Inferential Statistics - Hypothesis Testing.

Prepared By: Siman Giri, Instructor: Ronit and Shiv for Herald Center for AI.

Summer, 2025

1 Learning Objectives.

- Compute and summarize group statistics for hypothesis testing:
 - Learn to calculate sample sizes (n_i) , means x_i , and standard deviations s_i for different groups, which serve as the foundation for conducting t tests, z tests, ANOVA, and Chi square Tests.
 - Organize and interpret data for decision making: Understand how to structure group-level data
 in tables to compare means and variances across regions, enabling proper formulation and testing
 of null and alternative hypotheses using both single-sample and two-sample tests.

image generated via copilot.

2 Confidence Interval Approach to Hypothesis Testing:

2.1 How to ?

Confidence Interval Hypothesis Testing Procedure

- 1. State Hypotheses:
- $\mathbf{H_0}: \mu = \mu_0$ (NullHypothesis)
- $\mathbf{H_1}: \mu \neq \mu_0$ (Alternative Hypothesis)
- 2. Choose Significance Level:
 - $\alpha = 0.05(95\%CI) \text{ or } \alpha = 0.01(99\%CI)$
- 3. Check Assumptions:
 - Sample size, normality, data conditions for CI method
- 4. Find Critical Value:
 - Using \mathbf{z}^* (normal) or \mathbf{t}^* (t-distribution) for given α
- 5. Compute Confidence Interval:
 - $CI = \bar{x} \pm (critical \ value \times SE)$
- 6. Decision Rule:

```
\begin{array}{c} \text{if } \mu_0 \notin \mathit{CI} \text{ then} \\ \text{Reject } H_0 \\ \Rightarrow \text{Evidence for } H_1 \ (\mu \neq \mu_0) \\ \text{else} \\ \text{Fail to reject } H_0 \\ \Rightarrow \text{No significant difference found} \end{array}
```

- 7. Interpretation:
 - State conclusion in context of the research question

2.2 Exercises:

Problem 1 — Email Campaign: mean purchase amount

A marketing team tests a new email layout. A random sample of $\mathbf{n} = 40$ recipients shows an average purchase amount of $\bar{\mathbf{x}} = \$52$ with sample standard deviation $\mathbf{s} = \$12$. Test whether the true mean purchase amount differs from \$50 at the $\alpha = 0.05$ level.

Problem 1 — Sample Solution (Email Campaign)

1. Hypotheses Statement:

$$H_0: \mu = 50$$
 vs. $H_a: \mu \neq 50$

- 2. Choose test method, significance level and check assumptions:
 - two tailed test, with significance level of $\alpha = 0.05$.
 - Unknown population standard deviation, thus use t distributions with df = n 1 = 40 1 = 39.
- 3. Find Critical Value:

$$\mathrm{SE} = rac{\mathrm{s}}{\sqrt{\mathrm{n}}} = rac{12}{\sqrt{40}} = rac{12}{6.3246} pprox 1.8974.$$

Two-sided 95% CI uses $t_{0.975.39}$. From tables or python - scipy.stats:

$$t_{0.975.39} \approx 2.0227$$
.

- 4. Compute Confidence Interval:
 - Margin of Error:

$$ME = t_{0.975,39} \times SE \approx 2.0227 \times 1.8974 \approx 3.838.$$

• Confidence interval:

$$\bar{x} \pm ME = 52 \pm 3.838 \Rightarrow (48.162, 55.838).$$

5. Decision by CI approach:

The null value 50 lies inside the 95% CI (48.16, 55.84). Therefore Fail to reject H_0 at $\alpha = 0.05$.

6. Business Interpretation: Based on the sample, we do not have sufficient evidence (at 5%) to conclude the new email layout changes the average purchase amount from \$50. The observed mean \$52 is plausible under the claim of \$50.

Problem 2 — Delivery time (one-sided)

A logistics manager tests whether a new routing algorithm reduces mean delivery time. From a sample of n=25 shipments the mean delivery time is $\bar{\mathbf{x}}=3.8$ days with $\mathbf{s}=0.9$ days. Test $\mathbf{H_0}: \mu=4$ vs $\mathbf{H_a}: \mu<4$ at $\alpha=0.05$ using the CI approach.

