Extra Practice: Prime Factors, Applications, Rational/Irrational, Number Systems & Radicals

Math 10 · Mr. Merrick

Prime Factors

- 1. State all positive divisors of the following.
 - a) 84 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
 - b) 75 1, 3, 5, 15, 25, 75
 - c) 96 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96
 - d) 105 1, 3, 5, 7, 15, 21, 35, 105
- 2. In each case, determine the *number* of factors of the given whole number.
 - a) $96\ 96 = 2^5 \cdot 3 \Rightarrow (5+1)(1+1) = 12$
 - b) 131 $Prime \Rightarrow 2 factors$
 - c) $225 \ 225 = 3^2 \cdot 5^2 \Rightarrow (2+1)(2+1) = 9$
 - d) $256\ 256 = 2^8 \Rightarrow 9\ factors$
 - e) $374\ 374 = 2 \cdot 11 \cdot 17 \Rightarrow 2 \cdot 2 \cdot 2 = 8$
- 3. From the list in Question 2, state which numbers are prime and which are composite. *Prime:* 131. *Composite:* 96, 225, 256, 374.
- 4. Classify each whole number as prime or composite.
 - (a) 47 (b) 91 (c) 101 (d) 143 (e) 221 (f) (a) prime; (b) 7·13 composite; (c) prime; (d) 11·13 composite; (e) 13·17 composite; (f) prime
- 5. Twin primes are consecutive odd primes (e.g. 5,7). List seven other twin-prime pairs < 120. (11,13), (17,19), (29,31), (41,43), (59,61), (71,73), (101,103)
- 6. a) State the factors of 48. 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
 - b) State the *prime* factors of 48. 2, 3
 - c) Express 72 as a product of prime factors. $72 = 2^3 \cdot 3^2$
- 7. State the *prime factors* of:
 - a) 18 2, 3
 - b) 40 2, 5
 - c) 63 3, 7
 - d) 90 2, 3, 5

- 8. Explain why the numbers 0 and 1 have no prime factors. 0 is divisible by every integer (no unique prime factorization). 1 has only one factor (itself) and no prime divisors.
- 9. Use a *division table* to determine the prime factorization of:
 - a) $252 \ 2^2 \cdot 3^2 \cdot 7$
 - b) $378 \ 2 \cdot 3^3 \cdot 7$
 - c) $2025 \ 3^4 \cdot 5^2$
 - d) 2926 2 · 7 · 11 · 19
- 10. Use a *factor tree* to determine the prime factorization of:
 - a) $784\ 2^4 \cdot 7^2$
 - b) $960\ 2^6 \cdot 3 \cdot 5$
 - c) $4725 \ 3^3 \cdot 5^2 \cdot 7$
 - d) $8400\ 2^5 \cdot 3 \cdot 5^2 \cdot 7$
- 11. In each case, write the number as a product of (f) 257 prime factors.
 - a) $3315 \ 3 \cdot 5 \cdot 13 \cdot 17$
 - b) $8085 \ 3 \cdot 5 \cdot 7^2 \cdot 11$
 - c) $9990 \ 2 \cdot 3^3 \cdot 5 \cdot 37$
 - d) $7980\ 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 19$
 - 12. Which of the following numbers is *not* a prime factor of 2079?
 - **A.** 3 **B.** 7 **C.** 11 **D.** 13 2079 = $3^3 \cdot 7 \cdot 11$; not a factor: 13.
 - 13. How many numbers in the list 2, 3, 9, 13 are not prime factors of 2592? $2592 = 2^5 \cdot 3^4$; not prime factors: $9, 13 \Rightarrow 2$
 - 14. The sum of all *distinct* prime factors of 462 462 is _____. $462462 = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 13 \Rightarrow 36$
 - 15. There is only one set of *prime triplets* (three consecutive odd primes). If the triplets are a, b, c, find abc. $(3, 5, 7) \Rightarrow 105$
 - 16. The number 375 can be expressed as $p \times q^r$ in primes. Find p+q+r. $375=3\cdot 5^3 \Rightarrow 3+5+3=11$

