Polos Olímpicos de Treinamento Intensivo

Curso de Teoria dos Números - Nível 2

Professores: Cleber Assis, Samuel Barbosa e Tiago Miranda

POTI 2015

Curso Básico

. Teoria dos Números

Este material compila os arquivos do projeto Portal da Matemática, disponível em

http://matematica.obmep.org.br/

e serve como introdução aos tópicos iniciais de um curso de treinamento olímpico. Em geral, os assuntos são independentes e podem ser estudados em qualquer ordem. Neles, o leitor encontrará muitos exercícios escolares mesclados com problemas elementares de olimpíadas, todos com respostas e soluções. Além disso, no endereço do Portal da Matemática, existem vídeos que podem ser acessados gratuitamente cobrindo todo o conteúdo abaixo. Bons estudos!

Sumário

1	Números Naturais e Problemas de Contagem	1
2	Divisibilidade e Teorema da Divisão Euclideana	4
3	Potenciação	6
4	Números Racionais	8
5	Números Irracionais	10
6	Radiciação e Expressões Algébricas	12
7	Introdução aos Polinômios	14
8	Produtos Notáveis	17
9	Fatoração de Expressões Algébricas	20
10	Sentenças Matemáticas e Notação Algébrica	23
	Números Naturais e Problemas de Contagem — Soluções	25
	Divisibilidade e Teorema da Divisão Euclideana — Soluções	30
	Potenciação — Soluções	38
	Números Racionais — Soluções	40
	Números Irracionais – Soluções	
	Radiciação e Expressões Algébricas – Soluções	47
	Introdução aos Polinômios — Soluções	48
	Produtos Notáveis — Soluções	
	Fatoração de Expressões. Algébricas – Soluções	57
	Sentenças Matemáticas e Notação Algébrica — Soluções	64

Versão: 45 (Data: 27 de abril de 2015.)

1 Números Naturais e Problemas de Contagem

Problema 1. Qual a quantidade de elementos do conjunto que possui todos os números naturais de 8 até 908?

Problema 2. Quantos elementos há no conjunto {7,14,21,...,679,686}?

Problema 3. Quantos elementos há no conjunto {14, 19, 24, ..., 1004, 1009}?

Problema 4. Entre *n* pessoas existem duas com o mesmo signo. Qual o menor valor de *n* que garante esse fato?

Problema 5. Quantos números escrevemos ao numerarmos as páginas de um livro de 10 até 20? E quantos algarismos são usados para isso?

Problema 6. Numa floresta há 1000 jaqueiras. É conhecido que uma jaqueira não tem mais do que 600 frutos. Prove que existem 2 jaqueiras que têm a mesma quantidade de frutos.

Problema 7. Uma pessoa entrou num quarto escuro, sem enxergar absolutamente nada, e abriu uma gaveta na qual havia exatamente 20 meias pretas, 15 meias brancas e 10 meias marrons. Todas estavam misturados e eram indistinguíveis ao tato. Qual a quantidade mínima de meias que essa pessoa deve retirar para que tenha certeza de ter retirado:

- a) um par de meias de mesma cor?
- b) um par de meias brancas?

Problema 8. Prove que:

- a) a soma de dois números pares é igual a um número par.
- b) a soma de dois números ímpares resulta em um número par.
- c) a soma de um número par com um número ímpar resulta em um número ímpar.
- d) o produto de dois números ímpares é igual a um número ímpar.
- e) o produto de dois números pares é um número par.
- f) o produto de um número par com um número ímpar resulta em um número par.

Problema 9. Ao escrevermos todos os números naturais de 40 até 1200, quantos algarismos utilizamos?

Problema 10. Qual é a soma de todos os números de três algarismos?

Problema 11. Qual o número mínimo necessário de pessoas num grupo para que tenhamos certeza de que:

- a) três delas façam aniversário no mesmo mês?
- b) quatro tenham nascido no mesmo dia da semana?

Problema 12. Numa gaveta há 10 blusas amarelas, 12 blusas beges e 8 blusas cinzas. Suponha que sejam retiradas "n" blusas, no escuro, dessa gaveta (não há como perceber as cores). Qual o valor mínimo de "n" para que tenhamos certeza de que saiam 3 de cores distintas?

Problema 13. Se uma urna contém 7 bolas vermelhas, 9 pretas, 10 azuis e 8 verdes. Qual é o número mínimo de bolas que devemos retirar para que possamos ter certeza da retirada de pelo menos 4 da mesma cor?

Problema 14. Considere o número

$$S = 1 + 2 + 3 + 4 + \cdots + 2011 + 2012 + 2013 + 2014.$$

Esse número é par ou ímpar?

Problema 15. Discos dentados geram um tipo de sistema associado que funciona pela propulsão em um dos discos e esse proporciona o funcionamento dos demais. A figura 1 ilustra um desses sistemas e o disco "número 1" gira no sentido horário. Analise as proposições e responda o que se pede.

Figura 1

- i) O disco 2 gira no sentido anti-horário.
- ii) O disco 4 gira no sentido horário.
- iii) O disco 7 gira no mesmo sentido do disco 5.
- iv) O disco 10 gira no mesmo sentido do disco 3.
- v) Seria possível colocar um disco 11 em contato simultâneio com os discos 1 e 10.

Quantas das proposições acima são verdadeiras?

Problema 16. Escrevendo os números naturais de 1 até 10 em fila e mantendo um espaço vazio entre eles (□) obtemos

$$1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9 \square 10.$$

É possível ocupar os \square com sinais de "+" ou "-" de modo que o resultado da expressão que aparecerá após a colocação dos sinais seja **zero**?

Problema 17. Em uma urna há 32 bolas brancas, 16 bolas verdes, 7 bolas vermelhas, 3 bolas pretas e 11 bolas cinzas. Qual é o número mínimo de bolas que devemos sacar dessa urna para termos certeza de que obteremos pelo menos 13 bolas da mesma cor?

Problema 18. Se *n* é um número inteiro qualquer, qual das expressões abaixo resulta num número ímpar?

a)
$$n^2 - n + 2$$

c)
$$n^2 + n + 5$$

e)
$$n^3 + 5$$

b)
$$n^2 + n + 2$$

d)
$$n^2 + 5$$

Problema 19. Qual a paridade do algarismo das unidades do número

$$2010^{2010} + 2011^{2011} + 2012^{2012} + \dots + 2015^{2015} + 2016^{2016}$$
?

Problema 20. Qual o menor número de pessoas num grupo para garantir que pelo menos 4 nasceram no mesmo mês?

Problema 21. Uma máquina contém pequenas bolas de borracha de 10 cores distintas, sendo 10 bolas de cada cor. Ao inserir uma moeda, uma bola é expelida ao acaso. Para garantir a retirada de 4 bolas da mesma cor, qual o menor número de moedas inseridas na máquina?

Problema 22. Depois de *d* lançamentos de um dado de 6 faces temos certeza que uma das faces saiu mais de 5 vezes. Qual o valor de *d*?

Problema 23. Observe a sequência de algarismos

12345678910121314151617....

Qual será o 1002° algarismo usado nela?

Problema 24. Qual a soma dos múltiplos de 3 entre 1 e 301?

Problema 25. Quais são os pares de números¹ inteiros (x, y) tais que $\frac{xy}{x+y} = 144$?

Problema 26. Quantos números inteiros e positivos satisfazem a dupla inequação $2000 < \sqrt{n \cdot (n-1)} < 2005$?

a) 1.

b) 2.

- c) 3.
- d) 4.

e) 5.

Problema 27. Observe que

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

daí poderíamos calcular

$$2^{3} = (1+1)^{3} = 1^{3} + 3 \cdot 1^{2} \cdot 1 + 3 \cdot 1 \cdot 1^{2} + 1^{3}$$

$$3^{3} = (2+1)^{3} = 2^{3} + 3 \cdot 2^{2} \cdot 1 + 3 \cdot 2 \cdot 1^{2} + 1^{3}$$

$$4^{3} = (3+1)^{3} = 3^{3} + 3 \cdot 3^{2} \cdot 1 + 3 \cdot 3 \cdot 1^{2} + 1^{3}$$

$$5^{3} = (4+1)^{3} = 4^{3} + 3 \cdot 4^{2} \cdot 1 + 3 \cdot 4 \cdot 1^{2} + 1^{3}$$

A partir da análise dos exemplos acima, desenvolva uma fórmula para o cálculo de

$$1^2 + 2^2 + 3^2 + \cdots + n^2$$
.

Problema 28. A figura 2 é o composta por 100 quadrados colocados lado a lado, na qual tem-se indicadas as medidas dos lados de cada quadrado.

Qual o valor da área total dessa figura?

Problema 29. Uma rede de computadores é formada por seis computadores. Cada computador é conectado diretamente a pelo menos um dos outros computadores. Mostre que há pelo menos dois computadores na rede que estão diretamente conectados ao mesmo número de outros computadores.

¹"Pares de números" que dizer que a resposta sempre será por dois números em ordem, um represnetando o de x e outro o valor de y. Isso não tem necessarimanete relação com números pares.

2 Divisibilidade e Teorema da Divisão Euclideana

- **Problema 30.** Mostre que 21 divide $5^8 2^8$.
- **Problema 31.** Mostre que 10 divide $11^6 1$.
- **Problema 32.** Sejam a e $b \in \{0, 1, 2, ..., 9\}$. Determine os valores possíveis de $(a b)^2$ para que 23a1992b seja divisível por 45.
- **Problema 33.** Mostre que $2^{48} 1$ é múltiplo de 65 e de 63.
- **Problema 34.** Mostre que 10x + y é divisível por 7 se e só se x 2y também for.
- **Problema 35.** Calcule os números naturais que quando divididos por 8 deixam resto igual ao dobro do quociente.
- **Problema 36.** Calcule o número natural que quando dividido por 7 resulta no quociente 4 e o resto é o maior possível.
- **Problema 37.** Mostre que 10x + y é divisível por 13 se e só se x + 4y também for.
- **Problema 38.** Determine o menor inteiro positivo que dividido por 9 gera resto 3 e dividido por 11 gera resto 4.
- **Problema 39.** Um número inteiro positivo *k* deixa resto 4 quando dividido por 7.
- a) Determine o resto da divisão de $k^2 + k + 1$ por 7.
- b) Qual é o menor múltiplo positivo de k que devemos somar a k^2 para obter um múltiplo de 7.
- **Problema 40.** Um número inteiro *n* deixa restos respectivamente iguais a 4 e 6 quando dividido por 7 e 8. Determine o resto da divisão de *n* por 56.
- **Problema 41.** Quais os inteiros $n = 2^a \cdot 3^b$, como a e b inteiros não-negativos, possuem 15 divisores positivos?
- **Problema 42.** Qual é o valor de *n* para o qual o número 12345*n*789 é divisível por 91?
- Problema 43. Quais os possíveis restos de um número quadrado perfeito na divisão por 4?
- **Problema 44.** Dados três números naturais a, b e c tais que a+b+c é divisível por 6, prove que $a^3+b^3+c^3$ também é divisível por 6.
- **Problema 45.** Seja *x* o maior número natural com três algarismos que ao ser dividido por 2, por 3, por 5 e por 7 deixa resto 1. Qual a soma dos algarismos de *x*?
- **Problema 46.** Quantos números naturais menores que 400 são divisíveis por 17 ou 23 ?
- **Problema 47.** Qual o maior inteiro que divide todos os possíveis números da forma $m^2 n^2$ onde m e n são números ímpares quaisquer e n < m.?
- **Problema 48.** Quantos números podem ser formados com 4 algarismos, de modo que esses números sejam divisíveis por 2, 3, 5 e 9 e que o algarismo dos milhares seja 8?
- **Problema 49.** A multiplicação decrescente de inteiros não-negativos em sequência até o 1 é denominada de fatorial e é simbolizada por n!. Exemplos:
 - i) $8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$; e
- ii) $5! = 5 \times 4 \times 3 \times 2 \times 1$; e
- iii) $2! = 2 \times 1$.
- Definimos 1! = 1 e 0! = 1. Sendo assim, calcule o maior inteiro positivo x tal que 23^x divide 2000!.
- **Problema 50.** Dados três números naturais x, y e z tais que $x^2 + y^2 = z^2$, mostre que x e y não são ambos ímpares.
- Problema 51. Qual o resto da divisão por 9 do número

POTI 2015 – Teoria dos Números – Nível 2 – Aula 0 – Cleber Assis, Samuel Barbosa e Tiago Miranda

Problema 52. Em um número natural *N* de 9 algarismos, tem-se que:

- os algarismos das unidades simples, unidades de milhar e unidades de milhão iguais a X;
- os algarismos das dezenas simples, dezenas de milhar e dezenas de milhão iguais a Y; e
- os algarismos das centenas simples, centenas de milhar e centenas de milhão iguais a Z.

Pode-se afirmar que *N* sempre será divisível por:

a) 333664.

c) 333666.

e) 333668.

b) 333665.

d) 333667.

Problema 53. Se a e b são números naturais e 2a + b é divisível por 13, então qual das alternativas contém um múltiplo de 13?

a) 91a + b.

c) 93a + b.

e) 95a + b.

b) 92a + b.

d) 94a + b.

Problema 54. Sabendo-se que o resultado de

$$12 \cdot 11 \cdot 10 \cdot \cdots \cdot 3 \cdot 2 \cdot 1 + 14$$

é divisível por 13. Qual o resto da divisão do número

$$13\cdot 12\cdot 11\cdot \cdot \cdot \cdot 3\cdot 2\cdot 1$$

por 169?

Problema 55. Qual é o resto da divisão de

por 9?

Potenciação

Problema 56. Calcule o valor das expressões:

a) 3^5 .

b) $2^2 + 3^2$.

c) 5^4 .

d) $2^3 + 3^3$.

e) $\frac{1}{2} \cdot 2^4 \cdot 3$.

Problema 57. Calcule o valor das expressões:

a) $(0,01)^3$.

b) $100 \cdot \frac{1}{5^2}$.

c) $80 \cdot \left(\frac{5}{2}\right)^3$.

d) $\frac{1}{3} \cdot (0,3)^2$.

e) $200 \cdot (0.04)^4$.

Problema 58. Se a = 2 e b = 3, calcule o valor das expressões:

a) $\frac{a^3b}{b^2}$.

b) *a*^{*b*}.

c) a^3b^2 .

d) $(ab^2)^2$.

e) $(b+a)^2 - a^2$.

Problema 59. Escreva como um única potência:

b) $\frac{4^6 \cdot 8^2}{16^3}$.

c) $(-32)^{3^2}$.

d) $\frac{10^5 \cdot 10^{-3} \cdot 10}{10^{-7} \cdot 10^4}$. e) $8^3 : 2^{-5}$.

Problema 60. Determine quais das seguintes sentenças são verdadeiras e quais são falsas. Em cada item falso, indique um contraexemplo para a afirmação.

a) $a^n b^n = (a \cdot b)^n$. b) $a^{-n} = -a^n$.

c) $\left(\frac{a}{b}\right)^n = (a-b)^n$. d) $(a^n)^m = a^{nm}$. e) $(a^n)^m = a^{(n^m)}$.

Problema 61. Determine quais das seguintes sentenças são verdadeiras e quais são falsas. Em cada item falso, indique um contraexemplo para a afirmação.

a) $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$.

b) $(a+b)^n = a^n + b^n$. d) $(a^n)^{-n} = a^0$.

c) $a^{n+m} = a^n + a^m$.

e) Se $a \neq 0$ então $a^0 = 1$.

Problema 62. Calcule as potências:

a) $(0,3)^2$.

b) $(0,3)^{-2}$.

c) $(-0.02)^3$. d) $(-3)^{-2}$.

e) $(1,2)^3$

Problema 63. Escreva cada um dos seguintes números como uma potência de 2:

a) $(-0.5)^{-4}$.

b) $[(-0,25)^2]^{-6}$. c) $16^2:(0,25)^{-4}$. d) $32^{-2}:(0,25)^{-4}$.

e) $0.16 \cdot 10^2$.

Problema 64. Determine, em cada item, qual dos números é o maior.

a) $2^{1/2}$ ou $2^{1/3}$.

b) $\left(\frac{1}{2}\right)^{1/2}$ ou $\left(\frac{1}{2}\right)^{1/3}$.

c) $3^{1/5}$ ou $5^{1/3}$.

Problema 65. Dividindo-se o número 4⁴² por 4⁴ obtemos o número:

a) 2

b) 4^3

c) 4^4

d) 4^8

e) 4^{12}

Problema 66. Definamos a operação $a \otimes b$ como sendo a^b . Por exemplo, $2 \otimes 3 = 8$. Determine o valor de:

$$\frac{2\otimes(2\otimes(2\otimes2))}{((2\otimes2)\otimes2)\otimes2}.$$

- b) $\frac{1}{4}$

d) 4

e) 256

Problema 67. Para os inteiros $a \in b$ definimos $a * b = a^b + b^a$. Se 2 * x = 100, a soma dos algarismos de $(4x)^4$ é igual a:

- a) 20
- b) 25
- c) 30
- d) 35
- e) 27

Problema 68. Com quantos zeros termina o número $15^6 \cdot 28^5 \cdot 55^7$?

- a) 10
- b) 18
- c) 26
- d) 13
- e) 5

Problema 69. As potências 2^n e 5^n , onde n é um inteiro positivo, começam com o mesmo algarismo d. Qual é este algarismo?

Problema 70. Se $a = 2^{40}$, $b = 3^{20}$ e $c = 7^{10}$, então:

- a) c < b < a
- b) a < c < b c) b < a < c d) b < c < a
- e) c < a < b

Problema 71. Quanto vale $\sqrt{12^{12}}$?

- a) 6^6
- b) $2^{2\sqrt{3}}$
- c) $2^{12} \cdot 3^6$
- d) 6^{12}
- e) $\sqrt{12}^{\sqrt{12}}$

Problema 72. Se $2(2^{2x}) = 4^x + 64$, então *x* é igual a:

- a) -2
- b) -1
- c) 1

d) 2

e) 3

4 Números Racionais

Problema 73.	roblema 73. Escreva os seguintes números na notação científica:									
a) 45673.	b) 0,0012345.	c) -555.	d) 0,09							
Problema 74.	Escreva o período dos decimais periódicos:									
a) 0,342342342	b) 58,677	7	c) 456,9898	398						
Problema 75.	Encontre a fração geratriz de:									
a) 0,333 b) 0,121212		c) $6, \overline{5}$.	d) -0,666							
Problema 76. Obtenha as geratrizes das seguintes dízimas periódicas:										
a) 4,7222	b) 1,8999		c) 1,2010101							
Problema 77. periódica.	Sem efetuar a divisão, determin	ie se a fração corres	sponde a um decimal	exato ou a uma dízima						
a) $\frac{321}{320}$.	b) $\frac{15}{6}$.	c) $\frac{41}{15}$.	d) $\frac{3}{40}$.							
Problema 78. Dizemos que um inteiro positivo x está escrito na notação científica se é da forma $x = m$ onde k é um inteiro e m satisfaz:										
a) <i>m</i> é inteiro.	b) $1 \le m < 10$.	m < 1.	d) $1 \le m < 10$.	e) $0 < m < 1$.						
Problema 79.	Assinale qual o maior dentre o	s números seguint	es:							
a) $1,0\overline{1}$.	b) 1,0 12 . c)	$1,0\overline{102}.$	d) $1,011\overline{25}$.	e) 1,0 11 .						
Problema 80. Considere o número $X = 1,01001000100001$										
(O padrão se mantém, ou seja, a quantidade de zeros entre números uns consecutivos sempre aumenta exatamente uma unidade).										
a) Qual é a sua 25 ^a casa decimal após a vírgula?										
b) Qual é a sua 500 ^a casa decimal após a vírgula?										
c) O número X é racional ou irracional?										
Problema 81. Qual é o primeiro dígito não nulo após a vírgula na representação decimal da fração $\frac{1}{5^{12}}$?										

c) 4

b) 2

a) 1

d) 5

e) 7

Problema 82. O valor da expressão

$$\left[\sqrt{\left(\frac{1}{6}\right)^{3}\cdot(0,666\ldots)} + \sqrt{\left(\frac{2}{3}\right)^{0} - \frac{1}{(1,333\ldots)}}\right]^{-\frac{1}{2}}$$

é igual a:

a)
$$\frac{\sqrt{2}}{5}$$

b)
$$\sqrt{\frac{2}{5}}$$

c)
$$\sqrt{\frac{5}{2}}$$

c)
$$\sqrt{\frac{5}{2}}$$
 d) $\frac{5\sqrt{2}}{2}$

e)
$$\frac{3\sqrt{5}}{5}$$

Problema 83. Observe as multiplicações:

 $142857 \cdot 1 = 142857$ $142857 \cdot 2 = 285714$ $142857 \cdot 3 = 428571$ $142857 \cdot 4 = 571428$ $142857 \cdot 5 = 714285$ $142857 \cdot 6 = 857142$ $142857 \cdot 7 = 9999999$

Da última multiplicação, podemos concluir que $\frac{1}{7}=\frac{142857}{999999}=0,\overline{142857}$. Veja que as seis primeiras multiplicações produzem números com os mesmos dígitos de 142857 e este é exatamente o período da representação decimal de $\frac{1}{7}$. Você consegue descobrir um número primo p maior que 7 tal que o período da dízima que representa $\frac{1}{n}$ possui p-1 casas decimais?

