10/22/2024

Graphs

Graph

- Collection of 2 sets V &E
- V=Set of Nodes=(v1,v1,v2.....vn)
- E=Set of Edges=(e1,e2,e3.....en)
- Edge=an arc that connects 2 nodes

Graph

- 2 Types
 - Undirected
 - Directed

- A graph, which has **unordered pair of vertices**, is called undirected graph.
- Suppose there is an edge between $v_0 \& v_1$ then it can be represented as (v_0, v_1) or (v_1, v_0) also
- \circ V(G) = $\{1,2,3,4\}$
- $E(G) = \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}$

Directed Graph

- A graph which has ordered pair of vertices <v1,v2>
 where v1 is the head and v2 is the tail of the edge.
- Each edge has direction, means <v1,v2> and <v2,v1> will represent different edges.
- Directed means that a direction will be associated with that edge.
- Also known as digraph

Directed Graph

$$V(G) = \{1,2,3,4,5\}$$

 $E(G) = \{<1,2>, <2,3>, <4,3>, <4,1>, <4,5>, <5,1>\}$

10/22/2024

Graph Terminology

Weighted Graph

- A graph is said to be weighted if it's edges have been assigned some non negative value as weight.
- A weighted graph is also known as network.
- Graph G9 is a weighted graph.

Graph Terminology

Adjacent nodes

- A node u is adjacent to another node or is a neighbor of another node v if there is an edge from node u to node v.
- In undirected graph if **(v0,v1)** is an edge then v0 is adjacent to v1 and v1 is adjacent to v0.
- In a digraph if <v0,v1> is an edge then v0 is adjacent to v1 and v1 is adjacent from v0

Graph Terminology

Incidence:-

- In an undirected graph the edge (v0,v1) is incident on nodes v0 and v1.
- In a digraph the edge <v0,v1> is incident from node v0 and is incident to node v1.

Path:-

• A path from node u0 to node un is a sequence or nodes $u_0, u_1, u_2, u_3, \dots, u_{n-1}, u_n$ such that u_0 is adjacent to u_1 , u_1 is adjacent to u_2, \dots, u_{n-1} is adjacent to u_n .

Length of path:-

 Length of a path is the total number of edges included in the path.

Graph Terminology

- Closed path :-
- A path is said to be closed if first and last nodes of the path are same.
- Simple path :-
- Simple path is a path in which all the nodes are distinct with an exception that the first and last nodes of the path can be same.

Graph Terminology

- OCycle:-
- Cycle is a simple path in which first and last nodes are the same or we can say that a closed simple path is a cycle.
 - > In graph G7, path ACBA is a cycle
 - > In graph G9 path ABA is a cycle.

Graph Terminology

Cyclic graph:-

A graph that has cycles is called a cyclic graph.

Acyclic graph:-

A graph that has no cycles is called an acyclic graph.

Dag:-

- A directed acyclic graph is named as dag after its acronym.
- Graph G5 is an example of a dag.

Degree :-

- In an undirected graph,
- the number of edges connected to a node is called the degree of that node,

13

or

- we can say that degree of a node is the number of edges incident on it.
- In graph G2 degree of node A is 1, degree of node B is zero.

Graph Terminology

• In a digraph, there are two degrees for every node known as indegree and outdegree.

Indegree

Outdegree

Graph Terminology

Indegree:-

- The indegree of a node is the number of edges coming to that node or in other words edges incident to it.
- In graph G8, the indegree of nodes A, B, D and G are 0, 2, 6 and 1 respectively.

Outdegree :-

- The outdegree of node is the number of edges going outside from that node, or in other words the edges incident from it.
- In graph G8, outdegrees of nodes A, B, D, F, and G are 3, 1, 0, 3, and 2 respectively.

Representation of Graph

- There are two ways for representing the graph in computer memory.
 - sequential representation and
 - o linked list representation.

Representation of Graph

Adjacency Matrix:-

- Keeps the information of adjacent nodes.
 - that whether this node is adjacent to any other node or not.

Representation of Graph

Adjacency Matrix:

- Represent a matrix in two dimensional array
 - array[n][n]
 - Suppose there are 4 nodes in graph then row1 represents the node1, row2 represents the node2 and so on.
 - Similarly column1 represents node1, column2 represents nde2 and so on.
- The entry of this matrix will be as-

Arr[i][j] = 1 If there is an edge from node i to node j = 0 If there is no edge from node i to node j

• Hence, all the entries of this matrix will be either 1 or 0.

