

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC ELECTE SEP 21 1990

USNS BARTLETT CRUISE

TO THE GREENLAND SEA IN SEPTEMBER 1989

DATA REPORT

Robert H. Bourke, Robert F. Blythe, and Robert G. Paquette

JULY 1990

Interim Report for Period August 1989-June 1990

Approved for public release; distribution is unlimited

Prepared for: Director, Arctic Submarine Laboratory Naval Oceans Systems Center San Diego, CA 92152

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral R. W. West, Jr. Superintendent

Harrison Shull Provost

This work was prepared in conjunction with research sponsored by the Arctic Submarine Laboratory, Naval Ocean Systems Center, San Deigo, California and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

ROBERT H. BOURKE

Professor of Oceanography

ROBERT G. PAQUETTE

Professor of Oceanography

ROBERT F. BLYTHE

LT, USN

Reviewed by:

CURTIS A. COLLINS

Chairman

Department of Oceanography

Released by:

GORDON E. SCHACHER Dean of Science and

Engineering

REPORT DOCUMENTATION PAGE								
1a. REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS					
Unclassified								
2a. SECURITY CLASSIFICATION AUTHORITY			AVAILABILITY OF for public re	REPORT elease, di	stribution			
26 DECLASSIFICATION / DOWNGRADING SCHEDU	JLE	unlimite	ed.					
4 PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5 MONITORING	ORGANIZATION RE	PORT NUMBER	R(S)			
NPS 86-90-006								
6a NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL	1	ONITORING ORGAN					
Naval Postgraduate School	(If applicable)	Arctic Sul	bmarine Labor	ratory				
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit Code 19,	ry, State, and ZIP Co	ode)				
Monterey, Ca 93943		Naval Ocea	an Systems Ce , Ca 92152	enter				
8a NAME OF FUNDING / SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATION N	IUMBER			
Naval Postgraduate School			ect Funding					
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBERS					
Monterey, Ca 93943		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO.			
11 TITLE (Include Security Classification)		L <u> </u>	4					
USNS BARTLETT CRUISE TO THE G	REENLAND SEA IN	SEPTEMBER 19	89, DATA REPO	ORT				
12 PERSONAL AUTHOR(S) Robert H. Bourke, Robert F. B				· · · · · · · · · · · · · · · · · · ·				
13a TYPE OF REPORT 13b TIME O	OVERED		RT (Year, Month, D	lav) 15 PAG	E COUNT			
Interim FROMAUS	89 то Jun 90	July 1990		12	E COUNT 2			
16 SUPPLEMENTARY NOTATION					·			
17 COSATI CODES	18 SUBJECT TERMS (Continue on revers	e if necessary and	identify by bio	ock number)			
FIELD GROUP SUB-GROUP	Greenland Se	ea Norwegian Sea Deep Water						
	Jan Mayen Cu			and Sea Pr	roject			
19. ABSTRACT (Continue on reverse if necessary	Greenland Se	<u>a Deep water</u>	·					
As a component of the Gree the USNS BARTLETT during Septem water mass structure and circul high-quality CTD stations were or more. Five north-south tend temperature (<0°C), low salinitits warm, saline intermediate w Jan Mayen Fracture Zone suggest Greenland and Norwegian Seas viadvective feature as previously. 20 DISTRIBUTION AVAILABILITY OF ABSTRACT WORLDSSIFIED UNLIMITED	ber 1989 in the ation features o occupied to depting transects pey near-surface cater properties. that the intercathis trough is thought.	southern Gre f the Jan Ma hs of 1000 m rmitted trac ore. The JM Deep stati hangeof deep a slow diff	enland Sea to yen Current; five static king of the C could also ons made in and bottom usive process	o characte (JMC). A ons extend JMC by its be well of the trough water from s and not	erize the total of 48 ded to 3000m s low defined from a of the an active			
22a NAME OF RESPONSIBLE INDIVIDUAL			Include Area Code)		SYMBOL			
Robert H. Pourke		(408) 646-	32/0	OC/BF				

DD FORM 1473, 84 MAP

USNS BARTLETT CRUISE TO THE GREENLAND SEA IN SEPTEMBER 1989 DATA REPORT

by

Robert H. Bourke, Robert F. Blythe, and Robert G. Paquette

ABSTRACT

As a component of the Greenland Sea Project, a hydrographic cruise was conducted on board the USNS BARTLETT during September 1989 in the southern Greenland Sea to characterize the water mass structure and circulation features of the Jan Mayen Current (JMC). A total of 48 high-quality CTD stations were occupied to depths of 1000 m; five stations extended to 3000 m or more. Five north-south tending transects permitted tracking of the JMC by its low temperature (< 0°C), low salinity near-surface core. The JMC could also be well defined from its warm, saline intermediate water properties. Deep stations made in the trough of the Jan Mayen Fracture Zone suggest that the interchange of deep and bottom water from the Greenland and Norwegian Seas via this trough is a slow diffusive process and not an active advective feature as previously thought.

I. INTRODUCTION

In support of the multinational Greenland Sea Project (GSP) a hydrographic cruise was conducted on board USNS BARTLETT (T-AGOR-13) during the month of September 1989 by personnel from the Naval Postgraduate School (NPS), Scripps Institution of Oceanography, and the University of Paris. The cruise statistics are presented in Table 1. The GSP is a five year effort to monitor the water mass and current structure of the Greenland Sea on a nearly continuous basis. Such monitoring is necessary as the Greenland Sea acts as the gateway between the cold, fresh polar waters of the Arctic Ocean and the warm, salty waters of the Atlantic Ocean. Climatological changes in one basin are transmitted to the other through the Greenland Sea.

The Greenland Sea is dominated by a broad cyclonic circulation. Polar Water (PW) exiting the Arctic basin flows southward along the east coast of Greenland. Between 72°N and 74°N a branch of the PW flows eastward, presumably guided by bathymetric fracture zones, to eventually join with the northward flowing Norwegian-Atlantic Current near the mid-ocean ridge system. This eastward flowing branch, termed the Jan Mayen Current (JMC), is a major source of ice and fresh water to the circulation in the Greenland Basin. Characterizing the properties of this current was the major objective of the BARTLETT 89 cruise.

Table 1. BARTLETT Cruise Statistics

Vessel: USNS BARTLETT (T-AGOR-13)

Depart: Tromso, Norway 6 September 1989

Return: Trondheim, Norway 23 September 1989

Miles travelled: 2784 n mi

Number of shallow stations (0 - 1000 m): 43

Number of deep stations (3000 m): 5 Stations 2,11,21,40, and 48

Total stations: 48

Instrumentation: Neil Brown MK III CTD with 12-place rosette sampler with 2 liter Niskin bottles and low temperature range (-2°C to +2°C) reversing thermometers

Nominal bottle depths:

Shallow stations: 1000, 900, 800, 700, 600, 500, 400, 300,

200, 100, 75, and 10 m

Deep stations: 3000, 2800, 2600, 2400, 2200, 2000, 1800,

1600, 1400, 1100, 700, and 300 m

Thermometers usually on bottles at 1000, 800, and 75 m depth

Scientific Party:

Professor Robert H. Bourke, Chief Scientist, NPS Professor Jean-Claude Gascard, NPS and University of Paris

LT Robert F. Blythe USN, NPS student

Ms. Marla D. Stone, NPS technician

Mr. Vernon N. Anderson, NPS technician

Mr. David A. Muus, ODF/SIO research associate

Mr. Julien J. Gascard, University of Paris

II. OBJECTIVES

Other than surveys conducted throughout the summer and winter of 1958 as part of the International Geophysical Year (IGY) (Dietrich, 1969), the winter cruise of the HUDSON in 1982, and the spring cruise of the METEOR in 1982 (Koltermann and Luthje, 1989) few observations have been made of the JMC, the southern limb of the Greenland Sea gyre. The purpose of the cruise was to measure and quantify specific features of this current such as its speed, volume flow rate, areal extent, water properties, and fresh water contribution. Data were collected to address the following specific objectives:

- Determine the latitudinal extent of the eastward flow, i. e., establish the northern and southern boundaries of the JMC as it departs from the East Greenland Current (EGC),
- 2. Establish its relation to the bathymetric fracture zones which are presumed to steer it,
 - 3. Determine the eastward extent of the JMC,
- 4. Determine the frontal characteristics of the northern and southern boundaries of the JMC,
- 5. Determine the flow rate of the JMC based on geostrophic calculations and ice drift rates, and
- 6. Determine the volume of fresh water carried into the Greenland gyre by the JMC.

In addition to the hydrographic survey, there were two ancillary objectives relating to the GSP.

- 1. Install four autonomous listening arrays (ALSs) on shallow (< 2000 m) promontories. These arrays are designed to track the motion of SOFAR floats. The floats, nominally drifting at 100 m or 1000 m depth, were deployed in the Arctic Ocean north of Svalbard last summer (1988) as part of the CEAREX Project.
- 2. Make deep water CTD casts to re-affirm the theory of formation of Norwegian Sea Deep Water (NSDW). The prevalant theory (Swift and Koltermann, 1988) is that NSDW is derived from a mixture of Eurasian Basin Deep Water (EBDW) and Greenland Sea Deep Water (GSDW). The product of this mixture, "new" NSDW, is thought to enter the Norwegian Sea principally via a trough in the deep fracture zone just north of Jan Mayen Island.

An analysis of the cruise data which addresses these objectives is reported in the Master's thesis of Blythe (1990).

III. CRUISE PLAN

In order to achieve the objectives outlined above a series of north-south tending hydrographic lines were laid out from 72°N to 75°N which were expected to pass through the anticipated course of the Jan Mayen Current. The positions of these hydrographic lines were based on a CTD

station census plan produced by the GSP Steering Committee to aid GSP participants in setting up their cruise plans (Figure 1). The desired goal of the census plan is to achieve as many repeat samplings of the water column as possible during the five years of the project in order to establish seasonal and interannual fluctuation statistics. Also shown on this chart is the location of an intercalibration site (71°N, 4°E) near the center of the Lofoten Basin whose purpose is to determine the uniformity of deep water measurements among GSP investigators.

The position of the actual CTD stations and cruise track are shown in Figure 2 and listed in Table 2. As can be seen, our stations are more closely spaced (35 to 50 km apart), often with two or more stations located between a pair of GSP primary stations. To optimize our station plan within the time constraints of the cruise, it was necessary to limit most of the CTD observations to 1000 m depth.

Water samples were collected at 12 depths at approximately 100 m intervals for salinity and dissolved oxygen measurements. At appropriate locations deep water CTD casts to 3000 m (or the sea bottom) were made to assess the nature of the deep water; their locations are shown in Figure 2 with solid circles. Deep water samples were nominally collected at 200 m intervals over the 1000 m to 3000 m depth range. See Table 1 for specific details.

Figure 1. Hydrographic sampling plan for the Greenland Sea Project. The intercalibration site in the Lofoten Basin is to be sampled by all participants in the GSP to aid in intercomparison of data. Bottom contours (meters) and major bathymetric features are shown.

Figure 2. Trackline and location of CTD stations during the BARTLETT 89 cruise to the Greenland Sea. CTD stations extending to near bottom (3000 m) are denoted by solid circles. The location of vertical cross-sections are shown as Transects A through E.

Table 2. CTD Station Data

Sta	Lat	Long	Date	Hour	Bottom depth
	(deg-min)	(deg-min)			(m)
1	75-35.3N	000-00.0E	9	17.5	3750
2*	76-13.7N	003-27.7W	10	04.8	3580 2690
3	76-32.5N	004-32.6W	10 10	11.6 13.9	2290
4	76-36.1N	004-47.1W 004-03.8W	10	18.3	3510
5	76~17.5N 75~51.6N	004-46.8W	11	01.5	3410
6 7	75~35.8N	005-30.5W	11	05.6	3410
8	75~15.4N	006-38.0W	11	10.4	3440
9	75-00.7N	007-36.3W	11	14.1	3360
10	74-44.9N	008-12.1W	11	17.3	3320
11*	74-28.1N	009-03.1W	11	20.9	323 0
12	73-55.3N	010-30.5W	12	05.5	3010
13	73-22.7N	012-01.9W	12	11.0	2740
14	72-52.4N	013-28.4W	12	16.4	2450
15	72-22.2N	014-52. 0W	12	21.8	1950
16	71-49.9N	016-15.7W	13	03.1	1120
17	71-14.4N	013-56.7W	13	10.1	930
18	71-39.4N	013-20.9W	13	14.5	1740
19	72-03.3N	012-24.7W	13	19.0	2350
20	72-27.1N	011-16.4W	14	02.8	490 2880
21*	73-02.1N	009-38.5W	14 14	13.4 21.0	2970
22	73-25.1N	008-33.1W	15	02.6	3240
23	73-44.7N	007-17.4W 006-13.9W	15	06.4	3380
24 25	74-02.4N 74-20.5N	005-06.5W	15	10.4	3460
25 26	74-40.6N	003-00.5W	15	14.8	3740
27	75-00.1N	002-30.6W	15	19.0	3640
28	75-16.4N	001-13.1W	15	22.9	3690
29	74-59.2N	000-42.7E	16	08.5	3710
30	74-44.6N	000-25.2W	16	12.1	3710
31	74-25.4N	001-42.3W	16	15.9	3640
32	74-08.4N	003-01.1W	16	19.8	3600
33	73-47.4N	004-06.3W	16	23.8	3690
34	73-26.7N	005-09.5W	17	04.0	3030
3 5	73-05.3N	006-17.0W	17	08.2	2600
36	72-41.1N	007-25.4W	17	12.5	2300 2520
37	72-17.0N	008-30.0W	17	17.0 21.6	2500
38	71-52.2N	009-42.7W	17	02.4	1800
39	71-27.0N	010-47.1W	18 18	08.3	2220
40*	71-21.4N	009-04.7W 007-49.0W	18 18	17.5	2000
41 42	71-44.8N 72-08.1N	007-49.0W 006-38.5W	19	00.1	2880
42	72-06. IN 72-31. ON	005-26.1W	19	05.4	2640
44	72-52.8N	003-57.3W	19	14.2	2050
45	73-20.0N	003-01.4W	19	19. i	3000
46	72-46.5N	003-01.6W	19	23.9	2790
47	71-54.4N	004-14.5W	20	06.8	1070
48*	70-59.1N	006-31.1W	20	14.9	3610

^{*} Deep Cast (-1000 dbar)

IV. INSTRUMENT CALIBRATION

A basic philosophy of the GSP was calibration of instruments from all participants at a common location. This was to insure that data could be interchanged among all participants with no instrument biases. To achieve this goal all CTD's were calibrated, both statically and dynamically, at the Ocean Data Facility of Scripps Institution of Oceanography (ODF/SIO). The NPS four-sensor Neil Brown MK III CTD was shipped to the ODF for pre-cruise calibration. A post-cruise calibration was also conducted by the ODF. These two calibrations comprised the temperature and pressure corrections. While at sea David Muus, a member of the ODF staff, ran salinity and dissolved oxygen samples for us. A 12-place rosette sampler was provided by the ODF as well as three racks of lowtemperature (-2°C to +2°C) reversing thermometers. Water samples were collected at all but two stations. In order to further enhance the intercomparison of data among GSP investigators all salinities were run against a common lot of oceanographic standard water (Wormley batch number 108).

