

MODULO TEORICO PRACTICO ALGEBRA CÓDIGO MATERIA

PROF. ARNALDO L. CANTONE

VECTORES

Hay magnitudes que quedan determinadas por un número; a esas magnitudes se las denomina *magnitudes escalares*. Por ejemplo: la masa de un cuerpo, el tiempo transcurrido entre dos sucesos.

Para otras magnitudes no alcanza con un número para determinarlas.

Por ejemplo: para la velocidad de un punto, además de su *intensidad*, hace falta conocer la *dirección* en la que se mueve y el *sentido* en el que lo hace.

La dirección estará dada por una recta, considerando que todas las rectas paralelas tienen la misma dirección.

El sentido tendrá dos posibilidades, uno y su opuesto.

Estas magnitudes que necesitan de intensidad (número), dirección y sentido para quedar determinadas, se llaman <u>magnitudes vectoriales</u>. Otros ejemplos son: aceleración, cantidad de movimiento, intensidad de una corriente.

Para representar a estas magnitudes se emplean *vectores*. <u>Segmento Orientado</u>

Un segmento de recta posee dos puntos extremos, cuando esos extremos están dados en un cierto orden decimos que el segmento está orientado.

Vector

Se llama vector fijo a todo segmento orientado. Al primero de los puntos se lo llama origen y al segundo extremo.

La recta que lo contiene define su dirección, y la orientación sobre la recta, definida por el origen y el extremo determina su sentido.

Acordaremos en nombrar a los vectores según su origen y extremo o con una letra minúscula.

En la figura 1 vemos representado el vector $\vec{\boldsymbol{u}}$, cuyo origen es el punto $\boldsymbol{\boldsymbol{o}}$ y cuyo extremo es el punto $\boldsymbol{\boldsymbol{P}}$.

Módulo o Norma

La norma o módulo de un vector es la longitud del segmento orientado que lo define. Será siempre un número positivo. El vector de la figura 1, es el vector $\vec{u}=\mathbf{0P}$, e indicaremos: Módulo o Norma del vector: $|\vec{u}| |\mathbf{0P}|$ Para nosotros hablar de norma o hablar de módulo será equivalente.

Vectores equipolentes

Dos vectores son equipolentes si tienen el mismo módulo, la misma dirección y el mismo sentido.

En la figura 2 los vectores \vec{u} y \vec{v} son equipolentes

Se llama Vector libre, en adelante vector, a un conjunto de vectores equipolentes.

Definición:

Dos vectores (libres) son iguales si constituyen el mismo grupo de vectores equipolentes.

Vector nulo

Si un vector tiene módulo igual a cero, carecerá de dirección y sentido, y lo llamaremos vector nulo, indicándolo generalmente $\vec{\mathbf{0}}$.

Operaciones con vectores en forma gráfica

Vector suma

Dados dos vectores \overrightarrow{u} y \overrightarrow{v} , se define como vector suma $\overrightarrow{u+v}$, al vector que se determina de la siguiente manera: a partir del extremo de \overrightarrow{u} colocamos el origen de \overrightarrow{v} , y el vector $\overrightarrow{u+v}$, será el vector con origen en el origen de \overrightarrow{u} y extremo en el extremo de \overrightarrow{v} .

Figura 3

El vector suma $\overrightarrow{u+v}$ coincide con la diagonal del paralelogramo que tiene a los vectores \overrightarrow{u} y \overrightarrow{v} por lados del mismo, por tal motivo se la conoce como regla del paralelogramo.

Si tenemos los vectores \vec{u} ; \vec{v} ; \vec{w} , para obtener el vector suma de los tres, podemos obtener primero el vector $\vec{u}+\vec{v}$ y luego realizar la regla del paralelogramo con el vector obtenido y el vector \vec{w} , o utilizar lo que denominamos regla de la poligonal

Figura 4

Propiedades

Figura 5

- $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $\vec{u} + \vec{0} = \vec{0} + \vec{u}$
- $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$

Si \vec{u} es cualquier vector distinto del vector nulo, entonces $-\vec{u}$ es el vector opuesto de \vec{u} y se define como el vector que tiene el mismo módulo y dirección que \vec{u} , pero sentido contrario.

