How to Use LaTex and R to Write a Paper

Professional O. Writer July 24, 2015

Nothing Possible If You Never Try!

Contents

1	Fig	ures			
	1.1	Regression Plots			
	1.2	Regression Plots			
2	App	plied Circuits			
3	More Figures				
	3.1	Part MF1			
		Part MF2			
		3.2.1 part mf2-1			
	3.3				
4	Tex	Text			
	4.1	Part T1 - Equations			
		4.1.1 A Familar Equation			
		4.1.2 A Simple Laplace Transform			
	4.2	Part T2			
		Illustration of ARIMA-LRM Method in My Thesis			

1 Figures

This is a section for figures. Random citation¹ embeddeed in text. Random citation² embeddeed in text.

1.1 Regression Plots

We setup variable definitions without actually evaluating them, then we put the pieces together, result shown in Figure 1.1. Random citation³ embeddeed in text.

>
$$x <- 1:100$$

> $y <- 3 + 0.25*x^{(.315)} + 2*x + 1.5*rnorm(x, 2, 15)$

Figure 1: First Regression Plots

¹John Doe. The Book without Title One. Dummy Publisher First, 2100, p. 91.

²Johnston Smith. The Book without Title Two. Dummy Publisher Second, 2200, p. 71.

³Noah C. Li. "They All Play Minecraft". In: *Gaming Industry Analysis*. Ed. by Clara Li. Vol. 17. How It Works 07. Nothing Impossible. 12345 Buiding Road, Cedar Hills, Utah 84056: Electronics House, 2014, pp. 78–82, p. 11.

1.2 Regression Parameters

Here is the regression result. Random citation⁴ embeddeed in text. Random citation⁵ embeddeed in text.

Call:

lm(formula = y ~x)

Residuals:

Min 1Q Median 3Q Max -57.149 -15.325 0.366 14.822 62.443

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.65813 4.59417 1.885 0.0624 .

x 1.96984 0.07898 24.941 <2e-16 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.8 on 98 degrees of freedom

Multiple R-squared: 0.8639, Adjusted R-squared: 0.8625

F-statistic: 622 on 1 and 98 DF, p-value: < 2.2e-16

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	8.6581	4.5942	1.88	0.0624
X	1.9698	0.0790	24.94	0.0000

Table 1: Linear regression model for cats data.

⁴Ibid., p. 11.

⁵Clara M. Li. "The Comprehensive Animation Analysis Guide (CLARA)". in: *DreamWorks* 14.3 (2019), pp. 123–456, p. 71.

2 Applied Circuits

Paragraph1 If there is a very simple circuit, use package "circuitikz". Random citation⁶ embeddeed in text. Random citation⁸ embeddeed in text. Random citation⁹ embeddeed in text. Random citation¹⁰ embeddeed in text.

⁶Doe, The Book without Title One, op. cit., p. 121.

⁷Smith, The Book without Title Two, op. cit., p. 47.

⁸George D. Greenwade. "The Comprehensive Tex Archive Network (CTAN)". in: TUGBoat 14.3 (1993), pp. 342–351, p. 47.
⁹Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTeX Companion. Reading, Massachusetts: Addison-Wesley, 1993, p. 47.

¹⁰Li, "The Comprehensive Animation Analysis Guide (CLARA)", op. cit., p. 47.

3 More Figures

This is section "More Figures", shown in Figure 3. Random citation 11 embeddeed in text. Random citation 12 embeddeed in text. Random citation 13 embeddeed in text.

```
> x <- 1:100

> y <- 3 + 0.25*x^(.315) + 2*x + 1.5*rnorm(x, 2, 15)

> par(mfrow=c(1,3))

> plot(x, y, main = "Linear Regression Plot")

> abline(lm(y^x))

> hist(y, breaks=10)

> hist(residuals(lm(y^x)), breaks=5)
```


Figure 2: XY Plot and Histograms

¹¹Smith, *The Book without Title Two*, op. cit., p. 121.

¹²Greenwade, "The Comprehensive Tex Archive Network (CTAN)", op. cit., p. 47.

 $^{^{13}\}mathrm{Goossens},$ Mittelbach, and Samarin, The LaTeX Companion, op. cit., p. 47.

3.1 Part MF1

Random citation¹⁴ embeddeed in text. This formula $f(x) = x^2$ is an example. $\frac{1}{\sqrt{x}}$, $\left(\frac{1}{\sqrt{x}}\right)$. $\alpha and A$, $\gamma and \Gamma$, $\delta and \Delta$ $\theta and \Theta$ $\Lambda and \lambda$, $\forall x \in X$, $\exists y < \epsilon$

$$\sum_{i=1}^{10} \sum_{j=1}^{i} t_i(i,j)$$

$$\iiint f(x,y,z) dx dy dz \, \log_a b$$

the quick brown fox jumps over a lazy dog

$$f(x) = x^2$$

$$g(x) = \frac{1}{x}$$

$$F(x) = \int_b^a \frac{y^{(.0073z_{i_j})}}{x} x^3$$

3.2 Part MF2

3.2.1 part mf2-1

$$\begin{bmatrix} 2 & 0 & 1 \\ 4 & 1 & 2 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 & \dots & 1 \\ 4 & 1 & \dots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ 6 & 2 & \dots & 3 \end{bmatrix}$$

3.3 Subsection MF3

4 Text

This is section "Text". Random citation 15 embeddeed in text. Random citation 16 embeddeed in text. Random citation 17 embeddeed in text.

