(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 August 2004 (26.08.2004)

PCT

(10) International Publication Number WO 2004/072231 A2

(51) International Patent Classification7:

C12N

(21) International Application Number:

PCT/US2004/002013

(22) International Filing Date: 10 February 2004 (10.02.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/361,002

10 February 2003 (10.02.2003) US

(71) Applicant (for all designated States except US): CLEAR-ANT, INC. [US/US]; Suite 650, 11111 Santa Monica Boulevard, Los Angeles, CA 90025 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MCKENNEY, Keith [US/US]; 11918 Glen Mill Road, Potomac, MD 20854 (US). GILLMEISTER, Lidja [US/US]; 9419 Lee Highway, Fairfax, VA 22031 (US). MARLOWE, Kristina [US/US]; 9419 Lee Highway, Fairfax, VA 22031 (US). ARMISTEAD, David [US/US]; 1810 North Wayne Street, Arlington, VA 22201 (US).
- (74) Agents: MCPHAIL, Donald, R. et al.; Fleshner & Kim, LLP, P.O. Box 221200, Chantilly, VA 20153-1200 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PATHOGEN INACTIVATION ASSAY

(57) Abstract: The present invention relates to methods for determining the level of potentially active biological pathogens, such as viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), fungi (including yeasts) and single cell parasites, which may be found in a biological material. The present invention particularly relates to methods of determining the level of potentially active biological pathogens in a biological material using quantitative PCR.

PATHOGEN INACTIVATION ASSAY

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

The present invention relates to methods for determining the level of potentially active biological pathogens, such as viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), fungi (including yeasts), and single- and multi-cell parasites, which may be found in a biological material. The present invention particularly relates to methods of determining the level of potentially active biological pathogens in a biological material using quantitative PCR, and so may be particularly useful for determining the effectiveness of a sterilization process that has been applied to the biological material.

15 2. Background of the Related Art

20

Many biological materials that are prepared for human, veterinary, diagnostic and/or experimental use may contain unwanted and potentially dangerous biological pathogens, such as viruses, bacteria, in both vegetative and spore states, (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), fungi (including yeasts), and single- and multi-cell parasites. This may also be true of biological materials that are produced in or exported from locations where certain biological pathogens may exist to locations where those biological pathogens are not endemic. Consequently, it is of utmost importance that any biological pathogen in the

biological material be inactivated before the material is used. This is especially critical when the biological material is to be administered directly to a patient, for example in tissue implants, blood transfusions, blood factor replacement therapy, organ transplants, and other forms of human and/or other animal therapy corrected or treated by surgical implantation, intravenous, intramuscular or other forms of injection or introduction. This is also critical for the various biological materials that are prepared in media or via the culture of cells, or recombinant cells which contain various types of plasma and/or plasma derivatives or other biological materials and which may be subject to mycoplasmal, prion, ureaplasmal, bacterial, viral and/or other biological pathogens.

All living cells and multi-cellular organisms can be infected with viruses and other pathogens. Thus, the products of unicellular natural or recombinant organisms or tissues virtually always carry a risk of pathogen contamination. In addition to the risk that the producing cells or cell cultures may be infected, the processing of these and other biological materials also creates opportunities for environmental contamination. The risks of infection are more apparent for multi-cellular natural and recombinant organisms, such as transgenic animals.

10

15

Interestingly, even products from species as different from humans as transgenic plants carry risks, both due to processing contamination as described above, and from environmental contamination in the growing facilities, which may be contaminated by pathogens from the environment or infected organisms that co-inhabit the facility along with the desired plants. For example, a crop of transgenic corn grown in a field could be expected to be exposed to rodents such as mice during the growing season. Mice can harbor

serious human pathogens such as the frequently fatal Hanta virus. Since these animals would be undetectable in the growing crop, viruses shed by the animals could be carried into the transgenic material at harvest. Indeed, such rodents are notoriously difficult to control, and may gain access to a crop during sowing, growth, harvest or storage. Likewise, contamination from overflying or perching birds has the potential to transmit such serious pathogens as the causative agent for psittacosis. Thus, any biological material, regardless of its source, may harbor serious pathogens that must be removed or inactivated prior to administration of the material to a recipient human or other animal.

Accordingly, many procedures for producing human compatible biological materials have involved methods that screen or test the biological materials for one or more particular biological pathogens rather than removal or inactivation of the pathogen(s) from the biological material. The typical protocol for disposition of materials that test positive for a biological pathogen simply is non-use/discarding of that material.

Examples of screening procedures for contaminants include testing for a particular virus in human blood and tissues from donors. Such procedures, however, are not always reliable and are not able to detect the presence of certain viruses, and prions, particularly those present in very low numbers. This reduces the value, certainty, and safety of such tests in view of the consequences associated with a false negative result, which can be life threatening in certain cases, for example in the case of Acquired Immune Deficiency Syndrome (AIDS). Furthermore, in some instances it can take weeks, if not months, to determine whether or not the material is contaminated. Moreover, to date, there is no commercially available, reliable test or assay for identifying ureaplasmas, mycoplasmas, and

15

chlamydia within a biological material that is fully suitable for screening out potential donors or infected material (Advances in Contraception 10(4):309-315(1994)). This serves to heighten the need for an effective means of destroying ureaplasmas, mycoplasmas, chlamydia, etc., within a biological material, while still retaining the desired activity of that material. Therefore, it is highly desirable to apply techniques that kill or inactivate biological pathogens during and/or after manufacturing and/or harvesting the biological material.

More recent efforts have focussed on methods to remove or inactivate contaminants in products intended for use in humans and other animals. Particularly useful methods are those that alter the genetic material of a biological pathogen, such as the addition of chemical inactivants or sensitizers to a biological material or irradiation of a biological material.

10

15

20

The use of chemical inactivants or sensitizers involves the addition of noxious agents which bind to the DNA/RNA of the virus, and which are activated either by UV or other radiation. This radiation produces reactive intermediates and/or free radicals which bind to the DNA/RNA of the virus, break the chemical bonds in the backbone of the DNA/RNA, and/or cross-link or complex it in such a way that the virus can no longer replicate.

Irradiating a biological material with ionizing radiation, such as gamma, UV or e-beam radiation, is another method of sterilizing a product. The direct effects of gamma radiation are particularly useful for destroying the genetic material within viruses and bacteria, particularly when given in total doses of at least 25 kGy (See Keathly, et al., "Is There Life After Irradiation? Part 2," BioPharm July-August, 1993, and Leitman, "Use of Blood Cell Irradiation in the Prevention of Post Transfusion Graft-vs-Host Disease,"

Transfusion Science 10:219-239(1989)).

10

15

20

The use of such sterilization methods does not, however, remove any biological pathogens from the sterilized biological material. Rather, these methods render inactive any biological pathogens that may be present in the biological material by altering the genetic material within the pathogen, including cleaving, deleting, oxidizing, reducing, covalently bonding, cross-linking and/or complexing that genetic material or a component thereof.

For many potentially active biological pathogens, a single modification in their genome may be sufficient to render them inactive. Significantly, most presently available tests for the detection or quantification of biological pathogens, such as ELISA tests for surface antigens, will not indicate that the biological pathogen has been rendered inactive. Moreover, conventional genetic detection tests, such as the PCR reaction described below, examine only a small portion of the genome and may fail to detect sites of alteration that render the biological pathogen inactive, irrespective of whether there are several such sites or only one. In practice, these tests may frequently report a high level of false positive results, leading to inappropriate product quarantine or destruction

Accordingly, there is a need for methods to examine the genomes of potentially active biological pathogens in biological materials that have been subjected to sterilization in order to differentiate between biological pathogens that have been rendered inactive and those that are still potentially active. By doing so, such a method permits the determination of how effective a particular sterilization technique may be with respect to a particular biological pathogen. No presently available test provides such information.

PCR (polymerase chain reaction) is a method for increasing the concentration of a segment of a target sequence in a mixture of nucleic acid sequences without cloning or purification. (See K. B. Mullis et al., U.S. Pat. Nos. 4,683,195 and 4,683,202). This process for amplifying the target sequence consists of introducing two oligonucleotide primers to the sample containing the desired target nucleic acid sequence, followed by thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the target sequence. To effect amplification, the genetic material within the sample is first denatured and then the primers are annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, annealing and extension can be repeated many times (i.e., denaturation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified". The segment of genetic material that has been amplified is generally referred to as an "amplicon". The conditions employed for PCR reactions, including aspects of the timing, temperature(s) and particular polymerase selection are typically optimized for examining relatively short segments of nucleic acids, generally in the range of 50-200 nucleic acid residues. With PCR, it is possible to amplify a single copy of a specific target sequence in

genomic DNA to a level detectable by several different methodologies (e.g., hybridization with a labelled probe; incorporation of biotinylated primers followed by avidin-enzyme conjugate detection; incorporation of ³²P-labelled deoxynucleotide triphosphates, e.g., dCTP or dATP, into the amplified segment). In addition to genomic DNA, any oligonucleotide sequence can be amplified with the appropriate set of primer molecules.

5

10

15

20

End-point PCR is a polynucleotide amplification protocol. The amplification factor that is observed is related to the number (n) of cycles that have occurred and the efficiency of replication at each cycle (E), which, in turn, is a function of the priming and extension efficiencies during each cycle. Amplification has been observed to follow the form Eⁿ, until high concentrations of the PCR product have been made.

At these high product concentrations, the efficiency of replication tends to drop significantly. It has been suggested that this is probably due to the displacement of the primers by the longer complementary strands of the PCR product. At concentrations in excess of 10-8 M, the rate of the two complementary PCR amplified product strands finding each other during the priming reactions becomes sufficiently fast that it may occur before or concomitantly with the extension step of the PCR process. This ultimately leads to a reduced priming efficiency, and, consequently, a reduced cycle efficiency. Continued cycles of PCR lead to declining increases of PCR product molecules, until the PCR product eventually reaches a plateau concentration (the "end-point"), usually a concentration of approximately 10-8 M. As a typical reaction volume is about 100 microliters, this corresponds to a yield of about 6x10¹¹ double stranded product molecules.

Real-time PCR is also a polynucleotide amplification protocol, but PCR product

analysis occurs simultaneously with amplification of the target sequence. Detecting agents, such as DNA dyes or fluorescent probes, can be added to the PCR mixture before amplification and used to analyze PCR products during amplification. Sample analysis occurs concurrently with amplification in the same tube within the same instrument. This combined approach decreases sample handling, saves time, and greatly reduces the risk of product contamination, as there is no need to remove the samples from their closed containers for further analysis. The concept of combining amplification with product analysis has become known as "real time" or "quantitative" PCR. (See, e.g., WO/9746707A2, WO/9746712A2 and WO/9746714A1).

10

15

20

Originally, monitoring fluorescence each cycle of PCR involved the use of ethidium bromide. See Higuchi et al., "Simultaneous amplification and detection of specific DNA sequences," Bio/Technology 10:413-417 (1992); Higuchi et al., "Kinetic PCR analysis: real time monitoring of DNA amplification reactions," Bio/Technology 11:1026-1030 (1993). In that system, fluorescence was measured once per cycle as a relative measure of product concentration. Ethidium bromide detects double stranded DNA; thus, if the desired target nucleic acid sequence is present, fluorescence intensity increases with temperature cycling (otherwise no fluorescence). Furthermore, the cycle number where an increase in fluorescence is first detected increases inversely proportionally to the log of the initial target sequence concentration. Other fluorescent systems have since been developed that are capable of providing additional data concerning the nucleic acid concentration.

In view of the difficulties and problems discussed above, there remains a need for a simple, yet accurate method of determining the efficiency of methods of sterilizing biological

materials that act upon the genetic material of potentially active biological pathogens.

Each of the above references is incorporated by reference herein where appropriate for teachings of additional or alternative details, features and/or technical background.

SUMMARY OF THE INVENTION

5

10

15

20

An object of the invention is to solve at least the problems and/or disadvantages of the relevant art, and to provide at least the advantages described hereinafter.

Accordingly, it is an object of the present invention to provide methods of determining the level of potentially active biological pathogens in a biological material. Other objects, features and advantages of the present invention will be set forth in the detailed description of preferred embodiments that follows, and in part will be apparent from the description or may be learned by practice of the invention. These objects and advantages of the invention will be realized and attained by the compositions and methods particularly pointed out in the written description and claims hereof.

In accordance with these and other objects, a first embodiment of the present invention is directed to a method for determining the level of potentially active biological pathogens in a biological material, which comprises: (i) adding to a biological material an effective amount of at least two nucleic acid primer pairs, wherein a first nucleic acid primer pair hybridizes under stringent conditions to a first target nucleic acid sequence found in the biological pathogen and a second nucleic acid primer pair hybridizes under stringent conditions to a second target nucleic acid sequence found in the biological pathogen, and

further wherein first and second target nucleic acid sequences are not identical and the second target nucleic acid sequence contains more nucleic acid residues than the first; (ii) amplifying the target nucleic acid sequences by polymerase chain reaction, which comprises adding at least one polymerase to the biological material containing the primer pairs to form an amplification mixture and thermally cycling this amplification mixture between at least one denaturation temperature and at least one elongation temperature for a period of time sufficient to amplify the target nucleic acid sequences; and (iii) detecting and quantifying the target nucleic acid sequences, wherein the quantity of the first target nucleic acid sequence is proportional to the number of biological pathogens in the biological material and the quantity of the second target nucleic acid sequence is proportional to the number of potentially active biological pathogens in the biological material.

5

10

15

Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the complete genomic nucleic acid sequence of human Parvovirus

20 B19 (SEQ ID NO. 1), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

Figure 2 shows the complete genomic nucleic acid sequence of hepatitis B virus (SEQ ID NO. 2), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

Figure 3 shows the complete genomic nucleic acid sequence of porcine Parvovirus (SEQ ID NO. 3), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

Figure 4 shows the complete genomic nucleic acid sequence of Sindbis virus (SEQ ID NO. 4), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

Figure 5 shows the complete genomic nucleic acid sequence of West Nile virus (SEQ ID NO. 5), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

Figures 6A and 6B show the genomic nucleic acid sequence of the 16S ribosomal RNA gene (SEQ ID NO. 6) and the 23S ribosomal RNA gene of Escherichia coli (SEQ ID NO. 7), and indicate exemplary sequences for preparing suitable forward and reverse primers and probes.

15

20

Figures 7A and 7B show the genomic nucleic acid sequence of the 18S ribosomal RNA gene (SEQ ID NO. 8) and the 25S ribosomal RNA gene of yeast (*S. cerevisiae*) (SEQ ID NO. 9), and indicate exemplary sequences for preparing suitable forward and reverse primers and probes.

Figure 8 shows the complete nucleic acid sequence of human mitochondrial DNA

(SEQ ID NO. 10), and indicates exemplary sequences for preparing suitable forward and reverse primers and probes.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

5 A. Definitions

15

20

Unless defined otherwise, all technical and scientific terms used herein are intended to have the same meaning as is commonly understood by one of ordinary skill in the relevant art.

As used herein, the singular forms "a," "an," and "the" include the plural reference unless the context clearly dictates otherwise.

As used herein, the term "biological material" is intended to mean any substance derived or obtained from a living organism. Illustrative examples of biological materials include, but are not limited to, the following: cells; tissues; blood or blood components; proteins, including recombinant and transgenic proteins, and proetinaceous materials; enzymes, including digestive enzymes, such as trypsin, chymotrypsin, alpha-galactosidase and iduronodate-2-sulfatase; immunoglobulins, including mono and polyimmunoglobulins; botanicals; food and the like. Preferred examples of biological materials include, but are not limited to, the following: ligaments; tendons; nerves; bone, including demineralized bone matrix, grafts, joints, femurs, femoral heads, etc.; teeth; skin grafts; bone marrow, including bone marrow cell suspensions, whole or processed; heart valves; cartilage; comeas; arteries and veins; organs, including organs for transplantation, such as hearts, livers, lungs, kidneys, intestines, pancreas, limbs and digits; lipids; carbohydrates; collagen, including native,

afibrillar, atelomeric, soluble and insoluble, recombinant and transgenic, both native sequence and modified; chitin and its derivatives, including NO-carboxy chitosan (NOCC); stem cells, islet of Langerhans cells and other cells for transplantation, including genetically altered cells; red blood cells; white blood cells, including monocytes; and platelets. Additional examples of biological materials include forensic samples, human or animal remains, stomach contents, mummified remains of a once-living organism, fossilized remains, a product of manufacture containing or previously in contact with a biological material, and fomites.

As used herein, the term "biological pathogen" is intended to mean a biological pathogen that, upon direct or indirect contact with a biological material, may have a deleterious effect on the biological material or upon a recipient thereof. Such biological pathogens include, but are not limited to, the various viruses, bacteria (whether in the vegetative or spore state, including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), fungi (including yeasts) and/or single- or multi-cell parasites and pests known to those of skill in the art to generally be found in or infect biological materials.

Illustrative examples of some biological pathogens include, but are not limited to, the following: viruses, such as human immunodeficiency viruses and other retroviruses, herpes viruses, filoviruses, circoviruses, paramyxoviruses, cytomegaloviruses, hepatitis viruses (including hepatitis A, B, C, and D variants thereof, among others), pox viruses, toga viruses, Ebstein-Barr viruses and parvoviruses; bacteria, such as Escherichia, Bacillus, Campylobacter, Clostridium, Streptococcus and Staphylococcus; nanobacteria; single- and multi-cell parasites, such

as *Trypanosoma* and malarial parasites, including *Plasmodium* species; fungi; yeasts; mycoplasmas and ureaplasmas; chlamydia; rickettsias, such as *Coxiella burnetti*; and multi-cell pests and the like.

5

10

15

20

Additional non-limiting examples of pathogens found in biological materials include the following bacteria: Escherichia, Bacillus, Campylobacter, Helicobacter, Lysteria, Clostridium, Streptococcus, Enterococcus, Staphylococcus, Brucella, Haemophilus, Salmonella, Yersinia, Pseudomonas, Serratia, Enterobacter, Kebsiella, Proteus, Citrobacter, Corynebacterium, Propionibacterium and Coxiella, such as Staphylococci (including, for example, S. aureus, S. epidermidis, S. saprophyticus, among others), Chlamydia (including, for example, C. pneumoniae, among others), Streptococci (including, for example, the viridians group of Streptococci: S. sanguis, S. oralis (mitis), S. salivarius, S. mutans, and others; and other species of Streptococci, such as S. bovis and S. pyogenes), Enterococci (for example, E. faecalis and E. faecium, among others), various fungi, and the AHACEK group of gram-negative bacilli (Haemophilus parainfluenzae, Haemophilus aphrophilus, Actinibacillus actnomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae), Neisseria gonorrhoeae, Clostridia sp., Listeria moncytogenes, Salmonella sp., Bacteroides fragilis, Escherichia coli, Proteus sp, and Klebsiella-Enterobacter-Serratia sp., among others.

Still other non-limiting examples of pathogens found in biological materials include the following viruses: Adeno-associated Virus (AAV), California Encephalitis Virus, Coronavirus, Coxsackievirus—A, Coxsackievirus—B, Eastern Equine Encephalitis Virus (EEEV), Echovirus, Hantavirus, Hepatitis A Virus (HAV), Hepatitis C Virus (HCV),

Hepatitis Delta Virus (HDV), Hepatitis E Virus (HEV), Hepatitis G Virus (HGV), Human Immunodeficiency Virus (HIV), Human T-lymphotrophic Virus (HTLV), Influenza Virus (Flu Virus), Measles Virus (Rubeola), Mumps Virus, Norwalk Virus, Parainfluenza Virus, Polio virus, Rabies Virus, Respiratory Syncytial Virus, Rhinovirus, Rubella Virus, Saint Louis Encephalitis Virus, Western Equine Encephalitis Virus (WEEV), Yellow Fever Virus, Adenovirus, Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis B Virus (HBV), Herpes Simplex Virus 1 (HHV1), Herpes Simplex Virus 2 (HHV2), Molluscum contagiosum, Papilloma Virus (HPV), Smallpox Virus (Variola), Vaccinia Virus, Venezuelan Equine Encephalitis Virus (VEEV), Ebola Virus, West Nile Virus, Human Parvovirus B19 and Rotavirus.

10

15

20

As used herein, the term "potentially active biological pathogen" is intended to mean a biological pathogen that is capable of causing a deleterious effect, either alone or in combination with another factor, such as a second biological contaminant or pathogen or a native protein (wild-type or mutant) or antibody, in the biological material and/or a recipient thereof.

As used herein, the term "wild-type" in reference to a nucleic acid sequence an amino acid sequence is intended to refer to the corresponding sequence found in naturally occurring organisms, such as biological pathogens, including such variants and mutants as are known to those skilled in the art.

As used herein, the term "sterilize" is intended to mean a reduction in the level of at least one potentially active biological pathogen found in the biological material being treated.

As used herein, the term "radiation" is intended to mean radiation of sufficient energy to sterilize at least some component of the irradiated biological material. Types of radiation include, but are not limited to, the following: (i) corpuscular (streams of subatomic particles such as neutrons, electrons, and/or protons); (ii) electromagnetic (originating in a varying electromagnetic field, such as radio waves, visible (both mono and polychromatic) and invisible light, infrared, ultraviolet radiation, x-radiation, and gamma rays and mixtures thereof); and (iii) sound and pressure waves. Such radiation is often described as either ionizing (capable of producing ions in irradiated materials) radiation, such as gamma rays, and non-ionizing radiation, such as visible light. The sources of such radiation may vary and, in general, the selection of a specific source of radiation is not critical provided that sufficient radiation is given in an appropriate time and at an appropriate rate to effect sterilization. In practice, gamma radiation is usually produced by isotopes of Cobalt or Cesium, while UV and X-rays are produced by machines that emit UV and X-radiation, respectively, and electrons are often used to sterilize materials in a method known as "Ebeam" irradiation that involves their production via a machine. Visible light, both monoand polychromatic, is produced by machines and may, in practice, be combined with invisible light, such as infrared and UV, that is produced by the same machine or a different machine.

20 B. Particularly Preferred Embodiments

5

10

15

A first preferred embodiment of the present invention is directed to a method for determining the level of potentially active biological pathogens in a biological material, which

comprises:

5

10

15

20

(i) adding to a biological material an effective amount of at least two nucleic acid primer pairs,

wherein a first nucleic acid primer pair hybridizes under stringent conditions to a first target nucleic acid sequence found in the biological pathogen and a second nucleic acid primer pair hybridizes under stringent conditions to a second target nucleic acid sequence found in the biological pathogen, and further wherein first and second target nucleic acid sequences are not identical and the second target nucleic acid sequence contains more nucleic acid residues than the first;

- (ii) amplifying the target nucleic acid sequences by polymerase chain reaction, which comprises adding at least one polymerase to the biological material containing the primer pairs to form an amplification mixture and thermally cycling this amplification mixture between at least one denaturation temperature and at least one elongation temperature for a period of time sufficient to amplify the target nucleic acid sequences; and
- (iii) detecting and quantifying the target nucleic acid sequences, wherein the quantity of the first target nucleic acid sequence is proportional to the number of biological pathogens in the biological material and the quantity of the second target nucleic acid sequence is proportional to the number of potentially active biological pathogens in the biological material.

The first and second target nucleic acid sequences employed in the methods of the present invention are preferably selected to be specific for a particular biological pathogen of

interest. That is, it is preferred that at least one, and more preferably both, of the first and second nucleic acid sequences is found only in the biological pathogen of interest and not in any other component of the biological material. According to these embodiments of the present invention, such a selection (or selections) for the target nucleic acid sequence(s) allows for the selective determination of the levels of biological pathogen, including the total number of biological pathogens present (potentially active and inactive) as well as the number of potentially active pathogens and the number of inactive pathogens.

One skilled in the art may determine suitable target nucleic acid sequences empirically, based on factors such as the particular biological pathogen(s) of interest, the biological material being tested and the PCR conditions selected.

10

20

Preferably, the first target nucleic acid sequence contains between about 50 and about 500 nucleic acid residues. More preferably, the first target nucleic acid sequence contains between about 50 and about 250 nucleic acid residues, and most preferably between about 50 and about 150 nucleic acid residues.

The second target nucleic acid sequence preferably contains between about 500 and about 50,000 nucleic acid residues. More preferably, the second target nucleic acid sequence contains between about 1000 and about 10,000 nucleic acid residues, even more preferably between about 2000 and about 5000 nucleic acid residues and most preferably between about 2500 and about 5000 nucleic acid residues.

The first and second target nucleic acid sequences may be completely different or they may overlap by some or all of the shorter of the two. According to certain preferred

embodiments of the present invention, the first target nucleic acid sequence and the second nucleic acid sequence contain at least 16 contiguous nucleic acid residues in common.

As noted, the first and second target nucleic acid sequences are preferably selected to be specific for a biological pathogen of interest. According to such embodiments of the present invention, the biological pathogen is preferably selected from the group consisting of bacteria, viruses, mycoplasmas, fungi and single cell parasites.

According to these embodiments of the present invention, at least one of the first and second target nucleic acid sequences, and more preferably both the first and second target nucleic acid sequence, are at least 30% homologous to a wild-type nucleic acid sequence found in the biological pathogen of interest. More preferably, the first and/or second target nucleic acid sequence is at least 50% homologous to a wild-type nucleic acid sequence found in the biological pathogen of interest, and even more preferably at least 70% homologous. Most preferably, the first and/or second target nucleic acid sequence is at least 90% homologous to a wild-type nucleic acid sequence found in the biological pathogen of interest. According to certain preferred embodiments, the first and/or second target nucleic acid sequence is substantially identical to a wild-type nucleic acid sequence found in the biological pathogen of interest.

10

15

20

According to particularly preferred embodiments of the present invention, at least one of the first and second target nucleic acid sequences, and more preferably both, is a nucleic sequence that is highly conserved among different species, different genera or even different families of biological pathogens.

