Content.

Document Modification History	
Content	
Figure Catalog	
Table Catalog	
1 Introduction	
1.1 Purpose of writing34	
1.2 References34	
2 Features	. 35
3 Overview	39
4 Chip structure41	
4.1 Chip structure41	
4.2 Bus structure	
4.3 Clock Structure47	
4.4 Address space48	
4.4.1 SRAM	53
4.4.2 Flash	6
4.4.3 PSRAM	54
4.5 Startup configuration	
5 Clock and reset module	56
5.1 Function overview56	
5.2 Main features	56
5.3 Function description56	
5.3.1 Clock Gating	56
5.3.2 Clock Adaptive Shutdown	57
5.3.3 Function reset	57
5.3.4 Clock Divide	57
5.3.5 Debug function control	59
5.4 Register Description60	
5.4.1 Register List	. 60
5.4.2 Software Clock Gating Enable Register	50
5.4.3 Software Clock Mask Register	64
5.4.4 Software reset control register	65
5.4.5 Clock Divider Configuration Register	71
5.4.6 Debug Control Registers	73
5.4.7 I2S clock control register	74

5.4.8 Reset Status Register	/6
6 DMA module	77
6.1 Function overview	7
6.2 Main Features77	
6.3 Function description	77
6.3.1 DMA channel	77
6.3.2 DMA data flow	
6.3.3 DMA Cycling Mode	79
6.3.4 DMA transfer mode	79
6.3.5 DMA Peripheral Selection	79
6.3.6 DMA linked list mode	80
6.3.7 DMA Interrupt	80
6.4 Register description	80
6.4.1 Register List	80
6.4.2 Interrupt Mask Register	82
6.4.3 Interrupt Status Register	83
6.4.4 UART selection register	84
6.4.5 DMA Source Address Register	85
6.4.6 DMA Destination Address Register	85
6.4.7 DMA loop source start address register	85
6.4.8 DMA loop destination start address register	86
6.4.9 DMA Cycle Length Register	86
6.4.10 DMA Channel Control Register	86
6.4.11 DMA mode selection register	87
6.4.12 DMA data flow control register	88
6.4.13 DMA transfer bytes register	90
6.4.14 DMA linked list entry address register	90
6.4.15 DMA current destination address register	90
7 Generic Hardware Encryption Module	92
7.1 Function overview	92
7.2 Main features	92
7.3 Function description92	
7.3.1 SHA1 encryption	92
7.3.2 MD5 encryption	92
7.3.3 RC4 encryption	93
7.3.4 DES encryption	93

7.3.5 3DES encryption	93
7.3.6 AES encryption	93
7.3.7 CRC encryption	93
7.3.8 TRNG random number generator	94
7.4 Register Description95	
7.4.1 Register List	95
7.4.2 Configuration Registers	96
7.4.3 TRNG Control Register	99
7.4.4 Control Registers	100
7.4.5 Status Register	101
8 RSA encryption module	102
8.1 Function overview1	02
8.2 Main features	102
8.3 Function description	102
8.3.1 Modular multiplication function	102
8.4 Register description	1027
8.4.1 Register List	
8.4.2 Data X Register	103
8.4.3 Data Y register	103
8.4.4 Data M register	103
8.4.5 Data D Register	103
8.4.6 RSA Control Register	104
8.4.7 Parameter MC register	105
8.4.8 Parameter N register	105
9 GPIO module106	
9.1 Function overview1	06
9.2 Main Features106	
9.3 Function description	
9.4 Register Description	107
9.4.1 Register List	
9.4.2 GPIO data register109)
9.4.3 GPIO data enable register	110
9.4.4 GPIO direction control register	110
9.4.5 GPIO pull-up and pull-down control register	111
9.4.6 GPIO multiplexing selection register	112
9.4.7 GPIO multiplexing selection register 1	114

9.4.8 GPIO multiplexing selection register 0	114
9.4.9 GPIO interrupt trigger mode configuration register	115
9.4.10 GPIO interrupt edge-triggered mode configuration register	116
9.4.11 GPIO interrupt upper and lower edge trigger configuration regis	ster116
9.4.12 GPIO Interrupt Enable Configuration Register	117
9.4.13 GPIO Raw Interrupt Status Register	118
9.4.14 GPIO Masked Interrupt Status Register	118
9.4.15 GPIO Interrupt Clear Control Register	119
10 High-speed SPI device controller	120
10.1 Function overview12	0
10.2 Main Features	
10.3 Function description	120
10.3.1 Introduction to the SPI protocol	120
10.3.2 SPI working process	121
10.4 Register Description.	121
10.4.1 List of registers for internal operation of HSPI chip	121
10.4.2 Host access to HSPI controller register list	125
10.4.3 High Speed SPI Device Controller Interface Timing	130
11 SDIO device controller	141
11.1 Function overview14	1
11.2 Main Features141	
11.3 Function description	141
11.3.1 SDIO bus	141
11.3.2 SDIO Commands	1429
11.3.3 SDIO internal storage	142
11.4 Register Description	144
11.4.1 Register List	144
11.4.2 SDIO Fn0 register144	
11.4.3 SDIO Fn1 register157	
12 HSPI/SDIO Wrapper Controller	168
12.1 Function overview	8
12.2 Main Features	
12.3 Function description	169
12.3.1 Uplink data receiving function	169
12.3.2 Downlink data transfer function	170
12.4 Register Description	170

12.4.1 Register List	170
12.4.2 WRAPPER INTERRUPT STATUS REGISTER	172
12.4.3 WRAPPER INTERRUPT CONFIGURATION REGISTER	172
12.4.4 WRAPPER Upstream Command Ready Register	172
12.4.5 WRAPPER downlink command buf ready register	173
12.4.6 SDIO TX Link Enable Register173	
12.4.7 SDIO TX Link Address Register	
12.4.8 SDIO TX enable register	174
12.4.9 SDIO TX Status Register	4
12.4.10 SDIO RX Link Enable Register17510)
12.4.11 SDIO RX Link Address Register	
12.4.12 SDIO RX Enable Register	
12.4.13 SDIO RX Status Register	176
12.4.14 WRAPPER CMD BUF Base Address Register	177
12.4.15 WRAPPER CMD BUF SIZE register177	
13 SDIO HOST device controller	178
13.1 Function overview	
13.2 Main Features	
13.3 Function description	178
13.4 Register Description	179
13.4.1 Register List	179
14 SPI Controller	200
14.1 Function overview	
14.2 Main Features	
14.3 Function description	200
14.3.1 Master-slave configuration	200
14.3.2 Multiple Mode Support	201
14.3.3 Efficient data transfer	201
14.4 Register Description	201
14.4.1 Register List	201
14.4.2 Channel Configuration Registers	202
14.4.3 SPI Configuration Registers	206
14.4.4 CLOCK CONFIGURATION REGISTERS	209
14.4.5 Mode Configuration Register	210 1
14.4.6 Interrupt Control Register	211
14.4.7 Interrupt Status Register	213

14.4.8 SPI Status Register	215
14.4.9 SPI Timeout Register	216
14.4.10 Data transmission register	216
14.4.11 Transfer Mode Register	217
14.4.12 Data Length Register	219
14.4.13 Data Receive Register220	0
15 I2C Controller	221
15.1 Function overview	
15.2 Main Features	
15.3 Function description	221
15.3.1 Transmission rate selection.	221
15.3.2 Interrupt and start-stop controllable	222
15.3.3 Fast output and detection signal	222
15.4 Register Description	222
15.4.1 Register List	.222
15.4.2 Clock divider register_1	223
15.4.3 Clock divider register_2	223
15.4.4 Control Registers	22412
15.4.5 Data Registers	224
15.4.6 Transceiver Control Register22	25
15.4.7 TXR readout register	227
15.4.8 CR read register227	
16 I2S controller	
16.1 Function overview	
16.2 Main Features	
16.3 Function description	229
16.3.1 Multiple Mode Support	229
16.3.2 Zero-crossing detection	230
16.3.3 Efficient data transfer	230
16.4 I2S/PCM Timing Diagram	230
16.5 FIFO storage structure diagram	232
16.6 I2S module working clock configuration	234
16.7 Other function description:	237
16.7.1 Zero-Crossing Detection:	237
16.7.2 Mute function	238
16.7.3 Interrupts	238

16.7.4 FIFO Status Query	238
16.8 Data transfer process	239
16.8.1 The master sends audio data	239
16.8.2 Slave receiving audio data	239
16.8.3 The master receives audio data	240
16.8.4 Sending Audio Data from the Slave	241
16.8.5 Full-duplex mode	241
16.9 Register Descriptions	.242
16.9.1 Register List	
16.9.2 Control Registers	
16.9.3 Interrupt Mask Register	248
16.9.4 Interrupt Flag Register	250
16.9.5 Status Register	
16.9.6 Data transmission register	255
16.9.7 Data Receive Register	255
17 UART module256	
17.1 Function overview	256
17.2 Main Features	
17.3 Function description	256
17.3.1 UART baud rate	256
17.3.2 UART data format	257
17.3.3 UART hardware flow control	259
17.3.4 UART DMA transfer	259
17.3.5 UART Interrupt	260
17.4 Register Descriptions	.260
17.4.1 Register List	
17.4.2 Data Flow Control Register	261
17.4.3 Automatic Hardware Flow Control Register	262
17.4.4 DMA setup register	263
17.4.5 FIFO Control Register	264
17.4.6 Baud Rate Control Register	265
17.4.7 Interrupt Mask Register	265
17.4.8 Interrupt Status Register	266
17.4.9 FIFO Status Register	268
17.4.10 TX start address register	268
17.4.11 RX Start Address Register	269

18 UART&7816 module	270
18.1 Function overview	270
18.2 Main Features	270
18.3 UART function description	271
18.4 7816 Functional Description	271
18.4.1 Introduction to the 7816	
18.4.2 7816 interface	271
18.4.3 7816 Configuration	
18.4.4 7816 Clock Configuration	272
18.4.5 7816 rate setting	273
18.4.6 7816 Power-On Reset	274
18.4.7 7816 warm reset	275
18.4.8 7816 Inactivation process	275
18.4.9 7816 data transfer	276
18.4.10 UART&7816 DMA transfer	276
18.4.11 UART&7816 Interrupt	277
18.5 Register Descriptions	277
18.5.1 Register List	
-	
18.5.2 Data Flow Control Register	278
18.5.2 Data Flow Control Register	
	281
18.5.3 Automatic Hardware Flow Control Register	281
18.5.3 Automatic Hardware Flow Control Register	281 282 283
18.5.3 Automatic Hardware Flow Control Register	
18.5.3 Automatic Hardware Flow Control Register	
18.5.3 Automatic Hardware Flow Control Register	
18.5.3 Automatic Hardware Flow Control Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register 18.5.5 FIFO Control Register 18.5.6 Baud Rate Control Register 18.5.7 Interrupt Mask Register 18.5.8 Interrupt Status Register 18.5.9 FIFO Status Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register 18.5.5 FIFO Control Register 18.5.6 Baud Rate Control Register 18.5.7 Interrupt Mask Register 18.5.8 Interrupt Status Register 18.5.9 FIFO Status Register 18.5.10 TX Start Address Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register 18.5.5 FIFO Control Register 18.5.6 Baud Rate Control Register 18.5.7 Interrupt Mask Register 18.5.8 Interrupt Status Register 18.5.9 FIFO Status Register 18.5.10 TX Start Address Register 18.5.11RX Start Address Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register 18.5.5 FIFO Control Register 18.5.6 Baud Rate Control Register 18.5.7 Interrupt Mask Register 18.5.8 Interrupt Status Register 18.5.9 FIFO Status Register 18.5.10 TX Start Address Register 18.5.11RX Start Address Register 18.5.12 7816 Guard Time Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register 18.5.5 FIFO Control Register 18.5.6 Baud Rate Control Register 18.5.7 Interrupt Mask Register 18.5.8 Interrupt Status Register 18.5.9 FIFO Status Register 18.5.10 TX Start Address Register 18.5.11RX Start Address Register 18.5.12 7816 Guard Time Register 18.5.13 7816 Timeout time register	
18.5.3 Automatic Hardware Flow Control Register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register	
18.5.3 Automatic Hardware Flow Control Register 18.5.4 DMA setup register	

19.4 Register Descriptions	291
19.4.1 Register List	
19.4.2 Standard us configuration registers	292
19.4.3 Timer Control Register	292
19.4.4 Timer 1 Timing Value Configuration Register	294
19.4.5 Timer 2 Timing Value Configuration Register	294
19.4.6 Timer 3 Timing Value Configuration Register	294
19.4.7 Timer 4 Timing Value Configuration Register	294
19.4.8 Timer 5 Timing Value Configuration Register	295
19.4.9 Timer 6 Timing Value Configuration Register	295
19.4.10 Timer 1 current count value register	295
19.4.11 Timer 2 current count value register	295
19.4.12 Timer 3 current count value register	295
19.4.13 Timer 4 current count value register	296
19.4.14 Timer 5 current count value register	296
120 Power Management Modules2	98
20.1 Function overview	.298
20.2 Main Features	
20.3 Function description	298
20.3.1 Full-chip power control	298
20.3.2 Low Power Mode	299
20.3.3 Wake-up Mode	299
20.3.4 Timer0 timer	300
20.3.5 Real-time clock function	300
20.3.6 32K clock source switching and calibration	300
20.4 Register Description3	01
20.4.1 Register List	
20.4.2 PMU Control Registers	301
20.4.3 PMU Timer 0	304
20.4.4 PMU Interrupt Source Register	305
21 Real Time Clock Module	
21.1 Function overview	.307
21.2 Main Features	,
21.3 Function description	307
21.3.1 Timing function	307
21.3.2 Timing function	308

2	21.4 Register Description308	
	21.4.1 Register List	.308
	21.4.2 RTC Configuration Register 1	308
	21.4.3 RTC Configuration Register 2	309
22 \	Watchdog module310	
2	22.1 Function overview310	
2	22.2 Main Features	
2	22.3 Function description	
	22.3.1 Timing function	310
	22.3.2 Reset function	310
2	22.4 Register Description311	
	22.4.1 Register List	311
	22.4.2 WDG Timing Value Load Register	311
	22.4.3 WDG current value register	
	22.4.4 WDG Control Register	
	22.4.5 WDG Interrupt Clear Register	12
	22.4.6 WDG Interrupt Source Register	313
	22.4.7 WDG Interrupt Status Register	13
23 1	PWM Controller314	
2	23.1 Function overview314	
2	23.2 Main Features	
2	23.3 Function description	
	23.3.1 Input Signal Capture	315
	23.3.2 DMA transfer captures	315
	23.3.3 Support for single-shot and automount modes	315
	23.3.4 Multiple Output Modes	315
2	23.4 Register Description	
	23.4.1 PWM register list	.316
	23.4.2 Clock divider register_01317	
	23.4.3 Clock divider register_23317	
	23.4.4 Control Registers.	318
	23.4.5 Period Register	321
	23.4.6 Cycle count register	3
	23.4.7 Compare Register	323
	23.4.8 Dead Time Control Register	325
	23.4.9 Interrupt Control Register	326

23.4.10 Interrupt Status Register	32	7
23.4.11 Channel 0 capture register	329	
23.4.12 Brake Control Register	329	
23.4.13 Clock divider register_4	330	
23.4.14 Channel 4 Control Register_1		331
23.4.15 Channel 4 Capture Register	333	3
23.4.16 Channel 4 Control Register_2		334
24 QFLASH controller3	338	
24.1 Function overview	338	
24.2 Main Features		
24.3 Function description	338	
24.3.1 Bus access		338
24.3.2 Register Access		.338
24.3.3 Command configuration and startup		338
24.4 Register Descriptions.	341	
24.4.1 Register List		41
24.4.2 Command Information Register	•••••	341
24.4.3 Command Start Register		342
24.5 Common Commands of QFLASH		343
25 PSRAM interface controller		345
25.1 Function overview	345	
25.2 Main Features345		
25.3 Function description	345	
25.3.1 Pin Description		345
25.3.2 Access mode settings		346
25.3.3 PSRAM initialization	•••••	346
25.3.4 Access method of PSRAM		347
25.3.5 BURST function		347
25.4 Register Descriptions	348	
25.4.1 Register List		48
25.4.2 Command Information Register		348
26 Touch Sensor365		
26.1 Overview of module functions		365
26.2 Function Instructions.	365	
26.2.1 Basic Workflow	3	66
26.3 Register List:		366

26.3.1 Touch Sensor Control Register	.367
26.3.2 Touch key single control register	368
26.3.3 Interrupt Control Register	368
27 W800 Security Architecture Design370)
27.1 Function overview370	
27.1.1 SRAM Secure Access Controller (SASC)	370
27.1.2 Trusted IP Controller (TIPC)	' 1
27.2 Security Architecture Block Diagram	371
27.3 Register Description	
27.3.1 SASC register list372	
27.3.2 TIPC register	380
27.4 Instructions for use	
27.4.1 Memory Safe Access (SASC)	
27.4.2 Trusted Access of Peripherals	385
28 Appendix 1. Chip Pin Definition	386
28.1 Chip Pinout	
28.2 Chip pin multiplexing relationship	388
statement	

Figure 1 W800 chip structure 41	<u> </u>			
Figure 2 W800 bus structure				
Figure 3 W800 Clock Structure	47			
Figure 5. System clock frequency division relationship			57	
Figure 6 Host computer SPI send and receive data format				131
Figure 7 HSPI register read operation (big endian mode)			131	
Figure 8 HSPI register write operation (big endian mode)			132	
Figure 9 Register read operation (little endian mode)			132	
Figure 10 Register write operation (little endian mode)			132	
Figure 11 Port read operation (big endian mode)			132	
Figure 12 Port write operation (big endian mode)			133	
Figure 13 Port read operation (little endian mode)			133	
Figure 14 Port write operation (little endian mode)				
Figure 15 CPOL=0, CPHA=0	134			
Figure 16 CPOL=0, CPHA=1				
Figure 17 CPOL=1, CPHA=0				
Figure 18 CPOL=1, CPHA=1				
Figure 19 Main SPI processing interrupt flow			136	
Figure 20 Flow chart of downlink data				
Figure 21 Flowchart of downlink command				
Figure 22 Upstream data (command) flowchart			139	
Figure 23 SDIO internal storage map				
Figure 24 CCCR register storage structure				
Figure 25 FBR1 register structure				
Figure 26 CIS storage space structure			.113	
Figure 27 SDIO Receive BD Descriptor			169	
Figure 28 SDIO send BD descriptor				
Figure 29 UART data length		170		
Figure 30 UART stop bits				
rigure 30 OAKT Stop bits	230			
Figure 21 LIAPT parity bit	250			
Figure 32 LIART pardware flow control connection			250	
Figure 32 UART hardware flow control connection	•••••			272
Figure 32 UART hardware flow control connection				272
Figure 32 UART hardware flow control connection				272
Figure 32 UART hardware flow control connection	275			272
Figure 32 UART hardware flow control connection	275			272
Figure 32 UART hardware flow control connection	275	275		272
Figure 32 UART hardware flow control connection	275	275		272
Figure 32 UART hardware flow control connection	275	386	274	272
Figure 32 UART hardware flow control connection	275	386	274	272
Figure 32 UART hardware flow control connection	275	386	274	272
Figure 32 UART hardware flow control connection	275	386 44 45	274 44	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list	275	386 44 45	274 44	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space	275		274 44	272
Figure 32 UART hardware flow control connection	275		274 44 5 . 49	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List	275	44 45 46	274 44 5 . 49 60	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List Table 9 Software Clock Gating Enable Register	275	44 45 46	274 44 5496060	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List Table 9 Software Clock Gating Enable Register Table 10 Software Clock Mask Register	275		274 44 5 . 49 60 60	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 9 Software Clock Gating Enable Register Table 10 Software Reset Control Register Table 11 Software Reset Control Register	275	44 45 46	274 44 5 . 49 60 60 64	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List Table 9 Software Clock Gating Enable Register Table 10 Software Reset Control Register Table 11 Software Reset Configuration Registers	275	44 45 46	274 44 5 . 49 60 60 64	272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus masters Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave devices Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List Table 9 Software Clock Gating Enable Register Table 10 Software Reset Control Register Table 11 Software Reset Configuration Registers Table 12 Clock Divide Configuration Registers Table 13 Clock Select Register	275			272
Figure 32 UART hardware flow control connection Figure 33 7816 Connection Diagram Figure 34 7816 power-on reset sequence Figure 35 7816 Warm Reset Figure 36 7816 inactivation process Fig. 37 7816 data transfer Figure 38 W800 chip pinout table directory Table 1 List of AHB-1 bus masters Table 2 List of AHB-1 bus slave devices Table 3 List of AHB-2 bus masters Table 4 AHB-2 bus slave device list Table 5 Detailed division of bus device address space Table 6 Startup Configurations Table 8 Clock Reset Module Register List Table 9 Software Clock Gating Enable Register Table 10 Software Reset Control Register Table 11 Software Reset Control Registers Table 13 Clock Select Register Table 13 Clock Select Register Table 14 I2S clock control register	275			272
Figure 32 UART hardware flow control connection	275	44454646		272
Figure 32 UART hardware flow control connection	73	44454646		272
Figure 32 UART hardware flow control connection	73	44454646		272
Figure 32 UART hardware flow control connection	73		274 44 5 . 49606465	272
Figure 32 UART hardware flow control connection. Figure 33 7816 Connection Diagram	73			272
Figure 32 UART hardware flow control connection	73			272

Table 21 DMA Destination Address Register	85
Table 22 DMA loop source start address register	85
Table 23 DMA loop destination start address register	86
Table 24 DMA Cycle Length Register	
Table 25 DMA Channel Control Registers	86
Table 26 DMA Mode Select Register	87
Table 27 DMA data flow control registers	
Table 28 DMA Transfer Bytes Register	
Table 29 DMA linked list entry address register	
Table 30 DMA current destination address register	
Table 31 List of Cryptographic Module Registers	
Table 32 Cryptographic Module Configuration Registers	
Table 33 TRNG module control registers	
Table 33 Cryptographic Module Control Registers	
Table 34 Cryptographic Module Status Register	
Table 35 RSA register list102	
Table 36 RSA Data X Register	103
Table 37 RSA Data Y Register	
Table 38 RSA Data M Registers	
Table 39 RSA Data D Register	
Table 40 RSA Control Registers	104
Table 41 RSA parameter MC register	105
Table 42 RSA parameter N register	
·	
Table 43 GPIOA register list	
Table 44 GPIOB register list	
Table 45 GPIOA data register	
Table 46 GPIOB data register	
Table 47 GPIOA data enable register	
Table 48 GPIOB data enable register	
Table 49 GPIOA direction control register	
Table 50 GPIOB direction control register	
Table 51 GPIOA pull-up control register	
Table 52 GPIOB pull-up and pull-down control registers	
Table 53 GPIOA multiplexing selection register	
Table 54 GPIOB multiplexing selection register	
Table 55 GPIOA multiplexing selection register 1	
Table 56 GPIOB multiplexing selection register 1	
Table 57 GPIOA multiplexing selection register 0	
Table 58 GPIOB multiplexing selection register 0	
Table 59 GPIOA interrupt trigger mode configuration register	
Table 60 GPIOB interrupt trigger mode configuration register	
Table 61 GPIOA interrupt edge-triggered mode configuration register	
Table 62 GPIOB interrupt edge-triggered mode configuration register	
Table 63 GPIOA interrupt upper and lower edge-triggered configuration registers	
Table 64 GPIOB interrupt upper and lower edge-triggered configuration registers	117
Table 65 GPIOA Interrupt Enable Configuration Register117	
Table 66 GPIOB interrupt enable configuration register.117	
Table 67 GPIOA Raw Interrupt Status Register 118	
Table 68 GPIOB Raw Interrupt Status Register 118	
Table 69 GPIOA Masked Interrupt Status Register118	
Table 70 GPIOB Masked Interrupt Status Register.118	
Table 71 GPIOA Interrupt Clear Control Register119	
Table 72 GPIOB Interrupt Clear Control Register119	
Table 73 HSPI Internal Access Registers121	
Table 74 HSPI FIFO clear register122	
Table 75 HSPI configuration registers123	
Table 76 HSPI Mode Configuration Registers123	
Table 77 HSPI Interrupt Configuration Registers124	

