Chapitre 1: l'ensemble \mathbb{R}^n

Applications linéaires de \mathbb{R}^p dans \mathbb{R}^n .

Dans ce chapitre (module), vous apprendrez à faire des opérations sur les vecteurs, à déterminer si une famille donnée de vecteurs est libre ou liée. Vous apprendrez aussi à calculer l'image et le noyau d'une application linéaire de \mathbb{R}^p dans \mathbb{R}^n .

1 Espaces vectoriels

1.1 Introduction

1. Le Panier de la ménagère: Supposons que pour remplir son panier, une mère de famille achète du pain, de l'huile et de la viande. Le pain est vendu à l'unité, l'huile en litres et la viande en grammes. Chaque panier peut être caractérisé par trois nombres x₁, x₂, x₃ où x₁ est le nombre de pains, x₂ le nombre de litres d'huile et x₃ celui de kilogrammes de viande. On peut donc associer tout panier à un triplet (x₁, x₂, x₃). Si p₁ est le prix (en dinars) d'un pain, p₂ le prix d'un litre d'huile et p₃ le prix d'un kilo de viande, le triplet (p₁, p₂, p₃) est le vecteur prix. A tout panier x = (x₁, x₂, x₃) on peut associer son prix:

$$p(x) = p_1 x_1 + p_2 x_2 + p_3 x_3$$

2. La Statistique: Lors d'un enquête de consommation de deux biens X et Y, on relève des observations sur n années:

Pour $i=1,...,n, x_i$ représente la consommation de X et y_i celle de Y au cours de la ième année. Les n-uplets $(x_1,x_2,...,x_n)$ et $(y_1,y_2,...,y_n)$ sont les vecteurs de consommation de X et Y.

1.2 Définitions

Nous allons définir d'abord les espaces vectoriels dans le cas de \mathbb{R}^n puis on généralisera.

Dans la suite n désigne un entier supérieur ou égal à 1.

Définition 1 \mathbb{R}^n est l'ensemble des n-uplets x, appelés aussi **vecteurs**, définis par

$$x = (x_1, x_2, ..., x_n)$$

où pour i=1,...,n : $x_i \in \mathbb{R}$, x_i est appelée la $i^{\grave{e}me}$ composante (ou coordonnée) de x

Exemple 1 x = (1, -1, 0, 2) est un vecteur de \mathbb{R}^4 .

Exemple 2

$$\mathbb{R}^2 = \{ (x_1, x_2) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R} \}$$

(0,0) est le vecteur nul de \mathbb{R}^2 .

$$\mathbb{R}^3 = \{(x_1, x_2, x_3) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}\$$

(0,0,0) est le vecteur nul de \mathbb{R}^3 .

Remarque: Un nombre réel est appelé scalaire pour le distinguer des vecteurs.

1.3 Opérations

On définit une opération interne (addition) et une opération externe (multiplication par un scalaire) sur \mathbb{R}^n :

1. Addition de deux vecteurs: pour x, y dans \mathbb{R}^n :

$$x + y = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

2. Multiplication d'un vecteur par un scalaire: pour $x \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$:

$$\lambda x = \lambda(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

On note le vecteur nul (0,0,...,0) par $0_{\mathbb{R}^n}$ ou simplement par 0 en l'absence de confusion:

1.3.1 Propriétés de l'addition:

Prop 1 pour tous vecteurs x, y, z de \mathbb{R}^n :

$$x+(y+z)=(x+y)+z$$
 associative $x+y=y+x$ commutative $x+0=0+x$ $0=(0,...,0)$ élement neutre $x+(-x)=0$ -x symétrique de x

1.3.2 Propriétés de la multiplication externe:

Prop 2 pour tous vecteurs x, y de \mathbb{R}^n , pour tous scalaires λ, μ de \mathbb{R} :

$$\lambda (\mu x) = (\lambda \mu) x \qquad (\lambda + \mu) x = \lambda x + \mu x$$

$$\lambda (x + y) = \lambda x + \lambda y \qquad 1x = x$$

Définition 2 On dit que \mathbb{R}^n muni de ces deux opérations (vérifiant ces propriétés) est un espace vectoriel réel. Plus généralement, un ensemble non vide E muni d'une addition et d'une multiplication externe qui vérifient ces propriétés est- appelé espace vectoriel.

