고차미분 (Higher Derivatives)

Definition

(f')'

$$(f')' = f''$$

$$(f')' = f''$$
 the secon derivative of f

$$(f')' = f''$$
 the secon derivative of f

$$(f')' = f''$$
 the secon derivative of f $\frac{d}{dx} \left(\frac{dy}{dx} \right)$

▶ Start ▶ End

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

▶ Start ▶ End

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)

$$(f')' = f''$$
 the secon derivative of f $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$ (Leibniz notaion) $(f'')'$

$$(f')' = f''$$
 the secon derivative of f $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$ (Leibniz notaion) $(f'')' = f'''$

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)
$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)
$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)
$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$\frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$$

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)

$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$\frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)

$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$\frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$
 (Leibniz notaion)

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)
$$(f'')' = f''' \text{ the derivative of secon derivative of } f$$

$$\frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3}$$
 (Leibniz notaion)
$$f^{(n)}$$

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)

$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$\frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$
 (Leibniz notaion)

the nth derivative of *f*

$$(f')' = f''$$
 the secon derivative of f

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$
 (Leibniz notaion)
$$(f'')' = f'''$$
 the derivative of secon derivative of f

$$\frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3}$$
 (Leibniz notaion)
$$f^{(n)} \qquad \text{the nth derivative of } f$$

$$y^{(n)}$$

$$(f')' = f''$$
 the secon derivative of f
 $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$ (Leibniz notaion)

 $(f'')' = f'''$ the derivative of secon derivative of f
 $\frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3}$ (Leibniz notaion)

 $f^{(n)}$ the nth derivative of f
 $y^{(n)} = f^{(n)}(x)$

$$(f')' = f''$$
 the secon derivative of f $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ (Leibniz notaion)
$$(f'')' = f''' \text{ the derivative of secon derivative of } f$$
 $\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3}$ (Leibniz notaion)
$$f^{(n)} \qquad \text{the nth derivative of } f$$
 $y^{(n)} = f^{(n)}(x) = \frac{d^ny}{dx^n}$

▶ Start ▶ End

$$(f')' = f'' \text{ the secon derivative of } f$$

$$\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} \text{ (Leibniz notation)}$$

$$(f'')' = f''' \text{ the derivative of secon derivative of } f$$

$$\frac{d}{dx} \left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3} \text{ (Leibniz notation)}$$

$$f^{(n)} \qquad \text{the nth derivative of } f$$

$$y^{(n)} = f^{(n)}(x) = \frac{d^ny}{dx^n} \text{ (Leibniz notation)}$$

▶ Start ▶ End

$$(f')' = f'' \text{ the secon derivative of } f$$

$$\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} \text{ (Leibniz notation)}$$

$$(f'')' = f''' \text{ the derivative of secon derivative of } f$$

$$\frac{d}{dx} \left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3} \text{ (Leibniz notation)}$$

$$f^{(n)} \qquad \text{the nth derivative of } f$$

$$y^{(n)} = f^{(n)}(x) = \frac{d^ny}{dx^n} \text{ (Leibniz notation)}$$

Github:

https://min7014.github.io/math20240203001.html

Click or paste URL into the URL search bar, and you can see a picture moving.