A B C D

Representation of Graph

Adjacency Matrix:-

arr[0][1] = 1, which represents there is an edge in the graph from node A to node B.

Adjacency Matrix:

arr[0][1] = 1, which represents there is an edge in the graph from node A to node B.

Adjacency Matrix :In an undirected graph

 rowsum and columnsum for a node is same and represents the degree of that node and

Adjacency Matrix :In directed graph,

- rowsum represents the outdegree
- o columnsum represents the indegree of that node.

Adjacency Matrix A =

Representation of Graph

Adjacency Matrix :- Weighted Graph

= Weight on edge If there is an edge from node i to node j.

Arr[i][j]

= 0 Otherwise

Adjacency Matrix:

Weighted Adjacency Matrix W =
$$\begin{bmatrix} A & B & C & B \\ A & C & 2 & 0 & 8 \\ B & 3 & 0 & 4 & 7 \\ C & 0 & 0 & 0 & 5 \\ D & 9 & 0 & 6 & 0 \end{bmatrix}$$

arr[0][1] = weight, which represents there is an weighted edge in the graph from node A to node B.

Adjacency List:-

- If the adjacency matrix of the graph is sparse then
 - it is more efficient to represent the graph through adjacency list.
- We will maintain two lists.
- First list will keep track of all the nodes in the graph
- Second list will maintain a list of adjacent nodes for each node.

Adjacency List:-

- Suppose there are n nodes then we will create one list which will keep information of all nodes in the graph
- After that we will create n lists, where each list will keep information of all adjacent nodes of that particular node.
- Each list has a header node, which will be the corresponding node in the first list.

Structure of header node:

Pointer which points to the first node adjacent to header node (edge *adj)

10/22/2024

Structure of edge:

```
Name of the destination node
of the edge (char dest)

Struct edge {

char dest;
struct edge *link;
};
```

Adjacency list:

Adjacency list:

31

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	0
3	1	0	0	1	1
4	1	1	1	0	1
5	0	0	1	1	0

10/22/2024

Adjacency Matrix Representation:

32

$$3 \longrightarrow V_1 \longrightarrow V_4 \longrightarrow V_5$$

$$4 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_5$$

$$5 \longrightarrow V_3 \longrightarrow V_4$$

Operations on graph

The two main operations on graph will be-

- Insertion
- Deletion

Here insertion and deletion will be also on two things-

- On node
- On edge

Insertion in Adjacency Matrix:

- Node insertion :-
- Insertion of node requires only addition of one row and one column with zero entries in that row and column.

Insertion in Adjacency Mainx

- Node insertion :-
- Let us take an adjacency matrix-

	Α	В	C	D	
A	Γ_0	1	O	1	7
В	1	0	1	1	1
C	0	0	0	1	1
D	1	0	1	0_	

 Suppose we want to add one node E in the graph then we have a need to add one row and one column with all zero entries for node E.

- Edge insertion :-
- Insertion of edge requires changing the value 0 into 1 for those particular nodes.

- Edge insertion :-
- Let us take an adjacency matrix-

$$\begin{array}{c|cccc}
A & B & C & D \\
A & \begin{bmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}$$

- There is no edge between D to B.
- Suppose we want to insert an edge between D to B, then we have a need to change the 0 entry into 1 at the position 4th row 2nd column.
- Now the adjacency matrix will be-

$$\begin{array}{c|ccccc}
A & B & C & D \\
A & & 0 & 1 & 0 & 1 \\
B & & 1 & 0 & 1 & 1 \\
C & & 0 & 0 & 0 & 1 \\
D & & 1 & 1 & 1 & 0
\end{array}$$

Deletion in Adjacency Matrix:

- Node deletion :-
- Deletion of node requires deletion of that particular row and column in adjacency matrix for node to be deleted
- As node deletion requires deletion of all the edges which are connected to that particular node.

