Question 1

In terms of α and β , express all the lengths and other angle measures (θ and ϕ).

$con(\alpha) = \frac{con(\beta)}{con(\beta)}$
r= /a(a)./a(3) Lis(a)= 5 /a(e)

Variable	Algebraic expression
p =	cor (B)
q =	sin (B)
r =	$\text{son}(\alpha)$ $\text{son}(\beta)$
s =	Air(a). La(B)
$\theta =$	d
t =	sor(a). Di (B)
u =	di (a). dis (B)
$\phi =$	a+B
v =	Sor(a+B)
w =	Si(a+B)

Name:

Question 2

 $lon(\alpha+\beta) = lon(\alpha) lon(\beta) - lon(\alpha) lon(\beta)$ $lon(\alpha-\beta) = lon(\alpha) lon(\beta) + lon(\alpha) lon(\beta)$

The angle-sum and angle-difference identities are true for any α and β :

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

You know the following:

si(a+B) = si(a) (a) + ca(a) si(B) $Ais(\alpha-\beta)=Ais(\alpha)ser(\beta)-ser(\alpha)sis(\beta)$

$$\sin(45^\circ) = \frac{\sqrt{2}}{2}$$

$$\sin(45^\circ) = \frac{\sqrt{2}}{2}$$
 $\sin(150^\circ) = \frac{1}{2}$

$$\cos(45^\circ) = \frac{\sqrt{2}}{2}$$

$$\cos(150^\circ) = \frac{-\sqrt{3}}{2}$$

 $\cos(45^{\circ}) = \frac{\sqrt{2}}{2}$ $\cos(150^{\circ}) = \frac{-\sqrt{3}}{2}$ Determine $\cos(-105^{\circ})$ exactly. $\cos(350^{\circ}) = \frac{-\sqrt{3}}{2}$

cor (45°-150°)= cor (45°) en (150°) + Dú (45°) Dú (150°)

$$= \frac{\sqrt{2} \cdot -\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$=\frac{-\sqrt{6}}{4}+\frac{\sqrt{2}}{4}$$

Question 3

Prove that $\sin(2x) = 2\sin(x)\cos(x)$ for any x.

(Hint: start with an angle-sum formula from Question 2.)

$$Sin(\alpha + \beta) = Sin(\alpha)con(\beta) + con(\alpha)sin(\beta)$$

Let
$$\alpha = x$$
.

Let
$$z=x$$
.

$$\operatorname{Jin}\left(\chi+\chi\right)=\operatorname{Jin}(\chi)\operatorname{cer}(\chi)+\operatorname{cer}(\chi)\operatorname{Jin}(\chi)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

Question 4

Prove that $cos(2x) = 2cos^2(x) - 1$ for any x.

Pythagorean Identity: $\sin^2(x) + \cos^2(x) = 1$

$$\operatorname{cor}(\alpha+\beta) = \operatorname{cor}(\alpha)\operatorname{cor}(\beta) - \operatorname{fin}(\alpha)\operatorname{fr}(\beta)$$

$$con(x+x) = con(x)con(x) - sin(x)sin(x)$$

$$cor(2x) = cor^2(x) - sin^2(x)$$

$$2 \sin^2(x) = \left(1 - \cos^2(x)\right)$$

$$cor(2x) = cor^2(x) - (1 - cor^2(x))$$

$$ear(2x) = cor^{2}(x) - 1 + cor^{2}(x)$$

$$con(2x) = 2 con^2(x) - 1$$

Question 5

Prove that $\cos\left(\frac{y}{2}\right) = \sqrt{\frac{1+\cos(y)}{2}}$. (Technically this assumes $\cos(y/2) > 0$, but let's not worry about that here.)

(Hint: use the identity proved in Question 4.)

$$cor\left(2x\right) = 2 cor^{2}(x) - 1$$

Let
$$2x = y$$
, so $x = \frac{y}{2}$.

$$\operatorname{Cor}(y) = 2 \operatorname{Er}^2(\frac{y}{2}) - 1$$

$$cor(y)+1 = 2 cor^{2}(y/2)$$

$$\frac{\operatorname{cor}(y)+1}{2}=\operatorname{cor}^2(y_h)$$

$M = 2 l^2 - 1$

$$\int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{M+1}{2} \right)^{-1}$$

Question 6

If you knew that $\cos(110^\circ) \approx 1$, then what is $\cos(55^\circ)$? Please set up an expression, but do **not** try to simplify or evaluate a decimal approximation.

(Hint: 110/2 = 55.)

-0.34

$$Cer(55^{\circ}) = \sqrt{1 + (-0.34)}$$

$$\sqrt{\frac{1-0.34}{2}}$$