### **Actvidad 5**

Saúl Francisco Vázquez del Río

2024-08-14

df=read.csv("C:\\Users\\saulv\\OneDrive\\Escritorio\\Septimo
semestre\\mc-donalds-menu.csv") #Leer La base de datos

1. Utiliza la transformación Box-Cox. Utiliza el modelo exacto y el aproximado de acuerdo con las sugerencias de Box y Cox para la transformación

```
Prote = df$Protein
library(MASS)
bc<-boxcox((Prote+1)~1)</pre>
```



```
l=bc$x[which.max(bc$y)]
print(1)
## [1] 0.3838384
```

2. Escribe las ecuaciones de los modelos encontrados. log(x + 1)

$$\frac{x^{\lambda}-1}{\lambda}$$

```
Prote1=log(Prote + 1)
Prote2=((Prote+1)^1-1)/1
par(mfrow=c(3,1))
hist(Prote1,col=0,main="Histograma de Prote 1")
hist(Prote2,col=0,main="Histograma de Prote 2")
hist(Prote,col=0,main="Histograma de Proteinas")
```







```
library(nortest)
D=ad.test(Prote)
D$p.value
## [1] 8.515383e-12

D=ad.test(Prote1)
D$p.value
## [1] 3.7e-24

D=ad.test(Prote2)
D$p.value
## [1] 1.831193e-08

library(e1071)
print("Original")
## [1] "Original"
summary(Prote)
```

```
Min. 1st Qu. Median Mean 3rd Qu.
##
                                              Max.
##
      0.00
              4.00
                     12.00
                             13.34
                                     19.00
                                             87.00
print("Curtosis")
## [1] "Curtosis"
kurtosis(Prote)
## [1] 5.7955
print("Sesgo")
## [1] "Sesgo"
skewness(Prote)
## [1] 1.561741
library(e1071)
print("Transformacion 1")
## [1] "Transformacion 1"
summary(Prote1)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
                     2.565
                             2.230
                                     2.996
##
     0.000 1.609
                                             4.477
print("Curtosis")
## [1] "Curtosis"
kurtosis(Prote1)
## [1] -0.4185221
print("Sesgo")
## [1] "Sesgo"
skewness(Prote1)
## [1] -0.7992368
library(e1071)
print("Transformacion 2")
## [1] "Transformacion 2"
summary(Prote2)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
##
     0.000 2.227
                    4.368
                             4.021
                                     5.622 11.923
print("Curtosis")
```

```
## [1] "Curtosis"
kurtosis(Prote2)
## [1] -0.5104494

print("Sesgo")
## [1] "Sesgo"
skewness(Prote2)
## [1] -0.1145447

M2 <- Prote[Prote > 0]
par(mfrow=c(2,1))
boxplot(Prote, horizontal = TRUE, col="pink", main="Proteinas de los alimentos en McDonalds")
boxplot(M2, horizontal = TRUE, col="green", main="Proteinas de los alimentos en McDonalds sin ceros")
```

