(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

postage g ean ean early நில்லாக்களும் இலங்கைப் பரிட்சைத் திலைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் நிலைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் ions, Sri Lanka Department of இலங்கை பரிட்சைத் திணைக்களும் Sri Lanka Department of Examinations, Sri Lanka சின்று g ean ean early நிலைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

2019.08.05 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය

මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුම්වත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය				
------------	--	--	--	--

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ **B කොටස** (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු ${f A}$ **කොටසෙහි** පිළිතුරු පතුය, ${f B}$ **කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය I		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A 1	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
В	13	
	14	
	15	
	16	
	17	
-	එකතුව	

එකතුව	
ඉලක්කමෙන්	
අකුරින්	

	coeman ctom
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කලේ: 2	
අධීක්ෂණය කළේ:	

1	ගණිත අභපුහන මූලධර්මය	භාවිතලයන්	800 n = 7 + e	$\sum_{n=0}^{n} (2r-1)$	$= n^2 \partial \partial + \partial $	රුත්ත -
•	asa qagaa gacaa	83039889 ,	ათ <u>ც</u> <i>ო</i> ⊂ ∠ ი	r=1		
					······	
		*******		************		
		• • • • • • • • • • • • • • • • • • • •				

2.	එක ම රූප සටහනක y=	= 4 <i>x</i> – 3 හා	v=3-2 x නි ප	සේතාරවල දළ සම	ටහන් අඳින්න.	
_,	ඒ නයින් හෝ අන් අයුරකින් සොයන්න.					ත්වික අගයන්
_	ඒ නයින් හෝ අන් අයුරකින්					න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්					න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ		x හි සියලු ම තාත්ස	න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	ත්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	න්වික අගයන්
	ඒ නයින් හෝ අන් අයුරකින්	හෝ, 2x-3 -	+ x <3 අසමාහ	තතාව සපුරාලන	x හි සියලු ම තාත්ස	න්වික අගයන්

3.	ආගන්ඩ් සටහනක, $\operatorname{Arg}\left(z-2-2i\right)=-rac{3\pi}{4}$ සපුරාලන z සංකීර්ණ සංඛතා නිරූපණය කරන ලක්ෂාවල
	පථයෙහි දළ සටහනක් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}\left(z-2-2i\right)=-rac{3\pi}{4}$ වන පරිදි $\left i\overline{z}\right +1$ හි අවම අගය සොයන්න.
4.	$\left(x^3+\frac{1}{x^2}\right)^7$ හි ද්විපද පුසාරණයේ x^6 හි සංගුණකය 35 බව පෙන්වන්න.
	ඉහත ද්වීපද පුසාරණයේ x වලින් ස්වායත්ත පදයක් නොපවතින බවත් පෙන්වන්න.

5.	$\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi}$ බව පෙන්වන්න.
	$x \rightarrow 3 \sin(\pi(x-3)) = 2\pi$
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	භුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\frac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.

7 .	C යනු $t\in\mathbb{R}$ සඳහා $x=at^2$ සහ $y=2at$ මගින් පරාමිතිකව දෙනු ලබන පරාවලය යැයි ගනිමු; මෙහි $a\neq 0$ වේ.
	C පරාවලයට $\left(at^2,2at ight)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය $y+tx$ = $2at+at^3$ මගින් දෙනු
	ලබන බව පෙන්වන්න.
	C පරාවලය මත $P\equiv (4a,4a)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවට එම පරාවලය නැවත $Q\equiv (aT^{2},2aT)$
	ලක්ෂායක දී හමු වේ. $T=-3$ බව පෙන්වන්න.
	_ = =
	\cdots
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
8.	
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.

0	$A = (7.0)$ codemics $S = x^2 + x^2 + 4x + 6x + 12 = 0.0$ and $x = 2.0$ Replied RR2 in 20, and 2 disc
٦.	$A \equiv (-7,9)$ ලක්ෂාය $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.
	S=0 වෘත්තය මත වූ, A ලක්ෂාංයට ආසන්නතම ලක්ෂාංයෙහි ඛණ්ඩාංක සොයන්න.

