Arbres binaires de recherche

universite

Rappel: tas binaire

- topologie : arbre binaire presque complet tassé à gauche
- conditions sur les valeurs : la valeur d'un nœud est supérieure à celle de ses descendants;

En particulier tout sous-arbre est un tas binaire.

Implémentation des files de priorité par un tas :

- insertion : $O(\log n)$
- extraction de la valeur max (racine) : $O(\log n)$

avec n le nombre d'éléments dans le tas.

Arbre binaire de recherche (ABR)

- topologie : arbre binaire quelconque
- conditions sur les valeurs : pour tout nœud sa valeur est
 - supérieure aux valeurs du sous-arbre gauche
 - inférieure aux valeurs du sous-arbre droit

En particulier tout sous-arbre est un ABR.

Propriété: le parcours infixe affiche les valeurs en ordre croissant.

ABR : quelles opérations?

- recherche : O(h)
- element maximum ou minimum : *O*(*h*)
- insertion : *O*(*h*)
- suppression : O(h)

Rappel:

$$O(\log n) \le h \le n$$
.

Pour garantir que $h = O(\log n)$, il faut en plus que l'arbre soit équilibré

- arbres AVI
- arbres rouge-noin

ABR : quelles opérations?

- recherche : O(h)
- element maximum ou minimum : *O*(*h*)
- insertion : O(h)
- suppression : O(h)

Rappel:

$$O(\log n) \le h \le n$$
.

Pour garantir que $h = O(\log n)$, il faut en plus que l'arbre soit équilibré

- arbres AVL
- arbres rouge-noir

Implémentation des types abstraits

Opération	ABR équilibré	Tas binaire	Table de hachage
Maximum	$O(\log n)$	O(1)	O(n)
Recherche	$O(\log n)$	O(n)	O(1)/O(n)
1 insertion	$O(\log n)$	$O(\log n)$	O(1)/O(n)
n insertions	$O(n\log n)$	O(n)	$O(n)/O(n^2)$
Suppression	$O(\log n)$	$O(\log n)$	O(1)/O(n)

ABR équilibré : alternative à la table de hachage pour implémenter un dictionnaire.

Maximum d'un ABR

Algorithme: $\max(a : ABR) : entier$

Entrées : *a* : ABR non vide

Sorties: valeur max contenue dans *a*

- 1 **si** $arbre_vide(droite(a))$
- retourner racine(a)
- 3 retourner max(droite(a))

Complexité : *O*(*h*)

Recherche dans un ABR

```
Algorithme : recherche(a: ABR, v: entier) : booléen
  Entrées: a : ABR. v : valeur recherchée dans l'arbre
  Sorties: vrai si v dans a, faux sinon
1 si arbre_vide(a)
     retourner faux;
\mathbf{si} \ racine(a) = v
     retourner vrai;
5 sinon si racine(a) > v
     retourner recherche(gauche(a), v);
  sinon
     retourner recherche(droite(a), v);
```

Complexité : O(h)

Insertion suppression: modification d'un arbre

Il devient nécessaire de préciser une structure de données :

```
struct noeud{
  val: type des éléments contenus dans l'arbre
  g,d: références vers les noeuds gauches et droits
}
```

- le type Arbre est une référence vers le nœud racine de l'arbre
- l'arbre est vide si cette référence vaut Nil

Insertion (au niveau des feuilles)

```
Algorithme: insere arbre(a: ABR, v: entier): ABR
```

Entrées: a: ABR. v: valeur à insérer dans l'arbre

Sorties : Arbre dans lequel la valeur *v* a été insérée

/* on insère à gauche */

/* sinon on insère à droite */

Variables locales: nd: nœud

```
1 si a = Nil
       nd.val \leftarrow v
```

nd.g ← Nil

 $nd.d \leftarrow Nil$

retourner ↑ nd

6 si a.val > v

 $a.g \leftarrow insere \ arbre(a.g, v);$

8 si a.val < v

 $a.d \leftarrow insere_arbre(a.d, v);$

10 retourner a;

Complexité : O(h)

Suppression

Trois cas de figure pour le nœud qui contient la valeur

- le nœud est une feuille
 - supprimer la feuille
- le nœud a un seul fils
 - le supprimer et le remplacer par son fils
- le nœud a deux fils
 - détails à suivre

Suppression d'un nœud qui a deux fils

Par qui remplacer le nœud de valeur ν pour conserver la propriété ABR?