Problema 84. Considere um primo p que divide $10^n + 1$ para algum n inteiro positivo. Por exemplo, p = 7divide $10^3 + 1$. Analisando o período da representação decimal de $\frac{1}{n}$, verifique que o número de vezes que o dígito i aparece é igual ao número de vezes que o dígito 9-i aparece para cada $i \in \{0,1,2,\ldots,9\}$.

Problema 85. Considere um número primo p que não divide 10 e suponha que o período da representação decimal de $\frac{1}{n}$ seja 2k. É sempre possível decompormos o período em dois blocos de dígitos consecutivos que somam $10^k - 1$? Por exemplo, o período de $\frac{1}{7}$ tem tamanho 6 = 2k pois é igual à 142857. Veja que $142 + 857 = 999 = 10^3 - 1 = 10^k - 1.$

Números Irracionais 5

Problema 86. No quadro abaixo, determine quais números são irracionais.

23 5,345
$$\sqrt{2}$$
 2,313131... $\frac{1}{3}$ 0,01001000100001...

Problema 87. Quais das seguintes afirmações são verdadeiras?

- a) $\mathbb{N} \subset \mathbb{Q}$.

- b) $\mathbb{Z} \subset \mathbb{Q}$. c) $1 \in \mathbb{Q} \mathbb{Z}$. d) $r \in \mathbb{Q} \Rightarrow -r \in e$) $\frac{35}{5} \in \mathbb{Q} \mathbb{Z}$.

Problema 88. Represente em uma reta orientada os seguintes números:

$$3.5 \quad -\frac{9}{4} \quad 0 \quad \frac{14}{7} \quad 5,\overline{2} \quad -\frac{30}{7}$$

Problema 89. Utilizando a calculadora podemos obter que

$$\sqrt{2} = 1,4142135623730950488016887242097\dots$$

Agora, também utilizando uma calculadora, calcule os valores abaixo, faça os registro e observe como o resultado se aproxima cada vez mais do número 2.

a)
$$1.4^2 =$$

b)
$$1,41^2 =$$

c)
$$1,414^2 =$$

d)
$$1,4142^2 =$$

Problema 90. Com base no exercício anterior, utilizando a calculadora, calcule $\sqrt{3}$. Faça o mesmo procedimento do item anterior, ou seja, calcule o o quadrado do número encontrado apenas com uma casa decimal, depois com duas casas, depois com três e finalmente com quatro casas. Registre os resultados e observe como eles se aproximam cada vez mais de $\sqrt{3}$.

Problema 91. Compare as raízes abaixo preenchendo os espaços pontilhadas com os símbolos > ou <.

a)
$$\sqrt{2} \dots \sqrt{3}$$
.

b)
$$\sqrt{81} \dots \sqrt{121}$$
.

c)
$$\sqrt{\frac{4}{100}} \dots \sqrt{\frac{16}{25}}$$
.

c)
$$\sqrt{\frac{4}{100}} \dots \sqrt{\frac{16}{25}}$$
 d) $\sqrt{0,64} \dots \sqrt{0,1}$

- e) $\sqrt{n} \cdot \dots \cdot \sqrt{n+1}$ com *n* número real não negativo.
- **Problema 92.** Sem utilizar a calculadora, estime, com uma casa decimal, a melhor aproximação para $\sqrt{11}$.
- **Problema 93.** Sem utilizar a calculadora, estime, com duas casas decimais, uma boa aproximação para $\sqrt{11}$.
- **Problema 94.** Quantos números inteiros positivos existem entre $\sqrt{8}$ e $\sqrt{80}$?
- **Problema 95.** Quantos números inteiros positivos existem entre $\sqrt{37}$ e $\sqrt{1226}$?
- Problema 96. Quantos dos números abaixo são maiores que 10?

$$3\sqrt{11}$$
, $4\sqrt{7}$, $5\sqrt{5}$, $6\sqrt{3}$, $7\sqrt{2}$.

b) 2

c) 3

d) 4

e) 5

Problema 97. Explique porque entre dois números racionais sempre podemos encontrar um terceiro número racional.

Problema 98. Dados dois reais positivos, $\sqrt[3]{3}$ e $\sqrt[4]{4}$, determine o maior.

Problema 99. O número $\sqrt{1+\sqrt[3]{4}+\sqrt[3]{16}}$ está situado entre \sqrt{n} e $\sqrt{n+2}$, onde n é inteiro positivo. Determine n.

Problema 100. Prove que não é possível escrever $\sqrt{2}$ como uma fração de inteiros. Ou seja, prove que $\sqrt{2} \notin \mathbb{Q}$.

Problema 101. Prove que não é possível escrever:

i $\sqrt{3}$ como uma fração de inteiros. Ou seja, prove que $\sqrt{3} \notin \mathbb{Q}$.

ii $\sqrt{5}$ como uma fração de inteiros. Ou seja, prove que $\sqrt{5} \notin \mathbb{Q}$.

iii \sqrt{p} como uma fração de inteiros, sendo p um número primo. Ou seja, prove que $\sqrt{p} \notin \mathbb{Q}$.

Problema 102. É verdade que existem números irracionais A e B tais que A^B é racional?

Problema 103. A sequência F_n de Farey é uma sequência de conjuntos formados pelas frações irredutíveis $\frac{a}{b}$ com $0 \le a \le b \le n$ arranjados em ordem crescente. Exibimos abaixo os quatro primeiros termos da sequência de Farey.

$$F_1 = \{0/1, 1/1\}$$

$$F_2 = \{0/1, 1/2, 1/1\}$$

$$F_3 = \{0/1, 1/3, 1/2, 2/3, 1/1\}$$

$$F_4 = \{0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1\}$$

Qual deve ser o conjunto F_5 ?

Problema 104. É possível mostrar que se duas frações $\frac{a}{b}$ e $\frac{c}{d}$ são vizinhas na sequência de Farey F_n (veja o exercício anterior) então $ad-bc=\pm 1$. Sabendo disso, você consegue determinar que fração $\frac{a}{b}$ está imediatamente à esquerda de $\frac{5}{7}$ em F_7 sem calcular todos os seus elementos?

Problema 105. Considere dois tambores de capacidade suficientemente grande.

- a) Determine se é possível colocar exatamente um litro do líquido de um dos tambores no outro usando dois baldes, um com capacidade de 5 e o outro com capacidade de 7 litros.
- b) Determine se é possível colocar exatamente um litro do líquido de um dos tambores no outro usando dois baldes, um com capacidade de $2-\sqrt{2}$ e o outro com capacidade de $\sqrt{2}$ litros.

Problema 106. Achar o menor inteiro positivo n tal que as 73 frações

$$\frac{19}{n+21}$$
, $\frac{20}{n+22}$, $\frac{21}{n+23}$, ..., $\frac{91}{n+93}$

sejam todas irredutíveis.

Radiciação e Expressões Algébricas

Problema 107. Simplifique as expressões envolvendo radicais:

a) $\sqrt[3]{x^4}$.

b) $(\sqrt[3]{8})^2$.

c) $\sqrt[4]{81x^8y^4}$. d) $\sqrt{32} + \sqrt{162}$. e) $(4a^6b^4)^{3/2}$.

Problema 108. Transforme a expressão dada em outra sem radicais no denominador como indica o exemplo:

a) $\frac{2}{\sqrt{3}}$.

 $\frac{1}{\sqrt[5]{x^2}} = \frac{1}{\sqrt[5]{x^2}} \cdot \frac{\sqrt[5]{x^3}}{\sqrt[5]{x^3}} = \frac{\sqrt[5]{x^3}}{x}.$ c) $\sqrt[9]{\frac{1}{a^2}}$. d) $\frac{2}{\sqrt[3]{x}}$.

e) $\frac{1}{\sqrt[4]{a}}$.

Problema 109. Elimine os expoentes negativos das expressões abaixo:

a) $\frac{x^{-3}y^4}{x^5y^{-3}}$.

b) $\frac{6st^{-4}}{2s^{-2}t^2}$.

c) $\left(\frac{ba^{-4}}{ab^{-3}}\right)^{-2}$.

d) $\frac{a^{-3}}{b^{-2}} \cdot \frac{a^{-5}}{b^{-3}}$.

Problema 110. Simplificando a expressão $\frac{3\left(-\frac{1}{2}\right)^2 + \frac{1}{4}}{3\left(-\frac{1}{3}\right)^2 - \frac{3}{2}}$, obtemos:

a) $-\frac{6}{7}$. b) $-\frac{7}{6}$. c) $\frac{6}{7}$.

d) $\frac{7}{6}$.

Problema 111. Simplifique a expressão:

$$\frac{\left(\frac{3x^2y}{a^3b^3}\right)^2}{\left(\frac{3xy^2}{2a^2b^2}\right)^3}$$

Problema 112. Simplifique as expressões:

a) $\sqrt[3]{\sqrt{64x^{24}}}$.

b) $\sqrt[4]{x^4y^8z^2}$

c) $\sqrt{\sqrt{x}}$

Problema 113. Determine o valor da expressão abaixo quando a = 2014 e n = 1000.

 $\frac{1}{a^{-n}+1} + \frac{1}{a^{-n+1}+1} + \ldots + \frac{1}{a^{-1}+1} + \frac{1}{a^0+1} + \frac{1}{a^n+1} + \frac{1}{1+a^{-n+1}} + \ldots + \frac{1}{a^1+1}.$

a) 1000²⁰¹³

b) 2013¹⁰⁰⁰

c) 2013

d) $\frac{2001}{2}$

e) 1000.

Problema 114. Ao efetuar a soma $13^1+13^2+13^3+\ldots+13^{2006}+13^{2007}$, obtemos um número inteiro. Qual o algarismo das unidades desse número?

a) 1

b) 3

c) 5

d) 7

e) 9.

Problema 115. Efetuando as operações indicadas na expressão

$$\left(\frac{2^{2007}+2^{2005}}{2^{2006}+2^{2004}}\right)\cdot 2006$$

obtemos um número de quatro algarismos. Qual é a soma dos algarismos desse número?

a) 4

b) 5

c) 6

d) 7

e) 8

Problema 116. Sejam *a, b* e *c* inteiros e positivos. Entre as opções abaixo, a expressão que não pode representar o número 24 é:

a) ab^3

b) a^2b^3

c) a^cb^c

d) ab^2c^3

e) $a^bb^cc^a$.

Problema 117. Calcule o valor de

 $A = \frac{1001 \cdot 1002 \cdot 1003 \cdot \ldots \cdot 2000}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot 1999}$

a) 2^{1000}

b) 2⁹⁹⁹

c) 1000

d) 999

e) 2.

7 Introdução aos Polinômios

Problema 118. Seja *n* um número natural. Indique por meio de expressões algébricas:

a) o dobro de n.

c) o sucessor de n.

e) o cubo de n.

b) 20% de *n*.

d) a metade da soma entre $n \in 3$.

Problema 119. Determine a área de um retângulo cujas dimensões (comprimento e largura) são:

a) 2x e x.

b) 2x e (x + 1).

c) (x-1) e (x+2).

Problema 120. Escreva os graus de cada monômio:

a) $2x^5y^3$.

b) $-\frac{4}{5}m^2n$.

c) $\sqrt{5}p^{5}qr^{5}$.

d) $a^m b^n cd$.

Problema 121. Considere os monômios $A = 8x^3y^2$ e B = 4xy. Determine:

a) $A \cdot B$.

b) $\frac{A}{B}$.

Problema 122. Sejam os polinômios $P = 3x^2 + 4x - 8$ e $Q = x^2 + 1$, determine:

a) P + Q.

b) P-Q.

c) $P \cdot Q$.

Problema 123. Efetue as multiplicações:

a) $(a+1)(a^2-6a+4)$.

b) (3a - b)(3ab + 2a - b).

c) $\frac{a^2}{4} \left(1,2a^2 + 1,6a + \frac{8}{3} \right)$.

Problema 124. Um taxista cobra, por corrida, *R*\$3,00 como preço fixo inicial e mais *R*\$2,50 para cada *km* rodado.

a) Determine a expressão que representa quanto será cobrado por uma corrida de *x km*.

b) Quanto custa uma corrida de 9km?

Problema 125. Os produtos algébricos da forma (x + a)(x + b), onde x é variárel e a e b são números reais quaisquer, podem ser calculados usando-se a distributividade, obtemos assim $(x + a)(x + b) = x^2 + (a + b)x + ab$. Veja que o coeficiente de x é a soma de a e b e o coeficiente independete de x é ab. Por exemplo, $(x + 2)(x + 5) = x^2 + 7x + 10$. Utilize este princípio e calcule os produtos:

a) (x+1)(x+2)

d) (x-4)(x+4).

g) $\left(x+\frac{1}{2}\right)\left(x+\frac{3}{2}\right)$.

b) (x+3)(x+9).

e) (x+5)(x+5).

c) (x-2)(x+3).

f) (x-4)(x-4).

Problema 126. O **Teorema do Resto** diz que o resto da divisão de um polinômio P de uma variável x por outro polinômio da forma (x+a) é igual ao valor de P quando substituimos x por -a. Use este teorema para calcular o resto da divisão de $x^3 - 4x^2 + 5x - 1$ por:

a) x - 1.

b) x + 1.

c) x - 3.

d) x + 4.

e) $x - \frac{1}{2}$.

Problema 127. Use o *Teorema do Resto* para verificar se $x^4 + 2x^3 - 3x^2 - 8x - 4$ é divisível por:

a) x - 1.

b) x + 1.

c) x + 2. d) x - 2.

e) x + 3.

Problema 128. Em um jogo de perguntas e respostas, ganham-se 5 pontos por acerto e perdem-se 3 pontos por erro.

- a) Determine a expressão que representa o número de pontos obtidos por alguém que acertou *x* perguntas e errou y perguntas.
- b) Qual a pontuação de Maycon, se ele acertou 8 e errou 2 perguntas?

Problema 129. Um tanque de combustível possui a capacidade máxima de 50 litros. Se já existem x litros de combustível neste tanque, determine:

- a) A expressão que da quantidade de litros que faltam para completá-lo.
- b) A expressão que determina do quanto será gasto para completá-lo, se o litro de combustível custa R\$3,00.

Problema 130. Simplifique as expressões:

a) $a^9 \cdot a^{-5}$.

b) $(3y^2)(4y^5)$. c) $\frac{(2x^3)^2(3x^4)}{(x^3)^4}$. d) $(2a^3b^2)(3ab^4)^3$. e) $\left(\frac{x}{y}\right)^3 \left(\frac{y^2x}{z}\right)^4$.

Problema 131. Elimine os expoentes negativos das expressões abaixo:

a) $\frac{x^{-3}y^4}{x^5y^{-3}}$.

b) $\frac{6st^{-4}}{2s^{-2}t^2}$.

c) $\left(\frac{ba^{-4}}{ab^{-3}}\right)^{-2}$.

d) $\frac{a^{-3}}{h^{-2}} \cdot \frac{a^{-5}}{h^{-3}}$.

Problema 132. Simplifique a expressão:

$$\frac{\left(\frac{3x^2y}{a^3b^3}\right)^2}{\left(\frac{3xy^2}{2a^2b^2}\right)^3}$$

Problema 133. Determine o grau dos monômios abaixo:

- a) $5a^2b^7$.
- b) $\frac{7}{2}a^{n+1}b^{n+2}$, onde *n* é um número natural.
- c) $ab^2c^3d^4\dots z^{26}$ (onde é colocado em cada letra do alfabeto um expoente correspondendo à sua posição).

Problema 134. Determine o valor do inteiro positivo n para que o grau do monômio $5x^{n+1}y^{2n-1}$ seja 9.

Problema 135. Determine o valor de k para que o produto (kx-1)(2x+1) seja um polinômio cuja soma dos coeficientes é 3.

Problema 136. Use a propriedade de distributividade da multiplicação e resolva os produtos:

a) $(x + a^n)(x - a^n)$.

b) $(x + a^{2n})(x + a^{2n})$.

c) $(x-2a)^2$.

Problema 137. Determine o quociente e o resto das divisões:

a) $(x^2 - a^2) \div (x - a)$.

b) $(x^2 + 2xa + a^2) \div (x + a)$. c) $(x^3 + a^3) \div (x + a)$.

15

Problema 138. Determine o valor de $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ quando:

a)
$$a = 1; b = 4; c = 4$$
.

b)
$$a = 1; b = -2; c = -8.$$

c)
$$a = 1; b = 5; c = 0.$$

Problema 139. Determine k para que o polinômio $P(x) = x^3 - 2x^2 + 3x + k$ seja divisível por:

a)
$$x - 1$$

b)
$$x + 1$$

c)
$$x - 2$$

Problema 140. De uma cartolina quadrada de 50cm de lado, retira-se através de cortes um quadrado de x cm de lado de cada um dos quatro cantos da cartolina, sendo $0 \le x \le 25$. Determine:

- a) A expressão que determina a área da cartolina após os cortes.
- b) A área da cartolina cortada se x = 5cm.
- c) Suponha que a cartolina cortada é usada para formar uma caixa sem tampa dobrando-se ao longo das retas determinadas pelos cortes. Qual a expressão envolvendo *x* fornece o volume de tal caixa?

Problema 141. Simplifique a expressão:

$$\frac{(x^{2n+1}+x)(x^{2n+1}-x)-(x^4)^{(n+1/2)}}{(x^n+x)^2-x^{2n}-2x^{n+1}},$$

definida para $x \neq 0$.

Problema 142. Sejam $A = x^3 + 6x^2 - 2x + 4$ e $B = x^2 - 1$, polinômios. Determine o quociente e o resto de A na divisão por B.

Problema 143. Leila foi avisada em dezembro de 2012, que a mensalidade escolar de seus filhos para o ano de 2013 teria um aumento de 80%. Ela não concordou com o aumento e procurou o PROCON que, após analisar o caso, determinou que a escola reduzisse este último valor em 30%. A escola acatou a decisão do PROCON. Além disso, como Leila tem 3 filhos matriculados, a escola decidiu lhe dar 10% de desconto nas mensalidades de cada um de seus filhos. Determine:

- a) A expressão que determina o preço da mensalidade de cada filho de Leila em 2013.
- b) Quanto Leila gastará com mensalidades em 2013, se a mensalidade, em 2012, era R\$ 800,00.

Problema 144. A expressão $\sqrt[3]{-(x-1)^6}$ é um número real. Determine:

- a) O valor da expressão para x = 2.
- b) O maior valor possível para a expressão.

Problema 145. a) Calcule o valor de:

$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\ldots\left(1+\frac{1}{99}\right)$$

b) Calcule o valor de:

$$\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)\ldots\left(1+\frac{1}{x+98}\right)$$

Problema 146. a) Calcule o valor de

$$A = \frac{1001 \cdot 1002 \cdot 1003 \cdot \ldots \cdot 2000}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot 1999}$$

b) Se *x* é um inteiro positivo, calcule o valor de:

$$B = \frac{(x+1)(x+2)(x+3)\cdot\ldots\cdot(2x)}{1\cdot 3\cdot 5\cdot\ldots\cdot(2x-1)}$$

Produtos Notáveis

Problema 147. Siga o modelo e calcule os produtos notáveis:

$$(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2$$

= $x^2 + 10x + 25$

a) $(x+1)^2$. b) $(4+x)^2$. c) $(x+\sqrt{3})^2$. d) $(3x+1)^2$. e) $(4x+2)^2$.