The CTD data acquisition program is designed to permit 8616 data bytes to be collected, evenly spaced over the depth range selected prior to lowering. Hence, for our nomimal 1000 m depth casts, approximately nine observations

would be collected per meter. The instrument was lowered at a nearly constant rate of 60 m min⁻¹, varying with the roll of the ship. Deep casts were done in two segments, 0 to 1000 m and 1000 m to 3000 m. The sampling rate for the deep segments was 4.3 observations per meter.

The temperature sensor was calibrated at temperatures throughout the useful range to an accuracy better than 0.001°C. The post-cruise corrections were 0.002°C smaller and an average between the two correction curves was applied. There was a narrow region near 0°C where the output of the CTD could be double-valued with a maximum difference of 0.0014°C, depending on the direction from which 0° was approached. Considering both of these non-idealities, the use of a single correction equation for temperature results in general accuracies of about +0.002°C.

The pressure sensor was calibrated to accuracies better than 1 dbar. The post-cruise calibration was similar in form to the pre-cruise calibration but had shifted negative by 0.001 dbar. However, the calibration under increasing pressure differed from that under decreasing pressure by a maximum of 6 dbar. Principally because of this hysteresis the final pressures are deemed accurate only to ±3 dbar.

The salinity correction was found to be pressuresensitive, the correction varying not completely regularly with time over a range of 0.043 PSU at 3000 dbar and a range of 0.012 PSU below 1000 dbar. The deep lowerings of the five deep stations therefore were corrected individually while all the remaining lowerings were corrected with a single regression equation. Accuracies in salinity were judged by comparing the final edited salinities from the down traverse of the CTD with the bottle salinities obtained on the up traverse. Mean offsets were not significant and on the deep lowering the standard deviation of the comparisons was 0.0023 PSU.

In the shallow lowerings, the differences were high near the surface, presumably because the same water column was not being sampled on the up and down traverses.

Outliers therefore were removed to arrive at a standard deviation in salinity of 0.003 PSU.

VI. ACKNOWLEDGEMENTS

This work was sponsored by the Arctic Submarine

Laboratory and funded by the Naval Postgraduate School. We are pleased to acknowledge the support and assistance of the Ocean Data Facility of Scripps Institution of Oceanography in calibrating the CTD and to David Muus for his patient and careful salinity and dissolved oxygen sample analysis. We are grateful for the enthusiastic help provided by the officers and men of the USNS BARTLETT.

VII. REFERENCES

Blythe, R. F., The Jan Mayen Current and the deep waters of the Greenland Basin, Master's thesis, Naval Postgraduate School, Monterey, September 1990.

Dietrich, G., Atlas of the hydrography of the northern North Atlantic, 140 pp., Int. Counc. Explor. Sea., Copenhagen, 1969.

Koltermann, K. P. and H. Luthje, Hydrographic atlas of the Greenland and northern Norwegian Seas (1979-1987), Deutsches Hydrographisches Institut, Nr. 2328, Hamburg, 1989.

Swift, J. H. and K. P. Koltermann, The origin of Norwegian Sea deep water, <u>J. Geophys. Res.</u>, 93(C4), 3563-3569, 1988.

APPENDIX A

For each CTD cast station identification and position information based upon satellite navigation are listed as well as environmental conditions at the time of the cast. The edited data, originally recorded at about 9 samples per meter or at approximately 10 cm intervals, are shown subsampled at approximately standard depths. The data for the five deep stations (2, 11, 21, 40, and 48) are listed at 200 m intervals for depths below 1000 m.

Abbreviations and units should be mostly self evident. We have chosen units for electrical conductivity and for the specific volume anomaly (SVA) so that the tabulated data are numerically the same as the units conventionally used in oceanography prior to the advent of SI units.

Note that the dynamic depth, for lowerings not starting at zero pressure, is extrapolated down from the surface as though the water column above the topmost sample had the properties of that sample. There is little error if the top depth is within the mixed layer. The only shallow station with appreciable error is No. 29 which started at 35 m depth, a little below the mixed layer. At this depth the dynamic depth should be about 0.030 dynamic meters. All the deep stations have their dynamic depths in error. To correct, subtract from all values the dynamic depth of the

topmost record and add the dynamic depth from the bottom of the shallow lowering.

Final edited data tapes have been prepared and forwarded to NODC. These tapes list the data at one meter intervals to 1000 m and at two meter intervals below that.

STATION 1 75-35.3N 0- 0.uW 9/ 9/89 17.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 10/ 45, AIR TEMP. 4.0° C, DEW PT 4.0° C

PRESS DBAR	TEMP °C	SAL TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.1 10.0 15.1 20.0 25.0 30.0 46.1 50.0 75.0	3.481 3.484 3.476 3.474 3.474 3.466 3.346 -1.230 -1.070	34.532 34.533 34.532 34.532 34.531 34.531 34.581 34.692 34.770	1463.8 1463.9 1464.0 1464.1 1464.2 1464.3 1450.9 1444.2	27.465 27.466 27.466 27.467 27.466 27.466 27.467 27.469 27.748 27.912	31.697 31.703 31.697 31.698 31.699 31.702 31.696 31.676 29.035 27.792 27.996	3.481 3.484 3.476 3.473 3.473 3.464 0.344 -1.232 -1.072	27.466 27.467 27.466 27.467 27.466 27.467 27.467 27.470 27.470 27.913 27.910	60.622 60.591 60.669 60.640 60.753 60.748 60.7567 33.853 18.035	0.000 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.029 0.035 0.039
150.0	-0.109	34.885	1450.9	28.003 28.019	28.922	-0.115	28.003	9.526 8.153	0.042
175.1 200.0 250.0 300.0	-0.269 -0.293	34.883 34.892	1451.0 1451.7	28.022 28.025 28.034 28.040	28.807 28.816		28.026 28.035	7.860 7.431 6.554 5.894	0.046 0.048 0.051 0.054
350.0 400.1 450.0 500.1	-0.480 -0.550	34.900 34.897	1453.4 1453.9	28.045 28.049 28.050 28.052	28.730 28.691		28.050	5.288 4.788 4.530 4.170	0.057 0.060 0.062 0.064
600.0	-0.733 -0.855 -0.915 -0.951	34.895 34.895 34.895 34.895	1455.5 1456.6 1458.0 1459.5	28.056 28.061 28.065 28.066 28.067	28.601 28.541 28.536 28.549	-0.754 -0.880 -0.944 -0.983	28.058 28.062 28.066 28.068	3.398 2.537 1.804 1.325 0.647	0.068 0.071 0.073 0.075 0.075

STATION 2 76-15.4N 3-30.7W 9/10/89 5.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 11/ 35, AIR TEMP. .0° C, DEW PT .0° C

	76-13.7N 3- R 10/ 0, AIR		9/10/89 3.4° C,		HRS GMT, [3.4° C	988 RI	ECORDS
PRESS TEMP DBAR °C	SAL'TY SNDSPD PSU m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
1000.1 -1.046 1200.0 -1.053 1400.1 -1.052 1600.0 -1.057 1800.1 -1.048 2000.1 -1.039	34.888 1460.7 34.888 1460.7 34.892 1464.1 34.896 1467.4 34.896 1470.8 34.897 1474.2 34.900 1477.7 34.900 1481.1	28.064 28.068 28.071 28.071 28.072 28.073	28.507 28.591 28.680 28.760 28.852 28.942	-1.082 -1.098 -1.107 -1.123 -1.125 -1.129	28.070 28.073 28.074 28.075 28.077		• • • • •
2400.0 -1.052 2600.0 -1.053 2800.0 -1.055	34.900 1484.5 34.897 1487.9 34.897 1491.3	28.074 28.072 28.072	29.092 29.166 29.242	-1.168 -1.184 -1.200	28.079 28.077 28.078	-4.156 -4.681	-0.023 -0.031 -0.039 -0.048

STATION 3 76-32.8N 4-33.4W 9/10/89 11.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 9/360, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10 ⁸	DYNDTH DYN M
DBAR 0.0 5.0 10.0 15.0 20.1 25.0 40.0 75.1 100.0 155.0 125.0 125.0 125.0 130.0	0.856 1.347 3.151 3.531 3.733 4.625 4.148 2.346 1.502 1.293 1.501 1.435 1.359 1.162	PSU 32.452 34.822 34.261 34.651 34.755 34.755 34.816 34.933 34.941 34.941 34.954	m/s 1449.4 1452.2 1462.0 1465.0 1465.2 1467.4 1459.9 1456.4 1457.6 1457.6	kg/m ³ 26.005 26.259 27.170 27.247 27.296 27.444 27.537 27.747 27.859 27.946 27.966 27.962 27.982 27.996 28.005	27.802 28.483 31.074 31.525 31.782 32.827 32.848 30.899 30.211 30.084 30.234 30.234 30.236 30.237 30.019	0.856 1.347 3.150 3.530 3.734 4.623 4.146 2.344 1.500 1.496 1.496 1.452 1.153 1.026	Kg/m ³ 26.005 26.260 27.171 27.248 27.297 27.445 27.537 27.747 27.859 27.918 27.961 27.961 27.973 27.984 27.997 28.006	x108 199.185 175.028 88.654 81.427 76.817 62.937 54.174 34.206 23.582 18.107 15.552 14.293 13.157 120.963 10.215 9.538	DYN M 0.000 0.009 0.015 0.024 0.027 0.038 0.035 0.037 0.042 0.050 0.054 0.050 0.057
350.1			1457.0				28.018	8.873	0.074
400.0 450.1	0.299	34.920	1456.9	28.029			28.026 28.030	7.972 7.433	0.079 0.082
500.0	-0.008	34.910	1457.2	28.034	29.187	-0.028	28.035	6.728	0.086
600.0 700.0		34.908		28.045		-0.279	28.046 28.054	5.300	0.092 0.097
800.0	-0.423	34.907	1458.6 1459.9			-0.545		4.195 3.316	0.100
					28.925		28.066	2.613	0.103
998.0					28.981		28.071	2.060	0.106

STATION 4 76-36.1N 4-47.1W 9/10/89 14.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 4/310, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND ds/m	THETA °C	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
DBAR	-0.385 -0.436 -0.349 0.349 1.296 3.042 3.387 3.643 2.972 2.011 1.791 1.370 1.047 1.022 0.801 0.761 0.5336 0.171 0.023	PSU 31.528 31.522 31.6463 32.5504 34.0121 34.482 34.788 34.876 34.925 34.927 34.927 34.939 34.927 34.917	m/s 14422.5 14423.0 14453.7 1465.7 1465.1 1465.1 1458.7 1458.7 1457.1 1457.1 1457.1 1457.2 1457.2	kg/m ³ 25.319 25.316 25.413 26.823 27.094 27.147 27.410 27.666 27.849 27.895 27.959 27.970 27.983 28.000 28.011 28.012 28.023	dS/m 26.105 26.063 26.226 27.996 30.896 31.288 31.816 31.428 30.695 30.579 30.231 29.950 29.781 29.950 29.785 29.325	-0.385 -0.436 -0.349 0.349 1.295 3.040 3.385 3.641 2.969 2.007 1.705 1.705 1.039 1.013 0.790 0.747 0.531 0.153	kg/m ³ 25.320 25.317 25.413 26.0824 27.148 27.410 27.667 27.849 27.960 27.971 27.984 28.013 28.013 28.035	x10* 264.340 264.620 255.399 1921.537 96.027 91.008 66.244 41.950 24.707 20.523 14.394 13.277 12.169 10.548 9.514 8.813 7.419 6.823	DYN M 0.000 0.013 0.027 0.038 0.051 0.056 0.064 0.069 0.077 0.087 0.095 0.095 0.109 0.117 0.121 0.125
600.1 700.0 800.0 900.1	-0.206 -0.358 -0.496 -0.533	34.907 34.906 34.903 34.908	1457.9 1458.9 1459.9 1461.4	28.042 28.049 28.053 28.058	29.060 28.974 28.898	-0.230 -0.386 -0.527 -0.569	28.044 28.050 28.055 28.060	5.642 4.642 3.848 3.132 2.387	0.131 0.136 0.140 0.144 0.146

STATION 5 76-17.5N 4- 3.8W 9/10/89 18.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 11/ 0, AIR TEMP. 3.4° C, DEW PT 3.2° C

STATION 6 75-51.6N 4-46.8W 9/11/89 1.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 15/ 30, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
DBAR 0.0 10.0 10.0 25.0 25.0 30.0 40.0 75.0 1025.0 1025.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0	3.136 3.155 3.160 3.958 2.958 2.655 1.869 1.037 0.740 1.038 0.595 0.038 0.183 0.183 0.365 0.365 0.372	PSU 34.317 34.263 34.472 34.518 34.557 34.667 34.8905 34.928 34.928 34.928 34.908 34.908	m/s 1462.1 1462.2 1462.3 1460.7 1460.8 1457.4 1454.9 14554.6 14554.0 14554.0 14554.7 14554.7	kg/m ³ 27.327 27.282 27.266 27.459 27.530 27.562 27.698 27.964 27.986 27.986 27.988 20.045 28.033 28.045 28.045 28.045	dS/m 31.216 31.190 31.181 31.230 30.977 31.005 30.396 29.870 29.755 29.755 29.755 29.755 29.767 29.767 29.767 29.767 29.767 28.967 28.874 28.874	3.136 3.154 3.160 3.957 2.661 2.653 1.867 1.069 1.033 0.8734 0.702 0.586 0.198 -0.196 -0.276 -0.389	kg/m ³ 27.328 27.282 27.266 27.550 27.5531 27.562 27.699 27.853 27.945 27.987 27.987 27.988 28.034 28.034 28.034 28.034 28.034	x10* 73.728 78.053 79.627 61.7575 54.666 51.686 38.743 24.076 15.462 11.1581 10.562 7.575 6.788 5.972 7.575 6.788 5.978 5.467	DYN M 0.000 0.004 0.008 0.012 0.017 0.020 0.025 0.032 0.032 0.032 0.044 0.051 0.0548 0.0568 0.066
700.0 - 800.0 - 900.0 -	0.677	34.893 34.896 34.900	1457.5 1459.1 1460.5	28.053 28.052 28.055 28.061 28.066	28.699 28.739 28.728	-0.694 -0.707 -0.778	28.053 28.057 28.063	4.070 3.735 3.217 2.322 1.319	0.070 0.074 0.077 0.080 0.082

