GAS LEAKAGE MONITORING AND ALERTING SYSTEM FOR INDUSTRIES

NALAIYA THIRAN PROJECT BASED LEARNING

on

HX8001 -PROFESSIONAL READINESS FOR INNOVATION EMPLOYABILITY AND ENTREPRENEURESHIP (PRIEE)

TEAM ID: PNT2022TMID23542

Submitted by

DEEPAK KRISHNA P (113219041022)

VISHAL S R (113219041303)

BHARATH KUMAR S (113219041020)

SANTHOSH.S (113219041098)

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66

(An Autonomous Institution, Affiliated to Anna University, Chennai)

November 2022

VELAMMAL ENGINEERING COLLEGE **CHENNAI-66**

The Wheel of Knowledge rolls on!

BONAFIDE CERTIFICATE

Certified that this project report, "GAS LEAKAGE MONITORING AND **ALERTING SYSTEM FOR INDUSTRIES"** is the bonafide work of "DEEPAK" KRISHNA P,VISHAL S R,BHARATH KUMAR and SANTHOSH.S" who carried out the project work under my supervision and industry mentor.

SIGNATURE

Dr. S. MARY JOANS

PROFESSOR & HEAD OF THE DEPARTMENT

Department of Electronics & **Communication Engineering** Velammal Engineering College Ambattur-Redhills road. Chennai -66

SIGNATURE

Ms ANGELINA ROYAPPA

MENTOR ASSISTANT PROFESSOR I

Department of Electronics & Communication Engineering Velammal Engineering College Ambattur-Redhills road,

Chennai-66

CERTIFICATE OF EVALUATION

College Name : Velammal Engineering College

Department : Electronics & Communication Engineering

Semester : VII Semester

PROJECT MEMBERS	TITLE OF THE PROJECT	MENTOR
1.DEEPAK KRISHNA P (113219041022) 2.VISHAL S R (113219041303) 3.BHARATH KUMAR S (113219041020) 4.SANTHOSH S (113219041098)	GAS LEAKAGE MONITORING & ALERTING SYSTEM FOR INDUSTRIES	Ms ANGELINA ROYAPPA ASSISTANT PROFESSOR I (ECE)

The report of the project work submitted by the above students in the partial fulfillment for the award of Bachelor of Engineering Degree in **ELECTRONICS AND COMMUNICATION ENGINEERING** of Anna University, Chennai was evaluated and confirmed to be the report of the work done by the above students and then evaluated.

Submitted for Internal Evaluation held on_/___/2022.

MENTOR EVALUATOR

INDEX

CHAPTER	TITTLE
1	ABSTRACT
2	INTRODUCTION
3	OBJECTIVE
4	IDEATION PHASE
	4.1.1 Literature Survey
	4.1.2 Empathy Map
	4.1.3 Problem Statement
5	PROJECT DESIGN PHASE -1
	5.1 Proposed Solution Fit
	5.2 Proposed Solution
	5.3 Solution Architecture
6	Project Design Phase -2
	6.1 Customer Journey Map
	6.2 Data Flow Diagram
	6.3 Functional Requirements
	6.4 Technology Architecture

7	Project Development Phase
	7.1 Sprint-1
	7.2 Sprint-2
	7.3 Sprint-3
	7.4 Sprint-4
8	PROJECT PLANNING
8	PROJECT PLANNING 8.1 Milestone and Activity List
8	
9	8.1 Milestone and Activity List

10 RESULT

11 CONCLUSION AND FUTURE SCOPE

11.1 CONCLUSION

11.2 FUTURE SCOPE

ABSTRACT

- The Internet of things (IoT) is the system of gadgets, vehicles, and home machines that contain hardware, programming, actuators, and network which enables these things to interface, collaborate and trade information. IoT includes broadening Internet network past standard device, for example, work areas, workstations, cell phones and tablets, to any scope of generally stupid or non-web empowered physical device and ordinary articles.
- A gas spill alludes to a hole of petroleum gas or different vaporous item from a
 pipeline or other regulation into any territory where the gas ought not be available.
 Since a little hole may steadily develop a hazardous convergence of gas, spills are
 perilous.
- Notwithstanding causing flame and blast dangers, holes can slaughter vegetation, including huge trees, and may discharge amazing ozone harming substances to the environment. The gas leakage detection system can constantly monitor the gas leak with the help of the sensors.

