Congruence Closure

Slides by Jeremy Condit and Matthew Harren

Automated Deduction - George Necula - Lecture 12

Review

Automated Deduction - George Necula - Lecture 12

Theory of Equality.

- · The theory of equality with uninterpreted functions
- Symbols: =, ≠, f, g, ...
- Axiomatically defined:

reflexivity
$$\frac{}{E=E}$$
 $\frac{E_1=E_2-E_2=E_3}{E_1=E_3}$ transitivity

• Example of a satisfiability problem:

$$g(g(g(x)) = x \land g(g(g(g(x))))) = x \land g(x) \neq x$$

Automated Deduction - George Necula - Lecture 12

A Satisfiability Procedure for Equality

- · Definitions:
 - Let R be a relation on terms
 - The <u>equivalence closure</u> of R is the smallest relation that is closed under reflexivity, symmetry and transitivity
 - · An equivalence relation
- Equivalence classes
 - Given a term t we say that t* is its representative
 - Two terms t_1 and t_2 are equivalent iff $t_1^* = t_2^*$
 - Computable in near-linear time (union-find)
- The <u>congruence closure</u> of a relation is the smallest relation that is closed under equivalence and congruence

Automated Deduction - George Necula - Lecture 12

A Representation for Symbolic Terms

- · We represent terms as DAGs
 - Share common subexpressions
 - E.g. f(f(a, b), b):

- · Equalities are represented as dotted edges
 - E.g. f(f(a, b), b) = a
 - Called an E-DAG
- · We consider the transitive closure of dotted edges

Automated Deduction - George Necula - Lecture 12

Computing Congruence Closure

- We pick arbitrary representatives for all equivalence classes (nodes connected by dotted edges)
- For all nodes t = $f(t_1, ..., t_n)$ and s = $f(s_1, ..., s_n)$
 - If t_i* = s_i* for all i = 1..n (find)
 - We add an edge between t* and s* and pick one of them as the representative for the entire class (union)

Automated Deduction - George Necula - Lecture 12

Computing Congruence Closure (Cont.)

- Congruence closure is an inference procedure for the theory of equality
 - Always terminates because it does not add nodes
- The hard part is to detect the congruent pairs or terms
 - There are tricks to do this in O(n log n)
- We say that $f(t_1, ..., t_n)$ is represented in the DAG if there is a node $f(s_1, ..., s_n)$ such that $s_i^* = t_i^*$

Automated Deduction - George Necula - Lecture 12

Satisfiability Procedure for Equality

- 1. Given $F = \bigwedge_i t_i = t'_i \wedge \bigwedge_j u_j \neq u'_j$
- 2. Represent all terms in the same E-DAG
- 3. Add dotted edges for $t_I = t_{I'}$
- 4. Construct the congruence closure of those edges
- 5. Check that $\forall j. u_i^* \neq u_i^{\prime*}$

<u>Theorem</u>: F is satisfiable iff $\forall j. u_i^* \neq u_i^{\prime*}$

Automated Deduction - George Necula - Lecture 12

Example with Congruence Closure

• Consider: $g(g(g(x)) = x \land g(g(g(g(x))))) = x \land g(x) \neq x$

Automated Deduction - George Necula - Lecture 12

Congruence Closure. Discussion.

- The example from before has little to do with program verification
- · But equality is still very useful
- The congruence closure algorithm is the basis for many unification-based satisfiability procedures
 - We add the additional axiom:

$$f(E_1) = f(E_2)$$

 $E_1 = E_2$

- Or equivalently:

$$E_1 = E_2$$

 $f^{-1}(E_1) = f^{-1}(E_2)$

Automated Deduction - George Necula - Lecture 12

Soundness of Satisfiability Procedure

- To show: F satisfiable $\Rightarrow \forall j. u_i^* \neq u_i^*$
- \cdot Let ψ be an interpretation that satisfies F
 - We will show that t* = t'* \Rightarrow ψ (t) = ψ (t')
- · Proof by induction on the steps in congruence closure
- Base case: $(t, t') \in R$ comes from an equality in F
- · Inductive case:
 - Transivity: (t, t") \in R because (t, t'), (t', t") \in R
 - By induction, $\psi(t) = \psi(t')$ and $\psi(t') = \psi(t'')$, so $\psi(t) = \psi(t'')$
 - Congruence: $(f(t), f(t')) \in R$ because $(t, t') \in R$
 - By induction, $\psi(t) = \psi(t')$
 - $\psi(f(t)) = \psi(f)(\psi(t)) = \psi(f)(\psi(t')) = \psi(f(t'))$