1.4 Combinaison linéaire de vecteurs

1.4.1 Définition

Définition 3 Pour tous vecteurs $x_1 = (x_{11}, x_{12}, ..., x_{1n})$ et $x_2 = (x_{21}, x_{22}, ..., x_{2n})$ de \mathbb{R}^n , on appelle combinaison linéaire de deux vecteurs x_1 et x_2 , tout vecteur de la forme $\lambda_1 x_1 + \lambda_2 x_2$ où λ_1 et λ_2 sont des scalaires réels. Plus généralement si $x_1, x_2, ..., x_p$ sont des vecteurs de \mathbb{R}^n : chaque $x_i = (x_{i1}, x_{i2}, ..., x_{in})$, on appelle combinaison linéaire de ces p vecteurs tout vecteur de la forme:

$$\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_p x_p$$

où $\lambda_1, ..., \lambda_p$ sont des scalaires réels.

Exemple 3 dans \mathbb{R}^3 :

$$x = (1,0,2)$$
 $y = (2,1,-1)$

et alors

$$2x - y = 2(1,0,2) - (2,1,-1) = (0,-1,5)$$

Exemple 4 dans \mathbb{R}^2 , tout vecteur $x = (x_1, x_2)$ peut s'écrire comme comme combinaison linéaire de $e_1 = (1, 0)$ et $e_2 = (0, 1)$:

$$x = (x_1, x_2) = (x_1, 0) + (0, x_2) = x_1e_1 + x_2e_2$$

1.4.2 Bases canoniques

Base canonique de \mathbb{R}^3 : soient les vecteurs $e_1=(1,0,0),\ e_2=(0,1,0)$ et $e_3=(0,0,1)$. Tout vecteur de \mathbb{R}^3 peut s'écrire

$$x = (x_1, x_2, x_3) = (x_1, 0, 0) + (0, x_2, 0) + (0, 0, x_3) = x_1e_1 + x_2e_2 + x_3e_3$$

On dit que la famille de vecteurs $\mathcal{B} = (e_1, e_2, e_3)$ est la base canonique de \mathbb{R}^3 , les réels $x_1, x_2, ...x_3$ sont les coordonnées de x dans la base \mathcal{B} .

Plus généralement, dans \mathbb{R}^n , soient les vecteurs $e_1, e_2, ..., e_n$ définis par

$$e_1 = (1, 0, ..., 0)$$

$$e_2 = (0, 1, 0, ..., 0)$$

$$\vdots$$

$$e_i = (0, ..., 0, 1, 0, ..., 0)$$

$$\vdots$$

$$e_n = (0, 0, ..., 0, 1)$$

Toutes les composantes de e_i sont nulles sauf la ième qui est égale à 1.

Alors tout vecteur $x = (x_1, x_2, ..., x_n)$ de \mathbb{R}^n s'écrit comme combinaison linéaire des n vecteurs e_i :

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n = \sum_{i=1}^{n} x_ie_i$$

On dit que la famille de vecteurs $\mathcal{B} = (e_1, e_2, ..., e_n)$ est la base canonique de \mathbb{R}^n , les réels $x_1, x_2, ...x_n$ sont les coordonnées de x dans la base \mathcal{B} .

1.4.3 Familles libres, Familles liées

Définition 4 Une famille finie $(u_1, u_2, ..., u_p)$ de vecteurs de \mathbb{R}^n est libre si et seulement si

$$\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_p u_p = 0_{\mathbb{R}^n} \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_p = 0$$

On dit aussi que les vecteurs $u_1, u_2, ..., u_p$ sont linéairement indépendants.

