

How to Remember and Revisit Many Genetic Design Variants Automatically

Nicholas Roehner, Douglas Densmore CIDAR Lab of Boston University

COMBINE 2016 | Sept. 19 - 23 | Newcastle Upon Tyne

Splice: Synthetic Biology Board Game

How to Encode Many Possible Designs for a 4-Gene Cluster?

How to Track Which Designs are Ruled Out as Data is Gathered?

GenBank is Not the Answer

684,544 Files Memory >6 GB

Knox Provides a Solution

Genetic Design Space Memory <200 KB

684,544 GenBank Files Memory >6 GB

What is a Genetic Design Space?

A genetic design space is a graph that encodes design rules for composing sets of genetic parts.

Each Edge is Labeled with a Set of Parts

Design Spaces Can Be Combined via Graph Operations in Knox

Design Spaces Can Be Combined via Graph Operations in Knox

Design Spaces Can Be Combined via Graph Operations in Knox

Design Space for Majority Circuit

Every Design Space in Knox has a Version History

Design Spaces

Version Histories

Every Design Space in Knox has a Version History

Design Spaces

Version Histories

Every Design Space in Knox has a Version History

Design Spaces

Version Histories

Changes to a Design Space Can Be Saved to its Version History

Changes to a Design Space Can Be Saved to its Version History

Combining Design Spaces in Knox Also Merges Version Histories

Version History for Majority Circuit

Branching a Design Space in Knox Creates Two Parallel Versions

Further Refinements Can Be Saved to Separate Branches

Further Refinements Can Be Saved to Separate Branches

Branches Can Be Recombined Using Any Operator in Knox

Previous Commits Can Be Revisited with the Revert Operator

c8 is a copy of c5m11

Knox Provides a Web-Accessible Platform to Store and Track Changes to Design Spaces

Finch vs. Eugene

Finch

- Variable design length
- More machine-comparable,
 -mergable

- Fixed design length
- More human-readable, -writable

Eugene for Two Genes

Device toggle(Promoter, CDS, Promoter, CDS);

MIT-Broad Foundry

Constrained Eugene for Two Genes

Device toggle(Promoter, CDS, Promoter, CDS);

```
Rule toggleRules (ON toggle:
ALL_FORWARD AND
tetR BEFORE pTet AND
lacI BEFORE pLac
);
```



```
Device toggle(Promoter, CDS, Promoter, CDS);

Rule toggleRules (ON toggle:
    ALL_FORWARD AND
    tetR BEFORE pTet AND
    lacI BEFORE pLac
).
```



```
Device toggle(Promoter, CDS, Promoter, CDS);

Rule toggleRules(ON toggle:
    ALL_FORWARD AND
    tetR BEFORE pTet AND
    lacI BEFORE pLac
);
```



```
Device toggle(Promoter, CDS, Promoter, CDS);

Rule toggleRules(ON toggle:
    ALL_FORWARD AND
    tetR BEFORE pTet AND
    lacI BEFORE pLac
);
```


Device toggle(Promoter, CDS, Promoter, CDS);

Rule toggleRules(ON toggle:

ALL_FORWARD AND

tetR BEFORE pTet AND
lacI BEFORE pLac
);

Device toggle(Promoter, CDS, Promoter, CDS);

Rule toggleRules(ON toggle:

ALL_FORWARD AND

tetR BEFORE pTet AND
lacI BEFORE pLac
);

Device toggle(Promoter, CDS, Promoter, CDS);

Finch Code for Two Gene Design Space

```
pTet THEN NOT tetR THEN {
        { pLac THEN NOT lacI, tetR } OR
        { NOT pLac THEN NOT tetR }
} OR {
    NOT pTet,pLac THEN cds THEN {
        { pTet THEN NOT tetR } OR
        {NOT pTet,pLac THEN cds } OR
        { pLac THEN NOT lacl }
} OR {
    pLac THEN NOT lacI THEN {
        { pTet THEN NOT lacl, tetR } OR
        { NOT pTet THEN NOT lac! }
```


Scaling for Eugene Compilation

2^R where R is number of independent precedence rules

ABC AB BC AB

Acknowledgments

BOSTON

Densmore

Prof. Douglas Prof. Swapnil Bhatia

And the CIDAR Lab

D. Benjamin Gordon

Prof. Christopher Voigt

And the Broad Institute

This research was funded by the DARPA Living foundries award HR0011-15-C-0084.

Thank You - Knox GUI in Action

