

Modern Complexity Theory (CS1.405)

Dr. Ashok Kumar Das

IEEE Senior Member

Web of Science (ClarivateTM) Highly Cited Researcher 2022, 2023
Professor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashok-kumar-das
 https://sites.google.com/view/iitkgpakdas/

Intractability

- Assume that we grant the TM the ability to solve the satisfiability problem in a single step, for any size Boolean formula.
- Imagine an attached "black box" that gives the machine this
 capability. We call the black box an oracle to emphasize that it
 does not necessarily correspond to any physical device.
- The machine could use the oracle to solve any NP problem in polynomial time, regardless of whether P equals NP, because every NP problem is polynomial time reducible to the satisfiability problem (SAT).
- Such a TM is said to be computing relative to the satisfiability problem (SAT); hence the term relativization.

Definition

An oracle for a language A is a device that is capable of reporting whether any string w is a member of A. An oracle Turing machine M^A is a modified Turing machine that has the additional capability of querying an oracle for A. Whenever M^A writes a string on a special oracle tape, it is informed whether that string is a member of A in a single computation step.

Definition (The Class P^A)

 P^A be the class of languages decidable with a polynomial time oracle deterministic Turing machine that uses oracle A. In other words, $P^A := \{L | L \text{ is decided by a polynomial time oracle} \}$

deterministic Turing machine (ODTM) that uses oracle A}.

Definition (The Class NPA)

 NP^A be the class of languages decidable with a polynomial time oracle non-deterministic Turing machine that uses oracle A. In other words, $NP^A := \{L|L \text{ is decided by a polynomial time oracle non-deterministic Turing machine (ONTM) that uses oracle <math>A$ }.

Theorem

 $NP \subseteq P^{SAT}$.

Theorem

 $coNP \subset P^{SAT}$.

 Polynomial-time computation relative to the satisfiability problem (SAT) contains all of NP.
 In other words,

$$NP \subset P^{SAT}$$

Furthermore,

$$coNP \subseteq P^{SAT}$$

because P^{SAT} , being a deterministic complexity class, is closed under complementation.

Theorem

- 1. An oracle A exists whereby $P^A \neq NP^A$.
- 2. An oracle B exists whereby $P^B = NP^B$.

PROOF IDEA Exhibiting oracle B is easy. Let B be any PSPACE-complete problem such as TQBF.

We exhibit oracle A by construction. We design A so that a certain language L_A in NP^A provably requires brute-force search, and so L_A cannot be in P^A . Hence we can conclude that $\mathrm{P}^A \neq \mathrm{NP}^A$. The construction considers every polynomial time oracle machine in turn and ensures that each fails to decide the language L_A .

PROOF Let B be TQBF. We have the series of containments

$$\mathrm{NP}^{\mathit{TQBF}} \overset{1}{\subseteq} \mathrm{NPSPACE} \overset{2}{\subseteq} \mathrm{PSPACE} \overset{3}{\subseteq} \mathrm{P}^{\mathit{TQBF}}.$$

Containment 1 holds because we can convert the nondeterministic polynomial time oracle TM to a nondeterministic polynomial space machine that computes the answers to queries regarding TQBF instead of using the oracle. Containment 2 follows from Savitch's theorem. Containment 3 holds because TQBF is PSPACE-complete. Hence we conclude that $P^{TQBF} = NP^{TQBF}$.

Problem

If $NP = P^{SAT}$, then NP = coNP.

Solution: P^{SAT} is a deterministic class, so it is closed by complementation. We are also given that $NP = P^{SAT}$.

Note that, $A \in P$ if and only if (iff) $A \in P^{SAT}$.

Then, $A \in P^{SAT}$ iff $\bar{A} \in P^{SAT}$.

Since $NP = P^{SAT}$, $\bar{A} \in NP$ iff $A \in coNP$.

As a result, $A \in NP$ iff $A \in coNP$, that is, $NP \subseteq coNP$ and $coNP \subseteq NP$.