Problem 3 — App feature adoption (proportion)

A product analyst samples n=500 users; $\mathbf{x}=290$ have adopted a new feature ($\hat{\mathbf{p}}=0.58$). Test whether the true adoption proportion differs from 0.60 at $\alpha=0.05$ (two-sided) using the CI approach.

Problem 4 — Customer satisfaction benchmark (one-sided, high confidence)

A CX team measures customer satisfaction (1–5 scale). From $\mathbf{n} = \mathbf{100}$ responses the sample mean is $\mathbf{\bar{x}} = \mathbf{4.20}$ with $\mathbf{s} = \mathbf{0.80}$. Test whether the true mean exceeds the benchmark of 4.00 at the $\alpha = \mathbf{0.01}$ level using the CI approach.

Problem 5 — NFL linebacker weights (small sample)

Six randomly selected NFL linebackers have weights (lbs): 243, 238, 229, 253, 248, 225. Given $\bar{\mathbf{x}} = 239.3$ and $\mathbf{s} = 10.9$, test whether the mean weight differs from 230 lb at $\alpha = 0.05$ using the CI approach.

3 Critical and p - Value Approach:

3.1 Hypothesis Testing Step for t or z Test:

Step 1 - State Hypothesis:

• Null Hypothesis:

 H_0 : No effect or no difference. $\rightarrow \mu = \mu_0$

• Alternative Hypothesis:

H_a:There is an effect or Difference.

– Two - tailed: $\mu \neq \mu_0$

– One - Tailed (right): $\mu > \mu_0$

– One - Tailed (left) $\mu < \mu_0$

Step 2 - Choose Significance Level:

• Common choices: $\alpha = 0.05$ Or; $\alpha = 0.01$

Step 4 - Compute Test Statistics:

- Check and Validate assumptions regarding Normality, sample size requirements, independence.
- t statistic formula: When population variance is unknown and sample sizes are ≤ 30 .

t-statistic Formula

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Where:

- $-\bar{\mathbf{x}} = \text{sample mean}$
- $-\mu_0$ = hypothesized population mean
- $\mathbf{s} =$ sample standard deviation
- $-\mathbf{n} = \text{sample size}$
- df = n 1 (degrees of freedom)
- ullet z statistic formula: When population variance is known and sample sizes are ≥ 30 .

z-statistic Formula

$$\mathbf{z} = \frac{\mathbf{\bar{x}} - \mu_0}{\sigma / \sqrt{\mathbf{n}}}$$

Where σ = population standard deviation (known)

Step 4 - Determine Critical Values:

Crtical Values using Python - scipy .stats.

```
from scipy import stats
if test_type.lower() == "z":
    if tails == "two-tailed":
        crit_val = stats.norm.ppf(1 - alpha/2)
    elif tails == "right-tailed":
        crit_val = stats.norm.ppf(1 - alpha)
    elif tails == "left-tailed":
        crit_val = stats.norm.ppf(alpha)

else: # T-test
    if tails == "two-tailed":
        crit_val = stats.t.ppf(1 - alpha/2, df)
    elif tails == "right-tailed":
        crit_val = stats.t.ppf(1 - alpha, df)
    elif tails == "left-tailed":
        crit_val = stats.t.ppf(alpha, df)
```

Step 5 - Decision by Critical Value:

• For Two Tailed Test:

Reject
$$\mathbf{H_0}$$
 if $|\mathbf{z}| > \mathbf{z}_{\alpha/2}$ or $|\mathbf{t}| > \mathbf{t}_{\alpha/2,\,\mathbf{df}}$

• For Right - Tailed Test:

Reject
$$\mathbf{H_0}$$
 if $\mathbf{z} > \mathbf{z}_{\alpha}$ or $\mathbf{t} > \mathbf{t}_{\alpha, \mathbf{df}}$

• For Left - Tailed Test:

Reject
$$\mathbf{H_0}$$
 if $\mathbf{z} < -\mathbf{z}_{\alpha}$ or $\mathbf{t} < -\mathbf{t}_{\alpha, \mathbf{df}}$

Figure 1: Example Representation of Reject or Not Reject Area on Z - test.

