

ЭТИКЕТКА

СЛКН.431233.011 ЭТ Микросхема интегральная 564 ИР9В Функциональное назначение –

4-х разрядный последовательно-параллельный регистр

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	
1	Параллельный выход Q1	9	Параллельный вход D1	
2	Вход В	10	Параллельный вход D2	
3	Вход К	11	Параллельный вход D4	
4	Вход Ү	12	Параллельный вход D8	
5	Вход Р	13	Параллельный выход Q4	
6	Вход С	14	Параллельный выход Q3	
7	Вход А	15	Параллельный выход Q2	
8	Общий	16	Питание	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при t = (25 ± 10) °C) Таблица 1

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, 10 B	U_{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC} = 5~{\rm B}$ $U_{\rm CC} = 10~{\rm B}$	U _{ОН}	4,99 9,99	-	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IL}$ = 1,5 B, $U_{\rm IH}$ = 3,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IL}$ = 3,0 B, $U_{\rm IH}$ = 7,0 B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U_{OHmin}	4,2 9,0	- -	
5. Входной ток низкого уровня, мкА, при: $U_{\rm CC} = 15~{\rm B}$	$I_{\rm IL}$	-	/-0,1/	

Продолжение таблицы 1			
1	2	3	4
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_{O} = 0,5 \; B \\ U_{CC} = 10 \; B, \; U_{O} = 0,5 \; B$	I_{OL}	0,5 1,0	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_{O} = 4,5 \; B$ $U_{CC} = 10 \; B, \; U_{O} = 9,5 \; B$	I_{OH}	/-0,5/ /-1,0/	- -
9. Ток потребления, мкА, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I _{CC}	-	5,0 10,0 20,0
10. Ток потребления в динамическом режиме, мА, при: $U_{CC}=10~B,~C_L=50~\pi\Phi$	I _{occ}	-	0,55
11. Время задержки распространения при включении, нс, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PHL}	-	500 250
12. Время задержки распространения при выключении, нс, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PLH}	-	500 235
13. Входная емкость, п Φ , при: U_{CC} = 10 В	C _I	-	7,5

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото

серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1\,$ Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ не менее $120000\,$ ч.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИР9В соответствуют техническим условиям 6К0.347.064 ТУ 1/02 и признаны годными для эксплуатации.

Приняты по		от			_
	(извещение, акт и др.)		(да	та)	
Место для шт	гампа ОТК			_	Место для штампа ВП
Место для шт	тампа «Перепроверка	произ	ведена _		(70mg)
Приняты по	(извещение, акт и др.)	от	(да	ra)	(дата) –
Место для шт	гампа ОТК			,	Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.