

COMPUTER ANALYSIS OF THE RELATIVE FLOW IN THE BLUNT-TRAILING-EDGE SUPERSONIC COMPRESSOR BLADING

J. W. Salvage ARO, Inc.

May 1969

This document has been approved for public release and sale; its distribution is unlimited.

ENGINEERING SUPPORT FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

NOTICES

When U. S. Covernment drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

COMPUTER ANALYSIS OF THE RELATIVE FLOW IN THE BLUNT-TRAILING-EDGE SUPERSONIC COMPRESSOR BLADING

J. W. Salvage ARO, Inc.

This document has been approved for public release and sale; its distribution is unlimited.

FOR EWORD

The work reported herein was sponsored by the Aerospace Research Laboratories, Office of Aerospace Research, under Program Element 61102F, Project 7065.

The results of research presented were obtained by ARO, Inc., (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center under Contract F40600-69-C-0001. The research was conducted from April 1967 to December 1968 under ARO Project TW5901. The manuscript was submitted for publication on January 20, 1969.

The author, J. W. Salvage, is a research assistant at the University of Tennessee Space Institute assigned to ARO, Inc., under ARO subcontract to UTSI 69-29-TS/OMD.

The author is indebted to Mr. F. Worthy for his efforts in programming the major portion of the computations and to Mr. M. M. Solomon who successfully completed the programming. Grateful appreciation is also due Mr. C. T. Carman for his confidence in the endeavor. Thanks are due Drs. A. J. Wennerstrom and B. H. Goethert for their advice and Mr. J. (M.) Myers for his assistance.

The program described in this report was written to aid in analyzing the performance of the blunt-trailing-edge supersonic compressor and as partial fulfillment of the requirements for a Masters Degree at UTSI.

This technical report has been reviewed and is approved.

Hans K. Doetsch Research Division Directorate of Plans and Technology Edward R. Feicht Colonel, USAF Director of Plans and Technology

ABSTRACT

The computer program presented in this report has been designed specifically for the analysis of the blunt-trailing-edge supersonic compressor. Beginning with flow property measurements obtained in a non-rotating coordinate system, streamtube boundaries are determined at each measuring plane. Then mass-averaged values of the flow properties in each streamtube are translated to a coordinate system rotating with the compressor rotor, and a particular one-dimensional flow model is imposed on each streamtube to describe the flow process through the rotor. The flow model includes analysis of shock loss and sudden expansion loss leading to an estimate of the additional loss occurring within the flow field of the rotor. Various other calculations are presented which are aimed at the analysis of data for accuracy and consistency.

CONTENTS

	Page
AB	STRACT
	MENCLATURE v
_	RODUCTION
	HEME 1
-	SCRIPTION OF INPUT DATA
	SCRIPTION OF THE OUTPUT DATA
RE.	FERENCES
	APPENDIXES
I. ILL	USTRATIONS
Figure	
1. I	Mean Radius Profile - Blunt-Trailing-Edge
	Blade No. 1
2.	Test Cases for Streamtube Program
II. INP	UT DATA
III. OU	PPUT DATA
	NOMENÇLATURE
A	Area
A_i	Coefficients of a curve describing inlet rotor blade angle as a function of radius (i = 1,,6)
a, b, c, d	Coefficients of a curve describing enthalpy as a function of temperature
В	Blockage factor
$\mathrm{B_{i}}$	Coefficients of a curve describing suction surface expansion as a function of radius ($i = 1,, 5$)
C ₁	Passage shock loss adjustment coefficient

AEDC-TR-69-42

C_2	Passage shock static pressure rise adjustment coefficient
сp	Specific heat at constant pressure
c_{V}	Specific heat at constant volume
ō	Isentropic coefficient, (₹ -1)/₹
D	Diffusion factor
$\mathbf{D_i}$	Coefficients of a curve describing the exit blade angle as a function of radius (i = 1,,6)
d'()	Indicates change along a streamline
$\mathbf{E_{i}}$	Coefficients of a curve describing the blade-trailing-edge thickness as a function of radius (i = 1,,5)
$\mathbf{F_{i}}$	Coefficients of a curve describing the blade solidity as a function of radius (i = 1,,5)
gc	Conversion factor making Newton's Second Law consistent in units (32.1740 lbm-ft/lbf-sec ²)
H	Total enthalpy
J	Mechanical equivalent of heat (777.97 ft-lbf/Btu)
M	Mach number
$\mathbf{M}\mathbf{M}$	Number of streamtubes
m	Mass flow
N	Number of measurements supplied in each measuring plane
NN	Number of measurements supplied in the downstream traverse measuring plane
n	Number of blades on the rotor
P	Total pressure
PL	Profile loss parameter
р	Static pressure
R	Gas constant for air (1715.608 ft ² /sec ² -°R)
RF	Temperature probe recovery factor
$R_{\mathbf{p}}$	Total pressure ratio
r	Radial distance from the rotor axis
T .	Total temperature
t	Static temperature

th	Blade-trailing-edge thickness
V	Absolute velocity
x	Fractional portion of the annulus height
α	Absolute flow angle, angle between absolute velocity and axial direction
β	Relative flow angle, angle between relative velocity and axial direction
β΄	Blade angle, angle between blade camber line and axial direction
δE	Change in energy across the rotor
δН	Change in total enthalpy across the rotor
δm	Change in mass flow across the rotor
η	Efficiency
θ	Rotations per minute of rotor
κ	Ratio of specific heats, c_p/c_v
ĸ	Temperature averaged specific heat ratio
ν	Prandtl-Meyer expansion angle
σ	Blade solidity, ratio of blade chord to blade spacing
φ	Angle of surface expansion
ω	Total pressure loss parameter
Ω	Rotor angular speed
SUBSCRIPTS	
a	Axial component.
ad	Adiabatic
	Auddin Ada arrange

a	Axial component.
ad	Adiabatic
av	Arithmetic average
c	Corrected or calculated
E	Rotor exit conditions
h	Hub, inner casing
i	A counter designating the radial measuring stations
iB	Radial position counters locating streamtube boundaries

id	Ideal (no loss) conditions
is	Isentropic
i*	Radial position counter locating streamtube centers and boundaries
j = 1 = 2 = 3	Designation of the axial measuring planes Implies the measuring plane at rotor inlet Implies the measuring plane at rotor exit in which traverse measurements are made (This counter is also used to imply downstream conditions in general.) Implies the measuring plane at rotor exit in which rake measurements are made
m	Streamtube counter implying mass-averaged conditions of that streamtube
P	Profile
PS	Passage shock
SE	Sudden expansion
SS	Suction surface
T	Based on stagnation conditions
t	Tip, outer casing
θ	Tangential component

SUPERSCRIPTS

/ Relative to the rotor

* Critical conditions

SECTION I

The computer program described herein has been developed for the IBM 360/50 in an attempt to extend the capability of data analysis for the supersonic blunt-trailing-edge compressor at the Arnold Engineering Development Center. An example of a typical compressor blade profile is shown in Fig. 1 (Appendix I). The program is intended primarily to give some insight into the flow process through a compressor rotor viewed as if the observer were rotating with the angular velocity of the rotor. In general, theoretical techniques must be used to determine the flow in a rotating passage since it is not mechanically possible to place a probe within the rotor.

The problem is approached basically from the streamtube point of view. If flow is assumed steady and axisymmetric and if the radial height of the blade is divided into small enough increments so that the radial variation within the increment is small, then it should be possible to consider the flow through the rotor as one-dimensional within each streamtube. Strictly speaking, this method demands further that secondary flow effects, such as radial mass transfer, be negligible.

The model for the composition of the relative total pressure losses in a streamtube is quite similar to that proposed in Ref. 1 for flow in transonic compressors. In addition to the losses resulting from shock waves and the viscous effects along the blade profile as suggested in Ref. 1, the blunt-trailing-edge blading may be expected to have additional loss caused by the abrupt area increase at the blade trailing edge. The general validity of such a model has been demonstrated in Ref. 2.

The sections of this report include a description of the computer input (Appendix II), presentation of the equations used in the computation, and a description of the output from the program (Appendix III) The program is written in FORTRAN IV.

SECTION II THE EQUATIONS AND THE COMPUTATIONAL SCHEME

In general, the equations of this section outline step-by-step the process of the computation. The procedure is, basically, to determine the boundaries and centers of a selected number of steamtubes, MM, using data measured in an absolute frame of reference, then to mass

average the measured data between streamtube boundaries and to consider these average values as concentrated at the center of the streamtube. The averaged values are then translated to a frame of reference rotating with the angular velocity of the rotor. The flow model described in Refs. 2 and 3 is then used to determine additional loss unaccounted for in the model. Correlation of this additional loss remains the basic problem of the analyst.

In addition to the main objective of the program, described above, several additional computations have been included to provide checks on the results of experiments and to enlarge the use of the existing data.

2.1 ASSUMPTIONS

- 1. The flow of air as a weightless, thermally perfect gas is assumed to be frictionless, time-steady, adiabatic, and axisymmetric as determined from discrete point measurements of the flow variables.
- 2. Radial mass transfer across streamtube boundaries is ignored.
- 3. Five discrete points are selected for measurement of the flow properties in front of the wheel.
- 4. Behind the wheel two different sets of measurements may be used to independently describe the flow at the same axial plane of measurement. In the tests at AEDC this capability has been used to evaluate separate measurements made by single-probe traverse and multiprobe rake. Traverse measurements may be supplied at either 5 or 11 discrete points in the flow field. Rake measurements are supplied at only 5 points.
- 5. In one specific situation the two sets of measurements behind the wheel may be obtained at different axial planes. This particular condition is differentiated by the capability of entering exactly 13 discrete point measurements for the traverse. The set of data for the rake will still contain measurements at only 5 discrete points.
- 6. Discrete point measurements of total pressure, absolute flow angle, and total temperature may be entered in all three measuring planes at 5 points. When traverse measurements are made at 11 or 13 points, only total pressure

and absolute flow angle are obtained. Total temperature is obtained at only 5 points in the midportion of the flow field and not in the extra points traversed in the boundary layer. The extra total temperatures necessary for calculations are obtained in the program by extrapolation.

7. Static pressure is measured at the walls at the axial planes of the other flow property measurements. The static pressure is assumed to vary linearly across the annulus to obtain values at the discrete points of measurement.

2.2 DETERMINATION OF THE PROFILES FOR STATIC AND TOTAL PRESSURE, TOTAL TEMPERATURE, AND THE ABSOLUTE FLOW ANGLE

The inlet measuring plane, designated by the subscript j=1, is assumed to be located near enough to the leading edge of the rotor blades so that flow conditions at the measuring plane may be considered representative of conditions immediately ahead of the rotor leading edge. The downstream measuring planes, designated j=2 for measurements obtained by traverse and j=3 for measurements obtained by rakes, are assumed to be far enough downstream so that conditions may be considered axisymmetric. The planes of measurement are assumed to be perpendicular to the compressor axis.

In each measuring plane a number of radial positions, N_j , are chosen as points at which measurements are made of total pressure, total temperature, and absolute flow angle. Static pressure is measured at the wall in the same axial plane and is assumed to vary linearly across the annulus. A more complete description of the measuring techniques and the general layout of the supersonic compressor testing facility is described in Ref. 4. For j=1 or 3, N_j has the value of 5. For j=2, N_j may have the value of 5, 11, or 13 corresponding to NN in the input data. The radial location of the i-th measuring station in the j-th measuring plane is given by

$$r_{ji} = r_{jh} + x_{ji} (r_{jt} - r_{jh}),$$
 $j = 1, 2, 3, i = 1, 2, ..., N_j, 0 \le x_{ji} \le 1$ (1)

where r_{jh} is the radius in inches of the inner casing wall (hub wall), r_{jt} is the radius in inches of the outer casing wall (tip wall), and where x_{ji} may be interpreted as the location of the measuring station in terms of the fractional part of annulus height. The quantities r_{jh} , r_{jt} , and x_{ji} are input data.

Static pressure measurements are taken on the inner (h) and outer (t) casing walls. The assumption of straight line variation across the

annulus implies that the static pressure at any $x_{j\,i}$ may be calculated by the equation

$$p_{ji} = p_{jh} + x_{ji} (p_{jt} - p_{jh}), \quad j = 1, 2, 3, i = 1, 2, ..., N_j, 0 \le x_{ji} \le 1$$
 (2)

When N_j equals 5, the static pressure is calculated for two additional points at $x_{j\,i}$ equal to 0.05 and 0.95.

Because of the physical requirement of no "slip" at a wall, the flow velocity at a wall must be zero. For this reason the static and total pressures are equivalent at a wall; i.e.,

$$P_{ji} = P_{jh}, i = h$$

 $P_{ji} = P_{it}, i = t$ $j = 1, 2, 3$ (3)

The drop in total pressure from its inviscid value occurs rapidly in the wall boundary layer. In the cases of N_2 = NN = 11 or 13, a number of total pressure measurements have been made in the boundary-layer region so that, together with relations(3), a complete total pressure profile may be approximated. In the cases of N_j = NN = 5 the data are insufficient to allow accurate mass flow calculations across the annulus. Therefore, two additional points, located at x_{ji} equal to 0.05 and 0.95, are supplied using an empirically estimated relation based on the more accurate boundary-layer surveys. The value for N_j has thus been increased from 5 to 7 for these cases; i.e., 5 actual measurements in the flow field entered by input data plus 2 extrapolated points.

In every case, total temperature is obtained only at the five measuring stations in the midportion of the annulus. To obtain the extra values necessary for computation, a second degree polynomial is fit to the three measured points nearest the locations where the values are needed.

For the cases when it is necessary to estimate the total pressure at x_{ji} = 0.05 or 0.95, it is also necessary to supply an estimate of the absolute flow angle at these points. The boundary-layer traverses have shown that it is sufficiently accurate to assume a straight line fit of the two points nearest the annulus wall considered.

2.3 DETERMINATION OF THE ABSOLUTE MACH NUMBER, TOTAL AND STATIC TEMPERATURE CORRECTED FOR PROBE RECOVERY FACTOR, AND THE RATIO OF SPECIFIC HEATS

The specific heat at constant pressure, cp, is slightly temperature dependent. For air, using the data of Ref. 5, a third-order polynomial

was found to fit very well for the temperature range of interest, 400 to 900°R, i.e.,

$$c_{p} \left[Btu/lbm \, ^{\circ}R \right] = a - bt + ct^{2} - dt^{3}$$
 (4)

with

$$a = 0.241883$$
 $b = -1.22830 \times 10^{-5}$
 $c = 1.15098 \times 10^{-8}$
 $d = 7.75163 \times 10^{-12}$
(5)

where t is entered in degrees Rankine. Multiplying the result by g_CJ to obtain units of ft^2/\sec^2 R implies that the ratio of specific heats, κ , may be calculated by

$$\kappa = c_p/(c_p - R) \tag{6}$$

The absolute Mach number is calculated by

$$M = \sqrt{\frac{2}{\kappa - 1}} \left[\left(\frac{P}{P} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]^{\frac{\kappa}{2}}$$
 (7)

Correction of the measured and extrapolated total temperatures for the probe recovery factor, RF, may be accomplished by

$$T_{c} = \frac{T (\kappa M^{2} - M^{2} + 2)}{RF (\kappa M^{2} - M^{2}) - 2}$$
 (8)

The static temperature is then given by

$$t = T_c \left(\frac{p}{p}\right)^{\frac{\kappa-1}{\kappa}}$$
 (9)

Beginning with an initial guess on the static temperature in Eq. (4), an iteration process is carried out with Eqs. (4) to (9) until Eq. (9) is satisfied to the accuracy of the machine for each measuring station, i, in every measuring plane, j.

2.4 DETERMINATION OF THE TANGENTIAL AND AXIAL COMPONENTS OF VELOCITY FOR PLOTTING

The absolute velocity may now be calculated using the equation

$$V_{ij} = \sqrt{\kappa_{ji}Rt'_{ji}} M_{ji}, j = 1, 2, 3, i = t, 1, 2, ..., N_{j}, h$$
 (10)

The axial and tangential components of the absolute velocity are then given, respectively, by

$$V_{aji} = V_{ji} \cos \alpha_{ji}
V_{\theta ii} = V_{ii} \sin \alpha_{ii}$$
(11)

and

where $j = 1, 2, 3, i = t, 1, 2, ..., N_j, h$.

