19Z602 COMPILER DESIGN Unit-3 SYNTAX ANALYSIS

SYNTAX ANALYSIS: Need and Role of the Parser - Context Free Grammars

Top Down Parsing: Recursive Descent Parser - Predictive Parser.

Bottom Up Parsers: Shift Reduce Parser - LR Parser - LR (0) Item - Construction Of SLR Parsing Table - CLR Parser - LALR Parser.

Error Handling and Recovery in Syntax Analyzer

YACC Tool: Structure of YACC Program — Communication between LEX and YACC - Design of a Syntax Analyzer for a Sample Language

Outline

- Role of parser
- Context free grammars
- Top down parsing
- Bottom up parsing
- Parser generators

Need and Role of the parser

Syntactic analysis, or parsing, is needed to analyse the **syntactical** structure and checks if the given input is in the correct **syntax** of the programming language or not. The **syntax** analyser also checks whether a given program fulfills the rules implied by a context-free **grammar**. If it satisfies, the **parser** then creates the **parse** tree of that source program.

In the **syntax analysis** phase, a compiler verifies whether or not the tokens generated by the **lexical analyzer** are grouped according to the **syntactic** rules of the language. It detects and reports any **syntax** errors and produces a **parse** tree from which intermediate code can be generated.

The role of parser

Context Free Grammars

- A context free grammar consists of terminals, nonterminals, a start symbol, and productions.
- Terminals are the basic symbols from which strings are formed.
- Nonterminals are syntactic variables that denote sets of strings.
- One nonterminal is distinguished as the start symbol.
- The productions of a grammar specify the manner in which the terminal and nonterminals can be combined to form strings.
- A language that can be generated by a grammar is said to be a context-free language.

Notational Conventions

Example

$$E \rightarrow EAE \mid (E) \mid -E \mid id$$

 $A \rightarrow + \mid - \mid * \mid / \mid \uparrow$

Derivations

- Productions are treated as rewriting rules to generate a string
- Rightmost and leftmost derivations

$$E -> E + E | E * E | -E | (E) | id$$

Derivations for -(id+id)

•
$$E = -(E) = -(E+E) = -(id+E) = -(id+id)$$

Derivations

- $E \Longrightarrow -E$ is read "E derives -E"
- $E \Rightarrow -E \Rightarrow -(E) = -(id)$ is called a derivation of -(id) from E.
- If $A \rightarrow \gamma$ is a production and α and β are arbitrary strings of grammar symbols, we say $\alpha A\beta \Rightarrow \alpha \gamma \beta$.
- If $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n$, we say α_1 derives α_n .

Derivations (II)

- → means "derives in one step."
- ^{*}⇒ means "derives in zero or more steps."
 - $-\alpha \Rightarrow \alpha$
 - if $\alpha \stackrel{*}{\Longrightarrow} \beta$ and $\beta \Longrightarrow \gamma$ then $\alpha \stackrel{*}{\Longrightarrow} \gamma$
- If $S \Rightarrow \alpha$, where α may contain nonterminals, then we say that α is a sentential form.

Derivations (III)

- G: grammar, S: start symbol, L(G): the language generated by G.
- Strings in L(G) may contain only terminal symbols of G.
- A string of terminal w is said to be in L(G) if and only if $S \stackrel{+}{\Longrightarrow} w$.
- The string w is called a sentence of G.
- A language that can be generated by a grammar is said to be a context-free language.
- If two grammars generate the same language, the grammars are said to be equivalent.

Derivations (IV)

$$E \rightarrow EAE \mid (E) \mid -E \mid id$$

 $A \rightarrow + \mid - \mid * \mid / \mid \uparrow$

 The string – (id+id) is a sentence of the above grammar because

$$E \Rightarrow -E \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$
We write $E \Rightarrow -(id+id)$

Left-most Derivation

 If the sentential form of an input is scanned and replaced from left to right, it is called left-most derivation. The sentential form derived by the leftmost derivation is called the left-sentential form.

