```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv("C:\\Users\\jibin\\OneDrive\\Desktop\\Lambton\\Sem-3\\AML_3104_NNDL\\Algeria

In [3]: df

Out[3]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Region
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	not fire	0
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	not fire	0
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire	0
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	not fire	0
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	not fire	0
238	26	9	2012	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	fire	1
239	27	9	2012	28	87	15	4.4	41.1	6.5	8.0	0.1	6.2	0.0	not fire	1
240	28	9	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	not fire	1
241	29	9	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	not fire	1
242	30	9	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	not fire	1

243 rows × 15 columns

```
In [4]: df.isna().sum()
```

```
Out[4]: day
                         0
                         0
         month
                         0
         year
         Temperature
                         0
                         0
         RH
         Ws
                         0
         Rain
                         0
         FFMC
                         0
         DMC
                         0
         DC
                         0
                         0
         ISI
         BUI
                         0
                         0
         FWI
         Classes
                         0
         Region
                         0
         dtype: int64
```

In [5]: df.duplicated().sum()

Out[5]: 0

```
In [6]: correlation_matrix = df[['Temperature', 'RH', 'Ws', 'Rain', 'FFMC', 'DMC', 'DC', 'ISI', 'B
    plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
    plt.title("Correlation Heatmap")
    plt.show()
```



```
In [7]: df['Classes'].value counts()
```

```
Out[7]: fire
                           131
         not fire
                           101
         fire
                             4
         fire
                             2
         not fire
                             2
         not fire
                             1
         not fire
                             1
         not fire
         Name: Classes, dtype: int64
```

```
In [8]: df['Classes']= df['Classes'].str.strip()
 In [9]: df['Classes'].value_counts()
 Out[9]: fire
                         137
           not fire
                         106
           Name: Classes, dtype: int64
In [10]: | df = pd.get dummies(df, columns=['Classes'], drop first=False)
In [11]: |df
Out[11]:
                                                                                     BUI FWI Region Classes_fire
                    month year Temperature RH Ws Rain FFMC DMC
                                                                            DC ISI
              0
                  1
                          6 2012
                                            29
                                                57
                                                     18
                                                          0.0
                                                                65.7
                                                                       3.4
                                                                            7.6
                                                                               1.3
                                                                                      3.4
                                                                                           0.5
                                                                                                    0
                                                                                                                 0
                   2
                             2012
                                            29
                                                61
                                                    13
                                                          1.3
                                                                64.4
                                                                      4.1
                                                                            7.6
                                                                               1.0
                                                                                      3.9
                                                                                           0.4
                                                                                                                 0
              2
                   3
                          6 2012
                                                    22
                                                         13.1
                                                                47.1
                                                                      2.5
                                                                            7.1 0.3
                                                                                                    0
                                                                                                                 0
                                            26
                                                82
                                                                                      2.7
                                                                                           0.1
                             2012
                                                                                                                 0
              3
                   4
                                           25
                                                89
                                                    13
                                                          2.5
                                                                28.6
                                                                       1.3
                                                                            6.9
                                                                               0.0
                                                                                           0.0
                                                                                                    0
                                                                                      1.7
              4
                   5
                             2012
                                           27
                                                77
                                                     16
                                                          0.0
                                                                64.8
                                                                       3.0
                                                                           14.2 1.2
                                                                                      3.9
                                                                                           0.5
                                                                                                                 0
                                                ...
                                                     ...
                                                                 ...
                                                                                 ...
                                                                                                                 ...
                             2012
                  26
                                                                      16.0 44.5 4.5
            238
                                            30
                                                65
                                                    14
                                                          0.0
                                                                85.4
                                                                                     16.9
                                                                                           6.5
                                                                                                    1
                                                                                                                 1
            239
                  27
                             2012
                                            28
                                                87
                                                    15
                                                          4.4
                                                                41.1
                                                                      6.5
                                                                            8.0
                                                                               0.1
                                                                                      6.2
                                                                                           0.0
                                                                                                                 0
                                                                                                    1
            240
                  28
                          9 2012
                                            27
                                                87
                                                    29
                                                          0.5
                                                                45.9
                                                                       3.5
                                                                            7.9 0.4
                                                                                      3.4
                                                                                           0.2
                                                                                                                 0
            241
                  29
                             2012
                                                                      4.3 15.2 1.7
                                                                                                                 0
                                            24
                                                54
                                                     18
                                                          0.1
                                                                79.7
                                                                                      5.1
                                                                                           0.7
            242
                 30
                          9 2012
                                                    15
                                                          0.2
                                                                67.3
                                                                      3.8 16.5 1.2
                                                                                                                 0
                                           24
                                                64
                                                                                      4.8
                                                                                           0.5
                                                                                                    1
           243 rows × 16 columns
In [12]: df_ = df[['Temperature', 'RH', 'Ws', 'Rain', 'FFMC', 'DMC', 'DC', 'ISI', 'BUI', 'FWI', 'Cl
In [13]: df_ = df_.rename(columns={'Classes_fire': 'Classes'})
```

In [14]: df_

Out[14]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0
1	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0
2	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0
3	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0
4	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0
					•••						
238	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	1
239	28	87	15	4.4	41.1	6.5	8.0	0.1	6.2	0.0	0
240	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	0
241	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	0
242	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	0

243 rows × 11 columns

