RECONFIGURAÇÃO DOS SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

Os Sistemas de Distribuição de Energia Elétrica (SDEE) são planejados como redes malhadas interconectadas. Entretanto, operam com uma topologia ou configuração radial: a) Para facilitar a coordenação da proteção, e b) Reduzir a corrente de curto-circuito dos SDEE. Para obter uma topologia radial existem chaves de interconexão (abertas e/ou fechadas) em pontos estratégicos no sistema. Assim, a topologia inicial pode ser modificada pela operação das chaves para transferir as demandas entre os diferentes alimentadores. A nova topologia tem outro ponto de operação e precisa continuar sendo radial.

O problema de reconfiguração de sistemas de distribuição (RSD) consiste na abertura e/ou fechamento das chaves com o objetivo de melhorar um índice de desempenho. A reconfiguração ótima é uma importante ferramenta para aumentar a confiabilidade de um SDEE, especialmente quando a automação avançada e tecnologias de redes inteligentes (smart grids) tornam-se mais importante e mais acessível às concessionarias de distribuição.

Formulação do Problema de Reconfiguração da Rede Elétrica

Figura M1 - Sistema de distribuição radial

Hipóteses Adotadas

Visando representar o funcionamento em regime permanente de um sistema de distribuição de energia, são feitas as seguintes hipóteses (comumente usadas nas formulações de fluxo de carga de varredura [MR1] e mostradas na Figura 1):

- As demandas nas cargas na rede de distribuição são representadas como potência ativa e reativa constantes;
- O sistema é balanceado e representado pelo seu equivalente monofásico;
- As perdas de potência ativa e reativa no circuito ij estão concentradas no nó i.
- As chaves são representadas como circuitos curtos com impedância nula.

De acordo com a Figura M1, os termos \vec{V}_i e \vec{I}_{ij} representam os fasores da tensão do nó i e o fluxo de corrente no circuito ij, respectivamente. P_i^D e Q_i^D representam a potência ativa e

reativa demandada no nó i, respectivamente. P_i^S e Q_i^S representam a potência ativa e reativa gerada no nó i, respectivamente. P_{ij} e Q_{ij} representam o fluxo de potência ativa e reativa no circuito ij, respectivamente. R_{ij} , X_{ij} e Z_{ij} representam a resistência, reatância e impedância do circuito ij. $R_{ij}I_{ij}^2$ e $X_{ij}I_{ij}^2$ representam as perdas de potências ativa e reativa do circuito ij, respectivamente.

Formulação do Problema de Fluxo de Carga para Redes Elétricas Radiais

Na Figura 1, a queda de tensão em um circuito é definida pela equação (m.1).

$$\vec{V}_i - \vec{V}_j = \vec{I}_{ij} (R_{ij} + jX_{ij}) \ \forall ij \in \Omega_l$$
 (m.1)

em que Ω_l representa o conjunto de circuitos. \vec{I}_{ij} pode ser calculada usando a equação (m.2).

$$\vec{I}_{ij} = \left(\frac{P_{ij} + jQ_{ij}}{\vec{V}_j}\right)^* \qquad \forall ij \in \Omega_l$$
 (m.2)

A equação (m.2) é substituída na equação (m.1) para obter a equação (m.3).

$$(\vec{V}_{i} - \vec{V}_{i})\vec{V}_{i}^{*} = (P_{ii} - jQ_{ii})(R_{ii} + jX_{ii}) \ \forall ij \in \Omega_{l}$$
 (m.3)

Considerando que $\vec{V}_i = V_i \angle \theta_i$, $\vec{V}_j = V_j \angle \theta_j$ e $\theta_{ij} = \theta_i - \theta_j$, em que V_i e θ_i são a magnitude de tensão e o ângulo de fase na barra i, respectivamente, a equação (m.3) pode ser escrita como mostrado na equação (m.4).

$$V_i V_j [\cos \theta_{ij} + j \sin \theta_{ij}] - V_j^2 = (P_{ij} - jQ_{ij}) (R_{ij} + jX_{ij}) \ \forall ij \in \Omega_l$$
 (m.4)

