Investigation of the impact of Ge-quantum well width in Si/SiO₂/Ge/SiO₂/Pt resonant tunneling device (RTD) with NEGF formalism

IEEE 5th International Symposium on Devices, Circuits and Systems

Indian Institute of Engineering Science and Technology, Shibpur March 29th - 31st 2022, Kolkata, India

Nilayan Paul¹, Basudev Nag Chowdhury¹, Sanatan Chattopadhyay^{1,2*}

¹Department of Electronic Science, University of Calcutta, Kolkata 700009, India.

²Centre for Research in Nanoscience and Nanotechnology (CRNN) Saltlake City, Kolkata 700098, India.

*email id: scelc@caluniv.ac.in

Paper ID: ISDCS 2022 - 38

- □ Resonant tunneling
- Resonant tunneling: Applications
- Devices fabricated so far
- □ Device schematic in this work
- □ Theoretical model
- □ Results
- □ Conclusion
- □ Acknowledgement
- □ References

Resonant tunneling

- In a double barrier structure, resonant tunneling occurs when the energy level of incoming electrons coincides with one of the quasibound states in the quantum well.
- RTDs exhibit negative differential resistance (NDR).
- The peak-to-valley current ratio (PVCR) is a figure of merit of RTDs.
- High PVCR ⇒ better signal to noise ratio, which is particularly useful in oscillators.

Adapted from Encyclopedia of Physical Science and Technology, 3rd ed, 2003.

Voltage

Schematic representation of resonant tunneling in a double barrier and corresponding I-V characteristics.

Resonant tunneling: Applications

Feiginov et. al., App. Phys. Lett, 2011.

THZ oscillators

Qubit generation

Gorman et. al., Phys. Rev. Lett, 2005.

THZ imaging

Resonant **Tunneling**

Double Quantum Dots

Yao et. al., Nat. Photon., 2012.

Optoelectronic devices

TFETs

Gate Gate Oxid

Guo et. al., IEEE Electron Dev. Lett, 2009.

Devices fabricated so far...

- Low peak-to-valley current ratio (PVCR).
- Fabricated using III-V materials, particularly InGaAs, InAIAs, AIN, GaN, employing molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD) and so on...
- Si/Ge in contrast may provide cost effectiveness and simplicity in terms of fabrication.

MOCVD

Zhang et. al., J. App. Phys., 2021. PVCR ~ 1.93

Device schematic in this work

- (a) Schematic of Si/SiO₂/Ge/SiO₂/Pt resonant tunneling device. The Si substrate and top Pt contact act as reservoirs, source and drain, respectively.
- (b) Bandstructure of the device considered, in equilibrium. The thickness of the low bandgap Ge-film in-between the barriers is less than its EBR (~25 nm) and therefore, it acts as a quantum well.
- > Asymmetric barriers can provide technological flexibility in terms of fabrication in practice.

Theoretical model

Results: DOS Plots

DOS plots for device with different Ge-quantum well layer widths, for zero and 4.5 V applied biases.

(a) 15 nm (b) 20 nm (c) 25 nm

- A wider Ge-quantum well layer allows for more number of eigenstates compared to a thinner well.
- Application of bias changes the shape of the quantum wells and consequently, the energy levels in them.
- The bias required for resonance also depends on the well width.
- Maximum level tuning is observed for the device with 20 nm wide well, when biased at 4.5 V.

Results: Transmission coefficient

- Transmission coefficients for devices with Ge-quantum well widths of (a) 15 nm (b) 20 nm (c) 25 nm are considered.
- ■The increase in well width results in an increasing number of eigenstates.
- •The decrease in well width leads to a sharper resonance corresponding to the decrease in broadening of energy levels.
- ■These two are counteracting phenomena and their combined effect leads to maximum tunneling currents in the device with ~20 nm wide quantum well layer.

Results: IV Characteristics

Current valley characteristics of the device obtained by varying the Ge-quantum well width, data summarized in adjacent table.

Well width (nm)	Resonance Voltage (V)	Peak current density (mA/cm²)	PVCR
25	3.30	0.12	3.75
24	3.53	0.13	8.50
23	3.75	0.76	8.96
22	4.00	3.58	10.44
21	4.23	11.01	10.09
20	4.65	11.30	17.86
19	4.98	9.55	17.38
18	5.33	11.68	16.76
17	5.65	13.36	12.47
16	5.88	8.26	14.03
15	6.00	3.86	5.65

- ■A maximum PVCR of ~18 is obtained for a well width of 20 nm, corresponding to a peak current density of 11.30 mA/cm².
- Decrease in well width corresponds to a shift of current peaks to higher bias voltages.
- •Current peaks are observed to reach a minima for increasing the well width beyond 22 nm.

- •The variation of resonant tunneling current with applied bias and Ge-quantum well width at room temperature is investigated in detail. The results indicate that significant resonant tunneling requires higher voltages for lower Ge-well width.
- •For reducing the Ge-well width from above EBR to a sub-EBR value, the PVCR exhibits a maximum value at a well width of 20 nm.
- ■The tunneling current peak reaches a maximum value of 13.36 mA/cm² for a well width of 17 nm, corresponding to a PVCR of 12.47.
- •These values of PVCR are larger in order than conventional RTDs, at room temperature.

- > Department of Electronic Science, C.U.
- > CRNN, C.U.
- Centre of Excellence in Systems Biology and Bio-Medical Engineering, TEQIP Phase-III.

- Chang L, Esaki L, Tsu R.: Resonant tunneling in semiconductor double barriers.
 Applied Physics Letters, 24(12), 593-5 (1974).
- Miyamoto, T., Yamaguchi, A. and Mukai, T.: Terahertz imaging system with resonant tunneling diodes. Japanese Journal of Applied Physics, 55(3), 032201 (2016).
- Sen, S., Capasso, F., Beltram, F. and Cho, A.Y.: The resonant tunneling field-effect transistor: A new negative transconductance device. IEEE transactions on electron devices, 34(8), 1768-1773 (1987).
- Krishnamohan, T., Kim, D., Raghunathan, S. and Saraswat, K.: Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and << 60mV/dec subthreshold slope. In 2008 IEEE International Electron Devices Meeting, pp. 1-3. IEEE (2008).
- Paul, D. J.: Nanoelectronics. In: Meyers, R. A. (eds.) Encyclopedia of Physical Science and Technology. 3rd edn. Academic Press (2003).
- Keldysh, L.V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP, 20(4), 1018-1026 (1965).

- Nag Chowdhury, B. and Chattopadhyay, S.: Investigating the impact of source/drain doping dependent effective masses on the transport characteristics of ballistic Si-nanowire field-effect-transistors. Journal of Applied Physics, 115(12), 124502 (2014).
- Shinkai, G., Hayashi, T., Hirayama, Y. and Fujisawa, T.: Controlled resonant tunneling in a coupled double-quantum-dot system. Applied Physics Letters, 90(10), 103116 (2007).
- Datta, S.: Nanoscale device modeling: the Green's function method.
 Superlattices and microstructures, 28(4), 253-278 (2000).
- Lake R, Datta S.: Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. Physical Review B, 45(12), 6670 (1992).

THANK YOU!