EE 210 PROBLEM SET 3

3.8 Find the equivalent resistance R_{ab} for each of the

\$20Ω \$5Ω

circuits in Fig. P3.8.

≩30Ω

10Ω

(a)

26 Ω ≩ 3.4 Ω

 $20\,\Omega$

11.25 Ω

(b)

75 Ω 14⁶⁰ Ω

10Ω

 3Ω

5.2 Ω

15 Ω

(c)

Z_L12 Ω

\$5Ω

Figure P3.9

3.10 Find the power dissipated in the 5 Ω resistor in the circuit in Fig. P3.10.

3Ω ••••

Figure P3.10

3.11 For the circuit in Fig. P3.11 calculate

- a) v_o and i_o
- b) the power dissipated in the 15 Ω resistor
- c) the power developed by the voltage source

Figure P3.11

- 3.13
- * P
- a) Calculate the no-load voltage v_o for the voltage-divider circuit shown in Fig. P3.13.
- b) Calculate the power dissipated in R_1 and R_2 .
- c) Assume that only 1 W resistors are available. The no-load voltage is to be the same as in (a). Specify the ohmic values of R_1 and R_2 .

Figure P3.13

3.15 The no-load voltage in the voltage-divider \mathfrak{s} shown in Fig. P3.15 is 8 V. The smallest load \mathfrak{r} that is ever connected to the divider is 3.6 k Ω . It the divider is loaded, v_o is not to drop below \mathfrak{l}

- a) Design the divider circuit to meet the \P cations just mentioned. Specify the number value of R_1 and R_2 .
- b) Assume the power ratings of comma available resistors are 1/16, 1/8, 1/4.1 2 W. What power rating would you spa

Figure P3.15

3,17

- a) The voltage divider in Fig. P3.17(a) is loaded with the voltage divider shown in Fig. P3.17(b); that is, a is connected to a', and b is connected to b'. Find v_o .
- b) Now assume the voltage divider in Fig. P3.17(b) is connected to the voltage divider in Fig. P3.17(a) by means of a current-controlled voltage source as shown in Fig. P3.17(c). Find v_o .
- c) What effect does adding the dependent-voltage source have on the operation of the voltage divider that is connected to the 240 V source?

Figure P3.17

3.18 There is often a need to produce more than one voltage using a voltage divider. For example, the memory components of many personal computers require voltages of -12 V, 6 V, and +12 V, all with respect to a common reference terminal. Select the values of R_1 , R_2 , and R_3 in the circuit in Fig. P3.18 to meet the following design requirements:

Figure P3.18

- a) The total power supplied to the divider circuit by the 24 V source is 36 W when the divider is unloaded.
- b) The three voltages, all measured with respect to the common reference terminal, are $v_1 = 12 \text{ V}$, $v_2 = 6 \text{ V}$, and $v_3 = -12 \text{ V}$.
- **3.30** In the circuit in Fig. P3.30(a) the device labeled D represents a component that has the equivalent circuit shown in Fig. P3.30(b). The labels on the terminals of D show how the device is connected to the circuit. Find v_x and the power absorbed by the device.

Figure P3.30

3.32 The ammeter in the circuit in Fig. P3.32 has a resistance of $0.1~\Omega$. What is the percentage of error in the reading of this ammeter if

% error =
$$\left(\frac{\text{measured value}}{\text{true value}} - 1\right) \times 100$$
?

Figure P3.32

3.33 The ammeter described in Problem 3.32 is used to measure the current i_0 in the circuit in Fig. P3.33. What is the percentage of error in the measured value?

Figure P3.33

- 3.47 The circuit model of a dc voltage source is shown in Fig. P3.47. The following voltage measurements are made at the terminals of the source: (1) With the terminals of the source open, the voltage is measured at 50 mV, and (2) with a 15 M Ω resistor connected to the terminals, the voltage is measured at 48.75 mV. All measurements are made with a digital voltmeter that has a meter resistance of 10 M Ω .
 - a) What is the internal voltage of the source (v_s) in millivolts?
 - b) What is the internal resistance of the source (R_s) in kilo-ohms?

Figure P3.47

- 3.58
- P
- a) Find the resistance seen by the ideal voltage source in the circuit in Fig. P3.58.
- b) If v_{ab} equals 400 V, how much power is dissipated in the 31 Ω resistor?

Figure P3.58

3

Use a Y-to- Δ transformation to find (a) i_o ; (b) i_1 ; (c) i_2 ; and (d) the power delivered by the ideal voltage source in the circuit in Fig. P3.59.

Fakra P3.59

