Лабораторная работа №5: отчет.

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибутов.

Евдокимов Максим Михайлович. Группа - НФИбд-01-20.

Содержание

Цель работы	5
Задание	6
Теория	7
Подготовка лабораторного стенда	7
Компилирование программ	7
Выполнение лабораторной работы	8
Пункт 1.0	8
Пункт 1.1	8
Пункт 1.2	9
Пункт 1.3	9
Пункт 1.4	9
Пункт 1.5	10
Пункт 1.6	10
Пункт 1.7	11
Пункт 1.8	11
Пункт 1.9	11
Пункт 1.10	12
Пункт 1.11	13
Пункт 1.12	13
Пункт 1.13	13
Пункт 1.14	14
Пункт 1.15	14
Пункт 1.16	15
Пункт 1.17	15
Пункт 1.18	15
Пункт 1.19	16
Исследование Sticky-бита	17
Пункт 2.1	17
Пункт 2.2	17
Пункт 2.3	17
Пункт 2.4	18
Пункт 2.5	18
Пункт 2 6	12

	Пункт 2.9 Пункт 2.10																															
	Пункт 2.1	1						•	•		•								•	•						•		•			20	J
	Пункт 2.1	2			•			•																		•					20	J
	Пункт 2.1	3			•			•																		•					21	L
	Пункт 2.1	4																													21	L
	Пункт 2.1	5	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22	!
Вь	Выводы															23	í															

Список иллюстраций

1	Подготовка	8
2	Вход в систему	9
3	Koд simpleid	9
4	Компиляция и проверка	9
5	Запуск программы simpleid	10
6	Проверка через id	10
7	Koд simpleid2	10
8	Компиляция и запуск	11
9	Изменяем UID файла	11
10	Расмотрим файлы	12
11	Проверка программы simpleid2	12
12	Запуск программы simpleid2	13
13	Меняем GID файла	13
14	Koд readfile.c	14
15	Компиляция readfile.c	14
16	Изменение владельца readfile	14
17	Проверка readfile.c	15
18	Смена пользователя readfile	15
19	Провека 1 работы программы readfile	16
20	Провека 2 работы программы readfile	16
1	Смотрим атрибуты директории /tmp	17
2	Создание файла file01.txt	17
3	Изменение прав доступа	18
4	Проверяем содержимое файла	18
5	Изменяем содержание файла	18
6	Проверяем содержимое файла	19
7	Изменяем содержание файла	19
8	Проверяем содержимое файла	19
9	Продуем удалить файл	20
10	меняем атрибут Sticky-бита	20
11	Выход из суперпользователя	20
12	Проверка атрибутов	21
13	Повтор шагов	21
14	удаление файла	22
15	Возвращаем все изменения	22

Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

Задание

- 1. Изучить основы и особенности компилирование программ на Linux, работа с gcc, понятие объектный файл и другие.
- 2. Изучение механизмов изменения идентификаторов SetUID, SetGID и Stickyбитов.
- 3. Исследование Sticky-бита и рассмотрение его принципов работы в случае двух пользователей.

Теория

Подготовка лабораторного стенда

Командой "gcc -v" проверяем наличие gcc и если нет то используем команду "yum install gcc". Также чтобы менять атрибуты в системе уберём встроенную защиту от их изменений - SELinux, при помощи команды "setenforce 0". И проверив что она работает командой "getenforce", которая должна вывести: Permissive.

Компилирование программ

Компиляторы, доступные в Linux-системах, являются частью коллекции GNU-компиляторов, известной как GCC (GNU Compiller Collection, подробнее см. http://gcc.gnu.org). В неё входят компиляторы языков C, C++, Java, Objective-C, Fortran и Chill. Будем использовать лишь первые два.

