EXAMEN Parcial Novembre 2009. TEORIA

Indicar nom i NIUB i la resposta correcta a la taula del final del güestionari

1. En el següent circuit, quan el condensador s'ha carregat completament:

- a) Actua com un curtcircuit
- b) No circula corrent pel circuit
- c) Canvia el sentit de la intensitat
- d) El condensador comença a descarregar-se

2. Desconnectar una font de tensió, és a dir fer V=0, equival a

- a) L'afirmació es falsa. Desconnectar la font de tensió no significa posar la V a 0V.
- b) Depen de la resta del circuit.
- c) Curtcircuitar la branca del circuit on és.
- d) Obrir la branca del circuit on és.

3. Quan en un circuit assenyalem el sentit del corrent indiquem ...

- a) El sentit dels potencials creixents.
- b) El sentit cap on es mouen els electrons.
- c) El sentit cap on circulen totes les càrregues.
- d) El sentit cap on es mourien les càrregues positives.

4. Quan s'aplica el teorema de Thevenin s'ha de tenir en compte que la connexió d'ambdues xarxes (A i B) única i exclusivament es poden veure connectades pels dos punts als que apliquem el teorema.

- a) Cert sempre, sense excepcions.
- b)Cert, amb l'excepció de fonts d'alimentació comunes a les xarxes (que fixen una tensió del circuit).
- c) Fals. Encara que apliquem el teorema en dos punts, les xarxes poden connectar-se també per altres punts.
- d)Fals. Thevenin només té a veure amb una xarxa.

5. Per aplicar el teorema de Thevenin hem de fer els següents passos:

- a) Obtenir Rth entre els punts als que s'aplica i obtenir Vth com la suma de les fonts de tensió al circuit.
- b)Obtenir Rth com la suma de les resistències del circuit i Vth com suma de les fonts de tensió al circuit.
- c) Obtenir Rth entre els punts als que s'aplica (anul·lant fonts) i obtenir Vth com la diferència de tensió entre aquests mateixos punts.
- d)Obtenir Rth entre els punts als que s'aplica (anul·lant fonts) i obtenir Vth com la caiguda de tensió a Rth.

6. El principi de superposició permet resoldre circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una des les fonts del circuit, anul·lant la resta. La solució del circuit és el valor més alt obtingut.
- b)El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- c) Resoldre els circuits cada vegada només amb una des les fonts del circuit, anul·lant la resta. La solució del circuit és la suma de totes les solucions.
- d)Resoldre els circuits cada vegada només amb una des les fonts del circuit, anul·lant la resta. La solució del circuit és qualsevol d'aquestes solucions.
- e) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.

7. Una impuresa acceptadora ...

- a) dóna un electró i queda amb càrrega positiva.
- b) dóna un electró i queda amb càrrega negativa.
- c) dóna un forat i queda amb càrrega positiva.
- d) dóna un forat i queda amb càrrega negativa.

8. La conducció de corrent en un semiconductor es realitza mitjancant...

- a) Forats i electrons de conducció.
- b)Forats i electrons de valència.
- c) Electrons.
- d)Forats per un material tipus P.
- e) Forats.

9. El dibuix representa una unió PN ... per què a la zona central (zona de càrrega espacial) només representem les impuresses (+) i (-) i no els electrons i els forats?

- a) Per què els electrons i els forats són càrregues mòbils, mentres que les impureses estan fixes a la xarxa.
- b) Per què el camp elèctric repeleix els electrons i forats i atreu les impureses
- c) Per què és el que succeix en un primer instant, més tard les impureses també són repel·lides pel camp elèctric
- d) No es tracta d'impureses. Els (+) són els forats i els (-) són el electrons.

10. En aquesta figura la part de V negativa expressa la conducció en inversa d'un diode.

- a) Fals, ja que tenim un corrent Io no nul.
- b) Fals, ja que s'expressa amb una altra equació.
- c) Cert, sempre i quan el díode estigui connectat.
- d) Cert, en tots els casos.

