

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves rogerioag@utfpr.edu.br

Aula 006

Aula de Hoje:

Conjunto de Instruções

- Instruções de controle
- Construções: condicionais e laços de repetição.

Conjunto de Instruções

Desvios

-Alteram o fluxo de execução do programa.

3

Desvios

- Todo programa executa instruções fora da sequência.
- Tipos de desvios (branches):
 - Desvio condicional (conditional branches):
 - » branch if equal (beg): salta se igual.
 - » branch if not equal (bne): salta se não igual.
 - Desvio incondicional (unconditional branches):
 - » jump (j): salto com endereço/label.
 - » jump register (jr): salta para o endereço especificado em registrador.
 - » jump and link (jal): chamada de procedimento.

Instruções de desvio condicional

•beq (branch if equal)

beg registrador1, registrador2, L1

• se o valor do *registrador1* for *igual* ao do *registrador2* o programa será desviado para o label *L1*.

bne (branch if not equal)

bne registrador1, registrador2, L1

 se o valor do registrador1 não for igual ao do registrador2 o programa será desviado para o label L1.

5

Beq: exemplo

```
# MIPS assembly
```

```
addi $s0, $0, 4  # $s0 = 0 + 4 = 4

addi $s1, $0, 1  # $s1 = 0 + 1 = 1

sll $s1, $s1, 2  # $s1 = 1 << 2 = 4

beq $s0, $s1, target # desvio é tomado

addi $s1, $s1, 1  # Não executado

sub $s1, $s1, $s0  # Não executado
```

target: # label add \$s1, \$s1, \$s0 # \$s1 = 4 + 4 = 8

Bne: exemplo

```
# MIPS assembly
    addi $s0, $0, 4  # $s0 = 0 + 4 = 4
    addi $s1, $0, 1  # $s1 = 0 + 1 = 1
    sll $s1, $s1, 2  # $s1 = 1 << 2 = 4
    bne $s0, $s1, target # branch not taken
    addi $s1, $s1, 1  # $s1 = 4 + 1 = 5
    sub $s1, $s1, $s0  # $s1 = 5 - 4 = 1</pre>
target:
    add $s1, $s1, $s0  # $s1 = 1 + 4 = 5
```

Instruções de desvio condicional

Exemplo - Compilando um comando IF. Seja o comando abaixo:

```
if ( i == j ) go to L1;
f = g + h;
L1: f = f - i;
```

Supondo que as 5 variáveis correspondam aos registradores \$s0..\$s4, respectivamente, como fica o código MIPS para o comando?

Solução

```
beq $s3,$s4,L1  # vá para L1 se i = j
add $s0,$s1,$s2  # f = g + h, executado se i != j
L1: sub $s0,$s0,$s3  # f = f - i, executado se i = j
```

. UTFPR -

Desvio incondicional (j)

MIPS assembly

```
addi $s0, $0, 4  # $s0 = 4

addi $s1, $0, 1  # $s1 = 1

j target  # jump to target

sra $s1, $s1, 2  # não executado

addi $s1, $s1, 1  # não executado

sub $s1, $s1, $s0  # não executado
```

target: add \$s1, \$s1, \$s0 # \$s1 = 1 + 4 = 5

9

Instruções de desvio incondicional

```
• j L1
```

• quando executado faz com que o programa seja desviado para L1 Exemplo — Compilando um comando if-then-else

Seja o comando abaixo: Supondo:

```
if ( i == j)
    f = g + h;
else
    f = g - h;
i: $s3, j: $s4
f: $s0, g: $s1 e h: $s2
```

```
bne $s3,$s4,Else # vá para Else se i != j
    add $s0,$s1,$s2 # f = g + h, se i != j
    j Exit # vá para Exit
Else: sub $s0,$s1,$s2 # f = g - h, se i = j
Exit: nop
```

Desvio incondicional (jr)

MIPS assembly

Endereço	Instr	ução		
0x00002000	addi	\$s0,	\$0 ,	0x2010
0x00002004	jr	\$ s0		
0x00002008	addi	\$s1,	\$0 ,	1
0x0000200C	sra	\$s1,	\$s1,	. 2
0x00002010	lw	\$s3,	44(\$	\$s1)

Quais instruções serão executadas no trecho de código?

