ALES & GRE Notlari - Erhan Tezcan

ALES ve GRE notlarim bu dokumandadir.

Hos Sorular

Bu bolumde genel olarak hosuma giden sorular yer aliyor.

Example 1.

$$\frac{9}{16} < \frac{6}{x} < \frac{4}{5}$$

 $kosulunu\ saglayan\ x\ tam\ sayilarinin\ toplami\ kactir?$

Explanation.

$$\begin{split} \frac{16}{9} &> \frac{x}{6} > \frac{5}{4} \\ \frac{16 \times 4}{9 \times 4} &> \frac{x \times 6}{6 \times 6} > \frac{5 \times 9}{4 \times 9} \\ \frac{64}{36} &> \frac{6x}{36} > \frac{45}{36} \\ 64 &> 6X > 45 \\ 10, \dots &> x > 7, \dots \end{split}$$

O zaman x = 8, 9, 10 ve toplamlari 27.

Genel olarak inequility cozerken taraflarin isareti cok onemli! Eksi ile ugrasmak ozellikle***

Standart Sapma sorularinda hesaplamaktan cok nasil dagilmislar bakilabilir, mantik kullan yani.

Example 2. What is first number that is not a factor of 20!?

Explanation. 20 ve daha onceki sayilar hepsi factor, $21 = 7 \times 3$ ve $22 = 2 \times 11$ ama 23 asal dolayisiyla cevap 23.

Example 3. 2 evli cift ve 2 bekardan olusan 6 kisilik bir grup bir kanepeye oturacaktir, ciflerin her biri esleriyle yan yana olacaktir ve bekarlar yan yana olmayacaktir. Bu kisiler kanepeye kac farkli bicimde oturabilirler?

Learning outcomes: Author(s): Erhan Tezcan

Explanation.

Istenilen durum = Ciftler yan yana bekarlar serbest - Ciftler yanyana berkarlar yan yana = $4! \times 2! \times 2! - 3! \times 2! \times 2! \times 2! = 96$

Example 4. Bir torbada 3 beyaz 4 kirmizi top vardir. Bu torbadan ayni anda rastgele cekilen iki toptan en az birinin beyaz olma olasiligi kactir?

Explanation. En az birinin beyaz olmasi, toplam olasiliktan sadece kirmizi olmasinin cikarilmasi ile bulunabilir. Dolayisiyla

$$P = 1 - \frac{4}{7}$$

Example 5. $A = \{a, b, c, d, e, f, g\}$ kumesinin elemanlari kullanilarka biri 3 elemanli, digeri 4 elemanli iki ayrik kume olusturulmak isteniyor. Buna gore a ve b elemanlari ayni kumede bulunmayacak bicimde, bu iki kume kac farkli sekilde olusturulabilir?

Explanation. a ve b ayni kumede bulunmayacaksa a ya da b den birinin 3 elemanli, digerinin 4 elemanli alt kumede oldugu dusunulur. Buna gore:

$$\binom{5}{2} \times \binom{3}{3} \times 2 \times 1 = 20$$

Permutasyon & Kombinasyon

Kombinasyon

n elemanli bir kumenin r'li kombinasyonu sayisi C(n,r) seklinde gosterilir. Kombinasyonlarda mesela $\{a,b\}$ hesaplandiysa $\{b,a\}$ hesaplanmaz, yani permutasyonun aksine siralama onemli degil.

$$\binom{n}{r} = \frac{n!}{(n-r)! \times r!} \tag{1}$$

Kendimce aklimda tuttugum sekil soyle:

$$\binom{n}{r} = \underbrace{\overbrace{n \times (n-1) \times \dots}^{r \text{ tane}}}_{r!} \tag{2}$$

Remark 1.

$$\binom{n}{r} = \binom{n}{n-r} \tag{3}$$

$$\binom{n}{1} = n \tag{4}$$

$$\binom{n}{0} = 1 \tag{5}$$

Example 6. 8 kisi arasindan kurulacak 6 kisilik takim kac farkli sekilde secilebilir?

Explanation.

$$\binom{8}{6} = 28$$

Example 7. Bir cember ustunde 5 nokta vardir, bu bes noktanin (a) ikisinden gecen kac farkli dogru cizilebilir? (b) uc noktasindan kosesi olan kac farkli ucgen cizilebilir?

Explanation.

$$(a) \binom{5}{2} = 10$$

$$(b) \binom{5}{3} = 10$$

Example 8. $A = \{1, 2, 3, 4, 5, 6\}$ kumesinin uc elemanli alt kumelerinin kac tanesinde en az 2 tane cift sayi bulunur?

Explanation. Iki turlu olabilir: 2 cift 1 tek ve 3 cift sayi secilmis olabilir. 3 cift ve 3 tek sayi var zaten, oyleyse

$$\binom{3}{2} \binom{3}{1} + \binom{3}{3} = 9 + 1 = 10$$

Example 9. 5 kitaptan 3 tanesi secilip bir rafa dizilecektir. Kac farkli sekilde secim yapılabilir? (Simdi kombinasyon kullanılacak iste)

Explanation.

$$C(5,3) = 10$$

Permutasyon

Permutasyonda ise dizilim (siralama) onemlidir, kombinasyonda bu onemli degildir kombinasyonda sadece secim yapilir.

$$P(n,r) = \frac{n!}{(n-r)!} \tag{6}$$

Example 10. 5 kitaptan 3 tanesi secilip bir rafa dizilecektir. Kac farkli sekilde dizilim yapılabilir?