Identificando as partes real e imaginária na equação (m.4), obtemos:

$$V_i V_j \cos \theta_{ij} = V_j^2 + \left(R_{ij} P_{ij} + X_{ij} Q_{ij} \right) \quad \forall ij \in \Omega_l$$
 (m.5)

$$V_i V_i \operatorname{sen} \theta_{ij} = X_{ij} P_{ij} - R_{ij} Q_{ij} \quad \forall ij \in \Omega_l$$
 (m.6)

Utilizando a fórmula da trigonometria, que é a relação básica entre seno e cosseno, $\sec^2(\theta_{ij}) + \cos^2(\theta_{ij}) = 1$, e somando os quadrados de (m.5) e (m.6), obtemos:

$$V_i^2 - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2I_{ij}^2 - V_i^2 = 0 \quad \forall ij \in \Omega_l$$
 (m.7)

Em que a magnitude do fluxo de corrente I_{ij} é mostrada na equação (m.8).

$$I_{ij}^2 = \frac{P_{ij}^2 + Q_{ij}^2}{V_j^2} \qquad \forall ij \in \Omega_l$$
 (m.8)

A equação (m.7) não depende da diferença angular entre as tensões, e é possível obter a magnitude da tensão do nó (V_j) em termos da magnitude do nó inicial (V_i) , o fluxo de potência ativa (P_{ij}) , o fluxo de potência reativa (Q_{ij}) , a magnitude do fluxo de corrente (I_{ij}) e os parâmetros elétricos do ramo ij. As equações de balanço de carga convencional são mostradas nas equações (m.9) e (m.10), como mostradas na Figura M1.

$$\sum_{ji\in\Omega_l} P_{ji} - \sum_{ij\in\Omega_l} \left(P_{ij} + R_{ij} I_{ij}^2 \right) + P_i^s = P_i^D \quad \forall i \in \Omega_b$$
 (m.9)

$$\sum_{ji\in\Omega_l} Q_{ji} - \sum_{ij\in\Omega_l} \left(Q_{ij} + X_{ij} I_{ij}^2 \right) + Q_i^s = Q_i^D \quad \forall i \in \Omega_b$$
 (m.10)

em que Ω_b representa o conjunto de nós. O sistema de equações não lineares das equações (m.7)-(m.10) representam a operação em regime permanente de uma rede elétrica radial e são frequentemente utilizados no método de varredura de fluxo de carga [MR1]-[MR2].

Modelo Matemático do Problema de Reconfiguração da Rede Elétrica

Observe que nas equações (m.7)-(m.10) as magnitudes do fluxo de corrente I_{ij} e de tensão V_i aparecem apenas nas formas I_{ij}^2 e V_i^2 , respectivamente. Sendo assim, é conveniente considerar as seguintes mudanças de variáveis.

$$I_{ij}^{sqr} = I_{ij}^2$$
 e $V_i^{sqr} = V_i^2$

Com as hipóteses descritas acima, o problema de reconfiguração de uma rede elétrica radial pode ser representado utilizando um modelo de programação não linear inteira mista (PNLIM), como é mostrado em (M.11) – (M33).

$$Min = c^{lss} \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{sqr}$$
 (m.11)

Sujeito a:

$$\sum_{i \in \Omega_I} P_{ji} - \sum_{i j \in \Omega_I} \left(P_{ij} + R_{ij} I_{ij}^{sqr} \right) + \sum_{i i \in \Omega_{ch}} P_{ji}^{ch} - \sum_{i j \in ch} P_{ij}^{ch} + P_i^s = P_i^D \qquad \forall i \in \Omega_b$$
 (m.12)

$$\sum_{ij\in\Omega_I} Q_{ji} - \sum_{ij\in\Omega_I} \left(Q_{ij} + X_{ij}I_{ij}^{sqr}\right) + \sum_{ij\in\Omega_{ch}} Q_{ji}^{ch} - \sum_{ij\in ch} Q_{ij}^{ch} + Q_i^s = Q_i^D \qquad \forall i \in \Omega_b$$
 (m.13)

$$V_i^{sqr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{sqr} - V_i^{sqr} = 0$$
 $\forall ij \in \Omega_l$ (m.14)

