





### Outline

- Friction force
  - Coefficients of friction
- Resistive forces
- Terminal speed/velocity
- Archimedes' Principle







#### Friction Force

- When a body moves on a surface or through a viscous medium (e.g. air, water), there are forces of friction because the body interacts with its surroundings.
- Force of **static** friction,  $\mathbf{f}_s$ : the force that counteracts the applied force and keeps the object from moving
  - Present when object is not yet in motion
- Force of **kinetic** friction,  $\mathbf{f}_k$ : the retarding frictional force on the object in motion
  - Present when object is in motion









## Concept of Friction Force

- $f_s$  increases as the magnitude of the applied force increases, keeping the object in place
- When it is on the verge of moving,  $f_s$  is a maximum
- When the applied force exceeds  $(f_s)_{max}$ , the object accelerates
- Once the object is in motion, the frictional force  $(f_k)$  becomes less than  $(f_s)_{max}$











## Empirical Laws of Friction

The direction of the force of static friction between any two surfaces in contact is opposite the direction of any applied force and can have values:

$$f_s \le \mu_s n$$

where  $\mu_s$  is coefficient of static friction.

• The direction of the force of kinetic friction acting on an object is opposite the direction of its motion and is given by:

$$f_k = \mu_k n$$

 $f_k = \mu_k n$  where  $\mu_k$  is coefficient of kinetic friction.









#### Coefficients of Friction

- The values of  $\mu_s$  and  $\mu_k$  depend on the nature of the surfaces (0.05-1.5), but  $\mu_k$  is generally  $< \mu_s$ .
- The coefficients of friction are nearly independent of the area of contact between the surfaces.
- Although  $\mu_k$  varies with v, we normally neglect this (stick-slip motion at low v).









## Coefficients of Friction

|                           | $\mu_{\mathrm{s}}$ | $\mu_{ m k}$ |
|---------------------------|--------------------|--------------|
| Steel on steel            | 0.74               | 0.57         |
| Aluminum on steel         | 0.61               | 0.47         |
| Copper on steel           | 0.53               | 0.36         |
| Rubber on concrete (Dry)  | 1.0                | 0.8          |
| Rubber on concrete (Wet)  | 0.30               | 0.25         |
| Zinc on cast iron         | 0.85               | 0.21         |
| Copper on cast iron       | 1.05               | 0.29         |
| Glass on glass            | 0.94               | 0.40         |
| Copper on Glass           | 0.68               | 0.53         |
| Teflon on Teflon          | 0.04               | 0.04         |
| Teflon on steel           | 0.04               | 0.04         |
| Synovial joints in humans | 0.01               | 0.003        |







### Experimental Determination of Coefficients of Friction

- Suppose a block is placed on a rough surface inclined relative to the horizontal. The incline angle is increased until the block starts to move. By measuring the critical angle,  $\theta c$  at which this slipping just occurs, we can **obtain**  $\mu_s$ .
- Once the block starts to move, it accelerates down the incline. However, if  $\theta$  is reduced to a value less than  $\theta_c$ , it may be possible to find an angle  $\theta'_c$  such that the block moves down the incline with constant speed. We can then **obtain**  $\mu_k$ .











### Experimental Determination of Coefficients of Friction

$$\sum F_x = mg\sin\theta - f_s = ma_x = 0 \qquad \Longrightarrow \qquad f_s = mg\sin\theta$$

$$\sum F_y = n - mg\cos\theta = ma_y = 0 \qquad \Longrightarrow \qquad n = mg\cos\theta$$





$$f_s = n \tan \theta$$

Since 
$$f_s \leq \mu_s n$$

$$\mu_s = \tan \theta_c$$





If moving at constant v:  $f_k = \mu_k n \implies \mu_k = \tan \theta_c'$ 









## Example

- A 2.00-kg block is placed on top of a 5.00-kg block. The coefficient of kinetic friction between the 5.00 kg block and the surface is 0.200.
- a) Calculate the force needed to pull both blocks with an acceleration of 3.00 m/s<sup>2</sup>.
- b) Find the minimum coefficient of static friction between the blocks such that the upper block does not slip under this acceleration.











