The square root of a matrix P is defined as a matrix A, where $A^2 = P$. Given a permutation matrix P, either find its square root matrix or report that it does not exist.

Input Input starts with an integer $T (\le 100)$, denoting the number of test cases. Each case starts with a line containing an integer $N (\le 2000)$. The next line contains N integers each indexing the column in which the value is 1, row by row.

Output For each case, print the N integers denoting the columns in which the value is 1. Print 'Impossible' if the matrix does not exist. Each case should be separated with a blank line.

Sample Input	Output for the Sample Input
3	1230
4	
2 3 0 1	201
3	
120	Impossible
3	
2 1 0	

Explanation:

```
P = matrix([
     [0, 0, 1, 0],
     [0, 0, 0, 1],
     [1, 0, 0, 0],
     [0, 1, 0, 0]]
A = matrix([
     [0, 1, 0, 0],
     [0, 0, 1, 0],
     [0, 0, 0, 1],
     [1, 0, 0, 0]])
P = matrix([
     [0, 1, 0],
     [0, 0, 1],
     [1, 0, 0]])
A = matrix([
     [0, 0, 1],
     [1, 0, 0],
     [0, 1, 0]])
P = matrix([
     [0, 0, 1],
     [0, 1, 0],
     [1, 0, 0]])
A does not exist.
```

Deadline: 99/2/31

Email: alifarazdaghi@gmail.com Email's subject: HW2_LA