Hamburg Model

$$\Delta N_{eff} = g_a e^{\frac{-t}{\tau_a}} \Phi_{eq} + g_y \left(1 - \frac{1}{1 + \frac{t}{\tau_y}} \right) \Phi_{eq} + N_C$$
 (1)

- $\Delta N_{eff} = N_{eff}(t_{ann}) N_{eff,pre-irr}$
- Parameters to fit: g_a (beneficial annealing introduction rate), g_y (reverse annealing introduction rate), τ_a (beneficial annealing time constant), τ_y (reverse annealing time constant), N_C (stable damage)
- For HGCAL diodes $\Phi_{eq} = 2.5 \times 10^{15}~\text{cm}^{-2}$

Hamburg Model fits: CB18_D4

Hamburg Model fits: CB18_D7

Hamburg fit parameters

156min@60C ≈ 15 min@80C

Parameter	D4	D7	Moll	Sagir
$g_a (10^{-2} \text{ cm}^{-1})$	0.269	0.1133	1.81	1.16
$N_C \ (10^{11} \ { m cm}^{-3})$	-16.4	19.38	N/A	N/A
$g_y \ (10^{-2} \ \mathrm{cm}^{-1})$	0.437	0.8029	1.49	4.77
t_a (mins@60C)	50.6	38.44	19	~24.5
t_y (mins@60C)	212	2063	1260	~2954
t_a (mins@80C)	\sim 4.86	\sim 3.698	2	2.36
t_y (mins@80C)	\sim 20.4	\sim 198.5	92	284