Remarque: $0_{\mathbb{R}^n}$ est le vecteur nul de \mathbb{R}^n :

$$0_{\mathbb{R}^n} = (0, 0, ..., 0)$$

Exemple 5 base canonique de \mathbb{R}^2 :

 $\mathcal{B}=(e_1,e_2)$ où $e_1=(1,0)$ et $e_2=(0,1)$ est une famille libre de \mathbb{R}^2 . En effet, cherchons λ_1,λ_2 tels que

$$\lambda_1 e_1 + \lambda_2 e_2 = 0_{\mathbb{R}^2} = (0,0)$$

 $mais\ alors$

$$\lambda_1(1,0) + \lambda_2(0,1) = (0,0) \iff (\lambda_1,\lambda_2) = (0,0)$$

donc l'unique solution est $\lambda_1 = 0, \lambda_2 = 0$.

Exercice 1 Montrer que la base canonique de \mathbb{R}^3 est une famille libre. Montrer de même que la base canonique de \mathbb{R}^n est libre

Solution: $\mathcal{B} = (e_1, e_2, e_3)$ avec

$$e_1 = (1, 0, 0)$$
 $e_2 = (0, 1, 0)$ $e_3 = (0, 0, 1)$

Cherchons $\lambda_1, \lambda_2, \lambda_3$ tels que

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0_{\mathbb{R}^3} = (0, 0, 0)$$

c'est-à-dire

$$(\lambda_1, 0, 0) + (0, \lambda_2, 0) + (0, 0, \lambda_3) = (0, 0, 0)$$

donc $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0.$

Une famille qui n'est pas libre est dite liée, plus exactement:

Définition 5 Une famille finie $(u_1, u_2, ..., u_p)$ de vecteurs de \mathbb{R}^n est liée s'il existe p réels $\lambda_1, \lambda_2, ..., \lambda_p$ non tous nuls tels que

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_p u_p = 0_{\mathbb{R}^n}$$

On dit aussi que les vecteurs $u_1, u_2, ..., u_p$ sont linéairement dépendants.

Exemple 6

$$u_1 = (1, -2)$$
 $u_2 = (-2, 4)$

est une famille liée puisque $2u_1 + u_2 = 0_{\mathbb{R}^2}$.

1.4.4 Cas particuliers

- 1. Famille composée d'un seul vecteur: Soit u un vecteur de \mathbb{R}^n . La famille (u) est libre si et seulement si $u \neq 0_{\mathbb{R}^n}$. En effet, puisque (u) libre, l'équation $\lambda u = 0$ n'admet que la solution $\lambda = 0$ donc nécessairement $u \neq 0_{\mathbb{R}^n}$. Au contraire (u) liée si et seulement $u = 0_{\mathbb{R}^n}$
- 2. Famille de deux vecteurs:

$$(u_1, u_2)$$
 est liée $\iff \exists \lambda \in \mathbb{R} : u_2 = \lambda u_1$

On dit dans ce cas que u_1 et u_2 sont colinéaires. D'autre part

 (u_1, u_2) est libre \iff leurs composantes ne sont pas proportionnelles

Exemple 7 Dans \mathbb{R}^2 : $u_1 = (1,2)$ et $u_2 = (2,-1)$ forment une famille libre. En effet la résolution de l'équation

$$\lambda_1 u_1 + \lambda_2 u_2 = 0_{\mathbb{R}^2} \iff (\lambda_1, 2\lambda_1) + (2\lambda_2, -\lambda_2) = (0, 0)$$

c'est-à-dire

$$\begin{cases} \lambda_1 + 2\lambda_2 &= 0 \\ 2\lambda_1 - \lambda_2 &= 0 \end{cases} \iff \begin{cases} \lambda_1 &= -2\lambda_2 \\ -5\lambda_2 &= 0 \end{cases} \iff \lambda_1 = \lambda_2 = 0$$

Exemple 8 Dans \mathbb{R}^3 : $u_1 = (1,0,-3)$ et $u_2 = (-2,0,6)$ forment une famille liée:

$$2u_1 + u_2 = 0_{\mathbb{R}^3}$$

3. Famille de p vecteurs: $p \geq 3$: Pour une famille $(u_1, u_2, ..., u_p)$ de vecteurs de \mathbb{R}^n , on doit résoudre le système d'équations

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n = 0_{\mathbb{R}^n}$$

d'inconnues $\lambda_1,\lambda_2,...,\lambda_p.$ Si l'unique solution de ce système est la solution triviale

$$\lambda_1 = \lambda_2 = \dots = \lambda_p = 0$$

alors $(u_1, u_2, ..., u_p)$ est une famille libre. Sinon, s'il existe des réels $\lambda_1, \lambda_2, ..., \lambda_p$ non tous nuls solution de ce système alors $(u_1, u_2, ..., u_p)$ est une famille liée.

