UPPSALA UNIVERSITY

QUANTUM INFORMATION

Lecture Notes

Author:
Louis Henkel

April 11, 2023

Contents

1	Introduction 5				
	1.1	Quantum Theory	5		
	1.2	Qubits	5		
2	Qua	antum Mechanics	7		
	2.1	Density operator	7		
		2.1.1 Properties	8		
	2.2	Mixing theorem	9		
	2.3	Composite Systems	9		
		2.3.1 Bipartite case	10		
	2.4	Reduced denisty operator, partial trace	12		
	2.5	Completely positive maps (quantum channels)	12		
		2.5.1 Stine spring dilation	15		
	2.6	Application of the CPM formalism:	16		
		2.6.1 Measurement	16		
		2.6.2 Lindblad equation	18		
3	Qua	entum entanglement and cloning	21		
	3.1	Quantum entanglement	21		
	3.2	Entanglement detection	22		
	3.3	Quantifying entanglement	23		
		3.3.1 Generalization to mixed states (Wootters, PRL 1998) .	24		
A	Exe	rcices	25		
	A.1	Qubit	25		
	A.2	Quantum ensemble: Density operator	25		
	A.3	Composite system	$\frac{1}{25}$		
	A.4	Completely positive maps			

4 CONTENTS

A.5	Lindblad equation	. 2	28
A.6	Measurements	. 2	29
A.7	Quantum Entanglement	. 4	29
A.8	Detecting quantum entanglement	. 2	29
A.9	Quantifying quantum entanglement	. 2	29
A.10	Quantum teleportation	. 2	29
A.11	Bell's inequality	. 2	29
A.12	Quantum copying	. 2	29
A.13	B von Neumann and relative entropy	. 4	29

Chapter 1

Introduction

1.1 Quantum Theory

One can say, that quantum theory is a probability theory where events are associated with complex numbers α called probability amplitudes. There are three rules for these probability amplitudes:

- (a) Born rule: $P = |\alpha|^2$ gives the probability of the event α
- (b) For a sequence of events with amplitude $\alpha_1, \dots, \alpha_n$, then the amplitude of the whole sequence is: $\prod_{i=1}^n \alpha_{N-i+1}$
- (c) For two interconnected events with amplitude α_1 and α_2 , then the probability of one event occurring if the other has occurred, then the amplitude of this event is $\alpha = \alpha_1 + \alpha_2$. The probability of such event is given by:

$$P = |\alpha_1|^2 + |\alpha_2|^2 + 2\operatorname{Re}(\alpha_1^*\alpha_2)$$
 (1.1)

where the mixed term is called the interference term. This is where the difference between classical information and quantum information theory lies.

1.2 Qubits

A qubit is a quantum mechanical system that can be described as a two dimensional Hilbert space. In general, this can be the polarisation of a photon, spin of an electron, of a neutron and so on. We can view a qubit as a abstract sense as $\mathcal{H} = \text{span}\{|0\rangle, |1\rangle\}$. An arbitrary qubit state as $\alpha_0|0\rangle + \alpha_1|1\rangle$ with $\alpha_i \in \mathbb{C}$, with the normalisation condition $\alpha_0^1 + |\alpha_1|^2 = 1$. From the normalisation we can write the probability amplitudes as

$$\begin{cases} \alpha_0 = \cos^{\theta/2} e^{i\varphi_0} \\ \alpha_1 = \sin^{\theta/2} e^{i\varphi_1} \end{cases}$$
 (1.2)

This allows us to write a general state $|\phi\rangle$ as: #

$$|\phi\rangle = \cos\theta/2e^{i\varphi_0}|0\rangle + \sin\theta/2e^{i\varphi_1}|0\rangle$$
$$= e^{i\varphi_0} \left(\cos\theta/2|0\rangle + \sin\theta/2e^{i(\varphi_1 - \varphi_0)}|0\rangle\right)$$
$$\sim \cos\theta/2|0\rangle + \sin\theta/2e^{i\varphi}|1\rangle$$

This can be represented in a sphere called the Bloch sphere

Fig. 1.1. Representation of a Bloch sphere

Chapter 2

Quantum Mechanics

2.1 Density operator

Suppose we have a preparation of quantum states (such as sending photons through a polariser), that are not perfect with some impurity. Say that each possible *pure* state $|\Psi_1\rangle, \cdots |\Psi_K\rangle$ with probabilities $P_1, \cdots P_K$. Suppose we measure an observable A throught the operator \hat{A} on this set of states, and we want to calculate the expectation value of this observable:

$$A_{\rm av} = \left\langle \hat{A} \right\rangle_{\{P_k, |\Psi_k\rangle\}} = \sum_{k=1}^K P_k \left\langle \Psi_k | \hat{A} | \Psi_k \right\rangle \tag{2.1}$$

where this $K \in \mathbb{N} \cup \{\infty\}$ does not have to be the same as dimension as the Hilbert space of the system. We can rewrite the equation 2.1 as:

$$\begin{split} A_{\mathrm{av}} &= \sum_{k=1}^K P_k \left\langle \Psi_k | \hat{A} | \Psi_k \right\rangle \\ &= \sum_k \sum_n P_k \left\langle \Psi_k | n \right\rangle \left\langle n | \hat{A} | \Psi_k \right\rangle \\ &= \sum_k \sum_n P_k \left\langle n | \hat{A} | \Psi_k \right\rangle \left\langle \Psi_k | n \right\rangle \\ &= \sum_k p_k \operatorname{tr}(\hat{A} | \Psi_k \rangle \langle \Psi_k |) \\ &= \operatorname{tr}\left(\hat{A} \sum_k p_k | \Psi_k \rangle \langle \Psi_k | \right) \\ &= \operatorname{tr}(\hat{A} \hat{\rho}) \end{split}$$

We define $\hat{\rho} := \sum_k p_k |\Psi_k\rangle \langle \Psi_k|$ as the density operator representing the ensemble $\{p_k, |\Psi_k\rangle\}$

2.1.1 Properties

a) The density operator is a hermitian semi-definit operator: $\langle \hat{\rho} \rangle \geq 0$.

