Kunen note

sy

2020年2月4日

目次

0.1 完全性定理

定理 0.1.1 (補題 2.12.3). 補題 2.12.2 から定理 2.12.1 が得られる.

略証. 健全性定理より $\Sigma \vdash \varphi$ なら $\Sigma \models \varphi$ となる. $CON_{\models}(\Sigma)$ であれば、 $\mathfrak{A} \models \Sigma$ なるモデル \mathfrak{A} が取れるが、 $\Sigma \vdash \varphi$ ならば $\mathfrak{A} \models \varphi$ となる. 従って $\mathfrak{A} \not\models \neg \varphi$ となる. 従って $\Sigma \not\models \neg \varphi$ となる. 以上より

$$CON_{\models}(\Sigma) \Longrightarrow CON_{\vdash}(\Sigma)$$

となる. $\Sigma \models \varphi$ ならば $\Sigma \cup \{ \neg \varphi \}$ を充足するモデルは存在しない. つまり $\neg \mathrm{CON}_{\models}(\Sigma \cup \{ \neg \varphi \})$. すなわち $\Sigma \cup \{ \neg \varphi \} \vdash \bot$.

定理 0.1.2 (補題 2.12.6). $\tau \in CT_0(\mathcal{L})$ のとき $\mathrm{val}_{\mathfrak{U}_0}(\tau) \equiv \tau$.

略証. $\tau \in \mathcal{F}_0$ なら $\operatorname{val}_{\mathfrak{U}_0}(\tau) \equiv \tau_{\mathfrak{U}_0} \equiv \tau$. いま $\tau_1, \cdots, \tau_n \in CT_0(\mathcal{L})$ に対して

$$\operatorname{val}_{\mathfrak{A}_0}(\tau_i) \equiv \tau_i, \quad (i = 1, \dots, n)$$

と仮定すると,

$$\begin{aligned} \operatorname{val}_{\mathfrak{A}_0}(f\tau_1\cdots\tau_n) &\equiv f_{\mathfrak{A}_0}(\operatorname{val}_{\mathfrak{A}_0}(\tau_1),\cdots,\operatorname{val}_{\mathfrak{A}_0}(\tau_n)) \\ &\equiv f_{\mathfrak{A}_0}(\tau_1,\cdots,\tau_n) \\ &\equiv f\tau_1\cdots\tau_n \end{aligned}$$

となる.

定理 0.1.3 (定義 2.12.9 の正当性の検証). $\operatorname{val}_{\mathfrak{A}}()$ は商写像であるから同地類の代表云々は関係ない. 問題は $[\tau_i] \equiv [\sigma_i]$ のとき $f\tau_1 \cdots \tau_n \sim f\sigma_1 \cdots \sigma_n$ となり, $\Sigma \vdash p\tau_1 \cdots \tau_n \iff \Sigma \vdash p\sigma_1 \cdots \sigma_n$ となるか.

つまり $f_{\mathfrak{A}}$ が写像であるということを示すということ.定義 2.12.9 では商写像 $\mathrm{val}_{\mathfrak{A}}(\tau) \equiv [\tau]$ から始めて, $f \in \mathcal{F}_n$ の解釈を

$$f_{\mathfrak{A}}:([\tau_1],\cdots,[\tau_n])\longmapsto \operatorname{val}_{\mathfrak{A}}(f\tau_1\cdots\tau_n)\equiv [f\tau_1\cdots\tau_n]$$

と定めている.

定理 0.1.4 (補題 2.12.10). 語彙 \mathcal{L} の文の集合 Σ を考える. ただし $\mathcal{F}_0 \neq \emptyset$ と仮定する. $\mathfrak{A} = \mathfrak{C}\mathfrak{T}(\mathcal{L}, \Sigma)$ としよう. このとき

(1) \mathcal{L} の閉項 τ に対して $val_{\mathfrak{U}}(\tau) \equiv [\tau]$.

略証. (1) について、 $val_{\mathfrak{A}}()$ はもともとそのように設定されているのでこの問いはナンセンス.