Soluciones

3. Semana 3

3.1. Registros de desplazamiento

- . a) Por ejemplo, con el estado inicial $(s_3, s_2, s_1, s_0) = (1, 0, 1, 0)$ se obtiene $s = (0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, \dots)$. El período es 6. El polinomio $D^4 + D^2 + 1$ no es primitivo.
 - b) Por ejemplo, con el estado inicial $(s_2, s_1, s_0) = (1, 1, 1)$ se obtiene $s = (1, 1, 1, 0, 1, 0, 0, 1, \dots)$. El período es 7. El polinomio $D^3 + D + 1$ es primitivo.
- 2. s = 0101100100011110101, s' = 1010111100010011010

 $s_j = s'_{19-j}$, $0 \le j \le 19$. Es decir, la secuencia s' es la secuencia s recorrida en sentido inverso.

- 3. a) Si C(D) es producto de dos polinomios de grado menor que 4, hay dos posibilidades:
 - Uno de los dos polinomios tiene grado 3 y el otro grado 1.
 - Los dos polinomios tienen grado 2.

En los dos casos se llega a una contradicción.

b) Para que $(D^5+1) = (D^4+D^3+D^2+D+1)C_1(D)$, debe ser $C_1(D) = D+1$.

$$(D^4+D^3+D^2+D+1)(D+1)$$

$$= D^5+D^4+D^3+D^3+D^2+D+D^4+D^3+D^2+D+1=D^5+1.$$

- c) Los divisores propios de $2^4-1=15$ son 3, 5. Como C(D) divide a $D^5+1,\,C(D)$ no es primitivo.
- d) Los posibles estados iniciales (s_3, s_2, s_1, s_0) son

(1)0001, (2)0010, (3)0011, (4)0100, (5)0101, (6)0110, (7)0111, (8)1000,

 $(9)1001,\ (10)1010,\ (11)1011,\ (12)1100,\ (13)1101,\ (14)1110\ (15)1111.$

$$s_j = s_{j-4} + s_{j-3} + s_{j-2} + s_{j-1}$$

				5		<i>J</i>	3		3					
S_3	S_2	S_1	S_0		S_3	S_2	S_1	S_0		S_3	S_2	S_1	S_0	
0	0	0	1	(1)	0	0	1	0	(2)	0	1	1	1	(7)
1	0	0	0	(8)	1	0	0	1	(9)	1	0	1	1	(11)
1	1	0	0	(12)	0	1	0	0	(4)	1	1	0	1	(13)
0	1	1	0	(6)	1	0	1	0	(10)	1	1	1	0	(14)
0	0	1	1	(3)	0	1	0	1	(5)	1	1	1	1	(15)
0	0	0	1	(1)	0	0	1	0	(2)	0	1	1	1	(7)

Observemos que se han obtenido todos los posibles estados. Con cualquiera de ellos como estado inicial se obtiene un período igual a 5.

4.
$$L = 4$$
, $C(D) = 1 + D + D^4$, $s = (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, \dots)$.

1

3.2. Introducción al cifrado en bloque. Modos de cifrado

- 1. Transparencia 3 de "3_2bloque".
- 2. $a) \hat{L}_1 = \hat{R}_0 = L_n = R_{n-1}.$

b)
$$\widehat{L}_{p+1} = \widehat{R}_p = L_{n-p} = R_{n-p-1}$$
.

3.

$$D(C_i, K) = D(E(M_i \oplus C_{i-1}, K), K) = M_i \oplus C_{i-1}.$$

$$D(C_i, K) \oplus C_{i-1} = (M_i \oplus C_{i-1}) \oplus C_{i-1}$$

$$= M_i \oplus (C_{i-1} \oplus C_{i-1}) = M_i \oplus 0 = M_i.$$

4.

$$C_i \oplus E(C_{i-1}, K) = (M_i \oplus E(C_{i-1}, K)) \oplus E(C_{i-1}, K)$$
$$= M_i \oplus (E(C_{i-1}, K) \oplus E(C_{i-1}, K)) = M_i \oplus 0 = M_i.$$

3.3. El algoritmo DES

- 1. Tansparencias 2, 3 de "3_3DES".
- 2. Tansparencias 5, 6 de "3_3DES".
- 3. a) $S_5(010101) = 1111.$
 - b) $S_5(111100) = 0000$.
- 4. Transparencias 11, 12 de "3_3DES".
- 5. a) 1110 0000 1110 0000 1110 0000 1110 00001111 0001 1111 0001 1111 0001 1111 0001
 - b) fffffff0000000
- 6. Tansparencias 17, 18 de "3_3DES".