

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

+86-755-26648640 Telephone: +86-755-26648637 Fax: Website:

www.cga-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.: CQASZ20190500014EX-03

Applicant: Speedata Group Ltd

Address of Applicant: Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Beijing, China

Manufacturer: Speedata Group Ltd

Address of Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Manufacturer: Beijing, China

Equipment Under Test (EUT): Product: PDA

All Model No.: SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT,

T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60,

SD50, SN50, SD50RT, T50, PG50

Test Model No.: SD60 Brand Name: N/A

FCC ID: 2AJO5SD60

Standards: 47 CFR FCC Part 15 Subpart C 15.247

Date of Test: 2019-03-26 to 2019-07-12

Date of Issue: 2019-07-12

PASS* **Test Result:**

Tested By: (Daisy Qin)

Reviewed By:

(Aaron Ma

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20190500014EX-03

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190500014EX-03	Rev.01	Initial report	2019-07-12

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	ental frequency		PASS

3 Contents

			Page
1	VE	RSION	2
2	TE	ST SUMMARY	3
3	СО	NTENTS	4
4	GE	NERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	-
	4.3	TEST ENVIRONMENT	7
	4.4	DESCRIPTION OF SUPPORT UNITS	8
	4.5	TEST LOCATION	8
	4.6	TEST FACILITY	
	4.7	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.8	DEVIATION FROM STANDARDS	
	4.9	ABNORMALITIES FROM STANDARD CONDITIONS	-
	4.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	•
	4.11	EQUIPMENT LIST	
5	TE	ST RESULTS AND MEASUREMENT DATA	11
	5.1	ANTENNA REQUIREMENT	11
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	6DB OCCUPY BANDWIDTH	
	5.5	POWER SPECTRAL DENSITY	
	5.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	5.7 5.8	RF CONDUCTED SPURIOUS EMISSIONS	
	5.6 5.8		
	5.8		
	5.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
6	PH	OTOGRAPHS - EUT TEST SETUP	57
	6.1	RADIATED SPURIOUS EMISSION	57
	6.2	CONDUCTED EMISSION	
7	р⊔	OTOCDADUS EUT CONSTDUCTIONAL DETAILS	50

4 General Information

4.1 Client Information

Applicant:	Speedata Group Ltd	
Address of Applicant:	Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian	
Address of Applicant.	district, Beijing, China	
Manufacturer:	Speedata Group Ltd	
Address of Manufacturer:	Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian	
Address of Mandracturer.	district, Beijing, China	

4.2 General Description of EUT

Product Name:	PDA		
All Model No.:	SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT, T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60, SD50, SN50, SD50RT, T50, PG50		
Test Model No.:	SD60		
Trade Mark:	N/A		
Hardware Version:	8.1.0		
Software Version:	V.SD60.2.1.20.2019041909		
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(H40): 2422MHz~2452MHz		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7		
Channel Separation:	5MHz		
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM IEEE for 802.11n(HT20): OFDM IEEE for 802.11n(HT40): OFDM		
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location		
Antenna Type	IFIA Antenna		
Antenna Gain	-3.5dBi		
Power Supply:	DC 3.8V from Battery		
Adapter Information:	Model: A138A-120150U-US2 Input: 100-240V-50/60Hz, 0.5A Output: 5V 2.5A/ 9V 2A/ 12V 1.5A		

Note: 1. This report is only for 2.4GHz WiFi.

- 2. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3. There are many products, Only the model SD60 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Report No.: CQASZ20190500014EX-03

Operation F	Operation Frequency each of channel(802.11b/g/n HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	/	/

Operation Frequency each of channel(802.11n HT40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	/	4	2427MHz	7	2442MHz	10	/
2	/	5	2432MHz	8	2447MHz	11	/
3	2422MHz	6	2437MHz	9	2452MHz	/	/

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

Note: Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

4.3 Test Environment

Operating Environment	Operating Environment:				
Temperature:	25.0 °C				
Humidity:	53 % RH				
Atmospheric Pressure:	1001mbar				
Transmitting mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.				
	Note: In the process of transmitting of EUT, the duty cycle >98%.				

