Annexes Examens

Étienne Marceau, PhD, ASA Professeur titulaire, École d'actuariat

1^{er} février 2024

Table des matières

1	Sym	aboles, abréviations et limites	3
	1.1	Symboles	3
	1.2	Abréviations	3
	1.3	Limites	3
	1.4	Séries de Taylor	3
2	Résu	ultats	4
	2.1	Fonction quantile	4
	2.2	Inégalités	4
	2.3	Propriétés des fonctions	5
	2.4	Convergences et loi faible des grands nombres	6
	2.5	Somme finie de variables indépendantes	7
	2.6	Mesures de risque	8
	2.7	Propriétés souhaitables pour une mesure de risque	10
3	Lois	continues à support positif	12
	3.1	Loi uniforme	12
	3.2	Loi exponentielle	13
	3.3	Loi gamma	14
	3.4	Loi béta	15
	3.5	Loi Erlang	17
	3.6	Loi Erlang généralisée	18
	3.7	Loi de Weibull	20
	3.8	Loi lognormale	21
	3.9	Loi inverse gaussienne	22
	3.10	Loi Pareto	23
		Loi F-généralisée	24
	3.12	Loi Burr	25
	3.13	Loi log-logistique	26
4	Lois	continues à support réel	27
	4.1	Loi normale	27
	4.2	Loi de Student	28
5	Lois	discrètes	29
	5.1	Loi avec support arithmétique	29
	5.2	Loi de Poisson	30
	5.3	Loi binomiale	31
	5.4	Loi de Bernoulli	32
	5.5	Loi binomiale négative	33

	5.6 5.7	Loi géométrique	34 35
6	6.1	s univariées avec mélange Loi mélange d'exponentielles	
7	7.1	les de la loi normale Fonction de répartition	38 38 39
8	8.1	les de la loi gamma Fonction de répartition	40 40 42
9	9.1	les de la loi de Poisson Fonction de répartition	44 44 45
10	Tab!	le de la loi du khi-deux	46

1 Symboles, abréviations et limites

1.1 Symboles

- 1. $\mathbb{N} = \{0, 1, 2...\}$ = ensemble des entiers naturels (incluant $\{0\}$)
- 2. $\mathbb{N}^+ = \{1, 2...\}$
- 3. \mathbb{R} = ensemble des nombres réels
- 4. \mathbb{R}^+ = ensemble des nombres réels positifs (incluant $\{0\}$)
- 5. $i = \sqrt{-1}$ = unité imaginaire
- 6. $\mathbb{C} = \{x + yi; \ x, y \in \mathbb{R}\}$ = ensemble des nombres complexes
- 7. $\sum_{k=1}^{0} a_k = 0$
- 8. $\rho_P(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}}$
- 9. $\Phi(x)$ = fonction de répartition de la loi normale standard
- 10. $\Phi^{-1}(u)$ = fonction quantile de la loi normale standard

1.2 Abréviations

- 1. v.a. = variable(s) aléatoire(s)
- 2. i.i.d. = indépendant(e)s et identiquement distribué(e)s
- 3. fmp = fonction de masses de probabilité
- 4. fgp = fonction génératrice des probabilités
- 5. fgm = fonction génératrice des moments
- 6. TLS = transformée de Laplace-Stieltjes
- 7. MMV = méthode du maximum de vraisemblance

1.3 Limites

- 1. $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$
- 2. $\lim_{n\to\infty} \left(1+\frac{t}{n}\right)^{m\times n} = e^{mt}$
- 3. $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = e^{-1}$
- 4. $\lim_{n\to\infty} \left(1-\frac{t}{n}\right)^n = e^{-t}$

1.4 Séries de Taylor

- 1. Fonction exponentielle : $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ (x \in \mathbb{R})$
- 2. Fonction logarithmique : $\ln{(1+x)} = \sum_{k=1}^{\infty}{(-1)^{(k+1)}} \frac{x^k}{k!} (|x| < 1)$

3

2 Résultats

2.1 Fonction quantile

Définition 1 (Fonction quantile). Soit une v.a. X avec une fonction de répartition F_X . La fonction quantile F_X^{-1} de X est définie par

$$F_X^{-1}(u) = \inf (x \in \mathbb{R}, F_X(x) \ge u)$$

pour $u \in (0, 1)$.

Théorème 1 (Théorème de la fonction quantile). Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X , i.e., $F_X^{-1}(U) \sim X$.

Théorème 2 (Fonction quantile et fonction croissante continue). Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Si φ est une fonction croissante et continue, alors on a

$$F_{\varphi(X)}^{-1}\left(u\right) = \varphi\left(F_X^{-1}\left(u\right)\right), \quad u \in (0,1).$$

2.2 Inégalités

Théorème 3 (Inégalité de Markov). Soit une v.a. continue positive Z avec $E[Z] > \infty$. Alors, on a

$$\Pr(Z \ge a) \le \frac{E[Z]}{a}, \quad \forall a > 0.$$

Théorème 4 (Inégalité de Chebychev). *Soit la v.a.* Z *avec* $E[Z] < \infty$ *et* $Var(Z) < \infty$. *Pour tout* k > 0, *on a*

$$\Pr\left(|Z - E[Z]| > k\sqrt{\operatorname{Var}(Z)}\right) \le \frac{1}{k^2}.$$

Théorème 5 (Inégalité de Cantelli-Chebyshev). Soit la v.a. positive X avec $E[X] < \infty$ et $Var(X) < \infty$. L'inégalité de Cantelli-Chebyshev est donnée par

$$\Pr(X > c) \le \frac{Var(X)}{Var(X) + (c - E[X])^2}, \ c \ge E[X].$$
 (1)

2.3 Propriétés des fonctions

Définition 2 (Fonction monotone). Soit un intervalle A dans \mathbb{R} . Une fonction ϕ est croissante sur A si, pour tout éléments $x,y\in A$ tels que $x\leq y$, on a $\phi(x)\leq \phi(y)$. Une fonction ϕ est décroissante sur A si, pour tout éléments $x,y\in A$ tels que $x\geq y$, on a $\phi(x)\geq \phi(y)$. Une fonction ϕ est monotone sur A si elle est croissante ou bien décroissante sur A.

Définition 3 (Fonction convexe). *Une fonction réelle* ϕ *définie sur un intervalle* $A \in \mathbb{R}$ *est appelée convexe, si l'inégalité*

$$\phi(tx + (1-t)y) \le t\phi(x) + (1-t)\phi(y),$$

est satisfaite pour $\forall x, y \in A \text{ et } \forall t \in [0, 1].$

Définition 4 (Fonction concave). Une fonction réelle ϕ définie sur un intervalle $A \in \mathbb{R}$ est appelée concave, si l'inégalité

$$\phi(tx + (1-t)y) \ge t\phi(x) + (1-t)\phi(y),$$

est satisfaite pour $\forall x, y \in A \text{ et } \forall t \in [0, 1].$

Théorème 6 (Inégalité de Jensen - version discrète). Soit $x_1, \ldots, x_n \in A \subset \mathbb{R}$. Soit $\alpha_1 \geq 0, \ldots, \alpha_n \geq 0$ avec $\sum_{i=1}^n \alpha_i = 1$. Soit une fonction réelle ϕ convexe sur $A \subset \mathbb{R}$. Alors, on a

$$\phi\left(\sum_{i=1}^{n}\alpha_{i}x_{i}\right) \leq \sum_{i=1}^{n}\alpha_{i}\phi(x_{i}). \tag{2}$$

Théorème 7 (Inégalité de Jensen - version probabiliste). Soit la v.a. réelle X, avec $E[X] < \infty$. Soit une fonction réelle ϕ convexe sur \mathbb{R} . Alors, on a

$$\phi(E[X]) \le E[\phi(X)],\tag{3}$$

en supposant que la deuxième espérance existe.

2.4 Convergences et loi faible des grands nombres

Définition 5 (Convergence en distribution). Soit une suite de v.a. $\underline{Y} = \{Y_n, n \in \mathbb{N}_+\}$, où F_{Y_n} est la fonction de répartition de la v.a. Y_n , $n \in \mathbb{N}_+$, et une v.a. Z, avec fonction de répartition F_Z . Alors, on dit que la suite \underline{Y} converge en distribution vers la v.a. Z si

$$\lim_{n \to \infty} F_{Y_n}(x) = F_Z(x),$$

pour tout $x \in \mathbb{R}$ où F_Z est continue. Notation : $Y_n \stackrel{\mathcal{D}}{\to} Z$, quand $n \to \infty$.

Théorème 8 (Convergence en distribution et TLS). Soit une suite de v.a. positives $\{Y_n, n \in \mathbb{N}\}$ et un v.a. positive Z. Alors, $\lim_{n \to \infty} \mathcal{L}_{Y_n}(t) = \mathcal{L}_Z(t)$ si et seulement si $Y_n \stackrel{\mathcal{D}}{\to} Z$.

Théorème 9 (Convergence en distribution et FGM). Soit une suite de v.a. $\{Y_n, n \in \mathbb{N}\}$ et une v.a. Z dont les fgm existent. Alors, on a $\lim_{n\to\infty} \mathcal{M}_{Y_n}(t) = \mathcal{M}_Z(t)$ si et seulement si $Y_n \stackrel{\mathcal{D}}{\to} Z$.

Théorème 10 (Convergence en distribution et FGP). Soit une suite de v.a. discrètes positives $\{Y_n, n \in \mathbb{N}\}$ et une v.a. discrète aléatoire Z. Alors, on a $\lim_{n \to \infty} \mathcal{P}_{Y_n}(t) = \mathcal{P}_Z(t)$ si et seulement si $Y_n \stackrel{\mathcal{D}}{\to} Z$.

Définition 6 (Convergence en probabilité). Soit une suite de v.a. $\underline{Y} = \{Y_n, n \in \mathbb{N}_+\}$, où F_{Y_n} est la fonction de répartition de la v.a. Y_n , $n \in \mathbb{N}_+$, et une v.a. Z, avec fonction de répartition F_Z . Alors, on dit que la suite \underline{Y} converge en probabilité vers la v.a. Z si

$$\lim_{n \to \infty} \Pr\left(|Y_n - Z| > \epsilon\right) = 0,$$

pour tout $\epsilon > 0$. Notation : $Y_n \stackrel{\mathcal{P}}{\to} Z$, quand $n \to \infty$.

Théorème 11 (Convergences en probabilité et en distribution). On a les implications suivantes :

- $\bullet \ Y_n \stackrel{\mathcal{P}}{\to} Z \quad \Rightarrow \quad Y_n \stackrel{\mathcal{D}}{\to} Z.$
- L'implication inverse n'est pas toujours vraie.
- Exception : si la v.a. Z est tq $\Pr(Z=c)=1$, $c\in\mathbb{R}$, alors $Y_n\stackrel{\mathcal{D}}{\to} Z \quad \Rightarrow \quad Y_n\stackrel{\mathcal{P}}{\to} Z$.