Step 6 - Verification by p - value:

Computing p - value using scipy stats.

```
from scipy import stats
if test_type.lower() == "z":
    if tails == "two-tailed":
        p_value = 2 * (1 - stats.norm.cdf(abs(test_stat)))
    elif tails == "right-tailed":
        p_value = 1 - stats.norm.cdf(test_stat)
    elif tails == "left-tailed":
        p_value = stats.norm.cdf(test_stat)

else: # T-test

if tails == "two-tailed":
        p_value = 2 * (1 - stats.t.cdf(abs(test_stat), df))

elif tails == "right-tailed":
        p_value = 1 - stats.t.cdf(test_stat, df)

elif tails == "left-tailed":
        p_value = stats.t.cdf(test_stat, df)
```

- ullet If $p \leq lpha$ or equivalently, the test statistic is in the rejection region.
 - Reject Null Hypothesis H_0 .
 - Conclude the result H_a : is Statistically Significant.
- ullet If p>lpha or equivalently, the test statistic is not in the rejection region.
 - Fail to Reject Null Hypothesis H_0 .
 - Conclude the result H_a : is not Statistically Significant at the chosen significance level lpha.

3.2 Algorithm:

1. State Hypotheses:

Two-tailed:

$$H_0: \mu=\mu_0, \quad H_1: \mu
eq \mu_0$$

Right-tailed:

$$H_0: \mu < \mu_0, \quad H_1: \mu > \mu_0$$

Left-tailed:

$$H_0: \mu \geq \mu_0, \quad H_1: \mu < \mu_0$$

2. Choose Significance Level:

$$\alpha = 0.05$$
 or 0.01

3. Check Assumptions:

Normality, sample size requirements, independence

4. Calculate Test Statistic:

$$\mathbf{z} = rac{\mathbf{ar{x}} - \mu_{\mathbf{0}}}{\mathbf{SE}} \quad \mathbf{or} \quad \mathbf{t} = rac{\mathbf{ar{x}} - \mu_{\mathbf{0}}}{\mathbf{s}/\sqrt{\mathbf{n}}}$$

5. Find Critical Value:

$$z^*$$
 or t^* for given α

- 6. Decision Rule:
 - Two-tailed: If $|\mathbf{z}| > \mathbf{z}^*$ or $|\mathbf{t}| > \mathbf{t}^* \Rightarrow \text{Reject } H_0 \Rightarrow \text{Significant}$
 - Right-tailed: If $z > z^*$ or $t > t^* \Rightarrow \text{Reject } \mathbf{H_0} \Rightarrow \text{Significant}$
 - Left-tailed: If $z < -z^*$ or $t < -t^* \Rightarrow \text{Reject } H_0 \Rightarrow \text{Significant}$
 - Else \Rightarrow Fail to reject $H_0 \Rightarrow$ Not significant
- 7. Verification by p-value:
 - Two-tailed: $\mathbf{p} = \mathbf{2} \times [\mathbf{1} \mathbf{T}(|\mathbf{statistic}|)]$
 - Right-tailed: p = 1 T(statistic)
 - Left-tailed: $\mathbf{p} = \mathbf{T}(\mathbf{statistic})$

If $p < \alpha \Rightarrow \text{Reject } H_0 \text{ else } \Rightarrow \text{Fail to reject } H_0$

8. Interpretation:

Summarize in context of problem

3.3 Exercises:

Problem A - Retail Price Test:

A retailer advertises that the average basket value is \$75. A quality analyst randomly samples n = 12 recent transactions and finds a sample mean of \$79.8 with sample standard deviation s = \$9.6. Test at $\alpha = 0.05$ whether the true mean basket value differs from \$75.

Problem B - Call Center Wait Time.

A call-center manager claims average wait time is at most 2.5 minutes. A random sample of n = 16 calls yields mean – wait = 2.8min, s = 0.9min. Test at $\alpha = 0.10$ whether the mean wait time exceeds 2.5minutes.

Problem C - Email Click - Through.

A marketing team believes the click-through rate (CTR) of a new campaign is 8%. In an A/B trial, the new campaign got x = 78 clicks out of n = 900 impressions. Test at $\alpha = 0.05$ whether the CTR differs from 8% (two-sided).

Part D - Delivery Reliability.

A logistics KPI target is that on-time delivery rate = 95%. Over one quarter, a sample of n = 1200 deliveries shows 1,100 on time. Use $\alpha = 0.01$ to test whether the true on-time rate differs from 95% (two-sided).

Problem E - A/B Test Revenue Lift (One - sided, unequal variances, two - sample t/welch)

A product team runs an A/B test to check a new checkout flow.

