

Problem Set: Continuity

J. Balasubramaniam[†]

1) Show that the following functions are continuous by using $\epsilon - \delta$ definition.

(i)
$$x^n$$

(iv)
$$\ln x$$

(vii)
$$x^2 + x$$

(x)
$$\ln(\sin x)$$

(ii)
$$\sin x$$

(v)
$$\sqrt{x}$$

(v)
$$\sqrt{x}$$
 (viii) $\frac{x+1}{x-2}, x \neq 2$ (xi) $\sin(2x) + x^2$

(xi)
$$\sin(2x) + x^2$$

(iii)
$$e^{2x}$$

(vi)
$$\sin^{-1}(x)$$

(ix)
$$\sinh 4x$$

(ix)
$$\sinh 4x$$
 (xii) $(x+2)^3$

2) Investigate the continuity of each of the following functions at the indicated point x_0 .

(i)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 0, & x = 0 \end{cases}, x_0 = 0.$$

(iii)
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2; \\ 3, & x = 2 \end{cases}, x_0 = 2.$$

(ii)
$$f(x) = x - |x|, x_0 = 0.$$

(i)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 0, & x = 0 \end{cases}$$
, $x_0 = 0$.
(ii) $f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2; \\ 3, & x = 2 \end{cases}$, $x_0 = 2$.
(iv) $f(x) = \begin{cases} \sin x, & 0 < x < 1 \\ \ln x, & 1 < x < 2 \end{cases}$, $x_0 = 1$.

- 3) Give examples of functions with the following properties:
 - (a) A function f which is continuous at *only* a finite number of points.
 - (b) A function f which is discontinuous at *only* a finite number of points.
 - (c) An f which is nowhere continuous on the real line.
 - (d) An f which is continuous at every rational number.
 - (e) An f which is discontinuous at every rational and continuous at every irrational on $(0, \infty)$.
 - (f) A $c \in \mathbb{R}$ and two functions f, g that are discontinuous at c but such that f + g and fg are continuous at c.
- 4) Prove that any polynomial of finite degree over $\mathbb R$ is continuous. Hence show that rational functions are continuous over their admissible domain.
- † The author is with the Department of Mathematics, IIT Hyderabad 502285 India e-mail: jbala@iith.ac.in.

- 5) Let f,g be two continuous functions on (a,b) such that f(x)=g(x) for every rational $x\in(a,b)$. Prove that f(x)=g(x) for all $x\in(a,b)$.
- 6) Determine the domain of continuity of the following functions.
 - (i) $\sqrt{1-x^2}$

(v) $\frac{1}{\sqrt{10+x}}$

(ix) $\begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$

(ii) $\sin(e^{-x^2})$

(vi) $\sin \frac{1}{(x-1)^2}$

(x) $\sqrt{x+\sqrt{x}}$

- (iii) $ln(1 + \sin x)$
- (vii) $\sin\left(\frac{1}{\cos x}\right)$

(xi) $\cos(\sqrt{1+x^2})$

(iv) $\frac{1+\cos x}{3+\sin x}$

- (viii) $\sqrt{(x-3)(6-x)}$
- (xii) $\frac{\sqrt{1+|\sin|x}}{x}$
- 7) (a) Prove that $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 5, & x = 0 \end{cases}$, is not continuous at x = 0.
 - (b) Can you redefine f(0) so that f is continuous at x = 0.
- 8) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} .
 - (a) If f(r) = 0 for every rational number r, then prove that f(x) = 0 for all $x \in \mathbb{R}$.
 - (b) If f(r) = 0 for every irrational number r, then is it true that f(x) = 0 on whole of \mathbb{R} .
- 9) Show that every polynomial of odd degree with real coefficients has atleast one real root.
- 10) Prove that $\lim_{x\to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{\sin x} = 0$.
- 11) Let I = [a, b] and $f: I \to \mathbb{R}$ be a continuous function.
 - (a) If f(x) > 0 for all $x \in I$, show that there exists an $\alpha > 0$ such that $f(x) \geqslant \alpha$ for all $x \in I$.
 - (b) If for each $x \in I$ there exists a $y \in I$ such that $|f(y)| \leq \frac{1}{2}f(x)$, then show that there exists a $c \in I$ such that f(c) = 0.
 - (c) Show that f is bounded on I, i.e., there exists an M>0 such that |f(x)|< M for all $x\in I$. What if the interval $I=(-\infty,b]$ or $I=[a,\infty)$, will f still be bounded?
 - (d) Show that f attains both maximum and minimum values over I, i.e., there exists $p,q \in I$ such

that $f(p) \leq f(x) \leq f(q)$ for all $x \in I$. What happens if either $a = -\infty$ or $b = \infty$?

- (e) Let I = [0, 1] and f(0) = f(1). Prove that there exists a point $c \in [0, \frac{1}{2}]$ such that $f(c) = f\left(c + \frac{1}{2}\right)$.
- (f) Let I = [0, 1] and let $0 \le f(x) \le 1$ for all $x \in I$. Show that there exists a point $c \in I$ such that f(c) = c, i.e., f has a fixed point.
- (g) Show that if $f(a) \le a$ and $f(b) \ge b$ then f has a fixed point in I, i.e., there exists a point $c \in I$ such that f(c) = c.
- 12) Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition $|f(x) f(y)| \leq K|x y|$ for all $x, y \in \mathbb{R}$. Show that f is continuous at every point $c \in \mathbb{R}$.
- 13) Define $g: \mathbb{R} \to \mathbb{R}$ as follows. $g(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ x+3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all the points at which g is continuous.
- 14) Let $A \subseteq B \subseteq \mathbb{R}$, $f : \mathbb{B} \to \mathbb{R}$ and g be the restriction of f to A, i.e., g(x) = f(x) for $x \in A$.
 - If f is continuous at some $c \in A$, then show that g is also continuous at c.
 - Show by example that g is continuous at some $c \in A$ does not necessarily imply that f is continuous at that c.
- 15) Let $A, B \subseteq \mathbb{R}$, $f : A \to B$ and $g : B \to \mathbb{R}$. If f is continuous on A and g is continuous on B, show that $g \circ f$ is continuous on f(A).
- 16) Let $f:[a,b] \to \mathbb{R}$ be integrable on [a,x] for every $x \in [a,b]$ and let the indefinite integral A(x) be defined as $A(x) = \int_a^x f(t)dt.$

Show that A is continuous on whole of [a, b].(At each end point we have one-sided continuity.)