ORIE 4580/5580: Simulation Modeling and Analysis ORIE 5581: Monte Carlo Simulation

Unit 6: Generating Random Vectors

Sid Banerjee School of ORIE, Cornell University

review and roadmap

generating random variables

we have seen how to:

- ullet generate pseudorandom U[0,1] samples
- ullet transform U[0,1] samples to another rv using
 - inversion
 - acceptance-rejection

two special cases

- multivariate Normal rvs
 - generating correlated vectors
- Exponential rvs and the Poisson process
 - generating time-indexed processes

generating Normal rvs

can be done via several methods

- (numerical) inversion
- Box-Muller method
- acceptance-rejection (using Exp(1))

variance and covariance

- variance: $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- X and Y are independent if $\mathbb{P}[X \leq x, Y \leq y] = F_X(x)F_Y(y)$ for all x, y
- covariance: $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Rightarrow Cov(X, Y) = 0$ (independent implies uncorrelated)
- however, uncorrelated rvs can be dependent

correlation

for any rvs X, Y, their correlation coefficient is

$$\rho = \frac{\textit{Cov}(X, Y)}{\sqrt{\textit{Var}(X)} \sqrt{\textit{Var}(Y)}}$$

properties:

correlation: examples

clicker question: independence and correlation for Normal rvs

- $Z \sim \mathcal{N}(0,1), B \sim Ber(1/2)$
- X = Z, Y = (2B 1)Z
- (a) X and Y are correlated and dependent
- (b) X and Y are uncorrelated and dependent
- (c) X and Y are uncorrelated and independent
- (d) X and Y are correlated and independent

clicker question: independence and correlation for Normal rvs

- $Z \sim \mathcal{N}(0,1), B \sim Ber(1/2)$
- X = Z, Y = (2B 1)Z

multivariate normal rvs

ullet given a sample $X \sim \mathcal{N}(0,1)$, can generate $Y \sim \mathcal{N}(\mu,\sigma^2)$ as

- *d*-dimensional multivariate normal \iff vector (X_1, X_2, \dots, X_d)
 - each $X_i \sim \mathcal{N}(\mu_i, \sigma_{ii})$ (i.e., normally distributed with mean μ_i and variance σ_{ii})
 - covariance between X_i and X_j is $Cov(X_i, X_j) = \sigma_{ij}$
 - covariance between X_j and X_i is $Cov(X_j, X_i) = \sigma_{ji}$
 - conditions:

random vectors and covariance

consider any random vector (X_1, X_2, \ldots, X_n)

- vector of means $\mu = (\mu_1, \mu_2, \dots, \mu_d)^T$
- covariance matrix: $\Sigma = \mathbb{E}[(X \mu)(X \mu)^T]$

$$\Sigma = \left[\begin{array}{cccc} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{array} \right]$$

ullet Σ always positive definite

correlated Normal random variables

- $\mu = (\mu_1, \mu_2, \dots, \mu_d)^T$ (column vector)
- ullet $\Sigma =$ positive semidefinite covariance matrix

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$$

• want to generate samples of such *correlated* random variables.

bivariate Normal rvs

- start with the case d=2.
- $\sigma_1^2 = \sigma_{11} = Var(X_1)$, $\sigma_2^2 = \sigma_{22} = Var(X_2)$,

$$\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{21}}{\sigma_1 \sigma_2}.$$

$$\mu = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right], \quad \Sigma = \left[\begin{array}{cc} \sigma_{11} & \sigma_{21} \\ \sigma_{21} & \sigma_{22} \end{array} \right] = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right].$$

• want to generate samples of X_1 and X_2 , where

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \ X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2),$$

$$Cov(X_1, X_2) = \sigma_{12}.$$

generating correlated bivariate Normal rvs

- ullet take $N_1,N_2\sim \mathcal{N}(0,1)$ and independent.
- set $X_1 = \mu_1 + \sigma_1 N_1$,
- set $X_2 = \mu_2 + aN_1 + bN_2$
- we need to have

$$\sigma_2^2 = Var(X_2) = a^2 Var(N_1) + b^2 Var(N_2) =$$
 $\sigma_{12} = Cov(X_1, X_2) = Cov(\mu_1 + \sigma_1 N_1, \mu_2 + aN_1 + bN_2) =$

•
$$a^2 + b^2 = \sigma_2^2$$
, $a\sigma_1 = \rho\sigma_1\sigma_2 \implies (a, b) = \left(\frac{\sigma_{12}}{\sigma_1}, \sigma_2\sqrt{1 - \frac{\sigma_{12}^2}{\sigma_1^2\sigma_2^2}}\right)$

generating correlated bivariate Normal rvs

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \sigma_1 & 0 \\ \frac{\sigma_{12}}{\sigma_1} & \sigma_2 \sqrt{1 - \frac{\sigma_{12}^2}{\sigma_1^2 \sigma_2^2}} \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$$

$$X = \mu + L \qquad N$$

generating correlated multivariate Normal rvs

- this method works when d > 2 as well
- write X as $X = \mu + LN$, where N is a d-dimensional vector whose components are independent $\mathcal{N}(0,1)$.
- ullet to connect the matrix L to Σ , observe that

$$\Sigma = \mathbb{E}\left[(X - \mu)(X - \mu)^T\right] =$$

generating correlated Normal rvs

- L is a "square root" of Σ .
- \bullet writing Σ as

$$\Sigma = LL^T$$

is called the Cholesky factorization of Σ .

ullet once we can compute the Cholesky factor of Σ , we are done!

correlated rvs beyond multivariate Normal

FELIX SALMON 0

82.23.89 12:88 PM

Recipe for Disaster: The Formula That Killed Wall Street

In the mid-'80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their methods for minting money worked brilliantly... until one of them devastated the global economy.

🔯 " JIM KRANTZ / INDEX STOCK IMAGERY, INC. / GALLERY STOCK

