4. Оксид хлора (VII) – бесцветная маслянистая ядовитая жидкость, устойчивая до 60–70 °C. Определите, какое число молекул оксида хлора (VII), содержащих изотоп кислорода ¹⁸O, может находиться в образце оксида хлора (VII) массой 7.32 г. Природное содержание изотопа кислорода ¹⁸О составляет 0.204% по массе. Изменением изотопного состава в зависимости от происхождения образца и других факторов пренебречь.

1) Количество оксида хлора (VII) в образце: $n(Cl_2O_7) = \frac{7.32}{183} = 0.04$ моль

Количество всех атомов кислорода в образце: $n(O) = 0.04 \cdot 7 = 0.28$ моль

Масса кислорода (как элемента) в образце: $m(O) = 0.28 \cdot 16 = 4.48 \, \Gamma$

Масса кислорода, приходящаяся на изотоп 18 O: $m(^{18}$ O) = $4.48 \cdot 0.00204 = 9.14$ мг

Количество кислорода ¹⁸O в образце: $n(^{18}O) = \frac{0.00914}{18} = 5.08 \cdot 10^{-4}$ моль

- 2) Поскольку в молекуле оксида хлора (VII) 7 атомов кислорода, одна такая молекула может содержать от 1 до 7 изотопов ¹⁸О.
- 1 случай. Один изотоп ¹⁸О в молекуле. Число молекул, содержащих такой изотоп, будет максимальным в образце:

 $n(Cl_2O_7) = n(^{18}O) = 5.08 \cdot 10^{-4}$ моль $N(Cl_2O_7) = 5.08 \cdot 10^{-4} \cdot 6.02 \cdot 10^{23} =$ **3.06 · 10**²⁰ молекул

2 случай. Семь изотопов ¹⁸О в молекуле. Число молекул, содержащих такой изотоп, будет минимальным в образце:

 $n(Cl_2O_7) = \frac{n(^{18}O)}{7} = 0.726 \cdot 10^{-4}$ моль

 $N(Cl_2O_7) = 0.726 \cdot 10^{-4} \cdot 6.02 \cdot 10^{23} = 4.37 \cdot 10^{19}$ молекул

Таким образом, число молекул, содержащих изотоп кислорода 18 О, в образце находится в интервале от $4.37\cdot10^{19}$ до $3.06\cdot10^{20}$.

Рекомендации к оцениванию:

Расчет массы изотопа ¹⁸O в образце

4 балла

Учет атомной массы изотопа при вычислении количества 2.

1 балл

3. Указание на существование интервала значений

1 балл

Расчет минимального и максимального числа молекул по 2 балла 4.

4 балла

ИТОГО: 10 баллов