Applications of Prime Factors

- 1. State the greatest common factor (GCF) of:
 - a) 18 and 27 9
 - b) 32 and 56 8
 - c) 36, 48, 90 6
- 2. Use prime factorization to determine the GCF of:
 - a) 180 and 420 180 = $2^2 \cdot 3^2 \cdot 5$, $420 = 2^2 \cdot 3 \cdot 5 \cdot 7 \Rightarrow GCF = 60$
 - b) 294 and 385 294 = $2 \cdot 3 \cdot 7^2$, $385 = 5 \cdot 7 \cdot 11 \Rightarrow$ GCF = 7
 - c) 252 and 756 252 = $2^2 \cdot 3^2 \cdot 7$, 756 = $2^2 \cdot 3^3 \cdot 7 \Rightarrow GCF = 252$
- 3. Use prime factorization to determine the GCF of each pair.
 - a) 528 and 780 528 = $2^4 \cdot 3 \cdot 11$, 780 = $2^2 \cdot 3 \cdot 5 \cdot 13 \Rightarrow 12$
 - b) 616 and 840 616 = $2^3 \cdot 7 \cdot 11$, 840 = $2^3 \cdot 3 \cdot 5 \cdot 7 \Rightarrow 56$
 - c) 1870 and 2210 1870 = $2 \cdot 5 \cdot 11 \cdot 17$, 2210 = $2 \cdot 5 \cdot 13 \cdot 17 \Rightarrow 170$
 - d) 714 and 1050 714 = $2 \cdot 3 \cdot 7 \cdot 17$, 1050 = $2 \cdot 3 \cdot 5^2 \cdot 7 \Rightarrow 42$
 - e) 128 and 320 2^7 and $2^6 \cdot 5 \Rightarrow 64$
 - f) 735 and 980 735 = $3.5.7^2$, 980 = $2^2.5.7^2 \Rightarrow 245$
- 4. Determine the GCF of:
 - a) 84, 420, 1008 84
 - b) 128, 984, 1496, 3080 8
- 5. State the lowest common multiple (LCM) of:
 - a) 8 and 12 24
 - b) 7 and 9 63
 - c) 12 and 20 60
 - d) 15 and 18 90
- 6. Use prime factorization to determine the LCM of:
 - a) 18 and $24 \ 2^3 \cdot 3^2 = 72$
 - b) 45 and 84 $2^2 \cdot 3^2 \cdot 5 \cdot 7 = 1260$
 - c) 96 and 144 $2^5 \cdot 3^2 = 288$
 - d) 55 and 143 $5 \cdot 11 \cdot 13 = 715$
 - e) 72 and 252 $2^3 \cdot 3^2 \cdot 7 = 504$

- 7. Determine the LCM of:
 - a) 8, 12, 18 72
 - b) 6, 14, 35 210
 - c) 9, 10, 25 450
 - d) 12, 30, 105 420
- 8. In each case, decide whether the number is a perfect square (give the root if so).
 - a) $9801 99^2$
 - b) 7776 not a square $(2^5 \cdot 3^5)$
 - c) $4900 70^2$
 - d) 1089 33²
- 9. Consider 103 823.
 - a) Evaluate $\sqrt[3]{103\,823}$. 47
 - b) Explain why 103 823 is a perfect cube. 47³; prime exponents are all multiples of 3.
- 10. Use prime factorization to test for perfect cubes (give the cube root if so).
 - a) $2744 \ 14^3$
 - b) 11059248³
 - c) $35\,937\,33^3$
 - d) 421 875 75³
- 11. Explain how to tell if a number is both a perfect square and cube. All prime exponents multiples of 6 (a perfect 6th power).
- 12. The greatest common factor of 425 and 595 is **A.** 5 **B.** 7 **C.** 17 **D.** 85 $425 = 5^2 \cdot 17$, $595 = 5 \cdot 7 \cdot 17 \Rightarrow 85$.
- 13. Two whole numbers x, y have gcd(x, y) = 14. Which statement must be false?
 - **A.** x, y both even **B.** xy divisible by 98 **C.** x, y both multiples of 7 **D.** Neither x nor y can be prime (B) is false; gcd = 14 does not force 7^2 in xy.
- 14. The LCM of 36, 231, 275 is ______. 36 = $2^2 \cdot 3^2$, $231 = 3 \cdot 7 \cdot 11$, $275 = 5^2 \cdot 11 \Rightarrow LCM = 2^2 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 11 = 69,300$
- 15. An encyclopedia has 840 pages. Page 12 and every 12th page is green; page 21 and every 21st is orange. How many pages are both? *Multiples* of lcm(12, 21) = 84 up to 840: 10 pages.

Rational and Irrational Numbers

- 1. For each, state repeating/non-repeating and terminating/non-terminating.
 - a) $\frac{7}{20}$ 0.35; terminating
 - b) 0.742742742... repeating, non-terminating
 - c) $\frac{19}{22}$ repeating, non-terminating
 - d) $\sqrt{\frac{196}{400}} \frac{7}{10}$; terminating
 - e) $-\sqrt{31}$ non-repeating, non-terminating (irrational)
 - f) $\sqrt{0.36}$ 0.6; terminating
 - g) $-4\frac{5}{11}$ $-4.\overline{45}$; repeating
 - h) π non-repeating, non-terminating (irrational)
- 2. True/False.
 - a) Every terminating decimal is rational. T
 - b) A repeating decimal cannot be written as a fraction. F
 - c) Only terminating decimals are rational. F
 - d) Every rational decimal is either terminating or repeating. T
 - e) A decimal cannot be both repeating and non-repeating. T
 - f) π is irrational. T
- 3. Rational or irrational? Briefly justify.
 - a) $-\frac{17}{8}$ rational; ratio of integers
 - b) 0.605 rational; terminating
 - c) $\sqrt{196}$ rational; 14
 - d) 0.305305305... rational; repeating
- 4. Order on a number line:

 $\sqrt{14}$, $\sqrt{\pi}$, $\sqrt{0.2}$, $\sqrt{98}$, $2\sqrt{11}$, $3\sqrt{5}$.

Approximations: $\sqrt{0.2} \approx 0.447$,

 $\sqrt{\pi} \approx 1.772$,

 $\sqrt{14} \approx 3.742$

 $2\sqrt{11} \approx 6.633,$

 $3\sqrt{5}\approx 6.708$.

 $\sqrt{98} \approx 9.899.$

So $\sqrt{0.2} < \sqrt{\pi} < \sqrt{14} < 2\sqrt{11} < 3\sqrt{5} < \sqrt{98}$.

