* Vector -> Direction + Value (Displacement, flow of fluid)

Scalar > only value. (Mass, work, Energy, Frequency)
Electric charge)

vector torm

$$\bar{\alpha} = xi + yj$$

*
$$Q(1,-1,3) \Rightarrow \bar{a} = i-j+3k$$

 $b(5,2,-3) \Rightarrow \bar{b} = 5i+2j-3k$

$$|-3| = 3$$

$$|-4| = 4$$

$$= (2 + b)^{2}$$

$$= (2 + b)^{2} + (4 - 4)^{2}$$

$$= (2 + b)^{2} + (4 - 4)^{2}$$

$$\rightarrow 00^2 = 00^2 + 00^2$$

= $x^2 + y^2$
: $00 = \sqrt{x^2 + y^2}$.

$$\rightarrow a(xy_1z) \Rightarrow |a| = \sqrt{x^2+y^2+z^2}$$


```
* It = (sino, coso) then |E|= -
* Unit Vector! - It Modulus of vector is unit then given
  Vector is called Unit Vector. |al=1.
* Unit vector of a :- \a = a
* It a = i-3k+i then tind unit Vector of a.
     台= (点,点)
-> For verification: - Vx2+y2+2 = 1.
* It \ \ = 3i-j+4k then tind Unit Vector of \ \ \ \ \ \.
          * Addition & substraction of vector
\rightarrow \bar{\alpha} = (x_1, y_1, z_1) \quad \bar{b} = (x_2, y_2, z_2)
atb= (x1, y1, Z1) + (x2, y2, Z2)
    = (x1+x2, 41+42, 21+22)
* It a = i-3j+5k and b=4i+j-2k then tind (i) a+b1ii) a-b
(iii) 2ā +36 (iv) 3ā -26.
\rightarrow ci) \bar{a}+\bar{b}=(5,-2,3) (111) 2\bar{a}+3\bar{b}=(14,-3,4)
    (ii) \bar{a} - \bar{b} = (-3, -4, \bar{4}) (14) 3\bar{a} - 2\bar{b} = (-5, -11, 19)
* It a = j+k-i and b = 2i+j-3k then trind the value of laa+361.=3 Vio
* It a = (3,-1,-4), b = (-2,4,-3) and c = (-1,2,-5) then trud |a+25-c|.
* It a = i-2j+k, b = 2i+j+3k and i = -i+2j-3k then tind |2a-3b+i|.
* It a=(3,-1,-W, b=(-2,4,-3) and c=(-1,2,-1) then tind |3a-26+4c|
*It a= i-2j+4k, b=-3i+j-4k and c= i+2j-4k then tind (5a+3b+2c).
* It a = i+2i+k, b=2i-3j+k and == -2i-j+5k then tind 12a+3b-El.
* It a = 3i-2j+k, b = 2i-4j-3k and E = -i+2j+2k then tind
```

12 a-35-50 1= V30

* It $\bar{\alpha}=3i-j-4k$, $\bar{b}=-2i+4j-3k$ and $\bar{c}=i+2j-k$ then tind the direction cosine of vector $3\bar{\alpha}-2\bar{b}+4\bar{c}$.

- * It $\bar{a}=3i-j-4k$, $\bar{b}=-4i+4j-3k$ and $\bar{c}=-i+2j-5k$ then tind the direction cosine of $\bar{a}+2\bar{b}-\bar{c}$.
- * Multiplication of vectors
- * Dat product (ā.b) Scalar product
- * (ross product (axb) rector product
- * Dot product $\bar{a} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ $\bar{a} \cdot \bar{b} = (x_1, y_1, z_1) \cdot (x_2, y_2, z_2)$ $= x_1 x_2 + y_1 y_2 + z_1 z_2$.

* It $\bar{\alpha}=i-2i+k$ and $\bar{b}=3i+j+4k$ then find (i) $\bar{\alpha}\cdot\bar{b}$ (ii) $\bar{\alpha}\cdot(\bar{\alpha}+\bar{b})$.

* It \$\overline{\pi} = (1,-2,3) and \$\overline{\pi} = (-2,3,1) then trind (5\overline{\pi} + \overline{\pi}). (5\overline{\pi} - \overline{\pi}).

* It \(\in = (1, -2, 3) and \(\text{y} = (1, 2, -2) \) then trud (\(\times + \text{y} \). (\(\times - \text{y} \)).

* It a = (-4, 9, 6); b = (0,7,10) and T = (-1,6,6) then p. T.

* ヹ.ガスの

* · · (ダナ豆) = 元·ダナズ· 豆

*ええこの母文=0

レマ・ダ=ダ・文

* Angle between two Vectors

50 à

$$\rightarrow$$
 It $\overline{a} \cdot \overline{b} = 0$ then $\cos 0 = 0$ $0 = \cos^2 0 = 90$

* It ā.b=0 then ā and b are perpendicular to each other.

