

Lab1 Inverter chain & OR7 design

Digital Integrated Circuit Design

TA1: Zihan Lian - lianzihan@sjtu.edu.cn;

TA2: Yuxuan Qin - qinyuxuan@sjtu.edu.cn;

Outline

② 实验内容

- ・反相器链路设计
- 七输入或门设计
- ② 实验工具
 - Hspice
 - FinFET
- **②** 实验材料和要求
- **會** 附录

反相器链路设计——实验内容

輸入负载:最小尺寸反相器

●输出负载: 150倍最小尺寸反相器(扇出为4)

反相器链路设计——实验目标

②设计目标:

- 1. 在固定电压为标准电压 (PTM 10nm: 0.75V), 温度85度的情况下, 设计适当的级数和尺寸, 保证反相器输出上升下降速度基本相等的情况下, 优化t_p=(t_{pHL}+t_{pLH})/2;
- 2. 在1)的电路基础上,确定EDP最优的工作电压;

反相器链路设计——注意事项

- ◎测功耗时不包括负载反相器的功耗:
 - 反相器链和负载反相器的电源节点命名不同;

电压scaling过程中,当电源电压很低时,输出翻转会很慢。此时应当增大输入信号的周期,使输出有足够长的时间翻转;

Outline

② 实验内容

- 反相器链路设计
- ・七输入或门设计
- ② 实验工具
 - Hspice
 - FinFET
- **②** 实验材料和要求
- **會** 附录

七输入或门设计——实验内容

●输入负载:最小尺寸反相器

●输出负载:扇出为4的32倍最小尺寸反相器)

七输入或门设计——实验目标

●设计目标:

• 进行结构上的选取(多级,动静态,…),设计工作在标准电压(PTM 10nm: 0.75V)温度85度下的五输入与门,平均延迟、面积、功耗都要优于参考电路(下图)

七输入或门设计 (注意事项)

- 面积估算方法:
 - $\sum_{all\ T} W \times L$;
- input data pattern的不同会导致单次翻转的延时、动态功 耗会有所不同(对可能存在的情况求均值):
 - 功耗延迟计算7种模式(上升下降延迟各7种)的平均值:
 0000000与000001、0000000与000010、...、 000000与1000000
- 参 若不能同时取得面积、功耗、延时三者的优化,可考虑设计多个电路(不要求─定使用静态CMOS电路实现),分别完成上述要求的部分。若仍不能满足,需在报告中分析清楚原因

Outline

- ② 实验内容
 - 反相器链路设计
 - 七输入或门设计
- ② 实验工具
 - Hspice
 - FinFET
- **②** 实验材料和要求
- **會** 附录

SPICE Introduction

- SPICE Simulation Program with Integrated Circuit Emphasis developed by U.C.Berkeley
- SPICE simulate your electrical circuit designs, based on circuit level
 - Steady-state (DC Analysis)
 - Time (Transient Analysis)
 - Frequency (AC Analysis)

HSPICE仿真流程

输入输出文件

文件种类	文件后缀名
输入网表文件	.sp
模型与库文件	.inc .lib
运行状态文件	.st0
输出列表文件	.lis
测量输出文件	.m*#
瞬态分析文件	.tr#
直流分析文件	.sw#
交流分析文件	.ac#
其他文件	

输入输出文件

文件种类	文件后缀名	
输入网表文件	.sp	
模型与库文件	.inc .lib	
运行状态文件	.st0	
输出列表文件	.lis	
测量输出文件	.m*#	
瞬态分析文件	.tr#	
直流分析文件	.sw#	
交流分析文件	.ac#	
其他文件	•••	

