

Worksheet 12 (Solved)

HoTTEST Summer School 2022

The HoTTEST TAs 19 August 2022

1 (*)

For each of the following types, state how many unique¹ terms there are of that type, and list them. *Hint:* First figure out how many there are before defining them. Use Lemma 17.5.8 and think inductively!

(a)

$$\begin{pmatrix} \mathsf{Fin}\ 3 \\ \mathsf{Fin}\ 2 \end{pmatrix}$$

There are three such elements:

Everything else is equal to one of these three, according to the characterization of identity types of binomial types we obtained.

(b)

$$\begin{pmatrix} \mathsf{Fin}\; n \\ \mathbb{1} \end{pmatrix}$$

There are n such elements:

$$(\mathbbm{1}, \mathbf{const}_j) \colon egin{pmatrix} \mathsf{Fin} \ n \\ \mathbbm{1} \end{pmatrix}$$
 for each $j \colon \mathsf{Fin} \ n$

¹Unique up to identity – assume univalence and function extensionality.

(c)

$$\begin{pmatrix} \operatorname{Fin} n \\ \operatorname{Fin} n + 1 \end{pmatrix}$$

This type is empty. There cannot be an embedding $Fin(n)+1 \hookrightarrow Fin n$.

2 (**)

Consider a type A.

(a) We call a point a:A isolated if the map $\mathsf{const}_a:\mathbb{1}\to A$ is a decidable embedding. Construct an equivalence

$$\binom{A}{\mathbb{1}} \simeq \sum_{a:A} \mathsf{is}\mathsf{-isolated}(a).$$

Given (a, σ) on the right-hand side, we can construct the element

$$E(a,\sigma) := (\mathbb{1}, (\mathbf{const}_a, \sigma)) \colon \sum_{X \mathcal{U}_1} X \hookrightarrow_{\mathsf{d}} A.$$

This map is an equivalence: if (X, ψ) is any element of $\binom{A}{1}$ then, since we know $\|X \simeq \text{Fin } 1\|$, it must be that X is a singleton, i.e. $X = \mathbb{1}$. So, if ψ is a map $\mathbb{1} \to A$, then by function extensionality $\psi = \text{const}_{\psi(\star)}$, so $(X, \psi) = E(a, \sigma)$ for some a : A. So the fibers of E are inhabited. We can readily check by function extensionality that E indeed has contractible fibers.

(b) Show that if A is a set, then $\binom{A}{1} \simeq A$

This is a corollary of the previous part. This is because every point of a set is isolated: for any a':A, the fiber

$$\mathbf{fib}_{\mathbf{const}_a}(a') \doteq \sum_{x:\mathbb{I}} \mathbf{const}_a(x) = a'$$

is equivalent to the identity type a=a', which is a decidable proposition by the hypothesis that A is a set. So, since is-isolated is a proposition, we have

$$\binom{A}{\mathbb{1}} \simeq \sum_{a:A} \text{is-isolated}(a) \simeq \sum_{a:A} \mathbb{1} \simeq A$$

(c) Construct an equivalence

$$\binom{A}{1} \simeq \left(\sum_{X:\mathcal{U}} (X+1) \simeq A \right)$$

conclude that the map $X \mapsto X + 1$ on a univalent universe \mathcal{U} is 0-truncated.

By part (a), it suffices to show that the right-hand side is equivalent to

$$\sum_{a:A} \mathbf{is}\mathbf{-isolated}(a).$$

Given $X:\mathcal{U}$ and an equivalence $e:(X+\mathbb{1})\simeq A$, let's write a_0 for $e(\operatorname{inr}\star)$. To see that $\operatorname{const}_{a_0}$ is a decidable embedding, pick arbitrary a:A. Then we need to show that the fiber

$$\mathsf{fib}_{\mathsf{const}_{a_0}}(a) \doteq \sum_{x:\mathbb{I}} \mathsf{const}_{a_0}(x) = a$$

is a decidable proposition. This follows because a_0 is the image of $\operatorname{inr}(\star)$ under an equivalence: by the disjointedness of coproducts, $\operatorname{inr}(\star)$ is an isolated point of X+1. It follows that a_0 is an isolated point of A.

