ST552, Homework 4

Due Wednesday, Oct 9, 2013 (extended to Oct 16)

- 1. Fill out the missing steps in our derivation of the best (minimum variance) affine unbiased estimator (MVAUE) for the Aiken model: E(y) = Xb, $Cov(y) = \sigma^2 V$, assuming V is positive definite.
 - (a) Show that if V is positive definite, then V^{-1} is positive definite.
 - (b) If V is positive definite, show that $C(X^TV^{-1}X) = C(X)$.
 - (c) Prove that the minimum trace affine unbiased estimator (MTAUE) is unique by showing that

$$\boldsymbol{A} = \boldsymbol{\Lambda} (\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{V}^{-1}$$

is invariant to the choice of the generalized inverse $(X^TV^{-1}X)^-$. (Hint: you may use the fact there exists a positive definite matrix $V^{1/2}$ such that $V = V^{1/2}V^{1/2}$.)

- 2. Fill out the missing steps in our derivation of the best (minimum variance) affine unbiased estimator (MVAUE) for the Aiken model with linear constraints $\mathbf{R}\mathbf{b} = \mathbf{r}$. We assume $\mathbf{V} \succ \mathbf{0}_{n \times n}$ and let $\mathbf{G} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} + \mathbf{R}^T \mathbf{R}$.
 - (a) Show that G is positive semidefinite and $C(G) \supset C(X^T) \cup C(R^T)$.
 - (b) Show that $\mathcal{C}(RG^-R^T) \supset \mathcal{C}(RG^-X^T)$ and thus $RG^-R^T(RG^-R^T)^-RG^-\Lambda = RG^-\Lambda$.
 - (c) Check that the variance of the MTAUE is

$$\operatorname{Cov}(\widehat{\boldsymbol{\Lambda}\boldsymbol{b}}) = \sigma^2 \boldsymbol{\Lambda} \boldsymbol{G}^- \boldsymbol{\Lambda}^T - \sigma^2 \boldsymbol{\Lambda} \boldsymbol{G}^- \boldsymbol{R}^T (\boldsymbol{R} \boldsymbol{G}^- \boldsymbol{R}^T)^- \boldsymbol{R} \boldsymbol{G}^- \boldsymbol{\Lambda}^T.$$

- (d) Show that the MTAUE is also the MVAUE.
- 3. Let A and B be two matrices of same number of rows. Show that the following statements are equivalent. (Hint: I followed the route $(b) \to (a) \to (h), (i) \to (d), (f) \to (c), (e) \to (g) \to (b).$)
 - (a) $C(A) \cap C(B) = \{0\}$
 - (b) $rank(\mathbf{A}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T) = rank(\mathbf{A}) + rank(\mathbf{B})$
 - (c) $\mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \mathbf{B} \mathbf{B}^T)^{-} \mathbf{A}$ is idempotent
 - (d) $\mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \mathbf{B} \mathbf{B}^T)^- \mathbf{A} = \mathbf{A}^- \mathbf{A}$
 - (e) $\boldsymbol{B}^T(\boldsymbol{A}\boldsymbol{A}^T+\boldsymbol{B}\boldsymbol{B}^T)^-\boldsymbol{B}$ is idempotent
 - (f) $\boldsymbol{B}^T (\boldsymbol{A} \boldsymbol{A}^T + \boldsymbol{B} \boldsymbol{B}^T)^- \boldsymbol{B} = \boldsymbol{B}^- \boldsymbol{B}$
 - (g) $\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{A}^T + \boldsymbol{B}\boldsymbol{B}^T)^-\boldsymbol{B} = \boldsymbol{0}$
 - (h) $(\boldsymbol{A}\boldsymbol{A}^T + \boldsymbol{B}\boldsymbol{B}^T)^-$ is a generalized inverse of $\boldsymbol{A}\boldsymbol{A}^T$
 - (i) $(\mathbf{A}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T)^-$ is a generalized inverse of $\mathbf{B}\mathbf{B}^T$

