Лабораторная работа 2

Датчики случайных чисел. Построение гистограмм

Выполнил: студент гр. Р4106 Игнашов Иван Максимович Вариант 8

1. Цель работы

Изучение алгоритмов получения на ЭВМ чисел с заданным законом распределения и построения гистограмм

Порядок работы:

- 1. Выбрать закон распределения верятностей. В соответствии с вариантом: Эрланговский закон с параметрами $k=3, \lambda=4$
- 2. Вывести соотношение, позволяющее из чисел, сформированных базовым датчиком, получить числа с заданным законом распределения
- 3. Написать программу, реализующую датчик случайных чисел с заданным законом распределения
- 4. Написать программу построения гистограммы выборки, сформированной созданным датчиком с учетом параметров
- 5. При помощи программы построения гистограмм заполнить таблицу распределения элементов выборки по квантам гистограммы
- 6. На основании таблицы построить гистограмму распределения сформированной выборки
- 7. Построить график зависимости оценок математического ожидания и дисперсии от объема выборки

2. Формула и график моделируемого закона распределения

Плотность вероятности распределения по закону Эрланга: $f(x;k,\lambda)=\frac{\lambda^k x^{k-1}e^{-\lambda x}}{(k-1)!}$ для $x,\lambda\geq 0$

$$f(x;3,4) = \frac{64x^2e^{-4x}}{2} = 32x^2e^{-4x}$$
 для $x \ge 0$

Рис. 1: График закона распределения Эрланга(3,4)

Для расчета распределения заданной формулы воспользуемся тем, что случайная величина, распределенная по закону Эрланга порядка k и параметром λ , является суммой k независимых случайных величин, имеющих экспоненциальное распределение с параметром λ .

При этом для экспоненциального закона распределения соотношение выглядит как $a_i = \frac{-1}{\lambda} \ln R_i$

Таким образом, при $k=3,\,\lambda=4$:

$$a_i^{erl}(k,\lambda)=\sum_{j=1}^3 a_j^{exp}(\lambda)=\sum_{j=1}^3 \frac{-1}{\lambda} \ln R_j,$$
 где R_j - равномерное распределение $[0,1]$

3. Описание разработанных программ

```
lab2.m 💥 create_hist_quants.m
                                   x erlang_rand.m
       % Лабораторная работа 2
 2
       % Датчики случайных чисел. Построение гистограмм
 3 L
       % Вариант 8
 4
5 🖃
       function lab2
6
           % График рассматриваемого распределения
7 占
           function y = erlang_func(x)
8
               y = 32 .* x .^ 2 .* exp(-4 .* x);
9
10
           x = linspace(0,3);
11
           figure(1);
12
           plot(x, erlang_func(x));
13
14
           % Генерация данных для гистограммы
15
           hist_values = create_hist_quants(false, true)
16
           figure(3);
17
           bar(hist_values);
18
       end
```

Рис. 2: Код таіп сценария программы

Скрипт-сценариий lab2.m - точка входа программы, предназначен для запуска всех остальных функции и скриптов, а так же для вывода графиков результатов работы.

Основные переменные lab2.m:

- $erlang_func$ реализация функции плотности вероятности распределения по закону Эрланга при $k=3, \lambda=4$
- *hist_values* посчитанные значения распределения элемнтов сгенерированной выборки по квантам гистограммы

```
x create_hist_quants.m
                                   × erlang_rand.m
                                                     \times +
       % Генератор случайных чисел для Варианта 8
1 🗔
2
       % Случайная величина распределена по закону Эрланга(k, 1)
3 L
       % amount - количество требуемых чисел
4
5 🖃
       function As_erl = erlang_rand(k, 1, amount)
 6
 7
           % Генератор случайного числа с экпоненциальным законом распределения
8 🖹
           function As_exp = exp_rand(1, amount)
9
               As = rand(1, amount); % базовое распределение
10
               As_{exp} = (-1 / 1) .* log(As);
11
           end
12
13
           As_erl = zeros(1, amount);
14 白
           for i = 1:amount
15
               As_erl(1, i) = sum(exp_rand(1,k));
16
           end
17
       end
```

Рис. 3: Код для генерации случайных значений

Скрипт-функция $erlang_rand.m$ - функция для генерации набора случайных значений по закону Эрланга с параметрами $k=k, l=\lambda$. amount - количество чисел в возвращаемом наборе.

Основные переменные $erlang \quad rand.m$:

- exp_rand реализация генератора случайных чисел с экспоненциальным законом распределения; $l=\lambda, amount$ количество возвращаемых чисел
- As_erl заполняемый набор случайных чисел для распределения по закону Эрланга

```
lab2.m

    | x | create_hist_quants.m | x | erlang_rand.m

1 🖃
       % Функция построения квантов выборки
2 L
       % Выборка формируется созданным генератором erlang_rand(3, 4)
3
4 🗐
       function Y = create_hist_quants(show_stat_interior, show_stat_graph)
5
           quants = zeros(1, 10);
 6
           values = [];
 7
           [v_min, v_max] = deal(0, 0);
8
9 =
           function quants = place_val(new_val, v_min, v_max, quants)
10
               if (v_min < v_max)</pre>
11
                   place = ceil(10 * (new_val - v_min) / (v_max - v_min));
12
                   if (1 <= place && place <= 10)
13
                        quants(1, place) = quants(1, place) + 1;
14
                   elseif (new_val == v_min)
15
                        quants(1, 1) = quants(1, 1) + 1;
16
                   end
17
               end
18
           end
19
20
           mean_values = [];
21
           disp_values = [];
22
23 -
           while (min(quants) < 100)</pre>
24
               new_val = erlang_rand(3,4,1);
25
               values = [values, new_val];
26
               quants = place_val(new_val, v_min, v_max, quants);
27
28
               p_out = (numel(values) - sum(quants)) / numel(values);
29
30
               if (p_out >= 0.01)
31
                    [v_min, v_max] = deal(min(values), max(values));
32
                   quants = zeros(1, 10);
33 =
                   for value = values
34
                        quants = place_val(value, v_min, v_max, quants);
35
                   end
36
               end
37
38
               if (show_stat_interior)
39
                   disp(['Выборочное среднее ', num2str(mean(values)), ...
                         ; Выборочная дисперсия ', num2str(var(values))])
40
41
               end
42
               if (show_stat_graph)
43
                   mean_values = [mean_values, mean(values)];
                   disp_values = [disp_values, var(values)];
44
45
               end
46
47
           end
```

Рис. 4: Код построения квантов: генерация случайных величин

```
48
49
           total = numel(values);
50
           disp(['Сгенерировано значений: ', num2str(total)]);
           disp(['Выборочное среднее ', num2str(mean(values)),
51
52
                ; Выборочная дисперсия ', num2str(var(values))])
53
54
           if (show_stat_graph)
55
               real_mean = 3/4; \% k/1
56
               real_disp = 3/16; % k/1^2
57
58
               figure(2);
59
               subplot(1,2,1);
60
               plot(mean_values);
61
               yline(real_mean);
62
               legend('Оценка по выборке', 'Теоретическое значение')
               xlabel('Объём выборки');
63
64
               ylabel('Мат. ожидание');
65
66
               subplot(1,2,2);
67
               plot(disp_values);
68
               yline(real_disp);
               legend('Оценка по выборке', 'Теоретическое значение')
69
70
               xlabel('Объём выборки');
71
               ylabel('Дисперсия');
72
           end
73
74
           Y = quants;
75
       end
```

Рис. 5: Код построения квантов: ститистические оценки

Скрипт-функция *create_hist_quants.m* - функция построения квантов для гистограммы выборки, сформированной генератором *erlang_rand*. Функция автоматически подбирает конфигурацию подинтервалов и объём выборки.

Входные boolean флаги $show_stat_*$ позволяют выводить информацию о статистических данных во время построения квантов:

show_stat_interior даёт возможность на каждом цикле выводить оценки математического ожидания и дисперсии по выборке

show_stat_graph строит график зависимости оценок математического ожидания и дисперсии от объема выборки

Основные переменные create hist quants.m:

- quants возвращаемый набор квантов
- values значения выборки, генерируемой функцией erlang rand

- v_min, v_max минимальное и максимальное значения при построении гистограммы для выборки
- $place_val$ функция, которая "кладёт" значение new_val в правильный квант массива quants
- mean_values, disp_values массивы для запоминания оценок мат.ожидания и дисперсии во время работы алгоритма; имеют смысл только при show_stat_graph = true
- $real_mean$, $real_disp$ аналитически посчитанные значения мат.ожидания, дисперсии для случайных чисел генератора $erlang_rand$; имеют смысл только при show stat graph = true

Перерасчёт значений v_min , v_max происходит не при каждом новом элементе в выборке, а только тогда, когда доля значений выборки за пределами интервала гистограммы ≥ 0.01 . Это позволяет добиться большей выразительности конечной гистограммы.

Для обеспечения приемлемой точности моделирования принято считать, что каждое событие в процессе должно происходить не менее 100 раз. Таким образом, условием остановки генерации новых элементов выборки является то, что каждое значение массива quants должно быть не меньше 100.

4. Представление результатов анализа выборки

Рис. 6: Пример вывода программы

Заполним данными таблицу распределения элементов выборки по квантам гистограммы

Номер интервала	1	2	3	4	5	6	7	8	9	10
Число элементов	31635	41912	35176	19657	9302	4205	1797	682	258	100

5. Гистограмма сформированной выборки

Рис. 7: Гистограмма для полученной выборки

Полученная гистограмма соответсвует исходному графику закона распределения по Эрлангу

6. Графики зависимости оценок мат. ожидания и дисперсии от объема выборки

Для распределения по закону Эрланга (k,λ) существуют аналитическое выражение для математического ожидания и дисперсии:

$$Mean = \frac{k}{\lambda}$$

 $Variance = \frac{k}{\lambda^2}$

Получается, при $k=3,\,\lambda=4$: Mean=0.75; Variance=0.1875

Сравним эти значения с выборочными средним \overline{X} и дисперсией S^2 в процессе генерации выборки

Рис. 8: Сравнение статистических значений выборки

Видно, что при увеличении N - объема выборки - значения \overline{X} и S^2 стремятся к своим теоретическим значениям.

7. Выводы

Целью данной лабораторной работы было изучение алгоритмов получения на ${\rm ЭBM}$ чисел с заданным законом распределения и построения гистограмм.

В процессе выполнения был реализован способ генерации случайных чисел с эрланговским законом распределения.

Для выборок, полученных данным генератором были построены гистограмма и графики зависимости значений мат. ожидания и дисперсии от объема выборки.