Computer Science Course Notes — 1st Semester

Dario Loi

Contents

Models of Computation	Ĺ
First Lesson	1
Contact Information	l
Course Contents	1
Set Definition	l
Bactus Normal Form)
Beta Reduction)
Types of Variables)
Extra Rules	Ļ
Second Lecture	Ļ
Alpha Reduction	Ļ
Arithmetic Expressions	Ļ
Combinators	í
Third Lecture	;
Fourth Lecture	;
Fifth Lecture	;
Sixth Lecture	7
Transformation Algorithm	;
Example of application	;
Seventh Lecture)

iv CONTENTS

Models of Computation

First Lesson

Contact Information

Prof email: piperno@di.uniromal.it

Actual lecture times:

- Wednsday 13:30 15:00
- Thursday 16:00 17:30, or 16:15 17:55

Course Contents

The course content will focus on **functional programming** and λ -calculus.

The course contains practical exercises that should be done by pen and paper, so do not rely on *just* these notes.

The main application of these languages is that of *function application*, these languages are devoid of *assignment* semantics, and are therefore called *pure*.

The main ingredients of our programs will be:

- Variables, which are usually denoted by lowercase letters
- Starting from these, you obtain the set of all programs, which are called λ-terms, this set is denoted as Λ.

Set Definition

We can provide an inductive definition of a set of λ -terms, Λ :

$$\frac{x \in V}{x \in \Lambda} \quad \text{(var)}$$

$$\frac{M \in \Lambda \quad N \in \Lambda}{(MN) \in \Lambda} \quad \text{(app)}$$

$$\frac{M \in \Lambda \quad x \in V}{\lambda x. M \in \Lambda} \quad \text{(abs)}$$

Applying these inductive rules (variables, application, abstraction).

Bactus Normal Form

Another way of describing a set of lambda terms is by using Bactus Normal Form (BNF).

$$\Lambda :: Var | \Lambda \Lambda | \lambda Var . \Lambda$$

Which is essentially a grammar for the set of lambda terms.

Lambda calculus is left-associative:

$$((xy)z) = xyz \neq x(yz)$$

All functions are unary (we assume currying). For example, the function f(x,y) is represented as:

$$\lambda x. \lambda y. fxy$$

Functions in lambda calculus can be applied to other functions or themselves, they can also return functions.

Beta Reduction

The main operation in lambda calculus is *beta reduction*, which is the application of a function to an argument.

$$\frac{(\lambda x.M)N}{redex} \rightarrow_{\beta} M[N/x]$$

Where M[N/x] is the result of substituting all occurrences of x in M with N.

Some other examples:

$$(\lambda x.x)y \rightarrow_{\beta} y$$

$$(\lambda x.xx)y \rightarrow_{\beta} yy$$

$$(\lambda xy.yx)(\lambda u.u) \to_{\beta} \lambda y.y(\lambda u.u)$$

FIRST LESSON 3

$$(\lambda xy.yx)(\lambda t.y) \rightarrow_{\beta} \lambda y.y(\lambda t.y)$$

This rule can be applied in any context in which it appears.

Formal Substitution Definition

We give a formal definition of substitution, M[N/x]:

$$x[N/x] = N$$

$$y[N/x] = y$$

$$(M_1M_2)[N/x] = M_1[N/x]M_2[N/x]$$

$$(\lambda t.P)[N/x] = \lambda t.(P[N/x])$$

As observed, substitution is always in place of *free* variables, therefore the abstraction is *not* replaced in the last rule.

If we had an abstraction of type $\lambda x.P$ where $x \in P$, it would be best to rename x in order to avoid name clashes.

Types of Variables

We distinguish two kinds of variables:

- Free variables: variables that are not bound by an abstraction
- Bound variables: variables that are bound by an abstraction

For example, in the term $\lambda x.xy$, y is a free variable, while x is a bound variable.