- Deletion in Adjacency Matrix :
- Node deletion :-
- Let us take an adjacency matrix-

 Suppose we want to delete the node D, then 4th row and 4th column of adjacency matrix will be deleted.
 Now the adjacency matrix will be-

$$\begin{array}{c|cccc}
A & B & C \\
A & 1 & 0 \\
B & 1 & 0 & 1 \\
C & 0 & 0 & 0
\end{array}$$

Edge deletion:

 Deletion of an edge requires changing the value 1 to 0 for those particular nodes.

- Edge deletion :-
- Let us take an adjacency matrix-

	Α	В	\mathbf{C}	D	
Α	$\Box 0$	1	0	1	
В	1	0	1	1	
C	0	0	0	1	
D	1	0	1	0	

- o To delete the edge which is in between B and C,
- Change the entry 1 to 0 at the position 2nd row, 3rd column.

41

Adjacency matrix will be-

Insertion in Adjacency list

- Node insertion :-
- Insertion of node in adjacency list requires only insertion of that node in header nodes of adjacency list.
- Let us take a graph G-
- The adjacency list for this graph will be as-

Insertion in Adjacency list

- Suppose we want to insert one node E
- Addition of node E in header node only.
- Now the adjacency list will be-

Edge insertion in Adjacency list

Insertion of an edge

- Requires add operation in the list of the starting node of edge.
- Remember here graph is directed graph.
- In undirected graph, it will be added in the list of both nodes.
- Add the edge which starts from node C and ends at node B, then add operation is needed in the list if C node.

- Node deletion :-
- Deletion of node requires deletion of that particular node from header node and from the entire list wherever it's coming.
- Deletion of node from header will automatically free the list attached to that node.

- Node deletion :-
- Delete the node D from graph
- Delete node D from header node and from the list of A, B and C nodes.

Edge deletion :-

 Deletion in the list of that node where edge starts, and that element of the list will be deleted where the edge ends.

Edge deletion :-

- Delete the edge which starts from D and ends at A
- Delete in the list of node D and element in the list deleted will be A.

Traversal of Graph

The various graph traversals are

- Depth first search (DFS)
- Breadth first search (BFS)

- This method is called depth first search since searching is done forward (deeper) from current node.
- The distance from start vertex is called depth

- Choose a starting node, mark it visited ,traverse it Push it into the stack
- Rule 1: If possible, visit an adjacent unvisited vertex, mark it visited, traverse it and push it on the stack.
- Rule 2: If Rule 1 fails, then pop a vertex off the stack follow Rule 1 from it.
- i.e. For the Vertex on the top of the stack, If there is no unvisited adjacent node only then we pop it.
- Rule 3: Repeat Rule 1 and Rule 2 until the all the vertices are visited.

• Example of Depth First Search :

Let us consider the following graph-

 The depth-first search (DFS) uses a stack to remember where it should go when it reaches a dead end.

 To carry out the depth-first search, we pick a starting point, vertex A.

- We can do three things:
- Visit the vertex
- Push it onto stack so we can remember it, and
- Mark it, so it is not visited again.

10/22/2024

54

Depth First Search

10/22/2024

- Assuming the vertex are visited in alphabetical manner
- Visit the next vertex connected to A.
- It is B
- The vertex B is pushed into the stack and marked as visited, traverse it We are now at B.
- The adjacent unvisited vertex of B i.e. F is visited, traversed, pushed into stack
- We call this process Rule 1

Event	Stack	DFS
Visit A	A	A
Visit B	AB	AB
Visit F	ABF	ABF
Visit H	ABFH	ABFH
Pop H	ABF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pop F	AB	
Pop B	A	
Visit C	AC	ABFHC
Pop C	A	<u> </u>
Visit D	AD	ABFHCD
Visit G	ADG	ABFHCDG
Visit I	ADGI	ABFHCDGI
Pop I	ADG	and the same of the
Pop G	AD	Section 11 to 12 a
Pop D	A	
Visit E	AE	AB F HCDGIE
Pop E	A	half and
Pop A		
Done		

Rule 1

If possible, visit an adjacent unvisited vertex, mark it visited, and push it on the stack.

- Applying Rule 1 the vertex H is visited.
- Now from here there is no further unvisited adjacent vertex that we can visit.
- This condition is called dead end. Now we apply Rule 2.

