SA4

Ex-SA4.1) Soit une solution de chlorure de calcium $CaCl_2$ à $0,01 \ mol.L^{-1}$. Quelle quantité de Na_2SO_3 faut-il ajouter à $100 \ mL$ de la solution pour observer un précipité de sulfate de calcium $CaSO_{3\downarrow}$ dont le pK_s vaut 4?

Ex-SA4.2 Domaines d'existence : cas des sulfates de baryum et de calcium

Partant d'une solution initiale avec $[Ba^{2+}]_0 = [Ca^{2+}]_0 = 10^{-2} \ mol.L^{-1}$, entre quelles limites doit être comprise $[SO_4^{2-}]$ pour que $BaSO_{4(s)}$ précipite sans que $CaSO_{4(s)}$ précipite? Représenter les domaines d'existence en fonction de pSO_4 des deux précipités sur un même schéma.

Données : $pK_s(BaSO_{4(s)}) = 9,9 \text{ et } pK'_s(CaSO_{4(s)}) = 4,6$

Indications: SO_4^{2-} est une base très faible, dont on peut négliger l'hydrolyse (H_2SO_4 : acide fort; $pK_a(HSO_4^{-}/SO_4^{2-})=2$). On néglige la réaction des ions avec l'eau.

Rép. : $1,26.10^{-8} \ mol.L^{-1} \le [SO_4^{2-}]_0 \le 2,51.10^{-3} \ mol.L^{-1}$

Ex-SA4.3 Solubilité : effet d'ion commun (1)

- 1) Calculer la solubilité s de $AgI_{(s)}$ dans l'eau pure.
- 2) Calculer la solubilité s' de $AgI_{(s)}$ dans une solution de KI initialement à $C_0 = 10^{-2} \ mol.L^{-1}$. Le résultat était-il prévisible?

Données: $pK_s(AgI_{(s)}) = 16, 1$

Rép.: $s = 8,91.10^{-9} \ mol.L^{-1}$ et $s' = 8.10^{-15} \ mol.L^{-1}$

Ex-SA4.4) Effet d'ions communs (2)

- 1) Déterminer la solubilité de l'iodate d'argent $(AgIO_{3(s)})$ de $pK_s = 7, 5$:
- 1.a) dans l'eau pure;
- 1.b) dans une solution d'iodate de potassium à :
 - (a) $C_0 = 3, 5.10^{-1} \ mol.L^{-1};$ (b) $C_0 = 1, 0.10^{-4} \ mol.L^{-1}$.
- 2) Dans une solution saturée de fluorure de baryum, la concentration en ions fluorure est de $6,5.10^{-3}\ mol.L^{-1}$. En déduire la solubilité du fluorure de baryum dans une solution de nitrate de baryum à :
 - α) $C_0 = 2, 4.10^{-1} \ mol.L^{-1}$; β) $C_0 = 4, 0.10^{-4} \ mol.L^{-1}$.

Données : L'ion iodate est une base indifférente dans l'eau et $pKa(HF/F^-) = 3, 2$

■ Précipités et équilibres acido-basiques

Ex-SA4.5) Soit une solution de chlorure de fer (III), $FeCl_3$, de concentration c. L'ion ferrique hydraté $Fe_{(aq)}^{3+}$ est un acide de $pK_A = 2, 2$.

Pour quelle valeur de c le pH de la solution est-il tel qu'il y a début de précipitation d'hydroxyde de fer (III) $Fe(OH)_{3\downarrow}$ ($pK_s=38$)? Calculer ce pH.

(Ex-SA4.6) Soit une solution aqueuse saturée de AgCl. Calculer le pH de cette solution et la concentration en ions argent.

On ajoute de l'acide chlorhydrique pour ajuster la valeur du pH à 2. Calculer la nouvelle valeur de $[Ag^+]$. Quelle quantité de HCl a-t-on ajoutée? **Donnée**: $pK_s(AgCl_{\downarrow}) = 10$.

(Ex-SA4.7) Redissolution de précipité

- 1) Quelle quantité d'ammoniac faut-il ajouter à 1,00 L de solution contenant 0,0100 mol d'hydroxyde de cadmium $Cd(OH)_2$ pour obtenir une solution limpide?
- 2) Quel est alors le pH de la solution ainsi obtenue?

Données : $pK_s(Cd(OH)_2) = 14,0$; $\log \beta_4([Cd(NH_3)_4]^{2+}) = 7,0$

Indication : Utiliser le fait qu'à la limite de disparition de $Cd(OH)_2$, on peut encore écrire K_s , mais aussi β_4 .

Ex-SA4.8 Acétate d'argent

Dans une solution tampon de pH=6,0 la solubilité de l'acétate d'argent CH_3COOAg est de

 $4,5.10^{-2}$ mol. L^{-1} . Le pH d'une solution saturée en acétate d'argent vaut 8,7. En déduire la valeur du produit de solubilité de l'acétate d'argent K_s et la constante d'acidité K_a de l'acide acétique.