11

Instruções para teste de maior ou menor

- Set less than (slt)
 - slt reg_temp, reg1, reg2
 - se **reg1** é *menor* que **reg2**, **reg_temp** é setado, caso contrário é resetado.
 - Nos processadores MIPS o registrador \$0 possui o valor zero (\$zero).

Exemplo: Compilando o teste *Menor que*

Solução:

Instruções para teste de maior ou menor

- Set Greater Than (sgt)
 - sgt reg_temp, reg1, reg2
 - -se **reg1** é *maior* que **reg2**, **reg_temp** é setado, caso contrário é resetado.
 - Nos processadores MIPS o registrador \$0 possui o valor zero (\$zero).

Exemplo: Compilando o teste *Maior que*

Solução:

```
sgt $t0, $s0, $s1 # $t0 \(\epsilon\) setado se $s0 > $s1 bne $t0, $zero, EnderecoAlvo # v\(\alpha\) para EnderecoAlvo, # se $t0 != 0, ou seja a>b
```

13

Saltando mais longe

Dado o *branch* abaixo, rescrevê-lo de tal maneira a oferecer um deslocamento (offset) maior:

beq \$s0,\$s1,L1

6 bits 5 bits 5 bits 16 bits

Solução

bne \$s0, \$s1, L2

L2: j L1

Salta para um jump que suporta um endereço maior

Construções de Alto Nível

- if statements
- if/else statements
- while loops
- for loops

- UTFPR

if Statement

15

High-level code

$$f = f - i;$$

MIPS assembly code

Note que em assembly o teste é o oposto (i != j) do teste em alto nível (i == j).

if / else Statement

High-level code

if (i == j) f = g + h; else f = f - i;

MIPS assembly code

```
# $s0 = f, $s1 = g, $s2 = h
# $s3 = i, $s4 = j

bne $s3, $s4, L1
   add $s0, $s1, $s2
   j   done
L1:   sub $s0, $s0, $s3
done:   nop
```

17

— UTFPR

case/switch

Exemplo – Compilando o case/switch.

Seja a construção abaixo:

```
switch (k) {
    case 0: f = i + j;
        break;
    case 1: f = g + h;
        break;
    case 2: f = i + h;
        break;
}
```

- UTFPR -

case/switch

```
Solução: supor que $t2 tenha 3 e f, g, h, i, j, k = $s0..$s5, respectivamente.
                                                           Testa se k está dentro dos
slt
       $t3,$s5,$zero
                           # teste se k < 0
                                                               limites dos casos
                           # se k < 0 vá para Exit 🗲
       $t3,$zero,Exit
bne
                                                                Calcula o deslocamento
slt
       $t3,$s5,$t2
                           # teste se k < 3
                                                                  na tabela de saltos
       $t3,$zero,Exit
                           # se k>=2 vá para Exit
beq
                                                                   desloc = 4 * k
                                                                4*2 = 2+2+2+2 = 4+4
add
       $t1,$s5,$s5
                           # $t1 = 2 * k
                           # $t1 = 4 * k
                                                                addi $t1,$0,4
add
       $t1,$t1,$t1
                                                                mult $t1, $s5
# assumindo que 3 palavras na memória, começando no endereço contido em $t4,
# tem endereçamento correspondente a L0, L1, L2
add
       $t1,$t1,$t4
                           # $t1 = endereço de tabela[k]
lw
       $t0,0($t1)
                           # $t0 = tabela[k]
       $t0
                           # salto para endereço carregado em $t0: L0 ou L1 ou L2
jr
L0:
       add
             $s0,$s3,$s4 # k = 0 -> f = i + j
                                                               L1
                                                                    L2
                                                          L0
             Exit
L1:
       add
             $s0,$s1,$s2
                           \# k = 1 -> f = q + h
                                                         +0
                                                               +4
                                                                    +8
             Exit
       j
L2:
             $s0,$s3,$s2 # k = 2 -> f = i + h
       add
Exit:
       nop
```