For J = 2 and 3 the ratios of V_{aji} and $V_{\theta ji}$ to the maximum axial velocity are plotted versus annulus height when PLOT is $rac{1}{2}$ or 3. An example of the plot is shown in Fig. 2.

2.5 DETERMINATION OF THE RADIAL POSITION OF STREAMTUBE BOUNDARIES AND CENTERS

In each measuring plane, j, the annulus is to be divided into a number of areas, MM, through which equal mass flows, where MM is input data. The mass average of the flow properties in each of the MM areas is determined and is considered to be concentrated at the radius representing the center of mass of each area.

The axial mass flow per unit area is given by

$$\left(\frac{m}{A}\right)_{ji} = g_c \sqrt{\frac{\kappa_{ji}}{R}} \frac{p_{ji} M_{ji}}{\sqrt{T_{cji}}} \left(1 + \frac{\kappa_{ji} - 1}{2} M_{ji}^2\right)^{\frac{1}{4}} \cos \alpha_{ji}$$
 (12)

for j = 1, 2, 3, $i = t, 1, 2, ..., N_j$, h. The total mass flow at each measuring plane, m_j , is calculated using the equation

$$m_j = 2\pi \int_{r_{ih}}^{r_{jt}} r\left(\frac{m}{A}\right) dr, \quad j = 1, 2, 3$$
 (13)

The quantities m_j are printed out on output data PAGE 5 in Appendix III for flow continuity checks and comparison with other methods of mass flow measurements.

Beginning with r_{ji} * = r_{jt} , 2(MM) - 1 radii are determined satisfying the relation

$$2\pi \int_{r_{i,i}^{*} + 1}^{r_{j,i}^{*}} r\left(\frac{m}{A}\right) dr = \frac{m_{j}}{2(MM)}$$
 (14)

If the convention is adopted that i* equals zero when $r_{ji*} = r_{jt}$, then the radii of the streamtube centers are given when i* is odd and the streamtube boundaries are given when i* is even. The radii in terms of annulus height may be given by

$$x_{ji}* = \frac{r_{ji}* - r_{jh}}{r_{jt} - r_{jh}}, j = 1, 2, 3, i^* = t, 1, 2, ..., 2(MM) - 1, h$$
 (15)

Both r_{ji*} and x_{ji*} are printed on the output data PAGE 2 (Appendix III).

In an effort to check the accuracy with which the integrations have been performed, the integral of the mass flow between $r_{j2(MM)-1}$ and r_{jh}

is calculated and compared with the amount which should remain; i.e.,

$$\% \, \delta m_{j} = \frac{\frac{m_{j}}{2(MM)} - 2\pi \int_{r_{jh}}^{r_{j} 2(MM) - 1} r\left(\frac{m}{A}\right) dr}{\frac{m_{j}}{2(MM)}} \times 100, j = 1,2,3 \tag{16}$$

These quantities are printed on output data PAGE 5 in Appendix III.

2.6 DETERMINATION OF MASS-AVERAGED STREAMTUBE FLOW PROPERTIES

A measured flow property may be mass averaged between the boundaries of a streamtube using the equation

$$\overline{q}_{jm} = \frac{\int_{r_{jiB+1}}^{r_{jiB}} q \, r\left(\frac{m}{A}\right) dr}{\int_{r_{jiB+1}}^{r_{jiB}} r\left(\frac{m}{A}\right) dr}, \, j = 1, 2, 3, \, m = 1, 2, \dots, MM$$
(17)

where the counter iB is varied so that radii bounding the m-th streamtube are used. The quantity q may be the static pressure, total pressure, or the absolute flow angle; and \bar{q} represents the mass average of that quantity. The results of mass averaging are printed on output data PAGE 3 in Appendix III. The equivalent one-dimensional average over the annulus height of each property may be computed by

$$\overline{q}_{j} = \frac{1}{MM} \sum_{m=1}^{MM} \overline{q}_{jm}, j = 1, 2, 3$$
 (18)

These results are also printed on output data PAGE 3 in Appendix III.

Using the mass-averaged values of static and total pressure and total temperature and Eqs. (4), (5), (6), and (9), an iteration cycle is set up to yield an estimate of the mass-averaged values of the static temperature and the ratio of specific heats. Then Eq. (7) is used to calculate the streamtube average absolute Mach number.

In the following description, a quantity with a subscript m implies the streamtube mass average of that quantity. The subscript i will be retained to indicate input data or calculations at the radial measuring stations.

2.7 CALCULATIONS TO CHECK THE BALANCE OF THE ENERGY EQUATION FOR ADIABATIC FLOW

If the total enthalpy is defined

$$H = \int_0^T c_p dT$$

then the streamtube total enthalpy may be calculated

$$H_{jm} = aT_{jm} + \frac{b}{2}T_{jm}^2 + \frac{c}{3}T_{jm}^3 + \frac{d}{4}T_{jm}^4$$
 (19)

for j = 1, 2, 3, m = 1, 2, ..., MM, in units of Btu/lbm, where the coefficients a, b, c, and d are given in Eq. (5). The change in total enthalpy through a streamtube is the given by

$$\delta H_{jm} = H_{jm} - H_{lm}, j = 2, 3, m = 1, 2, ..., MM$$
 (20)

These quantities are printed on output PAGE 5 in Appendix III.

The streamtube average absolute velocity is given by an equation similar to (10) with κ_{ji} , t_{ji} , and M_{ji} replaced by, respectively, the mass-averaged values of the ratio of specific heats, static temperature, and absolute Mach number. The streamtube average of the tangential velocity is then given by

$$V\theta_{jm} = \frac{V_{jm}}{g_c J} - \sin \alpha_{jm}$$
 (21)

for $j = 1, 2, 3, m = 1, 2, \ldots, MM$, in units of Btu sec/lbm-ft.

The energy equation for adiabatic flow with work addition may be written

$$d'H = \Omega d'(rV_{\theta})$$

where the symbol d'() indicates change along a streamline. The wheel angular speed, Ω , in units of sec⁻¹, is given by

$$\Omega = \frac{2 \pi \theta}{60 \sec/\min}$$
 (22)

where θ is the wheel RPM and is supplied by input data. The degree of balance of the energy equation may be represented by

$$\delta E_{jm} = H_{jm} - H_{lm} - \frac{\Omega}{12\left(\frac{in.}{ft}\right)} \left(r_{jm} V_{\theta jm} - r_{lm} V_{\theta lm} \right)$$
 (23)

for j = 2, 3, m = 1, 2, ..., MM. The percentage of balance is calculated by

 $\left(\% \frac{\delta E}{\delta H}\right)_{jm} = \frac{\delta E_{jm}}{\delta H_{jm}} \times 100, j = 2, 3, m = 1, 2, \dots, MM$ (24)

This representation of the balance of the energy equation is printed on output data PAGE 5 in Appendix III along with the change in total enthalpy

through the corresponding streamtube. The one-dimensional average of these quantities is also presented.

2.8 CALCULATION OF STREAMTUBE TOTAL PRESSURE RATIO AND EFFICIENCY

The streamtube total pressure ratio is given by the relation

$$R_{pjm} = \frac{P_{jm}}{P_{lm}}, j = 2, 3, m = 1, 2, ..., MM$$
 (25)

This quantity, along with its equivalent one-dimensional average calculated by Eq. (18), is printed on output data PAGE 6 in Appendix III.

A temperature-averaged specific heat ratio, $\bar{\kappa}_{jm}$, is calculated by

$$\overline{\kappa}_{jm} = \frac{\int_{T_{1m}}^{T_{jm}} \frac{c_p}{c_p - R} dT}{T_{1m} - T_{1m}}, j = 2,3, m = 1,2,...,MM$$
(26)

for use in evaluating streamtube efficiency.

Adiabatic efficiency is defined by the equation

$$\eta_{\rm ad} \equiv \frac{\delta H_{\rm is}}{\delta H_{\rm obs}}$$

where δH_{is} is the isentropic enthalpy rise and δH is the actual enthalpy rise. Defining the isentropic coefficient \tilde{c}_{jm} by

$$\bar{c}_{jm} = \frac{\bar{\kappa}_{jm} - 1}{\bar{\kappa}_{jm}}, j = 2, 3, m = 1, 2, ..., MM$$
 (27)

then the isentropic enthalpy rise is given by

$$(\delta H_{is})_{jm} = a T_{lm} \left[(R_{pjm})^{\bar{c}_{jm}} - 1 \right] + \frac{b}{2} T_{lm}^{2} \left[(R_{pjm})^{2\bar{c}_{jm}} - 1 \right]$$

$$+ \frac{c}{3} T_{lm}^{3} \left[(R_{pjm})^{3\bar{c}_{jm}} - 1 \right] + \frac{d}{4} T_{lm}^{4} \left[(R_{pjm})^{4\bar{c}_{jm}} - 1 \right]$$
(28)

for j = 2, 3, m = 1, 2, ..., MM, where the coefficients a, b, c, and d are given in Eq. (5). The streamtube adiabatic efficiency is then given by

$$\eta_{\text{adjm}} = \frac{(\delta H_{is})_{jm}}{H_{jm} - H_{1m}} \quad j = 2,3, \quad m = 1, 2, ..., MM$$
(29)

This quantity and its equivalent one-dimensional average are printed on output data PAGE 6 in Appendix III.

2.9 DETERMINATION OF THE FLOW PROPERTIES IN RELATIVE COORDINATES

The streamtube average tangential component of the relative Mach number, $M_{\theta im}$, is given by

$$M'\theta_{jm} = \frac{2 \pi \theta r_{jm}}{\left(12 \frac{in}{ft}\right) 60 \left(\frac{sec}{min}\right) \sqrt{\kappa_{jm} Rt_{jm}}} - M_{jm} \sin \alpha_{jm}$$
(30)

for j = 1, 2, 3, m = 1, 2, ..., MM. The average relative Mach number is then given by

$$M'_{jm} = [N'_{\theta jm}^2 + (M_{jm} \cos \alpha_{jm})^2]^{\frac{1}{2}}$$
 (31)

for the same range of j and m.

The streamtube average relative flow angle, β_{jm} , is given by

$$\beta_{jm} = \arctan \left(\frac{M'\theta_{jm}}{M_{jm} \cos a_{jm}} \right)$$
 (32)

for j = 1, 2, 3, m = 1, 2, 3, ..., MM.

The relative total temperature and total pressure are given, respectively, by

$$T'_{jm} = T_{jm} \left[\frac{1 + \frac{\kappa_{jm} - 1}{2} M'_{jm}^2}{1 + \frac{\kappa_{jm} - 1}{2} M'_{jm}} \right]$$
(33)

$$P'_{jm} = p_{jm} \left(1 + \frac{\kappa_{jm} - 1}{2} + \frac{M'^{2}_{jm}}{2} \right)^{\frac{k_{jm}}{k_{jm} - 1}}$$
 (34)

for j = 1, 2, 3, m = 1, 2, ..., MM

The relative Mach number, flow angle, total pressure, and total temperature are printed for each streamtube and each measuring plane on output data PAGE 4 in Appendix III.

2.10 CALCULATION OF THE OVERALL RELATIVE TOTAL PRESSURE LOSS

In the preceding sections the main objective has been to locate a number of streamtubes and determine the average relative flow properties in each streamtube before and after the rotor. The objective becomes now that of attempting to fit the flow model to the experimental results.

To the benefit of centrifugal-type turbomachinery, a flowing fluid may do work or be worked upon by simply changing the distance of streamlines from the axis of the turbomachine. To correct for this fact in calculating the overall relative total pressure loss for an axial-flow machine, the ideal (no loss) relative total pressure ratio is given by $\kappa_{av,m}$

 $(R'_{pjm})_{id} = \left(\frac{P'_{jm}}{P'_{lm}}\right)_{id} = \left\{1 + \frac{\kappa_{avjm} - 1}{2} M^2_{Tjm} \left[1 - \left(\frac{r_{1m}}{r_{jm}}\right)^2\right\}^{\frac{\kappa_{avjm} - 1}{\kappa_{avjm} - 1}}$ (35)

for j = 2, 3, m = 1,2,..., MM from Ref. \mathcal{A} , where $\kappa_{avjm} = \frac{\kappa_{jm} - \kappa_{lm}}{2}$

where $M_{\mbox{Tjm}}$ is the ratio of the outlet element wheel speed to the inlet relative stagnation velocity; i.e.,

$$M_{T_{jm}} = \frac{\Omega r_{jm}}{\sqrt{\kappa_{T_m}^2 R T_{1m}^2}}, \quad j = 2, 3 \text{ m} = 1, 2, ..., MM$$
 (36)

where κ_{Tm} is the specific heat ratio based on the inlet relative total temperature. The overall relative total pressure loss is then given by

$$\bar{\omega}'_{jm} = (R'_{pjm})_{id} \begin{bmatrix} 1 - \frac{\left(\frac{P_{ijm}}{P_{im}'}\right)}{\left(R'_{pjm}\right)_{id}} \\ 1 - \frac{p_{fm}}{P'_{fm}} \end{bmatrix}$$
(37)

also from Ref. 6. This quantity is printed on output data PAGE 6 in Appendix III.

The overall relative total pressure loss is assumed to be the sum of shock loss, profile loss, and loss attributable to sudden area expansion at the trailing edge. Shock loss and sudden area expansion loss may be estimated under certain assumptions. The profile loss must be obtained by subtraction of these values from the overall loss, and then correlated.

2.11 CALCULATION OF SHOCK LOSSES

Pseudo-normal shock diffusion is inherent in the conception of the blunt-trailing-edge compressor blading. At maximum back pressure the losses caused by a pseudo-normal shock system, neglecting viscous interaction, cannot be greater than the loss of a single normal shock at the same inlet conditions. The passage inlet Mach number of the compressor is assumed to be the average of the blade inlet relative Mach number, M'_{1m} , and the suction surface Mach number at the entrance to the passage, MSSm. The Prandtl-Meyer angle, ν , of MSSm is given by

$$\nu(M_{SS m}) = \nu(M'_{1m}) + \beta_{lin} - \beta'_{1m} + \phi_{SSm}$$
 (38)

if $M'_{1m} \ge 1.0$, where $\nu(M'_{1m})$ is the Prandtl-Meyer angle of the inlet relative Mach number, where $\beta_{1m} - \beta'_{1m}$ is the amount of turning required for the inlet relative flow to become tangent to the blade surface at the leading edge, and where ϕ_{SSm} is the angle of expansion from the leading edge to passage entrance.

The Prandtl-Meyer angle, ν , for a Mach number, M, is calculated by

$$\nu = \sqrt{\frac{\kappa + 1}{\kappa - 1}} \arctan \sqrt{\frac{\kappa - 1}{\kappa + 1} (M^2 - 1)} - \arctan \sqrt{M^2 - 1}$$
 (39)

Therefore, $\nu(M'_{1m})$ is easily determined by this equation; but $\nu(M_{SSm})$, given by Eq. (38), requires iteration to obtain M_{SSm} from Eq. (39).

The inlet blade angle, β'_1 , is assumed to be described by an arbitrary function of the form

$$\beta'_{1} = \frac{A_{1}}{r^{2}} + \frac{A_{2}}{r} + A_{3} + A_{4}r + A_{5}r^{2} + \arctan(A_{6}r)$$
 (40)

where the coefficients are input data. Suction surface expansion, ϕ_{SS} , is assumed to be described by a similar function

$$\phi_{SS} = \frac{B_1}{r^2} + \frac{B_2}{r} + B_3 + B_4 r + B_5 r^2$$
 (41)

where the coefficients are input data.

The passage entrance Mach number is given by

$$M_{avm} = \frac{M'_{1m} + M_{SSm}}{2}$$
 (42)

This quantity is printed on output data PAGE 6 in Appendix III.

