• O potencial da pilha

Um sistema com fases em contato em que pelo menos um tipo de carga não pode penetrar todas as fases torna-se eletricamente carregado.

Exemplo: $Cu/Zn \rightarrow o Cu$ fica carregado negativamente e o Zn positivamente.

Exemplo: Zn mergulhado em água → parte do zinco vai para a solução em forma de cátion, ficando os elétrons na barra → aparecimento de uma diferença de potencial.

$$\Delta \phi = \phi_{M} - \phi_{S}$$

 ϕ_M e ϕ_S são os **potenciais Galvani** do metal e da solução.

Com a montagem de uma célula envolvendo dois eletrodos e cabos para conexão com o voltímetro, aparecem mais diferenças de potencial entre interfaces. A diferença de potencial global da célula pode ser racionalizada como a diferença entre dois **potenciais de eletrodos**, cada um sendo expresso como

$$E_i = \Delta \phi_i + C_i$$

onde $C_{\rm j}$ é uma constante que só depende da natureza do metal do eletrodo.

O valor do potencial

Fluxo espontâneo de elétrons \rightarrow produção de trabalho elétrico Processo **reversível** a T e P constantes: $dw_{e,max} = dG$

W elétrico está relacionado à diferença de potencial E entre os eletrodos $\rightarrow E$ pode ser calculada de ΔG e vice-versa, mas relação só é válida para reação ocorrendo reversivelmente. Medir E aplicando-se diferença de potencial contrária até haver equilíbrio (reação não ocorre na prática): **potencial da pilha a corrente nula**. Nesta circunstância, um avanço infinitesimal da reação em qualquer sentido seria reversível.

$$\Delta G_r = \left(\frac{\partial G}{\partial \xi}\right)_{P,T} \rightarrow dG = \Delta G_r d\xi \rightarrow dw_e = \Delta G_r d\xi$$
 (I)

O trabalho para transportar uma carga q entre dois pontos com diferença de potencial E é qE.

Reação genérica: $M^{v+} + N \rightarrow M + N^{v+}$

Consumo de 1 mol de M^{v+} e N \rightarrow $\Delta \xi = 1$ mol $\rightarrow n_{e^-}$ transferidos = v mols.

$$\begin{array}{ccc} \Delta \xi & n_{e^{-}} \\ 1 & & \nu \\ \mathrm{d} \xi & & \mathrm{d} n_{e^{-}} \end{array} \rightarrow \mathrm{d} n_{e^{-}} = \nu \mathrm{d} \xi$$

Número de elétrons transferidos = $(vd\xi)N_A$ Carga transferida = carga do $e^- \times$ número de elétrons = $-e(vd\xi N_A)$ $N_A \times e = F \rightarrow$ Carga transferida = $-vFd\xi$

$$\rightarrow dw_e = -vFEd\xi$$

Identificando com equação (I):

$$-vFEd\xi = \Delta G_r d\xi$$

$$\rightarrow -vFE = \Delta G_r \qquad 1 \text{ CV} = 1 \text{ J}$$
(II)

Sentido da medida de diferença de potencial:

Reação genérica: $A^+ + B \rightarrow A + B^+ \qquad \Delta G$

ightarrow Neste sentido da reação, assume-se que os elétrons saem do eletrodo de B para o eletrodo de A. Para o cálculo de $W_{\rm elet}$ (= qE), considera-se a diferença de potencial medida do ponto de chegada da carga para o ponto de partida ightarrow E deve ser a diferença $E_{\rm cátodo} - E_{\rm anodo}$, que na reação genérica seria $E({\rm A}) - E({\rm B})$.

Da termodinâmica de equilíbrio: $\Delta G = \Delta G^{\circ} + RT \ln Q$

$$\rightarrow -vFE = \Delta G^{\circ} + RT \ln Q \qquad \rightarrow E = -\frac{\Delta G^{\circ}}{vF} - \frac{RT}{vF} \ln Q$$

$$-\frac{\Delta G^{o}}{vF} = E^{o} = \text{potencial de célula padrão } (Q = 1, \text{ produtos e reagentes no estado padrão, com atividades unitárias)}$$

Equação de Nernst: $E = E^o - \frac{RT}{vF} \ln Q$ (III)

A 25°C, RT/F = 25.7 mV

Relação $E \times \ln Q$ para reações com diferentes valores de v:

 $\ln x = 2,303 \times \log x$

→ Inclinação = -2,303/v

 \rightarrow Potencial de células onde são trocados mais elétrons varia menos com Q.

