Risque et Incertitude¹

Pierre Biscaye

Janvier 2025

¹Le contenu de ce cours est tiré du cours de Microéconomie du Développement de Jeremy Magruder à l'UC Berkeley et du cours d'Économie du Développement de l'AEA d'Emily Breza et Supreet Kaur.

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Optimisation des entreprises

- Les entreprises résolvent quelque chose comme $\max pF(K, L; A) rK wL$
- Cependant, les entreprises peuvent faire face à des risques ou incertitudes dans leurs décisions de production
 - Incertitude autour des prix des produits ou des intrants
 - Incertitude concernant la disponibilité ou la qualité des intrants
 - ▶ Incertitude sur des facteurs externes influençant la production
- ▶ Dans ce cas, les entreprises résolvent quelque chose comme $\max E[pF(K,L;A) rK wL|X]$, où X sont des facteurs connus qui influencent les attentes

Exemples de sources de risque et d'incertitude

Pouvez-vous penser à des exemples de facteurs créant de l'incertitude pour la production ?

Exemples de sources de risque et d'incertitude

Pouvez-vous penser à des exemples de facteurs créant de l'incertitude pour la production ?

- Perturbations de la chaîne d'approvisionnement
 - Retards ou pénuries de matières premières, de biens intermédiaires ou engorgements logistiques
- Pannes d'équipements ou de machines
 - ► Temps d'arrêt dû à des problèmes de maintenance, pannes imprévues ou coupures d'électricité
- Disponibilité de la main-d'œuvre
 - ► Grèves, roulements, changements démographiques
- Catastrophes naturelles et événements climatiques extrêmes
 - Inondations, ouragans, tremblements de terre qui perturbent les opérations ou endommagent les infrastructures
- ► Volatilité des prix du marché
 - ► Fluctuations des prix des intrants ou des produits qui impactent la rentabilité et la planification de la production

Risque de production dans les pays en développement

- Perturbations de la chaîne d'approvisionnement
 - Infrastructure de transport et réseaux plus faibles, faible application des contrats
- Pannes d'équipements ou de machines
 - Infrastructure électrique déficiente
- Disponibilité de la main-d'œuvre
 - Moins d'accès à une main-d'œuvre qualifiée, prévalence accrue de maladies
- Catastrophes naturelles et événements climatiques extrêmes
 - Vulnérabilité accrue dans de nombreux pays, outils limités pour la prévention, la mitigation, et le secours
- Certains défis plus spécifiques à ces contextes :
 - Instabilité politique et institutions faibles
 - Accès limité aux marchés financiers (crédit, assurance)

Défis particuliers pour les agriculteurs pauvres

- Incertitude sur la fonction de production
 - Risques climatiques : variabilité des précipitations, sécheresses, vagues de chaleur
 - Risques liés aux ravageurs et maladies
 - Pertes après récolte
- Incertitude sur les intrants
 - Insécurité foncière et droits de propriété incertains
 - Santé de la main-d'œuvre
- Incertitude des prix
 - Saisonnalité de la production et des prix
 - Accès limité aux acheteurs, informations limitées sur les marchés et les prix

Réponses possibles au risque et à l'incertitude

- ► Mécanismes financiers et comportement de précaution : assurance, détention d'actifs liquides, accès au crédit
- ► Aversion au risque : sous-investissement, arbitrage entre risque et rendement des investissements
- ► Allocation des intrants : diversification ⇒ arbitrage entre risque et efficacité
- Diversification des produits : engagement dans différentes activités, répartition des risques ⇒ réduction de la spécialisation et des économies d'échelle
- ▶ Prévisions : investissement dans des technologies pour améliorer les capacités de prédiction et réduire (une partie de) l'incertitude

Réponses possibles au risque et à l'incertitude

- ► Mécanismes financiers et comportement de précaution : assurance, détention d'actifs liquides, accès au crédit
- ► Aversion au risque : sous-investissement, arbitrage entre risque et rendement des investissements
- ► Allocation des intrants : diversification ⇒ arbitrage entre risque et efficacité
- Diversification des produits : engagement dans différentes activités, répartition des risques ⇒ réduction de la spécialisation et des économies d'échelle
- ▶ Prévisions : investissement dans des technologies pour améliorer les capacités de prédiction et réduire (une partie de) l'incertitude

Le **résultat** : potentiel d'augmentation des coûts et de diminution de la productivité et des profits

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Quand le risque influence-t-il les décisions de production ?

- L'incertitude n'empêche pas les entreprises de maximiser leurs profits
- ► Elles ont seulement besoin d'informations sur les probabilités des différents états du monde et peuvent optimiser

Quand le risque influence-t-il les décisions de production ?

