Group 13

Dataset on laundry shop

Chan Yun Hong	1181103263
Boe Chang Horn	1181103320
Tan Kai Yuan	1181103087

Introduction

- Main Question 1: What factors contribute to the change in the total money spent by customers?
 - Focus on the factors that can increase the total money spent by customers,
 - Uplifting the monthly revenue
- Main Question 2: What are the frequent types of customers who like to do laundry for blankets or clothes?
 - Identify customer cluster
 - Create targeted campaign

Exploratory Data Analysis

External Dataset

- Location dataset from GeoPy's OpenStreetMap
 API
 - City, State, and Postcode
- Weather dataset from Visual Crossing's Historical
 Weather Data API
 - Temperature, Precipitation, Humidity, Weather Condition, etc.

Data Preprocessing

- Conflict and redundant feature such as "Kids_Category" and "With_Kids"
 - Keep "Kids_Category" and drop "With_Kids"
 - Use "With_Kids" to fill "Kids_Category"'s missing value
- Value with format issue
 - Additional space such as "foreigner" vs "foreigner"
- Data Transformation
 - "preciptype" to "isRain"
 - "DayOfWeek" and "HourInDay" from "Datetime"

```
display(df[df["With_Kids"] == "yes"]
display(df[df["With_Kids"] == "no"][
# "With Kids" conflicts with 'Kids C
young
           386
toddler
           347
baby
           336
no_kids
           330
toddler
           302
Name: Kids_Category, dtype: int64
no kids
           872
           316
voung
toddler
           313
baby
           297
toddler
Name: Kids_Category, dtype: int64
```

Outliers and Missing Values

- Missing Values
 - Drop features with high missing value and unnecessary features
 - Drop left over rows with missing value
- Outliers
 - Plot boxplots to see data distribution and outliers
 - Drop the columns that have extremely high outliers
 - Use machine learning model that is robust for dealing with outliers

Exploratory Data Analysis

Univariate Analysis

- Draw barcharts for Categorical and
 Numerical data as Data Visualization
- Each column is distributed fairly balance
- Distribution of the data is fairly equal
- No data imbalance treatment is necessary

Data Visualization for Univariate Analysis of Categorical Variables

13.0 14.0 15.0 16.0 17.0

TotalSpent_RM

Data Visualization for Univariate Analysis of Numerical Variables

10.0 11.0

12.0

Relationship between Variables

"How does the weather affect the total money spent on average?"

- Line plot (Temp VS Total Spend)
- No significant difference found
- Line is fluctuating throughout the x-axis

- Barplot (Rain VS Total Spend)
- Distribution is reasonably balanced
- No significant difference found

"How does the location of customer affect the total money spent?"

- Plot barplot between State and Average Total Spend
- No significant difference found
- Distribution of the Average Total Spend for each State is fairly equal

Association Rule Mining

- "What are the frequent types of customers who like to do laundry for blankets or clothes?"
- **Lift(A -> B)**, where A is the feature of customer (race, shirt_type and etc) and B is wash item (clothes or blankets)
- Display Top 5 Rules (All Customer Features & B = Wash Item)

op 5 Rules of All Customer Features	Top 5 Rules where B is Wash_Item
(Rule 1) Putrajaya -> no_kids	(Rule 1) Putrajaya -> clothes
Support: 0.018	Support: 0.015
Confidence: 0.8679	Confidence: 0.7358
Lift: 3.416	Lift: 4.9713
(Rule 2) big_basket -> Putrajaya Support: 0.014 Confidence: 0.6981 Lift: 3.7281	(Rule 2) Sepang -> clothes Support: 0.024 Confidence: 0.6562 Lift: 4.4336
(Rule 3) casual -> Putrajaya	(Rule 3) no_specs -> blankets
Support: 0.006	Support: 0.005
Confidence: 0.283	Confidence: 0.7222
Lift: 3.1266	Lift: 4.905
(Rule 4) Putrajaya -> clothes	(Rule 4) casual -> clothes
Support: 0.015	Support: 0.007
Confidence: 0.7358	Confidence: 0.2179
Lift: 4.9713	Lift: 3.4845
(Rule 5) Putrajaya -> fat	(Rule 5) chinese -> clothes
Support: 0.005	Support: 0.005
Confidence: 0.2642	Confidence: 0.6
Lift: 3.6555	Lift: 4.1967

- Rule 1 Example :
 - 1.5% of Putrajaya customers do laundry for clothes (Support)
 - 4.9 times more likely (Lift)

- Customers no glasses have the highest likelihood of washing blankets (Lift = 4.905).
- Customers who live in Putrajaya have the highest chance of washing clothes (Lift = 4.9713).