For example, if the biological pathogen of interest is bacteria, then the first and/or second target nucleic acid sequences are preferably sequences that are found in the gene encoding the 16S ribosomal RNA or the gene encoding the 23S ribosomal RNA. According to these preferred embodiments of the present invention, the first target nucleic acid sequence is even more preferably a nucleic acid sequence found in the gene encoding the 16S ribosomal RNA of bacteria. Preferably, such a sequence is conserved among different species and genera of bacteria.

Thus, as shown in Figure 6A, suitable primers and probes were prepared from the gene encoding the 16S ribosomal RNA of bacteria (SEQ ID NO. 6) that were useful for a wide range of bacterial biological pathogens, including Escerichia coli, Bacteroides forsythus, Porphyromonas gingivalis, Prevotella melaninogenica, Cytophaga baltica, Campylobacter jejuni, Helicobacter pylori, Trepnema denticola, Treponema pallidum, Leptothrix mobilis, Thiomicrospira dentrificans, Neisseria meningitides, Actinobacillus actinomycetemcomitans, Haemophilus influenzae, Salmonella typhi, Vibrio cholerae, Coxiella burnetii, Legionella pneumophila, Pseudomonas aeruginosa, Caulobacter vibrioides, Rhodospirillum rubrum, Nitrobacter winogradskyi, Wolbachia sp., Myxococcus xanthus, Corynebacterium diptheriae, Mycobacterium tuberculosis, Streptomyces coelicolor, Actinomyces odontolyticus, Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecais, Lactobacillus acidophilus, Streptococcus mutans, Clostridium botulinum, Peptostreptococcus micros, Veillonella dispar, Fusobacterium nucleatum, Clanrydia trachomatis, Mycoplasma pneumoniae.

15

20

According to these particularly preferred embodiments of the present invention, *i.e.* if the biological pathogen of interest is bacteria, then the second target nucleic acid sequence is preferably a nucleic acid sequence found in both the gene encoding the 16S ribosomal RNA

and the gene encoding the 23S ribosomal RNA. According to these embodiments, the second target nucleic acid sequence is even more preferably a nucleic acid sequence found in the gene encoding the 16S ribosomal RNA and at least a portion of the gene encoding the 23S ribosomal RNA, as well as the non-coding nucleic sequence found therebetween in bacterial genomes.

Similarly, if the biological pathogen of interest is fungi, then the first and/or second target nucleic acid sequences are preferably sequences that are found in the gene encoding the 18S ribosomal RNA or the gene encoding the 25S ribosomal RNA. According to these embodiments of the present invention, the first target nucleic acid sequence is even more preferably a nucleic acid sequence found in the gene encoding the 18S ribosomal RNA of fungi. Preferably, such a sequence is conserved among different species and genera of fungi.

According to these particularly preferred embodiments of the present invention, *i.e.* if the biological pathogen of interest is fungi, then the second target nucleic acid sequence is preferably a nucleic acid sequence found in both the gene encoding the 18S ribosomal RNA and the gene encoding the 25S ribosomal RNA. According to these embodiments, the second target nucleic acid sequence is even more preferably a nucleic acid sequence found in the gene encoding the 18S ribosomal RNA and at least a portion of the gene encoding the 25S ribosomal RNA and the non-coding nucleic sequence found therebetween in fungal genomes, and most preferably a nucleic acid sequence found in the gene encoding the 18S ribosomal RNA, at least a portion of the gene encoding the 25S ribosomal RNA and the gene encoding the 5.8S ribosomal RNA, as well as both non-coding nucleic sequences found therebetween in fungal genomes.

The first and second pairs of nucleic acid primers are each selected based on their ability to generate the desired target nucleic acid sequences under the appropriate PCR conditions. Accordingly, each primer must be specific for the desired target nucleic acid sequence. Similarly, each primer must be selected so that they are not self-complementary or complementary to another primer (or probe, if present).

According to certain preferred embodiments of the present invention, at least one member of each pair of nucleic acid primers is substantially identical, *i.e.* one of the first pair of nucleic acid primers and one of the second pair of nucleic acid primers are substantially identical.

According to other preferred embodiments of the present invention, the two pairs of nucleic acid primers are completely different, *i.e.*, neither of the first pair of nucleic acid primers is substantially identical to either of the second pair of nucleic acid primers.

10

20

According to still other preferred embodiments of the present invention, the two pairs of nucleic acid primers are substantially identical, i.e. one of the first pair of nucleic acid primers is substantially identical to one of the second pair of nucleic acid primers and the other one of the first pair is identical to the other one of the second pair. According to such embodiments, two distinct target sequences may still be obtained, for example, in the case where one or both members of each primer pair hybridize to more than one sequence, for example, as in the case where the first and second target sequences are part of a circular nucleic acid sequence, such as a plasmid, where the hybridization location of the primers on the circular nucleic acid sequence is such that transcription in different directions leads to two different amplicons. Similarly, in cases where the first and target sequences are highly

homologous, particularly at their respective 5' and 3' ends, then the primers will hybridize to both, such that transcription leads to two different amplicons.

The polymerize chain reaction employed in the inventive methods is performed according to the methods and techniques known to those skilled in the art, i.e., a nucleic acid primer pair is added to the biological material containing the sequence of interest to form an amplification mixture that is then thermally cycled for a sufficient period of time to amplify the desired sequence. The thermal cycling generally comprises cycling the amplification mixture between at least one denaturation temperature and at least one elongation temperature. Preferably, the thermal cycling comprises cycling the amplification mixture between at least one denaturation temperature, at least one annealing temperature and at least one elongation temperature.

10

15

20

Specific temperatures for use in denaturation, elongation and/or annealing may be determined empirically by one skilled in the art based, for example, on the specific target sequence being amplified and the particular probes employed. Likewise, the specific time(s) that the amplification mixture is maintained at the various denaturation, elongation and/or annealing temperature(s) may be determined empirically by one skilled in the art based on similar considerations.

According to particularly preferred embodiments of the present invention, the elongation temperature selected for use in the PCR of the inventive methods is not more than about 70°C. More preferably, the elongation temperature selected is between about 60°C and about 69°C, and even more preferably between about 65°C and about 69°C. Most

preferably, the elongation temperature employed in the PCR of the inventive methods is about 68°C.

According to additional preferred embodiments of the present invention, the denaturation temperature selected for use in the PCR of the inventive methods is not more than about 95°C. More preferably, the denaturation temperature selected is between about 90°C and about 95°C, and even more preferably between about 92°C and about 95°C. Most preferably, the denaturation temperature employed in the PCR of the inventive methods is about 94°C.

According to other preferred embodiments of the present invention, when the thermal cycling includes an annealing temperature, the annealing temperature selected is about 5-10°C below the melting temperature of the primers being employed. Preferably, the annealing temperature selected is not more than about 65°C. More preferably, the annealing temperature selected is between about 57°C and about 63°C, and even more preferably between about 58°C and about 62°C. Most preferably, the annealing temperature employed in the PCR of the inventive methods is about 60°C.

10

15

20

According to additional preferred embodiments of the present invention, during each thermal cycle, the amplification mixture is maintained at the elongation temperature for a period of not less than about 1 minute. More preferably, during each thermal cycle, the amplification mixture is maintained at the elongation temperature for a period of not less than about 2 minutes, and even more preferably for a period of not less than about 3

minutes.

10

15

20

According to particularly preferred embodiments of the present invention, the amplification mixture is maintained at the elongation temperature for a period of not less than about 2 minutes during the first cycle of the thermal cycling, and then the period during which said amplification mixture is maintained at the elongation temperature is increased by a period of about 5 seconds for each successive thermal cycle. Thus, for example, according to such embodiments of the present invention, if the amplification mixture was maintained at the elongation temperature for a period of 2 minutes during the first cycle of the thermal cycling, it would be maintained at the elongation temperature for a period of 2 minutes, 5 seconds for the second cycle, 2 minutes, 10 seconds for the third cycle, 2 minutes, 15 seconds for the fourth cycle, and so on until the thermal cycling is completed.

According to additional preferred embodiments of the present invention, during each thermal cycle, the amplification mixture is maintained at the denaturation temperature for a period of not more than about 1 minute. More preferably, during each thermal cycle, the amplification mixture is maintained at the denaturation temperature for a period of not more than about 45 seconds, and even more preferably for a period of not more than about 30 seconds, and still even more preferably for a period of not more than about 20 seconds. Most preferably, during each thermal cycle, the amplification mixture is maintained at the denaturation temperature for a period of not more than about 15 seconds, such as a period of about 10 seconds.

According to still other preferred embodiments of the present invention, when the thermal cycling includes an annealing temperature, the amplification mixture is maintained at

the annealing temperature for a period of not less than about 30 seconds. More preferably, according to such embodiments, during each thermal cycle, the amplification mixture is maintained at the annealing temperature for a period between 30 seconds and 2 minutes, and even more preferably for a period of not less than about 45 seconds. Most preferably, during each thermal cycle, the amplification mixture is maintained at the annealing temperature for a period of about 1 minute.

The number of thermal cycles employed in the PCR of the inventive methods may be determined empirically by one skilled in the art depending, for example, on the suspected concentration of the target sequence of interest in the biological material being tested. According to preferred embodiments of the present invention, the amplification mixture is subjected to at least about 30 cycles of thermal cycling, and even more preferably at least about 40 cycles. Most preferably, the amplification mixture is subjected to at least about 50 cycles of thermal cycling.

10

15

The polymerase employed in the PCR of the inventive methods may be any of the suitable polymerases known to those skilled in the art. Preferably, the polymerase employed is a thermostable polymerase, *i.e.* a polymerase that is not adversely affected by the higher temperatures involved in thermal cycling. More preferably, the polymerase may be a *Taq* polymerase, or a suitable derivative thereof and/or a proof-reading polymerase.

According to particularly preferred embodiments of the present invention, at least two polymerases are employed in the PCR of the inventive methods. Preferably, at least one of the polymerases is a *Taq* polymerase or a suitable derivative thereof, such as TaqMan DNA polymerase (available from Applied BioSystems), and the other polymerase is a proof-

reading polymerase, such as ProofStart DNA polymerase (available from Qiagen).

According to certain preferred embodiments of the present invention, the amplification mixture further contains at least one thermostable inorganic pyrophosphatase. Suitable amounts of thermostable inorganic pyrophosphatase may be determined empirically by one skilled in art. Generally, when present, the ratio of thermostable inorganic pyrophosphatase to *Taq* polymerase is at least about 1:20, more preferably at least about 1:10 and even more preferably at least about 1:5.

The remaining parameters employed in the PCR of the inventive methods, such as the primer concentration (generally about 100-500 nM and preferably about 200 nM)), magnesium concentration (generally 1.5-6 mM and preferably about 1.5 mM of magnesium sulfate and/or magnesium chloride), deoxyribonucleotide triphosphates (dNTP) concentration (generally about 0.2-0.4 mM each and preferably about 0.2 mM each), probe concentration (if present, generally about 50-800 nM, and preferably about 100 nM), may each be determined empirically by one skilled in the art using any of the known methods and techniques.

10

15

20

According to certain particularly preferred embodiments of the present invention, the deoxyribonucleotide triphosphates (dNTP) that are employed in the PCR of the inventive methods are selected from the group consisting of C, T, G and A. Preferably, substantially no dUTP is present in the amplification mixture of the inventive methods. According to still further preferred embodiments, substantially no uracil N-glycosylase is present in the amplification mixture of the inventive methods.

According to certain particularly preferred embodiments of the present invention, the amplification mixture further comprises at least one buffer solution. Suitable buffer solutions are known and available to those skilled in the art. Particularly preferred buffer solutions include pH modifying buffers, such as buffers containing Tris-HCl, and buffers which maintain salt concentration, particular magnesium concentration, such as buffers containing KCl and/or (NH₄)₂SO₄.

5

10

15

20

After amplification using PCR, the first and second target nucleic acid sequences are detected and quantified. This detecting and quantifying may be conducted using any of the methods and techniques known to those skilled in the art. For example, detecting and quantifying of the first and second nucleic acid sequences may be conducted by adding a suitable detecting agent, such as an intercalating dye, directly to the amplification mixture or by adding a suitable nucleic acid probe to the mixture, preferably either a suitable nucleic acid probe in combination with a detecting agent or a suitable nucleic acid probe having a detectable label covalently or ionically attached thereto or complexed therewith.

Preferably, the first and second target nucleic acid sequences are detected by adding at least one nucleic acid probe to the biological material being tested. If the first and second target nucleic acid sequences were amplified in a single reaction vessel, then it is preferable to use at least two nucleic acid probes, one of which is specific for the first target nucleic acid sequence and the other of which is specific for the second target nucleic acid sequence. Conversely, if the first and second target nucleic acid sequences were amplified in separate reaction vessels, then the same nucleic acid probe may be used for detecting both the first target nucleic acid sequence.

Any nucleic acid probe employed in the inventive methods should contain sufficient nucleic acid residues to hybridizes selectively under stringent conditions to a specific desired nucleic acid sequence, *i.e.* suitable probes will generally contain at least 16 nucleic acid residues, and preferably hybridizes selectively under stringent conditions to a specific nucleic acid sequence of the first and/or second target nucleic acid sequence that is not the same as the nucleic acid sequence of any of the primers. Suitable nucleic acid probes include, but are not limited to, 5' nuclease probes, hairpin probes, adjacent probes, sunrise probes and scorpion probes.

According to certain preferred embodiments of the present invention, the nucleic acid probe employed in the inventive methods has an endogenous passive dye, such as Tamra or the like. In other preferred embodiments, such an endogenous passive dye may be replaced by a passive dye that is not covalently bound to the probe, such as Rox or the like.

10

20

According to certain particularly preferred embodiments of the present invention, prior to step (i), the biological material being tested has been subjected to a process that alters at least one wild-type nucleic acid sequence in the biological pathogen of interest. Such processes may cause the wild-type nucleic acid sequence to break, cross-link and/or complex. An illustrative, but non-limiting, example of such a process is irradiation of the biological material with ionizing radiation, such as UV or gamma radiation.

Although not limited in application, the inventive methods are particularly useful in determining the effectiveness of processes that alter nucleic acid sequences, such as the inactivation of biological pathogens by gamma irradiation. More specifically, conventional PCR testing methods only determine whether a particular biological pathogen is present in a

biological material, not whether that biological pathogen is active or inactive. The methods of the present invention, however, may be used to determine not only whether a particular biological pathogen is present in a biological material as shown by amplification of the first target sequence, but also whether that biological pathogen is inactive by virtue of an altered wild-type nucleic acid sequence as shown by a relative delay in the amplification of the second target sequence (the greater the delay in amplification, the greater the reduction in the level of potentially active biological pathogens). Thus, the inventive methods are useful for evaluating the effectiveness of sterilization processes because they determine both the original level and the residual level of potentially active biological pathogens.

10

EXAMPLES

The following examples are illustrative, but not limiting, of the present invention.

Other suitable modifications and adaptations are of the variety normally encountered by those skilled in the art and are fully within the spirit and scope of the present invention.

15 Example 1

<u>Purpose</u>: To demonstrate linear amplification of B19 DNA.

Materials: 1. B19 virus, titer 7.6 x 10¹¹ iu/ml from Bayer;

2. SNAP whole blood DNA isolation kit;

3. Forward Primer: Prism 5 (Figure 1) (SEQ ID NO. 18);

4. Reverse Primer: Prism 6 (Figure 1) (SEQ ID NO. 20);

5. Probe 3 (Figure 1) (SEQ ID NO. 19) labeled with FAM at 5'

20

end and TAMRA at 3' end;

5

10

15

20

6. TaqMan Universal Master Mix, (ABI; cat. no. 4304437);

7. DNASE, RNASE free water;

8. ABI 96 well plate and adhesive cores;

9. ANI 7000.

Procedure:
1. Followed SNAP protocol for extraction of 100 1 B19 sample, eluted in 100 1TE;

- 2. Diluted primers to 18 M with TE;
- 3. Diluted probe to 5 M with TE;
- 4. Prepared the following master mix:

TaqMan Master Mix: 25 l;

Prism 5 (SEQ ID NO. 18): 2.5 l;

Prism 6 (SEQ ID NO. 20): 2.5 l;

Taqman Probe 2.5 l;

Water: 12.54 l;

5. Added 45 l of master mix per well;

- 6. Serially diluted B19 DNA, adding water to the NTC well;
- 7. Sealed and centrifuged the plate at 2300 rpm for about 30

seconds;

8. Ran PCR program for 50 cycles.

Results: A standard dilution curve was observed for B19 infected plasma, validating primer pair Prism 5 (SEQ ID NO. 18) and Prism 6 (SEQ ID NO. 20) with Probe 3 (SEQ

ID NO. 19).

Example 2

Purpose: To examine irradiated and unirradiated samples containing PPV using a 549

5 bp amplicon.

Materials:

1. PPV (irradiated at 0 kGy, 50 kGy, 65 kGy, 75 kGy or 85

kGy);

- 2. SNAP Protein Degrader;
- 3. Cell Lysis Buffer;

10

- 4. Tris-HCl;
- 5. Primers: Prism 11 and Prism 12 (Figure 3) (SEQ ID NOS.:

40 and 42, respectively); and

6. Probe 6 (Figure 3) (SEQ ID NO. 41).

Procedure:

- 1. To 100 μl viral sample, added 50 μl tris-HCl buffer, 60 μl
- 15 protein degrader, and 200 μl cell lysis buffer;
 - 2. Mixed and incubated for 25 minutes (5 minutes at 70°C);
 - 3. Diluted samples to 1/50, 1/500, 1/5000, 1/25000, 1/50000,

1/250000 and 1/500000;

- 4. Ran PCR for 55 cycles.
- 20 Results: Results showed that unirradiated material had regular dilution series curves, irradiated material (50 kGy) behaved differently, dilute material did not amplify showing a

reduction in the number of copies of the target sequence.

Example 3

Purpose: To determine effects of gamma irradiation (0 kGy sample, 50 kGy sample, mixture of 0+50kGy sample and 75 kGy sample) on samples containing PPV analyzed by PCR.

Materials:

- 1. PPV (irradiated at 0 kGy, 50 kGy or 75 kGy);
- 2. Primers: Prism 11 & Prism 12, Probe 6 (Figure 3) (SEQ ID NOS.: 40, 42, and 41, respectively);
- 3. Primers: Prism 1 & Prism 2, Probe 1 (Figure 3) (SEQ ID NOS.: 43, 45, and 44, respectively)
 - Procedure: 1. Diluted samples containing PPV to 1/100, 1/1000, 1-2000, 1/10000, 1/20000, 1/40000 and 1/400000 (0 kGy, 50 kGy, 0+50 kGy and 75 kGy);
 - 2. Ran PCR program for 55 cycles.
- 15 <u>Results</u>: Irradiation to 50 kGy of PPV material reduced amplification of 549 bp amplicon.

Example 4

Purpose: To examine the relative effectiveness of Qiagen and Taqman reagents on samples containing PPV.

Materials: 1. PPV DNA (phenol extracted); 2. Taq PCR Core Kit; 3. ProofStart DNA polymerase; 4. Taqman Universal PCR Master Mix; 5 5. Prism 1, 2, 11 and 17 (Figure 3) (SEQ ID NOS.: 43, 45, 40, and 47, respectively); 6. Probes 1 and 6 (Figure 3) (SEQ ID NOS.: 44 and 41, respectively); 7. Agarose; 10 8. TAE; 9. EtBr. Procedure: 1. Prepared the following four master mixes: a. Qiagen: 1 2 10x buffer: $25\,\mu l$ $30 \mu I$ 15 dNTP's: 9 µl $7.5 \mu l$ pA: $8.34 \mu l$ $6.95 \mu l$ pB: 8.34 µl 6.95 µl taq: $6 \mu l$ 5µl H₂O: 187.32 μl 156.1 µl 20 probe: 15 µl $12.5 \, \mu l$ b. Taqman: 3 4

Master Mix:	150 µl	125 µl
pA:	15 µl	12.5 μl
pB:	15 μΙ	12.5 μl
probe:	15 µl	12.5 µl
H ₂ O:	69 µl	57.5 μl

5

- 2. Pipetted 44 µl of master mix 1 into row D, wells 1 and 2; row E, wells 1 and 2; and row H, well 1, of a well plate;
- 3. Pipetted 44 μl of master mix 2 into row D, wells 3 and 4; and row E, wells 3 and 4, of a well plate;
- 4. Pipetted 44 μl of master mix 3, into row F, wells 1 and 2; row G, wells 1 and 2; and row H, well 3, of a well plate;
 - 5. Pipetted 44 μl of master mix 4 into row F, wells 3 and 4; and row G, wells 3 and 4, of a well plate;
 - 6. Added 1 μl of ProofStart taq to row D, wells 1-4 and row F,
- 15 wells 1-4 and added 1 μ l water to remaining wells;
 - 7. Added 5 μl water to row H, wells 1 and 3 and added 5 μl PPV DNA to remaining wells;
 - 8. Ran PCR for 40 cycles.

Results: Qiaqen Master with ProofStart taq produced functional large amplicons in realtime PCR with PPV DNA more efficiently than the TaqMan master mix.

Example 5

Purpose: To examine the effects of proofstart in amplifying large amplicons and to examine the effects of 50 kGy irradiation on PPV.

Materials:

1. PPV DNA (irradiated to 0 kGy and 50 kGy);

5

2. Taq PCR Core Kit;

3. Proofstart DNA polymerase;

4. Prism 11, 16 and 17 (Figure 3) (SEQ ID NOS.: 40, 46, and

47, respectively);

5. Agarose;

10

6. Ethidium Bromide;

7. TAE buffer.

pA:

Procedure:

1. Set up PCR master mix as follows:

10x buffer: 50 l

dNTP's: 15 l

15

taq: 10 l

water: 347.2 l

2. Placed aliquots into PCR tubes;

3. Added either primer 16 or 17 (SEQ ID NOS.: 46 or 47,

13.9 l (primer 11 (SEQ ID NO. 40))

20 respectively) to PCR tubes;

4. Added PPV DNA (diluted to 1:100) to each PCR tube:

5. Added 10 1 proofstart to half of the samples (2 at 0 kGy and

- 6. Performed PCR (about 55 cycles)
- 7. Poured a 1% gel and ran at 100 V for 20 minutes.
- 5 Results: Addition of a proofreading polymerase resulted in improved amplication of longer amplicons. Delay in amplification of target sequence in irradiated samples is proportional to damage done to viral genetic material.

Example 6

2 at 50 kGy);

10 <u>Purpose</u>: To examine the effect of TSP concentration on amplification of large target amplicons in gamma irradiated and unirradiated PPV.

Materials:

- 1. TSP (cat. no. M02965);
- 2. Qiagen Core kit;
- 3. ProofStart DNA polymerase;

15

- 4. PPV (irradiated to 0 kGy or 50 kGy).
- Procedure:

 1. Prepared a master mix (standard PCR set-up) for each

(TSP: Taq 1:20, 1:10, 1:5);

2. Added 43.61 1 of each master mix (TSP titration) to

PCR tubes;

20 3. Added 1.39 1 of primers 16, 17 or 19 (Figure 3) (SEQ ID NOS.: 46, 47, or 49, respectively) to appropriate PCT tubes;

4. Added 5 l water to the negative control, which contained primer pair 11, 16 (Figure 3) (SEQ ID NOS.: 40 and 46, respectively).

- 5. Diluted PPV 1:100;
- 6. Added PPV to PCR tubes;
- 7. Performed PCR;
- 8. Poured a 1% gel and ran at 100 V for 20 minutes.

Results: Under these conditions, addition of TSP resulted in increased amplification of target amplicons in both irradiated and unirradiated samples, but irradiation of PPV resulted in decreased amplification of target amplicon.

10

5

Example 7

<u>Purpose</u>: To examine the effects of gamma irradiation on amplification of PPV target amplicons of various sizes.

Materials:

- 1. PPV DNA (irradiated to 0 kGy or 50 kGy);
- 2. Taq PCR Core Kit;
 - 3. ProofStart DNA Polymerase;
 - 4. Prism 11, 16, 17, 18 and 19 (Figure 3) (SEQ ID NOS.: 40, 46, 47, 48, and 49, respectively);
 - 5. Agarose;

6. TAE;

7. Ethidium Bromide.

Procedure: 1. Prepared PCR Master Mix as follows:

10x Buffer 5 1

5 dNTPs 1.5 l

pA 1.39 1

pB 1.39 1

taq 1 1

water 33.72 l

PPV 5 1.

2. Aliquoted samples into PCR tubes;

3. Ran PCR;

4. Poured a 1% agarose gel and ran at 120 V for about

1.5 hours.

10

15 Results: Irradiation to 50 kGy resulted in decreased amplification of larger target amplicons.

Example 8

Purpose: To examine PCR sensitivity and determine log reduction of PPV in samples

irradiated to 50 kGy and having a starting concentration of 2.5x107 gEq.

Materials:

1. Standard PCR reagents (Qiacen Core Kit, TSP, Proofstart,

etc.);

- 2. Primers 11 and 17 (Figure 3) (SEQ ID NOS.: 40 and 47,
- 5 respectively);
- 3. PPV extract.

Procedure:

1. Prepared master mix with primers 11 and 17 (SEQ ID

NOS.: 40 and 47, respectively);

2. Performed a 10 fold dilution series from 107 to 100 of PPV

10 extract;

- 3. Pipetted 45 1 of master mix into PCR tubes;
- 4. Pipetted 5 1 of each PPV dilution into appropriate PCR

tubes;

5. Added 5 l water to control;

15

- 6. Ran PCR;
- 7. Ran samples in 1% agarose at 100V for about 47 minutes.

Results: Irradiation of sample to 50 kGy resulted in decreased amplification of target amplicon across all concentration ranges.

20 Example 9

Purpose: To examine PCR sensitivity and determine log reduction of PPV in samples

irradiated to 50 kGy and having a starting concentration of 2.5x107 gEq.

Materials:

- 1. TSP;
- 2. Standard PCR kit (Qiacen with ProofStart Polymerase);
- 3. Primers 11 and 19 (Figure 3) (SEQ ID NOS.: 40 and 49,
- 5 respectively);
- 4. PPV Extract (Irradiated to 0 kGy and 50 kGy).

