Pre-Read Notes

Max C Wong

November 21, 2020

Contents

1	Cha	apter 1: Function Characts. and Props.	4					
	1.1	Functions	4					
	1.2	Absolute value	4					
	1.3	Properties	4					
	1.4	Sketching Graphs	4					
	1.5	Inverse	4					
	1.6	Piecewise	5					
	1.7	Operations within	5					
		2 Chapter 3: Polynomial Functions						
2	Cha	apter 3: Polynomial Functions	5					
2	Cha 2.1	Apter 3: Polynomial Functions Polynomial Functions	5					
2		·						
2	2.1	Polynomial Functions	5					
2	2.1 2.2	Polynomial Functions	5					
2	2.1 2.2 2.3	Polynomial Functions	5 5 6					
2	2.12.22.32.4	Polynomial Functions	5 5 6					

3	Chapter 4: Polynomial Equ. and Ineq.					
	3.1	Solving	7			
	3.2	Solving Linear Inequalities	7			
	3.3	Solving Polynomial Inequalities	7			
	3.4	Rates of Change in Polynomials	7			
4	Chapter 5: Rational funcs., eqs., ineqs.					
	4.1	Graph of Reciprocals	8			
	4.2	Quotients of Polynomials	8			
	4.3	graph in form $\frac{ax+b}{cx+d}$	8			
	4.4	Solving Rational Equations	9			
	4.5	Solving Rational Inequalities	9			
	4.6	Rates of Change	9			
5	Chapter 6: Trigonometric functions					
	5.1	Radians	9			
	5.2	Radians on Cartesian Plane	9			
	5.3	Graphs of primary trig functions	10			
	5.4	Transformations	10			
	5.5	Reciprocal Graphs	10			
	5.6	Modelling	10			
	5.7	Rates of Change	10			
6	Chapter 7: Identities and Equations 1					
	6.1	Equivalent Trig Functions	11			
	6.2	Compound Angle Formulas	11			
	6.3	Double angels	11			

	6.4	Prove Identities	11
	6.5	Solve Linear Trig Equations	12
	6.6	Solve Quadratic Trig Equations	12
7	Cha	apter 8	13
	7.1		13
	7.2		13
	7.3		13
	7.4		13
	7.5		13
	7.6		13
	7.7		13
8	Cha	apter 9	13
9	Cha	apter 2	13

1 Chapter 1: Function Characts. and Props.

1.1 Functions

- A relationship is a function if a all values on the domain have less than or equal to 1 value on the range
- circular motion is represented by sinosoidal functions
- functions can be represented in many ways

1.2 Absolute value

• f(x) = |x| describes values ≥ 0

1.3 Properties

- Each function has a unique mixture of elements, usually most visually apparent on a graph
- This can be used to distinguish them

1.4 Sketching Graphs

- Do transformations in steps
- Do translations last when listing transformations
- general formula: y = af(k(x-d)) + c

1.5 Inverse

- Inverse is done by swapping x and y variables
- graphically a reflection about x and y axis (along y = x)
- denoted by $f^{-1}(x)$
- not all inverses are functions

1.6 Piecewise

- A function with multiple rules
- Related to specific intervals in the domain
- filled circle for inclusive, empty circle for exclusive
- Does not have to be continuous

1.7 Operations within

- If functions have overlapping domains they can be combined
- By combining the dependant variable in some way
- Properties carry onwards

2 Chapter 3: Polynomial Functions

2.1 Polynomial Functions

- A polynomial arranged in this formula
- $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
- where n are whole numbers and a are real numbers
- most simplified form
- the "degree" is the highest exponent in the polynomial
- degree is proportional to the number of "lines/curves" in the graph

2.2 Properties

- P. function's degree can indicate a lot:
- shape, turning points, zeroes, and end behavior
- \bullet odd degree \to opposite end dir., even degree \to same end dir.
- if even
- if leading coefficient is pos \rightarrow goes positive to negative
- if leading coefficient is neg \rightarrow goes negative to positive

- if odd
- neg \rightarrow face negative, pos \rightarrow face positive
- turning points proportional to n 1
- y axis symmetrical \rightarrow even function, rotational symetry \rightarrow odd function

2.3 Factored Form

- Polynomial function family \rightarrow P. functions of similar properties
- zeroes of a P. function are same as roots of related P equation (when factored?)
- Factored form gives roots, factored form at 0 gives zeroes
- Use zeroes and a point to get equation from $f(x) = a(x b)(x b) \cdots$ where a is solved using the extra point and b, c, \cdots are zeroes
- if root is exponent $1 \to \text{passes through as if linear}$
- if root is exponent $2 \to \text{glances}$ off like quad vertex
- \bullet if root is exponent 3 \rightarrow passes flat before going through, like parent root function

2.4 Transformations

• Like any other function

2.5 Dividing

- Polynomials can be divided in similar manner to numbers
- Like with long division
- remainders are added to the end of the equation, rest becomes factors

2.6 Factoring

- Remainder theorum: $\frac{f(x)}{x-1} = f(a)$
- Factor theorum: x a is a factor if f(a) = 0
- To factor:
 - 1. use factor theorum to determine factor
 - 2. divide by factor

2.7 Factoring Sum or Difference

- Expressions with two perfect cubes
- $A^3 + B^3 = (A+B)(A^2 AB + B^2)$
- $A^3 B^3 = (A B)(A^2 + AB + B^2)$

