# Arquiteturas tolerantes a falhas

micro sistemas COTS

Taisy Silva Weber UFRGS

# Arquiteturas tolerantes a falhas

✓ arquitetura: nível eficaz para suportar TF

✓ componentes

✓ conexões

barramentos ou linhas de comunicação processadores, memórias, controladores, interfaces

Tolerância a falhas de um sistema pode ser implementada ou por hardware, ou por software, ou ambas.

Hardware: mais eficiente. Software: mais flexível.

# Arquiteturas tolerantes a falhas

Existiram máquinas com o nome de **tolerantes a falhas**. Atualmente seriam chamadas de disponibilidade contínua ou alta disponibilidade.



foto: http://www.siliconvalleyfamilytree.org/home/tandem \_computers

TF (aqui) é usada no sentido de arquiteturas que empregam qualquer das técnicas de tolerância a falhas.

# Domínio de aplicação

SURI, N.; WALTER, C.J.; HUGUE, M.M. Advances in ultradependable distributed systems. IEEE Computer Society Press. Los Alamitos. 1995.



# Domínio de técnicas



# Exemplos de sistemas



### COTS

- ✓ componentes comerciais
  - ✓ produzidos em larga escala
  - ✓ baixo custo
  - √ facilidade de obtenção



- ✓ FIT baixo e com tendência a diminuir
  - √ (FIT = failures per 10<sup>9</sup> hours)
- muito suscetíveis a falhas transientes



desafio - construir sistemas tolerantes a falhas com componentes não confiáveis

# Falhas permanentes em COTS



SRAM 256 Kbytes

SRAM 4 Mbytes

— DRAM 1 Mbytes

— DRAM 32 Mbytes

microprocessadores

taxa de defeitos (em FIT) devido a falhas permanentes em dispositivos CMOS (COTS) na década de 90 até 2001

#### FIT = failures per 10<sup>9</sup> hours

Cristian Constantinescu, TRENDS AND CHALLENGES IN VLSI CIRCUIT RELIABILITY. IEEE Micro, 2003

## Fontes de defeitos em COTS

- ✓ mas
  - ✓ falhas permanentes não são a principal fonte de preocupação

FIT = failures per 10<sup>9</sup> hours FIT é medida de taxa de defeito (devido a falhas permanentes)

- ✓ problema maior: falhas transientes
  - ✓ alta susceptibilidade a interferências ambientais

redução no tamanho dos componentes e no nível de potência aumenta a susceptibilidade a interferências por radiação e outros fatores que causam falhas transientes

9

# Estudo google sobre memória

### √ 2 anos

- ✓ servidores com memória protegida por ECC
  - ✓ ECC comum (SECDED) e Chipkill
  - ✓ chipkill de 4 a 10 vezes mais eficiente que SECDED
- √ erros corrigidos
  - ✓ mais do que 8% dos chips e 1/3 das máquinas por ano
  - ✓ FIT: 25000 a 70000 por Mbit
- ✓ erros não corrigidos
  - √ 0,22% dos chips e 1,3% das máquinas
- ✓ fortes evidências que erros hard são mais comuns que soft

Google Inc.: Schroeder, B.; Pinheiro, E.; and Weber, W. "**DRAM Errors in the Wild: A Large-Scale Field Study**." SIGMETRICS/Performance "09, Seattle, WA, June 15-19, 2009.

# Desgaste em COTS

- ✓ incerteza sobre desgaste
  - ✓ medida de desgaste
    - ✓ importante para sistemas fechados em aplicações de vida longa



- desgaste pode começar após alguns anos
  - ✓ ainda sem medidas de envelhecimento
- √ taxa de defeitos pode aumentar no tempo
  - ✓ FIT baixo e constante pode ser uma medida com validade por curto espaço de tempo

# Incerteza quanto a desgaste

qual o tempo de vida útil para o qual vale o FIT baixo e constante?



# TF em microprocessadores comerciais

- ✓ solução externa:
  - ✓ duplicação ou replicação de chips
  - √ hardware adicional (votadores e comparadores)
- ✓ solução interna ao chip:
  - ✓ TF suprido pelo próprio microprocessador

basta diminuir o FIT dos microprocessadores e demais chips para garantir um sistema tolerante a falhas?