- L'incertitude n'empêche pas les entreprises de maximiser leurs profits
- ► Elles ont seulement besoin d'informations sur les probabilités des différents états du monde et peuvent optimiser
- Les ménages souhaitent éviter la réalisation de périodes de basse consommation
- Pourquoi? Et dans quels cas cela affecterait-il les décisions de production?

Quand le risque influence-t-il les décisions de production ?

- L'incertitude n'empêche pas les entreprises de maximiser leurs profits
- ► Elles ont seulement besoin d'informations sur les probabilités des différents états du monde et peuvent optimiser
- Les ménages souhaitent éviter la réalisation de périodes de basse consommation
- Pourquoi? Et dans quels cas cela affecterait-il les décisions de production?

Conclusion : Le risque influence différemment les décisions de production en présence d'échecs de marché et de séparation

Lissage ex post vs lissage ex ante des risques

- ► Risque et incertitude ⇒ variation des revenus réalisés
- Les producteurs-ménages veulent *lisser* leurs consommation et, par conséquent, leur revenus
- Lissage ex post
 - Accepter que le revenu sera plus faible à certaines périodes
 - ► Faire face aux conséquences: assurance, emprunts, épargne, recherche d'autres sources de revenus, etc.
 - ► Une meilleure gestion du risque ⇒ une plus grande disposition à prendre des risques
 - Que se passe-t-il si les marchés financiers sont contraints ?

Lissage ex post vs lissage ex ante des risques

- ► Risque et incertitude ⇒ variation des revenus réalisés
- Les producteurs-ménages veulent *lisser* leurs consommation et, par conséquent, leur revenus

Lissage ex post

- Accepter que le revenu sera plus faible à certaines périodes
- ► Faire face aux conséquences: assurance, emprunts, épargne, recherche d'autres sources de revenus, etc.
- ► Une meilleure gestion du risque ⇒ une plus grande disposition à prendre des risques
- Que se passe-t-il si les marchés financiers sont contraints ?

Lissage ex ante

- Essayer de prévenir la volatilité du revenu
- Modifier ou diversifier les stratégies de revenus pour réduire la variation potentielle
- La réduction de la variance peut se faire au détriment des niveaux de revenus

Exemples de lissage ex ante pour les producteurs-ménages

- Agriculture
 - Attendre les résultats de la mousson avant de planter
 - ▶ Planter des cultures plus sûres mais moins rentables
 - Planter des variétés résistantes à la sécheresse
 - Ne pas appliquer d'engrais
 - Envoyer un membre de la famille migrer en ville

Exemples de lissage ex ante pour les producteurs-ménages

- Agriculture
 - Attendre les résultats de la mousson avant de planter
 - ▶ Planter des cultures plus sûres mais moins rentables
 - Planter des variétés résistantes à la sécheresse
 - Ne pas appliquer d'engrais
 - Envoyer un membre de la famille migrer en ville
- Entreprises non agricoles
 - Ne pas lancer d'entreprises intensives en capital
 - Réinvestissement limité dans les entreprises
 - Diversifier les sources de revenus, manque de spécialisation
 - Ne pas adopter de nouveaux produits ou technologies

Incertitude climatique et investissement agricole en Inde (Rosenzweig & Udry 2013 WP)

- Combinaison de données localisées sur les prévisions annuelles de mousson et de données de panel sur les investissements agricoles et la production en Inde
- Des prévisions précises augmentent significativement les investissements pendant la phase de plantation ; aucune réponse lorsque les prévisions ne sont pas précises
- Utilisation de zones à haute précision dans une stratégie IV pour tracer les profits potentiels sous différents investissements en fonction des précipitations réalisées
- Conclusion : le niveau d'investissement optimal pour maximiser les profits attendus est trois fois supérieur à la moyenne observée
- Les agriculteurs sous-investissent considérablement !
 - Améliorer la précision des prévisions et leur accessibilité augmenterait les investissements et les profits moyens, même si la variabilité des profits augmente également

Risque et diversification des revenus (Banerjee & Duflo 2007)

			Table 6: H	How the poor earı	their mone	y: Occupation		
		Percent of	Median Ares	Percent of Households in		Percent of HHs That Receive Income		
		Households	Of Land	Is Self Employed In				Works for a Wage or Salary in
		that own land	Owned	Agriculture	Other	Agriculture	Other	From Multiple Sectors
Living on les	than \$1 a day							
Rural								
	Cote d'Ivoire	62.7%	300	37.2%	25.9%	52.4%	78.3%	72.1%
	Guatemala	36.7%	29	64.4%	22.6%	31.4%	86.4%	83.8%
	India - Udaipur	98.9%	60	98.4%	5.9%	8.5%	90.7%	94.0%
	India - UP/Bihar		40	72.1%	40.2%	2.0%	18.9%	41.8%
	Indonesia	49.6%	60	49.8%	36.6%	31.1%	34.3%	50.4%
	Mexico	4.0%		4.9%	20.4%	2.8%	72.6%	13.2%
	Nicaragua	50.4%	280	54.7%	11.6%	0.3%	42.8%	18.4%
	Pakistan	30.4%	162	72.1%	35.5%	32.6%	50.8%	66.8%
	Panama	85.1%	300	69.1%	17.7%	0.0%	0.0%	19.2%
	Peru	65.5%	150	71.7%	25.2%			34.8%
	South Africa	1.4%		0.0%	9.1%	27.9%	26.6%	0.4%
	Tanzania	92.3%	182					
	Timor Leste	95.2%	100	78.5%	12.0%			10.4%

