Chapter 3: Numerical Sequences and Series

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 3.1. Prove that the convergence of $\{s_n\}$ implies convergence of $\{|s_n|\}$. Is the converse true?

Proof.

(1) Since $\{s_n\}$ is convergent, there is $s \in \mathbb{R}^1$ with the following property: given any $\varepsilon > 0$, there is N such that $|s_n - s| < \varepsilon$ whenever $n \ge N$. So

$$||s_n| - |s|| < |s_n - s| < \varepsilon$$

(Exercise 1.13). That is, $\{|s_n|\}$ converges to |s|.

(2) The converse is not true by considering $s_n = (-1)^{n+1}$.

Exercise 3.2. Calculate $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.

Proof.

$$\sqrt{n^2 + n} - n = \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{1 + 1} = \frac{1}{2}$$

as $n \to \infty$. \square

Proof $(\varepsilon - N \text{ argument})$. Let $s_n = \sqrt{n^2 + n} - n$. Show that the sequence $\{s_n\}$ converges to $s = \frac{1}{2}$. Given any $\varepsilon > 0$, there is $N > \frac{1}{\varepsilon}$ such that

$$|s_n - s| = \left| (\sqrt{n^2 + n} - n) - \frac{1}{2} \right| = \left| \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} - \frac{1}{2} \right|$$

$$= \left| \frac{2 - \left(\sqrt{1 + \frac{1}{n}} + 1\right)}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)} \right| = \left| \frac{1 - \sqrt{1 + \frac{1}{n}}}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)} \right|$$

$$= \left| \frac{1 - \left(1 - \frac{1}{n}\right)}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)^2} \right| = \left| \frac{-\frac{1}{n}}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)^2} \right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

wheneven $n \geq N$. \square

Exercise 3.3. If $s_1 = \sqrt{2}$ and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} \ (n = 1, 2, 3, ...),$$

prove that $\{s_n\}$ converges, and that $s_n < 2$ for n = 1, 2, 3, ...

The convergence of $\{s_n\}$ implies there is $s \in \mathbb{R}$ such that $s_n \to s$ where $s = \sqrt{2 + \sqrt{s}}$ and $\sqrt{2} < s \le 2$. WolframAlpha shows that

$$s = \frac{1}{3} \left(-1 + \sqrt[3]{\frac{1}{2}(79 - 3\sqrt{249})} + \sqrt[3]{\frac{1}{2}(79 + 3\sqrt{249})} \right).$$

Proof (Theorem 3.14).

- (1) Show that $\{s_n\}$ is increasing (by mathematical induction).
 - (a) Show that $s_2 > s_1$. In fact,

$$s_2 = \sqrt{2 + \sqrt{s_1}} = \sqrt{2 + \sqrt{\sqrt{2}}} < \sqrt{2} = s_1.$$

(a) Show that $s_{n+1} > s_n$ if $s_n > s_{n-1}$.

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} > \sqrt{2 + \sqrt{s_{n-1}}} = s_n.$$

By mathematical induction, $\{s_n\}$ is (strictly) increasing.

- (2) Show that $\{s_n\}$ is bounded (by mathematical induction).
 - (a) Show that $s_1 \leq 2$. $\sqrt{2} \leq 2$.
 - (a) Show that $s_{n+1} \leq 2$ if $s_n \leq 2$.

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} \le \sqrt{2 + \sqrt{2}} < 2.$$

By mathematical induction, $\{s_n\}$ is bounded by 2.

Hence, $\{s_n\}$ converges since $\{s_n\}$ is increasing and bounded (Theorem 3.14). \square

Exercise 3.4. Find the upper and lower limits of the sequences $\{s_n\}$ defined by

$$s_1 = 0; s_{2m} = \frac{s_{2m-1}}{2}; s_{2m+1} = \frac{1}{2} + s_{2m}.$$

Write out the first few terms of $\{s_n\}$:

$$0,0,\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{3}{8},\frac{7}{8},\frac{7}{16},\frac{15}{16},\dots$$

It suggests us

$$s_{2m+1} = 1 - \frac{1}{2^m} \ (m = 0, 1, 2, ...),$$

 $s_{2m} = \frac{1}{2} - \frac{1}{2^m} \ (m = 1, 2, 3, ...).$

Proof.

(1) Show that

$$s_{2m+1} = 1 - \frac{1}{2^m} \ (m = 0, 1, 2, ...),$$

 $s_{2m} = \frac{1}{2} - \frac{1}{2^m}. \ (m = 1, 2, 3, ...)$

Apply mathematical induction.

- (2) The upper limit is 1.
- (3) The lower limit is $\frac{1}{2}$.

Exercise 3.5. For any two real sequences $\{a_n\}$, $\{b_n\}$, prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided the sum of the right is not of the form $\infty - \infty$.