$$V_{j}^{sqr}I_{ij}^{sqr}=P_{ij}^{2}+Q_{ij}^{2} \hspace{1.5cm} \forall ij\in\Omega_{l} \hspace{1.5cm} (\text{m.15})$$

$$-\left(\bar{V}^2 - \underline{V}^2\right)(1 - w_{ij}) \le V_i^{sqr} - V_i^{sqr} \le \left(\bar{V}^2 - \underline{V}^2\right)(1 - w_{ij}) \qquad \forall ij \in \Omega_{ch} \qquad (m.17)$$

$$-(\bar{V}\bar{I}_{ij}^{ch})w_{ij} \le P_{ij}^{ch} \le (\bar{V}\bar{I}_{ij}^{ch})w_{ij} \qquad \forall ij \in \Omega_{ch}$$
 (m.19)

$$-(\bar{V}\bar{I}_{ij}^{ch})w_{ij} \le Q_{ij}^{ch} \le (\bar{V}\bar{I}_{ij}^{ch})w_{ij} \qquad \forall ij \in \Omega_{ch}$$
 (m.20)

$$|\Omega_l| + \sum_{ij \in \Omega_{Ch}} w_{ij} = |\Omega_b| - 1 \tag{m.21}$$

$$\underline{V}^2 \le V_i^{sqr} \le \overline{V}^2 \ \forall i \in \Omega_b \tag{m.22}$$

$$0 \leq I_{ij}^{sqr} \leq \bar{I}_{ij}^2 \qquad \forall ij \in \Omega_l \tag{m.23}$$

$$w_{ij}$$
 binário $\forall ij \in \Omega_{ch}$ (m.28)

Em que Ω_b^S , Ω_{ch} e Ω_{tr} representam os conjuntos de subestações, chaves e transformadores da rede elétrica. c^{lss} representa o custo das perdas de potência ativa na rede. w_{ij} é uma variável binária que representa o estado da chave ij, se $w_{ij}=1$ a chave ij está fechada, caso contrario a chave ij está aberta, ver figura M3. P_{ij}^{ch} e Q_{ij}^{ch} representam o fluxo de potência ativa e reativa da chave ij, respectivamente. \underline{V} e \overline{V} representam a magnitude de tensão mínima e máxima permitida na rede elétrica, respectivamente. \overline{I}_{ij} representa o máximo fluxo de corrente no circuito. $|\Omega|$ operador que calcula o número de elementos do conjunto Ω .

As restrições (m.12) e (m.13) são o balanço de potência ativa e reativa, respectivamente e são uma extensão das equações (m.9) e (m.10), considerando a presença de chaves na rede elétrica. A restrição (m.14) calcula a queda da magnitude de tensão entre duas barras consecutivas. A restrição (m.15) calcula a magnitude do fluxo de corrente nos circuitos.

Figura M3 - Modelo de uma CI conectado entre os nós ij

A restrição (m.17) define o valor das magnitudes de tensão entre os nós de uma chave; se a chave está energizada ($w_{ij}=1$) as magnitudes de tensão entre os nós são iguais; caso contrario, são diferentes, ver figura M3. As restrições (m.19) e (m.20) representam a máxima potência ativa e reativa permitidos nas chaves da rede elétrica quando a chave está energizada; para chave desenergizada, as duas grandezas são iguais a zero. A restrição (m.21) juntamente com as restrições de balaço de potencia ativa e reativa (m.12) e (m.13) fornecem as condições necessárias e suficientes para garantir uma topologia final radial, ver [MR3]. Os limites da magnitude de tensão são representados na restrição (m.22). A restrição (m.23) representa o máximo fluxo de corrente permitido nos circuitos da rede elétrica. A restrição (m28) define as características binárias da variável w_{ij} .

