Corrigés des exercices du chapitre 4

9. Soit $a \in \mathbb{R}^n$ tel que ||a|| < 1 et soit $f_a : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto (1 + ||x||^2)^{\frac{1}{2}} - \langle a, x \rangle$. Montrer que f_a est convexe et déterminer $\operatorname{Arg}_{\mathbb{R}^n} \min f_a$.

$$f_a(x) = \left(1 + \sum_{i=1}^n x_i^2\right)^{1/2} - \sum_{i=1}^n a_i x_i \text{ et } D_j f_a(x) = \frac{1}{2} \left(1 + \sum_{i=1}^n x_i^2\right)^{-1/2} \times 2x_j - a_j \text{ donc } \nabla f_a(x) = \left(1 + \|x\|^2\right)^{-\frac{1}{2}} x - a \text{ et les points critiques vérifient } \left(1 + \|x\|^2\right)^{-\frac{1}{2}} x - a = 0, \text{ soit } \left(1 + \|x\|^2\right)^{-\frac{1}{2}} x = a. \text{ On commence par déterminer la norme de } x \text{ en prenant le carré de la norme des } 2 \text{ membres.}$$
On a donc $\left(1 + \|x\|^2\right)^{-1} \|x\|^2 = \|a\|^2$, soit $\|x\|^2 = \|a\|^2(1 + \|x\|^2)$, c'est-à-dire $\|x\|^2(1 - \|a\|^2) = \|a\|^2$, ce qui est possible puisque $\|a\| < 1$ et $\|x\| = \frac{\|a\|}{\sqrt{1 - \|a\|^2}}$, puis $1 + \|x\|^2 = \frac{1}{1 - \|a\|^2}$ et $x = a\left(1 + \|x\|^2\right)^{\frac{1}{2}} = \frac{a}{\sqrt{1 - \|a\|^2}}$ est l'unique candidat et $f_a\left(\frac{a}{\sqrt{1 - \|a\|^2}}\right) = \frac{1}{\sqrt{1 - \|a\|^2}} - \frac{\|a\|^2}{\sqrt{1 - \|a\|^2}} = \sqrt{1 - \|a\|^2}.$

Il reste à prouver que f_a est convexe (en prouvant que $\nabla^2 f_a(x)$ est une matrice positive). On a alors, pour $i \neq j$, $D_i D_j f_a(x) = -\frac{1}{2} x_i \left(1 + \|x\|^2\right)^{-\frac{3}{2}} \times 2x_j = -x_i x_j \left(1 + \|x\|^2\right)^{-\frac{3}{2}}$

et
$$D_i^2 f(x) = \left(1 + \|x\|^2\right)^{-\frac{1}{2}} - \frac{1}{2} x_i \left(1 + \|x\|^2\right)^{-\frac{3}{2}} \times 2x_i = \left(1 + \|x\|^2\right)^{-\frac{1}{2}} - x_i^2 \left(1 + \|x\|^2\right)^{-\frac{3}{2}}$$
.

On a donc
$$\nabla^2 f_a(x) = \left(1 + \|x\|^2\right)^{-\frac{1}{2}} \left[I - \left(1 + \|x\|^2\right)^{-1} M\right]$$
, où $M = (x_i x_j)$.

Si
$$MX = \lambda X$$
, alors $\nabla^2 f_a(x)X = \left(1 + \|x\|^2\right)^{-\frac{1}{2}} \left(1 - \lambda \left(1 + \|x\|^2\right)^{-1}\right) X$. On commence donc par chercher les valeurs propres de M .

donc par chercher les valeurs propres de
$$M$$
. $MX = Y$ avec $Y_i = \sum_j m_{ij} X_j = \sum_j x_i x_j X_j = x_i \langle x, X \rangle$ donc $MX = x \langle x, X \rangle$ et $MX = \lambda X$ équivaut à $\lambda X = x \langle x, X \rangle$:

- Si $\lambda \neq 0$, alors X est colinéaire à x (on peut prendre x = X), et alors $\lambda = ||x||^2$ (sauf si x = 0, mais alors $\nabla^2 f_a(0) = I$).
 - Si $\lambda = 0$ et $x \neq 0$, alors $\langle x, X \rangle = 0$, d'où $X \in (\mathbb{R}x)^{\perp}$.

On a donc une valeur propre non nulle, d'espace propre associé $\mathbb{R}x$ et, comme M est symétrique réelle, elle est diagonalisable dans une base orthonormée, l'autre valeur propre vaut 0 et $E_0 = (\mathbb{R}x)^{\perp}$.

Les valeurs propres de $\nabla^2 f_a(x)$ sont alors $\left(1 + \|x\|^2\right)^{-\frac{1}{2}} > 0$ et $\left(1 + \|x\|^2\right)^{-\frac{1}{2}} \left(1 - \frac{\|x\|^2}{1 + \|x\|^2}\right) = \left(1 + \|x\|^2\right)^{-\frac{3}{2}} > 0$. D'où $\nabla^2 f_a(x)$ est une matrice positive et f_a est bien convexe.