Report No.: CQASZ20190500014EX-03

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	AOHAI	A138A-120150U-US2	Provide by Client	SDOC

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Spectrum analyzer	Agilent	E4440A	CQA-103	2018/10/28	2019/10/27
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2018/9/26	2019/9/25
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2018/9/26	2019/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2018/9/26	2019/9/25
EMI Test Receiver	R&S	ESPI3	CQA-013	2018/9/26	2019/9/25
LISN	R&S	ENV216	CQA-003	2018/11/5	2019/11/4
Coaxial cable	CQA	N/A	CQA-C009	2018/9/26	2019/9/25

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

Antenna

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is IFIA Antenna. The best case gain of the antenna is -3.5dBi.

Report No.: CQASZ20190500014EX-03

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
	Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average				
Limit:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm						
Test Procedure:	 The mains terminal disturbation. The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS plane in the same way as the multiple socket outlet strip single LISN provided the rate of the terminal strategy of the terminal strategy. The tabletop EUT was placed on the horizontal ground reference plane. An explaced on the horizontal ground reference plane in the EUT shall be 0.4 mm and the vertical ground reference preference plane. The LISN unit under test and bonder mounted on top of the ground between the closest points the EUT and associated explane. In order to find the maximum equipment and all of the in ANSI C63.10: 2013 on contract. 	o AC power source throetwork) which provides oles of all other units of the LISN 1 for the unit because the LISN 1 for the unit because to connect mating of the LISN was need upon a non-metallice and for floor-standing arround reference plane, the a vertical ground reference olane was bonded to the 1 was placed 0.8 m from the vertical ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 the control of the LISN 1 and t	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were do to the ground reference being measured. A multiple power cables to a cot exceeded. The table 0.8m above the rangement, the EUT was deference plane. The rear do reference plane. The entricontal ground form the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. The positions of				
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver				
Exploratory Test Mode:	Transmitting with all kind of highest channel.	modulations, data rate	es at lowest, middle and				

Report No.: CQASZ20190500014EX-03

Final Test Mode:	Through Pre-scan, find the 6Mbps of rate of 802.11g at lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC120V/60Hz
Test Results:	Pass

Measurement Data

				_			(******	,			
-	No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBu∀	dBu∨	dB	Detector	Comment	
	1		0.1740	45.19	-0.13	45.06	64.76	-19.70	QP		
	2		0.1740	32.92	-0.13	32.79	54.76	-21.97	AVG		
	3		0.5940	38.12	-0.04	38.08	56.00	-17.92	QP		
	4		0.5940	27.43	-0.04	27.39	46.00	-18.61	AVG		
	5		1.3900	38.70	-0.18	38.52	56.00	-17.48	QP		
	6		1.3900	25.17	-0.18	24.99	46.00	-21.01	AVG		
	7		2.4980	38.97	-0.17	38.80	56.00	-17.20	QP		
	8		2.4980	25.93	-0.17	25.76	46.00	-20.24	AVG		
	9		4.1700	39.92	-0.20	39.72	56.00	-16.28	QP		
	10		4.2660	18.16	-0.21	17.95	46.00	-28.05	AVG		
	11	*	25.2660	47.78	-0.44	47.34	60.00	-12.66	QP		
	12		25.2660	26.41	-0.44	25.97	50.00	-24.03	AVG		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
1		0.1700	47.86	-0.13	47.73	64.96	-17.23	QP	
2		0.1700	31.64	-0.13	31.51	54.96	-23.45	AVG	
3		0.5980	29.18	-0.04	29.14	46.00	-16.86	AVG	
4		0.6060	43.38	-0.04	43.34	56.00	-12.66	QP	
5		1.3860	43.49	-0.17	43.32	56.00	-12.68	QP	
6		1.3860	29.06	-0.17	28.89	46.00	-17.11	AVG	
7	*	3.6100	44.32	-0.19	44.13	56.00	-11.87	QP	
8		3.6100	29.42	-0.19	29.23	46.00	-16.77	AVG	
9		9.1620	45.76	-0.19	45.57	60.00	-14.43	QP	
10		9.1620	27.80	-0.19	27.61	50.00	-22.39	AVG	
11		25.2939	48.47	-0.44	48.03	60.00	-11.97	QP	
12		25.2939	28.06	-0.44	27.62	50.00	-22.38	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: CQASZ20190500014EX-03