- * It a & b are perpendicular to each other then a-5=0.
- * sindo + ccsdo = 1
- * If $\bar{\chi} = (1,1,1)$ and $\bar{y} = (9,-1,-1)$ then P.T. $\bar{\chi}$ and \bar{y} are perpendicular to each other.
- * It $\bar{x} = (1, -2, -3)$ and $\bar{y} = (2, P, 4)$ then For what value of 'P'. \bar{x} and \bar{y} are perpendicular to each other. (P=-5)
- * Find x, It $\overline{a} = (2, -3, 5)$ and $\overline{b} = (x, -6, -8)$ are perpendicular to each other. (x = 11).
- * If 21+3j+k and Pi-j-3k are perpendicular to each other then trud 'P'. (P=3).
- * It (m, 2m, 4) and (m, -3,2) are perpendicular to each other then tind m. (m=4 or m=2)
- * Find the angle between two vectors (1,2,3) and (-2,3,1).
- * Find the angle between vectors (1,2,4) and (3,1,2).
- * prove that the angle between two vectors its-k and ai-2itk is sin 1 36
- * show that the angle between two vectors it is and it it + 3k is sin 146
- * prove that the angle between two vectors itej-3k and aitj-k is sint \(\frac{35}{84} \).
- * P.T. the angle between two vectors si+j+2k and 2i-2j+4k is sint of

* (9209S product ($\bar{a} \times \bar{b}$) $\bar{a} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ * $\bar{a} \times \bar{b} = (x_1, y_1, z_1)$ * $\bar{a} \times \bar{b} = (x_1, y_1,$

- * It a = i-i+3k and b=3i+2i-k then tind (i) axb (ii) bxa.
- * It a = pi-i and b = i+3i-ak then tind (i) [ax51 (ii) [ca+b) x (a-b)].
- * It \a = (2,-3,-1) and \b = (1,4,-3) then tind | (\a + \b) x (\a \b) |.
- * Simplify. (10i+2j+3k). [(1-2j+2k) x (3i-2j-2k)]

 Box product \bar{a} . (\bar{b} x \bar{c}). = $[\bar{a}$ \bar{b} \bar{c}] = $\begin{vmatrix} x_4 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$
- * Unit vector perpendicular to both vectors:
 - U. V. P. to both $\bar{a} + \bar{b} = \pm \frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|} \begin{cases} \bar{a} \perp (\bar{a} \times \bar{b}) \\ \bar{b} + (\bar{a} \times \bar{b}) \end{cases}$

- * It $\bar{x} = 3i-j+ak$ and $\bar{y} = ai+j-k$ then tind unit vector perpendicular to both vectors \bar{x} and \bar{y} . (-1, +, 5)
- * Find the unit vector perpendicular to both vectors $\overline{a} = (s, \overline{t}, -2)$ and $\overline{b} = (3, 1, -2)$. (-12, 4, -16)
- * Find the Unit Vector perpendicular to both vectors $\bar{a}=(1,2,3)$ and $\bar{b}=(-2,1,-2)$. (-7,-4,5)
- * Find the unit vector perpendicular to both vectors a= (3,1,2) and 5=(2,-2,4).
- * It $\bar{a} = 2i 3i + 4k$ and $\bar{b} = i i + k$ then tind unit vector perpendicular to $\bar{a} + \bar{b}$ and $\bar{a} \bar{b}$. (-2i 4i 2)
- * It = (1,1,1) and $\bar{y}=(2,-1,-1)$ then P.T. $\bar{\alpha}$ is perspendicular to \bar{y} . Also tind built vector perpendicular to both $\bar{\alpha}$ and \bar{y} .
- * work done by force: (W)

 [W=F.d], where F=Total torce F1+F2+F3+...

 d=Displacement d2-d1
- * The forces 3i-2j+k and -i-j+2k act on a particle and particle moves from the point (2,2,-3) to the point (-1,2,4) under the effect of these forces. Find the work done. (w=15 units)

- * The constant torces (1,2,3) and (3,1,2) act on a particle and . Particle moves from the point (0,1,-2) to the point (5,1,2). Find the work done. (w 40 units)
- * A particle moves from (-1,2,1) to (2,3,-1) under the effect of the torces (1,2,1) and (2,-1,0). Find coorle done. ($\omega=8$ Units)
- * The constant torses (1,2,3), (-1,2,3) and (-1,2,-3) act on a paraticle and under the effect of these torses particle move to the point (-1,3,2) train the point (0,1,-2). Find work done. $(\omega=25)$ units).
- The constant torces (1,2,3) and (3,1,1) act on a particle and particle moves from the point (0,1,-2) to the point (5,1,2), tind the work done. w=36 myt.
- * The constant tokes (1,-1,1)(1,1,-3) and (4,5,-6) act on a particle and particle moves from the point (3,-2,1) to the point (1,3,-4). Find work done. $(\omega = 53)$ units)

- * Moment of torce:
 - about a point Aca) is a vector about a point on the line of torce F.
- -> Magnitude of the moment of a torce F about a point A(a) on a particle P(B) = | ABXF |.

passing through the point } p. about the point sha

* A tokee F=dititk is acting at the point C-3,2,1). From the manginitude

of the moment of torce about the point (2,1,2). A [APXF = (2,3,-7), 1APXF] = [62]

* A torce 3i-j+2k is acting at the point (1,2,-1). Find the moment of torce about the point (3,0,1)

[APXF=(2, x2,-4)