The total pressure ratio across a normal shock with upstream Mach number M_{avm} is given by

$$R_{PSm} = \left[1 + \frac{2\kappa_{1m}}{\kappa_{1m} + 1} \left(M_{avm}^2 - 1\right)\right]^{\frac{1}{\kappa_{1m} - 1}} \left[\frac{(\kappa_{1m} + 1) M_{avm}^2}{(\kappa_{1m} - 1) M_{avm}^2 + 2}\right]^{\frac{\kappa_{1m}}{\kappa_{1m} + 1}}$$
(43)

The loss caused by the pseudo-normal shock system, neglecting viscous interaction, is then given by

$$\omega'_{PSm} = C_1 \left[\frac{1 - R_{PSm}}{1 - \frac{p_{1m}}{p_{1m}}} \right], m = 1, 2, ..., MM$$
 (44)

where C_1 is a correction factor supplied in the input data and used to adjust for the fact that the shock system may not produce normal shock loss. Generally, C_1 is approximately 0.9.

For transonic flow with high subsonic inlet relative Mach numbers, shocks may also be expected to occur. Total pressure losses attributable to these shocks may be estimated, similar to Ref. 7, by calculating $M_{\rm SSm}$ based on

$$\nu(Mss_m) = \phi ss_m$$

rather than Eq. (38). If M_{avm} , calculated by Eq. (42), is greater than one, shock loss is calculated through Eqs. (43) and (44); if M_{avm} is less than or equal to one, no shock loss is assumed to occur.

The passage shock loss, ω^{\prime}_{PSm} , is printed on output data PAGE 6 in Appendix III.

The static pressure through the normal shock system is given by

$$PPS_{m} = C_{2} p_{1m} \left[1 + \frac{2\kappa_{1m}}{\kappa_{1m} + 1} (M_{avm}^{2} - 1) \right] m = 1, 2, ... MM$$
 (45)

where C₂ is a correction factor supplied in the input data. This quantity is printed on output data PAGE 5 in Appendix III for comparison with experiment and the results of sudden area expansion calculations.

2.12 CALCULATION OF THE LOSS ATTRIBUTABLE TO SUDDEN AREA EXPANSION FOR CYLINDRICAL STREAM SURFACES

In order to use the results of Ref. 8, it is necessary to assume that the streamlines, represented by the streamtube centers, lie on circular cylinders between the plane of the trailing edge and the downstream measuring planes (j = 2 or 3). Such an assumption implicitly demands that radial shift of the streamlines, if such shift occurs, takes place entirely within the rotor.

The flow is assumed to leave the rotor at an average angle equal to the rotor exit blade angle, $\beta'_{\rm E}$, given as a function of radius by

$$\beta \acute{E} = \frac{D_1}{r^2} + \frac{D_2}{r} + D_3 + D_4 r + D_5 r^2 + \arctan(D_6 r)$$
 (46)

where the coefficients are input data.

The critical relative Mach number at the downstream measuring planes (j = 2, 3) is given by

$$M_{jm}^{*} = \left[\frac{\kappa_{jm-1}}{2} M_{jm}^{*2} \right]^{2}$$

$$\left[\frac{\kappa_{jm-1}}{2} M_{jm}^{*2} \right]^{2}$$
(47)

The critical Mach number of the relative flow at the trailing-edge plane is then given by

$$M_{Fjm}^{\prime *} = M_{jm}^{\prime *} = \frac{\sin \beta_{jm}}{\sin \beta_{Ejm}^{\prime *}}, j = 2, 3, m = 1, 2, ..., MM$$
 (48)

where β'_{Ejm} is calculated for $r = r_{jm}$, the radius of the center of the m-th streamtube for measurements in the j-th plane.

The relative Mach number at the trailing-edge plane is then given by

$$M_{E_{Jm}}' = \sqrt{\frac{\frac{2}{\kappa_{E_{Jm}} + 1} (M_{E_{Jm}}'^*)^2}{1 - \frac{\kappa_{E_{Jm}} - 1}{\kappa_{E_{Jm}} + 1} (M_{Jm}'^*)^2}}}^{\frac{1}{2}}, j = 2, 3, m = 1, 2, ..., MM$$
 (49)

where κ_{Ejm} is calculated by Eqs. (4), (5), and (6) for some initial guess on the trailing-edge static temperature.

The calculated area ratio of sudden expansion, $\left(\frac{A_2}{A_E}\right)_c$, where A_2 is the streamtube area at the downstream measuring station and A_E is the flow area at the trailing edge, is given by

$$\frac{\binom{A_2}{A_E}}{\binom{A_E}{A_E}} = \frac{M'_{Ejm} \cos \beta'_{Ejm}}{M'_{jm} \cos \beta_{jm}} \left[\frac{1 + \frac{\kappa_{ajm} - 1}{2} M'_{Ejm}^2}{1 + \frac{\kappa_{ajm} - 1}{2} M'_{jm}^2} \right]^{\frac{1}{2}} /_{1 + \kappa_{ajm}} M'_{jm}^2 \cos^2 \beta_{jm} \right] - \kappa_{ajm} M'_{Ejm}^2 \cos^2 \beta'_{Ejm} \tag{50}$$

for j = 2, 3, m = 1, 2, ..., MM where $\kappa_{ajm} = (\kappa_{E_1m} + \kappa_{jm})/2$

The relative total pressure at the trailing edge is given by

$$P'E_{jm} = P'_{jm} \left(\frac{A_2}{A_E}\right)_{c_{jm}} \frac{M'_{jm} \cos \beta_{jm}}{M'E_{jm} \cos \beta'E_{jm}} \left[\frac{1 + \frac{\kappa_{ajm} - 1}{2} M'_{Ejm}^2}{1 + \frac{\kappa_{ajm} - 1}{2} M'_{jm}^2}\right]^{\frac{\kappa_{ajm} - 1}{2(\kappa_{ajm} - 1)}}$$
(51)

The static pressure at the trailing edge, based on the sudden area expansion equations for cylindrical stream surfaces, is given by

$$P_{E_{jm}} = P_{jm} \left(\frac{A_{2}}{A_{E}} \right)_{c_{jm}} \frac{M'_{jm} \cos \beta_{jm}}{M'_{E_{jm}} \cos \beta'_{E_{jm}}} \left[\frac{1 - \frac{\kappa_{a_{jm}} - 1}{2} M'_{jm}^{2}}{1 + \frac{\kappa_{a_{jm}} - 1}{2} M'_{E_{jm}}^{2}} \right]^{\frac{1}{2}}$$
(52)

The static temperature at the trailing edge is then given by an equation similar to Eq. (9) involving relative flow properties. An iteration cycle is set up for the calculations of Eqs. (49) through (52) until the static temperature at the trailing edge converges to the limit of the machine.

The calculated area ratio, the relative total pressure, and the static pressure at the trailing edge are printed on output data PAGE 5 in Appendix III.

The relative total pressure loss caused by sudden area expansion is given by

$$\omega_{SEjm}' = \frac{P'_{Ejm} - P'_{jm}}{P'_{lm} - p_{lm}}$$
 (53)

These quantities are printed on output data PAGE 6 in Appendix III.

2.13 DETERMINATION OF THE PROFILE LOSS

The overall relative total pressure loss, $\overline{\omega}'$, of Eq. (37) is assumed to be the sum of the shock loss, sudden area expansion loss, and profile loss so that the profile loss may be given by

$$\omega'_{P_{jm}} = \overline{\omega}'_{jm} - \omega'_{PSm} - \omega'_{SE_{jm}}$$
 (54)

This may be put into a more standard form by defining the profile loss parameter, PL,

$$PL_{jm} = \frac{\omega_{p,jm}^{\prime} \cos \beta_{j,m}}{2 \sigma_{l,m}}$$
 (55)

where σ , the solidity, is assumed to have a distribution as a function of radius given by

$$\sigma = \frac{F_1}{r^2} + \frac{F_2}{r} + F_3 + F_4 r + F_5 r^2$$
 (56)

where the coefficients are input data. The solidity, for use in Eq. (55), is calculated based on the radius of the center of the streamtube at the inlet (j = 1).

The results of the loss calculations, as a function of annulus height, are plotted for both the traverse data (j=2) and the rake data (j=3). Examples of these graphs are shown in Fig. 2. The points representing shock loss are plotted at the annulus height of the streamtube centers at the inlet measuring plane. The overall loss points are plotted at the annulus height of the streamtube centers for outlet measurements. For cylindrical stream surfaces, the points locating sudden expansion loss must be positioned at the same radial location as the streamtube centers for outlet flow measurements. The shaded area represents the computed profile loss.

2.14 CALCULATION OF THE BLOCKAGE FACTOR

The blockage factor is defined as the difference between the geometrical area at the trailing edge through which flow may pass and the calculated flow area divided by the geometrical area; i.e.,

$$B_{j} = \frac{A_{E} - (A_{E})_{cj}}{A_{E}}, \quad j = 2, 3$$
 (57)

The geometrical area, AE, through which flow may pass is the difference between the annulus area at the plane of the trailing edge and the area occupied by the blades. Assuming the distribution of the blade trailing-edge thickness, th, may be written in the form

$$th = \frac{E_1}{r^2} + \frac{E_2}{r} + E_3 + E_4 r + E_5 r^2$$
 (58)

then AE is given by

$$A_{E} = (\pi - \frac{n}{2} E_{4}) (r^{2}E_{t} - r^{2}E_{h}) - n \left[E_{1} \frac{r_{Et} - r_{Eh}}{r_{Et} r_{Eh}} + E_{2} \ln \frac{r_{Et}}{r_{Eh}} + E_{3} (r_{Et} - r_{Eh}) + \frac{E_{3}}{3} (r^{3}E_{t} - r^{3}E_{h}) \right]$$
(59)

where $r_{\rm Et}$ and $r_{\rm Eh}$ are, respectively, the radii of the outer and inner annulus walls at the plane of the trailing edge, and where n is the number of blades. The coefficients of Eq. (58), the radii $r_{\rm Et}$ and $r_{\rm Eh}$, and the number of blades are all input data. The thickness, th, of Eq. (58) must be considered the arc length for use in these equations.

The streamtube area, A2, at the downstream measuring planes is calculated by

$$A_{2jm} = \pi \left(r^2 jiB - r^2 jiB + l\right) \tag{60}$$

where j = 2, 3, and where the counter iB is varied so that the stream-tube boundaries of the m-th streamtube are selected.

From the calculations of sudden area expansion for cylindrical stream surfaces, the streamtube area in the plane of the trailing edge is given by

$$(A_E)_{c_{jm}} = \frac{A_{2jm}}{(A_2/A_E)_{c_{jm}}}$$
 (61)

so that the calculated flow area at the trailing edge is given by

$$(A_E)_{ej} = \sum_{m=1}^{MM} (A_E)_{ejm}$$
 (62)

for j = 2, 3. The blockage factor may then be calculated by Eq. (57), and the results are printed on output data PAGE 5 in Appendix III.

2.15 CALCULATION OF THE DIFFUSION FACTOR

The diffusion factor, D, which is used as a blade loading parameter, may be given by

$$D_{jm} = 1 - \frac{M'_{jm}}{M'_{lm}} \sqrt{\frac{\kappa_{jm} t_{jm}}{\kappa_{lm} t_{lm}}} + \frac{M' \hat{\theta}_{lm} - M \hat{\theta}_{jm}}{2\sigma_{lm} M'_{lm}} \sqrt{\frac{\kappa_{jm} t_{jm}}{\kappa_{lm} t_{lm}}}$$
(63)

for $j=2,\ 3,\ m=1,\ 2,\ldots,MM$. The results of this calculation are printed on output data PAGE 6 in Appendix III.

SECTION III DESCRIPTION OF INPUT DATA

The input data necessary for the operation of the computer program are, basically, an analytical description of the rotor, the locations of measuring positions, as well as the actual measurements taken. The measurement data may be entered in one of two ways: (1) listing of all measurements or (2) through the use of data arrays produced from the data reduction program for the supersonic compressor test program. If the measurements are listed, the values entered must represent the time average values of the measured flow properties at each measuring station. When the data arrays are entered, the program handles the simple averaging process where necessary.

For the use of this program it is implicitly assumed that outlet rake measurements and traverse measurements involving 5 and 11 radial positions are located at the same plane. Furthermore, the traverse of 13 radial positions may be located in an axial location different from the plane of the rake measurements (and traverse of 5 and 11 radial positions). Sample card formats for input data are given in Appendix III.

3.1 GROUP DATA

The classification of group data includes the analytical description of the rotor, some assumptions on the behavior of the flow model, and the locations of the measurement stations in each measuring plane. This data must be entered for each different rotor configuration, but they are required only once for each rotor configuration.

The cards are numbered below with the computer format; the names of the variables are given along with their description. Every card must be entered in the order given.

CARD 1. IPRNT, HEAD 1

FORMAT (113, 19A4)

IPRNT

IX

- = 0, stop computation; therefore a blank card must be placed at the end of all input data.
- = 1 for complete print out of the step by step computation.
- = 2 for input and output tables only (see description of Output Data, Section IV).
- HEAD 1 An identification of the rotor configuration. There are 76 spaces allowed.

CARD 2. MX, IX, RF, NB

FORMAT (213, 1E12.4, 115)

MX Number of sets contained in the group. Speed lives

= 0 if a static pressure tap is located on the compressor casing (tip) at the rotor trailing edge.

= 1 if no static pressure tap is located at the rotor

trailing edge.

RF Recovery factor for the temperature probes.

NB Number of blades on the rotor.

CARD 3. R_{1t}, R_{1h}, R_{2t}, R_{2h}, R_{3t}, R_{3h} FORMAT (6E12.4)

Radius of the compressor casing (tip) at the plane of inlet flow measurements. (in.)

R_{1h} Radius of the compressor hub wall at the plane of the inlet flow measurements. (in.)

R_{2t} Radius of the compressor casing at the plane of the outlet traverse flow measurements. (in.)

R_{2h} Radius of the compressor hub wall at the plane of the outlet traverse flow measurements. (in.)

Radius of the compressor casing at the plane of the outlet rake flow measurements. This value must be entered only if $R_{2t} \neq R_{3t}$ or $R_{2h} \neq R_{3h}$; i. e., only if either or both the annulus walls converge or diverge. (in.)

Radius of the compressor hub wall at the plane of the outlet rake flow measurements. This value must be entered only if $R_{2t} \neq R_{3t}$ or $R_{2h} \neq R_{3h}$; i. e., only if either or both the annulus walls converge or diverge at outlet. (in.)

CARD 4. A_i FORMAT (6E12.3)

A_i Coefficients of a curve describing the inlet rotor blade angle β'_1 in radians as a function of radius from the axis in the form

$$\beta' = \frac{A_1}{r^2} + \frac{A_2}{r} + A_3 - A_4 r + A_5 r^2 + \arctan(A_6 r)$$

If any of the coefficients are zero, the proper 12 spaces required by the format may be left blank.

CARD 5. B_i FORMAT (5E12.3)

 B_i Coefficients of a curve describing the suction surface expansion ϕ_{SS} as a function of radius from leading edge to passage entrance in radians. Coefficients are entered for a curve of the form

$$\phi_{SS} = \frac{B_1}{r^2} + \frac{B_2}{r} + B_3 + B_4 r + B_5 r^2$$

If any of the coefficients are zero, the proper 12 spaces required by the format may be left blank.

CARD 6. C_1 , C_2

FORMAT (2L12.3)

C₁ Passage shock loss adjustment coefficient. (0.9 is suggested. See Eq. (44))

C2 Normal shock static pressure rise adjustment coefficient. (See Eq. (45))

CARD 7. Di

FORMAT (6E12.3)

 D_i Coefficients to describe the exit blade angle β_E' in radians as a function of radius. The assumed form is

$$\beta'_{E} = \frac{D_1}{r^2} + \frac{D_2}{r} + D_3 + D_4 r + D_5 r^2 + \arctan(D_6 r)$$

If any of the coefficients are zero, the proper 12 spaces required by the format may be left blank.