Automated Deduction - George Necula - Lecture 12

Completeness of Satisfiability Procedure

- To show: $\forall j. u_i^* \neq u_i'^* \Rightarrow F$ satisfiable
- Must show a universe and an interpretation ψ s.t.
 - ∀ i. ψ(t_i) = ψ(t_i')
 ∀ j. ψ(u_i) ≠ ψ(u_i')
- (2)
- Pick universe that includes representatives from the E-DAG and a special term 0
- Define ψ as follows:
 - $\psi(x) = x^*$
 - $\psi(f)(n_1, ..., n_k) = f(n_1, ..., n_k)^*$ if $f(n_1, ..., n_k)$ is repr in E-DAG
 - $\psi(f)(n_1, ..., n_k) = 0$ otherwise
- (1) & (2) satisfied by construction

Automated Deduction - George Necula - Lecture 12

12

Completeness (cont'd)

- · Must show that ψ satisfies axioms
- · Congruence is the interesting case
 - Must show that $\psi(t)$ = $\psi(t') \Rightarrow \psi(f(t))$ = $\psi(f(t'))$
- Case 1: $\psi(t) = \psi(t') = 0$
- Then $\psi(f(t)) = \psi(f(t')) = 0$
- Case 2a: $\psi(t) = \psi(t') \neq 0$ and f(t) is represented
 - Then $f(t)^* = f(t')^*$, so $\psi(f(t)) = \psi(f(t'))$
- Case 2b: $\psi(t) = \psi(t') \neq 0$ and f(t) is not represented
 - Then f(t') is not represented, so $\psi(f(t)) = 0 = \psi(f(t'))$
- · We have a constructive proof of completeness!

Automated Deduction - George Necula - Lecture 12

13

Convexity of Uninterpreted Functions

- · The theory of uninterpreted functions is convex
- · Proof:
 - Let E be a conjunction of equalities
 - Let E1 through En be equalities
 - Suppose that E entails $E_1 \vee ... \vee E_n$
 - Then $E \wedge \neg E_1 \wedge ... \neg E_n$ is unsatisfiable
 - Now run congruence closure
 - · Consider the first contradiction that we find
 - Now we have E_i such that $E \wedge \neg E_i$ is unsatisfiable!
 - Thus E entails E, alone

Automated Deduction - George Necula - Lecture 12

14

Theory of Lists

- · Add new symbols: car, cdr, cons
- · Add new axioms:
 - ∀x,y. car(cons(x, y)) = x
 ∀x,y. cdr(cons(x, y)) = y
- Extend congruence closure algorithm to close over these new axioms as well
- · Is the extended satisfiability procedure complete?

Automated Deduction - George Necula - Lecture 12

List Example

• Consider: $x = cons(u, v) \land cons(car(x), cdr(x)) \neq x$

- We've shown that cons(car(x), cdr(x)) = x
 - Thus we prove the overall formula to be unsatisfiable

Automated Deduction - George Necula - Lecture 12

16

List Example 2

• Consider: $cons(u, v) = cons(x, y) \land x \neq u$

- · We did not discover any contradictions
 - But this formula is unsatisfiable!
- For any interpretation $\boldsymbol{\psi}$ that satisfies the axioms:
 - $\psi(x) = \psi(car)(n_1) = \psi(car)(n_2) = \psi(u)$
 - The algorithm does not discover this equality
 - Thus our algorithm is incomplete!

Automated Deduction - George Necula - Lecture 12

Restoring Completeness

- · Two possible solutions:
- Solution 1: Add new axioms
 - \forall x,y,u,v. cons(u, v) = cons(x, y) ⇒ x = u ∧ y = v
 - This axiom suffices for lists
 - But other theories (e.g. arrays) would need an infinite number of these axioms
- · Solution 2: Add new nodes to the graph during closure
 - If $cons(x, y) \in G$, then $car(cons(x, y)) \in G$
 - If $cons(x, y) \in G$, then $cdr(cons(x, y)) \in G$
 - These additional closure rules suffice for lists

Automated Deduction - George Necula - Lecture 12

18

List Example 2 (revisited)

- Consider: $cons(u, v) = cons(x, y) \land x \neq u$
- · Add new nodes...

- Now we discover all equalities, including x = u
- · This new satisfiability procedure is complete!

Automated Deduction - George Necula - Lecture 12

19

21

Closure

Let's define closure more formally:

- close(G) is the closure of graph G with respect to the axioms.
- · G+t is graph G extended with term t.
- We require that if G is closed, then Property 1: close(G+t) terminates.

Property 2: Let G' = close(G+t). $\forall n \in G$. $repr_G(n) \equiv repr_{G'}(n)$

- Property 2 says that close(G+t) must add no new edges between existing nodes.
 - The weaker statement $\forall n_i, n_2 \in G$. $repr_G(n_1) \equiv repr_G(n_2)$ iff $repr_{G'}(n_1) \equiv repr_{G'}(n_2)$ would also encode this requirement, but the strong Property 2 helps us prove completeness.

Automated Deduction - George Necula - Lecture 12

Outline

- We require that if G is closed, then Property 1: close(G+t) terminates. Property 2: Let G' = close(G+t). $\forall n \in G$. $\text{repr}_G(n) \equiv \text{repr}_G(n)$
- In the rest of this lecture, we will:
 - Prove completeness, assuming that we have been given a closure operation that satisfies these properties.
 - 2. Derive a suitable closure operation for Lists.
 - 3. And do the same for Arrays.

