МФТИ, ФПМИ

Алгоритмы и структуры данных, осень 2021 Семинар №12. Деревья поиска, AVL-дерево

- 1. Дано подвешенное корневое бинарное дерево. Как за линейное время проверить, что оно является деревом поиска?
- **2.** Как в дереве поиска искать максимальный и минимальный элементы? Как находить наименьший элемент, больший x, лежащий в дереве? Может понадобиться хранить дополнительное поле в каждой вершине.
- 3. Пусть $F_0=1, F_1=1,$ а $F_n=F_{n-1}+F_{n-2}$ при $n\geqslant 2.$ Пусть $\varphi=\frac{1+\sqrt{5}}{2}.$ Докажите, что

$$F_{n-1} = rac{arphi^n - (-arphi)^{-n}}{\sqrt{5}}$$
 при $n \geqslant 1$.

- **4.** Докажите, что при выполнении операции **insert** в AVL-дереве можно остановиться (не подниматься вверх), когда $\Delta(v)=0$. Докажите, что если $\Delta(v)$ стало равным 1 или (-1), то это означает, что глубина поддерева с корнем в v (то есть h(v)) увеличилась. Докажите, что достаточно выполнить один поворот.
- **5.** Докажите, что при выполнении операции **erase** в AVL-дереве можно остановиться (не подниматься вверх), когда $\Delta(v) = \pm 1$. Докажите, что если $\Delta(v)$ стало равным 0, то это означает, что глубина поддерева с корнем в v (то есть h(v)) уменьшилась. Всегда ли достаточно выполнить один поворот?
- **6.** Пусть даны два AVL-дерева T_1 и T_2 , причём все ключи T_1 из них строго меньше всех ключей T_2 . Предложите алгоритм построения AVL-дерева, множество ключей которого совпадает с объединением множеств ключей T_1 и T_2 , за время $O(\log(|T_1| + |T_2|))$.
- 7. В изначально пустое множество по одному добавляются или удаляются элементы. После выполнения каждого запроса сообщать медиану текущей версии множества. Асимптотика: $O(\log n)$ на запрос, где n текущий размер множества.
- 8. Есть два множества отрезков на прямой, в них поступают запросы добавления. После каждого нужно сказать: сколько существует пар (отрезок из первого множества, отрезок из второго множества) таких, что они пересекаются? Асимптотика ответа на запрос: $O(\log n + \log m)$, где n, m размеры множеств.
- **9.** К изначально пустому множеству чисел S поступают запросы трёх типов: а) добавить x в S; б) удалить x из S; в) найти сумму элементов S, значения которых лежат в отрезке [l,r]; г) прибавить x ко всем элементам S. Отвечайте на каждый запрос за $O(\log q)$, а на запрос типа г) за O(1).

- **1.** Достаточно научиться считать минимум и максимум в поддереве. Альтернативно, можно обойти дерева от корня, причём для каждой вершины выписать сначала её левое поддерево, потом её саму, а затем правое поддерево. Получившийся массив должен быть отсортирован.
- 2. Для поиска минимального элемента нужно спускаться влево, пока левый сын существует.
- **3.** Воспользуйтесь индукцией по n.
- **4.** Все утверждения лучше доказывать вместе: если алгоритм переходит из поддерева в наддерево, то это происходит только в случае, если в поддереве значение Δ было равно ± 1 , а его глубина увеличилась (по сравнению с моментом времени до добавления элемента).
- **5.** Решение аналогично решению задачи 3. Здесь, однако, не обойтись одним поворотом: их может быть много.
- **6.** Пусть $h(T_1) \leq h(T_2)$. Удалите из T_1 максимальный элемент. Пройдите от корня T_2 вправо до той глубины, куда нужно подвесить T_1 . Верните удалённый элемент, подвесьте к нему T_1 и необходимое поддерево T_2 .
- 7. Храните два дерева поиска: список чисел, меньших медианы, и список чисел, больших медианы.
- 8. Проще считать количество пар непересекающихся отрезков.
- 9. В каждой вершине дерева храните сумму с поддерева. Также можно хранить отдельную константу, равную прибавляемому числу во всём дереве.