- L'auto-emploi à petite échelle est très courant
- Les revenus sont extrêmement diversifiés: manque de spécialisation

Lissage ex post (Adhvaryu, Kala, & Nyshadham 2021)

Table 4. Does Household Enterprise Activity Respond to Coffee Price Fluctuations?

Open in new tab

	Household owns a business	Household owns a merchant business	Household owns a non- merchant business	1(Participation in non-farm self- employment)
	(1)	(2)	(3)	(4)
Price/SD(Price)	-0.0469***	-0.0388***	-0.0138	-0.0430***
	(0.00978)	(0.0122)	(0.0106)	(0.0109)
Fixed effects		Household, year, and month		
Observations	3,514	3,094	3,094	3,382
Number of households	975	846	846	919
Mean of dependent variable	0.386	0.263	0.242	0.414

Source: Authors' analysis based on data from the Kagera Health and Development Survey (KHDS) and the International Coffee Association.

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Assurance comme stratégie de lissage ?

- L'assurance protège contre les « mauvais » états du monde
- ightharpoonup Le revenu Y est soumis à une incertitude
- lacktriangle Les états possibles sont définis par s
- ightharpoonup À chaque période, probabilité π_s de l'état s
- Le prix de l'assurance p_s est basé sur π_s
- Assurance parfaite : obtenir exactement le même montant chaque période avec certitude
 - Rend le revenu indépendant de l'état du monde
 - \blacktriangleright Si le coût de l'assurance est actuariellement équitable, le revenu total après la prime d'assurance est E[Y] : aucun profit attendu pour l'assuré

Exemple d'assurance parfaite

- ▶ Deux états possibles : le revenu dans les bons états est de \$100, mais 20% de chance d'un mauvais état avec un revenu de \$0
- Produit d'assurance : $\pi_B = 0.2 \Rightarrow p_B = 0.2$ par unité d'assurance, verse 1 unité de revenu dans le mauvais état BLe profit attendu pour l'assureur est nul
- Quelle est l'assurance parfaite dans cette situation?

Exemple d'assurance parfaite

- ▶ Deux états possibles : le revenu dans les bons états est de \$100, mais 20% de chance d'un mauvais état avec un revenu de \$0
- Produit d'assurance : $\pi_B=0.2 \Rightarrow p_B=0.2$ par unité d'assurance, verse 1 unité de revenu dans le mauvais état B
 - Le profit attendu pour l'assureur est nul
- ► Assurance parfaite : acheter 100 unités avec une prime de \$20 chaque période
 - Revenu total exactement identique chaque période : aucunincertitude
 - Actuariellement équitable : versement = E[Y]

Période	1	2	3	4	5
Réalisation du revenu	100	0	100	100	100
Prime	-20	-20	-20	-20	-20
Versement	0	100	0	0	0
Revenu total	80	80	80	80	80

Lissage de la consommation vs assurance

- ► Lissage de la consommation : égaliser la consommation en consommant moins dans les bons états du monde pour créer une réserve pour les mauvais états
- Cette forme d'« auto-assurance » redistribue la consommation dans le temps
 - Doit supporter tout choc de mauvais état, mais peut réallouer ses impacts entre les périodes pour atténuer la perte d'utilité
 - Vulnérable aux mauvais états répétés
- L'Aassurance permet une redistribution entre les états
 - ▶ Pour les producteurs-ménages : les chocs n'ont pas d'impact sur la consommation (ou l'utilité)
 - Pas de vulnérabilité aux mauvais états répétés

Peu d'assurances formelles dans les contextes de développement (Banerjee & Duflo 2007)

Table 11: Market for Insurance and the poor

		Percent of Total Households with Insurance:			
		Any Type	Health	Life	
Living on le	ss than \$1 a day				
Rural					
	Cote d'Ivoire				
	Guatemala				
	India - Hyderabad				
	India - Udaipur			3.8%	
	India - UP/Bihar	9.2%	4.7%	3.8%	
	Indonesia	6.0%	3.9%	0.0%	
	Mexico		50.7%		
	Nicaragua	0.0%	5.5%		
	Pakistan				
	Panama		0.0%	0.0%	
	Papua New Guinea				
	Peru		5.6%	0.0%	
	South Africa	5.4%			
	Tanzania				

Assurance communautaire

- ➤ Substitut à l'assurance formelle : les membres de la communauté s'assurent mutuellement
 - Risque de chocs de revenu est partagé
- Courant dans de nombreux contextes de développement
 - ➤ Townsend (1994) : rejette l'idée d'une assurance complète dans les villages pauvres en Inde, mais trouve que la consommation des ménages suit la moyenne du village et ne subit pas entièrement les chocs idiosyncratiques
- Quelles limites?

