

RÁDI

Amatérské

NOSITEL
VYZNAMENÁNÍ
ZA BRANNOU
VÝCHOVU
I. A II. STUPNĚ

ŘADA B PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNÍK XXXII/1983 ● ● ČÍSLO 6

V TOMTO SEŠITĚ

Naplňujeme závěry 8. zasedání
UV KSČ 201

JEDNODUCHÉ MĚŘICÍ PŘÍSTROJE

Přístroje skupiny C

Regulovatelný zdroj.
s MAA723H 202

Ní milivoltmetr
s tranzistor 203

Přímoukazující měřicí kapacit
a odporu 205

Přímoukazující měřicí kmitočtu 207

Přístroje skupiny D

Malý zkoušeč IO TTL 208

Zkoušeč IO TTL 209

Logická sonda 210

Univerzální čítač 211

Zobrazovací jednotka ze starého
televizoru 216

Doplňky k AR B5/83 217

Rady jmenovitých hodnot
součástek 217

Označování jmenovitých hodnot 218

ZAJÍMAVÁ A PRAKTICKÁ ZAPOJENÍ

I Napájecí zdroje, stabilizátory,
měniče 223

II Pomůcky pro fotografy 225

III Různé aplikovaná
elektronika 225

IV Zapojení s časovačem 555 228

Automatické přepínání rozsahu multimetru 232

Obsah ročníku 219

Seznam desek s plošnými
spoji, ročník 1981 až 1983 234

PŘÍLOHA K VII. SJEZDU SVAZARMU

Technická tvořivost v elektronice 236

AMATÉRSKÉ RÁDIO ŘADA B

Vydává UV Svažarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51-7. Šéfredaktor Ing. Jan Klábal, redaktor Luboš Kalousek, OK1FAC. Redakční radu řídí Ing. J. T. Hyán.

Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně výdej 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i důrčovatel. Objednávky do zahraničí vyřizuje PNS, ústřední expedice a dovoz tisku, závod 01, Káfkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6. Vlastní ulice č. 889/23.

Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině. Číslo indexu 46 044.

Toto číslo má výtisk podle plánu 27. 11. 1983.

© Vydavatelství NAŠE VOJSKO

NAPLŇUJEME ZÁVĚRY 8. ZASEDÁNÍ ÚV KSČ

Dosažení kvalitativních změn v intenzivním rozvoji ekonomiky, jak zdůraznilo 8. zasedání ÚV KSČ k uychleněmu uplatňování výsledků vědy a techniky v praxi, je nerozlučně spjato s mobilizací tvůrčích sil pracujících v oblasti, která je právem charakterizována jako revoluční úkol celé společnosti. Významnou součást tohoto úsilí představuje i vynálezectví, zlepšovatelství a novátorství. Také v této oblasti, jak zdůraznil ústřední výbor strany, musíme učinit ve všech orgánech a organizacích, v celém národním hospodářství výrazný krok kupředu v důsledné realizaci závěr XVI. sjezdu KSČ, v celovém programovém přístupu k rozvoji vynálezectví, zlepšovatelství a novátorství i jako nedílné součásti vedeckotechnického pokroku a růstu efektivnosti výroby.

Jako velmi účinný pomocník právě v oblasti působení na tvůrčí rozvoj schopnosti a využití nových myšlenek v konstrukci a použití elektronických obvodů i celých systémů jak u vývojových, tak i konstrukčních pracovníků slouží obě rádce časopisu Amatérské rádio, které v tomto směru mají již dlouholetou tradici. Publikováním nových či inovovaných elektronických celků, ať již v podobě ucelených konstrukčních návodů, či jen dílčích, nově řešených zapojení až již analogových nebo logických obvodů, dává AR vývojovým a konstrukčním pracovníkům do rukou náměty a ukazuje cesty k jejich využití v celé oblasti elektronizace našeho národního hospodářství.

8. zasedání ústředního výboru strany na základě provedené analýzy uskutečňovaných závěr XVI. sjezdu KSČ ve světle nových nárokov zdůraznilo zejména nutnost aktivně využívat tvůrčí práce vědců a techniků a jejím spojením s výrobou vytvořit pro zrychlení vedeckotechnického pokroku v národním hospodářství potřebné společenské, technické, ekonomické a kádrové předpoklady. A zde opět oba časopisy působí svým vlivem na technicky zaměřené čtenáře, na jeho odborný růst, pomáhají mu zvyšovat si kvalifikaci, vytvářejí zejména u mladých adeptů elektroniky trvalý zájem o tento obor a tím přimě působí na tvorbu kádrových rezerv. Tém čtenářům, kteří mají odborné vzdělání, pomáhají AR a i AR B soustavně zvyšovat jejich odborné znalosti a ovládat nové směry v konstrukci a použití elektrotechnických zařízení.

Zasedání, konané ve dnech 15. a 16. června letošního roku, zdůraznilo potřebu prosadit, aby se rozvoj a využití vědy a techniky, rozvoj tvůrčí technické činnosti v národním hospodářství stal osou plánování, řízení, politické a organizátorské práce. K tomu připomělo, že je třeba aktivně využívat pro urychlení vedeckotechnického pokroku v národním hospodářství socialistické integrace, zejména prohlubování vedeckotechnické a hospodářské spolupráce se Sovětským svazem a ostatními státy RVHP.

Zapojení časopisu i v této oblasti je již tradiční zejména tím, že jsou zveřejňovány zajímavá zapojení elektronických obvodů ze zahraničí. Tím dostávají konstrukteři elektronických zařízení nové podněty k jejich aplikaci na naši součástkovou základnu, popř. je tím i neprávem upozorněno na potřebu dovozu ze SSSR, NDR či jiného socialistického (popř. nesocialistického) státu v případě, že se u nás tyto součástky nevyrábějí.

„To nejdůležitější“, zdůraznil ve zprávě předsednictva UV KSČ k uychleněmu uplatňování výsledků vědy a techniky v praxi s. Miloš Jakeš, člen předsednictva a tajemník UV KSČ, v části týkající se vynálezectví a zlepšovatelství, „je rychlá realizace vynálezů a zlepšovacích návrhů v praxi. Tyto otázky se musí v další etapě stát obsahem veškeré řídicí, ale i výkonné a kontrolní činnosti.

I když většinu konstrukčních návodů publikovaných v obou časopisech nelze klasifikovat jako vynálezy či zlepšovací návrhy, je mezi naši čtenářskou obcí všeobecně známo, že ve většině uveřejňo-

váných konstrukcí téměř vždy jde o jedinečný vývojový a konstrukční prototyp, nabídnutý konstruktérem k širokému využití. V drtivě většině návodů přitom jde o nové, progresivní konstrukční řešení s využitím nových nejmodernějších obvodových prvků a součástek. Tím, že od konstrukce uveřejněvaných zařízení uplyne velmi krátká doba (díky zveřejnění v časopisu) k jejich využití širokou elektronicky zaměřenou veřejností, jde vlastně o přímou realizaci závěr 8. zasedání UV KSČ. Vždyť co jiného než realizace této závěrů je např. rychlé rozšíření tolik potřebného mikropočítače JPR-1 konstruktéra Ing. Smutného (AR pro konstruktéry č. 1 a 2/83)? Během několika měsíců po využití návodu je tento počítací stavěn a také využíván na desítkami, ale stovkami pracovišti i v těch „nejvzdálenějších“ oborech, jako je stavebnictví, zemědělství či administrativa. Ještě několik měsíců po využití a okamžitě rozebrání stavebního návodu přicházely do redakce dotazy od podniků a institucí, zda nemáme nějaký zbyvající sešit. Mnozí pracovníci nechtěli ani věřit, že by tak důležitý a pro aplikace elektroniky nepostradatelný časopis byl vydáván v tak omezeném počtu výtisků (88 tisíc) a že už není k dispozici.

„Velký význam příkládáme celému informačnímu systému,“ říká se dál ve zprávě přednesené na 8. zasedání s. Jakešem, „který musí odpovídat závažnosti úkolů řešených v oblasti vedeckotechnického rozvoje. Potřebujeme, aby vedecké, technické a ekonomické informace byly k dispozici všem kategoriím tvůrčích pracovníků i útvárnům a orgánům odpovídajícím za řízení a využívání vedecko-technického rozvoje. Za tím účelem je nutno podstatně zkvalitnit informační služby a technicky do budovat informační pracoviště...“

Ano, v oblasti šíření vedeckých a technických informací má společnost stále ještě velký dluh. Nízká úroveň informací, dlouhé jsou výrobní lhůty technických knižnic, publikací, citelný je i nedostatek technických časopisů v oblasti elektroniky, která za posledních patnáct let doznaла rozmachu nevidaného v žádném jiném oboru lidské činnosti (neboť jedině díky jí se tyto obory rozvíjejí) – vždyť dnes vychází stejný počet elektrotechnických časopisů jako před třetími lety! V konstrukční elektronice je to v podstatě pouze Amatérské rádio, které však vzhledem k omezenému počtu stran není schopno obsahovat celou šíři čtenářů požadovaných informací. Také jeho náklad, i když se v posledních letech zvýšil, stále výrazně pokuhává za požadavky, jak je i vidět ze skutečnosti, že PNS na celém území státu neprávě již několik let objednávky na jeho předplatné a remízenda je prakticky nulová (pouze doprovodnou značené sešity). Pro oblast výpočetní techniky a mikroelektronických aplikací nám v celostátním informačním systému vhodný časopis z vyhovujícím nákladem úplně chybí. Jak vyplývá z mnohých dotazů přicházejících do naší redakce, „hlad“ po AR mezi elektronicky zaměřenou veřejností je značný.

„Abu pracující úspěšně zvládli úkoly na úsečích, na nichž pracují, ať už ve vědě, výzkumu nebo výrobě, je potřebné trvale zdokonalovat jejich odbornou výkovu a vzdělávání tak, aby byli stále lépe připraveni na výkon svého povolání na všech úsecích. Je nutno dbát, aby do odborné stránky výchovy pronikaly nejnovější poznatky vědy a techniky z oblastí, které jsou základem vedeckotechnického pokroku. Konec osmdesátých a devadesátých let bude znamenat další kvalitativní změny v technice, v uplatňování mikroelektroniky, robotiky, biochemie, ale i nových forem spojení vědy s praxí, využívající vysokou organizovanost výrobních procesů.“ Tolik ještě s. Jakeš. A zde je třeba si plně uvědomit, že toto doplňkové vzdělávání může kromě postgraduálního a pomaturitního studia i doškolovacích kursů do určité míry zabezpečit, a to průběžně, právě odborný, úzejí specializovaný časopis.

JaK

VŠECHNY SÍLY PRO ZDAR
VII. SJEZDU SVAZARMU

Obr. 129. Deska s plošnými spoji stabilizovaného zdroje s MAA723, regulovatelného v rozmezí 0 až 20 V

$$A = \frac{650 C \sqrt{\lambda d}}{R_{tr} \sqrt{\lambda d} - 3,3 C^{0.25}} =$$

$$= \frac{650 \cdot 0,85 \cdot \sqrt{2,1 \cdot 2}}{3,75 \cdot \sqrt{2,1 \cdot 2} - 3,3 \cdot 0,85^{0.25}} =$$

$$= \frac{1132,2}{6,72} = 168,35 \text{ cm}^2.$$

Dosazeno: $C = 0,85$ z tabulky pro svíslou desku neupravenou, $\gamma = 2,1 \text{ W}/\text{C}\cdot\text{cm}$ z tabulky pro desku Al, $d = 2 \text{ mm}$ – zadáno.

Strana a desky:

$a = \sqrt{A} = \sqrt{168,35} = 12,9 \text{ cm}$. Volíme hliníkovou desku rozměru $13 \times 13 \text{ cm}$, nebo takovou, aby plocha byla rovna vypočtené ploše A . Tranzistor umístíme vždy do středu desky.

C-5 Nf milivoltmetr s tranzistory (3 až 1000 mV a 3 až 100 V)

Pro měření malých střídavých napětí při proměňování nf zesilovačů potřebujeme citlivý měřicí přístroj s velkým vstupním odporem. Protože pouze ručkové měřidlo s usměrňovačem nestačí, malý střídavý signál nejdříve zesílíme, usměrníme a pak vedeme do ručkového měřidla. Blokové schéma milivoltmetru je na obr. 130, celkové schéma je obr. 131.

Měřené napětí přivádime na vstupní kmitočtově kompenzovaný dělič 1:1000 ovládaný páčkovým přepínačem, který umožňuje měřit napětí v milivoltech nebo ve voltech. Z děliče jde měřené napětí přes vazební kondenzátor C_3 na emitorový sledovač s tranzistorem MOS (K521), který zaručuje velký vstupní odpor. Vstup tranzistoru je chráněn rychlými Zenerovými diodami D_1 , D_2 . Měřicí rozsah se přepíná připojením příslušného odporového děliče přepínačem P_2 do emitoru tranzistoru T_1 . Z děliče jde měřené napětí přes P_2 a přes vazební kondenzátor (nejlépe tantalový – kapacita není kritická) na dvoustupňový zesilovač se silnou zápornou zpětnou vazbou. Z kolektoru tranzistoru T_3 jde zesílené napětí přes můstkový usměrňovač z germaniových diod se zlatým hrotom do měřidla. Stupnice měřidla je téměř lineární s nepatrně stlačeným začátkem – (způsobeno charakteristikou diod). V běžné praxi to nevadí – málokdy potřebujeme měřit absolutně přesně, více nás zajímá, zda je měřené napětí po zásahu do obvodu stejně nebo větší. Použité měřidlo je MP 120 (MP 80) nebo nebo DHR 8 (DHR 5) se základním rozsahem do 500 μA . Nejvhodnější je měřidlo se stodílkovou stupnicí, u něhož 30dílkovou dokreslíme. Nechceme-li druhou stupnici kreslit, zvolíme rozsahy tak, aby chom vystačili s jednou stupnicí (např. volitelné rozsahy 5, 10, 50, 100, 500, 1000).

Přístroj je postaven na dvou deskách s plošnými spoji – vstupní dělič, emitorový

Údaje R_{ts}	Teplotní vodivost λ materiálů	
0,2 až 0,4 $^{\circ}\text{C}/\text{W}$	– neizolovaný styk	3,8 $\text{W}/\text{C}\cdot\text{cm}$
0,1 až 0,2	– namazáno silikonovou	2,1
	vazelínou	1,1
0,5 až 0,8	– při použití tenké	0,46
	slídové destičky	
1 až 1,6	– při použití	
	teflonové podložky	
0,6 až 1,1	– teflon + silikonová	
	vazelína	
		λ – měď
		– hliník
		– mosaz
		– ocel
	Údaje korekčního činitele C	
	1,00	– poloha desky
		vodorovná
	0,85	– poloha desky svislá

Obr. 130. Blokové schéma tranzistorového milivoltmetru

Obr. 131. Zapojení tranzistorového milivoltmetru

Obr. 132. Deska s plošnými spoji R214 vstupního děliče, emitorového sledovače a výstupního děliče milivoltmetru

Obr. 133. Deska s plošnými spoji R215 zesilovače milivoltmetru

sledovač T_1 a výstupní dělič jsou na desce podle obr. 132. Zesilovač milivoltmetru je na desce s plošnými spoji podle obr. 133. Deska s plošnými spoji pro výstupní dělič je tak rozměrná proto, že odpory rezistorů děliče nejsou z řady a jsou sestaveny z běžných rezistorů. Paralelními trimry lze nastavit odpory děliče podle potřeby. Tím

Obr. 134. Nákres děliče milivoltmetru (odpor děličů zleva 810, 8, 270, 99, 33 a 9,9 Ω)

obejdeme jednu z největších starostí při stavbě měřicích přístrojů – nutnost obstarat si přesné odpory. Pro přehlednost je dělič ní milivoltmetru nakreslen samostatně na obr. 134.

Zapojení je samozřejmě možné realizovat též na vrtaných destičkách z izolantu a plošné spoje nahradit dráty, na jedné destičce bude vstupní dělič a emitorový sledovač, na druhé zesilovač a na třetí (větších rozměrů) děliče.

C-6 Přímoukazující měřic kapacit s rozsahy 0 až 100 pF až 0 až 1000 μ F a měřic odpornu s rozsahy 1 až 10 Ω až 10 až 100 M Ω

Měřic kapacit jsou častým námětem v oblasti měřicích přístrojů. Přímoukazující přístroje jsou v oblibě především pro rychlou kontrolu kapacit kondenzátorů, neboť měření na můstku je zdlouhavé. Od měřic kapacit požadujeme, aby mohl měřit kapacity nejen rádu jednotek pF, ale také stovek až tisíců μ F (elektrolytické kondenzátory). Tomuto požadavku vyhovuje zatím jediné uveřejněné zapojení (AR 6/60): „Cmetr – přímoukazující přístroj s velkým rozsahem měření kapacit“. Přístroj dovoluje měřit kondenzátory 1 pF až 1000 μ F. Je jednoduchý a osazen elektronikami 6Z31 a ECC82, my ho osadíme tranzistory.

