ISE429, Optional sampling (stopping) theorems

Theorem 1 [Optional sampling (stopping) theorem 1]. Suppose, $\{M_n, n = 0, 1, ...\}$ is a martingale w.r.t. filtration $\{\mathcal{F}_n\}$. Suppose, T is a stopping time. Suppose, $T \leq K$ for some constant K. Then $EM_T = EM_0$.

Theorem 2 [Optional sampling (stopping) theorem 2]. Suppose, $\{M_n, n = 0, 1, ...\}$ is a martingale w.r.t. filtration $\{\mathcal{F}_n\}$. Suppose, T is a stopping time, $P\{T < \infty\} = 1$. Suppose, $E|M_T| < \infty$ and $\lim_{n\to\infty} E[|M_n|I\{T > n\}] = 0$. Then $EM_T = EM_0$.

Theorem 3 [Optional sampling (stopping) theorem 3]. Suppose, $\{M_n, n = 0, 1, ...\}$ is a uniformly integrable martingale w.r.t. filtration $\{\mathcal{F}_n\}$. Suppose, T is a stopping time, $P\{T < \infty\} = 1$. Suppose, $E|M_T| < \infty$. (This condition can be dropped; but we only proved this theorem with it.) Then $EM_T = EM_0$.