Так из наличие можно проверить двумя командами: "whereis gcc" и "whereis g++". Также в ходе работы будет создаваться - объектные файлы, которые невозможно запускать и использовать, поэтому после компиляции для получения готовой программы объектные файлы необходимо скомпоновать (автоудалить). Поэтому в ходе работы мы будем использовать команду "gcc файл. с -о файл" (где файл это имя файла кода с расширением .с), она не остовляет объектных файлов и даёт готовый к запуску файл.

Выполнение лабораторной работы

Пункт 1.0

Выполняем подготовку перед тем как начать работать, проверив наличие необходимых программ и их местоположение.

```
[max@Max ~]$ qcc -v
Используются внутренние спецификации.
COLLECT_GCC=gcc
COLLECT LTO WRAPPER=/usr/libexec/gcc/x86 64-redhat-linux/4.8.5/lto-wrapper
Целевая архитектура: x86 64-redhat-linux
Параметры конфигурации: ../configure --prefix=/usr --mandir=/usr/share/man --inf
odir=/usr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-
bootstrap --enable-shared --enable-threads=posix --enable-checking=release --wit
h-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-
unique-object --enable-linker-build-id --with-linker-hash-style=gnu --enable-lan
guages=c,c++,objc,obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-initf
ini-array --disable-libgcj --with-isl=/builddir/build/BUILD/gcc-4.8.5-20150702/o
bj-x86_64-redhat-linux/isl-install --with-cloog=/builddir/build/BUILD/gcc-4.8.5-
20150702/obj-x86_64-redhat-linux/cloog-install --enable-gnu-indirect-function --
with-tune=generic --with-arch_32=x86-64 --build=x86_64-redhat-linux
Модель многопоточности: posix
gcc версия 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC)
[max@Max ~]$ sudo setenforce 0
[sudo] пароль для max:
[max@Max ~]$ getenforce
Permissive
[max@Max ~]$ whereis gcc
gcc: /usr/bin/gcc /usr/lib/gcc /usr/libexec/gcc /usr/share/man/man1/gcc.1.gz
[max@Max ~]$ whereis g++
g++: /usr/bin/g++ /usr/share/man/man1/g++.1.gz
```

Рис. 1: Подготовка

Пункт 1.1

Войдим в систему от имени пользователя guest.

```
[max@Max ~]$ su guest
Пароль:
[guest@Max max]$ cd
[guest@Max ~]$ touch simpleid.c
```

Рис. 2: Вход в систему

Создаём программу simpleid.c и вводим указанный код.

```
Simpleid.c Coxpанить 

#include <sys/types.h>
#include <stdio.h>
int
main ()

{

uid_t uid = geteuid ();
gid_t gid = getegid ();
printf ("uid=%d, gid=%d\n", uid, gid);
return 0;
}
```

Рис. 3: Код simpleid

Пункт 1.3

Скомплилируем программу командой "gcc simpleid.c -o simpleid" и убедимся, что файл программы создан просмотрев папку.

```
[guest@Max max]$ cd
[guest@Max ~]$ touch simpleid.c
[guest@Max ~]$ gcc simpleid.c -o simpleid
```

Рис. 4: Компиляция и проверка

Пункт 1.4

Выполните программу simpleid командой "./simpleid".

```
[guest@Max ~]$ gcc simpleid.c -o simpleid
[guest@Max ~]$ ./simpleid
uid=1001, gid=1001
```

Рис. 5: Запуск программы simpleid

Выполним системную программу "id" и сравним полученный вами результат с данными предыдущего пункта задания.

```
[guest@Max ~]$ ./simpleid
uid=1001, gid=1001
[guest@Max ~]$ id
uid=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfined
_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Рис. 6: Проверка через id

Пункт 1.6

Усложняем программу, добавив вывод действительных идентификаторов. Для этого создадим новый файл командой "touch simpleid2.c".