Clustering

- Use K-means clustering
- Only includes age range and total money spent variable
- Findings
 - Red customer cluster
 - Average age range is 43
 - Contribute more sales to laundry shop
 - o Orange customer cluster
 - Average age range is 45
 - Contribute fewer sales to laundry shop

Feature Selection

Type of Feature Selection Methods

- Target variable: Total spent by customer
- Filter Method
 - Pearson Correlation
 - No strong correlation between dependent variable and independent variable
- 3. Wrapper Method
 - a. Boruta algorithm
- 4. Embedded Method
 - a. Random Forest feature importance

Proposed methodology to finalize features

- 1. Get the set of features that have the best performance from both feature selection techniques which are the Boruta algorithm and Random Forest feature importance, then
- 2. Retrieve the overlapped features of both sets of features as selected features.
- 3. Compare the performance between the model built using selected features and the model built using all available features to determine the final set of features

Model Construction and Comparison

- Chosen Models
 - Random Forest
 - Usually has decent performance
 - Robust to overfitting
 - LightGBM
 - Faster training speed
 - Higher efficiency
 - Lower memory usage
 - Better accuracy
- Model Validation
 - o Train-test split
 - See how well the model generalize on unseen data
 - K-fold cross validation
 - Minimize sampling bias

- Visualize the output of the model
 - Plotting the trend of RMSE of baseline models in multiple iterations
- Model comparison
 - By checking the average difference of model metrics
 - Random Forest is better
 - Running statistical test (Wilcoxon Test)
 - Using 15 fold cross validation to generate 15 pairs of RMSE from both type of model
 - Result
 - P-value is lower than 0.05, indicating that there is statistically significant difference between the RMSE
 - Random Forest is better

- Impact of SMOTE and non-SMOTE datasets on the model performance
 - Generating SMOTE dataset
 - Using 15 fold cross validation to generate 15 pairs of RMSE from model that use SMOTE dataset and model that use non-SMOTE dataset
 - Result
 - P-value is lower than 0.05, indicating that there is statistically significant difference between the RMSE
 - SMOTE dataset does improve the model performance

- Hyperparameter tuning
 - Certain model parameters are included such as number of boosted trees to fit for Random Forest
 - Numeric range of the parameters values are relatively small
 - Performed using Grid Search algorithm

- Model Evaluation between all models
 - Metrics used
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - Stacking ensemble model performs the best

- Interpret how the features impact the model prediction by
 - using SHAP values
- For example
 - High values of humidity will have a positive contribution to the prediction

- Chosen Models
 - Random Forest Classifier
 - Excels at handling overfitting
 - Strong emphasis on features
 - Naive Bayes
 - Straightforward
 - Efficient
 - Well-suited for approximate each category with the given features
 - Produce examples with comparable characteristics

Hyperparameter tuning

- Naive Bayes
 - o var smoothing regulate the level of regularization used
 - help avoid overfitting
- Random Forest Classifier
 - Certain model parameters are included such as number of boosted trees to fit for Random Forest
 - Numeric range of the parameters values are relatively small
- Performed using Grid Search algorithm

- Model Evaluation between all models
 - Metrics used
 - Accuracy
 - Recall
 - Precision
 - F1-Score
 - ROC AUC Score
 - Tuned Naive Bayes model performs the best

- Plot ROC curve
 - Discriminate between positive and negative classes

- All models performed quite similarly
 - Very close to random guessing
 - Approaching the diagonal line.

 Tuned Naive Bayes model produced slightly better results than the other 4 models.

Improve the performance of both classification and regression models

- Cause of low performance
 - The current dataset is in low quality, proved by
 - Pearson correlation
 - Data is not consistent between columns
- Solution
 - Apply data-centric strategy
 - Ensure the data is collected in a systematic and discrete way
 - Enhance data quality

Deployment

Real-time Visualization

Line plots

- Total Customer by month
- Mean Total Spent by month
- Washer No. Usage by month
- Dryer No. Usage by month

Interactive Choropleth Map

- Identify location of customer base
- Total Customers, Average Total Spent, Total Spent
- Monthly analysis
- Data export to CSV for further analysis

Total Customers by month Mean Total Spent by month

Washer No. Usage by month Dryer No. Usage by month

Total Spent by city on December, 2015

Export Total Spent Data to CSV

- Regression model
 - Predict Total Spent based on various attributes
 - Real-time prediction
 - Easy to use

- Classification model
 - Predict Wash Item based on various attributes
 - Instantaneous prediction
 - Input selections to predict

Wash Item Prediction

Please enter selections:

The predicted value is blankets

ace	
malay	-
Sender:	
male	+
oody_Size:	
moderate	-

conditions:	
Partially cloudy	•
isRain:	
True	•
DayOf Week:	
Wednesday	*
HourinDay:	
12	-
Predict	

Streamlit Cloud Hosting

- Source code published as a GitHub repository
- Hosted on Streamlit Cloud server
- Real-time data visualization and prediction everywhere
- URL: https://jasontan0649-randomrepoonly-main-4d op3o.streamlit.app

Performance Improvement

- Load Balancing Mechanism
 - Ensure high availability

- Caching
 - Reduce usage of computing resources

You want to cache your awesome figures to speed up the render

