Лабораторная работа 2.3.1

Получение и измерение вакуума при турбомолекулярной откачке

Аннотация

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

Теоретические сведения

В физике вакуумом называется состояние газа, при котором характерная длина свободного пробега молекул в газе λ сравнима по порядку величины с характерным линейным размером сосуда d, в котором газ находится. В технике вакуумом называют состояние газа, при котором его давление меньше атмосферного ($P < P_{\text{атм}}$), различая три основных типа:

- 1. Низкий, когда $\lambda < d$
- 2. Срединй, когда $\lambda \sim d$
- 3. Высокий, когда $\lambda > d$

Экспериментальная установка

Установка состоит из форвакуумного баллона (Φ Б), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (Φ H) и соединительных кранов K_1, K_2, \ldots, K_6 . Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема экспериментальной установки

Назначение кранов:

- 1. Используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом
- 2. Используется для соединения форвакуумного насоса с установкой или атмосферой
- 3. Отделяет высоковакуумную часть установки от форвакуумной
- 4. Соединяет между собой колена масляного манометра
- 5. и 6. стоят по концам капилляра и соединяют его с форвакуумной и высоковакуумной частями установки.

Форвакуумный насос. В цилинадгрической полости корпуса расположен эксцентрично ротор так, что он посотянно соприкасается своей верхней частью с корпусом. В диаметральный разрез ротора вставлены две пластины, раздвигаемые пружиной и плотно прижимаемые к поверхности полости. Они разделяют объём между ротором и корпусом на две части. В процессе вращения ротора в одну из частей откачиваемый газ поступает, а из другой выталкивается.

Рис. 2: Принцип действия форвакуумного насоса

Диффузионный насос. Откачивающее действие основано на внедрении молекул разреженного воздуха в струю паров масла. Попавшие в струю молекулы увлекаются ею и уже не возвращаются назад. На прежнем их месте образуется пустота, которая немедленно заполняется следующими порциями газа, увеличивая степень разрежения газа в окрестности струи и оказывая таким образом сильне откачивающее воздействие на весь газ в откачиваемом объёме. Скорость откачки диффузионных насосов в сотни и тысячи раз превосходит скорость откачки форвакуумных насосов.

Масло, налиотое в сосуд A, подогревается электической печкой. Пары масла поднимаются по трубе B и вырываются из сопла B. Струя паров увлекает молекулы газа, которые поступают через трубку BB. Дальше смесь попадает в вертикальную трубу Γ . Здесб масло осаждается на стенках трубы и маслообменников и стекает вниз, а оставшийся газ через трубу ΦB откачивается форвакуумным насосом.

(а) Схема работы диффузионного насоса

В нашей установке диффузионый насос имеет две ступени и соответственно два сопла. Первая ступень обогащается с помощью второй печи и плотность её струи выше, поэтому она начинает откачивать при более высоком давлении в форвакуумной части установки. Во второй ступени плотность струи меньше и она начинает откачивать при меньшем давлении.

Масляный манометр представляет собой U-образную трубку, до половины наполненную вязким маслом, обладающим весьма низким давлением насыщенных паров. Так как плотность масла мала, при помощи манометра можно измерить только небольшие разности давлений.

Ионизационный манометр представляет собой трехэлектродную лампу (3a). Электроны испускаются накаленным катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Далее они замедляются полем коллетора и возвращаются к катоду. На своём пути электроны ионизируют молекулы газа. Ионы притягиваются полем коллектора.

Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений і обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов? имеем:

$$-VdP = (PW - \sum_{i} Q_i)dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm np} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\rm np} = (P_0 - P_{\rm np}) \exp\left(-\frac{W}{V}t\right) \tag{3}$$

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \dots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение

существеннее определяется взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu} \frac{P_2 - P_1}{l}}$$
 (5)

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P=P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{\text{\tiny OTB}} = \left(\frac{dV}{dt}\right)_{\text{\tiny OTB}} = S\frac{\bar{v}}{4} \tag{7}$$

Для воздуха при комнатной температуре $\bar{v}/4=110~{\rm m/c}=11~{\rm \pi/c\cdot cm^2}.$