Note que (m.11)-(m.14), (m.17)-(m.23) e (m.25)-(m.28) são equações lineares, enquanto (m.15) é uma equação não linear devido ao produto de duas variáveis e o quadrado de variáveis. Adisoinalmente, Para obter as magnitudes de tensão nos nós e a magnitude do fluxo de corrente nos circuitos é necessário calcular a raiz quadrada de I_{ij}^{sqr} e V_i^{sqr} , respectivamente.

$$I_{ij} = \sqrt{I_{ij}^{sqr}}$$
 e $V_i = \sqrt{V_i^{sqr}}$

Restrição de Radialidade

A representação de um SDEE é feita através de nós e circuitos. Fazendo uma analogia com a teoria de grafos, um SDEE pode ser considerado como um grafo formado por n arcos e m nós. Da teoria de grafos, uma árvore é um grafo conexo sem ciclos, assim é possível comparar a topologia radial de um SDEE com uma árvore. Como mostrado no (M. S. Bazaraa, 1990), a árvore de um grafo é um sub-grafo conexo com (m-1) arcos.

Assim, pode-se dizer que a topologia de um SDEE com nb nós é radial se satisfaz as duas seguintes condições: Condição 1: a solução deve apresentar (nb-1) circuitos; e Condição 2: a solução deve gerar uma topologia conexa. Note que as restrições de radialidade tem que ser formado pela Condição 1 e Condição 2. Somente a Condição 1 não garante a radialidade do SDEE. O problema de RSD cumpre com as seguintes características: 1) apenas uma única subestação existente no SDEE (nó da subestação); 2) todos os outros nós são nós de carga; 3) a primeira lei de Kirchhoff, deve ser cumprida, e 4) o objetivo é encontrar a melhor topologia radial. A Condição 1 é satisfeita pela seguinte restrição:

$$|\Omega_l| + \sum_{ij \in \Omega_{ch}} w_{ij} = |\Omega_b| - 1$$

Uma solução que satisfaz a restrição de balanço de potência (primeira lei de Kirchhoff) tem de fornecer a demanda de potência em cada nó de carga. De modo que existe um caminho entre a subestação e os nós de carga. Portanto, cada nó está ligado com a subestação, formando um grafo conexo, o que comprova a Condição 2. Assim, quando as restrições de balanço de potencia são combinados com a Condição 1, cada nó de carga está ligado por um único caminho com a subestação, isto é, o SDEE é conexo, sem malhas.

Metodologia utilizada

O problema de PNLIM definido em (m.11) – (m28) é de solução bastante complicada. Adotouse uma resolução em duas fases para essa solução, sendo a primeira fase a resolução de um modelo de programação linear inteiro misto (PLIM) aproximado ao modelo (m.11) – (m.28) cujo objetivo é encontrar a variável binária de decisão w_{ij} , e a segunda fase consiste em resolver um problema de programação não linear PNL (fluxo de potencia ótimo), usando modelo (m.11) – (m.27) considerando a variável de decisão w_{ij} encontradas na primeira fase

um como fixas, com o objetivo de obter o ponto de operação da rede elétrica. Na primeira fase são necessárias algumas simplificações e/ou linearizações para obter um modelo de PLIM o mais próximo possível do modelo original de PNLIM. O uso de um modelo de PLIM garante a convergência para a solução ótima usando ferramentas de otimização clássica existentes. Ambas as fases podem ser resolvidas usando *solvers* comerciais.

A linearização do produto $V_j^{sqr}I_{ij}^{sqr}$ na restrição (m.15) pode ser realizadas usando uma discretização da variável V_j^{sqr} dentro do intervalo $[\underline{V}^2, \overline{V}^2]$, como mostrado em [MR.4]-[MR.6], porem seria necessário o uso de novas variáveis binárias, comprometendo o desempenho computacional da metodologia. Uma saída simples é considerar a magnitude de tensão nominal constante (V^{nom}) em cada produto, e obter as seguintes equivalências lineares:

$$V_i^{sqr} I_{ij}^{sqr} \approx \bar{V}^2 I_{ij}^{sqr}$$

Esta simplificação é valida e com um erro de aproximação baixo, devido ao intervalo restrito da magnitude de tensão $[\underline{V}^2, \overline{V}^2]$ e comprovado experimentalmente depois de realizar varias simulações apresentadas em [M.4]-[M.6].