Right-most Derivation

 If we scan and replace the input with production rules, from right to left, it is known as right-most derivation.
 The sentential form derived from the right-most derivation is called the right-sentential form.

```
Production rules:
E \rightarrow E + E
E \rightarrow E * E
E \rightarrow id
Input string: id + id * id
The left-most derivation is:
E \rightarrow E * E
E \rightarrow E + E * E
E \rightarrow id + E * E
E \rightarrow id + id * E
E \rightarrow id + id * id
Notice that the left-most side non-terminal is always processed first.
The right-most derivation is:
E \rightarrow E + E
E \rightarrow E + E * E
E \rightarrow E + E * id
E \rightarrow E + id * id
E \rightarrow id + id * id
Parse Tree
A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are derived
from the start symbol. The start symbol of the derivation becomes the root of the parse tree.
left-most derivation of a + b * c
The left-most derivation is:
E \rightarrow E * E
E \rightarrow E + E * E
E \rightarrow id + E * E
E \rightarrow id + id * E
```

Parse Tree

Fig. 4.2. Parse tree for -(id + id).

Parse Tree (II)

$$E \Rightarrow E \Rightarrow E \Rightarrow E \\ \begin{pmatrix} E \\ E \end{pmatrix} \\$$

Fig. 4.3. Building the parse tree from derivation (4.4).

Two Parse Trees

Example 4.6. Let us again consider the arithmetic expression grammar (4.3). The sentence id+id*id has the two distinct leftmost derivations:

$$E \Rightarrow E+E$$
 $\Rightarrow id+E$
 $\Rightarrow id+E*E$
 $\Rightarrow id+E*E$
 $\Rightarrow id+id*E$
 $\Rightarrow id+id*id$
 $E \Rightarrow E*E$
 $\Rightarrow E+E*E$
 $\Rightarrow id+E*E$
 $\Rightarrow id+E*E$
 $\Rightarrow id+id*E$
 $\Rightarrow id+id*E$

with the two corresponding parse trees shown in Fig. 4.4.

Fig. 4.4. Two parse trees for id+id*id.

If E1 then S1 else if E2 then S2 else S3
If E1 then if E2 then S1 else S2

Ambiguity

grammar that produces than more parse one tree for some sentence said be to ambiguous.

Fig. 4.6. Two parse trees for an ambiguous sentence.

Eliminating Ambiguity

- Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
- Stmt appearing between a 'then' and 'else' must be 'matched' ie - interior stmt must not end with unmatched or open 'then'

```
stmt → matched_stmt
| unmatched_stmt
| matched_stmt → if expr then matched_stmt else matched_stmt
| other
| unmatched_stmt → if expr then stmt
| if expr then matched_stmt else unmatched_stmt
```

Eliminating Left Recursion

- A grammar is left recursive if it has a nonterminal A such that there is a derivation $A \stackrel{+}{\Longrightarrow} A \alpha$ for some string α .
- If we have the left-recursive pair of productions-
- A→Aα | β
 (Left Recursive Grammar)
 where β does not begin with an A.
- $\begin{array}{ccc} \mathbb{A} {\longrightarrow} \mathbb{A} \alpha \mid \beta & \text{can be replaced by} \\ & & \mathsf{A} {\longrightarrow} & \beta \mathbb{A'} \\ & & \mathbb{A'} {\longrightarrow} \alpha \mathbb{A'} \mid \epsilon \end{array}$
- $A \rightarrow A\alpha_1 | A\alpha_2 | ... | A\alpha_m | \beta_1 | \beta_2 | ... | \beta_n |$ $A \rightarrow \beta_1 A' | \beta_2 A' | ... | \beta_n A' |$ $A' \rightarrow \alpha_1 A' | \alpha_2 A' | ... | \alpha_m A' | \epsilon$

Algorithm: Eliminating Left Recursion

Input. Grammar G with no cycles or ϵ -productions.

Output. An equivalent grammar with no left recursion.

Method. Apply the algorithm to G. Note that the resulting non-left-recursive grammar may have ϵ -productions.

