NC State University

Department of Electrical and Computer Engineering

ECE 463/521: Spring 2012 (Rotenberg)

Project #3: Dynamic Instruction Scheduling

by

<< SALIL KANITKAR >>

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."
Student's electronic signature:Salil Kanitkar (sign by typing your name)
Course number:521

Graph1: gcc Benchmark

Values Used in the Above Plot

	N = 1	N = 2	N = 4	N = 8
S = 8	0.99	1.88	2.67	2.82
S = 16	1.00	1.99	3.4	4.54
S = 32	1.00	1.99	3.90	6.48
S = 64	1.00	1.99	3.97	7.52
S = 128	1.00	1.99	3.97	7.83
S = 256	1.00	1.99	3.97	7.83

Graph2: perl Benchmark

Values Used in the Above Plot

	N = 1	N = 2	N = 4	N = 8
S = 8	0.98	1.68	2.18	2.28
S = 16	1.00	1.89	2.91	3.37
S = 32	1.00	1.98	3.68	5.18
S = 64	1.00	1.98	3.91	6.95
S = 128	1.00	1.98	3.94	7.61
S = 256	1.00	1.98	3.94	7.75

Discussion on Trends in Graphs

Benchmark A: GCC

- (1) The **ideal value of IPC** (**instructions per Cycle**) **is** N i.e. the Superscalar factor of the microarchitecture configuration. So in the most ideal case, in every cycle, N instructions would complete. This also puts **an upper limit on the value of IPC.**
- (2) As the Scheduling Queue Size increases i.e. as S increases, the IPC increases for given N. It goes on increasing till it reaches a saturated value. The saturated value is less than N but very close to N.
- (3) How much close to N the saturated value can be is dependent on the "N".
- (4) As N increases, the saturated value of IPC increases in absolute terms, however, the difference between saturated value and N increases, for larger N. For example, for basic case i.e. N, it can be seen that the saturated value is obtained at S=16 only (and of course all the subsequent values of S). However for N=2, the saturated value is 1.99, for N=4, it is 3.97 and for N=8, it is 7.83. The difference between saturated value and N is Maximum for larger N.
- (5) The saturated value is determined by the level of dependence between the instructions of the benchmark. Increasing the scheduling queue size for a constant N means that we can look farther into the instruction stream to extract parallelism.
- (6) **For given S, increasing N, increases the IPC value.** This reflects the fact that increasing the superscalar factor provides more fully pipelined functional units providing more opportunity to exploit parallelism.

Benchmark B: PERL

- (1) The **ideal value of IPC** (**instructions per Cycle**) **is N** i.e. the Superscalar factor of the microarchitecture configuration. So in the most ideal case, in every cycle, N instructions would complete. This also puts **an upper limit on the value of IPC.**
- (2) As the Scheduling Queue Size increases i.e. as S increases, the IPC increases for given N. It goes on increasing till it reaches a saturated value. The saturated value is less than N but very close to N.
- (3) How much close to N the saturated value can be is dependent on the "N".
- (4) As N increases, the saturated value of IPC increases in absolute terms, however, the difference between saturated value and N increases, for larger N. For example, for basic case i.e. N, it can be seen that the saturated value is obtained at S=16 only (and of course all the subsequent values of S). However for N=2, the saturated value is 1.98, for N=4, it is 3.94 and for N=8, it is 7.75. The difference between saturated value and N is Maximum for larger N.
- (5) The saturated value is determined by the level of dependence between the instructions of the benchmark. Increasing the scheduling queue size for a constant N means that we can look farther into the instruction stream to extract parallelism.

(6) **For given S, increasing N, increases the IPC value.** This reflects the fact that increasing the superscalar factor provides more fully pipelined functional units – providing more opportunity to exploit parallelism.

Comparison between Benchmarks:

- (1) For the same values of N & S, the IPC value of GCC is greater than PERL benchmark's IPC value for that configuration.
- (2) The reason for GCC having greater IPC value than PERL for the same configuration is that GCC must be having lesser dependency among instructions as compared to PERL instruction stream.
- (3) The saturated value for a given S & N configuration is more closer towards N for GCC than for same S, N combination of PERL.

Report: Project #3. Created 5/5/12.