Sage Reference Manual: Knot Theory

Release 8.8

The Sage Development Team

CONTENTS

1 Knots	1
2 Links	7
3 Indices and Tables	35
Python Module Index	37
Index	39

CHAPTER

ONE

KNOTS

AUTHORS:

- Miguel Angel Marco Buzunariz
- · Amit Jamadagni

```
class sage.knots.knot.Knot (data, check=True)
    Bases: sage.knots.link.Link, sage.structure.element.Element
```

A knot.

A knot is defined as embedding of the circle \mathbb{S}^1 in the 3-dimensional sphere \mathbb{S}^3 , considered up to ambient isotopy. They represent the physical idea of a knotted rope, but with the particularity that the rope is closed. That is, the ends of the rope are joined.

See also:

Link

INPUT:

- data see *Link* for the allowable inputs
- check optional, default True. If True, make sure that the data define a knot, not a link

EXAMPLES:

We construct the knot 8_{14} and compute some invariants:

```
sage: B = BraidGroup(4)
sage: K = Knot(B([1,1,1,2,-1,2,-3,2,-3]))
```



```
sage: K.alexander_polynomial()
-2*t^-2 + 8*t^-1 - 11 + 8*t - 2*t^2
sage: K.jones_polynomial()
t^7 - 3*t^6 + 4*t^5 - 5*t^4 + 6*t^3 - 5*t^2 + 4*t + 1/t - 2
sage: K.determinant()
31
sage: K.signature()
-2
```

REFERENCES:

• Wikipedia article Knot_(mathematics)

arf_invariant()

Return the Arf invariant.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: K = Knot(B([-1, 2, 1, 2]))
sage: K.arf_invariant()
0
sage: B = BraidGroup(8)
sage: K = Knot(B([-2, 3, 1, 2, 1, 4]))
sage: K.arf_invariant()
0
sage: K = Knot(B([1, 2, 1, 2]))
sage: K.arf_invariant()
1
```

connected_sum(other)

Return the oriented connected sum of self and other.

Note: We give the knots an orientation based upon the braid representation.

INPUT:

• other - a knot

OUTPUT:

A knot equivalent to the connected sum of self and other.

EXAMPLES:

```
sage: B = BraidGroup(2)
sage: trefoil = Knot(B([1,1,1]))
sage: K = trefoil.connected_sum(trefoil); K
Knot represented by 6 crossings
sage: K.braid()
s0^3*s1^-1*s0^3*s1
```

```
sage: rev_trefoil = Knot(B([-1,-1,-1]))
sage: K = trefoil.connected_sum(rev_trefoil); K
Knot represented by 6 crossings
sage: K.braid()
s0^3*s1^-1*s0^-3*s1
```

REFERENCES:

2 Chapter 1. Knots

• Wikipedia article Connected sum

dt code()

Return the DT code of self.

ALGORITHM:

The DT code is generated by the following way:

Start moving along the knot, as we encounter the crossings we start numbering them, so every crossing has two numbers assigned to it once we have traced the entire knot. Now we take the even number associated with every crossing.

The following sign convention is to be followed:

Take the even number with a negative sign if it is an overcrossing that we are encountering.

OUTPUT: DT code representation of the knot

EXAMPLES:

class sage.knots.knot.Knots

Bases: sage.misc.fast methods.Singleton, sage.structure.parent.Parent

The set for all knots, as a monoid for the connected sum.

Element

alias of Knot

an_element()

Return the trefoil knot.

EXAMPLES:

```
sage: Knots().an_element()
Knot represented by 3 crossings
```

from_dowker_code(code)

Build a knot from a Dowker-Thistlethwaite code.

The Dowker-Thistlethwaite code of a knot diagram is defined as follows.

Start following the knot diagram at some regular point. Label the crossings by a number (starting from number 1) in the order in which they are met. At the end, every crossing gets numbered twice, once by an even number and once by an odd number. When meeting an over-crossing with even number, use instead the negative of this even number as label.

Then the set of crossings gives a set of pairs (odd, even). Sort this set according to the odd component, and then keep only the even components in the same order. This is the Dowker-Thistlethwaite code.

INPUT:

4 Chapter 1. Knots

a list of signed even numbers, the Dowker-Thistlethwaite code of a knot

OUTPUT:

a knot

EXAMPLES:

```
sage: W = Knots()
sage: K1 = W.from_dowker_code([8,10,2,12,4,6])
sage: K1.dowker_notation()
[(5, 2), (9, 4), (11, 6), (1, 8), (3, 10), (7, 12)]

sage: W.from_dowker_code([6,10,14,12,16,2,18,4,8])
Knot represented by 9 crossings

sage: W.from_dowker_code([4,8,10,-14,2,-16,-18,-6,-12])
Knot represented by 9 crossings

sage: K3 = W.from_dowker_code([6,-12,2,8,-4,-10]); K3
Knot represented by 6 crossings
sage: K3.dowker_notation()
[(5, 2), (4, 9), (1, 6), (7, 8), (10, 11), (12, 3)]
```

See also:

dowker_notation()

REFERENCES:

- Wikipedia article Dowker_notation
- http://katlas.org/wiki/DT_(Dowker-Thistlethwaite)_Codes

from_gauss_code (gauss)

Build a knot from a signed Gauss code.

This makes some arbitrary choice of orientation.

INPUT:

• a signed Gauss code

OUTPUT:

a knot

EXAMPLES:

```
sage: W = Knots()
sage: K1 = W.from_gauss_code([2, -1, 3, -2, 1, -3])
sage: K1.alexander_polynomial()
t^-1 - 1 + t
```

$from_table(n, k)$

Return a knot from its index in the Rolfsen table.

INPUT:

- n the crossing number
- k a positive integer

OUTPUT:

the knot $K_{n,k}$ in the Rolfsen table

EXAMPLES:

