07

Дефекты с глубокими уровнями в полупроводниковой структуре фотоэлектрического преобразователя солнечной энергии с антиотражающей пленкой пористого кремния

© В.В. Трегулов 1 , В.Г. Литвинов 2 , А.В. Ермачихин 2

- 1 Рязанский государственный университет им. С.А. Есенина
- 2 Рязанский государственный радиотехнический университет

E-mail: trww@yandex.ru

Поступило в Редакцию 27 июня 2017 г.

Методом токовой релаксационной спектроскопии глубоких уровней проведено исследование дефектов в полупроводниковой структуре фотоэлектрического преобразователя солнечной энергии на основе p-n-перехода с антиотражающей пленкой пористого кремния на фронтальной поверхности. Предложено объяснение влияния толщины пленки пористого кремния, формируемой методом электрохимического травления, на характер трансформации дефектов с глубокими уровнями и показатели эффективности преобразования солнечной энергии.

DOI: 10.21883/PJTF.2017.21.45155.16929

Эффективность фотоэлектрического преобразователя солнечной энергии (ФЭП) с p-n-переходом на основе кремния может быть существенно повышена благодаря применению антиотражающей пленки пористого кремния (por-Si) [1]. Наиболее популярный способ изготовления таких ФЭП заключается в формировании пленки por-Si на фронтальной поверхности после создания p-n-перехода с малой

1*

глубиной залегания (не более $0.5\,\mu\mathrm{m}$) [1]. При этом длительность процесса электрохимического травления кремния не должна превышать $20-25\,\mathrm{s}$ при плотности тока $20-30\,\mathrm{mA/cm^2}$ [1,2]. В противном случае происходит прокол p-n-перехода, что может привести к возникновению дефектов с глубокими энергетическими уровнями (ГУ) в области пространственного заряда, которые оказывают существенное влияние на основные электрофизические характеристики ФЭП [3]. В связи с этим задача исследования дефектов с ГУ в полупроводниковых структурах ФЭП с антиотражающей пленкой por-Si является актуальной.

В настоящей работе для исследования дефектов использовался метод токовой релаксационной спектроскопии глубоких уровней (CDLTS). Применялся CDLTS-спектрометр, специально адаптированный для изучения образцов большой площади, с высокими токами утечки [4], что характерно для Φ ЭП.

Исследуемые образцы были изготовлены на кремниевых монокристаллических подложках р-типа проводимости с удельным сопротивлением $1 \Omega \cdot \text{ст}$ и ориентацией поверхности (100). Поверхность подложек подвергалась травлению в водном растворе КОН для получения текстурированного рельефа. Затем методом термической диффузии фосфора при температуре 1100° С в течение $10 \min$ формировался n^{+} – p-переход с глубиной залегания не более $0.5\,\mu\mathrm{m}$. После этого проводилось травление фосфоросиликатного стекла в водном растворе HF. Пленка por-Si выращивалась на поверхности n^+ -слоя методом анодного электрохимического травления в гальваностатическом режиме при плотности тока $20\,\text{mA/cm}^2$ в электролите, состоящем из смеси HF и C_2H_5OH в соотношении 1:1. Длительность процесса травления t_{et} составляла 5, 10 и 30 s для образцов № 2, 3 и 4 соответственно. На фронтальной поверхности образца № 1 пленка *por-*Si не выращивалась. На заключительном этапе формировались серебряные контакты к фронтальной и тыльной поверхностям ФЭП методом трафаретной печати. Использовалась серебряная паста типа ФС-1127 (ОАО "Монокристалл", Россия), применяемая при изготовлении фронтальных контактов кремниевых ФЭП.

При измерении CDLTS-спектров заполнение и опустошение ГУ проводились импульсным напряжением. Амплитуда напряжения импульса заполнения составляла 0 V, опустошение ГУ осуществлялось при напряжении обратного смещения 2 V. При таком режиме заполнения ГУ отсутствует инжекция неосновных носителей заряда в базу диодной структуры (p-типа), поэтому происходит преимущественно заполнение

CDLTS-спектры образцов № 1—4 при постоянной времени 1.18 ms.

ловушек основных носителей заряда — дырок. Такой режим измерения был выбран из соображений оптимального соотношения сигнал/шум. Анализ сигнала релаксации тока осуществлялся с помощью весовой функции "lock-in". Величины энергии активации ГУ E_t определялись по сдвигу максимумов CDLTS-спектров, измеренных при разных значениях постоянной времени [5]. Концентрация ГУ \overline{N}_t определялась по высоте пиков CDLTS-спектров [5].