1. Arrange the nonterminals in some order A_1, A_2, \ldots, A_n .

end

for i := 1 to n do begin

for j := 1 to i-1 do begin

replace each production of the form $A_i o A_j \gamma$ by the productions $A_i o \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma$,

where $A_j o \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k$ are all the current A_j -productions;

end

eliminate the immediate left recursion among the A_i -productions

Examples

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

S
$$\rightarrow$$
Aa|b
A \rightarrow Ac|Sd| ϵ

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

S
$$\rightarrow$$
Aa|b
A \rightarrow bdA'|A'
A' \rightarrow cA'|adA'| ϵ

 $A \rightarrow Ac \mid Aad \mid bd \mid \varepsilon$

Examples

A → ABd / Aa / a
 B → Be / b

• S → (L) / a L → L, S/S

Examples

A → ABd / Aa / a
 B → Be / b

A → aA'
 A' → BdA' / aA' / ∈
 B → bB'
 B' → eB' / ∈

S → (L) / a
 L → L, S / S

• $S \rightarrow (L) / a$ $L \rightarrow SL'$ $L' \rightarrow ,SL' / \in$

Left Factoring

- Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing.
- The basic idea is that when it is not clear which of two alternative productions to use to expand a nonterminal A, be able to rewrite the A-productions to defer the decision until we have seen enough of the input to make the right choice.
- Stmt --> if expr then stmt else stmt| if expr then stmt

Algorithm: Left Factoring

Algorithm 4.2. Left factoring a grammar.

Input. Grammar G.

Output. An equivalent left-factored grammar.

Method. For each nonterminal A find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$, i.e., there is a nontrivial common prefix, replace all the A productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$ where γ represents all alternatives that do not begin with α by

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

Left Factoring (example)

- $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
- The following grammar abstracts the danglingelse problem:
 - S→iEtS|iEtSeS|a
 - $-E \rightarrow b$
 - S→iEtSS'|a
 - $-S' \rightarrow eS \mid \varepsilon$
 - $-E \rightarrow b$

Error handling

- Common programming errors
 - Lexical errors: misspellings of identifiers, keywords, or operators
 - Syntactic errors: misplaced semicolons, extra or missing braces, case without switch,
 - Semantic errors: type mismatches between operators and operands
 - Logical errors
- Error handler goals
 - Report the presence of errors clearly and accurately
 - Recover from each error quickly enough to detect subsequent errors
 - Add minimal overhead to the processing of correct programs

Error-recover strategies

- Panic mode recovery
 - Discard input symbol one at a time until one of designated set of synchronization tokens is found
- Phrase level recovery
 - Replacing a prefix of remaining input by some string that allows the parser to continue
- Error productions
 - Augment the grammar with productions that generate the erroneous constructs (production rules for common errors)
- Global correction
 - Choosing minimal sequence of changes to obtain a globally least-cost correction

TOP DOWN PARSING

Types of Parser

Top-down parser

Top-down parser is the parser which generates parse for the given input string with the help of grammar productions by expanding the non-terminals i.e. it starts from the start symbol and ends on the terminals. It uses left most derivation.

Top-down parser is a parser for LL class of grammars

Recursive Descent Parsing

- Recursive descent parsing is a top-down method of syntax analysis in which a set recursive procedures to process the input is executed.
- A procedure is associated with each nonterminal of a grammar.
- Top-down parsing can be viewed as an attempt to find a leftmost derivation for an input string.
- Equivalently, it attempts to construct a parse tree for the input starting from the root and creating the nodes of the parse tree in preorder.
- Recursive descent parsing involves backtracking.