STATION 7 75-35.8N 5-30.5W 9/11/89 5.1 HRS GMT, 996 RECORDS WIND KNOTS/DIR 20/ 25, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
3.0 5.1 10.0 15.0 225.0 30.0 40.1 50.0 75.1 105.0 175.1 250.1 250.1 250.1 250.0 400.1 250.0	3.2550 3.2559 3.2559 3.3402 2.0620 -0.37649 -0.3767 -0.23557 -0.4955 -0.6188	34.351 34.353 34.353 34.4602 34.4602 34.606 34.891 34.891 34.8991 34.8991 34.8991 34.8991	1462.7 1462.8 1462.9 1463.5 1463.5 1463.7 1458.7 1452.6 1452.3 1452.3 1452.3 1452.3 1455.7	27.343 27.344 27.351 27.351 27.359 27.437 27.647 27.795 27.969 27.969 28.018 28.022 28.032 28.036 28.043 28.052 28.052	31.365 31.347 31.350 31.367 31.368 31.509 31.408 30.528 29.422 28.312 28.611 29.207 29.173 29.090 28.873 28.707 29.658	3.250 3.250 3.258 3.253 3.340 2.060 0.718 -0.647 -0.380 -0.129 0.149 0.040 -0.2365 -0.467 -0.652 -0.652	27.344 27.345 27.351 27.353 27.400 27.438 27.648 27.796 27.917 27.969 27.917 27.969 28.018 28.023 28.033 28.033 28.033 28.0448 28.051 28.053	72.233 72.232 72.131 71.602 70.571 67.067 63.501 43.496 17.794 12.861 10.703 8.981 8.393 7.982 4.962 4.521 4.521 4.521 3.836	0.002 0.007 0.0014 0.0018 0.0018 0.0036 0.039 0.039 0.045 0.0447 0.059 0.0663 0.0663 0.073
900.0 -	-0.809 -0.850	34.892 34.893	1458.5 1460.0	28.058 28.060	28.623 28.633 28.676	-0.838 -0.883		2.694 2.157 1.079	0.076 0.079 0.080

STATION 8 75-15.4N 6-38.0W 9/11/89 10.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 13/ 15, AIR TEMP. .0° C, DEW PT .0° C

STATION 9 75- 0.7N 7-36.3W 9/11/89 14.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 15/ 30, AIR TEMP. .0° C, DEW PT .0° C

5.0	PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m²	SVA ×10*	DYNDTH DYN M
700.0 -1.032 34.886 1455.8 28.062 28.386 -1.055 28.063 2.097 0.067 800.0 -1.034 34.888 1457.4 28.064 28.430 -1.061 28.065 1.610 0.068	DBAR 0.0 5.0 10.1 20.0 25.0 30.1 40.0 50.0 125.0 125.0 175.0 200.0 175.0 200.0 250.0 400.0 400.0 450.0	3.301 3.300 3.2231 3.2231 1.693 0.391 -0.606 -0.6645 -0.6688 -0.7489 -0.820 -0.820 -0.820 -0.820 -0.925	PSU 33.631 33.639 33.808 34.383 34.671 34.699 34.7819 34.862 34.8862 34.873 34.8873 34.8899 34.8888	m/s 1461.8 1461.9 1462.0 1462.4 1460.9 1456.7 1451.7 1447.3 1447.3 1448.8 1448.8 1448.8 1450.1 1451.5 1452.9	kg/m³ 26.764 26.764 26.771 27.072 27.414 27.731 27.841 27.985 28.016 28.024 28.032 28.037 28.040 28.048 28.055 28.055 28.055	dS/m 30.794 30.795 30.804 30.955 30.955 30.955 29.159 28.416 28.430 28.430 28.380 28.380 28.380 28.388	3.302 3.301 3.299 3.2230 2.757 1.691 0.390 -0.605 -0.605 -0.6671 -0.693 -0.754 -0.797 -0.821 -0.811 -0.941	26.765 26.764 26.772 27.727 27.415 27.732 27.841 27.919 27.985 28.025 28.038 28.040 28.049 28.056	x10* 127.091 127.159 126.501 108.059 65.660 35.563 25.111 17.681 11.320 8.319 7.491 6.718 6.160 5.821 5.106 4.734 4.239 3.892 3.618	
	700.0 800.0 900.0	-1.032 -1.034 -1.077	34.886 34.888 34.885	1455.8 1457.4 1458.9	28.062 28.064 28.063	28.386 28.430 28.435	-1.055 -1.061 -1.108	28.063 28.065 28.064	2.097 1.610 1.299	0.064 0.067 0.068 0.070 0.071

STATION 10 74-44.9N 8-12.1W 9/11/89 17.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 14/295, AIR TEMP. 3.5° C, DEW PT 3.3° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA	SIGTH kg/m³	SVA ×10 ⁸	DYNDTH DYN M
0.0 5.0	3.289	34.055	1462.7 1462.4 1462.7	27.104	31.137	3.358 3.289 3.307	27.125 27.105 27.182	92.914 94.900 87.589	0.000 0.005 0.010
10.2 15.1	3.332	34.176	1463.0	27.196	31.278	3.331	27.197	86.244	0.014
20.2 25.0			1463.0 1463.0			3.328 3.291	27.231	85.805 83.042	0.018 0.022
30.0 40.0	1.553		1456.1 1450.9			1.552	27.746 27.876	34.247 21.858	0.025 0.028
50.0	-0.147	34.777		27.933	28.762	-0.148 -0.338	27.934	16.309 9.366	0.030
100.0	-0.326	34.879	1449.1	28.025	28.709	-0.329	28.025	7.585	0.035
150.0	-0.581	34.879	1448.8 1448.7	28.037	28.514	-0.483 -0.586	28.038	6.933 6.255	0.039
		34.880 34.882	1448.8	28.041 28.043		-0.650 -0.672	28.041 28.044	5.833 5.557	0.040 0.041
250.0	-0.706		1449.8	28.046 28.051	28.457	-0.714	28.047 28.052	5.109 4.514	0.044 0.046
350.0	-0.776	34.888		28.053	28.447			4.228	0.049
450.0	-0.921	34.884	1452.1	28.056	28.365	-0.936	28.057	3.544	0.052
600.0	-1.049		1454.0	28.051	28.316		28.052	3.139 3.360	0.057
			1455.7 1457.1		28.378 28.365		28.063 28.063	2.133 1.634	0.059 0.061
900.0	-1.120	34.882	1458.7	28.062	28.396 28.491	-1.151 -1.105	28.064 28.072	1.263 0.386	0.063 0.064

STATION 11 74-28.3N 9- 3.7W 9/11/89 21.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 10/ 0, AIR TEMP. 3.3° C, DEW PT 3.2° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³		THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.0	2.812	32.488		25.895	29.441	2.812	25.917 25.896	207.521 209.598	0.000 0.010
10.0 15.0	2.965		1460.4		30.388	2.964	26.327 26.675	168.719 135.667	0.020
20.0 25.1	1.326	34.640		27.733	29.912	1.325	27.589 27.734	49.123 35.355	0.032
30.0 40.0	0.137		1450.0		28.969	0.135	27.801 27.886	28.977 20.855	0.035
50.0 75.0 100.1	0.511	34.907	1450.3 1452.5 1452.5	28.002	29.438	0.508	27.933 28.002 28.007	16.447 9.937 9.533	0.040 0.043 0.046
125.0	0.143	34.892	1451.7	28.011	29.132		28.012	8.990 8.149	0.048
175.0 200.0	-0.217	34.889	1450.8 1451.2	28.027	28.843	-0.223	28.028	7.305 6.972	0.052
300.0	-0.527	34.893	1450.7 1451.5	28.046	28.640	-0.537	28.047	6.048 5.187	0.057 0.060
400.1	-0.654	34.893	1451.9	28.052	28.577	-0.667	28.053	4.753 4.355	0.062
450.1 500.1	-0.830	34.892	1453.0 1453.4 1454.4	28.059	28.472	-0.847	28.060	3.976 3.242 3.061	0.066 0.068 0.072
	-1.027	34.881	1455.8	28.058	28.386		28.059	2.494 1.997	0.074
900.0	-1.014	34.887	1459.2 1460.8	28.062	28.490	-1.045	28.064	1.558 0.716	0.078

STATION WIND KNO		74-28.11 7 6/ 8	9- 30, AIR	3.1W TEMP.	9/11/89 3.1° C,		HRS GMT, 5.1° C	987 RI	ECORDS
PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
998.0 - 1000.0 - 1200.0 - 1400.1 - 1600.0 -	1.072 1.075 1.070	34.878 34.889 34.892	1460.6 1463.9 1467.3	28.057 28.066 28.069	28.570 28.662	-1.107 -1.120 -1.125	28.058 28.068 28.071	1.557 1.596 0.138 -0.676 -1.321	0.000 0.000 0.002 0.001 -0.001
1800.1 - 2000.0 - 2200.0 - 2400.0 -	1.065	34.895 34.898 34.899	1474.1 1477.7 1481.1	28.071 28.072 28.073	28.836 28.940 29.016	-1.142 -1.131 -1.149	28.074 28.076 28.077	-1.994 -2.534 -3.145	-0.004 -0.009 -0.015 -0.021
2600.0 - 2800.0 - 2968.0 -	1.056	34.896	1491.3	28.071	29.240	-1.201	28.077	-4.611	-0.029 -0.038 -0.046

STATION 12 73-55.3N 10-30.5W 9/12/89 5.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 25/ 20, AIR TEMP. .0° C, DEW PT .0° C

	MP SAL'TY C PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 2.3 5.0 2.3 10.0 2.3 15.1 2.3 20.0 2.4 30.0 1.8 40.0 1.8 40.0 1.8 75.0 1.0 100.0 0.7 125.1 0.6 150.0 0.2 250.0 0.2	12 32.086 12 31.905 12 31.905 12 31.898 032 33.321 49 33.322 49 33.322 49 34.113 57 34.623 45 34.694 93 34.875 15 34.875 16 34.877 17 34.877 18 34.877 17 34.877 17 34.877 17 34.877 18 34.877 18 34.877 19 34	1455.4 1455.5 1455.6 1456.5 1456.5 1456.5 1456.5 1456.5 1453.7 1453.9 1453.9 1453.9 14553.9 14557.0	25.614 25.508 25.470 25.463 25.616 27.007 27.286 27.515 27.846 27.515 27.884 27.979 27.992 28.003 28.032 28.032 28.032 28.032	28.698 28.596 28.5562 29.5562 29.5587 29.5687 29.799 29.487 29.379 29.487 29.379 29.379 29.379 29.379 29.379 29.379 29.379 29.379 29.378 28.678 28.678 28.678 28.6596	2.312 2.311 2.323 2.4130 1.847 1.661 1.654 1.031 0.741 0.688 0.278 0.034 -0.239 -0.559 -0.587 -0.786	25.615 25.508 25.470 25.464 26.617 27.008 27.287 27.515 27.515 27.856 27.983 28.004 28.033 28.033 28.033 28.033	236.310 246.448 250.676 203.554 141.208 104.167 77.726.126 34.797 21.154 14.392 12.133 10.889 9.6879 7.307 6.177 6.169 5.937 4.512	0.002 0.0125 0.025 0.037 0.049 0.058 0.0643 0.079 0.098 0.112 0.1127 0.1131 0.127 0.1334 0.1433 0.1453
	52 34.860						3.714	0.150

STATION 13 73-22.7N 12- 1.8W 9/12/89 11.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 11/ 20, AIR TEMP. 3.6° C, DEW PT 3.4° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	GOND dS/m	THETA °C	SIGTH kg/m³	SVA ×10°	DYNDTH DYN M
1.0	1.277	30.639	1448.9	24.524	26.716	1.276 1.277 1.277		340.104 340.073	0.003
10.0 15.0	1.284	30.657	1449.0 1449.2	24.538	26.740	1.284	24.539	340.022 338.645	0.034 0.051
20.0 25.0			1450.0 1447.0			0.608		121.919 66.588	0.065 0.069
30.0	0.252	34.285	1449.7	27.515	28.721	0.251	27.515	55.937	0.072
40.0 50.1	0.427 0.898	34.512	1451.0 1453.5	27.780	29.048	0.426	27.689 27.781	39.529 30.941	0.077 0.080
75.1 100.0	1.351		1456.2 1456.0				27.894 27.923	20.371 17.625	0.087 0.091
125.2	1.221	34.903	1456.5	27.952	30.073	1.215	27.953	14.943	0.095
150.0 175.0	1.071		1456.3			1.064	27.966 27.979	13.752 12.516	0.099
200.1	0.868	34.917	1456.2 1456.1	27.987	29.811	0.859	27.988	11.695	0.105
250.0 300.0	0.481	34.924	1456.1	28.017	29.528		28.002 28.018	10.316 8.788	0.111 0.115
350.0 400.0		34.918	1456.1 1455.8	28.023		0.279	28.025 28.030	8.046 7.304	0.120 0.123
450.0	-0.150	34.903	1455.7	28.035	29.037	-0.168	28.036	6.450	0.127
500.0 600.0			1456.0 1456.8			-0.292	28.041 28.047	5.834 4.905	0.130 0.135
700.2	-0.550 -0.637		1458.0	28.049 28.050		-0.576 -0.667	28.050 28.051	4.267 3.835	0.140 0.144
900.1	-0.746	34.887	1460.4	28.051	28.717	-0.780	28.053	3.263	0.147
9 98.0	-0./88	34.888	1401.9	20.055	28.725	-0.826	28.055	2.708	0.150

STATION 14 72-52.4N 13-28.4W 9/12/89 16.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 8/ 20, AIR TEMP. 3.7° C, DEW PT 3.7° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
1.0	1.556		1450.1	24.427	26.853	1.555		349.296 349.242	0.003
10.8 15.0	1.428		1449.6 1449.8	24.457 24.458			24.457 24.459	346.414 346.297	0.038 0.052
20.0		32.833					26.310	170.222	0.069
25.0 30.0	0.414	34.118 34.301					27.372 27.514	69.516 56.105	0.073 0.077
40.1	0.645	34.615	1452.1	27.758	29.312	0.643	27.758	32.980	0.081
50.1 75.0	1.028		1454.2 1455.0				27.838 27.919	25.487 17.965	0.084 0.089
100.0	1.027	34.886	1455.2	27.952	29.879	1.022	27.953	14.831	0.093
125.0 150.0	0.945 0.835	34.901 34.911		27.969 27.984		0.940 0.829		13.212 11.807	0.096 0.100
175.0	0.789	34.919	1455.4	27.994	29.733	0.781	27.995	10.941	0.102
200.0 250.0	0.671	34.920 34.921		28.002			28.003 28.016	10.144 8.841	0.105 0.110
300.0		34.914		28.023		0.436		7.965	0.114
350.0		34.909					28.032	7.034	0.118
		34.905 34.904			29.032 28.953			6.409 5.719	0.121 0.124
500.0	-0.378	34.901	1455.5	28.045	28.863	-0.397	28.047	5.147	0.127
	-0.514 -0.599	34.897 34.896			28.789 28.761		28.050 28.053	4.509 3.879	0.132 0.136
	-0.668		1459.1		28.739	-0.698		3.955	0.140
	-0.759				28.705			3.264	0.143
778.U	-0.840	34.885	1401.0	20.053	28.679	-0.0/8	20.006	2.541	0.146

