HYSYS For UTM学习总结

马青茂

2017年10月9日

目录	2	2
目录		
第一章 分离塔	3	3
1.1 分离塔		3

第一章 分离塔

1.1 分离塔

从天然气中回收液化气在天然气工业中是十分普遍的。回收主要被用来:

- 生产便携的液化气
- 符合液化气售卖的规格
- 使液收最大化

HYSYS可以模拟许多不同类型、规格的精馏塔。在这个仿真中,要建立一个包含3个精馏塔的NGL厂

- 脱甲烷塔
- 脱乙烷塔
- 脱丙烷塔

学习收获:在这章节最后,我们可以学会:

- 使用Input Experts添加精馏塔
- 给精馏塔添加额外的设计规定

预备知识: 在开始这个章节之前, 我们需要知道如何:

- 操作PFD
- 在PFD或WorkBook中添加物流
- 添加并连接单元操作

定义仿真环境

- 1. 新建一个工况
- 2. 选择Peng Robinson EOS
- 3. 添加组分: N_2 , CO_2 , $C_1 C_8$
- 4. 进入Simulation Environment

表 1. 物流1

Name	表 1: 物流1 Feed1	
Temperature	-95°C	
Pressure	2275KPa	
Flowrate	1620kgmole/h	
Component	Mole Fraction	
N_2	0.0025	
CO_2	0.0048	
C_1	0.7041	
C_2	0.1921	
C_3	0.0706	
$i-C_4$	0.0112	
$n-C_4$	0.0085	
$i-C_5$	0.0036	
$n-C_5$	0.0020	
C_6	0.0003	
C_7	0.0002	
C_8	0.0001	

添加进料物流

- 1. 添加一股物流1,数据如下表1
- 2. 添加另一股物流2,数据如下表2

表 2. 物流2

Name	表 2: 物流2 Feed2	
Temperature	-85°C	
Pressure	2290KPa	
Flowrate	215kgmole/h	
Component	Mole Fraction	
N_2	0.0057	
CO_2	0.0029	
C_1	0.7227	
C_2	0.1176	
C_3	0.0750	
$i-C_4$	0.0204	
$n-C_4$	0.0197	
$i-C_5$	0.0147	
$n-C_5$	0.0102	
C_6	0.0037	
C_7	0.0047	
C_8	0.0027	

添加脱甲烷塔

脱甲烷塔用Reboiled Absorber Column单元来模拟。

1. 添加一股能量流,数据如下表3

表 3: Ex Duty

Name	Ex Duty	
Energy	$2.1 \times 10^6 kJ/h$	

- 2. 双击**Reboiled Absorber**, 进入Input Expert 界面
- 3. 如下图1,完成输入

图 1: 脱甲烷塔输入界面

- 4. 点击Next进入下一个界面
- 5. 如下图2,完成压力输入

图 2: 脱甲烷塔压力输入界面

- 6. 点击Next进入下一个界面
- 7. 如下图3,完成温度输入

图 3: 脱甲烷塔温度输入界面

- 8. 点击Next进入下一个界面
- 9. 在最后一个界面,没有信息需要输入,所以直接点击Done完成输入

当点击**Done**之后,HYSYS将会打开精馏塔的参数界面,点击**Design**表格的**Monitor**页面,如下图4,确认塔的设计规定如图4所示。你需要输入一个设计规定,塔顶产品的流率(Ovhd Prod Rate参数),设计值是1338*kgmole/h*。一旦这个值确定并输入,这个精馏塔将开始运算并应该收敛,如图5

图 4: 脱甲烷塔参数界面

图 5: 脱甲烷塔计算结果界面

脱甲烷塔塔顶产品中的甲烷摩尔分率是多少? 0.9686

虽然这个塔已经收敛,但塔顶流量的设计规定不总是实用的。如果塔的进料改变,那么这个设计规定会导致塔不收敛或者产品不合格。

- 一个可行的方法是去规定产品中任一组分的摩尔分率或者回收率。
- 1. 进入Design列表中的Specs页面
- 2. 点击Add创建一个新的设计规定
- 3. 选中弹出列表中的Column Component Fraction
- 4. 点击Add Spec(s)

5. 按照图6所示,完成设计规定

图 6: 设计规定——塔顶甲烷回收率

- 6. 关闭图6中界面
- 7. 进入Monitor页面,取消Ovhd Prod Rate的Active属性,把创建的Comp Fraction的Active属性打勾

脱甲烷塔塔顶产品流量是多少? 1350kgmole/h