Logistics Regression Assignment - 2

February 22, 2024

[]: """Q1. What is the purpose of grid search cv in machine learning, and how does_\
\(\times \time

Ans: Grid search CV (Cross-Validation) is a hyperparameter tuning technique \Box used to find the best combination of hyperparameters for a machine learning \Box model.

It works by exhaustively searching through a predefined set of \Box \Box hyperparameters and evaluating the model's performance on each combination \Box \Box using cross-validation.

The combination of hyperparameters that produces the best performance $\neg is$ selected as the optimal set of hyperparameters for the model.

[]: """Q2. Describe the difference between grid search cv and randomize search cv, u v and when might you choose one over the other?

Ans: Grid search CV and random search CV are both hyperparameter tuning \Box techniques in machine learning, but differ in the way they explore the \Box hyperparameter space.

Grid search exhaustively searches through all possible hyperparameter \neg combinations, while random search randomly samples from the hyperparameter \neg space.

Random search is faster and more effective for high-dimensional $_{\sqcup}$ $_{\hookrightarrow}$ hyperparameter spaces, while grid search is more suitable for small $_{\sqcup}$ $_{\hookrightarrow}$ hyperparameter spaces or

when the relative importance of each hyperparameter is known.

[]: $"""Q3. What is data leakage, and why is it a problem in machine learning?_<math> \hookrightarrow Provide \ an \ example.$

11 11 11

Ans: Data leakage occurs when information from the test set is \sqcup \neg unintentionally used to influence the training of the model, leading to \sqcup \neg overly optimistic performance

perfect training accuracy but poor performance on new data. 11 11 11

[]: """Q4. How can you prevent data leakage when building a machine learning model?

Ans: To prevent data leakage in machine learning, it's important to $keep_{\sqcup}$ $_{\hookrightarrow}$ the training and testing datasets separate and ensure that the model is not $_{\sqcup}$ ⇔exposed to any

information in the testing set during training. Additionally, feature $_{\sqcup}$ \neg selection, data preprocessing, and hyperparameter tuning should be performed. *⇔using* only the

training set and cross-validation, rather than the entire dataset, to | 1 ⇒prevent overfitting and ensure unbiased model evaluation. *11 11 11*

[]: """Q5. What is a confusion matrix, and what does it tell you about the \Box ⇒performance of a classification model?

Ans: A confusion matrix is a table that summarizes the performance of a_{\sqcup} $_{
m o}$ classification model by comparing the predicted and actual class labels of $a_{
m L}$ ⇔set of data.

It shows the number of true positives, false positives, true_ \neg negatives, and false negatives, allowing for the calculation of metrics such *⇔as accuracy, precision,*

recall, and F1-score.

11 11 11

[]: """Q6. Explain the difference between precision and recall in the context of a_{\sqcup} \hookrightarrow confusion matrix.

Ans: precision and recall are metrics that help evaluate the performance of \Box $_{ o}a$ classification model. Precision is the proportion of predicted positive $_{\sqcup}$ \hookrightarrow instances that are

actually positive, while recall is the proportion of actual positive, \hookrightarrow instances that are correctly predicted as positive. In simpler terms, \sqcup ⇔precision is the model's

ability to correctly identify the positive cases among all predicted \sqcup \hookrightarrow positive cases, while recall is the model's ability to identify all actual $_{\sqcup}$ $\neg positive cases.$

A high precision means that the model makes few false positive, \hookrightarrow predictions, while a high recall means that the model detects most of the \sqcup *⇔actual* positive cases.

n n n

[]: """Q7. How can you interpret a confusion matrix to determine which types of \Box ⇔errors your model is making?

Ans: To interpret a confusion matrix and determine which types of errors a_{\sqcup} \rightarrow model is making, one can examine the false positives and false negatives.

False positives represent cases where the model predicted a positive \sqcup \hookrightarrow class label when the actual label is negative, while false negatives \sqcup \hookrightarrow represent

cases where the model predicted a negative class label when the actual $_{\sqcup}$ $_{\hookrightarrow}$ label is positive. By examining these errors, one can identify areas of the $_{\sqcup}$ $_{\hookrightarrow}$ model

that require improvement.

11 11 11

[]: """Q8. What are some common metrics that can be derived from a confusion_

matrix, and how are they calculated?

Ans: Common metrics that can be derived from a confusion matrix $include_{\sqcup}$ $\Rightarrow accuracy$, precision, recall, F1-score, and the area under the ROC curve.

Accuracy is calculated as (TP+TN)/(TP+TN+FP+FN), precision as TP/(TP+FP), recall as TP/(TP+FN), F1-score as 2*((precision*recall))/((precision+recall)),

[]: """Q9. What is the relationship between the accuracy of a model and the values $_{\sqcup}$ $_{\hookrightarrow}$ in its confusion matrix?

Ans: The accuracy of a model is calculated from the values in its confusion \sqcup matrix and represents the proportion of correctly classified instances over \sqcup the total number of

instances. Specifically, accuracy is calculated as (TP+TN)/ \hookrightarrow (TP+TN+FP+FN), where TP is the number of true positives, TN is the number of \hookrightarrow true negatives, FP is the number

[]: """Q10. How can you use a confusion matrix to identify potential biases or dimitations in your machine learning model?

Ans: A confusion matrix can help identify potential biases or limitations \sqcup \neg in a machine learning model by examining its distribution of predictions \sqcup \neg across different classes.

For instance, if the model consistently misclassifies one particular $_{\sqcup}$ $_{\hookrightarrow} class,$ it could indicate a bias or limitation in the model's ability to $_{\sqcup}$ $_{\hookrightarrow} capture$ that class's

bias and prompt the use of techniques such as resampling or adjusting $_{\!\!\!\perp}$ $_{\!\!\!\!\perp}$ class weights to mitigate it.