Os termos quadráticos $P_{ij}^2 + Q_{ij}^2$ e $\left(\sum_{\substack{i \in \Omega_b^s: \\ tf_i = tr}} P_i^s\right)^2 + \left(\sum_{\substack{i \in \Omega_b^s: \\ tf_i = tr}} Q_i^s\right)^2$ nas restrições (m.15) e

(m.24), respectivamente, podem ser linearizados como descrito em [M.4]-[M.6] e definido nas equações (m.30) - (m.35).

$$\begin{split} P_{ij}^{2} + Q_{ij}^{2} &\approx \sum_{r=1}^{R} m_{ij,r}^{l} \Delta_{ij,r}^{Pl} + \sum_{r=1}^{R} m_{ij,r}^{l} \Delta_{ij,r}^{Ql} \qquad \forall ij \in \Omega_{l} \\ P_{ij}^{+} - P_{ij}^{-} &= P_{ij} \qquad \forall ij \in \Omega_{l} \ (a) \\ P_{ij}^{+} + P_{ij}^{-} &= \sum_{r=1}^{R} \Delta_{ij,r}^{Pl} \quad \forall ij \in \Omega_{l} \ (b) \\ Q_{ij}^{+} - Q_{ij}^{-} &= Q_{ij} \qquad \forall ij \in \Omega_{l} \ (c) \\ Q_{ij}^{+} + Q_{ij}^{-} &= \sum_{r=1}^{R} \Delta_{ij,r}^{Ql} \quad \forall ij \in \Omega_{l} \ (d) \\ 0 &\leq \Delta_{ij,r}^{Pl} \leq \bar{\Delta}_{ij}^{l} \quad \forall ij \in \Omega_{l}, r = 1 \dots R \ (e) \\ 0 &\leq \Delta_{ij,r}^{Ql} \leq \bar{\Delta}_{ij}^{l} \quad \forall ij \in \Omega_{l}, r = 1 \dots R \ (f) \\ 0 &\leq P_{ij}^{+} \quad \forall ij \in \Omega_{l} \ (g) \\ 0 &\leq P_{ij}^{-} \quad \forall ij \in \Omega_{l} \ (i) \\ 0 &\leq Q_{ij}^{+} \quad \forall ij \in \Omega_{l} \ (i) \\ 0 &\leq Q_{ij}^{-} \quad \forall ij \in \Omega_{l} \ (j) \end{split}$$

Em que

$$\begin{split} m_{ij,r}^l &= (2r-1)\bar{\Delta}_{ij}^l &\quad \forall ij \in \Omega_l, r = 1 \dots R \\ \\ \bar{\Delta}_{ij}^l &= \frac{V^{nom}\bar{I}_{ij}}{R} &\quad \forall ij \in \Omega_l \end{split}$$

 $m_{ij,r}^l$ representam a inclinação do r-esimo bloco do fluxo de potência ativa e reativa no circuito ij. $\bar{\Delta}_{ij}^l$ representa o limite superior de cada bloco de discretização do fluxo de potência ativo e reativo no circuito ij. $\Delta_{ij,r}^{Pl}$ representam o valor do r-ésimo bloco de $P_{ij,d}$. $\Delta_{ij,r}^{Ql}$ representam o valor do r-ésimo bloco de $Q_{ij,d}$. P_{ij}^+ e P_{ij}^- são variáveis auxiliares não negativas que são utilizadas para modelar $|P_{ij}|$. Q_{ij}^+ e Q_{ij}^- são variáveis auxiliares não negativas que são utilizadas para modelar $|Q_{ij}|$. Note que as equações (m.30) - (m.31) são um conjunto de expressões lineares das equações $P_{ij}^2 + Q_{ij}^2$; e P_{ij}^l são parâmetros constantes. $P_{ij}^l = P_{ij}^l$ e P_{ij}^l são as aproximações lineares de P_{ij}^l e P_{ij}^l respectivamente. A linearização de P_{ij}^l é mostrada na Figura M2.

