Algebraic Analysis and Visualization of Multiple, Signed, and Two-mode Networks with 'multiplex' & 'multigraph'

Antonio Rivero Ostoic github.com/mplex

Agenda

visualization and algebraic analyses ...

- 1. Introduction
- 2. Data sets
- 3. Relational Structure
- 4. Signed Networks
- 5. Affiliation Networks
- (6. Miscellaneous)

1. Introduction

Multiple Networks

- Social networks are typically characterized by a single relationship
- But social life is more complex and people are embedded in different types of relations that are interlocked to each other

graph depicting a simple network

multigraph depicting a multiple network

• find the right methods to analyse multiple types of tie simultaneously

Dyadic properties

multiple networks

Tie Entrainment

Asymmetric character

Tie Exchange

Mutual character

Mixed pattern

Full pattern

Mutual character

Create multivariate network data

```
# SET WORKING DIRECTORY (e.g.)
setwd("C:/sunbelt")
```

```
# INSTALL multigraph FROM CRAN (INSTALL multiplex AS WELL)
install.packages("multigraph")

# BETA VERSION FOR LOOPS
library("devtools")
devtools::install_github("mplex/multigraph", ref = "beta")
install.packages("multiplex")
```

Create multivariate network data

```
# CREATE PSEUDO RANDOM DATA
library("stats")
set.seed(123); arr1 <- array(runif(9), c(3, 3, 1))
set.seed(321); arr2 <- array(runif(9), c(3, 3, 1))</pre>
```

```
# CREATE 3D ARRAY OF MULTIPLE NETWORK 'arr'
library("multiplex")
arr <- zbind(arr1, arr2)</pre>
arr <- dichot(arr, c = .5)</pre>
, , 1
[,1] [,2] [,3]
[1,] 0 1 1
[2,] 1 1 1
[3,] 0 0 1
, , 2
     [,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,]
```

Create multivariate network data

With the transf function:

```
# v2.6+
transf(list(c("1, 2", "1, 3", "2, 1", "2, 2", "2, 3", "3, 1"),
+ c("1, 1", "2, 1")), type = "toarray")
```

```
[1] [2] [3]
[1] 0 1 1
[2] 1 1 1
[3] 0 0 1

,,2

[1] [2] [3]
[1] 1 0 0
[2] 1 0 0
[3] 0 0 0
```

Bundle Patterns

```
# FUNCTION summaryBundles() REQUIRES A "Rel.Bundles" CLASS OBJECT
summaryBundles(bundles(arr))
```

```
Bundles
Asym1 ->{1} (1, 3)
Asym2 ->{1} (2, 3)
Mixd <->{1} <-{2} (1, 2)
```

```
bundle.census(arr)
```

```
BUNDLES NULL ASYMM RECIP T.ENTR T.EXCH MIXED FULL TOTAL 3 0 2 0 0 0 1 0
```

```
# LOOK AT THE MULTIGRAPH OF NETWORK 'arr'
library("multigraph")
multigraph(arr)
```



```
# ADD VERTEX / EDGE / GRAPH CHARACTERISTICS
multigraph(arr, cex = 6, lwd = 3, ecol = c('red','blue'))
```



```
# ADD VERTEX / EDGE / GRAPH CHARACTERISTICS
multigraph(arr, cex = 6, lwd = 3, ecol = 1, directed = FALSE)
```



```
# DEFINE A 'list' OF VERTEX / EDGE / GRAPH CHARACTERISTICS
otl <- list(cex = 6, lwd = 3, ecol = 1, directed = FALSE)
multigraph(arr, outline = otl)</pre>
```



```
# DO NOT COLLAPSE RECIPROCATED TIES (UNDIRECTED ONLY)
multigraph(arr, outline = otl, collRecip = FALSE)
```



```
# ALSO SWAP BUNDLE TIES...
multigraph(arr, outline = otl, collRecip = FALSE, swp = TRUE)
```



```
# SHOW LOOPS WITH THE COSTUMIZED CHARACTERISTICS multigraph(arr, outline = otl, loops = TRUE)
```



```
# TWO WAYS TO MAKE A TRANSFORMATION OF THE GRAPH
multigraph(arr, outline = otl, loops = TRUE, rot = 180)
multigraph(arr, outline = otl, loops = TRUE, mirrorY = TRUE)
```



```
# APPLY A FORCE DIRECTED LAYOUT TO THE DIGRAPH
multigraph(arr, outline = c(otl, directed = TRUE), layout = "force", seed = 1)
```


Weighted network visualization

```
# WEIGHTED MULTIGRAPH WITH LOOPS - Obtained from zbind()
multigraph(zbind(arr1*10, arr2*10), cex = 6, weighted = TRUE, loops = TRUE)
```


2. Data sets

Incubator network

```
# 'INCUBATOR A' NETWORK DATA SET
data("incubA")
str(incubA)
```

```
List of 2
$ net: num [1:26, 1:26, 1:5] 0 0 0 0 0 0 0 0 0 1 ...
... attr(*, "dimnames")=List of 3
....$: chr [1:26] "5" "6" "9" "12" ...
....$: chr [1:26] "5" "6" "9" "12" ...
....$: chr [1:5] "C" "F" "K" "A" ...
$ IM : num [1:4, 1:4, 1:7] 1 1 1 0 0 1 0 0 1 0 ...
...
```

```
# RECORD NETWORK AND ACTOR ATTRIBUTES
netA <- incubA$net[,,1:3]
attA <- incubA$net[,,4:5]</pre>
```

Incubator network

```
multigraph(netA, layout = "force", seed = 1)
```


Incubator network

```
otlA <- list(ecol = 1, vcol = "#COCOCO", cex = 3, tcex = .8, pos = 0, bwd = .5)
multigraph(netA, layout = "force", seed = 1, outline = otlA, att = attA)</pre>
```


Florentine families, Padgett (undirected network)

```
# FLORENTINE FAMILIES DATA SET AS A UCINET DL FILE
flf <- read.dl(file = "http://moreno.ss.uci.edu/padgett.dat")
multigraph(flf, directed = FALSE, layout = "force", seed = 1, ecol = 1)</pre>
```


Florentine families, Padgett (undirected network)

```
# ACTOR ATTRIBUTES
flfa <- read.dl(file = "http://moreno.ss.uci.edu/padgw.dat")</pre>
flfa <- flfa[order(rownames(flfa)), ]</pre>
         WEALTH #PRIORS #TIES
ACCIAIUOL
             10
                     53
ALBIZZI
             36
                     65
                            3
BARBADORI
             55
                           14
BISCHERI
             44
                    12
                          9
CASTELLAN
             20
                          18
GINORI
             32
                     0
                          9
GUADAGNT
              8
                     21
                          14
LAMBERTES.
             42
                          14
MEDICI
            103
                     53
                           54
PAZZT
             48
PERUZZI
                           32
             49
PUCCI
             3
                            1
RIDOLFI
             27
                     38
SALVIATI
             10
                     35
                           5
STROZZI
            146
                     74
                           29
TORNABUON
             48
                            7
```

```
Or locally read.dl (file = "data/padgw.dl")
```

Florentine families, Padgett (undirected network)

```
# PLOTTING WITH ACTOR ATTRIBUTES
multigraph(flf, directed = FALSE, "force", seed = 1, ecol = 1, cex = flfa[,1])
```



```
# LOAD DATA G20 COUNTRIES TRADE MILK AND HONEY 2017
load("data/fmlkhny2015.Rdata")
# LOOK AT THE THREE FIRST ACTORS
fmlkhny2015[1:3, 1:3, ]
, , M
         CHN
              USA
                    DEU
CHN
           0 53982
IISA
     1831891
                 0 13586
DEU 144173827 88390
, , H
       CHN
              USA
                       DEU
CHN
             10140 12987385
USA 1119310
                     13945
DEU 2964219 2948088
                         0
```

or obtain the data from Github

load (url ("https://github.com/mplex/sunbelt2017/raw/master/data/fmlkhny2015.Rdata"))

multigraph(fmlkhny2015, weighted = TRUE)


```
# LOAD DATA G20 ECONOMIC FACTS
load("data/g20dat.Rdata")
```