Théorème 12 (Loi faible des grands nombres - avec l'hypothèse de variance finie (**Chebychev**)). Soit $\underline{X} = \{X_n, n \in \mathbb{N}_+\}$ une suite de v.a. i.i.d. avec $E[X_i] = \mu < \infty$ et $Var(X_i) = \sigma^2 < \infty$, pour $i \in \mathbb{N}^+$. Soit une suite de v.a. $\underline{W} = \{W_n, n \in \mathbb{N}_+\}$, où

$$W_n = \frac{X_1 + \dots + X_n}{n}, \quad n \in \mathbb{N}_+. \tag{4}$$

Alors, $W_n \stackrel{\mathcal{P}}{\to} \mu$, quand $n \to \infty$, c'est-à-dire

$$\lim_{n \to \infty} \Pr(|W_n - \mu| > \epsilon) = 0, \quad \epsilon > 0.$$

Théorème 13 (Loi faible des grands nombres - sans l'hypothèse de variance finie (**Khintchine**)). *Soit* $\underline{X} = \{X_n, n \in \mathbb{N}_+\}$ une suite de v.a. i.i.d. avec $E[X_i] = \mu < \infty$, pour $i \in \mathbb{N}^+$. Soit une suite de v.a. $\underline{W} = \{W_n, n \in \mathbb{N}_+\}$, où

$$W_n = \frac{X_1 + \dots + X_n}{n}, \quad n \in \mathbb{N}_+. \tag{5}$$

Alors, $W_n \stackrel{\mathcal{D}}{\to} \mu$, quand $n \to \infty$, c'est-à-dire

$$\lim_{n \to \infty} F_{W_n}(x) = F_Z(x), \quad \Pr(Z = \mu) = 1.$$

En vertu du Théorème 11, $W_n \stackrel{\mathcal{D}}{\to} \mu \quad \Rightarrow \quad W_n \stackrel{\mathcal{P}}{\to} \mu.$

2.5 Somme finie de variables indépendantes

Théorème 14 (Théorème de convolution et FGM). Soit les v.a. indépendantes X_1, \ldots, X_n dont les FGM (si elles existent) sont $\mathcal{M}_{X_i}(t)$, pour $i=1,\ldots,n$. On définit la v.a. $S=X_1+\cdots+X_n$. Alors, la FGM de la v.a. S est donnée par

$$\mathcal{M}_S(t) = \mathcal{M}_{X_1}(t) \times \cdots \times \mathcal{M}_{X_n}(t), \quad t \in [0, t_0).$$

Théorème 15 (Théorème de convolution et TLS). Soit les v.a. indépendantes positives X_1, \ldots, X_n dont les TLS sont $\mathcal{L}_{X_i}(r)$, pour $i=1,\ldots,n$. On définit la v.a. $S=X_1+\cdots+X_n$. Alors, la TLS de la v.a. S est donnée par

$$\mathcal{L}_S(t) = \mathcal{L}_{X_1}(t) \times \cdots \times \mathcal{L}_{X_n}(t), \quad t \in [0, \infty).$$

Théorème 16 (Théorème de convolution et fgp). Soit les v.a. discrètes positives indépendantes X_1, \ldots, X_n dont les fgp sont $\mathcal{P}_{X_i}(r)$, $i \in \{1, \ldots, n\}$. On définit la v.a. $S = X_1 + \cdots + X_n$. Alors, la fgp de la v.a. S est donnée par

$$\mathcal{P}_S(r) = \mathcal{P}_{X_1}(r) \times \dots \times \mathcal{P}_{X_n}(r), \quad r \in [0, 1]. \tag{6}$$

2.6 Mesures de risque

Définition 7 (Mesure VaR). Soit un risque X avec une fonction quantile F_X^{-1} . La mesure VaR avec un niveau de confiance κ associée à la v.a. X est définie par

$$VaR_{\kappa}(X) = F_X^{-1}(\kappa), \quad \kappa \in (0,1).$$

Définition 8 (Mesure TVaR). La mesure TVaR avec un niveau de confiance κ est définie par

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} F_X^{-1}(u) \, \mathrm{d}u, \quad \kappa \in (0,1), \tag{7}$$

avec

$$\lim_{\kappa \to 0} TVaR_{\kappa}(X) = TVaR_0(X) = \int_0^1 F_X^{-1}(u) du = E[X].$$

Définition 9 (Fonction stop-loss). Soit une v.a. X avec $E[X] < \infty$. La fonction stop-loss $\pi_X(d)$ correspond à

$$\pi_X(d) = E\left[\max\left(X - d; 0\right)\right], \quad d \in \mathbb{R}. \tag{8}$$

Théorème 17 (Deux expressions pour la mesure TVaR). *Soit une v.a.* X *avec* $E[X] < \infty$. *Alors, à partir de* (7), *on déduit les deux expressions suivantes* :

1. Expression avec la prime stop-loss:

$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{1-\kappa}\Pi_{X}(VaR_{\kappa}(X)), \quad \kappa \in (0,1).$$
(9)

2. Expression avec l'espérance tronquée :

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + \frac{1}{1-\kappa} VaR_{\kappa}(X)(F_X(VaR_{\kappa}(X)) - \kappa), \quad \kappa \in (0,1).$$

$$(10)$$

Remarque 1 (3e expression de la mesure TVaR). *De (9), on déduit une 3e représentation de la mesure TVaR est*

$$TVaR_{\kappa}(X) = \inf_{x \in \mathbb{R}_{+}} \{ x + \frac{1}{1 - \kappa} \pi_{X}(x) \} = \inf_{x \in \mathbb{R}_{+}} \{ \phi(x) \}, \ \kappa \in (0, 1).$$
 (11)

оù

$$\phi(x) = x + \frac{1}{1 - \kappa} \pi_X(x), \quad x \in \mathbb{R}_+.$$

En (11), la fonction $\phi(x)=x+\frac{1}{1-\kappa}\pi_X(x)$ est convexe. Comme $\phi(x)$ est convexe, le minimum existe. Le minimum est atteint pour $x=VaR_\kappa(X)$.

Définition 10 (Mesure entropique). Soit une v.a. X dont la fgm existe, c'est-à-dire, il existe $t_0 > 0$ tel que $\mathcal{M}_X(t) = E[e^{tX}] < \infty$, $t \in (0, t_0)$. La mesure entropique de X est définie par

$$\psi_{\rho}^{ent}(X) = \frac{1}{\rho} \ln(\mathcal{M}_X(\rho)), \quad \rho \in (0, t_0).$$

+

Définition 11 (Mesure basée sur le principe de la valeur espérée). Soit le risque X avec $E[X] < \infty$. Alors, la mesure selon le principe de la valeur espérée est

$$\psi_{\theta}(X) = (1+\theta)E[X], \quad \theta > 0. \tag{12}$$

Définition 12 (Mesure basée sur le principe de l'écart-type). Soit le risque X avec $E[X] < \infty$ et $Var(X) < \infty$. Alors, la mesure selon le principe de l'écart-type est

$$\psi_{\theta}(X) = E[X] + \theta \sqrt{Var(X)}, \quad \theta > 0.$$

2.7 Propriétés souhaitables pour une mesure de risque

Propriété 1 (Invariance à la translation). Soit un risque X et un scalaire $a \in \mathbb{R}$. Une mesure ψ satisfait la propriété d'invariance à la translation si

$$\psi(X+a) = \psi(X) + a.$$

Propriété 2 (Monotonicité). Soit deux risques X et Y tels que $\Pr(X \le Y) = 1$. Une mesure ψ satisfait la propriété de monotonicité si

$$\psi(X) \leq \psi(Y)$$
.

Propriété 3 (Homogénéité). Soit un risque X et un scalaire $a \in \mathbb{R}^+$. Une mesure ψ_{κ} satisfait la propriété d'homogénéité si

$$\psi\left(aX\right) = a\psi\left(X\right).$$

Propriété 4 (Sous-additivité). Soit n risques X_1, \ldots, X_n . La mesure ψ satisfait la propriété de sous-additivité si

$$\psi\left(X_{1}+\cdots+X_{n}\right)\leq\psi\left(X_{1}\right)+\cdots+\psi\left(X_{n}\right).$$

Propriété 5 (Convexité). La mesure ψ satisfait la propriété de convexité si

$$\psi(\alpha X + (1 - \alpha)X') \le \alpha \psi(X) + (1 - \alpha)\psi_{\kappa}(X'), \ \alpha \in (0, 1).$$

Propriété 6 (Marge de risque non excessive). Soit une v.a. X et soit b le plus petit nombre réel tel que $\Pr(X \leq b) = 1$. La mesure ψ satisfait la propriété de ne pas introduire une marge de risque excessive si on a $\psi(X) \leq b$.

Propriété 7 (Marge de risque positive). Soit une v.a. X avec $E[X] < \infty$. La mesure ψ satisfait la propriété d'introduire une marge de risque positive si $\psi(X) \ge E[X]$.

Propriété 8 (Marge de risque justifiée). Soit a une constante quelconque. La mesure de risque ψ satisfait la propriété d'introduire une marge de risque justifiée si ψ (a) = a.

Théorème 18 (Propriété de monotonicité et théorème de la fonction quantile). Soit les v.a. X, X' où $X \stackrel{\mathcal{D}}{=} X'$ dont la fonction de répartition commune est F_X et la fonction quantile commune est F_X^{-1} . Soit les v.a. Y, Y' où $Y \stackrel{\mathcal{D}}{=} Y'$ dont la fonction de répartition commune est F_Y et la fonction quantile commune est F_Y^{-1} . Soit une v.a. $U \sim Unif(0,1)$. On a les deux résultats suivants :

1. $Si \Pr(X \leq Y) = 1$, alors

$$F_X(u)^{-1} \le F_Y(u)^{-1}, \quad u \in (0,1),$$

et

$$F_X(x) \ge F_Y(x), \quad x \in \mathbb{R}.$$

2. Si les v.a. X' et Y' sont telles que

$$F_{X'}(u)^{-1} \le F_{Y'}(u)^{-1}, \quad u \in (0,1),$$

et

$$F_{X'}(x) \ge F_{Y'}(x), \quad x \in \mathbb{R},$$

alors, en vertu du Théorème de la fonction quantile 1, on peut définir des v.a. X et Y par

$$X = F_{X'}^{-1}(U) = F_X^{-1}(U)$$

et

$$Y = F_{Y'}^{-1}(U) = F_{Y}^{-1}(U)$$

de telle sorte que $Pr(X \leq Y) = 1$ *.*

Remarque 2 (Version alternative de la Propriété 2 de Monotonicité). En vertu de l'Item 2 du Théorème 18, la Propriété 2 de Monotonicité peut aussi s'énoncer comme suit : Soit deux risques X_1 et X_2 tels que $F_X(u)^{-1} \le F_Y(u)^{-1}$, $u \in (0,1)$. Une mesure ψ satisfait la propriété de monotonicité si

$$\psi(X) \leq \psi(Y)$$
.

Remarque 3 (Mesures invariantes à la distribution). Toutes les mesures que l'on considère dans le cours sont invariantes à la distribution.

3 Lois continues à support positif

3.1 Loi uniforme

- Notation : $X \sim Unif(a, b)$
- Paramètres : $-\infty < a < b < \infty$
- Support : $x \in [a, b]$
- Fonction de densité : $f\left(x\right) = \frac{1}{b-a} \times 1_{\{x \in [a,b]\}}$
- Fonction de répartition : $F\left(x\right) = \left\{ \begin{array}{ll} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b \end{array} \right.$
- Espérance : $E[X] = \frac{a+b}{2}$
- Variance : $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$
- Fonction génératrice des moments : $\mathcal{M}_X(t) = \frac{\mathrm{e}^{bt} \mathrm{e}^{at}}{(b-a)t}$
- Moments d'ordre $k:E\left[X^k\right]=\frac{b^{k+1}-a^{k+1}}{(k+1)(b-a)}$
- • Espérance tronquée : $E\left[X\times 1_{\{X\leq d\}}\right]=\frac{d^2-a^2}{2(b-a)}$
- Mesure $VaR: VaR_{\kappa}(X) = a + (b a) \kappa$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = a + \frac{(b-a)}{2}\left(1 + \kappa\right)$
- Fonction $stop\text{-loss}:\pi_d\left(X\right)=\frac{\left(b-d\right)^2}{2\left(b-a\right)}$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{b-d}{2}$

3.2 Loi exponentielle

- Notation : $X \sim Exp(\beta)$
- Paramètre : $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \beta e^{-\beta x}$
- Fonction de répartition : $F(x) = 1 e^{-\beta x}$
- Fonction de survie : $\overline{F}(x) = e^{-\beta x}$
- Espérance : $E[X] = \frac{1}{\beta}$
- Variance : $Var(X) = \frac{1}{\beta^2}$
- Fonction génératrice des moments : $\mathcal{M}_X(t) = \frac{\beta}{\beta t}$, $t < \beta$
- Moments d'ordre $k: E\left[X^k\right] = \left(\frac{1}{\beta}\right)^k k!$
- Espérance tronquée : $E\left[X\times 1_{\{X\leq d\}}\right]=\frac{1}{\beta}\left(1-\mathrm{e}^{-\beta d}\right)-d\mathrm{e}^{-\beta d}$
- Mesure $VaR: VaR_{\kappa}(X) = -\frac{1}{\beta} \ln (1 \kappa)$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = VaR_{\kappa}\left(X\right) + E\left[X\right]$
- Fonction $stop\text{-loss}:\pi_{X}\left(d\right)=\frac{1}{\beta}\mathrm{e}^{-\beta d}=E\left[X\right]\overline{F}\left(d\right)$
- Fonction d'excès-moyen : $e_X(d) = \frac{1}{\beta}$

3.3 Loi gamma

- Notation : $X \sim Ga(\alpha, \beta)$
- Paramètres : $\alpha > 0, \beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f\left(x\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x},\,x>0$
- Fonction de répartition : notée $H(x; \alpha, \beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Fonction de survie : notée $\overline{H}(x; \alpha, \beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Espérance : $E[X] = \frac{\alpha}{\beta}$
- Variance : $Var(X) = \frac{\alpha}{\beta^2}$
- Fonction génératrice des moments : $\mathcal{M}_X(t) = \left(\frac{\beta}{\beta t}\right)^{\alpha}$, $t < \beta$
- Moments d'ordre $k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(\alpha+i)}{\beta^k}$
- • Espérance tronquée : $E\left[X\times 1_{\{X\leq d\}}\right]=\frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right)$
- Mesure VaR: outil d'optimisation si $\alpha \neq 1$
- Mesure $TVaR:TVaR_{\kappa}\left(X\right)=\frac{1}{1-\kappa}\frac{\alpha}{\beta}\overline{H}\left(VaR_{\kappa}\left(X\right);\alpha+1,\beta\right)$
- Fonction $stop-loss:\pi_{d}\left(X\right)=\frac{\alpha}{\beta}\overline{H}\left(d;\alpha+1,\beta\right)-d\overline{H}\left(d;\alpha,\beta\right)$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{\alpha}{\beta} \frac{\overline{H}(d;\alpha+1,\beta)}{\overline{H}(d;\alpha,\beta)} d$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right) + d\overline{H}\left(d;\alpha,\beta\right)$
- Lois associées:
 - la loi exponentielle est un cas particulier de la loi gamma (avec $\alpha = 1$);
 - la loi du khi-deux avec paramètre $\nu \in \mathbb{N}^+$ (nombre de degrés de liberté) correspond à une loi gamma de paramètres $\alpha = \frac{\nu}{2}$ et $\beta = 2$;
 - la loi Erlang avec paramètre $n \in \mathbb{N}^+$ correspond à une loi gamma de paramètres $\alpha = n$ et β .

