

Dinámica (FIS1514) Cinemática 2D y 3D

Felipe Isaule

felipe.isaule@uc.cl

Miércoles 14 de Agosto de 2024

Resumen clase anterior

 Definimos las ecuaciones para movimiento con aceleración constante.

$$dv = a_0 dt \longrightarrow v = v_0 + a_0 t$$

$$v dv = a_0 ds \longrightarrow \frac{v^2}{2} = \frac{v_0^2}{2} + a_0 (s - s_0)$$

$$ds = v dt \longrightarrow s = s_0 + v_0 t + \frac{1}{2} a_0 t^2$$

 Revisamos en detalle la integración de ecuaciones en cinemática.

Clase 4: Cinemática 2D y 3D

- Cinemática 2D
- Coordenadas rectangulares
- Lanzamiento de proyectil

- Bibliografía recomendada:
 - Meriam (2.3, 2.4).
 - Hibbeler (12.4, 12.5, 12.6).

Clase 4: Cinemática 2D y 3D

- Cinemática 2D
- Coordenadas rectangulares
- Lanzamiento de proyectil

Cinemática 2D

- Nos referimos como movimiento plano curvilíneo a un movimiento confinado a un plano (dos dimensiones).
- En coordenadas rectangulares, el vector posición está dado por

$$\vec{r} = x\hat{i} + y\hat{j}$$

Cinemática 2D

• El vector desplazamiento $\Delta \vec{r}$

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

• Si el movimiento es rectilíneo, la distancia recorrida:

$$\Delta s = \|\Delta \vec{r}\|$$

Cinemática 2D

• La velocidad promedio \vec{v} , velocidad instantánea \vec{v} , y rapidez v ,

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}, \qquad \vec{v} = \frac{d\vec{r}}{dt} = \dot{\vec{r}} \qquad v = \|\vec{v}\| = \frac{ds}{dt} = \dot{s}$$

• La aceleración promedio \vec{a} y aceleración instantánea \vec{a} ,

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}, \qquad \vec{a} = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \ddot{\vec{r}}$$

Visualización del movimiento

• La velocidad es tangente a la posición

$$\vec{v} = \frac{d\vec{r}}{dt}$$

La aceleración es **tangente** a la velocidad

$$\vec{a} = \frac{d\vec{v}}{dt}$$

Clase 4: Cinemática 2D y 3D

- Cinemática 2D
- Coordenadas rectangulares
- Lanzamiento de proyectil

Coordenadas rectangulares

• De manera general, la posición de una partícula en tres dimensiones

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Entonces, la velocidad y aceleración:

$$\vec{v} = \dot{\vec{r}} = \dot{x}\,\hat{i} + \dot{y}\,\hat{j} + \dot{z}\hat{k},$$

$$\vec{a} = \dot{\vec{v}} = \ddot{\vec{r}} = \ddot{x}\,\hat{i} + \ddot{y}\,\hat{j} + \ddot{z}\hat{k}.$$

 Si el movimiento está confinado en un plano (dos dimensiones):

$$\vec{r} = x\hat{i} + y\hat{j}$$

Coordenadas rectangulares

 Los componentes de la velocidad y aceleración

$$v_x = \dot{x}$$
 $v_y = \dot{y}$ $v_z = \dot{z}$ $a_x = \ddot{x}$ $a_y = \ddot{y}$ $a_z = \ddot{z}$

 Las magnitudes de la velocidad (rapidez) y aceleración

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}, \qquad a = \sqrt{a_x^2 + a_y^2 + a_y^2}.$$

La **posición** de una partícula en un plano está dada por

$$\vec{r} = At^2\hat{i} + Bt^{3/2}\hat{j} + C\hat{j}$$

donde A, B, y C son constantes conocidas. Encuentre la **rapidez** de la partícula en función del **tiempo** t .

La **posición** de una partícula en un plano está dada por

$$\vec{r} = At^2\hat{i} + Bt^{3/2}\hat{j} + C\hat{j}$$

donde A, B, y C son constantes conocidas. Encuentre la **rapidez** de la partícula en función del **tiempo** t .

La velocidad:
$$\vec{v} = 2At\,\hat{i} + \frac{3}{2}Bt^{1/2}\,\hat{j}$$

$$v_x$$

La rapidez:
$$v = \sqrt{v_x^2 + v_y^2} \qquad \longrightarrow \qquad v = \sqrt{4A^2t^2 + \frac{9B^2t}{4}}$$

Una partícula se mueve en un plano con una aceleración:

$$\vec{a} = 12t^2\hat{i} - 4t^3\hat{j} \,,$$

donde el tiempo está en segundos. Si la partícula tiene una **velocidad inicial** $\vec{v}_0 = 2\hat{i}$ en m/s, encuentre la **velocidad** y **rapidez** en función del **tiempo**.

Una partícula se mueve en un plano con una aceleración:

$$\vec{a} = 12t^2\hat{i} - 4t^3\hat{j} \,,$$

• donde el tiempo está en segundos. Si la partícula tiene una **velocidad inicial** $\vec{v}_0 = 2\hat{i}$ en m/s, encuentre la **velocidad** y **rapidez** en función del **tiempo**.

