P1 Chapter 7: Algebraic Methods

The Factor Theorem

The Factor Theorem

$$x^3 + x^2 - 4x - 4 = (x - 2)(x^2 + 3x + 2)$$

We can see that (x - 2) is a factor of $x^3 + x^2 - 4x - 4$. What would happen if x is 2?

2-2=0 so the RHS, and hence LHS would be 0.

The converse is also true: if we could find a value a such that the LHS is 0 when we substitute in a for x, then (x - a) would be a factor.

- ${\mathscr M}$ The Factor Theorem states that if f(x) is a polynomial then:
- If f(p) = 0, then (x p) is a factor of f(x).
- Conversely, if (x p) is a factor of f(x), then f(p) = 0.

Examples

Show that (x-2) is a factor of $x^3 + x^2 - 4x - 4$.

ק

Fully factorise $2x^3 + x^2 - 18x - 9$.

Examples

Show that (x-2) is a factor of $x^3 + x^2 - 4x - 4$.

Let
$$f(x) = x^3 + x^2 - 4x - 4$$

 $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$
 $\therefore (x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$.

Writing $f(x) = \cdots$ gives us appropriate notation, i.e. f(2), to show we're substituting 2 into the polynomial on the next line.

Fully factorise $2x^3 + x^2 - 18x - 9$.

Let
$$f(x) = 2x^3 + x^2 - 18x - 9$$

 $f(1) = 2(1)^3 + 1^2 - 18(1) - 9 = -24$
 $f(-1) = 2(-1)^3 + (-1)^2 + 18(-1) - 9 = 24$

f(3) = 0 : (x - 3) is a factor.

Using algebraic division we find that:

$$2x^3 + x^2 - 18x - 9 = (x - 3)(2x^2 + 7x + 3)$$
$$= (x - 3)(2x + 1)(x + 3)$$

Keep on trying values until you find one where f(p) = 0. Recommended order: p = 1, -1, 2, -2, ...

You can use the 'Table' mode on your calculator to try lots of values in a range – see my interactive Classwiz powerpoint.

Tip: If you consider that:

 $2x^3 + x^2 - 18x - 9 = (x - 3)(ax^2 + bx + c)$ it's clear, by considering the expansion of the RHS, that a = 2 and c = 3. We can determine b by considering for example the x terms in the expansion. This is much faster than algebraic division.

Using Factor Theorem to find unknown coefficients

Given that 2x + 1 is a factor of $6x^3 + ax^2 + 1$, determine the value of a.

Using Factor Theorem to find unknown coefficients

Given that 2x + 1 is a factor of $6x^3 + ax^2 + 1$, determine the value of a.

$$f(x) = 6x^{3} + ax^{2} + 1$$

$$f\left(-\frac{1}{2}\right) = 6\left(-\frac{1}{2}\right)^{3} + a\left(-\frac{1}{2}\right)^{2} + 1$$

$$= -\frac{3}{4} + \frac{1}{4}a + 1 = 0$$

$$\frac{1}{4}a = -\frac{1}{4}$$

$$a = -1$$

Side Notes:

Choose the value of x to substitute that **makes the divisor/factor 0**. So if 2x + 1 = 0, then $x = -\frac{1}{2}$, thus find $f\left(-\frac{1}{2}\right)$. This even works when you're dividing by nonlinear factors, e.g. $\frac{1}{x} + 1$, but at A Level they will always be of the form ax + b.

Test Your Understanding

Edexcel C2 May 2016 Q2

$$f(x) = 6x^3 + 13x^2 - 4$$

- (a) Use the factor theorem to show that (x + 2) is a factor of f(x).
- (b) Factorise f(x) completely. (4)

(2)

-

?

