

ECONOMETRÍA II Machine Learning

Descripción del curso:

En este curso introduciremos los principios fundamentales de ciencia de datos a través del pensamiento análisis de datos y de la construcción de modelos de machine learnig con el fin de extraer conocimiento útil y de valor para el negocio. Se utilizarán herramientas de programación basada en Python para desarrollar algoritmos de clasificación y regresión. Adicionalmente se explorará a profundidad cada uno de los pasos del flujo de trabajo para la construcción e implementación de modelos de machine learning con el fin de generar conocimiento en diferentes situaciones y giros de negocio.

Catedrático:

Ing. Preng Biba: prengsen@galileo.edu

Lic. Marvin Lopez: marvin.lopezdubon@galileo.edu

Objetivos del Curso:

- Introducir modelos de toma de decisiones basadas en Datos (Data Drive Decision-Making).
- Entender y practicar las distintas técnicas de minería de datos actuales utilizando Python.
- Caracterizar algoritmos de aprendizaje supervisado y su implementación en pipelines de Machine Learning.
- Practicar en casos teóricos y casos reales la aplicación de algoritmos de Machine Learning
- Conoce y aplica los fundamentos para la implementación y despliegue de modelos de machine learning.
- Utiliza mlFlow como herramienta para la gestión del ciclo de vida de MLOps.

Metodología:

- El curso se impartirá de forma sincrónica en el horario de clase y asincrónica mediante vídeos de clase
 - Es su propia responsabilidad descargar/ver los vídeos correspondientes cada semana.
 - Las dudas serán resueltas por medio de correo electrónico.
- Los exámenes serán presenciales y tendrán 3 horas para resolverlo. Se recomienda ver el calendario de clase y estar enterado de las semanas en las que se realizarán. No hay cambios de fechas ni reposiciones de exámenes

Calendario Tentativo:

Sesión	Tema
Semana 1	Machine Learning Workflow:
	Ingestión de Datos.
	Ingeniería de Características.
	Selección de Variables.
	Entrenamiento y Selección de Modelos.
	Optimización de Hyper-parámetros.
	Implementación y Despliege de Modelos.
	Monitoreo y Control de Modelos.
	Git & Github para Machine Learning
Semana 2	Ingeniería de Características - Parte 1:
	Data Imputation.
	Categorical Encoding.
Semana 3	Ingeniería de Características - Parte 2:
	Manejo de Outliers.
	Transformación de Variables.
	Feature Scaling.
Semana 4	Pipelines para Regresión - Parte 1:
	Regresión Lineal Múltiple.
	Métricas para Regresión: R^2 , RMSE, MAE.
	Gráficos de resultados.
	Stepwise Regression.

Sesión	Tema	
Semana 5	Pipelines para Regresión - Parte 2:	
	SVR, KNN, Árboles de Decisión, Radom Forest.	
	Regularización de Regresiones.	
	Optimización de Hyper-Parámetros para Regresión.	
	sklearn pipelines para regresiones.	
Semana 6	Pipelines para Clasificación - Parte 1:	
	Regresión Logística,	
	Matriz de Confusión.	
	Curva ROC-AUC.	
	Features Selection para Clasificación.	
	Pipelines para Clasificación - Parte 2:	
Semana 7	SVM, Naive Bayes, KNN, Árboles de Decisión, Random Forest.	
	Optimización de Hyper-Parámetros para Clasificación.	
	Pipelines de sklearn para clasificación	
Semana 8	Machine Learning Operations -:	
	Definición de MLOps	
	Ciclo de Vida de MLOps.	
	Introducción a mlFlow.	
Semana 9 Semana 10	mlFlow - Parte 1	
	Tracking and logging Components en mlFlow.	
	mlFlow - Parte 2	
	Models and Experiments en mlFlow.	

Bibliografía:

- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer..
- John Lu, Z. Q. (2010). The elements of statistical learning: data mining, inference, and prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 173(3), 693-694
- Cichosz, P. (2015). Data Mining Algorithms: Explained Using R (1 edition). Wiley.
- Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know about.
- Data Mining and Data-Analytic Thinking (1 edition). Sebastopol, Calif.: OReilly Media.

Evaluación:

Actividades a desarrollar	Puntuación Asignada
Laboratorios.	25 pts.
Proyecto I.	25 pts.
Proyecto Final.	25 pts.
Examen Final.	25 pts.
Total	100 pts.