Pure Mathematics P2 Mark scheme

Question	Scheme	Marks
1(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting f(1) or f(-1)	M1
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$	A1*
	(as required) AG	cso
		(2)
(b)	Attempting $f(-2)$ or $f(2)$	M1
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 $ { $\Rightarrow -2a + b = -24$ }	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1
		(5)

(7marks)

Notes:

(a)

M1: For attempting either f(1) or f(-1).

A1: For applying f(1), setting the result equal to 7, and manipulating this correctly to give the result given on the paper as a + b = 3. Note that the answer is given in part (a).

Alternative

M1: For long division by (x-1) to give a remainder in a and b which is independent of x.

A1: Or {Remainder = } b + a + 4 = 7 leading to the correct result of a + b = 3 (answer given).

(b)

M1: Attempting either f(-2) or f(2).

A1: <u>correct underlined equation</u> in a and b; e.g. $\underline{16-8+8-2a+b=-8}$ or equivalent, e.g. -2a+b=-24.

dM1: An attempt to eliminate one variable from 2 linear simultaneous equations in *a* and *b*. Note that this mark is dependent upon the award of the first method mark.

A1: Any one of a = 9 or b = -6.

A1: Both a = 9 and b = -6 and a correct solution only.

Alternative

M1: For long division by (x + 2) to give a remainder in a and b which is independent of x.

A1: For {Remainder = } b-2(a-8)=-8 { $\Rightarrow -2a+b=-24$ }. Then dM1A1A1 are applied in the same way as before.

Question	Scheme			
2(a)	$S_{\infty} = \frac{20}{1 - \frac{7}{2}}$; = 160	Use of a correct S_{∞} formula	M1	
	$1-\frac{7}{8}$,	160	A1	
			(2)	
(b)	$S_{12} = \frac{20(1 - (\frac{7}{8})^{12})}{1 - \frac{7}{8}}$; = 127.77324 = 127.8 (1 dp)	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around $\frac{7}{8}$) A1: awrt 127.8	M1 A1	
			(2)	
(c)	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	Applies $S_N(\mathbf{GP} \mathbf{only})$ with $a = 20$, $r = \frac{7}{8}$ and "uses" 0.5 and their S_∞ at any point in their working.	M1	
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $\left(\frac{7}{8}\right)^N$	dM1	
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their S}_{\infty}}\right)$ or $N > \log_{0.875}\left(\frac{0.5}{\text{their S}_{\infty}}\right)$	M1	
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823$ $\Rightarrow N = 44$ cso	$N = 44 \text{ (Allow } N \ge 44 \text{ but no } N > 44$	A1 cso	
	An incorrect <u>inequality</u> statement at any the final mark. Some candidates do inequality is reversed in the final line of gain full marks for using =, as long as n	not realise that the direction of the f their solution. BUT it is possible to		
			(4)	
	Alternative: Trial & Improvement M	ethod in (c):		
	Attempts $160 - S_N$ or S_N with a	t least one value for $N > 40$	M1	
	Attempts $160 - S_N$ or S_N	with $N = 43$ or $N = 44$	dM1	
	For evidence of examining $160 - S_N$ or both values correct to 2 DP Eg: $160 - S_{43} = \text{awrt } 0.51 \text{ ar}$ $S_{43} = \text{awrt } 159.49 \text{ and}$	and $160 - S_{44} = \text{awrt } 0.45 \text{ or}$	M1	
	N = 44			
	Answer of $N = 44$ only with no working scores no marks			
			(4)	
		()	8 marks)	

Question	Scheme			Marks				
3(a)							_	
	x	0	0.25	0.5	0.75	1		D1 D1
	y	1	1.251	1.494	1.741	2		B1 B1
								(2)
(b)	$\frac{1}{2}$ × 0.25, {(1+2)+2(1.251+1.494+1.741)} o.e.				B1 M1 A1ft			
						= 1	4965	A1
								(4)
(c)	Gives an	y valid rea	ason inclu	ding				
	• U • Ir	se more the	ne width o rapezia e number more deci	of strips				B1
								(1)

(7 marks)

Notes:

(a)

B1: For 1.494

B1: For 1.741 (1.740 is **B0**). Wrong accuracy e.g. 1.49, 1.74 is B1B0

(b)

B1: Need $\frac{1}{2}$ of 0.25 or 0.125 o.e.

M1: Requires first bracket to contain first plus last values **and** second bracket to include no additional values from the three in the table. If the only mistake is to omit one value from second bracket this may be regarded as a slip and M mark can be allowed (An extra repeated term forfeits the M mark however) x values: M0 if values used in brackets are x values instead of y values

A1ft: Follows their answers to part (a) and is for {correct expression}

A1: Accept 1.4965, 1.497, or 1.50 only after correct work. (No follow through except one special case below following 1.740 in table).