```
sage: K1 = Knots().from_table(6,3); K1
Knot represented by 6 crossings
sage: K1.alexander_polynomial()
t^{-2} - 3*t^{-1} + 5 - 3*t + t^{2}
sage: K2 = Knots().from_table(8,4); K2
Knot represented by 9 crossings
sage: K2.determinant()
19
sage: K2.signature()
sage: K3 = Knots().from_table(10,56); K3
Knot represented by 11 crossings
sage: K3.jones_polynomial()
t^10 - 3*t^9 + 6*t^8 - 9*t^7 + 10*t^6 - 11*t^5 + 10*t^4 - 7*t^3
+ 5*t^2 - 2*t + 1
sage: K4 = Knots().from_table(10,100)
sage: K4.genus()
```

REFERENCES:

• KnotAtlas, http://katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table

one()

Return the unit of the monoid.

This is the trivial knot.

EXAMPLES:

```
sage: Knots().one()
Knot represented by 0 crossings
```

6 Chapter 1. Knots

LINKS

A knot is defined as embedding of the circle \mathbb{S}^1 in the 3-dimensional sphere \mathbb{S}^3 , considered up to ambient isotopy. They represent the physical idea of a knotted rope, but with the particularity that the rope is closed. That is, the ends of the rope are joined.

A link is an embedding of one or more copies of \mathbb{S}^1 in \mathbb{S}^3 , considered up to ambient isotopy. That is, a link represents the idea of one or more tied ropes. Every knot is a link, but not every link is a knot.

Generically, the projection of a link on \mathbb{R}^2 is a curve with crossings. The crossings are represented to show which strand goes over the other. This curve is called a planar diagram of the link. If we remove the crossings, the resulting connected components are segments. These segments are called the edges of the diagram.

REFERENCES:

- Wikipedia article Knot_(mathematics)
- [?]
- [?]

See also:

There are also tables of link and knot invariants at https://www.indiana.edu/~knotinfo/ and https://www.indiana.edu/~linkinfo/.

AUTHORS:

- Miguel Angel Marco Buzunariz
- · Amit Jamadagni

```
class sage.knots.link.Link(data)
    Bases: sage.structure.sage_object.SageObject
```

A link.

A link is an embedding of one or more copies of \mathbb{S}^1 in \mathbb{S}^3 , considered up to ambient isotopy. That is, a link represents the idea of one or more tied ropes. Every knot is a link, but not every link is a knot.

A link can be created by using one of the conventions mentioned below:

Braid:

• The closure of a braid is a link:

```
sage: B = BraidGroup(8)
sage: L = Link(B([-1, -1, -1, -2, 1, -2, 3, -2, 3]))
sage: L
Link with 1 component represented by 9 crossings
sage: L = Link(B([1, 2, 1, -2, -1]))
```

(continues on next page)

```
sage: L
Link with 2 components represented by 5 crossings
```

Note: The strands of the braid that have no crossings at all are removed.

· Oriented Gauss Code:

Label the crossings from 1 to n (where n is the number of crossings) and start moving along the link. Trace every component of the link, by starting at a particular point on one component of the link and writing down each of the crossings that you encounter until returning to the starting point. The crossings are written with sign depending on whether we cross them as over or undercrossing. Each component is then represented as a list whose elements are the crossing numbers. A second list of +1 and -1's keeps track of the orientation of each crossing:

```
sage: L = Link([[[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, -3, 4, -7]],
...: [-1, -1, -1, 1, 1, -1, 1]])
sage: L
Link with 1 component represented by 8 crossings
```

For links there may be more than one component and the input is as follows:

```
sage: L = Link([[[-1, 2], [-3, 4], [1, 3, -4, -2]], [-1, -1, 1, 1]])
sage: L
Link with 3 components represented by 4 crossings
```

• Planar Diagram (PD) Code:

The diagram of the link is formed by segments that are adjacent to the crossings. Label each one of this segments with a positive number, and for each crossing, write down the four incident segments. The order of these segments is clockwise, starting with the incoming undercrossing.

There is no particular distinction between knots and links for this input.

EXAMPLES:

One of the representations of the trefoil knot:

```
sage: L = Link([[1, 5, 2, 4], [5, 3, 6, 2], [3, 1, 4, 6]])
sage: L
Link with 1 component represented by 3 crossings
```


One of the representations of the Hopf link:

```
sage: L = Link([[1, 4, 2, 3], [4, 1, 3, 2]])
sage: L
Link with 2 components represented by 2 crossings
```


We can construct links from the braid group:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, -1, -1, -2, 1, -2, 3, -2]))
sage: L
Link with 2 components represented by 8 crossings
```



```
sage: L = Link(B([1, 2, 1, 3]))
sage: L
Link with 2 components represented by 4 crossings
```

We construct the "monster" unknot using a planar code, and then construct the oriented Gauss code and braid representation:

(continues on next page)


```
[[[1, -4, 3, -1, 10, -9, 6, -7, 8, 5, 4, -3, 2, -6, 7, -8, 9, -10, -5, -2]],
[1, -1, 1, 1, 1, -1, -1, -1, -1]]

sage: L.braid()
s0*s1^-3*s2^-1*s1*s3*s2^2*s1^-1*s0^-1*s2*s1^-1*s3^-1*s2*s1^-1
```


We construct the Ochiai unknot by using an oriented Gauss code:

We construct the knot 7_1 and compute some invariants:

```
sage: B = BraidGroup(2)
sage: L = Link(B([1]*7))
```



```
sage: L.alexander_polynomial()
t^-3 - t^-2 + t^-1 - 1 + t - t^2 + t^3
sage: L.jones_polynomial()
-t^10 + t^9 - t^8 + t^7 - t^6 + t^5 + t^3
sage: L.determinant()
7
sage: L.signature()
-6
```

The links here have removed components in which no strand is used:

```
sage: B = BraidGroup(8)
sage: b = B([1])
sage: L = Link(b)
sage: b.components_in_closure()
7
sage: L.number_of_components()
1
sage: L.braid().components_in_closure()
1
sage: L.braid().parent()
Braid group on 2 strands
```

Warning: Equality of knots is done by comparing the corresponding braids, which may give false negatives.

