Course Notes

CSCA67 - Discrete Mathematics

Instructors:

Dr. Anna Bretscher

Email: bretscher@utsc.utoronto.ca

Office: IC493

Office Hours: Monday 12:10 - 1:30

Wednesday 1:10 - 2:00

Friday 1:10 - 2:00 (will change after week 6)

Dr. Richard Pancer

pancer@utsc.utoronto.ca

IC490

Monday 11:10 - 12:30 Friday 1:30 - 3:00

1 Propositions, Implications

Definitions:

A **proposition** is a statement that evaluates to True or False. In computer science, its often referred to as a **Boolean expression**.

A **compound roposition** is a proposition statement that involves multiple propositions joined by connectives. It takes multiple truth values as input and returns a single truth value as output.

A connective corresponds to English conjunctions such as "and", "or", "not" etc.

Basic connectives and truth tables:

\wedge "AND" \wedge "OR" \wedge T T T T \wedge T	Symbol	Meaning	D		$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \bowtie O$
\vee "OR" $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	\wedge	"AND"	T	Q				1 7 W
	\vee	"OR"	T	E I	F	1 T	E I	T
\rightarrow "IF THEN" 1 1 1 1 1	\rightarrow	"IFTHEN"	1	1	1	1	T.	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		"IF AND ONLY IF"	F.	T	F'	T	T	F
\neg \mid "NOT" \mid F \mid F \mid F \mid T \mid T			F	F	F	F	T	T

Implication:

Different ways of writing $P \rightarrow Q$:

- 1. If P then Q
- 2. If P, Q
- 3. Q, if P
- 4. P only if Q
- 5. P is sufficient for Q
- 6. Q is necessary for P
- 7. If not Q, then not P
- 8. Not P or Q

Logical Equivalences:

_		
Commutative	$p \wedge q \iff q \wedge p$	$p \lor q \iff q \lor p$
Associative	$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	$(p \lor q) \lor r \iff p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
Identity	$p \wedge T \iff p$	$p \lor F \iff p$
Negation	$p \vee \neg p \iff T$	$p \land \neg p \iff F$
Double Negative	$\neg(\neg p) \iff p$	
Idempotent	$p \wedge p \iff p$	$p \lor p \iff p$
Universal Bound	$p \lor T \iff T$	$p \wedge F \iff F$
De Morgan's	$\neg (p \land q) \iff (\neg p) \lor (\neg q)$	$\neg (p \lor q) \iff (\neg p) \land (\neg q)$
Absorption	$p \lor (p \land q) \iff p$	$p \land (p \lor q) \iff p$
Conditional or	$(p \to q) \iff (\neg p \lor q)$	$\neg (p \to q) \iff (p \land \neg q)$
(\rightarrow) Law		
Biconditional	$(p \leftrightarrow q) \iff (p \to q) \land (q \to p)$	

Order of Operations:

- 1. $NOT(\neg)$
- 2. AND(\wedge)
- 3. $OR(\vee)$
- 4. Quantifiers (\forall/\exists)
- 5. $(\rightarrow / \leftrightarrow)$

2 Predicates and Quantifiers

Forall:	Ā	
There exists:		H
Negations:	¬ ,,	
$\neg \forall = \exists$	$\neg \exists = \forall$	

Prove statement in the form of $\exists x \in S, \ni : P(x)$

We simply need to find **one** value of x in the set S, that makes P(x) true.

One value is enough.

Example:

There exists an integer n, such that n^2 is even.

 $\exists n \in \mathbb{Z}, \ni: n^2 \in 2\mathbb{Z}$

Let n=2, then $(2)^2=4$ which is an even number

Prove statemnet in the form of $\forall x \in S, \ni: P(x)$

This means we must use techniques such as algebraic manipulation to show that:

P(x) holds for every arbitrary $x \in S$

Example:

For all integers n, if n is odd, then n^2 is odd.

 $\forall n \in \mathbb{Z}, n \in 2\mathbb{Z} \to n^2 \in 2\mathbb{Z}$

Let $n = 2k, k \in \mathbb{Z}$

then $n^2 = (2k)^2 = 4k^2$ which is an even number.

Therefore: For all integers n, if n is odd, then n^2 is odd. QED

2.1 Modulus

$$10 \text{ mod } 3 = 1$$

The modulus or "mod" operator means the remainder when we divide two numbers.

Congruent mod means that two numbers have the same remainder when divided by one number.

$$10 \equiv_3 7 \Leftrightarrow 10 \mod 3 = 7 \mod 3$$

2.2 Fundamental Theorem of Arithmetic

The **Fundamental Theorem of Arithmetic** states that any integer greater than 1 is either a **prime** number itself, or can be represented as the unique product of prime numbers.