CARD 8. Ei

FORMAT (5E12.3)

 $\mathbf{E_{i}}$

Coefficients of the curve to describe the blade trailing edge thickness, th, as a function of radius. Coefficients are entered for a curve of the form

$$th = \frac{E_1}{r^2} + \frac{E_2}{r} + E_3 + E_4 r + E_5 r^2$$

If any of the coefficients are zero, the proper 12 spaces required by the format may be left blank.

CARD 9. Fi

FORMAT (5E12.3)

 F_i

Coefficients of the curve to describe the blade solidity, σ , as a function of radius in the form

$$\sigma = \frac{F_1}{r^2} + \frac{F_2}{r} + F_3 + F_4 r + F_5 r^2$$

If any of the coefficients are zero, the proper 12 spaces required by the format may be left blank.

CARD 10. X_{1i}

FORMAT (5E12.3)

 X_{1i}

Fractional part of annulus height locating positions of inlet flow measurements. Listing is made from casing to hub, i. e., decreasing annulus height. Only 5 are entered.

CARD 11. X52i

FORMAT (5E12.3)

X52i

Fractional part of annulus height locating traverse flow measurements for outlet when 5 positions are recorded. Listing is entered from casing to hub, i. e., decreasing annulus height.

CARD 12, 13, 14. X112i

FORMAT (5E12, 3)

X112i

Fractional part of annulus height locating traverse flow measurements for outlet when 11 positions are recorded. Listing is entered from casing to hub, i. e., decreasing annulus height.

CARD 15, 16, 17. X132i

FORMAT (5E12.3)

 $X13_{2i}$

Fractional part of annulus height locating traverse flow measurements for outlet when 13 positions are recorded. Listing is entered from casing to hub, i. e., decreasing annulus height.

CARD 18.

 X_{3i}

FORMAT (5E12.3)

 \mathbf{x}_{3i}

Fractional part of annulus height locating rake flow measurements for outlet. Only 5 are entered. Listing is made from casing to hub, i. e., decreasing annulus height.

CARD 19.

 z_{i}

FORMAT (7E11.4)

 z_{i}

Axial position of the trailing edge of the rotor and the wall static pressure taps between the trailing edge and the plane of the downstream rake measurements, inclusive. The listing is entered in successive order. A maximum of 7 may be entered. If there are less than seven values, spaces are filled until the required number has been entered and blank spaces are left at the end of the card. (in.)

CARD 20.

 R_{ti}

FORMAT (7E11.4)

 R_{ti}

Radii of the casing walls at each axial position corresponding to the static taps as mentioned on CARD 19. This card is entered blank if R_{ti} is constant since this value has been entered on CARD 3. (in.)

CARD 21. R_{hi} FORMAT (7E11.4)

Rhi

Radii of the hub wall at each axial position corresponding to the static taps as mentioned on CARD 19. This card is entered blank if Rh is constant since this value has been entered on CARD 3. (in.)

3.2 SET DATA

One card is required to give the number of subsets included in the set and to allow naming of the set. A set is usually interpreted as the data required to produce a constant rotor-speed operation characteristic. The card is placed before the subset data included in that set.

CARD 22. ISTART, HEAD 2 FORMAT (113, 19A4)

Number of subsets included in the set. **ISTART**

HEAD 2 An identification of the set. There are 76 spaces

allowed.

3.3 SUBSET DATA

This classification of data includes the actual flow measurements. The data may be entered in alternative methods depending on whether data are to be listed in full or advantage is taken of the data arrays output by a data reduction program for the supersonic compressor test facility. A maximum of 12 subsets may be included with each set.

CARD 23. HEAD 3 FORMAT (20A4)

HEAD 3 An identification of the subset. There are 80 spaces allowed.

CARD 24. NN, MM, IPT, INP, RPM FORMAT (413, 1E12.4)

NN Number of measuring stations at the outlet traverse measuring plane.

Number of streamtubes sought; there may be a maxi- $\mathbf{M}\mathbf{M}$

mum of 10.

IPT

= 0 if no plots are desired.

= 1 if only pressure loss plots are desired.

= 2 if only velocity ratio plots are desired.

= 3 if both velocity ratio and pressure loss plots are desired.

CARD 24. (Continued)

INP = 0 if input is by data array translation; CARDS 41

through 46 are expected to be supplied for each subset.

= 1 if input is by a full listing of averaged data; CARDS 25 through 40 are expected for each subset.

RPM Wheel rotations per minute; entered only if INP = 1.

CARDS 25 through 40 are expected if INP = 1.

CARD 25. p_{1t}, p_{1h}, p_{2t}, p_{2h}, p_{3t}, p_{3h} FORMAT (6E12.4)

Static pressure at outer casing at the inlet measuring plane. (lbf/in.²)

P_{1h} Static pressure at inner casing at the inlet measuring plane. (lbf/in.²)

p_{2t} Static pressure at outer casing for the outlet traverse measuring plane. (lbf/in.²)

p_{2h} Static pressure at inner casing for the outlet traverse measuring plane. (lbf/in.²)

Static pressure at outer casing for the outlet rake measuring plane. If the outlet traverse and rake measurements are made at the same plane, this value is not entered. (lik/in.2)

P_{3h} Static pressure at inner casing for the outlet rake measuring plane. If the outlet traverse and rake measurements are made at the same plane, this value is not entered. (lbf/in.²)

CARD 26. p_{ti} FORMAT (7E11.5)

Outer casing static pressure entered in a manner corresponding to the Z's of GROUP DATA CARD 19.

Leave blanks for unmeasured values. (lbf/in.²)

CARD 27. phi FORMAT (7E11.5)

phi Inner casing static pressures entered in a manner corresponding to the Z's of GROUP DATA CARD 19.

Leave blanks for unmeasured values. (lbf/in.2)

CARD 28. P_{1i} FORMAT (5E12.3)

P_{1i} Inlet total pressure. (lbf/in.²)

CARD 29 (30, 31)

 P_{2i} Outlet traverse total pressure. If NN = 5, one card P_{2i} is sufficient; if NN = 11 or 13, three cards are required. (lbf/in.2) CARD 32. P_{3i} FORMAT (5E12.3) Outlet rake total pressure. (lbf/in.2) P_{3i} CARD 33. FORMAT (5E12.3) T_{1i} Inlet total temperature. (°F) T_{1i} CARD 34. FORMAT (5E12.3) T2i Outlet traverse total temperature. (°F) T_{2i} CARD 35. T_{3i} FORMAT (5E12.3) T_{3i} Outlet rake total temperature. (°F) CARD 36. FORMAT (5E12.3) α_{1i} Inlet absolute flow angle in degrees. α_{1i} CARD 37 (38, 39) FORMAT (5E12.3) α_{2i} Outlet traverse absolute flow angle in degrees. If α_{2i} NN = 5, one card is sufficient; if NN = 11 or 13, three cards are necessary. CARD 40. FORMAT (5E12.3) α_{3i} Outlet rake absolute flow angle in degrees. This card α_{3i} must be supplied only if NN = 13 (CARD 24). CARDS 41 through 46 are expected if INP of CARD 24 equals zero. CARD 41. FORMAT (5E12.3) α_{3i} Absolute flow angles in degrees for the rake measure- α_{3i} ments. This card must be entered only if NN = 13; i. e., if NN = 13 (CARD 24). CARD 42. P_{ti} FORMAT (5E12.3) P_{ti} Traverse total pressures near the outer casing. This card is necessary only if NN = 11 or 13. Begin listing with the measurement nearest the outer casing. $(1bf/in.^2)$

FORMAT (5E12.3)

CARD 43. Phi

FORMAT (5E12.3)

 P_{hi}

Traverse total pressures near inner casing. This card is necessary only if NN = 11 or 13. Begin listing with the measurement nearest the mainstream values. ($lbf/in.^2$)

CARD 44. α_{ti}

FORMAT (5E12.3)

 α_{ti}

Traverse absolute flow angles in degrees nearest outer casing. This card is necessary only if NN = 11 or 13. Begin listing with measurements nearest the outer casing.

CARD 45. α_{hi}

FORMAT (5E12.3)

 $\alpha_{
m hi}$

Traverse absolute flow angle in degrees near inner casing. This card is necessary only if NN = 11 or 13. Begin listing with measurement nearest the mainstream values.

Arrangement of the measured values for CARDS 42 through 45 are entered in such a manner that the mainstream measurements in the data arrays may be placed in between these values.

CARD 46. NX, COR(NX), M

FORMAT (5(113, 1E12.3), 115)

NX

Channel number to be corrected.

COR(NX)

Correction to be substituted in channel NX.

M

= 0 if 5 corrections are sufficient; i. e., one card.

= 1 if another card of corrections is necessary.

CARD 46 may be entered whenever data arrays are supplied. This allows substitution for incorrect values in the data arrays. The card must be entered blank if there are no corrections.

The complete program is actually divided into two main sections; the first simply prepares the data for entry into the main calculations described in Section II. In the process the prepared data are stored on tape and there exists the option of recalling this tape to run the second part of the program independent of the first to obtain a different output. This option is controlled by the following two cards.

CARD 47. ITAPE

FORMAT (113)

ITAPE

- = 1 if input to second part is by cards.
- = 2 if input to second part is by tape.

CARD 48. IPRNT

FORMAT (113)

IPRNT

- = 0 to stop computation.
- = 1 for complete printout of step by step computation.
- = 2 for input and output tables only.

This option is useful in tracing errors. CARD 48 supercedes the IPRNT of CARD 1. These two cards are entered once, and a blank card follows to indicate program completion.

SECTION IV DESCRIPTION OF THE OUTPUT DATA

The output of this program may include

- 1. a. Results of step by step calculations, or
 - b. Six pages summarizing the main results.
- 2. Graphs prepared on a Calcomp plotter for:
 - a. The ratio of the axial and tangential components of the absolute velocity downstream of the rotor to the maximum axial velocity in function of annulus height, or
 - b. The composition of the overall relative total pressure loss according to the flow model in function of annulus height, or both.

In the following pages a brief description of Item 1.b. will be presented. An example of this output is shown in Appendix III. The results of the step by step calculations were used for checkout purposes and continue to be helpful in locating errors in input data; however, detailed description is unnecessary. Examples of the graphs are shown in Fig. 2.

Output data PAGE 1 presents a brief summary of the program input data.

Output data PAGE 2 presents the calculated boundaries and centers of the MM streamtubes for each measuring plane. These are presented both as the fractional part of annulus height and the radius in inches from the compressor axis.

Output data PAGE 3 presents a summary of the mass-averaged values of the streamtube flow variables in the absolute coordinate system for each of the measuring planes. Streamtubes are numbered from tip to hub in the first column. The second column repeats the streamtube center in the fractional part of the annulus height. The mass-averaged values of total pressure in units of lbf/in.² are presented in the third column. Similarly, the fourth column presents static pressure in units of lbf/in.²; the fifth column, total temperature, in °R; the sixth column, absolute flow angle, in degrees. The one-dimensional average in each measuring plane is also presented for the flow variables.

Output data PAGE 4 presents some of the main calculated flow conditions and their one-dimensional averages. The first and second columns again present streamtube number and the location of the streamtube center in the fractional part of annulus height. The third and fourth columns present the streamtube absolute Mach number and the relative Mach number, respectively. The fifth column presents the streamtube absolute total enthalpy in units of Btu/lbm. The sixth column presents the relative flow angle at each of the measuring planes in degrees. The seventh column presents the blade angle in degrees calculated at the radius of the streamtube center. The eighth column presents the relative total pressure in lbf/in.²; the ninth column, the relative total temperature in °R.

Output data PAGE 5 presents the total integrated mass flow in lbm/sec at each measuring plane along with the estimated percentage error in determining streamtube boundary and center location. It presents the calculations exhibiting the balance of the energy equation, various calculated values of static and total pressure at the rotor trailing edge, the results of the blockage factor calculation, and the streamtube area ratio from the sudden expansion calculations.

Output data PAGE 6 presents the principal results of the stream-tube calculations and generally involves the use of measured data upstream and downstream of the wheel. In addition to the streamtube number as a reference, presented are the streamtube average and the one-dimensional average of the absolute total pressure ratio, adiabatic efficiency, the overall relative total pressure loss coefficient, the passage entrance Mach number, the passage shock loss based on this Mach number, the loss in relative total pressure attributable to sudden expansion, the calculated (arithmetically) profile loss, the profile loss parameter, and the diffusion factor.

Computation time for one case is approximately two minutes.

REFERENCES

- 1. Schwenk, F. C., Lewis, G. W., and Hartmann, M. J. "A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors." NACA RM E57A30, 1957.
- 2. Wennerstrom, A. J. and Olympios, S. "A Theoretical Analysis of the Blunt Trailing Edge Supersonic Compressor and Comparison with Experiment." ARL 66-0236, November 1966.
- 3. Salvage, J. W. 'Investigation of the Flow through Supersonic Compressor Rotors of Blunt-Trailing-Edge Blade Design." University of Tennessee Space Institute, Tullahoma, Tennessee. 1969.
- 4. Carman, C. T. "Development of the Supersonic Compressor Test Facilities at the Arnold Engineering Development Center." AEDC-TR-65-169 (AD471021). October 1965.
- 5. Keenan, J. H. and Kaye, J. Gas Tables: Thermodynamic

 Properties of Air Products of Combustion and Component

 Gases, Compressible Flow Functions. John Wiley & Sons, Inc.,

 New York, May 1960.
- 6. Lewis Research Center, Cleveland, Ohio. 'Aerodynamic Design of Axial Flow Compressors.' NASA SP-36.
- 7. Steinke, R. J. and Crouse, J. E. "Analytical Studies of Aspect Ratio and Curvature Variation for Axial-Flow-Compressor-Inlet Stages Under High Loading." NASA TN D-3959, May 1967.
- 8. Wennerstrom, A. J. "Flow Tables for Air (γ = 1.4) Passing an Abrupt Area Increase Oblique to the Flow Direction." ARL 64-10, January 1964.

