目录 1

目录

1	an intro and an outline	2
2	notation and description of max flow problems	2
3	Ford and Fulkerson's method	2
	3.1 residual network	2
	3.2 augmented paths	3
	3.3 实例	3
4	method with bipartie graph	4

maximum flow

2022年11月3日

- 1 an intro and an outline
- 2 notation and description of max flow problems
- 3 Ford and Fulkerson's method

我超,这 ™ 搞那么复杂. 我们来点容易理解的. 最大流是多个单条路径流的线性叠加, i.e. 我们找出各种单条路径的所能贡献的 flow, 他们的和就是最大流.

需要注意的点如下:

- 1 子图中为什么需要反向的边?1
- 2 路径能够贡献的flow为什么是路径上的最小值?2

3.1 residual network

建议结合实例来看.

¹比如说有两个路径,同时有正向的边和反向的边,那么他们相加,就能将这个边抵消.

²显然, 如果不是最小值的话就卡住了

3.2 augmented paths

3.3 实例

图 1: 实例

- 1 先是, 对于原图, 我们找到一个路径 p (随便一个路径就行), 定义其 $c_f\left(p\right)=4$
- **2** 其次, 根据此路径创建子图, 其中反向边的长度为 $c_f(p)$, 正向边的长度为 $c(u,v) c_f(p)$. 反向的是因为, 不能太反, 不然两个路径加起来成负数. 正向的是因为, 相加后不能超过边的容量.
- 3 重复此操作,直到我无法找到路径.

图 2: 实例, 续

4 method with bipartie graph