1 .TITLE F04 DELAY	文件标题
2 .lib "C:\synopsys\tsmc\hspice\crn40lp_1d8_v2d0_2_shrink0d9_embedded_usage.l" TOP_TT 3 .OPTION POST	引用库文件
4 .GLOBAL VDD GND 5 .TEMP 25.0 6 .PARAM SUPPLY=1.1 7 .PARAM H=4	分析及输出配置
9 VDD VDD GND 'SUPPLY' 10 * 11 .SUBCKT INV A Y N=0.12u P=0.24u 12 xnmos Y A GND GND nch_mac W=N L=0.04u 13 xpmos Y A VDD VDD pch_mac W=P L=0.04u 14 .ENDS	子电路定义
16	元件描述
22 * 23 * 24 VIN A GND PULSE 0 'SUPPLY' 50ps 10ps 10ps 230ps 500ps	激励源
25 .tran 1ps 10ns 27 .op all	分析命令
28 29 .measure tpdrbc 30 + TRIG v(b) VAL='SUPPLY/2' FALL=1 31 + TARG v(c) VAL='SUPPLY/2' RISE=1 32 .measure dprfbc 33 + TRIG v(b) VAL='SUPPLY/2' RISE=1 34 + TARG V(c) VAL='SUPPLY/2' FALL=1	输出命令
35 .end	结束

.TITLE F04 DELAY	文件标题
2 .lib "C:\synopsys\tsmc\hspice\crn40lp_1d8_v2d\ 2_shrink0d9_embedded_usage.1" TOP_TT 3 .OPTION POST 4 .GLOBAL VDD GND	引用库文件
GLOBAL VDD GND TEMP 25.0 PARAM SUPPLY=1.1 PARAM H=4	分析及输出配置
9 VDD VDD GND 'SUPPLY' 10 * 11 .SUBCKI INV A Y N=0.120 P=0.240 1 3 .OPTION POST 1 4 .GLOBAL VDD GND	子电路定义
15 .TEMP 25.0 16 .PARAM SUPPLY=1.1 27 .PARAM H=4	元件描述
2 9 VDD VDD GND 'SUPPLY' A N -> + nt	激励源
定义子电路	分析命令
.SUBCKT INV A Y N=0.12u P=0.24u 212 xnmos Y A GND GND nch_mac W=N L=0.04u 313 xpmos Y A VDD VDD pch_mac W=P L=0.04u 514 FNDS	输出命令
35 end	结束


```
文件标题
     .TITLE FO4 DELAY
     .lib "C:\synopsys\tsmc\hspice\crn401p 1d8 v2d0 2 shrink0d9 embedded usage.1" TOP TT
                                                                                引用库文件
     .OPTION POST
    .GLOBAL VDD GND
     .TEMP 25.0
                                                                              分析及輸出配置
     .PARAM SUPPLY=1.1
   9 VDD VDD GND 'SUPPLY'
                                                                                子电路定义
   A B INV
      C INV M='H'
      D INV M='H**2'
                                              调用子电路模块
         INV M='H**3'
                                                                                 元件描述
         INV M='H**4'
X6 F G INV M='H**5'
                                                                                  激励源
                                              输入激励
                                                                                 分析命令
VIN A GND PULSE 0 'SUPPLY' 50ps 10ps 10ps 230ps 500ps
  29 .measure tpdrbc
        TRIG v(b) VAL='SUPPLY/2' FALL=1
                                                                                 输出命令
        TARG v(c) VAL='SUPPLY/2' RISE=1
     .measure dprfbc
        TRIG v(b) VAL='SUPPLY/2' RISE=1
        TARG V(c) VAL='SUPPLY/2' FALL=1
    .end
                                                                                   结束
```



```
文件标题
  .TITLE FO4 DELAY
                                                             引用库文件
   tran 1ps 10ns.
                         .tran 输出仿真波形在*.tr#中
                                                           分析及輸出配置
  .op all
                              输出测量结果在*.mt#中
  .measure tpdrbc
                                                            子电路定义
       TRIG v(b) VAL='SUPPLY/2' FALL=1
       TARG v(c) VAL='SUPPLY/2' RISE=1
16
  .measure dprfbc
                                                             元件描述
       TRIG v(b) VAL='SUPPLY/2' RISE=1
        TARG V(c) VAL='SUPPLY/2' FALL=1
                                                              激励源
                                                             分析命令
  .tran 1ps 10ns
  .measure tpdrbc
    TRIG v(b) VAL='SUPPLY/2' FALL=1
                                                             输出命令
    TARG v(c) VAL='SUPPLY/2' RISE=1
  .measure dprfbc
    TRIG v(b) VAL='SUPPLY/2' RISE=1
    TARG V(c) VAL='SUPPLY/2' FALL=1
                                                               结束
```


