Course Overview M1: Fixed Income Data

■ FD Forum M2 LESSON 1: FINANCIAL ASSET DATA O Required Readings O Lesson Notes

O Required Readings O Lesson Notes

25/03 600 FINANCIAL DATA

M2: Equities and Cryptocurrencies 🔨

LESSON 2: FINANCIAL ASSET & RETURN ANALYSIS

LESSON 3: SPECIAL MATRICES FOR EQUITY ANALYSIS O Required Readings O Lesson Notes

LESSON 4: ETHICAL PRACTICES WITH

O FD Collaborative Review Task

O FD Practice Quiz M2

O FD Graded Quiz M2

O Required Readings O Lesson Notes ASSESSMENTS

<

Home > My Courses > Financial Data > M2: Equities and Cryptocurrencies > FD Graded Quiz M2

FD Graded Quiz M2

Question 1	Given a symmetric matrix: $A = \begin{pmatrix} 4 & 2 \\ 2 & 5 \end{pmatrix}$	OUESTIONS
	is it positive definite?	123
	No, because its determinant is negative	11 12 13
	Yes, because its determinant is positive (16) and all eigenvalues are positive	16
	Cannot be determined from the given information	
	No, because it has a zero eigenvalue	
Question 2	How does semivariance improve upon variance when measuring risk?	
	By assuming returns are normally distributed	
	By considering only upside deviations emphasizing potential gains	
	By focusing only on downside deviations providing a measure of downside risk	
	By including both skewness and kurtosis in its calculation	
Question 3	Suppose A is a symmetric n×n matrix, and x is a non-zero n-dimensional vector. Define the Rayleigh quotient $R(A,x) = (x^T Ax) / (x^T x)$. Which of the following statements is true?	
	If A is positive definite, then $R(A, x) > 0$ for all non-zero x	
	\bigcirc If R(A,x) >= 0 for all non-zero x, then A is necessarily positive definite	
	If A is positive semidefinite, then the minimum value of R(A,x) over all unit vectors x is equal to the largest eigenvalue of A	
	If A is positive definite, then the maximum value of R(A,x) over all unit vectors x is equal to the trace of A	
Question 4	Calculate the Sharpe Ratio given a portfolio return of 12% risk-free rate of 2% and standard deviation of portfolio returns of 20%.	
	0.833	
	0.5	
	0.6	
	0.666	
Question 5	Given a stock with daily log returns having a mean of 0.001 and standard deviation of 0.02, what is the probability of observing a daily return exceeding 0.04 assuming normal distribution?	
	4.79%	
	2.56%	
	O 5.12%	

Question 6	According to the notes, what are the three distinct approaches to measuring and comparing investment volatility?
	High-low metric, moving average rolling distance, and standard deviation of returns
	Beta, alpha, and standard deviation
	Range, median, and mode of returns
	Variance, covariance, and correlation
Question 7	How can Benford's Law be applied to detect accounting manipulation?
	By tracking changes in account balances
	By monitoring unusual transactions
	By analyzing the frequency distribution of first digits in financial data
	By comparing transaction volumes across periods
Question 8	Given a symmetric matrix
	$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}$
	what is I22 in its Cholesky factorization?
	sqrt(4 + 4) = 2sqrt(2)
	• sqrt(3-(1/2)) = 1.58
	o sqrt(4) = 2
	O 4
Question 9	If an asset's returns exhibit high positive skewness what can be inferred about the distribution of its returns compared to a normal distribution?
	The mean median and mode of the distribution are all equal
	The distribution has a longer left tail indicating potential for extreme negative returns
	The distribution has a longer right tail indicating potential for extreme
	positive returns
	The distribution is symmetrical with no skewness
Question 10	What is the determinant of an upper triangular matrix?
	Always zero
	The product of all its non-zero elements The product of its diagonal elements
	The product of its diagonal elements The sum of its diagonal elements
	The sam of no diagonal elements
Question 11	If a stock has daily log returns with mean 0.0005 and standard deviation
	0.02, what is the approximate 3-sigma upper bound?
	0.0805
	0.0405
	● 0.0605
	O.0205

Using the compound interest formula shown in the notes, what would be $% \left\{ \left(1\right) \right\} =\left\{ \left(1\right) \right\}$ the future value of a \$5,000 investment after 3 years with an annual interest rate of 8% \$6,288.26 \$7,298.46 \$6,298.56 \$6,398.36 Question 13 Which of the following best explains why indices typically show lower volatility than individual stocks? O Individual stocks are more frequently traded O Indices are managed by professional fund managers O Indices are protected by government regulations Diversification across multiple stocks reduces overall portfolio volatility Question 14 According to the notes, what was Ernst & Young employees' ethical violation that led to regulatory action? Cheating on their ethics exam O Insider trading Falsifying client documents Misreporting financial statements Which of the following matrices is symmetric positive definite? $egin{array}{ccc} oldsymbol{\bullet} & A = egin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$ $\bigcirc \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\bigcirc A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $\bigcirc \ \ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Question 16 In the Jarque-Bera test for normality, what does a p-value of 0.0 indicate? O Perfect normal distribution O Inconclusive evidence O No skewness or kurtosis Strong evidence against normal distribution

SUBMIT

