Komputerowe systemy rozpoznawania

2020/2021

Prowadzący: dr inż. Marcin Kacprowicz poniedziałek, 12:00

Data oddania:	Ocena:

Maciej Lewandowski 224357 Kamil Dike 224282

Projekt 1. Klasyfikacja dokumentów tekstowych

Opis projektu ma formę artykułu naukowego lub raportu z zadania badawczego/doświadczalnego/obliczeniowego (wg indywidualnych potrzeb związanych np. z pracą inżynierską/naukową/zawodową).

Wybrane sekcje (rozdziały sprawozdania) są uzupełniane wg wymagań w opisie Projektu 1. i Harmonogramie ZAJĘĆ na WI-KAMP KSR jako efekty zadań w poszczególnych tygodniach.

1. Cel projektu

Celem zadania jest stworzenie systemu klasyfikującego teksty w zależności od kraju który jest opisywany przez tekst. System został oparty o metodę k-NN. Ponad to została przeanalizowana skuteczność działania programu w odniesieniu do nietraktowanego wektora cech.

2. Klasyfikacja nadzorowana metodą k-NN

Metoda k-NN służy do klasyfikacji obiektów. Opiera się na założeniu podobieństwa obiektów blisko położonych w przestrzeni cech. Jak podaje tadeusiewicz90 założenia dla algorytmu:

numclass - liczba rozpoznawanych klas

dim - wymiar przestrzeni cech

num - liczba obiektów ciągu uczącego

sampl[1...num][1...dim + 1] - ciag uczący

rec - identyfikator rozpoznanego obiektu

obj[1...dim] - rozpoznawany obiekt

dist(sampl[k],obj) - funkcja podająca odległość między i-tym elementem ciągu uczącego a rozpoznawanym obiektem

k - zmienna określająca ilość uwzględnianych sasiadów

tab[1...num][1...2] - tablica odległości

sort(tab) - funkcja sortująca tablicę

fun[1..numclass] - tabela wartości funkcji przynależności

pointmax(fun) - funkcja wskazująca numer klasy, dla której wartość przynależności jest maksymalna. Algorytm według tadeusiewicz90 składa się z następujących kroków:

- 1. wyzeruj tablicę fun
- 2. wykonaj pętlę s od i=1 do num
- w pętli s przyporządkuj elementowi tablicy tab[i][1]
 wynik wywołania funkcji dist(sampl[i],obj)
- w pętli s przyporządkuj elementowi tablicy tab[i][2] element tablicy sampl[i][dim+1]
- 5. zakończ pętlę s
- 6. wykonaj sortowanie tablicy sort(tab)
- 7. rozpocznij pętlę q od i=1 do i=k
- 8. w pętli q przyporządkuj elementowi tablicy fun[tab[i][2]] element tablicy fun[tab[i][2]]+1
- 9. zakończ pętlę q
- 10. przyporządkuj zmiennej rec wynik funkcji pointmax(fun)

Algorytm jako dane wejściowe pobiera obiekt do klasyfikacji obj oraz zmienną przechowującą informacje o klasie do którego zostanie przyporządkowany rec.Odległość dwóch obiektów określana jest poprzez określoną metrykę. Porównywane będą wektory cech reprezentujące obiekty.

2.1. Ekstrakcja cech, wektory cech

Na potrzeby reprezentacji obiektów poprzez wektory cech wybrano cechy:

1. Liczba słów w dokumencie

$$v_1 = \hat{A} \tag{1}$$

,gdzie

A oznacza artykuł taki, że $A = [s_1, s_2, s_3, ..., s_T]$

 s_i oznacza i- te słowo w artykule

 \hat{A} oznacza moc zbioru A

2. Wartość logiczna z logiki trój-wartościowej określająca dominujący rodzaj jednostek występujących w tekście. Wartość cechy 1 oznacza że dominują w artykule jednostki układu SI. Wartość cechy 0 oznacza że w artykule dominują jednostki układu Imperialnego. Wartość cechy 1/2 oznacza że w artykule nie dominują jednostki układu SI anie jednostki układu imperialnego.

$$v_2 = l(A) \tag{2}$$

gdzie,

 $\widetilde{l}:\mathcal{A}\to\{0,\frac{1}{2},1\},\;l$ funkcja przyporządkowywuje artykułowi wartość lo-

giczną 0, 1/2 albo 1 w zależności od ilości wystąpień jednostek danego typu(si/imperialne).