Outline

- ② 实验内容
 - 反相器链路设计
 - 七输入或门设计
- ② 实验工具
 - Hspice
 - FinFET
- **②** 实验材料和要求
- **沙** 附录

上海文章大学 Tri-Gate Transistor with Multiple Fins

Tri-Gate transistors can have multiple fins connected together to increase total drive strength for higher performance

22nm Tri-Gate Transistors

Source: Intel

Width Quantization of FinFET

the silicon body): t_{si}

Single fin:

$$W_{min} = 2 \times H_{fin} + t_{si}$$

N fins:

$$W_{\text{total}} = n \times W_{min}$$

= $n \times (2 \times H_{fin} + t_{si})$

The width quantization of FinFETs introduces interesting design challenges in CMOS circuits whose performances are highly sensitive to transistor sizing

Models for Experiment

Use the Predictive Technology Model (PTM) to evaluate the DC characteristics of multi-gate (MG)

FinFETs

LATEST MODELS

 ${
m T}_{
m vpical}$ SPICE model files for each future generation are available here.

Attention: By using a PTM file, you agree to acknowledge both the URL

New!

June 01, 2012:

PTM releases a new set of models for multi-gate transistors (PTM-MG), for bc Acknowledgement: PTM-MG is developed in collaboration with ARM.

Please start from models and param.inc.

- 7nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
- 10nm PTM MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
- 14nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
 16 PTM-MG HP NMOS H P PMOS H STP NMOS H
- 16nm PTM-MG <u>HP NMOS</u>, <u>HP PMOS</u>, <u>LSTP NMOS</u>, <u>LSTP PMOS</u>
- 20nm PTM-MG <u>HP NMOS</u>, <u>HP PMOS</u>, <u>LSTP NMOS</u>, <u>LSTP PMOS</u>

The entire package is also available here: PTM-MG

November 15, 2008:

PTM releases a new set of models for low-power applications (PTM LP), incor

- 16nm PTM LP model: <u>V2.1</u>
- 22nm PTM LP model: <u>V2.1</u>
- 32nm PTM LP model: <u>V2.1</u>
- 45nm PTM LP model: V2.1

September 30, 2008:

PTM releases a new set of models for high-performance applications (PTM HP

- 16nm PTM HP model: <u>V2.1</u>
- 22nm PTM HP model: V2.1
- 32nm PTM HP model: V2.1
- 45nm PTM HP model: <u>V2.1</u>

PTM Files

②使用方式一:

直接下载相应的nmos, pmos模型文件10nfet.pm,
 10pfet.pm, include并使用:

.include '../modelfiles/lstp/10pfet.pm'

. . .

Mpfet d g s x pfet L=lg NFIN=nfin

- · 其中, nfin的值必须是整数;
- 10nm的沟道长度一般选择lg=14n,工作电压0.75V;

PTM Files

②使用方式二:

- 下载完整的PTM-MG模型库;
- 通过引用其中的models文件使用 (models文件中的路 径可能需要调整):

.LIB "../PTM-MG/modelfiles/models" ptm10lstp

. . .

Xpfet d g s x pfet L=lg NFIN=nfin

Outline

- ② 实验内容
 - 反相器链路设计
 - 七输入或门设计
- ② 实验工具
 - Hspice
 - FinFET
- **寧实验材料和要求**
- **ᢀ** 附录

实验材料

@实验材料:

Hspice虚拟机使用教程(使用前先看一下):
 https://jbox.sjtu.edu.cn/l/F1Qm7h

• Hspice虚拟机 : <u>https://jbox.sjtu.edu.cn/l/61LhDT</u>

Hspice文档 : https://jbox.sjtu.edu.cn/l/M1RJrd

• PTM模型 : https://jbox.sjtu.edu.cn/l/W1Se7R

或者直接使用官方网址 http://ptm.asu.edu/

• JBOX提取码 : adic

 注:本次采用PTM中的 ptm10lstp 进行实验 (在 ./models 文件中定义),实验温度均为85度 (.TEMP 85)

圖报告内容:

- 各种指标测量结果、优化设计方案及结果分析(包含仿 真结果、波形、数据分析图表)
- HSPICE网表文件(包含必要的注释,与报告内容合并 为同一个pdf)

@提交方式:

- 上传至CANVAS平台。
- ・以 **学号_姓名_ADIC_lab1.pdf** 命名
- Deadline: 2022.4.12

谢谢

2021

Outline

會附录

- · Hspice使用方法
- FinFET的优点
- FinFET基本参数测量
- Inverter基本参数测量

库文件&网表文件调用

⑤调用工艺库文件

- .lib "<filepath/>" filename
- 本实验使用PTM 10nm(ptm10lstp)工艺,其工艺库文件下包含lstp与hp两个lib文件,分别针对低功耗与高性能
- 文件定义器件的参数模型
- 一般由foundary提供,对应有TT、SS、FF、SF、FS等工艺角,其他的D2D、mismatch模型

③引用网表文件

- .inc "<filepath/>" filename
- 将常用、可重复使用的模块写成单独子电路形式以供不同 电路中调用,便于模块化设计和验证

分析及输出配置

② .options : 配置仿真参数及输出格式

• e.g. .options post

● .temp : 语句设置电路工作温度

• *e.g.* .temp 85

● .global : 设置全局节点

• e.g. .global vdd gnd

● .param : 设置全局变量

• e.g. .param <paraname> = constant

② .ic .nodeset: 设置仿真起始条件

• *e.g.* .ic v(node1)=0.85

② .connect : 设置多节点相连

仿真控制选项

③.options 设置仿真及输出方式

- 输出控制类;
- 仿真精度类;
- 算法与收敛控制;
- 硬件资料配置类;
- 输入数据相关类;

语名	功能
.option post	输出高分辨率图形
.option post probe	仅输出probe指明变量
.option postlvl-06	将几级子电路内部节点输出
.option brief	输出文本省略某些内容
.option list	输出元器件列表
.option nomod	不输出模型库相关信息
.option dccap	DC仿真时计算C-V特性
.option runlvl=06	精度: 6精度最高, 0速度最快
.option scale=xxx	全局器件参数比例值
.option defl=0.18u	略省MOSFET沟道长度

子电路使用

學子电路定义

.subckt inv in out I=20n nfinn=1 beta=2

Xmn1 out in gnd gnd nfet I=20n nfin=nfinn

Xmp1 out in vdd vdd pfet I=20n nfin='nfinn*beta'
.ends

子电路调用

- 定义子电路inv
- 有输入in、输出out两个端口
- 有I、nfinn、beta三个参数值
- 子电路的定义中包含子电路的调用

原件描述

Xnand ina inb out [xx] nfinn1=1 nfinp1=1 元件名 连接方式 模型名 元件参数

☞ 原件描述构成

- 元件名:第一个字母表示该元件的类型, 不超过16个字符
- 连接方式: 即为电路的接口节点
- 元件参数: 指明元件的参数,可以用正 负整数、浮点数以及指数,不写则为默 认值
- 例子: MOSFET

Mxx nd ng ns nb 模型名 <W=w><L=l><AD=ad> +<AS=as><PD=pd> <PS=ps><NRD=nrd> +<NRS=nrs><OFF><IC=Vds、Vgs、Vbs初值> 一般只需要确定MOS管的长宽比即可:
e.g. M1 a b c VDD pfet W=0.42 L=0.2

关键字 母	元件类型
R	电阻
С	电容
L	电感
М	MOSFET
Q	BJT
J	JFET or MESFET
D	Diode
X	子电路
W\T\U\S	其他多端口线性器件

激励源

- ●独立源分为直流源、交流源、瞬态源,分别在直流、交流、瞬态分析中起作用
- ●可用混合源同时包含直流与交流
- 混合源示例:

•	第一	-项为电源的直流值
	/ -	

- 第二项为交流数据
- 第三选项为瞬态数据

Vxx n+ n- < <dc>直流值></dc>
+ <ac<交流振幅<交流相位>>></ac<交流振幅<交流相位>
+<瞬态值>
e.g. VCC vcc 0 5 AC=10V, 90