 $\label{eq:complex} \textbf{Or} \quad \textbf{load (url ("https://github.com/mplex/sunbelt2017/raw/master/data/g20dat.Rdata"))}$

	Trade	NomGDP	PPP_GDP_	GDP_PC	PPP_GDP_PC	HDI	Population	Area	Eco_class
CHN	4201000	10982829	19510000	7990	14107	0.727	1367520000	9572900	BRICS
USA	3944000	17947000	17947000	55805	55805	0.915	318523000	9526468	Advanced
DEU	2866600	3357614	3842000	40997	46893	0.916	80940000	357114	Advanced
JPN	1522400	4123258	4658000	32486	38054	0.891	127061000	377930	Advanced
FRA	1212300	2421560	2647000	37675	41181	0.888	63951000	640679	Advanced
GBR	1189400	2849345	2660000	43771	41159	0.907	64511000	242495	Advanced
KOR	1170900	1376868	1849000	27195	36511	0.898	50437000	100210	Advanced
ITA	948600	1815757	2174000	29867	35708	0.873	60665551	301336	Advanced
CAN	947200	1552386	1632000	43332	44967	0.913	35467000	9984670	Advanced
IND	850600	2090706	7965000	1617	6162	0.609	1259695000	3287263	BRICS
RUS	844200	1324734	3471000	9055	25411	0.798	146300000	17098242	BRICS
MEX	813500	1144334	2220000	9009	17534	0.756	119581789	1964375	Emerging
SAU	521600	653219	1683000	20813	53624	0.837	30624000	2149690	Emerging
AUS	496700	1223887	1489000	50962	47389	0.935	23599000	7692024	Advanced
BRA	484600	1772589	3166000	8670	16155	0.755	202768000	8515767	BRICS
TUR	417000	733642	1589000	9437	20438	0.761	77324000	783562	Emerging
ARG	142370	585623	964300	13589	22554	0.836	42961000	2780400	Emerging
ZAF	200100	312957	723518	5695	13165	0.666	53699000	1221037	BRICS
IDN	346100	858953	2839000	3362	11126	0.684	251490000	1904569	Emerging

```
# DEFINE CHARACTERISTICS cls <- g20dat[,9] otlg20 <- list(vcol = 4:2, clu = cls, pos = 0, cex = g20dat[,1], tcex = 1, ecol = c(5,8), weighted = TRUE)
```

```
multigraph(fmlkhny2015, layout = "conc", nr = cls, outline = otlg20)
```



```
# DROP TRADE UNDER 50000000 IN FORCE DIRECTED PLOT
multigraph(fmlkhny2015, layout = "force", seed = 2, outline = otlg20,
+ drp = 50000000)
```


G20 Countries (affiliation network)

```
# LOAD DATA G20 ECONOMIC FACTS
load("data/G20.Rdata")
```

 $\begin{tabular}{ll} \textbf{Or} & \textbf{load (url ("https://github.com/mplex/sunbelt2017/raw/master/data/G20.Rdata"))} \\ \end{tabular}$

```
P5 G4 G7 BRICS MIKTA DAC OECD Cwth N11
                                          0
DEU
IND
MEX
USA
```

G20 Countries (affiliation network)

```
# BIPARTITE GRAPH OF 'G20'
bmgraph(G20, rot = 90, mirrorX = TRUE)
```


G20 Countries (affiliation network)

```
# APPLY CORRESPONDENCE ANALYSIS TO THE PLOT
bmgraph(G20, layout = "CA", rot = 99, vcol = 2:3, pch = c(19, 15), jitter = .1)
```


3. Relational structure

Tie Interlock

Social structure = Ties between actors

Relational structure = Interrelations between relations

Role structure = Relational system of aggregated relations

we benefit from algebraic structures to represent relational systems

Semigroup

Algebraic structure

A **semigroup** is an algebraic structure with a set of elements with an associative operation attached to it:

$$\langle S, \circ \rangle$$

- -S is the underlying set, closed under the operation
- $-\circ$ is a binary operation on an ordered pair, i.e. $\circ\colon S\times S\to S$ that, for all $x,y,z\in S$ satisfies the associative law:

$$x \circ (y \circ z) = (x \circ y) \circ z$$

→ ○ is called the 'composition' operation

Semigroup of Relations

- In a semigroup of relations S(R), 'x' and 'y' are generators (or primitives), whereas ' $x \circ y$ ' constitutes a compound relation
- S(R) represents the relational structure in multiplex networks
- The elements in S(R) are the *unique* representative strings made of generator(s) and -most likely- compounds relations as well
- Unique strings are obtained after equating the occurring ties in the system, i.e. the Axiom of Quality (Boorman & White, 1976)

Partial Order

• A partial order is defined by an inclusion relation \leq among $x, y \in S$ with the rule:

$$S_{x,y}^{\leq} = \begin{cases} 1 & \text{iff relation } x \text{ is contained in relation } y \\ 0 & \text{otherwise} \end{cases}$$

where 'contained' implies that all ties in x are occurring in y as well

ightharpoonup A partially ordered semigroup (Pattison, 1993) is S with a partial order

String relations

```
# SOME REPRESENTATIVE STRINGS IN 'arr'
strings(arr)
$wt
, , 11
    [,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 0 0 1
, , 21
    [,1] [,2] [,3]
[1,] 0 1 1
[2,] 0 1 1
[3,] 0 0 0
, , 211
    [,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 0 0 0
```

Semigroup of relations

```
# SEMIGROUP OF RELATIONS IN NUMERICAL FORMAT

semigroup(arr)$S

1 2 3 4 5
1 3 2 3 4 5
2 4 2 5 4 5
3 3 2 3 4 5
4 5 2 5 4 5
5 5 2 5 4 5

...
```

Semigroup of relations

```
# SEMIGROUP OF RELATIONS IN SYMBOLIC FORMAT semigroup(arr, type = "symbolic")$S

1 2 11 21 211
1 11 2 11 21 211
2 21 2 211 21 211
11 11 2 11 21 211
21 211 2 211 21 211
21 211 2 211 2 211
21 211 2 211 21 211
...
```

Equations in the semigroup

\$`21`

[1] "21" "221" "121"

```
# EQUATIONS OF COMPOUNDS UNTIL LENGTH 3
strings(arr, equat = TRUE, k = 3)$equat

$`2`
[1] "2" "22" "12" "122" "112" "222" "212"

$`11`
[1] "11" "111"
```

Partial Order

```
# PARTIAL ORDER TABLE OF STRING RELATIONS
partial.order(strings(arr))

1 2 11 21 211
1 1 0 1 0 0
2 0 1 1 0 1
11 0 0 1 0 0
21 1 0 1 1 1
211 0 0 1 0 1
attr(,"class")
[1] "Partial.Order" "strings"
```

Hasse Diagram

Visualization of partial order structures

```
# FUNCTION diagram() PLOTS POSETS. REQUIRES "Rgraphviz" package
diagram(partial.order(strings(arr)))
```


Issues with the Semigroup Structure

- Modelling a multiple network by S(R) results in a quite large and complex structure, even if the system is small
- An important task is to reduce complexity of the network
 - by grouping different classes of actors
- Blockmodeling is an effective way to reduce the network and keeping the essential structure of the system

Positional Analysis

But it needs to preserve the network multiplicity of ties

Positional Analysis

Equivalences types

Each *type* of graph homomorphism (a structure-preserving mapping) induces to a particular kind of equivalence

- which represents a system of positions and roles of the network
- Equivalences from a global perspective:
 - Structural (Lorrain & White, 1971)
 - Automorphic (Winship & Mandel, 1983; Everett, 1985)
 - Regular (Sailer [Boyd], 1978; White & Reitz, 1983)
 - Generalized (Batagelj et al, 1992; Doreian et al, 1994)
- Equivalences from a local perspective:
 - Local Role (Winship & Mandel, 1983; Mandel, 1983)
 - Compositional (Breiger & Pattison, 1986; Mandel, 1978)

