BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE – PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2023-2024 (COURSE HANDOUT: PART-II)

Date: 09/01/2024

In addition to Part-I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME F323

Course Title : ENERGY STORAGE TECHNOLOGIES

Instructor-in-charge : R. PARAMESHWARAN

1. Course Description

Introduction, necessity of energy storage, classification, principles, challenges, comparison and applications of energy storage technologies. Mechanical energy storage: Flywheel, compressed air and pumped hydro energy storage. Thermal energy storage: Sensible heat, cryogenic storage, phase change materials, latent heat enthalpy, charging and discharging, thermochemical energy storage, sorption and desorption reactions. Electrochemical energy storage: Lead-acid batteries, ionic batteries, fuel cells, flow batteries, super- capacitors. Chemical energy storage: Hydrogen storage methods, power-to-gas and synthetic fuels. Superconducting and hybrid energy storage.

2. Scope and Objective

This course is intended to provide students an introduction to the energy storage technologies with an extensive understanding of the scientific aspects that reinforces the operation of systems/devices based on such technologies. This course emphasizes the need for the state-of-the-art methods for energy storage in order to provide innovative solutions to the challenges related to the energy generation, distribution, demand and its balance. More specifically, this course covers the main topics that include mechanical, thermal, electrochemical, chemical, hydrogen storage, superconducting and hybrid energy storage technologies, and their applications. The interactive methods to evaluate the performance attributes of the energy storage systems and their interactions with real world applications will be largely emphasized from the industrial perspectives.

3. Text Books:

- T1. A.R. Pendse, Energy Storage Science & Technology, SBS Publishers & Distributors Pvt. Ltd., New Delhi, 2011.
- T2: Odne Stokke Burheim, Engineering Energy Storage, Academic Press, 1st Edition, 2017.

Reference Books:

- R1. S. Kalaiselvam and R. Parameshwaran, Thermal Energy Storage Technologies for Sustainability Systems Design, Assessment and Applications, Academic Press, 1st Edition, 2014.
- R2. Yves Brunet, Energy Storage, Wiley-ISTE, 1st edition. 2013.
- R3. Umakanta Sahoo, Energy Storage, Wiley-Scrivener; 1st edition, 2021.

4. Course Plan

Lecture No.	Learning objectives	Chapter			
	Introduction to energy	Energy scenario, energy consumption, need for energy	T1: 1		
1-3	storage technologies	storage, technology perspectives, basic principles,	T2: 1		
	and their applications	R1: 1			
4-6	Classification of	Mechanical, thermal, electrochemical, chemical,	T1: 2		
	energy storage	superconducting and hybrid energy storage, comparison,	T2: 1		
	technologies	merits and challenges.	R1: 2		
7	Show	case of Energy Storage Devices/Prototypes	Experiential Learning		
,	onon-case of Energy otologe Devices/110totypes				
8-11	Mechanical energy	Fundamentals of flywheel, compressed air and pumped hydro	T1: 6		
	storage	energy storage, types, mechanisms and design, state-of-the-	T2: 3, 5		
	Storage	art developments, application perspectives.	R1: 2		
12-16	Thermal energy	Basics of sensible, latent, and thermochemical energy	T1: 5		
	storage (TES)	storage, materials and properties, mechanisms and reactions,	T2: 4		
	Storuge (TLO)	design aspects, state-of-the-art developments.	R1: 3-7		
17-19	Cryogenic energy	Types of cryogens and properties, liquid air/liquid nitrogen	T1, T2: 5		
	storage	and cryo-hydrogen energy storage, cycle efficiency, merits	R1: 2		
		and challenges.	R2: 5		
20-21	Field Visits				
20 21					
22-25	Electrochemical	Operating principles of lead-acid batteries, ionic batteries,	T1: 8		
	energy storage	flow batteries, types, reaction kinetics, electrode materials,	T2: 6, 7		
		catalysis, crucial factors, applications.	R2: 8, 9		
	Supercapacitors	Principle of operation, electric double layer, sizing	T1: 7		
26-27		supercapacitor, power interfaces, pseudo- and hybrid	T2: 9		
		supercapacitors, applications.	R2: 9		
28-31	Fuel Cells	Principles, types and functional aspects of fuel cells, direct	T1, T2: 8		
		energy conversion, comparison and applications.	R2: 6, 7		
32-33		Technical Seminars/Guest Lectures	Experiential		
J2-JJ		Teemines Seminary Succession 2000	Learning		
	Chemical energy	Hydrogen synthesis and storage methods, materials for	T1: 5		
34-36	storage	hydrogen storage, metal hydrides, metal organic frameworks	T2: 8		
		(MOFs), power-to-gas storage, synthetic fuels.	R2: 5		
37-38	Superconducting	Concept of superconductivity, magnetic energy storage,	T1: 6		
	energy storage	superconducting materials, benefits, challenges and	R1: 2		
		applications.	R3: 3		
39-40		Power plant operations, renewable energy integration,	R3: 3		
	Hybrid energy storage	power grids, challenges.	Research		
			Publications		
41-42	Trends in energy	Across Industry, transport, commercial and building sectors,	Research		
	storage technologies	future perspectives	Publications		
ليسيا		y be organized as part of course deliverables			

^{*}Guest lectures by industry experts may be organized as part of course deliverables.

5. Evaluation Scheme

Evaluation Component	Duration (minute)	Weightage (%)	Date & Time	Nature of Component
Mid-Semester Test	90	25	15/03 - 11.00 - 12.30PM	Closed Book
In-Class Self-Assessment Test (IC-SAT)	10	15	Best 6 out of 8	
Assignments (In-class and Take Home)		5	Will be conducted throughout the semester	Open Book (Continuous Evaluation)
Mini Project* (Reports & Presentations)		10	Will be announced in the Class	
Comprehensive Exam#	180	45	16/05 AN	Closed Book

NOTE:

- * Students shall submit project reports on a **topic** of their choice that **aligns** with the **course description** and **course plan**. The project reports (**softcopy**) not exceeding ten pages (A4 size) shall be submitted as per the schedule (to be announced in the Class). The reports will be evaluated based on the problem formulation, quality of the work, demonstration of the work (in the form of short videos and interactive presentations) and Turnitin/DrillBit report (similarity index).
- **6. Chamber Consultancy Hour:** To be announced in the class room.
- **7. Notices:** All notices concerning this course shall be displayed on the CMS (the Institute's web based course management system). Besides this, students are advised to visit regularly CMS for latest updates.
- **8. Make-up Policy:** Make-up shall be granted only to the genuine cases with prior confirmation. Request for the make-up tests, duly signed by the students, should reach the under signed well before the scheduled test.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge ME F323