Numerical methods

Numerical analysis is the study of algorithms for the problems of continuous mathematics.

Lloyd N. Trefethen

Elementary theory of uncertainties

Numerical solutions are always approximate

- 1. Mathematical models are approximate
- 2. Input data are approximate, may contain e.g., measurement uncertainties
- 3. Mathematical methods are approximate
- 4. Computer arithmetics is inexact (more below)

We need to be able to quantify the degree of approximation, and design algorithms to control and minimize what we can (esp. 3 and 4 above.)

Example: area on a map

City of Kostroma, 1781-84

Here's the map. Find the area of the city.

Example: area on a map

City of Kostroma, 1781-84

$$R \approx 2.4 \,\mathrm{km}$$

$$S = \pi R^2 / 2 \approx 9.2 \,\mathrm{km}^2$$

The model is approximate (the surface is flat; the map is drawn to scale). The method is approximate (the city is approximated by a semicircle). The input data is only measured approximately. The calculation uses finite precision.

Approximate numbers. Uncertainties.

Let S be an (unknown) exact number. Let S^{\ast} be a known value which approximates S.

The absolute uncertainty of S^* (absolute error, абсолютная погрешность, абсолютная ошибка) is defined as

$$\Delta S \equiv |S - S^*| .$$

Likewise,

$$\delta S \equiv \frac{\Delta S}{S} \equiv \frac{|S - S^*|}{S} \ .$$

is the relative error (относительная погрешность) of S^* .

Approximate numbers. Uncertainties.

Since the exact value ${\cal S}$ is typically not known, we are mostly interested in the upper limits for the uncertainties,

$$|S - S^*| \leqslant \overline{\Delta}S$$

and

$$\frac{|S - S^*|}{S} \leqslant \overline{\delta}S$$

To lighten the notation, we typically omit the overlines and simply write ΔS and δS to mean the upper limits of the uncertainties.

Fixed-point representation of real numbers. Significant figures

Let an approximate number a^* is given as a finite decimal fraction

$$a^* = \beta_n \beta_{n-1} \dots \beta_1 \beta_0 \alpha_1 \alpha_2 \dots \alpha_n$$

Significant figures (значащие цифры): all α -s and β -s except for leading zeros, if any.

For example: 0.42 has two s.f.; 0.4200 has four s.f

Common abbreviations: "Significant figures" \rightarrow *sig figs* or *s.f.*

A significant figure is *correct* (верная значащая цифра) iff the absolute uncertainty of a^* is less than a 1 in the corresponding decimal place.

7/14

Significant figures and uncertainties

The number of correct significant figures in a^* is directly related to the relative uncertainty of a^* :

if a^* has N correct significant figures, then $\delta a \sim 10^{-N}$

We always only write out correct sig figs. A number without uncertainty means all sig figs are correct.

Example: "Rounding to N s.f.": π to 3 s.f. is 3.14; π to 6 s.f. is 3.14159

Note: rounding to a correct number of s.f. is what tells a human from a machine. A computer may output 16 digits; it's our job to round to a correct number of s.f.

Significant figures and uncertainties

When writing out uncertainties:

Always round uncertainties to 1 or 2 s.f.

$$1.234 \pm 0.002$$
 (good) 1.234000 ± 0.001895 (bad)

Use consistent s.f. for both value and its uncertainty.

1.23 ± 0.02	(good)
1.234567 ± 0.02	(bad)
1.23 ± 0.00005	(bad)

Arithmetics with approximate numbers. Propagation of uncertainty.

Consider two unknown quantities, a and b. Suppose that we know approximations a^* and b^* , with uncertainties Δa and Δb .

The (upper limit of the) uncertainty of a + b is

$$\Delta(a+b) \leqslant \Delta a + \Delta b$$

Indeed,

$$\Delta(a+b) = |(a+b) - (a^* + b^*)|$$

$$= |(a-a^*) + (b-b^*)|$$

$$\leq |a-a^*| + |b-b^*|$$

$$\leq \Delta a + \Delta b$$

Arithmetics with approximate numbers. Propagation of uncertainty.

Consider two unknown quantities, a and b. Suppose that we know approximations a^* and b^* , with uncertainties Δa and Δb .

The (upper limit of the) uncertainty of a - b is

$$\Delta(a-b) \leqslant \Delta a + \Delta b$$

Indeed,

$$\Delta(a - b) = |(a - b) - (a^* - b^*)|$$

= |(a - a^*) - (b - b^*)|
\leq \Delta a + \Delta b

Notice the plus sign in the r.h.s.

Catastrophic cancellation

Let a = 101 and b = 100 are both known to 3 s.f.

The difference,

$$a - b = 1$$

is only known to 1 s.f.

⇒ avoid (i) subtraction of close numbers, (ii) divisions by small numbers

Example: Try computing

$$\frac{1}{\sqrt{x+1} - \sqrt{x}} = \sqrt{x+1} + \sqrt{x}$$

for $x \gg 1$ (do try it!)

Propagation of uncertainty in nonlinear operations

Let f(x) be a differentiable function of its scalar argument. Suppose x is only known with an absolute uncertainty Δx . What is the uncertainty of y=f(x)?

Assuming $\Delta x \ll |x|$, expand $f(x+\Delta x)$ into the Taylor series:

$$f(x + \Delta x) = f(x) + f'(x) \Delta x + \cdots$$

Therefore,

$$\Delta y \leqslant |f'(x)| \Delta x$$
,

and the relative uncertainty is $(\Delta x = x \, \delta x)$

$$\delta y \leqslant \left| \frac{f'(x) \, x}{f(x)} \right| \, \delta x$$

Sidetrack: An alternative, stochastic view of uncertainties.

The difference between the true value S and measured approximation S^* is due to random noise.

The distribution of measured values

Multiple repeated measurements produce different values of S^* .

The assumption is that the distribution of S^* is **Gaussian**, centered at the true value S. The uncertainty, ΔS , is then the width of this Gaussian distribution.

The sum of two independent Gaussian variables is also Gaussian, with the width

$$\Delta(a+b) = \sqrt{(\Delta a)^2 + (\Delta b)^2}$$