ROVNICE Kvadratické rovnice

ÚPLNÁ KVADRATICKÁ ROVNICA

- **Kvadratickou rovnicou (KVARO)** s neznámou x nazývame každú rovnicu tvaru $ax^2 + bx + c = 0$, kde a, b, c sú reálne čísla a x je premenná, pričom $a \neq 0$.
- ax² kvadratický člen,
- bx lineárny člen,

c - absolútny člen kvadratickej rovnice.

$$ax^{2} + bx + c = 0$$
 $a,b,c \in R; a \neq 0$
ÚPLNÁ KVADRATICKÁ ROVNICA

NEÚPLNÁ KVADRATICKÁ ROVNICA

TYP A)

Ak b = 0, tak rovnica má tvar

$$ax^2 + c = 0$$

a nazýva sa rýdzo kvadratická rovnica (kvaro bez lineárneho člena);

TYP B)

Ak c = 0, tak rovnica má tvar

$$ax^2 + bx = 0$$

a nazýva sa kvadratická rovnica bez absolútneho člena.

Ako riešiť kvadratickú rovnicu?

>neúplná kvadratická rovnica

- vynímanie pred zátvorku
- rozklad podľa vzorcov (napr. $a^2 b^2 = (a + b) \cdot (a b)$)

> úplná kvadratická rovnica

• použitie vzorca na riešenie kvadratickej rovnice

Riešenie KVARO bez lineárneho člena

Upravíme na súčinový tvar:

PR.1:
$$x^2 - 5 = 0$$

 $(x - \sqrt{5})(x + \sqrt{5})$
 $= 0$
 $x = \sqrt{5} \lor x = -\sqrt{5}$
 $K = \{\pm \sqrt{5}\}$

PR.2:
$$-5x^2 + 5 = 0$$

 $-5(x^2 - 1) = 0$
 $-5(x - 1)(x + 1) = 0$
 $x = 1 \lor x = -1$
 $K = \{\pm 1\}$

Postup:

- výraz rozložíme na súčin pomocou vzorca $a^2 b^2 = (a b) \cdot (a + b)$, prípadne aj vynímaním
- dostaneme rovnicu v súčinovom tvare (predchádzajúce učivo)
- súčin sa rovná nule, ak sa aspoň jeden z činiteľov rovná nule

Poznámka:

- ak úpravou dostaneme výraz $a^2 + b^2$, ten sa nedá rozložiť => kvadratická rovnica nemá riešenie

$$K = \{ \}$$

- súčet dvoch kladných čísel (druhá mocnina je vždy kladná) nikdy nebude nula

Riešenie KVARO bez absolútneho člena

Upravíme na súčinový tvar:

PR3:
$$x^2 - 2x = 0$$

 $x(x-2) = 0$
 $x = 0 \lor x - 2 = 0$
 $x = 2$
 $K = \{0; 2\}$

$$PR4: -4x^{2} + 6x = 0$$

$$-2x(2x - 3) = 0$$

$$-2x = 0 \lor 2x - 3 = 0$$

$$x = 0 \lor 2x = 3$$

$$x = \frac{3}{2}$$

$$K = \left\{ 0; \frac{3}{2} \right\}$$

Postup:

- vyberieme x pred zátvorku
- dostaneme rovnicu v súčinovom tvare (predchádzajúce učivo)
- súčin sa rovná nule, ak sa aspoň jeden z činiteľov rovná nule

Riešenie úplnej KVARO - vzorec

$$ax^2 + bx + c = 0$$

> o tom, či daná rovnica má alebo nemá riešenie, resp. aké sú hodnoty koreňov danej kvadratickej rovnice rozhoduje

DISKRIMINANT $D = b^2 - 4ac$

TRI PRÍPADY:

- > ak D > 0, tak KVARO má 2 reálne korene
- > ak D = 0, tak KVARO má 1 reálny koreň
- > ak D < 0, tak KVARO nemá riešenie v obore reálnych čísel

V prípade, že je $D \ge 0$, pokračujeme VZORCOM PRE KORENE KVARO:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Úplná KVARO - príklad

PR. 5:
$$5x^2 - 2x - 3 = 0$$

$$a = 5$$
 $D = (-2)^2 - 4.5.(-3)$ - vypočítame korene $x_1, x_2, b = -2$ $D = 4 + 60$ $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ $c = -3$ $D = 64 \ge 0$

$$x_{1,2} = \frac{2 \pm \sqrt{64}}{2.5} = \frac{2 \pm 8}{10}$$

$$x_1 = \frac{2+8}{10} = \frac{10}{10} = 1$$

$$x_2 = \frac{2-8}{10} = \frac{-6}{10} = -\frac{3}{5} \quad \mathbf{K} = \left\{-\frac{3}{5}; \mathbf{1}\right\}$$

Postup:

- určíme koeficienty a, b, c
- vypočítame podľa vzorca diskriminant, $D = b^2 - 4ac$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$