

Azure

Cloud의 혁신, Azure의 진화 3rd Wave

All About Azure 극강의 클라우드 플랫폼을 만나다!

2018년 6월 1일(금) 09:30~17:10 포시즌스호텔 서울 6F 누리볼룸

CustomVision.ai를 활용한 Machine Learning 이미지 처리 구현

김대우 부장 / Microsoft

https://github.com/CloudBreadPaPa/all-about-azure-mlhttps://www.linkedin.com/in/dae-woo-kim-ba721b52/

Cloud의 혁신, Azure의 진화 3rd Wave

All About Azure 극강의 클라우드 플랫폼을 만나다!

개발자, 왜 AI와 ML이 중요한가?

개발자, 왜 AI와 ML이 중요한가?

일부 기존 알고리듬이나 절차적 프로그램으로 해결하기 어려운 문제 해결

고객의 재방문 분류

이미지나 비디오의 물체 인식

개별 절차의 문제점 탐색

개발자, 더 쉽고 빠른 ML 모델 생성

Visual Intelligence 개발 및 배포

Custom Vision Service is an easy-to-use tool for prototyping, improving, and deploying a <u>custom</u> image classifier to a cloud service, without any background in computer vision or deep learning required.

Custom Vision의 장점

새로운 혁신

Custom Vision에서 이미지 분류(Classification)

Custom Vision은 Computer Vision 작업 경험 여부와 상관 없이 직관적인 사용을 목표로 개발

• 태그별로 약 30개의 이미지로 프로토타입 생성 가능

• 몇분 이내에 분류 모델 트레이닝 완성

• 모델을 생성하면 HTTP endpoint로 배포되어 어플리케이션에서 사용 가능

Custom Vision Demo

장점과 제약

- Custom Vision은 식별하려는 <u>이미지의 분류</u>에 적용 가능
- Custom Vision 은 적은 양의 데이터로 빠르게 프로토타입 개발 및 프로젝트 적용이 가능
- 제공되는 domain들로 분류 precision과 recall 정확도를 조절 가능

- 정확한 결과를 위해 다양한 이미지를 이용해 트레이닝 할 것을 권장. 예를 들어, 다양한 백그라운드 또는 각도에서 촬영한 사진
- 사용하는 분류의 정확도는 이미지와 패턴에 따라 상이

Customvision.ai

Microsoft

Cognitive Services

Custom Vision

Upload Images

Bring your own labeled images, or use Custom Vision to quickly add tags to any unlabeled images.

Train

Use your labeled images to teach Custom Vision the concepts you care about.

Evaluate

Use simple REST API calls to quickly tag images with your new custom computer vision model.

개발자, Machine Learning Model Inference

Model을 Export해서 어플리케이션에서 사용

Choose your platform

새로운 두가지 포맷 지원

- ONNX(Open Neural Network Exchange Format)
- Docker Container

Azure ML Package for Computer Vision

Sample code (less than 20 lines of code)

```
# create a dataset from a directory with folders representing different classes
dataset = Dataset.create from dir(dataset name, dataset location)
# split the full dataset into a train and test set
train set orig, test set = Splitter(dataset).split(train size=.8, stratify='label')
# Image augmentation
rotate and flip = augmenters.Sequential([augmenters.Affine(rotate=(-45, 45)), augmenters.Fliplr(.5)])
crop = augmenters.Sequential([augmenters.Crop(percent=(0, .1))])
train set = augment dataset(train set orig, [rotate and flip, crop])
# create the model
model = TransferLearningModel(num classes = num classes, base model name = 'ResNet18 ImageNet CNTK')
# train the model using cntk
num epochs = 45
mb size = 32
t = Trainer(model, train set, num epochs=num epochs, mb size=mb size)
t.start training()
# return the accuracy
ce = ClassificationEvaluation(model, test set, minibatch size=16)
acc = ce.compute accuracy()
# Deployment
deploy obj = AzureMLDeployment(deployment name=deployment name, associated DNNModel=model, replicas=5)
deploy obj.deploy()
```

Docker container 사용

Docker container 사용

SDK 호환성

단순 예측 call을 Custom Vision Service SDK를 이용해 적용

```
# Call the cloud service using the Python SDK
from azure.cognitiveservices.vision.customvision.prediction import prediction_endpoint
predictor = prediction_endpoint.PredictionEndpoint(prediction_key)
results = predictor.predict_image_url(project.id, iteration.id, url=test_img_url)
```

기존 SDK 어플리케이션도 같은 구성, Docker Container 주소만 추가 구성

```
# Call the local docker container using the Python SDK
from azure.cognitiveservices.vision.customvision.prediction import prediction_endpoint
predictor = prediction_endpoint.PredictionEndpoint(prediction_key, base_url="http://localhost:80")
results = predictor.predict_image_url(project.id, iteration.id, url=test_img_url)
```

개발자, 쓸만한 ML Inference 방안

When the solution is difficult to describe, describe the data instead.

From idea to Inference

Windows ML 으로 다음 문제 해결

- 1. 개발자는 Windows ML로 ML 모델 evaluate가 가능해 자신의 데이터와 시나리오에 집중 가능
- 2. 트레이닝된 ML 모델들을 다양한 툴킷에서 적용 가능
- 3. 다양한 Windows 플랫폼에서, 하드웨어 가속 기능으로 빠르게 ML 모델 evaluation 가능

Windows ML 호출 패턴

- 1. 메모리에 ML 모델 로드
- 2. 모델 input으로 어플리케이션 데이터 입력
- 3. 모델 evaluation을 수행하고 출력
- 4. 모델의 출력 결과를 어플리케이션에 맞게 적용

개발자, AI & ML을 적용하는 새로운 패턴

Al on the edge

Low latency

Scalability

Flexibility

Windows AI 플랫폼

Al platform for Windows developers

Windows as an Al-first product

Complete workflow with Microsoft Al

Artificial Intelligence

Intelligent Edge

Microsoft AI breakthroughs

2016

Object recognition Human parity

2017

Speech recognition Human parity

January 2018

Machine reading comprehension Human parity

March 2018

Machine translation Human parity Azure Al for every developer and every organization

Azure Al

Vision

Speech

Language

Customized language **Text-to-speech** understanding Content moderation Spell Speech translation check Custom image classification Speaker recognition Entity linking Sentiment analysis, & augmentation key phrase extraction Image tagging Custom Object detection Text translation voice OCR handwriting analysis Video insights recognition Custom translation Face Custom speech Assisted text moderation identification Speech transcription

Azure Al

Custom VisionCustom SpeechCustom Language

Microsoft will invest \$5 billion in IoT. Here's why.

Apr 4, 2018 | Julia White, CVP Microsoft Azure

SamJoy

Powered by Xiaomi

Announcing
Speech Devices SDK
& Reference Kits

Kinect

Announcing
Project Kinect for Azure

Azure Al Framework and Tools

Azure Al Infrastructure

Announcing Project Brainwave

Real-time Al

Intelligent Cloud

5X lower hardware latency than TPU for real-time Al

Azure Al Infrastructure

Announcing Project Brainwave

Real-time Al on cloud and edge

CustomVision.ai를 활용한 Machine Learning 이미지 처리 구현

김대우 부장 / Microsoft

Cloud의 혁신, Azure의 진화 3rd Wave

All About Azure 극강의 클라우드 플랫폼을 만나다!

Azure

Cloud의 혁신, Azure의 진화 3rd Wave

All About Azure 극강의 클라우드 플랫폼을 만나다!

2018년 6월 1일(금) 09:30~17:10 포시즌스호텔 서울 6F 누리볼룸