# TF em COTS: exemplos

- ✓ Intel
  - √ desde o 486 na família x86
  - √ 432 na década de 70

432 era excelente conceitualmente, mas foi um fiasco comercial (alguns afirmam que jamais foi produzido)

sem o emprego de TF, os chips atuais não funcionariam, o MTTF seria muito pequeno

### Micros Intel

- microprocessadores Intel
  - √ 100 FITs (FIT = failures per 10<sup>9</sup> hours)
  - ✓ MTTF potencial aprox. 1100 anos.
  - ✓ grande MTTF não indica ausência de problemas
    - ✓ suscetibilidade a falhas transientes
    - ✓ incerteza sobre desgaste
    - ✓ numerosas falhas de projeto (errata)
      - ✓ Intel P6 (início de 1999): 45 a 101 falhas de projeto
      - ✓ novas erratas: taxa de uma por mês

comportamento sob falhas transientes e erratas indicam a necessidade de tolerância a falhas externa ao chip (Avizienis)

## Micros Intel - FRC

### FRC - Functional Redundancy Checking

mestre e verificador devem estar sincronizados clockby-clock (lockstep)



### **Pentiums**



Taisy Weber 17

Components. DSN, IEEE 2000

**Dependable Computing with High-Performance COTS** 

## Pentium II



# Itanium 2

- ✓ recuperação de erros de barramento de dados.
- ✓ cache ECC (já existente no P6)
- correção de erro simples de memória
- re-tentativa na detecção de erro duplo de memória
- suporte a memória espelhada (spare)
- verificação de erros soft (transientes) na lógica interna: bit de paridade
- ✓ suporte a lockstep
- contenção de dados corrompidos

marca a porção de memória com dados corrompidos e limita o uso dos dados a apenas um programa; elimina os dados quando o programa termina ou sobrescreve a porção

memória com defeito é substituída por memória estepe



Reliability, Availability, and Serviceability for the Always-on Enterprise. White paper, Intel, 2005

### MCA

- machine check architecture
  - ✓ registradores dedicados para log de erros
    - √ facilita diagnóstico
  - ✓ capacidade de manipulação de erros

P6

MCA opcional - pode ser desligado por software

- Advanced MCA
  - ✓ segue padrões
    - padrões facilitam a interface com o SO e firmware
  - ✓ permite ao SO e ao firmware recuperarem erros complexos
  - ✓ pode resetar o sistema automaticamente em resposta a erros fatais



20

# Virtualização Intel

VM (máquina virtual):
isolamento de falhas por hardware
possibilidade de implementar *failover* na mesma máquina



VMM – software que opera como árbitro no acesso aos recursos físicos e hospeda as máquinas virtuais

## Intel i7 e Xeon

- ✓ Intel® QuickPath Interconnect (QPI)
  - √ detecção de erro com CRC
  - ✓ correção de erro usando Link level retry
  - ✓ Intel® Interconnect Built In Self Test



### MCA Recovery

- permite recuperação do sistema
- ✓ sinaliza o erro para o SO ou VMM que podem então recuperar o erro (se for possível) sem derrubar todo o sistema

herança do Itanium

Intel White Paper: Intel® Xeon® Processor E7 Family: Reliability, Availability, and Serviceability - Advanced data integrity and resiliency support for mission-critical deployments. 2011

# Intel Xeon processor E7



## Micros recentes

✓ IBM Power5 / Power6/ Power7



- √ vários outros
  - ✓ ARM Cortex R Series
  - ✓ SPARC64 V
  - ✓ SUN Niagara II
  - ✓ AMD Opteron
  - ✓ Texas Hercules

## **IBM** Power

✓ ECC

### comum ao Power5 e Power6

- ✓ sinais internos ao chip
- √ todos pinos entre o chip e:
  - √ L3 cache
  - ✓ memória
  - ✓ GX bus que conecta o chip ao I/O hub
  - ✓ fabric bus interface para comunicação entre chips e entre nodos
- ✓ L2 e L3 caches
- memória



as L1 são internas aos cores e protegidas por paridade



## **IBM** Power

### comum ao Power 5 e 6

- ChipKill
- scrubbing (limpeza)
   assistida por hardware
- redundância dinâmica e bit steering (troca por estepe)
- tratamento para special uncorrectable error (SUE)



# IBM Power6

### novas técnicas no Power6:

- reparo dinâmico no barramento de memória,
- failover dinâmico de oscilador (clock)
- recuperação de cache
- recuperação para outro processador
- partition isolation for core checkstops
- instruction retry para erros detectados nos cores



## IBM Power6 - RU

- ✓ unidade de recuperação RU
  - ✓ faz checkpoint do estado do sistema no final da execução de um grupo de instruções
  - ✓ array de checkpoints protegido por ECC
    - cuidados especiais são tomados para que o checkpoint não registre erros

- ✓ recuperação é realizada para todo o core
  - ✓ não apenas para uma thread
  - um pequeno período de tempo após a recuperação, o core fica sem operação em pipeline (slow mode)

Jude A. Rivers and Prabhakar Kudva. Reliability Challenges and System Performance at the Architecture Level. IEEE Design & Test of Computers. 2009. p. 62-72

