

Document Title

Summary of the fate and behaviour in the environment Bixafen + Fluopyram + Prothioconazole EC 260 (65+65+130 g/L)

Data Requirement(s)

Regulation (EC) No 1107/2009 & Regulation (EU) No 284/2013

Document MCP

Section 9: Fate and behaviour in the environment

According to the Guidance Document SANGO/10184/2013 & on preparing dossiers for the approval of a chi-Data Requirement(s)

No 1107t2009 & Regulation (EU) No 1

Document MCP.

Section 97 Fate and behaviour in the environment

Section 97 Fate and behaviour in the environment

on preparing dossiers for the approval of a chemical active substance

Date

2021-03-26

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer AG and/or affiliated entities. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer AG and and affiliated entities.

The summaries and evaluations contained in this document are based on inpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the • from Bayer AG or respective affiliate, or
• from other applicants once the period of Mata protection has expired. basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they have received the days on which the summaries and evaluation are based,

Version history

Date [yyyy-mm-dd]	Data points containing amendments or additions1 and brief description	Document identifier and version number
	K.	
It is suggested in SANCO/101	that applicants adopt a similar approach to showing revision 80/2013 Chapter 4, 'How to revise an Assessment Report.'	as and version history as ontined of

Table of Contents

	Table of Contents	
		Page (
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT	.50
CP 9.1	Fate and behaviour in soil	U A5
CP 9.1.1	Rate of degradation in soil	. \$ 5
CP 9.1.1.1	Laboratory studies	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CP 0 1 1 2	Field studies	
CD 0.1.1.2	Soil dissination studies	¥
CD 0 1 1 2 2	Soil accumulation studies	
CF 9.1.1.2.2 CD 0 1 2	Mobility in the sail	
CD 0 1 2 1	Laboratory studies	Ů
CP 9.1.2.1	Lycimotor studies	 © 6
CP 9.1.2.2	Eigld leaching studies	0
CP 9.1.2.3	Freid leaching studies	0
CP 9.1.3	Estimation of concentrations and solvers are solvers a	<u></u>
CP 9.2	rate and benaviour in water and segiment	912
CP 9.2.1	Aerobic mineralisation in surface water	12
CP 9.2.2	Water/sediment study	12
CP 9.2.3	Irradiated water/sediment study	12
CP 9.2.4	Estimation of concentrations in groundwater	13
CP 9.2.4.1	Calculation of concentrations in ground water.	14
CP 9.2.4.2	Additional fleetrests	41
CP 9.2.3	Estimation of concentrations in surface water and sediment	120
CP 9.3	rate and benavious in air	128
CP 9.3.1	Route and rate of degradation in air and transport via air	120
	Rate of degradation in soil Laboratory studies Field studies Soil dissipation studies Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in soil Fate and behaviour in water and, sediment Water/sediment study Irradiated water/sediment study Estimation of concentrations in groundwater Calculation of concentrations in surface water and sediment Estimation of concentrations in surface water and sediment. Calculation of concentrations in surface water and sediment. Set and behaviour in air Route and rate of degradation an air and transport via air Estimation of concentrations for other routes of exposure	
\bigcirc		

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Fluopyram was included in Annex I to Council Directive 91/414/EEC in 2013 (Regulation @U) 802/2013 into Force on August 22, 2013). This Supplementary Dossier contains only data which were not submitted at the time of the Annex I inclusion of Fluopyram under Council Directive 91/4/2/EEC and which were therefore not evaluated during the first EU review. All data which we've already submitted by Bayer AG (former Bayer CropScience) for the Annex I inclusion under Council Directive 91/414/EEC are contained in the Draft Assessment Report (DAR) and its Addenda and are included in the Baseline Dossier provided by Bayer.

The formulation Bixafen + Fluopyram + Prothioconazole EC 260 (65-65+130 g/Lyabbreviation BIX + FLU + PTZ EC 260, is an emulsifiable concentrate formulation containing 65 of of Bixafen 65 g/ Fluopyram and 130 g/L Prothioconazole. This formulation is registered throughout Europe under trade names such as Ascra Xpro EC 260. BIX+FEO+PTZ EC 260 was not already a representative formulation of Bayer AG for the Annex I inclusion of Prothioconazole under Council Directive 91/414/EEC.

et proposed for use in the field on creals (barley) based BIX + FLU + PTZ EC 260 is an end use product on the application pattern shown below.

Use pattern considered in this risk assessment

Table 9.1-1: Intended application patters

Crop	Timing	Number	Application	Maximum A	Maximum
	L of C)) "\" of	interval @	label rate grange	application rate,
	of application (range)	(le 🚿		grange	individual treatment
					(ranges) [kg a.s./ha]
()		6 4	[days]	[L prod./ha]	Fluopyram
Barley	BBCH 0-0	51 \$ 1,	5 - 5	0.6	0.039
Barley	BBCH 30			1.2	0.078

Rateof degradation in soil

For information degradation of soil please refer to Document MCA, Section 7.1.2.

Laboratory studies

information on aboratory studies please refer to Document MCA, Section 7.1.2.1.

CP 9.1.1.2 Field studies

For information on field studies please refer to Document MCA, Section 7.1.2.2.

CP 9.1.1.2.1 Soil dissipation studies

For information on field dissipation studies please refer to Document MCA, Section 7.1.2.2.1

CP 9.1.1.2.2 Soil accumulation studies

For information on field accumulation studies please refer to Document MCA, Section 7.1.2.22

CP 9.1.2 Mobility in the soil

For information on mobility studies please refer to Document MCA, Section 3.1.4%

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please befor to Document MCA, Section 74.4.1.

CP 9.1.2.2 Lysimeter studies

For information on lysimeter studies please refer to Document MCA Section 7.1.42

CP 9.1.2.3 Field leaching studies

For information on field Caching studies please refer to Document MCA Section 7.1.4.3.

CP 9.1.3 Estimation of concentrations in soil

Calculations of predicted environmental concentrations in soil (PEC_{soil}) are presented below.

Endpoints for PECsoil

Table 9.1.3- 1.9 Modelling input parameters for diopyram and its metabolites

Compound Fluopy am	Fluopyram-7-hydroxy (FLU-7-OH)	Trifluoroacetic acid (TFA)
Molecular mass (g/mol) 396.72	412.72	114.02
Molar mass corr Cactor 1 Q	1.0403	0.2874
Max. occurrence in soil [%]	5.8	14.8
DisT ₅₀ in soft (d)	85.52 1)	50.3 ²⁾

^{*} default

¹⁾ worst case lab mon-normalized

²⁾ worst case Dis T50, including default degradation and leaching

PEC_{soil} modelling approach

The predicted environmental concentrations in soil (PEC_{soil}) for the active substance fluopyram and its metabolites fluopyram-7-hydroxy (FLU-7-OH) and trifluoroacetic acid (TFA) were calculated based on a first-tier approach using a Microsoft® Excel spreadsheet under the assumption of an even distribution of the compound in the upper 0-5 cm soil layer. A standard soil density of 1.5 g/cm³ was assumed. Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of the FOCUS groundwater guidance paper FOCUS 2014&

Predicted environmental concentrations in soil (PEC_{SOIL})

Important remark by the applicant: The modelling core information and the PECsoil value presented below are interim values and are therefore subject to change until final modeling input parameters can be established. The applicant intends to provide final modelling fore information and final PEC_{soil} values latest by end of March 2002.

	LVCD 0 1 2/00.
Data Point:	KCP 9.1.3/0 V V V V V V V V V V V V V V V V V V V
Report Author:	
Report Year:	
Report Title:	Fluop Fam (FEU): Core PECow, PECow, PIO soil EUR - Modelling core info
	document for groundwater, surface water and soil@sk assessment in Europe
Report No:	EnSa-21-0077
Document No:	M-763252-01-€
Guideline(s) followed in	
study:	
Deviations from current test guideline:	
test guideline:	
	No, not previously submitted
Previous evaluation.	
GLP/Officially recognised	No, not conducted under GLP/Officially recognised testing facilities
testing facilities:	Yes V
Acceptal Rty/Reliability	Yes V

fluopyram and its metabolites as used for the

¹ FOCUS, 2014a: Generic Guidance for Tier 1 FOCUS Groundwater Assessments, version 2.2

Data Point:	KCP 9.1.3/02
Report Author:	
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolites: PECsoil EUR - Use in apples, spring cereal winter cereals and vines in Europe
Report No:	EnSa-21-0075
Document No:	<u>M-763355-01-1</u>
Guideline(s) followed in study:	not applicable
Deviations from current test guideline:	Current guideline: not applicable
Previous evaluation:	No, not previously submitted
GLP/Officially recognised testing facilities:	No, not conducted under Opt Officially recognised testing facilities
Acceptability/Reliability:	Yes & & & & & & & & & & & & & & & & & & &

Please note: The modelling report is considering BIX + FLU + PTZ EC 260 are presented here.

Methods and Materials:

The predicted environmental concentrations in soil (PECsoil of flyopyram and its metabolites fluopyram-7-hydroxy (FLU-7-OH) and frifluopoacetic acid (YFA) were calculated in a first tier approach using a Microsoft® Excel specialsheet. The use of fluory ram for barley (modelling crops: cereals) was assessed according to Good Agricultural Practice (GAP) under European cropping conditions.

A soil mixing depth of 5 cm was used for the calculation in of eals.

Detailed application data used for calculation of PEC were compiled in Table 9.1.3-2.

Table 9.1, 3-2: Application pattern used for PECsoil calculations of fluopyram

	A STATE OF A	pplication		Amount
Individual Crop	FOCUS crap used Rate per Interval	Plant Interception	BBCH Stage	reaching the soil per application
*	je a.s./haj juays]	[%]		[g a.s./ha]
Barley I	Cercents 0 1 239	80	30 - 61	1 × 7.80
Barkey II	Gereals 1 × 78	80	30 - 61	1 × 15.60
Findings:	PEC bil values for fluopyram and its m	etabolites are sun	nmarized in t	he tables below.

Table 9.1.3-3: PEC_{soil} for fluopyram on cereals I, 1×39 g a.s./ha, 80% interception

PEC _{soil}		Cereals I			
(mg/kg)		Single application		Multiple a	pplications
		Actual	TWA	Actual	TYPA
Initial		0.010	-	-5	4- , 4"
Short term	24h	0.010	0.010	4	, 67 - 57 , p
	2d	0.010	0000		
	4d	0.010	0.010	, S - , S	3 - 4 L
Long term	7d	0.010	<u></u> 0.010	Y	
	14d	0.010	0.010	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)
	21d	0.010	\$ 0.010°		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	28d	0.010	0000		
	42d	0.010	Ø.010 ₀		- 5
	50d	0 .010	₹ 0.0 10	P & - V	Q O
	100d	\$\text{0.0160}	0.010	\$ 5 5 S	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Plateau concentratio	n (20 cm) er year 10	0.609		Y 29- 20	(4) (5)
PEC (PEC _{act} +PE	accumulation Csort plateau)	% 0.016 °	7 0-		-

Table 9.1.3-4: PCC soil for fluors ram—Chydross on cereals L 1 × 39 g a.s./ha, 80% interception

			(, <i>()</i>	
PEC _{soil}		CO	žals I 🗳	
PEC _{soil} (mg/kg)	Single a	plication 3	~	pplications
	Aetual	OTW D	Actual	TWA
Initial S	©0.001 \(\times \)	\$\frac{1}{2}\tag{0.001}	-	-
Short term 24h	<0.001	♥ 0.001 [△]	-	-
Q Ad		< 0.0491	-	-
Long term A 70°	% <0.00¥ %	< 0.001	-	-
Long term	Q < 400 01 &	©< 0.001	-	-
14d Q 21d	<0.001	< 0.001	-	-
2,13	~ <0.001 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< 0.001	-	-
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t «0 001.°°	< 0.001	-	-
42	<0.001	< 0.001	-	-
S S S S S S S S S S S S S S S S S S S	<€ ? 001	< 0.001	-	-
100d	< 0.001	< 0.001	-	-
Plateau concentration (20 cm) afters year 1 PEC accumulation (PEC act +PEC soil plateau)	< 0.001	-	-	-
aftersyear 1				
PEC _{accumulation}	< 0.001	-	-	-
(PEC _{act} +PEC _{soil plateau})				

Table 9.1.3-5: PEC_{soil} for trifluoroacetic acid on cereals I, 1×39 g a.s./ha, 80% interception

PEC _{soil} (mg/kg)		Cereals I			
		Single a _l	Single application		pplications
		Actual	TWA	Actual	TY A
Initial		< 0.001	-	- 5	4- ,5
Short term	24h	< 0.001	< 0.001	4	, 5 - 5° 49
	2d	< 0.001	< 0001	<i>-</i>	
	4d	< 0.001	(0.001	, P - , P	
Long term	7d	< 0.001	<u></u> = 0.001	Y O	
	14d	<0.001	< 0.001		D' 49 - 20
	21d	<0.001	\$ 0.00°		~ <u>'</u>
	28d	<0.001	< 0.001	,	
	42d	<0,001	0.001		- 4
	50d	0.001	\$\leq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	100d	√√<0.00 0 °′	< 0.001		\$ \$ -
Plateau concentration	n (20 cm) ter year			\$ \$ - \$	~~ - ©
PEC (PEC _{act} +PEC	accumulation Soil plateau)	<0.00H	Y 0'- Y		-

Table 9.1.3- 6: PAC soil for fluors ram of cereals II, 13 78 g.a.s./ha, 89% inferception

		, 9 0 0	(
PEC _{soil}	* 6 ~ **	Ceft	vals II	
PEC _{soil} (mg/kg)	Single a	plication 3	~	pplications
	Aetual 🔊	TWA,	Actual	TWA
Initial S	Ø 021	5 5 ,0	-	-
Short term 24b	0.021	Ø	-	-
Q Ad		0.029	-	-
Long term A 70°	0.02P	0.021	-	-
Long term	0021	0.021	-	-
14d Q 21a		0.021	-	-
	0.020	0.021	-	-
28d s	\$\tag{0.020} \tag{}	0.021	-	-
420	\$\int 0.020 \tag{0}	0.021	-	-
Plateau concentration (20 cm) after sear 10 PEC accumulation (PEC at +PEC at labetes)	0.020	0.020	-	-
100dQ	0.019	0.020	-	-
Phyteau concentration (20 cm)	0.018	-	-	-
after at 10				
PEC _{accumulation}	0.039	-	-	-
(PEC _{act} +PEC _{soil plateau})				

Table 9.1.3-7: PEC_{soil} for fluopyram-7-hydroxy on cereals II, 1 × 78 g a.s./ha, 80% interception

PEC _{soil} (mg/kg)			Cere	eals II	pplications
		Single ap	oplication	Multiple applications	
		Actual	TWA	Actual	TY
Initial		0.001	-	-5	4- ,5
Short term	24h	0.001	0.001	4	, 6 - 8 , p
	2d	0.001	0. © 01	<i>-</i>	
	4d	0.001	0.001	, S - , S	3 - 2 4
Long term	7d	0.001	<u>J</u> 0.001		
	14d	0.001 «	0.001)
	21d	0.001	\$0.001°		~ . W
	28d	0.001	0001	,	
	42d	<0,001	Ø.001	A 20 2	- 5
	50d	0.001	\$0.001 \$\times 0.001 \$\times 0.001) <u> </u>	\$ <u>0</u>
	100d	<0.00 0 €	< 0.001		, 49 -
Plateau concentratio	on (20 cm) fter year	\$\tag{9001 \tag{9001}		\$ \$ - \$	(4) (5)
PE (PEC _{act} +PE	Caccumulation Csoil plateau)	\$\tau_0.00\tau_0	Y 0'- Y		-

Table 9.1.3-8: PCC soil for triffino roace be acid on cereals II, 1 × 78 g Q.s./ha, 80% interception

			(, 	
PEC _{soil}		Ceft	vals II	
PEC _{soil} (mg/kg)	Single a	plication 3	~	pplications
	Aetual	OTW D	Actual	TWA
Initial S	©0.001 \(\times \)	\$\frac{1}{2}\tag{0.001}	-	-
Short term 24h	<0.001	[♥] 0.001 [△]	-	-
Q Ad		< 0.0491	-	-
Long term A 70°	% <0.00¥ %	< 0.001	-	-
Long term 1	Q < 400 01 &	0.001	-	-
14d Q 21d	<0.001	< 0.001	-	-
2,13	~ <0.001 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< 0.001	-	-
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t «0 001.°°	< 0.001	-	-
42,4	<0.001	< 0.001	-	-
\$ \$\frac{1}{2} \frac{1}{2} \fr	< ♥ < ♥ 001	< 0.001	-	-
100d	< 0.001	< 0.001	-	-
Plateau concentration (20 cm) afters year 1 PEC accumulation (PEC act +PEC soil plateau)	< 0.001	-	-	-
aftersyear 1				
PEC _{accumulation}	< 0.001	-	-	-
(PEC _{act} +PEC _{soil plateau})				

PEC_{soil} for bixafen and prothioconzole and their metabolites

No soil assessment was required for bixafen and prothioconzole and their metabolites for the renewal process of fluopyram.

CP 9.2.1 Aerobic mineralisation in surface water studies glease refer to Docurgent MCA. Section 7.2.2.2.

CP 9.2.2 Water/sediment study

For information on water/sediment studies please refer to Document MCA. Section 7.2.2.3.

CP 9.2.3 Irradiated water/sediment studies please refer to Document MCA. Section 7.2.2.4.

CP 9.2.4 Estimation of concentrations in groundwater

Calculations of predicted environmental concentrations in groundwater (PEC_{gw}) are presented below_v

Endpoints for PECgw

Table 9.2.4-1: Modelling parameters for <u>fluopyram</u> and its metabolites FL/27-OH and TF

Compound	Fluopyram	Fluopyram-7-hydroxy	Trifluorpacetic acid 🗶
		(FLU-7-OH)	(TFA)
Molecular mass (g/mol)	396.7	∡ 412.7 ₀ 0 √	
Water solubility (mg/L)	19 (20°C)	33.75 (25 °C)	\$ 500000 (20°C) \$ \$\tilde{\pi}\$
Saturated vapour pressure (Pa)	1.2 E-6 (20°C)	1.55 E-9 (20° ©)	1.0 D6 (20@30 °C)
DT ₅₀ in soil (d)	298.1 (Tier 1, field DegT ₅₀ (matrix), 254.4 (Tier 2017, TDS) DT ₅₀ lab equilibrium, 216.48 (Tier 2022, TDS DTs) field Quilibrium)		
TDS f _{NE lab}	0.025 (Tier 2a)	\$ \$ - 0 C	
TDS k _{des lab} (1/d)	@ 0285 4 Tier 2a V	9 0 - 2 B	S 4 -
Koc (mL/g)	232.1	1,00%.2 , 2	© 0
Kom (mL/g)	Ø 0 134,⊅ 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58.1	
Freundlich exponent	0.843	0.929	1
Formation fraction	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.6342 from parent	0.5402, overall from parent, total molar yield
Plant uptake factor SCF	0.3026 (Rier 1) \$\frac{1}{2}\$	0.7256 (Tier V) 0.7256 (Tier Za, Briggs)	0 (Tier 1) 0.17 (Tier 2a, cereals)
Rate constant (Oday)	0.00233 (Tier 1), 0.00272 (Ajer 2a 4), 0.0032 (Tier 2a 2)	003954	0.00069

PECow modelling approach

The predicted environmental concentrations in groundwater (PEC_{gw}) for the active substance fluopyram were calculated using the simulation models PEARL, PELMO and MACRO (scenario Châteaudur) following the recommendations of the FOCUS working group on groundwater scenarios.

The simulations are carried out over 26 years for pesticides which are applied every year. The simulation length increases to 46 and 66 years for pesticides which are applied only every second and third year, respectively. The first 6 years are intended as a so called 'warm up' period. The following years are taken into account for the assessment of the potential leaching behaviour. The 80th percentile of the average annual groundwater concentrations in the percolate at 1 m depth under a treated plantation were evaluated and were taken as the relevant PEC_{gw} values. In respect to the assessment of a potential groundwater contentration this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According FOCOS, the calculations were conducted based on mean soil half-lives, referenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a

compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of FOCUS 2014a².

A summary of important substance input parameters is given in Table 9.2.4-1.

CP 9.2.4.1 Calculation of concentrations in groundwater

Important remark by the applicant: The modelling fore information and the PEC value as presented below are interim values and are therefore subject to change until find modelling input parameters can be established. The applicant intends to provide final modelling ore information and final PEC_{gw} values latest by end of March 2022.

For fluopyram, the metabolites fluopyram-Phydroxy (FLU-7-OM) and trifluoroacetic acid (TFA) were considered.

Data Point:	KCP 9.2.4.100
Report Author:	KCP 9.2.4.100
Report Year:	
Report Title:	Fluopyram (FL): Core PECov, PECov, PECsoil EER - Modelling core info
	docktorent for groundwater, surface water and soil risk assessment in Europe
Report No:	EnSa-21-0077
Document No:	Ø ₂ -7632ᡚ-01-10
Guideline(s) followed in	inone 1
study:	
Deviations from current	Current spideling not applicable
test guideline:	
Previous evaluation,	No, nor previously submitted 5
GLP/Officially Pecognised	No, not conducted under CLP/Quicially Decognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes C

Executive Summary

This document summarises the substance data for fluoryram and its metabolites as used for the purpose of groundwater risk assessment. The following deterministic pesticide fate models were used in the calculations:

- FOCOS PEARI
- FOOTIS PERMO
- FOCUS MACKO

The parameter correspond to standard EU requirements.

Modelling reports utilising this core in document should have the substance data presented in the form as shown in Table 9.2.4. I and Table 9.2.4.1-2.

² FOCUS, 2014a: Generic Guidance for Tier 1 FOCUS Groundwater Assessments, version 2.2

Table 9.2.4.1-1: Compound input parameters for fluopyram and its metabolites

Parameter	Unit	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Common				
Molar mass	(g/mol)	396.7	412.7	114.0 / 228.0*
Solubility	(mg/L)	19	33.8	500000
at temp.	(°C)	20	25	
Vapour pressure	(Pa)	1.20E-06	1.55E-09	√1.00E-06 √
at temp.	(°C)	20	25	
Freundlich exponent	(-)	0.8432	Q.929	
fne, TDS	(-)	$\text{n.a.}^{1)} / 0.525^{2)3)}$		
kdes, TDS	(1/day)	n.a. ¹⁾ / 200285 ^{2) 3)}		
Plant uptake factor	(-)	$0^{1)}$ 0.3026	\$\int 0^{1)} \text{ \text{9.72562}}	9 / 0. 17 (cereals) 2),3)
Walker exponent	(-)	0.7	# 0.7 % 0.7	0.74
PEARL parameters			~ A &	
Substance code	(-)	FLU ¹ VFLU2V ¹ / FLU2V	¶OH¹₩7OH2↓ ⁹ / ¶OH23 [®]	TFA)/TFA20//
DT ₅₀	(days)	298.1 ¹⁾	Z 183 S	\$ 10 6 0
Formation fraction	(-) (-) (-) (-)		0,6342	0.5402
Molar activ. energy	(kJ/mool) 🤝	65.40	65.4	65.4
Kom	(mL/g) 🖔	D 134.7 0	584	0
PELMO parameters				Ž
Substance code		O ASO .O	K Al S	B1
Rate constant	(1/day) \$\frac{1}{2} \]	$0.00233^{1}/\sqrt{3}$	0.09954	0.00069
Q10	(-), **	2.58	Ž 2.58	2.58
Koc 🔊	(mL/g)	232 Y	100.2	0
MACRO parameters			0 4	
Substance cøde		FLU [©] /FLU ² 1 ²⁾ / ©	70H [®] /70H21 ²⁾ /	TFA ¹⁾ / TFA21 ²⁾ / TFA23 ³⁾
Exponent moisture		\$ 0.49 °	0.49	0.49
Exponent		7 700 00 18 ° ×	0.0948	0.0948
temperature ©		\$ 50.0940 (C		
FRACEQ		$\mathfrak{D}^{,a,1)}/\mathfrak{D}^{3}44^{2)3}\mathfrak{D}^{3}$	0	0
SORPRATE	O/day)	0^{1} n.a. ¹⁾ 0^{1} 0.009 0^{3} 0.009	0	0

¹⁾ Tier 1

The model PELMO comot deal with formation fractions > 1. Therefore, a formation fraction reflecting trifluoroacetic acid (TFA) formation per CF3 moiety (related to max. ff 1) was used in combination with the molar mass of 2 TFA molecules. This adaptation of the formation in soil can be assumed regiable in case of TFA, since it is a non-sorbing metabolite, where equilibrium sorption is of no concern.

²⁾ Tier 2a 2 3) Tier 2a 2

^{*)} Pelind: Molar mass of FA multiplied by 2, in combination with overall formation fraction per CF3 moiety, 0.2701., i.e.

(7.5 * formation fraction for FLU prolecule. This is fone to adapt for limitations in PELMO with formation fractions > 1.

Table 9.2.4.1- 2: Degradation pathway related parameters for fluopyram and its metabolites

	Tier 1	Tier 2a 1	Tier 2a 2
Degradation fraction from → to (-) (FOCUS PEARL)	FLU → 7OH: 0.6342 FLU → TFA: 0.5402	FLU21 → 7OH21: 0.6342 FLU21 → TFA21: 0.5402	FLU23 → 7OH23: 0.542 FLU23 → TFA23: 0.5402 0
Degradation rate from → to (1/day) (FOCUS PELMO) a), b)	0.0014748 Active Substance → B1: 6.28E-04 Active Substance → BR/CO2: 2.23E-04	0.0017280 Active Substance → B 1. 7.36E 04 Active Substance → BRCO2: 2.61E-0 BRCO2: 2.61E-0 BR/CO2: 0.0395406	Active Substance → A1. 0.0020306 Active Substance → B1: 8.65E-04 Active Substance → BR/CO2: 3.05E-04 A1. → BR/CO2: 0.0395406 D → BR/CO2: 6.93E-04
Conversion factor from → to (-) (FOCUS MACRO) °)	FLU → 70H: 0.659777737 70H → TFA: 0.155257118		FLU23 - 70123: 5 0.659 777 FLU23 - TFA23 0.15525 9

	$[0.15525/118] \xrightarrow{A} [90.15525/1] \xrightarrow{A} [0.15525/1] \xrightarrow{A} [0.152525/1] \xrightarrow{A} [0.15525/1] \xrightarrow{A} [0.15525/1] \xrightarrow{A} [0.15525/1] \xrightarrow{A} $
a) Calculated as ln(2) / DT50 > b) formation fraction of TFA (c) Calculated as molar mass / 1	formation fraction B1) divided by 2 for adaptation to limitations in PEDMO molar mass producessors, formation fraction KCP/9.2.4.1/02
,	
	K@D9.2.4.1/02
Report Author:	
Report Year:	2021
Report Title:	Fluory ram (E)LU) and metabolites: PECgw FOCUS PEARD, PELMO, MACRO EUR (Tight) - Use in apples, spring cereals, winter cereals and vines in Europe
Report No:	EnSa-210026
Document No:	M-762352-01-1
Guideline(s) followed in	l none y W
study:	
study: Deviations from current	
test guideline:	Current guideline: not sipplicable
Previous evaluation:	No, not conducted under GLPOfficially recognised testing facilities Yes
GLP/Officially recognised	No, nor conducted under GLPOfficially recognised testing facilities
testing facilities:	
Acceptability/R@iabilit@International Acceptability Representation Acceptability Representation Representat	
Q	
4 1	
S ^O	
-	

Data Point:	KCP 9.2.4.1/03
Report Author:	
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolites: PECgw FOCUS PEARL, PELMO, MACRO
	EUR (Tier 2a 1, appl. every year) - Use in apples, spring cereals, winter cereals and
	vines in Europe
Report No:	EnSa-21-0053
Document No:	M-763421-01-1
Guideline(s) followed in	none of the second of the seco
study:	
Deviations from current	Current guideline: not applicable 🔻
test guideline:	
Previous evaluation:	No, not previously submitted v
GLP/Officially recognised	No, not conducted under OLP/Officially recognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes O C C C C C C C C C C C C C C C C C C
D . D	Tycho 2 4 1 (odf)
Data Point:	KCP 9.2.4.1/04
Report Author:	
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolites: PECOW FOCUS PEORL, PELMO MACRO
	EUR (Tier 2a Lapple Sery 2nd year) Use in apple spring gereals, winter cereals
	and the singurope
Report No:	En\$a-21-0054
Document No:	<u>M</u> -7634 <u>D</u> -01-15
Guideline(s) followed in	Mone A S S S S S S S S S S S S S S S S S S
study:	
Deviations from current	Cuffent and elineanot applicable
test guideline:	
Previous evaluation.	No, not previously submitted of the subm
CL D/OCC : 11 O	
GLP/Officially recognised	No, not conducted under GLP/Officially ecognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes
Data Point:	KCP 9.24.1/03
Report Author:	
Report Year:	2021 0 0 0 0
Report Title:	Fluopyram (FLL) and metabolines: PECgw FOCUS PEARL, PELMO, MACRO
and a second sec	EUR (Quer 2a Appl. Govery 3 de year) - Use in apples, spring cereals, winter cereals
	and mes in Europe
Report No:	EpSa-21-6055
Document No:	763420-01-10 × × × × × × × × × × × × × × × × × × ×
	Dione Cy Cy
study:	
Deviations from current	Current guideline: not applicable
test guideling	
Previous evaluation:	No, not previously submitted
GLP/Officially ecognised	No, not conducted under GLP/Officially recognised testing facilities
testing facilities:	The state of the s
Acceptability/Reliability:	Yes
	1

Data Point:	KCP 9.2.4.1/06
Report Author:	
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolites: PECgw FOCUS PEARL, PELMO, MACRO
	EUR (Tier 2a 3, appl. every year) - Use in apples, spring cereals, winter cereals and
	vines in Europe
Report No:	EnSa-21-0064
Document No:	<u>M-763424-01-1</u>
Guideline(s) followed in	none ST
study:	
Deviations from current	Current guideline: not applicable 🔻 🔎 🛒 🔊
test guideline:	
Previous evaluation:	No, not previously submitted v
GLP/Officially recognised	No, not conducted under OLP/Officially recognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes O P P P P P P P P P P P P P P P P P P
D . D	
Data Point:	KCP 9.2.4.1/07
Report Author:	
Report Year:	2021 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Report Title:	Fluopyran (FLU) and metabolites: PECow FOCUS PEARL, PELMO MACRO
	EUR (Tier 2a Sappl. every 2nd year) Use in apple spring ereals, winter cereals
D N	and when in Furope
Report No:	EnSa-21-0065
Document No:	
Guideline(s) followed in	Mone A S S S S S S S S S S S S S S S S S S
study:	Current goodeling not applicable
test guideline:	Current gastermezhoù appreante
Previous evaluation	No, not previously submitted 5
GLP/Officially recognised	No, not conducted under & LP/Quicially Decognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes o o o
Data Point:	KCP 9.24.1/08
Report Author:	
Report Year:	2027 0 0 0
Report Title:	FDiopyram (FLL) and partabolities: PECgw FOCUS PEARL, PELMO, MACRO
	EUR (Qer 2a & appl. Every 3 & year) - Use in apples, spring cereals, winter cereals
	and mes in Europe
Report No:	EnSa-21-0066 & Q
Document No:	\$\$\frac{3426-01-1}{2}\$
	phone of the contract of the c
study:	
Deviations from current	Carrent guideling: not applicable
test guideling	
Previous evaluation.	No, not previously submitted
GLP/Officially recognized	No, not conducted under GLP/Officially recognised testing facilities
testing facilities:	The state of the s
Acceptability/Reliability:	Yes

<u>Please note</u>: The modelling reports are considering several use scenarios. Only those relevant for BIX + FLU + PTZ EC 260 are presented here.

Methods and Materials:

Predicted environmental concentrations of the active substance fluopyram and its major soil degradation products in groundwater recharge (PEC_{gw}) were calculated for the use in Europe using the simulation models FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3 and FOCUS MACRO 5.5.4. PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. Model parameters and scenarios consisting of weather, soil, and crop data were used as proposed by FOCUS (2014a,b^{1,3}). The use of fluopyram in barley (modelling crops, spring cereals) winter cereals) was assessed according to Good Agricultural Practice (GAP) under European cropping conditions.

Detailed application data used for simulation of R

Table 9.2.4.1- 3: Application pattern used for

Individual crop	FOCUS crop	Rate () (g a.s./ha)	Y	(%) (%)	Stage (-)	Amount reaching soil
Spring Cereals I	Spring cere	. ∜Ψ× 39 ° °	F	(U) 800	© 30 % P	1 × 7.80
Spring Cereals II	Spring cereals &	1 × 8	L - 0	\$0 ×	339 - 61	1 × 15.60
Winter Cereals I	Winter cereals	15 ³ 39 5	, J	~ 80 € T	~~30 - 61V	1 × 7.80
Winter Cereals II	Winter cercals	\$1 × 78	\$ - %		30001	1 × 15.60

Input parameters - tiered approach:

A detailed description of the parameters used at the deferent steps as presented in Table 9.2.4.1- 4. More details on the selection of input parameter are given in the text below the table.

Dered approach for fluopyram and its metabolites used for modelling Table 9.2.4.1- 4:

		0 &		
	Tier T	Tier a 1	Tier	2a 2
~	DOS0 TSCF	DT50 TSCF	DT50	TSCF
FLU 🚄	298.1 a) O O O O O O	54.4 © 0.3026 f)	216.48 ^{c)}	0.3026 f)
FLU-7-Q	17.5 Q Q 0 e)	17°5√d) 0.7256 f)	17.5 ^{d)}	0.7256 f)
TFA ≪ 』	1,000° A 00° 0 A	900 e) 0.17 g)	1000 e)	0.17 g)

- a) De T_{50 field matrix}
- b) TDS, DT50 lab equilibrium
- c) TDS, DT50 field, equilibrium
- d) laboratory data
- e) FOCUS worst case default
- f) TSCF based on Briggs equation

³ FOCU\$\(\frac{1}{2}\)2014b: Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU: The Final Report of the Ground Water Work Group of FOCUS EC Document Reference: Sanco/13144/2010 3, 613 pp.

Rate of degradation of fluopyram

Tier 1: The geometric mean field DegT₅₀ matrix value of 298.1 d derived from field dissipation stadies was used for fluopyram.

Tier 2a: Degradation and time-dependent sorption studies showed aged-sorption effects for Auopyran. A geomean laboratory DT₅₀ equilibrium of 254.4 d was used as Tier 2a 1 in groundwater assessment. At Tier 2a 2 a geomean field DT50 equilibrium of 216.5 d was used in groundwater assessment for fluopyram. In both cases, laboratory data for f_{NE} and k_{NE} were used in combination with the D \mathcal{F}_{0} equilibrium.

Plant uptake (TSCF) of fluopyram and its metabolites

Tier 1: For fluopyram and its metabolites a TSCF of Opan be used for modelling as a first pier.

Tier 2a: As a more realistic tier a TSCF based on the Briggs equation of 0.3026 (huopytam) and O S 0.7256 (FLU-7-OH) should be taken into account.

For a more realistic consideration of the plant uptake of TPA, a bydroponic plant uptake study has been carried out with cereal plants. As a second tier a TSCF of 0,77 should be taken into account.

Input parameters for fluopyran and its metabolites were used Tab**[**49.2.4.1- 1 and Table 9.2.4.1-2.

Application dates for the simulation rans were defined following the crop even dates of the respective crop and scenario (see Table 9.2.4 5) as given by FOCUS (2014b). Crop interception was taken into account according to the BBCH wowth stage, as recommended by FOCUS (2014a).

ime windows time frame given in 2019). For application windows the chosen for modelling. For application windows the considered application windows. For use pattern with large application time windows, multiple starting times for modelling were chosen to coor the fall application time frame given in the GAP. This was done according to the proposal of the tool AppDate (Kloin 2019). For application window > 60 d, the earliest and the latest possible application dates were chosen for modelling. For windows > 90 d, a further application date was set to the middle of the considered application window according to AppDate.

Table 9.2.4.1- 5: First application dates and related information for fluopyram as used for the simulation runs; offset is relevant only for relative application dates, two sets of data are provided for crops with two seasons

Individual crop	Spring Cereals	Spring Cereals	Winter Cereals	Winter Cereals
individual Crop	I	II	I 💸	II.
Repeat interval for app.	Every year	Every year	Every year	Every year
events	Every 2 nd year	Every 2 nd year	Every 2 nd year	Every 2nd vear
CVCIItS	Every 3 rd year	Every 3 rd year	Every 3 year	Every 3rd year
Application technique	Spray	Spray	Spray	Spray V
Absolute / Relative to	Absolute	Absolute	Absolute	Absolute 0
Scenario	1st app. date	1st pp. date	1st app. dateQ	1st app. date
	(Julian day)	(Julian day)	(Ĵoshan dazy) 🦠	(Judian day)
	Offset	Offset 2	Offset	Offset
Chateaudun	16 Apr (106)	16Apr (106)	150xpr (105)	15 Apr ° (\$65)
Hamburg	28 Apr (118)	28/Apr 718)	04 May 59 (154) 59	04 M ® (124)
Jokioinen	05 Jun (\$36)	© 05 jui	94 Mag (134)	14 May (134)
Kremsmuenster	27 1		SN Apr Q	24 Apr
Kiemsmuchster			4 Apr	(114)
				- (114)
Okehampton	April April	2 Apr.	24Apr	21 Apr
T T T T T T T T T T T T T T T T T T T	(112)	\$\int(112)\text{\$\int_{\infty}\$}	\mathbb{Q}_{111}^{r}	(111)
			4 - Ø	-
Piacenza 💍 🍃	\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		19 . M ar	19 Mar
Piacenza	, o - o, «	16 Apr	19. Mar (78) - 30 Jan (30)	(78)
<u> </u>		16 Apr	-	-
Porto	160 Apr	O' 16 Apr	30 Jan	30 Jan
	(Mr06)	16 Apr (2)	\bigcirc (30)	(30)
Sevilla		16 Apr (2) (2006) 25 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	9 - 06 Jan	- 06 Jan
Sevilla			(6)	(6)
Q		~ <u>~</u> ~	-	-
Thiva 🎺 💍		P` _~ O`-	18 Jan	18 Jan
4			(18)	(18)
			-	-
Ž, ,	Y Q			
, so 29				
		- O		
		A T		
		4		
Thiva				

Findings:

PECgw were evaluated as the 80th percentile of the mean annual leachate at 1 m soil depth PECgw values for fluopyram and its metabolites are given in the following tables.

