Cryptographie M1

Ludovic Perret

(slides from C. Bouillaguet and Damien Vergnaud)

Sorbonne Université

2023 - 2024

Contents

Public-key cryptography

History of Public-key cryptography Diffie-Hellman key exchange Trapdoor permutations and RSA

RSA

Primality testing RSA and integer factoring RSA with shared modulus Broadcast attack

Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
 - symmetric encryption
 - MAC

 \leadsto confidentiality

→ authentication (integrity)

Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
 - symmetric encryption
 - MAC

→ confidentiality

→ authentication (integrity)

- Sender and receiver must share the same key
 - needs secure channel for key distribution

Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
 - symmetric encryption
 - MAC

→ confidentiality

→ authentication (integrity)

- Sender and receiver must share the same key
 - needs secure channel for key distribution
- Other limitation of authentication scheme
 - cannot authenticate to multiple receivers
 - does not have non-repudiation

How to distribute the cryptographic keys?

- ▶ If the users can meet in person beforehand it's simple.
- ▶ But what to do if they cannot meet? (e.g. on-line shopping)

How to distribute the cryptographic keys?

- ▶ If the users can meet in person beforehand it's simple.
- ▶ But what to do if they cannot meet? (e.g. on-line shopping)

A Naive solution

- ightharpoonup every user P_i has a separate key K_{ij} to communicate with every P_j
- ~ quadratic number of keys is needed
- ➤ ~ someone needs to "give the keys"
- ightharpoonup ightharpoonup the users need to store large numbers of keys in a secure way

How to distribute the cryptographic keys?

- ▶ If the users can meet in person beforehand it's simple.
- ▶ But what to do if they cannot meet? (e.g. on-line shopping)

A Naive solution

- ightharpoonup every user P_i has a separate key K_{ij} to communicate with every P_j
- ~ quadratic number of keys is needed
- ▶ ~ someone needs to "give the keys"
- ightharpoonup ightharpoonup the users need to store large numbers of keys in a secure way

The Needham-Schroeder Protocol (1978)

Please look at the board!

The solution: Public-Key Cryptography

first proposed by Diffie and Hellman

W.Diffie and M.E.Hellman

New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp. 644-654.

- similar idea by Merkle:
 - ▶ 1974: a project proposal for a Computer Security course at UC Berkeley (it was rejected)
 - ▶ 1975: submitted to the CACM journal (it was rejected) (see http://www.merkle.com/1974/)
- 2015 Turing Award
- It 1997 the GCHQ revealed that they knew it already in 1970 (James Ellis).

The idea

Encryption

- ▶ instead of using one key *K*: use 2 keys (*e*, *d*)
 - e → encryption,
 - d → decryption,
- e can be public and only d has to be kept secret!

- Public Key Encryption
 - Message + Billel's Public Key = Ciphertext
 - Ciphertext + Billel's Private Key = Message
- anyone with Billel's public key can send Billel a secret message.
- only Billel can decrypt the message, since only Billel has the private key.

The idea

Signature

- ▶ instead of using one key K: use 2 keys (e, d)
 - e → encryption,
 - d → decryption,
- e can be public and only d has to be kept secret!

Digital signatures

- Message + Anissa's Private Key = Signature
- Message + Signature + Anissa's Public Key = 0 or 1
- anyone with Anissa's public key can verify that the message comes from Anissa.
- only Anissa can produce the signature, since only Anissa has the private key.

But is it possible?

► In "physical world": yes!

→ Example: padlock

But is it possible?

▶ In "physical world": yes!

→ Example: padlock

- Diffie and Hellman proposed public key cryptography in 1976.
 - ▶ They just proposed the concept, not the implementation.
 - But they have shown a protocol for key-exchange

Key Exchange

 (\mathbb{G},\cdot) a finite cyclic group; $\langle g
angle = \mathbb{G}$

Anissa

Billel

Eve

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g}
angle = \mathbb{G}$

Billel

Anissa

Eve

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g}
angle = \mathbb{G}$

 $\underbrace{y_a = g^a}$ $\longleftarrow y_b = g^b$

Billel

Anissa

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g}
angle = \mathbb{G}$

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g}
angle = \mathbb{G}$

Diffie-Hellman Key Exchange: Security

Eve knows:

- ► (G,g)
- $ightharpoonup y_a = g^a$
- $\triangleright y_b = g^b$

and should have no information on $K = g^{ab}$.

