Interpretable Machine Learning of PET Imaging for Individualized Predictions of Seizure Outcomes after Temporal Lobe Epilepsy Surgery

2022 GDMA Nuclear Medicine Annual Conference

Huanhua Wu Prof. Hao Xu*

The First Affiliated Hospital of Jinan University

2022-12-03

Introduction

Background

Figure 1: Epilepsy epidemiology

Aims

Figure 2: Focuses on interpretability of ML

Scheme

Figure 3: Flowchart of TLE postsurgical IML

The Data

Combined of PET Radiomics and Clinical Features

Figure 4: PET radiomics score and clinical-PET features

Exploratory Data Analysis

Figure 5: Heatmap of Clinical-PET Features

The Model

Benchmark

Table 1: Performance Comparison Eleven ML algorithms and K-folds Cross-validation of the Selected AdaBoost

								Folds\Tuned_	Ada Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
								1	0.882	0.733	0.000	0.000	0.000	0.000	0.000	0.361
Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ada Boost Classifier	0.883	0.789	0.400	0.433	0.393	0.345	0.357	-								
Extreme Gradient Boosting	0.884	0.777	0.300	0.400	0.333	0.287	0.295	3	0.824	0.550	0.000	0.000	0.000	-0.085	-0.091	0.183
Random Forest Classifier	0.884	0.763	0.200	0.350	0.250	0.217	0.230	4	0.875	0.893	0.000	0.000	0.000	0.000	0.000	0.500
Gradient Boosting Classifier	0.890	0.762	0.350	0.483	0.390	0.346	0.360	5	0.938	0.929	0.500	1.000	0.667	0.636	0.683	0.750
Light Gradient Boosting Machine	0.859	0.749	0.250	0.325	0.267	0.211	0.221	0	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Logistic Regression	0.878	0.669	0.050	0.100	0.067	0.055	0.059	0								
Extra Trees Classifier	0.884	0.662	0.100	0.200	0.133	0.118	0.127	7	0.875	0.554	0.000	0.000	0.000	0.000	0.000	0.321
K Neighbors Classifier	0.865	0.646	0.200	0.200	0.183	0.140	0.149	8	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Linear Discriminant Analysis	0.884	0.642	0.100	0.200	0.133	0.119	0.128	9	0.938	1.000	0.500	1.000	0.667	0.636	0.683	1.000
Naive Bayes	0.251	0.586	0.900	0.129	0.226	0.014	0.072	10	0.938	0.679						
Decision Tree Classifier	0.798	0.584	0.300	0.264	0.259	0.158	0.167	10			0.500	1.000	0.667	0.636	0.683	0.591
								Mean	0.914	0.827	0.350	0.600	0.433	0.410	0.432	0.637
								Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

AdaBoost Algorithm

Figure 6: Illustration of AdaBoost Algorithm

 AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=0.2, n_estimators=230, random_state=123)

The Explanation

Permutation Importance

```
Weight Feature
0.0394 ± 0.0329 Al radscore
0.0197 ± 0.0138 Lat radscore
0.0085 ± 0.0138 Durmon
0.0085 ± 0.0138 SGS
0.0028 ± 0.0113 Onsetmon
     0 ± 0.0000 Frea
     0 \pm 0.0000 side
     0 ± 0.0000 Sex
     0 ± 0.0000 MRI
     0 ± 0.0000 history_of_previous_surgery
     0 ± 0.0000 early_brain_injury
     0 ± 0.0000 familial epilepsy
     0 ± 0.0000 brain hypoxia
     0 ± 0.0000 Central Nervous System Infections
     0 ± 0.0000 traumatic brain injury
     0 ± 0.0000 SE
-0.0028 ± 0.0113 Surgmon
```

Figure 7: Permutation Importance of AdaBoost