Event	Stack	DFS
Visit A	A	A
Visit B	AB	AB
Visit F	ABF	ABF
Visit H	ABFH	ABFH
Pop H	ABF	
Pop F	AB	
Pop B	A	
Visit C	AC	ABFHC
Pop C	A	
Visit D	AD	ABFHCD
Visit G	ADG	ABFHCDG
Visit I	ADGI	ABFHCDGI
Pop I	ADG	producers sill
Pop G	AD	S Is I would
Pop D	A	
Visit E	AE	AB F HCDGIE
Pop E	A	1000 117
Pop A		
Done		

Depth First Search

Rule 2

• If Rule 1 fails, then pop a vertex off the stack follow Rule 1 from it.

- Following Rule 2, we pop H off the stack, which brings us back to F.
- F also has no unvisited adjacent vertices, so we pop it also.
- It applies to **B also.**
- Now only A is left on the stack.
 A, however, does have unvisited adjacent vertices, so we now visit C and push C.
- But C also becomes a dead end.
- Hence we pop it.
- Again we are left with A.

Event	Stack	DFS
Visit A	A	A
Visit B	AB	AB
Visit F	ABF	ABF
Visit H	ABFH	ABFH
Pop H	ABF	
Pop F	AB	
Pop B	A	
Visit C	AC	ABFHC
Pop C	A	<u> </u>
Visit D	AD	ABFHCD
Visit G	ADG	ABFHCDG
Visit I	ADGI	ABFHCDGI
Pop I	ADG	ici nasa na sili
Pop G	AD	Service in
Pop D	A	
Visit E	AE	AB F HCDGIE
Pop E	A	Mark - UK
Pop A		
Done		

- We visit D, G, I, and then pop them all when we reach a dead end at I
- Now we are back to A
- We visit E, and again we are back to A
 This time, however A has no unvisited adjacent vertices.
- So we pop it off the stack.
- But now there is nothing left to pop, which brings us to Rule 3.
- So Stop

Event	Stack	DFS
Visit A	A	A
Visit B	AB	AB
Visit F	ABF	ABF
Visit H	ABFH	ABFH
Pop H	ABF	
Pop F	AB	2
Pop B	A	
Visit C	AC	ABFHC
Pop C	A	6 8
Visit D	AD	ABFHCD
Visit G	ADG	ABFHCDG
Visit I	ADGI	ABFHCDGI
Pop I	ADG	and the second section
Pop G	AD	
Pop D	A	
Visit E	AE	AB F HCDGIE
Pop E	A	half
Pop A		
Done		

• Rule 3: Repeat Rule 1 and Rule 2 until the all the vertices are visited.

63

 The table below shows the stack contents at each push and pop operations:

Event	Stack	DFS
Visit A	A	A
Visit B	AB	AB
Visit F	ABF	ABF
Visit H	ABFH	ABFH
Pop H	ABF	
Pop F	AB	
Pop B	A	
Visit C	AC	ABFHC
Pop C	A	(4) 1 2
Visit D	AD	ABFHCD
Visit G	ADG	ABFHCDG
Visit I	ADGI	ABFHCDGI
Pop I	ADG	or beautiful to be
Pop G	AD	Service The Day
Pop D	A	
Visit E	AE	AB F HCDGIE
Pop E	A	Mary
Pop A		
Done		

Required DFS is ABFHCDGIE

DFS-Procedure using Stack-

- Use array implementation of stack to keep the unvisited neighbors of the node
 - Initially stack is empty and top =-1
- Take a Boolean Array, visited[n]
- o In which value,
 - visited[i]=false, If node has not been visited
 - visited[i]=true, If node has been visited
- Initially visited[i]=false where i=1 to n, n is total no of nodes