Proof:.

$$\langle \Psi | \hat{\rho} | \Psi \rangle = \sum_{k} p_{k} \left| \langle \Psi | k \rangle \right|^{2} \ge 0 \forall \Psi \in \mathcal{H}$$

- b) $\operatorname{tr} \hat{\rho} = 1$
- c) $\hat{\rho}^2 \leq \hat{\rho}$ and $\hat{\rho}^2 = \hat{\rho} \iff \hat{\rho} = |\Psi_1\rangle\langle\Psi_1|$ called a pure state.

Example. Qubit density operator: In diagonal (spectral) form, we can write the density operator as:

$$\hat{\rho} = p_0 |\Psi_0\rangle \langle \Psi_0| + p_1 |\Psi_1\rangle \langle \Psi_1|$$

where $\langle \Psi_0 | \Psi_1 \rangle = 0$ and we can define the states Ψ_0, Ψ_1 as:

$$\Psi_0 = \cos \theta/2|0\rangle + \sin \theta/2e^{i\varphi}|1\rangle$$

$$\Psi_1 = -\sin \theta/2e^{-i\varphi}|0\rangle + \cos \theta/2|1\rangle$$

with $p_0 + p_1 = 1$, so we can write these as: $p_0 = \frac{1+r}{2}$, $p_1 = \frac{1-r}{2}$, so we can write the density operator as:

$$\hat{\rho} = \frac{1}{2} \left(\hat{I} + \vec{r} \cdot \vec{\sigma} \right) \tag{2.2}$$

where $\vec{r}(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$ is a 3*D*-vector and σ are the Pauli operators, and represent a point in the Bloch ball. For r=0, the density operator is the identity operator and we have the maximal mixed state.

2.2 Mixing theorem

It was formulated by Hughstom et al. in PLA (1993)

Consider
$$\hat{\rho} = \sum_{k=1}^{\dim(\mathcal{H})} p_k |e_k\rangle\langle e_k|$$
, where $\langle e_k | e_\ell\rangle = \delta_{k,\ell}$ and $\hat{\eta} = \sum_{\ell=1}^{L} q_\ell |\phi_\ell\rangle\langle \phi_\ell|$. Then $\hat{\rho} = \hat{\eta}$ iff there exists an unitary matrix $V \in \operatorname{Mat}(\dim(\mathcal{L}) \times \dim(\mathcal{L}))$ such that

$$\sqrt{q_{\ell}}|\phi_{\ell}\rangle = \sum_{k=1}^{\dim \mathcal{H}} \sqrt{p_k}|e_k\rangle V_{kl} \forall l = 1, \dots, \dim \mathcal{H}$$
(2.3)

2.3 Composite Systems

In quantum mechanics we use tennsor products to describe states of composite systems. Assume me have systems a, b and c with bases, then the wave function of such a composite system can be written as:

$$|\Psi_{ABC}\rangle = \sum_{k\ell m} a_{k\ell m} |a_k\rangle \otimes |b_\ell\rangle \otimes |c_m\rangle$$
 (2.4)

where the dimension of the Hilbert space is given by

$$\dim \mathcal{H}_{ABC} = \dim \mathcal{H}_A \cdot \mathcal{H}_B \cdot \mathcal{H}_C \tag{2.5}$$

is the number of combinations of basis vectors of the subsystems. As a notation we usually write

$$|a_k\rangle \otimes |b_\ell\rangle \otimes |c_m\rangle \longrightarrow |a_k b_\ell c_m\rangle$$
 (2.6)

As terminology: With N subsystems, we mean a N particle composite system.

Assume we have system of N qubits, then the dimension of the composite system

$$\mathcal{H}_{2D}^{\otimes N} = \bigotimes_{i=1}^{N} \mathcal{H}_{2D}$$

with dimension

$$\dim \mathcal{H}_{2D}^{\otimes N} = 2^N \tag{2.7}$$

we can write the basis as binarry strings $x \in \{0,1\}^N$ of length N that generate the Hilbert space. A general wave function can then be written as

$$|\Psi_{N\text{-Qubit}}\rangle = \sum_{x=1}^{2^N} c_x |x\rangle$$
 (2.8)

2.3.1 Bipartite case

In the bipartite case we set N=2 with subsystems A and B, an arbitrary pure state is described by

$$|\Psi^{AB}\rangle = \sum_{k=1}^{n_A} \sum_{\ell=1}^{n_B} a_{k\ell} |k\rangle \otimes |\ell\rangle \tag{2.9}$$

with $n_i = \dim \mathcal{H}_i$.

Theorem. It states, that:

$$|\Psi^{AB}\rangle = \sum_{m=1}^{\min\{n_A, n_B\}} \sqrt{d_m} |A_m\rangle \otimes |B_m\rangle$$
 (2.10)

where $|A_m\rangle \in \mathcal{H}_A$ and $\langle A_m|A_n\rangle = \delta_{mn}$ for A and B and $\sum_m d_m = 1$.