Exemple 9 dans \mathbb{R}^3 , $u_1 = (1,0,2)$, $u_2 = (0,1,-1)$, $u_3 = (1,1,1)$. On résoud le système

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_{3p} = 0_{\mathbb{R}^3} \Longleftrightarrow \left\{ \begin{array}{ccc} \lambda_1 & +\lambda_3 & = 0 \\ & \lambda_2 & +\lambda_3 & = 0 \\ 2\lambda_1 & -\lambda_2 & +\lambda_3 & = 0 \end{array} \right.$$

donc

$$\lambda_1 = \lambda_2 = -\lambda_3$$

et la famille est liée: $u_1 + u_2 - u_3 = 0$ (on a pris $\lambda_1 = 1$)

1.4.5 Propriétés

Les familles libres et liées vérifient les propriétés suivantes:

Prop 3:

- 1. Toute famille contenant le vecteur nul est liée.
- 2. Toute famille contenant deux vecteurs identiques est liée.
- 3. Toute famille contenant une famille liée est liée.
- 4. Toute sous-famille d'une famille libre est libre.
- 5. Dans \mathbb{R}^n , toute famille de n+1 vecteurs est liée.

1.5 Sous-espaces vectoriels

Définition 6 Une partie non vide F de \mathbb{R}^n est un sous-espace vectorie de \mathbb{R}^n si $(F, +, \cdot)$ est lui-même un espace vectoriel.

Concrètement, F est un sous-espace vectoriel de \mathbb{R}^n si-et-seulement-si F est stable par combinaisons linéaires:

$$\forall (u, v) \in F \times F \quad \forall (\lambda, \mu) \in \mathbb{R}^2 : \quad (\lambda \cdot u + \mu \cdot v) \in F$$

Exemple 10 Exemples: le vecteur nul 0_E et E sont deux sev de E.

Définition 7 On appelle sous -espace vectoriel engendré par les p vecteurs $x_1, x_2, ..., x_p$, l'ensemble des combinaisons linéaires de ces p vecteurs et l'on note cet ensemble V ect $(x_1, x_2, ..., x_p)$.

Nous allons présenter les exemples fondamentaux de sous-espaces vectoriels engendrés.

1.5.1 Droite vectorielle de \mathbb{R}^n :

Définition 8 Soit u un vecteur non nul de \mathbb{R}^n , on appelle droite vectorielle \mathcal{D} le sous-espace vectoriel engendré par u:

$$\mathcal{D} = Vect(u) = \{\lambda u : \lambda \in \mathbb{R}\}\$$

c'est l'ensemble des vecteurs colinéaires à u.

Exemple 11 dans \mathbb{R}^2 , soit u = (1,2) et un vecteur (x,y) est colinéaire à u si

$$(x,y) = \lambda(2,1) \Longleftrightarrow \begin{cases} x = \lambda \\ y = 2\lambda \end{cases} \Longleftrightarrow y = 2x$$

et "y = 2x" s'appelle une équation de la droite \mathcal{D} :

$$Vect(u) = \{(x, y) : y - 2x = 0\}$$

Exercice 2 Soit u = (-b, a) un vecteur non nul de \mathbb{R}^2 . Déterminer une équation de Vect(u).

Solution: (x, y) est colinéaire à u si

$$(x,y) = \lambda (-b,a) \iff \begin{cases} x = -\lambda b \\ y = \lambda a \end{cases} \iff \begin{cases} ax = -\lambda ab \\ by = \lambda ab \end{cases} \iff ax + by = 0$$

donc Vect(u) est la droite d'équation: ax + by = 0, elle est engendré par le vecteur (-b, a).