Спектры CDLTS исследуемых образцов, измеренные при постоянной времени 1.18 ms, приведены на рисунке. Значения величин E_t с указанием погрешности, а также N_t представлены в таблице.

В спектрах всех образцов присутствует пик H5, достаточно большая ширина которого может быть обусловлена наложением сигналов от нескольких ГУ с близкими значениями E_t , что объясняет довольно большой разброс величины E_t (см. таблицу).

Формирование пленки por-Si при $t_{et}=5$ и $10\,\mathrm{s}$ (образцы № 2, 3) приводит к снижению концентрации ГУ H5 по сравнению с таковой для образца № 1 без пленки por-Si (см. рисунок и таблицу). Для образца № 2 наблюдаются рост концентрации ГУ H4 по

Параметры ГУ и характеристики ФЭП

Номер образца	t_{et} , s	ГУ	Параметры ГУ		Характеристики ФЭП				
			E_t , eV	N_t , cm ⁻³	U_{OC} , mV	J_{SC} , mA/cm ²	J_S , A/cm ²	FF, a.u.	$\eta,\%$
1	-	H2 H4 H5	0.18 ± 0.05 0.34 ± 0.03 0.49 ± 0.06	$2.78 \cdot 10^{15} \\ 6.80 \cdot 10^{14} \\ 8.16 \cdot 10^{15}$	505	13.64	$1.33 \cdot 10^{-6}$	0.77	7.08
2	5	H1 H4 H5	0.08 ± 0.03 0.34 ± 0.03 0.49 ± 0.06	$1.45 \cdot 10^{15} \\ 1.57 \cdot 10^{15} \\ 8.00 \cdot 10^{15}$	512	22.20	$1.41 \cdot 10^{-6}$	0.77	10.92
3	10	H3 H5	0.27 ± 0.04 0.49 ± 0.06	$2.31 \cdot 10^{14} \\ 2.67 \cdot 10^{15}$	523	31.54	$5.23 \cdot 10^{-8}$	0.79	14.27
		Поверхностные состояния					7		
4	30	H5	0.49 ± 0.06	$1.37 \cdot 10^{15}$	493	16.19	$2.17 \cdot 10^{-7}$	0.77	7.70

сравнению с аналогичной величиной для образца № 1 и появление ГУ H1. Широкий пик H2 в образце № 1 может быть сформирован несколькими ГУ с близкими значениями E_t . Более узкий пик H1, возникающий при формировании пленки por-Si в течение $t_{et}=5\,\mathrm{s}$ в образце № 2, может быть результатом трансформации дефектов, образующих широкий пик Н2 в образце № 1. Дальнейшее увеличение t_{et} до 10 s (образец № 3) приводит к снижению N_t ГУ H1 и H4до величины, меньшей уровня чувствительности CDLTS-спектрометра, и появлению ГУ Н3. Согласно литературным данным [1,2], при условиях, в которых формировались пленки por-Si образцов № 2 и 3, толщина слоя por-Si меньше глубины залегания p-n-перехода. В то же время представленная выше картина трансформации дефектов свидетельствует о влиянии пленки рог-Si на ГУ в области пространственного заряда p-n-перехода. Эту ситуацию можно объяснить возникновением локальных проколов плоскости p-n-перехода в результате электрохимического травления. Известно, что интенсивность электрохимического травления возрастает в местах скопления дефектов, а также в областях поверхности с более высокой напряженностью электрического поля [6,7], возникающих за счет текстурированного рельефа.

При $t_{et}=30\,\mathrm{s}$ (образец № 4), согласно [1,2], нижняя граница формируемой пленки por-Si пересекает плоскость p-n-перехода. Это сопровождается дальнейшим снижением концентрации ГУ H5 по сравнению с таковой для образцов № 1-3 и появлением широкого пика в CDLTS-спектрах, положение которого не зависит от температуры. Этот широкий пик расположен в области температур, в границах которой фиксировались дискретные пики от ГУ H1-H4 с энергиями активации в диапазоне величин $0.08-0.43\,\mathrm{eV}$ в образцах № 1-3 (см. рисунок и таблицу), и может быть связан с возникновением поверхностных состояний в плоскости p-n-перехода. Величина эффективной плотности поверхностных состояний составляет $\sim 1.5 \cdot 10^{11}\,\mathrm{cm}^{-2}$.