FAULT-TOLERANT DESIGN OF THE IBM POWER6 MICROPROCESSOR", K Reick, PN Sanda, S Swaney, JW Kellington, Michael Mack, Michael Floyd e D. Henderson, publicado na IEEE Micro, 2008, pg. 30 a 38

### IBM Power6 - IRR

### ✓ IRR

- ✓ instruction retry recovery
- ✓ o RU (recovery unit) dispara o IRR
- ✓ se foi falha transitória, a recuperação é bem sucedida
- ✓ se foi permanente, é escalado um checkstop
  - ✓ no checkstop vai ser feita uma recuperação de alto nível para um core alternativo

Jude A. Rivers and Prabhakar Kudva. Reliability Challenges and System Performance at the Architecture Level. IEEE Design & Test of Computers. 2009. p. 62-72

FAULT-TOLERANT DESIGN OF THE IBM POWER6 MICROPROCESSOR", K Reick, PN Sanda, S Swaney, JW Kellington, Michael Mack, Michael Floyd e D. Henderson, publicado na IEEE Micro, 2008, pg. 30 a 38

### Power 7

- √ todas as características RAS do Power 6
- adicionais
  - algoritmo ECC 64 bits para a memória
    - permite a correção de 8 bits (ou seja um chip de memória)
  - estepe para os chips de buffer de memória
  - espelhamento de memória seletivo



Ron Kalla, B. Sinharoy, W. J. Starke, M. Floyd. POWER7: IBM'S NEXT-GENERATION SERVER PROCESSOR. IEEE Micro. 2010.

POWER7 System RAS - Key Aspects of Power Systems Reliability, Availability, and Serviceability October 3, 2012, IBM Systems and Technology Group, Daniel Henderson, Jim Mitchell, and George Ahrens

## Power6 e Power7



#### POWER6 (2007)

- 65 nm technology 341 mm<sup>2</sup>
- 0.79B transistors
- 2 Cores
  - 2 SMT threads/core
- 9 execution units/core
  - 2 integer and 2 binary floating-point units
  - 1 vector and 1 decimal floating-point unit
  - 2 load/store, 1 branch
- Integrated L2 cache
- L3 directory & controller (off chip L3 cache)
- · 2 memory controllers



#### POWER7 (2010)

- 45nm technology − 567 mm<sup>2</sup>
- 1.2B transistors
- 8 Cores
  - 4 SMT threads/core
- 12 execution units/core
  - 2 integer and 4 binary floating-point units
  - 1 vector and 1 decimal floating-point unit
  - 2 load/store, 1 branch, 1 condition register
- Integrated L2 cache
- Integrated L3 cache
- 2 memory controllers

# Bibliografia

- capítulos de livros
  - ✓ SIEWIOREK, D. Architecture of fault-tolerante computers, cap 2. **Fault-Tolerant System Design**. Prentice Hall, New Jersey, 1996
- ✓ livros
  - ✓ SURI, N.; WALTER, C.J.; HUGUE, M.M. Advances in ultra-dependable distributed systems. IEEE Computer Society Press. Los Alamitos. 1995.

# Bibliografia

### artigos

- ✓ AVIZIENIS, A. Fault Tolerance Infrastructure for Dependable Computing with High-Performance COTS Components. DSN, IEEE 2000
- ✓ Cristian Constantinescu, Trends and Challenges in VLSI Circuit Reliability. IEEE Micro, 2003
- ✓ R. Iyer et al. Recent Advances and New Avenues in Hardware-Level Reliability Support, IEEE Micro, vol. 25, pp. 18-29, 2005.
- ✓ K Reick, PN Sanda, S Swaney, JW Kellington, Michael Mack, Michael Floyd e D. Henderson. Fault-tolerant Design of The IBM Power6 Microprocessor. IEEE Micro, 2008, pg. 30 a 38
- ✓ Daniel Henderson, Jim Mitchell, and George Ahrens POWER7 System RAS Key Aspects of Power Systems Reliability, Availability, and Serviceability. October 3, 2012. IBM Systems and Technology Group

# Bibliografia

### artigos

- ✓ Ron Kalla, Balaram Sinharoy, William J. Starke, Michael Floyd. POWER7: IBM'S NEXT-GENERATION SERVER PROCESSOR. IEEE Micro. 2010. March/ april. 7-15
- ✓ Google Inc.; Schroeder, Bianca; Pinheiro, Eduardo; and Weber, Wolf-Dietrich. "DRAM Errors in the Wild: A Large-Scale Field Study." SIGMETRICS/Performance "09, Seattle, WA, June 15-19, 2009.
- ✓ Intel White Paper: Intel® Xeon® Processor E7 Family: Reliability, Availability, and Serviceability Advanced data integrity and resiliency support for mission-critical deployments. 2011