

第六章信号的运算和处理

§ 6.1 运算电路

§ 6.2 有源滤波电路

集成运效应用电路概述,电子信息系统

§ 6.1 集成运放组成的运算电路

- 一、概述
- 二、比例运算电路
- 三、加减运算电路
- 四、积分运算电路和微分运算电路
- 五、对数运算电路和指数运算电路
- 六、实现逆运算的方法
- 七、模拟乘法器及应用

1. 理想运放的参数特点

 A_{od} 、 r_{id} 、 f_{H} 均为无穷大, r_{o} 、失调电压及其温漂、失调电流及其温漂、噪声均为0

2. 集成运放的线性工作区

电路特征:引入电压负反馈

无源网络

因为 u_O 为有限值, $A_{od} = \infty$,所以 $u_N - u_P = 0$,即

$$u_{\rm N}=u_{\rm P}$$
........虚短路

因为
$$r_{id}=\infty$$
,所以 $i_N=i_P=0$ ……虚断路

3. 运算电路的作用

- (1)运算电路:运算电路的输出电压是输入电压某种运算的结果,如加、减、乘、除、乘方、开方、积分、微分、对数、指数等。
 - (2) 描述方法: 运算关系式 $u_0 = f(u_I)$

4. 运算电路的组成

反馈网络+运算放大器

- (1) 工作在线性区
 - > 实现输入输出的某种运算
- (2) 工作在非线性区
 - > 输出饱和
- (3) 引入电压负反馈
 - > 采用负反馈保证工作在线性区
 - > 稳定输出电压,采用电压负反馈

5. 运算电路的分析方法

- (1) 基尔霍夫定律
- (2)叠加原理
- (3) 戴维南等效定理
- (4) 诺顿等效定理
- (5) 虚短、虚断

6. 学习运算电路的基本要求

- (1) 识别电路
- (2) 掌握输出电压和输入电压运算关系式的求解方法
- (3) 根据需求设计电路

7. 运算电路与放大电路

- (1)运算电路:强调运算精度,参数为输入电阻、输出 电阻,研究时域的问题
- (2) 放大电路:强调传递关系,参数为输入电阻、输出 电阻、截止频率、最大不失真输出电压

8. 分析和设计运算电路的注意点

- (1) 电路分析,假设集成运放"理想化"
 - ➤ IC技术的发展,集成运放参数不断接近"理想化", 分析误差很小
- (2) 设计电路时需要考虑非理想化因素

二、比例运算电路

1. 反相输入

虚地

" 虚短" \longrightarrow $u_{\rm P} = u_{\rm N}$

" 虚断" \rightarrow $i_{\rm P} = i_{\rm N} = 0$

节点电流方程:

$$i_{\rm R} = i_{\rm F} \implies \frac{u_{\rm I} - u_{\rm N}}{R} = \frac{u_{\rm N} - u_{\rm O}}{R_{\rm f}} \implies u_{\rm O} = -\frac{R_{\rm f}}{R}u$$

- 1) 电路引入了哪种组态的负反馈?
- 2) 电路的输入电阻为多少?

保证输入级的对称性

- 3) R'有何作用,可否去掉? R'=R// $R_{\rm f}$
- > R'为补偿电阻,保证差分放大电路的对称性
- 4) 若要 R_i =100k Ω ,比例系数为-100,R=? R_f =?

T形反馈网络反相比 例运算电路 $R_{\rm f}$ 太大,噪声大。如何利用相对小的电阻获得一100的比例系数?

补偿电阻R'的作用?

例:
$$R' = 0, i_N = i_P = 1nA, R = 10k,$$

$$R_f = 100k, A_{od} = 10^5, u_I = 0, u_O = ?$$

$$u_O = A_{od}u_{PN}$$

$$u_{PN} = u_P - u_N = -i_N \cdot (R \parallel R_f)$$

$$u_O = -10^5 \cdot 1nA \cdot (10k \parallel 100k) = -0.909V$$
串入 R' :

$$R' = R \parallel R_f \implies u_P = i_P \cdot R' = i_N \cdot (R \parallel R_f)$$
$$\Rightarrow u_P - u_N = 0 \Rightarrow u_{PN} = 0 \Rightarrow u_O = 0$$

R'的接入消除了运放输入偏置电流(非理想因素)的影响

电压并联负反馈;

输入电阻为R,输出电阻为零;

输入与输出相位互差180°;

比例系数取决于 R_f/R ,而非 R_f 或R;

R_r与R 可否任意取值?

