Result Time Cycles Regs	Apply Rules Occupancy Calculator GPU SM Frequency 0 - NVIDIA GeForce RTX 3070 1.50 cycle/nsecond	CC Process 8.6. [13932] MandelbrotSet eye	Save as PDF ① ② ② ②
Command line profiler metrics			Ω
Intex_t_requests_pipe_lsu_mem_global_op_ld.sum [request] ▶ GPU Speed Of Light Throughput High level everyions of the throughput for compute and memory resources of the CRIL For each unit the			All Q
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the identify the highest contributor. High-level overview of the utilization for compute and memory resource. Compute (SM) Throughput [%] Memory Throughput [%]	es of the GPU presented as a roofline chart. 87.78	Duration (msecond) Elapsed Cycles (cycle)	110.25
L1/TEX Cache Throughput [%] L2 Cache Throughput [%] DRAM Throughput [%]	0.81 0.67	SM Active Cycles [cycle] SM Frequency [cycle/nsecond] DRAM Frequency [cycle/nsecond]	165,260,508.28 1.50 6.79
High Throughput The kernel is utilizing greater than 80.0% of the available compute or management in the second seco	emory performance of the device. To further improv	e performance, work will likely need to be shifted from the mo	st utilized to another unit. Start by analyzing workloads in the <u>Compute Workload</u>
↑ FP64/32 Utilization The ratio of peak float (fp32) to double (fp64) performance on this double consider using 32-bit precision floating point operations to improve		s device's fp32 peak performance and 18% of its fp64 peak pe or more details on roofline analysis.	erformance. If <u>Compute Workload Analysis</u> determines that this kernel is fp64 bound,
↑ FP64/32 Utilization The achieved fp64 performance is 70% lower than the fp64 pipeline of Compute Workload Analysis	utilization. Check the <u>Instruction Statistics</u> section	to see if using fused instructions can benefit this kernel.	Ω
Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achie Executed Ipc Elapsed [inst/cycle]	0.47	SM Busy [%]	might limit the overall performance. 87.81
Executed Ipc Active [inst/cycle] Issued Ipc Active [inst/cycle] A Very High Utilization FP64 is the highest-utilized pipeline (87.8%). It executes 64-bit float	0.47	d likely a performance bottleneck. See the (1) Kernel Profiling	Guide or hover over the pipeline name to understand the workloads handled by
	executed instructions in this kernel. Check the <u>War</u>		
Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the or maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory Memory Throughput [Gbyte/second]	y units. Detailed tables with data for each memory (2.11	unit. Mem Busy [%]	0.54
L1/TEX Hit Rate [%] L2 Hit Rate [%] L2 Compression Success Rate [%]	89.61	Max Bandwidth [%] Mem Pipes Busy [%] L2 Compression Ratio	0.67 12.10 0
↑ L1TEX Local Load Access Pattern The memory access pattern for local loads in L1TEX request, or 4.0*32 = 127.3 bytes of cache data trans the Source Counters section for uncoalesced local	fers per request. The optimal thread address patterr		s pattern, possibly caused by the stride between threads, results in 4.0 sectors per cache data transfers per request, to maximize L1TEX cache performance. Check
The memory access pattern for global stores in L1 A L1TEX Global Store Access Pattern per request, or 4.0*32 = 127.3 bytes of cache data Check the Source Counters section for uncoalesce	transfers per request. The optimal thread address p		dress pattern, possibly caused by the stride between threads, results in 4.0 sectors es of cache data transfers per request, to maximize L1TEX cache performance.
	ansfers per request. The optimal thread address pa		ss pattern, possibly caused by the stride between threads, results in 4.0 sectors of cache data transfers per request, to maximize L1TEX cache performance.
	optimal. The granularity of an L1TEX request to L2 is	s a 128 byte cache line. That is 4 consecutive 32-byte sectors mize how many cache lines need to be accessed per memory	per L2 request. However, this kernel only accesses an average of 3.2 sectors out request.