1.5.2 Plan vectoriel de \mathbb{R}^n :

Définition 9 Soient u et v deux vecteurs de \mathbb{R}^n non colinéaires, on appelle plan vectoriel de \mathbb{R}^n le sous-espace vectoriel \mathcal{P} enqendré par u et v: $\mathcal{P} = Vect(u, v)$

Exemple 12 dans \mathbb{R}^3 , soient u = (-1, 1, 0) et v = (-1, 0, 1) alors un vecteur (x, y, z) appartient au plan $\mathcal{P} = Vect(u, v)$ si et seulement si il est combinaison linéaire de ces deux vecteurs:

$$(x, y, z) = \lambda (-1, 1, 0) + \mu (-1, 0, 1) \Longleftrightarrow \begin{cases} x = -\lambda - \mu \\ y = \lambda \\ z = \mu \end{cases} \Longleftrightarrow x + y + z = 0$$

et x + y + z = 0 est une équation du plan vectoriel \mathcal{P} .

Plus généralement, on a la propriété suivante: Si a,b,c sont des réels non tous nuls, alors l'ensemble

$$\mathcal{P} = \{(x, y, z) : ax + by + cz = 0\}$$

est un plan vectoriel, il est engendré par exemple par $\left(-\frac{b}{a},1,0\right)$ et $\left(-\frac{c}{a},0,1\right)$ (si $a\neq 0$).

1.6 Bases et dimension

1.6.1 Familles génératrices

Définition 10 Une famille $\mathcal{U} = (u_1, u_2, ..., u_p)$ de vecteurs de \mathbb{R}^n est une famille génératrice de \mathbb{R}^n si et seulement si tout vecteur de \mathbb{R}^n est combinaison linéaire des vecteurs de \mathcal{U} . On dit que \mathcal{U} engendre \mathbb{R}^n .

Exemple 13 La base canonique de \mathbb{R}^2 , $\mathcal{B} = (e_1, e_2)$ est une famille génératrice de \mathbb{R}^2 . $\forall x = (x_1, x_2) \in \mathbb{R}^2$:

$$x = x_1 e_1 + x_2 e_2$$

. x s'écrit comme combinaison linéaire de e_1 et e_2 .

Exercice 3 Les familles suivantes sont-elles génératrices

- 1. Dans \mathbb{R}^2 : $\mathcal{U} = (u_1, u_2)$ avec $u_1 = (1, 1)$ et $u_2 = (2, 1)$.
- 2. Dans \mathbb{R}^2 : $\mathcal{U} = (u_1, u_2)$ avec $u_1 = (2, -1)$, $u_2 = (-4, 2)$
- 3. Dans \mathbb{R}^2 : $\mathcal{U} = (u_1, u_2, u_3)$ avec $u_1 = (2, 1)$, $u_2 = (0, 1)$ et $u_3 = (2, 2)$
- 4. Dans \mathbb{R}^3 : $\mathcal{U} = (u_1, u_2)$ avec $u_1 = (2, 1, 0)$ et $u_2 = (0, 1, 0)$
- 5. Dans \mathbb{R}^3 : $\mathcal{U} = (u_1, u_2, u_3)$ avec $u_1 = (2, 1, 0)$, $u_2 = (0, 1, 0)$ et $u_3 = (2, 2, 0)$.

