Branch-and-Cut Schema for EV Charging Station Placement

1 Problem Formulation

The EV charging station placement problem can be formulated as an Integer Linear Program:

Minimize
$$\sum_{j=1}^{n} x_{j}$$
Subject to:
$$\sum_{j=1}^{n} y_{ij} = 1 \quad \forall i \in \{1, \dots, n\}$$

$$y_{ij} \leq x_{j} \quad \forall i, j \in \{1, \dots, n\}$$

$$y_{ij} = 0 \quad \forall i, j \text{ where } distance(i, j) > \text{BATTERY_RANGE}$$

$$\sum_{i=1}^{n} y_{ij} \leq \text{MAX_VEHICLES_PER_STATION} \cdot x_{j} \quad \forall j \in \{1, \dots, n\}$$

$$x_{j}, y_{ij} \in \{0, 1\} \quad \forall i, j \in \{1, \dots, n\}$$

Where:

- x_j is a binary variable indicating if a charging station is placed at location j
- y_{ij} is a binary variable indicating if vehicle i is assigned to station j

2 Branch-and-Cut Tree

3 Explanation of the Branch-and-Cut Algorithm

Branch-and-cut is an extension of the branch-and-bound algorithm that incorporates cutting planes to tighten LP relaxations. The algorithm works as follows:

3.1 Key Components

- 1. **LP Relaxation**: Like branch-and-bound, we start by solving the LP relaxation of the integer problem, allowing variables to take fractional values.
- 2. **Cutting Planes**: Before branching, we try to add valid inequalities (cuts) that:
 - Are satisfied by all integer solutions
 - Cut off the current fractional solution
 - Tighten the LP relaxation, resulting in improved bounds
- 3. **Branching**: If cuts aren't enough to find an integer solution, we branch by creating subproblems with additional constraints.

3.2 Types of Cuts Used in the EV Charging Station Problem

1. Covering Cuts:

$$\sum_{j \in S} x_j \ge \left\lceil \frac{|V_S|}{MAX_VEH} \right\rceil$$

Where S is a set of locations and V_S is the set of vehicles that can only be served by stations in S. This ensures we have enough stations to cover the demand.

2. Neighborhood Cuts:

$$\sum_{j \in N(j,k)} x_j \ge 1$$

Where N(j, k) is the set of potential station locations within range of vehicle k. This ensures each vehicle has at least one charging station within its range.

3. Clique Inequalities:

$$\sum_{j \in C} x_j \ge 1$$

Where C is a clique of vehicles, meaning none of these vehicles share potential station locations. This ensures we place at least one station for each clique.

3.3 Benefits of Branch-and-Cut over Branch-and-Bound

- **Tighter LP Relaxations**: Cuts strengthen the bounds, making them closer to integer values.
- Fewer Branches Needed: With stronger bounds, we can prune more of the search tree.
- Faster Convergence: The algorithm typically finds the optimal solution faster than pure branch-and-bound.
- Better Scalability: More effective for large-scale problems like our EV charging station placement with thousands of vehicles.

3.4 Example from the Tree

In our example tree:

- At the root node, we add a covering cut that increases the bound from 42.5 to 43.2
- At Node 2, a neighborhood cut increases the bound from 43.8 to 44.1
- At Node 3, a clique inequality improves the bound from 43.5 to 43.9
- Eventually, we find an integer solution requiring 44 charging stations

The cuts helped tighten the relaxations at each node, resulting in a faster convergence to the optimal solution compared to pure branch-and-bound, which found a solution with 45 stations.