Assurance communautaire

- ➤ Substitut à l'assurance formelle : les membres de la communauté s'assurent mutuellement
 - Risque de chocs de revenu est partagé
- Courant dans de nombreux contextes de développement
 - ➤ Townsend (1994): rejette l'idée d'une assurance complète dans les villages pauvres en Inde, mais trouve que la consommation des ménages suit la moyenne du village et ne subit pas entièrement les chocs idiosyncratiques
- Quelles limites?
 - Chocs communs
 - Dépend des relations, de la réciprocité ⇒ défis d'exécution (engagement limité), exclusion possible de certains ménages, tensions sociales potentielles
 - Les transferts peuvent être faibles et insuffisants pour protéger complètement contre les pertes de revenus
 - ► Aléa moral: prise de risques potentielle (effort non observable)
 - Revenu caché: éviter les taxes sociales/familiales (revenu non observable)

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Karlan et al. (2014): Le risque influence-t-il l'investissement agricole?

- Considérons des producteurs-ménages avec une production F(L,K;A)
- ▶ Même si $\partial F/\partial K$ est élevé, le risque peut empêcher des investissements importants en production
- ▶ Pourquoi? Pourquoi particulièrement dans l'agriculture?

Karlan et al. (2014): Le risque influence-t-il l'investissement agricole?

- Considérons des producteurs-ménages avec une production $F(L,K;\mathcal{A})$
- ▶ Même si $\partial F/\partial K$ est élevé, le risque peut empêcher des investissements importants en production
- Pourquoi? Pourquoi particulièrement dans l'agriculture?
 - Les ménages veulent éviter une consommation très faible si un investissement risqué échoue
 - L'assurance communautaire échoue probablement dans l'agriculture en raison de la corrélation des risques agricoles
- ➤ Si nous voulons comprendre le rôle du risque dans l'investissement, l'agriculture offre certains avantages majeurs
 - Nous pouvons facilement mesurer une partie importante et exogène de ce risque : les conditions météorologiques
 - Nous pouvons concevoir un produit d'assurance qui couvre ce risque: assurance indicielle

Pourquoi cela est-il important?

- ▶ Politique: investissements importants de la communauté d'aide dans le crédit rural et l'assurance
- ► Académique: nombreuses questions sur la (généralement) faible demande pour les produits d'assurance indicielles
 - Assurance indicielle: le versement est basé sur un seuil observable prédéterminé (par exemple, le niveau de précipitation), plutôt que sur les pertes individuelles
- L'assurance devrait être très précieuse pour l'agriculture pluviale, mais la demande est généralement très faible
 - Ces produits sont-ils mal conçus?
 - Les agriculteurs commettent-ils une erreur, peut-être en raison d'un manque de littératie financière ou de biais de récence?
 - Ou existe-t-il une autre contrainte empêchant les agriculteurs de bénéficier de l'assurance?

Modèle: les réponses optimales à l'assurance ne sont pas si évidentes

Configuration simple:

- ► Les ménages agricoles commencent avec une dotation *Y* et vivent 2 périodes. En période 1, ils choisissent :
 - 1. un intrant risqué x_r
 - 2. un intrant de couverture x_h
 - 3. un actif sans risque a avec rendement $R=1/\beta$ en période 2
- ▶ En période 2, les agriculteurs produisent $f_s(x_r, x_h)$, qui équivaut à :
 - 1. $A_G f(x_r)$ dans l'état G
 - 2. $A_B f(x_h)$ dans l'état B; $A_B < A_G$
- ► Anticipation de l'expérience (RCT):
 - Les agriculteurs reçoivent une subvention en espèces k en période $\mathbf{1}$
 - Les agriculteurs reçoivent un versement conditionné à l'état k_s dans l'état s en période 2
- Les unités sont normalisées de sorte que les prix des intrants soient de 1

Les agriculteurs résolvent

$$\max_{\{a, x_r, x_h\}} u(c^0) + \beta \sum_{s \in S} \pi_s u(c_s^1)$$
$$c^0 = Y - x_r - x_h - a + k$$