Compositional Equivalence: Relation-Box

Compositional Equivalence: Person Hierarchies

Person Hierarchies

- Builds on the ordering among the actors' Role Relations in a particular Relation Plane (shadow part in the Relation-Box)
- All perceived inclusions in R_l^+ represents the **Person Hierarchy** H_l defined for $l,i,j\in\mathscr{X}$ and relation x as:

$$H_{l_{ij}} = \begin{cases} 1 & \text{iff } R_{l_{xi}}^* \le R_{l_{xj}}^* \\ 1 & \text{iff } R_{l_{xi}}^* = R_{l_{xj}}^* \\ 0 & \text{iff } R_{l_{xi}}^* \nleq R_{l_{xj}}^* \\ 0 & \text{iff } \sum R_{l_{xi}}^* = 0 \end{cases}$$

- A Cumulated Person Hierarchy ## matrix is based on the union of all person hierarchies with transitive closure
 - the establishment of roles and positions are from the perspectives of individual actors, but it also considers common relational features

Compositional Equivalence: Undirected Networks

Florentine Families. Solid: Marriage. Dashed: Business

Florentine Families

```
# INSPECT THE NETWORK RELATIONAL SYSTEM
rel.sys(flf, bonds = "full")$incl
[1] "BARBADORI" "BISCHERI" "CASTELLAN" "GUADAGNI" "LAMBERTES" "MEDICI"
                                                                  "PERUZZI"
[8] "SALVIATI" "TORNABUON"
# WHO IS NOT LINKED AT BOTH LEVELS
rel.sys(flf, bonds = "full")$excl
[1] "ACCIAIUOL" "ALBIZZI" "GINORI" "PAZZI" "PUCCI"
                                                       "RIDOLFI"
                                                                 "STROZZI"
```

Compositional Equivalence: Relation-Box

```
# FUNCTION TO CONSTRUCT THE RELATION—BOX
formals("rbox")
$w
$transp
[1] FALSE
$smpl
[1] FALSE
$k
Г1] 3
$tlbs
```

Compositional Equivalence: Cumulated Person Hierarchy

```
# FUNCTION cph() TO CONSTRUCT THE CUMULATED PERSON HIERARCHY
# INPUT MUST BE A "Rel.Box" CLASS. OUTPUT IS A "Partial.Order" "CPH" CLASS
cph(rbox(flf))
```

A	CCIAIUOL	ALBIZZI	BARBADORI	BISCHERI	CASTELLAN	GINORI	GUADAGNI	LAMBERTES	MEDICI	PAZZ
ACCIAIUOL	1	1	1	1	1	1	1	1	1	
ALBIZZI	1	1	1	1	1	1	1	1	1	
BARBADORI	1	1	1	1	1	1	1	1	1	
BISCHERI	1	1	1	1	1	1	1	1	1	
CASTELLAN	1	1	1	1	1	1	1	1	1	
GINORI	1	1	1	1	1	1	1	1	1	
GUADAGNI	1	1	1	1	1	1	1	1	1	
LAMBERTES	1	1	1	1	1	1	1	1	1	
MEDICI	1	1	1	1	1	1	1	1	1	
PAZZI	1	1	1	1	1	1	1	1	1	
PERUZZI	1	1	1	1	1	1	1	1	1	
PUCCI	0	0	0	0	0	0	0	0	0	
RIDOLFI	1	1	1	1	1	1	1	1	1	
SALVIATI	1	1	1	1	1	1	1	1	1	
STROZZI	1	1	1	1	1	1	1	1	1	
TORNABUON	1	1	1	1	1	1	1	1	1	
attr(,"clas	s")									
[1] "Partia	1.Order"	"CPH"								

(Extract)

Compositional Equivalence: Cumulated Person Hierarchy

```
cph(rbox(flf, k = 4))
          ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI GUADAGNI LAMBERTES MEDICI PAZZI
ACCIAIUOL
ALBTZZT
BARBADORT
RISCHERT
CASTELLAN
GINORI
GUADAGNT
LAMBERTES.
MEDICI
PAZZT
PERUZZT
PUCCI
RIDOLFI
SALVIATI
STROZZI
TORNABUON
attr(,"class")
[1] "Partial.Order" "CPH"
```

(Extract)

Compositional Equivalence: Cumulated Person Hierarchy

```
# TEST OBJECTS FOR EXACT EQUALITY
identical(cph(rbox(flf, k = 3)), cph(rbox(flf, k = 4)))
[1] TRUE
```

```
identical(cph(rbox(flf, k = 4)), cph(rbox(flf, k = 5)))
[1] FALSE
```

Visualization of the Poset

```
# CPH IS A POSET
diagram(cph(rbox(flf, k = 5)))
```


Compositional Equivalence: Positional Analysis

```
# LEVELS IN THE PLOTED HASSE DIAGRAM
diagram.levels(cph(rbox(flf, k = 5)))

2 2 1 1 1 2 1 1 1 1

1 ACCIAIUOL ALBIZZI BARBADORI BISCHERI CASTELLAN GINORI GUADAGNI LAMBERTES MEDICI PAZZI
1 3 2 1 2 1
1 PERUZZI PUCCI RIDOLFI SALVIATI STROZZI TORNABUON
```

```
# OBTAIN THE CLUSTERING WITH perm ARGUMENT
diagram.levels(cph(rbox(flf, k = 5)), perm = TRUE)$clu
```

```
[1] 2 2 1 1 1 2 1 1 1 1 3 2 1 2 1
```

However, levels in the plotted Hasse diagram are not always the best criteria for classifying the actors

Compositional Equivalence: Positional Analysis

```
# FIRST RECORD THE CLUSTERING VECTOR
flfclu <- diagram.levels(cph(rbox(flf, k = 5)), perm = TRUE)$clu

# APPLY CLUSTERING TO PRODUCE A POSITIONAL SYSTEM WITH FUNCTION reduc()
flfps <- reduc(flf, clu = flfclu)</pre>
```

```
, , PADGM

[,1] [,2] [,3]
[1,] 1 1 0
[2,] 1 1 0
[3,] 0 0 0

, , PADGB

[,1] [,2] [,3]
[1,] 1 1 0
[2,] 1 0 0
[3,] 0 0 0
```

Compositional Equivalence: Role Structure

```
# THE SEMIGROUP OF THE POSITIONAL SYSTEM IN DEFAULT FORMAT semigroup(flfps)
```

```
$dim
Γ1<sub>1</sub> 3
$gens
$ord
[1] 2
$st
[1] "PADGM" "PADGB"
$S
  1 2
1 1 1
2 1 1
attr(,"class")
[1] "Semigroup" "numerical"
```

Compositional Equivalence: Role Structure

```
# FOR SEMIGROUP IN SYMBOLIC FORMAT WE NEED TO ARRANGE THE TIE LABELS
semigroup(flfps, type = "symbolic", lbs = c("M", "B"))
```

```
$dim
Γ1<sub>1</sub> 3
$gens
$ord
Γ1<sub>1</sub> 2
$st
Γ1] "M" "B"
$S
  M B
M M M
вмм
attr(,"class")
[1] "Semigroup" "symbolic"
```

Compositional Equivalence: with Actor Attributes

For a given attribute defined in α , and for $i=x_1,x_2,...,x_n$, attribute information is analyzed in relational terms where pair of vectors are element of an indexed matrix \mathbf{A}^{α} as:

$$a_{ij}^{\alpha}=:\delta_{ij}$$
 ,

Here

$$c_i = \begin{cases} 1 & \text{if the corresponding attribute is tied to actor } i \\ 0 & \text{otherwise}. \end{cases}$$

And δ_{ij} is defined for nodes $i, j = x_1, x_2, ..., x_n$ in $\mathscr X$ by the Kronecker delta function as:

$$\delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j. \end{cases}$$

 $lue{}$ That is, ${f A}^{lpha}$ is a diagonal matrix.

