Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3216		К работе допущен
Студент Сиразетдин	ов А. Н	Работа выполнена
Преподаватель Смирнов	A.B	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.07

Изучение свойств ферромагнетика

1. Цель работы.

Изучение свойств ферромагнетика

- 2. Задачи, решаемые при выполнении работы.
- 1) Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2) Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы
- 3) Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4) Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания
- 3. Объект исследования.

Ферромагнетик

4. Метод экспериментального исследования.

Изменение напряженности магнитного пол

5. Рабочие формулы и исходные данные.

$$R_1 = 68~\mathrm{OM} \pm 10\%$$
 $R_2 = 470\mathrm{kOM} \pm 10\%$
 $C_1 = 0.47\mathrm{mk\Phi} \pm 10\%$
 $S = 0.64 \pm 0.05\mathrm{cm}^2$
 $L = 7.8 \pm 0.1~\mathrm{cm}$
 $N_1 = 1665\mathrm{But}$
 $N_2 = 970\mathrm{But}$
 $\alpha = \frac{N_1}{lR_1}$
 $\beta = \frac{R_2C_1}{N_2S}$
 $H = \frac{N_1}{lR_1} * U$ Коэрцитивная сила
 $B = \beta * U$ Остаточная индукция
 $\chi = \frac{N_1R_2C_1}{N_2R_1}f$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	
1	Цифровой осциллограф GDS-71102B	Измерительный	1Γц — 1ΓΓц	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис 2. Схема установки

Рис 3. Принципиальная схема установки

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

o. I do loi pooysibiaioi	Recopering Nomeponin	(maomaqbi, mpamopbi pa	o 1011100 ₁ .
U_{x_c} , B	U_{y_r} , B	H_c , А/м	B_r , Тл
0.075	0.116	23.54	0.41

Расчёт коэффициента α:

$$lpha = rac{N_1}{lR_1} = rac{1665}{0,078*68} = 313,91 rac{1}{\mathrm{M}*0\mathrm{M}}$$
 Расчёт коэффициента eta

$$\beta = \frac{R_2 * C_1}{N_2 * S} = 3,56 \frac{O_M * \Phi}{M^2}$$

Расчет коэрцитивной силы H_c

$$H_c = \alpha * U_x = 313,91 * 0.075 = 23.54$$
A/M

Расчет остаточной индукции B_r

$$B_r = \beta * U_v = 3.56 * 0.116 = 0.41$$
Тл

U_{x_m} , B	U_{y_m} , B	Н_m, А/м	B_m , Тл	μ_m
0.35	0.138	109.9	0.49	3548

Расчет магнитной проницаемости μ

$$\mu = \frac{B_m}{\mu_0 * H_m} = 3548$$

Рис 1. Петля гистерезиса

Расчет коэффициента χ

$$\chi = \frac{N_1 R_2 C_1}{N_2 R_1} f = \frac{1665 * 470000 * 0.47 * 10^{-6}}{970 * 68} = 0.167$$
Дж/с

Площадь петли *S*

 $S = 78 \text{ mB}^2$

Средняя мощность Р, расходуемой на перемагничивание образца

$$P = \chi * S = 0.167 * 78 = 13 \text{MBT}$$

U, B	U_{x} , мВ	Н,А/м	$U_{\mathcal{Y}}$, мВ	В, Тл	μ
19,00	752,00	235,38	266,00	0,95	3202
17,50	664,00	207,83	248,00	0,88	3380
16,00	592,00	185,30	226,00	0,80	3455
14,50	544,00	170,27	206,00	0,73	3427
13,00	488,00	152,74	188,00	0,67	3487

Максимальное значение проницаемости $\mu_{max}=3487$, напряженность поля, при которой она наблюдается - $152~\mathrm{A/m}$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость магнитной индукции от напряженности

График 2. График зависимости проницаемости от напряженности

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были рассчитаны коэрцитивная сила, остаточная индукция и магнитная проницаемость, а также построены графики зависимостей проницаемости и магнитной индукции от напряженности

Приложение 1

Рис 2. Схема установки

Рис 3. Принципиальная схема установки

Приложение 2

График 1. Зависимость магнитной индукции от напряженности

График 2. График зависимости проницаемости от напряженности

Приложение 3

			-	8/37				
	Bougha &	Deward 2	· Nasapatopuas 1	padang 183.0	7			
	Cupa zero	Junob 23.05.	Masopatopuas (ux	Hc B	A.T.		
	R1 = 68	TON THOUSE	150	B 232 M	3			
	C1 = 0	47 MLP +1001	2	. 2				
		64± 0,05 cm	9	,	11 2			
		18t- 0,1 cm	X		Hm Bm	Mm		
	W1 = 1	1665 But	350	4B 138 4F	3			
	N2=	940 But.	Ø	40 E 70	147			
			1 Day 7	orus 2,5,8	· · · · · · · · · · · · · · · · · · ·			
	×	(.KX=492	() went () -y + () -y -y - ()	3,6,9,				
	4,15	(AB) XX	H Ner (no)		μ			
	20	73250	290					
	, 20	792	28	0				
	2 19,5	776	27					
	3 19	752	266					
	9 17,5	712	26:					
	18	696	248					
	17,5	664	244					
	(4	648	232					
	16,5	624	220					
	16	592	218					
	15.5	568	214					
4.5	15	544	204					
7	1415							
		, ,		1 1			3 4 7 8	
		14	520	200				
				192				
		13,5	496	19.6		179		
		13	488					
		12,5	456	178				
		12	448	172				
		1 7						