需要関数の推定 #2

Takahiro KONNO

BLP (1995)

Berry, Levinsohn, and Pakes (1995)

● 効用関数を以下のように設定。

$$u_{ij} = X_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij}$$

- 係数が消費者によって異なる。
- 消費者間で、 α_i 、 β_i はiidな確率変数であることを仮定。
- よく使う仮定は、確率変数が多変量正規分布:

$$(\alpha_i, \beta_i)' \sim N\left((\bar{\alpha}, \bar{\beta})', \Sigma\right)$$

• $\bar{\alpha}, \bar{\beta}, \Sigma$ も推定しなければならない。

- Mean utility が $\delta_j=X_iar{\beta}-\bar{\alpha}p_j+\xi_j$ であることを用いると、 $u_{ij}=\delta_j+\epsilon_{ij}+(\beta_j-\bar{\beta})X_j-(\alpha_i-\bar{\alpha})p_j$
- このとき、Logit inversion はうまくいかない。
- Berry, Levinsohn, Pakes(1995)がこの解決方法を提示した。

 α_i, β_i に対して、消費者 i の選択確率は、

$$Pr(i,j) = \frac{exp(X_{j}\beta_{i} - \alpha_{i}p_{j} + \xi_{j})}{1 + \sum_{j'=1}^{J} exp(X_{j'}\beta_{i} - \alpha_{i}p_{j'} + \xi_{j'})}$$

集計シェアは、

$$\tilde{s}_{j} = \iint Pr(i,j)dG(\alpha_{i},\beta_{i}) = \iint \frac{exp(X_{j}\beta_{i} - \alpha_{i}p_{j} + \xi_{j})}{1 + \sum_{j'=1}^{J} exp(X_{j'}\beta_{i} - \alpha_{i}p_{j'} + \xi_{j'})} dG(\alpha_{i},\beta_{i})$$

$$= \iint \frac{exp(\delta_{j} + (\beta_{i} - \bar{\beta})X_{j} - (\alpha_{i} - \bar{\alpha})p_{j})}{1 + \sum_{j'=1}^{J} exp(\delta_{j'} + (\beta_{i} - \bar{\beta})X_{j'} - (\alpha_{i} - \bar{\alpha})p_{j'})} dG(\alpha_{i},\beta_{i})$$

$$\equiv \tilde{s}_{j}^{RC}(\delta_{1}, ..., \delta_{J}; \bar{\alpha}, \bar{\beta}, \Sigma)$$

• 集計シェアは、 (α, β) の分布によってウェイト付された 全消費者のPr(i,j)の積分となる。 今回はJ本の方程式に対し未知のパラメータが J+3 個ある。 よって今回はBerry(1994)の Inversion を行うことはできない。

多重積分は計算が難しい。BLPではシミュレーションを用いて積分計算を行う。

• すべての $\bar{\alpha}, \bar{\beta}, \Sigma$ に対して $\tilde{s_j}^{RC}$ を計算できると仮定する。

- GMMで推定を行う。 使用するモーメント条件は $E(\xi Z_m)=0$
- $\theta \equiv (\bar{\alpha}, \bar{\beta}, \Sigma)$ とすると、標本モーメント条件は

$$m_{m,J}(\theta) \equiv \frac{1}{J} \sum_{i=1}^{J} (\delta_j - X_j \bar{\beta} + \bar{\alpha} p_j) Z_{mj}$$

θ は標本モーメント関数の二次式の最小化問題で 推定できる。

$$\min_{\theta} Q_J(\theta) \equiv [m_{m,J}(\theta)]'_m W_J[m_{m,J}(\theta)]_m$$

ullet W_j は、 $M \times M$ のウェイト行列。

• $\delta_1,...,\delta_J$ を計算するために "inner loop" を "outer loop" で ネストした "nested" estimation algorithm を使う。

• outer loopでは、異なる値のパラメータで繰り返し計算を行う。 $\hat{\theta}$ は、その時に検討されている値。

inner loopでは、与えられた $\hat{\theta}$ に対して $Q(\hat{\theta})$ を求める。

1. まず、所与の $\hat{\theta}$ に対して連立方程式を解き、

$$\delta_1(\hat{ heta}),...,\delta_J(\hat{ heta})$$
 の値を得る。

$$\hat{s_1} = \tilde{s_1}^{RC}(\delta_1, ..., \delta_J; \hat{\theta})$$

$$\vdots$$

$$\hat{s_J} = \tilde{s_J}^{RC}(\delta_1, ..., \delta_J; \hat{\theta})$$

- 2. $\delta_1(\hat{\theta}), ..., \delta_J(\hat{\theta})$ の結果から、 $Q(\hat{\theta}) \equiv [m_{m,J}(\hat{\theta})]'_m W_J [m_{m,J}(\hat{\theta})]_m \quad を計算する。$
- その後、outer loop に戻る。 outer loop では、上式を最小にする $\hat{\theta}$ の値を見つけるまで サーチする。