Solution:

1. Soit $x=(x_1,x_2)$. A-t-on $x=\lambda_1u_1+\lambda_2u_2$? Si $\mathcal{B}=(e_1,e_2)$ est la base canonique de \mathbb{R}^2 ,

$$x = x_1 e_1 + x_2 e_2 \tag{*}$$

D'autre part $u_1 = (1,1)$ et $u_2 = (2,1)$ c'est-à-dire

$$\begin{cases} u_1 = e_1 + e_2 & (1) \\ u_2 = 2e_1 + e_2 & (2) \end{cases}$$

mais (2) - (1) entraine $e_1 = u_2 - u_1$ et donc $e_2 = e_1 - u_1 = u_2 - 2u_1$. On peut remplacer e_1 et e_2 en fonction de u_1 et u_2 dans (*):

$$x = x_1e_1 + x_2e_2 = x_1(u_2 - u_1) + x_2(u_2 - 2u_1)$$

et finalement

$$x = -(x_1 + 2x_2) u_1 + (x_1 + x_2) u_2$$

et donc tout élément x de \mathbb{R}^2 s'écrit comme combinaison linéaire de u_1 et u_2 , la famille (u_1, u_2) est donc génératrice.

2. $u_1=(2,-1)$, $u_2=(-4,2)$, remarquons que $u_2=-2u_1$ c'est à dire qu'ils sont colinéaires (sur la même droite vectorielle) donc tout vecteur x qui n'est pas sur cette droite n'est pas combinaison linéaire de u_1 et u_2 . Considérez par exemple $e_1=(1,0)$ alors on ne peut trouver λ_1 et λ_2 tels que

$$e_1 = \lambda_1 u_1 + \lambda_2 u_2 \iff (1,0) = \lambda_1 (2,-1) + \lambda_2 (-4,2)$$

donc

$$\begin{cases} 2\lambda_1 - 4\lambda_2 &= 1 & (1) \\ -\lambda_1 + 2\lambda_2 &= 0 & (2) \end{cases}$$

mais alors $2(2) + (1) \Longrightarrow 0 = 1$ absurde.

- 3. Dans \mathbb{R}^2 : $\mathcal{U}=(u_1,u_2,u_3)$ avec $u_1=(2,1)$, $u_2=(0,1)$ et $u_3=(2,2)$. C'est une famille génératrice.
- 4. Dans \mathbb{R}^3 : $\mathcal{U} = (u_1, u_2)$ avec $u_1 = (2, 1, 0)$ et $u_2 = (0, 1, 0)$. \mathcal{U} n'est pas une famille génératrice, par exemple $e_3 = (0, 0, 1)$ ne s'écrit pas comme combinaison linéaire des vecteurs de \mathcal{U} .
- 5. Dans \mathbb{R}^3 : $\mathcal{U} = (u_1, u_2, u_3)$ avec $u_1 = (2, 1, 0)$, $u_2 = (0, 1, 0)$ et $u_3 = (2, 2, 0)$. Même remarque que dans 4.

Nous avons les propriétés suivantes:

Prop 4:

- 1. Toute famille qui contient une famille génératrice est génératrice.
- 2. Toute famille libre de n vecteurs de \mathbb{R}^n est génératrice de \mathbb{R}^n .
- 3. Toute famille génératrice de \mathbb{R}^n contient au moins n vecteurs.

1.6.2 Bases

Définition 11 Une famille \mathcal{B} d'éléments de \mathbb{R}^n est une base de \mathbb{R}^n , si et seulement \mathcal{B} est libre et génératrice. de \mathbb{R}^n .

Exemple 14 Base canonique de \mathbb{R}^n , $\mathcal{B} = (e_1, e_2, ..., e_n)$ avec

$$e_1 = (1, 0, ..., 0)$$

$$e_2 = (0, 1, 0, ..., 0)$$

$$\vdots$$

$$e_i = (0, ..., 0, 1, 0, ..., 0)$$

$$\vdots$$

$$e_n = (0, 0, ..., 0, 1)$$

Prop 5 Toute base de \mathbb{R}^n contient exactement n vecteurs. On dit que \mathbb{R}^n est un espacfe vectoriel de dimension n.

La dimension d'un espace vectoriel est le nombre de vecteurs d'une base quelconque de cet espace.