3.4 Loi béta

• Notation : $X \sim B\hat{e}ta(\alpha, \beta)$

• Paramètres : $\alpha > 0, \beta > 0$

• Support : $x \in [0, 1]$

• Fonction bêta incomplète : $I(x; \alpha, \beta) = \int_0^x u^{\alpha-1} (1-u)^{\beta-1} du$, $x \in [0, 1]$

• Fonction bêta complète : $I\left(\alpha,\beta\right)=I\left(1;\alpha,\beta\right)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

• Fonction de densité : $f_X\left(x\right)=\frac{1}{I(\alpha,\beta)}x^{\alpha-1}\left(1-x\right)^{\beta-1}\times 1_{\{x\in[0,1]\}}$

• Fonction de répartition : $F_X(x) = \frac{I(x;\alpha,\beta)}{I(\alpha,\beta)}$, notée $B(x;\alpha,\beta)$

• Si
$$\beta = 1$$
, $F(x) = \begin{cases} 0, & x < 0 \\ x^{\alpha}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si
$$\alpha = 1$$
, $F(x) = \begin{cases} 0, & x < 0 \\ 1 - (1 - x)^{\beta}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si α , $\beta \in \mathbb{N}^+$,

$$F(x) = \begin{cases} 0, & x < 0\\ \sum_{j=\alpha}^{\alpha+\beta-1} \frac{(\alpha+\beta-1)!}{j!(\alpha+\beta-1-j)!} x^{j} (1-x)^{\alpha+\beta-1-j}, & 0 \le x \le 1\\ 1, & x > 1 \end{cases}$$

• Espérance : $E[X] = \frac{\alpha}{\alpha + \beta}$

• Variance : $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

• Fonction génératrice des moments :

$$\mathcal{M}_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{j=0}^{k-1} \frac{\alpha+j}{\alpha+\beta+j} \right) \frac{t^k}{k!}$$

• Moments d'ordre $k: E\left[X^k\right] = \frac{\Gamma(\alpha+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\alpha+\beta+k)}$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{\alpha}{\alpha + \beta} B(d; \alpha + 1, \beta), \alpha \leq d \leq \beta$

• Si
$$\beta = 1$$
, $E\left[X \times 1_{\{X \le d\}}\right] = \frac{\alpha d^{\alpha+1}}{\alpha+1}$

• Si
$$\alpha = 1$$
, $E\left[X \times 1_{\{X \le d\}}\right] = -d(1-d)^{\beta} + \frac{1-(1-d)^{\beta+1}}{\beta+1}$

• Mesure VaR: outil d'optimisation

• Si
$$\beta = 1$$
, $VaR_{\kappa}(X) = \kappa^{\frac{1}{\alpha}}$

• Si
$$\alpha = 1$$
, $VaR_{\kappa}(X) = 1 - (1 - \kappa)^{\frac{1}{\beta}}$

• Mesure $TVaR: TVaR_{\kappa}\left(X\right) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+\beta} (1 - B(VaR_{\kappa}(X); \alpha+1, \beta))$

• Si
$$\beta = 1$$
, $TVaR_{\kappa}(X) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+1} (1 - \kappa^{(\alpha+1)/\alpha})$

• Si
$$\alpha = 1$$
, $TVaR_{\kappa}(X) = 1 - \frac{\beta}{\beta + 1} (1 - \kappa)^{\frac{1}{\beta}}$

• Fonction $stop-loss: \pi_d(X) = \frac{\alpha}{\alpha+\beta}(1 - B(d; \alpha+1, \beta)) - d(1 - B(d; \alpha, \beta)), d \in [0, 1]$

• Si
$$\beta = 1$$
, $\pi_d(X) = \frac{\alpha}{\alpha+1}(1 - d^{\alpha+1}) - d(1 - d^{\alpha})$

• Si
$$\alpha = 1$$
, $\pi_d(X) = \frac{(1-d)^{\beta+1}}{1+\beta}$

• Fonction d'excès-moyen : $e_{d}\left(X\right)=\frac{\alpha}{\alpha+\beta}\frac{1-B\left(d;\alpha+1,\beta\right)}{1-B\left(d;\alpha,\beta\right)}-d$, $d\in\left[0,1\right]$

• Si
$$\beta = 1$$
, $e_d(X) = \frac{\alpha}{\alpha+1} \frac{1-d^{\alpha+1}}{1-d^{\alpha}} - d$

• Si
$$\alpha = 1$$
, $e_d(X) = \frac{(1-d)}{1+\beta}$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{\alpha}{\alpha+\beta}B(d;\alpha+1,\beta) + \beta(1-B(d;\alpha,\beta))$, $d\in\left[0,1\right]$

• Si
$$\beta=1, E\left[\min\left(X;d\right)\right]=\frac{\alpha}{\alpha+1}d^{\alpha+1}+d(1-d^{\alpha})$$

• Si
$$\alpha = 1$$
, $E\left[\min\left(X;d\right)\right] = \frac{1 - (1 - d)^{\beta + 1}}{\beta + 1}$

• Loi associée : la loi uniforme avec a=0 et b=1 est un cas particulier de la loi bêta avec $\alpha=1$ et $\beta=1$.

3.5 Loi Erlang

- Notation : $X \sim Erl(n, \beta)$
- Paramètres : $n \in \mathbb{N}^+$, $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x}$
- Fonction de survie : $\overline{F}(x) = e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$
- Espérance : $E[X] = \frac{n}{\beta}$
- Variance : $Var(X) = \frac{n}{\beta^2}$
- Fonction génératrice des moments : $\mathcal{M}_X(t) = \left(\frac{\beta}{\beta t}\right)^n, t < \beta$
- Moments d'ordre $k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(n+i)}{\beta^k}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{n}{\beta} \left(1 e^{-\beta d} \sum_{j=0}^{n} \frac{(\beta d)^{j}}{j!}\right)$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \frac{n}{\beta} \left(e^{-\beta VaR_{\kappa}(X)} \sum_{j=0}^{n} \frac{(\beta VaR_{\kappa}(X))^{j}}{j!} \right)$
- Fonction $stop-loss:\pi_{d}\left(X\right)=\frac{n}{\beta}\overline{H}\left(d;n+1,\beta\right)-d\overline{H}\left(d;n,\beta\right)$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{n}{\beta} \frac{\overline{H}(d;n+1,\beta)}{\overline{H}(d;n,\beta)} d$

3.6 Loi Erlang généralisée

• Notation : $X \sim ErlG(\beta_1, ..., \beta_n)$

• Paramètres : $\beta_1, ..., \beta_n > 0$ et $\beta_1, ..., \beta_n$ distincts

• Support : $x \in \mathbb{R}^+$

• Fonction de densité de *X* :

$$f_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \beta_i e^{-\beta_i x}$$

ullet Fonction de répartition de X :

$$F_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \left(1 - e^{-\beta_i x} \right)$$

• Fonction de survie de $X:\overline{F}_{X}\left(x\right)=\sum_{i=1}^{n}\left(\prod_{j=1,j\neq i}^{n}\frac{\beta_{j}}{\beta_{j}-\beta_{i}}\right)\mathrm{e}^{-\beta_{i}x}$

• Espérance de $X: E[X] = \sum_{i=1}^{n} \frac{1}{\beta_i}$

• Variance de X : $\operatorname{Var}(X) = \sum_{i=1}^{n} \frac{1}{\beta_i^2}$

• Fonction génératrice des moments de $X:\mathcal{M}_{X}\left(t\right)=\prod_{i=1}^{n}\left(\frac{\beta_{i}}{\beta_{i}-t}\right)$

• Moments d'ordre $k:E\left[X^k\right]=\prod_{i=1}^n \frac{\Gamma(k+1)}{\beta_i^k}$

• Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} \left(\prod_{j=1, j \ne i}^{n} \frac{\beta_j}{\beta_j - \beta_i}\right) \left(-d\mathrm{e}^{-\beta_i d} + \frac{1 - \mathrm{e}^{-\beta_i d}}{\beta_i}\right)$$

• Mesure VaR: outil d'optimisation

• Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_{j}}{\beta_{j} - \beta_{i}} \right) \left(VaR_{\kappa}(X) e^{-\beta_{i} VaR_{\kappa}(X)} + \frac{e^{-\beta_{i} VaR_{\kappa}(X)}}{\beta_{i}} \right)$$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^{n} \left(\prod_{j=1,j\neq i}^{n} \frac{\beta_{j}}{\beta_{j}-\beta_{i}}\right) \left(\frac{1-\mathrm{e}^{-\beta_{i}d}}{\beta_{i}}\right)$

• Fonction $stop-loss: \pi_d(X) = \sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j - \beta_i} \right) \left(\frac{e^{-\beta_i d}}{\beta_i} \right)$

 $\bullet \text{ Fonction d'excès-moyen}: e_d\left(X\right) = \frac{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j - \beta_i}\right)^{\left(\frac{e^{-\beta_i d}}{\beta_i}\right)}}{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j - \beta_i}\right)^{\left(e^{-\beta_i d}\right)}}$

• Remarques:

- les termes $\left(\prod_{j=1,j\neq i}^n \frac{\beta_j}{\beta_j-\beta_i}\right)$ sont négatifs ou positifs et $\sum_{i=1}^n \left(\prod_{j=1,j\neq i}^n \frac{\beta_j}{\beta_j-\beta_i}\right)=1$;
- la loi Erlang généralisée de la v.a. X est l'équivalent de la loi d'une somme de n v.a. indépendantes $Y_1, ..., Y_n$ de lois exponentielles indépendantes avec paramètres $\beta_1, ..., \beta_n$, e.g. $X = \sum_{i=1}^n Y_i$ où $Y_i \sim Exp\left(\beta_i\right)$ pour i=1,...,n.