Tier 1: DT_{50} soil for fluopyram based on field data

or fluopyram based on field data

Tier 1 PECgw for fluopyram and its metabolites on spring cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception

80th percentile PECgw at 1 m soil depth (µg/) **Table 9.2.4.1-6:**

		80th percentile PECgw at 1 m soil depth (μg/L)
Crop	Scenario	Fluopyram Fluopyram 7- Triffuoroaceric acid
		PEARL PELMO PEARL PELMO
Spring Cereals I	Chateaudun	0.004, 0.001, 0.0001 0.000 0.0073
	Hamburg	9,058 0.039 0.011 0.098 0.836 0.836
	Jokioinen	\$\int_{0.001}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Kremsmuenster	0.033 0.024 0.007 0.005 0.427 0.455
	Okehampton @	© 0.055 © 0.051 © 0.011
	Porto &	0.00 0.002 0.005 0.006 0.355 0.335
	A O	MACRO MACRO MACRO
	Chateaudun	J 0.002

Table 9.2.4.1-7: Tier \ PEC for fluopyran and its metabolites on spring cereals II (with FOCUS PEARL/ BELMO MACRO) — 78 g a.s./ha 80% interception

		epth (μg/L)					
Crop		Tuop	oyeam	Fluopyram-7- hydroxy		Trifluoroacetic acid	
Ž.		PEARE	PELMO	PEARL	PELMO	PEARL	PELMO
Spring Cereals II	Chatean Chatean	90 11	0.003	0.002	0.001	1.749	1.303
	Handourg Q	Ø0.187	Q.Y32	0.031	0.024	1.661	1.153
*	Morioinen	<0.001	×0.001	0.001	0.001	1.593	1.390
	Kremsonuenstor	0.113	0.088	0.019	0.016	0.852	0.906
	Okehampton	0.1 5 %	0.147	0.028	0.027	0.677	0.613
	Porto S	A 659	0.070	0.014	0.016	0.710	0.664
		MAG	CRO	MAC	CRO	MAG	CRO
	Shâteandun	0.0)15	0.0	003	1.3	398

Table 9.2.4.1- 8: Tier 1 PEC $_{gw}$ for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception

			80 th percen	tile PEC _{gw} a	nt 1 m soil d	epth (µg/L)	
Crop	Scenario	Fluop	oyram		ram-7- C roxy	* Trifluoro	aceric acid
		PEARL	PELMO	PEARL	PETMO	PEAR	PELMO
Winter Cereals I	Chateaudun	0.003	<0.001	<0.001	% 0.001	10172	0.962
	Hamburg	0.051	0.045	0.010	0.010	₹ 0.67 2 0	95 610 &
	Jokioinen	< 0.001	<0. 001	<0.00%	@0.001	0.942	0.827
	Kremsmuenster	0.033	0.032	Ø907 Ž	0.007	№ .372 €	(V) (V/ //
	Okehampton	0.058	0.062	پر 0.01 ب ر	Ø912	0.337	0.344
	Piacenza	0.02	. 0 .034	0.005	0.007	0.820	0.63
	Porto	\$ 021	× 0.030	, 49.005 J	0.098	0.346	9 371
	Sevilla	\$0.0 % 1	√0 ,001 ~	<0.001	\$0.001	1.588	0.732
	Thiva	<0.001	<0.001	20 :001	<0.001	.677.	1.028
		MAC	CRO		CRO	O MAC	CRO
	Châteaudun	0.0	06 V	\$\int_{\infty}\$ <\(\right)\$	9 01 🔊	© 1.2	255

Table 9.2.4.1-9: Tier 1 PEC for thopyram and its metabolites on winter cereals II (with FOCUS REARL/PELMO/MACRO) I × 78 g a.s./ha, 80% interception

		80 th percentile PEC _{gw} at 1 m soil depth (
Cropo	Scenario S		yram S	Fluoryram-7-		Trifluoroacetic acid				
		PEARL	PELMO	PEARL	PELMO	PEARL	PELMO			
Winter Cereals II	Chateaudun	\$0.017£	0.002	0.003	0.001	2.357	1.921			
	Hamburg 5	0.16	<u></u> 0.154 0	0.027	0.028	1.337	1.207			
4	Jokioinen 🧳	50 001	~0.0P	0.002	0.002	1.880	1.649			
	Kreinsmuerster	©0.110	2 ,112	0.019	0.020	0.742	0.834			
4	Okehampton	0.065	$\sqrt[8]{0.177}$	0.029	0.031	0.668	0.680			
*	Piacef Za D	0.092	0.107	0.015	0.020	1.238	1.267			
	Porto 0	0.06	0.097	0.015	0.022	0.689	0.738			
	Sevilla 🛴	≈6 .001	< 0.001	< 0.001	< 0.001	3.180	1.463			
	Sevilla Thiva	0.003	0.001	0.001	< 0.001	3.354	2.060			
	Tillva O	MAG	CRO	MAG	CRO	MAG	CRO			
	Châteaudun	0.0	16	0.0	003	2.5	514			

Tier 2a 1: DT₅₀ soil for fluopyram (TDS) based on laboratory data

Annual application

Table 9.2.4.1- 10: Tier 2a 1 PECgw for fluopyram and its metabolites on spring cereals I (with FOCKS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, annual application

			80 th percentile PEC _{gw} at 1 m son depth (μg/L)						
Crop	Scenario	Fluopyram		Fluopyrant 7 hydroxy		droxy			
		PEARL	PELMO	PEARL	PELMO	PEAR	PECMO		
Spring Cereals I	Chateaudun	< 0.001	50.001	<0.001	\$0.001Q		0.463		
	Hamburg	0.013	0.003 •	200 004	× 0.0 02	D.620	0,404		
	Jokioinen	<0.0010	<0.001	×0.005	© .001	0.601	<u> </u>		
	Kremsmuenster	0.004	√Ø.002√	0.002	0.004\$	0.344	0.389		
	Okehampton	6 ,014,~	0.00	. 49.006 O		€ 0.28	230		
	Porto	0.004	0 005	0.002	S.003	0.990 	0.239		
	Q,	MA(RO 🔊	A.7	PRO C	0 /.	CRO		
	Châteaudun	`~	.001		.001	0.6	500		

Table 9.2.4.1-11: Tier 22/1 PECgw for fluopyrom and its metabolites on spring cereals II (with FOCUS PEARL/PILMO/MACRO) – 12/78 g.a.s./ha, 80% interception, annual application

				/	- Server by	, .	T			
			80 th percentile PEC _{st} , at 1 m soil depth (μg/L)							
Crop &	Scenatio	Fuop	yram S	Faiopyram-7- hydfoxy		Trifluoroacetic acid				
		EARL	PET MO	PEARL	PELMO	PEARL	PELMO			
Spring Cereals II		<00001	Ç<0.0 © ↓	≤0 .001	< 0.001	1.456	0.926			
Ö	Ghateaudum Hamburg	30.056	0.016	0.013	0.007	1.232	0.804			
	Josepoinen O	<0.001	<u></u> ©0.001 ©	< 0.001	< 0.001	1.200	0.967			
4	Kremsmuenston	20 25	0.0	0.007	0.004	0.687	0.676			
	Okenampton	0.05	% 050	0.017	0.015	0.570	0.458			
	Porto A	0.4834/0	0.020	0.007	0.008	0.581	0.480			
		W MA	©RO	MAC	CRO	MA	CRO			
	Chateaudon «	 <0.	001	<0.	001	1.2	200			

Table 9.2.4.1- 12: Tier 2a 1 PEC $_{gw}$ for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, annual application

			80 th percen	tile PEC _{gw} a	nt 1 m soil d	epth (μg/L)	
Crop	Scenario	Fluop	yram	Fluopyram-7- C hydroxy		* Trifluoroa	acetic acid
		PEARL	PELMO	PEARL	PELMO	PEAR	PELMQ
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	© 17	0.58
	Hamburg	0.012	0.004	0.004	0.003	₹ 0.546	g\$426 &
	Jokioinen	< 0.001	< 0. 001	<0.00%	\$0.001	0.692	©0.56K
	Kremsmuenster	0.005	0.003	Ø 02 j	0.002	30.318	0,303
	Okehampton	0.019	0.007	× 0.007	200 006	0.290	0.259
	Piacenza	0.009,	. 0 .007	0.002	0.002	0.928	0.450
	Porto	g,005	y 0.0 07	\$0.002°	0,094	© 0.30 %	2 79
	Sevilla	\$0.0 %	√0 √001 ~	×<0.001	\$0.001	0.780	0.447
	Thiva	<0.001 MA	<0.001	20 :001	<0.001	£.083	0.679
		MAC	CRO		CRO Ĉ	O MAC	CRO
	Châteaudun	() () () () () () () () () ()	6 01 0		9 01 ~	© 0.9	986

Table 9.2.4.1-13: Tiet 2a 1 PEC_{gw} for fluopyram and its metabolities on winter cereals II (with FOCUS REARL/PELMO/MACRO) X × 78 g a.s./ha, 80% interception, annual application

			- ×		<i>@</i> ,	, 1	1			
			80th percentile PEC _{gw} at £m soil depth (μg/L)							
Crop	Scenario C	Fluor	yram S	Fluopy	V ram-7- roxy	Trifluoroacetic aci				
		PEARL	*RELMO	PĚARL	PELMO	PEARL	PELMO			
Winter Cereals II	Chateaudun	≈ 0.001√	<0.001	0.001	< 0.001	1.838	1.171			
Q ₁	Ha@nburg &	0.05	©.023 ©	0.012	0.009	1.086	0.847			
~Q~	Jokioinen J	20 001	(0.00)	< 0.001	0.001	1.382	1.121			
	Krefosmueroter	0.02	2018	0.008	0.006	0.633	0.624			
	Okehampton 0	0.671	× 0.066	0.018	0.018	0.576	0.515			
Y	Piacenza D	0.034	0.031	0.007	0.008	1.053	0.903			
	Porto	0.024	0.028	0.008	0.011	0.612	0.556			
	Sevilla S	≈6 .001	< 0.001	< 0.001	< 0.001	1.494	0.892			
	Sévilla Thiva	< 0.001	< 0.001	< 0.001	< 0.001	2.159	1.362			
		MAG	CRO	MAG	CRO	MAG	CRO			
	Châteaudun	<0.	.001	<0.	001	1.9	073			

Biennial application

Table 9.2.4.1- 14: Tier 2a 1 PEC $_{gw}$ for fluopyram and its metabolites on spring cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, biennial application

			80 th percen	tile PEC _{gw} a	at 1 m soil &	epth (μg/L)	
Crop	Scenario	Fluopyram		Fluopyram-7- hydroxy		Trifluoroa	acetic acid
		PEARL	PELMO	PEARL	E ELMO	PEARL	PELMO
Spring Cereals I	Chateaudun	< 0.001	< 0.001	<0.001	<0.001	0.389Q	B 308 &
	Hamburg	0.008	9 005	0.002	@0.002	0.3493	0.191
	Jokioinen	<0.001	0.001	20 .001 €	<0.001	∂ 0.306 ∜	0,227
	Kremsmuenster	0.003	0,002	× 0.001	9 00001 7	0.190	<u>_</u> 0.169 °
	Okehampton	0.00	~ 00.006 °	0.003	0.002	0.932	0.106
	Porto	Ø02	0.00	\$0.001°	0,001	© 0.12 %	93 103
		O MAC	CRO S	MA		MAG	RO
	Châteaudun		(0 001		2001	\(\tilde{	37

Table 9.2.4.1-15: Tier 2a 1 PEC stor fluoryram and its metabolites on spring cereals II (with FOCUS PEARL PELMO/ MACRO) 1 × 78 g a.s./ha, 80% interception biennial application

	12110		y - /y s -	S						
			80 percentile PCCgw at 1/2 m soil depth (μg/L)							
Crop	Scenario,"	Fluop	yram 9	Flugyy	ram#-	Trifluoroacetic acid				
Ö' VQ		PEARL	PELMO	PEARL	PELMO	PEARL	PELMO			
Spring Cereals II	Chateaudun	0.001	30. 001 °	\$\infty <0.00\f	< 0.001	0.778	0.616			
***	Hamburg	0.628	(°) 0.01¶	£ 607	0.005	0.604	0.380			
Ž	Jokiomen &	≪0.001kJ	<0.001	0.001	< 0.001	0.610	0.494			
	Kremsmuenster	0.00		0.004	0.003	0.379	0.338			
<u></u>	Okehampton	£Q)25	0.0	0.007	0.006	0.262	0.210			
	Port® Q	0.00	20.0 07	0.003	0.004	0.255	0.205			
		W MAN	RO	MAC	CRO	MAG	CRO			
	Châteaudun	V 50.	001	<0.	001	0.6	574			

Table 9.2.4.1- 16: Tier 2a 1 PEC_{gw} for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) -1×39 g a.s./ha, 80% interception, biennial application

			80 th percen	tile PEC _{gw} a	nt 1 m soil d	epth (µg/L)	
Crop	Scenario	Fluop	oyram	Fluopyram-7- C hydroxy		* Trifluoro	aceric acid
		PEARL	PELMO	PEARL	PETMO	PEAR	PELMO
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	0°497	0.396
	Hamburg	0.007	0.00%	0.002	0.002	©0.2530	£¥98 €
	Jokioinen	< 0.001	<0. 001	<0.00%	\$0.001	0.371	0.268
	Kremsmuenster	0.003	0.003	Ø901 ×	0.00	0.175 %	0,772
	Okehampton	0.008	0.008	× 0.003	Ø903	0.128	<u></u>
	Piacenza	0.002	. 70.003 °C	<0.001	0.001	0.253	0.228
	Porto	g 002		\$0.001 of	0.092	0.133	QH 13
	Sevilla	\$0.0 %	√0 ,001 ~	<0.001	\$0.001	0.53	0.246
	Thiva	<0.001	<0.001	20 :001	<0.001	7.174 ×	0.374
		MAC	CRO		CRO	O MAC	CRO
	Châteaudun	\$\bigcip\square <0.	6 67 0	\$\int_{\infty}\$ <\(\right)\$	9 01 🔊	© 0.4	169

Table 9.2.4.1- 17: Ties 2a 1 PEC_{gw} for fluopyram and its metabolites on winter cereals II (with FOCUS PEARL/PELMO/MACRO) X × 78 g a.s./ha, 80% interception, biennial application

			80th percen	tile PE gw 2	nt Din soil d	epth (μg/L)	
Crop	Scenario 9	f 🔗	ryram S	Fluopy Apa	Tam-7-	Trifluoroacetic aci	
			PELMO	PĚARL	PELMO	PEARL	PELMO
Winter Cereals II	Chateaudun	₹ 0.001€	<0.001	0.001	< 0.001	0.994	0.792
	Hamburg	0.023	©.021 ©	0.007	0.006	0.504	0.394
	Jokioinen	20 001	(0.00)	< 0.001	0.001	0.741	0.537
	Kreiksmuenster	0.012	2 011	0.004	0.004	0.349	0.343
4	Okehampton	0.627	$\sqrt[8]{0.027}$	0.007	0.008	0.254	0.223
*	Piacenza C	0.010	0.010	0.003	0.004	0.504	0.456
	Porto V	0.010	0.011	0.003	0.005	0.265	0.225
		≈6 .001	< 0.001	< 0.001	< 0.001	1.101	0.493
	Sevillas Thiva	< 0.001	< 0.001	< 0.001	< 0.001	2.349	0.750
	F. Y	MAG	CRO	MAG	CRO	MAG	CRO
	Châteaudun	<0.	001	<0.	001	0.9	937

Triennial application

Table 9.2.4.1- 18: Tier 2a 1 PEC $_{gw}$ for fluopyram and its metabolites on spring cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, triennial application

			80 th percen	tile PEC _{gw} a	at 1 m soil &	epth (μg/L)	
Crop	Scenario	Fluopyram		Fluopy hyd	ram-7-	Trifluoroa	
		PEARL	PELMO	PEARL	E ELMO	PEARL	PELMO
Spring Cereals I	Chateaudun	< 0.001	< 0.001	<0.001	<0.001	0.26 5	Ø₹92 &
	Hamburg	0.004	9.0 03	0.001	Ø.001	0.479	0.121
	Jokioinen	<0.001	©0.001°	₹0 :001	<0.001	0.177	0, Q78
	Kremsmuenster	0.002	0,601	×~0.001	@ 001	0.123	0.115
	Okehampton	0.004		0.001	0.004	0.989	0.0
	Porto	Ø.001 %	0.00	\$0.001 ₀	0,001	© 0.079U	9 062
	Å	O AYA	CRO S	W A		MA	RO
	Châteaudun 🕏	© <09	2 001		.001	\(\int_{\infty}\) \(\int_{\infty}\) \(\int_{\infty}\)	.12

Table 9.2.4.1- 19: Tier 2a 1 PEC for fluoryram and its metabolites on spring cereals II (with FOCUS PEARL PELMO/ MACRO) 1 × 78 g a.s./ha, 80% interception vriennial application

			80 percen	o kile PEC _{gw} a	y y m sojil∕d	》 epth (μg/L)	
Crop	Scenario, S	√ Fluop	yram 🎾 👚	Fluory	ram#-	Trifluoroacetic acid	
, Ø		PEARL 20.001	PELMO	PEARL	PELMO	PEARL	PELMO
Spring Coroals II	Chateaudun	≈ 0.001	\$\int_0001 \times	\$ <0.00Y	< 0.001	0.530	0.383
	Hamburg 💝 🐥	0.6)14	(°) 0.00 9	£ 004	0.003	0.356	0.241
Ö	Jokiomen 🗸	0.001	0.001	0.001	< 0.001	0.353	0.275
Q Q	Kremsmuenster	0.00	. 0.004	0.002	0.002	0.265	0.229
<u>.</u>	Okehampton O			0.004	0.004	0.176	0.142
	Port® Q	$\mathbb{Q}_{0.002}$	20004	0.002	0.002	0.158	0.124
Ž,		©0.002 MAI	RO	MAG	CRO	MA	CRO
@ \\	Châteaudun	W \$0.	.001	<0.	001	0.4	124

Table 9.2.4.1- 20: Tier 2a 1 PEC $_{gw}$ for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, triennial application

		80 th percentile PEC _{gw} at 1 m soil depth (μg/L)							
Crop	Scenario	Fluop	oyram	Fluopyram-7- hydroxy		Trifluoroacetic ac			
		PEARL	PELMO	PEARL	PETMO	PEAR	PELMO		
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	00327	0.26		
	Hamburg	0.004	0.00\$	0.001	0.001	∜0.1520°	8F24 &		
	Jokioinen	< 0.001	<0. 001	<0.00%	\$0.001	0.498	0.163		
	Kremsmuenster	0.002	0.002	<0.001 °	0.00	№ .122 №	10) W// I		
	Okehampton	0.004	0.005	× 0.002	Ø902 a	0.087	△ 0.076 °		
	Piacenza	0.001	. 70.002 C	<0.001	0.001	0.960	0.150		
	Porto	\$001 ×	× 0.002	\$0.001°	0.091	© 0.08 %	0.069		
	Sevilla	\$0.0 % 1	√0 ,001 ~	<0.001	\$0.001	0.669	0.185		
	Thiva	<0.001	<0.001	20 :001	<0.001	6.577×	0.309		
		MAC	CRO		CRO	O MAC	CRO		
	Châteaudun	\$\bigcip\square <0.	6 67 0	\$\int_{\infty}\$ <\(\right)\$	9 01 🔊	© 0.3	316		

Table 9.2.4.1-21: Tiet 2a 1 PEC_{gw} for fluopyram and its metabolities on winter cereals II (with FOCUS REARL/PELMO/MACRO) 1 × 78 g a.s./ha, 80% interception, triennial application

			- ×		<i>@</i> ,	<u> </u>	11			
			80th percentile PEC _{gw} at £m soil depth (μg/L)							
Crop	Scenario S	Fluor	ryram S	Fluopyram-7- & hydroxy		Trifluoroacetic ac				
		PEARL	*RELMO	PĚARL	PELMO	PEARL	PELMO			
Winter Cereals II	Chateaudun	≈ 0.001√	<0.001	0.001	< 0.001	0.654	0.525			
~	Light Light Control of the Control o	0.00	©.011 ©	0.004	0.004	0.304	0.249			
	Jokioinen J	20 001	0.0gP	< 0.001	0.001	0.396	0.325			
	Krefosmuenster	©0.00	2,006	0.002	0.002	0.244	0.235			
	Okehampton 6	0.6975	0.015	0.004	0.005	0.172	0.152			
Y	Piacenza D	0.005	0.005	0.002	0.002	0.319	0.301			
	Porto) 0.0 0	0.005	0.002	0.003	0.173	0.137			
	Sevilla	≈6 .001	< 0.001	< 0.001	< 0.001	1.334	0.369			
	Sevilla Thiva	< 0.001	< 0.001	< 0.001	< 0.001	1.154	0.619			
		MAG	CRO	MAG	CRO	MACRO				
	Châteaudun	<0.	.001	<0.	001	0.6	532			

Tier 2a 2: DT₅₀ soil for fluopyram (TDS) based on field data

Annual application

Table 9.2.4.1- 22: Tier 2a 2 PECgw for fluopyram and its metabolites on spring cereals I (with FOCKS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, annual application

		80th percentile PECgw at 1 m son depth (μg/L)							
Crop	Scenario	Fluopyram		Fluopyram-7			nçetac acid		
		PEARL	PELMO	PEARL	PELMO	PEARE S	PECMO		
Spring Cereals I	Chateaudun	< 0.001	(0.001	<0.001	\$0.001Q	0,531	0.464		
	Hamburg	0.006	0.002 •	2000 03	× 0.0 62	∂ 0.642 √	0,3479		
	Jokioinen	<0.0010	<0.001	×0.001	© .001	0.616	0.495_ 。		
	Kremsmuenster	0.00	~ 001 × 001	0.001	0.004\$	0.356	0.342		
	Okehampton	Ø 006 %	0.005	Ø.0040	0.004	0.295	236		
	Porto	0.00	, 0 002	0.00	S.002	0.291	0.237		
	Q.	MA(, (S	MAG	RO	Ď MX	CRO		
	Châteaudun	** \$\sqrt{0}.	001	√	.001	0.6	502		

Table 9.2.4.1-23: Tier 2a/2 PECgw for fluopyrom and its metabolites on spring cereals II (with FOCUS PEARL/PILMO/MACRO) – 15 78 gas. ha. 80% interception, annual application

						<u> </u>	
			80 th porcen	tile PEC _{stv} a	nt 1 mgsoil d	epth (μg/L)	
Crop	Scenatio	Fuop		O hyd	ram-7- Øxy	Trifluoro	acetic acid
		EARL	P E O™MO~	PEARL	PELMO	PEARL	PELMO
Spring Cereals II	Ghateaudun 👋	<00001	() [*] <0.0 % 1,	≤0 .001	< 0.001	1.462	0.930
Ž	Hamburg &	30. 028 3	0.007	0.009	0.005	1.278	0.836
	Jol Doinen 🖔 🛴	<0.001		< 0.001	< 0.001	1.231	0.990
4	Kremsmuenston	20 011	0.06	0.005	0.003	0.712	0.684
	Okehampton	0.02	20,024	0.012	0.011	0.588	0.470
	Porto A		$\gg 0.008$	0.004	0.005	0.584	0.477
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		W MA	© RO	MAC	CRO	MA	CRO
	Chateaudon &	O .	001	<0.	001	1.2	202

Table 9.2.4.1- 24: Tier 2a 2 PEC $_{gw}$ for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, annual application

			80 th percen	tile PEC _{gw} a	nt 1 m soil d	epth (μg/L)	
Crop	Scenario	Fluop	oyram	Fluopyram-7- hydroxy		Trifluoroacetic aci	
		PEARL	PELMO	PEARL	PETMO	PEAR	PELMO
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	© 915	0.61
	Hamburg	0.005	0.00\$	0.003	0.002	₹ 0.557 €	95 441 &
	Jokioinen	< 0.001	0.00 1	<0.00%	Ø0.001	0.798	0.574
	Kremsmuenster	0.002	0.001 .	Ø901 ×	y 0.0 0	0.323	
	Okehampton	0.009	0.007	\$\tag{0.005}	Ø905	0.298	0.266
	Piacenza	0.004,		0.001	0.002	0.928	0.4
	Porto	9,002	× 0.003×	Ø.001	0.092	© 0.30 %	Q 280
	Sevilla	\$0.0 %	0 ,001	<0.001	\$0.001	0.062	0.447
	Thiva	<0.001	<0.001	20 :001	<0.001	J.117	0.678
		MAC	CRO	. ,	CRO Ĉ	O MAC	CRO
	Châteaudun	√ <0.	6	<0	9 01	© 0.9	983

Table 9.2.4.1-25: Tiec 2a 2 PEC_{gw} for fluopyram and its metabolites on winter cereals II (with FOCUS PEARL/PELMO/MACRO) X × 78 g a.s./ha, 80% interception, annual application

			80 th percentile PE _{gw} at £m soil depth (μg/L)							
Crop	Scenario C	Fluor	yram S	Fluopy	V ram-7- roxy	Trifluoroacetic ac				
		PEARL	*RELMO	PĚARL	PELMO	PEARL	PELMO			
Winter Cereals II	Chateaudun	≈ 0.001√	<0.001	0.001	< 0.001	1.835	1.232			
~	Light Light Control of the Control o	0.025	©.010 ©	0.008	0.007	1.111	0.878			
	Jokioinen J	20 001	(0.00)	< 0.001	< 0.001	1.415	1.147			
	Krefosmuenster	©0.012	2 007	0.005	0.004	0.645	0.632			
	Okehampton 6	0.636	0.034	0.013	0.013	0.594	0.531			
Y	Piacenza D	0.016	0.014	0.005	0.005	1.055	0.901			
	Porto	0.0 f@	0.012	0.005	0.008	0.617	0.561			
	Sevilla	≈6 .001	< 0.001	< 0.001	< 0.001	1.518	0.893			
	Sevilla Thiva	< 0.001	< 0.001	< 0.001	< 0.001	2.227	1.359			
		MAG	CRO	MACRO		MACRO				
	Châteaudun	<0.	.001	<0.	.001	1.9	066			

Biennial application

Table 9.2.4.1- 26: Tier 2a 2 PEC $_{gw}$ for fluopyram and its metabolites on spring cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, biennial application

		80 th percentile PEC _{gw} at 1 m soil depth (μg/L)						
Crop	Scenario	Fluopyram		Fluopy hyd	ram-7- 🍣 roxy 🙏	Trifluoro	acetic acid	
		PEARL	PELMO	PEARL	E ELMO	PEARL	PELMO	
Spring Cereals I	Chateaudun	< 0.001	<0.001	<0.001	<0.001	~0.39Q	B 307 &	
	Hamburg	0.003	9.0 02	0.002	Ø.001	0.3/12	0.197	
	Jokioinen	<0.001	©0.001°	20 .001 €	<0.001	310	0,230	
	Kremsmuenster	0.001	0,6001	× 0.00	900 001 7	0.190	<u></u> 0.169_ 。	
	Okehampton	0.003,	©.003	0.002	0.002	0.935	0.100	
	Porto	0.001	0.00	\$0.001 ₀	0,001	© 0.12 %	9 103	
	,	O AYA	CRO S	W (MA)	CRO S	MA	RO	
	Châteaudun	\(\bar{Q} \)	2 001		.001	(V.3	338	

Table 9.2.4.1-27: Tier 2a 2 PEC stor fluoryram and its metabolites on spring cereals II (with FOCUS PEARL PELMO/ MACRO) 1 × 78 g a.s./ha, 80% interception biennial application

	12110				me pro))			
		1 / 1	XV: nercentile PEX or at was not it denth (110/L)						
Crop &	Crop Scenario		Fluopyram		ram 9- roxy	Trifluoroacetic acid			
Ŏ ,	. 4)	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO		
Spring Coccals II	Chateaudun	₹ 0.001	\$\int 001 \times 0001 \times 0007	7 < 0.00Y	< 0.001	0.779	0.614		
**************************************	Hamburg 💛	0.613	(, " U.UUX,	B 005	0.003	0.623	0.392		
Ĉ	Jokiomen &	1 4 001 a	<0.001	0.001	< 0.001	0.619	0.502		
	Kremsmuenster	0.005		0.002	0.002	0.379	0.338		
.	Okehampton V	00010	0.0	0.005	0.004	0.269	0.212		
	Porte Q	$\mathbb{Q}_{0.002}^{\mathbb{Z}}$	2003	0.002	0.002	0.257	0.206		
		WMA	0.000 0.003 RO	MAC	CRO	MA	CRO		
	Châteaudun	© ,\$0.	001	<0.	001	0.6	676		

Table 9.2.4.1- 28: Tier 2a 2 PEC_{gw} for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) -1×39 g a.s./ha, 80% interception, biennial application

	T	ı					
			80 th percen	tile PEC _{gw} a	nt 1 m soil d	epth (μg/L)	
Crop	Scenario	Fluop	yram	Fluopyram-7- hydroxy		Trifluoroacetic ac	
		PEARL	PELMO	PEARL	PETMO	PEAR	PELMO
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	© 498	0.398
	Hamburg	0.003	0.00\$	0.001	0.001	₹ 0.2600	9 203 &
	Jokioinen	< 0.001	<0 .001	<0.00%	\$0.001	0.376	0.270
	Kremsmuenster	0.001	0.001 .	₹0 001	0.00	0 .175 4	0,72
	Okehampton	0.004	0.004	%0.00 2	Ø902	0.130	0.113
	Piacenza	<0.001	. 0 .001	<0.001	0.001	0.252	0.22
	Porto	3 001		\$0.001	0.091	0.134	QN 14
	Sevilla	\$0.0 %	,≪0 ,001,≪	<0.001	\$0.001	0.58	0.246
	Thiva	<0.001	<0.001	0 .001	<0.001	₹.173×	0.385
		MAC	RO .		CRO	MAC	CRO
	Châteaudun		W 0	√ <q< td=""><td>901 🔊</td><td>Q 0.4</td><td>169</td></q<>	9 01 🔊	Q 0.4	169

Table 9.2.4.1- 29: Ties 2a 2 PECgw for fluopyram and its metabolites on winter cereals II (with FOCUS REARL/PELMO/MACRO) — × 78 g a.s./ha, 80% interception, biennial application

٥			80th percen	tile PE gw a	nt Din soil d	epth (μg/L)	
Crop	Scenario 🖗		ryram S	Fluogyram-7- V hydroxy		Trifluoroacetic aci	
			PELMO	PĚARL	PELMO	PEARL	PELMO
Winter Cereals II	Chateaudun	₩0.001√	<0.001	0.001	< 0.001	0.995	0.791
	Hanburg	0.00	. 0.009 Ô	0.004	0.004	0.519	0.406
	Jokioinen	20 001 €	(0.00)	< 0.001	< 0.001	0.751	0.541
	Krefosmuenoter	0.005	2 004	0.002	0.002	0.349	0.345
4	Okehampton	0.0013	0.013	0.005	0.005	0.260	0.225
Y	Piacefiza D	0.004	0.004	0.002	0.002	0.503	0.455
	Porto	0.004	0.005	0.002	0.003	0.267	0.227
	Sevilla &	≈6 .001	< 0.001	< 0.001	< 0.001	1.112	0.493
	Sevilla Thiva	< 0.001	< 0.001	< 0.001	< 0.001	2.346	0.772
		MAG	CRO	MAG	CRO	MAG	CRO
	Châteaudun	<0.	001	<0.	001	0.9	938

Triennial application

Table 9.2.4.1- 30: Tier 2a 2 PEC $_{gw}$ for fluopyram and its metabolites on spring cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, triennial application

			80 th percen	tile PEC _{gw} a	at 1 m soil d	epth (μg/L)	
Crop	Scenario	Fluop	yram	Fluopyram-7-		Trifluoroa	acetic acid
		PEARL	PELMO	PEARL	E ELMO	PEARL	PELMO
Spring Cereals I	Chateaudun	< 0.001	< 0.001	<0.001	<0.001	0.26 5	6 791 &
	Hamburg	0.002	9.0 01	<0.001	Ø.001	0.479	0.122
	Jokioinen	<0.001	0.001.	₹0 :001	<0.0001	3 0.178 🗸	0^P8
	Kremsmuenster	<0.001	0,6001	× 0.001	20 :001	0.134	<u>_</u> 0.114 °
	Okehampton	0.002	₹Ø.002 ***	<0.001	0.001	0.089	0.0
	Porto	Ø.001 %	, , ,	, \$0.001 ₀	<0.001	© 0.07 %	9 62
	, a	O AYA	CRO S) OMA		MA	RO
	Châteaudun 💞	© <09	(0 01 (0	\$ 50°	2001	\(\int_{\infty}\) \(\int_{\infty}\) \(\int_{\infty}\)	12

Table 9.2.4.1-31: Tier 2a 2 PEC_{gy} for fluopyram and its metabolites on spring cereals II (with FOCUS PEARL PELMO/ MACRO) 1 × 78 g a.s./ha, 80% interception triennial application

	121149 122110				The state of the s		
		A i Strange nercentile PFC at m soil denth (ug/L)					
Crop	Scenario	Fluopyram		Fluoryram 9-		Trifluoroacetic acid	
, Q		PEARL	PELMO	PEARL	PELMO	PEARL	PELMO
Spring Coccals II	Chateaudun	₹ 0.001	30. 001 2	\$\footnote{\sqrt{0.00}}	< 0.001	0.530	0.382
* ¥	Hamburg	0.606	(°, %0.00 %	∆ 003	0.002	0.358	0.245
Ę	Jokiomen &	0.001 0.002 0.002	<0.001	0.001	< 0.001	0.356	0.277
	Kromsmuenster ,	0.00	, © .002 ©	0.001	0.001	0.267	0.228
<u> </u>	Okehampton	19 006	0.00	0.003	0.003	0.177	0.143
	Port® Q	01.000	0.002	< 0.001	0.001	0.158	0.124
		MAM	RO	MAC	CRO	MA	CRO
	Châteaudun	© \$0.001		< 0.001		0.425	

Table 9.2.4.1- 32: Tier 2a 2 PEC $_{gw}$ for fluopyram and its metabolites on winter cereals I (with FOCUS PEARL/ PELMO/ MACRO) – 1 × 39 g a.s./ha, 80% interception, triennial application

		80 th percentile PEC _{gw} at 1 m soil depth (μg/L)							
Crop	Scenario	Fluopyram		Fluopyram			ram-7- Troxy	* Trifluoroa	acetic acid
		PEARL	PELMO	PEARL	PELMO	PEAR	PELMQ		
Winter Cereals I	Chateaudun	< 0.001	<0.001	<0.001	% 0.001	0327) 0.2 <i>6</i>		
	Hamburg	0.001	0.00\$	<0.001	0.001	∜0.153Q	g\$27 &		
	Jokioinen	< 0.001	0.00 1	<0.00%	\$0.001	0.499	0.163		
	Kremsmuenster	< 0.001	0.001 .	<0.001 °	<0.001	0.123 V			
	Okehampton	0.002	0.002	×0.001	Ø901	0.087	<u>∡</u> 0.076 °		
	Piacenza	<0.001	00.001	<0.001	₹0.00€	0.958	0.149		
	Porto	\$\delta 001 \cdot	y 0.00 y	\$0.001	0.091	©0.08 %	0.069		
	Sevilla	\$0.0 6 4,	40 ,001	<0.001	\$0.001	0.000	0.185		
	Thiva	<0.001	<0.001	0 :001	<0.001	£9.578√	0.314		
		MA	CRO		CRO	O MAC	CRO		
	Châteaudun	() () () () () () () () () ()		^N <0	9 01 ×	© 0.3	316		

Table 9.2.4.1-33: Tiet 2a 2 PEC_{gw} for fluopyram and its metabolities on winter cereals II (with FOCUS PEARL/PELMO/MACRO) X × 78 g a.s./ha, 80% interception, triennial application

٥	80 th percentile PE c _{sw} at 1 m soil depth (μg/L)							
Crop	Scenario 🖗	, y y %		Fluogyram-7- Lydroxy		Trifluoroacetic acid		
			PELMO	PĚARL	PELMO	PEARL	PELMO	
Winter Cereals II	Chateaudun	₩0.001√	<0.001	0.001	< 0.001	0.654	0.524	
	Hanburg	0.005		0.002	0.002	0.305	0.254	
	Jokioinen	₹0 001	(0.00)	< 0.001	< 0.001	0.399	0.327	
	Krefosmuenoter	0.002	0,002	0.001	0.001	0.246	0.234	
4	Okehampton	0.007	0.007	0.003	0.003	0.173	0.152	
_ \	Piacefiza D	0.002	0.002	< 0.001	0.001	0.316	0.298	
	Porto	0.002 0.009 0.009	0.002	< 0.001	0.002	0.173	0.138	
	Sevilla &	≈6 .001	< 0.001	< 0.001	< 0.001	1.337	0.369	
	Sevilla Thiva	< 0.001	< 0.001	< 0.001	< 0.001	1.156	0.628	
		MAG	MACRO M		MACRO		MACRO	
	Châteaudun	<0.	001	<0.	001	0.6	531	

Conclusion:

Following a tiered approach for all intended uses of BIX + FLU + PTZ EC 260 in barley there are no concerns for groundwater from the active substance fluopyram and its metabolites.

In Table 9.2.4.1- 34 to Table 9.2.4.1- 54 the maximum PEC_{gw} values of fluopyram and its metabolites for FOCUS PEARL/ PELMO/ MACRO calculations for all use patterns in Garley (FOCUS crops: spring cereals, winter cereals) are given at Tier 1 (Table 9.2.4.1- 34 to Table 9.2.4.1- 36), Tier 3a 1 (Table 9.2.4.1- 37 to Table 9.2.4.1- 45) and Tier 2a 2 (Table 9.2.4.1- 46 to Table 9.2.4.1- 47).