For Loops

A forma geral de um laço for é:

```
for(inicialização; condição; loop){
  corpo do laço
}
```

- inicialização: executado antes do loop
- condição: testada no início de cada iteração
- loop: executa no fim de cada iteração
- corpo do laço: executado para cada vez que a condição é satisfeita

For Loops

Código de alto nível

```
//somar números de 0 a 9
int sum = 0;
int i;

for (i=0; i!=10; i = i+1) {
   sum = sum + i;
}
```

Código Assembly do MIPS

21

- UTFPR

Loops (Laços)

Usando DO...WHILE Exemplo:

```
do{
   g = g + A[i];
   i = i + j;
}while(i!=h);
```

• Solução:

\$s5 tem o endereço do início de A, que é o A [0]

```
Loop: g = g + A[i];
i = i + j;
if ( i != h ) go to Loop
```

Como os elementos de A, são inteiros (32 bits = 4 bytes) o deslocamento para acessar o i-ésimo elemento é dado por 4 * i. Se i=2, então o A[2] inicia no 8° byte a partir do endereço base.

```
Loop: add $t1,$s3,$s3  # $t1 = 2 * i
    add $t1,$t1,$t1  # $t1 = 4 * i
    add $t1,$t1,$s5  # $t1 recebe endereço de A[i]
    lw $t0,0($t1)  # $t0 recebe A[i]
    add $s1,$s1,$t0  # g = g + A[i]
    add $s3,$s3,$s4  # i = i + j
    bne $s3,$s2,Loop  # se i != h vá para Loop
```

Loops (Laços)

- Usando while
- Exemplo:

```
while (save[i] == k)
i = i + j;
```

Solução: Para i, j e k correspondendo a \$s3, \$s4 e \$s5, respectivamente, e o endereço base do *array* em \$s6, temos:

```
Loop: add $t1,$s3,$s3 # $t1 = 2 * i
add $t1,$t1,$t1 # $t1 = 4 * i
add $t1,$t1,$s6 # $t1 = endereço de save[i]
lw $t0,0($t1) # $t0 recebe save[i]
bne $t0,$s5,Exit # va para Exit se save[i] != k
add $s3,$s3,$s4 # i = i + j
j Loop

Exit: nop
```

23

- UTFPR

For Loops: Usando slt

```
Código de Alto nível
// add the powers of 2 from 1
// to 100
int sum = 0;
int i;

for (i=1; i < 101; i = i*2) {
   sum = sum + i;
}</pre>
```

Código Assembly MIPS

done:

t1 = 1 if i < 101.

While Loops

High-level code

```
// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) {
   pow = pow * 2;
   x = x + 1;
}
```

MIPS assembly code

25

- UTEPR

```
While (save[i] == k)
i +=1;
```

Assumindo que o loop está alocado inicialmente na posição 80000 na memória, teremos a seguinte sequência de código em linguagem de máquina:

80000	0	0	19	9	4	0
80004	0	9	22	9	0	32
80008	35	9	8		0	
80012	5	8	21		2	
80016	8	19	19		1	
80020	2			20000		
80024	•••••					

UTFPR

26

Operandos MIPS					
Nome	Exemplo	Comentários			
32 registradores	\$s0, \$s1,, \$s7 \$t0, \$t1,, \$t7	Locais rápidos para dados. No MIPS, os dados precisam estar em registradores para a realização de operações aritméticas. Os registradores \$50-\$57 são mapeados para 16-23; \$t0-\$t7 são mapeados para 8-15. O registrador MIPS \$zero sempre é igual a 0.			
2 ³⁰ words na memória	Memória[0], Memória[4] Memória[4294967292]	Acessadas apenas por instruções de transferência de dados no MIPS. O MIPS utiliza endereços em bytes, de modo que os endereços em words seqüenciais diferem em 4 vezes. A memória contém estruturas de dados, arrays e spilled registers.			