Actor Attributes in Relational Structures

```
WEALTH #PRIORS #TIES
ACCTATION.
             10
ALBTZZT
             36
                    65
RARRADORT
             55
                         14
RISCHERT
             44
                   12
                          9
CASTELLAN
             20
                         18
GINORI
             32
GHADAGNT
                         14
LAMBERTES.
             42
                        14
MEDICI
                    53
                         54
           103
PAZZT
             48
                          7
PERUZZT
             49
                    42
                          32
PUCCT
                         1
RIDOLFI
             27
                    38
SALVIATI
           10
                    35
STROZZI
                    74
                          29
           146
TORNABUON
             48
```

```
# FUNCTION read.srt() TRANSFORMS DATA FRAMES INTO ARRAYS
read.srt(flfa, attr = TRUE, rownames = TRUE)

# SPLIT RICH ACTORS FROM THE VERY RICH ONES AND BIND IT TO THE NETWORK
fw <- dichot(read.srt(flfa, attr = TRUE, rownames = TRUE)[, , 1], c = 40)
flfw <- zbind(flf, fw)</pre>
```

Compositional Equivalence: CPH with Actor Attributes

```
# TEST OBJECTS FOR EXACT EQUALITY
identical(cph(rbox(flfw, k = 2)), cph(rbox(flfw, k = 3)))
[1] TRUE
```

```
identical(cph(rbox(flfw, k = 3)), cph(rbox(flfw, k = 4)))
[1] TRUE
```

```
identical(cph(rbox(flfw, k = 4)), cph(rbox(flfw, k = 5)))
[1] FALSE
```

Hasse Diagram of ${\mathscr H}$ with Actor Attributes

diagram(cph(rbox(flfw, k = 5)))

Positional Analysis with Actor Attributes

```
# POSITIONAL SYSTEM WITH THE CLUSTERING INFO OF THE HASSE DIAGRAM
flfwclu <- diagram.levels(cph(rbox(flfw, k = 5)), perm = TRUE)$clu
flfwps <- reduc(flfw, clu = flfwclu)</pre>
, , PADGM
     [,1] [,2] [,3] [,4]
[1,] 1 1 1 0
[2,] 1 1 1 0
[3,] 1 1 1 0
[4,] 0 0 0 0
, , PADGB
     [.1] [.2] [.3] [.4]
[1,] 1 1 1 0 0 [2,] 1 1 0 0 0 [3,] 1 0 0 0 0 [4,]
, , 3
     [,1] [,2] [,3] [,4]
Γ1.7
[2,] 0 1 0 0 [3,] 0 0 0 0
[4,] 0 0 0
```

Algebraic Constraint: Role Table

```
# SEMIGROUP OF ROLE RELATIONS WITH COSTUMIZED LABELS
semigroup(flfwps, type = "symbolic", lbs = c("M", "B", "W"))$S

# OR EVEN BETTER...
dimnames(flfwps)[3][[1]] <- c("M", "B", "W")
semigroup(flfwps, type = "symbolic")$S</pre>
```

```
MW BW WM WB WMW
   M M MW
            MW MW M
        BW
            MW
               MW M M
   WM WB
        W WMW WMW WM WB WMW
MW
   M M
        MW
            MW
               MW
BW
            MW
                MW
WW
   WMW MW WMW WMW WMW MW
WB
   WMW MW WMW WMW WMW MW
WMW WM WMW WMW WMW WM WMW
```

Algebraic Constraint: Set of Equations

```
# FUNCTION strings() SERVES TO FIND EQUATIONS AMONG RELATIONS
strings(flfwps, equat = TRUE, k = 3)$equat
```

```
$M
                             "BM" "MMM" "BBM" "MBB" "MMB" "BBB" "BMM" "BMB" "MBM" "MWM"
[15] "BWB" "MWB" "BWM"
[1] "W" "WW" "WWW"
$MW
[1] "MW" "MWW" "MMW" "BBW" "MBW" "BMW"
$BW
[1] "BW" "BWW"
$WM
[1] "WM" "WWM" "WMM" "WBB" "WMB" "WBM"
$WB
[1] "WB" "WWB"
$WMW
[1] "WMW" "WBW"
```

Algebraic Constraint: Partial Ordering

```
# PARTIAL ORDERING OF STRING RELATIONS
partial.order(strings(flfwps), type = "strings")
```

```
M B W MW BW WM WB WMW
M 1 0 0 0 0 0 0 0 0
B 1 1 0 0 0 0 0 0 0
W 1 1 1 1 1 1 1 1 1
MW 1 0 0 1 0 0 0 0
BW 1 1 0 1 1 0 0 0
WM 1 0 0 0 1 1 0 0
WM 1 0 0 0 0 1 1 0
WMW 1 1 0 1 1 1 1 1
attr(,"class")
[1] "Partial.Order" "strings"
```

Hasse Diagram for the Partial Order of String Relations

```
diagram(partial.order(strings(flfwps), type = "strings"))
```


Compositional Equivalence: Directed Networks

Incubator A. Solid: Collaboration. Dotted: Friendship. Dashed: Competition

Positional Analysis: Directed Networks

- Compositional equivalence with directed networks performs better by including relational contrast in the modeling
 - This is operationalized through the *transpose* of the primitive ties

```
netAat <- zbind(netA, attA)
dimnames(netAat)[3][[1]]

[1] "C" "F" "K" "A" "B"</pre>
```

- Function rbox can generate tie transposes
- However, since actor attributes are represented by diagonal matrices, it does not make any sense to include the transposes in the modeling
 - → we control the labeling of transposes through argument tlbs

```
rbox(netAat, transp = TRUE, tlbs = c("D", "G", "L", NA, NA))
```

Cumulated Person Hierarchy

```
cph(rbox(netAat, transp = TRUE, tlbs = c("D", "G", "L", NA, NA), k = 2))
```

Cumulated Person Hierarchy

Compositional equivalence with directed networks

```
diagram(cph(rbox(netAat, transp = TRUE, tlbs = c("D", "G", "L", NA, NA), k = 2)))
```


not an optimal structure

Cumulated Person Hierarchy

```
diagram(cph(rbox(netAat, transp = TRUE, tlbs = c("D", "G", "L", NA, NA), k = 3)))
```


Cumulated Person Hierarchy Compositional equivalence, directed networks

```
as.table(rbind(dimnames(netAat)[1][[1]],
+ c(3,2,1,1,1,2,4,2,2,3,3,1,4,3,1,1,3,4,1,1,1,1,4,3,4)))

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 5 6 9 12 14 20 23 30 35 46 48 50 58 59 60 63 64 70 71 72 75 76 84 89 90 229
B 3 2 1 1 1 2 4 2 2 3 3 1 4 3 1 1 3 4 1 1 1 1 1 4 3 4
```

Positional System for the Incubator A

IZ.