Given that 3x - 1 is a factor of $3x^3 + 11x^2 + ax + 1$, determine the value of a.

j

Test Your Understanding

Edexcel C2 May 2016 Q2

$$f(x) = 6x^3 + 13x^2 - 4$$

- (a) Use the factor theorem to show that (x + 2) is a factor of f(x).
- (b) Factorise f(x) completely. (4)

(a)
$$f(-2) = 6(-2)^3 + 13(-2)^2 - 4$$

= 0, and so $(x + 2)$ is a factor.
(b) $f(x) = \{(x + 2)\}(6x^2 + x - 2)$
= $(x + 2)(2x - 1)(3x + 2)$

Given that 3x - 1 is a factor of $3x^3 + 11x^2 + ax + 1$, determine the value of a.

$$f\left(\frac{1}{3}\right) = 3\left(\frac{1}{3}\right)^3 + 11\left(\frac{1}{3}\right)^2 + \frac{1}{3}a + 1 = 0$$

$$\frac{7}{3} + \frac{1}{3}a = 0 \quad \Rightarrow \quad a = -7$$

Exercise 7.1

Pearson Pure Mathematics Year 1/AS Pages 56

Extension

1 [MAT 2006 1E] The cubic

$$x^3 + ax + b$$

Has both (x - 1) and (x - 2) as factors.

Determine the values of a and b.

?

[MAT 2009 1I] The polynomial

$$n^2x^{2n+3} - 25nx^{n+1} + 150x^7$$

Has $x^2 - 1$ as a factor

- A) for no values of n;
- B) for n = 10 only;
- C) for n = 15 only;
- D) for n = 10 and n = 15 only.

The **remainder theorem** states that if f(x) is divided by (x - a), the remainder is f(a). This similarly works whenever a makes the divisor 0.

[MAT 2013 1G] Let $n \ge 2$ be an integer and $p_n(x)$ be the polynomial

$$p_n(x) = (x-1) + (x-2) + \dots + (x-n)$$

What is the remainder, in terms of n, when $p_n(x)$ is divided by $p_{n-1}(x)$?

.

Exercise 7.1

Pearson Pure Mathematics Year 1/AS Pages 56

Extension

1 [MAT 2006 1E] The cubic

$$x^3 + ax + b$$

Has both (x - 1) and (x - 2) as factors.

Determine the values of a and b.

$$a = -7, b = 6$$

[MAT 2009 1I] The polynomial $n^2x^{2n+3} - 25nx^{n+1} + 150x^7$

Has $x^2 - 1$ as a factor

- A) for no values of n;
- B) for n = 10 only;
- C) for n = 15 only;
- D) for n = 10 and n = 15 only.

$$x^2 - 1 = (x + 1)(x - 1)$$
 so both factors.
 $f(1) = n^2 - 25n + 150 = 0$

If n is odd: $f(-1) = -n^2 - 25n - 150 = 0$ If n is even: $f(-1) = -n^2 + 25n - 150 = 0$

Putting this all together, we get option B.

The **remainder theorem** states that if f(x) is divided by (x - a), the remainder is f(a). This similarly works whenever a makes the divisor 0.

[MAT 2013 1G] Let $n \ge 2$ be an integer and $p_n(x)$ be the polynomial

$$p_n(x) = (x-1) + (x-2) + \dots + (x-n)$$

What is the remainder, in terms of n, when $p_n(x)$ is divided by $p_{n-1}(x)$?

$$p_n(x) = nx - \frac{1}{2}n(n+1)$$

$$p_{n-1}(x) = (n-1)x + \frac{1}{2}n(n-1)$$

We need to make the divisor 0:

$$(n-1)\left(x+\frac{1}{2}n\right)=0 \rightarrow x=-\frac{n}{2}$$

Remainder:

$$p_n\left(-\frac{n}{2}\right) = n\left(-\frac{n}{2}\right) - \frac{1}{2}n(n+1) = -\frac{1}{2}n$$

Homework Exercise

- 1 Use the factor theorem to show that:
 - **a** (x-1) is a factor of $4x^3 3x^2 1$

- **b** (x + 3) is a factor of $5x^4 45x^2 6x 18$
- c (x-4) is a factor of $-3x^3 + 13x^2 6x + 8$.
- 2 Show that (x-1) is a factor of $x^3 + 6x^2 + 5x 12$ and hence factorise the expression completely.
- 3 Show that (x + 1) is a factor of $x^3 + 3x^2 33x 35$ and hence factorise the expression completely.
- 4 Show that (x-5) is a factor of $x^3-7x^2+2x+40$ and hence factorise the expression completely.
- 5 Show that (x-2) is a factor of $2x^3 + 3x^2 18x + 8$ and hence factorise the expression completely.
- **6** Each of these expressions has a factor $(x \pm p)$. Find a value of p and hence factorise the expression completely.
 - a $x^3 10x^2 + 19x + 30$
- **b** $x^3 + x^2 4x 4$

 $x^3 - 4x^2 - 11x + 30$

- 7 i Fully factorise the right-hand side of each equation.
 - ii Sketch the graph of each equation.