Bound variables can be renamed, whereas for free variables the naming is relevant.

$$\begin{cases} FV(x) &= \{x\} \\ FV(MN) &= FV(M) \cup FV(N) \\ FV(\lambda x.M) &= FV(M) - \{x\} \end{cases}$$

A set of lambda terms where $LM(\Lambda)$ = is called *closed*.

Extra Rules

$$(\mu) \quad \frac{M \to_{\beta} M'}{NM \to_{\beta} NM'}$$

$$(\nu) \quad \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N}$$

$$(\xi) \quad \frac{M \to M'}{\lambda x. M \to \lambda x. M'}$$

These rules allow us to select redexes in a context-free manner in the middle of our lambda term. We can then choose the order of evaluation of our redexes, while still taking care of the left-associative order of precedence. Our calculus is therefore not *determinate* but is still *deterministic*, meaning that there may be multiple reduction strategies but they all lead to the same result.

This corollary is called the *Church Rosser Theorem*, discovered in 1936.

In general, a call-by-value-like semantic is preferrable when choosing evaluation paths, as it clears the most amount of terms as early as possible.

- Call By Value is efficient
- Call By Name is complete, if the lambda term is normalizable

Second Lecture

Alpha Reduction

Alpha reduction is the renaming of bound variables in a lambda term.

$$\lambda x.M \rightarrow_{\alpha} \lambda y.M[y/x]$$

This rule is used to avoid name clashes between bound variables.

Arithmetic Expressions

The set of all valid arithmetic expressions has a very precise syntax. In general, a syntax can be viewed either as a tool for checking validity or as a generator of valid expressions (a grammar).

We proceed to give a definition for arithmetic expressions

$$\frac{x \in \mathbb{N}}{x \in \text{Expr}} \quad \text{(num)}$$

$$\frac{X \in \operatorname{Expr} \quad Y \in \operatorname{Expr}}{X + Y \in \operatorname{Expr}} \quad \text{(add)}$$

SECOND LECTURE 5

$$\frac{X \in \operatorname{Expr} \quad Y \in \operatorname{Expr}}{X \times Y \in \operatorname{Expr}} \quad \text{(mul)}$$

Etc, etc... for all the other binary operations.

From this, we can successfully decompose any arithmetic expression into a syntactic tree. With this set of rules, we have a slight problem: we can't represent negative numbers. We could solve this either by adding a rule for unary minus, or by specifying the num rule over $\mathbb Z$ instead of $\mathbb N$.

Combinators

We define three combinators:

$$S = \lambda xyz.xz(yz)$$

$$K = \lambda xy.x$$

$$I = \lambda u.u$$

We have that $SKy \rightarrow_{\beta} I$

Exercise 1.1: β -reduce S(KS)S

This reduces to $\lambda zbc.z(bc)$, which is the B combinator (composition).

Exercise 1.2: β -reduce S(BBS)(KK).

This reduces to $\lambda zcd.zdc$, which is the C combinator (permutation).

For exercise this, we show a step-by-step reduction:

S(BBS)(KK) $\rightsquigarrow \lambda z.(BBS)z((KK)z)$ $\rightsquigarrow \lambda z.(\lambda c.B(Sc))z((KK)z)$ $\rightsquigarrow \lambda z.(\lambda c.B(Sc))zK$ $\rightsquigarrow \lambda z.B(Sz)K$ $\rightsquigarrow \lambda z.(\lambda c.(Sz)(Kc)$ $\rightsquigarrow \lambda zc.Sz(Kc)$ $\rightsquigarrow \lambda zcd.zd(Kcd)$ $\rightsquigarrow \lambda zcd.zdc$ \square .

Third Lecture

Recupera!!!