ZigBee is used to feed real time sensor data over the cloud. The sensor monitors, detects and raises an alarm whenever a gas leak or fire broke out condition is detected. On cloud, analyze and store the data and communicate wirelessly for further analysis is possible. Anyone can access the leakage data from anywhere using any Internet enabled device like PC, tablet or smart phone and analyze

INTRODUCTION

The Internet of Things is a developing theme of specialized, social, and monetary centrality. Customer items, tough goods, cars and trucks, modern and utility segments, sensors, and other regular articles are being joined with Internet availability and amazing information systematic capacities that guarantee to change the manner in which we work, live, and play. Projections for the effect of IoT on the Internet and economy are amazing, with some foreseeing upwards of 100 billion associated IoT gadgets and a worldwide financial effect of more than \$11 trillion by 2025. The Internet of Things (IoT) is an essential theme in innovation industry, strategy, and designing circles. This innovation is encapsulated in a wide range of arranged items, frameworks, and sensors, which exploit headways in processing power, gadgets scaling down, and organize interconnections to offer new capacities. The expansive scale usage of IoT gadgets guarantees to change numerous parts of manner in which we live. For shoppers, new IoT items like Internet-empowered machines, home mechanization parts, and vitality the executive's gadgets are pushing us toward a dream of the "savvy home", offering greater security and vitality effectiveness. IoT frameworks like arranged vehicles, savvy traffic frameworks, and sensors implanted in streets and scaffolds draw us nearer to "brilliant urban areas", which help limit clog and vitality utilization. IoT innovation offers the likelihood to change horticulture, industry, and vitality creation and dissemination by expanding the accessibility of data along the esteem chain of generation utilizing arranged sensors.

OBJECTIVE

The design of a sensor-based automatic gas leakage detector with an alert and control system has been proposed. This is an affordable, less power using, lightweight, portable, safe, user friendly, efficient, multi featured and simple system device for detecting gas. Gas leakage detection will not only provide us with significance in the health department but it will also lead to raise our economy, because when gas leaks it not only contaminates the atmosphere, but also wastage of gases will hurt our economy. The need for ensuring safety in workplaces is expected to be the key driving force for the market over the coming years.

PROJECT DESIGN & PLANNING

Ideation Phase:

Literature Survey

Sr.	Paper Title	Author Name	Publication	Result
No			Year	
1	Internet of	Rohan Chandra	2017	This paper choice of
	Things (IOT)	Pandey, Manish		using a real time gas
	Based Gas	Verma, Lumesh		leakage monitoring and
	Leakage	Kumar Sahu		Sensing the output
	Monitoring and			levels of gas has been
	Alerting System			clearly observed by the
	with MQ-2			help of this system.
	Sensor			
2	Gas Leakage	Asmita Varma,	2017	The proposed gas
	Detection and	Prabhakar S,		leakage detector is
	Smart Alerting	Kayalvizhi		promising in the Field
	and Prediction	Jayavel		of safety.
	Using IoT			
3	The proposed gas	Chaitali Bagwe,	2018	The system provides
	leakage detector	Vidya Ghadi,		constant monitoring and
	is promising in	Vinayshri Naik,		detection of gas leakage
	the Field of	Neha Kunte		along with storage of
	safety.			data in database for
				predictions and analysis.
				The IOT components
				used helps in making
				the system much more
				cost effective in

				comparison with
				traditional Gas detector
				systems.
	T. C.	D 1 C1 1	2010	•
4	Internet of	Rohan Chandra	2018	A discussion on how the
	Things (IoT)	Pandey, Manish		aims and objectives are
	Based Gas	Verma, Lumesh		met is presented. An
	Leakage	Kumar Sahu,		overall conclusion IOT
	Monitoring and	Saurabh		based toxic gas detector
	Alerting System	Deshmukh		is it has become more
	with Mq-6			efficient, more
	Sensor			applicable to today's
				applications and
				smarter.
5	Gas Leakage	Shital Imade,	2018	In this paper we use
	Detection and	Priyanka		IOT technology for
		Rajmanes,		enhancing the existing
		Aishwarya		safety standards. While
	IoT	Gavali		making this prototype
	101	Guvan		
				has been to bring a
				revolution in the field of
				safety against the
				leakage of harmful and
				toxic gases