Note: The behavior of removing unused strands from an element of a braid group may change without notice in the future. Do not rely on this feature.

Todo: Implement methods to creating new links from previously created links.

alexander_polynomial(var='t')

Return the Alexander polynomial of self.

INPUT:

• var – (default: 't') the variable in the polynomial

EXAMPLES:

We begin by computing the Alexander polynomial for the figure-eight knot:

```
sage: B = BraidGroup(3)
sage: L = Link(B([1, -2, 1, -2]))
sage: L.alexander_polynomial()
-t^-1 + 3 - t
```

The "monster" unknot:

```
sage: L = Link([[3,1,2,4],[8,9,1,7],[5,6,7,3],[4,18,6,5],
...: [17,19,8,18],[9,10,11,14],[10,12,13,11],
...: [12,19,15,13],[20,16,14,15],[16,20,17,2]])
sage: L.alexander_polynomial()
1
```

Some additional examples:

```
sage: B = BraidGroup(2)
sage: L = Link(B([1]))
sage: L.alexander_polynomial()
1
sage: L = Link(B.one())
sage: L.alexander_polynomial()
1
sage: B = BraidGroup(3)
sage: L = Link(B([1, 2, 1, 2]))
sage: L.alexander_polynomial()
t^-1 - 1 + t
```

When the Seifert surface is disconnected, the Alexander polynomial is defined to be 0:

```
sage: B = BraidGroup(4)
sage: L = Link(B([1,3]))
sage: L.alexander_polynomial()
0
```

arcs (presentation='pd')

Return the arcs of self.

Arcs are the connected components of the planar diagram.

INPUT:

- presentation one of the following:
 - 'pd' the arcs are returned as lists of parts in the PD code
 - 'gauss_code' the arcs are returned as pieces of the Gauss code that start with a negative number, and end with the following negative one; of there exist a closed arc, it is returned as a list of positive numbers only

OUTPUT:

A list of lists representing the arcs based upon presentation.

EXAMPLES:

```
sage: K = Knot([[[1,-2,3,-1,2,-3]],[1,1,1]])
sage: K.arcs()
[[1, 2], [3, 4], [5, 6]]
sage: K.arcs(presentation='gauss_code')
[[-3, 1, -2], [-2, 3, -1], [-1, 2, -3]]
```

```
sage: L = Link([[1, 2, 3, 4], [3, 2, 1, 4]])
sage: L.arcs()
[[2, 4], [1], [3]]
sage: L.arcs(presentation='gauss_code')
[[-2, -1], [-1, -2], [2, 1]]
sage: L.gauss_code()
[[-1, -2], [2, 1]]
```

braid()

Return a braid representation of self.

OUTPUT: an element in the braid group

EXAMPLES:

```
sage: L = Link([[2, 3, 1, 4], [4, 1, 3, 2]])
sage: L.braid()
s^2
sage: L = Link([[-1, 2, -3, 1, -2, 3]], [-1, -1, -1]])
sage: L.braid()
s^-3
sage: L = Link([[1,8,2,7], [8,4,9,5], [3,9,4,10], [10,1,7,6], [5,3,6,2]])
sage: L.braid()
(s0*s1^-1)^2*s1^-1
```

colorings(n)

Return the n-colorings of self.

INPUT:

• n – the number of colors to consider

If n is not a prime number, it is replaced by the smallest prime number that is larger than n.

OUTPUT:

a list with the colorings. Each coloring is represented as a dictionary that maps a tuple of the edges forming each arc (as in the PD code) to the index of the corresponding color.

EXAMPLES:

```
sage: K = Link([[[1, -2, 3, -1, 2, -3]], [1, 1, 1]])
sage: K.colorings(3)
[{(1, 2): 0, (3, 4): 1, (5, 6): 2},
{(1, 2): 0, (3, 4): 2, (5, 6): 1},
{(1, 2): 1, (3, 4): 0, (5, 6): 2},
{(1, 2): 1, (3, 4): 2, (5, 6): 0},
{(1, 2): 2, (3, 4): 0, (5, 6): 1},
{(1, 2): 2, (3, 4): 1, (5, 6): 0}]
sage: K.pd_code()
[[4, 1, 5, 2], [2, 5, 3, 6], [6, 3, 1, 4]]
sage: K.arcs('pd')
[[1, 2], [3, 4], [5, 6]]
```

REFERENCES:

- Wikipedia article Fox_n-coloring
- Chapter 3 of [?]