Tier 1: DT₅₀ soil for fluopyram based on field data

Table 9.2.4.1- 34: Maximum FOCUS PEARL PROF results of Thropyram and its metabolites in µg/I for the uses assessed – Tier 1

Use pattern	Fluopyram Fluopyram-7- Triffuoroasetic acid hydroxy
Spring Cereals I, 1×39 g a.s./ha	© 2.058 © 5 00.011 0 00.873
Spring Cereals II, 1×78 g a.s./ha	0.1847 7 7 0.034 8 1.749
Winter Cereals I, 1×39 g a.s./ha	0.058 0011 0 F677
Winter Cereals II, 1×78 g a.s./ha	Ø.165 \$\tilde{\pi} \ \tilde{\pi} \ \tilde{\pi} 0.029 \tilde{\pi} \ \tilde{\pi} 3.354

Table 9.2.4.1- 35: Maximum FOCUS PELMOPEC_{gw} results of fluory am and its metabolites in μg/L for the uses assessed – Tier 1

Use pattern Fluopyram Fluopyram	Fluopyram-7- kydroxy	Trifluoroacetic acid
Spring Cereals I 39 gas./ha 0.054	0.01%	0.696
Spring Cereals W, 1×7 & a.s./ha 0.447	© 9 © 27	1.390
Winter Cereals I, 1×39 g a,s/ha	, ©0.012	1.028
Winter Cereals II, 1×78 g a.s./ha 0.17 0.17	0.031	2.060

Table 9.2.4.1- 36: Maximum FOCUS MACRO PEC_{gw} results of fluopyram and its metabolites in μg/L for the uses assessed – Tier 1

Use pattern Floopyra@	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 1×39 g a.s./ha 0.002	< 0.001	0.699
Spring Cereals II, 1×78 g a, ha (2) 0.002	0.003	1.398
Winter Cereals I, 39 g a.s./ha 0.003 Winter Cereals I, 1×78 g a.s. 4 0.016	< 0.001	1.255
1 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1	0.003	2.514
Winter Cereals 11, 1×8 g a.s. that 0.016		

Tier 2a 1: DT₅₀ soil for fluopyram (TDS) based on laboratory data

Annual application

Table 9.2.4.1- 37: Maximum FOCUS PEARL PECgw results of fluopyram and its metabolites in µgc for the uses assessed – Tier 2a 1, annual application

Use pattern	Fluopyram	Fluopyram-7	Trifluoroagetic acod
Spring Cereals I, 1×39 g a.s./ha	0.014	0.006	° 0.728
Spring Cereals II, 1×78 g a.s./ha	0.059	0.00	0 1436 , O
Winter Cereals I, 1×39 g a.s./ha	0.019	© 007	£ 2.083 £ (
Winter Cereals II, 1×78 g a.s./ha	0.0714	0.018 .	2.15

Table 9.2.4.1-38: Maximum FOCUS PELMO PEC_{gw} results of fluopyram and its metabolites in fig/L for the uses assessed – Tier a 1, annual application

Use pattern	Fluopyram	Fluopycam-75	Trifluoroacetic acid
Spring Cereals I, 1×39 g a.s./ha	% % 0.Q14 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.0 0	0.483
Spring Cereals II, 1×78 g a.s./ha	0.050	\$ 0.0015 C	,0 <u>.</u> 967
Winter Cereals I, 1×39 g a.s./ha	J 79:017 S	© \$0.006° ~	0.679
Winter Cereals II, 1×78 g a.s./ha	~ 0.066	0.0 %	0 1.362

Table 9.2.4.1-39: Maximum FQCUS MACRO PEC results of fluopyram and its metabolites in μg/L for the uses assessed – Tier 2a 1 annual application (

Use pattern Fluopyram 7-	Trifluoroacetic acid
Spring Cereals 1.×39 Sa.s./ha	0.600
Spring Cereals II, 1×78 g a.s./ha	1.200
Winter Cercals I, 1×39 g a.s./ha <0.001 <0.001	0.986
Winter Creals II, 1×78 (a.s./ha) <0.001 <0.001	1.973

Biennial application

Table 9.2.4.1 Φ: Maximum FOCUS PEARL PLC_{gw} results of fluopyram and its metabolites in μg/L for the use assessed – Tiev 2a 15 biennia application

Use pattern	Fluoporam	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 1×39 g a. Tha	% JO.008	0.003	0.389
Spring Cereals II 1×78 g a.s./h	\mathbb{Q}^{r} 0.028	0.007	0.778
Winter Cereals, 1×3 / g a.s. And	0.008	0.003	1.174
Winter Cereals II, \$278 g as./ha	0.027	0.007	2.349

Table 9.2.4.1- 41: Maximum FOCUS PELMO PEC $_{gw}$ results of fluopyram and its metabolites in $\mu g/L$ for the uses assessed – Tier 2a 1, biennial application

Use pattern	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic	
Spring Cereals I, 1×39 g a.s./ha	0.006	0.002	0.30%	
Spring Cereals II, 1×78 g a.s./ha	0.021	0.006	0.616	
Winter Cereals I, 1×39 g a.s./ha	0.008	0.003	, 03.396° , (
Winter Cereals II, 1×78 g a.s./ha	0.027	0.00	\$\tag{9.79}\tag{9.79}	

Table 9.2.4.1- 42: Maximum FOCUS MACRO PEC results of fluoryram and its metabolites in Table for the uses assessed – Tier 2a 1, thennial application

Use pattern	Fluopyram °	Fluonyram-V Aydroxy	Trifluorpacetic acid
Spring Cereals I, 1×39 g a.s./ha	4 < 0.0001 V	Q <0,001	O' 0,397'
Spring Cereals II, 1×78 g a.s./ha	\$\int \(\)	Ø.001°	\$\int_{\sqrt{0.674}}\$
Winter Cereals I, 1×39 g a.s./ha		<0.00	© 0.469°
Winter Cereals II, 1×78 g a.s./ha	~ ~ <0.00 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<0.001 S	~ Q. % 37

Triennial application

Table 9.2.4.1- 43: Maximum FOCOS PEARL PEC gw results of fluopyram and its metabolites in μg/L for the uses assessed – Tier 2a 1 Priennial application –

Use pattern	Fluopyram & Bluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 1, 99 g a Sha	0.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004 00.004	0.265
Spring Cereals IOI×78 Qa.s./ha	(0° 0.013° > 0.004	0.530
Winter Cereals I, 1×300g a.s./hd	0,004 S 0,002	0.669
Winter Cereals II, 1×78 g/ha	©.015 © 0.004	1.334

Table 9.2.4.1- 44: Maximum FOCUS PECMO PECgw results of fluopyram and its metabolites in μg/L for the uses assessed. Tier a 1, triennia opplication

Use pattern Fluonyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cecals I, 1×39 g &s./ha	0.001	0.192
Spring Cereals II, 1×70 g a.s./ha 0001	0.004	0.383
Winter Cereals I, 1×39 g a.s. na 2 2 2.005	0.002	0.309
Winter Cereals II _Q 1×78 g a.s./ha	0.005	0.619
Spring Cereals II, 1×70 g a.s./ha Winter Cereals II, 1×78 g a.s./ha Winter Cereals II, 1×78 g a.s./ha Winter Cereals II/01×78 g a.s./ha 0.001 Winter Cereals II/01×78 g a.s./ha 0.015		

Table 9.2.4.1- 45: Maximum FOCUS MACRO PEC $_{gw}$ results of fluopyram and its metabolites in $\mu g/L$ for the uses assessed – Tier 2a 1, triennial application

Use pattern	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic
Spring Cereals I, 1×39 g a.s./ha	< 0.001	<0.001	0.210
Spring Cereals II, 1×78 g a.s./ha	< 0.001	<0.001	0.424
Winter Cereals I, 1×39 g a.s./ha	< 0.001	<0.001	, 03.316
Winter Cereals II, 1×78 g a.s./ha	<0.001	<0.001	£ 0.637 F

Tier 2a 2: DT₅₀ soil for fluopyram (TDS) based on field data Annual application

Table 9.2.4.1- 46: Maximum FOCUS PEARI PEC Fesults of fluggyram and its metabolites in ug/L for the uses assessed – Tier 2a 2, angual application

Use pattern	Fhopyrang C	Fluopyram-7-	Triflueroacete acid
Spring Cereals I, 1×39 g a.s./ha	0.006	0.004	\$\int \text{04731}
Spring Cereals II, 1×78 g a.s./ha	© 029	\$9.012 \(\sigma\)	1.462
Winter Cereals I, 1×39 g a.s./ha	0.009	√ 0.005 °	1.117
Winter Cereals II, 1×78 g a.s./ha	0,56	0013	2.227

Table 9.2.4.1- 47: Maximum FOCUS PELMO PEC gw results of fluopyram and its metabolites in μg/L for the uses assessed — fier 2a 2, annual application

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~	% /	. 💚			
Use pattern			Fluop	yafam ~	Fluopyram-7 hydroxy	- Triflu	oroacetic acid
Spring Cerea	l s I, 1×39	g a.ş./ha	A 20.0	05 O	7, 60.004		0.495
Spring Corea			0.0	248	0.011		0.990
Winter Cerea	ıls I, 1×39	y a.s./ha	0.0	997 _{& .}	0.005		0.678
Winter Cerea	ıls II, 13	8 g a s./ha	70 °.0	34 0 8	0.013		1.359

Table 9.2.4.1-48: Maximum FOCUS MACRO PEC_{gw} results of fluopyram and its metabolites in μg/L for the uses assessed. Tier 2a 2, annual application

Use pattern	Fluepyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 339 g a.s./ha	% <0.001	< 0.001	0.602
Spring Cereals 17, 1×78 g a.s./las	<0.001	< 0.001	1.202
Winter Cerca I, 1 g a. ha	<0.001	< 0.001	0.983
Winter Cerals II X × 78 g a.s./ha	< 0.001	< 0.001	1.966

Biennial application

Table 9.2.4.1- 49: Maximum FOCUS PEARL PEC_{gw} results of fluopyram and its metabolites in μg/L for the uses assessed – Tier 2a 2, biennial application

Use pattern	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 1×39 g a.s./ha	0.003	0.002	B390
Spring Cereals II, 1×78 g a.s./ha	0.013	0.005	, 0.779 J
Winter Cereals I, 1×39 g a.s./ha	0.004	0.0	1.17
Winter Cereals II, 1×78 g a.s./ha	0.013	95 8 05	2 3 3 4 6 6

Table 9.2.4.1-50: Maximum FOCUS PELMO PEC gw results of Tuopyram and its metabolites in µg/l for the uses assessed – Tier 2a 2, biennial application

Use pattern	Fluopycam	Fuopyram-7- hydroxy	Triffuorogoetic acid
Spring Cereals I, 1×39 g a.s./ha	Ø (2.003, Ø ×	, 00.002	0.307
Spring Cereals II, 1×78 g a.s./ha	0.010	(0.00 °	0.64
Winter Cereals I, 1×39 g a.s./ha	0.004	\$ 9602 C	2 2 3 95
Winter Cereals II, 1×78 g a.s./ha		0.005	0.791

Table 9.2.4.1-51: Maximum FOCUS MACROPEC_{gw} results of fluopyram and its metabolites in μg/L for the uses assessed – Tier 2a 2, the nnial application

Use pattern		Fluopyram	Fluopyram-7-	Trifluoroacetic acid
Spring Cereals I	39 gars./ha	% (0,004 ~	<0.001	0.338
Spring Cereals 9, 1	×78 g a.s./ba		○ <i>Ş</i> % 001	0.676
Winter Cerears I, 1		Ø0.001	© 0.001	0.469
Winter Cereals II, 1	l×78 & a.s./ha	<0.061 W	, O < 0.001	0.938

Triennial application

Table 9.2.4.1-52: Maximum FOCUS PEARL PECgw results of fluopyram and its metabolites in μg/L for the use assessed – Tigo 2a 2g frienning application

Use pattern Q Q	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Spring Cereals I, 1×39 g a. Tha	Q.002	< 0.001	0.265
Spring Cereals II × 78 g a.s./h	\mathbb{Q}^{y} 0.006	0.003	0.530
Winter Cereal 1, 1×39/g a.s. And	0.002	< 0.001	0.670
Winter Ceresals II, \$78 g & S./ha	0.007	0.003	1.337

Maximum FOCUS PELMO PEC $_{gw}$ results of fluopyram and its metabolites in $\mu g/L$ Table 9.2.4.1- 53: for the uses assessed - Tier 2a 2, triennial application

Use pattern	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic
Spring Cereals I, 1×39 g a.s./ha	0.002	0.001	0.194
Spring Cereals II, 1×78 g a.s./ha	0.005	0.003	0.382
Winter Cereals I, 1×39 g a.s./ha	0.002	0.001	, 00.3146 /
Winter Cereals II, 1×78 g a.s./ha	0.007	0.00\$	£ 0.628 £

Maximum FOCUS MACRO PECar results of fluopyram and its metabolites in µg for the uses assessed – Tier 2a 2 oriennial application Table 9.2.4.1- 54:

	V	@ *	
Use pattern	Fluopyrano	Fluodyram I- Dydrox	Frifluoroacetic acid
Spring Cereals I, 1×39 g a.s./ha	<0.001	<0.001	0.\$12
Spring Cereals II, 1×78 g a.s./ha	Ø .001 Ø .	\$ 60.001 \$	© \$0.425
Winter Cereals I, 1×39 g a.s./ha	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.00	0.316
Winter Cereals II, 1×78 g a.s./ha	<0.001	<00001	\$ \ 0 \631

PEC_{gw} for bixafen and prothioconazole and their metabolites.

CP 9.2.4.2 Additional field tests
For information on additional field studies please refer to Document MCA, Section 7.1.2.2.1. No groundwater assessment was required for by a fen and prothioconazole and their metabolites for the fluopyram active substance renewal process

CP 9.2.5 Estimation of concentrations in surface water and sediment

Calculations of predicted environmental concentrations in surface water (PEC_{sw}) and sediment (PEC_{sed}) are presented below.

Endpoints for PECsw

Table 9.2.5-1: Modelling input parameters for <u>fluopyram</u> and its metabolites FLU-7.00 and FA
Tier 1 and Tier 2

	I		
Compound	Fluopyram	Fluopyram-7-hydroxy	Trifluoroavetic acid
		(FLU-7- 9 H)	(TFA)
Molecular mass (g/mol)	396.72	4 <u>f</u> S _y 72	Q \0114.60 \0
Water solubility (mg/L)	19 (20°C) 🐒	6° 33,55° (25°C) 6°	\$00000,(20°C)
Saturated vapour pressure (Pa)	1.2 E-6 (20°C) [©] ,	1.55 E-9 (50°C) \$	1.0Æ-6 (20℃)
Koc (mL/g)	232.1	∑y	
Kom (mL/g)	134.7	58.10	Ø 50* O
1/n	0;8432 ×	0.292	S & 1*,0
Plant uptake factor TSCF	0.3036 2)	0 1) 72.72560	0 0 0.17 (cereals) 2)
Wash off factor from crop (1/m)			50
DT ₅₀ in soil (d)	208.8 (field) 0"	17.53 (lab)	Ø 1000*
DT ₅₀ in water (d)		71000*	1000*
DT ₅₀ in sediment (d)	900 (Step (2) 1000* (Step 3,4)	1000*	1000*
DT ₅₀ in total system (d)	\$ 9 09 \$	1000	1000
DT ₅₀ on canopy(d)	901) / 2.122 (cervals) 26		10*
Maximum ocourrence (%) Water/sediment: Soil:	100		0 14.8
Formation fraction in Soil		%.6342, from parent	0.5402, overall from parent, total molar yield
Formation fraciton in water, sediment		7 5 0	0

^{*} default

2) Tier 2

PEC_{sw} modelling approach

Calculation of PEC values for the active substance according to FOCUS

FOCUS Ws a 4 step tiefed approach:

Step 1. In this, the most conservative step, all inputs are considered as a single loading to the water body and a worst-case PEC_{sw} and PEC_{sed} is calculated.

Step 2: Didividual loadings into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe separately, but no specific crop scenarios are defined.

¹⁾ Tier 1

Step 3: An exposure assessment using realistic worst-case scenarios is made. The scenarios are representative for agricultural conditions in Europe and consider weather, soil, crop and different

water-bodies. Simulations use the models PRZM, MACRO and TOXSWA.

Step 4: PEC values are refined by considering mitigation measures or specific scenario descriptions on scenario descripción a case-by-case basis.

A summary of important substance input parameters is given in Table 9.2.5-

KCP 9.2.5/01
2021
Fluopyram (FLU): Core PECgw, PECsw, PECsow EUR - Modeling core info
document for groundwater, surface water and soil risk assessment in Europe
EnSa-21-0077
M-763252-01-1
none S S S S S S S S S S S S S S S S S S S
Current guideline: pet applicable No. not previously submitted
No, not previously submitted
No not conducted under GLO Officially respenised testing acilities
Mgcs O D Q Q Q Q Q

Executive Summars

This document summarises the substance data for fluorism and its metabolites as used for the numose of surface waterick as a section. purpose of surface water risk assessment.

Modelling reports wollising this core info document should have the substance data presented in the form as shown in Table 22.5 25 Table 92.5- Sand Table 92.5-4.0

ubstance parameters used for fluopyram and its metabolites fluopyram-7-hydroxy Table 9.2.5- 2: (FLO-7-OH) and tofluoroacetic acid (TKA) at Steps 1-2 level (Tier 1 and Tier 2)

Parameter	Hnit	Fluopyram	Fluopyram-7- hydroxy	Trifluoroacetic acid
Molar mass	Qg/mol)	396/.72	412.72	114.02
Water solubility	(max/1)	2/19	33.75	500000
	(m) (g) (g)	232.1	100.2	1E-10
Degradation				
Soil &	(dayo	298.08	17.53	1000
Total system	(days) (days) (days) (days)	909	1000	1000
Water S	days) 🔷 🖔	909	1000	1000
Sediment S	(days)	909	1000	1000
Max occurrence				
Water Sediment Max occurrence Water / sediment	(%)	100	0	0
Spin S	(%)	100	5.8	14.8

Table 9.2.5-3: Substance parameters used for fluopyram and its metabolites at Step 3 level (<u>Tier 1</u>)

Parameter	Unit	Parent	Metabolite	Metabolite
Substance		Fluopyram_Tier 1	FLU-7-	TFA Tier
SWASH code		FLU	hydroxy_Tier1	TFA
2 111211 00 00		120	70H	
General			Ş	4 2
Molar mass	(g/mol)	396.72	412.72 *©	£14.02
Water solubility (temp.)	(mg/L)	19.0 (20 °C)	33.75 (25 °C)	500000 (200°C)
Vapour pressure (temp.)	(Pa)	1.2E-06 (20 %)	1.55E-0 Q (20 °C)	∡1E-06 (20 °C) 4
Crop processes		*		
Coefficient for uptake by plant		d,	°0,4	
(TSCF)	(-)			
Wash-off factor	(1/m)	£50		50
Sorption		Q (50
K _{OC}	(mL/g)	& 2320 ° S	100.2	
K_{OM}	(mL/g)	0 13 4 7	~~ 5&!@* ~~*	0,4
Freundlich exponent (1/n)	(-)	<u>4</u> 9 8432 0	Q 0.9292 ~	
Transformation	×		A O.	1000 20 20 3402
DT ₅₀ in soil	(days)	298	17.537 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	¥ 1000€
temperature	(°Q)		🗸 26 🔎	20 [©]
moisture content (pF)	(løg(cm))			
formation fraction in soil	Q (-) ,	- ×). 6342. 1	5 3402
DT ₅₀ in water	(days)	1000	√ 1000 × 0	4
temperature	(%Ç)	1000	717.53 26 717.53 717.53 717.53 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 710000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 71000 7100	1000
formation fraction in water	(-)	†, v		
DT ₅₀ in sediment	(days)			1000
temperature	(°CQ	20 20 C	200	20
formation fraction in sediment				-
D 150 on canopy	days)	\$\times_{1000}^{\text{0}} \tag{7}	200	10
Exponent for the effect of	6 7 T			
moisture S	7 , ~			
		0" 4" ».		
exp.)	[^{\(\sigma\)} (-) ^{\(\sigma\)}	V , \$\int 0.7	©0.7 © 0.49	0.7
MACRO (calibrated value)	(-) <u>4</u>	0.49	0.49	0.49
Effect of temperature	(kJ/mol)		- · · · · · · · · · · · · · · · · · · ·	
IOXS (molar activate energy)		§	65.4	65.4
MACRO (effect of temperature)	$\mathbb{K}^{(1/K)}$	10.0948	0.0948	0.0948
$ PRZM (Q_{10}) $	7 (-) ~	<u> </u>	2.58	2.58
MACRO (effect of temperature) PRZM (Q ₁₀)	,	2.58 2.58 2.58 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
		Ö. *O. *Q.		
	Y ATT			
	<i>W</i>			
		¥ • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)	2		
		Q "		
	*	•		
Ž Ž .Õ . Ž	y Q			
	2			
A A				

Table 9.2.5- 4: Substance parameters used for fluopyram and its metabolites at Step 3 level (<u>Tier 2</u>)

Parameter	Unit	Parent	Metabolite	Metabolite
Substance		Fluopyram Tier 1	FLU-7-hydroxy Tier	TFA Tier
SWASH code		FLU	2	TFA
			7OH 🍣	_0
General				\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Molar mass	(g/mol)	396.72	412.72	£14.02
Water solubility (temp.)	(mg/L)	19.0 (20 °C)	33.75 (25 ℃)	500000 (200°C)
Vapour pressure (temp.)	(Pa)	1.2E-06 (20 %)	1.55E-0 9 (20 °C)	√JE-06 (20°C) √
Crop processes		V		
Coefficient for uptake by plant		L	_0°	
(TSCF)	(-)	0.3026^{7} 1)	0.7256 1) O	0.17 (cereals) 3)
Wash-off factor	(1/m)	~500		50
Sorption		- Qo i		
K_{OC}	(mL/g)	232d ° 5	×100.2° 3	
K_{OM}	(mL/g)	0 13 4 .7	580° ~	0,4
Freundlich exponent (1/n)	(-)	§ 95432 Ø	0.9292	
Transformation	×		, A O	
DT ₅₀ in soil	(days)	298	17.53	~ ~ 1000€°
temperature	(°Q)		26 26	200
moisture content (pF)	(log(cm))			
formation fraction in soil	$\mathbb{Q}^{\mathbb{Y}}(-)$	4	9.6342 [©]	0,3402
DT ₅₀ in water	(days)	10.00	√ 1000 0	1000
temperature	(%Ç)	200 L	1000	© 20
formation fraction in water	(-)	N L	7 6342 1000 20 1000 1000	_
DT ₅₀ in sediment	(days)	1000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000
temperature **	(°C)	\$\frac{1}{2}\text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \text{\$\sigma} \	200	20
formation fraction in sediment	, (2)			-
DT ₅₀ on canopy	Adays)	<u>10[©]2.1223^y</u>	200	10
Exponent for the effect of A	6 7 T			
moisture S V				
PRZM and TOXSWA (Walker	Y			
exp.)	^U (-) [≪]	V & 0.7 Q (©0.7	0.7
MACRO (calibrated value)	(-) <u>1</u>	0.49	ॐ 0.49	0.49
Effect of temperature	Ø"			
TOXSWA (molar activate energy)	(kĴ/mol)	√	© 65.4	65.4
MACRO (effect of temperature)	½ (1/K) Ô	7 0.0948, 2	0.0948	0.0948
PRZM (Q_{10})	(-)	© 2.5® ×	2.58	2.58

1) TSCF based on Briggs equation

Input parameters - tiered approach:

Tier V. Conservative default TSCF values of Cand foliar DT50 values of 10 d are considered.

Tier 2: More redistic TSCF values are considered for fluopyram and FLU-7-OH according to Briggs equation. For TFA a more realistic TSCF resulting from a hydroponic plant uptake study in cereals was taken into account.

Additionally, for fluopyram of oliar DT₅₀ of 2.122 d for the washable substance amount on the leaf surface was used. This value is derived from a dislodgeable foliar residue study (DFR), carried out under rain protected conditions.

²⁾ based on rain protected DR study M-75 592-01 and M-761989-01-1 (submitted in KCA 7)

³⁾ based on experimental drydroponic study see MSA KCAN.1.4/92, M-762082-01-1

Predicted environmental concentrations in surface water (PEC_{sw}) and sediment (PEC_{sed}) of fluopyram and its metabolites

For fluopyram, the metabolites fluopyram-7-hydroxy (FLU-7-OH) and trifluoroacetic acid (TPA) were considered.

Important remark by the applicant: The modelling core information and the PEC_{sec} and PEC_{sed} values as presented below are interim values and are therefore subject to change until final modelling input parameters can be established. The applicant intende to provide final modelling core information and final PEC_{sed} values latest by end of March 2022.

The overall surface water assessment involving fluopyram and its metabolites consists of the following calculations:

KCP 9.2.5/02
2021
Fluopyram (FLU) and metabolite: PECsw, sed FOCUS EUR (tier to Use in apples, spring cereals, winter cereals and lines in Europe
spring cereals, wire cereals and vines in Europe
EnSa-21-0067
M-763/60-0 KV
none y
Gurrent guideline: not applicable
A STORY OF STORY
No prot previously submitted 2 2
No, not conducted under GLP Officially recognised testing facilities
Yes of the second secon

	KCRO 2.5/03
Report Author:	
Report Year:	2021 2 2
Report Year: Report Title:	Fluopycam (FLD) and metabolite: PECsw,sed FOCUS EUR (tier 1) - Use in apples,
	spring cereals, winter cereals and values in Europe
Report No:	EriSa-21-9069 O O
Document No:	₩-7634M-01-10 Ø Ø
Guideline(s) followed in	none T T V
study:	
Deviations from current	Current guideline not applicable
test guidenne:	
Previous evaluations "	No, not previously submitted
	<u>, jv</u> , v Q'
GLP/Officiall@ecognised	not conducted under GLP/Officially recognised testing facilities
testing facilities:	
Acceptabilary/Religibility:	Yes
GLP/Officiall Occognised testing facilities: Acceptability/Reliability:	Z Z
ž,	
Ũ	

Data Point:	KCP 9.2.5/04
Report Author:	
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolite: PECsw,sed FOCUS EUR (tier 2) - Use in spring
	cereals and winter cereals in Europe
Report No:	EnSa-21-0072
Document No:	<u>M-763464-01-1</u>
Guideline(s) followed in	none a second
study:	
Deviations from current	Current guideline: not applicable 🖔
test guideline:	
Previous evaluation:	No, not previously submitted 🛴 💍 🗳 🐒 🐒
GLP/Officially recognised	No, not conducted under Golfficially recognised testing facilities
testing facilities:	
Acceptability/Reliability:	Yes & & & & & & & & & & & & & & & & & & &

Data Point:	KCP 9.2.5/05
Report Author:	RCP 9.2.3/03
Report Year:	2021
Report Title:	Fluopyram (FLU) and metabolite DECsw. sed FQOUS ESR (tiers) - Use in spring
	cereals and winter cereals in Europe
Report No:	EnSa-21-0071
Document No:	M-769440-05×1
Guideline(s) followed in	none & S & S
study:	
Deviations from current	Current guideline: not opplicable
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially recognised	No, nor conducted under GLP/Officially recognised string facilities
testing facilities:	
Acceptability/Reliability:	

Please note: The modelling reports are considering several use scenarios. Only those relevant for BIX + FLU + PTZ C 260 are presented here.

Methods and Materials:

Predicted environmental concentrations of the active substance fluopyram and its metabolites in surface water (PEC_{si}) and sediment (PEC_{si}) were calculated for the use in Europe, employing the tiered FOCUS Surface Water (SW) approach (POCUS 2001, 2015). All relevant entry routes of a compound into surface water (principally a combination of spray drift and runoff/erosion or drain flow) were considered in these calculations.

The use of floopyram in barrey (FOCUS crops: cereals, spring and winter) was assessed according to Good Agricultural Practice (GAP) in Europe. Detailed application parameters are presented in Table 9.2%-5.

Table 9.2.5- 5: Application pattern used for PEC_{sw} calculations of fluopyram

Crop	BBCH stage	Rate [g a.s./ha]	Interval [days]	FOCUS crop (crop group)	Season	Crop cover
Spring Cereals I	30 - 61	1 × 39	-	Cereals, spring (arable crops)	Spring (Mar May Summer (Jun. ₂ Sep.)	Average Grop
Winter Cereals I	30 - 61	1 × 39	-	Ceresis, winter (grable crops)	Antumn (Ost Feb.) Spring (Mar May) Summer (Jun Seo)	Average crop
Spring Cereals II	30 - 61	1 × 78		Careals, spring Varable crops)	Spring	Average crop
Winter Cereals II	30 - 61	1 × 785		Cereals winter (arable crops)	Autumn (Oct Feb.) Spring Avar May) Summer (Jun Sep.)	As Gerage crop

Substance input parameter are summarised in Table 9.2.5- 2, Table 9.2.5- 2 and Table 9.2.5- 4

For the uses in barley in addition to FOCUS Step 1-2 values. FOCUS Step 3 values were calculated for the active sepstance fluorpyram and its, metabolites fluorpyram-74 hydroxy (FLU-7-OH) and trifluoroacetic acid (TFA). In FOCUS Step, the application date for each scenario is determined by the Pesticide Application Timer (PAT), which is part of the FOCUS SW Scenarios. The user may only define an application time window. The actual application date is then set by the PAT in such a way that there are at least 10 mm of rainfall in the first 10 days after application, and at the same time less than 2 mm of rain per day in a five day period around the date of application. If no such date can be found within the application time window, the above rules are step-wise relaxed. Information on application dates can be found in Table 9.2.5-7.

Parameter	Spring cereals	I & II, early		٥
PAT start date			1	ions ions
rel./absolute	Abso	lute		
Appl. method			,	
(appl. type)	Ground spray (2 – app	ol. foliar linear, 4 cm)		
No of appl.	1		4	
PAT window				
range	30) 💍		
Appl. interval Scenarios	DAT -	Application	· Q	
occiiai ios	start/end date	Application		
	(Julian day)	A	Q" ~	
D1	(varian aay)	0' ×		
D1	27-May/26-Jun	V17-Jun ⊕		
Ditch/Stream	(147/177)			F. A
D3	28-Apr/28-May	A Mare		
Ditch	(118/148)	The state of the s	I A S	
DIGH	(110/170)			
D4	18-May/17-Jun	36 May		
Pond/Stream	(138/168)		r ž Š	
D5	09-Apr/09-May	14 xpr		Q
Pond/Stream	(997129)	(Q , Z)	, O S	
				٨
R4	09@Apr/09@May	04-May		. L
Stream	(99/129)			
			· · · · · · · · · · · · · · · · · · ·	
آگير				
, 0				
8			, O	
, Ø				
			y	
*	Q' 4' 2 2		•	
.4				
, 4				
*	09-Apr/09-May (99/129) 09-Apr/09-May (99/129)			
_		2		
Ä,		*		
V F				
Ţ Ď				
A TA				
. () /				

Table 9.2.5-7: Application dates of fluopyram for the FOCUS Step 3 calculations

Parameter	Winter cereal	s I & II, early	Winter cereals I & II, late		
PAT start date					
rel./absolute	Abso	olute	Abso	olute 🧳 .	
Appl. method			Ö .		
(appl. type)	Ground spray (2 – app	ol. foliar linear, 4 cm)	Ground spray (2 Sap	pl. foliar linear, 4 cm	
No of appl.	I		. 1		
PAT window	3	0 6			
range Appl. interval	3				
Scenarios	PAT	Application	APAT	Application	
Scharlos	start/end date	dat	start/end date	date.	
	(Julian day)		(Julian day)		
D1	25-Mar/24-Apr	29-Mar	25-Jyn/25-Jyl	25-Jun \(\frac{y'}{2}\)	
Ditch/Stream	(84/114)	2 <i>y</i> -iviai	76/206)		
Diten Stream	(0 1/111)			4 4	
D2	04-Apr/04-May		Q01-Jul/31-Jul	O OLOTUI	
Ditch/Stream	(94/124)		(1/\$2/212)0		
	Į į				
D3	16-Apr/16-May	€ 20- A pr	23-Jul/24-Aug	24-Jul	
Ditch	(106/136)	Q. ~ ~ ~	(266/236)	S. J	
D4	18-Mar/[/ -Apr ≪			♥	
Pond/Stream	(77,407)	10 19-1vrar	17/4204)	04-Jul	
1 ond/Sucam	(///30/)				
D5	15-Mar/14-Apr	S-Apr	17- Way/16-Jun	② 27-May	
Pond/Stream	74/104)		(137/167)		
D6	16-Feb/18- Ma r	@ 2 3 *Feb **	02-App/02-May	09-Apr	
Ditch	* (47/77 9) (3		(92/122)		
D1 (5)				20. I	
R1 O Pond/Stream	24-Apr/24-May	26-Xpr	\$\frac{1}{2}\displays \text{Jun}\displays 2-Jun} (1\frac{3}{2}\displays 193)	29-Jun	
			1 × 1 /		
ŖŜ	49-March8-Apr	28-Mar 2	^ 12/-May/11-Jun	18-May	
Stream	(7.89)08) ¹	~, . 0 ~	(132/162)		
,			3 y		
R4	24-Jan/28 Feb	″ ~004-Fe© ° ⊗	17-May/16-Jun	27-May	
Stream	(2454)		(137/167)		
		0 0 0			
, ¶					
~ ×					
. */					
. O `		Ź,			
O ×		v 71			
	, Q, 70 d				
	A N				
R4 Stream	24-Jan/28-Apr (78)08) 24-Jan/28-Feb (248-4)				

Findings:

Tier 1: FOCUS Step 1 and 2

The maximum PEC_{sw} and PEC_{sed} values for FOCUS Step 1 and 2 are given in the tables below for fluopyram and its metabolites fluopyram-7-hydroxy (FLU-7-OH) and trifluoroacetic acid (TFA) considering application in barley (FOCUS crops: spring cereals, winter cereals)

Fluopyram

Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopy am following single application(s) of BIX + FLU + PTZ FC 260 to barlo 1 (modelling use spring cercals I Table 9.2.5-8: -- spring -- 1× 39g a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw Quant entry 21d-PECsw,twa Max PECswd (µg/L)** Quant entry (µg/L)** Quant entry (µg/L)**
Step 1	-	10.3 Runoff 210.1 23.5 23.5 25.6
Step 2		
Northern Europe	Mar May (Spring)	1.870 RunOff 7.83 7 4.28 *
Southern Europe	Mar May (Spring)	9.44 * * * * * * * * * * * * * * * * * *

Single applications are marked

Tier 1 FOGUS Step 1, 2 PECswand PECsed for Duopyram following single Table 9.2.5-9: application(s) of BIX+FLU+FTZ EC 260 to barley I (modelling use spring cereals I summer -- 3/39 g 4.5./ha)

Scenario FOCUS	Water body &	(μg/L_)*)/ [/np	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	- 5	\$\frac{10\text{\text{\$\sigma}}}{2}	Runorf	10.1	23.7
Step 2					
Northern Europe	Jun - Sep 1 (Summer)	1.87	RunOff	1.83	4.28 *
Southern Europe	Jun Sep. O	2.66	RynOff	2.61	6.11 *

Single applications are marked

TWA interval as required by ecotor

^{*} TWA interval as required by ecotox

Table 9.2.5- 10: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- autumn -- 1×39 g a.s./ha)

			1		
 cenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (μg/L)**	Max PÈς sed (μg/kg)*
Step 1	-	10.3	RunOff	10.10	23.7
Step 2				, S	
Torthern Europe	Oct Feb. (Autumn)	4.23 *	Runoff	Ø4.17	
outhern Europe	Oct Feb. (Autumn)	3.44 *	RunOff	3.39	7.936

Single applications are marked.

Tier 1 FOCUS Step 1, 2 PECsed for fluogyvam following single Table 9.2.5- 11: application(s) of BIX FILL + PTZ & 260 to bar Dy I (modelling use winter cereals I -- spring -- 1×39 g a.s./ha) Ô

Scenario FOCUS	Waterbody			21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	-	¥0.3	√ RupyOff ∜	~ 10.1©	23.7
Step 2	\$\tag{9}				
Northern Europe	Mar May (Spring)		Runoff	(1.83) ()	4.28 *
Southern Europe	Mao Mayo	3.44	RunOff	\$\tag{9}	7.93 *

Single applications are marked.

Tier 1 FOCUS Step 1, FPEC, and PEC, and PEC, for fluopyram following single application(s) of BIX + FLU PTZOC 260 to barley I (modelling use winter cereals I Table 9.2.5- 12:

Scenario FOCUS	Waterbody		Dominant entry Croute	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	- 7	Q 10.3 L	RunOff	10.1	23.7
Step 2					
Northern Europe	hun Sep. (Summer)	1.8 T	RunOff	1.83	4.28 *
Southern Europe	Jun Sep.	₹ 2.66°♥ *	RunOff	2.61	6.11 *

TWA interval as required by ecotox

TWA interval as required by ecotor

Single applications are marked.

TWA interval as required by ecotox

Table 9.2.5- 13: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use spring cereals II -- spring -- 1×78 g a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	-	20.6	RunOff	20.20	47.3
Step 2					
Northern Europe	Mar May (Spring)	3.74 *	Runneff	© 3.67	
Southern Europe	Mar May (Spring)	6.89 *	RunOff	6.79	15.90

Single applications are marked.

Tier 1 FOCUS Step 1, PECs, and PECsed for fluopyram following single Table 9.2.5- 14: application(s) of BIX FLL + PTZ &C 260 to banky II (modelling use spring egreals II -- summer -- 1×78/g a.s/ha)

Scenario FOCUS	Waterbody	ℚ (μg/Δ)* ♡		21d-PECsw,twa	Max PEC _{sed} (μg/kg)*
Step 1	-	2 0.6	Rugoff &	20.20	47.3
Step 2	**************************************				
Northern Europe	Jun Sep. (Summer)	\$\frac{1}{2}\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Runoff 5	3.67	8.57 *
Southern Europe	June Sep.	5.31		2 3	12.2 *

Single applications are marked.

Tier 1 FOCUS Step 1, SPEC, and PEC_{sed} for fluopyram following single application(s) of BIX FLU PTZ & C 260 to barley II (modelling use winter cereals II -- antume 1×78 g a.s./ha) Table 9.2.5- 15:

Scenario FOCUS	Waterbody		Dominant entry Croute	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	- 7	20.6	RunOff	20.2	47.3
Step 2					
Northern Europe	Oct Feb. (Autu <u>r</u> nn)	8.46 4*	RunOff	8.35	19.5 *
Southern Europe	Oct Feb.	& 6.89°Q *	RunOff	6.79	15.9 *

TWA interval as required by ecotox

TWA interval as required by ecotor

Single applications are marked.

TWA interval as required by ecotox

Tier 1 FOCUS Step 1, 2 PECsw and PECsed for fluopyram following single Table 9.2.5- 16: application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- spring -- 1×78 g a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (μg/L)**	Max Ple Sed (μg/μg)*
Step 1	-	20.6	RunOff	20.20**	47.3
Step 2			8	, C	
Northern Europe	Mar May (Spring)	3.74 *	Russiff	© 3.67	
Southern Europe	Mar May (Spring)	6.89 *	RunOff	6.79	15.90

Single applications are marked.

Tier 1 FOCUS Step 1, 2 PECs, and PCCsed for fluopyram following single Table 9.2.5- 17: application(s) of BIX FILL FTZ EC 260 to bar By II (modelling use winter cereals II -- summer -- 1×78/g a.s/ha) Ô

	1				
Scenario FOCUS	Waterbody	Max PECsw	Dominant entry	10-FC sw,twa	Max PEC _{sed} (μg/kg)*
Step 1	-	20 .6	RungOff &	20.20	47.3
Step 2		20.6			
Northern Europe	Jun Sep. (Summer)	3,74	Runoff	3.67	8.57 *
Southern Europe	Jun Sep.	5.31	RunOff	\$\frac{1}{2}3	12.2 *
* Single ** TWA i	appliedition when marked interval as required by the second secon	al. acoupy A Company A Co	RunOff RunOff RunOff		

TWA interval as required by ecotox

Fluopyram-7-hydroxy (FLU-7-OH)

Table 9.2.5- 18: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram-7-hydroxy following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereats I -- spring -- 1×39 g a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC _s w _a (μg/L)	Max PECsed
Step 1	-	0.692	-	Q.58 7	0.693 V
Step 2			V		
Northern Europe	Mar May (Spring)	0.110 *	\$ -	0.110	Q.111 5 * * * * C
Southern Europe	Mar May (Spring)	0.221 *		. © 0.219 V	0 221 0 *

^{*} Single applications are marked.

Table 9.2.5- 19: Tier 1 FOCUS Step 7, 2 PFC sw and PEC of for fluopyram-7-hydroxy following single application(s) of BFX + FTU + PTZ EC 260 to barley 1 modeling use spring cereals I -- summer -- 1 39 g a.s. ha)

		~// . (
Scenario FOCUS	Waterbody §	Max PECsy (µg/L)*	Dominant entry (21d-PECsw, Wa	Max PEC _{sed} (μg/kg)*
Step 1	- 😽	3 0.692 Q		₩ Q: \$87	0.693
Step 2	Ž (
Northern Europe	Jun. Sep. (Simmer)	***************************************		0.110	0.111 *
Southern Europe	Qun Sep. (Summer)			0.164	0.166 *

^{*} Single applications are marked.