For the proof we need singular value decomposition: Assume $a \in \operatorname{Mat}(n_A \times n_B)$ matrix. Then we can write this matrix a as

$$a = U \cdot d \cdots V$$

where $U \in U(n_A)$, $V \in U(n_B)$ unitary matrices and d a "diagonal" $n_A \times n_B$ matrix with the singular values $\sqrt{d_i}$ on the diagonal.

Proof:. We view $a_{k\ell}$ as a $n_A \times n_B$ matrix. Then using singular value decomposition we get

$$a_{k\ell} = \sum_{m=1}^{\min\{n_A, n_B\}} U_{km} \sqrt{d_m} V m\ell$$

For a general bipartite wave function we get

$$\begin{split} |\Psi^{AB}\rangle &= \sum_{k=1}^{n_A} \sum_{\ell=1}^{n_B} \sum_{m=1}^{\min\{n_A, n_B\}} U_{km} \sqrt{d_m} V m \ell \; |k\rangle \otimes |\ell\rangle \\ &= \sum_{m} \sqrt{d_m} \sum_{k} U_{km} |k\rangle \otimes \sum_{\ell} V m \ell |l\rangle \\ &= \sum_{m=1}^{\min\{n_A, n_B\}} \sqrt{d_m} |A_m\rangle \otimes |B_m\rangle \end{split}$$

It remains to prove, that orthonormality of the basis.

$$\langle A_m | A_n \rangle = \sum_{k,k'}^{n_A} U_{km}^* U_{k'm} \langle k | k' \rangle$$

$$= \sum_{k=1}^{n_A} U_{mk}^{\dagger} U_{kn}$$

$$= (U^{\dagger} U)_{m,n} = \delta_{m,n}$$

There exists no generalisation to N partite system. If it existsed it would take the form: $\Psi^{AB\cdots X} = \sum_{m} \sqrt{d_m} |A_m\rangle \cdots |X_m\rangle$

Example. Assume we have a 3-state qubit, we can write:

$$\begin{split} \Psi^{ABC} &= |000\rangle + a\left(|011\rangle + |101\rangle + |110\rangle\right) \\ &= |+++\rangle + |---\rangle = |GHZ\rangle \end{split}$$

where $|\pm\rangle = |0\rangle \pm |1\rangle$.

In comparason a state:

$$|\Psi^{ABC}\rangle = |111\rangle + a(\cdots)$$

that connot be decomposed into a Schmidt form. A similar state is

$$|W\rangle := \frac{1}{\sqrt{3}} (|001\rangle + |010\rangle + |100\rangle)$$

that has no Schmidt decomposition.

2.4 Reduced denisty operator, partial trace

Assume we have a bipartite system with state $|\Psi^{AB}\rangle$. What does it mean to only have accoess to onu of the two subsystems, say A? Vhat does it do operationally. Suppose we measure observable O_A an A, then using Schmidt decomposition

$$\begin{split} \left\langle \hat{O}_{A} \right\rangle_{\Psi^{AB}} &= \left\langle \Psi^{AB} | \hat{O}_{A} \otimes \hat{I}_{B} | \Psi^{AB} \right\rangle \\ &= \sum_{k\ell} \sqrt{d_{k}} \sqrt{d_{\ell}} \left\langle A_{k} | \hat{O}_{A} | A_{\ell} \right\rangle \left\langle B_{k} | \hat{I} | B_{\ell} \right\rangle \\ &= \sum_{k} d_{k} \left\langle A_{k} | \hat{O}_{A} | A_{k} \right\rangle \\ &= \operatorname{tr} \left(O_{A} \sum_{k} d_{k} | A_{k} \rangle \langle A_{k} | \right) \\ &= \operatorname{tr} \left(O_{A} \rho_{B} \right) \end{split}$$

where ρ_A is the reduced density operator in spectral form. A reduced density operator can be computed as a partial trace:

$$\rho_A = \operatorname{tr}_A |\Psi^{AB}\rangle \langle \Psi^{AB}| = \sum_m \langle B_m | \Psi^{AB} \rangle \langle \Psi^{AB} | B_m \rangle$$
 (2.11)

2.5 Completely positive maps (quantum channels)

Within the space of all possible states (Bloch sphere for a single qubit), we can have maps between different quantum states. If we restrict ourselves to

only using unitary transformation, that pure states can only stay pure states (called *closed system*) whereas completely positive maps that can transform a system more generally.

Definition. A completely positive map (CMP) $\rho \longrightarrow \mathcal{E}(\rho) \geq 0$ satisfies:

(a) $\operatorname{tr}[\mathcal{E}(\rho)]$ is the probability that \mathcal{E} happens:

$$\implies 0 \le \operatorname{tr}[\mathcal{E}(\rho)] \le 1,$$
 (2.12a)

with $tr[\mathcal{E}(\rho)] = 1$ if the CPM is a completely positive trance perserving (CPTP) map.