4.1 Part T1 - Equations

We have write an equation her as Equation 1 and others, such as Equation 2, Equation 3, Equation 4 and Equation 5.

$$\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi. \tag{1}$$

$$VG(t) = f(T2C(t), NG(t), IGV(t)) \tag{2}$$

$$X_t = VG(t) \tag{3}$$

$$X_{t} = \delta + AR_{1}X_{t-1} + AR_{2}X_{t-2} + /dots + AR_{p}X_{t-p} + A_{t} - MA_{1}A_{t-1} - MA_{2}A_{t-2} - \dots - MA_{q}A_{t-q}$$
 (4)

¹⁴Smith, The Book without Title Two, op. cit., p. 77.

¹⁵Doe, The Book without Title One, op. cit., p. 47.

 $^{^{16}{\}rm Greenwade},$ "The Comprehensive Tex Archive Network (CTAN)", op. cit., p. 47.

¹⁷Goossens, Mittelbach, and Samarin, The LaTeX Companion, op. cit., p. 47.

$$p(CompressorStall|N_{CombinedFlights}) = \beta_0 + \sum_{i=1}^{p} \beta_i * AR_i + \sum_{j=1}^{q} \beta_{j+p} * MA_j + \epsilon)$$
 (5)

4.1.1 A Familar Equation

if

$$ax^2 + bx + c = 0$$

then

$$x = \frac{-b \pm \sqrt[2]{b^2 - 4ac}}{2a}$$

4.1.2 A Simple Laplace Transform

$$\mathcal{L}\{\cos\omega t\} = \int_0^\infty e^{-st} \cos\omega t dt = \left. \frac{e^{-st} \left(\omega \sin\omega t - s\cos\omega t \right)}{s^2 + \omega^2} \right|_0^\infty = \frac{s}{s^2 + \omega^2}$$

4.2 Part T2

Paragraph2 Random citation¹⁸ embeddeed in text. Random citation¹⁹ embeddeed in text.

 ${f Subparagraph}$ Random citation 20 embeddeed in text. Random citation 21 embeddeed in text. Random citation 22 embeddeed in text.

4.3 Illustration of ARIMA-LRM Method in My Thesis

Here is to illustrate how my ARIMA-LRM method calculate the LRM coefficients (of Equation 5) handle the ARIMA coefficients (from Equation 4):

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \\ y_{m+1} \\ \vdots \\ y_n \end{pmatrix} \sim \begin{pmatrix} AR_{1_1} & AR_{2_1} & \dots & AR_{p_1} & MA_{1_1} & MA_{2_1} & \dots & MA_{q_1} \\ AR_{1_2} & AR_{2_2} & \dots & AR_{p_2} & MA_{1_2} & MA_{2_2} & \dots & MA_{q_2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ AR_{1_n} & AR_{2_n} & \dots & AR_{p_n} & MA_{1_n} & MA_{2_n} & \dots & MA_{q_n} \end{pmatrix}$$

¹⁸Doe, *The Book without Title One*, op. cit., p. 17.

¹⁹Smith, The Book without Title Two, op. cit., p. 27.

²⁰Greenwade, "The Comprehensive Tex Archive Network (CTAN)", op. cit., p. 347.

²¹Goossens, Mittelbach, and Samarin, *The LaTeX Companion*, op. cit., p. 48.

²²Li, "The Comprehensive Animation Analysis Guide (CLARA)", op. cit., p. 48.

List of Figures

$\frac{1}{2}$	First Regression Plots	
List	of Tables	
1	Linear regression model for cats data.	3

References

Doe, John. The Book without Title One. Dummy Publisher First, 2100.

Goossens, Michel, Frank Mittelbach, and Alexander Samarin. *The LaTeX Companion*. Reading, Massachusetts: Addison-Wesley, 1993.

Greenwade, George D. "The Comprehensive Tex Archive Network (CTAN)". In: *TUGBoat* 14.3 (1993), pp. 342–351.

- Li, Clara M. "The Comprehensive Animation Analysis Guide (CLARA)". In: *DreamWorks* 14.3 (2019), pp. 123–456.
- Li, Noah C. "They All Play Minecraft". In: *Gaming Industry Analysis*. Ed. by Clara Li. Vol. 17. How It Works 07. Nothing Impossible. 12345 Building Road, Cedar Hills, Utah 84056: Electronics House, 2014, pp. 78 –82.

Seely, Margaret M. "They All Went To Islands". In: *Optic Fiber Communications*. Ed. by Hood Peter. Vol. 27. Smith, Johnston. *The Book without Title Two*. Dummy Publisher Second, 2200.