Indications: Exprimer K_s en fonction de s, h et K_a dans la première solution, puis en fonction de K_a , K_e et h dans la seconde.

Ex-SA4.9) Détermination de la formule d'un ion complexe pare dosage acido-basique

Un composé B a pour formule brute $CrCl_3, 6H_2O$; lors de la mise en solution, il s'établit l'équilibre d'équation-bilan : $CrCl_3, 6H_2O_{(s)} \rightleftharpoons [CrCl_{(3-p)}H_2O_{(6-3+p)}]^{p+} + pCl^{-1}$

- 1) Donner toutes les formules possibles pour l'ion complexe, noté désormais C^{p+}
- 2) La solution aqueuse obtenue est un électrolyte, que peut-on en conclure?
- 3) Pour déterminer la formule exacte de C^{p+} , on fait passer une solution contenant m=0,319 g de B sur une résine échangeuse d'ions cationiques. Chaque ion C^{p+} est alors remplacé par p ions H_3O^+ (la résine, lors de l'échange de cations, reste donc électriquement neutre). La solution récupérée après passage sur la résine est dosée par une solution de soude à $C_0 = 0,200 \ mol.L^{-1}$; l'équivalence est obtenue pour $v_e(soude) = 17.8 \ mL$.
- \rightarrow En déduire la formule et la structure géométrique de C^{p+} .

(Ex-SA4.10) Solubilité de l'hydroxyde d'aluminium

• En présence d'ions hydroxyde HO^- , l'ion Al^{3+} précipite sous forme d'hydroxyde d'aluminium (III) $Al(OH)_3$. $Al(OH)_3$ est un hydroxyde métallique amphotère : il se dissout en milieu très basique par formation d'un complexe $Al(OH)_{4}^{-}$.

Données:

- Produit de solubilité de $Al(OH)_{3(s)}: pK_s = 32$
- Constante globale de formation du complexe $Al(OH)_4^-: \log \beta_4 = 34$
- Produit ionique de l'eau : $Ke = 10^{-14}$
- Une solution aqueuse a été réalisée avec une concentration globale d'aluminium dissous égale à $C_0 = 10^{-4} \ mol.L^{-1}$.
- 1) Déterminer les valeurs pH_1 et pH_2 du pH telles que respectivement :
 - a) le précipité d'hydroxyde d'aluminium $Al(OH)_{3(s)}$ apparaisse;
 - **b)** le précipité d'hydroxyde d'aluminium $Al(OH)_{3(s)}$ disparaisse.
 - c) Résumer les résultats précédent sur un schéma en fonction du pH.
- 2) Définir la solubilité s de $Al(OH)_{3(s)}$ en fonction de concentrations d'espèces contenant de
- 3) Exprimer la solubilité s de $Al(OH)_{3(s)}$ en fonction de $h = [H_3O^+]$ dans le domaine $[pH_1 1; pH_2 + 1$]. On découpera pour cela le domaine en différents intervalles suivant l'existence du précipité. En déduire, en justifiant les approximations faites, les relations linéaires $\log s = f(pH)$.
- 4) Tracer l'allure du diagramme asymptotique donnant $\log s$ en fonction du pH.5) Déterminer la valeur du pH lorsque la solubilité est minimale et la valeur de s correspondante. Compléter le graphique précédent.

Rép.: **1.a)**
$$pH_1 = 4,7$$
; **1.b)** $pH_2 = 8$; **2)** $s = [Al^{3+}] + [Al(OH)_4^-]$; **3)** $[3,7;4,7[:\log s = -4; [4,7;5,5[:\log s = 10 - 3pH;]5,5;8]:\log s = -12 + pH; [8;9]:\log s = -4; 5) $pH = 5,61$; $\log s = -6,25$$

■ Précipités et équilibres de complexation

(Ex-SA4.11) les ions mercurique Hg^{2+} donnent avec les ions iodure I^- le précipité $HgI_{2\downarrow}$ $(\overline{pK_s = 28})$ et le complexe HgI_4^{2-} $(pK_D = 30)$.

À 10 mL d'une solution d'ion mercurique à 10^{-2} mol. L^{-1} , on ajoute une solution d'iodure de potassium à $0, 1 \ mol.L^{-1}$.

- 1) Pour quel volume v_1 de KI observe-t-on le précipité orangé de $HgI_{2\downarrow}$? Calculer alors les concentrations de toutes les espèces chimiques en solution.
- 2) Pour quel volume v_2 de KI observe-t-on la disparition du précipité orangé de $HgI_{2\downarrow}$? Calculer alors les concentrations de toutes les espèces chimiques en solution.