- Group A (control): $n_1 = 45$, mean revenue per user $\bar{x_1} = \$24.50$, $s_1 = \$7.1$

Test at $\alpha = 0.05$ whether the new flow increases average revenue one - sided, $\mu_2 > \mu_1$, using the critical-value (Welch) approach.

Problem E — Sample Solution (Retail Price Test)

- 1. Provided Data:
 - For Group Control (A):

$$n_1 = 45; \bar{x}_1 = 24.50; s_1 = 7.2$$

• For Group - Treatment (B):

$$n_2 = 50; \bar{x}_2 = 27.10; s_2 = 8.0$$

2. Hypotheses Statement:

$$H_0: \mu_2 = \mu_1 \qquad \mathrm{vs.} \qquad H_a: \ \mu_2 > \mu_1$$

- 3. Choose test method, significance level and check assumptions:
 - one right tailed test, with significance level of $\alpha = 0.05$.

•

4. Compute Test Statistic (welch - statistic):

$$\mathrm{SE} = \sqrt{rac{\mathbf{s_1^2}}{\mathbf{n_1}} + rac{\mathbf{s_2^2}}{\mathbf{n_2}}}. = \sqrt{rac{7.2^2}{45} + rac{8.0^2}{50}} pprox 1.55949$$

Degrees of Freedom - Welch - Satterthwaite:

$$df \approx \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \approx 93.0$$

- 5. Compute Critical Value:
 - Two-sided 95% CI uses $\mathbf{t}_{0.975,11}$.
 - From tables or python scipy.stats: t_critical = stats.t.ppf(1 alpha, df)
 - $\bullet \ t_{crit} = t_{0.975,93} = 1.6614$
- 6. Decision by Critical value approach:

$$|\mathbf{t}| > t_{\mathrm{crit}}$$
 i.e. $1.6672 > 1.6614 \Rightarrow \mathtt{Reject}$ $\mathtt{Null}(H_0)$

- 7. Verified by p value: Compute p value:
 - For two tailed test p value is:

$$p-value = P(T \ge |t_{observed}|)$$

T follows a t - distribution with df degrees of freedom.

- Using python and scipy.stats: 1 stats.t.cdf(t_statistic, df)
- Decision: since p value $\leq \alpha$, we Reject Null(H₀). \rightarrow p value = 0.05 $\leq \alpha = 0.05$.

4 Test of Summary Statistics

4.1 One-Way ANOVA Testing Steps

1. State Hypotheses:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ (All group means are equal)

H_a:At least one group mean differs

- 2. Choose Significance Level: Select α (e.g., $\alpha = 0.05$).
- 3. Calculate Group Means and Overall Mean: Let $\bar{\mathbf{X}}_{\mathbf{i}}$ be the mean of group \mathbf{i} , and $\bar{\mathbf{X}}_{\mathbf{GM}}$ the grand mean.
 - (a) Group mean for group i:

$$ar{\mathrm{X}}_{\mathrm{i}} = rac{1}{\mathrm{n_i}} \sum_{\mathrm{j=1}}^{\mathrm{n_i}} \mathrm{X}_{\mathrm{ij}}$$

where:

- $X_{ij} = j$ -th observation in group i
- n_i = number of observations in group i
- (b) Grand mean (mean across all observations in all groups):

$$\bar{X}_{GM} = \frac{1}{N} \sum_{i=1}^k \sum_{i=1}^{n_i} X_{ij}$$

where:

- $\mathbf{k} = \text{number of groups}$
- $\bullet~N = \sum_{i=1}^k n_i = \mathrm{total}$ number of observations across all groups
- 4. Compute ANOVA Components:
 - \bullet Between-group variability:

$$SS_B = \sum_{i=1}^k n_i (\bar{X}_i - \bar{X})^2$$

• Within-group variability:

$$SS_W = \sum_{i=1}^k \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_i)^2$$

• Compute Mean Squares:

$$\mathbf{MS_B} = \frac{\mathbf{SS_B}}{\mathbf{k-1}}, \quad \mathbf{MS_W} = \frac{\mathbf{SS_W}}{\mathbf{N-k}}$$

5. Compute F-statistic:

$$F = \frac{MS_B}{MS_W}$$

6. Decision Rule (Critical Value Approach):

 $\bullet \ \ \mathrm{If} \ F > F^*_{(\mathbf{k-1},\mathbf{N-k})} \ \mathrm{at} \ \mathrm{significance} \ \mathrm{level} \ \alpha, \ \mathrm{reject} \ H_0.$

7. Verification by p-value:

- If $p < \alpha$, reject H_0 (statistically significant).
- Else, fail to reject H₀ (not significant).