Princip měřicí metody a popis přístroje

Měřený kondenzátor (obr. 135) je napájen malým střídavým napětím (1,6 V z transformátoru) přes rezistor, jehož odpor je asi 10× menší, než je kapacitní reaktance X_C měřeného kondenzátoru

Obr. 135. Blokové schéma přímoukazujícího měřiče kapacit

Obr. 136. Schéma zapojení tranzistorového přímoukazujícího měřiče kapacit

Obr. 137. Děliče z rezistorů běžně vyráběných odporů; a) s použitím běžných rezistorů a odporových trimrů, b) s použitím rezistorů

4xKY130/80

2xKA206

4xKC507 nebo 508

4xOA9

B/6
83

v pF, nF nebo μ F. Před měřením přístroj „ocejchujeme“ přepnutím na vestavěný přesný kondenzátor C_N (1 nF) a otáčením hřídelem potenciometru P_2 nastavíme plnou výchylku ručky měřidla. Tím je přístroj připraven k měření kondenzátorů.

Před měřením rezistorů se plná výchylka ručky nastaví přepnutím přepínače P_1 (na přesný rezistor R_N , 10 k Ω) a otáčením hřídelem potenciometru P_1 . Nastavení souhlasí na všech rozsazích za předpokladu, že jsou odpory rezistorů R_1 až R_{10} v přesném poměru.

Dělič lze zhotovit z běžných rezistorů a odporových trimrů podle obr. 137. Pro toto uspořádání je navržena i deska s plošnými spoji. Dva rezistory zapojené v sérii, tvořící R'_1 až R'_{10} , pájíme na výšku. Deska s plošnými spoji milivoltmetru s děličem.

Obr. 138. Deska s plošnými spoji R216 milivoltmetru s děličem pro měří kapacit

Měření odporů

Zapojíme-li místo měřeného kondenzátoru rezistor, naměříme na přepínaném sériovém rezistoru úbytek střídavého napětí stejně jako při měření kondenzátorů. Protože měříme napětí na děliči, jehož dělicí poměr je neznámým odporom měřený, není stupnice lineární, avšak reciproká, musíme ji nakreslit. Plné výchylce ručky měřidla odpovídá jednička, nikoli nulový odpor, je to vlastně odpor rezistoru, nastavený přepínačem rozsahů. Při zkratu svorek jde ručka „za roh“ a při rozpojení svorek je ručka měřidla na levé straně (na počátku stupnice) a ukazuje při každém rozsahu nekonečno. Na 1/10 výchylky ručky je odpor 10× větší a v polovině dvojnásobný, než odpovídá nastavenému rozsahu. Toto neobvyklé uspořádání dovoluje jednoduše měřit odporu od 1 Ω (konec stupnice – nejnižší rozsah) do 100 M Ω (1/10 výchylky – nejvyšší rozsah).

Obr. 139. Deska s plošnými spoji R217 zdroje pro měří kapacit

ličem je na obr. 138, zdroje na obr. 139. Přístroj je vestavěn do kovové nebo stíněné skřínky.

Uvedení do chodu

Nejprve překontrolujeme síťový zdroj. Zkontrolujeme měřicí napětí 1,6 a 16 V. Není-li přesné desetinásobkem, upravíme odpor rezistoru R_2 . Zkontrolujeme napětí na C_2 (9 až .10 V). Připojíme napájení milivoltmetru a zkontrolujeme stejnosměrné napětí kolektoru T_4 – na něm musí být polovina napájecího napětí, zvětšená o 0,5 až 1 V. Nastavíme ho odparem R_{24} . Máme-li možnost, přezkoušíme nastavení osciloskopem a nf generátorem (kmitočet 50 Hz). Zesílení zesilovače nastavíme trimrem R_{20} . Cím je odpor trimru menší, tím je zesílení větší. Měřidlo má ukazovat plnou výchylku asi při 60 mV na C_5 . Pracovní bod T_1 zkontrolujeme osciloskopem, případně ho upravíme změnou R_{15} na nejmenší zkreslení při 50 Hz. Zesílení sledovače je téměř 1. Přesné rezistory R_1 až R_{10} a R_N i přesný kondenzátor C_N změříme, případně nastavíme před zapojením do přístroje. Po nastavení všech částí přepneme přepínač P_1 do polohy „kalibrace C“ a přepínač P_2 do polohy „C“. Potenciometr P_2 dáme do střední polohy. Odporným trimrem R_{20} nastavíme plnou výchylku ručky. Pak můžeme kdykoli dobré nastavovat plnou výchylku jen potenciometrem P_2 (výchylka je závislá na napětí v sítí). Pak přepneme přepínač P_2 do polohy „R“ a přepínač P_1 do polohy „kalibrace R“. Potenciometrem P_1 nastavíme plnou výchylku ručky měřidla. Odpor rezistoru R_{13} upravíme tak, aby plné výchylky ručky měřidla bylo dosaženo také asi v polovině dráhy potenciometru P_1 . Při kalibraci musí být svorky C_x (R_x) volné – bez přívodních šnúr, jinak vlivem „nabuřeného“ napětí neodpovídá nastavení zesilovače skutečnosti. Při měření na rozsahu 100 pF (10 až 100 M Ω) musí být měřená součástka připojena přímo na svorky přístroje, bez šnúr, které ovlivňují údaj měření.

Technické údaje

Napájení: síť 220 V/50 Hz.

Měřicí rozsahy:

0 až 100 pF,	1 až 10 Ω ,
0 až 1 nF,	10 až 100 Ω ,
0 až 10 nF,	100 až 1000 Ω ,
0 až 100 nF,	1 až 10 k Ω ,
0 až 1 μ F,	10 až 100 k Ω ,
0 až 10 μ F,	100 k Ω až 1 M Ω ,
0 až 100 μ F,	1 až 10 M Ω ,
0 až 1000 μ F,	10 až 100 M Ω .

C-7 Přímoukazující měřicí kmitočtu

V rubrice R15 (AR 9/78) byl popsán přímoukazující měřicí kmitočtu jednoduché konstrukce s obvodem MH7400. Přístroj je řešen jako jednorozsahový do kmitočtu 10 kHz. Má malý vstupní odpor a malou citlivost. Protože obvody MH7400 jsou schopny pracovat s podstatně vyšším kmitočtem (až 20 MHz), je vhodné přístroj doplnit přepínačem rozsahů a vstupním zesilovačem. Získáme dobrý přístroj pro měření kmitočtu v širokém rozsahu.

Pops a provedení

Přístroj je postaven do kovové skřínky nebo do skřínky s dobrým stíněním. Napájení je ze dvou plochých baterií. Napájecí napětí je stabilizováno Zenerovou diodou. Schéma zapojení přístroje je na obr. 140. Měřený signál jde přes ochranný rezistor R_1 (nebo R_2) a přes oddělovací kondenzátor C_1 (tantalový) na tranzistor T_1 (sledovač), dalej na dvoustupňový zesilovač T_2 , T_3 . Z kolektoru T_3 jde zesílený signál na tvarovač, tvořený hradly 1 až 4. Získaný signál s dostatečně strmými náběžnými i sestupnými hranami jde do klopenného obvodu $R-S$ z hradel 5 a 6. Obvod $R-S$ pracuje jako dělič dvěma a přemění jakýkoli signál (i jehlové impulsy) na pravoúhlý se střídou 1:1. Za obvo-

dem $R-S$ je hradlo 7, které odděluje tento obvod od vyhodnocovacího obvodu, tvořeného členem RC (C_9 až C_{19} až R_{14} až R_{24}), diodou D_4 , tranzistorem T_4 a měřidlem s paralelním elektrolytickým kondenzátorem C_8 a odporným trimrem P_1 . Vyhodnocovací obvod je tzv. počítací detektor, nebo převodník kmitočet – proud. Přepínáním kondenzátorů členu RC měníme rozsah přístroje. Sériovým rezistorem s paralelním odporným trimrem můžeme rozsah v malých mezích měnit a nemusíme používat přesné kondenzátory; používáme však teplotně stabilní kondenzátory (styroflex, MKL, nebo polyester). Dioda D_4 umožňuje průchod kladných půlvln na zem. Měřidlo se základním rozsahem 100 μ A je zapojeno do kolektoru tranzistoru a výchylka ručky je pak přímo úměrná kmitočtu. Pro zesílení vysokých kmitočtů ve vstupním zesilovači je nutné, aby vazební kondenzátory C_1 a C_3 v předzesilovači mohly signály vysokých kmitočtů přenést. Volíme tantalové, nebo přemosťové běžné elektrolytické kondenzátory keramickými s kapacitou 0,1 μ F.

Uvedení do chodu

Nejprve zkontrolujeme napětí na Zenerovou diodou D_3 – musí být v rozmezí 4,75 až 5,25 V. Na diodu D_3 připojíme voltmetr a místo baterií zapojíme regulovatelný zdroj. Jeho napětí zvětšujeme od 4 V a sledujeme voltmetr. Jeho ručka se musí zastavit na požadovaném napěti 4,75 až 5,25 V, i když napětí zdroje dosahuje až 9 V. Je-li obvod stabilizace v pořádku, připojíme baterie. Jinak musíme diodu vyměnit. Dáváme též pozor na přepolování Zenerovy diody. Při správném napájecím napětí nastavíme vstupní zesilovač generátorem a osciloskopem na maximální zesílení. Pracovní body jednotlivých tranzistorů nastavujeme změnou odporu rezistorů označených hvězdičkou. Bude-li zesilovač kmitat, zvětšíme kapacitu C_4 (použijeme keramický kondenzátor). Pracuje-li zesilovač dobře, zkontrolujeme průběh signálu na jednotlivých hradlech

Obr. 140. Schéma zapojení přímoukazujícího měřiče kmitočtu

Obr. 141. Citlivý tvarovací obvod pro přímoukazující měřicí kmitočtu

tvarovače a obvodu R-S a to hlavně na nízkých a vysokých kmitočtech. Na výstupu R₅ obvodu (hradla 5 a 6) musí být pravouhlé napětí se střídou 1:1. Pak nastavíme přístroj na střed rozsahů, např. 10 kHz a generátor také na 10 kHz. Výstupní napětí generátoru asi 1 V přivedeme na vstup přístroje. Běžec odporového trimru P₆ nastavíme na střed a měřidlo by mělo ukázat výchylku. Trimrem P₁ nastavíme plnou výchylku ručky měřidla. Pak nastavíme generátor na 5 kHz a ručka by měla ukázat přesně polovinu výchylky. Není-li tomu tak, opravíme nastavení trimrem P₁ a pak všechny zbývající rozsahy nastavujeme na polovinu výchylky vždy pouze odporovými trimry P₂ až P₁₂. Trimrem P₁ nehýbáme. Nedaří-li se nám na některém rozsahu nastavit správně výchylku ručky měřidla, pomůžeme si změnou odporu rezistoru (malá změna) nebo změnou kapacity kondenzátoru (velká změna). Krajní rozsahy (100 Hz, 10 MHz) užijeme pouze tehdy, máme-li možnost zesilovač velmi dobře nastavit, jejich nastavení vyžaduje zkušenosť a je na hraničních možností měřiče. Při správném nastavení pracuje měřič dobré při vstupním napětí 40 až 100 mV v rozsahu kmitočtů 20 Hz až 10 MHz. Chceme-li dosáhnout ještě lepší citlivosti, zapojíme tvarovací obvod podle obr. 141; tvarovací obvod se pak překlápi menším napětím a pracuje dobré i při vysokých kmitočtech, se stejným zesilovačem (3x KC508) lze pak dosáhnout citlivosti 20 mV. Přístroj byl postaven s použitím původní desky s plošnými spoji a vrtaných destiček.

Technické údaje

Napájení: 9 V, 2 ploché baterie.
Citlivost: na rozsahu 20 kHz až 10 MHz asi 100 mV, 1 kHz až 1 MHz asi 40 mV.
Měřicí rozsahy: (100), 300 Hz, 1, 3, 10, 30, 100, 300 kHz, 1, 3, (10) MHz.

a svítí, i když zdířky nejsou vůbec připojeny (není-li na zdířkách log. 0, musí tam být log. 1). Pro oddělení zkoušeného obvodu od svítící diody slouží hradlo s otevřeným kolektorem (MH7403).

Vstupy zkoušeného obvodu napájíme z výstupu obvodu R-S a to proto, že pak jsou přesně definovány úrovne log. 1 a log. 0 a logické úrovne můžeme přepínat přepínačem tlačítka bez záklítek. Logické úrovne lze na zkoušený obvod přivést i z napájení (zdířky napájené přes R₇, R₈). Dvojí možnosti napájet vstupy využíváme tehdy, potřebujeme-li jedním vstupem „krokovat“ a nemají-li se na ostatních úrovni měnit.

S popisovaným zkoušečem se dají přezkoušet všechny běžně užívané obvody TTL (hradla, klopné obvody, převodníky kódů). Celý zkoušeč je postaven do krajíčky U6 nebo jen na destičku z izolantu se čtyřmi sloupky výšky 30 mm, které slouží jako nožky. Uspořádání volíme tak, že nahoru jsou 4 svítící diody, uprostřed vodorovně dvě zásuvky s kruhovými kontakty, dole vlevo přepínačí tlačítko a vpravo dole spínač baterie. Obvody MH7403 a MH7400 lze snadno umístit na vrtanou destičku. Místo zásuvek s kruhovými kontakty je možné použít objímkou pro integrované obvody TTL a zdířky. Celý zkoušeč je pak větší a propojovací kablíky

Obr. 142. Schéma zapojení malého zkoušeče IO - TTL

Obr. 143. Rozměry propojovacích drátků

Obr. 144. Zapojení obvodu s tranzistorem a žárovkou (náhrada hradla s otevřeným kolektorem)

s banánky jsou rozměrné; výhodou je snazší práce při zapojování. Zkoušeč je možno postavit i bez IO tak, že místo MH7403 použijeme tranzistory a žárovky podle obr. 144. Smířme-li se se zakmitnutím přepínacího tlačítka, můžeme vynechat i obvod R-S.

Technické údaje

Napájení: 4,5 V (plochá baterie) nebo 5 V ze síťového zdroje.
Výstupy: napájení 4,5 V nebo 5 V, úroveň log. 0, úroveň log. 1.

D-2 Zkoušeč IO TTL s možností demonstrace činnosti obvodu pomocí svíticích diod LED

Pro názornou představu jak pracují obvody TTL je výhodné vidět, jaké log. úrovni jsou na jednotlivých vývodech zkoušeného obvodu. Lze pak sledovat činnost celého obvodu při změně úrovni některého ze vstupů. Doplňme-li zkoušeč D-1 větším počtem hradel s otevřeným kolektorem a svíticími diodami, je požadavek spiněn.

Popis a provedení zkoušeče

Zkoušeč je navržen pro zkoušení obvodů TTL v pouzidlech DIL. Zkoušeč je osazen objímkami pro IO se 14, 16 a 24 vývody (místo objímk s 24 vývody jsou použity dvouzásvuky konektoru FRB). Nad objímkami je pole svíticích diod (24 kusů), uspořádaných a očíslovaných stejně jako vývody zkoušeného obvodu. Diody jsou připojeny anodami na +5 V a katodami na výstupy hradel s otevřeným kolektorem (MH7403). Vstupy těchto hradel jsou spojeny paralelně a připojeny na zdírky hlavního připojovacího pole vývodů – na vývody objímek. Vývody všech objímek a vývody hlavního i pomocného připojovacího pole jsou tedy propojeny paralelně podle čísel (obr. 145).

Svíticí diody i zdírky připojovacího pole jsou ve dvou vodorovných řadách po dvanácti. Aby bylo zkoušení přehledné, nepotřebné zdírky i diody se zakrývají krycími destičkami z izolantu. Destičky jsou pro zdírky i diody dvojí. Jednou dvojici krycích destiček zakryjeme zbylé zdírky a diody při zkoušení 14vývodového obvodu, druhou dvojici použijeme při zkoušení 16vývodového obvodu.

Připojovací pole úrovní tvoří hlavní část střední desky a zdírky v něm jsou propojeny vodorovně. V posledních dvou řadách je části zdírek (12 + 12) využito jako pomocného připojovacího pole vývodů. Šest vodorovných řad (A, B, C, D, E, F) a napájení (0, +5 V) je připojeno na přístrojové svorky v horní části, čímž je umožněno přivést do zkoušeče jiné logické úrovni a napájecí napětí, nebo ze zkoušeče vyvést napájení, hodinové impulsy apod. Zbylé čtyři vodorovné řady jsou připojeny na log. 1 a log. 0 (možno změnit tlačítkem KROK – vývody K, K) a výstup generátoru hodinových impulsů, který je opatřen oddělovacími tranzistory T₃, T₄ (KS500); jejichž vývody z kolektoru jsou označeny H a H̄.

Zkoušeč je napájen ze sítě, má výkonný stabilizovaný zdroj (5 V/1 A) a generátor pravoúhlých impulsů (hodiny) pro dynamické zkoušení obvodů. Při dynamickém zkoušení připojujeme na výstupy zkoušeného obvodu osciloskop. V obvodu napájení (+5 V) je zapojen miliampérmetr s rozsahem 1, 10 a 100 mA, jímž se měří

odběr proudu IO. Miliampérmetr je možné vybrat (čtvrtá poloha přepínače), vadil-li by při zkoušení nebo pokusech odpory bočníků v napájecí věti. Tlačítko s označením „KROK“ ovládá obvod R-S, z jehož výstupu dostáváme úroveň log. 0 a log. 1. Obvod je stejný jako u malého zkoušeče. Zkoušeč je postaven do rozváděčové desky pro elektroinstalaci (rozměr 225 × 300 × 65 mm).