10	$\theta \neq (2n+1)\pi$ there $t = \tan \theta$ and $\cos \theta = \cos \theta = \frac{1-t^2}{2}$ as a section of
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\!\in\!\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න.
	$ anrac{\pi}{12}=2-\sqrt{3}$ බව අපෝහන ය කරන්න.
	······

සියලු ම හිමිකම් ඇවිරිණි / (மුගුට් பதிப்புரிமையுடையது / All Rights Reserved)

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

ම්තතුව ලී ලංකා විභාග දෙපාර්තල්ත්තුව යි. ලොට්කා සිටුර්කාව පිටිධ සිටුර්කාව ලෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව නිතාන්ස්සභාග මුහතානයට පාලියට සිටුර්කාන් සිටුර්කාව පිටුර්කාව නිතාන් සිටුර්කාව නිතාන් සිටුර්කාවේ සිටුර්

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

 ${f 11.}$ (a) p \in ${f R}$ හා 0<p \le 1 යැයි ගනිමු. p^2x^2 + 2x + p = 0 සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. lpha හා eta යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමු. lpha හා eta දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වා

$$\frac{1}{(\alpha-1)} \cdot \frac{1}{(\beta-1)} = \frac{p^2}{p^2 + p + 2}$$

බව පෙන්වන්න

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සමීකරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මුල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශන** තාත්ත්වික සංඛාා දෙකක් යැයි ද $f(x)=x^3+2x^2-dx+cd$ යැයි ද ගනිමු. (x-c) යන්න f(x) හි සාධකයක් බවත්, (x-d) මගින් f(x) බෙදූ විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x+2)^2$ මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- $m{12}$. (a) P_1 හා P_2 යනු පිළිවෙළින් $ig\{A,B,C,D,E,1,2,3,4ig\}$ හා $ig\{F,G,H,I,J,5,6,7,8ig\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛාහංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සැදීමට අවශාව ඇත. පහත එක් එක් අවස්ථාවේ දී සැදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P_1 න් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.
 - (b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6U_r$ බව පෙන්වන්න.

ඒ නයින්, $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{5}{144} - \frac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbf{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගනිමු.

 $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n W_r = \frac{5}{144} - \frac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව **අපෝහන**ය කරන්න.

ඒ නයින්, $\sum W_r$ අපරිමිත ශේුණිය අභිසාරී බව පෙන්වා එහි ඓකාාය සොයන්න.

$$egin{aligned} \mathbf{13}.(a) & \mathbf{A} = \left(egin{array}{ccc} a & 0 & -1 \\ 0 & -1 & 0 \end{array}
ight), & \mathbf{B} = \left(egin{array}{ccc} 2 & 1 & 3 \\ 1 & -a & 4 \end{array}
ight)$$
 හා $\mathbf{C} = \left(egin{array}{ccc} b & -2 \\ -1 & b+1 \end{array}
ight)$ යනු $\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{C}$ වන පරිදි වූ නාහස යැයි ගනිමු; මෙහි $a,b \in \mathbb{R}$ වේ.

a 1 -- 1

a=2 හා b=1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොපවතින බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු. ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදි ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය 2 වන ඒකක නාහසය වේ.

(b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.

(i) Re
$$z \leq |z|$$
, 800

(ii)
$$z_2 \neq 0$$
 සඳහා $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$

බව පෙන්වන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(rac{z_1}{z_1+z_2}
ight) \leq rac{\left|z_1
ight|}{\left|z_1+z_2
ight|}$ බව **අපෝහනය** කරන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)+\operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right)=1$ බව සතාාපනය කර,

$$z_1,z_2\in\mathbb{C}$$
 සඳහා $\left|z_1+z_2\right|\leq \left|z_1\right|+\left|z_2\right|$ බව පෙන්වන්න.

(c)
$$\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$$
 යැයි ගතිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියත වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගනිමු.

 $x \neq 3$ සඳහා f(x) හි වයුත්පන්නය, f'(x) යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුඛ, y – අන්තෘඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

 $x \neq 3$ සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ **බව දී ඇත**. y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල x - 0ණ්ඩාංක

(b) යාබද රූපයෙන් පතුලක් සහිත ඍජු වෘත්තාකාර කේතු ඡිත්තකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග 30 cm ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය r cm

යැයි ගනිමු.

සොයන්න.

බේසමේ පරිමාව $V\,\mathrm{cm}^3$ යන්න $0\!<\!r\!<\!30$ සඳහා

$$V=rac{7}{3}\pi r^2\sqrt{900-r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.

බේසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

15.
$$(a)$$
 $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int_3^4 \sqrt{\frac{x-3}{5-x}} \, \mathrm{d}x$ අගයන්න.

(b) භින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න.

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ බව **අපෝහනය** කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියතයකි.

ඒ නයින්, $\int f(t)\,\mathrm{d}t$ සොයන්න.

(c) a හා b නියත වන $\int\limits_a^b f(x)\mathrm{d}x = \int\limits_a^b f(a+b-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} \, \mathrm{d}x$$
 හි අගය සොයන්න.

 $16. \ 12x - 5y - 7 = 0$ හා y = 1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි බණ්ඩාංක ලියා දක්වන්න.