Procedure:

1. Prepared master mix with primers 11 and 19 (SEQ ID

NOS.: 40 and 49, respectively);

2. Performed a 10 fold dilution series from 107 to 100 of PPV

10 extract;

- 3. Pipetted 45 µl of master mix into PCR tubes;
- 4. Pipetted 5 µl of each PPV dilution into appropriate PCR

tubes;

5. Added 5 µl water to control;

15

6. Ran PCR as follows: 95°C for 2 minutes (1 cycles)

94°C for 10 seconds (40 cycles)

60°C for 1 minute (40 cycles)

68°C for 2 minutes (40 cycles);

- 7. Cooled to 4°C;
- 8. Ran samples on 1% agarose gel in 1x TAE and 5 μ l/100 ml ethidium bromide at 100 V for 52 minutes (5 μ l on gel).

Results: Irradiation to 50 kGy resulted in decreased amplification of target amplicon across all concentration ranges. For unirradiated samples, relative band strength of observed target amplicon decreased with decreasing concentration.

5 Example 10

Purpose: Primer validation for B19 using probe 7 (SEQ ID NO. 12) and various

Materials:

primers.

1. B19 IGIV Paste (irradiated to 0 kGY or 50 kGy);

2. EXB;

10

3. Proteinase;

4. yeast tRNA

5. phenol chloroform isoamyl alcohol;

6. 3M NaAc;

7. isopropanol;

15

8. 70% EtOH;

9. TE buffer;

10. Prisms 5, 6, 20, 21, 22, 23, 24, 25, 26 (Figure 1) (SEQ ID

NOS.: 18, 20, 11, 13, 14, 15, 16, 17, and 21, respectively);

11. Qiagen reagents;

20

12. Ampligold Taq;

13. ProofStart Polymerase;

14. Agarose;

15. TAE;

16. Ethidium Bromide.

Procedure:

1. Prepared a Master Mix as follows:

5

 Buffer
 5 μl

 DNTP
 1.5 μl

 Taq
 1 μl

 DNA
 5 μl

water

 $34.72~\mu l$

10

15

- 2. Pipetted Master Mix into PCR tubes;
- 3. Added the following primer pairs to appropriate PCR tubes: 20&21 (SEQ ID NOS.: 11 and 13, respectively); 20&22 (SEQ ID NOS.: 11 and 14, respectively); 20&23 (SEQ ID NOS.: 11 and 15, respectively); 20&24 (SEQ ID NOS.: 11 and 16, respectively); 20&25 (SEQ ID NOS.: 11 and 17, respectively); 20&6 (SEQ ID NOS.: 11 and 20, respectively); 20&26 (SEQ ID NOS.: 11 and 21, respectively); 5&6 (SEQ ID NOS.: 18 and 20, respectively);
 - 4. Ran PCR;
 - 5. ran 1% gel for about 1 hour.

<u>Results</u>: All tested primers yielded desired target amplicons.

Example 11

Purpose: Use of PCR multiplexing with target amplicons of about 112 bp and about 2.4 kbp for B19 virus in samples irradiated to 0 kGy or 50 kGy.

5 Materials:

- 1. TSP thermostable inorganic pyrophosphatase
- 2. Standard PCR reagents;
- 3. B19 viral extract (irradiated to 0 kGy and 50 kGy);
- 4. Prisms 5, 6, 20 and 25 (Figure 1) SEQ IN NOS.: 18, 20, 11,

and 17, respectively);

10

15

- 5. Taq;
- 6. ProofStart Polymerase.

Procedure:

1. Prepared standard PCR set-up with 3x master mixes, for each primer set (primer sets: 5&6 (SEQ ID NOS.: 18 and 20, respectively); 20&25 (SEQ ID NOS.: 11 and 17, respectively); 5&6 (SEQ ID NOS.: 18 and 20, respectively); and 20&25 (SEQ ID NOS.: 11 and 17, respectively));

2. Prepared appropriate PCR tubes containing the following primer pairs: (5, 6) 0 kGy; (5, 6) 50 kGy; (20, 25) 0 kGy; (20, 25) 50 kGy; (5, 6) & (20, 25), 0 kGy; and (5, 6) and (20, 25), 50 kGy;

- 3. Added 5 µl B19 to PCR tubes containing 45 µl of
- 20 appropriate master mix;
- 4. Added 5 µl water to control;

5. Ran PCR.

6. Ran samples on 1% aragose gel at 100 V for about 17 $\,$

minutes.

Results: PCR multiplexing is effective for mixtures containing large target amplicons and small target amplicons. Irradiation to 50 kGy resulted in decreased amplification of the large target amplicon relative to the small target amplicon.

Example 12

Purpose: Irradiated and unirradiated samples containing B19 viral material were examined using real time PCR.

Materials:

- 1. B19 viral material (irradiated to 0 kGy and 50 kGy);
- 2. Prism pairs (20, 21) (SEQ ID NOS.: 11 and 13, respectively)

and (20, 26) (SEQ ID NOS.: 11 and 21, respectively) (Figure 1)

- 3. Qiagen PCR reagents;
- 4. Qiagen ProofStart;
 - 5. Agarose;
 - 6. TAE (1x);
 - 7. sample loading buffer (SLB).

Procedure:

- 1. Prepared standard samples containing primer pairs with 1011
- 20 to 10¹ dilution series;
- 2. Ran PCR (40 cycles);

3. Ran gel on 1% agarose (8 µl PCR product, 1 µl SLB) at 100

V for about 20 minutes.

Results: Unirradiated and irradiated samples amplified in a regular pattern for a dilution series with a small amplicon. As amplicon size increased, unirradiated material maintained a regular dilution pattern while irradiated material did not.

Example 13

Purpose: To investigate the effect of gamma irradiation on samples containing HBV clone and irradiated to 50 kGy.

10 Materials:

5

- 1. HBV (irradiated to 0 kGy and 50 kGy);
- 2. Taq PCR Core Kit;
- 3. ProofStart DNA polymerase;
- 4. Prisms 34, 9, 10, 15, 29, 30, 31, 36 and 37(SEQ ID NOS.:

31, 22, 24, 25, 27, 32, 34, 28, and 29, respectively);

15

- 5. Agarose;
- 6. TAE Buffer;
- 7. ethidium bromide.

Procedure:

1. Prepared PCR master mix as follows:

10x PCR buffer 5

5 µl

20

dNTPs

 $1.39 \mu l$

primers

 $1.39 \mu l$

taq 1 μl

ProofStart 1 μl

water $33.22 \mu l$

TSP $0.5 \mu l$

2. Aliquoted 43.61 µl of master mix into PCR tubes. Appropriate tubes contained the following primer pairs: (3, 4); (9, 10); (9, 15); (9, 29); (9, 30); (9, 31); (36, 37); and (9, 31), for both irradiated and unirradiated samples;

- 3. Added 5 μ l HBV per tube (irradiated or unirradiated);
- 4. Ran PCR as follows:

50°C for 2 minutes (one cycle)

95°C for 2 minutes (one cycle)

94°C for 10 seconds (40 cycles)

60°C for 1 minute (40 cycles)

68°C for 2 minutes, five seconds (40 cycles);

5. Ran 1% agarose gel (9 μl sample + 1 μl sample buffer) at

100v for about 20 minutes.

Results: Irradiated samples showed no band, indicating degradation of HBV clone by irradiation to 50 kGy.

20 Example 14

5

10

15

Purpose: To investigate the effect of gamma irradiation on samples containing HBV

DNA and irradiated to 50 kGy.

Materials:

- 1. HBV DNA material (irradiated to 0 kGy and 50 kGy);
- 2. Taq PCR Core Kit (Qiagen, cat. no. 201223);
- 3. ProofStart Taq Polymerase (Qiagen, cat. no. 20);
- 4. Prisms 10, 13, 30, 36 and 37 (Figure 2) (SEQ ID NOS.: 24,

26, 32, 28, and 29, respectively);

- 5. Agarose;
- 6. TAE Buffer;
- 7. Ethidium Bromide.
- 10 Procedure:

5

1. Prepared the following master mix:

10x buffer	60 µl
dNTP	18 μl
primer 36 (SEQ ID NO. 28)	16.68 μΙ
Taq	12μΙ
ProofStart	12 μΙ

15

- 2. Pipetted 46.61 µl of master mix into PCR tubes;
- 3. Added 1.39 μ l of reverse primer (10, 13, 30 or 37) (SEQ ID

440.64 µl;

NOS.: 24, 26, 32, or 29, respectively) and 2 μl HBV DNA (0 kGy and 50 kGy) to

water

- 20 appropriate tubes;
- . 4. Ran PCR for 50 cycles;

5. Poured a 1% agarose gel (8 μ l PCR product + 1 μ l sample buffer) at 100 V for about 20 minutes.

Results: Irradiated samples showed no band, indicating degradation of HBV DNA by irradiation to 50 kGy.

5

Example 15

Purpose: HBV amplification of nested primer set (about 80 bp, 400 bp and 697 bp) in samples containing ascorbate, including digestion of 0 kGy and 50 kGy samples with exonuclease I prior to PCR amplication.

- 10 Materials:

 1. HBV DNA (irradiated to 0 kGy and 50 kGy, with and without ascorbate);
 - 2. Primer sets: (9, 10Primer sets: (9, 10) (SEQ ID NOS.: 22 and 24, respectively); (9, 15) (SEQ ID NOS.: 22 and 25, respectively); and (9, 13) (SEQ ID NOS.: 22 and 26, respectively) (Figure 2);

15

20

- 3. Exonuclease I;
- 4. Standard PCR reagents.

Procedure:

- 1. Diluted HBV samples to 1/500, 1/2000 and 1/10000;
- 2. Digested 1 μl raw HBV extract in 0.25 μl Exonuclease I, 10 μl 10x Exonuclease I buffer and 88.75 μl water at 37°C for 30 minutes, inactivated at 80°C for 20 minutes;
 - 3. Dilutes digested HBV to 1/2000 and 1/10000;

4. Ran 55 cycles PCR.

Results: Irradiated and unirradiated samples coamplified with an 80 bp product. Only unirradiated samples amplified with a 697 bp product.

5 Example 16

<u>Purpose</u>: To investigate the amount of bacterial and fungal DNA present in pulverized tendon samples.

Materials:

1. E. Coli samples (tendon) - 0 or 50 kGy + stabilizer

(6.65x10¹⁰ CFU/μl);

2. C. Albicans samples (tendon) - 0 or 50 kGy + stabilizer

(3.55x10° CFU/μl);

3. Staph. Aureus samples;

4. Control tendon;

5. Dneasey tissue kit (Qiagen, cat. no. 69504);

6. Taq PCR Core Kit (Qiagen, cat. no. 201223);

7. ProofStart Taq Polymerase (Qiagen, cat. no. 202205);

8. Primers: Ribo 7 and 8, and Ribo 10, 11, 12, 13, 14 (Figures

6A and 6B) (SEQ ID NOS.: 69, 70, 71, 72, and 73, respectively) and Fungi 1, 2, 3, 4, 5, 6, 7, 8 (Figures 7A and 7B) (SEQ ID NOS.: 75, 77, 78, 79, 80, 81, 82 and 83, respectively);

9. Probes: FAM-RIBO;

Fungi Probe

20

15

(Figure 7A) (SEQ ID NO.: 76) labeled with FAM at 5' end and TAMRA at 3' end;

10. Microcon YM Centrifugal Filter Unit;

Procedure:

1. Using 0.05 tendon samples for E. coli and C. albicans,

followed the Qiagen extraction profile;

5

2. Prepared the following master mixes:

		Mix 1	Mix 2
	10x buffer	150 μl	85 µl
	dNTPs	45 µl	25.5 μl .
	Ribo 7 41.7	41.7 μl	
10	Fungi 1 (SEQ ID NO. 75)		23.65 µl
	Taq	30 μl	17 μl
ı	ProofStart	30 μl	17 μl
	Water	936.6 µl	530.74 µl
	FAM-RIBO	75 µl	Jul. 1
15	Fungi Probe		42.5 μl

3. Filtered master mixes using Microcon filter units for 30

minutes at 100x g;

4. Pipetted 43.6 µl of Mix 1 into: rows A-D, columns 1-6; rows

A-C, column 9; and row E, column 12;

5. Pipetted 43.6 µl of Mix 2 into: rows E-F, columns 1-7 and

row H, column 12;

- 6. Pipetted 1.39 µl of reverse primer into appropriate well;
- 7. Pipetted 5 µl DNA into appropriate wells;
- 8. Ran PCR.

Results: Irradiation with 50 kGy resulted in decreased amplification of large target amplicons, indicating degradation of the pathogen genetic material caused by irradiation.

Example 17

<u>Purpose</u>: To show functionality of E. coli primers for RT-PCR using large target amplicons.

10 Materials:

- 1. E. coli prepared from overnight culture;
- 2. Dneasy Tissue Kit (Qiagen, cat. no. 96504);
- 3. Taq PCR Core Kit (Qiagen, cat. no. 201223)
- 4. ProofStart DNA polymerase (Qiagen, cat. no. 202205);
- 5. Microcon YM-100 Centrifugal Filter Unit (cat. no. 42413);

15

- 6. Primers: Ribo 1-9;
- 7. Agarose;
- 8. TAE Buffer;
- 9. Ethidium Bromide.

Procedure:

1. Pipetted 1 ml of E. coli culture into each of 10 1.5 tubes;

- 2. Centrifuged all 10 tubes for 5 minutes at maximum speed;
- 3. Discarded supernatant;

4. Placed 8 tubes in -80°C and used 2 tubes for extraction following the Qiagen protocol;

5. Prepared Master Mix as follows:

10x Buffer 5 µl

dNTPs

 $1.5 \mu l$

pA 1.39 μl (Ribo 1 (SEQ ID NO. 62)) or

(Ribo 7)

5

20

pB 1.39 μl (Ribo 2, 3, 4, 5, or 6) (SEQ ID

NOS.: 64, 65, 66, 67, or 68, respectively) or (Ribo 8 or 9)

Taq 1 μ l

ProofStart 1 µl

Water 33.22 μl

TSP $0.5 \,\mu$ l

- 6. Mixed Master Mix by inversion;
- 7. Pipetted Master mix into a Microcon Centrifugal Filter Unit and centrifuged for 30 minutes at 100x g;
 - 8. Pipetted 43.61 µl of Master Mix into PCR tubes;
 - 9. Added appropriate reverse primer and DNA or water to create the following primer pairs: (1, 2) + 5 μl DNA; (1, 2) + 1 μl; (1, 3) + 5 μl DNA; (1, 3) + 1 μl DNA; (1, 4) + 5 μl DNA; (1, 4) + 1 μl DNA; (1, 5) + 5 μl DNA; (1, 5) + 1 μl DNA; (1, 6) + 5 μl DNA; (1, 6) + 1 μl DNA; (5, 8) + 5 μl DNA; (7, 8) + 1 μl DNA; (7, 9) + 5 μl

DNA; $(7, 9) + 1 \mu l$ DNA; and $(1, 2) + 5 (1, 4) + 5 \mu l$ water;

- 10. Ran PCR;
- 11. Ran 1 % Agarose gel at 100 V for about 20 min.

Results: All E. coli primers showed amplification of target sequences, regardless of size.

Example 18

5

Purpose: To investigate the effects of 50 kGy irradiation on samples containing E. coli.

Materials: 1. E. coli spiked tendon (irradiated to 0 kGy and 50 kGy) +

10 6.65x10¹⁰ CFU/μl;

2. Taq PCR Core Kit (Qiagen, cat. no. 201223);

3. ProofStart Taq Polymerase (Qiagen, cat. no. 202205);

4. Primers: Ribo 7 and 8, and Ribo 13, 14 and 15 (SEQ ID

NOS.: 72, 73, and 74 respectively);

5. Agarose;

6. TAE Buffer;

7. Ethidium Bromide;

8. Microcon Centrifugal Filter Unit.

Procedure: 1. Prepared Master Mix as follows:

20 10x Buffer $60~\mu l$

dNTP 18 μl

pA (forward) 16.68 µl

Taq

12 µl

ProofStart

12 µl

Water

452.64 µl;

5

- 2. Placed in Microcon and centrifuged for 30 minutes at 100x g;
- 3. Pipetted 47-61 µl master mix into each or 9 PCR tubes;
- 4. Added 1.39 μl of reverse primer and 1 μl DNA into

appropriate tubes;

5. Ran PCR.

10

6. Ran 1% Agarose gel (8 μ l sample + 1 μ l sample buffer) at

100 V for about 20 minutes.

Results: Samples irradiated to 50 kGy showed progessive disappearance of bands with increasing amplicon size, indicating degradation of the E. coli genetic material caused by irradiation.

15

Example 19

Purpose:

To show functionality of Mt-DNA primers for RT-PCR using large target

amplicons.

Materials:

1. Tendon DNA (irradiated to 0 kGy and 50 kGy);

20

2. ROX 6 (1/10 dilution) molecular probes;

3. Primers: MITO 1, 2, 3, 4, and 5 (Figure 8) (SEQ ID NOS.:

90, 92, 95, 96; and 97, respectively);

- 4. MITO Probe 1 (Figure 8) (SEQ ID NO.: 91);
- 5. Human DNA;
- 6. Qiagen PCR Reagants;

5 7. Qiagen ProofStart.

<u>Procedure</u>: 1. Prepared the following mixtures:

Buffer 1.5 µl

dNTPs 1.5 μl

MITO 1 2.5 μl (SEQ ID NO. 90)

reverse primer 2.5 µl (MITO 2, 3, 4 or 5) (SEQ

ID NOS.: 92, 95, 96, or 97, respectively)

10

15

MITO Probe 2.5 µl

Taq 1 μl

PS 1 μl

1/10 ROX 1 µl

water 28 µl

DNA 5 μ1

- 2. Ran 40 PCR;
- 3. Ran 1% agarose gel (8 μ l product + 1 μ l sample loading
- 20 buffer) at 100 V for about one hour.

Results: Mt-DNA primers were functional, regardless of amplicon size.

Having now fully described this invention, it will be understood to those of ordinary skill in the art that the methods of the present invention can be carried out with a wide and equivalent range of conditions, formulations and other parameters without departing from the scope of the invention or any embodiments thereof. Moreover, the methods of the present invention may also be applied to situations other than the preferred embodiments described above. For example, instead of determining the level of potentially active pathogens, the methods described above may be used to determine the number of cells having an altered genetic sequence, such as tumour cells or genetically modified cells, in a tissue sample.

All patents and publications cited herein are hereby fully incorporated by reference in their entirety. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that such publication is prior art or that the present invention is not entitled to antedate such publication by virtue of prior invention.

WHAT IS CLAIMED IS:

10

15

1. A method for determining the level of potentially active biological pathogens in a biological material, said method comprising:

(i) adding to said biological material an effective amount of at least two nucleic acid primer pairs,

wherein a first nucleic acid primer pair hybridizes under stringent conditions to a first target nucleic acid sequence found in said biological pathogen and a second nucleic acid primer pair hybridizes under stringent conditions to a second target nucleic acid sequence found in said biological pathogen, and

further wherein said first target nucleic acid sequence and said second target nucleic acid sequence are not identical and said second target nucleic acid sequence contains more nucleic acid residues than said first target nucleic acid sequence;

- (ii) amplifying said target nucleic acid sequences by polymerase chain reaction, said polymerase chain reaction comprising adding at least one polymerase to said biological material containing said nucleic acid primer pairs to form an amplification mixture and thermally cycling said amplification mixture between at least one denaturation temperature and at least one elongation temperature for a period of time sufficient to amplify said target nucleic acid sequences; and
- (iii) detecting and quantifying said first and second target nucleic acid

 sequences, wherein the quantity of said first target nucleic acid sequence is proportional to
 the number of said biological pathogens in said biological material and the quantity of said
 second target nucleic acid sequence is proportional to the number of potentially active

biological pathogens in said biological material.

2. The method according to claim 1, wherein said first target nucleic acid sequence contains between about 50 and about 500 nucleic acid residues

5

- 3 The method according to claim 1, wherein said second target nucleic acid sequence contains between about 500 and about 50,000 nucleic acid residues.
- 4. The method according to claim 1, wherein the nucleic acid sequence of said

 10 first target nucleic acid sequence and the nucleic acid sequence of said second target nucleic

 acid sequence contain at least 16 contiguous nucleic acid residues in common.
 - 5. The method according to claim 1, wherein said step (i) further comprises adding at least one nucleic acid probe to said biological material.

15

6. The method according to claim 5, wherein said nucleic acid probe is selected from the group consisting of 5' nuclease probes, hairpin probes, adjacent probes, sunrise probes and scorpion probes.

20

7. The method according to claim 1, wherein, prior to step (i), said biological material has been subjected to a process that alters at least one wild-type nucleic acid sequence in said biological pathogen.

8. The method according to claim 7, wherein said process comprises irradiating said biological material with gamma radiation.

- 5 9. The method according to claim 1, wherein one of said first pair of nucleic acid primers and one of said second pair of nucleic acid primers are substantially identical.
 - 10. The method according to claim 1, wherein neither of said first pair of nucleic acid primers is substantially identical to either of said second pair of nucleic acid primers.

- 11. The method according to claim 1, wherein said first pair of nucleic acid primers and said second pair of nucleic acid primers are substantially identical.
- 12. The method according to claim 5, wherein said nucleic acid probe contains at least 16 nucleic acid residues.
 - 13. The method according to claim 1, wherein said biological pathogen is selected from the group consisting of bacteria, viruses, fungi and single cell parasites.
- 20 14. The method according to claim 1, wherein said first target nucleic acid sequence is at least 30% homologous to a wild-type nucleic acid sequence found in said biological pathogen.

15. The method according to claim 1, wherein said second target nucleic acid sequence is at least 30% homologous to a wild-type nucleic acid sequence found in said biological pathogen.

5

16. The method according to claim 14 or 15, wherein said biological pathogen is selected from the group consisting of Aspergillus, Candida, Histoplasma, Saccharomyces, Coccidioides and Cryptococcus.

10

17. The method according to claim 14 or 15, wherein said biological pathogen is selected from the group consisting of Escherichia, Bacillus, Campylobacter, Helicobacter, Lysteria, Clostridium, Streptococcus, Enterococcus, Staphylococcus, Brucella, Haemophilus, Salmonella, Yersinia, Pseudomonas, Serratia, Enterobacter, Kebsiella, Proteus, Citrobacter, Corynebacterium, Propionibacterium and Coxiella.

15

20

18. The method according to claim 14 or 15, wherein said biological pathogen is selected from the group consisting of Adeno-associated Virus (AAV), California Encephalitis Virus, Coronavirus, Coxsackievirus—A, Coxsackievirus—B, Eastern Equine Encephalitis Virus (EEEV), Echovirus, Hantavirus, Hepatitis A Virus (HAV), Hepatitis C Virus (HCV), Hepatitis Delta Virus (HDV), Hepatitis E Virus (HEV), Hepatitis G Virus (HGV), Human Immunodeficiency Virus (HIV), Human T-lymphotrophic Virus (HTLV), Influenza Virus (Flu Virus), Measles Virus (Rubeola), Mumps Virus, Norwalk Virus,

Parainfluenza Virus, Polio virus, Rabies Virus, Respiratory Syncytial Virus, Rhinovirus, Rubella Virus, Saint Louis Encephalitis Virus, Western Equine Encephalitis Virus (WEEV), Yellow Fever Virus, Adenovirus, Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis B Virus (HBV), Herpes Simplex Virus 1 (HHV1), Herpes Simplex Virus 2 (HHV2), Molluscum contagiosum, Papilloma Virus (HPV), Smallpox Virus (Variola), Vaccinia Virus, Venezuelan Equine Encephalitis Virus (VEEV), Ebola Virus, West Nile Virus, Human Parvovirus B19 and Rotavirus.

- 19. The method according to claim 15, wherein said wild-type nucleic acid
 10 sequence comprises the 16S ribosomal RNA gene coding sequence.
 - 20. The method according to claim 15, wherein said wild-type nucleic acid sequence comprises the 16S ribosomal RNA gene coding sequence and a portion of the 23S ribosomal RNA gene coding sequence.

- 21. The method according to claim 15, wherein said wild-type nucleic acid sequence comprises the 16S ribosomal RNA gene coding sequence and a portion of the 23S ribosomal RNA gene coding sequence and the non-coding sequence therebetween.
- 20 22. The method according to claim 14, wherein said wild-type nucleic acid sequence comprises the 18S ribosomal RNA gene coding sequence.

23. The method according to claim 14, wherein said wild-type nucleic acid sequence comprises the 18S ribosomal RNA gene coding sequence and the 5.8S ribosomal RNA gene coding sequence.

- 5 24. The method according to claim 14, wherein said wild-type nucleic acid sequence comprises the 18S ribosomal RNA gene coding sequence and the 5.8S ribosomal RNA gene coding sequence and the non-coding sequence therebetween.
- 25. The method according to claim 14, wherein said wild-type nucleic acid sequence comprises the 18S ribosomal RNA gene coding sequence and the 5.8S ribosomal RNA gene coding sequence and a portion of the 28S ribosomal RNA gene coding sequence.
 - 26. The method according to claim 14, wherein said wild-type nucleic acid sequence comprises the 18S ribosomal RNA gene coding sequence and the 5.8S ribosomal RNA gene coding sequence and a portion of the 28S ribosomal RNA gene coding sequence and the non-coding sequences therebetween.

15

20

27. The method according to claim 1, wherein said polymerase is a thermostable polymerase.

28. The method according to claim 27, wherein said thermostable polymerase is a Taq polymerase.

29. The method according to claim 1, wherein said polymerase chain reaction thermally cycling said amplification mixture between at least one denaturation temperature, at least one annealing temperature and at least one elongation temperature for a period of time sufficient to amplify said target nucleic acid sequence.

