Mein Titel

Tim Jaschik

May 30, 2025

Abstract. – Kurze Beschreibung ...

Contents

IV.11. Der Hurewicz Homomorphismus.

Wir identifizieren $\Delta^1 \cong I$, wobei $(t_0, t_1) \in \Delta^1$ dem Element $t_1 \in I$ zugeordnet wird, dh. die Ecken $e_0, e_1 \in \Delta^1$ entsprechen $e_0 \leftrightarrow 0$ und $e_1 \leftrightarrow 1$. Mit Hilfe dieser Identifizierung können wir Wege $\sigma: I \to X$ mit 1-Simplizes $\tilde{\sigma}: \Delta^1 \to X$ identifizieren, $\tilde{\sigma}(t_0, t_1) = \sigma(t_1)$.

IV.11.1. Lemma.

Es gilt:

- (i) Ist $x \in X$, dann existiert $\tau \in C_2(X)$ mit $\tilde{c}_x = \partial \tau$.³⁵
- (ii) Ist $\sigma: I \to X$ eine Schleife, dann gilt $\partial \tilde{\sigma} = 0$.
- (iii) Sind $\sigma_0 \simeq \sigma_1 : I \to X$ homotop relativ Endpunkten, dann existiert $\tau \in C_2(X)$ mit $\tilde{\sigma}_1 = \tilde{\sigma}_0 + \partial \tau$.
- (iv) Sind $\sigma_0, \sigma_1 : I \to X$ mit $\sigma_0(1) = \sigma_1(0)$, dann existiert $\tau \in C_2(X)$ mit $(\sigma_0 \sigma_1)^{\sim} = \tilde{\sigma}_0 + \tilde{\sigma}_1 + \partial \tau$.
- (v) Ist $\sigma: I \to X$, dann existiert $\tau \in C_2(X)$ mit $\bar{\sigma}^{\sim} = -\tilde{\sigma} + \partial \tau$. ³⁶
- (vi) Ist $f: X \to Y$ stetig und $\sigma: I \to X$, dann gilt $f \circ \tilde{\sigma} = (f \circ \sigma)^{\sim}$.

Beweis.

Ad (i): Für den konstanten 2-Simplex $\tau: \Delta^2 \to X, \tau(t_0, t_1, t_2) := x$, erhalten wir $\partial \tau = \tilde{c}_x - \tilde{c}_x + \tilde{c}_x = \tilde{c}_x$.

Ad (ii): Für eine Schleife $\sigma: I \to X$ gilt $\partial \tilde{\sigma} = \sigma(1) - \sigma(0) = 0 \in C_0(X)$.

Ad (iii): Sei also $H: I \times I \to X$ eine Homotopie relativ Endpunkten von σ_0 nach σ_1 . Definiere $x_0 := \sigma_0(0) = \sigma_1(0), x_1 := \sigma_0(1) = \sigma_1(1), \ \rho: I \to X, \rho(t) := H_t(t), \text{ sowie } \tau_0, \tau_1: \Delta^2 \to X, \tau_0\left(t_0, t_1, t_2\right) := H_{t_2}\left(t_1 + t_2\right), \ \tau_1\left(t_0, t_1, t_2\right) := H_{t_1+t_2}\left(t_2\right)$. Dann gilt $\partial \tau_0 = \tilde{c}_{x_1} - \tilde{\rho} + \tilde{\sigma}_0$ und $\partial \tau_1 = \tilde{\sigma}_1 - \tilde{\rho} + \tilde{c}_{x_0}$. Nach (i) existieren $\tau_2, \tau_3 \in C_2(X)$ mit $\partial \tau_2 = \tilde{c}_{x_0}$ und $\partial \tau_3 = \tilde{c}_{x_1}$. Wir erhalten daher

$$\tilde{\sigma}_1 - \tilde{\sigma}_0 = \partial \left(\tau_1 - \tau_0 - \tau_2 + \tau_3 \right)$$

die Behauptung folgt daher mit $\tau := \tau_1 - \tau_0 - \tau_2 + \tau_3$.