Figura 6

•
$$\vec{u} + (-\vec{u}) = \vec{0}$$

Se define como diferencia $\overrightarrow{u}-\overrightarrow{v}=\overrightarrow{u}+(-\overrightarrow{v})$

Figura 7

Multiplicación de un vector por un escalar

Dados un vector \vec{v} distinto del vector nulo y un escalar λ distinto de cero, el vector $\lambda \vec{v}$ se define como el vector de módulo igual a $|\lambda|$ veces el módulo de \vec{v} y cuya dirección es la misma de \vec{v} .

Si $\lambda > 0$ tendrá igual sentido, si $\lambda < 0$, sentido contrario. Si $\lambda = 0$ o $\vec{v} = 0$, se define $\lambda \vec{v} = 0$.

Propiedades

Dados los vectores $\overrightarrow{m{u}}$ y $\overrightarrow{m{v}}$, y los escalares $\pmb{\lambda}$ y $\pmb{\mu}$

•
$$\lambda . (\vec{u} + \vec{v}) = \lambda . \vec{u} + \lambda . \vec{v}$$

•
$$(\lambda. \mu). \overrightarrow{v} = \lambda. (\mu. \overrightarrow{v})$$

•
$$(\lambda + \mu).\vec{v} = \lambda.\vec{v} + \mu.\vec{v}$$

Vectores en un sistema de coordenadas cartesianas ortogonales

Si consideramos un sistema de coordenadas cartesianas ortogonales y tomamos un representante de \vec{v} con origen en (0;0). Llamamos componentes de \vec{v} a las coordenadas de $P_1(v_x;v_y)$ y escribimos $\vec{v}=(v_x;v_y)$

Figura 9

 $\text{Sean } \overrightarrow{w} = \begin{pmatrix} w_x; w_y \end{pmatrix} \text{ y } \overrightarrow{v} = \begin{pmatrix} v_x; v_y \end{pmatrix} \text{ entonces: } \overrightarrow{w} + \overrightarrow{v} = \begin{pmatrix} w_x; w_y \end{pmatrix} + \begin{pmatrix} v_x; v_y \end{pmatrix} = \begin{pmatrix} w_x + v_x; w_y + v_y \end{pmatrix}$

Figura 10

Sean $\vec{v} = (v_x; v_y)$ y λ es cualquier escalar, entonces $\lambda \cdot \vec{v} = (v_x; v_y) = (\lambda v_x; \lambda v_y)$

Figura 11

Trabajando en \mathbb{R}^3 de igual manera que en \mathbb{R}^2 , (con la terna cartesiana x, y, z):

 $\overrightarrow{u} = \left(u_x; u_y; u_z\right)$ y $\overrightarrow{v} = \left(v_x; v_y; v_z\right)$ entonces:

•
$$\vec{u} + \vec{v} = (u_x + v_x; u_y + v_y; u_z + v_z)$$

•
$$\lambda \cdot \vec{u} = (u_x; u_y; u_z) = (\lambda \cdot u_x; \lambda \cdot u_y; \lambda \cdot u_z)$$

Ejemplo:

Dados los vectores $\vec{u}=(3;-2;1)$ \vec{y} $\vec{v}=(3;2;-5)$, hallar:

1.
$$\vec{u} + \vec{v} =$$

$$(3;-2;1)+(3;2;-5)=(3+3;-2+2;1-5)=(6;0;-4)$$

2.
$$\vec{u} - \vec{v} =$$

$$(3;-2;1)-(3;2;-5)=(3-3;-2-2;1+5)=(0;-4;6)$$

3.
$$7\vec{u} =$$

$$7.(3;-2;1) = (7.3;7.(-2);7.1) = (21;-14;7)$$

4.
$$3.\vec{u} - 4.\vec{v} =$$

$$3.(3;-2;1)-4.(3;2;-5)=(9;-6;3)+(-12;-8;20)=(-3;-14;23)$$

Componentes de un vector conocidos su origen y su extremo

Dados los puntos $A=(x_1;y_1)$ y $B=(x_2;y_2)$, el vector con origen en A y extremo en B, será el vector \overrightarrow{AB} , que es equipolente al vector $(x_2-x_1;y_2-y_1)$ y escribimos:

$$\overrightarrow{AB} = (x_2 - x_1; y_2 - y_1)$$

Figura 12

"Las componentes del vector son independientes del punto en que esté aplicado."

