July 3rd Meeting

Jayden Rivera - Olu Rouse July 3, 2025

Data

Treatment cities:

- Asheville city, North Carolina
- Baton Rouge city, Louisiana
- Flint city, Michigan
- Hartford city, Connecticut
- Kansas City city, Missouri
- Rapid City city, South Dakota
- Salt Lake City city, Utah
- Waco city, Texas

We have 205 control cities. 1617 Observations.

Parallel Trends

Figure 1: Mean Violent Crime Rate per 100k - Treatment vs Control

It is clear that the treated cities have a much higher violent crime rate in general. Further from 2015-2019 we see a divergence in crime rate. Wald test confirms that years

Effect on violent_crime

400 Estimate and 95% Conf. Int. 200 0 -200 -400

Figure 2: Event Study Plot

-4 year - 2022 -2

0

Wald test p-value: 0.63, fail to reject the null hypothesis that trends are parallel. More robustness checks needed.

Baseline Difference-in-Difference

-8

-6

Baseline Difference
$$\underbrace{\text{violent_crime}_{it}}_{y_{it}} = \beta_0 + \beta_1 \left(\text{treated}_i \times \text{post}_t \right) + \underbrace{\alpha_i}_{\text{city fixed effect}} + \underbrace{\lambda_t}_{\text{year fixed effect}} + \varepsilon_{it},$$

i indexes **cities**

t indexes **years**

 $\mathbf{treated}_i = 1 \text{ if city } i \text{ ever received the 2022 grant}$

 $\mathbf{post}_t \, = 1 \text{ for } 2022 \text{ and later}$

 α_i , λ_t are the city and time fixed effects

 β_1 is the causal DiD estimate

Table 1: Difference-in-Differences Estimation Results (Without Controls)

Variable	Estimate	Std. Error	t value	$\Pr(> t)$
treated:postTRUE	-78.7228	106.236	-0.74102	0.4595

Notes: OLS estimation with violent crime as dependent variable.

RMSE: 280.7, Adj. R²: 0.977751, Within R²: 4.911e-4. Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Difference-in-Difference with Controls

$$\begin{split} y_{it} &= \beta_0 + \beta_1 \big(\text{treated}_i \times \text{post}_t \big) \\ &+ \theta_1 \operatorname{pct_white}_{it} + \theta_2 \operatorname{pct_bach_degree}_{it} \\ &+ \theta_3 \operatorname{unemployment_rate}_{it} + \theta_4 \operatorname{poverty_rate}_{it} \\ &+ \alpha_i + \lambda_t + \varepsilon_{it}. \end{split}$$

Table 2: Difference-in-Differences Estimation Results (With Controls)

Variable	Estimate	Std. Error	t value	$\Pr(> t)$
pct_white	87.4965	207.753	0.421156	0.6741
pct_bach_degree	823.7577	508.242	1.620797	0.1066
$unemployment_rate$	2586.9382	838.519	3.085126	0.0023**
poverty_rate	-518.6812	353.140	-1.468769	0.1434
${\bf treated:} {\bf postTRUE}$	-84.0615	104.651	-0.803258	0.4227

Notes: OLS estimation with violent crime as dependent variable.

RMSE: 292.2, Adj. R^2 : 0.977264, Within R^2 : 0.009056. Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1