STATION 15 72-22.2N 14-52.0W 9/12/89 22.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 8/30, AIR TEMP. 3.5° C, DEW PT 3.5° C

PRESS TEMP DBAR °C	SAL TTY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA x108	DYNDTH DYN M
0.0 1.167 5.0 1.165 10.1 1.505 15.0 1.773 20.0 1.741 25.0 1.666 30.0 1.006 40.0 0.591 50.1 1.057	30.806 31.237 31.409 31.417 31.520 32.748 34.089 34.446	1450.9 1452.4 1452.3 1452.2 1451.0 1451.2 1453.9	24.665 24.990 25.110 25.119 25.206 26.234 27.338 27.596	26.761 27.371 27.724 27.707 27.732 28.168 28.864 29.541	1.165 1.504 1.772 1.741 1.665 1.004 0.589 1.054	24.685 24.665 24.991 25.111 25.120 25.207 26.234 27.596	324.790 326.651 295.643 284.225 283.381 275.059 177.408 72.747 48.381	0.000 0.016 0.032 0.046 0.061 0.075 0.086 0.097
250.0 0.365 300.0 0.139 350.1 -0.062 400.1 -0.170	34.865 34.891 34.912 34.917 34.920 34.908 34.903 34.903 34.900 34.898	1454.8 1455.2	27.931 27.966 27.992 27.999 28.006 28.016 28.031 28.031 28.041 28.045 28.051	29.906 29.766 29.670 29.640 29.592 29.220 29.068 28.951 28.873 28.782 28.810		27.932 27.966 27.992 28.000 28.007 28.025 28.032 28.032 28.032 28.042 28.047 28.053 28.053	27.277 16.778 13.537 11.089 10.395 9.786 8.738 7.836 6.983 6.179 5.764 5.172 4.200 3.557	0.112 0.117 0.121 0.127 0.129 0.138 0.145 0.145 0.145 0.155 0.159

. ,

STATION 16 71-49.9N 16-15.7W 9/13/89 3.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 26/ 25, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
DBAR 2.0 5.3 10.1 150.0 250.0 30.0 150.0 1050.0 1250.0	1.311 1.314 1.311 1.312 1.367 0.481 -0.523 -0.732 -0.088 0.4046 1.018 0.624 0.651 0.833 0.768 0.764 0.633 0.4814 -0.002	PSU 30.981 30.982 30.9880 31.075 31.289 33.967 34.677 34.887 34.887 34.886 34.910 34.995 34.895	m/s 1449.6 1449.6 14449.6 14450.7 14450.7 14455.1 14555.9 14555.8 14558.4 1458.7 1458.7 1458.7 1458.7	kg/m ³ 24.797 24.797 24.795 24.795 24.872 25.036 25.733 27.297 27.388 27.657 27.859 27.859 27.898 27.917 27.988 27.998 27.9988 27.9988 27.9988 27.9988	dS/m 27.012 27.016 27.014 27.095 27.306 27.232 27.836 27.742 28.569 29.1819 29.507 29.562 29.778 29.778 29.785 29.785 29.5869 29.5869	1.311 1.314 1.310 1.312 1.366 0.480 -0.524 -0.734 -0.91 0.417 1.011 0.642 0.7548 0.6464 0.292 -0.027	kg/m ³ 24.797 24.797 24.796 24.879 24.877 25.734 27.297 27.388 27.657 27.860 27.918 27.938 27.964 27.978 27.990 27.990 27.990 28.005	x10* 314.078 314.060 314.183 313.907 224.908 76.479 67.807 42.418 32.331 23.692 20.312 18.144 16.303 14.067 12.814 11.776 10.866 9.378 7.949	DYN M 0.006 0.017 0.032 0.047 0.063 0.078 0.091 0.103 0.110 0.124 0.133 0.145 0.150 0.162 0.168 0.1750 0.185 0.190 0.199
700.0 800.0 900.0 998.0	-0.369 -0.478	34.891 34.890 34.889 34.890	1460.5 1461.7	28.028 28.036 28.040 28.044	28.996 28.947	-0.234 -0.401 -0.513 -0.579	28.030 28.038 28.042 28.046	6.827 5.734 4.937 4.258	0.206 0.212 0.218 0.222

STATION 17 71-14.4N 13-55.4W 9/13/89 10.1 HRS GMT, 903 RECORDS WIND KNOTS/DIR 10/ 15, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.1 10.0 15.0 15.0 20.1 300.0 150.0 125.0 1250.0 1250.0 1250.0 2300.0 1250.0 2300.0 1250.0 2300.0 2300.0 200	2.971 2.977 2.924 2.830 2.876 2.735 1.0518 0.131 0.2192 0.331 0.450 0.4517 0.450 0.1045 0.1045 0.1045 0.1045 0.1045 0.1045	33.977 33.976 33.985 34.008 34.016 34.033 34.655 34.655 34.836 34.835 34.8851 34.8874 34.897 34.897	1460.9 1461.9 1460.6 1460.5 1460.7 1460.7 1460.7 1453.9 14451.8 1455.3 14557.1 14557.1 14577.4 1459.6	27.071 27.070 27.081 27.106 27.110 27.117 27.137 27.177 27.583 27.824 27.885 27.919 27.941 27.954 27.962 27.979	30.793 30.801 30.765 30.665 30.6688 30.6695 29.521 28.992 29.124 29.214 29.374 29.440 29.440 29.448 29.448 29.448 29.448 29.448 29.448 29.448 29.448 29.448 29.448 29.448	2.971 2.977 2.924 2.829 2.873 2.731 2.732 1.048 0.016 0.128 0.286 0.324 0.412	27.071 27.070 27.082 27.106 27.111 27.113 27.137 27.184 27.885 27.920 27.942 27.942 27.963 27.992 28.008 28.016 28.016 28.032 28.037	98.053 98.170 97.084 94.419 94.419 91.962 88.1692 26.649 20.913 17.708 15.632 14.435 13.799 11.271 10.332 9.705 9.019 8.601 7.525 6.639 5.979	0.005 0.005 0.015 0.019 0.029 0.029 0.059 0.059 0.059 0.0648 0.0725 0.087 0.098 0.098 0.115 0.1128 0.1128
901.0	-0.454	34.889	1461.8	28.039	28.968	-0.490	28.041	5.062	0.133

STATION 18 71-39.4N 13-20.9W 9/13/89 14.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 16/40, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
1.0 5.3 10.0 15.0 20.0	2.173 2.155 1.978 2.442 -1.027 -1.365 -1.384 -1.168 -0.791 0.347 1.283 1.135 1.045 0.944	PSU 31.853 31.866 31.935 32.360 33.963 34.113 34.241 34.341 34.586	m/s 1454.5 1454.5 1453.9 1445.2 1441.9 1442.0 1443.3 1445.3 1456.0 1456.1	kg/m ³ 25.438 25.450 25.518 25.827.313 27.446 27.490 27.544 27.611 27.752 27.837 27.8888 27.912 27.936	dS/m 28.396 28.394 28.309 29.405 27.261 27.500 27.893 29.051 30.007 29.981 29.881 29.821	2.172 2.154 1.977 2.441 -1.027 -1.365 -1.384 -1.169 -0.792 0.364 1.130 1.039 0.936	kg/m ³ 25.438 25.450 25.519 27.827 27.490 27.544 27.611 27.753 27.838 27.889 27.913		
250.0 300.0 350.0 400.0 450.4 500.5 600.0 700.0 800.0	0.775 0.640 0.569 0.442 0.248 0.085 -0.187 -0.334 -0.437 -0.515	34.890 34.897 34.903 34.904 34.898 34.890 34.889 34.889 34.889	1456.6 1456.8 1457.3 1457.6 1457.5 1457.6 1458.0 1459.0 1460.2	27.971 27.985 27.995 28.003 28.010 28.017 28.027 28.034 28.038 28.040	29.733 29.645 29.611 29.524 29.375 29.256 29.063 28.938 28.938	0.764 0.627 0.554 0.425 0.229 0.064 -0.211 -0.361 -0.469 -0.551	27.972 27.987 27.996 28.004 28.011 28.019 28.028 28.036 28.040 28.042	15.165 13.231 11.862 10.972 10.144 9.311 8.425 7.082 6.059 5.334 4.836 4.188	0.096 0.103 0.115 0.121 0.125 0.130 0.138 0.144 0.155 0.155

STATION 19 72-3.3N 12-24.7W 9/13/89 19.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 21/15, AIR TEMP. 3.3° C, DEW PT 3.3° C

PRESS TE		SNDSPD m/s	SIG-T kg∕m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
DBAR 0.0 1.7, 5.0 1.7, 10.0 1.6, 15.0 -0.4, 25.1 -1.2, 30.0 -1.3, 40.1 -0.9, 50.1 -0.5, 75.1 0.3, 100.1 1.2, 1250.0 1.1, 175.1 1.0, 200.0 0.9, 250.0 0.8, 300.0 0.7, 350.1 0.5, 400.0 0.3, 500.0 0.0, 600.0 -0.2	PSU 6 31.051 2 31.057 7 31.175 0 32.306 6 34.77 6 34.140 2 34.29 8 34.43 0 34.64 9 34.81 1 34.85 7 34.88 2 34.89	m/s 1451.6 1451.6 1451.3 1445.5 1442.3 14446.6 1456.5 1456.5 1456.6 1457.3 1457.3 1457.3	kg/m ³ 24.825 24.831 24.932 25.832 27.135 27.412 27.467 27.582 27.676 27.803 27.980 27.993 28.001 28.011 28.032	dS/m 27.413 27.426 27.835 27.738 27.316 27.298 27.687 28.157 29.084 30.042 29.984 29.935 29.736 29.866 29.803 29.333	1.756 1.742 1.636 1.0455 -1.237 -1.317 -0.993 -0.560 0.327 1.244 1.225 1.130 0.943 0.828 0.718 0.5415 0.175 -0.007 -0.227	24.825 24.831 24.932 25.876 27.135 27.467 27.582 27.676 27.881 27.911 27.983 27.963 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983 27.983		
800.0 -0.4 900.0 -0.5	4 34.889	1459.9	28.041 28.043		-0.525 -0.604	28.043 28.045	4.967 4.448 3.697	0.150 0.155 0.159

STATION WIND KNO					9/14/89 .0° C,		HRS GMT		CORDS
PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA C	SICTH kg/m³	SVA ×108	DYNDTH DYN M
1.0 5.0 10.1 15.0 20.0 25.0	1.619 1.611 1.682 1.077	30.682 30.674 30.690 31.181 33.857 34.225	1450.5 1450.6 1451.7 1452.7	24.531 24.545 24.934 27.121	27.010 27.019 27.469 29.087	1.619 1.611 1.681 1.076	24.537 24.532 24.546 24.935 27.122 27.422	338.876 339.335 338.027 300.982 93.285 64.815	0.003 0.017 0.034 0.050 0.058 0.062
30.0 40.1 50.1 75.1	0.686 0.137 0.413	34.387 34.561 34.590 34.755	1451.9 1449.8 1451.2	27.572 27.744 27.752	29.168 28.837 29.100	0.684 0.135 0.411	27.573 27.744 27.752 27.845	50.553 34.252 33.527 24.900	0.065 0.069 0.073 0.080
100.1 125.0 150.0 175.0 200.0	1.225 1.135 0.977	34.855 34.875 34.889 34.895 34.901	1456.5 1456.5 1456.3	27.929 27.947 27.962	30.054 29.998 29.878	1.219 1.128 0.969	27.901 27.930 27.948 27.963 27.975	19.766 17.103 15.489 14.041 12.884	0.086 0.090 0.094 0.098 0.101
250.0 300.0 350.1 400.0 450.0	0.749 0.683 0.440 0.307	34.909 34.911 34.914 34.905 34.902	1456.5 1457.0 1456.8 1457.0	27.989 27.994 28.012 28.012	29.726 29.693 29.508 29.409	0.738 0.670 0.425 0.290	27.990 27.995 28.013 28.014 28.018	11.560 11.073 9.292 9.111 8.644	0.107 0.113 0.118 0.123 0.127
493.0	0.046	34.894	1457.3	28.018	29.218	0.026	28.020	8.283	0.131

STATION 21 73- 2.0N 9-39.4W 9/14/89 13.1 HRS GMT, 995 RECORDS WIND KNOTS/DIR 20/ 0, AIR TEMP. .0° C, DEW PT .0° C

STATION 21 73~ 2.1N 9-38.4W 9/14/89 16.1 HRS GMT, 914 RECORDS WIND KNOTS/DIR 28/ 40, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m		SIGTH kg/m³	SVA ×108	DYNDTH DYN M
1000.0 1200.1 1400.1 1600.1 1800.1 2000.1 2200.1	-0.937 -0.971 -0.987 -0.998 -1.006 -1.016 -1.040 -1.054	34.893 34.897 34.894 34.898 34.900 34.902 34.900 34.899	1461.2 1464.4 1467.7 1471.1 1474.4 1477.8 1481.1 1484.4	28.063 28.064 28.069 28.067 28.070 28.074 28.073 28.073	28.603 28.664 28.734 28.811 28.889 28.963 29.022 29.089	-0.974 -1.017 -1.043 -1.065 -1.084 -1.106 -1.143 -1.170	28.066 28.071 28.069 28.073 28.076 28.078 28.078 28.078	-3.748	-0.013 -0.020
2800.0	-1.073	34.894	1491.2	28.072 28.070 28.068	29.224	-1.218	28.076	-4.232 -4.661 -4.548	-0.037

