Contrôle d'algèbre linéaire N°3

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	_	
	Groupe	
PRENOM:		

- 1. Dans le plan, muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})\,,\,\,$ on considère les trois endomorphismes suivants :
 - r: rotation de centre O et d'angle $\varphi = -\frac{\pi}{27}$,
 - s: symétrie orthogonale telle que l'image du point P(0,4) est $P'(2,2\sqrt{3})$,
 - g est donné par sa matrice dépendant d'un paramètre $\alpha \in \mathbb{R}$ $M_g = \begin{pmatrix} 0 & 1 \\ \alpha & 2\alpha + 1 \end{pmatrix} \text{ par rapport à } B.$
 - a) Déterminer la matrice de l'endomorphisme $l=g+s\circ r^{18}$ par rapport à B .
 - b) Déterminer α sachant que l est composée d'une homothétie et d'une projection sur l'axe $(O, \vec{e_2})$, de direction $\vec{v} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$. Puis déterminer k, rapport de l'homothétie.

3.5 pts

- **2.** Le plan \mathbb{R}^2 est muni de la base canonique $B = (\vec{e_1}, \vec{e_2})$. On considère une affinité f d'axe une droite a passant par le point A(-2, 3), de rapport $\lambda = 2$ et de direction $\vec{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.
 - a) Déterminer la matrice M_f' de l'application f dans une base B', à préciser, où la matrice M_f' est diagonale.
 - b) Déterminer la matrice M_f de l'application f dans la base B.

Soit $h = g \circ f$ où g est une projection orthogonale sur la droite b: 2x - y = 0.

- c) Déterminer $\operatorname{Im} h$ et $\operatorname{Ker} h$.
- d) Déterminer, avec précision, la nature géométrique de h.

4,5 pts

3. L'espace \mathbb{R}^3 , d'origine O est muni de la base canonique $B=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$. Soit f l'endomorphisme sur \mathbb{R}^3 défini par sa matrice M_f par rapport à B:

$$M_f = \left(\begin{array}{ccc} 3 & -1 & -1 \\ -2 & 2 & -2 \\ -1 & -1 & 3 \end{array}\right)$$

- a) Déterminer les équations paramétriques de Ker f. Montrer que Im f est un plan et en donner deux générateurs, notés \vec{a} et \vec{b} .
- b) Calculer $f(\vec{x})$ pour tout $\vec{x} = \alpha \vec{a} + \beta \vec{b}$, $\alpha, \beta \in \mathbb{R}$. Déterminer, avec précision, la nature géométrique de f.

3 pts

4. Soient $B_v = (\vec{v}_1, \vec{v}_2)$ et $B_a = (\vec{a}_1, \vec{a}_2, \vec{a}_3)$ des bases de \mathbb{R}^2 et \mathbb{R}^3 respectivement.

On donne les relations vectorielles suivantes:

$$\begin{cases} \vec{e}_1 = 2\vec{e}_2 + \vec{a}_2 - \vec{a}_3 \\ \vec{a}_1 - \vec{e}_2 = \vec{0} \\ \vec{e}_2 - \vec{a}_3 - \vec{e}_3 = \vec{0} \end{cases}$$
 et
$$\begin{cases} \vec{u}_1 = \frac{1}{2} \left(-\vec{v}_1 + \vec{v}_2 \right) \\ \vec{u}_2 = -\frac{1}{2}\vec{v}_1 - \frac{1}{2}\vec{v}_2 \end{cases}$$

- a) Montrer que $B_e = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ et $B_u = (\vec{u}_1, \vec{u}_2)$ sont des bases de \mathbb{R}^3 et \mathbb{R}^2
- b) Soit la droite d dont l'équation cartésienne dans la base B_u est la suivante :

$$d: x' + 2y' - 3 = 0.$$

Déterminer l'équation cartésienne de d dans la base B_v .

c) On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^2 telle que :

$$f(\vec{a}_1) = \vec{0}$$

 $f(\vec{a}_2) = -\vec{v}_2$
 $f(\vec{a}_3) = \vec{v}_1$.

Déterminer la matrice, notée M', de f relativement aux bases B_e et B_u .

Soit le vecteur $\vec{x} = \vec{e}_1 - 12 \vec{e}_2 - \vec{e}_3$.

Déterminer les composantes du vecteur $\vec{y} = f(\vec{x})$ dans la base B_v .

4 pts