FCM32F1xx/FCM32H1xx 应用相关注意事项 (C 版 IC)

FCM32F1xx/FCM32H1xx 为基于 Cortex M4 内核的控制器,与 STM32F1xx 系列兼容,由于生产工艺/电路设计等原因,两者之间仍然会存在一些差异,以下逐一说明。

目录

1	相同	司点	4			
2	不同	不同点				
3	注意	意事项	5			
3	3.1	Cortex 内核	5			
3	3.2	VBAT 供电	6			
3	3.3	ADC	6			
	3.3	.1 ADC 精度	6			
	3.3	.2 单次转换	6			
3	3.4	CAN	6			
	3.4	.1 FCM 的 CAN 与 S**不能 BIN 兼容	6			
	3.4	.2 CAN 时钟精度要求	6			
3	3.5	USART	7			
	3.5	.1 SR 的 TC 位不能通过写 0 清除	7			
	3.5	.2 USART3 REMAP 功能不正常	7			
	3.5	.3 使用 HSI 时,波特率受温度影响过大	7			
3	3.6	RCC	8			
	3.6	.1 RCC->CSR 寄存器不能使用 bit band 方式修改	8			
	3.6	.2 选择 HSI 作为 PLL 时钟源时,需要系统频率为>=72MHz (<i>FCM 新增功能</i>)	8			
	3.6	.3 TIM 输入时钟需要 2 倍 PLLCLK (FCM 新增功能)	9			
	3.6	.4 使用 HSE 时,时钟配置失败	9			
	3.6	.5 HSI 温飘较大	9			
3	3.7	GPIO	10			
	3.7	.1 GPIO 的 PIN2/PIN3 的特定设置组合会导致 PIN3 I/O 作为输入功能不对	10			
;	3.8	H103 使用 Flash Turbo(FLASH 加速)功能	10			
3	3.9	FCM 器件识别	10			
3	3.10	FLASH	10			
	3.1	0.1 信息区(information block)	10			
	3.1	0.2 读保护	11			
3	3.11	滚码烧写失败	11			
;	3.12	RTC	11			
	3.1	2.1 RTC 闹钟标志 ALRF 不对	11			

Ap	р	N	ote

	3.12.2	RTC 闹钟时间间隔越来越长	11
3	3.13 SPI.		12
		SPI 支持 NSSP 模式	
		SPI 支持 TI 模式	
:			
		史	

1相同点

- 脚位
- 内存映射
- 开发环境(Keil/IAR)
- 烧写工具
- 库函数/例程
- 同频性能
- 时序兼容

2 不同点

项目	STM32F1	FCM32F1	FCM32H1
Cortex 内核	M3	M4	M4
VDD	2.0~3.6V	1.8~5.5V	1.8~5.5V
VDDA	2.0~3.6V	1.8~5.5V	1.8~5.5V
VBAT	\checkmark	×	×
工作温度范围		-40~85	-40~85
SRAM	20KB	20KB	32KB
Coremark 性能	181.0@72MHz	191.4@72MHz	239.5@72MHz
			319.4@96MHz
CPU/AHB/APB2 最高频率	72MHz	72MHz	96MHz
APB1 最高频率	36MHz	72MHz	96MHz
Flash 工作频率	24MHz	24MHz	32MHz
Flash Turbo	-	-	\checkmark
TIM1/2/3/4 最高时钟	72MHz	72MHz	192MHz
SPI1 作为 I2S1	X	✓	\checkmark
SPI 支持 NSSP 模式	×	\checkmark	\checkmark
SPI 支持 TI 模式	×	\checkmark	\checkmark
Boot loader	USART	USART	USART
工作电流(HSI 8MHz)	9.85mA	4.92mA	
工作电流(HSI+PLL72MHz)	35.4mA	26.7mA	
工作电流(HSI+PLL96MHz)	45.9mA	35.2mA	
Stop 电流(I _{DD} +I _{DDA} ,LDO=Run)	20.7uA	18.2uA	18.2uA
Stop 电流(I _{DD} +I _{DDA} ,LDO=LPR)	10.4uA	7.5uA	7.5uA
Standby 电流(I _{DD} +I _{DDA})	1.9uA	7.2uA	7.2uA