Table 78 HSPI Interrupt Status Register 124
Table 79 HSPI data upload length register125
Table 80 HSPI interface configuration registers (master access)125
Table 81 HSPI get data length register127
Table 82 HSPI send data flag register 127
Table 83 HSPI Interrupt Configuration Register 128
Table 84 HSPI Interrupt Status Register 128
Table 85 HSPI data port 0128
Table 86 HSPI Data Port 1129
Table 87 HSPI command port 0129
Table 88 HSPI Command Port 1130
Table 89 SDIO CCCR register and FBR1 register list145
Table 90 SDIO Fn1 address mapping relationship157
Table 91 SDIO Fn1 part of the register (for HOST access)158
Table 92 SDIO AHB bus registers160
Table 93 WRAPPER Controller Registers. 170
Table 94 WRAPPER Interrupt Status Register172
Table 95 WRAPPER INTERRUPT CONFIGURATION REGISTER 172
Table 96 WRAPPER Upstream Command Ready Register.172
Table 97 WRAPPER downlink command buf ready register173
Table 98 SDIO TX link enable register173
Table 99 SDIO TX link address register174
Table 100 SDIO TX enable register174
Table 101 SDIO TX Status Register174
Table 102 SDIO RX link enable register 175
Table 103 SDIO RX link address register175
Table 104 SDIO RX enable register 176
Table 105 SDIO RX Status Register 176
Table 106 WRAPPER CMD BUF Base Address Register177
Table 107 WRAPPER CMD BUF SIZE register 177
Table 108 SPI register list201
Table 109 SPI channel configuration registers202
Table 110 SPI configuration registers206
Table 111 SPI Clock Configuration Registers209
Table 112 SPI Mode Configuration Registers210
Table 113 SPI Interrupt Control Registers211
Table 114 SPI Interrupt Status Register213
Table 115 SPI Status Register 215
Table 116 SPI Timeout Register 216
Table 117 SPI data transmission registers216
Table 118 SPI transfer mode register 217
Table 119 SPI Data Length Register 219
Table 120 SPI Data Receive Registers220
Table 121 I2C register list222
Table 122 I2C clock divider register_1223
Table 123 I2C clock divider register_2223
Table 124 I2C Control Registers224
Table 125 I2C Data Registers224
Table 126 I2C Transceiver Control Register225
Table 127 I2C TXR readout register 227
Table 128 I2C CR readout register 227
Table 129 I2S register list.242
Table 130 I2S Control Registers.243
Table 131 I2S Interrupt Mask Register 248
Table 132 I2S Interrupt Flag Register250
Table 133 I2S Status Register254
Table 134 I2S data transmission register255
Table 135 I2S data receive register 255

= 11 40C114D= 1 1 11 1	
Table 136 UART register list260	
Table 137 UART data flow control registers. 261	
Table 138 UART Auto Hardware Flow Control Registers262	
Table 139 UART DMA Setup Registers. 263	
Table 140 UART FIFO Control Registers264	
Table 141 UART Baud Rate Control Register 265	
Table 142 UART Interrupt Mask Register265	
Table 143 UART Interrupt Status Register266	
Table 144 UART FIFO Status Register 268	
Table 145 UART TX start address register268	
Table 146 UART RX start address register269	
Table 147 7816 Rate Settings273	
Table 148 UART&7816 register list277	
Table 149 UART&7816 data flow control register278	204
Table 150 UART&7816 Automatic Hardware Flow Control Register	281
Table 151 UART&7816 DMA setting register.282	
Table 152 UART&7816 FIFO Control Register.283	
Table 153 UART&7816 Baud Rate Control Register284	
Table 154 UART&7816 Interrupt Mask Register285	
Table 155 UART&7816 Interrupt Status Register285	
Table 156 UART&7816 FIFO Status Register.287	
Table 157 UART&7816 TX start address register288	
Table 158 UART&7816 RX start address register288	
Table 159 7816 Guard Time Register 289	
Table 160 7816 Timeout Time Register 289	
Table 161 Timer register list 291	
Table 162 Timer standard us configuration register.292	
Table 163 Timer Timer Control Register292	
Table 164 Timer 1 Timing Value Configuration Register.294	
Table 165 Timer 2 Timing Value Configuration Registers294	
Table 166 Timer 3 Timing Value Configuration Registers294	
Table 167 Timer 4 Timing Value Configuration Registers294	
Table 168 Timer 5 Timing Value Configuration Registers295	
Table 169 Timer 6 Timing Value Configuration Registers295	
Table 170 PMU register list301	
Table 171 PMU Control Registers301	
Table 172 PMU Timer 0 Registers 304	
Table 173 PMU Interrupt Source Registers305	
Table 174 RTC register list308	
Table 175 RTC Configuration Register 1308	
Table 176 RTC Configuration Register 2309	
Table 177 List of WDG Registers311	
Table 178 WDG Timing Value Load Register 311	
Table 179 WDG current value register 312	
Table 180 WDG Control Registers312	
Table 181 WDG Interrupt Clear Register312	
Table 182 WDG Interrupt Source Register 313	
Table 183 WDG Interrupt Status Register313	
Table 184 PWM register list 316	
Table 185 PWM clock divider register_01 317	
Table 186 PWM clock divider register_23 317	
Table 187 PWM Control Registers318	
Table 188 PWM Period Register321	
Table 189 PWM period number register 323	
Table 190 PWM Compare Registers323	
Table 191 PWM Dead-Time Control Registers	
Table 192 PWM Interrupt Control Register326	
Table 193 PWM Interrupt Status Register327	
Table 1991 Will Interrupt Status Register	

Table 194 PWW Channel o Capture Register 329
Table 195 PWM Brake Control Register329
Table 196 PWM clock divider register_4330
Table 197 PWM Channel 4 Control Register_1 .331
Table 198 PWM channel 4 capture register333
Table 199 PWM Channel 4 Control Register_2 .334
Table 200 QFLASH Controller Register List341
Table 201 QFLASH command information register 341
Table 202 QFLASH command start register342
Table 203 QFALSH common commands 343
Table 200 List of PSRAM Controller Registers348
Table 201 PSRAM Control Setting Registers348
Table 201 CS Timeout Control Register349
Table 200 Touch Sensor Controller Register List 366
Table 201 Touch Sensor Control Setting Registers367
Table 201 Touch key single channel setting register368
Table 201 Touch key interrupt control register.368
Table 204 Chip pin multiplexing relationship 388

1. Introduction

1.1 Purpose of writing.

The W800 chip is an embedded Wi-Fi SoC chip launched by Lianshengde Microelectronics. The chip is highly integrated, requires less peripheral devices, and is cost-effective

high. It is suitable for various smart products in the field of IoT (smart home). Highly integrated Wi-Fi and Bluetooth 4.2 Combo functions are its main features;

In addition, the chip integrates XT804 core, built-in QFlash, SDIO, SPI, UART, GPIO, I²C, PWM, I²S, 7816, LCD, Interfaces such as Touch Sensor, support a variety of hardware encryption and decryption algorithms. In addition, the chip MCU contains a security kernel that supports code security permission settings.

The whole system supports firmware encrypted storage, firmware signature, security debugging, security upgrade and other security measures to improve product security features.

This document mainly describes the internal structure of the W800 chip, information on each functional module and detailed register usage information; it is a guide for developers to develop drivers,

The main reference for the application. There are open source implementations of various functions in the SDK provided by Lianshengde Microelectronics, and developers can refer to the corresponding drivers

Programs, application examples to increase understanding of chip functions and register descriptions. There are no register descriptions for the Wi-Fi/BT part of this document.

1.2 References

For information on W800 chip package parameters, electrical characteristics, RF parameters, etc., please refer to "W800 Chip Product Specifications";

The W800 chip integrates the ROM program. The ROM program provides functions such as downloading firmware, MAC address reading and writing, and Wi-Fi parameter reading and writing.

For information, please refer to "WM_W800_ROM Function Brief";

The W800 chip has a built-in 2Mbytes QFlash memory, which is used as a storage space for codes and parameters. This document provides basic QFlash operations

for information. For requirements beyond the scope of this document, you need to refer to the QFlash manual; W800 chip adopts Hangzhou Pingtou Ge XT804 core, 804 related function introduction, development materials, etc. can refer to Pingtou Ge company release information;

2 Features

- Chip Packaging
- ➤ QFN32 package, 4mm x 4mm.
- Chip integration
- ➤ Integrated XT804 processor, up to 240MHz
- ➤ Integrated 288KB SRAM
- ➤ Integrated 2MB FLASH
- ➤ Integrated 8-channel DMA controller, supports 16 hardware applications, and supports software linked list management
- ➤ Integrated PA/LNA/TR-Switch
- ➤ Integrated 32.768KHz clock oscillator
- ➤ Integrated voltage detection circuit
- ➤ Integrated LDO
- ➤ Integrated power-on reset circuit
- Chip interface
- ➤ Integrate 1 SDIO2.0 Device controller, support SDIO 1-bit/4-bit/SPI three operating modes, operating clock range 0~50MHz
- ➤ Integrate 1 SDIO 2.0 HOST controller, support SDIO and SD card operation, operating clock range 0~50MHz
- ➤ Integrate 1 QSPI PSRAM interface, support PSRAM with a maximum capacity of 64MB, and a maximum operating clock frequency of 80MHz;
- ➤ Integrate 5 UART interfaces, support RTS/CTS, baud rate range 1200bps~2Mbps
- ➤ Integrate a high-speed SPI slave interface, the operating clock range is 0~50MHz
- ➤ Integrate 1 SPI master/slave interface, the working clock of the master device is up to 20MHz, and the slave device supports up to 6Mbps data transfer rate
- ➤ Integrate an I2C controller, support 100/400Kbps rate
- ➤ Integrated PWM controller, support 5-channel PWM

Single output or 2 PWM inputs. Maximum output frequency 20MHz, maximum input frequency 20MHz

- ➤ Integrated duplex I2S controller, support 32KHz to 192KHz I2S interface codec
- ➤ Integrate one 7816 interface, compatible with UART interface, support ISO-7816-3 T=0.T=1 mode; support EVM2000 Protocol
- > Support a variety of hardware encryption and decryption modes, including

RSA/AES/RC4/DES/3DES/RC4/SHA1/MD5/CRC8/CRC16/CRC32/TRNG

- ➤ Integrate one differential, or two single-ended 16bit ADC interfaces;
- ➤ Integrate 11-way Touch Sensor;
- > Support up to 17 GPIO ports, each IO port has rich reuse relationships. With input and output configuration options.
- WIFI protocol and function
- ➤ Support GB15629.11-2006, IEEE802.11 b/g/n;
- > Support WMM/WMM-PS/WPA/WPA2/WPS
- ➤ Support WiFi Direct;
- Support EDCA channel access mode;
- ➤ Support 20/40M bandwidth working mode;
- ➤ Support STBC, GreenField, Short-GI, support reverse transmission;
- > Support RIFS frame interval;
- ➤ Support AMPDU, AMSDU;
- ➤ Support 802.11n MCS 0~7, MCS32 physical layer transmission rate gear, the transmission rate is up to 150Mbps;
- > Support HT-immediate Compressed BlockAck, normal ACK, no ACK response mode;
- > Support CTS to self;
- > Support AP function; AP and STA are used at the same time;
- ➤ In the BSS network, multiple multicast networks are supported, and each multicast network supports different encryption methods.
- 32 multicast networks and network access STA encryption;
- ➤ When the BSS network supports as an AP, the total number of supported sites and groups is 32;

- ➤ Receive Sensitivity:
- 2 20MHz MCS7@-71dBm@10%PER;
- 2 40MHz MCS7@-67dBm@10%PER;
- 2 54Mbps@-73dBm@10%PER;
- 2 11Mbps@-86dBm@8%PER;
- 2 1Mbps@-96dBm@8%PER;
- > Support a variety of different received frame filtering options;
- > Support monitoring function;
- Bluetooth protocol and function
- ➤ Integrated Bluetooth baseband processor/coprocessor, support BT/BLE4.2 protocol
- Support various rates of DR/EDR;
- ➤ Support BLE 1Mbps rate;
- Power supply and power consumption
- ➤ 3.3V single power supply;
- > Support Wi-Fi power saving mode power management;
- > Support work, sleep, standby, shutdown working modes;
- Standby power consumption is less than 15uA;

3 Overview

This chip is a SOC chip that supports multi-interface, multi-protocol wireless local area network 802.11n (1T1R). The SOC chip integrates

RF Transceiver, CMOS PA Power Amplifier, Baseband Processor/Media Access Control, SDIO, SPI,

Low-power WLAN chip with interfaces such as UART and GPIO.

W800 chip supports GB15629.11-2006, IEEE802.11 b/g/n protocol, and supports STBC, Green Field,

Short-GI, Reverse Transmission, RIFS Interframe Interval, AMPDU, AMSDU, T-immediate Compressed Block Ack, Rich protocols and operations such as normal ACK, no ACK, and CTS to self.

The W800 chip integrates the RF transceiver front-end, A/D and D/A converters. It supports DSSS (Direct Sequence Spread Spectrum) as well as OFDM

(Orthogonal Frequency Division Multiplexing) modulation mode, with data descrambling capability, supports a variety of different data transmission rates. in the analog front end of the transceiver

The equipped transceiver AGC function enables the system-on-a-chip to obtain the best performance. The W800 chip also includes a built-in enhanced signal monitor,

The influence of multipath effect can be largely eliminated.

In terms of security, the W800 chip not only supports the national standard WAPI encryption, but also supports the international standard WEP, TKIP, CCMP encryption,

These hardware components enable data transmission systems based on the chip to obtain data similar to those of non-encrypted communications during secure communications.

data transmission performance.

In addition to supporting the energy-saving operations specified by the IEEE802.11 and Wi-Fi protocols, the W800 chip also supports user-customized energy-saving solutions. chip

It supports four working modes: work, sleep, standby and shutdown, so that the whole system can achieve low power consumption, and it is convenient for users to adapt to their own use fields.

different scenarios for energy saving.

The W800 chip integrates a high-performance 32-bit embedded processor, a large number of memory resources, and a wealth of peripheral interfaces, which are convenient for users

It is easy to apply the chip to the secondary development of a specific product.

The W800 chip supports the AP function, which can realize the establishment of 5 SSID networks at the same time, and realize the function of 5 independent APs. Support for creating multiple

Multicast network function. It can realize the function of establishing a BSS network as an AP while joining other networks as an STA.

The W800 chip supports the WPS method, so that users can realize an encrypted complete network with one-click operation to ensure the security of information

sex.

The multi-function and high integration of the W800 chip ensures that the WLAN system does not need too many off-chip circuits and external memory.

4.1 Chip structure

The following figure describes the overall structure of the W800 chip, the core part includes the XT804 CPU, 288KB SRAM and 20KB ROM storage space.

As the constant power supply module of the chip, the PMU part provides power-on sequence management, start-up clock, and real-time clock functions. Provides a wealth of peripherals

function and hardware encryption and decryption functions. The Wi-Fi part integrates MAC, BB and RF.

Figure 1 W800 chip structure diagram

4.2 Bus Structure

The W800 chip consists of a two-level bus, as shown in the figure below

Figure 2 W800 bus structure diagram

(1) AHB-1 bus

This bus has four masters - XT804, DMA, GPSEC and 5 slaves.

XT804 is a 32-bit high-efficiency embedded CPU core for the control field, using a 16/32-bit mixed coding instruction system, designed a streamlined and efficient 3-stage pipeline.

The XT804 provides a variety of configurable functions, including hardware floating point unit, on-chip cache, DSP acceleration unit, trusted protection technology, on-chip tightly coupled IP, etc., users can configure according to application needs. In addition, XT804 provides multi-bus interface, supports system bus, finger flexible configuration of the order bus and data bus. XT804 has made special acceleration for interrupt response, and the interrupt response delay only needs 13 cycles.

The bus clock operates at the fastest frequency of 240MHz and can be configured to 240/160/120/80/40MHz, or lower.

Table 1 AHB-1 bus master list

Main device	function
CPU	Complete chip register configuration, memory management and use, and complete 802.11MAC proto-
0.7 0	col. Highest operating frequency 240MHz
DMA	Independent 8-channel DMA module supporting linked list structure, supporting 16 on-chip hardware
DIVIA	DMA request sources.
GPSEC	Universal encryption module, supports DES/3DESSHA1/AES/MD5/RC4/CRC/PRDN. automatic com-
GPSEC	pletion data blocks in the specified memory space are encrypted and written back.

Table 2 List of AHB-1 Bus Slaves

Slave	Function			
	ROM is used to store the initialization firmware after the CPU is powered on.			
ROM	It mainly completes the initial configuration of the chip register space and other work. After completing			
KOW	the above work, the CPU control			
	The control is given to the firmware stored in FLASH.			
	Complete the conversion of CPU bus clock domain to BusMatrix2 bus clock domain master access. Re-			
AHB2AHB	quire			
AIIDZAIID	The clock domains must be of the same origin, and the ratio of the CPU clock to the BusMatrix2 clock			
	frequency is M:1, M is an integer greater than or equal to 1.			
FLASH	Store firmware code and operating parameters			
SRAM 160KB	Can be used to hold instructions or data, and firmware can use this memory as needed.			
RSA	Supports RSA encryption and decryption operations up to 2048bit			
GPSEC	Universal encryption/decryption module, supports SHA1/AES/MD5/RC4/CRC/TRNG. autocomplete			
OI SEC	Encrypt/decrypt and write back data blocks in a given memory space.			
	SDIO 2.0 standard SDIO HOST controller; SDIO interface peripherals can be accessed through this in-			
SDIO_HOST	terface.			
	The SDIO interface clock is obtained by dividing the bus clock and supports up to 50MHz.			
	PSRAM controller with QSPI interface. An external PSRAM can be accessed through this controller.			
PSRAM_CTR	QSPI connection			
	The port clock is obtained by dividing the frequency of the bus clock and supports a maximum clock of			
80MHz.				

2) AHB-2 bus

This bus has 4 master devices and 3 slave devices. Using the crossbar connection structure, different master devices can connect to different slave devices.

access at the same time, thereby increasing the bandwidth. The bus clock operates at the fastest frequency of 40MHz and can be configured lower as required.

Table 3 AHB-2 bus master list

Main device	function
	802.11MAC control protocol processing module. Operations on the bus mainly include sending read
MAC	data
	Data, receive write data, and send write-back completion descriptors.
	802.11MAC control protocol processing module. Operations on the bus mainly include sending read
SEC	data
	Data, receive write data, and send write-back completion descriptors.

AHB2AHB	Transition of bus master access from the AHB-1 bus to the AHB-2 bus.
SDIO/HSPI	Connect the host to the chip through the SDIO2.0 device controller or high-speed SPI slave device controller Accesses translate to AHB bus signals and access content memory and register space.

Each master device adopts a fixed priority, and the priority decreases from top to bottom.

Table 4 AHB-2 bus slave list

Slave	Function		
SRAM 128KB	Used to store upstream and downstream data buffer, SDIO/SPI/UART interface uses this RAM as		
SKAWI 120KD	data cache		
Configuration	Register configuration space, high-speed module configuration registers are uniformly addressed here		
APB	All low-speed modules access the space, and various low-speed modules are connected using the APB		
APD	bus.		
BT_CORE	Bluetooth controller.		

4.3 Clock Structure

W800 uses 24/40MHz crystal as SoC clock source, built-in 1 DPLL output 480MHz, supply used by CPU, system bus, data bus and WiFi system; additionally built-in 32.768KHZ RC oscillator for PMU and LCD modules. An overview of the clock structure is shown in the figure below.

Figure 3 W800 Clock Structure

4.4 Address space

XT804 supports 4G storage space, which is divided into 6 blocks as shown in the figure above, which are code area, memory area, on-chip peripherals, and off-chip storage.

area, off-chip peripherals and system peripherals area. According to the requirements, the on-chip storage space of w800 is mapped to the first three areas as shown in Figure 3.

Table 5 Detailed division of bus device address space

bus from equipment	BootMode=0	Address space breakdown	Remark
ROM	0x0000 0000 ~ 0x0004 FFFF		Store the solidified firmware code
FLASH	0x0800 0000 ~ 0x0FFF FFF		Stored as a dedicated instruction device.
SRAM	0x2000 0000 ~ 0x2002 7FFF		Firmware memory and instruction storage Area
Mac RAM	0x2002 8000 ~ 0x2004 7FFF		SDIO/H-SPI/UARTdata cache
PSRAM	0x3000 000~0x3080 0000		Peripheral memory
		0x4000 0000 ~ 0x4000 05FF	RSA configuration space
		0x4000 0600 ~ 0x4000 07FF	GPSEC configuration space
CONFIC	0x4000 0000 ~ 0x4000 2FFF	0x4000 0800 ~ 0x4000 09FF	DMA configuration space
CONFIG		0x4000 0A00 ~ 0x4000 0CFF	SDIO_HOST configuration is empty between
		0x4000 0D00 ~ 0x4000 0DFF	PMU configuration space
		0x4000 0E00 ~ 0x4000 0EFF	Clock and Reset Configuration space
		0x4000 0F00 ~ 0x4000 0FFF	MacPHY Router configuration space
		0x4000 1000 ~ 0x4000 13FF	BBP configuration space
		0x4000 1400 ~ 0x4000 17FF	MAC configuration space
		0x4000 1800 ~ 0x4000 1FFF	SEC configuration space
		0x4000 2000 ~ 0x4000 21FF	FLASH Controller configuration space
		0x4000 2200 ~ 0x4000 23FF	PSRAM_CTRL configuration space
		0x4000 2400 ~ 0x4000 25FF	SDIO Slave configuration is empty between
		0x4000 2600 ~ 0x4000 27F	H-SPI configuration space
		0x4000 2800 ~ 0x4000 29FF	SD Wrapper configuration space
		0x4000 2A00 ~ 0x4000 A9FF	BT Core configuration space
		0x4000 B000 ~ 0x4000 B0FF	SASC-B1 Level 1 Bus Memory Security Configuration Mode piece
		0x4000 B100 ~ 0x4000 B1FF	SASC-Flash Flash Security Configuration Module
		0x4000 B200 ~ 0x4000 B2FF	SASC-B2 Secondary bus memory security configuration module piece
APB	0x4001 0000 ~ 0x 4001		I2C master
7 M D	C000	0x4001 0000 ~ 0x4001 01FF	
		0x4001 0200 ~ 0x4001 03FF	Sigma ADC
		0x4001 0400 ~ 0x4001 07FF	SPI master
		0x4001 0600 ~ 0x4001 07FF	UART0
		0x4001 0800 ~ 0x4001 09FF	UART1
		0x4001 0A00 ~ 0x4001 0BFF	UART2

	0x4001 0C00 ~ 0x4001 0DFF	UART3
	0x4001 0E00 ~ 0x4001 0FFF	UART4
	0x4001 1000 ~ 0x4001 11FF	UART5
	0x4001 1200 ~ 0x4001 13FF	GPIO-A
	0x4001 1400 ~ 0x4001 15FF	GPIO-B
	0x4001 1600 ~ 0x4001 17FF	WatchDog
	0x4001 1800 ~ 0x4001 19FF	Timer
	0x4001 1A00 ~ 0x4001 1BFF	RF_Controller
	0x4001 1C00 ~ 0x4001 1DFF	LCD
	0x4001 1E00 ~ 0x4001 1FFF	PWM
	0x4001 2000 ~ 0x4001 22FF	I2S
	0x4001 2200 ~ 0x4001 23FF	BT-modem
	0x4001 2400 ~ 0x4001 25FF	Touch Sensor
	0x4001 2600 ~ 0x4001 25FF	TIPC Interface Security Settings
	0x4001 4000 ~ 0x4000 BFFF	RF BIST DAC transmit RAM
	0x4001 C000 ~ 0x4003 BFFF	RF_BIST ADC receive RAM
	0x4001 3C00 ~ 0x5FFF FFFF	RSV

4.4.1 SRAM

W800 has built-in 288KB SRAM. Among them, 160KB is mounted on the first-level AHB bus, and 128KB is mounted on the second-level AHB bus. CPU

Devices on the first-level bus can access all memory areas, but devices on the second-level bus can only access 128KB of memory on the second-level bus.

4.4.2 Flash

4.4.2.1 QFlash

W800 integrates 2MBytes QFlash inside. The XIP method is implemented on the QFlash through the integrated 32KB cache inside the chip.

sequence. When the program is running, the CPU first reads the instruction from the Cache, and when the instruction cannot be obtained, it reads the instruction from the

QFlash reads the instruction and stores it in the Cache. Therefore, when the continuous running code size is less than 32K, the CPU will not need to read from QFlash

Instructions are fetched, at which point the CPU can run at a higher frequency. The above method is the operation mode of the read command, and the RO segment of the entire Image will be

Operate in this way. This process requires no user intervention.

QFlash can also store data. When the user program needs to read and write data in QFlash, it needs to be performed by the built-in QFlash controller.

Operation, QFlash provides the corresponding address, instruction and other registers to assist the user to achieve the desired operation. For specific description, please refer to QFlash

The controller corresponds to the chapter.

Users need to pay attention that when the program reads or writes data, there is no need to perform state judgment, wait and other operations, because the QFlash control

The device itself will judge. When the QFlash controller returns, the read or write is complete.

4.4.2.2 SPI Flash

In addition to supporting the 6PIN QFlash interface (built-in PIN, not packaged), the W800 chip also supports low-speed SPI interface access. The SPI maximum operating frequency of the interface can reach 20MHz, and it supports the master-slave function. For a detailed description, please refer to the corresponding chapter of the SPI interface. 4.4.3 PSRAM

W800 has a built-in PSRAM controller with SPI/QSPI interface, supports external PSRAM device access with a maximum capacity of 64Mb, and provides a bus mode of PSRAM read, write and erase operations. The maximum read and write speed is 80MHz. When the storage capacity needs to be expanded, the off-chip PSRAM can be used to expand fill code storage space or data storage space. PSRAM also supports program execution in XIP mode, and CPU Cache also supports cache data in PSRAM.

