Глава первая ОПИСАНИЕ ЛАБОРАТОРНЫХ РАБОТ ПО ОТЦ

Лабораторная работа № 1

Знакомство с системой схемотехническоко моделирования Micro-Cap

1 Цель работы

Установить программу Micro-Cap 8.1.1 Evaluation Version или более высокой версии на персональный компьютер (ПК). Научиться собирать схемы с помощью этой программы.

2 Задание для самостоятельной подготовки

Изучить основные возможности программы Micro-Cap стр. 107—125 [1], стр. 1—170 [2] и стр. 36—117 [3]. Дополнительно познакомьтесь с литературой [4] и [5]. С помощью этой программы ввести схему, например, заданную в курсовой работе по ОТЦ.

3 Установка программы Місто-Сар

Распакуйте файл demo.zip в директорию, например, в МС8.

Запустите Setup.exe из этой директории для установки Micro-Cap на свой компьютер (рис. 1).

На рабочем столе появиться ярлык этой программы.

Запустите Місго-Сар, щелкнув два раза мышкой на этом ярлыке. Появится окно этой программы (рис. 2).

Рис. 1

Рис. 2

4 Знакомство с возможностями программы Micro-Cap

В меню **Help** выберите команду **General Demo...** и просмотрите, возможно, несколько раз, основные возможности программы (рис. 3).

Нажмите клавишу **F1** и ознакомьтесь с файлом помощи. В меню **Help** выберите команду **About Micro-Cap** и прочитайте номер версии (рис. 4).

Рис. 3

Рис. 4

5 Редактирование вида элементов

Установите **EURO** графику для резистора. Для этого выберите в мню **Window** команду **Component Editor...** (рис. 5).

В окне Shape установите Resistor_Euro.

При закрытии этого редактора компонентов сохраните внесенные изменения (рис. 6).

Исправьте вид катушки индуктивности. Для этого в меню **Windows** выберите команду **Shape Editor...** В появившемся левом окне установите **Inductor** (рис. 7).

Используя инструменты этого графического редактора, получите следующее изображение катушки индуктивности (рис. 8).

Замечание. Для удобства редактирования отключите фиксацию привязки графических объектов к узлам сетки (Grid Snap) (рис. 8).

Аналогично можно исправить изображение источников напряжения, источников токов, трансформаторов, микросхем и других элементов.

Рис. 5

Рис. 6

Рис. 7

Рис. 8

6 Краткий справочник

6.1 Приставки

F	Femto	фемто	10 ⁻¹⁵	1E-15
Р	Pico	пико	10 ⁻¹²	1E-12
n	Nano	нано	10 ⁻⁹	1E-9
u	Micro	микро	10 ⁻⁶	1E-3
m	Milli	милли	10 ⁻³	1E-3
К	Kilo	кило	10 ³	1E3
MEG	Mega	мега	10 ⁶	1E6
G	Giga	гига	10 ⁹	1E9
T	Tera	тера	10 ¹²	1E12

Например, 1 мк Φ = 1uF, 1 кОм = 1K.

6.2 Некоторые функции

Функции комплексной переменной z = x + jy	
SIN(z)	Синус, z в радианах
COS(z)	Косинус, z в радианах
TAN(z)	Тангенс, z в радианах
COT(z)	Котангенс, z в радианах

Продолжение некоторых функций

	Функции комплексной переменной z = x + jy
SEC(z)	Секанс, z в радианах
CSC(z)	Косеканс, z в радианах
ASIN(z)	Арксинус
ACOS(z)	Арккосинус
ATAN(z)	Арктангенс
ATN(z)	Арктангенс
ARCTAN(z)	Арктангенс
ATAN2(y,x)	Арктангенс2 = $ATN(y/x)$
ACOT(z)	Арккотангенс
ASEC(z)	Арксеканс
ACSC(z)	Арккосеканс
SINH(z)	Гиперболический синус
COSH(z)	Гиперболический косинус
TANH(z)	Гиперболический тангенс
COTH(z)	Гиперболический котангенс
SECH(z)	Гиперболический секанс
CSCH(z)	Гиперболический косеканс
ASINH(z)	Гиперболический арксинус
ACOSH(z)	Гиперболический арккосинус
ATANH(z)	Гиперболический арктангенс
ACOTH(z)	Гиперболический арккотангенс
ASECH(z)	Гиперболический арксеканс
ACSCH(z)	Гиперболический арккосеканс
LN(z)	Натуральный логарифм
LOG(z)	Десятичный логарифм
LOG10(z)	Десятичный логарифм
EXP(z)	Экспонента
POW(z,x)	Возведение в степень, z^x
PWR(y,x)	Возведение в степень действительного числа, y^* или * или * (например; 5^* 2 = 25 или 5^* 2 = 25)
PWRS(y,x)	Возведение в степень действительного числа со знаком: $ y ^x$, если $y > 0$, $- y ^x$ если $y < 0$
HARM(u)	Расчет гармоник сигнала и
FFT(u)	Прямое преобразование Фурье сигнала u(t)
IFT(S)	Обратное преобразование Фурье спектра S
CONJ(S)	Сопряженный комплексный спектр S
CS(u,v)	Взаимный спектр сигналов и и v, равный CONJ(FFT(v))*FFT(u)*dt*dt