## Example

Part (a): Consider total mass of 7 kg,

$$n = 7.00(9.80) = 68.6 \text{ N}$$

$$f_k = \mu_k n = 0.200(68.6) = 13.7 \text{ N}$$

$$\sum F_x = F - f_k = (m_1 + m_2)a$$

$$F = 7.00(3.00) + 13.7 = 34.7 \text{ N}$$











## Example

Part (b): Consider the mass of 2 kg alone,

$$\sum F_y = n_1 - m_1 g = 0$$

$$n_1 = 2.00(9.80) = 19.6 \text{ N}$$

$$f_s \leq \mu_s n_1$$











#### Resistive Forces

- Interaction between moving object and medium (liquid, gas) sometimes cannot be neglected.
- The medium exerts a resistive force **f** on the object opposite to its direction of motion.











#### Resistive Forces

- The magnitude of the resistive force, f, generally increases with increasing speed; the actual dependence is complicated; common approximations:
  - For small objects at low speeds (e.g. dust in air):

$$f = kv$$

• For large objects at high speeds (e.g. skydiver):

$$f = Dv^2$$











## Resistive Forces at Low Speeds

$$\sum F_y = ma = m\frac{dv}{dt}$$

$$f = kv$$

$$mg - kv = m\frac{dv}{dt}$$

$$\frac{dv}{dt} = g - \frac{k}{m}v$$





k is a constant value which depends on medium and the object.







## Terminal Speed/Velocity

$$\frac{dv}{dt} = g - \frac{k}{m}v$$

- When v = 0, the resistive force -kv is also zero and the acceleration is simply g
- As *t* increases, the resistive force increases and the acceleration decreases.
- Eventually, the acceleration becomes zero and object moves with a constant speed  $v_t$  which is the **terminal speed**.



$$mg - kv_t = 0$$

$$v_t = \frac{mg}{k}$$









## Terminal Speed/Velocity

$$\frac{dv}{dt} = g - \frac{k}{m}v$$



$$\frac{dv}{dt} = g - \frac{k}{m}v \qquad v = \frac{mg}{k} \left(1 - e^{-kt/m}\right)$$

First order ODE

Define (time constant)  $\tau = \frac{1}{k}$ 

$$\tau = \frac{m}{k}$$

$$v = v_t \left( 1 - e^{-t/\tau} \right)$$











## Air Drag at High Speeds

For objects moving at high speeds through air, the resistive force is  $\infty$  square of the speed:

$$f=Dv^2$$
 from (Young & Freedman)

A more detailed formula is given in Serway & Jewett:

$$f = \frac{1}{2}D\rho Av^2$$

 $\rho$  = density of air A =cross-sectional area of the falling object (measured in a plane  $\perp$  its motion) D = drag coefficient









## Air Drag at High Speeds

#### Young & Freedman

$$mg - Dv^2 = ma$$



$$a = g - \frac{D}{m}v^2$$

When 
$$a = 0$$

$$v_t = \sqrt{\frac{mg}{D}}$$

#### Serway & Jewett

$$mg - \frac{1}{2}D\rho Av^2 = ma$$



$$a = g - \left(\frac{D\rho A}{2m}\right)v^2$$

When 
$$a = 0$$

$$v_t = \sqrt{\frac{2mg}{D\rho A}}$$







## Comparing With/Without Resistive Forces







Typical free falling object









## Archimedes' Principle

- States that: When a body is completely or partially immersed in a fluid, the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body.
- The upward force that a fluid exerts on any submerged object is called the buoyant force.

$$B = W_{fluid}$$











## Understanding Various Resistive Forces







Apple

Balloon

Helium balloon







# The End