4.5 Startup Configuration

After the W800 chip is powered on, the CPU will start to execute the firmware in the ROM and load the user image at the specified address in the Flash.

When the ROM firmware starts to run, it will read the BootMode (PAO) pin, and judge to enter the boot state according to the signal of the pin:

Table 6 Startup Configurations

Table o Startap configurations		
BootMode	Start condition	Start mode
high		normal startup process
Low	Continuous <30ms, quick test mode is invalid	normal startup process
	Last >=30ms	Enter functional mode
a		

Note:

Test mode: chip test function, user cannot operate.

Function mode: Enter the basic functions implemented by ROM, such as: downloading firmware, programming MAC address, etc. For details, please refer to "WM_W800_ROM Function Brief.pdf"

Typically, the BootMode pins should be used in production or debug stages. During production, the user continuously pulls the BootMode pin

If it is lower than 30ms, it will enter the function mode, which can quickly burn the Flash.

In the scenario of product rework or repair, the chip does not enter the "highest security level" (for the description of the security level, please refer to

"WM_W800_ROM Function Brief"), you can enter the function mode through this pin, erase the old Image, write the new

Image.

In the debugging stage, no matter what the firmware is faulty, you can enter the serial port by continuously pulling the BootMode pin down for more than 30ms

Download function, burn new firmware.

5 Clock and reset module

5.1 Function overview

The clock and reset module completes the software control of the chip clock and reset system. Clock control includes clock frequency conversion, clock shutdown and self-adaptation

should be gated; reset control includes soft reset control of the system and sub-modules.

5.2 Main Features

- Supports clock shutdown of each module
- Support some modules clock adaptive shutdown
- Support software reset of each module
- Support CPU frequency setting
 - Support ADC/DAC loopback test
- Support I2S clock setting

5.3 Functional Description

5.3.1 Clock Gating

By configuring the clock gating enable register CLK_GATE_EN, the clock of the specified function can be controlled to shut down, so as to shut down the function of a certain module.

able purpose.

In order to provide the flexibility of firmware to control the power consumption of the system, the clock and reset module provides the clock gating function of each module in the system. when closed

When the clock of the corresponding module is stopped, the digital logic and clock tree of the module will stop working, which can reduce the dynamic power consumption of the system.

The switch of each module corresponds to the detailed description of the register SW CLKG EN.

5.3.2 Clock Adaptive Shutdown

The chip adaptively shuts down the clocks of certain functional modules according to the transition of certain internal states.

Users, please do not change the configuration, otherwise it may cause system abnormality when configuring the PMU function.

5.3.3 Function reset

The chip provides the soft reset function of each subsystem, and the subsystem reset can be achieved by setting the corresponding BIT of SW_RST_CTRL to 0.

However, the reset state will not be cleared automatically, and the corresponding BIT bit of SW_RST_CTRL needs to be set to 1 to resume normal operation.

The soft reset function does not reset the CPU and WatchDog.

In this register, the reset operation of APB/BUS1/BUS2 (corresponding to APB bus, system bus and data bus) is not recommended, which will cause the system to fail.

The system access device is abnormal.

5.3.4 Clock division

The W800 system uses 40MHz/24MHz crystal as the system clock source, the system has built-in DPLL, and the fixed output 480MHz clock is used as the clock source.

The clock source of the whole system (as shown in the figure below).

Figure 4 System clock frequency division relationship

The clock of the system bus is the same as the CPU clock, and the clock of the data bus is fixed at 1/4 of the WLAN root clock.

The WLAN root clock is also the clock source for the entire WLAN system.

This module provides the function of setting CPU clock and WLAN root clock for firmware to adjust system performance and power consumption.

Set the BIT[7:0] of the SYS_CLK_DIV register to adjust the CPU clock division factor. The source clock of the CPU clock frequency division is the DPLL output, fixed at 480MHz. The default value of the CPU clock frequency division factor is 6, that is, the default operating frequency of the CPU is 480MHz divided by 6, i.e. 80MHz. This parameter can be reconfigured when the clock required by the CPU needs to be adjusted.

The CLK_PERI clock provides the root clock of the operating clock of the cryptographic modules in the SoC system, as well as the root clock of the operating clock of some interfaces, more than such as PWM interface, I2S interface, Flash interface clock. This clock is also derived by dividing the 480MHz output from the DPLL. normal working condition

The lower frequency should be fixed at 3 to get the CLK_PERI root clock of 160MHz. Divide by 2 and divide by 4 by CLK_PERI root clock

80MHz and 40MHz are provided for encryption module and interface module.

Set the BIT[15:8] of the SYS_CLK_DIV register to adjust the WLAN clock frequency division factor. The default divide factor is 3, i.e. for DPLL 480MHz output is divided by 3 to get a 160MHz clock, which is sent to the WLAN as the root node clock (the WLAN continues to divide the frequency to get a more

For the detailed low frequency clock used by the WLAN system.

Note: If you want the WLAN system to work normally, the WLAN root clock needs to be kept at 160MHz, otherwise the WLAN system will fail.

When the WLAN system is not required to work, the WLAN root clock can be lowered to reduce the dynamic power consumption of the system.

When changing the system clock configuration, it should be noted that the ratio of the system bus to the data bus needs to be maintained at M:1, where M is an integer,

The minimum is 1. When changing the system clock configuration, it is also necessary to update the BIT [23:16] of the register SYS_CLK_DIV at the same time, set the correct ratio

example coefficient. Otherwise, accessing the data bus will result in abnormal data.

[15:8] of SYS_CLK_SEL provides the frequency division factor for setting the operating frequency of SAR_ADC, which is divided by 40M as the clock source. Frequency division

The number is the assigned frequency division value.

BIT[4] of SYS_CLK_SEL is to configure the clock frequency selection of the core operation of the RSA module, which can be 80MHz or 160MHz.

BIT[5] is to configure the clock frequency selection of the core operation of the GPSEC module, which can be 80MHz or 160MHz.

BIT[6] is to configure the clock frequency selection of the external bus of the FLASH module, which can be 40MHz or 80MHz.

When you need to reconfigure cpu_clk_divider, wlan_clk_divider, bus2_syncdn_factor, sdadc_fdiv, you need to set BIT[31] of SYS_CLK_DIV, the hardware automatically updates the above four parameters to the frequency divider, and then clears BIT[31].

I2S_CLK_CTRL provides the clock configuration function of the I2S module.

5.3.5 Debug function control

The user can enable and disable the JTAG function by setting the value of DEBUG_CTRL (SYS_CLK_SEL-BIT[16]).

5.4 Register Description

5.4.1 Register List

Table 7 Clock Reset Module Register List

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess		
0x0000	Software Clock Gating Enable Register	SW_CLKG_EN	RW	Whether the software configuration module shuts down the clock	0x0000_7FFF
0x0004	Software Clock Mask Register	SW_CLK_MASK	RW	Whether the software configuration module is automatically shut down Bell	0x0000_007E
0x0008	Reserved				
0x000C	Software Reset Control Register	SW_RST_CTRL	RW	Software configuration reset module	0x01FF_FFFF
0x0010	Clock Divider Configuration Register	SYS_CLK_DIV	RW	Configure the clock divider ratio	0x0000_2212
0x0014	Debug Control Register	DEBUG_CTRL	RW	Configure ADC/DAC loop- back test	0x0000_0000
0x0018	I2S Clock Control Reg- ister	I2S_CLK_CTRL	RW	Configure the I2S clock	0x0000_0000
0x001C	Reset status register	RESET_STATUS	RW	View CPU Soft Reset and Watchdog	0x0000_0000

5.4.2 **SW_CLKG_EN** - Software Clock Gating Enable Register.

Bit	Access	Operation Description	Reset Value
[31:22]	RO	Reserved	
[21]	RW	soft_touch_gate_en Configure the gating of the touch_sensor module clock. By default, the gating of the touch_sensor module is enabled. 0: touch_sensor module clock is off 1: touch_sensor clock on	1'b1
[20]	RW	soft_bt_gate_en	1'b1

		Configure the gating of the BT./BLE module clock. By default, the gating of the	
		BT/BLE module is enabled. 0: BT/BLE module clock is off	
		1: BT/BLE clock on	
		soft_qsram_gate_en Configure the gating of the qspi_ram module clock. By default, the gating of the	1'b1
[19]	RW	qspi_ram module is enabled.	
		0: qspi_ram module clock is off	
		1: qspi_ram clock on soft_sdio_m_gate_en	1'b1
		Configure the gating of the clock of the sdio_master module. By default, the gating of	1 01
[18]	RW	the sdio_master module is enabled.	
		0: sdio_master module clock is off 1: sdio_master clock on	
		soft_gpsec_gate_en	1'b1
[17]	RW	Configure gpsec module clock gating, gpsec module gating is enabled by default 0: gpsec module clock is off	
		1: gpsec clock on	
		soft_rsa_gate_en	1'b1
[16	RW	Configure the gating of the RSA clock, the default RSA gating is enabled 0: RSA module clock is off	
		1: RSA clock on	
		soft_i2s_gate_en 1'b162	1'b1
[15]	RW	Configure the gating of the i2s clock, the default i2s gating is enabled 0: i2s clock is off	
		1: i2s clock on	
		soft_lcd_gate_en Configure the gating of the lcd clock, the default lcd gating is enabled	1'b1
[14]	RW	0: LCD clock off	
		1: LCD clock on	131.1
		Soft_pwm_gate_en Configure the gating of the pwm clock, the default pwm gating is enabled	1'b1
[13]	RW	0: pwm clock off	
		1: pwm clock on	1 21- 1
5107	DIV	soft_sd_adc_gate_en Configure the gating of sd_adc_clock, by default sd_adc_gating is enabled	1'b1
[12]	RW	0: sd_adc_clock off	
		1: sd_adc_clock on soft_gpio_gate_en	1'b1
[11]	RW	Configure the gating of the GPIO clock, the default GPIO gating is enabled	1 01
[11]	KW	0: GPIO clock off	
		1: GPIO clock on soft_timer_gate_en	1'b1
[10]	RW	Configure the gating of the timer clock, the default timer gating is enabled	
[10]	TC V	0: timer clock off 1: timer clock on	
		soft_rf_cfg_gate_en: used internally, do not modify	1'b1
[9]	RW	Configure the gating of the rf_cfg clock, the default rf_cfg gating is enabled	
		1'b0: rf_cfg clock off 1'b1: rf_cfg clock on	
		soft_dma_gate_en	1'b1
[8]	RW	Indicates whether the clock supplied to the dma clock domain is turned off 1'b0: dma clock off	
		1'b1: dma clock on	
		soft_ls_spi_gate_en	1'b1
[7]	RW	Configure the gating of the low-speed spi clock, the default low-speed spi gating is enabled	
		1'b0: low speed spi clock off	
		1'b1: low-speed spi clock on soft_uart5_gate_en	1'b1
[6]	RW	Configure the gate control of uart5, default uart5 is enabled	1 01

		0: uart5 is off	
		1: uart5 is on	
		soft_uart4_gate_en	1'b1
[5]	RW	0: uart4 is off	
		1: uart4 is on	
		soft_uart3_gate_en	1'b1
[4]	RW	0: uart3 is off	
		1: uart3 is on	
		soft_uart2_gate_en	1'b1
[3]	RW	0: uart2 is off	
		1: uart2 is on	
		soft_uart1_gate_en	1'b1
[2]	RW	0: uart1 is off	
		1: uart1 is on	
		soft_uart0_gate_en	1'b1
[1]	RW	0: uart0 is off	
		1: uart0 is on	
		soft_i2c_gate_en	1'b1
[0]	RW	Configure i2c clock gating, i2c gating is enabled by default	
[0]	IX VV	1'b0: i2c clock off	
		1'b1: i2c clock on	

$5.4.3~\mbox{SW_CLK_MASK}$ - Software Clock Mask Register.

Table 9 Software Clock Mask Register

Bit	Access	Operation Description	Reset
			Value
[6]	RW	soft_cpu_clk_gt_mask	1'b1
		Indicates whether the clock supplied to the CPU clock domain (including CPU, bus1,	
		ROM, SRAM) can be adaptive	
		Shutdown (when the CPU needs to enter the WFI state, do not set the adaptive shut-	
		down)	
		1'b0: Allows adaptive turn-off and turn-on	
		1'b1: Adaptive turn-off and turn-on are not allowed	
[5:2]	RW	Reserved for internal use, do not modify	
[1]	RW	soft_sdioahb_clk_gt_mask	1'b1
		Indicates whether the clock supplied to the sdio ahb clock domain can be shut down	
		adaptively	
		1'b0: Allows adaptive turn-off and turn-on	
		1'b1: Adaptive turn-off and turn-on are not allowed	
[0]	RW	soft_pmu_clk_gt_mask	1'b1
		There is a gating unit after the clock output by pll, which is configured by this register	
		to indicate whether it is allowed to be turned off by the PMU.	
		1'b0: Allows the PMU to shut down the gate unit, thereby shutting down the clock	
		1'b1: PMU is not allowed to shut down the gate unit	

$5.4.4~\mbox{SW_RST_CTRL}~$ - Software Reset Control Register.

Table 10 Software Reset Control Register

Bit	Access	Operation Description	Reset
			Value
[31]	RW	soft_touch_rst_n Software reset touch_sensor module	
		0: reset	0
		1: Reset release	
[30]	RW	soft_rst_flash_n Software reset Flash controller module	
		0: reset	0
		1: Reset release	
[29]	RW	soft_rst_bt_n Software reset BT module	0
		0: reset	U

		1: Reset release	
[28]	RW	soft_rst_qspi_ram_n Software reset qspi_ram module	
		0: reset	0
		1: Reset release	
[27]	RW	soft_rst_sdio_m_n Software reset sdio_master module	
		0: reset	0
		1: Reset release	
[26]	RW	soft_rst_gpsec_n	
		Software reset gpsec module	0
		1'b0: reset 1'b1: reset release	
[25]	RW	soft_rst_rsa_n Software reset RSA module	
[23]	KW	1'b0: reset	0
		1'b1: reset release	U
[24]	RW	soft_rst_i2s_n Software reset i2s module	
[24]	IX VV	1'b0: reset	0
		1'b1: reset release	
[23]	RW	soft_rst_lcd_n software reset lcd module	0
		1'b0: reset	0
[22]	RW	soft_rst_pwm_n software reset pwm module	
		1'b0: reset	0
		1'b1: reset release	
[21]	RW	soft_rst_sar_adc_n Software reset sar_adc module	
		1'b0: reset	0
5007	D	1'b1: reset release	
[20]	RW	soft_rst_timer_	
		Software reset timer	0
		1'b0: reset 1'b1: reset release	
[19]	RW	soft_rst_gpio_n	
[19]	KW	software reset the gpio module	
		1'b0: reset	0
		1'b1: reset release	
[18]	RW	soft_rst_rf_cfg_n Software reset to configure the RF register module (for internal use, do	
		not modify)	0
		1'b0: reset	0
		1'b1: reset release	
[17]	RW	soft_rst_spis_n Software reset high-speed spi module	
		1'b0: reset	0
		1'b1: reset release	
[16]	RW	soft_rst_spim_n software reset low speed spi module	0
		1'b0: reset 1'b1: reset release	0
[15]	RW	soft_rst_uart5_n Software reset on-chip uart5 module	
[15]	KW	soit_rst_uart5_n Soitware reset on-cmp dart5 module 1'b0: reset	0
		1'b1: reset release	J
[14]	RW	soft_rst_uart4_n	0
[13]	RW	soft_rst_uart3_n	0
[12]	RW	soft_rst_uart2_n	0
[11]	RW	soft_rst_uart1_n	0
[10]	RW	soft_rst_uart0_n	0
[9]	RW	soft_rst_i2c_n Software reset on-chip i2c module	
		1'b0: reset	0
		1'b1: reset release	
[8[RW	soft_rst_bus2_n Software reset on-chip bus2 module	
		1'b0: reset	0
F	Divi	1'b1: reset release	
[7]	RW	soft_rst_bus1_n Software reset on-chip bus1 module	0
		1'b0: reset 1'b1: reset release	0
[6]	RW	soft_rst_apb_n software reset abp bridge module	0
[6]	I/ W	sort_ist_apo_ii sortware reset aup unuge mounie	U

		1'b0: reset	
		1'b1: reset release	
[5]	RW	soft_rst_mem_mng_n Software reset mem_mng module (internal use, do not modify)	
		1'b0: reset	0
		1'b1: reset release	
[4]	RW	soft_rst_dma_n software reset dma module	
		1'b0: reset	0
		1'b1: reset release	
[3]	RW	soft_rst_sdio_ahb_n software reset sdio ahb clock domain module	
		1'b0: reset	0
		1'b1: reset release	
[2]	RW	soft_rst_sec_n Software reset security module (internal use, do not modify)	
		1'b0: reset	0
		1'b1: reset release	
[1]	RW	soft_rst_mac_n Software reset mac module (internal use, do not modify)	
		1'b0: reset	0
		1'b1: reset release	
[0]	RW	soft_rst_bbp_n Software reset bbp module (internal use, do not modify)	
		1'b0: reset	0
		1'b1: reset release	

$5.4.5~\mbox{\bf SYS_CLK_DIV}$ - Clock Divider Configuration Register.

Table 11 Clock Divider Configuration Register

Bit	Access	Operation Description	Reset Value
[31]		divide_freq_en When it is necessary to reconfigure cpu_clk_divider, wlan_clk_divider, bus2_syncdn_factor, When sdadc_fdiv, set this register, the hardware will automatically update the above four parameters to the frequency divider, and then clear this register	0
[30:28]		Reserved	
[27:24]	RW	Peripheral_divider 160M clock frequency division factor: Divided by the DPLL as the clock source. The frequency division factor is the assigned frequency division value. The divided output should be 160MHz. The DPLL output is 480MHz and should be configured to 3.	0x03
[23:16]	RW	bus2_syncdn_factor The clock ratio between bus1 and bus2 should be N:1 Among them, N is an integer. In actual adjustment, it mainly depends on the ratio of the operating frequency of the CPU to the clock frequency of bus2. Since the default cpu uses 80MHz clock and bus2 uses 40MHz clock, then N=2	0x02
[15:8]	RW	wlan_clk_divider The clock from the PLL is divided and sent to the wlan system. This register is the frequency division factor, which is >=2. The default frequency division factor is 3, that is, the 480MHz output of the pll is divided by 3, and the 160MHz clock is obtained as the root The node clock is sent to wlan (wlan continues to divide the frequency to obtain a more detailed low-frequency clock); Note 1: If the WLAN system needs to work normally, this clock needs to be fixed at 160MHz; if the WLAN system is turned off, Then this clock can be downclocked to save power. This clock must not be configured higher than 160MHz. Note 2: The secondary bus clock and APB clock are divided by four;	0x03
[7:0]	RW	cpu_clk_divider The clock from the PLL is divided and sent to the CPU. This register is the frequency division factor, which is >=2. The default frequency division factor is 6, that is, after the reset is released, the 480MHz clock output by the PLL is divided by 6 and sent to the cpu is an 80MHz clock. When you need to adjust the clock required by the cpu, you can reconfigure this parameter	0x06

5.4.6 **DEBUG_CTRL** - Debug Control Register

Table 12 Clock Select Register

Bit	Access	Operation Description	Reset Value
[16]	RW	JTAG enable 1'b0: Disable JTAG debugging 1'b1: Enable JTAG debug function	0
[15:8]	RW	sd_adc_div sigma-delta ADC clock division factor: Divide by 40MHz as the clock source. The frequency division factor is the assigned frequency division value. After configuring this register, Divide_freq_en in the register clk_divider must be configured to take effect;	d10
[7]	RW	RSV	0
[6]	RW	qflash_clk_sel QSPI_FLASH clock selection 1: Use 80MHz; 0: 40 Mhz	0
[5]	RW	gpsec_sel GPSEC clock selection 1: Use 160MHz; 0: use 80MHz;	0
[4]		rsa_sel RSA clock selection 1: Use 160MHz; 0: use 80MHz;	0
[3:0]	RW	reserved, do not modify	d0

$5.4.7~ \textbf{I2S_CLK_CTRL}~-~I2S~Clock~Control~Register$

Table 13 I2S Clock Control Register

Bit	Access	Operation Description	Reset
			Value
[31:18]		Reserved	
[17:8]	RW	BCLKDIV BCLK splitter: F_BCLK = F_I2SCLK / BCLKDIV Note: If EXTAL_EN is not selected and internal PLL is used then F_I2SCLK = F_CPU (same as CPU frequency). Assuming F_CPU = 160MHz, F_I2SCLK = external crystal frequency when WXTAL_EN is enabled, BCLKDIV = round (F_I2SCLK/(Fs*W*F)) Where Fs is the sampling frequency of the audio data, and W is the word width; 10'b075 F = 1 when the data is mono; F = 2 when the data is stereo. For example, if the internal PLL is used and the data width is 24 bits, the format is stereo and the sampling frequency is 128KHz, BCLKDIV should be configured as (160 * 10e6 / 128 * 10e3 * 24 * 2) = 10'h1a.	0
[7:2]	RW	MCLKDIV If an external clock is selected, this MCLK divider is used to generate the appropriate MCLK frequency. F_mclk = F_I2SCLK / (2 * MCLKDIV); F_I2SCLK is the external clock when MCLKDIV = 0; F_mclk = F_I2SCLK when MCLKDIV >= 1; Note: F_mclk should be configured as 256 * fs, where fs is the sampling frequency.	0
[1]	RW	MCLKEN MCLK enable switch 1'b0: MCLK disabled	0

		1'b1: enable MCLK	
[0]		EXTAL_EN	
		External clock selection, choose whether to use internal I2S block clock or external	
		clock	
	RW	1'b0: Internal clock	0
		1'b1: External clock	
		Note: When using an external clock, the external clock must be 2 * N * 256 fs, where fs	
		is the sampling frequency, and N must be an integer.	

5.4.8 **RESET_STATUS** - Reset Status Register.

Bit	Access	Operation Description	Reset
			Value
[31:18]			
[17:8]	WO	CPU soft reset state clear Write 1 to clear CPU soft Reset Status.	0
[7:2]	WO	CPU soft reset state clear Write 1 to clear CPU soft Reset Status.	0
[1]	RO	CPU soft reset state 1: The CPU has generated a soft reset; 0: The CPU does not generate a soft reset;	0
[0]	RO	Wdog reset state 1: Wdog generates a Reset; 0: Wdpg does not generate a Reset	0

6 DMA module

6.1 Function overview

DMA is used to provide high-speed data transfer between peripherals and memory and between memory and memory. Can operate without any CPU

Fast data movement via DMA without The CPU resources saved in this way do not affect the operation of other instructions by the CPU.

DMA is mounted on the AHB bus, supports up to 8 channels, 16 hardware peripheral request sources, supports linked list structure and register control.

6.2 Main Features

- Amba2.0 standard bus interface, 8 DMA channels
- Support DMA operation based on memory linked list structure
- Supports 16 hardware peripheral request sources
- Support 1, 4-burst operation mode
- Support byte, half-word, word as unit transfer operation
- Support source and destination address unchanged or sequentially incremented or configurable to cycle operations within a predefined address range
 - Supports data transfer methods from memory to memory, memory to peripherals, and peripherals to memory 6.3 Functional Description

6.3.1 DMA channel

W800 supports a total of 8 DMA channels, DMA channels do not interfere with each other and can run at the same time. Request different data streams can choose different DMA channel.

Each DMA channel is allocated in a different register address offset segment, you can directly select the address segment of the corresponding channel for configuration and use. No 78

The register configuration method of the same channel is exactly the same.

Table 15 DMA address assignment

DMA base address	0x4000 0800
DMA_CH0	offset (0x10~0x38)
DMA_CH1	offset (0x40~0x68)
DMA_CH2	offset (0x70~0x98)
DMA_CH7	offset (0x160~0x188)

Eight DMA channels enable a unidirectional data transfer link between source and destination.

The source and destination addresses of DMA can be set to remain unchanged, incremented or cyclic after each DMA operation is completed:

- DMA_CTRL[2:1] controls how the source address changes after each DMA operation;
- DMA_CTRL[4:3] controls how the destination address changes after each DMA operation.

DMA can set the handling unit of byte, half-word and word, and the final quantity of data to be handled is an integer multiple of the handling unit.

DMA_CTRL[6:5] to set.

DMA can set how many units of data to transfer each time through burst, and choose to transfer 1 or 4 units at a time through DMA_CTRL[7]

Bit data, if DMA_CTRL[6:5] is set to word and burst is set to 4, then 4 words of data are transferred each time.