Hence, NP = coNP.

Motivation

- Computers are built from electronic devices wired together in a design called a digital circuit.
- We can also simulate theoretical models, such as Turing machines, with the theoretical counterpart to digital circuits, called Boolean circuits.
- Two purposes are served by establishing the connection between TMs and Boolean circuits.
 - First, researchers believe that circuits provide a convenient computational model for attacking the P versus NP and related questions.
 - Second, circuits provide an alternative proof of the Cook–Levin theorem that SAT is NP-complete.

Definition (Boolean circuit)

A **Boolean circuit** is a collection of **gates** and **inputs** connected by wires. Cycles are not permitted. Gates take three forms: 1) AND gates, 2) OR gates, and 3) NOT gates

Example (A Boolean circuit)

The wires in a Boolean circuit carry the Boolean values 0 and 1. The gates are simple processors that compute the Boolean functions AND, OR, and NOT. The AND function outputs 1 if both of its inputs are 1 and outputs 0 otherwise. The OR function outputs 0 if both of its inputs are 0 and outputs 1 otherwise. The NOT function outputs the opposite of its input; in other words, it outputs a 1 if its input is 0 and a 0 if its input is 1. The inputs are labeled x_1, \ldots, x_n . One of the gates is designated the *output gate*. The following figure depicts a Boolean circuit.

Boolean circuit computing

We use functions to describe the input/output behavior of Boolean circuits. To a Boolean circuit C with n input variables, we associate a function $f_C: \{0,1\}^n \longrightarrow \{0,1\}$, where if C outputs b when its inputs x_1, \ldots, x_n are set to a_1, \ldots, a_n , we write $f_C(a_1, \ldots, a_n) = b$. We say that C computes the function f_C . We sometimes consider Boolean circuits that have multiple output gates. A function with k output bits computes a function whose range is $\{0,1\}^k$.

Boolean circuit computing

Example (A Boolean circuit that computes the parity function)

The *n*-input *parity function* $parity_n : \{0,1\}^n \to \{0,1\}$ outputs 1 if an odd number of 1s appear in the input variables.

Definition (Circuit family)

A *circuit family* C is an infinite list of circuits, say $(C_0, C_1, C_2, ...)$, where C_n has n input variables. Then, C decides a language A over the alphabet $\{0,1\}$ if for every string w,

$$w \in A \operatorname{iff} C_n(w) = 1,$$

where n is the length of w.

- The size of a circuit is the number of gates that it contains.
- Two circuits are equivalent if they have the same input variables and output the same value on every input assignment.
- A circuit is **size minimal** if no smaller circuit is equivalent to it.
- The problem of minimizing circuits has obvious engineering applications but is very difficult to solve in general.

- A circuit family is minimal if every C_i on the list is a minimal circuit.
- The *size complexity* of a circuit family $(C_0, C_1, C_2,...)$ is the function $f: N \to N$, where f(n) is the size of C_n .
- The *depth* of a circuit is the length (number of wires) of the longest path from an input variable to the output gate.
- We define depth minimal circuits and circuit families, and the depth complexity of circuit families, as we did with circuit size.

Definition

- The circuit complexity of a language is the size complexity of a minimal circuit family for that language.
- The circuit depth complexity of a language is defined similarly, using depth instead of size.

Theorem

Let $t: N \to N$ be a function, where $t(n) \ge n$. If a language $A \in TIME(t(n))$, then A has circuit complexity $O(t^2(n))$.

We say that a Boolean circuit is **satisfiable** if some setting of the input causes the circuit to output 1.

The *circuit-satisfiable* problem tests whether a circuit is satisfiable. Define

CIRCUIT-SAT := $\{\langle C \rangle | C \text{ is a satisfiable Boolean circuit} \}$.

Theorem

CIRCUIT-SAT is NP-complete.

Proof.