Explanation.

$$P(5,3) = 60$$

Direkt olarak n tane urunun siralanmasi:

$$n!$$
 (7)

Example 11. 5 kitaptan bir rafa kac farkli sekilde dizilebilir?

Explanation.

$$P(5,5) = 5! = 120$$

Compound Interest (Bilesik Faiz)

Diyelim elimizde P para var, yillik yuzde f faizden n yil duruyor. Sonunda elimizde ne kadar para olur dersek:

$$P\left(1 + \frac{f}{100}\right)^y \tag{8}$$

Aslinda formul ezberlemeye gerek yok, her iterasyonda parantez icindeki 1 onceki faizi aliyor ve parantezin geri kalani ayni degere faiz uyguluyor. Bu parantezlerden carpim halinde n tane oluyor.

Probability

Example 12. If P(A) = 0.60 then what is the highest value P(B) can have if A and B are mutually exclusive?

Explanation. Highest value of P(B) = 0.40. Mutually exclusive means that if A is happening B wont happen, therefore B can only happen 40% of the time.

Complement Rule: P(not A) = 1 - P(A)

If P(A) = 1 then we say event A is completely certain: it is absolutely guaranteed that it will happen.

FOr general events, $P(A \vee B) = P(A) + P(B) - P(A \wedge B)$

Statistics

Negatively correlated: If two variables are negatively correlated, then in general, as one increases the other decrease. The graph would have a general negative-slope trend.

Positively correlated: If two variables are positively correlated, then in general, as one increases the other increases too. The graph would have a general positive-slope trend.

Median: Middle number on the ordered list. (If the list has even number of entries, the median is the average of the middle two numbers.)

Mode: The most frequent entry on a list, if each entry appears once then there is no mode. If multiple numbers are tied for most appearance, they are all modes.

Mean: Average of the entries in the list.

Range: max - min

Fundamental Counting Principal: If task 1 can happen in n_1 ways, task 2 in n_2 ways and so on for m events, the number of outcomes is

$$n_1 \times n_2 \times \ldots \times n_m$$

nCr ne demek? C(n,r) ile ayni. (n choose r). Number of combination of r things that can be selected from a pool of n things.

Profit = Revenue - Cost, yani kar esittir gelir eksi masraf.

Geometry

If a line has a negative y-intercept (where the line crosses y-axis), it must pass through which two quadrants?: III and IV.

If a line has a negative slope, it must pass through which two quadrants? II and IV.

Slopes of perpendicular lines are opposite reciprocals:

$$m_1 = \frac{a}{b} \xrightarrow{\text{opposite reciprocal}} m_2 = -\frac{b}{a}$$

Slopes of parallel lines are equal. Slope of a vertical line is **undefined**. Slope of a horizontal line is **0 Regular Polygon**: Her kenar ayni uzunlukta ve her koseler ayni acida. **Isosceles Triangle**: Ikizkenar Ucgen **Equilateral Triangle**: Eskenar Ucgen **Right-angled Triangle**: Dik-acili Ucgen **Perimeter**: Cevre **Rhombus**: Eskenar Dortgen (acilar 90 olunca kare oluyor, ama onun disinda herhangi bir sekilde olabilir) **Diameter**: Cap **Radius**: Yaricap **Perimeter**: Cevre **Circumference**: Cevre (Daire) **N-kenar poligon ic acilar toplami**: $(n-2) \times 180^{\circ}$

Guzel Pisagor ezberi: 3, 4, 5 var, 5, 12, 13 var, 7, 24, 25 var ve 8, 15, 17.

An angle inscribed in a semicircle is always a 90° angle. (Capi goren aci 90° derece)

Numbers

Mixed Number $6\frac{3}{5}$ bir mixed numberdir. Ek olarak, $\frac{18}{5}$ ayni deger olsa da buna Improper Fraction denir.

Proportion vs Ratio. Ratio is a single fraction. Proportion is an equation with fractions on the both sides.

Rounding yaparken suna dikkat et: 5ten kucuk ise asagi, buyuk esit ise yukari yuvarlaniyor.

Quotinent: The result of a division is called quotinent.

When we divide p by q, what is the name of the role q has, the role of the thing which we divide?: q is **Divisor**, also p is **Dividend**

Finding Factors: $N = p_1^{a_1} \times p_2^{a_2} \times ... p_n^{a_n}$ ise mesela ustlerinin bir fazlasinin carpimi (p ler prime).

$$factors_o f_N = (a_1 + 1) \times (a_2 + 1) \times ... \times (a_n + 1)$$

Polinom hakkinda guzel bir sey:

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Roman numerals:

- I = 1 (Unum)
- V = 5 (Quinque)
- X = 10 (Decem)
- L = 50 (Quinquaginta)
- C = 100 (Centum)
- D = 500 (Quingenti)
- M = 1000 (Mille)

Roman money currencies (denarius):

- I = 1 (as)
- II = 2 (Dupondious)
- IIS = 2.5 (Sestertius)
- V = 5 (Quinarius)
- X = 10 (Denarius) (bu en cok kullanilan)