Avec un parfait partage des risques et aucun risque agrégé, $c_G^1=c_B^1=c^1\,$

$$c^{1} = \sum_{s \in S} \pi_{s}(f_{s}(x_{r}, x_{h}) + k_{s}) + Ra$$

lackbox Si les marchés du crédit sont parfaits, $u'(c^0)=u'(c^1)$

$$u'(c^0) = \beta \pi_G u'(c^1) A_G f'(x_r) = \beta \pi_B u'(c^1) A_B f'(x_h)$$
$$\Rightarrow \pi_G A_G f'(x_r) = 1/\beta = \pi_B A_B f'(x_h)$$

Supposons que le risque soit mutualisé, mais que les marchés du crédit soient imparfaits

- Supposons qu'il soit impossible d'emprunter : $a \ge 0$
- \blacktriangleright Lorsque la contrainte de crédit s'applique, a=0 et $u'(c^0)>u'(c^1)$
- Les conditions d'optimalité (CPOs) pour x_h, x_r restent les mêmes
- Quel est l'effet d'une subvention en espèces initiale k?

$$u'(c^{0}) = \beta \pi_{G} u'(c^{1}) A_{G} f'(x_{r}) = \beta \pi_{B} u'(c^{1}) A_{B} f'(x_{h})$$

$$\frac{\partial u'(c^{0})}{\partial k} < 0 \Rightarrow$$

$$\beta \pi_{G} A_{G} \frac{\partial u'(c^{1}) f'(x_{r})}{\partial k} = \beta \pi_{B} A_{B} \frac{\partial u'(c^{1}) f'(x_{h})}{\partial k} < 0$$

$$\Rightarrow \frac{\partial x_{r}}{\partial k} \text{ et } \frac{\partial x_{h}}{\partial k} > 0$$

Lissage dans le temps et entre les états : effets surprenants de l'assurance

- ▶ Quel est l'effet de l'assurance ($\uparrow k_B$) dans ce contexte ?
- $ightharpoonup \uparrow k_B \Rightarrow u'(c^1) \downarrow$
 - ▶ Grâce à l'assurance parfaite, $u'(c^1) = u'(c^1_B) = u'(c^1_G)$ donc l'utilité marginale (MU) diminue dans tous les états du monde
- ► Cependant, $u'(c^0) = \beta \pi_G u'(c^1) A_G f'(x_r) = \beta \pi_B u'(c^1) A_B f'(x_h) \Rightarrow u'(c^0) \downarrow$
- ► Lorsque a = 0, $\downarrow u'(c^0) \Rightarrow x_r, x_h \downarrow$
- Lorsque les contraintes de crédit s'appliquent, l'assurance réduit l'investissement

Que se passe-t-il en cas d'assurance imparfaite ?

- Pour simplifier, supposons maintenant que les marchés du crédit sont parfaits mais qu'il n'y a aucune assurance
- Nous avons $c_s^1 = f_s(x_r, x_h) + k_s + Ra$
- Cela implique que le problème de l'agriculteur est

$$\max_{x_r, x_h, a} u(c^0) + \beta \sum_{s \in S} \pi_s u(c_s^1)$$

$$\max_{x_r, x_h, a} u(Y - x_r - x_h - a + k) + \beta (\pi_G u(A_G f(x_r) + Ra))$$

$$+ \beta (\pi_B u(A_B f(x_h) + k_b + Ra))$$

$$\frac{\partial}{\partial x_r} : u'(c^0) = \beta \pi_G A_G f'(x_r) u'(c_G^1)$$

$$\frac{\partial}{\partial x_h} : u'(c^0) = \beta \pi_B A_B f'(x_h) u'(c_B^1)$$

$$\frac{\partial}{\partial a} : u'(c^0) = \pi_G u'(c_G^1) + \pi_B u'(c_B^1)$$

La solution

$$\pi_G u'(c_G^1) + \pi_B u'(c_B^1) = \beta \pi_G A_G f'(x_r) u'(c_G^1)$$

$$\pi_B u'(c_B^1) = \pi_G u'(c_G^1) (\frac{1}{R} A_G f'(x_r) - 1)$$

$$\frac{\pi_B u'(c_B^1)}{\pi_G u'(c_G^1)} = \frac{1}{R} A_G f'(x_r) - 1$$

$$R\left[\frac{\pi_B u'(c_B^1)}{\pi_G u'(c_G^1)} + 1\right] = A_G f'(x_r)$$

$$R\left[\frac{\pi_G u'(c_G^1)}{\pi_B u'(c_B^1)} + 1\right] = A_B f'(x_h)$$

Comprendre la solution

$$R\left[\frac{\pi_B u'(c_B^1)}{\pi_G u'(c_G^1)} + 1\right] = A_G f'(x_r)$$

$$R\left[\frac{\pi_G u'(c_G^1)}{\pi_B u'(c_B^1)} + 1\right] = A_B f'(x_h)$$

▶ Sans assurance, $u'(c_G^1) < u'(c_B^1)$ et $\pi_G + \pi_B = 1$, ce qui implique que

$$\pi_G A_G f'(x_r) = R \left[\frac{\pi_B u'(c_B^1)}{u'(c_G^1)} + \pi_G \right] > R > \pi_B A_B f'(x_h)$$

