§ 4 牛顿法 /* Newton - Raphson Method */

原理: 将非线性方程线性化

—— Taylor 展开 /* Taylor's expansion */

取 $x_0 \approx x^*$, 将 f(x)在 x_0 做一阶 Taylor展开:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2$$
, $\xi \propto x_0 \approx x \gtrsim 10$.

将 $(x^* - x_0)^2$ 看成高阶小量,则有:

 x_0

$$0 = f(x^*) \approx f(x_0) + f'(x_0)(x^* - x_0) \qquad \Rightarrow \qquad x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$\downarrow y \qquad \qquad \downarrow \qquad \qquad$$

只要 $f \in C^1$,每一步迭代都有 $f'(x_k) \neq 0$,而且 $\lim_{k \to \infty} x_k = x^*$,则 x^* 就是 f 的根。

现在令
$$\varphi(x) = x + h(x) f(x), h(x)$$
 为待定函数,但 $h(x^*) \neq 0$,则 等价
$$f(x) = 0 \longrightarrow x = \varphi(x) = x + h(x) f(x)$$

由构造过程知Newton迭代法至少有二阶的收敛速度。 十分重要的问题是构造迭代函数。为了使收敛速度的阶高一些,应尽可能使 $\varphi(x)$ 在 x^* 处有直到更高阶导数等于0。 $= \frac{-1}{f'(x^*)}$

故可取 $h(x) = \frac{-1}{f'(x)}$,于是 $\varphi(x)$ 被确定为 $\varphi(x) = x - f(x)/f'(x)$

由此得出下面的特殊的简单迭代法

定理 (局部收敛性) 设 $f \in C^2[a,b]$, 若 x^* 为f(x)在[a,b] 上的根,且 $f'(x^*) \neq 0$,则存在 x^* 的邻域 $R(x^*)$ 使得任取初值 $x_0 \in R(x^*)$,Newton's Method产生的序列{ x_k } 收敛到 x^* ,且满足

 $\lim_{k \to \infty} \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(x^*)}{2f'(x^*)}$

解非线性方程 f(x)=0的牛顿法,是一种将非线性方程线性化方法。它是解代数方程和超越方程的有效方法之一。牛顿方法在单根附近具有较高的收敛速度,而且牛顿方法不仅可以用来求实根,还可用来求 f(x)=0代数方程的复根,同时还可推广用来解非线性方程组。

证明: Newton's Method 事实上是一种特殊的不动点迭代

其中
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
,则

$$|\varphi'(x^*)| = \left| \frac{f''(x^*)f(x^*)}{f'^2(x^*)} \right| = 0 < 1 \implies \psi \not \infty$$

由 Taylor 展开 在单根 /*simple root */ $0 = f(x^*) = f(x_k)$ 附近收敛快

$$\Rightarrow x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2! f'(x_k)} (x)$$

$$\Rightarrow \frac{x^*-x_{k+1}}{(x^*-x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)} \quad \text{只要} f'(x^*) \neq 0, \quad \text{则令} k \to \infty$$

例 用牛顿法解方程 $xe^x-1=0$

$$x_{k+1} = x_k - \frac{x_k - e^{-x_k}}{1 + x_k}$$

取迭代值 $x_0 = 0.5$, 迭代结果列于表中。

\boldsymbol{k}	0	1	2	3
\boldsymbol{x}_k	0.5	0.57102	.056716	0.56714

所给方程实际上是方程 $x = e^{-x}$ 的等价形式。若用迭代格式 $x_{k+1} = e^{-x_k}$ 进行计算,迭代到同一精度要迭代17次,可见 牛顿法收敛速度是很快的。

例 利用Newton迭代法计算√2的近似值。

解
$$\sqrt{2}$$
可视为 $f(x) = x^2 - 2 = 0$ 的正根, 而 $f'(x) = 2x$

则Newton迭代公式为:

$$x_{k+1} = x_k - \frac{x_k^2 - 2}{2x_k} = \frac{1}{2}x_k + \frac{1}{x_k}$$
 $k = 1, 2, \dots$

取初值 $x_0 = 1$,则得到

$$x_1 = 1.5000000000$$
 $x_2 = 1.416666667$

$$x_3 = 1.414215686$$
 $x_4 = 1.414213562$

注: Newton's Method 收敛性依赖于x₀ 的选取。

HW: p.230 #9, #10, #11

Newton法的改进

优点: Newton法收敛很快(对单根),算法简单。

缺点: 1) 初值 x_0 不能偏离 x^* 太大, 否则可能不收敛,

2) 对重根收敛较慢, 3) 需要计算导数值。

针对这几点改进如下:

🤷 Newton下山法 /* Descent Method */

——Newton's Method 局部微调:

由Newton迭代法的收敛性定理知(局部收敛性),Newton迭代法对初值 x_0 的要求是很苛刻的,在实际应用中,往往很难给出较好的初值 x_0 ,牛顿下山法,就是在事先没有给出较好的初值情况下,求 f(x)=0 根的一种修正的牛顿法。

原理: 若由 x_k 得到的 x_{k+1} 不能使 |f| 减小,则在 x_k 和 x_{k+1} 之间找一个更好的点 $\overline{x_{k+1}}$,使得 $|f(\overline{x_{k+1}})| < |f(x_k)|$ 。

$$x_{k}$$

$$x_{k+1}$$

$$\lambda x_{k+1} + (1-\lambda)x_{k}, \lambda \in [0,1]$$

$$\overline{x_{k+1}} = \lambda \left[x_k - \frac{f(x_k)}{f'(x_k)} \right] + (1 - \lambda) x_k$$

$$= x_k - \lambda \frac{f(x_k)}{f'(x_k)} \quad (k = 0, 1, 2, \dots)$$

 λ 称为下山因子(一个可选择的参数) 选择因子 λ 使(即选取 $\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \dots, \lambda \geq \varepsilon_{\lambda} > 0$) $|f(x_{k+1})| < |f(x_k)|$