STATION 22 73-25.1N 8-33.1W 9/14/89 21.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 19/15, AIR TEMP. 3.3° C, DEW PT 3.3° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.0	2.526 2.525	31.420 31.420	1455.5		28.329 28.331		25.066 25.066	288.506 288.497	0.000 0.014
10.0		31.418 32.616		25.064 26.009			25.065 26.010	288.609 198.806	0.029 0.043
15.0 20.0				27.573			27.573	50.575	0.047
25.0	1.531	34.608	1455.9		30.064	1.530	27.693	39.198	0.050
30.0 40.0	0.710	34.631 34.741		27.730 27.855		1.259	27.731 27.856	35.616 23.763	0.051 0.054
50.0	0.749		1453.0		29.549	0.746	27.902	19.461	0.056
75.0	0.847	34.880	1454.0		29.707	0.844	27.959	14.113	0.060
100.0 125.0		34.909 34.911		27.983 27.993		0.838		11.883 10.861	0.064 0.067
150.0	0.575		1454.1		29.531	0.568	28.003	10.063	0.069
175.0	0.433	34.909	1453.8	28.008			28.009	9.434	0.072
200.0		34.897		28.015	29.169 28.924		28.016	8.673 7.449	0.074 0.078
	-0.164		1452.7		28.860	-0.280		6.597	0.081
350.2	-0.512	34.882	1452.4	28.036	28.667	-0.524	28.037	6.042	0.085
					28.674			5.532	0.087
	-0.618	34.885		28.044	28.624	-0.669	28.044	5.100 4.847	0.090 0.092
	-0.735		1455.5	28.048	28.592	-0.756	28.050	4.150	0.097
		34.890			28.636			3.480	0.101
•	-0.829		1458.4		28.603 28.519		28.056	2.919 2.565	0.104 0.107
					28.488			2.654	0.109

STATION 23 73-44.7N 7-18.8W 9/15/89 2.1 HRS GMT, 998 RECORDS NIND KNOTS/DIR 19/ 25, AIR TEMP. 3.4° C, DEW PT 3.2° C

STATION 24 74- 2.4N 6-13.9W 9/15/89 6.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 5/ 30, AIR TEMP. 3.5° C, DEW PT 3.3° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
DBAR 0.0 5.0 10.0 120.0 225.0 40.0 75.0 105	3.624 3.633 3.6752 3.6148 0.22551 -0.5512 -0.5512 -0.5745 -0.7722 -0.7545 -0.7532	PSU 33.498 33.491 33.515 33.515 34.683 34.885 34.885 34.8887 34.8887 34.8887 34.8888 34.8887 34.8888 34.8885 34.8885	m/s 1462.9 1463.1 1463.9 1464.0 1456.0 1456.0 1450.6 1447.5 1447.6 1449.0 1449.6 1450.6 14512.9 1452.9	kg/m ³ 26.551 26.5549 26.5564 26.651 27.6554 27.835 27.907 27.980 28.023 28.034 28.032 28.034 28.047 28.049 28.049	dS/m 30.884 30.8893 30.997 31.312 30.044 29.046 28.667 28.4550 28.5662 28.598 28.469 28.598 28.469 28.511 28.469	3.627 3.624 3.632 3.6751 3.613 1.546 0.271 -0.554 -0.554 -0.5518 -0.417 -0.608 -0.763 -0.763 -0.7694 -0.849	26.552 26.5549 26.5551 26.5552 26.5652 27.654 27.836 27.980 28.0024 28.035 28.033 28.044 28.045 28.045 28.045 28.051	x10* 147.285 147.586 147.462 146.189.866 108.610 42.902 25.635 18.806 11.814 9.551 7.637 6.599 6.681 6.044 5.550 5.417 5.077 4.352 4.054	DYN M 0.000 0.007 0.015 0.029 0.036 0.040 0.045 0.045 0.055 0.057 0.058 0.064 0.067 0.067 0.073
600.1 700.0 800.0 900.1	-0.875 -0.960 -1.057 -1.097	34.883 34.879 34.872 34.868	1454.8 1456.1	28.053 28.054 28.052 28.050	28.472 28.442 28.399 28.406	-0.896 -0.984 -1.084 -1.128	28.055 28.055 28.053 28.052	4.054 3.429 3.000 2.701 2.425 2.152	0.073 0.077 0.080 0.083 0.086 0.088

STATION 25 74-20.5N 5-6.5W 9/15/89 10.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 10/40, AIR TEMP. 2.7° C, DEW PT 2.7° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.0		33.728 33.769	1463.2 1463.4			3.582	26.816 26.846	122.266 119.411	0.000
10.0			1463.7			3.641		115.137	0.012
15.0			1464.2				26.991	105.778	0.017
20.0			1462.4				27.228	83.291	0.022
25.0			1461.8				27.351	71.668	0.026
30.0			1459.5			2.366		49.509	0.029
40.0		34.733						20.314	0.032
50.1	-0.488	34.771	1447.4	27.945	28.467	-0.490	27.946	15.120	0.034
75.0	-0.751		1446.6					9.679	0.037
100.0	-0.842		1446.6					7.597	0.039
125.0							28.029	7.015	0.041
150.1			1447.3			-0.882		6.407	0.043
175.0			1447.7					6.054	0.044
200.2		34.869						5.868	0.046
250.0		34.871						5.194	0.049
300.0			1449.3					4 886	0.051
350.0		34.868						4.381	0.053
400.0			1450.7					4.119	0.056
450.0			1451.3					3.754	0.058
500.0			1452.1			-1.124		3.617	0.059
600.0 700.0		34.869 34.870	1455.3			-1.148		3.108 2.768	0.053 0.066
800.2			1455.3					2.542	0.068
900.2			1457.0					2.217	0.071
998.0		34.867						1.968	0.073

STATION 26 74-40.6N 3-49.4W 9/15/89 15.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 24/ 25, AIR TEMP. 3.8° C, DEW PT 3.6° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND ds/m	THETA °C	SIGTH kg/m²	SVA ×108	DYNDTH DYN M
1.0 5.0 10.0 15.1 20.0	3.556 3.547 3.527 3.525 3.527	34.327 34.326 34.326	1463.9 1463.9	27.296 27.297 27.297	31.596 31.587 31.571 31.572 31.576	3.556 3.546 3.526 3.524 3.526		76.545 76.691 76.665 76.667	0.001 0.004 0.008 0.012 0.015
25.1 30.0	3.258 0.577	34.342 34.655	1463.0 1451.7 1447.4	27.336 27.795	31.355 29.281	3.256 0.576		76.719 73.103 29.484 19.034	0.019 0.022 0.024
50.0 75.0 100.0	-0.743 -0.460 -0.330	34.760 34.843 34.871	1446.2 1448.0 1449.0	27.948 28.002 28.018	28.243 28.556 28.699	-0.744 -0.462 -0.333	27.948 28.003 28.019	14.833 9.672 8.178	0.026 0.029 0.031
150.0 175.0		34.866 34.869	1448.5 1448.6	28.028 28.033	28.471 28.430	-0.625 -0.690	28.025 28.029 28.034 28.037	7.490 7.043 6.515 6.180	0.033 0.035 0.036 0.038
	-0.701 -0.781	34.877		28.041 28.043	28.457 28.411	-0.709 -0.790 -0.852	28.042 28.044	5.623 5.256 4.866	0.041 0.044 0.046
450.0 500.0	-0.991 -1.018	34.870 34.871	1451.3 1451.8 1452.5	28.047 28.047 28.049	28.348 28.297 28.297		28.050	4.537 4.221 3.871	0.048 0.051 0.053
700.1 800.0	-1.094	34.870	1457.1	28.051 28.052	28.321	-1.121	28.052 28.054	3.262 2.957 2.526 2.256	0.056 0.059 0.062 0.064
998.0	-1.123	34.868	1460.3	28.051	28.426	-1.158	28.052	2.015	0.067

STATION 27 75- 0.1N 2-30.6W 9/15/89 19.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 15/ 10, AIR TEMP. 3.9° C, DEW PT 3.9° C

5.0	PRESS	TEMP	SAL'TY	SNDSPD	SIG-T	COND	THETA	SIGTH	SVA	DYNDTH
	DBAR	C	PSU	m/s	kg/m³	dS/m	°C	kg/m³	×108	DYN M
700.0 -1.115 34.869 1455.4 28.051 28.302 -1.138 28.053 2.897 0.066 800.0 -1.118 34.870 1457.0 28.052 28.346 -1.144 28.054 2.487 0.068	0.0 10.1 15.1 20.0 30.0 1	3.595 3.598 3.5889 3.5882 3.5573 3.5727 -0.708 -0.708 -0.7282 -0.7282 -0.7282 -0.7282 -0.918 -0.918 -1.0147 -1.0147 -1.118	34.385 34.3885 34.3887 34.3887 34.3888 34.7783 34.8866 34.8867 34.8867 34.8870 34.8870 34.8870 34.8870 34.8870 34.8870	14644.3 14644.5 14664.5 14664.5 14664.5 14663.0 14467.7 14478.3 14479.0 145512.3 145512.3 14557.0	27.339 27.337 27.338 27.340 27.341 27.342 27.749 27.909 27.976 28.020 28.023 28.033 28.041 28.044 28.049 28.049 28.049 28.049 28.051 28.051 28.051	31.677 31.680 31.674 31.675 31.675 31.675 31.675 29.564 28.380 28.394 28.370 28.375 28.375 28.375 28.377 28.377 28.377 28.377 28.377 28.372 28.371 28.372 28.371 28.372 28.372	3.595 3.598 3.588 3.580 3.587 0.926 -0.728 -0.711 -0.732 -0.757 -0.852 -0.924 -0.932 -1.032 -1.033 -1.138 -1.144	27.339 27.338 27.339 27.341 27.341 27.343 27.749 27.909 27.976 28.021 28.021 28.021 28.034 28.045 28.045 28.055 28.055 28.055 28.055 28.055 28.055 28.055	72.617 72.826 72.778 72.622 72.645 72.565 33.861 18.557 12.163 9.238 7.802 7.002 6.469 6.159 5.547 5.083 4.748 4.062 3.897 2.897 2.487	0.004 0.007 0.0018 0.0018 0.0229 0.0337 0.0337 0.0447 0.0553 0.0557 0.0557 0.05668 0.06681

STATION 28 75-16.4N 1-13.1W 9/15/89 23.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 14/40, AIR TEMP. 3.9° C, DEW PT 3.9° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
DBAR 1.00 10.00 10.00 20.10 20.30 40.33 700.00 125.00	3.709 3.698 3.694 3.706 3.714 3.993 -0.9912 -0.981 -0.985 -0.9828 -0.9280 -1.0282	PSU 34.370 34.372 34.371 34.381 34.395 34.553 34.785 34.8857 34.8857 34.8857 34.8857 34.8858	m/s 14644.6 1464.7 1464.9 1465.0 1465.0 1445.8 1446.4 1447.5 1446.4 1447.5 1448.8 1446.0	kg/m ³ 27.314 27.317 27.318 27.323 27.323 27.459 27.471 27.899 27.471 27.899 28.032 28.032 28.034 28.034 28.034 28.045 28.045	dS/m 31.764 31.757 31.756 31.775 31.800 32.123 31.832 28.762 28.060 28.236 28.239 28.215 28.236 28.236 28.224	3.709 3.698 3.693 3.691 3.701 3.701 3.591 -0.113 -0.985 -0.985 -0.843	k9/m ³ 27.315 27.317 27.318 27.319 27.324 27.334 27.479 27.479 27.479 27.479 27.479 28.008 28.032 28.032 28.034 28.044		
450.0	-1.095	34.868 34.873	1451.3 1452.3	28.050 28.052	28.207 28.264	-1.109 -1.074	28.051 28.053	3.831 3.525	0.056
500.0 600.0 700.0	-1.059 -1.096 -1.105	34.873 34.870 34.873	1452.3 1453.8 1455.4	28.052 28.052 28.054	28.264 28.275 28.314	-1.074 -1.115 -1.128	28.053		
900.1	-1.146		1458.6	28.054	28.366	-1.177	28.056	1.949	0.069

STATION 29 74-59.2N 0-42.7W 9/16/89 8.1 HRS GMT, 965 RECORDS WIND KNOTS/DIR 20/ 10, AIR TEMP. 3.9° C, DEW PT 3.7° C

40.0 0.772 34.614 1452.7 27.750 29.421 0.770 27.750 33.777 0.0 50.0 -0.467 34.695 1447.3 27.883 28.429 -0.469 27.884 20.987 0.0 75.1 -0.812 34.778 1446.3 27.965 28.209 -0.814 27.966 13.128 0.0 100.0 -0.508 34.845 1448.2 28.006 28.528 -0.511 28.007 9.278 0.0 125.0 -0.384 34.872 1449.2 28.022 28.666 -0.388 28.023 7.772 0.0 150.0 -0.371 34.879 1449.7 28.027 28.693 -0.376 28.028 7.289 0.0 175.0 -0.476 34.878 1449.6 28.031 28.614 -0.482 28.032 6.827 0.0 200.1 -0.527 34.882 1449.8 28.037 28.585 -0.534 28.038 6.212 0.0 250.0 -0.619 34.884 1450.2 28.043 28.585 -0.627		EMP SAL'TY °C PSU			SNDSPD m/s	SIG-T kg∕m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
400.1 -0.813 34.880 1451.8 28.048 28.432 -0.826 28.049 4.525 0.0 450.0 -0.840 34.883 1452.5 28.051 28.434 -0.855 28.052 4.048 0.0 500.0 -0.911 34.881 1453.0 28.053 28.394 -0.928 28.054 3.692 0.0 600.0 -0.973 34.879 1454.4 28.054 28.386 -0.993 28.055 3.215 0.0 700.0 -1.022 34.879 1455.8 28.056 28.388 -1.046 28.057 2.687 0.0 800.0 -1.069 34.877 1457.3 28.056 28.392 -1.096 28.058 2.227 0.0 900.0 -1.099 34.876 1458.8 28.056 28.410 -1.130 28.058 1.833 0.0	40.0 0.7 50.0 -0.4 75.1 -0.8 100.0 -0.5 125.0 -0.3 150.0 -0.4 200.1 -0.6 350.0 -0.7 400.1 -0.8 450.0 -0.8 500.0 -0.9 600.0 -1.0 900.0 -1.0	772 34.614 467 34.695 812 34.778 508 34.875 384 34.872 371 34.888 527 34.884 678 34.884 678 34.884 711 34.886 813 34.881 911 34.881 911 34.87 0099 34.87	40.0 	.614 .695 .778 .872 .878 .8884 .8884 .8886 .8881 .8879 .877	1452.7 1447.3 1446.2 1449.2 1449.8 1450.8 1450.8 1451.8 1452.0 14557.8 14557.8	27.750 27.883 27.965 28.006 28.022 28.037 28.037 28.045 28.045 28.056 28.055 28.056 28.056	29.421 28.429 28.209 28.528 28.666 28.693 28.585 28.532 28.500 28.434 28.394 28.394 28.388 28.392 28.410	0.770 -0.469 -0.814 -0.511 -0.388 -0.376 -0.482 -0.627 -0.688 -0.726 -0.855 -0.855 -0.928 -1.096 -1.130	27.750 27.884 27.966 28.007 28.023 28.032 28.032 28.046 28.049 28.052 28.0557 28.0557 28.0558	33.777 20.987 13.128 9.278 7.772 7.289 6.827 6.212 5.478 5.127 4.701 4.525 4.048 3.692 3.215 2.227 1.833	0.000 0.002 0.005 0.0014 0.016 0.017 0.022 0.022 0.025 0.023 0.034 0.037 0.044 0.044

j

STATION 30 74-44.6N 0-25.2W 9/16/89 12.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 15/40, AIR TEMP. 4.0° C, DEW PT 4.0° C

