Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №7 "Анализ точности систем управления" Вариант - 10

Выполнила	<u>Ким А. А.</u>	(фамилия, и.о.)	(подпись)
Проверил		(фамилия, и.о.)	(подпись)
"" 2	20г.	Санкт-Петербург,	20г.
Работа выполнена (с оценкой		

Цель работы: Исследование точностных свойств систем управления.

Исходные данные. В таблице 1 и таблице 2 приведены передаточная функция ОУ, характеристики задающих и возмущающих воздействий.

Таблица 1 – Исходные данные

$W_0(s)$	$W_1(s)$	g = A	g = Vt	$g = at^2/2$	f_1	f_2	Сигнал задания
$\frac{8}{0,5s^2 + 2s + 8}$	$\frac{1.5s + 8}{0,5s^2 + 2s + 8}$	2	t	$0.3t^{2}$	1.5	-0.5	5+t

1 Исследование системы с астатизмом нулевого порядка

Задана замкнутая система, структурная схема которой представлена на рисунке 1, где $H(s)=k,\,W(s)=\frac{8}{0.\,5s^2+2s+8}.$

Рисунок 1 – Структурная схема моделируемой системы

1.1 Исследование стационарного режима работы: g(t) = A

На рисунке 2 представлена структурная схема системы при входном воздействии g=2, представлены графики переходных процессов (рисунок 3) и переходные характеристики ошибок (рисунок 4) при различных значениях k.

Рисунок 2 – Структурная схема системы с астатизмом нулевого порядка

Рисунок 3 – Переходные характеристики системы для стационарного режима работы

Рисунок 4 – Переходные характеристики для ошибки

С помощью расчета проверим получившееся на графике значения установившейся ошибки:

$$e = A/(1+k) \tag{1}$$

при
$$k=1$$
: $\varepsilon=\frac{A}{1+k}=\frac{2}{2}=1$; при $k=5$: $\varepsilon=\frac{2}{6}=0,33$; при $k=10$: $\varepsilon=\frac{2}{11}=0,18$;

1.2 Исследование режима движения с постоянной скоростью: q(t) = Vt

На рисунке 5 представлена переходная характеристика системы при входном воздействии q=t.

Рисунок 5 – Переходные характеристики системы для движения с постоянной скоростью

Для статической системы при линейно нарастающем входном воздействии g(t)=Vt имеем:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + H(s)W(s)} G(s) = \infty.$$
 (2)

Вывод: в системах управления с нулевым порядком астатизма присутствует ошибка.

2 Исследование системы с астатизмом первого порядка

Структурная схема моделируемой системы представлена на рисунке 1, где $H(s)=\frac{k}{s},$ $W(s)=\frac{1.5s+8}{0,5s^2+2s+8}.$

2.1 Исследование стационарного режима работы: g(t) = A

На рисунке 6 представлена структурная схема системы при входном воздействии g=2, представлены графики переходных процессов (рисунок 7) и переходные характеристики ошибок (рисунок 8) при различных значениях k.

Рисунок 6 – Структурная схема системы с астатизмом моделируемой системы

Для статической системы при постоянном входном воздействии g(t) = A имеем:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + H(s)W(s)} G(s) = 0.$$
(3)

Рисунок 7 – Переходные характеристики системы для стационарного режима работы

Рисунок 8 – Переходные характеристики для ошибки

2.2 Исследование режима движения с постоянной скоростью: g(t) = Vt

На рисунке 9 представлена переходная характеристика системы при входном воздействии g=t, на рисунке 10 - переходные характеристики для ошибки.

Рисунок 9 – Переходные характеристики системы для движения с постоянной скоростью

При линейно нарастающем воздействии g(t)=Vt предельное значение установившейся ошибки будет равно:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} * \frac{V}{s^2} = \lim_{s \to 0} \frac{s}{s + k} \frac{V}{s} = \frac{V}{k}.$$
 (4)

Тогда при k=1: $\varepsilon=\frac{1}{1}=1$;

при
$$k = 5$$
: $\varepsilon = \frac{1}{5} = 0.2$;

при
$$k = 5$$
: $\varepsilon = \frac{1}{5} = 0.2$;
при $k = 10$: $\varepsilon = \frac{1}{10} = 0.1$

Рисунок 10 – Переходные характеристики для ошибки

2.3 Исследование режима движения с постоянным ускорением: $g(t) = at^2/2$

На рисунке 11 представлена переходная характеристика системы при входном воздействии $g=0.3t^2$ и ошибка на рисунке 12.