Ad (iv): Definieren wir $\tau: \Delta^2 \to X$, $\tau(t_0, t_1, t_2) := (\sigma_0 \sigma_1) (t_1/2 + t_2)$, dann folgt $\partial \tau = \tilde{\sigma}_1 - (\sigma_0 \sigma_1)^{\sim} + \tilde{\sigma}_0$. Ad(v): Setze $x_0 := \sigma(0)$. Nach (iv) existiert $\tau_1 \in C_2(X)$ mit $(\sigma \bar{\sigma})^{\sim} = \tilde{\sigma} + \bar{\sigma}^{\sim} - \partial \tau$. Da $\sigma \bar{\sigma} \simeq c_{x_0}$ erhalten wir aus (iii) ein $\tau_2 \in C_2(X)$ mit $(\sigma \bar{\sigma})^{\sim} = \tilde{c}_{x_0} + \partial \tau_2$. Nach (i) existiert $\tau_3 \in C_2(X)$ mit $\partial \tau_3 = \tilde{c}_{x_0}$. Zusammen erhalten wir

$$\tilde{\sigma} + \bar{\sigma}^{\sim} = \partial (\tau_1 + \tau_2 + \tau_3).$$

Behauptung (vi) ist trivial, $(f \circ \tilde{\sigma})(t_0, t_1) = f(\tilde{\sigma}(t_0, t_1)) = f(\sigma(t_1)) = (f \circ \sigma)(t_1) = (f \circ \sigma)^{\sim}(t_0, t_1)$, für $(t_0, t_1) \in \Delta^1$. Nach Lemma IV.11.1(ii) und (iii) ist

$$h_1 = h_1^{(X,x_0)} : \pi_1(X,x_0) \to H_1(X), \quad h_1([\sigma]) := [\tilde{\sigma}].$$

eine wohldefinierte Abbildung, sie wird der (erste) Hurewicz-Homomorphismus genannt. Dabei bezeichnet $[\sigma] \in \pi_1(X, x_0)$ die Homotopieklasse der Schleife $\sigma: I \to X$ bei x_0 , und $[\tilde{\sigma}] \in H_1(X)$ die von dem ensprechenden 1-Simplex $\tilde{\sigma}: \Delta^1 \to X$ repräsenterte Homologieklasse. In Proposition IV.11.2 unten werden wir zeigen, dass dies tatsächlich ein Gruppenhomomorphismus ist.

IV.11.2. Proposition (Hurewicz-Homomorphismus).

Ist (X, x_0) ein punktierter Raum, dann definiert (IV.43) einen Gruppenhomomorphismus. Dieser Homomorphismus ist natürlich, dh. das linke Diagramm

$$\pi_1(X, x_0) \xrightarrow{h_1^{(X, x_0)}} H_1(X)$$

$$f_* \downarrow \qquad \qquad \downarrow f_*$$

$$\pi_1(Y, y_0) \xrightarrow{h_1^{(Y, y_0)}} H_1(Y)$$

$$\begin{array}{ccc}
h_1^{(X,x_0)} & & & & \\
h_1^{(X,x_0)} & & & & \\
& & & & \\
\pi_1(X,x_0) & & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

kommutiert für jede Abbildung punktierter Räume $f:(X,x_0)\to (Y,y_0)$. Für jeden Weg $h:I\to X$ von $h(0)=x_0$ nach $h(1)=x_1$ ist darüber hinaus das rechte Diagramm oben kommutative, siehe Proposition I.1.18.