将下山法和牛顿法结合起来使用的方法,称为Newton下山法。

注: $\lambda = 1$ 时就是Newton's Method 公式。

当λ=1代入效果不好时,将λ减半计算。

例 求方程 $x^3-x-1=0$ 在 x=1.5 附近的一个根 x^* 。

解 1) 用Newton法计算

显然,当取初值 $x_0 = 1.5$ 时,计算结果如下:

k	0	1	2	3
X_k	1.5	1.34783	1.32520	1.32472

表中 x_3 的每一位数字均为有效数字。

当取初值 $x_0 = 0.6$ 时,按牛顿公式计算有 $x_1 = 17.9, x_2 = 11.9, \cdots$ 影响收敛速度, $x_1 = 17.9$,这个结果反而比 x_0 更偏离了所求的根

x^{*}。
2)用Newton下山法计算

按Newton公式求得的迭代值 $\overline{x}_1 = 17.9$,设取下山因子 $\lambda = \frac{1}{32}$,由用Newton下山法计算可求得 $x_1 = \frac{1}{32}\overline{x}_1 + \frac{31}{32}x_0 = 1.140625$ 这个结果纠正了 \overline{x}_1 的严重偏差。

Algorithm: Newton's Descent Method

Find a solution to f(x) = 0 given an initial approximation x_0 .

Input: initial approximation x_0 ; f(x) and f'(x); minimum step size of x_{min} ; tolerance TOL1 for x; tolerance TOL2 for λ ; maximum number of iterations N_{max} .

Output: approximate solution x or message of failure.

```
Step 1 Set k=1;
Step 2 While (k \le N_{max}) do Step 3 Set \lambda=1;
Step 3 Set \lambda=1;
Step 4 Set x=x_0-\lambda \frac{f(x_0)}{f'(x_0)};
Step 5 If |x-x_0| < TO^* and Output (x); STOP; /* successful */
Step 6 If |f(x)| < |f(x_0)| then x_0=x; GOTO Step 10; /* update x_0 */
Step 7 Set \lambda=\lambda/2; /* update \lambda to descend */
Step 8 If \lambda > TOL2 then GOTO Step 4; /* compute a better x_i */
Step 9 Set x_0=x_0+x_{min}; /* move forward anyway to avoid deadlock */
Step 10 Set k ++;
```

Step 11 Output (Method failed after N_{max} iterations); STOP. /* unsuccessful */

掌重根 /* multiple root */ 加速收敛法:

Q1: 若 $f'(x^*)=0$, Newton's Method 是否仍收敛?

设 x^* 是方程 f(x)=0 的 m 重根 $(m \ge 2)$, f(x) 在 x^* 的某邻域

内有由T

由于 $0 < \varphi'(x^*) < 1$,所以,只要 x_0 充分靠近 x^* ,由Newton法产生的序列 $\{x_k$ 奶收敛于 x^* ,但是只有线性的收敛速度。

A1: 有局部收敛性,但重数 m 越高,收敛越慢。

其中 51,52,53 都在 x与 x*之间。由Newton法的迭代函数

$$\varphi(x) = x - f(x) / f'(x)$$

$$\varphi'(x^*) = \lim_{x \to x^*} \varphi'(x) = \lim_{x \to x^*} \frac{f(x)f''(x)}{[f'(x)]^2}$$

$$= \lim_{x \to x^*} \frac{(m-1)f^{(m)}(\xi_1)f^{(m)}(\xi_3)}{m[f^{(m)}(\xi_2)]^2} = 1 - \frac{1}{m}$$

Q2: 如何加速重根的收敛?

A2:若把迭代函数修改为

 $\overline{\varphi}(x) = x - \frac{mf(x)}{f'(x)}$ $\overline{\varphi}(x^*) = \lim_{x \to x^*} \overline{\varphi}(x) = \lim_{x \to x^*} \left[x - \frac{(x - x^*)f^{(m)}(\xi_1)}{f^{(m)}(\xi_2)} \right] = x^*$ $\overline{\varphi}'(x^*) = \lim_{x \to x^*} \overline{\varphi}'(x) = \lim_{x \to x^*} \left[1 - m + \frac{mf(x)f''(x)}{[f'(x)]^2} \right]$ $= 1 - m + m(1 - \frac{1}{m}) = 0$

这两个等式说明,当 x^* 是方程 f(x)=0的 m 重根时,变形的 Newton法:

$$x_{k+1} = x_k - \frac{mf(x_k)}{f'(x_k)}$$
 $k = 0,1,\dots$

不仅可以收敛于x*,而且仍具有二阶的收敛速度。

在重根的情况下,若重数m不知道呢?

可考虑函数: $u(x) = \frac{f(x)}{f'(x)}$

即将求f的重根转化为求另一函数的单根。

$$\phi_{u(x)} = \frac{f(x)}{f'(x)}$$
,则 f 的重根 = u 的单根。

求解方程 u(x)=0 的Newton 法迭代函数为

$$g(x) = x - \frac{u(x)}{u'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f'(x)}$$

迭代公式为:

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f'(x_k)} \qquad (k = 0, 1, 2, \dots)$$

** 弦截法 /* Secant Method */:

Newton's Method 一步要计算 f 和 f', 相当于2个函数值, 比较费时。现用 f 的值近似 f',可少算一个函数值。

切线斜率 \approx 割线斜率 \Rightarrow $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
 需要2个初值 x_0 和 x_1 。