See also:

```
is_colorable()
```

determinant()

Return the determinant of self.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, 2, 1, 2]))
sage: L.determinant()
1
sage: B = BraidGroup(8)
sage: L = Link(B([2, 4, 2, 3, 1, 2]))
sage: L.determinant()
```

(continues on next page)

```
3
sage: L = Link(B([1]*16 + [2,1,2,1,2,2,2,2,2,2,2,1,2,1,2,-1,2,-2]))
sage: L.determinant()
65
```

dowker_notation()

Return the Dowker notation of self.

Similar to the PD code we number the components, so every crossing is represented by four numbers. We focus on the incoming entities of the under and the overcrossing. It is the pair of incoming undercrossing and the incoming overcrossing. This information at every crossing gives the Dowker notation.

OUTPUT:

A list containing the pair of incoming under cross and the incoming over cross.

EXAMPLES:

fundamental_group (presentation='wirtinger')

Return the fundamental group of the complement of self.

INPUT:

- presentation string; one of the following:
 - 'wirtinger' (default) the Wirtinger presentation (see Wikipedia article Link_group)
 - 'braid' the presentation is given by the braid action on the free group (see chapter 2 of [?])

OUTPUT:

· a finitely presented group

EXAMPLES:

```
sage: L = Link([[1, 2, 3, 4], [3, 2, 1, 4]])
sage: L.fundamental_group()
Finitely presented group < x0, x1, x2 | x1*x0^-1*x2^-1*x0, x2*x0*x1^-1*x0^-1 >
sage: L.fundamental_group('braid')
Finitely presented group < x0, x1 | 1, 1 >
```

We can see, for instance, that the two presentations of the group of the figure eight knot correspond to isomorphic groups:

```
sage: K8 = Knot([[[1, -2, 4, -3, 2, -1, 3, -4]], [1, 1, -1, -1]])
sage: GA = K8.fundamental_group()
sage: GA
Finitely presented group < x0, x1, x2, x3 |</pre>
```

(continues on next page)

```
x2*x0*x3^-1*x0^-1, x0*x2*x1^-1*x2^-1,
x1*x3^-1*x2^-1*x3, x3*x1^-1*x0^-1*x1 >
sage: GB = K8.fundamental_group(presentation='braid')
sage: GB
Finitely presented group < x0, x1, x2 | x1*x2^-1*x1^-1*x0*x1*x2*x1*x2^-1*x1^-
-1*x0^-1*x1*x2*x1^-1*x0^-1, x1*x2^-1*x1^-1*x0*x1*x2*x1^-1*x2^-1*x1^-
-1*x1*x2*x1^-1*x0*x1*x2*x1*x2^-1*x1^-1*x0^-1*x1*x2*x1^-2, x1*x2^-1*x1^-
-1*x0*x1*x2*x1^-1*x2^-1 >
sage: GA.simplified()
Finitely presented group < x0, x1 |
x1^-1*x0*x1*x0^-1*x1*x0*x1^-1*x0^-1*x1*x0^-1 >
sage: GB.simplified()
Finitely presented group < x0, x2 |
x2^-1*x0*x2^-1*x0^-1*x2*x0*x2^-1*x0*x2*x0^-1 >
```

gauss_code()

Return the Gauss code of self.

The Gauss code is generated by the following procedure:

- a. Number the crossings from 1 to n.
- b. Select a point on the knot and start moving along the component.
- c. At each crossing, take the number of the crossing, along with sign, which is if it is an undercrossing and + if it is a overcrossing.

EXAMPLES:

```
sage: L = Link([[1, 4, 2, 3], [4, 1, 3, 2]])
sage: L.gauss_code()
[[-1, 2], [1, -2]]
sage: B = BraidGroup(8)
sage: L = Link(B([1, -2, 1, -2, -2]))
sage: L.gauss_code()
[[-1, 3, -4, 5], [1, -2, 4, -5, 2, -3]]
sage: L = Link([[[-1, 2], [-3, 4], [1, 3, -4, -2]], [-1, -1, 1, 1]])
sage: L.gauss_code()
[[-1, 2], [-3, 4], [1, 3, -4, -2]]
```

genus()

Return the genus of self.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, 3, 1, 3]))
sage: L.genus()
0
sage: L = Link(B([1,3]))
sage: L.genus()
0
sage: B = BraidGroup(8)
sage: L = Link(B([-2, 4, 1, 6, 1, 4]))
sage: L.genus()
0
sage: L = Link(B([1, 2, 1, 2]))
sage: L = Link(B([1, 2, 1, 2]))
sage: L.genus()
```

homfly_polynomial(var1='L', var2='M', normalization='lm')

Return the HOMFLY polynomial of self.

The HOMFLY polynomial P(K) of a link K is a Laurent polynomial in two variables defined using skein relations and for the unknot U, we have P(U) = 1.

INPUT:

- var1 (default: 'L') the first variable
- var2 (default: 'M') the second variable
- normalization (default: lm) the system of coordinates and can be one of the following:
 - 'lm' corresponding to the Skein relation $L \cdot P(K_+) + L^{-1} \cdot P(K_-) + M \cdot P(K_0) = 0$
 - 'az' corresponding to the Skein relation $a \cdot P(K_+) a^{-1} \cdot P(K_-) = z \cdot P(K_0)$

where $P(K_+)$, $P(K_-)$ and $P(K_0)$ represent the HOMFLY polynomials of three links that vary only in one crossing; that is the positive, negative, or smoothed links respectively

OUTPUT:

A Laurent polynomial over the integers.

Note: Use the 'az' normalization to agree with the data in [?] and http://www.indiana.edu/~knotinfo/.