 - **a** $y = 2x^3 + 5x^2 4x 3$ **b** $y = 2x^3 17x^2 + 38x 15$ **c** $y = 3x^3 + 8x^2 + 3x 2$

- **d** $v = 6x^3 + 11x^2 3x 2$ **e** $v = 4x^3 12x^2 7x + 30$
- 8 Given that (x-1) is a factor of $5x^3 9x^2 + 2x + a$, find the value of a.
- 9 Given that (x + 3) is a factor of $6x^3 bx^2 + 18$, find the value of b.

Homework Exercise

10 Given that (x - 1) and (x + 1) are factors of $px^3 + qx^2 - 3x - 7$, find the values of p and q.

11 Given that (x + 1) and (x - 2) are factors of $cx^3 + dx^2 - 9x - 10$, find the values of c and d.

Problem-solving

Use the factor theorem to form simultaneous equations.

12 Given that (x + 2) and (x - 3) are factors of $gx^3 + hx^2 - 14x + 24$, find the values of g and h.

13 $f(x) = 3x^3 - 12x^2 + 6x - 24$

a Use the factor theorem to show that (x - 4) is a factor of f(x). (2 marks)

b Hence, show that 4 is the only real root of the equation f(x) = 0. (4 marks)

14 $f(x) = 4x^3 + 4x^2 - 11x - 6$

a Use the factor theorem to show that (x + 2) is a factor of f(x). (2 marks)

b Factorise f(x) completely. (4 marks)

c Write down all the solutions of the equation $4x^3 + 4x^2 - 11x - 6 = 0$. (1 mark)

15 a Show that (x-2) is a factor of $9x^4 - 18x^3 - x^2 + 2x$. (2 marks)

b Hence, find four real solutions to the equation $9x^4 - 18x^3 - x^2 + 2x = 0$. (5 marks)

Challenge

$$f(x) = 2x^4 - 5x^3 - 42x^2 - 9x + 54$$

- **a** Show that f(1) = 0 and f(-3) = 0.
- **b** Hence, solve f(x) = 0.

Homework Answers

1 **a**
$$f(1) = 0$$

b
$$f(-3) = 0$$

$$c f(4) = 0$$

7 c i
$$(x + 1)(x + 2)(3x - 1)$$

ii

$$(x-1)(x+3)(x+4)$$

3
$$(x+1)(x+7)(x-5)$$

4
$$(x-5)(x-4)(x+2)$$

5
$$(x-2)(2x-1)(x+4)$$

a
$$(x+1)(x-5)(x-6)$$

b
$$(x-2)(x+1)(x+2)$$

c
$$(x-5)(x+3)(x-2)$$

a i (x-1)(x+3)(2x+1)

d i
$$(x+2)(2x-1)(3x+1)$$

b i
$$(x-3)(x-5)(2x-1)$$

e i
$$(x-2)(2x-5)(2x+3)$$
 ii

Homework Answers

```
8 2

9 -16

10 p = 3, q = 7

11 c = 2, d = 3

12 g = 3, h = -7

13 a f(4) = 0

b f(x) = (x - 4)(3x^2 + 6)

For 3x^2 + 6 = 0, b^2 - 4ac = -72 so there are no real roots. Therefore, 4 is the only real root of f(x) = 0.

14 a f(-2) = 0 b (x + 2)(2x + 1)(2x - 3)

c x = -2, x = -\frac{1}{2} and x = 1\frac{1}{2}

15 a f(2) = 0 b x = 0, x = 2, x = -\frac{1}{3} and x = \frac{1}{3}
```

Challenge

a
$$f(1) = 2 - 5 - 42 - 9 + 54 = 0$$

 $f(-3) = 162 + 135 - 378 + 27 + 54 = 0$
b $2x^4 - 5x^3 - 42x^2 - 9x + 54$
 $= (x - 1)(x + 3)(x - 6)(2x + 3)$
 $x = 1$ $x = -3$, $x = 6$, $x = -1.5$