DISCIPLINE SPECIFIC CORE COURSE –18: INDUSTRIAL MICROBIOLOGY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the			Eligibility	Pre-
Code		course			criteria	requisite
		Lecture	Tutorial	Practical/		of the
				Practice		course
						(if any)
MICROB-	4	3	0	1	Class XII pass	None
DSC603:					with Biology/	
INDUSTRIAL					Biotechnology/	
MICROBIOLOGY					Biochemistry	

Learning Objectives

The Learning Objectives of this course are as follows:

- The major objective of this course is to give students an overview of the applications of fermentation processes in industry.
- The students will gain in-depth knowledge of different types of fermentation processes, fermenter designs and operations. They will become aware of large scale culturing methods of microorganisms for production of bioactives of industrial importance.
- Students will also gain an insight into steroid biotransformation and enzyme immobilization

Learning outcomes

The Learning Outcomes of this course are as follows:

- Student will be able to describe important developments in industrial microbiology and explain different types of fermentation processes.
- Student will be able to discuss the design, operations and applications of different types of fermenters and the measurement and control of fermentation parameters.
- Student will be able to demonstrate use of various methods to isolate, screen, preserve and maintain industrially important microbial strains, the different types of media used in fermentation processes.
- Student will be able to demonstrate use of various techniques for the recovery and purification of industrial products produced by microorganisms.
- Student will be able to explain the principles of large-scale microbial production and recovery of industrial products.
- Student will be able to demonstrate microbiological transformations of steroids and use the methods of enzyme immobilization to exploit their advantages and applications in the industry.

SYLLABUS OF DSC-18

UNIT – I (7 hours)

Development of industrial microbiology: Important developments in industrial microbiology and contribution of following scientists: Louis Pasteur, Carl Wilhelm Scheele, Casimir Funk, Alexander Fleming, Selman A. Waksman, Howard W Florey and Ernst B Chain. Types of fermentation processes: aerobic and anaerobic fermentations, solid-state and liquid-state (stationary and submerged) fermentations, batch, fed-batch and continuous fermentations

UNIT - II (10 hours)

Bioreactors and analysis of fermentation parameters: Parts of a typical fermenter. Types of bioreactors and their applications: Laboratory, pilot-scale and production fermenters, continuously stirred tank reactor, air-lift fermenter. Measurement and control of parameters: pH, temperature, dissolved oxygen, foaming and aeration.

UNIT – III (7 hours)

Selection of industrially important microbial strains: Sources of industrially important microorganisms, their isolation and screening (primary and secondary). Preservation and maintenance of stock and working cultures. Crude and synthetic fermentation media, inoculum and production media. Crude media components: molasses, corn-steep liquor, sulphite- waste liquor, whey, yeast extract., peptone and tryptone.

UNIT – IV (4 hours)

Recovery methods for fermentation products: Physiochemical and biological methods for cell disruption, centrifugation, batch filtration, precipitation, solvent-solvent extraction spray drying and lyophilization.

UNIT – V (17 hours)

Upstream and downstream processing of microbial products, steroid biotransformation and enzyme immobilization: Citric acid, ethanol, glutamic acid, Vitamin B12, Wine (white, rose & red), beer, antibiotics (penicillin, streptomycin) and enzymes (amylase, protease, lipase and glucose oxidase). Microbiological transformation of steroids and its applications. Methods of enzyme immobilization: cross linking, entrapment, adsorption and covalent bonding. Advantages and applications of immobilized enzymes: glucose isomerase and penicillin acylase

Practical component

UNIT 1: (18 hours)

Aerobic fermentation processes: Microbial production of enzymes (amylases/lipase/protease) by liquid-state static /submerged fermentation and its detection by plate-assay method using an agar-based medium. Estimation of enzyme activity spectrophotometrically. Production of amino acids (glutamic acid /lysine) using a suitable bacterial culture, its detection by paper chromatography and its

colorimetric estimation using buffered ninhydrin reagent. Microbial production of citric acid by solid-state /liquid state fermentation using Aspergillus niger, its detection by chromatographic techniques and its quantitative estimation by titration.

Unit 2: (12 hours)

Anaerobic fermentation processes: Ethanol production by submerged fermentation using Saccharomyces cerevisiae, its detection by qualitative tests and its estimation spectrophotometrically using a suitable reagent.

A visit to any educational institute/industry to understand different types of fermenters/ bioreactors: laboratory-scale, pilot-scale and production fermenter, and their components (spargers, baffles, impellers etc

Essential/recommended readings

Theory:

- 1. Industrial Microbiology by A.H. Patel. 2nd edition. Laxmi publication Pvt Ltd/Trinity Press. 2022.
- 2. Industrial Microbiology by L.E. Casida. 2nd edition. New Age International publisher. 2019.
- 3. Modern Industrial Microbiology and Biotechnology by N. Okafor and B.C. Okeke. 2nd edition. CRC press, UK. 2018.
- 4. Crueger's Biotechnology: A Textbook of Industrial Microbiology by W. Crueger,
- A. Crueger and K.R.Aneja. 3rd edition. Medtech Publisher, India. 2017.
- 5. Biotechnology Industrial Microbiology. A textbook by W.Clarke. CBS Publishers, India.2016.
- 6. Industrial Microbiology by K.L. Benson. CBS Publishers & Distributors. 2016.
- 7. Principles of Fermentation Technology by P.F. Stanbury, A.Whitaker and S.J. Hall. 3rd edition. Elsevier Science Ltd, Netherlands. 2016.
- 8. Microbial technology. Vol I- Microbial processes and Vol II -Fermentation technology edited by H.J. Peppler and D. Perlman. 2nd edition. Academic Press, USA. 2009.
- 9. Industrial Microbiology: An Introduction by M.J. Waites, N.L. Morgan, J.S. Rockey and G.Higton. Wiley—Blackwell. 2001.
- 10. Microbial Biotechnology: Fundamentals of Applied Microbiology by A.N. Glazer and H.Nikaido. 1st edition. W.H. Freeman and Company, UK.1995.

Practicals:

- 1. Microbiology: A Laboratory Manual by J. Cappuccino and C.T. Welsh. 12th edition. Pearson Education, USA. 2020.
- 2. Laboratory manual of Microbiology and Biotechnology by K.R. Aneja. 2nd edition. Scientific International Pvt. Ltd., Delhi. 2018.
- 3. Manual of Industrial Microbiology and Biotechnology edited by R.H. Baltz, A.L. Demain, and J.E. Davies. 3rd edition. American Society for Microbiology. 2010.
- 4. Microbial technology. Vol I- Microbial processes and Vol II -Fermentation technologyedited by H.J. Peppler and D. Perlman. 2nd edition. Academic Press, USA. 2009.

Suggestive readings

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.