10. Soit
$$\varphi : \Omega \subset \mathbb{R}^n \to \mathbb{R}$$
. Pour tout $y \in \mathbb{R}^n$, on pose $\varphi^*(y) = \sup_{x \in \Omega} (\langle y, x \rangle - \varphi(x))$.

- a) Montrer que φ^* est convexe.
- **b)** Soit $p \in]1, +\infty[$ et $\varphi(x) = \frac{\|x\|^p}{p}$. Montrer que φ est convexe ; déterminer $\varphi^*(y)$ et montrer que $\varphi^{**} = \varphi$. (On utilisera q tel que $\frac{1}{p} + \frac{1}{q} = 1$).

c) Soit $\varphi(x) = \frac{1}{2} < Ax, x > + < b, x > + c$ où A est une matrice symétrique définie positive. Montrer que φ est convexe ; déterminer $\varphi^*(y)$ et montrer que $\varphi^{**} = \varphi$.

a)
$$\psi_x: y \mapsto \langle y, x \rangle - \varphi(x)$$
 est affine, donc convexe et concave et $\varphi^* = \sup_x \psi_x$ est convexe.

$$\varphi^*(y) = \sup_{x} \left(\langle y, x \rangle - \varphi(x) \right) = -\inf_{x} \left(\varphi(x) - \langle x, y \rangle \right)$$

. (En effet, si $F(x) \ge F(x')$, alors $-F(x) \le -F(x')$ et sup $F = -\inf(-F)$.

Si φ est convexe, alors $x \mapsto \varphi(x) - \langle x, y \rangle$ est convexe comme somme de fonctions convexes et un minimum sera donc un point critique, solution de $\nabla \varphi(x) - y = 0$ ou $\nabla \varphi(x) = y$.

$$\varphi(x) = \frac{1}{p} \left(\|x\|^2 \right)^{\frac{p}{2}} = \frac{\|x\|^p}{p}.$$

 $\Phi: t \mapsto \frac{t^p}{p}$ est croissante convexe sur \mathbb{R}_+ car $\Phi'(t) = t^{p-1}$ et $\Phi''(t) = (p-1)t^{p-2} \ge 0$ pour p > 1. Donc, comme $x \mapsto ||x||$ est convexe et $\varphi = \Phi \circ ||\cdot||$, φ est convexe.

p > 1. Donc, comme $x \mapsto \|x\|$ est convexe et $\varphi = \Phi \circ \| \|$, φ est convexe. $D_i \varphi(x) = \frac{1}{2} \left(\|x\|^2 \right)^{\frac{p}{2} - 1} \times 2x_i$, donc $\nabla \varphi(x) = \|x\|^{p-2} x$. $\nabla \varphi(x) = y$ donne $y = \|x\|^{p-2} x$ et en prenant la norme, $\|y\| = \|x\|^{p-1}$.

On a alors $\varphi^*(y) = -\varphi(x) + \langle x, y \rangle = -\frac{1}{p} \|y\|^{\frac{p}{p-1}} + \|x\|^p$, c'est-à-dire $\varphi^*(y) = \left(1 - \frac{1}{p}\right) \|y\|^{\frac{p}{p-1}}$ avec $\frac{p}{p-1} = \frac{1}{1-\frac{1}{p}} = q$ où $\frac{1}{p} + \frac{1}{q} = 1$. Ainsi, $\varphi^*(y) = \frac{\|y\|^q}{q}$ où $\frac{1}{p} + \frac{1}{q} = 1$. On a alors $\varphi^{**} = \varphi$ puisque $p \mapsto q \mapsto p$.

c)
$$\varphi(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c.$$

$$\varphi(x+h) = \frac{1}{2} \langle A(x+h), x+h \rangle + \langle b, x+h \rangle + c$$

$$= \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c + \langle Ax, h \rangle + \langle b, h \rangle + \frac{1}{2} \langle Ah, h \rangle$$

donc $\nabla \varphi(x) = Ax + b$ et $\nabla^2 \varphi(x) = A$ est définie positive donc inversible (et φ est convexe). $\nabla \varphi(x) = y = Ax + b$, donne $x = A^{-1}(y - b)$. On a alors:

$$\begin{split} \varphi^*(y) &= -\varphi(A^{-1}(y-b)) + \langle y, A^{-1}(y-b) \rangle \\ &= -\frac{1}{2} \langle y-b, A^{-1}(y-b) \rangle - \langle b, A^{-1}(y-b) \rangle - c + \langle y, A^{-1}(y-b) \rangle \\ &= \frac{1}{2} \langle A^{-1}(y-b), y-b \rangle - c = \frac{1}{2} \langle A^{-1}y, y \rangle - \langle A^{-1}b, y \rangle + \frac{1}{2} \langle A^{-1}b, b \rangle - c \end{split}$$

Ainsi, φ^* est de même type que φ avec $A^* = A^{-1}$, $b^* = -A^{-1}b$ et $c^* = -\frac{1}{2}\langle b^*, b \rangle - c$. On a alors $A^{**} = (A^*)^{-1} = A$, $b^{**} = -(A^*)^{-1}b^* = -Ab^* = b$ et $c^{**} = -\frac{1}{2}\langle b^{**}, b^* \rangle - c^* = -\frac{1}{2}\langle b, b^* \rangle + \frac{1}{2}\langle b^*, b \rangle + c = c$.

