2025-03-27 06:18 AM

Tags: [[Linear Algebra]], [[Matrix Determinants]], [[Matrix Invertibility]], [[Rank & Nullity Theorem]], [[Column & Row Space]], [[Fundamental Subspaces]], [[Function & Relations]], [[Basis & Dimension]], [[Vector Spaces]], [[Coordinate Systems]]

Reference:

[[Linear Algebra Test 2 Guide - MATH 2164]]

1. Compute the Determinant of a Matrix

Use for:

- Checking invertibility
- Applying Cramer's Rule
- Verifying properties like det(AB) = det(A) * det(B)
- Validating row operation effects

TI-84 Steps:

```
1. 2nd \rightarrow MATRIX \rightarrow EDIT \rightarrow Choose [A], enter matrix.
```

- 2. 2nd → 0UIT → Return to home screen.
- 3. 2nd \rightarrow MATH \rightarrow Choose det (.
- 4. 2nd → MATRIX → Select [A] → Close), then ENTER.

2. Perform Elementary Row Operations (via RREF)

Use for:

- Solving systems
- Finding pivot positions
- Determining linear independence
- Constructing basis from spanning sets

TI-84 Steps:

- 1. 2nd \rightarrow MATRIX \rightarrow EDIT \rightarrow Input matrix [A].
- 2. On home: 2nd \rightarrow MATRIX \rightarrow MATH \rightarrow Select rref(.
- 3. Then $2nd \rightarrow MATRIX \rightarrow Choose [A]$, close), then ENTER.

3. Compute Inverse of a Matrix

Use for:

- Coordinate vector transformations: [v]_B = M_B⁻¹ * v
- Change of basis
- Solving systems x = A⁻¹b

TI-84 Steps:

- 1. Store [A] via 2nd \rightarrow MATRIX \rightarrow EDIT.
- 2. On home screen: [A] $\rightarrow x^{-1}$ (via x^{-1} button) \rightarrow ENTER.

4. Multiply Matrices

Use for:

- Matrix equations like M_B⁻¹ * v or M_C⁻¹ * M_B
- · Changing coordinates
- Linear combinations

TI-84 Steps:

- 1. Input [A] and [B] into matrices.
- 2. On home: $[A] * [B] \rightarrow ENTER$.

5. Multiply Matrix by Scalar

Use for:

- Verifying determinant rules like det(kA) = kⁿ * det(A)
- Row/column scaling

TI-84 Steps:

- 1. Enter scalar $\rightarrow * \rightarrow 2nd \rightarrow MATRIX \rightarrow select matrix$.
- 2. ENTER.

6. Use Cramer's Rule

Use for:

Solving Ax = b using x_j = det(A_j) / det(A)

TI-84 Steps:

- 1. Compute det(A) and $det(A_j)$ where you replace j-th column with b.
- 2. Use steps from #1 to compute each determinant.
- 3. Divide: det(A_j)/det(A) manually.

7. Solve System via Inverse Matrix

Use for:

Shortcut solution to Ax = b

TI-84 Steps:

- 1. Enter matrix [A] and vector [B] (as a column matrix).
- 2. On home: $[A]^{-1} * [B] \rightarrow ENTER$.

8. Find a Basis (from Spanning Set)

Use for:

- Determining independence and dimension
- Finding basis from spanning set using Gaussian elimination

TI-84 Steps:

- 1. Store vectors as rows in a matrix [A].
- 2. Perform rref([A]).
- 3. Look at pivot rows/columns to find basis vectors.

9. Construct Coordinate Vector [v]_B

Use for:

• Coordinatization in a non-standard basis

TI-84 Steps:

- 1. Form matrix [M_B] with basis vectors as columns.
- 2. Compute inverse: M_B⁻¹.
- 3. Multiply: $M_B^{-1} * v$.

10. Change of Basis (from B to C)

Use for:

• Computing $[v]_C = M_{C^{-1}} * M_B * [v]_B$

TI-84 Steps:

- 1. Input M_B and M_C into [A], [B].
- 2. Compute inverse: $M_C^{-1} = [B]^{-1}$.
- 3. Multiply: $M_C^{-1} * M_B$.

11. Compute Adjoint (Transpose of Cofactor Matrix)

Use for:

• Inverse via $A^{-1} = 1/\det(A) * adj(A)$

TI-84 Steps: WARNING: TI-84 cannot compute cofactors or adjoints directly, but you can:

• Manually input the cofactor matrix as [C].

• Use 2nd → MATRIX → MATH → Transpose(to get adj(A).

12. Compute Rank (Number of Pivots)

Use for:

- Applying Rank-Nullity Theorem
- Finding dimension of Column Space or Row Space

TI-84 Steps:

- 1. Perform rref([A]).
- 2. Count non-zero rows to get rank.

13. Test Linear Independence

Use for:

• Determining if vectors form a basis

TI-84 Steps:

- 1. Store vectors as rows of [A].
- 2. Perform rref([A]) and see if there are any free variables (non-pivot columns).