

Observa os diagramas de dispersão A, B e C e admite que, em cada um, as variáveis x e y registam uma associação linear.

Para cada uma das seguintes alíneas, indica a afirmação verdadeira.

- 1.1. Quais são os diagramas em que se regista uma associação linear positiva entre as variáveis?
 - (A) A e B
- (B) B e C
- (C) A e C
- (D) A, B e C
- **1.2.** Qual é o diagrama em que se verifica o maior valor absoluto da correlação linear entre as duas variáveis?
 - (A) A

(B) B

(C) C

- (D) Nenhum
- 1.3. Em qual dos diagramas se verifica uma correlação linear forte, mas não perfeita?
 - (A) A

(B) B

(C) C

- (D) Nenhum
- **1.4.** Qual é o diagrama em que a reta de regressão tem declive positivo, mas a correlação entre as variáveis é positiva fraca?
 - (A) A

(B) B

(C) C

- (D) Nenhum
- 1.5. Indica um valor que possa corresponder ao coeficiente de correlação linear do diagrama C.
 - (A) r = 0.25
- **(B)** r = -0.21
- (C) r = 0.95
- **(D)** r = 0.66

- 2 Completa de forma a obteres afirmações verdadeiras.
 - 2.1. O valor da correlação linear entre duas variáveis é um número real compreendido entre

 - **2.2.** Se ______, existe uma associação linear _____, isto é, à medida que aumenta uma variável, a outra diminui.
 - **2.3.** Se ______, existe uma associação linear positiva, isto é, à medida que aumenta uma variável, a outra ______.
 - **2.4.** No caso de $r \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, a correlação linear entre duas variáveis é ______.
 - **2.5.** Se r = -0,001, considera-se que _____ correlação linear.

- **3** Considera a situação que já foi apresentada no exercício 2 da página 55, que relacionava a taxa de oxigénio (y) consumido por determinados animais em zonas com as temperaturas ambientais distintas (x), variáveis que se relacionam linearmente.
 - **3.1.** As variáveis x e y apresentam associação linear...
 - (A) ... positiva fraca
 - (B) ... negativa fraca
 - (C) ... negativa forte
 - (D) ... perfeita
 - **3.2.** Escreve a equação da reta de regressão entre duas variáveis.
 - **3.3.** Calcula o valor de \overline{x} e de \overline{y} e mostra que o ponto de coordenadas $(\overline{x}, \overline{y})$ pertence à reta de regressão.

x; Temperatura (°C)	y, Taxa de oxigénio (ml/g/h)			
- 18	5,5			
– 15	4,7			
– 10	4,5			
– 5	6,6			
0	3,7			
5	3,0			
10	2,7			
19	1,8			

4 Um grupo de alunos realizou uma experiência numa atividade laboratorial de Físico-Química que consistiu no aquecimento de um cilindro de ferro.

No decorrer da experiência, os alunos registaram, numa tabela, a temperatura atingida pela barra a cada minuto, ao longo de 10 min . Em seguida, construíram um diagrama de dispersão que relaciona as variáveis x = tempo (em minutos) e y = temperatura registada (°C).

Sabe-se que as variáveis x e y se relacionam através de um modelo de regressão linear e que $(\bar{x}, \bar{y}) = (5; 25,5)$.

Completa o texto seguinte, selecionando para cada espaço a opção correta que consta na tabela abaixo representada.

O diagrama de dispersão permite-nos concluir da existência de uma associação linear

prevê-se que a barra de ferro atinja os 40,7 °C ao fim de

_____ entre as variáveis. A equação da reta de regressão é igual a _____ II____.

A melhor estimativa de temperatura registada ao fim de 4 min foi de _____ III____.

O coeficiente de correção linear é aproximadamente _____ IV____. Considerando este modelo,

ı	II	Ш	IV	V
a) positiva fraca	a) $y = 0.991x + 20.5$	a) 24,3	a) 0,999	a) 20 min e 34 s
b) positiva forte	b) $y = 0.989x + 20.4$	b) 24,5	b) 0,994	b) 20 min e 21 s
c) nula	c) $v = 0.997x + 21.2$	c) 24.7	c) 0.995	c) 20 min e 23 s

Considera a tabela que contém os valores da área dos imóveis (x) para venda na agência imobiliária onde trabalha a Fátima e o respetivo custo (y) em milhares de euros.

Admite que x e y registam uma associação linear.

X _i	100	120	200	150	125	110	92	61
y_i	231	245	500	338	550	264	230	225

A Paula, amiga da Fátima, fez uma previsão e disse que nesta agência um imóvel com 180 m² custa entre 350 e 400 mil euros. Concordas com a afirmação da Paula? Justifica.

- 6 Duas variáveis x e y seguem um modelo de regressão linear, onde:
 - y = ax + b é a equação da reta de regressão linear
 - a×b<0
 - $0.64 \le r^2 \le 0.81$

Em seguida são apresentados dois diagramas de dispersão de dados bivariados.

Nem o gráfico A nem o gráfico B podem representar o diagrama de dispersão entre as variáveis $x \in y$. Para cada gráfico, indica um motivo que mostre que o mesmo não pode representar o diagrama de dispersão entre $x \in y$, nas condições enunciadas.

7 Observa a seguinte tabela com dados referentes às variáveis $x \in y$.

х	b	b – 1	25	0,5 <i>b</i> + 5,6	20,5	19	23	20
у	5	6,2	а	6 + a	2 <i>a</i>	a + 5	6	9

Sabe-se que:

- x e y se ajustam a um modelo de regressão linear;
- a equação da reta de regressão é dada por y = -0,82x + 25,2;
- o ponto $(\bar{x}, a+3)$ pertence à reta de regressão.
- 7.1. Determina o valor de a.
- **7.2.** Calcula \bar{x} com aproximação às centésimas.
- **7.3.** Mostra que $b \approx 24.8$.
- **7.4.** Faz uma previsão do valor de y, se x = 30,5.
- **7.5.** Com os dados da tabela, calcula o coeficiente de correlação linear e classifica o tipo de associação linear entre $x \in y$.