Assembly do MIPS

Categoria	Instrução	Exemplo	Significado	Comentários
Aritmética	Add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Três operandos; dados nos registradores
Anuneuca	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2- \$s3	Três operandos; dados nos registradores
Transferência	load word	lw \$s1,100(\$s2)	\$s1 = Memória[\$s2 + 100]	Dados da memória para o registrador
de dados	store word	sw \$s1,100(\$s2)	Memória[\$s2 + 100] = \$s1	Dados do registrador para a memória
	And	and \$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Três operadores em registrador; AND bit a bit
dia filipiania parte accessor a constituire	Or	or \$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Três operadores em registrador; OR bit a bit
	nor	nor \$s1,\$s2,\$s3	\$s1 = ~(\$s2 \$s3)	Três operadores em registrador; NOR bit a bit
Lógica	and immediate	andi \$s1,\$s2,100	\$s1 = \$s2 & 100	AND bit a bit entre registrador com constante
	or immediate	ori \$s1,\$s2,100	\$s1 = \$s2 100	OR bit a bit entre registrador com constante
	shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	Deslocamento à esquerda por constante
	shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	Deslocamento à direita por constante
	branch on equal	beq \$s1,\$s2,L	if (\$s1 == \$s2) go to L	Testa igualdade e desvia
	branch on not equal	bne \$s1,\$s2,L	if (\$s1 != \$s2) go to L	Testa desigualdade e desvia
Desvio condicional	set on less than	slt \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compara menor que; usado com beq. bne
	set on less than immediate	slt \$s1,\$s2,100	if (\$s2 < 100) \$s1 = 1; else \$s1 = 0	Compara menor que imediato; usado com beq, bne
Desvio incondicional	jump	jL	go to L	Desvia para endereço de destino

FIGURA 2.12 Arquitetura MIPS revelada até a Seção 2.6. As partes destacadas mostram as estruturas MIPS introduzidas na Seção 2.6.

۷ /

Instruções vistas até o momento

Linguagem de máquina do MIPS

Nome	Formato			* :	Exemplo			Comentários
add	R	0	18	19	17	0	32	add \$s1,\$s2,\$s3
sub	R	0	18	19	17	0	34	sub \$s1,\$s2,\$s3
1w	I	35	18	17		100		lw \$s1,100(\$s2)
SW	1	43	18	17		100		sw \$s1,100(\$s2)
and	R	0	18	19	17	0	36	and \$s1,\$s2,\$s3
or	R	0	18	19	17	0	37	or \$s1,\$s2,\$s3
nor	R	0	18	19	17	0	39	nor \$s1,\$s2,\$s3
andi	1	12	18	17		100		andi \$s1,\$s2,100
ori	1	13	18	17		100		ori \$s1,\$s2,100
s11	R	0	0	18	17	10	0	sll \$s1,\$s2,10
srl	R	0	0	18	17	10	2	srl \$s1,\$s2,10
beq		4	17	18		25		beq \$s1,\$s2,100
bne	operator of the state of the st	5	17	18		25		bne \$s1.\$s2,100
slt	R	0	18	19	17	0	42	slt \$s1,\$s2,\$s3
j	J	2			2500	2500		j 10000 (ver Seção 2.9)
Tamanho do campo		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	Todas as instruções MIPS de 32 bits
Formato R	R	ор	rs	rt	rd shamt funct		funct	Formato das instruções aritméticas
Formato I	I	ор	rs	rt		endereço		Formato para transferências de dados e desvios

FIGURA 2.13 A linguagem de máquina do MIPS revelada até a Seção 2.6. As partes destacadas mostram as estruturas do MIPS introduzidas na Seção 2.6. O formato J, usado para instruções de jump, é explicado na Seção 2.9, que também explica os valores apropriados para os campos de endereço das instruções de desvio.

Resumo da Aula de Hoje

Tópicos mais importantes:

Linguagem Assembly

Microprocessador MIPS

Instruções de controle de fluxo de execução

- Saltos
- Construções de linguagem de alto nível: condicionais e laços.

