Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A = \{1, 2, 10\}$ and $B = \{4, 8, 40\}$. Which of the following formulae do **not** define a function $f: A \rightarrow B$?

1 / 1 point

- f(1) = 4, f(2) = 4, and f(10) = 4.
- $\bigcirc f(a) = 4a$, for each $a \in A$
- f(1) = 4, f(2) = 40, and f(10) = 8.
- f(1) = 5, f(2) = 8, and f(10) = 40.

✓ Correct

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1) = 5 \notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if $\frac{1}{1}$ point you're confused here!). Suppose that $Y = \{+, -\}$ and $Z = \{H, S\}$

Suppose that $T: A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a) = S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

$$\bullet$$
 $T(a) = +$ and $D(a) = H$

$$\bigcirc T(a) = + \text{ and } D(a) = S$$

$$\bigcirc T(a) = - \text{ and } D(a) = S$$

$$\bigcirc T(a) = - \text{ and } D(a) = H$$

✓ Correct

Recall that a false positive is a positive test result (so T(a) = +) which is misleading because the person actually does not have the disease (D(a) = H)

3.	Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are <i>not</i> on the graph of g ?	1 / 1 point
	\bigcirc $(-1,0)$	
	\bigcirc $(0,-1)$	
	\bigcirc (1,0)	
	igodelimspace (2,-1)	
	\checkmark Correct Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3\neq -1$, so the point $(2,-1)$ is \emph{not} on the graph of g .	
4.	Let the point $A=(2,4)$. Which of the following graphs does $\it not$ contain the point $\it A$?	1 / 1 point
	\bigcirc The graph of $f(x)=2x$	
	lacktriangledown The graph of $h(x)=x-1$	
	\bigcirc The graph of $s(x)=x^2$	
	\bigcirc The graph of $g(x)=x+2$	
	\checkmark Correct The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 eq 4$, so	
	the point $(2,4)$ is <i>not</i> on the graph of h .	
5.	Suppose that $h(x)=-3x+4.$ Which of the following statements is true?	1/1 point
	lacktriangledown is a strictly decreasing function	
	\bigcirc h is neither a strictly increasing function nor a strictly decreasing function.	
	\bigcirc h is a strictly increasing function	
	All statements are correct	
	✓ Correct	
	A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	
	Since the graph of h is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1 / 1 point
	Which of the following is a possible value for $f(3.7)$?	
	O 14.7	
	17	
	○ 3	
	\bigcirc -3	
	✓ Correct	

A function f is called strictly increasing if whenever $a \times b$ then $f(a) \times f(b)$