Les agriculteurs surinvestissent dans les intrants de couverture par rapport au cas des marchés complets, où nous avions

$$\pi_G A_G f'(x_r) = R = \pi_B A_B f'(x_h)$$

Et les réponses des agriculteurs aux subventions ou à l'assurance?

- Sans assurance, ils essayent d'équilibrer l'utilité aujourd'hui, une chance d'un état futur à forte utilité et une chance d'un état futur à faible utilité
- ▶ Une augmentation de k_b augmente c_B^1 , donc il est nécessaire de transférer l'utilité vers c^0 et $c_G^1 \Rightarrow x_h \downarrow, x_r \uparrow$
- ▶ Une augmentation de k augmente c^0 , mais l'effet dépend des hypothèses sur la fonction d'utilité (aversion absolue au risque)
 - ▶ Par exemple, avec DARA $\frac{u''(c_B^1)}{u'(c_B^1)} < \frac{u''(c^0)}{u'(c^0)} < \frac{u''(c_G^1)}{u'(c_G^1)}$
 - ▶ $\uparrow k \Rightarrow \uparrow a$ et donc une augmentation de la consommation dans les deux états en période 1; équilibrer les utilités marginales avec DARA implique alors $x_h \downarrow, x_r \uparrow$

Prédictions du modèle

TABLE I Summary of Implications of Market Imperfections

		rket nment				ed change vestment		
	Perfect capital	Perfect	Capital grant treatment only		grant	urance treatment only	Capital & insurance grant treatment	
	markets	markets	Risky asset	Hedging asset	Risky asset	Hedging asset	Risky asset	Hedging asset
1	Yes	Yes	0	0	0	0	0	0
2	No	Yes	++	++	_	_	+ ^a	+ ^b
3	Yes	No	+c	_d	++		++	
4	No	No	+	+	_	_	+	+

Notes. "The model prediction is ambiguous, but in practice in our experiment the expected value of the insurance treatment was considerably smaller than the value of the cash grant, thus the net predicted effect in our exteting is positive. ¹The model prediction is ambiguous, but in practice in our experiment the expected value of the insurance treatment was considerably smaller than the value of the cash grant, thus the net predicted effect in our setting is positive. ¹Small and positive via wealth effect, if DARA; zero if CARA. ²Small and negative via wealth effect, if DARA; zero if CARA.

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Deux questions abordées dans cet article

- 1. Quels sont les rendements du capital pour les agriculteurs ?
- 2. Quels sont les rendements de l'assurance?
- Conduit à un design expérimental simple : allocation aléatoire de
 - Subvention en especes
 - Assurance indicielle
 - Les deux
- Remarque : cadre d'échantillonnage complexe, changements dans le produit d'assurance au fil du temps, discutés en détail dans l'article

Les agriculteurs souhaitent-ils une assurance ?

Adoption plus élevée que dans d'autres contextes : 40-50% pour une assurance actuariellement équitable

Demande de couverture d'assurance

The Demand for Acres Insured

Effets des traitements

Quantifier les réponses des agriculteurs

 ${\bf TABLE\ IV}$ Impact on Investment and Harvest (Instrumental Variables)

	(1) Land	(2)	Value of	(4)	(5) Opportunity	(6)	(7)
Dependent variable:	preparation costs	# of Acres cultivated	chemicals used	Wages paid to hired labor	cost of family labor	Total costs	Value of harvest
Insured	25.53**	1.02**	37.90**	83.54	98.16	266.15**	104.27
	(12.064)	(0.420)	(14.854)	(59.623)	(84.349)	(134.229)	(81.198)
Insured * capital grant treatment	15.77	0.26	66.44***	39.76	-52.65	72.14	129.24
	(13.040)	(0.445)	(15.674)	(65.040)	(86.100)	(138.640)	(81.389)
Capital crant treatment	15.36	0.09	55.63***	75.61	-130.56	2.44	64.82
•	(13.361)	(0.480)	(17.274)	(68.914)	(92.217)	(148.553)	(89.764)
Constant	169.38***	8.12***	171.70***	201.88***	1,394.58***	2,033.11***	1,417.52***
	(10.603)	(0.399)	(13.804)	(45.383)	(84.786)	(124.294)	(90.635)
Observations	2,320	2,320	2,320	2,320	2,320	2,320	2,320
R-squared	0.017	0.143	0.041	0.005	0.006	0.009	0.012
Mean for control	189.1	5.921	158.3	327.9	1,302	2,058	1,177
Chi ² test of insured and insured + capital grant treatment	8.889	7.125	36.15	3.136	0.239	5.091	6.618
p-value	.003	.008	.000	.077	.625	.024	.010