2 Applications linéaires

2.1 Définition

Définition 12 Soient E et F deux espaces vectoriels et soit f une application de E dans F. f est une application linéaire si

- 1. $\forall u \in E \quad \forall v \in E : f(u+v) = f(u) + f(v)$
- 2. $\forall u \in E$, $\forall \lambda \in \mathbb{R} : f(\lambda x) = \lambda f(x)$

Remarques:

$$f(0_E) = 0_F \qquad f(-x) = -f(x)$$

Exemple 15:

1. Les fonctions linéaires de $\mathbb R$ dans $\mathbb R$ sont de la forme:

$$\begin{array}{ccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax \end{array}$$

2. Soit g de \mathbb{R}^3 dans \mathbb{R}^2 qui à $x=(x_1,x_2,x_3)\in\mathbb{R}^3$ associe $y=(y_1,y_2)\in\mathbb{R}^2$ définie par:

$$\begin{array}{cccc} g: \mathbb{R}^3 & \to & \mathbb{R}^2 \\ x = (x_1, x_2, x_3) & \longmapsto & y = (y_1, y_2) = (2x_1 + x_2, x_2 - x_3) \end{array}$$

c'est-à-dire

$$\begin{cases} y_1 = 2x_1 + x_2 \\ y_2 = x_2 - x_3 \end{cases}$$

On vérifie que g est une application linéaire.

3.
$$\begin{array}{ccc} h: I\!\!R^2 & \to & I\!\!R \\ (x_1, x_2) & \longmapsto & 2x_1^2 + x_2 \end{array}$$

h n'est pas une application linéaire.

L'ensemble des applications linéaires définies de E dans F est noté $\mathcal{L}(E,F)$.

Théorème 1 $(\pounds(E,F),+,.)$ est un espace vectoriel réel.

Définition 13 On appelle **isomorphisme** toute application linéaire bijective. On appelle **endomorphisme** toute application linéaire définie de l'ensemble E dans lui-même. On note $\mathcal{L}(E)$, l'ensemble des endomorphismes de E.

2.2 Propriétés

Prop 6 Conséquences directes de la définition:

 $f(0_E) = 0_F \qquad (\lambda = 0)$

2. $\forall v \in E: \quad f(-v) = -f(v) \quad (\lambda = -1)$

3. somme récurrente:

$$(v_1, v_2, ..., v_n) \in E^n : f\left(\sum_{i=1}^n v_i\right) = \sum_{i=1}^n f(v_i)$$

Prop 7 Soit $(v_1, v_2, ..., v_n)$ une famille liée de n vecteurs de E. Soit f une application linéaire de E dans F. Alors la famille $\{f(v_1), f(v_2), ..., f(v_n)\}$ est liée.

Preuve:

 $(v_1, v_2, ..., v_n)$ liée, donc il existe $\lambda_1, \lambda_2, ..., \lambda_n$, non tous nuls tels que

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0_E$$

donc

$$f(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n) = f(0_E) = 0_E$$

ou encore

$$\lambda_1 f(v_1) + \lambda_2 f(v_2) + \dots + \lambda_n f(v_n) = 0_F$$

ainsi $(f(v_1), f(v_2), ..., f(v_n))$ est une famille liée.

Prop 8 Soit $f: E \to F$ linéaire alors:

- si A est un sous-espace vectoriel de E alors f (A) est un sous-espace vectoriel de F.
- 2. si B est un sous-espace vectoriel de F alors $f^{-1}(B)$ est un sous-espace vectoriel de E.

Preuve:

1. On a

$$f(A) = \{f(x) : x \in A\}$$

Soit y_1 et y_2 deux éléments de f(A):

$$\exists x_1 \in A : y_1 = f(x_1)$$
 $\exists x_2 \in A : y_2 = f(x_2)$

et si λ_1, λ_2 sont des réels

$$\lambda_1 y_1 + \lambda_2 y_2 = \lambda_1 f(x_1) + \lambda_2 f(x_2) = f(\lambda_1 x_1 + \lambda_2 x_2) \in f(A)$$

donc f(A) est stable par combinaisons linéaires, c'est un sous-espace vectoriel de F.

