

人工智能技术及应用

Artificial Intelligence and Application

Theory behind GAN

Generation

x: an image (a highdimensional vector)

• We want to find data distribution $P_{data}(x)$

c.f. $w^*, b^* = arg \min_{w,b} L$

$$G^* = arg \min_{G} \underline{Div(P_G, P_{data})}$$

Divergence between distributions P_G and P_{data} How to compute the divergence?

Sampling is good enough

$$G^* = arg \min_{G} Div(P_G, P_{data})$$

Although we do not know the distributions of P_G and P_{data} , we can sample from them.

sample from normal sector sector sample from the sector se

Sampling from P_G

Discriminator
$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 $\uparrow \uparrow$: data sampled from P_{data}

 \bigstar : data sampled from P_G

Training: $D^* = arg \max V(D, G)$

The value is related to JS divergence.

Objective Function for D

class 2

$$V(G,D) = E_{y \sim P_{data}}[logD(y)] + E_{y \sim P_G}[log(1 - D(y))]$$

$$D^* = \underset{D}{arg \max} V(D, G)$$

negative cross entropy

Training classifier: minimize cross entropy

Discriminator
$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 $\uparrow \uparrow$: data sampled from P_{data}

: data sampled from P_G

Training:

$$D^* = \arg \max_{D} V(D, G)$$

large divergence

easy to discriminate

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$D^* = \arg\max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$D^* = \arg\max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

- Initialize generator and discriminator
- In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

Can we use other divergence?

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u}-1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the divergence you like ©

https://arxiv.org/abs/1606.00709

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$ \exp(t-1) \\ -1 - \log(-t) $
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$\frac{1}{2} - 2\sqrt{1-t}$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))_{10}$

GAN is difficult to train

NO PAIN NO GAN

Tips for GAN

JS divergence is not suitable

• In most cases, P_G and P_{data} are not overlapped.

1. The nature of data

Both P_{data} and P_G are low-dimmanifold in high-dim space.

The overlap can be ignored.

2. Sampling

Even though P_{data} and P_{G} have overlap.

If you do not have enough sampling

What is the problem of JS divergence?

JS divergence is always log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier achieves 100% accuracy.

The accuracy (or loss) means nothing during GAN training.

Wasserstein distance

- Considering one distribution P as a pile of earth, and another distribution Q as the target
- The average distance the earth mover has to move the earth.

Wasserstein distance

There are many possible "moving plans".

Using the "moving plan" with the smallest average distance to define the Wasserstein distance.

WGAN: Earth Mover's Distance

There many possible "moving plans".

Using the "moving plan" with the smallest average distance to define the earth mover's distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

What is the problem of JS divergence?

WGAN

Evaluate Wasserstein distance between P_{data} and P_{G}

$$\max_{D \in 1-Lipschitz} \left\{ E_{y \sim P_{data}}[D(y)] - E_{y \sim P_{G}}[D(y)] \right\}$$

D has to be smooth enough. How to fulfill this constraint?

Without the constraint, the training of D will not converge.

Keeping the D smooth forces D(y) become ∞ and $-\infty$

GAN is still challenging ...

Generator and Discriminator needs to match each other (棋逢对手)

Generate fake images to fool discriminator

Tell the difference between real and fake

More Tips

- Tips from Soumith
 - https://github.com/soumith/ganhacks
- Tips in DCGAN: Guideline for network architecture design for image generation
 - https://arxiv.org/abs/1511.06434
- Improved techniques for training GANs
 - https://arxiv.org/abs/1606.03498
- Tips from BigGAN
 - https://arxiv.org/abs/1809.11096

Evaluation of Generation

Quality of Image

- Human evaluation is expensive (and sometimes unfair/unstable).
- How to evaluate the quality of the generated images automatically?

