

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

DTIC FILE COPY

OFFICE OF NAVAL RESEARCH

Contract NOO014-85-0177

R & T Code 431a003

Technical Report No. 3

Preparation and Characterization of the Quaternary Chalcogenides $Cu_2B(II)C(IV)X_4 \ [B(II) = Zn,Cd; C(IV) = Si,Ge; X = S,Se]$

by

G.Q. Yao, H-S. Shen, E. D. Honig, R. Kershaw, K. Dwight, A. Wold

Prepared for Publication in

Solid State Ionics

Brown University
Department of Chemistry
Providence, RI 02912

July 6, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited

STREET, WITHIN SECONS

PREPARATION AND CHARACTERIZATION OF THE QUATERNARY CHALCOGENIDES $Cu_2B(II)C(IV)X_4$ [B(II) = Zn,Cd; C(IV) = Si,Ge; X = S,Se]

G-Q. Yao, H-S. Shen, E. D. Honig, R. Kershaw, K. Dwight, A. Wold* Chemistry Department, Brown University Providence, Rhode Island 02912

Accesi	on For	\
NTIS	CRA&I	4
DTIC		
	iounced	H
Justifi	Calwii	
By Distrib	ution /	
Α	vailability (Codes
Dist	Avail and Specia	
A-1		

A number of quaternary chalcogenides crystallizing with the wurtz-stannite structure have been prepared by chemical vapor transport and characterized. CugZnGeS4 and CugZnSiSe4 transmit in the infrared beyond 12 microns. CugZnGeS4 was stable in air up to 620°C and also was the hardest of all the materials studied.

1. INTRODUCTION

20201200 0000000

In recent years, compounds crystallizing with the chalcopyrite structure have been studied in order to observe their optical and semiconducting properties. However, only a relatively few studies have been reported concerning the characterization of quaternary chalcogenides crystallizing with the stannite structure. The compounds Cu₂ZnSiS₄, Cu₂ZnSiSe₄, Cu2ZnGeS4 and Cu2CdSiS4 are semiconductors which crystallize with the orthorhombic superstructure of wurtzite called the wurtz-stannite structure (1-4) space group Pmn2₁, shown in Fig. 1. this structure there are alternating cation layers of mixed B(II) and C(IV) atoms, which are separated by layers of Cu atoms. The structure is therefore derived from an ordering of the cations of the wurtzite cell. In this structure, every sulfur or selenium has four nearest neighbor metal atoms at the corners of the surrounding tetrahedron, two copper atoms, one zinc or cadmium atom, and either a silicon or germanium atom.

Single crystals of these compounds have been grown by chemical vapor transport using iodine as the transport agent (1-4). Several publications report their magnetic, electrical and optical properties (4-6). However, there has been no report concerning their hardness, thermal stability or their transmission in the infrared. It was of interest to measure these properties and correlate them with the substitutions made for the Group II, Group IV and Group VI elements.

2. EXPERIMENTAL

Single crystal growth.

Single crystals of the quaternary chalcogenides were all prepared by chemical vapor transport using iodine as the transport agent. The stoichiometric weights of the elements were introduced into silica tubes which were evacuated to 5×10^{-5} torr. Five mg/cc of iodine were added to the transport tube which was then sealed and the tube set in the back transport mode and run in this mode for two days. Optimum crystal growth of Cu_2ZnGeS_4 .

Cu₂CdSiS₄, Cu₂ZnSiSe₄ occurred when the charge zone was maintained at 850°C and the growth zone at 800°C. The transport temperature was 950°C at the charge zone and 900°C at the growth zone for crystal growth of Cu₂ZnSiS₄. The transport process was carried out for two weeks. Polyhedral crystals 2 x 2 x 3 mm³ of Cu₂ZnGeS₄ and blade crystals 2 x 1 x 7 mm³ of Cu₂ZnSiS₄, Cu₂ZnSiSe₄ and Cu₂CdSiS₄ were obtained.

Powder diffraction patterns of ground single crystals were obtained with a Norelco diffractometer using monochromatic radiation from a high-intensity copper source (λ -CuK α_1 = 1.5405Å). Cell parameters were determined from slow-scan (0.25°/min) diffraction patterns over the range 12°<2072°. The precise cell parameters were obtained using a least-squares refinement from these reflections.

Optical and electrical measurements.

Infrared transmission measurements were made on polished single-crystal slices at room temperature using a Perkins-Elmer 580 single beam scanning infrared spectrophotometer. The measurements were performed in the transmission mode over the range 2.5 μ m - 25 μ m. Transmission through the sample was normalized to the signal obtained in the absence of the sample.