注:

- 1. 以 STM32F103CBT6 为参考。
- 2. 测试条件为 3.3V/25C,LSI/IWDG OFF,VDDA Monitor ON。
- 3. 96MHz 为 STM32F103 超频工作。

3 注意事项

3.1 Cortex 内核

FCM32x103 使用的是 Cortex M4(不带 F)内核,完全兼容 M3 的程序。但在 IAR 中调试时,由于其会判断内核版本,因此无法进行调试,出错信息如下:

打开工程选项,会发现 Core 使用的是 M3 内核:

解决方案:

使用 FCM32 提供的器件支持包。

下载地址: FCM32F103-深圳市闪芯微电子有限公司 (flashchip.com.cn)

3.2 VBAT 供电

FCM32x103 系列 IC 不提供掉电模式的后备电池供电, VBAT 为空脚。

3.3 ADC

3.3.1 ADC 精度

部分应用中 ADC 精度不够,因为 FCM 的 ADC 电气特性与 S**不尽相同,相同的采样时间,FCM 的输入阻抗(RAIN)要低,规格书中已列出 RAIN 表格。

解决方案二选一,或二者结合:

- 1) 根据外部输入阻抗,调整采样时间
- 2) 降低外部输入阻抗(通常为等比例降低分压电阻的阻值,或者使用运放做一级 buf)

3.3.2 单次转换

在使用单次转换模式,如果通道序列长度设置为大于 1 次(ADC_SQR1->L 或 ADC_JSQR->JL 不为 0),则每次触发会按通道设定依次转换,而 S**只会转换第一个通道。

解决方案:

需要单次转换时,ADC_SQR1->L 或 ADC_JSAR->JL 设为 0。

3.4 CAN

3.4.1 FCM 的 CAN 与 S**不能 BIN 兼容

可以使用 FCM 提供的 CAN 函数库重新编译。

3.4.2 CAN 时钟精度要求

在使用 CAN 功能时, MCU 时钟源必须使用晶振, 不能使用内部 RC OSC。

3.5 USART

3.5.1 SR 的 TC 位不能通过写 0 清除

解决方案三选一:

- 1) 使用 TXE 代替 TC 位来控制发送
- 2) 在写入 DR 后再打开 TCIE 中断;在 TC 中断中,发送完最后一个数据之后关闭 TCIE 中断

```
// 发送第一个数据
__disable_irq();
temp = USART1->SR;
USART1->DR = buf[0];
__enable_irq();
// 中断函数
void USART1_IRQHandler(void)
{
    if(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=RESET)
    {
        if (tx_count-- != 0)
        {
            USART1->DR = buf[p++];
        }
        else
            USART1->CR1 &= ~USART CR1 TCIE; //发送完最后一个数据,关掉 TCIE 中断
    }
}
```

3) 采用 DMA 方式发送

3.5.2 USART3 REMAP 功能不正常

USART3_REMAP=3 (映射到 PD8/PD9), 工作不正常

解决方案:

无。

3.5.3 使用 HSI 时,波特率受温度影响过大

HSI 受温度影响可能超过 3%, 因此可能导致串口通讯异常。

解决方案:

采用波特率自适应算法,使用定时器捕捉 RXD 的低电平宽度,估算出低电平的位数 (接收到的数据中连续的 0 的位数未知),再算出实际波特率,重新设定波特率值。

3.6 RCC

3.6.1 RCC->CSR 寄存器不能使用 bit band 方式修改

在使用 FWlib 固件库时,会通过 bit band 的方式来开启 LSI,此时程序会停止。

解决方案:

不使用 bit band 方式,直接操作整个寄存器。 原来程序:

```
void RCC_LSICmd(FunctionalState NewState)
{
    /* Check the parameters */
    assert_param(IS_FUNCTIONAL_STATE(NewState));
    *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}

修改后:
void RCC_LSICmd(FunctionalState NewState)
```

```
void RCC_LSICmd(FunctionalState NewState)
{
    /* Check the parameters */
    assert_param(IS_FUNCTIONAL_STATE(NewState));

// *(_IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
    if (NewState == ENABLE)
        RCC->CSR |= RCC_CSR_LSION;
    else
        RCC->CSR &= ~RCC_CSR_LSION;
}
```