Beweis. Sind $\sigma_1, \sigma_2: I \to X$ zwei Schleifen bei x_0 , dann folgt aus Lemma IV.11.1(iv)

$$h_1\left(\left[\sigma_1\right]\left[\sigma_2\right]\right) = h_1\left(\left[\sigma_1\sigma_2\right] = \left[\left(\sigma_1\sigma_2\right)^{\sim}\right] = \left[\tilde{\sigma}_1\right] + \left[\tilde{\sigma}_2\right] = h_1\left(\left[\sigma_1\right]\right) + h_1\left(\left[\sigma_2\right]\right),$$

also ist (IV.43) ein Gruppenhomomorphismus. Ist $f:(X,x_0)\to (Y,y_0)$ eine Abbildung punktierter Räume und $\sigma:I\to X$ eine Schleife bei x_0 , dann folgt aus Lemma IV.11.1(vi)

$$\begin{split} h_1^{(Y,y_0)}\left(f_*([\sigma])\right) &= h_1^{(Y,y_0)}([f\circ\sigma]) = [(f\circ\sigma)^\sim] \\ &= [f\circ\tilde{\sigma}] = f_*([\tilde{\sigma}]) = f_*\left(h_1^{(X,x_0)}([\sigma])\right) \end{split}$$

Dies zeigt die Natürlichkeit von h_1 . Ist nun $\sigma: I \to X$ eine Schleife bei x_1 , dann folgt

$$\begin{split} h_1^{(X,x_0)}\left(\beta_h([\sigma])\right) &= h_1^{(X,x_0)}([h\sigma\bar{h}]) = \left[(h\sigma\bar{h})^{\sim}\right] \\ &= \left[\tilde{h} + \tilde{\sigma} + \bar{h}^{\sim}\right] = [\tilde{h} + \tilde{\sigma} - \tilde{h}] = [\tilde{\sigma}] = h_1^{(X,x_0)}([\sigma]) \end{split}$$

wobei wir Lemma IV.11.1(iv) und (v) verwendet haben.

IV.11.3. Satz (Hurewicz-Isomorphismus).

Es sei (X, x_0) ein wegzusammenhängender punktierter Raum. Dann ist der Hurewicz-Homomorphismus (IV.43) surjektiv und sein Kern stimmt mit der Kommutatoruntergruppe von $\pi_1(X, x_0)$ überein. Er induziert daher einen Isomorphismus $\pi_1(X, x_0)_{ab} \cong H_1(X)$.

Beweis.

Da $H_1(X)$ abelsch ist, induziert (IV.43) einen Homomorphismus

$$h_1: \pi_1(X, x_0)_{ab} \to H_1(X)$$

es genügt zu zeigen, dass (IV.44) ein Isomorphismus ist. Da X wegzusammenhängend ist, können wir zu jedem Punkt $x \in X$ einen Weg $\rho_x: I \to X$ von $\rho_x(0) = x_0$ nach $\rho_x(1) = x$ wählen. Ist nun $\tilde{\sigma}: \Delta^1 \to X$ ein 1-Simplex und $\sigma: I \to X$ der entsprechende Weg, dann ist $\left(\rho_{\sigma(0)}\sigma\right)\bar{\rho}_{\sigma(1)}$ eine Schleife bei x_0 und definiert daher ein Element in $\left[\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)}\right] \in \pi_1\left(X,x_0\right)$. Da $\pi_1\left(X,x_0\right)_{\rm ab}$ abelsch ist können wir einen Homomorphismus auf Erzeugern $\tilde{\sigma}: \Delta^1 \to X$ wie folgt definieren:

$$\phi: C_1(X) \to \pi_1(X, x_0)_{ab}, \quad \phi(\tilde{\sigma}) := \left[\rho_{\sigma(0)} \sigma \bar{\rho}_{\sigma(1)}\right].$$