Na horní straně desky vrtačkou, pilkou a pilníkem uděláme dva velké obdélníkové otvory tak, aby nevadily zdírkám na střední dvojitě desce a přístrojům na spodní desce. Propojovací kablíky zhovíme různě dlouhé a barevné. Místo zdírek připojovacích polí je možné použít zásuvky řadových konektorů a na propojovací kablíky pak pájet špičky ze zástrčky použitého konektoru.

Elektronická část zkoušeče (24 hradel s rezistory pro svíticí diody) je zapojena na dvou deskách (univerzální desky) s plošnými spoji a zdrojem s generátorem a obvodem R-S na třetí desce.

Technické údaje

Napájení: 220 V/50 Hz.

Objímky: DIL 14, 16 a 24 vývodů.

Výstupy: napájecí napětí 5 V/1 A, generátor hodinových impulsů 10 kHz, úroveň log. 0, úroveň log. 1.

Indikace: 24 diod LED (LQ110).

Popisovaný zkoušeč, i když je dost složitý, umožní informativní zkoušku IO. Jeho největší předností je, že dává obrázek o činnosti zkoušeného obvodu. Je velmi výhodný pro výuku a seznamování se s činností obvodů TTL. Zkoušečem lze dobře demonstrovat práci klopých obvodů, rozdíl překlopení na náběžnou nebo sestupnou hraniču impulsu, dobré se ukazuje činnost převodníků kódů a jiné. Při zkoušení základního obvodu MH7400 lze na zkoušeči obvod zapojit a předvést ve funkci logického člena ANO (YES), NE (NOT), AND-OR, NOR, EXCLUSIVE-OR, jako klopový obvod R-S, hodinový obvod R-S. Přídavnou kupřesvitkovou destičkou

Obr. 145. Celkové schéma zapojení zkoušeče IO

s objímkami pro IO TTL, přišroubovanou pod přístrojové svorky, můžeme realizovat rychle řadu zapojení jako se stavebnici, neboť máme k dispozici napájecí zdroj, generátor impulsů a obvod R-S pro skokovou změnu log. 0 na log. 1 a naopak.

D-3 Logická sonda s počítáním náhodných krátkých impulsů

Logická sonda je dobrým pomocníkem při práci s integrovanými obvody TTL. Na stránkách AR byla uveřejněna řada logicích sond, některé dost složité. Zde uvádíme zapojení poměrně jednoduché logické sondy s možností počítat náhodné krátké impulsy; u sondy není nutné nic nastavovat.

Popis a provedení sondy

Schéma zapojení logické sondy je na obr. 146. Sledovaná logická úroveň je vedena přes R_1 a paralelní kondenzátor C_1 na báze tranzistorů T_1 a T_2 . Je-li vstupní napětí menší než 0,65 V, vede tranzistor T_1 a vstup hradla 3 je připojen tranzistorem

provedení logické sondy

MH7493				
A	B	C	D	vstup 14
L	L	L	L	0
H	L	L	L	1
L	H	L	L	2
H	H	L	L	3
L	L	H	L	4
H	L	H	L	5
L	H	H	L	6
H	H	H	L	7
L	L	L	H	8
H	L	L	H	9
L	H	L	H	10
H	H	L	H	11
L	L	H	H	12
H	L	H	H	13
L	H	H	H	14
H	H	H	H	15

Obr. 146. Schéma zapojení logické sondy s možností počítání náhodných krátkých impulsů

T_1 na zem (log. 0), tím je log. 0 také na výstupu hradla 4 a dioda D_2 svítí. Při překročení napětí 0,65 V na bázi tranzistoru T_1 , přestává tranzistor vést a na vstupu hradla 3 je kladné napětí (log. 1), dioda D_2 zhasne. Při napětí 1,5 V začíná slabě svítit dioda D_1 – tranzistor T_2 (emitorový sledovač) vede natolik, že se na vstupu hradla 1 objeví napětí, které zmenší úroveň log. 1 na jeho výstupu. Při napětí 2,4 V se hradlo 1 skokem překlopí a LED svítí plným svitem. Překlopení je usnadněno zapojením R_3 a R_5 . Každý impuls (log. 1) svou sestupnou hranou půsune čítač MH7493 o jeden krok. Stav čítače je znázorněn čtyřmi diodami LED na výstupu (v kódu BCD – viz tabulka na obr. 146). Na výstupu čítače jsou připojeny diody LED, v sérii s nimi křemíkové diody KA206 (nebo jiné – zaručují, že se napětí na výstupech nezmenší odběrem proudu diodami LED pod dovolenou mez). Čítač je možné využívat rozpinacím tlačítkem (mikrospínač). Pro přesné měření je v blízkosti zkoušecího hrotu sondy šroubek, kam je možné přivést zem v případě, že je sonda napájena z cizího zdroje.

Obr. 147. Deska s plošnými spoji R218 logické sondy
(R_3 a R_5 ze strany spojů, přidány dodatečně)

Sonda je jištěna proti přepólování napájecího napětí diodou D₃ a proti připojení většího napětí Zenerovou diodou D₄.

Uvedení sondy do chodu nečiní potíže – nic se nenaastavuje. Podmínkou je, aby tranzistory T₁ a T₂ měly dostatečně velký zesilovací činitel. Tranzistor T₁ (TR15) je volen s ohledem na spinaci rychlosť. Sonda je schopna zpracovat impuls od šírky 20 ns, který již posune čitač. Spokojíme-li se s pomalejší sondou, použijeme místo TR15 jiný tranzistor.

Deska s plošnými spoji je na obr. 147. Na desce s plošnými spoji není počítáno s rezistory R₃ a R₅, které připájíme ze strany spojů. Pouzdro sondy zhodovime jako krabičku spájenou k kuprextitu s přišroubovaným horním víčkem. Ve víčku jsou dvě díry pro diody LED (log. 0 a log. 1), čtyři díry pro LED, indikující stav výstupu čitače (A, B, C, D) a jedna díra pro tlačítko mikrospínače (nulování).

Technické údaje

Rozměry: 150 × 28 × 18 mm.

Napájení: 5 až 5,5 V.

Úroveň log. 0: 0 až 0,65 V.

Úroveň log. 1: 2,4 až 5 V.

Uspořádání desek s plošnými spoji a zdroje v čitači

D-4 Univerzální čitač s předvolbou

Čitač je dobrým pomocníkem v radioamatérské praxi. Integrované obvody, které jsou na našem trhu, umožňují postavit čitač velmi dobrých vlastností. Protože stavba čitače není levnou záležitostí, doporučuji ji pouze tomu, kdo má odpovídající zkušenosť a znalosti – proto popis nebude podrobný, ale jen ukázkou a vodítkem pro stavbu. S ohledem na pořizovací cenu je čitač navržen jako víceúčelový přístroj.

Činnost přístroje

- Měření kmitočtu od 1 Hz do 120 MHz s možností odečtení nebo přičtení předvolby (použití jako stupnice), citlivost lepší než 50 mV.
- Měření délky periody s rozlišením 1 μs.
- Prosté čítání impulsů.
- Měření času (stopky) se spouštěním ručně nebo elektricky – úrovní TTL.
- Časový spínač s možností nastavit čas od 1 μs do 99999 s. Spouštění ručně nebo elektricky – úrovní TTL.
- Použití jako digitální hodiny – 24hodinový cyklus.

Uspořádání

Čitač je proveden jako šestimístný v základním provedení se sedmsegmentovým displejem LED (LQ410), po úpravě desky s plošnými spoji a po výměně dekodérů za MH74141 je možné použít digitrony.

Funkce čitače je volena tlačítky (Isostat), časová základna se přepíná dvanáctipolohovým, dvoupólovým přepínačem (1 pól přepíná desetinnou tečku). Předvolba se ovládá palcovým přepínačem pracujícím v kódě BCD.

Elektrická část je na obr. 148. Čitač je vestaven do panelové jednotky s rozměrem předního panelu 200 × 110 mm a hloubkou základního rámečku 160 (s krytem 180).

Popis jednotlivých částí

Základní část

Pro vlastní čítání je použit 6 × dekadický synchronní čitač s využívanou předvolbou a s možností čítání vpřed i vzad (MH74192). Jako paměť slouží obvody MH7475, které během čítání uchovávají informaci až do dalšího přenosu dat A. Pro sedmsegmentové zobrazovací jednotky použity dekodéry SN7447 (nebo D147, NDR). Přenosu nuly z vývodů 4, 5 je využito k automatickému zhášení displeje při použití jako časový spínač. V době, kdy se neměří, svítí na displeji pouze desetinná tečka. Celá základní část je na jedné desce s plošnými spoji (obr. 149). K osazení první dekády jsou použity pro IO objímky, všechny ostatní IO je třeba před zapojením do desky s plošnými spoji změnit.

Zobrazovací jednotky jsou vsazeny do objímek na samostatné desce s plošnými spoji, která je propojena se základní částí plochým několikažilovým kabelem, pájeným ze strany spojů. Deska s plošnými spoji je na obr. 150. Deska s plošnými spoji se zobrazovacími jednotkami je přišroubována k přednímu panelu.

Časová základna

Je použito běžné zapojení tranzistorového oscilátoru s krystalem 1 MHz. Pryná dělička je osazena obvodem MH7493 a je přepínána pro dělení čtyřmi nebo šestnácti. Další IO, 6 × MH7490, dělí deseti. Všechny děličky jsou nulované (signál R). Tím je dosaženo při měření času přesnosti ±1 μs. Jednotlivé výstupy jsou spinány tranzistory KC508. Deska s plošnými spoji je na obr. 151.

Rídící logika

V obvodech logiky jsou použity obvody MH74S00 – výstupní hradlo 8, výstup časového spínače, hradlo 11; MH7472 (IO₁₂) určuje délku měřeného intervalu; MH7437 (IO₁₃) dodává impulsy pro řízení paměti, pro nastavení předvolby a nulová-

ní časové základny. Vzhledem k tomu, že obvody MH74192 jsou při přenosu čítání schopny pracovat až do 16 MHz, bylo pro vyšší kmitočty použito dělení čtyřmi – MH74S74 (IO₁₀) – přepojováno přepínačem 10 (dělička vf). Tím se kmitočtový rozsah čitače zvýší až do 60 MHz. (Při použití zahraniční rychlé děličky deseti, SN74196, se dosáhne stejněho mezního kmitočtu, prodlužuje se však 10 × měřicí interval.) Do děličky čtyřmi, MH74S74 (IO₁₀) jsou ze součinnového hradla přiváděny měřené signály ze vstupního tvarovače pro vf (0,3 až 50 MHz), vstupního tvarovače a děličky VHF (VKV) (2 až 110 MHz). Při měření VHF (VKV) se přepíná první dělička MH7493 (IO₁) v časové základně na dělení 16 (přepnutím přepínače 7 a 10). Přepínání signálu před nebo za děličkou je řešeno stejnospěrně (IO₈). Výstupní signál tvarovače nf a vstup TTL spolu se signály vf jsou přivedeny do součinnového hradla MH7420 (IO₉), tím odpadá přepínač vstupu. Deska s plošnými spoji je na obr. 152.

Obvod relé

Výstup časového spínače je tvořen kontakty relé LUN-6 V, spinaného tranzistorem KC507 (T₁₀). Výstup TTL je možno použít současně. Deska s plošnými spoji je na obr. 153.

Poznámka: tranzistor T₁₁ (obr. 148) je doplněn do čitače pro kontrolu spinání vstupního hradla IO₁₁, MH74S00.

Vstupní obvody

Vstup TTL

Signál přivádime přes ochranný odpor 39 Ω do součinnového hradla MH7420 (IO₉). Proti přepěti a opačné polaritě je vstup chráněn diodou KZ141 a rezistorem 1kΩ.

Poznámka: všechny popsané obvody jsou na obr. 148. Další obvody (vstup nf, vstup

Obr. 148. Celkové schéma zapojení univerzálního čítacího s předvolbou

Přepínáče

- 1 – vstup, měření / nebo počtu period, 2 – měření/kmitočtu nebo času, 3 – čítání nároční doby, 4 – výpravná paměť, 5 – nulování, 6 – start/stop, 7 – měření VHF, 8 – Přepnutí na hodiny do 24 h, 9 – časový spínací, 10 – delička vý.

Obr. 149. Deska s plošnými spoji R219 pro základní část čítače

Obr. 150. Deska s plošnými spoji R220 pro zobrazovací jednotku čítače

vf, vstup VHF) jsou na obr. 148 zakresleny jen blokově a jsou rozkresleny dálé.

Vstup nf

Vstupní zesilovač a tvarovač pro kmitočty 1 Hz až 0,3 MHz je osazen tranzistory 3x KC508 a diodami 4x KA206. Je zapojen (obr. 154) podle AR (příloha 1975). Vstup je určen především pro měření signálů velmi nízkých kmitočt (od 1 Hz). Vzhledem k jednoduchosti není zapojení na desce s plošnými spoji uvedeno.

Vstup vf

je osazen tranzistory KF521, KSY71, IO MH74S00 (podle časopisu Funkamatér 7/81). Schéma zapojení je na obr. 155. Deska s plošnými spoji je na obr. 156. Zesilovač pracuje dobře do kmitočtu 50 MHz.

Obr. 151. Deska s plošnými spoji R221 časové základny čítače

Obr. 152. Deska s plošnými spoji R222 řídící logiky čítače

Obr. 153. Deska s plošnými spoji R223 obvodu relé pro čítač

Obr. 154. Schéma zapojení vstupního zesilovače a tvarovače nf

Obr. - 155. Schéma zapojení vstupního zosilovače a tvarovače vif

Vstup VHF (VKV)

Je použito zapojení podle AR 6/77, skládá se ze vstupního zesilovače (BF244A, KF173, KSY21) a tvarovače (MH74S00) s děličkou (MH74S74). Schéma zapojení je na obr. 157, deska s plošnými spoji je na obr. 158.

Při použití zahraničních obvodů – tvarovače MC10116 a děličky MC10131 – pracuje vstupní zesilovač až do 170 MHz. S obvody 11C90 (Fairchild) nebo SP8680 (Plessey) je možno měřit (podle Radio Electronics 8/81) kmitočty až do 500 MHz (citlivost 100 mV). Schéma zapojení je na obr. 159, deska s plošnými spoji na obr. 160.

Zdroj

Spotřeba IO celého čítače je asi 1,4 A. Jako stabilizátor byl použit obvod MA7805. Displej je napájen z nestabilizovaného napětí 5 V. Spotřeba je asi 400 mA. Zdroj si navrhne každý podle svých možností. Při použití digitronů je nutné si uvědomit, že obvody pro spínání digitronů (MH74141) nemají napěťovou rezervu a není dobré, dává-li zdroj napětí větší než 200 V; vypadne se proto použít stabilizátor, např. 11TA31 + 2x 8NZ70 apod.

Poznámka: pro provedení čítače s digitrony slouží deska s plošnými spoji podle obr. 161, na kterém je celá základní část. Na desce s plošnými spoji není uvažováno použití čítače jako časového spínače, není počítáno se zapojením spinačních diod a tranzistorů pro vyhodnocení nuly.

Závěr

Popisů univerzálních čítačů byla již v literatuře zveřejněna řada. Účelem článku je ukázat na různé možnosti použití čítače. Pro ty, kdo se stavbou čítačů zabývají, může být dalším zdrojem inspirace.

Obr. 156. Deska s plošnými spoji R224 vstupního zesilovače a tvarovače VKV

Obr. 157. Schéma zapojení vstupního zesilovače a tvarovače VHF (VKV)

Obr. 158. Deska s plošnými spoji R225 vstupního zesilovače a tvarovače VHF

Obr. 159. Schéma zapojení vstupního zesilovače a tvarovače pro měření kmitočtů do 500 MHz

Obr. 160. Deska s plošnými spoji R226 vstupního zesilovače a tvarovače pro měření kmitočtů do 500 MHz

Obr. 161. Deska s plošnými spoji R227 pro základní část čítače s digitrony

D-5 Zobrazovací jednotka ze starého televizoru

Staré televizory bývají častým zdrojem materiálu v radiokroužcích. S rozebráním je dost práce a kromě odporů, kondenzátorů a reproduktoru se většinou nic jiného nepoužije. Naskytá se otázka, zda by se nedalo televizor využít jinak. Přestavba na osciloskop je nevhodná a pracná – jednodušší verze nedává uspokojivé výsledky při měření signálů nad 10 kHz. Televizní obrazovku můžeme však dobře použít při takových měřeních, kdy pracujeme s nízkými kmitočty, u nichž nevadí in-

dukčnost vychylovacích cívek (rozmitáče, zobrazovače charakteristik). Potřebujeme tedy televizor, který má v pořádku obvod vysokého napětí (rádkový rozklad), případně i obvod snímkového rozkladu (máme časovou základnu). Obrazovka může být „slabá“ (pro zobrazení čáry dobré vyhoví). Lepší je obrazovka menší.