PRESS DBAR	TEMP °C	SAL TTY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.0 10.0 15.0 225.0 30.0 150.0 125.0 100.1 175.0 250.0 400.1 2500.0 4500.0 4500.1 2500.0 4500.1 700.1	3.379 3.379 3.379 3.5470 0.945 -0.2156 -0.44902 -0.4720 -0.615 -0.615 -0.7128 -0.728 -0.7811 -0.7811 -0.7953	34.311 34.3114 34.3317 34.5668 34.5603 34.637 34.687 34.887 34.887 34.887 34.8883 34.8883 34.8883 34.8883 34.8883	1463.5 1463.5 1463.5 14664.5 14664.5 14664.5 14460.5 14460.5 14460.5 1450.5 1450.5 1455.3 1455.3 1455.3 1455.3	27.299 27.299 27.302 27.318 27.496 27.607 27.757 27.865 27.939 28.012 28.030 28.034 28.034 28.034 28.046 28.047 28.050 28.050 28.050 28.050 28.050	31.424 31.427 31.470 31.728 31.728 30.959 29.587 28.638 28.559 28.559 28.5531 28.531 28.493 28.493 28.493 28.493 28.360	3.379 3.377 3.374 3.398 3.5668 2.558 0.942 -0.216 -0.659 -0.495 -0.622 -0.623 -0.728 -0.728 -0.728 -0.7827 -1.076	27.299 27.300 27.302 27.319 27.481 27.496 27.758 27.865 27.940 28.003 28.019 28.035 28.035 28.047 28.048 28.048 28.056	76.398 76.420 76.188 74.662 59.397 47.390 33.092 22.749 15.629 9.656 8.074 7.228 6.394 5.956 5.422 4.715 4.062 3.336 2.754	0.000 0.004 0.008 0.011 0.018 0.020 0.027 0.035 0.035 0.035 0.042 0.045 0.045 0.055 0.055 0.055 0.055 0.055 0.056 0.064
800.0 900.0 998.0	-1.081 -1.086 -1.085	34.875 34.876 34.877	1458.8	28.055 28.056 28.057		-1.108 -1.117 -1.120	28.057 28.057 28.058	2.297 1.956 1.561	0.067 0.069 0.071

STATION 31 74-25.4N 1-42.2W 9/16/89 16.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 15/ 25, AIR TEMP. 4.0° C, DEW PT 3.8° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³		THETA OC	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
DBAR 1.0 5.0 10.0 20.0 25.0 30.0 40.0 50.1 75.0 125.0 125.0 125.0	4.025 4.027 4.023 3.689 3.118 0.566 -0.296 -0.867 -0.6689 -0.741	PSU 33.906 33.906 33.909 34.392 34.392 34.514 34.689 34.722 34.799 34.856 34.866	m/s 1465.4 1465.4 1465.4 1464.8 1464.5 1462.7 1451.9 1448.0 1447.9 1448.4	kg/m ³ 26.913 26.912 26.916 27.334 27.365 27.486 27.8897 27.985 28.013 28.032	dS/m 31.652 31.655 31.656 31.833 31.768 31.711 31.376 29.302 28.594	4.025 4.027 4.022 3.6882 3.588 3.117 0.564 -0.674 -0.674 -0.674 -0.747	kg/m ³ 26.914 26.913 26.916 27.224 27.335 27.366 27.486 27.823 27.897 27.985 28.013 28.033		
250.1 300.1 350.0 400.0 450.0 500.0 600.4 700.1 800.1	-0.734 -0.789 -0.842 -0.923 -0.935 -1.006 -1.095 -1.121 -1.132	34.879 34.878 34.875 34.877 34.874 34.874 34.874 34.874	1449.7 1450.8 1451.3 1452.0 1452.5 1455.5 1455.5 1457.0 1458.6	28.044 28.046 28.049 28.051 28.055 28.055 28.055 28.056	28.435 28.385 28.335 28.335 28.335 28.358 28.358 28.325 28.381 28.426	-0.742 -0.799 -0.853 -0.936 -0.949 -1.025 -1.118 -1.1187 -1.163	28.044 28.047 28.049 28.052 28.052 28.056 28.056 28.056	5.334 5.338 4.628 4.344 3.953 3.710 3.101 2.638 2.278 1.780	0.057 0.055 0.055 0.057 0.059 0.061 0.064 0.067 0.072

STATION 32 74-8.4N 3-1.1M 9/16/89 20.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 19/10, AIR TEMP. 3.9° C, DEW PT 3.9° C

STATION 33 73-47.4N 4-6.3W 9/17/89 0.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 20/ 0, AIR TEMP. 4.0° C, DEW PT 3.9° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
DBAR 1.0 5.0 10.1 20.0 25.1 30.0 40.0 50.1 125.0 175.0 200.1 125.0 175.0 200.0 350.0	3.517 3.517 3.6358 3.816 2.844 2.012 0.394 -0.1441 -0.1481 -0.466 -0.437 -0.732 -0.771 -0.732	PSU 32.239 32.239 32.587 33.739 34.2624 34.755 34.877 34.8875 34.877 34.8877 34.8877 34.8877 34.8888	m/s 1460.9 1461.0 1462.6 1464.5 1461.1 1458.1 1451.1 1448.9 1449.7 1448.4 1449.5 1449.5 1449.5	kg/m³ 25.635 25.636 26.612 26.801 27.312 27.669 27.985 27.985 27.989 28.027 28.032 28.032 28.0332 28.035	dS/m 29.821 30.29.821 331.253 31.338 30.930 30.497 29.163 28.744 28.596 28.634 28.596 28.447 28.449	3.519 3.517 3.637 3.814 2.842 2.010 0.388 -0.143 -0.471 -0.471 -0.577 -0.77151 -0.814	kg/m ³ 25.635 25.636 25.902 26.802 27.313 27.670 27.846 27.912 28.021 28.021 28.033 28.037 28.033		
400.0	-0.863	34.868	1451.5	28.040	28.380	-0.876	28.041	5.189	0.077
			1452.0 1452.6					4.884 4.586	0.079 0.082
			1453.9					3.988	0.086
700.0	-1.090	34.865	1455.5	28.047	28.320	-1.113	28.048	3.367	0.089
			1457.1					2.746	0.092
			1458.8					1.982	0.095
998.0	-1.081	34.878	1460.5	28.057	28.469	-1.116	28.059	1.524	0.097

STATION 34 73-26.6N 5- 9.5W 9/17/89 4.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 21/ 30, AIR TEMP. 3.7° C, DEW PT 3.5° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
	2.900 2.887 2.913 2.3248 1.308 0.5589 0.5589 0.4713 0.6471 0.4284 0.5119 0.0114 0.0114 0.01396	PSU 31.832 31.832 31.832 34.949 34.109 34.548 34.610 34.774 34.837 34.909 34.914 34.907 34.899 34.899 34.899	m/s 1457.7 1458.0 1457.8 14553.8 14553.8 1451.7 14552.3 14553.3 14553.6 14553.1 14553.1 14553.1 14553.1	kg/m ³ 25.366 25.366 25.457 27.312 27.660 27.761 27.855 27.889 27.947 27.995 28.005 28.010 28.015 28.030 28.030 28.040 28.044	dS/m 28.971 28.963 29.082 29.429 29.825 29.199 29.277 29.3515 29.577 29.531 29.444 29.300 29.081 28.735 28.735	2.900 2.887 2.912 2.335 1.307 0.521 0.503 0.587 0.470 0.639 0.655 0.476 0.001 -0.1367 -0.410	kg/m ³ 25 365 25 366 25 458 27 .661 27 .762 27 .855 27 .890 27 .948 27 .996 28 .011 28 .016 28 .024 28 .038 28 .038		
600.0 700.1 800.0		34.890 34.889 34.891	1457.1					4.216 3.607 2.787	0.093 0.097 0.100
900.0	-0.896	34.888 34.88	1459.7	28.058	28.591 28.575	-0.928	28.060	2.219 1.604	0.103

STATION 35 73- 5.3N 6-17.0W 9/17/89 8.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 13/ 25, AIR TEMP. 3.5° C, DEW PT 3.5° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10°	DYNDTH DYN M
DBAR 0.0 5.1 10.1 120.0 25.1 30.0 150.0 1750.0 1750.0 1750.0 1750.0 1750.0 1750.0 1750.0 1750.0 1750.0	3.58664 3.586648 3.566648 0.75421 0.75421 0.75421 0.59886 0.258866 0.258866 0.258866 0.258866 0.258866 0.258866 0.258866 0.258866	PSU 32.666 32.666 32.6670 33.1880 34.491 34.557 34.6823 34.885 34.885 34.901 34.910 34.910 34.8889 34.8889	m/s 1461.8 1461.8 1461.9 1460.8 1452.8 1452.4 1453.7 1453.7 1454.3 1454.3 1453.7 1453.7	kg/m³ 25.973 25.975 25.975 26.4330 27.642 27.705 27.782 27.838 27.995 27.978 27.978 27.991 28.007 28.007 28.007 28.007 28.0036 28.041	dS/m 30.229 30.230 30.225 30.128 29.423 29.354 29.575 29.575 29.575 29.536 29.533 29.449 29.533 29.449 29.653 29.653 29.653 29.653 29.653	3.577 3.580 3.566 3.5663 3.027 0.891 0.749 0.7419 0.580 0.580 0.580 0.580 0.580 0.580 0.5445 -0.366 -0.3414	kg/m ³ 25.973 25.970 25.975 26.430 27.705 27.783 27.839 27.920 27.958 27.979 28.001 28.008		DYN M 0.000 0.010 0.020 0.030 0.044 0.046 0.049 0.057 0.061 0.067 0.067 0.072 0.088 0.091
600.0 - 700.1 - 800.1 - 900.0 -	-0.605 -0.731 -0.823 -0.860	34.891 34.890 34.886 34.885 34.889 34.893	1456.1 1457.2	28.047 28.050 28.053 28.057	28.707 28.641 28.606 28.621	-0.552 -0.627 -0.756 -0.852 -0.893 -0.920	28.049 28.051 28.054 28.059	4.473 3.811 3.110 2.365 1.703	0.093 0.098 0.102 0.106 0.108 0.110

STATION 36 72-41.1N 7-25.4W 9/17/89 12.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 17/ 20, AIR TEMP. 3.7° C, DEW PT 3.7° C

STATION 37 72-17.0N 8-30.0W 9/17/89 17.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 26/ 0, AIR TEMP. 3.8° C, DEW PT 3.6° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg∕m³	SVA ×108	DYNDTH DYN M
DBAR 2.0 10.0 15.0 20.1 25.0 40.0 150.0 125.0 105.0 1250.0	2.963 2.964 2.965 1.598 1.298 -0.194 -0.3743 0.217 0.6610 0.688 0.602 0.589 0.252 -0.201 -0.201 -0.319	PSU 32.238 32.2568 32.2568 33.785 34.4589 34.8858 34.8899 20.334.8899 20.334.8899 20.334.8899 20.334.8899 20.334.8899 20.334.8889 20.334.8899 20.334.8999 20.334.8	m/s 1458.6 1458.6 1458.7 1458.7 1458.7 1457.7 1447.3 1448.9 1455.1 1455.1 1455.1 1455.7 1457.7	kg/m ³ 25.684 25.684 25.684 26.854 27.045 27.514 27.691 27.876 27.951 27.969 27.969 27.991 28.004 28.019 28.025	dS/m 29.359 29.361 29.364 29.387 29.216 28.322 28.625 29.500 29.500 29.503 29.557 29.475 29.4	2.962 2.964 2.964 2.964 1.593 1.297 -0.3144 0.604 0.681 0.581 0.440 0.057	K9/m ³ 25.685 25.684 25.684 26.854 27.515 27.787 27.952 27.982 27.992 28.0015 28.021 28.021 28.0315 28.047		
900.0 998.0		34.887 34.894	1460.2	28.053 28.059	28.681	-0.823		2.934 2.215	0.128 0.131

STATION 38 71-52.7N 9-39.5W 9/17/89 22.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 20/40, AIR TEMP. 3.9° C, DEW PT 3.7° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA OC	SIGTH kg/m³	SVA ×10*	DYNDTH DYN M
	3.118 3.127 3.107 3.108 2.990 0.263	PSU 32.749 32.746 32.746 32.780 33.905 34.423 34.423 34.888 34.888 34.905 34.905 34.905	m/s 1459.8 1460.0 14600.7 14459.2 1445.2 1445.3 14453.5 14553.6 14555.6 14555.8	kg/m ³ 26.078 26.075 26.077 26.113 27.208 27.512 27.673 27.748 27.951 27.951 27.970 27.981 27.991 28.002 28.019 28.026	dS/m 29.908 29.916 29.9015 29.835 28.440 27.973 28.123 28.356 28.477 29.351 29.395 29.409 29.449 29.481 29.155 29.046	3.118 3.126 3.106 3.107 2.988 -0.587 -0.591 -0.410 0.410 0.426 0.315	k9/m ³ 26.078 26.077 26.078 26.114 27.208 27.512 27.674 27.748 27.857 27.918		
600.1 700.0 800.0 900.2 997.0	-0.399 -0.511 -0.581 -0.640	34.895 34.895 34.898 34.901	1457.0 1458.2 1459.5 1460.9	28.042 28.047 28.052 28.058	28.886 28.835 28.822	-0.422 -0.538 -0.612 -0.675	28.043 28.048 28.054 28.060 28.064	5.346 4.519 3.707 2.890 2.213	0.114 0.119 0.123 0.127 0.129