Problema 148. Calcule os produtos notáveis:

a) $(2x+3)^2$. b) $(2x+3y)^2$. c) $(x^2+3)^2$. d) $(a^2+3b^2)^2$. e) $(x^4+3^2)^2$.

Problema 149. Veja o seguinte exemplo para calcular o quadrado de um número:

$$42^{2} = (40+2)^{2}$$

$$= 40^{2} + 2 \cdot 40 \cdot 2 + 2^{2}$$

$$= 1600 + 160 + 4$$

$$= 1764$$

Calcule os quadrados de 13, 41 e 19 sem usar a calculadora.

Problema 150. Calcule o valor das expressões:

a) $(\sqrt{a} + \sqrt{b})^2 - 2\sqrt{ab}$.

c) $(a+1)^2 + 2(a+1)a + a^2 + 2(2a+1) + 1$.

b) $(x+1)^2 + (x-1)^2$.

Problema 151. Calcule as expressões:

a) $(-a-b)^2$. b) $(-2a+b)^2$. c) $(2ab+3c)^2$. d) $(2a-2b)^2$.

Problema 152. Calcule os produtos:

a) (x-1)(x+1).

c) $(x^2-3z)(x^2+3z)$.

b) (4-a)(4+a).

d) $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})(x+y)$

Problema 153. Siga o modelo abaixo e calcule o valor das expressões dadas.

$$27 \cdot 33 = (30 - 3)(30 + 3)$$
$$= 30^{2} - 3^{2}$$
$$= 891$$

a) 99·101.

b) 1998 · 2002.

c) $5 \cdot 15 + 25$

Problema 154. Ao efetuarmos a multiplicação (a + b)(a + b) usando a distributividade, quantas operações de multiplicação faremos?

Problema 155. Repita o exercício anterior com a multiplicação (a + b)(a + b). Em seguida, determine quantas cópias de a^2b aparecem no resultado. Finalmente, conclua com argumentos de contagem que:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

Problema 156. Encontre uma figura que explique geometricamente, através do uso de áreas, a equação:

$$1+2+3+4+5+6=\frac{6\cdot 7}{2}$$
.

Problema 157. A figura abaixo explica geometricamente, usando áreas, o desenvolvimento do produto notável

$$(a+b)^2 = a^2 + 2ab + b^2.$$

Você conseguiria obter uma figura que explicasse geometricamente, também usando áreas, a equação

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$
?

Problema 158. Encontre uma figura que explique geometricamente, através do uso de áreas, a equação:

$$1+3+5+\ldots+17=9^2$$

Problema 159. O professor Medialdo acaba de explicar a seus alunos que a média aritmética de dois números a e b é $\frac{a+b}{2}$ e a média geométrica é \sqrt{ab} . Antes de entregar as notas de duas provas aplicadas anteriormente, ele decidiu testar o conhecimento dos seus alunos perguntando se eles prefeririam que cada um recebesse a média geométrica ou a média aritmética das duas notas. Considerando que os alunos desejam a maior nota possível no boletim, o que eles devem dizer ao professor Medialdo?

Problema 160. Sejam *a* e *b* números reais.

- a) Verifique que $(a+b)^2 > 4ab$.
- b) Verifique que $\frac{1}{a} + \frac{1}{h} \ge \frac{4}{a+h}$.
- c) Verifique que $\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$.

Problema 161. João deseja construir um retângulo usando um arame com 2 metros de comprimento. Qual é a maior área possível de tal retângulo?

Problema 162. Sejam:

$$A = \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{3}}} e B = \sqrt{2 + \sqrt{2 + \sqrt{2} + \sqrt{3}}} \times \sqrt{2 - \sqrt{2 + \sqrt{2} + \sqrt{3}}}$$

Quanto vale $A \cdot B$?

a)
$$\sqrt{2}$$

b)
$$\sqrt{3}$$

d)
$$2 + \sqrt{2}$$

d)
$$2 + \sqrt{2}$$
 e) $2 + \sqrt{3}$.

Problema 163. Calcule o valor do número:

$$20142013^2 - 2(20142013)(20142012) + 20142012^2 \\$$

Problema 164. Se x, y, a e b são reais tais que $\sqrt{x-y} = a$ e $\sqrt{x} + \sqrt{y} = b$, determine o valor de \sqrt{xy} .

- a) $\frac{b^4 a^4}{4b^2}$
- b) $\frac{a^2}{h}$
- c) $\frac{a^2 + b^2}{b}$ d) $\frac{1}{b}$
- e) a^2 .

Problema 165. João está ajudando seu pai com as finanças de sua loja. Como a quantidade de produtos ofertados estava influenciando a quantidade de produtos vendidos, ele decidiu procurar algum padrão que pudesse ajudá-lo a descobrir qual a quantidade ideal de produtos que deveriam ser ofertadas para maximizar a quantidade de produtos vendidos. Depois de um bom tempo "quebrando a cabeça", ele percebeu que se "a" produtos eram ofertados, então a loja vendia "a(10-a)" itens. Em seguida, com a ajuda de um produto notável semelhante a essa expressão, foi possível achar a quantidade ideal de produtos que deveriam ser vendidos. Como ele fez isso?

Problema 166. O pai de João (veja o problema anterior), percebendo a astúcia do filho, decidiu desafiá-lo a fazer o mesmo com uma fórmula bem diferente e supondo agora que a é um número real qualquer. Nesse novo problema, dado "a" real, ele deve tentar achar o valor máximo de $4a - a^4$. Novamente usando produtos notáveis, João conseguiu descobrir que o máximo de tal expressão é 3. Você consegue descobrir como ele fez isso?

Fatoração de Expressões Algébricas

Problema 167. Siga o modelo e fatore as expressões:

$$3a + ba = a(3+b)$$

a)
$$5a + ba$$
.

b)
$$am + an$$
.

c)
$$xa + xb + xc$$

d)
$$ax + a$$
.

e)
$$ab + bc + abc$$
.

Problema 168. Simplifique as frações fatorando o denominador e o numerador.

$$a) \ \frac{3a+5b}{6a+10b}$$

$$b) \ \frac{3x+3y}{8x+8y}.$$

c)
$$\frac{3a^2 + 5a}{6a + 10}$$
.

b)
$$\frac{3x+3y}{8x+8y}$$
. c) $\frac{3a^2+5a}{6a+10}$. d) $\frac{a(x+y)+b(x+y)}{(a-b)x+(a-b)y}$.

Problema 169. Fatore por agrupamento as seguintes expressões:

a)
$$a^2 + ab + ac + bc$$
.

b)
$$ax - bx + ay -$$

c)
$$2ab + 2a + b + 1$$

$$d) \ ax - bx + 2a - 2b$$

a)
$$a^2 + ab + ac + bc$$
. b) $ax - bx + ay - c$) $2ab + 2a + b + 1$. d) $ax - bx + 2a - 2b$ e) $10ab - 2b + by$.

Problema 170. Fatore o numerador e o denominador e simplifique cada expressão dada:

a)
$$\frac{m^4 + m^2}{m^2 + 1}$$
.

b)
$$\frac{x^3 + x^2 + x + 1}{x^3 + x^2}$$
.

c)
$$\frac{m^4 + 3m^3 + 2m + 6}{(m+3)^2}$$
.

Problema 171. Fatore as expressões abaixo usando a diferença de quadrados:

a)
$$a^2 - 25b^2$$
.

b)
$$4x^2 - 1$$
.

c)
$$7 - x^2$$
.

d)
$$a^2x^2 - b^2y^2$$
.

e)
$$a^4 - b^4$$

Problema 172. Para cada um dos itens abaixo, decida se a expressão dada é o quadrado de um binômio, isto é, se pode ser escrita na forma:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 ou como $(a-b)^2 = a^2 - 2ab + b^2$.

a)
$$x^2 - 4x + 3$$
.

b)
$$x^2 + x + \frac{1}{4}$$
.

c)
$$y^2 + 6y + 18$$
.

c)
$$y^2 + 6y + 18$$
. d) $4z^2 - 12zy + 9y^2$. e) $3z^2 + 6z + 3$.

Em caso afirmativo, escreva o binômio.

Problema 173. Fatore completamente as expressões abaixo:

a)
$$x^4 - 2x^2 + 1$$
.

b)
$$5a^2 - 10a + 5$$
.

c)
$$a^2 - b^2 - 2bc - c^2$$
.

Problema 174. Efetue as multiplicações e divisões indicadas como no exemplo:

$$\frac{2ab}{3ax} \cdot \frac{5xy}{7by} = \frac{2ab}{3ax} \cdot \frac{5xy}{7by}$$
$$= \frac{2}{3} \cdot \frac{5}{7}$$
$$= \frac{10}{21}$$

a)
$$\frac{4a}{b} \cdot \frac{5b}{a}$$
.

b)
$$\frac{x^3 + x}{3y} \div \frac{x^2 + 1}{y^2}$$
.

c)
$$\frac{yx+x}{(x+1)^2} \cdot \frac{xy+y}{(y+1)^2}$$
.

Problema 175. Se xy = 6 e x + y = 7, quanto vale $x^2y + y^2x$?

Problema 176. Se, ao adicionarmos x ao numerador e subtrairmos x do denominador da fração $\frac{u}{h}$, com a e b reais, obtemos a fração $\frac{c}{d}$, com c e d reais e $c \neq -d$, qual o valor de x?

Problema 177. Fatore as expressões:

a)
$$a^2b - b^3$$
.

b)
$$x^2 - 2xy + y^2 - 9$$
.

c)
$$a^4 - 32a^2 + 256$$
.

Problema 178. Verifique que:

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2).$$

Em seguida, fatore $x^3 - 8$.

Problema 179. No exercício anterior, o que acontece se trocarmos y por -z?

Problema 180. A soma de dois números é 4 e seu produto é 1. Encontre a soma dos cubos desses números.

Problema 181. Se xy = x + y = 3, calcule $x^3 + y^3$.

Problema 182. Seja x um número real tal que $x + \frac{1}{x} = 2$, calcule $x^2 + \frac{1}{x^2}$.

Problema 183. Qual a forma mais simplificada da expressão $(a-b)^2 + (-a+b)^2 + 2(a-b)(b-a)$?

Problema 184. Simplifique a expressão

$$(\sqrt{5} + \sqrt{6} + \sqrt{7})(\sqrt{5} + \sqrt{6} - \sqrt{7})(\sqrt{5} - \sqrt{6} + \sqrt{7})(-\sqrt{5} + \sqrt{6} + \sqrt{7}).$$

Problema 185. Fatore completamente $x^4 + 4$.

Problema 186. Verifique que

$$n(n+1)(n+2)(n+3) + 1 = (n(n+3)+1)^2$$

Problema 187. Calcule o valor de:

$$\sqrt{(2014)(2015)(2016)(2017)+1}$$

Problema 188. Fatore $p^4 - 1$.

Problema 189. Se $x = \sqrt{3 - \sqrt{8}} - \sqrt{3 + \sqrt{8}}$, mostre que x é um inteiro negativo.

Problema 190. Fatore $n^5 + n^4 + 1$.

Problema 191. Qual é o menor inteior positivo *n* tal que $\sqrt{n} - \sqrt{n-1} < 0.01$

Problema 192. Encontre o quociente da divisão de $a^{32} - b^{32}$ por

$$(a^{16} + b^{16})(a^8 + b^8)(a^4 + b^4)(a^2 + b^2)$$

Problema 193. Verifique que

$$\frac{(2^3-1)(3^3-1)\dots(100^3-1)}{(2^3+1)(3^3+1)\dots(100^3+1)} = \frac{3367}{5050}.$$

Problema 194. A sequência de Fibonacci é definida recursivamente por $F_{n+2} = F_{n+1} + F_n$ para $n \in \mathbb{Z}$ e $F_1 = F_2 = 1$. Determine o valor de:

a)
$$\frac{F_{2016}}{F_{2013}^2}$$

b)
$$\frac{F_{2014}}{F_{2013}}$$

$$\left(1 - \frac{F_2^2}{F_3^2}\right) \left(1 - \frac{F_3^2}{F_4^2}\right) \cdot \dots \cdot \left(1 - \frac{F_{2013}^2}{F_{2014}^2}\right)
c) \frac{F_{2015}^2}{F_{2013}^2} d) \frac{F_{2015}}{2}$$

d)
$$\frac{F_{2014}}{2}$$

e)
$$\frac{F_{2015}}{2F_{2013}F_{2014}}$$
.

Problema 195. Se x + y + z = 0, verifique que:

$$x^3 + y^3 + z^3 = 3xyz.$$

Problema 196. Define-se o conjunto de 100 números $\{1,1/2,1/3,...,1/100\}$. Eliminamos dois elementos quaisquer a e b deste conjunto e se inclui, no conjunto, o número a + b + ab ficando assim um conjunto com um elemento a menos. Depois de 99 destas operações, ficamos só com um número. Que valores pode ter esse número?

Problema 197. Verifique que

$$(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(x+z)(y+z).$$

Problema 198. Verifique que:

$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$$

Problema 199. Fatore a expressão

$$(b-c)^3 + (c-a)^3 + (a-b)^3$$
.

Problema 200. Sejam a, b, c, x, y, z reais distintos tais que ax + by + cz = 0. Verifique que

$$\frac{ax^2 + by^2 + cz^2}{bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2}$$

não depende de *x*, nem de *y*, nem de *z*.

10 Sentenças Matemáticas e Notação Algébrica

Problema 201. Nos parênteses dos ítens abaixo, marque A, caso a sentença seja aberta, ou F, caso a sentença seja fechada.

a)
$$(\underline{}) 4^2 = 15 + 1.$$

e) (____) $7 \in \mathbb{N}$.

b)
$$() 2x - 1 = x + 4.$$

f) (____) $\frac{1}{x+1} = 2x$.

c) (____)
$$\sqrt{1} < 2$$
.

g) (____) $x^2 = 5$.

d) (____)
$$2a - 1 = b$$
.

Problema 202. Quais das sentenças fechadas abaixo são verdadeiras?

a)
$$5^2 = 4^2 + 3^2$$
.

d)
$$\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$
.

g)
$$\sqrt{25} \in \mathbb{Q}$$
.

b)
$$7 - 13 = -6$$
.

e)
$$-6 \in \mathbb{N}$$
.

h)
$$\sqrt[3]{-8} \notin \mathbb{Z}$$
.

c)
$$\frac{1}{2} + \frac{1}{3} = \frac{2}{5}$$
.

f)
$$\sqrt{16} > 4$$
.

i)
$$-\frac{1}{2} < -\frac{1}{3}$$
.

Problema 203. Utilize símbolos matemáticos e letras para representar as grandezas e reescrever as sentenças abaixo.

- a) O perímetro de um quadrado é o quádruplo da medida do seu lado.
- b) A área de um quadrado é o quadrado da medida do seu lado.
- c) A soma das idades de Luiz e Luísa é dezesseis.
- d) A metade da raiz quadrada de um número é menor que o triplo desse número.
- e) O salário de Rodrigo é setecentos reais mais vinte por cento do valor de suas vendas.
- f) A área de um retângulo cuja altura é o dobro da base é o dobro do quadrado da base.

Problema 204. Seja *l* a medida da aresta de um cubo. Determine as expressões correspondentes

- a) a sua área A.
- b) ao seu volume *V*.
- c) à soma S das medidas de todas as arestas.

Problema 205. Diz a lenda que no túmulo de Diofanto (matemático grego da antiguidade) havia o seguinte problema:

Viajante, aqui estão as cinzas de Diofanto. É milagroso que os números possam medir a extensão de sua vida: 1/6 dela foi uma bela infância; depois de 1/12 de sua vida, sua barba cresceu; 1/7 de sua vida passou em um casamento sem filhos; cinco anos após isso nasceu seu primeiro filho, que viveu metade da vida de seu pai; e, em profundo pesar, o pobre velho terminou seus dias na terra quatro anos após perder seu filho. Quantos anos viveu Diofanto?

Construa uma equação, utilizando os dados do túmulo, na qual seja possível calcular a idade de Diofanto e a resolva.

Problema 206. A figura abaixo é o desenho de um terreno retangular dividido em três retângulos menores. Determine:

- a) uma expressão que representa o perímetro *P* do terreno.
- b) uma expressão que representa a quantidade Q de cerca gasta, se todos os retângulos serão cercados e lados comuns recebem cerca apenas uma vez.
- c) uma expressão que representa a área A do terreno.

Figura 3

Problema 207. O retângulo *ABCD* abaixo representa um terreno. Deve-se passar uma cerca que o divida de maneira que a área do polígono CDEF seja o dobro da área do polígono ABFE. Sobre o lado AD essa cerca começa a 5m do vértice A e sobre o lado BC essa cerca termina a x metros do vértice B.

- a) Represente algebricamente a área dos dois polígonos separados pela cerca.
- b) Determine o valor de *x*.

Respostas e Soluções.

1. (Extraído da Vídeo Aula)

Observe que se tivéssemos começado a contar pelo número 1, não haveria dúvidas quanto a quantidade de elementos do conjunto $\{1, 2, 3, \ldots, 908\}$. Como começamos sete unidades a mais que o 1, a resposta automática seria 908 - 8 = 900. Este é um excelente ponto para lembrar que subtração não indica quantidade e sim "distância" entre dois números. Ao calcularmos a distância do 908 (ou de m) até o 8 (ou de n) estamos contando apenas o espaço entre eles, sendo assim, após a subtração devemos adicionar uma unidade para calcular a exata quantidade. Por fim, a quantidade será

$$908 - 8 + 1 = 901$$
 números.

De modo geral, a quantidade de números inteiros de m até n, sendo m > n, é m - n + 1.

Outra solução: Uma outra estratégia é fazermos um ajuste na contagem deslocando cada valor até o ponto inicial, o 1, e depois simplesmente olhar onde terminou. Como 8-7=1 e 908-7=901, a quantidade de elementos do conjunto $\{8,9,10,\ldots,908\}$ é mesma que a do conjunto $\{1,2,3,\ldots,901\}$, isto é, 901 elementos.

- **2.** Perceba que poderíamos dividir todos os elementos do conjunto por 7 para começarmos a contar do 1 ficando com {1, 2, 3, ..., 97, 98}. Portanto, há 98 elementos no conjunto inicial.
- **3.** Perceba que podemos subtrair 9 de cada elemento do conjunto inicial e ficaremos com o conjunto $\{5, 10, 15, \ldots, 995, 1000\}$. Agora, dividindo todos os elementos do novo conjunto por 5 ficamos com $\{1, 2, 3, \ldots, 199, 200\}$. Portanto, há 200 elementos no conjunto inicial.
- **4.** Como há 12 signos do zodíaco, basta n = 13 para que duas pessoas tenham o mesmo signo. A ideia é pensar nos Signos como as casas e nas pessoas como os pombos.

Pombo sem casa, o 13° elemento.

Logo, há 12 casas, e para garantir que alguma das casas tenha dois pombos, basta ter n = 12 + 1 pombos.

5. (Extraído da Vídeo Aula)

Observe que os números usados são

$$\{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}.$$

São 20 - 10 + 1 = 11 números, cada um com dois algarismos, logo foram usados $11 \times 2 = 22$ algarismos.

6. Vamos pensar na quantidade de frutos como as casas e nas jaqueiras como os pombos (●)

Agora coloquemos as jaqueiras (que serão os pombos) nas respectivas casas que representam suas quantidades de frutos.

Caso ocupemos todas as casas, ainda haverá 399 jaqueiras a serem distribuídas.

Como 1000 > 601, o PCP garante que alguma casa terá dois pombos.

- 7. Considere as três cores como sendo as casas e as meias retiradas como os pombos.
- a) Pelo Princípio da Casa dos Pombos, se retirarmos 4 meias, pelo menos duas delas terão a mesma cor. Para ver que esse é o número mínimo, note que é possível pegarmos uma meia de cada cor nas três primeiras retiradas e não formarmos um par.

Resposta: 4 meias.

b) Observe que o cenário mais difícil para o objetivo é retirar todas as meias de cor preta, todas as meias de cor marrom e depois o par de cor branca. Assim, deveremos retirar 20 + 10 + 2 = 32 meias para garantir o par de cor branca.

Resposta: 32 meias.