3.7 Loi de Weibull

• Notation : $X \sim We(\tau, \beta)$

• Paramètres : $\tau > 0, \beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \beta \tau (\beta x)^{\tau-1} e^{-(\beta x)^{\tau}}$

• Fonction de répartition : $F(x) = 1 - e^{-(\beta x)^{\tau}}$

• Fonction de survie : $\overline{F}(x) = e^{-(\beta x)^{\tau}}$

• Espérance : $E[X] = \frac{1}{\beta}\Gamma(1 + \frac{1}{\tau})$

• Variance : $\operatorname{Var}(X) = \frac{1}{\beta^2} \Gamma\left(1 + \frac{2}{\tau}\right) - \left(\frac{1}{\beta} \Gamma\left(1 + \frac{1}{\tau}\right)\right)^2$

• Fonction génératrice des moments (pour $\alpha > 1$) :

$$\mathcal{M}_{X}\left(t\right) = \sum_{k=0}^{\infty} \frac{t^{k}}{\beta^{k} k!} \Gamma\left(1 + \frac{k}{\tau}\right)$$

• Moments d'ordre $k : E\left[X^k\right] = \frac{1}{\beta^k} \Gamma\left(1 + \frac{k}{\tau}\right)$

• Espérance tronquée : $E\left[X \times 1_{\{X < d\}}\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau})$

• Mesure $VaR: VaR_{\kappa}(X) = \frac{1}{\beta}(-\ln(1-\kappa))^{\frac{1}{\tau}}$

• Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{\beta(1-\kappa)}\Gamma(1+\frac{1}{\tau})\overline{H}(-\ln(1-\kappa);1+\frac{1}{\tau},1)$

• Fonction $stop-loss: \pi_d(X) = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})\overline{H}(d^\tau;1+\frac{1}{\tau},\beta^\tau) - d\mathrm{e}^{-(\beta d)^\tau}$

• Fonction d'excès-moyen : $e_d(X) = \frac{e^{(\beta d)^{\tau}}}{\beta} \Gamma(1 + \frac{1}{\tau}) \overline{H}(d^{\tau}; 1 + \frac{1}{\tau}, \beta^{\tau}) - d$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau}) + d\mathrm{e}^{-(\beta d)^{\tau}}$

• Cas particuliers :

• la loi Raleigh est un cas cas particulier de la loi Weibull avec $\tau=2$.

3.8 Loi lognormale

• Notation : $X \sim LN(\mu, \sigma^2)$

• Paramètres : $-\infty < \mu < \infty, \sigma^2 > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f\left(x\right)=\frac{1}{x\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{\left(\ln x-\mu\right)^{2}}{2\sigma^{2}}}$

• Fonction de répartition : $F\left(x\right) = \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right)$

• Espérance : $E[X] = e^{\mu + \frac{\sigma^2}{2}}$

• Variance : $\operatorname{Var}\left(X\right) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1\right)$

• Fonction génératrice des moments : forme non analytique

• Moments d'ordre $k: E[X^k] = e^{k\mu + k^2 \frac{\sigma^2}{2}}$

• Espérance tronquée : $E\left[X \times 1_{\{X < d\}}\right] = \exp(\mu + \sigma^2/2)\Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})$

• Mesure $VaR:VaR_{\kappa}\left(X\right)=\exp\left(\mu+\sigma VaR_{\kappa}\left(Z\right)\right)$

• Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} e^{\mu+\sigma^2/2} (1 - \Phi(VaR_{\kappa}(Z) - \sigma))$$

• Fonction *stop-loss*:

$$\pi_d(X) = e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

• Fonction d'excès-moyen :

$$e_d(X) = \frac{1}{[1 - \Phi(\frac{\ln d - \mu}{\sigma})]} e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d$$

• Espérance limitée :

$$E[\min(X;d)] = e^{\mu + \sigma^{2}/2} \Phi(\frac{\ln d - \mu - \sigma^{2}}{\sigma}) + d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

3.9 Loi inverse gaussienne

• Notation : $X \sim IG(\mu, \beta)$

• Paramètres : $\mu, \beta \in \mathbb{R}^+$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\mu}{\sqrt{2\pi\beta x^3}} \exp\left(-\frac{1}{2\beta x}(x-\mu)^2\right)$

• Fonction de répartition :

$$F_{X}\left(x\right) = \Phi\left(\sqrt{\frac{1}{\beta x}}\left(x - \mu\right)\right) + e^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(x + \mu\right)\right)$$

• Espérance : $E[X] = \mu$

• Variance : $Var(X) = \mu \beta$

• Fonction génératrice des moments : $\mathcal{M}_{X}\left(t\right)=e^{\frac{\mu}{\beta}\left(1-\sqrt{\left(1-2\beta t\right)}\right)}$

• Espérance tronquée :

$$\begin{split} E\left[X\times \mathbf{1}_{\{X\leq d\}}\right] &= d-(2d-\mu)\Phi\bigg(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \\ &-(2d+\mu)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\bigg(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \end{split}$$

 \bullet Mesure VaR: outil d'optimisation

• Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \left(\mu - d + (2d+\mu)e^{\frac{2\mu}{\beta}} \right) + \frac{1}{1-\kappa} \left((2d-\mu)\Phi\left((d-\mu)\sqrt{\frac{1}{\beta d}} \right) \right),$$

avec $d = VaR_{\kappa}(X)$

• Fonction *stop-loss* :

$$\pi_{d}(X) = (\mu - d) \left(1 - \Phi\left((d - \mu) \sqrt{\frac{1}{\beta d}} \right) \right) + (d + \mu) e^{\frac{2\mu}{\beta}} \Phi\left(- (d + \mu) \sqrt{\frac{1}{\beta d}} \right)$$

• Fonction d'excès-moyen :

$$e_{d}\left(X\right) = \frac{\left(\mu - d\right)\left(1 - \Phi\left(\left(d - \mu\right)\sqrt{\frac{1}{\beta d}}\right)\right)}{1 - \left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d - \mu\right)\right) + e^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d + \mu\right)\right)\right)} + \frac{\left(d + \mu\right)e^{\frac{2\mu}{\beta}}\Phi\left(-\left(d + \mu\right)\sqrt{\frac{1}{\beta d}}\right)}{1 - \left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d - \mu\right)\right) + e^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d + \mu\right)\right)\right)}$$

• Espérance limitée :

$$\begin{split} E\left[\min\left(X;d\right)\right] &= d - (d-\mu)\Phi\bigg(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \\ &- (d+\mu)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\bigg(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \end{split}$$

3.10 Loi Pareto

• Notation : $X \sim Pa(\alpha, \lambda)$

• Paramètres : $\alpha > 0$, $\lambda > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha+1}}$

• Fonction de répartition : $F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Fonction de survie : $\overline{F}(x) = \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda}{\alpha - 1}$

• Variance (pour $\alpha > 2$) : $Var(X) = \frac{\alpha \lambda^2}{(\alpha - 1)^2(\alpha - 2)}$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre k (pour $\alpha>k\in\mathbb{N}^+$) : $E\left[X^k\right]=\frac{\lambda^k k!}{\prod\limits_{i=1}^k (\alpha-i)}$

• Moments d'ordre $k:E\left[X^k\right]=rac{\lambda^k\Gamma(k+1)\Gamma(\alpha-k)}{\Gamma(\alpha)},$ si $-1 < k < \alpha$

• Espérance tronquée (pour $\alpha > 1$) :

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{\lambda}{\alpha - 1} \left(1 - \frac{\lambda^{\alpha - 1}}{\left(\lambda + d\right)^{\alpha - 1}}\right) - d\left(\frac{\lambda}{\lambda + d}\right)^{\alpha}$$

• Mesure $VaR: VaR_{\kappa}\left(X\right) = \lambda\left(\left(1-\kappa\right)^{-\frac{1}{\alpha}}-1\right)$

• Mesure TVaR (pour $\alpha > 1$): $TVaR_{\kappa}(X) = \lambda \left(\frac{\alpha}{\alpha - 1} (1 - \kappa)^{-\frac{1}{\alpha}} - 1\right)$

• Fonction stop-loss (pour $\alpha > 1$) : $\pi_d(X) = \frac{\lambda}{\alpha - 1} (\frac{\lambda}{\lambda + d})^{\alpha - 1}$

• Fonction d'excès-moyen (pour $\alpha > 1$): $e_d(X) = \frac{\lambda + d}{\alpha - 1}$, si $\alpha > 1$

• Espérance limitée (pour $\alpha>1$) : $E\left[\min\left(X;d\right)\right]=\frac{\lambda}{\alpha-1}[1-(\frac{\lambda}{\lambda+d})^{\alpha-1}]$

3.11 Loi F-généralisée

• Notation : $X \sim FG(\alpha, \lambda, \tau)$

• Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\Gamma(\alpha+\tau)\lambda^{\alpha}x^{\tau-1}}{\Gamma(\alpha)\Gamma(\tau)(\lambda+x)^{\alpha+\tau}}$

• Fonction de répartition : $F_X(x) = B(\frac{x}{\lambda + x}; \tau, \alpha)$

• Espérance (pour $\alpha > 1$): $E[X] = \frac{\lambda \tau}{\alpha - 1}$

• Variance (pour $\alpha > 2$): Var $(X) = \frac{\lambda^2 \tau(\tau - \alpha + 1)}{(\alpha - 1)^2 (\alpha - 2)}$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre k (pour $\alpha>k$) : $E\left[X^k\right]=\lambda^k\frac{\prod\limits_{i=0}^{k-1}(\tau+i)}{\prod\limits_{i=1}^{k}(\alpha-i)}$

• Espérance tronquée (pour $\alpha > 1$):

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{\lambda \tau}{\alpha - 1} B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)$$

 \bullet Mesure VaR: outil d'optimisation

• Mesure TVaR (pour $\alpha > 1$):

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \frac{\lambda \tau}{\alpha - 1} \overline{B}\left(\frac{VaR_{\kappa}(X)}{\lambda + VaR_{\kappa}(X)}; \tau + 1, \alpha - 1\right)$$

• Fonction *stop-loss* (pour $\alpha > 1$):

$$\pi_{d}\left(X\right) = \frac{\lambda \tau}{\alpha - 1} \overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) - d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

• Fonction d'excès-moyen (pour $\alpha > 1$):

$$e_{d}\left(X\right) = \frac{\lambda\tau}{\alpha - 1} \frac{\overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)}{\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)} - d$$

• Espérance limitée (pour $\alpha > 1$):

$$E\left[\min\left(X;d\right)\right] = \frac{\lambda\tau}{\alpha - 1}B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) + d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

• Loi associée : la loi de Pareto est un cas particulier de la loi F-généralisée avec $\tau=1$.

• Remarque : la loi F-généralisée est parfois appelée la loi de Pareto généralisée.

3.12 Loi Burr

• Notation : $X \sim Burr(\alpha, \lambda, \tau)$

• Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X\left(x\right) = \frac{\alpha\tau\lambda^{\alpha}x^{\tau-1}}{(\lambda+x^{\tau})^{\alpha+1}}$

• Fonction de répartition : $F_X\left(x\right) = 1 - \left(\frac{\lambda}{\lambda + x^{\tau}}\right)^{\alpha}$

• Espérance : $E[X] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})$

• Variance : Var $(X) = \frac{\lambda^{2/\tau}}{\Gamma(\alpha)} \left(\Gamma(1 + \frac{2}{\tau}) \Gamma(\alpha - \frac{2}{\tau}) - \frac{(\Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}))^2}{\Gamma(\alpha)} \right)$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre $k:E\left[X^k\right]=\frac{1}{\Gamma(\alpha)}\lambda^{k/\tau}\Gamma(1+\frac{k}{\tau})\Gamma(\alpha-\frac{k}{\tau}), -\tau < k < \alpha au$

• Espérance tronquée :

$$E\left[X\times 1_{\{X\leq d\}}\right] = \frac{1}{\Gamma(\alpha)}\lambda^{1/\tau}\Gamma(1+\frac{1}{\tau})\Gamma(\alpha-\frac{1}{\tau})B(\frac{d^{\tau}}{\lambda+d^{\tau}};1+\frac{1}{\tau},\alpha-\frac{1}{\tau})$$

• Mesure $VaR : VaR_{\kappa}(X) = (\lambda \{(1-\kappa)^{-1/\alpha} - 1\})^{1/\tau}$

• Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{(1-\kappa)\Gamma(\alpha)} \left(\lambda^{1/\tau}\Gamma(1+\frac{1}{\tau})\Gamma(\alpha-\frac{1}{\tau})\overline{B}\left(\frac{VaR_{\kappa}(X)^{\tau}}{\lambda + VaR_{\kappa}(X)^{\tau}}; 1+\frac{1}{\tau}, \alpha-\frac{1}{\tau}\right)\right)$$

• Fonction *stop-loss* :

$$\pi_d(X) = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}) \overline{B}(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}) - d(\frac{\lambda}{\lambda + d^{\tau}})^{\alpha}$$

• Fonction d'excès-moyen :

$$e_d(X) = \frac{(\lambda + d^{\tau})^{\alpha} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})}{\lambda^{\alpha - 1/\tau} \Gamma(\alpha)} \overline{B}(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}) - d$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1+\frac{1}{\tau}) \Gamma(\alpha-\frac{1}{\tau}) B(\frac{d^{\tau}}{\lambda+d^{\tau}};1+\frac{1}{\tau},\alpha-\frac{1}{\tau}) + d(\frac{\lambda}{\lambda+d^{\tau}})^{\alpha}$$

• Loi associée : la loi de Pareto est un cas particulier de la loi Burr avec $\tau=1$.