	(_				Г				^			F	4	
1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0
0	1	1	0	1	1	1	0	0	1	0	0	0	1	0	0
1	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1
)			(G				L			E	3	
1	0	1	0	1	1	1	0	1	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
1	1	1	0	1	1	1	0	1	0	1	0	0	0	1	0
Λ	Λ	Λ	1	Λ	Λ	Λ	1	Λ	Λ	Λ	Λ	Λ	Λ	Λ	1

Role Structure of Incubator A

Three **algebraic constraints** of the Role Structure:

```
# ROLE TABLE
semigroup(netAatps, type = "symbolic")
```

```
# SET OF EQUATIONS
netAatst <- strings(netAatps, equat = TRUE, k = 3)
netAatst$equat</pre>
```

```
# SET OF INCLUSIONS
partial.order(netAatst, type = "strings")
```

Hasse Diagram with the Set of Inclusions

Role structure of Incubator A

```
diagram(partial.order(netAatst, type = "strings"))
```


Decomposition of Relational Structures

Subdirect representation

- An aggregated role structure is obtained by means of synthesis rules of the relational system
 - synthesis rules can be a direct or a subdirect representation
- Subdirect representations imply finding congruence relations, which are correspondences that preserve the operation
 - certain overlapping is required with this synthesis rule

Function cngr computes the congruence relations in semigroups

Function decomp performs the decomposition of relational structures

Decomposition of Relational Structures

```
# FIRST RECORD THE ROLE AND PARTIAL ORDER TABLES
netAatrt <- semigroup(netAatps, type = "symbolic")
netAatpo <- partial.order(netAatst, type = "strings")</pre>
```

```
## CONGRUENCES IN THE ABSTRACT SEMIGROUP
cngr(netAatrt)
```

```
# UNIQUE CONGRUENCES IN THE PARTIALLY ORDERED SEMIGROUP
netAatcg <- cngr(S = netAatrt, PO = netAatpo, unique = TRUE)</pre>
```

```
# DECOMPOSITION OF ROLE TABLES BASED ON CONGRUENCE CLASSES
decomp(netAatrt, netAatcg, type = "cc")
```

```
# DECOMPOSITION WITH THE REDUCTION OPTION
decomp(netAatrt, netAatcg, type = "cc", reduc = TRUE)
```

Example: Decomposition of Role Structures Incubator A

```
netAatdc <- decomp(netAatrt, netAatcg, type = "cc", reduc = TRUE)

# ADDITIONAL SET OF EQUATIONS
netAatdc$eq[2]

[[1]]
[[1]] [[1]] [ F CK CD CL KD DC DF DK GC CKD KDC DCK DCL

[[1]] [[2]]
[1] KL
...</pre>
```

Decomposition of Relational Structures

- Aggregated role tables are homomorphic images of the role structure
- They provide the logics in the interlock of the role relations
 - make a more transparent substantial interpretation

- It is possible to decompose the relational system by induced inclusions of the full factorization option from PACNET (Pattison et al, 2000)
 - → use function pacnet to import this outcome
- To compare relational structures are different strategies: the joint homomophic reduction or JNTHOM (Boorman & White, 1976), and the common structure semigroup or CSS (Bonacich, 1980)
 - → this is an extension that is out of scope

4. Signed networks

Structural Balance

- Simmel (1950) studied "conflict as a mechanism for integration" in triadic relations
- Heider (1958) developed the Structural Balance theory as a special cases of transitivity
- Structural Balance theory applies to networks to see whether the system has an inherent equilibrium or not

"all positive ties within groups; all negative ties between groups"

Structural Balance

- A balanced structure is represented by a signed network
 - → a special case of a multiple network

 Paths in signed graphs are positive when they have an even number of negative edges; otherwise negative

extension: a path/semipath is ambivalent iff contains at least one ambivalent edge

Structures in Balance Theory

$$\begin{array}{lll} \textbf{balanced} & \rightarrow & \textbf{clusterable} & \rightarrow & \text{`weak'} \text{ clusterable} \\ (\text{Cartwright \&} & & (\text{Davis, 1967}) \\ & \text{Harary, 1956}) & & \end{array}$$

0	р	n
р	р	n
n	n	p

Classical

Extended

$$\mathsf{p} o \mathsf{positive}$$

$$\mathsf{n} o \mathsf{negative}$$

 $\mathsf{a} \to \mathsf{ambivalent}$

Semiring

Algebraic structure

A **semiring** is an object set endowed with a pair operations, multiplication and addition, together with two neutral elements:

$$\langle Q, +, \cdot, 0, 1 \rangle$$

properties:

- closed, associative, and commutative under addition
- multiplication distributes over addition, i.e. for all $p, n, a \in Q$:

$$p \, \cdot \, (n+a) = (p \, \cdot \, n) + (p \, \cdot \, a) \quad \text{and} \quad (p+n) \, \cdot \, a = (p \, \cdot \, a) + (n \, \cdot \, a)$$

 Semirings help us to evaluate the relational system in terms of balance theory by looking at paths and semipaths

Semiring Operations

•	0	n	р	а	
0	0	0	0	0	
n	0	p n	n	а	
p a	0 0	n	р	а	
a	0	a	a	а	

+	0	n	р	а
0	0	n	р	а
n	n	n	а	а
p	р	а	р	а
a	a	a	a	a

Balance

+	0	n	p	а	q
0	0	n	р	а	q
n	n	n	а	а	n
p	n p a	a a	p	а	р
a		а	а	а	а
q	q	n	р	a	q

Clustering

Semiring function

```
# ARGUMENTS IN FUNCTION semiring()
formals("semiring")
$x
$type
c("balance", "cluster")
$symclos
[1] TRUE
$transclos
[1] TRUE
$k
[1] 2
$1bs
```

Balanced Structures

Example as in Doreian, et al (2005)

Figure 10.3. An example from Roberts.

Table 10.4. The Value Matrix and Its Closure for Roberts's Example

	и	υ	w	х	у	z		и	υ	w	х	y	z
v	n		<i>p</i> 0 0	0		0	v	n	n P n	n	n P n	P	n
	0	p	0	p		$\frac{0}{n}$	x y		p	n n	P	p p	

Balance Semiring

```
# CREATE MATRIX DATA TYPE
mat <- matrix (nrow=6, ncol=6)
rownames(mat) <- letters [21:26]
colnames (mat) <- rownames (mat)
# ASSING VALUES
mat[1,] \leftarrow c(0,0,1,-1,0,1)
mat[2,] \leftarrow c(-1,0,0,0,0,0)
mat[3,] \leftarrow c(0,0,0,-1,-1,0)
mat[4,] \leftarrow c(0,1,0,0,0,0)
mat[5,] \leftarrow c(0,0,0,1,0,-1)
mat[6.] \leftarrow c(0.0.0.-1.0.0)
 0 0 1 -1
  -1 0 0 0 0 0
  0 0 0 -1 -1 0
x 0 1 0 0 0 0
y 0 0 0 1 0 -1
z 0 0 0 -1 0 0
```

```
# BALANCE SEMIRING STRUCTURE
semiring (as. signed (mat), type="balance")
$val
[1] 1 0 -1
$s
  123 4 5 6
1 0 0 1 -1 0 1
2 -1 0 0 0 0 0
3 0 0 0 -1 -1 0
4 0 1 0 0 0 0
5 0 0 0 1 0 -1
6 0 0 0 -1 0 0
 1 2 3 4 5 6
1 pnpnnp
2 n p n p p n
3 p n p n n p
4 npnppn
5 n p n p p n
6 pnpnnp
$k
[1] 2
attr(,"class")
[1] "Rel.Q" "balance"
```

Incubator network

```
# COOPERATION AND COMPETITION TIES IN 'netA' WITHOUT ISOLATES
netAck <- rm.isol(netA[,, c(1,3)])

# PLOT THE MULTIGRAPH BY REUSING THE OUTLINE
multigraph(netAck, outline = otlA, lty = c(1,3), layout = "force", seed = 9)</pre>
```


Signed Network C and K in Incubator A

```
# FUNCTION signed() CREATES A "Signed" CLASS OBJECT FROM 2 MATRICES
netAsg <- signed(netAck)</pre>
$val
[1] pon a
$s
                   0
                   0
                          0
                   0
           0 0 p 0 0 0 p
```

Semiring structures

```
# BALANCE SEMIRING 2—PATHS (DEAFULT)
semiring(netAsg, type = "balance")

# 3—PATHS
semiring(netAsg, type = "balance", k = 3)

# 2—SEMIPATHS
semiring(netAsg, type = "balance", symclos = FALSE)
# ...
```

```
# CLUSTER SEMIRING 2—PATHS (DEAFULT)
semiring(netAsg, type = "cluster")

# 3—PATHS
semiring(netAsg, type = "cluster", k = 3)

# 2—SEMIPATHS
semiring(netAsg, type = "cluster", symclos = FALSE)
# ...
```