5

- 30. The method according to claim 7, wherein said process fragments said at least one wild-type nucleic acid sequence in said biological pathogen.
- 31. The method according to claim 7, wherein said process cross-links said at least one wild-type nucleic acid sequence in said biological pathogen.
 - 32. The method according to claim 7, wherein said process covalently modifies said at least one wild-type nucleic acid sequence in said biological pathogen.
 - 33. The method according to claim 1, wherein said biological material is selected from the group consisting of: cells; tissues; blood or blood components; proteins; enzymes; immunoglobulins; botanicals; and food.
- 34. The method according to claim 1, wherein said biological material is selected from the group consisting of: ligaments; tendons; nerves; bone; teeth; skin grafts; bone marrow; heart valves; cartilage; corneas; arteries and veins; organs; lipids; carbohydrates;

collagen; chitin and its derivatives; forensic samples, mummified material; human or animal remains; stem cells; islet of Langerhans cells; cells for transplantation; red blood cells; white blood cells; and platelets.

CI0043PCTseqlisting.ST25 SEQUENCE LISTING

<110>	Clearant, Inc. McKenney, Keith Gillmeister, Lidja Marlowe, Kristina Armistead, David	
<120>	Pathogen Inactivation Assay	
<130>	CI-0043	
<150> <151>	10/361,002 2003-02-10	
<160>	99	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 5594 DNA B19 virus	
<400> ccaaat	1 caga tgccgccggt cgccgccggt aggcgggact tccggtacaa gatggcggac	60
	gtca tttcctgtga cgtcatttcc tgtgacgtca cttccggtgg gcgggacttc	120
cggaat	tagg gttggctctg ggccagcttg cttggggttg ccttgacact aagacaagcg	180
gcgcgc	cgct tgtcttagtg gcacgtcaac cccaagcgct ggcccagagc caaccctaat	240
tccgga	agtc ccgcccaccg gaagtgacgt cacaggaaat gacgtcacag gaaatgacgt	300
aattgt	ccgc catcttgtac cggaagtccc gcctaccggc ggcgaccggc ggcatctgat	360
ttggtg	stott ottttaaatt ttagogggot tttttocogo ottatgoaaa tgggcagoca	420
ttttaa	ngtgt ttcactataa ttttattggt cagttttgta acggttaaaa tgggcggagc	480
gtaggo	egggg actacagtat atatagcacg gcactgccgc agctctttct ttctgggctg	540
cttttt	cctg gactttcttg ctgttttttg tgagctaact aacaggtatt tatactactt	600
gttaac	catac taacatggag ctatttagag gggtgcttca agtttcttct aatgttctgg	660
actgtg	gctaa cgataactgg tggtgctctt tactggattt agacacttct gactgggaac	720
cactaa	actca tactaacaga ctaatggcaa tatacttaag cagtgtggct tctaagcttg	780
acttta	accgg ggggccacta gcggggtgct tgtacttttt tcaagtagaa tgtaacaaat	840
ttgaag	gaagg ctatcatatt catgtggtta ttgggggggcc agggttaaac cccagaaacc	900
tcacag	rtgtg tgtagagggg ttatttaata atgtacttta tcaccttgta actgaaaatg	960
taaago	ctaaa atttttgcca ggaatgacta caaaaggcaa atactttaga gatggagagc	1020
agttta	ataga aaactattta atgaaaaaaa tacctttaaa tgttgtatgg tgtgttacta	1080
atattg	gatgg atatatagat acctgtattt ctgctacttt tagaagggga gcttgccatg	1140
ccaaga	aaacc ccgcattacc acagccataa atgacactag tagtgatgct ggggagtcta	1200
gcggca	acagg ggcagaggtt gtgccaatta atgggaaggg aactaaggct agcataaagt	1260
ttcaaa	actat ggtaaactgg ttgtgtgaaa acagagtgtt tacagaggat aagtggaaac Page 1	1320

tagttgactt	taaccagtac	actttactaa	gcagtagtca	cagtggaagt	tttcaaattc	1380
aaagtgcact	aaaactagca	atttataaag	caactaattt	agtgcctaca.	agcacatttc	1440
tattgcatac	agactttgag	caggttatgt	gtattaaaga	caataaaatt	gttaaattgt	1500
tactttgtca	aaactatgac	cccctattag	tggggcagca	tgtgttaaag	tggattgata	1560
aaaaatgtgg	caagaaaaat	acactgtggt	tttatgggcc	gccaagtaca	ggaaaaacaa	1620
acttggcaat	ggccattgct	aaaagtgttc	cagtatatgg	catggttaac	tggaataatg	1680
aaaactttcc	atttaatgat	gtagcaggga	aaagcttggt	ggtctgggat	gaaggtatta	1740
ttaagtctac	aattgtagaa	gctgcaaaag	ccattttagg	cgggcaaccc	accagggtag	1800
atcaaaaaat	gcgtggaagt	gtagctgtgc	ctggagtacc	tgtggttata	accagcaatg	1860
gtgacattac	ttttgttgta	agcgggaaca	ctacaacaac	tgtacatgct	aaagccttaa	1920
aagagcgaat	ggtaaagtta	aactttactg	taagatgcag	ccctgacatg	gggttactaa	1980
cagaggctga	tgtacaacag	tggcttacat	ggtgtaatgc	acaaagctgg	gaccactatg	2040
aaaactgggc	aataaactac	acttttgatt	tccctggaat	taatgcagat	gccctccacc	2100
cagacctcca	aaccacccca	attgtcacag	acaccagtat	cagcagcagt	ggtggtgaaa	2160
gctctgaaga	actcagtgaa	agcagctttt	ttaacctcat	caccccaggc	gcctggaaca	2220
ctgaaacccc	gcgctctagt	acgcccatcc	ccgggaccag	ttcaggagaa	tcatttgtcg	2280
gaagctcagt	ttcctccgaa	gttgtagctg	catcgtggga	agaagccttc	tacacacctt	2340
tggcagacca	gtttcgtgaa	ctgttagttg	gggttgatta	tgtgtgggac	ggtgtaaggg	2400
gtttacctgt	gtgttgtgtg	caacatatta	acaatagtgg	gggaggcttg	ggactttgtc	2460
cccattgcat	taatgtaggg	gcttggtata	atggatggaa	atttcgagaa	tttaccccag	2520
atttggtgcg	gtgtagctgc	catgtgggag	cttctaatcc	cttttctgtg	ctaacctgca	2580
aaaaatgtgc	ttacctgtct	ggattgcaaa	gctttgtaga	ttatgagtaa	agaaagtggc	2640
aaatggtggg	aaagtgatga	taaatttgct	aaagctgtgt	atcagcaatt	tgtggaattt	2700
tatgaaaagg	ttactggaac	agacttagag	cttattcaaa	tattaaaaga	tcactataat	2760
atttctttag	ataatcccct	agaaaaccca	tcctctctgt	ttgacttagt	tgctcgtatt	2820
aaaaataacc	ttaaaaactc	tccagactta	tatagtcatc	attttcaaag	tcatggacag	2880
ttatctgacc	acccccatgc	cttatcatcc	agtagcagtc	atgcagaacc	tagaggagaa	2940
aatgcagtat	tatctagtga	agacttacac	aagcctgggc	aagttagcgt	acaactaccc	3000
ggtactaact	atgttgggcc	tggcaatgag	ctacaagctg	ggcccccgca	aagtgctgtt	3060
gacagtgctg	caaggattca	tgactttagg	tatagccaac	tggctaagtt	gggaataaat	3120
ccatatactc	attggactgt	agcagatgaa	gagcttttaa	aaaatataaa	aaatgaaact	3180
gggtttcaag	cacaagtagt	aaaagactac	tttactttaa	aaggtgcagc	tgcccctgtg	3240
gcccattttc	aaggaagttt	gccggaagtt	cccgcttaca	acgcctcaga	aaaataccca	3300
agcatgactt	cagttaattc	tgcagaagcc	agcactggtg Page 2	caggaggggg	tggcagtaat	3360

		C10043P	Ciseqiistiii	9.5123		
cctgtcaaaa	gcatgtggag	tgagggggcc	acttttagtg	ccaactctgt	aacttgtaca	3420
ttttccagac	agtttttaat	tccttatgac	ccagagcacc	attataaggt	gttttctccc	3480
gcagcaagca	gctgccacaa	tgccagtgga	aaggaggcaa	aggtttgcac	aattagtccc	3540
ataatgggat	actcaacccc	atggagatat	ttagatttta	atgctttaaa	tttattttt	3600
tcacctttag	agtttcagca	cttaattgaa	aattatggaa	gtatagctcc	tgatgcttta	3660
actgtaacca	tatcagaaat	tgctgttaag	gatgttacag	acaaaactgg	agggggggta	3720
caggttactg	acagcactac	agggcgccta	tccatgttag	tagaccatga	atacaagtac	3780
ccatatgtgt	taggacaagg	tcaggatact	ttagccccag	aacttcctat	ttgggtatac	3840
tttcccctc	aatatgctta	cttaacagta	ggagatgtta	acacacaagg	aatctctgga	3900
gacagcaaaa	aattagcaag	tgaagaatca	gcattttatg	ttttggaaca	cagttctttt	3960
cagcttttag	gtacaggagg	tacagcaact	atgtcttata	agtttcctcc	agtgccccca	4020
gaaaatttag	agggctgcag	tcaacacttt	tatgaaatgt	acaatccctt	atacggatcc	4080
cgcttagggg	ttcctgacac	attaggaggt	gacccaaaat	ttagatcttt	aacacatgaa	4140
gaccatgcaa	ttcagcccca	aaacttcatg	ccagggccac	tagtaaactc	agtgtctaca	4200
aaggagggag	acagctctaa	tactggagct	ggaaaagcct	taacaggcct	tagcacaggc	4260
acctctcaaa	acactagaat	atccttacgc	cctgggccag	tgtcacagcc	ataccaccac	4320
tgggacacag	ataaatatgt	tccaggaata	aatgccattt	ctcatggtca	gaccacttat	4380
ggtaacgctg	aagacaaaga	gtatcagcaa	ggagtgggta	gatttccaaa	tgaaaaagaa	4440
cagctaaaac	agttacaggg	tttaaacatg	cacacctatt	tccccaataa	aggaacccag	4500
caatatacag	atcaaattga	gcgcccccta	atggtgggtt	ctgtatggaa	cagaagagcc	4560
cttcactatg	aaagccagct	gtggagtaaa	attccaaatt	tagatgacag	ttttaaaact	4620
cagtttgcag	ccttaggagg	atggggtttg	catcagccac	ctcctcaaat	atttttaaaa	4680
atattaccac	aaagtgggcc	aattggaggt	attaaatcaa	tgggaattac	taccttagtt	4740
cagtatgccg	tgggaattat	gacagtaact	atgacattta	aattggggcc	ccgtaaagct	4800
acgggacggt	ggaatcctca	acctggagta	tatccccgc	acgcagcagg	tcatttacca	4860
tatgtactat	atgaccccac	agctacagat	gcaaaacaac	accacaggca	tggatacgaa	4920
aagcctgaag	aattgtggac	agccaaaagc	cgtgtgcacc	cattgtaaac	actccccacc	4980
gtgccctcag	ccaggatgcg	taactaaacg	cccaccagta	ccacccagac	tgtacctgcc	5040
ccctcctgta	cctataagac	agcctaacac	aaaagatata	gacaatgtag	aatttaagta	5100
cttaaccaga	tatgaacaac	atgttattag	aatgttaaga	ttgtgtaata	tgtatcaaaa	5160
tttagaaaaa	taaacatttg	ttgtggttaa	aaaattatgt	tgttgcgctt	taaaaattta	5220
aaagaagaca	ccaaatcaga	tgccgccggt	cgccgccggt	aggcgggact	tccggtacaa	5280
gatggcggac	aattacgtca	tttcctgtga	cgtcatttcc	tgtgacgtca	cttccggtgg	5340
gcgggacttc	cggaattagg	gttggctctg	ggccagcgct Page 3	tggggttgac	gtgccactaa	5400

gacaagcggc gcgccgcttg tctta	agtgtc aaggcaaccc	caagcaagct	ggcccagagc	5460
caaccctaat tccggaagtc ccgcc	ccaccg gaagtgacgt	cacaggaaat	gacgtcacag	5520
gaaatgacgt aattgtccgc catc	ttgtac cggaagtccc	gcctaccggc	ggcgaccggc	5580
ggcatctgat ttgg				5594
210 2				
<210> 2 <211> 3221 <212> DNA			,	
<212> DNA <213> Hepatitis B virus				
<400> 2 ttccactgcc ttccaccaag ctctg	ncaaga cccagagtc	aggggtctgt	attttcctgc	60
tggtggctcc agttcaggaa cagta				120
aatctccgcg aggaccgggg accc				180
aggacccctg cccgtgttac aggc				240
				300
gcagagtcta gactcgtggt ggac			•	360
tggccaaaat tcgcgatccc caac				420
tcctggttat cgctggatgt gtct				480
atgcctcatc ttcttattgg ttct				
aattctagga tcaacaacaa ccag	•			540
aggcaactct atgtttccct catg				600
tattcccatc ccatcgtctt gggc			•	. 660
tttctcttgg ctcagtttac tagt	gccatt tgttcagtgg	ttcgtagggc	tttcccccac	720
tgtttggctt tcagctatat ggat	gatgtg gtattggggg	ccaagtctgt	acagcatcgt	780
gagttccttt ataccgctgt tacc	aatttt cttttgtctc	tgggtataca	tttaaaccct	840
aacaaaacaa aaagatgggg ttat	tcccta aacttcatgg	gttatgtaat	tggaagttgg	900
ggaacattgc cacaggatca tatt	gtacaa aaaatcaaac	actgttttag	aaaacttcct	960
gttaacaggc ctattgattg gaaa	gtatgt caaagaattg	tgggtctttt	gggctttgct	1020
gctcctttta cacaatgtgg atat	cctgcc ttaatgccct	tgtatgcatg	tatacaagct	1080
aaacaggctt tcactttctc gcca	acttac aaggccttto	taagtaaaca	gtacatgaac	1140
ctttaccccg ttgctcggca acgg	cctggt ctgtgccaag	tatttgctga	tgcaaccccc	1200
actggctggg gcttggccat aggc	catcag cgcatgcgcg	gaacctttgt	ggctcctctg	1260
ccgatccata ctgcggaact ccta	gccgct tgttttgcto	gcagccggtc	tggagcgaaa	1320
ctcatcggaa ctgacaattc tgtc	gtcctc tcgcggaaat	: atacctcgtt	tccatggcta	1380
ctaggctgtg ctgccaactg gatc				1440
ctgaatcccg cggacgaccc ctct				1500
ctgccgttcc agccgaccac gggg				1560
- 599-9 9995		- 		

CI0043PCTseqlisting.ST25 tctcatctgc cggtccgtgt gcacttcgct tcacctctgc acgttgcatg gagaccaccg 1620 tgaacgccca tcagatcctg cccaaggtct tacataagag gactcttgga ctcccagcaa 1680 1740 tgtcaacgac cgaccttgag gcctacttca aagactgtgt gtttaaggac tgggaggagc tgggggagga gattaggtta aaggtctttg tattaggagg ctgtaggcat aaattggtct 1800 gcgcaccagc accatgcaac tttttcacct ctgcctaatc atctcttgta catgtcccac 1860 tgttcaagcc tccaagctgt gccttgggtg gctttggggc atggacattg acccttataa 1920 agaatttgga gctactgtgg agttactctc gtttttgcct tctgacttct ttccttccgt 1980 cagagatete ctagacaceg ceteggetet gtategggaa geettagagt etectgagea 2040 ttgctcacct caccataccg cactcaggca agccattctc tgctgggggg aattgatgac 2100 2160 tctagctacc tgggtgggta ataatttgga agatccagca tccagggatc tagtagtcaa ttatgttaat actaacatgg gattaaagat caggcaactc ttgtggtttc atatctcttg 2220 ccttactttt ggaagagaaa ctgtacttga atatttggtc tctttcggag tgtggattcg 2280 cactcctcca gcctatagac caccaaatgc ccctatctta tcaacacttc cggaaactac 2340 tgttgttaga cgacgggacc gaggcaggtc ccctagaaga agaactccct cgcctcgcag 2400 acgcagatct caatcgccgc gtcgcagaag atctcaatct cgggaatctc aatgttagta 2460 ttccttggac tcataaggtg ggaaacttca ctgggcttta ttcctctaca gcacctatct 2520 2580 ttaatcctga atggcaaact ccttcctttc ctaaaattca tttacaagag gacattatta 2640 ataggtgtca acaatttgtg ggccctctca ctgtaaatga aaagagaaga ttgaaattaa 2700 ttatgcctgc tagattctat cctacccaca ctaaatattt gcccttagac aaaggaatta aaccttatta tccagatcag gtagttaatc attacttcca aaccagacat tatttacata 2760 ctctttggaa ggcgggtatt ctatataaga gagaaaccac acgtagcgca tcattttgcg 2820 ggtcaccata ttcttgggaa caagagctac agcatgggag gttggtcatc aaaacctcgc 2880 aaaggcatgg ggacgaatct ttctgttccc aaccctctgg gattctttcc cgatcatcag 2940 3000 ttggaccctg tattcggagc caactcaaac aatccagatt gggacttcaa ccccatcaag gaccactggc cagcagccaa ccaggtagga gtgggagcat tcgggccagg gttcacccct 3060 ccacacggcg gtgttttggg gtggagccct caggctcagg gcatgttgac cccagtgtca 3120 acaattcctc ctcctgcctc cgccaatcgg cagtcaggaa ggcagcctac tcccatctct 3180 ccacctctaa gagacagtca tcctcaggcc atgcagtgga a 3221 <210> 5075 DNA <213> Porcine parvovirus 60 aatctttaaa ctgaccaact gtctttgcgt atggtgacgt gatgacgcgc gctacgcgcg ctgccttcgg cagtcacacg tcaccatcag caaagacagt tggtcagttt aaagattaat 120 180 aagacattcc attggctgaa aagaggcggg aaattcaaaa aaaqaggcgg gaaaaaaaga

Page 5

ggtggagcct	aacactataa	atacagttgc	ttacttcagt	tagttccttt	ctgcttcaga	240
			actactctca			300
ggaaacactt	actcggaaga	ggtactaaaa	gctaccaact	ggcttcaaga	taatgctcaa	360
aaagaagcat	tctcttatgt	atttaaaaca	caaaaagtca	atctaaatgg	aaaagaaatt	420
gcttggaata	actacaacaa	agatacaaca	gatgcggaaa	tgataaacct	acaaagagga	480
gcagaaacat	catgggacca	ggcaacagac	atggaatggg	aatcagaaat	cgacagcctc	540
acaaaacggc	aagtactgat	ttttgactct	cttgttaaaa	aatgtctctt	tgaaggtata	600
ttgcaaaaga	acctaagtcc	aagtgactgc	tactggttca	tacagcatga	acatggtcaa	660
gatactggct	atcactgcca	tgtactacta	ggtggaaaag	gcttacaaca	agcaatggga	720
aaatggttca	gaaaacaatt	aaacaattta	tggagtagat	ggttaataat	gcaatgcaaa	780
gtacctctaa	caccagttga	aagaataaaa	ttaagggaat	tagcagagga	tggtgagtgg	840
gtatcgctac	taacctacac	tcacaaacaa	actaaaaaac	aatatacaaa	aatgactcat	900
tttggaaata	tgattgctta	ctacttccta	aataaaaaaa	gaaagacaac	tgaaagagag	960
catggatatt	atctcagctc	agattctggc	ttcatgacaa	atttcttaaa	agaaggcgag	1020
agacacttag	tcagtcacct	atttactgaa	gcaaataaac	ctgaaactgt	ggaaacaacg	1080
gttactacag	ctcaggaagc	caaaagaggc	agaatacaaa	caaaaaaaga	agtaagcata	1140
aaatgcacaa	taagagactt	ggttaataaa	agatgtacta	gcatagaaga	ctggatgatg	1200
acagatccag	acagttatat	agaaatgatg	gctcaaaccg	gaggagaaaa	tttaatcaaa	1260
aatacactag	aaataacaac	tcttactcta	gcaagaacaa	aaacagcata	tgacttaata	1320
cttgaaaagg	caaaaccaag	catgctacca	acatttaata	ttagcaatac	aagaacatgt	1380
aaaatattca	gcatgcacaa	ttggaactac	attaaagtct	gccatgctat	aacttgtgta	1440
ctaaacagac	aaggaggaaa	aagaaataca	attctatttc	atgggccagc	atcaacagga	1500
aaaagtataa	ttgctcaaca	cattgcaaac	ttagttggta	atgttggttg	ctacaatgca	1560
gccaatgtga	actttccatt	taatgactgt	acaaataaaa	acttaatatg	gattgaagaa	1620
gcaggaaact	tctctaacca	agtaaaccaa	ttcaaagcca	tatgttcagg	tcaaacaatt	1680
agaattgaco	aaaaaggtaa	aggaagcaaa	caaattgaac	caactcctgt	aataatgact	1740
acaaatgaag	acataactaa	agttagaata	ggatgcgagg	aaagaccaga	acatacacaa	1800
ccaataagag	acagaatgtt	aaacataaac	: ctaaccagaa	aactgccagg	tgattttgga	1860
cttttagaag	aaactgaatg	gccactaata	tgtgcttggt	tggtaaagaa	aggttaccaa	1920
gcaacaatgg	ctagctatat	gcatcattgg	g ggaaatgtac	ctgattggtc	agaaaaatgg	1980
gaggagccaa	aaatgcaaad	cccaataaat	acaccaacag	actctcagat	ttccacatca	2040
gtgaaaactt	cgccagcgga	caacaactac	gcagcaacto	: caatacagga	ggacctggat	2100
					caacctgcac	2160
ttaactccaa	caccgccaga	ttcagcaata	e cggacaccaa Page 6	gtccaacttg	gtcggaaata	2220

						2200
	taagagcctg					2280
	cgcctcctgc					2340
	taaaactaac					2400
	taccttggtc					2460
agacgccgca	gcaaaagaac	acgacgaagc	ctacgacaaa	tacataaaat	ctggaaaaaa	2520
tccatacttc	tacttctcag	cagctgatga	aaaattcata	aaagaaactg	aacacgcaaa	2580
agactacgga	ggtaaaattg	gacattactt	cttcagagca	aagcgtgcct	ttgctccaaa	2640
actctcagaa	acagactcac	caactacatc	tcaacaacca	gaggtaagaa	gatcgccgag	2700
aaaacaccca	gggtctaaac	caccaggaaa	aagacctgct	ccaágacata	tttttataaa	2760
cttagctaaa	aaaaaagcta	aagggacatc	taatacaaac	tctaactcaa	tgagtgaaaa	2820
tgtggaacaa	cacaacccta	ttaatgcagg	cactgaattg	tctgcaacag	gaaatgaatc	2880
tgggggtggg	ggcggcggtg	gcgggggtag	gggtgctggg	ggggttggtg	tgtctacagg	2940
tactttcaat	aatcaaacag	aatttcaata	cttgggggag	ggcttggtta	gaatcactgc	3000
acacgcatca	agactcatac	atctaaatat	gccagaacac	gaaacataca	aaagaataca	3060
tgtactaaat	tcagaatcag	gggtggcggg	acaaatggta	caagacgatg	cacacacaca	3120
aatggtaaca	ccttggtcac	taatagatgc	taacgcatgg	ggagtgtggt	tcaatccagc	3180
ggactggcag	ttaatatcca	acaacatgac	agaaataaac	ttagttagtt	ttgaacaaga	3240
aatattcaat	gtagtactta	aaacaattac	agaatcagca	acctcaccac	caaccaaaat	3300
atataataat	gatctaactg	caagcttaat	ggtcgcacta	gacaccaata	acacacttcc	3360
atacacacca	gcagcaccta	gaagtgaaac	acttggtttt	tatccatggt	tacctacaaa	3420
accaactcaa	tacagatatt	acctatcatg	catcagaaac	ctaaatccac	caacatacac	3480
tggacaatca	caacaaataa	cagactcaat	acaaacagga	ctacacagtg	acattatgtt	3540
ctacacaata	gaaaatgcag	taccaattca	tcttctaaga	acaggagatg	aattctccac	3600
aggaatatat	: cactttgaca	caaaaccact	aaaattaact	cactcatggc	aaacaaacag	3660
atctctagga	ctgcctccaa	aactactaac	tgaacctacc	acagaaggag	accaacaccc	3720
aggaacacta	ccagcagcta	acacaagaaa	aggttatcac	caaacaatta	ataatagcta	3780
cacagaagca	ı acagcaatta	ggccagctca	ggtaggatat	aatacaccat	acatgaattt	3840
tgaatactco	aatggtggac	catttctaac	tcctatagta	ccaacagcag	acacacaata	3900
taatgatgat	gaaccaaatg	gtgctataag	atttacaatg	gattaccaac	atggacactt	3960
aaccacatct	tcacaagagc	tagaaagata	cacattcaat	ccacaaagta	aatgtggaag	4020
					caaataatgg	4080
					tgaatacact	4140
					caaatggtca	4200
					cagctccatt	4260

tgtttgtaaa aacaatccac cagga	caact atttgtaaaa atagcaccaa acctaacaga 4320
tgatttcaat gctgactctc ctcaa	caacc tagaataata acttattcaa acttttggtg 4380
gaaaggaaca ctaacattca cagcaa	aaaat gagatccagt aatatgtgga accctattca 4440
acaacacaca acaacagcag aaaaca	attgg taactatatt cctacaaata ttggtggcat 4500
aagaatgttt ccagaatatt cacaa	cttat accaagaaaa ttatactaga aataactctg 4560
taaataaaaa ctcagttact tggtta	aatca tgtactacta tcattgtata cttcaataaa 4620
aataaattgt aaaatcaata aaact	aagtt acttagtttc tgtataccta tactagaaat 4680
aactctgtaa ataaaaactc agtta	cttgg ttaatcatgt actactatca ttgtatactt 4740
caataaaaat aaattgtaaa atcaa	taaaa ctaagttact tagtttctgt ataccaatta 4800
tccccaaaaa acaataaaat tttaa	aaaga aacaagctct catgtgttta ctattaacta 4860
aaccaaccac acttatatga cctta	tgtct ttagggtggg tgggtgggaa ttactatgta 4920
ttcctttgag ttagttggtc gcctt	tgggc gactaaccaa gcggctctgc cgcttggtta 4980
gtcgcacggc gaccaactaa ctcaa	aggaa tacatagtaa ttcccaccca cccaccctaa 5040
agacataagg tcatataagt gtggt	tggtt tagtt 5075
<210> 4 <211> 11703 <212> DNA <213> Sindbis virus	
<400> 4 attgacggcg tagtacacac tattg	aatca aacagccgac caattgcact accatcacaa 60
tggagaagcc agtagtaaac gtaga	cgtag acccccagag tccgtttgtc gtgcaactgc 120
aaaaaagctt cccgcaattt gaggt	agtag cacagcaggt cactccaaat gaccatgcta 180
atgccagagc attttcgcat ctggc	cagta aactaatcga gctggaggtt cctaccacag 240
cgacgatctt ggacataggc agcgc	accgg ctcgtagaat gttttccgag caccagtatc 300
attgtgtctg ccccatgcgt agtco	agaag acccggaccg catgatgaaa tacgccagta 360
aactggcgga aaaagcgtgc aagat	tacaa acaagaactt gcatgagaag attaaggatc 420
tccggaccgt acttgatacg ccgga	tgctg aaacaccatc gctctgcttt cacaacgatg 480
ttacctgcaa catgcgtgcc gaata	ttccg tcatgcagga cgtgtatatc aacgctcccg 540
gaactatcta tcatcaggct atgaa	aggcg tgcggaccct gtactggatt ggcttcgaca 600
ccacccagtt catgttctcg gctat	ggcag gttcgtaccc tgcgtacaac accaactggg 660
ccgacgagaa agtccttgaa gcgcg	taaca tcggactttg cagcacaaag ctgagtgaag 720
gtaggacagg aaaattgtcg ataat	gagga agaaggagtt gaagcccggg tcgcgggttt 780
atttctccgt aggatcgaca cttta	tccag aacacagagc cagcttgcag agctggcatc 840
ttccatcggt gttccacttg aatgg	gaaagc agtcgtacac ttgccgctgt gatacagtgg 900
tgagttgcga aggctacgta gtgaa	igaaaa tcaccatcag tcccgggatc acgggagaaa 🥏 960

