Classification of Secondary Succession Stages Using Remotely Sensed Data in the Brazilian Amazon

Dengsheng Lu (Indiana University) Mateus Batistella (Embrapa, Brazil) Emilio Moran (Indiana University)

Study Area in Machadinho, Rondonia State

Field Data Collection

Data sets used in research

Images:

- Landsat TM (1998, 2003) and ETM+ (2001)
- Terra ASTER (2003)
- SPOT 5 HRG (2003)
- Radarsat C-band (2001)

Field data:

- Field measurement for plots in 1998
- Collection of training samples for different land cover types in 1999 and 2003
- Land use history

Criteria for separation of secondary succession stages

- Lu, D., Mausel, P., Brondízio, E., and Moran, E. 2003. Classification of Successional Forest Stages in the Brazilian Amazon Basin. Forest Ecology and Management, 181(3), 301–312.
 - Based on field measurement variables (e.g., DBH, tree height) and derived parameters (e.g., biomass)
 - Canon discriminant analysis

Four SS stages were separated

Characteristics of forest stand parameters for successional stages and mature forest

Variables	SS1	SS2	SS3	SS4	MF
RTB	0	0.15 - 0.45	0.48 - 0.89	0.91 - 0.99	0.89 - 1.00
AGB (kg/m2)	0 - 4.62	3.41 - 7.03	7.28 - 13.55	20.34 – 29.30	17.45 – 39.45
BA (m2/ha)	0 - 13.33	9.94 – 19.21	15.45 – 32.24	26.13 – 36.78	27.38 – 56.13
ASD (cm)	0 - 4.61	10.84 – 15.42	12.85 - 22.14	19.82 – 29.25	23.11 – 39.27
ASH (m)	0 - 6.03	6.40 - 11.24	8.73 - 14.45	11.51 – 20.27	15.20 – 20.09
Age (year)	1-5	3 – 15	7 – 29	15 – 25	unknown

Note: RTB – ratio of tree biomass to total aboveground biomass

AGB – aboveground biomass

BA – basal area

ASD – average stand diameter

ASH – average stand height

Land cover classification with different classifiers or different image combination

- Lu, D., Batistella, M., and Moran, E., in press. Land Cover Classification in the Brazilian Amazon with the Integration of Landsat ETM+ and RADARSAT Data. International Journal of Remote Sensing.
- Lu, D., Batistella, M., Moran, E., and de Miranda, E. E., (in press). A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing.
- Lu, D., Batistella, M., Moran, E., and Mausel, P. 2004. Application of Spectral Mixture Analysis to Amazonian Land-Use and Land-Cover Classification. International Journal of Remote Sensing, 25(23), 5345–5358.
- Lu, D., Mausel, P., Batistella, M., and Moran, E. 2004. Comparison of Land-Cover Classification Methods in the Brazilian Amazon Basin. Photogrammetric Engineering and Remote Sensing, 70(6), 723–731.

Comparison of classification accuracies among different sensor data

	Dataset	Code -	SS1		SS2		SS3	
	Dataset		PA%	UA%	PA%	UA%	PA%	UA%
Spectral signatures	SPOT HRG	HRG-ALL	62.00	63.27	47.22	38.64	66.67	30.00
	Landsat 5 TM	TM2345	58.00	60.42	36.11	35.14	66.67	23.08
		TM-ALL	68.00	51.52	31.11	23.53	33.33	20.00
	Terra ASTER	AST123	9.38	30.00	41.67	31.25	42.86	13.64
		AST1234	50.00	45.71	37.50	40.91	42.86	20.00
		AST12345	50.00	48.48	41.67	45.45	42.86	20.00
		AST-ALL	59.38	55.88	41.67	50.00	71.43	21.74
	Landsat ETM+	ETM345	52.31	59.65	26.19	45.83	53.85	17.50
		ETM-ALL	64.62	63.64	21.43	45.00	46.15	18.18