Empathy Map

PROBLEM STATEMENT

Liquid Petroleum Gas (LPG) is a highly flammable chemical that consists of mixture of propane and butane. LPG is used for cooking at home, restaurant, and certain use for industry. They have certain weaknesses that make the gas leakage occur. The leakage of gases only can be detected by human nearby and if there are no human nearby, it cannot be detected. But sometimes it cannot be detected by human that has a low sense of smell. Thus, this system will help to detect the presence of gas leakage.

- Furthermore, gas leakage can cause fire that will lead to serious injury or death and it also can destroy human properties. This system was developed by using IoT to give real-time response to the user and the nearest fire station.
- LPG gas cylinders are used in our homes for various purposes. Cooking and heating water are a major part of the same.
- Hence it would not be wrong to say that it is an integral part of our life.
 However, there have been cases in the past about accidents due to gas leakage. The basic objective of the project is to provide a security system to prevent a caused due to the leakage of gas.

Proposed Solution:

S.N No.	Parameter	Description
1.	Problem Statement	Liquid Petroleum Gas (LPG) is a highly
	(Problem to be solved)	flammable chemical that consists of
		mixture of propane and butane. LPG is
		used for cooking at home, restaurant, and
		certain use for industry. They have certain
		weaknesses that make the gas leakage
		occur. The leakage of gases only can be
		detected by human nearby and if there are
		no human nearby, it cannot be detected.
		But sometimes it cannot be detected by
		human that has a low sense of
		smell.Furthermore, gas leakage can cause
		fire that will lead to serious injury or death
		and it also can destroy human properties.
2.	Idea / Solution description	When the gas leakage is detected it
		will alert the user by alarm/buzzer
		It can send the sms to the user also
		We can also make the exhaust fan
		on while during the gas leakage
		Detection of the gas leakage
		is important and halting
		leakage is important equally.
3.	Novelty / Uniqueness	instant detection of gas leakage
		□ send sms to the concerned
		user
		easy to access and operate

4.	Social Impact / Customer	Cost efficient
	Satisfaction	 Easy to access and operate
		• Easy installation and detect the
		gas leakage fastly
		Prevent fires and explosions
5.	Business Model (Revenue	• This project is mainly for
	Model)	Industries so we can visit to the
		industries and explain them about
		the benefits of our
6	Scalability of the Solution	Our end to end wireless gas
•		monitoring system uses wireless
		sensors to detect the presence of
		toxic gases . The solution can hence
		be scaled up for flexible functionality
		and offer great extendibility for
		multi-purpose usage.
		We can also upgraded it in future
		like making exhaust fan on while gas
		is detected (or) like making
		automatically close the valve of gas
		cylinder when thegas is start to leak

6. CUSTOMER CONSTRAINTS

CS

J&P

TR

What constraints prevent your customers from taking action or limit their choices of solutions? i.e. spending power, budget, no cash, network connection, available

High budget in installing other products make them to move far from modern technologies.

5. AVAILABLE SOLUTIONS

Which solutions are available to the customers when they face the problem or need to get the job done? What have they tried in the past? What pros & cons do these solutions have? Le. pen and paper is an alternative to digital notetaking.

Then sensor-enabled solution helps prevent the high risk of gas explosions and affecting any casualties within and outside the premises, the gas sensors help detect the concentration of the gases present in the atmosphere to avoid hazardous consequences like fire breakouts.

2. JOBS-TO-BE-DONE / PROBLEMS

Which jobs-to-be-done (or problems) do you address for your customers? There could be more than one; explore different sides.

most of gas explosions are caused by undetected gas leakage in the pre-detection condition. so that gas leakage monitoring and altering system is needed

the purpose of this system is to detect gas leakage, neutralize it, and prevent the explosion.

