Algorithms

Lecture 6: Representation of Graphs, BFS

Anxiao (Andrew) Jiang

22.1 Representation of Graphs

Graph $d \bigcirc e$ Node (vertex) $a \bigcirc b$ Edge (Undirected, Directed) G = (V, E) $V = \{a, b, c, d, e, f\}$ $E = \{(a, b), (a, c), (b, c), \cdots, (c, f)\}$

Complete Graph:

22.1 Representation of Graphs

Complete Graph:

Tree: connected acyclic graph.

Number of edges = number of nodes - 1

22.1 Representation of Graphs

a: b, c

b: a, c, e

c: a, b, d, e, f

d: c, e

e: b, c, d

f: c

Adjacency List Size: O(|V| + |E|)

$$O(V+E)$$

22.1 Representation of Graphs

Adjacency List

a: b, c b: a, c, e

c: a, b, d, e, f

d: c, e

e: b, c, d

f: c

Size: O(|V| + |E|)

O(V+E)

Adjacency Matrix

Size: $O(|V|^2)$

 $O(V^2)$

22.2 Breadth First Search (BFS)

Basic idea:

Starting at a node,
We first check its 1-hop neighbors,
then check its 2-hop neighbors (neighbors of 1-hop neighbors),
then check its 3-hop neighbors (neighbors of 2-hop neighbors),
then check its 4-hop neighbors (neighbors of 3-hop neighbors),

. ,

until all reachable nodes are checked.

22.2 Breadth First Search (BFS)

CH 22. Elementary Graph Algorithms

22.2 Breadth First Search (BFS)

22.2 Breadth First Search (BFS)

CH 22. Elementary Graph Algorithms 22.2 Breadth First Search (BFS)

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

CH 22. Elementary Graph Algorithms 22.2 Breadth First Search (BFS)

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

CH 22. Elementary Graph Algorithms 22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to $v:\ d(v)$
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

For each node V:

- 1) distance from root to v:d(v)
- 2) the node that discovered v: $\pi(v)$

S

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

s r x

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

r x

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

r x v

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

X V

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

x v t y

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

v t y

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

t y

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

t y u

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

y u

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

y u z

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

u z

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

For each node V:

- 1) distance from root to v:d(v)
- 2) the node that discovered V: $\pi(V)$

Z

CH 22. Elementary Graph Algorithms 22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered v: $\pi(v)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

$$\frac{S}{0}$$
, $\frac{r}{1}$, $\frac{v}{2}$, $\frac{t}{3}$, $\frac{u}{2}$

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

22.2 Breadth First Search (BFS)

Queue (for remembering the discovered nodes):

$$\frac{S}{0}$$
, $\frac{r}{1}$, $\frac{v}{2}$, $\frac{t}{3}$, $\frac{u}{3}$

Undiscovered nodes: white

Discovered (but unfinished) nodes: gray

Finished nodes: black

For each node V:

- 1) distance from root to v: d(v)
- 2) the node that discovered V: $\pi(V)$

Time complexity: O(V+E)