

目录

- 1. 初赛方案
 - 解耦跳数和层数
 - 优化采样
 - 参数设置
- 2. 复赛方案
 - 利用metapath进行数据增强
- 3. 可能的改进点

解耦跳数和层数

Decoupling the Depth and Scope of Graph Neural Networks (NeurIPS 2021)

简单地解耦采样跳数和GNN的深度,可以提高模型的表现。

Pyg 的ShaDowKHopSampler完美实现,但考虑到效率,使用NeighborLoader进行替代、效果差不多。

跳数 = 2

模型深度 = 4

结果:				
	说明	val_ap		
rgcn_sage	baseline	0.95953		
rgcn_4	rgcn 增加到 4 层,hops=2	0.96081		

优化采样 01/14

设置采样跳数为2,同时每次将所有mini-batch中两跳节点e和节点a之间关系H的边,全部收录进来。时间效率上几乎没有区别。

	说明	val_ap
rgcn_sage	baseline	0.95953
rgcn_4	rgcn 增加到 4 层, hops=2	0.96081
ResRGCN_4	rgcn 更换为 resRgcn	0.95975
ResRGCN_4_H	使用方案二加入 H 关系	0.96192

结果:

初赛及复赛参数设置

隐藏层维度	256
学习率	0.001
BatchSize	200
模型层数	4
采样的邻居	每种关系采样 150 个,共采样 2 跳
RGCN 的 base	8
库	pyg

数据增强- 随机组合metapath作为增强样本

MetaPath 是指一条包含relation序列的路径

Id	MetaPath	MAX_VAL _Score	
1	(a – f – item)	0.9471 (0.94714)	
2	(c – f – item)	0.9426	
3	(f-item)	0.9416	
4	(item – f – item)	0.9451	
5 (b-item) 6 (item-b-item)	(b – item)	0.9346	
	(item – b – item)	0.9380	
7	(d – f- item)	0.9418	
8	(e-f-item)	0.9439	

数据增强框架

Unsupervised Data Augmentation for Consistency Training (NeurIPS 2020)

损失函数

$$\min_{ heta}J(heta)=E_{x,y^{\in}L}[-\log p_{ heta}(y^{|}x)]+\lambda E_{x\in U}E_{\hat{x}\sim q(\hat{x}|x)}[D_{KL}(p_{ ilde{ heta}}(y|x)||p_{ heta}(y|\hat{x}))]$$
 $ilde{ heta}$ 代表不对这里的参数求导

额外的训练技巧

$$\frac{1}{|B|} \sum_{x \in B} I(\max_{y'} p_{\tilde{\theta}}(y' \mid x) > \beta) \text{CE}\left(p_{\tilde{\theta}}^{(sharp)}(y \mid x) \| p_{\theta}(y \mid \hat{x})\right)$$

$$p_{\tilde{\theta}}^{(sharp)}(y\mid x) = \frac{\exp(z_y/\tau)}{\sum_{y'} \exp(z_{y'}/\tau)} \quad \text{ Sharpening Predictions}$$

结果:				
	说明	val_ap		
rgcn_sage	baseline	0.95953		
rgcn_4	rgcn 增加到 4 层,hops=2	0.96081		
ResRGCN_4	rgcn 更换为 resRgcn	0.95975		
ResRGCN_4_H 0.914016	使用方案二加入 H 关系	0.96192		
ResRGCN_4_H_meta _{0.917587}	加入随机组合 metapath 的数据增强	0.96571		

可能的改进点

1. 没有利用上无标签数据

先前的数据增强的方法可以利用上。

2. 没有对节点的属性进行补全

Heterogeneous Graph Neural Network via Attribute Completion, (WWW 2021 best paper)

总结

感谢聆听! Q&A