 $oldsymbol{l}$ යනු මෙම රේඛාවලින් සෑදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගනිමු. $oldsymbol{l}$ සඡල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායක් යැයි ගනිමු. P හි ඛණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ \in \mathbb{R} වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

S=0 යනු AB විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහනය** කරන්න.

 $U\!=\!0$ යනු l ට ලම්බව, B හරහා යන සරල රේබාවේ සමීකරණය බව පෙන්වන්න.

සියලු λ \in \mathbb{R} සඳහා $S+\lambda U=0$ සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුභින්න වූ ද අචල ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$
 හා

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

- බව **අපෝහනය** කරන්න.
- ඒ නයින්. $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විසඳන්න.
- (b) ABC තිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=eta$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහත (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- (c) $2 an^{-1} x + an^{-1} (x+1) = \frac{\pi}{2}$ විසඳන්න. **ඒ නයින්**, $\cos \left(\frac{\pi}{4} \frac{1}{2} an^{-1} \left(\frac{4}{3} \right) \right) = \frac{3}{\sqrt{10}}$ බව පෙන්වන්න.

තියලු ම හිමිකම් ඇවිරිණි / ψ ු ψ ු ාන්ට්பුලිකාංගයුක Luනු /All~Rights~Reserved]

((නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයක්ත ගණිතය II II இணைந்த கணிதம் Combined Mathematics

2019.08.07 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

මිනිත්තු 10 යි අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ **B කොටස** (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි $oldsymbol{B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- st මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කාටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
. 1	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

එකතුව	
ඉලක්කමෙන්	
අකුරින්	

ന്ദ്യമ്മ് ദാമ

	0-0m2 q-2
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ:	2
අධීක්ෂණය කළේ:	

	_
	කොටස
- 75	

1.	එක එකක ස්කන්ධය m වූ A , B හා C අංශු තුනක් එම පිළිවෙළින්, සුමට තිරස් මේසයක් මත සරල රේඛාවක
	තබා ඇත. A අංශුවට u පුවේගයක් දෙනු ලබන්නේ එය B අංශුව සමග සරල ලෙස ගැටෙන පරිදි ය. A අංශුව
	සමග ගැටුන පසු, B අංශුව චලනය වී C අංශුව සමග සරල ලෙස ගැටේ. A හා B අතර පුතාහාගති සංගුණකය
	e වේ. පළමු ගැටුමෙන් පසුව B හි පුවේගය සොයන්න.
	B හා C අතර පුතාහාගති සංගුණකය ද e වේ. B සමග ගැටුමෙන් පසුව C හි පුවේගය ලියා දක්වන්න.
2.	තිරස් හා සිරස් සංරචක පිළිවෙළින් $\sqrt{g}a$ හා $\sqrt{6}ga$ සහිත පුවේගයකින් තිරස් ගෙබිමක් මත වූ O ලක්ෂායක සිට අංශුවක් පුක්ෂේප
	කරනු ලැබේ. රූපයේ දැක්වෙන පරිදි, එකිනෙකට a තිරස් දුරකින් පිහිටි
	උස a හා b වූ සිරස් තාප්ප දෙකකට යාන්තමින් ඉහළින් අංශුව යයි. $\sqrt{6ga}$
	උස a වූ තාප්පය පසු කරන විට අංශුවේ පුවේගයෙහි සිරස් සංරචකය a
	$2\sqrt{ga}$ බව පෙන්වන්න.
	$O \subset \leftarrow a \rightarrow$
	$b=rac{5a}{2}$ බව තවදුරටත් පෙන්වන්න.

AL/2019/10/S-II(NEW)	-3-	විභාග	අංකය			THE IN	ii) ėgij	
3. රූපයෙහි A, B හා C යනු ස්කන්ධ පිළි හා B අංශු සැහැල්ලු අවිතනා තන්තුව මේසයක් මත වූ C අංශුව, මේසයේ දාරු මතින් යන තවත් සැහැල්ලු අවිතනා ස තන්තු සියල්ලම එකම සිරස් තලයක පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිතු ආතතිය නිර්ණය කිරීමට පුමාණවත් ස	කින් සම්බන්ධ ක යට සවිකර ඇති තන්තුවකින් <i>B</i> ට පිහිටයි. තන්තු තු ලැබේ. <i>A</i> හා <i>B</i>	රේ ඇත. සුමට කු ඇඳා අ නොබුර යා කරා	සුමට තිර ඩා කප්පිය ැත. අංශු අ රුල්ව ඇති තූ තත්තුම	සේ ක් ගා ව		M O C		$m \circ B$

