Esercitazione di Laboratorio:

Misure su amplificatori

Coa Giulio Licastro Dario Montano Alessandra 5 gennaio 2020

1 Scopo dell'esperienza

Gli scopi di questa esercitazione sono:

- Analizzare il comportamento e misurare i parametri di moduli amplificatori (invertenti e non).
- Verificare alcune deviazioni rispetto al comportamento previsto con i modelli di prima approssimazione.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Multimetro	Agilent 34401A	
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{{\rm s}},$
		$R_{\rm i} = 1 \text{M}\mathring{\Omega},$
		$C_{\rm i}$ = 13 pF,
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 \mathrm{MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	3 canali
Sonda	Rigol PVP215	$B = 35 \mathrm{MHz},$
		$V_{\text{nominale}} = 300 \text{V},$
		$L_{\rm cavo} = 1.2 \mathrm{m},$
		$R_{\rm s} = 1 {\rm M}\Omega,$
		Intervallo di compensazione: $10 \div 25 \mathrm{pF}$
Scheda premontata	A2	
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Amplificatore

Un amplificatore è un doppio bipolo unidirezionale caratterizzato dalla seguente relazione

$$y(t) = A \cdot x(t)$$

Dove A è detto guadagno dell'amplifiatore.

In base al tipo di segnale in ingresso e in uscita, possiamo distinguere quattro tipi di amplifiatori:

- Amplificatore di Tensione.
- Amplificatore di Transconduttanza.
- Amplificatore di Transresistenza.
- Amplificatore di Corrente.

3.2.1 Amplificatore operazionale

L'amplificatore operazionale è un amplificatore differenziale, ovvero amplifica la differenza delle tensioni ai suoi capi, che presenta un'amplificazione $A_{\rm d}$ idealmente infinita.

$$A_{\rm d} = \frac{v_{\rm out}}{v_{\rm d}} =$$
$$= \frac{v_{\rm out}}{v^+ - v^-}$$

Figura 2: Amplificatore operazionale.

3.2.2 Amplificatore invertente

L'amplificatore invertente è un derivato dell'amplificatore di transresistenza che fornisce, in uscita, un segnale proporzionale al segnale in ingresso ma che presenta fase invertita rispetto ad esso;

esso caratterizzato dalle seguenti relazioni

$$\begin{aligned} v_{\text{out}} &= A_{\text{v}} \cdot v_{\text{in}} = \\ &= -\frac{R_2}{R_1} \cdot v_{\text{in}} \\ R_{\text{in}} &= R_1 \\ R_{\text{out}} &= 0 \end{aligned}$$

Figura 3: Amplificatore invertente.

 $\mathbf{N.B.}\ R_{\mathrm{in}}$ non è necessariamente elevata.

4 Esperienza in laboratorio

Abbiamo realizzato il circuito richiesto, collegando:

- Il generatore di segnali al connettore coassiale J1.
- L'alimentatore duale viene connesso, in modalità tracking, al morsetto J8.
- L'oscilloscopio, tramite due cavi coassiali BNC-coccodrillo, all'ingresso e all'uscita del circuito, rispettivamente gli ancoraggi J4 e J5 (massa) e J6 e J7 (massa).

E portando gli switch S1 ed S2, che determinano il tipo d'amplificatore da usare, sull'1, ovvero selezionando l'amplificatore non-invertente.

4.1 Parametri di un amplificatore

4.1.1 Misura del guadagno

Abbiamo disposto la scheda premontata in modo da applicare la tensione del generatore direttamente all'ingresso dell'amplificatore non-invertente, seguendo la seguente tabella

Interruttore	Posizione	Note
S1	2	
S2	2	
S3	2	chiuso
S4	2	chiuso
S5	2	chiuso
S6	1	aperto
S7	1	aperto
S8	1	aperto
S9	1	aperto

Impostando il generatore di segnali come richiesto, abbiamo misurato, tramite cursori, l'ampiezza d'ingresso e d'uscita al fine di calcolare il guadagno dell'amplificatore.

4.1.2 Misura della resistenza equivalente in ingresso

Al fine di misurare la resistenza in ingresso all'amplificatore, ci avvaliamo di una resistenza esterna, di valore noto, mettendola in serie al generatore; in questo modo si va a creare un partitore di tensione che sfrutteremo per determinare R_i .

Nel concreto, ciò avviene commutando la posizione dello switch S5, che determina la presenza della resistenza R_9 nel circuito.

Abbiamo effettuato le misurazioni sulla tensione di uscita, poichè ciò permette di evidenziare maggiormente quanto la resistenza influenzi il segnale.

4.1.3 Misura della resistenza equivalente di uscita

Al fine di misurare la resistenza di uscita all'amplificatore, ci avvaliamo di una resistenza esterna, di valore noto, mettendola in serie all'uscita; in questo modo si va a creare un partitore di tensione che sfrutteremo per determinare $R_{\rm u}$.

