```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans

#load iris dataset
iris=load_iris()
X=iris.data
y=iris.target

iris

df=pd.DataFrame(X)
df
```

|     | 0   | 1   | 2   | 3   |
|-----|-----|-----|-----|-----|
| 0   | 5.1 | 3.5 | 1.4 | 0.2 |
| 1   | 4.9 | 3.0 | 1.4 | 0.2 |
| 2   | 4.7 | 3.2 | 1.3 | 0.2 |
| 3   | 4.6 | 3.1 | 1.5 | 0.2 |
| 4   | 5.0 | 3.6 | 1.4 | 0.2 |
|     |     |     |     |     |
| 145 | 6.7 | 3.0 | 5.2 | 2.3 |
| 146 | 6.3 | 2.5 | 5.0 | 1.9 |
| 147 | 6.5 | 3.0 | 5.2 | 2.0 |
| 148 | 6.2 | 3.4 | 5.4 | 2.3 |
| 149 | 5.9 | 3.0 | 5.1 | 1.8 |

150 rows × 4 columns

```
#implement elbow method
wcss=[] #Within-Cluster Sum of Squares

for i in range(1,11):
    kmeans = KMeans(n_clusters=i,n_init=10,random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

#plot the elbow method
plt.plot(range(1,11),wcss,marker="*")
plt.title("Elbow Method")
```

Text(0.5, 1.0, 'Elbow Method')



 $\label{lem:k_optimal} $$k_optimal=3$$kmeans=KMeans(n_clusters=k_optimal,init='k-means++',max_iter=300,n_init=10,random_state=0)$$kmeans.fit(X)$$ 

```
* KMeans
KMeans(n_clusters=3, n_init=10, random_state=0)
```

#get centroids
centroids=kmeans.cluster\_centers\_
labels=kmeans.labels\_

#visualize the clusters
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.5)
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200, marker='o')
plt.xlabel(iris.feature\_names[0])
plt.ylabel(iris.feature\_names[1])
plt.title('Clustered Classification with Centroids')
plt.show()



Start coding or generate with AI.