$20240926~{\rm MATH}3301~{\rm NOTE}~4[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Introduction	3
2	Preliminaries	3
3	Construction of S_m	7
4	Construction of A_m	7
5	Transposition	7

1 Introduction

In linear algebra, we tend to define determinant as:

$$\det \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} = \sum_{\{j_1, j_2, \cdots, j_m\} = \{1, 2, \cdots, m\}} \tau a_{1j_1} a_{2j_2} \cdots a_{mj_m}$$

Here, τ is the sign of the following permutation:

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_{1j_1} & a_{2j_2} & \cdots & a_{mj_m} \end{pmatrix}$$

Clearly, we need to define τ before we define determinant. In order to show τ is well-defined, we shall not rely on determinant, otherwise, there is a vicious circle. Hence, this note proposes a construction to solve this problem.

2 Preliminaries

Definition 2.1. (Group)

Let G be a set, and $\circ: (g_1, g_2) \mapsto g_1g_2$ be a binary operation on G. If:

- $(1) \ \forall g_1, g_2, g_3 \in G, (g_1g_2)g_3 = g_1(g_2g_3) \in G;$
- (2) $\exists e \in G, \forall g \in G, eg = ge = g;$
- (3) $\forall g \in G, \exists h \in G, hg = gh = e,$

then G is a group under \circ .

Remark: It is easy to show that:

- (1) e is unique in G;
- (2) $\forall g \in G$, h is unique in G.

Hence, we may apply the notation g^{-1} for the inverse of g.

Definition 2.2. (Subgroup)

Let G be a group under \circ , and H be a subset of G. If:

- $(1) e \in H$:
- (2) $\forall h_1, h_2 \in G, h_1 \in H \text{ and } h_2 \in H \implies h_1 h_2 \in H;$
- $(3) \ \forall h \in G, h \in H \implies h^{-1} \in H,$

then $H \leq G$, i.e., H is a subgroup of G.

Definition 2.3. (Coset)

Let G be a group under \circ , H be a subgroup of G, and g be an element of G.

Define $gH = \{gh\}_{h \in H}$ as the left H-coset of g;

Define $Hg = \{hg\}_{h \in H}$ as the right H-coset of g.

Remark: One may expand a "word" as follows:

$$uH^2vIJ = \{uh_1h_2vij \in G : h_1, h_2 \in H \text{ and } i \in I \text{ and } j \in J\}$$

Theorem 2.4. (Lagrange's Theorem)

Let G be a group under \circ , and H be a subgroup of G.

 $G/H = \{gH\}_{g \in G}$ partitions G.

Proof. We may divide our proof into three parts.

Part 1: For all $gH \in G/H$, there exists $g = ge \in gH$, so $gH \neq \emptyset$.

Part 2: For all $g_1H, g_2H \in G/H$:

$$g_1 H \cap g_2 H \neq \emptyset \implies \exists h_1, h_2 \in H, g_1 h_1 = g_2 h_2$$
$$\implies \exists h_2 h_1^{-1} \in H, g_1 = g_2 h_2 h_1^{-1} \implies g_1 H = g_2 H$$

Part 3: For all $g \in G$, there exists $gH \in G/H$, such that $g = ge \in gH$.

Hence, G/H partitions G. Quod. Erat. Demonstrandum.

Remark: It is easy to show that $H \to gH, h \mapsto gh$ is a bijection, so each coset gH have the same cardinality, which implies the order of H divides the order of G.

Definition 2.5. (Normal Subgroup)

Let G be a group under \circ , and H be a subgroup of G.

If $\forall g \in G, gH = Hg$, then $H \leq G$, i.e., H is normal in G.

Remark: As a corollary, for all subgroups H, K of $G, H \leq G \implies KH = HK$.

Proposition 2.6. $\{e\} \leq G$ and $G \leq G$

Proof. We may divide our proof into four parts.

Part 1: $e \in \{e\}$ and $e \in G$.

Part 2: $ee \in \{e\}$ and $\forall g_1, g_2 \in G, g_1g_2 \in G$.

Part 3: $e^{-1} = e \in \{e\}$ and $\forall g \in G, g^{-1} \in G$

Part 4: $\forall g \in G, g\{e\} = \{e\}g = \{g\} \text{ and } \forall g \in G, gG = Gg = G.$

Hence, $\{e\} \leq G$ and $G \leq G$. Quod. Erat. Demonstrandum.

Proposition 2.7. $H_1 \leq G$ and $H_2 \leq G \implies H_1 \cap H_2 \leq G$

Proof. We may divide our proof into four parts.

Part 1: $e \in H_1$ and $e \in H_2 \implies e \in H_1 \cap H_2$.

