

Aula 01

Pós-Graduação em Gestão de Sistemas de Informação

Modelagem de classes e objetos

Análise e Projeto Arquitetural de Software

Prof. Thiago

Objetivos

Após esta aula, você deverá ser capaz de:

- Compreender a estruturação de classes e objetos;
- Modelar a estrutura de classes utilizando a notação do Diagrama de Classes.

Conceitos básicos de OO

 Vamos estudar agora os principais conceitos empregados na modelagem e programação orientadas a objetos

- Classes (e objetos)
- > Atributos
- > Métodos
- > Mensagens

Classe

■ **Definição**: Uma *classe de objetos* descreve um grupo de objetos com propriedades (atributos) em comuns, comportamento (operações) em comum, relacionamentos comuns com outros objetos.

Exemplo: Pessoas.

Objeto

Definição: Um objeto é uma instância de uma classe. Ou seja, um elemento que pertence àquela classe.

■ Exemplo: Maria é um objeto da classe Pessoas.

Atributos

■ **Definição**: São propriedades comuns aos objetos de uma classe, porém cada objeto pode ter um valor diferente para seus atributos.

Exemplo: Nome é um atributo da classe Pessoas. Mas uma pessoa chamada Maria tem nome diferente de uma pessoa chamada João.

Método

■ **Definição**: comportamento de uma classe de objetos. Um método pode acessar e alterar atributos.

■ Exemplo: o método TrocarDeRoupa da classe Pessoa faz com que o atributo Roupa se altere.

Mensagem

Definição: chamada a um objeto para invocar um de seus métodos.

■ Exemplo: efetivamente "fazer" com que uma pessoa troque de roupa.

■ Lembrete:

- Método: descrição de uma operação
- > Mensagem: execução de uma operação

"Teatro de objetos"

 Um exemplo divertido utilizando esses conceitos é a modelagem de cobranças de pênalti em um jogo de futebol

Classes:

- > Goleiro
- Batedor de pênalti
- > Torcedor educado
- > Torcedor mal-educado
- > Juiz

"Teatro de objetos"

Cada objeto de cada classe tem alguns atributos e entende algumas mensagens:

Classe	Atributos	Mensagens
Goleiro	Time NumeroDaCamisa	SuaVez; CobrançaAutorizada; VenceuOTime(X)
Batedor de pênalti	Time NumeroDaCamisa	SuaVez; CobrançaAutorizada; VenceuOTime(X)
TorcedorEducado	Time	Ação; VenceuOTime(X)
TorcedorMalEducado	Time	Ação; VenceuOTime(X)
Juiz		CoordenarCobrança

Cartão de Responsabilidade e Colaboração (CRC)

 Uma das primeiras técnicas para modelagem de sistemas OO

Consiste em definir, para cada classe de objetos candidata:

- Os atributos que descrevem objetos dessa classe;
- > As responsabilidades de um objeto dessa classe;
- Que classes colaboram para a classe cumprir suas responsabilidades.

CRC – um exemplo

Classe		Atributos	
PedidoDeVenda		-Data do pedido -Hora do pedido -Vendedor -Produtos -Cliente	
Responsabilidades		Colaborações	
-Calcular o valor do frete -Calcular o percentual de ICMS do destino -Fornecer informações para o cálculo da Fatura e da Nota Fiscal		-Fatura -NotaFiscal	4
O que a classe faz		lasses colaboram classe atingir seu objetivo	

Diagrama de classes

 É o principal diagrama estrutural do sistema na UML

 Exibe as classes, seus métodos e atributos, e os possíveis relacionamentos entre as classes

Classe

- É representada por um retângulo com três compartimentos
- O nome da classe normalmente é uma ou mais palavras curtas, sem espaçamento e iniciadas por letra maiúscula
- Os atributos e métodos são palavras curtas iniciadas por letra minúscula
 - Essas regras não são indispensáveis na UML mas acabam facilitando o mapeamento posterior para uma linguagem de programação como Java

Classe - exemplos

Métodos

+ calcularArea() : float

Classe - exemplos

 O padrão UML não obriga, mas permite que os atributos tenham definidos os seus tipos de dados

 Os métodos podem indicar os parâmetros esperados e seus tipos, bem como o tipo do retorno

