Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	9
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм конструктора класса Cls	10
3.2 Алгоритм метода init_arr класса Cls	10
3.3 Алгоритм метода output класса Cls	11
3.4 Алгоритм функции func	11
3.5 Алгоритм функции main	12
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	16
5.1 Файл Cls.cpp	16
5.2 Файл Cls.h	17
5.3 Файл main.cpp	18
6 ТЕСТИРОВАНИЕ	20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, вначале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- Конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- Метод деструктор, который в начале работы выдает сообщение;
- Метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение;
- Метод последовательного вывода содержимого элементов массива,

которые разделены тремя пробелами.

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Создание локального объекта с использованием параметризированного конструктора.
- 2. Возврат созданного локального объекта.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание первого объекта.
- 5. Присвоение первому объекту результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. Для первого объекта вызов метода создания массива.
- 7. Для первого объекта вызов метода ввода данных массива.
- 8. Для первого объекта вызов метода 2.
- 9. Инициализация второго объекта первым объектом.
- 10. Вызов метода 1 для второго объекта.
- 11. Вывод содержимого массива первого объекта.
- 12. Вывод суммы элементов массива первого объекта.
- 13. Вывод содержимого массива второго объекта.
- 14. Вывод суммы элементов массива второго объекта.

1.1 Описание входных данных

Первая строка:

```
«Целое число»
Вторая строка:
«Целое число» «Целое число» . . .
Пример:
```

4 3 5 1 2

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

«Целое число» «Целое число» «Целое число» . . .

Пример вывода:

4
Default constructor
Constructor set
Destructor
Copy constructor
15 5 2 2
24
20 5 4 2
31
Destructor
Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj1 класса Cls предназначен для Первый объект для решения задаяи;
- объект obj2 класса Cls предназначен для Второй объект для решения задачи;
- функция func для Функция инициализации объекта.

Класс Cls:

- функционал:
 - о метод Cls Параметризированный конструктор;
 - о метод init_arr Метод инициализации памяти в массиве arr;
 - о метод output Метод вывода содержимого массива arr.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Cls

Функционал: Параметризированный конструктор.

Параметры: int n - размер массива.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Cls

N₂	Предикат	Действия	No
			перехода
1		Вывод Constructor set	2
2		length = n	Ø

3.2 Алгоритм метода init_arr класса Cls

Функционал: Метод инициализации памяти в массиве arr.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода init_arr класса Cls

No	Предикат	Действия	N₂
			перехода
1		Выделение памяти по указателю arr размером п	Ø

3.3 Алгоритм метода output класса Cls

Функционал: Метод вывода содержимого массива arr.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода output класса Cls

N₂	Предикат	Действия	No
			перехода
1		Инициализация i = 0 типа int	2
2	i < length	Вывод значения arr[i]	3
			Ø
3	i!= length - 1	Вывод трёх пробелов	4
			4
4		i++	2

3.4 Алгоритм функции func

Функционал: Инициализация объекта класса Cls.

Параметры: int n - длина массива.

Возвращаемое значение: Cls - объект класса Cls.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции func

No	Предикат	Действия	No
			перехода
1		Создание объекта obj класса Cls с передачей аргумента n	2
2		Возврат обј	Ø

3.5 Алгоритм функции main

Функционал: Основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

N₂	Предикат	Действия	
1		Объявление n типа int	2
2		Ввод значения п	3
3	n % 2 n <= 2	Вывод n?	16
			4
4		Вывод п	5
5		Создание объекта obj1 класса Cls	6
6		Присвонеие объекту obj1 значения вызова	7
		функции func c аргументом n	
7		Вызов метода init_arr у объекта obj1	8
8		Вызов метода input у объекта obj1	9
9		Вызов метода m2 у объекта obj1	10
10		Создание объекта obj2 класса Cls с аргументом	
		obj1	
11		Вызов метода m1 у объекта obj2	
12		Вызов метода output у объекта obj1	13
13		Вывод значения вызова метода m3 у объекта obj1	
14		Вызов метода output у объекта obj2	
15		Вывод значения вызова метода m3 у объекта obj2	
16		Возврат значения 0	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Cls.cpp

Листинг 1 – Cls.cpp

```
#include "Cls.h"
#include <iostream>
using namespace std;
Cls::Cls()
  cout << endl << "Default constructor";</pre>
Cls::Cls(int n)
  cout << endl << "Constructor set";</pre>
  length = n;
Cls::~Cls()
  cout << endl << "Destructor";</pre>
  delete arr;
Cls::Cls(const Cls & ob)
  cout << endl << "Copy constructor";</pre>
  length = ob.length;
  arr = new int[ob.length];
  for(int i = 0; i < length; i++)
      arr[i] = ob.arr[i];
}
void Cls::init_arr()
  arr = new int[length];
void Cls::input()
  for(int i = 0; i < length; i++)
```

```
{
     cin >> arr[i];
  }
}
void Cls::output()
  cout << endl;</pre>
  for(int i = 0; i < length; i++)
      cout << arr[i];</pre>
     if(i != length - 1) cout << " ";</pre>
}
int Cls::m1()
  for(int i = 0; i < length; i+=2)
     arr[i] = arr[i] + arr[i + 1];
  return m3();
int Cls::m2()
  for(int i = 0; i < length; i+=2)
     arr[i] = arr[i] * arr[i + 1];
  return m3();
int Cls::m3()
  int sum = 0;
  for(int i = 0; i < length; i++)
     sum += arr[i];
  return sum;
}
```

5.2 Файл Cls.h

Листинг 2 – Cls.h

```
#ifndef __CLS__H
#define __CLS__H
class Cls
```

```
{
private:
  int* arr = nullptr;
  int length;
public:
  Cls();
  Cls(int n);
  ~Cls();
  Cls(const Cls &ob);
  void init_arr();
  void input();
  void output();
  int m1();
  int m2();
  int m3();
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 - main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "Cls.h"
#include <iostream>
using namespace std;
Cls func(int n){
  Cls obj_loc(n);
  return obj_loc;
}
int main()
  int n;
  cin >> n;
  if(n % 2 != 0 || n <= 2){
     cout << n << "?";
     return(0);
  }
  cout << n;
  Cls obj1;
  obj1 = func(n);
  obj1.init_arr();
  obj1.input();
```

```
obj1.m2();

Cls obj2(obj1);
obj2.m1();

obj1.output();
cout << endl << obj1.m3();
obj2.output();
cout << endl << obj2.m3();

// program here
return(0);
}</pre>
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 3 5 1 2	4 Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor	4 Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor
3	3?	3?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).