- 5. Identify as rational or irrational; if rational, simplest fraction.
 - a) $0.92 \frac{23}{25}$
 - b) $\sqrt{\frac{9}{121}} \frac{3}{11}$
 - c) $\sqrt{0.0121} \ 0.11 = \frac{11}{100}$
 - d) $-\sqrt{97}$ irrational
 - e) $-0.\overline{8} \frac{8}{9}$
 - f) $-\sqrt{\frac{49}{81}} \frac{7}{9}$
 - g) $4.612612...\frac{512}{111}$
 - h) $\sqrt{\frac{361}{529}} \frac{19}{23}$
 - i) $5.\overline{0}$ 5
- 6. Convert to improper fraction (simplest form).
 - a) $0.\overline{7} \frac{7}{9}$
 - b) $0.1\overline{6} \frac{1}{6}$
 - c) $1.2\overline{3} \frac{37}{30}$
 - d) $0.\overline{204} \frac{304}{999} = \frac{68}{333}$ e) $-2.45\overline{45} \frac{245}{99}$
- 7. Convert the repeating decimal to a fraction (algebraic method).
 - a) $0.\overline{3} \frac{1}{3}$
 - b) $0.7\overline{2} \frac{13}{18}$
 - c) $0.009\overline{81} \frac{27}{2750}$
- 8. Convert each terminating decimal to an improper fraction (lowest terms).
 - a) $3.007 \frac{3007}{1000}$
 - b) $-2.125 \frac{17}{8}$
 - c) $4.0625 \frac{65}{16}$
- 9. The decimal for $\frac{7}{12}$ is
 - A. terminating & repeating
 - **B.** terminating & non-repeating
 - C. non-terminating & repeating
 - **D.** non-terminating & non-repeating Correct: C.
- 10. Which is irrational?
 - **A.** $\sqrt{256}$ **B.** $\sqrt{0.09}$ **C.** $\frac{25}{6}$ **D.** $\sqrt{50}$ Correct: D.
- 11. $9.\overline{9}$ is equal to
 - **A.** $\frac{99}{10}$ **B.** $\frac{999}{100}$ **C.** 10 **D.** 9 Correct: C (since
- 12. Write $0.\overline{27} = \frac{a}{b}$ in lowest terms and compute $b-a. \frac{3}{11} \Rightarrow 8$

Number Systems

- 1. Place each into the appropriate nested sets $(N\subset W\subset \mathbb{Z}\subset \mathbb{Q}\subset \mathbb{R} \text{ and } \mathbb{R}\setminus \mathbb{Q})$: $-3,\ \sqrt{81},\ \frac{29}{11},\ \sqrt{2},\ 0,\ \pi.$ $-3:\mathbb{Z};\ \sqrt{81}=9:N;\ \frac{29}{11}:\mathbb{Q};\ \sqrt{2}:\mathbb{R}\setminus \mathbb{Q};\ 0:W;$ $\pi:\mathbb{R}\setminus \mathbb{Q}.$
- 2. List all sets (largest \rightarrow smallest) each belongs to.
 - a) $-8 \mathbb{R}, \mathbb{Q}, \mathbb{Z}$
 - b) $\sqrt{64} \mathbb{R}, \mathbb{Q}, \mathbb{Z}, W, N$
 - c) $3.2727...\mathbb{R}, \mathbb{Q}$
 - $d) -\frac{12}{7} \mathbb{R}, \mathbb{Q}$
 - e) $0 \mathbb{R}, \mathbb{Q}, \mathbb{Z}, W$
 - f) $\sqrt{11} \mathbb{R} \setminus \mathbb{Q}$
 - g) non-repeating $-2.1345218...\mathbb{R} \setminus \mathbb{Q}$
 - h) $\pi \mathbb{R} \setminus \mathbb{Q}$
- 3. Why does -7 belong to more sets than $-\frac{7}{2}$? -7 is an integer (hence rational, real); $-\frac{7}{2}$ is not an integer.
- 4. Indicate membership in $\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}$ (irrationals), and \mathbb{R} for each.
 - a) $\frac{1}{5} \mathbb{Q}, \mathbb{R}$
 - b) $123987 \mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - c) $-4 \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - d) $7.534 \mathbb{Q}, \mathbb{R}$
 - e) $9.5 \mathbb{Q}, \mathbb{R}$
 - f) $\sqrt{75} \ \overline{\mathbb{Q}}, \mathbb{R}$
 - g) $-\pi \overline{\mathbb{Q}}, \mathbb{R}$
 - h) $-\frac{355}{113} \mathbb{Q}, \mathbb{R}$
 - i) $-\sqrt{49} \ \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - j) $0.000005 \mathbb{Q}, \mathbb{R}$
 - k) non-repeating $2.232425\dots\,\overline{\mathbb{Q}},\mathbb{R}$
- 5. Find a number that satisfies each condition.
 - a) Integer but not whole. -3
 - b) Rational but not integer. $\frac{7}{5}$
 - c) Real but not rational. $\sqrt{5}$
 - d) Whole but not natural. 0

