

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/site/iitkgpakdas/

Coding Theory (Group Codes)

Error Detection

E, E': Error detecting codes f: Error detecting code function

Figure: Error detection

Error Detection

- For a given frame of bits, additional bits that constitute an error-detecting code are added by the transmitter. This code is calculated as a function of the other transmitted bits.
- The receiver performs the same calculation and compares the two results. A detected error occurs if and only if there is a mismatch.

Definition

Let x and y be binary n-tuples, i.e., $x = \langle x_1, x_2, \dots, x_n \rangle$ and $y = \langle y_1, y_2, \dots, y_n \rangle$, where $x_i, y_i \in \{0, 1\}$. The Hamming distance between x and y denoted as H(x, y) is the number of co-ordinates (components) in which they differ.

- Example: The Hamming distance between $\langle 1, 0, 1 \rangle$ and $\langle 1, 1, 0 \rangle$ is $H(\langle 1, 0, 1 \rangle, \langle 1, 1, 0 \rangle) = 2$.
- The Hamming distance between two *n*-tuples is equal to the number of independent single errors needed to change one *n*-tuple into the other.

Properties

- $H(x, y) \ge 0$, $\forall x, y \in C$, where C is the set of code words which are n-tuples $c_i = \langle c_{i,1}, c_{i,2}, \dots, c_{i,n} \rangle$, $c_{i,j} \in \{0, 1\}$.
- H(x, y) = 0 if and only if x = y.
- $\bullet \ H(x,y) = H(y,x), \forall x,y \in C.$
- $H(x,z) \leq H(x,y) + H(y,z), \forall x,y,z \in C$.

Definition

The minimum distance (or minimum Hamming distance) of an n-coordinate code, C is $H_c = min_{c_i,c_j \in C}H(c_i,c_j)$.

Theorem

A code C can detect all combinations of d or fewer errors if and only if its minimum distance is at least (d + 1).

In other words,

C can detect < d errors

if and only if

 $H_c = minimum \ distance \ of \ C = min_{c_i,c_i \in C} H(c_i,c_j) \geq (d+1).$

Theorem

A code C can correct every combination of t or fewer errors if and only if its minimum distance is at least (2t + 1).

Proof. Let C be a code of n-tuple code words c_i , where

$$c_i = \langle c_{i,1}, c_{i,2}, \ldots, c_{i,n} \rangle, c_{i,j} \in \{0,1\}.$$

The Hamming distance H(x, y) between two n-tuple code words x and y, where $x, y \in C$, is H(x, y) = number of coordinates in which they differ.

The minimum Hamming distance is given by $H_c = min_{c_i, c_j \in C} H(c_i, c_j)$. (\Rightarrow) : Given C can correct < t errors.

RTP: $H_c = 2t + 1$, that is, $\forall x, y \in C, H(x, y) \ge (2t + 1)$.

If possible, let $\exists x, y \in C$ such that H(x, y) = 2t.

Let l_1, l_2, \ldots, l_{2t} be the coordinates (positions) where x and y differ.

Select l_1, l_2, \ldots, l_t and change x to another n-tuple x' by changing x in these positions. Therefore, H(x, x') = t.

Proof (Continued ...)

Proof (Continued . . .) But, then from the property of Hamming distance, we have:

$$H(x,y) \leq H(x,x') + H(x',y)$$

$$= t+t$$

$$H(x,y) \leq 2t.$$

There exists some *n*-tuple x' that satisfies H(x, x') = t and $H(x', y) \le t$.

This is a contradiction. Hence, $H_c = 2t + 1$, that is, $\forall x, y \in C, H(x, y) \ge (2t + 1)$.

Proof (Continued ...)

 (\Leftarrow) : Given $H_c = 2t + 1$, that is, $\forall x, y \in C$,

$$H(x,y) \geq 2t+1. \tag{1}$$

Let x' be a received n-tuple that is corrupted by NOT more than t errors and x be a code word. x' has thus changed from x by t or fewer errors. Hence,

$$H(x,x') \leq t. \tag{2}$$

From the properties of Hamming distance, we have

$$H(x,y) \le H(x,x') + H(x',y)$$

 $H(x',y) \ge H(x,y) - H(x,x')$
 $\ge t+1$, using Eqns. (1) and (2).

Therefore, every code word y is farther than x' than is x, and x can be correctly decoded.

Definition

A *group code* is a code from which *n*-tuple code words forms a group with respect to the operation \oplus (modulo-2 or bitwise XOR), where $x \oplus y = \langle x_1 \oplus y_1, x_2 \oplus y_2, \dots, x_n \oplus y_n \rangle$.

Definition

The weight of a code word x, denoted by w(x), is the number of its coordinates (or components) that are 1s, that is, w(x) = number of 1s in x.

Example: $w(\langle 1, 1, 1, 1 \rangle) = 4$ $w(\langle 1, 1, 0, 0 \rangle) = 2$. We denote the *n*-tuple $\langle 0, 0, \dots, 0 \rangle$ by 0. Note that w(x) = H(x, 0), $H(x, y) = H(x \oplus y, 0) = w(x \oplus y)$.