```
simpleid2.c

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
int
main ()

{

uid_t real_uid = getuid ();
 uid_t e_uid = geteuid ();
 gid_t real_gid = getgid ();
 gid_t e_gid = getegid ();
 printf ("e_uid=%d, e_gid=%d\n", e_uid, e_gid);
 printf ("real_uid=%d, real_gid=%d\n", real_uid,! real_gid);
 return 0;
}
```

Рис. 7: Код simpleid2

Скомпилируйте и запустите simpleid2.c командами "gcc simpleid2.c -o simpleid2" и "./simpleid2".

```
[guest@Max ~]$ gcc simpleid2.c -o simpleid2
[guest@Max ~]$ ./simpleid2
e_uid=1001, e_gid=1001
real uid=1001, real gid=0
```

Рис. 8: Компиляция и запуск

Пункт 1.8

От имени суперпользователя выполним команды "sudo chown root:guest /home/guest/simpleid2" и "sudo chmod u+s /home/guest/simpleid2".

```
[max@Max ~]$ sudo chown root:guest /home/guest/simpleid2
[sudo] пароль для max:
[max@Max ~]$ sudo chmod u+s /home/guest/simpleid2
```

Рис. 9: Изменяем UID файла

Пункт 1.9

Используя sudo или повысив временно свои права с помощью su. Поясним, что делают эти команды.

```
[quest@Max ~]$ ls -la
итого 56
drwxrwx---. 7 guest guest 264 сен 18 13:05 .
drwxr-xr-x. 5 root root
                         44 сен 11 20:56 ..
-rw-----. 1 guest guest 1790 сен 13 13:22 .bash history
-rw-r--r-. 1 guest guest 18 anp 1 2020 .bash logout
-rw-r--r-. 1 guest guest 193 anp 1 2020 .bash profile
-rw-r--r-. 1 guest guest 231 anp 1 2020 .bashrc
                         18 сен 9 17:22 .cache
drwxrwxr-x. 3 guest guest
drwxrwxr-x. 6 guest guest 62 сен 17 22:14 .config
drwx----. 2 guest guest
                          19 сен 13 11:25 dir1
drwxrwxr-х. 3 guest guest 19 сен 17 22:13 .local
drwxr-xr-x. 4 guest guest 39 сен 6 20:25 .mozilla
-rwxrwxr-x. 1 guest guest 8472 сен 18 13:02 simpleid
-rwxrwxr-x. 1 root guest 8576 сен 18 13:05 simpleid2
-rw-rw-r--. 1 guest guest 311 сен 18 13:05 simpleid2.c
-rw-rw-r--. 1 guest guest 179 сен 18 13:01 simpleid.c
-rw-----. 1 guest guest 120 сен 17 22:14 .xauthbPs0tj
-rw-----. 1 guest guest 120 сен 17 20:39 .xauthTCzRqx
```

Рис. 10: Расмотрим файлы

Выполним проверку правильности установки новых атрибутов и смены владельца файла simpleid2 командой "ls -l simpleid2".

```
[guest@Max ~]$ ls -la simpleid2
-rwsrwxr-x. 1 root guest 8576 сен 18 13:05 <mark>simpleid2</mark>
[guest@Max ~]$ lsattr simpleid2
----- simpleid2
[guest@Max ~]$ ls -a
              .bash profile dir1
                                      simpleid2
                                                    .xauthTCzRqx
              .bashrc .local simpleid2.c
                                      simpleid2.c
.bash_history .cache
.bash_logout .config simpleid .xauthbPsOtj
[guest@Max ~]$ ls -l
итого 32
drwx----. 2 guest guest 19 сен 13 11:25 dir1
-rwxrwxr-x. 1 guest guest 8472 сен 18 13:02 simpleid
-rwsrwxr-x. 1 root guest 8576 сен 18 13:05 simpleid2
-rw-rw-r--. 1 guest guest 311 сен 18 13:05 simpleid2.c
-rw-rw-r--. 1 guest guest 179 сен 18 13:01 simpleid.c
[guest@Max ~]$ ls -l simpleid2
-rwsrwxr-х. 1 root guest 8576 сен 18 13:05 simpleid2
```

Рис. 11: Проверка программы simpleid2

Запустим simpleid2 и id командами "./simpleid2" и "id". Сравним результаты.