Nel concreto, ciò viene ottenuto commutando la posizione dello switch S6, che determina la presenza della resistenza R_{10} nel circuito.

Abbiamo effettuato le misurazioni sulla tensione di uscita, poichè ciò permette di evidenziare maggiormente quanto la resistenza influenzi il segnale.

N.B. Ovviamente, prima di procedere con questa parte dell'esercitazione, abbiamo ripristinato lo stato iniziale dell'amplificatore, ovvero abbiamo cortocircuitato la resistenza R_9 .

4.2 Risposta in frequenza di un amplificatore con celle RC esterne

Abbiamo disposto la scheda premontata come richiesto, seguendo la seguente tabella

Interruttore	Posizione	Note
S1	2	
S2	2	
S3	2	C_{10} inserito
S4	1	C_5 non cortocircuitato
S5	2	chiuso
S6	1	aperto
S7	1	aperto
S8	2	C_6 inscrito
S9	1	C_9 non inserito

Successivamente, abbiamo eseguito le misure di guadagno per frequenze da 300 Hz a 1 MHz, con due misure per decade, usando, come consigliatori, un segnale con ampiezza $V_{\rm pp}$ pari a 1 V per frequenze fino a 30 kHz ed un segnale con ampiezza $V_{\rm pp}$ pari a 200 mV per frequenze a partire da 100 kHz.

4.3 Amplificatore invertente

Abbiamo disposto la scheda premontata di modo da utizzare l'amplificatore invertente, ovvero abbiamo commutato gli switch S1 ed S2, e, successivamente, abbiamo ripetuto l'esperienza effettuata precedentemente e verificato l'inversione di fase tra il segnale e la tensione in uscita.

5 Risultati

5.1 Parametri di un amplificatore

5.1.1 Misura del guadagno

$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$	$A_{\rm v}$ [dB]
1.12	8.72	7.78	17.82

Come si può vedere, il risultato ottenuto rientra nel range fornito dal costruttore (9.33 ± 0.93) .

Figura 4: Misura del guadagno dell'amplificatore non-invertente.

5.1.2 Misura della resistenza equivalente in ingresso

	$V_{\rm u}$ [V]
R_9 inserita	4.64 ± 0.87
R_9 cortocircuitata	8.72 ± 0.88

(a) Misura della resistenza equivalente (b) Misura della resistenza equivalente d'ingresso con R9 cortocircuitata. d'ingresso con R9 inserita.

Figura 5: Si può notare, sia dalle immagini sia dalle misurazioni, come si riduce l'ampiezza di $V_{\rm u}$ a causa dell'aggiunta della resistenza R_9 in serie all'ingresso.

Sfruttando il partitore di tensione formatosi all'ingresso dell'amplifiatore quando la resistenza R_9 è inserita, possiamo scrivere

$$\begin{split} w &= \frac{v_{\text{out}, R_9}}{v_{\text{out}}} = \\ &= 532m \\ w &= \frac{v_{\text{out}, R_9}}{v_{\text{out}}} = \\ &= \frac{A_{\text{v}} \cdot V_{\text{i}, R_9}}{A_{\text{v}} \cdot V_{\text{i}}} = \\ &= \frac{V_{\text{i}, R_9}}{V_{\text{i}}} = \\ &= \frac{v_{\text{s}} \cdot \frac{R_{\text{i}}}{R_9 + R_{\text{i}}}}{v_{\text{s}}} = \\ &= \frac{R_{\text{i}}}{R_9 + R_{\text{i}}} \end{split}$$

Da cui

$$R_{\rm i} = w \cdot R_9 \cdot \frac{1}{1 - w} =$$

$$= 532m \cdot 10k \cdot \frac{1}{1 - 532m} =$$

$$= 11.4 \pm 3.88 \,\mathrm{k}\Omega$$

Il valore ottenuto è compatibile col valore dato dal costruttore (10 \pm 0.5 k Ω), in quanto le due fasce d'incertezza si sovrappongono.

5.1.3 Misura della resistenza equivalente di uscita

	$V_{\rm u}$ [V]
R_{10} inserita	4.40
R_{10} cortocircuitata	8.72

(a) Misura della resistenza equivalente (b) Misura della resistenza equivalente d'uscita con R10 cortocircuitata. d'uscita con R10 inserita.

Figura 6: Si può notare, sia dalle immagini sia dalle misurazioni, come si riduce l'ampiezza di $V_{\rm u}$ a causa dell'aggiunta della resistenza R_{10} in serie all'uscita.