Scheduler Statistics Summary of the activity of the schedulers issuing instructions. Each scheduler maintains a pool of wa	rps that it can issue instructions for. The upper bou	nd of warps in the pool (Theoretical Warps) is limited by the la	aunch configuration. On every cycle each scheduler checks the state of the allocated warps
in the pool (Active Warps). Active warps that are not stalled (Eligible Warps) are ready to issue their ne no instruction is issued. Having many skipped issue slots indicates poor latency hiding. Active Warps Per Scheduler [warp]	xt instruction. From the set of eligible warps the sch 10.51	eduler selects a single warp from which to issue one or more No Eligible [%]	instructions (Issued Warp). On cycles with no eligible warps, the issue slot is skipped and 88.19
Eligible Warps Per Scheduler [warp] Issued Warp Per Scheduler Every scheduler is capable of issuing one instruction per cycle, but to	0.12	One or More Eligible [%] tion every 8.5 cycles. This might leave hardware resources un	derutilized and may lead to less optimal performance. Out of the maximum of 12 warps
	s per scheduler, but only an average of 0.18 warps v	vere eligible per cycle. Eligible warps are the subset of active v	varps that are ready to issue their next instruction. Every cycle with no eligible warp
➤ Warp State Statistics Analysis of the states in which all warps spent cycles during the kernel execution. The warp states descrequired to hide this latency. For each warp state, the chart shows the average number of cycles spent			
executing a kernel with mixed library and user code, these metrics show the combined values. Warp Cycles Per Issued Instruction [cycle] Warp Cycles Per Executed Instruction [cycle]	89.03	Avg. Active Threads Per Warp Avg. Not Predicated Off Threads Per Warp	30.57 29.55
	y operations to shared memory, but other contribut	ors include frequent execution of special math instructions (e	otal average of 89.0 cycles between issuing two instructions. The primary reason .g. MUFU) or dynamic branching (e.g. BRX, JMX). Consult the Memory Workload g low-latency registers instead of direct memory accesses.
	for the L1TEX instruction queue to be not full. This re	epresents about 39.7% of the total average of 89.0 cycles betw	ween issuing two instructions. This stall reason is high in cases of utilization of
(i) Warp Stall Check the <u>▶ Source Counters</u> section for the top stall locations in your source be	ased on sampling data. The <u>@ Kernel Profiling Guid</u>	e provides more details on each stall reason.	
Instruction Statistics Statistics of the executed low-level assembly instructions (SASS). The instruction mix provides insight hiding latencies and enables parallel execution. Note that 'Instructions/Opcode' and 'Executed Instruct	ions' are measured differently and can diverge if cyc	cles are spent in system calls.	
Executed Instructions [inst] Issued Instructions [inst] This kernel executes 0 fused and 306265766 non-fused FP32 instructions	3,589,939,286	Avg. Executed Instructions Per Scheduler [inst] Avg. Issued Instructions Per Scheduler [inst] as to their @ fused_bigher-throughout equivalent, the achieve	19,510,451.72 19,510,539.60 d FP32 performance could be increased by up to 50% (relative to its current
performance). Check the Source page to identify where this kernel of the Page 10 identified in the Page	executes FP32 instructions. uctions. By converting pairs of non-fused instruction		d FP64 performance could be increased by up to 50% (relative to its current
NVLink Topology	executes FP64 instructions.		Ω
NVLink Topology diagram shows logical NVLink connections with transmit/receive throughput. NVLink Tables Detailed tables with properties for each NVLink.			Ω
Launch Statistics Summary of the configuration used to launch the kernel. The launch configuration defines the size of the size of the configuration defines the size of	the kernel grid, the division of the grid into blocks, ar	nd the GPU resources needed to execute the kernel. Choosing	an efficient launch configuration maximizes device utilization.
Grid Size Block Size Threads [thread]	256	Registers Per Thread [register/thread] Static Shared Memory Per Block [byte/block] Dynamic Shared Memory Per Block [byte/block]	29 0 0
Waves Per SM Function Cache Configuration	534.26	Driver Shared Memory Per Block [Kbyte/block] Shared Memory Configuration Size [Kbyte]	1.02 8.19
 Occupancy Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of phowever, low occupancy always reduces the ability to hide latencies, resulting in overall performance described. 			
Theoretical Occupancy [%] Theoretical Active Warps per SM [warp] Achieved Occupancy [%]	48 87.13	Block Limit Registers [block] Block Limit Shared Mem [block] Block Limit Warps [block]	8 8 6
Achieved Active Warps Per SM [warp] Occupancy Limiters This kernel's theoretical occupancy is not impacted by any block limited execution. Load imbalances can occur between warps within a block	t. The difference between calculated theoretical (10		result of warp scheduling overheads or workload imbalances during the kernel g occupancy.
➤ Source Counters Source metrics, including branch efficiency and sampled warp stall reasons. Warp Stall Sampling metrics.	ics are periodically sampled over the kernel runtime	. They indicate when warps were stalled and couldn't be sche	duled. See the documentation for a description of all stall reasons. Only focus on stalls if
the schedulers fail to issue every cycle. Branch Instructions [inst] Branch Instructions Ratio [%]		Branch Efficiency [%] Avg. Divergent Branches	99.61 7,761.27
⚠ Uncoalesced Global Accesses This kernel has uncoalesced global accesses resulting in had additional information on reducing uncoalesced dev	ice memory accesses.		cessive table for the primary source locations. The @ CUDA Programming Guide
Location kernel.cu:95 (0x700bbc6f0 in kernel) ₹	L2 Theoretical Secto	Value 9,632	Value (%)
kernel.cu:105 (0x700bbcb90 in kernel) ₹		7,731	45