11. Atenent als circuits

- a) En el circuit esquerra la tensió màxima serà 0.7V i en la dreta la mínima serà -0.7V.
- b)En el circuit esquerra la tensió màxima serà la tensió llindar, en la dreta la mínima serà '-' la tensió llindar.
- c) En el circuit esquerra la tensió màxima serà 0.7V i en la dreta la mínima serà 0.7V.
- d)En el circuit esquerra la tensió mínima serà -0.7V i en la dreta la màxima serà 0.7V.

1/14

12. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que Vy, i sortida V_C):

- a) Quan Vi és positiva, la sortida es Vi-Vγ. Quan és negativa, Vo=0V.
- b)Quan Vi és negativa, la sortida es Vi-Vγ. Quan és positiva, Vo=0V.
- c) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- d)Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.

13. En un BJT, atenent als corrents que hi ha, el corrent més elevat en valor absolut en estat de activa directa és:

- a) el de base.
- b) el d'emissor.
- c) el de col·lector.
- d) depent de l'estat o mode.

14. El quocient entre intensitat de col·lector i de base és sempre constant en un BJT.

- a) Cert. S'anomena guany de corrent d'emissor comú i es simbolitza per una lletra grega beta.
- b) Cert. S'anomena guany de tensió d'emissor comú i es simbolitza per una lletra grega alfa.
- c) Fals. No és constant sota cap circumstància.
- d) Fals. Només és aproximadament constant quan estem en activa directe.
- e) Fals. Només és constant quan estem en activa directe.

15. Si la tensió d'emissor i la de col·lector són superiors a la de base, el BJT PNP està en:

- a) Tall.
- b) Activa directe.
- c) Saturació.
- d) Activa inversa.

16. En un transistor bipolar NPN:

- a) Tots els corrents entren al transistor.
- b) I_B i I_C entren al transistor i I_E surt.
- c) I_B i I_E entren al transistor i I_C surt.
- d) I_B i I_E surten del transistor i I_C entra.
- e) Depèn del mode de treball.

17. En un transistor MOSFET, el que diferencia el Drenador (Drain) de la Font (Source) és ...

- a) Que la font sempre està a terra.
- b) Físicament són indistingibles, elèctricament dels dos terminals diem que és la font el que té el potencial inferior.
- c) Físicament, que la font té més dopatge que el drenador i elèctricament que la tensió de font és inferior.
- d)Que pel drenador controlem la tensió corresponent a l'efecte camp.

18. En un inversor lògic digital basat en tecnologia CMOS, el funcionament del transistor es realitza a les regions de ...

- a) Tríode (zona lineal) i tall.
- b) Tríode (zona no lineal) i tall.
- c) Activa directa i tall.
- d) Saturació i tall.

19. Aquest NMOS (dreta), estarà sempre en

- a) Tríode, si Vdd és superior a la tensió llindar.
- b)Tríode, si Vdd és inferior a la tensió llindar.
- c) Saturació, independentment de Vdd.
- d)Saturació, si Vdd és superior a la tensió llindar.
- e) Saturació, si Vdd és inferior a la tensió llindar.

20. Com resoldrem un circuit amb transistors PMOS respecte a un amb NMOS?

- a) Considerarem que V_T es negatiu i utilitzarem les mateixes relacions utilitzades pels NMOS.
- b)Invertim els sentits dels corrents, prenem V_T negatiu i utilitzem les mateixes relacions utilitzades pels NMOS.
- c) Invertim els sentits dels corrents i agafem les tensions oposades (ex: V_{SG}) respecte als NMOS. Apliquem llavors les mateixes relacions que amb un NMOS.
- d)Invertim els sentits dels corrents i agafem les tensions oposades (ex: V_{SG}) respecte als NMOS, i agafem V_{T} positiu. Apliquem llavors les mateixes relacions que amb un NMOS.
- e) No hem de fer res d'especial i el resoldrem com un NMOS utilitzant els mateixos corrents i tensions i agafant V_T positiu.

