Assignment -2

Data Visualization and Pre-processing

Assignment Date	24 September 2022
Student Name	SANJANA S
Student Roll Number	311519104050
Maximum Marks	2 Marks

To Perform Below Tasks to complete the assignment:-

Step 1. Download the dataset: <u>Dataset</u>

Step 2. Load the dataset.

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

df = pd.read_csv('Churn_Modelling.csv')
df.head()

Output:

Step 3. Perform Below Visualizations.

• Univariate Analysis

sns.distplot(df.Age)

sns.lineplot(df.Age,df.Exited)

Output:

 $plt.pie(df.Gender.value_counts(),[0.2,0],colors=['red','green'],labels=['Male','Female'],autopct='\%1.1f\%\%')\\ plt.title('GENDER')\\ plt.show()$

Output:

 $sns.barplot(df.NumOfProducts.value_counts().index, df.NumOfProducts.value_counts())$

• Bi - Variate Analysis

```
def countplot_2(x,hue,title=None,figsize=(6,5)):
plt.figure(figsize=figsize)
sns.countplot(data=df[[x,hue]],x=x,hue=hue)
plt.title(title)
plt.show()
```

countplot 2('IsActiveMember', 'NumOfProducts', 'Credit Card Holders Product Details')

Output:

• Multi - Variate Analysis

sns.pairplot(df)

Output:

df.corr()

Output:

sns.heatmap(df.corr())

plt.figure(figsize=(16,15))
sns.heatmap(df.corr(),annot=True)
plt.show()

Output:

Step 4. Perform descriptive statistics on the dataset.

df.describe()

Output:

df.info()

Step 5. Handle the Missing values.

df = df.drop(columns=['RowNumber','CustomerId','Surname'])

df.isnull().sum()

Output:

df.shape

Output:

Step 6. Find the outliers and replace the outliers

sns.boxplot(df.CreditScore)


```
Q1 = df.CreditScore.quantile(0.25)
Q3 = df.CreditScore.quantile(0.75)
IQR = Q3-Q1
upper_limit = Q3 + (1.5*IQR)
lower_limit = Q1 - (1.5*IQR)
```

df['CreditScore'] = np.where(df['CreditScore'] < lower_limit,650,df['CreditScore']) sns.boxplot(df.CreditScore)

Output:

Step 7. Check for Categorical columns and perform encoding.

from sklearn.preprocessing import LabelEncoder le = LabelEncoder()
df.Geography = le.fit_transform(df.Geography)
df.Gender = le.fit_transform(df.Gender)

df.head()

os O	df.head()											
C+	(reditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	619	0	0	42	2	0.00	1	1	1	101348.88	1
	1	608	2	0	41	1	83807.86	1	0	1	112542.58	0
	2	502	0	0	42	8	159660.80	3	1	0	113931.57	1
	3	699	0	0	39	1	0.00	2	0	0	93826.63	0
	4	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Step 8. Split the data into dependent and independent variables.

X = df.drop(columns=['Exited']) X.head()

Output:

Y = df.Exited Y.head()

Output:

Step 9. Scale the independent variables

from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler()

X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)

Step 10. Split the data into training and testing