元件类型
独立电压源
独立电流源
压控电压源
流控电流源
压控电流源
流控电压源

瞬态源

Trapezoidal pulse : pulse

Sinusoidal : sin

Exponential : exp

Piecewise linear : pwl

Single-frequency FM: sffm

Single-frequency AM: am

Pattern : pat

PULSE (v2 v1 td tr tf pw per)

e.g. VIN in 0 PULSE 0 5 2ns 2ns 2ns 30ns 80ns

直流分析控制

●.DC、.AC、.TRAN分析将自动进行直流操作点计算

● .DC : 直流仿真

● .OP : 直流操作点分析

● .PZ : 零极点分析

● .SENS : 直流小信号敏感度分析

● .TF : 直流小信号传输函数分析

● .nodeset: 初始化仿真节点电压,加快收敛速度

.DC var1 start1 stop1 inc

+ <SWEEP var1 type np start2 stop2>

瞬态分析控制

● 仿真电路在时域的变化趋势

● .TRAN : 瞬态仿真

● .IC : 为瞬态分析设置初始值

.tran tstep tstop1 <inc2 stop2 ... incN stopN> +<START=var><UIC><SWEEP ...> e.g. .TRAN 1ns 100ns UIC

注:

- 1) tstep为时间步长, tstop为瞬态分析的时间终值, tstart为 瞬态分析的时间起始值, 补缺值为0;
- 2) UIC表使用.IC设置的值作为仿真初始值,不进行OP计算

参数扫描

②在直流、交流、瞬态分析中均可进行参数的扫描

- •扫描参数:
 - 定义扫描参数 .param beta=2
 - 在电路中引用参数 Mn1 d g s b nmos I=20n w='I*beta'
 - 在分析命令中指明参数扫描类型 .tran 10ps 10ns sweep beta 1.2 3 0.1
- 扫描数表、随机分布:
 - sweep <data=dataname/monte=count>
 - 数表定义:

.data dataname

+ pname1 pname2...

<data1 data2 ...>

. . .

.enddata

关键字	扫描类型
LIN	线性 (缺省)
DEC	十倍增量
OCT	二倍增量
POI	指定点

输出控制

.PRINT

- · 规定.lis中打印的变量值
- e.g. .print I(*) V(*) P(*) var=par('I(node)*V(node)')

.PLOT

- · 将选定结果在.lis中绘图输出
- e.g. .plot anytype var<(plo1,pli1)>...

.PROBE

• 将变量存储到接口文件和图像数据文件中,不打印

B.GRAPH

• 生成一高分辨率的绘图结果

MEASURE

• 对选定结果进行测量,得到精确值,可做积分、微分、表达式运算(AVG/RMS/MIN/MAX)

MEASURE语句

◎测量延迟

- .MEASURE <DC|AC|TRAN> result TRIG... TARG...
- e.g. .MEASURE TRAN td TRIG vin val='supply/2' RISE=2 TARG vout +val='supply/2' RISE=2

②测量功耗

- .MEASURE <DC|AC|TRAN> result func out_var FROM=val
 +TO=val
- e.g. TRAN avgpower AVG P(VDD) FROM=1ns TO=80ns

◎测量阈值电压

- .MEASURE <DC|AC|TRAN> result 条件
- e.g. .MEASURE TRAN vth FIND Vgs WHEN I(nmos)='0.1u*width'

Outline

會附录

- Hspice使用方法
- FinFET的优点
- FinFET基本参数测量
- Inverter基本参数测量

Traditional Bulk Silicon Transistor

- 2D structure
- Conducting channel only on the surface

As the channel length decreases, the gate control over the channel of device is reduced

32nm Planar Transistors

Source: Intel

The End of the 2D Planar Transistor

- On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years
- The new 3D Tri-Gate transistors enable the production of integrated-circuit chips that operate faster with less power

Intel Reinvents Transistors Using New 3-D Structure

Posted by IntelPR May 4, 2011

New Transistors for 22 Nanometer Chips Have an Unprecedented Combination of Power Savings and Performance Gains

NEWS HIGHLIGHTS

- Intel announces a major technical breakthrough and historic innovation in microprocessors: the world's first 3-D transistors, called Tri-Gate, in a production technology.
- The transition to 3-D Tri-Gate transistors sustains the pace of technology advancement, fueling Moore's Law for years to come.
- An unprecedented combination of performance improvement and power reduction to enable new innovations across a range of future 22nm-based devices from the smallest handhelds to powerful cloud-based servers.
- Intel demonstrates a 22nm microprocessor codenamed "Ivy Bridge" that will be the first high-volume chip to use 3
 -D Tri-Gate transistors.