Рисунок 11 – Переходные характеристики системы для движения с постоянным ускорением

Рисунок 12 — Переходные характеристики для ошибки при входном воздействии $g=0.3t^2$ Вывод: в СУ с астатизмом первого порядка ошибка бесконечна.

3 Исследование влияний внешних возмущений

Структурная схема возмущённой системы при входном воздействии g=1 представлена на рисунке 13, также представлены графики переходных процессов (рисунок 14) и переходные характеристики ошибок (рисунок 15) при различных значениях k.

Рисунок 13 - Структурная схема системы при влиянии внешних возмущений

Функция ошибки слежения равна

$$e = \frac{g - W(s)f_1 - \frac{1}{s}W(s)f_2}{1 + \frac{1}{s}W(s)} = -f_2,$$
(5)

Положим, что $f_2=0$, тогда предельное значение ошибки при заданных параметрах должно быть равно 0. Если положить $f_1=0$, тогда предельное значение ошибки будет равно $-f_2$, то есть 0.5.

Рисунок 14 – Переходные характеристики системы при влиянии внешних возмущений

Рисунок 15 – Переходные характеристики для ошибки

4 Исследование установившейся ошибки при произвольном входном воздействии

Структурная схема представлена на рисунке 1, где $H(s)=1, W(s)=\frac{8}{0,5s^2+2s+8}$, а задающее воздействие g(t)=5+t. В ходе моделирования заданной системы (рисунок 15) был получен график переходного процесса, представленный на рисунке 16. Из него видно, что предельное значение ошибки стремится к ∞ . Схема моделирования системы представленна на рисунке 13.

Рисунок 16 - Структурная схема системы при произвольном входном воздействии

Рисунок 17 — Переходной процесс в замкнутой системе при произвольном входном воздействии

Получим приближенное аналитическое выражение для установившейся ошибки слежения путём разложения в ряд Тейлора передаточную функцию замкнутой системы по ошибке

слежения. Передаточная функция замкнутой системы по ошибке слежения выглядит так:

$$\Phi_e(s) = \frac{1}{1 + W(s)} = \frac{1}{1 + \frac{8}{0,5s^2 + 2s + 8}} = \frac{0.5s^2 + 2s + 8}{0.5s^2 + 2s + 16}.$$
 (6)

При произвольном входном воздействии выражение установившейся ошибки будет выглядеть следующим образом:

$$e_y(t) = \Phi_e(s)|_{s=0}g(t) + \frac{d\Phi_e(s)}{ds}\bigg|_{s=0}\dot{g}(t) + \frac{d^2\Phi_e(s)}{ds^2}\bigg|_{s=0}\frac{\ddot{g}(t)}{2!}.$$
 (7)

Найдём производные g(t) и $\Phi_e(s)$:

$$g(t) = t + 5$$

$$\Phi_e(s)|_{s=0} = \frac{0.5s^2 + 2s + 8}{0.5s^2 + 2s + 16} = 0.5$$

$$\dot{g}(t) = 1$$

$$\frac{d\Phi_e(s)}{ds}|_{s=0} = 0.0625$$

$$\ddot{g}(t) = 0$$

Тогда получаем выражение ошибки $e_y(t)$:

$$e_y(t) = 0.5(t+5) + 0.0625 * 1 + 0 = 0.5t + 2.5625.$$
 (8)

Убедимся, что графики расчетной и экспериментально определённой установившейся ошибки слежения совпадают для этого построим их на одном графике, представленном на рисунке 17.

Рисунок 18 – Графики ошибок

Вывод

В ходе лабораторной работы были исследованы системы с разным порядком астатизма, при влиянии внешних возмущений и при произвольном входном воздействии. Были построены переходные характеристики для всех случаев и найдены значения установившихся ошибок. Данные исследования позволяют сделать вывод о том что, установившееся значение ошибки можно изменить путём увеличения или уменьшения общего коэффициента усиления разомкнутой системы, а также путём снижения или повышения порядка астатизма.

Кроме того было показано, что порядок астатизма системы по задающему воздействию, в общем случае, не соответствует порядку астатизма по возмущению.

Так же было получено приближенное аналитическое выражение для установившейся ошибки слежения системы при произвольном входном воздействии.