Monoidal Structures, Operads and Stable Categories I

Symmetric Monoidal « - categories

Keminder: The Segal category Finx consists of finite pointed sets $(n) = \{*, 1, ..., n\}, n \ge 0$, and pointed maps (think: partially defined). · Q:(n)→(n) is injective · S: (n) ->(1), 1515 n standard inst maps it (1, j=1 Let U, V, W be VS, then the reason why (N&V)&W=U&(U&U) is because both classify trilinger map Trilin (U.V.W; X) \Rightarrow New way to encode ogum. Monoidal structure (\mathcal{C}, \otimes) via a new category \mathcal{C}^{\otimes} with objects types [En,..., cn] in e; marginisms [En,..., cn] -> [c', ..., c'm] consisting of (n) -> (m) in Fing and (fine (155)) - co) 1556m The canonical projection elempting is an oppibilitien: Opplications: I dea is that a map of outs E-B is specified by the family of inverse images (\$\(\bar{\chi}(\bar{\chi})\) tell, in other words views to Set/R = { set with a mop to T} ~ Fin(B , Set) • Replace B by a space $\hat{=}$ ∞ -groupoid, then Fun(B,Set) should be the covering since Set is a 1-cat. opacos over \mathbb{B} , i.e. $Cov(\mathbb{B}) \simeq \overline{\mathsf{Fun}}(\mathbb{B}, \mathsf{Set}) \sim \overline{\mathsf{Fem}}(\pi_{\mathsf{A}}(\mathbb{B}), \mathsf{Set}) =$ Most general reasion: An application is a functor of on-calepoises € P B such that He∈ E H x: p(e) → b' there is a p-cocostosian maph. x: e → e' with p(x) = x. This "co-Cortesian lift" is enertially unique, in fact $Map_{\mathcal{B}}(e', x) \xrightarrow{-0} Map_{\mathcal{E}}(e, x)$ we obtain a co-Cortesian transport functor $Map_{\mathcal{B}}(p(e'), p(x)) - Map_{\mathcal{B}}(p(e), p(x))$ we obtain a coCortesian transport functor $\alpha_i: \mathcal{E}_b \longrightarrow \mathcal{E}_{b'}$ Thin [Linie] $\forall \mathcal{B} = \emptyset$ -category, $\{ \text{opphistions} \} \sim \text{Fun}(\mathcal{B}_1 \text{ Catas})$ $(\mathcal{E} \to \mathcal{B}) \xrightarrow{\text{stoightening}} (\mathcal{A} \mapsto \mathcal{E}_b \to \mathcal{E}_b) \}$ (pairs (beB, x e F(b))) = B x (Catoo) *// windrajur F: B -> Catoo (=) One of the main achievements of HTT)

Def) A symmetric monoidal a category (C, 8) is an application $p: e^{\otimes} \to \text{Fin}_*$, such that the transport maps $(g:)_1: e^{\otimes} \to e^{\otimes}$; induce an equivalence $e^{\otimes} \simeq \tilde{\Pi} e^{\otimes} =: e^{\times n} \quad \forall n$.

Monoidal & - categories

Recall: \triangle^p is the category of finite totally ordered sets $[n] = \{0, ..., (n], n \ge 0\}$ and order-preserving unops $\infty : [n] \leftarrow [m]$

Def) A unancidal as -category is an application $p: e^{\otimes} \rightarrow S^{\circ}$, or equivalently a functor $S^{\circ} = (a_{\infty}, such that g_{i} induce <math>e^{\otimes} = (a_{\infty})^{\times n}$ Read off: Underlying is $e^{(n)}$, and $e^{(n)} = (a_{\infty})^{\times n}$ gives $e^{(n)} = (a_{\infty})^{\times n}$

00 - Operads

Motivation: For some categories, eg. leinds of topol US, the functor

Dilin(V×V',-) is not representable. Still, it is a weak bind of 10-stanture.

Same idea: Given a caloned operad O, define new category.

On with directs tudos of coops [X, ..., X]

Fin* with disert types of adors $[X_1,...,X_n]$ Fin* $(\phi_j \in Mul(\{X_i\}_{i \in G'(j)}, Y_j))_{1 \leq j \leq n}$

composition induced by composition in \mathcal{O} , similarly identities. Via this construction, $\mathcal{O}_{\text{CN}}^{\text{IS}} \cong (\mathcal{O}_{\text{CN}}^{\text{IS}})^{\text{KN}}$, but no optibilities, since e.g. there shouldn't be a tentor product functor to read off. However, there are projections $\{n-\text{tuples}\ in\ \mathcal{O}\}$ $\xrightarrow{\text{Proj}}$ $\{m-\text{tuples}\ in\ \mathcal{O}\}$ for $n\geq m$ inst maps!

Del An ∞ -opologies a functor of ∞ -calogories $p: O^{\otimes}$ — σ Finx, such that (i) $\forall \underline{X} \in \mathcal{O}_{cos}^{\otimes}$, $\propto < \infty \longrightarrow < \infty$ Were is a p-colorteoion morphism X:X-Yin 00 lifting ~ no Transport functor x: On - On (ii) The p-coCartaion lifts (8i), Ocn - Ocns exhibit of = (00) xn Notation: Choose $X \longrightarrow X_i$ probablish of Q_i , then write $X = [X_1, ..., X_m]$ Notation For x: (m) - (m), X & OCW, Y & OCW) Let Map (X, Y) be the fiber $Map(X,Y) \times \{\alpha\}$, is the marphisms over α . (iii) Map (X, Y) = TT Map ((Xi); EZ'(j), Vi) - whe should also multiple sources, but not multiple tagets. Denote Mulg(X,,,,X,,Y) := Mapoo ([x,,...,X,],Y) for X;,YEO := 000 Ex. Fin, - Fin, is the abundative operad Ex • Every (Symm.) colored operad defines on ∞ -approad $N(\mathcal{O}^{\otimes} \to \operatorname{First})$ enriched in ton completes defines on as operad. In fact, this is part of a Quillen-equivalence. · Let E, be the category with objects (n), but Morph are a: (n) - (n) together with a specified total ordering on x"(((k)) for all 1≤ k≤m. <u>Composition</u> is defined by glainy together total sodos.
"(kxicgraphically" =) One multimorphism for every asserting = LM8 comes from the adored operad LM with two colors a, I and $Mul(a,...,a;a) = \{total orderings of \{n,...,n\}\} as for <math>E_n^{\otimes}$ $\text{Hul}(a,...,a,l;l) = \text{Hul}(a,...,a;l) = \{-"-\], otherwise <math>\emptyset$ Composition again why exicographical ordering. A way of so-operade is a function +: 00 ___ 30 over Fint, sending color lifts of instr to 1. Call this on 8-agebra in I and define Algo(9) = Fun (00, 90) Fun(0, Fin, (p) = Fun (Fin) (00, 90) Let D be an ∞ -cat. with product. A functor $M: \partial^{\infty}-iD$ is an O-monoid

in ω : \Leftrightarrow The inert life $(0,...,0_n) - (0)$ exhibit $M((0,...,0_n)) \stackrel{\triangle}{=} \stackrel{+}{\text{TT}} M((\alpha))$