Table 9.2.5- 20: Tier 1 FOCL Step 1, 2 PEC sw and PEC of for fluopyram-7-hydroxy following single applications of BIX + FDU + PIZ EC 260 to barley I (modelling use winter cereals I - autum 1-1×39 g a.s. fra)

Scenario FOCUS		Max PECsw (µg/L)*	Deminant entry route	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1		×0.692.Q ~	-	0.687	0.693
Step 2					
Northern Europe	Oct. Feb. (Autumn)	6.276 **	1	0.274	0.277 *
Southern Europe	Set Feb. (Autumn)	0.221 *	-	0.219	0.221 *

^{*} Single pplications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA Interval as required by exotox

^{**} TWA interval as required by ecotox

Table 9.2.5- 21: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram-7-hydroxy following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- spring -- 1×39 g a.s./ha)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Presed (μg/kg)*
Step 1	-	0.692	-	0.68	0,693
Step 2					
Northern Europe	Mar May (Spring)	0.110 *		©0.110	
Southern Europe	Mar May (Spring)	0.221 *		0.219	0.22 to 0.22 t

Single applications are marked.

Tier 1 FOCUS Step 1, 2 PECs, and PECsed for fluopyram-Phydroxy following single Table 9.2.5- 22: application(s) of BIX FILL + PTZ &C 260 to bar Dy I (modelling use winter cereals I -- summer -- 1×39 (3a.s./ka)

Scenario FOCUS	Waterbody		Dominant entry Froute	21d-PECsw,twa	(μg/kg)*
Step 1	-	0 46 92	L o	0.68\$	0.693
Step 2	**************************************				
Northern Europe	Jun Sep. (Summer)	\$ 0.100 G		(0.111 *
Southern Europe	Jung Sep.	30.166 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		\$ 0\$64	0.166 *

Single applications are marked.

Tier 1 FOCUS Step 1, FPEC, and PEC_{sed} for fluopyram-7-hydroxy following single application(s) of BIX + FLU + PTZ C 260 to barley II (modelling use spring cereals Table 9.2.5- 23:

Scenario FOCUS	Waterbody	J (µg/4)" , Q	Dommant entry Croute	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	- 7	Q 1.38 Z	-	1.37	1.39
Step 2					
Northern Europe	Mar May (Spring)	\$\frac{0.2\pi_{1}}{2}	-	0.219	0.221 *
Southern Europe	(Spring) Mary May Pring)	₹ 0.442 ♥ *	-	0.438	0.443 *

TWA interval as required by ecotox

TWA interval as required by ecotor

Single applications are marked.

TWA interval as required by ecotox

Table 9.2.5- 24: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram-7-hydroxy following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use spring cereals II -- summer -- 1×78 g a.s./ha)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Presed (μg/kg)*
Step 1	-	1.38	-	1.370	1.39
Step 2					
Northern Europe	Jun Sep. (Summer)	0.221 *		©0.219	
Southern Europe	Jun Sep. (Summer)	0.331 *		0.329	0.332° 70°

^{*} Single applications are marked.

Table 9.2.5-25: Tier 1 FOCUS Step 1, 2 PECs, and PECsed for fluory ram-7-hydroxy following single application(s) of BIX+ FLV+ PTZ+C 260 to bardey II (modelling use winter cereals II -- autumn -- 1×78 g a.s.ha)

Scenario FOCUS	Waterbody	Max PECsw & (µg/L)*	Dominant entry Froute	21d-PECsw,twa	(μg/kg)*
Step 1	-	y \$138 D		1.370	1.39
Step 2	****				
Northern Europe	Oct Feb. (Autumn)	5 0.5 52 Q		0.548	0.553 *
Southern Europe	Octo Feb.	\$0.442\$ *		\$ 0\$\frac{1}{2}38	0.443 *

^{*} Single applications are marked.

Table 9.2.5- 26:

The 1 FOCUS Step 1, FEC, and PEC, and P

rocus	Waterbody	J (µg/4)" ,	Dommant entry Croute	21d-PEC _{sw,twa} (μg/L)**	Max PEC _{sed} (μg/kg)*
Step 1©	- 77 4	1.38		1.37	1.39
Step 2					
Northern Europe	Mar May (Spring)	0.220	-	0.219	0.221 *
Southern Europe	Mary May Spring)	* 0.442 \(\tilde{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	-	0.438	0.443 *

^{*} Single applications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by ecotor

^{**} TWA interval as equired by ecotox

Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for fluopyram-7-hydroxy following single Table 9.2.5- 27: application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- summer -- 1×78 g a.s./ha)

11 Summer 1 ^ 70 g a.s./na)					
Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Prosed (µghg)*
Step 1	-	1.38	-	1.370	1.39
Step 2					
Northern Europe	Jun Sep. (Summer)	0.221 *		2 0.219	(µg/gg)* 1.39 0.24 0.332
Southern Europe	Jun Sep. (Summer)	0.331 *		0.329	0.332
* Single ** TWA i	Waterbody Jun Sep. (Summer) Jun Sep. (Summer) applications are marke nterval as required by or separate the separate that the sep	d. ecotox d. fill fill fill fill fill fill fill fil			1,39 0,331 0,332 0,3

Trifluoroacetic acid (TFA)

Table 9.2.5- 28: Tier 1 FOCUS Step 1, 2 PEC_{sw} and PEC_{sed} for trifluoroacetic acid following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereats I -- spring -- 1×39 g a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC _{sc} w _a (μg/L)	Max PEC sed
Step 1	-	0.553	- &.	6.5 49	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 2			V		
Northern Europe	Mar May (Spring)	0.088 *	\$ -	0.088	\$0.001\$\tag{\chi}\$
Southern Europe	Mar May (Spring)	0.177 * &		. © 0.175 V	O' <0.0001

^{*} Single applications are marked.

Table 9.2.5- 29: Tier 1 FOCUS Step 7, 2 P.C. sw and PEC of for tribluoroacetic acid following single application(s) of BPX + FTU + PTZ EC 260 to barley C modeling use spring cereals I -- summer -- 1 39 g a.s./ha)

Scenario FOCUS	Waterbody §	Max PECsw (µg/L)*	Dominant entry (L route	21d-PECsw, wa	Max PEC _{sed} (μg/kg)*
Step 1	-	0.553	Y	\$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \qu	<0.001
Step 2	A I			(4 .4)	
Northern Europe	Jun. Sep. (Simmer)	0,088		0.088	<0.001 *
Southern Europe	Qun Sep. (Summer)			0.131	<0.001 *

^{*} Single applications are marked.

Table 9.2.5-30: Tier 1 FOCUS Step 1, 2 PEC sw and PEC for trifluoroacetic acid following single applications of BFX + FDU + PFZ EC 500 to barley I (modelling use winter cereals I - autumo - 1×39 g a.s. ha)

Scenario FOCUS		Max PECsw (µg/L)*	Deminant entry route	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1		× 0.553 Q S	-	0.549	< 0.001
Step 2					
Northern Europe	Oct. Feb. (Antumn)	6.221 **	•	0.219	<0.001 *
Southern Europe	Set Feb. (Autumn)	0.177 *	-	0.175	<0.001 *

^{*} Single plications are worked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by cortox

^{**} TWA interval as required by ecotox

Table 9.2.5- 31: Tier 1 FOCUS Step 1, 2 PECsw and PECsed for trifluoroacetic acid following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- spring -- 1×39 g a.s./ha)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max PEςsed (μg/kg)*
Step 1	-	0.553	-	0.549	<0.001
Step 2					
Northern Europe	Mar May (Spring)	0.088 *		©0.088	<0.001 0*
Southern Europe	Mar May (Spring)	0.177 *		0.175	\$0.00d

Single applications are marked.

Tier 1 FOCUS Step 1, 2 PEC and PEC sed for trifluoroacetic acid following single Table 9.2.5- 32: application(s) of BIX+ FILT+ PTZ/LC 260 to bardey I (modelling use winter cereals I -- summer -- 1×39 (sa.s./ka)

Scenario FOCUS	Waterbody		Dominant entry Froute	21d-PECsw,twa	€ (μg/kg)*
Step 1	-	Ø4553 D		0.540	<0.001
Step 2					
Northern Europe	Jun Sep. (Summer)	\$ 0.088		(0.088) (4)	<0.001 *
Southern Europe	Jung Sep.	\$\int_{\infty}^{\infty} 0.132^{\infty} \tag{\chi}	~~~~~	\$ 0\$31	<0.001 *

Single applications are marked.

Tier 1 FOCUS Step 1, SPEC, and PEC, and Table 9.2.5- 33:

Scenario FOCUS	Waterbody	β (μg/μ)* 🔏	Dominant entry Croute	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1	- 27	Q 1.11 , S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.10	< 0.001
Step 2					
Northern Europe	Mar May (Spring)		1	0.175	<0.001 *
Southern Europe	(Spring) Mary May Spring)	₹ 0.35 3 ♥ *	-	0.350	<0.001 *

TWA interval as required by ecotox

TWA interval as required by ecotor

Single applications are marked.
TWA interval as required by ecotox

Table 9.2.5- 34: Tier 1 FOCUS Step 1, 2 PECsw and PECsed for trifluoroacetic acid following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use spring cereals II -- summer -- 1×78 g a.s./ha)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max PEςsed (μg/kg)*
Step 1	-	1.11	-	1.10	<0.001
Step 2					
Northern Europe	Jun Sep. (Summer)	0.177 *		©0.175	<0.0001
Southern Europe	Jun Sep. (Summer)	0.265 *		0.263	\$0.00£ \$\frac{1}{2}\$

Single applications are marked.

Tier 1 FOCUS Step 1, 2 PECs, and PECsed for trifluoroacetic acid following single Table 9.2.5- 35: application(s) of BIX+ FLI + PTZ &C 260 to bar By II (modelling use winter cereals II -- autumn -- 1×78 g a.s. ha) Ò

Scenario FOCUS	Waterbody		Dominant entry Froute	21d-PECsw,twa	(μg/kg)*
Step 1	-	SLII D		1.100	<0.001
Step 2	***				
Northern Europe	Oct Feb. (Autumn)			0.438	<0.001 *
Southern Europe	Octo Feb.	0.353		\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.001 *

Single applications are marked.

Tier 1 FOCUS Step 1, FEC, wand REC, sed for trifluoroacetic acid following single application(s) of BIX FLUE PTZ C 260 to barley II (modelling use winter cereals Table 9.2.5- 36:

Scenario FOCUS	Waterbody	J (µg/4)"	Dominant entry Croute	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 1		Q 1.11 25		1.10	< 0.001
Step 2			7		
Northern Europe	Mgar May 《Spring》	\$\frac{0.1\pi}{2}	1	0.175	<0.001 *
Southern Europe	(Spring) Mary May Spring)	×0.353 *	-	0.350	<0.001 *

TWA interval as required by ecotox

TWA interval as required by ecotor

Single applications are marked.

TWA interval as required by ecotox

Tier 1 FOCUS Step 1, 2 PECsw and PECsed for trifluoroacetic acid following single Table 9.2.5- 37: application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- summer -- 1×78 g a.s./ha)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PECsw,twa (μg/L)**	Max Prosed (µg/kg)*
Step 1	-	1.11	-	1.10	<0.001
Step 2				, S [™]	
Northern Europe	Jun Sep. (Summer)	0.177 *	\$.	© 0.175	
Southern Europe	Jun Sep. (Summer)	0.265 *		0.263	0.00t° to

Ozea po proper de la proper dela proper de la proper de la proper de la proper de la proper dela proper de la proper del la proper de la proper del la proper del la proper del la proper del la proper de la proper de la proper de la proper de la proper del la The state of the s

Tier 1: FOCUS Step 3

The maximum PEC_{sw} and PEC_{sed} values for FOCUS Step 3 are given in the tables below for considering application in barley (FOCUS crops: cereals, spring and winter). The reported PEC, and PEC_{sed} values represent loadings via all relevant entry routes fluopyram and its metabolites fluopyram-7-hydroxy (FLU-7-OH) and trifluoroacetic acid (TPA)

Fluopyram

Tier 1 FOCUS Step 3 PECsw and PECsc for fluopyram following single application (s) Table 9.2.5-38: of BIX + FLU + PTZ EC 260 to barley (modelling use spring cereals I -- corly 0.039 kg a.s./ha)

			a y	4	<u>~~~</u> o* ~~
Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21 PEC wa (µg/L)**	Max PECser
Step 3		Ő.	O Draillage	γ(μg/L)**	
D1	Ditch	1.28 *	O Drainage	0.3694 0.3694 0.206 0.224	7.2 ** 4.35 ** 0.118 *
D1	Stream	(//) . •	Drainage	0.694	£4.35 **
D3	Ditch	0.24% &	Spray Orift	Ø.014	Ø 0.118 *
D4	Pond	6 ¥17 °° *	Drainage	0.30	* * *
D4	Stream	© 0.319 *0	Draina &	O. 0. 206 O	% 0.642 *
D5	Pond *	0,234 5*	🎝 Drainage 🦑	0.224	1.85 *
D5	Stream 🦂	0.226 \$ *	Spray drift	/ / O O O O O O O O O O O O O O O O O O	0.419 *
R4	Stream	♥ 0.5 \$ Ø	Runoff	0.055	0.358 *
	Pond Stream Stream Stream application are marke enterval as a quired by	0.226 Q	Runoff S		

Table 9.2.5-39: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- early --0.039 kg a.s./ha)

	0.039 kg a	.s./na)			<u> </u>
Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Pic sed (μg/gg)*
Step 3				o o	
D1	Ditch	1.91 *	Drainage	L 01	7.23
D1	Stream	1.22 *	Draimage	1.03	434 4
D2	Ditch	2.48 *	Drainage	1.32	₹.47 ₹ *¢
D2	Stream	1.56 *	Drainage	Q°.653	4.13
D3	Ditch	0.247 *	Spray drift	0.042	@J10 ~ *
D4	Pond	0.341	Drainage	Ø331 S	1.81
D4	Stream	0.346 *	Drainage Q	0.221	0.64
D5	Pond	0.227	Drainage	0.248	√1.84 [∞] *
D5	Stream	0.25	Spray drift	Ø.077	0.419 *
D6	Ditch	£409 °° *	Drainage	0.116	* √0.¥68 *
R1	Pond	© 0.029 ***	RunOf	0.027	€ 0.183 *
R1	Stream	J 0,299 5**	K RunOff K	0.018	0.129 *
R3	Stream 🦃	9.440 \$ *S	RunOff	0.020	0.254 *
R4	Stream	\$\tag{\sqrt{0.5}\$\$	RunOff	0.024	0.221 *
	Stream Ditch Pond Stream Stream Stream application or marked anterval as sequired by the stream of the strea				

Tier 1 FOCUS Step 3 PECsw and PECsed for fluopyram following single application(s) Table 9.2.5- 40: of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

	,						
Scenario FOCUS	Waterbody	Max PEC (μg/L)*	sw	Dominant entry route	21d-PECsw,twa (µg/L)**	Max PÊÇse (μg/kg)*	d 6
Step 3					, O		,7
D1	Ditch	0.981	*	Drainage	Q.839	~_04.85_G	*
D1	Stream	0.613	*	Drainage	Ø0.520	5 2 ZZ _	Ž*
D2	Ditch	0.799	*	Dicainage	0.449	\$3.39 \$\sqrt{\$\eqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sqrt{\$\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	*&
D2	Stream	0.500	*	Drainage	0°.260	2.10 [©]	Ş
D3	Ditch	0.248	*	Spray drift	0.020	QJ47 ~	<i>"</i> *
D4	Pond	0.213	5	Drainage	y 6 206 S	1.17	*
D4	Stream	0.214	*	Spray@rift Q	0.138	0 430	%
D5	Pond	0.103	**	Drainage	0.899	49.986 £	*
D5	Stream	0.23		Spray drift	Ø.041	0.212	*
D6	Ditch	£51	*	Spray drift	0.070	₀ 0.293	*
R1	Pond	© 0.091	***	RunOf	0.085	% 0.440	*
R1	Stream	Q.408	% *	《 RunOff 《	0.037	0.377	*
R3	Stream 🦂	(0.499 ()	*.	RunOff	\$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac	0.211	*
R4	Stream	0.188	0	Runoff	(0.010	0.136	*

For 1 FOCUS Step 3 PEC_{sw}, and PEC_{sd} for Diopyrum following single application(s) Table 9.2.5- 419 of BIX + FLU PTZ-FC 260 to barley II (modelling use spring cereals II -- early --

Scenario FOCUS	Waterbody	Max PEOsw (µg/L)*	101100	21d-PEC _{sw,twa} (μg/L)**	Max PEC _{sed} (μg/kg)*
Step 3			S S		
D1	Ditch	2.30	Painage	2.31	14.2 *
D1 🖉	Stream	Q 1.6V X	Drainage	1.44	8.26 *
D3	Djich 🗐	A95 0 * *	Spray drift	0.027	0.226 *
D4	Pond O	0.663	Drainage	0.645	3.44 *
D4	Stream	0 67 3	Drainage	0.428	1.26 *
D5	Rond F	₹ 0.52 6 *	Drainage	0.505	3.90 *
D5 🍣	Stream	0.461 *	Spray drift	0.175	0.895 *
R4	Stream ,	1.20 *	RunOff	0.112	0.682 *

Single application (are marked. TWA interval as required by ecotor)

Single oplications are marked.

TWo interval as required by ecotox

Table 9.2.5- 42: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early --0.078 kg a.s./ha)

	0.078 kg a	33.7114)			
Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (µg/L)**	Max Prosed (µg/kg)*
Step 3				O ^T	
D1	Ditch	3.84 *	Drainage	£ 12	13.2 0 * * * * * * * * * * * * * * * * * *
D1	Stream	2.46 *	Drainage	2.01	28Y 0
D2	Ditch	5.22 *	Drainage	3.05	214.6 5 * <u>4</u>
D2	Stream	3.31 *	Drainage	5.03 0.034	\$ 8.46° \$
D3	Ditch	0.494 *	Spray drift	0.024	Q211 \\ *
D4	Pond	0.704	Drainage .	685	3.57
D4	Stream	0.723 **	Drainage Q	0.454	
D5	Pond	0.510	Drainage	0.492	* 2 00 * *
D5	Stream	0.45% &	Spray drift	Q .175	0.892 *
D6	Ditch	£814 *	Drainage	0.492	•0.911 *
R1	Pond	@ 0.0 5 % *0	RunOf	0.052	€ 0.338 *
R1	Stream	0,622 °*	C RunOff C	0.036	0.257 *
R3	Stream 🦠	(0.929 b) * <u>(</u>	RunOff	0:043	0.501 *
R4	Stream	1.00	RunOff	(0.047)	0.432 *
			RunOff RunOff RunOff AunOff		

Table 9.2.5- 43: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 (65+65+130 g/L) to barley II (modelling use winter cereals II -- late -- 0.078 kg a.s./ha)

		late 0.0 / 6 kg a.	1	T	<u> </u>
Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (µg/L)**	Max Prosed (μg/kg)*
Step 3				G.	
D1	Ditch	2.10 *	Drainage	£ 82	9.15 %
D1	Stream	1.31 *	Drainage	Ø1.14	539 07
D2	Ditch	1.70 *	Drainage	0.932	* * _€
D2	Stream	1.07 *	Drainage	© 0°.544	₹ 3.96°
D3	Ditch	0.496 *	Spray drift	0.041	Q 282
D4	Pond	0.436	Drainago	0 423 S	2.27
D4	Stream	0.439 *	O Drainage	0.28	0.824
D5	Pond	0.236	Drainage	0.228	« 2.12 ° *
D5	Stream	0.46	Spray Orift	9 .088	0.467 *
D6	Ditch	£303 ***	Spray drift	0.130	• <u>0</u> .541 *
R1	Pond	© 0.188 ***	RunOf	09.76	
R1	Stream	0.844 5**	RunOff 4	Q0.077	0.718 *
R3	Stream 🦠	9.10 % *S	RunOff	0.019	0.433 *
R4	Stream	(\$\sqrt{9}\) 0.3 \Q (\$\sqrt{9}\)	RunOff	(0.019 O	0.245 *
			Spray drift Spray drift RunOff RunOff RunOff		
C					

Fluopyram-7-hydroxy (FLU-7-OH)

Table 9.2.5- 44: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7-OH following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereals I -- early -- 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsαwa (μg/L)	Max PEC _{sed} () (μg/kg)*
Step 3			۵.		
D1	Ditch	0.115 *		Ø0.099	O 0.330 V
D1	Stream	0.072 *	¥ -	0.061	Ø.142 ♥ *½
D3	Ditch	<0.001 *	- 4	\$0.001 \$	\$ <0.00°F
D4	Pond	0.029 *	Q Q	0.028	6089 * *
D4	Stream	0.027		6 017	0.029 *
D5	Pond	0.028 **		0.027	0 0 0 0 4 0 *
D5	Stream	0.021	Y	0.009	≪9.024 🗳 *
R4	Stream	0.068 %	-	\$0.001	2 < 0.001 *

^{*} Single applications are marked.

Table 9.2.5- 45: Tier 1 FOCUS Step 3 PECsw and PECd for FLU-7 OH following single application(s) of BIX FLU + PTZ FC 260 to barley I (modelling use whiter careals I -- early -- 0.039 kg a.s. Tha)

Scenario FOCUS	Waterbody	Max PECsw (µg/L)*	Domidant entry	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3					
D1	Ditch	Ø.140 <u>4</u> *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.101	0.221 *
D1	Stream	\$\tag{0.020} \tag{*}		0.066	0.129 *
D2 D2	Ditch 🗘	# 82 0 * * ×		0.119	0.320 *
D2	Stream 4	©0.12 5 * * * * * * * * * * * * * * * * * * *		0.073	0.189 *
D3	O Ditch	<0.901 0*		< 0.001	<0.001 *
D4	Pond &	Ø.032Q *		0.031	0.091 *
D4 🖉	Stream .	Q 0.03 V	· ~ -	0.019	0.029 *
D.5	Pond	0.030 *	7 -	0.027	0.114 *
D5	Stream 💇		-	0.009	0.024 *
D6	Ditch Rond	0.025	-	0.011	0.029 *
R1	Rond 6	₹ 50.004 © *	-	< 0.001	0.001 *
R1	®tream	0.004 *	-	< 0.001	0.001 *
RX R4	Stream S	0.008 *	-	< 0.001	0.003 *
\$\text{R4}	Stream	0.009 *	-	< 0.001	0.002 *

^{*} Single applications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by ecotox

Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7-OH following single application(s) Table 9.2.5- 46: of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PEC (μg/L)*		Dominant entry route	21d-PEC _{sw,twa} (µg/L)**	Max Prosed (μg/μg)*
Step 3					Ö	
D1	Ditch	0.082	*		Q 5060	0.1300 **
D1	Stream	0.052	*	T	Ø0.039	5 0.9% J
D2	Ditch	0.075	*	¥ -	0.042	Ø.141 5 *⟨
D2	Stream	0.047	*	- ·	0°.023	& 0.080 X
D3	Ditch	< 0.001	*	Q Q	<0.001	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
D4	Pond	0.016	8	0 - ×	200 16	0.046 *
D4	Stream	0.016	4 *		0.010	0 0,005
D5	Pond	0.014	*	Y . W K	0.013	<0.062 ♣ *
D5	Stream	0.04			Ø.005	0.013 *
D6	Ditch	6013	*	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.00	•0: 0 13 *
R1	Pond	@<0.00¥	*0		< 9.001	
R1	Stream *	Q ₂ 005	% *	4 6 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.001 *
R3	Stream 🧳	« 8.014 ©	*	\$ 4 - ~ \	\$\int\tag{\chi_0001}\$	0.003 *
R4	Stream	0.968	0		<0.001	0.003 *

Ther 1 FOCUS Step 3 PEC_{sw}, and PEC_{sw} for FLU-7-ØH following single application(s) of BIX + FLU PTZ-FC 260 to barrey II (modelling use spring cereals II -- early -- 0.078 kg a so (ha) Table 9.2.5- 47

Scenario FOCUS	Waterbody	Max PEOsw & (µg/L)*	Dominant entry	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3			5		
D1	Ditch	Ø.224Q *	ľ W	0.194	0.473 *
D1 🔎	Stream	0.140	, , , , , , , , , , , , , , , , , , ,	0.119	0.267 *
D3 D4	Diff A	6 .001 *	-	< 0.001	0.003 *
Ď4	Pond P	0.061	-	0.059	0.184 *
D4	Stream	0.934	-	0.036	0.061 *
D5	Rond S	* 0.057° *	-	0.055	0.227 *
D5 🍣	Stream	0.043 *	-	0.017	0.047 *
R4	Stream V	0.005 *	-	< 0.001	0.002 *

Single application (are marked. TWA interval as required by ecotor)

Single oplications are marked.

TWo interval as required by ecotox

Table 9.2.5-48: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7-OH following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early --0.078 kg a.s./ha)

	0.078 kg a	s./na)			<u>v</u> °
Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (µg/L)**	Max Prosed (µg/kg)*
Step 3				Ö.	
D1	Ditch	0.266 *		Q.T91	% 90.42 <i>3 \% \</i> f
D1	Stream	0.169 *	- C	Ø0.125	0.27
D2	Ditch	0.336 *	£ -	0.225	Ø.601 × *&
D2	Stream	0.233 *	- A	0.223	\$ 0.360 P
D3	Ditch	<0.001 *	Q V	<0.001	*
D4	Pond	0.066		0064	0.189 *
D4	Stream	0.059 *		0.040	
D5	Pond	0.056	y	0.855	× 0.229 × *
D5	Stream	0.0		Ø.018	0.048 *
D6	Ditch	\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\		0.020	₹ •0 . 959 *
R1	Pond			Q < 0.001 0 C	
R1	Stream	© 8008 *	4 5	0.000	0.002 *
R3	Stream 🦠	8.016 & *S		<0001 V	0.005 *
R4	Stream	\$\frac{1}{2} 0.9\$\frac{1}{2}		<0.001	0.004 *
	Stream Ditch Pond Stream Stream Stream Applications are marked interval as acquired by a stream of the control of the co				

Table 9.2.5- 49: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7-OH following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- late --0.078 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECswatwa (μg/L)**	Max Poc _{sed} (µg/kg)*
Step 3				<u></u>	\$ \$ 6
D1	Ditch	0.157 *	-Č⁄3	Ø.114	0.250
D1	Stream	0.100 *	-	Q 0.075 , Q	
D2	Ditch	0.149 *	- 4 - 1	6° 0,082 .° €	0.266
D2	Stream	0.093 *	- ×	©0.045 V	0,651 0*
D3	Ditch	<0.001 *%		<0001	\$0.001 **
D4	Pond	0.033		0.032	5 0.0g
D4	Stream	0.032		\$\tag{0.000} \times	0.030 *
D5	Pond	0.029		10 xxxx 03	\$0.125
D5	Stream	0.022 **	7 2 2	0.010	0.027 *
D6	Ditch	0.024		4 0011 O	7025
R1	Pond	9.00Y **	- 4 C	©0.001	0.023 *
R1	Stream 🐧	Ø.008 × ×		~ < 0.00° i	0.002 *
R3	Stream	A, 0.025	Z - 5 4	20.001	0.006 *
R4	Stream	0.015 ₀ *	\$ \tau_{\text{\tint{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\exitit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\tex{\tex	0.00J	0.005 *
** TWA i	Stream Ditch Pond Stream Stream Stream applications are marken nterval as required by a				

Trifluoroacetic acid (TFA)

Table 9.2.5- 50: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{sed} for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereals I -- early -- 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC _{so} wa (μg/L)	Max PEC sed (β)
Step 3			۵۰		
D1	Ditch	0.244 *		©0.236	
D1	Stream	0.151 *	\$ -	0.144	3 .076 3 *4
D3	Ditch	0.431 *	- ~	©°.431	\$\tag{0.286}\$
D4	Pond	0.692 *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.689	8 425
D4	Stream	0.285		\$ 6 268 \$	0.161 *
D5	Pond	0.929 **		0.923	0 0 5 6 9 0 %
D5	Stream	0.382	Y . Q Q	0.364	≪9.171 🗳 *
R4	Stream	0.068		\$0.001£	2 < 0.001 *

^{*} Single applications are marked.

Table 9.2.5-51: Tier 1 FOCUS Step 3 PEC_{sw} and PEC_{dd} for TFA following single application(s) of BIX +2 LU + PTZ E© 260 to barley I (modelling use winter cereals I -- early -- 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (µg/L)*	Dominant entry	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3				,	
D1	Ditch	20 .361 *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.352	0.172 *
D1	Stream	0.22		0.215	0.102 *
D2 ***	Ditch 🛴	1 2 64 3 * *	<u> </u>	0.245	0.151 *
D2	Stream 4	0.17		0.155	0.097 *
D3	@ Ditch	0.470 0*		0.470	0.308 *
D4	Pond	Ø.805 ₂ *)	0.802	0.484 *
D4 🖉	Stream	Q 0.354 Z	· ~ -	0.330	0.185 *
D.5	Pond 🐴	0.354	-	0.998	0.635 *
D5	Stream 💇		-	0.421	0.191 *
D6	Ditch	0.589 2*	-	0.544	0.296 *
R1	Rond 5	<u></u> \$0.00√ *	-	< 0.001	<0.001 *
R1	Stream S	<0.001 *	-	< 0.001	<0.001 *
RX R4	Stream	0.003 *	-	< 0.001	<0.001 *
\$\text{R4}	Stream S	0.001 *	-	< 0.001	<0.001 *

 ^{*} Single applications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by ecotox

Tier 1 FOCUS Step 3 PECsw and PECsed for TFA following single application(s) of Table 9.2.5- 52: BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.039 kg

						<u>. </u>	
Scenario FOCUS	Waterbody	Max PEC (μg/L)*	sw	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Pk sed (μg/kg)*	Ť Ŝ
Step 3					, O		,,,
D1	Ditch	0.185	*		Q. 780	0.088	*
D1	Stream	0.114	*	T	Ø0.110	J 0.632 , C	×
D2	Ditch	0.122	*	¥ -	0.114	2 .070	*﴿
D2	Stream	0.081	*	- ·	© 0°.072	& 0.045°	Ş
D3	Ditch	0.279	*	Q Q	0.279	Q 65 S	*
D4	Pond	0.333	8	0 - L	332	0.199	*
D4	Stream	0.146	*		0.137	0,0°5° 0	*
D5	Pond	0.431	**	Y . W K	0:429	√ 9.271 ♣	*
D5	Stream	0.138			Ø.165	0.078	*
D6	Ditch	£ 265	0° *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.240	* •0.¥33	*
R1	Pond	@<0.00 ⁴	*0		< 9.001 °C	&<0.001	*
R1	Stream *	<0.001	*	4 6 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.001	*
R3	Stream 🧳	4 P.008	*.	\$ 4 - ~ \	< 0.0001	< 0.001	*
R4	Stream	0.902	Ŏ.		<0.001	< 0.001	*

Ther 1 FOCUS Step 3 PEC_{sw} and PEC_{sw} for OFA following single application(s) of BIX + FLU + FTZ EC 260 to barley II (modelling use spring cereals II -- early -- 0.078 Table 9.2.5- 53

Scenario FOCUS	Waterbody	Max PEOw (µg/L)*	Dommant entry	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3			S S		
D1	Ditch	Ø.481_Q *)	0.467	0.253 *
D1 🔎	Stream	0.299	- - -	0.285	0.150 *
D3	Dijîsh 🗐	863 0 * * *		0.863	0.572 *
D4	Pond	1.38	-	1.37	0.846 *
D4	Stream	0 5 70	-	0.535	0.320 *
I //	Rond	* 1.85	-	1.84	1.18 *
D5 🍣	Stream	0.763 *	-	0.726	0.342 *
R4	Stream V	0.002 *	-	< 0.001	<0.001 *

Single applications are marked.

Single application (are marked. TWA interval associated by ecotor)

TWA interval as required by ecotox

Table 9.2.5- 54: Tier 1 FOCUS Step 3 PECsw and PECsed for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early -- 0.078

Ditch Stream Ditch Stream Ditch Stream Ditch Pond Stream Pond	Max PECsw (μg/L)* 0.719 * 0.444 * 0.526 * 0.350 * 0.941 * 1.60 * 0.702 *	Dominant entry route	21d-PECsw,twa (μg/L)*** 2701 20.427 0.488 0.309 0.961	₹ 0.193°
Stream Ditch Stream Ditch Pond Stream Pond	0.444 * 0.526 * 0.350 * 0.941 * 1.60	& -	0.488 0°309 4	0.342 * 0.301
Stream Ditch Stream Ditch Pond Stream Pond	0.444 * 0.526 * 0.350 * 0.941 * 1.60	& -	0.427	0.342
Ditch Stream Ditch Pond Stream Pond	0.526 * 0.350 * 0.941 * 1.60 *	\$\frac{\pi}{2} -	0.488	0.203
Stream Ditch Pond Stream Pond	0.350 * 0.941 * 1.60 *	\$\frac{1}{2} - \frac{1}{2}	0°.309	₹ 0.193°
Ditch Pond Stream Pond	0.941 * 1.60 *		0.941	& 0.193 C
Pond Stream Pond	1.60		0.941	P . Ø U . I
Stream Pond	_		2, °0 0	Q.616 ~ *
Pond	0.702 **	~ C C	\$ 60	0.965 *
Pond			0.659	0 208
	2.00	y	f 1:99 5	√ 1 27 √ * l
Stream	0.889, &		9 .841	0.380 *
Ditch	£.18 "° *	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1.00	•0:591 *
Pond	⊘ <0.00√ *∂	- T	0.001	% <0.001 *
Stream	@001 &**		~~~0.00g	<0.001 *
Stream 🦃	0.005 \$\tilde{\pi} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	¥ <u> </u>	\$\tag{\text{9001}}\$	<0.001 *
Stream	\$\sqrt{0.002} \text{\$\int_{\text{0}}^{\text{7}}}\ 0.002		<0.001	<0.001 *
interval as sequired by e				
	Pond Stream Ditch Pond Stream Stream Stream Application of marked application of the marked appl	Pond 2.00 * *.	Pond 2.00 % * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pond 2.00 * 7 - 1.99

Tier 1 FOCUS Step 3 PECsw and PECsed for TFA following single application(s) of Table 9.2.5- 55: BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- late -- 0.078

	g					
Scenario FOCUS	Waterbody	Max PECs (μg/L)*	w	Dominant entry route	21d-PEC _{sw,twa} (μg/L)**	Max Prosed (μg/kg)*
Step 3					, F	
D1	Ditch	0.367	*	- 4	Q338	~ 0.175 *
D1	Stream	0.227	*	V	© 0.218	0.04 0*
D2	Ditch	0.242	*	¥ -	0.225	3 .138 * * * * * * * * * * * * * * * * * * *
D2	Stream	0.160	*		Q°.143	& 0.089 &
D3	Ditch	0.558	*		0.558	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
D4	Pond	0.664	8		662	0.396 *
D4	Stream	0.290	1 *	, O Q Q	0.272	0 0,50 0*
D5	Pond	0.858	*	Y . Q Q	0.853	Q.539 * *
D5	Stream	0.348			9.329	0.156 *
D6	Ditch	£531	*	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.489	•Q:265 *
R1	Pond	©<0.004	*0		© < 9.001 ° C	<0.001 *
R1	Stream *	Q ₀ 002	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 6 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.001 *
R3	Stream 👋	9.013 ©	*6	4 - ~ \	<0.001	<0.001 *
R4	Stream	0.004	0		<0.001	<0.001 *

Single application are marked.

** Single application or marked.

** TWA interval as required by ecotor

Tier 1: FOCUS Step 4 Tier 1: FOCUS Step 4

The maximum PEC values for FOCUS Step 4 are given in the tables below for fluopyram and its metabolite fluopyram-7, hydroxy (FLO 7-OH) considering application in barley (FOCUS crops: cereals, spring and winter). The reported PEC values represent loadings via all relevant entry routes.