Separate trapezia may be used: **B1** for 0.125, **M1** for $\frac{1}{2}h(a+b)$ used 3 or 4 times (and **A1**ft if it is all correct) e.g. 0.125(1+1.251) + 0.125(1.251+1.494) + 0.125(1.741+2) is **M1 A0** equivalent to missing one term in { } in main scheme.

			Scheme		Marks
A solution	A solution based around a table of results				
	2	2 2	1		
n	n^2	n^2+2			
1	1	3	Odd		
2	4	6	Even		
3	9	11	Odd		
4	16	18	Even		
5	25	27	Odd		
6	36	38	Even		
	2 .				
When <i>n</i> is	odd, <i>n</i> ² is	s odd (odd	\times odd = od	ld) so $n^2 + 2$ is also odd	M1
So for all o				ld and so cannot be divisible by 4	A1
When <i>n</i> is multiple of		is even an	d a multip	le of 4, so $n^2 + 2$ cannot be a	M1
Fully correct and exhaustive proof. Award for both of the cases above plus a final statement "So for all n , $n^2 + 2$ cannot be divisible by 4"				A1*	
				<u> </u>	(4)
Alternative - (algebraic) proof					
If <i>n</i> is even, $n = 2k$, so $\frac{n^2 + 2}{4} = \frac{(2k)^2 + 2}{4} = \frac{4k^2 + 2}{4} = k^2 + \frac{1}{2}$			M1		
If n is odd,	n = 2k + 1	, so $\frac{n^2 + 2}{4}$	$\frac{2}{4} = \frac{\left(2k+1\right)^2}{4}$	$\frac{x^2+2}{4} = \frac{4k^2+4k+3}{4} = k^2+k+\frac{3}{4}$	M1
For a partia	ıl explanat	ion stating	that		
• eith	$er of k^2 +$	$-\frac{1}{2}$ or k^2 +	$k + \frac{3}{4}$ are n	ot a whole numbers.	A 1
 either of k² + 1/2 or k² + k + 3/4 are not a whole numbers. with some valid reason stating why this means that n² +2 is not a multiple of 4. 				A1	
	multiple of 4. Full proof with no errors or omissions. This must include				
-	conjectur				
	=		ebra for bo	th even and odd numbers	A1*
• A f	-	ation statin	g why, for	all n , $n^2 + 2$ is not divisible	
					(4)
				(4 marks

Pearson Edexcel International Advanced Subsidiary/Advanced Level in Mathematics, Further Mathematics and Pure Mathematics – Sample Assessment Materials (SAMs) – Issue 3 – June 2018 © Pearson Education Limited 2018

Question		Scheme		Marks		
5(a)	(S =)a + (a + d) + + [a + (n - 1)d]	B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1			
	$[S=)[a+(n-1)d]+\ldots+a$	M1: for reversing series (dots needed)	M1			
	$2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$	dM1: for adding, must have 2 <i>S</i> and be a genuine attempt. Either line is sufficient. Dependent on 1 st M1.	dM1			
	2S = n[2a + (n-1)d]		(NB –Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)			
	$S = \frac{n}{2} \left[2a + (n-1)d \right] \cos $			A1		
				(4)		
(b)	$600 = 200 + (N-1)20 \implies N = \dots$	I	600 with a correct formula in an t to find N .	M1		
	N = 21	cso		A1		
				(2)		
(c)	Look f	or an AF	P first:			
	$S = \frac{21}{2} (2 \times 200 + 20 \times 20) \text{ or}$ $\frac{21}{2} (200 + 600)$	M1: Us their in (b) who				
	$S = \frac{20}{2}(2 \times 200 + 10 \times 20)$ or		M1A1			
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20) \text{ or}$ $\frac{20}{2} (200 + 580)$	M1: Us	WITAT			
	(= 8400 or 7800)	(b) who $= 20$.				
	Then for the constant terms:					
	600 × (52 - "N") (= 18600)		M1: $600 \times k$ where k is an integer and 3 $< k < 52$			
		through	correct un-simplified follow n expression with their <i>k</i> ent with <i>n</i> so that	A1ft		
	So total is 27000	cao	A1			
	There are no marks in (c) for just finding S ₅₂					
				(5)		
			(1)	1 marks)		

