# IFN646 - Biomedical Data Science — Wearables Project

#### Import of necessary packages

```
import matplotlib.pyplot as plt
import numpy
import seaborn as sns
import pandas as pd
from sklearn.metrics import confusion_matrix, f1_score, accuracy_score, precision_score, recall_score
from preprocess import load_data, inform, __handle_missing_values
import warnings

# create image directory
from pathlib import Path
Path("img").mkdir(parents=True, exist_ok=True)
warnings.filterwarnings('ignore')
```

#### Load the data

```
In [2]:
    full, train, test = load_data()
    Loading cached files.
```

#### Print statistics of the datasets

```
In [3]:
         print("Full data:")
         inform(full)
         print("Training data:")
         inform(train)
         print("Test data:")
         inform(test)
        Full data:
        Shape of data: (49100, 5)
        There are 90.74% O values in column 'Actiware classification'.
        There are 92.14 0 values in column 'Actiwatch activity counts'.
        Training data:
        Shape of data: (40761, 5)
        There are 91.03% 0 values in column 'Actiware classification'
        There are 92.13 0 values in column 'Actiwatch activity counts'.
        Test data:
        Shape of data: (8339, 5)
        There are 89.29% 0 values in column 'Actiware classification'.
        There are 92.18 0 values in column 'Actiwatch activity counts'.
```

#### Gain overview of data

```
# plot histogram of Actiwatch activity counts for the whole data set
plt.hist(full['Actiwatch activity counts'], bins=25)
plt.ylabel('Count')
plt.xlabel('Actiwatch activity counts');
plt.savefig('img/actiwatch_histogram.pdf', bbox='tight')
```

```
In [5]: # plot histogram of Apple Watch ENMO for the whole data set
plt.hist(full['Apple Watch ENMO'], bins=25)
plt.ylabel('Count')
plt.xlabel('Apple Watch ENMO');
plt.savefig('img/apple_watch_histogram.pdf', bbox='tight')
```



# Function to calculate total counts according to Philips' Actiware software specification

```
In [6]:
         def total_counts(df, src_col, dest_col):
              day = df['day'].values
              cts = df[src_col].values
              total = []
              for i in range(len(cts)):
                  div_by_25_sum = 0
                  div_by_5_sum = 0
                  for j in range(-8, -4):
                      if i + j \ge 0 and day[i + j] == day[i]:
                          div_by_25_sum += cts[i + j]
                  for j in range(-4, 0):
                      if i + j \ge 0 and day[i + j] == day[i]:
                  div_by_5_sum += cts[i + j]
for j in range(1, 5):
                      if i + j < len(cts) and day[i + j] == day[i]:
    div_by_5_sum += cts[i + j]</pre>
                  for j in range(5, 9):
                      if i + j < len(cts) and day[i + j] == day[i]:
                           div_by_25_sum += cts[i + j]
                  calculation = 0.04 * div_by_25_sum + 0.20 * div_by_5_sum + 4.00 * cts[i]
                  total.append(calculation)
              df[dest_col] = total
In [7]:
         # call total_counts function and add a column for total counts from Actiwatch
         total counts (train, 'Actiwatch activity counts', 'Actiwatch Total Counts')
          # print first 30 items
         train.head(30)
```