Fluopyram

Table 9.2.5- 56: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use spring cereals—early -- 0.039 kg a.s./ha)

	,	0.057 Kg a						j.		jp"
PEC _{sw} (μg/L)	Scenario			St	ep 4 fluop	yram_Tiei	r 15	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			7
reduction	No spray buffer (m)	0 m	5 m	10 m 🎝	20 m	(D) m	20 mg		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
None	D1 Ditch	1.28	1.28	1,2	1.28	1.200	£.28	Y ~		
50 %		1.28	1.28	. ¥P.28	1.280°	1,28	o 1.28			
75 %		1.28	1.28	1.28	#2 8	\$1.28°	1,28	·		
90 %		1.28	1.284	. 1⁄2∕8 <u> </u>	@1.28 Q	1,28	1.28			
None	D1 Stream	0.798	0.798	√ Ø.798 <u>^</u>	0.708	10,7 98 _%	© 0.79 %	4 ,		
50 %		0.798	0 .798 [©]	0.798	0.798	0.798	0.998		'n	
75 %		ر 0.798	0.798	ð: 7 98	<0.79 8 √0.798√0	0398	798 \$			
90 %		0.798	<i>9</i> ₹998	<i>©</i> 0.798	0.79%	Ø.798 _~	0.79	1		
None	D3 Ditch	9. Ç 47	°>0.067	0.036		$\bigcirc 0.036$	0.919			
50 %		0.124	0.034	Ø018	∂ 0.009 €	0.018	3 0.009			
75 %	*	0.062	0.017	\$0.00 %	0.005	Ø.009	0.065			
90 %	2	0 .0725	\$0.007 [©]	0,0004	>0.002 ×	0.004	20,002			
None	D4 Pond	0.317	0.387	316 g	0.316	0.316	0.316			
50 %	D4 P6nd	0.316	0.316	y 0.3 16,	Q 3 15	0.316	0.315			
75 %		@.316 C	0.3460	93 15	0.315	0.315	0.315			
90 %		0.315	0.315	> 0.315∂		3 0315	0.315			
None	D4 Stream	0°911,0	Ø .319	0.349	№ 319 ^	0.319	0.319			
50 %	D+ Stream	×9.319 _~	0.349	19 J	0.319	0.319	0.319			
75 %		0.319	Ø: 3 19	© 0.3190°	0.319	0.319	0.319			
90 %		0.\$19	©0.319	0.209	© :319	0.319	0.319			
None &	OD5 Pond	© .234°	0.233	0.233 0.233	0.233	0.233	0.233			
50 % 📣	Č	0.259		\$ 0.23 \$	0.233	0.233	0.233			
75 %		Ø₽33	0.233	0.283	0.232	0.233	0.232			
900%		\$\tag{0.232}	0.202	2 0.232	0.232	0.232	0.232			
None	D5 Stream	0.226	0.185	0.185	0.185	0.185	0.185			
50 %		® .185) 0.18 %	0.185	0.185	0.185	0.185			
75 %		0.185	Q#85	0.185	0.185	0.185	0.185			
90 % Ø Note		0,485	0.185	0.185	0.185	0.185	0.185			
None	R4 Stream	Ø.557	0.557	0.557	0.557	0.252	0.131			
50 %		¥ 0.557	0.557	0.557	0.557	0.252	0.131			
75 %		0.557	0.557	0.557	0.557	0.252	0.131			
90 %		0.557	0.557	0.557	0.557	0.252	0.131			

Table 9.2.5- 57: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- early -- 0.039 kg a.s./ha)

PECsw (μg/L)	Scenario			St	ep 4 fluop	yram_Tiei	:1			F F
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			, Ö
reduction	No spray buffer (m)	0 m	5 m	10 m	№ 20 m	1000	20 m			, e
None	D1 Ditch	1.91	1.91	1.91	1.91	P.91	1.9%	Q .		&\ \{\frac{1}{2}}
50 %		1.91	1.91	1.21	1.91 "	₹ 1.9 & °	J\$91	y C	4	9
75 %		1.91	1.91	P .91	1.91	1,91	, Ĭ.9 <u>1</u>			
90 %		1.91	1.91	¥ 1.91	1.91	K 1.91	1.90	~		
None	D1 Stream	1.22	1.224	122	@1.22 Q	1.22	1.22		Z,	,
50 %		1.22	1,22	X.22	1.20	<u>√1.2</u> 22 _∞	O 1.22		K,	
75 %		1.22	J. 22 K	1.22	¥22 ,	[©] 1.22, [∞]	1 22	Ş C		
90 %		1.22 🔏	1.22	1 22	1.22 C	1,22	£ 22 €			
None	D2 Ditch	2.48	2348	© 2.48 ©	2.	Q.48 Q	2.480	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
50 %		2.48	2.48	2.48	Q.48	Q 2.48	2 0 48	&		
75 %		2.48 %	2.48	2 48	₀ 2.48 √	2:48	©2.48			
90 %	*	2.48 ⁰	2 48	\$\frac{1}{2.48}\$	2,48	¥2.48,5	2,48			
None	D2 Stream	156	© 1.56 أ	136	≈9.56 &	1.56	· 1956			
50 %	Ĩ	1.56	1.56	Ĵ.56 €	1.56	196	√1.56			
75 %	, Š, ć	1.56	¥1.56 ^	y 1.56	1.36	\$1.56				
90 %		1.56	1.56	1.56	1.56	1.56	1.56			
None	D3 Dorch	©0.247	0,067	× 0.036	0.019	£0,636	0.019			
50 %	*	0.124	10 .034	0.018	~ 9 €09 ~	0.018	0.009			
75 🖏		~ 9 2062	0.01%	.Q. Q 09	₹0.00 5	0.009	0.005			
90 %		0.025	0.007	0.004	0.002	0.004	0.002			
None	Da Pond	0.341	©0.341	0.340	3 40	0.340	0.340			
50 %		Ø.340°~	0.349	~Q340 _~	0.340	0.340	0.340			
75 %	7	0.340	9 340	0.340	0.340	0.340	0.340			
90 %	, Q	QQ 40	©0.340	0.340	0.340	0.340	0.340			
Nøne	D4 Sfream	△0.346	0.346	°0:346	0.346	0.346	0.346			
50 %		0.348	0.346	0.346	0.346	0.346	0.346			
75 %	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 346 ×	0.340	0.346	0.346	0.346	0.346			
90 %		0.346	0.846	0.346	0.346	0.346	0.346			
None O	D\$ Pond	0.237	0.227	0.226	0.226	0.226	0.226			
50.29	2 A	~ © :226	0.226	0.226	0.226	0.226	0.226			
75%		y 0.226	0.226	0.226	0.226	0.226	0.226			
90 %		0.226	0.226	0.226	0.226	0.226	0.226			
None	D5 Stream	0.223	0.185	0.185	0.185	0.185	0.185			
50 %		0.185	0.185	0.185	0.185	0.185	0.185			

PEC _{sw} (μg/L)	Scenario			St	ep 4 fluop	yram_Tiei	r 1		. 0
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	(
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	€ m	\$ \tag{\tag{\tag{\tag{\tag{\tag{\tag{	
75 %		0.185	0.185	0.185	0.185	0.185	0.185		
90 %		0.185	0.185	0.185	© .185	0.185	0.185		
None	D6 Ditch	0.409	0.409	0.409	0.409	95 4 09	0.409		
50 %		0.409	0.409	0.40	0.409	0.409 °	0.409	, ~ c	
75 %		0.409	0.409	9,2009	0.409	0.409	®́409, (W W
90 %		0.409	0.409	0.409	0.409	20,409	Ø 0.400		T,
None	R1 Pond	0.029	0.029	0.028	Ø d27	0.013	0.4007	S 2	
50 %		0.027	0.027	• Q.9 26 ∧	0.026	0.011	3 9.006	57 85	
75 %		0.026	0 926 ×	0.025	0.025	Ø:011,°	0.00	~	
90 %		0.025	3 .02 3	0.025	~0×025 ~	0.010	0.005		
None	R1 Stream	0.299	0.299	0.299	0.299	0036	O.0715		
50 %		0.299	·. ·	0.299	0299	∯0.136°	0,001	Q,	
75 %		.0.299	0.299	0,299	°Ø.299√	0, 4	0.071	0"	
90 %		_{්ධි} 0.299	0.299	2 0.299	0.299 °	100,136	≫0.071 [©]		
None	R3 Stream	0.440	0.440	0.446	95 ⁴⁴⁰ 4	0.201∜	0,305		
50 %		-0	J 0.440	0.440	0.440	0.26/1	0.105		
75 %		(0.44 6)	0.440	0.440	0.440	0.201	, 0.105		
90 %		0.440	0.440	0.440	© 440	© 0.2015	0.105		
None	K4 Stream	© .515	0.5\$\$	\$315	0.51 5 و	0,234	0.123		
50 %		0.51\$	Q \$15	0.515	0.515	©.234	0.123		
75 %		0515	©0.515	0.595	\$515 C	9 0.234	0.123		
90 %"		€ 0.515€	0.553	0×515 (c	, 0.515	0.234	0.123		
					F.				

Table 9.2.5- 58: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

PEC		1410 0	.039 kg a.s	,,, ma <i>,</i>						<u></u>	2
None		Scenario			St	ep 4 fluop	yram_Tiei				A. A.
None	Nozzle		None	None	None	None	10 m)
50 % 0.981 0.981 0.981 0.983 0.981 0.984 0.981 0.984 0.981 0.984 0.981 0.984	reduction		0 m	5 m	10 m	№ 20 m	~	0,			2
None	None	D1 Ditch	0.981	0.981	(//)	0.981	* 🤝	0.984	Q .		<u>)</u>
None	50 %		0.981	0.981	0.98	0.981		95981	y C	S S	
None	75 %		0.981	0.981		0.98	, /	0.981			
None	90 %		0.981	0.981	₹0.98 1	0.981			1 1	2	
175 %	None	D1 Stream	0.613	0.613	0,613		0.619				
None	50 %		0.613		1 // ~ //		Ø. 0 13		.// .		
None	75 %		0.613	\$.613 K	0.613	0.613					
None D2 Ditch 0.799 0.	90 %				0.613		04693	3 613 £			
So %	None	D2 Ditch	0.799♥	0399	<i>©</i> 0.799℃	0.78	Ø.799_(0.79	**		
90 % 0.799	50 %		0.799	×0.799	0.7 %	0 799	V ~	0.099	&		
None D2 Stream 0.500 0.000 0.0	75 %		_ 2	0.790	Ø\$799	₀ 0.799√	0.799	3 0.799			
None D2 Stream 0.500 0.000 0.0	90 %	* <u></u>	0.7299	00799		0,799	40 .799	* 0.7 5 9			
So % So % So % So % % % % % % % % % % % % % % % % % %	None	D2 Stream	0500	<i>©</i> 0.500 ©	0.500	9.500 ^{(k}	0.500				
None	50 %			0,500	3 500 2	0.500	0.\$00	√0.500			
None	75 %	, Ši (ó	0.509	6.500 ^	y 0.500	0.300	%0.50Q	0.500			
To by To b	90 %		0.500	√0.5000°	0,500		0.500	0.500			
None D4 Pond 0.213 0.212 0.242 0.211 0.212 0.211	None	D3 Dorch	<0.248 °	0,067	%0.036 \$	0.019	· 🤝	0.019			
None D4 Pond 0.213 0.212 0.242 0.211 0.212 0.211	50 %	\ \	0.124	10 7.034	\sim	№ 09 ×	0.018	0.009			
None D4 Pond 0.213 0.212 0.242 0.211 0.212 0.211 50 % 0.211 0.219 0.211 0.211 0.211 0.211 75 % 0.210 0.211 0.211 0.211 0.211 90 % 0.214 0.216 0.210 0.210 0.210 0.210 None D4 Sfram 0.214 0.216 0.210 0.210 0.210 0.210 75 % 0.210 0.210 0.210 0.210 0.210 90 % 0.210 0.210 0.210 0.210 0.210 90 % 0.210 0.210 0.210 0.210 0.210 None D5 Pond 0.203 0.102 0.102 0.102 0.102 50 % 0.102 0.102 0.102 0.101 0.101 75 % 0.102 0.101 0.101 0.101 0.101 90 % 0.102 0.101 0.101 0.101 0.101 90 % 0.102 0.101 0.101 0.101 0.101 90 % 0.102 0.101 0.101 0.101 0.101 90 % 0.102 0.101 0.101 0.101 0.101 90 % 0.102 0.101 0.101 0.101 0.101	75	, Ø	~ 9.0 62_	0.017	.Q. Q 09	0.005	0.009	0.005			
None D4 Pont 0.213 0.212 0.212 0.211 0.211 0.211 0.211 0.211 0.211 75 % 0.210 0.211 0.211 0.211 0.211 0.211 0.211 90 % 0.210 0.211 0.210 0.210 0.210 0.210 None D4 Stram 0.214 0.200 0.210 0.210 0.210 0.210 50 % 0.210 0.210 0.210 0.210 0.210 0.210 75 % 0.210 0.210 0.210 0.210 0.210 0.210 90 % 0.210 0.210 0.210 0.210 0.210 0.210 None D5 Pond 0.403 0.102 0.102 0.102 0.102 0.102 50 % 0.102 0.102 0.102 0.102 0.102 0.102 50 % 0.210 0.200 0.102 0.102 0.102 0.102 50 % 0.102 0.102 <	90 %		0.02	0.007	50.004°	0.002	0.004	0.002			
50 % 0.211 0.212 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.210	None	Da Pond		©0.212	0.242		0.212	0.211			
75 %	50 %		Ø.211%	0.219	~0 ² 11	0.211	0.211	0.211			
None D4 Stream 0.214 0.200 0.210 0.102 0.102 0.102 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.106 0.106 0.106	75 %		0.240	92 11	0.21	f	0.211	0.211			
None D4 Stream 0.214 0.200 0.210 0.102 0.102 0.102 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.106 0.106 0.106	90 %		Q 211	©.21]	0.231	0.210	0.211	0.210			
75 % 90 % None Depend 0.210 0.210 0.210 0.210 0.210 0.210 0.102 0.102 0.102 0.102 0.102 0.102 50 % 0.102 0.102 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 None Depend 0.231 0.106 0.106 0.106 0.106 0.106	Nøne	D4 Stream	<u> </u>		^0.2 10	0.210	0.210	0.210			
90 % 0.210 0.210 0.210 0.210 0.210 0.210 0.210 0.210 None De Pondo 0.203 0.102 0.102 0.102 0.102 0.102 0.102 0.102 50 0 0.102 0.102 0.102 0.101 0.10	50 %		0.210	0.210	0.210	0.210	0.210	0.210			
None Dependence 0.103 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106	75 %		2 10 ×	0.2100	0.210	0.210	0.210	0.210			
50 % 0.102 0.102 0.102 0.101 0.102 0.101 0.102 0.101 0.102 0.101 0	90 %		©0.210	0.210	0.210	0.210	0.210	0.210			
50.00 0.102 0.102 0.101 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.106 <td< td=""><td>None O</td><td>DS Pond</td><td>0.203</td><td>0.102</td><td>0.102</td><td>0.102</td><td>0.102</td><td>0.102</td><td></td><td></td><td></td></td<>	None O	DS Pond	0.203	0.102	0.102	0.102	0.102	0.102			
0.102 0.101		2 A	~ © :102	0.102	0.102	0.101	0.102	0.101			
None D5 Stream 0.231 0.106 0.106 0.106 0.106 0.106	75%		ÿ 0.102	0.101	0.101	0.101	0.101	0.101			
	90 %		0.101	0.101	0.101	0.101	0.101	0.101			
50 % 0.115 0.106 0.106 0.106 0.106 0.106	None	D5 Stream	0.231	0.106	0.106	0.106	0.106	0.106			
	50 %		0.115	0.106	0.106	0.106	0.106	0.106			

PEC _{sw} (μg/L)	Scenario			St	ep 4 fluop	yram_Tiei	• 1		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	Ċ	
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	% 0 m	4	
75 %		0.106	0.106	0.106	0.106	0.106	0.106		
90 %		0.106	0.106	0.106	© .106	0.196	0.106		
None	D6 Ditch	0.251	0.167	0.167	0.167	9 767	0.167®		
50 %		0.167	0.167	0.16	0.167	0.167	0.1©7	(C	
75 %		0.167	0.167	9,067	0.167	0.169	Q167, () b	, v
90 %		0.167	0.167	0.167	0.169	<u>√0</u> ,167 √	Ø 0.16	****	Š
None	R1 Pond	0.091	0.090	0.08	Ø, 6 87	~0.0 3 %	0.020	4 4	e °
50 %		0.088	0.087	- Q .987 ∧	$\sqrt[9]{0.086}$	0.036	Ø.019		W.
75 %		0.086	0,986 ·	0.086	0.085	Ø⁄.035 °	0.018	₩ (
90 %		0.085	3 0.08 3	0.085	~0×085	La azer	Q 17		
None	R1 Stream	0.408	0.408	0.408	0.408	0.086	Ĉ0.097Ŝ		
50 %		0.498	20 408 4	0.40	0.408	5 0.186	0,097	<i>Q</i> ,	
75 %		Ø.¥08	0.40	0,408	7.408	0.186	0.097	O [®]	
90 %]	(a) 0.408(b)	0,408	20. 408	0.408	186	ÿ0.09 <i>7</i> ♀		
None	R3 Stream	0.4299	0.499	0.499	05 ⁴⁹⁹ 6	0.227	0,799		
50 %		4 99 ×	J 0.499	0.499	ৣ [™] 0.499©	0.227	0.119		
75 %		(, 0.49 %)	0.499	0.4925°	0.499	0.227 _@	, 0.119		
90 %		0.499	0.499	0.499	© 499	© 0.2275	0.119		
None	K4 Stream	0 .188 ©	0.188	8 788	0.188	0,086	0.045		
50 % ू 🤵	°U √ ,	0.18	0 4188	0.188	04,88	Ø.086	0.045		
75 %		Q \$88	©0.188 _\	0.188	\$.188 C	^y 0.086	0.045		
90 🚿		0 .188	0.188	√0×188 ⟨ <u>/</u>	0.188	0.086	0.045		

0.188 0.188

Table 9.2.5- 59: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use spring cereals II -- early -- 0.078 kg a.s./ha)

PEC _{sw} (μg/L)	Scenario			St	ep 4 fluop	yram_Tiei				7
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			
reduction	No spray buffer (m)	0 m	5 m	10 m	№ 20 m	1000	20 m			4
None	D1 Ditch	2.56	2.56	2.56	2.56	<u> 2</u> .56	2.5%	Q (5 4)
50 %		2.56	2.56	2.50	2.56	[©] 2.5 6 ₀ °	3 .36	S C	4	
75 %		2.56	2.56	2 2.56	2.56	2 56	2.56		~\$	
90 %		2.56	2.56	¥ 2.56	2.36	£ 2.56	2.50	ν.		
None	D1 Stream	1.60	1.60	1,50	@1.60 Q	1.60	1.60	Ť À	Š	
50 %		1.60	1,60	X.60 \	1.60	J.60 .	Ö 1.60			
75 %		1.60	J.60 &	1.60	1 ,60	O1.60	160			
90 %		1.60 🔏	1.60	150	1.60 °C	1,60	∑F.60 £			
None	D3 Ditch	0.494	0 3 34	<i>©</i> 0.071∂	0.057	Ø071_0	0.030	**Y		
50 %		Q2#7	×0.067	0.036	0 ,019	20.036	0.019	%		
75 %		0.124 🖔	0.033	% 018	_∂ 0.009 √	0.018	3 0.009			
90 %	%	0.049	00013	\$0.00 7 C	0,004	40 .007,\(\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	0.004			
None	D4 Pond	0063	©0.662 ©	0.66	∘ 9.661 [©]	0.661	₂ 0.661			
50 %	D4 TORO	0.661	0.664	3 .660 2	0.660	0.60	√0.660			
75 %	, Š	0.669	6.660 ^	y 0.660 ⁰	0.660	%0.66Q	0.660			
90 %		0.660	♥0.6600°	0.639	0.659	0.659	0.659			
None	D4 Stocam	₩0.67 3	0,673	£673	0.679	£673	0.673			
50 %		0,673	% .673	0.673	2 9 73 ≈	0.673	0.673			1
75		» 92673 ,	0.673	.Q.@73	0.673°	0.673	0.673			
90 %	\$	V 0.673	0.673	0.673	0.673	0.673	0.673			1
None	D'S Pond →	0.526	©0.525	0.525	524	0.525	0.524			
50 %		Ø.525°	0.52	~0 ³ 24	0.524	0.524	0.524			
75 % 🦼	7	0.523	Ø\$24	0.524	0.524	0.524	0.524			1
90 %		Q 24	©.524	0.523	0.523	0.523	0.523			
Nøne	D5 Sfream	△0.461	0.362	20 .392	0.392	0.392	0.392			1
50%	~ ~	0.392	0.392	0.392	0.392	0.392	0.392			١
75 %		€392 ≪	0.392	0.392	0.392	0.392	0.392			1
90 %		0.392	0.392	0.392	0.392	0.392	0.392			
None a	R4 Stream	1.20	1.20	1.20	1.20	0.543	0.284			1
None 50.25		~Qr.20	1.20	1.20	1.20	0.543	0.284			
75% @		1.20	1.20	1.20	1.20	0.543	0.284			
90 %\$		1.20	1.20	1.20	1.20	0.543	0.284			1

Table 9.2.5- 60: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- early -- 0.078 kg a.s./ha)

PEC		carry	U.U / 8 KŞ	5 a.s./11a/							2
None		Scenario			St	ep 4 fluop	yram_Tiei				#P 25.
None			None	None	None	None	10 m)
S0 %	reduction		0 m	5 m	10 m	҈ 20 m		20 m			Z
75 %	None	D1 Ditch	3.84	3.84	3.84	3.84		3.84	Q (5 4)
None	50 %		3.84	3.84	U// NP	3.84	° 3.8€°	384	y C	S S	
None	75 %		3.84	3.84		3.84	3,84	3.84		\$ T	
None	90 %		3.84	3.84	¥ 3.84°	3.84	I % / ./	3.80	7		
2.46	None	D1 Stream	2.46		2,46	©2.46 Q	2.46	2.46		. S	
75 % 2.46	50 %		2.46	2,46	×2.46 ×	^y 2.46 °	2 .46 ,			S,	
None D2 Ditch 5.22	75 %		2.46	m."		2,A6 ,	©2.46,°	2 .			
50 % 5.22 <td< td=""><td>90 %</td><td></td><td></td><td>⁰2.46</td><td>2,76</td><td>2.46 [©]</td><td>2,46</td><td></td><td></td><td></td><td></td></td<>	90 %			⁰ 2.46	2 ,76	2.46 [©]	2,46				
50 % 5.22 <td< td=""><td>None</td><td>D2 Ditch</td><td>5.22®</td><td>5632</td><td>\$ 5.22 D</td><td>5.23</td><td>©.22 (</td><td>5.22</td><td>**</td><td></td><td></td></td<>	None	D2 Ditch	5.22®	5632	\$ 5.22 D	5.23	©.22 (5.22	**		
None	50 %			5.22	5.2 2	\$.22 g	\$ 5.22	502	&		
So %	75 %		3.22 🖔	, 5.20	\$,22	_{₹ 5.22} 5.22	5 :32 .	\$5.22 _@			
So %	90 %	* <u></u>	\$ 5.22°	\$ 22	\$ 5.22 ₄	5,22	\$.22 \square	7 5,2 2			
75 % 90 % None D3 Dirch 0.494 0.134 0.007 0.009 0.018 0.009 0.004 0.007 0.004	None	D2 Stream	3,31	Ø 3.31 O	33	§31 ×	3.21	· 3.31			
75 % 90 % None D3 Dirch 0.494 0.134 0.007 0.009 0.018 0.009 0.004 0.007 0.004	50 %			3,34	3 .31 2	3.31	3 ⁹ 1	₹3.31			
None	75 %	, Ši (ó	3.3₺	*\$!.31 ^	y 3.31	3 3 1	/3.31 (P	3.31			
None D3 Birch	90 %			× 3.3,10°	3.31		3.31	3.31			
50 % 0.247 0.067 0.036 0.019 0.019 75 % 0.024 0.034 0.068 0.009 0.018 0.009 90 % 0.044 0.074 0.703 0.004 0.007 0.004 None D4 Pond 0.044 0.704 0.703 0.703 0.703 0.703 50 % 0.703 0.703 0.702 0.702 0.702 0.702 0.702 75 % 0.702 0.702 0.702 0.702 0.702 0.702 90 % 0.723 0.723 0.723 0.723 0.723 0.723 50 % 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 90 %	None	D3 Dorch	√0.494 °		% 0.071 \$	0.03		0.037			
None D4 Pond 0.049 0.013 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.003 0.703 0.703 0.703 0.703 0.703 0.702	50 %		0.247	10 .067	0.036	№ 19 ∧	0.036	0.019			
None D4 Pond 0.049 0.013 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.003 0.703 0.703 0.703 0.703 0.703 0.702	75 🖏	·	· 9724			0.009°	0.018	0.009			
None D4 Pont 0.504 0.704 0.703 0.703 0.703 0.703 0.703 50 % 0.703 0.703 0.702 0.702 0.702 0.702 0.702 75 % 0.700 0.702 0.702 0.702 0.702 0.702 90 % 0.723 0.723 0.723 0.723 0.723 0.723 50 % 0.723 0.723 0.723 0.723 0.723 0.723 75 % 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 None 0.500 0.510 0.509 0.509 0.509 0.509 50 % 0.508 0.508 0.508 0.508 0.508 90 % 0.509 0.509 0.509 0.509 50 % 0.508 0.508 0.508 0.508 90 % 0.508 0.508 0.508 0.508 </td <td>90 %</td> <td>\$</td> <td>0.049</td> <td>0.013</td> <td>50.007</td> <td>0.004</td> <td>0.007</td> <td>0.004</td> <td></td> <td></td> <td></td>	90 %	\$	0.049	0.013	50.007	0.004	0.007	0.004			
50 % 0.703 0.703 0.703 0.702 0.702 0.702 0.702 75 % 0.702 0.702 0.702 0.702 0.702 0.702 0.702 90 % 0.702 0.702 0.702 0.702 0.702 0.702 None D4 Sfram 0.723 0.723 0.723 0.723 0.723 0.723 75 % 0.723 0.723 0.723 0.723 0.723 0.723 0.723 90 % 0.723 0.723 0.723 0.723 0.723 0.723 None D5 Pond 0.500 0.510 0.509 0.509 0.509 0.509 90 % 0.508 0.508 0.508 0.508 0.508 0.508 90 % 0.509 0.509 0.509 0.509 0.509 0.509 90 % 0.509 0.509 0.508 0.508 0.508 90 % 0.508 0.508 0.508 0.508 0.508 90 % 0.508 0.508 0.508 0.508 0.508 <tr< td=""><td>None</td><td>Da Pond</td><td>0.204</td><td></td><td>0.703</td><td></td><td>0.703</td><td>0.703</td><td></td><td></td><td></td></tr<>	None	Da Pond	0.204		0.703		0.703	0.703			
90 % Q002 0.7023 0.723	50 %		Ø.703°×	0.709	~0 ⁹ 02	0.702	0.702	0.702			
90 % Q002 0.723 0.723 0	75 %	Y T	0.700	9 302	0.70 2	0.702	0.702	0.702			
None D4 Sfream 0.723	90 %		Q Q 02	©0.702	0.792		0.702	0.702			
50 % 0.723 0.509 0.509 0.509 0.509 0.509 0.508 0.508 0.508	Nøne	D4 Stream	4 0.723	0.723		0.723	0.723	0.723			
90 % 0.723 0.723 0.723 0.723 0.723 0.723 0.723 None Depend 0.500 0.510 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.508	50 %		0.723	0.723	0.723	0.723	0.723	0.723			
None DS Pond 0.500 0.510 0.509 0.509 0.509 0.509 50.504 0.509 0.509 0.508 0.508 0.508 0.508 75% 0.508 0.508 0.508 0.508 0.508 0.508 90% 0.508 0.508 0.508 0.508 0.508 None D5 Stream 0.457 0.383 0.383 0.383 0.383 0.383	75 %		€ 723 ≈	0.7230	0.723	0.723	0.723	0.723			
50 0.509 0.509 0.509 0.508 0.509 0.508 75% 0.508 0.508 0.508 0.508 0.508 0.508 90% 0.508 0.508 0.508 0.508 0.508 None D5 Stream 0.457 0.383 0.383 0.383 0.383 0.383	90 %		0.723	0.723	0.723	0.723	0.723	0.723			
50.50 0.509 0.509 0.508 0.509 0.508 <td< td=""><td>None O</td><td>D\$ Pond</td><td>0.50</td><td>0.510</td><td>0.509</td><td>0.509</td><td>0.509</td><td>0.509</td><td></td><td></td><td></td></td<>	None O	D\$ Pond	0.50	0.510	0.509	0.509	0.509	0.509			
75% 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 90% 0.508 0.508 0.508 0.508 0.508 0.508 None D5 Stream 0.457 0.383 0.383 0.383 0.383 0.383		2 A	~ © .509	0.509	0.509	0.508	0.509	0.508			
None D5 Stream 0.457 0.383 0.383 0.383 0.383 0.383	75%		0.508	0.508	0.508	0.508	0.508	0.508			
	90 %		0.508	0.508	0.508	0.508	0.508	0.508			
50 % 0.383 0.383 0.383 0.383 0.383 0.383	None	D5 Stream	0.457	0.383	0.383	0.383	0.383	0.383			
	50 %		0.383	0.383	0.383	0.383	0.383	0.383			

PECsw (μg/L)	Scenario			St	ep 4 fluop	yram_Tie	· 1		a.° ≈
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	.~	
75 %		0.383	0.383	0.383	0.383	0.383	> 0.383		
90 %		0.383	0.383	0.383	© .383	0.38	0.383		
None	D6 Ditch	0.814	0.814	0.814	0.814	0814	0.814	Ž	Z 1.0
50 %		0.814	0.814	0.81	0.814	0.814	0.894	<i>Q</i> 0	
75 %		0.814	0.814	9814	0.814	0.84	®\$14. ()	
90 %		0.814	0.814	0.814	0.84	£0,814 ₄	Ø 0.81	**************************************	Š
None	R1 Pond	0.058	0.057	0.054	Ø52	0.026°	0.044	4 4	e °
50 %		0.053	0.057	∘Q.950 ∧	$\sqrt[6]{0.050}$	0.022	Ø.012	7 P	W.
75 %		0.050	0 50	(0.049 ₀)	0.049	Ø:021 %		% 1	
90 %		0.049	3 .04 %	0.048	~0.048 g	0.020	Q		Ø
None	R1 Stream	0.622	0.622	0.622	0.622	0082	©0.148\$		
50 %		0.622	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	0.622	0.62/2	5 0.282	0,148	<i>Q</i> .	
75 %		Ø.\$22 ₍₁₎	0.622	0,622	V.622	0.280	0.148	0"	
90 %		_{گي} 0.622	0.622	20 .622	0.622	282	≫0.148 [©]		
None	R3 Stream	0.929	0.929	0.926	05 9 29 (0.424	0.222		
50 %		1 929 ×	J 0.929	0029	ৣ 0 .929©	0.424	©.222		
75 %		(0.92 0)	0.929	0.922	0.929	0.424	0.222		
90 %		0.929	0.929	0.929	Ø929 <u>(</u>	© 0.42A	0.222		
None	X4 Stream	JQI.04 C	1.04	3.04) 1.04 ²	0474	0.248		
50 % ू 🧔	7 "O" _/ ,	1.04	4 04	1.04	1,04	Ø.474	0.248		
75 %		2904	1.04	1,04	J.04	0.474	0.248		
90 🕅		1.04	1.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.474	0.248		

Table 9.2.5- 61: Tier 1 PEC_{sw} values for fluopyram, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- late -- 0.078 kg a.s./ha)

None D2 Dich D2 Dich D3 Brich D4 B			- 0.070 Kg	,							2
No. None N		Scenario			St	tep 4 fluop	yram_Tier				100
None			None	None	None	None	10 m	20 m			1
S0 %	reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m		20 m			4
2.10	None	D1 Ditch	2.10	2.10	2.10	2.10		2.10	Q ,	5 4)
None	50 %		2.10	2.10		2.10	[©] 2.1 0 ₀ °	3 70	& C		
None	75 %		2.10	2.10		2.10	2,10	2.10		3	
None	90 %		2.10	2.10	× 2.10	2.76	2.10	2.10	2 4		
75 % 1.31 3.31 1.31 3.31 1.	None	D1 Stream	1.31	1.314	1,31	@1.31 Q	1.3	1.31	ð <i>Þ</i>	, S	
None	50 %		1.31	1,34		1.30	₫. 31 °			Ş	
None D2 Ditch 1.70	75 %		1.31	J. 31 K	1.34	1 31 ,	[©] 1.31		Ş (
None D2 Ditch 1.70	90 %			0 1.31	1 ,31	1.31 V	1,397	3 .31 £			
1.70	None	D2 Ditch	1.70%	1670	Ø 1.70 🖔	1.30		1.700			
75 %	50 %			<i>□</i>	1.70	- W	Q″1.70 °	100	&		
None D2 Stream 1.70 1.07 1.	75 %		Y.70 &	1.70	4 √70 €	₆ 1.70 √	ſ: 7 0 .	\$1.70 g			
1.07	90 %	* <u></u>	7 1.70 °	6 70	\$\tilde{\sqrt{1.70}}		₹.70,7°	1,70			
1.07	None	D2 Stream	1507	© 1.07 O	1207	° 9.07 €	1.07	. 			
75 %	50 %		1.07	1,00	Ĵ.07 2	1.07	1907	\$1.07			
None	75 %	Ţ	1.0%	4.07 ^	1.02		\$1.07\$	1.07			
None D3 Datch	90 %		//	× 1.070	1.07		1.07	1.07			
50 % 0.248 0.067 0.036 0.019 0.036 0.019 75 % 0.024 0.034 0.018 0.009 0.018 0.009 90 % 0.056 0.014 0.007 0.004 0.007 0.004 None D4 Ponds 0.436 0.435 0.434 0.433 0.434 0.433 50 % 0.434 0.439 0.432 0.432 0.432 0.432 90 % 0.433 0.432 0.432 0.432 0.432 0.432 90 % 0.439 0.439 0.439 0.439 0.439 0.439 None D4 Stram 0.439 0.439 0.439 0.439 0.439 0.439 50 % 0.439 0.439 0.439 0.439 0.439 0.439 0.439 75 % 0.439 0.439 0.439 0.439 0.439 0.439 0.439 90 % 0.439 0.439 0.439 0.439 0.439 <t< td=""><td>None</td><td>D3 Dorch</td><td>©0.496</td><td>0,134</td><td>6.071</td><td>0.039</td><td></td><td>0.037</td><td></td><td></td><td></td></t<>	None	D3 Dorch	©0.496	0,134	6 .071	0.039		0.037			
75 %	50 % 🔊		0.248		0.036		0.036	0.019			
None D4 Pond 0.436 0.435 0.434 6.433 0.434 0.433 50 % 0.434 0.439 0.432 0.432 0.432 0.432 75 % 0.433 0.432 0.432 0.432 0.432 0.432 90 % 0.433 0.439 0.439 0.439 0.439 0.439 0.439 None D4 Sfream 0.439 0.439 0.439 0.439 0.439 0.439 50 % 0.439 0.439 0.439 0.439 0.439 0.439 75 % 0.439 0.439 0.439 0.439 0.439 0.439 90 % 0.439 0.439 0.439 0.439 0.439 0.439 None D5 Pond 0.236 0.236 0.235 0.235 0.235 0.235 50 % 0.234 0.234 0.234 0.234 0.234 0.234 90 % 0.235 0.235 0.235 0.235 0.235	75	,,0	· 92 24	0.034	.0. 0 18	₹0.009 C	3 .	0.009			
None D4 Pond 0.436 0.435 0.434 6.433 0.434 0.433 50 % 0.434 0.439 0.432 0.432 0.432 0.432 75 % 0.433 0.432 0.432 0.432 0.432 0.432 90 % 0.433 0.439 0.439 0.439 0.439 0.439 0.439 None D4 Sfream 0.439 0.439 0.439 0.439 0.439 0.439 50 % 0.439 0.439 0.439 0.439 0.439 0.439 75 % 0.439 0.439 0.439 0.439 0.439 0.439 90 % 0.439 0.439 0.439 0.439 0.439 0.439 None D5 Pond 0.236 0.236 0.235 0.235 0.235 0.235 50 % 0.234 0.234 0.234 0.234 0.234 0.234 90 % 0.235 0.235 0.235 0.235 0.235	90 %	\$	0.050		0.007	0.004	0.007	0.004			
50 % 0.434 0.433 0.433 0.432 0.433 0.432 0.433	None	Da Pond	0.436	©0.435	0.434	433	0.434	0.433			
75 %	50 %		3434	0.439	0,433	0.432	0.433	0.432			
None D4 Sir am 0.439 0.235 0.235 0.235	75 % 🔏		0.433	Ø \$33	0.43 2	ay .	0.432	0.432			
None D4 Sir am 0.439 0.235 0.235 0.235	90 %		QQ 32	©0.432	0.432	0.432	0.432	0.432			
50 % 0.439 0.439 0.439 0.439 0.439 0.439 0.439 75 % 439 0.430 0.439 0.439 0.439 0.439 0.439 90 % 0.439 0.439 0.439 0.439 0.439 0.439 None 0.236 0.236 0.235 0.235 0.235 0.235 50 % 0.234 0.234 0.234 0.234 0.234 0.234 90 % 0.234 0.234 0.234 0.234 0.234 0.234 None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214 0.214	Nøne	D4 Sfream	<u> 4</u> 0.439	0.439	×0.439	0.439	0.439	0.439			
90 % 0.439 0.439 0.439 0.439 0.439 0.439 0.439 None DS Pond 0.236 0.236 0.235 0.235 0.235 0.235 0.235 0.235 0.234	50 %		0.439	0.439	0.439	0.439	0.439	0.439			
None DS Pond 0.236 0.236 0.235 0.235 0.235 0.235 50 0.235 0.234 0.234 0.234 0.234 0.234 75% 0.234 0.234 0.234 0.234 0.234 0.234 90% 0.234 0.234 0.234 0.233 0.234 0.233 None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214	75 %		₩ 439 ≈	0.43 Q	0.439	0.439	0.439	0.439			1
50 % 0.235 0.235 0.234 0	90 %		0.439	0.439	0.439	0.439	0.439	0.439			
50.25 0.235 0.234 0.234 0.234 0.234 0.234 75% 0.234 0.234 0.234 0.234 0.234 0.234 90% 0.234 0.234 0.234 0.234 0.234 None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214	None O	DS Pond	0.236	0.236	0.235	0.235	0.235	0.235			1
75% 0.234 0.234 0.234 0.234 0.234 0.234 0.234 90% 0.234 0.234 0.234 0.233 0.234 0.233 None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214		2 A	~ © :235	0.235	0.234	0.234	0.234	0.234			
None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214	75%		y 0.234	0.234	0.234	0.234	0.234	0.234			
None D5 Stream 0.461 0.214 0.214 0.214 0.214 0.214	90 %		0.234	0.234	0.234	0.233	0.234	0.233			1
	None	D5 Stream	0.461	0.214				0.214			1
		1									1

PECsw (μg/L)	Scenario			St	ep 4 fluop	yram_Tie	r 1		@1° &
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	.~	
75 %		0.214	0.214	0.214	0.214	0.214	0.214		
90 %		0.214	0.214	0.214	© .214	0.21	0.214		
None	D6 Ditch	0.503	0.326	0.326	0.326	0326	0.326		
50 %		0.326	0.326	0.32	0.326	0.326	0.326	(V	
75 %		0.326	0.326	93026	0.326	0.328	®326 _{\(\)} () Ö	
90 %		0.326	0.326	(0.326	0.326	20,326 ×	© 0.3265°	**	
None	R1 Pond	0.188	0.187	0.184	6 ,181	⁷ 0.0790	0.40 1	4 4	, , ,
50 %		0.182	0.187	~Q.₽80 ∧	90.1 <u>7</u> 8	0.075	3 0.038		
75 %		0.179	05\\78_s	0.178	0.107	Ø.073,	0.03	× 1	
90 %		0.177	3 0.17 7	0.176	~ © :176 /	0.072	Q 36		
None	R1 Stream	0.844	0.844	0.844	0.844	0384	£0.202\$		
50 %		0.844	.0 844 4	0.844	0.44	5 0.384	0,202	<i>Q</i> ,	
75 %		Ø.844	0.844	0,844	7.844	0.384	0.202	0 "	
90 %		© 0.844	0.894	20 .844	0.844	20384	> 0.202 [©]		
None	R3 Stream	1,10	1.10	1.10	J\$10 (0.501	0,262		
50 %		Ø.10 ×	J 1.10	1,90	َ 1.10 Ô	0.501	0.262		
75 %		(1.100)	1 90	1.10	1,100	0.501	0.262		
90 %		1:40	1.10	1.10	D:10	© 0.5015	0.262		
None	X4 Stream	@ .362	0.382	\$ 362	©0.362	0,1,65	0.087		
50 % ू 🧔] "O" _/ ,	0.36\$	0 4362	0.3620	0,3,62	6 0.165	0.087		
75 %		0.362	©0.362 \	0.362	£362 C	0.165	0.087		
90 🖑		~0.362 ~	0.362	√0×362 (<u>/</u>	0.362	0.165	0.087		

0.362 0.362 0.362 0.3 90 % 0.362 0.362 0.362 0.3 0.362 0.362 0.3 0.362 0.3 0.36

Fluopyram-7-hydroxy (FLU-7-OH)

Table 9.2.5- 62: Tier 1 PEC_{sw} values for FLU-7-OH, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use spring cereals—early -- 0.039 kg a.s./ha)