#### Proteinas de los alimentos en McDonalds



### Proteinas de los alimentos en McDonalds sin cerc



```
library(MASS)
M2 = subset(df, Protein>0)
M2Protein <- M2$Protein
bc<-boxcox((M2Protein+1)~1)</pre>
```



```
l=bc$x[which.max(bc$y)]

print(1)

## [1] 0.3838384

Prote1=log(M2Protein+1)
Prote2=((M2Protein+1)^1-1)/1
par(mfrow=c(3,1))
hist(Prote1,col=0,main="Histograma de Prote 1")
hist(Prote2,col=0,main="Histograma de Prote 2")
hist(M2Protein,col=0,main="Histograma de Proteinas")
```







```
library(nortest)
D0=ad.test(M2Protein)
D1=ad.test(Prote1)
D2=ad.test(Prote2)
print("D0")
## [1] "D0"
print(D0)
##
    Anderson-Darling normality test
##
##
## data: M2Protein
## A = 4.2129, p-value = 1.685e-10
print("D1")
## [1] "D1"
print(D1)
##
##
    Anderson-Darling normality test
##
## data:
          Prote1
## A = 5.9646, p-value = 1.034e-14
```

```
print("D2")
## [1] "D2"
print(D2)
##
   Anderson-Darling normality test
##
##
## data: Prote2
## A = 1.6613, p-value = 0.000283
library(e1071)
m0=round(c(as.numeric(summary(M2Protein)),kurtosis(M2Protein),skewness(M2
Protein),D0$p.value),3)
m1=round(c(as.numeric(summary(Prote1)),kurtosis(Prote1),skewness(Prote1),
D1$p.value),3)
m2=round(c(as.numeric(summary(Prote2)),kurtosis(Prote2),skewness(Prote2),
D2$p.value),3)
m<-as.data.frame(rbind(m0,m1,m2))</pre>
row.names(m)=c("Original", "Primer modelo", "Segundo Modelo")
names(m)=c("Minimo","Q1","Mediana","Media","Q3","Máximo","Curtosis","Sesg
o", "Valor p")
print(m)
##
                  Minimo
                            Q1 Mediana Media
                                                  Q3 Máximo Curtosis
Sesgo
## Original
                   1.000 8.000 13.000 14.884 20.000 87.000
                                                               6.814
1.697
## Primer modelo
                   0.693 2.197
                               2.639 2.489 3.045 4.477
                                                              -0.092 -
0.733
## Segundo Modelo 0.794 3.450 4.569 4.486 5.777 11.923
                                                              -0.027
0.004
##
                  Valor p
## Original
                        0
## Primer modelo
                        0
## Segundo Modelo
                        0
library(VGAM)
## Cargando paquete requerido: stats4
## Cargando paquete requerido: splines
Prote3<- yeo.johnson(M2Protein, lambda = 1)</pre>
print(Prote3)
##
     [1] 5.2955787 5.4612587 4.7615655 5.9281928 5.9281928
6.6260599
## [7] 5.6216488 5.6216488 5.7771703 5.7771703 4.1568554
```