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10: 2013				
Test Setup:	EUT Power Meter				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40); Only the worst case is recorded in the report.				
Limit:	30dBm				
Test Results:	Pass				

WIFI

Туре	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	15.76		
802.11b	Middle	16.47	30.00	Pass
	Highest	16.71		
	Lowest	18.77		
802.11g	Middle	19.24	30.00	Pass
	Highest	20.09		
	Lowest	19.08		Pass
802.11n(HT20)	Middle	19.53	30.00	
	Highest	19.81		
802.11n(HT40)	Lowest	19.15		
	Middle	19.37	30.00	Pass
	Highest	19.91		

Note: 1.The test results including the cable lose.

5.4 6dB Occupy Bandwidth

Measurement Data

Туре	Channel	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit (MHz)	Result
	Lowest	8.604	12.313		
802.11b	Middle	9.590	12.823	≥0.5	Pass
	Highest	8.661	12.899		
	Lowest	14.90	16.365		
802.11g	Middle	16.49	16.516	≥0.5	Pass
	Highest	16.27	16.597		
	Lowest	15.49	17.528		
802.11n(HT20)	Middle	17.77	17.721	≥0.5	Pass
	Highest	17.34	17.669		
802.11n(HT40)	Lowest	23.59	35.680		
	Middle	36.46	36.264	≥0.5	Pass
	Highest	22.49	35.456		

Test plot as follows:

Report No.: CQASZ20190500014EX-03

5.5 Power Spectral Density

Measurement Data

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	Lowest	-13.651			
802.11b	Middle	-13.658	8	Pass	
	Highest	-13.483			
	Lowest	-12.981		Pass	
802.11g	Middle	-13.803	8		
	Highest	-13.753			
	Lowest	-13.109		Pass	
802.11n(HT20)	Middle	-13.570	8		
	Highest	-11.707			
	Lowest	-17.971			
802.11n(HT40)	Middle	-15.720	8	Pass	
	Highest	-16.386			

Test plot as follows:

Report No.: CQASZ20190500014EX-03

5.6 Band-edge for RF Conducted Emissions

Test plot as follows:

Report No.: CQASZ20190500014EX-03

5.7 RF Conducted Spurious Emissions

Report No.: CQASZ20190500014EX-03

Test plot as follows:

Report No.: CQASZ20190500014EX-03

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: CQASZ20190500014EX-03

5.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
Receiver Setup:	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
Receiver Setup.	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above 1G112	Peak	1MHz	10Hz	Average				
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: CQASZ20190500014EX-03

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5
 - meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for

the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.			
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.			
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel			
h. Repeat above procedures until all frequencies measured was complete.			
Transmitting with all kind of modulations, data rates.			
Transmitting mode, Charge + Transmitting mode.			
Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case			
Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;			
6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case			
of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)			
For below 1GHz, through Pre-scan, find the 6Mbps of rate of 802.11g at highest channel is the worst case.			
Only the worst case is recorded in the report.			
Pass			

5.8.1 Radiated emission below 1GHz

30MHz~1GHz Test mode: Charge +Transmitting Vertical

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	48.5016	52.09	-16.38	35.71	40.00	-4.29	QP
2	*	75.1822	55.28	-18.26	37.02	40.00	-2.98	QP
3		251.1804	49.66	-13.18	36.48	46.00	-9.52	QP
4		319.9370	40.08	-10.64	29.44	46.00	-16.56	QP
5		744.8661	28.97	-1.74	27.23	46.00	-18.77	QP

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Report No.: CQASZ20190500014EX-03