		0.057 Kg a						<i>[</i>	Ž Ô	<i>"</i>
PECsw (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	er \$			
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			
reduction	No spray buffer (m)	0 m	5 m	10 m 🎝	20 m	00 m	20 ma		5 4 5 4	Ď,
None	D1 Ditch	0.115	0.115	0.475	0.115	0.11 %	6 715	Y ~		
50 %		0.115	0.115	0.115	, 0.115	Ø:¥15	_இ 0.11 5			
75 %		0.115	0.115	0.116	0415	\$0.1150°	0.435	.6 .4		
90 %		0.115	0.11.5	0015	2 0.115-Q	0.115	Q.115 (
None	D1 Stream	0.072	0.072	∞ 0.072	0.00	10 ,072 %	°0.072			
50 %		0.072	9 .072 [©]	0.072	0.072	0.072	0.072)	
75 %		0.072	0.072	ð:972	$\sqrt[4]{0.072}$	03072	20.072			
90 %		0.072	99 072	© 0.072	0.00	£0.072	0.07	,		
None	D3 Ditch	< € 00001	°×0.001	<0.001	₹9 .001	°<0.001	<0.001	0		1
50 %		<0.001	<0.001	% 001	ð<0.00Î [∀]	≤0.0 01 <	Q0.00			1
75 %	*	<0.Q01	< 0001	\$<0.00√	<0.901	₹0.00 £	<0.001			1
90 %	*	<0.001	\$\chi_0.001 [©]	<0.0001	>0.001 ₀	/ <0. Q 01	≈0 .001			1
None	D4 Pond	0.029	0.039	0.029	0.029	0.029	0.029			1
50 %	į į į	0.029	0.029_^	× 0.029,	0.629	© 0.029	0.029			
75 %		@.029 (0.0290	0.029	0.029	0.029	0.029			
90 %		0.028	0.029	> 0.029∂	0.029	0.029	0.029			
None	D4 Stream	0.027	Ø.027	0.027	~ 0 :027 ^	9 0.027	0.027			1
50 💖	D4 Stream	~9.027 _~	0.020	10.027	0.02	0.027	0.027			
75 %		0.02	0.927	© 0.0270	0.027	0.027	0.027			
90 %		0.527	©0.027~	0.0027	0 :027	0.027	0.027			
None *	D5 Pond	Ø.028°>	0.628	~0,028 _~	0.028	0.028	0.028			
50 % 🔌	Ĭ.	0.029		\$\frac{9}{0.02}\$\frac{9}{2}	0.028	0.028	0.028			
75 %		Ø928	0.028	0.028	0.028	0.028	0.028			
900%		\$\0.028\dot\^	0.028	% .028	0.028	0.028	0.028			
None	D5 Stream	0.00	0.021	0.021	0.021	0.021	0.021			
50 %		© .021,5	0.02P	0.021	0.021	0.021	0.021			
75 %		0.021	0.621	0.021	0.021	0.021	0.021			
90 % Ø		0,021	0.021	0.021	0.021	0.021	0.021			٦
Norte	R4 Stream	2 0.003	0.003	0.003	0.003	0.001	< 0.001			٦
50 %		¥ 0.003	0.003	0.003	0.003	0.001	< 0.001			٦
75 %		0.003	0.003	0.003	0.003	0.001	< 0.001			٦
90 %		0.003	0.003	0.003	0.003	0.001	< 0.001			٦

Table 9.2.5- 63: Tier 1 PEC_{sw} values for FLU-7-OH, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- early -- 0.039 kg a.s./ha)

	curry	0.039 kg a							<u></u>
PEC _{sw} (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie			
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	1000	20 m		
None	D1 Ditch	0.140	0.140	0.140	0.140	Q.140	0.140	Q (5 4
50 %		0.140	0.140	0.140	0.140	© 0.1469°	95 140	S, C	
75 %		0.140	0.140	6 2140	0.140	0.140	0.140		~\$°
90 %		0.140	0.140	₹0.14 0	0.170	Ø.140	0.1400	<i>y</i>	
None	D1 Stream	0.090	0.090	0,090	©.090 Q	0.09	0.090		a.S
50 %		0.090	0.090	0.090	0.0	, 0e 6. 90	0.090		
75 %		0.090	J.090 &	0.090	0.990	J0.09 0	0.090	S C	
90 %		0.090 🌊	0.0%	0.090	₹0.090°	0.090			
None	D2 Ditch	0.182	0 4 82	<i>©</i> 0.182∂	0.182	Ø182_0	0.182	***	
50 %		0,182	×9.182	0.1802	Ø 182	©0.182	0.082	%	
75 %		0.182 🖔	0.180	Ø\$182	₀ 0.182√	0.182	3 0.182		
90 %	*	0.182	0282	©0.18 2 (,	0,182	40 .182	0.182		
None	D2 Stroom	00/2/5	<i>©</i> 0.125 ©	0.25	9.125 [©]	0.125	₀Q.9025		
50 %	D2 Stream	0.125	0.125	3 0.7125 2	0.125	0.\$\P25	5 0.125		
75 %	, Ši (ó	0.125	Ø.125 [^]	y 0.125	0.925	0.125	0.125		
90 %	D3 Dorch	0.125	∜0.12 5 ⊙ [™]	0,125	0.125	0.125 [°]	0.125		
None	D3 Dorch	₩0.00 <u>1</u>	<0.001	×50.001	₹<0.0 9	≨ 9.001	< 0.001		
50 %		<0.001	20 .001	⁰ <0.001	≈© 001 ×	0.001	< 0.001		
75 🗞	, Ø	~\$0001 _/	<0.001	€0.001	$<_{0.001}^{\circ}$	< 0.001	< 0.001		
90 %		\$<0.0 0	< 0.001	~0.00 _b	<0.001	< 0.001	< 0.001		
None	Da Pond	0.032	©0.032	0.032	032	0.032	0.032		
50 %		Ø.032×	0.039	0,032	0.032	0.032	0.032		
75 %	\ \tag{2}	0.030	20 32 (0.03 2	0.032	0.032	0.032		
90 %		0032	©0.032	0.032	0.032	0.032	0.032		
Nøne	D4 Sfream	△0.030	0.050	°-0.030	0.030	0.030	0.030		
50%		0.080	0.030	0.030	0.030	0.030	0.030		
75 %	L" 4 V	6 030 ~	0.030	0.030	0.030	0.030	0.030		
90 %		©0.030	0.030	0.030	0.030	0.030	0.030		
None None	DS Pond	0.027	0.027	0.027	0.027	0.027	0.027		
50.85	Ž A	~ © :027	0.027	0.027	0.027	0.027	0.027		
75%		y 0.027	0.027	0.027	0.027	0.027	0.027		
90 %		0.027	0.027	0.027	0.027	0.027	0.027		
None	D5 Stream	0.021	0.021	0.021	0.021	0.021	0.021		
50 %		0.021	0.021	0.021	0.021	0.021	0.021		

PEC _{sw} (μg/L)	Scenario			Ste	p 4 FLU-7	7- OH _Tie	er 1		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	(C	
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	₽ 0 m	.~	
75 %		0.021	0.021	0.021	0.021	0.021	0.021		
90 %		0.021	0.021	0.021	Ø .021	0.02	0.021		Ź,
None	D6 Ditch	0.025	0.025	0.025	0.025	Q5 Q 25	0.025		
50 %		0.025	0.025	0.02	0.025	0.025	0.025	(V	
75 %		0.025	0.025	0.025	0.025	0.023	®025 () Ø	W.
90 %		0.025	0.025	0.025	0.02	20,025 ₄	© 0.02		Š
None	R1 Pond	< 0.001	<0.001	<0.00		°€0.09°	<02001	e .4	, ,
50 %		< 0.001	<0.00	≤0 001 ∧	©0.001	<0.001	\$0.001		Ø.
75 %		< 0.001	<0.001	₹0.00£	<0.001	€Ø.001°	<0.001	₩ /	
90 %		< 0.001	\$0.00 4	<0.001	~©.001	~<0.0 ©	<0.001		9
None	R1 Stream	0.004	0.004	0.004	0.004	0002	Ĉ0.00 <u>1</u> Ŝ		
50 %		0.094	.0 004 4	0.004	0.004	\$0.002°	0,001	(k)	
75 %		0.004	~0.00 4 √	0,004	Ø.004	0,00	0.001	O ^v	
90 %] .	© 0.004	0,004	20. 004	0.004	900 002	√0.00 ₁ ©		
None	R3 Stream	0.008	0.008	0.00%	05008 _{(/}	0.004	0.002		
50 %		Ø 008 ×	J 0.008	0.008	0.008	0.004	©.002		
75 %		(0.00 8)	0:008	0.008	0.008	(0.004	0.002		
90 %		0.498	0.008	0.008	60008	© 0.00A	0.002		
None	R4 Stream	@ .009	0.009	Ø 609	©0.009	0,004	0.002		
50 % 🛴 🙋] "O",	0.00\$	0 2009	0.009	0,009	6 0.004	0.002		
75 %		0.009	©0.009 _\	0.009	\$.009 °C	y 0.004	0.002		
90 %		\$\cdot 0.009\times	0.069	202009 (g	0.000	0.004	0.002		

90 % 0.009 0

Table 9.2.5- 64: Tier 1 PEC_{sw} values for FLU-7- OH, following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

PECsw (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	er 1	E		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	5		
reduction	No spray buffer (m)	0 m	5 m	10 m	₽ 20 m	1000	20 m			,
None	D1 Ditch	0.082	0.082	0.082	0.082	£0.082	0.082	Q .		K,C
50 %		0.082	0.082	0.082	0.082	© 0.083°	05982	Å . C	4	T
75 %		0.082	0.082	6 2082	0.082	0.082	0.082		Z	
90 %		0.082	0.082	∜0.08 2 ©	0.082	Ø.082	0.082	2 4		
None	D1 Stream	0.052	0.052	0,052	© 0.052 Q	0.052	0.052	Ď Ź	Æ,	,
50 %		0.052	0.052	~0.052 <u>~</u>	× 0.0	Ø .0 52 .	0.052		K,	
75 %		0.052	J.052 &	× 0.052	0.052	J0.0524	0.052	Ş		
90 %		0.052 🔏	0.052	0.052	0.052°	0.0\$2	20 .052 £			
None	D2 Ditch	0.07 <i>5</i>	0@75	<i>©</i> 0.075℃	0.05	©075 ©	0.075	~		
50 %		0.075	×0.075	0.075	0 ,075	20.075	0.075	%		
75 %		0.075 %	0.075	Ø\$075	₀ 0.07 <i>5</i> √	0.075	30 .075			
90 %	°_	9 0.075	00075	©0.07 5 C	0,075	20.075	0.025			
None	D2 Stream	00047	©0.047 ©	0.047	~ 9.047 ^{(k}		₀ 0.9047			
50 %	Ţ	0.047	0.047	3 0.047	0.047	0.947	√0.047			
75 %		0.047	Ø <u>.</u> 047 ^	y 0.0479	0.047	£0.047	0.047			
90 %		0.047	∜0.047°	0.047	0.047	0.047	0.047			
None	D3 Dorch	~0.00 <u>1</u>	<0.001	×\$0.001\$	₹<0.0 9	≨ 9 .001	< 0.001			
50 %	X.	<0.001	20 .001	<0.001	≈ © 001 ×	0.001	< 0.001			
75 🖏	, Ø	~ 0001,	<0.001	€ 0.001	$<_{0.001}$	< 0.001	< 0.001			
90 %		V<0.000	<0,001	20.00	<0.001	< 0.001	< 0.001			
None	D⁄4 Pond√	0.016	©0.016	0.046	6 016	0.016	0.016			
50 %		Ø.016%	0.DLG	·Q.016	0.016	0.016	0.016			
75 %	, (j	0.040	2 2016 (0.01	0.016	0.016	0.016			
90 🎾 "		00016	©0.016	0.000	0.016	0.016	0.016			
Nøne	D4 Sfream	△0.016	0.066	° 0 :016	0.016	0.016	0.016			
50 %		0.016	0.016	0.016	0.016	0.016	0.016			
75 %		6 016 ~		0.016	0.016	0.016	0.016			
90 %		0.016	0.0216	0.016	0.016	0.016	0.016			
None 🔗	DS Pond	0.054	0.014	0.014	0.014	0.014	0.014			
50.25	Ž A	0 .014	0.014	0.014	0.014	0.014	0.014			
75%		0.014	0.014	0.014	0.014	0.014	0.014			
90 %		0.014	0.014	0.014	0.014	0.014	0.014			
None	D5 Stream	0.012	0.012	0.012	0.012	0.012	0.012			
50 %		0.012	0.012	0.012	0.012	0.012	0.012			

PEC _{sw} (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	er 1		a,° ×
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	4	
75 %		0.012	0.012	0.012	0.012	0.012	0.012		
90 %		0.012	0.012	0.012	© .012	0.01	0.012		
None	D6 Ditch	0.013	0.013	0.013	0.013	9913	0.013		
50 %		0.013	0.013	0.01	0.013	0.013	0.093	, × &	
75 %		0.013	0.013	9.0013	0.013	0.0f3	®013 ()	
90 %		0.013	0.013	0.013	0.019	0,013	0.01	***	
None	R1 Pond	< 0.001	<0.001	~0.00°	9 .001	© 0.00°	<070001	4 4	, , ,
50 %		< 0.001	<0.00	< 0001 ∧	×0.001	<0.001	\$0.001		
75 %		< 0.001	<0.001	₹0.00 %	<0.001	80.001	<0.001	× 1	
90 %		< 0.001	\$0.00 4	<0.001	~©.001	<0.000	<0.001		
None	R1 Stream	0.005	0.009	0.005	0.005	0002	€£0.00		
50 %		0.095	,0,005 A	0.005	0.605	₹Ø.002°	0,001	\\\ \(\).	
75 %		.0.005	0.005	0,005	V.005	0,002	0.001	O	
90 %		(a) 0.005	0.005	20 .005	0.005	90,0 02	≫0.00 ₁ ©		
None	R3 Stream	0.044	0.014	0.014	9914	0.006	0.003		
50 %		Ø014 ×	0.014	0.014	ُ0.014Ô	0.006	0.003		
75 %		Ç 0.01 4)	0:014	0.014	0.0024	0.006	, 0.003		
90 %		0.014	0.014	0.014	Ø014	© 0.0065	0.003		
None	X4 Stream	@ .008	0.008	B 008	0.008	0,004	0.002		
50 % ू 🤵	*O* * .	0.00\$	9 4008	0.008	0,008	Ø.004	0.002		
75 %		0.008	©0.008 _\	0.008	£008 C	9 0.004	0.002		
90 💖		30.008	0.068	√0×008 €	0.00	0.004	0.002		

90 % 0.008 0

Table 9.2.5- 65: Tier 1 PEC_{sw} values for FLU-7- OH, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use spring cereals II -- early -- 0.078 kg a.s./ha)

PECsw (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	er 1	e M		
(μg/L)	Vegetated				<u> </u>	<u> </u>			(N)	
Nozzle	strip (m)	None	None	None	None	10 m	20 m	, Š		, Ö
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	1000	20 m			,
None	D1 Ditch	0.224	0.224	0.224	0.224	Ø.224	0.224	Q (KO K
50 %		0.224	0.224	0.224	0.224	© 0.22 % °	95224	S C	S.)
75 %		0.224	0.224	® 224	0.22	0.224	0.224			
90 %		0.224	0.224	¥0.22 4 €	0.224	Ø.224	0.224	<i>y</i>	2	
None	D1 Stream	0.140	0.140	0,740	Ø.140.Q	0.140	0.140		, S)
50 %		0.140	0.140	0.140	0.120	Ø .1 40 👡	00.140			
75 %		0.140	\$.140 \(\)	0.140	0.140	J ⁶ .14 0 ∕	0.130		i de la companya de	
90 %		0.140 🔏	0.140	0.140	₹0.140 °	0.140	3 .140 £			
None	D3 Ditch	<0.001	< 0,001	Ø0.00€		9 .001 (%		
50 %		<0.001	>0.001	© < 0.00 °	≈0 .001	Q<0.001	<000001			
75 %		₹ 0 .001%	· <0.001	≈ 001 a	₀ <0.001√	<0.901	\$0.001			
90 %	°>		<0001	\$0.00 t	<0.001	×0.001/	× <0,00H			
None	D4 Pond	00001	©0.061 ©	0.061	∘ 9.061 [©]	0.061	∘ 0 :061			
50 %	D4 PONO	0.061	0.064	.0 :061 2	0.061	0.961	√0.061			
75 %	, Š, (ó	0.061	6.061 ^	y 0.06Î	0.061	0.061	0.061			
90 %		0.061	₹0.0610°	0.061	0.061	0.06Y	0.061			
None	D4 Stocam	$\checkmark0.054$	0,054	©.054	0.05	.0,054	0.054			
50 %		0.054	10 7.054	0.054	_0\$654 ×	0.054	0.054			
75 🗞	, Ø	°, 9054	0.054	.0. 9 54	¹ √0.054 C	0.054	0.054			
90 %	\$. ·	90.054°	0.054	0.054	0.054	0.054	0.054			
None	D'∰ Pond	0.657	©0.057	0.057	. 057	0.057	0.057			
50 %		3 .057%	0.059	0.057	0.057	0.057	0.057			
75 % 🙎	7	0.050	9 57	0.057	0.057	0.057	0.057			
90 %	Ş	00057	©0.057	0.057	0.057	0.057	0.057			
Nøne	D5 Sfream	<u>4</u> 0.043	0.043	20 :043	0.043	0.043	0.043			
50 %		0.043	0.043	0.043	0.043	0.043	0.043			
75 %		€043 ≈	0.0430	0.043	0.043	0.043	0.043			
90 %		0.043	0.043	0.043	0.043	0.043	0.043			
None None	R4 Stream	0.005	0.005	0.005	0.005	0.002	0.001			
50.25	Z A	~ © .005	0.005	0.005	0.005	0.002	0.001			
75%		ÿ 0.005	0.005	0.005	0.005	0.002	0.001			
90 %		0.005	0.005	0.005	0.005	0.002	0.001			

Table 9.2.5- 66: Tier 1 PEC_{sw} values for FLU-7- OH, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- early -- 0.078 kg a.s./ha)

PECsw (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie		E	S S
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		Ş
reduction	No spray buffer (m)	0 m	5 m	10 m	№ 20 m	100	20 m		, ,
None	D1 Ditch	0.266	0.266	0.266	0.266	Q.266	0.266	Q,	&C
50 %		0.266	0.266	0.2	0.266 "	[©] 0.2666°	95 266	Y C	ク
75 %		0.266	0.266	8 266	0.266	0.266	0.266		
90 %		0.266	0.266	¥0.26 €	0.266	L.0.266	0.266	e 4	
None	D1 Stream	0.169	0.169	0,569	© .169 Q	0.169	0.169		\$ 5
50 %		0.169	0,169	~0.169 <u>~</u>	90.1 69	Ø . 169 .	0.169		
75 %		0.169	J .169 &	0.169	0.169	90.16 9 %	0.169		
90 %		0.169 🔏	0.169	0.169	₹0.169 °	0.169	3 0.169 £		
None	D2 Ditch	0.336	0&36	<i>©</i> 0.336€	0.338	@336_@	0.336	°~	
50 %		Q3\$6	0.336	0.33%	0 ,336	[©] 0.336	0.336	%	
75 %		0.336 &	0.336	Ø\$336	₀ 0.336 √	0.336	30 .336		
90 %	` <u>`</u>	0.336	0336	©0.336C	0,336	40 .336	0.336		
None	D2 Stream	00333	©0.233 ©	0.253	· 9.233 K	0.233	٠ <u>0</u> .233		
50 %		0.233	0.293	233 2	0.233	0.233	5 0.233		
75 %	D2 Sitean	0.233	Ø.233 [∧]	y 0.233	0.233	0.233	0.233		
90 %		0.233	♥0.2330°	0,233	0.233	0.233	0.233		
None	D3 Dorch	₩0.00 <u>1</u>	<0.001	×0.001	<0.09	≨9 .001	< 0.001		
50 % 🔊	Ž – Ž	<0.001	20 .001	<0.001	<i>≨</i> \$001 ∧	0.001	< 0.001		
75 🍀	·	~\$0.001 _/	<0.001	<0.001	$<_{0.001}^{\circ}$	< 0.001	< 0.001		
90 %		\$\cdot\0.0\0	<0,001	20.00	<0.001	< 0.001	< 0.001		
None	Da Pond	0.066	70.066 ×	0.066	. 066	0.066	0.066		
50 %		Ø.066°~	0.26	20,066 <u> </u>	0.066	0.066	0.066		
75 %] *	0.00	9 66	$^{5}_{0.06}$	0.066	0.066	0.066		
90 % "		00066	©0.066	0.966	0.066	0.066	0.066		
Nøne	D4 Stream	10.059	0.059	20 .059	0.059	0.059	0.059		
50 %		0.059	0.959	0.059	0.059	0.059	0.059		
75 %		€ ,059 ≈	0.05 Q	0.059	0.059	0.059	0.059		
90 %		0.059	0.059	0.059	0.059	0.059	0.059		
None 🖉	DS Pond	0.056	0.056	0.056	0.056	0.056	0.056		
50.89	Ž A	0 .056	0.056	0.056	0.056	0.056	0.056		
75%		0.056	0.056	0.056	0.056	0.056	0.056		
90 %		0.056	0.056	0.056	0.056	0.056	0.056		
None	D5 Stream	0.041	0.041	0.041	0.041	0.041	0.041		
50 %		0.041	0.041	0.041	0.041	0.041	0.041		

PEC _{sw} (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	r 1		<i>a.</i> ° *
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	(C	
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	2 0 m	.~	
75 %		0.041	0.041	0.041	0.041	0.041	0.041		
90 %		0.041	0.041	0.041	© .041	0.04\$	0.041		Ĩ,
None	D6 Ditch	0.049	0.049	0.049	0.049	05 9 49	0.049	Ž	
50 %		0.049	0.049	0.04	0.049	0.049	0.049	(V	
75 %		0.049	0.049	0.049	0.049	0.049	®049 () Ö	W
90 %		0.049	0.049	(0.049	0.049	30,0 49 4	O 0.04		Ī
None	R1 Pond	< 0.001	<0.001	0.0gH	© .001 a	°€0.09°	<000001	e .4	, e°
50 %		< 0.001	<0.00	≤0 001 ∧	×0.001	<0.001	©0.001		
75 %		< 0.001	<0.001	₹0.00£	<0.001	Ø.001°	<0.001	& a	
90 %		< 0.001	\$0.00 4	<0.001	~©.001	~<0.0 ©	<0 001		9
None	R1 Stream	0.008	0.008	0.008	0.008	0.004	Ĉ0.002 Ŝ		
50 %		0.008	10 008 4	0.00	0.008	5 0.004	0,002	<i>Q</i> .	
75 %		.0.008	0.008	0,008	V.008	0.004	0.002	O ^v	
90 %] .	© 0.008	0,008	20. 008	0.008	90 004	√0.002 [©]		
None	R3 Stream	0.046	0.016	0.016	05 9 16 6	0.007	0,004		
50 %		1 0016 ×	0.016	0.016	°0.016°	0.007	0.004		
75 %		(0.01 6)	0:016	0.016	0. 0%	0.007 _@	, 0.004		
90 %		0.616	0.016	0.016	Ø016	© 0.0075	0.004		
None	R4 Stream	@ .017	0.0%	G 017	0.017	0,008	0.004		
50 % . Q] "O",	0.019	0 2017	0.0170	0,017	30 .008	0.004		
75 %		0.017	©0.017 _\	0.047	©.017 ©	Ø 0.008	0.004		
90 %		0 .017	0.0	\$0×017 (c	0.013	0.008	0.004		

90 % 0.017 0.017 0.01 90 % 0.017 0.017 0.017 0.01

Table 9.2.5- 67: Tier 1 PEC_{sw} values for FLU-7- OH, following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- late -- 0.078 kg a.s./ha)

PEC _{sw} (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie				
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	, Ö		
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	100	20 m			<i>y</i>
None	D1 Ditch	0.157	0.157	0.157	0.157	Q.157	0.15	Q,		, O Y
50 %		0.157	0.157	0.15	0.157	© 0.15% °	95¥57	S. C		1
75 %		0.157	0.157	6 2157	0.157	0.157	0.157		Đ,	
90 %		0.157	0.157	∜0.15 7	0.037	Ø.157	0.157	ν,	2	
None	D1 Stream	0.100	0.100	0,00	© .100 Q	0.100	0.100		~~ ~~	
50 %		0.100	0.100	0.100	0.100	Ø . 100 .	0.100	.// .		
75 %		0.100	J .100 ⟨⟨	0.100	0.100	J0.10 0 %	0.1000			
90 %		0.100 🔏	0.100	0.100	0.100°	0.190	30 .100 £			
None	D2 Ditch	0.149🗣	0449	<i>©</i> 0.149∂	0.13	Ø149_0	0.140	**		
50 %		0.149	×0.149	0.148	0 ,149	Q0.149	0.049	%		
75 %		0.149 🖔	0.149	Ø\$149	₀ 0.149√	0.449	3 0.149			
90 %	` <u>`</u>	0.149	00,49	©0.149C,	0,1,49	40 .149	0.149			
None	D2 Stream	0093	©0.093 ©	0.093	≈ 9 .093 &	0.093	₀ 0.993			
50 %	D2 Stream	0.093	0.093	£0.093 ²	0.093	0.093	×0.093			
75 %	Į Š, ć	0.093	6.093 ^	y 0.093°	0.093	0.093	0.093			
90 %		0.093	∜0.09 <i>3</i> ⊙	0.093	0.093	0.093	0.093			
None	D3 Dorch	×0.001	< 0.001	%0.001√S	<0.09	€9 .001	< 0.001			
50 %	\	<0.001	20 .001	<0.001	≨ © 001 ≈	0.001	< 0.001			
75 🕏		~\$ @ 001_	<0.001	€0 .0 01	₹0.001°	< 0.001	< 0.001			
90 %		V<0.000	< 0.001	×0.005	<0.001	< 0.001	< 0.001			
None	Da Pond	0.033	©0.033	0.033	033	0.033	0.033			
50 %		3 .033	0.039	~0,033	0.033	0.033	0.033			
75 %	* *	0.023		0.033	0.033	0.033	0.033			
90 🎾 "		0033	©0.033	0.033	0.033	0.033	0.033			
Nøne	D4 Sfream	<u></u>	0.032	°0.032	0.032	0.032	0.032			
50 %		0.082	0.032	0.032	0.032	0.032	0.032			
75 %		€032 ≪	0.03 2	0.032	0.032	0.032	0.032			
90 %		©0.032	0.032	0.032	0.032	0.032	0.032			
None O	DS Pond	0.029	0.029	0.029	0.029	0.029	0.029			
50.29	Ž A	~ © :029	0.029	0.029	0.029	0.029	0.029			
75%		0.029	0.029	0.029	0.029	0.029	0.029			
90 %		0.029	0.029	0.029	0.029	0.029	0.029			
None	D5 Stream	0.022	0.022	0.022	0.022	0.022	0.022			
50 %	1	0.022	0.022	0.022	0.022	0.022	0.022			

PEC _{sw} (μg/L)	Scenario			Ste	ep 4 FLU-7	7- OH _Tie	er 1		a,° ×
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	.~	
75 %		0.022	0.022	0.022	0.022	0.022	0.022		
90 %		0.022	0.022	0.022	© .022	0.02	0.022		
None	D6 Ditch	0.024	0.024	0.024	0.024	05024	0.024		
50 %		0.024	0.024	0.02	0.024	0.024	0.024	, ²	
75 %		0.024	0.024	0.024	0.024	0.02A	®024_ () Ö	Ø,
90 %		0.024	0.024	(,0.024 ₍₎	0.024	0,024	© 0.02	**	
None	R1 Pond	0.001	0.001	0.00	0,001	°€0.0 9 ©	<070001	4 4	, , ,
50 %		0.001	0.007	•Q.901 ∧	©0.0Q1	<0.001	\$0.001		
75 %		0.001	0,001	(0.001 ₀)	0.001	€Ø.001°	<0.001	4	
90 %		0.001	€ 00.00 K	0.001	~ © :001 /	~0.0 @	400 001		
None	R1 Stream	0.008	0.008	0.008	0.008	0.004	£0.002\$		
50 %		0.098	10.008	0.008	0.008	5 0.004	0.002	<i>Q</i> ,	
75 %		.0.908 	~0.00 %	0,008	7.008	0.004	0.002	0 "	
90 %] .	© 0.008	0.008	20 .008	0.008	90,0 04	≫0.002 [©]		
None	R3 Stream	0.025	0.025	0.025	05025 _{(/}	0.011	0,006		
50 %		Ø 025 ×	J 0.025	0.025	҈0.025©	0.0°M	20.006		
75 %		(0.02 5)	0.025	0.025	0.025	0.011	0.006		
90 %		0.4925	0.025	0.023	Ø025	© 0.0175	0.006		
None	X4 Strom	@ .015	0.0\$\$	Ø 015	©0.01 5	0,007	0.004		
50 % ू 🤵	"O" _/ ,	0.01\$	02015	0.0150	0,015	6 0.007	0.004		
75 %		0.015	©0.015 (0.095	20.015 C	^y 0.007	0.004		
90 🖑		~0.015√	0.043	0×015 (0.015	0.007	0.004		

0.01\$ 0.01\$ 0.01\$ 0.01\$ 0.00\$

Tier 2: FOCUS Step 1 and 2

The maximum PEC_{sw} and PEC_{sed} values for FOCUS Step 1 and 2 are the same for Tier 1 and Tier 2

The maximum Tier 2 PEC_{sw} and PEC_{sed} values for FOCUS Step 3 are given in the tables below for fluopyram and its metabolites fluopyram-7-hydroxy (FLU-7-OH) and trifluoroaceuc acid (TFA) considering application in barley (FOCUS crops: cereals, spring and winter). The results of the pectagon of the p

Fluopyram

Tier 2 FOCUS Step 3 PECs, and PECsed for fluopy am following single application(s) Table 9.2.5- 68: of BIX + FLU + PTZ EC 260 to barley I (modelling us spring cereals) -- early --0.039 kg a.s./ha) 1

Scenario FOCUS	Waterbody	Max Pecsw (µg/L)*	Dominant entry	21d-PECsw.wy	Max PCC _{sed} (µg/kg)*
Step 3		Q &	h Or A		
D1	Ditch	1.04 **		0.886	
D1	Stream	0.031		~ 0.5460 ·	3 70 *
D3	Ditch 🔊	0.247		Q. 014 25	0.118 *
D4	Pond	∞ 0 ∞ 7 7 7		0.242	1.39 *
D4	Stream	3 249 * *	Drainage@	0.162	0.516 *
D5	Pond	\$\sqrt{0.208} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqqq \qqq \qqqq	Drainage	9 .200	1.66 *
D5	Stream		Spray drift	0.068	0.376 *
R4 ≽	Stream	√0.259 } *ô	RunOf	0.023	0.143 *
	Stream applications are marked interval as required by a stream of the				

Table 9.2.5- 69: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- early --0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECswatwa (μg/L)**	Max P&C _{sed} (µg/kg)*
Step 3					
D1	Ditch	1.80 *	Drainage	\$1.52	6.87
D1	Stream	1.15 *	Drainage	Q 0.968 Q	
D2	Ditch	2.29 *	Brainage ,	1.22	7.03
D2	Stream	1.44 *	Drainage	©0.611 V	3.88 0*
D3	Ditch	0.247 *%	- 0°	0.012	°Ø.110 ° *
D4	Pond	0.319	Drainage	3 0.310	1.7\$ (*°
D4	Stream	0.324	Dramage	0.200	0.624 *
D5	Pond	0.202	Drainage	10 M/04 m	\$ 1.680 *
D5	Stream	0.220 **	Spray drift	0.068	0.378 *
D6	Ditch	0.357	Drainage)	002	Ø.416 *
R1	Pond	9.017	RunOff	©0.015	0.416
R1	Stream	© 163 * *	Spray drift	0.009	0.063 *
R3	Stream	0.236	R unOff &	0.011	0.142 *
R4	Stream	0.713	S RogoOff O	0.019	0.180 *
** TWA i	Stream Ditch Pond Stream Stream Stream application are marken nterval as required by a stream of the control of the cont				

Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) Table 9.2.5- 70: of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.039

Scenario FOCUS	Waterbody	Max PEC (μg/L)*	sw	Dominant entry route	21d-PECsw,twa (µg/L)**	Max PÈς, (μg/kg)*	ed (
Step 3					O T		
D1	Ditch	0.403	*	Drainage	Q.354	~	*
D1	Stream	0.253	*	Drainage	Ø0.220	5 13Y ,	*
D2	Ditch	0.296	*	Spkay drift	0.236	QT.54 S	*&
D2	Stream	0.253	*	Spray drift	0°.196	√ 0.968°	Z.
D3	Ditch	0.248	*	Spray drift	0.020	QJ47 ~	<i>*</i>
D4	Pond	0.064	5	Drainage	9 0062 F	0.408	*
D4	Stream	0.214	*	Spray@rift Q	0.040	O 0,193	V.
D5	Pond	0.029	**	Drainage	0.027	Q.319 D	*
D5	Stream	0.23		Spray Wift	Ø.013	0.079	*
D6	Ditch	6 249	*	Spray drift	0.043	•0 <u>.2</u> 23	*
R1	Pond	© 0.035	*0	RunOf	0.032	€ 0.182	*
R1	Stream *	Q ₁ 163	% *	& Spray drift &	0.01	0.137	*
R3	Stream 👋	4 8.229 G	*_	Spray drift\	\$\tag{0.013}	0.100	*
R4	Stream	0.163	0	Spray drift 4	((0.003	0.045	*

Ther 2 FOCUS Step 3 PECsw. and PECsd for Diopyrum following single application(s) of BIX + FLU PTZ-FC 260 to barley II (modelling use spring cereals II -- early -- 0.078 kg a x 7 ha) Table 9.2.5- 719

Scenario FOCUS	Waterbody	Max PEOsw (µg/L)*	Dominant entry	21d-PEC _{sw,twa} (μg/L)**	Max PEC _{sed} (μg/kg)*
Step 3					
D1	Ditch	2.043	Painage	1.83	12.2 *
D1 🖉	Stream	Q 1.28 J	Drainage	1.14	7.00 *
D3	Dijîsh 🗐	A95 X * 2	Spray drift	0.027	0.226 *
D4	Pond O	0.523	Drainage	0.509	2.78 *
D4	Stream	0 S 27	Drainage	0.339	1.02 *
D5	Rond F	₹ 0.47 0 *	Drainage	0.451	3.52 *
D5 🍣	Østream C	0.455 *	Spray drift	0.156	0.804 *
R4	Stream V	0.558 *	RunOff	0.046	0.272 *

Single applications are marked.

Single application are marked.
TWA interval as required by ecotor

TW Interval as required by ecotox

Table 9.2.5- 72: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early --0.078 kg a.s./ha)

Scenario FOCUS Waterbody Max PECsw (μg/L)* Dominant entry route 21d-PECswawa (μg/L)* Max PECsed (μg/kg)* Dominant entry route 21d-PECswawa (μg/L)* Dominant entry route 21d-PECswawa (μg/L)* Max PECsed (μg/kg)* Dominant entry route Dominant entry route 21d-PECswawa (μg/L)* Dominant entry route Dominant entry route		U.U/8 Kg a	.s./11a)			
Step 3 D1 Ditch 3.60 * Drainage 2.94 12.5 * D1 Stream 2.31 * Drainage 1.89 350 * D2 Ditch 4.83 * Drainage 2.81 13.70 * D2 Stream 3.06 * Drainage 1.30 7.94 * D3 Ditch 0.494 * Spray drift 0.024 0.211 * D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.423 1.20 *		Waterbody				Max Pocsed (µg/kg)*
D1 Ditch 3.60 * Drainage 2.94 12.5 D1 Stream 2.31 * Drainage 1.89 350 * D2 Ditch 4.83 * Drainage 2.81 13.70 * D2 Stream 3.06 * Drainage 1.30 7.94 * D3 Ditch 0.494 * Spray drift 0.024 0.211 * D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.423 1.20 *	Step 3				A	\$ \$7 b
D1 Stream 2.31 * Drainage 1.89 50 * D2 Ditch 4.83 * Brainage 2.81 13.70 * D2 Stream 3.06 * Drainage 1.30 7.94 * D3 Ditch 0.494 * Spray drift 0.024 0.211 * D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.423 1.20 *	D1	Ditch	3.60 *	Drain a ge	2.94	1257 8
D2 Ditch 4.83 * Frainage 2.81 13.70 * D2 Stream 3.06 * Drainage 1.30 7.94 * D3 Ditch 0.494 Spray drift 0.024 0.211 * D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.423 1.20 *	D1	Stream	2.31 *	Drainage	L & 189 @	750 2 * 6
D5 Dich 0.494 Spray drift 0.4024 (7.211 5) D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.423 1.20 *	D2	Ditch	4.83 *	Brainage	2.81	13.70
D3 Ditch 0.494 Syray drift 0.424 (0.211	D2	Stream	3.06 *	(Ob)	1.30	7.94 0*
D4 Pond 0.655 * Drainage 0.638 3.34 * D4 Stream 0.673 * Drainage 0.42 1.20 *	D3	Ditch	0.494 *	Spay drift	1 P UNIV.4	°0.211 **
	D4	Pond	0.655	Drainage	0.638	C
	D4	Stream	0.673	. is a mage of	(0.4D (~/ · · · · · · · · · · · · · · · · · · ·
D5 Stream	D5	Pond		Drainage	0 4 1 5	\$\frac{1}{3}.54\hfrac{1}{3}
D6	D5	Stream	0.451 0**	Spray drift	©0.155°	0.804 *
R1	D6	Ditch	0.708 3 *	Drainage)	\$ 0304 0	₹700 *
R1 Stream	R1	Pond	0.034 **	RunOff C	©0.031	© 0.211 *
R3 Stream 4 0.497 RunOff 0.023 0.279 * R4 Stream 0.835 * RunOff 0.038 0.351 * **Single applications are marked. TWA interval as required by ecotox	R1	Stream	©325 × 3	Spray drift	0.018	0.126 *
R4 Stream 0.335 * ReaOff 0.038 0.351 * **Single applications are marked. **TWA intervales required by costox	R3	Stream	A 0.497	ÆunOff (0.023	0.279 *
** Single applications are marked. *** TWA interval as required by costox TWA interval as required by costox	R4	Stream	0.335 ₀ *	Remooff O	0.038	0.351 *
	** TWA is	nterval as required by a				

Table 9.2.5-73: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for fluopyram following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- late --0.078 kg a.s./ha)

	U.U / O Kg a				<u></u> <u>v</u> '
Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PECswatwa (µg/L)**	Max PoC _{sed} (µg/kg)*
Step 3					
D1	Ditch	0.933 *	Drainage	Ø.791	434
D1	Stream	0.584 *	Drainage	Q 0.491 , Q	234 * *
D2	Ditch	0.623 *	Brainage ,	0,474	2.94
D2	Stream	0.504 *	Spray drift	0.394	0 184 0*
D3	Ditch	0.496 *		0.041	°Ø.282 **
D4	Pond	0.136	Draipage	Ø.132	0.869
D4	Stream	0.427	Spray drift	0.086	0.284 *
D5	Pond	0.06	Droincas	10 AA61 @	\$0.665° *
D5	Stream	0.461 **	Spray drift	0.026	0,181 *
D6	Ditch	0.498 3	Spray drift	\$ 0086 \$ 0007	Ø.428 *
R1	Pond	9 0.072 **	RunOff	©0.067	0.428
R1	Stream 🛴	© 351 > *	RunOff	0.030	0.260 *
R3	Stream	A, 0.504	RunOff &	0.028	0.206 *
R4	Stream	0.327 _@ *	Sprawdrift O	0.006	0.081 *
** TWA i	Stream Ditch Pond Stream Stream Stream application are marked are marked at required by each of the stream and the stream are marked at the				

Fluopyram-7-hydroxy (FLU-7-OH)

Table 9.2.5- 74: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7-OH following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereals I -- early -- @ 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC scawa (μg/L)	Max PEC sed (μg/kg)*
Step 3			۵.		
D1	Ditch	0.095 *	T	Ø0.082	C 0.273 (0*
D1	Stream	0.059 *	\$ -	0.050	3 .121 3 *4
D3	Ditch	<0.001 *		Ø 50.001	\$ <0.00°F
D4	Pond	0.023 *	, Q , , , , , , , , , , , , , , , , , ,	0.023	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
D4	Stream	0.022	√	0014	0.024 *
D5	Pond	0.025 **		0.024	
D5	Stream	0.019	Y . W 4	0.008	Ø.021 *
R4	Stream	0.06		\$0.001	% <0.001 *

^{*} Single applications are marked.