Ejemplo:

Dados los puntos A=(7;-3) y B=(-4;5), el vector con origen en A y extremo en B será el vector $\overrightarrow{AB}=(-4-7;5+3)=(-11;8)$, un vector equipolente al vector \overrightarrow{AB} , es el vector con origen en el origen de coordenadas y extremo en el punto (-11;8)

En \mathbb{R}^3

Dados los puntos A(2;-4;0) y B(-7;1;-5), el vector con origen en A y extremo en B es:

$$\overrightarrow{AB} = (-7 - 2; 1 + 4; -5 - 0) = (-9; 5; -5)$$

Módulo o norma de un vector

Figura 13

Utilizando el teorema de Pitágoras vemos que

$$|\vec{v}| = \sqrt{(v_x)^2 + (v_y)^2}$$

El módulo o norma de un vector es igual a la raíz cuadrada de la suma de los cuadrados de sus componentes.

En \mathbb{R}^3

$$|\vec{v}| = \sqrt{(v_x)^2 + (v_y)^2 + (v_z)^2}$$

Ejemplo:

Dados los puntos A(2; -4; 0) y B(-7; 1; -5), hallar el módulo del vector \overrightarrow{AB}

$$\left| \overrightarrow{AB} \right| = \sqrt{(-7-2)^2 + (1+4)^2 + (-5-0)^2} = \sqrt{(-9)^2 + (5)^2 + (-5)^2}$$

$$\left| \overrightarrow{AB} \right| = \sqrt{81 + 25 + 25} = \sqrt{131}$$

Vector unitario o versor

Se llama vector unitario o versor a aquel vector cuyo módulo es igual a 1 (uno). Ejemplo:

$$|\overrightarrow{w}:\left(\frac{\sqrt{2}}{2};0;-\frac{\sqrt{2}}{2}\right)$$
 $|\overrightarrow{w}|=\sqrt{\left(\frac{\sqrt{2}}{2}\right)^2+0^2+\left(-\frac{\sqrt{2}}{2}\right)^2}=\sqrt{\frac{1}{2}+0+\frac{1}{2}}=\sqrt{1}=1$

Versores fundamentales

Figura 14

i(0;1;0)

$$\hat{k}(0;0;1)$$

Ángulo formado por dos vectores

Figura 16

Si \overrightarrow{u} y \overrightarrow{v} tienen igual dirección y sentido, entonces $\alpha=\mathbf{0}^\circ$

Si \overrightarrow{u} y \overrightarrow{v} tienen igual dirección y sentido contrario, entonces $\alpha=180^\circ$

Otra forma de expresar a un vector

Si $\vec{u} = (u_x; u_y; u_z)$, aplicando propiedades:

$$\vec{u} = (u_x; u_y; u_z) = (u_x; 0; 0) + (0; u_y; 0) + (0; 0; u_z)$$
$$= u_x(1; 0; 0) + u_y(0; 1; 0) + u_z(0; 0; 1)$$

$$\vec{u} = (u_x; u_y; u_z) = u_x \underbrace{(\mathbf{1}; \mathbf{0}; \mathbf{0})}_{i} + u_y \underbrace{(\mathbf{0}; \mathbf{1}; \mathbf{0})}_{j} + u_z \underbrace{(\mathbf{0}; \mathbf{0}; \mathbf{1})}_{k} = u_x \cdot i + u_y \cdot j + u_z \cdot k$$

$$\vec{u} = (u_x; u_y; u_z) = u_x \cdot i + u_y \cdot j + u_z \cdot k$$

En adelante usaremos cualquiera de las dos notaciones.

Producto escalar o interior

Definición

Dados los vectores \overrightarrow{u} y \overrightarrow{v} pertenecientes a \mathbb{R}^2 o a \mathbb{R}^3 , si α es el ángulo comprendido entre ambos, entonces el producto escalar $\overrightarrow{u} \circ \overrightarrow{v}$ se define de la siguiente manera:

$$\vec{u} \circ \vec{v} = \begin{cases} |\vec{u}| |\vec{v}| \cos \alpha & si \vec{u} \neq 0 \ y \vec{v} \neq 0 \\ 0 & si \vec{u} = 0 \ \acute{o} \ \vec{v} = 0 \end{cases}$$

Producto escalar entre vectores conocidas las componentes de los mismos

Sean $\vec{u}=(u_x;u_y;u_z)$ y $\vec{v}=(v_x;v_y;v_z)$ dos vectores distintos del vector nulo, como vemos en la figura 17, α es el ángulo entre \vec{u} y \vec{v} , entonces por el teorema del coseno:

$$|\overrightarrow{u} - \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 - 2. |\overrightarrow{u}|. |\overrightarrow{v}|. \cos\alpha$$

$$|\vec{u}|. |\vec{v}|. \cos \alpha = \frac{1}{2} (|\vec{u}|^2 + |\vec{v}|^2 - |\vec{u} - \vec{v}|^2)$$