Proof. Write $\alpha = \limsup_{n \to \infty} a_n$ and $\beta = \limsup_{n \to \infty} b_n$.

- (1) $\alpha = \infty$ and $\beta = \infty$. Nothing to do.
- (2) $\alpha = -\infty$ and $\beta = -\infty$. Since $\alpha = -\infty < \infty$, there exists M' such that $a_n < M'$ for all n. For any real M, $a_n > M M'$ for at most a finite number of values of n (Theorem 3.17(a)). Hence $a_n + b_n > M$ for at most a finite number of values of n. Hence $\limsup_{n \to \infty} (a_n + b_n) = -\infty$, or

$$\lim \sup_{n \to \infty} (a_n + b_n) = \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n$$

in this case.

(3) α and β are finite. (Similar to the argument in Theorem 3.37.) Choose $\alpha' > \alpha$ and $\beta' > \beta$. There is an integer N such that

$$\alpha' \geq a_n$$
 and $\beta' \geq b_n$

whenever $n \geq N$. Hence

$$a_n + b_n \le \alpha' + \beta'$$

whenever $n \geq N$. Take \limsup to get Hence

$$\limsup_{n\to\infty} (a_n + b_n) \le \alpha' + \beta'.$$

Since the inequality is true for every $\alpha' > \alpha$ and $\beta' > \beta$, we have

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

Exercise 3.7. Prove that the convergence of $\sum a_n$ implies the convergence of

$$\sum \frac{\sqrt{a_n}}{n},$$

if $a_n \geq 0$.

Proof (Cauchy's inequatity).

(1) Show that $\sum \frac{\sqrt{a_n}}{n}$ is bounded. For any $k \in \mathbb{Z}^+$,

$$\left(\sum_{n=1}^{k} \frac{\sqrt{a_n}}{n}\right)^2 \le \left(\sum_{n=1}^{k} a_n\right) \left(\sum_{n=1}^{k} \frac{1}{n^2}\right)$$
 (Cauchy's inequatity)
$$\le \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right). \quad \left(\sum a_n, \sum \frac{1}{n^2}: \text{ convergent}\right)$$

Thus, $\left(\sum_{n=1}^k \frac{\sqrt{a_n}}{n}\right)^2$ is bounded, or $\sum_{n=1}^k \frac{\sqrt{a_n}}{n}$ is bounded.

(2) Show that $\sum_{n=1}^{k} \frac{\sqrt{a_n}}{n}$ is increasing. It is clear due to $\frac{\sqrt{a_n}}{n} \ge 0$.

By Theorem 3.14, $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. \square

Proof (AM-GM inequality). Show that $\sum \frac{\sqrt{a_n}}{n}$ is bounded.

$$\frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(a_n + \frac{1}{n^2} \right) \tag{AM-GM inequality}$$

$$\sum_{n=1}^k \frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(\sum_{n=1}^k a_n + \sum_{n=1}^k \frac{1}{n^2} \right)$$

$$\leq \frac{1}{2} \left(\sum_{n=1}^\infty a_n + \sum_{n=1}^\infty \frac{1}{n^2} \right). \qquad \left(\sum a_n, \sum \frac{1}{n^2} : \text{ convergent} \right)$$

Thus, $\sum_{n=1}^k \frac{\sqrt{a_n}}{n}$ is bounded. The rest proof is the same as previous. \square

Exercise 3.12. Suppose $a_n > 0$ and $\sum a_n$ converges. Put

$$r_n = \sum_{m=n}^{\infty} a_m.$$

(a) Prove that

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > 1 - \frac{r_n}{r_m}$$

if m < n, and deduce that $\sum \frac{a_n}{r_n}$ diverges.

(b) Prove that

$$\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

and deduce that $\sum \frac{a_n}{\sqrt{r_n}}$ converges.

Note.

- (1) Each r_n is positive and finite (since $a_n > 0$ and $\sum a_n$ converges).
- (2) $\{r_n\}$ is monotonic decreasing (since $a_n > 0$).
- (3) $\{r_n\}$ converges to 0 (since $\sum a_n$ converges).

Proof of (a).

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > \frac{a_m}{r_m} + \dots + \frac{a_n}{r_m} \qquad (r_m > r_k \text{ for } k = m+1, \dots, n)$$

$$= \frac{a_m + \dots + a_n}{r_m}$$

$$= \frac{r_m - r_{n+1}}{r_m}$$

$$> \frac{r_m - r_n}{r_m}$$

$$= 1 - \frac{r_n}{r_m}.$$
(Definition of r_k)

(2) (Reductio ad absurdum) If $\sum \frac{a_n}{r_n}$ were converged, then given $\varepsilon=\frac{1}{64}>0$ there is an integer N such that

$$\left| \frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} \right| < \frac{1}{64} \text{ whenever } n \ge m \ge N$$

(Theorem 3.22). By (1), let m = N to get

$$1 - \frac{r_n}{r_N} < \frac{1}{64} \text{ whenever } n \ge N,$$

or

(1)

$$r_n > \frac{63}{64}r_N,$$

contrary to the assumption that $\{r_n\}$ converges to 0 (since $\sum a_n$ converges).

