

properties of injective functions

Canonical name PropertiesOfInjectiveFunctions

Date of creation 2013-03-22 16:40:20 Last modified on 2013-03-22 16:40:20

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 22

Author rspuzio (6075)
Entry type Theorem
Classification msc 03E20
Classification msc 03E99

Theorem 1. Suppose A, B, C are sets and $f: A \to B$, $g: B \to C$ are injective functions. Then the composition $g \circ f$ is an injection.

Theorem 2. Suppose $f: A \to B$ is an injection, and $C \subseteq A$. Then the restriction $f|_C: C \to B$ is an injection.

Proof. Suppose $(f|_C)(x) = (f|_C)(y)$ for some $x, y \in C$. By definition of restriction, f(x) = f(y). Since f is assumed injective this, in turn, implies that x = y. Thus, $f|_C$ is also injective.

Theorem 3. Suppose A, B, C are sets and that the functions $f: A \to B$ and $q: B \to C$ are such that $q \circ f$ is injective. Then f is injective.

Proof. (direct proof) Let $x, y \in A$ be such that f(x) = f(y). Then g(f(x)) = g(f(y)). But as $g \circ f$ is injective, this implies that x = y, hence f is also injective.

Proof. (proof by contradiction) Suppose that f were not injective. Then there would exist $x, y \in A$ such that f(x) = f(y) but $x \neq y$. Composing with g, we would then have g(f(x)) = g(f(y)). However, since $g \circ f$ is assumed injective, this would imply that x = y, which contradicts a previous statement. Hence f must be injective.

Theorem 4. Suppose $f: A \to B$ is an injection. Then, for all $C \subseteq A$, it is the case that $f^{-1}(f(C)) = C$.

Proof. It follows from the definition of f^{-1} that $C \subseteq f^{-1}(f(C))$, whether or not f happens to be injective. Hence, all that need to be shown is that $f^{-1}(f(C)) \subseteq C$. Assume the contrary. Then there would exist $x \in f^{-1}(f(C))$ such that $x \notin C$. By defintion, $x \in f^{-1}(f(C))$ means $f(x) \in f(C)$, so there exists $y \in A$ such that f(x) = f(y). Since f is injective, one would have x = y, which is impossible because y is supposed to belong to C but x is not supposed to belong to C.

¹In this equation, the symbols "f" and " f^{-1} " as applied to sets denote the direct image and the inverse image, respectively

Theorem 5. Suppose $f: A \to B$ is an injection. Then, for all $C, D \subseteq A$, it is the case that $f(C \cap D) = f(C) \cap f(D)$.

Proof. Whether or not f is injective, one has $f(C \cap D) \subseteq f(C) \cap f(D)$; if x belongs to both C and D, then f(x) will clearly belong to both f(C) and f(D). Hence, all that needs to be shown is that $f(C) \cap f(D) \subseteq f(C \cap D)$. Let x be an element of B which belongs to both f(C) and f(D). Then, there exists $y \in C$ such that f(y) = x and $z \in D$ such that f(z) = x. Since f(y) = f(z) and f(z) = x is injective, f(z) = x so f(z) = x.