```
In [17]: X = df_[['Temperature', 'Ws', 'FFMC', 'DMC', 'DC', 'ISI', 'BUI', 'Classes']]
y=df_['FWI']
```

In [23]: X

Out[23]:

	Temperature	Ws	FFMC	DMC	DC	ISI	BUI	Classes
0	29	18	65.7	3.4	7.6	1.3	3.4	0
1	29	13	64.4	4.1	7.6	1.0	3.9	0
2	26	22	47.1	2.5	7.1	0.3	2.7	0
3	25	13	28.6	1.3	6.9	0.0	1.7	0
4	27	16	64.8	3.0	14.2	1.2	3.9	0
	•••		•••					
238	30	14	85.4	16.0	44.5	4.5	16.9	1
239	28	15	41.1	6.5	8.0	0.1	6.2	0
240	27	29	45.9	3.5	7.9	0.4	3.4	0
241	24	18	79.7	4.3	15.2	1.7	5.1	0
242	24	15	67.3	3.8	16.5	1.2	4.8	0

243 rows × 8 columns

```
In [19]: y
Out[19]: 0
                0.5
                0.4
                0.1
         2
                0.0
         3
         4
                0.5
         238
                6.5
         239
                0.0
         240
                0.2
         241
                0.7
         242
                0.5
         Name: FWI, Length: 243, dtype: float64
In [21]: from sklearn import linear model
         from sklearn.linear model import LinearRegression
         from sklearn import metrics
         from sklearn.metrics import mean_squared_error, mean_absolute_error
         from sklearn.model selection import train_test_split, cross_val_score
         X train,X test, y train, y test = train test split(X, y, test size = 0.2, random state = 1
In [27]: X_train.shape,X_test.shape,y_train.shape,y_test.shape
Out[27]: ((194, 8), (49, 8), (194,), (49,))
In [28]: reg model = linear model.LinearRegression()
In [29]: #Fitting the Multiple Linear Regression model
         reg model = LinearRegression().fit(X train, y train)
In [31]:
         #Predicting the Test and Train set result
         y_pred= reg_model.predict(X_test)
         x pred= reg model.predict(X train)
In [32]: print("Prediction for test set: {}".format(y pred))
         Prediction for test set: [ 6.05176264 11.43387494 10.74452183 6.41110479 8.14370482 1.
         08072076
           7.04139212 3.00473307 -0.11875184 20.96724443 10.12433492 -0.06779128
          20.55919766 19.86207262 22.16848474 0.11445612 9.56986098 0.81976444
          17.27652615 12.63383098 3.63330435 5.08552238 6.63868377 0.03990432
           0.84127601 23.34819853 14.41464635 2.62423383 7.56450129 10.68342403
           3.78936385 -0.18444854 0.65758776 11.34756055 -0.05008951 1.72644001
          15.08798216 -0.10512724 0.99056539 1.02844239 10.06137156 6.06482729
          27.20084621 3.23770917 6.54180835 -0.11960046 0.24600328 7.28820698
           0.16144613]
```

```
In [33]: #Actual value and the predicted value
reg_model_diff = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred})
reg_model_diff
```

Out[33]:

	Actual value	Predicted value
65	6.1	6.051763
59	10.7	11.433875
191	10.7	10.744522
111	6.3	6.411105
112	8.3	8.143705
161	1.3	1.080721
150	7.2	7.041392
160	3.1	3.004733
99	0.4	-0.118752
83	22.3	20.967244
163	9.6	10.124335
31	0.3	-0.067791
88	19.9	20.559198
85	20.3	19.862073
185	20.9	22.168485
182	0.8	0.114456
69	9.9	9.569861
97	0.9	0.819764
81	18.4	17.276526
190	12.7	12.633831
46	3.6	3.633304
142	4.9	5.085522
238	6.5	6.638684
152	0.5	0.039904
125	1.0	0.841276
204	24.5	23.348199
26	15.0	14.414646
220	2.7	2.624234
209	6.1	7.564501
201	9.0	10.683424
64	3.9	3.789364
217	0.4	-0.184449
3	0.0	0.657588
225	10.3	11.347561
32	0.5	- 0.050090
96	1.7	1.726440
211	16.0	15.087982
140	0.4	-0.105127
223	1.2	0.990565

	Actual value	Predicted value
41	0.9	1.028442
110	9.7	10.061372
128	6.0	6.064827
186	12.6	27.200846
237	3.0	3.237709
75	6.3	6.541808
213	0.0	-0.119600
19	0.4	0.246003
210	5.9	7.288207
62	0.8	0.161446

```
In [38]: print("Test Set Metrics:")
    mae = metrics.mean_absolute_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = np.sqrt(metrics.mean_squared_error(y_test, y_pred))

print('Mean Absolute Error:', mae)
    print('Mean Square Error:', mse)
    print('Root Mean Square Error:', r2)
```

Test Set Metrics:
Mean Absolute Error: 0.7640382627135188
Mean Square Error: 4.761056837511573
Root Mean Square Error: 2.181984609824637

```
In [39]: print("\nTrain Set Metrics:")
    mse_train = mean_squared_error(y_train, x_pred)
    mae_train = mean_absolute_error(y_train, x_pred)
    r_squared_train = reg_model.score(X_train, y_train)

print("MSE:", mse_train)
    print("MAE:", mae_train)
    print("R-squared:", r_squared_train)
```

Train Set Metrics:
MSE: 0.6068592013883295
MAE: 0.5119620421576673
R-squared: 0.9894430919283679

```
In [40]: import pickle
    model = "MultiLinear_regression_model.pkl"

with open(model, 'wb') as model_file:
    pickle.dump(reg_model, model_file)

print(f"Model saved to {model}")
```

Model saved to MultiLinear_regression_model.pkl

Pickling a model enables model durability, simple sharing, and effective deployment in machine learning projects by storing it to a file for reuse. By removing the need for recurrent training, it promotes reproducibility, quickens development, and conserves computational resources.