# HN462732, HN462732G, HN462732P

4096-word × 8-bit U.V. Erasable and Programmable Read Only Memory

The HN462732 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

The HN462532P is a 4096 word by 8 bit, one time programmable ROM. This device is packaged in a 24-pin, dual-in-line plastic package.

#### **FEATURES**

• Single Power Supply . . . . . +5V ±5%

• Simple Programming . . . . . Program Voltage: +25V D.C.

Program with One 50ms Pulse

• Static . . . . . . . . No Clocks Required

 Inputs and Outputs TTL Compatible During Both Read and Program Modes

Fully Decoded On-Chip Address Decode

• Access Time ...... 450ns (max)

■ Low Power Dissipation . . . . 150mA (max) Active Currents

30mA (max) Standby Current

• Three State Output . . . . . OR-Tie-Capability

Compatible with INTEL 2732



#### **MODE SELECTION**

| Mode            | Pins | (18)     | OE /V <sub>PP</sub> (20) | V <sub>cc</sub> (24) | Outputs<br>(9~11, 13~17) |
|-----------------|------|----------|--------------------------|----------------------|--------------------------|
| Read            |      | VIL .    | VIL                      | +5                   | Dout                     |
| Stand by        |      | $V_{IH}$ | Don't Care               | +5                   | High Z                   |
| Program         |      | VIL      | $V_{PP}$                 | +5                   | Din                      |
| Program Verify  |      | VIL      | VIL                      | +5                   | Dout                     |
| Program Inhibit |      | VIH      | $V_{PP}$                 | +5                   | High Z                   |



#### **■ PIN ARRANGEMENT**



### ■ ABSOLUTE MAXIMUM RATINGS

| Item                          | Symbol  | Value`        | Unit |
|-------------------------------|---------|---------------|------|
| Operating Temperature Range   | Topr    | 0 to +70      | °C   |
| Storage Temperature Range     | Tets    | -65 to +125   | °C   |
| All Input and Output Voltage* | $V_T$   | -0.3  to  +7  | V    |
| V <sub>PP</sub> Voltage*      | OE /VPP | -0.3  to  +28 | V    |

#### \* With respect to GND

#### **READ OPERATION**

#### • DC AND OPERATING CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm5\%$ , $V_{PP}=V_{cc}\pm0.6V$ )

| Parameter                                                     | Symbol            | Test Condition                                                 | min. | typ. | max.       | Unit |
|---------------------------------------------------------------|-------------------|----------------------------------------------------------------|------|------|------------|------|
| Input Leakage Current (Except $\overline{\text{OE}}/V_{PP}$ ) | $I_{LI1}$         | $V_{IN}=5.25\mathrm{V}$                                        | _    | _    | 10         | μA   |
| OE /VPP Input Leakage Current                                 | I <sub>LI 2</sub> | $V_{IN}=5.25\mathrm{V}$                                        | _    | _    | 10         | μA   |
| Output Leakage Current                                        | ILO               | Vout = 5.25 V                                                  | _    | _    | 10         | μA   |
| Vcc Current (Standby)                                         | I <sub>cc1</sub>  | $\overline{\text{CE}} = V_{IH}, \overline{\text{OE}} = V_{IL}$ | _    | _    | 30         | m A  |
| Vcc Current (Active)                                          | I <sub>CC2</sub>  | $\overline{OE} = \overline{CE} = V_{IL}$                       | _    |      | 150        | m A  |
| Input Low Voltage                                             | $V_{IL}$          |                                                                | -0.1 | _    | 0.8        | V    |
| Input High Voltage                                            | VIH               |                                                                | 2.0  | _    | $V_{cc}+1$ | V    |
| Output Low Voltage                                            | Vol               | $I_{OL}=2.1\mathrm{mA}$                                        | _    | _    | 0.45       | v    |
| Output High Voltage                                           | $V_{OH}$          | $I_{OH} = -400 \mu\text{A}$                                    | 2.4  | -    | _          | V    |

#### • AC CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5$ V $\pm 5\%$ , $V_{PP}=V_{cc}\pm 0.6$ V)

| Parameter                            | Symbol          | Test Condition                                         | min | typ | max | Unit |
|--------------------------------------|-----------------|--------------------------------------------------------|-----|-----|-----|------|
| Address to Output Delay              | tACC            | $\overline{\text{CE}} = \overline{\text{OE}} = V_{IL}$ | _   | _   | 450 | ns   |
| CE to Output Delay                   | t <sub>CE</sub> | $\overline{OE} = V_{IL}$                               | _   | _   | 450 | ns   |
| Output Enable to Output Delay        | to <sub>E</sub> | $\overline{\text{CE}} = V_{IL}$                        | _   | _   | 120 | - ns |
| Output Enable High to Output Float * | t <sub>DF</sub> | $\overline{\text{CE}} = V_{IL}$                        | 0   |     | 100 | ns   |
| Address to Output Hold               | t <sub>OH</sub> | $\overline{CE} = \overline{OE} = V_{IL}$               | 0   | -   | _   | ns   |

<sup>\*</sup> tDF defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

#### • SWITCHING CHARACTERISTICS

**Test Condition** 

Input Pulse Levels:

Input Rise and Fall Times:

Output Load:

Reference Level for Measuring Timing:

0.8V to 2.2V ≤ 20ns

1TTL Gate + 100pF

Inputs 1V and 2V



#### • CAPACITANCE $(Ta=25^{\circ}\text{C}, f=1\text{MHz})$

| Parameter                                                 | Symbol           | Test Condition          | min. | typ. | max. | Unit |
|-----------------------------------------------------------|------------------|-------------------------|------|------|------|------|
| Input Capacitance (Except $\overline{\text{OE}}/V_{PP}$ ) | G <sub>N1</sub>  | $V_{IN}=0$ V            | _    | _    | 6    | pF   |
| OE/V <sub>PP</sub> Input Capacitance                      | C <sub>IN2</sub> | $V_{IN} = 0 \text{ V}$  | -    |      | 20   | pF   |
| Output Capacitance                                        | Cont             | $V_{out} = 0 \text{ V}$ | _    | _    | 12   | pF   |

#### **PROGRAMMING OPERATION**

#### • DC PROGRAMMING CHARACTERISTICS ( $V_{CC} = 5V \pm 5\%$ , $V_{PP} = 25V \pm 1V$ , $Ta = 25^{\circ}C \pm 5^{\circ}C$ )

| Parameter                                                            | Symbol          | Test Condition                                                 | min. | typ. | max.               | Unit |
|----------------------------------------------------------------------|-----------------|----------------------------------------------------------------|------|------|--------------------|------|
| Input Leakage Current                                                | Iμ              | $V_{IN} = 5.25 \text{V} / 0.4 \text{V}$                        | -    | _    | 10                 | μA   |
| Output Low Voltage During Verify                                     | Vol             | IoL = 2.1 m A                                                  | _    | _    | 0.4                | V    |
| Output High Voltage During Verify                                    | V <sub>OH</sub> | $I_{OH} = -400 \mu\text{A}$                                    | 2.4  | _    | -                  | V    |
| Vcc Supply Current                                                   | 1 <sub>cc</sub> |                                                                | -    | _    | 150                | m A  |
| Input Low Level                                                      | V <sub>IL</sub> |                                                                | -0.1 | _    | 0.8                | V    |
| Input High Level (All Input Except $\overline{\mathrm{OE}}/V_{PP}$ ) | VIH             |                                                                | 2.0  | _    | V <sub>cc</sub> +1 | V    |
| VPP Supply Current                                                   | $I_{PP}$        | $\overline{\text{CE}} = V_{IL}, \overline{\text{OE}} = V_{PP}$ |      | _    | 30                 | m A  |

#### • AC PROGRAMMING CHARACTERISTICS ( $V_{CC}$ = 5V ±5%, $V_{PP}$ = 25V ±1V, Ta = 25°C ±5°C)

| Parameter                             | Symbol          | Test Condition                                                 | min. | typ. | max. | Unit |
|---------------------------------------|-----------------|----------------------------------------------------------------|------|------|------|------|
| Address Setup Time                    | tas             |                                                                | 2    | _    | _    | μs   |
| OE Setup Time                         | toes            |                                                                | 2    | _    | _    | μs   |
| Data Setup Time                       | tos             | 1                                                              | 2    | _    | _    | μs   |
| Address Hold Time                     | t <sub>AH</sub> |                                                                | 0    | _    | _    | μs   |
| OE Hold Time                          | t oeh           | ]                                                              | 2    | -    | _    | μs   |
| Data Hold Time                        | t DH            | 1                                                              | 2    | _    | _    | μs   |
| Chip Enable to Output Float Delay*    | tor             |                                                                | 0    | _    | 120  | ns   |
| Data Valid from CE                    | tov             | $\overline{\text{CE}} = V_{IL}, \overline{\text{OE}} = V_{IL}$ | _    | _    | 1    | μs   |
| CE Pulse Width During Programming     | t pw            |                                                                | 45   | 50   | 55   | ms   |
| OE Pulse Rise Time During Programming | t PRT           | ]                                                              | 50   | _    | -    | ns   |
| V <sub>PP</sub> Recovery Time         | t va            |                                                                | 2    | _    | _    | μs   |

<sup>\*</sup> t br defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

## • SWITCHING CHARACTERISTICS Test Conditions

Input Pulse Level:

0.8V to 2.2V

Input Rise and Fall Times:

≤ 20ns

Output Load:

1TTL Gate + 100pF

Reference Level for Measuring Timing:

Inputs; 1V and 2V, Outputs; 0.8V and 2V



#### ERASE

Erasure of HN462732 is performed by exposure to Ultraviolet light of 2537Å, and all the output data are changed to "1" after this prosedure.

The minimum integrated close (i.e., UV intensity x exposure time) for erasure is 15W • sec/cm2.

NOTE THAT THE HN462743P CANNOT BE ERASED.

#### SUPPLY CURRENT vs. SUPPLY VOLTAGE



#### ACCESS TIME vs. SUPPLY VOLTAGE



#### SUPPLY CURRENT VS. AMBIENT TEMPERATURE



#### ACCESS TIME VS. AMBIENT TEMPERATURE

