Big-Data-Technologien

Kapitel 15: Stream-Verarbeitung

Hochschule Trier Prof. Dr. Christoph Schmitz

Stream

- kontinuierlicher Fluss von Datensätzen
- gleichartige Datensätze
- unendlich (bzw. Ende nicht absehbar)
- Zugriff nur sequentiell
- Zugriff nur ein Mal pro Datensatz

"Messaging" vs. "Streaming" vs. ...

Messaging

- Transport von Daten von A nach B
- Architekturprinzip für verteilte Systeme
- Garantien, Transaktionen, Skalierbarkeit, ...

Streaming

- Verarbeitungsmodell für Datenströme
- Grundlage für Algorithmen

Echtzeit

hier: "weiche" Echtzeit

Operationen

- Filtern
- Transformieren

- Aggregation
- Join
 - → Worüber?
- Complex Event Processing

Operationen: Filtern

Operationen: Transformieren

Filtern und Transformieren

Filtern und Transformieren sind einfach!

```
for data in inputstream:
    if filter(data):
        outputstream.write(transform(data))
```

- Keine Korrelation zwischen Elementen
- Trivial zu parallelisieren
 - → vgl. Mapper (MapReduce), schmale Transformationen (Spark)

Parallelisierung: Filter, Transform

Operationen: Aggregation

- Worüber wird aggregiert?
 - Summe eines unendlichen Stroms?
 - Maximum eines unendlichen Stroms?

Operationen: Aggregation

- Worüber wird aggregiert?
 - Summe eines unendlichen Stroms?
 - Maximum eines unendlichen Stroms?
- Einschränkung auf Fenster
 - Bestimmte Anzahl von Elementen
 - Elemente innerhalb eines bestimmten Zeitraumes
- Was ist das Ergebnis?
 - → Strom von Ergebnissen

 $\Sigma = 17$

1 5 3 9 4 2 5 2 4 5 4 2

Fenster: letzte n Elemente

Zeitfenster: Hopping Windows

Zeitfenster: Tumbling Windows

Zeitfenster: Sliding Windows

Aggregatfunktionen: Wo lebt der Zustand?

```
window = []
for data in inputstream:
  # move window
  window.add(data)
  window.removeOldData()
  if newWindow():
    # emit aggregate
    outputstream.write(aggregate(window))
```

Behandeln von Zustand

Complex Event Processing

Zeitbegriffe

- Was ist der Zeitstempel eines Ereignisses?
- Event Time: Wann hat das Ereignis stattgefunden?
- Ingestion Time:
 Wann wurde das Ereignis in unser System eingefügt?
- Processing Time:
 Wann wurde das Ereignis verarbeitet?

"A long time ago in a galaxy far, far away..."

Beispiel: Star Wars

Processing Time

Kinostart in unserer Zeitrechnung

Event Time

Processing Time

Beispiel: Log-Daten

"Aggregiere die Log-Daten pro Tag!"

Zeitbegriffe: Strategien

- Wie mit verspäteten ("out-of-order") Daten umgehen?
- Strategie 1: Warten, dann verwerfen
 - Warte bis 3:00 Uhr am Folgetag.
 Was danach kommt, wird verworfen.

- Strategie 2: Ergebnisse aktualisieren
 - Wenn am 14.6. noch Ereignisse vom 12.6. bekannt werden, publiziere neue Aggregate für den 12.6.

Zwischenfazit

- Kontinuierliche Datenströme
- Operationen wie Batch-Verarbeitung, aber...

- ... andere Semantik von Aggregationen:
 - → Fenster

 Complex Event Processing als Königsdisziplin

Zwischenfazit

- Unterschiedliche Zeitbegriffe
 - Event Time ist das Ideal
 - Processing Time ist umsetzbar

Herausforderungen

- Die Klassiker...
 - Durchsatz
 - Latenz
 - Skalierbarkeit
- Zustandsbehaftete Operationen
 - Wo lebt der Zustand?
 - Skalierbarkeit
 - Beziehungen zwischen Ereignissen → Zeitbegriffe
- Complex Event Processing

Stream-Verarbeitung: Systeme

Spezialisten

Micro Batches

Message Broker

Kafka Streams

- Kafka transportiert nur Daten
 - keine Verarbeitung/Filterung/...
- Kafka Streams fügt Verarbeitung hinzu

Bibliothek → keine Infrastruktur außer Kafka

Kafka Streams

Kafka Streams

Codebeispiel

```
KStreamBuilder builder = new KStreamBuilder();
KStream<String, String> lines = builder.stream(Serdes.String(),
                                     Serdes.String(), "inputTopic");
KStream<String, String> warnings =
       lines.filter((key, value) -> value.contains("WARNING"));
warnings.to("warningsTopic");
Properties config = new Properties();
// config befüllen...
KafkaStreams streams = new KafkaStreams(builder, config);
streams.start();
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
```

inputTopic filter warningsTopic

Codebeispiel

Streams und Tabellen

- Tabellen
 - beinhalten Ist-Zustand:

kontostand = 100

- Streams (Logs)
 - dokumentieren Veränderungen:

kontostand ← kontostand + 50

Streams und Tabellen

Bild: confluent.io

KStreams und KTables

- KStream<K, V>
 - Nachrichten in einem Topic als Update-Stream
- KTable<K, V>
 - Ist-Zustand, verändert durch Updates

Wo leben KTables?

KTables: Beispiel

Partitionierung von Streams

Beispiel: Anzahl Zugriffe pro Benutzer

Partitionierung von Streams

Beispiel: Anzahl Zugriffe pro Benutzer

Joins

 Join: zusammengehörige Daten zusammenführen – aber welche?

Kafka Streams: Zusammenfassung

- Streamverarbeitung basierend auf Kafka
- Implementierung als Kafka-Client
- Wenig eigene Infrastruktur
- Dualität von Streams und Tabellen
- Operationen analog Spark etc.
- Zustandsbehaftete Operationen bleiben schwierig
- Lokaler Zustand pro Knoten