Que se puede escribir de la siguiente manera:

$$\vec{u} \circ \vec{v} = |\vec{u}||\vec{v}|\cos\alpha = \frac{1}{2}(|\vec{u}|^2 + |\vec{v}|^2 - |\vec{u} - \vec{v}|^2)$$

Sustituyendo
$$|\vec{u}|^2 = u_x^2 + u_y^2 + u_z^2$$
 $|\vec{v}|^2 = v_x^2 + v_y^2 + v_z^2$

Y
$$|\vec{u} - \vec{v}|^2 = (u_x - v_x)^2 + (u_y - v_y)^2 + (u_z - v_z)^2$$

Obtenemos:

$$\vec{\boldsymbol{u}} \circ \vec{\boldsymbol{v}} = \boldsymbol{u}_{x} \cdot \boldsymbol{v}_{x} + \boldsymbol{u}_{y} \cdot \boldsymbol{v}_{y} + \boldsymbol{u}_{z} \cdot \boldsymbol{v}_{z}$$

Ejemplo:

Calcular el producto escalar entre $\overrightarrow{u}=(3;-4;2)$ y $\ \overrightarrow{v}=(2;5;0)$

$$\vec{u} \circ \vec{v} = 3.2 + (-4).5 + 2.0 = 6 - 20 + 0 = -14$$

Cálculo del ángulo entre dos vectores

Si *u* y *v* son vectores distintos del vector nulo, entonces

Sean $\vec{u}=(u_x;u_y;u_z)$ y $\vec{v}=(v_x;v_y;v_z)$ dos vectores distintos del vector nulo:

$$\cos\alpha = \frac{\vec{u} \circ \vec{v}}{|\vec{u}|.\,|\vec{v}|} \begin{cases} \alpha \ es \ agudo & si \ y \ solo \ si \ \vec{u} \circ \vec{v} > 0 \\ \alpha \ es \ obtuso & si \ y \ solo \ si \ \vec{u} \circ \vec{v} < 0 \\ \alpha = \frac{\pi}{2} & si \ y \ solo \ si \ \vec{u} \circ \vec{v} = 0 \end{cases}$$

Ejemplo

Dados los vectores $\vec{u}=(1;1;2)$ y $\vec{v}=(2;-1;1)$, determinar el ángulo que forman

$$\vec{u} \circ \vec{v} = 1.2 + 1.(-1) + 2.1 = 3 \qquad |\vec{u}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6} \qquad |\vec{v}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}$$

$$\cos \alpha = \frac{\vec{u} \circ \vec{v}}{|\vec{u}|.|\vec{v}|} = \frac{3}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \qquad \cos \alpha = \frac{1}{2}$$

$$\alpha = \arccos\left(\frac{1}{2}\right) \quad \therefore \quad \alpha = \frac{\pi}{3}$$

Ángulos directores y cosenos directores

Llamaremos ángulos directores de un vector a los ángulos que forma el vector con cada uno de los ejes coordenados, es decir el ángulo que forma con los Versores fundamentales (i; j; k)

Y llamaremos cosenos directores de dicho vector a los cosenos de dichos ángulos.

$$\cos \alpha = \frac{u_x}{|\vec{u}|}$$

$$\cos \beta = \frac{u_y}{|\vec{u}|}$$

$$\cos \gamma = \frac{u_z}{|\vec{u}|}$$

$$i$$
Figure 19

Ejemplo:

Dado el vector $\overrightarrow{u} = \left(\sqrt{2}; \mathbf{1}; -\mathbf{1}\right)$, hallar sus ángulos directores

$$|\vec{u}| = \sqrt{\sqrt{2}^2 + 1^2 + (-1)^2} = 2$$

Ángulo que forma con el eje
$$x$$
 $\cos \alpha = \frac{\overrightarrow{u} \circ \emph{i}}{|\overrightarrow{u}|.|\overrightarrow{v}|} = \frac{\left(\sqrt{2}; 1; -1\right).(1; 0; 0)}{2.1} = \frac{\sqrt{2}}{2}$ $\alpha = 45^{\circ} = \frac{\pi}{4}$

