Estadística y modelos predictivos

Santiago Caño Muñiz

All models are wrong, but some are useful George Box

La medida

Data in an uncertain world, perfect knowledge of the uncertainty

Presentar resultados

Tablas vs imágenes

Coef.	2.50%	97.50%	Estimate
(Intercept)	52.84821	54.08622	53.46721
Weight	0.341727	0.35174	0.346734
Age	-0.02391	-0.01199	-0.01795
Height	-0.31998	-0.31354	-0.31676
Sex2	-0.17377	-0.05999	-0.11688
Weight:Age	0.000225	0.000387	0.000306

¿Qué hacemos cuando los datos no son normales?

El modelo

Generalización de modelos lineares

GLM

Modelando la distribución

$$\begin{cases} Y \sim N(\mu, \sigma^2) \\ \mu \sim \beta_1 X_i + \beta_0 + e_{ij} \end{cases}$$

GLM

Modelando la distribución

$$\begin{cases} Y & (\mu, \sigma^2) \\ \mu \sim \beta_1 X_i + \beta_0 + e_{ij} \end{cases}$$

$$\begin{cases} Y \sim \boldsymbol{g}(\mathbb{E}(\boldsymbol{y}), \boldsymbol{Var}(\boldsymbol{y}), \mathbb{P}(\boldsymbol{0})) \\ \mathbb{E}(\boldsymbol{y}) = \mu \sim \beta_1 X_i + \beta_0 + e_{ij} \end{cases}$$

GLM

Modelando la distribución

$$\begin{cases} Y \times V(\mu, \sigma^2) \\ \mu \sim \beta_1 X_i + \beta_0 + e_{ij} \end{cases}$$

$$\begin{cases} Y \sim g(\mathbb{E}(y), Var(y), \mathbb{P}(0)) \\ \mathbb{E}(y) = \beta_1 X_i + \beta_0 + e_{ij} \end{cases}$$

¿Puede un tratamiento X curar la tuberculosis?

Pensar en la **pregunta** adecuada

Resultado del tratamiento en los pacientes

Positivo|Negativo

Mejora|Empeora|
Transplate|Defunción

Binomial Multinomial Logistica Número de bacterias en una biopsia del paciente

Poisson N-binomial Concentración de antibiótico para inhibir el crecimiento de la bacteria

Gaussian T-Student Gamma Tweedie

GLM

Modelando la distribución

Modelar la distribución con glmmTMB

```
library(glmmTMB)
# Iqual que m6.1 pero con notación GLM explicita
m6.1.1 <- glmmTMB (Total vol ~ BMI + Cancer Status + Sex + Season,
           data = d, family = gaussian)
m6.2 <- glmmTMB(Total vol ~ BMI + Cancer Status + Sex + Season,
           data = d, family = tweedie(link = "log")) # Modelando la distribución
AIC (m6.1, m6.1.1, m6.2)
> df
            AIC
m6.1 6 39960.32
m6.1.1 6 39960.32
m6.2 7 5083.34
```

Entender el resultado

```
Family: tweedie ( log )
Formula:
                Total vol ~ Cancer Status + Sex + Season
Data: d[, `:=`(Cancer Status, as.factor(Cancer Status))]
    AIC
            BIC logLik deviance df.resid
 5104.6 5143.2 -2546.3 5092.6
                                    4586
Overdispersion parameter for tweedie family (): 49.3
Conditional model:
             Estimate Std. Error z value Pr(>|z|)
                        0.58791 8.642 < 2e-16 ***
(Intercept)
            5.08051
             -0.08965 0.01883 -4.761 1.93e-06 ***
BMI
Cancer Status1 -0.44755 0.17739 -2.523 0.01164 *
             -1.63311 0.18545 -8.806 < 2e-16 ***
Sex
            Season
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
# Representar el resultado
plot model (m6.2, sort.est = T, show.values = TRUE)
```


¿Qué es una función de enlace?