- (b) A CMP should be linear, so that: $\mathcal{E}\left(\sum_{k} p_{k} \rho_{k}\right) = \sum_{k} p_{k} \mathcal{E}(\rho_{k})$.
- (c) Let A, B be positive semi-definit operator, then the following inequality should hold

$$\mathcal{E}(A) \ge 0$$
 (positivity) (2.12b)

and, if B is an operator that acts on a larger Hilbert space, then

$$\mathcal{E} \otimes \mathcal{I}(B) > 0 \tag{2.12c}$$

for any extension of the system (complete positivity). This conditions guaranties that remote systems cannot influence the physical nature of $\mathcal E$

Definition. Transposition:

$$(|A\rangle\langle A^{\perp}|)^{T} = |A^{\perp}\rangle\langle A| \tag{2.13}$$

(partial transpostion)

Example. We have the state:

$$\begin{split} |\Psi^{AB}\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle - |20\rangle \right) &\longrightarrow \rho_{AB}^{T_A} = |\Psi^{AB}\rangle \langle \Psi^A B|^{T_A} \\ &= \frac{1}{2} \left(|01\rangle - |10\rangle \right) \left(\langle 01| - \langle 10| \right)^{T_A} \\ &= \frac{1}{2} \left(|01\rangle \langle 01| - |01\rangle \langle 10| - |10\rangle \langle 01| + |10\rangle \langle 10| \right)^{T_A} \\ &= \frac{1}{2} \left(|0\rangle \langle 0| \otimes |1\rangle \langle 1| - |0\rangle \langle 1| \otimes |1\rangle \langle 0| - |0\rangle \langle 1| \otimes |0\rangle \langle 1| + |1\rangle \langle 1| \otimes |0\rangle \langle 0| \right) \\ &= \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \end{split}$$

with eigenvalues $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right\}$

Theorem. \mathcal{E} is a CPM $\iff \exists \{E_k\}$ such that

$$\sum_{k} E_k^{\dagger} E_k \le \hat{1} \tag{2.14}$$

where the equality is given for CPTP maps in terms of which

$$\mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger} \tag{2.15}$$

called the Kraus representation or operator sum representation and the E_k are called Kraus operators.

Example. "Decay of an atom" Let $|e\rangle$ be the excited state of a atom and $|g\rangle$ be its ground state. Then the Kraus operators are

$$\begin{cases} E_0 &= |g\rangle\langle g| + \sqrt{1-\gamma}|e\rangle\langle e| \\ E_1 &= \sqrt{\gamma}|g\rangle\langle e| \end{cases}$$

with $\gamma \in [0, 1]$. So

$$\rho \longrightarrow E_{0}\rho E_{0}^{\dagger} + E_{1}\rho E_{1}^{\dagger}$$

$$= \left(|g\rangle\langle g| + \sqrt{1 - \gamma}|e\rangle\langle e| \right) \rho \left(|g\rangle\langle g| + \sqrt{1 - \gamma}|e\rangle\langle e| \right) + (\gamma|g\rangle\langle e|) \rho|e\rangle\langle g|$$

$$\longrightarrow_{\gamma \to 1} |g\rangle\langle g|\rho|g\rangle\langle rho| + |g\rangle\langle e|\rho|e\rangle\langle rho|$$

$$= |g\rangle\langle g|\underbrace{(\langle g|\rho|g\rangle + \langle e|\rho|e\rangle)}_{\text{tr }\rho = 1}$$

$$= |g\rangle\langle g|$$

a decay with $\gamma = 1 - e^{-\lambda t}$.

2.5.1 Stine spring dilation

Assume we have a system s in an environement e and we want to determine the effect of the environement on the system with the time evolution operator U_{se} , then we can decompose the state:

$$\rho_{se} = \rho \otimes |e_0\rangle\langle e_0| \tag{2.16}$$

With a unitary map:

$$\rho_{se} \longmapsto U_{se} \rho \otimes |e_0\rangle\langle e_0|U_{se}^{\dagger}$$

The map of the system gives us:

$$\rho \longmapsto \operatorname{tr}_{e} \left(U_{se} \rho_{se} U_{se}^{\dagger} \right) = \sum_{n=0}^{\dim \mathcal{H}_{e}-1} \left\langle e_{n} | U_{se} \rho \otimes | e_{0} \right\rangle \left\langle e_{0} | U_{se}^{\dagger} | e_{n} \right\rangle$$

$$= \sum_{n} \left\langle e_{n} | U_{se} | e_{0} \right\rangle \rho \left\langle e_{0} | U_{se}^{\dagger} | e_{n} \right\rangle$$

$$= \sum_{n} E_{n} \rho E_{n}^{\dagger}$$

To prove that $(\langle e_n|U_{se}|e_0\rangle)^{\dagger} = \langle e_n|U_{se}^{\dagger}|e_0\rangle$ use:

$$\sum_{k\ell,pq} |s_k\rangle |s_\ell\rangle (U_{se})_{k\ell,pq} \langle s_q | \langle p |$$

This is a CPTP map:

$$\sum_{n} E_{n}^{\dagger} E_{n} = \sum_{n} (\langle e_{n} | U_{se} | e_{0} \rangle)^{\dagger} \langle e_{n} | U_{se} | e_{0} \rangle$$

$$= \sum_{n} \langle e_{0} | U_{se}^{\dagger} | e_{n} \rangle \langle e_{n} | U_{se} | e_{0} \rangle$$

$$= \langle e_{0} | U_{se}^{\dagger} U_{se} | e_{0} \rangle$$

$$= \hat{I}_{s} \langle e_{0} | \hat{I}_{e} | e_{0} \rangle = \hat{I}_{s}$$

One can use Stinespring dilation to prove that the Kraus representation is not unique. Using a basis transformation: $|e_n\rangle \longmapsto |f_n\rangle = \sum_m |e_m\rangle U_{mn}^{\dagger}$ with a unitary basis transformation U. As U only is unitary transformation should not affect the map. Kraus operators $\{F_n = \langle f_n|U_{se}|e_0\rangle\}$ define the same map as $\{E_n = \langle e_n|U_{se}|e_0\rangle\}$, one finds

$$F_n = \sum_m U_{mn} E_m$$

2.6 Application of the CPM formalism:

2.6.1 Measurement

A generalized measurement is a CPTP map with the following interpretation:

- (i) Each measurement outcome m_k is associated with a Kraus operator E_k .
- (ii) The **Born rule**: the probability $P(m_k|\rho)$ is given by:

$$P(m_k|\rho) = \operatorname{tr}(E_k^{\dagger} E_k \rho) \tag{2.17}$$

(iii) Update the probability distribution (i.e. the state) usnig the following rule:

$$\rho \xrightarrow[m_k]{} E_k \rho E_k^{\dagger} \tag{2.18}$$

The special case called von Neumann or projective measurement we have $E_k = |k\rangle\langle k|$ and the measurement with probability yields:

$$P(m_k|\rho) = \operatorname{tr}(|k\rangle\langle k||k\rangle\langle k|\rho)$$
$$= \operatorname{tr}(|k\rangle\langle k|\rho)$$
$$= \langle k|\rho|k\rangle$$

if $\rho = |\Psi\rangle\langle\Psi|$, then:

$$\Longrightarrow P(m_k|\rho) = \langle k|\Psi\rangle \langle \Psi|k\rangle$$
$$= |\langle k|\Psi\rangle|^2$$

Note. The sum of the probabilty of all outcomes:

$$\sum_{k} P(m_{k}|\rho) = \sum_{k} \operatorname{tr}(E_{k}^{\dagger} E_{k} \rho)$$

$$= \operatorname{tr}\left(\sum_{k} \underbrace{E_{k}^{k} E_{k}}_{\hat{I}} \rho\right)$$

$$= \operatorname{tr} \rho = 1$$

Notation. We define $\{\Pi_k := E_k^{\dagger} E_k\}$ as a positive operator valued measure (POVM).

Theorem. Non-orthogonal states can not be distinguished in a general measurement

Proof:. Assume $|\Phi\rangle$ and $|\Psi\rangle$ are non-orthogonal and can be distinguished. If this is possible then there exists Π_1 and P_2 such that $\langle \Psi | \Pi_1 | \Psi \rangle = 1$ and $\langle \Phi | \Pi_2 | \Phi \rangle = 1$. Because probabilities must add up to 1, we must have $\langle \Psi | \Pi_2 | \Psi \rangle = 0$ where $\Pi_k \geq 0$, so $\sqrt{\Pi_k} \geq 0$. We get:

$$0 = \langle \Psi | \Pi_2 | \Psi \rangle = \left\| \sqrt{\Pi_2} | \Psi \rangle \right\|^2$$

so $\sqrt{\Pi_2}|\Psi\rangle = 0$ (0-vector).

We can write $|\Phi\rangle = a|\Psi^{\perp}\rangle + b|\Psi\rangle$ where $b \neq 0$ by assumption. This implies also that $|a|^2 + |b|^2 = 1$, so $|a|^2 < 1$. Thus

$$\begin{split} \sqrt{\Pi_2} |\Phi\rangle &= a \sqrt{\Pi_2} |\Psi^{\perp}\rangle + b \sqrt{\Pi_2} |\Psi\rangle \\ &= a \sqrt{\Pi_2} |\Psi^{\perp}\rangle \end{split}$$

So

$$\begin{cases} \left\| \sqrt{\Pi_2} |\Psi^{\perp} \rangle \right\| &= \langle \Phi | \Pi_2 | \Phi \rangle = 1 \\ \left\| \sqrt{\Pi_2} |\Psi^{\perp} \rangle \right\| &= \left| a \right|^2 \left\langle \Psi^{\perp} | \Pi_2 | \Psi^2 \right\rangle \le \left| a \right|^2 < 1 \end{cases}$$

2.6.2 Lindblad equation

So far we have only been looking at discreet maps through CPMs. How would the dynamics of an open system be described, from a time ρ_0 to a time T ρ_T . We can model such case throught a series of small CPMs for timesteps $\Delta t \longrightarrow 0$, where the environemental state is measured at each timesteps t_i , and the system always can be described as a product state. We can map the density operator as a sequence of CPM (Markonvian approximation)

$$\rho \longmapsto \mathcal{E}_{k\delta t,(k-1)\delta t} \circ \cdots \circ \mathcal{E}_{2\delta t,\delta t} \circ \mathcal{E}_{\delta t,0}(\rho_0)$$

We do the simplifying assumption, that $\mathcal{E}_{t+\delta t,\delta t} \equiv \mathcal{E}_{\delta t}$ (which implies that the Hamiltonian of the system is time independent). We consider the map

$$\rho_t \longmapsto \rho_{t+\delta t} = \sum_k E_k(\delta t) \rho_t E_k^{\dagger}(\delta t)$$
$$= \mathcal{E}_{\delta t}(\rho_t)$$
$$\mathcal{E}_{\delta t} \underset{\delta t \to 0}{\longrightarrow} \mathcal{I}$$

with \mathcal{I} being the identity map.