CI0043PCTseqlisting.ST25 1020 ccgtgggata cgcggttaca cacaatagcg agggcttctt gctatgcaaa gttactgaca 1080 cagtaaaagg agaacgggta tcgttccctg tgtgcacgta catcccggcc accatatgcg atcagatgac tggtataatg gccacggata tatcacctga cgatgcacaa aaacttctgg 1140 1200 ttgggctcaa ccagcgaatt gtcattaacg gtaggactaa caggaacacc aacaccatgc 1260 aaaattacct tctgccgatc atagcacaag ggttcagcaa atgggctaag gagcgcaagg atgatcttga taacgagaaa atgctgggta ctagagaacg caagcttacg tatggctgct 1320 tgtgggcgtt tcgcactaag aaagtacatt cgttttatcg cccacctgga acgcagacct 1380 1440 gcgtaaaagt cccagcctct tttagcgctt ttcccatgtc gtccgtatgg acgacctctt 1500 tgcccatgtc gctgaggcag aaattgaaac tggcattgca accaaagaag gaggaaaaac tgctgcaggt ctcggaggaa ttagtcatgg aggccaaggc tgcttttgag gatgctcagg 1560 1620 aggaagccag agcggagaag ctccgagaag cacttccacc attagtggca gacaaaggca tcgaggcagc cgcagaagtt gtctgcgaag tggaggggct ccaggcggac atcggagcag 1680 cattagttga aaccccgcgc ggtcacgtaa ggataatacc tcaagcaaat gaccgtatga 1740 1800 tcqqacaqta tatcqttgtc tcgccaaact ctgtgctgaa gaatgccaaa ctcgcaccag 1860 cgcacccgct agcagatcag gttaagatca taacacactc cggaagatca ggaaggtacg 1920 cggtcgaacc atacgacgct aaagtactga tgccagcagg aggtgccgta ccatggccag 1980 aattcctagc actgagtgag agcgccacgt tagtgtacaa cgaaagagag tttgtgaacc 2040 gcaaactata ccacattgcc atgcatggcc ccgccaagaa tacagaagag gagcagtaca aggttacaaa ggcagagctt gcagaaacag agtacgtgtt tgacgtggac aagaagcgtt 2100 2160 gcgttaagaa ggaagaagcc tcaggtctgg tcctctcggg agaactgacc aaccctccct 2220 atcatgaget agetetggag ggaetgaaga eeegaeetge ggteeegtae aaggtegaaa 2280 caataggagt gataggcaca ccggggtcgg gcaagtcagc tattatcaag tcaactgtca cggcacgaga tcttgttacc agcggaaaga aagaaaattg tcgcgaaatt gaggccgacg 2340 2400 tgctaagact gaggggtatg cagattacgt cgaagacagt agattcggtt atgctcaacg 2460 gatgccacaa agccgtagaa gtgctgtacg ttgacgaagc gttcgcgtgc cacgcaggag 2520 cactacttgc cttgattgct atcgtcaggc cccgcaagaa ggtagtacta tgcggagacc 2580 ccatgcaatg cggattcttc aacatgatgc aactaaaggt acatttcaat caccctgaaa 2640 aagacatatg caccaagaca ttctacaagt atatctcccg gcgttgcaca cagccagtta 2700 cagctattgt atcgacactg cattacgatg gaaagatgaa aaccacgaac ccgtgcaaga agaacattga aatcgatatt acaggggcca caaagccgaa gccaggggat atcatcctga 2760 2820 catgtttccg cgggtgggtt aagcaattgc aaatcgacta tcccggacat gaagtaatga 2880 cagccgcggc ctcacaaggg ctaaccagaa aaggagtgta tgccgtccgg caaaaagtca atgaaaaccc actgtacgcg atcacatcag agcatgtgaa cgtgttgctc acccgcactg 2940 3000 aggacaggct agtgtggaaa accttgcagg gcgacccatg gattaagcag cccactaaca

CIOO43PCTseqlisting.ST25 3060 tacctaaagg aaactttcag gctactatag aggactggga agctgaacac aagggaataa 3120 ttgctgcaat aaacagcccc actccccgtg ccaatccgtt cagctgcaag accaacgttt 3180 gctgggcgaa agcattggaa ccgatactag ccacggccgg tatcgtactt accggttgcc agtggagcga actgttccca cagtttgcgg atgacaaacc acattcggcc atttacgcct 3240 3300 tagacgtaat ttgcattaag tttttcggca tggacttgac aagcggactg ttttctaaac 3360 agagcatccc actaacgtac catcccgccg attcagcgag gccggtagct cattgggaca 3420 acagcccagg aacccgcaag tatgggtacg atcacgccat tgccgccgaa ctctcccgta 3480 gatttccggt gttccagcta gctgggaagg gcacacaact tgatttgcag acggggagaa 3540 ccagagttat ctctgcacag cataacctgg tcccggtgaa ccgcaatctt cctcacgcct 3600 tagtccccga gtacaaggag aagcaacccg gcccggtcaa aaaattcttg aaccagttca aacaccactc agtacttgtg gtatcagagg aaaaaattga agctccccgt aagagaatcg 3660 3720 aatggatcgc cccgattggc atagccggtg cagataagaa ctacaacctg gctttcgggt ttccgccgca ggcacggtac gacctggtgt tcatcaacat tggaactaaa tacagaaacc 3780 3840 accactttca gcagtgcgaa gaccatgcgg cgaccttaaa aaccctttcg cgttcggccc 3900 tgaattgcct taacccagga ggcaccctcg tggtgaagtc ctatggctac gccgaccgca acagtgagga cgtagtcacc gctcttgcca gaaagtttgt cagggtgtct gcagcgagac 3960 4020 cagattgtgt ctcaagcaat acagaaatgt acctgatttt ccgacaacta gacaacagcc 4080 gtacacggca attcaccccg caccatctga attgcgtgat ttcgtccgtg tatgagggta 4140 caagagatgg agttggagcc gcgccgtcat accgcaccaa aagggagaat attgctgact 4200 gtcaagagga agcagttgtc aacgcagcca atccgctggg tagaccaggc gaaggagtct 4260 gccgtgccat ctataaacgt tggccgacca gttttaccga ttcagccacg gagacaggca ccgcaagaat gactgtgtgc ctaggaaaga aagtgatcca cgcggtcggc cctgatttcc 4320 4380 ggaagcaccc agaagcagaa gccttgaaat tgctacaaaa cgcctaccat gcagtggcag 4440 acttagtaaa tgaacataac atcaagtctg tcgccattcc actgctatct acaggcattt 4500 acgcagccgg aaaagaccgc cttgaagtat cacttaactg cttgacaacc gcgctagaca 4560 gaactgacgc ggacgtaacc atctattgcc tggataagaa gtggaaggaa agaatcgacg 4620 cggcactcca acttaaggag tctgtaacag agctgaagga tgaagatatg gagatcgacg 4680 atgagttagt atggatccat ccagacagtt gcttgaaggg aagaaaggga ttcagtacta 4740 caaaaggaaa attgtattcg tacttcgaag gcaccaaatt ccatcaagca gcaaaagaca 4800 tggcggagat aaaggtcctg ttccctaatg accaggaaag taatgaacaa ctgtgtgcct 4860 acatattggg tgagaccatg gaagcaatcc gcgaaaagtg cccggtcgac cataacccgt 4920 cgtctagccc gcccaaaacg ttgccgtgcc tttgcatgta tgccatgacg ccagaaaggg 4980 tccacagact tagaagcaat aacgtcaaag aagttacagt atgctcctcc acccccttc ctaagcacaa aattaagaat gttcagaagg ttcagtgcac gaaagtagtc ctgtttaatc 5040

CI0043PCTseqlisting.ST25 5100 cgcacactcc cgcattcgtt cccgcccgta agtacataga agtgccagaa cagcctaccg 5160 ctcctcctgc acaggccgag gaggcccccg aagttgtagc gacaccgtca ccatctacag ctgataacac ctcgcttgat gtcacagaca tctcactgga tatggatgac agtagcgaag 5220 gctcactttt ttcgagcttt agcggatcgg acaactctat tactagtatg gacagttggt 5280 cgtcaggacc tagttcacta gagatagtag accgaaggca ggtggtggtg gctgacgttc 5340 5400 atgccgtcca agagcctgcc cctattccac cgccaaggct aaagaagatg gcccgcctgg 5460 cagcggcaag aaaagagccc actccaccgg caagcaatag ctctgagtcc ctccacctct cttttggtgg ggtatccatg tccctcggat caattttcga cggagagacg gcccgccagg 5520 5580 cagcggtaca acccctggca acaggcccca cggatgtgcc tatgtctttc ggatcgtttt 5640 ccgacggaga gattgatgag ctgagccgca gagtaactga gtccgaaccc gtcctgtttg 5700 gatcatttga accgggcgaa gtgaactcaa ttatatcgtc ccgatcagcc gtatcttttc 5760 cactacgcaa gcagagacgt agacgcagga gcaggaggac tgaatactga ctaaccgggg 5820 taggtgggta catattttcg acggacacag gccctgggca cttgcaaaag aagtccgttc 5880 tgcagaacca gcttacagaa ccgaccttgg agcgcaatgt cctggaaaga attcatgccc cggtgctcga cacgtcgaaa gaggaacaac tcaaactcag gtaccagatg atgcccaccg 5940 aagccaacaa aagtaggtac cagtctcgta aagtagaaaa tcagaaagcc ataaccactg 6000 agcgactact gtcaggacta cgactgtata actctgccac agatcagcca gaatgctata 6060 6120 agatcaccta tccgaaacca ttgtactcca gtagcgtacc ggcgaactac tccgatccac 6180 agttcgctgt agctgtctgt aacaactatc tgcatgagaa ctatccgaca gtagcatctt atcagattac tgacgagtac gatgcttact tggatatggt agacgggaca gtcgcctgcc 6240 6300 tggatactgc aaccttctgc cccgctaagc ttagaagtta cccgaaaaaa catgagtata 6360 gagccccgaa tatccgcagt gcggttccat cagcgatgca gaacacgcta caaaatgtgc 6420 tcattgccgc aactaaaaga aattgcaacg tcacgcagat gcgtgaactg ccaacactgg 6480 actcagcgac attcaatgtc gaatgctttc gaaaatatgc atgtaatgac gagtattggg 6540 aggagttcgc tcggaagcca attaggatta ccactgagtt tgtcaccgca tatgtagcta 6600 gactgaaagg ccctaaggcc gccgcactat ttgcaaagac gtataatttg gtcccattgc 6660 aagaagtgcc tatggataga ttcgtcatgg acatgaaaag agacgtgaaa gttacaccag gcacgaaaca cacagaagaa agaccgaaag tacaagtgat acaagccgca gaacccctgg 6720 6780 cgactgctta cttatgcggg attcaccggg aattagtgcg taggcttacg gccgtcttgc 6840 ttccaaacat tcacacgctt tttgacatgt cggcggagga ttttgatgca atcatagcag 6900 aacacttcaa gcaaggcgac ccggtactgg agacggatat cgcatcattc gacaaaagcc 6960 aagacgacgc tatggcgtta accggtctga tgatcttgga ggacctgggt gtggatcaac 7020 cactactcga cttgatcgag tgcgcctttg gagaaatatc atccacccat ctacctacgg 7080 gtactcgttt taaattcggg gcgatgatga aatccggaat gttcctcaca ctttttgtca

CIOO43PCTseqlisting.ST25 acacagtttt gaatgtcgtt atcgccagca gagtactaga agagcggctt aaaacgtcca 7140 7200 gatgtgcagc gttcattggc gacgacaaca tcatacatgg agtagtatct gacaaagaaa tggctgagag gtgcgccacc tggctcaaca tggaggttaa gatcatcgac gcagtcatcg 7260 gtgagagacc accttacttc tgcggcggat ttatcttgca agattcggtt acttccacag 7320 cgtgccgcgt ggcggatccc ctgaaaaggc tgtttaagtt gggtaaaccg ctcccagccg 7380 acgacgagca agacgaagac agaagacgcg ctctgctaga tgaaacaaag gcgtggttta 7440 gagtaggtat aacaggcact ttagcagtgg ccgtgacgac ccggtatgag gtagacaata 7500 ttacacctgt cctactggca ttgagaactt ttgcccagag caaaagagca ttccaagcca 7560 7620 tcagagggga aataaagcat ctctacggtg gtcctaaata gtcagcatag tacatttcat 7680 ctgactaata ctacaacacc accaccatga atagaggatt ctttaacatg ctcggccgcc gccccttccc ggcccccact gccatgtgga ggccgcggag aaggaggcag gcggccccga 7740 7800 tgcctgcccg caacgggctg gcttctcaaa tccagcaact gaccacagcc gtcagtgccc 7860 tagtcattgg acaggcaact agacctcaac ccccacgtcc acgcccgcca ccgcgccaga agaagcaggc gcccaagcaa ccaccgaagc cgaagaaacc aaaaacgcag gagaagaaga 7920 7980 agaagcaacc tgcaaaaccc aaacccggaa agagacagcg catggcactt aagttggagg 8040 ccgacagatt gttcgacgtc aagaacgagg acggagatgt catcgggcac gcactggcca 8100 tggaaggaaa ggtaatgaaa cctctgcacg tgaaaggaac catcgaccac cctgtgctat caaagctcaa atttaccaag tcgtcagcat acgacatgga gttcgcacag ttgccagtca 8160 acatgagaag tgaggcattc acctacacca gtgaacaccc cgaaggattc tataactggc 8220 accacggagc ggtgcagtat agtggaggta gatttaccat ccctcgcgga gtaggaggca 8280 gaggagacag cggtcgtccg atcatggata actccggtcg ggttgtcgcg atagtcctcg 8340 . gtggcgctga tgaaggaaca cgaactgccc tttcggtcgt cacctggaat agtaaaggga 8400 8460 agacaattaa gacgaccccg gaagggacag aagagtggtc cgcagcacca ctggtcacgg caatgtgttt gctcggaaat gtgagcttcc catgcgaccg cccgcccaca tgctataccc 8520 8580 gcgaaccttc cagagccctc gacatccttg aagagaacgt gaaccatgag gcctacgata ccctgctcaa tgccatattg cggtgcggat cgtctggcag aagcaaaaga agcgtcattg 8640 acgactttac cctgaccagc ccctacttgg gcacatgctc gtactgccac catactgtac 8700 8760 cgtgcttcag ccctgttaag atcgagcagg tctgggacga agcggacgat aacaccatac 8820 gcatacagac ttccgcccag tttggatacg accaaagcgg agcagcaagc gcaaacaagt 8880 accgctacat gtcgcttaag caggatcaca ccgttaaaga aggcaccatg gatgacatca 8940 agattagcac ctcaggaccg tgtagaaggc ttagctacaa aggatacttt ctcctcgcaa 9000 aatgccctcc aggggacagc gtaacggtta gcatagtgag tagcaactca gcaacgtcat 9060 gtacactggc ccgcaagata aaaccaaaat tcgtgggacg ggaaaaatat gatctacctc ccgttcacgg taaaaaaatt ccttgcacag tgtacgaccg tctgaaagaa acaactgcag 9120

CI0043PCTseqlisting.ST25 9180 gctacatcac tatgcacagg ccgagaccgc acgcttatac atcctacctg gaagaatcat 9240 cagggaaagt ttacgcaaag ccgccatctg ggaagaacat tacgtatgag tgcaagtgcg gcgactacaa gaccggaacc gtttcgaccc gcaccgaaat cactggttgc accgccatca 9300 agcagtgcgt cgcctataag agcgaccaaa cgaagtgggt cttcaactca ccggacttga 9360 9420 tcagacatga cgaccacacg gcccaaggga aattgcattt gcctttcaag ttgatcccga 9480 gtacctgcat ggtccctgtt gcccacgcgc cgaatgtaat acatggcttt aaacacatca 9540 gcctccaatt agatacagac cacttgacat tgctcaccac caggagacta ggggcaaacc 9600 cggaaccaac cactgaatgg atcgtcggaa agacggtcag aaacttcacc gtcgaccgag 9660 atggcctgga atacatatgg ggaaatcatg agccagtgag ggtctatgcc caagagtcag caccaggaga ccctcacgga tggccacacg aaatagtaca gcattactac catcgccatc 9720 9780 ctgtgtacac catcttagcc gtcgcatcag ctaccgtggc gatgatgatt ggcgtaactg ttgcagtgtt atgtgcctgt aaagcgcgcc gtgagtgcct gacgccatac gccctggccc 9840 9900 caaacgccgt aatcccaact tcgctggcac tcttgtgctg cgttaggtcg gccaatgctg 9960 aaacgttcac cgagaccatg agttacttgt ggtcgaacag tcagccgttc ttctgggtcc 10020 agttgtgcat acctttggcc gctttcatcg ttctaatgcg ctgctgctcc tgctgcctgc 10080 cttttttagt ggttgccggc gcctacctgg cgaaggtaga cgcctacgaa catgcgacca ctgttccaaa tgtgccacag ataccgtata aggcacttgt tgaaagggca gggtatgccc 10140 cgctcaattt ggagatcact gtcatgtcct cggaggtttt gccttccacc aaccaagagt 10200 acattacctg caaattcacc actgtggtcc cctccccaaa aatcaaatgc tgcggctcct 10260 tggaatgtca gccggccgct catgcagact atacctgcaa ggtcttcgga ggggtctacc 10320 10380 cctttatgtg gggaggagcg caatgttttt gcgacagtga gaacagccag atgagtgagg 10440 cgtacgtcga attgtcagca gattgcgcgt ctgaccacgc gcaggcgatt aaggtgcaca 10500 ctgccgcgat gaaagtagga ctgcgtattg tgtacgggaa cactaccagt ttcctagatg tgtacgtgaa cggagtcaca ccaggaacgt ctaaagactt gaaagtcata gctggaccaa 10560 10620 tttcagcatc gtttacgcca ttcgatcata aggtcgttat ccatcgcggc ctggtgtaca 10680 actatgactt cccggaatat ggagcgatga aaccaggagc gtttggagac attcaagcta cctccttgac tagcaaggat ctcatcgcca gcacagacat taggctactc aagccttccg 10740 10800 ccaaqaacqt gcatqtcccg tacacgcagg cctcatcagg atttgagatg tggaaaaaca actcaggccg cccactgcag gaaaccgcac ctttcgggtg taagattgca gtaaatccgc 10860 10920 tccgagcggt ggactgttca tacgggaaca ttcccatttc tattgacatc ccgaacgctg 10980 cctttatcag gacatcagat gcaccactgg tctcaacagt caaatgtgaa gtcagtgagt 11040 gcacttattc agcagacttc ggcgggatgg ccaccctgca gtatgtatcc gaccgcgaag 11100 gtcaatgccc cgtacattcg cattcgagca cagcaactct ccaagagtcg acagtacatg 11160 tcctggagaa aggagcggtg acagtacact ttagcaccgc gagtccacag gcgaacttta

	CI0043P	CTseqlistin	g.ST25		11220
tcgtatcgct gtgtgggaag					
atatcgtgag caccccgcac					11280
catggagttg gctgtttgcc					11340
tgatttttgc ttgcagcatg					11400
atccgaccag caaaactcga					11460
gtacattaga tccccgctta					11520
cgaggaagcg cagtgcataa					11580
tatctagcgg acgccaaaaa					11640
cagcgtctgc ataactttta	ttatttcttt	tattaatcaa	caaaattttg	tttttaacat	11700
ttc					11703
<210> 5					
<211> 10945 <212> DNA			•		
<213> West Nile viru	S				
<400> 5 gaggattaac aacaattaac	acagtgcgag	ctgtttctta	gcacgaagat	ctcgatgtct	60
aagaaaccag gagggcccgg					120
cgcgtgttgt ccttgattgg					180
ccaatacgat ttgtgttggc				•	240
cgagcagtgc tggatcgatg					300
agttttaaga aggaactagg					360
aagaaaagag gaggaaagac					420
gcagttaccc tctctaactt					480
acagatgtca tcacgattco					540
gatgtgggat acatgtgcga					600
aatgatccag aagacatcga					660
agatgcacca agacacgcca					720
ggagaaagca ctctagcgaa					780
tatttggtaa aaacagaatc					840
gtcattggtt ggatgcttgg					900
cttttggtgg ccccagctta					960
gaaggagtgt ctggagcaac					1020
atcatgtcta aggacaagco					1080
ctggcagagg tccgcagtta					1140
gcgtgcccga ccatggggga					1200
agacaaggag tggtggacag					1260
	, 5555555	Page 14	2 33		