29

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves rogerioag@utfpr.edu.br

Aula 006

Aula de Hoje:

Conjunto de Instruções

- Instruções de controle
- Construções: condicionais e laços de repetição.

2

- UTFPR

Conjunto de Instruções

- Desvios
 - -Alteram o fluxo de execução do programa.

Desvios

- Todo programa executa instruções fora da sequência.
- Tipos de desvios (branches):
 - Desvio condicional (conditional branches):
 - » branch if equal (beq): salta se igual.
 - » branch if not equal (bne): salta se não igual.
 - Desvio incondicional (unconditional branches):
 - » jump (j): salto com endereço/label.
 - » jump register (jr): salta para o endereço especificado em registrador.
 - » jump and link (jal): chamada de procedimento.

4

Instruções de desvio condicional

•beq (branch if equal)

beq registrador1, registrador2, L1

- se o valor do *registrador1* for *igual* ao do *registrador2* o programa será desviado para o label *L1*.
- •bne (branch if not equal)

bne registrador1, registrador2, L1

 se o valor do registrador1 não for igual ao do registrador2 o programa será desviado para o label L1.

Beq: exemplo

MIPS assembly

```
addi $s0, $0, 4  # $s0 = 0 + 4 = 4

addi $s1, $0, 1  # $s1 = 0 + 1 = 1

sll $s1, $s1, 2  # $s1 = 1 << 2 = 4

beq $s0, $s1, target # desvio é tomado

addi $s1, $s1, 1  # Não executado

sub $s1, $s1, $s0  # Não executado
```

```
target: # label
add $s1, $s1, $s0 # $s1 = 4 + 4 = 8
```

6

Bne: exemplo

MIPS assembly

```
addi $s0, $0, 4  # $s0 = 0 + 4 = 4

addi $s1, $0, 1  # $s1 = 0 + 1 = 1

sll $s1, $s1, 2  # $s1 = 1 << 2 = 4

bne $s0, $s1, target # branch not taken

addi $s1, $s1, 1  # $s1 = 4 + 1 = 5

sub $s1, $s1, $s0  # $s1 = 5 - 4 = 1
```

target:

add \$s1, \$s1, \$s0 # \$s1 = 1 + 4 = 5

- UTFPR

Instruções de desvio condicional

Exemplo - Compilando um comando IF. Seja o comando abaixo:

```
if ( i == j ) go to L1;
f = g + h;
L1: f = f - i;
```

MIPS assembly

Supondo que as 5 variáveis correspondam aos registradores \$s0..\$s4, respectivamente, como fica o código MIPS para o comando?

```
Solução
```

```
beq $s3,$s4,L1  # vá para L1 se i = j
add $s0,$s1,$s2  # f = g + h, executado se i != j
L1: sub $s0,$s0,$s3  # f = f - i, executado se i = j
```

Desvio incondicional (j)

```
addi $s0, $0, 4 # $s0 = 4
addi $s1, $0, 1 # $s1 = 1
j target # jump to target
```

 sra
 \$s1, \$s1, 2
 # não executado

 addi
 \$s1, \$s1, 1
 # não executado

 sub
 \$s1, \$s1, \$s0
 # não executado

target: add \$s1, \$s1, \$s0 # \$s1 = 1 + 4 = 5

Instruções de desvio incondicional

• j L1

• quando executado faz com que o programa seja desviado para L1

Exemplo - Compilando um comando if-then-else

```
Seja o comando abaixo:

if ( i == j)
    f = g + h;
else
    f = g - h;
Supondo:

i: $s3, j: $s4

f: $s0, g: $s1 e h: $s2
```

```
bne $s3,$s4,Else # vá para Else se i != j
    add $s0,$s1,$s2 # f = g + h, se i != j
    j Exit # vá para Exit
Else: sub $s0,$s1,$s2 # f = g - h, se i = j
Exit: nop
```

10

- UTFPR

Desvio incondicional (jr)

MIPS assembly

Endereço	Instr	ução		
0x00002000	addi	\$s0,	\$0 ,	0x2010
0x00002004	jr	\$ s0		
0x00002008	addi	\$s1,	\$0 ,	1
0×0000200C	sra	\$s1,	\$s1,	. 2
0x00002010	1 w	\$s3,	44(\$	Ss1)

Quais instruções serão executadas no trecho de código?

