Calculus II Homework

Tangents and curve length

- 1. Find the values of the parameter t for which the curve has horizontal and vertical tangents.
 - (a) $x = t^2 t + 1, y = t^2 + t 1$

(b) $x = t^3 - t^2 - t + 1, y = t^2 - t - 1.$

(c) $x = \cos(t), y = \sin(3t)$

(d) $x = \cos(t) + \sin(t)$, $y = \sin(t)$.

- 2. Show that the parametric curve has multiple tangents at the point and find their slopes.
 - (a) $x = \cos t$, $y = 2\sin(2t)$, two tangents at (x, y) = (0, 0).
 - (b) $x = \cos t \sin(3t)$, $y = \sin(t) \sin(3t)$, six tangents at

- 3. Find the length of the curve.
 - (a) $y = x^2, x \in [1, 2]$.

(x,y) = (0,0).

(c) $x = \cos t, y = \sin(3t)$, find the two points at which the curve has double tangent and find the slopes of both pairs

- of tangents.
- (d) $x=t^3-t^2-t+1$, $y=t^2-t-1$, find a point where the curve has double tangent and find the slopes of the tangents.

(b)
$$y = \sqrt{x}, x \in [1, 2].$$

(c)
$$x=\sqrt{t}-2t$$
 and $y=\frac{8}{3}t^{\frac{3}{4}}$ from $t=1$ to $t=4$.

$$\text{(d)} \ \ \gamma: \left| \begin{array}{ccc} x(t) & = & \frac{1}{t} + \frac{t^3}{3} \\ y(t) & = & 2t \end{array} \right. \ , t \in [1,2] \quad .$$

(e)
$$\gamma: \left| \begin{array}{ccc} x(t) & = & \frac{1}{t}+t \\ y(t) & = & 2\ln t \end{array} \right.$$
 , $t\in [1,2]$.

(f) One arch of the cycloid

$$\gamma: \left| \begin{array}{lcl} x(t) & = & t-\sin t \\ y(t) & = & 1-\cos t \end{array} \right., t \in [0,2\pi]$$

(g) The cardioid

$$\gamma: \left| \begin{array}{lcl} x(t) & = & (1+\sin t)\cos t \\ y(t) & = & (1+\sin t)\sin t \end{array} \right., t \in [0,2\pi]$$

4. Set up an integral that expresses the length of the curve and find the length of the curve.

(a)
$$\left| \begin{array}{lcl} x(t) & = & e^t + e^{-t} \\ y(t) & = & 5 - 2t \end{array} \right., t \in [0,3]$$

(b)
$$\begin{vmatrix} x(t) &= \sin t + \cos t \\ y(t) &= \sin t - \cos t \end{vmatrix}, t \in [0, \pi]$$

