Modelling: the basics

Your Turn 1

Take another look at life expectancy over time for Canada.

What do you notice?

Models

A low dimensional description of a higher dimensional data set.

(Popular) modeling functions in R

function	package	fits		
lm()	stats	linear models		
glm()	stats	generalized linear models		
gam()	mgcv	generalized additive models		
glmnet()	glmnet	penalized linear models		
rlm()	MASS	robust linear models		
rpart() rpart		trees		
randomForest()	randomForest	random forests		
xgboost()	xgboost	gradient boosting machines		

(Popular) modeling functions in R

function	package	fits		
lm()	stats	linear models		
glm()	stats	generalized linear models		
gam() mgcv		generalized additive models		
glmnet()	glmnet	penalized linear models		
rlm()	MASS	robust linear models		
rpart()	rpart	trees		
randomForest()	randomForest	random forests		
xgboost()	xgboost	gradient boosting machines		

lm()

Fit a linear model to data

formulas

Formula only needs to include the response and predictors

$$y = \alpha + \beta x + \epsilon$$

Your Turn 2

Run the chunk to fit the model.

What kind of output do you get?

Explore canada_lm by clicking on it in the environment, what's inside the object?

Asking for the object prints a minimal summary

But the object has everything inside you might need to calculate useful summaries

summary(canada_lm)

```
Call:
lm(formula = lifeExp \sim year, data = canada)
Residuals:
       1Q Median 3Q
   Min
                                 Max
-0.3812 -0.1368 -0.0471 0.2481 0.3157
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.583e+02 8.252e+00 -43.42 1.01e-12 ***
            2.189e-01 4.169e-03 52.50 1.52e-13 ***
year
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.2492 on 10 degrees of freedom
Multiple R-squared: 0.9964, Adjusted R-squared: 0.996
F-statistic: 2757 on 1 and 10 DF, p-value: 1.521e-13
```

A more comprehensive summary,

but not easy to work with.

oroom

broom

Turns model output into data frames

```
# install.packages("tidyverse")
library(broom)
```


broom

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. **augment()** returns predictions, residuals, and other raw values

tidy()

Returns useful model output as a data frame

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	-358.3488923	8.252132349	-43.42501	1.007334e-12
year	0.2188692	0.004168638	52.50378	1.520503e-13

2 rows

Easy to work with

Since output of tidy is a data frame we can use dplyr functions to manipulate it:

```
canada_lm %>% tidy() %>%
  filter(term == "year") %>%
  pull(estimate)
```

[1] 0.2188692

On average, life expectancy is increasing by 0.22 years per year.

glance()

Returns common model diagnostics as a data frame

r.squared	adj.r.squared	sigma	statistic	p.value	df
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
0.9963855	0.9960241	0.2492483	2756.647	1.520503e-13	2

1 row | 1-6 of 11 columns

Your Turn 3

Look at the output of canada_lm %>% glance()
Use dplyr tools to extract the R-squared for the model.

canada_lm %>% glance() %>% pull(r.squared)

[1] 0.9963855

augment()

Returns data frame of model output related to original data points

canada_lm %>% augment()

lifeExp <dbl></dbl>	year <int></int>	.fitted <dbl></dbl>	.se.fit <dbl></dbl>	.resid <dbl></dbl>	.hat <dbl></dbl>
68.750	1952	68.88385	0.13534705	-0.133846 5	0.29487179
69.960	1057	60.075	0 11021352	0.018102 1	0.22494172
71.	Fitted values		54 R	Residual	0.16899767
72.1			38		0.12703963
72.880	1972	73.26123	0.07845091	-0.38123077	0.09906760
74.210	1977	74.35558	0.07270261	-0.14557692	0.08508159
75.760	1982	75.44992	0.07270261	0.31007692	0.08508159
76 960	1097	76 54427	0.07845001	0.21572077	0.00006760

augment() useful for visualizing

```
canada_lm %>% augment() %>%

ggplot() +
  geom_point(aes(x = year, y = lifeExp)) +
  geom_line(aes(x = year, y = .fitted))
```


Recap

Use glance(), tidy(), and augment() to return model values in a data frame.

Your Turn 4

How has life expectancy changed in other countries?

Make a line plot of **lifeExp** vs. **year** grouped by **country**. Set alpha to 0.2, to see the results better.


```
gapminder %>%

ggplot(mapping = aes(x = year, y = lifeExp, group = country)) +

geom_line(alpha = 0.2)
```


ldea 1

To quantify "linearity," fit a linear model, compare r-squared.

purrr

Idea 2

To quantify rate of change fit a linear model, extract coefficient on year.

Goal

Fit model, compute r.squared, collect coefficient for every country.

- 1. dplyr grouping toolkit
- 2. purrr toolkit and list columns