4. In class we showed that the MVAUE for Aitken model (non-singular V) with linear constraints Rb = r is

$$\widehat{\boldsymbol{\Lambda}\boldsymbol{b}} = \boldsymbol{\Lambda}\boldsymbol{G}^{-}\boldsymbol{X}^{T}\boldsymbol{V}^{-1}\boldsymbol{y} + \boldsymbol{\Lambda}\boldsymbol{G}^{-}\boldsymbol{R}^{T}(\boldsymbol{R}\boldsymbol{G}^{-}\boldsymbol{R}^{T})^{-}(\boldsymbol{r} - \boldsymbol{R}\boldsymbol{G}^{-}\boldsymbol{X}^{T}\boldsymbol{V}^{-1}\boldsymbol{y})$$

where $G = X^T V^{-1} X + R^T R$, and has variance

$$Cov(\widehat{\Lambda b}) = \sigma^2 \Lambda G^- \Lambda^T - \sigma^2 \Lambda G^- R^T (RG^- R^T)^- RG^- \Lambda^T.$$

Show that in the special case $C(X^T) \cap C(R^T) = \{0\}$, the MVAUE simplifies to

$$\widehat{\boldsymbol{\Lambda}\boldsymbol{b}} = \boldsymbol{\Lambda}\boldsymbol{G}^{-}(\boldsymbol{X}^{T}\boldsymbol{V}^{-1}\boldsymbol{y} + \boldsymbol{R}^{T}\boldsymbol{r}),$$

with variance matrix

$$Cov(\widehat{\Lambda b}) = \sigma^2 \Lambda G^- \Lambda^T - \sigma^2 \Lambda G^- R^T R G^- \Lambda^T.$$

(Hint: Use Q3 with $\mathbf{A} = \mathbf{X}^T \mathbf{V}^{-1/2}$ and $\mathbf{B} = \mathbf{R}^T$.)

- 5. (Generalized inverse of bordered Gramian matrix) Let $A \in \mathbb{R}^{n \times n}$ be a positive semidefinite matrix and $B \in \mathbb{R}^{n \times m}$. Let $N = A + BB^T$ and $C = B^T N^- B$. Show the following facts.
 - (a) $C(A) \subset C(N)$, $C(B) \subset C(N)$, C(N) = C((A, B))
 - (b) $NN^{-}A = A, NN^{-}B = B$
 - (c) $C(\boldsymbol{B}^T) = C(\boldsymbol{C})$, rank $(\boldsymbol{B}) = \text{rank}(\boldsymbol{C})$
 - (d) A generalized inverse of the bordered Gramian matrix

$$oldsymbol{Z} = egin{pmatrix} oldsymbol{A} & oldsymbol{B} \ oldsymbol{B}^T & oldsymbol{0} \end{pmatrix}$$

is

$$Z^{-} = egin{pmatrix} N^{-} & N^{-}BC^{-}B^{T}N^{-} & N^{-}BC^{-} \ C^{-}B^{T}N^{-} & -C^{-}+CC^{-} \end{pmatrix},$$

where $N = A + BB^T$ and $C = B^T N^- B$, and

$$m{Z}m{Z}^- = egin{pmatrix} m{N}m{N}^- & m{0} \ m{0} & m{C}m{C}^- \end{pmatrix}.$$

(e) In the special case, $\mathcal{C}(B) \subset \mathcal{C}(A)$, the generalized inverse in (d) takes a simpler form

$$\boldsymbol{Z}^{-} = \begin{pmatrix} \boldsymbol{A}^{-} - \boldsymbol{A}^{-} \boldsymbol{B} \boldsymbol{\Lambda}^{-} \boldsymbol{B}^{T} \boldsymbol{A}^{-} & \boldsymbol{A}^{-} \boldsymbol{B} \boldsymbol{\Lambda}^{-} \\ \boldsymbol{\Lambda}^{-} \boldsymbol{B}^{T} \boldsymbol{A}^{-} & -\boldsymbol{\Lambda}^{-} \end{pmatrix},$$

where $\mathbf{\Lambda} = \mathbf{B}^T \mathbf{A}^- \mathbf{B}$, and

$$oldsymbol{Z}oldsymbol{Z}^- = egin{pmatrix} AA^- & 0 \ 0 & BB^- \end{pmatrix}.$$

(Hint: it's easier to verify directly instead of deriving from (d).)