| Out[7]: | da | ıy | Actiwatch activity counts | Actiware classification | Apple Watch ENMO | time     | Actiwatch Total Counts |
|---------|----|----|---------------------------|-------------------------|------------------|----------|------------------------|
|         | 1  | 1  | 109.0                     | 1.0                     | 0.227648         | 20:58:15 | 555.20                 |
|         | 2  | 1  | 170.0                     | 1.0                     | 0.217089         | 20:58:30 | 812.40                 |
|         | 3  | 1  | 91.0                      | 1.0                     | 0.267528         | 20:58:45 | 548.68                 |
|         | 4  | 1  | 101.0                     | 1.0                     | 0.222397         | 20:59:00 | 607.12                 |
|         | 5  | 1  | 125.0                     | 1.0                     | 0.262205         | 20:59:15 | 727.64                 |
|         | 6  | 1  | 105.0                     | 1.0                     | 0.283417         | 20:59:30 | 673.96                 |
|         | 7  | 1  | 176.0                     | 1.0                     | 0.314253         | 20:59:45 | 954.84                 |
|         | 8  | 1  | 105.0                     | 1.0                     | 0.328872         | 21:00:00 | 689.72                 |
|         | 9  | 1  | 159.0                     | 1.0                     | 0.444264         | 21:00:15 | 897.32                 |
|         | 10 | 1  | 215.0                     | 1.0                     | 0.521921         | 21:00:30 | 1110.12                |
|         | 11 | 1  | 208.0                     | 1.0                     | 0.515725         | 21:00:45 | 1095.32                |
|         | 12 | 1  | 91.0                      | 1.0                     | 0.318492         | 21:01:00 | 637.72                 |
|         | 13 | 1  | 97.0                      | 1.0                     | 0.348385         | 21:01:15 | 651.84                 |
|         | 14 | 1  | 134.0                     | 1.0                     | 0.301678         | 21:01:30 | 773.68                 |
|         | 15 | 1  | 125.0                     | 1.0                     | 0.292101         | 21:01:45 | 762.48                 |
|         | 16 | 1  | 117.0                     | 1.0                     | 0.306116         | 21:02:00 | 692.08                 |
|         | 17 | 1  | 76.0                      | 1.0                     | 0.273415         | 21:02:15 | 517.52                 |
|         | 18 | 1  | 73.0                      | 1.0                     | 0.242683         | 21:02:30 | 484.24                 |
|         | 19 | 1  | 385.0                     | 1.0                     | 0.276460         | 21:02:45 | 1639.80                |
|         | 20 | 1  | 2.0                       | 1.0                     | 0.004816         | 21:03:00 | 156.08                 |
|         | 21 | 1  | 0.0                       | 1.0                     | 0.002099         | 21:03:15 | 126.12                 |
|         | 22 | 1  | 0.0                       | 1.0                     | 0.002393         | 21:03:30 | 110.08                 |
|         | 23 | 1  | 0.0                       | 1.0                     | 0.002089         | 21:03:45 | 93.04                  |
|         | 24 | 1  | 0.0                       | 1.0                     | 0.002052         | 21:04:00 | 26.44                  |
|         | 25 | 1  | 0.0                       | 1.0                     | 0.001939         | 21:04:15 | 21.44                  |
|         | 26 | 1  | 0.0                       | 1.0                     | 0.001993         | 21:04:30 | 18.40                  |
|         | 27 | 1  | 0.0                       | 1.0                     | 0.002051         | 21:04:45 | 15.48                  |
|         | 28 | 1  | 0.0                       | 1.0                     | 0.001956         | 21:05:00 | 0.08                   |
|         | 29 | 1  | 0.0                       | 1.0                     | 0.002015         | 21:05:15 | 0.00                   |
|         | 30 | 1  | 0.0                       | 1.0                     | 0.001976         | 21:05:30 | 0.00                   |

# Helper functions that classifies into sleep/wake according to threshold 40

```
In [8]:
    def classify(row, col):
        if row[col] > 40:
            return 1
        else:
            return 0
```

# Plausibility Check

### Perform classification of actiwatch total counts for plausibility check

```
train['Actiware classification calculated'] = train.apply(lambda x: classify(x, 'Actiwatch Total Counts'), axis
# set uninterrupted sleep values
train = __handle_missing_values(train, 'Actiware classification calculated')
#print first 30 elements
train.head(30)
```

 $\theta$  rows were dropped where both activity counts and classification were missing. That is roughly 0.00% of the dataset.

1125 classifications were set to 1 for the first and last 5 minutes of uninterrupted sleep. That is roughly 2.76% of the dataset.