	******************	*******						
***************************************	· · · · · · · · · · · · · · · · · · ·							

***************************************								•••••••
			**********	•••••				••••••
2322		*******	*********					
	***************		•••••	* * * * * * *				
4. ස්කන්ධය $M \log m$ $P \log m$ නියන ජවයකි පහළට චලනය වේ. එහි චලිතයට $R > 1$ ත්වරණය $a \mod m$ 1 වේ. මෙම මොහොතෙ මාර්ගය දිගේ පහළට කාරයට චලනය වි	$Mg \sin lpha$) N නිය $lpha$ ත් දී කාරයේ පුණ	ා පුතිරෙ ව්ගය දෙ වේගය -	ර්ටයක් ඇ	ත. එස	ත්තරා (මොහො ව අපෝ ස	ාතක දී	කාරයේ
			n-MgSII	ια				

			********		•••••			
		•••••			• • • • • • • •			
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			
***************************************			• • • • • • • • • • • • • • • • • • • •					

		••••••						

•••••			**********					
	***************************************	*******	**********					
	The second secon					Francis		

අවිතනය තත්තුවක දෙකෙළවරට ඇඳා සමකුලිකතාවයේ එල්ලෙයි. A ව සිරස්ව a දුරක් ඉහළින් වූ ලක්ෂයයකින් නිශ්වලකාවයේ සිට මුදා හරින ලද ස්කන්ධය m ම වූ C කුඩා පබළුවක් ගුරුත්වය යවතේ නිදහසේ වලනය වී A සමග ගැටි හා වේ. (රූපය බලන්න.) A හා C අතර ගැටුම සිදු වන මොහොතේ දී තත්කුවේ ආවේගය ද ඉහත ගැටුමෙන් මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න. 5. සුපුරුදු අංකනයෙන්, O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂය දෙකක පිහිටුම දෙශික පිළි $2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු, $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න දෙකකි පිහිටුම දෛශික සොයන්න.	B
පබළුවක් ගුරුත්වය යටතේ නිදහසේ චලනය වී A සමග ගැටී හා වේ. (රූපය බලන්න.) M හා C අතර ගැටුම සිදු වන මොහොතේ දී තන්තුවේ ආවේගය ද ඉහත ගැටුමෙන් මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න. M	B
A හා C අතර ගැටුම සිදු වන මොහොතේ දී තත්තුවේ ආවේගය ද ඉහත ගැටුමේන් මොහොතකට පසු B ලබා ගත්තා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න.	В
මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න.	$_{B}$
දක්වන්න. \int_{A}^{A} ති සුපුරුදු අංකනයෙන්, O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම දෙශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ හා $OC=OD=\frac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	B
6. සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ හා $OC=OD=\frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න	В
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	IB.
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	m
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	******
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
G . සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළි $2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුභින්න	
දෙකෙහි පිහිටුම් දෛශික සොයන්න.	ුක්ෂ ා

7 .	තිරස සමග පිළිවෙළින් $lpha$ හා $rac{\pi}{3}$ කෝණ සාදන AP හා BP $A \sqrt{lpha}$
	සැහැල්ලු අවිතනා තන්තු දෙකක් මගින් තිරස් සිවිලිමකින්
	එල්ලා ඇති බර W වූ P අංශුවක්, රූපයේ දැක්වෙන පරිදි
	සමතුලිතතාවයේ පවතී. AP තන්තුවේ ආතතිය, W හා $lpha$
	ඇසුරෙන් සොයන්න.
	ඒ නයින්, මෙම ආතතියේ අවම අගයත් එයට අනුරූප $lpha$ හි අගයත් සොයන්න.
8.	දිග $2a$ හා බර W වූ ඒකාකාර AB දණ්ඩක් එහි A කෙළවර රළු තිරස්
	ගෙබිමක් මත ද B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව ද $B \longrightarrow rac{W}{2}$
	තබා ඇත. බිත්තියට ලම්බ සිරස් තලයක දණ්ඩ සමතුලිතතාවයේ
	තබා ඇත්තේ A කෙළවරේ දී බිත්තිය දෙසට යෙදූ විශාලත්වය P
	වන තිරස් බලයක් මගිනි. රූපයේ F හා R මගින් පිළිවෙළින් A හි දී
	සර්ෂණ බලය හා අභිලම්බ පුතිකිුිිියාව දක්වා ඇත. B හි දී බිත්තිය
	මගින් ඇති කරන පුතිකිුියාව, රූපයේ පෙන්වා ඇති පරිදි $\frac{W}{2}$ ද
	දණ්ඩ හා ගෙබීම අතර ඝර්ෂණ සංගුණකය $\frac{1}{4}$ ද නම්, $\frac{W}{4} \leq P \leq \frac{3W}{4}$ බව පෙන්වන්න.
	[නගවැනි පිටුව බලන්න,

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{3}{5}$, $P(A\cap B)=rac{2}{5}$
	හා $P(A'\cap B)=rac{1}{10}$ බව දී ඇත. $P(B)$ හා $P(A'\cap B')$ සොයන්න; මෙහි A' හා B' වලින් පිළිවෙළින් A හ
	B හි අනුපූරක සිද්ධි දැක්වේ.