We must demonstrate the following two things:

- CIRCUIT-SAT is in NP.
- (NP-hard) any language A in NP is reducible to CIRCUIT-SAT.

Part 1. CIRCUIT-SAT is in NP.

We design the following polynomial-time verifier (DTM, V) that can decide CIRCUIT-SAT.

Algorithm: Polynomial-time verifier (DTM, V) for CIRCUIT-SAT

Input: $(\langle C \rangle, \beta)$, where β is a certificate (an assignment of the setting of the n Boolean variables, say x_1, x_2, \cdots, x_n)

Output: Accept/Reject

- 1: **if** β does not contain n Boolean variables assignment **then**
- 2: return "reject"
- 3: **end if**
- 4: Evaluate the circuit C on β .
- 5: if the circuit output is 1 then
- 6: return "accept"
- 7: **else**
- 8: return "reject"
- 9: end if

Part 2. CIRCUIT-SAT is NP-hard.

We show that any language A in NP is poly-time reducible to CIRCUIT-SAT. We must give a polynomial time reduction $f: \Sigma^* \to \Sigma^*$ that maps strings to circuits, where $f(w) = \langle C \rangle$ implies that $w \in A$ iff Boolean circuit C is satisfiable.

Because A is in NP, it has a polynomial time verifier (DTM) V whose input has the form $\langle x,c\rangle$ where c may be the certificate showing that the assignment x is in A. In order to construct f, we need to obtain the circuit simulating V.

We now fill in the inputs to the circuit that correspond to x with the symbols of w. The only remaining inputs to the circuit correspond to the certificate c. We call this circuit C and output it.

If C is satisfiable, a certificate exists, so w is in A. Conversely, if w is in A, a certificate exists, so C is satisfiable.

Time Complexity: If the running time of the polynomial-time verifier V is n^k for some positive integer k, so the size of the circuit constructed is $O((n^k)^2) = O(n^{2k})$ by the circuit complexity theorem. Since the structure of the circuit is quite simple (actually, it is highly repetitious), so the running time of the reduction is $O(n^{2k})$, which is poly-time.

Definition (P-complete)

A language B is P-complete if

- lacktriangledown $B \in P$, and
- 2 every A in P is log space reducible to B, that is,

$$A \leq_L B, \forall A \in P$$
.

[P-hard]

P-completeness

For a circuit C and input setting x, we represent C(x) to be the value of C on x. Define

CIRCUIT-VALUE := $\{\langle C, x \rangle | C \text{ is a Boolean circuit and } C(x) = 1\}.$

Theorem

CIRCUIT-VALUE is P-complete.

Proof.

Part 1. CIRCUIT-VALUE is in P. We need to design a DTM, say, M that can decide CIRCUIT-VALUE in poly-time.

Part 2. Any A in P is log space reducible to CIRCUIT-VALUE, that is,

$$A \leq_L CIRCUIT-VALUE, \forall A \in P.$$

Part 1.

Algorithm: Polynomial-time DTM, M for CIRCUIT-VALUE Input: (C, x), where C is a Boolean circuit and x an assignment of the setting of the *n* Boolean variables, say x_1, x_2, \dots, x_n

Output: Accept/Reject

- 1: Evaluate the circuit C on x.
- 2: if the circuit output is 1 then
- return "accept"
- 4: else
- return "reject"
- 6: **end** if

Part 2. Required to Prove (RTP):

$$A \leq_L CIRCUIT-VALUE, \forall A \in P$$

Let A be any language in P. We convert an input string $w \in A$ to a Boolean circuit C with w such that $w \in A$ if and only if $f(w) = \langle C \rangle$ is satisfiable Boolean circuit on w, where $f : \Sigma^* \to \Sigma^*$ is log-space reduction function.

On input w, the reduction produces a circuit C that simulates the polynomial time deterministic Turing machine (DTM) for A. The input to the circuit C is w itself. The reduction can be carried out in log space because the circuit C it produces has a simple and repetitive structure.

Thank You!!!