

Chapitre 2:La segmentation des réseaux IP en sousréseaux

Module: Réseau II

Chapitre 5

- 1) Segmenter un réseau IPv4 en sous-réseaux
- 2) Les schémas d'adressage

La segmentation des réseaux

Pourquoi créer des sous-réseaux ?

Les grands réseaux doivent être segmentés en sous-réseaux plus petits en créant des groupes de périphériques et de services pour :

- Surveiller le trafic en contenant le trafic de diffusion dans le sous-réseau
- Réduire le trafic total du réseau et améliorer les performances de ce dernier

Création de sous-réseaux : procédé consistant à segmenter un réseau en portions plus petites appelées sous-réseaux.

Communication entre les sous-réseaux

- Un routeur est nécessaire pour que les périphériques des différents réseaux et sous-réseaux puissent communiquer.
- Chaque interface de routeur doit comporter une adresse d'hôte IPv4 qui appartient au réseau ou au sous-réseau auquel elle est connectée.
- Les périphériques d'un réseau et d'un sous-réseau utilisent l'interface de routeur associée à son réseau local (LAN) comme passerelle par défaut.

La segmentation en sous-réseaux IP est fondamentale

La planification nécessite la prise de décisions concernant chaque sous-réseau, notamment leur taille, le nombre d'hôtes par sous-réseau et l'attribution des adresses d'hôte.

Notions de base sur les sous-réseaux

- ♣ Bits empruntés pour créer des sous-réseaux
- ♣ Emprunter 1 bit 2¹ = 2 sous-réseaux

Emprunter 1 bit à la partie hôte crée 2 sous-réseaux avec le même masque de sous-réseau

Sous-réseau 1

Sous-réseau 0

Réseau : 192.168.1.**0-127/25** Réseau : 192.168.1.**128-255/25**

Masque: 255.255.255.128 Masque: 255.255.255.128

Les sous-réseaux dans la pratique

Plage d'adresses du sous-réseau 192.168.1.0/25

Sous-réseau 0

Réseau: 192.168.1.0-127/25

Sous-réseau 1

Réseau: 192.168.1.128- 255/25

Plage d'adresses du sous-réseau 192.168.1.128/25

Les formules de calcul des sous-réseaux

Calculer le nombre de sous-réseaux

Calculer le nombre d'hôtes

Créer 4 sous-réseaux

Emprunter 2 bits pour créer 4 sous-réseaux 2² = 4 sous-réseaux
Emprunt de 2 bits

Créer 8 sous-réseaux

Emprunter 3 bits pour créer 8 sous-réseaux 2³ = 8 sous-réseaux

Réseau 0	Réseau	192.	168.	1.	000	0	0000	192.168.1.0
	Premier	192.	168.	1.	000	0	0001	192.168.1.1
	Dernier	192.	168.	1.	000	1	1110	192.168.1.30
	Diffusion	192.	168.	1.	000	1	1111	192.168.1.31
Réseau 1	Réseau	192.	168.	1.	001	0	0000	192.168.1.32
	Premier	192.	168.	1.	001	0	0001	192.168.1.33
	Dernier	192.	168.	1.	001	1	1110	192.168.1.62
	Diffusion	192.	168.	1.	001	1	1111	192.168.1.63
	Réseau	192.	168.	1.	010	0	0000	192.168.1.64
Dágagu 2	Premier	192.	168.	1.	010	0	0001	192.168.1.65
Réseau 2	Dernier	192.	168.	1.	010	1	1110	192.168.1.94
	Diffusion	192.	168.	1.	010	1	1111	192.168.1.95
Réseau 3	Réseau	192.	168.	1.	011	0	0000	192.168.1.96
	Premier	192.	168.	1.	011	0	0001	192.168.1.97
	Dernier	192.	168.	1.	011	1	1110	192.168.1.126
	Diffusion	192.	168.	1.	011	1	1111	192.168.1.127

Créer 8 sous-réseaux (suite)