```
[guest@Max ~]$ ./simpleid2
e_uid=0, e_gid=1001
real_uid=1001, real_gid=0
[guest@Max ~]$ id
uid=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfine
_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Рис. 12: Запуск программы simpleid2

Пункт 1.12

Проделаем тоже самое относительно SetGID-бита командой "sudo chmod g+s /home/guest/simpleid2".

```
[max@Max ~]$ sudo chmod u+s /home/guest/simpleid2
[max@Max ~]$ sudo chmod g+s /home/guest/simpleid2
```

Рис. 13: Меняем GID файла

Пункт 1.13

Создаём программу readfile.c.

```
| COTKPDATE | Part | P
```

Рис. 14: Код readfile.c

Откомпилируем код выше ранее используемыми командами.

```
[guest@Max ~]$ touch readfile.c
[guest@Max ~]$ gcc readfile.c -o readfile
```

Рис. 15: Компиляция readfile.c

Пункт 1.15

Сменим владельца у файла readfile.c (или любого другого текстового файла в системе) и изменим права так, чтобы только суперпользователь (root) мог прочитать его, а guest не мог. (выполнено не в полной мере)

```
[max@Max ~]$ sudo chown root:guest /home/guest/readfile
[max@Max ~]$ sudo chmod 770 /home/guest/readfile
[max@Max ~]$ sudo chmod 000 /home/guest/readfile
```

Рис. 16: Изменение владельца readfile

Проверим, что пользователь guest не может прочитать файл readfile.c.

```
[guest@Max ~]$ cat /home/guest/readfile.c
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
main (int argc, char* argv[])
        unsigned char buffer[16];
        size_t bytes_read;
        int i;
        int fd = open (argv[1], 0_RDONLY);
                bytes read = read (fd, buffer, sizeof (buffer));
                for (i =0; i < bytes read; ++i) printf("%c", buffer[i]</pre>
        while (bytes_read == sizeof (buffer));
        close (fd);
        return 0;
```

Рис. 17: Проверка readfile.c

Пункт 1.17

Сменим у программы readfile владельца и установите SetU'D-бит.

```
[max@Max ~]$ sudo chmod u+s /home/guest/readfile
```

Рис. 18: Смена пользователя readfile

Пункт 1.18

Проверим, может ли программа readfile прочитать файл readfile.c?

```
[guest@Max ~]$ ls -l readfile
------. 1 root guest 8512 сен 18 13:22 readfile
[guest@Max ~]$ ls -l readfile
---S----. 1 root guest 8512 сен 18 13:22 readfile
[guest@Max ~]$ ./readfile readfile.c
bash: ./readfile: Отказано в доступе
```

Рис. 19: Провека 1 работы программы readfile

Проверим, может ли программа readfile прочитать файл /etc/shadow? Отразим полученный результат и ваши объяснения в отчёте

Рис. 20: Провека 2 работы программы readfile

Исследование Sticky-бита

Пункт 2.1

Выясняем, установлен ли атрибут Sticky на директории /tmp, для чего выполните команду "ls -l / | grep tmp".

```
[max@Max ~]$ ls -l / | grep tmp
drwxrwxrwt. 22 root root 4096 сен 18 13:22 tmp
[max@Max ~]$
```

Рис. 1: Смотрим атрибуты директории /tmp

Пункт 2.2

От имени пользователя guest создим файл file01.txt в директории /tmp со словом test командой "echo"test" > /tmp/file01.txt".

```
[guest@Max ~]$ echo "test" > /tmp/file01.txt
[guest@Max ~]$ ls -l /tmp/file01.txt
-rw-rw-r--. 1 guest guest 5 сен 18 13:29 /tmp/file01.txt
```

