Prova scritta di Logica Matematica 2 settembre 2021

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio della prima parte viene sommato a quello della seconda per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

	PRIMA PARTE			
	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.			
a.	$(p \land q \to \neg r) \to \neg (p \lor \neg s \lor r) \equiv (p \land q \land r) \lor (\neg p \land \neg r \land s).$	\mathbf{V}	\mathbf{F}	
b.	Se $F \vDash \neg(G \to H)$ allora $\neg G \vDash \neg F$.	$\overline{\mathbf{V}}$	\mathbf{F}	
c.	Esiste un insieme di Hintikka che contiene le formule			
	$\exists x (p(x) \land \neg q(x)) \in \forall y (p(y) \to q(y)).$		\mathbf{F}	
d.	Sia <i>I</i> l'interpretazione con $D^I = \{A, B, C, D, E\}, p^I = \{A, D, E\},$ $q^I = \{B, C, D\}$ e $r^I = \{(A, B), (B, A), (B, D), (B, E), (C, D), (D, A), (D, E), (E, E), (C, D), (D, A), (D, E), (E, E), (C, D), (E, E), $		_	
	$q^{I} = \{B, C, D\} \text{ e } r^{I} = \{(A, B), (B, A), (B, D), (B, E), (C, D), (D, A), (D, E), (E, E)\}$	D)}.	
	Allora $I \models \exists x (p(x) \land \forall y (q(y) \rightarrow r(y, x))).$	$oxed{\mathbf{V}}$	\mathbf{F}	
e.	Quante delle seguenti formule sono enunciati?	_		
	Quante delle seguenti formule sono enunciati? $\forall x \neg \exists y r(x,y), \forall y (p(y) \lor r(x,y)), \forall z (\exists u r(z,u) \lor r(u,z)), p(c) \land r(c,y). \boxed{0 \ 1 \ 2}$ $\exists z (p(z) \rightarrow r(z,f(z))) \equiv \forall x p(x) \rightarrow \exists y r(y,f(y)).$	<u>2 3</u>	4	
		$oxed{\mathbf{V}}$	\mathbf{F}	
$\mathbf{g}.$	Sia F un enunciato e φ un omomorfismo forte suriettivo di I in J .			
	Se $J \models F$ allora $I \models F$.		\mathbf{F}	
h.	Quando nell'algoritmo di Fitting per la trasformazione in forma normale disgiu	ntiv		
	si opera su una β -formula il numero di disgiunti resta lo stesso.	\mathbf{V}	\mathbf{F}	
i.	Per stabilire se $F, G \vDash H$ costruiamo un tableau			
	la cui radice è etichettata con $\{F, G, H\}$.	\mathbf{V}	\mathbf{F}	
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	\mathbf{F}	
	$\frac{\exists x p(x)}{q(a)} \xrightarrow{q(a)} \frac{[p(x)]^1 \qquad p(x) \to q(a)}{q(a)}$			
	$\exists x \ p(x)$ $g(a)$			
	$\frac{1}{a(a)}$ 1			
k.	Nel riquadro scrivete l'enunciato del Lemma di Sostituzione per formule.			
	The inquire service i enumerate del Bellinia di Sessivazione per formate.			

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il primo e l'ultimo, per cui c'è spazio sufficiente sotto l'esercizio stesso.

1. Sia $\mathcal{L} = \{c, m, a, s, u\}$ un linguaggio dove c è un simbolo di costante, m è un simbolo di funzione unario, a è un simbolo di relazione unario e s e u sono simboli di relazione binari. Interpretando c come "Camilla", m(x) come "il maestro di x", a(x) come "x è un alunno", s(x,y) come "x è severo con y" e u(x,y) come "x ubbidisce ad y", traducete la frase:

3pt

"il maestro di Camilla non è severo con Camilla, ma è severo con tutti gli alunni che non ubbidiscono al loro maestro."

2. Dimostrate che

5pt

$$\forall x \, r(f(x), x), \forall x \, \forall y (\neg r(x, y) \vee \neg r(y, x)) \not\vDash \forall z \, \exists w \, r(z, w).$$

3. Dimostrate che

$$\{\exists x (p(x) \land \neg p(g(x))), \forall y (p(y) \rightarrow p(g(y)) \lor \exists z f(z) = y), \forall w \neg p(f(w))\}$$

è insoddisfacibile nella logica con uguaglianza.

