Fabian Neumann and Tom Brown

fabian.neumann@kit.edu

Institute for Automation and Applied Informatics Karlsruhe Institute of Technology (KIT)

September 19, 2019

Long-Term Energy System Optimisation

Cost-effective pathways to reduce greenhouse gas emissions \rightarrow optimisation models

Simultaneous investment planning of generation, storage and transmission \rightarrow trade-offs

$$\mathbf{Minimise} \begin{pmatrix} \mathbf{Yearly} \\ \mathbf{system \ costs} \end{pmatrix} = \sum_{n} \begin{pmatrix} \mathbf{Annualised} \\ \mathbf{capital \ costs} \end{pmatrix} + \sum_{n,t} \begin{pmatrix} \mathbf{Operational} \\ \mathbf{costs} \end{pmatrix}$$

subject to linear optimal power flow constraints. the variability & potentials of renewable energy. and emission reduction targets.

Linearised Power Flow without capacity expansion

Decision Variable

Parameter

Susceptance

Labels of Heuristics

power flow between nodes i and j at time t line capacity
$$f_{ij,t}$$
 $\leq F_{ij,t}$

Transmission Expansion Planning Problem (MINLP)

If line capacity can be extended discretely, the problem becomes nonconvex...

$$|f_{ij,t}| \leq \frac{\text{relative increase of capacity}}{\left(1 + \frac{\Gamma_{ij}}{\tilde{\gamma}_{ij}}\right)} \cdot \frac{\text{relative increase of capacity}}{\tilde{F}_{ij}}$$

... and nonlinear ...

$$f_{ij,t} = \overbrace{\left(1 + rac{\Gamma_{ij}}{ ilde{\gamma}_{ii}}
ight) ilde{b}_{ij}}^{b_{ij}} \cdot (heta_{i,t} - heta_{j,t})$$

... which we can transform to an MILP using a Big-M disjunctive relaxation.

Reminder: Labels of Heuristics

Discrete investment decisions

heur-int

$$\Gamma_{ij} \in \mathbb{N}_{\geq 0}$$

are relaxed to allow each line to be expanded continuously, i.e.

heur

$$\Gamma_{ij} \in \mathbb{R}$$

Pursue an iterative approach (convergence tolerance or iteration limit)

iter(-segdisc)

$$f_{ij,t} = \overbrace{\left(1 + rac{\Gamma_{ij}}{ ilde{\gamma}_{ii}}
ight) ilde{b}_{ij}}^{b_{ij}} \cdot \left(heta_{i,t} - heta_{j,t}
ight) \qquad \longrightarrow \qquad f_{ij,t} = b_{ij}^{(k)} \cdot \left(heta_{i,t} - heta_{j,t}
ight)$$

First iteration \rightarrow initial susceptances

$$b_{ij}^{(1)} = \tilde{b}_{ij}$$

Subsequent iterations \rightarrow current **optimal line investment** $\Gamma_{ii}^{*(k)}$ (or rounded)

$$b_{ij}^{(k+1)} = \left(1 + rac{\Gamma_{ij}^{*(k)}}{ ilde{\gamma}_{ij}}
ight) ilde{b}_{ij} \qquad orall k > 1$$

Following the iterations. fractional decisions must be fitted to valid investment choices:

postdisc

- Round relaxed line capacities nearest discrete choice (threshold z = 0.3)
- Fix line capacities & rerun generation expansion only.

Optionally:

postdisc_mult

Repeat for multiple discretization thresholds (z) & choose configuration with lowest costs.

Run of River

Open Optimisation Model of the European Transmission System

Results: Generation and Transmission Expansion

Results: Accuracy & Speed

When **co-optimizing** generation, transmission and storage infrastructure **discrete line expansion** is computationally prohibitive (to date).

The heuristics mirror optimal line investment of the MINLP close enough in view of attainable optimality gaps but with immense time savings!

Resources

Conclusions

Find the slides:

https://neumann.fyi/files/eem19-tepheuristics.pdf

Send an email:

fabian.neumann@kit.edu

Find the energy system model:

Code: https://github.com/pypsa/pypsa-eur

Documentation: https://pypsa-eur.readthedocs.io

