Odpowiedzi i schematy oceniania

Arkusz 1

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	B.	Jedyną liczbą pierwszą w danym przedziale jest 37.	
2.	C.	Po rozszerzeniu danych ułamków otrzymujemy: $\frac{22}{26} < \frac{23}{26} < \frac{24}{26}$.	
3.	D.	$9^{\log_3 16} = 3^{2\log_3 16} = 3^{\log_3 256} = 256$	
4.	A.	$ x < 6 \Leftrightarrow x > -6 \land x < 6 \Leftrightarrow x \in (-6,6)$	
5.	D.	$ A \ge 0$, stąd $ A \le 0$. Zatem jedynie liczba 0 nie spełnia danej	
		nierówności.	
6.	В.	Wyrażenie z przykładu B można zapisać w postaci: $\frac{x-5}{(x-5)^2}$.	
7.	В.	$(x+3)(x-7) = 0 \Leftrightarrow x+3 = 0 \lor x-7 = 0 \Leftrightarrow x = -3 \lor x = 7$	
8.	A.	$6 - 2m > 0 \Rightarrow -2m > -6 \Rightarrow m < 3$	
9.	В.	$x_W = -\frac{12}{6} \Rightarrow x_W = -2$	
10.	A.	$y_W = f(3) = 18$	
11.	C.	Wykres funkcji $y = \frac{2}{x}$ został przesunięty o 3 jednostki w dół,	
		zatem zbiorem wartości funkcji jest $R \setminus \{-3\}$.	
12.	C.	$f(-\frac{1}{2}) = \frac{1}{3}$	
13.	D.	$n^2 - 25 < 0 \Rightarrow n \in (-5,5)$, ale jedynie liczby 1, 2, 3, 4 z	
		wyznaczonego przedziału są naturalne dodatnie.	
14.	D.	$190 = 3 + (n-1) \cdot 5 \Rightarrow 5n = 192 \Rightarrow n = \frac{192}{5} \notin N_{+}$	
15.	A.	$q = \frac{1}{\sqrt{2} - \sqrt{3}} \Rightarrow q = \frac{\sqrt{2} + \sqrt{3}}{-1} \Rightarrow q = -\sqrt{2} - \sqrt{3}$	
16.	A.	Przeciwprostokątna $c=26$, najmniejszy kąt α leży naprzeciwko	

_			
		najkrótszego boku, zatem $\sin \alpha = \frac{10}{26}$.	
17.	D.	$\sin 20^{\circ} \cos 70^{\circ} + \cos 20^{\circ} \sin 70^{\circ} - tg10^{\circ} tg80^{\circ} =$ $= \sin 20^{\circ} \sin 20^{\circ} + \cos 20^{\circ} \cos 20^{\circ} - tg10^{\circ} ctg10^{\circ} = 1 - 1 = 0$	
18.	C.	$ \angle BCD = 90^{\circ} \Rightarrow \angle BDC = 66^{\circ} \Rightarrow BAC = 66^{\circ}$, gdyż kąty BAC i	
		BDC są kątami wpisanymi w okrąg opartymi na tym samym łuku.	
19.	B.	$\left \angle ABC \right = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ} \Rightarrow \left \angle DAB \right = 90^{\circ} - 50^{\circ} = 40^{\circ}$	
20.	A.	Boki trójkąta można zapisać w postaci $3\sqrt{2}, 5\sqrt{2}, 6\sqrt{2}$, zatem	
		proporcjonalne do nich są boki trójkąta z przykładu A.	
21.	B.	$a, a\sqrt{3}, a\sqrt{3}$ – odpowiednio krawędź sześcianu, przekątna ściany i	
		przekątna sześcianu	
		$a\sqrt{3} = a\sqrt{2} + 2 \Rightarrow a = \frac{2}{\sqrt{3} - \sqrt{2}} \Rightarrow a = 2(\sqrt{3} + \sqrt{2})$	
22.	B.	Ostrosłup ma więc 6 krawędzi bocznych i 6 krawędzi podstawy,	
		ma zatem 6 ścian bocznych i podstawę.	
23.	A.	r, h, v – odpowiednio promień podstawy, wysokość i objętość	
		ostrosłupa przed zmianami,	
		R, H, V – odpowiednio promień podstawy, wysokość i objętość	
		ostrosłupa po zmianach,	
		$R = 3r, H = \frac{1}{3}h, V = \pi \cdot 9r^2 \cdot \frac{1}{3}h = 3\pi r^2 h = 3v$	
24.	A.	$\frac{7+11+13+17+19+23}{6} = 15$	
25.	B.	$\bar{\Omega} = 52, \bar{A} = 16$, gdyż suma zbioru króli i kierów jest zbiorem	
		szesnastoelementowym.	
L		I .	

