Análise Sintática Analisadores TopDown

Profa. Dra. Andréa Aparecida Konzen

Analisadores Descendentes (Top-down)

• a árvore de derivação correspondente é construída de *cima para baixo*, ou seja, da raiz (símbolo inicial S) para as folhas.

• é necessário decidir qual a regra A-> β deve ser aplicada a um nó rotulado por um não-terminal A. A *expansão* de A é feita criando nós filhos rotulados com os símbolos de β .

Tipos de analisadores

Com Retrocesso (1)

Análise Recursiva com Retrocesso

Mais poderosos, mais lentos, não indicados, testa diferentes possibilidades retrocedendo se falhar

Preditivos (2)

Análise Recursiva Preditiva (descida recursiva)

Análise Preditiva Tabular (LL dirigida por tabela)

Tentam prever a construções "seguintes" na cadeia com base em um ou mais marcas de verificação à frente

Algoritmos -> descendentes recursivos (1) / LL(1) não necessita de retrocesso (2)

Gramáticas LL(1)

IMPORTANTE: A tabela sintática não possui entradas múltiplas, não é ambígua e não possui recursividade à esquerda

LL(1) indica que:

- a cadeia de entrada é examinada da esquerda para a direita
- L = *left-to-right*
- o analisador procura construir uma derivação esquerda
- L = *leftmost*
- exatamente 1 símbolo do resto da entrada é examinado

Análise Preditiva Tabular - Algoritmo

Construção da tabela sintática preditiva:

Para cada produção X $ightarrow \alpha$ da gramática execute:

Para cada terminal $a \in first(\alpha)$

Adicione X $\rightarrow \alpha$ na linha X, coluna a.

Se α pode ser nulo

Para cada terminal $a \in follow(x)$

Adicione X $\rightarrow \alpha$ na linha X, coluna a

Análise Preditiva Tabular - Algoritmo

Construção da tabela sintática preditiva (cont.):

```
para cada a \in first(\alpha)

insira A \rightarrow \alpha \ na \ posição [A,a]

Se \lambda \in first(\alpha)

insira A \rightarrow \alpha \ na \ posição [A,b]

onde b \in follow(A)
```

Obs.: Pontos de sincronismo são o conjuntos follow das regras que não tem produção nula. Espaços em branco na tabela correspondem a rotinas de erros.

Exemplo:

Gramática

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E)|a$$

	first	follow
Е	(,a	\$,)
E'	+, ε	\$,)
Т	(,a	+,),\$
T'	*, ε	+,),\$
F	(,a	*,+,),\$

Exemplo (cont.) - Tabela sintática

LE/LD	а	+	*	()	\$
E	E→ TE'			E→ TE'	sinc	sinc
Ε'		E'→+ TE'			E' →ε	E' →ε
Т	T→ FT'	sinc		T→ FT'	sinc	sinc
T'		T'→ ε	T'→ *FT1		T'→ε	T'→ ε
F	F→ a	sinc	sinc	F →(E)	sinc	sinc

Exemplo (cont.) - reconhecimento de entrada

Pilha	Entrada	Produção
\$ E	a+a*a\$	
\$ E' T	a+a*a\$	E →TE'
\$ E' T' F	a+a*a\$	T →FT'
\$ E' T' a •	• a+a*a \$	F →a
\$ E' T'	+a*a\$	
\$ E'	+a*a\$	$T' \rightarrow \varepsilon$
\$ E' T+ •	• +a*a\$	E' →+TE'
\$ E' T	a*a\$	
\$ E' T'F	a*a\$	F →FT'
\$ E' T' a •	• a*a\$	F →a
\$ E' T'	*a\$	
\$ E' T' F* ●	• *a\$	T' →*FT'
\$ E' T' F	a\$	
\$ E' T'a ●	•a\$	F →a
\$ E' T'	\$	T' →ε
\$ E'	\$	E' →ε