3.13 Loi log-logistique

• Notation : $X \sim LL(\lambda, \tau)$

• Paramètres : $\lambda, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \frac{\frac{\tau}{\lambda} \left(\frac{x}{\lambda}\right)^{\tau-1}}{\left(1 + \left(\frac{x}{\lambda}\right)^{\tau}\right)^2} = \frac{\tau \lambda^{\tau} x^{\tau-1}}{(\lambda^{\tau} + x^{\tau})^2}$

• Fonction de répartition : $F\left(x\right) = \frac{1}{1+\left(\frac{x}{x}\right)^{-\tau}} = \frac{x^{\tau}}{\lambda^{\tau}+x^{\tau}} = 1 - \frac{\lambda^{\tau}}{\lambda^{\tau}+x^{\tau}}$

• Espérance (pour $\tau>1$) : $E\left[X\right]=\lambda\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)$

• Variance (pour $\tau > 2$):

$$\operatorname{Var}\left(X\right) = \lambda^2 \left(\Gamma\left(1 + \frac{2}{\tau}\right) \Gamma\left(1 - \frac{2}{\tau}\right) - \left(\Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right)\right)^2\right)$$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre $k: E\left[X^k\right] = \lambda^k \Gamma\left(1 + \frac{k}{\tau}\right) \Gamma\left(1 - \frac{k}{\tau}\right), -\tau < k < \tau$

• Espérance tronquée (pour $\tau > 1$) :

$$E\left[X\times 1_{\{X\leq d\}}\right] = \lambda\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

• Mesure $VaR: VaR_{\kappa}(X) = \lambda (\kappa^{-1} - 1)^{-1/\tau}$

• Mesure TVaR (pour $\tau > 1$):

$$TVaR_{\kappa}\left(X\right) = \frac{\lambda}{1-\kappa}\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)\overline{B}\left(\kappa;1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

• Fonction *stop-loss* (pour $\tau > 1$):

$$\pi_{d}\left(X\right) = \lambda \Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right) \overline{B}\left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau}\right) - \frac{d\lambda^{\tau}}{\lambda^{\tau} + d^{\tau}}$$

• Fonction d'excès-moyen (pour $\tau > 1$):

$$e_{d}\left(X\right) = \frac{\lambda^{\tau} + d^{\tau}}{\lambda^{\tau - 1}} \Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right) \overline{B}\left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau}\right) - d$$

• Espérance limitée (pour $\tau > 1$) :

$$\begin{split} E\left[\min\left(X;d\right)\right] &= \lambda \Gamma\left(1+\frac{1}{\tau}\right) \Gamma\left(1-\frac{1}{\tau}\right) B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right) \\ &+\frac{d\lambda^{\tau}}{\lambda^{\tau}+d^{\tau}} \end{split}$$

4 Lois continues à support réel

4.1 Loi normale

• Notation : $X \sim N(\mu, \sigma^2)$

• Paramètres : $-\infty < \mu < \infty$, $\sigma^2 > 0$

• Support : $x \in \mathbb{R}$

• Fonction de densité : $f\left(x\right) = \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{\left(x-\mu\right)^2}{2\sigma^2}}$

• Fonction de répartition : notée $\Phi\left(\frac{x-\mu}{\sigma}\right)$, forme non explicite

• Espérance : $E[X] = \mu$

• Variance : $Var(X) = \sigma^2$

ullet Fonction génératrice des moments : $\mathcal{M}_X(t) = \mathrm{e}^{t\mu + t^2 rac{\sigma^2}{2}}$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \mu \Phi\left(\frac{d-\mu}{\sigma}\right) - \sigma \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Mesure $VaR: VaR_{\kappa}(X) = \mu + \sigma\Phi^{-1}(\kappa) = \mu + \sigma VaR_{\kappa}(Z)$

• Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \mu + \frac{1}{1 - \kappa}\sigma \frac{1}{\sqrt{2\pi}}e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}} = \mu + \sigma TVaR_{\kappa}\left(Z\right)$$

• Fonction stop-loss : $\pi_d(X) = (\mu - d)(1 - \Phi(\frac{d-\mu}{\sigma})) + \frac{\sigma}{\sqrt{2\pi}}e^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Fonction d'excès-moyen : $e_d(X) = \mu + d - \frac{1}{1 - \Phi(\frac{d-\mu}{2})} \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \mu\Phi\left(\frac{d-\mu}{\sigma}\right) - \frac{\sigma}{\sqrt{2\pi}}\mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}} + d[1 - \Phi(\frac{d-\mu}{\sigma})]$

• Remarque :

• lorsque $\mu=0$ et $\sigma=1$, on dit par convention que X obéit à une loi normale standard;

• par convention, Φ est la notation pour la fonction de répartition d'une loi normale standard.

4.2 Loi de Student

• Notation : $X \sim St(\nu)$

• Paramètre : $\nu > 0$

• Support : $x \in \mathbb{R}$

• Fonction de densité : $f(x) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$

• Si $\nu = 1$, $f(x) = \frac{1}{\pi} \frac{1}{(1+x^2)}$

• Si $\nu = 2$, $f(x) = \frac{1}{(2+x^2)^{\frac{3}{2}}}$

• Fonction de répartition :

$$F(x) = 1 - \frac{1}{2}B\left(\frac{\nu}{x^2 + \nu}; \frac{\nu}{2}, \frac{1}{2}\right),$$

désignée par $t_{\nu}\left(x\right)$

• Si $\nu = 1$, $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan(x)$

• Si $\nu = 2$, $F(x) = \frac{1}{2} \left(1 + \frac{x}{\sqrt{2+x^2}} \right)$

• Fonction de survie : $\overline{F}(x) = \frac{1}{2}B\left(\frac{\nu}{x^2+\nu}; \frac{\nu}{2}, \frac{1}{2}\right)$

• Espérance : $E[X] = 0, \nu > 1$

• Variance : $Var(X) = \frac{\nu}{\nu - 2}, \nu > 2$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre *k* :

$$E\left[X^k\right] = \left\{ \begin{array}{ll} 0, & 0 < k \text{ impair} < \nu \\ \frac{1}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(\Gamma\left(\frac{k+1}{2}\right)\Gamma\left(\frac{\nu-k}{2}\right)\nu^{\frac{k}{2}}\right), & 0 < k \text{ pair} < \nu \end{array} \right.$$

• Espérance tronquée (pour $\nu > 1$):

$$E\left[X\times 1_{\{X\leq d\}}\right] = \left\{ \begin{array}{l} -\sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d<0 \\ \sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d>0 \end{array} \right.$$

• Mesure VaR: outil d'optimisation

• Mesure TVaR (pour $\nu > 1$):

$$TVaR_{\kappa}(X) = \begin{cases} -\frac{1}{1-\kappa}\sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) < 0\\ \frac{1}{1-\kappa}\sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) > 0 \end{cases}$$

• Espérance limitée (pour $\nu > 1$):

$$E\left[\min\left(X;d\right)\right] = \left\{ \begin{array}{l} -\sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), \quad d < 0 \\ \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), \quad d > 0 \end{array} \right.$$

28

• Note : la loi de Student converge en loi vers la loi normale lorsque $\nu \to \infty$.

5 Lois discrètes

5.1 Loi avec support arithmétique

- Support : $X \in \{0, 1h, 2h, ...\}$
- Fonction de masse de probabilité : $f(kh) = \Pr(X = kh), k \in \mathbb{N}, h \in \mathbb{R}^+$
- Espérance : $E[X] = \sum_{k=0}^{\infty} kh f_X(kh)$
- Variance : $\operatorname{Var}\left(X\right) = \sum_{k=0}^{\infty} \left(kh E\left[X\right]\right)^{2} f_{X}\left(kh\right)$
- Fonction génératrice des moments : $\mathcal{M}\left(t\right) = \sum_{k=0}^{\infty} \mathrm{e}^{tkh} f_{X}\left(kh\right)$
- Fonction génératrice des probabilités : $\mathcal{P}\left(t\right)=\sum_{k=0}^{\infty}t^{kh}f_{X}\left(kh\right)$
- • Espérance tronquée : $E\left[X\times 1_{\{X\leq k_0h\}}\right]=\sum_{k=0}^{k_0}khf_X\left(kh\right)$
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \left\{ E\left[X\right] - \sum_{k=0}^{k_0} khf_X\left(kh\right) + k_0h\left(\Pr\left(X \le k_0h\right) - \kappa\right) \right\},\,$$

où $VaR_{\kappa}\left(X\right)=k_{0}h$ avec $k_{0}\in\mathbb{N}$

5.2 Loi de Poisson

• Notation : $M \sim Pois(\lambda)$

• Paramètre : $\lambda > 0$ • Support : $k \in \mathbb{N}$

• Espérance : $E[M] = \lambda$

• Variance : $Var(M) = \lambda$

• Fonction génératrice des moments : $\mathcal{M}(t) = \exp{\{\lambda(\mathbf{e}^t - 1)\}}$

5.3 Loi binomiale

- Notation : $M \sim Bin(n,q)$
- Paramètres : $n \in \mathbb{N}, q \in (0,1)$
- Support : $k \in \{0, 1, ..., n\}$
- Espérance : E[M] = nq
- Variance : Var(M) = nq(1-q)
- Fonction génératrice des moments : $\mathcal{M}(t) = \left(q\mathbf{e}^t + 1 - q\right)^n$
- Loi associée : la loi de Bernoulli est un cas particulier de la loi binomiale avec n=1.

5.4 Loi de Bernoulli

- Notation : $M \sim Bern(q) \sim Bin(1,q)$
- Paramètre : $q \in (0,1)$
- Support : $k \in \{0, 1\}$
- Espérance : E[M] = q
- Variance : Var(M) = q(1-q)
- ullet Fonction génératrice des moments : $\mathcal{M}(t) = (q e^t + 1 q)$

5.5 Loi binomiale négative

Selon les auteurs, on rencontre deux paramétrisations pour la loi binomiale négative qui sont équivalentes.

Les principales caractéristiques pour la première paramétrisation sont :

- Notation : $M \sim BN(r,q)$
- Paramètres : $r \in \mathbb{R}^+$, $q \in (0,1)$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité : $\Pr(M = k) = {r+k-1 \choose k} (q)^r (1-q)^k$
- Espérance : $E[M] = r \frac{1-q}{q}$
- Variance : $Var(M) = r \frac{1-q}{q^2}$
- Fonction génératrice des moments : $\mathcal{M}(t) = \left(\frac{q}{1-(1-q)\mathrm{e}^t}\right)^r$
- Fonction génératrice des probabilités : $\mathcal{P}(t) = \left(\frac{q}{1-(1-q)t}\right)^r$

Les principales caractéristiques pour la deuxième paramétrisation sont :

- Notation : $M \sim BN(r, \beta)$
- Paramètres : $r \in \mathbb{R}^+, \beta \in \mathbb{R}^+$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité : $\Pr(X = k) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \left(\frac{1}{1+\beta}\right)^r \left(\frac{\beta}{1+\beta}\right)^k$
- Espérance : $E[X] = r\beta$
- Variance : $Var(X) = r\beta(1+\beta)$
- Fonction génératrice des moments : $\mathcal{M}_X(t) = (1 \beta(e^t 1))^{-r}$
- Fonction génératrice des probabilités : $\mathcal{P}_X(t) = (1 \beta(t-1))^{-r}$
- Lien entre la 1^{re} paramétrisation et la 2^e paramétrisation : $q=\frac{1}{1+\beta}$ ou $\beta=\frac{1-q}{q}$
- Note:
 - si $r \in \mathbb{N}^+$, la distribution binomiale négative est parfois appelée la distribution de Pascal;
 - si $r \in \mathbb{R}^+$, la distribution binomiale négative est parfois appelée la distribution de Polya.
- Loi associée : la loi géométrique est un cas particulier de la loi binomiale négative avec r=1.

