

The Butterfly Effect

A Case for Biodiversity using Machine Learning

What do we want to predict?

Using a **Time Series model**,

an estimation of the butterfly population evolution over the next years

In the context of **climate change**

What are we looking at?

65,000 butterfly sightings

2001 - 2020

London

Dataset 1 is merged with:

- Temperatures
- Rain
- Sun
- Air Frost

- Ground Level Ozone (O3)
- Nitrogen Dioxide (NO2)
- Sulphur Dioxide (SO2)
- Particles (PM10)
- Carbon Monoxide (CO)

From: Met Office

From: London Air Quality Network

How to build the model?

Data Transformation Data Selection Data Cleaning Butterfly pop indicator Butterfly population indicator Stationarity **External Factors** Check for anomalies From 65K Butterfly sightings Differencing Granger Causality Test Fill Missing values To 1 data point / month: Dickey Fuller test Cointegration **Butterfly seen per Survey** Merge all datasets **Time Series Decomposition** Scaling MinMaxScaler Trend Seasonality Residuals Lags 12/24 months => Impact of external factors on the next generations of butterflies Preprocessing steps
(Depending on the model)

1 Time Series decomposition

1 Time Series decomposition

2| Monthly lags

Original data

	Butterflies per Survey	Temperature - No Lag
July 2005	7.8	16.3
July 2006	7.6	15.5
July 2007	7.1	15.6

Lagged data for the model

Butterflies per Survey	Temperature - Lag 12
7.8	-
7.6	16.3
7.1	15.5

Model & Forecasts

Univariate models

1 variable impact the predictions

> Butterflies per Survey

SARIMA / Prophet

Multivariate models

Several variables impact the predictions

> Butterflies per Survey + weather / air quality data

VAR / Prophet

Best data / model combination

Model filters

Data Sources

Butterfly sightings data: **UKBMS**

Weather data: Met Office

Air Quality data: London Air

A multivariate Time Series model aimed to predict the Butterfly Population Evolution amid climate change (a focus around London, UK) - using Facebook Prophet model

The Butterfly Effect

Butterflies population evolution estimation trend in London, UK

Next steps

> Extend to more locations

> Break down per species or butterflies group

(using specific traits, for example: wingspan or number of host plants)

Thank you!