Результаты измерений и обработка данных

Эксперимент 1				Эксперимент 2			
Улучшение		Ухудшение		Улучшение		Ухудшение	
0	87	10	4.2	0	63	0	4.2
2	80	20	6	2	50	10	6.4
4	63	30	9.8	4	31	20	10
6	43	40	13	6	22	30	14
7	29	50	16	8	16	40	18
10	20	60	20	10	13	50	22
12	15	70	23	12	9.4	60	26
14	11	80	27	14	8.1	70	30
16	9.2	90	31	16	7	80	34
18	7.4	100	34	18	6.1	90	38
20	6.6	110	37	20	5.7		
22	6.1	120	42	22	5.4		
24	5.7	130	46	24	5.1		
		140	50				
		150	54				
		160	57				
		170	61				
		180	66				

Построение графика и вычисление W высоковакуумного насоса

Мы получили резултаты давления p, подчиняющиеся формуле (3). Для того, чтобы получить линейную зависимость, проведём следующие преобразования:

$$p \longrightarrow f(P(t)) = \ln(P - P_{\text{np}}) - \ln(P_1) = -\frac{W}{V}t$$

В реальности точно опредлеить предельное давление невозможно, поэтому зависимость имеет более сложный вид:

$$f(P(t)) = \ln(P + \Delta P) - \ln(P_1)$$

где ΔP – разница измеренного предельного давления с «идеальным» для формулы.

$$f(t) = \ln \left[P_1 \exp\left(-\frac{W}{V}t\right) + \Delta P \right] - \ln P_1 \tag{8}$$

Разложив по формуле Тейлора до O(t) для маленьких t, получаем:

$$f(t) \approx -\frac{P_1(W/V)}{P_1 + \Delta P}t + \ln\left(\frac{P_1}{P_1 + \Delta P}\right)$$

Заметим, что при $\Delta P \ll P_1$ зависимость переходит в обычную пропорциональность f(t) = (W/V)t. В нашей работе $P_1/\Delta P \sim 10^2$, можно использовать это приближение.

Построим график для экспериментальных точек, применив эти преобразования (рис. 3).

(а) Улучшение вакуума 1

(b) Улучшение вакуума 2

Рис. 3: Результаты экспериментов с применённой к ним f(P)

	k, c^{-1}	σ_k, c^{-1}	V, cm ³	σ_V , cm ³	
1	-0.185	0.006	1180	7	
2	-0.183	0.006	1100	'	

$$\sigma_k = \sqrt{(\sigma_k^{\text{chyq}})^2 + (\sigma_k^{\text{chct}})^2}, \qquad \sigma_k^{\text{chct}} = k\sqrt{\varepsilon_V^2 + \varepsilon_P^2}$$

$$\sigma_{k_1} = \sqrt{0.003^2 + 0.005^2} = 0.006 \text{ c}^{-1}, \qquad \sigma_{k_2} = \sqrt{0.003^3 + 0.005^2} = 0.006 \text{ c}^{-1}$$

$$P_1V_1 = P_2V_2 \Rightarrow V_2 = \frac{P_1V_1}{P_2} = 2122 \text{ cm}^3, \qquad P_2V_2 = P_3V_3 \Rightarrow V_3 = \frac{P_2V_2}{P_3} = 3302 \text{ cm}^3, \qquad V_{\text{BB}} = V_3 - V_2 = 1180 \text{ cm}^3$$

$$\sigma_{V_2} = V_2\sqrt{\left(\frac{\sigma_{P_2}}{P_2}\right)^2 + \left(\frac{\sigma_{P_1}}{P_1}\right)^2} \approx 4 \text{ cm}^3 \qquad \sigma_{V_3} = V_3\sqrt{\left(\frac{\sigma_{P_2}}{P_2}\right)^2 + \left(\frac{\sigma_{P_3}}{P_3}\right)^2 + \left(\frac{\sigma_{V_2}}{V_2}\right)^2} \approx 6 \text{ cm}^3$$

$$\sigma_{V_{\text{BB}}} = \sqrt{(\sigma_{V_3})^2 + (\sigma_{V_2})^2} = 7 \text{ cm}^3$$

Тогда получаем:

Гогда получаем:
$$k = -\frac{W}{V}$$

$$W = -kV = \frac{0.185 + 0.183}{2} \cdot 1183 \frac{\mathrm{cm}^3}{c} \approx 218.3 \frac{\mathrm{cm}^3}{c}, \qquad \sigma_W = W\sqrt{\varepsilon_k^2 + \varepsilon_V^2} = 218.3\sqrt{0.032^2 + 0.005^2} = 7.1 \frac{\mathrm{cm}^3}{c}$$

$$W = 218.3 \pm 7.1 \frac{\mathrm{cm}^3}{c}$$

Вычисление величины потока $Q_{\rm H}$

$$V_{\scriptscriptstyle \rm BB} dP = (Q_{\scriptscriptstyle \rm I\!I} + Q_{\scriptscriptstyle \rm H}) dt$$

 $Q_{\rm д} \ll Q_{\rm h},$ поэтому можно записать:

$$\frac{dP}{dt} = \frac{Q_{\rm H}}{V_{\rm BB}}$$

P от t зависит линейно, поэтому значение dP/dt можно найти с помощью метода наименьших квадратов.

Рис. 4: Результаты экспериментов

Получаем:

$$k = \frac{k_1 + k_2}{2} = \frac{0.386 + 0.366}{2} = 0.376 \Rightarrow \boxed{Q_{\text{h}} = kV_{\text{bb}} = 443.7 \pm 4.1 \ \frac{\text{Topp} \cdot \text{cm}^3}{\text{c}}}$$

$$\sigma_Q = Q_{\text{h}} \sqrt{\varepsilon_k^2 + \varepsilon_V^2} = 4.1 \ \frac{\text{Topp} \cdot \text{cm}^3}{\text{c}}$$

$$\varepsilon_{k_1} \approx \varepsilon_{k_2} = \varepsilon_k = \sqrt{(\sigma_k^{\text{chyq}})^2 + (\sigma_k^{\text{chct}})^2}/k = \sqrt{0.004^2 + 0.008^2}/0.366 = 0.008$$

$$\varepsilon_V = 6/1180 = 0.005$$

Оценка пропускной способности трубы

$$d \sim 10^{-2} \; \mathrm{m}, \qquad L \sim 1 \; \mathrm{m}, \qquad \sqrt{\frac{RT}{\mu}} \sim 500 \frac{\mathrm{m}}{\mathrm{c}}$$

По формуле (6), получаем:

$$U_{\mathrm{Tp}} \sim 1000 \ \mathrm{cm}^3/\mathrm{c}$$

Расчёт производительности насоса

$$\begin{cases} P_{\text{пр}}W = Q_1 \\ P_{\text{уст}}W = Q_1 + d(PV)_{\text{капилл}}/dt \end{cases} \xrightarrow{\text{формула (5)}} W = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{\text{фB}}}{L(P_{\text{уст}} - P_{\text{пр}})} \approx 22.15 \; \frac{\text{Topp} \cdot \text{cm}^3}{\text{c}}$$
$$r = d/2 = 0.4 \; \text{cm} \qquad L = 10.8 \; \text{cm}$$

Обсуждение результатов

В результате проделанной работы были получены значения объёмов форвакуумнойи высоковакуммной частей установки:

- $V_{\Phi B} = (2073 \pm 4) \text{ cm}^3, \ \varepsilon_{V_{\Phi B}} = 0.01$
- $V_{\rm BB} = (1180 \pm 6) \text{ cm}^3, \ \varepsilon_{V_{\rm BB}} = 0.01$

Также была рассчитана скорость откачки высоковакуумным насосом:

$$W = 218.3 \pm 7.1 \frac{\text{cm}^3}{c}, \ \varepsilon_W = 0.03$$

Оценено количество газа, поступающего из насоса назад в высоковакуумную часть:

$$Q_{\text{\tiny H}} = 443.7 \pm 4.1 \; \frac{\text{Topp} \cdot \text{cm}^3}{c}, \; \varepsilon_{Q_{\text{\tiny H}}} = 0.01$$

Во втором эксперименте скорость откачки уменьшилась, что соответствует формуле (4), т.к. увеличилось количество проводящих элементов.

Выводы

В ходе данной работы:

- измерены объёмы форвакуумной и высоковакуумной частей установки;
- получен высокий вакуум
- определены скорости откачки системы в стационарном режиме по ухудшению и улучшению вакуума;
- проверены теоретические зависимости, связанные с течением газа:
- проверено несколько методик по измерению производительности высоковакуумного насоса:
- измерено значение производительности насоса с точностью $\varepsilon = 0.03$.