Aplicação: células de concentração no eletrólito

$$M \mid M^{+}(aq, b_1) \parallel M^{+}(aq, b_2) \mid M$$

Meias-reações:

$$M(s) \rightarrow M^+(aq, b_1) + e^-$$

 $M^+(aq, b_2) + e^- \rightarrow M(s)$

Reação: M+(aq,
$$b_2$$
) \to M+(aq, b_1) $Q = \frac{a_{M^+,1}}{a_{M^+,2}}$ $v = 1$

Para o cálculo de ΔG° , usaríamos $\Delta G_{\rm f}^{\circ}$ do produto $({\rm M}^+,b^{\circ})$ e $\Delta G_{\rm f}^{\circ}$ do reagente $({\rm M}^+,b^{\circ})\to\Delta G^{\circ}=0\to E^{\circ}=0$

$$ightarrow E = -rac{RT}{F} \ln rac{a_{M^+,1}}{a_{M^+,2}} \approx -rac{RT}{F} \ln rac{b_1}{b_2}$$

Se
$$b_1 < b_2, E > 0$$

• Potenciais padrões

Define-se o potencial de um eletrodo como a diferença entre o potencial do eletrodo e o potencial nulo. Pelo mesmo raciocínio que levou à equação (I), é possível mostrar que

$$-vFE_i = \Delta G_i$$

onde $E_{\rm i}$ é o potencial do eletrodo i e $\Delta G_{\rm i}$ a energia livre da meiareação de redução associada. Se eletrodo é montado com atividades unitárias, -v $FE_{\rm i}^{\rm o} = \Delta G_{\rm i}^{\rm o}$

Para uma reação que seja a composição de duas meias-reações, $\Delta G^{\rm o} = \Delta G_{\rm i}^{\rm o}$ - $\Delta G_{\rm j}^{\rm o}$, onde j é a meia-reação que se realizará como oxidação. Introduzindo as relações com potenciais:

$$-vFE^{o} = -v_{i}FE_{i}^{o} - (-v_{j}FE_{j}^{o})$$

Para uma reação química "completa" (nº de e^- na redução igual ao nº de e^- na oxidação), combina-se as meias-reações com estequiometria que iguala v_i com v_j (que ficam iguais a v para a reação completa). Neste caso,

$$-\nu F E^{o} = -\nu F E_{i}^{o} + \nu F E_{j}^{o}$$

$$\rightarrow E^{o} = E_{i}^{o} - E_{j}^{o}$$
(IV)

Para uma combinação de uma redução e uma oxidação que resulte em outra redução, os coeficientes ν não se anulam. Neste caso, $\nu=\nu_i-\nu_j$ e

$$E^{o} = \frac{v_i E_i^{o} - v_j E_j^{o}}{v} \tag{V}$$

De qualquer modo, não é possível medir valores de E° ou ΔG° para eletrodos isolados.

Convenção: E^{o} do eletrodo de hidrogênio é zero em todas as temperaturas

Determinando o potencial de outra meia-célula:

Célula Pt | $H_2(g)$ | $H^+(aq)$ || $Cl^-(aq)$ | AgCl(s) | $Ag \rightarrow$ potencial medido com atividades unitárias é 0,22 V a 25°C

$$\rightarrow 0.22 \text{ V} = E^{\circ}(\text{AgCl/Ag, Cl}^{-}) - E^{\circ}(\text{H}^{+}/\text{H}_{2}) = E^{\circ}(\text{AgCl/Ag, Cl}^{-}) - 0$$

$$\rightarrow$$
 E°(AgCl/Ag, Cl⁻) = 0,22 V

Exemplo de uso dos potenciais padrões:

$$Pilha\,Ag(s)\mid Ag^+(aq)\parallel Cl^-(aq)\mid AgCl(s)\mid Ag(s)$$

Potenciais tabelados:

$$E^{\circ}(AgCl/Ag, Cl^{-}) = 0.22 \text{ V e } E^{\circ}(Ag^{+}/Ag) = 0.80 \text{ V}$$

 $\rightarrow E^{\circ} = 0.22 - 0.80 = -0.58 \text{ V}$

Pela equação (II), se $E^{\rm o}$ < 0, $\Delta G_{\rm r}^{\rm o}$ > 0 \rightarrow reação não é espontânea a partir de reagentes e produtos no estado padrão.

