Instituto Tecnológico y de Estudios Superiores de Monterrey

Maestría en Inteligencia Artificial Aplicada

Proyecto Integrador

Avance 1 – Ejecución de Mattergen y objetivos de uso de Mattergen

Equipo 17

Carlos Giovanny Encinia González A01795601

Ignacio Antonio Quintero Chávez A01794419

> Gustavo Pérez Juárez A01795310

> > 28 de septiembre de 2025

Mattergen

MatterGen es una herramienta de Inteligencia Artificial creada por Microsoft.

Está entrenada para imaginar y generar estructuras de materiales (como cristales o compuestos químicos) que no existen todavía en la naturaleza o en laboratorios.

Funciona como un "generador de materiales": a partir de ciertos parámetros (ejemplo: band gap, dureza, grupo espacial), propone cómo se vería un cristal con esas propiedades (Microsoft Research, 2025).

Algunos ejemplos de ejecución usando JSON se describen en la siguiente imagen

Material	Uso típico	Band Gap objetivo (eV)	Grupo espacial	Ejemplo JSON
Hierro (Fe)	Metal conductor	≈0	lm-3m / Fm-3m	{"dft_band_gap":{"target":0.0,"tolerance":0.05}}
Cobre (Cu), Al (Al)	Conductores	≈0	-	{"dft_band_gap":{"target":0.0,"tolerance":0.05}}
Silicio (Si)	Semiconductores, chips	1.1 ± 0.2	Fd-3m	{"dft_band_gap":{"target":1.1,"tolerance":0.2}}
GaAs	Optoelectrónica, LEDs	1.4 ± 0.2	-	{"dft_band_gap":{"target":1.4,"tolerance":0.2}}
NaCl	Aislante	6 ± 0.5	Fm-3m	{"dft_band_gap":{"target":6.0,"tolerance":0.5}}
MgO	Refractario, aislante	7.8 ± 0.5	Fm-3m	{"dft_band_gap":{"target":7.8,"tolerance":0.5}}
Diamante (C)	Muy duro	5.5	Fd-3m	{"ml_bulk_modulus":{"min":400}}
Carburos (WC, TiC, Fe3C)	Alta dureza	≈0	Pnma / varios	{"dft_band_gap":{"target":0.0,"tolerance":0.05}}
NiO	Magnético	≈ 4	-	{"dft_band_gap":{"target":4.0,"tolerance":0.3}}
Perovskitas (SrTiO3)	Celdas solares, baterías	≈3.2	Pm-3m	{"dft_band_gap":{"target":3.2,"tolerance":0.3},"space_group":"Pm-3m"}

Durante esta semana nos enfocamos a utilizar el modelo para generar algunos materiales cristalizados como pruebas de concepto, para presentar con al encargado del proyecto en Chalmers.

Los resultados los podemos ver en las carpetas results y results_cond

Se pueden visualizar a través del uso de VESTA, que es un software de visualización.

A continuación algunos ejemplos de cristales generados con Mattergen:

Ejemplo de fluoroniobato de sodio

Ejemplo de **fluoro-óxido de aluminio** (mezcla de Al con flúor y oxígeno) generada por mattergen a partir de las siguientes propiedades:

mattergen-generate results_cond/ \

- --pretrained-name dft_band_gap \
- --batch_size=1 \
- --num batches=1 \
- --properties_to_condition_on='{"dft_band_gap":{"target":1.8,"tolerance":0.3}}

Objetivos de uso de Mattergen

Una vez realizada la llamada con el representante de Chalmers; el Dr. Samuel Lara Lira, se define como alcance de proyecto para la generación de partículas a través de Mattergen los siguientes:

- Generación de materiales bidimensionales
- Simulación de Grafeno epitaxial intercalado con oro
- Estructuras Metal-Orgánicas: materiales cristalinos formados por; nodos metálicos (iones o clusters de metales como Zn, Cu, Fe, etc.) ligados orgánicos (moléculas que actúan como "puentes") generando una red tridimensional muy porosa (llena de huecos).
- Generación de materiales semiconductores a partir de Grafenos

Bibliografía

Microsoft Research. (2025). MatterGen: A new paradigm of materials design with generative AI. Recuperado de: https://www.microsoft.com/enus/research/blog/mattergen-a-new-paradigm-of-materials-design-with-generative-ai/.

ScienceDirect. (2024). A guide to discovering next-generation semiconductor materials using atomistic simulations and machine learning. Current Opinion in Solid State and Materials Science, 28(3), Recuperado de: https://www.sciencedirect.com/science/article/abs/pii/S092702562400329X