| t[9]: |    | day | Actiwatch activity counts | Actiware classification | Apple Watch<br>ENMO | time     | Actiwatch Total<br>Counts | Actiware classification calculated |  |
|-------|----|-----|---------------------------|-------------------------|---------------------|----------|---------------------------|------------------------------------|--|
|       | 1  | 1   | 109.0                     | 1.0                     | 0.227648            | 20:58:15 | 555.20                    | 1                                  |  |
|       | 2  | 1   | 170.0                     | 1.0                     | 0.217089            | 20:58:30 | 812.40                    | 1                                  |  |
|       | 3  | 1   | 91.0                      | 1.0                     | 0.267528            | 20:58:45 | 548.68                    | 1                                  |  |
|       | 4  | 1   | 101.0                     | 1.0                     | 0.222397            | 20:59:00 | 607.12                    | 1                                  |  |
|       | 5  | 1   | 125.0                     | 1.0                     | 0.262205            | 20:59:15 | 727.64                    | 1                                  |  |
|       | 6  | 1   | 105.0                     | 1.0                     | 0.283417            | 20:59:30 | 673.96                    | 1                                  |  |
|       | 7  | 1   | 176.0                     | 1.0                     | 0.314253            | 20:59:45 | 954.84                    | 1                                  |  |
|       | 8  | 1   | 105.0                     | 1.0                     | 0.328872            | 21:00:00 | 689.72                    | 1                                  |  |
|       | 9  | 1   | 159.0                     | 1.0                     | 0.444264            | 21:00:15 | 897.32                    | 1                                  |  |
|       | 10 | 1   | 215.0                     | 1.0                     | 0.521921            | 21:00:30 | 1110.12                   | 1                                  |  |
|       | 11 | 1   | 208.0                     | 1.0                     | 0.515725            | 21:00:45 | 1095.32                   | 1                                  |  |
|       | 12 | 1   | 91.0                      | 1.0                     | 0.318492            | 21:01:00 | 637.72                    | 1                                  |  |
|       | 13 | 1   | 97.0                      | 1.0                     | 0.348385            | 21:01:15 | 651.84                    | 1                                  |  |
|       | 14 | 1   | 134.0                     | 1.0                     | 0.301678            | 21:01:30 | 773.68                    | 1                                  |  |
|       | 15 | 1   | 125.0                     | 1.0                     | 0.292101            | 21:01:45 | 762.48                    | 1                                  |  |
|       | 16 | 1   | 117.0                     | 1.0                     | 0.306116            | 21:02:00 | 692.08                    | 1                                  |  |
|       | 17 | 1   | 76.0                      | 1.0                     | 0.273415            | 21:02:15 | 517.52                    | 1                                  |  |
|       | 18 | 1   | 73.0                      | 1.0                     | 0.242683            | 21:02:30 | 484.24                    | 1                                  |  |
|       | 19 | 1   | 385.0                     | 1.0                     | 0.276460            | 21:02:45 | 1639.80                   | 1                                  |  |
|       | 20 | 1   | 2.0                       | 1.0                     | 0.004816            | 21:03:00 | 156.08                    | 1                                  |  |
|       | 21 | 1   | 0.0                       | 1.0                     | 0.002099            | 21:03:15 | 126.12                    | 1                                  |  |
|       | 22 | 1   | 0.0                       | 1.0                     | 0.002393            | 21:03:30 | 110.08                    | 1                                  |  |
|       | 23 | 1   | 0.0                       | 1.0                     | 0.002089            | 21:03:45 | 93.04                     | 1                                  |  |
|       | 24 | 1   | 0.0                       | 1.0                     | 0.002052            | 21:04:00 | 26.44                     | 1                                  |  |
|       | 25 | 1   | 0.0                       | 1.0                     | 0.001939            | 21:04:15 | 21.44                     | 1                                  |  |
|       | 26 | 1   | 0.0                       | 1.0                     | 0.001993            | 21:04:30 | 18.40                     | 1                                  |  |
|       | 27 | 1   | 0.0                       | 1.0                     | 0.002051            | 21:04:45 | 15.48                     | 1                                  |  |
|       | 28 | 1   | 0.0                       | 1.0                     | 0.001956            | 21:05:00 | 0.08                      | 1                                  |  |
|       | 29 | 1   | 0.0                       | 1.0                     | 0.002015            | 21:05:15 | 0.00                      | 1                                  |  |

## Compare classification to calculated classification

0.001976 21:05:30

0.00

The plausibility check in which we re-classified the sleep/wake state according to Philip's software specification almost yielded a perfect result. Merely 19 values are misclassified. This might be due to some NA values handled improperly or a bug in the uninterrupted sleep algorithm. We will investigate that further in the next iteration.