DMA can set the number of Bytes to start DMA transfer each time, the maximum is 65535 Bytes, which is set by DMA CTRL[23:8]. 79

6.3.3 DMA Cycling Mode

The DMA loop address mode means that after the source and destination addresses of DMA are set, after the data transfer reaches the set loop boundary, it will jump to the loop start address, and this loop executes until the set transfer byte is reached.

The source and destination addresses of the round-robin address mode need to be set with the SRC_WRAP_ADDR and DEST_WRAP_ADDR registers, and passed WRAP_SIZE to set the loop length value.

6.3.4 DMA transfer mode

DMA supports 3 transfer modes:

• RAM to RAM

Both the source address and the destination address are configured as memory addresses to be transferred, DMA_MODE[0] is set to 0, software mode.

Memory to Peripherals

The source address is set to the memory address, the destination address is set to the peripheral address, DMA_MODE[0] is set to 1, the hardware mode,

DMA_MODE[5:2] selects the peripheral used.

Peripherals to memory

The source address is set to the peripheral address, the destination address is set to the memory address,

DMA_MODE[0] is set to 1, the hardware mode, DMA_MODE[5:2] selects the peripheral used.

6.3.5 DMA peripheral selection

When using the transfer method of peripheral to memory or memory to peripheral, in addition to the corresponding peripheral needs to be set to DMA TX or RX, DMA_MODE[5:2] also needs to select the corresponding peripheral.

Note: Because there are 3 UART ports, when the UART uses DMA, it is necessary to select the corresponding port through UART CH[1:0]. UART.

6.3.6 DMA linked list mode

DMA supports linked list working mode. Through the linked list mode, when DMA transfers the current linked list memory data, we can advance to the next

The data is filled in each linked list. After the DMA finishes moving the current linked list, it judges that the next linked list is valid, and can directly move the data of the next linked list.

The linked list method can effectively improve the efficiency of DMA and CPU cooperation.

Linked list operation mode: Set the DMA to linked list working mode through the DMA_MODE[1] register, and then set the DESC_ADDR register is the starting address of the linked list structure, and then enables DMA through the CHNL_CTRL register. When the DMA process finishes moving the current memory after that, the software notifies the DMA that there is still valid data in the linked list by setting the valid flag, and the DMA processes the data according to the valid flag of the linked list a data to be moved.

6.3.7 DMA Interrupts

DMA transfer completion or burst can generate interrupts, INT_MASK register can mask the interrupt corresponding to the DMA channel.

When the corresponding DMA interrupt is generated, the current interrupt status can be queried through the INT_SRC register, indicating what is currently generating the interrupt.

The corresponding status bit needs to be cleared by software by writing 1 to 0.

6.4 Register Description

6.4.1 Register List

Table 16 DMA register list

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess		
0x0000	interrupt mask regis-	INT_MASK	RW	Set DMA interrupts that need	0x0000_FFFF
	ter			to be masked	

03/0004	Indexessed Classes Dec	INT CDC	DW	To disease the intermed states	00000 0000	
0X0004	Interrupt Status Register	INT_SRC	RW	Indicates the interrupt status of the current DMA	0x0000_0000	
0X0008	DMA channel selec-	DMA_CH	RW	Which UART to choose	0x0000_0000	
	tion register			when UART peripheral		
0X000C reserved			RW		0X0000_0000	
DMA CH	INL0 registers					
0X0010	DMA Source Ad-	SRC_ADDR	RW	Source address of DMA	0x0000_0000	
	dress Register	_		transfer		
0X0014	DMA Destination	DEST_ADDR	RW	The destination address of the	0x0000_0000	
	Address Register			DMA transfer		
0X0018	DMA loop source	SRC_WRAP_ADDR	RW	DMA transfer source address	0x0000_0000	
	start address register			in circular mode		
0X001C	DMA loop destina-	DEST_WRAP_ADDR	RW	DMA transfer destination in	0x0000_0000	
	tion start address reg-			circular mode		
	ister			site		
	device					
0X0020	DMA Cycle Length	WRAP_SIZE	RW	DMA loop boundary in loop	0x0000_0000	
	Register			mode		
0X0024	DMA Channel Con-	CHNL_CTRL	RW	Current channel DMA start	0x0000_0000	
	trol Register			and stop		
0X0028	DMA Mode Select	DMA_MODE	RW	DMA Mode Select Register	0x0000_0000	
	Register					
0X002C	DMA Data Flow	DMA_CTRL	RW	Set up DMA transfer data	0x0000_0000	
	Control Register			stream		
0X0030	DMA transfer bytes	DMA_STATUS	RO	Get the current number of	0x0000_0000	
	register			bytes transferred		
0X0034	DMA linked list en-	DESC_ADDR	RW	DMA linked list address en-	0x0000_0000	
	try address register			try address setting		
0X0038	DMA current desti-	CUR_DEST_ADDR	RO	The address of the current	0x0000_0000	
	nation address regis-			DMA operation		
	ter					
	INL1 registers	T				
0X0040 -		Same as DMA CHNL0 registers				
	INL2 registers					
0X0070 - 0X0098		Same as DMA CHNL0 registers				
DMA CHNL3 registers						
0X00A0 - 0X00C8						
DMA CHNL4 registers						
0X00D0 -						
	INL5 registers					
0X0100 -						
	INL6 registers					
0X0130 -						
	INL7 registers					
0X0160 -	0X0188					

6.4.2 Interrupt Mask Register

Table 17 DMA Interrupt Mask Register

Bit	Access	Operating Instructions	reset
			value
[31:16]		reserved	
[15]	RW	channel7 transfer_done interrupt mask, active high.	1
[14]	RW	channel7 burst_done interrupt mask, active high.	1
[13]	RW	channel6 transfer_done interrupt mask, active high.	1
[12]	RW	channel6 burst_done interrupt mask, active high.	1
[11]	RW	channel5 transfer_done interrupt mask, active high.	1
[10]	RW	channel5 burst_done interrupt mask, active high.	1
[9]	RW	channel4 transfer_done interrupt mask, active high.	1
[8]	RW	channel4 burst_done interrupt mask, active high.	1

[7]	RW	channel3 transfer_done interrupt mask, active high.	1
[6]	RW	channel3 burst_done interrupt mask, active high.	1
[5]	RW	channel2 transfer_done interrupt mask, active high.	1
[4]	RW	channel2 burst_done interrupt mask, active high.	1
[3]	RW	channel1 transfer_done interrupt mask, active high.	1
[2]	RW	channel1 burst_done interrupt mask, active high.	1
[1]	RW	channel0 transfer_done interrupt mask, active high.	1
[0]	RW	channel0 burst_done interrupt mask, active high.	1

6.4.3 Interrupt Status Register

Table 18 DMA Interrupt Status Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]		reserved	
[15]	RW	channel7 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[14]	RW	channel7 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[13]	RW	channel6 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[12]	RW	channel6 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[11]	RW	channel5 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[10]	RW	channel5 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[9]	RW	channel4 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[8]	RW	channel4 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[7]	RW	channel3 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[6]	RW	channel3 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[5]	RW	channel2 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[4]	RW	channel2 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[3]	RW	channel1 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[2]	RW	channel1 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0
[1]	RW	channel0 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	0
[0]	RW	channel0 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	0

6.4.4 UART selection register

Table 19 UART Select Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:24]		reserved	
[23:8]	RW	dma req clear: Write 1 to each bit to clear the corresponding dma req request. Self-cleaning. For example, writing 1 to bit 23 will clear the 15th corresponding dma request in dma_sel; Writing 1 to bit 8 will clear the 0th dma request in dma_sel - uart_rx_req;	d0

[2:0]		Uart dma channel selection:	0x0
		3'd0: uart0 module dma channel access dma	
		3'd1: uart1 module dma channel access dma	
	RW	3'd2: uart2/7816 module dma channel access dma	
		3'd3: uart3 module dma channel access dma	
		3'd4: uart4 module dma channel access dma	
		3'd5: uart5 module dma channel access dma	

6.4.5 DMA Source Address Register

Table 20 DMA Source Address Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:0]	RW	In acyclic mode, the destination address, peripheral address or memory address of DMA	0x00
		transfer	

6.4.7 DMA loop source start address register

Table 22 DMA Loop Source Start Address Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:0]	RW	In circular mode, the starting address of the source address, peripheral address or memory	0x00
		address of the DMA transfer	

6.4.8 DMA loop destination start address register

Table 23 DMA Loop Destination Start Address Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:0]	RW	In circular mode, the starting address, peripheral address or memory address of the destina-	0x00
		tion address of DMA transfer	

6.4.9 DMA Cycle Length Register

Table 24 DMA Cycle Length Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]	RW	In loop mode, the loop length of the DMA destination address.	0x00
		DMA moves data sequentially from the start address. When the number of bytes of data to	
		be moved reaches this set value, it will jump	
		Go to the cycle start address and continue to move data from the start address	
[15:0]	RW	In loop mode, the DMA source address loop length.	0x00

6.4.10 DMA Channel Control Register

Table 25 DMA Channel Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:2]		reserved	
[1]	RW	dma_stop	0
		Stop dma operation, active high.	
		The DMA will stop after completing the current burst operation and clear chnl_on at the	
		same time. software should be based on	
		chnl_on is 0 to determine that the dma has stopped completely	
[0]	RW	chnl_on	0
		Start the current channel DMA conversion, active high.	

6.4.11 DMA Mode Select Register

Table 26 DMA Mode Select Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:7]		reserved	
[6]	RW	chain_link_en	0
		Valid in linked list mode, indicating whether dma continues to read and process subsequent	
		chains after processing the first linked list	
		surface.	
		If it is 1, update next_desc_addr in the linked list and continue reading the next linked list	
		until the linked list	
		where vld is 0; if it is 0, processing stops after completing the current linked list.	
[5:2]	RW	dma_sel	0x00
		Choice of 16 dma_reqs.	
		4'd0: uart rx dma req	
		4'd1: uart tx dma req	
		4'd2: pwm_cap0_req	
		4'd3: pwm_cap1_req	
		4'd4: LS_SPI rx dma req	
		4'd5: LS_SPI tx dma req	
		4'd6: SD_ADC chill req	
		4'd7: SD_ADC chnl1 req	
		4'd8: SD_ADC chnl2 req	
		4'd9: SD_ADC chnl3 req	
		4'd10: I2S RX req	
		4'd11: I2S TX req	
		4'd12: SDIO_HOST req	_
[1]	RW	chain_mode	0
		1'b0: use normal mode	
F07	DIL	1'b1: use linked list mode	0
[0]	RW	dma_mode	0
		1'b0: Software mode.	
		1'b1: Hardware mode.	

6.4.12 DMA Data Flow Control Register

Table 27 DMA Data Flow Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:24]		reserved	
[23:8]	RW	total_byte	0x00
		The total number of bytes to operate on. It needs to be consistent with the data_size config-	
		uration, that is, if it is a word operation, then	
		Should be configured as a multiple of 4; if it is a halfword operation, it should be config-	
		ured as a multiple of 2.	
[7]	RW	burst_size	0
		Set how many units of data the DMA transfers at a time	
		1'b0: burst is 1	
		1'b1: burst is 4	
		When the last burst size exceeds the number of remaining transfers, use the burst size as	
		the size of the remaining data	
		small.	
[6:5]	RW	data_size	0x00
		Set the handling unit for DMA	
		2h0: byte	

		2'h1: half_word	
		2'h2: word	
		2'h3: reserved	
[4:3]	RW	dest addr inc	0x00
[4.5]	IX VV	2'h0: The destination address remains unchanged after each operation;	UAUU
		2'h1: The destination address is automatically accumulated after each operation.	
		2'h2: reserved	
		2'h3: Loop operation, the destination address is automatically accumulated after each opera-	
		tion, and it jumps to the start of the loop when it reaches the defined loop boundary.	
		starting address.	
[2:1]	RW	src_addr_inc	0x00
		2'h0: The source address remains unchanged after each operation;	
		2'h1: The source address is automatically accumulated after each operation.	
		2'h2: reserved	
		2'h3: Loop operation, the source address is automatically accumulated after each operation,	
		and jumps to the start of the loop when it reaches the defined loop boundary	
		address.	
0	RW	auto_reload	0
		When the current DMA transfer is completed, the next DMA transfer will be automatically	
		performed according to the current DMA configuration.	

6.4.13 DMA transfer bytes register

Table 28 DMA Transfer Bytes Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]		reserved	
[15:0]	RW	transfer_cnt	0x00
		The number of bytes currently transferred. Each time the DMA is turned on again (chnl_on	
		is set to 1), it is cleared to 0 and starts counting again.	

6.4.14 DMA linked list entry address register

Table 29 DMA linked list entry address register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:0]	RW	desc_addr	0x00
		When the linked list is enabled, it is used as the entry address of the linked list. After each	
		transfer of the linked list is completed, the base of the next linked list is	
		address is updated to this register.	

6.4.15 DMA current destination address register

Table 30 DMA current destination address register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:0]	RO	current_dest_addr	0x00
		The current DMA operation destination address. When the software stops the DMA, the	
		destination address that the DMA will operate can be known by looking at this register.	

7.1 Function overview

The encryption module automatically completes the encryption of the source address space data of the specified length, and automatically writes the encrypted data back to the specified destination address after completion time; supports SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG.

7.2 Main Features

- Support SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG encryption algorithm
- DES/3DES supports ECB and CBC modes
- AES supports ECB, CBC and CTR modes
- CRC supports four modes: CRC8, CRC16_MODBUS, CRC16_CCITT and CRC32
- CRC supports input/output reverse
- SHA1/MD5/CRC supports continuous multi-packet encryption
- Built-in true random number generator, also supports seed to generate pseudo-random numbers

7.3 Functional Description

7.3.1 SHA1 encryption

The hardware SHA1 calculation can be performed on consecutive multiple packets of data, the calculation result is stored in the register, and the encryption result of the previous packet can be used as the encryption result of the next packet initial value.

7.3.2 MD5 encryption

Hardware MD5 calculation can be performed on consecutive multiple packets of data, the calculation result is stored in the register, and the encryption result of the previous packet can be used as the initial value of the next packet initial value.

7.3.3 RC4 encryption

Supports RC4 encryption and decryption.

7.3.4 DES encryption

Support DES encryption and decryption, support ECB and CBC two modes.

7.3.5 3DES encryption

Supports 3DES encryption and decryption, and supports both ECB and CBC modes.

7.3.6 AES encryption

Support AES encryption and decryption, support ECB, CBC and CTR three modes.

7.3.7 CRC encryption

The hardware CRC calculation can be performed on consecutive multi-packet data, the calculation result is stored in the register, and the encryption result of the previous packet can be used as the initial value of the next packet.

It supports four modes: CRC8, CRC16_MODBUS, CRC16_CCITT and CRC32, and supports input/output inversion.

The calculation formula of CRC32 is as follows:

1. CRC-32: 0x04C11DB7

X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

Commonly used in ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS and other protocols.

2. CRC-16: supports two polynomials

2.1: 0X1021

X16 + X12 + X5 + 1

Commonly used in ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS CCITT and other protocols.

2.2: 0X8005

X16 + X15 + X2 + 1

Commonly used in USB, ANSI X3.28, SIA DC-07 and other protocols.

3. CRC-8: 0X207

x8+x2+x1+1

7.3.8 TRNG Random Number Generator

A true random number generator module is integrated into the W800 system. Divided into analog module and digital post-processing module. The analog module outputs a random clock ad_trng_clks and random numbers ad_trng_dout, the digital post-processing module is used to eliminate the bias and autocorrelation of random numbers. Related control

The control register is in the GPSEC register list.

The basic operation process is as follows:

1. Enable TRNG_EN and set TRNG_SEL to 1, so that GPSEC register 0x48 displays the output value of TRNG. mode at this time

The pseudo module starts to output random clocks and random signals. The signal sampled by the first 8 clocks is used as the initial state of the LFSR to initialize the LFSR chain, the data sampled by each random clock is post-processed by XOR CHAIN and LFSR register, and then shifted and stored in the register in the server TRNG_RANDOM.

2. Software can read random value through GPSEC register 0x48. Digital postprocessing when register TRNG_DIG_BYPASS is set to 1

The module stops working and directly stores the output value of the analog module into the result register TRNG_RANDOM.

- 7.4 Register Description
- 7.4.1 Register List

Table 31 Cryptographic Module Register List

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess	·	
0x0000	source address register	SRC_ADDR	RW	RC4/SHA1/AES/DES/3DES/CRC/MD5 Multiplexing source address	0x0000_0000
0X0004	destination ad- dress register	DEST_ADDR	RW	RC4/AES/DES/3DES multiplexing destination address	0x0000_0000
0X0008	configuration register	GPSEC_CFG	RW	Generic Hardware Cryptographic Module Configuration Registers	0x0000_0000
0X000C	control regis- ter	GPSEC_CTRL	RW	Generic Hardware Cryptographic Module Control Register	0x0000_0000
0X0010	Key 0 Low Register	KEY00	RW	The first input key in the lower 32 bits of Key0 (RC4/AES/DES/3DES), multiplexed CRC Ci	0x0000_0000
0X0014	Key 0 High Register	KEY01	RW	Key0 high 32-bit first input key (RC4/AES/DES/3DES)	0x0000_0000
0X0018	Key 1 Low Register	KEY10	RW	The second input key of the lower 32 bits of Key1 (RC4/AES//3DES)	0x0000_0000
0X001C	Key 1 High Register	KEY11	RW	Key1 high 32 bits second input key (RC4/AES//3DES)	0x0000_0000
0X0020	Key 2 Low Register	KEY20	RW	Key2 low 32 bit third input key (3DES), multiplex iv1 low 32-bit input initial Vector (AES)	0x0000_0000
0X0024	Key 2 High Register	KEY21	RW	Key2 high 32 bits third input key (3DES), multiplex iv1 high 32-bit input initial Vector (AES)	0x0000_0000
0X0028	Initial vector 0 low register device	IV00	RW	IV0 low 32-bit input initial vector (AES/DES/3DES)	0x0000_0000
0X002C	Initial vector 0 high order register device	IV01	RW	IV0 upper 32-bit input initial vector (AES/DES/3DES)	0x0000_0000
0X0030		GPSEC_STS	RW	Generic Hardware Cryptographic Module Status Register	0x0000_0000
0X0030	Summary 0 Register	SHA1- DIGEST0	RW	sha1-digest0/MD5-digest0	0X6745_2301
0X0038	Summary 1 Register	SHA1- DIGEST1	RW	sha1-digest1/MD5-diges1	0XEFCD_AB89
0X003C	Summary 2 Register	SHA1- DIGEST2	RW	sha1-digest2/MD5-digest	0X98BA_DCFE
0X0040	Summary 3 Register	SHA1- DIGEST3	RW	sha1-digest3/MD5-digest3	0X1032_5476

0X0044	Summary 4 Register	SHA1- DIGEST4	RW	sha1-digest4/MD5-digest4	0XC3D2_E1F0
0X0044	RNG_result	RNG_RESULT	RW	RNG output	0X0000_0000
0X0048	Key 3 Low Register	Key30	RW	The third input key in the lower 32 bits of Key3 (RC4's 256bit mode)	0X0000_0000
0X004C	Key 3 Low Register	Key31	RW	The third input key in the upper 32 bits of Key3 (RC4's 256bit mode)	0X0000_0000
0X0050	TRNG configuration	TRNG_CR	RW	True random number generator configuration options	0X40

========== TO BE TRANSLATED =====================

9 GPIO module

9.1 Function overview

The GPIO controller implements software configuration of GPIO properties, enabling users to conveniently operate GPIO.

Each GPIO can be individually configured by software, set it as input port, output port, set its floating, pull-up, pull-down state, set its rising edge, falling edge, double edge, high level, low level interrupt trigger mode.

9.2 Main Features

- Support GPIO software configuration
- Support GPIO interrupt configuration
- Provides up to 48 GPIOs available
- 9.3 Functional Description

The GPIO provided in W800 is divided into two groups, one is GPIOA, the other is GPIOB. The starting addresses of GPIOA and GPIOB registers are different, but function the same.

When the user wants to use a specific IO as a software-controlled GPIO, set the corresponding position in the GPIO multiplexing selection register to 0, i.e. Can.

The GPIO direction control register is used to control the direction of the GPIO, 1 means the corresponding GPIO is used as an output pin, 0 means the corresponding GPIO as an input pin.

The GPIO pull-up and pull-down control registers are used to control the pull-up and pull-down functions of the corresponding IO.

The GPIO pull-up control register is **active low**, setting it to 0 means to open the pull-up function of the corresponding IO, and setting it to 1 means to close the pull-up and pull-down function.

For the properties of IO, please refer to the IO multiplexing table.

The GPIO pull-down control register is **active high**. Setting it to 1 means turning on the pull-down function of the corresponding IO, and setting it to 0 means turning off the pull-down function.

For the properties of IO, please refer to the IO multiplexing table.

The GPIO data register represents the level of the input IO when it is set to the input state, and can be specified by writing 1 or 0 when it is set to the output state IO output level. This register is controlled by the GPIO data enable register, only when the GPIO data enable register is set to 1 time, the GPIO data register can be read and written.

The GPIO module provides input signal detection function. High and low level detection and upper and lower edges can be realized by configuring GPIO interrupt related registers Jump detection. When the input signal corresponding to IO meets the preset conditions, such as high-level trigger or rising edge trigger, etc., it will trigger GPIO interrupt is reported to MCU for processing. The MCU needs to clear the corresponding interrupt status to avoid false triggering of the interrupt.

9.4 Register Description

9.4.1 Register List

Table 44. **GPIOA register list**

(aliases of registers as described in CDK file "wm regs.h", not as in RM!!)