Question	S	scheme	Marks			
6(i)	$\log_2\left(\frac{2x}{5x+4}\right) = -3$ or $\log_2\left(\frac{5x+4}{2x}\right) = 3$ or $\log_2\left(\frac{5x+4}{x}\right) = 4$					
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{or} \left(\frac{5x+4}{2x}\right)$	$\left(\frac{5x+4}{x}\right) = 2^3 \qquad \mathbf{or} \left(\frac{5x+4}{x}\right) = 2^4$	M1			
	$16x = 5x + 4 \Rightarrow x = (\text{depends on M})$	s and must be this equation or equiv)	dM1			
	$x = \frac{4}{11}$ or exact recurring decimal 0	.36 after correct work	A1 cso			
	Alternative					
	$\log_2(2x) + 3 = \log_2(5x + 4)$					
	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$	earns 2 nd M1 (3 replaced by log ₂ 8)	2 nd M1			
	Then $\log_2(16x) = \log_2(5x + 4)$ earns 1 st M1 (addition law of logs)					
	Then final M1 A1 as before		dM1A1			
			(4)			
(ii)	$\log_a y + \log_a 2^3 = 5$		M1			
	$\log_a 8y = 5$	Applies product law of logarithms	dM1			
	$y = \frac{1}{8}a^5$ cso	$y = \frac{1}{8}a^5$ cso	A1			
			(3)			

(7 marks)

Notes:

(i)

M1: Applying the subtraction or addition law of logarithms correctly to make **two** log **terms into one** log term .

M1: For RHS of either 2^{-3} , 2^3 , 2^4 or $\log_2\left(\frac{1}{8}\right)$, $\log_2 8$ or $\log_2 16$ i.e. using connection between log base 2 and 2 to a power. This may follow an error. Use of 3^2 is M0

dM1: Obtains **correct** linear equation in x. usually the one in the scheme and attempts x =

A1: cso. Answer of 4/11 with **no** suspect log work preceding this.

(ii)

M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$

dM1: (Should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$

Question	Scheme	Marks
7(a)	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1
	(10, 8)	A1
		(2)
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) "100" + "64" - 139$	M1
	r = 5*	A1
		(2)
(c)	Substitute $x = 13$ into the equation of circle and solve quadratic to give $y =$	M1
	e.g. $x = 13 \implies (13 - 10)^2 + (y - 8)^2 = 25 \implies (y - 8)^2 = 16$	A1 A1
	so $y = 4$ or 12	
	N.B. This can be attempted via a 3, 4, 5 triangle so spotting this and achieving one value for y is M1 A1. Both values scores M1 A1 A1	
		(3)
(d)	$OC = \sqrt{10^2 + 8^2} = \sqrt{164}$	M1
	Length of tangent = $\sqrt{164 - 5^2} = \sqrt{139}$	M1 A1
		(3)

(10 marks)

Notes:

(a)

M1: Obtains $(x \pm 10)^2$ and $(y \pm 8)^2$ May be implied by one correct coordinate

A1: (10, 8) Answer only scores both marks.

Alternative: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$

M1: Obtains $(\pm 10, \pm 8)$

A1: Centre is (-g, -f), and so centre is (10, 8).

(b)

M1: For a correct method leading to r = ..., or $r^2 =$

Allow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to identify $r = r^2$

A1*: r = 5 This is a printed answer, so a correct method must be seen.

Alternative:

(b)

M1: Attempts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139

A1*: r = 5 following a correct method.

(c)

M1: Substitutes x = 13 into either form of the circle equation, forms and solves the quadratic equation in y

A1: Either y = 4 or 12

A1: Both y = 4 and 12

Question 7 notes continued

(d)

M1: Uses Pythagoras' Theorem to find length OC using their (10,8)

M1: Uses Pythagoras' Theorem to find *OX*. Look for $\sqrt{OC^2 - r^2}$

A1: $\sqrt{139}$ only

Question	Scheme	Marks
8(a)	Substitutes $x = 1$ in C_1 : $y = 10x - x^2 - 8 = 10 - 1 - 8 = 1$ and in C_2 : $y = x^3 = 1^3 = 1 \Rightarrow (1, 1)$ lies on both curves.	B1
		(1)
(b)	$10x - x^2 - 8 = x^3$	B1
	$x^3 + x^2 - 10x + 8 = 0$	
	$(x-1)(x^2+2x-8)=0$	M1 A1
	(x-1)(x+4)(x-2) = 0 x = 2	M1 A1
	(2, 8)	A1
		(6)
(c)	$\int \left\{ \left(10x - x^2 - 8\right) - x^3 \right\} \mathrm{d}x$	M1
	$=5x^2 - \frac{x^3}{3} - 8x - \frac{x^4}{4}$	M1 A1
	Using limits 2 and 1: $\left(20 - \frac{8}{3} - 16 - 4\right) - \left(5 - \frac{1}{3} - 8 - \frac{1}{4}\right)$	M1
	$=\frac{11}{12}$	A1
		(5)
		(2 morks)

(12 marks)

Notes:

(a)

B1: Substitutes $x = \text{nto both } y = 10x - x^2 - 8 \text{ and } y = x^3 \text{ AND achieves } y = 1 \text{ in both.}$

(b)

B1: Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$

M1: Divides by (x-1) to form a quadratic factor. Allow any suitable algebraic method including division or inspection.