➤ Influência da estequiometria no potencial padrão:

Para a meia-reação AgCl(s) + $e^- \rightarrow$ Ag(s) + Cl⁻(aq), $E^0 = -\Delta G^0/1 \cdot F$ = 0.22 V.

Eq. de Nernst:
$$E = E^o - \frac{RT}{F} \ln a_{Cl}$$

Para uma estequiometria duplicada, v = 2, $\Delta G^{o} = 2 \times \Delta G^{o}$ e $Q' = a_{Cl}^{2}$ Novos valores de E^{o} e E:

$$E^{o'} = -\frac{\Delta G^{o'}}{\nu F} = -\frac{2 \cdot \Delta G^{o}}{2 \cdot F} = E^{o}$$

$$E' = E^{o'} - \frac{RT}{2F} \ln a_{C\Gamma}^2 = E^{o} - \frac{2RT}{2F} \ln a_{C\Gamma} = E$$

→ Potencial de meia-célula é propriedade **intensiva**. Na combinação de meias-células, ajuste estequiométrico não influencia potenciais de meia-célula para obtenção do *E*° da célula

Exemplo: corrosão do ferro em meio ácido:

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \rightarrow Fe^{2+}(aq) + H_{2}O(l)$$

Meias-reações de redução:

(a)
$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$
 $E^{\circ} = -0.44 \text{ V}$

(b)
$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(1)$$
 $E^0 = 1,23 \text{ V}$

Reação completa é $\frac{1}{2}$ (b) – (a), mas $E^{\circ} = 1,23 - (-0,44) = 1,67 \text{ V}$

 $E^{\circ} > 0 \rightarrow \text{corrosão \'e espontânea}$

Atkins e de Paula, 7ª edição, exercício 10.23(a):

10.23 (a) A energia de Gibbs padrão da reação $K_2CrO_4(aq) + 2 Ag(s) + 2 FeCl_3(aq) \rightarrow Ag_2CrO_4(s) + 2 FeCl_2(aq) + 2 KCl(aq) é -62,5 kJ mol^{-1}, a 298 K. (a) Calcule a fem padrão da pilha galvânica correspondente e (b) o potencial padrão do par <math>Ag_2CrO_4/Ag_3CrO_4^{2-}$.

• Células em equilíbrio

Reação eletroquímica em equilíbrio: $\Delta G_{\rm r} = 0$, Q = K

Mas
$$-vFE = \Delta G_r \rightarrow E = 0$$

Equação de Nernst: $0 = E^o - \frac{RT}{vF} \ln K$

$$\rightarrow \ln K = \frac{vFE^o}{RT}$$
 (IV)

Exemplo: Diferença de potencial fornecida pela pilha de Daniell com atividades unitárias (ou concentrações diluidas iguais para o Cu^{2+} e o Zn^{2+}) é 1,10 V

$$\ln K = \frac{2 \cdot 96485 \cdot 1,10}{8.314 \cdot 298} = 85,67 \qquad \rightarrow K = 1,6 \times 10^{37}$$

Uso de potenciais padrões para cálculo de constantes de equilíbrio:

Reação de desproporcionamento do cátion cobre:

$$2\text{Cu}^+(\text{aq}) \to \text{Cu}(\text{s}) + \text{Cu}^{2+}(\text{aq}) \text{ a } 25^{\circ}\text{C}$$
 $Q = \frac{a_{Cu^{2+}}}{a_{Cu^{+}}^2}$

Meias-reações de redução:

(a)
$$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = 0.52 \text{ V}$

(b)
$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$$
 $E^{\circ} = 0.15 \text{ V}$

Reação completa é (a) - (b) \rightarrow E^{o} = 0,52 - 0,15 = 0,37 V e v = 1.

$$\ln K = \frac{1.96485 \cdot 0.37}{8.314 \cdot 298} = 14.4 \rightarrow K = 1.8 \times 10^6$$

 \rightarrow Cu⁺ se desproporciona quase completamente em solução. Uma solução de Cu⁺ não é estável.