Table 9.2.5-75:

Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{dd} for FLU-7. OH following single application(s) of BIX FLU + PTZ/EC 260 barley I (modelling use whiter cereals I -- early -- 0.039 kg a.s.tha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant enery	21d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3				, W	
D1	Ditch	Ø.133 <u>*</u>	7 F- W	0.095	0.204 *
D1	Stream	\$ 0.085		0.062	0.119 *
D2 ***	Ditch 🗘	Ø471 0 * *		0.111	0.302 *
D2	Stream 4	©0.11 © *		0.068	0.179 *
D3	Ø Ditch	<0.901 0*		< 0.001	<0.001 *
D4	Pond	0.029 Q *	* _ <i>@</i> -	0.028	0.084 *
D4 👸	Stream	Q 0.028 Q	·Z -	0.018	0.027 *
D.5	Pond 🚕	0.028 ×	-	0.024	0.104 *
D5	Stream 0		-	0.008	0.022 *
D6	Ditch	0.022 2*	-	0.010	0.026 *
R1	Rond 6	* \$\display 0.00\display *	-	< 0.001	<0.001 *
R1	®tream	0.002 *	-	< 0.001	<0.001 *
RX R4	Stream S	0.005 *	-	< 0.001	0.002 *
\$\text{R4}	Stream	0.007 *	-	< 0.001	0.002 *

^{*} Single applications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by ecotox

Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7- OH following single application(s) Table 9.2.5- 76: of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.039

Scenario FOCUS	Waterbody	Max PEC (μg/L)*	SW	Dominant entry route	21d-PECsw,twa (µg/L)**	Max Prosed (μg/kg)*
Step 3					O. C.	
D1	Ditch	0.041	*		Q.D30	· 0.055 0 *
D1	Stream	0.026	*	T	Ø0.019	O.\$4 , \$
D2	Ditch	0.030	*	¥ -	0.017	Ø.060 ♥ *e
D2	Stream	0.019	*	- 4	©°010	\$\tag{0.034}
D3	Ditch	< 0.001	*		<0.001	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
D4	Pond	0.005	8		3 005 5	0.016 *
D4	Stream	0.006	*		0.002	0 0,005
D5	Pond	0.004	*	Y . W K	0.004	«9.020 » *
D5	Stream	0.00%		. 4 . 5	Ø.002	© 0.004 *
D6	Ditch	Ø005	*	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.000	∘0. 9 05 *
R1	Pond	@<0.001	*0		© < 9.001 °C	<0.001 *
R1	Stream *	Q ₂ 002	~~*	4 6 4	~~~0.00 %	<0.001 *
R3	Stream 🧳	4 8.006 B	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$\inf\(\sigma\) <\(\theta\)0001 \\ \text{\$\pi\}	0.001 *
R4	Stream	0.963	0		<0.001	0.001 *

Ther 2 FOCUS Step 3 PECsw, and PECsd for DU-7-OH following single application(s) of BIX + FLU PTZ C 260 to barrey II (modelling use spring cereals II -- early -- 0.078 kg a solva) Table 9.2.5- 77

Scenario FOCUS	Waterbody	Max PEOsw & (µg/L)*	Dominant entry	21d-PEC _{sw,twa} (µg/L)**	Max PEC _{sed} (μg/kg)*
Step 3			5		
D1	Ditch	Ø.183 ₂ *	(<i>O</i>)	0.159	0.401 *
D1 🔎	Stream	0.119	, , , , , , , , , , , , , , , , , , ,	0.098	0.226 *
D3 D4	Diff(X 4	©.001 0 *	-	< 0.001	0.002 *
D4	Pond	© 0.049 ©	-	0.048	0.149 *
D4	Stream	0 944 Q*	-	0.029	0.050 *
D5	Rond S	<u></u> √0.051 *	-	0.050	0.205 *
D5 🍣	Stream	0.039 *	-	0.016	0.043 *
R4	Stream V	0.005 *	-	< 0.001	0.001 *

Single application are marked.
TWA interval as required by ecotor

Single oplications are marked.

TWo interval as required by ecotox

Table 9.2.5- 78: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7- OH following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early --0.078 kg a.s./ha)

Waterbody Ditch	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PECsw,twa (μg/L)**	Max Pβ sed (μg/kg)*
	0.250 *		₩.Y	
	0.250 *		, O	
C4		- &	Q 1 79	0.3889
Stream	0.160 *	S.	Ø0.118	0.26
Ditch	0.315 *	£ -	0.211	Ø.566 ♥ *↓
Stream	0.219 *	-	©0°.132	₹ 0.33 \$
Ditch	<0.001 *		<0.001	0.002 **
Pond	0.060		6 559 5	0.173 *
Stream	0.055 **		0.037	0 0,600
Pond	0.051		0.649	√9.208 ★ *
Stream	0.038		9.017 9.017	0.044 *
Ditch	£642 * *	- 57 2 - 57	0.017	⋄Ø:θ51 *
Pond	@<0.00\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ - V	<0.001 °C	& 0.001 *
Stream	\$\text{0.005} \text{0.5}*	4 5 4	~~~0.00b	0.001 *
Stream 🦃	0.010 \$ *S		\$\tag{9001}\$	0.003 *
Stream	© 0.9 ©		<0.001	0.004 *
terval assequired by e				
				Stream 0.038

Table 9.2.5- 79: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for FLU-7- OH following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- late --0.078 kg a.s./ha)

	0.076 kg a		T	T	
Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PECsw,twa (µg/L)**	Max Pic sed (μg/kg)*
Step 3				, T	
D1	Ditch	0.079 *		Q.D57	0.1030 *
D1	Stream	0.050 *	O V	0.037	0.064
D2	Ditch	0.060 *	L -	0.034	€114 \$ *¢
D2	Stream	0.037 *	₽ -	0.034	& 0.065 A
D3	Ditch	<0.001 *	Q Z	<0.001	<0.001 \(\tilde{\pi} \) *
D4	Pond	0.011		\$ 6 011 \$	0.032 *
D4	Stream	0.011 *		0.007	
D5	Pond	0.009	7 7 - 4	0.009	√0.040 . \$\delta * \delta
D5	Stream	0.008		0.000	0.008 *
D6	Ditch	£\$09 € * £	, , , , , , , , , , , , , , , , , , ,	0.00	\$0: 0 10 *
R1	Pond	@<0.001\frac{1}{2} *0	\$ - V	< 0.001 °C	& 0.001 *
R1	Stream	0.003	4 5 4	~~0.00¢b	0.001 *
R3	Stream 👋	0.010 \$	7 - 7 ·	\$\$\frac{7}{5}\frac{3}{5}\text{\$\frac{3}\text{\$\frac{3}\text{\$\frac{3}\text{\$\frac{3}\text{\$\frac{3}{5}\text{\$\frac{3}{5}	0.002 *
R4	Stream	0.965		<0.001	0.002 *
	Stream Ditch Pond Stream Stream Stream applications are marked applications.				

Trifluoroacetic acid (TFA)

Table 9.2.5- 80: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use spring cereals I -- early -- 0.039 kg a.s./ha)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	21d-PEC viwa (µg/L)**	Max PEC
Step 3			Ö		
D1	Ditch	0.191 *	Z -	0.185	\$ 102 \$ *
D1	Stream	0.119 *	<u> </u>	0.113	0.06¢
D3	Ditch	0.350 *	Q - >	0.350	O' 0,231
D4	Pond	0.548		0:546	*W.337 ***
D4	Stream	0.230 *		0.216	0.128 4°
D5	Pond	0.768		0.764 &	0.485 *
D5	Stream	0.300		Ø.288 Ø	\$\tilde{\pi}0.137^\infty *
R4	Stream	0.001 0*		\$\frac{1}{2} < 0.0@\$\frac{1}{2} \tag{2}	<0.001 *

^{*} Single applications are marked.

Table 9.2.5-81: Tier 2-FOCUS Step 3 PECs and PECsed for TFA following single application(s) of BIX + FLU PTZ FC 260 bar of I (modelling use winter cereals I -- early -- 0.039 kg a.s./ha)

		W	~ ``		
Scenario	Waterbady	Max PEC _{sw}	Dominant entry	21d PECsw,twa	Max PEC _{sed}
FOCUS		(Har)*	route &	μg/L)**	(μg/kg)*
Step 3 📡				Ø.	
D1	Ditch	0.272		0.265	0.131 *
D1	Stream 🖇	\$.168\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.162	0.078 *
D2	Ditch	0.198	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.183	0.114 *
D2	Stream S	0.142 * 2	~ ~ ~	0.117	0.073 *
D3 ,	Ditch	\$0.382		0.382	0.247 *
D4 🖑	Pone Stream	♥ 0.666 ♥*	-	0.664	0.398 *
R ₄		\$289\tilde{\text{\$\circ}} *\tilde{\text{\$\circ}}	-	0.272	0.151 *
D5	Pond	0.818	-	0.813	0.514 *
D5	Stream		-	0.326	0.150 *
D6	C Antch C	\$\times_0.419\$\times *	-	0.390	0.212 *
R1	Pond «	<0.001 *	-	< 0.001	<0.001 *
R	Stopam S	<0.001 *	-	< 0.001	<0.001 *
R3 5	Stream	0.002 *	-	< 0.001	<0.001 *
R4	Stream	<0.001 *	-	< 0.001	<0.001 *

 ^{*} Single applications are marked.

^{**} TWA interval as required by ecotox

^{**} TWA interval as required by ecotox

Table 9.2.5- 82: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley I (modelling use winter cereals I -- late -- 0.030 kg a.s./ha)

Scenario	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC twa (µg/L)**	Max PEC so
FOCUS		(FS 2)	10400	(18.2)	
Step 3			Ö		
D1	Ditch	0.050 *	₹ -	0.049	00024 **
D1	Stream	0.031 *	<u> </u>	LY 0.020 -O	0.014C 20
D2	Ditch	0.045 *	Q - >	(° 0.041 € \	0,025 0*
D2	Stream	0.030	I (//n %)	0:026	Ø.016 [™] *
D3	Ditch	0.097		0.097	0.058
D4	Pond	0.113		0.19	0.068 🔊 *
D4	Stream	0.050		J 0.047 V	\$\int_0.025^\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
D5	Pond	0.¥32		0.13	0.082 *
D5	Stream	0.051 *		\$ 0.949 S	©.023 *
D6	Ditch 🐇	S 0.090 S*		^v	0.045 *
R1	Pond 🔯	© .001 *		~ <0.0001 ~ C	<0.001 *
R1	Stream	<0.001		0.001	<0.001 *
R3	Stream	0.003 0 *		O.064	<0.001 *
R4	Stocam	~0.00K *		\$ € Ø01	<0.001 *

^{*} Single applications are marked.

Table 9.25-83:

Tier 2 FO F S Step 3 PEC_{sw} and PEC_{sw} for TRA following single application(s) of BIX + FLV + PTZ EC 200 to parley II (modelling use spring cereals II -- early -- 0.078 g a.s./ha)

Scenario FOCUS	Water Gody C	Max PECO	Pominant entry	21d-PEC _{sw,twa} (μg/L)**	Max PEC _{sed} (μg/kg)*
Step 3©					
	Disch S	%.378 ° *	-	0.366	0.201 *
D1	Stream	0.235	-	0.224	0.119 *
D3	Dite.	6.6 99 **	-	0.699	0.461 *
D4 /	Cond C	\$\times 1.09\$\times *	-	1.09	0.671 *
D4,	Stream	0.458 *	-	0.431	0.254 *
DS	Pord S	1.53 *	-	1.52	0.966 *
D5 0	Stream	0.603 *	-	0.574	0.274 *
R4	Stream	0.002 *	-	< 0.001	<0.001 *

 ^{*} Single applications are marked.

^{**} TWA interest as required by ecotox

^{**} TWA interval as required by ecotox

Table 9.2.5-84: Tier 2 FOCUS Step 3 PEC_{sw} and PEC_{sed} for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- early -- 00078 kg a.s./ha)

	,				
Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	21d-PEC twa (µg/L)**	Max PEC
Step 3					
D1	Ditch	0.541 *		0.527	\$259 \$ *
			-	0.527	0.1540
D1	Stream	0.554	- 1	0.322	0.154° **
D2	Ditch	0.575		\$\\\ \ \\ \ \\ \ \\ \ \ \\ \ \ \ \ \ \	0,226 0*
D2	Stream	0.200		0232	Ø.143
D3	Ditch	0.765 *			0.403
D4	Pond	1.32		1,32	0.792 *
D4	Stream	0.57		0 .541 V	\$0.300° *
D5	Pond	1 ‰3		7 1.62	* kØ2 *
D5	Stream	0.681	?	\$ 0.549 \$ 0.770	Ø.300 *
D6	Ditch 🐰	0.836	- 4 C	©0.778	0.423 *
R1	Pond 🛴 🧔	© .001, *		~ <0.00°1	<0.001 *
R1	Stream	<0.001	\$ -; 6 4	0.001	<0.001 *
R3	Stream	0.003 © *	Z Z 0	0.06	<0.001 *
R4	Stream O	~0.002~ * <u></u>	, S - S	\$\square\$\left\{\partial}\text{001}	<0.001 *
** TWA i	Stream Ditch Pond Stream Stream Stream applications are marked by the stream of	Ecotox O C C C C C C C C C C C C C C C C C C			

Table 9.2.5-85: Tier 2 FOCUS Step 3 PECsw and PECsed for TFA following single application(s) of BIX + FLU + PTZ EC 260 to barley II (modelling use winter cereals II -- late -- 0.078

Scenario Waterbody Max PECsw (µg/L)* Dominant entry route 21d-PECswater (µg/L)* Max PEC (µg/kg)*	
Step 3 D1 Ditch 0.098 * 0.096 0.047 D1 Stream 0.061 * - 0.058 0.028 D2 Ditch 0.089 * - 0.082 0.050 D2 Stream 0.059 * - 0.052 0.092 D3 Ditch 0.194 * - 0.094 0.115 D4 Pond 0.226 * 0.093 0.051 D5 Pond 0.262 * - 0.003 0.066	Sed *
D1 Ditch 0.098 * - 0.096 0.047 D1 Stream 0.061 * - 0.058 0.028 D2 Ditch 0.089 * - 0.082 0.050 D2 Stream 0.059 * - 0.052 0.032 D3 Ditch 0.194 * - 0.094 0.115 D4 Pond 0.226 * 0.093 0.051 D4 Stream 0.100 * - 0.003 0.051 D5 Pond 0.262 * - 0.003 0.036	Zy (
D1 Stream 0.061 * - 0.058 0.028 D2 Ditch 0.089 * - 0.082 0.050 D2 Stream 0.059 * - 0.052 0.032 D3 Ditch 0.194 * - 0.094 0.115 D4 Pond 0.226 * 0.025 0.134 D4 Stream 0.100 * - 0.025 0.051 D5 Pond 0.262 * - 0.003 0.064	
D2 Stream 0.039 - 0.032 0.092 D3 Ditch 0.194 0.115 D4 Pond 0.226 0.225 0.134 D4 Stream 0.100 0.051 0.002 0.051 D5 Pond 0.262 0.02 0.003 0.0466	* *
D2 Stream 0.039 - 0.032 0.092 D3 Ditch 0.194 0.115 D4 Pond 0.226 0.225 0.134 D4 Stream 0.100 0.051 0.002 0.051 D5 Pond 0.262 0.02 0.003 0.0466	* *
D3 Ditch 0.194 * 0.115 D4 Pond 0.226 * 0.134 D5 Pond 0.262	@*
D4 Stream 0.100 * 7 2 0.093 0.051 0.051 D5 Pond 0.262 7 2 0.064 0.164 0.) *
D4 Stream 0.100 * 7 2 0.093 0.051 0.051 D5 Pond 0.262 7 2 0.064 0.164 0.	*°
D5 Pond 0.262	* *
D5 Stream 0.002	*
D6	*
R1 Pond	*
R1 Stream 0.001 * 0.001	*
R3 Stream 0.006 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	*
R4 Stream 0.001 * 5 5 5 0 0.001 * TWA interval as required by ecotox	*
* Single applications are marked. *** TWA interval as required by ecosyox	*
D6	

Tier 2: FOCUS Step 4

The maximum Tier 2 PEC_{sw} values for FOCUS Step 4 are given in the tables below for fluopyram and its metabolite fluopyram-7-hydroxy (FLU-7-OH) considering application in barley (FOCUS cops: cereals, spring and winter). The reported PEC_{sw} values represent loadings via all relevant entry fortes.

Fluopyram

Table 9.2.5- 86: Tier 2 PEC_{sw} values for fluopyram following single application of BIX FLU PTZ EC 260 to barley I according to surface water Step 4 (modelling use spring cereals Fearly -- 0.039 kg a.s./ha)

	<u> </u>			A.			≪ <i>i</i>		
PECsw (μg/L)	Scenario			<i>\Q</i> j^{\tilde{\t	fluopyran	n_cereals_	Tier 2		
Nozzle	Vegetated strip (m)	None	None (Non@	None	\$10 m	20 m	۹ . ۹	W.
reduction	No spray buffer (m)	0 m	5 m/ Q1.01	NO m	, 20 m	Jron , ,	©20 mg		
None	D1 Ditch	1.01		1.05	1.01	1.01	1991)
50 %		1.01	1.040	î>01	1.01	r joi	\$\ £01. الإ م		
75 %		1.01	1 201	\$ 1.01\$	1,0)	×1.01 %	1.04	10	
90 %		1.01	°>√1.01 _{(~}	1.09	√r.01 €	× 1.04	1.01	0	
None	D1 Stream	0.631	' 0.65H	(0),001	Ø 0.631	0.63 1	0.631		
50 %	*	0.631	0.631	0.63	0.631	Ø.631			
75 %	*	£ 631	©0.631 ©	0.631	° 0.631 0	0.63,1	20,631		
90 %			0.631	®.631	0.631	0.631	[∞] 0.631		
None	Da Ditch	0.247	0.067	× 0.036	9 519	© 0.036C	0.019		
50 %		6 .124 6	0.0340	0.018	∂ 0.00 9	0.018	0.009		
75 %		0.062	04017	ॅ ð.009∂	0.005	10.009	0.005		
90 %		0.025	Ø.007	0.004	≈0 ,002 ^	√0° √0.004	0.002		
None	D4 Pind	~9.249 _√	0.249	248 ₍₂	0.2489	0.248	0.248		
50 %		0.24	ð. 2 48	® 0.2480°	0.248	0.248	0.248		
75 %	-~,	0.248	©0.248	0.2048	9 .247	0.248	0.247		
90 % *		0.247	0.247	20 :247	0.247	0.247	0.247		
None 🐴	D4 C4	0.249	249.	(249)	0.249	0.249	0.249		
50 %		Ø.\$49 <u></u>	0.249	0.249	0.249	0.249	0.249		
75%	D4 Stream	\$0.249°	0.249	Ø.249	0.249	0.249	0.249		
90 %	0	0,2249	0.249	0.249	0.249	0.249	0.249		
None	D5 Pond	Ø.208,	® 0.208	0.208	0.208	0.208	0.208		
50 %	D5 Pond	0.208	Q \$ 08	0.208	0.207	0.208	0.207		
75 % 💇		0,207	0.207	0.207	0.207	0.207	0.207		
90	R A	3 0.207	0.207	0.207	0.207	0.207	0.207		
90 V	D5 Stream	₹ 0.223	0.167	0.167	0.167	0.167	0.167		
50 %©		0.167	0.167	0.167	0.167	0.167	0.167		
75 %		0.167	0.167	0.167	0.167	0.167	0.167		
90 %		0.167	0.167	0.167	0.167	0.167	0.167		

Document MCP – Section 9: Fate and behaviour in the environment Bixafen + Fluopyram + Prothioconazole EC 260 (65+65+130 g/L)

None	R4 Stream	0.259	0.259	0.259	0.259	0.117	0.061	
50 %		0.259	0.259	0.259	0.259	0.117	0.061	0
75 %		0.259	0.259	0.259	0.259	0.117	0.061	
90 %		0.259	0.259	0.259	0.259	0.117	0,061	

Table 9.2.5- 87: Tier 2 PEC_{sw} values for fluopyram following single application of BIX + FLU + FTZ

EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I value early -- 0.039 kg a.s./ha)

P.F. 6							01	/ "\"	Z A
PECsw (μg/L)	Scenario			Step 4	fluopyrar	n cereals_	Tier 2		
, 0 /	37 1					Y Q		D &	
Nozzle	Vegetated strip (m)	None	None	None	, Nome	No m	20 m		Ţ
reduction	No spray buffer (m)	0 m	5 m	1054h	, Nome	10 10	20 m	y Á	
None	D1 Ditch	1.80	180	₹ 1.80 ↑	1.80	√Q.80 %	°1.80		Š.
50 %		1.80	Q1.80 ₄ 4	1.80		1.80	180		
75 %		1.80	1.800	180	\checkmark 1.80 \checkmark	180	\$ N8.1 الإجرا		
90 %		1.80	128 0	\$\times 1.80\times	1.80	J.80	1.80	<i>*</i>	
None	D1 Stream	AQ 5	~1.15 _~	1.19	√y.15 <i>6</i>	1.15	1975	O O	
50 %		1.15	1.19	(<i>()</i>	ỡ 1.15 ^{√√}	_1_7/5 ·	[©] 1.15		
75 %	° / /	1 ^ \	P 15	9 1.15	1013	4 1.15	1,15		
90 %	D2 Dach	1 515	§ 1.15 [◎]	1.05	%√1.15 0 ×	1.45	≈ 1.₹5		
None	D2 Dorch	2 202	229	2.29	2.29	2.29	2.29		
50 %		2,29	2.29	y 2.29	3 29	(¹ 2.29)	2.29		
75 %		2.29	2.290	2.29	2.29	2.29	2.29		
90 %		2.2%	2.29	×2.29	2.29	42 .29	2.29		
None	D2 Stream	1,44	Ø1.44	1.44	~Q.44 ^	1.44	1.44		
50 %	D2 Stream	×1.44 «	1.44	×1,44	1.44	1.44	1.44		
75 %		1.44	1.44	€1.44©		1.44	1.44		
90 %	~~~	1544	Ø1.44×	1.434	1.44 \$1.44	1.44	1.44		
None 4	D3 Dûtch	O.247	0.067	\$\text{0.036}	0.019	0.036	0.019		
50 % 🕰		0.139	4 034	\$ 0.01 \$	0.009	0.018	0.009		
75 %		Ø962	0.017	0 009	0.005	0.009	0.005		
200%		(\$\)0.02 <i>5</i> \(\)^	0.007	9 .004	0.002	0.004	0.002		
None	D4 Pond ®	0,309	0.319	0.318	0.318	0.318	0.318		
50 %		© .318	7 0.31 %	0.318	0.318	0.318	0.318		
75 %		0.318	9 \$18	0.318	0.318	0.318	0.318		
90 % 💇		0348	0.318	0.318	0.318	0.318	0.318		
Note	504 Stream	3 9.324	0.324	0.324	0.324	0.324	0.324		
50 % 6		¥ 0.324	0.324	0.324	0.324	0.324	0.324		
75 %		0.324	0.324	0.324	0.324	0.324	0.324		
90 %		0.324	0.324	0.324	0.324	0.324	0.324		
None	D5 Pond	0.202	0.202	0.202	0.202	0.202	0.202		

PECsw (μg/L)	Scenario			Step 4	fluopyrar	n_cereals_	Tier 2		0
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	(
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	ॐ m	\ \times \ \ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
50 %		0.202	0.202	0.201	0.201	0.201	> 0.201		
75 %		0.201	0.201	0.201	© .201	0.29	0.201		(I)
90 %		0.201	0.201	0.201	0.201	92 01	0.201) J	
None	D5 Stream	0.220	0.171	0.17	0.171	0.171	0.101	(V	
50 %		0.171	0.171	9.071	0.171	0.1	Q171 ()	
75 %		0.171	0.171	0.171	0.13	.0,171 ₄	© 0.170	**************************************	Ī
90 %	-	0.171	0.171	0.17	Ø 171 a	⁶ 0.174 [©]	0.46 1	s. A	
None	D6 Ditch	0.357	0.357	- Q . 9 57 ∧	0.357	0 <u>.3</u> 57	3 3.357		W.
50 %		0.357	0,3×57	0.357	0.357	Ø⁄.357,°≈	0.35	*	
75 %		0.357	3 .357	0.357	~0×357	0.35	9 57		9
90 %		0.357	0.359	0.357	0.35%	0357	Ĉ0.357€		
None	R1 Pond	0.047	Ø16 a	0.015	0.0124	\$0.008°	0,005	6	
50 %		Ø.915	0.014	0,014	%.013 _e @	0.006	0.003	0	
75 %	-	0.014	0,03	20 .013	0.013	100 006	≫0.003 [©]		
90 %	*	0.043	0.013	0.013	0.013	0.005	0,003		
None	R1 Stroam	163 ×	€0.138	0,38	20.138O	0.063	©.033		
50 %		(0.1385)	Q:Q38	0.138	0.188	0.063	0.033		
75 %		0.438	0.138	0.138	Ø138	\$\tilde{\pi} 0.063\tilde{\pi}	0.033		
90 %		_ _ _ _ _ _ _ _ _ _	0.198	Ø 138	0.138	0,063	0.033		
None 0	R3 Stream	0.23	0±236	0.2360	0,2,36	Ø.108	0.056		
50 %	l	Q 36	©0.236 \	0.2\$6	236 C	0.108	0.056		
75 %		236%	0.238	°0∕236 //.	0.236	0.108	0.056		
90 %		0.286	236 ₄	© 0.236	0236	0.108	0.056		
None	R4 Stream	60 413	0.413	0.413	3 0.413	0.188	0.099		
50 %		00.413	0,413	Ø.413 %	0.413	0.188	0.099		
75 %)	0.43/3	70 .413	0.413	0.413	0.188	0.099		
90 %		0.413	0.413	4 03 13	0.413	0.188	0.099		
	R4 Street								

Table 9.2.5- 88: Tier 2 PEC_{sw} values for fluopyram following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

PECsw	Scenario			Step 4	fluopyrar	n cereals	Tier 2	E		
(µg/L)										
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			Ö
reduction	No spray buffer (m)	0 m	5 m	10 m	№ 20 m	100	20 m			y G
None	D1 Ditch	0.403	0.403	0.403	0.403	Q.403	0.40\$	Q .	o s	, C &
50 %		0.403	0.403	0.403	0.403	©0.40%°	05403	\$. O		1
75 %		0.403	0.403	6 2403	0.403	0.403	0.403			
90 %		0.403	0.403	∜0.40 3	0.403	£0.403	0.403	~		
None	D1 Stream	0.253	0.253	0,253	© .253 Q	0.259	0.253		, S	
50 %		0.253	0.253	% 253	9.2 3	Ø .2 53 .	0.253	<i></i>	<u> </u>	
75 %		0.253	\$.253 \(\)	r ~~	0.253	J0.253€	0.253	Ž,		
90 %		0.253	0.253	0.253	0.253 °C	0.2\$3				
None	D2 Ditch	0.296	0,2386	<i>©</i> 0.286℃	_@//	©286_(0.286	~		
50 %		0.286	×0.286	0.286	£0,286	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	0.086			
75 %		0.286 &	0.286	Ø\$286 a	_℃ 0.286 🗸	0.286	3 0.286			
90 %	*	Y - 4	0286	©0.286C	0,2,86	20.286, S	0.2 %			
None	D2 Stream	00733	<i>©</i> 0.178 <i>©</i>	0.78	9.178 ^{(k}	0.178	- <u>0</u> .978			
50 %	D2 Stream	0.178	0.198	3 778 2	0.178	0.\$\vec{97}8	5 0.178			
75 %	Ď, Ši (ó	0.178	Ø.178 <u></u> ^	y 0.178°	0.978	0.178°	0.178			
90 %		0.178	∜0.1 78 0	0/178	0.178	0.178	0.178			
None	D3 Dorch	©0.248	0,067	%.036 \$	0.019	£0,636	0.019			
50 %	×,	0.124	10 .034	0.018	№ 09 ×	0.018	0.009			
75 🔊		~ 92 062	0.01%	.Q. Q 09	0.00 5	0.009	0.005			
90 %	\$	0.025	0.007	0.004	0.002	0.004	0.002			
None	Da Pond	0.064	©0.064	0.063	£063	0.063	0.063			
50 %		Ø.063°×	0.269	·Q,063	0.063	0.063	0.063			
75 %	Y T	0.00		0.063	0.062	0.063	0.062			
90 🎾 "		QQ 62	©0.062	0.062	0.062	0.062	0.062			
Nøne	D4 Sfream	20.214	0.058	30. 062	0.062	0.062	0.062			
50 %		0.107	0.062	0.062	0.062	0.062	0.062			
75 %		€ 062 ≈	0.06 2	0.062	0.062	0.062	0.062			
90 %		0.062	0.062	0.062	0.062	0.062	0.062			
None None	D\$ Pond	0.029	0.028	0.028	0.028	0.028	0.028			
50.25	Ž A	~ © :028	0.028	0.028	0.027	0.028	0.027			
75%		y 0.027	0.027	0.027	0.027	0.027	0.027			
90 %		0.027	0.027	0.027	0.027	0.027	0.027			
None	D5 Stream	0.231	0.084	0.045	0.036	0.045	0.036			
50 %		0.115	0.042	0.036	0.036	0.036	0.036			

PECsw (μg/L)	Scenario			Step 4	fluopyrai	m_cereals_	Tier 2		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	Ċ	
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	\ \frac{\pi}{\pi}	
75 %		0.058	0.036	0.036	0.036	0.036	> 0.036		
90 %		0.036	0.036	0.036	© .036	0.03	0.036		
None	D6 Ditch	0.249	0.072	0.072	0.072	959 72	0.072		
50 %		0.125	0.072	0.07	0.072	0.072	0.002	~ ~ ~	
75 %		0.072	0.072	9.0072	0.072	0.072	®072 () b	
90 %		0.072	0.072	0.072	0.05	0,072 ₄	Ø 0.07	****	Š
None	R1 Pond	0.035	0.034	0.03	0,031	0.016C	0.0099	4 4	, e°
50 %		0.031	0.037	∘Q.930 ∧	$\sqrt[9]{0.030}$	0.014	3 0.007		
75 %		0.030	0,930	0.029	0.029	Ø.012 °≈	0.00	*	
90 %		0.029	3 0.02 %	0.029	~0.029 n	1 0 01 R	000 06		
None	R1 Stream	0.163	0.158	0.158	0.158	0.071	©0.037\$		
50 %		0.158	158	0.158	0 38	% 0.071	0.037	<i>Q</i> ,	
75 %		Ø.¥58	0.15	0,158	V.158	0.03	0.037	O [®]	
90 %]	© 0.158	0,158	20 .158	0.158	9 071	≫0.03 <i>7</i> ©		
None	R3 Stream	0.229	0.228	0.228	0 228 _{(/}	0.104	0.054		
50 %		228	0.228	0.228	~0.228©	0.194	0.054		
75 %		(0.22 8)	0.228	0.228	0.2	0.104	, 0.054		
90 %		0.228	0.228	0.228	Ø228 <u></u>	© 0.10A	0.054		
None	K4 Stream	@ .163 ©	0.0%0	Ø555	0.05	0,032	0.017		
50 % ू 🤵	°U √ ,	0.08	0 4055	0.055	0,955	Ø.025	0.013		
75 %		0.055	©0.055 _\	0.0\$5	2055 C	0.025	0.013		
90 🚿		0 .055&	0.053	(0×055 (4	0.055	0.025	0.013		

90 % 0.08\$ 0.05\$ 0.05\$ 0.0\$

90 % 0.05\$ 0.05\$ 0.05\$ 0.0\$

90 % 0.05\$ 0.05\$ 0.05\$ 0.0\$

Table 9.2.5- 89: Tier 2 PEC_{sw} values for fluopyram following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use spring cereals II -- early -- 0.078 kg a.s./ha)

PECsw	Scenario			Step 4	fluopyrai	n_cereals_	Tier 2	Č		To the second
(μg/L)			T	T	ı	1)
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			, Ø
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	1000	20 m			<i>"</i>
None	D1 Ditch	2.04	2.04	2.04	2.04	2.04	2.04	Q .	b [©]	W)
50 %		2.04	2.04	2.04	2.04	° 2.0€°	3 904	Y O	4	D
75 %		2.04	2.04	2 04	2.04	2,04	2.04			
90 %		2.04	2.04	¥ 2.04	2.04	2.04	2.60			
None	D1 Stream	1.28	1.284	1278	©1.28 Q	1.28	1.28		a.y	5
50 %		1.28	1,28	7.28 ×	1.28	£.28 _%	Õ 1.28U		S.	
75 %		1.28	J.28 &	1.28	1 28	©1.28×	128			
90 %		1.28	1.28	1/28	√1.28√	1,28	3 .28 £			
None	D3 Ditch	0.494	0കൃ34	<i>©</i> 0.071 €		Ø071	0.03	~~ ~~		
50 %		0.247	×0.067	0.03%	0,019	\mathbb{Q}^{7} 0.036	0.019			
75 %		0.124 %	0.033	Ø\$018 a	_₽ 0.009 €	0.018	3 0.009			
90 %	*	r	00013	©0.007C	0,004	©.007,	0.004			
None	D4 Pond	0523	<i>©</i> 0.523 ©	0.52	° 9.522 €	0.522	-Q.S.22			
50 %		0.522	0.592	3 521 2	0.521	0.\$\vec{9}21	5 0.521			
75 %	D4 Pond	0.521	Ø.521 ^	y 0.52Î	0.320	\$0.521\text{0}	0.520			
90 %		0.520	√0.5200°	0.520	0.520	0.520	0.520			
None	D4 Storam	<0.527€	0,527	%.527 <i>\</i>	0.529	@\$27	0.527			
50 %	×,	0.527	% .527	0.527	"Q\$27 ∧	0.527	0.527			
75 🗞		· 93527	0.527,	•Q.\$\\\27	0.527°	0.527	0.527			
90 %		0.52	0.527	0.527	0.527	0.527	0.527			
None	D® Pond	0.470	©0.469	0.469	468	0.469	0.468			
50 %		9 .468%	0.468	20,468 20,468	0.468	0.468	0.468			
75 %	7	0.469	Ø.468	0.46 %	0.467	0.468	0.467			
90 % "		Q 67	©0.467	0.467	0.467	0.467	0.467			
Nøne	D5 Sfream	<u> </u>	0.350	°-0.350	0.350	0.350	0.350			
50 %		0.350	0.350	0.350	0.350	0.350	0.350			
75 %		€350 ≈	0.35Q	0.350	0.350	0.350	0.350			
90 %		0.350	0.850	0.350	0.350	0.350	0.350			
None O	R4 Stream	0.558	0.558	0.558	0.558	0.252	0.132			
50.25	Ž A	^0 :558	0.558	0.558	0.558	0.252	0.132			
75%		9 0.558	0.558	0.558	0.558	0.252	0.132			
90 %	48	0.558	0.558	0.558	0.558	0.252	0.132			

Table 9.2.5- 90: Tier 2 PEC_{sw} values for fluopyram following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- early -- 0.078 kg a.s./ha)

		0.070 Kg	3						_@/	2
PECsw (μg/L)	Scenario			Step 4	l fluopyrai	n_cereals_				1000
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			1
reduction	No spray buffer (m)	0 m	5 m	10 m	© 20 m	100	20 m			d
None	D1 Ditch	3.60	3.60	3.60	3.60	£9.60	3.60		5 4)
50 %		3.60	3.60	3.60	3.60 "	° 3.60°	360	Sy C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
75 %		3.60	3.60	3 9.60	3.60	3,50	3.60		S	
90 %		3.60	3.60	¥ 3.60€	3.60	3.60	3.60	,		
None	D1 Stream	2.31	2.314	2,31	©2.31 Q	2.3	2.31		, S	
50 %		2.31	2,34	2.31	2.30	2.31	© 2.3 kg		S.	
75 %		2.31	£.31 k	2.34	231	[©] 2.31	201	Ş (
90 %		2.31	⁰ 2.31	2. 3 1	2.31	2,3)	2 .31 &			
None	D2 Ditch	4.83	483	⊘ 4.83 🖔	4.83	Q.83 Q	J 4.830	**************************************		
50 %		4.83	4.83	4.8%	4.83	Q 4.83	40873	&		
75 %		4.83 🖔	4.80	483	⊕ 4.83 °√	4.83	4.83			
90 %	\ *\	4.83°	4 083	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.83	×4.83,	4,83			
None	D2 Stream	35,06	② 3.06 ○	306	~ 9.06 ^{&}	3.06	~ 3 .06			
50 %		3.06	3,06	₹.06 £	3.06	3906	₹3.06			
75 %] "Š" (ó	3.06	*\$\.06_^	y 3.06	3906	₹3.06€	3.06			
90 %		3.06	× 3.060	3.06	3.06	3.06	3.06			
None	D3 Dorch	©0.494	0,134	6 .071	0.039	. 0 7 071	0.037			
50 %		0.247	10 7.067	0.036	№ 19 ×	0.036	0.019			
75 🔊		92124 ₂	0.034	.0.918	0.009 C	0.018	0.009			
90 %		0.049	0.013	0.007°	0.004	0.007	0.004			
None	Da Pond	0.555	©0.655	0.655	654	0.655	0.654			
50 %		0 .654%	0.65	0,654	0.654	0.654	0.654			
75 %		0.653	9 2854	0.653	0.653	0.653	0.653			
90 %		9 053	©0.653	0.653	0.653	0.653	0.653			
Nøne	D4 Stream	4 0.673	0. 63 3	°-0.673	0.673	0.673	0.673			
50 %		0.673	0.873	0.673	0.673	0.673	0.673			
75 %		€,673 ≈	0.67 3 Q	0.673	0.673	0.673	0.673			
90 %		©0.673	0.673	0.673	0.673	0.673	0.673			
None	DS Pond	0.455	0.454	0.454	0.453	0.454	0.453			
50.5	Z A	~ © :453	0.453	0.453	0.453	0.453	0.453			
75%		y 0.453	0.453	0.452	0.452	0.452	0.452			_
90 %		0.452	0.452	0.452	0.452	0.452	0.452			_
None	D5 Stream	0.451	0.351	0.351	0.351	0.351	0.351			_
50 %		0.351	0.351	0.351	0.351	0.351	0.351			_
										-

PECsw (μg/L)	Scenario			Step 4	fluopyrai	n_cereals_	Tier 2		
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	3 0 m	4	
75 %		0.351	0.351	0.351	0.351	0.351	> 0.351		
90 %		0.351	0.351	0.351	© .351	0.35	0.351		
None	D6 Ditch	0.708	0.708	0.708	0.708	9 308	0.708		
50 %		0.708	0.708	0.70	0.708	0.708	0.708	(P	
75 %		0.708	0.708	9,7008	0.708	0.798	® 708√) b	Ø
90 %		0.708	0.708	(0.708 ₍₎	0.708	40,708 ₄	Ø 0.70	***	Š
None	R1 Pond	0.034	0.032	0.03	0,028	⁷ 0.016©	0.0099	4 4	e °
50 %		0.029	0.028	∘ Q.9 27 ∧	$\sqrt[9]{0.026}$	0.013	Ø.007		W.
75 %		0.026	0,926	0.025	0.925	Ø:011 ×	0.00	W /	
90 %		0.025	3 .02 3	0.025	~0×024 /	0.010	00005		
None	R1 Stream	0.326	0.288	0.288	0.288	0.031	Ĉ0.06 <u>9</u> Ŝ		
50 %		0.288	.0 288 4	0.28	0288	5 0.131	0.00	& .	
75 %		Ø. 2 88	0.28	0,288	7.288	0,134	0.069	0	
90 %]	ۇ 0.288 ^{ئۇ}	0,23/8	20 .288	0.288	131	×0.069		
None	R3 Stream	0.497	0.497	0.49	9 9 97 (0.227	0.799		
50 %		4 97 ×	J 0.497	0.497	҈0.497Ô	0.227	0.119		
75 %		(0.49 7)	0.497	0.497	0.497	0.227 g	, 0.119		
90 %		0.497	0.497	0.497	© 497	\$\text{\$\pi\$0.227}\$	0.119		
None	K4 Stream	@ .835 ©	0.8\$5	835	0.83	03,80	0.199		
50 % ू 🤵	°U √ ,	0.83	04835	0.8350	0,835	3 0.380	0.199		
75 %		0.835	©0.835 _\	0.8\$5	₹835 C	^y 0.380	0.199		
90 🚿		√0.835¢	0.838	02835 <u>k</u>	0.835	0.380	0.199		

0.883 0.835 0.835 0.8 0.835 0.835 0.835 0.8 0.835 0.835 0.835 0.8 0.835 0.8 0.855 0.8 0.855 0.

