$$Q1.1 \qquad 1. \qquad \frac{2W(x;p)}{2p^{T}} \qquad W(\vec{x};\vec{p}) = \vec{x} + \vec{p} = \begin{pmatrix} X + P_{1} \\ Y + B \end{pmatrix} - \begin{pmatrix} W_{1}(x,y) \\ W_{2}(x,y) \end{pmatrix}$$

$$\frac{2W(\vec{x},\vec{p})}{2p^{T}} = \begin{pmatrix} \frac{2W_{1}(x,y)}{2p_{1}} & \frac{2W_{1}(x,y)}{2p_{1}} & \frac{2W_{2}(x,y)}{2p_{1}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Q \cdot \int_{-2P_{1}}^{2P_{1}} (X' + \Delta p) - I_{1}(x) \int_{-2P_{1}}^{2P_{1}} \Delta p - I_{2}(x) \int_{-2P_{1}}^{2P_{1}} \Delta p - I_{3}(x) \int_{-2P_{1}}^{2P_{1}} \Delta p - I_{4}(x) \int_{-2P_{1}}^{2P_{1}} \Delta p -$$

$$= \left| \frac{2 \operatorname{It}(X')}{2 X'T} \frac{2 W(X; p)}{2 p^{T}} \Delta p - \left(\operatorname{It}(X) - \operatorname{It}(X') \right) \right|^{2}$$

$$A = \begin{bmatrix} 2I_{tH}(x_1) \\ 2X_1^T \end{bmatrix}$$

$$D = \begin{bmatrix} I_{t}(X_1) - \hat{I}_{tH}(X_1) \\ I_{t}(X_2) - I_{tH}(X_2) \end{bmatrix}$$

$$I_{t}(X_0) - I_{tH}(X_0)$$

$$2I_{tH}(X_0)$$

$$2X_0^T$$

$$3x_0^T + C(x_1)$$

$$2x_0^T + C(x_1)$$

ATA is invertible.

It's better that both eigenvalues are large and have similar magnitude.

Q1.4

$$Q_{2.1}$$
 $I_{th}(x) = I_{t}(x) + w^{T} B(x)$

asume n is the number of pixels in the frame

Itel Ite are NXI Vectors and
$$\{B_k\}_{k=1}^K$$
 is KXN matrix $\{E_{t+1} - E_t\} = \{B_t\}_{k=1}^K$

$$B_{i}^{T} \left(I_{t+1} - I_{t} \right) = B_{i}^{T} \omega^{T} B = \omega_{i} B_{i}^{T} B_{i}$$

$$be cause B_{i}^{T} B_{j} = \begin{cases} 0 \text{ if } \\ 0 \text{ if } \end{cases}$$

$$W = \left(\begin{array}{cc} B^{T} & B^{T} \\ \end{array}\right) \left(\begin{array}{cc} I_{tH} - I_{t} \end{array}\right)$$

The difference of performance is relatively small.

(23.3

Q4,1

The gradient of T and Jacobian can be precomputed. So we only need to compute affine of I in each iteration tor $\nabla T(W(x,0)) = \nabla T$ Q42 arymin \frac{1}{2} | y - x | g | | \frac{2}{2} + \frac{2}{2} | | g | | \frac{1}{2} L = = 11y-x g 112+ = 11 g112 $= \frac{1}{2} (y - x^{T}g)^{T} (y - x^{T}g) + \frac{\lambda}{2} g^{T}g$ $= \frac{1}{2} \left(y^{\mathsf{T}} - g^{\mathsf{T}} x \right) \left(y^{\mathsf{T}} - \lambda^{\mathsf{T}} g \right) + \frac{\lambda}{2} g^{\mathsf{T}} g$ $= \pm y^{T}y - y^{T}x^{T}y + \pm y^{T}x^{T}y + \frac{\lambda}{2}y^{T}y$ + $9^{T}(\chi\chi^{T} + \lambda I)$ $-xy + (xx^T + \lambda I)y = 0$ $g = (\chi \chi + \chi I)^{T} \times g$ $=(S+\chi I)\chi y$ Result weight factor g without regualarization (24)

with regularization

without regualarization

with regularization

7=1 work the best. Because 119112 term prevent the model from being too complex. And then no feautures will dominate the predicting result.

Convolution without regualarization

with regularization

Because convolution is different from convolution
When g [::-1,:-1] is performed, they should be
equivalent