Note: 識別のための必要条件

● 識別のための必要条件は、

$$M = dim(\vec{Z}) \ge dim(\theta) > dim(\alpha, \beta) = dim([X, p])$$

 Coefficients \(\Sigma\) がランダム係数と独立でないので、 もし価格の内生性の問題がないとしても、
 パラメータを推定するためには操作変数が必要。

Estimation Equilibrium: Both demand and supply side

- Random coefficient モデルに供給サイドを導入する。
- 限界費用は一定。コスト要因に対して線形を仮定する。

$$C_1^j = c^j \equiv w_j \gamma + \omega_j$$

最適反応の条件は、

$$D^{j} + \sum_{j' \in \mathcal{K}} \frac{\partial D^{j'}}{\partial p_{j}} (p_{j'} - c^{j}) = 0$$

• $E(\omega U) = 0$ となるような操作変数 U_j を持っていると仮定。この操作変数はDemand shifter である。

Objective function に供給サイドのモーメント条件を追加。

$$Q(\theta, \gamma) = G_J(\theta, \gamma)' W_j G_J(\theta, \gamma)$$

 \bullet G_J は、M+N 次元ベクトル。

$$G_{J}(\theta,\gamma) \equiv \begin{bmatrix} \frac{1}{J} \sum_{i=1}^{J} (\delta_{j} - X_{j}\bar{\beta} + \bar{\alpha}p_{j})z_{1j} \\ \vdots \\ \frac{1}{J} \sum_{i=1}^{J} (\delta_{j} - X_{j}\bar{\beta} + \bar{\alpha}p_{j})z_{Mj} \\ \frac{1}{J} \sum_{i=1}^{J} (c_{j}(\theta) - w_{j}\gamma)u_{1j} \\ \vdots \\ \frac{1}{J} \sum_{i=1}^{J} (c_{j}(\theta) - w_{j}\gamma)u_{Nj} \end{bmatrix}$$

Mは需要サイドの操作変数の数。

Nは供給サイドの操作変数の数。

$$M + N \ge dim(\theta) + dim(\gamma)$$

- Inner loop では、所与の $\hat{\theta}$, $\hat{\gamma}$ に対して、 $Q(\hat{\theta}, \hat{\gamma})$ を評価する。
- 1. まず、所与の $\hat{\theta}$ に対して、 $\delta_1(\hat{\theta}),...,\delta_J(\hat{\theta})$ を求める。

2.
$$\delta_1(\hat{\theta}), ..., \delta_J(\hat{\theta})$$
 $\boldsymbol{\varepsilon}$,
$$\vec{s_j}^{RC}(\hat{\theta}) \equiv \left(\tilde{s_1}^{RC}(\delta(\hat{\theta})), ..., \tilde{s_J}^{RC}(\delta(\hat{\theta}))\right)'$$

と、偏微係数行列

$$D(\hat{\theta}) = \begin{pmatrix} \frac{\partial s_1^{RC}(\delta(\hat{\theta}))}{\partial p_1} & \frac{\partial s_1^{RC}(\delta(\hat{\theta}))}{\partial p_2} & \cdots & \frac{\partial s_1^{RC}(\delta(\hat{\theta}))}{\partial p_J} \\ \frac{\partial s_2^{RC}(\delta(\hat{\theta}))}{\partial p_1} & \frac{\partial s_2^{RC}(\delta(\hat{\theta}))}{\partial p_2} & \cdots & \frac{\partial s_2^{RC}(\delta(\hat{\theta}))}{\partial p_J} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial s_J^{RC}(\delta(\hat{\theta}))}{\partial p_1} & \frac{\partial s_J^{RC}(\delta(\hat{\theta}))}{\partial p_2} & \cdots & \frac{\partial s_J^{RC}(\delta(\hat{\theta}))}{\partial p_J} \end{pmatrix}$$
を計算する。

Multinomial Logit ならばこれらの偏微係数は、

$$\frac{\partial s_j}{\partial p_k} = \begin{cases} -\alpha s_j (1 - s_j) & \text{for } j = k \\ -\alpha s_j s_k & \text{for } j \neq k \end{cases}$$