Automated Deduction - George Necula - Lecture 12

Completeness

- Consider E ∧ D
 - E is conjunction of equalities
- D is a conjunction of disequalities
- Let G_0 be a closed graph for E
 - Using any closure operation that satisfies Property 1 and Property 2.
- Statement of completeness:

if \forall "x \neq y" \in D . $repr_{\mathcal{G}_0}(x)\neq repr_{\mathcal{G}_0}(y)$ then E \wedge D is satisfiable

Automated Deduction - George Necula - Lecture 12

22

Proof of Completeness

- G_0 was built from E and satisfies D.
- · Define an order for the universe U of terms.
- Define the family $G_{i+1} \triangleq close(G_i + t_i)$, where t_i is the smallest term not in G_i
- $\forall i. G_i$ is closed. (by def'n of G_i)
- $\forall i. G_i$ satisfies D. (by closure Property 2)
- $\forall t \in U$. $\exists k$. t is represented in G_k .

(because U must be countable for Nelson-Oppen)

• Now let $\Psi(t) = \operatorname{repr}_{Gk}(t)$

Automated Deduction - George Necula - Lecture 12

23

List closure

- Recall the axioms for car, cdr, cons:
- $\forall x,y. car(cons(x,y)) = x$
- ∀x,y. cdr(cons(x, y)) = y
- Close 6 + t with respect to these axioms, where t is not yet represented in G.
- Case: G + cons(x, y)

- No axioms triggered, so Property 2 holds

Automated Deduction - George Necula - Lecture 12

24

List closure (cont'd)

Case: 6 + car(x)

- If x is a cons node, or if x equals a cons node, then add edges.
- · Problem: we've violated Property 2.

Automated Deduction - George Necula - Lecture 12

1

25

List closure, 2nd attempt

- · Add two closure rules
 - Rule 1: if $cons(x,y) \in G$, then $car(cons(x,y)) \in G$.
 - Rule 2: if $cons(x,y) \in G$, then $cdr(cons(x,y)) \in G$.
- · Now close w.r.t. both the axioms and the closure rules.
- Case: 6 + car(x)

- No axioms triggered.
 - x can't be a cons node, or else Rule 1 would already have added the car.

Automated Deduction - George Necula - Lecture 12

List closure, 2nd attempt (cont'd)

Case: G + cons(x, y)

- · We also add a car and a cdr.
- The new nodes are equal to at most one equivalence class in G. (Otherwise, cons(x, y) would already be represented.) So Property 2 holds.

Automated Deduction - George Necula - Lecture 12

27

List closure, summary

- Add closure rules specifying when to add extra nodes to the graph.
- The extra nodes ensure we'll never have to join existing equivalence classes.
- We must also show that Property 1 (termination) holds.
 because we can't repeat patterns.
- Using these rules, the decision procedure is complete, by the proof shown earlier.
- · Claim: this theory is convex.

Automated Deduction - George Necula - Lecture 12

28

Arrays

- Axiom 1: sel(upd(a,i,e),i) = e
- Axiom 2: $i \neq j \Rightarrow sel(upd(a,i,e),j) = sel(a,j)$
- These rules have the same completeness problem as Lists.
- · What nodes can cause us to violate Property 2?
- Case: G + upd(a,i,e)
 - Nothing to do here, since the axioms only fire for sel.

Automated Deduction - George Necula - Lecture 12

29

Arrays (cont'd)

Axiom1: sel(upd(a,i,e),i) = eAxiom2: $i \neq j \Rightarrow sel(upd(a,i,e),j) = sel(a,j)$

- Case: G + sel(a,i)
- There are three ways this could fire an axiom. Here's Axiom1:

• So add Rule1: $upd(a,i,e) \in G \Rightarrow sel(upd(a,i,e),i) \in G$

Automated Deduction - George Necula - Lecture 12

- We need three new closure rules that add nodes "early".

- earry . Rule1: $upd(a,i,e) \in G \Rightarrow sel(upd(a,i,e),i) \in G$ Rule2: $sel(upd(a,i,e),j) \in G \Rightarrow sel(a,j) \in G$ Rule3: $(upd(a,i,e),j) \in G \land sel(a,j) \in G$ Note that if i = j, then the node added by Rule3 is the same as the one added by Rule1.
- · What about convexity?
 - Consider upd(upd(a,i₁,x), i₂, x) = upd(a,j,x) This implies i_1 = $i_2 \lor sel(a,i_1)$ = x $\lor sel(a,i_2)$ = x
 - So arrays are complete (with our extra rules), but not convex for Nelson-Oppen.
 - Axiom2 introduces a disequality. We'd need a case analysis to handle it.

Automated Deduction - George Necula - Lecture 12