Different Filtering Approaches

Introduction

Filters are standard methods for solving state space models. A state space model contains two sequences of random variables.

1. A latent (hidden) state, X_t , which forms a Markov chain, so

$$p(x_t|x_{0:t-1}) = p(x_t|x_{t-1})$$

2. A series of observations, Y_t , which depends only on, X_t . Hence, given X_t , Y_t is independent of X_s , Y_s with $s \neq t$.

The filtering problem of interest is how to associate all observations to estimate hidden states. We may look for either $p(x_{0:t}|y_{0:t})$ or $p(x_t|y_{0:t})$.

This problem has a recursive nature which allows online calculations. There are several established methods in the literature for the filtering problem.

In realistic scenarios measurements could be nonlinear such as the distance between a race car which is driving around a circular track to a sensor or the distance between a maneuvering airplane to a radar station.

Different Techniques of Filtering

Discrete Bayes filter: It is multimodal, can handle nonlinear measurements, and can be extended to work with nonlinear behaviour. However, it is discrete and univariate.

Kalman filter: The Kalman filter produces optimal estimates for unimodal linear systems with Gaussian noise.

Unscented Kalman filter: The UKF handles nonlinear, continuous, multivariate problems. However, it is not multimodal nor does it handle occlusions. Not well with distributions that are very non-Gaussian or problems that are very nonlinear.

Extended Kalman filter: The EKF has the same strengths and limitations as the UKF, except that is it even more sensitive to strong nonlinearities and non-Gaussian noise.

Çağatay Şahin - Ali Yeşilkanat

Particle Filtering

- We are interested in marginal or joint distribution of the latent variables at time t given all observations up to that point.
- The intractability of the normalising constant, $p(y_t|y_{0:t-1})$, often prohibits direct calculation.
- Importance Sampling must be used.
- Sequentially update the posterior distribution at time t without modifying the previous states $x_{0:t-1}$.
- The unnormalized weights are:

$$\widetilde{w}_{t}^{(i)} = \widetilde{w}_{t-1}^{(i)} \frac{p(y_{t}|x_{t})p(x_{t}|x_{t-1})}{q(x_{t}|x_{0:t-1},y_{0:t})}$$
, for $i = 1, ..., N$

• q is the proposal distribution

$$q(x_{0:t}|y_{0:t}) = q(x_{0:t-1}|y_{0:t-1}) \ q(x_t|x_{0:t-1}, y_{0:t})$$

- q updates recursively in time when the next observation becomes available
- choice of q is very critical.

Unscented Transform

UKF uses unscented transform to capture the posterior mean and covariance to the higher orders. The purpose is to calculate the statistics of a random variable which undergoes a nonlinear transformation $\mathbf{y} = \mathbf{g}(\mathbf{x})$ where $\mathbf{g} : \mathbb{R}^{n_x} \to \mathbb{R}^{n_y}$ and n_x , n_y are the dimensions of x and y respectively.

$$X_0 = \bar{x}$$
 $W_0 = k/(n_x + k)$ $i = 0$ $X_i = \bar{x} + (\sqrt{(n_x + k)P_x})_i$ $W_i = 1/\{2(n_x + k)\}$ $i = 1, ..., n_x$ $X_i = \bar{x} - (\sqrt{(n_x + k)P_x})_i$ $W_i = 1/\{2(n_x + k)\}$ $i = n_x + 1, ..., 2n_x$

$$\mathbf{Y}_{i} = \mathbf{g}(X_{i}) \qquad \mathbf{i} = 0, \dots, 2n_{x}$$

$$\bar{y} = \sum_{i=0}^{2n_{x}} W_{i}Y_{i} , \qquad \mathbf{P}_{y} = \sum_{i=0}^{2n_{x}} W_{i}(Y_{i} - \bar{y}) (Y_{i} - \bar{y})^{T}$$

Unscented Particle Filter

Importance Sampling Step is modified

- Update the particles with the UKF
 - Calculate sigma points
 - Propagate particle into future (time update)
 - Incorporate new observation (measurement update)
- Sample $\hat{x}_t^{(i)} \sim q\left(x_t^{(i)} \middle| x_{0:t-1}^{(i)}, y_{1:t}\right) = \mathcal{N}\left(\bar{x}_t^{(i)}, \hat{P}_t^{(i)}\right)$
- Set $\hat{x}_{0:t}^{(i)} \leftarrow (x_{0:t-1}^{(i)}, \hat{x}_t^{(i)})$ and $\hat{\boldsymbol{P}}_{0:t}^{(i)}(\boldsymbol{P}_{0:t-1}^{(i)}, \hat{\boldsymbol{P}}_t^{(i)})$ $w_t^{(i)} \propto \frac{p\left(y_t \middle| \hat{x}_t^{(i)}\right) p\left(\hat{x}_t^{(i)} \middle| x_{t-1}^{(i)}\right)}{q\left(\hat{x}_t^{(i)} \middle| x_{0:t-1}^{i}, y_{1:t}\right)} \text{, for } i = 1, \dots, N$

Experiment

A time-series was generated by the following process model

$$x_{t+1} = 1 + \sin(\omega \pi t) + \phi_1 x_t + v_t$$

Where v_t is a Gamma G(3, 2) random variable modelling the process noise, and $\omega = 4\text{e-}2$ and $\phi_1 = 0.5$ are scalar parameters.

A non-stationary observation model,

$$y_t = \begin{cases} \phi_2 x_t^2 + n_t & t \le 30\\ \phi_3 x_t - 2 + n_t & t > 30 \end{cases}$$

is used, with ϕ_2 =0.2 and ϕ_3 =0.5 The observation noise, n_t , is drawn from $\mathcal{N}(0, 0.00001)$.

Algorithm	MSE	
	mean	var
Extended Kalman Filter	0.374	0.015
Unscented Kalman Filter	0.280	0.012
Particle Filter	0.424	0.053
Unscented Particle Filter	0.070	0.006

References

- 1. Van Der Merwe, R., Doucet, A., De Freitas, N., & Wan, E. A. (2001). The unscented particle filter. In *Advances in neural information processing systems* (pp. 584-590).
- 2. Julier, S. J., & Uhlmann, J. K. (1997, April). A new extension of the Kalman filter to nonlinear systems. In Int. symp. aerospace/defense sensing, simul. and controls (Vol. 3, No. 26, pp. 182-193).