5.6 Loi géométrique

- Notation : $M \sim Geom(q)$
- Paramètre : $q \in (0,1)$
- Support : $k \in \mathbb{N}$
- Espérance : $E[M] = \frac{1-q}{q}$
- Variance : $Var(M) = \frac{1-q}{q^2}$
- Fonction génératrice des moments : $\mathcal{M}(t) = \frac{q}{(1-(1-q)\mathrm{e}^t)}$

5.7 Loi logarithmique

• Notation : $M \sim Log(\gamma)$

 $\bullet \ \ {\rm Paramètre}: \gamma \in \]0,1[$

• Support : $k \in \mathbb{N}^+$

• Espérance : $E\left[M\right] = \frac{-1}{\ln(1-\gamma)} \frac{\gamma}{1-\gamma}$

• Variance : $Var(M) = \frac{\gamma + \ln(1-\gamma)}{(1-\gamma)^2(\ln(1-\gamma))^2}$

• Fonction génératrice des moments : $\mathcal{M}(t) = \frac{\ln(1-\gamma e^t)}{\ln(1-\gamma)}$

6 Lois univariées avec mélange

6.1 Loi mélange d'exponentielles

- Notation : $X \sim MxExp(\{(p_i, \beta_i), i = 1, 2, ..., n\})$
- Paramètres : $\beta_i > 0, 0 \le p_i \le 1, p_1 + ... + p_n = 1$
- Fonction de densité : $f\left(x\right) = \sum_{i=1}^{n} p_{i}\beta_{i}\mathrm{e}^{-\beta_{i}x}, \, x>0$
- Fonction de répartition : $F\left(x\right) = \sum_{i=1}^{n} p_i \left(1 \mathrm{e}^{-\beta_i x}\right), \, x > 0$
- Fonction de survie : $\overline{F}(x) = \sum_{i=1}^{n} p_i e^{-\beta_i x}, x > 0$
- Espérance : $E[X] = \sum_{i=1}^{n} p_i \frac{1}{\beta_i}$
- Variance : Var $(X) = \sum_{i=1}^n p_i \frac{2}{\beta_i^2} \left(\sum_{i=1}^n p_i \frac{1}{\beta_i}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{i=1}^n p_i \frac{\beta_i}{\beta_i t}$
- Moments d'ordre $k : E[X^k] = \sum_{i=1}^n p_i \left(\frac{1}{\beta_i}\right)^k k!$
- Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} p_i \left(\frac{1}{\beta_i} \left(1 - e^{-\beta_i d}\right) - de^{-\beta_i d}\right)$$

- \bullet Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \sum_{i=1}^{n} p_{i} \left(\frac{1}{\beta_{i}} \left(e^{-\beta_{i}VaR_{\kappa}(X)}\right) + de^{-\beta_{i}VaR_{\kappa}(X)}\right)$$

- Fonction $stop-loss: \pi_X\left(d\right) = \sum_{i=1}^n p_i \frac{1}{\beta_i} \mathrm{e}^{-\beta_i d}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^n p_i \frac{1}{\beta_i} \left(1 \mathrm{e}^{-\beta_i d}\right)$

Loi mélange d'Erlang

- Notation : $X \sim MxErl(\{(p_k, \beta), k = 1, 2, ...\})$
- Paramètres : $\beta > 0, 0 \le p_k \le 1 \ (k = 1, 2, ...), \sum_{k=1}^{\infty} p_k = 1$
- Fonction de densité : $f\left(x\right) = \sum_{k=1}^{\infty} p_k h\left(x; k, \beta\right), x > 0$
- Fonction de répartition : $F\left(x\right) = \sum_{k=1}^{\infty} p_k H\left(x;k,\beta\right), x>0$ Fonction de survie : $\overline{F}\left(x\right) = \sum_{k=1}^{\infty} p_k \overline{H}\left(x;k,\beta\right), x>0$
- Espérance : $E[X] = \sum_{k=1}^{\infty} p_k \frac{k}{\beta}$
- Variance: $\operatorname{Var}(X) = \sum_{k=1}^{\infty} p_k \frac{k(k+1)}{\beta^2} \left(\sum_{k=1}^{\infty} p_k \frac{k}{\beta}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{k=1}^{\infty} p_k \left(\frac{\beta_i}{\beta_i t}\right)^k$
- Moments $m: E[X^m] = \sum_{k=1}^{\infty} p_k \frac{k(k+1)...(k+m-1)}{\beta}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \sum_{k=1}^{\infty} p_k \frac{k}{\beta} H\left(d; k+1, \beta\right)$
- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \sum_{k=1}^{\infty} p_{k} \frac{k}{\beta} \overline{H}\left(VaR_{\kappa}\left(X\right); k+1, \beta\right)$$

• Fonction *stop-loss* :

$$\pi_{d}\left(X\right) = \sum_{k=1}^{\infty} p_{k}\left(\frac{k}{\beta}\overline{H}\left(d; k+1, \beta\right) - d\overline{H}\left(d; k, \beta\right)\right)$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \sum_{k=1}^{\infty} p_k \left(\frac{k}{\beta} H\left(d;k+1,\beta\right) + d\overline{H}\left(d;k,\beta\right)\right)$$

• Note : $H(x; k, \beta)$, $\overline{H}(x; k, \beta)$ et $h(x; k, \beta)$ sont les fonctions de répartition, de survie et de densité de la loi Erlang (k, β) .

7 Tables de la loi normale

7.1 Fonction de répartition

Tableau 1 – Valeurs de la fonction de répartition de la loi normale standard à (x+u)

$x \setminus u$	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

7.2 Valeurs de la fonction quantile

Tableau 2 – Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.5	0.0000	0.0251	0.0502	0.0753	0.1004	0.1257	0.1510	0.1764	0.2019	0.2275
0.6	0.2533	0.2793	0.3055	0.3319	0.3585	0.3853	0.4125	0.4399	0.4677	0.4959
0.7	0.5244	0.5534	0.5828	0.6128	0.6433	0.6745	0.7063	0.7388	0.7722	0.8064
0.8	0.8416	0.8779	0.9154	0.9542	0.9945	1.0364	1.0803	1.1264	1.1750	1.2265
0.9	1.2816	1.3408	1.4051	1.4758	1.5548	1.6449	1.7507	1.8808	2.0537	2.3263

Tableau 3 – Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

	u_1/u_2	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
ſ	0.99	2.3263	2.3656	2.4089	2.4573	2.5121	2.5758	2.6521	2.7478	2.8782	3.0902

Tableau 4 – Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

П	u_1/u_2	0	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009
П	0.999	3.0902	3.1214	3.1559	3.1947	3.2389	3.2905	3.3528	3.4316	3.5401	3.7190

8 Tables de la loi gamma

8.1 Fonction de répartition

Tableau 5 – Valeurs de la fonction de répartition d'une v.a. $X \sim \operatorname{Gamma}(\alpha,1)$ à $x \in [0.1,5]$

$x \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.1	0.3453	0.0952	0.0224	0.0047	0.0009	0.0002	0.0000	0.0000	0.0000	0.0000
0.2	0.4729	0.1813	0.0598	0.0175	0.0047	0.0011	0.0003	0.0001	0.0000	0.0000
0.3	0.5614	0.2592	0.1036	0.0369	0.0120	0.0036	0.0010	0.0003	0.0001	0.0000
0.4	0.6289	0.3297	0.1505	0.0616	0.0230	0.0079	0.0026	0.0008	0.0002	0.0001
0.5	0.6827	0.3935	0.1987	0.0902	0.0374	0.0144	0.0052	0.0018	0.0006	0.0002
0.6	0.7267	0.4512	0.2470	0.1219	0.0551	0.0231	0.0091	0.0034	0.0012	0.0004
0.7	0.7633	0.5034	0.2945	0.1558	0.0757	0.0341	0.0144	0.0058	0.0022	0.0008
0.8	0.7941	0.5507	0.3406	0.1912	0.0988	0.0474	0.0214	0.0091	0.0037	0.0014
0.9	0.8203	0.5934	0.3851	0.2275	0.1239	0.0629	0.0299	0.0135	0.0058	0.0023
1	0.8427	0.6321	0.4276	0.2642	0.1509	0.0803	0.0402	0.0190	0.0085	0.0037
1.1	0.8620	0.6671	0.4681	0.3010	0.1792	0.0996	0.0521	0.0257	0.0121	0.0054
1.2	0.8787	0.6988	0.5064	0.3374	0.2085	0.1205	0.0656	0.0338	0.0165	0.0077
1.3	0.8931	0.7275	0.5425	0.3732	0.2386	0.1429	0.0806	0.0431	0.0219	0.0107
1.4	0.9057	0.7534	0.5765	0.4082	0.2692	0.1665	0.0971	0.0537	0.0283	0.0143
1.5	0.9167	0.7769	0.6084	0.4422	0.3000	0.1912	0.1150	0.0656	0.0357	0.0186
1.6	0.9264	0.7981	0.6382	0.4751	0.3308	0.2166	0.1341	0.0788	0.0442	0.0237
1.7	0.9348	0.8173	0.6660	0.5068	0.3614	0.2428	0.1543	0.0932	0.0537	0.0296
1.8	0.9422	0.8347	0.6920	0.5372	0.3917	0.2694	0.1755	0.1087	0.0643	0.0364
1.9	0.9487	0.8504	0.7161	0.5663	0.4214	0.2963	0.1975	0.1253	0.0759	0.0441
2	0.9545	0.8647	0.7385	0.5940	0.4506	0.3233	0.2202	0.1429	0.0886	0.0527
2.1	0.9596	0.8775	0.7593	0.6204	0.4790	0.3504	0.2435	0.1614	0.1022	0.0621
2.2	0.9641	0.8892	0.7786	0.6454	0.5066	0.3773	0.2673	0.1806	0.1168	0.0725
2.3	0.9680	0.8997	0.7965	0.6691	0.5334	0.4040	0.2914	0.2007	0.1323	0.0838
2.4	0.9715	0.9093	0.8130	0.6916	0.5592	0.4303	0.3156	0.2213	0.1486	0.0959
2.5	0.9747	0.9179	0.8282	0.7127	0.5841	0.4562	0.3400	0.2424	0.1657	0.1088
2.6	0.9774	0.9257	0.8423	0.7326	0.6080	0.4816	0.3644	0.2640	0.1835	0.1226
2.7	0.9799	0.9328	0.8553	0.7513	0.6310	0.5064	0.3887	0.2859	0.2019	0.1371
2.8	0.9820	0.9392	0.8672	0.7689	0.6529	0.5305	0.4128	0.3081	0.2208	0.1523
2.9	0.9840	0.9450	0.8782	0.7854	0.6738	0.5540	0.4367	0.3304	0.2402	0.1682
3	0.9857	0.9502	0.8884	0.8009	0.6938	0.5768	0.4603	0.3528	0.2601	0.1847
3.1	0.9872	0.9550	0.8977	0.8153	0.7128	0.5988	0.4834	0.3752	0.2803	0.2018
3.2	0.9886	0.9592	0.9063	0.8288	0.7308	0.6201	0.5061	0.3975	0.3007	0.2194
3.3	0.9898	0.9631	0.9142	0.8414	0.7479	0.6406	0.5283	0.4197	0.3213	0.2374
3.4	0.9909	0.9666	0.9214	0.8532	0.7641	0.6603	0.5500	0.4416	0.3421	0.2558
3.5	0.9918	0.9698	0.9281	0.8641	0.7794	0.6792	0.5711	0.4634	0.3629	0.2746
3.6	0.9927	0.9727	0.9342	0.8743	0.7938	0.6973	0.5916	0.4848	0.3837	0.2936
3.7	0.9935	0.9753	0.9398	0.8838	0.8074	0.7146	0.6115	0.5058	0.4045	0.3128
3.8	0.9942	0.9776	0.9450	0.8926	0.8203	0.7311	0.6308	0.5265	0.4251	0.3322
3.9	0.9948	0.9798	0.9497	0.9008	0.8324	0.7469	0.6494	0.5468	0.4456	0.3516
4	0.9953	0.9817	0.9540	0.9084	0.8438	0.7619	0.6674	0.5665	0.4659	0.3712
4.1	0.9958	0.9834	0.9579	0.9155	0.8544	0.7762	0.6847	0.5858	0.4859	0.3907
4.2	0.9962	0.9850	0.9616	0.9220	0.8645	0.7898	0.7014	0.6046	0.5056	0.4102
4.3	0.9966	0.9864	0.9649	0.9281	0.8739	0.8026	0.7173	0.6228	0.5250	0.4296
4.4	0.9970	0.9877	0.9679	0.9337	0.8827	0.8149	0.7327	0.6406	0.5441	0.4488
4.5	0.9973	0.9889	0.9707	0.9389	0.8909	0.8264	0.7473	0.6577	0.5627	0.4679
4.6	0.9976	0.9899	0.9733	0.9437	0.8987	0.8374	0.7614	0.6743	0.5810	0.4868
4.7	0.9978	0.9909	0.9756	0.9482	0.9059	0.8477	0.7748	0.6903	0.5988	0.5054
4.8	0.9981	0.9918	0.9777	0.9523	0.9126	0.8575	0.7876	0.7058	0.6162	0.5237
4.9	0.9983	0.9926	0.9797	0.9561	0.9189	0.8667	0.7998	0.7207	0.6331	0.5418
5	0.9984	0.9933	0.9814	0.9596	0.9248	0.8753	0.8114	0.7350	0.6495	0.5595

Relation : $H(x; \alpha, \beta) = H(x\beta; \alpha, 1)$. Exemple : H(0.5; 0.5, 10) = H(5; 0.5, 1) = 0.9984.

