Analysis of Image Tranforms for Sketch-based Retrieval Diploma Thesis

Felix Stürmer

Technische Universität Berlin Fakultät IV - Elektrotechnik und Informatik Computer Graphics

02.11.2012

Outline

Introduction and Background

Motivation

Prior Work

Anatomy of a CBIR System

Proposed Solution

Proposed Retrieval Pipelines

Acquisition

The Curvelet Transform

Feature Extraction

Ranking

Results

Cross-Domain Benchmark Intra-Domain Benchmark

Conclusions

Motivation

- Increasing amount of visual information in
 - the internet
 - medicine
 - astronomy
- Manual search largely infeasible
- Textual queries require cognitive effort by human and machine
- Sketches allow for easy expression of query intent

Prior Work on Face Recognition

Figure: "Face recognition using curvelet based PCA.", T. Mandal and Q. M.J Wu, ICPR 2008

Prior Work on Human Recognition

Proposed Solution

Figure: "Histograms of oriented gradients for human detection", Dalal and Triggs, CVPR 2005

Introduction and Background

Prior Work on Visual Codebooks

Figure: "Video Google: A text retrieval approach to object matching in videos", Sivic and Zisserman, ICCV 2003

Anatomy of a CBIR System

- 1. Image Acquisition
- 2. Signature Extraction
- 3. Ranking

Acquisition

Introduction and Background

Figure: Original Image

Figure: Luma, Canny, Sobel and gPb contour transformations

Properties of the Curvelet Transform

- Published by Candes and Donoho, 2004
- An extension of the wavelet transform
- Especially suited for representing curve-like discontinuities, because
- Curvelets obey parabolic scaling: $width \approx length^2$
- Parameterized by location, scale and orientation
- Approximation error along edges using m largest coefficients decays with $\frac{1}{m^2}$ (compare $\frac{1}{m}$ for wavelets)
- ▶ Defined and applied in frequency domain as $\hat{\varphi}_{i,l,k}$ using the inverse Fourier Transform:

$$c(j,l,k) := \langle f, \varphi_{j,l,k} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\varphi_{j,l,k}(x)} dx$$

Conclusions

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Introduction and Background

The Fast Discrete Curvelet Transform (via Wrapping)

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform (via Wrapping)

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform (via Wrapping)

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform (via Wrapping)

Figure: Frequency Domain

Figure: Parallelogram Support

Introduction and Background

The Fast Discrete Curvelet Transform (via Wrapping)

- 1. Transform image f to \hat{f} using 2D FFT
- 2. For each scale and angle, multiply \hat{f} with the curvelet window
- 3. Wrap the product around the origin
- 4. Apply inverse 2D FFT to wrapped product to collect curvelet coefficients for each scale and angle

Example Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Global Feature Extraction (Sampling)

MEAN Calculate the mean of coefficients on $n \times n$ grid, concatenate across scales and angles

Figure: Curvelet coefficients at a specific scale and angle

Figure: Mean values on an 8×8 grid

Local Feature Extraction (Sampling)

PMEAN Collect $(n-m+1)^2$ sample vectors of length $N_s \cdot N_{\theta_s} \cdot m^2$ by concatenating across scales and angles

PMEAN2 Collect $N_s \cdot (n-m+1)^2$ sample vectors of length $N_{\theta_a} \cdot m^2$ by concatenating across angles

Figure: 8×8 mean coefficient grid sampled using 3×3 window

n image width and height

- m window width and height
- N_s Number of scales
- N_{θ} . Number of angles at scale s

Local Feature Extraction (Clustering)

- k-means clustering of features in database images
- k = 1000 clusters sufficient
- ▶ Each sample vector is assigned to the cluster S_i , i = 1, ..., k the center of which it is closest to
- Image signature is the number of occurences of each "visual word" in the image:

$$\tilde{I} = [|S_1|, |S_2|, \dots, |S_k|]$$

Distance Metrics

$$L_2$$
 Distance $d_{EUCL}(p,q) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$

Cosine Distance
$$d_{COS}(p,q) = 1 - \frac{p \cdot q}{\|p\| \|q\|}$$

Histogram Intersection (HI)
$$d_{HI}(P,Q) = 1 - \frac{\sum_{i=1}^{n} \min(p_i,q_i)}{\sum_{i=1}^{n} q_i}$$

Earth Mover's Distance (EMD)
$$d_{EMD}(P,Q) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} d_{i,j} f_{i,j}}{\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j}}$$

TF-IDF Weighting

Term t_i occurs $tc_{i,j}$ times in document $d_j \in D$ with length n_j and is present in m_i documents overall.

Term Frequency
$$tf_{i,j} = \frac{tc_{i,j}}{n_j}$$

Inverse Document Frequency $idf_i = \log \frac{|D|}{m_i}$

Total Term Weight
$$w_{i,j} = tf_{i,j} \cdot idf_i = \frac{tc_{i,j}}{n_j} \cdot \log \frac{|D|}{m_i}$$

⇒ Amplify rare features, suppress common features

Cross-Domain Dataset

Figure: Example images from "Sketch-based image retrieval: benchmark and bag-of-features descriptors", Eitz et al., 2011

Cross-Domain Benchmark

- ▶ 31 user study-based ground-truth rankings of 40 images with corresponding query sketches (Eitz et al., 2011)
- ▶ Kendall rank correlation coefficient $-1 \le \tau_B \le 1$
- τ_B is based on the number of similarly ordered pairs of measurements between two distributions
- $au_B=1$ means same ordering, $au_B=-1$ means inverted ordering
- independent of the scaling differences between the two distributions

Cross-Domain Results

Preproc.	Sampling	G	P	σ	Metric	Mean $ au_B$ correlation coefficient
CANNY LUMA SOBEL	PMEAN PMEAN2 MEAN MEAN		3		HI	0.188 0.22 0.19 0.191 0.2 0.2
						$0 \qquad 0.1 \qquad 0.2 \qquad 0.3 \qquad 0.4$

Table: Best performing pipeline configurations

Cross-Domain Distribution

Query Images

Intra-Domain Dataset

Figure: Example sketches from four categories from "How do humans sketch objects?", Eitz et al., 2012

Intra-Domain Benchmark

► 50 categories with 80 hand-drawn sketches each (Eitz et al., 2012)

Proposed Solution

Precision-recall statistics

$$\begin{split} recall &= \frac{\text{number of correct positive results}}{\text{total number of positives}} \\ precision &= \frac{\text{number of correct positive results}}{\text{total number of results}} \end{split}$$

no edge-detecting preprocessing

Intra-Domain Results

Discussion and Conclusions

- Retrieval performance comparable to other descriptors
- For cross-domain retrieval, local LUMA+CANNY+HI performs best
- For intra-domain retrieval, global descriptors work better
- Large performance differences between queries
- Very dependent on the nature of the images
- ⇒ Possibly much better results for narrower problem statements and specialized applications

Cross-Domain Parameter Variation: Angles

Preproc.	Sampling	N_s	N_{θ}	Metric	Mean $ au_B$ correlation coefficient
CANNY	PMEAN	4	4	HI	0.183
CANNY	PMEAN	4	8	HI	0.207
CANNY	PMEAN	4	12	HI	0.22
CANNY	PMEAN	4	16	HI	0.207
CANNY	PMEAN	4	20	HI	0.208
					0 0.1 2 0.2 2 0.3 0.4

Cross-Domain Parameter Variation: Grid and Patch Sizes

Cross-Domain Parameter Variation: Canny Sigma