| 4.1568554             |           | F 4613F07  | F 4612F07         | F 4612F07                               | F 20FF707                               |  |
|-----------------------|-----------|------------|-------------------|-----------------------------------------|-----------------------------------------|--|
| ## [13]<br>5.2955787  | 5.4612587 | 5.461258/  | 5.461258/         | 5.461258/                               | 5.2955/8/                               |  |
|                       | 6.4932972 | 5.6216488  | 5.7771703         | 4.1568554                               | 5.7771703                               |  |
| 5.9281928             |           |            |                   |                                         |                                         |  |
|                       | 7.1287843 | 7.1287843  | 7.4801104         | 6.8827676                               | 6.8827676                               |  |
| 6.6260599<br>## [31]  |           | 7 8128150  | 7 8128150         | 7 7038246                               | 7.7038246                               |  |
| 3.4499091             |           | 7.0120130  | 7.0120130         | 7.7030240                               | 7.7030240                               |  |
|                       |           | 4.3678356  | 0.7941071         | 2.8930904                               | 2.5771963                               |  |
| 2.5771963             |           |            |                   |                                         |                                         |  |
|                       | 6.3573496 | 7.1287843  | 7.9200053         | 7.9200053                               | 7.0070394                               |  |
| 8.9988974<br>## [49]  |           | 4 9463384  | 6 3573496         | 8 1292837                               | 6.0750423                               |  |
| 6.7558264             |           | 4.2403304  | 0.3373430         | 0.1202007                               | 0.0730423                               |  |
| ## [55]               | 6.0750423 | 6.0750423  | 6.0750423         | 6.3573496                               | 6.8827676                               |  |
| 7.8128150             |           |            | - 0100:=1         | <b>-</b> 0.000:=:                       | 0.051753                                |  |
| ## [61]<br>5.9281928  | 8.2315091 | 7.3652046  | 7.8128150         | 7.8128150                               | 8.2315091                               |  |
|                       |           | 6.0750423  | 5.7771703         | 4.7615655                               | 7.3652046                               |  |
| 7.8128150             |           | 0.0750.125 | 31,7,72,03        | , 013033                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
|                       | 6.7558264 | 7.1287843  | 6.7558264         | 7.2481328                               | 6.2180085                               |  |
| 6.7558264             |           | 4 5600060  |                   | 0 4057040                               | 44 0004440                              |  |
| ## [/9]<br>4.9463384  | 3.6998078 | 4.5690368  | 6.0/50423         | 8.625/262                               | 11.9231668                              |  |
|                       | 3.6998078 | 6.4932972  | 7.0070394         | 2.8930904                               | 6.2180085                               |  |
| 6.7558264             |           | 0,10001    |                   | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.1_00000                               |  |
|                       | 4.7615655 | 5.1241251  | 4.7615655         | 5.1241251                               | 4.9463384                               |  |
| 5.1241251             |           | 2 2260170  | 2 0020004         | 0 7041071                               | 0.7041071                               |  |
| ## [9/]<br>2.2269170  | 1.3665522 | 2.2269170  | 2.8930904         | 0.7941071                               | 0.7941071                               |  |
|                       | 1.3665522 | 1.3665522  | 1.3665522         | 0.7941071                               | 3.4499091                               |  |
| 3.1822528             |           |            |                   |                                         |                                         |  |
|                       | 2.8930904 | 1.3665522  | 1.8302649         | 2.2269170                               | 0.7941071                               |  |
| 3.4499091             |           | 1 2665522  | 1 9202640         | 2 2260170                               | 0 7041071                               |  |
| ## [115]<br>0.7941071 | 3.6998078 | 1.3003322  | 1.0302049         | 2.2269170                               | 0.7941071                               |  |
|                       |           | 3.6998078  | 4.1568554         | 4.9463384                               | 3.6998078                               |  |
| 4.1568554             |           |            |                   |                                         |                                         |  |
|                       |           | 3.6998078  | 4.1568554         | 4.9463384                               | 3.6998078                               |  |
| 4.1568554<br>## [133] | 4.9463384 | 3 6009079  | / 36793E <i>6</i> | V 0VE336V                               | 3.9347419                               |  |
| 4.3678356             |           | J. 0990070 | 7.30/0330         | +.9403304                               | J. JJ4/41J                              |  |
|                       |           | 3.9347419  | 4.3678356         | 5.1241251                               | 3.9347419                               |  |
| 4.3678356             |           |            |                   |                                         |                                         |  |
|                       |           | 3.9347419  | 4.3678356         | 5.1241251                               | 3.9347419                               |  |
| 4.3678356<br>## [151] | 5.1241251 | 3 93/7/10  | 1 5600360         | 5 12/1251                               | / 156QEE/                               |  |
| 4.5690368             |           | J.734/417  | 4.3050508         | J.1241231                               | 4.1300334                               |  |
|                       |           | 3.9347419  | 4.3678356         | 5.1241251                               | 3.9347419                               |  |
|                       |           |            |                   |                                         |                                         |  |

```
4.5690368
## [163] 5.2955787 4.1568554 4.7615655 5.2955787 4.3678356
4.7615655
## [169] 5.6216488 0.7941071 0.7941071 1.3665522 0.7941071
0.7941071
## [175] 1.3665522 0.7941071 0.7941071 1.3665522 0.7941071
0.7941071
## [181] 1.3665522 0.7941071 0.7941071 1.3665522 3.4499091
3.6998078
## [187] 4.7615655 3.4499091 3.9347419 4.7615655 3.4499091
3.6998078
## [193] 4.5690368 3.4499091 3.9347419 4.7615655 3.1822528
3.6998078
## [199] 4.1568554 3.1822528 3.6998078 4.1568554 3.4499091
3.6998078
## [205] 4.3678356 1.3665522 1.8302649 2.2269170 1.8302649
2.2269170
## [211] 2.5771963 1.3665522 1.8302649 2.2269170 4.1568554
4.7615655
## [217] 5.4612587 4.3678356 4.9463384 5.4612587 4.3678356
4.9463384
## [223] 5.6216488 4.7615655 5.4612587 4.5690368 5.7771703
3.6998078
## [229] 4.3678356 4.9463384 3.4499091 5.9281928 3.9347419
library(VGAM)
lp <- seq(0,1,0.001) # Valores de Lambda propuestos</pre>
nlp <- length(lp)</pre>
n=length(M2Protein)
D <- matrix(as.numeric(NA),ncol=2,nrow=nlp)</pre>
d < -NA
for (i in 1:nlp){
d= yeo.johnson(M2Protein, lambda = lp[i])
p=ad.test(d)
D[i,]=c(lp[i],p$p.value)}
N <- as.data.frame(D)</pre>
colnames(N) <- c("Lambda", "Valor-p")</pre>
plot(N$Lambda, N$`Valor-p`, type="1", col="darkred", lwd=3,
     xlab="Lambda", ylab="Valor p (Normalidad)",
     main="Valor p de la Prueba de Normalidad en Función de Lambda")
```