Instruções para teste de maior ou menor

- Set less than (slt)
 - •slt reg_temp, reg1, reg2
 - -se **reg1** é *menor* que **reg2**, **reg_temp** é setado, caso contrário é resetado.
 - Nos processadores MIPS o registrador \$0 possui o valor zero (\$zero).

Exemplo: Compilando o teste *Menor que*

Solução:

12

Instruções para teste de maior ou menor

- Set Greater Than (sgt)
 - sgt reg_temp, reg1, reg2
 - -se **reg1** é *maior* que **reg2**, **reg_temp** é setado, caso contrário é resetado.
 - Nos processadores MIPS o registrador \$0 possui o valor zero (\$zero).

Exemplo: Compilando o teste Maior que

```
Solução:
```

```
sgt $t0, $s0, $s1 # $t0 \(\epsilon\) setado se $s0 > $s1
bne $t0, $zero, EnderecoAlvo # v\(\alpha\) para EnderecoAlvo,
# se $t0 != 0, ou seja a>b
```


Saltando mais longe

Dado o *branch* abaixo, rescrevê-lo de tal maneira a oferecer um deslocamento (offset) maior:

beq \$s0,\$s1,L1

Solução

bne \$s0, \$s1, L2

L2: j L1

Salta para um jump que suporta um endereço maior

14

Construções de Alto Nível

- if statements
- if/else statements
- while loops
- for loops

if Statement

High-level code

f = g + h;

$$f = f - i;$$

MIPS assembly code

L1: sub \$s0, \$s0, \$s3

Note que em assembly o teste é o oposto (i != j) do teste em alto nível (i == j).

16

if / else Statement

High-level code

MIPS assembly code

add \$s0, \$s1, \$s2 i done

L1: sub \$s0, \$s0, \$s3

done: nop

case/switch

Exemplo – Compilando o case/switch.

Seja a construção abaixo:

```
switch (k) {
    case 0: f = i + j;
        break;
    case 1: f = g + h;
        break;
    case 2: f = i + h;
        break;
}
```

case/switch

18

- UTFPR

```
Solução: supor que $t2 tenha 3 e f, g, h, i, j, k = $s0..$s5, respectivamente.
                                                              Testa se k está dentro dos
                            # teste se k < 0
slt
       $t3,$s5,$zero
       $t3,$s5,$zero # teste se k < 0
$t3,$zero,Exit # se k < 0 vá para Exit \blacktriangleleft
                                                                  limites dos casos
bne
                                                                   Calcula o deslocamento
       $t3,$s5,$t2
$t3,$zero,Exit
                            # teste se k < 3
slt
                                                                     na tabela de saltos
                            # se k>=2 vá para Exit
beq
                                                                      desloc = 4 * k
add
                                                                   4*2 = 2+2+2+2 = 4+4
       $t1,$s5,$s5
                            # $t1 = 2 * k
                             # $t1 = 4 * k
                                                                   addi $t1,$0,4
add
       $t1,$t1,$t1
                                                                   mult $t1, $s5
# assumindo que 3 palavras na memória, começando no endereço contido em $t4,
# tem endereçamento correspondente a L0, L1, L2
add
       $t1,$t1,$t4
                            # $t1 = endereço de tabela[k]
       $t0,0($t1)
                            # $t0 = tabela[k]
lw
jr
       $t0
                            # salto para endereço carregado em $t0: L0 ou L1 ou L2
L0:
              $s0,$s3,$s4 # k = 0 -> f = i + j
       add
                                                                 L1
                                                            L0
                                                                       L2
              Exit
L1:
       add
              $s0,$s1,$s2
                           \# k = 1 -> f = g + h
                                                            +0
                                                                  +4
                                                                       +8
             Exit
       j
                                                         $t4
L2:
             s0,s3,s2 # k = 2 -> f = i + h
       add
Exit:
       nop
```