STATION 39 71-27.0N 10-47.1W 9/18/89 2.1 HRS GMT, 998 RECORDS WIND KNOTS/DIR 20/ 10, AIR TEMP. 3.7° C, DEW PT 3.7° C

PRESS DBAR	TEMP C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10 ⁸	DYNDTH DYN M
D8AR 2.0 10.0 15.0 25.0 10.0 25.0 30.0 75.1 105.0 175.0	3.075 3.076 3.076 3.187 2.8547 2.779 1.477 0.108 -0.287 0.746 0.746 0.6667 0.6667 0.167 0.167 -0.163	PSU 32.9112 32.9112 33.4323 34.323 34.323 34.388 34.480 34.895 34.991 34.991 34.990 34.990 34.9999	m/s 1459.9 1460.1 1461.2 1461.3 1461.3 1462.3 1462.3 1465.7 14452.3 1455.6 1455.6 1456.6 1456.7 1458.0	kg/m ³ 26.212 26.211 26.211 26.354 27.358 27.423 27.680 27.846 27.916 27.937 27.968 27.977 27.992 28.003 28.012 28.012 28.026 28.034	dS/m 30.008 30.004 30.012 30.511 31.005 30.916 29.931 28.7567 29.688 29.630 29.688 29.630 29.688 29.688 29.699 29.2588 29.2588 29.2588 29.2588 29.2588	3.074 3.075 3.075 3.1856 2.8556 2.708 1.475 0.109 0.431 0.5592 0.737 0.6554 0.1091 0.10591 0.10591	kg/m ³ 26.212 26.211 26.212 26.555 27.382 27.423 27.601 27.681 27.917 27.938 27.969 27.978 27.978 27.978 27.969 27.978 27.969 27.978 27.969 27.978 27.969 27.978	x10* 179.513 179.631 179.626 137.5278 68.710 64.854 47.940 40.284 24.473 18.049 16.050 13.7256 12.558 11.188 10.135 9.214 8.640 8.7630 6.429 5.366	DYN M 0.004 0.009 0.018 0.022 0.035 0.035 0.049 0.057 0.066 0.074 0.077 0.088 0.093 0.101 0.112 0.118
		34.905	1461.5	28.055 28.061	28.921	-0.559	28.052 28.057 28.063	4.168 3.397 2.568	0.123 0.127 0.130

STATION 40 71-21.1N 9- 0.8W 9/18/89 8.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 30/ 10, AIR TEMP. 3.9° C, DEW PT 3.7° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
C.0 5.0 10.0	3.457 3.459 3.453	33.622 33.637	1462.6 1462.7	26.755	30.924 30.934	3.452	26.743 26.755	129.678 129.192 128.063	0.000 0.007 0.013
15.0 20.0 25.0 30.0	0.155	34.235 34.334	1449.1 1446.9	26.858 27.480 27.585 27.634	28.597 28.242	0.155 -0.357	26.858 27.480 27.586 27.635	118.300 59.247 49.218 44.541	0.019 0.024 0.027 0.029
40.0 50.0 75.0	-0.380 -0.333 0.043	34.496 34.561 34.702	1447.8 1447.8 1450.1	27.718 27.768 27.863	28.350 28.442 28.880	-0.382 -0.334 0.040	27.719 27.768 27.864	36.612 31.914 22.947	0.033 0.036 0.043
100.0 125.0 150.0 175.0	0.777 0.693	34.849 34.869	1454.5 1454.5	27.917 27.938 27.959 27.972	29.645 29.600	0.772	27.918 27.939 27.960 27.973	18.090 16.124 14.110 12.847	0.048 0.052 0.056 0.059
200.0 250.0 300.1	0.633 0.609 0.576	34.888 34.909 34.919	1455.1 1455.9 1456.5	27.978 27.997 28.007	29.586 29.604 29.606	0.625 0.598 0.563	27.979 27.998 28.009	12.356 10.682 9.747	0.063 0.068 0.073
350.0 400.0 450.1 500.0		34.908 34.903	1456.5 1456.5	28.015 28.021 28.026 28.032	29.317 29.184		28.017 28.022 28.027 28.034	8.886 8.200 7.517 6.741	0.078 0.082 0.086 0.090
600.0 700.0 800.0 900.0	-0.420 -0.539	34.900 34.900	1458.6 1459.7	28.041 28.047 28.052 28.059	28.917 28.859	-0.291 -0.447 -0.570 -0.644	28.042 28.049 28.054 28.061	5.638 4.698 3.795 2.848	0.096 0.101 0.105 0.109
998.0				28.065				2.056	0.111

STATION 40 WIND KNOTS/DI	71-21.4N 9- R 11/ 20, AIR	4.7W TEMP.			HRS GMT, T 4.0° (ECORDS
PRESS TEMP DBAR °C	SAL'TY SNDSPD PSU m/s	SIG-T kg/m³	COND dS/m		SIGTH kg/m³	SVA ×108	DYNDTH DYN M
1000.0 -0.632 1200.0 -0.726 1400.0 -0.795 1600.0 -0.875 1800.1 -0.944 2000.0 -0.985 2200.0 -1.027	34.910 1462.6 34.909 1462.7 34.909 1465.6 34.910 1468.6 34.910 1471.6 34.907 1474.7 34.906 1477.9 34.901 1481.1 34.898 1481.9	28.064 28.068 28.072 28.075 28.076 28.076 28.074	28.875 28.881 28.908 28.925 28.947 28.993 29.034	-0.671 -0.775 -0.854 -0.943 -1.023 -1.076 -1.130	28.066 28.070 28.075 28.079 28.079 28.080 28.078	-3.115	

STATION 41 71-44.3N 7-48.9W 9/18/89 17.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 30/ 20, AIR TEMP. 4.0° C, DEW PT 3.8° C

PRESS	TEMP	SAL'TY	SNDSPD	SIG-T	COND	THETA	SIGTH	SVA	DYNDTH
DBAR	°C	PSU	m/s	kg/m³	dS/m	°C	kg/m³	×108	DYN M
1.0 5.0 10.0 15.0 225.0 30.0 40.1 75.0 100.7 1250.0 175.0 1250.0 175.0 250.1 250.1 250.0 175.0 1	3.324 3.301 3.290 3.285 3.243 -0.206 -0.478 -0.292	33.2993 33.2993 33.2993 33.2993 33.21293 34.3504 34.5600 34.8576 34.88576 34.8899 34.88993 34.88993 34.88993	1461.5 1461.5 1461.6 1461.6 1461.3 1446.5 1447.7 1446.9 14512.6 14555.1 14555.1 14555.1 14556.1 14556.1	26.491 26.493 26.495 26.497 27.720 27.776 27.845 27.972 27.972 27.972 27.983 28.003 28.003 28.022 28.039 28.039 28.039	30.531 30.514 30.507 30.506 30.452 28.209 28.154 28.277 28.454 28.454 28.843 29.021	3.301 3.289 3.2841 -0.2407 -0.479 -0.529 -0.5415 -0.0405 -0.275 0.375 0.445 0.0445 -0.12624 -0.12624 -0.537	26.491 26.495 26.497 26.497 27.605 27.721 27.777 27.846 27.928 27.953 27.991 28.020 28.029 28.029 28.034 28.045	x10* 153.048 152.849 152.784 152.583 154.119 66.151 47.408 36.411 31.092 24.515 16.830 14.556 12.760 11.772 11.125 10.028 9.162 7.775 7.165 6.539 5.573 4.818	DYN M 0.008 0.0015 0.0035 0.035 0.035 0.035 0.0442 0.058 0.065 0.068 0.071 0.085 0.096 0.096 0.107 0.112
900.1	-0.638	34.891	1460.9	28.049	28.812	-0.673		3.678	0.116
998.0	-0.689	34.890	1462.3	28.051	28.811	-0.728		3.228	0.119

STATION 42 72-8.1N 6-38.5W 9/19/89 0.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 21/20, AIR TEMP. 3.6° C, DEW PT 3.6° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg/m³		THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
0.0 5.0 10.0	3.616	33.688	1463.2 1463.3 1463.3	26.780	31.115	3.615	26.789 26.781 26.785	124.763 125.608 125.270	0.000 0.006 0.013
15.0 20.0	3.609 3.660	33.724 33.796	1463.5 1463.9	26.809 26.862	31.144 31.250	3.608 3.659	26.810 26.863	122.921 117.953	0.019
25.0 30.0 40.1	1.680	34.137	1463.5 1456.0 1446.3	27.304	29.824	1.679	27.044 27.305 27.703	100.830 75.993 38.089	0.030 0.035 0.040
50.1 75.0	-0.486 0.464	34.542 34.765	1447.0 1452.1	27.760 27.890	28.299 29.288	-0.488 0.461	27.760 27.891	32.636 20.487	0.043
100.1 125.0 150.0	0.481 0.085	34.856 34.843	1453.3 1453.1 1451.7	27.962 27.975	29.396 29.057	0.476	27.930 27.963 27.976	16.808 13.747 12.396	0.054 0.058 0.061
175.1 200.0 250.0	0.429	34.893	1453.8 1454.2 1454.7	27.995	29.413	0.420	27.988 27.996 28.007	11.382 10.698 9.615	0.064 0.067 0.072
300.0 350.0	0.224	34.904 34.899	1454.9 1455.2	28.016 28.018	29.290 29.215	0.212	28.017 28.019	8.672 8.342	0.077 0.081
450.1 500.0	-0.199 -0.273	34.892 34.893	1455.2 1455.5 1456.0	28.029 28.034	28.987 28.947	-0.216 -0.292	28.024 28.030 28.035	7.716 6.963 6.391	0.085 0.089 0.092
700.0	-0.556	34.889		28.044	28.838 28.792 28.811	-0.582	28.042 28.045 28.049	5.357 4.731 4.144	0.098 0.103 0.107
900.4	-0.653	34.890	1460.9	28.050	28.799 28.815	-0.688	28.052	3.612 3.102	0.111

STATION 43 72-31.0N 5-26.1W 9/19/89 5.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 20/ 25, AIR TEMP. 3.6° C, DEW PT 3.6° C

STATION 44 72-52.8N 3-57.3W 9/19/89 14.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 28/ 30, AIR TEMP. 3.8° C, DEW PT 3.6° C

STATION 45 73 WIND KNOTS/DIR	3-20.0N 3- 35/ 35, AIR		9/19/89 3.7° C,		HRS GMT		CORDS
PRESS TEMP S DBAR °C	SAL'TY SNDSPD PSU m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×10 ⁸	DYNDTH DYN M
20.1 3.318 25.0 1.673 30.0 0.882 40.0 0.591 50.0 0.542 75.0 0.672 100.0 0.731 125.0 0.587 150.0 0.574 175.1 0.457 200.0 0.293 250.0 0.058 350.0 -0.320 400.1 -0.320 400.1 -0.320 400.1 -0.320 400.0 -0.489 500.0 -0.606 600.0 -0.700 700.0 -0.894 800.0 -0.955	34.633 1453.1 34.682 1452.0 34.773 1452.1 34.863 1453.2 34.903 1453.9 34.914 1454.1 34.914 1454.1 34.914 1453.9 34.903 1453.6 34.898 1453.3 34.898 1453.3 34.898 1455.6	27.057 27.590 27.758 27.816 27.8956 27.976 27.976 28.010 28.010 28.010 28.025 28.045 28.045 28.0551 28.0551 28.0554	31.122 30.097 29.526 29.5318 29.3542 29.5628 29.532 29.532 29.449 29.125 28.741 28.6624 28.5545 28.5545 28.5547	3.316 1.672 0.880 0.589 0.540 0.669 0.588 0.450 0.285 0.498 -0.332 -0.623 -0.623 -0.623 -0.623	28.034 28.041 28.044 28.046 28.047 28.051 28.053 28.056 28.058	120.950 99.33 48.966 33.020 27.510 20.297 14.303 12.4857 9.885 9.219 8.626 7.689 6.689 6.689 6.689 5.517 4.786 4.086 3.436 2.245	0.019 0.027 0.029 0.035 0.035 0.045 0.055 0.056 0.0669 0.0677 0.0687

STATION 46 72-46.5N 3-1.6W 9/20/89 0.1 HRS GMT, 999 RECORDS WIND KNOTS/DIR 20/ 20, AIR TEMP. 4.0° C, DEW PT 4.0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD'	SIG-T kg/m³	COND dS/r	THETA °C	SIGTH kg/m³	SVA ×108	HTDNYD M NYD
0.0 4 5.0 4 10.0 4 15.0 0 3 30.0 0 0 40.0 0 0 50.0 0 0 100.1 0 100.1 0 100.1 0 175.0 0 175.0 0 200.5 0 0 175.0 0 200.0 0 0 400.0 0 0 175.0 0 0 0 0 175.0 0 0 0 0 175.0 0 0 0 0 175.0 0 0 0 0 0 175.0 0 0 0 0 0 175.0 0 0 0 0 0 0 175.0 0 0 0 0 0 0 0 175.0 0 0 0 0 0 0 0 0 0 175.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.048 .046 .028 .028 .028 .028 .028 .028 .028 .037 .043 .043 .043 .043 .043 .043 .043 .043	33.918 33.918 33.918 33.9231 34.459 34.459 34.875 34.8875 34.8877 34.8887 34.8887 34.8887 34.8887 34.8887	1465.6 1465.6 1465.6 1465.9 1465.9 1465.9 1452.7 1452.7 1452.7 1452.6 1452.6 1453.3 14553.6 14553.6 14553.6	26.918 26.920 26.923 26.923 27.059 27.631 27.833 27.893 27.982 28.007 28.007 28.020 28.027 28.034 28.034 28.045 28.045 28.046	31.679 31.676 31.684 31.670 31.355 29.206 28.556 28.647 29.321 29.389 29.355 29.191	4.048 4.039 4.045 4.045 4.985	26.918 26.921 26.923 26.923 27.060 27.632 27.833 27.893 27.956 27.983 27.983 28.008 28.015 28.028 28.035 28.035 28.035 28.035 28.035		
700.0 -0 800.0 -0 900.1 -0	1.814 1.884 1.921	34.885 34.883 34.882	1456.8 1458.1 1459.6	28.052 28.054 28.055	28.570 28.553 28.565 28.590	-0.839 -0.912 -0.954	28.054 28.056 28.056	3.399 2.871 2.469 1.937	0.080 0.083 0.086 0.088