Diversity - Mode Collapse

*: real data

🌟 : generated data

Diversity - Mode Dropping

*: real data

🌟 : generated data

Generator at iteration t

Generator at iteration t+1

(BEGAN on CelebA)

Diversity

$$P(c) = \frac{1}{N} \sum_{n} P(c|y^{n})$$

low diversity

Inception Score (IS):

Diversity

Good quality, large diversity → Large IS

$$P(c) = \frac{1}{N} \sum_{n} P(c|y^{n})$$

Uniform means higher variety

Fréchet Inception Distance (FID)

GAN	DISCRIMINATOR LOSS	GENERATOR LOSS
MM GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} = -\mathbb{E}_{x \sim p_d}[\log(D(x))] + \mathbb{E}_{\hat{x} \sim p_g}[\log(1 - D(\hat{x}))]$	$\mathcal{L}_G^{GAN} = -\mathcal{L}_D^{GAN}$
NS GAN	$\mathcal{L}_{D}^{NSGAN} = \mathcal{L}_{D}^{GAN}$	$\mathcal{L}_{G}^{\text{NSGAN}} = \mathbb{E}_{\hat{x} \sim p_g}[\log(D(\hat{x}))]$
WGAN	$\mathcal{L}_{\mathbf{D}}^{\mathbf{WGAN}} = -\mathbb{E}_{x \sim p_d}[D(x)] + \mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$	$\mathcal{L}_{G}^{WGAN} - = \mathcal{L}_{D}^{WGAN}$
WGAN GP	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_g} [(\nabla D(\alpha x + (1 - \alpha \hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{WGAN}} = -\mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$
LS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{LSGAN}} = -\mathbb{E}_{x \sim p_d} [(D(x) - 1)^2] + \mathbb{E}_{\hat{x} \sim p_g} [D(\hat{x})^2]$	$\mathcal{L}_{G}^{LSGAN} = -\mathbb{E}_{\hat{x} \sim p_g} [(D(\hat{x} - 1)^2)]$
DRAGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{DRAGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_d + \mathcal{N}(0,c)} [(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{G}^{DRAGAN} = -\mathcal{L}_{D}^{NS GAN}$
BEGAN	$\mathcal{L}_{D}^{BEGAN} = \mathbb{E}_{x \sim p_d}[x - AE(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - AE(\hat{x}) _1]$	$\mathcal{L}_{G}^{BEGAN} = \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - AE(\hat{x}) _1]$

FIT: Smaller is better

Are GANs Created Equal? A Large-Scale Study https://arxiv.org/abs/1711.10337

We don't want memory GAN.

Real Data

Generated Data

Same as real data ...

Generated Data

Simply flip real data ...

To learn more about evaluation ...

