Zadanie 21. (1 pkt)

W układzie współrzędnych dane są punkty A = (a, 6) oraz B = (7, b). Środkiem odcinka AB jest punkt M = (3, 4). Wynika stąd, że

A.
$$a = 5 i b = 5$$

B.
$$a = -1$$
 i $b = 2$

C.
$$a = 4 \text{ i } b = 10$$

B.
$$a = -1$$
 i $b = 2$ **C.** $a = 4$ i $b = 10$ **D.** $a = -4$ i $b = -2$

Zadanie 22. (1 pkt)

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy

A.
$$0 \le p < 0, 2$$

B.
$$0.2 \le p \le 0.35$$
 C. $0.35 **D.** $0.5$$

C.
$$0,35$$

D.
$$0.5$$

Zadanie 23. (1 pkt)

Kat rozwarcia stożka ma miarę 120°, a tworząca tego stożka ma długość 4. Objętość tego stożka jest równa

A.
$$36\pi$$

B.
$$18\pi$$

C.
$$24\pi$$

D.
$$8\pi$$

Zadanie 24. (1 pkt)

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).

Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze

Zadanie 25. (1 pkt)

Średnia arytmetyczna sześciu liczb naturalnych: 31, 16, 25, 29, 27, x, jest równa $\frac{x}{2}$. Mediana tych liczb jest równa