Функции

Определение 3.38. Соответствие $f \subseteq A \times B$ называется функцией из множества A в множество B, если f функциональное и полностью определенное. Соответствие f называется *частичной* функцией, если f функциональное и частично определенное.

Таким образом, соответствие $f \subseteq A \times B$ является функцией из A в B, если для любого $x \in A$ существует единственный элемент $y \in B$ такой, что $(x, y) \in f$. При этом элемент y обозначается через f(x) и называется значением функции f для аргумента x. Функция f из A в B обозначается через $f: A \to B$ или $A \xrightarrow{f} B$. Если $(x, y) \in f$, то используется общепринятая запись y = f(x), а также запись $f: x \mapsto y$ (означает, что функция f ставит в соответствие элементу x элемент y).

Область определения и область значений функции, равные функции определяются так же, как и для соответствий.

Пример 3.28. Какие из соответствий, графы которых изображены на рис. 3.13, являются функциями? Найдите для каждой функции ее область определения и область значений.

Рис. 3.13

Решение. Соответствия f_2 , f_3 и f_4 являются функциями, а f_1 – не является, так как $f_1(b) = \{1, 3\}$. Далее имеем: $Dom f_2 = \{1, 2, 3\} = B$, $Im f_2 = \{a, b, c\} \subseteq A$; $Dom f_3 = \{a, b, c\} = A$, $Im f_3 = \{1, 2, 3\} = B$; $Dom f_4 = \{a, b, c, d\} = A$, $Im f_4 = \{1, 2, 3\} = B$.

Аргументами функции могут являться элементы произвольной природы, в частности, кортежи длины n ($x_1, x_2, ..., x_n$). Функцию $f: A^n \to B$ называют n-местной функцией из A в B. Тогда пишут $y = f(x_1, x_2, ..., x_n)$ и говорят, что y есть значение функции f при значении аргументов $x_1, x_2, ..., x_n$.

Функции называются также *отображениями*. Пусть f — функция из A в B. Если $A = Dom\ f$ и $Im\ f \subseteq B$, то говорят, что f есть *отображение множества* A в множество B. Если $A = Dom\ f$ и $B = Im\ f$, то говорят, что f есть *отображение множества* A на множество B.

Определение 3.39. Функция $f \subseteq A \times B$ называется *инъективной*, или *инъекцией*, если $(\forall x, y \in A)$ $f(x) = f(y) \Rightarrow x = y$.

Определение 3.40. Функция $f \subseteq A \times B$ называется *сюръективной*, или *сюръекцией*, если для каждого элемента $y \in B$ существует хотя бы один элемент $x \in A$ такой, что y = f(x).

Заметим, что сюръективная функция $f\subseteq A\times B$ является отображением A на B.

Определение 3.41. Функция $f \subseteq A \times B$ называется биективной (биекцией) или взаимно однозначным соответствием между множествами A u B, если она одновременно инъективна и сюръективна.

Пример 3.29. Какие из соответствий, графы которых изображены на рис. 3.13, являются инъективными, сюръективными, биективными функциями?

Решение. Функции f_2 и f_3 являются инъективными; f_3 и f_4 – сюръективными; f_3 – биективной.

Определение 3.42. Если соответствие, обратное к функции $f \subseteq A \times B$, является функциональным и полностью определенным, то оно называется функцией, обратной к f и обозначается f^{-1} .

Так как в обратном соответствии образы и прообразы меняются местами, то для существования функции, обратной к функции $f \subseteq A \times B$, необходимо и достаточно, чтобы Im f = B и каждый элемент $y \in Im f$ имел единственный прообраз.

Утверждение 3.4. Для функции $f: A \to B$ существует обратная к ней функция $f^{-1}: B \to A$ тогда и только тогда, когда f – биекция.

Определение 3.43. Пусть даны функции $f: A \to B$ и $g: B \to C$. Функция $h: A \to C$ называется *композицией* (*суперпозицией*) функций f и g, если $(\forall x \in A) h(x) = g(f(x))$.

Композиция функций f и g обозначается через $f \circ g$, при этом знак \circ часто опускается.