	Measure	Description
3	1. Average Log-likelihood [18, 22]	 Log likelihood of explaining realworld held out/test data using a density estimated from the generated data. (e.g. using KDE or Parzen window estimation). L = ½ ∑_i log P_{model}(x_i)
8	2. Coverage Metric [33]	 The probability mass of the true data "covered" by the model distribution C := P_{data}(dP_{model} > t) with t such that P_{model}(dP_{model} > t) = 0.95
- 13	3. Inception Score (IS) [3]	 KLD between conditional and marginal label distributions over generated data. exp (E_x [KL (p(y x) p(y))])
3	4. Modified Inception Score (m-IS) [34]	 Encourages diversity within images sampled from a particular category. exp(E_{x,} [(KL(P(y x_i)) P(y x_j))]])
		Similar to IS but also takes into account the prior distribution of the labels over real data.
10	5. Mode Score (MS) [35]	$\exp \left(\mathbb{E}_{\mathbf{x}}\left[\mathbb{KL}\left(p\left(y\mid\mathbf{x}\right)\parallel p\left(y^{train}\right)\right)\right]-\mathbb{KL}\left(p\left(y\right)\parallel p\left(y^{train}\right)\right)\right)$
8	6. AM Score [36]	 Takes into account the KLD between distributions of training labels vs. predicted labels,
35		as well as the entropy of predictions. $KL(p(y^{train}) p(y)) + E_x[H(y x)]$
	7. Fréchet Inception Distance (FID) [37]	 Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space
		$FID(r, g) = \mu_r - \mu_g _2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$
	8. Maximum Mean Discrepancy (MMD) [38]	 Measures the dissimilarity between two probability distributions Pr and Pg using samples drawn independent.
		from each distribution. $M_k(P_r, P_g) = \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim P_r}[k(\mathbf{x}, \mathbf{x}')] - 2\mathbb{E}_{\mathbf{x} \sim P_r, \mathbf{y} \sim P_g}[k(\mathbf{x}, \mathbf{y})] + \mathbb{E}_{\mathbf{y}, \mathbf{y}' \sim P_g}[k(\mathbf{y}, \mathbf{y}')]$
		. The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples
- 3	9. The Wasserstein Critic [39]	$\hat{W}(\mathbf{x}_{test}, \mathbf{x}_g) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_g[i])$
0	10. Birthday Paradox Test [27]	• Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)
-	 Classifier Two Sample Test (C2ST) [40] 	Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)
		An indirect technique for evaluating the quality of unsupervised representations
1	12. Classification Performance [1, 15]	(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].
1	13. Boundary Distortion [42]	 Measures diversity of generated samples and covariate shift using classification methods.
	14. Number of Statistically-Different Bins	Given two sets of samples from the same distribution, the number of samples that
	(NDB) [43]	fall into a given bin should be the same up to sampling noise
	15. Image Retrieval Performance [44]	 Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity)
3	 Generative Adversarial Metric (GAM) 	 Compares two GANs by having them engaged in a battle against each other by swapping discriminators
	[31]	or generators. $p(\mathbf{x} y=1; M_1)/p(\mathbf{x} y=1; M_2) = (p(y=1 \mathbf{x}; D_1)p(\mathbf{x}; G_2))/(p(y=1 \mathbf{x}; D_2)p(\mathbf{x}; G_1))$
	17. Tournament Win Rate and Skill	 Implements a tournament in which a player is either a discriminator that attempts to distinguish between
	Rating [45]	real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.
	18. Normalized Relative Discriminative	 Compares n GANs based on the idea that if the generated samples are closer to real ones,
- 3	Score (NRDS) [32]	more epochs would be needed to distinguish them from real samples.
	19. Adversarial Accuracy and Divergence	 Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained
	[46]	on real data and another on generated data, on a labeled validation set to approximate $P_y(y \mathbf{x})$ and $P_r(y \mathbf{x})$.
		Adversarial Divergence: Computes $KL(P_g(y \mathbf{x}), P_r(y \mathbf{x}))$
	20. Geometry Score [47]	Compares geometrical properties of the underlying data manifold between real and generated data.
3	21. Reconstruction Error [48]	 Measures the reconstruction error (e.g. L₂ norm) between a test image and its closest generated image by optimizing for z (i.e. min_x G(z) - x^(fext) ²)
	22. Image Quality Measures [49, 50, 51]	Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference
	23. Low-level Image Statistics [52, 53]	Evaluates how similar low-level statistics of generated images are to those of natural scenes
	24. Precision, Recall and F ₁ score [23]	in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc. • These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.
	1. Nearest Neighborn	
tative		 To detect overfitting, generated samples are shown next to their nearest neighbors in the training set In these experiments, participants are asked to distinguish generated samples from real images
	2. Rapid Scene Categorization [18]	in a short presentation time (e.g. 100 ms); i.e. real v.s fake
	3. Preference Judgment [54, 55, 56, 57]	• Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)
3		• Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring
Ž,	 Mode Drop and Collapse [58, 59] 	the distances of generated data to mode centers
		• Regards exploring and illustrating the internal representation and dynamics of models (e.g. space continuity)
19	 Network Internals [1, 60, 61, 62, 63, 64] 	as well as visualizing learned features

Pros and cons of GAN evaluation measures

Conditional Generation

Text-to-Image

a dog is running a bird is flying

Traditional supervised approach

Conditional GAN

x is real image or not

D
(original)

scalar

Real images:

Generated images: Image

e 0

Generator will learn to generate realistic images

But completely ignore the input conditions.

Conditional GAN

True text-image pairs: (train,

(cat, 0 (train, 1mage) 0

Conditional GAN - Discriminator

[Han Zhang, et al., arXiv, 2017]

Conditional GAN

Image translation, or pix2pix

Image-to-image

Traditional supervised approach

Testing:

It is blurry because it is the average of several images.

Conditional GAN

Testing:

Speech Enhancement

Typical deep learning approach

training data

Speech Enhancement

Conditional GAN

Conditional GAN Talking Head Generation

https://arxiv.org/abs/1905.08233

Concluding Remarks

Introduction of Generative Models

Generative Adversarial Network (GAN)

Can Generator learn by itself?/Can Discriminator generate?

Theory behind GAN

Tips for GAN

Evaluation of Generative Models

Conditional Generation