APPENDIXES

- I. ILLUSTRATIONS
- II. INPUT DATA
- III. OUTPUT DATA

Fig. 1 Mean Radius Profile - Blunt-Trailing-Edge Blade No. 1

TEST CASES FOR STREAMTUBE PROGRAM
FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 1 1.0N NIN EXHIBITING OUTPUT FOR 5 STREAMTUBES INFON NIN-5

Fig. 2 Test Cases for Streamtube Program

AEDC-TR-69-42

BREAKDOWN OF TOTAL PRESSURE LOSS

TEST CASES FOR STREAMTUBE PROGRAM
FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 1 1.0N MIN EXHIBITING OUTPUT FOR S STREAMTUBES MAEN NOW-6

TRAVERSE DATA

A -SHOCK LOSS

SUDDEN EXPANSION LOSS

+ -OVERALL LOSS

Fig. 2 Continued

RAKE DATA

A -SHOCK LOSS X -SUDDEN EXPRNSION LOSS

+ -OVERRLL LOSS

Fig. 2 Continued

AEDC-TR-69-42

TEST CASES FOR STREAMTUBE PROGRAM
FROM RUN CR 31 0094 SELECTED EXRIPLES FOR TEST CASES
DATA GROUP 2 1.0N MAX EXHIBITING OUTPUT FOR 10 STREAMTUBES MICH MIN-11

A - TANG VEL O - AKIRL VEL

Fig. 2 Continued

TRAVERSE DATA

A -SHOCK LOSS

X -SUDDEN EXPANSION LOSS

+ -OVERALL LOSS

Fig. 2 Continued

AEDC-TR-69-42

BREAKDOWN OF TOTAL PRESSURE LOSS

TEST CASES FOR STREAMTUBE PROGRAM
FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 2 1.0N MAX EXHIBITING OUTPUT FOR 10 STREAMTUBES MHEN NN-14

RAKE DATA

A -SHOCK LOSS X -SUCCEN EXPRISION LOSS

+ = OVERALL LOSS

Fig. 2 Continued

TEST CASES FOR STREAMTUBE PROGRAM
FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 3 1.0M HAX EXHIBITING OUTPUT FOR S STREAMTUBES MEN MI-13

A - TANG VEL O - RKIAL VEL

Fig. 2 Concluded

39

AEDC-TR-69-42

APPENDIX II INPUT DATA

ARO, INC.
Amold Air Force Station, Tennessee

CARD FORMAT

PROJECT NO.	SHEET 1 OF 4 PROGRAMMER SOLOMON -123
2 TEST CASES FOR STREAMTURE PROGRAM	41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 10 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
11.0185 9.8435 11.0185 9	. 1660483948
0.148252987	
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39	35766051 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79
6.44386824350	0 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 0 7 2 6 3 6 1 8 9 . 0 1 7 3 3 9 8 2 3 4
	311 .105
. 513	062 .045
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 15 37 39	921 , 904 , 905 , 963 , 9
046 030 22 24 26 28 30 32 34 36 38 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	311

CARD FORMAT

JOB TITLE	SHEET2 PROGRAMMER	OF	4
	41 43 45 47 49 51 10 42 44 46 48 50 52	53 55 57 59 61 63 65 54 56 58 60 62 64 6	67 69 71 73 75 77 79 56 68 70 72 74 76 78 80
BLANK CARD 3 FROM RUN CA 31 0094 SELECTED EXAMP	LES FOR TEST	CASES	
DRTR GROUP . ON MIN EXHIBITING QUT	PUT FOR 5 STR	eantubes when	NN = 5
8.87667 9.926661 9.95 10.8	12.540 2333 12.123 41 43 45 47 49 51	F3 FF F3 F0 0: 03 03	67 69 71 73 75 77 79
8.176669 9.03 12.0	2 12 13 50 32	33 12,54 4,920	66 68 70 72 74 76 78 80
16.250 20.500 23.750 14.847 21.070 23.437	21.300 1	9.960	
		8.29	
0.0 0.0	0.0	15.42 .0 53 55 57 59 61 33 65	67 69 71 73 75 77 79
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 03.0 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4	35.4 3 PUT FØR 10 ST	53 55 57 59 61 33 65 54 56 58 60 62 64 6 4 • 0 REAMTUBES WHE	SE 68 70 72 74 76 78 80

DE 2

ARO, INC.
Amold Air Force Station, Tennessee

CARD FORMAT

JOB TITLEPROJECT NO	SHEET 3 PROGRAMMER	OF4
11110 3 1 1 16710.	41 43 45 47 49 51 53 55 57 59 40 42 44 46 48 50 52 54 56 58	9 61 63 65 67 69 71 73 75 77 79 60 62 64 66 68 70 72 74 76 78 80
19.35933 18.9933 19.01 19.3		. 76332
14.847 14.943 14.928 29.75 30.70 31.00	14.915 14.918 31.25 31.50	
1 3 5 7 9 II 13 15 17 19 21 23 25 27 29 31 33 35 37 39	3 4 . 6 0 3 3 3 . 5 0 41 43 45 47 49 51 53 55 57 59	0 61 63 65 67 69 71 73 75 77 79
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 3 30 18 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		60 62 64 66 68 70 72 74 76 78 80
	315.00 317.00	
	0. 0 0. 0 85. 0 To. 5	
54,5	52, 5	61 63 65 67 69 71 73 75 77 79
DATA GROUP 3 1.0N MAX EXHIBITING DUT	PUT FOR 5 STREAMTUR	

CARD FORMAT

PROJECT NO.	SHEET 4 PROGRAMMER	OF
11.7633 11.99 19.00665 1	8.41331 21.54	61 63 65 67 69 71 73 75 77 79 60 62 64 66 68 70 72 74 76 78 80
14.855 14.94332 14.92666 1	7331 19.02432 19	.78331
25.3	8.5 28.5	
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 30		61 63 65 67 69 71 73 75 77 79
70.0663 67.0201 66.6014 6	40 42 44 46 48 50 52 54 56 58 7 3 8 1 1 6 9 59 48	60 62 64 66 68 70 72 74 76 78 80
	12.1817 305.5463	
108. 4 104. 4 102. 4 9 69. 4 47. 7 47. 9 5	9.7 98.4	
52,5 53,3 54,5 55,8 55,0 55,0 55,0 55,0 55,0 55,0 55	1 . O	0 61 63 65 67 69 71 73 75 77 79
BLANK CARD	40 42 44 46 48 50 52 54 56 58	60 62 64 66 68 70 72 74 76 78 80

42

APPENDIX III OUTPUT DATA

	INPUT	CONSTANTS													
R		11.01850	9.90000	11.018	850	9.90000	11.01850								
1															
A						0.0	0.16605								
-	0.0	0.0	0.0	0.0		0.0	0.10005								
. 8												154 1			8/31
	0.0	0.0	0.14835	0.0		0.0	Aug.								
C															
	0.90000	1.00000						7							
0)									(48.000)	1000				
	0.0	0.0	0.0	0.0		0.0	0.05520						1		
E		0.0	0.0	0.01	358	0.0									
	0.0	0.0		,											
F	F														
	0.0	0.0 CA 31 0094	6.44387 SELECTE	FYAMP	IFS FO	0.01734 OR TEST C	ASES								
	FROM RUN	O.O CA 31 OC94 DATA GROUP	SELECTE	FYAMP	IFS FO	R TEST C	ASES T FOR 5 S	STREAMTUR	ES WHEN	NN=5					
	O.O FROM RUN (CONSTANTS	CA 31 0094 DATA GROUP	SELECTE	FYAMP	IFS FO	R TEST C	ASES T FOR 5 S	STREAMTUR	ES WHEN	NN=5					
C	O.O FROM RUN	CA 31 0094 DATA GROUP FOR A SUBS	SELECTEI 1 1.0N	D EXAMP	LES FO	OR TEST C ING OUTPU	ASES T FOR 5 S	STREAMTUR	ES WHEN	NN=5					
C	O.O FROM RUN	CA 31 0094 DATA GROUP	SELECTEI 1 1.0N	D EXAMP	LES FO	OR TEST C ING OUTPU	T FOR 5 S	STREAMTUR	ES WHEN	NN=5					
	FROM RUN CONSTANTS P 11.89370	CA 31 0094 DATA GROUP FOR A SUBS	SELECTEI 1 1.0N 1 ET	D EXAMPINEX	LES FO	OR TEST C	0.0				0.0	0.0	0.0	2.0	
(F	FROM RUN CONSTANTS 11.89370 PBAR 500 14.94	CA 31 0094 DATA GROUP FOR A SUBS	SELECTE 1 1.0N 0 ET 12.54000	D EXAMPMIN EX	700	O.O	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
14.85 16.25	0.0 FROM RUN (CONSTANTS) 11.89370 PBAR F500 14.94	CA 31 0094 DATA GROUP FOR A SUBS 11.57700 50 14.9330 00 23.7500	SELECTE 1 1.0N ET 12.54000 14.9220 1 21.3000 1	12.78	700 0.0	O.O	0.0 0.0								
14.85 16.25	0.0 FROM RUN (CONSTANTS) 11.89370 PBAR F500 14.94	CA 31 0094 DATA GROUP FOR A SUBS	SELECTE 1 1.0N ET 12.54000 14.9220 1 21.3000 1	12.78	700 0.0	O.O	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
14.85 16.25 14.86	0.0 FROM RUN CONSTANTS P 11.89370 PBAR 500 14.94 500 20.50 470 21.070	CA 31 0094 DATA GROUP FOR A SUBS 11.57700 50 14.9330 00 23.7500 00 23.4370	SELECTE 1 1.0N 0 ET 12.54000 14.9220 1 21.3000 1 21.1230 1	12.78 4.9200 9.9000	700 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	2.0	
14.85 16.25 14.86	0.0 FROM RUN CONSTANTS P 11.89370 PBAR 500 14.94 500 20.50 470 21.070	CA 31 0094 DATA GROUP FOR A SUBS 11.57700 50 14.9330 00 23.7500	SELECTE 1 1.0N 0 ET 12.54000 14.9220 1 21.3000 1 21.1230 1	12.78 4.9200 9.9000	700 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	2.0	
14.85 16.25 14.86	0.0 FROM RUN CONSTANTS 11.89370 PBAR 500 14.94 500 20.50 470 21.070 TEMP 140 525.40	CA 31 0094 DATA GROUP FOR A SUBS 11.57700 50 14.9330 00 23.7500 00 23.4370	SELECTE 1 1.0N 0 ET 12.54000 14.9220 1 21.3000 1 21.1230 1	12.78 4.9200 9.9000	700 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	675.090	
14.85 16.25 14.86	0.0 FROM RUN CONSTANTS 11.89370 PBAR 500 14.94 500 20.50 470 21.070 TEMP 140 525.40	CA 31 0094 DATA GROUP FOR A SUBS 11.67700 50 14.9330 00 23.7500 00 23.4370 00 524.750 GREES	SELECTE 1 1.0N ET 12.54000 14.9220 1 21.3000 1 21.1230 1	12.78 4.9200 9.9000	700 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 674-170	0.0 0.0 0.0 0.0	0.0	0.0	0.0	675.090	
14.85 16.25 14.86	0.0 FROM RUN CONSTANTS 11.89300 PBAR 500 14.94 500 20.500 470 21.070 TEMP 140 525.40 ANGLEDE 0 0.0	CA 31 0094 DATA GROUP FOR A SUBS 11.67700 50 14.9330 00 23.7500 00 23.4370 00 524.750 GREES	SELECTE 1 1.0N ET 12.54000 14.9220 1 21.3000 1 21.1230 1	12.78 4.9200 9.9600 27.960	700 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	675.090	

DATA GROUP 1 1.0N MIN EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=5

CALCULATED BOUNDARIES AND CENTERS OF STREAMTUBES
RATIO TO PASSAGE HEIGHT AND RADIUS IN INCHES

STREAMTUBE NO.	OU	TREAMTUBE TER NTER	0	TRAVERSE UTER ENTER	OUTLET RAKE OUTER CENTER		
	IN	NER	1	NNER	INNER	La Santa	
· · · · · · · · · · · · · · · · · · ·	1.0000	11.0185	1.0000	11.0185	1.0000	11.0185	
	0.8820	10.8798	0.7969	10.7914	0.7855	10.7785	
	0.7912	10.7731	0.7004	10.6834	0.6941	10.6763	
2							
	0.7912	10.7731	0.7004	10.6834	0.6941	10.6763	
	0.6999	10.6659	0.6193	10.5926	0.6167	10.5897	
	0.6079	10.5577	0.5436	10.5080	0.5431	10.5074	
3							
	0.5079	10.5577	0.5436	10.5080	0.5431	10.5074	
	7.5146	10.4481	0.4579	10.4233	0.4676	10.4230	
	0.4198	10.3368	·. 3.3878	10.3338	0.3873	10.3332	
4							
	0.4198	10.3368	0.3878	10.3338	0.3873	10.3332	
	0.3237	10.2238	0.3032	10.2391	0.3023	10.2381	
	0.2261	10.1092	0.2144	10.1398	0.2132	10.1385	
5							
	0.2261	10.1092	0.2144	10.1398	0.2132	10.1385	
	0.1271	9.9928	0.1223	10.0368	0.1214	10.0358	
	0.0	9.8435	0.0	9.9000	0.0	9.9000	

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 1 1.0N MIN EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=5

SUMMARY OF MASS AVERAGED STREAMTUBE FLOW VARIABLES

	RADIAL	RATIO TO	TOTAL	STATIC	TOTAL	ABSOLUTE	
	POSITION	PASSAGE HEIGHT	PRESSURE	PRESSURE	TEMP	FLOW ANGLE	
INLET							
	1	0.8820	14.7865	11.7029	528.2647	0.0	
	2	0.6999	14.9434	11.7418	526.7777	0.0	
	3	0.5146	14.9375	11.7819	526.2191	0.0	
	4	0.3237	14.9228	11.8231	526.9851	0.0	
	5	0.1271	14.8740	11.8653	529.0062	0.0	
	AVERAGE		14.8928	11.7830	527.4506	0.0	
OUTLET							
THE CHOL	1	2.7969	18.8101	12.7366	680.7538	45.5406	
	2	0.5193	21.8457	12.6960	696.1969	34.6389	
	3	0.4679	23.0468	12.6561	701.4062	34.6209	
	4	0.3032	21.2484	12.6146	689.9601	35.3193	
	5	0.1223	19.7691	12.5701	678.4390	34.2794	
	AVERAGE		20.9440	12.6547	689.3512	36.8798	
OUTLET							
RAKE							
	1	0.7855	19.2960	12.7330	684.2809	43.5589	
	2	0.6157	22.1139	12.6963	691.9601	34.8549	
	3	0.4676	22.7793	12.6561	693.1563	34.6406	
	4	0.3023	21.0746	12.6144	689.0272	35.3176	
	5	0.1214	19.7785	12.5698	679.3307	34.2702	
	AVERAGE		21.0084	12.6539	687.5511	36.5284	

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES DATA GROUP 1 1.0N MIN EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=5

CALCULATED FLOW CONDITIONS

	RADIAL POSITION	RATIO TO PASSAGE	ABSOLUTE MACH	RELATIVE	TOTAL YALAHTA	RELATIVE	BLADE	RELATIVE	RELATIVE
	POSITION	HEIGHT	NUMBER	NUMBER	LHIMALFI	ANGLE	ANGLE	PRESSURE	TEMPERATURE
INLET					-				
	1	0.8820	0.5877	1.5807	126.7801	68.1746	61.0340	48.3568	741.4553
	2	0.6999	0.5970	1.5607	126.4237	67.5112	60.5495	47.1137	731.6788
	3	0.5146	0.5921	1.5317	126.2897	67.2583	60.0406	45.3034	722.8362
	4	0.3237	0.5863	1.4997	126.4734	66.9872	59.4998	43.3998	715.2469
	5	0.1271	0.5774	1.4640	126.9579	66.7729	58.9241	41.3657	708.8473
30 - 10 - 10	AVERAGE		0.5881	1.5274	126.5850	67.3408	60.0096	45.1079	724.0129
OUTLET									
TRAVERSE									
	11	0.7969	0.7679	0.9341	153.4420	54.8433	30.7815	22.3548	715.0986
	2	0.6193	0.9160	1.0850	167.1701	46.0029	30.3154	26.6014	736.4295
	3	0.4679	0.9666	1.0942	168.4284	42.8055	29.9147	26.4946	729.8666
	4	0.3032	0.8965	1.0414	165.6640	45.3831	29.4751	25.0703	723.2945
	5	0.1223	0.8312	1.0280	162.8834	48.0754	28.9877	24.5838	721.9590
	AVERAGE		0.8757	1.0345	165.5176	47.4220	29.8949	25.0210	725.3296
OUTLET									
RAKE									
	1	0.7855	0.7944	0.9568	164.2931	53.0107	30.7516	22.9256	718.7466
	2	0.6167	0.9270	1.0876	166.1469	45.6151	30.3086	26.6877	730.0880
	3	0.4676	0.9563	1.0854	166.4357	43.5426	29.9139	26.5347	724.0073
	4	0.3023	9.9889	1.0397	165.4388	45.7681	29.4726	25.0186	723.5840
	5	0.1214	0.8317	1.0276	163.0986	48.0184	28.9854	24.5709	722.7000
	AVERAGE		0.8797	1.0394	165.0826	47.1910	29.8864	25.1475	723.8252