Offset	Name	Abbreviation	Ac-	Description	Reset
Address	CDIO dete mais		cess	Dood and arrive CDIO arranged data	Value
0x0000	GPIO data regis- ter	DATA	RW	Read and write GPIO current data	0x180B
0x0004	GPIO data enable	DATA_B_EN	RW	Configure the enable bit of GPIO_DATA	0xFFFF
	register				
0x0008	GPIO direction	DID	RW	Configure GPIO direction	0x0000
	control register	DIR			
0x000C	GPIO Pull-Up	PULLUP_EN	RW	Configure GPIO pull-ups	0xFFFF
	Control Register				
0x0010	GPIO multiplex-		RW	Configure GPIO alternate function enable bit	0xFFFF
	ing selection reg-	AF_SEL			
	ister				
0x0014	GPIO multiplex-	AF_S1	RW	GPIO alternate function selection bit high address	0x0000
	ing selection reg-	Ar_Si		bit	
	ister 1				
0x0018	GPIO multiplex-		RW	GPIO alternate function selection bit low address	0x0000
	ing selection reg-	AF_S0		bit	
0.0015	ister 0				
0x001C	GPIO pull-down	PULLDOWN_EN	RW	Configure GPIO pull-down	0x0000
0.0000	control register	10220 ((1(_2)			0.0000
0x0020	GPIO interrupt		RW	Configure the interrupt triggering method of GPIO	0x0000
	trigger mode con-	IS			
	figuration regis-				
0.0024	ter		DW	C. C CDIO I	0.0000
0x0024	GPIO interrupt		RW	Configuring GPIO Interrupt Edge Triggered Mode	0x0000
	edge-triggered	IBE			
	mode configura- tion				
0x0028	GPIO interrupt		RW	Configure GPIO interrupt upper and lower edge	0x0000
0.0020	upper and lower		IX VV	trigger or high and low level touch	000000
	edge trigger con-	IEV		trigger of high and low level toden	
	figuration regis-	IL V			
	ter				
0x002C	GPIO Interrupt		RW	Configure GPIO Interrupt Enable	0x0000
	Enable Configu-	IE			5115 5 5 5
	ration Register	_			
0x0030	GPIO Bare Inter-		RO	Query GPIO raw interrupt status (before MASK)	0x0000
	rupt Status Regis-	RIS		• • • • • • • • • • • • • • • • • • • •	
	ter				
0x0034	GPIO Masked In-		RO	Query the interrupt status after GPIO masking	0x0000
	terrupt Status	MIS		(MASK	
	Register			Rear)	
0x0038	GPIO Interrupt		WO	Control GPIO interrupt clearing	0x0000
	Clear Control	IC			
	Register				

Table 45 **GPIOB register list**

Offset Address	Name	Abbreviation	Access	Description	Reset Value
0x0000	GPIO data register	DATA	RW	Read and write GPIO current data	0x0000_7304
0x0004	GPIO data ena- ble register	DATA_B_EN	RW	Configure the enable bit of GPIO_DATA	0x7FFF_FFFF
0x0008	GPIO direction control register	DIR	RW	Configure GPIO direction	0x0000_0000

0x000C	GPIO Pull-Up Control Regis-	PULLUP_EN	RW	Configure GPIO pull-ups	0xFFFF_FFFF
0x0010	GPIO multi- plexing selec- tion register	AF_SEL	RW	Configure GPIO alternate function enable bit	0xFFFF_FFFF
0x0014	GPIO multi- plexing selec- tion register 1	AF_S1	RW	GPIO alternate function selection bit high address bit	0x0000_0000
0x0018	GPIO multi- plexing selec- tion register 0	AF_S0	RW	GPIO alternate function selection bit low address bit	0x0000_0000
0x001C	GPIO pull- down control register	PULLDOWN_EN	RW	Configure GPIO pull-down	0x0000_0000
0x0020	GPIO interrupt trigger mode configuration register	IS	RW	Configure the interrupt triggering method of GPIO	0x0000_0000
0x0024	GPIO interrupt edge-triggered mode configu- ration	IBE	RW	Configuring GPIO Interrupt Edge Triggered Mode	0x0000_0000
0x0028	GPIO interrupt upper and lower edge trigger configuration register	IEV	RW	Configure GPIO interrupt upper and lower edge trigger or high and low level touch	0x0000_0000
0x002C	GPIO Interrupt Enable Config- uration Register	IE	RW	Configure GPIO Interrupt Enable	0x0000_0000
0x0030	GPIO Bare Interrupt Status Register	RIS	RO	Query GPIO raw interrupt status (before MASK)	0x0000_0000
0x0034	GPIO Masked Interrupt Status Register	MIS	RO	Query the interrupt status after GPIO masking (MASK Rear)	0x0000_0000
0x0038	GPIO Interrupt Clear Control Register	IC	WO	Control GPIO interrupt clearing	0x0000_0000

9.4.2 **DATA** - GPIO data register

Table 46. **GPIOA** data register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	GPIO current data, each BIT corresponds to the corresponding GPIO line	0x180B

Table 47 **GPIOB** data register

	Bit	Ac-	Operating Instructions	reset
ı		cess		value
	[31:0]	RW	GPIO current data, each BIT corresponds to the corresponding GPIO line	0x7304

9.4.3 **DATA_B_EN** - GPIO Data Enable Register

Table 48 **GPIOA** Data Enable Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[15:0]	RW	Corresponding to the BIT enable bit of GPIO_DATA, only when the corresponding BIT is 1, the operation of the corresponding bit of GPIO_DATA	0xFFFF

It is valid only after the operation, each BIT corresponds to the corresponding	
GPIO line, 1'bx:	
$[x] = 0$, GPIO_DATA[x] cannot be read or written	
$[x] = 1$, GPIO_DATA[x] can be read and written	

Table 49 GPIOB Data Enable Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	Corresponding to the BIT enable bit of GPIO_DATA, only when the corresponding	0xFFFFFFF
		BIT is 1, the operation of the corresponding bit of GPIO_DATA	
		It is valid only after the operation, each BIT corresponds to the corresponding	
		GPIO line, 1'bx:	
		$[x] = 0$, GPIO_DATA[x] cannot be read or written	
		$[x] = 1$, GPIO_DATA[x] can be read and written	

9.4.4 **GPIO_DIR** - GPIO direction control register

Table 50 GPIOA Direction Control Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[15:0]	RW	GPIO direction control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] is input [x] = 1, GPIO[x] is output	0x0000

Table 51 GPIOB direction control register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0)] RW	GPIO direction control, each BIT corresponds to the corresponding GPIO line, 1'bx: $[x] = 0$, GPIO[x] is input $[x] = 1$, GPIO[x] is output	0x00000000

9.4.5 PULLUP_EN - GPIO pull-up and pull-down control register

Table 52 GPIOA Pull-Up Control Register ()

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	GPIO pull-up control, each BIT corresponds to the corresponding GPIO line, 1'bx: Note: This register is active low! [x] = 0, GPIO[x] has pull-up [x] = 1, no pull-up on GPIO[x]	0xFFFF

PULLDOWN_EN - GPIOA Pull-Down Control Register ()

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]		GPIO pull-down control, each BIT corresponds to the corresponding GPIO line, 1'bx:	
	RW	Note: This register is active high!	0x0000
	IX VV	[x] = 1, $GPIO[x]$ has pull-down	0.0000
		[x] = 0, GPIO $[x]$ has no pull-down	

Table 53 GPIOB pull-up and pull-down control registers

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	GPIO pull-up control, each BIT corresponds to the corresponding GPIO line, 1'bx:	0xFFFFFFF
		Note: This register is active low!	UXFFFFFFF
		[x] = 0, GPIO $[x]$ has pull-up	
		[x] = 1, no pull-up on $GPIO[x]$	

PULLDOWN_EN - GPIOA Pull-Down Control Register ()

Bit	Ac-	Operating Instructions	reset value	
	cess			
[31:0]		GPIO pull-down control, each BIT corresponds to the corresponding GPIO line,		
		1'bx:	0x00000000	
	RW	Note: This register is active high!		
		[x] = 1, GPIO $[x]$ has pull-down		
		[x] = 0, GPIO $[x]$ has no pull-down		

9.4.6 AF_SEL - GPIO multiplexing selection register

Table 54 GPIOA multiplexing selection register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	GPIO multiplexing function enable bit, each BIT corresponds to whether the corresponding GPIO multiplexing function is enabled, 1'bx: $[x] = 0$, GPIO[x] alternate function is disabled $[x] = 1$, GPIO[x] alternate function is enabled When $[x] = 1$, the alternate function depends on the corresponding BITs of the two registers $\mathbf{AF}_{-}\mathbf{S1}$ and $\mathbf{AF}_{-}\mathbf{S0}$ status. $S1.[x] = 0$, $S0.[x] = 0$, alternate function 1 (opt1) $S1.[x] = 0$, $S0.[x] = 1$, alternate function 2 (opt2) $S1.[x] = 1$, $S0.[x] = 0$, alternate function 3 (opt3) $S1.[x] = 1$, $S0.[x] = 1$, alternate function 4 (opt4) When $[x] = 0$, if $\mathbf{DIR}_{-}[x] = 0$ and $\mathbf{PULLUP}_{-}\mathbf{EN}_{-}[x] = 1$, the GPIO multiplexing is opt6 analog IO function For the IO multiplexing function, please refer to the chip pin multiplexing relationship	0xFFFF

Table 55 GPIOB multiplexing selection register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	GPIO multiplexing function enable bit, each BIT corresponds to whether the corresponding GPIO multiplexing function is enabled, 1'bx: [x] = 0, GPIO[x] alternate function is disabled [x] = 1, GPIO[x] alternate function depends on the corresponding BITs of the two registers AF_S1 and AF_S0 status. S1.[x] = 0, S0.[x] = 0, alternate function 1 (opt1) GPIO multiplexing function enable bit, each BIT corresponds to whether the corresponding GPIO multiplexing function is enabled, 1'bx: [x] = 0, GPIO[x] alternate function is disabled [x] = 1, GPIO[x] alternate function is enabled When [x] = 1, the alternate function depends on the corresponding BITs of the two registers AF_S1 and AF_S0 status. S1.[x] = 0, S0.[x] = 0, alternate function 1 (opt1)	0xFFFFFFFF

9.4.7 **AF_S1** - GPIO multiplexing selection register 1

Table 56 GPIOA multiplexing selection register 1

Bit	Ac- cess	Operating Instructions	reset value
[15:0]	RW	The high address bit of the GPIO alternate function selection bit, together with AF_S0 to determine the alternate function	0x0000

For the IO multiplexing	function, please refer to	the chip pin mult	iplexing relationship
-------------------------	---------------------------	-------------------	-----------------------

Table 57 GPIOB multiplexing selection register 1

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	The high address bit of the GPIO alternate function selection bit, together with GPIO_AF_S0 to determine the alternate function For the IO multiplexing function, please refer to the chip pin multiplexing relationship	0x00000000

9.4.8 AF_S0 - GPIO multiplexing selection register 0

Table 58 GPIOA multiplexing selection register 0

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	The low address bit of the GPIO alternate function selection bit, and GPIO_AF_S1 together determine the alternate function How to configure see GPIO_AF_SEL register description	0x0000

Table 59 GPIOB multiplexing selection register 0

Bit	Ac-	Operating Instructions	reset value
	cess		
		The low address bit of the GPIO alternate function selection bit, and GPIO_AF_S1	0x00000000
[31:0]	RW	together determine the alternate function	
		How to configure see GPIO_AF_SEL register description	

9.4.9 **IS** - GPIO interrupt trigger mode configuration register

Table 60 GPIOA interrupt trigger mode configuration register

ı	Bit	Ac-	Operating Instructions	reset
		cess		value
	[15:0]	RW	GPIO interrupt triggering method, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] interrupt is edge-triggered [x] = 1, GPIO[x] interrupt is level sensitive	0x0000

Table 61 GPIOB interrupt trigger mode configuration register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	GPIO interrupt triggering method, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] interrupt is edge-triggered [x] = 1, GPIO[x] interrupt is level sensitive	0x00000000

9.4.10 IBE - GPIO Interrupt Edge Triggered Mode Configuration Register

Table 62 GPIOA Interrupt Edge Triggered Mode Configuration Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	GPIO interrupt edge trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] edge-triggered interrupt mode is determined by IEV [x] = 1, both edges of GPIO[x] trigger an interrupt	0x0000

Table 63 GPIOB Interrupt Edge Triggered Mode Configuration Register

Bit	Ac-	Operating Instructions	reset value
	cess		

[31:0]	RW GPIO interrupt edge trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] edge-triggered interrupt mode is determined by IEV [x] = 1, both edges of GPIO[x] trigger an interrupt	0x00000000
--------	---	------------

9.4.11 IEV - GPIO interrupt upper and lower edge trigger configuration register

Table 64 GPIOA interrupt upper and lower edge trigger configuration register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RW	GPIO interrupt upper and lower edge trigger or high and low level trigger selection, each BIT corresponds to the corresponding GPIO line, 1'BX: [x] = 0, GPIO [X] interrupt is triggered at a low or falling edge [x] = 1, GPIO [x] interrupt is high or rising edge trigger	0x0000

Table 65 GPIOB interrupt upper and lower edge trigger configuration register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	GPIO interrupt upper and lower edge trigger or high and low level trigger selection, each BIT corresponds to the corresponding GPIO line, 1'BX: [x] = 0, GPIO [X] interrupt is triggered at a low or falling edge [x] = 1, GPIO [x] interrupt is high or rising edge trigger	0x00000000

9.4.12 IE - GPIO Interrupt Enable Configuration Register

Table 66 GPIOA Interrupt Enable Configuration Register

Ī	Bit	Ac-	Operating Instructions	reset
		cess		value
	[15:0]	RW	GPIO interrupt enable control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] interrupt disabled [x] = 1, GPIO[x] interrupt enable	0x0000

Table 67 GPIOB Interrupt Enable Configuration Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	GPIO interrupt enable control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] interrupt disabled [x] = 1, GPIO[x] interrupt enable	0x00000000

9.4.13 RIS - GPIO Raw Interrupt Status Register

Table 68 GPIOA Raw Interrupt Status Register

Ī	Bit	Ac-	Operating Instructions	reset
		cess		value
	[15:0]	RO	GPIO bare interrupt status (before MASK), each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no interrupt is generated for GPIO[x] [x] = 1, GPIO[x] has an interrupt	0x0000

Table 69 GPIOB Raw Interrupt Status Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	GPIO bare interrupt status (before MASK), each BIT corresponds to the corresponding GPIO line, 1'bx:	0x00000000

	[x] = 0, no interrupt is generated for $GPIO[x]$	
	[x] = 1, GPIO $[x]$ has an interrupt	

9.4.14 MIS - GPIO Masked Interrupt Status Register

Table 70 GPIOA Masked Interrupt Status Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	RO	Interrupt status after GPIO masking (after MASK), each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no interrupt is generated for GPIO[x] (after MASK) [x] = 1, GPIO[x] interrupt is generated (after MASK)	0x0000

Table 71 GPIOB Masked Interrupt Status Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	Interrupt status after GPIO masking (after MASK), each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no interrupt is generated for GPIO[x] (after MASK) [x] = 1, GPIO[x] interrupt is generated (after MASK)	0x00000000

9.4.15 IC - GPIO Interrupt Clear Control Register

Table 72 GPIOA Interrupt Clear Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[15:0]	wo	GPIO interrupt clear control, each BIT corresponds to the corresponding GPIO line, 1'bx: $[x] = 0$, no action $[x] = 1$, clear GPIO $[x]$ interrupt status	0x0000

Table 73 GPIOB Interrupt Clear Control Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	wo	GPIO interrupt clear control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no action [x] = 1, clear GPIO[x] interrupt status	0x00000000

====== TO BE TRANSLATED =======

9 Timer module

19.1 Functional overview

The timer contains a 32-bit auto-loaded counter driven by a divided system clock. W800 has 6 fully independent timer. Accurate timing and interrupt functions are implemented, which can be used for delayed or periodic event processing.

19.2 Main Features

- 6 fully independent timers
- 32-bit autoload counter
- The timing unit can be configured as ms, us
- It can realize single timing or repeated timing function
- Scheduled interrupt function
- You can query the timer count value at any time;

19.3 Functional Description

The timer module consists of 6 completely independent timers, which do not affect each other, and the 6 channels can work at the same time.

After the system clock is divided by the frequency division factor, the us standard clock is obtained, which is used for the input clock of the counter. Timing unit can be configured as us, ms two kinds of levels.

The timing value is a 32-bit configurable register that can meet the needs of different timing durations. Each timer corresponds to an interrupt, when after the timing time is met, if the interrupt function is enabled, an interrupt request will be generated, which can be used to process periodic events.

19.3.1 Timing function

Timing function means that according to the time set by the user, when the time is up, a hardware interrupt is generated to notify the user to implement a specific function. Timing trigger support ticket there are two types, time and period, one can be used to process single events, and the other can be used to process periodic events.

The user obtains the APB bus clock frequency according to the frequency division factor of the system clock, and sets the base microsecond count configuration register of the timer (TMR_CONFIG), set the timing value, configure the timing unit, work mode, enable the interrupt, and then start the timing function. when timed when the time is up, the program enters the timer interrupt processing function and clears the interrupt.

19.3.2 Delay function

The delay function means that the user can keep the program in a waiting state according to the countdown function of the timer, and the program will continue to run until the timing is completed.

19.4 Register Description

19.4.1 Register List

Table 162 Timer register list

(aliases of registers as described in CDK file "wm_regs.h", not as in RM!!)

Offset Address	Name	Abbreviation	Ac- cess	Description	Reset Value
0x0000	Standard us configuration registers	TMR_CONFIG	RW	Standard us timing divider value, by bus time divide the frequency to get the standard us timing, this value Equal to APB bus frequency (MHz) minus 1	0X0000_0027
0x0004	Timer Control Register	CR	RW	Timer Control Register	0X0631_8C63
0x0008	Timer 1 Timing Value Configu- ration Register	TIM0_PRD	RW	Timer1 timing value configuration register	0X0000_0000
0x000C	Timer2 Timing Value Configu- ration Register	TIM1_PRD	RW	Timer2 timing value configuration register	0X0000_0000
0x0010	Timer 3 Timing Value Configu- ration Register	TIM2_PRD	RW	Timer3 timing value configuration register	0X0000_0000
0x0014	Timer 4 Timing Value Configu- ration Register	TIM3_PRD	RW	Timer4 timing value configuration register	0X0000_0000
0x0018	Timer 5 Timing Value Configu- ration Register	TIM4_PRD	RW	Timer5 timing value configuration register	0X0000_0000

0x001C	Timer 6 Timing Value Configuration Register	TIM5_PRD	RW	Timer6 timing value configuration register	0X0000_0000
0x0020	Timer 1 current count value TMR1_CNT		RO	Timer1 current count value	0X0000_0000
0x0024	Timer 2 current count value	TMR2_CNT	RO	Timer2 current count value	0X0000_0000
0x0028	Timer 3 current count value	TMR3_CNT	RO	Timer3 current count value	0X0000_0000
0x002C	Timer 4 current count value	TMR4_CNT	RO	Timer4 current count value	0X0000_0000
0x0030	Timer 5 current count value	TMR5_CNT	RO	Timer5 current count value	0X0000_0000
0x0034	Timer 6 current count value	TMR6_CNT	RO	Timer6 current count value	0X0000_0000

19.4.2 **TMR_CONFIG** - Standard us configuration registers.

Bit	Ac-	Operating Instructions	
	cess		
[31:7]		reserved	
[6:0]	RW	The clock divider configures prescale. For example: apb_clk=40MHz prescale = 40 - 1 = 8'd39	0x27 (dec 39)

19.4.3 TMR_CR - Timer Control Register.

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:30]		reserved	0x00
[29:25]	RW	TMR6_CSR, same as TMR1_CSR	0x03
[24:20]	RW	TMR5_CSR, same as TMR1_CSR	0x03
[19:15]	RW	TMR4_CSR, same as TMR1_CSR	0x03
[14:10]	RW	TMR3_CSR, same as TMR1_CSR	0x03
[9:5]	RW	TMR2_CSR, same as TMR1_CSR	0x03
	RW	[4:0] is TMR1_CSR, as follows:	
		[4]: Interrupt status flag, TIM_CR_TIM0_TIF, write 1 to clear	
		1'b0: Timer generates no interrupt;	0
		1'b1: Timer generates an interrupt;	
		[3]: Interrupt Enable bit, TIM_CR_TIM0_TIE	
		1'b0: No interrupt will be generated after the timing is completed;	0
		1'b1: An interrupt is generated after the timing is completed;	
		[2]: Timer enable bit, TIM_CR_TIM0_EN	
[4:0]		1'b0: the timer does not work;	0
		1'b1: enable timer	
		[1]: Timer working mode, TIM_CR_TIM0_MODE	
		1'b0: Timer repeats timing;	1
		1'b1: The timer only timed once, and it will be closed automatically after the time is com-	-
		pleted;	
		[0]: Timer timing unit, TIM_CR_TIM0_UNIT	
		1'b0: the timing unit is us;	1
		1'b1: The timing unit is ms;	

19.4.4 **TIM0_PRD** - Timer 0 Timing Value Configuration Register

Bit	Ac- cess	Operating Instructions	reset value
[31:0]	RW	Configure the timer value of Timer 0	0x00000000

19.4.5 **TIM1_PRD** - Timer 1 Timing Value Configuration Register

Bit	Ac- cess	Operating Instructions	reset value
[31:0]	RW	Configure the timer value of Timer 1	0x00000000

19.4.6 **TIM2_PRD** - Timer 2 Timing Value Configuration Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RW	Configure the timer value of Timer 2	0x00000000
		RD - Timer 3 Timing Value Configuration Register	
Bit	Ac-	Operating Instructions	reset value
F21 01	cess		0.0000000
[31:0]	RW	Configure the timer value of Timer 3	0x00000000
		RD Timer 4 Timing Value Configuration Register	, 1
Bit	Ac-	Operating Instructions	reset value
[31:0]	RW	Configure the timer value of Timer 4	0x00000000
		RD Timer 5 Timing Value Configuration Register	0x00000000
Bit	Ac-	Operating Instructions	reset value
Dit	cess	Operating instructions	reset value
[31:0]	RW	Configure the timer value of Timer 5	0x00000000
		imer 0 current count value register	0.100000000
Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	Current timer value of Timer 0	0x00000000
TIM1_C	NT Ti	mer 1 current count value register	
Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	Current timer value of Timer 1	0x00000000
		Γimer 2 current count value register	
Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	Current timer value of Timer 2	0x00000000
		mer 4 current count value register	. 1
Bit	Ac-	Operating Instructions	reset value
[21,0]	cess	Current timer value of Timer 3	00000000
[31:0]	RO	mer 5 current count value register	0x00000000
Bit			magat valua
Bit	Ac- cess	Operating Instructions	reset value
[31:0]	RO	Current timer value of Timer 4	0x00000000
	_	mer 5 current count value register	0A0000000
Bit	Ac-	Operating Instructions	reset value
Dit	cess	operating instructions	reset value
[31:0]	RO	Current timer value of Timer 5	0x00000000
	-1		

10 High Speed SPI Device Controller

10.1 Function overview

Compatible with the general SPI physical layer protocol, by agreeing on the data format for interaction with the host, the host can access the device at high speed, up to working frequency is 50MHZ.

10.2 Main Features

- Compatible with general SPI protocol
- Selectable level interrupt signal
- Supports up to 50Mbps
- Simple frame format, full hardware parsing and DMA
- 10.3 Functional Description
- 10.3.1 Introduction to SPI Protocol

SPI works in a master-slave manner, usually with one master and one or more slaves, requiring at least 4 wires, in fact 3 wires are also possible (single when transferring). They are SDI (data input), SDO (data output), SCLK (clock), CS (chip select).

- (1) SDI Serial Data In, serial data input
- (2) SDO Serial Data Out, serial data output
- (3) SCLK Serial Clock, clock signal, generated by the master device
- (4) CS Chip Select, the slave device enable signal, controlled by the master device.

Among them, CS is the control signal of whether the slave chip is selected by the master chip, that is to say, only when the chip select signal is the predetermined enable signal (high potential or low potential), the operation of the master chip is valid for this slave chip. This makes it possible to connect multiple SPI devices on the same bus.

In addition to the above 4 signal lines, HSPI also adds an INT line, which generates a drop when the slave device has data to upload.

The interruption of the edge realizes the active reporting of data.

SPI communication is accomplished through data exchange, the data is transmitted bit by bit, the clock pulse is provided by SCLK, SDI, SDO are based on

This pulse completes the data transfer. The data output goes through the SDO line, the data changes on the rising or falling edge of the clock, and the data changes on the following falling edge or rising edge is read. To complete one-bit data transmission, the same principle is used for input. Therefore, at least 8 changes of the clock signal (the rising edge and the lower edge is once) to complete the transmission of 8-bit data.

The SCLK signal line is controlled by the master device, and the slave device cannot control the signal line. In an SPI-based device, there is at least one master device.

10.3.2 SPI working process

The HSPI inside the chip works with the wrapper controller. The wrapper controller integrates DMA and is implemented through DMA.

Data exchange between HSPI internal FIFO and chip internal cache. This operation is implemented in hardware, and software does not need to care about data transmission and reception

In the process, you only need to configure the sending and receiving data linked list, and operate the corresponding registers of the wrapper controller.

For a detailed introduction to the wrapper controller, please refer to the relevant chapters.

10.4 Register Description

10.4.1 Register List of Internal Operation of HSPI Chip

Table 74 HSPI Internal Access Registers

Offset Address	Name	Abbreviation	Ac- cess	Description	Reset Value
0x0000	HSPI FIFO clear register	CLEAR_FIFO	RW	Clear the contents of the Tx and Rx FIFOs while A circuit that synchronously resets the system clock domain	0X0000_0000
0x0004	HSPI Configura- tion Register	SPI_CFG		Configure the SPI transfer mode and endianness set	0x0000_0000
0x0008	HSPI Mode Configuration Register	MODE_CFG		When configuring the ahb master to access the bus burst length	0x0000_0000
0X000C	HSPI Interrupt Configuration Register	SPI_INT_CPU_ MASK		Configure whether the interrupt is enabled	0X0000_0003

0X0010	HSPI Interrupt Status Register	SPI_INT_CPU_ STTS	Get and clear interrupt status	0x0000_0000
	HSPI data up- load length reg- ister	RX_DAT_LEN	Configure the length of data that can be uploaded	0x0000_0000

10.4.1.1 **CLEAR_FIFO** - HSPI FIFO clear register

Table 75 HSPI FIFO clear register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:1]	RO	reserved	
[6:0]	RW	Clear FIFOs, clear the contents of the Tx and Rx FIFOs, and synchronously reset the circuit of the system clock domain (this except for the registers in the list) 0: Do not clear the FIFO 1: Clear valid Set by software, cleared by hardware Note: If you want to reset the whole circuit, you need to use the asynchronous reset leg of this module: rst_n	0

10.4.1.2 **SPI_CFG** - HSPI Configuration Register

Table 76 HSPI configuration registers

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:4]	RO	reserved	
[3]	RW	Bigendian, spi interface supports big and small endian selection of data. 0: support small segment data transfer 1: Support big-endian data transmission	0
[2]	RW	spi_tx_always_drive 0: The spi output is only valid when the chip select is valid, and it is high impedance at other times 1: spi output is always valid	0
[1]	RW	SPI CPHA 0: Transmission mode A 1: Transmission mode B	0
[0]	RW	SPI CPOL, SCK polarity at IDLE 0: 0 for SCK IDLE 1: 1 when SCK IDLE	0

10.4.1.3 MODE_CFG - HSPI Mode Configuration Register

Table 77 HSPI Mode Configuration Register

D:4	Α.	Occupied Industrian	
Bit	Ac-	Operating Instructions	reset value
	cess		
[31:1]	RO	reserved	
[0]	RW	Burst len, the burst length when the ahb master accesses the bus 0: burst len is 1 word 1: burst len is 4 characters It is recommended to set the burst transmission of 4 words, so that when the frequency of the spi interface is high, the continuous flow can be guaranteed.	0

10.4.1.4 **SPI_INT_CPU_MASK** - HSPI Interrupt Configuration Register

Table 78 HSPI Interrupt Configuration Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:2]	RO	reserved	

		IntEnRxOverrun, RxOverrun interrupt enable	
[1]	RW	0: Rx FIFO overflow interrupt enable	1
		1: Rx FIFO overflow interrupt disabled	
		IntEnTxUnderrun, TxUnderrun interrupt enable	
[0]	RW	0: Tx FIFO underflow interrupt enable	1
		1: Tx FIFO underflow interrupt disabled	

10.4.1.5 **SPI_INT_CPU_STTS** - HSPI Interrupt Status Register

Table 79 HSPI Interrupt Status Register

Bit	Ac- cess	Operating Instructions	reset value
[31:2]	RO	reserved	
[1]	RW	RxOverrun 0: Rx FIFO overflow 1: Rx FIFO overflow Write 1 to clear	0
[0]	RW	TxUnderrun 0: Tx FIFO underflow 1: Tx FIFO underflow Write 1 to clear	0

10.4.1.6 **RX_DAT_LEN-** HSPI data upload length register

Table 80 HSPI data upload length register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:16]	RO	reserved	
[15:0]	RW	Rx_dat_len Indicates the length of data that can be uploaded, in bytes The upload length is an integer multiple of words. If the upload length is less than a whole word, it will be rounded up.	0x0000

10.4.2 Host side access HSPI controller register list

The host side accesses the SPI interface registers through a fixed SPI command format. The command length is fixed to one byte, and the data length is fixed to two byte.

