Question 4

[CM4]Random Forest Classifier

1. Hyper parameter tuning is performed using 10-fold cross validation on each label to evaluate the best value for number of trees and Max Depth

Original Features:

```
[ ] DTbase = RandomForestClassifier(max_features = 'auto', random_state = 0)
    param_grid = {
        'n_estimators' : [5, 10, 50, 150, 200],
        'max_depth': [3, 5, 10, None],
    }

DT_fit = GridSearchCV(estimator=DTbase, param_grid=param_grid, cv = 10, refit='accuracy_score')
DT_result = DT_fit.fit(Original_data_copy.iloc[:, 3:14], y)

results_df = pd.DataFrame(DT_result.cv_results_)
    results_df
```

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	param_n_estimators	params	mean_test_score	std_test_score	rank_test_score
0	0.017757	0.005407	0.003402	0.000704	3	5	{'max_depth': 3, 'n_estimators': 5}	0.772555	0.034819	20
1	0.024917	0.002625	0.003550	0.000058	3	10	{'max_depth': 3, 'n_estimators': 10}	0.799828	0.032848	19
2	0.110068	0.005244	0.008559	0.000468	3	50	{'max_depth': 3, 'n_estimators': 50}	0.802287	0.028968	18
3	0.326658	0.012556	0.022202	0.002116	3	150	{'max_depth': 3, 'n_estimators': 150}	0.803946	0.028103	16
4	0.426768	0.014316	0.028316	0.003514	3	200	{'max_depth': 3, 'n_estimators': 200}	0.803946	0.028103	16
5	0.014943	0.001144	0.002913	0.000061	5	5	{'max_depth': 5, 'n_estimators': 5}	0.814669	0.031606	15
6	0.027115	0.001237	0.003666	0.000118	5	10	{'max_depth': 5, 'n_estimators': 10}	0.815510	0.032094	14
7	0.122380	0.005092	0.009056	0.001137	5	50	50}	0.832893	0.042717	5
8	0.367693	0.005441	0.022184	0.001716	5	150	{'max_depth': 5, 'n_estimators': 150}	0.841157	0.036919	1
9	0.481975	0.011075	0.028851	0.002923	5	200	{'max_depth': 5, 'n_estimators': 200}	0.832879	0.040836	6

10	0.018383	0.001702	0.003118	0.000062	10	5	{'max_depth': 10, 'n_estimators': 5}	0.826247	0.036205	8
11	0.032452	0.001145	0.003776	0.000147	10	10	{'max_depth': 10, 'n_estimators': 10}	0.833678	0.035825	4
12	0.153483	0.003747	0.009348	0.000380	10	50	{'max_depth': 10, 'n_estimators': 50}	0.831219	0.032581	7
13	0.445450	0.008905	0.024775	0.005772	10	150	{'max_depth': 10, 'n_estimators': 150}	0.834525	0.043197	3
14	0.577283	0.011328	0.029102	0.001252	10	200	{'max_depth': 10, 'n_estimators': 200}	0.835351	0.042152	2
15	0.017089	0.000479	0.002906	0.000062	None	5	{'max_depth': None, 'n_estimators': 5}	0.820482	0.018481	11
16	0.033139	0.002035	0.003952	0.000351	None	10	{'max_depth': None, 'n_estimators': 10}	0.821295	0.025797	9
17	0.150238	0.004513	0.009301	0.000445	None	50	{'max_depth': None, 'n_estimators': 50}	0.817975	0.033474	13
18	0.455255	0.014941	0.023570	0.001712	None	150	{'max_depth': None, 'n_estimators': 150}	0.821281	0.035706	10
19	0.601419	0.009090	0.031274	0.003508	None	200	{'max_depth': None, 'n_estimators': 200}	0.819621	0.037182	12
<pre>import numpy as np data = np.array(results_df["mean_test_score"]) data</pre>										
0	array	0.8146 0.8262	6942, 0.8 4656, 0.8	81550964, 83367769,	0.8022865 , 0.83289256, 0.83121901, 0.81797521,	0. 0.	84115702 83452479	2, 0.832 9, 0.835	87879, 35124,	

Heat plot with (5 * 4) mean accuracies for different values of number of trees and maximum depth:

We can conclude from the heat map that max depth of 5 with 150 trees provides the best accuracy of 84.11%