4.2 Chi-Square Goodness-of-Fit Test

Goal: Test whether observed frequencies match expected frequencies.

1. State Hypothesis:

 H_0 : Observed frequencies follow the expected distribution

H_a:Observed frequencies do not follow the expected distribution.

2. Test Statistics:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

where:

- \bullet $O_i = Observed$ frequency for category i
- $\bullet \ E_i = Expected \ frequency \ for \ category \ i$
- \bullet k = Number of categories.
- 3. Degrees of Freedom:

$$df = k - 1$$

where:

- k = Number of Groups.
- 4. Decision Rule:
 - Reject Null Hypothesis H_0 if $\chi^2 > \chi^2_{\text{critical}, df, \alpha}$
 - Otherwise, fail to reject H₀
- 5. Verification by p-value:
 - If $p < \alpha$, reject H₀ (statistically significant).
 - Else, fail to reject H_0 (not significant).

4.3 Chi-Square Test of Independence Steps

1. State Hypotheses:

H₀:No association between the two categorical variables

H_a:There is an association between the two categorical variables.

- 2. Choose Significance Level: Select α (e.g., $\alpha = 0.05$).
- 3. Create a Contingency Table: Organize observed frequencies O_{ij} in a table.
- 4. Calculate Expected Frequencies:

$$\mathbf{E_{ij}} = \frac{(\text{Row Total})_i \times (\text{Column Total})_j}{\text{Grand Total}}$$

5. Compute Chi-Square Statistic:

$$\chi^2 = \sum_i \sum_i \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- 6. Decision Rule (Critical Value Approach):
 - $\bullet \ \ \mathrm{If} \ \chi^2 > \chi^2_{(\alpha,df)} \ \mathrm{where} \ \mathbf{df} = (r-1)(c-1), \ \underline{reject} \ H_0.$
- 7. Verification by p-value:
 - If $p < \alpha$, reject H_0 (statistically significant).
 - Else, fail to reject H_0 (not significant).

4.4 Exercises:

Problem A — Which Creative Wins? Comparing Mean CTR Across Ads:

Fresh-mart tested four ad creatives in an email campaign. For each group, you collected CTR (%) from equal sub - samples.

- Given (Summary Stats:
 - Group A: $n_1 = 30, \bar{x}_1 = 5.2, s_1 = 0.9$
 - Group B: $n_2 = 30, \bar{x}_2 = 5.7, s_2 = 1.0$
 - Group C: $n_3 = 30, \bar{x}_3 = 5.1, s_3 = 0.8$
 - Group D: $n_4 = 30, \bar{x}_4 = 5.9, s_4 = 1.1$
- Test at $\alpha = 0.05$ using one way ANOVA.

Problem A - sample solution (marketing creatives):

1. Provided Data:

Group A:
$$n_1 = 30$$
, $\bar{x}_1 = 5.2$, $s_1 = 0.9$

Group B:
$$n_2 = 30$$
, $\bar{x}_2 = 5.7$, $s_2 = 1.0$

Group C:
$$n_3 = 30$$
, $\bar{x}_3 = 5.1$, $s_3 = 0.8$

Group D:
$$n_4 = 30$$
, $\bar{x}_4 = 5.9$, $s_4 = 1.1$

2. Hypothesis Statement:

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D$$
 vs. $H_a:$ at least one mean differs

3. Compute Grand Mean:

$$\mathbf{\bar{X}_{G}} = \frac{\sum_{i=1}^{4} n_{i} \mathbf{\bar{X}_{i}}}{\sum_{i=1}^{4} n_{i}} = \frac{30(5.2 + 5.7 + 5.1 + 5.9)}{120} = 5.475$$

4. Sum of squares between (SSB):

$$SSB = \sum_{i=1}^4 n_i (\bar{X}_i - \bar{X}_G)^2$$

Compute for each term:

Table 1:	Computation	of Sum	of Squares	Between ((SSB)

