Сходимость функций

Опр: 1. $f_n \to f$ поточечно на множестве D, если $\forall x \in D, f_n(x) \to f(x)$.

При поточечной сходимости теряется свойство непрерывности. Но точек разрыва не может быть слишком много.

Теорема 1. Если f_n - непрерывны на $\mathbb{R} \wedge \forall x \in \mathbb{R}$, $f_n(x) \to f(x)$, то у функции f есть хотя бы одна точка непрерывности.

<u>Идея</u>: Будем доказывать от противного, что точек непрерывности вообще нет. Тогда найдется промежуток на котором функция будет вести себя, как функция Дирихле (то есть в каждой точке имеет положительный скачок). С другой стороны, на этом же промежутке можно найти интервал, где f_n достаточно близко подойдут к функции f, но f_n - непрерывные функции, а f имеет множественные скачки \Rightarrow получим противоречие.

□ Предположим противное, что точки разрыва это вся числовая ось.

1) Тогда
$$\mathbb{R} = \bigcup_{k=1}^{\infty} \underbrace{\left\{x \colon \omega(f,x) \geq \frac{1}{k}\right\}}_{\text{замкнутые}}$$
. По теореме Бэра $\exists \, k \land (\alpha,\beta) \colon (\alpha,\beta) \subset \left\{\, x \colon \omega(f,x) \geq \frac{1}{k} \,\right\}$.

Уменьшая интервал, считаем, что $\alpha < \beta$ и $[\alpha, \beta] \subset \{x : \omega(f, x) \geq \frac{1}{k}\}.$

2) Пусть $\varepsilon > 0 \Rightarrow$ в каждой точке $x, \exists N_x : \forall n, m > N_x, |f_n(x) - f_m(x)| \le \varepsilon$, так как $f_n(x)$ в каждой точке x сходится и выполняется условие Коши $\forall x \Rightarrow$

$$\Rightarrow [\alpha, \beta] = \bigcup_{N} \bigcap_{n, m > N} \left\{ x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon \right\}$$

Множество $\{x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon\}$ - замкнуто (n и m - фиксированы). Действительно, пусть $x_k \in \{x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon\} \land x_k \to x_0 \Rightarrow |f_n(x_k) - f_m(x_k)| \le \varepsilon$, так как функции $f_n(x), f_m(x) \text{ - }$ непрерывные, то $f_n(x_k) \to f_n(x_0) \land f_m(x_k) \to f_m(x_0) \Rightarrow |f_n(x_k) - f_m(x_k)| \to |f_n(x_0) - f_m(x_0)| \le \varepsilon \Rightarrow x_0 \in \{x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon\} \Rightarrow$ множество замкнутое.

 $\Rightarrow x_0 \in \{x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon\} \Rightarrow$ множество замкнутое. Таким образом $\bigcap_{n,m>N} \{x \in [\alpha, \beta] : |f_n(x) - f_m(x)| \le \varepsilon\}$ - замкнутое множество, как пересечение замкнутых множеств (любое пересечение замкнутых множеств - замкнутое).

- 3) По теореме Бэра $\exists N \land (\alpha_1, \beta_1) \subset \bigcap_{n,m>N} \{x \in [\alpha, \beta] : |f_n(x) f_m(x)| \leq \varepsilon \}$. На интервале (α_1, β_1) выполняются следующие свойства:
 - (1) $\forall x \in (\alpha_1, \beta_1), \, \omega(f, x) \ge \frac{1}{k};$
 - (2) $\forall x \in (\alpha_1, \beta_1), \forall n, m > N, |f_n(x) f_m(x)| \le \varepsilon;$

Фиксируем n > N, устремляем m в бесконечность $m \to \infty \Rightarrow |f_n(x) - f(x)| \le \varepsilon$.