Measurements of absorbtion coefficients were made with an Oriel Model 1724 monochrometer, an Oriel G 772-5400 long pass filter, and a calibrated silicon diode detector. Absorption values were calculated from the responses with and without the crystal in the beam.

The van der Pauw (7) method was used to measure electrical resistivities from 77K to 400K. Contacts were made by the ultrasonic soldering of indium onto the samples, and ohmic behavior was established by measuring the current-voltage characteristics.

3. RESULTS AND DISCUSSION

Single crystals of Cu_2ZnSiS_4 , $Cu_2ZnSiSe_4$, Cu_2ZnGeS_4 , Cu_2ZnGeS_4 , Cu_2ZnGeS_4 and Cu_2CdGeS_4 have been grown by chemical vapor transport using iodine as the transport agent. The first

four compounds showed transmission in the infrared region and were therefore studied in detail. A relatively high transport temperature (950°C - 900°C) was used to grow Cu₂ZnSiS₄ single crystals because at lower temperatures (850°C - 800°C) the major phase obtained at the growth zone was ZnS.

X-ray diffraction analysis confirmed the cell parameters (Table 1) of these quaternary chalcogenides previously reported (3, 4, 6).

The microhardness measurements (Knoop indenter) were made on crystals using a Kentron Microhardness Tester. The results were obtained using a diamond indenter with a 100 g load and are given in Table 1.

The stability of these compounds toward oxidation was determined by heating them in a flowing oxygen stream (65 cc/min) and determining the change in weight during the heating period. The results shown in Table 1 indicate that Cu₂ZnSiS₄ decomposes at a higher temperature than the selenide Cu2ZnSiSe4. Furthermore Cu₂ZnSiS₄ is more stable than Cu₂CdSiS₄. A comparison of the relative thermal stability of Cu₂ZnSiS₄ and Cu₂ZnGeS₄ is shown in Fig. 2. It can be seen that the rate of oxidation proceeds much slower for the former compound. These results are consistent with the anticipated increased stability of sulfides vs selenides and silicon vs germanium or zinc vs cadmium chalcogenides.

A comparison of the infrared absorption bands can also be made by examining the results summarized in Table 1 and Figs. 3 and 4. It can be seen that the substitution of selenium for sulfur shifts the absorption bands to higher wavelengths. The substitution of germanium for silicon also results in a shift of the bands to higher wavelengths but in addition the absorption peaks occur much closer together.

PROCESS SECRETARY SERVICES CONTRACTOR SECRETARY CONTRACTOR CONTRAC

The indirect optical band gaps were obtained from plots of $(\alpha h v)^{1/2}$ vs energy and are given in Table 1. Cu₂ZnSiS₄ was observed to show the largest band gap (3.04 eV) and there was a marked decrease in the band gap when either a larger cation (Cd or Ge) or anion (Se) was substituted for Zn, Si or S. The resistivities

for the four chalcogenides are also given in Table 1 and the lower resistivity of the cadmium compound is consistent with the electronic properties of other cadmium chalcogenides.

4. ACKNOWLEDGMENTS

This research has been partially supported by the Office of Naval Research. The authors also wish to acknowledge the National Science Foundation Grant No. NSF Grant No. DMR-820-3667 for the partial support of K. Dwight and they express their appreciation for the use of Brown University's Materials Research Laboratory which is supported by the National Science Foundation.

*Address all correspondence

5. REFERENCES

gover accordes accorden accessed activity accesses accorde accorde

- H. Hahn and H. Schulze, Naturorssenschaften <u>52</u>, 426 (1965).
- R. Nitsche, D. F. Sargent and P. Wild,
 J. Cryst. Growth 1, 52 (1967).
- W. Schafer and R. N. Nitsche, Mat. Res. Bull., 9, 645 (1974).
- D. M. Schleich and A. Wold, Mat. Res. Bull., 12, 111 (1977).
- L. Guen, W. S. Glaunsinger and A. Wold, Mat. Res. Bull., <u>14</u>, 463 (1979).
- 6. L. Guen and W. S. Glaunsinger, J. Solid State Chem., 35, 10 (1980).
- J. van der Pauw, Philips Res. Rep., 13, 11 (1958).

FIGURE CAPTIONS

Fig. 1.

The wurtz-stannite structure.

Fig. 2.

Comparison of the stability toward oxidation in O_2 of ground crystals of Cu_2ZnSiS_4 and Cu_2ZnGeS_4 .

Ċ

Fig. 3.

Comparison of the infrared transmission spectra of polished crystals of $\text{Cu}_2\text{ZnSiS}_4$ and $\text{Cu}_2\text{ZnSiS}_4$, normalized to a thickness of 0.11 mm assuming no reflection or scattering.

