Decision Theory

Time to make a decision...

Exercise inspired by Mausam, University of Washington, CSE573

Poor market Good market

Don't invest

	performance Payoff	performance Payoff
	-1,000	1,700
<u> </u>	-2,000	2,100
	10	10

How to invest \$10 in 2004?

Maximax

Optimism

	State of	Nature	Criterion
	Poor market performance Payoff	Good market performance Payoff	Maximum payoff for an action
Buy Apple	-1,000	1,700	1,700
Buy Google	-2,000	2,100	2,100
Don't invest	10	10	10

Select the maximum of the maximum payoff

Maximax

Optimism

	State of	Nature	Criterion
	Poor market performance Payoff	Good market performance Payoff	Maximum payoff for an action
Buy Apple	-1,000	1,700	1,700
Buy Google	-2,000	2,100	2,100
Don't invest	10	10	10

Select the maximum of the maximum payoff

← Maximax

Action

Maximin

	State of	Nature	Criterion
	Poor market performance Payoff	Good market performance Payoff	Minimum payoff for an action
Buy Apple	-1,000	1,700	-1,000
Buy Google	-2,000	2,100	-2,000
Don't invest	10	10	10

Pessimism

Select the maximum of the minimum payoffs

Maximin

Pessimism

	State of	Nature	Criterion
	Poor market performance Payoff	Good market performance Payoff	Minimum payoff for an action
Buy Apple	-1,000	1,700	-1,000
Buy Google	-2,000	2,100	-2,000
Don't invest	10	10	10

Select the maximum of the minimum payoffs

← Maximin

Action

K. Bradbury and L. Collins

Minimax

Select the minimum maximum regret

Criterion

	Poor market	performance	Good market	performance	Maximum regret for	١
	Payoff	Regret	Payoff	Regret	an action	
Buy Apple	-1,000	1,010	1,700	400	1,010	
Buy Google	-2,000	2,010	2,100	0	2,010	
Don't invest	10	0	10	2,090	2,090	

State of Nature

If I knew the future, which decision would I regret least?

K. Bradbury and L. Collins

Action

Minimax

Select the minimum maximum regret

Criterion

	Poor market	performance	Good market	t performance	Maximum regret for	regret
	Payoff	Regret	Payoff	Regret	an action	
Buy Apple	-1,000	1,010	1,700	400	1,010	← Minimax
Buy Google	-2,000	2,010	2,100	0	2,010	
Don't invest	10	0	10	2,090	2,090	

State of Nature

If I knew the future, which decision would I regret least?

K. Bradbury and L. Collins

Action

Equal likelihood

Criterion **State of Nature** Poor market Good market Average performance performance reward/ payoff **Payoff Payoff** Buy Apple -1,0001,700 350 Buy Google 2,100 -2,000 50 Don't invest 10 10 10 State

0.5

Select the highest average payoff ASSUMING all states are of equal probability

K. Bradbury and L. Collins

Probability:

Decision Theory

0.5

Equal likelihood

Criterion **State of Nature** Poor market Good market Average performance performance reward/ payoff **Payoff Payoff** Buy Apple -1,0001,700 350 Buy Google 2,100 -2,000 50 Don't invest 10 10 10 State

0.5

Select the highest average payoff ASSUMING all states are of equal probability

K. Bradbury and L. Collins

Probability:

Decision Theory

0.5

Weighted average

Criterion **State of Nature** Poor market Good market Probability performance performance weighted **Payoff Payoff** average Buy Apple -1,0001,700 80 Buy Google 2,100 -2,000 -360 Don't invest 10 10 10

0.6

Select the highest average payoff ASSUMING state probabilities from prior knowledge

K. Bradbury and L. Collins

Probability:

State

Decision Theory

0.4

Weighted average

Criterion **State of Nature** Poor market Good market Probability performance performance weighted **Payoff Payoff** average Buy Apple -1,0001,700 80 Buy Google 2,100 -2,000 -360 Don't invest 10 10 10

Select the highest average payoff ASSUMING state probabilities from prior knowledge

Weighted average

Probability:

State

0.6

0.4

Decision making design pattern

1. Define a measure of risk or reward

2. Select the action that optimizes that metric

State of Nature (s)

Poor	market
perfo	rmance

Excellent market performance

_	_	
\mathbf{R}_{1117}	App	$1 \bigcirc$
Duy	MUD	

Buy Google

Don't invest

-1,000	1,700
-2,000	2,100
10	10

State of Nature (s)

Poor market
performance
$s = s_0$

Excellent market performance

 $s = s_1$

Buy	Appl	е

-1,000

1,700

Buy Google

-2,000

2,100

Don't invest

10

10

State of Nature (s)

Buy	Αp	op	le
($\gamma =$	Ω_{\circ}	

Buy Google $a = a_1$

Don't invest $a = a_2$

Poor market performance $s = s_0$	Excellent market performance $s = s_1$
-1,000	1,700
-2,000	2,100
10	10