Popis úpravy a zapojení

Starý televizor uvedeme do chodu tak, aby obrazovka „svítila“ (rozkladové části i v ní musí být v pořádku). Odpojíme reproduktor a chceme-li změnit spotřebu televizoru, vymějme nevyužívané elektroniky a místo jejich zhávení zařadíme do obvodu drátový rezistor (odpor vypočteme podle typu televizoru). Odpojíme cívky

pro vodorovné vychylování – místo nich zapojíme náhradní cívku, nejlépe stejně vychylovací cívky z druhého televizoru, nebo cívku o stejně indukčnosti (např. Aleš 8 mH) zhotovime (dodržet průměr drátu). Bez náhradní cívky nemůže dobrě pracovat zdroj vn. Po zapnutí se uprostřed obrazovky objeví svislá čára. Pracujeme s nejmenším jasem. Na vodorovné vychylovací cívky přivedeme stejnosměrné napětí a zjistíme, jaký proud a napětí potřebujeme k vychýlení čáry na konec stínítka. Nejvhodnější jsou televizory s obrazovkou, jejíž úhel vychylování je 90°, neboť ty mají nejmenší potřebný výkon na vychýlení. U televizoru Aleš, Kriváň potřebujeme ve směru vodorovném 4,5 V, proud 0,6 A (2,4 W) a ve směru svislém 3,5 V/0,4 A (1,4 W) na vychýlení paprsku ze středu stínítka na jeho okraj.

Vodorovné vychylovací cívky vvedeme na přepínač s dobrou izolací tak, abychom je v poloze 1 připojili na transformátor snímkového rozkladu (bude nám sloužit jako časová základna – „pila“ 50 Hz), v poloze 2 na zesilovač, v poloze 3 na zvláštní vinutí transformátoru (3,15 V/0,4 A pro televizory Aleš, Kriváň) – využijeme při práci s rozmitáčem. Poslední položka 4 – cívky nezapojeny. Svislé vychylovací cívky připojíme na páčkový přepínač tak, že v poloze 1 jsou připojeny na zesilovač a v poloze 2 jsou nezapojeny. Při úpravě dbáme, aby cívky nebyly spojeny galvanicky s kostrou televizoru, aby mohly být zapojeny vždy odděleně od sítě. Potíže činí sekundární vinutí transformátoru snímkového rozkladu a zhášení zpětného běhu. Nepodaří-li se sekundární vinutí od kostry oddělit, nebudeme televizor bud s ohledem na možný úraz elektrickým proudem vůbec používat, nebo ho zapneme přes oddělovací transformátor.

Zesilovače

Pro svislé i vodorovné cívky (obr. 162) použijeme zesilovače s IO MBA810 (zapojení B-6b), na jejichž vstupech jsou lineární potenciometry TP 280, 0,1 MΩ, jimiž se řídí citlivost zesilovačů.

Zesilovače jsou napojeny ze stabilizovaného zdroje 12 až 14 V/3 A. Transformátor zdroje má zvláštní vinutí 3 až 4 V/1 V pro případné napájení vodorovných vychylovacích cívek. Vychylovací cívky zapojíme přes páčkové přepínače, abychom při pokusech mohli snadno přepínat směr proudu v cívkách a tím měnit polohu zobrazovaných křivek. Zdroj, zesilovače a přepínače vestavíme do zvláštní skříňky nebo přímo do televizoru; umístění do samostatné skříňky je s ohledem na stínění výhodnější. Skříňku s televizorem propojíme šňůrou s několikapólovým konektorem, nebo pomocí zdířek, kablíků a banánek. Blokové schéma úpravy je na obr. 162. Podrobné zapojení závisí na použitém televizoru a materiálových možnostech. U sovětských televizorů s transformátorem nehraci nebezpečí úrazu elektrickým proudem (kostra není galvanicky spojena se sítí), transformátoru v televizoru lze využít pro zdroj a ní zesiilovače lze použít tak, že místo reproduktoru zapojíme svislé vychylovací cívky. Po připojení výstupu snímkového rozkladu

Obr. 163. Schéma zapojení přípravku pro sledování charakteristik diod a tranzistorů

na vodorovné vychylovací cívky (časová základna s „pilou“ 50 Hz) může televizor okamžitě pracovat jako osciloskop pro signály nízkých kmitočtů. Signál připojujeme na potenciometr regulace hlasitosti. Po úpravě je možné signálem z nf zesilovače „časovou základnu“ synchronizovat.

Zobrazovací jednotku používáme v kroužcích bud k zobrazení střídavých proudů síťového nebo nízkých kmitočtů, přičemž používáme časovou základnu (snímkový rozklad), nebo k znázornění Lissajousových obrazců při porovnání kmitočtů (bez časové základny). Pro sledování charakteristik diod a tranzistorů použijeme zapojení podle AR 10/68 (obr. 163). Použití zobrazovací jednotky spolu s rozmitáčem podle AR B5/78 nebo AR A3/80 je též výhodné. Pro rozmitání osciloskopu lze použít buď signál časové základny (snímkový rozklad), nebo signál o kmitočtu sítě z transformátoru. Vodorovné vychylovací cívky mohou být „napájeny“ oběma signály.

Závěr

Uvedený stručný popis je námětem a pobídkou k účelnějšímu využití starého televizoru, než je pouhý rozebrání. Vstupní jednotka (v. samostatné skřínce) je pouze „střídavá“, neobsahuje žádný prvek pro posuv obrázku směrem X nebo Y a nemůže tedy sloužit pro přesná měření.

V případě, že bychom chtěli získat kvalitnější přístroj, použijeme zesilovače

bez výstupních kondenzátorů. Vychylovací cívky vázané stejnosměrně vyžadují však napájecí zdroj souměrný se středním vývodem. Pak už stojí za zamýšlení, zda nenahradit rádkový rozklad s velkým příkonem samostatným zdrojem vysokého napětí (tranzistorový střídací apod.). Z celého televizoru lze pak ovšem použít jen obrazovku.

Doplňky k AR B5/83

Přes pečlivou kontrolu se vyskytlo v AR B5/83 několik chyb, proto si, prosíme, opravte:
str. 165, tab. 1, místo 6 V/0,08 A má být 6 V/0,8 A;
na str. 171, v obrázku 38, je u tranzistoru T₁ chybně označen kolektor a emitor. Místo označení C má být správně E a místo E má být C. Dále chybí v obrázku spoj mezi C tranzistoru T₁ a horním koncem rezistoru R₂ (báze T₂);
na str. 180, na obr. 64b, chybí spoj mezi horním koncem C₂ a vývodom 4 integrovaného obvodu;
na str. 190, v obr. 94a, je chybně veden spoj z propojených vývodů přepínače (rozsah 500, 100, 10 a 1 mA) na svorku mínus, měřidlo a R₁₀. Spoj má být správně veden na pravou stranu rezistoru R₇;
na str. 194, obr. 102b, chybí spoj mezi vývodem 6 integrovaného obvodu a spojovacím spojem C₂, C₁, R₁ a R₂ (viz schéma);
na str. 198, obr. 119a, chybí díra pro vývod – kondenzátoru C₆ (viz obr. 119 b).

Řady jmenovitých hodnot součástek

Pasivní součástky se vyrábějí v řadách E6 až E192. Do jedné dekády se vejde počet hodnot podle toho, jak je volena tolerance součástek.

Rada E6 se používá pro jmenovité hodnoty s úchytkou $\pm 20\%$ a menší.
E12 se používá pro jmenovité hodnoty s úchytkou $\pm 10\%$ a menší.
E24 se používá pro jmenovité hodnoty s úchytkou $\pm 5\%$ a menší.
E48 se používá pro jmenovité hodnoty s úchytkou $\pm 2\%$ a menší.
E98 se používá pro jmenovité hodnoty s úchytkou $\pm 1\%$ a menší a E192 se používá pro jmenovité hodnoty s úchytkou $\pm 0,5\%$ a menší.

E 6	1	1,5	2,2	3,3	4,7	6,8
E 12	1	1,2	1,5	1,8	2,2	2,7

Obr. 162. Blokové schéma zobrazovací jednotky

E 24
1 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,4 2,7 3,0
3,3 3,6 3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1

E 48
1,00 1,05 1,10 1,15 1,21 1,27 1,33 1,40 1,47 1,54
1,62 1,69 1,78 1,87 1,96 2,05 2,15 2,26 2,37 2,49
2,61 2,74 2,87 3,01 3,16 3,32 3,48 3,65 3,83 4,02
4,22 4,42 4,64 4,87 5,11 5,36 5,62 5,90 6,19 6,49
6,81 7,15 7,50 7,87 8,25 8,66 9,09 9,53

E 96
1,00 1,02 1,05 1,07 1,10 1,13 1,15 1,18 1,21 1,24
1,27 1,30 1,33 1,37 1,40 1,43 1,47 1,50 1,54 1,58
1,62 1,65 1,69 1,74 1,78 1,82 1,87 1,91 1,96 2,00
2,05 2,10 2,15 2,21 2,26 2,32 2,37 2,43 2,49 2,55
2,61 2,67 2,74 2,80 2,87 2,94 3,01 3,09 3,16 3,24
3,32 3,40 3,48 3,57 3,65 3,74 3,83 3,92 4,02 4,12
4,22 4,32 4,42 4,53 4,64 4,75 4,87 4,99 5,11 5,23
5,36 5,49 5,62 5,76 5,90 6,04 6,19 6,34 6,49 6,65
6,81 6,98 7,15 7,32 7,50 7,68 7,87 8,06 8,25 8,45
8,66 8,87 9,09 9,31 9,53 9,76

Označování jmenovitých odporů rezistorů a kapacit kondenzátorů a jejich dovolených úchylek písmenovým kódem

V současné době se součástky označují způsobem: dříve používaným systémem A a zaváděným systémem B. Běžně se stává, že se nám dostávají do rukou součástky označené jak systémem A, tak systémem B.

Písmenný kód pro jmenovité odpory rezistorů a kapacity kondenzátorů je uveden dále. Výchozí jednotkou u rezistorů je 1Ω .

Násobitel	Základní písmenový kód	
	systém A	systém B
1	J (j) *)	R
10^3	k	K
10^6	M	M
10^9	G	G
10^{12}	T	T

*) Používá se pouze v tom případě, zastupuje-li desetinnou čárku.

Užije-li se systém A, označují se rezistory takto:

Jmenovitý odpor	Označení kódem A	Jmenovitý odpor	Označení kódem A
$0,33\Omega$	J33	$100\text{k}\Omega$	M1
$1,5\Omega$	J15	$1\text{M}\Omega$	1M
22Ω	22	$2,2\text{M}\Omega$	2M2
1000Ω	1k	$100\text{M}\Omega$	G1
5600Ω	5k6	$1000\text{M}\Omega$	1G

Užije-li se systém B, označují se rezistory takto:

Jmenovitý odpor	Označení kódem	Jmenovitý odpor	Označení kódem
$0,1\Omega$	B	1500Ω	B
1Ω	R10	$100\text{k}\Omega$	1K5
$1,5\Omega$	R10	$1\text{M}\Omega$	100K
590Ω	R15	$3,32\text{M}\Omega$	1M0
1000Ω	590 R	$100\text{M}\Omega$	3M32
	1K0		100M

Výchozí jednotkou pro kódování jmenovitých kapacit kondenzátorů je 1pF u systému A a 1F u systému B.

Systém A		Systém B	
násobitel	kód	násobitel	kód
1	bez označení J (j) *)	10^{-12}	p
10^3	k	10^{-9}	n
10^6	M	10^{-6}	μ
10^9	G	10^{-3}	m

*) Používá se pouze tehdy, zastupuje-li desetinnou čárku.

Jmenovitá kapacita a její dovolená úchylka	Způs. kód. označení systém A	Způs. kód. označení systém B
$100\text{pF} \pm 20\%$	100	100p/M
$47000\text{pF} \pm 10\%$	47k/A	47n/K
$0,5\mu\text{F} \pm 1\%$	M5/D	500n/F
$200\mu\text{F} \pm 5\%$	G2/B	200 μ J

Písmenový kód pro dovolené úchylky

V kódovém označení rezistorů nebo kondenzátorů se písmenové označení dovolené úchylky uvádí za lomenou čarou:

Dovolená úchylka [%]	Písmenový kód	
	systém A	systém B
<i>Souměrná úchylka</i>		
$\pm 0,1\%$	-	B
$\pm 0,25$	-	C
$\pm 0,5$	E	D
± 1	D	F
± 2	C	G
± 5	B	J
± 10	A	K
± 20	M*)	M
± 30	-	N
<i>Nesouměrné úchylky</i>		
$-10 \text{ až } +30$	-	Q
$-10 \text{ až } +50$	-	T
$-20 \text{ až } +50$	QM	S
$-20 \text{ až } +80$	RM	Z

*) Neoznačuje se u výrobků, kde je tato úchylka největší.

Ostatní úchylky

Úchylky, pro něž nebylo v této normě stanoveno písmeno kódů, se označují kódovým písmenem A. Písmeno A značí, že se úchylka stanoví v příslušné státní normě nebo normě nižšího stupně.

Užije-li se systém A, vyznačuje se jmenovitá kapacita písmenovým kódem takto:

Jmenovitá kapacita	Označení kódem A	Jmenovitá kapacita	Označení kódem A
$0,15\text{pF}$	J15 (j15)	$0,1\mu\text{F}$	M1
10pF	10	$3,3\mu\text{F}$	3M3
100pF	100	$15\mu\text{F}$	15M
1500pF	1k5	$100\mu\text{F}$	G1

Užije-li se systém B, vyznačuje se jmenovitá kapacita písmenovým kódem takto:

Jmenovitá kapacita	Označení kódem B	Jmenovitá kapacita	Označení kódem B
$0,1\text{pF}$	p10	150nF	150n
1pF	1p0	$1\mu\text{F}$	1μ0
$33,2\text{pF}$	33p2	$5,9\mu\text{F}$	5μ9
100pF	100p	$100\mu\text{F}$	100μ
1nF	1n0	1mF	1m0

Použití kódů v plném označení

Jmenovitý odpor a jeho dovolená úchylka	Způsob kód. označení systém A	Způsob kód. označení systém B
$220\Omega \pm 20\%$	220	220R/M
$4700\Omega \pm 10\%$	4k7/A	4K7/K
$2,2\text{M}\Omega \pm 5\%$	2M2/B	2M2/J
$100\text{M}\Omega \pm 1\%$	G1/D	100M/F

Značení miniaturních plochých kondenzátorů písmenovým kódem (kondenzátory keramické)

Kapacita	Označení	1 n 5	Umenovité napětí
S Z s			
1,5 pF	1,5		12,5 V
15 pF	15		32 V
150 pF	150		40 V
1 500 pF	1n5		250 V
15 000 pF	15n		500 V
150 000 pF	150n		

Typ	Označení hmoty	Kód
1B	P100	A
1B	P033	B
1B	N033	H
1B	N047	J
1B	N150	P
1B	N220	R
1B	N330	S
1B	N470	T
1B	N750	U
1B	N1500	V
2B	E1000	F
2C	E2000	Z
2E	E4000	W
2F	E10000	Y
3E	Supermit	N

Keramické kondenzátory – materiály pro kondenzátory s malými ztrátami:

Hmotu	tepl. součinitel.	$10^{-6}/^\circ\text{C}$
P100 (Stealit)		+120
P033 (Stabilit)		+33
N047 (Stabilit)		-47
N075 (Stabilit)		-75
N150 (Stabilit)		-150
N750 (Rutilit)		-750
N1500 (Negatit)		-1500

Použití: do rezonančních obvodů a filtrů, jako vazební a oddělovací ve výobudech.

Materiály pro kondenzátory s kvalitním dielektrikem:

Hmotu	E1000 (Permitit)	tepl. charakteristika nelineární
E2000 (Permitit)	tepl. charakteristika nelineární	
E4000 (Permitit)	tepl. charakteristika nelineární	
E6000 (Permitit)	tepl. charakteristika nelineární	
E10000 (Permitit)	tepl. charakteristika nelineární	

Použití: vhodné pro vazební a blokovací účely, kde mají ztráty a stabilita nejsou nezbytným požadavkem.

