R을 활용한 머신러닝

Sejong Oh Bio Information Technology Lab.

1. 개요

AI, machine learning, deep learning

https://www.argility.com/argility-ecosystem-solutions/industry-4-0/machine-learning-deep-learning/

1. 개요

https://www.linkedin.com/pulse/20140916175039-113015482-how-the-buzz-words-fit-into-the-trading-world-ai-machine-learning-and-data-mining

What is machine learning?

https://www.lexalytics.com/technology/machine-learning

7 लाणलना मृजू

- - 과거의 경험 → 데이터에 반영
 - 과거 데이터로 부터 숨겨진 규칙을 찾아내어 일반화. 이를 미래의 예측에 활용.
 - o ex) 주가 예측

데이터 막이님

- 전통적 SW
 - 규칙을 인간이 알아내어 알고리즘의 형태로 SW 안에 구현함
- 머신러닝
 - 규칙을 알아내는 <mark>방법은 인간이 제시</mark>
 - 실제 규칙을 알아내는 과정은 머신(?)이 진행함.
 - 머신이 규칙을 알아내는 과정이 '학습(learning)'
 (인간 입장에서는 머신을 '훈련(training)' 시키는 과정)

- 머신러닝 분야의 예: 주가 예측
 - 전통적 방법
 - 주가 예측 공식을 인간이 개발하여 SW 로 구현
 - 머신러닝 방법
 - 1) 과거 데이터를 수집. 정리

- 2) 학습(훈련) 방법 결정 (regression, decision tree, deep neural network,..)
- 3) 학습(훈련) 진행
- 4) 예측모델 도출 (학습방법에 따라 다양한 형태)
- 5) 주가 예측에 활용

Machine ?

- SW, Program
- 학습의 주체가 사람이 아니라는 의미

• 학습 자료 ?

Data

4	Α	В	С	D	E	F
1	Country -	Salesperson 🔻	Order Date 💌	OrderID 💌	Units 💌	Order Amoun
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

https://www.myonlinetraininghub.com/excel-tabular-data-format

http://blog.ageha-inc.jp/2015/10/sns-data/

- Learning ?
 - 데이터: (*y₁x₁*), *i*=1,2,3,..,*n*
 - 반응변수(response variable)
 - 설명변수(explanatory variable) : $\mathbf{x}_i = (x_{i1}, x_{i2}..., x_{ip})^T$

predictor

○ 반응변수(Y)와 설명변수(X) 간의 관계를 찾는 것 -> 훈련(training)

X: 키,몸무게, 허리둘레,..

Y: 고혈압여부

- Learning ?
 - 과거의 주식 변동 데이터를 학습하여 일주일 후의 주가를 예측
 - 건강검진 데이터를 학습하여 간암 발생률 추이를 예측
 - 과거의 대출 및 회수 데이터를 학습하여 대출 신청자가 대출금을 갚을지, 못갚을지를 예측
 - 키, 몸무게 등 정보로 부터 고혈압 여부를 예측
 - 과거 월드컵 경기 데이터를 학습하여 올해의 우승팀을 예측
 - 특정 기업의 10년후 생존 가능성 예측
 - 다양한 사진 정보를 학습하여 특정 사진속에서 사람이 몇 명 있는지 검사
 - 필기체 글씨 판독
 - 이미지 안에서 사람의 성별 구분
 - 음성 인식 (Seri, 빅스비, google)
 - 번역

- Learning 방법
 - 다양한 학습 알고리즘들이 존재함
 - KNN, SVM, regression, random forest, deep neural network, ...

전통적 문제해결

인간 분석자가 데이터를 연구하여 어떤 원리나 이론을 도출 Machine learning

데이터와 학습 방법을 제시하고 프로그램 스스로 원리나 이론을 도출하도록 함

- Learning 의 결과는
 - (learning) model
 - 어떤 방법으로 학습을 시켰는가에 따라 model 의 형태는 다양함

- 정리: Machine learning 은
 - 과거의 축적된 데이터를 학습하여 미래를 예측하는 기술
 - 주가 예측, 질병진단, 스팸 필터링, 이미지 분류, 번역, ...
 - 얼마나 정확한 모델을 만드느냐가 관건
 - 학습 데이터가 많을 수록 유리

- 정리: Machine learning 의 목표
 - 주어진 자료를 가장 잘 설명하는 모형을 찾는 것이 최종 목표가 아님
 - 새로운 설명변수의 값이 주어졌 때, 정확한 예측값을 주는 모형을 찾 는 것이 목적 (과거 현상을 잘 설명하기 보다는 미래의 자료를 잘 예 <u>측할 수 있어야 함</u>)

3. Machine learning areas

- Machine learning 분류
 - 지도학습 (supervised learning)

회귀(regression)

분류(classification) 등

설명변수(X), 반응변수(Y) 존재

Y 가(수치형)(주가, 기온,..)

Y 가(범주형)정상인/환자, 남/녀, ..)

- 비지도학습(unsupervised learning)
 - 군집화(clustering)

o 강화학습(Reinforcement learning) 역가 어머니 게이

설명변수(X)만 존재

大地明 计如外对对

	head(iris)	Senal Width	Petal.Length	Detal Width	Snecies
	Jepan Length	Scpar.wracii	i ctai. Length		
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

^{*} Deep learning 은 지도학습 방법에 해당

3. Machine learning areas

classification

질병진단 문자인식 이미지분류

clustering

고객 세분화 비정상거래 탐지

3. Machine learning areas

regression

주가예측 오존농도에 따른 기온예측

용어정리

And 1514 (feature)

					7	一处组织
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	\ 07.5.
1	5.1	3.5	1.4	0.2	setosa	(lakel)
2	4.9	3.0	1.4	0.2	setosa	(lorbot >
3	4.7	3.2	1.3	0.2	setosa	
4	4.6	3.1	1.5	0.2	setosa	
5	5.0	3.6	1.4	0.2	setosa	
6	5.4	3.9	1.7	0.4	setosa/	
1						

- 특징(feature) / 레이블(label)
- 관측값(observation)
- 변수(variable)
- 학습알고리즘(learning algorithm)
- 모형, 모델(model)
- 회귀/분류/군집

용어정리

혼동행렬(confusion matrix)

