2022-2023 学年线性代数 I (H) 期中

任课老师: 刘康生 考试时长: 45 分钟

一、 设矩阵
$$A=\begin{pmatrix}a&-1&1\\-1&a&-1\\1&-1&a\end{pmatrix},\;\beta=\begin{pmatrix}0\\1\\1\end{pmatrix}.$$
 假设线性方程组 $Ax=\beta$ 有解但解不唯一.

- (1) 求 a 的值;
- (2) 给出 $Ax = \beta$ 的所有解.
- 二、设

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

定义 $\mathbf{R}^{3\times2}$ 上映射 σ :

$$\sigma(A) = PAQ.$$

- (1) 验证 σ 是线性映射;
- (2) 求 $im \sigma$ 和 $ker \sigma$;
- (3) 求 $\mathbf{R}^{3\times2}$ 的两组基 B_1, B_2 ,使得 σ 在 B_1, B_2 下的矩阵为对角矩阵.
- 三、 设 $B = \{\beta_1, \beta_2, \dots, \beta_n\}$ 是实数域 \mathbf{R} 上线性空间 V 的一组基, $T \in \mathcal{L}(V)$, $T(\beta_1) = \beta_2$, $T(\beta_2) = \beta_3$, \cdots , $T(\beta_{n-1}) = \beta_n$, $T(\beta_n) = \sum_{i=1}^n a_i \beta_i (a_i \in \mathbf{R})$. 求 T 在 B 下的表示矩阵. 在什么条件下 T 是同构映射?
- 四、 判断下列命题的真伪, 若它是真命题, 请给出简单的证明; 若它是伪命题, 给出理由或举反例将它否定.
 - (1) 若 W 是线性空间 V 的子空间, $\alpha \in V$, 则 $\alpha + W$ 是 V 的子空间;
 - (2) 若 W 是线性空间 V 的子空间,对任何的 $\alpha \in V$,定义 $\overline{\alpha} = \alpha + W$,则

$$\overline{\alpha} = \overline{\beta}$$
 或者 $\overline{\alpha} \cap \overline{\beta} = \emptyset$;

- (3) 若方阵 $A^3 = 0$, 则 E + A 和 E A 都是可逆矩阵;
- (4) 若方阵 $A^2 = A$, 则 E + A 和 E A 都是可逆矩阵.