D
Ш
D
0
-
Z
6
8
4
N

COMMENTS								PAGE	
				IN	LFT	OUTLET TRAV.	OUTLET RAKE		
MASS FLOW				20	9760 00	21.684D 00	21.5620 00		
	OSS IN DETERMININ	IG RADIAL	POSITIONS		6530-09	2.0470-07	2.9160-07		
	PE	CENT ENER	GY UNBALANCE						
	STREAMTUBE		DUTLET TRAV			DUTLET RAKE			
		DELTA(H)	DELTA(E)/DELTA	A(H)	DELTA(H)	DELTA(F)/DFL	TA(H)		
	1	36.662	-1.452521		37.513	-1.1532			
	2	40.746	4.91617		39.723	1.2555	10 00		
	3	42.139	4.98455		49.146	1.7029	80 00		
	4	39.191	5.01874	0 00	38.965	5.2470	30 00		
	5	35.926	8.127711	0 00	36.141	8,5979	50 nn		
	STAI	IC PRESSI	JRE AT TRAILING E	D 00	38.498 RELAT	IVE TOTAL PRESSU	RE AT TRAILING	EDGF	
STREAMTUBE 1 2 3	PASSAGE ENTE 45.130 44.017 42.877	QUATIONS	DUTLET TRAV. 5.596 4.904 5.915	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501	RELAT	DUTLET TRAV. 29.710 27.237 26.770	OUTLET RAKE 28.712 27.218 26.822		
	PASSAGE ENTE PASSAGE ENTE 45-130 44-017	QUATIONS	FROM SUDDEN EXPAI OUTLET TRAV. 5.596 4.904	DGE NSION EQUATI OUTLET RAK 5.456 4.997	RELAT	FROM SUDDEN EXPA	NE AT TRAILING ON SION FQUATIONS OUTLET RAKE 28.712 27.218		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIS	QUATIONS RANCE VERSE = -0.	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 3142 OUTLET R.	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.120 44.017 42.877 41.623 40.280 CTOROUTLET TRAK	QUATIONS RANCE VERSE = -0. AREA RATI	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 3142 OUTLET R	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE = -0.3456 LADE AREA RA OUTLET RAKE	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIS	QUATIONS RANCE VERSE = -0. AREA RATION OUT	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 3142 OUTLET RITTER	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA OUTLET RAKE 1.299	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIS	QUATIONS RANCE VERSE = -0. AREA RATI	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 .3142 OUTLET RI IOACTUAL EXIT BI	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA OUTLET RAKE 1.299 0.903	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIS	QUATIONS RANCE VERSE = -0. AREA RATION	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 3142 OUTLET R. (OACTUAL EXIT BILLET TRAVERSE 1.437 0.904 0.927	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA OUTLET RAKE 1.299 0.903 0.914	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIN	QUATIONS RANCE VERSE = -0. AREA RATION OUT	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 .3142 OUTLET R. IOACTUAL EXIT BI ILET TRAVERSE 1.437 1.904 1.927	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA OUTLET RAKE 1.299 0.903 0.914 0.954	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		
STREAMTUBE 1 2 3 4 5 BLOCKAGE FAI	PASSAGE ENTE 45.100 44.017 42.877 41.623 40.280 CTOROUTLET TRAIN	QUATIONS RANCE VERSE = -0. AREA RATION OUT	OUTLET TRAV. 5.596 4.904 5.915 5.115 4.178 3142 OUTLET R. (OACTUAL EXIT BILLET TRAVERSE 1.437 0.904 0.927	DGE NSION EQUATI OUTLET RAK 5.456 4.997 5.501 5.014 4.199 AKE= -0.3456 LADE AREA RA OUTLET RAKE 1.299 0.903 0.914	RELAT	DUTLET TRAV. 29.710 27.237 26.770 26.240 26.729	OUTLET RAKE 28.712 27.218 26.822 26.303		

AVERAGE

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES DATA GROUP 1 1.0N MIN FXHIBITING DUTPUT FOR 5 STREAMTUBES WHEN NN=5

PAGE 6

RESULTS OF STREAMTUBE CALCULATIONS

	INLETDU	TLET TRAVERS	E		n orrestore				
RADIAL POSITION	TOTAL PRESSURE RATIO	ADIABATIC	OVERALL	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE LOSS	PROFILE LOSS PARAMETER	DIFFUSION
1	1.2721	0.2455	0.6880	1.8562	0.2523	0.2007	0.2350	0.0227	0.4099
2	1.4619	0.3546	0.5621	1.8318	0.2415	0.0180	0.3026	0.0350	0.2967
3	1.5429	0.3942	0.5550	1.8060	0.2310	0.0082	0.3158	0.0381	0.2891
4	1.4239	0.3419	0.5843	1.7776	0.2194	0.0370	0.3279	0.0375	0.2993
5	1.3291	0.2985	0.5799	1.7471	0.2071	0.0727	0.3001	0.0323	0.2862
AVERAGE	1.40598	0.32693	0.59384	1.80373	0.23024	0.06732	0.29628	0.03312	0.31627
	INLET	DUTLET RAKE							
RADIAL POSITION	PRESSURE RATIO	ADIABATIC EFFICIENCY	OVERALL	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE LOSS	PROFILE LOSS PARAMETER	DIFFUSION
1	1.3050	0.2663	0.6693	1.8562	0.2523	0.1579	0.2592	0.0262	0.3947
2	1.4798	0.3761	0.5589	1.8318	0.2415	0.0150	0.3025	0.0352	0.2993
3	1.5250	0.4020	0.5537	1.8060	0.2310	0.0086	0.3142	0.0375	0.2906
4	1.4122	0.3355	0.5857	1.7776	0.2194	0.0407	0.3256	0.0370	0.2997
5	1.3297	0.2972	0.5801	1.7471	0.2071	0.0724	0.3006	0.0324	0.2862

0-30041

0.03365

0.31411

1.41035 0.33543 0.58955 1.80373 0.23024 0.05890

		TES	T CASES F	OR STRE	AMTUBE P	ROGRAM								PAGE
	INPUT (CONSTANTS												
R														
	9.84350 1	1.01850	9.90000	11.01	850 9.	90000 1	11.01850							
A	0.0	0.0	0.0	0.0	0.	0	0.16605							
	3.0	0.0						Berlin To		1.				
В	0.0	0.0	0.14835	5 0.0	0.	0								
- с														
-	0.90000	1.00000												
D														
	0.0	0.0	0.0	0.0	0.	.0	0.05520							
E			0.0	0.01	358 0.	0								
	0.0	0.0	9.0	0.01	336 0									
F	0.0	0.0	6-4438	7 -0.50	726 0.	01734					•			
							CEC							
F	ROM RUN CA	A 31 0094 FA GROUP	2 1.0N	MAX EX	HIBITING	OUTPUT	FOR 10 5	TREAMTUR	SES WHEN	NN=11				
co	NSTANTS FO													
P 1	1.98300	11.77000	19.7630	0 21.54	000 0.	0	0.0		de si i					
00	AR													
0.0		0.0	0.0	14.8470	14.9430	14.9280	14.9150	14.9180	0.0	0.0	0.0	0.0	0.0	0.0
0.0	29.7500		31.0000	31.2500	31.5000	34.0000	36.2500	35.9000	34.6000	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	30.8930	31.9430	34.5370	35.9770	34. (030)	0.0	0.0	0.0	0.0	0.0	
	MP												771 000	744 700
TF	MP 0 526.830	526.410	526.980	528.900	787.670	786.670	780.670	774.670	776.670	782.040	780.993	776.010	771.980	164.190
TE 529.79				10202000					0.0	0.0	0.0	0.0	0.0	0.0
529.79 AN	GLEDEGR		0.0	0.0	0.0	55.830	51.000	52.000				0.0	0.0	2.0
529.79 AN 0.0	0.0	0.0				22.630			0.0	0.0	0.0	0.0	0.0	0.0
529.79 AN 0.0 0.0	90.400	88.100	86.200	85.000	70.500	55.800	51.000	52.000	0.0	0.0	4.4	0.0	0.0	0.0
529.79 AN 0.0 0.0 0.0	0.0	88.130 0.0		85.000	70.500	55.800	51.000	52.000	0.0	0.0			0.0	0.0

CALCULATED BOUNDARIES AND CENTERS OF STREAMTUBES
RATIO TO PASSAGE HEIGHT AND RADIUS IN INCHES

STREAMTUBE NO.	OU CE	TREAMTUBE TER NTER	C	TRAVERSE UTER ENTER	OUTLET RAKE OUTER CENTER		
	IN	NER '	I	NNER	INNER		
1							
	1.0000	11.0185	1.0000	11.0185	1.0000	11.018	
	0.9275	10.9333	3.7763	10.7683	0.7800	10.772	
	0.8819	10.8797	3.6960	10.6785	0.7010	10.684	
2							
	0.8819	10.8797	0.6960	10.6785	0.7010	10.684	
	0.8365	10.8264	0.6351	10.6103	0.6411	10.617	
	0.7911	10.7730	0.5842	10.5534	0.5911	10.561	
3							
	0.7911	10.7730	3.5842	10.5534	0.5911	10.561	
	0.7456	10.7195	3.5397	10.5037	0.5474	10.512	
	0.6999	10.6659	0.4998	10.4590	0.5081	10.468	
4							
	0.6999	10.6659	0.4998	10.4590	0.5081	10.468	
	0.6540	10.6120	0.4623	10.4170	0.4713	10.427	
	0.6079	10.5578	0.4263	10.3768	0.4358	10.387	
5							
	0.6079	10.5578	0.4263	10.3768	0.4358	10.387	
	0.5614	10.5032	0.3914	10.3378	. 0.4014	10.348	
	7.5146	10.4481	0.3574	10.2998	0.3677	10.311	
6							
	0.5146	10.4481	0.3574	10.2998	0.3677	10.311	
	0.4674	10.3927	0.3240	10.2624	0.3345	10.274	
	0.4198	10.3368	0.2910	10.2254	0.3016	10.237	
7							
	0.4198	10.3368	0.2910	10.2254	0.3016	10.237	
	3.3719	10.2805	0.2581	10.1887	0.2688	10.200	
	0.3236	10.2238	0.2252	10.1519	0.2359	10.163	
8							
	0.3236	10.2238	0.2252	10.1519	0.2359	10.163	
	0.2750	10.1667	0.1921	10.1149	0.2028	10.126	
	0.2261	10.1091	0.1587	10.0775	0.1693	10.089	
9							
	0.2261	10.1091	0.1587	10.0775	0.1693	10.089	
	2.1767	10.0512	0.1246	10.0394	0.1352	10.051	
	0.1270	9.9928	0.0898	10.0004	0.1001	10.011	
10	The second series of the second series						
	0.1270	9.9928	0.0898	10.0004	0.1001	10.011	
to CERTAIN S. 1878	0.0768	9.9337	0.0534	9.9598	0.0634	9.970	
	0.0	9.8435	0.0	9.9000	0.0	9.9000	

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 2 1.0N MAX EXHIBITING OUTPUT FOR 10 STREAMTUBES WHEN NN=11

SUMMARY OF MASS AVERAGED STREAMTUBE FLOW VARIABLES.

	POSITION	PASSAGE HEIGHT	TOTAL PRESSURE	PRESSURE	TOTAL	ABSOLUTE Flow angle	
INLET							
	1	0.9275	14.6811	11.7861	531.5419	0.0	
	2	0.8365	14.8924	11.8050	529.8412	0.0	
	3	0.7456	14.9329	11.8243	528.5614	0.0	
	4	0.6540	14.9495	11.8436	527.8224	0.0	
	5	0.5614	14.9412	11.8633	527.6409	0.0	
	6	0.4674	14.9238	11.8935	527.7741	0.0	
	7	0.3719	14.9174	11.9338	528.0092	0.0	
	8	0.2750	14.9145	11.9244	528.5386	0.0	
	9 .	0.1767	14.9152	11.9454	529.3882	0.0	
	10	0.0758	14.8290	11.9660	530.5064	0.0	
	AVERAGE		14.8897	11.8745	528.9624	0.0	
OUTLET							
RAVERSE		0.7753	30 0512	21.1668	701 2472	74 2044	
	2	0.6351	30.9512 32.4141	20.8912	791.2672	76.3946	
	2 3	0.5397		20.7213	788.1543	64.8474	
	4	0.4623	33.6540 34.8779	23.5723	785.5254 782.5876	57.8011	
	5	0.3914	35.7237	20.4461	780.5310	53.9044	
	6	0.3240	36.1830	23.3365	779.5343	52.0950	
	7	0.2581	36.3729	23.2306	779.2997	51.1369 50.7772	
	8	0.1921	36.3280	20.1188	779.7560	1. Sept. 이번 프레이크의 회사 (1) 프라이트 : Color II (1) 이번 (1) - Color II (1	
	9	0.1246	36.0160	19.9903	780.9998	50.9443	
	10	0.0534	33.4600	19.8575	782.8065	51.6622	
	10	0.0374	33.4000	17.0373	702.8003	53.0264	
	AVERAGE		34.5981	20.4331	783.0462	56.2589	
OUTLET							
RAKE							
	1	0.7830	31.1804	21.1728	785.4903	76.6526	
	2	0.5411	32.8269	20.9025	783.0721	65.3194	
	3	0.5474	34.0746	23.7352	781.0166	58.3364	
	4	0.4713	35.0766	20.5901	779.6713	54.2292	
		0.4014	35.6826	23.4533	778.5305	52.3195	
	6	2.3345	35.9406	20.3533	777.1745	51.2513	
	7	0.2688	35.9334	20.2478	775.5259	50.7867	
	8	0.2028	35.6723	20.1374	773.4523	50.8575	
	9	0.1352	35.1043	20.0112	770.7163	51.5194	
	10	0.0634	33.3180	19.8833	767.3171	52.1811	
	AVERAGE		34.4810	20.4497	777.1967	56.3453	

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 2 1.0N MAX EXHIBITING DUTPUT FOR 10 STREAMTUBES WHEN NN=11

CALCULATED FLOW CONDITIONS

	POSITION	RATIO TO PASSAGE	AB SOLUTE MACH	RELATIVE	TOTAL	RELATIVE	BLADE	RELATIVE	RELATIVE
		HEIGHT	NUMBER	NUMBER	CAINALPI	ANGLE	ANGLE	PRESSURE	TEMPERATUR
INLET									
	1	0.9275	0.5689	1.5629	127.5659	68.6532	61.1529	47.4402	743.4767
	2	0.8365	0.5857	1.5604	127.1581	67.9562	60.9143	47.3446	737.6650
	3 .	0.7456	0.5871	1.5495	126.8513	67.7370	60.6723	46.6708	732.3088
	4	2.6542	0.5864	1.5368	125.6741	67.5697	60.4249	45.8831	727.5037
	5	0.5614	0.5835	1.5220	126.6306	67.4582	60.1707	44.9811	723.2484
	6	0.4674	0.5797	1.5063	126.6625	67.3633	59.9085	44.0359	719.2850
	7	0.3719	0.5769	1.4907	126.7189	67.2304	59.6381	43.1263	715.4962
The state of the	8	0.2750	0.5744	1.4747	126.8458	67.0773	59.3591	42.2166	711.8262
	9	0.1767	0.5721	1.4583	127.0495	66.9016	59.0713	41.3079	708.5116
	10	0.0768	0.5620	1.4373	127.3176	66.9819	58.7735	40.1588	705.4598
	AVERAGE		0.5777	1.5099	126.9474	67.4929	60.0086	44.3165	722.4671
DUTLET									
MATHIE	1	0.7763	0.7582	0.4999	190.2076	69.0954	30.7276	25.0942	745.5762
	2	0.6351	0.8186	0.5748	189.4506	52.7462	30.3570	26.1205	741.3188
	3	0.5397	0.8629	0.6545	188.8115	45.3744	30.1053	27.6136	742.6115
	4	0.4623	0.9030	0.7072	188.0974	41.2108	29.8997	28.7023	740.4272
	5	0.3914	0.9304	0.7330	187.5976	38.7638	29.7111	29. 2092	737.1109
	6	0.3240	0.9465	0.7458	187.3555	37.2144	29.5309	29.4015	734.8601
	7	0.2581	0.9559	0.7482	187.2985	36.1163	29.3540	29.3148	732.9254
	the state of the s	0.1921	0.9597	0.7409	187.4093	35.2999	29.1764	28.9531	731.0246
	8 9		0.9577	0.7230	187.7115	34.7479	28.9940	28.2964	729.2198
	10	0.1246		0.6870	188.1506	38.2214			738.1598
	10	0.0534	0.8973	0.6870	188.1506	38.2214	28.8011	27.2126	738.1598
	AVERAGE		0.8990	0.6814	188.2090	42.8790	29.6657	27.9918	737.3234
DUTLET									
RAKE									
	1	0.7800	0.7656	0.4975	188.8029	69.1890	30.7372	25.0620	738.2983
	2	0.6411	0.8305	0.5685	188.2152	52.4125	30.3730	26.0133	733.0213
	3	0.5474	0.8740	0.6486	187.7156	44.9840	30.1255	27.4962	734.8428
	4	0.4713	0.9074	0.7044	187.3887	41.1491	29.9237	28.6569	736.1385
	5	9.4014	9.9286	0.7310	187.1116	39.0609	29.7376	29.1785	735.2389
	6	0.3345	0.9399	0.7449	186.7821	37.8436	29.5588	29.4013	734.0343
	7	0.2688	0.9443	0.7488	186.3817	37.1264	29.3827	29.3551	732.1858
	9	0.2028	2.9427	0.7432	185.8781	36.8010	29.2053	29.0418	729.5112
	9	0.1352	0.9339	0.7270	185.2137	36.9336	29.0226	28.4310	725.8543
	10	0.0634	0.8921	0.7077	184.3885	39.3780	28.8281	27.7554	728.4797
	AVERAGE		0.8959	0.6822	186.7878	43.4878	29.6895	28.0391	732.7605

