CSC3022H:

Machine Learning: Introduction

Geoff Nitschke

Department of Computer Science University of Cape Town, South Africa

Course Syllabus

Introduction: Basic concepts.

Supervised Learning:

- ANNs. Back propagation.
- Generative Learning algorithms. Naïve Bayes.
- Concept Learning.

Unsupervised Learning:

- Clustering, Hierarchical clustering, K-means, EC, NE.
- PCA, ICA, SOM, ART.

Reinforcement Learning:

Q-learning. Policy and Value function approximation.

Module Overview

Assigned text:

- Mitchell, T. (1997). Machine Learning, McGraw Hill:
- http://www.cs.cmu.edu/~tom/mlbook.html

Recommended text:

 Russell, S., and Norvig, P. (2009). Artificial Intelligence: A Modern Approach – Third Edition.
 Prentice Hall: http://aima.cs.berkeley.edu/

ML Labs:

□ TA in Senior Lab every Friday 10.00 – 11.00 am.

Programming Assignments:

- 4 weekly tuts + 2 part assignment.
- For the rest: See course outline.

Where Does ML Fit In?

Examples of Machine Learning Types

- Supervised Learning:
 - Classification.
 - Regression.
- Unsupervised Learning:
 - Clustering.
 - Dimensionality reduction.
- Reinforcement Learning:
 - Value and policy iteration.
 - Q Learning.

Unsupervised Learning

- In supervised learning, data is in the form: < x, y >, where y = f (x). Goal is to approximate f well.
- Unsupervised learning: data just contains x.
- Goal is to "summarize" or find "patterns" or "structure" in the data.
 - Clustering (e.g. partitioning, hierarchical clustering).
 - Density estimation.
 - Dimensionality reduction (e.g. visualization, compression, pre-processing).
- Often used in data analysis, pre-processing for supervised learning.

What is Clustering?

- Clustering is grouping similar objects together.
 - To classify, or detect outliers.
 - To simplify data for further analysis or learning.
 - To visualize data (dimensionality reduction).
- Clustering is usually not "right" or "wrong". Different clustering criteria can reveal different things about the data.
- Clustering algorithms:
 - Use some notion of distance between objects.
 - Explicit or implicit criterion defining what a good cluster is.
 - Heuristically optimise criterion to get good clusters.

Example: Clustering Faces

Face data-base:

- Images have thousands or millions of pixels.
- What to cluster?
- Similarity metric?

Clustering

- K-means clustering.
- Hierarchical clustering:
 - Agglomerative.
 - Divisive.
- Dimensionality reduction:
 - Principal Component Analysis (PCA).
 - Independent Component Analysis (ICA).
- Self-Organising Maps (SOM).

K-means Clustering

- One of the most commonly-used clustering algorithms.
- Easy to implement and quick to run.
- Assumes objects (instances) to be clustered are n-dimensional vectors, x_i (real valued data).
- Uses a similarity distance metric (e.g. Euclidian distance).
- Goal: Partition the data into K disjoint subsets.

K-means Clustering

- Inputs:
 - A set of *n*-dimensional real vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$.
 - K, the desired number of clusters.
- Output: A mapping of the vectors into K clusters (disjoint subsets), $C: \{1, \ldots, m\} \mapsto \{1, \ldots, K\}.$
- 1. Initialize C randomly.
- 2. Repeat
 - (a) Compute the centroid of each cluster (the mean of all the instances in the cluster)
 - (b) Reassign each instance to the cluster with closest centroid until C stops changing.
- For given data $\{x_1, \ldots, x_m\}$ and a clustering C, consider the sum of the squared Euclidian distance between each vector and the center of its cluster:

$$J = \sum_{i=1}^{m} \|\mathbf{x}_i - \mu_{C(i)}\|^2 ,$$

where $\mu_{C(i)}$ denotes the centroid of the cluster containing \mathbf{x}_i .

K-means Clustering

What if we do not know the right number of clusters?

assign into 4 clusters randomly

recompute centroids - done!

Problems
with
K-means
Clustering?

Problems with K-means Clustering

- Applicable only when mean is defined what about categorical data? (e.g. enumerated types)?
- Need to specify k (number of clusters) in advance.
- Best method to initially assign instances to clusters?
- Cannot handle noisy data / outliers.
- Will it always find the same answer?