Réseau 4	Réseau	192.	168.	1.	100	0	0000	192.168.1.128
	Premier	192.	168.	1.	100	0	0001	192.168.1.129
	Dernier	192.	168.	1.	100	1	1110	192.168.1.158
	Diffusion	192.	168.	1.	100	1	1111	192.168.1.159
Réseau 5	Réseau	192.	168.	1.	101	0	0000	192.168.1.160
	Premier	192.	168.	1.	101	0	0001	192.168.1.161
	Dernier	192.	168.	1.	101	1	1110	192.168.1.190
	Diffusion	192.	168.	1.	101	1	1111	192.168.1.191
	Réseau	192.	168.	1.	110	0	0000	192.168.1.192
Pássau 6	Réseau Premier	192. 192.	168. 168.	1.	110 110	0	0000	192.168.1.192 192.168.1.193
Réseau 6					10/10/2004			
Réseau 6	Premier	192.	168.	1.	110	0	0001	192.168.1.193
Réseau 6	Premier Dernier	192. 192.	168. 168.	1.	110 110	0	0001 1110	192.168.1.193 192.168.1.222
	Premier Dernier Diffusion	192. 192. 192.	168. 168. 168.	1. 1.	110 110 110	0 1 1	0001 1110 1111	192.168.1.193 192.168.1.222 192.168.1.223
Réseau 6	Premier Dernier Diffusion Réseau	192. 192. 192.	168. 168. 168.	1.	110 110 110 111	0 1 1	0001 1110 1111 0000	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224
	Premier Dernier Diffusion Réseau Premier	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1.	110 110 110 111 111	0 1 1 0 0	0001 1110 1111 0000 0001	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224 192.168.1.225

192.168.1.0/27 192.168.1.34/27 192.168.1.34/27 192.168.1.32/27 192.168.1.96/27 192.168.1.96/27 192.168.1.130/27 192.168.1.130/27 192.168.1.128/27

Déterminer le masque de sous-réseau

Segmenter le réseau en sous-réseaux en fonction des besoins des hôtes

Deux considérations sont à prendre en compte lors de la planification de sous-réseaux :

- Nombre de sous-réseaux nécessaires
- Nombre d'adresses d'hôte nécessaires
- Formule pour déterminer le nombre d'hôtes utilisables

- 2ⁿ' (où n est le nombre de bits d'hôte restant) est utilisé pour calculer le nombre d'hôtes
- -2 L'ID de sous-réseau et l'adresse de diffusion ne peuvent pas être utilisés sur chaque sous-réseau

Déterminer le masque de sous-réseau

Segmenter le réseau en fonction des besoins de celui-ci

Calculer le nombre de sous-réseaux

- Formule 2ⁿ (où n est le nombre de bits empruntés)
- Sous-réseau nécessaire pour chaque service du schéma

Exercice d'application

Soit le réseau 172.16.1.0/24

On suppose emprunter 3 bits de la partie hôte de l'adresse

- a. Donner la valeur du masque de sous réseau.
- b. Donner le nombre de sous réseau et le nombre d'hôte par sous réseau.
- c. Compléter le tableau ci-dessous

Adresse du sous- réseau	Plages des adresses valides	Adresse de diffusion

Exercice 2

A partir d'une adresse réseau et d'un nombre voulu de sous-réseaux, calculez le masque de sous-réseau, le nombre d'hôtes par sous-réseau, les adresses de sous-réseau et les plages des adresses possibles :

a) ID réseau: 114.0.0.0 et 7 sous-réseaux.

b) ID réseau : 185.42.0.0 et 4 sous-réseaux

Déterminer le masque de sous-réseau

Segmenter le réseau en fonction des besoins de celui-ci

- Il est important d'équilibrer le nombre de sous-réseaux nécessaires et le nombre d'hôtes nécessaires pour le plus grand sous-réseau.
- Il faut que le schéma d'adressage puisse accueillir le nombre maximal d'hôtes pour chaque sous-réseau.
- Prévision de croissance dans chaque sous-réseau.

Déterminer le masque de sous-réseau

Segmenter le réseau en fonction des besoins de celui-ci

Schéma de sous-réseaux

```
10101100.00010000.000000 00.00 000000 172.16.0.0/22

0 10101100.00010000.000000 00.00 000000 172.16.0.0/26
1 10101100.00010000.000000 00.01 000000 172.16.0.64/26
2 10101100.00010000.000000 00.10 000000 172.16.0.128/26
3 10101100.00010000.000000 00.11 000000 172.16.0.192/26
4 10101100.00010000.000000 01.00 000000 172.16.1.0/26
5 10101100.00010000.000000 01.01 000000 172.16.1.64/26
6 10101100.00010000.000000 01.10 000000 172.16.1.128/26
```

Réseaux 7 à 14 non illustrés

```
14 10101100.00010000.000000 11.10 000000 172.16.3.128/26
15 10101100.00010000.000000 11.11 000000 172.16.3.192/26
```

4 bits empruntés à la partie hôte pour créer des sous-réseaux

Les avantages des masques de sous-réseau de longueur variable

La segmentation traditionnelle en sousréseaux entraîne un gaspillage d'adresses

- Segmentation traditionnelle : le même nombre d'adresses est attribué à chaque sous-réseau.
- Les sous-réseaux qui n'ont pas besoin de la totalité ont des adresses inutilisées (gaspillées). Par exemple, les liaisons WAN n'ont besoin que de 2 adresses.
- Les masques de sous-réseau de longueur variable (VLSM, Variable Length Subnet Mask) ou la segmentation d'un sous-réseau optimisent l'utilisation des adresses.

