Modeling the Relationship between Software Effort and Size Using Deming Regression

STAINS

STAtistics in Information Systems Group

Nikolaos Mittas Makrina Viola Kosti Basiliki Argyropoulou Lefteris Angelis

Programming Languages & Software Engineering Lab
Department of Informatics
Aristotle University of Thessaloniki, Greece
{nmittas, mkosti, vargyrop, lef}@csd.auth.gr

Presentation Outline

- Motivation and Objectives
 - Research questions
- Definitions and Description
- Methodology of Experimentation
 - Dataset
 - Evaluation method
- Results and Conclusions
- Directions of Future Research

The Research Problem in Software Cost Estimation (SCE)

- Accurate prediction of software cost needed
- Plethora of prediction methods
 - Expert judgment to statistical models and machine learning techniques
- The General Research problem
 - Identification of the "best" prediction technique for a certain dataset
- Findings from literature contradictory no global answer
 - Lack of standardization in SCE methodologies, measurement, reporting techniques, terminology, etc
 - Accuracy depends on dataset

Motivation

- □ Regression Analysis (RA) (especially Ordinary Least Squares OLS) → Well-known modeling technique:
 - Various forms of regression for modeling the relationship between effort and size
- Despite the popularity of OLS in SCE → Several restrictions:
 - OLS it is assumed that the values of the independent variable (i.e. size) are measured without errors
- The assumption of error-free measurement is not so realistic in SCE:
 - Software size is the result of a counting and estimating process derived from a tool or an expert (Source Lines of Code (SLOC) or Function Points (FP))

Related Work

- Literature Regression forms
 - Miyazaki et al.(1991)
 - Regression based on relative errors
 - Chen & Stromberg (1997)
 - Heteroscedasticity (LMS, Least Median of Squares LTS, Least Trimmed Squares)
 - Pickard et al. (1999)
 - RR, Robust Regression LAD, Least Absolute Deviation
- Inaccuracy of measurement
 - Miyazaki et al.(1994)
 - Foss et al. (2001)

Proposed Model

- □ Deming regression → Improvement of the process for modeling the relationship between effort and size
- □ Deming regression → General class of errors-in-variables models:
 - Appropriate in situations where random errors exist in the measurements of both the independent and the dependent variable

Modeling the SCE Procedure

- SCE is the procedure of predicting the cost of a new project
- □ Let:
 - Y → Real random dependent variable representing the **cost** of projects
 - X → Real random variable representing the size of projects
- Goal to find a regression function

$$y_i = f(x_i) + \varepsilon_i \qquad (i = 1,...,n)$$

 \bullet $\varepsilon_i \rightarrow \text{Real random error}$

Parametric Estimation Technique

Ordinary Least Squares (OLS) Regression

$$y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Objective:
 - Minimization of the overall Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

 \square Final estimation of *constant* (β_{θ}) and *slope* (β_{1})

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} y_{i})}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \qquad \hat{\beta}_{0} = \overline{y} - \beta_{1} \overline{x}$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Proposed Model

- □ Deming Regression:
 - A form of errors-in-variables model
 - Takes into account:
 - The error arising from the dependent variable (effort) (similarly OLS)
 - The error in measurement of the independent variable (size)

Theoretical Model (1/2)

- Notation
 - (X_i, Y_i) → True **unknown** observations
 - (x_i,y_i) → Erroneously measured observations
 - $(\varepsilon_i, \delta_i)$ → Error terms
- \square Constant ratio λ of error variances

$$\lambda = \frac{S_{e_x}^2}{S_{\delta_y}^2}$$

Deming Regression Model

$$X_i = X_i + \varepsilon_i$$

$$y_i = Y_i + \delta_i$$

Theoretical Model (2/2)

Deming Regression

$$Y_i = \beta_0 + \beta_1 X_i$$

- Objective:
 - Minimization of the overaweighted Sum of Square Residuals (SSR)

$$SSR = \sum_{i=1}^{n} \left(\frac{\varepsilon_{\iota}^{2}}{S_{\varepsilon_{x}}^{2}} + \frac{\delta_{\iota}^{2}}{S_{\delta_{y}}^{2}} \right) =$$

$$\sum_{i=1}^{n} ((y_i - \beta_0 - \beta_1 X_i)^2 + \lambda (x_i - X_i)^2)$$

Estimation of Coefficients

 \square Final estimation of constant (β_0) , slope (β_1) and X

$$\hat{\beta}_{l} = \frac{s_{yy} - \lambda s_{xx} + \sqrt{(s_{yy} - \lambda s_{xx})^{2} + 4\lambda s^{2}_{xy}}}{2s_{xy}} \qquad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{l}\bar{x}$$

$$X_{i} = x_{i} + \frac{\hat{\beta}_{l}}{\hat{\beta}_{l}^{2} + \lambda}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{l}x_{i})$$

$$\text{ere} \qquad s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \qquad s_{yy} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

where

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Methodology (Datasets)

- Desharnais
 - 77 completed software projects from a Canadian Software house
 - The project size measured with FPs
- COCOM081
 - COCOMO81 → Public domain database
 - The project size is measured with SLOCs
- Maxwell
 - 62 projects from a commercial Finnish bank
 - The project size measured with FPs
- Nasa93
 - 93 projects from different centers
 - The project size measured with *SLOC*s

For better fitting, size and effort were logarithmically transformed

Methodology (Accuracy measures)

