

STUDENT ID NO													

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2015/2016

EEN7046 - VLSI DESIGN

5 MARCH 2016 2.30 p.m - 5.30 p.m (3 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages with 4 Questions only.
- 2. Attempt All questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

(a) Construct the truth table for the following functions. $F1(A, B, C, D) = \Sigma m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)$ $F2(A, B, C, D) = AB + \bar{C}D + A\bar{B}CD$

[8 marks]

(b) Compute the simplified characteristic equations of the function in part (a).

[8 marks]

(c) Design the functions in part (b) using programmable logic array.

[9 marks]

(a) Compute the equation of the output signal, F shown in Figure 2.

[2 marks]

- (b) Compute the simplified characteristic equation of function F in part (a). [4 marks]
- (c) Implement the function F in part (b) using CMOS transistors. [8 marks]
- (d) Compute the W/L ratio of all the transistors used in the CMOS circuit that you draw in part (c) using $1\mu m$ CMOS technology. The transistor length must be minimum and the ratio of $\frac{[W/L]p}{[W/L]n} = 2$.

[4 marks]

(e) Design the function F in part (b) using pure NAND gates only. [7 marks]

- (a) Answer the following questions regarding Early voltage, V_A in bipolar junction transistor (BJT).
 - (i) Define Early voltage.

[2 marks]

- (ii) Sketch I_C versus V_{CE} graph and identify the Early voltage in the graph. Write the collector current equation which contains Early voltage. [3 marks]
- (b) Fill up the comparison of voltage gain, current gain, input resistance and output resistance for the different configuration of BJT amplifiers given in Table 3(b).

[6 marks]

Configuration	Voltage gain	Current gain	Input resistance	Output resistance
Common emitter				100000000
Emitter follower				
Common base				

(c) A multistage source follower amplifier consists of NMOS transistors is shown in Figure 3(c). The transistors parameters are as follow.

$$K_{n1} = K_{n2} = 150 \,\mu A / V^2, V_{TH1} = V_{TH2} = 0.6V, \lambda_1 = \lambda_2 = 0.$$

- (i) Given that $V_{DS2} = 4V$. Determine the values for I_{D2} , V_{GS2} , V_{S1} , I_{D1} and V_{DS1} (by sequence). [8 marks]
- (ii) Determine V_{GS1} and V_{G1} . Given that R_{in} =200k Ω . Find the appropriate values for resistor R_1 and R_2 . [6 marks]

Figure 3(c)

- (a) R-2R ladder is one of the most popular architecture of DAC architecture
 - (i) Sketch the circuit diagram of R-2R ladder DAC.

[5 marks]

(ii) Describe the function of the circuit based on the circuit diagram in (a)(i) above.

[4 marks]

- (iii) Describe the advantage of R-2R ladder compared to weighted-resistor DAC. [2 marks]
- (iv) Write down the V_{out} equation for R-2R ladder. Given that the reference voltage, V_{ref} for the 8-bit R-2R ladder is 3V. If B_{in}=11100101, determine the output voltage of the DAC. Also find V_{LSB}.

[6 marks]

- (b) The emitter coupled pair shows in Figure 4(b) has β = 100, R_{EE} = 50k Ω , r_{μ} = ∞ , r_{o} = ∞ , R_{C} = 10k Ω , I_{Q} = 1mA, V_{T} = 26mV and V_{CC} = 15V. Assume that i_{C1} = i_{C2} .
 - (i) Determine g_m and r_{π} .

[3 marks]

(ii) Find the differential-mode input impedance, R_{id}.

[2 marks]

(iii) Determine the differential mode gain, A_d.

[3 marks]

Appendix: Useful formula

$$\begin{split} V_T &= \frac{kT}{q} \\ I_B &= \frac{I_C}{\beta_F} \\ I_E &= \frac{I_C}{\alpha_F} \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(\exp\bigg(\frac{V_{BE}}{V_T}\bigg) - 1 \bigg) \bigg(1 + \frac{V_{CE}}{V_A} \bigg) \\ I_C &= I_S \bigg(e^{-\frac{1}{2}} \frac{E_{CS}}{V_T} \bigg) \bigg(e^{-\frac{1}{2}} \frac{E_{CS}}{V_T} \bigg) \\ I_C &= I_S \bigg(e^{-\frac{1}{2}} \frac{E_{CS}}{V_T} \bigg) \bigg(e^{-\frac{1}{2}}$$

End of Paper

6/6