Recursive descent parsing

- Consists of a set of procedures, one for each nonterminal
- Execution begins with the procedure for start symbol
- A typical procedure for a non-terminal


```
procedure E()
      T();
      E'();
   if NextInputChar = END then /* done */
                                                                             Consider the Grammar
  else print ("syntax error")
                                                                             \mathsf{E}\to\mathsf{TE'}
                                                                             E' \to +TE' \mid \epsilon
                                                                             \mathsf{T}\to\mathsf{FT'}
procedureE'();
                                                                             T' \rightarrow *FT' \mid \epsilon
   if NextInputChar = "+" then
                                                                             F \rightarrow (E) \mid id
   read(NextInputChar);
   T();
   E'();
procedure T()
      F();
      T'();
procedure T '()
      if NextInputChar = "*" then
      read(NextInputChar);
      F();
      T'();
procedure F()
      if NextInputChar = "(" then
                 read(NextInputChar);
                 E();
                 if NextInputChar = ")" then
                 read(NextInputChar)
                 else print("syntax error");
      else if NextInputChar = identifier then
      read(NextInputChar)
      else print("syntax error");
```

Example (backtracking)

Consider the grammar
 S → cAd
 A→ab|a
 and the input string w = cad

 To construct a parse tree for this string using topdown approach, initially create a tree consisting of a single node labeled S.

Procedure S

```
procedure S()
begin

if input symbol = 'c' then

begin

ADVANCE();

if A() then

if input symbol = 'd' then

begin ADSVANCE(); return true
end

end;

return false
end
```

Procedure A procedure A() begin **Grammar:** isave := input-pointer; $S \rightarrow cAd$ if input symbol = 'a' then $A \rightarrow ab \mid a$ begin ADVANCE(); if input symbol = 'b' then Input string begin ADVANCE(); return true end w = cadend input-pointer := isave; /* failure to find ab */ if input symbol = 'a' then begin ADVANCE(); return true end else return false end (c) (b)

(a)

Fig. 4.9. Steps in top-down parse.

Predictive Parsers

 Eliminating left recursion, and left factoring the resulting grammar, can obtain a grammar that can be parsed by a recursive-descent parser that needs no backtracking, i.e., a predictive parser.

```
S \rightarrow cAd

A \rightarrow aA'

A' \rightarrow b \mid \epsilon
```

```
stmt → if expr then stmt else stmt
| while expr do stmt
| begin stmt_list end
```

The construction of a predictive parser is aided by two functions associated with a grammar G:

- FIRST()-First(α) is set of terminals that begins strings derived from α .
 - In predictive parsing when we have A-> $\alpha \mid \beta$, if First(α) and First(β) are disjoint sets then we can select appropriate A-production by looking at the next input
- FOLLOW()- for any nonterminal A, is set of terminals **a** that can appear immediately after A in some sentential form If we have $S = ^* \alpha Aa\beta$ for some α and β then **a** is in Follow(A)

Rules for FIRST():

- If X is terminal, then FIRST(X) is {X}.
- If $X \to \varepsilon$ is a production, then add ε to FIRST(X).
- If X is non-terminal and $X \rightarrow a\alpha$ is a production then add a to FIRST(X).
- If X is non-terminal and $X \to Y_1 Y_2 ... Y_k$ is a production, then place \boldsymbol{a} in **FIRST**(\boldsymbol{X}) if for some i, a is in FIRST($\boldsymbol{Y}i$), and ϵ is in all of FIRST($\boldsymbol{Y}1$),...,FIRST($\boldsymbol{Y}i-1$); that is, $\boldsymbol{Y}1,...,\boldsymbol{Y}i-1$ *=> ϵ . If ϵ is in FIRST(\boldsymbol{Y}_j) for all j=1,2,...,k, then add ϵ to FIRST(\boldsymbol{X}).

