

SC1015: Review Lecture

Classification

Dr Smitha K G

Art and Craft of DATA SCIENCE

COLLECTION

Practical MOTIVATION

PREPARATION

FORMULATION

Exploratory ANALYSIS

Statistical **DESCRIPTION**

VISUALIZATION

Pattern **RECOGNITION**

Algorithmic OPTIMIZATION

Machine **LEARNING**

PRESENTATION PRESENTATION

Statistical INFERENCE

CONSIDERATION

DECISION

SC1015

Admin Announcements

- 1. Mini-Project details posted on NTULearn. Check the FAQs and take inspiration from the datasets.
- 2 Talk to your Lab TA to form your Project Teams. Deadline for team formation March 1st 5pm.

LAMS Completion Status

Module 1 Parts 1, 2: Above 800 – Quiz solutions posted Module 2 Parts 1, 2: Above 750 – Quiz solutions posted

Module 3: Above 600 - quiz solutions will be posted by next Monday

Module 4: Above 250 – Complete by Exercise 5 (W7)

LAMS DS deadline: 3rd March 11.59 pm

DS Theory Quiz in Recess Week: **8 March, Friday**. Slots: 12:30 pm – 2:00 pm and 2:30 pm to 4:00 pm. Lab allocations and FAQs posted.

Let's touch upon the basic ideas of ...

CLASSIFICATION

Connection between Data Partitions and Decision Tree

The intuition of Gini Index, and how Partitioning works

How to predict Binary Classes using the Decision Tree

The concept of Classification Accuracy and the Errors

The idea of Multi-Variate Decision Tree and Partitions

Which part of this Lesson will you like me to review in t...

Connection between Data Partitions and Decision Tree

The intuition of Gini Index, and how Partitioning works

How to predict Binary Classes using the Decision Tree

The concept of Classification Accuracy and the Errors

The idea of Multi-Variate Decision Tree and Partitions

SC1015

Let's clarify some of these ...

Body Shape	Body Color	Head Shape	Head Color	Funny?
Oval	White	Square	White	No
Oval	Black	Circle	White	Yes
Rectangle	White	Square	White	Yes
Rectangle	White	Square	White	Yes
Rectangle	White	Square	White	Yes
Rectangle	Black	Circle	White	No
Rectangle	White	Square	White	Yes
Oval	White	Square	White	No
Oval	White	Square	White	No
Rectangle	White	Square	White	Yes
Oval	White	Square	White	No
Oval	White	Circle	White	Yes

YES: NO

7:5

Rectangular Bodies

Oval Bodies

YES: NO

YES: NO

2:4

Rectangular Bodies

Rectangular Body and White

Rectangular Body and Gray

Yes Yes

YES: NO

5:1

YES: NO

5:0

YES: NO

Oval Bodies

YES: NO

2:4

Oval Body and Square Head

Oval Body and Circular Head

YES: NO

2:0

7:5 5:1 2:4

Head: Square or Circle

Parent : Gini = $1 - (7/12)^2 - (5/12)^2 = 0.486$

LChild: $1 - (5/6)^2 - (1/6)^2 = 0.278$ | 6 samples

RChild: $1 - (2/6)^2 - (4/6)^2 = 0.444 \mid 6 \text{ samples}$

Children: $0.278 \times (6/12) + 0.444 \times (6/12) = 0.361$

Improvement = 0.486 - 0.361 = 0.125

Body: Rectangle or Oval

Parent : Gini = $1 - (7/12)^2 - (5/12)^2 = 0.486$

LChild: $1 - (5/9)^2 - (4/9)^2 = 0.494 | 9 samples$

RChild: $1 - (2/3)^2 - (1/3)^2 = 0.444 \mid 3 \text{ samples}$

Children : $0.494 \times (9/12) + 0.444 \times (3/12) = 0.482$

Improvement = 0.488 - 0.482 = 0.006

Head: Square or Circle

Data Science
Binary Classification

How to "read" a Decision Tree?

If **Total <= 655.0**, go to Left Child Otherwise, go to Right Child

Gini = 0.5 at this node

Total samples at node = 84

Proportion **NL** : **L** = **41** : **43**

Data Science **Binary Classification**

Goodness of Fit of the Model

TP: True predicted as True 19 TN: False predicted as False 552 FN: True predicted as False 24 FP: False predicted as True 5

$$accuracy = \frac{552 + 19}{552 + 19 + 5 + 24}$$

$$tpr = \frac{19}{19 + 24}, \qquad fnr = \frac{24}{24 + 19},$$
 $fpr = \frac{5}{5 + 552}, \qquad tnr = \frac{5}{552 + 5}$

16

Predicted Response

"Positive" : 1 "Negative": 0

Legendary Non-Legendary

Confusion Matrix: https://en.wikipedia.org/wiki/Confusion matrix

Actual N	TN	FP
Actual P	FN	TP
	Predicted N	Predicted P

25	0
0	75

0	25
0	75

When will you be happy?

Ideal	TPR = 1, FPR = 0
Bad?	TPR = 1, FPR = 1
Bad?	TPR = 0, FPR = 0
Trash	TPR = 0, FPR = 1

25	0
75	0

0	25
7 5	0

Balancing classes to achieve the desired TPR and FPR is a tricky thing to do. ©

Data Science

Binary Classification

How does a Tree "decide" classes?

The tree doesn't! You decide it on your own by choosing Decision Threshold.

If Proportion > T, you call it Positive, and else, you call it Negative class.

Default Threshold for Trees = 0.5

Experiment with the Decision Threshold!

Use your tree to find Leaf Nodes.

Vary your decision threshold T in steps from 0 to 1 and note the TPR and FPR.

T = 0 : Everyone P TPR = 1, FPR = 1

T = 1 : Everyone N TPR = 0, FPR = 0

