深層学習を用いた音楽感情認識における データ構造の最適化

[xx - x - xx]

◎松波旭(福井大学工学部機械・システム工学科)黒岩丈介 小高知宏(福井大学大学院工学研究科)諏訪いずみ(仁愛女子短期大学)白井治彦(福井大学工学部)

はじめに

- ユーザー行動履歴による推薦
- ・感情による推薦
- これまでの研究では、精度不十分
- ::多様な特徴量入力により精度向上
 - 各々の特徴量は小サイズのほうが、学習時間が短い

研究目的

スペクトログラムのサイズ削減について考える

代表的な音楽ストリーミング サービスとその提供曲数

5000 万

9000 万 1億

データセットの詳細

特徴量作成

特徴量:スペクトログラム

周波数と音圧の時間変化 を表現

オーバーラップ率	50%
窓サイズ	512

STFT(短時間フーリエ変換) 後の二次元配列

モデルについて (Efficient Net V2)

最適化関数	SGD	バッチサイズ	32
学習率	0.0005	epoch数	200

Table 4. EfficientNetV2-S architecture – MBConv and Fused-MBConv blocks are described in Figure 2.

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	272	15
7	Conv1x1 & Pooling & FC	-	1792	1

- 画像認識タスクで 高精度なモデル
- Efficient Net より、 小パラメータ量 小トレーニング時間

引用元: EfficientNetV2: Smaller Models and Faster Training Mingxing Tan Quoc V. Le

感情推定精度とデータ量比較実験の手法

サイズの違う4つの データセットに対し、

Python, Kerasを使用

分類結果の評価指標

Accuracyの算出方法

教師 予測	Q1	Q2	Q3	Q4
Q1	a_{11}	a ₁₂	a ₁₃	a_{14}
Q2	a_{21}	a_{22}	a_{23}	a_{24}
Q3	a_{31}	a ₃₂	a_{33}	a ₃₄
Q4	a_{41}	a ₄₂	a_{43}	a_{44}

各セル (a_{ij})には、 データ数を表す自然数

Accuracy = $a_{11} + a_{22} + a_{33} + a_{44}$

全データ数

結果

threshold	size [KiB (%)]	time [min (%)]	accuracy
0	42489 (100%)	126.9 (100%)	0.66
0.1	41134 (96%)	116.0 (91%)	0.65
0.15	36351 (85%)	100.6 (79%)	0.64
0.2	31428 (73%)	100.0 (79%)	0.57

考察

- データ量を削減すると効率的に学習できる。
- ・データ削減による効率化は閾値0.15が限界

モデル構造を変更するのが良いのではないか。

おわりに

まとめ

- ・データ削減を行って学習した際の効率を調べた。
- ・閾値0.2以外、データ削減によって効率化できた。

今後

- データを複数入力できるようなモデルの実現
- ・モデルの構造の変更