Part 2: For all $g, g' \in G$:

$$g \in H_1 \cap H_2$$
 and $g' \in H_1 \cap H_2 \implies g \in H_1$ and $g \in H_2$ and $g' \in H_1$ and $g' \in H_2$

$$\implies gg' \in H_1 \text{ and } gg' \in H_2$$

$$\implies gg' \in H_1 \cap H_2$$

Part 3: For all $g \in G$:

$$g \in H_1 \cap H_2 \implies g \in H_1 \text{ and } g \in H_2$$

 $\implies g^{-1} \in H_1 \text{ and } g^{-1} \in H_2$
 $\implies g^{-1} \in H_1 \cap H_2$

Part 4: For all $g \in G$:

$$g(H_1 \cap H_2) = (gH_1) \cap (gH_2) = (H_1g) \cap (H_2g) = (H_1 \cap H_2)g$$

Hence, $H_1 \cap H_2 \leq G$. Quod. Erat. Demonstrandum.

Remark: This can be generalized to:

Each
$$H_{\lambda} \triangleleft G \implies \bigcap_{\lambda \in I} H_{\lambda} \triangleleft G$$

Proposition 2.8. $H_1 \leqslant G$ and $H_2 \leqslant G \implies H_1H_2 \leqslant G$

Proof. We may divide our proof into four parts.

Part 1: $e \in H_1$ and $e \in H_2 \implies e = ee \in H_1H_2$.

Part 2: For all $g, g' \in G$:

$$g \in H_1H_2$$
 and $g' \in H_1H_2 \implies \exists h_1, h_1' \in H_1$ and $h_2, h_2' \in H_2, g = h_1h_2$ and $g' = h_1'h_2'$

$$\implies \exists h_1'' \in H_1 \text{ and } h_2'' \in H_2, h_2h_1' = h_1''h_2''$$

$$\implies \exists h_1h_1'' \in H_1 \text{ and } h_2''h_2' \in H_2, gg' = h_1h_1''h_2''h_2'$$

$$\implies gg' \in H_1H_2$$

Part 3: For all $q \in G$:

$$g \in H_1 H_2 \implies \exists h_1 \in H_1 \text{ and } h_2 \in H_2, g = h_1 h_2$$

$$\implies \exists h_1' \in H_1 \text{ and } h_2' \in H_2, h_1 h_2 = h_2' h_1'$$

$$\implies \exists h_1'^{-1} \in H_1 \text{ and } h_2' \in H_2, g^{-1} = h_1'^{-1} h_2'^{-1}$$

$$\implies g^{-1} \in H_1 H_2$$

Part 4: For all $g \in G$:

$$gH_1H_2 = H_1gH_2 = H_1H_2g$$

Hence, $H_1, H_2 \leq G$. Quod. Erat. Demonstrandum.

Remark: This can be generalized to:

Each
$$H_k \triangleleft G \implies \prod_{k=1}^m H_k \triangleleft G$$

Definition 2.9. (Quotient Group)

Let G be a group under \circ , and H be a normal subgroup of G.

Define $\circ: (g_1H, g_2H) \mapsto g_1g_2H$. Observe that:

- (1) \circ is a well-defined binary operation on G/H;
- (2) G/H is a group under \circ .

Hence, define this group as the quotient group of G by H.

Proof. Let's prove the two observations above.

(1) For all $(g_1H, g_2H), (g_1'H, g_2'H) \in G/H \times G/H$:

$$(g_1H, g_2H) = (g_1'H, g_2'H) \implies g_1H = g_1'H \text{ and } g_2H = g_2'H$$

$$\implies \exists h_1, h_2 \in H, g_1 = g_1'h_1 \text{ and } g_2 = g_2'h_2$$

$$\implies \exists h_1'' \in H, h_1g_2' = g_2'h_1''$$

$$\implies \exists h_3h_2 \in H, g_1g_2 = g_1'g_2'h_1''h_2$$

$$\implies g_1g_2H = g_1'g_2'H$$

Hence, \circ is a well-defined operation on G/H.

(2) We may divide our proof into three parts.

Part 1: For all $g_1H, g_2H, g_3H \in G/H$:

$$(g_1Hg_2H)g_3H = g_1g_2Hg_3H = (g_1g_2)g_3H$$

= $g_1(g_2g_3)H = g_1Hg_2g_3H = g_1H(g_2Hg_3H)$

Part 2: There exists $eH \in G/H$, such that for all $gH \in G/H$:

$$eHgH = egH = gH$$
 and $gHeH = geH = gH$

Part 3: For all $gH \in G/H$, there exists $g^{-1}H \in G/H$, such that:

$$g^{-1}HgH = g^{-1}gH = eH$$
 and $gHg^{-1}H = gg^{-1}H = eH$

Hence, G/H is a group under \circ . Quod. Erat. Demonstrandum.

3 Construction of S_m

Definition 3.1. (The Symmetric Group S_m)

Let S_m be the set of all bijective functions on $\{1, 2, \dots, m\}$. Observe that:

- (1) Composition \circ is a well-defined operation on S_m ;
- (2) S_m is a group under \circ .

