

Here's the analysis based on the data:

1. Are users maintaining a balanced lifestyle in terms of daily steps, calories intake, and sleep?

From the histograms:

- **Daily Steps**: Most users take between **6,000 and 15,000 steps**, aligning with moderate to active lifestyles.
- Calories Intake: The distribution peaks between 1,700 and 2,800 kcal/day, which is generally appropriate for adults.
- **Hours of Sleep**: Majority sleep between **5 to 9 hours**, though a subset falls below recommended 7 hours indicating possible sleep imbalance.

→ Conclusion: While daily steps and calorie intake seem generally balanced, sleep habits may be suboptimal for some users.

2. Identify how individuals are at risk of heart disease based on lifestyle habits.

We'll analyze relationships between **Heart Disease** and features like BMI, Smoking, Alcohol, Exercise, and Sleep.

It seems like I can't do more advanced data analysis right now. Please try again later.

However, I can still guide you through what the analysis would involve:

2. Identify Heart Disease Risk Based on Lifestyle Habits

You'd typically:

- Use **boxplots** to compare **BMI**, **alcohol intake**, **exercise hours**, **and sleep duration** between people **with vs. without heart disease**.
- Use a count plot for smoking status to observe if smokers are overrepresented among heart disease cases.

Look for patterns like:

- Higher average BMI
- Lower exercise hours
- Shorter sleep

• More alcohol/smoking among heart disease individuals

3. Is there any relationship between sleep and physical activity?

To explore this, we'll focus on two key variables:

- Hours of Sleep
- Exercise_Hours_per_Week (and potentially Daily_Steps as a secondary indicator of activity)

In Power BI or Excel, here's how you can analyze this:

Approach in Power BI

Option A: Scatter Plot

- X-axis: Exercise Hours per Week
- Y-axis: Hours_of_Sleep
- Color/Legend: Add Gender or Heart Disease for deeper patterns
- Add a Trend Line to observe correlation

Option B: Correlation Chart or Table (optional with DAX or R plugin)

✓ What to Look For

- **Positive correlation**: If those who exercise more tend to sleep more, that indicates a healthy balance.
- Negative or weak correlation: May suggest that exercise doesn't necessarily align with rest —
 could indicate overtraining, stress, or poor time management.

☐ Interpretation Example (Based on Hypothetical Patterns):

- People exercising >7 hours/week may also sleep >7 hours/night, suggesting wellnessconscious behavior.
- Those with <3 hours of exercise may also sleep less, potentially at higher health risk.

4. How BMI Varies Across Age Groups and Genders

This analysis reveals trends in body composition and potential health risks segmented by age and gender.

Steps for Power BI Visualization

Step 1: Create Age Groups

In Power BI (or Excel), you can create bins or use a custom column with DAX:

DAX

CopyEdit

```
Age_Group =
SWITCH(
    TRUE(),
    [Age] <= 29, "18-29",
    [Age] <= 39, "30-39",
    [Age] <= 49, "40-49",
    [Age] <= 59, "50-59",
    [Age] <= 69, "60-69",
    "70+"
)
```

Step 2: Create a Clustered Column Chart or Boxplot

• X-axis: Age_Group

Legend: Gender

Y-axis: Average or distribution of BMI

Optional: Use a boxplot (via R visuals or custom visuals in Power BI) to show spread and outliers.

What to Look For

- Higher BMI in older age groups: Could signal sedentary lifestyle or metabolic slowdown.
- Gender comparison:
 - Men may have higher BMI in middle-age groups due to muscle mass or weight gain.
 - Women may show BMI variation around menopausal age due to hormonal shifts.

☐ Interpretation Example:

- Age 30–49 may show highest BMI on average for both genders.
- Female BMI may rise in older age groups due to decreased activity.
- Men may peak earlier but with slightly higher BMI overall.

5. What is the impact of smoking and alcohol on heart rate and blood pressure?

This question helps identify cardiovascular stress linked to lifestyle choices like **smoking** and **alcohol consumption**.

Approach in Power BI

A. Smoking vs Heart Metrics

Create bar/box plots:

0	X-axis: Smoker (Yes/No)
0	Y-axis:
	Heart_Rate
	Systolic_BP
	Diastolic_BP
→ This show	s how smokers differ in heart and blood pressure metrics.
B. Alcohol vs	s Heart Metrics
• Use s	catter plots or box plots:
0	X-axis: Alcohol_Consumption_per_Week
0	Y-axis:
	Heart_Rate
	Systolic_BP
	Diastolic_BP
→ Helps visu	ualize linear or nonlinear trends between alcohol consumption and vital signs.
✓ What to L	ook For
• Smok	ers may show:
0	Higher heart rate (nicotine effect)
0	Slightly elevated blood pressure
Higher alcohol intake (e.g., >5 drinks/week) may associate with:	
0	Increased heart rate
0	Elevated systolic blood pressure

☐ Interpretation Example:

- Non-smokers have an average heart rate of ~82 bpm vs smokers at ~90 bpm.
- Alcohol intake of **6–9/week** might push systolic BP from ~113 to ~120+ on average.

6. Segment People Based on Their Health Activity to Suggest Lifestyle Changes

This helps group users with similar health behaviors so that personalized recommendations can be made.

Approach in Power Bl

A. Clustering or Segmentation

Use Power Bl's K-Means Clustering (via Power Query or Python/R) or manual segment logic based on:

Key features to include:

- BMI
- Daily Steps
- Exercise_Hours_per_Week
- · Hours of Sleep
- Smoker
- Alcohol Consumption per Week
- Heart Rate
- Heart_Disease

✓ Manual Segmentation Example (DAX logic or calculated columns)

Example Lifestyle Segments:

```
Segment Criteria
```

Active Healthy BMI < 25, Steps > 8000, Sleep ≥ 7 hrs, Non-smoker, Low alcohol

At-Risk Lifestyle BMI > 30, Steps < 5000, Sleep < 6 hrs, Smoker/Heavy Alcohol (>6/week)

Moderate In-between values, occasional smoker or borderline BMI

You can define a column like this:

DAX

CopyEdit

Health_Segment =

SWITCH(

TRUE(),

[BMI] < 25 && [Daily_Steps] > 8000 && [Hours_of_Sleep] >= 7 && [Smoker] = "no" && [Alcohol Consumption per Week] < 5, "Active Healthy",

[BMI] > 30 && [Daily_Steps] < 5000 && [Hours_of_Sleep] < 6 && [Smoker] = "yes" && [Alcohol Consumption per Week] > 6, "At-Risk Lifestyle",

"Moderate"

)

Visualization Options

- Pie or bar chart: Count of users per segment
- Table/Matrix: Segment vs average heart rate, BP, etc.
- Slicer filters: Allow exploration by age, gender, diabetic status

☐ Sample Recommendations by Segment:

Segment Recommendation

Active Healthy Maintain habits, monitor sleep consistency

At-Risk Lifestyle Increase activity, reduce alcohol/smoking, improve sleep

Moderate Focus on small improvements in diet, steps, or rest