						PAGE
			INLFT	DUTLET TRAV.	OUTLET RAKE	
MASS FLOW			20.7120 00			
PERCENT MASS LOSS IN D	ETERMINING RADIAL	POSITIONS	2.1700-08	3.085D-07	20.383D 00 3.008D-07	
	DEDCENT FUE			3.4.0305-61	3.60.911-67	
		RGY UNBALANCE				
STREAMT	UBE (DUTLET TRAV		DUTLET RAKE		
	DELTA(H)	DELTA(E)/DELTA(H)	DELTA(H)	DELTA(E)/DEL	TATHS	
	62.642	3.739120 00	61.237	8.8489		
2	62.292	5.074860 00	61.057	1.7908		
· · · · · · · · · · · · · · · · · · ·	61.960	7.648990 00	60.864	4.5751		
4	61.423	8.402440 00	60.715	6.6443		
5	60.967	8.371120 20	60.481	7.5256		
6	60.693	8.55066D 00	60.120	8.1245		
	60.590	8.752850 00	59.663	8.4138		
8	60.564	8.851720 00	59.032	8.2702		
9	60.662	8.85254D 00	58.164	7.6355		
10	60.833	1.303230 01	57.071	9.6010		
AVER	RAGE 61.262	8.12866D 00	59.840	6.3466	10.00	
		RE AT TRAILING EDGE		0. 7400	10 00	
FROM NORMAL		FROM SUDDEN EXPANSION E			RE AT TRAILING EDG	
	SHOCK EQUATIONS	FROM SUDDEN EXPANSION E	QUATIONS F	ROM SUDDEN EXPA	NSION FQUATIONS	
	SHOCK EQUATIONS AGE ENTRANCE 44.827	OUTLET TRAV. OUTLE	QUATIONS F	ROM SUDDEN EXPAN	NSION EQUATIONS	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311	OUTLET TRAV. OUTLE	QUATIONS F	TLET TRAV.	OUTLET RAKE 32.785	
	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1	T RAKE DU 8.009	TLET TRAV. 32.884 29.535	OUTLET RAKE 32.785 29.225	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.831 43.828 43.302	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1	QUATIONS F T RAKE DU 8.009 6.630	TLET TRAV.	OUTLET RAKE 32.785 29.225 29.281	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.827 44.311 43.828 43.302 42.735	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1	T RAKE DU 8.009 6.630 6.330	TLET TRAV. 32.884 29.535 29.546	OUTLET RAKE 32.785 29.225 29.281 29.782	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.827 44.311 43.828 43.302 42.735 42.142	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 16.921 1	QUATIONS F T RAKE DU 8.009 6.630 6.330 6.395	TLET TRAV. 32.884 29.535 29.546 29.854	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 17.159 1	QUATIONS F T RAKE DU 8.009 6.630 6.330 6.395 6.588 6.712 6.774	TLET TRAV. 32.884 79.535 29.546 29.854 29.963	OUTLET RAKE 32.785 29.225 29.281 29.782 29.988	
STREAMTUBE PASS	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906	OUTLET TRAY. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 17.159 1 17.363 1	QUATIONS F T RAKE OU 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766	TLET TRAV. 32.884 29.535 29.546 29.854 29.963	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782	
STREAMTUBE PASS 1 2 3 4 5 6 7 8	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 16.921 1 17.159 1 17.363 1 17.509 1	T RAKE DU 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659	ROM SUDDEN EXPANTILET TRAV. 32.884 29.535 29.546 29.854 29.963 29.947 29.734	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606	OUTLET TRAV. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 17.159 1 17.363 1 17.509 1 16.363 1	QUATIONS F T RAKE OU 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766	ROM SUDDEN EXPAN TLET TRAV. 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.734	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 7.1	OUTLET TRAY. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 16.921 1 17.159 1 17.363 1 17.509 1 16.363 1 1843 OUTLET RAKE= 0	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 7.1	OUTLET TRAY. OUTLE 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 17.159 1 17.363 1 17.509 1 16.363 1	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 2.1 POSITION OUTL	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 17.159 17.363 17.509 16.363 1843 OUTLET RAKE= DACTUAL EXIT BLADE AR	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 0.1 PANSION AREA RATIO POSITION OUTL 1	OUTLET TRAV. OUTLET 17.965 1 16.493 1 16.147 1 16.317 1 16.645 1 17.159 1 17.159 1 17.363 1 17.509 1 16.363 1 1843 OUTLET RAKE= 0 DACTUAL EXIT BLADE ARI LET TRAVERSE OUTLET 2229 4.252	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 9.1 PANSION AREA RATIO POSITION OUTL 1 4.2	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 11.159 17.159 17.363 17.509 16.363 1843 OUTLET RAKE= OD-ACTUAL EXIT BLADE AR LET TRAVERSE 1229 1963 1945	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.906 40.250 39.606 LET TRAVERSE= 9.1 PANSION AREA RATIO POSITION OUTI 1 4.2 1.4 3	OUTLET TRAV. 17.965 16.493 16.147 16.317 17.16.645 17.159 17.363 17.509 16.363 17.509 16.363 1843 1843 1843 1843 1843 1843 1843 184	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 2.1 PANSION AREA RATIO POSITION OUTL 1 4.2 1.3 1.4	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 17.159 17.363 17.509 16.363 1843 OUTLET RAKE= OUTLET R	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 0.1 PANSION AREA RATIO POSITION OUTL 1 4.2 1.3 1.4 5.1.5	OUTLET TRAV. 17,965 16.493 16.147 16.317 16.645 11 17.159 17.159 17.509 16.363 1843 OUTLET RAKE= OUTLET RAKE= OUTLET RAKE= OUTLET RAVERSE OUTLET RAVERSE OUTLET RAVERSE 1.229 963 1.945 490 1.478 305 1.304 1.232	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.837 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 9.1 PANSION AREA RATIO POSITION OUTL 1 4.2 1.3 1.6 1.6	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 11 17.159 17.159 17.363 17.509 16.363 1843 OUTLET RAKE= OUTLET RAK	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.906 40.250 39.606 LET TRAVERSE= 9.1 PANSION AREA RATIO POSITION OUTL 1 4.2 1.4 2 1.5 6 1.5 6 1.7	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 11.7.159 17.363 17.509 16.363 17.509 16.363 1843 OUTLET RAKE= OD-ACTUAL EXIT BLADE AR LET TRAVERSE 1.229 1.229 1.229 1.478 1.304 1.232 1.81 1.197 1.181	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	
STREAMTUBE PASS 1 2 3 4 5 6 7 8 9 10 BLOCKAGE FACTOROUT CALCULATED SUDDEN EX	SHOCK EQUATIONS AGE ENTRANCE 44.877 44.311 43.828 43.302 42.735 42.142 41.536 40.906 40.250 39.606 LET TRAVERSE= 2.1 PANSION AREA RATIO 1 1 4.2 1.3 1.4 2 1.6 7 1.7 1.7 8	OUTLET TRAV. 17.965 16.493 16.147 16.317 16.645 11 17.159 17.159 17.363 17.509 16.363 1843 OUTLET RAKE= OUTLET RAK	QUATIONS F T RAKE 0U 8.009 6.630 6.330 6.395 6.588 6.712 6.774 6.766 6.659 5.798 .1891 EA RATIO IS 1.3	ROM SUDDEN EXPAN 32.884 29.535 29.546 29.854 29.963 29.947 29.734 29.289 28.582 27.964	OUTLET RAKE 32.785 29.225 29.281 29.782 29.782 29.978 30.041 29.914 29.574	

AEDC-TR-69-42

RESULTS OF STREAMTURE CALCULATIONS

	INLETOU	TLET TRAVERS	F						
RADIAL POSITION	TOTAL PRESSURE RATIO	ADIABATIC	OVERALL	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE LOSS	PROFILE LOSS PARAMETER	DIFFUSION
1	2.1082	0.4814	0.5873	1.8442	0.2479	0.2185	0.1209	0.0073	0.7152
2	2.1766	0.5057	0.5459	1.8330	0.2421	0.0961	0.2077	0.0211	0.6605
3	2.2537	0.5327	0.4956	1.8219	0.2375	0.0555	0.2026	0.0237	0.5981
4	2.3331	0.5625	0.4581	1.8100	0.2325	0.0338	0.1917	0.0239	0.5570
5	2.3910	0.5851	0.4364	1.7972	0.2274	0.0228	0.1863	0.0240	0.5353
6	2.4245	0.5986	0.4236	1.7838	0.2220	0.0170	0.1847	0.0241	0.5219
7	2.4383	0.6044	0.4199	1.7701	0.2164	0.0134	0.1901	0.0251	0.5155
8	2.4358	0.6043	0.4251	1.7558	0.2105	0.0111	0.2035	0.0270	0.5162
9	2.4147	0.5976	0.4402	1.7409	0.2044	0.0097	0.2261	0.0300	0.5246
10	2.2564	0.5456	0.4657	1.7261	0.1989	0.0266	0.2402	0.0303	0.5373
VFRAGE	2.32321	0.56180	0.46980	1.78829	0.22396	0.05045	0.19539	0.02364	0.5681
	INLETO	UTLET -RAKE							
RADIAL POSITION	TOTAL PRESSURE RATIO	ADIABATIC EFFICIENCY	OVERALL	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE LOSS	PROFILE LOSS PARAMETER	DIFFUSION
1	2.1239	0.4980	0.5892	-1.8442	0.2479	0.2166	0.1247	0.0075	0.7194
2	2.2043	0.5254	0.5505	1.8330	0.2421	0.0904	0.2180	0.0223	0.6685
3	2.2819	0.5517	0.5009	1.8219	0.2375	0.0512	0.2122	0.0250	0.6060
4	2.3463	0.5734	0.4618	1.8100	0.2325	0.0331	0.1962	0.0245	0.5609
5	2.3882	0.5890	0.4400	1.7972	0.2274	0.0242	0.1885	0.0242	0.5373
6	2.4083	0.5992	0.4264	1.7838	0.2220	0.0199	0.1845	0.0239	0.5221
7	2.4088	0.6042	0.4215	1.7701	0.2164	0.0179	0.1873	0.0244	0.5142
	2.3918	0.6058	0.4251	1.7558	0.2105	0.0176	0.1970	0.0256	0.5132
9	2.3536	0.6030	0.4386	1.7409	0.2044	0.0192	0.2150	0.0277	0.5201
10	2.2468	0.5784	0.4493	1.7261	0.1989	0.0358	0.2146	0.0266	0.5233
VERAGE	2.31538	0.57283	0.47033	1.78829	0.22396	0.05257	0.19380	0.02317	0.56850

			ST CASES F	OK SIKE	AMIUBE	PRUGRAM									PAGE 1
	INPUT	CONSTANT	S												
R'															
C	9.84350	11.01850	9.92000	11.01	850 9	90000	11.01850								
4															
	0.0	0.0	0.0	0.0	0	.0	0.16605								
В	2.0	0.0	0.14835	0.0	0	•0									
			0.14.055												
C															
	0.90000	1.00000													
0															
0	0.0	0.7	0.0	0.0	0	.0	0.05520								
E															
	0.0	0.0	0.0	0.01	358 0	.0									
_															
			6.44387 SELECTE	D EXAMP	LES FOR										
FR	ROM RUN (CA 31 0094 ATA GROUP	SELECTE 3 1.0N	D EXAMP	LES FOR	TEST CA		STREAMTU	BES WHEN	NN=1 3					
FR	ROM RUN (CA 31 0094	SELECTE 3 1.0N	D EXAMP	LES FOR	TEST CA		STREAMTU	BES WHEN	NN=1 3					
FR CON	ROM RUN (DA	CA 31 0094 ATA GROUP FOR A SUBS	SELECTE 3 1.0N	D EXAMP	LES FOR HIBITIN	TEST CA G OUTPUT	FOR 5	STREAMTU	BES WHEN	NN=13					
FR CON	ROM RUN (DA	CA 31 0094 ATA GROUP FOR A SUBS	SELECTE 3 1.0N	D EXAMP	LES FOR HIBITIN	TEST CA G OUTPUT	FOR 5	STREAMTU	BES WHEN	NN=1 3					
FR CON	NSTANTS F	CA 31 0094 ATA GROUP FOR A SUBS	SELECTE 3 1.0N	D EXAMP	LES FOR HIBITIN	TEST CA G OUTPUT	FOR 5	STREAMTU	BES WHEN	NN=1.3					
CON P 11 PBA	ROM RUN (D/ NSTANTS F	TA 31 0094 ATA GROUP FOR A SUBS 11.76330	SELECTE 3 1.0N SET 18.47331	D EXAMPMAX EX	LES FOR HIBITIN 665 19	TEST CA G OUTPUT .78331	FOR 5 9	14.9150	14.9133	0.0	0.0	0.0	0.0	0.0	
CON P 11 PBA	NSTANTS F	CA 31 0094 ATA GROUP FOR A SUBS 11.76330	3 1.0N SET 18.47331 0.0	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000	TEST CA G OUTPUT .78331 14.9433 29.2000	21.54000 14.9267 35.7000	14.9150 37.8500	14.9133	0.0	34.8000	34.1000	32.5500	0.0	
CON P 11 PBA	ROM RUN (D/ NSTANTS F	TA 31 0094 ATA GROUP FOR A SUBS 11.76330	3 1.0N SET 18.47331 0.0	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000	TEST CA G OUTPUT .78331 14.9433 29.2000	FOR 5 9	14.9150 37.8500	14.9133	0.0					
CON P 11 PBA	NSTANTS F	CA 31 0094 ATA GROUP FOR A SUBS 11.76330	3 1.0N SET 18.47331 0.0	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000	TEST CA G OUTPUT .78331 14.9433 29.2000	21.54000 14.9267 35.7000	14.9150 37.8500	14.9133	0.0	34.8000	34.1000	32.5500	0.0	
CON P 11 PBA 0 •0 •0	NSTANTS F 1.99000 AR 0.0 25.3000	CA 31 0094 ATA GROUP FOR A SUBS 11.76330 0.0 0.727.5000	3 1.0N SET 18.47331 0.0	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000 30.9200	.78331 .78331 .14.9433 .29.2000 .31.9833	FOR 5 9 21.54000 14.9267 35.7000 34.5766	14.9150 37.8500 36.0100	14.9133 36.0000 34.8066	0.0 35.5000 0.0	34.8000	34.1000	32.5500	0.0	
0 FR CON P 11 PBA .0 .0 .0	NSTANTS F 1.99000 AR 0.0 25.3000	CA 31 0094 ATA GROUP FOR A SUBS 11.76330 0.0 27.5000 0.0	SELECTE 3 1.0N SET 18.47331 0.0 28.2500 2	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000 30.9200	.78331 .78331 .14.9433 .29.2000 .31.9833	FOR 5 9 21.54000 14.9267 35.7000 34.5766	14.9150 37.8500 36.0100	14.9133 36.0000 34.8066	0.0 35.5000 0.0	34.8000	34.1000	32.5500	0.0	
O FR CON P 11 PBA 0 0 7 0 TFM 9.736	NSTANTS F 1.99000 AR 0.0 25.3000 0.0	CA 31 0094 ATA GROUP FOR A SUBS 11.76330 0.0 27.5000 0.0	SELECTE 3 1.0N SET 18.47331 0.0 28.2500 2	19.00 0.0 8.5000	LES FOR HIBITIN 665 19 14.8550 28.5000 30.9200	.78331 .78331 .14.9433 .29.2000 .31.9833	FOR 5 9 21.54000 14.9267 35.7000 34.5766	14.9150 37.8500 36.0100	14.9133 36.0000 34.8066	0.0 35.5000 0.0	34.8000	34.1000	32.5500	0.0	
O FR CON P 11 PBA 0 -0 -0 TFM 9-736 ANG 0-0 0-0	NSTANTS F 1.99000 AR 0.0 25.3000 0.0 6526.690 6526.690 6526.690 108.400	CA 31 0094 ATA GROUP FOR A SUBS 11.76330 0.0 0.27.5000 0.0 0.526.271 REES 0.0 0.104.400	18.47331 0.0 28.2500 2 0.0 527.051 5	19.00 0.0 8.5000 0.0 29.265	LES FOR HIBITIN 665 19 14.8550 28.5000 30.9200 787.670	.78331 14.9433 29.2000 31.9833 786.670	21.54000 14.9267 35.7000 34.5766 780.670 0.0 47.700	14.9150 37.8500 36.0100 774.670	14.9133 36.0000 34.8066 776.670	0.0 35.5000 0.0 782.728	781.055 0.0 52.500	34.1000 0.0 775.876 0.0 53.300	32.5500 0.0 771.852	765.216	
0 FR CON P 111 PBA 0 0 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	NSTANTS F 1.99000 AR 0.0 25.3000 0.0 6526.690 6526.690 6526.690 108.400	CA 31 0094 ATA GROUP FOR A SUBS 11.76330 0.0 0.27.5000 0.0 0.526.271 REES 0.0	18.47331 0.0 28.2500 2 0.0 527.051 5	19.00 0.0 8.5000 0.0	LES FOR HIBITIN 665 19 14.8550 28.5000 30.9200 787.670	.78331 .78331 .14.9433 .29.2000 .31.9833 .786.670	21.54000 14.9267 35.7000 34.5766 780.670 0.0 47.700	14.9150 37.8500 36.0100 774.670	14.9133 36.0000 34.8066 776.670	0.0 35.5000 0.0 782.728	781.055	775.876	771.852	765.216	