- ▶ If finding a from y_a is easy then the DH key exchange is not secure.
- ► Even if it is hard, then

...the scheme may also not be completely secure

► How to choose **G**?

Diffie-Hellman Key Exchange: Security

Eve knows:

- ► (G,g)
- $ightharpoonup y_a = g^a$
- $\triangleright y_b = g^b$

and should have no information on $K = g^{ab}$.

- ▶ If finding a from y_a is easy then the DH key exchange is not secure.
- Even if it is hard, then

...the scheme may also not be completely secure

► How to choose © ?

...First choice (**bad**): $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}, +)$ for some integer n.

Diffie-Hellman Key Exchange: Security

Eve knows:

- **▶** (**G**,**g**)
- $ightharpoonup y_a = g^a$
- $\triangleright y_b = g^b$

and should have no information on $K = g^{ab}$.

- ▶ If finding a from y_a is easy then the DH key exchange is not secure.
- Even if it is hard, then

...the scheme may also not be completely secure

► How to choose © ?

```
...First choice (bad): \mathbb{G} = (\mathbb{Z}/n\mathbb{Z}, +) for some integer n. ...Second choice (good): \mathbb{G} = (\mathbb{Z}/n\mathbb{Z}^*, \cdot) for some integer n.
```

$$Z = Y^X \mod N$$

When Z is unknown, it can be efficiently computed

Exponentiation by squaring - square-and-multiply

$$y^{x} = \begin{cases} 1 & \text{if } x = 0\\ y \cdot y^{x-1} & \text{if } x \text{ is odd}\\ (y^{2})^{x/2} & \text{if } x \text{ is even} \end{cases}$$

Efficiency of computation modulo *n*

Suppose that *n* is a *k*-bit number, and $0 \le x, y \le n$

- $ightharpoonup (x \pm y) \mod n \rightsquigarrow O(k)$
- $ightharpoonup (xy) \mod n \leadsto O(k^2) (\text{or } \tilde{O}(k))$
- ▶ $(x)^c \mod n \rightsquigarrow O((\log c)k^2)$ or $\tilde{O}((\log c)k)$
- ▶ $(x^{-1}) \mod n \rightsquigarrow O(k^3)$ (or $\tilde{O}(k^2)$) or $O(k^2)$ (or $\tilde{O}(k)$)

$$Z = Y^X \mod N$$

When X is unknown, the problem is known as the **discrete logarithm** and is generally believed to be hard to solve

$$Z = Y^X \mod N$$

When X is unknown, the problem is known as the **discrete logarithm** and is generally believed to be hard to solve

We will see that later...

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the **discrete root extraction** and is generally believed to be hard to solve

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the **discrete root extraction** and is generally believed to be hard to solve unless the factorisation of N is known.

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the **discrete root extraction** and is generally believed to be hard to solve unless the factorisation of N is known.

We will see that later...

Public Key Cryptosystems

Asymmetric encryption: Billel owns two "keys"

a public key known by everybody (including Anissa)a secret key known by Billel only

Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

 $ightharpoonup \mathcal{K}$ is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk,pk) depending on the security parameter κ ,

Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- $ightharpoonup \mathcal{K}$ is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk,pk) depending on the security parameter κ ,
- \mathcal{E} is a probabilistic **encryption algorithm** which takes on input a public key pk and a plaintext $m \in \mathcal{M}$, runs on a random tape $u \in \mathcal{U}$ and returns a ciphertext c,

Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- $ightharpoonup \mathcal{K}$ is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk,pk) depending on the security parameter κ ,
- \mathcal{E} is a probabilistic **encryption algorithm** which takes on input a public key pk and a plaintext $m \in \mathcal{M}$, runs on a random tape $u \in \mathcal{U}$ and returns a ciphertext c,
- ▶ \mathcal{D} is a deterministic **decryption algorithm** which takes on input a secret key sk, a ciphertext c and returns the corresponding plaintext m or the symbol \bot . We require that if $(sk, pk) \leftarrow \mathcal{K}$, then $\mathcal{D}_{sk}\left(\mathcal{E}_{pk}(m,u)\right) = m$ for all $(m,u) \in \mathcal{M} \times \mathcal{U}$.