➤ Influência das concentrações no potencial de meia-célula:

Equação de Nernst é válida para o potencial de uma meia-célula, considerando-se *Q* para a meia-reação de redução.

Exemplo: calcular alteração de potencial em um eletrodo de Ag/AgCl com solução saturada em AgCl (atividade 1,3×10⁻⁵ para os íons Cl⁻) quando se adiciona excesso de KCl(aq) 0,010 mol kg⁻¹

Meia-reação: AgCl(s) + e⁻
$$\rightarrow$$
 Ag(s) + Cl⁻(aq) $Q = a_{\text{Cl}}^-$ e v = 1
$$E = E^o - \frac{RT}{F} \ln a_{Cl}^-$$

Mudança no potencial:

$$E(a_{C\Gamma,2}) - E(a_{C\Gamma,1}) = -\frac{RT}{F} \left(\ln a_{C\Gamma,2} - \ln a_{C\Gamma,1} \right) = -\frac{RT}{F} \ln \frac{a_{C\Gamma,2}}{a_{C\Gamma,1}}$$

Pela lei limite de Debye-Hückel aplicada ao par K⁺ e Cl⁻ na segunda situação, $\gamma_{\pm} = 0.906 \rightarrow a_{\text{Cl}^-,2} = 0.906 \times 0.010 = 0.00906$

$$\rightarrow \Delta E = -25,69 \text{mV ln}(0,00906/1,3\times10^{-5}) = -0,17 \text{ V}$$

Exemplo: calcular alteração de potencial em um eletrodo de cloro quando a pressão do cloro aumenta de 1,0 atm para 2,0 atm.

Meia-reação:
$$\text{Cl}_2(g) + 2e^- \rightarrow 2\text{Cl}^-(aq)$$
 $\nu = 2$
$$E = E^o - \frac{RT}{2F} \ln \frac{a_{C\Gamma}^2}{(f_{Cl_2}/P^o)} \qquad \text{Assumir } f_{\text{Cl}2} \approx P_{\text{Cl}2}$$

$$\Delta E = -\frac{RT}{2F} \left(\ln \frac{a_{C\Gamma}^2}{P_2/P^o} - \ln \frac{a_{C\Gamma}^2}{P_1/P^o} \right) = -\frac{RT}{2F} \ln \frac{a_{C\Gamma}^2}{P_2/P^o} \cdot \frac{P_1/P^o}{a_{C\Gamma}^2} = -\frac{RT}{2F} \ln \frac{P_1}{P_2}$$

$$= -\frac{1}{2} (25,69 \text{mV}) \ln 0,5 = 8,9 \text{ mV}$$

Atkins e de Paula, 7^a edição, problema numérico 10.3:

10.3 Embora o eletrodo de hidrogênio seja conceitualmente o eletrodo mais simples, e seja a base do estado de referência dos potenciais elétricos dos sistemas eletroquímicos, ele é um dispositivo incômodo e dificil de operar. Nestas circunstâncias, imaginaram-se vários eletrodos para substituí-lo. Um eletrodo que pode ser usado em seu lugar é o eletrodo de quinidrona. A quinidrona (Q · QH₂) é um complexo da quinona, C₆H₄O₂ = Q, e da hidroquinona, C₆H₄O₂H₂ = QH₂. A meia-reação do eletrodo é Q(aq) + 2 H⁺(aq) + 2 e⁻QH₂(aq), e o respectivo potencial padrão é E[⊕] = +0,6994 V. Se tivermos a pilha Hg|Hg₂Cl₂(s)|HCl(aq)| Q·QH₂|Au e o potencial medido for +0,190 V, qual o pH da solução de HCl? Admita a validade da lei limite de Debye-Hückel.