

What is Facial Recognition?

- The ability to automatically attach an individual's identity to a face
- It's a task that human abilities are absolutely brilliant, and even some animals, dogs, crows, sheep can do it!
- Can machines do it?

Facial Recognition the Early Days

- OpenCV has 3 facial recognition libraries, all of which operate similarly.
- They take a dataset of labelled faces, and compute features to represent the images. Their classifiers then utilise these features to classify.
- **Eigenfaces (1987)** createEigenFaceRecognizer()
- Fisherfaces (1997) createFisherFaceRecognizer()
- Local Binary Patterns Histograms (1996)createLBPHFaceRecognizer()

Facial Recognition using Deep Learning

- Siamese Networks can be used for Facial Recognition.
- Let's take a look at two popular Deep Learning Facial Recognition Networks:
 - VGGFace
 - FaceNet

A look at FaceNet

- FaceNet was first introduced by Google in 2015
- It transforms a face into a 128 dimension Euclidian space embedding
- Uses the triplet loss function

3 Dim in euclidian space

Triplet Loss Training

https://arxiv.org/pdf/1503.03832.pdf

AIS

A look at FaceNet

One shot learning using FaceNet

A look at VGGFace

- VGGFace was introduced by Oxford University Researchers Omkar M. Parkhi, Andrea Vedaldi and Andrew Zisserman in their paper titled 'Deep Face Recognition) in 2015
- They used Triplet Loss and an embedding vector of 2,622 or 1,024 (depending on the configuration) with input image size being 224 x 224

Figure 1: Example images from our dataset for six identities.

https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf

A look at VGGFace

Dataset	Identities	Images	
LFW	5,749	13,233	
WDRef [4]	2,995	99,773	
CelebFaces [25]	10,177	202,599	

Dataset	Identities	Images	
Ours	2,622	2.6M	
FaceBook [29]	4,030	4.4M	
Google [[8M	200M	

Table 1: **Dataset comparisons:** Our dataset has the largest collection of face images outside industrial datasets by Goole, Facebook, or Baidu, which are not publicly available.

VGGFace Performance

No.	Method	Images	Networks	Acc.	
1	Fisher Vector Faces [21]	18	-	93.10	
2	DeepFace [29]	4M	3	97.35	
3	Fusion [11]	500M	5	98.37	
4	DeepID-2,3		200	99.47	
5	FaceNet [[11]]	200M 1		98.87	
6	FaceNet [+ Alignment	200M	1	99.63	
7	Ours	2.6M	1	98.95	

Table 5: **LFW unrestricted setting.** Left: we achieve comparable results to the state of the art whilst requiring less data (than DeepFace and FaceNet) and using a simpler network architecture (than DeepID-2,3). Note, DeepID3 results are for the test set with label errors corrected – which has not been done by any other method. Right: ROC curves.

LFW - Labelled Faces in the Wild

No.	Method	Images	Networks	100%- EER	Acc.
1	Video Fisher Vector Faces [-	: 	87.7	83.8
2	DeepFace [29]	4M	1	91.4	91.4
3	DeepID-2,2+,3		200	-	93.2
4	FaceNet [□] + Alignment	200M	1	-	95.1
5	Ours ($K = 100$)	2.6M	1	92.8	91.6
6	Ours ($K = 100$) + Embedding learning	2.6M	1	97.4	97.3

Table 6: Results on the Youtube Faces Dataset, unrestricted setting. The value of K indicates the number of faces used to represent each video.

Next...

Face Similarity, Recognition, VGG Face and FaceNet