Proof of Result in Chapter 10

Proof of Result 10.1 We assume that Σ_{11} and Σ_{22} are nonsingular.¹ Introduce the symmetric square-root matrices $\Sigma_{11}^{1/2}$ and $\Sigma_{22}^{1/2}$ with $\Sigma_{11} = \Sigma_{11}^{1/2} \Sigma_{11}^{1/2}$ and $\Sigma_{11}^{-1} = \Sigma_{11}^{-1/2} \Sigma_{11}^{-1/2}$. [See (2-22).] Set $\mathbf{c} = \Sigma_{11}^{1/2} \mathbf{a}$ and $\mathbf{d} = \Sigma_{22}^{1/2} \mathbf{b}$, so $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{c}$ and $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{d}$. Then

$$Corr(\mathbf{a}'\mathbf{X}^{(1)}, \mathbf{b}'\mathbf{X}^{(2)}) = \frac{\mathbf{a}'\boldsymbol{\Sigma}_{12}\mathbf{b}}{\sqrt{\mathbf{a}'\boldsymbol{\Sigma}_{11}\mathbf{a}}\sqrt{\mathbf{b}'\boldsymbol{\Sigma}_{22}\mathbf{b}}} = \frac{\mathbf{c}'\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1/2}\mathbf{d}}{\sqrt{\mathbf{c}'\mathbf{c}}\sqrt{\mathbf{d}'\mathbf{d}}}$$
(1)

By the Cauchy-Schwarz inequality (2-48),

$$\mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{d} \leq \left(\mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1/2} \mathbf{c} \right)^{1/2} (\mathbf{d}' \mathbf{d})^{1/2}$$
 (2)

Since $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$ is a $p \times p$ symmetric matrix, the maximization result (2-51) yields

$$\mathbf{c}' \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2} \mathbf{c} \le \lambda_1 \mathbf{c}' \mathbf{c}$$
 (3)

where λ_1 is the largest eigenvalue of $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{21}^{-1}\Sigma_{11}^{-1/2}$. Equality occurs in (3) for $\mathbf{c} = \mathbf{e}_1$, a normalized eigenvalue associated with λ_1 . Equality also holds in (2) if **d** is proportional to $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_1$. Thus,

$$\max_{\mathbf{a},\mathbf{b}} \operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)},\mathbf{b}'\mathbf{X}^{(2)}) = \sqrt{\lambda_1}$$
 (4)

with equality occurring for $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{c} = \Sigma_{11}^{-1/2} \mathbf{e}_1$ and with **b** proportional to $\Sigma_{22}^{-1/2} \Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1/2} \mathbf{e}_1$, where the sign is selected to give positive correlation. We take $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{f}_1$. This last correspondence follows by multiplying both sides of

$$(\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1/2})\,\boldsymbol{e}_{1}\,=\,\boldsymbol{\lambda}_{1}\boldsymbol{e}_{1}$$

by $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}$, yielding

$$\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}(\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_{1}) = \lambda_{1}(\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_{1})$$
 (5)

Thus, if $(\lambda_1, \mathbf{e}_1)$ is an eigenvalue-eigenvector pair for $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{21}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$, then $(\lambda_1, \mathbf{f}_1)$ —with \mathbf{f}_1 the normalized form of $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_1$ —is an eigenvalue-eigenvector pair for $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}$. The sign for \mathbf{f}_1 is chosen to give a positive correlation. We have demonstrated that $U_1 = \mathbf{e}_1'\Sigma_{11}^{-1/2}\mathbf{X}^{(1)}$ and $V_1 = \mathbf{f}_1'\Sigma_{22}^{-1/2}\mathbf{X}^{(2)}$ are the first pair of canonical variables and that their correlation is $\rho_1^* = \sqrt{\lambda_1}$. Also, $\mathrm{Var}(U_1) = \mathbf{e}_1'\Sigma_{11}^{-1/2}\Sigma_{11}\Sigma_{11}^{-1/2}\mathbf{e}_1 = \mathbf{e}_1'\mathbf{e}_1 = 1$, and similarly, $\mathrm{Var}(V_1) = 1$.

Continuing, we note that U_1 and an arbitrary linear combination $\mathbf{a}'\mathbf{X}^{(1)} = \mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$ are uncorrelated if

$$0 = \text{Cov}(U_1, \mathbf{c}' \Sigma_{11}^{-1/2} \mathbf{X}^{(1)}) = \mathbf{e}'_1 \Sigma_{11}^{-1/2} \Sigma_{11} \Sigma_{11}^{-1/2} \mathbf{c} = \mathbf{e}'_1 \mathbf{c}, \text{ or } \mathbf{c} \perp \mathbf{e}_1$$

At the kth stage, we require that $\mathbf{c} \perp \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}$. The maximization result (2-52) then yields

$$c' \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2} c \leq \lambda_k c' c \quad \text{for } c \perp e_1, \dots, e_{k-1}$$

¹ If Σ_{11} or Σ_{22} is singular, one or more variables may be deleted from the appropriate set, and the linear combinations $\mathbf{a}'\mathbf{X}^{(1)}$ and $\mathbf{b}'\mathbf{X}^{(2)}$ can be expressed in terms of the reduced set. If $p > \text{rank}(\Sigma_{12}) = p_1$, then the nonzero canonical correlations are $\rho_1^*, \ldots, \rho_{p_1}^*$.

and by (1),

$$\operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)},\mathbf{b}'\mathbf{X}^{(2)}) = \frac{\mathbf{c}'\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1/2}\mathbf{d}}{\sqrt{\mathbf{c}'\mathbf{c}}\sqrt{\mathbf{d}'\mathbf{d}}} \leq \sqrt{\lambda_k}$$

with equality for $\mathbf{c} = \mathbf{e}_k$ or $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{e}_k$ and $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{f}_k$, as before. Thus, $U_k = \mathbf{e}_k' \Sigma_{11}^{-1/2} \mathbf{X}^{(1)}$ and $V_k = \mathbf{f}_k' \Sigma_{22}^{-1/2} \mathbf{X}^{(2)}$, are the kth canonical pair, and they have correlation $\sqrt{\lambda_k} = \rho_k^*$.

Although we did not explicitly require the V_k to be uncorrelated,

$$Cov(V_k, V_\ell) = \mathbf{f}_k' \mathbf{\Sigma}_{22}^{-1/2} \mathbf{\Sigma}_{22} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{f}_\ell = \mathbf{f}_k' \mathbf{f}_\ell = 0, \quad \text{if } k \neq \ell \leq p$$

Also,

$$Cov(U_k, V_{\ell}) = \mathbf{e}_k' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{f}_{\ell} = 0, \quad \text{if } k \neq \ell \leq p$$

• since \mathbf{f}'_k is a multiple of $\mathbf{e}'_k \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2}$ by (5).