- 6. Fill with always/sometimes/never.
 - a) A whole number is _____ a natural number. Sometimes (0 excluded)
 - b) The quotient of two integers is _____ an integer. Sometimes
 - c) A whole number is _____ a rational number. Always
 - d) The difference between two integers is _____ an integer. Always
 - e) The square root of a number is _____ irrational. Sometimes
 - f) A negative number is _____ in W. Never
 - g) A number in N is _____ in \mathbb{R} . Always
- 7. True/False.
 - a) All natural numbers are integers. T
 - b) Real numbers consist of rationals and irrationals. ${\cal T}$
 - c) Integers are nested within rationals. T
 - d) All integers are rational. T
 - e) All irrationals are real. T
 - f) \mathbb{R} is contained in N. F
 - g) \mathbb{Q} is contained in W. F
 - h) Exactly one element of W is not in N. T (0)
- 8. More about roots (True/False).
 - a) Every positive number has two square roots but one cube root. T (real roots)
 - b) Every negative number has one real cube root but no real square roots. T
- 9. Short explanations (estimation).
 - a) $\sqrt{8} + \sqrt{17} \neq \sqrt{25} \ 2.83 + 4.12 \approx 6.95 \neq 5$
 - b) $\sqrt{2} + \sqrt{3} + \sqrt{4} \neq \sqrt{9} \ 1.41 + 1.73 + 2 = 5.14 \neq 3$
- 10. Determine true or false.
 - a) $\sqrt{9} + \sqrt{4} = \sqrt{9+4}$. F
 - b) $\sqrt{9} \sqrt{4} = \sqrt{9-4}$. F
 - c) $\sqrt{9} \cdot \sqrt{4} = \sqrt{36}$. T
 - d) $\sqrt{9} + \sqrt{4} = \sqrt{9} + 4$. F

- 11. For each, (i) estimate mentally; (ii) use a calculator (nearest tenth) and judge the estimate.
 - a) $\sqrt{21}$ (i) 4–5; (ii) ≈ 4.6
 - b) $\sqrt{27.4}$ (i) 5-6; (ii) ≈ 5.2
 - c) $4\sqrt{48} 3\sqrt{63} \approx 3.9$
 - d) $\frac{3}{4}\sqrt{14.2} + \frac{1}{2}\sqrt{5} \approx 4.0$
 - e) $\sqrt{123} \approx 11.1$
 - f) $\sqrt{\sqrt{90}} \approx 3.08$
 - g) $\sqrt{10} + \sqrt{24.5} \approx 8.11$
 - h) $\sqrt{\sqrt{2601}} \approx 7.14$
- 12. Estimate to one significant digit.
 - a) $\sqrt{507.1} \approx 20$
 - b) $\sqrt{7991} \approx 90$
 - c) $\sqrt{10389} \approx 100$
 - d) $\sqrt{823775} \approx 900$
 - e) $\sqrt{0.501} \approx 0.7$
 - f) $\sqrt{0.0501} \approx 0.2$
 - g) $\sqrt{0.0876} \approx 0.3$
 - h) $\sqrt{0.0003972} \approx 0.02$
- 13. (i) estimate; (ii) calculator (nearest tenth).
 - a) $\sqrt[3]{25} \approx 2.9$
 - b) $\sqrt[3]{2} \approx 1.3$
 - c) $\sqrt[3]{202} \approx 5.9$
 - d) $\sqrt[3]{999.9} \approx 10.0$
 - e) $2\sqrt[3]{58.7} 3\sqrt[3]{7.62} \approx 1.9$
 - f) $\frac{2}{3}\sqrt{40} \frac{1}{2}\sqrt{60} \approx 0.3$
 - g) $\sqrt[3]{3\sqrt{10}} \approx 2.1$

14. Order on the number line:

 $\sqrt{50}$, $\sqrt[3]{50}$, $5\sqrt{10}$, $\sqrt[3]{10^3}$, $10\sqrt{5}$, $10\sqrt[3]{5}$. $\sqrt[3]{50} \approx 3.68 < \sqrt{50} \approx 7.07 < \sqrt[3]{1000} = 10 < 5\sqrt{10} \approx 15.81 < 10\sqrt[3]{5} \approx 17.10 < 10\sqrt{5} \approx 22.36$.

- 15. Which nesting statement is false?
 - **A.** Integers \subset rationals
 - **B.** Wholes \subset naturals
 - **C.** Irrationals \subset reals
 - **D.** Reals \subset naturals *Correct:* **D**.
- 16. How many of $-\sqrt{6}$, $\sqrt[3]{-6}$, $-\sqrt[3]{6}$, $\sqrt{-6}$ are not real? $\sqrt{-6}$ only $\Rightarrow 1$
- 17. How many of $\sqrt{49}$, $\sqrt{49/100}$, $\sqrt{0.49}$, $\sqrt{\frac{4}{9}}$ can be written as $\frac{a}{b}$ with $a, b \in \mathbb{N}$? All 4.
- 18. To the nearest hundredth, evaluate $5\sqrt[3]{7}$. \approx 9.57
- 19. Evaluate the absolute values.
 - a) |-4| 4
 - b) |13| 13
 - c) |3-9|6
 - d) ||3| |9|| 6
 - e) $|-\sqrt[3]{27}|$ 3
 - f) $|\sqrt[3]{-27}|$ 3
- 20. Decide whether the statement is true or false.
 - a) |x| = x if x > 0. T
 - b) |x| = -x if x < 0. T
- 21. Sketch solution sets on a number line.
 - a) $|x| < 5 \ (-5, 5)$
 - b) $|a| \ge 3 \ (-\infty, -3] \cup [3, \infty)$