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Don't invest $a = a_2$

Poor market performance

Excellent market performance

$s = s_0$	$s = s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

State of Nature (s)

Poor market performance

Excellent market performance

Buy Apple $a = a_0$

Buy Google $a = a_1$

Don't invest $a = a_2$

$s = s_0$	$s = s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

 $EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)(s_1)$ Expected payoff

State of Nature (s)

Poor market performance Excellent market performance

$$s = s_1$$

Buy Apple $a = a_0$

Buy Google

 $a = a_1$

Don't invest $a = a_2$

$s = s_0$	$s = s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

 $EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)(s_1)$ Expected payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Don't invest $a = a_2$

Poor market performance $s = s_0$

Excellent market performance $S = S_1$

3 - 30	$s-s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

Expected Reward

 $EV(a_i)$

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

 $EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)(s_1)$ Expected payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google

Don't invest $a = a_2$

Poor market performance Excellent market performance

$s = s_0$	$s = s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

Expected Reward

 $EV(a_i)$

(0.6)(-1000) + (0.4)(1700)

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

 $EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)(s_1)$ Expected payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Don't invest

Poor market performance $s = s_0$

Excellent market performance $S = S_1$

$(a_0 s_0)$ -1,000	$(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100

 $a = a_2$

 $V(a_2|s_1)$

Expected Reward

 $EV(a_i)$

(0.6)(-1000) + (0.4)(1700)= 80

(0.6)(-2000) + (0.4)(2100)= -360

State Probability: $P(s_0) = 0.6$

$$P(s_0) = 0.6$$

 $V(a_2|s_0)$

$$P(s_1) = 0.4$$

 $EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)(s_1)$ Expected payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google

Don't invest $a = a_2$

Poor market performance Excellent market performance

$s = s_0$	$s = s_1$
$V(a_0 s_0)$ -1,000	$V(a_0 s_1)$ 1,700
$V(a_1 s_0)$ -2,000	$V(a_1 s_1)$ 2,100
$V(a_2 s_0)$ 10	$V(a_2 s_1)$ 10

Expected Reward

 $EV(a_i)$

(0.6)(-1000) + (0.4)(1700)

(0.6)(-2000) + (0.4)(2100)= -360

(0.6)(10) + (0.4)(10)= 10

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

Risk = expected loss (cost)

$$\lambda(a_i|s_j) \triangleq$$
 Loss incurred by choosing action i and the state of nature being state j

$$R(a_i) = \sum_{j=1}^{N_S} \lambda(a_i|s_j)P(s_j)$$

Goal:

Select action i for which $R(a_i)$ is minimum

Investments: loss

State of Nature (s)

 $\lambda \left(a_0 | s_1 \right)$

Buy Apple $a = a_0$

Buy Google

Don't invest $a = a_2$

Poor market	
performance	
$s = s_0$	
$\lambda(a_0 s_0)$	
1,010	

1,010 -1,690
$$\lambda (a_1|s_0) = 2,010$$

$$\lambda (a_2|s_0) = 0$$

$$\lambda (a_2|s_1) = 0$$

Expected Loss

 $\lambda\left(a_{i}\right)$

$$(0.6)(1010) + (0.4)(-1690)$$

= -70

$$(0.6)(2010) + (0.4)(-2090)$$

= **370**

$$(0.6)(0) + (0.4)(0)$$

= **0**

State Probability: $P(s_0) = 0.6$

$$P(s_0) = 0.6$$

$$P(s_1) = 0.4$$

Excellent market

performance

 $s = s_1$

How does this relate to supervised learning?

State of Nature

Class 0

Class 1

Estimate

Class 0

$$\lambda_{ij}$$
 = Classify as class i when state of nature is class j

State of Nature

Class 1

Estimate

Class 0

$$\lambda_{ij}$$
 = Classify as class i when state of nature is class j

- Assume our classification problem is landmine detection
- A false alarm wastes some time and resources, but a missed detection may cost a life

State of Nature

Class 0

Class 1

Estimate

Class 0

$\lambda_{00} = 0$	$\lambda_{01} = 100$
$\lambda_{10} = 1$	$\lambda_{11} = 0$

State of Nature

Class 0

Class 1

$$R(a_i) = \lambda_{01}(1 - P_D(i)) + \lambda_{10}P_{FA}(i)$$

Estimate

Class 0

$\lambda_{00} = 0$	$\lambda_{01} = 100$
$\lambda_{10} = 1$	$\lambda_{11} = 0$

Action: select operating point <i>i</i>	Probability of false alarm P_{FA}	Probability of missed detection $(1-Pd)$	Risk $R(a_i)$
1	0	1	100
2	0	0.33	33
3	0.5	0.33	33.5
4	0.5	0	0.5
5	1	0	1