Hmotu – Redukovaný permitit – tepl. cha-

AMATÉRSKÉ RADIO

ŘADA B

**ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ**

Ročník XXXII, 1983

ŠÉFREDAKTOR ING. JAN KLABAL

Redakční radu řídí Ing. J. T. Hyan. Členové: RNDr. V. Brunnhofer, V. Brzák, K. Donát, Ing. O. Filippi, V. Gazda, A. Glanc, I. Harminc, M. Háša, Z. Hradiský, P. Horák, J. Hudec, Ing. J. Jaroš, doc. Ing. Dr. M. Joachim, Ing. F. Králik, RNDr. L. Kryška, J. Kroupa, Ing. E. Môcik, V. Němec, K. Novák, RNDr. L. Ondriš, CSc., Ing. O. Petráček, Ing. F. Smolík, Ing. E. Smutný, Ing. V. Ťeska, doc. Ing. J. Vackář, CSc., laureát st. ceny KG, J. Vorlíček, Ing. J. Zímat

AR B1

Mikroprocesory a mikropočítače Ing. Eduard Smutný

Polytechnická výchova ve Svažaru	1
Úvod	2
Mikroprocesory? - Proč	2
Mikroprocesor? Jak vlastně pracuje?	3
Co potřebujeme k práci s mikroprocesory?	5
Tester TST-01	7
Přípravek TST-02	7
Přípravek TST-03	7
Simulátor EPROM	8

Amatérský osobní mikropočítač INTELKA Jaromír Šíma, Michal Humpál

Popis zapojení	
Zdroj	10
Sběrnice	10
Mikroprocesorová deska	11
Osazení desek	15
Oživení desek	15

Mikropočítáčový systém JPR-1 Ing. Eduard Smutný

Sběrnice ARB-1	23
Sběrnice	23
Vstupní a výstupní signály mikroprocesoru	23
Sběrnice mikropočítáčových systémů	25
Sběrnice STD BUS	25
Signály sběrnice ARB-1	27
Popis signálů sběrnice ARB-1	27
Konstrukce sběrnice ARB-1	31
Konstrukce sběrnice ARB-1	31
Seznam součástek pro desku sběrnice ARB-1	31
Deska procesoru JPR-1	31
Konstrukce systému JPR-1	31
Blokové schéma JPR-1	31
Blokové schéma desky procesoru JPR-1	31
Schéma zapojení desky JPR-1	32
Dekódér adres	34
Paměti	35
Porty	35
Přerušení	36
Oživení desky prostoru JPR-1	37
Seznam součástek	39
Opravy chyb v AR B5/82	40

AR B2

Mikroprocesory a mikropřijímače

Ing. Eduard Smutný
(Dokončení z AR B1/83)

Vstříc VII. sjezdu Svažaru	41
Alfanumerická klávesnice ANK-1	42
Kód ASCII	42
Klávesnice	43
Stavba amatérské membránové klávesnice	44
ANK-1	45
Programování	46
Seznam součástek desky ANK-1	47
Deska pamětí REM-1	47
Popis činnosti	47
Oživení desky REM-1	49
Programování desky REM-1	50
Seznam součástek	50
Alfanumerický displej AND-1	51
Formát dat na stínítku obrazovky	51
Další úvahy	52
Kód zobrazovaných znaků	53
Střední textu na stínítku	53
Popis zapojení AND-1	54
Zhotovení a oživení desky AND-1	56
Programování AND-1	58
Seznam součástek	60
Jednotka zdroje a sběrnice, JZS-1	60
Napájecí zdroj	60
Mechanika jednotky	62
Prodlužovací deska PDK-1	62
Univerzální deska BDK-1	63
Seznam součástek	63
Literatura	64

Programování mikropočítače JPR-1

Ing. Tomáš Smutný

Základní programové vybavení JPR-1	64
Výpis programů	64

Hlavní části programu	64
Programová obsluha klávesnice	64
Podprogram pro vstup znaku	66
Programová obsluha displeje	66
Program pro vstup znaku na displeji	66
MIKROBASIC JPR-1	68
Není BASIC jako BASIC	68
MIKROBASIC JPR-1	69
Aritmetika	69
Relační operátory	69
Jednoduché proměnné	69
Indexované proměnné	69
Textový řetěz a textový operátor	69
Základní pravidla MIKROBASIC	69
Povely MIKROBASIC	69
LIST, LLIST, RUN, NEW, MONITOR, RAM, LOAD a SAVE	70
Výpis MIKROBASIC	70
Programové příkazy	71
LET, FORTONEXTSTEP, GOTO, GOSUB, RETURN	71
REM, INPUT, PRINT, LPRINT, TAB, HARD, DISPL, IF	72
END, STOP, CLEAR,CLS, CALL, POKE, OUT, OUTCHAR, BYTE,	
WORD, MASK, WAIT	73
BEEP, IS, OS	74
Funkce MIKROBASIC	74
RND, ABS, HEX, INCHAR, PEEK, IN, INM, LEN, TOP, SIZE	74
Závěrem několik příkladů	75
Mikromonitor JPR-1	75
Příkazy Mikromonitoru	75
Příkaz D, příkazy S a G, R a B	76
Výpis programu	76
Důležité adresy programu	76
Jak pracuje interpreter	77
Realizace programu v BASIC	77
Realizace jednotlivých příkazů	78
Zpracování funkcí	79
Uprávily interpreteru	79
Přeadresování interpreteru	79
Několik rad závěrem	80

AR B3

Moderní metody měření a zkoušení Ing. M. Arendáš, Ing. M. Ručka

Čs. rozhlas a televize jubilují	81
---------------------------------	----

Úvod	82
Diagnostika	82
Zálohování náhradními díly	83
Spolehlivost součástek	85
Základní metody zvětšování spolehlivosti	85

Diagnosticke pomucky	87
Pripravek na urcovani cisel na spickach konektoru FRB	86
Zkousec tranzistoru, logicka sonda	87
Meri Zenerovych diod	88
Hlidače maxima odebrane elektrické energie	88
Jednotka signalizace bez obsluhy	88
Funkce pistafoje	88
Slozitejsi jednotka signalizace	94
Pomocne zdroje elektrické energie	96
Střidac pro zařívkou	96
Měnič pro holici strojek	97
Automaticky nouzový spínající zdroj 220 V	97
Indikátor výpadku sítě	98
Souměrný napájecí zdroj	98
Stabilizátory s MAA78XX	99
Elektronické odměrování délky	99
Generátor impulsů 1 Hz	104
Doplňek k rozhlasovému přijímači s hodinami a budíkem	105
Úprava délky impulsů	105
Elektronické stolní hodiny	107
Generátor pravoúhlých impulsů	107
Základní technické údaje	107
Elektronický přepínač - vypínač v signálu	109
Rídící jednotka pro tyristory	109
Indikátor modulačních špiček pro nf techniku	109
Generátor 100 Hz řízený sítí	109
Integrovaný spínač diod LED	110
Cílciový intervalový spínač střežeců	112
Zkoušecí přístroj	113
Použití pistafoje	113
Činnost pistafoje	114
Převodník z binárního kódu na kód sedmisegmentové zobrazovací jednotky v hexadecimálním vyjádření	116
Převodník z kódu pro sedmisegmentové zobrazovací jednotky na kód BCD	117
Zpožděné zhasnutí světla	117
Samočinné vypnutí kazetového magnetofonu	117
Samočinné přepínání reproduktoru	118
Přístroj k léčení magnetickým polem	118
Silniční semafor	119

AR B4

Doplňky k přijímačům Allan Matuška

Součástková základna elektroniky v ČSSR	121
Úvod	122
Obvody automatického ladění	122
Analogové obvody automatického ladění	122
Digitální automatické ladění	126
Syntezátor	131
Syntezátory s obvody LSI	135
Digitální stupnice	140
Digitální stupnice s obvody LSI	143
Impulsní regulátor jako analogová dělička	146

Antennní zesilovače	146
Dva typické antennní zesilovače	149
Výběr místa pro přijímací anténu	151
Odrůšení rozhlasového příjmu	152
Obvod pro automatické potlačení poruch – stavební návod	154
Popis funkce	154
Stavba pistafoje	156
Oživení pistafoje	156
Instalace do rozhlasového přijímače	156
Seznam součástek	156
Integrované obvody pro automatické potlačení poruch	157
Potlačení poruch v přijímačích AM	157
Potlačení nežádoucích silných signálů	158
Literatura	158
Jednoduchý indikátor stereofonních pořadů s automatickým přepínačem „mono-stereo“ – stavební návod	158
Seznam součástek	160
Selektory hudby – stavební návod	160

AR B5

Jednoduché měřicí přístroje Václav Machovec, Josef Korous, Pavel Bartušek, Jan Libý

Chcete se stát důstojníkem (praporčíkem) ČSLA a pokračovat v radioamatérské činnosti?	161
Přístroje skupiny A	
A-1a Jednoduchá žárovková zkoušečka	162
Použití zkoušečky	163
Provedení zkoušečky	164
Rozpiska materiálu	165
A-1b Žárovková zkoušečka s tranzistorem	165
Funkce zkoušečky	166
Použití zkoušečky	166
Provedení zkoušečky	167
Oživení	167
A-2a Jednoduchý bateriový zdroj	167
Provedení zdroje	168
Uvedení do chodu	168
Rozpiska materiálu	168
A-2b Bateriový zdroj s regulací tranzistorem	168
Použití a funkce	169
Provedení zdroje	169
Provedení do chodu	170
Rozpiska materiálu	170
A-3 Multivibrátor s tranzistory	170
A-3a Multivibrátor se žárovkou	170
Uvedení do chodu	170
Rozpiska materiálu	170
A-3b Multivibrátor v souměrném zapojení	171
Uvedení do chodu	171
Rozpiska materiálu	171
A-4 Sledovač signálu	172
Zapojení sledovače signálu	173

Provedení sledovače	173
Uvedení do chodu	174
Rozpiska materiálu	175
A-5 Jednoduchý přijímač na sluchátka	175
Provedení	176
Uvedení do chodu	177
Rozpiska materiálu	177
Přístroje pro pokročilé – skupina B	
B-1 Jednoduché generátory nf signálu	177
B-1a Nf generátor LC 1 kHz (sinus)	177
Popis a stavba	177
Přibližný výpočet oscilátoru 1 kHz	177
B-1 b Nf generátor LC 1 kHz (sinus)	177
Popis a stavba	178
B-1 c Nf generátory napětí pravoúhlého průběhu s MH7400	178
Popis generátorů	179
B-1d Jednoduchý generátor napětí sinusového a pravoúhlého průběhu 1 kHz	180
Rozpiska materiálu	181
B-2 Akustická zkoušečka s MH7400	181
Rozpiska materiálu	181
B-3 Zdokonalená žárovková zkoušečka s multivibrátorem	182
Rozpiska materiálu	182
B-4 Jednoduché měřicí přístroje s ručkovým měřidlem	183
Co s neznámým měřidlem	184
B-4a Napěťový ohmmetr	184
Provedení	185
Postup výpočtu stupnice	185
B-4b Proudový ohmmetr	185
Provedení ohmmetu	185
B-4c Napěťový ohmmetr s třemi rozsahy	186
Provedení	186
B-4d Jednoduchý stejnosměrný voltmetr	187
Výpočet předfádků	187
Cejchování	188

B-4e Jednoduchý miliampérmetr	188
Cejchování	188
B-4f Stejnosměrný ampérmetr	188
Výpočet bočníku	188
Materiály na bočníky	189
B-4g Malý stejnosměrný voltampérometr	190
Výpočet sdrženého bočníku	190
Provedení, cejchování	191
B-5a Jednoduchý zkoušeč tranzistorů	191
Popis, trochu počítání	191
Provedení	191
Cejchování a uvedení do chodu	192
B-5b Jednoduchý zkoušeč tranzistorů se žárovkou	193
Provedení	193
Uvedení do chodu	193
Rozpiska materiálu	193
B-6a Koncový nf zesilovač s MA0403	193
Popis a provedení	193
Uvedení do chodu	194
Rozpiska materiálu	194
B-6b Koncový zesilovač s MBA810	194
Popis a provedení	194
Rozpiska materiálu	195
Přístroje pro pokročilé starší – skupina C	
C-1 Jednoduché regulovatelné a stabilizované zdroje	
napájené ze sítě	195
Transformátor	195
Usměrňovač	196
Filtrační elektrolytický kondenzátor	197
C-1a Jednoduchý síťový zdroj	197
C-1b Síťový zdroj s tranzistorem	197
C-1c Jednoduchý síťový zdroj s nastavitelným výstupním napětím	197
C-2 Jednoduchý regulovatelný zdroj 0 až 20 V/1 A s omezením výstupního proudu	199
Provedení zdroje	199
C-3 Regulovatelné zdroje s MAA723	199

AR B6

Jednoduché měřicí přístroje

**Václav Machovec, Josef Korous, Pavel Bartušek,
Jan Libý**
(Dokončení z AR B5)

Naplňujeme závěry 8. zasedání ÚV KSČ	201
C-3a Regulovatelný zdroj 0 až 20 V/1 A s obvodem MAA723H	202
C-5 Nf milivoltmetr s tranzistory (3 mV až 1 V, 3 až 10 V)	203
C-6 Přímoukazující měřič kapacit s rozsahy 0 až 100 pF až 0 až 1000 uF a měříc odporní s rozsahy 1 až 10 a 10 až 100 M	205
Princip měřicí metody a popis přístroje	205
Měření odporů	206
Uvedení do chodu	207
Technické údaje	207
C-7 Přímoukazující měřič kmitočtu	207
Popis a provedení	207
Uvedení do chodu	207
Technické údaje	208
Přístroje pro vyspělé radioamatéry, kroužky a kluby – skupina D	
D-1 Malý zkoušeč IO TTL	208
Popis a provedení přístroje	208
Technické údaje	209
D-2 Zkoušeč IO TTL s možností demonstrace činnosti obvodu pomocí svítících diod LED	209
Popis a provedení zkoušeče	209
Technické údaje	209
D-3 Logická sonda s počítáním náhodných krátkých impulsů	210
Popis a provedení sondy	210
Technické údaje	211
D-4 Univerzální čítač s předvolbou	211
Cinnost přístroje	211
Uspořádání	211
Popis jednotlivých částí – Základní část	211
Časová základna	211
Řídící logika, obvod relé	211
Vstupní obvody – vstup TTL	211
Vstup nf, vstup vf	213
Vstup VHF (VKV)	215
Zdroj	215
Závěr	215
D-5 Zobrazovací jednotka ze starého televizoru	216
Popis úpravy a zapojení	216
Zesilovače	217
Závěr	217
Doplňky k AR B5/83	217
Rady jmenovitých hodnot součástek	217
Označování jmenovitých odporů rezistorů a kapacit kondenzátorů a jejich dovolených úchytek písmenovým kódem	218
Literatura	223

Zajímavá a praktická zapojení

Dr. Ludvík Kellner

I Napájecí zdroje, stabilizátory, měniče

Stabilizátor napětí s výstupním proudem až 2 A	223
Stabilizátor malých napětí	223
Stabilizovaný zdroj 5 V/0,5 A	223
Univerzální napájení LED	223
Zdroj symetrického napětí 12 V	224

Stabilizátor malých napětí pro výstupní proud sž 1 A	224
Zdroj symetrického napětí	224
Stabilizovaný zdroj	224
Odrůšovací filtr pro přívod sítě	224
Zdroj 5 V/1 A s pojistkou	224
Zdroj malého napětí bez transformátoru	224
Regulovatelný zdroj 2 až 20 V/0,25 A	224
Automatická nabíječka	224
Měnič 10 mW	224
Jednoduchý měnič	224
Zdroj konstantního proudu	224
Zdroj s nastavitelným výstupním napětím	224
Měnič bez „zeleza“	224

II Pomůcky pro fotografy

Odpálení blesku zvukem 1	225
LED jako fotodioda	225
Snímek rozbití skla s bleskem	225
Odpálení blesku zvukem 2	225
Odpálení pomocného blesku	225
Synchronní ovládání druhého blesku	225
Blesk na baterie s automatikou	225
Odpálení druhého blesku	225
Stroboskop	225

III Různě aplikovaná elektronika

IV Zapojení s časovačem 555	
Záporné napájecí napětí pro OZ	228
Generátor nf	228
Stroboskop k seřízení zapalování automobilu	228
Časový spínač	229
Kapesní „karabáč“	229
Řízení rychlosti otáčení motorku	229
Časový spínač	229
Detektor vynechaného impulsu	229
Světelná závora	230
Sekvenční časový spínač	230
Spínač osvětlení	230
Intervalový spínač	230
Regulace tvaru napětí trojúhelníkovitého průběhu	230
Poplach podle teploty	230
Monostabilní generátor impulsů	230
Astabilní multivibrátor	230
Poplachové zařízení	230
Siréna „Kojak“	231
Klopný obvod k úpravě napětí sinusového průběhu na pravoúhlé	230
Jednoduchý lineární měřič kmitočtu	230

Automatické přepínání rozsahů k digitálnímu multimetru s obvodem

ICL7106 a 7107

Ing. Josef Kellner

Popis zapojení přístroje	232
--------------------------------	-----

Příloha k VII. sjezdu Svazarmu

Technická tvořivost v elektronice v předvečer VII. sjezdu Svazarmu	234
---	-----

rakteristika nelineární (Super-
permit).
Použití: speciální pro tranzistorové přístroje, jako vazební, blokovací a filtrační kondenzátory v nf technice (do 1 MHz).

Literatura

- Pacák, M.:** Měřicí metody a přístroje. Orbis: Praha 1949.
Šrait, P.: Modely a hračky s tranzistory. Mladá fronta: Praha 1965.
Šrait, P.: Od krystalky k modelům s tranzistory. SNTL: Praha 1978.
Kroupa, J.; Láb, M.; Šimeček, A.: Zesilovače T 74/78. SNTL: Praha 1978.
Donát, K.: Měření a výpočty v amatérské radiotechnice. Naše vojsko: Praha 1961.
Hyau, T.: Měření a sladování amatérských přijímačů. SNTL: Praha 1964.
Arendáš, M.; Ručka M.: Nabíječe a nabíjení. SNTL: Praha 1978.
Nečásek, S.: Radiotechnika do kapsy. SNTL: Praha 1981.
Holub, P.; Zíka, J.: Praktická zapojení polovodičových diod a tyristorů. SNTL: Praha 1977.
Syrovátko, M.; Černoch, B.: Zapojení s integrovanými obvody. SNTL: Praha 1975.
Syrovátko, M.: Zapojení s polovodičovými součástkami. SNTL: Praha 1980.
Nessel, V.: Polovodičové součástky v automatizaci. SNTL: Praha 1979.
Vašíček, A.: Typizované napájecí transformátorky a vyhlašovací tlumivky. SNTL: Praha 1975.
Budinský, J.: Nízkofrekvenční tranzistorové zesilovače. SNTL: Praha 1961.
Funke, R.; Liebscher, S.: Základní elektronická zapojení. SNTL: Praha 1976.
Český, M.: Rádce televizního opraváře. SNTL: Praha 1963.
Havlíček, M. a kolektiv: Ročenka sdělovací techniky 1980. SNTL: Praha 1979.
Schubert, A.: Modely řízené rádiem. Naše vojsko: Praha 1967.
Kolektiv autorů: Amatérská radiotechnika II. díl. Naše vojsko: Praha 1954.

