94.66122. Smarter Models, Fewer Features: Why PCA **Matters in Feature Selection** 35,64,50656.8 15.94,67905.07 115.94,66938.9 Arthur Gondim - 2025 | Photo by Mika Baumeister on Unsplash

Dataset: ABEV3 - Brazilian Market

Example 1: Raw Data Classifier

'Raw' data as input:

- Total of 19 features.
- Dataset combines technical, fundamental, and sentiment analysis data from the ABEV3 stock.

Random Forest algorithm:

• Since the dataset is small, parameters are set to **stress-test**, simulating computational intensity.

Output

 (Encoded) categorical variable representing the next week's return based on histogram-defined regions.

Principal Component Analysis (PCA)

Cumulative Explained Variance vs. Number of Principal Components

- The **cumulative explained variance** is the **sum** of the variance proportions explained by each principal component (PC).
- It indicates how much information is retained in **lower-dimensional space**.
- Helps decide the **optimal number** of principal components to retain.

Example 2: Principal Components Classifier

8 Principal Components as input:

• ~90% of the variance.

Random Forest algorithm

• Same parameters as before.

	Overall Results	
	RAW inputs	PCA
Training time	6.38 s	4.42 s
Overall Accuracy	23.8 %	33.3 %