In the other direction: if we have an isolated point $a_0: A$, then we know that $\mathsf{fib}_{\mathsf{const}_{a_0}}(a)$ is a decidable prop for each a: A. Then let's put

$$X \doteq \sum_{a:A} \neg \mathbf{fib}_{\mathbf{const}_{a_0}}(a)$$

Now define an equivalence $e:(X+1)\simeq A$ by putting

$$e(\mathbf{inl}(a, _)) \doteq a$$

 $e(\mathbf{inr} \star) \doteq a_0.$

This is an equivalence: for any a:A, we have a term

$$au_a: \mathbf{fib}_{\mathbf{const}_{a_0}}(a) + \neg (\mathbf{fib}_{\mathbf{const}_{a_0}}(a))$$

since $\operatorname{const}_{a_0}$ is decidable. If τ_a is $\operatorname{inl}(p)$ then $a=a_0$ and $\operatorname{inr}(\star)$ is the unique inhabitant of $\operatorname{fib}_e(a)$. If τ_a is $\operatorname{inr}(q)$, then

$$e(\mathsf{inl}(a,q)) = a$$

and, moreoever, if there were another element of X + 1 mapped to a by e, then it would have to be $\operatorname{inl}(a', q')$ for some a' : A and $q' : \neg(\operatorname{fib}_{\operatorname{const}_{a_0}}(a'))$. But

$$a = e(\mathbf{inl}(a', q')) \doteq a'$$

So a = a'. Since $\neg(\mathbf{fib_{const}}_{a_0}(a))$ is a proposition, we also get that q = q'. So e has contractible fibers, and we're done.

(d) More generally, construct an equivalence

$$\binom{A}{B} \simeq \sum_{X:\mathcal{U}_B} \sum_{Y:\mathcal{U}} X + Y \simeq A$$

Given an $X:\mathcal{U}_B$ and a $Y:\mathcal{U}$ and an equivalence $e:X+Y\simeq A$, we construct an element of $\binom{A}{B}$ in the following way: X is, of course, the element of \mathcal{U}_B we need, and then we obtain an embedding $\psi:X\hookrightarrow_{\sf d} A$ by composing the left injection map $X\hookrightarrow X+Y$ with the equivalence e. We can check that embeddings are preserved by composing with an equivalence, so this is an embedding. It is decidable because, given a:A, we can construct a term

$$\mathbf{fib}_{\psi}(a) + \neg \mathbf{fib}_{\psi}(a)$$

We do this by casing on $e^{-1}(a)$. If $e^{-1}(a)$ is $\operatorname{inl}(x)$ for some x:X, then, by construction, x is in $\operatorname{fib}_{\psi}(a)$. Otherwise, if $e^{-1}(a)$ is $\operatorname{inr}(y)$, then $e^{-1}(a)$ is not $\operatorname{inl}(x)$ for any x:X and hence a is not $\psi(x)$ for any x:X, i.e. $\operatorname{fib}_{\psi}(a)$ is empty.

3 (**)

Given a type A, the type of **unordered pairs** in A is defined to be

$$\mathsf{unordered\text{-}pairs}(A) := \sum_{X:BS_2} X \to A$$

(a) Construct an embedding

$$\binom{A}{\mathsf{bool}} \hookrightarrow \mathsf{unordered\text{-}pairs}(A)$$

Why does unordered-pairs (A) have, in general, more elements than $\binom{A}{\mathsf{bool}}$? Which elements of unordered-pairs (A) are *not* in the image of this embedding?

Observe that \mathcal{U}_{bool} , the type of types $X : \mathcal{U}$ such that $||X \simeq bool||$ is the same thing as BS_2 . So we can say

unordered-pairs
$$(A) = \sum_{X:\mathcal{U}_{\text{bool}}} X \to A.$$

Since $\binom{A}{\text{bool}}$ is defined as

$$\sum_{X:\mathcal{U}} X \hookrightarrow_{\mathsf{d}} A$$

we can define a function $\binom{A}{\mathsf{bool}}$ \to unordered-pairs(A) by sending each (X,ψ) to itself ("forgetting" that ψ is a decidable embedding). This is an embedding, by function extensionality.