## Fit Machine Learning Model

0.0

30

dtype: int64

## Draw scatter plot from Apple Watch and Actiwatch

```
train.plot.scatter(x='Apple Watch ENMO', y='Actiwatch activity counts')
plt.savefig('img/scatter_plot.pdf', bbox='tight')
```



#### Fit linear Regression Model

```
In [12]:
          # declare x and y for the model
x = train['Apple Watch ENMO']
          y = train['Actiwatch activity counts']
          x.fillna(0, inplace=True)
          y.fillna(0, inplace=True)
          x = x.tolist()
          y = y.tolist()
          x removed_high_values = []
          y removed high values = []
          # only focus on finding a regression line for smaller values, as high activity
          # counts are likely to be awake anyway
          for i in range(len(x)):
              if y[i] < 160:
                  x removed high values.append(x[i])
                  y_removed_high_values.append(y[i])
          # fit linear model
          model = numpy.poly1d(numpy.polyfit(x_removed_high_values, y_removed_high_values, 1))
          # create linspace to draw scatter plot in next step
          line = numpy.linspace(0, 3.5, 1000)
          # scatter plot
          plt.scatter(x, y)
          # draw regression graph into plot
          plt.plot(line, model(line), color='red')
          # set limits
          plt.xlim([0,3.51])
          plt.ylim([0,910])
          # set labels
          plt.xlabel("Apple Watch ENMO")
          plt.ylabel("Actiwatch activity counts")
          plt.savefig('img/scatter_plot_with_regression_line.pdf', bbox='tight')
          print('The function of the regression line is:\nf(x) = ', str(model).strip())
```

f(x) = 830.1 x - 1.774

800
600
0.0 0.5 10 1.5 2.0 2.5 3.0 3.9

Apple Watch ENMO

The function of the regression line is:

### Predict if sleep or awake for test data

```
test['Predicted activity counts'] = model(test['Apple Watch ENMO'])
# calculate total counts from prediction
total counts(test, 'Predicted activity counts', 'Predicted Total Counts')
# print first 15 rows
test.head(15)
```

Out[13]:

```
Actiware
                                                           Apple Watch
                                                                                     Predicted activity
                                                                                                            Predicted Total
               Actiwatch activity
      day
                                                                            time
                                        classification
                                                                 ENMO
                          counts
                                                                                                counts
                                                                                                                    Counts
7789
        5
                             91.0
                                                  1.0
                                                               0.049485 22:11:15
                                                                                             39.301102
                                                                                                                442.111665
7790
         5
                             62.0
                                                  1.0
                                                               0.047339 22:11:30
                                                                                             37.520075
                                                                                                                450.677075
7791
         5
                             58.0
                                                  1.0
                                                               0.069403 22:11:45
                                                                                             55.834148
                                                                                                                530.042896
7792
         5
                            154.0
                                                  1.0
                                                               1.066049 22:12:00
                                                                                            883.105176
                                                                                                               3673.955762
7793
                            164.0
                                                  1.0
                                                               0.503060 22:12:15
                                                                                            415.792924
                                                                                                               1898.819150
         5
7794
         5
                            159.0
                                                  1.0
                                                               0.117267 22:12:30
                                                                                             95.563985
                                                                                                                675.876534
         5
                             94.0
                                                  1.0
                                                               0.075325 22:12:45
                                                                                             60.749480
                                                                                                                537.821826
7795
7796
         5
                                                  1.0
                                                               0.003893 22:13:00
                                                                                              1.457241
                                                                                                                303.842708
                              0.0
         5
                                                               0.006534 22:13:15
                                                                                                                171.210781
7797
                              6.0
                                                  1.0
                                                                                              3.649144
7798
         5
                              0.0
                                                  1.0
                                                               0.003435 22:13:30
                                                                                              1.076835
                                                                                                                 93.540957
7799
         5
                              0.0
                                                  1.0
                                                               0.003716 22:13:45
                                                                                              1.310717
                                                                                                                 77.808235
7800
         5
                              0.0
                                                  1.0
                                                               0.003637 22:14:00
                                                                                              1.245012
                                                                                                                 65.899504
7801
         5
                              0.0
                                                  1.0
                                                               0.004128 22:14:15
                                                                                              1.652067
                                                                                                                 32.204541
7802
         5
                              0.0
                                                  1.0
                                                               0.003439 22:14:30
                                                                                              1.080816
                                                                                                                 12.950007
7803
         5
                              0.0
                                                  1.0
                                                               0.003159 22:14:45
                                                                                              0.847705
                                                                                                                   8.196882
```

```
In [14]:
          # classify
          test['Predicted wake'] = test.apply(lambda x: classify(x, 'Predicted Total Counts'), axis=1)
          # set uninterrupted sleep values
          test = __handle_missing_values(test, 'Predicted wake')
          # print first 15 rows
          test.head(15)
```