Table 81 HSPI Interface Configuration Register (Master Access)

Offset Address	Name	Abbreviation	Ac- cess	Description	Reset Value
0x02	Get data length register	RX_DAT_LEN	RO	When uploading data, the spi host is used to obtain data from the length of the data read by the device side	0x0000
0x03	Send data flag register	TX_BUFF_AVAIL	RO	When the master sends data to the slave, it is used to judge whether it can be download data or commands	0x0000
0x04	reserved		RO		
0x05	Interrupt configuration register	SPI_INT_HOST_MASK	RW	Whether to mask the interrupt	0x0000
0x06	Interrupt Status Register		RO	Interrupt status register, the spi host polls this bit check if there is data to upload	0x0000
0x07	reserved		RO		
0x00	Data Port 0	DAT_PORT0	RW	The Spi master communicates to the slave device through this register port To send data, the previous data frame is sent using this port	

0x10	Data Port 1	DAT_PORT1	RW	The Spi master communicates to the slave device through this register port To send data, send the last data frame to use the port	
0x01	Command port 0	DN_CMD_PORT0	WO	The Spi host sends the slave device through this register Command data, use the previous command data the port	
0x11	Command port 1	DN_CMD_PORT1	WO	The Spi host sends the slave device through this register Command data, send the last frame of command data to make use this port	

10.4.2.1 HSPI get data length register

Table 82 HSPI Get Data Length Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[15:0]	RO	spi host read-only register, when uploading data, it is mainly used to know how much data is read from the device side But in this module, the upload length is an integer multiple of words. If the upload length value is not an integer word, the host will read round up when counting, that is, read some redundant bytes	0x0000

======= TO BE TRANSLATED =========

20 Power Management Module

20.1 Function Overview

The PMU implements the switching of the chip hardware operating state and the power management during the state switching, and provides timers, real-time clocks, and 32K clocks.

It also provides timer, real time clock and 32K clock.

20.2 Main Features

- Provides chip power control
- Provides timer functionality
- Provides real-time clock control
- Provides 32K RC oscillator calibration
- Provide wake-up function.

20.3 Function Description

20.3.1 Full Chip Power Control

The PMU module controls the power switch of the chip, including 40M start-up circuit, Bandgap, digital PLL, voltage detection circuit, digital circuit, and LDO.

When the chip is powered on, the PMU module guides each module to turn on the power in turn according to the preset power-on sequence.

When the software configuration registers enter sleep mode, the PMU module guides each functional module to turn off the power in turn according to the safe power-down sequence.

turning off the clock, crystal start-up circuitry and associated power supplies in sequence when the software configuration registers enter sleep mode.

Three wake-up modes are provided in the sleep/sleep mode: Timer timer, RTC timer or wake-up by pulling the special WAKEUP pin high.

20.3.2 Low-power modes

2 low-power modes can be selected by configuring the PMU register chip.

Standby mode.

In this mode, the power supply of the digital power domain will be turned off, and only the PMU module will work on the whole chip, providing wake-up and reset functions; at this time, the power consumption of the whole chip is about 15uA.

The power consumption of the chip is about 15uA. After power off, all the data and contents stored in the memory will be lost, and the firmware will be reloaded after waking up, which is equivalent to reboot.

After waking up, the firmware will be reloaded, which is equivalent to reboot.

Sleep mode.

In this mode, the power supply of the digital power domain will be retained, only the DPLL and crystal start circuit will be turned off, and the clock will be cut off.

The power consumption of the whole chip is about 1mA; the stored data and code in the memory will still be retained; the program will continue to run after waking up.

20.3.3 Wake-up modes

PMU supports 3 wake-up modes, Timer wake-up, RTC wake-up and external IO wake-up.

Timer wakeup

Before setting the hibernation/sleep mode in the software, configure the Timer0 module in the PMU and set the hibernation time. When the system enters the hibernate mode, when the Timer0 timer reaches the sleep time, it will wake up the system and generate the corresponding Timer interrupt. When the system resumes operation, it needs to write the corresponding status bits in the interrupt status register.

Otherwise, the system will be woken up by the interrupt immediately after entering the hibernation mode next time. RTC Wakeup

Before setting the hibernate/sleep mode in software, configure the RTC module in PMU and set the hibernate time. When the system enters the hibernation mode, when the system enters the sleep mode, the system will be woken up when the RTC time reaches the sleep time and the corresponding RTC interrupt will be given. After the system resumes operation, please write '1' to the corresponding status bit in the interrupt register 0x14 to clear the interrupt status, otherwise, the system will be woken up by the interrupt immediately after entering the hibernation mode next time.

External IO Wakeup

After software hibernation/sleep, the PMU detects a specific Wakeup pin and the external controller can wake up the system by pulling this IO high and giving the corresponding IO wakeup interrupt.

The PMU does not detect this IO state after leaving the hibernation mode. After the system resumes operation, please write '1' to the corresponding status bit in the interrupt register 0x14, otherwise, the system will be woken up by the interrupt immediately after the next sleep mode.

20.3.4 Timer0 Timer

The timer enable signal and timing time are configured through the AHB register. First set the timer value, then set the timer enable BIT to start the timer.

When the timing time is reached, an interrupt is generated and the software clears the interrupt flag by writing the BITO of the status register.

20.3.5 Real Time Clock Function

Refer to the real time clock module

20.3.6 32K clock source switching and calibration

The W800 chip integrates a 32K RC oscillator as the PMU module clock source.

The output frequency of the 32K RC oscillator may change due to changes in operating environment and temperature, resulting in timing deviations. Therefore, the 32K RC oscillator is introduced in the PMU module.

Therefore, a 32K RC oscillator calibration function and a 32K clock switching function are introduced in the PMU module to correct timing deviations.

1) Switching of 32K clock source

The 32K clock can be switched from 32K RC oscillator to 32K clock obtained from 40M clock division by setting bit3 of PS_CR register to 1.

The 32K clock is obtained from the 40M clock divider. However, when the chip enters sleep mode, bit3 will be automatically cleared to 0 because the 40M clock will be turned off.

If the firmware still wants to use the precision timing function, you need to reset bit3 to 1.

2) Calibration of 32K RC oscillation circuit

First set bit2 of PS_CR register to 0, then set bit2 of PS_CR register to 1.

After the calibration is completed, the 32K RC oscillator will be relatively accurate. However, if you want more accurate timing, it is still recommended to use the 40M clock divider

This will result in an accurate RTC clock, and the deviation will only be related to the crystal frequency bias.

20.4 Register Description

20.4.1 Register List

Table 171 List of PMU registers

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess		
0x0000	PMU control register	CR	RW	For configuring 32K calibration, configuring 32K clock source, set the STANDBY function of the chip	0X0000_0002
0x0004	PMU Timer 0	TIMER0	RW	Configure the timing value (in seconds), enable timing device	0X0000_0000
0x0008	reserved				
0x0014	PMU Interrupt Source Register	IF	RW	Provides PMU interrupt flags	0X0000_0000

20.4.2 **PMU_CR** - PMU control register

Table 172 PMU control registers

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:11]	RO	reserved	
		Wake-up key interrupt polarity selection.	
[10]	RW	0: Set the interrupt when the wakeup button is high.	1
[10]	IX VV	1: Set the interrupt when the wakeup button is high.	1
		Valid only for the Sleep interrupt.	
[9:6]	RW	Minimum hold time for key wake-up.	dec 01
[>.0]		Unit: 128ms.	000 01
		DLDO_CORE Reference Voltage Source Selection	
[5]	RW	1: ABG	1
		0: DBG	
[4]	RW	32K oscillation circuit BYPASS signal	0
		High valid, 32K is obtained by 40M clock division after setting to 1. ○2	
[3]	RW	RC 32K oscillator calibration circuit start switch. 1'b0: reset of the calibration circuit.	
		1'b1: start calibration circuit.	0
		To start the calibration function, this bit needs to be set to 0 first and then to 1.	
		Enable key trigger to sleep function	
		0: no enable.	
2	RW	1: When io_wakeup key is pressed in active mode and reaches the threshold time, it	0
_		will trigger	
		io_sleep_flag is interrupted and reported to MCU.	
		Sleep enable signal, high valid.	
		1'b0: Chip wake-up state	
		1'b1	
		1'b1: the chip enters the Sleep state	
	RW	If the WAKEUP pin is invalid and no TIMER0/1 interrupt wake-up is configured,	1
	IX VV	the register	1
		is valid, the chip enters the Sleep state.	
		If the wake-up interrupt is generated, the chip will switch from the Sleep state to the	
		wake-up state, and when the wake-up condition is satisfied, this bit is automatically	
		cleared to 0.	

		If the wake-up interrupt is generated, the chip will switch from the sleep state to the	
		wake-up state.	
		Wake-up source: WAKEUP pin, TIMER0/TIMER1, RTC	
		1) WAKEUP pin, high active; for the chip to enter Sleep state, WAKEUP pin must	
		be	
		low. To wake up, pull the WAKEUP pin high to generate a wake-up interrupt and	
		make the chip leave the Sleep	
		state.	
		2) TIMER0, timer wake-up interrupt.	
		When the WAKEUP pin is low, TIMER0 sets the timing time and enables it.	
		Timer0 will generate a wakeup interrupt to make the chip leave the Sleep state.	
		3) RTC, wake-up at timing time	
		When WAKEUP pin is low, RTC will generate a wakeup interrupt when the timing	
		time is up, which will make the chip leave the Sleep state.	
		state.	
		STANDBY enable signal, high valid.	
		1'b0: Chip wake-up state	
		1'b1: chip enters STANDBY state	
		If the WAKEUP pin is invalid and no TIMER0/1 interrupt wake-up is configured,	
		the register is valid, the chip enters the STANDBY state.	
	RW	If the wake-up interrupt is generated, the chip will switch from STANDBY state to	0
		wake-up state, and when the wake-up condition is satisfied, this bit will be cleared to	
		0 automatically.	
		If the wake-up interrupt is generated, the chip will switch from STANDBY state to	
		wake-up state, and this bit will be cleared automatically when the wake-up condition	
		is satisfied.	

20.4.3 **PMU_TIMER0 -** PMU Timer 0

Table 173 PMU Timer 0 Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:17]	RO	reserved	0
		Timer0 enable bit	
[16]	RW	1'b0: Bit enable.	0
		1'b1: enable;	
[15:0]	RW	Timing value of Timer0, unit: second	0

20.4.4 $PMU_IF\:$ - PMU Interrupt Source flag register

Table 174 PMU Interrupt Source Register

Bit	Ac-	Operating Instructions	reset value
2.0	cess		10000 (4100
[31:9]	RO	reserved	0
[8]	RW	Display the current power-on status: 1'b0: Power-on or reset start 1'b1: wake up from sleep, write 1 to clear	0
[7]	RO	reserved	0
[6]	RO	reserved	0
[5]	RW	RTC timer interrupt flag bit: 1'b0: A timed interrupt is generated 1'b1: No timing interrupt is generated, write 1 to clear	0
[4]	RW	reserved	0
[3]	RW	reserved	0
[2]	RW	WAKEUP pin wake-up interrupt flag 1'b0: No WAKEUP wake-up interrupt is generated 1'b1: WAEKUP wake-up interrupt is generated, write 1 to clear	0
[1]	RW		
[0]	RW	Timer0 timer interrupt flag bit: 1'b0: No Timer0 interrupt is generated 1'b1: Timer0 interrupt is generated, write 1 to clear	0

- 21 Real time clock module
- 21.1 Function overview

RTC is a BCD counter/timer provided by the PMU module. Two 32-bit registers contain seconds, minutes, hours, days, months, years, and two

The decimal format representation (BCD) of the base code can automatically correct the months of 28, 29 (leap year), 30, and 31 days.

Under the corresponding software configuration, the RTC can not only provide the clock calendar function, but also can be used as a timer, when the timer reaches the set time an RTC interrupt is then generated, which can be used to wake the system from sleep.

The RTC module has two clock sources that can be configured: 40M clock division and internal 32K clock. Which can be used by software configuration during normal work clock source; only 32K clocks can be used in sleep state. If the RTC clock source is divided by 40M clock in normal working state, then it will automatically switch to the 32K clock after entering the sleep state, and the 32K clock will still be used after the system is woken up. So as long as the power supply voltage within the working range, the RTC module will not stop working regardless of whether the module is in a normal working state or a sleep state.

- 21.2 Main Features
- Provide timing function
- Provide timing function
- Provide timed interrupt
- Interrupt to wake up the system
- 21.3 Functional Description
- 21.3.1 Timing function

The initial value of day, hour, minute and second can be configured in RTC configuration register 1, and the initial value of year and month can be configured in RTC configuration register 2.

The timekeeping function is enabled in RTC configuration register 2.

After the RTC timing function is enabled, read the RTC configuration register 1 to get the current day, hour, minute and second values.

Register 2 can get the current year and month value.

21.3.2 Timing function

The day, hour, minute, and second timing values can be configured in RTC configuration register 1, and the year and month timing values can be configured in RTC configuration register 2.

RTC Configuration Register 1 enables the timing function.

When the RTC timer reaches the timing time, an RTC interrupt will be generated. At this time, set the RTC interrupt bit of the PMU interrupt source register to 1 to clear it.

except the interrupted state.

When the system enters sleep mode, the interrupt generated by the RTC timer will wake up the system.

21.4 Register Description

21.4.1 Register List

The RTC module has a total of 2 32-bit dedicated registers. The RTC interrupt status needs to query the PMU interrupt source register.

Table 175 RTC register list

Off	set	Name	Abbreviation	Ac-	Description	Reset Value
Add	dress			cess		
0x0	000C	RTC Configura-	RTCCR0	RW	Configure RTC day, hour, minute and second	0X0000_0000
		tion Register 1	KICCKU	IX VV	value, configure enable timing	
0x0	010	RTC Configura-	RTCCR1	RW	Configure RTC year and month value, config-	0X0000_0000
		tion Register 2	KICCKI	ΚW	ure enable timing	

21.4.2 RTC Configuration Register 1

Table 176 RTC Configuration Register 1

Bit	Ac-	Operating Instructions	reset value
	cess		
[31]	RW	RTC timer interrupt function enable 1'b0: Disable 1'b1: enable	0
[30:29]		reserved	
[28:24]	RW	Day start value/day time value	0
[23:21]		reserved	

[20:16]	RW	Hour initial value/hour timing value	0
[15:14]		reserved	
[13:8]		reserved	
[7:6]		reserved	
[5:0]	RW	Second initial value/second timing value	0

21.4.3 RTC Configuration Register 2

Table 177 RTC Configuration Register 2

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:17]		reserved	0
[16]	RW	RTC timing function enable bit 1'b0: Disable 1'b1: enable	0
[15]			
[14:8]	RW	Beginning of the year value/yearly fixed value	0
[7:4]			
[3:0]	RW	Monthly value/monthly fixed value	0

22 Watchdog module

22.1 Function overview

Implement the "watchdog" function. Designed for a global reset in the event of a system crash.

The "watchdog" will generate a periodic interrupt. The system software will clear its interrupt flag after the interrupt is generated. If it exceeds the set time, it will not be cleared.

Otherwise, a hard reset signal will be generated to reset the system.

- 22.2 Main Features
- Provide timing function
- Provide reset function
- Provide timed interrupt
- 22.3 Functional Description
- 22.3.1 Timing function

After setting the timing value to the register WD_LD, set BIT0 of WDG_CTRL to 1 to start the timer, and the WDG module will generate the

When a timed interrupt occurs, the notification program is processed. If the BIT0 of the register WD_CLR is not cleared, a timed interrupt will be generated periodically.

The value of WD_LD is based on the APB clock unit, and the APB clock is divided from the 160M clock.

22.3.2 Reset function

After setting the chip timing value WD_LD, start the timing and reset function (set BIT1/BIT0 of WDG_CTRL), and the WDG module starts the reverse operation timing, when the timing time is up, WDG will generate a timing interrupt. At the same time, if the BIT0 of WD_CLR is not cleared, the chip will the reset signal is generated in the next cycle.

22.4 Register Description

22.4.1 Register List

Table 178 WDG Register List

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess	1	
0x0000	WDG Timing	WD LD	RW	Configure timing values for repeated loading	0XFFFF_FFFF
	Load Register	WD_LD	IX VV		
0x0004	WDG current	WD_VAL	RO	Get the value of the current timer	0xFFFF_FFFF
	value register	WD_VAL	RO		
0x0008	WDG Control	WD CTRL	RW	control register	0X0000_0000
	Register	WD_CIKL	KW		
0x000C	WDG Interrupt	WD CLD	WO	interrupt clear register	0X0000 0000
	Clear Register	WD_CLR	WO		_
0x0010	WDG Interrupt	WD CDC	RO	interrupt source register	0X0000_0000
	Source Register	WD_SRC	KU		_
0x0014	WDG Interrupt	WID COLUMN	DO	Interrupt Output Status Register	0X0000 0000
	Output Register	WD_STATE	RO		_

22.4.2 WD_LD WDG Timing Value Load Register

Table 179 WDG Timing Value Load Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0	RW	Configure timing values for repeated loading The value of this register is counted in APB clocks. For example: when the APB clock is 40MHZ, the maximum duration of the timing value is about 107s, that is, 0FFFFFFFF/40000000	0xFFFF_FFFF

22.4.3 WD_VAL - WDG Current Value Register

Table 180 WDG Current Value Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:0]	RO	Get the value of the current timer To calculate the remaining time, just read the current value. To calculate the elapsed time, simply subtract the value of register WD_VAL from the value of register WD_LD	0xFFFF_FFFF

22.4.4 WD_CTRL - WDG Control Register

Table 181 WDG Control Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:2]		reserved	0
[1]	RW	reset enable bit 1'b0: When the WDG reset condition occurs, no reset signal is generated 1'b1: When the WDG reset condition occurs, the reset signal is generated	0
[0]	RW	timing enable bit 1'b0: Timer not working 1'b1: The timer works and generates periodic interrupts	0

22.4.5 WD_CLR - WDG Interrupt Clear Register

Table 182 WDG Interrupt Clear Register

Bit	Ac- cess	Operating Instructions	reset value
[31:1]		reserved	0
[0]	WO	Interrupt status clear bit, write any value to clear the current interrupt status	0

22.4.6 **WD_SRC** - WDG Interrupt Source Register

Table 183 WDG Interrupt Source Register

Bit	Ac- cess	Operating Instructions	reset value
[31:1]		reserved	0
[0]	RO	The interrupt source register, the timer function is turned on, will generate the interrupt at the same time	0

22.4.7 WD_STATE - WDG Interrupt Status Register

Table 184 WDG Interrupt Status Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:1]		reserved	0
[0]	RO	Interrupt output status register. This interrupt is not generated after the timer is turned off, but WD_SRC may be 1	0

23 PWM controller

23.1 Function overview

PWM is a method of digitally encoding analog signal levels. Through the use of a high resolution counter, the duty cycle of the square wave is modulated with to encode the level of a specific analog signal. The PWM signal is still digital because at any given moment, the full-scale the current supply is either completely present (ON) or completely absent (OFF). A voltage or current source is a repetitive pulse of ON or OFF.

The pulse sequence is added to the simulated load. When it is on, the DC power supply is applied to the load, and when it is off, the power supply is disconnected.

when. Any analog value can be encoded using PWM as long as the bandwidth is sufficient.

23.2 Main Features

- Support 2-channel input signal capture function (two channels of PWM0 and PWM4)
- Input signal capture function supports interrupt interactive mode and DMA transfer mode; DMA mode supports word-by-word operation
 - Support 5-channel PWM signal generation function
 - 5-channel PWM signal generation supports one-shot generation mode and auto-load mode
 - Support 5-channel braking function
 - PWM output frequency range: 3Hz~160kHz
 - The maximum precision of the duty cycle: 1/256, the width of the counter inserted in the dead zone: 8bit
 - Support channel 0 channel 1 synchronization function, support channel 2 channel 3 synchronization function
- Supports complementary and non-complementary modes of channel 0, channel 1, and complementary and non-complementary modes of channel 2 and channel 3
 - Support 5-channel sync function

23.3 Functional Description

23.3.1 Input Signal Capture

The PWM controller supports the signal capture function of two channels, and the capture of channel 0 can be activated by setting Bit24 of the PWM_CTL register.

The capture function of channel 4 can be activated by setting Bit1 of the PWM_CAP2CTL register. The level of the captured signal can also be to set whether to flip the function. After the channel captures the corresponding signal, the capture number is updated to the corresponding capture register PWM_CAPDAT (pass channel 0 capture number) and PWM_CAP2DAT (channel 4 capture number).

23.3.2 DMA Transfer Captures

After channel 0 or channel 4 enables the capture function, the count of the capture register can be quickly transferred to the memory through the DMA channel to speed up the user process.

23.3.3 Support for single-shot and autoload modes

The five output channels of the PWM controller all support one-shot output mode and auto-load mode. In single-load mode, the channel outputs the specified cycle after the waveform, the PWM wave will no longer be output; in the automatic loading mode, after the channel outputs the specified cycle waveform, the cycle will be automatically reloaded number, so as to continue to generate PWM waves.

23.3.4 Multiple Output Modes

The PWM controller supports independent output mode, that is, each channel outputs independently and does not interfere with each other; supports dual-channel synchronous mode, that is, one channel

The output is exactly the same as the output of another channel; supports five-channel sync mode, the output of channel 1 to channel 4 is exactly the same as the output of channel 0

It supports dual-channel complementary output, that is, the waveform output by one channel is completely opposite to the waveform output by the other channel; supports complementary mode

Commonly used dead zone settings, the dead zone length can be set up to 256 clock cycles; support braking mode, when the braking port detects the specified power

After leveling, the output channel will output the set braking level.

A variety of output modes are flexible and configurable to meet users' various application scenarios related to PWM.

