 0.9) \,\mathrm{cm}^3$
- (C) $(50.65 \pm 0.24) \,\mathrm{cm}^3$
- (D) $(51 \pm 12) \,\mathrm{cm}^3$
- (E) None of the above

Which rules did you use?

You are given $a=2.16\pm0.03,\,b=1.89\pm0.04,\,{\rm and}\,\,c=0.57\pm0.02.$ What is (a-b)/c (show calculation)?

- (A) 0.4737 ± 0.0002
- (B) 0.47 ± 0.03
- (C) 0.47 ± 0.07
- (D) 0.47 ± 0.09
- (E) 0.47 ± 0.14
- (F) 0.5 ± 0.3
- (G) 0.5 ± 0.5

Which rules did you use?