double notation

· LIKE PEANO NUMBERS IN THAT ITS & LIST REPRESENTATION OF NUMBERS

· LIMITED TO THREE SYMBOLF

760

THE NUMBER ZERO (0)

THE "STARTING POINT"

L. D

"DOUBLE"

- DOUBLES WHATS IN PARENTHESES

Same as 2(x)

LO "DOUBLE PLUS 1"

- DOUBLES WHATS IN PARENTHESES THEN

ADDS ONE

SIME AS 2(x)+1

NUM	DOUBLE NOTATION	MATHE MATICAL PROOF
0	zero	0
1	(zero) DP1	2(0)+1
2	((200) DP1)D	2(2(0)+1)
3	((2e10) DP1) DP1	2(2(0)+1)+1
Ч	(((zero)DP1)D)D	2(2(0)+1))
5	(((zeo) DP1) D)DP1	2(2(2(0)+1))+1
6	(((zero) DP1) DP1)D	2(2(2(0)+7)+1)
7	(((zero) DP1) DP1) DP1	

LOOKS ALOT LIKE BINARY
D=0; DP1=1

6 → (((2CN) OP1) OP1) > 0110.

ADDITION

(D(DP1(zero))) + (DP1(DP1(DP1(zero))))

- · LETS BREAK THIS DOWN
- · FOCUS ON THE OUTER MOST TERMS FIRST
- . THREE COMBINATIONS OF OUTER TERMS
 - L D + D
 - U D + DP1
 - 4 DP1 + DP1

D + D

· DOUBLE MEASUS 2× SOMETHING

D(SOMETHING) + D(SOMETHING)

2(x) + 2(x)

2(2(x))

D(D(SOMETHING)

· BASIC PROCESS IS AS FOLLOWS

TRANSLATE DOUBLE NOTATION INTO ITS

MATHEMATIC COUNTERPART

USE BASIC MATH TO TURN TWO TERMS

INTO ONE WE CAN USE

INTO DOUBLE NOTATION

D + DP1--

D(SOMETHING) + PPT (SOMETHING)

2(x) + 2(x)+1

4(x)+1

2(2x)+1

D(DP1 (SOMETHING))

DP1+DP1

DP1 (SOMETHING) + DP1 (SOMETHING)

2(x)+1 + 2(x)+1

4(x)+2

2(2(x)+1)

D(DP1 (SOMETHING))

FULL ADDITION—

- · WORK LEFT TO RIGHT DOING THE SMALLER ADDITIONS AND CARRYING
- WHEN ADDING TO ZERO, USE THE IDENTITY PROPERTY
 - L. D+zen = D
 - DP1+zen=DP1-