$u_{\rm O} = -\frac{R_{\rm f}}{R}u_{\rm I} \Longrightarrow A_{od} = -\frac{R_{\rm f}}{R}$

例: Aod=-50,

➤ R=10k, Rf=500k **仁** 合适

▶ R=100k, Rf=5M← ・ 噪声大、稳定性差;・ 电路特性改变。

要求: A_{od}=-500, 怎么办?

- •输入电阻不能太小;
- 反馈电阻不能太大;

R=10k;

 $R_f = -R*A_{od} = 5M;$

T形反馈网络反相比例运算电路

分析方法:

- (1) "虚短"、"虚断";
- (2) 节点电流法;
- (3) 戴维南端口等效定理;

$$R_{th} = R_3 \parallel R_4$$

$$u_{th} = \frac{R_3}{R_3 + R_4} u_o$$

$$u_{th} = -\frac{R_2 + R_{th}}{R_1} u_I$$

$$u_{th} = \frac{R_2 + R_{th}}{R_1} u_I$$

例: Aod=-500, R1=10k, R2=R4=100k;

• R3=2.08k

要求:输出信号与输入信号同相,怎么办?

- 两级反相比例运算电路串联
- 同相比例运算电路

 $u_{\rm o}$

2. 同相输入

"虚短"
$$u_{\rm P} = u_{\rm N} = u_{\rm I}$$

"虚断" $i_{\rm P} = i_{\rm F}$

- 1) 电路引入了哪种组态的负反馈?
- 2) 输入电阻为多少?
- 3) 电阻R'=? 为什么?
- 4) 共模抑制比 $K_{CMR} \neq \infty$ 时会影响运算精度吗?

特点:

电压串联负反馈;

输入电阻为无穷大,输出电阻为零;

输入与输出同相位;

比例系数取决于Rf/R,而非Rf或R; 共模输入;

选用高共模抑制比的集成运放!

$$R \rightarrow \infty \Rightarrow u_0 = u_1$$

电压跟随器

电压跟随器

1)
$$\dot{F} = ?$$

2)
$$R_i = ? R_o = ?$$

3)
$$u_{1c} = ?$$

特点:

输出电压完全反馈到输入;

输出完全跟随输入;

输入电阻为无穷大,输出电阻为零;

电压缓冲器,提高前级电路带载能力;

 $u_{\rm I}$

三、加减运算电路

ightharpoonup 反相比例运算电路: $u_0 = -Ku_1$ 如何实现加,减,加减运算?

▶ 同相比例运算电路: u₀ = K'u₁

加法:
$$\begin{cases} u_{\text{O}} = -(K_{1}u_{\text{I1}} + K_{2}u_{\text{I2}} + \dots + K_{n}u_{\text{In}}) \\ u_{\text{O}} = K_{1}'u_{\text{I1}} + K_{2}'u_{\text{I2}} + \dots + K_{n}'u_{\text{In}} \end{cases}$$

减法: $u_0 = K'u_{11} - Ku_{12}$

加減: $u_{\text{O}} = (K_1'u_{11} + K_2'u_{12} + \dots + K_n'u_{1n}) - (K_1u_{11} + K_2u_{12} + \dots + K_nu_{1n})$

回顾:信号的叠加方式!

1. 反相求和

- ▶ "N" 虚地 → 输入为等效电流源
- ▶电流源并联实现 "信号叠加"

分析方法一:

- (1) "虚短"、"虚断";
- (2) 诺顿端口等效定理;

$$i_{th} = \frac{u_{I1}}{R_1} + \frac{u_{I2}}{R_2} + \frac{u_{I3}}{R_3}$$

$$R_{th} = R_1 || R_2 || R_3$$

$$u_{P} = u_{N} = 0$$

$$u_{\rm O} = -R_{\rm f} \left(\frac{u_{I1}}{R_{\rm l}} + \frac{u_{I2}}{R_{\rm 2}} + \frac{u_{I3}}{R_{\rm 3}} \right)$$

分析方法二:

- (1) "虚短"、"虚断"
- (2) 节点电流法

$$u_{N} = u_{P} = 0$$

$$i_{F} = i_{R1} + i_{R2} + i_{R3}$$

$$= \frac{u_{I1}}{R_{1}} + \frac{u_{I2}}{R_{2}} + \frac{u_{I3}}{R_{3}}$$

$$u_{\rm O} = -i_{\rm F}R_{\rm f} = -R_{\rm f}\left(\frac{u_{\rm I1}}{R_{\rm l}} + \frac{u_{\rm I2}}{R_{\rm 2}} + \frac{u_{\rm I3}}{R_{\rm 3}}\right)$$

