[MEN573] Advanced Control Systems I

Lecture 2 & 3 Supplement – LT & ZT tables

Associate Professor Joonbum Bae Department of Mechanical Engineering UNIST

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	_		Kronecker delta $\delta_0(k)$ 1 $k=0$ 0 $k \neq 0$	1
2.	_		$\delta_0(n-k)$ $1 \qquad n=k$ $0 \qquad n \neq k$	z - k
3.	<u>1</u> s	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e-at	e-akT	$\frac{1}{1-e^{-ar_z-1}}$
5.	$\frac{1}{s^2}$	ť	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t²	(kT) ²	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	6 s*	t ³	(kT) ³	$\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$
8.	$\frac{a}{s(s+a)}$	1 — e -ai	1 — e ^{-akT}	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	e-ai — e-bi	e-akT — e-bkT	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$

10.	$\frac{1}{(s+a)^2}$	te-at	kTe-akt	$\frac{Te^{-aT_{Z}-1}}{(1-e^{-aT_{Z}-1})^{2}}$
11.	$\frac{\dot{s}}{(s+a)^2}$	(1 - at)e-at	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-a\tau}z^{-1}}{(1 - e^{-a\tau}z^{-1})^2}$
12.	$\frac{2}{(s+a)^3}$	[² e ^{-at}	(kT) ^z e ^{-akt}	$\frac{T^{2}e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^{3}}$
13.	$\frac{a^2}{s^2(s+a)}$	at - 1 + e-or	akT - l + e ^{-okT}	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{s_3+\omega_5}{\omega}$	sin ωt	sin wkT	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ωt	cos ωkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e-ot sin ωt	e ^{-akT} sin ωkT	$\frac{e^{-\alpha T}z^{-1}\sin \omega T}{1-2e^{-\alpha T}z^{-1}\cos \omega T+e^{-2\alpha T}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	e-et cos wt	e-out cos wkT	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
18.			a*	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$\frac{z^{-1}}{1-az^{-1}}$
20.			ka*-1	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			k²a ^{k−1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k³a*-1	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k⁴a*-1	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.			a ^k cos kπ	$\frac{1}{1+az^{-1}}$

 $x(t)=0 \qquad \text{for } t<0.$

 $x(kT) = x(k) = 0 \qquad \text{for } k < 0.$

Unless otherwise noted, $k = 0, 1, 2, 3, \ldots$

 TABLE 2.1
 Laplace transform table

Item no.	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{1}{s^2}$
4.	$t^n u(t)$	$\frac{n!}{s^n+1}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$

Table 2.1

[©] John Wiley & Sons, Inc. All rights reserved.

TABLE 2.2 Laplace transform theorems

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	=kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$[f(s)] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.		$= s^{n} F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathcal{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty} sF(s)$	Initial value theorem ²

¹For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no more than one can be at the origin.

Table 2.2 © John Wiley & Sons, Inc. All rights reserved.

²For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (that is, no impulses or their derivatives at t = 0).

TABLE 13.1 Partial table of *z*- and *s*-transforms

(C)	f(t)	F(s)	F(z)	f(kT)
1.	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	u(kT)
2.	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
4.	e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e^{-akT}
5.	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$\sin \omega kT$
7.	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	$\cos \omega kT$
8.	$e^{-at}\sin\omega t$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\cos\omega kT$

Table 13.1

© John Wiley & Sons, Inc. All rights reserved.

TABLE 13.2 z-transform theorems

	Theorem	Name
1.	$z\{af(t)\} = aF(z)$	Linearity theorem
2.	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem
3.	$z\{e^{-aT}f(t)\} = F(e^{aT}z)$	Complex differentiation
4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation
5.	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$	Complex differentiation
6.	$f(0) = \lim_{z \to \infty} F(z)$	Initial value theorem
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem

Table 13.2

[©] John Wiley & Sons, Inc. All rights reserved.