Stats Assignment 1

Group 48 - ABRMAR043

STA2005S Regression Assignment

Setup, Data loading and Objective:

Part One: Analysis

Section 1: Introduction

Problem & Unknown:

Analysis Summary:

Nature of analysis:

Section 2: Data Exploration

Density Plots:

```
# Plot a histogram of consumption_kwh (freq = FALSE, if using base R) with an overlaid normal
mean_kwh <- mean(consumption_kwh, na.rm = TRUE)
sd_kwh <- sd(consumption_kwh, na.rm = TRUE)
hist(consumption_kwh,
    freq = FALSE,
    main = "Histogram of Electricity Consumption",</pre>
```

```
xlab = "Consumption (kwh)",
ylab = "Density",
col = col_palette[7],
border = "white"
)

curve(dnorm(x, mean = mean_kwh, sd = sd_kwh),
    col = col_palette[11],
    lwd = 2.5,
    add = TRUE
)
```

Histogram of Electricity Consumption


```
# Plot the density of consumption_kwh, stratified by solar_installed, with overlaid normal desolar_yes <- data %>% filter(solar_installed == "Yes")
solar_no <- data %>% filter(solar_installed == "No")

mean_solar <- mean(solar_yes$consumption_kwh, na.rm = TRUE)
mean_no_solar <- mean(solar_no$consumption_kwh, na.rm = TRUE)
sd_solar <- sd(solar_yes$consumption_kwh, na.rm = TRUE)
sd_no_solar <- sd(solar_no$consumption_kwh, na.rm = TRUE)</pre>
```

```
ggplot(data, aes(x = consumption_kwh, fill = solar_installed)) +
 geom_density(color = "white", linewidth = 0, alpha = 0.4) +
 stat_function(fun = dnorm,
                args = list(mean = mean_solar, sd = sd_solar),
                aes(linetype = "Normal (Solar)"),
                color = col_palette[4], linewidth = 1.15) +
 stat_function(fun = dnorm,
                args = list(mean = mean_no_solar, sd = sd_no_solar),
                aes(linetype = "Normal (No solar)"),
                color = col_palette[12], linewidth = 1.15) +
 scale_fill_manual(values= c("Yes"=col_palette[1], "No"=col_palette[11])) +
 scale linetype manual(values = c(2, 2), name = "Normal Distribution") +
 labs(title = "Density Plot of Electricity Consumption Density by Solar Installation",
      x = "Consumption (kWh)",
      y = "Density",
      fill = "Solar Installed"
      ) +
 theme_minimal()
```

Density Plot of Electricity Consumption Density by Solar Instal

Pairwise Plots:

```
# Create pairwise scatterplots for all continuous variables, including consumption_kwh
cts_variables <- data %>%
  dplyr::select(consumption_kwh, outside_temperature, humidity,
                wind_speed, household_size, appliance_index)
day_numeric <- as.numeric(factor(data$day_of_week,</pre>
levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"), or
efficiency_numeric <- as.numeric(factor(data$energy_efficiency, levels = c("Poor", "Average"</pre>
solar_numeric <- as.numeric(factor(data$solar_installed, levels = c("Yes", "No"), ordered = '
# Graph
pairs(x = cts_variables, pch = 19,
      col = col_palette[efficiency_numeric + 1],
      main = " Pairwise Scatterplot for Continous Variables",
      gap = 0.5,
      las = 1,
      cex = 3,
      cex.labels = 3,
      cex.axis = 3,
      cex.main = 3
```

Categorical Variable Plots:

Boxplot of Energy Consumption by Efficiency

Energy Consumption (kWh)

Boxplot of Energy Consumption by Solar Use

Energy Consumption (kWh)

Boxplot of Energy Consumption by Weekday

Energy Consumption (kWh)

Boxplot of Energy Consumption by Holiday Status

Energy Consumption (kWh)

Categorical Relationships:

```
\begin{table}[!h]
\begin{center}
\caption{Some important Table - put the caption at the top of a table} \vspace{.5cm}
\begin{tabular}{ |c|c| }
\hline
x & y \\
\hline
\hline
100 & 200 \\
150 & 259\\
120 & 249\\
111 & 212\\
139 & 221\\
342 & 435\\
\hline
\end{tabular}
\label{tab:somelabel} %this is how one adds a label for a table
\end{center}
\end{table}
```

Comments:
Section 3: Simple Linear Regression
Model Fitting:
Simultaneous Hypothesis Test:
Section 4: Multiple Linear Regression
Fit Model:
Hypothesis Testing:
Interpretation:
Section 5: Conclusion
Summary:
Recomendations:
Future Research:

Part Two: Simulation of Power

Scenario A: Baseline Normal Errors

Scenario B: Non-linear Truth/Exponential Relationship