Beginner Monthly Problem Solutions

Due: Friday, 17 January 2020

- 1. How many positive square numbers are factors of 1600?
- ANS: Factorising yield: $1600 = 2^6 \times 5^2 = (2^2)^3 \times (5^2)^1$ Note that a square number has only even exponents in its factorization, hence is made of square factors. Hence the square factors of 1600 = (3+1)(1+1) = 8
 - 2. A palindrome is a positive integer whose digits are the same when read forwards or backwards. For example, 2882 is a four-digit palindrome and 49194 is a five-digit palindrome. There are pairs of four-digit palindromes whose sum is a five-digit palindrome. One such pair is 2882 and 9339. How many such pairs are there including this pair?
- ANS: Let $P_1 = abba$, $P_2 = cddc$ Note that the first digit, and therefor the last digit, of the 5 digit palindrome, $P_1 + P_2 = xyzyx$, is $1 \implies x = 1 \implies a + c = 11 \implies y = 1, 2$

If $y=1 \implies b+d < 10$ and $b+d \equiv_{10} = 0 \implies b+d = 0 \implies b=d=0$, hence there are 9-2+1=8 possibilities in this case. If $y=2 \implies b+d \ge 10$ and $b+d \equiv_{10} = 1 \implies b+d=11$, hence there are $(9-2+1)\times (9-2+1)=64$ possibilities in this case.

In total there are 72 ordered possibilities \implies 36 pairs.

- 3. Show all the ways the number 365 can be written as the sum of two or more different perfect square numbers?
- ANS: $365 = a^2 + b^2$ W.L.O.G x > y Note we only have check for $y \le 13$ as $\sqrt{\frac{365}{2}} < 14$ The only cases which work is y = 2, 13 which has integer solutions for x = 19, 14 respectively.
 - 4. How many squares on an 8×8 chessboard are more black than white?
- ANS: Note that even \times even squares have the same amount of black and white squares, hence we will only look at odd \times odd squares. Note that the total amount of odd \times odd squares has the same amount of more white as more black squares by symmetry. Therefor the amount of total odd \times odd squares is twice the amount of more black squares. Total more black = $\frac{2^2+4^2+6^2+8^2}{2}=60$
 - 5. In triangle ABC, $\widehat{A}=45^{\circ}$. Point P is on BC, Q on AB and R on AC such that BP=QP and CP=RP. Find \widehat{QPR} .

ANS: $B\hat{Q}P = \hat{B} \implies B\hat{P}Q = 180 - 2\hat{B}$ Similarly $C\hat{P}R = 180 - 2\hat{C}$

$$\implies Q\hat{P}R = 180 - (180 - 2\hat{C}) - (180 - 2\hat{B}) = 180 - 2(180 - \hat{C} - \hat{B}) = 180 - 2\hat{A} = 90$$

6. If X and Y are two digits and the five digit number 30XY5 can be expressed as the product $225 \times n$, find all possible positive integer values of n.

1

ANS: 30XY5 is odd, hence $225 \times n$ is odd $\implies n$ is odd.

$$n = \left\lceil \frac{30XY5}{225} \right\rceil \ge \left\lceil \frac{30005}{225} \right\rceil = 134$$

$$n = \left\lfloor \frac{30XY5}{225} \right\rfloor \le \left\lfloor \frac{30995}{225} \right\rfloor = 137$$

$$\implies n = 135, 137$$

7. The symbol |x| means the greatest integer less than or equal to x. For example,

$$[5.7] = 5 \text{ and } [4] = 4.$$

Calculate the value of the sum

$$\lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \lfloor \sqrt{4} \rfloor + \dots + \lfloor \sqrt{49} \rfloor + \lfloor \sqrt{50} \rfloor$$

ANS: Note $\left\lfloor \sqrt{n^2} \right\rfloor = n$ and $\left\lfloor \sqrt{n^2 - 1} \right\rfloor = n - 1$ and $\left\lfloor \sqrt{x} \right\rfloor$ is an increasing function.

Hence the sum becomes:

$$1 + 1 + 1 + 2 + 2 + \dots + 6 + 7 + 7 = 1(2^2 - 1^2) + 2(3^2 - 2^2) + 3(4^2 - 3^2) + \dots + 6(7^2 - 6^2) + 7 + 7 = 217$$

- 8. On a page, there are 10 circles. Any pair of them intersect at exactly 2 points but no 3 of them intersect at one common point. Into how many parts do these circles divide the page?
- ANS: Let C be one of the circles. C meets each of the other n-1 circles in 2 points. The 2n-2 points where C crosses one of the other circles divide the circle C into 2n-2 arcs, which we consider as edges of a plane graph. There are 2n-2 such arcs on each of the n circles, making a total of E=n(2n-2) edges in the graph

Now we can use the following formula:

$$F = E - V + 2 = n(2n - 2) - n(n - 1) + 2 = n(n - 1) + 2 = n^{2} - n + 2$$

Where F is the amount of parts, V the amount of vertices and E the amount of edges we just calculated. Subbing in n = 10 yields F = 100 - 10 + 2 = 92

9. Note that by choosing any two points which aren't diametrically opposite, we can find the other two points which will form a rectangle by taking the two points which are diametrically opposite the two chosen points. Also note that for every rectangle consisting of 4 points, choosing any 2 points (except for 2 which are diametrically opposite) it will define the rectangle.

The total amount of rectangles is: $\frac{\binom{12}{2}-6}{4}=15$

10. What is the remainder when $6^{2012} + 8^{2021}$ is divided by 49?

ANS: $6^{2012} + 8^{2021} \equiv_{49} 6^{-4} + 8^5$ by Euler Phi

The multiplicative inverse of 6 is $-8 \pmod{49}$

Hence the above simplifies to $(-8)^4 + 8^5 \equiv_{49} 29 + 36 \equiv_{49} 16$

Email submission guidelines

- Email your solutions to samf.training.assignments@gmail.com.
- In the subject of your email, include your name and the level of the assignment (Beginner, Intermediate or Senior).

2

- Submit each question in a single separate PDF file (with multiple pages if necessary), with your name and the question number written on each page.
- If you take photographs of your work, use a document scanner such as Office Lens to convert to PDF.
- If you have multiple PDF files for a question, combine them using software such as PDFsam.