Perform DFS

Perform DFS

Event	Stack	DFS
Visit V ₁	V ₁	V ₁
Visit V ₂	$V_1 V_2$	V ₁ V ₂
Visit V ₄	V ₁ V ₂ V ₄	V ₁ V ₂ V ₄
Visit V ₈	V ₁ V ₂ V ₄ V ₈	V ₁ V ₂ V ₄ V ₈
Visit V ₅	V ₁ V ₂ V ₄ V ₈ V ₅	V ₁ V ₂ V ₄ V ₈ V ₅
Pop V ₅	V ₁ V ₂ V ₄ V ₈	
Visit V ₆	V ₁ V ₂ V ₄ V ₈ V ₆	V ₁ V ₂ V ₄ V ₈ V ₅ V ₆
Visit V ₃	V ₁ V ₂ V ₄ V ₈ V ₆ V ₃	V ₁ V ₂ V ₄ V ₈ V ₅ V ₆ V ₅
Visit V ₇	V ₁ V ₂ V ₄ V ₈ V ₆ V ₃ V ₇	V ₁ V ₂ V ₄ V ₈ V ₅ V ₆ V ₃ V ₇
Pop V ₇	V ₁ V ₂ V ₄ V ₈ V ₆ V ₃	
Pop V ₃	V ₁ V ₂ V ₄ V ₈ V ₆	
Pop V ₆	V ₁ V ₂ V ₄ V ₈	
Pop Vs	$V_1 V_2 V_4$	
Pop V ₄	$V_1 V_2$	
Pop V ₂	V ₁	La company and bearing
Pop V ₁		
Done		

The required DFS is $V_1 V_2 V_4 V_8 V_5 V_6 V_3 V_7$

Depth-first search using Backtracking

Step	Traversal	Description						
	A B C Stack	Initialize the stack.	4	A B C top+ D A S Stack	Visit D and mark it as visited and put onto the stack. Here, we have B and C nodes, which are adjacent to D and both are unvisited. However, we shall again choose in an alphabetical order.	7	A B C top+ C D A S Stack	Only unvisited adjacent node is fis C now. So we visit C, mark it a visited and put it onto the stack.
	A B C top+ S Stack	Mark S as visited and put it onto the stack. Explore any unvisited adjacent node from S. We have three nodes and we can pick any of them. For this example, we shall take the node in an alphabetical order.	5	a b c top+ B D A S Stack	We choose B, mark it as visited and put onto the stack. Here B does not have any unvisited adjacent node. So, we pop B from the stack.	a noo	does not have any unvisited adjacent node de that has an unvisited adjacent node. In the the stack is empty.	
	s	Mark A as visited and put it onto the	6	5	We check the stack top for return to			

the previous node and check if it has

any unvisited nodes. Here, we find D

to be on the top of the stack.

Courtesy: https://www.tutorialspoint.com/data_structures_algorithms/depth_first_traversal.htm

stack. Explore any unvisited adjacent

adjacent to A but we are concerned

node from A. Both S and D are

for unvisited nodes only.

DFS

DFS of a graph is analogous to the pre-order traversal of an ordered tree.

Recursive Defn of DE

Algorithm DFS (G)

Algorithm DF-Travel (v)

```
status[v] = visited

for each vertex u adjacent to v do

if status[u] == unvisited then

parent[u] = v

DF-Travel ( u )
```

Breadth First Search

- BFS of a graph is analogous to level-by-level traversal of an ordered tree.
- This method is called breadth first search, since it works outward from a center point, much like the ripples created when throwing a stone into a pond.
- It moves outward in all directions, one level at a time.

Breadth First Search

- Choose the start node, mark it visited, traverse it, enqueue it
- Rule 1: Visit all the next unvisited vertices (if any) that is adjacent to the current vertex(At Front end), and insert them into a queue one at a time on every visit.
- Rule 2: If there is no unvisited vertex, remove a vertex from the Queue and make it the current vertex and then follow Rule 1.
- Rule 3 : Repeat Rule 1 and Rule 2 until the all the vertices visited.

Let us consider the following graph-

- In BFS, all the vertices adjacent to start vertex are visited, In first pass
- This kind of search is implemented using a Queue

75

 Let us consider the following graph-

- Pick a starting point,
- Lets start with vertex A.
- We mark it as visited, traverse it
- Then rules are applied

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	B C	ABC
Visit D	BCD	ABCD
Visit E	BCDE	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	
Visit I	НІ	ABCDEFGHI
Remove H	I	
Remove I		
Done		Y.

- Visit all the vertices adjacent to A, inserting each one into the queue during each visit.
- We visit A, B, C, D and E.
- At this point the queue (from front to rear) contains B, C D and E.
- There are no more unvisited vertices adjacent to A,

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	B C	ABC
Visit D	BCD	ABCD
Visit E	BCDE	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	
Visit I	НІ	ABCDEFGHI
Remove H	I	
Remove I		
Done		X

Rule 1: Visit all the next unvisited vertices (if any) that is adjacent to the current vertex, and insert them into a queue one at a time on every visit.