Finalmente, o modelo de PLIM do problema de reconfiguração de uma rede elétrica radial com atendimento de cargas prioritárias, equivalente ao problema de PNLIM (M.11) – (M29) é mostrado em (m.36).

$$Min (m. 11)$$
Sujeito a: $(m. 12) - (m. 14), (m. 17) - (m. 23),$

$$(m. 25) - (m. 29), (m. 31), (m. 33) e (m. 35)$$

$$(V^{nom})^{2} I_{ij}^{sqr} = \sum_{r=1}^{R} m_{ij,r}^{l} \Delta_{ij,r}^{Pl} + \sum_{r=1}^{R} m_{ij,r}^{l} \Delta_{ij,r}^{Ql} \quad \forall ij \in \Omega_{l} \quad (a)$$

$$(m. 36)$$

Note que as restrições (m.36.a) e (m.31) substituem a restrição (m.15). O número de variáveis contínuas aumentou devido à linearização, enquanto que o número das variáveis de decisão binárias (w_{ij}) não muda, este tipo de problema de otimização pode ser resolvido com a ajuda de solvers comerciais.

Figura M2 - Ilustração da modelagem linear por partes da função P_{ii}^2 .

Fluxograma

As formulações de PLIM (m.36) e PNL (m.11) – (m.27) podem ser implementadas na linguagem de modelagem AMPL [MR7] e sua solução pode ser obtida usando os *solvers* comerciais CPLEX [MR8] e KNITRO [MR9], respectivamente, chamados com suas opções padrões. Para os testes pode ser considerado um número de blocos de linearização R = 20, um valor comprovado experimentalmente depois de realizar diversas simulações [MR4]-[MR6]. Os passos da metodologia proposta são os seguintes:

- 1. Resolver o problema de PLIM (m.36), para obter a solução das variáveis de decisão binárias w_{ij}^* .
- 2. Fixas as variáveis de decisão binárias $w_{ij} = w_{ij}^* \ \forall ij \in \Omega_{ch}$ nos valores obtidos no passo 1.
- 3. Resolver o problema de PNL (m.11) (m.27), para obter o ponto de operação exato da rede elétrica.
- 4. Escrever o relatório de resultados.

Figura M4 – Estado inicial da rede elétrica de 45 nós

Exemplo didático usando uma rede elétrica de 45 nós

Para demonstrar à eficácia do método proposto, a rede elétrica fictícia mostrada na Figura M4 é tomada como exemplo didático. A Figura M4 mostra o estado de operação inicial da rede elétrica de 44 nós. Note que as chaves abertas estão representadas como retângulos brancos e as chaves fechadas estão representadas como retângulos pretos, os circuitos energizados estão representados como linhas continuas e as linhas dezenergizadas com linhas tracejadas. A topologia da rede elétrica de 45 nós inicial é radial. Tensão nominal de linha (V_{nom}) = 13,8 kV, Tensão máxima (\overline{V}) = 1,05 · V_{nom} kV. Tensão mínima (\underline{V}) = 0,93 · V_{nom} kV. c^{lss} = 1 US\$/kWh. A rede elétrica têm um alimentador (ver nós 1) e os dados são mostrados nas Tabelas M1, M2, M3 e M4.

Tabela M1 – Dados de nós da rede elétrica de 44 nós

#	nome	P_i^D	Q_i^D	tf_i
		[kW]	[kVAr]	
1	nó 1	0,00	0,00	1
3	nó 3	30.0	10.0	0
4	nó 4	30.0	10.0	0
5	nó 5	40.0	15.0	0
6	nó 6	20.0	10.0	0
7	nó 7	20.0	5.0	0
8	nó 8	60.0	30.0	0
10	nó 10	60.0	30.0	0
11	nó 11	20.0	5.0	0
13	nó 13	20.0	5.0	0
14	nó 14	15.0	10.0	0
15	nó 15	20.0	10.0	0
17	nó 17	20.0	10.0	0
18	nó 18	40.0	15.0	0
19	nó 19	20.0	5.0	0
20	nó 20	20.0	5.0	0
21	nó 21	20.0	5.0	0
22	nó 22	30.0	10.0	0
24	nó 24	30.0	10.0	0
25	nó 25	30.0	10.0	0
26	nó 26	30.0	10.0	0
27	nó 27	30.0	10.0	0
30	nó 30	30.0	10.0	0
32	nó 32	140.0	60.0	0
33	nó 33	140.0	60.0	0
35	nó 35	20.0	5.0	0
37	nó 37	20.0	5.0	0
38	nó 38	20.0	5.0	0
39	nó 39	40.0	15.0	0
40	nó 40	60.0	30.0	0
42	nó 42	50.0	10.0	0
43	nó 43	70.0	30.0	0
44	nó 44	20.0	5.0	0