This allows us to make an ansatz:

$$E_0(\delta t) = 1 - i(H - iG)\delta t$$

With H and G hermitian operators.

$$E_{k>0}(\delta t) = \sqrt{\delta t} L_k$$

We assume that $\mathcal{E}_{\delta t}$ is a CPTP since we do not excract information of the system during the evolution, in other words tr $\rho_t = 1$ for all t. This implies for our ansatz:

$$\hat{I} = \sum_{k} E_{k}^{\dagger}(\delta t) E_{k}(\delta t)$$

$$= E_{0}^{\dagger}(\delta t) E_{0}(\delta t) + \sum_{k=0} E_{k}^{\dagger}(\delta t) E_{k}(\delta t)$$

$$= \hat{I} + 2G\delta t + \delta t \sum_{k=1} L_{k}^{\dagger} L_{k} + O(\delta t^{2})$$

So we get:

$$G = \frac{1}{2} \sum_{k=1} L_k^{\dagger} L_k \tag{2.19}$$

This gives us the Lindblad equation:

$$\frac{\rho_{t+\delta t} - \rho_t}{\delta t} = -i[H, \rho_t] + \sum_k \left(L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \} \right)$$

$$\delta t \longrightarrow 0 \Longrightarrow \dot{\rho}_t = -i[H, \rho_t] + \sum_k \left(L_k \rho_t L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho_t \} \right) \tag{2.20}$$

where $\{A, B\} = AB + BA$ is the anticommutator, and H should be interpreted as the Hamiltonian, thus the first term of the equation is called the "Schrödinger term", the L_k are called Lindblad operators and the anticommutator term give non hermitian dynamics.

Example. Assume a qubit system with $L = \sqrt{\gamma}\sigma_z$ with Hamiltonian $H = \omega\sigma_z$, would give a density operator:

$$\rho_t = \frac{1}{2}(\hat{I} + \vec{r}_t \cdot \vec{\sigma})$$

with the solution in the rotating frame.

$$\dot{\vec{r}} = -2\gamma(x_t, y_t, 0)
\vec{r} = (x_0 e^{-2\gamma t}, y_0 e^{-2\gamma t}, z_0)$$

which for $t \longrightarrow \infty$, we end up with a state lying on the z-axis, and the exponential term in the x and y coordinates are called decoherence terms.

Chapter 3

Quantum entanglement and cloning

3.1 Quantum entanglement

In the beginning, we only talk about the bipartite case. We can divide our system into two subsystems.

Definition. A state $|\Psi_{AB}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ is entangled iff it cannot be written as a product state $|\phi_A\rangle \otimes |phi_B\rangle$

Example. Given a 2 qubit system

$$|\Psi_{AB}\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

with $a, b, c, d \in \mathbb{C}$ and $\langle \Psi_{AB} | \Psi_{AB} \rangle = 1$. How do determine if this state can be written as a product state.

• We can put this into Schmidt form, so that:

$$|\Psi_{AB}\rangle = \sum_{k=1}^{2} \sqrt{d_k} |A_k\rangle \otimes |B_k\rangle$$

then, $|\Psi_{AB}\rangle$ is entangled iff $d_1 \cdot d_2 \neq 0$.

• We can compute the reduced density operator $\rho_A = \operatorname{tr}_B |\Psi_{AB}\rangle\langle\Psi_{AB}| = \sum_{k=1}^2 d_k |A_k\rangle\langle A_k|$, then if $d_1 \cdot d_2 \neq 0$ implies ρ_A is a non-pure stare. Thus, if ρ_A is non-pure, then $|\Psi_{AB}\rangle$ is mixed and vice versa.

• In the this example, there is an easy way to deterime entanglement. Iff $ad - bc \neq 0$, then $|\Psi_{AB}\rangle$ is entangled.

Let us consider a mixed state with $\rho_{AB} \geq 0$ and $\operatorname{tr} \rho_{AB} = 1$.

$$\rho_{AB} = \rho_A \otimes \rho_B \longrightarrow \operatorname{tr}_B \rho_{AB} = \rho_A \operatorname{tr} \rho_B = \rho_A$$
(3.1)

How do we determine entanglement for ρ_{AB} ?

Idea. Suppose we have many copies of $\rho_A \otimes \rho_B$ and suppose that Alice and Bob can perform "coordinated" local operations $\{p_k, \mathcal{E}_k \otimes \mathcal{F}_k\}$ leading to:

$$\rho_{AB} = \sum_{k} p_{k} \mathcal{E}_{k} \otimes \mathcal{F}_{k}(\rho_{A} \otimes \rho_{B})$$

$$= \sum_{k} p_{k} \mathcal{E}_{k}(\rho_{A}) \otimes \mathcal{F}_{k}(\rho_{B})$$

$$= \sum_{k} p_{k} \rho_{A}^{k} \otimes \rho_{B}^{k}$$

Since we only use local operations and classical communication (LOCC) starting from a product state, the output will *not* be entangled such a state is called separable.

Definition. A state ρ_{AB} is entangled iff it *cannot* be written in the form $\sum_{k} p_{k} \rho_{A}^{k} \otimes \rho_{B}^{k}$.

3.2 Entanglement detection

We are given a state ρ_{AB} , how do we determine if it is entangled or not?

Theorem (Horodedu family : Phy. lett A (1996)). ρ_{AB} is separable \iff for every "positive" map \mathcal{A} on one of the subsystems $\mathcal{A} \otimes I_B(\rho_{AB}) \geq 0$.

• Useful test: (PPT = positive partial transposition)

$$\rho^{AB}$$
 is separable $\Longrightarrow (\rho^{AB})^{T_A} \ge 0$ (3.2)

The implication to the other side only holds for $2 \otimes 2$ or $2 \otimes 3$ systems.

23

3.3 Quantifying entanglement

Definition. We can quantifying entanglement by using a measurment function

$$\mu: \mathcal{H}_A \otimes \mathcal{H}_B \longrightarrow \mathbb{R} : \rho^{AB} \longmapsto \mu(\rho^{AB})$$

This measurment function should furfill:

- $\mu \geq 0$
- $\mu = 0$ for separable states
- μ is be non-increasing under LOCC
- μ is invariant under local unitary operations.