4) Возьмем $\varepsilon=\frac{1}{10k}$, тогда используя неравенство треугольника получим $\forall x,y\in(\alpha_1,\beta_1)$

$$|f_n(x) - f_n(y)| \ge |f(x) - f(y)| - |f_n(x) - f(x)| - |f_n(y) - f(y)| \ge |f(x) - f(y)| - \frac{1}{5k}$$

Пусть $x_0 \in (\alpha_1, \beta_1)$, возьмем $\delta > 0$: $\mathcal{U}_{\delta}(x_0) \subset (\alpha_1, \beta_1)$. Тогда $\forall x, y \in \mathcal{U}_{\delta}(x_0) \Rightarrow$

$$\Rightarrow \omega(f_n, \mathcal{U}_{\delta}(x_0)) = \sup_{x, y \in \mathcal{U}_{\delta}(x_0)} |f_n(x) - f_n(y)| \ge |f_n(x) - f_n(y)| \ge |f(x) - f(y)| - \frac{1}{5k} \Rightarrow$$

$$\Rightarrow \omega(f_n, \mathcal{U}_{\delta}(x_0)) \ge \sup_{x, y \in \mathcal{U}_{\delta}(x_0)} |f(x) - f(y)| - \frac{1}{5k} = \omega(f, \mathcal{U}_{\delta}(x_0)) - \frac{1}{5k} \Rightarrow$$

Устремим $\delta \to 0 \Rightarrow$ так как f_n - непрерывная, то $\omega(f_n, \mathcal{U}_\delta(x_0)) \to 0$, $\omega(f, \mathcal{U}_\delta(x_0)) \to \omega(f, x_0) \Rightarrow$

$$\Rightarrow 0 \ge \omega(f, x_0) - \frac{1}{5k} \ge \frac{1}{k} - \frac{1}{5k} > 0 \Rightarrow$$

⇒ получили противоречие.

Следствие 1. Множество точек непрерывности f - всюду плотно, то есть во всяком интервале есть точка непрерывности.

<u>Идея</u>: Превратить интервал в прямую, так чтобы свойства непрерывности и поточечной сходимости не исчезло.

Пусть есть интервал (α, β) , на нем есть функции $f_n(x)$ и f(x). Пусть мы построили непрерывные отображения $g: \mathbb{R} \to (\alpha, \beta) \wedge g^{-1}: (\alpha, \beta) \to \mathbb{R}$.

K примеру, $g(x) = \tan(x) : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R} \land g^{-1}(x) = \arctan(x) : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Рис. 1: $y = \arctan(x)$.

Любой интервал можно превратить в $(-\frac{\pi}{2}, \frac{\pi}{2})$ линейным отображением. Составим новые функции $\tilde{f}_n(y) = f_n(g(y)) \wedge \tilde{f}(y) = f(g(y))$ - непрерывные, как композиции непрерывных функций. Поточечная сходимость есть, так как зафиксировав y фиксируется и $g(y) \Rightarrow f_n(g(y)) \to f(g(y)) \Rightarrow \exists y_0 \in \mathbb{R} \colon f(g(y))$ - непрерывна в точке y_0 по теореме выше.

Возьмем $x_0 = g(y_0), f(x) = f(g(g^{-1}(x))) \Rightarrow f(g(y))$ - непрерывна в точке y_0 , а $g^{-1}(x)$ - непрерывна в точке $x_0 \Rightarrow$ композиция непрерывных функций - непрерывна $\Rightarrow f$ - непрерывна в точке x_0 .

Rm: 1. Не любую функцию можно получить, как поточечный предел непрервных фнукций (например, нельзя получит функцию Дирихле).

Теорема 2. Пусть $f_n: D \to \mathbb{R}$, $f: D \to \mathbb{R}$, $a \in D$ - точка непрерывности f_n , $\forall n$ и f_n сходятся к f равномерно на D. Тогда f непрерывна в точке a.

 \square По неравенству треугольника $|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|$.

 $\forall \varepsilon > 0, \exists N : \forall n > N, \forall x \in D, |f_n(x) - f(x)| < \varepsilon$ - из-за равномерной сходимости. Фиксируем n > N, так как f_n - непрерывна в точке a, то $\exists \delta > 0 : \forall x \in D, |x-a| < \delta \Rightarrow |f_n(x) - f_n(a)| < \varepsilon \Rightarrow |f(x) - f(a)| < 3\varepsilon$.

Дифференциальное исчисление

Пусть f определена в окрестности точки a.

Опр: 2. Функция f дифференцируема в точке a, если $f(a+h)-f(a)=A\cdot h+\alpha(h)\cdot h$, где A - число, $\alpha(h)$ - функция, определенная в проколотой окрестности h=0 и $\lim_{h\to 0}\alpha(h)=0$,

f(a+h)-f(a) - приращение функций и h - произвольное число из некоторой проколотой окрестности точки 0 - приращение аргумента.