Entender el resultado

```
Family: tweedie ( log )
Formula:
               Total vol ~ Cancer Status + Sex + Season
Data: d[, `:=`(Cancer Status, as.factor(Cancer Status))]
    AIC
            BIC logLik deviance df.resid
 5104.6 5143.2 -2546.3 5092.6
                                    4586
Overdispersion parameter for tweedie family (): 49.3
Conditional model:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.80629
                        0.34430 8.151 3.62e-16 ***
Cancer Status1 -0.37062 0.17799 -2.082 0.03731 *
Sex
            -1.68022
                        0.18626 -9.021 < 2e-16 ***
            Season
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
# Representar el resultado
plot model (m6.2, sort.est = TRUE, show.values = TRUE,
             transform = "exp")
```


Aprogramar

Por ejemplo

Mucho por mejorar

Inspeccionar la dispersion y exceso de 0

Modelando los ceros

- La mayor parte de la población carece de grasa parda
 - Podría existir un proceso que "activa" la presencia de grasa parda
 - Una vez activada la presencia de grasa parda, la masa empieza a crecer
- La inspección visual de variables separadas nos puede dar una pista de que factores participan en la generación de 0

Inspeccionar el exceso de 0

¿Cómo explorar la densidad en 0?

- Buscamos relacionar distintas variables con la probabilidad de y = 0
 - Contar y = 0
 - − Contar y != 0
 - Comparar

Inspeccionar el exceso de 0


```
# Seleccionar variables
d[, .(BrownFat, Age, Diabetes, Cancer Status)] %>%
 # Agregar entorno a la variable de interes
 melt.data.table(., id.vars = "BrownFat") %>%
 # Contar obs. En cada categoría
             .[, .(Count = .N),
             by = .(variable, value, BrownFat)] %>%
 # Graficar
ggplot(., aes(x = as.factor(value), y = Count,
               fill = as.factor(BrownFat)) ) +
 # Formato barra. Apilar por color
 geom bar(stat = "identity", position = "fill") +
 # Un panel para cada variable
 facet wrap (~ variable,
             scales = "free x", nrow = 1)
```

Modelar el exceso de 0

$$\begin{cases} \mathbb{E}(\mathbf{y}) = \beta_1 X_i + \dots + \beta_0 + e_{ij} \\ \mathbb{P}(\mathbf{y} = \mathbf{0}) = \beta_1 X_i + \dots + \beta_0 + e_{ij} \end{cases}$$

Modelando los ceros

- El volumen de grasa parda depende de
 - BMI
 - Cancer
 - Sexo
 - Season
- La PROBABILIDAD de tener o no grasa parda depende de
 - Diabetes
 - Edad

Modelar la dispersion y exceso de 0

```
summary (m7.1)
>...
Conditional model:
              Estimate Std. Error z value Pr(>|z|)
                                   6.652 2.90e-11 ***
             3.73905
                         0.56212
(Intercept)
              -0.07472
                         0.01916 -3.900 9.64e-05 ***
BMI
Cancer Status1 -0.27970
                         0.17701 -1.580 0.11407
Sex2
              -1.53802
                         0.18670 -8.238 < 2e-16 ***
             0.23400
                         0.07596
                                   3.081 0.00206 **
Season
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 0.1
Zero-inflation model:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.62769
                      1.19632 -3.868 0.00011 ***
Diabetes
           2.14340
                      0.51858 4.133 3.58e-05 ***
Age
            0.07682
                       0.01473
                                5.216 1.83e-07 ***
```

Modelando los ceros

- El volumen de grasa parda depende de
 - BMI
 - Cancer
 - Sexo
 - Season
- La PROBABILIDAD de tener o no grasa parda depende de
 - Diabetes
 - Edad

Inspeccionar la dispersion

¿Cómo explorar la densidad en 0?

- Buscamos explorar la extensión de los datos por subgrupos
 - Histogramas
 - Diagramas de cajas
 - Diagramas de violín
 -

Inspeccionar la dispersion

¿Cómo explorar la densidad en 0?

Modelar el exceso de 0

$$\begin{cases} \mathbb{E}(\mathbf{y}) = \beta_1 X_i + \dots + \beta_0 + e_{ij} \\ \mathbf{Var}(\mathbf{y}) = \beta_1 X_i + \dots + \beta_0 + e_{ij} \end{cases}$$

Modelando los ceros

- El volumen de grasa parda depende de
 - Season
 - BMI
 - Cancer
- La variabilidad del volumen de grasa parda depende de
 - Sexo

Modelar el exceso de 0

```
summary (m7.2)
>...
Conditional model:
              Estimate Std. Error z value Pr(>|z|)
                         0.56428 6.287 3.23e-10 ***
(Intercept) 3.54772
                         0.01934 -4.720 2.36e-06 ***
              -0.09128
BMI
Cancer Status1 -0.45346
                         0.18075 -2.509 0.0121 *
Sex2
             -1.63022 0.20829 -7.827 5.01e-15 ***
           0.20645
                         0.07833 2.636
                                        0.0084 **
Season
Signif. codes: 0 '***' 0.001 '**'
Dispersion model:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.73872
                      0.05503 67.94 < 2e-16 ***
                      0.10654 4.75 2.06e-06 ***
Sex2
           0.50576
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
```