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.8.2 Transmitter emission above 1GHz

Test mode:		802.11g(6Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4824.000	58.41	-4.26	54.15	74	-19.85	PK	Н
4824.000	37.60	-4.26	33.34	54	-20.66	AV	Н
7236.000	59.00	1.18	60.18	74	-13.82	PK	Н
7236.000	40.73	1.18	41.91	54	-12.09	AV	Н
4824.000	61.45	-4.26	57.19	74	-16.81	PK	V
4824.000	38.77	-4.26	34.51	54	-19.49	AV	V
7236.000	59.03	1.18	60.21	74	-13.79	PK	V
7236.000	42.28	1.18	43.46	54	-10.54	AV	V

Test mode:		802.11g(6Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4874.000	60.10	-4.12	55.98	74	-18.02	PK	Н
4874.000	38.81	-4.12	34.69	54	-19.31	AV	Н
7311.000	57.57	1.46	59.03	74	-14.97	PK	Н
7311.000	41.54	1.46	43.00	54	-11.00	AV	Н
4874.000	60.43	-4.12	56.31	74	-17.69	PK	V
4874.000	38.40	-4.12	34.28	54	-19.72	AV	V
7311.000	59.22	1.46	60.68	74	-13.32	PK	V
7311.000	41.74	1.46	43.20	54	-10.80	AV	V

Report No.: CQASZ20190500014EX-03

Test mode:		802.11g(6Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4924.000	61.15	-4.03	57.12	74	-16.88	PK	Н
4924.000	38.26	-4.03	34.23	54	-19.77	AV	Н
7386.000	58.73	1.66	60.39	74	-13.61	PK	Н
7386.000	39.89	1.66	41.55	54	-12.45	AV	Н
4924.000	61.27	-4.03	57.24	74	-16.76	PK	V
4924.000	37.38	-4.03	33.35	54	-20.65	AV	V
7386.000	57.60	1.66	59.26	74	-14.74	PK	V
7386.000	41.11	1.66	42.77	54	-11.23	AV	V

Remark:

- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: CQASZ20190500014EX-03

5.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)						
	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
Limit:	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
Test Setup:									

Figure 1. 30MH	z to 1GHz	Figure 2. Above 1 GHz
	above the ground rotated 360 degre 2) Above 1G: The meters above the was rotated 360 d	EUT was placed on the top of a rotating table 0.8 meters at a 3 meter semi-anechoic camber. The table was sees to determine the position of the highest radiation. EUT was placed on the top of a rotating table 1.5 ground at a 3 meter semi-anechoic camber. The table degrees to determine the position of the highest radiation. Sated emission test above 1GHz:
Test Procedure:	determined to be distance, while ke emissions at each oriented for maxin be higher or lowe emission and stay maximum signal. which maximizes maximum emission	rement antenna away from each area of the EUT a source of emissions at the specified measurement epping the measurement antenna aimed at the source of a frequency of significant emissions, with polarization mum response. The measurement antenna may have to rethan the EUT, depending on the radiation pattern of the ying aimed at the emission source for receiving the The final measurement antenna elevation shall be that the emissions. The measurement antenna elevation for one shall be restricted to a range of heights of from 1 m ground or reference ground plane.
		3 meters away from the interference-receiving antenna, ed on the top of a variable-height antenna tower.
	ground to determ	ht is varied from one meter to four meters above the ine the maximum value of the field strength. Both rtical polarizations of the antenna are set to make the

measurement.