3. 供給サイドの最適反応の下式から $c_1(\hat{ heta}),...,c_J(\hat{ heta})$ を求める。

$$\vec{s_j}^{RC}(\hat{\theta}) + D(\hat{\theta}) * \begin{pmatrix} p_1 - c^1 \\ \vdots \\ p_J - c^J \end{pmatrix} = 0$$

4. $G(\hat{\theta}, \hat{\gamma})$ を計算する。

- s = 1,2,...,S 個のシミュレーション
- 1. u_1^s, u_2^s を独立に N(0,1) からドローする。
- 2. 所与の推定パラメータ $\hat{\alpha}$, $\hat{\beta}$, $\hat{\Sigma}$ に対して、以下の変換を行い (u_1^s,u_2^s) を $N((\hat{\alpha},\hat{\beta}),\hat{\Sigma})$ からのドローに変換する。

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \hat{\bar{\alpha}} \\ \hat{\bar{\beta}} \end{pmatrix} + \hat{\Sigma}^{1/2} \begin{pmatrix} u_1^s \\ u_2^s \end{pmatrix}$$

 $\hat{\Sigma}^{1/2}$ は、行列 $\hat{\Sigma}$ のCholesky分解。

正則対称行列 Γ のCholesky分解は、 $G'G = \Gamma$ を満たすような三角行列である。ここでは下側の三角行列を使う。

● ドローを通して、積分を標本平均で近似することができる。

$$\mathcal{E}(\hat{\bar{\alpha}}, \hat{\bar{\beta}}, \hat{\Sigma}) \approx \frac{1}{S} \sum_{s=1}^{S} \frac{exp(\delta_j + (\beta^s - \hat{\bar{\beta}})X_j - (\alpha^s - \hat{\bar{\alpha}})p_j)}{1 + \sum_{j'=1}^{J} exp(\delta_{j'} + (\beta^s - \hat{\bar{\beta}})X_{j'} - (\alpha^s - \hat{\bar{\alpha}})p_{j'})}$$

• 所与の $\hat{\alpha}$, $\hat{\beta}$, $\hat{\Sigma}$ に対してこの近似が正確であることは、 大数の法則によって保証される。

積分シミュレーション

シミュレーションの原則:期待値は、標本平均で近似することができる。

$$\mathcal{E} \equiv E_G \left[\frac{exp(\delta_j + (\beta_i - \bar{\beta})X_j - (\alpha_i - \bar{\alpha})p_j)}{1 + \sum_{j'=1}^{J} exp(\delta_{j'} + (\beta_i - \bar{\beta})X_{j'} - (\alpha_i - \bar{\alpha})p_{j'})} | \bar{\alpha}, \bar{\beta}, \Sigma \right]$$

 α_i, β_i は確率変数で、これは多変量正規分布 $N((\bar{\alpha}, \bar{\beta})', \Sigma)$ から取り出せると仮定する。

BLPアルゴリズム

Random Coefficient (BLP)

● 間接効用関数

$$u_{ijt} = x_{jt}\beta_i + \alpha_i p_{jt} + \xi_{jt} + \epsilon_{ijt}$$

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \hat{\bar{\alpha}} \\ \hat{\bar{\beta}} \end{pmatrix} + \underbrace{\Pi D_i + \Sigma_{\nu_i}}_{\theta_2 = (\Pi, \Sigma_{\nu_i})}$$

● 間接効用関数を2つの部分に分ける。

$$u_{ijt} = \underbrace{\delta(x_{jt}, p_{jt}, \xi_{jt}; \theta_1)}_{Mean} + \underbrace{\mu(x_{jt}, p_{jt}, D_i, \nu_i; \theta_2)}_{HHDeviationsfromMean} + \epsilon_{ijt}$$

- $\delta_{jt} = x_{jt}\beta + \alpha p_{jt} + \xi_{jt} \, \boldsymbol{\xi}_{\bullet} \, \mu_{ijt} = (p_{jt} \, x_{jt})(\Pi D_i + \Sigma_{\nu_i})$
- 解析的に δ_{jt} を計算することはできない。

BLP Algorithm

1. 消費者のセットに対して ν_i (と必要なら D_i)を ドローする。Homogeneous Logit から δ_{jt} の初期値を得る。

- 2. シェアを予測する。
 - ・ 所与の $heta_2$ に対して HH Deviations from Mean を計算する。 $\mu(x_{jt},p_{jt},D_i,
 u_i; heta_2)$
 - 所与の平均効用 δ_t と θ_2 に対して予測シェアを計算する。 $\tilde{\sigma_j}(\delta_t, x_t, p_t; \theta_2)$