Další použitá literatura

- Kolektiv autorů 835. ZO Svaz. Praha 8:** Elektroakustika a videotechnika pro svazarmovskou mládež. Svazarm 1979, 1980.
Kroupa, J.: Nízkofrekvenční tranzistorová technika. Svazarm 1980.
Winkler, J.: Jednoduchý přijímač pro příjem středních vln. KDPM Č. Budějovice 1980.
Bocek, J.; Winkler, J.; Šenovský, M.: Edice metodických materiálů na pomoc rozvoji technické a branné technické činnosti mládeže č. 12/80. DPM Ostrava 4. Poruba 1980.
Řídítelný zdroj 6Z3. Svazarm 1966.
Hrubý, F.; Machálík, L.: Příklady použití integrovaných stabilizátorů napětí MAA723, MAA723H. Technické zprávy TESLA Rožnov 1976.
Machálík, L.; Slížek, R.: Integrovaný nf výkonový zesilovač MBA810. MBA810A. Technické zprávy TESLA Rožnov 1975.
Katalogy aktivních a pasivních prvků TESLA.

Casopisy

- Kavalír, L.:** Tranzistorový zesilovač 2T61. AR 5/71.

ZAJÍMAVÁ A PRÁKTICKÁ ZAPOJENÍ

Dr. Ludvík Kellner

Člověk je tvor sběratelský. Jeden sbírá staré (nové) pohlednice, druhý motýly, třetí pivní etikety a další zase tisíce jiných věcí – podle méně manželky: staré krámy. Já jsem sbíral a sbírám nejrůznější návody a zapojení, „které by se mohly jednou hodit“. Až jednou. A tak se mi během dlouhých let nashromádila sbírka všech možných zapojení z nejrůznějších zdrojů, především časopisů. Rekl jsem si v rámci jarního úklidu, že je třeba udělat i v této věci pořádek a že by tato zapojení mohla sloužit i jiným. Zapojení jsem přebral, některá pro „pokročilý věk“ vyházel a zbytek překládám čtenářům formou jednoduchých schémat bez textů (nebo

jen s nejnuttnejšími texty) a doufám, že si každý najde v uvedených 100 schématech „něco pro sebe“.

Zapojení jsem sice podrobně probral a snažil se vyloučit možnost, že nějaké z nich bylo již v minulosti u nás otištěno – nelze to však v dnešní informační explozi vyloučit, prosím proto předem za promítání.

Značení součástek není úplné, kde je možné použít libovolný typ tranzistoru nebo diody (tzv. typy TUN, TUP, atd., viz článek J. Vorlička: Univerzální tranzistory a diody v konstruktérské práci, AR 8/82), není typ původního polovodičového prvku uveden.

I Napájecí zdroje, stabilizátory, měniče

1. Stabilizátor napětí s výstupním proudem až 2 A

Rádiotechnika 1/1983

3. Stabilizovaný zdroj 5 V/0,5 A

LED slouží jako zdroj referenčního napětí

Elektor 7-8/1982

4. Univerzální napájení LED

Elektor 7-8/1982

2. Stabilizátor malých napětí

Électronique pratique 5/1978

Hyau, T.: Výpočet a konstrukce měřicích přístrojů. RK 8/58.

Šebek, V.: Univerzální nf zesilovač s MA0403. AR 8/73.

Zlma, J.: Stabilizátor napětí se spojitou regulací výstupního napětí v rozsahu 0 až 20 V s MAA723. AR 12/75.

Udrich, M.: Cmetr – přímoukazující přístroj s velkým rozsahem měření kapacit. AR 6/60.

Valenta, V.: Přímoukazující měřič kmitočtu. AR 9/78.

Němec, V.: Číslicová stupnice k přijímači. AR 6/77.

Pacovský, J.: Rozšíření kmitočtového rozsahu čítače. Příloha AR 1975.

Melezinek, A.; Sedláček, J.: Nebojte se počítání. RK 4/67.

Machovec, V.; Bartušek, P.: Víceúčelová zkouška – měřidlo chudého radioamatéra. AR 7,8/82.

Vorliček, J.: Univerzální tranzistory a diody v konstruktérské práci. AR 8/82.

5. Zdroj symetrického napětí 12 V

Jakubaschk, B.: Das grosse Bastelbuch, str. 71

6. Stabilizátor malých napětí pro výstupní proud až 1 A

Funkamateur 6/1981

7. Zdroj symetrického napětí

Při odběru proudu větším než 100 mA je třeba použít výkonové tranzistory (do 1 A)

Le haut parleur, listopad 1981

8. Stabilizovaný zdroj

Součástky označené hvězdičkou je třeba upravit podle použitých polovodičových prvků. Při odběru 300 mA se výstupní napětí změní max. o 2 mV.

Radio (SSSR) 8/1980

9. Odrušovací filtr pro přívod sítě

Obě cívky jsou na stejném jádře (ferit, železo), kondenzátory jsou na 630 V

Radioplans, září 1979

10. Zdroj 5 V/1 A s pojistkou

Spínač S: rozpojen – odpojená nadprudová pojistka, sepnut – pojistka ve funkci

Industr. elektr. Schaltungen, str. 145

11. Zdroj malého napětí bez transformátoru

(neodpovídá bezpečnostním předpisům)

Toute l'électronique 3/1977

12. Regulovatelný zdroj 2 až 20 V/0,25 A

Le haut parleur 1524

13. Automatická nabíječka

Radio (SSSR) 3/1976

14. Měnič 10 mW

záťah 1 MΩ, f = 5 kHz
feritový hrníček,
 $L_1 = 100$ závitů drátu o Ø 0,12 mm,
 $L_2 = 50$ závitů drátu o Ø 0,05 mm,
 $L_3 = 100$ závitů drátu o Ø 0,05 mm

Standardsschaltungen, str. 229

15. Jednoduchý měnič

Tr – budicí transformátor z miniaturního tranzistorového přijímače

Antena 5/1980

16. Zdroj konstantního proudu

17. Zdroj s nastaviteľným výstupním napäťom 10 nebo 20 V

Wireless World 6/1979

18. Měnič bez „železa“

Vnitřní odpór 10 Ω,
záťah 100 mA – výstup 18 V,
200 mA – 17 V,
naprázdno – 19 V
D₁ a D₂ – germaniové diody, typ podle záťahu

Radio, Fernsehen, Elektronik 19/1973

II Pomůcky pro fotografy

19. Odpálení blesku zvukem (1)

20. LED jako fotodioda

21. Snímek rozbití skla s bleskem

22. Odpálení blesku zvukem (2)

23. Odpálení pomocného blesku

III Různě aplikovaná elektronika

28. Řízení rychlosti a směru (vpřed-vzad) pro modely lodí

24. Synchronní ovládání druhého blesku

29. Měnič kmitočtu z 50 na 60 Hz

25. Blesk na baterie s automatikou

26. Odpálení druhého blesku

27. Stroboskop

30. Násobič kmitočtu

31. Zkoušení obvodu 7490 (7493) na osciloskopu

32. Lineární ohmmetr (1)

Practical Wireless 11/1980

33. Lineární ohmmetr pro malé odpory

Při $R_x = 10 \Omega$ potenciometrem nastavit plnou výchylku ručky měřidla

Rádiotechnika 1/1980

34. Zkoušeč krytalů

pracuje v rózsahu asi 100 kHz až 10 MHz

Practical Wireless 5/1971

35. Krystalový oscilátor

36. Měření malých proudů s malým úbytkem napětí

Funkschau 12/1980

37. Generátor napětí trojúhelníkovitého a pravoúhlého průběhu

Funkschau 11/1981

42. Regulace rychlosti otáčení malých motorů (2)

Toute l'électronique 4/1973

38. Generátor funkcí

$f = 35$ až 3500 Hz

Funkschau 12/1978

39. Zesilovač pro fotodiodu

zesílení 47, $f = 15$ kHz

Das Opto-Kochbuch

40. Krystalový oscilátor pro malá napájecí napětí

$f = 100$ kHz až 10 MHz

Elektor 7-8/1981

41. Regulace rychlosti otáčení malých motorů (1)

Funkschau 26/1978

43. Regulace rychlosti otáčení malých motorů (3)

Le haut parleur 1480

44. Regulátor teploty

katalog Oppermann 1980

45. Lineární převodník teplota-napětí

Rozsah: -30 až +130 °C, T je křemíkový tranzistor se zesilovacím činitelem asi 100 až 200, 2,2 mV/°K, P₁ – nastavení nuly, P₂ – nastavení 100 °C

Funkschau 9/1980

46. Časový spínač

Rozsah: od několika sekund do několika minut

Le haut parleur 1536

47. Regulátor osvětlení

$\dot{Z} = 15$ až 200 W, rozsah regulace světla 40 až 95 %, vyrábí se průmyslově v PLR, údaj P neuveden

48. Řízení triaku (tyristoru) světlem

Siemens Schaltbeispiele 1978/79

49. Detektor lži

Le haut parleur 1480

50. Terč pro světelnou pistoli (1)

Elektor 12/1980

51. Terč pro světelnou pistoli (2)

Hobby 17/1978

56. Odrušení tyristorového regulátoru

Rádiotechnika 5/1974

57. Zapálení zářivky

C – původní kondenzátor, T1 – původní tlumivka, St – původní startér

Rádiotechnika 1/1983

53. Řízení jasu digitronů fotorezistory

58. Náhrada bipolárních kondenzátorů větších kapacit běžnými elektrolytickými kondenzátory

59. Okamžité zapálení zářivky

Spojit oba vývody na koncích zářivky

Funkschau 16/1978

Electronics Australia 8/1972

55. Odrušení regulátoru pro vrtačky

TI – 100 µH

Practic 1981

60. Blikáč

R_b – pro ochranu vlákna žárovky, asi 200 Ω

Wireless World 3/1981

61. Bzučák

Funkamateur 3/1981

62. Siréna

Radio plans 11/1977
Radio-Electronics 12/1981

64. Poplach na dotyk

Popular Electronics 2/1969.

65. Sluneční budíček

Budi po východu Slunce

Elektor 5/1981

66. Kombinované poplašné zařízení

Radio plans 2/1976

67. Kontrola vody v nádrži

Hobby 14/1978

63. Siréna se změnou tónu a blikáním

Electronics Australia 10/1976

C_1, C_2 podle zvoleného tónu (5 až 20 μF)

68. Indikátor zvonění telefonu (zvukový spínač)

Radio plans 3/1976

IV Zapojení s časovačem 555**69. Záporné napájecí napětí pro OZ**

$f = 1$ až 4 kHz, zátěž do 150 mA

Wireless World 4/1978

71. Generátor nt

$0,1,1,10,100 \text{ Hz}, f = 1,4/(R_1 + 2R_2)C$

70. Stroboskop pro zapalování v autě

72. Časový spínač

$$T_1 - \text{nulování, start, } t = 1,1RC \quad [\Omega, F]$$

Radio plans 6/1980

73. Periodický spínač pro dlouhé časy

první 555 - 36 Hz, $R_1 = R_2 = 1,8 \text{ M}\Omega$,
 $C = 10 \mu\text{F}$, $f = 1,49/(R_1 + R_2)C$; druhá 555 -
8 s, $R = t/1,1C$
v každé hodině signál 8 s

ELO 1/1980

74. Kapesní „karabáč“

3 impulsy za sekundu; jeden impuls trvá 2,3 ms

ELO 2/1980

75. Lineární převodník napětí/kmitočet

Rozsah (na vstupu) 0 až 5 V, na výstupu 0 až 21 kHz (3 %)

Elektronik Industrie 5/1978

Časový interval začíná zapnutím napájecího napětí. Po uplynutí stanoveného času se otevře T_2 a zůstane v tomto stavu. Na výstupu časovače 555 je log. 0.

78. Časový spínač start-stop

Časovací interval začíná stisknutím tlačítka start. Během nastavené doby je relé v klidném stavu. Nastavený čas lze přerušit stisknutím tlačítka stop.

Rádiotechnika 11/1982

79. Časový spínač

Během nastavené doby je relé přitaženo. Potenciometrem P lze nastavenou dobu jemně reguloval

Rádiotechnika 11/1982

80. Časový spínač spouštěný dotekem

Rádiotechnika 11/1982

81. Detektor vyněchaného impulsu

Bádiótechnika 12/1982

82. Světelná závora

Zacloňením fototranzistoru přitáhne relé. Obvod se do klidového stavu uvede stisknutím tlačítka reset.

Rádiotechnika 1/1982

83. Sekvenční časový spínač (podle pořadí)

Obvod se spouští záporným impusem ($1/3U_{\text{napájecí}}$). S uvedenými součástkami spíná první obvod za 10 ms, druhý za 50 ms, třetí za 20 ms. Časové konstanty lze libovolně upravovat.

Rádiotechnika 3/1982

84. Spínač osvětlení

Nastavitelný čas je 1 až 1,5 h

Popular electronics 6/1976

85. Intervalový spínač

Spíná v mezích 0,7 až 38 s, ON: $0,693R_A C_1 [s]$, OFF: $0,693(R_A + R_B)C_1 [s]$, má-li být $t_{\text{zap}} = t_{\text{vyp}}$, pak $R_A = 0,3R_B$

Practical Electronics 9/1977

86. Regulace tvaru napětí trojúhelníkovitého průběhu

f až do 100 kHz, T_1, T_2 musí mít co největší zesilovací činitel, T_3 je spínací typ, kmitočet určuje C

$M1 \quad R_2 < R_1 \quad M2 \quad R_2 = R_1 \quad M3 \quad R_2 > R_1$

88. Monostabilní generátor impulsů

C_1	t
10M	90 ms až 1,2 s
1M	9 ms až 120 ms
100n	0,9 ms až 12 ms
10n	90 μ s až 1,2 ms
1n	9 μ s až 120 μ s

ETI 1/1977

89. Astabilní multivibrátor

Electronics Australia 5/1976

Periody výstupního signálu asi 7,5 μ s až 750 μ s

ETI 1/1977

90. Poplachové zařízení

Signál zazní, zvýší-li se (a) nebo sníží-li se (b) teplota nad nebo pod stanovenou mez

a) °C	$R_1 + P [\text{k}\Omega]$	b) °C	$R_1 + P [\text{k}\Omega]$
20	85	12	37
25	75	14	35
35	50	16	39
45	30	18	29
55	18	21	27
65	10	24	25
75	6,5	27	23
85	4	30	18
95	2,5		
100	1,8		

ETI 1/1977

91. Siréna „Kojak“

ETI 1/1977

92. Klopní obvod k úpravě napětí sinusového průběhu na pravoúhlé

ETI 1/1977

93. Jednoduchý lineární měřič kmitočtu

Uvedené R a C při měřeném kmitočtu do 1 kHz, změnou lze dosáhnout až 100 kHz

ETI 1/1977

94. Kapesní metronom

40 až 220 signálů za minutu

Popular Electronics 4/1974

95. Kapesní signalizátor

Podle volby R a C lze nastavit čas až řádu hodin

Katalog Thali 1978

96. Generátor impulsů 1 Hz až 10 kHz

97. Senzorové ovládání se zvukovou signálizací

98. Automatická regulace množství vody v nádrži

$R_1, R_2 \text{ až } 500 \Omega \text{ ve vodě}$

$100 \Omega \text{ na vzduchu}$

99. Jednoduchý měřič kapacity

Měřicí rozsah asi 100 pF až 10 μF (100 pF – 10 kHz, 1 μF – 1 Hz) $C = 1/f [nF \cdot kHz]$
výstupní signál se vede k číslicovému měřiči kmitočtu

Rádiotechnika 2/1982

100. Melodický zvonek

Rádiotechnika 7/1982

Vážení čtenáři,
byli bychom rádi, kdybyste nám napsali svůj názor na Zajímavá a praktická zapojení, tak jak jsou uvedena v tomto čísle AR řady B – tj. jednoduchá zapojení bez bližšího popisu, pouze s uvedením původního pramenu. Bude-li ohlas příznivý, zkusili bychom čas od času taková zapojení otisknout.

AR

Ty – podle čerpadla

AUTOMATICKÉ PŘEPÍNÁNÍ ROZSAHŮ K DIGITÁLNÍMU MULTIMETRU S OBVODEM ICL 7106 A 7107

Ing. Josef Kellner

Světoví výrobci digitálních multimetrů stále častěji používají kromě ručního přepínání rozsahů i přepínání automatické. Není to jen otázka pohodlnosti a komfortu obsluhy, ale také pohotovosti a rychlosti měření.

Návrh automatického přepínání rozsahů byl zpracován pro použití v multimetrech, osazených obvody ICL7106 a 7107 ([1], [2], [3], [4], [5]). Tuto metodu po malých konstrukčních úpravách by bylo možné použít i pro jiné multimetry. Pro DMM s ICL7106 s displejem z tekutých krystalů bylo zařízení sestaveno z obvodů CMOS, aby mohla být použita k napájení

baterie 9 V. Pro DMM s ICL7107, u kterého je displej z LED, byly použity obvody TTL a napájení ze sítě. Měřicí rozsahy jsou obvyklé: 200 mV, Ω , μA , 20, 200, 2000 V, $k\Omega$, mA, 20 M Ω .