STATION 47 71-54.4N 4-14.5W 9/20/89 7.1 HRS GMT, 1000 RECORDS WIND KNOTS/DIR 35/ 25, AIR TEMP. 3.9° C, DEW PT 3.9° C

0.0 5.371 34.568 1471.8 27.288 33.410 5.371 27.289 77.397 0.000 5.0 5.372 34.568 1471.8 27.289 33.414 5.371 27.289 77.429 0.004 10.0 5.373 34.568 1471.9 27.288 33.417 5.372 27.289 77.531 0.008 15.0 5.371 34.569 1472.0 27.289 33.418 5.370 27.290 77.508 0.012 20.0 5.379 34.572 1472.1 27.291 33.430 5.377 27.292 77.385 0.015 25.0 5.347 34.575 1472.1 27.291 33.407 5.345 27.298 76.875 0.019 30.0 5.340 34.576 1472.1 27.297 33.407 5.345 27.298 76.875 0.019 30.0 5.340 34.576 1472.1 27.297 33.407 5.345 27.298 76.875 0.019 30.0 5.340 34.576 1472.1 27.297 33.407 5.345 27.298 76.875 0.019 30.0 5.340 34.576 1472.1 27.297 33.407 5.345 27.298 76.875 0.019 30.0 5.340 34.576 1472.1 27.299 33.403 5.337 27.300 76.767 0.023 40.0 3.257 34.536 1463.5 27.491 31.522 3.255 27.491 58.541 0.031 75.1 -0.912 34.680 1445.7 27.890 28.052 -0.914 27.891 20.161 0.041 100.0 -0.434 34.771 1448.4 27.943 28.052 -0.914 27.891 20.161 0.041 125.0 -0.102 34.818 1450.4 27.964 28.866 -0.107 27.965 13.336 0.049 150.0 0.266 34.886 1455.6 27.982 29.229 0.260 27.983 11.769 0.052 175.2 0.228 34.873 1452.8 27.991 29.214 0.221 27.992 10.965 0.055 175.2 0.228 34.881 1450.4 27.964 28.866 -0.107 27.965 13.336 0.049 150.0 0.066 34.889 1454.3 28.009 29.306 0.300 28.001 10.183 0.058 250.2 0.265 34.898 1454.3 28.009 29.299 0.255 28.010 9.289 0.063 30.02 0.096 34.894 1454.3 28.009 29.299 0.255 28.010 9.289 0.063 30.02 0.096 34.894 1454.3 28.005 29.173 0.084 28.016 88.616 0.067 7.860 0.071 400.0 -0.069 34.899 1455.2 28.038 28.992 -0.248 28.040 6.013 0.081 600.0 -0.229 34.902 1456.2 28.038 28.992 -0.248 28.040 6.013 0.081 600.0 -0.229 34.899 1455.2 28.038 28.992 -0.248 28.040 6.013 0.081 600.0 -0.720 34.899 1455.5 28.055 28.712 -0.683 28.060 28.735 -0.747 28.061 2.735 0.094 900.0 -0.731 34.899 1455.5 28.055 28.712 -0.683 28.060 28.735 -0.746 28.061 2.785 0.094 900.0 -0.731 34.899 1458.9 28.059 28.705 -0.749 28.061 2.485 0.099 900.0 -0.747 34.899 1458.9 28.059 28.705 -0.749 28.061 2.485 0.099 900.0 -0.7747 34.899 1460.5 28.060 28.779 -0.765 28.061 2.485 0.099 900.0 -0.7747		MP SALITY	SNDSPD m/s	SIG-T kg/m³	COND dS/m	THETA °C	SIGTH kg/m³	SVA ×108	DYNDTH DYN M
	5.0 5.1 10.0 5.25.0 5.30.0 5.25.0 75.1 -0.125.0 -0.125.0 -0.125.0 0.2250.2 0.350.0 0.450.0 -0	34.568 34.568 34.571 34.573 34.573 34.573 34.573 34.573 34.573 34.573 34.873 34.883 36.883	1471.8 1471.9 1472.1 1472.1 1472.1 1472.1 1472.1 1447.0 1445.7 14450.6 1452.6 1455.6 1455.6 1455.6 1455.6 1455.6 1455.9 1456.6 1456.5 1456.5 1456.5 1456.5	27.288 27.289 27.288 27.289 27.291 27.299 27.491 27.760 27.8943 27.964 27.982 27.964 27.982 27.983 27.964 27.982 27.983 27.983 27.983 28.000 28.005 28.033 28.038 28.059 28.059 28.059	33.414 33.418 33.418 33.407 33.407 33.522 28.052 28.052 28.052 28.291 29.214 29.294 29.173 29.171 29.025 28.773 29.733	5.371 5.377 5.377 5.377 5.345 5.3255 -0.914 -0.437 -0.120 0.255 0.085 -0.1248 -0.56849 -0.56849 -0.765	27.289 27.289 27.299 27.299 27.298 27.300 27.491 27.894 27.965 27.983 27	77.397 77.429 77.531 77.508 77.3875 76.875 76.767 58.541 32.627 20.161 15.242 13.336 11.765 10.183 9.289 8.616 7.860 7.197 6.625 6.013 3.436 2.735	0.004 0.008 0.012 0.015 0.013 0.035 0.046 0.046 0.0558 0.067 0.075 0.075 0.087 0.081 0.094

STATION 48 70-59.6N 6-31.3W 9/20/89 15.1 HRS GMT, 989 RECORDS WIND KNOTS/DIR 30/ 10, AIR TEMP. .0° C, DEW PT .0° C

15.0 3.616 34.039 1464.0 27.060 31.413 3.615 27.060 99.173 0.015 20.0 3.605 34.043 1464.0 27.064 31.408 3.604 27.064 98.851 0.020 25.0 3.602 34.045 1464.1 27.066 31.410 3.601 27.066 98.715 0.025 30.0 3.566 34.043 1464.0 27.067 31.378 3.564 27.068 98.571 0.036 40.6 0.047 34.451 1449.2 27.660 28.678 0.045 27.661 42.142 0.036 27.50 0.0 -0.436 34.543 1447.3 27.758 28.342 -0.438 27.759 32.794 0.040 27.53 -0.7 8 34.638 1446.2 27.850 28.134 -0.780 27.851 23.987 0.047 100.0 -0.519 34.714 1448.0 27.901 28.422 -0.522 27.901 19.241 0.052 125.0 -0.100 34.795 1450.4 27.945 28.850 -0.104 27.946 15.116 0.057 150.0 0.087 34.829 1451.7 27.963 29.047 0.081 27.964 13.529 0.060 175.0 0.225 34.854 1452.8 27.975 29.197 0.218 27.964 13.529 0.060 175.0 0.225 34.854 1452.8 27.975 29.197 0.218 27.964 12.404 0.063 250.0 0.381 34.892 1454.8 27.998 29.290 0.297 27.986 11.542 0.066 250.0 0.381 34.892 1454.8 27.998 29.290 0.297 27.986 11.542 0.066 250.0 0.381 34.892 1455.8 28.007 29.394 0.370 27.998 10.473 0.077 350.0 0.416 34.907 1455.8 28.007 29.394 0.370 27.998 10.473 0.077 350.0 0.316 34.906 1456.2 28.012 29.394 0.302 28.013 9.121 0.082	PRESS	TEMP	SAL'TY	SNDSPD	SIG-T	COND	THETA	SIGTH	SVA	DYNDTH
	DBAR	°C	PSU	m/s	kg/m³	ds/m	°C	kg/m³	×108	DYN M
500.0 -0.104 34.901 1456.7 28.031 29.098 -0.124 28.033 6.830 0.094 600.0 -0.284 34.900 1457.6 28.040 28.988 -0.308 28.042 5.674 0.100	11.0 15.0 20.0 30.0 40.6 50.0 75.3 100.0 125.0 125.0 250.0 350.0 400.0 400.0 400.0	3.617 3.616 3.605 3.602 3.5047 -0.436 -0.718 -0.100 0.0875 0.305 0.316 0.3213 0.1044 -0.284	34.045 34.045 34.045 334.045 334.045 334.53 34.795 334.87 334.87 334.89 334.900 334.900	14644.0 14644.0 14664.2 14669.3 144680.4 14451.8 14451.8 14553.8 14556.6 14566.6 14566.7 14567.6	27.060 27.060 27.064 27.067 27.660 27.758 27.850 27.901 27.945 27.963 27.985 27.985 27.985 27.985 27.985 27.985 27.985 27.985	31.412 31.413 31.408 31.4108 31.378 28.678 28.342 28.134 28.422 28.850 29.197 29.296 29.394 29.394 29.327 29.327 29.398	3.617 3.615 3.604 3.5604 0.045 -0.438 -0.780 -0.522 -0.104 0.297 0.370 0.404 0.396 0.1297 0.1294 -0.1294	27.061 27.060 27.064 27.068 27.068 27.661 27.759 27.851 27.991 27.946 27.986 27.986 27.988 28.013 28.013 28.013 28.023 28.042	99.125 99.173 98.851 98.715 98.715 42.142 32.794 23.987 19.241 15.116 13.542 10.473 9.634 9.121 8.558 7.6830 5.674	0.0115 0.0120 0.025 0.030 0.036 0.047 0.055 0.066 0.077 0.086 0.099 0.099 0.105

STATION 48 70-59.1N 6-31.1W 9/20/89 16.1 HRS GMT, 1231 RECORDS WIND KNOTS/DIR 28/ 20, AIR TEMP. .0° C, DEW PT .0° C

PRESS DBAR	TEMP °C	SAL'TY PSU	SNDSPD m/s	SIG-T kg∕m³	COND dS/m	THETA °C	SIGTH kg/m²	SVA ×108	DYNDTH DYN M
998.0 1000.0 1200.1 1400.1 1600.0 2000.1 2200.1 2400.1 2600.2 2800.1 3000.0	-0.686 -0.778 -0.855 -0.898 -0.933 -0.933 -0.938 -0.919 -0.905	34.908 34.907 34.906 34.907 34.907 34.912 34.908 34.907 34.908	1462.4 1462.4 1465.3 1468.4 1471.5 1474.8 1478.2 1485.0 1488.5 1492.0 1495.5	28.065 28.065 28.069 28.071 28.073 28.075 28.077 28.069 28.069 28.075 28.075 28.075	28.827 28.828 28.835 28.854 28.903 28.966 29.040 29.122 29.122 29.280 29.365 29.452	-0.724 -0.725 -0.826 -0.913 -0.966 -1.001 -1.025 -1.052 -1.052 -1.061 -1.067 -1.069	28.067 28.067 28.071 28.074 28.076 28.078 28.082 28.083 28.084 28.084 28.081	1.918 1.908 0.873 -0.061 -0.904 -1.626 -2.423 -3.026 -3.526 -3.526 -4.169	0.000 0.000 0.003 0.004 0.003 0.000 -0.004 -0.009 -0.015 -0.021 -0.029
		34.907		28.073	29.629	-1.069	28.081	-4.640	-0.045 -0.054 -0.057

APPENDIX B

This section contains plots of temperature, salinity, sound speed and density (sigma-t). The deeper portions (> 1000 m) of the five deep stations are shown on an expanded scale to better illustrate the small changes in properties at these deep depths. In addition, the density anomaly for the deep stations is plotted as sigma-theta rather than sigma-t to give a truer picture of water column stability.

INITIAL DISTRIBUTION LIST

		NO. COPIES
1.	Director Applied Physics Laboratory Attn: Mr. Robert E. Francois Library University of Washington	1
	1013 Northeast 40th Street Seattle, Washington 98105	
2.	Director Arctic Submarine Laboratory Code 19, Building 371 Naval Ocean Systems Center San Diego, California 92152	2
3.	Superintendent Naval Postgraduate School Attn: Dr. R.H. Bourke Dr. R.G. Paquette Monterey, California 93943-5000	7 1
4.	Chief of Naval Operations Department of the Navy Attn: NOP-02 NOP-22 Washington, D. C. 20350	1
5.	Dr. John L. Newton 10211 Rookwood Drive San Diego, California 92131	1
6.	Chief of Naval Research Department of the Navy Attn: Code 1125 Arctic 800 N. Quincy Street Arlington, Virginia 22217	1
7.	Commander Submarine Development Squadron TWELVE Naval Submarine Base New London Groton, Connecticut 06349	1
8.	Director Naval Research Laboratory Attn: Technical Information Division	1

9.	Attn: Dr. J.H. Swift ODF, A-014 La Jolla, California 92093	1
10.	School of Oceanography University of Washington Attn: Dr. L.K. Coachman Dr. S. Martin Mr. D. Tripp Library Seattle, Washington 98195	1 1 1
11.	School of Oceanography Oregon State University Attn: Library Corvallis, Oregon 97331	1
12.	CRREL U.S. Army Corps of Engineers Attn: Library Hanover, New Hampshire 03755-1290	1
13.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
14.	Commanding Officer NOARL Attn: Technical Director Stennis Space Center Bay St. Louis, Mississippi 39529	1
15.	Commanding Officer Naval Oceanographic Command Stennis Space Center Bay St. Louis, Mississippi 39522	. 1
16.	Scott Polar Research Institute University of Cambridge Attn: Library Sea Ice Group Cambridge, England CB2 1ER	1
17.	Chairman Department of Oceanography U.S. Naval Academy Annapolis, Maryland 21402	1

	Science Applications, Inc. Attn: Dr. Robin Muench 13400B Northup Way Suite 36 Bellevue, Washington 98005	1
19.	Institute of Polar Studies Attn: Library 103 Mendenhall 125 South Oval Mall Columbus, Ohio 43210	1
20.	Institute of Marine Science University of Alaska Attn: Library Fairbanks, Alaska 99701	1
21.	Depart of Cseanography University of British Columbia Attn: Library Vancouver, British Columbia Canada B2Y 4A2	1
22.	Bedford Institute of Oceanography Attn: Dr. P. Jones Dr. A. Clarke Library P.O. Box 1006 Dartmouth, Nova Scotia Canada B2Y 4A2	1 1 1
23.	Department of Oceanography Dalhousie University Halifax, Nova Scotia Canada B3H 4J1	1.
24.	Dr. Richard Armstrong MIZEX Data Manager National Snow and Ice Data Center Cooperative Institute for Research in Environmental Sciences Boulder, Colorado 80309	2
25.	Institute of Ocean Sciences Attn: Dr. Eddy Carmack Dr. E.L. Lewis P.O. Box 6000 Sidney, British Columbia Canada V8L 4B2	1 1

26.	Dr. Knut Aagaard NOAA/PMEL NOAA Bldg. #3 7600 Sand Point Way N.E. Seattle, Washington 98115	1
27.	Research Administration Naval Postgraduate School Monterey, California 93943-5000	1
28.	Dr. T.O. Manley Department of Geology Middlebury College Middlebury, Vermont	1
29.	Dr. Arne Foldvik Geophysical Institute University of Bergen Allegaten 70 Bergen, Norway	1
30.	Superintendent Naval Postgraduate School Attn: Library (Code 0142) Monterey, California 93943-5002	2
31.	Dr. Thomas S. Hopkins Applied Oceanography Group SACLANT Undersea Research Centre APO New York, 09019-5000	1
32.	Dr. Eberhard Fahrbach Alfred Wegener Institute for Polar and Marine Research Am Handelshafen 12 D-2850 Bremerhaven Federal Republic of Germany	1
33.	Institut fur Meereskinde der Universitat Hamburg Attn: Dr. Detlef Quadfasel Dr. Jens Meincke Dr. Steffanie Legutke 2000 Hamburg 54 Federal Republic of Germany	1 1 1
34.	Scripps Institution of Oceanography Attn: Dr. Bruce D. Cornuelle Dr. Peter F. Worcester Mail Code A-030 UCSD La Jolla, California 92093	1

.

.

35.	Norsk Polar Institute Attn: Dr. T. Vinje Dr. B. Rudels P.O. Box 158 N-1330 Oslo Lufthavn Norway	1 1
36.	Dr. Svend-Aage Malmberg Marine Research Institute P.O. Box 1390 Skulagata 4 121 Reykjavik, Iceland	1
37.	Dr. Tom A. McClimans NHL N-7034 Trondheim Norway	1
38.	Dr. Jean Claude Gascard LODC Universite Pierre et Marie Curie Paris 6. France	1