分析方法三:

- "虚短"、"虚断"
- (2)叠加原理

首先求解每个输入信号单独作用时的 输出电压,然后将所有结果相加,即得到 所有输入信号同时作用时的输出电压

$$u_{O2} = -\frac{R_{f}}{R_{2}} \cdot u_{I2}$$

$$u_{O3} = -\frac{R_{f}}{R_{3}} \cdot u_{I3}$$

$$u_{O} = u_{O1} + u_{O2} + u_{O3} = -\frac{R_{f}}{R_{1}} \cdot u_{I1} - \frac{R_{f}}{R_{2}} \cdot u_{I2} - \frac{R_{f}}{R_{3}} \cdot u_{I3}$$

特点:

> 反相求和运算电路: 多个输入信号作用在反相输入端

2. 同相求和 设 $R_1 \parallel R_2 \parallel R_3 \parallel R_4 = R \parallel R_f$

▶电流源并联实现 "信号叠加"

分析方法一:

- (1) "虚短", "虚断"
- (2)叠加原理

$$u_{\text{O1}} = (1 + \frac{R_{\text{f}}}{R}) \cdot \frac{R_2 // R_3 // R_4}{R_1 + R_2 // R_3 // R_4} \cdot u_{I1}$$

同理可得, u_{I2} 、 u_{I3} 单独作用时的 u_{O2} 、 u_{O3} , $u_{O} = u_{O1} + u_{O2} + u_{O3}$ 物理意义清楚,计算麻烦!

在求解运算电路时,应选择合适的方法,使运算结果简 单明了,易于计算

分析方法二:

- (2) 节点电流法

$$i_1 + i_2 + i_3 = i_4$$

(1) "虚短"、"虚断";
$$\frac{u_{11}-u_{P}}{R_{1}}+\frac{u_{12}-u_{P}}{R_{2}}+\frac{u_{13}-u_{P}}{R_{3}}=\frac{u_{P}}{R_{4}}$$
 (2) 节点电流法
$$\frac{u_{11}}{R_{1}}+\frac{u_{12}}{R_{2}}+\frac{u_{13}}{R_{3}}=(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}})u_{P}$$

$$u_{P}=R_{P}\left(\frac{u_{11}}{R_{1}}+\frac{u_{12}}{R_{2}}+\frac{u_{13}}{R_{3}}\right)$$

$$(R_{P}=R_{1}/\!\!/R_{2}/\!\!/R_{3}/\!\!/R_{4})$$

$$u_{\rm O} = (1 + \frac{R_{\rm f}}{R}) \cdot u_{\rm P} = \frac{R + R_{\rm f}}{R} \cdot R_{\rm P} (\frac{u_{\rm I1}}{R_{\rm 1}} + \frac{u_{\rm I2}}{R_{\rm 2}} + \frac{u_{\rm I3}}{R_{\rm 3}}) \cdot \frac{R_{\rm f}}{R_{\rm f}}$$

$$u_{\rm O} = R_{\rm f} \cdot (\frac{u_{\rm I1}}{R_{\rm l}} + \frac{u_{\rm I2}}{R_{\rm 2}} + \frac{u_{\rm I3}}{R_{\rm 3}})$$
 与反相求和运算电路的结果差一负号

特点:

- > 同相求和运算电路
 - ← 多个输入信号作用在同相输入端;

3. 加减运算

设
$$R_1 /\!/ R_2 /\!/ R_f = R_3 /\!/ R_4 /\!/ R_5$$

$$u_{\rm O} = R_{\rm f} \cdot (\frac{u_{\rm I3}}{R_3} + \frac{u_{\rm I4}}{R_4} - \frac{u_{\rm I1}}{R_1} - \frac{u_{\rm I2}}{R_2})$$

若 $R_1 /\!/ R_2 /\!/ R_1 \neq R_3 /\!/ R_4 /\!/ R_5$, $u_0 = ?$

$$u_{\rm O} = \frac{R_{\rm f}}{R} \cdot (u_{\rm I2} - u_{\rm I1})$$

实现了差分 放大电路

▶ 加减运算电路 ← 多个输入信号分别作用在同相和反 相输入端

电路如图所示

设
$$R_1 = R_{f2}, R_3 = R_{f1}$$

- (1)组成哪种基本运算电路?与用一个运放组成的完成同样运算的电路的主要区别是什么?
- (2)为什么在求解第一级电路的运算关系时可以不考虑第二级电路对它的影响?