Fourth Lecture

First we do a simple exercise, β -reduce $\lambda uv.(\lambda z.zz)(\lambda t.tuv)$.

$$\lambda uv.(\lambda z.zz)(\lambda t.tuv)$$

$$\rightarrow_{\beta} \lambda uv.(\lambda t.tuv)(\lambda t.tuv)$$

$$\rightarrow_{\beta} (\lambda t.tuv)(\lambda t.tuv)$$

$$\rightarrow_{\beta} \lambda uv.(\lambda t.tuv)uv$$

$$\rightarrow_{\beta} \lambda uv.uuvv \quad \Box.$$

Find a term X s.t $Xx = \lambda t.t(Xx)$

$$Xx = \lambda t.t(Xx)$$

$$X = (\lambda f xy.t(f x))X$$

$$X = Y(\lambda f xy.t(f x))$$

Find a term H s.t $H(\lambda x_1 x_2 x_3.P) = \lambda a x_3 x_2 x_1.a x_1 x_2 x_3$

Fifth Lecture

Today we will try to be more precise about the *fixed point* operator.

The first question is:

Find X s.t:

$$XMN = MI(MN) \quad \forall M, N \in \Lambda$$

By substitution, we have:

$$X = \lambda xy.xI(xy)$$

This can be verified by beta reduction (we skip it since it's trivial).

Now, the core question is to replicate the same result with an expression that is *recursive* in nature.

For example: find $X \in Lambda$ s.t:

$$XMN = M(XMN) \quad \forall M, N \in \Lambda$$

SIXTH LECTURE 7

Sixth Lecture

This lecture will focus on *Combinatory Logic*, which is a simpler version of lambda calculus, where we only use combinators.

Here we have: * Application * Variables * No Abstraction

This means that all variables are free!.

We have some *constants* (we define them using abstraction with a slight abuse of notation): * $S = \lambda xyz.xz(yz)$ * $K = \lambda xy.x$ * $I = \lambda x.x$ * $B = \lambda xyz.x(yz)$ * $C = \lambda xyz.xzy$

(Where SK is a sufficient base for all combinators, and the other combinators are syntactic sugar).

We define the *CL* set inductively, as follows:

$$\frac{x \in V}{x \in CL} \quad \text{(var)}$$

$$\frac{X \in const}{X \in CL} \quad \text{(const)}$$

$$\frac{X \in CL \quad Y \in CL}{(XY) \in CL} \quad \text{(app)}$$

In the same way as lambda calculus, we use left-associative application.

$$((UV)W) = UVW \neq U(VW)$$

Our constants have *computational behavior*, as explained by the abstraction rules. We can give explicit definitions for constant computations in order to completely remove the abstraction rules.

- $SXYZ \triangleright XZ(YZ)$
- $KXY \triangleright X$
- $IX \triangleright X$
- $BXYZ \triangleright X(YZ)$
- *CXYZ* ► *XZY*

Showing that these combinators map to lambda terms is trivial (we can just apply the definitions). Showing the opposite is a bit more complex, but it can be done.

We essentially want to *implement* the abstraction behavior from combinatory logic, so that we can transpose *any* lambda term (not just trivial combinators) into combinatory logic.

$$\lambda x.P$$
 [x]P (abstraction of x in P)

For instance

$$\lambda xy.yx \quad [x]([y]yx)$$

Transformation Algorithm

Our aim is to produce an algorithm that performs this transformation:

$$([x]P)x \rightarrow P$$

We do this by creating a set of rules that we then apply iteratively (effectively performing a closure of the initial expression over the transformation set).

We define indicators U, V s.t:

$$\begin{cases} U & x \notin FV(U) \\ W, V & x \in FV(V) \end{cases}$$

Then we define the following rules:

I.
$$[x]Ux = U$$

II. $[x]x = I$
III. $[x]U = KU$
IV. $[x](UW) = BU([x]W)$
V. $[x][VU] = C([x]V)U$
VI. $[x](VW) = S([x]V)([x]W)$

The order of the rules is *important*. This kind of algorithm is called a *markov algorithm*, which is a class of algorithms in which a set of rules is applied iteratively, with a priority order, until a fixed point is reached.