Blokové schéma automatického přepínání rozsahů je na obr. 1. Vstupní údaje se snímají z displeje ze segmentů K (AB), B3, G3, E3. V obvodu indikace stavu se signálny z těchto segmentů porovnávají a na výstup dostáváme dva možné signály: přeplněno a nedoplňeno. Signál nedoplňeno se objeví, nesvítí-li segmenty K a G3 a svítí E3. Tento stav nastává, když je displej údaj .099. Signál přeplnění se objeví, nesvítí-li segmenty G3 a B3, to znamená, že nesvítí třetí číslice a je indikován stav přeplnění 1 . . .

Za obvodem indikace následuje přepínač, který je řízen přepínači kmitočet z oscilátoru. Přepínač má ještě blokovací vstupy z relé 1 a 6, aby se nemohly přepnout rozsahy 6 na 1 a 1 na 6. Z přepínače prochází signál na čítače vpřed/vzad. Údaj na jeho výstupu určuje (přes dekodér), který rozsah má být sepnut.

Z bezpečnostních důvodů (přepínání musí začít vždy od nejvyššího rozsahu) je k nule na výstupu čítače přiřazen šestý rozsah a hodnota 5 odpovídá prvnímu rozsahu.

Jeden cyklus tedy proběhne následovně: displej ukazuje kupř. přepínání. Pokud již není sepnut rozsah 6, odblokuje se přepínač. Údaj na výstupu čítače se sníží, tím se multimetr přepne na vyšší rozsah, znak přeplnění mizí a přepínač se zablokuje. Totéž se opakuje opačným směrem, klesne-li údaj na displeji na .099.

Při použití obvodu ICL7106 byla automaticka osazena obvody CMOS. Relé, spínající jednotlivé rozsahy, byla vybrána tak, aby při napětí 6,5 až 9 V měla max. odběr 15 mA. Byla použita jazyčková relé vyrobená po domácku, jejichž cívka byla navinuta drámem o $\varnothing 0,07$ mm (5500 závitů). U všech relé stačí jeden spínací kontakt, jen u prvního rozsahu musí být dva. Pokud chceme realizovat měření proudů do 2 A, musíme použít pro rozsahy 5 a 6 relé s robustnějšími kontakty. Jde kupř. najistovat relé RP210 na 24 V tak, aby spínalo již od 6,5 V při odběru 12 mA.

Zapojení přepínače je na obr. 2. Obvod indikace stavu je tvořen hradly EX-OR, na jejichž vstupech se porovnává signál z displeje se signálem BP. Pokud jsou oba signály shodné, na výstupu hradla je úroveň H. Jsou-li tyto signály od sebe posunuty o 180° příslušný segment svítí a na výstupu hradla bude L. Výstupní signály hradel jsou negovány a zavedeny do třívstupových hradel NAND. Na jejich vstupech jsou signály přeplněno a nedoplněno. Na obr. 3 je pravdivostní tabulka těchto výstupů.

Oscilátor je sestaven z hradel NAND a má kmitočet 4 Hz, to znamená, že doba přepnutí z prvního na šestý rozsah je 1,5 s. Blokovací signály z relé jsou odvozeny z bází spínacích tranzistorů přes diody.

Obr. 1. Blokové schéma automatického přepínání rozsahů

Obr. 2. Automatické přepínání rozsahů u ICL7106

Přepl.	Nedopl.	Displej ukazuje
1	1	měří
1	0	nedoplňeno
0	1	přeplňeno

Obr. 3. Pravdivostní tabulka

Přepínač se skládá ze dvou částí: spínače signálu hodinového kmitočtu složeného ze dvou třivstupových hradel NOR a ze tří hradel NAND a z klopného obvodu R-S, který určuje směr čítání. Byl použit synchronní čítač vpřed-vzad CD4029. Jeho výstupy A, B jsou vedeny do vstupů A, B dvojitých čtyřkanálových analogových multiplexérů CD4052. Výstupem C čítače je řízen vstup multiplexeru INHIBIT, který při úrovni H rozpojí všechny analogové spínače. Na společný vývod

Obr. 5. Lineární usměrňovač (OZ1 – pro 7106 bude CA3130, pro 7107 bude LF356, popř. CA3140, WSH 220 apod., R3 až R6, R8 TR 161, 0,2 %, C4, C5, C7 – tantal.)

Obr. 4. Analogová část DVM (Př1 – napětí, V_i až V₆, Př2 – odpory, R1 až R8, Př3 – proud, I₁ až I₈, Př4 – ss/st, L₁ a L₂; rozsahy 1–200 mV, μA, 2–2 V, kΩ, mA, 3–20 V, kΩ, mA, 4–200 V, kΩ, mA, 5–2000 V, kΩ, mA, 6–20 kV, MΩ, A viz text)

jednoho páru spínačů je přivedeno kladné napětí +9 V pro spínání relé a na druhý spínač napětí pro desetinné tečky. Druhé póly spínačů vedou do bází tranzistorů, spínající relé a na desetinné tečky.

Na prvním a šestém rozsahu jsou změny jednotek indikovány svíticími diodami (podžhavené, proud 3 mA).

Přepínání automatická-ruční ovládání je řešeno přepnutím 9 V a řídíčího napětí teček ze společných vývodů spínače na ruční přepínač rozsahů. Tento úkon bylo možné realizovat i přednastavením čítače 4029. Toto řešení bylo použito v automatici pro ICL7107, se sice jednodušší, ale má tu nevýhodu, že při poruše automatiky nelze použít ruční řízení.

Analogová část DMM je na obr. 4. Je pro oba druhy DMM stejná, pouze se liší napájení, a pro měření odporů s obvodem 7107 je potřeba použít externí zdroj konstantního proudu [2], [5]. Zapojení není popisováno podrobněji, protože už bylo uveřejněno několikrát [2], [3], [4]. Liší se pouze šestý rozsah. Aby byla zachována kontinuita rozsahů, pro napětí je 20 kV a pro proudy 20 A. Samozřejmě, že rozsah je použit jen k měření odporů do 20 MΩ, a je třeba jen pro správnou funkci přepínače rozsahů.

Na obr. 5 je lineární usměrňovač. Liší se od dosud uveřejněných zapojení tím, že

OZ2 má tzv. dopřednou kompenzaci. Díky ní usměrňovač pracuje až do 100 kHz.

DMM je napájen devítivoltovou baterii nebo šesti tužkovými článci. Odběr dosahuje 20 mA. Obvody CMOS mají již letos vyrábět k. p. TESLA Piešťany (řada MHB 4000), lze je sehnat i v NDR, SSSR, MLR. Obvod 4000 lze nahradit obvodem 4002. Obvody CMOS mají zem připojenou na vývod 37-TEST obvodu ICL7106, který je „posunut“ o 2,8 V. Tím dostaneme záporné předpětí -2,8 V pro napájení obvodu 4052.

Při měření odporů řádu stovek kΩ zakmitával přepínač rozsahů, což bylo způsobeno pomalým „najížděním“ měřené veličiny na danou hodnotu. Tento stav lze odstranit zvýšením četnosti měření na šest měření za sekundu (oscilátor obvodu ICL7106, 100 kHz, kapacita místo udávaných 100 pF asi 45 pF).

Údaj kupř. 120,5 Ω se změří pouze jako 120. Pokud chceme, aby na displeji bylo 120,5, musíme měřicí svorky na chvíli zkratovat (při měření napětí rozpojit), aby přepínač „najížděl“ na danou hodnotu od prvního rozsahu a nikoli od posledního.

Aby mohlo být měřeno automatikou větší napětí, musí mít DMM kvalitní přepěťovou ochranu, protože při přepnutí se mohou na vstup dostat napěťové špičky.

Lépe je používat automatiku jen při měření malých napětí asi do 50 V.

Princip automatického přepínání DMM s obvodem ICL7107 je podobný (obr. 6), je však jednodušší.

Signál přepětně a nedoplňeno získáváme čtyřmi tranzistory p-n-p, třemi invertory a dvěma třivstupovými hradly NAND. Přepínač je ze dvou třivstupových hradel NAND. Pro oscilátor je použit časovač 555. Pro čítač slouží obvod MH74193, který má dva hodinové vstupy, jeden pro čítání nahoru, druhý pro čítání dolů. Po zapnutí napájení se obvod po dobu nabíjení C4 vynuluje. Ručně se rozsahy přepínají předvolbou čítače. Z automatického na ruční řízení se přístroj připojí připojením úrovně H na vstup L čítače. Dekodér je MH7442 – prevodník BCD na kód 1 z 10. Z jeho výstupu se přes tranzistory spínají relé, desetinné tečky a indikace, v jakých jednotkách měříme.

Napájení DMM je ±5 V. Kladné napětí je stabilizováno obvodem MA7805, odběr je kolem 600 mA. Záporné napětí získáme ze stabilizátoru MA723. Odběr je jen několik miliamper.

Obr. 6. Automatické přepínání rozsahů u DVM7107

Literatura

Návrhy desek s plošnými spoji a mechanickou konstrukcí neuvádím, protože každý zájemce o stavbu bude mít odlišné součástky (podle svých možností).

- [1] Firemní literatura INTERSIL.
- [2] AR B2/1979.
- [3] AR A11/1981.

- [4] AR B4/1981.
- [5] ST 9/82.

Seznam desek s plošnými spoji, které byly uveřejněny v AR B v letech 1980, 1981, 1982 a 1983

Uvedené desky s plošnými spoji lze podle jejich označení objednat na dobríku u

Radiotehnika Teplice

podnik ÚV Svařarmu

závod 02, expedice plošných spojů

Zlžkovo nám. 32

500 21 Hradec Králové

nebo zakoupit „přes pult“ v prodejně Svařarmu, Budečská 7, Praha 2-Vinohrady.

1980

Programátor ústředního topení, č. 3, str. 98

časová základna O 202

univerzální deska O 203

programátor deska O 204 (kromě čísla uvést i název)

Předzesilovač pro magnetodynamickou přenosku, č. 4, str. 157

deska předzesilovače O 204

Časový spinač a čítač pro temnou komoru, č. 4, str. 153

deska předzesilovače O 204 (kromě čísla uvest i název)

zdroj ke spinači, deska O 206

display s digitrony, deska O 207

display s LED, deska O 208

Šumový a interferenční filtr pro přijímače KV, č. 4, str. 135
deska filtru O 209

Měřič harmonického zkreslení, č. 5, str. 163

deska generátoru měřicího signálu O 210

deska filtru a milivoltmetru O 211

deska napájecího zdroje O 212

Měřič přechodového zkreslení, č. 5, str. 168

deska měřiče O 213

Jednoduchý převodník teplota-napětí, č. 5, str. 174

deska převodníku O 214

deska teploměru O 215

Mf zesilovač s A240D, č. 6, str. 219

deska mf zesilovače O 216

Korekční zesilovač s integrovanými obvody, č. 6, str. 237

deska zesilovače O 217

Mf zesilovač FM a stereofonní dekodér, č. 6, str. 239

deska zesilovače a dekodéru O 218

1981

Jednoduchý adaptér pro příjem Zelené vlny, č. 1, str. 6

deska adaptéra P 201

deska nf zesilovače P 202

Mf zesilovač 10,7 MHz, č. 1, str. 16

desky pásmové propusti P 203, P 204

deska mf zesilovače P 205

- Rozhlasový přijímač do auta, č. 1, str. 21**
 deska vč části přijímače P 206
 deska nf části přijímače P 207
- Konvertory pro VKV, č. 1, str. 27**
 základní konvertor-oscilátor, deska P 208
 diodový konvertor, deska P 209
 deska konvertoru pro monofonní přijímače P 210
 deska předzesilovacího konvertoru P 211
 deska konvertoru pro autorádio P 212
 deska předzesilovacího konvertoru P 213
 deska anténního předzesilovače P 214
 deska laděného konvertoru P 215
 deska laděného konvertoru P 216
- Senzorové tlačítko, č. 2, str. 78**
 deska senzorového tlačítka P 217
- Univerzální čtyřdekádový čítač, č. 2, str. 106**
 deska čítače P 218
- Univerzální číslicový měřicí přístroj UDM-1000, č. 4, str. 140**
 deska časové ústředny a řídící logiky P 219
 deska převodníku napětí-kmitočet P 220
 deska obvodu absolutní hodnoty P 221
 deska měřicího přístroje P 222
- Číslicový panelový voltmetr, č. 4, str. 147**
 deska panelového měřidla P 223
 deska displeje P 224
- C/A převodník DAC 12 BCD, č. 4, str. 155**
 deska převodníku P 225, P 226
- Stereofonní zesilovač s MDA2020, č. 5, str. 212**
 deska zesilovače se symetrickým napájením P 227
 deska zesilovače s nesymetrickým napájením P 228
 deska můstkového zesilovače P 229
- Korekční předzesilovač s aktivními korekcemi, č. 5, str. 214**
 deska předzesilovače P 230
- Korekční předzesilovač s A273, A274, č. 5, str. 216**
 deska předzesilovače P 231
- Indikátor mono-stereo s indikací, č. 5, str. 240**
 deska indikátoru P 233

1982

- Přípravek k měření indukčnosti na číslicovém měřiči kmitočtu, č. 2, str. 52**
 deska přípravku Q 201
- Generátor přesného síťového kmitočtu pro hodiny, č. 2, str. 62**
 deska generátoru Q 202
 deska generátoru Q 203
- Generátor funkcí, č. 3, str. 113**
 deska generátoru Q 204
- Vzestupný blokující regulátor, č. 4, str. 144**
 deska regulátoru Q 205
- Dvouhladnový blokující regulátor, č. 4, str. 150**
 deska regulátoru Q 206
- Zdroj 5 V/5 A s propustným měničem, č. 4, str. 152**
 deska regulátoru Q 207
- Elektronický hádač čísel, č. 5, str. 195**
 deska hádače Q 208
- Model podmíněného reflexu, č. 5, str. 199**
 deska modelu Q 209

1983

- Hlídač maxima odebrané elektrické energie, č. 3, str. 88**
 deska pomocných obvodů R 203
- Elektronické odměřování délek, č. 3, str. 99**
 deska odměřovacího zařízení R 204
- Generátor impulsů 1 Hz, č. 3, str. 105**
 deska generátoru R 205
- Generátor pravoúhlých impulsů, č. 3, str. 107**
 deska generátoru R 206
 deska koncového stupně R 207
- Přístroj k léčení magnetickým polem, č. 3, str. 118**
 deska přístroje R 208
- Silniční semafory, č. 3, str. 119**
 deska semaforu R 209
- Obvod pro automatické potlačení poruch, č. 4, str. 154**
 deska obvodu R 210
- Stereofonní indikátor, č. 4, str. 158**
 deska indikátoru R 211
- Jednoduchý regulační zdroj 0 až 20 V/1 A, č. 5, str. 199**
 deska zdroje R 212
- Regulační zdroj s obvodem MAA723H, č. 6, str. 202**
 deska zdroje R 213
- Nf milivoltmetr s tranzistory, č. 6, str. 203**
 deska vstupního děliče, sledovače a výstupního děliče R 214
 deska zesilovače milivoltmetru R 215
- Přimoukazující měřič kapacit a odporů, č. 6, str. 205**
 deska milivoltmetru R 216
 deska zdroje R 217

- Logická sonda, č. 6, str. 210**
 deska sondy R 218
- Univerzální čítač s předvolbou, č. 6, str. 211**
 deska základní části R 219
 deska displeje R 220
 deska časové základny R 221
 deska řídící logiky R 222
 deska relé R 223
 deska zesilovače a tvarovače R 224
 deska zesilovače a tvarovače VHF R 225
 deska zesilovače a tvarovače do 500 MHz R 226
 deska pro osazení digitrony R 227

*Souprava pro demonstraci dvoustavové logiky.
Autor Ján Zemánek z Trnavy (viz článek na další straně)*

Kulová reproduktorská soustava Lubomíra Vosáhla z Jablonce n. N.

PŘÍLOHA K VII. SJEZDU SVAZARMU

TECHNICKÁ TVORIVOST V ELEKTRONICE V PŘEDVEČER VII. SJEZDU

Podle rezoluce VI. sjezdu Svazarmu „naplňovat úlohu zájmových svazarmovských činností vyžaduje zvýšit pozornost jejich masovému rozvíjení. K tomu bude nezbytné rozvíjet především v základních organizacích zájmové branné činnosti v širším komplexu jejich obsahu než dosud, včas reagovat na potřeby rozvíjející se společnosti. Rozvíjet a podchycovat je třeba především branné sportovní a branně technické zájmy mládeže. Potřebám masového rozvoje zájmové branné činnosti musí odpovídat systém soutěží, výstav, přehlídek soutěžních prací i technické osvětové činnosti Svazarmu.“

Technická tvořivost v elektronice, kterou především stavebními návody výrazně podporuje i náš časopis, je právě takovou branně technickou činností, která mimořádně rozvíjí technické záliby členů Svazarmu i našich čtenářů, rozvíjí jejich tvořivé schopnosti i konstrukční dovednosti a v nejvyšších svých formách přechází ve zlepšovatelské hnutí. Proto nikoli náhodou jsme uspořádali na 15. celostátní přehlídkce technické tvořivosti Svazarmu v elektronice Hifi-Áma 83 Trnava besedu k výsledkům i dalším úkolům v technické tvořivosti, a to v předvečer VII. sjezdu Svazu pro spolupráci s armádou. Besedy se zúčastnili pplk. ing. Frant. Šimek, vedoucí oddělení elektroniky ÚV Svazarmu, Miloslav Láb, tajemník komise technického rozvoje UR elektroniky a ing. Vladimír Tesař, odborný pracovník oddělení elektroniky ÚV Svazarmu.