4. Usando il metodo dei tableaux dimostrate che

4pt

5pt

$$\forall x \, r(x, a), \exists y \, \neg r(b, y) \vDash \neg \forall x \, \forall y (\exists z (r(x, z) \land r(y, z)) \rightarrow r(x, y))$$

5. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\exists x \, r(x, f(x)), \forall y (\exists u \, r(u, y) \to p(y) \lor p(g(y))) \rhd \exists z \, p(z).$$

6. Nello spazio qui sotto, usando l'algoritmo di Fitting, mettete in forma normale 2pt congiuntiva la formula

$$(p \to \neg w) \land \neg (q \lor \neg r) \to \neg (s \lor \neg (t \to u)).$$

Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b.** V perché se $v(\neg G) = \mathbf{V}$ allora $v(G \to H) = \mathbf{V}$ e di conseguenza $v(\neg (G \to H)) = \mathbf{F}$. Deve quindi essere $v(F) = \mathbf{F}$ (cioè $v(\neg F) = \mathbf{V}$) perché $v(F) = \mathbf{V}$ implica $v(\neg (G \to H)) = \mathbf{V}$.
- **c.** F perchè se \mathcal{H} è un insieme di Hintikka con $\exists x(p(x) \land \neg q(x)) \in \mathcal{H}$ deve essere anche $p(c) \land \neg q(c) \in \mathcal{H}$ per qualche costante c; ma allora $p(c) \in \mathcal{H}$ e $\neg q(c) \in \mathcal{H}$. D'altra parte $\forall y(p(y) \to q(y)) \in \mathcal{H}$ implica $p(c) \to q(c) \in \mathcal{H}$ che richiede $\neg p(c) \in \mathcal{H}$ oppure $q(c) \in \mathcal{H}$, che sono entrambe incompatibili con quanto ottenuto in precedenza.
- **d.** F perché per nessun $d \in D^I$ si ha $I, \sigma[x/d] \models p(x) \land \forall y(q(y) \rightarrow r(y, x))$. Quando $d \in \{B, C\}$ si ha $I, \sigma[x/d] \nvDash p(x)$. Se invece $d \in \{A, D, E\}$ si ha $I, \sigma[x/d] \nvDash \forall y(q(y) \rightarrow r(y, x))$: $I, \sigma[x/A, y/C] \nvDash q(y) \rightarrow r(y, x)$, $I, \sigma[x/D, y/D] \nvDash q(y) \rightarrow r(y, x)$, $I, \sigma[x/E, y/C] \nvDash q(y) \rightarrow r(y, x)$.
- **e.** 1 solo la prima formula è un enunciato (nella seconda formula è libera x, nella terza è libera l'ultima occorrenza di u, nella quarta è libera y).
- f. V per il Lemma 8.35 delle dispense.
- g. V per il Teorema 10.13 e il Corollario 7.13 delle dispense.
- h. F per il punto (3) dell'Algoritmo 3.22 delle dispense.
- i. F secondo l'Algoritmo 4.40 delle dispense bisogna costruire un tableau la cui radice è etichettata con $\{F, G, \neg H\}$.
- **j.** F perché nelle applicazioni della regola ($\exists e$) è necessario che la variabile su cui si opera (in questo caso x) non compaia libera nelle ipotesi (nel nostro caso compare libera in $p(x) \to q(a)$); si noti inoltre che $\exists x \, p(x), p(x) \to q(a) \nvDash q(a)$.
- **k.** Se la sostituzione $\{x/t\}$ è ammissibile in F, allora $I, \sigma \models F\{x/t\}$ se e solo se $I, \sigma[x/\sigma(t)] \models F$.
- 1. $\neg s(m(c), c) \land \forall x(a(x) \land \neg u(x, m(x)) \rightarrow s(m(c), x)).$
- 2. Dobbiamo definire un'interpretazione che soddisfi i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2, 3\}, \qquad f^{I}(0) = 1, \quad f^{I}(1) = 2, \quad f^{I}(2) = 3, \quad f^{I}(3) = 1,$$

$$r^{I} = \{(1, 0), (1, 3), (2, 1), (3, 2)\};$$

$$D^{J} = \mathbb{N}, \quad f^{J}(n) = n + 1, \quad r^{J} = \{(n, m) : n > m\}.$$

3. Supponiamo che I sia un'interpretazione normale che soddisfa i tre enunciati, che indichiamo con F, G e H. Il nostro obiettivo è ottenere una contraddizione.