- The predictive accuracy of the cost model is usually based on local measures of error
 - Absolute Error (AE) $AE_i = |Y_{A_i} Y_{E_i}|$
 - The Magnitude of Relative Error (MRE)

$$MRE_{i} = \frac{\left| Y_{A_{i}} - Y_{E_{i}} \right|}{Y_{A_{i}}}$$

- □ The global accuracy measures are:
 - Mean and Median Magnitude of Relative Error (MMRE, MdMRE)
 - Mean and Median of Absolute Error (MAE, MdAE)
 - Percentage of projects with MRE≤25% (pred25)

Methodology (Graphical Comparison)

- Graphical analysis through
 Regression Errror Characteristic
 (REC) curves
- 2-dimensional plot:
 - x-axis → the error tolerance of a predefined accuracy measure
 - y-axis → the accuracy of a prediction model
- Trade-off between accuracy and tolerance:
 - The accuracy of a model increases as the error tolerance becomes higher
 - e=0 → only the predictions that are identical to actual values considered accurate

Desharnais Dataset

OLS		Deming	
intercept	slope	intercept	slope
2.993	0.929	-2.212	1.868

Deming (solid line) vs. OLS (dashed line)

Accuracy Measures (Desharnais)

	OLS	Deming	Improvement (%)	
MAE	2101.13	614.25	70.77%	
MdAE	1107.46	335.59	69.70%	
MMRE (%)	66.88	15.28	77.15%	
MdMRE (%)	34.88	11.30	67.60%	
pred25 (%)	35.06	87.01	148.17%	

- •Deming outperforms for all accuracy measures
- •The improvement ranges from 67.60% (MdMRE) up to 148.17% (pred25)
- •The Wilcoxon test statistically signifies the difference for AEs
- Error reduction achieved by Deming

COCOMO81 Dataset

OLS		Deming	
intercept	slope	intercept	slope
1.204	1.106	0.243	1.404

Deming (solid line) vs. OLS (dashed line)

Accuracy Measures (COCOMO81)

	OLS	Deming	Improvement (%)	
MAE	455.37	222.22	51.20%	
MdAE	63.90	22.47	64.84%	
MMRE (%)	137.38	32.99	75.99%	
MdMRE (%)	63.97	26.31	58.87%	
pred25 (%)	19.05	49.21	158.32%	

- •Deming outperforms for all accuracy measures
- •The improvement ranges from 51.20% (MAE) up to 158.32% (pred25)
- •The Wilcoxon test statistically signifies the difference for AEs
- •AE distribution of OLS → High variability
- •REC curve for Deming dominates

Maxwell Dataset

OLS		Deming	
intercept	slope	intercept	slope
3.517	0.827	2.088	1.065

Deming (solid line) vs. OLS (dashed line)

Accuracy Measures (Maxwell)

	OLS		Deming	Improvement (%)
MAE	3766.83		1856.38	50.72%
MdAE	1997.54	I	1068.19	46.52%
MMRE (%)	55.33	I	25.46	53.99%
MdMRE (%)	45.22		22.67	49.87%
pred25 (%)	20.97		56.45	169.19%

- •Deming outperforms for all accuracy measures
- •The improvement ranges from 46.52% (MdAE) up to 169.19% (pred25)
- •The Wilcoxon test statistically signifies the difference for AEs
- AE distribution of OLS → High variability with a long upper tail
- •REC curve for Deming dominates → Solid line climbs rapidly to 1

NASA93 Dataset

OLS		Deming	
intercept	slope	intercept	slope
1.977	0.920	1.277	1.107

Deming (solid line) vs. OLS (dashed line)

Accuracy Measures (NASA93)

	OLS	Deming	Improvement (%)	
MAE	346.51	198.94	42.59%	
MdAE	70.34	34.21	51.36%	
MMRE (%)	65.79	26.77	59.31%	
MdMRE (%)	36.08	16.02	55.60%	
pred25 (%)	33.33	64.52	93.58%	

- •Deming outperforms for all accuracy measures
- •The improvement ranges from 42.59% (MdAE) up to 93.58% (pred25)
- •The Wilcoxon test statistically signifies the difference for AEs
- •AE distribution of OLS → Slightly higher variability
- •REC curve for Deming dominates

Conclusions (1/2)

- Study of modeling the relationship between effort and size
- Main idea:
 - OLS is applied under the assumption that the observed values of the variables are measurements which coincide with the true values
 - Not realistic assumption in SCE → Heterogeneous projects with respect to:
 - Nature
 - The way they were measured

Conclusions (2/2)

- Goal of this paper:
 - Application of Deming regression
 - Alternative robust technique → Beneficial:
 - Counting process of the size is characterized by uncertainty due to:
 - Subjective decisions of the practitioners
 - Tools
- Significant improvement compared to OLS:
 - Several accuracy measures
 - Graphical inspection (REC curves, boxplots)
 - Statistical tests (Wilcoxon matched paired)

Future Work (1/2)

- Method deserves a deeper and thorough study
- □ Construction of *Prediction Intervals* (PI) → "optimistic" and "pessimistic" guess for the true magnitude of the cost:
 - Researchers suggest that PI → Realistic estimate accounting for both uncertainty and risk
 - Under the assumption of error in measurement → Point estimate is meaningless:
 - Expresses not the response to the true size value, but the response to the measured value

Future Work (2/2)

- Introduction of more explanatory (or independent) variables in the model → Increase the percent of variability of the effort that is explained by the cost function
- Examination of the performance of the comparative models to different situations:
 - Systematic treatment trough simulation
 - Errors of the independent variable ranges from a small amount into a high source of variability

Thank You