Modelando los ceros

- El volumen de grasa parda depende de
 - Season
 - BMI
 - Cancer
 - Season
- La variabilidad del volumen de grasa parda depende de
 - Sexo

Validar

Siempre verificar

Como presenter los resultados

¿Qué hacer cuando el modelo es muy complejo?

```
p <- plot_model(m7.3, type = "pred", vcov.fun = "vcovCL", grid = T)
do.call("grid.arrange", c(p, ncol = 4))</pre>
```


Aprogramar

Por ejemplo

Cuando los dantos no son normales

Transformaciones

- Cuando los datos son:
 - No lineales
- Transformaciones monotónicas
 - Normalizar = $\frac{x_i \mu}{\sigma^2}$
 - Logaritmo = log(x)
 - Ratios = $\frac{x_1}{x_2}$
- Cuidado, cuantas más transformaciones hagamos, más difícil es interpretar el modelo

Cuando los dantos no son normales

Transformaciones

- Cuando los datos son:
 - No lineales
- Transformaciones monotónicas
 - Normalizar = $\frac{x_i \mu}{\sigma^2}$
 - Logaritmo = log(x)
 - Ratios = $\frac{x_1}{x_2}$
- Cuidado, cuantas más transformaciones hagamos, más difícil es interpretar el modelo

El modelo

Modelos Aditivos

Cuando los dantos no son normales

Modelos aditivos

- Cuando los datos son:
 - No lineales
 - No monotónicas
- Polinomios

$$- \quad \mathbb{E}(y) = a + \beta_1 x_1 + \beta_2 x_1^2 + \dots + \beta_n x_n^n + \varepsilon$$

- Modelos aditivos
 - $\mathbb{E}(y) = a + f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \varepsilon$

Cuando los dantos no son normales

Función base

- Cuando los datos son:
 - No lineales
 - No monotónicas
- Polinomios

$$- \quad \mathbb{E}(y) = a + \beta_1 x_1 + \beta_2 x_1^2 + \dots + \beta_n x_n^n + \varepsilon$$

- Modelos aditivos
 - $\mathbb{E}(y) = a + f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \varepsilon$

Cuando los dantos no son normales

Función base

- Cuando los datos son:
 - No lineales
 - No monotónicas
- Polinomios

$$- \quad \mathbb{E}(y) = a + \beta_1 x_1 + \beta_2 x_1^2 + \dots + \beta_n x_n^n + \varepsilon$$

- Modelos aditivos
 - $\mathbb{E}(y) = a + f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \varepsilon$

Modelos aditivos

mgcv

```
mgcv::gam
```

Modelos aditivos

Regresión no lineal simple


```
ggplot(d,
    aes(x = Weight , y = LBW)) +
    geom_point(alpha = 0.3) +

stat_smooth(method = "lm", linetype = 2) +
    stat_smooth(method = "gam",

    labs(x = "Peso - Kg", y = "Índice LBW")

m0 <- lm(LBW ~ Weight, data = d)

m1 <- gam(LBW ~ s(Weight , k = 3),
    data = d, method = "REML")</pre>
```

Verificar el modelo


```
gam.check(m)
>Method: REML Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-0.0008537355, 0.0008522113]
(score 13091.98 & scale 13.02218).
Hessian positive definite, eigenvalue range
[0.5001828,2419.501].
Model rank = 4 / 4
Basis dimension (k) checking results. Low p-value (k-
index<1) may
indicate that k is too low, especially if edf is close to
k'.
          k' edf k-index p-value
                    0.97
                            0.03 *
s(weight)
```

Verificar el modelo


```
m \leftarrow gam(LBW \sim s(weight, k = 9), data = d,
            method = "REML")
gam.check(m)
>Method: REML Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-0.0008537355, 0.0008522113]
(score 13091.98 & scale 13.02218).
Hessian positive definite, eigenvalue range
[0.5001828,2419.501].
Model rank = 4/4
Basis dimension (k) checking results. Low p-value (k-
index<1) may
indicate that k is too low, especially if edf is close to
k'.
             k' edf k-index p-value
s(weight) 8.00 7.67 1.01
                               0.79
```