# alor p de la Prueba de Normalidad en Función de La



```
G=data.frame(subset(N,N$`Valor-p`==max(N$`Valor-p`)))
print(G)

## Lambda Valor.p
## 547 0.546 0.0029409

par(mfrow=c(2,1))
hist(Prote3,col=0,main="Histograma de Prote 3")
hist(M2Protein,col=0,main="Histograma de Proteinas",xlab="Proteinas")
```





## Histograma de Proteinas



```
library(e1071)
summary(Prote3)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
    0.7941 3.4499
                    4.5690
                           4.4864 5.7772 11.9232
##
print("Curtosis")
## [1] "Curtosis"
kurtosis(Prote3)
## [1] -0.02734962
print("Sesgo")
## [1] "Sesgo"
skewness(Prote3)
## [1] 0.004282062
```

Define la mejor transformación de los datos de acuerdo a las características de los modelos que encontraste. Toma en cuenta los criterios del inciso anterior para analizar normalidad y la economía del modelo.

La mejor transformación en esta actividad para mi fue la de Yeo Johnson porque la p tiene un valor mayor en la prueba normalidad Concluye sobre las ventajas y desventajas de los modelos de Box Cox y de Yeo Johnson.

Box Cox

Desventajas: No puede manejar datos que sean ceros o negativos y no puede ser considerada si los datos no son simétricos.

Ventajas: Es ideal si los datos son positivos y si esta puede a llegar a ser más simple si sus datos no nos son negativos.

Yeo Johnson

Desventajas: Es más compleja que Box Cox y podría necesitar ajustes si los datos no son uniformes

Ventajas: Puede manejar datos positivos y negativos, y es más fácil de usar cuando los datos son uniformes

Analiza las diferencias entre la transformación y el escalamiento de los datos: Escribe al menos 3 diferencias entre lo que es la transformación y el escalamiento de los datos

1. Transformación: Esta modifica la distribución de los datos para hacer a esta más cercana a una distribución normal.

Escalamiento: Esta escala los datos para que estos se encuentren en un rango específico.

2. Transformación: Ésta puede estabilizar la varianza de los datos

Escalamiento: Ajusta la magnitud de los datos y no afecta a la varianza

3. Transformación: Esta se le dificulta trabajar con datos negativos

Escalamiento: Esta se puede aplicar a cualquier rango de datos incluso si estos son negativos

Indica cuándo es necesario utilizar cada uno

Transformacion: Se usa cuando los datos no tiene una distribución normal

Escalamiento: Se usa cuando se quieren normalizar los datos