Окончание некоторых функций

Функции комплексной переменной z = x + jy	
AS(u)	Собственный спектр сигнала u, равный CS(u,u)
CC(u,v)	Взаимная корреляция сигналов и и v, равная IFT(CONJ(FFT(v))*FFT(u))*dt
AC(u)	Автокорреляционная функция сигнала u, равная IFT(CONJ(FFT(u))*FFT(u))*dt
COH(u,v)	Нормированная корреляционная функция сигналов u и v , равная $CC(u,v)/sqrt(AC(u(0))^*AC(v(0)))$
REAL(S)	Действительная часть спектра S, рассчитываемая с помощью FFT
IMAG(S)	Мнимая часть спектра S, рассчитываемая с помощью FFT
MAG(S)	Модуль спектра S, рассчитываемый с помощью FFT
PHASE(S)	Фаза спектра S, рассчитываемая с помощью FFT

Арифметические операции	
+	Сложение
-	Вычитание
*	Умножение
/	Деление
MOD	Остаток после целочисленного деления
DIV	Целочисленное деление

Стандартные логические функции	
AND	И
NAND	НЕ-И
NOR	или
NOT	HE
OR	или
XOR	Исключающее ИЛИ

Операции отношения	
<	Меньше
>	Больше
<=	Меньше или равно
>=	Больше или равно
<> или !	Не равно
==	Равно

	Специальные функции от комплексной переменной z = x + jy
ABS(z)	Абсолютное значение от z
RMS(u)	Текущее среднеквадратическое отклонение переменной и при интегрировании по времени
AVG(u)	Текущее среднее значение переменной и
CURVEY(«имя файла», "W")	Импортирует Y компоненту кривой W из файла пользователя
CURVEX(«имя файла», "W")	Импортирует X компоненту кривой W из файла пользователя
DELAY(x,d)	Возвращает х с отсрочкой в d секунд
DIFA(u,v[,d])	Сравнение значений двух аналоговых кривых и и v во всех точках анализа. Возвращает 1 если разность во всех точках по модулю меньше d, в противном случае возвращает 0. Параметр d необязателен, по умолчанию d = 0
DIFD(u,v[,d])	Сравнение значений двух цифровых кривых и и v во всех точках анализа. Возвращает 1 если во всех точках анализа функции отличаются друг от друга, в противном случае возвращает 0. В течении первых d секунд сравнение не проводиться. Параметр d необязателен, по умолчанию d = 0
FACT(n)	Факториал от целого числа п
u!	Факториал от целой переменной и
IMPORT(f,y)	Импорт функции из файла f
IMPULSE(y)	Функция импульса от амплитуды у в пределах от 1 до 0
JN(n,z[,m])	Функция Бесселя первого рода n-порядка (m-членов ряда по умолчанию m = 10)
J0(z)	Функция Бесселя нулевого рода первого порядка
J1(z)	Функция Бесселя первого рода первого порядка
LAST(z,n)	Кривая z приостанавливается на п временных точек
MAXR(x)	Возвращает наибольшее текущее значение х при временном или DC-анализе
MINR(x)	Возвращает наименьшее текущее значение х при временном или DC-анализе
NORM(z,x0)	Кривая z нормализуется по переменной z, где выражение X равно x0. Оператор в ДБ нормализован к 0
NORMMAX(z)	Кривая z нормализуется по максимуму переменной z
NORMMIN(z)	Кривая z нормализуется по минимуму переменной z
PROD(n,n1,n2,z)	Вычисление сложного комплексного выражения $z=z(n)$, для $n=n1$ до $n=n2$. Например $PROD(n,1,3,j+n)=(j+1)^*(j+2)^*(j+3)=0$ +10 j
SERIES(n,n1,n2,z)	Вычисление суммирования комплексного выражения $z=z(n)$, для $n=n1$ до $n=n2$. Например SERIES $(n,1,3,n+j)=(j+1)+(j+2)+(j+3)=6+3j$
SGN(y)	Знак, Возвращает1 если y>0, -1 если y<0, 0 если y = 0
SQRT(z)	Корень из комплексного числа z
STP(x)	Ступенчатая функция амплитудой 1. Возвращает 0 при T > = x
YN(n,z[,m])	Функция Бесселя второго рода n-порядка (m-членов ряда по умолчания m = 10)
Y0(z)	Функция Бесселя нулевого рода второго порядка
Y1(z)	Функция Бесселя второго рода второго порядка