Rules for FOLLOW ():

- If S is a start symbol, then FOLLOW(S) contains \$.
- If there is a production $A \rightarrow \alpha B\beta$, then everything in FIRST(β) except ϵ is placed in follow(B).
- If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B\beta$ where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

```
Consider the following grammar:
                                                                     Consider this following grammar:
E \rightarrow E+T \mid T
                                                                     S \rightarrow iEtS \mid iEtSeS \mid a
T \rightarrow T^*F \mid FF \rightarrow (E) \mid id
                                                                     E \rightarrow b
After eliminating left-recursion the grammar is
                                                                     After eliminating left factoring,
     E \rightarrow TE'
                                                                     S→iEtSS' | a
     E' \rightarrow +TE' \mid \epsilon
                                                                     S' \rightarrow eS \mid \epsilon
     T \rightarrow FT'
                                                                      E \rightarrow b
     T' \rightarrow *FT' \mid \epsilon
     F \rightarrow (E) \mid id
                                                                     FIRST(S) = { i, a }
                                                                     FIRST(S') = \{e, \epsilon\}
FIRST():
                                                                      FIRST(E) = \{b\}
       FIRST(E) = { ( , id}
       FIRST(E') =\{+, \epsilon\}
                                                                     FOLLOW(S) = { $ ,e }
       FIRST(T) = { ( , id}
                                                                     FOLLOW(S') = \{ , e \}
       FIRST(T') = \{*, \epsilon\}
                                                                     FOLLOW(E) = \{t\}
       FIRST(F) = \{ (, id \} )
FOLLOW():
     FOLLOW(E) = { $, ) }
     FOLLOW(E') = \{ \$, \} \}
     FOLLOW(T) = \{ +, \$, ) \}
     FOLLOW(T') = \{ +, \$, \} \}
     FOLLOW(F) = {+, *, $, ) }
```

FIRST(X)

For a production rule $X \rightarrow Y_1Y_2Y_3$,

- If ∈ ∉ First(Y₁), then First(X) = First(Y₁)
- If ∈ ∈ First(Y₁), then First(X) = { First(Y₁) − ∈ } ∪
 First(Y₂Y₃)
- If ∈ ∉ First(Y₂), then First(Y₂Y₃) = First(Y₂)
- If ∈ ∈ First(Y₂), then First(Y₂Y₃) = { First(Y₂) − ∈ } ∪
 First(Y₃)

FOLLOW(B)

For any production rule $A \rightarrow \alpha B\beta$,

- If ∈ ∉ First(β), then Follow(B) = First(β)
- If ∈ ∈ First(β), then Follow(B) = { First(β) − ∈ } ∪
 Follow(A)

Calculate the first and follow functions for the given grammar-

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$\mathsf{D}\to\mathsf{EF}$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

$$\mathsf{S} \to \mathsf{A}$$

 $A \rightarrow aB / Ad$

 $\mathsf{B}\to \mathsf{b}$

 $C \to g\,$

 $\mathsf{S} \to \mathsf{A}$

 $\mathsf{A} \to \mathsf{a}\mathsf{B}\mathsf{A}'$

 $A'\to dA'\ /\in$

 $\mathsf{B}\to\mathsf{b}$

 $\mathsf{C} \to \mathsf{g}$

- LL(1) Grammars
 Predictive parsers are those recursive descent parsers needing no backtracking
- Grammars for which we can create predictive parsers are called LL(1)
 - The first L means scanning input from left to right
 - The second L means leftmost derivation
 - And 1 stands for using one input symbol for lookahead
- A grammar G is LL(1) if and only if whenever A-> $\alpha \mid \beta$ are two distinct productions of G, the following conditions hold:
 - For no terminal a do α and β both derive strings beginning with a
 - At most one of α or β can derive empty string
 - If $\alpha \stackrel{*}{=} > \epsilon$ then β does not derive any string beginning with a terminal in Follow(A).

Non-recursive predictive parser

The table-driven predictive parser has an input buffer, stack, a parsing table and an output stream.

Input buffer:

It consists of strings to be parsed, followed by \$ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by \$ to indicate the bottom of the stack. Initially, the stack contains the start symbol on top of \$.

Parsing table:

It is a two-dimensional array M[A, a], where 'A' is a non-terminal and 'a' is a terminal.

Construction of predictive parsing table

Algorithm for construction of predictive parsing table:

Input: Grammar G

Output: Parsing table M

Method:

- 1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
- 2. For each terminal α in FIRST(α), add $A \rightarrow \alpha$ to $M[A, \alpha]$.
- 3. If ε is in FIRST(α), add $A \rightarrow \alpha$ to M[A, b] for each terminal b in FOLLOW(A). If ε is in FIRST(α) and φ is in FOLLOW(φ), add φ and φ to φ .
- 4. Make each undefined entry of *M* be **error**.