There are two measures:

(a) Negativity: Based on PPT:

$$\mathcal{N}_e(\rho^{AB}) = \frac{\operatorname{tr}\left|\left(\rho^{AB}\right)^{T_A}\right| - 1}{2} = \frac{\left\|\left(\rho^{AB}\right)^{T_A}\right\| - 1}{2}$$

where $\|\rho\| := \operatorname{tr} \sqrt{A^{\dagger}A}$

Example. We look at the state $|\Psi^{AB}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ where the eigenvalues of $(|\Psi^{AB}\rangle\langle\Psi^{AB}|)^{T_A}$ are $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $-\frac{1}{2}$. so the negativity is non-zero.

(b) Concurrence: Only works for 2×2 systems from its definition. Based on the univeral flip: $\Theta(\alpha|0\rangle + \beta|1\rangle) = -\beta^*|0\rangle + \alpha^*|1\rangle$, that is orthogonal to the initial state (such an aperation cannot be made, because we cannot make compled conjugation).

A pure state of two qubits written in Schmidt decomposition:

$$|\Psi_{AB}\rangle = \sum_{k=0}^{1} \sqrt{d_k} |A_k\rangle \otimes |B_k\rangle$$

$$= \sqrt{d_k} |A_0\rangle \otimes |B_0\rangle + \sqrt{d_1} |A_1\rangle \otimes |B_1\rangle \stackrel{\text{``}\Theta_A \otimes \Theta_B''}{\longrightarrow}$$

$$\longrightarrow \sqrt{d_0} |A_1\rangle \otimes |B_1\rangle + \sqrt{d_1} |A_0\rangle \otimes |B_0\rangle =: |\tilde{\Psi}_{AB}\rangle$$

$$\Longrightarrow \left|\left\langle \tilde{\Psi}_{AB} |\Psi_{AB} \right\rangle \right| = 2\sqrt{d_0 d_1} = 2\sqrt{d_0 (1 - d_0)} \le 1$$

with equality if $d_0 = \frac{1}{2}$.

The concurrence $C(\Psi_{AB})$

3.3.1 Generalization to mixed states (Wootters, PRL 1998)

Given a state ρ_{AB}

- Qubit flip: $\rho_{AB} \longmapsto \tilde{\rho}_{AB} = \sigma_y \otimes \sigma_y \mathcal{K}(\rho_{AB}) \sigma_y \otimes \sigma_y$ where \mathcal{K} is the comlpex conjugation with regard to the product basis $|00\rangle, \dots, |11\rangle$.
- Compute the eigenvalues λ_k of $\rho_{AB}\tilde{\rho}_{AB}$.
- We compute: $\max\{0, \sqrt{\lambda_1} \sqrt{\lambda_2} \sqrt{\lambda_3} \sqrt{\lambda_4}\} = C(\rho_{AB})$, where λ_1 is the largest eigenvalue.

Appendix A

Exercices

- A.1 Qubit
- A.2 Quantum ensemble: Density operator
- A.3 Composite system
- A.4 Completely positive maps

18.

(a) The phase damping completely positive map: $\mathcal{E}(\rho) = (1-p)\rho + p\sigma_z\rho\sigma_z$ for $p \in [0,1]$. The Kraus operators are

$$\begin{cases} E_0 &= \sqrt{1-p}\hat{I} \\ E_1 &= \sqrt{p}\hat{\sigma}_z \end{cases}$$

(b) The bit flip map $\mathcal{E}(\rho) = (1-p)\rho + p\sigma_x\rho\sigma_x$ for $p \in [0,1]$. The Kraus operators are

$$\begin{cases} E_0 &= \sqrt{1-p}\hat{I} \\ E_1 &= \sqrt{p}\hat{\sigma}_x \end{cases}$$

(c) The phase shape and bit shift map $\mathcal{E}(\rho) = (1-p)\rho + p\sigma_y\rho\sigma_y$ for $p \in [0,1]$.

The Kraus operators are

$$\begin{cases} E_0 &= \sqrt{1-p}\hat{I} \\ E_1 &= \sqrt{p}\hat{\sigma}_y \end{cases}$$

22. Consider a two lever atom with ground state $|g\rangle$ and excited state $|e\rangle$. The atom is placed in a cavity, which includes decay of an atom modeled by the unitary transformation

$$|e\rangle \otimes |n\rangle \longmapsto \sqrt{1-p}|e\rangle \otimes |n\rangle + \sqrt{p}|g\rangle \otimes |n+1\rangle$$

 $|g\rangle \otimes |n\rangle \longmapsto |g\rangle \otimes |n\rangle$

where $|n\rangle$ and $|n+1\rangle$ are the states of the quantizised field corresponding to the n and n+1 photons in the cavity. Suppose the atom+cavity field start in the pure states

$$|\Psi\rangle = (\cos\theta/2|g\rangle + \sin\theta/2|g\rangle) \otimes |n\rangle$$

and undergoes a decay. Compute the average number of photons in the cavity as a function of the decay probability p.