- So we remove B from the queue and look for vertices adjacent to it
- We find **F**, so we insert it in the queue.
- There are no more unvisited vertices adjacent to B,

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	BC	ABC
Visit D	BCD	ABCD
Visit E	BCDE +	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	
Visit I	Н	ABCDEFGHI
Remove H	I	1
Remove I		
Done		X.

Rule 2: If there is no unvisited vertex, remove a vertex from the Queue and make it the current vertex and then follow Rule 1.

- Remove C from the queue, It has no unvisited vertices
- Remove D from the queue
- D has an unvisited vertex G adjacent to it, insert G
- Remove E as it has no adjacent vertices

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	B C	ABC
Visit D	BCD	ABCD
Visit E	BCDE	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	
Visit I	HI	ABCDEFGHI
Remove H	I	
Remove I		
Done		XX

- Now the queue is FG.
- Remove F, F has an unvisited node H, insert H in Queue
- Remove G, G has an unvisited node I, insert
 I in queue

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	B C	ABC
Visit D	BCD	ABCD
Visit E	BCDE	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	7,0-000
Visit I	НІ	ABCDEFGHI
Remove H	I	1
Remove I		
Done		XI.

- Now the queue is HI
- Visit H, Remove H
- Visit I, Remove I

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit B	В	AB
Visit C	B C	ABC
Visit D	BCD	ABCD
Visit E	BCDE	ABCDE
Remove B	CDE	
Visit F	CDEF	ABCDEF
Remove C	DEF	
Remove D	EF	
Visit G	EFG	ABCDEFG
Remove E	FG	
Remove F	G	
Visit H	GH	ABCDEFGH
Remove G	H	
Visit I	HI	ABCDEFGHI
Remove H	I	
Remove I		
Done		N.

- While removing each of these and found no adjacent unvisited vertices,
- The queue is empty.
- BFS terminates

Queue (Front to Rear)	BFS
	A
В	AB
BC	ABC
BCD	ABCD
BCDE	ABCDE
CDE	
CDEF	ABCDEF
DEF	
EF	
EFG	ABCDEFG
FG	
G	
GH	ABCDEFGH
H	
HI	ABCDEFGHI
I	
	XX
	B BC BCD BCDE CDE CDEF DEF EF EF G G GH H

BFS-Procedure-using Queue

- Use array implementation of queue to keep the unvisited neighbors of the node
 - Initially Queue is empty, front=-1,rear=-1
- Take a Boolean Array, visited[n]
- o In which value,
 - visited[i]=false, If node has not been visited
 - visited[i]=true, If node has been visited
- Initially visited[i]=false where i=1 to n, n is total no of nodes

BFS- Procedure using Queue

- Insert starting node into the queue and traverse it, make visited[i]=true
- 2) Delete front element from the queue and insert all its unvisited neighbors into the queue at the end, and traverse them. Also make the value of visited array true for these nodes
- 3) Repeat step 2 until the queue is empty

Perform BFS

Perform BFS

<u>Event</u>	Queue (Front to Rear)	BFS
Visit V ₁		V ₁
Visit V ₂	V ₂ .	V ₁ V ₂
Visit V ₃	$V_2 V_3$	V ₁ V ₂ V ₃
Remove V ₂	V_3	
Visit V ₄	V_3V_4	V ₁ V ₂ V ₃ V ₄
Visit V ₅	V ₃ V ₄ V ₅	V ₁ V ₂ V ₃ V ₄ V ₅
Remove V ₃	V ₄ V ₅	
Visit V ₆	V ₄ V ₅ V ₆	V ₁ V ₂ V ₃ V ₄ V ₅ V ₆
Visit V ₇	V ₄ V ₅ V ₆ V ₇	V ₁ V ₂ V ₃ V ₄ V ₅ V ₆ V ₇
Remove V ₄	V ₅ V ₆ V ₇	
Visit V ₈	V ₅ V ₆ V ₇ V ₈	$V_1V_2 V_3V_4V_5 V_6V_7 V_8$
Remove V ₅	$V_6V_7V_8$	
Remove V ₆	V_7V_8	
Remove V ₇	V ₈	
Remove V ₈		
Done		

The required BFS is $V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8$.