For Loops

A forma geral de um laço for é:

```
for(inicialização; condição; loop){
  corpo do laço
}
```

- inicialização: executado antes do loop
- condição: testada no início de cada iteração
- *loop:* executa no fim de cada iteração
- corpo do laço: executado para cada vez que a condição é satisfeita

20

For Loops

Código de alto nível

```
//somar números de 0 a 9
int sum = 0;
int i;

for (i=0; i!=10; i = i+1) {
   sum = sum + i;
}
```

Código Assembly do MIPS

Loops (Laços)

Usando DO...WHILE Exemplo:

```
Loop: g = g + A[i];
i = i + j;
if ( i != h ) go to Loop
```

\$s5 tem o endereço do início de A, que é o A [0]

```
do{
   g = g + A[i];
   i = i + j;
}while(i!=h);
```

Como os elementos de A, são inteiros (32 bits = 4 bytes) o deslocamento para acessar o i-ésimo elemento é dado por 4 * i. Se i=2, então o A[2] inicia no 8° byte a partir do endereço base.

Solução:

```
Loop: add $t1,$s3,$s3  # $t1 = 2 * i
    add $t1,$t1,$t1  # $t1 = 4 * i
    add $t1,$t1,$s5  # $t1 recebe endereço de A[i]
    lw $t0,0($t1)  # $t0 recebe A[i]
    add $s1,$s1,$t0  # g = g + A[i]
    add $s3,$s3,$s4  # i = i + j
    bne $s3,$s2,Loop  # se i != h vá para Loop
```

Loops (Laços)

- Usando while
- Exemplo:

```
while (save[i] == k)
i = i + j;
```

Solução: Para i, j e k correspondendo a \$s3, \$s4 e \$s5, respectivamente, e o endereço base do *array* em \$s6, temos:

```
$t1,$s3,$s3
                               # $t1 = 2 * i
Loop:
         add
                               # $t1 = 4 * i
         add
               $t1,$t1,$t1
                               # $t1 = endereço de save[i]
         add
               $t1,$t1,$s6
          1w
               $t0,0($t1)
                               # $t0 recebe save[i]
               $t0,$s5,Exit
                              # va para Exit se save[i] != k
         bne
         add
               $s3,$s3,$s4
                              # i = i + j
         j
               Loop
Exit:
         nop
```

For Loops: Usando slt

Código de Alto nível // add the powers of 2 from 1 // to 100 int sum = 0; int i; for (i=1; i < 101; i = i*2) { sum = sum + i; }</pre>

Código Assembly MIPS

\$t1 = 1 if i < 101.

24

- UTFPR -

While Loops

High-level code

```
// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) {
   pow = pow * 2;
   x = x + 1;
}
```

MIPS assembly code

```
While (save[i] == k)
i +=1;
```

Assumindo que o loop está alocado inicialmente na posição 80000 na memória, teremos a seguinte sequência de código em linguagem de máquina:

80000	0	0	19	9	4	0	
80004	0	9	22	9	0	32	
80008	35	9	8		0		
80012	5	8	21		2		
80016	8	19	19		1		
80020	2			20000			
80024		••••••					

26

Operandos MIPS

Nome	Exemplo	Comentários
32 registradores	\$s0, \$s1,, \$s7 \$t0, \$t1,, \$t7	Locais rápidos para dados. No MIPS, os dados precisam estar em registradores para a realização de operações aritméticas. Os registradores \$s0-\$s7 são mapeados para 16-23; \$t0-\$t7 são mapeados para 8-15. O registrador MIPS \$zero sempre é igual a 0.
2 ³⁰ words na memória	Memória[0], Memória[4] Memória[4294967292]	Acessadas apenas por instruções de transferência de dados no MIPS. O MIPS utiliza endereços em bytes, de modo que os endereços em words seqüenciais diferem em 4 vezes. A memória contém estruturas de dados, arrays e spilled registers.