Checking for Balance

```
identical(
+ semiring(netAsg, type = "balance", k = 3)$Q,
+ semiring(netAsg, type = "balance", k = 2)$Q)

[1] FALSE
```

```
identical(
+ semiring(netAsg, type = "balance", k = 3)$Q,
+ semiring(netAsg, type = "balance", k = 4)$Q )
[1] FALSE
```

```
identical(
+ semiring(netAsg, type = "balance", k = 4)$Q,
+ semiring(netAsg, type = "balance", k = 5)$Q)
[1] TRUE
```

Checking for Balance (Cluster)

```
identical(
+ semiring(netAsg, type = "cluster", k = 3)$Q,
+ semiring(netAsg, type = "cluster", k = 2)$Q )
[1] FALSE
```

```
identical(
+ semiring(netAsg, type = "cluster", k = 3)$Q,
+ semiring(netAsg, type = "cluster", k = 4)$Q )
[1] FALSE
```

```
identical(
+ semiring(netAsg, type = "cluster", k = 4)$Q,
+ semiring(netAsg, type = "cluster", k = 5)$Q)
[1] TRUE
```

```
# BALANCE WITH SEMTPATHS
netAQb <- semiring(netAsg, type = "balance", k = 4)</pre>
perm(netAQb$Q, clu = c(1,6,1,2,6,6,3,2,2,3,6,2,4,2,5,2,2,1,1,2,6,2))
```

```
# BALANCE WITH PATHS
netAQbp <- semiring(netAsg, type = "balance", symclos = FALSE, k = 4)</pre>
perm(netAQbp\$Q, clu = c(1,6,1,2,6,6,3,2,2,3,6,2,4,2,5,2,2,1,1,2,6,2))
```

Main component of Incubator A

```
# FUNCTION comps() FINDS COMPONENTS AND ISOLATES
comps(netAck)
$com
$com[[1]]
 [1] "5" "50" "59" "60" "63" "64" "71" "72" "75" "76" "84" "90" "9" "14" "30" "46" "48"
$com[[2]]
[1] "58" "89" "23"
$com[[3]]
[1] "6" "20"
$isol
character(0)
```

```
# RECORD TIES FROM MAIN COMPONENT OF netAck
netAc1 <- rel.sys(incubA$net, "toarray", sel = comps(netAck)$com[[1]])</pre>
```

Main component of Incubator A

```
# PLOT NETWORK RELATIONS 'C' AND 'K' IN THE COMPONENT
multigraph(netAc1[,,c(1,3)], outline = otlA, layout = "force", seed = 6)
```


Outline

```
# MAKE OUTLINE WITH INFO FROM WEAK BALANCE STRUCTURE OF PATHS
otlAck <- list(lty = c(1,3), clu = c(1,1,2,3,2,2,3,2,4,2,5,2,2,1,1,2,2),
+ vcol = c("blue", "red", "green", "orange", "peru"), alpha = .5)</pre>
```

```
c(otlAck,otlA)
$1ty
[1] 1 3
$clu
[1] 1 1 2 3 2 2 3 2 4 2 5 2 2 1 1 2 2
$vcol
[1] "blue" "red" "green" "orange" "peru"
$alpha
[1] 0.5
$ecol
[1] 1
$vcol
[1] "#COCOCO"
```

Main component of Incubator A

```
# ARGUMENT NAMES CAN BE OMITTED OUTSIDE outline
multigraph(netAc1[,,c(1,3)], outline = c(otlA, otlAck), "force", seed = 6)
```


 $Otherwise \quad outline = c(otIA, otIAck, layout="force")$

for social influence through comparison

Balance semiring (Signed triad)

```
# 2—Paths (9, 75)
"n, p" "o, a" "a, o"
# multiplication
"n" "o" "o"
# addition
n
```


		9			Э		
5	0	0	р	5 9	р	0	
9	n	0	а	9	а	0	
75	р	0	0	75	0	0	

	5	9	75
5	р	а	а
9	а	а	n
75	а	n	а

	5	9	75
5	a	а	а
9	а	а	а
75	а	а	а

 t^{α}

p

 t^{α} paths, k > 1 t^{α} semipaths, k = 2 t^{α} semipaths, k > 2

5. Two-mode networks

Two-mode networks

- Ties between two sets of entities represent two-mode, bipartite, or affiliations networks
 - → like the duality between "people and groups", "person and events", "actors and their attributes"

- In a 2-mode matrix data the domain and the codomain are not equal
 serves to represent affiliations networks
 - serves to represent anniations networks
- An algebraic approach to affiliation networks is found in Formal Concept Analysis

Formal Concept Analysis

(Ganter & Wille, 1996)

- Formal Concept Analysis is an analytical framework for the study of affiliation networks
- Elements in the domain and codomain are called *Objects* and *Attributes* resp.
- A set of Objects G and a set of Attributes M are associated with an incident relation $I \subseteq G \times M$ in a **formal context**
- The formal concept of a formal context is a pair of sets of maximally contained objects A and attributes B
 - → (i.e. maximal rectangles in the formal context)

A and B are said to be the *extent* and *intent* of the formal concept

G20 countries affiliation network

OBJECT G20 IS A DATA FRAME THAT REPRESENTS A FORMAL CONTEXT G20

	P5	G4	G7	BRICS	MIKTA	DAC	OECD	${\tt Cwth}$	N11
ARG	0	0	0	0	0	0	0	0	0
AUS	0	0	0	0	1	1	1	1	0
BRA	0	1	0	1	0	0	0	0	0
CAN	0	0	1	0	0	1	1	1	0
CHN	1	0	0	1	0	0	0	0	0
FRA	1	0	1	0	0	1	1	0	0
DEU	0	1	1	0	0	1	1	0	0
IND	0	1	0	1	0	0	0	1	0
IDN	0	0	0	0	1	0	0	0	1
ITA	0	0	1	0	0	1	1	0	0
JPN	0	1	1	0	0	1	1	0	0
KOR	0	0	0	0	1	1	1	0	1
MEX	0	0	0	0	1	0	1	0	1
RUS	1	0	0	1	0	0	0	0	0
SAU	0	0	0	0	0	0	0	0	0
ZAF	0	0	0	1	0	0	0	1	0
TUR	0	0	0	0	1	0	1	0	1
GBR	1	0	1	0	0	1	1	1	0
USA	1	0	1	0	0	1	1	0	0

G20 countries affiliation network

```
# BIPARTITE GRAPH WITH THREE COLUMNS
bmgraph(G20, layout = "bip3", cex = 3, tcex = 1)
```


Galois Derivations

• A Galois derivation between G and M is defined for any subsets $A\subseteq G$ and $B\subseteq M$ by

$$A' = m \in M \mid (g, m) \in I \quad (\text{for all } g \in A)$$

$$B' = g \in G \mid (g, m) \in I \quad (\text{for all } m \in B)$$

- -A' is the set of attributes common to all the objects in the intent
- -B' the set of objects possessing the attributes in the extent

```
formals("galois")

$x

$labeling
c("full", "reduced")
```

Galois derivations in G20

```
galois(G20)
$P5
[1] "CHN, FRA, GBR, RUS, USA"
$G4
[1] "BRA, DEU, IND, JPN"
$'DAC, G7, OECD'
[1] "CAN, DEU, FRA, GBR, ITA, JPN, USA"
$BRICS
[1] "BRA, CHN, IND, RUS, ZAF"
$MIKTA
[1] "AUS, IDN, KOR, MEX, TUR"
$ DAC, OECD
[1] "AUS, CAN, DEU, FRA, GBR, ITA, JPN, KOR, USA"
$0ECD
[1] "AUS. CAN. DEU. FRA. GBR. ITA. JPN. KOR. MEX. TUR. USA"
$Cwth
[1] "AUS, CAN, GBR, IND, ZAF"
$`MIKTA, N11`
[1] "IDN, KOR, MEX, TUR"
$'BRICS, Cwth, DAC, G4, G7, MIKTA, N11, OECD, P5'
character(0)
```

