ENGSCI 355 Project 1

ANDREW JACKSON LOGAN WU SCOTT SUNG

Department of Engineering Science

AUGUST 2, 2017 The University of Auckland

1 Formulation

1.a Parameters

 $S = \{A, P, N, Z, X, O\}$; Set of shift types $W = \{1, 2, 3, 4, 5, 6\}$; Set of weeks in the roster cycle $D = \{Mon, ..., Sun\}$; Set of days in a week

Note that for continuity, a dummy week 0 and dummy day Sun_{dummy} also exist but are not part of the sets W and D.

1.b Decision Variables

X is the array of binary variables determining if a type of shift belongs to a given week and day in the roster:

$$x_{s,w,d} \in \{0,1\} \quad \forall s \in S, \ w \in W \cup \{0\}, \ d \in D \cup \{\text{Sun}_{\text{dummy}}\}$$

Y determines if a given week in the roster is the night shift week. Note the night shift also includes the final three days of the preceding week:

$$y_w \in \{0,1\} \quad \forall w \in W \cup \{\text{Sun}_{\text{dummy}}\}$$

V denotes whether registrars are forced to take a weekend off:

$$v_w \in \{0,1\} \quad \forall w \in W \cup \{\operatorname{Sun}_{\operatorname{dummv}}\}\$$

1.c Constraints

Create a dummy week 0 that is equal to week 6.

$$x_{s,0,d} = x_{s,|W|,d} \quad \forall s \in S, \ d \in D$$
 (1)

Create a dummy day 0 that is equal to Sunday of the previous week, allowing wrap-around from Sunday to Monday.

$$x_{s,w-1,|D|} = x_{s,w,0} \quad \forall s \in S, \ w \in W$$
 (2)

Ensure every slot has a shift assigned by summing over all shift types, except for the night-shift week which must have two.

$$\sum_{s \in S} x_{s,w,d} - y_w = 1 \quad \forall w \in W, \ d \in D$$
(3)

Every day must have a single registrar assigned to each A, P and N shift.

$$\sum_{w \in W} x_{s,w,d} = 1 \quad \forall s \in \{A, P, N\}, \ d \in D$$

$$\tag{4}$$

Every P shift must follow an A shift, except for Sunday where an A must follow.

$$x_{P,w,d} = x_{A,w,d-1} \quad \forall w \in W, \ d \in D$$
 (5)

$$x_{A,w,d} = x_{A,w,d-1} \quad \forall w \in W, \ d \in \{Sun\}$$
 (6)

Setting up the night shift: only one week can be the full 'night shift' week.

$$\sum_{w \in W} y_w = 1 \tag{7}$$

The Friday to Sunday before the full night shift week are also night shifts.

$$x_{N,w-1,d} - y_w = 0 \quad \forall w \in W, \ d \in \{Fri, Sat, Sun\}$$
 (8)

The Monday to Thursday of the full night shift week are night shifts.

$$x_{N,w,d} - y_w = 0 \quad \forall w \in W, \ d \in \{\text{Mon, Tue, Wed, Thu}\}$$
 (9)

The Friday to Sunday of the full night shift week are sleep shifts.

$$x_{Z,w,d} - y_w = 0 \quad \forall w \in W, \ d \in \{\text{Fri, Sat, Sun}\}$$
 (10)

Ensure no one else has a sleep shift and is slacking off!

$$\sum_{w \in W} x_{Z,w,d} = \text{n.o. allowed rests (i.e., 3)}$$
 (11)

To give people weekends off: no weekdays are allowed to be taken off:

$$x_{\mathbf{X},w,d} = 0 \quad \forall w \in W, \ d \in \{\text{Mon}, \dots, \text{Fri}\}$$
 (12)

Weekends must be taken off if scheduled as a 'weekend off' (but may be taken off on other weekends):

$$x_{\mathbf{X},w,d} \ge 0 \quad \forall w \in W, \ d \in \{ \mathbf{Sat}, \mathbf{Sun} \}$$
 (13)

No two consecutive weekends can pass without a weekend off being forced.

$$v_w + v_{w-1} \ge 1 \quad \forall w \in W \tag{14}$$