MATH 2554 : 2.4-2.5 Review Sheet

Some Problems From this section I recommend

— Section 2.4:29,38

— Section 2.5 : 31, 46, **78**

Especially important ones in **bold**

Key Concepts

Key take away : Remember that vertical asymptotes x=a occur when $\lim_{x\to a} f(x)=\pm\infty$, $\lim_{x\to a^-} f(x)=\pm\infty$, or $\lim_{x\to a^+} f(x)=\pm\infty$ while a horizontal asymptote y=L occurs at $\lim_{x\to -\infty} f(x)=L$ or $\lim_{x\to \infty} f(x)=L$

Analyzing infinite limits:

"Because the numerator \rightarrow _____ while the denominator \rightarrow 0 and is $\underline{(+ \text{ or } -)}$ and since $\underline{(\frac{+or-}{+or-} = +or-)}$ then the $\lim_{x \rightarrow a} f(x) = +\infty$ or $-\infty$."

DEFINITION One-Sided Infinite Limits

Suppose f is defined for all x near a with x > a. If f(x) becomes arbitrarily large for all x sufficiently close to a with x > a, we write $\lim_{x \to a^+} f(x) = \infty$ (Figure 2.26a). The one-sided infinite limits $\lim_{x \to a^+} f(x) = -\infty$ (Figure 2.26b), $\lim_{x \to a^-} f(x) = \infty$ (Figure 2.26c), and $\lim_{x \to a^-} f(x) = -\infty$ (Figure 2.26d) are defined analogously.

DEFINITION Vertical Asymptote

If $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a^+} f(x) = \pm \infty$, or $\lim_{x \to a^-} f(x) = \pm \infty$, the line x = a is called a **vertical asymptote** of f.