Public-Key Encryption: Security Notions

Encryption is supposed to provide confidentiality of the data.

But what exactly does this mean?

Security goal	But
Recovery of secret key	True if data is
is infeasible	sent in the clear
Obtaining plaintext from	Might be able to obtain
ciphertext is infeasible	half the plaintext
etc	etc

So what is a **secure** encryption scheme?

Not an easy question to answer ...

Trapdoor permutations

- ► A **trapdoor function** is a function that
 - is easy to compute in one direction,
 - yet believed to be difficult to compute in the opposite direction (finding its inverse) without special information, called the "trapdoor".
- ▶ A trapdoor permutation family ${E: X \longrightarrow X}_{(e,d)}$
 - easy to compute $y = E_e(x)$ for any $x \in X$,
 - ▶ (believed to be) difficult to compute $E_e^{-1}(y)$ for any $y \in X$,
 - except if one knows $d: E_e^{-1}(y) = D_d(y) = x$.
- Do such functions exist?

How to encrypt a message *m*

Warning: in general it's not that simple. We will explain it later.

RSA - Key Generation

Rivest, Shamir, Adleman (1978)

A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21 (2): pp.120-126.

2002 Turing Award

- Key generation:
 - Generate two large primes p and q ($p \neq q$).

How?

RSA - Key Generation

Rivest, Shamir, Adleman (1978)

A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21 (2): pp.120-126.

2002 Turing Award

Key generation:

▶ Generate two large primes p and q ($p \neq q$).

How?

- Compute $N = p \cdot q$ and $\varphi(N) = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \varphi(N)$, such that gcd(e, (p-1)(q-1)) = 1.
- Compute the unique integer d, $1 < d < \varphi(N)$ with $e \cdot d \equiv 1 \mod \varphi(N)$.

Public key = (N, e) which can be published. Private key = (d, p, q) which needs to be kept secret

RSA - Encryption / Decryption

- ► **Encryption:** if Anissa wants to encrypt a message for Billel, she does the following:
 - ightharpoonup Obtain Billel's authentic public key (N, e).
 - ▶ Represent the message as a number 0 < m < N.
 - ▶ Compute $c = m^e \mod N$.
 - Send the ciphertext c to Billel.

RSA - Encryption / Decryption

- ► **Encryption:** if Anissa wants to encrypt a message for Billel, she does the following:
 - ▶ Obtain Billel's authentic public key (N, e).
 - ▶ Represent the message as a number 0 < m < N.
 - ▶ Compute $c = m^e \mod N$.
 - Send the ciphertext c to Billel.

- **Decryption:** to recover *m* from *c*, Billel does the following:
 - Use the private key d to recover $m = c^d \mod N$.

RSA - Proof That Decryption Works

Recall that $e \cdot d \equiv 1 \mod \varphi(N)$, so there exists an integer k such that

$$\mathbf{e} \cdot \mathbf{d} = 1 + \mathbf{k} \cdot \varphi(\mathbf{N}).$$

- ▶ If gcd(m, p) = 1:
 - **>** By Fermat's Little Theorem we have $m^{p-1} \equiv 1 \mod p$.
 - ▶ Taking k(q-1)-th power and multiplying with m yields

$$m^{1+k(p-1)(q-1)} \equiv m \mod p$$

▶ If gcd(m, p) = p, then $m \equiv 0 \mod p$ and the previous equality is valid again.

Hence, in all cases $m^{e \cdot d} \equiv m \mod p$ and by a similar argument we have $m^{e \cdot d} \equiv m \mod q$.