В таблице для исследуемых образцов также представлены основные электрофизические характеристики Φ ЭП: напряжение холостого хода U_{OC} , плотность тока короткого замыкания J_{SC} , плотность тока насыщения темновой вольт-амперной характеристики J_S , фактор заполнения FF и эффективность преобразования солнечного излучения η . Величины U_{OC} , J_{SC} , FF и η определены для условий освещения AM1.5.

Последовательное сопротивление всех исследованных образцов составляет $2.9 \pm 0.3 \, \Omega.$

Одной из причин роста величин U_{OC} , J_{SC} , FF и η для образцов № 1-3 (см. таблицу) может быть снижение отражательной способности фронтальной поверхности ФЭП за счет пленки *por*-Si [1]. Одновременно для указанных образцов заметно уменьшается величина J_S , что, согласно [3], может объясняться снижением влияния процессов рекомбинации носителей в области пространственного заряда p-n-перехода. Также при этом должен происходить рост значений U_{OC} , FF и η [3], что наблюдается для образцов № 1-3. Данная ситуация может быть связана со снижением концентрации ГУ Н5. Наиболее высокими показателями эффективности ФЭП при наиболее низком значении J_S (см. таблицу) обладает образец № 3, для которого концентрация ГУ Н5 имеет минимальное значение среди образцов № 1-3 и присутствует ГУ Н3 с относительно небольшой концентрацией. Дефекты с ГУ, характеризующиеся значениями E_t , близкими к середине запрещенной зоны, такие как Н3, Н4, Н5, как правило, играют роль рекомбинационных ловушек [3].

Снижение величин U_{OC} , J_{SC} , FF и η для образца \mathbb{N}_2 4 при одновременном повышении J_S может быть объяснено усилением влияния рекомбинационных процессов в области пространственного заряда p-n-перехода, вызванным появлением поверхностных состояний (см. рисунок и таблицу). В то же время концентрация ΓY H5 в образце \mathbb{N}_2 4 ниже, чем в остальных образцах. Снижение концентрации ΓY H5 с ростом величины t_{et} может быть связано с эффектом пассивации дефектов при формировании пленки por-Si [1,8].

Таким образом, формирование пленки por-Si на текстурированной фронтальной поверхности $\Phi \ni \Pi$ даже при небольших t_{et} приводит к локальным проколам p-n-перехода, которые сопровождаются трансформацией дефектов с ГУ. С увеличением t_{et} наблюдается снижение концентрации ГУ, находящихся в непосредственной близости от середины запрещенной зоны (H5). В то же время при достаточно больших значениях t_{et} , когда толщина пленки por-Si становится соизмеримой с глубиной залегания p-n-перехода или превышает ее, образуются поверхностные состояния, распределенные в широкой полосе значений E_t , и эффективность $\Phi \ni \Pi$ значительно снижается вследствие усиления рекомбинационных процессов в области пространственного заряда.

Представленные результаты получены в рамках выполнения государственного задания Министерства образования и науки РФ № 3.9506.2017/8.9 в Рязанском государственном университете им. С.А. Есенина, а также в рамках работ по гранту Президента РФ № 14.Z56.16.4518-МК в Рязанском государственном радиотехническом университете.

Список литературы

- [1] Handbook of porous silicon / Ed. L. Canham. Springer International Publ., 2014. 1017 p.
- [2] Remache L., Fourmond E., Mahdjoub A. et al. // Mater. Sci. Eng. B. 2011. V. 176. N 1. P. 45–48.
- [3] Зи С.М. Физика полупроводниковых приборов. М.: Мир., 1984. 456 с.
- [4] Litvinov V.G., Vishnyakov N.V., Gudzev V.V. et al. // Proc. of IEEE Int. Conf. industrial technology (ICIT). Seville, Spain, 2015. P. 1071–1074.
- [5] Litvinov V.G., Vishnyakov N.V., Gudzev V.V. et al. // MRS Adv. 2016. V. 1. N 14. P. 911–916.
- [6] *Батенков В.А.* Электрохимия полупроводников. Барнаул: Изд-во Алт. ун-та, 2002. 162 с.
- [7] Улин В.П., Улин Н.В., Солдатенков Ф.Ю. // ФТП. 2017. Т. 51. В. 4. С. 481–496
- [8] Стецюра С.В., Козловский А.В., Маляр И.В. // Письма в ЖТФ. 2015. Т. 41. В. 4. С. 24–32.