K-means Clustering

- Solution depends on the initial assignment of instances to clusters, random restarts will give different solutions.
- Assigning each item to random cluster in {1,..., K} is unbiased, but typically results in cluster centroids near the centroid of all the data.
- Heuristic initialisation Spread initial centroids around:
 - Place 1st centre on top of a randomly chosen data point.
 - Place 2nd centre on a data point as far as possible from 1st one.
 - □ Place *i-th* centre as far away as possible from the closest of centres 1,..., *i* 1.
- How to find best k?

K-means Clustering

- How to find best k?
- K-means clustering is fast and efficient: O(tkn).:
 - $\mathbf{n} = \text{Number of items (data points)}$
 - $\mathbf{k} = \mathbf{Number}$ of clusters.
 - $\mathbf{t} = \mathbf{N}$ umber of iterations.
- With a randomised initialisation step, just run K-means multiple times and take the clustering with best result.

ML: Reading & Lab

K-Means Clustering Online Tutorials: □ http://www.saedsayad.com/clustering_kmeans.htm http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html ☐ ML Lab this Friday (27th July).: K-Means programming assignment – On Vula now! Due: Friday (3rd August).

Examples of Machine Learning Types

- Supervised Learning:
 - Classification.
 - Regression.
- Unsupervised Learning:
 - Clustering.
 - Dimensionality reduction.
- Reinforcement Learning:
 - Value and policy iteration.
 - Q Learning.

Concept Learning

Concept Learning

- Learning from examples.
- General to specific ordering of hypotheses.
- Version spaces and candidate elimination algorithm.
- Inductive learning!

Inductive Learning

Induction versus Deduction?

□ Difference?

Inductive Learning

Induction (Bottom-up logic):

- Generalising about properties of data based on a few data-point observations.
- Specific to general (Learning from examples).
- □ Pull 4 marbles out of a box: 3 are red, 1 is white → Box contains a distribution of 75% red and 25% white marbles.

Deduction (Top-down logic):

- Conclusion reached from general statements.
- General to specific.
- All robots must recharge; Ava is a robot; Ava must recharge.

The Learning Problem

Example: Credit Approval – Formalisation:

```
\bullet Input: \mathbf{x} (customer application)
• Output: y (good/bad customer?)
• Target function: f: \mathcal{X} \to \mathcal{Y} (ideal credit approval formula)
• Data: (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N) (historical records)
• Hypothesis: g: \mathcal{X} \to \mathcal{Y} (formula to be used)
```

The Learning Problem

- Two solution components of the learning problem:
 - Hypothesis set:

$$\mathcal{H} = \{h\}$$
 $g \in \mathcal{H}$

- Learning algorithm.
- Together, they are referred to as the learning model.

Training Examples for Concept: Enjoy Sport

attributes

Sky	Temp	Humic	l Wind	Water		Enjoy Sport
Sunny	Warm	Norı in	ctanco	Warm	Same	Yes
Sunny	Warm	Higt."	stance	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

- Concept: Days on which someone enjoys playing sport.
- Task: Predict the value of "Enjoy Sport" based on the values of the other attributes.

Inductive Learning Hypothesis

 Any hypothesis found to approximate the target function well over the training examples, will also approximate the target function well over the unobserved examples (Mitchell, 1997).

Concept Learning: Terminology

- Instance space X: Set of all possible inputs.
 - Sky: < Sunny, Cloudy, Rainy >
 - AirTemp: < Warm, Cold >
 - Humidity: < Normal, High >
 - Wind: < Strong, Weak >
 - Water: < Warm, Cold >
 - Forecast: < Same, Change >
- Example: x = < sunny, warm, normal, strong, warm, same >
 - Number of distinct instances and concepts?

Concept Learning: Terminology

- Instance space X: Set of all possible inputs.
 - Sky: < Sunny, Cloudy, Rainy >
 - AirTemp: < Warm, Cold >
 - Humidity: < Normal, High >
 - Wind: < Strong, Weak >
 - Water: < Warm, Cold >
 - Forecast: < Same, Change >
- Distinct *instances* = $(3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)$ = 96 instances.
- Distinct concepts = 2⁹⁶

Concept Learning: Terminology

- Training examples: D = { < x , c(x) > }
 - Instance x from X with target concept value c(x).
 - +ve examples: c(x) = 1, members of target concept.
 - \neg -ve examples: c(x) = 0, non-members of target concept.
 - □ Target concept c: $X \rightarrow \{0, 1\}$
- Hypothesis space H: Set of possible hypotheses (e.g.: EnjoySport)
 - \Box (5 · 4 · 4 · 4 · 4 · 4) = 5120 syntactically distinct hypotheses.
 - \Box (4 · 3 · 3 · 3 · 3 · 3) = 973 semantically distinct hypotheses.