Table 9.2.5- 91: Tier 2 PEC_{sw} values for fluopyram following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- late -- 0.078 kg a.s./ha)

PECsw (μg/L)	Scenario			Step 4	fluopyrar	n_cereals_				
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			Ö
reduction	No spray buffer (m)	0 m	5 m	10 m	№ 20 m	1000	20 m		Į.) /
None	D1 Ditch	0.933	0.933	0.933	0.933	£9.933	0.938	Q,	Ő,	&\ \{\bar{\chi}
50 %		0.933	0.933	0.93	0.933 "	[©] 0.9383°	95933	Y C	4	9
75 %		0.933	0.933	8933	0.933	0.933	0.933			
90 %		0.933	0.933	∜0.93 3	0.933	Ø.933	0.953	2 4		
None	D1 Stream	0.584	0.584	0584	© 584 Q	0.584	0.584		4	0
50 %		0.584	0.584	~0.584 <u>~</u>	× 0.5	Ø ,3 84 👡	0.584		K.	
75 %		0.584	J.584 &	⁷ 0.584	0.584	_0.58 4 %	0.584	Ş Ö		
90 %		0.584 🌊	0.58	0.584	√0.584 [©]	0.584	20 .584 £			
None	D2 Ditch	0.623	06623	<i>©</i> 0.623 Ô	0.63	©623 ©	0.62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
50 %		0.623	×0.623	0.623	£623	$\mathbb{Q}_{0.623}^{\circ}$	0.623	%		
75 %		0.623 🖔	0.623	Ø\$623	₀ 0.623 √	0.623	30 .623			
90 %	\$	0.623	06523	©0.623C	0,623	©.623,	0.623			
None	D2 Stream	00504	<i>©</i> 0.389 <i>©</i>	0.389	· 9.389 &		₂ 0.389			
50 %	D2 Stream	0.389	0.389	\$389 \hat{2}	0.389	0.989	√0.389			
75 %	, Š, ć	0.389	b.389 ^	y 0.389	0.389	£0.389	0.389			
90 %		0.389	∜0.3890°	0,389	0.389	0.389	0.389			
None	D3 Dorch	©0.496	0,134	9 .071	0.039	. 0 , 071	0.037			
50 % 🔊		0.248	10 .067	0.036	29 19 ∧	0.036	0.019			
75 🕏		\$\hat{9}\dag{24}	0.034	.0.918	₹0.009 ©	0.018	0.009			
90 %		0.050	0.014	0.007	0.004	0.007	0.004			
None	Da Pond	0.36	©0.136	0.135	0.134	0.135	0.134			
50 %		Ø.134%	0.139	20,134	0.133	0.134	0.133			
75 % 🔏		0.133	Ø\$33	0.13 3		0.133	0.133			
90 %		0 Q 33	©0.133	0.432	0.132	0.132	0.132			
Nøne	D4 Stream	<u> </u>	0.156	20 .132	0.132	0.132	0.132			
50 %		0.214	0.132	0.132	0.132	0.132	0.132			
75 %		€ 132 ≈	0.13 2	0.132	0.132	0.132	0.132			
90 %		©0.132	0.032	0.132	0.132	0.132	0.132			
None O	DS Pond	0.064	0.064	0.063	0.063	0.063	0.063			
50.25	Ž A	~ © :063	0.063	0.062	0.062	0.062	0.062			
75%		° 0.062	0.062	0.062	0.062	0.062	0.062			
90 %		0.062	0.062	0.062	0.061	0.062	0.061			
None	D5 Stream	0.461	0.168	0.089	0.071	0.089	0.071			
50 %		0.231	0.084	0.071	0.071	0.071	0.071			

PECsw (μg/L)	Scenario			Step 4	fluopyrai	n_cereals_	Tier 2		a,° ×
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	% 0 m	4	
75 %		0.115	0.071	0.071	0.071	0.071	> 0.071		
90 %		0.071	0.071	0.071	© .071	0.07	0.071		(S)
None	D6 Ditch	0.498	0.141	0.141	0.141	QQ41	0.1410		
50 %		0.250	0.141	0.14	0.141	0.141	0.191	<i>, Q c</i>	
75 %		0.141	0.141	9.7041	0.141	0.141	- 37) b	
90 %		0.141	0.141	0.141 ₀	0.149	<u>√0</u> ,141 √	Ø 0.14	2×7	Š
None	R1 Pond	0.072	0.070	0.06	0,064	0.03 3	0.0 8	4 4	, e°
50 %		0.065	0.065	∘Q.963 ∧	0.062^{2}	0.028	Ø.015		W.
75 %		0.062	0,062	0.061	0.060	Ø.026,	0.013	× 1	
90 %		0.060	3 .06 %	0.060	~0.060 g	0.02	Q 13		J .
None	R1 Stream	0.351	0.359	0.351	0.351	0.058	©0.083		
50 %		0.351	3 51 <i>a</i>	0.351	0	5 0.158	0,083	<i>Q</i> .	
75 %		Ø.351	[™] 0.35√	0.351	V.351	0.168	0.083	O [®]	
90 %		ن 0.351 من الأسلام	0.351	20 .351	0.351	40,158	≫0.08 <i>3</i> ©		
None	R3 Stream	0.504	0.504	0.50	0\$04 ₍₄	0.229	0,320		
50 %		\$504	J 0.504	0504	Ĵ0.504Ô	0.229	0.120		
75 %		(0.504)	0.504	0.504	0.5 04	0.229	0.120		
90 %		0.504	0.504	0.504	Ø504	© 0.2295	0.120		
None	X4 Stream	@ .327 ©	0.1969	8 107	©0.10 7	0,063	0.033		
50 % ू 🧔	**************************************	0.164	01107	7 0.107 0	04,07	Ø.049	0.026		
75 %		0.907	©.107 °	0.107	29.107 C	0.049	0.026		
90 🚿		0.107	0.167	0 /107 (<u>(</u>	0.100	0.049	0.026		

0.188 8,107 0.107 0. 0.164 0.107 0.107 0. 0.107 0.107 0.107 0.10 0.107 0.107 0.10

Fluopyram-7-hydroxy (FLU-7-OH)

Table 9.2.5- 92: Tier 2 PEC_{sw} values for FLU-7-OH following single application of BIX + FLU + PTZ
EC 260 to barley I according to surface water Step 4 (modelling use spring cereals 4 -early -- 0.039 kg a.s./ha)

								į.	Y C	<u>)" </u>
PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	Ther 2			
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			<i>7</i>
reduction	No spray buffer (m)	0 m	5 m	10 m 🎝	20 m	© m	20 ma		54 %	0,0
None	D1 Ditch	0.095	0.095	0.695	0.095	[©] 0.09%	6 095	Y	a.Y	
50 %		0.095	0.095	0.095	, 0.095	0:995	© 0.09 5			
75 %		0.095	0.095	0.09	04095	\$0.095 ₀	0.993	. J		
90 %		0.095	0.095	0095	© 0.095₽	0.095	Q.095 (Ž,	
None	D1 Stream	0.059	0.059	3 .059	0.00	10 ,059 %	©′0.05 %	4		
50 %		0.059	Ø.059 K	0.059	0.059	0.05	0.039			
75 %		0.059	0.05%	ð:Ø59	₹0.05 9	07839	3 .059 \$			
90 %		0.059	99059	\$0.059	0.059	0.059	0.05	**		
None	D3 Ditch	< 900 901	°×0.001	<0.001	₹9 .001	°<0.001	<0.001	0		
50 %		<0.001	<0.00/1	% 001	♂<0.00Î	≤0.00 1 ⟨	Q0.00			
75 %	*	<0.001	< 0001	€0.00 ×	<0.001	₹0.00 £	<0.001			
90 %	2	<0.001	\$0.001 [©]	<0.001	≈0.001°	<0.001	≈0 .001			
None	D4 Pond	0.023	0.033	0.023	0.023	0.023	0.023			
50 %		0.023	0.023	× 0.023	0.023	Ø.023	0.023			
75 %		@.023 @	0.0230	0.023	0.023	0.023	0.023			
90 %	3	€0.02 3	0.023	~0.023 ~	0.023	20 023	0.023			
None	D4 Stream	0.022	Ø.022	0.022	~0.022 ^	0.022	0.022			
50 %	D4 Stream,	~0.022 _~	0.020	10,022	0.022	0.022	0.022			
75 %		0.02	0:922	0.022	0.022	0.022	0.022			
90 %		0.022	00.022	0.002/2	© :022	0.022	0.022			
None a	D5 Pond	0.025	0.625	°0,025	0.025	0.025	0.025			
50 % 🚄		0.029		\$\frac{9}{0.02}\$	0.025	0.025	0.025			
75 %		Ø. 25	0.025	0 025	0.025	0.025	0.025			
90%		₹ 0.02 <i>5</i> 0	0.025	29. 025	0.025	0.025	0.025			
None	D5 Stream	0.009	0.019	0.019	0.019	0.019	0.019			
50 %		© .019 ~	0.01%	0.019	0.019	0.019	0.019			
75 %		0.019	0.49	0.019	0.019	0.019	0.019			
90 %		0,019	0.019	0.019	0.019	0.019	0.019			
Note	R4 Stream	20.002	0.002	0.002	0.002	0.001	< 0.001			
,50°%		₹ 0.002	0.002	0.002	0.002	0.001	< 0.001			
75 %		0.002	0.002	0.002	0.002	0.001	< 0.001			
90 %		0.002	0.002	0.002	0.002	0.001	< 0.001			

Table 9.2.5- 93: Tier 2 PEC_{sw} values for FLU-7- OH following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals - early -- 0.039 kg a.s./ha)

-							8	<u> </u>		O ^y
PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	@~			<i>A</i> -
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		<i>\$</i>	
reduction	No spray buffer (m)	0 m	5 m	10 m 🎝	20 m	O m	20 m/s		5 4	, Ć
None	D1 Ditch	0.133	0.133	0.433	0.133	0.133	ØY33			
50 %		0.133	0.133	0.133	0.13	0:133	0.133			
75 %		0.133	0.133	0.13	Q <u>4</u> 1333	₹0.133 _%	0.433	. J		
90 %		0.133	0.133	0033	© 0.133 	0.133	Q.133 (Z,	
None	D1 Stream	0.085	0.085	Ø.085	0.083	10,0 85 %	0.085	% n	Ş	
50 %		0.085	Ø.085 ×	0.085	Ø:085 s	0.085	0,085		٥	
75 %		0.085	0.085	ð: 9 85	₹0.08 5	02085	.085 S			
90 %		0.085	99085	\$ 0.08 5	0.055	20. 085	0.08	*		
None	D2 Ditch	0.07 1	°>0.171	0.179	4 9.171	\$0.171	0.971	0		
50 %		0.171	0.134	5 171	♂ 0.171 🕏	0.371	0 .171			
75 %	*	0.171	0,971	\$0.17 }	0.471	Ø.171	0.474			
90 %	*	997 1	<i>Q</i> 0.171 ○	0,071	9 .171	Ø.1 2 71	20,17 1			
None	D2 Steam	0.117	0.187	3 .117	0.117	0.917	0.117			
50 %		0.17	0.117	7 0.1 1 7	Q\$17	© 0.117C	0.117			
75 %		@.117 @	0.1470	0 (1)17	0.117	0.117	0.117			
90 %	_	©0.1176	04117	3 0.117	0.117	30 117	0.117			
None	D3 Ditck	<0.001	2 0.001	<0.001	9.001	~<0.001	< 0.001			
50 %		×0.001,	<0.001	\$0,001	<0.004	< 0.001	< 0.001			
75 %] \$ 4	<0.00	50 ,001	×0.00	<0.001	< 0.001	< 0.001			
90 %		< 0.001	Ø0.001	<0.001	\$9.001	< 0.001	< 0.001			
None *	D4 Pond	Ø.022°>	0.629	°0,029	0.029	0.029	0.029			
50 % 🔌	. (0.029		\$\frac{9}{0.02\pi}	0.029	0.029	0.029			
75 %		6929 8	0.029	0.029	0.029	0.029	0.029			
9 Q V%		₹ 0.029	0.029	% .029	0.029	0.029	0.029			
None	D4 Stream	0.028	0.028	0.028	0.028	0.028	0.028			
50 %	D4 Stream	Ø .028,	0.02	0.028	0.028	0.028	0.028			
75 %		0.028	Q S 28	0.028	0.028	0.028	0.028			
90 %		0,028	0.028	0.028	0.028	0.028	0.028			
Note	D5 Pond	29 .025	0.025	0.025	0.025	0.025	0.025			
		₹ 0.025	0.025	0.025	0.025	0.025	0.025			
75 %		0.025	0.025	0.025	0.025	0.025	0.025			
90 %		0.025	0.025	0.025	0.025	0.025	0.025			
None	D5 Stream	0.020	0.020	0.020	0.020	0.020	0.020			

PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	_Tier 2		. 0
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	ॐ 0 m	\ \ !\	
50 %		0.020	0.020	0.020	0.020	0.020	> 0.020		
75 %		0.020	0.020	0.020	© .020	0.02	0.020		
90 %		0.020	0.020	0.020	[®] 0.020	959 20	0.020		
None	D6 Ditch	0.022	0.022	0.02	0.022	0.022	0.022	, 4	
50 %		0.022	0.022	9,022	0.022	0.022	®022_() Ø	W.
75 %		0.022	0.022	(0.022 ₍₎	0.032	\$0,022 _{\$\lambda\$}	Ø 0.02	~\\\\	Ţ
90 %		0.022	0.022	0.Q2 G	6 ,022 a	~0.02 2	0.0022	s. A	
None	R1 Pond	< 0.001	<0.00	<0001 ×	$\sqrt[8]{0.001}$	<0.001	©0.001		
50 %		< 0.001	<0.001	₹0.00k)	<0.001	€Ø.001°	~ ×	2	
75 %		< 0.001	\$0.00 4	<0.001	~©.001 ©		≤© 001		
90 %		<0.001	<0.001	<0.001	<0.001	<000001	£0.00,15		
None	R1 Stream	0.092	D002 1	0.002	0.602	% 0.001	<0.001	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
50 %		Ø.902 _/	0.002	0,002	V.002	0.00	<0.001	0,	
75 %		(a) 0.002	0.002	Ø.002 ¹	0.002	% 00001	1 1 0.00 1		
90 %	. **	0.002	0.002	0.00%	002 _{(/}	0.001	<0.001		
None	R3 Stream	Ø 005 ×	0.005	0.005	رِيُّةُ).005	0.002	0 .001		
50 %	R3 Stream	Ç 0.00 S	0.005	0.005	0.005	0.002	0.001		
75 %		0.4905	0.005	0.003	Ø005 g	© 0.0025	0.001		
90 %		@ .005 ©	0.005	B 005	Ö0.00 5	0,02	0.001		
None 🛴 ဳ	R4 Stream	0.00\$	0 4007	0.007	0,007	Ø.003	0.002		
50 %		0.007	©0.007 _{\(\sigma\)}	0.007	3 007 C	¥ 0.003	0.002		
75 %		0 .0074	0.067	√0×007 (<u>/</u>	0.000	0.003	0.002		
90 %	\$\frac{1}{6} 4	0.00	20,0 07 4	© 0.007°	0.0 07	0.003	0.002		
	R4 Stream			0x007 & 0x007					

Table 9.2.5- 94: Tier 2 PEC_{sw} values for FLU-7- OH following single application of BIX + FLU + PTZ EC 260 to barley I according to surface water Step 4 (modelling use winter cereals I -- late -- 0.039 kg a.s./ha)

		.039 kg a.s							<u> </u>	2
PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	- 0			T. P
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m)
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	100	20 m			\d \d
None	D1 Ditch	0.041	0.041	0.041	0.041	. 0.041	0.044	Q (5 4	<i>)</i>
50 %		0.041	0.041	0.04	0.041	° 0.045°	05/941	y C	\$	
75 %		0.041	0.041	69041	0.04	0.041	0.041		~	
90 %		0.041	0.041	₹0.04£	0.071	(0.041)	0.047	1 1		
None	D1 Stream	0.026	0.026	0,026	© .026 Q	0.02	0.026		¥°	
50 %		0.026	0.026	0.026) 0.0 25	Ø .0 26 .	0.026	~// ~	L. T	
75 %		0.026	\$.026 \(\)	× 0.026	0.926	90.02 6 4	0.026			
90 %		0.026 🔏	0.026	0.026	0.026	0.026	3 0.026 £			
None	D2 Ditch	0.030\$	0@30	<i>©</i> 0.030€	0.030	Ø.030	0.030	**		
50 %		0.630	~0.030 °	0.0336	0,030	$\mathbb{Q}_{0.030}^{\circ}$	0.030	&		
75 %		0.030 📞	0.030	Ø\$030 a	_₽ 0.030 €	0.030	30 .030			
90 %	*	0.030	00030	©0.030C	0,030	Ø.030,~	0.036			
None	D2 Stream	00019	<i>©</i> 0.019©	0.0	• 9 .019 &	0.019	-Q.Ø19			
50 %	D2 Stream	0.019	0.00	.0 .019 2	0.019	0.019	√0.019			
75 %	Ŏ, Ť	0.019	%019 <u></u> ^	y 0.0120	0.019	%0.012°	0.019			
90 %	D3 Porch	0.019	∜0.0196 [™]	0.019	0.019	0.019	0.019			
None	D3 Dorch	~0.00J	<0.001	%0.001.S	₹<0.0 9	≨ 9.001	< 0.001			
50 %		<0.001	20 .001	⁰ <0.001	≈© 001 ×	0.001	< 0.001			
75 🗞	, W	~\$ 0 001,	<0.001	<0.001	<0.061	< 0.001	< 0.001			
90 %	9	V<0.000	<0,001	~0.00 _b	<0.001	< 0.001	< 0.001			
None	Da Pond	0.005	©0.005	0.005	20 2005	0.005	0.005			
50 %		Ø.005×	0.009	×0,005	0.005	0.005	0.005			
75 %	~ ~	0.0405	9 05 (\$0.00 5	0.005	0.005	0.005			
90 %		Q	©0.005	0.005	0.005	0.005	0.005			
Nøne	D4 Sfream	$\triangle 0.006$	0.006	20. 006	0.006	0.006	0.006			
50 %	, °	0.008	0.006	0.006	0.006	0.006	0.006			
75 %	Q	Ø ,006 ≈	0.00 Q	0.006	0.006	0.006	0.006			
90 %		©0.006	0.006	0.006	0.006	0.006	0.006			
None S	DS Pond	0.004	0.004	0.004	0.004	0.004	0.004			
50.25	Ž A	~ © :004	0.004	0.004	0.004	0.004	0.004			
75%		9 0.004	0.004	0.004	0.004	0.004	0.004			
90 %		0.004	0.004	0.004	0.004	0.004	0.004			
None	D5 Stream	0.004	0.004	0.004	0.004	0.004	0.004			
50 %		0.004	0.004	0.004	0.004	0.004	0.004			

PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	_Tier 2		٥
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	2 0 m	~ ~ ~	
75 %		0.004	0.004	0.004	0.004	0.004	> 0.004		
90 %		0.004	0.004	0.004	© .004	0.09	0.004		
None	D6 Ditch	0.005	0.005	0.005	0.005	959 05	0.005		
50 %		0.005	0.005	0.00	0.005	⊙0.005 °	0.005	, × c	P' _@
75 %		0.005	0.005	9,005	0.005	0.063	®005_(-2/	
90 %		0.005	0.005	(,0.005 ₍₎	0.00	₂ 0,005 ₄	Ø 0.00		
None	R1 Pond	< 0.001	<0.001	~0.00°	3 .001	£0.0 0	<000001	L &	, ·
50 %		< 0.001	<0.00	≤0 001 ≈	$\sqrt[8]{0.001}$	<0.001	©0.001		
75 %		< 0.001	<0,001	₹0.00 £	<0.001	Ø.001°	~ >	&	
90 %		< 0.001	Q0.004	<0.001	~©.001 _@	~0.000°	<001		
None	R1 Stream	0.002	0.002	0.002	0.002	<00001	Ø0.00 <u>1</u> 5		
50 %		0.092	_	0.002	0.602	∳ 0.001∂	<0.001	&	
75 %		.0.002 	0.002	0.002	V.002	· · · · · · · · · · · · · · · · · · ·	<0.001	0"	
90 %	.	(b) 0.002	0.002	Ø.002 ⁴	© 0.002 °	© .001	×0.00		
None	R3 Stream	0.006	0.006	0.00	05 9 06	0.003	0.001		
50 %		Ø006 ×	J 0.006	0.006	ॅ 0.006©	0.003	0.001		
75 %		$\sqrt{0.000}$	0:006	V.006	0.006	0.003	, 0.001		
90 %		0.496	0.006	0.000	Ø0006	© 0.003	0.001		
None	X4 Strom	© .003	0.063	Ø 603	O.003	0,001	< 0.001		
50 % _ @		0.00\$	0 2003	$\sqrt[8]{0.003}$	0.003	6 0.001	< 0.001		
75 %		0,003	©0.003 ₁	0.003	£003 C	[≫] 0.001	< 0.001		
90 %"		(0.003\(\sqrt{)}	0.063	0×003 (x	0.00	0.001	< 0.001		
				(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c					

Table 9.2.5- 95: Tier 2 PEC_{sw} values for FLU-7- OH following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use spring cereals II -- early -- 0.078 kg a.s./ha)

PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	_Tier 2			
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m			Ì
reduction	No spray buffer (m)	0 m	5 m	10 m	© 20 m	100	20 m			4
None	D1 Ditch	0.183	0.183	0.183	0.183	Q.183	0.18	Q .		
50 %		0.183	0.183	0.183	0.183	° 0.18€°	95 1 /83	y C	Sy.	
75 %		0.183	0.183	6 2183	0.183	0.183	0.183			
90 %		0.183	0.183	∜0.18 3 ,	0.183	Ø.183	0.183	<i>y</i>	2	
None	D1 Stream	0.115	0.115	0,115	Ø.115.Q	0.119	0.115		, e	
50 %		0.115	0.115	Ø.115	0.15	Ø . 15 .	00.115			
75 %		0.115	J.115 &	0.145	0.115	90.11 5 4	0.105			
90 %		0.115 🔏	0.115	0.115	₩0.115	04195	20 .115 £			
None	D3 Ditch	<0.001	< 0,001	Ø0.00€	<0.001	9 .001		**		
50 %		<0.001	>0.001	0.00 °	≈0 .001	Q<0.001	<000001	&		
75 %		₹0.001%	· <0.001	≈ 001 a	₀ <0.001√	<0:901	\$ 0.001			
90 %	*	<0.00	<0001	\$0.00 L	<0.001	₹0.001	<0,00H			
None	D4 Pond	0049	<i>©</i> 0.049 <i>©</i>	0.0	· 9.049 &	0.049	₂ 0.9049			
50 %		0.049	0.049	.0 :049 2	0.049	0.049	√0.049			
75 %	, Š, (ó	0.049	6.049 ^	y 0.049	0.049	%0.049	0.049			
90 %		0.049	∜0.0490°	0.049	0.049	0.049	0.049			
None	D4 Stocam	©0.044	0,044	%.044 \$	0.044	.0 9 44	0.044			
50 % 💸	×.	0.094	20 .044	0.044	2 9 44 ∧	0.044	0.044			
75 🖏		· 92044	0.044	.0.944	0.044 C	0.044	0.044			
90 %		90.04 4	0.044	30.044	0.044	0.044	0.044			
None	De Pond	0.051	©0.051	0.05,1	05051	0.051	0.051			
50 %		3 .051%	0.059	20,051	0.051	0.051	0.051			
75 %	7	0.050	9 51	0.051	0.051	0.051	0.051			
90 %	٥	Q 51	©0.051	0.051	0.051	0.051	0.051			
Nøne	D5 Sfream	△0.039	0.039	20 .039	0.039	0.039	0.039			
50 %		0.089	0.039	0.039	0.039	0.039	0.039			
75 %		€039 ≪	90.03£Q	0.039	0.039	0.039	0.039			٦
90 %		©0.039	0.039	0.039	0.039	0.039	0.039			٦
None O	R4 Stream	0.005	0.005	0.005	0.005	0.002	0.001			
50.25	Z A	~ © :005	0.005	0.005	0.005	0.002	0.001			
75%		√ √ 0.005	0.005	0.005	0.005	0.002	0.001			
90 %		0.005	0.005	0.005	0.005	0.002	0.001			٦

Table 9.2.5- 96: Tier 2 PEC_{sw} values for FLU-7- OH following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- early -- 0.078 kg a.s./ha)

		0.0 / O Kg							
PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals			
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	© 20 m	1000	20 m		
None	D1 Ditch	0.250	0.250	0.250	0.250	Q.250	0.250	Q .	5 4
50 %		0.250	0.250	0.250	0.250	© 0.25%)°	952 50	S. C	
75 %		0.250	0.250	6 250	0.250	0.250	0.250		~ G
90 %		0.250	0.250	¥0.25 9	0.230	£0.250	0.250	/ A	
None	D1 Stream	0.160	0.160	0,50	©.160 Q	0.160	0.160		S.
50 %		0.160	0.160	% 0.160	0.1	Ø . 160 _%	0.160		
75 %		0.160	J.160 &	0.160	0.160	Ç [©] i.16 0 %	0.160		
90 %		0.160 🔏	0.16	0.160	0.160 °C	0460	3 .160 £		
None	D2 Ditch	0.315	0&15	<i>©</i> 0.315€	0.343	Ø315	0.316	**	
50 %		0.3/5	×0.315	0.346	0,315	₽0.315	0.015		
75 %		0.315 🖔	0.3 15	Ø\$315	₆ 0.315 €	0.315	30 .315		
90 %	* <u></u>	Y - 4(02315	©0.31 5 (0,2,1%	×0.315	0.345		
None	D2 Stream	0019	<i>©</i> 0.219 Ô	0.2	~ P.219 [©]	0.219	₀ <u>0</u> .2019		
50 %		0.219	0.209	2 0.219 2	0.219	0.219	√0.219		
75 %	Ţ	0.219	Ø <u>.</u> 219 ^	y 0.2199	0.2019	3 0.21 2	0.219		
90 %		0.219	¥0.2196	0.219	0.219	0.219	0.219		
None	D3 Dorch	₩0.00 <u>1</u>	<0.001	% 0.001\$	<0.09	≨ 9 .001	< 0.001		
50 % 🔊		<0.001	20 .001	³ <0.001	≈ \$001 ×	0.001	< 0.001		
75 👫		~ @ 001_	<0.001	€0.001	~ 0.001	< 0.001	< 0.001		
90 %	\$	V<0.000	<0,001	X 0.00)	<0.001	< 0.001	< 0.001		
None	Da Pond	0.060	©0.060,×	0.060	060	0.060	0.060		
50 %		Ø.060°×	0.260	2060 20060	0.060	0.060	0.060		
75 %	¥ - (2)	0.0 0	9 5860	0.06	0.060	0.060	0.060		
90 % © "		Q	©0.060	0.060	0.060	0.060	0.060		
Nøne	D4 Stream	4 0.055	0.653	°0.055	0.055	0.055	0.055		
50 %		0.053	0.055	0.055	0.055	0.055	0.055		
75 %		€,055 ≪	0.055	0.055	0.055	0.055	0.055		
90 %		0.055	0.055	0.055	0.055	0.055	0.055		
None O	D\$ Pond	0.051	0.051	0.051	0.051	0.051	0.051		
50.89	Z A	~ © :051	0.051	0.051	0.051	0.051	0.051		
75%		y 0.051	0.051	0.051	0.051	0.051	0.051		
90 %		0.051	0.051	0.051	0.051	0.051	0.051		
None	D5 Stream	0.038	0.038	0.038	0.038	0.038	0.038		
50 %		0.038	0.038	0.038	0.038	0.038	0.038		

PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	_Tier 2		@
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m		
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	№ 0 m	4	
75 %		0.038	0.038	0.038	0.038	0.038	0.038		
90 %		0.038	0.038	0.038	© .038	0.03	0.038		
None	D6 Ditch	0.042	0.042	0.042	0.042	05042	0.042		
50 %		0.042	0.042	0.04	0.042	0.042	0.042	(C	
75 %		0.042	0.042	0.042	0.042	0.042	®042_() B	
90 %		0.042	0.042	(0.042 ₍₎	0.049	0,042	© 0.04	**	
None	R1 Pond	< 0.001	<0.001	~0.QG	20.001	°€0.09€	<070001	4 4	, , ,
50 %		< 0.001	<0.00	≤0 9001 ∧	×0.001	<0.001	\$0.001		
75 %		< 0.001	<0.001	₹0.00k	<0.001	80.001	<0.001	A n	
90 %		< 0.001	\$0.00 4	<0.001	~©0.001	~0.0 @	400 001		
None	R1 Stream	0.005	0.009	0.005	0.005	0.002	£0.001		
50 %		0.005	,0,005 a	0.005	0.005	₩.002°	0,00	<i>Q</i> ,	
75 %		.0.905	~0.00 5 ~	0,005	7.005	0.002	0.001	O	
90 %]	(j) 0.005	0.005	Ø.005	0.005	9 002	y0.001 [©]		
None	R3 Stream	0.000	0.010	0.016	05 9 10 (0.005	0.003		
50 %		Ø010 ×	J 0.010	0.010	҈0.010Ô	0.005	0.003		
75 %		(0.01 0)	0.010	0.010	0.000	0.005	0.003		
90 %		0.610	0.010	0.010	Ø010	© 0.0035	0.003		
None	X4 Stream	@ .013	0.0\$3	Ø 013	©0.01 3	0,006	0.003		
50 % ू 🧔] "O"	0.0190	04013	0.0130	0,013	6 0.006	0.003		
75 %		0.013	©0.013 _\	0.0\$3	©.013 ©	9.006	0.003		
90 %		7 0.013	0.043	0×013 (g	0.013	0.006	0.003		

90 % 0.013 0.013 0.003 0

Table 9.2.5- 97: Tier 2 PEC_{sw} values for FLU-7- OH following single application of BIX + FLU + PTZ EC 260 to barley II according to surface water Step 4 (modelling use winter cereals II -- late -- 0.078 kg a.s./ha)

1		- 0.0 /8 kg								2
PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals				To Day
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m)
reduction	No spray buffer (m)	0 m	5 m	10 m	҈ 20 m	1000	20 m			Z
None	D1 Ditch	0.079	0.079	0.079	0.079	_L P.079	0.079	Q,)
50 %		0.079	0.079	0.0	0.079 '	° 0.07⊗°	05079	S, C	S S	
75 %		0.079	0.079	% 079	0.079	0.079	0.079			
90 %		0.079	0.079	¥0.07 9 €	0.079	L0.079	0.079	<i>y</i>	2	
None	D1 Stream	0.050	0.050	0,050	© .050 Q	0.05	0.050 (` ~	
50 %		0.050	0.050	~0.050~	0.0	· * *	0.050			
75 %		0.050	\$.050 K	0.050	0.950	90.05 9 4	0.050			
90 %		0.050 🔏	0.050	0.050	₩0.050	0.0\$0				
None	D2 Ditch	0.060	0@60	<i>©</i> 0.060€	0.060	Ø.060_0	0.060	***		
50 %		0.650	~0.060 °	0.0	Ø,060	$\mathbb{Q}_{0.060}^{\circ}$	0.060			
75 %		0.060 🖔	0.00	Ø\$060 a	_₽ 0.060√	0.000	3 0.060			
90 %	*	0.060	00060	©0.060C	0,060	Ø.060,	7 0.0 50			
None	D2 Stream	0037	\$ 0.037 ©	0.057	• 9.037 [©]	0.037	₀Q. 903 7			
50 %	D2 Stream	0.037	0.037	3 037 2	0.037	0.937	5 0.037			
75 %	Ŏ, Ž,	0.037	Ø <u>.</u> 037 ू^	y 0.03.7°	0.037	0.037	0.037			
90 %	D3 Dorch	0.037	₹0.037°	0.037	0.037	0.037	0.037			
None	D3 Dorch	×0.001	<0.001	\$0.001\$	<0.09	≨ 9.001	< 0.001			
50 %		<0.001	20 .001	³ <0.001	≈© 001 ×	0.001	< 0.001			
75 🗞		~\$ 0 2001_	<0.001	€0 .0 01	$<_{0.001}^{\circ}$	< 0.001	< 0.001			
90 %	9	\$\leq0.0 9 \text{\$\ext{\$\text{\$\}\$}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	<0,001	₹ 0.00}	<0.001	< 0.001	< 0.001			
None	Da Pond	0.011	©0.011	0.04,1	6 011	0.011	0.011			
50 %		Ø.011%	0.019	·0.011	0.011	0.011	0.011			
75 %	"	0.040	9 311	0.01 kg	0.011	0.011	0.011			
90 🎾 "		Q	©.01]	0.001	0.011	0.011	0.011			
Nøne	D4 Sfream	△0.011	0. 6 1	~0 .011	0.011	0.011	0.011			
50 %	. 0	0.01	0.011	0.011	0.011	0.011	0.011			
75 %	Q	6 011 ×	0.014Q	0.011	0.011	0.011	0.011			
90 %		©0.011	0.001	0.011	0.011	0.011	0.011			
None None	DS Pond	0.009	0.009	0.009	0.009	0.009	0.009			_
50.29	ŽA	~ © :009	0.009	0.009	0.009	0.009	0.009			_
75%		0.009	0.009	0.009	0.009	0.009	0.009			
90 %		0.009	0.009	0.009	0.009	0.009	0.009			
None	D5 Stream	0.008	0.008	0.008	0.008	0.008	0.008			
50 %		0.008	0.008	0.008	0.008	0.008	0.008			_

PECsw (μg/L)	Scenario			Step 4	FLU-7- O	H _cereals	_Tier 2		@
Nozzle	Vegetated strip (m)	None	None	None	None	10 m	20 m	(
reduction	No spray buffer (m)	0 m	5 m	10 m	20 m	10 m	2 0 m	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
75 %		0.008	0.008	0.008	0.008	0.008	> 0.008		
90 %		0.008	0.008	0.008	© .008	0.00	0.008		Š
None	D6 Ditch	0.009	0.009	0.009	0.009	95 8 09	0.009		
50 %		0.009	0.009	0.00	0.009	0.009	0.009	, ²	
75 %		0.009	0.009	9,0009	0.009	0.00	®009. ()	W.
90 %		0.009	0.009	(0.009 ₍₎	0.009	20,009 ×	© 0.00		
None	R1 Pond	< 0.001	<0.001	<0.004	9 .001	0.00°	<070001	4 4	
50 %		< 0.001	<0.00	<0001 ×	$\sqrt[8]{0.001}$	<0.001	©0.001	7 0	
75 %		< 0.001	<0.001	×0.00	<0.001	80.001°	<0.001	2	
90 %		< 0.001	Q0.00 4	<0.001	~©.001		50.001		2
None	R1 Stream	0.003	0.009	0.003	0.003	0,002	&0.00 <u>1</u> \$		
50 %		0.093	20 003	0.003	0.003	₹Ø.002°	<0.001	<i>y</i>	
75 %		.0.903	[™] 0.003€	0,003	7.003	0.002	<0.001	0,	
90 %		© 0.003 €	0.003	Ø.003 ["]	0.003	90,0 02	×0.001		
None	R3 Stream	0.040	0.010	0.016	2010 6	0.005	0.002		
50 %		Ø010 ×	J 0.010	0.010	ِيُّ0.010©	0.005	0.002		
75 %		(, 0.0,1 0)	0.010	0.01 <u>0</u>	0. 0© 0	0.005	0.002		
90 %		0.410	0.010	0.010	600 10	© 0.003	0.002		
None	X4 Stream	@ .005	0.005	Ø 605	Ö0.00 5	0,002	0.001		
50 % ू ဳ		0.00\$	02005	0.005®	0,005	©.002	0.001		
75 %		0.005	©0.005 _{\(\sigma\)}	0.005	©.005 ©	y 0.002	0.001		
90 🖑		€0.005¢	0.063	√0×005 (<u>/</u>	0.00	0.002	0.001		

Predicted environmental concentrations in surface water (PEC_{sw}) and sediment (PEC_{sed}) of bixafen and prothioconazole and their metabolites

No surface water and sediment assessment was required for bixafen and prothioconazole and their metabolites for the renewal process of the active substance fluopyram.

CP 9.3 Fate and behaviour in air

For information on the fate and behaviour in air please refer to Document MCA, Section 7.3.

CP \$3.1 Poute and rate of degradation in air and transport via air

For information on route and rate of degradation in air and transport via air please refer to Document MCA, Sections 7.3.1 and 7.3.2.

and practice.

and pr The state of the s