Universidade Federal Fluminense

LISTA 11 - 2010-2 EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

EDO linear de ordem n: PVI, existência e unicidade Funções L. I. e Wronskiano Conjunto fundamental de soluções EDO linear de $2^{\underline{a}}$ ordem: redução de ordem

Nos exercícios 1 a 4 determine o maior intervalo na vizinhança de x_0 onde se tem certeza que o PVI (problema de valor inicial) dado tem solução única.

1.
$$2y^{iv} - 3x^2y'' + 4xy = 3 \operatorname{sen} x$$
; $y(\pi) = 2$; $y'(\pi) = -1$; $y''(\pi) = 0$; $y'''(\pi) = 1$

2.
$$2y^{iv} - 3x^2y'' + 4xy = 3\ln x$$
; $y(2) = -1$; $y'(2) = 0$; $y''(2) = 0$; $y'''(2) = 2$

3.
$$(x^2 - 4)y''' + (x - 1)y' + 4xy = e^{2x}$$
; $y(-1) = -1$; $y'(-1) = 1$; $y''(-1) = 0$

4.
$$(x^2 - 4)y''' + (x - 1)y' + 4xy = \frac{1}{x}$$
; $y(-1) = -1$; $y''(-1) = 1$; $y''(-1) = 0$

Nos exercícios 5 e 6 verificar que qualquer membro da família dada é uma solução da EDO linear no intervalo I. Encontrar, se possível, a única solução que satisfaz as condições iniciais dadas.

5.
$$x^2y'' - 20y = 0$$
; família: $y = C_1x^5 + \frac{C_2}{x^4}$ em $I = (0, \infty)$ condições iniciais: $y(1) = 4$; $y'(1) = 2$

6.
$$y''' - 2y'' + 2y' = \cos x + 2 \sin x$$
; família: $y = C_1 + e^x(C_2 \cos x + C_3 \sin x) + \sin x$ em $I = \mathbb{R}$ condições iniciais: $y(0) = 3$, $y'(0) = 6$, $y''(0) = 6$

- 7. Sabe-se que $y = C_1 + C_2 x^2$, $x \in \mathbb{R}$ é uma família a dois parâmetros de soluções de $x^2 y'' y' = 0$.
 - (a) Mostre que não existem constantes C_1 e C_2 para que um membro da família satisfaça as condições y(0) = 0, y'(0) = 1. Explique porque isso não constitui uma violação do Teorema da Existência e Unicidade para um PVI linear.
 - (b) Encontre dois membros da família que satisfazem y(0) = 0, y'(0) = 0.

Nos exercícios 8 a 13 verifique se o conjunto de funções dadas são linearmente independentes. Se forem linearmente dependentes determine a relação de dependência entre elas.

8.
$$2x-3$$
, x^2+1 , $2x^2-x$ 11. $2x-3$, x^3+1 , $2x^2-x$, x^2+x+1

9.
$$2x-3$$
, $2x^2+1$, $3x^2+x$ 12. e^x , e^{-x} , senh x

10.
$$2x - 3$$
, $x^2 + 1$, $2x^2 - x$, $x^2 + x + 1$ 13. x , $x \ln x$, $x^2 \ln x$, $x > 0$

14. Mostre que as funções y=x, $y=x^{-2}$, $y=x^{-2}\ln x$, x>0 formam um conjunto fundamental (base) de soluções da EDO $x^3y'''+6x^2y''+4xy'-4y=0$. Forme a solução geral.

Nos exercícios 15 a 18 encontre uma segunda solução da EDO linear de $2^{\underline{a}}$ ordem, a partir da solução dada, isto é, use o método da redução de ordem para encontrar uma segunda solução.

15.
$$y'' - y = 0$$
, $y_1 = \cosh x$ 17. $(1+2x)y'' + 4xy' - 4y = 0$, $y_1 = e^{-2x}$

16.
$$x^2y'' - 7xy' + 16y = 0$$
, $y_1 = x^4$ 18. $x^2y'' - 5xy' + 9y = 0$, $y_1 = x^3 \ln x$

Nos exercícios 19 e 20 resolva o PVI, se uma solução $y_1(x)$ da EDO é dada.