Wir zeigen zunächst

$$\phi \circ \partial = 1 : C_2(X) \to \pi_1(X, x_0)_{ab}$$

dh. ϕ definiert einen Homomorphismus

$$\phi: H_1(X) \to \pi_1(X, x_0)_{ab}, \quad \phi([c]) := \phi(c).$$

Für $\tau: \Delta^2 \to X$ ist also $\phi(\partial \tau) = 1$ zu zeigen. ³⁷ Setzen wir $\tilde{\sigma}_i := \tau \circ \delta_2^i : \Delta^1 \to X$, i = 0, 1, 2, dann gilt offensichtlich $\partial \tau = \tilde{\sigma}_0 - \tilde{\sigma}_1 + \tilde{\sigma}_2$. Da ϕ ein Homomorphismus ist, erhalten wir:

$$\begin{split} \phi(\partial\tau) &= \phi\left(\tilde{\sigma}_{0}\right)\phi\left(\tilde{\sigma}_{1}\right)^{-1}\phi\left(\tilde{\sigma}_{2}\right) \\ &= \left[\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\rho}_{\sigma_{0}(1)}\right]\left[\rho_{\sigma_{1}(0)}\sigma_{1}\bar{\rho}_{\sigma_{1}(1)}\right]^{-1}\left[\rho_{\sigma_{2}(0)}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}\right] \\ &= \left[\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\rho}_{\sigma_{0}(1)}\rho_{\sigma_{1}(1)}\bar{\sigma}_{1}\bar{\rho}_{\sigma_{1}(0)}\rho_{\sigma_{2}(0)}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}\right] \\ &= \left[\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\sigma}_{1}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}\right] \\ &= \left[\rho_{\sigma_{0}(0)}\bar{\rho}_{\sigma_{2}(1)}\right] = \left[c_{x_{0}}\right] = 1 \end{split}$$

Dabei haben wir verwendet, dass $\sigma_0\bar{\sigma}_1\sigma_2, \bar{\rho}_{\sigma_0(1)}\rho_{\sigma_1(1)}, \bar{\rho}_{\sigma_1(0)}\rho_{\sigma_2(0)}$ und $\rho_{\sigma_0(0)}\bar{\rho}_{\sigma_2(1)}$ nullhomotope Schleifen sind. Damit ist (IV.45) gezeigt. Es genügt nun zu zeigen, dass (IV.46) invers zu (IV.44) ist. Zunächst gilt

$$\phi \circ h_1 = \mathrm{id}_{\pi_1(X,x_0)_{\mathrm{ab}}}$$

denn für jede Schleife $\sigma: I \to X$ bei x_0 gilt

$$\phi\left(h_1([\sigma])\right) = \phi([\tilde{\sigma}]) = \phi(\tilde{\sigma}) = \left[\rho_{x_0} \sigma \bar{\rho}_{x_0}\right] = \left[\rho_{x_0}\right] \left[\tilde{\sigma}\right] \left[\rho_{x_0}\right]^{-1} = \left[\sigma\right]$$

Es bleibt daher nur noch

$$h_1 \circ \phi = \mathrm{id}_{H_1(X)}$$

zu zeigen. Um dies einzusehen definieren wir einen Homomorphismus auf Erzeugern $x \in X$ durch

$$g: C_0(X) \to C_1(X), \quad g(x) := \tilde{\rho}_x$$

Für jeden 1-Simplex $\tilde{\sigma}: \Delta^1 \to X$ gilt dann

$$h_1(\phi(\tilde{\sigma})) = h_1\left(\left[\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)}\right]\right) = \left[\left(\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)}\right)^{\sim}\right]$$
$$= \left[\tilde{\rho}_{\sigma(0)} + \tilde{\sigma} - \tilde{\rho}_{\sigma(1)}\right] = \left[\tilde{\sigma} - g(\partial\tilde{\sigma})\right].$$

Dabei haben wir Lemma IV.11.1(iv) und (v) verwendet. Es folgt sofort $h_1(\phi(c)) = [c - g(\partial c)]$ für alle $c \in C_1(X)$, also $h_1(\phi(c)) = [c]$, für alle Zyklen $c \in Z_1(X)$. Damit ist (IV.47) gezeigt und der Beweis vollständig.