Radicals

- 1. Mentally evaluate where possible (real numbers).
 - a) $\sqrt{81} \ 9$
 - b) $\sqrt[4]{81}$ 3
 - c) $5\sqrt[3]{27}$ 15
 - d) $\sqrt[5]{100\,000}$ 10
 - e) $\sqrt{\frac{16}{25}} \frac{4}{5}$
 - f) $\sqrt[4]{\frac{1}{16}} \frac{1}{2}$
 - g) $4\sqrt[4]{\frac{1}{16}}$ 2
 - h) $-\sqrt{1} 1$
 - i) $\sqrt{-1}$ not real
 - j) $\sqrt[5]{-1}$ -1
 - k) $7\sqrt[3]{-125} 35$
 - l) $-\sqrt[4]{\frac{1}{16}}$ $-\frac{1}{2}$
 - m) $3\sqrt{144}$ 36
 - n) $\frac{5}{2}\sqrt[5]{32}$ 5
 - o) $-\sqrt[11]{-1}$ 1 (since $\sqrt[11]{-1} = -1$, so -(-1) = 1)
 - p) $\sqrt[3]{\frac{8}{27}} \frac{2}{3}$
- 2. True/False.
 - a) The square roots of 25 are ± 5 . T
 - b) $\sqrt{25} = \pm 5$. F (principal root = +5)
 - c) If $x^2 = 25$ and $x \in \mathbb{R}$, then $x = \pm 5$. T
- 3. Use a calculator to evaluate (state sign first, then value as needed).
 - a) $\sqrt[4]{4096}$ 8
 - b) $\sqrt[5]{-243} -3$
 - c) $-\sqrt[4]{2401} -7$
 - d) $-\sqrt[3]{729} -9$
 - e) $\sqrt[3]{-729} 9$
 - f) $-8\sqrt[4]{\frac{1}{256}}$ -1
 - g) $\sqrt[6]{0.015625}$ 0.5
 - h) $\sqrt[4]{-6561}$ not real
 - i) $\frac{3}{2}\sqrt[4]{\frac{16}{81}}$ 1

- 4. Evaluate to the nearest hundredth.
 - a) $\sqrt[4]{10} \approx 1.78$
 - b) $\sqrt[8]{29} \approx 1.54$
 - c) $\frac{3}{2}\sqrt[3]{-527} \approx -12.12$
- 5. Evaluate to the nearest tenth.
 - a) $\sqrt[5]{-25} \approx -1.9$
 - b) $-5\sqrt[4]{169} \approx -18.0$
 - c) $\frac{1}{2}\sqrt[3]{-81} \approx -2.2$
- 6. Identify the *index* and the *radicand* in each radical.
 - a) $\sqrt[3]{42}$ index: ___ radicand: ___ index 3, radicand 42
 - b) $\sqrt[4]{36}$ index: ____ radicand: ____ index 4, radicand 36
 - c) $5\sqrt{17}$ index: ____ radicand: ____ index 2, radicand 17; 5 is a coefficient
- 7. Explain the meaning of the index 4 in the radical $\sqrt[4]{36}$. It means the fourth root: the number which, raised to the 4th power, equals 36.
- 8. Determine whether each statement is **true** or **false**.
 - a) $\sqrt{30} = \sqrt{5}\sqrt{6}$ True
 - b) $\sqrt{6-4} = \sqrt{6} \sqrt{4} \; False$
 - c) $\sqrt{3} = \frac{\sqrt{45}}{\sqrt{15}}$ True
 - d) $\frac{\sqrt{20}}{\sqrt{10}} = \sqrt{10} \ False$
 - e) $\sqrt{2} + \sqrt{2} = \sqrt{4} \ False$
 - f) $\sqrt{2} \times \sqrt{2} = \sqrt{4} \text{ True}$
 - g) $\sqrt{\frac{1}{2} \cdot 30} = \sqrt{15} \ True$
 - $h) \frac{1}{2}\sqrt{30} = \sqrt{15} False$

- 9. Write as a single radical in the form \sqrt{x} (simplify x).
 - a) $\sqrt{5}\sqrt{7}\sqrt{35}$
 - b) $\sqrt{14}\sqrt{2}\sqrt{28}$
 - c) $\sqrt{3} \cdot \sqrt{8} \sqrt{24}$
 - d) $\sqrt{6} \cdot \sqrt{11} \sqrt{66}$
 - e) $\frac{\sqrt{20}}{\sqrt{10}} \sqrt{2}$
 - $f) \ \frac{\sqrt{25}}{\sqrt{5}} \ \sqrt{5}$
 - $g) \ \frac{\sqrt{10}\sqrt{6}}{\sqrt{2}} \ \sqrt{30}$
 - $h) \ \frac{\sqrt{81}}{\sqrt{9}} \ \sqrt{9}$
- 10. Express each as a product of radicals (split into two square roots).
 - a) $\sqrt{35} \sqrt{5} \sqrt{7}$
 - b) $\sqrt{33} \sqrt{3} \sqrt{11}$
 - c) $\sqrt{65} \sqrt{5} \sqrt{13}$
 - d) $\sqrt{49} \sqrt{7} \sqrt{7}$

- 11. Consider the statements:
 - I. The cube root of -27 (over the reals) is ± 3 .
 - II. The fourth roots of 81 (over the reals) are ± 3 .

III. $-\sqrt[3]{1000} = \sqrt[3]{-1000}$.

IV. $-\sqrt[4]{16} = \sqrt[4]{-16}$.

Which are true?