Ángulo que forma con el eje
$$y$$
 $\cos \beta = \frac{\overrightarrow{u} \circ \cancel{j}}{|\overrightarrow{u}|.|\overrightarrow{v}|} = \frac{\left(\sqrt{2};1;-1\right).(0;1;0)}{2.1} = \frac{1}{2}$ $\beta = 60^{\circ} = \frac{\pi}{3}$

Ángulo que forma con el eje
$$z$$
 $\cos \gamma = \frac{\overrightarrow{u} \circ \overleftarrow{k}}{|\overrightarrow{u}|.|\overrightarrow{v}|} = \frac{\left(\sqrt{2};1;-1\right).(0;0;1)}{2.1} = -\frac{1}{2}$ $\gamma = 120^{\circ} = \frac{2}{3}\pi$

Propiedades

Dados los vectores \overrightarrow{u} ; \overrightarrow{v} ; \overrightarrow{w} pertenecientes a \mathbb{R}^2 o a \mathbb{R}^3 , $k \in \mathbb{R}$

•
$$\vec{u} \circ \vec{v} = \vec{v} \circ \vec{u}$$

•
$$\vec{u} \circ (\vec{v} + \vec{w}) = \vec{u} \circ \vec{v} + \vec{u} \circ \vec{w}$$

•
$$k(\overrightarrow{u} \circ \overrightarrow{v}) = (k\overrightarrow{u}) \circ \overrightarrow{v} = \overrightarrow{u} \circ (k\overrightarrow{v})$$

•
$$\vec{u} \circ \vec{u} > 0$$
 $si \vec{u} \neq 0$

•
$$\vec{u} \circ \vec{u} = 0$$
 $si \vec{u} = 0$

•
$$\vec{u} \circ \vec{u} = |\vec{u}|^2$$
, es decir, $|\vec{u}| = \sqrt{\vec{u} \circ \vec{u}}$

Producto vectorial

Definimos como producto vectorial a la operación que asocia a cada par de vectores \vec{u} ; \vec{v} pertenecientes a \mathbb{R}^3 , el vector $\vec{u} \times \vec{v}$, unívocamente determinado por las condiciones:

- * Si \overrightarrow{u} ; \overrightarrow{v} , son ambos no nulos y no colineales:
- 1) $\overrightarrow{\pmb{u}} imes \overrightarrow{\pmb{v}}$ es ortogonal a $\overrightarrow{\pmb{u}}$ y a $\overrightarrow{\pmb{v}}$
- 2) la terna $\{\vec{u}; \vec{v}; \vec{u} \times \vec{v}\}$ es una terna directa igualmente orientada que la terna (i; j; k)

- 3) $|\vec{u} \times \vec{v}| = |\vec{u}| \cdot |\vec{v}| \cdot \sin \alpha$
 - Si \vec{u} y \vec{v} son colineales, es decir $\vec{u} = \lambda . \vec{v}$, entonces $\vec{u} \times \vec{v} = \vec{0}$

Propiedades

Dados los vectores \vec{u} ; \vec{v} ; \vec{w} pertenecientes a \mathbb{R}^2 o a \mathbb{R}^3 , $k \in \mathbb{R}$

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $\mathbf{k} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \times \mathbf{k} \cdot \overrightarrow{\mathbf{v}} = \mathbf{k} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $(\vec{v} + \vec{w}) \times \vec{u} = \vec{v} \times \vec{u} + \vec{w} \times \vec{u}$

Producto vectorial entre vectores conocidas las componentes de los mismos

Productos vectoriales entre versores fundamentales

$$i \times j = k$$

$$i \times j = k$$
 $j \times i = -k$

$$i \times k = i$$

$$j \times \hat{k} = i$$
 $\hat{k} \times j = -i$

$$\dot{k} \times \dot{\iota} = \dot{\iota}$$

$$\hat{k} \times \hat{i} = \hat{j}$$
 $\hat{i} \times \hat{k} = -\hat{j}$

Figura 21

$$i \times i = \vec{0}$$

$$j \times j = \overline{0}$$

$$\hat{k} \times \hat{k} = \overline{0}$$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$j \times i = -k$$

$$\hat{k} \times \hat{j} = -\hat{\iota}$$

$$i \times k = -j$$

Si
$$\vec{u}=(u_x;u_y;u_z)$$
 y $\vec{v}=(v_x;v_y;v_z)$ entonces $\vec{u}\times\vec{v}$