9 PROBLEM ROOT CAUSE

What is the real reason that this problem exists?
What is the back story behind the need to do
this job?
i.e. customers have to do it because of the change in
regulations.

when the workers failed to monitor properly,the gas can cause high risk to their health or the properties of the industry.

7 REHAVIOUR

RC

What does your customer do to address the problem and get the job done?

Le. directly related: find the right solar panel installer, calculate usage and benefits; indirectly associated: customers spend free time on volunteering work (i.e. Greenpeace)

using manpower as the souce of monitoring the leakage causus high hazards. if the gas leaked is heavily toxic,there is a chance

of causing hereditary health issues too.

3. TRIGGERS

strong

What triggers customers to act? i.e. seeing their neighbour installing solar panels, reading about a more efficient solution in the news.

most of gas explosions are caused by undetected gas leakage in the pre-detection condition.so thst,gas leakage monitoring and altering system is needed.

4. EMOTIONS: BEFORE / AFTER

How do customers feel when they face a problem or a job and afterwards? i.e. lost, insecure > confident, in control - use it in your communication strategy & design.

Before: the heavy losses due to the leakage made them feel of guilt due to reduced reputation of their products.

After:increased the level of confidence and feel.

10. YOUR SOLUTION

If you are working on an existing business, write down your current solution first, fill in the canvas, and check how much it fits reality.

If you are working on a new business proposition, then keep it blank until you fill in the canvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behaviour.

Develop an efficient system & an application and alter the workers.

8. CHANNELS of BEHAVIOUR

8.1 ONLINE

What kind of actions do customers take online? Extract online channels from #7

3.2 OFFLINE

What kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.

ONLINE:

Promoting through social media with the help of social media enterpreneurs/influencer.

OFFLINE:

Newspaper advertisements.

Explore AS, differentiate

Focus on J&P, tap into BE, und

2 & FM

CH

Identify strong TR &

Solution Architecture

Project Design Phase II

Customer Journey Map

	Stage 1	Stage 2	Stage 3
	Write a goal	Gas leakage	The system comprises of
	or activity	detection systems	sensors for detecting gas
OBJECT		protect personnel	leak interfaced to
IVES		and the environment	microcontroller that will
		from potentially	give an alert to user
		hazords exposure to	whenever there is a gas
		gases	leakage,display warning
			information by
			using liquid.
	Write a	Fire hazard	Harmful gas
NEEDS	need you	prevention	detection
	want to		
	meet		
	Write a	Happy about this	Embrassed on the
FEELIN	emotion you	solution	solution and promoted the
GS	expect the		good words towords this
	customer to		project.
	have		
	Write a	Higher officials	Commercial
	potential		companies
BARRIE	challenge to		
RS	your		
	objective		
BARRIE	customer to have Write a potential challenge to your	Higher officials	project. Commercial

AWARE	Write how	Online ads and social	Television ads
NESS	to create	media	
	awareness		
	Write what	Provide waranty	Help desk/chat
SERVIC	at all		
E	services are		
	provided		

Data Flow Diagram

Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Monitoring	Level of gas is monitored using sensor and if there is any leakage, alert can be sent through messages and with a buzzer sound.
FR-2	User Reception	The data like the level of gas can be send through messages
FR-3	User Understanding	The user can monitor the level of gas with the help of the data. If there is an increase in gas level then the alert will be given by message or buzzer sound.
FR-4	User Performance	When the user gets notified, they could take precaution steps like turning the gas off, turn on the exhaust fan/sprinkler and avoid serious accidents.

Technology Architecture

Project Planning

Milestone and Activity List

Sprint Delivery Plan

PROJECT DEVELOPMENT PHASE

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
int redled = 2;
int greenled = 3;
int buzzer = 4;
int sensor = A0;
int sensorThresh = 400;
void setup()
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
lcd.begin(16,2);
}
void loop()
 int analogValue = analogRead(sensor);
 Serial.print(analogValue);
 if(analogValue>sensorThresh)
  digitalWrite(redled,1);
  digitalWrite(greenled,0);
```