The unordered pairs which are in $\binom{A}{\mathsf{bool}}$ are the ones whose two components are *distinct*. However, **unordered-pairs**(A) additionally contains unordered pairs whose components are the same. For example,

(bool, const₇): unordered-pairs(
$$\mathbb{N}$$
)

because **bool** is a 2-element type and $\operatorname{const}_7 : \operatorname{bool} \to \mathbb{N}$. This encodes the unordered pair whose two components are both 7. But const_7 is not an embedding – the fiber of 7 is **bool** itself, which is not a proposition – so this is not an element of $\binom{\mathbb{N}}{\operatorname{bool}}$.

(b) The type of homotopy commutative binary operations from A to B is defined as

unordered-pairs
$$(A) \rightarrow B$$
.

Show that if B is a set, then this type is equivalent to the type

$$\sum\nolimits_{m:A\to A\to B}\prod\nolimits_{x,y:A}m(x,y)=m(y,x).$$

Begin by observing that

$$\left(\sum_{X:BS_2} X \to A\right) \to B \qquad \simeq \qquad \prod_{X:\mathcal{U}} \|X \simeq \operatorname{Fin} 2\| \to (X \to A) \to B$$

To define something of the right-hand-side type, we write a function which takes in a $X:\mathcal{U}$ and then produce a function $\|X\simeq\operatorname{Fin} 2\|\to (X\to A)\to B$. Since B is a set, then by Theorem 14.4.6, it suffices to define a function

$$q:(X\simeq\operatorname{Fin} 2)\to (X\to A)\to B$$

which is constant in its first argument: q(e) = q(e') for all e, e'. So, if we have a commutative binary function m, we define the corresponding function unordered-pairs $(A) \to B$ as follows: given $X: \mathcal{U}$ and $e: X \simeq \text{Fin } 2$ and $\psi: X \to A$, we define $q(e, \psi)$ to be $m(\psi(e^{-1}(0)), \psi(e^{-1}(1)))$. This is constant in e: if $d: X \simeq \text{Fin } 2$, then, by function extensionality, either

$$e = d$$
 or $e^{-1}(0) = d^{-1}(1)$ and $e^{-1}(1) = d^{-1}(0)$

Intuitively: X only has two elements, so two different isomorphisms between X and Fin 2 must be the same, up to a permutation of Fin 2. But this implies that q(d) = q(e): if d = e then this follows immediately. Otherwise, if d and e are equal up to the nontrivial permutation of Fin 2, then

$$q(e, \psi) \doteq m(\psi(e^{-1}(0)), \psi(e^{-1}(1)))$$

$$= m(\psi(e^{-1}(1)), \psi(e^{-1}(0))) \qquad (m \text{ commutative})$$

$$= m(\psi(d^{-1}(0)), \psi(d^{-1}(1)))$$

$$\doteq q(d, \psi). \qquad (above)$$

So by function extensionality, q(d) = q(e). So we've satisfied Theorem 14.4.6, so we have our homotopy commutative operation. Conversely, if we have M: unordered-pairs $(A) \to B$, then obtain m: $A \to A \to B$ by putting

$$m(a, a') \doteq M(\mathbf{bool}, \lambda b.\mathbf{if}\ b\ \mathbf{then}\ a\ \mathbf{else}\ a')$$

where $(\lambda b.\text{if } b \text{ then } a \text{ else } a')$ is the function **bool** $\rightarrow A$ sending **true** to a and **false** to a'. Check that this m is commutative: when calculating m(a',a) instead, we form the element

(**bool**,
$$\lambda b$$
.if b then a' else a) : unordered-pairs(A)

But elements $(X, \psi), (Y, \mu)$ of unordered-pairs (A) are equal if we have an equivalence $e: X \simeq Y$ such that $\psi \sim \mu \circ e$. Notice that the two elements we have constructed are indeed equal, by the nontrivial equivalence bool \simeq bool.

