Macroeconomic Effects of Funds Rate Perturbation (VAR Expectations)

2. Macroeconomic Effects of Funds Rate Perturbation (VAR Expectations)

3. Macroeconomic Effects of Funds Rate Shock

iter	converge stat	SSR stat	step length	step iters	Newton MCE deriv's?
0	0.367737	1.756082			
1	0.136811	0.571843	1.000000	1	
2	0.061447	0.093404	1.000000	1	
3	0.100691	0.165098	1.000000	1	
4	0.081485	0.136067	1.000000	1	
5	0.011192	0.002334	1.000000	1	
6	0.005199	0.000353	1.000000	1	
7	0.002092	6.26E-05	1.000000	1	
8	0.000402	2.22E-06	1.000000	1	
9	5.75E-05	5.10E-08	1.000000	1	
10	9.49E-06	1.39E-09	1.000000	1	

Simulation start = 2012Q1
Simulation end = 2018Q4
MCE method = "qnewton"
--- Initial Jacobian approximation = "bd"
---- QNewton iteration switch = 600
Linesearch method = Imr
--- Linesearch trigger = 0.9
--- Maximum linesearch iterations = 10
Convergence criteria = 1e-05
Maximum number of MCE iterations = 200
MCE instrument perturbation factor = 0.001
Intermediate output level factor = 1
MCE instrument variables = ZDIVGR_A_ZGAP05_A_ZGAP10_A_ZGAP30_A_ZPI10_A_ZPI10F_A_ZPIB5_A_ZPIC30_A_ZPIC58_A_ZPICXFE_A_ZPIECI_A_ZRFF10_A_ZRFF30_A_ZRFF5_A
MCE error variables = EZDIVGR_EZGAP05_EZGAP10_EZGAP30_EZPI10_EZPI10F_EZPIB5_EZPIC30_EZPIC58_EZPICXFE_EZPIECI_EZRFF10_EZRFF30_EZRFF5
There are 392 instrument and 392 error observations
At iteration 11, convergence

4. Macroeconomic Effects of Funds Rate Shock

-4.0E-12

-5.0E-12

iter	converge	SSR	step	step	Newton MCE
	stat	stat	length	iters	deriv's?
0	9.22E-12	2.99E-21			

Macroeconomic Effects of Negative AD Shock (VAR Expectations; Policy = rfftay) (ZLB and Thresholds Imposed)

Blue: Actual; Red: Simulated

on MCE riv's?

Simulation start = 2012Q1
Simulation end = 2016Q4
MCE method = "qnewton"
--- Initial Jacobian approximation = "bd"
---- QNewton iteration switch = 600
Linesearch method = Imr
-- Linesearch trigger = 0.9
-- Maximum linesearch iterations = 10
Convergence criteria = 1e-05
Maximum number of MCE iterations = 200
MCE instrument perturbation factor = 0.001
Intermediate output level factor = 1
MCE instrument variables = ZDIVGR A ZGAP05 A ZGAP10 A ZGAP30 A ZPI10 A ZPI10F A ZPIB5 A ZPIC30 A ZPIC58 A
ZPICXFE A ZPIECI A ZRFF10 A ZRFF30 A ZRFF5 A ZGAP3 A ZPIC43 A
MCE error variables = EZDIVGR EZGAP05 EZGAP10 EZGAP30 EZPI10 EZPI10F EZPIB5 EZPIC30 EZPIC58 EZPICXFE EZPIECI
EZRFF10 EZRFF30 EZRFF5 EZGAP3 EZPIC43
There are 320 instrument and 320 error observations
At iteration 10, convergence