四、积分运算电路和微分运算电路型消费大学Tsinghua University

 \triangleright 反相比例运算电路: $u_0 = -Ku_1$

如何实现积分、微分运算?

▶ 同相比例运算电路: u_o = K'u_I

$$K \to K \int K \to K \frac{d}{dt}$$

回顾: 元件的记忆性!

注意:

- > 电感感值很难做大
- > 电感存在磁通饱和问题
- > 实际应用中, 电容容值比电感感值稳定

1. 积分运算电路

- ➤ "N" 虚地 → 输入为等效电流源
- ▶ 电容对电流有积分作用

分析方法:

- (1) "虚短"、"虚断";
- (2) 电容端电压和电流的关系

$$i_{C} = i_{R} = \frac{u_{I}}{R}$$

$$u_{C} = \frac{1}{C} \int i_{C} dt$$

$$u_{C} = \frac{1}{C} \int i_{C} dt$$

$$u_{C} = -\frac{1}{C} \int i_{C} dt = -\frac{1}{RC} \int u_{I} dt$$

$$u_{C} = -\frac{1}{C} \int i_{C} dt = -\frac{1}{RC} \int u_{I} dt + u_{O}(t_{I})$$

利用积分运算的基本关系实现不同的功能singhua University

- 1) 输入为阶跃信号时的输出电压波形?
- 2) 输入为方波时的输出电压波形?
- 3) 输入为正弦波时的输出电压波形?

线性积分,延时

 $u_{\rm O}$

0

- > 低频信号增益大
- > 电容电压容易饱和,电路易出现阻塞现象25

R2的作用?

15V

2. 微分运算电路

- ➤ "N" 虚地 → 输入为等效电流源
- ▶电容对电流有积分作用

$$i_{\rm R} = i_{\rm C} = -\frac{u_{\rm O}}{R}$$

分析方法:

(1) "虚短"、"虚断"; $u_{c} = \frac{1}{C} \int i_{c} dt$

限制输出

电压幅值

滞后补偿

 \overline{u}_{0}

(2) 电容端电压和电流的关系

$$u_{O} = -i_{R}R = -RC\frac{\mathrm{d}u_{I}}{\mathrm{d}t}$$

特点:

- ▶ 高频信号增益大,噪声影响大
- ▶ 电容电压容易饱和,电路 易出现阻塞现象
- ▶ 反馈网络滞后,对高频信号输入易产生自激振荡

限制输入电流

如何基于同相比例运算电路的知识构成积分、微分运算电路?

五、对数运算电路和指数运算电路型消费大学Tsinghua University

ightharpoonup 反相比例运算电路: $u_0 = -Ku_1$ 如何实现对数、指数运算?

➤ 同相比例运算电路: u₀ = K'u₁

$$K \to Ke^U \qquad K \to K \ln U$$

回顾: PN结的伏安特性!

$$i = I_{\rm S}(e^{\frac{u_{\rm D}}{U_{\rm T}}} - 1) \approx I_{\rm S}e^{\frac{u_{\rm D}}{U_{\rm T}}}$$

$$i_{\mathrm{C}} \approx I_{\mathrm{S}} \mathrm{e}^{\frac{u_{\mathrm{BE}}}{U_{\mathrm{T}}}}$$

1. 对数运算电路

- 1) 对输入电压的极性和幅值有何要求?
- 2) 缺点是什么?如何改进?

$$u_{\rm O} = -u_{\rm BE} \approx -U_{\rm T} \ln \frac{u_{\rm I}}{I_{\rm S} R}$$

实用电路中常常采取措施消除Is对运算关系的影响

集成对数运算电路

$$i_{\text{Cl}} = i_{\text{II}} = \frac{u_{\text{I}}}{R_3} \approx I_{\text{S}} e^{\frac{u_{\text{BEI}}}{U_{\text{T}}}}$$
 $u_{\text{BEI}} \approx U_{\text{T}} \ln \frac{u_{\text{I}}}{I_{\text{S}} R_3}$
同理, $u_{\text{BE2}} \approx U_{\text{T}} \ln \frac{U_{\text{REF}}}{I_{\text{S}} R}$
 $= U_{\text{T}} \ln \frac{I_{R}}{I_{\text{S}}}$

$$u_{\text{N2}} = u_{\text{P2}} = u_{\text{BE2}} - u_{\text{BE1}} \approx -U_{\text{T}} \ln \frac{u_{\text{I}}}{I_{R} R_{3}}$$

$$u_{\rm O} = (1 + \frac{R_2}{R_5})u_{\rm N2} \approx -(1 + \frac{R_2}{R_5})U_{\rm T} \ln \frac{u_{\rm I}}{I_{\rm R}R_3}$$
 热敏电阻的温度系数为正还是为负?