Concept Learning: Hypotheses

- Hypothesis h is a conjunction of constraints on attributes.
- Each constraint can be:
 - Specific value: e.g.: Water = Warm.
 - Don't care value: e.g.: Water = ?
 - □ **No value allowed** (null hypothesis): e.g.: Water = \emptyset .
- Example: Hypothesis h:

Concept Learning: Hypotheses

Most general hypothesis:

Most specific hypothesis:

 \square < \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset >

Notation:

- X: Set of instances over which the concept is defined.
- e.g: EnjoySport (concept) for sets of values (instances) for attributes: <Sky, Air Temp, Humidity, Wind, Water, Forecast>.
- **c:** Target concept.
- $\mathbf{c}(\mathbf{x}) = \mathbf{1}$ if EnjoySport = Yes; $\mathbf{c}(\mathbf{x}) = \mathbf{0}$ if EnjoySport = No.

Prototypical Concept Learning

Given:

- Instance X: Possible days described by the attributes: <Sky, Temp, Humidity, Wind, Water, Forecast>.
- □ Target concept c: Enjoy Sport, $X \rightarrow \{0,1\}$.
- Hypotheses H: Conjunction of literals e.g.:
 Sunny, ?, ?, Strong, ?, Same >
- □ Training set D: +ve and -ve examples of target function:

$$< X_1, C(X_1) > ..., < X_n, C(X_n) >$$

Determine:

 \Box A hypothesis **h** in **H** such that h(x) = c(x) for all **x** in **D**.

General to Specific Order

Consider hypotheses:

- $h_1 = < Sunny, ?, ?, Strong, ?, ? >$
- $h_2 = < Sunny, ?, ?, ?, ?, ? >$

Set of instances covered by h₁ and h₂:

□ h_2 imposes fewer constraints than h_1 and therefore classifies more instances of x as positive: h(x) = 1.

Definition:

- Let h_i and h_k be Boolean valued functions defined over X.
- □ Then h_j is more general than or equal to h_k (i.e. $h_j \ge_g h_k$)

iff:
$$(\forall x \in X)[(h_k(x) = 1) \rightarrow (h_i(x) = 1)]$$

General to Specific Order

Find S Algorithm

Initialise *h* to the most specific hypothesis in *H*.

FOR each **+ve** training instance **x**:

FOR each attribute constraint a_i in h:

IF the constraint a_i in h is satisfied by x THEN do nothing

ELSE replace a_i in h by the next more general constraint that is satisfied by x.

Output hypothesis h.

Example	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- Initialise h to most specific hypothesis in H:
 - $h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$
- ?

Example	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Initialise h to most specific hypothesis in H:

$$h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

- Hypothesis is too specific replace with:
 - □ **h**₁ = < Sunny, Warm, Normal, Strong, Warm, Same >
- **?**

Example	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- h₁ is still too specific 2nd training example forces Find-S to further generalise h:
 - "?" in place of any value not satisfied by new example.
 - h₂ = < Sunny, Warm, ?, Strong, Warm, Same >
- · ?

Example	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

 Find-S ignores 3rd training example (ignores every -ve example).

?

Example	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- 4th example further generalisation of h.
 - $h_4 = \langle Sunny, Warm, ?, Strong, ?, ? \rangle$

Hypothesis Space Search by Find-S

 $h0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$

x1 = < Sunny, Warm, Normal, Strong, Warm, Same >, +
h1 = < Sunny, Warm, Normal, Strong, Warm, Same >

x2 = <Sunny, Warm, High, Strong, Warm, Same>, +
h2 = < Sunny, Warm, ?, Strong, Warm, Same >

x3 = < Rainy, Cold, High, Strong, Warm, Change >, h3 = < Sunny, Warm, ?, Strong, Warm, Same >

x4 = < Sunny, Warm, High, Strong, Cool, Change >, + h4 = < Sunny, Warm, ?, Strong, ?, ? >

Properties of Find-S

- Hypothesis Space: Described by conjunctions of attributes.
- Find-S: Outputs the most specific hypothesis within H that is consistent with the +ve training examples.
- Always prefers the most specific hypothesis.
- But has the learner converged to the only hypothesis in *H* consistent with the data (correct target concept)?
- Problems with Find-S?

Problems with Find-S

- Why should we prefer the most specific hypothesis?.
- Impossible to know if only one unique hypothesis remains.
- We will not detect inconsistent data (noise!) since all –ve examples are ignored.
- What if there are multiple maximally specific hypotheses?

Next ... Candidate Elimination Algorithm

ML: Reading

Chapter 2: Concept Learning