Interpréter les réponses des agriculteurs

- Effets limités des subventions en espèces seules par rapport à l'assurance seule ou les deux
 - N'augmente que les intrants chimiques
- ► Effets similaires de l'assurance seule et assurance + subventions
 - Augmente la superficie cultivée : intrant risqué ?
 - Le traitement combiné a un impact supplémentaire sur l'utilisation d'intrants chimiques
- Les contraintes de liquidité ne sont pas aussi fortes que supposé (dans ce contexte)
 - « Lorsque les agriculteurs reçoivent une assurance contre le principal risque catastrophique auquel ils font face, ils trouvent des ressources pour augmenter les dépenses sur leurs exploitations. »

Investissements risqués ?

➤ Si le risque est une faible pluviométrie et que l'assurance permet des investissements risqués, ceux-ci devraient être particulièrement rentables en cas de fortes pluies

TABLE V
Reallocation of Investments (Instrumental Variables)

Dependent variable:	(1) Value of harvest	(2) Proportion of land planted with maize	(3) Average weekly orchard income	(4) Household has nonfarm income generating activity (binary)	# of HH members working in nonfarm income generating activity	(6) Average weekly enterprise income
Insured	-1,069.13* (596.208)	0.09*** (0.031)	-1.59* (0.876)	-0.06* (0.033)	-0.11* (0.061)	-8.64 (7.151)
Insured * capital grant treatment	1,324.48 (821.152)	(0.029)	0.65 (0.776)	0.07**	0.16**	3.77 (9.126)
Capital grant treatment	-879.77 (642.233)	(0.034)	-0.19 (0.926)	-0.04 (0.038)	-0.08 (0.066)	-2.83 (4.530)
Insured * total rainfall	156.82** (76.291)					
Insured * capital grant treatment * total rainfall	-155.36 (105.649)					
Capital grant treatment * total rainfall	124.95 (83.589)					
Total rainfall (hundreds of millimeters)	2,247.39*** (624.545)					
Total rainfall squared	-146.65*** (40.970)					
Constant	-7,154.76*** (2,375.086)	0.23*** (0.016)	2.42*** (0.613)	0.17*** (0.027)	(0.038)	5.79 (4.363)
Observations	2,320	2,782	2,316	2,320	2,320	2,350
R-squared Chi ² test of joint effect of insurance and insurance+capital	0.021	0.090 15.52	0.001	0.007 0.132	0.010 0.388	0.007
p-value Mean for control	.710 1177	8.16e-05 0.309	.341 2.587	.717 0.261	.534 0.405	.503 6.604

Bien-être

 ${\bf TABLE~VI}$ Income and Household Welfare (Instrumental Variables)

	(1)	(2)	(3) Household	(4)	(5)	(6)	(7)
	Total farm revenue		reports having missed a meal		Utility		Borrowed in past
	(inc. insurance	Postharvest	in past	Total	expenses	School	12 months
Dependent variable:	payouts, net of premiums)	assets (livestock+grain)	12 months (binary)	expenditure in 12 months	in past 12 months	expenses in past 12 months	from any source (binary)
Insured	284.98*** (82.991)	530.74** (230.839)	-0.08** (0.033)	46.39 (58.767)	0.36 (7.102)	-0.71 (15.872)	-0.00 (0.025)
Insured * capital grant treatment	109.13 (84.446)	310.66 (229.150)	-0.03 (0.030)	2.44 (58.568)	19.96** (8.444)	25.83 (16.111)	-0.13*** (0.033)
Capital grant treatment	66.93 (90.585)	606.12** (266.636)	-0.08** (0.037)	7.14 (61.540)	10.30 (8,268)	24.04 (18.841)	-0.06 (0.040)
Constant	1,386.17*** (91.209)	1,782.29*** (223.471)	0.37*** (0.035)	470.10*** (43.073)	37.72*** (5.768)	107.94*** (12.632)	0.46*** (0.035)
Observations	2,320	2,265	2,304	2,316	2,316	1,940	3,756
R-squared	0.023	0.007	0.013	0.015	0.050	0.032	0.203
Chi ² test of joint effect of insurance and insurance + capital	17.97	10.68	9.830	0.581	5.192	1.984	13.39
p-value	0.0000225	0.00108	0.00172	0.446	0.0227	0.159	0.000253
Mean for Control	1,179	1,756	0.229	585.6	41.93	115.2	0.313