数为正还是为负?

2. 指数运算电路

3. 乘法、除法运算电路

A、实现递运算的方法

1. 电路的结构

为什么不标定 +、一?

运算电路必须引入负反馈!

2. 利用积分运算实现微分运算。

$$u_{O2} = -\frac{1}{R_3 C} \int u_O dt$$
$$u_{O2} = -\frac{R_2}{R_1} u_I$$

$$u_{\rm O} = \frac{R_2 R_3 C}{R_1} \cdot \frac{\mathrm{d}u_{\rm I}}{\mathrm{d}t}$$

电路名称	反相比例运算	反相求和运算	电压跟随器	积分运算
电路	R_{u_1} $R'=R/\!\!/R_f$	$\begin{array}{c} R_1 \\ u_{11} \\ \vdots \\ u_{12} \\ \vdots \\ \vdots \\ \vdots \\ R_3 \\ u_{13} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ R_4 = R_1 /\!/ R_2 /\!/ R_3 /\!/ R_f \end{array}$	同相比例运算特例	$ \begin{array}{c} C \\ \downarrow i_C \\ \downarrow i_C \end{array} $ $ \begin{array}{c} R' \\ \end{array} $
运算关系式	$u_{\rm O} = -\frac{R_{\rm f}}{R} \cdot u_{\rm I}$	$u_{\rm O} = -R_{\rm f} \left(\frac{u_{\rm I1}}{R_{\rm l}} + \frac{u_{\rm I2}}{R_{\rm 2}} + \frac{u_{\rm I3}}{R_{\rm 3}} \right)$	$u_{\rm O} = u_{\rm I}$	$u_{\rm O} = -\frac{1}{RC} \int u_{\rm I} \mathrm{d}t$
	Ι	<u> </u>		-
电路名称	同相比例运算	同相求和运算	差分运算	微分运算
电路名称电路	同相比例运算 反馈组态? 尽馈组态? R'=R//R _f	同相求和运算 R R R R R R R R R R R R R	差分运算 「「「「」」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」	微分运算 。

基本运算电路

有共模输入电压吗?

图中电流是 实际方向

大学 University

	_ *		
电路名称	加减运算	对数运算	指数运算
电路	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} i_{\text{C}} & \text{T} \\ \hline \\ u_{\text{I}} > 0) & \overline{i_{R}} & \text{A} \\ \hline \\ R' & \end{array}$	$i_{\rm E}$ $i_{\rm R}$ $i_{\rm R}$ $i_{\rm R}$ $i_{\rm R}$
运算关系式	设 $R_1 // R_2 // R_f = R_3 // R_4 // R_5$ $u_O = R_f \cdot (\frac{u_{13}}{R_3} + \frac{u_{14}}{R_4} - \frac{u_{11}}{R_1} - \frac{u_{12}}{R_2})$	$u_{\rm O} \approx -U_{\rm T} \ln \frac{u_{\rm I}}{I_{\rm S} R}$	$u_{\rm O} \approx -I_{\rm S} R {\rm e}^{\frac{u_{\rm I}}{U_{\rm T}}}$

应该研究的问题

同相和反相比例运算电路反馈组态的区别

- (1) 负反馈组态
- (2) 输入、输出电阻

输出电阻为0,输入电阻?

- (3) 集成运放参数对运算精度的影响,如共模抑制比
- (4) 利用运算关系实现其它功能,如放大、波形变换、移相

讨论一

已知 $R_1 = R_2$,求解 $u_0 = f(u_1) = ?$

二极管什么时候导通?什么时候截止?

在集成运放应用电路中开 关管的工作状态往往决定于输 入信号或输出信号的极性!

$$u_{\rm I} > 0$$
时, $u_{\rm O2} < 0$,D截止, $u_{\rm O} = u_{\rm I}$;

$$u_{\rm I}$$
<0时, $u_{\rm O2}$ >0,D导通, $u_{\rm P1}$ =0, $u_{\rm O}$ =- $u_{\rm I}$;

讨论二

分析以各集成运放为核心器件分别组成哪种基本运算电路,并 求解各电路的运算关系

$$i_{\rm O} = f(u_{\rm I}) = ?$$

$$u_{\rm O} = f(u_{\rm I}) = ?R_{\rm i} = ?R_{\rm o} = ?$$

右图所示电路可等效成差分放大电路的哪种接法?与该接法的分立元件电路相比有什么优点?