At iteration 10, convergence

5. Macroeconomic Effects of a Shock to Consumption

Macroeconomic Effects of a Shock to Consumption

7. FRB/US Ping Simulations: VAR Expectations -- III

Response of Hourly El Compensation Annual Growth Rate

FRB/US Ping Simulations: VAR Expectations -- II

FRB/US Ping Simulations: VAR Expectations -- I

Response of Hourly El Compensation Annual Growth Rate

			,.		000/ 1	000/ 1:	70 0/ I	700/ 1:
qtr	baseline	mean	median	stdev	90%-low	90%-hi	70%-low	70%-hi
RFF 2012Q4 2013Q4 2014Q4	0.161 0.085 0.102	0.050 0.368 1.060	0.000 0.027 0.635	0.122 0.544 1.209	0.000 -0.000 -0.000	0.308 1.508 3.539	0.000 0.000 0.000	0.113 0.936 2.396
LUR 2012Q4 2013Q4 2014Q4	7.812 6.956 5.718	7.805 6.905 5.712	7.765 6.871 5.706	0.510 0.912 1.253	7.050 5.454 3.669	8.690 8.389 7.792	7.305 5.995 4.436	8.316 7.834 6.994
PICXFE 2012Q4 2013Q4 2014Q4	1.762 1.900 1.098	1.771 1.931 1.141	1.755 1.918 1.120	0.969 0.978 1.034	0.218 0.356 -0.553	3.329 3.575 2.820	0.800 0.960 0.111	2.801 2.941 2.232
PICNIA 2012Q4 2013Q4 2014Q4	2.240 1.629 -0.508	2.207 1.656 -0.451	2.202 1.615 -0.496	1.333 1.254 1.260	0.341 -0.288 -2.493	4.123 3.770 1.685	1.038 0.485 -1.687	3.497 2.934 0.869
PICX4 2012Q4 2013Q4 2014Q4	1.808 1.578 1.452	1.815 1.602 1.500	1.791 1.608 1.500	0.584 0.806 0.847	0.873 0.246 0.077	2.786 2.922 2.873	1.228 0.773 0.601	2.383 2.404 2.342
XGAP2 2012Q4 2013Q4 2014Q4	-3.119 -1.949 -0.291	-3.073 -1.863 -0.368	-3.016 -1.806 -0.242	1.140 2.180 2.994	-5.077 -5.706 -5.144	-1.362 1.670 4.506	-4.209 -4.112 -3.486	-1.944 0.427 2.563
HGGDP 2012Q4 2013Q4 2014Q4	0.455 3.180 2.245	0.461 3.118 1.883	0.638 3.107 1.949	2.709 2.956 2.808	-3.959 -1.644 -2.806	4.458 7.988 6.253	-2.138 0.137 -1.020	3.088 6.126 4.731
ANNGR 2012Q4 2013Q4 2014Q4	1.469 2.614 2.877	1.508 2.659 2.705	1.609 2.688 2.696	1.245 1.836 1.866	-0.675 -0.533 -0.291	3.299 5.563 5.668	0.287 0.902 0.875	2.721 4.444 4.592
EPOP 2012Q4 2013Q4 2014Q4	0.588 0.585 0.593	0.588 0.586 0.593	0.588 0.586 0.593	0.003 0.007 0.009	0.582 0.575 0.578	0.592 0.596 0.608	0.584 0.579 0.583	0.591 0.592 0.602
PIECI 2012Q4 2013Q4 2014Q4	1.377 2.032 2.321	1.415 2.065 2.331	1.358 2.078 2.263	1.139 1.198 1.314	-0.228 0.156 0.355	3.168 3.915 4.377	0.443 0.892 1.040	2.449 3.203 3.604

8. Stochastic Simulations (70 and 90 percent bands)

error	mean	std-dev
EBFI_ERR ECD_ERR ECD_ERR ECH_ERR ECH_ERR ECO_ERR EGFE_ERR EGFE_ERR EGFL_ERR EGSE_ERR EH ERR EMO_ERR EX_ERR EYERR E	2.40E-19 7.86E-19 -4.36E-20 -1.36E-19 2.18E-20	0.016009 0.025866 0.000197 0.003959 0.018066 0.006980 0.015474 0.002860 0.032154 0.017333 0.183766 0.021044 0.028381 0.092891 0.002744 0.044014 7.42E-05 0.011931 0.004946 0.001199 0.003216 0.097896 0.001791 0.005326 0.004462 0.006567 0.0065693 1.068906 0.001410 0.006902 0.006902 0.006902 0.006902 0.006902 0.0068139 0.322426 4.134953 0.290780 0.0141663 0.493445 0.002335 0.290780 0.0043297 0.0043297 0.0043297 0.002162

9. ZLB Imposed

iter	f(x)	step size	convergence statistic	linearity statistic
0	118.5264			
1	118.3343	0.250000	0.001621	-1.035195
2	118.2532	1.000000	0.000685	0.333356
3	118.2472	0.250000	5.04E-05	-1.496582
4	118.2472	0.031250	2.71E-07	-1.408235

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 8, convergence unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 4, convergence

iter	f(x)	step size	convergence statistic	linearity statistic
0	124.9776			
1	123.0016	0.125000	0.015811	-1.008300
2	121.7573	0.500000	0.010116	-1.036963
3	119.6347	1.000000	0.017433	0.529866
4	118.8931	1.000000	0.006199	0.094747
5	118.8737	1.000000	0.000163	0.832745
6	118.8717	0.500000	1.69E-05	-1.567517
7	118.8680	1.000000	3.12E-05	-0.290151
8	118.8680	0.000977	3.95E-08	-1.246978

unconstrained optimization (EViews) optimization type = committment simulation period: 2012Q1 - 2027Q4 loss evalation period: 2012Q1 - 2031q4 instrument setting period: 2012Q1 - 2026q4 max number of optimization iterations = 15 max number of line search steps per iteration = 20 convergence criteria = 1e-05 output control parameter = 3 compute instrument derivs? = yes instrument perturbation factor = 0.01 At iteration 8, convergence