

CMSC 124

Design and Implementation of Programming Languages

Kristine Bernadette Pelaez Institute of Computer Science University of the Philippines Los Baños

Lexical Analysis

Lexical Analysis

done by the lexical analyzer (scanner)

Lexical Analysis

groups the sequence of characters into lexemes

Lexical Analysis

Lexeme smallest syntactic unit

Lexical Analysis

the lexical analyzer also identifies the type of each lexeme

Lexical Analysis

Token

a data structure containing the lexeme and its type Lexical Analysis

printf("Age is ", age);

Lexical Analysis

printf("Age is ", age);

LEXEME	TYPE	LEXEME	ТҮРЕ	
printf	function identifier	,	separator	
(delimiter_oparen	age	variable identifier	
"	delimiter_str) delimiter_cparen		
Age is	string literal	;	delimiter_end	
u	delimiter_str			

PPelaez. ICS, UPLB. 2020.

KBPPelaez. ICS, UPLB. 2020.

Lexical Analysis

Symbol Table

a data structure used to store tokens and the information about these tokens

Lexical Analysis

printf("Age is ", age);

LEXEME	TYPE	VALUE	REFERENCING ENVIRONMENT
"	variable identifier		
,	separator		
age	variable identifier		
)	delimiter_cparen		
;	delimiter_scol		

Lexical Analysis

the lexical analyzer finds each lexeme by using pattern matching

Lexical Analysis

lexemes follow a specific pattern based on their type

Lexical Analysis

the lexical analyzer will match the patterns for each type of lexeme to a string of characters

Lexical Analysis

if a string did not match with any of the patterns, an error will be produced

Lexical Analysis

```
124
2.2534
-100
-5.55
.2
0.751
-.0006
```

Lexical Analysis

12-30-1995
18-02-1997
2015-05-26
07-18-93
96-08-23

Ways of Matching Strings

State-transition diagrams
 Regular Expressions

1. State-transition Diagrams

1. State-transition diagrams

1. State-transition diagrams

aka state diagrams; they are used to give an abstract description of the behavior of a system lexical analyzers use the state diagram called *finite* automata

1. State-transition diagrams

state diagrams are just directed graphs

1. State-transition diagrams

nodes in a state diagram are called *states*

1. State-transition diagrams

usually represented by a circle containing the name of the state even

odd

1. State-transition diagrams

one of the states will be the start state which will be where the pattern must start even

odd

1. State-transition diagrams

the start state has an *inverted triangle* drawn on its side

odd

1. State-transition diagrams

some states can also be a final state, which are the states that accepts the input string

odd

BPPelaez. ICS, UPLB. 2020.

1. State-transition diagrams

they are drawn using concentric circles

1. State-transition diagrams

arcs on state diagrams are also called transitions

1. State-transition diagrams

drawn using arrows, and must have an assigned symbol

1. State-transition diagrams

the symbol assigned to a transition is needed to move from one state to another

1. State-transition diagrams

if multiple transitions exist for the same source and destination state, all symbols can be written in the same arrow

1. State-transition diagrams

What does this finite automata do? What strings does it accept?

Example

124

2.2534

-100

-5.55

.2

0.751

-.0006

1. may start with a negative sign

- 2. may have a decimal point
- 3. if it has a decimal point, it must be followed by at least one digit
- 4. may have numbers at the left of the decimal point

2. Regular Expressions

2. Regular Expressions

aka regex; set of characters that formally defines a pattern

35 KBPPelaez. ICS, UPLB. 2020

2. Regular Expressions

more info here!

				_	
SYMBOL	DESCRIPTION	EXAMPLE	SYMBOL	DESCRIPTION	EXAMPLE
^	string starts with	^car	{n}	occurs exactly n times	a{3}
\$	string ends with	ry\$	{n,}	occurs n times or more	a{2,}
- 1	or operator	pas(s t)	{n,m}	occurs n-m times	a{2,3}
[]	one of these characters	[axy]		any one character	err.rs
+	one or more consecutive occurrences	bar+	\	escape character	u∖.
*	zero or more consecutive occurrences	bar*	[^]	not any of these characters	[^a]
?	optional; may or may not occur in the string	t?rust	\d	digits	\d{3}
	3				

Example

124

2.2534

-100

-5.55

.2

0.751

-.0006

1. may start with a negative sign

2. may have a decimal point

3. if it has a decimal point, it must be followed by at least one digit

4. may have numbers at the left of the decimal point

Lexical Analysis

38 KBPPelaez. ICS, UPLB. 2020.

Which is better? State-diagrams or regular expressions?

Lexical Analysis

They are equal in capabilities.

If you have a regex, you can create a finite automaton for it.

If you have a finite automaton, you can create a regex for it.

