SC1015 Mini Project

Students Performance In

SC7 Team 7: Yao Xian(Robin), Akash, John

Exams

Problem Formulation

Does parental education really affect student results?

Does attending Test Prep Course affect student results?

Does having a proper lunch affects performance?

Does doing good in one subject mean they are good in another subject?

Data Introduction

```
In [3]: Students_data = pd.read_csv('StudentsPerformance.csv')
Students_data.head()
```

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

```
In [4]: print("Data type : ", type(Students_data))
    print("Data dims : ", Students_data.shape)
```

Data type : <class 'pandas.core.frame.DataFrame'>

Data dims : (1000, 8)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x19e3d77bf70>

Data Introduction

RFC VS SVM Vs Naive Bayes?

Done By: AKASH

Random Forest Classifier

- Random Forest is a supervised learning algorithm
- Consists a large number of decision trees that operate as an ensemble
- Each Individual tree in the random forest spits out a class prediction
- The class with the most votes becomes our model prediction
- Fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting
- The model is generally trained using a bagging method

SUPPORT VECTOR MACHINE

- Is a supervised machine learning algorithm
- We plot each data item as a point in n-dimensional space with the value of each feature being the value of a particular coordinate.
- Then, we perform classification by finding the hyper-plane that differentiates the two classes very well.

GAUSSIAN NAIVE BAYES

- Uses various features to discriminate different objects
- Using Bayes theorem, we can find the probability of A happening, given that B has occurred.
- Here, B is the evidence and A is the hypothesis. The assumption made here is that the predictors/features are independent. That is presence of one particular feature does not affect the other.
- Mence it is called naive.
- 3 Types of Naive Bayes Classifier: Multinomial, Bernoulli & Gaussian

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Does parental education really affect student results?

Done By: Yao Xian(Robin)

Data Analysis

Data Analysis

Data Analysis (Random Forest Classification)

TPR Test:

TNR Test:

FPR Test:

FNR Test:

Train Set

TPR Train:

TNR Train:

0.987460815047022

0.9957537154989384

FPR Train: 0.004246284501061571 FNR Train: 0.012539184952978056 **Test Set**

0.35443037974683544

0.6638655462184874

0.33613445378151263

0.6455696202531646

Data Analysis (Random Forest Classification)

Data Analysis (Naive Bayes)

Train Set

TPR Train: 0.3605015673981191

TNR Train: 0.7579617834394905

FPR Train: 0.24203821656050956 FNR Train: 0.6394984326018809

Test Set

TPR Test: 0.4050632911392405

TNR Test: 0.6890756302521008

FPR Test: 0.31092436974789917 FNR Test:

0.5949367088607594

Data Analysis (Naive Bayes)

Train Set Test Set

Does Test Prep Course really affect student results?

Done By: Yao Xian(Robin)

Data Analysis

Data Analysis

Data Analysis (Random Forest Classification)

Train Set

TPR Train: 0.996031746031746 TNR Train :

0.9790209790209791

FPR Train : FNR Train :

0.02097902097902098

0.003968253968253968

Test Set

TPR Test: TNR Test:

0.7244094488188977

0.4788732394366197

FPR Test: FNR Test: 0.5211267605633803

0.2755905511811024

Data Analysis (Random Forest Classification)

Data Analysis (Support Vector Machine)

					support	f1-score	recall	precision	
					286	0.52	0.47	0.60	completed
					504	0.77	0.82	0.73	none
		est Set	1		790	0.69			accuracy
		031 001			790	0.65	0.64	0.66	macro avg
support	f1-score	recall	precision		790	0.68	0.69	0.68	weighted avg
71	0.47	0.45	0.50	completed					
127	0.73	0.75	0.71	none			t	Train Se	
198	0.64			accuracy					
198	0.60	0.60	0.60	macro avg					
198	0.64	0.64	0.63	eighted avg	We				

Data Analysis (Naive Bayes)

Train Set

0.7440476190476191

TNR Train : 0.527972027972028

TPR Train:

FPR Train: 0.47202797202797203 FNR Train: 0.25595238095238093

Test Set

TPR Test: 0.6062992125984252 TNR Test: 0.4647887323943662

FPR Test: 0.5352112676056338 FNR Test: 0.3937007874015748

Data Analysis (Naive Bayes)

Does having a proper lunch affects performance?

Done By: Yao Xian(Robin)

Data Analysis

Data Analysis

Data Analysis (Random Forest Classification)

Train Set

TPR Train : 0.9940119760479041

TNR Train: 0.9792387543252595

FPR Train: 0.020761245674740483 FNR Train: 0.005988023952095809

Test Set

TPR Test: 0.78
TNR Test: 0.30

0.7816901408450704

0.30357142857142855

FPR Test : FNR Test :

0.6964285714285714

0.21830985915492956

Data Analysis (Random Forest Classification)

Data Analysis (Support Vector Machine)

	precision	recall	f1-score	support				
free/reduced	0.65	0.37	0.47	289				
standard	0.71	0.88	0.79	501				
accuracy			0.70	790		Test Set		
macro avg	0.68	0.63	0.63	790		1631 361	•	
weighted avg	0.69	0.70	0.67	790				
					precision	recall	f1-score	support
	Train Set		fr	ee/reduced	0.56	0.34	0.42	56
				standard	0.77	0.89	0.83	142
				accuracy			0.74	198
				macro avg	0.67	0.62	0.63	198
			we	eighted avg	0.71	0.74	0.71	198

Data Analysis (Naive Bayes)

Train Set

TPR Train : 0.7325349301397206

TNR Train : 0.5121107266435986

FPR Train : 0.48788927335640137

FNR Train : 0.26746506986027946

Test Set

TPR Test: 0.78

0.7887323943661971 0.4642857142857143

TNR Test:

FPR Test :

0.5357142857142857

FNR Test: 0.2112676056338028

Data Analysis (Naive Bayes)

Train Set Test Set

Does doing good in one subject mean they are good in another?

Done by: John

Correlation of the different scores

Using Writing score VS predict Math score (Random Forest Regression)

MAE	7.29
RMSE	8.92
R^2	0.69

Using Reading score VS predict Math score (Random Forest Regression)

MAE	7.24
RMSE	9.09
R^2	0.65

Using Writing score VS predict Reading score (Random Forest Regression)

Conclusion

Done by: John

CONCLUSION

Parents Holding Degree

Test Preparation Course

A+

Proper Lunch

A+

THANK YOU!