$\overline{\text{Group}(i)}$	$ar{f X_i}$	$ar{ar{ extbf{X}}_{ extbf{i}}-ar{ extbf{X}}_{ extbf{G}}}$	$(ar{\mathbf{X_i}} - ar{\mathbf{X_G}})^{2}$	$n_i(\bar{X}_i - \bar{X}_G)^2$
1	5.2	-0.275	0.075625	2.26875
2	5.7	0.225	0.050625	1.51875
3	5.1	-0.375	0.140625	4.21875
4	5.9	0.425	0.180625	5.41875
			SSB	13.425

5. Sum of squares within (SSW) from sample standard deviations:

$$SSW = \sum_{i=1}^4 (n_i-1) s_i^2$$

$$\begin{split} SSW &= 29(0.9^2) + 29(1.0^2) + 29(0.8^2) + 29(1.1^2) \\ &= 29(0.81 + 1.00 + 0.64 + 1.21) = 29(3.66) = 106.14 \end{split}$$

6. Degrees of freedom:

$$df_{B} = k - 1 = 4 - 1 = 3,$$
 $df_{W} = N - k = 120 - 4 = 116.$

7. Mean Squares:

$$ext{MSB} = rac{ ext{SSB}}{ ext{df}_{ ext{B}}} = rac{13.425}{3} = 4.475, \qquad ext{MSW} = rac{ ext{SSW}}{ ext{df}_{ ext{W}}} = rac{106.14}{116} pprox 0.915$$

8. Compute F - statistic:

$$\mathrm{F} = rac{\mathrm{MSB}}{\mathrm{MSW}} = rac{4.475}{0.915} pprox 4.891$$

9. p-value (from F-distribution): Using $df_1 = 3$, $df_2 = 116$:

$$p = P(F_{3,116} \ge 4.891) \approx 0.00308$$

using python and scipy.stats - p_value = stats.f.sf(F_value, df_between, df_within)

10. Decision at $\alpha = 0.05$:

$$ext{Since}
ightarrow ext{p} pprox 0.0031 < 0.05$$
 Reject $ext{H}_0$

11. **Business Interpretation:** There is strong evidence that at least one creative's mean CTR differs from the others. Next step: perform post-hoc pairwise comparisons (e.g., Tukey HSD) to identify which creatives differ and by how much.

Problem B - Regional Sales Performance

A retailer collected the following average order values (\$) from three regions:

North (15 stores)	South (12 stores)	West (18 stores)
82.50	76.80	88.10
85.30	74.20	90.50
79.80	78.50	85.70
83.10	75.90	92.30
81.40	77.30	87.60

Tasks:

1. Complete the summary statistics table:

Region	number of sample n_i	Mean \bar{x}_i	Standard Deviation s_i
North	15 stores		
South	12 stores		
West	18 stores		

2. Perform ANOVA at $\alpha = 0.01$

Problem C — Channel Mix Shift - Has the Sales Channel Mix Changed?

• Scenario: Historically, order share by channel is:

- **Web**: 60%

- **App**: 30%

- **Phone**: 10%

• During a new campaign week (N = 500), observed orders were:

- Web = 275

 $-\mathbf{App} = 185$

- **Phone** = 40

• Test at $\alpha = 0.05$ using a **chi-square goodness-of-fit test**.