Tableau 6 – Valeurs de la fonction de répartition d'une v.a. $X \sim \text{Gamma}(\alpha, 1)$ à $x \in [5.1, 10]$

П	$x \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
П	5.1	0.9986	0.9939	0.9831	0.9628	0.9302	0.8835	0.8225	0.7487	0.6655	0.5769
- 11	5.2	0.9987	0.9945	0.9845	0.9658	0.9353	0.8912	0.8330	0.7619	0.6809	0.5939
- 11	5.3	0.9989	0.9950	0.9859	0.9686	0.9401	0.8984	0.8430	0.7746	0.6959	0.6105
- 11	5.4	0.9990	0.9955	0.9871	0.9711	0.9445	0.9052	0.8524	0.7867	0.7103	0.6267
- i i	5.5	0.9991	0.9959	0.9883	0.9734	0.9486	0.9116	0.8614	0.7983	0.7243	0.6425
- i i	5.6	0.9992	0.9963	0.9893	0.9756	0.9524	0.9176	0.8699	0.8094	0.7378	0.6578
- i i	5.7	0.9993	0.9967	0.9903	0.9776	0.9560	0.9232	0.8779	0.8200	0.7507	0.6728
- i i	5.8	0.9993	0.9970	0.9911	0.9794	0.9593	0.9285	0.8855	0.8300	0.7632	0.6873
- 11	5.9	0.9994	0.9973	0.9919	0.9811	0.9624	0.9334	0.8927	0.8396	0.7752	0.7013
- 11	6	0.9995	0.9975	0.9926	0.9826	0.9652	0.9380	0.8994	0.8488	0.7867	0.7149
Ш	6.1	0.9995	0.9978	0.9933	0.9841	0.9679	0.9423	0.9058	0.8575	0.7977	0.7281
Ш	6.2	0.9996	0.9980	0.9939	0.9854	0.9703	0.9464	0.9119	0.8658	0.8083	0.7408
Ш	6.3	0.9996	0.9982	0.9944	0.9866	0.9726	0.9502	0.9175	0.8736	0.8184	0.7531
Ш	6.4	0.9997	0.9983	0.9949	0.9877	0.9747	0.9537	0.9229	0.8811	0.8281	0.7649
Ш	6.5	0.9997	0.9985	0.9954	0.9887	0.9766	0.9570	0.9279	0.8882	0.8374	0.7763
Ш	6.6	0.9997	0.9986	0.9958	0.9897	0.9784	0.9600	0.9326	0.8948	0.8462	0.7873
Ш	6.7	0.9997	0.9988	0.9962	0.9905	0.9801	0.9629	0.9371	0.9012	0.8547	0.7978
- 11	6.8	0.9998	0.9989	0.9965	0.9913	0.9816	0.9656	0.9412	0.9072	0.8627	0.8080
- i i	6.9	0.9998	0.9990	0.9968	0.9920	0.9831	0.9680	0.9451	0.9129	0.8704	0.8177
- i i	7	0.9998	0.9991	0.9971	0.9927	0.9844	0.9704	0.9488	0.9182	0.8777	0.8270
- i i	7.1	0.9998	0.9992	0.9974	0.9933	0.9856	0.9725	0.9523	0.9233	0.8846	0.8359
- i i	7.2	0.9999	0.9993	0.9976	0.9939	0.9867	0.9745	0.9555	0.9281	0.8912	0.8445
- i i	7.3	0.9999	0.9993	0.9978	0.9944	0.9878	0.9764	0.9585	0.9326	0.8975	0.8527
- 11	7.4	0.9999	0.9994	0.9980	0.9949	0.9887	0.9781	0.9613	0.9368	0.9034	0.8605
- i i	7.5	0.9999	0.9994	0.9982	0.9953	0.9896	0.9797	0.9640	0.9409	0.9091	0.8679
- 11	7.6	0.9999	0.9995	0.9983	0.9957	0.9905	0.9812	0.9665	0.9446	0.9144	0.8751
Ш	7.7	0.9999	0.9995	0.9985	0.9961	0.9912	0.9826	0.9688	0.9482	0.9195	0.8819
Ш	7.8	0.9999	0.9996	0.9986	0.9964	0.9919	0.9839	0.9710	0.9515	0.9243	0.8883
Ш	7.9	0.9999	0.9996	0.9988	0.9967	0.9926	0.9851	0.9730	0.9547	0.9288	0.8945
Ш	8	0.9999	0.9997	0.9989	0.9970	0.9932	0.9862	0.9749	0.9576	0.9331	0.9004
Ш	8.1	0.9999	0.9997	0.9990	0.9972	0.9937	0.9873	0.9766	0.9604	0.9372	0.9060
Ш	8.2	0.9999	0.9997	0.9991	0.9975	0.9942	0.9882	0.9783	0.9630	0.9410	0.9113
Ш	8.3	1.0000	0.9998	0.9991	0.9977	0.9947	0.9891	0.9798	0.9654	0.9446	0.9163
- 11	8.4	1.0000	0.9998	0.9992	0.9979	0.9951	0.9900	0.9813	0.9677	0.9481	0.9211
- 11	8.5	1.0000	0.9998	0.9993	0.9981	0.9955	0.9907	0.9826	0.9699	0.9513	0.9256
- []	8.6	1.0000	0.9998	0.9994	0.9982	0.9959	0.9914	0.9838	0.9719	0.9543	0.9299
- []	8.7	1.0000	0.9998	0.9994	0.9984	0.9962	0.9921	0.9850	0.9738	0.9572	0.9340
H	8.8	1.0000	0.9998	0.9995	0.9985	0.9965	0.9927	0.9861	0.9756	0.9599	0.9379
- 11	8.9	1.0000	0.9999	0.9995	0.9986	0.9968	0.9932	0.9871	0.9772	0.9624	0.9416
- 11	9	1.0000	0.9999	0.9996	0.9988	0.9971	0.9938	0.9880	0.9788	0.9648	0.9450
- 11	9.1	1.0000	0.9999	0.9996	0.9989	0.9973	0.9942	0.9889	0.9802	0.9671	0.9483
- 11	9.2	1.0000	0.9999	0.9996	0.9990	0.9975	0.9947	0.9897	0.9816	0.9692	0.9514
- 11	9.3	1.0000	0.9999	0.9997	0.9991	0.9977	0.9951	0.9905	0.9828	0.9712	0.9544
Ш	9.4	1.0000	0.9999	0.9997	0.9991	0.9979	0.9955	0.9912	0.9840	0.9731	0.9571
Ш	9.5	1.0000	0.9999	0.9997	0.9992	0.9981	0.9958	0.9918	0.9851	0.9748	0.9597
	9.6	1.0000	0.9999	0.9998	0.9993	0.9982	0.9962	0.9924	0.9862	0.9765	0.9622
	9.7	1.0000	0.9999	0.9998	0.9993	0.9984	0.9965	0.9930	0.9871	0.9780	0.9645
Ш	9.8	1.0000	0.9999	0.9998	0.9994	0.9985	0.9967	0.9935	0.9880	0.9795	0.9667
Ш	9.9	1.0000	0.9999	0.9998	0.9995	0.9986	0.9970	0.9940	0.9889	0.9808	0.9688
Ш	10	1.0000	1.0000	0.9998	0.9995	0.9988	0.9972	0.9944	0.9897	0.9821	0.9707
		•									

Relation : $H(x; \alpha, \beta) = H(x\beta; \alpha, 1)$. Exemple : H(0.5; 0.5, 10) = H(5; 0.5, 1) = 0.9984.

8.2 Fonction quantile

Tableau 7 – Valeurs de la fonction quantile d'une v.a. $X \sim \mathrm{Gamma}(\alpha,1)$ à $\kappa \in [0.01,0.50]$

Г	$\kappa \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Г	0.01	0.0001	0.0101	0.0574	0.1486	0.2771	0.4360	0.6195	0.8232	1.0440	1.2791
1	0.02	0.0003	0.0202	0.0924	0.2147	0.3759	0.5672	0.7821	1.0162	1.2662	1.5295
1	0.03	0.0007	0.0305	0.1225	0.2675	0.4515	0.6648	0.9008	1.1550	1.4242	1.7060
1	0.04	0.0013	0.0408	0.1501	0.3136	0.5157	0.7462	0.9986	1.2683	1.5523	1.8483
1	0.05	0.0020	0.0513	0.1759	0.3554	0.5727	0.8177	1.0837	1.3663	1.6626	1.9701
1	0.06	0.0028	0.0619	0.2006	0.3942	0.6250	0.8825	1.1602	1.4540	1.7607	2.0784
1	0.07	0.0039	0.0726	0.2244	0.4308	0.6736	0.9423	1.2305	1.5341	1.8502	2.1767
- 1	0.08	0.0050	0.0834	0.2475	0.4657	0.7195	0.9984	1.2961	1.6086	1.9331	2.2675
	0.09	0.0064	0.0943	0.2700	0.4993	0.7632	1.0514	1.3578	1.6785	2.0107	2.3524
1	0.1	0.0079	0.1054	0.2922	0.5318	0.8052	1.1021	1.4166	1.7448	2.0841	2.4326
	0.11	0.0096	0.1165	0.3140	0.5634	0.8456	1.1507	1.4727	1.8080	2.1540	2.5088
	0.12	0.0114	0.1278	0.3355	0.5942	0.8849	1.1976	1.5268	1.8687	2.2210	2.5817
1	0.13	0.0134	0.1393	0.3568	0.6244	0.9231	1.2431	1.5791	1.9273	2.2854	2.6518
1	0.14	0.0156	0.1508	0.3779	0.6540	0.9604	1.2874	1.6298	1.9840	2.3478	2.7194
1	0.15	0.0179	0.1625	0.3989	0.6832	0.9969	1.3306	1.6791	2.0391	2.4083	2.7850
1	0.16	0.0204	0.1744	0.4197	0.7120	1.0328	1.3729	1.7274	2.0928	2.4671	2.8488
	0.17	0.0230	0.1863	0.4405	0.7405	1.0681	1.4144	1.7745	2.1453	2.5246	2.9109
1	0.18	0.0259	0.1985	0.4612	0.7687	1.1029	1.4552	1.8208	2.1967	2.5808	2.9717
1	0.19	0.0289	0.2107	0.4819	0.7966	1.1373	1.4954	1.8663	2.2472	2.6359	3.0312
1	0.2	0.0321	0.2231	0.5026	0.8244	1.1713	1.5350	1.9112	2.2968	2.6900	3.0895
1	0.21	0.0355	0.2357	0.5233	0.8520	1.2049	1.5742	1.9554	2.3457	2.7433	3.1469
1	0.22	0.0390	0.2485	0.5439	0.8794	1.2383	1.6130	1.9990	2.3939	2.7958	3.2034
	0.23	0.0427	0.2614	0.5647	0.9068	1.2715	1.6514	2.0422	2.4415	2.8476	3.2592
	0.24	0.0467	0.2744	0.5854	0.9341	1.3045	1.6895	2.0850	2.4886	2.8988	3.3142
	0.25	0.0508	0.2877	0.6063	0.9613	1.3373	1.7273	2.1274	2.5353	2.9494	3.3686
-	0.26	0.0551	0.3011	0.6272	0.9885	1.3700	1.7649	2.1695	2.5816	2.9996	3.4225
-	0.27	0.0596	0.3147	0.6482	1.0157	1.4026	1.8023	2.2114	2.6275	3.0494	3.4758
	0.28	0.0642	0.3285	0.6693	1.0428	1.4351	1.8396	2.2530	2.6732	3.0988	3.5288
-	0.29	0.0691	0.3425	0.6905	1.0701	1.4675	1.8767	2.2944	2.7185	3.1478	3.5814
-	0.3	0.0742	0.3567	0.7118	1.0973	1.5000	1.9138	2.3357	2.7637	3.1967	3.6336
-	0.31	0.0795	0.3711	0.7333	1.1247	1.5324	1.9508	2.3768	2.8087	3.2452	3.6856
-	0.32	0.0851	0.3857	0.7549	1.1521	1.5648	1.9877	2.4179	2.8536	3.2937	3.7373
-	0.33	0.0908	0.4005	0.7767	1.1796	1.5973	2.0247	2.4589	2.8983	3.3419	3.7889
	0.34	0.0968	0.4155	0.7987	1.2073	1.6299	2.0616	2.4998	2.9430	3.3901	3.8403
	0.35	0.1030	0.4308	0.8208	1.2350	1.6626	2.0986	2.5408	2.9876	3.4381	3.8916
	0.36	0.1094	0.4463	0.8431	1.2630	1.6953	2.1357	2.5818	3.0323	3.4862	3.9429
	0.37	0.1160	0.4620	0.8656	1.2910	1.7282	2.1729	2.6229	3.0769	3.5342	3.9940
	0.38	0.1229	0.4780	0.8884	1.3193	1.7612	2.2101	2.6640	3.1216	3.5822	4.0452
	0.39	0.1301	0.4943	0.9114	1.3478	1.7944	2.2475	2.7053	3.1664	3.6303	4.0965
	0.4	0.1375	0.5108	0.9346	1.3764	1.8277	2.2851	2.7466	3.2113	3.6785	4.1477
	0.41	0.1452	0.5276	0.9581	1.4053	1.8613	2.3228	2.7881	3.2563	3.7268	4.1991
	0.42	0.1531	0.5447	0.9818	1.4344	1.8951	2.3607	2.8298	3.3015	3.7752	4.2506
	0.43	0.1613	0.5621	1.0058	1.4638	1.9291	2.3989	2.8717	3.3469	3.8239	4.3023
	0.44	0.1699	0.5798	1.0301	1.4935	1.9634	2.4373	2.9139	3.3925	3.8727	4.3541
	0.45	0.1787	0.5978	1.0547	1.5235	1.9980	2.4759	2.9563	3.4383	3.9217	4.4062
1	0.46	0.1878	0.6162	1.0797	1.5537	2.0328	2.5149	2.9989	3.4844	3.9710	4.4585
	0.47	0.1972	0.6349	1.1050	1.5844	2.0680	2.5541	3.0419	3.5308	4.0206	4.5111
	0.48	0.2069	0.6539	1.1306	1.6153	2.1036	2.5937	3.0852	3.5775	4.0705	4.5640
	0.49	0.2170	0.6733	1.1566	1.6466	2.1394	2.6337	3.1289	3.6246	4.1208	4.6173
L	0.5	0.2275	0.6931	1.1830	1.6783	2.1757	2.6741	3.1729	3.6721	4.1714	4.6709