				+	cotettaaaa	1320
	gcgccaaatt	-				
	agtacgaagt					1380
	ccacacaggt					1440
	acacactaaa					1500
cggtcaggga	ttgacaccaa	tgcatactac	gtgatgactg	ttggaacaaa	gacgttcttg	1560
gtccatcgtg	agtggttcat	ggacctcaac	ctcccttgga	gcagtgctgg	aagtactgtg	1620
tggaggaaca	gagagacgtt	aatggagttt	gaggaaccac	acgccacgaa	gcagtctgtg	1680
atagcattgg	gctcacaaga	gggagctctg	catcaagctt	tggctggagc	cattcctgtg	1740
gaattttcaa	gcaacactgt	caagttgacg	tcgggtcatt	tgaagtgtag	agtgaagatg	1800
gaaaaattgc	agttgaaggg	aacaacctat	ggcgtctgtt	caaaggcttt	caagtttctt	1860
gggactcccg	cagacacagg	tcacggcact	gtggtgttgg	aattgcagta	cactggcacg	1920
gatggacctt	gcaaagttcc	tatctcgtca	gtggcttcat	tgaacgacct	aacgccagtg	1980
ggcagattgg	tcactgtcaa	cccttttgtt	tcagtggcca	cggccaacgc	taaggtcctg	2040
attgaattgg	aaccaccctt	tggagactca	tacatagtgg	tgggcagagg	agaacaacag	2100
atcaatcacc	attggcacaa	gtctggaagc	agcattggca	aagcctttac	aaccaccctc	2160
aaaggagcgc	agagactagc	cgctctagga	gacacagctt	gggactttgg	atcagttgga	2220
ggggtgttca	cctcagttgg	gaaggctgtc	catcaagtgt	tcggaggagc	attccgctca	2280
ctgttcggag	gcatgtcctg	gataacgcaa	ggattgctgg	gggctctcct	gttgtggatg	2340
ggcatcaatg	ctcgtgatag	gtccatagct	ctcacgtttc	tcgcagttgg	aggagttctg	2400
ctcttcctct	ccgtgaacgt	gcacgctgac	actgggtgtg	ccataaacat	cacccggcaa	2460
gagctgagat	gtggaagtgg	agtgttcata	cacaatgatg	tggaggcttg	gatggaccgg	2520
tacaagtatt	accctgaaac	gccacaaggc	ctagccaaga	tcattcagaa	agctcataag	2580
gaaggagtgt	gcggtctacg	atcagtttcc	agactggagc	atcaaatgtg	ggaagcagtg	2640
aaggacgagc	tgaacactcc	tttgaaggag	aatggtgtgg	accttagtgt	cgtggttgag	2700
aaacaggagg	gaatgtacaa	gtcagcacct	aaacgcctca	ccgccaccac	ggaaaaattg	2760
gaaattggct	ggaaggcctg	gggaaagagt	attttatttg	caccagaact	cgccaacaac	2820
acctttgtgg	ttgatggtcc	ggagaccaag	gaatgtccga	ctcagaatcg	cgcttggaat	2880
agcttagaag	tggaggattt	tggatttggt	ctcaccagca	ctcggatgtt	cctgaaggtc	2940
agagaaggca	acacaactga	atgtgactcg	aagatcattg	gaacggctgt	caagaacaac	3000
ttggcgatcc	acagtgacct	gtcctattgg	attgaaagca	ggctcaatga	tacgtggaag	3060
cttgaaaggg	cagttctggg	tgaagtcaaa	tcatgtacgt	ggcctgagac	gcataccttg	3120
tggggcgatg	gaatccttga	gagtgacttg	ataataccag	tcacactggc	gggaccacga	3180
agcaatcaca	atcggagacc	tgggtacaag	acacaaaacc	agggcccatg	ggacgaaggc	3240
cgggtagaga	ttgacttcga	ttactgccca	ggaactacgg	tcaccctgag	tgagagctgc	3300
			Page 15			

ggacaccgtg	gacctgccac	tcgcaccacc	acagagagcg	gaaagttgat	aacagattgg	3360
tgctgcagga	gctgcacctt	accaccactg	cgctaccaaa	ctgacagcgg	ctgttggtat	3420
ggtatggaga	tcagaccaca	gagacatgat	gaaaagaccc	tcgtgcagtc	acaagtgaat	3480
gcttataatg	ctgatatgat	tgaccctttt	cagttgggcc	ttctggtcgt	gttcttggcc	3540
acccaggagg	tccttcgcaa	gaggtggaca	gccaagatca	gcatgccagc	tatactgatt	3600
gctctgctag	tcctggtgtt	tgggggcatt	acttacactg	atgtgttacg	ctatgtcatc	3660
ttggtggggg	cagctttcgc	agaatctaat	tcgggaggag	acgtggtaca	cttggcgctc	3720
atggcgacct	tcaagataca	accagtgttt	atggtggcat	cgtttctcaa	agcgagatgg	3780
accaaccagg	agaacatttt	gttgatgttg	gcggctgttt	tctttcaaat	ggcttatcac	3840
gatgcccgcc _.	aaattctgct	ctgggagatc	cctgatgtgt	tgaattcact	ggcggtagct	3900
tggatgatac	tgagagccat	aacattcaca	acgacatcaa	acgtggttgt	tccgctgcta	3960
gccctgctaa	cacccgggct	gagatgcttg	aatctggatg	tgtacaggat	actgctgttg	4020
atggtcggaa	taggcagctt	gatcagggag	aagaggagtg	cagctgcaaa	aaagaaagga	4080
gcaagtctgc	tatgcttggc	tctagcctca	acaggacttt	tcaaccccat	gatccttgct	4140
gctggactga	ttgcatgtga	tcccaaccgt	aaacgcggat	ggcccgcaac	tgaagtgatg	4200
acagctgtcg	gcctaatgtt	tgccatcgtc	ggagggctgg	cagagcttga	cattgactcc	4260
atggccattc	caatgactat	cgcggggctc	atgtttgctg	ctttcgtgat	ttctgggaaa	4320
tcaacagata	tgtggattga	gagaacggcg	gacatttcct	gggaaagtga	tgcagaaatt	4380
acaggctcga	gcgaaagagt	tgatgtgcgg	cttgatgatg	atggaaactt	ccagctcatg	4440
aatgatccag	gagcaccttg	gaagatatgg	atgctcagaa	tggtctgtct	cgcgattagt	4500
gcgtacaccc	cctgggcaat	cttgccctca	gtagttggat	tttggataac	tctccaatac	4560
acaaagagag	gaggcgtgtt	gtgggacact	ccctcaccaa	aggagtacaa	aaagggggac	4620
accaccaccg	gcgtttacag	gatcatgact	cgtgggctgc	tcggcagtta	tcaagcagga	4680
gcgggcgtga	tggttgaagg	tgttttccac	accctttggc	atacaacaaa	aggagccgct	4740
ttgatgagcg	gagagggccg	cctggaccca	tactggggca	gtgtcaagga	ggatcgactt	4800
tgttacggag	gaccctggaa	attgcagcac	aagtggaacg	ggcaggatga	ggtgcagatg	4860
attgtggtgg	aacctggcaa	gaacgttaag	aacgtccaga	cgaaaccagg	ggtgttcaaa	4920
acacctgaag	gagaaatcgg	ggccgtgact	ttggacttcc	ccactggaac	atcaggctca	4980
ccaatagtgg	acaaaaacgg	tgatgtgatt	gggctttatg	gcaatggagt	cataatgccc	5040
aacggctcat	acataagcgc	gatagtgcag	ggtgaaagga	tggatgagcc	aatcccagcc	5100
ggattcgaac	ctgagatgct	gaggaaaaaa	cagatcactg	tactggatct	ccatcccggc	5160
gccggtaaaa	caaggaggat	tctgccacag	atcatcaaag	aggccataaa	cagaagactg	5220
aġaacagccg	tgctagcacc	aaccagggtt	gtggctgctg	agatggctga	agcactgaga	5280
ggactgccca	tccggtacca	gacatccgca	gtgcccagag Page 16	aacataatgg	aaatgagatt	5340

gttgatgtca	tgtgtcatgc	taccctcacc	cacaggctga	tgtctcctca	cagggtgccg	5400
aactacaacc	tgttcgtgat	ggatgaggct	catttcaccg	acccagctag	cattgcagca	5460
agaggttaca	tttccacaaa	ggtcgagcta	ggggaggcgg	cggcaatatt	catgacagcc	5520
accccaccag	gcacttcaga	tccattccca	gagtccaatt	caccaatttc	cgacttacag	5580
actgagatcc	cggatcgagc	ttggaactct	ggatacgaat	ggatcacaga	atacaccggg	5640
aagacggttt	ggtttgtgcc	tagtgtcaag	atggggaatg	agattgccct	ttgcctacaa	5700
cgtgctggaa	agaaagtagt	ccaattgaac	agaaagtcgt	acgagacgga	gtacccaaaa	5760
tgtaagaacg	atgattggga	ctttgttatc	acaacagaca	tatctgaaat	gggggctaac	5820
ttcaaggcga	gcagggtgat	tgacagccgg	aagagtgtga	aaccaaccat	cataacagaa	5880
ggagaaggga	gagtgatcct	gggagaacca	tctgcagtga	cagcagctag	tgccgcccag	5940
agacgtggac	gtatcggtag	aaatccgtcg	caagttggtg	atgagtactg	ttatgggggg	6000
cacacgaatg	aagacgactc	gaacttcgcc	cattggactg	aggcacgaat	catgctggac	6060
aacatcaaca	tgccaaacgg	actgatcgct	caattctacc	aaccagagcg	tgagaaggta	6120
tataccatgg	atggggaata	ccggctcaga	ggagaagaga	gaaaaaactt	tctggaactg	6180
ttgaggactg	cagatctgcc	agtttggctg	gcttacaagg	ttgcagcggc	tggagtgtca	6240
taccacgacc	ggaggtggtg	ctttgatggt	cctaggacaa	acacaatttt	agaagacaac	6300
aacgaagtgg	aagtcatcac	gaagcttggt	gaaaggaaga	ttctgaggcc	gcgctggatt	6360
gacgccaggg	tgtactcgga	tcaccaggca	ctaaaggcgt	tcaaggactt	cgcctcggga	6420
aaacgttctc	agatagggct	cattgaggtt	ctgggaaaga	tgcctgagca	cttcatgggg	6480
aagacatggg	aagcacttga	caccatgtac	gttgtggcca	ctgcagagaa	aggaggaaga	6540
gctcacagaa	tggccctgga	ggaactgcca	gatgctcttc	agacaattgc	cttgattgcc	6600
ttattgagtg	tgatgaccat	gggagtattc	ttcctcctca	tgcagcggaa	gggcattgga	6660
aagataggtt	tgggaggcgc	tgtcttggga	gtagcgacct	ttttctgttg	gatggctgaa	6720
gttccaggaa	cgaagatcgc	cggaatgttg	ctgctctccc	ttctcttgat	gattgtgcta	6780
attcctgagc	cagagaagca	acgttcgcag	acagacaacc	agctagccgt	gttcctgatt	6840
tgtgtcatga	cccttgtgag	cgcagtggca	gccaacgaga	tgggttggct	agataagacc	6900
aagagtgaca	taagcagttt	gtttgggcaa	agaattgagg	tcaaggagaa	tttcagcatg	6960
ggagagtttc	ttctggactt	gaggccggca	acagcctggt	cactgtacgc	tgtgacaaca	7020
gcggtcctca	ctccactgct	aaagcatttg	atcacgtcag	attacatcaa	cacctcattg	7080
acctcaataa	acgttcaggc	aagtgcacta	ttcacactcg	cgcgaggctt	ccccttcgtc	7140
gatgttggag	tgtcggctct	cctgctagca	gccggatgct	ggggacaagt	caccctcacc	7200
gttacggtaa	cagcggcaac	actccttttt	tgccactatg	cctacatggt	tcccggttgg	7260
caagctgagg	caatgcgctc	agcccagcgg	cġgacagcgg	ccggaatcat	gaagaacgct	7320
gtagtggatg	gcatcgtggc	cacggacgtc	ccagaattag Page 17	agcgcaccac	acccatcatg	7380

cagaagaaag	ttggacagat	catgctgatc	ttggtgtctc	tagctgcagt	agtagtgaac	7440
ccgtctgtga	agacagtacg	agaagccgga	attttgatca	cggccgcagc	ggtgacgctt	7500
tgggagaatg	gagcaagctc	tgtttggaac	gcaacaactg	ccatcggact	ctgccacatc	7560
atgcgtgggg	gttggttgtc	atgtctatcc	ataacatgga	cactcataaa	gaacatggaa	7620
aaaccagggc	taaaaagagg	tggggcaaaa	ggacgcacct	tgggagaggt	ttggaaagaa	7680
agactcaacc	agatgacaaa	agaagagttc	actaggtacc	gcaaagaggc	catcatcgaa	7740
gtcgatcgct	cagcggcaaa	acacgccagg	aaagaaggca	atgtcactgg	agggcatcca	7800
gtctctaggg	gcacagcaaa	actgagatgg	ctggtcgaac	ggaggtttct	cgaaccggtc	7860
ggaaaagtga	ttgaccttgg	atgtggaaga	ggcggttggt	gttactatat	ggcaacccaa	7920
aaaagagtcc	aagaagtcag	agggtacaca	aagggcggtc	ccggacatga	agagccccaa	7980
ctagtgcaaa	gttatggatg	gaacattgtc	accatgaaga	gtggagtgga	tgtgttctac	8040
agaccttctg	agtgttgtga	caccctcctt	tgtgacatcg	gagagtcctc	gtcaagtgct	8100
gaggttgaag	agcataggac	gattcgggtc	cttgaaatgg	ttgaggactg	gctgcaccga	8160
gggccaaggg	aattttgcgt	gaaggtgctc	tgcccctaca	tgccgaaagt	catagagaag	8220
atggagctgc	tccaacgccg	gtatgggggg	ggactggtca	gaaacccact	ctcacggaat	8280
tccacgcacg	agatgtattg	ggtgagtcga	gcttcaggca	atgtggtaca	ttcagtgaat	8340
atgaccagcc	aggtgctcct	aggaagaatg	gaaaaaagga	cctggaaggg	accccaatac	8400
gaggaagatg	taaacttggg	aagtggaacc	agggcggtgg	gaaaacccct	gctcaactca	8460
gacaccagta	aaatcaagaa	caggattgaa	cgactcaggc	gtgagtacag	ttcgacgtgg	8520
caccacgatg	agaaccaccc	atatagaacc	tggaactacc	acggcagtta	tgatgtgaag	8580
cccacaggct	ccgccagttc	gctggtcaat	ggagtggtca	ggctcctctc	aaaaccatgg	8640
gacaccatca	cgaatgttac	caccatggcc	atgactgaca	ctactccctt	cgggcagcag	8700
cgagtgttca	aagagaaggt	ggacacgaaa	gctcctgaac	cgccagaagg	agtgaagtac	8760
gtgctcaacg	agaccaccaa	ctggttgtgg	gcgtttttgg	ccagagaaaa	acgtcccaga	8820
atgtgctctc	gagaggaatt	cataagaaag	gtcaacagca	atgcagcttt	gggtgccatg	8880
tttgaagagc	agaatcaatg	gaggagcgcc	agagaagcag	ttgaagatcc	aaaattttgg	8940
gagatggtgg	atgaggagcg	cgaggcacat	ctgcgggggg	aatgtcacac	ttgcatttac	9000
aacatgatgg	gaaagagaga	gaaaaaaccc	ggagagttcg	gaaaggccaa	gggaagcaga	9060
gccatttggt	tcatgtggct	cggagctcgc	tttctggagt	tcgaggctct	gggttttctc	9120
aatgaagacc	actggcttgg	aagaaagaac	tcaggaggag	gtgtcgaggg	cttgggcctc	9180
caaaaactgg	gttacatcct	gcgtgaagtt	ggcacccggc	ctgggggcaa	gatctatgct	9240
gatgacacag	ctggctggga	cacccgcatc	acgagagctg	acttggaaaa	tgaagctaag	9300
gtgcttgagc	tgcttgatgg	ggaacatcgg	cgtcttgcca	gggccatcat	tgagctcacc	9360
tatcgtcaca	aagttgtgaa	agtgatgcgc	ccggctgctg Page 18	atggaagaac	cgtcatggat	9420

CI0043PCTseqlisting.ST25

gttatctcca gagaagatca gagggggagt ggacaagttg tcacctacgc cctaaacact 9480 ttcaccaacc tggccgtcca gctggtgagg atgatggaag gggaaggagt gattggccca 9540 gatgatgtgg agaaactcac aaaagggaaa ggacccaaag tcaggacctg gctgtttgag 9600 aatggggaag aaagactcag ccgcatggct gtcagtggag atgactgtgt ggtaaagccc 9660 ctggacgatc gctttgccac ctcgctccac ttcctcaatg ctatgtcaaa ggttcgcaaa 9720 gacatccaag agtggaaacc gtcaactgga tggtatgatt ggcagcaggt tccattttqc 9780 tcaaaccatt tcactgaatt gatcatgaaa gatggaagaa cactggtggt tccatgccga 9840 ggacaggatg aattggtagg cagagctcgc atatctccag gggccggatg gaacgtccgc 9900 gacactgctt gtctggctaa gtcttatgcc cagatgtggc tgcttctgta cttccacaga 9960 agagacctgc ggctcatggc caacgccatt tgctccgctg tccctgtgaa ttgggtccct 10020 accggaagaa ccacgtggtc catccatgca ggaggagagt ggatgacaac agaggacatg 10080 ttggaggtct ggaaccgtgt ttggatagag gagaatgaat ggatggaaga caaaacccca 10140 gtggagaaat ggagtgacgt cccatattca ggaaaacgag aggacatctg gtgtggcagc 10200 ctgattggca caagagcccg agccacgtgg gcagaaaaca tccaggtggc tatcaaccaa 10260 gtcagagcaa tcatcggaga tgagaagtat gtggattaca tgagttcact aaagagatat 10320 gaagacacaa ctttggttga ggacacagta ctgtagatat ttaatcaatt gtaaatagac 10380 aatataagta tgcataaaag tgtagtttta tagtagtatt tagtggtgtt agtgtaaata 10440 gttaagaaaa ttttgaggag aaagtcaggc cgggaagttc ccgccaccgg aagttgagta 10500 gacggtgctg cctgcgactc aaccccagga ggactgggtg aacaaaqccg cgaagtgatc 10560 catgtaagcc ctcagaaccg tctcggaagg aggaccccac atgttgtaac ttcaaagccc 10620 aatgtcagac cacgctacgg cgtgctactc tgcggagagt gcagtctgcg atagtgcccc 10680 aggaggactg ggttaacaaa ggcaaaccaa cgccccacgc ggccctagcc ccggtaatgg 10740 tgttaaccag ggcgaaagga ctagaggtta gaggagaccc cgcggtttaa agtgcacggc 10800 ccagcctggc tgaagctgta ggtcagggga aggactagag gttagtggag accccgtgcc 10860 acaaaacacc acaacaaaac agcatattga cacctgggat agactaggag atcttctgct 10920 10945 ctgcacaacc agccacacgg cacag

```
<210> 6
<211> 1542
<212> DNA
<213> Escherichia coli 16S Ribosomal RNA
```

<220> <221> misc_feature <222> (896)..(896) <223> n is a, c, g, or t

<400> 6
aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa

60

CI0043PCTseqlisting.ST25 gtcgaacggt aacaggaakc agcttgctga tttgctgacg agtggcggac gggtgagtaa 120 tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180 aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240 300 ggattagcta gtaggtgggg taaaggctca cctaggcgac gatccctagc tggtctgaga ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360 ggaatattgc acaatgggcg caagcctgat gcagccatgc cgcgtgtatg aagaaggcct 420 tcgggttgta aagtactttc agcggggagg aagggagtaa agttaatacc tttgctcatt 480 gacgttaccc gcagaagaag caccggctaa ctccgtgcca gcagccgcgg taatacggag 540 ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600 660 gatgtgaaat ccccgggctc aacctgggaa ctgcatctga tactggcaag cttgagtctc 720 gtagaggggg gtagaattcc aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc ggtggcgaag gcggccccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780 aacaggatta gataccctgg tagtccacgc cgtaaacgat gtcgacttgg aggttgtgcc 840 900 cttgaggcgt ggcttccgga gctaacgcgt taagtckacc gcctggggag tacggncgca aggttaaaac tcaaatgaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat 960 1020 tcgatgcaac gcgaagaacc ttacctggtc ttgacatcca cagaactttc cagagatgga 1080 ttggtgcctt cgggaactgt gagacaggtg ctgcatggct gtcgtcagct cgtgttgtga aatgttgggt taagtcccgc aacgagcgca acccttatcc tttgttgcca gcggtccggc 1140 cgggaactca aaggagactg ccagtgataa actggaggaa ggtggggatg acgtcaagtc 1200 atcatggccc ttacgaccag ggctacacac gtgctacaat ggcgcataca aagagaagcg 1260 1320 ayctcgcgag agcaagcgga cctcataaag tgcgtcgtag tccggattgg agtctgcaac 1380 tegactecat gaagteggaa tegetagtaa tegtggatea gaatgecaeg gtgaataegt tcccgggcct tgtacacacc gcccgtcaca ccatgggagt gggttgcaaa agaagtaggt 1440 agcttaacct tcgggagggc gcttaccact ttgtgattca tgactggggt gaagtcgtaa 1500 1542 caaggtaacc gtaggggaac ctgcggttgg atcacctcct ta 7 2905 <210> <211> DNA Escherichia coli 23 S Ribosomal RNA <400> 60 ggttaagcga ctaagcgtac acggtggatg ccctggcagt cagaggcgat gaaggacgtg 120 ctaatctgcg ataagcgtcg gtaaggtgat atgaaccgtt ataaccggcg atttccgaat ggggaaaccc agtgtgtttc gacacactat cattaactga atccataggt taatgaggcg 180 aaccggggga actgaaacat ctaagtaccc cgaggaaaag aaatcaaccg agattccccc 240 agtagcggcg agcgaacggg gagcaqccca gagcctgaat cagtqtqtqt gttagtggaa .300... 360 gcgtctggaa aggcgcgcga tacaqqqtqa cagccccgta cacaaaaatg cacatgctgt Page 20

gagctcgatg	agtagggcgg	gacacgtggt	atcctgtctg	aatatggggg	gaccatcctc	420
caaggctaaa	tactcctgac	tgaccgatag	tgaaccagta	ccgtgaggga	aaggcgaaaa	480
gaaccccggc	gaggggagtg	aaaaagaacc	tgaaaccgtg	tacgtacaag	cagtgggagc	540
acgcttaggc	gtgtgactgc	gtaccttttg	tataatgggt	cagcgactta	tattctgtag	600
caaggttaac	cgaatagggg	agccgaaggg	aaaccgagtc	ttaactgggc	gttaagttgc	660
agggtataga	cccgaaaccc	ggtgatctag	ccatgggcag	gttgaaggtt	gggtaacact	720
aactggagga	ccgaaccgac	taatgttgaa	aaattagcgg	atgacttgtg	gctgggggtg	780
aaaggccaat	caaaccggga	gatagctggt	tctccccgaa	agctatttag	gtagcgcctc	840
gtgaattcat	ctccgggggt	agagcactgt	ttcggcaagg	gggtcatccc	gacttaccaa	900
cccgatgcaa	actgcgaata	ccggagaatg	ttatcacggg	agacacacgg	cgggtgctaa	960
cgtccgtcgt	gaagagggaa	acaacccaga	ccgccagcta	aggtcccaaa	gtcatggtta	1020
agtgggaaac	gatgtgggaa	ggcccagaca	gccaggatgt	tggcttagaa	gcagccatca	1080
tttaaagaaa	gcgtaatagc	tcactggtcg	agtcggcctg	cgcggaagat	gtaacggggc	1140
taaaccatgc	accgaagctg	cggcagcgac	gcttatgcgt	tgttgggtag	gggagcgttc	1200
tgtaagcctg	cgaaggtgtg	ctgtgaggca	tgctggaggt	atcagaagtg	cgaatgctga	1260
cataagtaac	gataaagcgg	gtgaaaagcc	cgctcgccgg	aagaccaagg	gttcctgtcc	1320
aacgttaatc	ggggcagggt	gagtcgaccc	ctaaggcgag	gccgaaaggc	gtagtcgatg	1380
ggaaacaggt	taatattcct	gtacttggtg	ttactgcgaa	ggggggacgg	agaaggctat	1440
gttggccggg	cgacggttgt	cccggtttaa	gcgtgtaggc	tggttttcca	ggcaaatccg	1500
gaaaatcaag	gctgaggcgt	gatgacgagg	cactacggtg	ctgaagcaac	aaatgccctg	1560
cttccaggaa	aagcctctaa	gcatcaggta	acatcaaatc	gtaccccaaa	ccgacacagg	1620
tggtcaggta	gagaatacca	aggcgcttga	gagaactcgg	gtgaaggaac	taggcaaaat	1680
ggtgccgtaa	cttcgggaga	aggcacgctg	atatgtaggt	gaagcgactt	gctcgtggag	1740
ctgaaatcag	tcgaagatac	cagctggctg	caactgttta	ttaaaaacac	agcactgtgc	1800
aaacacgaaa	gtggacgtat	acggtgtgac	gcctgcccgg	tgccggaagg	ttaattgatg	1860
gggttagcgg	taacgcgaag	ctcttgatcg	aagccccggt	aaacggcggc	cgtaactata	1920
acggtcctaa	ggtagcgaaa	ttccttgtcg	ggtaagttcc	gacctgcacg	aatggcgtaa	1980
tgatggccag	gctgtctcca	cccgagactc	agtgaaattg	aactcgctgt	gaagatgcag	2040
tgtacccgcg	gcaagacgga	aagaccccgt	gaacctttac	tatagcttga	cactgaacat	2100
tgagccttga	tgtgtaggat	aggtgggagg	ctttgaagtg	tggacgccag	tctgcatgga	2160
gccgaccttg	aaataccacc	ctttaatgtt	tgatgttcta	acgttggccc	gtaatccggg	2220
ttgcggacag	tgtctggtgg	gtagtttgac	tggggcggtc	tcctcctaaa	gagtaacgga	2280
ggagcacgaa	ggttggctaa	tcctggtcgg	acatcaggag	gttagtgcaa	tggcataagc	2340
cagcttgact	gcgagcgtga	cggcgcgagc	aggtgcgaaa Page 21	gcaggtcata	gtgatccggt	2400

			.9.5.25		
ggttctgaat ggaagggcca	tcgctcaacg	gataaaaggt	actccgggga	taacaggctg	2460
ataccgccca agagttcata	tcgacggcgg	tgtttggcac	ctcgatgtcg	gctcatcaca	2520
tcctggggct gaagtaggtc	ccaagggtat	ggctgttcgc	catttaaagt	ggtacgcgag	2580
ctgggtttag aacgtcgtga	gacagttcgg	tccctatctg	ccgtgggcgc	tggagaactg	2640
aggggggctg ctcctagtac	gagaggaccg	gagtggacgc	atcactggtg	ttcgggttgt	2700
catgccaatg cactgcccgg	tagctaaatg	cggaagagat	aagtgctgaa	agcatctaag	2760
cacgaaactt gccccgagat	gagttctccc	tgacccttta	agggtcctga	aggaacgttg	2820
aagacgacga cgttgatagg	ccgggtgtgt	aagcgcagcg	atgcgttgag	ctaaccggta	2880
ctaatgaacc gtgaggctta	acctt				2905
<210> 8 <211> 1798 <212> DNA <213> Yeast (S. cerev	risiae)				
tatctggttg atcctgccag	tagtcatatg	cttgtctcaa	agattaagcc	atgcatgtct	60
aagtataagc aatttataca	gtgaaactgc	gaatggctca	ttaaatcagt	tatcgtttat	120
ttgatagttc ctttactaca	tggtataacc	gtggtaattc	tagagctaat	acatgcttaa	180
aatctcgacc ctttggaaga	gatgtattta	ttagataaaa	aatcaatgtc	ttcggactct	240
ttgatgattc ataataactt	ttcgaatcgc	atggccttgt	gctggcgatg	gttcattcaa	300
atttctgccc tatcaacttt	cgatggtagg	atagtggcct	accatggttt	caacgggtaa	360
cggggaataa gggttcgatt	ccggagaggg	agcctgagaa	acggctacca	catccaagga	420
aggcagcagg cgcgcaaatt	acccaatcct	aattcaggga	ggtagtgaca	ataaataacg	480
atacagggcc cattcgggtc	ttgtaattgg	aatgagtaca	atgtaaatac	cttaacgagg	540
aacaattgga gggcaagtct	ggtgccagca	gccgcggtaa	ttccagctcc	aatagcgtat	600
attaaagttg ttgcagttaa	aaagctcgta	gttgaacttt	gggcccggtt	ggccggtccg	660
attttttcgt gtactggatt	tccaacgggg	cctttccttc	tggctaacct	tgagtccttg	720
tggctcttgg cgaaccagga	cttttacttt	gaaaaaatta	gagtgttcaa	agcaggcgta	780
ttgctcgaat atattagcat	ggaataatag	aataggacgt	ttggttctat	tttgttggtt	840
tctaggacca tcgtaatgat	taatagggac	ggtcgggggc	atcggtattc	aattgtcgag	900
gtgaaattct tggatttatt	gaagactaac	tactgcgaaa	gcatttgcca	aggacgtttt	960
cattaatcaa gaacgaaagt	taggggatcg	aagatgatct	ggtaccgtcg	tagtcttaac	1020
cataaactat gccgactaga	tcgggtggtg	tttttttaat	gacccactcg	gtaccttacg	1080
agaaatcaaa gtctttgggt	tctgggggga	gtatggtcgc	aaggctgaaa	cttaaaggaa	1140
ttgacggaag ggcaccacta	ggagtggagc	ctgcggctaa	tttgactcaa	cacggggaaa	1200
ctcaccaggt ccagacacaa	taaggattga	cagattgaga	gctctttctt	gattttgtgg	1260