Since p and q are distinct primes, the **CRT** leads to

$$c^d = (m^e)^d = m^{ed} = m^{k(p-1)(q-1)+1} = m \mod N.$$

Outline

Public-key cryptography
History of Public-key cryptography
Diffie-Hellman key exchange
Trapdoor permutations and RSA

RSA

Primality testing RSA and integer factoring RSA with shared modulus Broadcast attack

Prime Numbers

prime numbers are needed for RSA

Theorem (Prime number theorem — 1896)

The number of primes less than x is about $x/\log x$.

- ightharpoonup ightharpoonup primes are quite common ($\simeq 2^{503}$ primes $\le 2^{512}$).
- testing primes can be done very fast!
- generating primes can be done very fast!
 (on average, one need to test 177 numbers before one find a 512-bit prime)

Fermat's test

Theorem (Fermat's little theorem)

For $\mathbf{a} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\mathbf{a}^{\varphi(\mathbf{n})} \equiv 1 \mod \mathbf{n}$.

- ▶ if *n* is prime we have $a^{n-1} \equiv 1 \mod n$ always
- ▶ if *n* is not prime we have $a^{n-1} \equiv 1 \mod n$ is unlikely

Fermat's test

Theorem (Fermat's little theorem)

For $\mathbf{a} \in (\mathbb{Z}/n\mathbb{Z})^*$, $\mathbf{a}^{\varphi(n)} \equiv 1 \mod n$.

- ▶ if *n* is prime we have $a^{n-1} \equiv 1 \mod n$ always
- ▶ if *n* is not prime we have $a^{n-1} \equiv 1 \mod n$ is unlikely

Fermat's test

For i = 1 to k do

- ▶ Pick a randomly from $(\mathbb{Z}/n\mathbb{Z})^*$
- ▶ Compute $b = a^{n-1} \mod n$
- ▶ If $b \not\equiv 1$ output (Composite,a)

output Possibly Prime

Carmichael numbers

- ► Carmichael numbers are composite numbers *n* which fail the Fermat Test for every *a* not dividing *n*.
- There are infinitely many Carmichael Numbers
 - the first three are 561, 1105, 1729
- **Exercise:** Carmichael Numbers *N* have the following properties
 - always odd
 - 2. are square free
 - 3. if p divides N then p-1 divides N-1.
 - 4. have at least three prime factors
- Need for other tests

References

A Computational Introduction to Number Theory and Algebra Victor Shoup

References

Prime Numbers: A Computational Perspective Crandall, Richard, Pomerance, Carl B.

Security of RSA

- Security of RSA relies on difficulty of finding d given N and e.
- If we can factor N then we can find p and q
 - Hence we can calculate d.
- i.e. If factoring is easy we can break RSA.
 - Currently 829 bit numbers are the largest that have been (2021) factored
 - Hence best to choose (at least) 2048 bit numbers
- Is RSA as strong as factorization? Will next show that knowing d we can factor N.
 - Still does not rule out possibility that breaking RSA is easier than factoring

Integer Factoring

- Exponential methods:
 - trial division
 - ightharpoonup Pollard's p-1 method
 - ▶ Pollard's ρ method

Integer Factoring

- Exponential methods:
 - trial division
 - ▶ Pollard's p − 1 method
 - ▶ Pollard's ρ method
- ► Three most effective algorithms are:
 - quadratic sieve
 - elliptic curve factoring algorithm (ECM)
 - number field sieve (NFS)

Integer Factoring

- Exponential methods:
 - trial division
 - Pollard's p-1 method
 - Pollard's ρ method
- ► Three most effective algorithms are:
 - quadratic sieve
 - elliptic curve factoring algorithm (ECM)
 - number field sieve (NFS)
- One idea many factoring algorithms use:
 - ▶ Suppose one finds $x^2 \equiv y^2 \mod N$ s.t. $x \neq \pm y \mod N$.
 - ► Then N | (x y)(x + y).
 - Neither (x y) nor (x + y) is divisible by N; thus,

Time complexity of Integer Factoring

quadratic sieve:

$$O(\exp((1+o(1))\sqrt{\ln N \ln \ln N}))$$

[For $N \simeq 2^{1024}$, " $O(e^{68})$ "]

elliptic curve factoring algorithm:

$$O(\exp((1+o(1))\sqrt{2\ln p \ln \ln p})),$$

where p is N's smallest prime factor [For N=pq and $p,q\simeq 2^{512}$, " $O(e^{65})$ "]

number field sieve:

$$O(\exp((1.92 + o(1))(\ln N)^{1/3}(\ln \ln N)^{2/3}))$$

[For $N \simeq 2^{1024}$, " $O(e^{60})$ "]

- Multiple 512-bit moduli have been factored
- Extrapolating trends of factoring suggests that:
 - ▶ 1024-bit moduli will be factored by 2018 ...(PERDU!)