PCA features:

```
# RF with PCA
       DTbase = RandomForestClassifier(max_features = 'auto', random_state = 0)
       param_grid = {
              'n_estimators' : [5, 10, 50, 150, 200],
             'max_depth': [3, 5, 10, None],
       DT_fit = GridSearchCV(estimator=DTbase, param_grid=param_grid, cv = 10, refit='accuracy_score')
       DT result = DT fit.fit(pca features, y)
       results df = pd.DataFrame(DT result.cv results )
       results df
   mean_fit_time std_fit_time mean_score_time std_score_time param_max_depth param_n_estimators
                                                                                                       params mean_test_score std_test_score rank_test_score
                                                                                                   {'max_depth'
        0.012742
                      0.001647
                                      0.002435
                                                     0.000412
                                                                                                                      0.616997
                                                                                                                                    0.042880
                                                                                                                                                        20
                                                                                               5 'n_estimators'
                                                                                                   {'max_depth':
        0.020724
                      0.000426
                                      0.002933
                                                     0.000255
                                                                                                                                    0.043976
                                                                                               10 'n_estimators'
                                                                                                                      0.621129
                                                                                                                                                        19
                                                                                                   {'max_depth'
        0.097238
                      0.005845
                                      0.008004
                                                     0.000570
                                                                                              50 'n_estimators': 50}
                                                                                                                                    0.045664
                                                                                                   {'max_depth':
         0.284575
                      0.006652
                                      0.021331
                                                     0.002061
                                                                                              150 'n_estimators':
                                                                                                                                    0.042470
                                                                                                                      0.625262
                                                                                                                                                        16
                                                                                                   {'max_depth':
        0.369913
                      0.007628
                                      0.026685
                                                     0.002215
                                                                                              200 'n_estimators':
                                                                                                                      0.624428
                                                                                                                                    0.043676
                                                                                                                                                        17
                                                                                                  {'max_depth':
        0.012697
                     0.000923
                                      0.002388
                                                     0.000413
                                                                                                                0.652534
                                                                                                                                0.056588
                                                                                                                                                       14
                                                                                                 'n_estimators':
                                                                                                  {'max_depth':
                                                                                                 'n_estimators':
10}
        0.023028
                      0.001857
                                      0.003090
                                                     0.000427
                                                                                                                0.659986
                                                                                                                                0.057524
                                                                                                                                                       12
                                                                                                  {'max_depth':
                                                                                                                0.669931
                                                                                                                                0.049012
                                                                                                                                                       10
        0.102191
                      0.001932
                                      0.008162
                                                     0.001040
                                                                                                 'n_estimators'
                                                                                                  {'max_depth':
                                                                                                                0.663292
                                                                                                                                0.051744
                                                                                                                                                        11
        0.304221
                      0.003543
                                      0.020213
                                                     0.000635
                                                                                                 'n_estimators':
150}
                                                                                                  {'max_depth'
                                                                                                                                0.047006
        0.405902
                      0.006650
                                      0.029259
                                                     0.004108
                                                                                             200 'n_estimators': 200}
                                                                                                  {'max_depth': 10,
        0.015263
                      0.002009
                                      0.002439
                                                     0.000191
                                                                           10
                                                                                                                0.651729
                                                                                                                                0.054863
                                                                                                                                                       15
10
                                                                                              5 'n_estimators':
                                                                                                  {'max_depth'
                                      0.003149
11
        0.028414
                      0.001525
                                                     0.000124
                                                                           10
                                                                                                                0.703017
                                                                                                                                 0.059784
                                                                                                 'n_estimators'
                                                                                                  {'max_depth':
12
        0.122018
                      0.002599
                                      0.008878
                                                     0.000835
                                                                           10
                                                                                              50 'n_estimators':
                                                                                                                0.698877
                                                                                                                                 0.044754
                                                                                                  {'max_depth':
                      0.004700
                                      0.022204
13
        0.354898
                                                                                                 'n_estimators':
                                                                                                                0.698836
                                                                                                                                 0.052454
                                                                                                  {'max_depth':
        0.476229
                     0.007589
                                      0.031783
                                                     0.003256
14
                                                                           10
                                                                                            200 'n_estimators':
                                                                                                                0.698850
                                                                                                                                 0.050192
```

16 0.028417 0.000871 0.003956 0.002662 None 10 None, None, None, None, None 0.2417 0.2417 0.00871 0.003956 0.002662 None Following Managers, None, None, None (max.depth; None, N	19	0.507097	0.007671	0.029216	0.000636	None	{'max_depth': None, 'n_estimators': 200}	0.681529	0.061904	9
16 0.028417 0.000871 0.003956 0.002662 None 10 None, 10 N	18	0.395652	0.010129	0.022607	0.000550	None	150 None, 'n_estimators':	0.695565	0.066476	8
16 0.028417 0.000871 0.003956 0.002662 None 10 None, 0.411560 0.021735	17	0.135405	0.007303	0.009035	0.000270	None	50 'n_estimators':	0.707955	0.049690	3
finax denthi	16	0.028417	0.000871	0.003956	0.002662	None	'o 'n_estimators':	0.711260	0.054232	1
### (max_depth*: 0.000956 0.002481 0.000273 None 5 max_depth*: 0.000956 0.002481 0.000273 None 5 max_depth*: 0.004059	15	0.015524	0.000956	0.002481	0.000273	None	None, ⁵ 'n_estimators':	0.709601	0.054029	2

```
import numpy as np
    data = np.array(results_df["mean_test_score"])
    data
    array([0.61699725, 0.62112948, 0.62442837, 0.62526171, 0.62442837,
           0.65253444, 0.65998623, 0.66993113, 0.66329201, 0.65833333,
           0.65172865, 0.70301653, 0.69887741, 0.69883609, 0.69884986,
           0.68152893, 0.69556474, 0.70795455, 0.71126033, 0.70960055])
     data = data.reshape(4,5)
     import seaborn as sns
     plt.title('Mean Accuracy vs Max Depth- Heat Plot PCA')
     ax = sns.heatmap(data, annot=True, fmt='f')
8
         Mean Accuracy vs Max Depth- Heat Plot PCA
         0.616997 0.621129 0.624428 0.625262 0.624428
                                                        - 0.70
                                                        - 0.68
        - 0.652534 0.659986 0.669931 0.663292 0.658333
                                                        - 0.66
         0.651729 0.703017 0.698877 0.698836 0.698850
                                                        - 0.64
         0.681529 0.695565 0.707955 0.711260 0.709601
                                                        - 0.62
            ó
```

We can conclude from the heat map that max depth of None with 150 trees provides the best accuracy of 71.12%

Original Features:

Label	Max_Depth	No. of trees	Accuracy
Confirmed	5	10	96.27%
Recovered	10	10	93.33%
Deaths	3	150	92.39%

PCA Features:

Max_Depth	No.of tress	Accuracy		
None	150	71.12%		

Decision Tree is prone to overfitting and ensemble method like Random Forest helps to tackle this issue.

It can be observed that Random Forest has the best accuracy on all the 3 labels compared to all the other tree based classifiers and Naive Bayes on the covid dataset