Zadania otwarte

Numer	Medelewe eteny pozwierzywonie zodonie	Liczba
zadania	Modelowe etapy rozwiązywania zadania	punktów

26.	Wyznaczenie pierwiastków trójmianu: $x_1 = -\frac{1}{4}, x_2 = \frac{1}{5}$.	1
	Rozwiązanie nierówności: $x \in \left(-\frac{1}{4}, \frac{1}{5}\right)$.	1
27.	Zapisanie prawej strony równania w postaci	1
	iloczynowej: $(x^2 - 9)(x + 5) = 0$.	
	Wyznaczenie pierwiastków równania: $x_1 = -3$, $x_2 = 3$, $x_3 = -5$.	1
28.	Obliczenie przeciwprostokątnej trójkąta ABC : $c = 26$ i obwodu	1
	trójkąta ABC: 60.	
	Obliczenie skali podobieństwa: $k = \frac{3}{2}$ i obwodu trójkąta	1
	KLM: O = 90.	
29.	Zapisanie równania wynikającego z twierdzenia o logarytmach:	1
	$\log_{121} 5\sqrt{5} = \frac{\log_5 5\sqrt{5}}{\log_5 121} \Rightarrow \log_{121} 5\sqrt{5} = \frac{\frac{3}{2} \log_5 5}{2 \log_5 11}.$	
	Wykazanie tezy zadania: $\log_{121} 5\sqrt{5} = \frac{3}{4a}$.	1
30.	Zapisanie układu równań: $\begin{cases} a_1 + 2r = 10 \\ a_1 + 6r = 42 \end{cases}$.	1
	Rozwiązanie układu równań: $\begin{cases} a_1 = -6 \\ r = 8 \end{cases}$	1
31.	Zapisanie zależności między liczbą zadań rozwiązywanych	1
	jednego dnia x i liczbą dni y : $xy = 448$.	
	Zapisanie układu równań: $\begin{cases} xy = 448 \\ (x+4)(y-2) = 448 \end{cases}$	1
	Zapisanie równania z jedną niewiadomą x lub y:	1
	$(x+4)\left(\frac{448}{x}-2\right)=448.$	
	Rozwiązanie układu: $x = 28$, $y = 16$.	1
32.	Wyznaczenie równania prostej $AB: y = \frac{1}{2}x - \frac{1}{2}$.	1
	Wyznaczenie równania prostej, w której zawarty jest bok	2 (1 punkt za

	BC: y = -2x + 17.	współczynnik
		kierunkowy i
		1 za pozostałe
		obliczenia)
	Wyznaczenie długości boku kwadratu: $ AB = 2\sqrt{5}$.	1
	Zapisanie układu równań z dwiema niewiadomymi $C = (x, y)$:	1
	$\int y = -2x + 17$	
	$\begin{cases} y = -2x + 17 \\ \sqrt{(x-7)^2 + (y-3)^2} = 2\sqrt{5} \end{cases}$	
	Rozwiązanie układu równań i podanie odpowiedzi:	1
	$C = (5,7) \lor C = (9,-1).$	
33.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	dokładnych oznaczeń:	
	a, h – odpowiednio krawędź podstawy i wysokość ostrosłupa,	
	lpha – kąt między ścianą boczną a płaszczyzna podstawy	
	ostrosłupa,	
	$V = \frac{1}{3}a^2h.$	
	Zapisanie układu równań: $\begin{cases} \frac{1}{3}a^2h = 48\\ \frac{2h}{a} = \frac{4}{3} \end{cases}$.	1
	Wyznaczenie $a, h: a = 6, h = 4$.	1
	Wyznaczenie wysokości ściany bocznej: $H = 5$.	1
	Wyznaczenie pola powierzchni bocznej ostrosłupa: $P_b = 60$.	1