Рис. 2: Создание файла file01.txt

Пункт 2.3

Просмотрите атрибуты у только что созданного файла и разрешите чтение и запись для категории пользователей «все остальные» команды "ls -l/tmp/file01.txt", "chmod o+rw/tmp/file01.txt" и "ls -l/tmp/file01.txt".

```
[guest@Max ~]$ ls -l /tmp/file01.txt
-rw-rw-r--. 1 guest guest 5 ceH 18 13:29 /tmp/file01.txt
[guest@Max ~]$ chmod o+rw /tmp/file01.txt
[guest@Max ~]$ ls -l /tmp/file01.txt
-rw-rw-rw-. 1 guest guest 5 ceH 18 13:29 /tmp/file01.txt
```

Рис. 3: Изменение прав доступа

От пользователя guest2 (не являющегося владельцем) попробуем прочитать файл командой "cat /tmp/file01.txt".

```
[guest2@Max ~]$ cat /tmp/file01.txt
test
```

Рис. 4: Проверяем содержимое файла

Пункт 2.5

От пользователя guest2 дозаписываем в файл /tmp/file01.txt слово test2 командой "echo"test2" > /tmp/file01.txt". Что проходит успешно.

```
[guest2@Max ~]$ cat /tmp/file01.txt
test
[guest2@Max ~]$ echo "test2" > /tmp/file01.txt
```

Рис. 5: Изменяем содержание файла

Пункт 2.6

Проверим содержимое файла командой "cat /tmp/file01.txt".

```
[guest2@Max ~]$ echo "test2" > /tmp/file01.txt
[guest2@Max ~]$ cat /tmp/file01.txt
test2
```

Рис. 6: Проверяем содержимое файла

От пользователя guest2 попробуйте записать в файл /tmp/file01.txt слово test3, стерев при этом всю имеющуюся в файле информацию командой "echo"test3" > /tmp/file01.txt".

```
[guest2@Max ~]$ echo "test2" > /tmp/file01.txt
[guest2@Max ~]$ cat /tmp/file01.txt
test2
[guest2@Max ~]$ echo "test3" > /tmp/file01.txt
```

Рис. 7: Изменяем содержание файла

Пункт 2.8

Проверим содержимое файла командой "cat /tmp/file01.txt".

```
[guest2@Max ~]$ echo "test3" > /tmp/file01.txt
[guest2@Max ~]$ cat /tmp/file01.txt
test3
```

Рис. 8: Проверяем содержимое файла

Пункт 2.9

От пользователя guest2 попробуем удалить файл /tmp/file01.txt командой "rm /tmp/fileOl.txt".

```
[guest2@Max ~]$ rm /tmp/file01.txt
rm: невозможно удалить «/tmp/file01.txt»: Операция не позволена
```

Рис. 9: Продуем удалить файл

Повысим свои права до суперпользователя командой "su -" и выполните после этого команду, снимающую атрибут t (Sticky-бит) "chmod -t /tmp".

```
su: Сбой при проверке подлинности
[guest2@Max ~]$ su -
Пароль:
Последняя неудачная попытка входа в систему:Пн сен 18 13:34:01 MSK 202
Зна pts/2
Число неудачных попыток со времени последнего входа: 3.
[root@Max ~]# chmod -t /tmp
```

Рис. 10: меняем атрибут Sticky-бита

Пункт 2.11

Покиньте режим суперпользователя командой "exit".

```
[root@Max ~]# chmod -t /tmp
[root@Max ~]# ls -l /tmp/file01.txt
-rw-rw-rw-. 1 guest guest 6 сен 18 13:32 /tmp/file01.txt
[root@Max ~]# exit
logout
```

Рис. 11: Выход из суперпользователя

Пункт 2.12

От пользователя guest2 проверим, что атрибута t у директории /tmp нет: "ls -l / | grep tmp".

```
logout
[guest2@Max ~]$ ls -l / | grep tmp
drwxrwxrwx. 22 root root 4096 сен 18 13:34 tmp
```