Knowledge of $\varphi(N)$

- We will show knowledge of $\varphi(N)$ allows us to factor N as well.
- We have

$$\varphi(N) = (p-1)(q-1) = N - (p+q) + 1.$$

▶ Hence

$$S = p + q = N + 1 - \varphi(N)$$

$$P = pq = N$$

• p and q are the **roots** of $X^2 - SX + P = 0$.

Security of RSA

- ► Suppose you can find *d* for a given *N* and *e*.
- ► Then for some integer s

$$ed - 1 = s(p - 1)(q - 1).$$

▶ Hence for any $x \neq 0$

$$x^{ed-1} = 1 \mod N.$$

We want to put

$$y_1 = \sqrt{x^{ed-1}} = x^{(ed-1)/2}$$

and then use

$$y_1^2 - 1 \equiv 0 \mod N$$

to recover a factor of N from $gcd(y_1 - 1, N)$.

▶ This will only work when $y_1 \neq \pm 1 \mod N$.

Security of RSA

Now suppose $y_1 = 1 \mod N$, then we take a square root of y_1

$$y_2 = \sqrt{y_1} = x^{(ed-1)/4}$$

- We know $y_2^2 = y_1 = 1 \mod N$. Hence we compute $gcd(y_2 1, N)$ and see if this gives a factor of N.
- We repeat until
 - either we have factored N
 - or $(ed-1)/2^s$ is no longer divisible by 2.
- \blacktriangleright We will factor N with probability 1/2.

Shared Modulus

- Assume for efficiency that each user has
 - The same modulus N
 - ▶ Different public/private exponents (e_i, d_i)
- Suppose I am user number one, and I want to find user number two's d₂.
 - User one computes p and q since they know d_1 .
 - User one computes $\varphi(N) = (p-1)(q-1)$
 - User one computes $d_2 = e_2^{-1} \mod \varphi(N)$
- So each user can then find every other users key.

What about an eavesdropper?

Shared Modulus

- Now suppose the attacker is not one of the people who share a modulus
- Suppose Anissa sends the message m to two people with public keys

$$(N, e_1), (N, e_2), \text{ i.e. } N_1 = N_2 = N.$$

- \blacktriangleright Eve can see the messages c_1 and c_2 where
 - $ightharpoonup c_1 = m^{e_1} \mod N$
 - $ightharpoonup c_2 = m^{e_2} \mod N$

Shared Modulus

- Eve can now compute
 - $t_1 = e_1^{-1} \mod e_2$
 - $t_2 = (t_1 e_1 1)/e_2$

▶ Eve can then **retrieve the message** from

$$c_1^{t_1}c_2^{t_2} \equiv m^{e_1t_1}m^{-e_2t_2} \mod N$$

$$\equiv m^{1+e_2t_2}m^{-e_2t_2} \mod N$$

$$\equiv m^{1+e_2t_2-e_2t_2} \mod N$$

$$\equiv m \mod N$$

Small Public Exponent

Hastad (1988) Solving Simultaneous Modular Equations of Low Degree. SIAM J. Comput. 17(2): 336-341

- Suppose we have three users
 - ▶ With public moduli N₁, N₂ and N₃
 - All with public exponent e = 3
- Suppose Anissa sends them the same message m
- Eve sees the messages
 - $ightharpoonup c_1 = m^3 \mod N_1$
 - $ightharpoonup c_2 = m^3 \mod N_2$
 - $ightharpoonup c_3 = m^3 \mod N_3$
- Now Eve, using the **CRT**, computes the solution to

$$X = c_i \mod N_i$$

to obtain

$$X \mod N_1 N_2 N_3$$
.