Hence, define this group as the symmetric group S_m .

Proof. Let's prove the two observations above.

(1) For all bijective functions f_1, f_2 on $\{1, 2, \dots, m\}$,

 f_1f_2 is a bijective function on $\{1, 2, \cdots, m\}$.

Hence, \circ is a well-defined operation on S_m .

(2) We may divide our proof into three parts.

Part 1: Composition \circ is associative in general, so it is associative in S_m .

Part 2: The identity function e is an identity in S_m .

Part 3: For all $f \in S_m$, its inverse function f^{-1} is an inverse of f in S_m .

Combine the three parts above, we've proven that S_m is a group under \circ .

Quod. Erat. Demonstrandum.

4 Construction of A_m

Definition 4.1. (The Alternating Group A_m)

Define the alternating group A_m as the largest proper normal subgroup of S_m .

Remark: The word "largest" here means the maximal element of subset relation. We need to show that such maximal element exists and is unique.

5 Transposition

Definition 5.1. (Transposition)

Let k_1, k_2 be two distinct elements of $\{1, 2, \dots, m\}$. Define:

$$(k_1, k_2) \in S_m, (k_1, k_2)(k) = \begin{cases} k_2 & \text{if } k = k_1; \\ k_1 & \text{if } k = k_2; \\ k & \text{if } k \neq k_1, k_2; \end{cases}$$

as a transposition.

Lemma 5.2. When $m \geq 2$, each $f \in S_m$ is a product of transpositions.

Proof. We may divide our proof into two cases.

Case 1: If f = e, then e = (1, 2)(1, 2) is a product of transpositions.

Case 2: If $f \neq e$, then find the smallest $1 \leq k \leq m$ such that $f(k) \neq k$.

Consider the product (k, f(k))f.

Situation 2.1: If (k, f(k))f = e, then f = (k, f(k)) is a transposition.

Situation 2.2: If $(k, f(k))f \neq e$, then define g = (k, f(k))f and repeat the process.

This process will eventually end because there are finitely many element to permute.

Hence, f = (k, f(k))g is a product of transpositions.

Quod. Erat. Demonstrandum.

Lemma 5.3. Let H be a normal subgroup of S_m .

If H contains some transposition, then H contains all transposition.

Proof. Assume that H contains some transposition (k_1, k_2) .

For all transposition (k_3, k_4) , define f by:

$$f(k) = \begin{cases} k_3 & \text{if} & k = k_1; \\ k_4 & \text{if} & k = k_2; \\ k_1 & \text{if} & k = k_3; \\ k_2 & \text{if} & k = k_4; \\ k & \text{if} & k \neq k_1, k_2, k_3, k_4; \end{cases}$$

As $k_1 \neq k_2$ and $k_3 \neq k_4$, f is a well-defined bijection on $\{1, 2, \dots, m\}$, so:

$$(k_3, k_4) = f(k_1, k_2)f^{-1} \in fHf^{-1} = H$$

Quod. Erat. Demonstrandum.

Remark: This implies no $H \triangleleft G$ contains any transposition.

Theorem 5.4. When $m \geq 2$, there exists a unique A_m .

Proof. We may divide our proof into two parts.

Part 1: In this part, we prove the existence of A_m .

Define $\operatorname{Spec}(S_m) = \{H\}_{H \triangleleft S_m}$.

We want to find a maximal element $A_m \in \operatorname{Spec}(S_m)$ of $\operatorname{Spec}(S_m)$.

Assume to the contrary that such element fails to exist.

There exists a sequence of normal subgroups $(H_n)_{n\in\mathbb{N}}$ of S_m , such that:

$$\forall n \in \mathbb{N}, H_n \subset H_{n+1}$$

But S_m is finite, it cannot have infinitely many $H_n \in \operatorname{Spec}(S_m)$, a contradiction. Hence, there exists $A_m \in \operatorname{Spec}(S_m)$, such that for all $H \in \operatorname{Spec}(S_m)$:

$$A_m \subseteq H \implies A_m = H$$

Part 2: In this part, we prove the uniqueness of A_m .

For all transposition (k_1, k_2) , as A_m is maximal, the smallest normal subgroup of S_m containing $A_m \cup \{(k_1, k_2)\}$ is S_m . Hence, $S_m = A_m \sqcup (k_1, k_2) A_m$. For all transpositions $(k_1, k_2), (k'_1, k'_2)$:

$$(k_1, k_2)A_m = (k'_1, k'_2)A_m = S_m \setminus A_m \implies (k_1, k_2)(k'_1, k'_2) \in A_m$$

This implies:

- (1) All even product of transpositions is contained in A_m .
- (2) All odd product of transpositions is contained in $S_m \setminus A_m$. As the two types of products partition S_m , A_m is unique.

Quod. Erat. Demonstrandum.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.