Sfruttando il partitore di tensione formatosi all'uscita dell'amplifiatore quando la resistenza R_{10} è inserita, possiamo scrivere

$$\begin{split} w &= \frac{v_{\text{out}, R_{10}}}{v_{\text{out}}} = \\ &= 505m \\ w &= \frac{v_{\text{out}, R_{10}}}{v_{\text{out}}} = \\ &= \frac{A_{\text{v}} \cdot V_{\text{i}, R_{10}}}{A_{\text{v}} \cdot V_{\text{i}}} = \\ &= \frac{V_{\text{i}, R_{10}}}{V_{\text{i}}} = \\ &= \frac{v_{\text{s}} \cdot \frac{R_{\text{u}}}{R_{10} + R_{\text{u}}}}{v_{\text{s}}} = \\ &= \frac{R_{\text{u}}}{R_{10} + R_{\text{u}}} \end{split}$$

Da cui

$$R_{\rm u} = w \cdot R_{10} \cdot \frac{1}{1 - w} =$$

$$= 505m \cdot 1k \cdot \frac{1}{1 - 505m} =$$

$$= 1.02 \,\mathrm{k}\Omega$$

Il valore ottenuto rientra nel range dato dal costruttore $(1 \pm 0.05 \,\mathrm{k}\Omega)$.

5.2 Risposta in frequenza di un amplificatore con celle RC esterne

Frequenza	Pulsazione	$A_{ m v}$ calcolato [dB]	$A_{ m v}$ misurato [dB]
$300\mathrm{Hz}$	$1.88 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	0.28	13.1
1 kHz	$6.28 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	0.93	14.1
$3\mathrm{kHz}$	$18.8 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	2.68	17.1
$10\mathrm{kHz}$	$62.8 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	6.57	16.5
$30\mathrm{kHz}$	$188 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	8.48	11.7
$100\mathrm{kHz}$	$628 \mathrm{k} \frac{\mathrm{rad}}{\mathrm{s}}$	6.56	3.29
$300\mathrm{kHz}$	$1.88\mathrm{M}\frac{\mathrm{rad}}{\mathrm{s}}$	2.95	-8.89
1 MHz	$6.28\mathrm{M}\frac{\mathrm{rad}}{\mathrm{s}}$	0.93	-23.4

5.3 Amplificatore invertente

5.3.1 Misura del guadagno

$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$	$A_{\rm v}$ [dB]
1.12	10.3	9.20	19.27

Come si può vedere, il risultato ottenuto rientra nel range fornito dal costruttore (9.33 \pm 0.93). Alla frequenza $f=1\,\mathrm{kHz}$, il guadagno dell'amplificatore invertente è pari a

$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$	$A_{\rm v}$ [dB]
1.08	10.3	9.54	19.59

Figura 7: Si può notare come l'amplificatore invertente inverta la fase del segnale in ingresso.

5.3.2 Misura della resistenza equivalente in ingresso

	$V_{\rm u}$ [V]
R_9 inscrita	6.24
R_9 cortocircuitata	10.3

(a) Misura della resistenza equivalente (b) Misura della resistenza equivalente d'ingresso con R9 cortocircuitata. d'ingresso con R9 inserita.

Figura 8: Si può notare, sia dalle immagini sia dalle misurazioni, come si riduce l'ampiezza di $V_{\rm u}$ a causa dell'aggiunta della resistenza R_9 in serie all'ingresso.

Sfruttando il partitore di tensione formatosi all'ingresso dell'amplifiatore quando la resistenza R_9 è inserita, possiamo scrivere

$$\begin{split} w &= \frac{v_{\text{out}, R_9}}{v_{\text{out}}} = \\ &= 606m \\ w &= \frac{v_{\text{out}, R_9}}{v_{\text{out}}} = \\ &= \frac{A_{\text{v}} \cdot V_{\text{i}, R_9}}{A_{\text{v}} \cdot V_{\text{i}}} = \\ &= \frac{V_{\text{i}, R_9}}{V_{\text{i}}} = \\ &= \frac{v_{\text{s}} \cdot \frac{R_{\text{i}}}{R_9 + R_{\text{i}}}}{v_{\text{s}}} = \\ &= \frac{R_{\text{i}}}{R_9 + R_{\text{i}}} \end{split}$$

Da cui

$$R_{i} = w \cdot R_{9} \cdot \frac{1}{1 - w} =$$

$$= 606m \cdot 10k \cdot \frac{1}{1 - 606m} =$$

$$= 15.4 \text{ k}\Omega$$

Il valore ottenuto rientra nel range dato dal costruttore (15 \pm 0.75 k Ω).

5.3.3 Misura della resistenza equivalente di uscita

	$V_{\rm u}$ [V]
R_{10} inserita	10.3
R_{10} cortocircuitata	10.3

Figura 9: Misura della resistenza equivalente d'uscita.

Dato che le due tensioni misurate sono uguali, deduciamo che il valore di $R_{\rm u}$ è trascurabile e, quindi, essa è assimilabile ad un cortocircuito.