# Flickr Tag Recommendation based on Collective Knowledge

Borkur Sigurbjornsson, Roelof van Zwol

#### Introduction

- Tagging
  - Adding keywords(tags) to objects
- Tags
  - Meaningful descriptions of the objects
  - Can help to organize and Index contents
  - Useful with multimedia objects that provide little or no textual context, such as bookmarks, photos and videos
- Tags on social media
  - Users can provide semantic context tags through manual annotations
  - User can tag their photos to make them can be accessible to searching

### Tagging Behavior

- Tag Frequency
  - The distribution of tag frequency can be modeled by a power law [19, 1]



- The head of the power law contains tags that would be too generic to be useful as a tag suggestion
- The tail of the power law may contains some highly specific tags that will only e useful recommendation in exceptional cases

### Tagging Behavior

• Based on the tags information over the WordNet categories, the locations are tagged most frequent.

 Users do not only tag the visual contents of the photo, but to a large extent provide a broader context

- location
- time
- actions in photos



#### Tag Recommendation System

- Tag co-occurrence
  - The co-occurrence between two tags is the number of photos where both tags are used in the same annotation
  - Find candidate tags based on user-defined tags by calculating co-occurrence coefficients between of two tags
  - Normalization methods
    - Symmetric measures
    - Asymmetric measures

#### Symmetric Measures

• Jaccard's coefficient: statistics used for computing and normalizing the similarity and diversity of tags

$$J(t_i, t_j) := \frac{|t_i \cap t_j|}{|t_i \cup t_j|}$$

- Use the number of intersections between the two tags, divided by the union of two tags
- Good at identifying equivalent tags
- Example:
  - Eiffel tower: Tour Eiffel, Eiffel, Seine, La tour Eiffel, Paris

#### Asymmetric Measures

• Alternatively, tag co-occurrence can be normalized using the frequency of one of the tags

$$P(t_j \mid t_i) := \frac{|t_i \cap t_j|}{|t_i|}$$

- Take the number of intersections between two tags and then normalized by the total frequency of one tag
- Good at providing more diverse candidates than symmetric measures
- Example:
  - Eiffel Tower: Paris, France, Tour Eiffel, Eiffel, Europe

### Tag Aggregation and Promotion

#### Definitions

- User-defined tags (U) the set of tags that user assigned to a photo
- Candidate tags  $(C_u)$  the ranked list with the top m most cooccuring tags
- Union of Candidate tags (*C*) the union of all candidate tags for each user-defined tags **u** in **U**
- Recommended tag (R) the ranked list of n most relevant tags produced by the tag recommendation systems

## Tag Aggregation: Vote

• The voting strategy computes a score for each candidate tag c in C, where a vote for c is a cast, whenever c in  $C_u$ 

$$vote(u,c) = 1$$
 if  $c \in C_u$ 

• The list of recommended tags R is obtained by sorting the candidate tags on the number of votes

$$score(c) := \sum_{u \in U} vote(u, c)$$

# Tag Aggregation: Sum

• Take the union of all candidate tag lists (C), and sums over the co-occurrence values of the tags

$$score(c) := \sum_{u \in U} P(c \mid u)$$
 if  $c \in C_u$ 

•  $P(c \mid u)$  - calculate the asymmetric co-occurrence value

### Tag Promotion

• Stability-promotion

- $stability(u) := \frac{k_s}{k_s + |k_s \log(|u|)|}$
- To make user-defined tags with lower frequency (tags in the tail of the power law distribution) less reliable
- Descriptiveness-promotion

- $descriptive(c) := \frac{k_d}{k_d + |k_d \log(|c|)|}$
- To avoid general tags (tags in the head of the power law distribution )with few information tanked too highly
- Rank-promotion

- $rank(u,c) := \frac{k_r}{k_r + (r-1)}$
- To count for the position r of the candidate tags c in  $C_u$  for a given user-defined tag c

### Tag Promotion

Combined promotion function

```
promotion(u,c) = rank(u,c) + stability(u) + descriptive(c)
```

- Can be applied on a tag pair (u, c) in combination with either voting or summing aggregation function
- For voting case:  $score(c) := \sum_{u \in U} vote(u, c) \cdot promotion(u, c)$
- For summing case:  $score(c) := \sum_{u \in U} P(c \mid u)$  if  $c \in C_u$  promotion(u, c)

#### Tag Aggregation and Promotion System Overview



#### **User-defined Tags**

Segrada Familia

Barcelona



#### Sagrada Familia:

Barcelona, Gaudi, Spain architecture, Catalunya church

#### Barcelona:

Spain, Gaudi, 2006 Catalunya, Europe, travel

#### **Recommended Tags**

Gaudi, Spain, Catalunya, architecture, church