

138961-1

IN THE SPECIFICATION

Please amend Paragraph [0050] as follows:

[0050] In synthesizing a polythiophene for a specific design temperature, e.g. for the series of poly(3-alkylthiophene)s there is roughly an inverse correlation with the length of the n-alkane substituent and the temperature of the thermochromic transition for both the regiorandom (R_1 =alkyl, R_4 =alkyl, $n \approx 0.8$, $m \approx 0.2$, $l=40-80$, R_2 , R_3 , R_5 , $R_6=H$) and regioregular (R_1 =alkyl, $n=40-80$, $m=0$, R_2 , R_5 , $R_6=H$), poly(3-n-alkylthiophene)s. For regiorandom polymers longer substituents such as n-hexadecyl have lower temperature thermochromic transitions ($81^\circ C$) than shorter chain substituents such as n-octyl ($130^\circ C$). The regioregular polymers have higher thermochromic transitions than the regiorandom polymers but the same inverse correlation with ~~chainlength~~ ~~chain length~~ is observed. The n-hexadecyl and n-octyl have thermochromic transition from about 125 to about $175^\circ C$. As long as the number of thiophene units in the polymer is approximately greater than sixteen the thermochromic transition is molecular weight independent. Oligothiophenes ($n+m+1 < 16$) have lower temperature thermochromic transitions than the polythiophenes ($n+m+1 > 16$).