3.6.2 选择 HSI 作为 PLL 时钟源时,需要系统频率为>=72MHz (FCM 新增功能)

解决方案:

FCM32x103 的 RCC_CFGR2 扩展了一位,用于选择 PLL 的输入时钟,使其在使用内部 RC 振荡器时可以支持 72MHz 及以上的频率。

RCC_CFGR2 Address: 0x2C

[31]: PLLSRC[0],默认=0

RCC CFGR

Address: 0x04
[16]: PLLSRC[1]

PLLSRC[1:0]: PLL 时钟源选择

00 = 选择 HSI/2 作为 PLL 输入时钟 01 = 选择 HSI 作为 PLL 输入时钟 10 = 选择 HSE 作为 PLL 输入时钟

示范代码:

1) 将 PLL 配置成使用 HSI/2, 倍频数为 9 倍 (假设需要 8*9=72MHz)

2) 在 PLL enable 之前,插入一行: *(volatile uint32_t*)(RCC_BASE+0x2c) |= 1<<31;

3.6.3 TIM 输入时钟需要 2 倍 PLLCLK (FCM 新增功能)

解决方案:

通过 RCC_CFGR3 的 TIMxSW 位实现。当选择 2x PLLCLK 时,SYSCLK/HCLK/PCLK 必须同频,即不经过任何分频。

RCC_CFGR3 Address: 0x30

Reset value: 0x0000 0000

[9]: TIM1SW, 1 = select 2x PLLCLK as TIM1 clock source
 [24]: TIM2SW, 1 = select 2x PLLCLK as TIM2 clock source
 [25]: TIM34SW, 1 = select 2x PLLCLK as TIM3/4 clock source

3.6.4 使用 HSE 时,时钟配置失败

程序配置时钟时,在启动 HSE 后,未等到 HSERDY,导致时钟配置失败。

原因为 FCM 103 的复位电压在 1.6V 左右,而部分晶振在此电压下比较难以起振,需等到 VDD 上升到一定值后才会有 HSERDY 信号,这样在 VDD 上升较慢时,1.6V 电压下 MCU 已经开始执行时钟配置程序并进行溢出超时计数,计数溢出前无 HSERDY 信号,因此时钟配置失败。

解决方案:

修改头文件中有关 HSE 溢出时间的定义为最大: #define HSE_STARTUP_TIMEOUT ((uint16_t)0xffff) /*!< Time out for HSE start up */

3.6.5 HSI 温飘较大

在环境温度<0C 或>60C 时,内置 HSI OSC 误差范围可能超过 3%,会影响串口通讯。

解决方案:

环境温度范围要求较大时, 使用外部晶振。

3.7 **GPIO**

3.7.1 GPIO 的 PIN2/PIN3 的特定设置组合会导致 PIN3 I/O 作为输入功能不对

每一组 I/O 的 PIN3(PA3/PB3...)在设置成通用<mark>输入且带上/下拉</mark>功能时,如果该组 I/O 的 PIN2(PA2/PB2...)的 MODE1 位为 1,则会导致 PIN3 作为 alternate function 输出,无法作为输入。

解决方案:

将 PIN2 的输出速度设置为 10MHz。

3.8 H103 使用 Flash Turbo(FLASH 加速)功能

在 FCM32H103 系列中,使用了 FLASH Turbo 模块代替了 F103 系列的 Prefetch-buf(预取指缓冲),其打开与关闭仍然使用 FLASH_ACR.PRFTBE 位控制,且其 cache 的操作是完全硬件化,无需软件干预。

3.9 FCM 器件识别

FCM32F1/H1 系列 MCU 型号,在信息区以下地址可以读到,以和其它厂家区别开来。

地址	内容	说明
0x1FFF_F7C0	0x46433332 'FC32' ASCII code	
0x1FFF_F7C4	0x0046xxxv/	46 = 'F', 48 = 'H'
	0x0048xxxv	xxx=type, eg. 103
		v=version, eg. A/B/C