- **A.** II and III only
- B. I, II, and III only
- C. I, II, III, and IV
- **D.** Some other combination *Correct:* **A**. (I false, II true, III true, IV false).
- 12. In the radical $\sqrt[4]{18}$, the index and radicand are
 - **A.** index 2, radicand $\sqrt{18}$
 - **B.** index 1, radicand 1
 - C. index 18, radicand 1
 - **D.** index 4, radicand 18 Correct: **D**.
- 13. To the nearest hundredth, evaluate $\sqrt{\frac{7}{8}} + 2\sqrt[4]{\frac{7}{8}}$. $\frac{\sqrt{0.875}}{sum \approx 2.87} \approx 0.9354, \ \sqrt[4]{0.875} \approx 0.9672,$

Entire Radicals and Mixed Radicals — Part One

1. Without a calculator, arrange in order from greatest to least:

greatest to teast: $3\sqrt{5}$, $5\sqrt{3}$, $\sqrt{15}$, $2\sqrt{8}$, $8\sqrt{2}$. $8\sqrt{2}$ (11.31) > $5\sqrt{3}$ (8.66) > $3\sqrt{5}$ (6.71) > $2\sqrt{8} = 4\sqrt{2}$ (5.66) > $\sqrt{15}$ (3.87).

- 2. Two students find the hypotenuse PQ of a right triangle with legs $\sqrt{34}$ and $\sqrt{38}$. Louis rounds each leg; Asia simplifies radicals first.
 - a) Compute each to the nearest hundredth. Louis ≈ 8.48 ; Asia $6\sqrt{2} \approx 8.49$.
 - b) Which is more accurate? Asia (kept exact form before rounding).
 - c) Exact mixed radical. $6\sqrt{2}$.
- 3. Convert each to a mixed radical (simplest form).
 - a) $\sqrt{96} \ 4\sqrt{6}$
 - b) $\sqrt{242} \ 11\sqrt{2}$
 - c) $\frac{2}{3}\sqrt{180} \ 4\sqrt{5}$
 - d) $\frac{1}{8}\sqrt{320} \sqrt{5}$
 - e) $\sqrt{245} \ 7\sqrt{5}$
 - f) $4\sqrt{338} \ 52\sqrt{2}$
 - g) $\sqrt{1250} \ 25\sqrt{2}$
 - h) $\sqrt{66}$ cannot convert (no perfect-square factor > 1)
 - i) $-\frac{5}{6}\sqrt{304} \frac{10}{3}\sqrt{19}$
 - j) $\sqrt{980} \ 14\sqrt{5}$
 - k) $4\sqrt{272} \ 16\sqrt{17}$
 - 1) $-3\sqrt{288} 36\sqrt{2}$
 - m) $2\sqrt{369} \ 6\sqrt{41}$
 - n) $\sqrt{364} \ 2\sqrt{91}$
 - o) $\frac{2}{5}\sqrt{450} \ 6\sqrt{2}$
 - p) $\frac{7}{11}\sqrt{341} \ cannot \ convert \ (341 = 11 \cdot 31)$
- 4. Convert to a *mixed radical* where the radicand is a whole number.
 - a) $\sqrt{\frac{2}{9}} \frac{1}{3} \sqrt{2}$
 - b) $\sqrt{\frac{5}{4}} \frac{\sqrt{5}}{2}$
 - c) $\sqrt{\frac{18}{25}} \frac{3\sqrt{2}}{5}$

d)
$$7\sqrt{\frac{20}{49}} \ 2\sqrt{5}$$

- 5. Convert to entire radical form.
 - a) $2\sqrt{6} \sqrt{24}$
 - b) $3\sqrt{7} \sqrt{63}$
 - c) $5\sqrt{15} \sqrt{375}$
 - d) $12\sqrt{2} \sqrt{288}$
 - e) $3\sqrt{25} \sqrt{225}$
 - f) $-8\sqrt{3} \sqrt{192}$
 - g) $9\sqrt{10} \sqrt{810}$
 - h) $-4\sqrt{5} \sqrt{80}$
- 6. Convert the following to entire radical form.
 - a) $\frac{1}{3}\sqrt{27} \sqrt{3}$
 - b) $15\sqrt{225}$
 - c) $\frac{3}{2}\sqrt{8}\sqrt{18}$
 - d) $3^2\sqrt{21} \sqrt{1701}$
- 7. Given $\sqrt{6} \approx 2.45$ and $\sqrt{60} \approx 7.75$, approximate:
 - a) $\sqrt{600}$ 24.5
 - b) $\sqrt{6000}$ 77.5
 - c) $\sqrt{600000}$ 775
 - d) $\sqrt{0.06}$ 0.245
 - e) $\sqrt{0.6} \ 0.775$
 - f) $\sqrt{24} \ 4.90$
 - g) $\sqrt{540}$ 23.25
 - h) $\sqrt{\frac{6}{25}}$ 0.49
- 8. Arrange from greatest to least:

 $3\sqrt{7}$, $5\sqrt{3}$, $\sqrt{60}$, $2\sqrt{11}$, $\frac{1}{2}\sqrt{200}$.

 $5\sqrt{3}$ (8.66) > $3\sqrt{7}$ (7.94) > $\sqrt{60}$ (7.75) > $\frac{1}{2}\sqrt{200}$ (7.07) > $2\sqrt{11}$ (6.63).