EXAMPLES:

We give some examples:

```
sage: g = BraidGroup(2).gen(0)
sage: K = Knot(g^5)
sage: K.homfly_polynomial()
L^-4*M^4 - 4*L^-4*M^2 + 3*L^-4 - L^-6*M^2 + 2*L^-6
```

The Hopf link:

```
sage: L = Link([[1,3,2,4],[4,2,3,1]])
sage: L.homfly_polynomial('x', 'y')
-x^-1*y + x^-1*y^-1 + x^-3*y^-1
```

Another version of the Hopf link where the orientation has been changed. Therefore we substitute $x \mapsto L^{-1}$ and $y \mapsto M$:

```
sage: L = Link([[1,4,2,3], [4,1,3,2]])
sage: L.homfly_polynomial()
L^3*M^-1 - L*M + L*M^-1
sage: L = Link([[1,4,2,3], [4,1,3,2]])
sage: L.homfly_polynomial('a', 'z', 'az')
a^3*z^-1 - a*z - a*z^-1
```

The figure-eight knot:

```
sage: L = Link([[2,1,4,5], [5,6,7,3], [6,4,1,9], [9,2,3,7]])
sage: L.homfly_polynomial()
-L^2 + M^2 - 1 - L^-2
sage: L.homfly_polynomial('a', 'z', 'az')
a^2 - z^2 - 1 + a^-2
```

The "monster" unknot:

```
sage: L = Link([[3,1,2,4], [8,9,1,7], [5,6,7,3], [4,18,6,5],
...: [17,19,8,18], [9,10,11,14], [10,12,13,11],
...: [12,19,15,13], [20,16,14,15], [16,20,17,2]])
sage: L.homfly_polynomial()
1
```

The knot 9_6 :

```
sage: B = BraidGroup(3)
sage: K = Knot(B([-1,-1,-1,-1,-1,-1,-2,1,-2,-2]))
sage: K.homfly_polynomial()
L^10*M^4 - L^8*M^6 - 3*L^10*M^2 + 4*L^8*M^4 + L^6*M^6 + L^10
- 3*L^8*M^2 - 5*L^6*M^4 - L^8 + 7*L^6*M^2 - 3*L^6
sage: K.homfly_polynomial('a', 'z', normalization='az')
-a^10*z^4 + a^8*z^6 - 3*a^10*z^2 + 4*a^8*z^4 + a^6*z^6 - a^10
+ 3*a^8*z^2 + 5*a^6*z^4 - a^8 + 7*a^6*z^2 + 3*a^6
```

REFERENCES:

- Wikipedia article HOMFLY_polynomial
- http://mathworld.wolfram.com/HOMFLYPolynomial.html

is_alternating()

Return True if the given knot diagram is alternating else returns False.

Alternating diagram implies every overcross is followed by an undercross or the vice-versa.

We look at the Gauss code if the sign is alternating, True is returned else the knot is not alternating False is returned.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, -1, -1, -1]))
sage: L.is_alternating()
False
sage: L = Link(B([1, -2, -1, 2]))
sage: L.is_alternating()
False
sage: L = Link(B([-1, 3, 1, 3, 2]))
sage: L.is_alternating()
False
sage: L = Link(B([1] *16 + [2,1,2,1,2,2,2,2,2,2,2,2,1,2,1,2,-1,2,-2]))
sage: L.is_alternating()
False
sage: L = Link(B([-1,2,-1,2]))
sage: L.is_alternating()
True
```

is colorable(n)

Return whether the link is n-colorable.

A link is n-colorable if its arcs can be painted with n colours, labeled from 0 to n-1, in such a way that at any crossing, the average of the indices of the undercrossings equals twice the index of the overcrossing.

INPUT:

• n – the number of colors to consider

If n is not a prime number, it is replaced by the smallest prime number that is larger than n.

EXAMPLES:

We show that the trefoil knot is 3-colorable:

```
sage: K = Link([[[1, -2, 3, -1, 2, -3]], [1, 1, 1]])
sage: K.is_colorable(3)
True
```

But the figure eight knot is not:

```
sage: K8 = Link([[[1, -2, 4, -3, 2, -1, 3, -4]], [1, 1, -1, -1]])
sage: K8.is_colorable(3)
False
```

REFERENCES:

- Wikipedia article Fox_n-coloring
- Chapter 3 of [?]

See also:

```
colorings()
```

is knot()

Return True if self is a knot.

Every knot is a link but the converse is not true.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([1, 3, 1, -3]))
sage: L.is_knot()
False
sage: B = BraidGroup(8)
sage: L = Link(B([1, 2, 3, 4, 5, 6]))
sage: L.is_knot()
True
```

jones_polynomial (variab=None, skein_normalization=False, algorithm='jonesrep')

Return the Jones polynomial of self.

The normalization is so that the unknot has Jones polynomial 1. If skein_normalization is True, the variable of the result is replaced by a itself to the power of 4, so that the result agrees with the conventions of [?] (which in particular differs slightly from the conventions used otherwise in this class), had one used the conventional Kauffman bracket variable notation directly.

If variab is None return a polynomial in the variable A or t, depending on the value skein_normalization. In particular, if skein_normalization is False, return the result in terms of the variable t, also used in \cite{t} ?

ALGORITHM:

The calculation goes through one of two possible algorithms, depending on the value of algorithm. Possible values are 'jonesrep' which uses the Jones representation of a braid representation of self to compute the polynomial of the trace closure of the braid, and statesum which recursively computes the Kauffman bracket of self. Depending on how the link is given, there might be significant time gains in using one over the other. When the trace closure of the braid is self, the algorithms give the same result.

INPUT:

- variab variable (default: None); the variable in the resulting polynomial; if unspecified, use either a default variable in $\mathbf{Z}[A, A^{-1}]$ or the variable t in the symbolic ring
- skein_normalization boolean (default: False); determines the variable of the resulting polynomial
- algorithm string (default: 'jonesrep'); algorithm to use and can be one of the following:
 - 'jonesrep' use the Jones representation of the braid representation
 - 'statesum' recursively computes the Kauffman bracket

OUTPUT:

If skein_normalization if False, this returns an element in the symbolic ring as the Jones polynomial of the link might have fractional powers when the link is not a knot. Otherwise the result is a Laurent polynomial in variab.