It remains to verify that these two operations are inverse, but this is routine.

Consider the following claim.

$$\binom{\mathsf{Fin}(n)}{\mathsf{bool}} \simeq \sum_{k:\mathsf{Fin}(n)} \mathsf{Fin}(k) \tag{*}$$

Prove (*) by induction on n, using the equivalences from Lemma 17.5.8 and the identities proved above. You should not need to unfold the definition of $\binom{A}{B}$ or explicitly construct any decidable embeddings.

Start with $n \doteq 0$. The Lemma tells us that

$$\binom{\emptyset}{B+1} \simeq \emptyset$$

so, since **bool** = $\mathbb{I} + \mathbb{I}$, the left-hand side is equivalent to \emptyset . Since $Fin(0) \doteq \emptyset$, the right hand side is also empty.

Now suppose

$$\binom{\mathsf{Fin}(n)}{\mathsf{bool}} \simeq \sum_{k: \mathsf{Fin}(n)} \mathsf{Fin}(k)$$

for some $n : \mathbb{N}$. Again, using the Lemma and basic identities of finite sets, we have

$$\binom{\mathsf{Fin}(\mathsf{suc}\;n)}{\mathsf{bool}} = \binom{\mathsf{Fin}(n) + \mathbb{1}}{\mathbb{1} + \mathbb{1}} \simeq \binom{\mathsf{Fin}(n)}{\mathbb{1}} + \binom{\mathsf{Fin}(n)}{\mathsf{bool}}$$

By Question 2b above and the fact that $\operatorname{Fin}(n)$ is a set, we know $\binom{\operatorname{Fin} n}{1} \simeq \operatorname{Fin} n$. Applying the inductive hypothesis, we now have

$$\binom{\mathsf{Fin}(\mathsf{suc}\;n)}{\mathsf{bool}} \simeq (\mathsf{Fin}\;n) + \sum_{k:\mathsf{Fin}(n)} \mathsf{Fin}(k)$$

The right-hand side can easily be seen to be equivalent to $\sum_{k: \mathsf{Fin}(\mathsf{suc}\ n)} \mathsf{Fin}(k)$, as desired.

5 (**)

Given a finite type A, show that the following are equivalent:

- (i) The type of all decidable equivalence relations on A
- (ii) The type of all surjective maps $A \to X$ into a finite type X
- (iii) The type of finite types X equipped with a family $Y:X\to \mathsf{Fin}$ of finite types, such

that each Y(x) is inhabited and equipped with an equivalence

$$e: \left(\sum_{x:X} Y(x)\right) \simeq A$$

(iv) The type of all decidable partitions of A, i.e. the type of all $P:(A \to \mathsf{dProp}) \to \mathsf{dProp}$ such that each Q in P is inhabited, and such that for each a:A the type of $Q:A \to \mathsf{dProp}$ such that Q(a) holds and P(Q) holds is contractible.

First, let's show (i) is equivalent to (ii). If we have a surjective map $f: A \to X$ into a finite X, we define a decidable equivalence relation $R: A \to A \to d$ Prop by

$$R_f(a, a') \doteq f(a) = f(a')$$

This is evidently an equivalence relation, and a decidable one because X is finite, i.e. a set. Conversely, given a decidable equivalence relation R, we define X_R as the image of R as a map from A to $A \to \mathsf{dProp}$

$$X_R \doteq \sum_{Q: A \to dProp} \left\| \sum_{a:A} R(a) = Q \right\|$$

The surjection from A to X_R sends a to $(R(a),|\mathbf{refl}|)$. It is a surjection by construction: given $(Q,k):X_R$, we have k as a proof that there merely exists some a:A such that R(a)=Q. We can also check that X is finite. To see that these two operations are mutually inverse, we can check that X_{R_f} is equivalent to X: if $Q:A\to \mathbf{dProp}$ is equal to $R_f(a)$ for some a:A, then Q(a') holds iff f(a')=f(a). So Q corresponds to the element f(a):X. And for each X:X, there is an X:X such that X:X and so X:X corresponds to X:X similarly, if we start with X:X then form X:X and X:X and then obtain the relation X:X it will be equal to the X:X we started with.