- 9. In right $\triangle XYZ$ with legs 19 cm and 5 cm, find hypotenuse XY:
 - a) entire radical $\sqrt{386}$
 - b) mixed radical $(already\ simplest)$
 - c) decimal (nearest hundredth) 19.65
- 10. Find the missing side in simplest mixed radical form.
 - a) legs 4,8; hypotenuse $x = \sqrt{80} = 4\sqrt{5}$
 - b) legs 5,6; hypotenuse $x = \sqrt{61}$
 - c) hypotenuse 8, leg 6; other leg x $x = \sqrt{28} =$

 $2\sqrt{7}$

- 11. The length of \overline{KL} for legs $\sqrt{6}$ and $\sqrt{24}$ is **A.** $\sqrt{540}$ **B.** $3\sqrt{2}$ **C.** $\sqrt{30}$ **D.** $9\sqrt{2}$ Correct: C.
- 12. Without a calculator, which radical is *not* equal to the others?
 - **A.** $12\sqrt{2}$ **B.** $\sqrt{288}$ **C.** $6\sqrt{8}$ **D.** $4\sqrt{72}$ *D.* $(\sqrt{288} = 12\sqrt{2}, 6\sqrt{8} = 12\sqrt{2}, but 4\sqrt{72} = 24\sqrt{2}.)$
- 13. On a clear day, $d = \sqrt{13h}$ (km), where h metres is eye level above ground. From a 698.2 m building with eye level 1.8 m above the roof, write $d = a\sqrt{b}$ and find a + b. h = 700, $d = \sqrt{9100} = 10\sqrt{91}$; a + b = 101.
- 14. Using Heron's formula, a triangle with sides 14, 15, 25 has area $A = p\sqrt{26}$. Find p. p = 18.
- 15. A square of side 8 cm is inscribed in a larger square by joining midpoints. If larger side is $p\sqrt{q}$, find pq. $8\sqrt{2} \Rightarrow pq = 16$.

Entire Radicals and Mixed Radicals — Part Two

- 1. Convert the following radicals to mixed radicals in simplest form.
 - a) $\sqrt[3]{48} \ 2\sqrt[3]{6}$
 - b) $\sqrt[3]{128} 4\sqrt[3]{2}$
 - c) $\sqrt[3]{2000} 10\sqrt[3]{2}$
 - d) $5\sqrt[3]{-81} 15\sqrt[3]{3}$
 - e) $\frac{5}{6}\sqrt[3]{108} \frac{5}{2}\sqrt[3]{4}$
 - f) $5\sqrt[4]{162}$ $15\sqrt[4]{2}$
 - g) $5\sqrt{192} \ 40\sqrt{3}$
 - h) $-2\sqrt[3]{625} 10\sqrt[3]{5}$
- 2. Convert the following mixed radicals to entire radicals.
 - a) $2\sqrt[5]{2} \sqrt[5]{32}$
 - b) $3\sqrt[3]{4}\sqrt[3]{108}$
 - c) $-3\sqrt[4]{3} \sqrt[4]{243}$
 - d) $-10\sqrt[3]{5} \sqrt[3]{5000}$
 - e) $2\sqrt[5]{6}\sqrt[5]{192}$
 - f) $\frac{1}{2}\sqrt[3]{16}\sqrt[3]{2}$
 - g) $\frac{3}{10}\sqrt[4]{100000}\sqrt[4]{810}$
 - h) $-5\sqrt[3]{9} \sqrt[3]{1125}$
- 3. Arrange, least to greatest (no calculator): $7\sqrt[6]{1}$, $-3\sqrt[3]{-27}$, $\frac{5}{2}\sqrt[4]{16}$, $3\sqrt[3]{64}$. $-3\sqrt[3]{-27} < 7\sqrt[6]{1} < \frac{5}{2}\sqrt[4]{16} < 3\sqrt[3]{64}$.
- 4. Consider $2\sqrt[3]{11}$, $3\sqrt[3]{3}$, $4\sqrt[3]{2}$, $2\sqrt[3]{6}$.
 - a) Explain how to compare without a calculator. Cube each expression; compare the resulting values.
 - b) Order least to greatest. $2\sqrt[3]{6} < 3\sqrt[3]{3} < 4\sqrt[3]{2} < 2\sqrt[3]{11}$.
- 5. $\sqrt[3]{240}$ is equivalent to

A. $2\sqrt[3]{40}$ **B.** $4\sqrt[3]{15}$ **C.** $2\sqrt[3]{30}$ **D.** $8\sqrt[3]{30}$ *Correct:* **B**.

- 6. Consider the statements:
 - 1) $-3\sqrt[4]{8} = 3\sqrt[4]{-8}$,
 - $2) -2\sqrt[3]{7} = 2\sqrt[3]{-7}.$
 - A. Both true B. Both false C. 1 true, 2 falseD. 1 false, 2 true Correct: D.
- 7. The mixed radical $\frac{1}{12}\sqrt[3]{128}$ equals $a\sqrt[3]{b}$ in simplest form. Find a+b (nearest tenth). $\frac{1}{3}\sqrt[3]{2} \Rightarrow 2.3$.
- 8. $\sqrt{3x} \cdot \sqrt{2x}$ is equivalent to

A.
$$\sqrt{6x}$$
 B. $\sqrt{36x^2}$ **C.** $6\sqrt{x}$ **D.** $x\sqrt{6}$ $\sqrt{3x}\sqrt{2x} = \sqrt{6x^2} = x\sqrt{6}$ $(x \ge 0)$.