8. Sejam x e y números inteiros pares, então podemos escrevê-los como x=2a e y=2b, para a e b inteiros. Analogamente, se w e z são números inteiros ímpares, podemos escrever w=2c+1 e z=2d+1, com c e d inteiros.

a) c) e)
$$x + y = 2a + 2b \qquad x + w = 2a + 2c + 1 \qquad x \cdot y = 2a \cdot 2b \\ = 2(a + b), \qquad = 2(a + c) + 1, \qquad = 2 \cdot 2ab,$$
 é par. b) d) f)
$$w + z = 2c + 1 + 2d + 1 \qquad w \cdot z = (2c + 1)(2d + 1) \qquad x \cdot w = 2a \cdot (2c + 1) \\ = 2(c + d + 1), \qquad = 2(2cd + c + d) + 1, \qquad = 2(2ac + a),$$
 é par. é par.

9. (Extraído da Vídeo Aula)

Observe que de 40 até 99 há 99 - 40 + 1 = 60 números de dois algarismos cada, logo foram utilizados 60 \times 2 = 120 algarismos. Agora, de 100 até 999 há 999 - 100 + 1 = 900 números de três algarismos, o que totaliza 900 \times 3 = 2700 algarismos. Seguindo de 1000 até 1200 são 1200 - 1000 + 1 = 201 números com quatro algarismos, ou seja, 201 \times 4 = 804. Por fim, teremos

$$120 + 2700 + 804 = 3624$$
 algarismos utilizados.

10. A soma pedida é

$$S = 100 + 101 + 102 + \dots + 999$$
$$= \frac{900 \cdot (100 + 999)}{2}$$
$$= 494550.$$

11. (Extraído da Vídeo Aula)

- a) Como são 12 meses, com 24 pessoas no grupo não é possível garantir que três delas façam aniversário no mesmo mês, afinal poderíamos ter exatamente 2 em cada mês. Agora, com 25 pessoas teremos certeza pois, se cada mês receber no máximo dois aniversariantes, a 25^a pessoa ficará sem data de aniversário possível. Logo, é preciso, no mínimo, 25 pessoas.
- b) Como são 7 dias na semana, não basta termos 21 pessoas, pois poderíamos ter 3 pessoas nascidas em cada dia. Com a 22^a pessoa, com certeza, haverá um dia no qual 4 pessoas nasceram. Portanto, no mínimo, deveremos ter 22 pessoas.

12. (Extraído da Vídeo Aula)

Se tirarmos 8 blusas, podem ser todas cinzas; tirando 10 blusas, podem ser todas amarelas; e sendo 12, podemos ser todas beges. No caso de 18 poderiam ser as cinzas e as amarelos; para 20, as beges e as cinzas; e para 22 as amarelas e as beges. Mas, com certeza, se forem 23 teremos uma de cada cor.

13. Como são 4 cores, poderemos dar o "azar" de em várias retiradas sempre chegarmos em 3 bolas de cada cor, sem antes obtermos na 4^a bola de cor repetida. Tirar 3 bolas de cada cor pode ser obtido após $4 \times 3 = 12$ retiradas. Daí, com certeza, a 13^a bola repetirá pela quarta vez alguma cor. Portanto, temos que retirar, no mínimo, 13 bolas.

14. (Extraído da Vídeo Aula)

Observe que se escrevermos a soma pedida no sentido inverso obteremos

$$S = 2014 + 2013 + 2012 + 2011 + \dots + 4 + 3 + 2 + 1$$

e, somando a forma original com sua escrita invertida, também obteremos

S	=	1	+	2	$+\cdots+$	2013	+	2014
					+···+			
2 <i>S</i>	=	2015	+	2015	$+\cdots +$	2015	+	2015
2 <i>S</i>	=	2014	×	2015				
S	=	1007	×	2015,				

que é o produto de números ímpares. Logo a soma dada é ímpar.

Observação: Veja que

$$2S = 2015 + 2015 + \cdots + 2015 + 2015$$

2014 parcelas iguas a 2015.

pode ser facilmente transformada em uma multiplicação em função da igualdade das parcelas, resultando em

$$2S = 2014 \times 2015$$
.

Essa ideia pode ser aplicada na soma

$$S = 1 + 2 + 3 + \cdots + (n-2) + (n-1) + n$$
.

Repetindo o método chegaremos a

sindo o metodo chegaremos a
$$S = 1 + 2 + \cdots + (n-1) + n$$
 $S = n + (n-1) + \cdots + 2 + 1$ $2S = (n+1) + (n+1) + \cdots + (n+1) + \cdots + (n+1)$ $2S = n \times (n+1)$

que produz a fórmula para a soma *S* dos naturais de 1 até *n*:

$$S = \frac{n \cdot (n+1)}{2}.$$

15. (Adaptado do livro Círculos Matemáticos)

Observe que cada disco dentado gira no sentido inverso que o dos seus vizinhos. Como o disco 1 gira no sentido horário, o 2 ficará no anti-horário, o 3 no horário, e assim por diante. O que conclui que os ímpares ficaram no sentido horário e os pares no anti-horário. Portanto, as proposições verdadeiras são as i e iii. Serão apenas 2 proposições corretas.

16. (Adaptado da Vídeo Aula)

Observe que se isso for possível, poderemos separar os números de 1 até 10 em dois conjuntos de modo que a soma *S* dos elementos do primeiro seja igual a soma dos elementos do segundo. Como esses conjuntos têm todos os números citados, então

$$S + S = 1 + 2 + 3 + 4 + \dots + 10$$
$$2S = \frac{10 \cdot (1 + 10)}{2}$$
$$2S = 55$$

Mas 2*S* é um número par e 55 é um número ímpar, então essa equação não tem solução inteira, daí, não tem como cumprir o que o problema perguntou.

17. Primeiro observe que não poderemos ter qualquer cor com 13 bolas, apenas conseguiremos isso com as brancas e as verdes. Sendo assim, por "azar", poderíamos ter tirado todas as cores que não resolvem o problema, totalizando 7+3+11=21 bolas. Agora restam apenas duas cores e como queremos treze bolas de cor repetida devemos tirar ao menos mais 12+12+1=25. O que resulta em

$$21 + 25 = 46$$
.

18. (Adaptado da OBMEP)

Observe que se n é ímpar, então n^2 é ímpar, como está provado no exercício 8. Assim, $n^2 \pm n$ será par. Como deseja-se um número ímpar, basta somarmos um ímpar. A resposta está na letra \mathbf{c} .

19. Observe que 2010^{2010} possui unidade par, pois é o produto de números pares, já 2011^{2011} ficará com unidade ímpar, 2012^{2012} terá unidade par e essa alternância continuará. Por fim, a paridade resultante será

$$par + impar + par + impar + par + impar + par = impar$$
.

20. (Extraído do Vestibular da PUC/RJ)

Tome os 12 meses como as casas e as n pessoas como os pombos. Se houver uma distribuição de 3 pessoas em cada mês, não se chegará ao objetivo do problema e já teríamos $12 \times 3 = 36$ pessoas no grupo. Agora basta que mais uma pessoa seja colocada em qualquer uma das casas para concluir o problema. Portanto, 37 pessoas num grupo garantem que ao menos 4 nasceram no mesmo mês.

21. (Extraído do Vestibular da UERJ/RJ - 2011)

Se retirarmos 30 bolas, é possível que existam 3 bolas de cada cor e o objetivo não será cumprido. Com 31 bolas, pelo menos uma cor terá 4 representantes.

- 22. Como há 6 faces, para ter certeza que ao menos um delas saiu:
 - i) 2 vezes, deveremos ter ao menos $7 = 1 \cdot 6 + 1$ lançamentos;
- ii) 3 vezes, deveremos ter ao menos $13 = 2 \cdot 6 + 1$ lançamentos;
- iii) 4 vezes, deveremos ter ao menos $19 = 3 \cdot 6 + 1$ lançamentos;
- iv) 5 vezes, deveremos ter ao menos $26 = 4 \cdot 6 + 1$ lançamentos; e
- v) 6 vezes, deveremos ter ao menos $31 = 5 \cdot 6 + 1$ lançamentos.

A resposta é d=31 lançamentos. A ideia é pensar que o número em cada face representa uma casa (6 números =6 casas). Queremos alguma casa com mais do que d pombos (lançamentos) então deve-se distribuir os resultados dos lançamentos nas respectivas casas. Se tivermos 6d+1 lançamentos, não é possível que cada número tenha saído no máximo d vezes e assim teremos uma casa com pelo menos d+1 pombos.

23. (Adaptado da Vídeo Aula)

- i) de 1 até 9 são 9 1 + 1 = 9 dígitos.
- ii) de 10 até 99 são $(99 10 + 1) \times 2 = 180$ dígitos.
- iii) de 100 até 999 são $(999 100 + 1) \times 3 = 2700$ dígitos.

COmo 9 e 180 são divisíveis por 3 e 9+180<1002<9+180+2700, o 1002° será o último dígito de um número de três dígitos. Observe que de 100 até um número de três algarismos n, temos 100-n+1 números de 3 algarismos, logo, são $(n-100+1)\times 3$ dígitos nessa sequência. Queremos encontrar n tal que:

$$9 + 180 + 3 \cdot (n - 99) = 1002$$

$$3 \cdot (n - 99) = 1002 - 189$$

$$3 \cdot (n - 99) = 813$$

$$3n - 297 = 813$$

$$3n = 813 + 297$$

$$3n = 1110$$

$$n = \frac{1110}{3}$$

$$n = 370$$

Então, ao escrevermos o número 370, teremos 1002 termos na sequência, logo o 1002° termo será o 0.

24. (Extraído da Vídeo Aula)

Os múltiplos de 3 entre 1 e 301 são

$${3,6,9,\ldots,297,300}.$$

A sua soma S pode ser escrita como

$$S = 3 + 6 + 9 + \dots + 297 + 300$$

$$S = 3(1 + 2 + 3 + \dots + 99 + 100)$$

$$S = 3 \cdot \left(\frac{100 \cdot (1 + 100)}{2}\right)$$

$$S = 15150.$$

25. (Extraído da OBMEP)

Observe que podemos desenvolver a equação pedida da seguinte forma:

$$\frac{xy}{x+y} = 144$$

$$xy = 144x + 144y$$

$$xy - 144x - 144y + 144^2 = 144^2$$

$$x(y - 144) - 144(y - 144) = 12^4$$

$$(x - 144)(y - 144) = (2^2 \cdot 3)^4$$

$$(x - 144)(y - 144) = 2^8 \cdot 3^4.$$

Como estamos trabalhando com os números inteiros, (x-144) e (y-144) dividem 144^2 , ou seja, basta calcularmos o número de divisores de $144^2=2^8\cdot 3^4$. Esse número possui

$$(8+1) \cdot (4+1) = 45$$

divisores inteiros positivos. Como não há restrição para os valores positivos, teremos

90 pares ordenados

que resolvem o problema.

26. (Extraído da OBMEP)

Observe que podemos desenvolver a inequação dupla (ou simultânea) da seguinte maneira:

$$2000 < \sqrt{n \cdot (n-1)} < 2005$$

$$2000^2 < \left(\sqrt{n \cdot (n-1)}\right)^2 < 2005^2$$

$$2000 \cdot 2000 < n \cdot (n-1) < 2005 \cdot 2005.$$

Então, podemos concluir que

$$n \in \{2001, 2002, 2003, 2004, 2005\},\$$

totalizando 5 números inteiros e positivos. O que está na letra e.

27. Chame a soma pedida de S_2 e siga o que foi iniciado nos exemplos do enunciado até o $(n+1)^3$.

$$2^{3} = 1^{3} + 3 \cdot 1^{2} + 3 \cdot 1 + 1$$

$$3^{3} = 2^{3} + 3 \cdot 2^{2} + 3 \cdot 2 + 1$$

$$4^{3} = 3^{3} + 3 \cdot 3^{2} + 3 \cdot 3 + 1$$

$$5^{3} = 4^{3} + 3 \cdot 4^{2} + 3 \cdot 4 + 1$$

$$\vdots = \vdots$$

$$(n - 1 + 1)^{3} = (n - 1)^{3} + 3 \cdot (n - 1)^{2} + 3 \cdot (n - 1) + 1$$

$$(n + 1)^{3} = n^{3} + 3 \cdot n^{2} + 3 \cdot n + 1$$

Agora, some todos os membros dessas equações observando que todos os termos ao cubo do lado esquerdo se anulam com os do lado direito, exceto o $(n + 1)^3$ e o 1^3 . Obtemos assim

$$(n+1)^3 = 1^3 + 3 \cdot S_2 + 3 \cdot \left(\frac{n(n+1)}{2}\right) + n.$$

Por fim, chegaremos a

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

28. (Adaptado da Vídeo Aula)

Utilizaremos a fórmula desenvolvida no exercício 27, pois a área total é equivalente a soma $1^2 + 2^2 + 3^2 + \cdots + 100^2$, ou seja, é uma soma de quadrados de números inteiros. Sendo assim, obteremos

$$1^{2} + 2^{2} + 3^{2} + \dots + 100^{2} = \frac{100 \cdot 101 \cdot 201}{6}$$
$$= 338350 \text{ u.a.}$$

29. Cada computador pode estar conectado a 1, 2, 3, 4 ou 5 outras máquinas. Como há 6 computadores e cinco opções de conexão, então ao menos dois computadores terão o mesmo número de conexões.

30. (Extraído da Vídeo Aula)

Podemos escrever $5^8 - 2^8$ como

$$\begin{split} 5^8 - 2^8 &= \left(5^4 + 2^4\right) \left(5^4 - 2^4\right) \\ &= \left(5^4 + 2^4\right) \left(5^2 + 2^2\right) \left(5^2 - 2^2\right) \\ &= \left(5^4 + 2^4\right) \left(5^2 + 2^2\right) \cdot 21. \end{split}$$

Portanto, 21 | $5^8 - 2^8$.

31. (Extraído da Vídeo Aula)

Podemos escrever $11^6 - 1$ como

$$11^{6} - 1 = 11^{6} - 1^{6}$$

$$= (11^{3} + 1^{3}) (11^{3} - 1^{3})$$

$$= (11^{3} + 1^{3}) (11^{2} + 11 + 1) (11 - 1)$$

$$= (11^{3} + 1^{3}) (11^{2} + 11 + 1) \cdot 10.$$

Portanto, $10 \mid 11^6 - 1$.

31. (Outra solução.)

Podemos perceber que 11^6 termina em 1 (tem como algarismo das unidades o 1). E observando só as unidades, ele será subtraído de 1, logo $11^6 - 1$ termina em zero. Sendo assim, ele é divisível por 10.

- **32.** Um número que é divisível por 45 é, ao mesmo tempo, divisível por 5 e por 9. Para ser divisível por 5 deve ter o algarismo das unidades igual a 0 ou 5, esses são os possíveis valores de b. Para ser divisível por 9, a soma dos seus algarismos deve ser um múltiplo de 9, ou seja, 9 deve dividir 2+3+a+1+9+9+2+b=26+a+b.
 - i) Para b = 0, temos que 26 + a deve ser múltiplo de 9, daí a = 1 é a única solução no conjunto indicado.
- ii) Para b = 5, temos que 31 + a deve ser múltiplo de 9, daí a = 5 é a única solução no conjunto indicado.

Por fim, para a=1 e b=0 temos $(1-0)^2=1$ e, para a=5 e b=5, temos $(5-5)^2=0$. Os possíveis valores de $(a-b)^2$ são 0 e 1.

33. (Adaptado da Vídeo Aula)

Podemos observar que $2^{48} - 1$ é igual a

$$2^{48} - 1 = (2^{24})^{2} - 1^{2}$$

$$= (2^{24} + 1) (2^{24} - 1)$$

$$= (2^{24} + 1) (2^{12} + 1) (2^{12} - 1)$$

$$= (2^{24} + 1) (2^{12} + 1) (2^{6} + 1) (2^{6} - 1)$$

$$= (2^{24} + 1) (2^{12} + 1) \cdot 65 \cdot 63.$$

Portanto, $65 \mid 2^{48} - 1 \text{ e } 63 \mid 2^{48} - 1.$

34. Se 10x + y é divisível por 7, então 10x + y - 7x - 7y também o é. Agora, temos que

$$10x + y - 7x - 7y = 3x - 6y$$

 $\log 3x - 6y$ é divisível por 7. Fatorando o 3, temos

$$3x - 6y = 3 \cdot (x - 2y)$$
.

Como 7 não divide 3, então 7 divide x - 2y. Para provar a volta, basta tomarmos as operações inversas em cada passagem anterior de trás para frente.

Observação: Vejamos agora alguns exemplos da aplicação do que foi demonstrado no exercício 34.

a) Para demonstrar que o número 294 é divisível por 7, basta tomarmos x = 29 e y = 4:

$$29 - 2 \cdot 4 = 21$$
.

Como 7 divide 21, então 7 divide 294.

b) Para verificar se 7 divide o número 248738, o método vai ser aplicado várias vezes, observe.

$$24873 - 2 \cdot 8 = 24857$$

$$2485 - 2 \cdot 7 = 2471$$

$$247 - 2 \cdot 1 = 245$$

$$24 - 2 \cdot 5 = 14$$

Como 7 divide 14, então 7 divide 248738.

c) Usando o método para o número 7557, obtemos:

$$755 - 2 \cdot 7 = 741$$

$$74 - 2 \cdot 1 = 72$$

$$7 - 2 \cdot 2 = 3$$

Assim, como 7 não divide 3, 7 não divide 7557.

35. (Extraído da Vídeo Aula)

Sabendo que os possíveis restos numa divisão por 8 são $\{0,1,2,3,4,5,6,7\}$ e como o resto é o dobro do quociente, então só trabalharemos com os valores pares, ficando com os possíveis restos: 0,2,4 e 6. Seja n o valor procurado. Simbolicamente teremos:

$$\begin{array}{c|c}
n & 8 \\
2q & q
\end{array}$$

com $0 \le 2q < 8$. Portanto, $0 \le q < 4$. Além disso, como

$$n = 8 \cdot q + 2q = 10q$$

basta considerarmos os seguintes casos para o valor do resto:

- i) se o resto for zero, o quociente será 0 e n = 0;
- ii) se o resto for dois, o quociente será 1 e $n = 8 \cdot 1 + 2 = 10$;
- iii) se o resto for quatro, o quociente será 2 e $n = 8 \cdot 2 + 4 = 20$; e
- iv) se o resto for seis, o quociente será 3 e $n = 8 \cdot 3 + 6 = 30$.

Portanto, os números são 0, 10, 20 e 30.

36. (Extraído da Vídeo Aula)

Os possíveis restos numa divisão por 7 são os elementos do conjunto $\{0,1,2,3,4,5,6\}$. O maior resto possível é o 6 e assim queremos descobrir $n \in \mathbb{N}$ tal que

A partir do diagrama anterior, $n = 7 \cdot 4 + 6 = 34$.

37. Se 10x + y é divisível por 13, então 10x + y - 13x - 13y também o é. Agora, temos que

$$10x + y - 13x - 13y = -3x - 12y = -3(x + 4y),$$

e como 13 não divide -3, então 13 divide x + 4y. Para provar o caminho de volta, basta tomarmos as operações inversas em cada passagem anterior de trás para frente.

Observação: Vejamos alguns exemplos da aplicação do que foi demonstrado no exercício 37.

a) O número 1001 é divisível por 13, para provar isso tome x = 100 e y = 1 e aplique o exercício anterior:

$$1001 \rightarrow 100 + 4 \cdot 1 = 104.$$

Agora, faça x' = 10 e y' = 4, obtendo

$$104 \rightarrow 10 + 4 \cdot 4 = 26$$
.

Como 13 divide 26, então 13 divide 1001.

b) Façamos o mesmo para verificar se 13 divide 2464085:

$$246408 + 4 \cdot 5 = 246428$$

$$24642 + 4 \cdot 8 = 24674$$

$$2467 + 4 \cdot 4 = 2483$$

$$248 + 4 \cdot 3 = 260$$

$$26 + 4 \cdot 0 = 26.$$

Como 13 divide 26, então 13 divide 2464085.

38. Seja n esse número, logo existem a e b inteiros tais que n = 9a + 3 e n = 11b + 4. Ou seja,

$$9a + 3 = 11b + 4$$

 $9a = 11b + 4 - 3$
 $9a = 11b + 1$.

Daí, 9 divide 11b + 1. Substituindo os valores de b do conjunto $\{0, 1, 2, ..., 8\}$, podemos concluir que o menor b natural que satisfaz essa afirmação é b = 4. Portanto, a = 5 e n = 48.