19.
$$y'' - 3(\tan x)y' = 0$$
; $y_1(x) = 1$; $y(0) = 2$, $y'(0) = 6$

20.
$$x^2y'' - 4xy' + 6y = 0$$
, $y_1(x) = x^2 + x^3$, $y(1) = 0$, $y'(1) = 3$

RESPOSTAS DA LISTA 11 (Com indicação ou resumo de algumas resoluções)

- 1. $(-\infty, \infty)$
- $2. (0,\infty)$
- 3. (-2,2)
- 4. (-2,0)
- 5. $x^2y'' 20y = x^2 (20C_1x^3 + 20C^2x^{-6}) 20(C_1x^5 + C^2x^{-4}) = 20C_1x^5 + 20C_2x^{-4} 20C_1x^5 20C_2x^{-4} = 0$ $x_0 = 1 \in I = (0, \infty);$ única solução: $y = x^5 + 1/x^4$
- 6. Determinando as derivadas até a ordem 3 e simplificando, encontra-se

$$y' = e^x [(-C_2 + C_3) \sin x + (C_3 + C_2) \cos x] + \cos x \Longrightarrow 2y' = e^x [(-2C_2 + 2C_3) \sin x + (2C_3 + 2C_2) \cos x] + 2 \cos x$$

$$y'' = e^x [2C_3 \cos x - 2C_2 \sin x] - \sin x \Longrightarrow -2y'' = e^x [-4C_3 \cos x + 4C_2 \sin x] + 2 \sin x$$

$$y''' = e^x [(2C_3 - 2C_2) \cos x - (2C_2 + 2C_3) \sin x] - \cos x$$
Substituindo na EDO dada,
$$y''' - 2y'' + 2y' = e^x [(2C_3 - 2C_2 - 4C_3 + 2C_3 + 2C_2) \cos x] + 2 \cos x$$

 $+ e^{x} [(-2C_2 - 2C_3 + 4C_2 - 2C_2 + 2C_3) \sin x] - \cos x + 2 \sin x + 2 \cos x = \cos x + 2 \sin x$

c.q.d.

Única solução: $y = 1 + e^x(2\cos x + 3\sin x) + \sin x$

- 7. (a) $y = C_1 + C_2 x^2 \Longrightarrow y' = 2C_2 x \Longrightarrow y'(0) = 0 \neq 1$. Neste caso a hipótese $a_2(x) = x^2 \neq 0$ do teorema da existência e unicidade não está satisfeita, logo não é possível garantir que existe solução que satisfaz o PVI.
 - (b) $y=x^2$ e $y=-x^2$. Na verdade qualquer parábola $y=C_2x^2$ satisfaz o PVI.
- 8. São L. I. porque $W(2x-3, x^2+1, 2x^2-x) = -14 \neq 0$
- 9. São L. D. Relação de dependência: $(2x-3) + 3(2x^2+1) 2(3x^2+x) = 0$
- 10. São L. D. Relação de dependência: $2(2x-3)+13(x^3+1)-3(2x^2-x)-7(x^2+x+1)$
- 11. São L. I. porque $W(2x-3, x^3+1, 2x^2-x, x^2+x+1)=156\neq 0$
- 12. São L. D. Relação de dependência: $e^x e^{-x} 2 \operatorname{senh} x = 0$
- 13. São L. I. porque $W(x, x \ln x, x^2 \ln x) = 2x + x \ln x \neq 0, \forall x \neq e^{-2}$. Atenção: para ser L. I. basta o wronskiano ser não nulo em um dos pontos do intervalo.
- 14. Para ver que são soluções é preciso derivar cada função, substituir no lado esquerdo da EDO e verificar que se anula.

São L. I. porque $W(x,x^{-2},x^{-2}\ln x)=9/x^6\neq 0,\ \forall x>0.$

- 15. $y_2 = \operatorname{senh} x$
- 16. $y_2 = x^4 \ln |x|$
- 17. $y_2 = x$
- 18. $y_2 = x^3$
- 19. Solução geral: $y = C_1 + C_2(\tan x \sec x + \ln|\sec x + \tan x|)$ Solução do PVI: $y = 2 + 6(\tan x \sec x + \ln|\sec x + \tan x|)$
- 20. Solução geral: $y = C_1 x^2 + C_2 x^3$ Solução do PVI: $y = -3x^2 + 3x^3$