Рис. 12: Проверка атрибутов

Повторив предыдущие шаги, можем заметить что мы теперь можем взаимодействовать с файлом как раньше и способны его удалить.

```
[guest2@Max ~]$ cat /tmp/file01.txt
test3
[guest2@Max ~]$ echo "test1" > /tmp/file01.txt
[guest2@Max ~]$ cat /tmp/file01.txt
test1
[guest2@Max ~]$ rm /tmp/file01.txt
rm: невозможно удалить «/tmp/file01.txt»: Нет такого файла или каталога
[guest2@Max ~]$ rm /tmp/file01.txt
```

Рис. 13: Повтор шагов

Пункт 2.14

Удалось удалить файл от имени пользователя, не являющегося его владельцем.

```
[guest2@Max ~]$ ls -l /tmp/
итого 228

      drwxr-xr-x. 2 root root
      18 сен 9 22:20 hsperfdata_root

      -rw-r--r-. 1 root root
      71 сен 9 22:18 lua_bSaede

      drwx----. 2 max max
      24 сен 17 20:35 ssh-RLjzGYfOpkBL

      drwx----. 2 max max
      24 сен 14 15:02 ssh-sCsZfamsvb9d

      drwx----. 3 root root
      17 сен 17 20:35 systemd-private-l

                                 17 сен 17 20:35 systemd-private-b84ab87994
df44598649f93d7dde2401-bolt.service-07akIv
drwx-----. 3 root root 17 сен 17 20:35 systemd-private-b84ab87994
df44598649f93d7dde2401-colord.service-zZaLOs
drwx-----. 3 root root 17 сен 17 20:35 systemd-private-b84ab87994
df44598649f93d7dde2401-cups.service-v0qv3J
drwx-----. 3 root root 17 сен 17 20:36 systemd-private-b84ab87994
df44598649f93d7dde2401-fwupd.service-KHmUoS
drwx-----. 3 root root 17 сен 17 20:35 systemd-private-b84ab87994
df44598649f93d7dde2401-rtkit-daemon.service-pkmled
drwx-----. 3 root root 17 сен 14 13:41 systemd-private-f13578се95
204621b151e2e29be0a591-bolt.service-c58yYz
drwx-----. 3 root root 17 сен 14 13:41 systemd-private-f13578се95
204621b151e2e29be0a591-colord.service-CI73XR
drwx-----. 3 root root 17 сен 14 13:41 systemd-private-f13578ce95
204621b151e2e29be0a591-cups.service-w2mqld
drwx-----. 3 root root 17 сен 14 15:02 systemd-private-f13578ce95
204621b151e2e29be0a591-fwupd.service-Hu4gb0
204621b151e2e29be0a591-rtkit-daemon.service-2bJ2I0
drwx-----. 2 max max 6 сен 18 13:53 tracker-extract-files.1000
-rw-r--г-. 1 root root 27718 сен 9 22:24 vboxguest-Module.symvers
-rw-----. 1 root root 199861 сен 9 10:58 yum save tx.2023-09-09.10-
58.cIvB8i.yumtx
```

Рис. 14: удаление файла

Повысим свои права до суперпользователя и вернём атрибут t на директорию выполнив цепочку команд "su -", "chmod +t /tmp" и "exit".

```
[guest2@Max ~]$ su -
Пароль:
Последний вход в систему:Пн сен 18 13:34:11 MSK 2023на pts/2
[root@Max ~]# chmod +t /tmp
[root@Max ~]# exit
```

Рис. 15: Возвращаем все изменения

Выводы

Изучены механизмы изменения идентификаторов UID, GID и Sticky-битов. Получены практическе навыки работы в консоли с дополнительными атрибутами. Рассмотрены работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

Список литературы

- 1. Основные команды для работы с Linux
- 2. Основы управления пользоателем и командой su
- 3. Файл лабораторной работы
- 4. Linux всё о правах доступа к файлам
- 5. Работа с дополнительными атрибутами