Pulse Formation and Shaping

Detector Signal from Single Event

- Short current pulse (ns, μ s) induced on electrode by each charge-generating event in detector
- Pulse shape depends on detector material properties, charge carrier mobility, electric field, geometry (weighting field), etc.
 - May contain information about interaction position in the detector
- Total charge delivered in the current pulse contains information about energy deposition or creating interaction
- The main goal in radiation spectroscopy is to measure the total charge generated by each deposition event
 - There are other applications where the goals may be different,
 e.g. particle tracking detectors
 - Design of signal-sensing circuits dictated by application

Spectroscopy Signal Processing Chain

Spectroscopy Signal Processing Chain

Preamplifier Electronics

- Total charge in detector current pulse is proportional to energy deposited by interaction in detector.
- $E \propto Q_s = \int i_s(t) dt$
- Need to integrate current signal: Preamplifier!
- Desired properties for spectroscopic preamplifiers:
 - Integrate all of the signal from detector
 - High gain (CSA: V/pC)
 - Response independent of detector
 - Low noise, stable
- Further considerations based on system/application
 - Event rate, multichannel detectors, etc.
- N.B. "Preamplifier" has more to do with position in the signal chain than its role in "amplification"

Charge Sensitive Preamplifier I

- Active integrator w/ negative feedback
 - Input impedance $Z_i \rightarrow \infty$
 - No signal current through amplifier input
 - High open-loop gain (A is large)

Voltage difference across
$$C_f$$
: $v_f = (A+1) v_i$

$$\Rightarrow$$
 Charge deposited on C_f : $Q_f = C_f v_f = C_f (A+1) v_i$

$$Q_i = Q_f$$
 (since $Z_i = \infty$)

From Spieler

Effective input capacitance

$$C_i = \frac{Q_i}{v_i} = C_f(A+1)$$

Gain

$$A_Q = \frac{dV_o}{dQ_i} = \frac{A \cdot v_i}{C_i \cdot v_i} = \frac{A}{C_i} = \frac{A}{A+1} \cdot \frac{1}{C_f} \approx \frac{1}{C_f} \quad (A >> 1)$$

Vout(t): CSP output pulse: 10ns/div

Charge Sensitive Preamplifier II

 $\Delta V \propto Q_{TOT}$

- Rising edge contains additional information
 - Timing
 - Position sensitivity

- tion
 - Vout(t): CSP output pulse: 10ns/div

- Resistive feedback
 - Discharge back to baseline

$$\circ$$
 $\tau = R_f C_f >> t_{collection}$

Charge Reset

- Continuous (passive) reset may not be ideal
 - High rates can cause DC voltage to exceed supply: "lock-up"
 - Thermal noise in R_f bad for ultra-low noise applications

Realistic Charge Sensitive Preamplifiers

- Cartoon illustrates operating principles, but assumes idealized components
 - Infinite input impedance, infinite speed
- Real CSA designs requires consideration of many more factors
 - Frequency response (impedance)
 - Timing characteristics (slew rate)
 - Matched input impedance for multichannel systems
 - o Etc.
- Spieler is an excellent resource addressing these considerations

Implementation

Output of Preamplification Stage

- Successfully converted detector signal to a step voltage, but...
 - Poor signal-to-noise ratio
 - Continuous reset preamps have long tails → pulse pileup
 - Tail pulse shape

Not suitable for direct measurement of peak-height

http://www.cremat.com/why-use-csps/

Pulse Shaping I

- Spectroscopic information in magnitude of voltage step from preamplifier
- Maximize SNR
 - minimize noise contributions to energy resolution
- Optimum shaping depends on:
 - Noise spectrum for system
 - Requirements for pile-up free counting
- N.B. the original shape of the signal is lost!
 - Pulse shape analysis

Pulse Shaping II

- Pulse shaping is full of trade-offs
- Example 1: SNR vs. Rate capability
 - SNR is often improved by limiting high-frequency response (LP filter)
 - This broadens the pulse, reducing rate capabilities
- Example 2: SNR vs. Peak Detect
 - Optimal pulse shape for maximizing SNR = cusp
 - Sharp peak not optimal for MCA
- "Optimum" shaping driven by application

Reduced Pulse Pileup

Theoretical Optimum for SNR

Finite peak width better for MCA

Review: Analog Signal Shaping

- Analog pulse shaper often implemented as CR-(RC)ⁿ network
 - Unipolar, Gaussian-like (high n increases symmetry)
 - CR = differentiator (HP filt.)
 - RC = integrator (LP filt.)