Bilan : plusieurs leçons utiles

- 1. Limitation : pas de véritable intrant de couverture dans les données
 - Aurait été utile pour tester le modèle, qui est utile pour l'intuition mais non inclus dans la version publiée de l'article
- 2. Effet des subventions en espèces limité, mais augmente les achats d'intrants
 - Similaire à une série d'études sur les impacts du crédit rural
- 3. Peu d'impact supplémentaire de cash + assurance
 - Suggère que les contraintes de crédit peuvent ne pas être si importantes pour ces ménages
- 4. L'absence d'assurance contraint clairement ces agriculteurs
 - Analyses supplémentaires sur la demande d'assurance dans l'article
 - La demande est limitée et dépend fortement de facteurs variables comme les paiements antérieurs
 - Implications pour la conception des produits d'assurance

Outline

Risque et production des entreprises

Lissage des risques

Assurance

Modèle de Karlan et al. (2014)

Analyse empirique de Karlan et al. (2014)

Adoption de l'assurance

Pourquoi l'adoption de l'assurance climatique est-elle faible?

- Nombreuses études montrant une faible adoption des produits d'assurance et étudiant les facteurs potentiels
 - Contraintes de liquidité, manque de littératie financière, biais présentiste, manque de confiance
 - Mais l'adoption reste faible même lorsque ces obstacles sont levés dans des contextes expérimentaux (Bridle et al. 2018)
- ► Karlan et al. (2014) montrent une demande plus élevée que d'autres études et des avantages clairs à fournir une assurance, mais une demande limitée à un prix actuariellement équitable
- ► Ils montrent également que l'utilisation continue ou l'abandon dépend fortement de la réception de paiements
 - Défi d'adoption pour les technologies qui révèlent leurs avantages de manière peu fréquente
 - Lié à une littérature plus large sur les effets de l'expérience sur la prise de décision

Effet des paiements: Cai, de Janvry, & Sadoulet (2020)

- RCT sur l'assurance climatique auprès des ménages producteurs de riz en Chine
- Randomisation croisée de programme d'éducation et de subventions à l'assurance
- Analyse de l'adoption de l'assurance 2-4 ans plus tard
- Constat: « seule une expérience positive avec l'assurance (réception de paiements) augmente la demande, et en général cet effet ne persiste pas dans le temps. »
- L'effet des paiements conduit à une adoption persistante uniquement avec le programme éducatif; les autres ménages «mettent continuellement à jour leurs décisions d'adoption en fonction des expériences récentes »
- Preuves que « la nature stochastique des paiements et le faible niveau de littératie financière » sont des raisons clés de la faible adoption par les agriculteurs

L'expérience compte pour d'autres technologies réduisant les risques: Boucher et al. (2024)

- ▶ RCT au Kenya et au Mozambique: communautés assignées à un groupe témoin, des semences tolérantes à la sécheresse (DT), ou DT + assurance indicielle basée sur satellite
- ► Le traitement DT protège contre la sécheresse en milieu de saison et atténue les baisses à long terme des investissements agricoles et de la productivité après une sécheresse
- ► Le regroupement avec l'assurance indicielle a un impact significatif supplémentaire
- L'expérience des agriculteurs est importante:
 - Les agriculteurs traités qui subissent une sécheresse et bénéficient des traitements augmentent leurs investissements agricoles au-delà des niveaux d'avant le choc
 - Les agriculteurs traités qui ne constatent pas les avantages des technologies sont plus susceptibles de les abandonner

Réduire le risque de base: Feed the Future Innovation Lab for MMR 2025

- L'assurance indicielle évite le coût élevé de la vérification des pertes individuelles
- Risque de base: possibilité que les agriculteurs subissent une perte qui devrait être couverte mais qui n'est pas captée par l'indice
 - Aggrave le bien-être des ménages assurés, réduit la confiance
- ▶ Réponse potentielle: règle d'audit activée lorsque les agriculteurs estiment que l'indice a échoué
 - Vérification formelle des conditions pour voir si elles atteignent le seuil de paiement, paiement émis si oui
 - Nécessite une réflexion sur quand déclencher un audit, comment tester les conditions hors de la procédure indicielle normale
 - ▶ Ne diminue pas l'importance d'un indice précis
- Arbitrages :
 - ► Augmentera les coûts pour l'assureur ⇒ nécessitera des primes plus élevées
 - Peut augmenter la confiance et l'adoption

Conclusions

- Avantages de la fourniture d'assurance pour l'investissement agricole, la production et la résilience
- Mais adoption limitée des produits d'assurance
- Leçons pour la conception des produits
 - Subventions
 - Éducation
 - Expérience
 - Réduction du risque de base
- ► Rôle des autres échecs de marché ?
- Rôle des autres mécanismes comportementaux ?