

1

Προσομοιώσεις PLL με ιδανικά στοιχεία

Στην παρούσα αναφορά θα προσομοιώσουμε το PLL στο LTSpice και θα ελέγξουμε τις δυνατότητες της σχεδίασης μας.

1. Αοχικό Κύκλωμα

Το schematic του PLL φαίνεται στο Σχήμα 1.

 Σ χήμα 1: PLL Schematic

2. Ποσομοίωση για U_{in} = 1kHz

Κατά την αρχική προσομοίωση (Σχήμα 2), για $U_{in}=1\,\mathrm{kHz}$, παρατηρείται πολύ καλό κλείδωμα στα $100\,\mathrm{ms}$, με $V_{control}=1.4\,\mathrm{V}$ και τετραπλασιασμό της συχνότητας στην έξοδο.

 Σ χήμα 2: PLL Simulation for $U_{in}=1\,\mathrm{kHz}$

3. Ποοσομοίωση για U_{in} = 1.2 kHz

Αυξάνοντας τη συχνότητα εισόδου στα $1.2 \, \mathrm{kHz}$ — όριο κλειδώματος του PLL στο εργαστήριο — το κύκλωμα συνεχίζει να κλειδώνει, με $V_{control} = 2 \, \mathrm{V}$ (Σχήμα 3).

 Σ χήμ α 3: PLL Simulation for $U_{in}=1.2\,\mathrm{kHz}$

4. Ποοσομοίωση για U_{in} = 1.5 kHz

Για $U_{in}=1.5\,\mathrm{kHz}$, το PLL εξακολουθεί να κλειδώνει, με $V_{control}=3\,\mathrm{V}$. Εδώ αρχίζει να φαίνεται η διαφορά μεταξύ προσομοίωσης και πραγματικού κυκλώματος.

Σχήμα 4: PLL Simulation for $U_{in} = 1.5 \,\mathrm{kHz}$

5. Ποοσομοίωση για U_{in} = 2.5 kHz

Αυξάνοντας τη συχνότητα εισόδου στα 2.5 kHz, παρατηρούμε ότι το PLL δεν κλειδώνει πλέον. Το $V_{control}$ φτάνει στα 3.5 V και σταθεροποιείται (Σχήμα 5), κάτι που μοιάζει με κλείδωμα αλλά είναι παραπλανητικό. Στην πραγματικότητα, ο ενισχυτής φτάνει την τάση κορεσμού, η οποία είναι περίπου 1.4–1.6 V χαμηλότερη από την τάση τροφοδοσίας.

Σχήμα 5: PLL Simulation for $U_{in} = 2.5 \, \text{kHz}$

6. Αύξηση Τάσης Τοοφοδοσίας στα 6V

Δοκιμάζουμε να αυξήσουμε την τάση τροφοδοσίας στα 6 V. Το $V_{control}$ φτάνει στα 4.5 V αλλά το PLL εξακολουθεί να μην κλειδώνει (Σχήμα 6). Δεν παρατηρείται διαφορά ούτε με αποσύνδεση του ST και του διαιρέτη.

Σχήμα 6: PLL Simulation for $U_{in}=2.5\,\mathrm{kHz}$, $V_{cc}=6\,\mathrm{V}$

7. Χοήση Ιδανικού OpAmp

Αντικαθιστούμε τον OPAMP U11 (buffer) με τον ιδανικό `universalOpAmp`. Το κύκλωμα κλειδώνει, με $V_{control}=4.5\,\mathrm{V}$ (Σχήμα 7). Όμως, πλέον βοισκόμαστε πολύ κοντά στην τάση τοοφοδοσίας, περιορίζοντας τη δυνατότητα περαιτέρω αύξησης συχνότητας.

Σχήμα 7: PLL Simulation for $U_{in} = 2.5 \, \text{kHz}$ with Ideal OpAmp

8. Αντικατάσταση Όλων με Ιδανικά Στοιχεία

Αντικαθιστούμε όλους τους ενισχυτές με `universalOpAmp2` και τα τρανζίστος με ιδανικά. Δεν παρατηρείται βελτίωση — αντίθετα, το κύκλωμα δεν κλειδώνει ούτε στα $10\,\mathrm{kHz}$.

Logbook

Το συμπέρασμα είναι πως η τοπολογία του VCO είναι ο περιοριστικός παράγοντας. Απαιτεί υψηλές τάσεις για να παραγάγει παλμούς (σχετικά) χαμηλής συχνότητας.

9. Βελτιώσεις

Ποοκειμένου να βελτιώσουμε την απόδοση του PLL, ποέπει να βελτιώσουμε το K_{VCO} . Αυτό μπορεί να γίνει μειώνοντας την σταθερά χρόνου RC του ολοκληρωτή και αυξάνοντας το κέρδος του ST.

Χοησιμοποιούμε τις τιμές:

- $R_8 = R_9 = R_1 0 = 200 K \,\mathrm{k}\Omega$
- $R_{11} = 40K \, k\Omega$
- $R_{12} = R_{13} = R_{14} = 20K \,\mathrm{k}\Omega$
- $C_1 = 4.7nF$
- $C_2 = 0.1nF$
- $C_3 = 47nF$
- $Uin = 15 \,\mathrm{kHz}$
- N = 4

Φαίνεται ξεκάθαρα η επίδραση του K_{VCO} στην έξοδο του PLL, το οποίο πλέον κλειδώνει και σε υψηλότερες συχνότητητες (60KHz). Χρησιμοποιώντας τον LM324 ως τελεστικός, η έξοδος περιορίζεται στα 20KHz.

Συμπέρασμα, η τοπολογία του VCO είναι ένας περιοριστικός παράγοντας καθώς δεν είναι ιδιαίτερα αποδοτικός με την $V_{control}$. Αυτό μπορεί να αντιμετωπιστεί τροποποιώντας τις τιμές των στοιχείων (και κυρίως των ανσιστάσεων) της τοπολογίας.

Όμως, ο τελεστικός LM324 είναι το βασικότερο εμπόδιο, καθώς η περιορίζει σημαντικά τις τιμές που μπορεί να πάρει η $V_{control}$, ενώ επιπλέον το Slew Rate του (0.5V/us) σημαίνει πως στα 4V που λειτουργεί η έξοδος του VCO μας περιορίζει περίπου στα 20KHz.

Σχήμα 8: Updated PLL Schematic

Σχήμα 9: PLL Simulation for $U_{in}=20\,\mathrm{kHz}$ with Improved VCO