Next, (ii) is equivalent to (iii). Given surjective $f:A\to X$ as in (ii), we define

$$Y(x) \doteq \mathbf{fib}_f(x).$$

This is a subtype of a finite type, hence finite as well. The surjectivity guarantees that each Y(x) is inhabited, and then the equivalence

$$\sum_{x:X} \mathbf{fib}_f(x) \simeq A$$

is obtained by sending (x, (a, p)) to a – check that this defines an equivalence. Now, going the other direction: given the data of (iii), define $f: A \to X$ as the composition

$$A \xrightarrow{e^{-1}} \sum_{x:X} Y(x) \xrightarrow{\operatorname{pr}_1} X$$

This is surjective: because each Y(x) is inhabited, the fibers of pr_1 are inhabited, so it's surjective; and e^{-1} is an equivalence, hence also surjective; and surjections are closed under composition. Now, to see that these processes are inverse, start with the surjection f from (ii) and observe that if Y(x) is defined as $\operatorname{fib}_f(x)$, then, for any $a:A, e^{-1}$ sends a to some (x,(a,p)) where p:f(a)=x, so then $\operatorname{pr}_1(e^{-1}(a))=f(a)$, and thus the surjection we obtain is equal to the f we began with. For the other compositon, start with the data of (iii), then define f as $\operatorname{pr}_1\circ e^{-1}$, and then define Y(x) as

$$Y(x) \doteq \mathbf{fib}_{\mathbf{pr}_1 \circ e^{-1}}(x)$$

. But we can calculate:

$$\begin{split} \mathbf{fib}_{\mathbf{pr}_{1} \circ e^{-1}}(x) &\doteq \sum_{a:A} \mathbf{pr}_{1}(e^{-1}(a)) = x \\ &\simeq \sum_{x':X} \sum_{y':Y(x')} \mathbf{pr}_{1}(e^{-1}(e(x',y'))) = x \\ &\simeq \sum_{x':X} \sum_{y':Y(x')} \mathbf{pr}_{1}(x',y') = x \\ &\doteq \sum_{x':X} \sum_{y':Y(x')} x' = x \\ &\simeq Y(x) \end{split}$$

So, by univalence, we get that this definition of Y gives us the Y we started with. Finally, we show that (ii) is equivalent to (iv). Given a surjection $f: A \to X$, let's define for each x: X the map $F_x: A \to \mathsf{dProp}$ by

$$F_x(a) \doteq (f(a) = x)$$

This is a decidable proposition, because X is a set. Now, note that, since dProp has decidable equality, so too does $A \to dProp$, and thus we can define $P: (A \to dProp) \to dProp$ by

$$P(Q) \doteq \exists_{x:X} Q = F_x$$

To prove that "each Q in P is inhabited", i.e.

$$P(Q) \to \exists_{a:A} Q(a)$$

we proceed as follows: if P(Q) holds, then since we're proving a proposition, we use the universal property of the truncation to obtain the x:X such that $Q=F_x$. Appealing to the surjectivity of f and again using the universal property, obtain an a:A such that f(a)=x. It then follows that Q(a) holds, by definition of F_x . And then finally we can check that, for each a:A and each Q, if P(Q) and Q(a) both hold, then $Q=F_x$ for some x in the fiber of a, i.e. the type of Q such that P(Q) and Q(a) hold is contractible with center F_x .

Conversely, given the decidable partition P, we define the X called for in (ii) to be

$$X_P \doteq \sum_{Q:A \to \mathsf{dProp}} P(Q).$$

And then we define a surjection from A to X_P by sending each a:A to the uniquely-determined $Q:A\to \operatorname{dProp}$ such that P(Q) and Q(a). This is a surjection because of the requirement that each Q in P is inhabited. We can readily check that X must be finite as well. We can also reason by function extensionality that these two operations are inverse of each other.