3 Chapter 4: Polynomial Equ. and Ineq.

3.1 Solving

- Solution of f(x) = 0 are zeroes
- sometimes you need to ignore the values outside of the defined intervals

3.2 Solving Linear Inequalities

- Solve linear inequalities by rearranging, like solving linear equations
- \bullet If you multiply or divide by a negative number, flip over the inequality sign

3.3 Solving Polynomial Inequalities

- To solve:
 - 1. Solve for main points, like roots
 - 2. Plot on some sort of line system
 - 3. This will give you your solution ranges

3.4 Rates of Change in Polynomials

- Rate of change is $\frac{change \ in \ range}{change \ in \ domain}$
- On interval $x_1 \le x \le x_2$ is $\frac{f(x_2) f(x_1)}{x_2 x_1}$
- When x is very small, $roc = \frac{f(x+h) f(x)}{h}$
- On any "indexes" the roc is near 0

4 Chapter 5: Rational funcs., eqs., ineqs.

4.1 Graph of Reciprocals

- Reciprocals of linear and quadratic functions follow a similar general graphed form
- Take characteristics from original to graph Reciprocals
- Y coordinates mostly the same to the original
- original's zeroes determine vertical asymtotes
- Reciprocals always start with a asymtote on y = 0 unless translated

4.2 Quotients of Polynomials

- Rational function is $f(x) = \frac{g(x)}{h(x)}$ where f(x) and g(x) are Polynomials
- Has breaks or gaps where denominator is zero, must be restricted
- vertical asymtotes and gaps determine restrictions on the domain
- end behavior determined by vertical or oblique asymtotes
- oblique asymtote: slanted asymtote
- Horizontal asymtote $\rightarrow g(x)$ degree is less than or equal to h(x)
- Otherwise, if greater, slanted asymtote

4.3 graph in form $\frac{ax+b}{cx+d}$

- Most have vertical and horizontal asymtotes
- Determine vertical asymtote by finding what creates 0 on the denominator
- Determine horizontal asymtote by comparing the ratio between numerator and denominator leading coefficient
- in form $\frac{b}{cx+d}$ vetical asymtote at $x=-\frac{d}{c}$ and horizontal asymtote at y=0
- If numerator and denominator have a common linear factor, line has hole where the zero of the common factor occurs

4.4 Solving Rational Equations

- Solve algebraicly
- zeroes in rational function are zeroes of the numerator
- Make sure to check for extraneous answers

4.5 Solving Rational Inequalities

- Find all values that satisfy inequality
- Use roots and an inequality table

4.6 Rates of Change

- Use previous methods to calculate rates of change
- Cannot calculate where there is a hole
- roc at vertical gaps or asymtotes are undefined
- ullet roc o horizontal asymtotes approach zero

5 Chapter 6: Trigonometric functions

5.1 Radians

- Radians is defined as the angle formed when 2r is equal to the arc (c between the 2 r's)
- 2π is equivalent to 180 degrees
- Gives exact numbers without units

5.2 Radians on Cartesian Plane

- Special trangle angles can be expressed with Radians
- Otherwise, same operations as with degrees
- Unit circle stuff

5.3 Graphs of primary trig functions

- A recap on sin and cosine functions
- New: Tangent functions \rightarrow period is from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$

5.4 Transformations

- transformed from their parent functions
- to sketch either take information from the equation and sketch or take key points, apply transformations and then sketch
- g(x) = af(k(x-d)) + c where f(x) is sin, cos or tan
- $\bullet \ |a|$ gives amplitude and v. stretch, compression and a gives reflection
- $\frac{1}{|k|}$ gives h. stretch/compression and k gives reflection. $\frac{2\pi}{|k|}$ gives period

5.5 Reciprocal Graphs

- The reciprocal function is closely related to the original function
- Vertical asymtotes at zeroes of original
- Same positive negative intervals
- increase points on the original or the inverse on the Reciprocals

5.6 Modelling

• Casn be used for application

5.7 Rates of Change

- Like any other
- Waiting for derivatives :/
- roc at midle line in tangent functions is zero

6 Chapter 7: Identities and Equations

6.1 Equivalent Trig Functions

- Different trig functions can produce the same result/relationship
- Can use h. translations
- Sin and Tan seperately have rotational symetry with themselves

6.2 Compound Angle Formulas

Addition Formulas

Subtraction Formulas

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \quad \sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \quad \cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \quad \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

6.3 Double angels

• Derived from compound angle Formulas

Double Angle for Sine

$$\sin 2\theta = 2\sin\theta\cos\theta$$

Double Angle for Cosine

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\cos 2\theta = 2\cos^2 \theta - 1$$

 $\cos 2\theta = 1 - 2\sin^2\theta$

Double Angle for Tangent

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

6.4 Prove Identities

• Rations are identities if both sides are proven equal

• Use other proven identities to prove an identity or by applying zero sum and 1 product rules

6.5 Solve Linear Trig Equations

- Solve linear trig equations like regular linear Equations
- Be wary of the periodic nature of the relationship, can have multiple solutions within the interval given

6.6 Solve Quadratic Trig Equations

- WARNING: WEAK IN THIS AREA
- Can be solved initially algebraicly
- Can have multiple solutions, some are extraneous
- Usually factor first before solving

7 Chapter 8

7.1

•

7.2

•

7.3

•

7.4

•

7.5

•

7.6

•

7.7

•

- 8 Chapter 9
- 9 Chapter 2