 $\boldsymbol{\theta}$  rows were dropped where both activity counts and classification were missing. That is roughly 0.00% of the dataset.

273 classifications were set to 1 for the first and last 5 minutes of uninterrupted sleep. That is roughly 3.27% of the dataset.

Out[14]:

| :    | day | Actiwatch activity counts | Actiware classification | Apple Watch<br>ENMO | time     | Predicted activity counts | Predicted Total<br>Counts | Predicted<br>wake |
|------|-----|---------------------------|-------------------------|---------------------|----------|---------------------------|---------------------------|-------------------|
| 7789 | 5   | 91.0                      | 1.0                     | 0.049485            | 22:11:15 | 39.301102                 | 442.111665                | 1                 |
| 7790 | 5   | 62.0                      | 1.0                     | 0.047339            | 22:11:30 | 37.520075                 | 450.677075                | 1                 |
| 7791 | 5   | 58.0                      | 1.0                     | 0.069403            | 22:11:45 | 55.834148                 | 530.042896                | 1                 |
| 7792 | 5   | 154.0                     | 1.0                     | 1.066049            | 22:12:00 | 883.105176                | 3673.955762               | 1                 |
| 7793 | 5   | 164.0                     | 1.0                     | 0.503060            | 22:12:15 | 415.792924                | 1898.819150               | 1                 |
| 7794 | 5   | 159.0                     | 1.0                     | 0.117267            | 22:12:30 | 95.563985                 | 675.876534                | 1                 |
| 7795 | 5   | 94.0                      | 1.0                     | 0.075325            | 22:12:45 | 60.749480                 | 537.821826                | 1                 |
| 7796 | 5   | 0.0                       | 1.0                     | 0.003893            | 22:13:00 | 1.457241                  | 303.842708                | 1                 |
| 7797 | 5   | 6.0                       | 1.0                     | 0.006534            | 22:13:15 | 3.649144                  | 171.210781                | 1                 |
| 7798 | 5   | 0.0                       | 1.0                     | 0.003435            | 22:13:30 | 1.076835                  | 93.540957                 | 1                 |
| 7799 | 5   | 0.0                       | 1.0                     | 0.003716            | 22:13:45 | 1.310717                  | 77.808235                 | 1                 |
| 7800 | 5   | 0.0                       | 1.0                     | 0.003637            | 22:14:00 | 1.245012                  | 65.899504                 | 1                 |
| 7801 | 5   | 0.0                       | 1.0                     | 0.004128            | 22:14:15 | 1.652067                  | 32.204541                 | 1                 |
| 7802 | 5   | 0.0                       | 1.0                     | 0.003439            | 22:14:30 | 1.080816                  | 12.950007                 | 1                 |
| 7803 | 5   | 0.0                       | 1.0                     | 0.003159            | 22:14:45 | 0.847705                  | 8.196882                  | 1                 |

#### Print statistics of classification

#### Confusion matrix

```
conf_mat = confusion_matrix(test['Actiware classification'], test['Predicted wake'])

# put matrix into data frame
df_cm = pd.DataFrame(conf_mat, range(2), range(2))

# plot matrix with blues color style
plt.figure(figsize=(10,7))
sns.set(font_scale=1.4)

s = sns.heatmap(df_cm, annot=True, cmap='Blues', fmt='g')
s.set(xlabel='Predicted label', ylabel='True label', title='Confusion Matrix')

fig = s.get_figure()
fig.savefig("img/confusion_matrix.pdf", bbox='tight')
```



