A Cross Disciplinary Subject

- Computing Applications neural net applications in image processing, robotics etc
- Artificial Intelligence connectionism as a model of artificial intelligence
- Machine Learning neural nets origin of machine learning
- Cognitive Psychology connectionist models of psychological behaviour

- Philosophy of Mind What is the mind?
 Connectionist metaphors critical
- (Cognitive) Neuroscience neural nets as mathematical models of brain systems: axons, dendrites, synaptic connections etc
- Statistical Learning neural networks can be thought of as performing statistical learning
- Deep Learning the new meaning of Artificial Intelligence.

- "The brain is the most interesting (computational) entity in the Universe?" [R. O'Reilly]
- (challenge you to think of anything else more interesting)
- It is also (probably) the most complex

Origins of Connectionist Tradition

- First mathematical abstractions of neural behaviour
 - McCulloch and Pitts (1943)
 - modelling logic using neuron-like computational units
 - Hebb (1949)
 - mathematical definition of neural learning
 - Rosenblatt (1959)
 - the perceptron supervised error-driven learning

Historical Perspective

- 1969 symbolic dominance starts
 - "Perceptrons" (Minsky & Papert) argues neuronlike models computationally limited
- 1980 connectionist revolution starts
 - Rumelhart, Hinton & Williams rediscover backpropagation - can learn any computable function (modulo local minima)
 - importance of distributed representations (McClelland)
 - Hopfield nets attractor dynamics
- 2005ish deep learning and the new Al
 - e.g. deep convolution neural networks

Problem

- Back-propagation not biologically plausible!
 - How are error terms relayed back along processing pathways?
- Hebbian vs back-propagation learning
 - Hebbian
 - anatomically plausible
 - computationally weak

Computational Cognitive Neuroscience

 "How the brain embodies the mind using biologically based computational models"

[O'Reilly and Munakata]

- Informed by modern brain sciences -
 - brain imaging, electroencephalogram (EEG) etc
 - brain anatomy
 - traditional experimental psychology
 - pure neural networks research

Planned Lectures

- Lecture 1: Cognitive Neural Networks Intro (HB)
- Lectures 2, 3, 4, 5 & 6: Computation in Single Neurons (HB)
 Activation Levels, Spikes, Membrane Potentials
- Lectures 7, 8, 9, 10 & 11: Networks of Neurons (HB)
 Feedforward, Recurrent, Inhibitory Mechanisms
- Lectures 12, 13, 14 & 15: Model Learning (MG)
 Hebbian Learning
- Lectures 16, 17, 18, 19 & 20: Task Learning (MG)
 The Delta Rule and Back Propagation
- Lecture 21 & 22: Current Perspective (MG)
 Deep Learning
- Practical Class (8 Classes, 2 hrs each): From week 4 for rest of first term

Running Simulations from O'Reilly and Munakata

- Two assessments from simulations for all.
- MSc students extra assessments.

Some maths, not hard.