

Tarea 3: Hevan Jesus Viscencio Lopez

Hevan Jesus Viscencio Lopez Sistemas Expertos 22310198

Mecatronica 7F HEVAN Viscencio

Motores de Inferencia de la Actualidad

¿Qué son los motores de inferencia?

Los motores de inferencia representan el núcleo de los sistemas expertos y de muchos modelos actuales de inteligencia artificial. Su función principal es aplicar las reglas almacenadas en la base de conocimiento a los hechos o datos disponibles, con el fin de obtener conclusiones lógicas. Dicho de otra manera, el motor de inferencia es el encargado de "razonar" y transformar información en resultados útiles.

En la actualidad se utilizan distintos métodos de inferencia. Uno de los más comunes es la **inferencia hacia adelante**, en la que el proceso comienza con los hechos conocidos y a partir de ellos se van aplicando reglas hasta llegar a nuevas conclusiones. Por ejemplo, si sabemos que una lámpara no enciende y existe la regla que indica "si el foco está fundido, entonces la lámpara no enciende", el motor puede llegar a la conclusión de que se debe cambiar el foco. Otro método importante es la **inferencia hacia atrás**, en la que se parte de una hipótesis o conclusión y se busca si los hechos disponibles permiten comprobarla. Esto ocurre, por ejemplo, cuando un sistema médico parte de la sospecha de que un paciente tiene gripe y revisa los síntomas para confirmar si efectivamente se cumplen.

En contextos donde no existe certeza absoluta, también se emplean motores de inferencia basados en **probabilidades**, que permiten dar diagnósticos con un porcentaje de confianza, como cuando un sistema afirma que "con un 70% de probabilidad el fallo está en la fuente de alimentación". Asimismo, se ha extendido el uso de la **lógica difusa**, que no se limita a valores binarios como verdadero o falso, sino que trabaja con grados intermedios. Por ejemplo, en lugar de decir que la temperatura es "alta" o "no alta", puede asignar un grado de pertenencia, como 0.4 para 37.5 °C y 0.9 para 39 °C.

En cuanto a las reglas de inferencia clásicas, el motor de inferencia se apoya en principios lógicos fundamentales. Uno de ellos es el **Modus Ponens**, que establece que si se tiene una premisa "si A entonces B" y además se cumple A, se puede concluir que B es verdadero. Un ejemplo cotidiano sería: "Si llueve, entonces la calle se moja; está lloviendo, por lo tanto, la calle está mojada". Otro principio clave es el **Modus Tollens**, que se basa en la negación del consecuente. Se plantea de la siguiente forma: "si A entonces B; no se cumple B, por lo tanto, no se cumple A". Por ejemplo: "Si el foco está fundido, la lámpara no enciende; la lámpara sí enciende, por lo tanto, el foco no está fundido".

En conclusión, los motores de inferencia actuales son una combinación de lógica clásica y métodos modernos como la probabilidad o la lógica difusa, lo que les permite enfrentar tanto problemas deterministas como escenarios con

incertidumbre. Gracias a ello, se han convertido en herramientas esenciales en campos como el diagnóstico médico, la automatización industrial y la toma de decisiones en general.