	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel				
	g. Test the EUT in the lowest channel , the Highest channel				
	h. Repeat above procedures until all frequencies measured was complete.				
Cyploretery Teet Mede	Transmitting with all kind of modulations, data rates.				
Exploratory Test Mode:	Transmitting mode.				
	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case				
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case				
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)				
	Only the worst case is recorded in the report.				
Test Results:	Pass				

Report No.: CQASZ20190500014EX-03

Test data:

Worse case mode:		802.11b(1Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2390.000	61.58	-9.2	52.38	74	-21.62	PK	Н
2390.000	37.78	-9.2	28.58	54	-25.42	AV	Н
2400.000	58.54	-9.39	49.15	74	-24.85	PK	Н
2400.000	42.24	-9.39	32.85	54	-21.15	AV	Н
2390.000	59.48	-9.2	50.28	74	-23.72	PK	V
2390.000	37.61	-9.2	28.41	54	-25.59	AV	V
2400.000	58.70	-9.39	49.31	74	-24.69	PK	V
2400.000	41.78	-9.39	32.39	54	-21.61	AV	V

Worse case mode:		802.11b(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	59.72	-9.29	50.43	74	-23.57	PK	Н
2483.500	37.22	-9.29	27.93	54	-26.07	AV	Н
2483.500	58.15	-9.29	48.86	74	-25.14	PK	V
2483.500	41.09	-9.29	31.80	54	-22.20	AV	V

Worse case	Worse case mode:		802.11g(6Mbps)		Test channel:		
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.19	-9.2	48.99	74	-25.01	PK	Н
2390.000	38.88	-9.2	29.68	54	-24.32	AV	Н
2400.000	57.68	-9.39	48.29	74	-25.71	PK	Н
2400.000	39.61	-9.39	30.22	54	-23.78	AV	Н
2390.000	60.03	-9.2	50.83	74	-23.17	PK	V
2390.000	37.05	-9.2	27.85	54	-26.15	AV	V
2400.000	57.76	-9.39	48.37	74	-25.63	PK	V
2400.000	40.48	-9.39	31.09	54	-22.91	AV	V

Worse case mode:		802.11g(6Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	58.07	-9.29	48.78	74	-25.22	PK	Н
2483.500	37.34	-9.29	28.05	54	-25.95	AV	Н
2483.500	58.89	-9.29	49.60	74	-24.40	PK	V
2483.500	41.38	-9.29	32.09	54	-21.91	AV	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	60.23	-9.29	50.94	74	-23.06	PK	Н
2390.000	38.07	-9.29	28.78	54	-25.22	AV	Н
2400.000	56.69	-9.29	47.40	74	-26.60	PK	Н
2400.000	41.92	-9.29	32.63	54	-21.37	AV	Н
2390.000	61.46	-9.2	52.26	74	-21.74	PK	V
2390.000	38.92	-9.2	29.72	54	-24.28	AV	V
2400.000	58.55	-9.39	49.16	74	-24.84	PK	V
2400.000	41.75	-9.39	32.36	54	-21.64	AV	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	61.61	-9.29	52.32	74	-21.68	PK	Н
2483.500	37.11	-9.29	27.82	54	-26.18	AV	Н
2483.500	56.53	-9.29	47.24	74	-26.76	PK	V
2483.500	40.55	-9.29	31.26	54	-22.74	AV	V

Report No.: CQASZ20190500014EX-03

Worse case mode:		802.11n(HT40)(13.5Mbps)		Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	60.79	-9.2	51.59	74	-22.41	PK	Н
2390.000	38.04	-9.2	28.84	54	-25.16	AV	Н
2400.000	57.12	-9.39	47.73	74	-26.27	PK	Н
2400.000	41.44	-9.39	32.05	54	-21.95	AV	Н
2390.000	60.06	-9.2	50.86	74	-23.14	PK	V
2390.000	37.72	-9.2	28.52	54	-25.48	AV	V
2400.000	57.90	-9.39	48.51	74	-25.49	PK	V
2400.000	39.42	-9.39	30.03	54	-23.97	AV	V

Worse case mode:		802.11n(HT40)(13.5Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	59.05	-9.29	49.76	74	-24.24	PK	Н
2483.500	37.60	-9.29	28.31	54	-25.69	AV	Н
2483.500	57.66	-9.29	48.37	74	-25.63	PK	V
2483.500	42.37	-9.29	33.08	54	-20.92	AV	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

Above 1GHz

6.2 Conducted Emission

7 Photographs - EUT Constructional Details

Please refer to the report No: CQASZ20190500014EX-01

THE END