	•••••
10.	එක එකක් 5 ට අඩු ධන නිඛිල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධානාසය හ
10.	එක එකක් 5 ට අඩු ධන නිඛිල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධානාපය හැ මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	
10.	
10.	
10.	
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න.
10.	මධාපස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිබිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.

සියලු ම හිමිකම් ඇවිරිනි / முழுப் பதிப்புநிமையுடையது /All Rights Reserved]

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

මේන්තුව ලි ලංකා විභාග ඉදහර්ත වි**ද්ධත්ව විභාග පෙ**රවර්ගමේන්තුව ලි ලංකා විභාග ඉදහර්තමේන්තුව ලි ලංකා විභාග ඉදහර්තමේන්තුව නිශාශාස්සාව මුහෝසනස්ව පුළුත්ත් නිශාශාස්සාව මුහේසන්ව පුළුත්ත නිශාශාස්සාව මුහේසනස්ව පුළුත්ත මුහේසනස්ව ප්රධානය නිශාශාස්සාව මුහේසන්ව ප්රධානය විභාග ඉදහර්තමේන්තුව ලි ලංකා විභාග ඉදහර්තමේන්තුව ලින්නෙස්ව ප්රධානය සිටියා සි

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

II

இணைந்த கணிதம் Combined Mathematics II II

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

B කොටස

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

- $11.\,(a)$ P හා Q මෝටර් රථ දෙකක් ඍජු පාරක් දිගේ නියත ත්වරණ සහිතව එකම දිශාවකට චලනය වේ. කාලය t=0 හි දී P හි පුවේගය u m s $^{-1}$ ද Q හි පුවේගය (u+9) m s $^{-1}$ ද වේ. P හි නියත ත්වරණය f m s $^{-2}$ ද Q හි නියත ත්වරණය $\left(f + \frac{1}{10}\right)$ m s $^{-2}$ ද වේ.
 - (i) $t \ge 0$ සඳහා P හා Q හි චලිතවලට, එකම රූපයක හා
 - (ii) $t \ge 0$ සඳහා P ට සාපේක්ෂව Q හි චලිතයට, වෙනම රූපයක,

පුවේග-කාල වකුවල දළ සටහන් අඳින්න.

කාලය t=0 හි දී P මෝටර් රථය Q මෝටර් රථයට වඩා මීටර 200 ක් ඉදිරියෙන් සිටි බව තවදුරටත් දී ඇත. P පසුකර යෑමට Q මගින් ගනු ලබන කාලය සොයන්න.

(b) සමාන්තර ඍජු ඉවුරු සහිත පළල a වූ ගඟක් u ඒකාකාර පුචේගයෙන් ගලයි. රූපයෙහි, $A,\,B,\,C$ හා Dයන ඉවුරු මත වූ ලක්ෂා සමචතුරසුයක ශීර්ෂ වේ. ජලයට සාපේක්ෂව නියත u(>u) වේගයෙන් චලනය වන $B_1^{}$ හා $B_2^{}$ බෝට්ටු දෙකක් එකම මොහොතක A සිට ඒවායේ $\underline{\mathrm{o}}$ මත් ආරම්භ කරයි. B_1 බෝට්ටුව පළමුව \overrightarrow{AC} දිගේ C වෙත ගොස් ඉන්පසු \overrightarrow{CD} දිශාවට ගඟ දිගේ ඉහළට D වෙත යයි. B_2 බෝට්ටුව පළමුව AB දිශාවට ගඟ දිගේ පහළට B වෙත ගොස් ඉන්පසු BD දිගේ D වෙත යයි. එකම රූපයක, B_1 හි A සිට C දක්වා ද B_2 හි B සිට D දක්වා ද චලිත සඳහා පුවේග තිුකෝණවල දළ සටහන් අඳින්න.

ඒ නයින්, A සිට C දක්වා චලිතයේ දී B_1 බෝට්ටුවේ චේගය $\dfrac{1}{\sqrt{2}}\Big(\sqrt{2\,v^2-u^2}+u\Big)$ බව පෙන්වා B සිට Dදක්වා චලිතයේ දී B_2 බෝට්ටුවේ වේගය සොය<mark>න්න.</mark>

 B_1 හා B_2 බෝට්ටු දෙකම එකම මොහොතක දී D වෙත ළඟා වන බව තවදුරටත් පෙන්වන්න.

