DIFFERENTIAL EQUATION MIDTERM

Dept. of Elec. Eng., National Taiwan University

Total=105 pts

Nov 21, 2002

1. (27 %) Solve the differential equations

(a)
$$e^x y^2 \frac{dy}{dx} = e^{-y} + e^{-2x-y}$$
 (5%)

(b)
$$2xy\frac{dy}{dx} + 3x + 2y^2 = 0$$
 (8%)

(c)
$$\frac{dy}{dx} = \sin(2x + y) \tag{7\%}$$

(d)
$$xy' = y \ln(xy) \tag{7\%}$$

- 2. (8%) If $y_1 = \frac{2}{x}$ is a known solution of the differential equation $\frac{dy}{dx} = -\frac{4}{x^2} \frac{y}{x} + y^2$ Find a one-parameter family of solutions for the differential equation.
- 3. (12%) Find the general solution for the following differential equation.

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = \frac{\ln(x^3)}{x}$$

4. (7%) An LR series circuit has a variable inductor with the inductance defined by

$$L = \begin{cases} 1 - \frac{t}{10} & \dots & 0 \le t < 10 \\ 0 & \dots & t \ge 10 \end{cases}$$

Find the current i(t) if the resistance is 0.2 ohm, the impressed voltage is E(t)=4 and i(0)=0.

- 5. (23%) Suppose $f_1(x) = x^2$ and $f_2(x) = x 1$.
 - (a) Please find an operator L_1 which can annihilate $f_1(x)$ and $f_2(x)$ simultaneously and find the general solution of $L_1y(x) = 0$. (4%)
 - (b) If f₁(x) and f₂(x) are two independent solutions of some differential equation and their linear combination is also a solution, please find the associated differential equation L₂y(x) = 0.
 (7%)
 - (c) Please find a finite range where the solution subject to two initial conditions of $L_2y(x) = 0$ is unique. (5%)
 - (d) If the coefficient of the highest derivative in $L_2y(x)$ is 1, please find a particular solution of $L_2y(x) = x(x-2)\sin x$. (7%)

6. (10%) The potential V(r) in the coaxial cable showing in Figure 1 is determined from the boundary-value problem:

$$r\frac{d^2V}{dr^2} + \frac{dV}{dr} = 0$$
, $a < r < b$, $V(a) = V_1$, $V(b) = V_2$.

Find the solution of V(r)

- 7. (18%)
 - (a) Show that the solution of the initial-value problem

$$\frac{d^2x}{dt^2} + \omega^2 x = 2\cos^2(\gamma t) - 1, \qquad x(0) = 0, \quad x'(0) = 0$$
is
$$x(t) = \frac{-2}{\omega^2 - 4\gamma^2} \sin\left[(\gamma - \frac{\omega}{2})t\right] \sin\left[(\gamma + \frac{\omega}{2})t\right]$$
(Hint: $\sin u * \sin v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v)\right] *$) (8%)

(b) If we define $\varepsilon = \gamma - \frac{\omega}{2}$, show that when ε is small an approximation solution is $X(t) = \frac{1}{4\varepsilon\gamma}\sin(\varepsilon t)\sin(2\gamma t)$ (7%)

(c) Find the dash curve (or envelope) E(t) of the graph of x(t) in Figure 2 (3%)

Figure 1

Figure 2