```
tone(buzzer, 1000, 10000);
  lcd.clear();
  lcd.setCursor(0,1);
  lcd.print("ALERT");
  delay(1000);
  lcd.clear();
  lcd.setCursor(0,1);
  lcd.print("EVACUATE");
  delay(1000);
 }
else
  digitalWrite(greenled,1);
  digitalWrite(redled,0);
  noTone(buzzer);
  lcd.clear();
  lcd.setCursor(0,0);
  lcd.print("SAFE");
  delay(1000);
  lcd.clear();
  lcd.setCursor(0,1);
  lcd.print("ALL CLEAR");
  delay(1000);
}
```

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
    int redled = 2;
      int greenled = 3;
      int buzzer = 4;
      int sensor = A0;
      int sensorThresh = 400;
      void setup()
      pinMode(redled, OUTPUT);
      pinMode(greenled,OUTPUT);
      pinMode(buzzer,OUTPUT);
      pinMode(sensor,INPUT);
      Serial.begin(9600);
      lcd.begin(16,2);
      void loop()
       int analogValue = analogRead(sensor);
       Serial.print(analogValue);
       if(analogValue>sensorThresh)
       {
        digitalWrite(redled,1);
        digitalWrite(greenled,0);
```

```
tone(buzzer,1000,10000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALERT");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("EVACUATE");
 delay(1000);
}
else
{
 digitalWrite(greenled,1);
 digitalWrite(redled,0);
 noTone(buzzer);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("SAFE");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALL CLEAR");
 delay(1000);
}
```

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
int redled = 2;
int greenled = 3;
int buzzer = 4;
int sensor = A0;
int sensorThresh = 400;
void setup()
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
lcd.begin(16,2);
}
void loop()
{
 int analogValue = analogRead(sensor);
 Serial.print(analogValue);
 if(analogValue>sensorThresh)
```

```
{
 digitalWrite(redled,HIGH);
 digitalWrite(greenled,LOW);
 tone(buzzer,1000,10000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALERT");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("EVACUATE");
 delay(1000);
}
else
{
 digitalWrite(greenled,HIGH);
 digitalWrite(redled,LOW);
 noTone(buzzer);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("SAFE");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALL CLEAR");
```

```
delay(1000);
}
```

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
int redled = 2;
int greenled = 3;
int buzzer = 4;
int sensor = A0;
int sensorThresh = 400;
void setup()
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
lcd.begin(16,2);
}
void loop()
{
 int analogValue = analogRead(sensor);
 Serial.print(analogValue);
 if(analogValue>sensorThresh)
```

```
{
 digitalWrite(redled,HIGH);
 digitalWrite(greenled,LOW);
 tone(buzzer,1000,10000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALERT");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("EVACUATE");
 delay(1000);
}
else
{
 digitalWrite(greenled,HIGH);
 digitalWrite(redled,LOW);
 noTone(buzzer);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("SAFE");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALL CLEAR");
```

```
delay(1000);
}
```

CODE AND SOLUTION

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
int redled = 2;
int greenled = 3;
int buzzer = 4;
int sensor = A0;
int sensorThresh = 400;
void setup()
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
lcd.begin(16,2);
}
void loop()
{
 int analogValue = analogRead(sensor);
 Serial.print(analogValue);
```

```
if(analogValue>sensorThresh)
 digitalWrite(redled,HIGH);
 digitalWrite(greenled,LOW);
 tone(buzzer,1000,10000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("ALERT");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
 lcd.print("EVACUATE");
 delay(1000);
}
else
{
 digitalWrite(greenled,HIGH);
 digitalWrite(redled,LOW);
 noTone(buzzer);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("SAFE");
 delay(1000);
 lcd.clear();
 lcd.setCursor(0,1);
```

```
lcd.print("ALL CLEAR");
delay(1000);
}
```

RESULT

CONCLUSION

After this project performance, can conclude that detection of the LPG gas leakage is incredible in the project system. Applicable usefully in the industrial and domestic purpose. In danger situations we are able to save the life by using this system. An alert is indicated by the GSM module. A sensor node senses gas like CO2, oxygen, propane. The estimated range of transmission and consumption of power is obtained. The simple procedures and Arduino UNO Micro controller area used to build the sensor.