$E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$ **FIRST():** $FIRST(E) = \{ (, id\}$ $FIRST(E') = \{ (, id\}$ $FIRST(T') = \{ (, id\}$ $FIRST(F) = \{ (, id) \}$

FOLLOW(): FOLLOW(E) = { \$,) } FOLLOW(E') = { \$,) } FOLLOW(T) = { +, \$,) } FOLLOW(T') = { +, \$,) } FOLLOW(F) = {+, *, \$,) }

Algorithm for construction of predictive parsing table:

Input : Grammar *G*

Output : Parsing table M

Method:

- 1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
- 2. For each terminal a in FIRST(α), add $A \rightarrow \alpha$ to M[A, a].
- 3. If ε is in FIRST(α), add $A \rightarrow \alpha$ to M[A, b] for each terminal b in FOLLOW(A). If ε is in FIRST(α) and φ is in FOLLOW(φ), add φ at to φ is in FOLLOW(φ).
- 4. Make each undefined entry of *M* be **error**.

Predictive parsing table :

NON- TERMINAL	id	+	*	()	\$
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	E'→ε
T	$T \to FT^\prime$			$T \rightarrow FT'$		
T'		$T'\!\!\to\!\epsilon$	T'→*FT'		$T' \to \epsilon$	$T' \to \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Predictive parsing program:

The parser is controlled by a program that considers **X**, the symbol on top of stack, and a, the current input symbol. These two symbols determine the parser action. There are three possibilities:

- If X = a = \$, the parser halts and announces successful completion of parsing.
- If $X = a \neq \$$, the parser pops X off the stack and advances the input pointer to the next input symbol.
- If X is a non-terminal, the program consults entry M[X, a] of the parsing table M. This entry will either be an X-production of the grammar or an error entry. If $M[X, a] = \{X \rightarrow UVW\}$, the parser replaces X on top of the stack by UVW
- If M[X, a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input: A string w and a parsing table M for grammar G.

Output: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method: Initially, the parser has \$S on the stack with S, the start symbol of G on top, and w\$ in the input buffer. The program that utilizes the predictive parsing table M to produce a parse for the input is as follows:

set ip to point to the first symbol of w\$;

repeat

let X be the top stack symbol and a the symbol pointed to by ip; if X is a terminal or \$ then

if X = a then

pop X from the stack and advance ip

else error()

else/* X is a non-terminal */

if $M[X, a] = X \rightarrow Y1Y2 \dots Yk$ then begin

pop X from the stack;

push Yk, Yk-1, ..., Y1 onto the stack, with Y1 on top;

output the production $X \rightarrow Y1 \ Y2 \dots Yk$

end

elseerror()

until X = \$

Stack implementation:

stack	Input	Output
\$E	id+id*id\$	•
\$E'T	id+id*id\$	E → TE'
\$E'T'F	id+id*id\$	$T \rightarrow FT$
\$E'T'id	id+id*id\$	$F \rightarrow id$
\$E'T'	+id*id\$	
\$E'	+id*id \$	$T' \to \epsilon$
\$E'T+	+id*id\$	E' → +TE'
\$E'T	id*id\$	
\$E'T'F	id*id\$	$T \rightarrow FT$
\$E'T'id	id*id \$	$F \rightarrow id$
\$E'T'	*id \$	
\$E'T'F*	*id \$	T' → *FT'
\$E'T'F	id\$	
\$E'T'id	id\$	$F \rightarrow id$
\$E'T'	\$	
\$E'	\$	$T' \to \epsilon$
\$	\$	$E' \to \epsilon$