Pa le nœud

- dont la valeur est la plus grande valeur plus petite que v (prédecesseur)
 - la plus grande valeur du sous-arbre gauche
 - donc celle qui est le plus à droite dans ce sous-arbre
- ou dont la valeur est la plus petite valeur plus grande que v (successeur)
 - la plus petite valeur du sous-arbre droit
 - celle qui est le plus à gauche dans ce sous-arbre

Suppression d'un nœud qui a deux fils

Par qui remplacer le nœud de valeur v pour conserver la propriété ABR?

Pa le nœud:

- dont la valeur est la plus grande valeur plus petite que v (prédecesseur)
 - la plus grande valeur du sous-arbre gauche
 - donc celle qui est le plus à droite dans ce sous-arbre
- ou dont la valeur est la plus petite valeur plus grande que v (successeur)
 - la plus petite valeur du sous-arbre droit
 - celle qui est le plus à gauche dans ce sous-arbre

```
Algorithme: extrait arbre(a: ABR, v: entier): ABR
 1 si a = Nil retourner a;
2 si v > a.val
      a.d \leftarrow extrait\_arbre(a.d, v)
4 sinon si v < a.val
      a.g \leftarrow extrait\_arbre(a.g, v)
6 sinon si a.g = Nil
      retourner a.d
8 sinon si a.d = Nil
      retourner a.g
10 sinon
    w \leftarrow \max(a.g)
   a.val \leftarrow w
12
      a.g \leftarrow extrait \ arbre(a.g, w)
13
14 retourner a;
   Complexité : O(h)
```

arbre équilibré

Définition : un arbre est équilibré si, pour chaque nœud, la différence de hauteur du sous-arbre et droit et du sous-arbre gauche diffère au plus de 1.

Pour tout sous-arbre a on doit avoir

$$|h(a.g) - h(a.d)| \le 1$$

où h(a) est la hauteur de l'arbre a.

Résultat

La hauteur *h* d'un arbre équilibré à *n* nœuds satisfait

$$h \in O(\log n)$$

Arbre AVL (Adelson-Velsky, Landis 1962)

- Arbre ABR
- Arbre équilibré

Exemple d'arbre AVL

On affiche h(a.g) - h(a.d) pour chaque nœud.

Exemple d'arbre AVL

On affiche h(a.g) - h(a.d) pour chaque nœud.

Insertion / suppression dans un AVL

- on insère / supprime comme dans un ABR
- on équilibre si besoin
- complexité $O(h) = O(\log n)$

Conséquence : algo de tri des valeurs en $O(n \log n)$.

Exemple d'arbre AVL

Ajout aux feuilles du noeud 14

Opération de rotation

Il y a 3 cas de figures pour un déséquilibre de +2 (resp. −2) :

- Un déséquilibre de +1 sur le sous-arbre gauche (resp. droit)
- Un déséquilibre de 0 sur le sous-arbre gauche (resp. droit)
- Un déséquilibre de −1 sur le sous-arbre gauche (resp. droit)

Dans tous les cas, on utilise l'opération de rotation

qui conserve la propriété ABR.

déséquilibre de +2 à la racine, + 1 dans le sous-arbre gauche (insertion ou suppression)

Exemple déséquilibre +1 dans le sous-arbre gauche

Exemple déséquilibre +1 dans le sous-arbre gauche

Exemple déséquilibre +1 dans le sous-arbre gauche

déséquilibre de +2 à la racine, 0 dans le sous-arbre gauche (suppression uniquement)

Exemple déséquilibre 0 dans le sous-arbre gauche

Exemple déséquilibre 0 dans le sous-arbre gauche

Exemple déséquilibre 0 dans le sous-arbre gauche

déséquilibre de +2 à la racine, -1 dans le sous-arbre gauche (suppression uniquement)

Bilan

Insertion: au plus une rotation.

Suppression : au plus $0(\log n)$ rotations où n est la taille de l'arbre.

Dans tous les cas, complexité $0(\log(n))$.