30 Двоїстість

§30.1 Двоїстість, дуальні пари і слабка топологія

Означення 30.1. Нехай X, Y — лінійні простори. Відображення, що ставить кожній парі елементів $(x, y) \in X \times Y$ комплексне число (x, y) називається **двоїстістю**, якщо

1. $\langle x, y \rangle$ — білінійна форма, тобто

$$\langle a_1 x_1 + a_2 x_2, y \rangle = a_1 \langle x_1, y \rangle + a_2 \langle x_2, y \rangle,$$

$$\langle x, a_1 y_1 + a_2 y_2 \rangle = a_1 \langle x, y_1 \rangle + a_2 \langle x, y_2 \rangle.$$

2. $\langle x, y \rangle$ задовольняє умови невиродженості:

$$\forall x \in X \setminus \{0\} \quad \exists y \in Y : \quad \langle x, y \rangle \neq 0,$$

 $\forall y \in Y \setminus \{0\} \quad \exists x \in X : \quad \langle x, y \rangle \neq 0.$

Означення 30.2. Пара просторів X, Y із заданою на них двоїстістю називаються **дуальною парою**, або *парою просторів* у *двоїстюсті*.

Означення 30.3. Нехай X, Y — пара просторів у двоїстості. По кожному $y \in Y$ визначимо функціонал на X за правилом $y(x) = \langle x, y \rangle$, тобто $Y \subset X'$.

Слабкою топологією на X називатимемо топологію $\sigma(X,Y)$, тобто базу околів нуля топології $\sigma(X,Y)$ задає сім'я множин $\{x \in X : \max_{y \in G} |\langle x,y \rangle| < \varepsilon\}$, де $\varepsilon > 0$, а G пробігає всі скінчені підмножини простору Y.

Зауваження 30.1 — Друга аксіома дуальної пари гарантує віддільність слабкої топології. За теоремою 12.1 $(X, \sigma(X, E))^* = Y$, тобто будь-яку дуальну пару можна вважати парою вигляду (X, X^*) .

Зауваження 30.2 — Особливістю загального визначення дуальної пари є рівноправність просторів X і Y. Елементи x також можна вважати функціоналами на Y і розглядати слабку топологію $\sigma(Y,X)$ на просторі Y.

Зауваження 30.3 — Топологія $\sigma(X,Y)$ — це найслабкіша топологія, в якій усі функціонали $y(x) = \langle x,y \rangle$ є неперервними. Зокрема, якщо X — локально опуклий простір, то $\sigma(X,X^\star)$ слабкіше вихідної топології (звідси і назва).

Теорема 30.1

Кожна опукла замкнена множина локально опуклого простору X є замкненою і в слабкій топології $\sigma(X, X^*)$. Зокрема, кожний замкнений підпростір локально опуклого підпростору X є $\sigma(X, X^*)$ -замкненим.

Доведення. Без доведення.

§30.2 Поляра і аннулятор множини, їхні власивості

Означення 30.4. Нехай X, Y — дуальна пара. Полярою множини $A \subset X$ називаеться множина $A^0 \subset Y$, що визначається за правилом: $y \in A^0$ якщо $|\langle x, y \rangle| \leq 1$ для всіх $x \in A$. Аналогічно визначається поляра $A^0 \subset X$ множини $A \subset Y$.

Означення 30.5. Аннулятором множини $A \subset X$ називається множина $A^{\perp} \subset Y$, що складається з тих $y \in Y$, якщо $\langle x,y \rangle = 0$ для всіх $x \in A$. Очевидно, $A^{\perp} \subset A^0$ і згідно леми 12.2, якщо A — лінійний підпростір, то $A^{\perp} \subset A$. Крім того, $A^{\perp} = (\ln A)^{\perp}$.

Приклад 30.1

Розглянемо пару (X, X^*) , де X — банахів простір. Тоді $(B_X)^0 = B_{X^*}^0$. Дійсно,

$$f \in \overline{B}_{X^{\star}} \iff \|f\| \le 1 \iff \sup_{x \in B_X} |f(x)| \le 1 \iff f \in (B_X)^0.$$

Теорема 30.2

Поляри мають такі властивості:

- 1. якщо $A \subset B$, то $A^0 \supset B^0$;
- 2. $\{0_X\}^0 = Y$, $\{0_Y\}^0 = X$, де 0_X і 0_Y нульові елементи X і Y відповідно;
- 3. $(\lambda A)^0 = \lambda^{-1} A^0$ при $\lambda \neq 0$;
- 4. $(\bigcup_{A\in\mathfrak{C}}A)^0=\bigcap_{A\in\mathfrak{C}}A^0$ для будь-якої сім'ї \mathfrak{C} підмножин простору X.
- 5. $\{x\}^0$ опуклий, врівноважений $\sigma(X,Y)$ -замкнений окіл нуля;
- 6. A^0 опукла врівноважена $\sigma(X,Y)$ -замкнена множина;
- 7. множини вигляду A^0 , де A пробігає усі скінчені підмножини простору X, утворюють базу околів нуля в топології $\sigma(X,Y)$.

Доведення. Властивості 1-4 є очевидними. Опуклість і врівноваженість множини

$$\{x\}^0 = \{y \in Y : |\langle x, y \rangle| \le 1\} = \{y \in Y : |x(y)| \le 1\} = x^{-1}\{\lambda \in \mathbb{C} : |\lambda| \le 1\}$$

випливають з лінійності x як функціонала на Y. Оскільки $C_1 = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ — це замкнений окіл нуля в \mathbb{C} , а функціонал x є неперервним в топології $\sigma(X,Y)$, то ця формула означає, що $\{x\}^0$ — це $\sigma(X,Y)$ -замкнений окіл нуля. Із цього випливає властивість 5).

Властивість 6) випливає з 5) внаслідок властивості 4): $A^0 = \bigcap_{x \in A} \{x\}^0$, а операція перетину не порушує опуклості, замкненості і врівноваженості.

Для доведення властивості 7) зауважимо таке: якщо підмножина $A \subset X$ є скінченою, то $A^0 = \bigcap_{x \in A} \{x\}^0$ — це скінчений перетин $\sigma(X,Y)$ -околів. Отже, поляра скінченої множини — це слабкий окіл. Далі, за означенням, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду

$$U_{G,\varepsilon} = \{ y \in Y : \max_{g \in G} |g(x)| < \varepsilon \}, \quad G = \{ g_1, \dots, g_n \} \subset X, \quad \varepsilon > 0.$$

Для $A=(2\varepsilon)^{-1}G$ маємо $U_{G,\varepsilon}\supset A$. Отже, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду A^0 , де $A\subset X$ є скінченою множиною.

30 Двоїстість 161

Наслідок 30.1

Аннулятор довільної $A\subset X$ є $\sigma(X,Y)$ -замкненим лінійним підпростором.

Доведення. Лінійність перевіряється безпосереднью, а $\sigma(X,Y)$ -замкненість випливає з властивості 6) і формули $A^{\perp} = (\ln A)^{\perp} = (\ln A)^{0}$.

§30.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 528-531).