- 3. Contraction Mapping: 所与の非線形パラメータ θ_2 に対して、 $s_{jt} = \sigma_j(\delta_t, x_t, p_t; \theta_2)$ を満たすような δ_t を探索する。
- 4. δ_t から解析的に線形パラメータを推定する。 GMMの目的関数 $Q(\theta_2)$ を求める。
- 5. $Q(\theta_2)$ を θ_2 に関して最小化する。 θ_2 の試行ごとに、各Step2-4 をネストする。

Step1: Simulating HH draws

• ν_i と D_i はそれぞれの分布 $F_{\nu}^*(\nu), F_D^*(D)$ から発生させる。

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \underbrace{\begin{pmatrix} \hat{\alpha} \\ \hat{\beta} \end{pmatrix}}_{\theta_1} + \underbrace{\Pi D_i + \Sigma_{\nu_i}}_{\theta_2 = (\Pi, \Sigma_{\nu_i})}$$

● ∑はHomogeneous Logitの分散行列のCholesky分解。

ⅡはHomogeneous Logitの係数行列。

Step2: Computing market shares

● ロジット、入れ子ロジットのときは、解析的に解ける。

● ランダム係数の場合は、シミュレーションで積分計算。

$$\sigma_{jt} \approx \frac{1}{NS} \sum_{i=1}^{NS} \frac{exp(\delta_{jt} + (p_{jt} \ x_{jt})(\Pi D_i + \nu_i))}{\sum_{k=0}^{J} exp(\delta_{kt} + (p_{kt} \ x_{kt})(\Pi D_i + \nu_i))}$$

Step3: Contraction Mapping

ロジットと入れ子ロジットでは、平均効用deltaを解析的に 求められる。

$$ln(s_{jt}) - ln(s_{0t}) = \delta_{jt} - \delta_{0t} = X'_j \beta - \alpha p_j + \xi_j + \epsilon_{ij}$$

$$ln(s_{jt}) - ln(s_{0t}) = \delta_{jt} - \delta_{0t} = X'_j \beta - \alpha p_j + \sigma ln(s_{jt}/s_{Gt}) + \xi_j + \epsilon_{ij}$$

● ランダム係数では、Contraction Mapping が必要。

収束するまで $(\delta_t^{h+1} = \delta_t^h < Tolerance)$ 繰り返し計算をする。

$$\delta_t^{h+1} = \delta_t^h + \ln(s_t) - \ln(\sigma_t^h(\delta_t^h, x_t, p_t, F_{NS}; \theta_2), h = 1, ..., H$$

Step4: Estimate parameters in two steps

A. 所与の $\delta_t(\theta_2)$ に対して、 θ_1 を推定し ξ_{jt} を計算する。 $\theta_1 = (X'ZWZ'X)^{-1}(X'ZWZ'\delta)$ $\xi_{jt}(\theta_2) = \delta_{jt} - x_{jt}\beta - \alpha p_{jt}$

B. GMM目的関数を求める。 $\xi(\theta)'ZWZ'\xi(\theta)$

ただしWはGMM weight matrixで、

$$(E((\xi(\theta)'Z)'(Z'\xi(\theta))))^{-1}$$

Wはθに依存。初期値W=Iとして繰り返し更新していく。 実行上は、Homogeneous Logit の結果を使えばよい。

Step5: Optimizing over θ_2

Step4 で得られた GMM目的関数を最小化する。 $\min_{\theta_2} \xi(\theta)' ZW Z' \xi(\theta)$

最適化ツールは関数を繰り返し呼び出すので、Step2 - Step4 を関数内で実行すればネストされる。

推定するパラメータの初期値を与える

パラメータの更新

BLP推定値を得る

BLPアルゴリズムを実行してみる

	mean	sigma	income	income^2	age	child
со	nstant -2.6797	0.3195	4.1266	0	0.2311	0
	0.2249	0.1171	0.9766	0	0.3442	0
	ice -30.5981	2.3351	16.4214	-0.8937	0	2.9625
	7.1174	0.8487	156.0640	8.0705	0	3.5366
su	gar 0.1197	0.0158	-0.2319	0	0.0576	0
	0.2249	0.0093	0.0355	0	0.0235	0
mu	shy -0.2941	0.2335	1.4380	0	-0.8770	0
	0.0130	0.1427	0.4847	Ø	0.4988	0

GMM objective: 23.4556 MD R-squared: 0.4976

MD weighted R-squared: 0.062216 run time (minutes): 0.48567