Tabela M4 – Dados dos transformadores da rede elétrica de 44 nós

tr	\bar{S}_{tr}
1	9999

Tabela M2 – Dados dos circuitos da rede elétrica de 44 nós

De	Para	$ar{I}_{ij}$	R_{ij}	X_{ij}
		[A]	[Ω]	[Ω]
2	3	0.0922	0.0470	200
3	4	0.4930	0.2511	200
4	5	0.3660	0.1864	200
5	6	0.3811	0.1941	200
6	7	0.8190	0.7070	200
7	8	0.1872	0.6188	200
9	10	0.7114	0.2351	200
10	11	1.0300	0.7400	200
11	13	1.0440	0.7400	200
13	14	0.1966	0.0650	200
14	15	0.3744	0.1238	200
15	16	1.4680	1.1550	200
17	18	0.5416	0.7129	200
18	19	0.5910	0.5260	200
19	20	0.7463	0.5450	200
20	21	1.2890	1.7210	200

21	22	0.7320	0.5740	200
3	23	0.1640	0.1565	200
24	25	1.5042	1.3554	200
25	26	0.4095	0.4784	200
26	27	0.7089	0.9373	200
4	30	0.4512	0.3083	200
31	32	0.8980	0.7091	200
32	33	0.8960	0.7011	200
7	35	0.2030	0.1034	200
36	37	0.2842	0.1447	200
37	38	1.0590	0.9337	200
38	39	0.8042	0.7006	200
39	40	0.5075	0.2585	200
41	42	0.9744	0.9630	200
42	43	0.3105	0.3619	200
43	44	0.3410	0.5302	200
10	28	2.0000	2.0000	200
12	19	2.0000	2.0000	200
18	29	2.0000	2.0000	200
22	45	0.5000	0.5000	200
34	39	0.5000	0.5000	200

Tabela M3 – Dados das chaves da rede elétrica de 44 nós

De	Para	nome	Estado inicial
1	2	Chave 1	Fechada
8	9	Chave 2	Fechada
11	12	Chave 3	Aberta
16	17	Chave 4	Fechada

I	23	24	Chave 5	Fechada
I	26	28	Chave 6	Aberta
I	27	29	Chave 7	Aberta
	30	31	Chave 8	Fechada
I	33	34	Chave 9	Aberta
	35	36	Chave 10	Fechada
I	40	41	Chave 11	Fechada
	44	45	Chave 12	Aberta

O estado de operação inicial da rede elétrica de 44 nós apresenta perdas totais de potência ativa igual a 81.51 kW, magnitude de tensão mínima de 0.8532 p.u. (no nó 45), magnitudes dos fluxos das correntes nos circuitos dentro das suas capacidades máximas e a operação das subestações esta resumida na Tabela M5. Note que a magnitude de tensão mínima do sistema está fora dos limites impostos pela ANEEL.

Tabela M5 – Relatório da operação inicial das subestações da rede elétrica de 44 nós

#	Nome	P_i^s	Q_i^s	S_i^s
		[kW]	[kVAr]	[kVA]
1	nó 1	1296.52	499.66	1389.47

A Figura M5 mostra o estado de operação otimizado da rede elétrica de 44 nós apresentado umas perdas totais de potência ativa igual a 44.39 kW, magnitude de tensão mínima de 0.9532 p.u. (no nó 17), magnitudes dos fluxos das correntes nos circuitos dentro das suas capacidades máximas e a operação das subestações está resumida na Tabela M6. Note que a magnitude de tensão mínima do sistema cumpre com os limites impostos pela ANEEL.