$$\vec{u} = u_x \cdot \hat{\imath} + u_y \cdot \hat{\jmath} + u_z \cdot \hat{k}$$
 $\vec{v} = v_x \cdot \hat{\imath} + v_y \cdot \hat{\jmath} + v_z \cdot \hat{k}$

$$\vec{u} \times \vec{v} = (u_x \cdot i + u_y \cdot j + u_z \cdot k) \times (v_x \cdot i + v_y \cdot j + v_z \cdot k)$$

$$\vec{u} \times \vec{v} = \underbrace{u_x. i \times (v_x. i + v_y. j + v_z. k)}_{A} + \underbrace{u_y. j \times (v_x. i + v_y. j + v_z. k)}_{B} + \underbrace{u_z. k \times (v_x. i + v_y. j + v_z. k)}_{C}$$

$$A = u_x \cdot v_x \cdot \underbrace{i \times i}_{0} + u_x \cdot v_y \cdot \underbrace{i \times j}_{k} + u_x \cdot v_z \cdot \underbrace{i \times k}_{-i} = u_x \cdot v_y \cdot k - u_x \cdot v_z \cdot j$$

$$B = u_y.v_x.\underbrace{j \times i}_{i} + u_y.v_y.\underbrace{j \times j}_{0} + u_y.v_z.\underbrace{j \times k}_{i} = -u_y.v_x.\underbrace{k + u_y.v_z.}_{i}$$

$$C = u_z.v_x.\underbrace{k \times i}_{j} + u_z.v_y.\underbrace{k \times j}_{-i} + u_z.v_z.\underbrace{k \times k}_{0} = u_z.v_x.j - u_z.v_y.i$$

$$\vec{u} \times \vec{v} = u_r \cdot v_v \cdot \hat{k} - u_r \cdot v_z \cdot \hat{j} - u_v \cdot v_r \cdot \hat{k} + u_v \cdot v_z \cdot \hat{i} + u_z \cdot v_r \cdot \hat{j} - u_z \cdot v_v \cdot \hat{i}$$

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = -\boldsymbol{u}_{\boldsymbol{v}} \cdot \boldsymbol{v}_{\boldsymbol{z}} \cdot \hat{\boldsymbol{\iota}} - \boldsymbol{u}_{\boldsymbol{z}} \cdot \boldsymbol{v}_{\boldsymbol{v}} \cdot \hat{\boldsymbol{\iota}} + \boldsymbol{u}_{\boldsymbol{z}} \cdot \boldsymbol{v}_{\boldsymbol{z}} \cdot \hat{\boldsymbol{\jmath}} - \boldsymbol{u}_{\boldsymbol{z}} \cdot \boldsymbol{v}_{\boldsymbol{z}} \cdot \hat{\boldsymbol{\jmath}} + \boldsymbol{u}_{\boldsymbol{z}} \cdot \boldsymbol{v}_{\boldsymbol{v}} \cdot \hat{\boldsymbol{k}} - \boldsymbol{u}_{\boldsymbol{v}} \cdot \boldsymbol{v}_{\boldsymbol{z}} \cdot \hat{\boldsymbol{k}}$$

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = (-\boldsymbol{u}_z, \boldsymbol{v}_y + \boldsymbol{u}_y, \boldsymbol{v}_z) i + (\boldsymbol{u}_z, \boldsymbol{v}_x - \boldsymbol{u}_x, \boldsymbol{v}_z) j + (\boldsymbol{u}_x, \boldsymbol{v}_y - \boldsymbol{u}_y, \boldsymbol{v}_x) k$$

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = (\boldsymbol{u}_{\boldsymbol{v}}.\boldsymbol{v}_{\boldsymbol{z}} - \boldsymbol{u}_{\boldsymbol{z}}.\boldsymbol{v}_{\boldsymbol{v}})i + (\boldsymbol{u}_{\boldsymbol{z}}.\boldsymbol{v}_{\boldsymbol{x}} - \boldsymbol{u}_{\boldsymbol{x}}.\boldsymbol{v}_{\boldsymbol{z}})j + (\boldsymbol{u}_{\boldsymbol{x}}.\boldsymbol{v}_{\boldsymbol{v}} - \boldsymbol{u}_{\boldsymbol{v}}.\boldsymbol{v}_{\boldsymbol{x}})k$$

Existe una forma memotécnica de obtener el producto vectorial.

$$\vec{u} \times \vec{v} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = \begin{pmatrix} \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} ; - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} ; \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \end{pmatrix}$$