2. On a

$$f^{-1}(B) = \{x \in E : f(x) \in B\}$$

Soit x_1 et x_2 deux éléments de $f^{-1}(B)$:

$$y_1 = f(x_1) \in B \qquad y_2 = f(x_2) \in B$$

or B est un sous-espace vectoriel donc stable par combinaisons linéaires, si λ_1,λ_2 sont des réels

$$\lambda_1 y_1 + \lambda_2 y_2 \in B$$

mais

$$\lambda_1 y_1 + \lambda_2 y_2 = \lambda_1 f(x_1) + \lambda_2 f(x_2) = f(\lambda_1 x_1 + \lambda_2 x_2) \in B$$

donc $\lambda_1 x_1 + \lambda_2 x_2 \in f^{-1}(B)$ donc $f^{-1}(B)$ est stable par combinaisons linéaires, c'est un sous-espace vectoriel de E.

2.3 Image et Noyau

Définition 14 On désigne par $\operatorname{Im} f$ l'ensemble des images des éléments de E qu'on appelle aussi **l'ensemble image** de E.

$$\operatorname{Im} f = f\left(E\right) = \left\{f\left(x\right) : x \in E\right\}$$

 $\operatorname{Im} f$ est un sous-espace vectoriel de F.

Définition 15 Considérons le sous-espace vectoriel $\{0_F\}$; $f^{-1}(\{0_F\})$ est un sous-espace vectoriel de E. On l'appelle le **noyau** de f et on le note ker f.

$$\ker f = f^{-1}(\{0_F\}) = \{v \in E : f(v) = 0_F\}$$

Exemple 16 Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(x_1, x_2) = (x_1, 0)$$

Determiner $\ker f$ et $\operatorname{Im} f$.

- On a $x = (x_1, x_2) \in \ker f \iff f(x_1, x_2) = (0, 0) \iff (x_1, 0) = (0, 0) \iff x_1 = 0$ $donc \ \ker f = \{(0, x_2) : x_2 \in \mathbb{R}\} = Vect(e_2) \ droite \ vectorielle \ engendrée$ $par \ e_2 = (0, 1).$
- ullet On a

Im
$$f = \{f(x_1, x_2) : (x_1, x_2) \in \mathbb{R}^2\} = \{(x_1, 0) : x_1 \in \mathbb{R}\} = Vect(e_1)$$

droite vectorielle engendrée par $e_1 = (1,0)$.

2.4 Applications dans les espaces de dimension finie

Théorème 2 Théorème de la dimension: Soit E un espace vectoriel de dimension finie et soit $f: E \to F$ linéaire alors

$$\dim \operatorname{Im} f + \dim \ker f = \dim E$$

Définition 16 On appelle rang de f et on note rg(f) la dimension du sousespace vectoriel Im f.

Exercice 4 Determiner $\ker f$ et $\operatorname{Im} f$

$$f(x_1, x_2, x_3) = (x_1, x_2 + x_3)$$

Solution

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

donc dim Im f + dim ker f = 3. et $x \in \ker f$ entraı̂ne

$$f(x_1, x_2, x_3) = (x_1, x_2 + x_3) = (0, 0) \iff \begin{cases} x_1 = 0 \\ x_2 = -x_3 \end{cases}$$

donc $\ker f = vect(0, 1, 1)$ et dim $\ker f = 1$. D'après le théorème de la dimension finie

$$rg(f) = \dim \operatorname{Im} f = 2$$

donc Im f est un sous-espace vectoriel de \mathbb{R}^2 de dimension 2 donc Im $f = \mathbb{R}^2$. D'une façon générale,une application linéaire f de \mathbb{R}^p dans \mathbb{R}^n , à $x \in \mathbb{R}^p$ associe $y = f(x) \in \mathbb{R}^n$:

$$f(x_1, x_2, ..., x_p) = (y_1, y_2, ..., y_n)$$

chaque y_i est une fonction linéaire de $x_1, x_2, ..., x_p$:

$$\forall i = 1, ..., n \qquad y_i = \sum_{j=1}^p a_{ij} x_j$$

les $a_{ij}: i=1,...,n$ j=1,...,p sont des réels. On dira (voir module 2) que les coefficients (a_{ij}) forment la matrice de frelativement aux bases canoniques de \mathbb{R}^p et \mathbb{R}^n .