23.4.1 PWM Register List

Table 185 PWM Register List (register abbr. as in wm_regs.h)

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address	Tume	7 10010 viation	cess	Description	reset value
0x0000	Clock divider register_01	PWM_CLKDIV01	RW	Divide the clock for channel 0 and channel 1	0x00000000
0x0004	Clock divider register_02	PWM_CLKDIV23	RW	Divide the clock for channel 2 and channel 3	0x00000000
0x0008	control register	PWM_CTL	RW	Used to configure or control some configurable items	0x00000000
0x000C	Period register	PWM_PERIOD	RW	Used to set the period of channel 0 to channel 4	0x00000000
0x0010	Period Number Register	PWM_PNUM	RW	is used to set the signal generation of channel 0 to channel 4 into cycles	0x00000000
0x0014	Compare Register	PWM_CMPDAT	RW	is used to store the comparison value of channel 0 to channel 4 to produce different duty cycles	0x00000000
0x0018	Dead Time Con- trol Register	PWM_DTCTL	RW	is used to configure or control the configurable set item	0x00000000
0x001C	Interrupt Control Register	PWM_IE	RW	Used to enable and control related interrupts	0x00000000
0x0020	Interrupt Status Register	PWM_IF	RW	Used to query the status of related interrupts	0x00000000
0x0024	Channel 0 Cap- ture Register	PWM_CH0CAPDAT	RO	Used to capture and count rises to channel 0 edge and falling edge	0x00000000
0x0028	brake control reg- ister	PWM_BKCR	RW	Used to control the braking mode	0x00000000
0x002C	Clock divider reg- ister_4	PWM_CH4CR1	RW	Divide the clock for channel 4	0x00000000
0x0030	Channel 4 Control Register_2	PWM_CH4CR2	RW	Set related configuration items of channel 4	0x00000000
0x0034	Channel 4 Cap- ture Register	PWM_CH4CAPDAT	RO	Used to capture and count the rise to channel 4 edge and falling edge	0x00000000
0x00338	Channel 4 Control Register_3	PWM_CH4CR3	RW	Set related configuration items of channel 4	0x00000000

23.4.2 PWM_CLKDIV01 - Clock divider register_01

Table 186 PWM clock divider register_01

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:16]	RW	CLKDIV1 CH1 frequency division counter The frequency division is determined by the counter value Note: The frequency division range is (0~65535). If frequency division is not required, enter 0 or 1.	0x0000
[15:0]	RW	CLKDIV0 CH0 frequency division counter Same as CH1	0x0000

23.4.3 2 PWM_CLKDIV012 - Clock divider register_23

Table 187 PWM Clock Divider Register_23

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:16]	RW	CLKDIV3 CH3 frequency division counter Same as CH1	0x0000
[15:0]	RW	CLKDIV2 CH2 frequency division counter Same as CH1	0x0000

23.4.4 PWM_CTL Control Register

Table 188 PWM Control Register

			Tuble 1001 WW Control Register	
ĺ	Bit	Ac-	Operating Instructions	reset
		cess		value
	[31:27]	RW	CNTEN Counter count enable 1'b0: stop counting 1'b1: start counting Note: Each bit controls each channel separately, and controls CH4, CH3, CH2, CH1 and CH0 in turn from high to low	0

[26]		reserved	0
		CAPINV	
[05]	DW	Capture reverse enable flag	0
[25]	RW	1'b0: Inverse of input signal in capture mode is invalid	0
		1'b1: The input signal in the capture mode is valid in reverse, and the input signal is reversed	
		CPEN	
		Capture function enable flag	
[24]	RW	1'b0: The capture function of CH0 is invalid, and the RCAPDAT and FCAPDAT values will not be updated;	
		1'b1: CH0 capture function is valid, capture and latch the PWM counter, respectively store in RCAPDAT (ris-	
		ing edge latch) and FCAPDAT (falling edge latch)	
		CNTTYPE3 2'b0	
		CH3 Counter counting method	
[00 00]	DIV	2'b00: edge-aligned mode (counter counting is incremented, only for capture mode)	00
[23:22]	RW	2'b01: edge-aligned mode (counter counts down, only for PWM mode)	00
		2'b10: Center-aligned mode (PWM mode only) Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting method to	
		decrement way.	
		CNTTYPE2	
[21:20]	RW	CH2 Counter counting method	00
[21.20]	1011	Same as CH3	
		CNTTYPE1	
[19:18]	RW	CH1 Counter counting method	00
		Same as CH3	
		CNTTYPE0	
[17:16]	RW	CH0 Counter counting method	00
		Same as CH3	
		TWOSYNCEN	
		2-channel sync mode enable signal	
		1'b0: 2-channel sync is not allowed	
[15:14]	RW	1'b1: Enable 2-channel synchronization, PWM_CH0 and PWM_CH1 have the same phase, and the phase is determined by PWM_CH0; PWM_CH2	00
		has the same phase as PWM_CH3, and the phase is determined by PWM_CH2	
		15bit control CH3 and CH2	
		14bit control CH1 and CH0	
[13]		reserved	0
L J		POEN	
		PWM pin output enable bit	
[12]	RW	1'b0: PWM pin is set to output state	0
		1'b1: PWM pin is set to tri-state	
		Note: only for CH0	
		CNTMODE	
		PWM generation loop method	
[11:8]	RW	1'b0: One shot mode 1'b1: Autoload mode	0
		Note: During the change of CNTMODE, PWM_CMPDAT returns to zero; each bit controls each channel sep-	
		arately, from high controls PW3, PW2, PW1 and PW0 in sequence to low	
[7]		reserved	0
F. J		ALLSYNCEN	
		All-channel sync mode enable signal	
[6]	RW	1'b0: All channels are not allowed to synchronize	0
		1'b1: All channels are allowed to synchronize, PWM_CH0, PWM_CH1, PWM_CH2 and PWM_CH3 have	
		the same phase, and the phase is determined by PWM_CH0	
		PINV	
		PWM output signal polarity enable	
[5:2]	RW	1'b0: PWM output polarity reversal disabled	0
		1'b1: PWM output polarity reversal enable Note: Each bit controls each channel separately, control PWM3, PWM2, PWM1 and PWM0 in sequence from	
		high to low	
		OUTMODE	
		output mode	
F1 03	DIV	1'b0: Non-complementary mode for every two channels	0
[1:0]	RW	1'b1: Complementary mode for every two channels	0
		BIT1 controls CH2 and CH3	
		BIT0 controls CH0 and CH1	

23.4.5 **PWM_PERIOD** - Period Register

Table 189 PWM Period Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:24]	RW	PERIOD3 CH3 period register value (Note: period cannot be greater than 255) "Edge-aligned mode (counter counts down)": ➤ PERIOD register value, period value is (PERIOD + 1)	0x00

		ightharpoonup Duty cycle = (CMP+1)/(PERIOD + 1)	_
		➤ CMP>=PERIOD: PWM output is fixed high	
		➤ CMP <period: (cmp+1)<="" (period-cmp),="" high="" is="" level="" low="" pwm="" td="" width=""><td></td></period:>	
		➤ CMP=0: PWM low level width is PERIOD, high level width is 1;	
		"Center Alignment Mode":	
		➤ PERIOD register value: period is 2*(PERIOD+1)	
		➤ Duty cycle=(2*CMP+1)/(2*(PERIOD+1))	
		➤ CMP>PERIOD: PWM is continuously high	
		➤ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1,	
		High level=(2*CMP)+1	
		➤ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
		Note: The number of cycles should not be 255 in "Center Aligned Mode".	
		No matter which alignment mode is selected, the channel period is determined by the division num-	
		ber (N) and the number of periods (P),	
		That is: the input clock is 40MHz, the clock frequency f_div after frequency division is: f_div =	
		40MHz/N, N is the division	
		Frequency (16bit). The output frequency f_{output} is: $f_{\text{output}} = f_{\text{div}} / P$, where P is the number of	
		cycles.	
		Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting	
		method to decrement way.	
		PERIOD2	
[23:16]	RW	CH2 period register value (Note: period cannot be greater than 255)	0x00
		Same as PERIOD3	
[15.0]	DW	PERIOD1 CH1 period register value (Note: period cannot be greater than 255)	0x00
[15:8]	RW	Same as PERIOD3	UXUU
		PERIODO	
[7:0]	RW	CH0 period register value (Note: period cannot be greater than 255)	0x00
		Same as PERIOD3	

23.4.6 PWM_PNUM - Cycle Number Register

Table 190 PWM Period Number Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:24]	RW	PNUM3 PWM3 generation cycle number Set the number of PWM3 cycles PNUM3, when the PWM generates PNUM3 PWM signals, stop generating the signal. number, trigger the interrupt and set the interrupt status word at the same time	0x00
[23:16]	RW	PNUM2 Number of PWM2 generation cycles Same as PNUM3	0x00
[15:8]	RW	PNUM1 Number of PWM1 generation cycles Same as PNUM3	0x00
[7:0]	RW	PNUM0 Number of PWM0 generation cycles Same as PNUM3	0x00

23.4.7 PWM_CMPDAT - Compare Register

Table 191 PWM Compare Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:24]	cess	"Edge-aligned mode (counter counts down)": ➤ PERIOD register value, period value is (PERIOD + 1) ➤ Duty cycle = (CMP+1)/(PERIOD + 1) ➤ CMP>=PERIOD: PWM output fixed bit high ➤ CMP <period: "center="" (cmp+1)="" (period-cmp),="" 1;="" 2*(period+1)="" alignment="" cmp="" duty="" high="" is="" level="" low="" mode":="" period="" period,="" pwm="" ratio="(2*CMP+1)/2*(PERIOD+1)" register="" value:="" width="" ➤="">PERIOD: PWM is continuously high</period:>	value 0x00
		➤ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1 ➤ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	

		Regardless of which alignment mode is selected, the channel period is determined by the division number (N) and the number of periods (P), namely: The input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is the frequency division number (16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
		Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting method to decrement way.	
[23:16]	RW	CMP2 PWM2 compare register value Same as CMP3	0x00
[15:8]	RW	CMP2 PWM2 compare register value Same as CMP3	0x00
[7:0]	RW	CMP2 PWM2 compare register value Same as CMP3	0x00

23.4.8 PWM_DTCTL - Dead Time Control Register

Table 192 PWM Dead Time Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:22]		reserved	0x00
[21]	RW	DTEN23 Can channel 2 and channel 3 insert deadband valid flags? Insert deadband valid signal is valid only after the complementary mode of the channel is turned on. And, if a valid signal is inserted If it is 0, the complementary signal output by the two channels has no dead zone insertion. 1'b0: Invalid insertion dead zone 1'b1: Insert dead zone valid	0
[20]	RW	DTEN01 Can channel 0 and channel 1 insert deadband valid flags? Same as DTEN23	0
[19:18]		reserved	0
[17:16]	RW	DTDIV Dead time clock divider control 2'b00: Dead time clock equal to base clock (40MHz) 2'b01: The dead-time clock is equal to the reference clock (40MHz) divided by two 2'b10: Dead-band clock equal to base clock (40MHz) divided by four 2'b11: Dead-band clock equal to base clock (40MHz) divided by eight	0
[15:8]	RW	DTCNT23 Dead time interval for channel 3 and channel 2 8bit determines the dead time interval value, and the dead time clock is determined by DTDIV	0
[7:0]	RW	DTCNT01 Dead time interval for channel 1 and channel 0 8bit determines the dead time interval value, and the dead time clock is determined by DTDIV	0

23.4.9 PWM_IE - Interrupt Control Register

Table 193 PWM Interrupt Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:8]		reserved	0
[21]	RW	DMA_request_EN DMA_request enable 1'b0: DMA_request is invalid	0
		1'b1: DMA_req	
[6]	RW	FLIEN Falling edge buffer interrupt enable bit 1'b0: Falling edge buffer interrupt invalid 1'b1: Falling edge buffer interrupt is valid Note: For CH0	0
[5]	RW	RLIEN Rising edge buffer interrupt enable bit 1'b0: Rising buffer interrupt invalid 1'b1: Rising edge buffer interrupt is valid Note: For CH0	0

[4:0]	RW	PIEN PWM Period Interrupt Enable Bit 1'b0: Periodic interrupt is invalid 1'b1: Periodic interrupt is valid	0
		Note: When the counter counts to 0 and the number of PWM cycles meets PWM_PNUM, an inter-	
		rupt is triggered.	

23.4.10 PWM_IF - Interrupt Status Register

Table 194 PWM Interrupt Status Register

Bit	Ac-	Operating Instructions	reset
[24,40]	cess	reserved	value 0
[31:10]		OVERFL	U
[9]	RW	Counter overflow flag 1'b0: Capture mode, the counter does not overflow during the counting process 1'b1: Capture mode, counter overflows during counter counting Note: When the user clears CFLIF or CRLIF, this bit is also cleared at the same time	0
[8]	RW	FLIFOV Falling edge delay interrupt flags overrun status 1'b0: When CFILF is 1, no falling edge delay interrupt is generated 1'b1: When CFILF is 1, another falling edge delay interrupt occurs Note: When the user clears CFILF, this bit is also cleared at the same time	0
[7]	RW	RLIFOV Rising edge delay interrupt flag overrun status 1'b0: When CRILF is 1, no rising edge delay interrupt is generated 1'b1: When CRILF is 1, another rising edge delay interrupt occurs Note: When the user clears CRILF, this bit is also cleared at the same time	0
[6]	RW	CFLIF Capture falling edge interrupt flag 1'b0: No falling edge captured 1'b1: When a falling edge is captured, this bit is set to 1 Note: By writing 1, clear this flag; Note: For CH0	0
[5]	RW	CRLIF Capture rising edge interrupt flag 1'b0: No rising edge captured 1'b1: When a rising edge is captured, this bit is set to 1 Note: By writing 1, clear this flag; Note: For CH0	0
[4:0]	RW	PIF PWM Period Interrupt Flag When the PWM generates a PWM signal with a specified period, the flag is set to 1; write 1 through software to clear the flag Note: Each bit identifies each channel, and controls PW4, PW3, PW2, PW1 and PW0 in sequence from high to low	0

23.4.11 PWM_CH0CAPDAT - Channel 0 Capture Register

Table 195 PWM Channel 0 Capture Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]	RO	PWM_FCAPDAT Capture falling edge register When there is a falling edge of the input signal, the current counter value is stored	0x00
[15:0]	RO	PWM_RCAPDAT Capture rising edge register When there is a rising edge of the input signal, the current counter value is stored	0x00

23.4.12 PWM_BKCR - Brake Control Register

Table 196 PWM Brake Control Register

		Twell 1, 01 Will Blanc Control 10818001	
Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]		reserved	0x00
[15:11]	RW	BRKCTL	0x00

		Brake Mode Enable	
		1'b0: Braking mode disabled	
		1'b1: Brake mode activated	
		[15:11] correspond to CH4, CH3, CH2, CH1 and CH0 respectively	
[10:8]		reserved	0
		BKOD	
		Brake output control register	
[7:3]	RW	1'b0: When the braking mode is valid, the PWM output is low level	0
		1'b1: When the braking mode is valid, the PWM output is high level	
		[7:3] correspond to CH4, CH3, CH2, CH1 and CH0 respectively	
[2:0]		reserved	0

23.4.13 PWM_CH4CR1 - Channel 4 Control Register_1 Table 197 PWM Channel 4 Control Register_1

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]	RW	CLKDIV4 CH4 Frequency division counter The frequency division is determined by the counter value Note: The frequency division range is (0~65535). If frequency division is not required, enter 0 or 1.	0x0000
[15:8]	RW	PERIOD4 CH4 period register value (Note: period cannot be greater than 255) "Edge-aligned mode (counter counts down)": ➤ PERIOD register value, period value is (PERIOD + 1) ➤ Duty cycle = (CMP+1)/(PERIOD + 1) ➤ CMP>=PERIOD: PWM output fixed bit high ➤ CMP <period: "center="" (cmp+1)="" (period-cmp),="" 1;="" 2*(period+1)="" alignment="" cmp="" cycle="(2*CMP+1)/(2*(PERIOD+1))" duty="" high="" is="" level="" low="" mode":="" period="" period,="" pwm="" register="" value:="" width="" ➤="">PERIOD: PWM is continuously high ➤ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1 ➤ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1. Note: The number of cycles should not be 255 in "Center Aligned Mode". No matter which alignment mode is selected, the channel period is determined by the division number (N) and the number of periods (P), That is: the input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is the division Frequency (16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles. Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting method to decrement way.</period:>	0x00
[7:0]	RW	CH4 Generation Cycles Set the number of PWM4 cycles to PNUM4, after the PWM generates PNUM4 PWM signals, stop generating a signal while triggering an interrupt and setting the interrupt status word	0x00

23.4.14 PWM_CH4CR2 - Channel 4 Control Register_2 Table 198 PWM Channel 4 Control Register_2

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]		reserved	0x0000
[15:8]	RW	CMP4 CH4 period register value "Edge-aligned mode (counter counts down)": > PERIOD register value, period value is (PERIOD + 1) > Duty cycle = (CMP+1)/(PERIOD + 1) > CMP>=PERIOD: PWM output fixed bit high > CMP <period: (cmp+1)="" (period-cmp),="" high="" is="" level="" low="" pwm="" width=""> CMP=0: PWM low level width is PERIOD, high level width is 1; "Center Alignment Mode": > PERIOD register value: period is 2*(PERIOD+1) > Duty ratio=(2*CMP+1)/2*(PERIOD+1)</period:>	0

	➤ CMP>PERIOD: PWM is continuously high	
	➤ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1	
	➤ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
	Regardless of which alignment mode is selected, the channel period is determined by the division	
	number (N) and the number of periods (P), namely:	
	The input clock is 40MHz, the clock frequency f_div after frequency division is: f_div =	
	40MHz/N, N is the frequency division number	
	(16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
	Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting	
f= -1	method to decrement way.	
[7:5]	reserved	
	CNTTYPE4	
	CH4 Counter counting method	
[4.2]	2'b00: edge-aligned mode (counter counting is incremented, only for capture mode) 2'b01: edge-aligned mode (counter counts down, only for PWM mode)	0
[4:3]	2'b10: Center-aligned mode (PWM mode only)	U
	Note: In PWM mode, when the counter is set to edge-aligned mode, you need to set the counting	
	method to decrement way.	
[2]	reserved	
[4]	CNTMODE4	
	CH4 generation cycle method	
[1]	1'b0: One shot mode	0
. ,	1'b1: Autoload mode	
	Note: During CNTMODE changing, PWM_CMPDAT returns to zero	
	PINV4	
[0]	CH4 output signal polarity enable	0
[U]	1'b0: PWM output polarity reversal disabled	U
	1'b1: PWM output polarity reversal enable	

23.4.15 PWM_CH4CAPDAT - Channel 4 Capture Register

Table 199 PWM Channel 4 Capture Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:16]	RO	PWM_FCAP2DAT Capture falling edge register When there is a falling edge of the input signal, the current counter value is stored	0x0000
[15:0]	RO	PWM_RCAP2DAT Capture rising edge register When there is a rising edge of the input signal, the current counter value is stored	0x0000

23.4.16 PWM_CH4CR3 - Channel 4 Control Register 3

Table 200 PWM Channel 4 Control Register_3

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:11]		reserved	0x0000
[10]	RW	DMA_request2_mask DMA_request2 enable 1'b0: DMA_request2 is invalid 1'b1: DMA_request2 is valid Note: only for CH4	0
[9]	RW	FLIEN2 Falling edge buffer interrupt enable bit 1'b0: Falling edge buffer interrupt invalid 1'b1: Falling edge buffer interrupt is valid Note: only for CH4	0
[8]	RW	RLIEN2 Rising edge buffer interrupt enable bit 1'b0: Rising buffer interrupt invalid 1'b1: Rising edge buffer interrupt is valid Note: only for CH4	0
[7]	RW	OVERFL2 Counter overflow flag 1'b0: Capture mode, the counter does not overflow during the counting process 1'b1: Capture mode, counter overflows during counter counting	0

		Note: When the user clears CFLIF or CRLIF, this bit is also cleared at the same time	
		Note: only for CH4	
		FLIFOV2	
[6]	RW	Falling edge delay interrupt flags overrun status 1'b0: When CFILF is 1, no falling edge delay interrupt is generated 1'b1: When CFILF is 1, another falling edge delay interrupt occurs Note: When the user clears CFILF, this bit is also cleared at the same time Note: only for CH4	0
[5]	RW	RLIFOV2 Rising edge delay interrupt flag overrun status 1'b0: When CRILF is 1, no rising edge delay interrupt is generated 1'b1: When CRILF is 1, another rising edge delay interrupt occurs Note: When the user clears CRILF, this bit is also cleared at the same time Note: only for CH4	0
[4]	RW	CFLIF2 Capture falling edge interrupt flag 1'b0: No falling edge captured 1'b1: When a falling edge is captured, this bit is set to 1 Note: Clear this flag by writing a 1 Note: only for CH4	0
[3]	RW	CRLIF2 Capture rising edge interrupt flag 1'b0: No rising edge captured 1'b1: When a rising edge is captured, this bit is set to 1 Note: Clear this flag by writing a 1 Note: only for CH4	
[2]	RW	POEN2 PWM pin output enable bit 1'b0: PWM pin is set to output state 1'b1: PWM pin is set to tri-state Note: only for CH4	
[1]	RW	CPEN2 Capture function enable flag 1'b0: CH4 capture function is invalid, RCAPDAT and FCAPDAT values will not be updated; 1'b1: CH4 capture function is valid, capture and latch the PWM counter, respectively store in RCAPDAT (rising edge latch) and FCAPDAT (falling edge latch) Note: only for CH4	
[0]	RW	CAPINV2 Capture reverse enable flag 1'b0: Inverse of input signal in capture mode is invalid 1'b1: The input signal in the capture mode is valid in reverse, and the input signal is reversed Note: only for CH4	

14 SPI Controller

14.1 Function overview

SPI is an abbreviation for Serial Peripheral Interface. SPI is a high-speed, full-duplex, synchronous communication protocol

String. The communication principle of SPI is very simple. It works in a master-slave mode. This mode usually has a master device and one or more slave devices.

At least 4 wires, in fact 3 wires are also possible (for unidirectional transmission), including SDI (data input), SDO (data output), SCLK (time clock), CS (chip select).

14.2 Main Features

- Can be used as both SPI master and SPI slave
- Transmit and receive paths each have 8-word deep FIFOs
- master supports 4 formats of motorola spi (CPOL, CPHA), TI timing, macrowire timing
- slave supports 4 formats of motorola spi (CPOL, CPHA)
- Supports full duplex and half duplex
- The master device supports bit transmission, up to 65535bit transmission

- The slave device supports transmission modes of various length bytes
- The maximum clock frequency of spi_clk input from the device is 1/6 of the system APB clock

14.3 Functional Description

14.3.1 Master and slave can be configured

The SPI controller supports both a device as a SPI communication master and a device as a SPI communication slave. By setting the SPI_CFG register Bit2 of the device can switch the master-slave role of the device back and forth.

14.3.2 Multiple Mode Support

As the master device, by setting Bit1(CPHA) and Bit0(CPOL) of the SPI_CFG register, it can be set to MOTOROLA respectively.

The four formats of SPI transmit data. CPOL is used to determine the idle level of the SCK clock signal, CPOL=0, the idle level is low.

When CPOL=1, the idle level is high. CPHA is used to determine the sampling time, CPHA=0, on the first clock edge of each cycle

Sampling, CPHA=1, is sampled on the second clock edge of each cycle. The master can also be set by setting the TRANS MODE register

The data is transmitted in the TI timing or the microwire timing, and the transmission data length under both timings can be adjusted.

As a slave device, only four formats of MOTOROLA SPI are supported, and the format selection is also done by setting the same signal as that of the master device register to achieve.

14.3.3 Efficient data transfer

The FIFO memory is a first-in, first-out dual-port buffer, that is, the first data entered into it is the first to be shifted out, and one of the memory's the input port, and the other port is the output port of the memory. The SPI controller integrates two (one for each transceiver) FIFO storage with a depth of 8 words. It can increase the data transfer rate, handle a large number of data streams, and match systems with different transfer rates, thereby improving system performance. able to pass Setting Bit[8:6] and Bit[4:2] of the MODE_CFG register can set the trigger level of RXFIFO and TXFIFO to meet different performance requirements at the same transmission rate. After the trigger level of the FIFO is triggered, an interrupt or DMA can be triggered to transfer data from memory move to TXFIFO or move data from RXFIFO to memory.

