${\it Logik~und~diskrete~Strukturen} \\ {\it Wintersemester~2022/2023}$

Abgabe: 16.01.23, 10:00 Besprechung: KW4

PD Dr. Elmar Langetepe Christine Dahn Joshua Könen Institut für Informatik

Übungszettel 11

Aufgabe 11.1: Ringe und Körper

(5+3 Punkte)

Sei $(R, +_R, \cdot_R)$ ein Ring, $M \neq \emptyset$ eine beliebige Menge und $F := \{f : M \to R\}$ die Menge aller Funktionen, welche von der Menge M nach R abbilden. Wir definieren eine neue Struktur $(F, +_F, \cdot_F)$ wie folgt:

Für zwei Elemente $f,g \in F$ und Element $m \in M$ sei $(f +_F g)(m) := f(m) +_R g(m)$ und $(f \cdot_F g)(m) := f(m) \cdot_R g(m)$.

- a) Zeigen Sie, dass $(F, +_F, \cdot_F)$ einen Ring definiert.
- b) Ist $(F, +_F, \cdot_F)$ ein Körper, falls $(R, +_R, \cdot_R)$ ein Körper ist?

Aufgabe 11.2: Euklidischer Algorithmus

(8 Punkte)

Der euklidische Algorithmus aus der Vorlesung durchläuft eine while-Schleife solange, bis b gleich 0 ist. Sei die Folge der Fibonacci-Zahlen f_n durch folgende Rekursion definiert:

$$f_0 = 0, f_1 = 1$$
 und für alle $n \ge 0 : f_{n+2} = f_n + f_{n+1}$.

Beweisen Sie, dass für jedes $k \geq 2$ gilt: Der euklidische Algorithmus durchläuft die while-Schleife genau (k-1)mal, wenn er auf das Zahlenpaar (f_{k+1}, f_k) angewandt wird.