- **39.** Podemos escrever k = 7q + 4 para algum q inteiro.
- a) Sendo assim,

$$k^{2} + k + 1 = (7q + 4)^{2} + (7q + 4) + 1$$

$$= 49q^{2} + 56q + 16 + 7q + 4 + 1$$

$$= 49q^{2} + 63q + 21$$

$$= 7(7q^{2} + 9q + 3).$$

Portanto, $k^2 + k + 1$ é múltiplo de 7, ou seja, deixa resto 0 em sua divisão por 7.

b) Seja nk um múltiplo de k que, somado a k^2 produz um múltiplo de 7, assim temos

$$k^{2} + nk = (7q + 4)^{2} + n(7q + 4)$$

$$= 49q^{2} + 56q + 16 + 7nq + 4n$$

$$= 49q^{2} + 56q + 7nq + 14 + 4n + 2$$

$$= 7(7q^{2} + 8q + nq + 2) + 4n + 2.$$

Agora, precisamos encontrar o menor inteiro n tal que 4n + 2 seja múltiplo de 7. Substituindo os valores de n do conjunto $\{0, 1, 2, ... 6\}$, o menor valor será n = 3 e daí teremos 4n + 2 = 14. O menor múltiplo será 3k.

40. Observe que

$$n = 7a + 4 e$$

 $n = 8b + 6$,

para a e b inteiros. Multiplicando a primeira por 8 e a segunda por 7, obteremos

$$8n = 56a + 32 e$$

 $7n = 56b + 42.$

Subtraindo-as, chegamos a

$$8n - 7n = 56(a - b) - 10$$

$$n = 56(a - b) - 10$$

$$= 56(a - b) - 10 + 56 - 56$$

$$= 56(a - b) - 56 + 46$$

$$= 56(a - b - 1) + 46$$

Ou seja, *n* deixa resto 46 quando dividido por 56.

41. Sendo $n = 2^a \cdot 3^b$, sua quantidade de divisores será (a+1)(b+1) = 15. Daí teremos quatro situações, a saber:

i)
$$a + 1 = 1$$
 e $b + 1 = 15$, resultando em $n = 3^{14}$;

ii)
$$a + 1 = 3$$
 e $b + 1 = 5$, resultando em $n = 2^2 \cdot 3^4 = 324$;

iii)
$$a + 1 = 5$$
 e $b + 1 = 3$, resultando em $n = 2^4 \cdot 3^2 = 144$; ou

iv)
$$a + 1 = 15$$
 e $b + 1 = 1$, resultando em $n = 2^{14}$.

42. Para um número ser divisível por 91, ele deve ser divisível ao mesmo tempo por 13 e 7. Um método prático para a divisão por 7 foi demonstrado no exercício 34.

Vamos aplicá-lo agora:

$$12345n78 - 2 \cdot 9 = 12345n60$$

$$12345n6 - 2 \cdot 0 = 12345n6$$

$$12345n - 2 \cdot 6 = 123450 + n - 12$$

$$= 123438 + n.$$

 $12345078 + 4 \cdot 9 = 12345114$ $1234511 + 4 \cdot 4 = 1234527$ $123452 + 4 \cdot 7 = 123480$ $12348 + 4 \cdot 0 = 12348$ $1234 + 4 \cdot 8 = 1266$ $126 + 4 \cdot 6 = 150$ $15 + 4 \cdot 0 = 15$.

Seguindo o mesmo método para descobrir qual o resto

da divisão de 123438 por 7.

$$12343 - 2 \cdot 8 = 12327$$

$$1232 - 2 \cdot 7 = 1218$$

$$121 - 2 \cdot 8 = 105$$

$$10 - 2 \cdot 5 = 0$$

Logo, 123438 é divisível por 7 e n pode ser 0 ou 7. Agora, vamos para o método do 13 (visto no exercício 37) utilizando n=0 e depois n=7. Para n=0, Como 13 divide 130, ele dividirá 123457789. Finalteremos

Como 13 não divide 15, ele não dividirá 123450789. Agora, para n = 7, ficaremos com o número 123457789 e obteremos

$$12345778 + 4 \cdot 9 = 12345814$$

$$1234581 + 4 \cdot 4 = 1234597$$

$$123459 + 4 \cdot 7 = 123487$$

$$12348 + 4 \cdot 7 = 12376$$

$$1237 + 4 \cdot 6 = 1261$$

$$126 + 4 \cdot 1 = 130,$$

mente, ficamos com n = 7.

43. Para analisar os restos de x^2 por 4, podemos analisar os possíveis restos de x por 4.

- i) Se x = 4k, então $x^2 = 4(4k^2)$, ou seja, x^2 deixa resto 0 na divisão por quatro;
- ii) se x = 4k + 1, então $x^2 = 4(4k^2 + 2k) + 1$, ou seja, x^2 deixa resto 1 na divisão por quatro;
- iii) se x = 4k + 2, então $x^2 = 4(4k^2 + 4k + 1)$, ou seja, x^2 deixa resto 0 na divisão por quatro; e
- iv) se x = 4k + 3, então $x^2 = 4(4k^2 + 6k + 2) + 1$, ou seja, x^2 deixa resto 1 na divisão por quatro.

Apenas os restos 0 e 1 são possíveis.

- **43. Outra solução:** Se x é ímpar, x = 2k + 1 e temos que $x^2 = 4k(k+1) + 1$ deixa resto 1 na divisão por 4. Se x é par, x = 2k e temos que $x^2 = 4k^2$ deixa resto 0 na divisão por. 4
- **44.** (Extraído da Vídeo Aula)

Se 6 divide a + b + c, então existe um inteiro k tal que a + b + c = 6k. Logo a + b = 6k - c e, elevando ambos os membros ao cubo, chegamos a

$$a + b = 6k - c$$

$$(a + b)^3 = (6k - c)^3$$

$$a^3 + 3a^2b + 3ab^2 + b^3 = 216k^3 - 108k^2c + 6kc^2 - c^3.$$

Observe que $216k^3 - 108k^2c + 6kc^2$ é múltiplo de 6, então para algum m inteiro teremos $216k^3 - 108k^2c + 6kc^2 = 6m$. Voltando à equação encontrada e substituindo o valor acima por 6m obtemos

$$a^3 + b^3 + c^3 = 6m - 3ab(a + b).$$

Observe agora que se a ou b forem pares, 3ab é divisível por 6 e que se ambos forem ímpares então (a+b) é par e 3ab(a+b) é divisível por 6. Logo, em qualquer caso, 6 divide $a^3+b^3+c^3$.

45. Como x deixa resto 1 nas divisões por 2, 3, 5 e 7, então x-1 é divisível por esses números e, portanto, é um múltiplo comum deles. Sendo assim, existe algum k inteiro tal que $x-1=2\cdot 3\cdot 5\cdot 7\cdot k$, ou seja,

$$x = 210k + 1$$
.

Como x tem três algarismos, temos

$$100 \le x \le 999$$

$$100 \le 210k + 1 \le 999$$

$$\frac{99}{210} \le k \le \frac{998}{210}.$$

Portanto o maior k é 4 e, para tal valor, x = 841. A soma dos algarismos procurada é 8 + 4 + 1 = 13.

46. Seja M_{17} o conjunto dos múltiplos de 17 menores que 400, daí

$$M_{17} = \{17, 34, 51, \cdots, 374, 391\}.$$

Como $17 = 1 \cdot 17$ e $391 = 23 \cdot 17$, então

$$|M_{17}| = 23.$$

Seja M_{23} o conjunto dos múltiplos de 23 menores que 400, daí

$$M_{23} = \{23, 46, \cdots, 368, 391\}.$$

Como $23 = 1 \cdot 23$ e $391 = 17 \cdot 23$, então

$$|M_{23}| = 17.$$

Os dois conjuntos anteriores possuem um elemento em comum, a saber, $M_{17} \cap M_{23} = \{391\}$. Por fim, há

$$23 + 17 - 1 = 39$$

múltiplos de 17 ou 23 e menores que 400.

47. Para m=3 e n=1, $m^2-n^2=8$. Portanto, o maior inteiro procurado é menor ou igual à 8. Sendo m e n ímpares, existem x e y inteiros tais que m=2x+1 e n=2y+1. Substituindo e desenvolvendo a expressão dada, encontraremos que

$$m^{2} - n^{2} = (2x + 1)^{2} - (2y + 1)^{2}$$
$$= 4x^{2} + 4x + 1 - 4y^{2} - 4y - 1$$
$$= 4(x(x + 1) - y(y + 1)).$$

Concluindo assim que $m^2 - n^2$ é múltiplo de 4. Agora, como x(x+1) e y(y+1) são números pares, teremos que sua subtração será par, ou seja, existe t inteiro tal que

$$x(x+1) - y(y+1) = 2t$$

e que $m^2 - n^2 = 4 \cdot 2t = 8t$. Isso nos permite concluir que o maior inteiro que divide $m^2 - n^2$, quaisquer que sejam m e n inteiros ímpares é o 8.

48. Se esse número é divisível por 2 e 5, ele é divisível por 10. Assim, o algarismo das unidades como 0. Como ele é divisível por 9, a soma dos seus dígitos é um múltiplo de 9. Então, o número será do tipo

$$\begin{array}{c|ccccc} M & C & D & U \\ \hline 8 & x & y & 0 \end{array}$$

com 8 + x + y divisível por 9. Daí teremos dois casos:

- i) o primeiro será quando x + y = 1, com duas opções, (1,0) e (0,1); e
- ii) o segundo será quando x + y = 10, com nove opções, (1,9), (2,8), (3,7), (4,6), (5,5), (6,4), (7,3), (8,2) e (9,1).

Não é possível que x + y seja 19, pois como x e y são dígitos, eles valem no máximo 9. Por fim, ficamos com 11 números.

49. (Adaptado da Olimpíada de Matemática do Canadá)

Observe inicialmente que 23 é primo. Agora, cada vez que o 23 ou um dos seus múltiplos aparece na expansão de 2000!, a potência de 23 que o divide aumenta em uma unidade, no caso dos múltiplos de 23^2 , essa potência aumenta uma unidade adicional. Não devemos considerar na análise o 23^3 , pois $23^3 > 2000$. Por fim, no primeiro caso existem 86 múltiplos de 23 menores que 2000 e no segundo apenas 3. Logo, 23^{86+3} divide 2000! e x = 89.

50. (Extraído da Vídeo Aula.)

Suponha, por absurdo, que x e y são ímpares. Portanto, existem a e b inteiros tais que x = 2a + 1 e y = 2b + 1. Daí, substituindo na equação dada, obtemos

$$x^{2} + y^{2} = z^{2}$$

$$(2a+1)^{2} + (2b+1)^{2} = z^{2}$$

$$4a^{2} + 4a + 1 + 4b^{2} + 4b + 1 = z^{2}$$

$$4(a^{2} + a + b^{2} + b) + 2 = z^{2}.$$

Chegamos a um quadrado perfeito que deixa resto 2 numa divisão por quatro. Isso contradiz o exercício 43. Logo x e y não podem ser ambos ímpares.

51. Podemos chamar 11111 = n e substituir na expressão do enunciado ficando com

$$\sqrt{1111111111} - 22222 = \sqrt{1111100000 + 11111 - 2 \cdot 11111}$$

$$= \sqrt{n \cdot 10^5 + n - 2n}$$

$$= \sqrt{n(10^5 - 1)}$$

$$= \sqrt{n(99999)}$$

$$= \sqrt{n \cdot 9 \cdot 11111}$$

$$= \sqrt{n \cdot 9 \cdot n}$$

$$= \sqrt{9n^2}$$

$$= 3n$$

$$= 33333.$$

Esse número, quando dividido por 9, deixa resto 6.

52. (Extraído exame de acesso do Colégio Naval.)

O número em questão será

$$N = ZYXZYXZYX$$

com $0 \le X, Y, Z \le 9$ e $Z \ne 0$. Logo, podemos escrever N como

$$Z \cdot 10^8 + Y \cdot 10^7 + X \cdot 10^6 + Z \cdot 10^5 + Y \cdot 10^4 + X \cdot 10^3 + Z \cdot 10^2 + Y \cdot 10^1 + X.$$

E agrupando os termos semelhantes teremos

$$Z \cdot 10^2 \cdot (10^6 + 10^3 + 1) + Y \cdot 10 \cdot (10^6 + 10^3 + 1) + X \cdot (10^6 + 10^3 + 1).$$

O que nos permite conluir que $10^6 + 10^3 + 1 = 1001001$ divide N. Além disso, $1001001 = 3 \cdot 333667$ e, portanto, 333667 divide N. Esse número está na letra \mathbf{d} .

53. (Extraído exame de acesso do Colégio Naval.)

Se 2a + b é divisível por 13, então podemos escrever, para algum k inteiro, que 2a + b = 13k. Agora, se somarmos qualquer múltiplo de 13, o resultado continuará dessa forma. Somando $13 \cdot 7a = 91a$ obteremos

$$2a + b + 91a = 93a + b$$

como outro múltiplo de 13, o que está na letra c.

54. (Extraído exame de acesso do Colégio Naval.) Observe que para algum $k \in \mathbb{Z}$ temos que

$$12 \cdot 11 \cdot 10 \cdot \dots \cdot 3 \cdot 2 \cdot 1 + 14 = 13k$$

$$12 \cdot 11 \cdot 10 \cdot \dots \cdot 3 \cdot 2 \cdot 1 = 13k - 14$$

$$13 \cdot 12 \cdot 11 \cdot 10 \cdot \dots \cdot 3 \cdot 2 \cdot 1 = 13 \cdot (13k - 14)$$

$$13 \cdot 12 \cdot 11 \cdot 10 \cdot \dots \cdot 3 \cdot 2 \cdot 1 = 169k - 182$$

$$= 169k - 169 - 13$$

$$= 169(k - 1) - 13$$

$$= 169(k - 1) - 13 + 169 - 169$$

$$= 169(k - 2) + 156.$$

Logo, o resto da divisão de $13 \cdot 12 \cdot 11 \cdot \dots \cdot 3 \cdot 2 \cdot 1$ por $169 \notin 156$.

55. Um número é divisível por 9 quando a soma dos seus dígitos é um múltiplo de nove. Agora, como 10111213141516...979899 é composto de

- 10 algarismos uns nas "dezenas" e 9 uns nas "unidades".
- 10 algarismos dois nas "dezenas" e 9 dois nas "unidades".
- 10 algarismos noves nas "dezenas" e 9 noves nas "unidades".

A soma dos dígitos será

$$19 \cdot 1 + 19 \cdot 2 + \dots + 19 \cdot 9 = 19 \cdot \left(\frac{(1+9) \cdot 9}{2}\right) = 19 \cdot 45.$$

Portanto, esse número é múltiplo de 9 e sua divisão então resto 0.

56.

a) 243.

b) 4+9=13.

c) 625.

d) 8 + 27 = 35. e) $2^{4-1} \cdot 3 = 24$.

57.

a) 0,000001.

c) $80 \cdot \frac{125}{8} = 1250$.

e) $200 \cdot \frac{256}{10000} = 5{,}12.$

b) 4.

d) $\frac{1}{3} \cdot 0.09 = 0.03$.

58.

b) 8.

c) 72.

d) 324.

e) $5^2 - 2^2 = 21$.

59.

b) 2⁶

c) -2^{45} .

d) 10^6 .

e) 2^{13} .

60.

- a) Verdadeiro.
- b) Falso. Por exemplo, $2^{-1} = \frac{1}{2} \neq -2$.
- c) Falso. Por exemplo, $(\frac{2}{1})^2 = 4 \neq (2-1)^2 = 1$.
- d) Verdadeiro.
- e) Falso. Por exemplo, $(2^2)^3 = 64 \neq 256 = 2^{(2^3)}$.

61.

- a) Verdadeiro.
- b) Falso. Por exemplo, $(1+2)^3 = 27 \neq 9 = 1^3 + 2^3$.
- c) Falso. Por exemplo, $2^{2+1} = 8 \neq 5 = 2^2 + 2^1$.
- d) Falso. Por exemplo, $(2^2)^{-2} = \frac{1}{16} \neq 1 = 2^0$.
- e) Verdadeiro.

b)
$$\frac{100}{9}$$
.

c)
$$-0.000008$$
.

d)
$$\frac{1}{9}$$
.

e) 1,728.

63.

a)
$$2^4 = 16$$
.

d)
$$2^{-18}$$
.

e)
$$2^4$$
.

64.

a) Como
$$2^3 > 2^2$$
, segue que $2^{1/2} = (2^3)^{1/6} > (2^2)^{1/6} = 2^{1/3}$.

- b) Pelo item anterior, $2^{1/2} > 2^{1/3}$ e consequentemente $\frac{1}{2^{1/2}} < \frac{1}{2^{1/3}}$.
- c) Como $3^3 < 5^5$, segue que $3^{1/5} = (3^3)^{1/15} < (5^5)^{1/15} = 5^{1/3}$.
- **65.** $4^{4^2}: 4^4 = 4^{4^2-4} = 4^{12}$. Resposta E.
- 66. Fazendo o desenvolvimento segundo a regra definida no enunciado chegaremos a:

$$\frac{2 \otimes (2 \otimes (2 \otimes 2))}{((2 \otimes 2) \otimes 2) \otimes 2} = \frac{2 \otimes (2 \otimes 4)}{(4 \otimes 2) \otimes 2}$$

$$= \frac{2 \otimes 16}{16 \otimes 2}$$

$$= \frac{2^{16}}{16^{2}}$$

$$= 2^{8}.$$

Resposta E.

- 67. Como $2 * x = 2^x + x^2$ e x é inteiro, devemos ter $x^2 \in \{1^2, 2^2, \dots, 10^2\}$. Dentre os elementos listados, o único possível para o qual $100 x^2$ é uma potência de 2 é $x^2 = 36$ pois nesse caso x = 6 e $100 x^2 = 64 = 2^6$. Consequentemente $(4x)^4 = 256x^4 = 256 \cdot 1296 = 331776$. Resposta E.
- 68. Utilizando as propriedades de potências teremos que:

$$15^{6} \cdot 28^{5} \cdot 55^{7} = (3^{6} \cdot 5^{6}) \cdot (2^{10} \cdot 7^{5}) \cdot (5^{7} \cdot 11^{7})$$
$$= 3^{6} \cdot 11^{7} \cdot 5^{3} \cdot 10^{10}$$

Logo, o número termina em 10 zeros. Resposta A.

69. Representemos os dígitos desconhecidos de 2^n e 5^n com asteriscos. Se k e l são as quantidades de algarismos de cada um deles, temos:

$$d \cdot 10^{k} < d * * * \dots * = 2^{n} < (d+1) \cdot 10^{k}$$

$$d \cdot 10^{l} < d * * * \dots * = 5^{n} < (d+1) \cdot 10^{l}$$

Multiplicando ambas as inequações, obtemos $10^{k+l} \cdot d^2 < 10^n < 10^{k+l} \cdot (d+1)^2$. Cancelando 10^{k+l} em ambos os lados, concluímos que existe uma potência de 10 entre d^2 e $(d+1)^2$. Analisando os quadrados dos dígitos de 1 até 9, percebemos que isso ocorre apenas para d=3($3^2<10<4^2$).

70.
$$a=2^{40}=16^{10}$$
, $b=3^{20}=9^{10}$ e $c=7^{10}$. Como $16>9>7$, temos $a>b>c$. Resposta A.

71.
$$\sqrt{12^{12}} = 12^6 = (2^2 \cdot 3)^6 = 2^{12} \cdot 3^6$$
. Resposta C.

$$64 = 2(2^{2x}) - 4^{x}$$

$$= 2 \cdot 2^{2x} - 2^{2x}$$

$$= 2^{2x}.$$

Como $64 = 2^6$, temos 2x = 6 e x = 3. Resposta E.

73.

- a) $4,5673 \cdot 10^4$.
- b) $1,2345 \cdot 10^{-3}$. c) $-5,55 \cdot 10^{2}$. d) $9 \cdot 10^{-2}$.

74.

a) 342.

b) 7.

c) 98.

c)

75.

a)

b)

c)

d)

$$x = 0,333...$$
 $x = 0,121212...$ $x = 6,555...$ $10x = 3,333...$ $100x = 12,121212...$ $10x = 65,555...$ $9x = 3$ $99x = 12$ $9x = 59$

$$x = 0,121212...$$

$$0x = 65,555...$$

$$x = -0,666...$$

 $10x = -6,666...$

$$9x = 3$$

$$99x = 12$$

b)

$$9x = 59$$

$$9x = -6$$

Logo,
$$x = \frac{3}{9} = \frac{1}{3}$$
.