 Esses tipos estarão normalmente associados à linguagem da implementação

Encapsulamento

- É a capacidade de um objeto ocultar do mundo exterior dados e detalhes de sua implementação que não dizem respeito ao mundo exterior
- Ajuda a separar a funcionalidade que um objeto fornece da forma como ela é implementada internamente
- É implementada através do nível de visibilidade de métodos e atributos (que podem ser públicos ou privados)
 - > Públicos: visíveis e disponíveis para quem acessa o objeto
 - > Privados: visíveis e disponíveis apenas no código interno do objeto

Encapsulamento

Relacionamentos entre classes

 Qualquer sistema orientado a objetos envolverá a existência de diversos objetos, de diversas classes, que vão trabalhar em *colaboração* para atingir um objetivo

 O diagrama de classes permite a definição de como as classes se relacionarão para executar um trabalho coordenado

Relacionamentos entre classes

Os possíveis relacionamentos entre classes são:

- Dependência
- Associação
- > Agregação e composição
- Especialização

- A associação modela qualquer relação lógica entre duas classes
 - Por exemplo, Classe "tem" Aluno, Conta bancária "tem" Correntistas, Funcionário "está subordinado a" Departamento
- Muito semelhante ao conceito de relacionamento no Diagrama Entidade-Relacionamento

 A associação é indicada por uma linha contínua conectando as classes

- Uma associação pode ter um nome, definido junto ao centro da linha
- A direção de leitura do nome dado pode ser indicada por meio de uma seta

 A cardinalidade (quantidade de objetos de cada classe que podem ou devem participar do relacionamento) pode ser também indicada

Exemplos de cardinalidade:

Cardinalidade	Significado
01	No mínimo zero e no máximo um
11	Um e somente um
0*	No mínimo zero e no máximo vários
*	
1*	No mínimo um e no máximo muitos
35	No mínimo três e no máximo cinco

Dependência

- Quando uma classe A depende dos serviços de outra classe B para fornecer alguma funcionalidade, dizemos que há uma relação de dependência entre A e B
- Essa relação é indicada por uma seta tracejada
- Situação frequente: A usa um objeto do tipo B como parâmetro de um método

Agregação

A agregação é um relacionamento entre classes do tipo "parte-todo"

Uma objeto de uma classe "maior" tem vários objetos da classe "menor"

Agregação

- A agregação é indicada por um losango branco no lado da classe cujos objetos vão possuir várias instâncias dos objetos da outra
- A notação de cardinalidade continua válida

Composição

A composição é um tipo especial de associação

Nela os objetos da classe "menor" devem pertencer exclusivamente a um único objeto da classe "maior"

A classe "maior" é responsável pela criação e destruição dos objetos da classe "menor"

Composição

 A composição é indicada por um losango preenchido

Especialização

- A especialização é uma relação entre uma classe mais genérica e uma classe mais específica
- Representa um dos conceitos fundamentais da orientação a objetos: a herança entre classes
- A classe mais geral é chamada de superclasse; a mais específica, de subclasse
- A subclasse incorpora todos os atributos e métodos da sua superclasse, e mais os atributos e métodos que ela venha a definir

Especialização - exemplo

Especialização - exemplo

- No exemplo anterior, utilizamos as seguintes premissas:
 - Toda pessoa no sistema tem nome, CPF e endereço. Logo esses atributos serão herdados pelas três subclasses de pessoa
 - Toda pessoa pode ter seu cadastro ativo ou inativo. Assim, os métodos ativar() e desativar() também serão herdados pelas três subclasses de pessoa, bem como o atributo ativo
 - O professor tem seu salário dependente do valor da hora-aula e da quantidade de horas-aula ministradas
 - O funcionário tem um salário base fixo. O cálculo mensal do salário envolve descontos de INSS, Imposto de Renda, etc...
 - O aluno pertence a um curso e está em um semestre. O valor da sua mensalidade depende da quantidade de DP's cursadas

Navegabilidade de associações

- Uma associação pode ter uma seta em uma de suas extremidades A → B
- Isso significa que a associação é navegável na direção da seta, ou seja, a partir de um objeto da classe A, pode-se obter o objeto da classe B associado.

Obrigado!

tsbarcelos@ifsp.edu.br