- 1. 函数 $y = \sqrt{x-1} + \sqrt{\frac{x-1}{x-2}}$ 的定义域为_____

- $4. \lim_{x\to\infty}\left(1-\frac{1}{3x}\right)^x=\underline{\hspace{1cm}}$
- 5. 已知当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}}-1$ 与 $\cos x-1$ 是等价无穷小,则常数a=______
- 7. 设a为非零常数,则 $\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x = \underline{\qquad}$.
- 8. 已知 $x_n = \sqrt{3 + \sqrt{3 + \dots + \sqrt{3}}}$ (n重根号),且极限存在,则 $\lim_{n \to \infty} x_n = \underline{\qquad}$.

1

-	AN AND MISS	/A- 1 1	
	四坪燈	(每小题3分)	# 24 分

1.	设 $f(x) = \frac{\sin(x+1)}{1+x^2}, -\infty < x < +\infty$,	则此函数是)
2.	(A) 有界函数 (B) 奇函数 下列结论中正确的是	(C) 偶函数	(D) 周期函数 ()
	(A) 若 $\lim_{n\to\infty} x_n = a $, 则 $\lim_{n\to\infty} x_n = a$ (a)	≠ 0)		
	(B) 若 $\lim_{n\to\infty} x_n$ 不存在, $\lim_{n\to\infty} y_n$ 不存在,	则 $\lim_{n\to\infty}(x_n+y_n)$ 必不存	在	
	(C) 若 $\lim_{n\to\infty} x_n$ 不存在, $\lim_{n\to\infty} y_n$ 存在, 则	$\lim_{n\to\infty}(x_n+y_n)$ 必不存在		
	(D) 若 $\lim_{n\to\infty} x_n$ 存在, $\lim_{n\to\infty} y_n$ 不存在,则			
3.	下列数列中,发散的是	化二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	2) 图点数数段系)
	(A) $\left\{ (-1)^n \frac{1}{n} \right\}$ (B) $\left\{ \frac{n-1}{n+1} \right\}$	$(C) \left\{ \frac{2^n - 1}{3^n} \right\}$	(D) $\left\{n(-1)^n\right\}$	
4.	数列的有界性是数列收敛的		()
	(A) 充分条件 (B) 必要条件 (C) 充要条件 (D) [既非充分又非必要条	件
5.	下列函数在指定的变化过程中,属于无穷	了小量的是	()
	$(A) e^{\frac{1}{x}}, x \to \infty$	$(B) \ \frac{1}{x^2 + 2x}, \ x \to \infty$	•	
	(C) $ln(1+x), x \rightarrow 1$	(D) e^x , $x \to +\infty$		
6.	当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是	((母小園6分, 共)	· 计基下列组用)
	(A) $1 - e^{\sqrt{x}}$ (B) $\sqrt{1 + \sqrt{x}} - 1$	(C) $1-\cos\sqrt{x}$	(D) $\ln \frac{1+x}{1-x}$	$\frac{x}{\sqrt{x}}$
7.	当 $x \to 1$ 时,函数 $\frac{x^2 - 1}{x - 1} e^{\frac{1}{x - 1}}$ 的极限		()
	(A) 等于2 (B) 等于0 (C)不存在但不为无实	野大 (D)无野	子大
8.	设 $x_n \le z_n \le y_n$,且 $\lim_{n \to \infty} (y_n - x_n) = 0$,	则 $\lim_{n\to\infty} z_n$	()
		B)存在但不一定等于 D)一定不存在	-0	

至。從理解《尋布整》分。其(2分)

三、证明题 (每小题 6 分, 共 12 分)

1. 用函数极限的定义证明 $\lim_{x \to +\infty} \frac{\sin x}{\sqrt{x} + 1} = 0$.

2. 用函数极限的定义证明 $\lim_{x\to 5} \sqrt{x} = \sqrt{5}$.

 $\{(-1)^{n}\} = \{(-1)^{n}\} = \{(-$

四、计算下列极限 (每小题 6 分, 共 24 分)

1.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$
.

$$2. \lim_{x \to 0^+} \frac{\tan x - \sin x}{x \ln(1+x)}.$$

3.
$$\lim_{n\to\infty}\frac{(-2)^n+3^n}{(-2)^{n+1}+3^{n+1}}.$$

(会 18 共、长 8 幾小婦) 獨次真

4.
$$\lim_{n\to\infty} \left(\frac{1}{2n+\sqrt{1}} + \frac{1}{2n+\sqrt{2}} + \dots + \frac{1}{2n+\sqrt{n}} \right)$$

(1 + ar) - x > 0 - x - 1 - x - 0

miles to the second

五、(本題满分 8 分) 设
$$\lim_{x\to 1} \frac{x^2 + ax + b}{1-x} = 5$$
, 求常数 $a \pi b$.

六、(本題満分 8 分) 已知
$$x_1 > 0$$
 , $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$, $n \in \mathbb{N}^+$. 证明:数列 $\left\{ x_n \right\}$ 收敛,并求其极限值.