Assembly do MIPS

Categoria	Instrução	Exemplo	Significado	Comentários	
Aritmética	Add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Três operandos; dados nos registradores	
Anuneuca	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2- \$s3	Três operandos; dados nos registradores	
Transferência	load word	lw \$s1,100(\$s2)	\$s1 = Memória[\$s2 + 100]	Dados da memória para o registrador	
de dados	store word	sw \$s1,100(\$s2)	Memória[\$s2 + 100] = \$s1	Dados do registrador para a memória	
	And	and \$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Três operadores em registrador; AND bit a bit	
	Or	or \$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Três operadores em registrador; OR bit a bit	
	nor	nor \$s1,\$s2,\$s3	\$s1 = ~(\$s2 \$s3)	Três operadores em registrador; NOR bit a bit	
Lógica	and immediate	andi \$s1,\$s2,100	\$s1 = \$s2 & 100	AND bit a bit entre registrador com constante	
	or immediate	ori \$s1,\$s2,100	\$s1 = \$s2 100	OR bit a bit entre registrador com constante	
	shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	Deslocamento à esquerda por constante	
	shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	Deslocamento à direita por constante	
	branch on equal	beq \$s1,\$s2,L	if (\$s1 == \$s2) go to L	Testa igualdade e desvia	
	branch on not equal	bne \$s1,\$s2,L	if (\$s1 != \$s2) go to L	Testa desigualdade e desvia	
Desvio condicional	set on less than	slt \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compara menor que; usado com beq. bne	
	set on less than immediate	slt \$s1,\$s2,100	if (\$s2 < 100) \$s1 = 1; else \$s1 = 0	Compara menor que imediato; usado com beq, bne	
Desvio incondicional	jump	j L	go to L	Desvia para endereço de destino	

FIGURA 2.12 Arquitetura MIPS revelada até a Seção 2.6. As partes destacadas mostram as estruturas MIPS introduzidas na Seção 2.6.

Instruções vistas até o momento

Linguagem de máquina do MIPS

Nome	Formato			* E	xemplo			Comentários
add	R	0	18	19	17	0	32	add \$s1,\$s2,\$s3
sub	R	0	18	19	17	0	34	sub \$s1,\$s2,\$s3
lw	I	35	18	17		100		lw \$s1,100(\$s2)
SW	I	43	18	17		100		sw \$s1,100(\$s2)
and	R	0	18	19	17	0	36	and \$s1,\$s2,\$s3
or	R	0	18	19	17	0	37	or \$s1,\$s2,\$s3
nor	R	.0	18	19	17	0	39	nor \$s1,\$s2,\$s3
andi	1	12	18	17		100		andi \$s1,\$s2,100
ori	1	13	18	17		100		ori \$s1,\$s2,100
sll	R	0	0	18	17	10	0	s11 \$s1,\$s2,10
srl	R	0	0	18	17	10	2	srl \$s1,\$s2,10
beq	1	4	17	18		25	•	beq \$s1,\$s2,100
bne	1	5	17	18		25		bne \$s1.\$s2,100
slt	R	0	18	19	17	0	42	slt \$s1,\$s2,\$s3
j	J	2			2500			j 10000 (ver Seção 2.9)
Tamanho do campo		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	Todas as instruções MIPS de 32 bits
Formato R	R	ор	rs	rt	rd	shamt	funct	Formato das instruções aritméticas
Formato I	I	ор	rs	rt	endereço			Formato para transferências de dados e desvios

FIGURA 2.13 A linguagem de máquina do MIPS revelada até a Seção 2.6. As partes destacadas mostram as estruturas do MIPS introduzidas na Seção 2.6. O formato J, usado para instruções de jump, é explicado na Seção 2.9, que também explica os valores apropriados para os campos de endereço das instruções de desvio.

28

Resumo da Aula de Hoje

Tópicos mais importantes:

Linguagem Assembly

Microprocessador MIPS

Instruções de controle de fluxo de execução

- Saltos
- Construções de linguagem de alto nível: condicionais e laços.