Proof of (b).

(1) Note that each r_n is positive and finite, and thus

$$\begin{split} \frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}}) &\iff \frac{r_n - r_{n+1}}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}}) \\ &\iff \frac{\sqrt{r_n} + \sqrt{r_{n+1}}}{\sqrt{r_n}} < 2 \\ &\iff \sqrt{r_n} + \sqrt{r_{n+1}} < 2\sqrt{r_n} \\ &\iff \sqrt{r_{n+1}} < \sqrt{r_n} \\ &\iff r_{n+1} < r_n. \end{split}$$

The last statement holds since $\{r_n\}$ is monotonic decreasing.

(2) (a) Each term $\frac{a_n}{\sqrt{r_n}}$ of $\sum \frac{a_n}{\sqrt{r_n}}$ is nonnegative.

(b) The partial sum

$$\sum_{k=1}^{n} \frac{a_k}{\sqrt{r_k}} < \sum_{k=1}^{n} 2(\sqrt{r_k} - \sqrt{r_{k+1}}) = 2(\sqrt{r_1} - \sqrt{r_{n+1}}) < 2\sqrt{r_1}$$

is bounded by $2\sqrt{r_1}$.

By (a)(b), $\sum \frac{a_n}{\sqrt{r_n}}$ converges (Theorem 3.24).

Exercise 3.13. Prove that the Cauchy product of two absolutely convergent series converges absolutely.

Proof.

(1) Given two absolutely convergent series $\sum a_n$ and $\sum b_n$. The Cauchy product is $\sum c_n$ where

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} \ (n = 0, 1, 2, \ldots).$$

Let $\sum |a_n| = A < \infty$ and $\sum |b_n| = B < \infty$.

- (2) Each term $|c_k|$ of $\sum_{k=0}^{n} |c_k|$ is nonnegative.
- (3) Thus,

$$\sum_{k=0}^{n} |c_k| = \sum_{k=0}^{n} \left| \sum_{m=0}^{k} a_m b_{k-m} \right|$$

$$\leq \sum_{k=0}^{n} \sum_{m=0}^{k} |a_m| |b_{k-m}|$$

$$= \sum_{k=0}^{n} |a_k| \sum_{m=0}^{n-k} |b_m|$$

$$\leq \sum_{k=0}^{n} |a_k| B$$

$$\leq AB$$

$$< \infty.$$

(4) By (2)(3), $\sum_{k=0}^{n} |c_k|$ converges (Theorem 3.24), or $\sum_{k=0}^{n} c_k$ converges absolutely.

Exercise 3.20. Suppose $\{p_n\}$ is a Cauchy sequence in a metric space X, and some subsequence $\{p_{n_i}\}$ converges to a point $p \in X$. Prove that the full sequence $\{p_n\}$ converges to p.

Proof. Given any $\varepsilon > 0$.

(1) Since $\{p_n\}$ is a Cauchy sequence, there exists a positive integer N_1 such that

 $d(p_n, p_m) < \frac{\varepsilon}{2}$ whenever $n, m \ge N_1$.

(2) Since the subsequence $\{p_{n_i}\}$ converges to a point $p \in X$, there exists a positive integer N_2 such that

 $d(p_{n_i}, p) < \frac{\varepsilon}{2}$ whenever $n_i \ge N_2$.

(3) Let $N = \max\{N_1, N_2\}$ be a positive integer. So

 $d(p_n, p) \le d(p_n, p_{n_i}) + d(p_{n_i}, p)$ (Definition 2.15(c)) $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \text{ whenever } n, n_i \ge N$ ((1)(2)) $= \varepsilon \text{ whenever } n \ge N.$

Hence the full sequence $\{p_n\}$ converges to p.

Exercise 3.21. Prove the following analogue of Theorem 3.10(b): If $\{E_n\}$ is a sequence of closed and bounded sets in a complete metric space X, if $E_n \supseteq E_{n+1}$, and if

$$\lim_{n\to\infty} \operatorname{diam}(E_n) = 0,$$

then $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point.

Assume $E_n \neq \emptyset$. It is unnecessary to assume that E_n is bounded since we have the condition that $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$.

Note. Every compact metric space is complete, but complete spaces need not be compact. In fact, a metric space is compact if and only if it is complete and totally bounded.