CI0043PCTseqlisting.ST25 gtggtggtgc atggccgttt ctcagttggt ggagtgattt gtctgcttaa ttgcgataac 1320 gaacgagacc ttaacctact aaatagtggt gctagcattt gctggttatc cacttcttag 1380 agggactatc ggtttcaagc cgatggaagt ttgaggcaat aacaggtctg tgatgccctt 1440 agaacgttct gggccgcacg cgcgctacac tgacggagcc agcgagtcta accttggccg 1500 agaggtcttg gtaatcttgt gaaactccgt cgtgctgggg atagagcatt gtaattattg 1560 ctcttcaacg aggaattcct agtaagcgca agtcatcagc ttgcgttgat tacgtccctg 1620 ccctttgtac acaccgcccg tcgctagtac cgattgaatg gcttagtgag gcctcaggat 1680 ctgcttagag aagggggcaa ctccatctca gagcggagaa tttqgacaaa cttggtcatt 1740 tagaggaact aaaagtcgta acaaggtttc cgtaggtgaa cctgcggaag gatcatta 1798 <210> 9 3911 <211> DNA Yeast 25S Ribosomal RNA <400> aattccgtga tgggccttta ggttttacca actgcggcta atctttttt atactgagcg 60 tattggaacg ttatcgataa gaagagagcg tctaggcgaa caatgttctt aaagtttgac 120 ctcaaatcag gtaggagtac ccgctgaact taagcatatc aataagcgga ggaaaagaaa 180 ccaaccggat tgccttagta acggcgagtg aagcggcaaa agctcaaatt tgaaatctgg 240 taccttcggt gcccgagttg taatttggag agggcaactt tggggccgtt ccttgtctat 300 gttccttgga acaggacgtc atagagggtg agcatcccgt gtggcgagga gtgcggttct 360 ttgtaaagtg ccttcgaaga gtcgagttgt ttgggaatgc agctctaagt gggtggtaaa 420 ttccatctaa agctaaatat tggcgagaga ccgatagcga acaagtacag tgatggaaag 480 atgaaaagaa ctttgaaaag agagtgaaaa agtacgtgaa attgttgaaa gggaagggca 540 tttgatcaga catggtgttt tgtgccctct gctccttgtg ggtaggggaa tctcgcattt 600 cactgggcca gcatcagttt tggtggcagg ataaatccat aggaatgtag cttgcctcgg 660 taagtattat agcctgtggg aatactgcca gctgggactg aggactgcga cgtaagtcaa 720 ggatgctggc ataatggtta tatgccgccc gtcttgaaac acggaccaag gagtctaacg 780 tctatgcgag tgtttgggtg taaaacccat acgcgtaatg aaagtgaacg taggttgggg 840 cctcgcaaga ggtgcacaat cgaccgatcc tgatgtcttc ggatggattt gagtaagagc 900 atagctgttg ggacccgaaa gatggtgaac tatgcctgaa tagggtgaag ccagaggaaa 960 ctctggtgga ggctcgtagc ggttctgacg tgcaaatcga tcgtcgaatt tgggtatagg 1020 ggcgaaagac taatcgaacc atctagtagc tggttcctgc cgaagtttcc ctcaggatag 1080 cagaagctcg tatcagtttt atgaggtaaa gcgaatgatt agaggttccg gggtcgaaat 1140 gaccttgacc tattctcaaa ctttaaatat gtaagaagtc cttgttactt aattgaacgt 1200 ggacattiga atgaagagct titagigggc cattiliggi aagcagaact ggcgaigcgg 1260 gatgaaccga acgtagagtt aaggtgccgg aatacacgct catcagacac cacaaaaggt 1320 Page 23

gttagttcat	ctagacagcc	ggacggtggc	catggaagtc	ggaatccgct	aaggagtgtg	1380
taacaactca	ccggccgaat	gaactagccc	tgaaaatgga	tggcgctcaa	gcgtgttacc	1440
tatactctac	cgtcagggtt	gatatgatgc	cctgacgagt	aggcaggcgt	ggaggtcagt	1500
gacgaagcct	agaccgtaag	gtcgggtcga	acggcctcta	gtgcagatct	tggtggtagt	1560
agcaaatatt	caaatgagaa	ctttgaagac	tgaagtgggg	aaaggttcca	cgtcaacagc	1620
agttggacgt	gggttagtcg	atcctaagag	atggggaagc	tccgtttcaa	aggcctgatt	1680
ttatgcaggc	caccatcgaa	agggaatccg	gtaagattcc	ggaacttgga	tatggattct	1740
tcacggtaac	gtaactgaat	gtggagacgt	cggcgcgagc	cctgggagga	gttatctttt	1800
cttcttaaca	gcttatcacc	ccggaattgg	tttatccgga	gatggggtct	tatggctgga	1860
agaggccagc	acctttgctg	gctccggtgc	gcttgtgacg	gcccgtgaaa	atccacagga	1920
aggaatagtt	ttcatgctag	gtcgtactga	taaccgcagc	aggtctccaa	ggtgaacagc	1980
ctctagttga	tagaataatg	tagataaggg	aagtcggcaa	aatagatccg	taacttcggg	2040
ataaggattg	gctctaaggg	tcgggtagtg	agggccttgg	tcagacgcag	cgggcgtgct	2100
tgtggactgc	ttggtggggc	ttgctctgct	aggcggacta	cttgcgtgcc	ttgttgtaga	2160
cggccttggt	aggtctcttg	tagaccgtcg	cttgctacaa	ttaacagatc	aacttagaac	2220
tggtacggac	aaggggaatc	tgactgtcta	attaaaacat	agcattgcga	tggtcagaaa	2280
gtgatgttga	cgcaatgtga	tttctgccca	gtgctctgaa	tgtcaaagtg	aagaaattca	2340
accaagcgcg	agtaaacggc	gggagtaact	atgactctct	taaggtagcc	aaatgcctcg	2400
tcatctaatt	agtgacgcgc	atgaatggat	taacgagatt	cccactgtcc	ctatctacta	2460
tctagcgaaa	ccacagccaa	gggaacgggc	ttggcagaat	cagcggggaa	agaagaccct	2520
gttgagcttg	actctagttt	gacattgtga	agagacatag	agggtgtaga	ataagtggga	2580
gcttcggcgc	cagtgaaata	ccactacctt	tatagtttct	ttacttattc	aatgaagcgg	2640
agctggaatt	cattttccac	gttctagcat	tcaaggtccc	attcggggct	gatccgggtt	2700
gaagacattg	tcaggtgggg	agtttggctg	gggcggcaca	tctgttaaac	gataacgcag	2760
atgtcctaag	gggggctcat	ggagaacaga	aatctccagt	agaacaaaag	ggtaaagccc	2820
cttagtttga	tttcagtgtg	aatacaaacc	attgaaagtg	tggcctatcg	atcctttagt	2880
ccctcggaat	ttgaggctag	aggtgccaga	aaagttacca	cagggataac	tggcttgtgg	2940
cagtcaagcg	ttcatagcga	cattgctttt	tgattcttcg	atgtcggctc	ttcctatcat	3000
accgaagcag	aattcggtaa	gcgttggatt	gttcacccac	taatagggaa	catgagctgg	3060
gtttagaccg	tcgtgagaca	ggttagtttt	accctactga	tgaatgttac	cagcaatagt	3120
aattgaactt	agtacgagag	gaacagttca	ttcggataat	tggtttttgc	ggctgtctga	3180
tcaggcattg	ccgcgaagca	ccatccgctg	gattatggct	gaacgcctct	aagtcagaat	3240
ccatgctaga	acgcggtgat	ttctttgctc	cacacaatat	agatggatac	gaataaggcg	3300
tccttgtggc	gtcgctgaac	catagcaggc	tagcaacggt Page 24	gcacttggcg	gaaaggcctt	3360

CIOO45PCTSeqTTSCTflg.ST25	
gggtgcttgc tggcgaattg caatgtcatt ttgcgtgggg ataaatcatt tgtatacgac	3420
ttagatgtac aacggggtat tgtaagcggt agagtagcct tgttgttacg atctgctgag	3480
attaagcctt tgttgtctga tttgtttttt atttctttct aagtgggtac tggcaggagc	3540
cggggcctag tttagagaga agtagactca acaagtctct ataaatttta tttgtcttaa	3600
gaattctatg atccgggtaa aaacatgtat tgtatatatc tattataata tacgatgagg	3660
atgatagtgt gtaagagtgt accatttact aatgtatgta agttactatt tactatttgg	3720
tctttttatt ttttatttt ttttttttt tcgttgcaaa gatgggttga aagagaaggg	3780
ctttcacaaa gcttcccgag cgtgaaagga tttgcccgga cagtttgctt catggagcag	3840
ttttttccgc accatcagag cggcaaacat gagtgcttgt ataagtttag agaattgaga	3900
aaagctcatt t	3911
<210> 10 <211> 16569 <212> DNA <213> Human mitochondrial DNA <400> 10	
gatcacaggt ctatcaccct attaaccact cacgggagct ctccatgcat ttggtatttt	60
cgtctggggg gtatgcacgc gatagcattg cgagacgctg gagccggagc accctatgtc	120
gcagtatctg tctttgattc ctgcctcatc ctattattta tcgcacctac gttcaatatt	180
acaggcgaac atacttacta aagtgtgtta attaattaat gcttgtagga cataataata	240
acaattgaat gtctgcacag ccactttcca cacagacatc ataacaaaaa atttccacca	300
aacccccct cccccgcttc tggccacagc acttaaacac atctctgcca aaccccaaaa	360
acaaagaacc ctaaccag cctaaccaga tttcaaattt tatcttttgg cggtatgcac	420
ttttaacagt cacccccaa ctaacacatt attttcccct cccactccca tactactaat	480
ctcatcaata caacccccgc ccatcctacc cagcacacac acaccgctgc taaccccata	540
ccccgaacca accaaacccc aaagacaccc cccacagttt atgtagctta cctcctcaaa	600
gcaatacact gaaaatgttt agacgggctc acatcacccc ataaacaaat aggtttggtc	660
ctagcctttc tattagctct tagtaagatt acacatgcaa gcatccccgt tccagtgagt	720
tcaccctcta aatcaccacg atcaaaaggg acaagcatca agcacgcagc aatgcagctc	780
aaaacgctta gcctagccac acccccacgg gaaacagcag tgattaacct ttagcaataa	840
acgaaagttt aactaagcta tactaacccc agggttggtc aatttcgtgc cagccaccgc	900
ggtcacacga ttaacccaag tcaatagaag ccggcgtaaa gagtgtttta gatcacccc	960
tccccaataa agctaaaact cacctgagtt gtaaaaaact ccagttgaca caaaatagac	1020
tacgaaagtg gctttaacat atctgaacac acaatagcta agacccaaac tgggattaga	1080
taccccacta tgcttagccc taaacctcaa cagttaaatc aacaaaactg ctcgccagaa	1140
cactacgagc cacagcttaa aactcaaagg acctggcggt gcttcatatc cctctagagg	1200

CI0043PCTseqlisting.ST25 agcctgttct gtaatcgata aaccccgatc aacctcacca cctcttgctc agcctatata 1260 ccgccatctt cagcaaaccc tgatgaaggc tacaaagtaa gcgcaagtac ccacgtaaag 1320 acgttaggtc aaggtgtagc ccatgaggtg gcaagaaatg ggctacattt tctaccccag 1380 aaaactacga tagcccttat gaaacttaag ggtcgaaggt ggatttagca gtaaactaag 1440 agtagagtgc ttagttgaac agggccctga agcgcgtaca caccgcccgt caccctcctc 1500 aagtatactt caaaggacat ttaactaaaa cccctacgca tttatataga ggagacaagt 1560 cgtaacatgg taagtgtact ggaaagtgca cttggacgaa ccagagtgta gcttaacaca 1620 aagcacccaa cttacactta ggagatttca acttaacttg accgctctga gctaaaccta 1680 gccccaaacc cactccacct tactaccaga caaccttagc caaaccattt acccaaataa 1740 agtataggcg atagaaattg aaacctggcg caatagatat agtaccgcaa gggaaagatg 1800 aaaaattata accaagcata atatagcaag gactaacccc tataccttct gcataatgaa 1860 ttaactagaa ataactttgc aaggagagcc aaagctaaga cccccgaaac cagacgagct 1920 acctaagaac agctaaaaga gcacacccgt ctatgtagca aaatagtggg aagatttata 1980 ggtagaggcg acaaacctac cgagcctggt gatagctggt tgtccaagat agaatcttag 2040 ttcaacttta aatttgccca cagaaccctc taaatcccct tgtaaattta actgttagtc 2100 caaagaggaa cagctctttg gacactagga aaaaaccttg tagagagagt aaaaaattta 2160 acacccatag taggcctaaa agcagccacc aattaagaaa gcgttcaagc tcaacaccca 2220 ctacctaaaa aatcccaaac atataactga actcctcaca cccaattgga ccaatctatc 2280 accctataga agaactaatg ttagtataag taacatgaaa acattctcct ccgcataagc 2340 ctgcgtcaga ttaaaacact gaactgacaa ttaacagccc aatatctaca atcaaccaac 2400 aagtcattat taccctcact gtcaacccaa cacaggcatg ctcataagga aaggttaaaa 2460 aaagtaaaag gaactcggca aatcttaccc cgcctgttta ccaaaaacat cacctctagc 2520 atcaccagta ttagaggcac cgcctgccca gtgacacatg tttaacqqcc qcqqtaccct 2580 aaccgtgcaa aggtagcata atcacttgtt ccttaaatag ggacctgtat gaatggctcc 2640 acgagggttc agctgtctct tacttttaac cagtgaaatt gacctgcccg tgaagaggcg 2700 ggcataacac agcaagacga gaagacccta tggagcttta atttattaat gcaaacagta 2760 cctaacaaac ccacaggtcc taaactacca aacctgcatt aaaaatttcg gttggggcga 2820 cctcggagca gaacccaacc tccgagcagt acatgctaag acttcaccag tcaaagcgaa 2880 ctactatact caattgatcc aataacttga ccaacggaac aagttaccct agggataaca 2940 gcgcaatcct attctagagt ccatatcaac aatagggttt acgacctcga tgttggatca 3000 ggacatcccg atggtgcagc cgctattaaa ggttcgtttg ttcaacgatt aaagtcctac 3060 gtgatctgag ttcagaccgg agtaatccag gtcggtttct atctaccttc aaattcctcc 3120 ctgtacgaaa ggacaagaga aataaggcct acttcacaaa gcgccttccc ccgtaaatga 3180 tatcatctca acttagtatt atacccacac ccacccaaga acagggtttg ttaagatggc 3240

agagcccggt	aatcgcataa		tttacagtca		tcctcttctt	3300
aacaacatac	ccatggccaa	cctcctactc	ctcattgtac	ccattctaat	cgcaatggca	3360
ttcctaatgc	ttaccgaacg	aaaaattcta	ggctatatac	aactacgcaa	aggccccaac	3420
gttgtaggcc	cctacgggct	actacaaccc	ttcgctgacg	ccataaaact	cttcaccaaa	3480
gagcccctaa	aacccgccac	atctaccatc	accctctaca	tcaccgcccc	gaccttagct	3540
ctcaccatcg	ctcttctact	atgaaccccc	ctccccatac	ccaaccccct	ggtcaacctc	3600
aacctaggcc	tcctatttat	tctagccacc	tctagcctag	ccgtttactc	aatcctctga	3660
tcagggtgag	catcaaactc	aaactacgcc	ctgatcggcg	cactgcgagc	agtagcccaa	3720
acaatctcat	atgaagtcac	cctagccatc	attctactat	caacattact	aataagtggc	3780
tcctttaacc	tctccaccct	tatcacaaca	caagaacacc	tctgattact	cctgccatca	3840
tgacccttgg	ccataatatg	atttatctcc	acactagcag	agaccaaccg	aacccccttc	3900
gaccttgccg	aaggggagtc	cgaactagtc	tcaggcttca	acatcgaata	cgccgcaggc	3960
cccttcgccc	tattcttcat	agccgaatac	acaaacatta	ttataataaa	caccctcacc	4020
actacaatct	tcctaggaac	aacatatgac	gcactctccc	ctgaactcta	cacaacatat	4080
tttgtcacca	agaccctact	tctaacctcc	ctgttcttat	gaattcgaac	agcatacccc	4140
cgattccgct	acgaccaact	catacacctc	ctatgaaaaa	acttcctacc	actcacccta	4200
gcattactta ·	tatgatatgt	ctccataccc	attacaatct	ccagcattcc	ccctcaaacc	4260
taagaaatat	gtctgataaa	agagttactt	tgatagagta	aataatagga	gcttaaaccc	4320
ccttatttct	aggactatga	gaatcgaacc	catccctgag	aatccaaaat	tctccgtgcc	4380
acctatcaca	ccccatccta	aagtaaggtc	agctaaataa	gctatcgggc	ccataccccg	4440
aaaatgttgg -	ttataccctt	cccgtactaa	ttaatcccct	ggcccaaccc	gtcatctact	4500
ctaccatctt	tgcaggcaca	ctcatcacag	cgctaagctc	gcactgattt	tttacctgag	4560
taggcctaga a	aataaacatg	ctagctttta	ttccagttct	aaccaaaaaa	ataaaccctc	4620
gttccacaga a	agctgccatc	aagtatttcc	tcacgcaagc	aaccgcatcc	ataatccttc	4680
taatagctat (cctcttcaac	aatatactct	ccggacaatg	aaccataacc	aatactacca	4740
atcaatactc a	atcattaata	atcataatag	ctatagcaat	aaaactagga	atagccccct	4800
ttcacttctg a	agtcccagag	gttacccaag	gcacccctct	gacatccggc	ctgcttcttc	4860
tcacatgaca a	aaaactagcc	cccatctcaa	tcatatacca	aatctctccc	tcactaaacg	4920
taagccttct (cctcactctc	tcaatcttat	ccatcatagc	aggcagttga	ggtggattaa	4980
accagaccca g	gctacgcaaa	atcttagcat	actcctcaat	tacccacata	ggatgaataa	5040
tagcagttct a	accgtacaac	cctaacataa	ccattcttaa	tttaactatt	tatattatcc	5100
taactactac d	cgcattccta	ctactcaact	taaactccag	caccacgacc	ctactactat	5160
ctcgcacctg a	aaacaagcta	acatgactaa	cacccttaat	tccatccacc	ctcctctccc	5220
taggaggcct g	gcccccgcta	accggctttt	tgcccaaatg	ggccattatc	gaagaattca	5280

				-		
caaaaaacaa	tagcctcatc	CI0043F atccccacca	CTseqlistin tcatagccac	ng.ST25 catcaccctc	cttaacctct	5340
acttctacct	acgcctaatc	tactccacct	caatcacact	actccccata	tctaacaacg	5400
taaaaataaa	atgacagttt	gaacatacaa	aacccacccc	attcctcccc	acactcatcg	5460
cccttaccac	gctactccta	cctatctccc	cttttatact	aataatctta	tagaaattta	5520
ggtťaaatac	agaccaagag	ccttcaaagc	cctcagtaag	ttgcaatact	taatttctgt	5580
aacagctaag	gactgcaaaa	ccccactctg	catcaactga	acgcaaatca	gccactttaa	5640
ttaagctaag	cccttactag	accaatggga	cttaaaccca	caaacactta	gttaacagct	5700
aagcacccta	atcaactggc	ttcaatctac	ttctcccgcc	gccgggaaaa	aaggcgggag	5760
aagccccggc	aggtttgaag	ctgcttcttc	gaatttgcaa	ttcaatatga	aaatcacctc	5820
ggagctggta	aaaagaggcc	taacccctgt	ctttagattt	acagtccaat	gcttcactca	5880
gccattttac	ctcaccccca	ctgatgttcg	ccgaccgttg	actattctct	acaaaccaca	5940
aagacattgg	aacactatac	ctattattcg	gcgcatgagc	tggagtccta	ggcacagctc	6000
taagcctcct	tattcgagcc	gagctgggcc	agccaggcaa	ccttctaggt	aacgaccaca	6060
tctacaacgt	tatcgtcaca	gcccatgcat	ttgtaataat	cttcttcata	gtaataccca	6120
tcataatcgg	aggctttggc	aactgactag	ttcccctaat	aatcggtgcc	cccgatatgg	6180
cgtttccccg	cataaacaac	ataagcttct	gactcttacc	tccctctctc	ctactcctgc	6240
tcgcatctgc	tatagtggag	gccggagcag	gaacaggttg	aacagtctac	cctcccttag	6300
cagggaacta	ctcccaccct	ggagcctccg	tagacctaac	catcttctcc	ttacacctag	6360
caggtgtctc	ctctatctta	ggggccatca	atttcatcac	aacaattatc	aatataaaac	6420
cccctgccat	aacccaatac	caaacgcccc	tcttcgtctg	atccgtccta	atcacagcag	6480
tcctacttct	cctatctctc	ccagtcctag	ctgctggcat	cactatacta	ctaacagacc	6540
gcaacctcaa	caccaccttc	ttcgaccccg	ccggaggagg	agaccccatt	ctataccaac	6600
acctattctg	atttttcggt	caccctgaag	tttatattct	tatcctacca	ggcttcggaa	6660
taatctccca	tattgtaact	tactactccg	gaaaaaaaga	accatttgga	tacataggta	6720
tggtctgagc	tatgatatca	attggcttcc	tagggtttat	cgtgtgagca	caccatatat	6780
ttacagtagg	aatagacgta	gacacacgag	catatttcac	ctccgctacc	ataatcatcg	6840
ctatccccac	cggcgtcaaa	gtatttagct	gactcgccac	actccacgga	agcaatatga	6900
aatgatctgc	tgcagtgctc	tgagccctag	gattcatctt	tcttttcacc	gtaggtggcc	6960
tgactggcat	tgtattagca	aactcatcac	tagacatcgt	actacacgac	acgtactacg	7020
ttgtagccca	cttccactat	gtcctatcaa	taggagctgt	atttgccatc	ataggaggct	7080
tcattcactg	atttccccta	ttctcaggct	acaccctaga	ccaaacctac	gccaaaatcc	7140
atttcactat	catattcatc	ggcgtaaatc	taactttctt	cccacaacac	tttctcggcc	7200
tatccggaat	gccccgacgt	tactcggact	accccgatgc	atacaccaca	tgaaacatcc	7260
tatcatctgt	aggctcattc	atttctctaa	cagcagtaat	attaataatt	ttcatgattt	7320

gagaageett	cocttcoaao	CIUU431	PCTseqlisti taatantan	ng.ST25	ataaacctgg	7380
			•			
					tacataaaat	7440
ctagacaaaa	aaggaaggaa	tcgaaccccc	caaagctggt	ttcaagccaa	ccccatggcc	7500
tccatgactt	tttcaaaaag	gtattagaaa	aaccatttca	taactttgtc	aaagttaaat	7560
tataggctaa	atcctatata	tcttaatggc	acatgcagcg	caagtaggtc	tacaagacgc	7620
tacttcccct	atcatagaag	agcttatcac	ctttcatgat	cacgccctca	taatcatttt	7680
ccttatctg	ttcctagtcc	tgtatgccct	tttcctaaca	ctcacaacaa	aactaactaa	7740
tactaacato	tcagacgctc	aggaaataga	aaccgtctga	actatcctgc	ccgccatcat	7800
cctagtcctc	atcgccctcc	catccctacg	catcctttac	ataacagacg	aggtcaacga	7860
tccctccctt	accatcaaat	caattggcca	ccaatggtac	tgaacctacg	agtacaccga	7920
ctacggcgga	ctaatcttca	actcctacat	acttccccca	ttattcctag	aaccaggcga	7980
cctgcgactc	cttgacgttg	acaatcgagt	agtactcccg	attgaagccc	ccattcgtat	8040
aataattaca	tcacaagacg	tcttgcactc	atgagctgtc	cccacattag	gcttaaaaac	8100
agatgcaatt	cccggacgtc	taaaccaaac	cactttcacc	gctacacgac	cgggggtata	8160
ctacggtcaa	tgctctgaaa	tctgtggagc	aaaccacagt	ttcatgccca	tcgtcctaga	8220
attaattccc	ctaaaaatct	ttgaaatagg	gcccgtattt	accctatagc	accccctcta	8280
cccctctag	agcccactgt	aaagctaact	tagcattaac	cttttaagtt	aaagattaag	8340
agaaccaaca	cctctttaca	gtgaaatgcc	ccaactaaat	actaccgtat	ggcccaccat	8400
aattacccc	atactcctta	cactattcct	catcacccaa	ctaaaaatat	taaacacaaa	8460
ctaccaccta	cctccctcac	caaagcccat	aaaaataaaa	aattataaca	aaccctgaga	8520
accaaaatga	acgaaaatct	gttcgcttca	ttcattgccc	ccacaatcct	aggcctaccc	8580
gccgcagtac	tgatcattct	atttccccct	ctattgatcc	ccacctccaa	atatctcatc	8640
aacaaccgac	taatcaccac	ccaacaatga	ctaatcaaac	taacctcaaa	acaaatgata	8700
accatacaca	acactaaagg	acgaacctga	tctcttatac	tagtatcctt	aatcattttt	8760
attgccacaa	ctaacctcct	cggactcctg	cctcactcat	ttacaccaac	cacccaacta	8820
tctataaacc	tagccatggc	catcccctta	tgagcgggca	cagtgattat	aggctttcgc	8880
tctaagatta	aaaatgccct	agcccacttc	ttaccacaag	gcacacctac	accccttatc	8940
cccatactag	ttattatcga	aaccatcagc	ctactcattc	aaccaatagc	cctggccgta	9000
cgcctaaccg	ctaacattac	tgcaggccac	ctactcatgc	acctaattgg	aagcgccacc	9060
ctagcaatat	caaccattaa	ccttccctct	acacttatca	tcttcacaat	tctaattcta	9120
ctgactatcc	tagaaatcgc	tgtcgcctta	atccaagcct	acgttttcac	acttctagta	9180
agcctctacc	tgcacgacaa	cacataatga	cccaccaatc	acatgcctat	catatagtaa	9240
aacccagccc	atgaccccta	acaggggccc	tctcagccct	cctaatgacc	tccggcctag	9300
•	tcacttccac	•				9360