Find DFS in a di-graph

- The rules for a DFS traversal of a graph same as for undirected graph
- Difference-Adjacent nodes for a node A exists only if there exists an edge starting from A and incident to any other node

Find DFS & BFS in a di-graph

Let us consider the following di-graph-

Covering nodes in Alphabetical Order

Find DFS & BFS in a di-graph

Find DFS in a di-graph

 The table below shows the stack contents at each push and pop

Event	Stack	DFS
Visit A	Α	Α
Visit C	AC	AC
Visit B	ACB	ACB
Visit G	ACBG	ACBG
Pop G	ACB	
Pop B	AC	
Visit D	ACD	ACBGD
Visit F	ACDF	ACBGDF
Visit E	ACDFE	ACBGDFE
Pop E	ACDF	
Pop F	ACD	
Pop D	AC	
Pop C	Α	
Pop A	NULL	

The required DFS is A C B G D F E.

Find BFS in a di-graph

- The rules for a BFS traversal of a graph are: -
- Same as for Undirected Graph
- Only concept of Directed Edges , Adjacency will differ

Find BFS in a di-graph

 The table below shows the Queue contents at every insert and remove operations:

Event	Queue (Front to Rear)	BFS
Visit A		A
Visit C	C	AC
Visit F	CF	ACF
Remove C	F	34
Visit B	FB	ACFB
Visit D	FBD	ACFBD
Remove F	BD	The House
Visit E	BDE	ACFBDE
Remove B	DE	
Visit G	DEG	ACFBDEC
Remove D	EG	IE.
Remove E	G	
Remove G		
Done		

• The required BFS is A C F B D E G.

Why Use Graphs?

- Graphs serve as models of a wide range of objects:
 - A roadmap
 - A map of airline routes
 - A layout of an adventure game world
 - A schematic of the computers and connections that make up the Internet
 - The links between pages on the Web
 - The relationship between students and courses
 - A diagram of the flow capacities in a communications or transportation network

GRAPHS Representation:

- Graph representation of a road network
- A road network is a simple example of a graph,
- Vertices represents cities and road connecting them are correspond to edges.

94

V= { Delhi, Chenai, Kolkata, Mumbai, Nagpur }

E= { (Delhi, Kolkata), (Delhi, Mumbai}, (Delhi, Nagpur), (Chenai, Kolkata), (Chenai, Mumbai), (Chenai, Nagpur), (Kolkata, Nagpur), (Mumbai, Nagpur) }

Applications of Graph Data Structure

- Google maps
- Facebook
- World Wide Web
- Operating System

o šš

- In Computer science graphs are used to represent the flow of computation.
- Google maps
 - uses graphs for building transportation systems,
 - where intersection of two(or more) roads are considered to be a vertex and
 - the road connecting two vertices is considered to be an edge,
 - thus their navigation system is based on the algorithm to calculate the **shortest path between two vertices**.

- o In Facebook,
 - o users are considered to be the vertices and
 - if they are friends then there is an edge running between them.
 - Facebook's Friend suggestion algorithm uses graph theory.
 - Facebook is an example of undirected graph.

- In World Wide Web,
 - web pages = vertices.
 - There is an edge from a page u to other page v if there is a link of page v on page u.
 - This is an example of Directed graph.
 - It was the basic idea behind Google Page Ranking Algorithm.

- In Operating System,
 - we come across the Resource Allocation Graph where
 - each process and resources are considered to be vertices.

- Edges are drawn from
 - resources to the allocated process, or
 - from requesting process to the requested resource.
- If this leads to any formation of a cycle then a deadlock may occur.

Resource Allocation Grouph With A Deadlock

- Suppose P3 requests for R2,
- Since no resource instance is free, a request edge P3->R2 is added
- So, Now Two cycles exist –
 P1->R1->P2->R3->P3->R2->P1
 P2->R3->P3->R2->P2
- P1,P2,P3 are deadlocked

10/22/2024

102

extra

DFS- Procedure using Stack

- 1) Push starting node into the stack
- Pop an element from the stack, if it has not been traversed then traverse it, If it has been already traversed then just ignore it. After traversing, make the value of visited array for this node as true.
- Now push all the unvisited adjacent nodes of the popped element on stack. Push the element even if it already on the stack
- 4) Repeat steps 3 and 4 until stack is empty