State of Nature

Class 0

$R(a_i) = \lambda_{01}(1 - P_D(i)) + \lambda_{10}P_{FA}(i)$	nate	Class 0	$\lambda_{00} = 0$	$\lambda_{01} = 100$	_
	Estin	Class 1	$\lambda_{10} = 1$	$\lambda_{11}=0$	

Action: select operating point i	Probability of false alarm P_{FA}	Probability of missed detection $(1-Pd)$	Risk $R(a_i)$
1	0	1	100
2	0	0.33	33
3	0.5	0.33	33.5
4	0.5	0	0.5
5	1	0	1

State of Nature

Class 0

$R(a_i) = \lambda_{01}(1 - P_D(i)) + \lambda_{10}P_{FA}(i)$	nate	Class 0	$\lambda_{00} = 0$	$\lambda_{01} = 100$	_
	Estin	Class 1	$\lambda_{10} = 1$	$\lambda_{11}=0$	

Can we use this theory to develop a classifier?

36 / 26

Binary decision

State of Nature

Class 0

Class 1

$$s = s_0$$

$$s = s_1$$

Class 0 $a = a_0$

 $\lambda(a_0|s_0) \qquad \qquad \lambda(a_0|s_1)$

$$\lambda_{01}$$

Class 1 $a = a_1$

 $\lambda (a_1|s_0)$ $\lambda (a_1|s_1)$ λ_{11}

 λ_{ij} = Loss when you classify as class i when state of nature is class j

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

$$P(s_i|\mathbf{x}) = \frac{P(\mathbf{x}|s_i)P(s_i)}{P(\mathbf{x})}$$

Define the risk associated with each of the two actions

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

Create a decision rule based on the data

If
$$R(a_0|\mathbf{x}) < R(a_1|\mathbf{x})$$
 then a_0

Else $R(a_0|\mathbf{x}) > R(a_1|\mathbf{x})$ then a_1

3

a function of loss

Interpret that rule as
$$\lambda_{00}P(s_0|x) + \lambda_{01}P(s_1|x) > \lambda_{10}P(s_0|x) + \lambda_{11}P(s_1|x)$$

$$\frac{P(s_1|x)}{P(s_0|x)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$
 then a_1

Minimizing the misclassification rate

$$\frac{P(s_1|x)}{P(s_0|x)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$
 then a_1

Assume that the loss is only for error, and it's the same for both types of error:

$$\lambda_{10} = \lambda_{01}$$
 and $\lambda_{00} = \lambda_{11} = 0$

Then the decision rule becomes:

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > 1 \quad \text{then } a_1$$

Pick whichever class is more likely given the data

Recall Bayes Rule

$$P(s_i|x) = \frac{P(x|s_i)P(s_i)}{P(x)}$$
Posterior
$$\frac{P(x|s_i)P(s_i)}{P(x)}$$
Evidence

Use Bayes rule to express this as a function of likelihoods

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

$$P(s_i|\mathbf{x}) = \frac{P(\mathbf{x}|s_i)P(s_i)}{P(\mathbf{x})}$$

$$\frac{P(\mathbf{x}|s_1)P(s_1)}{P(\mathbf{x}|s_0)P(s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

then a_1

The decision rule can be expressed as a likelihood ratio

$$\frac{P(\mathbf{x}|s_1)}{P(\mathbf{x}|s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \frac{P(s_0)}{P(s_1)}$$

then a_1

False positive

then a_1

State of Nature

Class 0

 $\lambda_{10} = 1$

Class 1

Missed detection	ē
	mate
	sti

$$\lambda_{00} = 0$$

$$\lambda_{01}=100$$

$$\lambda_{11}=0$$

We can use this with generative models

$$\frac{P(x|s_1)}{P(x|s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \frac{P(s_0)}{P(s_1)} \quad \text{then } a_1$$

- If we have class conditional models for our data, we can classify them
- Naïve Bayes: assume all features are independent given their class
- Linear discriminant analysis: assume the class conditional distributions, e.g. $P(x|s_1)$, are each Gaussian

Generative and discriminative models

Unobservable

Data Generating Process

p(X,Y)

Target Function for predicting y from x

$$f(x) \rightarrow y$$

Types of models. We can either model the full data generating process **OR** the target function, the mapping x to y

If we model this process, it's a generative model

- Models P(x|y)
- Can be used to generate synthetic data and impute missing values

If we model this function, it's a discriminative model

- May model P(y|x) or directly map x to y without probabilities
- Often better performance for large sample sizes

Takeaways

To make a decision:

- 1. Define a measure of risk or reward
- 2. Select the action that optimizes that metric

Decision theory informs how to operate supervised learning algorithms in practice

Decision theory incorporates relative importance of errors

Generative models estimate P(x|y), while discriminative models estimate P(y|x)