Complexity, Intelligence and Resources of the Electric Grid

by John G Schwitz, November 19, 2012

This briefing is UNCLASSIFIED

Intelligence, National Security, and Collaboration

TERMS: Cascading Failures / Isolated Islands / Scale-free Networks (Power Law) / Complexity Tripped Relays / NOT damaged Generators

SOURCES:

Electric Grid is Complex Process / Extensively Studied Major Blackouts NERC/FERC

Arizona-Southern California Outages September 8, 2011

United States Canadian Blackout (largest in US) August 14, 2003

Future of Electric Grid -- MIT Study

Risk analysis of critical loading and blackouts with cascading events -- CERTS / Ian Dowson Baraba'Lab (complexity, self-organized criticality {soc}, networks)

Frequency of Events -> Power Law -> Black Swan Events

Frequency of Events of degree d

In many domains this yields a Power Distribution:

{earthquakes, forest fires, traffic congestion, disturbances on electric grid, transmission of biological & computer viruses, diseases, and fads}

Fig. 1: Log-log plot of scaled PDF of energy unserved during North American blackouts 1984 to 1998.

self-organized criticality (soc), chaos theory, small world networks, complexity theory

The basic idea is that certain structures evolve through internally and externally driven processes toward a critical state. There is no architect or master plan. There is no reductive physics explaining the process. The differentiating feature of a critical state is its response to disturbances.

A normal state responds, within a narrow range, with a characteristic response time and scale. A critical state is scale-free. It responds to disturbances with time and scale responses of any size.

Exponential Distribution $y=x^k$ Yields log[y] = k log[x] For k = -1

Increasing the degree (magnitude of event) by 10x reduces frequency by only 1/10'th

Connectedness, Infinte Variance and the Power Law

A Power Law describes the scale of response statistically. A Power Law is a different beast because it has infinite variance. Power Law only applies over a restricted range.

A Power Law is a different beast because it has infinite variance. Power Law only applies over a restricted range.

Comparison of Power Law to N(1,4)

 1σ (5) is 68%, 2σ (9) 95%, 3σ (13) 99.7% x axis at 6σ / range limited to 200

Network Connectedness Resulting in Vulnerabilities

Robustness to Random Failure / Vulnerability to Attack

(LEFT) Theoretical behavior of Network Diameter (d) and Cluster Size (C) under Random Failure & Attack for Scale-free network.

(RIGHT) Cascading Failures and Isolated Islands in largest US Blackout (2003)

Critical infrastructure is robust under random failure, but extremely vulnerable to destruction under attack.

Characteristics of Electric Grid (Components, Structure, Statistics)

The Electric Grid's three components {Generation / Transmission / Distribution} and 3 Interconnection Systems {Eastern / Western / Texas} / Transmission Scale-Free Network

\$1 Trillion Asset Value / 200k miles 230k Volt and higher / 950k MegaWatts Generation / managed by 140 Control Areas /3,500 Utilities / serving 100M customers and 283M people / Grid saves \$13B annually

Transmission network is a mesh (dark gray), while Distribution (light gray & white) are mainly radial. Transition system modeling uses Distribtution (light gray) as the boundary nodes.

Intelligence, National Security, and Collaboration

TERMS: Cascading Failures / Isolated Islands / Scale-free Networks (Power Law) / Complexity Tripped Relays / NOT damaged Generators

SOURCES:

Electric Grid is Complex Process / Extensively Studied Major Blackouts NERC/FERC

Arizona-Southern California Outages September 8, 2011

United States Canadian Blackout (largest in US) August 14, 2003

Future of Electric Grid -- MIT Study

Risk analysis of critical loading and blackouts with cascading events -- CERTS / Ian Dowson Baraba'Lab (complexity, self-organized criticality {soc}, networks)

Analysis / Forecasts