New York City Airbnbs and Price Prediction

Catherine Somers

Introduction to Airbnb

- Since 2008, Airbnb has been used by guests and hosts to help expand on travelling options and create a unique personalized way to experience the world.
- Today, Airbnb has become a one of a kind service used and recognized all over the world.
- Data analysis on millions of listings provided through Airbnb is a crucial factor for the company.

New York City

- Comprised of 5 different boroughs (neighbourhood group in dataset)
 - o Manhattan, Queens, Brooklyn, Staten Island, Bronx
- The longitude and latitude are correlated with each other as listing price is driven by location.

Problem Statement

- Determining optimal rental price
- **Potential issues:** Charging too much causing renter to seek more affordable options that fit within their budget
- **Aim of this project:** To predict listing price
- Stakeholders: Airbnb hosts, Airbnb
- How this can help:
 - Better pricing for guests
 - Optimize revenue for both host and company

Data Wrangling

- Collecting and cleaning data
 - New York City Airbnb Open Data
 - Group columns into categories
 - Retain useful rows and columns
- Fixing Missing Values
- Remove outliers

Exploratory Data Analysis

- Research Questions
 - 1. Which neighbourhood group are most of these Airbnbs located in?
 - Compared share of the Neighborhood with the Neighbourhood Group
 - 2. What is the price distribution based on the number of reviews?
 - Analyzed price distribution using boxplots and lineplots
 - 3. What is the relationship between price and room type across neighbourhood and neighbourhood group?
 - Running several hypothesis tests.

Share of Neighborhood by Neighbourhood Group

• 44.3 % of Airbnbs are located in the Manhattan neighbourhood and 41.1% of Airbnbs are located in Brooklyn.

Price Distribution based on Number of Reviews

 Among the number of reviews, the price distribution of apartments are more concentrated around the Manhattan, Queens, and Bronx neighbourhood groups.

Price across type of room

- Done through conducting different hypothesis tests (One/Two Way ANOVA,
 Chi Squared Test)
- Conditions: Normalcy of target variable, Randomness of sampling, and Equal Variance across categories
 - Alpha used in all tests is 0.5 (5 percent)
- Price dependent on room type across neighbourhood and neighbourhood group

Bivariate Correlations

- Number of reviews per month is fairly correlated at 40% with the total number of reviews and the total number of reviews is correlated at 30% with the availability of the property
- Longitude is anti-correlated

Choosing a Prediction Target

Prediction target without log transformation

Prediction target with log transformation.

Machine Learning Modeling

- The goal is to predict the price of the Airbnb property
 - Using various machine learning techniques to find the one that performs best
- Methods
 - o Regression
 - Predicts the optimal price

Regression

- Cross-Validation
 - o Train/Test Split, K-fold CV
- Evaluation Metrics
 - Mean-squared error(MSE), CV error, test error, training error,
 R²
- Algorithms
 - XGBoost Regressor
 - Ridge Regression
 - Random Forest Regressor

Regression Method Results

• Results from 3 different machine learning modeling algorithm types

Model Name	CV error	CV std	training error	test error	training_r2_score	test_r2_score
Ridge Regression	0.194241	0.006121	0.191407	0.000000	0.583508	0.573302
Random Forest Regressor	0.174007	0.005768	0.075234	0.175243	0.836296	0.616741
XGBRegressor	0.173099	0.004799	0.117471	0.182283	0.744389	0.601344

XGBoost Regressor Model Results

- Models best as the cross-validation error and standard deviation are lowest amongst the algorithms tested.
- R² scores suggest there is a moderate to strong effect on location and availability of listing
 - O Number of listings and reviews

By optimizing the learning rate, we find that the optimal parameter values are a max_depth of 5 and a min_child_weight of 1

Ridge Regression Model Results

- The R² scores suggest there is a moderate effect size on the listing based on neighbourhood, room type, and availability
- The ridge regression price tended to be higher than the true price of listings.

Random Forest Regressor Results

• The room types, entire home/apt and private room have the most weight when making decisions

Weight	Feature
0.2022 ± 0.2921	room_type_Entire home/apt
0.1621 ± 0.2626	room_type_Private room
0.1184 ± 0.1158	longitude
0.0898 ± 0.0542	latitude
0.0441 ± 0.0112	availability_365
0.0414 ± 0.0089	minimum_nights
0.0395 ± 0.0863	neighbourhood_group_Manhattan
0.0337 ± 0.0199	calculated_host_listings_count
0.0336 ± 0.0089	last_review
0.0330 ± 0.0086	reviews_per_month
0.0282 ± 0.0078	number_of_reviews
0.0203 ± 0.0303	room_type_Shared room
0.0121 ± 0.0217	neighbourhood_Midtown
0.0118 ± 0.0274	neighbourhood_group_Brooklyn
0.0114 ± 0.0300	neighbourhood_group_Queens
0.0092 ± 0.0059	low_avail
0.0072 ± 0.0046	all_year_avail
0.0048 ± 0.0148	neighbourhood_Bushwick
0.0042 ± 0.0054	neighbourhood_Williamsburg
0.0041 ± 0.0105	neighbourhood_Bedford-Stuyvesant 220 more

Recommendations

- It is heavy correlated that the price of a listing is linked to what area the Airbnb is located in.
- In my opinion, when searching for an Airbnb in New York City. Consider the following factors:
 - Price based on location
 - Number of reviews for listing in question
 - Number of listings a host has

Conclusion and Future Work

- Analyzed the New York City Airbnb data to help predict and find relationships between features.
 - Data wrangling
 - Data Visualization
 - Exploratory Data Analysis
 - Machine Learning Modeling
- Future Work
 - Analysis on most popular hosts and their listings based on location
 - More on actual neighbourhoods rather than the neighbourhood group