Zomato data analysis

→ Step 1 - importing libraries

Double-click (or enter) to edit

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Step 2 - create a dataframe

dataframe = pd.read_csv("Zomato data .csv")
print(dataframe)

_		name	online_order	book_table	rate	votes
_	0	Jalsa	Yes	Yes	4.1/5	775
	1	Spice Elephant	Yes	No	4.1/5	787
	2	San Churro Cafe	Yes	No	3.8/5	918
	3	Addhuri Udupi Bhojana	No	No	3.7/5	88
	4	Grand Village	No	No	3.8/5	166
	143	Melting Melodies	No	No	3.3/5	0
	144	New Indraprasta	No	No	3.3/5	0
	145	Anna Kuteera	Yes	No	4.0/5	771
	146	Darbar	No	No	3.0/5	98
	147	Vijayalakshmi	Yes	No	3.9/5	47

	approx_cost(for	TWO	beobre)	listea_in(type)
0			800	Buffet
1			800	Buffet
2			800	Buffet
3			300	Buffet
4			600	Buffet
				• • •
143			100	Dining
144			150	Dining
145			450	Dining
146			800	Dining
147			200	Dining

[148 rows x 7 columns]

dataframe

Covert thev data type of Column - Rate

```
def handleRate(value):
  value = str(value).split('/')
  value = value[0];
  return float(value)
dataframe['rate'] = dataframe['rate'].apply(handleRate)
print(dataframe.head())
₹
                        name online_order book_table rate votes \
                       Jalsa
                                      Yes
                                                 Yes
                                                      4.1
                                                             775
                                                             787
              Spice Elephant
                                      Yes
                                                  No
                                                      4.1
```

```
2
             San Churro Cafe
                                    Yes
                                                   3.8
                                                         918
       Addhuri Udupi Bhojana
                                    No
                                                   3.7
                                                          88
              Grand Village
                                    No
                                                  3.8
                                                         166
       approx_cost(for two people) listed_in(type)
                             800
                             800
                                         Buffet
    2
                             800
                                         Buffet
    3
                             300
                                         Buffet
    4
                             600
                                         Buffet
dataframe.info()
<pr
    RangeIndex: 148 entries, 0 to 147
    Data columns (total 7 columns):
     # Column
                                    Non-Null Count Dtype
         name
                                   148 non-null
                                                  object
         online_order
                                   148 non-null
                                                  object
        book_table
                                   148 non-null
                                                  object
     3
        rate
                                   148 non-null
                                                  float64
                                    148 non-null
                                                  int64
     4
        votes
        approx_cost(for two people) 148 non-null
                                                  int64
     6 listed_in(type)
                                    148 non-null
                                                  object
    dtypes: float64(1), int64(2), object(4)
    memory usage: 8.2+ KB
```

→ Analysis 1:Type of Restaurant

dataframe.head()

₹		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)	
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet	ıl.
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet	
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet	
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet	
	4	Grand Village	No	No	3.8	166	600	Buffet	

New interactive sheet

```
Next steps: Generate code with dataframe View recommended plots

sns.countplot(x=dataframe['listed_in(type)'])

plt.xlabel("Restaurant types")

plt.title("Distribution of restaurant types.")

plt.show()
```


Conclusion - Majority of the restaurant fall in the dinning category

Analysis 2:Votes by Restaurant Type

dataframe.head()

⋺ •		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)	
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet	ıl.
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet	
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet	
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet	
	4	Grand Village	No	No	3.8	166	600	Buffet	

```
Next steps: Generate code with dataframe View recommended plots New interactive sheet

grouped_data = dataframe.groupby('listed_in(type)')['votes'].sum()
result = pd.DataFrame({'votes': grouped_data})
plt.plot(result, c="green", marker="o")
plt.xlabel("Type of Restaurant", c="red", size=16)
plt.ylabel("votes", c="red", size=16)
```

plt.title("Votes by Restaurant Type",size=20)
plt.show()

Conclusion - Dinning restaurants has recieved maximum votes

Analysis 3:Ratings Distribution

dataframe.head()

_ →		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)	
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet	ıl.
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet	
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet	
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet	
	4	Grand Village	No	No	3.8	166	600	Buffet	

Next steps: Generate code with dataframe View recommended plots New interactive sheet

Conclusion - Majority restaurant received ratings from 3.5 - 4

→ Analysis 4: Restaurant Cost Preference for Couples

dataframe.head()

Next steps:

$\overline{\Rightarrow}$		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)	
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet	ılı
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet	
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet	
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet	
	4	Grand Village	No	No	3.8	166	600	Buffet	

New interactive sheet

View recommended plots

couple_data = dataframe['approx_cost(for two people)']
sns.countplot(x=couple_data)
plt.title("Restaurant Cost Preference for Couples",size=20)
plt.show()

Generate code with dataframe

Restaurant Cost Preference for Couples

Conclusion - majority of couples prefer restaurants with an approximate cost of 300 rupees

Analysis 5: Online vs. Offline Ratings

Which mode recieves maximum rating

dataframe.head()

_		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)	
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet	ılı
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet	
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet	
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet	
	4	Grand Village	No	No	3.8	166	600	Buffet	

Next steps: Generate code with dataframe

View recommended plots

New interactive sheet

```
plt.figure(figsize=(6,6))
sns.boxplot(x= 'online_order',y='rate',data=dataframe)
plt.title("Online Order vs Rating",size=20)
plt.show()
```


Conclusion - Offline order received lower rating compared to online rating

Analysis 6: Online Orders by Restaurant Type

dataframe.head()

Conclusion - Dinning restaurants primarily accept offline orders, whereas cafes primarily recieve online orders. This suggests that clients prefers orders in person at restaurants, but prefer online ordering at cafes.