七、模拟乘法器及其在运算电路中的发ing用。University

- 1. 模拟乘法器简介
 - 1) 变跨导型模拟乘法器的基本原理

$$u_{\rm O} = -(\Delta i_{\rm C1} - \Delta i_{\rm C2})R_{\rm c} \approx -g_{\rm m}u_{\rm X}R_{\rm c}$$

$$g_{\rm m} \approx \frac{I_{\rm EQ}}{U_{\rm T}} = \frac{I}{2U_{\rm T}} \quad I = \frac{u_{\rm Y} - u_{\rm BE3}}{R_{\rm e}}$$

若
$$u_{\rm Y} >> u_{\rm BE3}$$
,则 $g_{\rm m} \approx \frac{u_{\rm Y}}{2U_{\rm T}R_{\rm e}}$

$$u_{\rm O} \approx \frac{R_{\rm c}}{2U_{\rm T}R_{\rm e}} \cdot u_{\rm X}u_{\rm Y}$$

实际电路需在多方面改进,如线性度、温度的影响、输入电压的极性等方面。

2)模拟乘法器的符号及等效电路

理想情况下, r_{i1} 、 r_{i2} 、 f_H 为 无穷大,失调电压、电流及其 温漂为0, r_o 为0, u_x 、 u_y 幅值 和频率变化时 k 值不变。

有单象限、两象限和四象限之分。

2. 在运算电路中的基本应用

1) 乘法运算

$$u_{\rm O} = ku_{\rm I1}u_{\rm I2}$$

则 $u_0=10$ V。

2) 乘方运算

若
$$u_{\rm I} = \sqrt{2}U_{\rm i}\sin\omega t$$

实现了对正弦波电压的二倍频变换

则 $u_{\rm O} = 2kU_{\rm i}^2 \sin^2 \omega t = 2kU_{\rm i}^2 (1 - \cos^2 \omega t)$

3) 除法运算

运算电路中集成运放必须引入负反馈!

$$u_{\mathcal{O}} = -\frac{R_2}{R_1} \cdot \frac{u_{\mathcal{I}1}}{k u_{\mathcal{I}2}}$$

为使电路引入的是负反馈, $k和u_{12}$ 的极性应如何?

若集成运放的同相输入端与反相输入端互换,则k和 u_{12} 的极性应如何?

4) 开方运算

$$u_{\mathrm{O}}' = -\frac{R_2}{R_1} \cdot u_{\mathrm{I}} = ku_{\mathrm{O}}^2$$

$$u_{\rm O} = \sqrt{-\frac{R_2}{kR_1} \cdot u_{\rm I}}$$

为满足上式,电路中 u_0 、k的极性是什么?为什么?

若要 u_0 <0,则有何变化?

若要求 u_{I} 、 u_{O} 均大于0,则有何变化?

若集成运放的负反馈通路中为某种运算电路,则整个电路实现其逆运算!

如何实现开三次方运算电路?

讨论一

求解运算关系式

讨论二

实现下列运算关系

1.
$$u_{\rm O} = -10^2 \int \frac{10u_{\rm I1}u_{\rm I3}}{11u_{\rm I2}}$$

2.
$$u_{\rm O} = 100 \sqrt[3]{2u_{\rm I1}^2 + 3u_{\rm I2}^2 + u_{\rm I3}}$$

- 1. 按运算顺序构造电路;
- 2. 运算电路一定引入负反馈;
- 3. 电路里电阻阻值受集成运放功耗的限制,不能太小; 为噪声小且运算关系不受集成运放参数的影响,阻 值又不能太大。

讨论三

 K_2 闭合,然后断开; K_1 接到 u_I ,经过 t_1 毫秒后接至 u_{REF} ,再经过 t_2 毫秒后 u_0 =0,求 t_2 。

双积分型A/D转换 器的模拟电路部分

$$u_{O}(t_{1}) = -\frac{1}{RC} \int_{0}^{t_{1}} u_{I} dt + 0 = -\frac{1}{RC} u_{I} \cdot t_{1}$$

$$t_2 = -\frac{u_1}{u_{\text{REF}}} \cdot t_1$$

$$u_{O}(t_{1}+t_{2}) = -\frac{1}{RC} \int_{0}^{t_{2}} u_{REF} dt + u_{O}(t_{1}) = -\frac{1}{RC} (u_{REF} \cdot t_{2} + u_{I} \cdot t_{1}) = 0$$

