Predicting Survival on the Titanic Using Random Forests

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understanding the Random Forests technique

Use the Random Forests technique to solve the Titanic problem

Understand the different parameters which can be used to control the algorithm

- An ensemble learning technique
- Builds an ensemble of decision trees

Models built using different

Training Sets

Each tree built from a different subset of the training set **Features**

Bagging

Each tree built from a different subset of the training set Random Subspace

Bagging

Each tree built from a different subset of the training set

Training Data

Jane	Lawrence	
Maria	Sam	
Eliza	Elliot	
Ellen	Tom	
Teri	Jack	

Tree 1

Training Data

Lawrence Jane Maria Eliza Ellen Teri

Sam Elliot Tom Jack

Tree 1

Training Data

Jane

Maria

Eliza

Ellen

Teri

Lawrence

Sam

Elliot

Tom

Jack

Tree 2

Tree 1

Training Data

Jane

Maria

Eliza

Ellen

Teri

Lawrence

Sam

Elliot

Tom

Jack

Tree 3

Tree 1

Tree 2

Tree 3

Each training set is a randomly generated subset of the original training set

Bootstrap Aggregating

Bootstrap Sampling

A statistical technique to select samples from a dataset

A person is studying how fast cars are traveling at an intersection

The person randomly selects some cars and measure their speed

Every car has an equal probability of being picked

Cars which passed by might pass by again

Every data point has an equal probability of being picked

 A data point can be picked for a training set more than once

Bagging

Each tree built from a different subset of the training set

Random Subspace

Each tree built from a different subset of the training set

Training Data

Vowel beginning	Begin with K	End with N

Tree 1

Training Data

Training Data

Random Forests

Tree 2

Tree 2

Training Data

Bagging

Each tree built from a different subset of the training set Random Subspace

Demo

Use Random Forests to solve the Titanic problem

Summary

Understanding the Random Forests technique

Use the Random Forests technique to solve the Titanic problem

Understand the different parameters which can be used to control the algorithm