Tableau 8 – Valeurs de la fonction quantile d'une v.a. $X \sim \text{Gamma}(\alpha, 1)$ à $\kappa \in [0.51, 0.99]$

$\kappa \backslash \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.51	0.2383	0.7133	1.2098	1.7105	2.2124	2.7148	3.2174	3.7199	4.2225	4.7250
0.52	0.2494	0.7340	1.2370	1.7430	2.2496	2.7560	3.2623	3.7683	4.2740	4.7795
0.53	0.2610	0.7550	1.2647	1.7761	2.2872	2.7977	3.3077	3.8171	4.3260	4.8345
0.54	0.2729	0.7765	1.2929	1.8096	2.3253	2.8399	3.3536	3.8664	4.3785	4.8900
0.55	0.2853	0.7985	1.3215	1.8436	2.3639	2.8826	3.4000	3.9163	4.4316	4.9461
0.56	0.2981	0.8210	1.3507	1.8781	2.4030	2.9259	3.4470	3.9667	4.4853	5.0028
0.57	0.3114	0.8440	1.3804	1.9132	2.4428	2.9698	3.4946	4.0178	4.5396	5.0602
0.58	0.3252	0.8675	1.4107	1.9489	2.4832	3.0143	3.5429	4.0696	4.5946	5.1182
0.59	0.3394	0.8916	1.4416	1.9853	2.5242	3.0595	3.5919	4.1220	4.6503	5.1770
0.6	0.3542	0.9163	1.4731	2.0223	2.5659	3.1054	3.6416	4.1753	4.7068	5.2366
0.61	0.3695	0.9416	1.5053	2.0600	2.6084	3.1521	3.6921	4.2293	4.7642	5.2971
0.62	0.3854	0.9676	1.5382	2.0985	2.6516	3.1995	3.7435	4.2842	4.8224	5.3584
0.63	0.4018	0.9943	1.5718	2.1378	2.6957	3.2479	3.7957	4.3400	4.8816	5.4207
0.64	0.4189	1.0217	1.6063	2.1779	2.7407	3.2971	3.8489	4.3968	4.9417	5.4841
0.65	0.4367	1.0498	1.6416	2.2188	2.7865	3.3474	3.9031	4.4547	5.0030	5.5486
0.66	0.4552	1.0788	1.6777	2.2608	2.8334	3.3987	3.9583	4.5136	5.0654	5.6142
0.67	0.4744	1.1087	1.7148	2.3037	2.8813	3.4510	4.0147	4.5738	5.1290	5.6811
0.68	0.4945	1.1394	1.7529	2.3477	2.9304	3.5046	4.0724	4.6352	5.1940	5.7494
0.69	0.5153	1.1712	1.7921	2.3929	2.9807	3.5594	4.1314	4.6980	5.2603	5.8191
0.7	0.5371	1.2040	1.8324	2.4392	3.0322	3.6156	4.1917	4.7622	5.3282	5.8904
0.71	0.5598	1.2379	1.8740	2.4869	3.0851	3.6732	4.2536	4.8280	5.3977	5.9633
0.72	0.5835	1.2730	1.9168	2.5359	3.1396	3.7323	4.3171	4.8955	5.4689	6.0380
0.73	0.6084	1.3093	1.9610	2.5865	3.1956	3.7932	4.3823	4.9648	5.5420	6.1147
0.74	0.6344	1.3471	2.0068	2.6387	3.2533	3.8558	4.4494	5.0361	5.6171	6.1934
0.75	0.6617	1.3863	2.0542	2.6926	3.3128	3.9204	4.5186	5.1094	5.6944	6.2744
0.76	0.6903	1.4271	2.1033	2.7485	3.3744	3.9871	4.5899	5.1851	5.7740	6.3579
0.77	0.7204	1.4697	2.1544	2.8063	3.4382	4.0561	4.6637	5.2632	5.8563	6.4440
0.78	0.7522	1.5141	2.2075	2.8665	3.5043	4.1276	4.7400	5.3441	5.9414	6.5330
0.79	0.7857	1.5606	2.2629	2.9290	3.5730	4.2018	4.8193	5.4279	6.0295	6.6253
0.8	0.8212	1.6094	2.3208	2.9943	3.6446	4.2790	4.9016	5.5150	6.1211	6.7210
0.81	0.8588	1.6607	2.3815	3.0625	3.7194	4.3596	4.9875	5.6058	6.2163	6.8206
0.82	0.8988	1.7148	2.4452	3.1341	3.7976	4.4438	5.0771	5.7005	6.3158	6.9244
0.83	0.9415	1.7720	2.5123	3.2092	3.8797	4.5321	5.1711	5.7996	6.4198	7.0330
0.84	0.9871	1.8326	2.5833	3.2885	3.9662	4.6250	5.2698	5.9038	6.5290	7.1470
0.85	1.0361	1.8971	2.6585	3.3724	4.0576	4.7231	5.3739	6.0135	6.6440	7.2670
0.86	1.0890	1.9661	2.7387	3.4616	4.1546	4.8270	5.4842	6.1297	6.7657	7.3938
0.87	1.1463	2.0402	2.8244	3.5569	4.2580	4.9377	5.6016	6.2532	6.8949	7.5285
0.88	1.2087	2.1203	2.9167	3.6591	4.3688	5.0562	5.7271	6.3852	7.0330	7.6722
0.89	1.2771	2.2073	3.0167	3.7695	4.4883	5.1838	5.8621	6.5271	7.1813	7.8266
0.9	1.3528	2.3026	3.1257	3.8897	4.6182	5.3223	6.0085	6.6808	7.3418	7.9936
0.91 0.92	1.4372 1.5325	2.4079 2.5257	3.2457 3.3793	4.0217	4.7605	5.4740	6.1686	6.8487	7.5171 7.7105	8.1758
0.92	1.5325	2.6593	3.5302	4.1683 4.3332	4.9183 5.0955	5.6417 5.8300	6.3456 6.5439	7.0342 7.2418	7.7105	8.3767 8.6013
0.93	1.7687	2.8134	3.7034	4.5332	5.2981	6.0448	6.7699	7.2418	8.1730	8.8566
0.94	1.7687	2.8134	3.9074	4.7439	5.5352	6.2958	7.0336	7.4782	8.4595	9.1535
0.95	2.1089	3.2189	4.1556	5.0128	5.8222	6.2958	7.0556	8.0854	8.8041	9.1535
0.96	2.1089	3.5066	4.1556	5.3559	6.1873	6.9838	7.7545	8.5052	9.2398	9.5104
0.97	2.7059	3.9120	4.4736	5.8339	6.6941	7.5166	8.3112	9.0841	9.2398	10.5804
0.98	3,3174	4.6052	5.6724		7.5431	8.4059	9.2377	10.0451	10.8330	11.6046
0.99	3.31/4	4.6052	3.6/24	6.6384	7.5451	8.4059	9.23//	10.0451	10.8550	11.6046

9 Tables de la loi de Poisson

9.1 Fonction de répartition

Tableau 9 – Valeurs de la fonction de répartition de la v.a. $X \sim Pois(\lambda)$

$-k \lambda$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.6065	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.9098	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9856	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9982	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9998	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	1.0000	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8	1.0000	1.0000	1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

9.2 Fonction stop-loss

Tableau 10 – Valeurs de la fonction stop-loss de la v.a. $X \sim Pois(\lambda)$

$k \lambda$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.5000	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	4.0000	4.5000	5.0000
1	0.1065	0.3679	0.7231	1.1353	1.5821	2.0498	2.5302	3.0183	3.5111	4.0067
2	0.0163	0.1036	0.2810	0.5413	0.8694	1.2489	1.6661	2.1099	2.5722	3.0472
3	0.0019	0.0233	0.0898	0.2180	0.4132	0.6721	0.9869	1.3480	1.7458	2.1718
4	0.0002	0.0043	0.0242	0.0751	0.1708	0.3194	0.5236	0.7815	1.0881	1.4368
5	0.0000	0.0007	0.0056	0.0225	0.0619	0.1346	0.2490	0.4103	0.6202	0.8773
6	0.0000	0.0001	0.0011	0.0059	0.0199	0.0507	0.1066	0.1954	0.3231	0.4933
7	0.0000	0.0000	0.0002	0.0014	0.0057	0.0172	0.0413	0.0848	0.1542	0.2555
8	0.0000	0.0000	0.0000	0.0003	0.0015	0.0053	0.0146	0.0336	0.0676	0.1221
9	0.0000	0.0000	0.0000	0.0001	0.0004	0.0015	0.0047	0.0123	0.0273	0.0540
10	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0014	0.0041	0.0102	0.0222
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0013	0.0036	0.0085
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0012	0.0030
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0010
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

10 Table de la loi du khi-deux

Tableau 11 – Valeurs critiques calculées pour la loi du khi-deux et avec un niveau de confiance de 5% (note : valeur critique à $5\% = F_Z^{-1}(0.95)$, où Z obéit à une loi du khi-deux

Degrés de liberté	$\mathbf{F_{Z}^{-1}}(0.95)$
1	3.841458821
2	5.991464547
3	7.814727903
4	9.487729037
5	11.070497694
6	12.591587244
7	14.067140449
8	15.507313056
9	16.918977605
10	18.307038053
11	19.675137573
12	21.026069817
13	22.362032495
14	23.684791305
15	24.995790140
16	26.296227605
17	27.587111638
18	28.869299430
19	30.143527206
20	31.410432844