3.10 FLASH

3.10.1 信息区 (information block)

FCMx103 中密度系列器件,其信息区大小和分配如下表:

Block	Name	Addesses	Size(bytes)
Information block	System memory	0x1FFF_E600 - 0x1FFF_F7FF	4.5k
	Option bytes	0x1FFF_F800 - 0x1FFF_F9FF	0.5k

3.10.2 读保护

FCM 的信息区不受读保护。即使开启了读保护,信息区仍然可读 (System memory 可读, Option bytes 可读写)。

3.11 滚码烧写失败

某些型号的烧录器在启用滚码写入功能时,会出现滚码写入失败。

解决方案:

将滚码地址设在 FLASH 的前 16K 之内,并在源程序中保留该地址,初始化为全 FF,并重新编译。

例如滚码为 4 个字节, 其起始地址为 0x080007fc, 在源程序中加入以下代码:

```
const uint32_t roll_size[4] __attribute__ ((at(0x080007fc))) = {0xff,0xff,0xff,0xff};
```

3.12 RTC

3.12.1 RTC 闹钟标志 ALRF 不对

ALRF 标志位的置位发生在秒中断标志(SECF)置位时,因此,RTC 全局中断中的闹钟中断不可用。

	4	9	settable	I AIVIE LIX	ramper interrupt	0X0000_00 1 0
	3	10	settable	RTC	RTC global interrupt	0x0000_004C
- 1						

解决方案:

使用通过 EXTI 的闹钟中断。

- 1						1
	41	48	settable	RTCAlarm	RTC alarm through EXTI line interrupt	0x0000_00E4

3.12.2 RTC 闹钟时间间隔越来越长

例如闹钟溢出时间设置为 5ms,在每次闹钟溢出后,程序会重新设置下次闹钟溢出的时间(当前溢出时间+5ms),FCM的溢出时间会按 5ms、10ms、15ms...的间隔溢出,只有第一次溢出是正确的。

原因为 RTC 计数器 (RTC_CNT) 的写入有一级 buf,在闹钟配置完成后 (RTC_CRL->CNF 清 0 时) 而 RTC_CNT 未写入的情况下,RTC_CNT 也会发生装载,而装载值为第一次对 RTC_CNT 的写入值,而不是当前的 CNT 继续计数。

解决方案:

闹钟溢出后,设置新的溢出时间时,将 RTC_CNT 读出再写入。

3.13 SPI

3.13.1 SPI 支持 NSSP 模式

NSSP 模式为两帧数据之间 NSS 插入无效电平。可将 NSSP 写 1 来允许该功能(仅在 FRF=0, CPHA=0 时有效,CPOL 忽略)。

SPIx_CR2[3] :

NSSP : 1=NSS 脉冲模式使能。复位=0。

NSSP 模式时序:

3.13.2 SPI 支持 TI 模式

将 FRF 写 1 来支持 TI 模式。

SPIx_CR2[4] :

FRF : 1=TI 模式使能。复位=0。

TI 模式时序:

3.14 -

4版本历史

Date	Revision	Author	Changes
2021/5/6	0.10	Dick Hou	初版,适用于 C 版 IC
2021/5/14	0.11	Dick Hou	第二节不同点,增加 I2S 相关内容;
			三.7.2 节增加示范代码;
			增加三.9 节
2021/5/28	0.12	Dick Hou	增加三.4 节
2021/7/13	0.13	Dick Hou	修改格式
			增加三.7 节
			增加三.10 节
2021/7/22	0.14	Dick Hou	三.4 节 CAN 增加时钟相关
			增加三.11 节 FSMC
2021/8/9	0.15	Dick Hou	删除 FSMC 相关描述
2021/11/4	0.16	Dick Hou	增加 3.11 滚码烧写
2022/1/24	0.17	Dick Hou	增加 3.6.5 HSI 温飘的说明;
			增加 3.12 RTC
2022/2/21	0.18	Dick Hou	增加 3.14 SPI 章节
2022/2/23	0.19	Dick Hou	增加 3.5.3 章节
2022/5/7	0.20	Dick Hou	增加 3.5.2 章节;
			简化 3.5.3 章节

5 其它