Game of Life Cellular Automata

Game of Life Music

Andrew Adamatzky (Ed.)

Game of Life Cellular Automata

Game of Life Cellular Automata, de Andrew Adamatzky (2010)

Capítulo "*Game of Life Music*" (pág. 489 - 501)

ISBN: 978-1-84996-216-2

 $\underline{\underline{\mathscr{D}}}$ Springer

Índice

- Qué es un autómata celular
- Breve introducción al "Juego de la Vida"
- Formas de hacer música a partir del "Juego de la Vida"
 - CAMUS
 - o CAMUS 3D
 - Representación radial

Qué es un autómata celular

El Juego de la Vida

Vecindario

SE					W		E		SW	S
					SW	S	SE			
	NW	N	NE							
	W		E	v						
	SW	S	SE							
NE						,			NW	N
Ε					NW	N	NE		W	

Reglas

- Nacimiento: una célula muerta revive si tiene tres vecinos vivos.
- Muerte por hacinamiento: una célula viva muere si tiene cuatro o más vecinos vivos.
- Muerte por exposición: una célula viva muere si tiene uno o ningún vecino vivo.
- Supervivencia: una célula viva seguirá viviendo si tiene dos o tres vecinos vivos.

Las reglas se aplican sobre todas las células simultáneamente

Renderizado de formas musicales a partir del Juego de la Vida

Tipos de mapeados

Nombre	Dimensiones	Sist. coordinado	Notas por célula
CAMUS	2	2D Cartesiano	3
CAMUS 3D	3	3D Cartesiano	4
Simetría radial	2	2D Radial	1

CAMUS

Intervalo

Representación en el plano cartesiano

Ahora, en un autómata celular

Cómo reproducir música

- El autómata celular, aunque evoluciona en paralelo, la reproducción se realiza columna por columna.
- Las notas de una celda no necesariamente se tocan a la vez. Para ello se mira el vecindario:

р	b	n
d		С
m	а	0

Inicio y duración

Dos palabras de 4 bits cada una, que se obtienen de la siguiente forma:

- El sistema deriva la información de cada nota de Tgg y de la duración de esta forma.
- Por cada palabra relevante, el sistema asocia un código para representar formas de tiempo.

Ejemplo

- Tgg = $1111 | 1111 \Rightarrow 1111$
- Dur = $0000 | 0000 \Rightarrow 0000$

0	1	0
1	1	1
0	1	0

Representación de las formas de tiempo

- B indica la nota de referencia inferior, M la nota media y U la superior.
- Son las siguientes:

```
0000 = B[UM]
0001 = [UMB]
0010 = BUM
                      Notas entre corchetes son
0011 = UMB
                      reproducidas
                      simultáneamente.
0101 = BMU
0110 = UBM
0111 = MBU
1001 = U[MB]
1011 = MUB
1111 = M[UB]
```

Representación gráfica de las formas de tiempo

Morfología temporal de las formas de tiempo

Los valores reales en milisegundos para los parámetros de disparo y duración se calculan utilizando un generador de números pseudoaleatorios.

Pasos del algoritmo GoL musical

CAMUS 3D

Modificación del GoL

Representación radial

Simetría radial

Algoritmo para generación de música (S. Radial)

- Elegir valor para BPM (Bits por minuto). Inicializar variable baseBeat a 0, elegir una duración D de nota fija.
- 2. Ejecutar una generación del GoL.
- 3. Iterar θ alrededor de la matriz desde 0 hasta 2π en 127 pasos. Por cada uno de los 127 valores de θ , iterar r desde el centro de la matriz hacia su eje, una célula cada vez.
- 4. Por cada valor iterado de r, examinar la célula en (r, θ). Si está viva generar una nota MIDI con un pitch (tono) proporcional a r, y duración D. Localizar la nota MIDI en el compás: baseBeat + D + (16 * (θ/(2π)))
- 5. Después de completar las iteraciones anidadas de (r, θ) sobre toda la matriz, actualizar baseBeat al compás de la última nota MIDI generada.
- 6. Volver a 2 y repetir.

Gracias

¿Alguna pregunta?

Sergio Rodríguez Calvo

Febrero 2017

sergiorodriguezcalvo@gmail.com

Twitter: @sergio_7rc

Github: serrodcal
