ANALYSIS I EXTENSION LECTURE 4. CONSTRUCTION OF THE INTEGERS $\mathbb Z$

ASILATA BAPAT

Construction of \mathbb{Z}

(Equivalence classes of pairs of naturals)

Let $Z = \mathbb{N} \times \mathbb{N}$. Define a relation R on $Z \times Z$ $(R \subseteq Z \times Z)$ as follows:

$$R := \{ ((a,b), (c,d)) \in Z \times Z) \mid a+d = b+c \}$$

Example. $((3,1),(4,2)) \in R$ and $((1,5),(5,9)) \in R$

Claim. R is an equivalence relations:

- (1) (Reflexivity) Since $a+b=b+a \quad \forall a,b \in \mathbb{N}$, we see that $\forall a,b \in \mathbb{N}$, the pair ((a,b),(a,b)) in R.
- (2) (Symmetry) If $((a,b),(c,d)) \in R$ then a+d=b+c, so c+a=d+b and so $((c,d),(a,b)) \in R$
- (3) (Transitivity) Suppose $((a+b), (c+d)) \in R$ and $((c,d), (p,g)) \in R$. Then a+b=b+c and c+q=d+p. After adding these and some manipulations, we see that

$$(a+q) + (c+d) = (b+p) + (c+d)$$

By cancellation , we have a+q=b+p, so $((a,b),(p,q))\in R$

If $x \in \mathbb{Z}$, write

$$[x] := \{ y \in Z \mid (x, y) \in R \}$$

Then $[x] \subseteq Z$ and $x \in [x]$, so $[x] \neq \emptyset$. This is the <u>equivalence class</u> of x. \mathbb{Z} is partitioned into disjoint, nonempty equivalence classes, so:

Definition.

$$\mathbb{Z} := Z / R = \{ S \in \mathbb{P}(Z) \mid S = [x] \text{ for some } x \in Z \}$$
$$= \{ \text{ all equivalence classes of } R \}$$

Example. [(0,1)] = [(3,4)]

There is an injective function $i : \mathbb{N} \to \mathbb{Z}$ given by $n \mapsto [(n,0)]$.

The properties of \mathbb{Z}

- (1) (Addition) $[(a,b)] + [(c,d)] := [(a +_{\mathbb{N}} c, b +_{\mathbb{N}} d)]$
- (2) (Negative) -[(a,b)] := [(b,a)], and [(a,b)] + [(b,a,)] = [(0,0)]
- (3) (Subtraction) [(a,b)] [(c,d)] := [(a,b)] + [(c,d)] = [(a+d,b+c)]
- (4) (Order Relation) We say [(a,b)] < [(,d)] if a+d < b+c. Then this is a well-defined, total order. That is, if [(a,b)] and [(c,d)] are in \mathbb{Z} , then we have a trichotomy:

$$[(a,b)] < [(c,d)] \text{ or } [(c,d)] < [(a,b)] \text{ or } [(a,b)] = [(c,d)]$$

- (5) (Multiplication) $[(a,b)] \cdot [(c,d)] := [(ac+bd,ad+bc)]$ This is commutative, associative, and distributes over addition.
- (6) (Absolute Value)

$$|[a-b]| := \begin{cases} a-b & \text{if } a \ge b \\ b-a & \text{otherwise} \end{cases}$$

Henceforth, we write [(a, b)] as follows:

- If $a \geq b$, we replace it by $(a b) \rightarrow \text{Subtraction in } \mathbb{N}$
- If a < b, we replace it by $-(b-a) \to \text{subtraction in } \mathbb{N}$