

INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

Jl. Ganesha No 10 Bandung 40132 Indonesia

UJIAN 3 FISIKA DASAR IB (FI-1102) SEMESTER 1, TAHUN 2022/2023 KAMIS, 15 DESEMBER 2022, PUKUL 09.15-11.15 WIB

- 1. Grafik di samping menunjukan kecepatan sebuah benda yang bergerak sepanjang garis lurus. Jika saat $t=20\,$ s posisi benda berada di $x=200\,$ m, tentukanlah: a. posisi benda saat $t=0\,$ s.
 - b.kecepatan rata-rata benda antara t = 0 5 s.
 - c. percepatan benda saat t = 3 s dan t = 6 s.

2. Sebuah partikel bermassa m=0.5 kg diikatkan pada seutas tali ringan dengan panjang L=50 cm dan kemudian diputar berlawanan arah putar jarum jam dengan laju angular konstan ω sehingga membentuk lintasan berupa lingkaran vertikal (lihat gambar). Diketahui pada saat t=0, partikel berada pada posisi (0,-50 cm) dan pada saat $t=\pi/18$ s partikel berada pada posisi $(25\sqrt{3}$ cm, 25 cm) untuk yang pertama kalinya. Jika nilai percepatan gravitasi adalah g=10 m/s², tentukanlah

- a. laju angular gerak putaran partikel,
- b. besar gaya tegangan tali pada saat $t = \pi/18$ s,
- c. Tentukan besar gaya arah tangensial yang harus diberikan pada partikel pada saat $t = \pi/18$ s agar partikel dapat berputar dengan laju sudut konstan.
- 3. Sebuah balok bermassa $m_1=2$ kg sedang bergerak dengan laju $v_1=6$ m/s ke arah kanan pada sebuah permukaan horizontal licin. Balok lain bermassa $m_2=3$ kg bergerak dengan laju $v_2=8$ m/s ke arah kiri pada permukaan yang

sama seperti ditunjukkan gambar. Kedua balok kemudian bertumbukan dan setelah bertumbukan balok m_1 bergerak dengan laju $v_1'=3$ m/s ke arah kiri.

- a. Tentukan laju gerak balok m_2 setelah tumbukan
- b. Tentukan selisih energi kinetik sistem dua balok sebelum dan setelah tumbukan.
- c. Tentukan besar impuls yang diberikan oleh balok m_2 pada balok m_1 selama proses tumbukan.
- 4. Dua buah balok masing-masing bermassa $m_1 = 10$ kg dan $m_2 = 40$ kg digantung menggunakan tali ringan dan tidak mulur yang dilewatkan pada suatu katrol seperti ditunjukkan pada gambar. Katrol dapat dianggap berupa cakram (silinder) pejal dengan jari-jari 10 cm yang dapat berputar bebas tanpa gesekan pada porosnya. Besar percepatan turunnya balok m_2 teramati sebesar setengah percepatan gravitasi. Jika besar percepatan gravitasi adalah g = 10 m/s² dan tali tidak slip pada katrol, tentukan:

 $V(m^3)$

- a. besar percepatan sudut katrol
- b. momen inersia katrol.
- c. besar momen gaya total pada katrol
- 5. Suatu gas ideal monoatomik mengalami proses abca seperti terlihat pada gambar berikut. Diketahui nilai P_b adalah 7,5 kPa sedangkan nilai P_a adalah 2,5 kPa dan temperatur pada keadaan a adalah $T_a = 200$ K. Konstanta gas umum adalah R = 8,31 J/mol K.

- a. Berapa jumlah mol gas tersebut?
- b. Lengkapi tabel berikut

Keadaan	Tekanan (kPa)	Volume (m ³)	Temperatur (K)
a			
b			
c			

c. Tentukan kerja total yang dilakukan gas selama satu siklus.