Comparison of classification accuracies among different image combinations

Combination	Dataset	Code	SS1		SS2		SS3	
Combination	Dataset	Code	PA%	UA%	PA%	UA%	PA%	UA%
	HRG MS &							
	PAN	HRG-PAN	62.00	65.96	41.67	35.71	55.56	20.83
Data fusion	TM MS &	TM-HRG-						
Data Tusion	HRG PAN	PAN	66.00	56.90	25.00	25.00	11.11	7.14
	ETM MS &							
	PAN	ETM-PAN	53.85	61.40	21.43	36.00	69.23	22.50
	HRG MS +	HRG-						
	PAN texture	PANText	54.00	62.79	50.00	45.00	77.78	43.75
	(HRG MS &							_
Combination	PAN) fusion +	HRG-PAN-						
	PAN texture	PANText	64.00	66.67	50.00	42.86	55.56	26.32
of spectral and textures	ETM + PAN	ETM-						
	texture	PANText	61.54	63.49	21.43	52.94	84.62	27.50
	(ETM & PAN)							
	fusion + PAN	ETM-PAN-						
	texture	PANText	63.08	62.12	23.81	52.63	84.62	32.35

A concept of vegetation stand structure complexity among different vegetation classes

Classification of secondary succession stages based on fraction images

- Lu, D., Moran, E., and Batistella, M. 2003.
 Linear Mixture Model Applied to Amazonian
 Vegetation Classification. Remote Sensing of Environment, 87(4), 456–469.
 - Based on ratioed images with vegetation and shade, which was developed using spectral mixture analysis of TM image

A comparison of different succession stages in spectral features and fraction images

Classification of secondary succession stages based on the estimated forest stand parameter

- Lu, D. 2005. Integration of Vegetation Inventory Data and Landsat TM Image for Vegetation Classification in the Western Brazilian Amazon. Forest Ecology and Management, 213(1-3), 369–383.
 - Based on the entropy variable describing tree height distribution

Case study 2: vegetation classification based on forest stand structure

Entropy calculation

 entropy is used to evaluate the complexity of a stand structure for each plot based on tree height probability distribution

$$ENT = -\sum_{i=j}^{h} P_i \log_2(P_i)$$

$$P_i = n_i / \sum_{i=j}^{h} n_i$$

$$adjENT = 0.1 * avgH * ENT$$

A Summary of Major Features and Thresholds Used for Vegetation Classification

Vegetation classes	Age (year)		Average tree height (m)	v	Thresholds of <i>adjENT</i>
SS1	<5	< 5	< 8	< 1.5	0 – 1.6
SS2	5 – 9	4 – 10	8 – 11	1.7 - 2.9	1.6 - 3.0
SS3	8 – 13	> 11	> 10	> 3.2	≥ 3.0
LMF		10 - 20	12 – 15	<4.0	<4.0
HMF		> 20	12 – 19	> 3.8	≥ 4.0

Relationships between TM band 5 and adjust entropy variable

Classification image based on adjust entropy variable

Comparison of Accuracy Assessment Results between *adjENT* Approach and MLC

Accuracy assessment for adjENT based approach								MLC*	
	SS1	SS2	SS3	RT	CT	UA%	PA%	UA%	PA%
SS1	17	5	0	22	19	77.27	89.47	44.74	51.52
SS2	2	11	1	14	18	78.57	61.11	61.11	56.41
SS3	0	2	7	9	8	77.78	87.50	42.11	53.33

Conclusion

- Classification of secondary succession is very difficulty directly using remotely sensed data. Much confusions are between successional stages and agroforestry, advanced succession and mature forest, initial succession and degraded pasture.
- Estimated forest stand parameter representing forest structure complexity is useful for separation of secondary succession stages

Discussion

- Smooth transition between secondary succession stages
- Similar stand structure and spectral features between secondary succession and agroforestry
- Environmental factors, such as soil condition, affect vegetation growth rates, and then vegetation stand structures