La segmentation en sous-réseaux traditionnelle crée des sousréseaux de taille égale

Sous-réseaux de tailles variables

Un sous-réseau a été à nouveau divisé pour créer 8 sous-réseaux plus petits de 4 hôtes chacun

Les avantages des masques de sous-réseau de longueur variable

Les masques de sous-réseau de longueur variable (VLSM)

- La technique VLSM permet de décomposer un espace réseau en parties inégales.
- Le masque de sous-réseau varie alors selon le nombre de bits ayant été empruntés pour un sous-réseau particulier.
- Le réseau est segmenté en premier, puis les sousréseaux sont divisés à leur tour.
- Cette opération est répétée autant de fois que nécessaire pour créer des sous-réseaux de différentes tailles.

Les avantages des masques de sous-réseau de longueur variable VLSM de base

Schéma de sous réseaux avec VLSM

```
11000000.10101000.00010100.00000000 192.168.20.0/24
0 11000000 10101000 00010100 00000000 192.168.20.0/27
                                                           Réseaux
1 11000000 10101000 00010100 00100000 192.168.20.32/27
                                                           locaux
  11000000.10101000.00010100.01000000 192.168.20.64/27
                                                           A, B, C, D
                                       192.168.20.96/27
3 11000000.10101000.00010100.01100000
4 11000000 10101000 00010100 10000000 192.168.20.128/27 Non
                                                           utilisé/
                                        192.168.20.160/27
  11000000.10101000.00010100.10100000
                                                           disponible
                                        192.168.20.192/27
 11000000.10101000.00010100.11000000
7 11000000.10101000.00010100.11100000
                                        192.168.20.224/27
    3 autres bits empruntés au sous-
    réseau 7 :
7:0 11000000.10101000.00010100.11100000
                                                            Réseaux
7:1 11000000.10101000.00010100.11100100
                                                            étendus
7:2 11000000 10101000 00010100 11101000 192.168.20.232/30
7:3 11000000 10101000 00010100 11101100 192.168.20.236/30
7:4 11000000 10101000 00010100 11110000
                                         192.168.20.240/30
                                                           Non
                                                            utilisé/
7:5 11000000 10101000 00010100 11110100 192.168.20.244/30
                                                            disponible
7:6 11000000 10101000 00010100 11111000 192.168.20.248/30
                                         192.168.20.252/30
7:7 11000000 .10101000 .00010100 .11111100
```

Les avantages des masques de sous-réseau de longueur variable VLSM dans la pratique

- Avec des sous-réseaux VLSM, les segments LAN et WAN dans l'exemple cidessous peuvent être adressés avec un minimum de perte.
- Un sous-réseau avec le masque /27 sera attribué à chaque réseau local (LAN).
- Un sous-réseau avec le masque /30 sera attribué à chaque liaison WAN.

Les avantages des masques de sous-réseau de longueur variable Tableau VLSM

Segmentation en sous-réseaux VLSM de 192.168.20.0/24

	Réseau /27	Hôtes
Bât.A	.0	.130
Bât.B	.32	.3362
Bât.C	.64	.6594
Bât.D	.96	.97126
Non utilisé	.128	.129158
Non utilisé	.160	.161190
Non utilisé	.192	.193222
	.224	.225254
+	*	<u> </u>
	Réseau /30	Hôtes
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
	.236	.237238
Non utilisé	2 Marine 170	
	.240	.241242
Non utilisé	2700000	.241242 .245246
Non utilisé Non utilisé Non utilisé Non utilisé	.240	

Exemple découpage VLSM

Segmenter le réseau 192.168.1.0/24 pour le besoin en termes d'adressage suivant :

SR1:54 machines

SR2: 29 machines

SR3: 18 machines

SR4:5 machines

SR5: 2 machines

Adresse du sous-réseau	Masque sous- réseau	Plages des adresses valides	Adresse de diffusion
SR1			
SR2			
SR3			
SR4			
SR5			