Stack implementation:

stack	Input	Output
\$E	id+id*id \$	
\$E'T	id+id*id \$	$E \rightarrow TE'$
\$E'T'F	id+id*id \$	$T \rightarrow FT'$
\$E'T'id	id+id*id\$	$F \rightarrow id$
\$E'T'	+id*id \$	
\$E'	+id*id \$	$T' \to \epsilon$
\$E'T+	+id*id \$	E' → +TE'
\$E'T	id*id\$	
\$E'T'F	id*id \$	$T \rightarrow FT'$
\$E'T'id	id*id \$	$F \rightarrow id$
\$E'T'	*id \$	
\$E'T'F*	*id \$	T' → *FT'
\$E'T'F	id \$	
\$E'T'id	id \$	$F \rightarrow id$
\$E'T'	\$	
\$E'	\$	$T' \to \epsilon$
\$	\$	$E' \to \epsilon$

Error recovery in predictive parsing

An error is detected during the predictive parsing

- when the terminal on top of the stack does not match the next input symbol or
- when nonterminal A on top of the stack, a is the next input symbol, and parsing table entry M[A,a] is empty.

Error recovery in predictive parsing

- Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a selected set of synchronizing tokens. In this method, successive characters from input are removed one at a time until a designated set of synchronizing tokens is found. Synchronizing tokens are deli-meters such as; or }
- Phrase Level Recovery -This involves, defining the blank entries in the table with pointers to some error routines which may
- Change, delete or insert symbols in the input or
- May also pop symbols from the stack

Panic-mode

How to select synchronizing set?

- Place all symbols in FOLLOW(A) into the synchronizing set for nonterminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from the stack, it likely that parsing can continue.
- We might add keywords that begins statements to the synchronizing sets for the nonterminals generating expressions.
- If a nonterminal can generate the empty string, then the production deriving ϵ can be used as a default. This may postpone some error detection, but cannot cause an error to be missed. This approach reduces the number of nonterminals that have to be considered during error recovery.
- If a terminal on top of stack cannot be matched, a simple idea is to pop the terminal, issue a message saying that the terminal was inserted.

Example: error recovery

"synch" indicating synchronizing tokens obtained from FOLLOW set of the nonterminal in question.

If the parser looks up entry M[A,a] and finds that it is blank, the input symbol a is skipped.

If the entry is synch, the nonterminal on top of the stack is popped.

If a token on top of the stack does not match the input symbol, then we pop the token from the stack.

FIRST(
$$E$$
) = FIRST(T) = FIRST(F) = {(, id}.
FIRST(E') = {+, ϵ }
FIRST(T') = {*, ϵ }
FOLLOW(E) = FOLLOW(E') = {), \$}
FOLLOW(T) = FOLLOW(T') = {+,), \$}
FOLLOW(T) = {+, *,), \$}

Nonter-		INPUT SYMBOL				
MINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			E→TE'	synch	synch
E'	:	$E' \rightarrow +TE'$			E′→€	E′→€
T	T→FT'	synch		T→FT'	synch	synch
T'	- -	T′→€	<i>T'</i> →* <i>FT'</i>		Τ′→ϵ	Τ′→ε
F	F→id	synch	synch	$F \rightarrow (E)$	synch	synch

Fig. 4.18. Synchronizing tokens added to parsing table of Fig. 4.15.

Example: error recovery (II)

STACK	INPUT	REMARK
\$ <i>E</i>) id * + id \$	error, skip)
\$ <i>E</i>	id * + id \$	id is in FIRST(E)
\$ <i>E'T</i>	id * + id \$	
E'T'F	id * + id \$	
E'T'id	id * + id \$	
\$E'T'	* + id \$	
E'T'F*	* + id \$	
\$ <i>E'T'F</i>	+ id \$	error, $M[F, +] = $ synch
\$ <i>E'T'</i>	+ id \$	F has been popped
\$ <i>E</i> '	+ id \$	
E'T +	+ id \$	
\$ <i>E'T</i>	id \$	
E'T'F	id \$	
E'T'id	id \$	
\$ <i>E'T'</i>	\$	
\$E'	\$	
\$	\$	

Fig. 4.19. Parsing and error recovery moves made by predictive parser.