Функции от комплексной переменной z = x + jy		
DB(z)	Децибел от z (20lg(lzl))	
RE(z)	Действительная часть от z	
IM(z)	Мнимая часть от z	
IMAG(z)	Мнимая часть от z	
IMG(z)	Мнимая часть от z	
MAG(z)	Модуль z	
M(z)	Модуль z	
PH(z)	Фаза z в градусах	
P(z)	Фаза z в градусах	
PHASE(z)	Фаза z в градусах	
GD(z)	Групповое время запаздывания, Delta(фаза от z)/Delta(частота)	
MIN(z1,z2)	Минимум из действительной и мнимой частей z1 b z2	
MAX(z1,z2)	Максимум из действительной и мнимой частей z1 b z2	
LIMIT(z,z1,z2)	Возвращает z	
IF(b,z1,z2)	Если b истинна, функция возвращает z1, иначе возвращается z2	

Операции с логическими (цифровыми) переменными	
D(A)	Логическое состояние цифрового узла А
HEX(A,B,C,D)	Значение состояний цифровых узлов А,В,С и D в 16-ричной системе
BIN(A,B,C,D)	Значение состояний цифровых узлов А,В,С и D в 2-ичной системе
DEC(A,B,C,D)	Значение состояний цифровых узлов А,В,С и D в 10-тичной системе
OCT(A,B,C,D)	Значение состояний цифровых узлов А,В,С и D в 8-ричной системе
+	Сумма двух 2-, 8-, 16-, 10-десятичных чисел
-	Разность двух 2-, 8-, 16-, 10-десятичных чисел
MOD	Остаток после целочисленного деления двух 2-, 8-, 16-, 10-десятичных чисел
DIV	Целочисленное деление двух 2-, 8-, 16-, 10-десятичных чисел
&	Операция И от состояний двух цифровых узлов
I	Операция ИЛИ от состояний двух цифровых узлов
۸	Операция поразрядного исключающего ИЛИ от состояний двух цифровых узлов
~	Операция поразрядного исключающего НЕ от состояний двух цифровых узлов

6.3 Некоторые функциональные клавиши

Для окна редактора схем:

F1 — вызов справки;

F3 — вызов окна Search;

F10 — вывод окна настроек.

Для окна Analysis:

F2 — возврат к графикам;

F3 — возврат к схеме;

F4 — переход к окну графиков.

Для окна графиков:

F2 — Run;

F3 — возврат к схеме;

F5 — просмотр файла с числовыми данными;

F9 — переход в окну ввода параметров графиков;

F11 — переход к меню Stepping.

6.4 Список переменных

Логическое состояние узла А
Напряжение узла А относительно Земли
Напряжение между узлами А и В
Падение напряжения на приборе D1
Ток через прибор D1
Ток между узлами А и В
Ток, втекающий в полюс R прибора Q1
Напряжение между узлами R и S прибора Q1
Емкость между узлами R и S прибора Q1
Заряд между узлами R и S прибора Q1
Сопротивление резистора R1
Емкость конденсатора или диода X1
Заряд конденсатора или диода X1
Индуктивность катушки или сердечника L1
Магнитный поток в катушке или сердечника L1
Магнитная индукция сердечника L1
Напряженность магнитного поля в сердечнике L1
Время

Окончание списка переменных

F	Частота
S	Комплексная частота, равная 2*PI*F*j
RND	Генератор случайных чисел (0 <= RND <= 1)
ONOISE	Напряжение шумов на выходе
INOISE	Напряжение шумов на входе (ONOISE/gain)
PG(V1)	Мощность источника V1
PS(X1)	Мощность емкостная или индуктивная поглощаемая прибором X1
PD(D1)	Мощность рассеиваемая прибором D1

7 Литература

- 1. Фриск В. В. Основы теории цепей. Лабораторный практикум на персональном компьютере. М.: СОЛОН-Пресс, 2002. 192 с.
- 2. Разевиг В. Д. Система схемотехнического моделирования Micro-Cap V. М.: СОЛОН, 1997. 280 с.
- 3. Разевиг В. Д. Схемотехническое моделирование с помощью Micro-Cap 7. М.: Горячая линия—Телеком, 2003. 68 с.
- 4. Фриск В. В. Основы теории цепей. Расчеты и моделирование с помощью пакета компьютерной математики Mathcad. М.: СОЛОН-Пресс, 2006. 83 с.
- 5. Гаврилов Л. П., Соснин Д. А. Расчет и моделирование линейных электрических цепей с применением ПК. М.: СОЛОН-Пресс, 2004. 448 с.