Figura M5 – Estado otimizado final da rede elétrica de 45 nós

Tabela M6 – Relatório da operação otimizado das subestações da rede elétrica de 44 nós

#	Nome	P_i^s [kW]	Q_i^s [kVAr]	S_i^s [kVA]
1	nó 1	1259.40	497.09	1353.95

Na tabela M7 é mostrado o estado de operação otimizado das chaves da rede elétrica de 44 nós.

Tabela M7 – Dados otimizados das chaves da rede elétrica de 44 nós

De	Para	nome	Estado inicial
1	2	Chave 1	Fechada
8	9	Chave 2	Fechada
11	12	Chave 3	Aberta
16	17	Chave 4	Aberta
23	24	Chave 5	Fechada
26	28	Chave 6	Aberta
27	29	Chave 7	Aberta
30	31	Chave 8	Fechada
33	34	Chave 9	Fechada
35	36	Chave 10	Aberta
40	41	Chave 11	Fechada
44	45	Chave 12	Fechada

Referências

- [MR1] D. Shirmohammadi, H. W. Hong, A. Semlyen and G. X. Luo, "A compensation based power flow method for weakly meshed distribution and transmission networks". *IEEE Transactions on Power Systems*, vol. 3, no. 2, pp. 753-762, 1988.
- [MR2] R. Cespedes, "New method for the analysis of distribution networks". *IEEE Transactions Power Delivery*, vol. 5, no. 1, pp. 391-396, Jan. 1990.
- [MR3] M. Lavorato, J. F. Franco, M. J. Rider and R. Romero, "Imposing Radiality Constraints in Distribution System Optimization Problems", IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 172-180, Feb. 2012.
- [MR4] R. P. Alves, "Localização Ótima de Reguladores de Tensão em Sistemas de Distribuição de Energia Elétrica Radiais Usando uma Formulação Linear Inteira Mista". Fevereiro 2012. 95 f. Dissertação (Mestrado em Engenharia Elétrica) – Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, 2012.
- [MR5] E. T. Ribeiro, "Modelos de Programação Inteira Mista para a Alocação Ótima de Bancos de Capacitores em Sistemas de Distribuição de Energia Elétrica Radiais". Abril 2013. 101 f. Dissertação (Mestrado em Engenharia Elétrica) – Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, 2013.
- [MR6] R. R. Gonçalves, "Modelos de Programação Linear Inteiro Misto para Problemas de Otimização em Sistemas de Distribuição de Energia Elétrica". Junho 2013. 218 f. Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, 2013.

- [MR7] R. Fourer, D. M. E. Gay and B. W. Kernighan, *AMPL: A modeling language for mathematical programming*. CA: Brooks/Cole-Thomson Learning, Pacific Grove, 2nd Ed., 2003.
- [MR8] "CPLEX Optimization subroutine library guide and reference, version 11.0," CPLEX Division, ILOG Inc., Incline Village, NV, USA, 2008.
- [MR9] R. H. Byrd, J. E. Nocedal and R. A. Waltz, "KNITRO: An integrated package for nonlinear optimization". *Large-Scale Nonlinear Optimization*. New York, Springer Verlag, p. 35-59, 2006.
- [MR10] Rao, S. S. *Engineering optimization: theory and practice*. 4. ed. New York: John Wiley & Sons, 2009. 813 p.
- [MR11] LOPES, H. S.; RODRIGUES, L. C. d. A.; STEINER, M. T. A. (Ed.). Meta-heurísticas em pesquisa operacional. Curitiba, PR: Ominipax, 2013. 472 p. Disponível em: http://www.omnipax.com.br.
- [MR12] ROMERO, R.; LAVORATO, M. Metaheurísticas em sistemas elétricos de potência: Introdução ao estudo e aplicações. In: IV SIMPÓSIO BRASILEIRO DE SISTEMAS ELÉTRICOS SBSE. Minicurso. Goiânia, GO, 2012. p. 1–52.
- [MR13] GLOVER, F. Future paths for integer programming and links to artificial intelligence. Computers an Operations Research. v. 13, n. 5, pp. 533-549, 1986.
- [MR14] GLOVER, F. W.; LAGUNA, M. Tabu Search. Norwell, MA: Kluwer Academic Publishers, 1997.