Galois derivations in G20 - Reduced labeling

```
g20gc <- galois(G20, labeling = "reduced")</pre>
```

```
$reduc
$reduc$P5
character(0)
$reduc$G4
character(0)
$reduc$G7
[1] "ITA"
$reduc$BRICS
character(0)
$reduc$MTKTA
character(0)
$reduc$DAC
character(0)
$reduc$OECD
character(0)
$reduc$Cwth
character(0)
```

```
$reduc$N11
[1] "IDN"
$reduc[[10]]
character(0)
$reduc[[11]]
[1] "FRA, USA"
$reduc[[12]]
[1] "CHN. RUS"
$reduc[[13]]
[1] "GBR"
$reduc[[14]]
[1] "DEU, JPN"
$reduc[[15]]
[1] "BRA"
$reduc[[16]]
[1] "IND"
$reduc[[17]]
[1] "CAN"
```

```
$reduc[[18]]
[1] "ZAF"
$reduc[[19]]
F17 ""
$reduc[[20]]
character(0)
$reduc[[21]]
[1] "AUS"
$reduc[[22]]
character(0)
$reduc[[23]]
[1] "KOR"
$reduc[[24]]
[1] "MEX, TUR"
$reduc[[25]]
[1] "ARG, SAU"
```

Partial ordering of the Concepts

A hierarchy of concepts is given by the sub-superconcept relation

$$(A, B) \le (A_2, B_2) \Leftrightarrow A_1 \subseteq A_2 \quad (\Leftrightarrow B_1 \subseteq B_2)$$

Concept Lattice of the Context

- built from the hierarchy structure of concepts
- The greatest lower bound of the meet and the least upper bound of the join are defined for an index set T as

$$\bigwedge_{t \in T} (A_t, B_t) = \left(\bigcap_{t \in T} A_t, \left(\bigcup_{t \in T} B_t \right)'' \right)$$

$$\bigvee_{t \in T} (A_t, B_t) = \left(\left(\bigcup_{t \in T} A_t \right)'', \bigcap_{t \in T} B_t \right)$$

Partial order of concepts

```
# FUNCTION partial.order() CONSTRUCTS HIERARCHY OF CONCEPTS
g20gcpo <- partial.order(g20gc, type = "galois")</pre>
             {P5} {} {G4} {} {G7} {ITA}
                                        {BRICS} {} {MIKTA}
                                                           {} {DAC} {} {OECD}
{P5} {}
{G4} {}
{G7} {TTA}
{BRICS} {}
{MIKTA} {}
{DAC} {}
{OECD} {}
{Cwth} {}
{N11} {IDN}
10
{} {FRA, USA}
{} {CHN, RUS}
{} {GBR}
{} {DEU, JPN}
{} {BRA}
{} {IND}
{} {CAN}
{} {ZAF}
19
20
{} {AUS}
22
{} {KOR}
{} {MEX. TUR}
{} {ARG, SAU}
```

(Extract)

Galois derivations and partial ordering

```
# STRUCTURE OF g20gc OBJECT CREATED WITH A REDUCED LABELING
str(g20gc)
List of 2
 $ full :List of 25
 ..$ P5
                                                    : chr "CHN, FRA, GBR, RUS, USA"
 ..$ G4
                                                    : chr "BRA, DEU, IND, JPN"
                                                    : chr "CAN, DEU, FRA, GBR, ITA, JPN, USA"
 ..$ DAC, G7, DECD
  ..$ BRICS
                                                    : chr "BRA, CHN, IND, RUS, ZAF"
  ..$ MIKTA
                                                    : chr "AUS, IDN, KOR, MEX, TUR"
  ..$ DAC, OECD
                                                    : chr "AUS, CAN, DEU, FRA, GBR, ITA, JPN,
  ..$ OECD
                                                    : chr "AUS, CAN, DEU, FRA, GBR, ITA, JPN,
  ..$ Cwth
                                                    : chr "AUS, CAN, GBR, IND, ZAF"
  ..$ MIKTA, N11
                                                    : chr "IDN, KOR, MEX, TUR"
  ..$ BRICS, Cwth, DAC, G4, G7, MIKTA, N11, OECD, P5: chr(0)
..- attr(*, "class")= chr [1:2] "Galois" "full"
 $ reduc:List of 25
  ..$ P5 : chr(0)
  ..$ G4 : chr(0)
  ..$ G7 : chr "ITA"
  .. $ BRICS: chr(0)
  .. $ MIKTA: chr(0)
  ..$ DAC : chr(0)
  ..$ OECD : chr(0)
  .. $ Cwth : chr(0)
  ..$ N11 : chr "IDN"
  ..$ : chr(0)
```

Concept lattice of the context

PLOT HIERARCHY OF CONCEPTS AS LATTICE DIAGRAM
diagram(g20gcpo)

Set of inclusions in the partial ordering

```
# FUNCTION transf() TRANSFORMS MATRIX TO LIST OF PAIRWISE RELATIONS
transf(g20gcpo, type = "tolist", 1b21b = TRUE)
  [1] "{} {ARG, SAU}, {} {ARG, SAU}" "{} {AUS}, {} {ARG, SAU}"
  [3] "{} {AUS}, {} {AUS}"
                                 "{} {AUS}, {Cwth} {}"
  [5] "{} {AUS}, {DAC} {}"
                                  "{} {AUS}, {MIKTA} {}"
  [7] "{} {AUS}, {OECD} {}"
                                  "{} {AUS}, 19"
  [9] "{} {AUS}, 20"
                                    "{} {AUS}, 22"
 [11] "{} {BRA}, {} {ARG, SAU}"
                                  "{} {BRA}, {} {BRA}"
 [13] "{} {BRA}, {BRICS} {}"
                                    "{} {BRA}, {G4} {}"
 [15] "{} {CAN}, {} {ARG, SAU}"
                                    "f} {CAN}, {} {CAN}"
 [17] "{} {CAN}, {Cwth} {}"
                                     "{} {CAN}, {DAC} {}"
 [19] "{} {CAN}, {G7} {ITA}"
                                     "{} {CAN}, {OECD} {}"
                                     "{} {CHN, RUS}, {} {ARG, SAU}"
 [21] "{} {CAN}, 22"
 [23] "{} {CHN, RUS}, {} {CHN, RUS}" "{} {CHN, RUS}, {BRICS} {}"
                                     "{} {DEU, JPN}, {} {ARG, SAU}"
 [25] "{} {CHN, RUS}, {P5} {}"
 [27] "{} {DEU, JPN}, {} {DEU, JPN}" "{} {DEU, JPN}, {DAC} {}"
 [29] "{} {DEU, JPN}, {G4} {}"
                                     "{} {DEU, JPN}, {G7} {ITA}"
 [31] "{} {DEU, JPN}, {OECD} {}"
                                     "{} {FRA, USA}, {} {ARG, SAU}"
 [33] "{} {FRA, USA}, {} {FRA, USA}" "{} {FRA, USA}, {DAC} {}"
 [35] "{} {FRA, USA}, {G7} {ITA}"
                                     "{} {FRA, USA}, {OECD} {}"
 [37] "{} {FRA, USA}, {P5} {}"
                                     "{} {GBR}, {} {ARG, SAU}"
                                     "{} {GBR}, {} {FRA, USA}"
 [39] "{} {GBR}, {} {CAN}"
 [41] "{} {GBR}, {} {GBR}"
                                     "{} {GBR}, {Cwth} {}"
 [43] "{} {GBR}, {DAC} {}"
                                    "{} {GBR}, {G7} {ITA}"
 [45] "{} {GBR}, {OECD} {}"
                                    "{} {GBR}, {P5} {}"
 [47] "{} {GBR}, 22"
                                    "{} {IND}, {} {ARG, SAU}"
[135] "22, 22"
```