Dato che $I \vDash F$ esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $g^I(d_0) \notin p^I$. Dato che $I \vDash G$ si ha in particolare $I, \sigma[y/d_0] \vDash p(y) \to p(g(y)) \lor \exists z \ f(z) = y$ da cui, dato che $I, \sigma[y/d_0] \vDash p(y)$, segue che $I, \sigma[y/d_0] \vDash p(g(y)) \lor \exists z \ f(z) = y$. Dato che $I, \sigma[y/d_0] \nvDash p(g(y))$ deve essere $I, \sigma[y/d_0] \vDash \exists z \ f(z) = y$. Esiste dunque $d_1 \in D^I$ tale che $(f^I(d_1), d_0) \in =^I$; per la normalità di I, questo significa che $f^I(d_1)$ e d_0 sono lo stesso elemento di D^I . Si ha dunque $f^I(d_1) \in p^I$ e perciò $I, \sigma[w/d_1] \nvDash \neg p(f(w))$, contraddicendo $I \vDash H$.

4. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 11.51 e le Convenzioni 11.19 e 11.21 delle dispense) un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e dalla negazione dell'enunciato a destra.

Indichiamo con F, G, H e K le γ -formule $\forall x \, r(x, a), \, \forall x \, \forall y (\exists z (r(x, z) \land r(y, z)) \rightarrow r(x, y)), \, \forall y (\exists z (r(b, z) \land r(y, z)) \rightarrow r(b, y))$ e $\neg \exists z (r(b, z) \land r(c, z))$. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$F, \exists y \neg r(b, y), \underline{\neg \neg G}$$

$$F, \underline{\exists y \neg r(b, y)}, G$$

$$F, \neg r(b, c), \underline{G}$$

$$F, \neg r(b, c), G, \underline{H}$$

$$F, \neg r(b, c), G, H, \underline{\exists z(r(b, z) \land r(c, z)) \rightarrow r(b, c)}$$

$$F, \neg r(b, c), G, H, \underline{K}$$

$$F, \neg r(b, c), G, H, K \qquad F, \neg r(b, c), G, H, r(b, c)$$

$$F, \neg r(b, c), G, H, K, \underline{\neg r(b, a) \land r(c, a)}$$

$$F, \neg r(b, c), G, H, K, \underline{\neg r(b, a) \land r(c, a)}$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

$$F, \neg r(b, c), G, H, K, \neg r(c, a)$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule; con altre scelte il tableau cresce rapidamente di dimensione.

5. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{\frac{[r(x,f(x))]^2}{\exists u\,r(u,f(x))}\,\frac{\forall y(\exists u\,r(u,y)\to p(y)\vee p(g(y)))}{\exists u\,r(u,f(x))\to p(f(x))\vee p(g(f(x)))}\,\frac{[p(f(x))]^1}{\exists z\,p(z)}\,\frac{[p(g(f(x)))]^1}{\exists z\,p(z)}}{\frac{\exists z\,p(z)}{\exists z\,p(z)}_1}$$

6. Utilizziamo l'Algoritmo 3.18 delle dispense, con le semplificazioni della Nota 3.30:

$$\langle [(p \rightarrow \neg w) \land \neg (q \lor \neg r) \rightarrow \neg (s \lor \neg (t \rightarrow u))] \rangle$$

$$\langle [\neg ((p \rightarrow \neg w) \land \neg (q \lor \neg r)), \neg (s \lor \neg (t \rightarrow u))] \rangle$$

$$\langle [\neg (p \rightarrow \neg w), q \lor \neg r, \neg (s \lor \neg (t \rightarrow u))] \rangle$$

$$\langle [\neg (p \rightarrow \neg w), q, \neg r, \neg (s \lor \neg (t \rightarrow u))] \rangle$$

$$\langle [p, q, \neg r, \neg (s \lor \neg (t \rightarrow u))], [w, q, \neg r, \neg (s \lor \neg (t \rightarrow u))] \rangle$$

$$\langle [p, q, \neg r, \neg s], [p, q, \neg r, t \rightarrow u], [w, q, \neg r, \neg s], [w, q, \neg r, t \rightarrow u] \rangle$$

$$\langle [p, q, \neg r, \neg s], [p, q, \neg r, \neg t, u], [w, q, \neg r, \neg s], [w, q, \neg r, \neg t, u] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(p \vee q \vee \neg r \vee \neg s) \wedge (p \vee q \vee \neg r \vee \neg t \vee u) \wedge (w \vee q \vee \neg r \vee \neg s) \wedge (w \vee q \vee \neg r \vee \neg t \vee u).$$