EXAMPLES:

The unknot:

```
sage: B = BraidGroup(9)
sage: b = B([1, 2, 3, 4, 5, 6, 7, 8])
sage: Link(b).jones_polynomial()
1
```

The "monster" unknot:

The Ochiai unknot:

Two unlinked unknots:

```
sage: B = BraidGroup(4)
sage: b = B([1, 3])
sage: Link(b).jones_polynomial()
-sqrt(t) - 1/sqrt(t)
```

The Hopf link:

```
sage: B = BraidGroup(2)
sage: b = B([-1,-1])
sage: Link(b).jones_polynomial()
-1/sqrt(t) - 1/t^(5/2)
```

Different representations of the trefoil and one of its mirror:

```
sage: B = BraidGroup(2)
sage: b = B([-1, -1, -1])
sage: Link(b).jones_polynomial(skein_normalization=True)
-A^{-16} + A^{-12} + A^{-4}
sage: Link(b).jones_polynomial()
1/t + 1/t^3 - 1/t^4
sage: B = BraidGroup(3)
sage: b = B([-1, -2, -1, -2])
sage: Link(b).jones_polynomial(skein_normalization=True)
-A^{-16} + A^{-12} + A^{-4}
sage: R.<x> = LaurentPolynomialRing(GF(2))
sage: Link(b).jones_polynomial(skein_normalization=True, variab=x)
x^{-16} + x^{-12} + x^{-4}
sage: B = BraidGroup(3)
sage: b = B([1, 2, 1, 2])
sage: Link(b).jones_polynomial(skein_normalization=True)
A^4 + A^12 - A^16
```

K11n42 (the mirror of the "Kinoshita-Terasaka" knot) and K11n34 (the mirror of the "Conway" knot) in [?]:

```
sage: B = BraidGroup(4)
sage: K11n42 = Link(B([1, -2, 3, -2, 3, -2, -2, -1, 2, -3, -3, 2, 2]))
sage: K11n34 = Link(B([1, 1, 2, -3, 2, -3, 1, -2, -2, -3, -3]))
sage: bool(K11n42.jones_polynomial() == K11n34.jones_polynomial())
True
```

The two algorithms for computation give the same result when the trace closure of the braid representation is the link itself:

When we have thrown away unknots so that the trace closure of the braid is not necessarily the link itself, this is only true up to a power of the Jones polynomial of the unknot:

```
sage: B = BraidGroup(3)
sage: b = B([1])
sage: L = Link(b)
sage: b.components_in_closure()
2
sage: L.number_of_components()
1
sage: b.jones_polynomial()
-sqrt(t) - 1/sqrt(t)
sage: L.jones_polynomial(algorithm='statesum')
1
```

khovanov_homology (ring=Integer Ring, height=None, degree=None)

Return the Khovanov homology of the link.

INPUT:

• ring – (default: ZZ) the coefficient ring

- height the height of the homology to compute, if not specified, all the heights are computed
- degree the degree of the homology to compute, if not specified, all the degrees are computed

OUTPUT:

The Khovanov homology of the Link. It is given as a dictionary whose keys are the different heights. For each height, the homology is given as another dictionary whose keys are the degrees.

EXAMPLES:

```
sage: K = Link([[[1, -2, 3, -1, 2, -3]],[-1, -1, -1]])
sage: K.khovanov_homology()
{-9: {-3: Z},
    -7: {-3: 0, -2: C2},
    -5: {-3: 0, -2: Z, -1: 0, 0: 0},
    -3: {-3: 0, -2: 0, -1: 0, 0: Z},
    -1: {0: Z}}
```

The figure eight knot:

```
sage: L = Link([[1, 6, 2, 7], [5, 2, 6, 3], [3, 1, 4, 8], [7, 5, 8, 4]])
sage: L.khovanov_homology(height=-1)
{-1: {-2: 0, -1: Z, 0: Z, 1: 0, 2: 0}}
```

The Hopf link:

```
sage: B = BraidGroup(2)
sage: b = B([1, 1])
sage: K = Link(b)
sage: K.khovanov_homology(degree = 2)
{2: {2: 0}, 4: {2: Z}, 6: {2: Z}}
```

mirror_image()

Return the mirror image of self.

EXAMPLES:

```
sage: g = BraidGroup(2).gen(0)
sage: K = Link(g^3)
sage: K2 = K.mirror_image(); K2
Link with 1 component represented by 3 crossings
sage: K2.braid()
s^-3
```

```
sage: K = Knot([[[1, -2, 3, -1, 2, -3]], [1, 1, 1]])
sage: K2 = K.mirror_image(); K2
Knot represented by 3 crossings
sage: K.pd_code()
[[4, 1, 5, 2], [2, 5, 3, 6], [6, 3, 1, 4]]
sage: K2.pd_code()
[[4, 2, 5, 1], [2, 6, 3, 5], [6, 4, 1, 3]]
```

number_of_components()

Return the number of connected components of self.

OUTPUT: number of connected components

EXAMPLES:


```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, 3, 1, 3]))
sage: L.number_of_components()
4
sage: B = BraidGroup(8)
sage: L = Link(B([-2, 4, 1, 6, 1, 4]))
sage: L.number_of_components()
5
sage: L = Link(B([1, 2, 1, 2]))
sage: L.number_of_components()
1
sage: L = Link(B.one())
sage: L.number_of_components()
1
```

omega_signature(omega)

Compute the ω -signature of self.

INPUT:

• ω – a complex number of modulus 1. This is assumed to be coercible to QQbar.

This is defined as the signature of the Hermitian matrix

$$(1-\omega)V + (1-\omega^{-1})V^t$$
,

where V is the Seifert matrix, as explained on page 122 of [?].

According to [?], this is also known as the Levine-Tristram signature, the equivariant signature or the Tristram-Levine signature.