A1: Correct quadratic factor $(x^2 + 2x - 8)$

M1: For factorising of their quadratic factor.

A1: Achieves x=2

A1: Coordinates of B = (2, 8)

(c)

M1: For knowing that the area of $R = \int \{(10x - x^2 - 8) - x^3\} dx$

This may also be scored for finding separate areas and subtracting.

M1: For raising the power of x seen in at least three terms.

A1: Correct integration. It may be left un-simplified. That is allow $\frac{10x^2}{2}$ for $5x^2$

Question 8 notes continued

- **M1:** For using the limits "2" and 1 in their integrated expression. If separate areas have been attempted, "2" and 1 must be used in both integrated expressions.
- A1: For $\frac{11}{12}$ or exact equivalent.

Question	So	heme	Marks	
9(i)	Way 1 Divides by $\cos 3\theta$ to give $\tan 3\theta = \sqrt{3} \text{ so} \Rightarrow (3\theta) = \frac{\pi}{3}$	Way 2 Or Squares both sides, uses $\cos^2 3\theta + \sin^2 3\theta = 1$, obtains $\cos 3\theta = \pm \frac{1}{2}$ or $\sin 3\theta = \pm \frac{\sqrt{3}}{2}$ so $(3\theta) = \frac{\pi}{3}$	M1	
	Adds π or 2π to previous value of an	gle(to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1	
	So $\theta = \frac{\pi}{9}$,	$\frac{4\pi}{9}$, $\frac{7\pi}{9}$ (all three, no extra in range)	A1	
			(3)	
(ii)(a)	$4(1 - \cos^2 x) + \cos x = 4 - k$	$Applies \sin^2 x = 1 - \cos^2 x$	M1	
	Attempts to solve $4 \cos^2 x - \cos x - k$	$x = 0$, to give $\cos x =$	dM1	
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8} \qquad \text{or} \qquad \cos x = \frac{1 \pm \sqrt{1 + 16k}}{8}$	$x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}}$	A1	
	or other correct equivalent			
			(3)	
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4}$ (see the note below if errors are made)	M1	
	Obtains two solutions from 0, 139,	221	dM1	
	(0 or 2.42 or 3.86 in radians)			
	x = 0 and 139 and 221 (allow awr	t 139 and 221) must be in degrees	A1	
			(3)	
			(O o lo)	

(9 marks)

Notes:

(i)

M1: Obtains $\frac{\pi}{3}$. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$. Need not see working here. May be implied by $\theta = \frac{\pi}{9}$ in final answer (allow $(3\theta) = 1.05$ or $\theta = 0.349$ as decimals or $(3\theta) = 60$ or $\theta = 20$ as degrees for this mark). Do not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$

M1: Adding π or 2π to a previous value however obtained. It is not dependent on the previous mark. (May be implied by final answer of $\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$). This mark may also be given for answers as decimals [4.19 or 7.33], or degrees (240 or 420).

Question 9 notes continued

A1: Need all three correct answers in terms of π and no extras in range.

NB: $\theta = 20^{\circ}$, 80° , 140° earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0

(ii)(a)

M1: Applies $\sin^2 x = 1 - \cos^2 x$ (allow even if brackets are missing e.g. $4 \times 1 - \cos^2 x$). This must be awarded in (ii) (a) for an expression with k not after k = 3 is substituted.

dM1: Uses formula or completion of square to obtain $\cos x = \exp i\sin h$ (Factorisation attempt is M0)

A1: cao - award for their final simplified expression

(ii)(b)

M1: Either attempts to substitute k = 3 into their answer to obtain two values for $\cos x$ Or restarts with k = 3 to find two values for $\cos x$ (They cannot earn marks in ii(a) for this). In both cases they need to have applied $\sin^2 x = 1 - \cos^2 x$ (brackets may be missing) and correct method for solving their quadratic (usual rules – see notes) The values for $\cos x$ may be >1 or <-1.

dM1: Obtains **two correct** values for x

A1: Obtains **all three correct values** in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.