Modelo mixto


```
ggplot(d,
    aes(x = Weight , y = LBW, y = Sex)) +
    geom_point(alpha = 0.3) +

stat_smooth(method = "lm", linetype = 2) +
    stat_smooth(method = "gam",
    formula = y ~ s(x, k = 3, bs = "cc")) +
    labs(x = "Peso - Kg", y = "Índice LBW")

m1.3 <- gam(LBW ~ s(Weight , k = 9) + Sex,
    data = d,
    method = "REML")</pre>
```

Modelo mixto

```
ggplot(d,
    aes(x = Weight , y = LBW, y = Sex)) +
    geom_point(alpha = 0.3) +

stat_smooth(method = "lm", linetype = 2) +
    stat_smooth(method = "gam",
    formula = y ~ s(x, k = 3, bs = "cc")) +
    labs(x = "Peso - Kg", y = "Índice LBW")

m1.3 <- gam(LBW ~ s(Weight , k = 9) + Sex,
    data = d,
    method = "REML")

summary(m1.3)</pre>
```

Aprogramar

Por ejemplo

Las interacciones

Como expresarlas en mgcv

$$y \sim s(x1) + s(x1)$$

• 2 variables aditivas

 $y \sim s(x1, x2)$

• 2D-Interacción aditiva, misma curvatura

 $y \sim te(x1, x2)$

• 2D-Interacción aditiva, diferente curvatura

 $y \sim te(x1) + s(x2) + ti(x1, x2)$

• 2D curva, interacción independiente

Las interacciones

Comparar entre modelos aditivos

```
m2 \leftarrow gam(LBW \sim s(weight, bs = "fs", by = sex),
           data = d, method = "REML") # Peso modulado por sexo
m3 <- gam(LBW ~ s(weight) + height, # Peso combinado con regression lineal altura
           data = d, method = "REML")
m4 <- gam(LBW ~ s(weight) + s(height) ,
                                      # Peso combinado con curva altura
           data = d, method = "REML")
m5 <- gam(LBW ~ s(weight, height) + s(weight) + s(height),
           data = d, method = "REML") # Reg. curva de peso, curva altura e inteacción
AIC(m, m2, m3, m4, m5) \% data.table(., keep.rownames = T) \% .[order(AIC)]
> rn df
              AIC
1: m5 36.59825 22645.69
2: m2 11.42847 24285.65
3: m4 17.63645 25448.30
4: m3 11.83294 25675.65
5: m1.1 10.78283 25993.12
```

Modelos no lineales

Criterios de información

```
summary (m3)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -46.905749 1.000730 -46.87 <2e-16 ***
height 0.594772
                       0.006038 98.50 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' 1
Approximate significance of smooth terms:
           edf Ref.df
                         F p-value
s(weight) 8.695 8.97 958.4 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
R-sq.(adj) = 0.883 Deviance explained = 88.3%
-REML = 12856 Scale est. = 11.73 n = 4842
```

```
summary (m5)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.5465 0.0359 1436 <2e-16
* * *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1
Approximate significance of smooth terms:
                  edf Ref.df
                                  F p-value
s(weight, height) 25.312 27.00 256.475 <2e-16 ***
s(weight)
            1.000 1.00 1.149 0.284
s(height) 8.005 8.71 115.501 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1
R-sq.(adj) = 0.938 Deviance explained = 93.8%
-REML = 11380 Scale est. = 6.2417 n = 4842
```

Modelos no lineales

Criterios de información

Funciones curvas vs Tensores

- Using the usual s () function for the smooth for interactions uses thin plate splines.
- In this option isotropy is assumed, i.e. the same amount of smoothing is used in both directions (time and month).
- This could be reasonable for spatial fitting, or for interactions where both variables are in the same unit, but not in our case.
- For interactions between variables that should not be smoothed with the same amount, we can use tensor products te()

Validación visual

Efectos individuales

Validación visual

Efectos individuales

Presentar resultados

Efectos combinados - gráficos isobáricos

 El paquete mgcv contiene herramientas preinstaladas muy potentes para representación visual

Presentar resultados

Efectos combinados - gráficos isobáricos

 El paquete mgcv contiene herramientas preinstaladas muy potentes para representación visual

Recordar

¡Cuidado con el sobre-ajuste!

Para saber más

Libros de referencia

http://socviz.co/

https://web.stanford.edu/cla ss/bios221/book/introductio n.html

Generalized Additive Models: An Introduction with R, S Wood

iGracias por vuestro tiempo!