See also:

```
signature(), seifert_matrix()
```

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: K = Knot(B([1,1,1,2,-1,2,-3,2,-3]))
sage: omega = QQbar.zeta(3)
sage: K.omega_signature(omega)
-2
```

orientation()

Return the orientation of the crossings of the link diagram of self.

EXAMPLES:

oriented_gauss_code()

Return the oriented Gauss code of self.

The oriented Gauss code has two parts:

- a. the Gauss code
- b. the orientation of each crossing

The following orientation was taken into consideration for construction of knots:

From the outgoing of the overcrossing if we move in the clockwise direction to reach the outgoing of the undercrossing then we label that crossing as -1.

From the outgoing of the overcrossing if we move in the anticlockwise direction to reach the outgoing of the undercrossing then we label that crossing as +1.

One more consideration we take in while constructing the orientation is the order of the orientation is same as the ordering of the crossings in the Gauss code.

Note: Convention: under is denoted by -1, and over by +1 in the crossing info.

EXAMPLES:

pd_code()

Return the planar diagram code of self.

The planar diagram is returned in the following format.

We construct the crossing by starting with the entering component of the undercrossing, move in the clockwise direction and then generate the list. If the crossing is given by [a, b, c, d], then we interpret this information as:

- 1. a is the entering component of the undercrossing;
- 2. b, d are the components of the overcrossing;
- 3. c is the leaving component of the undercrossing.

EXAMPLES:

```
sage: L = Link([[[1, -2, 3, -4, 2, -1, 4, -3]], [1, 1, -1, -1]])
sage: L.pd_code()
[[6, 1, 7, 2], [2, 5, 3, 6], [8, 4, 1, 3], [4, 8, 5, 7]]
sage: B = BraidGroup(2)
sage: b = B([1, 1, 1, 1, 1])
sage: L = Link(b)
sage: L.pd_code()
[[2, 1, 3, 4], [4, 3, 5, 6], [6, 5, 7, 8], [8, 7, 9, 10], [10, 9, 1, 2]]
sage: L = Link([[[2, -1], [1, -2]], [1, 1]])
sage: L.pd_code()
[[2, 3, 1, 4], [4, 1, 3, 2]]
sage: L = Link([[1, 2, 3, 3], [2, 4, 5, 5], [4, 1, 7, 7]])
sage: L.pd_code()
[[1, 2, 3, 3], [2, 4, 5, 5], [4, 1, 7, 7]]
```

plot (gap=0.1, component_gap=0.5, solver=None, color='blue', **kwargs)
Plot self.

INPUT:

- gap (default: 0.1) the size of the blank gap left for the crossings
- component_gap (default: 0.5) the gap between isolated components
- solver the linear solver to use, see MixedIntegerLinearProgram.
- color (default: 'blue') a color or a coloring (as returned by colorings ().

The usual keywords for plots can be used here too.

EXAMPLES:

We construct the simplest version of the unknot:

```
sage: L = Link([[2, 1, 1, 2]])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```

We construct a more interesting example of the unknot:

```
sage: L = Link([[2, 1, 4, 5], [3, 5, 6, 7], [4, 1, 9, 6], [9, 2, 3, 7]])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```

The "monster" unknot:

```
sage: L = Link([[3,1,2,4],[8,9,1,7],[5,6,7,3],[4,18,6,5],
...: [17,19,8,18],[9,10,11,14],[10,12,13,11],
...: [12,19,15,13],[20,16,14,15],[16,20,17,2]])
```

(continues on next page)


```
sage: L.plot()
Graphics object consisting of ... graphics primitives
```


The Ochiai unknot:

One of the representations of the trefoil knot:

```
sage: L = Link([[1, 5, 2, 4], [5, 3, 6, 2], [3, 1, 4, 6]])
sage: L.plot()
Graphics object consisting of 14 graphics primitives
```

The figure-eight knot:

```
sage: L = Link([[2, 1, 4, 5], [5, 6, 7, 3], [6, 4, 1, 9], [9, 2, 3, 7]])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```

The knot K11n121 in [?]:


```
sage: L = Link([[4,2,5,1], [10,3,11,4], [5,16,6,17], [7,12,8,13],
...: [18,9,19,10], [2,11,3,12], [13,20,14,21], [15,6,16,7],
...: [22,18,1,17], [8,19,9,20], [21,14,22,15]])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```


One of the representations of the Hopf link:

```
sage: L = Link([[1, 4, 2, 3], [4, 1, 3, 2]])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```


Plotting links with multiple isolated components:

```
sage: L = Link([[[-1, 2, -3, 1, -2, 3], [4, -5, 6, -4, 5, -6]], [1, 1, 1, 1, \frac{1}{2}, \frac{1}{2}])
sage: L.plot()
Graphics object consisting of ... graphics primitives
```

If a coloring is passed, the different arcs are plotted with the corresponding colors:

```
sage: B = BraidGroup(4)
sage: b = B([1,2,3,1,2,-1,-3,2,3])
```

(continues on next page)


```
sage: L = Link(b)
sage: L.plot(color=L.colorings(3)[0])
Graphics object consisting of ... graphics primitives
```


regions()

Return the regions from the link diagram of self.

Regions are obtained always turning left at each crossing.

Then the regions are represented as a list with the segments that form its boundary, with a sign depending on the orientation of the segment as part of the boundary.

EXAMPLES:

(continues on next page)

Note: The link diagram is assumed to have only one completely isolated component. This is because otherwise some regions would have disconnected boundary.

seifert_circles()

Return the Seifert circles from the link diagram of self.

Seifert circles are the circles obtained by smoothing all crossings respecting the orientation of the segments.

Each Seifert circle is represented as a list of the segments that form it.