其他讨论:

- 输入电阻的"大小"
- 输出电阻的"大小"
- 带载能力的"大小"

§ 6.2有源滤波电路

- 一、概述
- 二、低通滤波器
- 三、高通、带通、带阻滤波器
- 四、状态变量型滤波器

一、概述

1. 滤波电路的功能

使指定频段的信号顺利通过,其它频率的信号被衰减。

2. 滤波电路的种类

低通滤波器 (LPF)

用幅频特性描述滤波特性,要研究 \dot{A}_{up} 、 \dot{A}_{u} (f_{P} 、下降速率)。

理想滤波器的幅频特性

高通滤波器 (HPF)

带阻滤波器 (BEF)

带通滤波器 (BPF)

全通滤波器 (APF)

概述

3. 无源滤波电路和有源滤波电路

空载: $\dot{A}_{up} = 1$ $f_p = \frac{1}{2\pi RC}$

$$\dot{A}_{u} = \frac{1}{1 + j \frac{f}{f_{p}}}$$

带载: $\dot{A}_{up} = \frac{R_L}{R + R_I}$

$$f_{\rm p} = \frac{1}{2\pi \left(R /\!/ R_{\rm L} \right) C}$$

空载时

带负载时

负载变化,通带 $\dot{A}_{u} = \frac{A_{up}}{1+j\frac{f}{c}}$ 频率均变化。

$$\dot{A}_{u} = \frac{A_{up}}{1 + j \frac{f}{f_{p}}}$$

有源滤波电路

无源滤波电路的滤波参数随负载变化;有源滤波电路的滤波参数不随负载变化,可放大。

无源滤波电路可用于高电压大电流,如直流电源中的 滤波电路;有源滤波电路是信号处理电路,其输出电压和 电流的大小受有源元件自身参数和供电电源的限制。

二、低通滤波器

1. 同相输入

$$\dot{A}_{up} = 1 + \frac{R_2}{R_1}$$

$$f_{\rm p} = \frac{1}{2\pi RC}$$

$$\dot{A}_{u} = \frac{\dot{A}_{up}}{1 + j \frac{f}{f_{p}}}$$

频率趋于0时的放大 倍数为通带放大倍数

决定于RC环节

表明进入高频段的下降速率为 -20dB/十倍频

经拉氏变换得 传递函数:

$$A_{u}(s) = \frac{U_{o}(s)}{U_{i}(s)} = (1 + \frac{R_{f}}{R_{1}}) \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = (1 + \frac{R_{2}}{R_{1}}) \cdot \frac{1}{1 + sRC}$$

- ho 求解传递函数时,只需将放大倍数中的 $j\omega$ 用 s 取代即可; s 的方次称为阶数。 mLPF
- > 对LPF, 频率趋于0时的放大倍数即为通带放大倍数

二、低通滤波器

清茅大学 Tsinghua University

1. 同相输入

(1) 一阶电路: 幅频特性

$$\dot{A}_{up} = 1 + \frac{R_2}{R_1}$$

$$\dot{A}_{u} = \frac{\dot{A}_{up}}{1 + j\frac{f}{f_p}} \quad (f_p = \frac{1}{2\pi RC})$$

$$A_u(s) = \frac{U_o(s)}{U_i(s)} = (1 + \frac{R_2}{R_1}) \cdot \frac{1}{1 + sRC}$$

(2) 简单二阶LPF

分析方法: 电路引入了负反馈, 具有"虚短"和"虚断"的特点利用节点电流法求解输出电压与输入电压的关系。

$$A_{u}(s) = (1 + \frac{R_{2}}{R_{1}}) \frac{1}{1 + 3sRC + (sRC)^{2}}$$

$$\dot{A}_{u} = (1 + \frac{R_{2}}{R_{1}}) \frac{1}{1 - (\frac{f}{f_{0}})^{2} + 3j\frac{f}{f_{0}}}$$

$$f_0 = \frac{1}{2\pi RC}$$
 特征频率

截止频率 $f_p \approx 0.37 f_0$

(3) 压控电压源二阶LPF

为使 $f_p = f_0$,且在 $f = f_0$ 时幅频特性按-40 dB/十倍频下降。

 $f\rightarrow 0$ 时, C_1 断路,正反 馈断开, 放大倍数为通带放 $U_{o}(s)$ 大倍数。

> $f \rightarrow \infty$, C₂短路,正反馈 不起作用,放大倍数 $\rightarrow 0$ 。

引入正反馈

因而有可能在 $f = f_0$ 时放大倍数等于或大于通带放大倍数, 对于不同频率的信号正反馈的强弱不同。

压控电压源二阶LPF的分析

列P、M点的节点电流方程,整理可得:

$$A_{u}(s) = \frac{A_{up}(s)}{1 + [3 - A_{up}(s)]sRC + (sRC)^{2}}$$

$$\dot{A}_{u} = \frac{\dot{A}_{up}}{1 - (\frac{f}{f_0})^2 + j[3 - \dot{A}_{up}]\frac{f}{f_0}}$$

$$\left| f = f_0$$
 时, $\left| \dot{A}_u \right| = \left| \frac{\dot{A}_{up}}{3 - \dot{A}_{up}} \right| = \left| Q \dot{A}_{up} \right|$

$$Q = \left| \dot{A}_u \right|_{f = f_0} / \left| \dot{A}_{up} \right|$$

当
$$2 < |\dot{A}_{up}| < 3$$
时, $|\dot{A}_{u}|_{f=f_0} > |\dot{A}_{up}|$

二、低通滤波器

2. 反相输入低通滤波器

积分运算电路的传递函数为

$$A_{u}(s) = -\frac{1}{sR_{1}C}, \quad \exists f \to 0, \quad \left|\dot{A}_{u}\right| \to \infty.$$

加 R_2 后, $f \rightarrow 0$,C 断开,通带放大倍数,

$$\dot{A}_{up} = -R_2/R_1$$

网络来确定通带放大倍数。

需有电阻构成的负反馈

$$A_u(s) = -\frac{R_2}{R_1} \cdot \frac{1}{1 + sR_2C}$$

三、葛通、带通、带阻有源滤波器等Tsinghua University

1. 高通滤波器 (HPF)

与LPF有对偶性,将LPF的电阻和电容互换,就可得一阶HPF、简单二阶HPF、压控电压源二阶HPF电路。

四、状态变量型滤波器

要点:

- 》 将比例、积分、求和等基本运算电路组合成自由设置传递函数、实现各种滤波功能的电路
- 通带放大倍数决定于负 反馈网络
- > 利用"逆运算"方法

 $f \rightarrow 0$ 时负反馈最强, A_1 输出电压 $\rightarrow 0$; $f \rightarrow \infty$ 时C相当于短路, A_2 输出电压 $\rightarrow 0$,电路开环, A_1 输出电压 $\rightarrow \pm U_{OM}$,工作到非线性区;需引入负反馈决定通带放大倍数

二阶状态变量滤波器

运算电路与有源滤波器的比较

- □ 相同之处
 - 电路中均引入深度负反馈,因而集成运放均工作在线性区。
 - 均具有"虚短"和"虚断"的特点,均可用节点电流法求解电路。

□ 不同之处

- 运算电路研究的是时域问题,有源滤波电路研究的是频域问题;测试时,前者是在输入信号频率不变或直流信号下测量输出电压与输入电压有效值或幅值的关系,后者是在输入电压幅值不变的情况下测量输出电压幅值与输入电压频率的关系。
- 运算电路用运算关系式描述输出电压与输入电压的关系, 有源滤波器用电压放大倍数的幅频特性描述滤波特性。

讨论一

- □ 频率趋于零,电压放大倍数趋于通带放大倍数 的滤波器有哪几种?
- □ 频率趋于无穷大,电压放大倍数趋于通带放大倍数的滤波器有哪几种?
- □ 频率趋于零,电压放大倍数趋于零的滤波器有 哪几种?
- □ 频率趋于无穷大零,电压放大倍数趋于零的滤 波器有哪几种?

讨论二

图示电路是哪种有源滤波器?

$$\begin{aligned} \dot{\underline{U}}_{o} &= -\dot{\underline{U}}_{o1} - \dot{\underline{U}}_{i} \\ -\dot{\underline{o}}_{i} & f \to 0, |\dot{A}_{u}| \to ? \\ f \to \infty, |\dot{A}_{u}| \to ? \end{aligned}$$

$$f \to 0, |\dot{A}_u| \to ?$$

$$f \to \infty, |\dot{A}_u| \to ?$$

A₁、A₂各组成什么电路?

电路为LPF

讨论三

通过MultisimAC分析判断图示电路为哪种有源滤波器? 设 $R_1=R_3=10$ k Ω ,C=1000pF。