The expectation value is $\langle N \rangle = \langle a^{\dagger} a \rangle = \operatorname{tr}(\mathcal{E}(\rho_{\gamma})N)$. The density of the composite system is:

$$\rho_{a\gamma} = |\Psi\rangle\langle\Psi| = |\Psi_0\rangle\langle\Psi_0| \otimes |n\rangle\langle n| \tag{A.1}$$

Now appling the positivy map and calculate the partial trace.

$$\mathcal{E}(\rho_{a\gamma} = [\mathcal{E}(|\Psi\rangle)] [\mathcal{E}(|\Psi\rangle)]^{\dagger}$$
$$= \operatorname{tr}_{a}(\mathcal{E}(\rho_{a\gamma})) = \dots$$

An alternative: From the lecture, we know, that a composite system evolves as $\rho_{se} \longrightarrow U_{se}\rho_{se}U_{se}^{\dagger}$, then the system has a Kraus decomposition

$$\rho \longrightarrow \sum E_n \rho E_n^{\dagger}$$

where $E_n = \langle E_n | U_{se} | E_0 \rangle$ with E_n an orthogonal basis for the environment. On out atom system, we need to determine the basis for the composite system $\{|g\rangle|0\rangle, |g\rangle|0\rangle, \cdots, |g\rangle|n\rangle, \cdots, |e\rangle|0\rangle, \cdots|e\rangle|n\rangle, \cdots\}$. As a matrix, the time evolution operator looks like:

We can calculate the Kraus coeffitions:

$$\begin{cases} E_g = \langle g|U_{ac}|\Psi_0\rangle \\ E_e = \langle e|U_{ac}|\Psi_0\rangle \end{cases}$$

with $|\Phi_0\rangle = \cos\theta/2|g\rangle + \sin\theta/2|e\rangle$ and get:

$$E_{g} = \cos^{\theta/2} \langle g|U_{ac}|g\rangle + \sin^{\theta/2} \langle g|U_{ac}|e\rangle$$

$$= \cos^{\theta/2}I + \sin^{\theta/2}B$$

$$E_{e} = \cos^{\theta/2} \langle e|U_{ac}|g\rangle + \sin^{\theta/2} \langle e|U_{ac}|e\rangle$$

$$= \sin^{\theta/2}C$$

So we get:

$$\mathcal{E}(\rho) = \mathcal{E}(|n\rangle\langle n|)$$

$$= E_g|n\rangle\langle n|E_g^{\dagger} + E_e|n\rangle\langle n|E_e^{\dagger}$$

$$= \cos^2\theta/2|n\rangle\langle n| + \cos^2\theta/2\sin^2\theta/2\left(|n\rangle\langle n|B^{\dagger} + B|n\rangle\langle n|\right)$$

$$+ \sin^2\theta/2B|n\rangle\langle n|B^{\dagger} + \sin^2\theta/2\sin^2\theta/2\left(|n\rangle\langle n|B^{\dagger} + B|n\rangle\langle n|\right)$$

$$= \left[\cos^2\theta/2 + (1-p)\sin^2\theta/2\right]|n\rangle\langle n| + p\sin^2\theta/2|n+1\rangle\langle n+1|$$

$$+ \sqrt{p}\sin^2\theta/2\cos^2\theta/2\left[|n\rangle\langle n+1| + |n+1\rangle\langle n|\right]$$

We can now calculate the expectation value of N with $N|n\rangle = a^{\dagger}a|n\rangle = n$

$$\langle N \rangle = \operatorname{tr}(\mathcal{E}(\rho_c)N)$$

$$= n \left[\cos^2 \theta/2 + (1-p)\sin^2 \theta/2 \right] + (n+1)p \sin^2 \theta/2$$

$$= n + p \sin^2 \theta/2$$

A.5 Lindblad equation

26. Let H be the Hamiltonian:

$$H = \sum E_k |\Phi_k\rangle \langle \Phi_k|$$

with an error $L = \sqrt{\gamma}H$. Let $\rho(t)$ be the state of the system at time t, then:

$$\dot{\rho}(t) = -i[H, \rho] + \sum \left(L_n \rho L_n^{\dagger} - \frac{1}{2} \{ L_n^{\dagger} L_n, \rho \} \right)$$

We want to show, that it reduced to

$$\dot{\rho}(t) = -[H,\rho] - \frac{\gamma}{2}[H,[H,\rho]]$$

We only need to show, that:

$$L\rho L^{\dagger} - \frac{1}{2} \{LL^{\dagger}, \rho\} = \gamma \left(H\rho H - \frac{1}{2} (H^2 \rho + \rho H^2) \right)$$
$$-\gamma [H, [H, \rho]] = -\gamma (H, H\rho - \rho H)$$
$$= -\gamma \left(H^2 \rho - H\rho H - H\rho H + \rho H^2 \right)$$
$$= \frac{\gamma}{2} \left(H\rho H - \frac{1}{2} (H^2 \rho + H^2 \rho) \right)$$

This is the damping equation used in magnetism. We can write the density operator as

$$\rho = \sum_{\ell k} = \rho_{k\ell}(t) |\Phi_k\rangle \langle \Phi_\ell|$$

that, because of linearity, we only need to solve them for one of the $\rho_{k\ell}$

$$\dot{\rho}_{k\ell}(t) = -\rho_{k\ell}[H, |\Phi_k\rangle\langle\Phi_\ell|] - \frac{\gamma}{2}\rho_{k\ell}[H, [H, |\Phi_k\rangle\langle\Phi_\ell|]]$$

$$= \rho_{k\ell}(t) \left(-i(E_k - E_\ell) - \frac{\gamma}{2}(E_k - E_\ell)^2\right) |\Phi_k\rangle\langle\Phi_\ell|$$

And we get

$$\rho_{k\ell}(t)e^{t(-i(E_k-E_\ell))}e^{-\frac{\gamma t}{2}(E_k-E_\ell)^2}$$

For $\gamma t \to \infty$, $\rho_{k\ell}$ goes to 0.

- A.6 Measurements
- A.7 Quantum Entanglement
- A.8 Detecting quantum entanglement
- A.9 Quantifying quantum entanglement
- A.10 Quantum teleportation
- A.11 Bell's inequality
- A.12 Quantum copying
- A.13 von Neumann and relative entropy