Example of application

Let's give an example of application by transforming

$$\lambda xy.ytx$$

We start by applying the rules:

SEVENTH LECTURE 9

```
\lambda xy.ytx
[x]([y](yt)x)
[x](C([y]yt)x)
[x](C(C([y]y)t)x)
[x](C(C(I)t)x)
[x]C(CIt)x
C(CIt)x
```

Now we can apply this combinatory logic expression to xy:

$$C(CIt)xy \triangleright C(CIt)yx$$
 $\triangleright CItyx$
 $\triangleright Iytx$
 $\triangleright ytx \quad \Box$.

Seventh Lecture

At the beginning of the history of computer science, there was interest on defining the class of *computable functions*, that is, functions that are computed by a *model of computation*.

A *model of computation* is a combination of a language and an evaluation rule.

It was shown that the following models of computation are equivalent:

- Turing Machines
- Lambda Calculus
- Recursive Functions

And that they all compute the same class of functions, the computable functions.

Computable functions are sort of recursively defined, in that a computable function is simply any function for which there exists a "program" that computes it.

Since we are using *Lambda Calculus* as a model of computation, we are interested in *lambda representable functions*.

We will use a different numeral system (rather than church numerals) for this.

We define true as K, false as K_*

$$K \coloneqq \lambda x y. x$$

$$K_* := \lambda x y. y$$

We then also define the logical implication operator

if
$$B$$
 then P else Q

As:

Which, by the definition of true and false, behaves as expected.

We define the *pairing* operator, for $M, N \in \Lambda$:

$$[M, N] = \lambda z$$
. if z then M else N $(= \lambda z. zMN)$

This is akin to a *struct* of two elements in C. We can see that K, K_* act as *projection operators* on this pair, accessing either the first or the second element.

$$[M, N]$$
true = M ,
 $[M, N]$ false = N ,

We can use this pairing construction for an alternative representation of numbers, as done in Barendregt et al. (1976).

For each $n \in \mathbb{N}$, the numeral \hat{n} is defined inductively

We provide this inductive definition:

$$\hat{0} = I$$
,
 $n + 1 = [false, \hat{n}]$.

We define the following basic operations on these numerals:

$$S^+ = \lambda x.[$$
true, $x],$
 $P^- = \lambda x.x$ false,
 $Z = \lambda x.x$ true,

A numeric function

$$\phi: \mathbb{N}^p \to \mathbb{N}$$

is a p-ary function for some $p \in \mathbb{N}$.

A numeric p-ary function ϕ is called λ -definable if for some combinator F:

$$F\hat{n}_1\hat{n}_2\dots\hat{n}_p = \phi(n_1, n_2, \dots, n_p)$$

SEVENTH LECTURE

11

If this holds then the function is said to be λ -defined by F.

We define the initial functions

$$U_i^n = x_i, (1 \le i \le n)$$

$$S^+(n) = n + 1$$

$$Z(n) = 0$$

Where U is the projection operator, that can be λ -defined as:

$$U_i^n := \lambda x_1 x_2 \dots x_n \cdot x_i \quad \forall n, i \in \mathbb{N}, \ 1 \le i \le n$$

Now, let P(n) be a numeric relation. As usual:

$$\mu m[P(m)]$$

Denotes the *least* number m s.t P(m) holds.

Now, let A be a class of numeric functions s.t:

1. A is closed under composition if

$$\forall \phi x(\phi_1(\hat{n}), \dots, \phi_m(\hat{n}))$$

with $x, \phi_1, \ldots, \phi_m \in A$, one has $\phi \in A$.

2. A is closed under primitive recursion if for all ϕ defined by:

$$\phi(\hat{0}, \hat{n}) = \chi \hat{n}$$

$$\phi(m+1,\hat{n}) = \psi(\phi(m,\hat{n}), m, \hat{n})$$

with $x, \psi \in A$, one has $\phi \in A$.

3. WRITE MINIMALIZATION.