Shifting

Bit *Shifting* means to move bits left or right inside an operand.

There are two ways to shift the bits in an operand

1. Logical shift: fills the newly created bit position with zero

2. **Arithmetic shift**: fills the newly created bit position is with a copy of the sign bit (shift arithmetic right preserves the sign bit)

note: 'shift arithmetic left' works the same way as 'logical shift left', we can simply say Shift Left

Shifting

Arithmetic right shift: shift all bits to the right

preserves the sign bit

fills the MSB with a copy of the original sign bit

Right Shift = Division by powers of 2

$$a \gg n = \left| \frac{a}{2^n} \right|$$

```
user@host $ cat shift_s.py
num = 128
for i in range(10):
    num = num >> 1
user@host $ python shift_s.py
128
user@host $
```

Shifting

Shift Left:

Shifting any operand left by n bits multiplies the operand by 2^n .

Example: shifting the integer 5 left by 1 bit yields the product of $5 * 2^1 = 10$:

Left Shift = multiplication by powers of 2

```
user@host $ cat shift.py
num = 5
print( num )
print( num << 1 )</pre>
print( num << 2 )</pre>
print( num << 3 )</pre>
user@host $ python shift.py
5
10
20
40
```


Order of Precedence

Precedence	Name	Operator	C++
1	Parentheses	()	()
2	NOT	r	!
3	AND	×	& &
4	XOR	⊕	N/A
5	OR	+	

р	p'
0	1
1	0

NOT

Can only ever be 2 inputs. [0,1]

Number of inputs = x Number of outputs = y

$$y = 2^n$$

p	q	p X q
0	0	0
0	1	0
1	0	0
1	1	1

AND

Number of inputs = 2 Number of outputs = 4

$$4 = 2^2$$

р	q	r	p X q X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

AND

Number of inputs = 3 Number of outputs = 8

$$8 = 2^3$$

p	q	p + q
0	0	0
0	1	1
1	0	1
1	1	1

OR

Number of inputs = 2 Number of outputs = 4

$$4 = 2^2$$

p	q	r	p + q + r
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

OR

Number of inputs = 3 Number of outputs = 8

$$8 = 2^3$$

p	q	p e q
0	0	0
0	1	1
1	0	1
1	1	0

XOR

Number of inputs = 2 Number of outputs = 4

$$4 = 2^2$$

p	q	r	p # q # r
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

XOR

Number of inputs = 3 Number of outputs = 8

$$8 = 2^3$$

р	q	r	p X q + r
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Try for yourself #1

Number of inputs = ? Number of outputs = ?

$$? = 2^?$$

p	q	r	p X (q + r)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Try for yourself #2

Number of inputs = ? Number of outputs = ?

$$? = 2^?$$

Building blocks

Integrated Circuit (IC)

logic gates

transistors

transistors

CMOS (Complementary Metal-Oxide-Semiconductor) technology uses pMOS and nMOS transistors to implement: microprocessors, microcontrollers, BIOS chips, and other digital circuits. CMOS technology is also used for image sensors.

NOT Gate (inverter)

Inverter

NOT gate

NAND Gate

NAND Gate

NAND Gate

in1

in2

AND Gate

AND gate is built by inverting the output of a NAND gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

AND Gate AND gate is built by inverting the output of a NAND gate

(due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

AND Gate

AND gate is built by inverting the output of a NAND gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

AND Gate

AND gate is built by inverting the output of a NAND gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

OR gate is built by inverting the output of a NOR gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

OR gate is built by inverting the output of a NOR gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

OR Gate

OR gate is built by inverting the output of a NOR gate

(due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

in1 in2 out

OR gate is built by inverting the output of a NOR gate

(due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

OR gate is built by inverting the output of a NOR gate (due to physics: pMOS is a poor conductor of 0's, and nMOS a poor conductor of 1's)

in1

in1 in2 out

in1 in2 out

in1

in2