Cada una de las componentes del vector $\vec{u} \times \vec{v}$ se obtendrá como resultado del determinante de $2 \times$

2 planteado

Ejemplo:

Dados los vectores $\vec{u}=(1;1;2)$ y $\ \vec{v}=(2;-1;1)$, determinar $\vec{u} imes \vec{v}$

$$\overrightarrow{u}\times\overrightarrow{v}=\begin{vmatrix}\mathbf{1} & \mathbf{1} & \mathbf{2} \\ \mathbf{2} & -\mathbf{1} & \mathbf{1}\end{vmatrix}=\left(\begin{vmatrix}\mathbf{1} & \mathbf{2} \\ -\mathbf{1} & \mathbf{1}\end{vmatrix} \ ; \ -\begin{vmatrix}\mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{1}\end{vmatrix} \ ; \ \begin{vmatrix}\mathbf{1} & \mathbf{1} \\ \mathbf{2} & -\mathbf{1}\end{vmatrix}\right)$$

$$\begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 1.1 - (-1).2 \qquad -\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -(1.1 - 2.2) \qquad \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = 1.(-1) - 2.1$$
$$\begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 3 \qquad -\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 3 \qquad \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -3$$
$$\vec{u} \times \vec{v} = (3; 3; -3)$$

Interpretación geométrica del módulo del producto vectorial

Recordando que $|\vec{u} \times \vec{v}| = |\vec{u}| . |\vec{v}| . sin \alpha$

Figura 22

Vemos en la Figura 22, que $|\vec{v}|$. $sin \alpha$ es la altura del paralelogramo dos de cuyos lados adyacentes son \vec{u} y \vec{v}

Por lo tanto el área del paralelogramo está dada por

$$A = base \times altura = |\vec{u}| \cdot |\vec{v}| \cdot sin \alpha = |\vec{u} \times \vec{v}|$$

Producto mixto

Dados
$$\overrightarrow{u} = (u_x; u_y; u_z); \ \overrightarrow{v} = (v_x; v_y; v_z) \ y \ \overrightarrow{w} = (w_x; w_y; w_z)$$

Entonces $\overrightarrow{u} \circ (\overrightarrow{v} \times \overrightarrow{w})$ se lo denomina producto mixto de \overrightarrow{u} ; \overrightarrow{v} y \overrightarrow{w} .

$$\overrightarrow{w} \circ (\overrightarrow{u} \times \overrightarrow{v}) = \overrightarrow{w} \circ \begin{pmatrix} \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} & \mathbf{i} - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} & \mathbf{j} + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} & \mathbf{k} \end{pmatrix}$$

$$\overrightarrow{w} \circ (\overrightarrow{u} \times \overrightarrow{v}) = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} \cdot w_x - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} \cdot w_y + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \cdot w_z = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}$$

Interpretación geométrica del valor absoluto del producto mixto

El valor absoluto del producto mixto representa el volumen del paralelepípedo, que tiene a los vectores \vec{u} ; \vec{v} y \vec{w} como aristas concurrentes. (Suponemos que los vectores \vec{u} ; \vec{v} y \vec{w} no son coplanares).

EJERCICIO Nº 1: completar el siguiente cuadro, conociendo los siguientes datos

	Origen Ā	Extremo B	\overrightarrow{AB}		Origen $ec{A}$	$Extremo$ \overrightarrow{B}	\overrightarrow{AB}
1)	4i-7j-2k	-3i+j-2k		5)	9i + j - 2k		18i-2j+4k
2)	2i - k	-i-2j+3k		6)		2i-4j+k	-i-7j-2k
3)	-3i+4j+k	i-4j+5k		7)	5i-3j-k		-i + 3j + k
4)	-j+k	6i-4j+9k		8)		7i - 8j - 2k	-4i-4j-4k

