

Classificação de Imagens Histológicas de Glomérulos Renais com Podocitopatia

Aluno: George Oliveira Barros

george.barros@ifgoiano.edu.br

Sumário

- Introdução
- Revisão de literatura
- Metodologia
- Resultados e discussão
- Conclusões e trabalhos futuros
- Referências

Histopatologia Digital

- Histologia: estudo da anatomia microscópica de tecidos de organismos [1].
- Histopatologia: análise microscópica de seções histológicas com o objetivo da diferenciação entre tecidos biológicos saudáveis e doentes [2].

Análise de seções de tecido biológico através de sistemas computacionais.

- O que é uma imagem histológica?
 - 1. Biópsia
 - 2. Corte de seção de tecido
 - 3. Aplicação de corantes
 - 4. Observação ampliada por microscópio
 - 5. Aquisição da imagem

Padrão ouro para diagnóstico médico de uma série de patologias!

Fig 1. Ilustração das estruturas internas de um glomérulo

Fig 2. Imagem digital de glomérulo renal saudável

Objetivo do trabalho:

Classificação de imagens de glomérulos renais como imagens: com podocitopatia ou sem podocitopatia.

Fig 3. Estruturas internas de um glomérulo

Fig 4. Sem lesão

Fig 5. Com lesão

- ☐ Trabalhos similares:
 - Zeng et al. 2020: Segmentação de glomérulos e células internas [1].
 - Chagas et al. 2019: Classificação de glomérulos com hipercelularidade, lesão mesangial e esclerótica.
 - Ginley et al. 2020: Detecção de glomérulos.
 - Pinaki et al. 2019: Lesão de glomérulos relacionadas a diabetes e hipertensão.

Não há nenhum trabalho com foco nas lesões podocitárias.

- Resnets
 - Adição de blocos residuais
 - Sendo x o resultado de uma camada, ao utilizar um bloco residual, o resultado se dá por y = x + f(x) (Kaiming He et al., 2015).

Fonte: Residual block (Kaiming He et al., 2015)

Densenet

☐ Cada camada recebe informações de todas as camadas anteriores e não apenas a antecessora (Gao Huang et al., 2016).

■ Data augmentation

Ampliar o conjunto de dados por meio de operações nas imagens. Rotação, flip, ruído, entre outras. (Wong et al., 2016).

□ Transfer learning:

- ☐ Transferência de aprendizado é a reutilização dos pesos de um modelo pré-treinado em um novo problema (Zhu et al., 2020).
- ☐ Técnica aplicada para treinar dataset menores, já que uma rede para conseguir uma generalização adequada em geral necessita de muitos dados.

- 1. Dataset e Data augmentation
- 2. Arquiteturas utilizadas
- 3. Transfer learning
- 4. Avaliação dos modelos

1. Dataset e Data augmentation: 376 imagens (176 com lesão), 70/30 (treino/teste).

Exemplos de imagens do dataset

Alguns resultado de data augmentation

1. Arquitetura utilizadas

- a. Resnet34
- b. Resnet50
- c. Resnet101
- d. Densenet121
- e. Densenet201

1. Transfer learning

1. Carregar arquitetura pré-treinada com Imagenet

2. Finder learning rate

3. Ajuste de pesos da última camada com 5 épocas

4.Descongelamento das demais camadas

Resultados e Discussão

- Resultados mais confiáveis com validação cruzada
- Natureza das imagens do Imagenet bem distinta do dataset utilizado
- Uso hiperparâmetros automáticos
- Apesar do data augmentation, dataset muito pequeno

Modelo	Acc.(%)	Prec.(%)	Recc.(%)	F1-score(%)	Pesos iniciais	Épocas
Resnet34	0,86	0,79	0,94	0,86	Imagenet	15
Resnet50	0,89	0,84	0,89	0,86	Imagenet	13
Resnet101	0,93	0,89	0,94	0,92	Imagenet	7
Densenet121	0,87	0,82	0,86	0,84	Imagenet	14
Densenet201	0,92	0,91	0,89	0,90	Imagenet	14

Conclusões

 Resultados indicam que as CNNs podem ter bom desempenho para classificar lesão podocitária

Trabalhos futuros

- Melhoria do dataset
- ☐ Testes com redes treinados do zero
- ☐ Implementação de validação cruzada
- ☐ Transfer learning com imagens mais parecidas
- ☐ Fine tunnig dos hiperparâmetros
- Classificação dos tipos de lesões
- ☐ Segmentação e classificação dos podócitos lesionados

Referências

- Zeng, C., Nan, Y., Xu, F., Lei, Q., Li, F., Chen, T., . . . Liu, Z. (2020). Identi fi cation of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning. https://doi.org/10.1002/path.5491
- Belsare, A. D.; Mushrif, M. M. Histopathological image analysis using image processing techniques: an overview. Signal & image processing: an international journal (SIPIJ) vol.3. 2012.
- Ginley, B. G., Emmons, T., Lutnick, B., Urban, C. F., Segal, B. H., & Sarder, P. (2017). Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-18099-y
- Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger. Densely Connected Convolutional Networks (CVPR 2017). ArXiv:1608.06993, 2016.
- Kaiming He et al., Deep Residual Learning for Image Recognition (Microsoft Research). arXiv:1512.03385v1
 [cs.CV] 10 Dec 2015.
- Sebastien C. Wong et al., Understanding data augmentation for classification: when to warp?. arXiv:1609.08764v2, 2016.
- Zhuangdi Zhu, Kaixiang Lin, Jiayu Zhou. Transfer Learning in Deep Reinforcement Learning: A Survey. arXiv:2009.07888, 2020.