Examen Corrigés de Statistique, Inf2

Exercice 1- Nous sommes dans le cas d'un schéma de Bernoulli (On suppose qu'il n'y a qu'un poulain par portée) :

- Pour chaque poulain il y a deux éventualités contraires : soit il est gris (avec une probabilité p=0,25 soit il est non gris avec une probabilité de 1-p=0,75)
- Les couleurs des 5 poulains d'une jument sont indépendantes et ont été obtenues dans les mêmes conditions.

2- Il s'agit ici d'un test d'ajustement :

Posons l'hypothèse nulle H_0 : Les résultats sont conformes à la théorie. C'est-à-dire : H_0 : La variable aléatoire X suit la loi binomiale B(5;0,25).

A l'aide de la formule **1pt**

$$P(X = k) = C_5^k (0.25)^k (0.75)^{5-k}$$
, pour $0 \le k \le 5$.

nous allons calculer les probabilités puis les effectifs théoriques correspondant aux diverses valeurs de X:

Nombre de poulains gris	0	1	2	3 ou plus	Totaux	
sur les 5 produits				1		
Effectifs observés (n_i)	10	18	16	6	50	5pts
Probabilités (p_i)	0,2373	0,3955	0,2637	0,1035	1	——————————————————————————————————————
Effectifs théoriques (np_i)	11,87	19,78	13, 18	5,17	50	
$n_i - np_i$	1,87	-1,78	2,82	0,83	0	

La taille de l'échantillon est n=50, c'est-à-dire l'effectif total.

Variable de décision :

Tous les effectifs théoriques étant supérieurs à 5, on peut dire que, sous l'hypothèse H_0 , la

variable

$$\chi_{calc}^{2} = \sum_{i=1}^{5} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$$
 2pt

$$\chi^2_{calc} = \frac{(10 - 11, 87)^2}{11, 87} + \frac{(18 - 19, 78)^2}{19, 78} + \frac{(16 - 13, 18)^2}{13, 18} + \frac{(6 - 5, 17)^2}{5, 17}$$

$$= \frac{(1, 87)^2}{11, 87} + \frac{(-1, 78)^2}{19, 78} + \frac{(2, 82)^2}{13, 18} + \frac{(0, 83)^2}{5, 17}$$
 soit $\chi^2_{calc} \approx 1.19$ **2pts**

Décision : $\alpha=5\%$

Pour $3\ ddl$ on lit dans la table : $\chi^2_{0.95}=7.81$ ______1

$$\chi^2_{calc} \le \chi^2_{0.95}$$
 donc on ne rejette pas H_0

Nous pouvons donc en conclure, au seuil de 5%, que les résultats observés ne contredisent pas la théorie..

•