taaccatata	ccaatgatgg	cgcgatgtaa	cacgagaaag	cacataccaa	ggccaccaca	9420
caccacctgt	ccaaaaaggc	cttcgatacg	ggataatcct	atttattacc	tcagaagttt	9480
ttttcttcgc	aggattttc	tgagcctttt	accactccag	cctagcccct	accccccaat	9540
taggagggca	ctggccccca	acaggcatca	ccccgctaaa	tcccctagaa	gtcccactcc	9600
taaacacatc	cgtattactc	gcatcaggag	tatcaatcac	ctgagctcac	catagtctaa	9660
tagaaaacaa	ccgaaaccaa	ataattcaag	cactgcttat	tacaatttta	ctgggtctct	9720
attttaccct	cctacaagcc	tcagagtact	tcgagtctcc	cttcaccatt	tccgacggca	9780
tctacggctc	aacattttt	gtagccacag	gcttccacgg	acttcacgtc	attattggct	9840
caactttcct	cactatctgc	ttcatccgcc	aactaatatt	tcactttaca	tccaaacatc	9900
actttggctt	cgaagccgcc	gcctgatact	ggcattttgt	agatgtggtt	tgactatttc	9960
tgtatgtctc	catctattga	tgagggtctt	actcttttag	tataaatagt	accgttaact	10020
tccaattaac	tagttttgac	aacattcaaa	aaagagtaat	aaacttcgcc	ttaattttaa	10080
taatcaacac	cctcctagcc	ttactactaa	taattattac	attttgacta	ccacaactca	10140
acggctacat	agaaaaatcc	accccttacg	agtgcggctt	cgaccctata	tccccgccc	10200
gcgtcccttt	ctccataaaa	ttcttcttag	tagctattac	cttcttatta	tttgatctag	10260
aaattgccct	ccttttaccc	ctaccatgag	ccctacaaac	aactaacctg	ccactaatag	10320
ttatgtcatc	cctcttatta	atcatcatcc	tagccctaag	tctggcctat	gagtgactac	10380
aaaaaggatt	agactgaacc	gaattggtat	atagtttaaa	caaaacgaat	gatttcgact	10440
cattaaatta	tgataatcat	atttaccaaa	tgcccctcat	ttacataaat	attatactag	10500
catttaccat	ctcacttcta	ggaatactag	tatatcgctc	acacctcata	tcctccctac	10560
tatgcctaga	aggaataata	ctatcgctgt	tcattatagc	tactctcata	accctcaaca	10620
cccactccct	cttagccaat	attgtgccta	ttgccatact	agtctttgcc	gcctgcgaag	10680
cagcggtggg	cctagcccta	ctagtctcaa	tctccaacac	atatggccta	gactacgtac	10740
ataacctaaa	cctactccaa	tgctaaaact	aatcgtccca	acaattatat	tactaccact	10800
gacatgactt	tccaaaaaac	acataatttg	aatcaacaca	accacccaca	gcctaattat	10860
tagcatcatc	cctctactat	tttttaacca	aatcaacaac	aacctattta	gctgttcccc	10920
aaccttttcc	tccgaccccc	taacaacccc	cctcctaata	ctaactacct	gactcctacc	10980
cctcacaatc	atggcaagcc	aacgccactt	atccagtgaa	ccactatcac	gaaaaaaact	11040
ctacctctct	atactaatct	ccctacaaat	ctccttaatt	ataacattca	cagccacaga	11100
actaatcata	ttttatatct	tcttcgaaac	cacacttatc	cccaccttgg	ctatcatcac	11160
ccgatgaggc	aaccagccag	aacgcctgaa	cgcaggcaca	tacttcctat	tctacaccct	11220
agtaggctcc	cttcccctac	tcatcgcact	aatttacact	cacaacaccc	taggctcact	11280
aaacattcta	ctactcactc	tcactgccca	agaactatca	aactcctgag	ccaataactt	11340
aatatgacta	gcttacacaa	tagcttttat	agtaaagata	cctctttacg	gactccactt	11400

CI0043PCTseqlisting.ST25

atgactccct aaagcccatg tcgaagcccc catcgctggg tcaatagtac ttgccgcagt 11460 actictaaaa ctaggegget atggtataat acgeeteaca eteattetea acceeetgae 11520 aaaacacata gcctacccct tccttgtact atccctatga ggcataatta taacaagctc 11580 catctgccta cgacaaacag acctaaaatc gctcattgca tactcttcaa tcagccacat 11640 agccctcgta gtaacagcca ttctcatcca aaccccctga agcttcaccg gcgcagtcat 11700 tctcataatc gcccacgggc ttacatcctc attactattc tqcctaqcaa actcaaacta 11760 cgaacgcact cacagtcgca tcataatcct ctctcaagga cttcaaactc tactcccact 11820 aatagctttt tgatgacttc tagcaagcct cgctaacctc gccttacccc ccactattaa 11880 CCtactggga gaactctctg tgctagtaac cacgttctcc tgatcaaata tcactctct 11940 acttacagga ctcaacatac tagtcacagc cctatactcc ctctacatat ttaccacaac 12000 acaatggggc tcactcaccc accacattaa caacataaaa ccctcattca cacgagaaaa 12060 cacceteatg tteatacace tatececcat tetectecta teceteaace eegacateat 12120 taccgggttt tcctcttgta aatatagttt aaccaaaaca tcagattgtg aatctgacaa 12180 cagaggctta cgacccctta tttaccgaga aagctcacaa gaactgctaa ctcatgcccc 12240 catgictaac aacatggctt tctcaacttt taaaqqataa caqctatcca ttqqtcttaq 12300 gccccaaaaa ttttggtgca actccaaata aaagtaataa ccatgcacac tactataacc 12360 accetaacce tgactteect aatteecece atcettacea ceeteqttaa ceetaacaaa 12420 aaaaactcat acccccatta tgtaaaatcc attgtcqcat ccacctttat tatcaqtctc 12480 ttccccacaa caatattcat gtgcctagac caagaagtta ttatctcgaa ctgacactga 12540 gccacaaccc aaacaaccca gctctcccta agcttcaaac tagactactt ctccataata 12600 ttcatccctg tagcattgtt cgttacatgg tccatcatag aattctcact qtqatatata 12660 aactcagacc caaacattaa tcagttcttc aaatatctac tcatcttcct aattaccata 12720 CtaatCttag ttaccgctaa caacctattc caactgttca tcggctgaga gggcqtagga 12780 attatatcct tcttgctcat cagttgatga tacgcccgag cagatgccaa cacagcagcc 12840 attcaagcaa tcctatacaa ccgtatcggc gatatcggtt tcatcctcgc cttagcatga 12900 tttatcctac actccaactc atgagaccca caacaaatag cccttctaaa cgctaatcca 12960 agceteacce cactactagg cetecteeta geageageag geaaateage ceaattaggt 13020 ctccaccct gactcccctc agccatagaa ggccccaccc cagtctcagc cctactccac 13080 tcaagcacta tagttgtagc aggaatcttc ttactcatcc gcttccaccc cctagcagaa 13140 aatagcccac taatccaaac tctaacacta tgcttaggcg ctatcaccac tctqttcgca 13200 gcagtctgcg cccttacaca aaatgacatc aaaaaaatcg tagccttctc cacttcaagt 13260 caactaggac tcataatagt tacaatcggc atcaaccaac cacacctagc attcctgcac 13320 atctgtaccc acgccttctt caaagccata ctatttatgt gctccgggtc catcatccac 13380 aaccttaaca atgaacaaga tattcgaaaa ataggaggac tactcaaaac catacctctc 13440

CI0043PCTseqlisting.ST25

acttcaacct ccctcaccat tggcagccta gcattagcag gaataccttt cctcacaggt 13500 ttctactcca aagaccacat catcgaaacc gcaaacatat catacacaaa cgcctgagcc 13560 ctatctatta ctctcatcgc tacctccctg acaagcgcct atagcactcg aataattctt 13620 ctcaccctaa caggtcaacc tcgcttcccc acccttacta acattaacga aaataacccc 13680 accetactaa accecattaa acgeetggea geeggaagee tattegeagg attteteatt 13740 actaacaaca tttcccccgc atccccttc caaacaacaa tccccctcta cctaaaactc 13800 acagccctcg ctgtcacttt cctaggactt ctaacagccc tagacctcaa ctacctaacc 13860 aacaaactta aaataaaatc cccactatgc acattttatt tctccaacat actcggattc 13920 taccctagca tcacacaccg cacaatcccc tatctaggcc ttcttacgag ccaaaacctg 13980 cccctactcc tcctagacct aacctgacta gaaaagctat tacctaaaac aatttcacag 14040 caccaaatct ccacctccat catcacctca acccaaaaag gcataattaa actttacttc 14100 ctctctttct tcttcccact catcctaacc ctactcctaa tcacataacc tattccccg 14160 14220 agcaatctca attacaatat atacaccaac aaacaatgtt caaccagtaa ctactactaa tcaacgccca taatcataca aagcccccgc accaatagga tcctcccgaa tcaaccctga 14280 cccctctcct tcataaatta ttcagcttcc tacactatta aagtttacca caaccaccac 14340 cccatcatac tctttcaccc acagcaccaa tcctacctcc atcgctaacc ccactaaaac 14400 actcaccaag acctcaaccc ctgaccccca tgcctcagga tactcctcaa tagccatcgc 14460 tgtagtatat ccaaagacaa ccatcattcc ccctaaataa attaaaaaaa ctattaaacc 14520 catataacct cccccaaaat tcagaataat aacacaccg accacaccgc taacaatcaa 14580 tactaaaccc ccataaatag gagaaggctt agaagaaaac cccacaaacc ccattactaa 14640 acccacactc aacagaaaca aagcatacat cattattctc gcacggacta caaccacgac 14700 caatgatatg aaaaaccatc gttgtatttc aactacaaga acaccaatga ccccaatacg 14760 caaaattaac cccctaataa aattaattaa ccactcattc atcgacctcc ccaccccatc 14820 caacatctcc gcatgatgaa acttcggctc actccttggc gcctgcctga tcctccaaat 14880 caccacagga ctattcctag ccatgcacta ctcaccagac gcctcaaccg ccttttcatc 14940 aatcgcccac atcactcgag acgtaaatta tggctgaatc atccgctacc ttcacgccaa 15000 tggcgcctca atattcttta tctgcctctt cctacacatc gggcgaggcc tatattacgg 15060 atcatttctc tactcagaaa cctgaaacat cggcattatc ctcctgcttg caactatagc 15120 aacageette ataggetatg teeteeegtg aggeeaaata teattetgag gggeeacagt 15180 aattacaaac ttactatccg ccatcccata cattgggaca gacctagttc aatgaatctg 15240 aggaggctac tcagtagaca gtcccaccct cacacgattc tttacctttc acttcatctt 15300 gcccttcatt attgcagccc tagcaacact ccacctccta ttcttgcacg aaacgggatc 15360 aaacaacccc ctaggaatca cctcccattc cgataaaatc accttccacc cttactacac 15420 aatcaaagac gccctcggct tacttctctt ccttctctc ttaatgacat taacactatt 15480

CI0043PCTseqlisting.ST25 ctcaccagac ctcctaggcg acccagacaa ttatacccta gccaacccct taaacacccc 15540 tccccacatc aagcccgaat gatatttcct attcgcctac acaattctcc gatccgtccc 15600 taacaaacta ggaggcgtcc ttgccctatt actatccatc ctcatcctag caataatccc 15660 catcctccat atatccaaac aacaaagcat aatatttcgc ccactaagcc aatcacttta 15720 ttgactccta gccgcagacc tcctcattct aacctgaatc ggaggacaac cagtaagcta 15780 cccttttacc atcattggac aagtagcatc cgtactatac ttcacaacaa tcctaatcct 15840 aataccaact atctccctaa ttgaaaacaa aatactcaaa tgggcctgtc cttgtagtat 15900 aaactaatac accagtcttg taaaccggag atgaaaacct ttttccaagg acaaatcaga 15960 gaaaaagtct ttaactccac cattagcacc caaagctaag attctaattt aaactattct 16020 ctgttctttc atggggaagc agatttgggt accacccaag tattgactca cccatcaaca 16080 accgctatgt atttcgtaca ttactgccag ccaccatgaa tattgtacgg taccataaat 16140 acttgaccac ctgtagtaca taaaaaccca atccacatca aaaccccctc cccatgctta 16200 caagcaagta cagcaatcaa ccctcaacta tcacacatca actgcaactc caaagccacc 16260 cctcacccac taggatacca acaaacctac ccacccttaa cagtacatag tacataaagc 16320 catttaccgt acatagcaca ttacagtcaa atcccttctc gtccccatgg atgacccccc 16380 tcagataggg gtcccttgac caccatcctc cgtgaaatca atatcccgca caagagtgct 16440 actiticiting ctccgggccc ataacacttg ggggtagcta aagtgaactg tatccgacat 16500 ctggttccta cttcagggtc ataaagccta aatagcccac acgttcccct taaataagac 16560 atcacgatg 16569 <210> 11 <211> 17 <212> DNA B19 Virus <213> <400> 11 tggtctggga tgaaggt 17 12 23 <210> <211> <212> DNA <213> B19 virus <400> 12 ccattttagg cgggcaaccc acc 23 <210> 13 <211> 21 <212> DNA <213> B19 virus <400> 13 tggaagtgta gctgtgcctg g 21 <210> <211>

Page 33

2			CI0043PCTs	qlisting.ST25		
<212> <213>	DNA B19	virus		-		
<400> agaatca	14 attt	gtcggaagct	cag			23
<210> <211> <212> <213>	15 20 DNA B19	virus				
	15 Etgg	gcaagttagc				20
<210> <211> <212> <213>	16 21 DNA B19	virus				
	16 cag	tggaaaggag	g			21
<212>	17 23 DNA B19	virus				
<400> ctttaac	17 aca	tgaagaccat	gca			23
<211> <212>	18 28 DNA B19	virus				
<400> cctctca	18 iaaa	cactagaata	tccttacg			28
<211> <212>	19 27 DNA B19	virus				
<400> cagccat		accactggga	cacagat		:	27
<211> <212>	20 23 DNA B19	virus				
	20 ttt	ctcatggtca	gac		:	23
<211> <212>	21 20 DNA B19	virus				
	21 aac	accacaggca	Pac	e 34	2	20

<210> <211> <212> <213>		
<400> caacct	22 ccaa tcactcacca ac	22
<210> <211> <212> <213>		
<400> cctcca	23 attt gtcctggtta tcgc	24
<210> <211> <212> <213>	23	,
	24 gcgg cgttttatca tat	23
<210> <211> <212> <213>		
<400> tgtttg	25 gctt tcagctatat gga	23
<210> <211> <212> <213>		
<400> aattgt	26 gggt cttttgggct tt	22
<210> <211> <212> <213>	27 18 DNA Hepatitis B virus	
<400> ttctcc	27 gtct gccgttcc	18
<210> <211> <212> <213>	28 21 DNA Hepatitis B virus	
<400> accagca	28 acca tgcaactttt t	21
<210> <211> <212>	29 25 DNA	

	CIOO43PCTseqlisting.ST25	
<213>	Hepatitis B virus	
<400> tttttc	29 acct ctgcctaatc atctc	25
<210>	30	
<211>	16	
<212> <213>	DNA Hepatitis B virus	
<400> tcccac	30 tgtt caagcc	16
210	24	
<210> <211>		
<212>	DNA	
<213>	Hepatitis B virus	
	31	
acctca	ccat accgcactca g	21
<210>	32	
<211>	25	
<212> <213>	DNA · Hepatitis B virus	
<400>		25
yyyaac	tgat gactctagct acctg	25
<210>	33	
<211>	22	
<212> <213>	DNA Hepatitis B virus	
<400>	33	
	aatg gcaaactcct tc	22
210	24	
<210> <211>	34 20	
<212>	DNA ·	
<213>	Hepatitis B virus	
	34	
gagaaa	ccac acgtagcgca	20
<210>	35	
<211>	16	
	DNA	
<213>	Hepatitis B virus	
<400> cacccc1	35 Ecca cacggc	16
		-0
<210>	36	
<211> <212>	27 DNA	
<213>	Hepatitis B virus	
<400>	36	
atctctc	ccac ctctaagaga cagtcat	27

<210> <211> <212> <213>	37 22 DNA Porcine parvovirus	
	37 aaaa cggcaagtac tg	22
	38 36 DNA Porcine parvovirus	
<400> acctaa	38 gtcc aagtgactgc tactggttca tacagc	36
<210> <211> <212> <213>	39 29 DNA Porcine parvovirus	
<400> gttaat	39 aatg caatgcaaag tacctctaa	29
	40 25 DNA Porcine parvovirus	
	40 aact gaaagagagc atgga	25
<210> <211> <212> <213>		
<400> tctcag	41 ctca gattctggct tcatgacaaa	30
<210> <211> <212> <213>	42 22 DNA Porcine parvovirus	
<400> caattc	42 tatt tcatgggcca gc	22
<210> <211> <212> <213>	43 17 DNA Porcine parvovirus	
<400> cgtgga	43 · gcga gccaaca	17
<210> <211> <212> <213>	44 28 DNA Porcine parvovirus	

<400> ctgcac	44 ttaa ctccaacacc gccagatt	28
<210> <211> <212> <213>	45 24 DNA Porcine parvovirus	
	45 cgga caccaagtcc aact	24
<210> <211> <212> <213>	46 23 DNA Porcine parvovirus	
<400> gaggta	46 agaa gatcgccgag aaa	23
<210> <211> <212> <213>	47 28 DNA Porcine parvovirus	
<400> aacctc	47 acca ccaaccaaaa tatataat	28
<210> <211> <212> <213>	48 29 DNA Porcine parvovirus	
<400> actact	48 aact gaacctacca cagaaggag	29
<210> <211> <212> <213>	49 26 DNA Porcine parvovirus	·
<400> ctttta	49 cctt cagatccaat aggagg	26
<210> <211> <212> <213>	50 18 DNA Sindbis virus	
<400> gcgtgc	50 ggac cctgtact	18
<210> <211> <212> <213>	51 25 DNA Sindbis virus	
<400> attggc1	51 tcg acaccaccca gttca	25

CI0043PCTseqlisting.ST25 <210> 52 <211> 20 <212> DNA <213> Sindbis virus <400> 52 ttctcggcta tggcaggttc 20 <210> 53 <211> 25 <212> DNA <213> Sindbis virus <400> 53 gtttatttct ccgtaggatc gacac 25 <210> 54 <211> 20 <212> DNA <213> Sindbis virus <400> 54 aaaactgctg caggtctcgg 20 <210> 55 <211> 22 <212> DNA <213> Sindbis virus <400> 55 gaaatcgata ttacaggggc ca 22 <210> 56 <211> 21 <212> DNA <213> Sindbis virus <400> 56 gcattaagtt tttcggcatg g 21 <210> 57 <211> 18 <212> DNA <213> Sindbis virus <400> 57 cgattggcat agccggtg 18 <210> 58 <211> 21 <212> DNA <213> West Nile virus tcagcgatct ctccaccaaa g 21 <210> 59 <211> 22 <212> DNA <213> West Nile virus

CT0042DCT===li=sin== cm25	
<pre><400> 59 tgcccgacca tgggggaagc cc</pre> CI0043PCTseqlisting.ST25	22
<210> 60 <211> 21 <212> DNA <213> West Nile virus	
<400> 60 caatgacaaa cgtgctgacc c	. 21
<210> 61 <211> 20 <212> DNA <213> West Nile virus	
<400> 61 gctagtcctg gtgtttgggg	20
<210> 62 <211> 24 <212> DNA <213> Escherichia coli 165 Ribosomal RNA	
<400> 62 agagtttgat catggctcag attg	24
<210> 63 <211> 24 <212> DNA <213> Escherichia coli 16s Ribosomal RNA	
<400> 63 ctggcggcag gcctaacaca tgca	24
<210> 64 <211> 21 <212> DNA <213> Escherichia coli 165 Ribosomal RNA	
<400> 64 aataccgcat aacgtcgcaa g	21
<210> 65 <211> 20 <212> DNA <213> Escherichia coli 16S Ribosomal RNA	
<400> 65 gatgcaacgc gaagaacctt	20
<210> 66 <211> 23 <212> DNA <213> Escherichia coli 16S Ribosomal RNA	
<pre>400> 66 pactggggtg aagtcgtaac aag</pre>	23
210 67	•

PCT/US2004/002013

WO 2004/072231

	CI0043PCTseqlisting.ST25	
<211> <212> <213>	24 DNA Escherichia coli 16S Ribosomal RNA	
<400> gtaaca	67 aggt aaccgtaggg gaac	24
<210> <211> <212> <213>	68 19 DNA Escherichia coli 16S Ribosomal RNA	
<400> gcggtt	68 ggat cacctcctt	19
<210> <211> <212> <213>	69 22 DNA Escherichia coli 23S Ribosomal RNA	
<400> ccgata	69 gtga accagtaccg tg	22
<210> <211> <212> <213>	70 25 DNA Escherichia coli 23S Ribosomal RNA	
<400> atgttga	70 aaaa attagcggat gactt	25
<210> <211> <212> <213>	71 18 DNA Escherichia coli 23S Ribosomal RNA	
<400> gcactgt	71 :ttc ggcaaggg	18
<210> <211> <212> <213>	72 18 DNA Escherichia coli 23S Ribosomal RNA	
<400> gccggaa	72 gac caagggtt	18
<210> <211> <212> <213>	73 24 DNA Escherichia coli 23S Ribosomal RNA	
	73 act ataacggtcc taag	24
<212>	74 26 DNA Escherichia coli 23S Ribosomal RNA	
	74	

WO 2004/072231	PCT/US2004/002013
CIOO43PCTseqlisting.ST25 gataagtgct gaaagcatct aagcac	26
<210> 75 <211> 25 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 75 ctgccagtag tcatatgctt gtctc	25
<210> 76 <211> 36 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 76 tacagtgaaa ctgcgaatgg ctcattaaat cagtta	36
<210> 77 <211> 27 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 77 taatacatgc ttaaaatctc gaccctt	27
<210>. 78 <211> 24 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 78 gtcttcggac tctttgatga ttca	24
<210> 79 <211> 17 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 79 gcagccgcgg taattcc	17
<210> 80 <211> 24 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 80 gctgaaactt aaaggaattg acgg	24
<210> 81 <211> 23 <212> DNA <213> Yeast (S. cerevisiae)	
<400> 81 tggaagtttg aggcaataac agg	23
<210> 82 <211> 19	,

Page 42

	CI0043PCTseqlisting.ST25	
<212> <213>	DNA Yeast (S. cerevisiae)	
<400> tgaacc	82 tgcg gaaggatca	19
<210> <211> <212> <213>	83 24 DNA Yeast 25S Ribosomal RNA	
<400> aagcat	83 atca ataagcggag gaaa	24
<210> <211> <212> <213>	84 20 DNA Yeast 25S Ribosomal RNA	
	84 tgga ggctcgtagc	20
<210> <211> <212> <213>	85 18 DNA Yeast 25S Ribosomal RNA	
<400> aatgga	85 tggc gctcaagc	18
<210> <211> <212> <213>	86 25 DNA Yeast 25S Ribosomal RNA	
<400> tgaaaa	86 tcca caggaaggaa tagtt	25
<210> <211> <212> <213>	87 21 DNA Yeast 25s Ribosomal RNA	
<400> ctaagg	87 gtcg ggtagtgagg g	21
<210> <211> <212> <213>	88 20 DNA Yeast 25S Ribosomal RNA	
<400> agaaati	88 tcaa ccaagcgcga	20
<210> <211> <212> <213>	89 19 DNA Yeast 25s Ribosomal RNA	
<400> atgtca1	89 Ettt gcgtgggga Page 43	19

<210> <211> <212> <213>	90 23 DNA Human mitochondrial DNA	
<400>	90 cctc taaatcacca cga	23
<210> <211> <212> <213>	91 23 DNA Human mitochondrial DNA	
	91 cgca gcaatgcagc tca	23
<210> <211> <212> <213>	92 26 DNA Human mitochondrial DNA	
<400> ggaaac	92 agca gtgattaacc tttagc	26
<210> <211> <212> <213>	93 28 DNA Human mitochondrial DNA	
<400> gactac	93 gaaa gtggctttaa catatctg	28
<210> <211> <212> <213>	94 24 DNA Human mitochondrial DNA	
<400> tagagt	94 gctt agttgaacag ggcc	24
<210> <211> <212> <213>	95 24 DNA Human mitochondrial DNA	
<400> taggcga	95 atag aaattgaaac ctgg	24
<210> <211> <212> <213>	96 21 DNA Human mitochondrial DNA	
<400> tttgtta	96 aaga tggcagagcc c	21
<210> <211> <212>	97 20 DNA	

PCT/US2004/002013

<213>	CIO043PCTseqlisting.ST25 Human mitochondrial DNA	
<400> agaatc	97 gaac ccatccctga	20
<210> <211> <212> <213>	19	
<400> tttcac	98 cgta ggtggcctg	19
	99 20 DNA Human mitochondrial DNA	
<400> aatcgc	99 tgtc gccttaatcc	20