Fig. 4.

CONTRACTOR CONTRACTOR (SCIENCE CONTRACTOR CO

Comparison of the infrared transmission spectra of polished crystals of $\text{Cu}_2\text{ZnSiS}_4$ and $\text{Cu}_2\text{ZnGeS}_4$, normalized to a thickness of 0.11 mm assuming no reflection or scattering.

FIGURE CAPTIONS

Fig. 1. The wurtz-stannite structure.

Fig. 2.

Comparison of the stability toward oxidation in 02 of ground crystals of Cu2ZnSiS4 and Cu2ZnGeS4.

Fig. 3.

Comparison of the infrared transmission spectra of polished crystals of Cu2ZnSiS4 and Cu2ZnSiSe4, normalized to a thickness of 0.11 mm assuming no reflection or scattering.

Comparison of the infrared transmission spectra of polished crystals of Cu22nSiS4 and Cu22nGeS4, normalized to a thickness of 0.11 mm assuming no reflection or scattering.

TABLE 1. PROPERTIES OF SOME QUARTERNARY CHALCOGENIDES

Compound	Ce 1	Cell Parameter B	O .	(R-T) (Ω-cm)	Eg (e.V.)	IR Absorption bands (μ)	Knoop* Hardness kg/mm ²	Decomposition Temperature C°±10)
Cu2ZnSiS4 (orth)	7.436(1) 6.39	6.398(1)	6.137(2)	6.137(2) Insulator 3.04(2)	3.04(2)	7.9(w) 9.7, 11.1	340	620
Cu ₂ ZnGeS ₄ (orth)	7.506(3) 6.47	6,476(4)	6.189(2)	6.189(2) 1.6 x 10 ⁴ 2.04(2)	2.04(2)	12.6, 13.2	340	620
Cu ₂ ZnSiSe ₄ (orth)	7.826(3) 6.72	6.727(2)	6.445(1) 3 x 10 ⁴	3 x 10 ⁴	2.20(2)	12, 15.3	280	470
Cu ₂ CdSiS ₄ (orth)	7.609(1) 6.48	6.485(1)	5(1) 6.251(1) 48	48	2.0	9.7, 11.1 12.5(w)	250	510

*Knoop intenter at 100g, lowered slowly. Hardness values $^{\pm}100$.

APPENDED DESCRIPTION APPROPRIATE PARTICULAR

Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, VA 22217-5000

Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, CA 91232

Spline ()
Germin

Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47511-5050

Naval Civil Engineering Lab Attn: Dr. R. W. Drisko Code L52 Port Hueneme, CA 93401

Defense Technical Information Center, Building 5 Cameron Station Alexandria, VA 22314

DTNSRDC

Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, MD 21401

Dr. william Tolles Superintendent Chemistry Division, Code 6100 Naval Research Lab Washington D.C. 20375-5000

Dr. David Young Code 334 NORDA NSTL, Mississippi 39529

Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, CA 93555

CONTRACTOR OF THE PROPERTY OF

100000

Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380

U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle park, NC 27709

Mr. John Boyle Materials Branch Naval Ship Engineering Ctr. Philadelphia, PA 19112 Dr. Karl Frese, Jr. SRI International 333 Ravenswood Avenue Menlo Park, CA 94025

Dr. Aaron Fletcher Code 3852 Naval Weapons Center China Lake, CA 93555

Dr. J. Cooper Code 6170 Naval Research Laboratory

Dr. J. Cooper
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. N. C. Baird
Department of Chemistry
Queens's University
Kingston, Canada
K7L 3N6
Dr. N. N. Lichtin
Department of Chemistry
Boston University
685 Commonwealth Ave
Boston, MA 02215

Dr. R. Eisenberg
Dept. of Chemistry
University of Rochester
Rochester, NY 14627

Dr. Alan R. Cutler
Department of Chemistry
RPI
Troy, NY 12180-3590

Dr. L. Vaska
Department of Chemistry
Clarkson College
Potsdam, NY 13676

Dr. R. A. Huggins
Naterials Science and Engineering Dept.
Stanford University
Stanford, CA 94305

Dr. Carlo Floriani
Minerale et Analytique
Universite de Lausanne
Place du Chateau 3
Lausanne, Switzerland

Dr. Wiley Youngs
Department of Chemistry
Case Western Reserve U.
Cleveland, OH 44106

Dr. N. John Cooper Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260

Dr. S. D. Worley Department of Chemistry Auburn University Auburn, Alabama 36830

Dr. Thomas J. Meyer Department of Chemistry University of North Carolina Chapel Hill, NC 27514

Dr. Jeffrey Zink Department of Chemistry University of California Los Angeles, CA 90024