12.(a) රූපයෙහි ABC හා LMN තිකෝණ, $A\hat{C}B=L\hat{N}M=rac{\pi}{3}$ හා $A\hat{B}C=L\hat{M}N=rac{\pi}{2}$ වූ BC හා MN අඩංගු මුහුණත් සුමට ති්රස් ගෙබිමක් මත තබන ලද පිළිවෙළින් X හා Y සර්වසම සුමට ඒකාකාර කුඤ්ඤ දෙකක තුරුත්ව කේන්දු තුළින් වූ සිරස් හරස්කඩ වේ. ස්කන්ධය 3m වූ X කූඤ්ඤය ගෙබිම මත චලනය වීමට

නිදහස් වන අතර Y කුඤ්ඤය **අචලව** තබා ඇත. AC හා LNරේඛා අදාළ මුහුණත්වල උපරිම බෑවුම් රේඛා වේ. A හා L හි සවිකර ඇති සුමට කුඩා කප්පි දෙකක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවර ස්කන්ධ පිළිවෙළින් m හා 2mවූ P හා Q අංශු දෙකකට ඇඳා ඇත. රූපයේ පරිදි ආරම්භක පිහිටීමේ දී, තන්තුව නොබුරුල්ව හා AP=AL=LQ=a වන ලෙස P හා Q අංශු පිළිවෙළින් AC හා LN මත අල්වා තබා ඇත. පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Y වෙත යාමට X ගනු ලබන කාලය, a හා g ඇසුරෙන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.

(b) රූපයේ පෙන්වා ඇති පරිදි සුමට සිහින් ABCDE බටයක් සිරස් තලයක සවිකර ඇත. දිග $2\sqrt{3}a$ වූ AB කොටස සෘජු වන අතර එය B හි දී අරය 2a වූ BCDE වෘත්තාකාර කොටසට ස්පර්ශක වේ. A හා E අන්ත O කේන්දුයට සිරස්ව ඉහළින් පිහිටයි. ස්කන්ධය m වූ P අංශුවක් A හි දී බටය තුළ තබා නිශ්චලතාවයේ සිට සීරුවෙන් මුදා හරිනු ලැබේ. \overrightarrow{OA} සමග $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ කෝණයක් \overrightarrow{OP} සාදන විට P අංශුවේ වේගය, v යන්න, $v^2 = 4ga(2-\cos\theta)$ මගින් දෙනු ලබන බව පෙන්වා, එම මොහොතේ දී P අංශුව මත බටයෙන් ඇති කරන පුතිකියාව සොයන්න.

P අංශුව A සිට B දක්වා චලිතයේ දී එය මත බටයෙන් ඇති කරන පුතිකියාව ද සොයන්න.

P අංශුව B පසු කරන විට P අංශුව මත බටයෙන් ඇති කරන පුතිකිුයාව ක්ෂණිකව වෙනස් වන බව පෙන්වන්න.

13. තිරසට $\frac{\pi}{6}$ කෝණයකින් ආනත සුමට අචල තලයක උපරිම බෑවුම් රේඛාවක් මත OA = a හා AB = 2a වන පරිදි O පහළම ලක්ෂාය ලෙස ඇතිව O,A හා B ලක්ෂා එම පිළිවෙළින් පිහිටා ඇත. ස්වාභාවික දිග a හා පුතායාස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතායාස්ථ තන්තුවක එක් කෙළවරක් O ලක්ෂායට ඈඳා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ඈඳා ඇත. P අංශුව B ලක්ෂාය කරා ළඟා වන තෙක් තන්තුව OAB රේඛාව දිගේ අදිනු ලැබේ. ඉන්පසු P

අංශුව නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. B සිට A දක්වා P හි චලිත සමීකරණය, $0 \le x \le 2a$ සඳහා, $\ddot{x} + \frac{g}{a} \left(x + \frac{a}{2} \right) = 0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි AP = x වේ.

 $y=x+rac{a}{2}$ යැයි ගෙන ඉහත චලිත සමීකරණය $rac{a}{2} \le y \le rac{5a}{2}$ සඳහා $\ddot{y}+\omega^2 y=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $\omega=\sqrt{rac{g}{a}}$ වේ.

ඉහත සරල අනුවර්තී චලිතයේ කේන්දුය සොයා $\dot{y}^2=\omega^2\,(c^2-y^2\,)$ සූතුය භාවිතයෙන්, c විස්තාරය හා A වෙත ළඟා වන විට P හි පුවේගය සොයන්න.

O වෙත ළඟා වන විට P හි පුවේගය $\sqrt{7ga}$ බව පෙන්වන්න.

B සිට O දක්වා චලනය වීමට P මගින් ගනු ලබන කාලය $\sqrt{rac{a}{g}}\left\{\cos^{-1}\left(rac{1}{5}
ight)+2k
ight\}$ බවත් පෙන්වන්න; මෙහි $k=\sqrt{7}-\sqrt{6}$ වේ.