Logo,
$$x = \frac{12}{99} = \frac{4}{33}$$
.

Logo,
$$x = \frac{59}{9}$$
.

Logo,
$$x = \frac{3}{9} = \frac{1}{3}$$
. Logo, $x = \frac{12}{99} = \frac{4}{33}$. Logo, $x = \frac{59}{9}$. Logo, $x = -\frac{6}{9} = -\frac{2}{3}$.

76.

990x = 1189

$$x = 4,7222...$$

 $10x = 47,222...$

$$x = 1,8999...$$

 $10x = 18,999...$

$$x = 1,2010101\dots$$

$$100x = 472,222...$$

$$10x = 18,999.$$

$$10x = 12,010101...$$

$$90x = 425$$

$$100x = 189,999...$$

$$1000x = 1201,010101...$$

Logo,
$$x = \frac{425}{90} = \frac{85}{18}$$
.

Logo,
$$x = \frac{171}{90} = \frac{19}{10}$$
.

90x = 171

Logo,
$$x = \frac{1189}{990}$$
.

77.

- a) Decimal exato. Isso ocorre pois o denominador só possui fatores primos 2 e 5.
- b) Decimal exato. Isso ocorre pois $\frac{15}{6} = \frac{5}{2}$ e o denominador só possui fator 2.
- c) Dízima periódica. Trata-se de uma fração irredutível com um fator primo no denominador que não é 2 e nem 5. De fato, $\frac{41}{15} = 2,7333...$
- d) Decimal exato. Isso ocorre pois o denominador só possui fatores primos 2 e 5.
- 78. Resposta B.
- 79. Resposta B.

- a) 0.
- b) Um grupo de k zeros é separado de um grupo seguinte de k+1 zeros por exatamente um número 1. Assim, contando até o dígito 1 que sucede um grupo de k zeros, temos:

$$\underbrace{1+2+3+\ldots+k}_{\text{algarismos zeros}} + \underbrace{k}_{\text{algarismos uns}} = \frac{k(k+3)}{2}.$$

Se k = 30, já teremos $\frac{30(33)}{2} = 495$. Consequentemente a 500^a casa decimal vale *zero* pois está no grupo com 31 zeros.

- c) O número *X* não é racional porque sua representação decimal não é periódica uma vez que a quantidade de algarismos zeros entre dois 1's consecutivos sempre está aumentando.
- **81.** Multiplicando a fração inicial por $\frac{2^{12}}{2^{12}}$ teremos:

$$\frac{1}{5^{12}} = \frac{1}{5^{12}} \cdot \frac{2^{12}}{2^{12}}$$
$$= \frac{2^{12}}{10^{12}}$$

Como $2^{12} = 4096$, o primeiro dígito não nulo após a vírgula é 4. Resposta C.

82. Veja que

$$\sqrt{\left(\frac{1}{6}\right)^3 \cdot (0,666\ldots)} = \sqrt{\left(\frac{1}{6}\right)^3 \cdot \frac{6}{9}}$$

$$= \sqrt{\frac{1}{6^2 \cdot 9}}$$

$$= \frac{1}{18}$$

Além disso,

$$\sqrt{\left(\frac{2}{3}\right)^{0} - \frac{1}{1,333...}} = \sqrt{1 - \frac{1}{12/9}}$$

$$= \sqrt{1 - \frac{9}{12}}$$

$$= \sqrt{\frac{3}{12}}$$

$$= \frac{1}{2}$$

Assim, o valor da expressão procurada é:

$$\left[\frac{1}{18} + \frac{1}{2}\right]^{-1/2} = \left[\frac{10}{18}\right]^{-1/2}$$
$$= \frac{3}{\sqrt{5}}$$
$$= \frac{3\sqrt{5}}{5}$$

Resposta E

83. Um valor possível para p é 17 pois:

$$\frac{1}{17} = 0,\overline{05882352994117647}.$$

Todos os primos menores que 100 que satisfazem essa propriedade são:

Comentário para professores: Seja p um número primo que não divide 10 e seja n um inteiro com 0 < n < p. Se d é o menor inteiro positivo tal que $10^d - 1$ é múltiplo de p, é possível mostrar que o período da representação decimal de $\frac{n}{p}$ é exatamente d. No exemplo anterior, como 7 não divide $10^1 - 1$, $10^2 - 1$, . . . , $10^5 - 1$ e divide $10^6 - 1$, temos d = 6.

84. Podemos escrever $10^n + 1 = p \cdot a$ onde a é um número com não mais que n dígitos na base 10, digamos $a = a_1 a_2 \dots a_n$. Queremos dizer com isso que cada número a_i é um dos dígitos de a. Mesmo que ele possua estritamente menos que n dígitos, podemos colocar alguns a_i 's da esquerda como sendo 0. Temos

$$\frac{1}{p} = \frac{a}{a \cdot p}
= \frac{a}{10^n + 1}
= \frac{a(10^n - 1)}{10^{2n} - 1}
= \frac{[10^n(a - 1) + (10^n - 1) - (a - 1)]}{10^{2n} - 1}$$

O número $10^n - 1$ é constituído por n números iguais a 9 e a diferença $(10^n - 1) - (a - 1)$ reduz cada um desses dígitos 9 por um dígito de a. Assim, a representação decimal do numerador é:

$$a_1a_2...a_{n-1}(a_n-1)(9-a_1)(9-a_2)...(9-a_{n-1})(10-a_n).$$

O numero anterior representa o período da representação de $\frac{1}{p}$ e cada dígito i pode ser pareado com um outro dígito da forma 9-i. Assim, as quantidades de aparições de tais dígitos são iguais. No exemplo do enunciado, o período de 1/7 é 142857 e temos os seguintes pareamentos:

$$1 \rightarrow 8$$

$$4 \rightarrow 5$$

$$2 \rightarrow 7$$

85. Como $10^{2k}-1=(10^k-1)(10^k+1)$ e p é primo, um dentre 10^k-1 e 10^k+1 é múltiplo de p. Não podemos ter 10^k-1 múltiplo de p pois caso contrário poderíamos escrever $\frac{1}{p}=\frac{(10^k-1)/p}{10^k-1}$ e obteríamos uma dízima periódica com período menor do que 2k. Sendo assim, p divide 10^k+1 e podemos usar repetir a solução anterior para concluir que o período da representação decimal de 1/p é da forma:

$$a_1a_2 \dots a_{k-1}(a_k-1)(9-a_1)(9-a_2)\dots (9-a_{k-1})(10-a_k).$$

Somando o número formado pelos k primeiros dígitos com o número formado pelos k últimos, obtemos

$$\underbrace{99\ldots9}_{k \text{ vezes}} = 10^k - 1.$$

86. Números irracionais são aqueles que possuem representação decimal infinita e não periódica. Sendo assim, $\sqrt{2} \in \mathbb{Q}'$ e 0,01001000100001... $\in \mathbb{Q}'$ pois possuem representações decimais não periódicas; ao passo que $23 \in \mathbb{N} \subset \mathbb{Q}$, $5,345 \in \mathbb{Q}$, $\frac{1}{3} \in \mathbb{Q}$, $2,313131... \in \mathbb{Q}$ possuem representações decimais periódicas.

Comentário para professores: Pode ser difícil convencer o aluno em um primeiro contato com os números irracionais que $\sqrt{2}$ é irracional e consequentemente nos primeiros exercícios o aluno deverá assumir tal fato. Deixamos a demonstração desta afirmação para o final deste bloco de exercícios e sugerimos que o professor faça o mesmo até seus alunos terem mais familiaridade com as distinções entre os conjuntos numéricos.

87. Já sabemos que valem as inclusões $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. Assim:

a) $\mathbb{N} \subset \mathbb{Q}$. Verdadeira!

d) $r \in \mathbb{Q} \Rightarrow -r \in \mathbb{Q}$. Verdadeira!

b) $\mathbb{Z} \subset \mathbb{Q}$. Verdadeira!

- e) $\frac{35}{5} \in \mathbb{Q} \mathbb{Z}$. Falsa, pois $\mathbb{Q} \mathbb{Z}$ é o conjunto das
- c) $1 \in \mathbb{Q} \mathbb{Z}$. Falsa, pois $\mathbb{Q} \mathbb{Z}$ é o conjunto das frações não inteiras e $\frac{35}{5} = 7$. frações não inteiras.
- 88. Uma representação seria:

89. Resposta com o uso da calculadora.

- a) $1,4^2 = 1,96$.

- b) $1,41^2 = 1,9881$. c) $1,414^2 = 1,999396$. d) $1,4142^2 = 1,99996164$.
- 90. Resposta com o uso da calculadora.

 $\sqrt{3} = 1,7320508075688772935274463415059...$

- a) $1,7^2 = 2,89$. b) $1,73^2 = 2,9929$. c) $1,732^2 = 2,999824$. d) $1,7320^2 = 2,999824$.

91.

a) $\sqrt{2} < \sqrt{3}$.

c) $\sqrt{\frac{4}{100}} < \sqrt{\frac{16}{25}}$.

d) $\sqrt{0.64} > \sqrt{0.1}$.

b) $\sqrt{81} < \sqrt{121}$.

e) $\sqrt{n} < \sqrt{n+1}$ com n.

92. Observe que $\sqrt{9} = 3 < \sqrt{11} < \sqrt{16} = 4$.

Agora tentemos descobrir a primeira casa decimal após a vírgula:

- i $3,1^2 = 9,61$.
- ii $3.2^2 = 10.24$. iii $3.3^2 = 10.89$.
- iv $3.4^2 = 11.56$.

Logo, para apenas a descobrirmos a primeira casa decimal, basta observarmos que:

$$3,3^2 < 11 < 3,4^2$$

 $10,89 < 11 < 11,56$

Então a melhor aproximação com uma casa decimal será o 3,3.

93. Observe que $\sqrt{11}$ com uma casa decimal foi aproximado para 3, 3. Agora para a casa do centésimo, basta considerarmos os quadradados:

$$(3,30)^2$$
, $(3,31)^2$, $(3,32)^2$, ..., $(3,39)^2$, $(3,40)^2$.

Repetindo o procedimento do exercício anterior, a melhor aproximação será 3,31.

94. Como $\sqrt{8} < \sqrt{9} = 3$ e $\sqrt{64} = 8 < \sqrt{80} < \sqrt{81} = 9$. O primeiro inteiro positivo maior que $\sqrt{8}$ é 3 e o último inteiro menor que $\sqrt{80}$ é 8. Sendo assim, teremos 6 inteiros positivos, a saber $\{3,4,5,6,7,8\}$.

$$6 = \sqrt{36} < \sqrt{37} < \sqrt{49} = 7;$$

$$35 = \sqrt{1225} < \sqrt{1226} < \sqrt{1296} = 36.$$

Assim, podemos concluir que o primeiro inteiro positivo maior que $\sqrt{37}$ é 7 e o último inteiro positivo menor que $\sqrt{1226}$ é o 35. Logo, teremos: 35-7+1=29 inteiros positivos compreendidos entre os números do problema, a saber: $\{7,8,9,\ldots,34,35\}$.

- **96.** Os quadrados dos números são respectivamente: 99, 112, 125, 108 e 98. Destes, apenas o primeiro e o último são menores que o quadrado de 10 que é 100. Assim, os três números do meio são maiores que 10. Resposta C.
- **97.** Dados dois racionais *a* e *b*, somando *a* aos dois lados da desigualdade, temos:

$$a < b$$

$$a + a < b + a$$

$$2a < a + b$$

$$a < \frac{a+b}{2}$$

Repetindo o procedimento, agora com *b*, temos:

$$\begin{array}{rcl}
a & < & b \\
a+b & < & b+b \\
a+b & < & 2b \\
\frac{a+b}{2} & < & b
\end{array}$$

O que resulta em: $a < \frac{a+b}{2} < b$ Como $\frac{a+b}{2}$ também é um racional, isso mostra que existe um racional entre $a \in b$.

Comentário para professores: É bom enfatizar que se a construção acima for reiterada com os racionais a e $\frac{a+b}{2}$ (ou com $\frac{a+b}{2}$ e b) o aluno poderá mostrar que existe uma infinidade de racionais entre a e b. Outros comentários comentários que poderiam instigar os alunos sobre a distribuição dos racionais e dos irracionais na reta seria questioná-los se qualquer intervalo contém números racionais e irracionais.

98. (Extraído da UNICAMP)

Uma boa estratégia seria eliminar os radicais elevando ambos números a uma potência múltipla de 3 e 4. Veja que:

$$(\sqrt[3]{3})^{12} = 3^4$$

= 81
> 64
= 4^3
= $(\sqrt[4]{4})^{12}$

Portanto, como $(\sqrt[3]{3})^{12} > (\sqrt[4]{4})^{12}$, segue que $\sqrt[3]{3}$ é o maior.

99. (Extraído do Colégio Naval)

Façamos uma primeira estimativa:

$$\begin{array}{c} 1 < 4 < 8 \\ 1^3 < 4 < 2^3 \\ \sqrt[3]{1} < \sqrt[3]{4} < \sqrt[3]{8} \\ 1 < \sqrt[3]{4} < 2 \end{array}$$

Segunda estimativa:

$$8 < 16 < 27$$

$$2^{3} < 16 < 3^{3}$$

$$\sqrt[3]{8} < \sqrt[3]{16} < \sqrt[3]{27}$$

$$2 < \sqrt[3]{16} < 3$$

Finalmente, somando as duas últimas desiguldades obtidas, temos:

$$3 < \sqrt[3]{4} + \sqrt[3]{16} < 5$$

$$4 < 1 + \sqrt[3]{4} + \sqrt[3]{16} < 6$$

$$\sqrt{4} < \sqrt{1 + \sqrt[3]{4} + \sqrt[3]{16}} < \sqrt{6}$$

Portanto, n = 4.

100. Vamos supor que é possível termos uma fração irredutível $\frac{m}{n}$, $m \in \mathbb{Z}$, $n \in \mathbb{Z}^*$ tal que $\sqrt{2} = \frac{m}{n}$. Neste caso, podemos escrever:

$$\sqrt{2} = \frac{m}{n}$$
$$(\sqrt{2})^2 = \left(\frac{m}{n}\right)^2$$
$$2 = \frac{m^2}{n^2}$$
$$2n^2 = m^2$$

Agora temos a seguinte situação, o membro da esquerda é par, portanto o da direita também o será. Contudo, não podemos ter m^2 par, se m também não for par. Sendo assim, m=2k, para algum $k \in \mathbb{Z}$, e

$$m = 2k$$
$$m^2 = 4k^2$$

Agora, voltando à equação $2n^2 = m^2$ e substituindo o m^2 pelo $4k^2$, e ficamos com:

$$2n^2 = m^2$$

$$2n^2 = 4k^2$$

$$n^2 = 2m^2$$

Pelo argumento anterior, n é par, isso contradiz nossa suposição inicial pois tínhamos assumido que a fração $\frac{m}{n}$ era irredutível. Essa contradição mostra que a suposição inicial é falsa, ou seja, $\sqrt{2}$ não é racional.

Comentário para professores: Este é um exemplo clássico de prova por absurdo. Quando mencionado em sala de aula, sugerimos que o professor comente exemplos cotidianos de afirmações que conduzem a absurdos para que os alunos se sintam mais confortáveis com tal demonstração.

101. Utilize o mesmo argumento da questão anterior.

102. Tome $A=B=\sqrt{2}$. Se o número $\sqrt{2}^{\sqrt{2}}$ é racional, o enunciado está satisfeito. Caso contrário, faça $A=\sqrt{2}^{\sqrt{2}}$ e $B=\sqrt{2}$. Assim, $a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=2$ servirá como exemplo.

Comentário para professores: Já existe uma demonstração de que $\sqrt{2}^{\sqrt{2}}$ é de fato irracional. Um exemplo mais construtivo usando fatos que não são estudados no oitavo ano seria escolher $A=\sqrt{10}$ e $B=\log_{10}4$. Daí, $A^B=2$ é um racional.

103.
$$F_5 = \{0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1\}.$$

104. Usando a propriedade dada no enunciado, temos $7a-5b=\pm 1$. Veja que 7a deve deixar resto 1 ou 6 na divisão por 5. Dentre os valores possíveis de a no conjunto $\{0,1,2,\ldots,7\}$, apenas 2 e 3 satisfazem tal condição. Se a=2, temos b=3. Se a=3, teremos b=4. Entretanto, como $\frac{2}{3}<\frac{5}{7}<\frac{3}{4}$, a fração procurada é $\frac{2}{3}$.

105.

- a) Basta usar três vezes o balde de 5 litros e, em seguida, retirar duas vezes líquido do tambor usando o balde de 7 litros. Dessa forma, transportamos $3 \times 5 2 \times 7 = 1$ litro.
- b) A quantidade a que podemos transportar de um tambor para o outro é da forma $k(2-\sqrt{2})+l(\sqrt{2})$ litros onde k e l são inteiros indicando quantas vezes tiramos ou colocamos líquidos usando cada um dos baldes. Se $l-k \neq 0$, podemos escrever:

$$a = k(2 - \sqrt{2}) + l\sqrt{2}$$

$$a - 2k = \sqrt{2}(l - k)$$

$$\frac{a - 2k}{l - k} = \sqrt{2}$$

Assim, o número $\sqrt{2}$ seria o quociente de dois inteiros o que resultaria em um número racional. Sabemos que isso não pode acontecer porque $\sqrt{2}$ é irracional. Falta analisarmos o que acontece quando l=k. A equação se transforma em:

$$a = k(2 - \sqrt{2}) + l\sqrt{2}$$
$$= k(2 - \sqrt{2}) + k\sqrt{2}$$
$$= 2k.$$

Veja que 2k é par e assim não podemos levar um valor ímpar como a=1. Em qualquer caso, não é possível colocar exatamente 1 litro usando os baldes com as capacidades dadas neste item.

106. (Extraído da prova da Cone Sul publicada na Revista Eureka número 5)

A fração $\frac{a}{b}$ é irredutível se e só se $\frac{a}{b-a}$ é irredutível (se a e b tem um fator comum, então a e b-a têm um fator comum, e reciprocamente). O problema se transforma em achar o menor valor de n tal que as frações sejam todas irredutíveis. Observe que as frações anteirores possuem a forma $\frac{a}{n+a+2}$ e pelo critério anterior

bastaria que $\frac{a}{n+2}$ fosse irredutível. Tendo isso em mente, se n+2 é um primo maior que 91, todas as frações serão irredutíveis. Assim, um valor possível de n é 95 pois n+2=97 é um número primo. Verifiquemos que é o menor possível.

- (a) Se n+2 < 97 e n+2 é par, então n é par e há frações redutíveis como, por exemplo, $\frac{20}{n+2}$.
- (b) Se $19 \le n + 2 \le 91$, obviamente há uma fração redutível.
- (c) Se n + 2 < 19, então n + 2 tem um múltiplo entre 19 e 91 e, portanto, há uma fração redutível.
- (d) Se n + 2 = 93 = 3.31, então $\frac{31}{n+2}$ é redutível.
- (e) Se n + 2 = 95 = 5.19, então $\frac{19}{n+2}$ é redutível.

Logo, o valor mínimo de n + 2 é 97, que corresponde a n = 95.

a)
$$x\sqrt[3]{x}$$
.

c)
$$3x^2y$$
.

e)
$$(4a^6b^4)^{3/2} = \sqrt{2^6a^{18}b^{12}} = 8a^9b^6$$
.

d)
$$2\sqrt{2} + 9\sqrt{2} = 11\sqrt{2}$$
.

108.

a)
$$\frac{2\sqrt{3}}{3}$$
.

c)
$$\frac{\sqrt[9]{a^7}}{a}$$
.

e)
$$\frac{\sqrt[4]{a^3}}{a}$$
.

b)
$$\frac{1}{\sqrt[4]{x^3}} = \frac{1}{\sqrt[4]{x^3}} \cdot \frac{\sqrt[4]{x}}{\sqrt[4]{x}} = \frac{\sqrt[4]{x}}{x}$$
.

b)
$$\frac{1}{\sqrt[4]{x^3}} = \frac{1}{\sqrt[4]{x^3}} \cdot \frac{\sqrt[4]{x}}{\sqrt[4]{x}} = \frac{\sqrt[4]{x}}{x}$$
. d) $\frac{2}{\sqrt[3]{x}} = \frac{2}{\sqrt[3]{x}} \cdot \frac{\sqrt[3]{x^2}}{\sqrt[3]{x^2}} = \frac{2\sqrt[3]{x^2}}{x}$.