 \mathcal{A} oznacza zbiór wszystkich możliwych wektorów reprezentujących artykuły.

3. Najczęściej występujący miesiąc

$$v_3 = m(A) \tag{3}$$

,gdzie

 $m:\mathcal{A}\to\{0,1,2,...,12\},\;m$ funkcja przyporządkowywująca artykułowi wartość całkowitą od 0 do 12, w zależności od ilości wystąpień danego miesiąca w zbiorze A.

4. Najczęściej występujący typ spółki/firmy

$$v_4 = f(max(k(A, G_S))) \tag{4}$$

,gdzie

 $\mathcal G$ zbiór wszystkich możliwych wektorów słów kluczowych

 $G_S = [x_1, x_2, x_3, ..., x_j]$ wektor słów kluczowych rodzajów spółek x_i oznacza *i*-te słowo kluczowe

 ${\mathcal H}$ zbi
ór wszystkich możliwych wektorów częstości występowania słów kluczowych

H wektor częstości występowania słów kluczowych

 $f:\mathcal{H}\to\mathcal{G},$ f jest funkcją przyporządkowującą zbiór częstości do zbioru słów kluczowych

 $k:\mathcal{A},\mathcal{G}\to\mathcal{H},$ k jest funkcją zwracającą wektor częstości dla zapewnionego artykułu oraz wektora słów kluczowych

5. Najczęściej występująca w tekście nazwa giełdy

$$v_5 = f(max(k(A, G_G))) \tag{5}$$

,gdzie

 $G_g = [x_1, x_2, x_3, ..., x_j]$ wektor słów kluczowych nazw giełd

6. Najczęściej występująca nazwa morza lub oceanu

$$v_6 = f(max(k(A, G_M))) \tag{6}$$

,gazie

 $G_M = [x_1, x_2, x_3, ..., x_j]$ wektor słów kluczowych nazw mórz i oceanów

7. Względna ilość słów o długości do 4 znaków

$$v_7 = \frac{c(A, 0, 4)}{v_1} \tag{7}$$

.gdzie

 $c:\mathcal{A},N,M\to P$ c jest funkcją zliczającą ilość słów o długości od n
 do m znaków

 $N = \{n : n \in \mathbb{N} \land n > 0\}$ $M = \{m : m \in \mathbb{N} \land m > n\}$ $P = \{p : p \in \mathbb{N}\}$ 8. Względna ilość słów o długości od 4 do 8 znaków

$$v_8 = \frac{c(A, 4, 8)}{v_1} \tag{8}$$

9. Względna ilość słów o długości od 8 znaków

$$v_9 = \frac{c(A, 8, \infty)}{v_1} \tag{9}$$

10. Najczęściej występujący rok w artykule

$$v_{10} = yr(A) \tag{10}$$

,gdzie

 $yr:\mathcal{A}\to\mathcal{P},\,yr$ to funkcja zwracająca najczęściej występującą datę w tekście

11. Ilość cen w tekście

$$v_{11} = dl(A) \tag{11}$$

,gdzie

 $dl:\mathcal{A}\to\mathcal{P},\ yr$ to funkcja zwracająca najczęściej występujący rok w tekście

12. Liczba unikalnych słów

$$v_{12} = us(A) \tag{12}$$

,gdzie

 $us: \mathcal{A} \to \mathcal{P}, yr$ to funkcja zwracająca ilość różnych słów w tekście

2.2. Miary jakości klasyfikacji

Celem miar jakości klasyfikacji jest zbadanie dokonanej klasyfikacji. Ze względu na brak miary idealnej posłużymy się paroma następującymi miarami:

- 1. accuracy
- 2. precision
- 3. recall
- 4. F1

Do wyznaczenia miar jakości klasyfikacji korzystamy z tablicy pomyłek. Spis oznaczeń:

TP - prawdziwie pozytywna klasyfikacja

FP - fałszywie pozytywna klasyfikacja

FN - fałszywie negatywna klasyfikacja

TN - prawdziwie negatywna klasyfikacja

2.2.1. Accuracy

Dokładność wyraża się wzorem:

$$ACC = \frac{\Sigma TP}{\Sigma populacja} \tag{13}$$

2.2.2. Precision

Precyzja wyraża się wzorem:

$$PPV = \frac{\Sigma TP}{\Sigma TP + \Sigma FP} \tag{14}$$

2.2.3. Recall

Czułość wyraża się wzorem:

$$TPR = \frac{\Sigma TP}{\Sigma TP + \Sigma FN} \tag{15}$$

2.2.4. F1

Miarę F1 wyraża się wzorem:

$$TPR = 2 * \frac{PPV * TPR}{PPV + TPR} \tag{16}$$

3. Klasyfikacja z użyciem metryk i miar podobieństwa tekstów

Wzory, znaczenia i opisy symboli zastosowanych metryk z przykładami. Wzory, opisy i znaczenia miar podobieństwa tekstów zastosowanych w obliczaniu metryk dla wektorów cech z przykładami dla każdej miary [2]. Oznaczenia jednolite w obrębie całego sprawozdania. Wstępne wyniki miary Accuracy dla próbnych klasyfikacji na ograniczonym zbiorze tekstów (podać parametry i kryteria wyboru wg punktów 3.-8. z opisu Projektu 1.).

Sekcja uzupełniona jako efekt zadania Tydzień 04 wg Harmonogramu Zajęć na WIKAMP KSR.

4. Budowa aplikacji

4.1. Diagramy UML

Aplikacja złożona jest z komponentów: extractor, features, knn, main, model, parser, utils

4.1.1. Struktura aplikacji

4.1.2. extractor

4.1.3. features

4.1.4. knn

4.1.5. main

4.1.6. model

4.1.7. parser

4.1.8. utils

4.2. Prezentacja wyników, interfejs użytkownika

Krótki ilustrowany opis jak użytkownik może korzystać z aplikacji, w szczególności wprowadzać parametry klasyfikacji i odczytywać wyniki. Wersja JRE i inne wymogi niezbędne do uruchomienia aplikacji przez użytkownika na własnym komputerze.

Sekcja uzupełniona jako efekt zadania Tydzień 04 wg Harmonogramu Zajęć na WIKAMP KSR.

5. Wyniki klasyfikacji dla różnych parametrów wejściowych

Wyniki kolejnych eksperymentów wg punktów 2.-8. opisu projektu 1. Wykresy i tabele obowiązkowe, dokładnie opisane w "captions" (tytułach), konieczny opis osi i jednostek wykresów oraz kolumn i wierszy tabel.

Ewentualne wyniki realizacji punktu 9. opisu Projektu 1., czyli "na ocene 5.0" i ich porównanie do wyników z części obowiązkowej.

Sekcja uzupełniona jako efekt zadania Tydzień 05 wg Harmonogramu Zajęć na WIKAMP KSR.

6. Dyskusja, wnioski

Dokładne interpretacje uzyskanych wyników w zależności od parametrów klasyfikacji opisanych w punktach 3.-8 opisu Projektu 1. Szczególnie istotne są wnioski o charakterze uniwersalnym, istotne dla podobnych zadań. Omówić i wyjaśnić napotkane problemy (jeśli były). Każdy wniosek/problem powinien mieć poparcie w przeprowadzonych eksperymentach (odwołania do konkretnych wyników: wykresów, tabel).

Dla końcowej oceny jest to najważniejsza sekcja sprawozdania, gdyż prezentuje poziom zrozumienia rozwiązywanego problemu.

** Możliwości kontynuacji prac w obszarze systemów rozpoznawania, zwłaszcza w kontekście pracy inżynierskiej, magisterskiej, naukowej, itp. **

Sekcja uzupełniona jako efekt zadania Tydzień 06 wg Harmonogramu Zajęć na WIKAMP KSR.

7. Braki w realizacji projektu 1.

Wymienić wg opisu Projektu 1. wszystkie niezrealizowane obowiązkowe elementy projektu, ewentualnie podać merytoryczne (ale nie czasowe) przyczyny tych braków.

Literatura

- [1] R. Tadeusiewicz: Rozpoznawanie obrazów, PWN, Warszawa, 1991.
- [2] A. Niewiadomski, Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2008.

Literatura zawiera wyłącznie źródła recenzowane i/lub o potwierdzonej wiarygodności, możliwe do weryfikacji i cytowane w sprawozdaniu.