5 Appendix - Sample Python Implementations.

5.1 T Test and Z Test:

Hypothesis Testing with Python

```
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
def hypothesis_test(sample_mean, mu0, s=None, n=None, sigma=None, alpha=0.05,
                  tails="two-tailed", test_type="t", plot=True):
   General hypothesis testing with Z-test or T-test, including critical value, p-value, and
       visualization.
   0.00
   Parameters:
       sample_mean : float
           Sample mean
       mu0 : float
          Hypothesized mean
       s : float, optional
           Sample standard deviation (needed for t-test)
       n: int
           Sample size
       sigma : float, optional
           Population standard deviation (needed for z-test)
       alpha : float
           Significance level
       tails : str
           'two-tailed', 'right-tailed', or 'left-tailed'
       test_type : str
           'z' for Z-test, 't' for T-test
   0.00
   # --- Step 1: Test Statistic ---
   if test_type.lower() == "z":
       if sigma is None:
          raise ValueError("Population standard deviation (sigma) required for Z-test")
       se = sigma / np.sqrt(n)
       test_stat = (sample_mean - mu0) / se
       df = None
   elif test_type.lower() == "t":
       if s is None or n is None:
          raise ValueError("Sample std deviation (s) and sample size (n) required for T-test")
       se = s / np.sqrt(n)
       test_stat = (sample_mean - mu0) / se
       df = n - 1
   else:
       raise ValueError("test_type must be 'z' or 't'")
   # --- Step 2: Critical Value ---
   if test_type.lower() == "z":
       if tails == "two-tailed":
           crit_val = stats.norm.ppf(1 - alpha/2)
```

```
crit_val_lower = stats.norm.ppf(alpha/2)
       crit_val_upper = crit_val
   elif tails == "right-tailed":
       crit_val = stats.norm.ppf(1 - alpha)
       crit_val_lower = None
       crit_val_upper = crit_val
   elif tails == "left-tailed":
       crit_val = stats.norm.ppf(alpha)
       crit_val_lower = crit_val
       crit_val_upper = None
else: # T-test
   if tails == "two-tailed":
       crit_val = stats.t.ppf(1 - alpha/2, df)
       crit_val_lower = stats.t.ppf(alpha/2, df)
       crit_val_upper = crit_val
   elif tails == "right-tailed":
       crit_val = stats.t.ppf(1 - alpha, df)
       crit_val_lower = None
       crit_val_upper = crit_val
   elif tails == "left-tailed":
       crit_val = stats.t.ppf(alpha, df)
       crit_val_lower = crit_val
       crit_val_upper = None
# --- Step 3: Decision Rule (Critical Value Method) ---
if tails == "two-tailed":
   reject_cv = abs(test_stat) > crit_val
   decision_cv = "Reject H" if reject_cv else "Do not reject H"
elif tails == "right-tailed":
   reject_cv = test_stat > crit_val
   decision_cv = "Reject H" if reject_cv else "Do not reject H"
elif tails == "left-tailed":
   reject_cv = test_stat < crit_val
   decision_cv = "Reject H" if reject_cv else "Do not reject H"
# --- Step 4: P-value ---
if test_type.lower() == "z":
   if tails == "two-tailed":
       p_value = 2 * (1 - stats.norm.cdf(abs(test_stat)))
   elif tails == "right-tailed":
       p_value = 1 - stats.norm.cdf(test_stat)
   elif tails == "left-tailed":
       p_value = stats.norm.cdf(test_stat)
else: # T-test
   if tails == "two-tailed":
       p_value = 2 * (1 - stats.t.cdf(abs(test_stat), df))
   elif tails == "right-tailed":
       p_value = 1 - stats.t.cdf(test_stat, df)
   elif tails == "left-tailed":
       p_value = stats.t.cdf(test_stat, df)
reject_pv = p_value < alpha
decision_pv = "Reject H" if reject_pv else "Do not reject H"
# --- Step 5: Plot ---
if plot:
```

```
x = np.linspace(-5, 5, 1000) if test_type.lower() == "t" else np.linspace(-4,4,1000)
       y = stats.t.pdf(x, df) if test_type.lower() == "t" else stats.norm.pdf(x)
       plt.figure(figsize=(8,4))
       plt.plot(x, y, label=f'{test_type.upper()} distribution')
       # Rejection regions
       if tails == "two-tailed":
          plt.fill_between(x, 0, y, where=(x <= crit_val_lower) | (x >= crit_val_upper), color='red',
              alpha=0.3, label="Rejection region")
       elif tails == "right-tailed":
           plt.fill_between(x, 0, y, where=(x >= crit_val_upper), color='red', alpha=0.3, label="
               Rejection region")
       elif tails == "left-tailed":
          plt.fill_between(x, 0, y, where=(x <= crit_val_lower), color='red', alpha=0.3, label="
              Rejection region")
       plt.axvline(test_stat, color='blue', linestyle='--', linewidth=2, label=f"Test statistic ({
           test_stat:.2f})")
       if crit_val_lower is not None:
           plt.axvline(crit_val_lower, color='red', linestyle='-', linewidth=2, label=f"Critical value
                ({crit_val_lower:.2f})")
       if crit_val_upper is not None:
           plt.axvline(crit_val_upper, color='red', linestyle='-', linewidth=2)
       plt.title(f"Hypothesis Test Visualization\nCritical Value Decision: {decision_cv}, P-value
           Decision: {decision_pv}")
       plt.xlabel("Test Statistic")
       plt.ylabel("Density")
       plt.legend()
       plt.grid(True)
       plt.show()
   return {
       "test_statistic": test_stat,
       "critical_value": crit_val,
       "reject_by_critical_value": reject_cv,
       "decision_critical_value": decision_cv,
       "p_value": p_value,
       "reject_by_p_value": reject_pv,
       "decision_p_value": decision_pv,
       "df": df
   }
# ----- Example Test -----
# One-tailed right T-test - Adjusted to get test statistic between 2 and 3
result = hypothesis_test(sample_mean=46.8, mu0=45, s=8, n=100, alpha=0.05,
                      tails="right-tailed", test_type="t")
print("\nHypothesis Test Results:")
print(f"Test Statistic: {result['test_statistic']:.4f}")
print(f"Critical Value: {result['critical_value']:.4f}")
print(f"P-value: {result['p_value']:.4f}")
print(f"Decision (Critical Value): {result['decision_critical_value']}")
print(f"Decision (P-value): {result['decision_p_value']}")
```



```
Hypothesis Test Results: Test Statistic: 2.2500 Critical Value: 1.6604 P-value: 0.0133 Decision (Critical Value): Reject H<sub>0</sub> Decision (P-value): Reject H<sub>0</sub>
```