Tri-Gate Transistor

3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation

- √ 3D structure
- ✓ Conducting channel on three sides
- √ Very little leakage

Transistors have now entered the third dimension!

上海文章大学 Tri-Gate Transistor with Multiple Fins

Tri-Gate transistors can have multiple fins connected together to increase total drive strength for higher performance

22nm Tri-Gate Transistors

Source: Intel

3D Transistor (Tri-Gate and FinFET) Advantage Summary

Intel's 22 nm Tri-Gate Technology

Higher Effective Channel Width

> 2X Core Performance

Lower Leakage Current

> 50% Power Reduction

Allows smaller junction sizes

Higher Densities

Transistor Current-Voltage Characteristics

- Tri-Gate transistor provides a steeper subthreshold slope (SS) that reduces leakage current
 - SS indicates how effectively a transistor can be turned off when V_{GS} is decreased below V_{th}
 - Lower subthreshold slope is desirable for achieving lower subthreshold leakage current

Improved SS: Better Low-Voltage Performance

The steeper (lower) subthreshold slope allows for lower Vth for the same loff, allowing the transistors to operate at lower voltage to reduce power and improve switching speed

Outline

會附录

- Hspice使用方法
- FinFET的优点
- · FinFET基本参数测量
- Inverter基本参数测量

Take the n-channel device as an example:

- The on-state current (I_{on}) is measured when:
 - $\bullet V_{gs} = V_{DD}$
 - $\bullet V_{ds} = V_{DD}$
- The off-state current (I_{off}) is measured when:
 - $\bullet V_{gs} = 0$
 - $\bullet V_{ds} = V_{DD}$

Threshold Voltage (V_t)

- Constant current method defines threshold as the gate voltage at a given drain current I_{crit}
 - A typical choice of I_{crit} is 0.1uA×(W/L)
 - You can also determine a reasonable I_{crit}

FIGURE 8.19 Constant current threshold voltage extraction method

Subthrehold Slope (SS)

According to the definition, you can:

- Find the V_{gs} when I_{ds} = 0.1uA×(W/L) ,denoted by V_1
- Find the V_{gs} when I_{ds} = 0.01uA×(W/L) ,denoted by V_2
- The subthreshold slope (SS) = V1-V2;

DIBL can be calculated as following:

$$DIBL = \frac{|\delta V_t|}{|\delta V_{DS}|} = \frac{|V_t(V_{DS2}) - V_t(V_{DS1})|}{|V_{DS2} - V_{DS1}|}$$

- V_t(V_{DS2}) is the threshold voltage that is measured at a high drain voltage (typically V_{DS2} = V_{DD})
- V_t(V_{DS1}) is the threshold voltage that is measured at a very low drain voltage (typically V_{DS1} = 0.05V)

Outline

會附录

- Hspice使用方法
- FinFET的优点
- FinFET基本参数测量
- · Inverter基本参数测量

最小反相器设计

- ●固定NMOS fin number为1,确定PMOS的fin number:
 - 使得tpHL和tpLH基本相同;

反相器门电容测量

☞测量门电容方法:

- •扫描Cdelay的值,使c->g的延迟基本与c->d延迟相等;
- 此时Cdelay的值就等于X4反相器的门电容;
- · 仿真方法详细介绍和代码示例在如下引用书籍的8.4.3 章节处;

tp测量方法

$$t_p = \frac{t_{pLH} + t_{pHL}}{2}$$

PDP&EDP 测量方法

- power delay product (PDP)描述每次开关事件平均消耗的能量:
 - 使用一段时间的平均功耗乘以总时间,再除以开关的次数
- Energy delay product (EDP):
 - $EDP = PDP \times t_p$