CISC1003 – Unit C Locomotion

Topics

- Modes of Locomotion
- Algorithm
- Multitasking

Locomotion

- Locomotion = locus (place) + motion
- Locomotion refers to the way a body moves
 - from place to place.
- A fundamental function of humans, animals
 - Acquired through training
 - Requiring significant "brain power"
- It's generally the first challenge for a robot
- Many modes of locomotion exist

Modes of Locomotion

- Legs:
 - Walking, crawling, climbing, jumping, hopping etc.
- Wheels:
 - Rolling
- Arms:
 - Swinging, crawling, climbing, lifting
- Wings:
 - Flying
- Flippers:
 - Swimming

Modes of Locomotion

- Most common, legged vs. Wheeled
- Benefits and challenges:
 - Wheeled:
 - Most efficient use of power, low DOFs.
 - Legged:
 - Large DOFs, challenge of stability.

- **Static stability**: robots maintain upright without constant active control
 - Are humans statically stable?
 - We as humans are not statically stable!
 - Fall if fainting, etc.

- Static stability: robots maintain upright without constant active control
 - support polygon is a horizontal region over which the center of mass must lie to achieve static stability
 - Maintained when center of gravity (COG) is above a certain horizontal region
 - Region called support polygon
 - Statically stable walking is slow, energy inefficient

- Dynamic stability: robots must actively balance or move to maintain stability
 - The inverse pendulum model for one legged balance
 - Two legged walking alternates between swing and stance phase
 - between the two legs.

 A statically stable robot can use dynamically stable walking to better use energy – tradeoff between stability/speed.

Gaits

- The way a robot moves by using a particular pattern of footfall
 - 2 legged: alternating swing and stance phases.
 - 4 legged: lateral walking vs. diagonal walking
 - Lateral walking: right hind, right front, left hind, left front
 - Diagonal: the feet on opposite sides move forward in sequence

Gaits

- The way a robot moves by using a particular pattern of footfall
 - 2 legged: alternating swing and stance phases.
 - 4 legged: lateral walking vs. diagonal walking
 - 6 legged: alternating tripod gait vs. ripple gait.
 - Tripod gait: weight shifts to three legs each time
 - https://www.youtube.com/watch?v=nRtJu4qrqn0
 - Ripple gait: two legs used each time
 - One leg changes each time
 - https://www.youtube.com/watch?v=3 Qk5svpUc0

Gaits

- Consideration for desirable robot gaits
 - Stability, speed, energy
 - Robustness, simplicity

Wheels and Steering

- Wheels are the choice of locomotion in robotics
 - Advantages of wheels:
 - Highly efficient
 - Simple to control
- Most wheeled robots are not holonomic
 - Following a specific trajectory (motion planning) is more difficult than simply moving from one place to another (navigation).
- Differential drive(steering):
 - Wheels are driven independently by separate motors=> easier control.

Go Beyond Locomotion - Dancing Automaton

- One or more robots come together
 - With music, dressed in costume
 - Moving in creative harmony.
- Need to develop an algorithm.
- Robot will be multitasking.

Algorithm

ComputerHope.com

- A step-by-step sequence of instructions for carrying out some task.
- Examples of algorithms outside of computing:
 - Cooking recipes
 - Dance steps
 - Proofs (mathematical or logical)
 - Solutions to mathematical problems
- Often, there is more than one way to solve a problem.

Algorithms -Solving problems

- In computing, algorithms are synonymous with problem solving.
- How To Solve It [George Polya, 1945]
 - Understand the problem
 - Devise a plan
 - Carry out your plan
 - Examine the solution

Algorithms -Polya[1945]

- Understand the problem:
 - Understand all the words, goal
 - Create a picture or a diagram to help solve
 - Is there enough information to solve the problem?
- Devise a plan
 - Choose a strategy: guess and check, eliminate possibilities, etc.
- Carry out your plan
 - Write the program, run the system
- Examine the solution
 - Look back, did you solve the problem?

Algorithms - features

- Speed (number of steps)
- Memory (size of work space)
- Complexity (can others understand it?)
- Parallelism (can you do more than one step at once?)

Case Study – *Boids* Algorithm by Craig Reynolds

Algorithm - Boids by Craig Reynolds

- Algorithmic for coordinated animal motion
 - Models steering behaviors
 - for animated flocking creatures.
 - Allowed individual elements to navigate their digital environments in a "life-like" manner
 - with strategies for different actions:
 - seeking, fleeing, wandering, arriving, pursuing, evading, path following, obstacle avoiding, etc.

Algorithm - *Boids* by Craig Reynolds (cont.)

- System has multiple characters
 - each steering according to simple locally-based rules,
- Surprising levels of complexity emerge
 - the most famous example being Reynolds' "boids" model for "flocking"/"swarming" behavior.

Algorithm - *Boids* by Craig Reynolds (cont.)

- Simple steering behaviors:
 - Separation:
 - avoid crowding neighbors
 - Alignment:
 - steer towards average heading of neighbors
 - Cohesion:
 - steer towards average position of neighbors

Algorithm - *Boids* by Craig Reynolds (cont.)

- An animated short featuring the boids model called Stanley and Stella in: Breaking the Ice was created
 - Boids video

Multitasking

- Computer Multitasking: When multiple tasks, also known as processes, are executed concurrently
 - May share common processing resources such as a CPU.
- If only one CPU exists, only one task runs at any point in time
 - the CPU is actively executing instructions for that task.
- Multitasking involves scheduling which task may be the one running at any given time
 - And when another waiting task gets a turn.

Multitasking

- Each program can have multiple tasks, from which one is the main task.
- The execution of the program jumps from one active task to another.
- The act of reassigning a CPU from one task to another one is called a context switch
 - When context switches occur frequently enough the illusion of parallelism is achieved.

Introduction to Programming

Planning and Behavior, Pseudocode

- What is the problem?
 - Identify the behavior you need

Example: follow the path

Break the main path into smaller paths:

- Each of the smaller paths is called a behavior
- Write down the sequence of behaviors that is needed

- Follow the path:
 - Move forward
 - Turn left
 - Move forward
 - Turn right
 - Move forward
 - Turn right
 - Move forward

Can we break these into smaller tasks?

- Follow the path:
 - Move forward
 - Left motor forward
 - Right motor forward
 - Wait 2 seconds
 - Turn left
 - Left motor reverse
 - Right motor forward
 - Wait 1 second
- Etc...

Pseudocode

- As we increase the level of details, we will reach commands we can express directly in programming language
- This is the plan the robot needs to follow
- The steps are written in English
 - So can be understood by the human programmer
- This is called *Pseudocode*

Pseudocode Example

```
task main()
while ( touch sensor is not pressed
   Robot runs forward
   if (sonar detects object < 20 cm away)</pre>
     Robot stops
     Robot turns right
```