117 / 133

Filters and Ideals

formal definition

- Let (P, \leq) be an ordered set, and a, b are elements in P
- A non-empty subset U [resp. D] of P is an upset [resp. downset] called a **filter** [resp. **ideal**] if, for all $a \in P$ and $b \in U$ [resp. D]

```
b \leq a \quad \text{implies} \quad a \in U \qquad \qquad \left[ \text{ resp. } a \leq b \quad \text{implies} \quad a \in D \ \right]
```

- The upset $\uparrow x$ formed for all the upper bounds of $x \in P$ is called a **principal filter** generated by x
- Dually, $\downarrow x$ is a **principal ideal** with all the lower bounds of $x \in P$
 - filters and ideals not coinciding with P are called proper

Filters and Ideals

```
# fltr() FINDS PRINCIPAL FILTERS IN THE PARTIAL ORDER OF THE CONTEXT
formals("fltr")
$x
$P0
$rclos
[1] TRUE
$ideal
[1] FALSE
```

Principal Filters

```
# PRINCIPAL FILTER OF THE FIRST CONCEPT IN g20gcpo fltr(1, g20gcpo)

$'1'
[1] "{P5} {}"

$'25'
[1] "{} {ARG, SAU}"
```

```
# ANOTHER OPTION IS TO USE INTENT LABELS OF DIFFERENT CONCEPTS
fltr(c("P5", "BRICS"), g20gcpo)

$`1`
[1] "{P5} {}"

$`4`
[1] "{BRICS} {}"

$`25`
[1] "{} {ARG, SAU}"
```

Principal Ideals

```
# PRINCIPAL IDEAL OF THE FIRST CONCEPT IN g20gcpo
fltr("P5", g20gcpo, ideal = TRUE)
$`1`
[1] "{P5} {}"
$`10`
Γ17 "10"
$`11`
[1] "{} {FRA, USA}"
$`12`
[1] "{} {CHN, RUS}"
$`13`
[1] "{} {GBR}"
```

Beware that ideals in groups and semigroups have a different meaning

6. Miscellaneous

```
# FUNCTION frcd() PROVIDES COORDINATES FOR THE FORCE DIRECTED LAYOUT
frcd(netA, seed = 1)
           V1
  0.65267103 -0.28223505
  0.17257937 -0.43406002
  0.79536079 -0.13969918
12 0.73711345 -0.01060475
14 0.34446352 -0.06955628
20 0.12662053 -0.37858449
23 1.00000000 -0.91130240
30 0.63293893 -0.75622763
35 0.31886852 -0.76427853
46 0.51657424 -0.51546610
48 0.45059885 -0.65494211
50 0.23722657 -0.27412538
58 0.93472721 -0.76427853
59 0.58590570 -0.38352210
60 0.76960028 -0.35724634
63 0.36873411 -0.62902125
64 0.42137241 -0.12903575
70 0.00000000 -0.05321605
71 0.29624989 -0.20766673
72 0 45630701 -0 31248805
75 0.65140506 -0.17440605
76 0.86214500 -0.21322180
84 0.17061150 -0.68040030
89 0.86214500 -0.90619560
90 0.32575712 -0.47210522
229 0.08260838 0.00000000
```

```
# THESE OPTIONS ARE THEN EQUIVALENT
multigraph(netA, outline = otlA, layout = "force", seed = 1)
multigraph(netA, outline = otlA, coord = frcd(netA, seed = 1))
```



```
# RECORD DATA TRIADIC CONFIGURATION of netA
cdsA <- frcd(netA, seed = 1)[c(7,13,24), ]
netAc2 <- rel.sys(netA, type = "toarray", sel = comps(netA)$com[[2]])</pre>
```

multigraph (netAc2, coord=cdsA)

 $\color{red} \textbf{multigraph} \, \big(\, \texttt{netAc2} \,\,, \,\,\, \texttt{coord=cdsA} \,\,, \,\,\, \texttt{swp=TRUE} \big)$


```
# SIMILAR EQUIVALENCE WITH THE CONCENTRIC LAYOUT...
multigraph(fmlkhny2015, layout = "conc", nr = cls)
multigraph(fmlkhny2015, coord = conc(fmlkhny2015, nr = cls))
```


Decomposition with meet complements

Recall...

```
# PARTIAL ORDER TABLE
netAatpo <- partial.order(netAatst, type = "strings")</pre>
## CONGRUENCES IN THE ABSTRACT SEMIGROUP
cngr(netAatrt)
# UNIQUE CONGRUENCES IN THE PARTIALLY ORDERED SEMIGROUP
netAatcg <- cngr(S = netAatrt, P0 = netAatpo, unique = TRUE)</pre>
# DECOMPOSITION OF ROLE TABLES BASED ON CONGRUENCE CLASSES
decomp(netAatrt, netAatcg, type = "cc")
# DECOMPOSITION WITH THE REDUCTION OPTION
decomp(netAatrt, netAatcg, type = "cc", reduc = TRUE)
```

Decomposition with meet complements

 $\# \ \, \text{FUNCTION pacnet() READS OUTPUT OF PACNET PROGRAM (FULL FACTORIZATION OPTION)} \\ \ \, \text{pacnet(file = "https://github.com/mplex/sunbelt2017/raw/master/data/netAdecmp.out")} \\ \ \, \text{The pacnet of the p$

```
# OR WITH LOCAL DIRECTORY
# setwd("C:/sunbelt")
netApac <- pacnet(file = "data/netAdecmp.out")</pre>
```

```
# THEN PI—RELATIONS ARE CREATED WITH THE PARTIAL ORDER STRUCTURE netAatpi <- pi.rels(netApac, netAatpo)
```

Decomposition with meet complements

```
# DECOMPOSITION WITH MEET COMPLEMENTS
decomp(netAatrt, netAatpi, type = "mc", reduc = TRUE)$clu

[[1]]
[1] 1 1 1 2 3 4 2 1 4 1 4 1 3 3 3 4 4 4 3 3

[[2]]
[1] 1 2 3 3 4 4 4 1 2 2 4 4 1 2 4 1 2 1 1 2

[[3]]
[1] 1 1 2 1 1 1 2 2 1 2 2 2 1 1 2 1 2 2 2 2
```

Finally, some terminology...

- Multiplex ↔ Monoplex structure
 - ightharpoonup System with several \leftrightarrow single or collapsed levels in the set of relations
- multiplex ↔ uniplex edge
 - ightharpoonup A relationship with multiple \leftrightarrow single or collapsed levels
- Multimodal network
 - → Same as Multiplex, but most used with flows or transportation modes
- Multilevel network
 - → A structure with individual and group levels; i.e. affiliation networks, but where both level entities are interrelated
- Multilayer network
 - Cascade structure with multiple subsystems and layers of connectivity

Multilevel...

TBD

References

- Pattison, P. Algebraic Models for Social Networks. Cambridge Univ. Press. 1993
- Doreian, P., V. Batagelj and A. Ferligoj Generalized Blockmodeling. Cambridge Univ. Press, 2004
- Harary, F, Z. Norman, and D. Cartwright Structural Models: An Introduction to the Theory of Directed Graphs. John Wiley & Sons. 1965.
- Ganter, B. and R. Wille Formal Concept Analysis Mathematical Foundations.

 Springer. 1996
- Ostoic, J.A.R. "Creating context for social influence processes in multiplex networks."
- Network Science, 5(1), 1-29.
- R Development Core Team, R: A language and environment for statistical computing, v 3.3.1
- Gentry, J, et al Rgraphviz: Provides plotting capabilities for R graph objects. R pkg v 2.12.2

 Ostoic, J.A.R. multiplex: Algebraic Tools for the Analysis of Multiple Social Networks. R
- pkg v 2.6

 Ostoic, J.A.R. multigraph: Plot and Manipulate Multigraphs. R pkg devel v 0.60 (beta)

Maintainer Antonio Rivero http://CRAN.R-Project.org/package=multiplex

Psychometrics, SocialSciences

http://CRAN.R-Project.org/package=multigraph