COL215: Help session: HW assignment 2

Naman Jain

SIT, Indian Institute of Technology

Overview

1. VGA overview

 $2. \ \mathsf{Timings}$

3. VHDL modules

VGA overview

Display timings: CRT monitors

Display timing basics

Display timing basics

Timings

Display timings

Table 1: 640×480@60

	Parameter	Value	
	Pixel clock	25 MHz	
4	HSYNC	96 pixels	
٦	HBACK	48 pixels	
J	HFRONT	16 pixels	١
4	HACTIVE	640 pixels	J
	VSYNC	2 tines'	١
	VBACK	3 <mark>3 l</mark> ines	١
	VFRONT	10 <i>J</i> ines	١
U	VACTIVE	480 lines	
	•		

define based on VESA group standards

(Flora) P

Display timings ore diplayed file proceed to be (time to display one proces) beep rock of count of pixelin one this tome frame

Pixel clock calculation

Total number of pixels in one horizontal line (active+blanking) will be:

$$HTOT = HACTIVE + HBACK + HFRONT + HSYNC$$

$$800 = 640 + 48 + 16 + 96$$

Total number of lines in one frame will be :

$$VTOT = VACTIVE + VBACK + VFRONT + VSYNG$$

$$525 = 480 + 33 + 10 + 2$$

Total number of pixels in one frame are, 420000 to be displayed in fixed amount of time that is 16.66 ms (60 Hz or 60 frames per seconds).

VHDL modules

Modules in VGA controller

Modules in VGA controller

Output Signals from FPGA to Monitor

Output Signals from FPGA to Monitor () -> VACT -> VFPONT -> VSYNC -> VTOT

Extra

Extra