AR: Jakých výsledků dosáhli členové svazarmovských radioklubů a hi-

fiklubů v technické tvořivosti při naplňování rezoluce VI. sjezdu Svazarmu?

F. Šimek: Projdeme-li dnešní přehlídku Hifi-Áma, zjistíme, že členů radíoklubu zde vystavuje jen několik. Nelze říci, že mezi radioamatéry se nekonstruuje, ale společná účast na těchto výstavách se zatím nevzhila a radioamatérští konstruktéři nejsou ani všichni ochotni své výrobky vystavovat. Není to z pýchy, jedním z nejvzácnějších důvodů je ten, že svých zařízení využívají v závodech po celý rok. V souvislosti s tím je možno podtknut, že v plnění koncepcie odbornosti jako celku mají radioamatéři značné rezervy především v rozvoji šíření a popularizaci technických znalostí a odborných dovedností. Po VII. sjezdu budeme muset tento stav přehodnotit a přijmout opatření k popularizaci konstruktérské činnosti v radioamatérství. Pro dobré věci jsem přesvědčen, že například radiodálno-pis vystavený jako exponát na měst-

ské přehlídkce Hifi-Áma v Praze by i z celostátní přehlídky bez cenné visačky neodešel. Jiná situace je u členů hifiklubů. Zde se již projevuje koncepčnost práce ústřední rady elektroniky i rad elektroniky nižších stupňů především v tom aspektu, který je nejcennější – tedy v tom, jak se jejich práce projevuje v aktivistické činnosti. Podaří-li se prosadit do výsledků jejich technické tvořivosti plnění všech kritérií soutěže, včetně dokumentace a dodržování bezpečnostních zásad i u exponátů krajských přehlídek, budeme moci blahopřát více než nyní.

V. Tesař: To právě vidím na trnavské Hifi-Ámě. Postrádá větší prostor pro jednotlivé exponáty. A za závažný nedostatek považují velmi strohě informace o jednotlivých exponátech. Mám na mysli identifikační karty nebo průvodní listy exponátů, které by mely být rozsáhlejší než „obchodní název výrobku“, který návštěvníkovi neřekne prakticky vůbec nic. Prospešnější by byl srozumitelný název exponátu, stručný popis činnosti a základní technické parametry vystavovaného přístroje nebo zařízení. Co chybí exponátům, to je především dodržování československých norem a předpisů z hlediska bezpečnosti a ochrany před nebezpečným dotykem. Je to otázka pro další využití exponátů stěžejní! Zejména při práci s dětmi musíme dbát na dodržování bezpečnost-

Expozice Středo-slovenského kraje,
1. místo v soutěži krajů

Expozice Bratislavы-města, 2. místo v soutěži krajů celostátní přehlídky HIFI AMA 1983

ních norem při konstrukci přístrojů a děti k tomu již od začátku jejich práce v klubu vést. Koneckonců UV Svazarmu k tomu vydal příslušné metodické pokyny. Také určité zásady ergonomie, účelnosti a efektivnosti konstrukce by se mely výrazněji uplatňovat. Nikoli na okraj: když už anglické popisy přístrojů a zařízení, které se stále na některých zařízeních objevují, tak alespoň správně gramaticky.

AR: Jaké směry ve vývoji konstruktérské činnosti lze podle posledních přehlídek Hifi-Ama pozorovat?

M. Láb: Celostátní přehlídky Hifi-Ama představují veřejnosti špičkovou amatérskou technickou tvorivost v elektronice. Původní, úzká specializace na hifi techniku se rozšířila postupně o další aktuální obory. Především jsme zaznamenali prudký rozvoj oboru měřicí techniky, kterým se amatéři snaží nahradit nedostatek měřicí techniky, která je až dosud pro jednotlivce v klubu příliš nákladná. Druhým atraktivním technickým směrem se v poslední době stává výpočetní technika a aplikace mikroelektronických prvků. Svazarmovští amatéři jsou i v této oblasti často progresivnější než příslušné hospodářské organizace. Třetím, neméně významným odvětvím je zveřejňování vyřešených tématických úkolů a zlepšovacích návrhů. Právě přehlídky Hifi-Ama v posledních letech představily již stovky přijatých vynálezů a zlepšovacích návrhů na pomoc národnímu hospodářství. V tradiční elektroakustice se postupně zvyšuje kvalita reprodukčních zařízení nejen u konstrukcí, ale i u obvodových řešení, šíře se uplatňují teoretické znalosti a v neposlední řadě dochází i k zavádění číslicového řízení nebo dokonce k číslicovému zpracování analogového signálu.

AR: Zůstaňme ještě u hifi techniky. Která zařízení můžeme považovat

Amatérské televizní studio. Klub elektroakustiky Brno

na této trnavské přehlídce za předzvěst zítřka a proč?

M. Láb: Kromě běžných aplikací a konstrukčních variant známých obvodových řešení a přístrojů se objevují méně konvenční výrobky – např. reproduktorové soustavy s fungujícím bassreflexem, navržené na základě měření zářičů a výpočtu ozvučnice, které vystavoval kolektiv svazarmovců z klubu v Odolené Vodě, jakostní výkonový zesilovač Miroslava Théra ze 405. ZO Svazarmu Praha 4 s výstupním výkonem 2×200 W, některá zařízení na úpravu signálu – ekvalizéry a kompandery. V gramofonové technice pokračuje využívání netradičních materiálů. Poloňské přehlídky v Plzni, kde se představily přístroje s šasi z betonu a skla, přibyl i gramofon s mramorovým šasi od s. Charváta z Plzně. Aplikace těchto netradičních materiálů není zcela samoúčelná – důsledkem jejich použití je zvýšení odolnosti gramofonu proti otřesům, strukturální akustické zpětné vazbě.

Ke škodě přehlídky se letos prosadilo jen málo využívání digitální techniky, což je podle mého názoru spojeno především s vyššími požadavkami cennami příslušných součástek i až dosud omezeném sortimentu na našem trhu.

F. Šimek: Další brzdou vývoje je i nedostatek publikací v této oblasti a absence kvalitní specializované měřicí techniky. Přesto mezi exponáty lze zaznamenat digitální dozvukové a efektové zařízení s osmibitovým převodníkem a pamětí 56K bytů a syntetizátor. Oba exponáty jsou od Slavomíra Lovicha ze Žiliny.

AR: Vedle zvukové techniky je televizní a audiovizuální technika již tradičním oborem svazarmovské elektroniky. Co můžeme vidět zajímavého na trnavské Hifi-Amé?

V. Tesař: Rozhodně zajímavá a divácky atraktivní je expozice amatérského

Expozice Prahy-města. 3. místo v soutěži krajů

Průmyslový robot. Kolektiv z Brezna (Středoslovenský kraj)

Demonstrační stavebnice základních pokusů z elektroniky. Autor ing. Karel Ranner, pedagogická fakulta Plzeň

Univerzální sdružený měřicí přístroj. Kompas Brno, Luděk Pavlus

Zesilovač Canton. Autor Šilhart z Gottwaldova

televizního studia Klubu elektroniky Brno, což je ovšem téměř profesionální záležitost. V tomto studiu po odchodu Petra Karaivanova jsme za poslední rok nová, amatérsky konstruovaná zařízení neviděli. V krajských expozicích jsem však zaznamenal takové exponáty jako např. titulkovací zařízení a kameru se speciálním hledáčkem, které nasvědčuje tomu, že i v tomto oboru lze rozvíjet tvorivou amatérskou činnost a konstruovat zajímavá zařízení. Budeme se muset zřejmě zamýšlet nad širšími aplikacemi televizní a audiovizuální techniky, jakou je např. termovize, snímání ultrazvukem apod.

AR: Podle našeho názoru brněnskému televiznímu studiu dnes chybí především dobrý amatérský režisér tak, aby tato televizní technika mohla být využívána s větší ideovou i estetickou náročností. Snad můžeme doporučit spojení s některým zájmovým uměleckým kroužkem brněnského Parku kultury a oddechu anebo jiným kulturním zařízením.

F. Šimek: Nejvíce jsem se zajímal o obor aplikované mikroelektroniky a výpočetní techniky, který se jeví jako perspektivní pro využití ve svazarmovských klubech. Mám na mysli především takové přístroje a zařízení, které budou sloužit pro výuku, výcvik, měření a další konstruktérskou činnost. Zaujaly mě zejména zdařilé stavebnice, sondy a měřicí přístroje a doporučuji Amatérskému rádiu některé exponáty vybrat a publikovat pro široký okruh čtenářů. Podle mého názoru by jim mohlo být věnováno jedno modré AR, v kterém by byl nejen stručný popis přístroje či zařízení, ale přímo stavební návod.

AR: Na trnavské přehlídce rozhodně lze hovořit o vzestupném trendu aplikované mikroelektroniky a výpočetní techniky. Co do počtu exponátů i jejich využitelnosti.

V. Tesař: Kromě již klasických aplikací číslicové techniky, jakými jsou např. melodický zvonek, autotester, digitální měřič vzdálenosti, elektronické stopky a hodiny atd. jsou zde i exponáty, které získaly nejvyšší ocenění a zaslouží si zvláštní pozornost. Patří mezi ně zejména mikropočítáčový systém MCS 85, aplikace mikroprocesoru 8080-v zařízeních pomalé počítacové grafiky, průmyslový robot a další.

F. Šimek: Vedle jmenovaných mě také zaujaly exponáty, které ukazovaly výhody použití číslicové techniky v průmyslu, jako dálkový digitální tachometr nebo digitální ukazatel vyložení jeřábu, naznačující cestu, jak poměrně snadno lze při práci s mládeží přejít od „hran“ k cílevědomé činnosti pro společnost, na pomoc národnímu hospodářství. Potěšitelný byl velký počet vystavovaných demonstračních a frontálních stavebnic pro číslicovou techniku i různé typy zkušebních a testovacích sond. Od těch nejjedno-

dušších stavebnic až po složité a nákladné, od optických sond k sondám počítacím. Je vidět, že potřeba levné univerzální sondy i potřeba levné a názorné stavebnice hraje dominantní roli pro další rozvoj tohoto oboru amatérské činnosti, zejména mezi mládeží.

V. Tesař: Zaznamenali jsme zajímavé exponáty i z hlediska programového vybavení – programování mikropočítače MHB8080, program pro příjem kódů morse a zpracování výsledků Dukelského závodu branné zdatnosti. To svědčí o tom, že také zájem o softwaremou část stále roste.

AR: Vše tedy k naší radosti nasvědčuje tomu, že zájem o mikroelektroniku a její aplikace zejména mezi mládeží vzrůstá a že je tedy třeba pro rozvoj tohoto odvětví zájmové činnosti vytvářet dálé podmínky v klubech, radami elektroniky a jistě i naším časopisem. Vraťme se však k měřící technice, která v mnoha směrech podmiňuje rozvoj organizované technické tvorivosti v klubech.

M. Láb: Trvalým trendem je v posledních letech konstrukce levných víceúčelových přístrojů, určených jak pro jednotlivce, tak i pro kluby. Tímto aktivním přístupem se amatéři a kluby snaží vypořádat s nedostatkem podobných přístrojů pro zájmovou činnost v elektrotechnice. Tak se již delší dobu na těchto přehlídkaх setkáváme s různými nízko frekvenčními i vysokofrekvenčními generátory či rozmitači, milivoltmetry, čítači, digitálními multimetry atd. Z nejjednodušších exponátů bych chtěl jmenovat alespoň stejnosměrný zdroj a můstek RCL se sledovačem signálu od Mariána Bodjana z Martina, soupravu měřicích přístrojů J. Hokra z Plzně nebo televizní generátor Ondřeje Lukavského z Prahy 10. S příchodem a rozšířením číslicové techniky je tu – jak již bylo řečeno – řada sond a testerů, jednoduchých analyzátorů. Mne např. zaujal šestnáctistavový indikátor od ing. Jozefa Šulianského a Kolomana Dobáka z Liptovského Mikuláše. Z tohoto širokého zázemí se začínají objevovat i speciální přístroje, např. univerzální měřicí přístroj od Ludka Pavluse z Kompasu Brno. Pod názvem si místo „avometu“ musíme ovšem představit velmi dokonalý charakterograf. I v této oblasti svazarmovští konstruktéři často řeší problémy národního hospodářství, dokladem je např. průtokový měřicí spotřebu paliva s číslicovou indikací od ing. M. Reháka a P. Celjaka z Jičína.

AR: Tvorivá práce ve svazarmovské elektronice má ovšem také své překážky.

F. Šimek: Nejde však o překážky nepřekonatelné. Především jde o provedení určitých změn v soutěžním řádu, a tím i úpravu pojetí přehlídek. Dále půjde o přímé a aktuální obměňování obsahu přehlídek tak, aby vystavova-

Zesilovač ONKYO. Autor Ondřej Lukavský, 031. ZO Praha

Domácí studio. Feckel Jindřich, 303. ZO Brno

Sada měřicích přístrojů Zdenka Krobota ze Zábřeha

né exponáty byly v souladu se stavem rozvoje vědy a techniky v oblasti elektroniky, kde má naše oddělení značné pole působnosti především v oblasti spolupráce s resortem elektrotechnického průmyslu. Celá řada zde vystavaných věcí vznikla bez „vývojových nákladů“ a přímo se nabízejí jako průmyslové vzory. Podáří-li se nám zapojit do ovlivňování obsahového pojetí přehlídek i příslušné ústavy a podniky resortu, věřím, že prospěšnost technické tvořivosti ještě mnohonásobně stoupne. V poslední řadě budeme muset dořešit otázky materiálně technického zabezpečení konstruktérské činnosti. Bylo to nanejvý spravedlivé, kdyby podíl materiálu hrazeného ze soukromých prostředků konstruktéra byl podstatně nižší až nulový. A to je problém nejpříčivější právě u tvořivosti mládeže. Podáří-li se nám vyřešit MTZ a zkomplikují-li se spolupráce se školstvím a SSM i v této oblasti, myslím, že si na podíl mládeže na tvořivých činnostech v elektronice nebudeme moci stěžovat.

M. Láb: Na výstavách Hifi-Ama v posledních letech postrádám aktivní účast a přítomnost všech konstruktérů, kteří by si na burze konstruktérské činnosti mohli vyměnit svoje nápady, poznatky a uzavřít i řadu „vzájemných kooperací“. Masovost rozvoje elektroniky má zatím za následek určitou organizační izolovanost samotných amatérů. Stále postrádám stánek s technickými a konstrukčními informacemi od amatérů, s knihovnou stavebních návodů, s rozmnožovacím zařízením atd., aktivní účast profesionálních techniků, nikoli vedoucích pracovníků, ale konstruktérů a obvodářů na odborných přednáškách. A jako skalní hifista postrádám i kvalitní řešení poslechového prostoru, kde by se nejen návštěvníci, ale i samotní konstruktéři mohli ujistit, jak jejich či jiná špičková reprodukční zařízení fungují a co by se dalo na nich vylepšit.

AR: My jsme v Trnavě postrádali ještě kvalitní poradenskou službu pro návštěvníky přehlídky, která by poskytla informace nejen odborné, ale při které by se také získaly další členové organizace. Pravda, Hifi-Ama 83 opět prokázala vysokou obětavost konstruktérů z celé republiky, obrovské úsilí organizátorů pod vedením ing. Jána Kánika, ale také dala východiska pro další zkvalitňování technické tvořivosti v elektronice po VII. sjezdu naší branné organizace.

F. Šimek: Ta právě vyplývají z toho, co již bylo řečeno. Půjde především o širší zapojení našich členů, ale i čtenářů našeho svazarmovského časopisu, zvláště mládeže, do této soutěžních přehlídek. Tento požadavek, spolu s tematicky specifikovaným zaměře-

Syntetizátor Esosynth Slavomíra Lovicha ze Žiliny

Průtokový měřič spotřeby paliva ing. M. Řeháka a P. Celjaka

Stabilizovaný zdroj a můstek RLC se sledovačem signálu Mariána Bodjana z Martina

ním technické tvořivosti bude tím nejpotřebnějším a nejdůležitějším, co pro splnění závěrů 8. zasedání ÚV KSČ můžeme udělat. Nepochybňně půjde o nárůst aplikací mikroprocesorové techniky, ta nám však nesmí zastínit tvořivost v jiných oblastech. Neustále půjde o to, abychom zvyšovali užitnou hodnotu zařízení, zefektivňovali a z hospodářovali jak činnost této zařízení, tak jejich výrobu. A to jde využíváním nových technologií, progresivních prvků, ale především jejich vtipnou a promyšlenou aplikací. A v tom svazarmovští elektronici zatím jsou a věřím, že zůstanou, špičkou. Posoudíte-li užitečnost

vystavovaných exponátů, zjistíte, že celá řada z nich není určena pro vlastní zábavu či uspokojení soukromých zájmů. A nám teď půjde o to, aby tato řada narůstala. Aby se množily nové výrobky, průmyslové vzory, nová řešení tématických úkolů, zlepšovacích návrhů, didaktických pomůcek i výsledky jejich působení. Řečeno jednou větou: přiblížit elektroniku co nejvíce řadám naší společnosti a maximální měrou přispět k elektro-nizaci naší ekonomiky.

Za redakční radu Amatérského radia besedu připravil

Vladimír Gazda.