Table 4.1 Measured timing factors for semi-Gaussian output pulses

Factor	Time interval	Symbol	Time ^a
Rise time	0.1 to 0.9 of pulse maximum	_	1.26 + 0.05
Peaking time	threshold ^b to maximum	$T_{ m P}$	2.1 + 0.1
Linear gate time	threshold to 0.9 of max. beyond max.	$T_{ m LG}$	2.6 + 0.2
Width	threshold to threshold	$T_{ m W}$	5.6 + 0.5

a Time is specified in units of time constant.

Typical semi-gaussian pulse resulting from CR-RCⁿ shaping network. Listed times normalized by shaping time constant

(c) Combined CRRC circuit

Gilmore 4.13

^b The threshold used was, as near as possible, 0.1% of peak maximum.

Review: Analog Signal Shaping

Functions of the "Spectroscopic Amplifier"

Energy Resolution

- Energy resolution is paramount for spectroscopy
 - Ability to identify features
 - Sensitivity

Gilmore 6.2

Electronic Noise & Energy Resolution

Several sources of variability contribute to overall energy resolution

Sources of Electronic Noise

- Detector leakage current shot noise
- Noise in FET thermal effects & shot noise
- Continuous-reset preamplifier: thermal noise in feedback resistor
- Transistor-reset preamplifier: leakage current through reset element
- 1/f "flicker" noise

Noise Dependence on Shaping Time

Series (or voltage) noise

$$ENC^2 \sim (4kTR_S + e_{na}^2) C_d^2 \frac{1}{\tau}$$

(Johnson noise associated with series resistance and the thermal noise of the FET)

Parallel (or current) noise

$$ENC^2 \sim (2qI_1 + 4kT/R_f) T$$

 I_L – full shot-noise leakage current

(Fluctuations in the (**surface** or **bulk**) leakage current)

1/f noise

$$ENC^2 \sim A C_d^2$$

Trapping/Detrapping effects in FET, ...

(capture and release of charges in the input FET, **not** dependent on shaping time)

N.B. ENC: Equivalent Noise Charge [e_{RMS}]

"Noise Corner" = Optimum SNR

Leakage Current

- Source of charge seen at preamplifier output
 - sometimes referred to as "step" noise
- Bulk leakage current
 - Thermal excitation of charge carriers across bandgap
 - $\blacksquare \quad \propto T^{3/2} \exp(-E_g/(2kT))$
- Surface leakage
 - Channeling/contamination on surf.
 - Mitigate with clean processing, guard rings
- Short shaping times to mitigate effect on energy resolution

Leakage current seen on output of transistor-reset preamplifier

Ballistic Deficit

- Short shaping time desirable in many circumstances
 - Reduce pileup
 - Minimize parallel noise contributions
- Shaping time on order of pulse rise time → ballistic deficit
 - Charge collection / pulse shape variability
- Can be avoided with trapezoidal shapers
 - Introduce "flat-top" w/ duration>= maximum charge collection time

Pulse Pile-up I

- Consequence of random nature of radioactive decay
 - Poisson random process

$$P(x) = \frac{(\bar{x})^x e^{-\bar{x}}}{x!}$$

r – average rate of detector event occurrence
 rdt – probability of event occurrence in time interval dt

$$P(0) = \frac{(rt)^0 e^{-rt}}{0!}$$
 probability of no event in time interval **0** to **t**

I(t)dt - probability of next event occurrence after delay of t relative to previous event:

$$I(t) = re^{-rt}$$

I(t) - distribution function of time intervals between adjacent random events

Pulse Pile-up II

- Analog shapers often include "pile-up rejection" circuits
- Information from pile-up pulses is often recoverable
- Digital domain
 - Adaptive filtering
 - Signal shape depends on rate
 - Pile-up flagging
 - Record pile-up events for subsequent processing

Pulse Pileup from CR-RC⁴ shaping network with $T_{shape} = 1\mu s$ (Gilmore 4.22)