NOM:

NIUB:

Indicar aquí l'única resposta correcta

arear adar r arried responses corrects				
	Pregunta	Resp.	Pregunta	Resp.
	1	b	11	b
	2	c	12	c
	3	d	13	b
	4	b	14	d
	5	c	15	c
	6	c	16	e
	7	d	17	b
	8	a	18	a
	9	a	19	d
	10	d	20	d

Resposta Correcta=0.15 Resposta Incorrecta=-0.05

EXAMEN Parcial Novembre 2009. Problemes.

P1) (2 punts) Resol el següent circuit (tensions i corrents):

(Si ho necessiteu, utilitzeu V_{γ} =0.7 i β =100)

Veiem que és possible que el transitor estigui en activa directa o en saturació. Per tant, intentem resoldre'l en activa directe. Per això apliquem Kirchhoff a una malla que passi per la unió BE. És a dir, agafem des de la tensió d'entrada de 5V fins el terra, passant per la unió BE. Agafant corrents en mA, resistències en $k\Omega$ i tensions en Volts:

$$5 - 50 \cdot I_B - V_{BE} - 5 \cdot I_E = 0$$

En activa directa sabem que: $I_E = (\beta + 1) \cdot I_B$

$$\Rightarrow 5 - 50 \cdot I_{\scriptscriptstyle B} - 0.7 - 5 \cdot (\beta + 1) \cdot I_{\scriptscriptstyle B} = 0$$

$$\Rightarrow 4.3 - I_B \cdot (50 + 505) = 0$$

$$\Rightarrow I_B = \frac{4.3}{555} = 7.75 \cdot 10^{-3} \, mA$$

Amb aquest corrent, podem obtenir els altres dos corresponents al transistor:

$$I_E = (\beta + 1) \cdot I_B = 0.783 \ mA$$

$$I_C = \beta \cdot I_B = 0.775 \ mA$$

Així, podem obtenir las tensions del circuit:

$$V_C = 15V - 2 \cdot I_C = 13.45 V$$

$$V_{B} = 5V - 50 \cdot I_{B} = 4.61 \, V$$

$$V_E = 5 \cdot I_E = 3.92 V$$

La unión BC està en inversa i BE en directa. Per tant, està en activa directa, i hem finalitzat el càlcul.

P2) (2 punts) Resol el següent circuit (tensions i corrents): (Preneu K_n'·W/L=1.0 mA/V² i V_T=2V). (Si heu de resoldre en triode, utilitzeu l'equació de triode lineal).

$$I_G = 0 \implies V_G = \frac{3M\Omega}{3M\Omega + 7M\Omega} \cdot 10V = 3V$$

Suposem saturació. Per tant:

$$I_D = 0.5 \cdot K_n \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 = 0.5 \cdot 1 \cdot (3 - 4 \cdot I_D - 2)^2 = 0.5 \cdot (1 - 4 \cdot I_D)^2 = 0.5 \cdot (1 - 8 \cdot I_D + 16 \cdot I_D^2)$$

$$\Rightarrow 16 \cdot I_D^2 - 10 \cdot I_D + 1 = 0$$

Les dues possibles solucions són:

$$I_D = \frac{10 \pm \sqrt{100 - 4 \cdot 16 \cdot 1}}{2 \cdot 16} = \frac{10 \pm 6}{32} = \begin{cases} 0.5 \ mA \rightarrow V_S = 0.5 * 4 = 2V \\ 0.125 \ mA \rightarrow V_S = 0.125 * 4 = 0.5V \end{cases}$$

La primera solució supondria que el transistor estaria en tall ($V_{GS}=1V$, $V_{T}=2V$). L'única possible solució es la segona. Llavors, per veure si es compleix la condició de saturació, calculem la tensió de drenador amb aquest corrent:

$$V_D = 10V - 0.125 * 4 = 9.5V$$

Comprovem si es compleix la condició de saturació:

$$V_{DS} \ge V_{GS} - V_T \iff (9.5 - 0.5) \ge (3 - 0.5) - 2 \iff 9 \ge 0.5$$

La qual cosa és certa. Per tant ja hem finalitzat el càlcul.