For example:

$$\begin{array}{ll} 16 & = 2^4 \\ 18 & = 2^1 \cdot 3^2 \\ 21 & = 2^0 \cdot 3^1 \cdot 5^0 \cdot 7^1 \end{array}$$

Numbers that can be written as the unique product of primes are called **Composite Numbers**.

Reminder: a **prime number** is an number that can only be divided evenly by 1 and the number itself.

3 Proofs - Proof Strategies

To prove in the form of $P \to Q$:

Direct Proof: Assume P is true then prove Q

This form works because if we recall the truth table for $P \to Q$,

When P is true, Q must be true for the statement to evaluate to true.

Proof by Contrapositve: Assume $\neg Q$ is true then prove $\neg P$

This form works because the contrapositive is logically equivalent to the original,

$$P \to Q \equiv \neg Q \to \neg P$$

Proof by Contradiction: Assume $\neg(\neg(P \to Q)) \equiv P \land \neg Q$

Then we must derive some sort of contradiction.

Once we arrive at the contradiction, that means one of our assumptions cannot be correct. for example if $\neg Q$ is false, that means Q is true.

Proof by Cases/Exhaustion: $X \vee Y \to Q$ Show $X \to Q \wedge Y \to Q$ **Example**:

$$x \in \mathbb{Z} \to x^2 + x + 1 \in 2\mathbb{Z} + 1 \ (x^2 + x \text{ is odd})$$

Case 1: x is odd

$$x = 2k + 1$$

$$(2k+1)^2 + (2k+1) + 1$$

$$=4k^2+4k+1+2k+1+1$$

$$=4k^2+6k+3$$

 $= 2(2k^2 + 3) + 3$ case holds when x is odd.

Case 2: x is even

$$x = 2k$$

$$(2k^2) + 2k + 1$$

$$=4k^2+2k+1$$

$$= 2(2k^2 + k) + 1$$
 case holds when x is even.

Since we have proven both case are independently even, we can conclude $\forall x \in \mathbb{Z}, x^2 + x + 1 \in 2\mathbb{Z} + 1$

4 Proof of Irrationality

4.1 Approach 1 - Fundamental Theorem of Arithmetic

Prove that $\sqrt{2}$ is irrational.

Assume the contrary that $\sqrt{2}$ is rational.

Then by the definition of rational numbers, $\sqrt{2} = \frac{m}{n}, \exists m, n \in \mathbb{Z}, gcd(m,n) = 1, n \neq 0$

$$\sqrt{2} = \frac{m}{n}$$

$$n\sqrt{2} = m$$

$$2n^2 = m^2$$

 $m = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n}$ $n = y_1^{\beta_1} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n}$

Each x, y are primes by the fundamental theorem of arithmetic.

$$m^2 = (x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n})(x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot x_3^{\alpha_3} \cdot \dots \cdot x_n^{\alpha_n})$$

This means that m^2 has 2n possible factors.

$$2n^2 = 2(y_{1_1}^{\ \beta} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n})(y_{1_1}^{\ \beta} \cdot y_2^{\beta_2} \cdot y_3^{\beta_3} \cdot \dots \cdot y_n^{\beta_n})$$

This means that n^2 has 2n possible factors plus one factor 2.

as m^2 has an even number of prime factors, $2n^2$ will have an odd number of prime factors, contradicting the fundamental theorem.

$$\therefore \sqrt{2} \in \mathbb{I}$$
 by contradiction.

QED

4.2 Approach 2 - Definition of a Rational Number

Prove that $\sqrt{2}$ is irrational.

Assume the contrary that $\sqrt{2}$ is rational.

Then by the definition of rational numbers, $\sqrt{2} = \frac{m}{n}, \ni: m, n \in \mathbb{Z}, gcd(m,n) = 1, n \neq 0$

gcd(m, n) means that m, n MUST be relative prime.

$$\sqrt{2} = \frac{m}{n}$$

$$n\sqrt{2} = m$$

$$2n^2 = m^2$$

$$2n^2 = m^2 \Rightarrow m^2 \in 2\mathbb{Z} \Rightarrow m \cdot m \in 2\mathbb{Z}$$

The previousline showed that m is even, so now we can substitute m with any arbitrary even number 2k.

$$m = (2k), k \in \mathbb{Z}$$

$$2n^2 = (2k^2)$$

$$2n^2 = 4k^2$$

$$n^2 = 2k^2$$

$$n^2 \in 2\mathbb{Z} \Rightarrow n \in 2\mathbb{Z}$$

$$m, n \in 2\mathbb{Z} \Rightarrow \gcd(m, n) \neq 1$$

Since m, n are both even, they cannot be relatively prime, $\therefore \sqrt{2} \in \mathbb{I}$ by contradiction.

QED