Figure 2: Sample output T - Test

5.2 One - Way ANOVA Test:

One-Way-ANOVA with Python

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import f, stats
# Sample data: click-through rates (%) for 4 ad creatives
# Each group represents CTRs from 10 randomly sampled customers
group_A = np.array([5.2, 5.5, 5.1, 5.4, 5.3, 5.6, 5.2, 5.5, 5.4, 5.3])
group_B = np.array([5.7, 5.8, 5.6, 5.9, 5.5, 5.6, 5.7, 5.8, 5.7, 5.6])
group_C = np.array([5.1, 5.0, 5.2, 5.1, 5.3, 5.0, 5.2, 5.1, 5.3, 5.0])
group_D = np.array([5.9, 6.0, 5.8, 5.7, 5.9, 5.8, 5.9, 6.0, 5.8, 5.9])
# Perform one-way ANOVA
F_statistic, p_value = stats.f_oneway(group_A, group_B, group_C, group_D)
print(f"F-statistic: {F_statistic:.3f}")
print(f"P-value: {p_value:.4f}")
# Decision at alpha = 0.05
alpha = 0.05
if p_value < alpha:</pre>
   print("Reject HO: There is a significant difference among the group means.")
else:
   print("Fail to reject HO: No significant difference among the group means.")
# Degrees of freedom for the F-test in one-way ANOVA
num_groups = 4
```

```
observations_per_group = 10
total_observations = num_groups * observations_per_group
df_numerator = num_groups - 1
df_denominator = total_observations - num_groups
# Calculate critical F-value
critical_f_value = f.ppf(1 - alpha, df_numerator, df_denominator)
# Plotting the F-distribution
x = np.linspace(0, F_statistic + 2, 500) # Adjust upper limit based on F-statistic
y = f.pdf(x, df_numerator, df_denominator)
plt.figure(figsize=(10, 6))
plt.plot(x, y, color='blue', lw=2, label=f'F-distribution (df={df_numerator}, {df_denominator})')
# Shade the rejection region
x_reject = np.linspace(critical_f_value, x[-1], 300) # Shade from critical value to the right
plt.fill_between(x_reject, f.pdf(x_reject, df_numerator, df_denominator), color='red', alpha=0.4,
               label=f'Rejection Region')
# Mark the F-statistic
plt.axvline(F_statistic, color='green', linestyle='--', lw=2, label=f'F-statistic = {F_statistic:.2f}')
# Mark the critical F-value
plt.axvline(critical_f_value, color='red', linestyle='-', lw=2, label=f'Critical F-value = {
    critical_f_value:.2f}')
plt.title('F-Test for One-Way ANOVA with Rejection Region')
plt.xlabel('F-value')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
plt.show()
```


F-statistic: 71.655 P-value: 0.0000 Reject HO: There is a significant difference among the group means.

Figure 3: Sample Output One - Way - ANOVA