109.

a)
$$\frac{y^7}{x^8}$$
.

b)
$$\frac{3s^3}{t^6}$$
.

c)
$$\frac{a^{10}}{b^8}$$
.

d)
$$\frac{b^5}{a^8}$$
.

110.

$$\frac{3\left(-\frac{1}{2}\right)^{2} + \frac{1}{4}}{3\left(-\frac{1}{3}\right)^{2} - \frac{3}{2}} = \frac{\frac{3}{4} + \frac{1}{4}}{\frac{3}{9} - \frac{3}{2}}$$
$$= \frac{1}{-7/6}$$
$$= -\frac{6}{7}.$$

111.

$$\frac{\left(\frac{3x^2y}{a^3b^3}\right)^2}{\left(\frac{3xy^2}{2a^2b^2}\right)^3} = \frac{\frac{9x^4y^2}{a^6b^6}}{\frac{27x^3y^6}{8a^6b^6}}$$
$$= \frac{8x}{3y^4}.$$

112.

a)
$$2^2x^4$$
.

b)
$$xy^2z^{1/2}$$

c)
$$x^{1/8}$$

113. Veja que:

$$\frac{1}{1+a^{-k}} + \frac{1}{1+a^k} = \frac{1}{1+1/a^k} + \frac{1}{1+a^k}$$
$$= \frac{a^k}{1+a^k} + \frac{1}{1+a^k}$$
$$= 1.$$

Assim, se agruparmos a primeira fração com a última, a segunda com a penúltima e assim sucessivamente; sempre obteremos o número 1. A única fração que não fará parte de nenhum par é a do meio que vale $\frac{1}{1+a^0} = \frac{1}{2}$. Como a quantidade de pares é igual a n, a resposta é $1000 + \frac{1}{2} = \frac{2001}{2}$. Resposta D.

114. Indiquemos com uma seta o último dígito de um número. Assim,

$$13^{1} \rightarrow 3 \quad 13^{2} \rightarrow 9 \quad 13^{3} \rightarrow 7 \quad 13^{4} \rightarrow 1$$

 $13^{5} \rightarrow 3 \quad 13^{6} \rightarrow 9 \quad 13^{7} \rightarrow 7 \quad 13^{8} \rightarrow 1$

Como 13⁴ termina em 1, sempre que multiplicarmos os números de uma linha por esse valor para obtermos os números da próxima, o último dígito se manterá. Podemos então agrupar os número de 4 em 4 e obtermos uma soma que termina em $3+9+7+1 \rightarrow 0$. Como $2007 = 501 \cdot 4 + 3$, teremos 501 grupos e sobrarão números com os dígitos 3, 9 e 7 cuja soma terminará em 9. Resposta E.

115.

$$\left(\frac{2^{2007} + 2^{2005}}{2^{2006} + 2^{2004}}\right) \cdot 2006 = \frac{2^{2005}(2^2 + 1)}{2^{2004}(2^2 + 1)} \cdot 2006$$

$$= 2 \cdot 2006$$

$$= 4012.$$

A soma dos dígitos de 4012 é 7. Resposta D.

116. O número $24 = 2^3 \cdot 3$ tem somente dois divisores cubos perfeitos: 1 e 8. Assim, se é possível representar 24 na forma a^2b^3 , então b=1 ou b=2 e, portanto, $a^2=24$ ou $a^2=3$, o que é impossível. Além disso, na alternativa a podemos tomar a=3 e b=2; na alternativa c, podemos tomar a=24 e b=c=1; na alternativa d, podemos tomar a=3, b=1 e c=2; e na alternativa e, podemos tomar a=2, b=3 e c=1. Resposta B.

117. Seja

$$B = \frac{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}$$
$$= \frac{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2000}$$

Assim

$$A \cdot B = \frac{2^{1000} \cdot 2000!}{2000!}$$
$$= 2^{1000}$$

Como, B=1, concluímos que $A=2^{1000}$. Resposta C.

Observação: Estamos escrevendo 2000! no lugar de $1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2000$.

118.

b)
$$n/5$$

c)
$$n + 1$$

c)
$$n+1$$
 d) $(n+3)/2$ e) n^3

e)
$$n^3$$

119.

a)
$$2x \cdot x = 2x^2$$
.

$$2x \cdot (x+1) = 2x^2 + 2x$$

b)
$$2x \cdot (x+1) = 2x^2 + 2x$$
. c) $(x-1)(x+2) = x^2 + x - 2$.

d)
$$m + n + 2$$
.

121.

a)
$$32x^4y^3$$
.

b)
$$\frac{8x^3y^2}{4xy} = \frac{8x^3y^2}{4xy} = 2x^2y^2$$

122.

a)
$$4x^2 + 4x - 7$$
.

b)
$$2x^2 + 4x - 9$$
.

c)
$$3x^4 + 4x^3 - 5x^2 + 4x - 8$$
.

123.

a)
$$a^3 - 5a^2 - 2a + 4$$
.

b)
$$9a^2b + 6a^2 - 5ab - 3ab^2 + b^2$$
.

c)
$$0.3a^4 + 0.4a^3 + \frac{a^2}{3}$$
.

124.

a)
$$3 + 2,5x$$
.

b) Para x = 9, teremos:

$$3+2,5x = 3+22,5$$

= R25,50.$

125.

a)
$$x^2 + 3x + 2$$
.

d)
$$x^2 - 16$$
.

g)
$$x^2 + 2x + \frac{3}{4}$$
.

b)
$$x^2 + 12x + 27$$
.

e)
$$x^2 + 10x + 25$$
.

c)
$$x^2 + x - 6$$
.

f)
$$x^2 - 8x + 16$$
.

126.

b)
$$-11$$

d)
$$-149$$

e)
$$5/8$$

Comentário para professores: É interessante instigar os alunos a calcularem em alguns exemplos numéricos simples o resto da divisão de um polinômio em x por x+a e compararem com o valor obtido de tal polinômio quando avaliado em -a. Isto poderá ajudá-los a intuir e a compreender melhor a demonstração do Teorema dos Restos que segue:

Se P(X) possui quociente Q(X) e resto R(x) ao ser dividido por x + a, então:

$$P(x) = Q(x)(x+a) + R(x)$$

 $P(-a) = Q(-a)(-a+a) + R(-a)$
 $P(-a) = R(-a)$

Como R(x) é um polinômio constante pois x + a possui grau 1, podemos concluir que R(x) = P(-a).

127. As expressões das letras (b), (c) e (d) são divisíveis pelos polinômios dados enquanto que as expressões em (a) e (e) não o são.

a)
$$5x - 3y$$
.

b)
$$5 \cdot 8 - 3 \cdot 2 = 34$$
.

129.

a)
$$50 - x$$
, para $0 \le x \le 50$.

b) 150 - 3x, para $0 \le x \le 50$.

130.

a)
$$a^4$$
.

d)

e)

b)
$$12y^7$$
.

$$(2a^3b^2)(3ab^4)^3 = (2a^3b^2)(27a^3b^{12})$$

= $54a^6b^{14}$.

c)

$$\frac{(2x^3)^2(3x^4)}{(x^3)^4} = \frac{(4x^6)(3x^4)}{x^{12}}$$
$$= \frac{12x^{10}}{x^{12}}$$
$$= 12x^{-2}$$

$$\left(\frac{x}{y}\right)^3 \left(\frac{y^2 x}{z}\right)^4 = \left(\frac{x^3}{y^3}\right) \cdot \left(\frac{y^8 x^4}{z^4}\right)$$
$$= \frac{x^7 y^5}{z^4}$$

131.

a)
$$y^7/x^8$$

b)
$$3s^3/t^6$$

c)
$$a^{10}/b^8$$

d)
$$b^5/a^8$$

132.

$$\frac{\left(\frac{3x^2y}{a^3b^3}\right)^2}{\left(\frac{3xy^2}{2a^2b^2}\right)^3} = \frac{\frac{9x^4y^2}{a^6b^6}}{\frac{27x^3y^6}{8a^6b^6}}$$
$$= \frac{8x}{3y^4}.$$

133.

b)
$$2n + 3$$
.

c)
$$1+2+3+4+...+26=351$$
.

- **134.** Devemos ter 9 = (n+1) + (2n-1) = 3n. Portanto, n = 3.
- 135. Pela propriedade de distributividade:

$$(kx-1)(2x+1) = 2kx^2 + kx - 2x - 1$$

= $2kx^2 + x(k-2) - 1$.

A soma dos coeficientes é 2k + (k-2) - 1 = 3k - 3. Tal soma vale 3 apenas quando k = 2.

136.

a)
$$x^2 - a^{2n}$$
.

b)
$$x^2 + 2xa^{2n} + a^{4n}$$
.

c)
$$x^2 - 4xa + 4a^2$$
.

137. Pelo Teorema dos Restos, todas as divisões anteriores são exatas. Além disso, como:

$$(x^{2} - a^{2}) = (x + a)(x - a)$$

$$(x^{2} + 2xa + a^{2}) = (x + a)(x + a)$$

$$(x^{3} + a^{3}) = (x + a)(x^{2} - ax + a^{2}).$$

Os quocientes são: (x + a), (x + a) e $x^2 - ax + a^2$, respectivamente.

a)
$$x = -2$$

b)
$$x = 4$$

c)
$$x = 0$$
.

139. Pelo Teorema dos Restos, basta que P(1), P(-1) e P(2) sejam nulos.

- a) Calculando P(1) teremos
- b) Calculando P(-1) teremos c) Calculando P(2) teremos

$$P(1) = 1 - 2 + 3 + k$$

= 2 + k
= 0;

$$P(1) = 1 - 2 + 3 + k$$

= 2 + k
= 0:
 $P(-1) = -1 - 2 - 3 + k$
= -6 + k
= 0:

$$P(2) = 8 - 8 + 6 + k$$

= 6 + k
= 0;

Os valores de k devem ser -2, 6 e -6, respectivamente.

140.

a)
$$(2500 - 4x^2)cm$$
.

b)
$$(2500 - 4 \cdot 25) = 2400 cm^2$$
.

- c) Será formado uma caixa sem tampa cujo fundo é um quadrado de 50 2xcm de lado e cujas alturas medem xcm. Portanto, o volume de tal caixa é $x(50-2x)^2$.
- **141.** (Adaptado do exame do EPCAR 2012) Temos:

$$\frac{(x^{2n+1}+x)(x^{2n+1}-x)-(x^4)^{(n+1/2)}}{(x^n+x)^2-x^{2n}-2x^{n+1}} = \frac{(x^{4n+2}-x^{2n+2}+x^{2n+2}-x^2)-x^{4n+2}}{x^{2n}+2x^{n+1}+x^2-x^{2n}-2x^{n+1}} = \frac{-x^2}{x^2} = \frac{-1}{x^2}$$

142. Pelo algoritmo da divisão, temos:

Assim, o quociente vale x + 6 e o resto -x + 10.

b)

143. (Adaptado do exame do EPCAR -2014)

a) Seja x a mensalidade em 2012. Após o aumento de b) Basta substituirmos o valor de x e multiplicarmos 80%, o valor da mensalidade passou para:

$$100\%x + 80\%x = 1.8x$$
.

A redução de 30% transformou a mensalidade em $1,8x \cdot 0,7$. Finalmente, com o desconto de 10%, esse valor passou para:

$$x \cdot 1, 8 \cdot 0, 7 \cdot 0, 9 = 1,134x$$

144. (Adaptado do exame de acesso do Colégio Naval – 2011)

a)
$$\sqrt[3]{-(2-1)^6} = \sqrt[3]{-1} = -1$$
.

b) Como todo quadrado de um número real é não negativo, temos $(x-1)^6 \ge 0$. Assim, $-(x-1)^6 \le 0$ $e^{\sqrt[3]{-(x-1)^6}} \le 0.$

pela quantidade de meses do ano obtendo:

 $1,134 \cdot 800 \cdot 12 = R$10.886,40.$

Como $\sqrt[3]{-(1-1)^6} = 0$, em virtude da última desigualdade, podemos concluir que o valor máximo da expressão é 0.

145.

a)

$$\left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{4}\right) \dots \left(1 + \frac{1}{99}\right) =$$

$$\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \dots \cdot \frac{100}{99} =$$

$$\frac{3}{2} \cdot \frac{\cancel{4}}{\cancel{3}} \cdot \frac{\cancel{5}}{\cancel{4}} \cdot \dots \cdot \frac{100}{\cancel{99}} =$$

$$\frac{100}{2} = 50.$$

 $\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)\ldots\left(1+\frac{1}{x+98}\right)$

$$\frac{x+1}{x+1} \cdot \frac{x+2}{x+1} \cdot \frac{x+3}{x+2} \cdot \frac{x+4}{x+3} \cdot \dots \cdot \frac{x+99}{x+98} = \frac{x+2}{x+1} \cdot \frac{x+3}{x+2} \cdot \frac{x+4}{x+3} \cdot \dots \cdot \frac{x+99}{x+98} = \frac{x+99}{x+1} \cdot \dots \cdot \frac{x+99}{x+1} = \frac{x+9}{x+1} \cdot \dots \cdot \frac{x+9}{x+1} = \frac{$$

146.

a) Seja

$$C = \frac{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}$$
$$= \frac{2^{1000} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2000}$$

Assim,

$$A \cdot C = \frac{2^{1000} \cdot 2000!}{2000!}$$
$$= 2^{1000}.$$

Como, C = 1, concluímos que $A = 2^{1000}$.

b) Como no item anterior, considere um número auxiliar:

$$D = \frac{2^{x} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot x}{2^{x} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot x}$$
$$= \frac{2^{x} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot x}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2x}$$

Assim,

$$B \cdot D = \frac{2^x \cdot (2x)!}{(2x)!}$$
$$= 2^x.$$

Como, D = 1, concluímos que $D = 2^x$.

Observação: Estamos escrevendo n! no lugar de $1 \cdot 2 \cdot 3 \cdot \dots \cdot n$.

a)
$$x^2 + 2x + 1$$

b)
$$16 + 8x + x^2$$

a)
$$x^2 + 2x + 1$$
. b) $16 + 8x + x^2$. c) $x^2 + 2\sqrt{3}x + 3$. d) $9x^2 + 6x + 1$. e) $16x^2 + 16x + 4$.

d)
$$9x^2 + 6x + 1$$

e)
$$16x^2 + 16x + 4$$
.

148.

a)
$$4x^2 + 12x + 9$$
.

b)
$$4x^2 + 12xy + 9y^2$$
.

c)
$$x^4 + 6x^2 + 9$$
.

d)
$$a^4 + 6a^2b^2 + 9b^4$$
.

e)
$$x^8 + 18x^4 + 81$$
.

149.

a) Cálculo do valor de 13².

b) Cálculo do valor de 41².

c) Cálculo do valor de 19².

$$13^{2} = (10+3)^{2}$$

$$= 100+60+9$$

$$= 169;$$

$$41^{2} = (40+1)^{2}$$

$$= 1600 + 80 + 1$$

$$= 1681;$$

c)

$$19^{2} = (20-1)^{2}$$

$$= 400-40+1$$

$$= 361.$$

150.

$$(\sqrt{a} + \sqrt{b})^2 - 2\sqrt{ab} = a + 2\sqrt{ab} + b - 2\sqrt{ab} = a + b.$$

$$(a+1)^{2} + 2(a+1)a + a^{2} + 2(2a+1) + 1 =$$

$$((a+1)+a)^{2} + 2(2a+1) + 1^{2} =$$

$$(2a+2)^{2}.$$

b)

$$(x+1)^{2} + (x-1)^{2} = (x^{2} + 2x + 1) + (x^{2} - 2x + 1) = 2x^{2} + 2.$$

151.

a)
$$a^2 + 2ab + b^2$$

a)
$$a^2 + 2ab + b^2$$
. b) $4a^2 - 4ab + b^2$.

c)
$$4a^2b^2 + 12abc + 9c^2$$
. d) $4a^2 - 8ab + 4b^2$.

d)
$$4a^2 - 8ab + 4b^2$$
.

152.

a)
$$x^2 - 1$$
.

b)
$$16 - a^2$$
.

$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})(x+y) = (x-y)(x+y) = (x^2 - y^2)$$

c)
$$x^4 - 9z^2$$
.

153.

a)
$$100^2 - 1^2 = 9999$$
.

b)
$$2000^2 - 4 = 3999996$$
.

c)
$$10^2 - 5^2 + 5^2 = 100$$
.

154. Cada termo obtido após usarmos a distributividade teve um de seus membros vindo de alguma letra entre os primeiros parênteses e o segundo vindo de alguma entre os segundos parênteses. Assim, como temos duas possibilidade de escolhas em cada um deles, teremos no total 2×2 termos possíveis na múltiplicação. Isso pode também pode ser facilmente visualizado se momentaneamente colocarmos um índice para distinguirmos de qual parêntese veio cada letra. Por exemplo:

$$(a_1 + b_1)(a_2 + b_2) = a_1a_2 + a_1b_2 + b_1a_2 + b_1b_2$$

155. Como temos três parênteses e em cada um deles temos duas escolhas, o número de termos é $2 \times 2 \times 2 = 8$. Para formarmos o termo a^2b , dois parênteses irão fornecer a letra "a" e o outro a letra b. Uma vez escolhido aquele que irá fornecer a letra "b", os demais estão determinados. Podemos fazer tal escoha de 3 formas e assim existirão três termos a^2b . O mesmo argumento se aplica ao termo ab^2 . A única maneira de formarmos os termos a^3 e b^3 é escolhendo a mesma letra em todos os parênteses e isso só pode ser feito de uma forma. Assim,

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

156. O retângulo 6×7 desenhando abaixo foi dividido em duas figuras na forma de escada. Em cada coluna, estamos escrevendo quantos quadrados foram pintados. Como as duas figuras são iguais, a soma dos quadrados pintados - que corresponde ao termo 1+2+3+4+5+6 da equação -, deve ser igual à metade da área do retângulo, ou seja,

$$1 + 2 + 3 + 4 + 5 + 6 = \frac{6 \cdot 7}{2}.$$

Construindo um rentângulo $n \times (n+1)$, é possível mostrar que:

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}.$$

157. Um exemplo seria:

Comentário para professores: O exemplo anterior é de Shirley Wakin e foi retirado do livro "*Proofs without words*" escrito por Roger Nelsen. O leitor interessado poderá encontrar mais exemplos interessantes em tal fonte.

158. Um exemplo seria:

Veja que área do quadrado maior de lado 9 é a soma das áreas das regiões destacadas e cada uma delas é da forma 2n + 1 onde n é o lado do quadrado que a região contorna. É possível construirmos quadrados cada vez maiores e mostrarmos que a soma dos k primeiros inteiros positivos ímpares é igual à k^2 .

159. Como todo quandrado perfeito é um número não negativo, se *a* e *b* representam as notas de um aluno, temos:

$$\begin{array}{rcl} (\sqrt{a}-\sqrt{b})^2 & \geq & 0 \\ a-2\sqrt{ab}+b & \geq & 0 \\ a+b & \geq & 2\sqrt{ab} \\ \frac{a+b}{2} & \geq & \sqrt{ab} \end{array}$$

Assim, é preferível escolher a média aritmética porque ela é sempre maior ou igual à média geométrica.

Comentário: Provamos que se *a* e *b* são não negativos, então:

$$\frac{a+b}{2} \ge \sqrt{ab}.$$

Isso é um caso particular do resultado mais geral de que a média aritmética de n números reais não negativos é sempre maior ou igual à média geométrica de tais números.

160. Vamos usar novamente o fato de que todo quadrado é um número não negativo.

a) Sendo assim, teremos que

$$(a-b)^2 \geq 0$$

$$a^2 - 2ab + b^2 \geq 0$$

$$a^2 + 2ab + b^2 \geq 4ab$$

$$(a+b)^2 \geq 4ab.$$

$$\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{4}{c} + \frac{16}{d} \ge$$

$$\left(\frac{4}{a+b} + \frac{4}{c}\right) + \frac{16}{d} \ge$$

$$\left(\frac{16}{a+b+c} + \frac{16}{d}\right) \ge$$

$$\frac{64}{a+b+c+d}.$$

b) Dividindo a expressão do item anterior por ab(a + b) obtemos:

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} \ge \frac{4}{a+b}.$$

161. Sejam a e b as dimensões do retângulo, devemos ter que 2a + 2b = 2, ou seja, a + b = 1. A área obtida será ab. Pelo exercício anterior,

$$ab = (\sqrt{ab})^2 \le (\frac{a+b}{2})^2 = \frac{1}{4}.$$

Assim, a área máxima é $\frac{1}{4}$. Podemos obtê-la construindo um quadrado de lado $\frac{1}{2}$.