P අංශුව O වෙත ළඟා වන විට, තලයට ලම්බව O හි සවිකර ඇති සුමට බාධකයක් හා එය ගැටෙයි. බාධකය හා P අතර පුතාහාගති සංගුණකය e වේ. $0 < e \le \frac{1}{\sqrt{7}}$ නම්, පසුව සිදු වන P හි චලිතය සරල අනුවර්තී **නොවන** බව පෙන්වන්න.

14.(a) OACB යනු සමාන්තරාසුයක් යැයි ද D යනු AC මත AD:DC=2:1 වන පරිදි වූ ලක්ෂාය යැයි ද ගනිමු. O අනුබද්ධයෙන් A හා B ලක්ෂාවල පිහිටුම් දෛශික පිළිවෙළින් λa හා b වේ; මෙහි $\lambda > 0$ වේ. \overrightarrow{OC} හා \overrightarrow{BD} දෙශික, a, b හා λ ඇසුරෙන් පුකාශ කරන්න.

දැන්, \overrightarrow{OC} යන්න \overrightarrow{BD} ට ලම්බ වේ යැයි ගනිමු. $3\left|\mathbf{a}\right|^2\lambda^2+2(\mathbf{a}\cdot\mathbf{b})\lambda-\left|\mathbf{b}\right|^2=0$ බව පෙන්වා $\left|\mathbf{a}\right|=\left|\mathbf{b}\right|$ හා $A\hat{O}B=\frac{\pi}{3}$ නම්, λ හි අගය සොයන්න.

(b) කේන්දය O හා පැත්තක දිග 2a වූ \overrightarrow{ABCDEF} සවිධි ෂඩසුයක තලයෙහි වූ බල තුනකින් පද්ධතියක් සමන්විත වේ. මූලය O හි ද Ox-අක්ෂය \overrightarrow{OB} දිගේ ද Ox-අක්ෂය \overrightarrow{OH} දිගේ ද ඇතිව බල හා ඒවායේ කිුිිියා ලක්ෂා, සුපුරුදු අංකනයෙන්, පහත වගුවේ දක්වා ඇත; මෙහි H යනු CD හි මධා ලක්ෂාය වේ. (P නිව්ටන වලින් ද a මීටර වලින් ද මනිනු ලැබේ.)

තියා ලක්ෂපය	පිහිටුම් දෛශිකය	වල ය
A	$a\mathbf{i} - \sqrt{3}a\mathbf{j}$	$3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
С	ai+√3aj	$-3Pi + \sqrt{3}Pj$
E	-2 <i>a</i> i	$-2\sqrt{3}P\mathbf{j}$

පද්ධතිය යුග්මයකට තුලා වන බව පෙන්වා, යුග්මයේ ඝූර්ණය සොයන්න. දැන්, \overrightarrow{FE} දිගේ කිුයා කරන විශාලත්වය 6P N වූ අතිරේක බලයක් මෙම පද්ධතියට ඇතුළත් කරනු ලැබේ. නව පද්ධතිය ඌනනය වන තනි බලයේ විශාලත්වය, දිශාව හා කිුයා රේඛාව සොයන්න.

15. (a) එක එකක දිග 2a වූ AB හා BC ඒකාකාර දඬු දෙකක් B හි දී සුමට ලෙස සන්ධි කර ඇත. AB දණ්ඩේ බර W ද BC දණ්ඩේ බර 2W ද වේ. A කෙළවර අචල ලක්ෂාකට සුමට ලෙස අසව් කර ඇත. AB හා BC දඬු යටි අත් සිරස සමග පිළිවෙළින් α හා β කෝණ සාදමින් මෙම පද්ධතිය සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ, C හි දී රූපයේ පෙන්වා ඇති BC ට ලම්බ දිශාව ඔස්සේ යෙදූ $\frac{W}{2}$ බලයක් මගිනි. $\beta = \frac{\pi}{6}$ බව පෙන්වා, B සන්ධියේ දී AB දණ්ඩ මගින් BC දණ්ඩ මත යොදන පුතිකිුයාවෙහි තිරස් හා සිරස් සංරචක සොයන්න. $\tan \alpha = \frac{\sqrt{3}}{9}$ බවත් පෙන්වන්න.

(b) රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල ඒවායේ කෙළවරවල දී සුමට ලෙස සන්ධි කළ AB,BC,BD,DC හා AC සැහැල්ලු දඬු පහකින් සමන්විත වේ.