Simplemente separamos la aceleración en sus dos componentes:

$$a_x = 12t^2 \qquad a_y = -4t^3$$

La velocidad en x:

$$v_x = v_{x,0} + \int_0^t a_x dt = 2 + 4t^3$$

La velocidad en y:

$$v_x = v_{y,0} + \int_0^t a_y dt = -t^4$$

Entonces la velocidad:

$$\vec{v} = (2 + 4t^3)\hat{i} - t^4\hat{j}$$

La rapidez:

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(2+4t^3)^2 + t^8}$$

$$v = \sqrt{4 + 8t^3 + 16t^6 + t^8}$$

Una partícula se mueve en un plano con una aceleración:

$$\vec{a} = 12t^2\hat{i} - 4t^3\hat{j} \,,$$

• donde el tiempo está en segundos. Si la partícula tiene una **velocidad inicial** $\vec{v}_0 = 2\hat{i}$ en m/s, encuentre la **velocidad** y **rapidez** en función del **tiempo**.

Simplemente separamos la aceleración en sus dos componentes:

$$a_x = 12t^2 \qquad a_y = -4t^3$$

La velocidad en x:

$$v_x = v_{x,0} + \int_0^t a_x dt = 2 + 4t^3$$

La velocidad en y:

$$v_x = v_{y,0} + \int_0^t a_y dt = -t^4$$

Entonces la velocidad:

$$\vec{v} = (2 + 4t^3)\hat{i} - t^4\hat{j}$$

La rapidez:

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(2+4t^3)^2 + t^8}$$

$$v = \sqrt{4 + 8t^3 + 16t^6 + t^8}$$

¿Qué unidades tiene cada número en las respuestas?

Clase 4: Cinemática 2D y 3D

- Cinemática 2D
- Coordenadas rectangulares
- Lanzamiento de proyectil

- Una **partícula** es lanzada con un **ángulo** θ respecto a la superficie con una **rapidez inicial** v_0 . Si la partícula está sujeta a la gravedad,
 - ¿Cuál es su trayectoria y velocidad?
 - ¿A qué **altura** llega la partícula? Asuma que la partícula es lanzada desde la **superficie**.
 - ¿Qué distancia horizontal recorre la partícula al tocar nuevamente la superficie?

- Una **partícula** es lanzada con un **ángulo** θ respecto a la superficie con una **rapidez inicial** v_0 . Si la partícula está sujeta a la gravedad,
 - ¿Cuál es su trayectoria y velocidad?

La aceleración es nula en el eje x, y constante hacia la superficie en el eje y:

$$a_x = 0$$
, $a_y = -g$

La velocidad es un movimiento con aceleración constante en cada componente:

En este ejemplo:

$$v_{x,0} = v_0 \cos \theta$$
$$v_{y,0} = v_0 \sin \theta$$
$$x_0 = y_0 = 0$$

Mientras que la posición:

$$\longrightarrow \begin{cases} x = x_0 + v_{x,0} t \\ \longrightarrow \end{cases}$$

$$y = y_0 + v_{y,0} t - gt^2/2$$

También podemos escribir:

- Una partícula es lanzada con un ángulo θ respecto a la superficie con una rapidez inicial v_0 . Si la partícula está sujeta a la gravedad,
 - ¿A qué **altura** llega la partícula? Asuma que la partícula es lanzada desde la **superficie**.

La **cima** se alcanza cuando la **velocidad vertical** es cero. La aceleración vertical sigue siendo -*g*.

La altura alcanzada es:

$$v_y^2 = v_{y,0}^2 - 2g(y - y_0) \qquad \longrightarrow \qquad \Delta y = \frac{v_{y,0}^2}{2g} = \frac{v_0^2 \sin^2 \theta}{2g}$$

 v_y =0 en el punto de **altura máxima**

- * Si $\theta{=}0$, entonces $\Delta\,y{=}0.$ La partícula se mantiene en el suelo.
- * Por otro lado, la altura es máxima para θ =90°.

- Una **partícula** es lanzada con un **ángulo** θ respecto a la superficie con una **rapidez inicial** v_0 . Si la partícula está sujeta a la gravedad,
 - ¿Qué distancia horizontal recorre la partícula al tocar nuevamente la superficie?

Primero obtenemos el tiempo que toma volver a tocar el suelo:

$$y = y_0 + v_{y,0} t - gt^2/2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

y=0 cuando vuelve a tocar el suelo

$$\longrightarrow \Delta t = \frac{2v_{y,0}}{g} = \frac{2v_0 \sin \theta}{g}$$

si θ =90°, entonces Δx =0. La partícula es lanzada verticalmente.

Ahora utlizamos la trayectoria horizontal:

$$x = x_0 + v_{x,0} t$$

Resumen

- Introducimos la cinemática en dos dimensions (movimiento plano curvilíneo).
- Hemos revisado el problema del lanzamiento de un proyectil.
- Próxima clase:
 - Lanzamiento de proyectil (continuación)
 - → Coordenadas polares