- **11.** Soit $C \subset \mathbb{R}^n$ un convexe fermé non vide et $b \in \mathbb{R}^n$. Soit $\pi = \operatorname{Arg}_C \min N$ où $N(x) = \|x b\|^2$.
 - a) Montrer que:
 - i) π est non vide;
- ii) si $p \in \pi$, pour tout $c \in C$, $\langle p b, p c \rangle \leq 0$. (On utilisera $F(\lambda) = \|\lambda c + (1 \lambda)p b\|^2$).

- iii) π contient exactement 1 élément, noté p(b).
- iv) Si $< u b, u c > \le 0$ pour tout $c \in C$, alors u = p(b).
- b) Déduire de a) que, $b \notin C$ si et seulement si il existe $w \in \mathbb{R}^n$ tel que

$$< w, b > < \inf_{c \in C} < w, c > .$$

a) i) $x \mapsto N(x) = \|x - b\|^2$. $t \mapsto t^2$ est convexe croissante sur \mathbb{R}_+ et $x \mapsto \|x - b\|$ est convexe de \mathbb{R} sur \mathbb{R}_+ ($\|\theta x + (1-\theta)y - b\| = \|\theta(x-b) + (1-\theta)(y-b)\| \le \theta \|x - b\| + (1-\theta)\|y - b\|$ donc N est convexe.

C fermé et N continue coercive car $N(x) \geq (\|x\| - \|b\|)^2 \to +\infty$ si $\|x\| \to +\infty$, donc N admet un minimum sur C (qui n'est pas forcément un point critique car il peut être sur le bord (C fermé).

ii)
$$F(0) = ||p - b||^2 = N(p)$$
 et

$$F(\lambda) = \|p - b + \lambda(c - p)\|^2 = N(p + \lambda(c - p)) = N((1 - \lambda)p + \lambda c)$$

= $\|p - b\|^2 + 2\lambda\langle p - b, c - p\rangle + \lambda^2\|c - p\|^2$

On a donc $F(\lambda) \ge F(0)$ pour tout $\lambda \in]0,1]$ donc $\frac{F(\lambda) - F(0)}{\lambda} \ge 0$, puis, avec $\lambda \to 0$, $F'(0) \ge 0$. Or $F'(\lambda) = 2\lambda \|c - p\|^2 + 2\langle p - b, c - p \rangle$, d'où $F'(0) = 2\langle p - b, c - p \rangle \ge 0$ et $\langle p - b, p - c \rangle \le 0$

pour tout $c \in C$.

iii) Si $p_1 \in \Pi$ et $p_2 \in \Pi$, alors on applique ii) à $(p,c) = (p_1,p_2)$

$$\langle p_1 - b, p_1 - p_2 \rangle \le 0$$

puis, en appliquant ii) à $(p,c)=(p_2,p_1)$,

$$\langle p_2 - b, p_2 - p_1 \rangle = \langle b - p_2, p_1 - p_2 \rangle < 0.$$

En sommant les 2 inégalités et en utilisant la bilinéarité, on a alors $\langle p_1 - p_2, p_1 - p_2 \rangle =$ $||p_1 - p_2||^2 \le 0$, ce qui n'est possible que si $p_1 = p_2$.

iv) Réciproquement, c = p(b) donne $\langle u - b, u - p(b) \rangle \leq 0$ (1).

On fait alors c = u dans ii): $\langle p(b) - b, p(b) - u \rangle \leq 1$ (3), soit $\langle b - p(b), u - p(b) \rangle \leq 0$.

On ajoute (1) et (3) en utilisant la linéarité à gauche : $\langle u-b+b-p(b), u-p(b)\rangle =$ $\langle u - p(b), u - p(b) \rangle \le 0$ donc $||u - p(b)||^2 \le 0$ et u = p(b).

 $\mathbf{b)} \bullet \mathrm{Si} \ b \in C, \ \langle w,b \rangle \geq \inf_{c \in C} \langle w,c \rangle \ \mathrm{et}, \ \mathrm{par} \ \mathrm{contrapos\acute{e}e}, \ \mathrm{si} \ \inf_{C} \langle w,c \rangle > \langle w,b \rangle, \ \mathrm{alors} \ b \notin C.$ Si $b \notin C$, $\mathrm{alors} \ b - p(b) \neq 0$: $\langle p(b) - b, p(b) - p + p - c \rangle \leq 0$ pour tout $c \in C$, c'est-à-dire $\|p(b) - b\|^2 + \langle p(b) - b, b \rangle \leq \langle p(b) - b, c \rangle$ pour tout $c \in C$. En posant w = p(b) - b, on a $\inf_{C} \langle w,c \rangle \geq \|w\|^2 + \langle b,w \rangle > \langle w,b \rangle$, d'où le résultat.