මෙහි AB = CB = a ද CD = 2a ද $B\hat{A}C = \frac{\pi}{6}$ ද බව දී ඇත. රාමු සැකිල්ල A හි දී අචල ලක්ෂායකට සුමට ලෙස අසව කර ඇත. D සන්ධියේ දී W භාරයක් එල්ලා, AC සිරස්ව ද CD තිරස්ව ද ඇතිව සිරස් තලයක රාමු සැකිල්ල සමතුලිතව තබා ඇත්තේ C සන්ධියේ දී AB දණ්ඩට සමාන්තරව රූපයේ පෙන්වා ඇති දිශාවට යෙදූ P බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් D, B හා C සන්ධි සඳහා පුතාාබල සටහනක් අඳින්න.

- (i) ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් දඬු පහේම පුතාහබල, හා
- (ii) *P* හි අගය සොයන්න.

- ${f 16}.$ ${f (i)}$ අරය a වූ තුනී ඒකාකාර අර්ධ වෘත්තාකාර කම්බියක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට ${2a\over \pi}$ දුරකින් ද
 - (ii) අරය a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{a}{2}$ දුරකින් ද පිහිටන බව පෙන්වන්න.

කේන්දුය O හා අරය 2a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළකට රූපයේ දැක්වෙන පරිදි දිග $2\pi a$ වූ AB සෘජු කොටසකින් ද BD විෂ්කම්භය AB ට ලම්බ වන පරිදි, අරය a වූ BCD අර්ධ වෘත්තාකාර කොටසකින් ද සමන්විත ඒකාකාර කම්බියකින් සාදනු ලැබූ ABCD තුනී මිටක් දෘඪ ලෙස සවි කිරීමෙන් හැන්දක් සාදා ඇත. A ලක්ෂාය අර්ධ ගෝලයේ ගැට්ට මත ඇති අතර OA යන්න AB ට ලම්බ ද OD යන්න AB ට සමාන්තර ද වේ. තව ද BCD යන්න OABD හි තලයේ පිහිටා ඇත. අර්ධ ගෝලයේ ඒකක වර්ගඵලයක ස්කන්ධය σ ද මිටෙහි ඒකක දිගක ස්කන්ධය $\frac{a\sigma}{2}$ ද වේ. හැන්දේ ස්කන්ධ කේන්දුය, OA සිට පහළට $\frac{2}{19\pi}\Big(8\pi-2\pi^2-1\Big)a$ දුරකින් ද O හා D හරහා යන රේඛාවේ සිට $\frac{5}{19}a$ දුරකින් ද Oහා D හරහා යන රේඛාවේ සිට C0 වන ද පිහිටන බව පෙන්වන්න.

- 17.(a) ආරම්භයේ දී එක එකක් සුදු පාට හෝ කළු පාට වූ, පාටින් හැර අන් සෑම අයුරකින්ම සමාන බෝල 3 ක් පෙට්ටියක අඩංගු වේ. දැන්, පාටින් හැර අන් සෑම අයුරකින්ම පෙට්ටියේ ඇති බෝලවලට සමාන සුදු පාට බෝලයක් පෙට්ටිය තුළට දමා ඉන්පසු සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. පෙට්ටියේ ඇති බෝලවල ආරම්භක සංයුති හතර සම සේ භවා වේ යැයි උපකල්පනය කරමින්,
 - (i) ඉවතට ගත් බෝලය සුදු පාට එකක් වීමේ,
 - (ii) ඉවතට ගත් බෝලය සුදු පාට එකක් බව දී ඇති විට ආරම්භයේ දී පෙට්ටිය තුළ හරියටම කළු පාට බෝල 2 ක් තිබීමේ,

සම්භාවිතාව සොයන්න.

(b) μ හා σ යනු පිළිවෙළින් $\left\{x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාය හා සම්මත අපගමනය යැයි ගනිමු. $\left\{\alpha x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාය හා සම්මත අපගමනය සොයන්න; මෙහි α යනු නියතයකි.

එක්තරා සමාගමක සේවකයින් 50 දෙනකුගේ මාසික වැටුප් පහත වගුවේ සාරාංශගත කර ඇත:

මාසික වැටුප (රුපියල් දහසේ ඒවායින්)	සේවකයින් ගණන
5 – 15	9
15 – 25	11 - *
25 – 35	14
35 – 45	10
45 – 55	6

සේවකයින් 50 දෙනාගේ මාසික වැටුප්වල මධානාය හා සම්මත අපගමනය නිමානය කරන්න.

වසරක ආරම්භයේ දී එක් එක් සේවකයාගේ මාසික වැටුප p% වලින් වැඩි කරනු ලැබේ. ඉහත සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල මධානාය රුපියල් $29\ 172$ බව දී ඇත. p හි අගය හා සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල සම්මත අපගමනය නිමානය කරන්න.