Metrics: Accuracy, Misclassification Rate, Precision, Recall, F1-score

Note: As we are trying to classify sleep, we consider 0 as the positive class

```
In [16]:
          # Accuracy
          acc = round(accuracy score(test['Actiware classification'], test['Predicted wake'])*100, 2)
          print("Accuracy score: \t", acc, '%')
          # Misclassification Rate
          print("Misclassification rate:\t", round(100-acc, 2), '%')
          # Precision
          print("Precision score:\t",
                round(precision_score(test['Actiware classification'], test['Predicted wake'], pos_label=0)*100, 2), '%']
          # Recall
          print("Recall: \t\t",
                round(recall_score(test['Actiware classification'], test['Predicted wake'], pos label=0)*100, 2), '%')
          print("F1 score: \t\t",
                round(f1_score(test['Actiware classification'], test['Predicted wake'], pos_label=0)*100, 2), '%')
                                  97.85 %
         Accuracy score:
         Misclassification rate:
                                  2.15 %
         Precision score:
                                  97.99 %
         Recall:
                                  99.64 %
```

Further metrics like total sleep time, awakenings during night

98.81 %

F1 score:

```
In [17]: # extract days
days = test['day'].unique()

# consider every day separately
for day in days:
    subset = test[test['day'] == day]

# calc fall asleep time for actiware
    fall_asleep_id_acti = subset['Actiware classification'].idxmin()
```

```
# calc wake up time for actiware
    wake_up_id_acti = subset.iloc[::-1]['Actiware classification'].idxmin()+1
     # calc sleep time for actiware
    sleep_time_acti = (wake_up_id_acti - fall asleep id acti) / 4 / 60
     # calc fall asleep time for predicted
    fall asleep id pred = subset['Predicted wake'].idxmin()
     # calc wake up time for predicted
    wake up id pred = subset.iloc[::-1]['Predicted wake'].idxmin()+1
     # calc sleep time for predicted
     sleep time pred = (wake up id pred - fall asleep id pred) / 4 / 60
     # calc awakenings during night for actiware
    awakening ids = []
     # iterate over all ids of night period
    for i in range(fall_asleep_id_acti, wake_up_id_acti):
         # append all ids where wearer is awake
        if subset.loc[i]['Actiware classification'] == 1:
            awakening_ids.append(i)
     # calculate distinct wake ups
    distinct awakenings = 0
    for i in range(1, len(awakening_ids)):
         # just consider new wake ups, i.e., where prior epoch is not already set to wake
        if awakening ids[i-1] != awakening ids[i]-1:
            distinct_awakenings += 1
    awakenings_acti = distinct_awakenings
    # calc awakenings during night for predicted
    awakening_ids = []
# iterate over all ids of night period
     for i in range(fall asleep id pred, wake up id pred):
        # append all ids where wearer is awake
if subset.loc[i]['Predicted wake'] == 1:
            awakening_ids.append(i)
     # calculate distinct wake ups
    distinct_awakenings = 0
     for i in range(1, len(awakening_ids)):
         # just consider new wake ups, i.e., where prior epoch is not already set to wake
        if awakening_ids[i-1] != awakening_ids[i]-1:
            distinct awakenings += 1
     awakenings_pred = distinct_awakenings
    print("\t\t awakenings:\t", awakenings_acti, "\t\t pred. awakenings:\t", awakenings_pred)
    print()
day 5 :
                 sleep time:
                                 6.75 h
                                                 pred. sleep time:
                                                                         6.78 h
                                                 pred. awakenings:
                                                                         18
                 awakenings:
                                 18
day 14 :
                 sleep time:
                                 8.57 h
                                                 pred. sleep time:
                                                                         8.58 h
                awakenings:
                                59
                                                 pred. awakenings:
                                                                         50
day 15 :
                 sleep time:
                                 5.5 h
                                                 pred. sleep time:
                                                                         5.52 h
                 awakenings:
                                                 pred. awakenings:
                 sleep time:
                                 6.78 h
                                                 pred. sleep time:
                                                                         6.83 h
day 17 :
                 awakenings:
                                 24
                                                 pred. awakenings:
                                                                         22
```

pred. sleep time:

pred. awakenings:

5.83 h

40

day 25 :

sleep time:

awakenings:

5.85 h

44