162. Pela diferença de quadrados, temos:

$$B = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{3}}}} \times \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{3}}}}$$
$$= \sqrt{2 - \sqrt{2 + \sqrt{3}}}$$

Apliquemos novamente a diferença de quadrados para obter o número:

$$C = \sqrt{2 + \sqrt{2 + \sqrt{3}}} \cdot B$$
$$= \sqrt{2 + \sqrt{2 + \sqrt{3}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{3}}}$$
$$= \sqrt{2 - \sqrt{3}}$$

Para terminar, veja que:

$$A \cdot B = \sqrt{2 + \sqrt{3}} \cdot C$$
$$= \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 - \sqrt{3}}$$
$$= 1$$

Resposta C

163. Se denotarmos por a = 20142012 o valor da expressão anterior pode ser escrito como:

$$(a+1)^2 - 2(a+1)a + a^2 = [(a+1) - a]^2$$

= 1²

164. (Extraído da OBM 2014)

Usando a diferença de quadrados, podemos escrever:

$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = (x - y).$$

Assim, obtemos:

$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}} = \frac{a^2}{b}$$

$$\sqrt{x} + \sqrt{y} = b$$

Resolvendo o sistema anterior, encontramos $\sqrt{x} = \frac{b^2 + a^2}{2b}$ e $\sqrt{y} = \frac{b^2 - a^2}{2b}$. Assim,

$$\sqrt{xy} = \frac{b^4 - a^4}{4b^2}.$$

165. Note que:

$$a(10-a) = 10a - a^{2}$$

$$= 25 - 25 + 10a - a^{2}$$

$$= 25 - (5-a)^{2}$$

Como $(5-a)^2$ é sempre um número não negativo, a última expressão é no máximo 25. Tal valor é atingido apenas quando $(5-a)^2=0$, ou seja, quando a=5.

$$4a - a^{4} = 4a - 2a^{2} + 2a^{2} - a^{4}$$

$$= 4a + 1 - 2a^{2} - 1 + 2a^{2} - a^{4}$$

$$= 4a + 1 - 2a^{2} - (a^{2} - 1)^{2}$$

$$= 3 - 2 + 4a - 2a^{2} - (a^{2} - 1)^{2}$$

$$= 3 - 2(a - 1)^{2} - (a^{2} - 1)^{2}.$$

Como $2(a-1)^2 + (a^2-1)^2$ é sempre um número não negativo por se tratar da soma de três quadrados, a expressão anterior é no máximo 3. Veja que tal valor pode ser atingido quando a = 1.

167.

- a) a(5+b). b) a(m+n). c) x(a+b+c). d) a(x+1).
- e) b(a+c+ac).

168.

- a) $\frac{1}{2}$.
- b) $\frac{3}{8}$.
- c) $\frac{a}{2}$.
- d) $\frac{a+b}{a-b}$.

169.

- a) (a+b)(a+c). b) (a-b)(x+y). c) (2a+1)(b+1). d) (a-b)(x+2). e) (5a-1)(2b+3).

170.

a) m^{2} .

b) $\frac{x^2+1}{x^2}$.

c) $\frac{m^3+2}{m+3}$.

171.

a)
$$(a-5b)(a+5b)$$
. b) $(2x-1)(2x+1)$. c) $(\sqrt{7}-x)(\sqrt{7}+d)(ax-by)(ax+e)(a-b)(a+b)(a+b^2)$.

172.

- Se fosse $b^2 = 3$, deveríamos ter $b = \sqrt{3}$. Entretanto, $-4 \neq -2bx$.
- a) A expressão não representa um binômio perfeito. c) A expressão não representa um binômio perfeito. Se fosse $b^2 = 18$, deveríamos ter $b = 3\sqrt{2}$. Entretanto, $6 \neq 2by$.
 - d) $4z^2 12zy + 9y^2 = (2z 3y)^2$.

b) $x^2 + x + \frac{1}{4} = (x + 1/2)^2$.

e) $3z^2 + 6z + 3 = (\sqrt{3}z + \sqrt{3})^2$.

c)

- a) $(x-1)^2(x+1)^2$.
- b) $5(a-1)^2$.

 $a^2 - h^2 - 2hc - c^2 =$ $a^2 - (b+c)^2 =$ (a - (b+c))(a + (b+c)) =(a - b - c)(a + b + c).

174.

a) 20.

b) $\frac{xy}{3}$.

c) $\frac{xy}{(x+1)(y+1)}$.

$$x^{2}y + y^{2}x = xy(x + y)$$

$$= 6 \cdot 7$$

$$= 42.$$

176. (Extraído do vestibular da UNIVASF) **Temos**

$$\frac{a+x}{b-x} = \frac{c}{d}$$

$$\Rightarrow$$

$$cb-xc = ad+xd.$$

Isolando os termos com x de um só lado e fatorando-o, obtemos: cb - ad = xc + xd = x(c + d), ou seja, $x = \frac{bc - ad}{c + d}.$

177.

a)
$$b(a - b)(a + b)$$
.

b)
$$(x-y-3)(x-y+3)$$
. c) $(a-4)^2(a+4)^2$

c)
$$(a-4)^2(a+4)^2$$

178. Pela distributividade, temos:

$$(x - y)(x^{2} + xy + y^{2}) = (x^{3} + x^{2}y + xy^{2}) - (yx^{2} + xy^{2} + y^{3}) = x^{3} - y^{3}$$

Usando a fatoração fornecida, temos:

$$x^3 - 8 = (x - 2)(x^2 + 2x + 4).$$

179. Se y = -z, temos:

$$x^{3} + z^{3} =$$

$$x^{3} + (-y)^{3} =$$

$$x^{3} - y^{3} =$$

$$(x - y)(x^{2} + xy + y^{2}) =$$

$$(x + z)(x^{2} - xz + z^{2})$$

Obtemos assim uma fatoração para a soma dos cubos dada por:

$$x^3 + z^3 = (x+z)(x^2 - xz + z^2).$$

180. Se *x* e *y* são esses números, temos:

$$x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2}) = (x+y)((x+y)^{2} - 3xy) = 4 \cdot (4^{2} - 3) = 52$$

$$x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2}) = (x+y)((x+y)^{2} - 3xy) = 3 \cdot (3^{2} - 3) = 18$$

182.

$$x^{2} + \frac{1}{x^{2}} =$$

$$\left(x + \frac{1}{x}\right)^{2} - 2 \cdot x \cdot \frac{1}{x} =$$

$$2^{2} - 2 = 2$$

183. (Extraído da Olimpíada Cearense)

$$(a-b)^{2} + (-a+b)^{2} + 2(a-b)(b-a) = [(a-b) + (-a+b)]^{2} = 0.$$

184. (Extraído da AIME) Aplicando a diferença de quadrados nos dois primeiros parênteses e nos dois últimos, temos:

$$\begin{array}{rl} (\sqrt{5}+\sqrt{6}+\sqrt{7})(\sqrt{5}+\sqrt{6}-\sqrt{7}) & = \\ & ((\sqrt{5}+\sqrt{6})^2-7) & = \\ & (4+2\sqrt{30}) \\ (\sqrt{7}+\sqrt{5}-\sqrt{6})(\sqrt{7}-\sqrt{5}+\sqrt{6}) & = \\ & (7-(\sqrt{5}-\sqrt{6})^2) & = \\ & (-4+2\sqrt{30}) \end{array}$$

Assim, o produto é igual à:

$$(2\sqrt{30} + 4)(2\sqrt{30} - 4) = 4 \cdot 30 - 16 = 104.$$

185.

$$x^{4} + 4 = x^{4} + 4x^{2} + 4 - 4x^{2}$$

$$= (x^{2} + 2)^{2} - 4x^{2}$$

$$= (x^{2} - 2x + 2)(x^{2} + 2x + 2).$$

186.

$$(n(n+3)+1)^2 = n^2(n+3)^2 + 2n(n+3) + 1$$

$$= n(n+3)[n(n+3)+2] + 1$$

$$= n(n+3)[n^2 + 3n + 2] + 1$$

$$= n(n+3)[(n+1)(n+2)] + 1$$

$$= n(n+1)(n+2)(n+3) + 1$$

187. Usando o exercício anterior para n = 2014, obtemos (2014)(2017) + 1.

$$p^4 - 1 = (p^2 - 1)(p^2 + 1)$$

= $(p - 1)(p + 1)(p^2 + 1)$

189. (Extraída do vestibular da UFRJ)

Seja $y = \sqrt{3 - \sqrt{8}} + \sqrt{3 + \sqrt{8}}$. Claramente y é um inteiro positivo pois cada um dos radicais o é. Assim, o produto xy possui o mesmo sinal de x. Calculemos tal produto usando diferença de quadrados:

$$xy = (3 - \sqrt{8}) - (3 + \sqrt{8})$$
$$= -2\sqrt{8}.$$

Portanto, como $-\sqrt{8}$ é negativo, x também o é.

190.

$$n^{5} + n^{4} + 1 =$$

$$n^{5} + n^{4} + n^{3} - n^{3} - n^{2} - n + n^{2} + n + 1 =$$

$$n^{3}(n^{2} + n + 1) - n(n^{2} + n + 1) + (n^{2} + n + 1) =$$

$$(n^{2} + n + 1)(n^{3} - n + 1).$$

191. (Extraído da Olimpíada Cearense) Usando diferença de quadrados, temos:

$$\sqrt{n} - \sqrt{n-1} = \frac{n - (n-1)}{\sqrt{n} + \sqrt{n-1}}$$
$$= \frac{1}{\sqrt{n} + \sqrt{n-1}}$$

Para que o número anterior seja menor que 0,01, devemos ter:

$$\sqrt{n} + \sqrt{n-1} > 100.$$

Se $n \le 50^2$,

$$\sqrt{n} + \sqrt{n-1} < 50 + \sqrt{2499}$$

< 100.

Se $n = 50^2 + 1$,

$$\sqrt{n} + \sqrt{n-1} = \sqrt{2501} + 50$$

> 100.

Logo, o menor inteiro positivo que satisfaz a desigualdade do enunciado é $n=50^2+1$.

192. Aplicando a diferença de quadrados sucessivamente, temos:

$$a^{32} - b^{32} = (a^{16} + b^{16})(a^{16} - b^{16}) = (a^{16} + b^{16})(a^8 + b^8)(a^8 - b^8) = (a^{16} + b^{16})(a^8 + b^8)(a^4 + b^4)(a^4 - b^4) = (a^{16} + b^{16})(a^8 + b^8)(a^4 + b^4)(a^2 + b^2)(a^2 - b^2) =$$

Assim, o quociente é $a^2 - b^2$.

193. Note que
$$((x+1)^2 - (x+1) + 1) = (x^2 + x + 1)$$
.

Verifiquemos agora uma fração genérica do produto:

$$\frac{x^3 - 1}{x^3 + 1} = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)} = \frac{x - 1}{x + 1} \cdot \frac{(x + 1)^2 - (x + 1) + 1}{x^2 - x + 1}$$

A primeira parte da última expressão é uma fração onde o numerador e o denominador diferem por 2 e a segunda parte é um quociente de termos envonvendo a expressão $n^2 - n + 1$ quando n é x + 1 e x. Vamos analisar a expressão anterior para cada valor de x no conjunto $\{2,3,\ldots,100\}$.

Primeiramente vejamos o que acontece quando multiplicarmos apenas as frações que constituem a primeira parte da expressão:

$$\frac{1}{\cancel{3}} \cdot \frac{2}{\cancel{4}} \cdot \frac{\cancel{3}}{\cancel{5}} \cdot \frac{\cancel{4}}{\cancel{6}} \cdot \frac{\cancel{5}}{\cancel{7}} \cdot \dots \cdot \frac{\cancel{98}}{100} \cdot \frac{\cancel{99}}{101} = \frac{2}{100 \cdot 101}.$$

A segunda parte produz um cancelamento diferente:

$$\frac{3^{2} - 3 + 1}{2^{2} - 2 + 1} \cdot \frac{4^{2} - 4 + 1}{3^{2} - 3 + 1} \cdot \dots \cdot \frac{101^{2} - 101 + 1}{100^{2} - 100 + 1} = \frac{10101}{3}.$$

Assim, o valor da expressão é:

$$\frac{2}{100 \cdot 101} \cdot \frac{10101}{3} = \frac{3367}{5050}.$$

194. (Extraído da OBM 2014) Observe que:

$$1 - \frac{F_k^2}{F_{k+1}^2} = \frac{F_{k+1}^2 - F_k^2}{F_{k+1}^2}$$
$$= \frac{(F_{k+1} - F_k)(F_{k+1} + F_k)}{F_{k+1}^2}$$
$$= \frac{F_{k-1}F_{k+2}}{F_{k+1}^2}.$$

Assim,

Resposta E.

195. Na identidade anterior, podemos trocar a soma de quaisquer dois, pelo simétrico do terceiro obtendo:

$$(x+y+z)^{3} = x^{3} + y^{3} + z^{3} + 3(x+y)(x+z)(y+z) = x^{3} + y^{3} + z^{3} + 3(-z)(-y)(-x) = x^{3} + y^{3} + z^{3} - 3xyz.$$

Como $(x + y + z)^3 = 0$, segue o resultado.

196. (Extraído da Olimpíada do Cone Sul)

Comecemos analisando alguma relação entre a, b e a+b+ab. O último termo lembra a fatoração:

$$(a+1)(b+1) = ab + a + b + 1.$$

Em cada momento após realizarmos as operações, se analisarmos a quantidade que representa o produto de todos os números do conjunto acrescidos de uma unidade. A equação anterior nos diz que tal produto nunca se altera. Consequentemente, no final teremos um único número x tal que:

$$(1+1/2)(1+1/3)\dots(1+1/100)=(1+x).$$

Ou seja, x = 99/2. Para entender melhor que quantidade estamos analisando, façamos um exemplo pequeno. Suponha que em um dado momento temos os números 2, 3 e 5, devemos analisar o número

$$(2+1)(3+1)(5+1)$$
.

Se trocarmos a = 2 e b = 3 por ab + a + b = 11 e fizermos o novo produto obteremos:

$$(11+1)(5+1)$$
.

Perceba que o valor continua sendo o mesmo.

197. Para fazer tal expansão, podemos considerar momentaneamente x + y = w e a expressão que já conhecemos para o binômio:

$$(x+y+z)^{3} = (w+z)^{3} = w^{3} + 3w^{2}z + 3wz^{2} + z^{3}$$

Além disso,

$$w^{3} = (x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3} = x^{3} + y^{3} + 3xy(x+y) = x^{3} + y^{3} + 3xyw$$

Voltando para a expressão original, temos:

$$(x+y+z)^3 = x^3 + y^3 + z^3 + 3xyw + 3w^2z + 3wz^2.$$

Resta estudarmos o termo:

$$3xyw + 3w^{2}z + 3wz^{2} = 3w(xy + wz + z^{2}) = 3(x+y)(xy + xz + yz + z^{2}) = 3(x+y)(x+z)(y+z)$$

Com isso, podemos concluir que:

$$(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(x+z)(y+z).$$

198. Para fazer tal expansão, podemos considerar momentaneamente x + y = w e a expressão que já conhecemos para o binômio:

$$(x+y+z)^2 = (w+z)^2 = w^2 + 2wz + z^2$$

Além disso,

$$w^2 = (x+y)^2 = x^2 + 2xy + y^2.$$

Voltando para a expressão original, temos:

$$(x+y+z)^{2} = x^{2} + y^{2} + z^{2} + 2xy + 2wz = x^{2} + y^{2} + z^{2} + 2xy + 2(x+y)z = x^{2} + y^{2} + z^{2} + 2xy + 2x + 2yz$$

Com isso, podemos concluir que:

$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz.$$

199. Sejam x = b - c, y = c - a e z = a - b. Pelo exercício anterior, como x + y + z = 0, podemos escrever:

$$(b-c)^{3} + (c-a)^{3} + (a-b)^{3} = x^{3} + y^{3} + z^{3} = 3xyz = 3(b-c)(c-a)(a-b).$$

200. Elevando ao quadrado a igualdade dada, temos

$$a^2x^2 + b^2y^2 + c^2z^2 + 2(abxy + bcyz + cazx) = 0$$

E consequentemente:

$$-2(abxy + bcyz + cazx) = a^2x^2 + b^2y^2 + c^2z^2$$

Daí, a expressão $bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2$ é igual a

$$x^{2}(ab + ac) + y^{2}(ba + bc) + z^{2}(ca + cb)$$

$$-2(abxy + bcyz + cazx)$$

$$= x^{2}(a^{2} + ab + ac) + y^{2}(ba + b^{2} + bc) +$$

$$+z^{2}(ca + cb + c^{2})$$

$$= ax^{2}(a + b + c) + by^{2}(a + b + c) +$$

$$+cz^{2}(a + b + c)$$

$$= (ax^{2} + by^{2} + cz^{2})(a + b + c).$$

Assim,

$$\frac{ax^2 + by^2 + cz^2}{bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2} = \frac{1}{a+b+c'}$$

que independe de x, y e z.

a) *F*.

d) A.

g) A.

b) *A*.

e) *F*.

c) F.

f) A.

202. a, b, d, g, i.

203.

- a) P = 4l, sendo P o perímetro e l a medida do lado.
- b) $A = l^2$, sendo A a área e l a medida do lado.
- c) L + l = 16, sendo L a idade de Luiz e l a idade de Luísa.
- d) $\frac{\sqrt{x}}{2}$ < 3x, sendo x o referido número.
- e) $S = 700 + \frac{20}{100} \cdot V = 700 + 0,2V$, sendo S o salário e V o valor das vendas.
- f) $A = b \cdot 2b = 2b^2$, sendo A a área e b a medida da base.

204.

a) $A = 6l^2$.

b) $V = l^3$.

c) S = 12l.

205. (Extraído da Vídeo Aula)

Supondo que Diofanto tenha vivido x anos, temos $x=\frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5+\frac{x}{2}+4$. Para resolver esta equação, primeiramente encontraremos um denominador comum a todas as frações, sendo o menor deles (e mais fácil de se trabalhar) 84. Escrevendo agora as frações equivalentes, com denominador 84, a cada uma das frações da equação, temos $\frac{84x}{84}=\frac{14x}{84}+\frac{7x}{84}+\frac{12x}{84}+\frac{420}{84}+\frac{42x}{84}+\frac{336}{84}$. Fazendo as devidas simplificações, chegamos a x=84, que é a quantidade de anos vividos por Diofanto.

206. (Extraído da Vídeo Aula)

- a) P = 2a + b + a + b + b + 2a + b + a = 6a + 4b.
- b) Basta somar ao perímetro encontrado no item anterior, as medidas internas de divisão do terreno. Assim, ficamos com Q = 6a + 4b + a + b + 2a = 9a + 5b.
- c) Vamos calcular cada uma das áreas dos retângulos menores e somá-las. Temos então

$$A = 2a^2 + 2ab + ab + b^2 = 2a^2 + 3ab + b^2$$
.

Figura 4

- a) Representaremos a área de um polígono ABCD por [ABCD]. Os dois polígonos formados são trapézios, que possui uma fórmula para o cálculo direto de sua área, porém não a utilizaremos. Trace duas paralelas ao lado AB, uma pelo ponto E e outra pelo ponto F. Pronto! Dividimos cada trapézio em um retângulo e um triângulo. Vamos ao cálculo de suas áreas. $[ABFE] = 30 \cdot 5 + \frac{30 \cdot (x-5)}{2} = 75 + 15x$. $[CDEF] = 30 \cdot (40 x) + \frac{30 \cdot (x-5)}{2} = 1125 15x$.
- b) Como a [CDEF] é o dobro de [ABFE], temos:

$$[CDEF] = 2[ABFE]$$

$$1125 - 15x = 150 + 30x$$

$$45x = 975$$

$$x = \frac{65}{3}.$$