14.4 Register Description

14.4.1 Register List

Table 109 SPI register list

Offset	Name	Abbreviation	Access	Description	Reset Value
Address					
0x0000	Channel Configuration Register	CH_CFG	RW	is used to perform some configure	0x00000000
0x0004	SPI Configura- tion Register	SPI_CFG	RW	Configure SPI communication related items	0x00000004
0x0008	Clock Configura- tion Register	CLK_CFG	RW	Used to set the clock frequency division factor	0x00000000
0x000C	Mode Configura- tion Register	MODE_CFG	RW	Configure transfer mode	0x00000000
0x0010	Interrupt Control Register	INT_MASK	RW	Mask or enable related interrupts	0x000000FF
0x0014	Interrupt Status Register	INT_SRC	RW	Used to query interrupt sources	0x00000000
0x0018	SPI Status Register	STATUS	RO	List relevant states in SPI communication	0x00000000
0x001C	SPI Timeout Register	TIMEOUT	RW	Set SPI communication timeout	0x00000000
0x0020	data transmission register	TXDATA	RW	TX FIFO, used to store the data to be sent	0x00000000
0x0024	transfer mode register	TRANS_MODE	RW	Set transfer mode	0x00000000
0x0028	data length regis- ter	SLV_LEN	RO	Used as a slave device for storage when sending out or the length of the data received by the	0x00000000
0x002C		RSV		Reserved	0x00000000
0x0030	data receive register	RXDATA	RW/RO	RX FIFO for storing received data	0x00000000

14.4.2 CH_CFG - Channel Configuration Register

Bit	Ac- cess	Operating Instructions	reset value
[31]		reserved	0
[30:23]	RW	RX_INVALID_BIT, Indicates how many first bits are invalid data when the receiving channel starts to receive, and these invalid data need to be thrown directly off, do not enter the Rx FIFO. Only subsequent data goes into the Rx FIFO This register is used in conjunction with Tx/Rx length. The final amount of data actually stored in the Rx FIFO is Tx/Rx length - RX_INVALID_BIT Note: master mode is valid Motorola/TI mode active	0
[22]	RW	Clear FIFOs, clear the contents of Tx and Rx FIFO, and reset all circuits of master and slave synchronously (except configuration registers) 1'b0: Do not clear FIFO 1'b1: Clear valid Set to 1 by software, cleared to 0 by hardware Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[21]	RW	Clear FIFOs, clear the contents of Tx and Rx FIFO, and reset all circuits of master and slave synchronously (except configuration registers) 1'b0: Do not clear FIFO 1'b1: Clear valid Set to 1 by software, cleared to 0 by hardware Note: Both master/slave are valid Motorola/TI/microwire mode is valid When this mode is enabled, if there is no data in the tx fifo, invalid data may be sent first. so please after filling in the data, start the spi master Motorola/TI/microwire mode is valid	0
[20]	RW	RxChOn, whether the receive channel is turned on 1'b0: Rx channel off 1'b1: Rx channel on Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[19]	RW	TxChOn, whether the transmission channel is turned on 1'b0: Tx channel off 1'b1: Tx channel on Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[18:3]	RW	Tx/Rx length When Spi is transmitting, the number of valid SCKs It also indirectly reflects the length of the data sent or received. When (TxChOn=1, RxChOn=1), it indicates the number of bits sent and the maximum number of bits received (with how much the body receives is related to RX_INVALID_BIT) When (TxChOn=1, RxChOn=0), Indicates the number of bits sent, When (TxChOn=0, RxChOn=1), Indicates the maximum number of bits received (the specific number of received bits is related to RX_INVA-LID_BIT, the actual number of received bits is Tx/Rx length - RX_INVALID_BIT) When (TxChOn=0, RxChOn=0), meaningless. Note: master is valid Motorola/TI/microwire mode is valid	0
[2]	RW	Chip selects 1'b0: SPI_CS valid signal is 0 1'b1: SPI_CS valid signal is 1 Note: master is valid Motorola/TI/microwire mode is valid	0
[1]	RW	Force CS out 1'b0: spi_cs signal output is controlled by hardware 1'b1: The spi_cs signal output is controlled by software, and the specific output value is Chip selects This signal cooperates with Chip selects to realize the programmable output csn signal, that is, when the signal is 1, spi_cs = Chip selects Note: master is valid Motorola/TI/microwire mode is valid	0
[0]	RW	SPI start, Command SPI to start receiving or sending, write 1 for spi to start working, after that, it will automatically return to zero 1'b0: stop spi working 1'b1: start a send or receive of spi, automatically return to zero Note: master is valid Motorola/TI/microwire mode is valid	0

$14.4.3 \ \text{SPI_CFG} - \text{SPI Configuration Register}$

Table 111 SPI Configuration Registers

Bit	Ac-	Operating Instructions	reset
	cess		value

[31:19]		reserved	0
[18:17]	RW	FRAM FORMAT 2'b00: motorola 2'b01:TI 2'b10: microwire 2'b11: reserved Choose which manufacturer's protocol the master supports Note: master is valid	0
[16]	RW	SPI_TX pin always driven 1'b0: The spi output is driven only when spi_cs is valid, and is tri-stated at other times 1'b1: The spi output is always driven, even if there is no data transfer Note: Both master/slave are valid Motorola/TI/microwire mode is valid	
[15]		reserved	
[14:12]	RW	cs hold, the time that spi_cs is valid after data transmission is completed, that is, the hold time of spi_cs 3'b000 >= 1 APB bus CLK 3'b001 >= 2 APB bus CLK 3'b010 >= 4 APB bus CLK 3'b011 >= 8 APB bus CLK 3'b100 >= 16 APB bus CLKs 3'b101 >= 32 APB bus CLK 3'b110 >= 64 APB bus CLK 3'b111 >= 127 APB bus CLK Note: master is valid Motorola mode is valid	0
[11:9]	RW	cs setup, the time that spi_cs is valid in advance before data transmission, that is, the setup time of spi_cs 3'b000 >= 1 APB bus CLK 3'b001 >= 2 APB bus CLK 3'b010 >= 4 APB bus CLK 3'b011 >= 8 APB bus CLK 3'b100 >= 16 APB bus CLKs 3'b101 >= 32 APB bus CLK 3'b110 >= 64 APB bus CLK 3'b111 >= 127 APB bus CLK Note: master is valid Motorola mode is valid	
[8:7]	RW	SPI-out delay, the delay of SPI data output relative to SCK, mainly for hold time consideration. [8:7] Number of system clock cycles (APB clock) 2'b00 0 2'b01 1 2'b10 2 2'b11 3 Note: Both master/slave are valid Motorola mode is valid	0
[6:4]	RW	Frame delay, the default interval between the end of a frame (spi_cs is valid) and the beginning of the next frame is SCK Half of the clock period, which is the SPI_CS inactive time. But for compatibility, it can be configured here. Default at least 0.5SCK [6:4] SCK clock 3'b000 0 3'b001 2 3'b010 4 3'b011 8 3'b100 16 3'b101 32 3'b110 64 3'b111 127 For example, if 128byte data is transmitted in block mode, after the data transmission is completed, the set delay will be added. late time. Note: master is valid	0
[3]	RW	Bigendian 1'b0: The data format adopts the little endian mode, that is, during the transmission process, the low byte is sent first 1'b1: The data format adopts the big endian mode, that is, during the transmission process, the high byte is sent first	0
[2]	RW	MASTER/SLAVE 1'b0: slave, the device is slave 1'b1: master, the device is the master Note: Both master/slave are valid	1
[1]	RW	SPI CPHA 1'b0: Transmission mode A 1'b1: Transmission mode B Note: Both master/slave are valid	0

		Motorola mode is valid	
[0]	RW	SPI CPOL, SCK polarity at IDLE 1'b0: 0 when SCK IDLE 1'b1: 1 for SCK IDLE Note: Both master/slave are valid Motorola mode is valid	0

14.4.4 CLK_CFG - Clock Configuration Register

Table 112 SPI Clock Configuration Register

Bit	Ac-	Operating Instructions	reset value
	cess		
[31:16]		reserved	0
[15:0]	RW	Divider FSCK = FAPB_CLK/ (2 x (Divider +1)) Note: master is valid Motorola/TI/microwire mode is valid	0

$14.4.5 \; \text{MODE_CFG} \;$ - Mode Configuration Register

Table 113 SPI Mode Configuration Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:9]		reserved	0
[8:6]	RW	RxTrigger level Data stored in RX FIFO triggers interrupt or DMA request threshold: 0~7word Only when the data in the rxbuffer is greater than the RxTrigger level will trigger an interrupt or request a DMA transfer Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[5]		reserved	
[4:2]	RW	TxTrigger level Data stored in TX FIFO triggers interrupt or DMA request threshold: 0~7word Only when the data in the txbuffer is greater than or equal to the TxTrigger level will an interrupt be triggered or a DMA transfer request will be made. shift Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[1]	RW	RxDMA On, use DMA to move data enable 1'b0: Do not use DMA, 1'b1: DMA Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[0]	RW	TxDMA On, use DMA to move data enable 1'b0: Do not use DMA, 1'b1: DMA Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0

14.4.6 INT_MASK - Interrupt Control Register

Table 114 SPI Interrupt Control Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:8]		reserved	0
[7]	RW	IntEn_spi_timeout 1'b0: enable spi_timeout interrupt generation 1'b1: spi_timeout interrupt is not allowed Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[6]	RW	IntEn_spi_done 1'b0: spi send or receive completed, enable interrupt generation 1'b1: The spi send or receive is completed, and interrupts are not allowed Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[5]	RW	IntEnRxOverrun 1'b0: Rx FIFO overflow interrupt enable 1'b1: Rx FIFO overflow interrupt disabled Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[4]	RW	IntEnRxUnderrun 1'b0: Rx FIFO underflow interrupt disabled	1

		1'b1: Rx FIFO underflow interrupt enable	
		Note: Both master/slave are valid Motorola/TI/microwire mode is valid	
[3]	RW	IntEnTxOverrun 1'b0: Tx FIFO overflow interrupt enable 1'b1: Tx FIFO overflow interrupt disabled Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[2]	RW	IntEnTxUnderrun 1'b0: Tx FIFO underflow interrupt enable 1'b1: Tx FIFO underflow interrupt disabled Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[1]	RW	IntEnRxFifoRdy 1'b0: Rx FIFO has data upload interrupt enable 1'b1: Rx FIFO has data upload interrupt disabled Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1
[0]	RW	IntEnTxFifoRdy 1'b0: Tx FIFO can write data to TX FIFO interrupt enable 1'b1: Tx FIFO can write data to TX FIFO interrupt disabled Note: Both master/slave are valid Motorola/TI/microwire mode is valid	1

$14.4.7 \; \text{INT_SRC} \;$ - Interrupt Status Register

Table 115 SPI Interrupt Status Register

Bit	Ac- cess	Operating Instructions	reset value
[31:8]	CCSS	reserved	0
[7]	RW	spi_timeout 1'b0: There is no end data in rxfifo that needs to be taken by the CPU 1'b1: There is end data in rxfifo that needs to be taken by the CPU Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[6]	RW	spi_done 1'b0: SPI transmission or reception is not completed 1'b1: SPI transmission or reception completed Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[5]	RW	RxOverrun 1'b0: Rx FIFO overflow 1'b1: Rx FIFO overflow Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[4]	RW	RxUnderrun 1'b0: Rx FIFO underflow 1'b1: Rx FIFO underflow Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[3]	RW	TxOverrun 1'b0: Tx FIFO overflow 1'b1: Tx FIFO overflow Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[2]	RW	TxUnderrun 1'b0: Tx FIFO underflow 1'b1: Tx FIFO underflow Write 1 to clear In the case of continue mode = 1, the interrupt is never generated. Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[1]	RW	RxFifoRdy 1'b0: Rx FIFO data volume <= RxTrigger level, no need to upload 1'b1: Rx FIFO data volume > RxTrigger level, request to upload Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[0]	RW	TxFifoRdy 1'b0: Tx FIFO data volume > TxTrigger level, cannot write data to TX FIFO 1'b1: Tx FIFO data volume <= TxTrigger level, data can be written to TX FIFO Write 1 to clear Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0

14.4.8 **STATUS** - SPI Status Register

Table 116 SPI Status Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:13]		reserved	0

[12]	RO	SPI Busy 1'b0: SPI has no transmit and receive tasks 1'b1: SPI is in the process of sending or receiving Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[11:6]	RO	RX FIFO fill level The amount of data in the Rx FIFO, in bytes Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[5:0]	RO	Tx FIFO fill level The amount of data in the Tx FIFO, in bytes Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0

14.4.9 TIMEOUT - SPI Timeout Register

Table 117 SPI Timeout Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31]	RW	spi_timer_en 1'b0: timer is not allowed 1'b1: allow timer to count Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0
[30:0]	RW	SPI_TIME_OUT When a transmission is completed, in the receive channel rxfifo, if the data at the end cannot trigger the receive interrupt When RxFifoRdy or DMA request, a timing mechanism needs to be used to notify the CPU to remove the end data. Specific method: When rxfifo is in idle state (no read and write operations, no dma request, cs is invalid, There is data in rxfifo, and the amount of data is less than or equal to the RxTrigger level), start counting and reach the setting of this register. If the set value is set, the timeout interrupt is triggered, and the CPU is requested to remove the end data. Any read or write to rxfifo will clear the timeout timer. The time represented is: T = SPI_TIME_OUT/FAPB_CLK Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0

14.4.10 **TXDATA** - Data Transmission Register

Table 118 SPI Data Transmit Register

Bit	Ac-	Operating Instructions	reset
	cess		value
		Window address for writing data to Tx FIFO	
[31:0]	RW	Note:	0
[31.0]	IX VV	Both master/slave are valid	U
		Motorola/TI/microwire mode is valid	

14.4.11 **TRANS_MODE** - Transfer Mode Register Table 119 SPI Transfer Mode Register

Bit	Ac-	Operating Instructions	reset
	cess		value
[31:30]		reserved	0
[29:24]	RW	TI_BLK_LEN In the timing mode of TI, the length of each block transmission, that is, the transmission data length after each CS is valid. Support 4~32bit 6'h4: 4bit long data 6'h5: 5bit long data 6'h6: 6bit long data 6'h20: 32bit long data Note: master is valid TI mode active	0
[23:17]			
[16]		MICRO_BURST 1b'1: In Microwire mode, burst transmission is used, that is, Tx sends control words, Rx receives data, and then Alternately, MICRO_CONTROL_LEN indicates the length of the control word, MICRO_DAT_LEN indicates is the length of the sent or received word, Tx/Rx length indicates the valid sck and burst during the entire transmission process In mode, the number of times of sending and receiving alternately is (Tx/Rx length)/(MICRO_CON-TROL_LEN+ MICRO_DAT_LEN+1) 1'b0: In Microwire mode, burst transmission is not used In this mode, there are two cases 1) tx_ch_on = 1, rx_ch_on = 0, at this time, only sending, MICRO_CONTROL_LEN means Control word length, Tx/Rx length indicates the valid sck during the entire transmission process, the length of the data sent at this time	0

		The degree is m*MICRO_DAT_LEN = Tx/Rx length - MICRO_CONTROL_LEN, where m represents How many (MICRO_DAT_LEN) length words to send 2) tx_ch_on = 1, rx_ch_on = 1, at this time, Tx sends control word, Rx receives data, MICRO_CONTROL_LEN indicates the length of the control word, and Tx/Rx length indicates the entire transmission Valid sck in the process, the length of the received data is m*MICRO_DAT_LEN = Tx/Rx lengthMICRO_CON-TROL_LEN-1, where m indicates how many (MICRO_DAT_LEN) words are received Note: master is valid microwire mode works	
[15:1	41	incrowne mode works	
[13:8		MICRO_DAT_LEN In Microwire mode, in burst mode, the length of data transmitted in each burst From 1 to 32: 6'h1: 1bit long data 6'h2: 2bit long data 6'h3: 3bit long data 6'h20 32bit long data Note: master is valid microwire mode works	
[7:6]		
[5:0]	MICRO_CONTROL_LEN In Microwire mode, the length of the command word From 1 to 32: 6'h1: 1bit long command 6'h2: 2bit long command 6'h3: 3bit long command 6'h20 32bit long command Note: master is valid microwire mode works	

14.4.12 SLV_LEN - Data Length Register

Table 120 SPI Data Length Register

Bit	Ac-	Operating Instructions	Reset
	cess		Reset
[31:16]	RO	When acting as a slave, the length of the data sent out during the valid period of cs, in bits Note: slave is valid Motorola mode is valid	0
[15:0]	RO	When acting as a slave, during the valid period of cs, the length of the received data, in bits Note: slave is valid Motorola mode is valid	0

14.4.13 RXDATA - Data Receive Register

Table 121 SPI Data Receive Register

Bit	Ac- cess	Operating Instructions	Reset
[31:0]	RO	Window address to read data from Rx FIFO Note: Both master/slave are valid Motorola/TI/microwire mode is valid	0

15 I2C Controller.

15.1 Function overview.

The I2C bus is a simple, bidirectional two-wire synchronous serial bus. It requires only two wires to transmit information between devices connected to the bus interest. The master device is used to start the bus to transmit data and generate a clock to open the device for transmission. At this time, any addressed device is considered a slave. piece. The relationship between master and slave, sending and receiving on the bus is not constant, but depends on the direction of data transfer at this time. If the master wants to send data to the slave device, the host first addresses the slave device, then actively sends data to the slave device, and finally terminates the data transfer by the host; if the host wants to receive The data of the slave device is first addressed by the master device. Then the host receives the data sent from the device, and finally the host terminates the receiving process. under these circumstances. The host is responsible for generating the timing clock and terminating the data transfer.

15.2 Main Features

- APB bus protocol standard interface
- Can only be used as a master device controller
- I2C working rate can be configured, 100KHz~400KHz
- Multiple GPIOs can be multiplexed into I2C communication interface
- Quickly output and detect timing signals

15.3 Functional Description

15.3.1 Transmission rate selection.

The data transfer rate on the I2C bus can be configured from 100KHz to any bus frequency integer divide value between 400KHz.

15.3.2 Interrupt and start-stop control.

Enable or disable the I2C controller to generate interrupts by setting Bit6 of register CTR, and can also start at any time by setting Bit7 or stop the work of the I2C controller.

15.3.3 Fast output and detection signal.

By setting the corresponding bits of the register CR_SR, the controller can quickly output or detect the bus START signal, bus STOP signal, total Line ACK signal, bus NACK signal. In master mode, the I2C interface initiates data transfers and generates clock signals. a serial data transfer The output always starts with a start signal and ends with a stop signal. Once the start signal is generated on the bus, the master mode is selected.

15.4 Register Description

15.4.1 Register List

Table 122: I2C register list

Offset	Name	Abbreviation	Ac-	Description	Reset Value
Address			cess		
0x0000	Clock divider register_1	PRESCALE_L	RW	Stores the low-order 8-bit frequency division value for APB The bus clock is divided	0x0000_00FF
0x0004	Clock divider register_2	PRESCALE_H	RW	Stores the high-order 8-bit frequency division value for APB The bus clock is divided	0x0000_00FF
0x0008	Control register	EN	RW	Is used to control interrupt enable and I2S control enable	0x0000_0040
0x000C	Data register	DATA	RW	Is used to store the data to be sent or receive	0x0000_0000
0x0010	Transceiver control register	CR_SR	RW	Is used to control some data read and write related operations	0x0000_0000
0x0014	TXR read register	TXR	RO	Read TXR register value when I2C is sent	0x0000_0000
0x0018	CR Read register	CR	RO	Read the set value of I2C control register CR	0x0000_0000

15.4.2 PRESCALE_L - Clock divider register_1

Table 123 I2C Clock Divider Register_1

Bit	Access	Description	Reset		
			Value		
[31: 8]		reserved			
[7:0]	RW	The clock divider configures the higher 8 bits of prescale. For example: apb_clk=40MHz, $SCL=100KHz$ prescale = $(40*1000)/(5*100) - 1 = 16'd79$ apb_clk = 40M, $SCL=400K$ prescale= $(40*1000)/(5*400) - 1 = 16'd19$	0xFF		

15.4.3 PRESCALE_H - Clock divider register_2

Table 124 I2C Clock Divider Register 2

Tuole 12 1 12 C Clock B1 1 del 1 teglistel 2			
Bit	Access	Description	Reset Value
[31: 8]		reserved	
[7:0]	RW	The clock divider configures the lower 8 bits of prescale. For example: apb_clk=40MHz, SCL=100KHz prescale = $(40*1000)/(5*100) - 1 = 16$ 'd79 apb_clk = 40M, SCL=400K prescale= $(40*1000)/(5*400) - 1 = 16$ 'd19	8'hff

15.4.4 EN - Control Register

Table 125 I2C Control Register

Bit	Access	Description	Reset value
[31:8]		reserved	
		I2C enable control,	
[7]	RW	1'b0: Disable	0
		1'b1: enable	
		interrupt MASK,	
[6]	RW	1'b0: Enable interrupt generation	1
		1'b1: Interrupt generation is not allowed	
[5:0]	RW	reserved	

15.4.5 DATA – I2C Data Register

Table 126 I2C Data Register

Bit	Ac-	Description	Reset
	cess		Value
[31: 8]		reserved	
[7:0]	WR	When writing this register, it is the transmit register TXR, which indicates the next byte to be transmitted, when it is a device address, [0]: 1 means read, 0 means write. When reading this register, it is the receive register RXR, is the latest byte received from I2C.	0x00

15.4.6 CR_SR - Transceiver Control Register

Table 127 I2C Transceiver Control Register

Bit	Ac- cess	Description	Reset Value
[31: 8]		reserved	
[7:0]	WR	When writing this register, it is CR, and the function is as follows: [7]: STA, control to generate START timing; 1'b0: invalid 1'b1: Generate START timing [6]: STO, control generates STOP sequence; 1'b0: invalid 1'b1: Generate STOP sequence [5]: RD, read from SLAVE; 1'b0: invalid 1'b1: read from SLAVE [4]: WR, write to SLAVE; 1'b0: invalid 1'b1: write to SLAVE [3]: Control sends ACK/NACK back to SLAVE; 1'b0: return ACK 1'b1: return NAK [2:1]: reserved; [0]: IACK, clear the interrupt status, 1 is valid; 1'b0: invalid 1'b1: clear interrupt flag When reading this register, it is SR, and its function is as follows: [7]: RxACK, ACK/NACK status received from SLAVE; 1'b0: ACK received from SLAVE [6]: BUSY; 1'b0: STO rear 1'b1: STA is followed by 1 [5]: AL, Arbitration Lost, this bit is reserved; [4:2]: reserved; [1]: TIP; 1'b0: No transfer in progress 1'b1: there is a transfer in progress [0]: IF, interrupt status bit; 1'b0: No interrupt is generated 1'b1: Set to 1 when transfer is complete or AL	8'h0

Bit	Ac- cess	Description	Reset Value
[31: 8]		reserved	
[7:0]	RO	Read only, read value of TXR register, See TXR_RXR register for function description;	0x00

15.4.8 CR read register

Table 129 I2C CR readout register

Bit	Ac-	Description	Reset
	cess		Value
[31: 8]		reserved	
[7:0]	RO	Read only, read value of CR register, See CR_SR register for function description;	0x00

бит	доступ	описание	по умолчанию
[31: 8]		зарезервировано	0
[7]	запись	I2C_CR_START, уст. в «1» генерирует START на шине, уст. «0» не разрешена	0
	чтение	I2C_SR_RXACK, если «1» - слейв ответил NACK, если «0» - слейв ответил АСК	0
[6]	запись	I2C_CR_STOP, уст. в «1» генерирует STOP на шине, уст. «0» не разрешена	0
[6]	чтение	I2C_SR_BUSY, если «1» - обнаружен START на шине, сброс в «0» после обнаружения STOP	0
[5]	запись	I2C_CR_RD, уст. в «1» читает байт от слейва, уст. «0» не разрешена	0
[5]	чтение	AL, arbitration lost, зарезервирован	0
F.41	запись	I2C_CR_WR, уст. в «1» отправляет байт слейву, уст. «0» не разрешена	0
[4]	чтение	зарезервировано	0
[2]	запись	I2C_CR_ACK, уст. «1» запрещает отправку АСК слейву при приеме, уст. «0» разрешает АСК	0
[3]	чтение	зарезервировано	0
[2]	запись	зарезервировано	0
[2]	чтение	зарезервировано	0
[1]	запись	зарезервировано	0
[1]	чтение	I2C_SR_TIP, transfer_in_progress, стоит в «1» пока идет передача или прием байта	0
[0]	запись	I2C_CR_IF, уст. «1» сбрасывает флаг прерывания от I2C, уст. «0» не разрешена	0
[۷]	чтение	I2C_SR_IF, флаг окончания передачи байта (или AL), флаг прерывания	0

17 UART module

17.1 Function overview

UART is a universal serial data bus used for asynchronous communication. The bus supports bidirectional communication and can realize full-duplex transmission and reception.

W800 has a total of 6 groups of common UART ports, and can realize various baud rate settings through fine clock frequency division combination, and can support up to 2Mbps

communication rate. W800 UART can be used in conjunction with hardware DMA to achieve efficient asynchronous transfer of data.

17.2 Main Features

- Compliant with APB bus interface protocol, full-duplex asynchronous communication mode
- Support interrupt or polling working mode
- Support DMA Byte transfer mode, send and receive each 32-byte FIFO
- Programmable baud rate, up to 2Mbps
- 5-8bit data length, and parity polarity can be configured
- 1 or 2 stop bits configurable
- Support RTS/CTS flow control
- Support Break frame sending and receiving
- Support Overrun, parity error, frame error, rx break frame interrupt indication

17.3 Functional Description

17.3.1 UART Baud Rate

Asynchronous communication requires both parties to send and receive data according to the negotiated baud rate because the two sides do not have the same clock source for reference. W800 fine-grained baud rate control can be achieved through the baud rate setting register, the BAUD_RATE_CTRL register.

BAUD_RATE_CTRL[15:0] is named ubdiv, BAUD_RATE_CTRL[19:16] is named ubdiv_frac, the wave to be set Bit rate baudrate, the formula is as follows:

ubdiv = apbclk / (16 * baudrate) - 1 //Integer

ubdiv frac = (apbclk % (baudrate * 16)) / baudrate //Integer

Take the APB clock of 40MHz and the baud rate of 19200bps as an example:

ubdiv = 40000000 / (16 * 19200) - 1 = 129

ubdiv frac = (40000000 % (19200* 16)) / 19200 = 3

According to the above formula, when the APB clock is 40MHz and the baud rate is 19200bps, the baud rate register should be set as:

BAUD_RATE $_$ CTRL = (3<<16) | 129 = 0x0003 $_$ 0081.

17.3.2 UART Data Format

• Data length

The UART of W800 supports configurable data length of 5bit, 6bit, 7bit and 8bit. The definition of data length is as follows:

Figure 28 UART data length

Normal UART communication consists of 1bit start bit, 1bit stop bit plus the middle data bit, and the middle data bit can be configured,

W800 supports 4 configurable data bits of 5bit, 6bit, 7bit, 8bit, and the data bit length can be selected according to the actual application.

Normal UART communication consists of 1bit start bit, 1bit stop bit plus the middle data bit, and the middle data bit can be configured,

8bit 单数据长度

7bit 单数据长度

图 28 UART 数据长度

W800 supports 4 configurable data bits of 5bit, 6bit, 7bit, 8bit, and the data bit length can be selected according to the actual application.