DATA GROUP 3 1.0N MAX EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=13

CALCULATED BOUNDARIES AND CENTERS OF STREAMTUBES
RATIO TO PASSAGE HEIGHT AND RADIUS IN INCHES

	INLET S	TREAMTUBE	OUTLET.	TRAVERSE	OUTLET RAKE		
STREAMTUBE NO.		TER NTER		UTER ENTER	OUTER CENTER		
		NER		NNER	INNER		
	14	MEK		MINEK	IMMER		
1		11 0100		** ***	1 0000	11 010	
	1.0000	11.0185	1.0000	11.0185	1.0000	11.018	
	0.8820	10.8799	0.5997	10.5707	0.7010	10.684	
	0.7914	10.7734	0.5296	10.4924	0.5912	10.561	
2							
	0.7914	10.7734	0.5296	10.4924	0.5912	10.561	
	0.7002	10.6663	3.4678	10.4232	0.5082	10.4684	
	0.6083	10.5582	0.4090	10.3574	0.4359	10.387	
3							
	0.6083	10.5582	0.4090	10.3574	0.4359	10.387	
	0.5150	10.4486	0.3501	10.2916	0.3677	10.311	
	0.4202	10.3372	0.2884	10.2225	0.3016	10.237	
4							
	0.4202	10.3372	0.2884	10.2225	0.3016	10.237	
	0.3240	10.2242	2.2236	10.1501	0.2360	10.163	
	0.2264	10.1095	0.1559	10.0743	0.1693	10.089	
5	0.2204	1001075	V	.5.5145	0.1073		
3	0 2244	10.1095	0.1559	10.0743	0.1693	10.089	
	0.2264						
	0.1272	9.9930	3.0847	9.9947	0.1001	10.012	
	0.0	9.8435	0.0	9.9000	0.0	9.900	

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 3 1.0N MAX EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=13

SUMMARY OF MASS AVERAGED STREAMTUBE FLOW VARIABLES

	POSITION	PASSAGE HEIGHT	TOTAL PRESSURE	STATIC PRESSURE	TOTAL TEMP	ABSOLUTE FLOW ANGL
INLET						
	1	0.8820	14.7923	11.7904	530.6331	0.0
	2	0.7002	14.9414	11.8313	528.0566	0.0
	3	0.5150	14.9315	11.8732	527.5847	0.0
	4	0.3240	14.9158	11.9166	528.3295	0.0
	5	0.1272	14.8689	11.9609	530.2725	0.0
	AVERAGE		14.8900	11.8745	528.9753	0.0
OUTLET						
TRAVERSE						
	1	0.5997	35.3261	18.7550	787.6370	44.1672
	2	0.4678	37.0745	18.7288	785.2097	47.1127
	3	0.3501	37.7026	18.6667	781.9266	47.2920
	4	0.2236	37.1536	18.5922	780.3389	49.4239
	5	0.0847	35.3806	18.5180	782.7836	51.8884
	AVERAGE		36.5274	19.6521	783.5792	47.9768
OUTLET						
RAKE			*			
	11	0.7010	32.0421	21.0435	784.4047	70.9886
	2 .	0.5082	34.6129	20.6728	780.2107	56.2870
	3	0.3677	35.8447	20.4213	777.6833	51.7866
	4	0.2360	35.8381	20.2081	774.5021	50.8219
	.5	0.1001	34.2526	19.9655	769.4693	51.8500
	AVERAGE		34.5181	23.4622	777.2540	56.3468

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES DATA GROUP 3 1.0N MAX EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=13

CALCULATED FLOW CONDITIONS

	RADIAL POSITION	RATID TO PASSAGE HEIGHT	ABSOLUTE MACH NUMBER	RELATIVE MACH NUMBER	YATEL	RELATIVE FLOW ANGLE	BLADE ANGLE	RELATIVE TOTAL PRESSURE	RELATIVE TOTAL TEMPERATURE
INLET									
	1	0.8820	0.5784	1.5637	127.3480	68.2897	61.0342	47.5144	740.9453
	2	0.7002	0.5870	1.5449	125.7302	67.6681	60.5503	46.3845	730.2055
	3	0.5150	0.5815	1.5157	126.6171	67.4379	60.0418	44.6044	721.5656
	4	0.3240	0.5754	1.4838	126.7957	67.1852	59.5007	42.7491	714.0634
	5	0.1272	0.5662	1.4483	127.2615	66.9865	58.9245	40.7759	707.6908
	AVERAGE		0.5777	1.5113	126.9505	67.5135	60.0103	44.4057	722.8941
OUTLET					•				
RAVERSE									
	1	0.5997	0.9964	0.8924	189.3248	36.7854	30.2637	31.4403	761.9600
	. 2	0.4678	1.0385	0.8438	188.7347	33.1181	29.9144	29.8293	738.0934
	3	0.3501	1.0552	0.8386	187.9368	31.4138	29.6007	29.5720	729.6947
	4	0.2236	1.0463	0.7897	187.5510	30.4732	29.2613	28.0398	720.2598
	5	0.0847	1.0086	0.7262	188.1450	31.0035	28.8859	26.2919	719.3741
	AVERAGE		1.0290	0.8182	188.3385	32.5588	29.5852	29.0347	733.8744
DUTLET									
RAKE									
	1	0.7010	0.7998	0.5213	188.5391	60.0146	30.5304	25.3147	733.6599
	2	0.5082	0.8914	0.6762	187.5198	42.9679	30.0216	28.0645	735.0716
	3.	0.3677	0.9345	0.7387	186.9057	38.5073	29.6478	29.3284	734.5577
	4	0.2360	0.9437	0.7467	186.1330	37.0272	29.2945	29.2416	730.9641
	5	0.1001	0.9138	0.7177	184.9109	38.1447	28.9277	28.1252	727.5257
	AVERAGE		0.8966	0.6801	186.8017	43.3323	29.6844	28.0149	732.3558

-	
D	-
П	1
C	7
()
-	7
Z	7
å	
0	-
V	0
4	
+	-
~	3
	_

COMMENTS							PAGE
			INL	ET	DUTLET TRAV.	OUTLET RAKE	
MASS FLOW			20.1	13D 00	21.684D 00	20.4070 00	
	IN DETERMINING RAD	IAL POSITIONS		47D-08	4.985D-07	1.5000-07	
	PERCENT	ENERGY UNBALANCE	3				
SI	REAMTUBE .	OUTLET TRAV			DUTLET RAKE		
	DELTA	H) DELTA(E)/DEL	TA(H)	DELTA(H)	DELTA(E)/DEL	TA(H)	
1	61.97			61.191	5.6795		
2	62.00			60.790		70 00	
3	61.32			59.337	7,691	250 00	
5	60.88			57.649		50 00	
	AVERAGE 61.38	8 7.0885	20 00	59.851	6.056	150 00	
	STATIC PR	ESSURE AT TRAILING	EDGE	RELAT	IVE TOTAL PRESSU	RE AT TRAILING EDG	F
	317110 11	LOGONE HI INHELIO					
FROM 1	NORMAL SHOCK EQUATION	NS FROM SUDDEN EXP	ANSION EQUATION	INS	FROM SUDDEN EXP	ANSION EQUATIONS	
STREAMTUBE	PASSAGE ENTRANCE	OUTLET TRAV.	DUTLET RAKE	. 0	UTLET TRAV.	OUTLET RAKE	
1	44.634	14.986	17.175		31.843	30.271	
2	43.661	16.979	16.345		29.920	29.494	
3	42.540	17.664	16.627		29.600	30.058	
5	41.314	17.988	16.750		28.052	29.798	
,	40.000	17.023	10.222		20.320		
BLOCKAGE FACTO	DROUTLET TRAVERSE=	-0.2874 OUTLET	RAKE= 0.1492	Name of the same			
CALCULATED SU	DEN EXPANSION AREA	RATIDACTUAL EXIT	BLADE AREA RAT	10 IS 1.	3741		
	RADIAL POSITION	OUTLET TRAVERSE	DUTLET RAKE				
	RADIAL POSTITION	1.095	2.673				
	2	1.058	1.382				
	3	1.034	1.215	Av.			
	4	1.026	1.182				

FROM RUN CA 31 0094 SELECTED EXAMPLES FOR TEST CASES
DATA GROUP 3 1.0N MAX EXHIBITING OUTPUT FOR 5 STREAMTUBES WHEN NN=13

PAGE 6

RESULTS OF STREAMTUBE CALCULATIONS

TNI	FT-	- OUT	ET	TRAN	/ERSE
1 14 1		CUUIL		INAI	FROE

POSITION	TOTAL PRESSURE RATIO	ADIABATIC EFFICIENCY	OVERALL LOSS	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE	PROFILE LOSS PARAMETER	DIFFUSION FACTOR	
1	2.3881				0.2458	0.0113	0.1202	0.0162		
2	2.4813	0.6036	0.4213	1.8181	0.2359	0.0026	0.1828	0.0255	0.4717	
3	2.5250	0.6233	0.4213	1.7926	0.2256	0.0009	0.1949	0.0274	0.4680	
4	2.4909	0.6194	0.4589	1.7647	0.2143	0.0004	0.2442	0.0343	0.4950	
5	2.3795	0.5852	0.5031	1.7348	0.2023	0.0012	0.2996	0.0413	0.5278	
AVERAGE	2.45298	0.60187	0.43638	1.79010	0.22477	0,00327	0.20834	0.02893	0.47913	

INLET--OUTLET RAKE

POSITION	TOTAL PRESSURE RATIO	ADIABATIC EFFICIENCY	LOSS	PASSAGE ENTRANCE MACH NO.	PASSAGE SHOCK LOSS	EXPANSION LOSS	PROFILE	PROFILE LOSS PARAMETER	DIFFUSION
1	2.1661	0.5121	0.5748	1.8404	0.2458	0.1387	0.1903	0.0160	0.7040
2	2.3166	0.5633	0.4829	1.8181	0.2359	0.0414	0.2056	0.0250	0.5844
3	2.4006	0.5948	0.4335	1.7926	0.2256	0.0223	0.1856	0.0239	0.5297
4	2.4027	0.6060	0.4233	1:7647	0.2143	0.0180	0.1910	0.0248	0.5135
5	2.3036	0.5922	0.4438	1.7348	0.2023	0.0267	0.2148	0.0272	0.5217
AVERAGE	2.31793	0.57368	0.47166	1.79010	0.22477	0.04942	0.19746	0.02339	0.57068

UNCLASSIFIED						
Security Classification						
DOCUMENT CONT	ROL DATA - R & D					
(Security classification of title, body of abstract and indexing	annotation must be entered when	the overall report is classified)				
1 ORIGINATING ACTIVITY (Corporate author)	2a. REPOR	28. REPORT SECURITY CLASSIFICATION				
Arnold Engineering Development Cente	er UNC	UNCLASSIFIED				
ARO, Inc., Operating Contractor	2b. GROUF	26. GROUP				
Arnold Air Force Station, Tennessee	N/A	N/A				
3 REPORT TITLE						
COMPUTER ANALYSIS OF THE RELATIVE FI SUPERSONIC COMPRESSOR BLADING	OW IN THE BLUNT	-TRAILING-EDGE				
April 1967 - December 1968 - Final I	Report					
5. AUTHOR(S) (First name, middle initial, last name)						
J. W. Salvage, ARO, Inc.						
, , , , , , , , , , , , , , , , , , ,						
6 REPORT DATE	78. TOTAL NO. OF PAGES	7b. NO. OF REFS				
May 1969	68	8				
BE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT	NUMBER(S)				
F40600-69-C-0001						
b. PROJECT NO. 7065	AEDC-TR-69-42					
^{c.} Program Element 61102F	9b. OTHER REPORT NO(S) (Any other numbers that may be easigned this report)					
	N/A					
d,						
This document has been approved for	public release	and sale;				
its distribution is unlimited.						
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
		arch Laboratories,				
Available in DDC	Office of Aero	space Research,				
INVALIANIE III DIA	West made to the second	ATD 01 45400				

13. ABSTRACT

The computer program presented in this report has been designed specifically for the analysis of the blunt-trailing-edge supersonic compressor. Beginning with flow property measurements obtained in a nonrotating coordinate system. streamtube boundaries are determined at each measuring plane. Then mass-averaged values of the flow properties in each streamtube are translated to a coordinate system rotating with the compressor rotor, and a particular one-dimensional flow model is imposed on each streamtube to describe the flow process through the The flow model includes analysis of shock loss and sudden expansion loss leading to an estimate of the additional loss occurring within the flow field of the rotor. Various other calculations are presented which are aimed at the analysis of data for accuracy and consistency.

Wright-Patterson AFB, Ohio 45433

Security Classification						
14. KEY WORDS	ROLE	C A	LINK B		LINK C	
	ROLE	WT	ROLE	WT	KOLE	WI
axial-flow compressors						
compressor blades						
supersonic flow						
computerized simulation				i '		
blunt bodies						
					į	
•						
	<u> </u>					
		!				
		,				
						1
						1
				1		
	ļ					
]			
•						
				l ,		
					,	
		1	ĺ			
·			1			
			<u></u>			
	-	•				
AFSC	ŀ					
AFSC track AFS Team	<u> </u>	<u></u>		L	<u>l</u>	