Опр: 3. Линейная функция $h \mapsto A \cdot h$ называется дифференциалом функции f в точке a и обозначается df(a,h) или df(h).

Пример: $f(x) = x \Rightarrow f(a+h) - f(a) = a+h-a = h = 1 \cdot h + 0 \cdot h \Rightarrow A = 1$, $\alpha(h) = 0$. Таким образом, получили, что дифференциал линейной функции df(h) = h.

Пример: $f(x) = x^2 \Rightarrow f(a+h) - f(a) = (a+h)^2 - a^2 = a^2 + 2ah + h^2 - a^2 = 2a \cdot h + h \cdot h \Rightarrow A = 2a$, $\alpha(h) = h$ и дифференциал функции $df(h) = 2a \cdot h$.

Утв. 1. Дифференциал определен однозначно, то есть, если $f(a+h) - f(a) = A_1h + \alpha_1(h)h$ $f(a+h) - f(a) = A_2h + \alpha_2(h)h \Rightarrow A_1 = A_2$.

 \square Вычтем одну строчку из другой $\Rightarrow (A_1 - A_2)h + (\alpha_1(h) - \alpha_2(h))h = 0, \forall h \neq 0 \Rightarrow$ поделим на $h \Rightarrow A_1 - A_2 = \alpha_2(h) - \alpha_1(h) \xrightarrow[h \to 0]{} 0$, но так как слева стоят числа, которые не зависят от $h \Rightarrow A_1 = A_2$.

Утв. 2. Функция f дифференцируема в точке $a \Leftrightarrow \exists$ конечный $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Этот предел называется производной функции f в точке a и обозначается f'(a) и $\frac{df}{dx}(a)$. Кроме того, $df(a,h) = f'(a) \cdot h$.

 \square $(\Rightarrow) \ f(a+h) - f(a) = A \cdot h + \alpha(h) \cdot h$ это верно $\forall h$ из некоторой проколотой окрестности 0. Делим на $h \Rightarrow \frac{f(a+h) - f(a)}{h} = A + \alpha(h) \xrightarrow[h \to 0]{} A$.

 (\Leftarrow) Пусть существует $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$, обозначим его как A, тогда положим: $\alpha(h) = \frac{f(a+h)-f(a)}{h} - A \Rightarrow \lim_{h\to 0} \alpha(h) = 0 \Rightarrow$ умножаем на $h \Rightarrow f(a+h) - f(a) = Ah + \alpha(h)h \Rightarrow df(a,h) = Ah = f'(a)h$.

Геометрический смысл дифференцируемости

Рис. 2: График функции хорошо приближается прямой в точке а.

 $f(a+h)=f(a)+f'(a)h+\alpha(h)h$, будем писать $x=a+h\Rightarrow f(x)=f(a)+f'(a)(x-a)+\alpha(x-a)(x-a)$, Знаем, что $\alpha(x-a)\xrightarrow[x\to a]{}0\Rightarrow$ при x близких к $a\Rightarrow f(x)\approx f(a)+f'(a)(x-a)$.

y = f(a) + f'(a)(x - a) - это прямая, приближающая функцию f в окрестности точки a.

Опр: 4. Прямая y = f'(a)(x-a) + f(a) называется касательной к графику y = f(x) в точке (a, f(a)).

Пример: $f(x)=x^2\sin\frac{1}{x},\,x\neq 0 \land f(x)=0,\,x=0$ - дифференцируемая в 0 функция:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Таким образом, касательная в точке (0,0) это просто y=0. И может пересекать f сколь угодно много раз.

Рис. 3: Касательная функции $f(x) = x^2 \sin \frac{1}{x}$ в точке (0,0) пересекает график функции.

Утв. 3. Касательная - это предельное положение секущей, то есть секущая: $y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$. Наклон секущей $\frac{f(b) - f(a)}{b - a} \to f'(a)$, при $b \to a$.

□ Очевидно из определения производной.

Rm: 2. Когда $b \to a$, то наклон секущей стремится к наклону касательной. Приращение функции состоит из дифференциала, приближающего это приращение и погрешности этого приближения, которая ведет себя как $\alpha(h)h$.

Рис. 4: Приращение функции состоит из дифференциала и погрешности приближения.