Answer: **D**.

- 9. Express as an entire radical.
 - a) $6\sqrt{y} \sqrt{36y}$
 - b) $8\sqrt{c^2} \sqrt{64c^2}$
 - c) $10\sqrt{2yz^3} \sqrt{200yz^3}$
 - d) $-3\sqrt[3]{x^2}\sqrt[3]{-27x^2}$
 - e) $c\sqrt{c}\sqrt{c^3}$
 - f) $x\sqrt{3y^3} \sqrt{3x^2y^3}$
 - g) $11c^2\sqrt{c^2d} \sqrt{121c^6d}$
 - h) $5a^3b\sqrt{3a^2b} \sqrt{75a^8b^3}$
- 10. Express as a mixed radical in simplest form.
 - a) $\sqrt{a^5} a^2 \sqrt{a}$
 - b) $\sqrt{t^3} t\sqrt{t}$
 - c) $\sqrt{x^{11}} \ x^5 \sqrt{x}$
 - d) $\sqrt[3]{x^4} \ x \sqrt[3]{x}$
 - e) $\sqrt[3]{b^8} \ b^2 \sqrt[3]{b^2}$
 - f) $\sqrt[4]{x^6} \ x \sqrt[4]{x^2}$
- 11. Express as a mixed radical.
 - a) $\sqrt{8y^2} \ 2y\sqrt{2}$
 - b) $\sqrt{16p^3} \ 4p\sqrt{p}$
 - c) $\sqrt{75y^3z^4} \ 15yz^2\sqrt{3y}$
 - d) $\sqrt{300a^9w^7} \ 30a^4w^3\sqrt{3aw}$
 - e) $5\sqrt{28c^4d^3} \ 10c^2d\sqrt{7d}$
 - $f) -6\sqrt{29a^4b^8} -6a^2b^4\sqrt{29}$

Quick Check

- 1. Which is not a prime factor of $14\,014$?
 - **A.** 7 **B.** 11 **C.** 13 **D.** 17 D
- 2. How many numbers in the list 7, 11, 17, 21 are prime factors of 3234?
 - **A.** 1 **B.** 2 **C.** 3 **D.** 4 B
- 3. The sum of prime factors of 160797 is _____.
- 4. The GCF of 6699 and 8265 is _____. 87
- 5. LCM of 14 and 105 equals GCF of P, Q. Which must be false?
 - **A.** P multiple of 7
 - $\mathbf{B.}\ Q$ multiple of 21
 - **C.** P < 200
 - **D.** $Q > 2000 \ C$
- 6. If x is a perfect square, minimum value of d (in the given factor tree) is
 - **A.** 2 **B.** 3 **C.** 6 **D.** 9 D
- 7. If x is a perfect cube, the minimum value of x is ______. 216
- $8. \otimes is irrational.$ Its decimal representation is
 - **A.** terminating & repeating
 - B. terminating & non-repeating
 - C. non-terminating & repeating
 - **D.** non-terminating & non-repeating D
- 9. Which are rational? (I) 1.0100100001... (non-repeating), (II) $\sqrt[3]{\frac{8}{27}}$, (III) 0.04, (IV) 0.29
 - A. III, IV
 - B. II, III, IV
 - C. I, II, III, IV
 - **D.** Other B

- 10. The rational number $1.\overline{54}$ as $\frac{c}{d}$; the value of c is **A.** 17 **B.** 11 **C.** 6 **D.** 4 A
- 11. M, N irrationals with 30 < M < 40, 3 < N < 4. The value of $\sqrt{M} + \sqrt{N}$ is best represented by **A.** P **B.** Q **C.** R **D.** S B
- 12. Largest among $\sqrt[3]{67}$, $\sqrt[4]{98}$, $\sqrt{19}$, $\sqrt[5]{201}$ is **A.** $\sqrt{19}$ **B.** $\sqrt[4]{98}$ **C.** $\sqrt[3]{67}$ **D.** $\sqrt[5]{201}$ *A*
- 13. The length $12\sqrt[4]{4000}$ m has index and radicand **A.** 4 and 4000
 - **B.** 12 and 4000
 - **D.** 12 and 400
 - **C.** 4 and 12
 - **D.** 4000 and 4 A
- 14. When $7\sqrt[3]{6}$ is written as an entire radical, the radicand is _____. 2058
- 15. Which statements are true? 1) $35 = 7\sqrt{5}$ 2) $\sqrt{28} = 2\sqrt{7}$ 3) $4\sqrt{3} = 48$
 - **A.** 1 only
 - **B.** 2 only
 - C. 1 and 2 only
 - **D.** 2 and 3 only C
- 16. Three students rewrote $\sqrt{4050}$. Who is correct?
 - A. I only
 - **B.** II and III
 - C. All three
 - **D.** Other B
- 17. Circle area: if area 120π cm², radius is **A.** 60 **B.** $12\sqrt{10}$ **C.** $2\sqrt{30}$ **D.** $2\sqrt{15}$ *C*
- 18. A cube with volume 720 mm³ has edge length
- $a\sqrt[3]{b}$ mm. Find a+b. 92
- 19. Consider $4\sqrt[3]{3}$, $5\sqrt{x}$, $16\sqrt{y}$. Which is correct?
 - **A.** x < y < z
 - **B.** z < x < y
 - **C.** y < z < x
 - **D.** $z < y < x \ C$