EXAMPLES:

```
sage: L = Link([[[1, -2, 3, -4, 2, -1, 4, -3]], [1, 1, -1, -1]])
sage: L.seifert_circles()
[[1, 7, 5, 3], [2, 6], [4, 8]]
sage: L = Link([[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, -3, 4, -7]], [-
\hookrightarrow 1, -1, -1, -1, 1, 1, -1, 1])
sage: L.seifert_circles()
[[1, 13, 9, 3, 15, 5, 11, 7], [2, 10, 6, 12], [4, 16, 8, 14]]
sage: L = Link([[-1, 2, -3, 4, 5, 1, -2, 6, 7, 3, -4, -7, -6, -5]], [-1, -1, _]
\rightarrow-1, -1, 1, -1, 1]])
sage: L.seifert_circles()
[[1, 7, 3, 11, 5], [2, 8, 14, 6], [4, 12, 10], [9, 13]]
sage: L = Link([[1, 7, 2, 6], [7, 3, 8, 2], [3, 11, 4, 10], [11, 5, 12, 4],...
\rightarrow[14, 5, 1, 6], [13, 9, 14, 8], [12, 9, 13, 10]])
sage: L.seifert_circles()
[[1, 7, 3, 11, 5], [2, 8, 14, 6], [4, 12, 10], [9, 13]]
sage: L = Link([[[-1, 2, -3, 5], [4, -2, 6, -5], [-4, 1, -6, 3]], [-1, 1, 1, ...]
\hookrightarrow 1, -1, -1])
sage: L.seifert_circles()
[[1, 11, 8], [2, 7, 12, 4, 5, 10], [3, 9, 6]]
sage: B = BraidGroup(2)
sage: L = Link(B([1, 1, 1]))
sage: L.seifert_circles()
[[1, 3, 5], [2, 4, 6]]
```

seifert_matrix()

Return the Seifert matrix associated with self.

ALGORITHM:

This is the algorithm presented in Section 3.3 of [?].

OUTPUT:

The intersection matrix of a (not necessarily minimal) Seifert surface.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, 3, 1, 3]))
sage: L.seifert_matrix()
[ 0   0]
[ 0 -1]
sage: B = BraidGroup(8)
sage: L = Link(B([-1, 3, 1, 5, 1, 7, 1, 6]))
sage: L.seifert_matrix()
[ 0   0   0]
[ 1 -1   0]
[ 0   1 -1]
sage: L = Link(B([-2, 4, 1, 6, 1, 4]))
sage: L.seifert_matrix()
[-1   0]
[ 0 -1]
```

signature()

Return the signature of self.

This is defined as the signature of the symmetric matrix

$$V + V^t$$
,

where V is the Seifert matrix.

See also:

omega_signature(), seifert_matrix()

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: L = Link(B([-1, 3, 1, 3]))
sage: L.signature()
-1
sage: B = BraidGroup(8)
sage: L = Link(B([-2, 4, 1, 6, 1, 4]))
sage: L.signature()
-2
sage: L = Link(B([1, 2, 1, 2]))
sage: L.signature()
-2
```

writhe()

Return the writhe of self.

EXAMPLES:

(continues on next page)

```
-3
sage: L = Link([[[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, -3, 4, -7]],
...:
[-1, -1, -1, -1, 1, 1, -1, 1]])
sage: L.writhe()
-2
```

CHAPTER

THREE

INDICES AND TABLES

- Index
- Module Index
- Search Page

PYTHON MODULE INDEX

k

sage.knots.knot,1
sage.knots.link,7

38 Python Module Index

INDEX

```
Α
alexander_polynomial() (sage.knots.link.Link method), 12
an_element() (sage.knots.knot.Knots method), 4
arcs () (sage.knots.link.Link method), 13
arf_invariant() (sage.knots.knot.Knot method), 2
В
braid() (sage.knots.link.Link method), 13
C
colorings () (sage.knots.link.Link method), 14
connected_sum() (sage.knots.knot.Knot method), 2
D
determinant () (sage.knots.link.Link method), 14
dowker_notation() (sage.knots.link.Link method), 15
dt_code() (sage.knots.knot.Knot method), 4
F
Element (sage.knots.knot.Knots attribute), 4
F
from_dowker_code() (sage.knots.knot.Knots method), 4
from_gauss_code() (sage.knots.knot.Knots method), 5
from_table() (sage.knots.knot.Knots method), 5
fundamental_group() (sage.knots.link.Link method), 15
G
gauss_code() (sage.knots.link.Link method), 16
genus () (sage.knots.link.Link method), 16
Η
homfly_polynomial() (sage.knots.link.Link method), 16
is_alternating() (sage.knots.link.Link method), 18
```

```
is_colorable() (sage.knots.link.Link method), 18
is_knot() (sage.knots.link.Link method), 19
J
jones_polynomial() (sage.knots.link.Link method), 19
K
khovanov_homology() (sage.knots.link.Link method), 21
Knot (class in sage.knots.knot), 1
Knots (class in sage.knots.knot), 4
L
Link (class in sage.knots.link), 7
M
mirror_image() (sage.knots.link.Link method), 22
Ν
number_of_components() (sage.knots.link.Link method), 22
0
omega_signature() (sage.knots.link.Link method), 24
one () (sage.knots.knot.Knots method), 6
orientation() (sage.knots.link.Link method), 24
oriented_gauss_code() (sage.knots.link.Link method), 25
Р
pd_code() (sage.knots.link.Link method), 25
plot() (sage.knots.link.Link method), 26
R
regions () (sage.knots.link.Link method), 31
S
sage.knots.knot (module), 1
sage.knots.link (module), 7
seifert_circles() (sage.knots.link.Link method), 32
seifert_matrix() (sage.knots.link.Link method), 32
signature() (sage.knots.link.Link method), 33
W
writhe() (sage.knots.link.Link method), 33
```

40 Index