EJERCICIO Nº 2: Hallar el módulo de los siguientes vectores

$$\vec{a} = 2i - 4j + \hat{k}$$

$$\vec{d} = \frac{\sqrt{2}}{2}i - \frac{\sqrt{2}}{2}j + \frac{1}{2}\hat{k}$$

$$\vec{g} = \frac{\sqrt{3}}{2}i + \frac{\sqrt{5}}{2}j + \sqrt{2}\hat{k}$$

$$\vec{b} = \frac{1}{3}i + \frac{2}{5}\hat{k}$$

$$\vec{e} = \sqrt{7}i + \sqrt{7}j + \sqrt{7}\hat{k}$$

$$\vec{h} = -\frac{2}{5}i + 2j - \frac{1}{5}\hat{k}$$

$$\vec{c} = -3i - j + 2\hat{k}$$

$$\vec{f} = -i - j + \hat{k}$$

$$\vec{m} = -3i - 2j + \hat{k}$$

EJERCICIO Nº 3: Hallar los versores canónicos de los vectores del ejercicio Nº 2

EJERCICIO Nº 4: Resolver las siguientes operaciones con los vectores del ejercicio Nº 2

1)
$$\vec{a} + \vec{b} + \vec{c} =$$

5)
$$|\overrightarrow{d}| + 3|\overrightarrow{e}| - 2|\overrightarrow{g}| =$$

2)
$$\vec{a} - 2\vec{e} + \vec{f} =$$

6)
$$\frac{-2(\vec{c}-\vec{e})-3(\vec{f}+\vec{g})}{4}=$$

3)
$$\frac{\vec{e}+\vec{f}}{2}-3(\vec{h}+\vec{m})=$$

7)
$$(\vec{a}-\vec{d}).5-\frac{\vec{f}-\vec{g}}{3}=$$

4)
$$\frac{\overrightarrow{d}}{3} - \frac{\overrightarrow{f}}{2} + 5. \overrightarrow{m} =$$

8)
$$\frac{\left|-\overrightarrow{a}-\overrightarrow{f}+\overrightarrow{g}\right|}{2}+\left|\overrightarrow{h}\right|=$$

EJERCICIO N° 4: Hallar los siguientes productos escalares, vectoriales y mixtos. Con los vectores del ejercicio N° 2

1)
$$\vec{a} \circ \vec{b} =$$

5)
$$\vec{f} \times \vec{c} =$$

2)
$$\vec{e} \circ \vec{f} + \vec{g} \circ \vec{c} =$$

6)
$$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} =$$

3)
$$-5(\vec{f} \circ \vec{m}) - \vec{d} \circ \vec{e} =$$

7)
$$\vec{f} \circ (\vec{h} \times \vec{c})$$

4)
$$-\frac{\vec{f}}{5} \circ \frac{\vec{h}}{4} + 5. \vec{m} \circ \vec{b} =$$

8)
$$\vec{d} \circ (\vec{b} \times \vec{a}) + \vec{d} \circ (\vec{f} \times \vec{f}) =$$

EJERCICIO Nº 5: Hallar los ángulos y los cosenos directores de los vectores del ejercicio Nº 2

EJERCICIO Nº 6: Hallar los ángulos entre los siguientes vectores del ejercicio Nº 2

$$\vec{a} \ y \ \vec{c}$$

$$\overrightarrow{m} y \overrightarrow{h}$$

$$\overrightarrow{d}$$
 y \overrightarrow{g}

$$\vec{a} y \vec{d}$$

$$\vec{e} \ v \ \vec{b}$$

$$\vec{e} \ v \ \vec{b}$$

$$\vec{f}$$
 y \vec{m}

$$\overrightarrow{g} y \overrightarrow{b}$$

EJERCICIO N° 7: Hallar el volumen del paralelepípedo, que tiene a los vectores \vec{u} ; \vec{v} y \vec{w} como aristas concurrentes

1)
$$\begin{cases} \vec{u} = 2i - 4j + k \\ \vec{v} = -4i + 5j + 2k \\ \vec{w} = \frac{3}{2}i + \frac{5}{2}j - 3k \end{cases}$$

3)
$$\begin{cases} \vec{u} = 5i - 4j + k \\ \vec{v} = -7i + 5j + 3k \end{cases}$$
$$\vec{w} = \sqrt{5}i - \frac{\sqrt{5}}{3}j + \sqrt{2}k$$

2)
$$\begin{cases} \vec{u} = \frac{1}{3}i + \frac{2}{5}\hat{k} \\ \vec{v} = -i - j + \hat{k} \\ \vec{w} = -3i - j + 2\hat{k} \end{cases}$$

4)
$$\begin{cases} \vec{u} = -\frac{2}{5}i + 2j - \frac{1}{5}k \\ \vec{v} = 3i - 2j + k \end{cases}$$
$$\vec{w} = \frac{\sqrt{2}}{2}i - \frac{\sqrt{2}}{2}j + \frac{1}{2}k$$