Proof.

(1) Pick $p_n \in E_n$ for n = 1, 2, ...

(2) Show that $\{p_n\}$ is a Cauchy sequence. Given any $\varepsilon > 0$. There is a positive integer N such that $\operatorname{diam}(E_n) < \varepsilon$ whenever $n \geq N$. Especially,

$$diam(E_N) < \varepsilon$$
.

As $m, n \geq N$, $p_m \in E_m \subseteq E_N$ and $p_n \in E_n \subseteq E_N$. By the definition of the diameter of E_N ,

$$d(p_m, p_n) \leq \operatorname{diam}(E_N) < \varepsilon$$
 whenever $m, n \geq N$.

- (3) Since X is complete, $\{p_n\}$ converges to a point $p \in X$.
- (4) Show that $p \in \bigcap_{n=1}^{\infty} E_n$. (Reductio ad absurdum) If there were some n such that $p \notin E_n$. Consider the subsequence

$$p_n, p_{n+1}, p_{n+2}, \ldots$$

Note that all p_n, p_{n+1}, \ldots are in E_n . By (3), it converges to p. Thus p is a limit point of E_n . Since E_n is closed, $p \in E_n$, which is absurd.

(5) Show that $\bigcap_{n=1}^{\infty} E_n = \{p\}$. (Reductio ad absurdum) If there were $q \in \bigcap_{n=1}^{\infty} E_n$ with $q \neq p$, then d(p,q) > 0 (Definition 2.15(a)). It implies that

$$diam(E_n) \ge d(p,q) > 0$$
 for all n ,

contrary to $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$.

Exercise 3.22 (Baire category theorem). Suppose X is a complete metric space, and $\{G_n\}$ is a sequence of dense open subsets of X. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_n$ is not empty. (In fact, it is dense in X.) (Hint: Find a shrinking sequence of neighborhoods E_n such that $\overline{E_n} \subseteq G_n$, and apply Exercise 3.21.)

Proof. Given any open set G_0 in X, will show that

$$\bigcap_{n=0}^{\infty} G_n \neq \emptyset.$$

(1) Since G_1 is dense, $G_0 \cap G_1$ is nonempty. Take any one point p_1 in the open set $G_0 \cap G_1$, then there exists a closed neighborhood

$$V_1 = \{ q \in X : d(q, p_1) < r_1 \}$$

of p_1 with $r_1 < 1$ such that

$$V_1 \subseteq G_0 \cap G_1$$
.

Take $U_1 \subseteq E_1 \subseteq V_1$ such that

$$E_1 = \left\{ q \in X : d(q, p_1) \le \frac{r_1}{64} \right\} \subseteq V_1,$$

$$U_1 = \left\{ q \in X : d(q, p_1) < \frac{r_1}{89} \right\} \subseteq E_1.$$

(2) Suppose V_n, E_n, U_n have been constructed, take any one point p_{n+1} in the open set $U_n \cap G_{n+1}$, there exists an open neighborhood

$$V_{n+1} = \{ q \in X : d(q, p_{n+1}) < r_{n+1} \}$$

of p_{n+1} with r_{n+1} with $r_{n+1} < \frac{1}{n+1}$ such that

$$V_{n+1} \subseteq U_n \cap G_{n+1}$$
.

Take $U_1 \subseteq E_1 \subseteq V_1$ such that

$$E_{n+1} = \left\{ q \in X : d(q, p_{n+1}) \le \frac{r_{n+1}}{64} \right\} \subseteq V_{n+1},$$

$$U_{n+1} = \left\{ q \in X : d(q, p_{n+1}) < \frac{r_{n+1}}{89} \right\} \subseteq E_{n+1}.$$

- (3) Note that
 - (a) E_n is closed and nonempty (since $p_n \in E_n$).
 - (b) $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$ (since $\operatorname{diam}(E_n) \le 2 \cdot \frac{r_n}{64} < r_n < \frac{1}{r_n}$.)
 - (c) $E_1 \supseteq E_2 \supseteq \cdots$ (since $E_{n+1} \subseteq V_{n+1} \subseteq U_n \cap G_{n+1} \subseteq U_n \subseteq E_n$).

Since X is complete, by Exercise 3.21,

$$\bigcap_{n=1}^{\infty} E_n = \{p\}$$

for some $p \in X$.

(4) Hence

$$p \in \bigcap_{n=1}^{\infty} E_n \iff p \in E_n \text{ for all } n = 1, 2, 3, \dots$$

$$\implies p \in E_1 \subseteq G_0 \cap G_1 \text{ and } p \in E_{n+1} \subseteq U_n \cap G_{n+1} \subseteq G_{n+1}$$

$$\implies p \in G_0 \cap G_1 \cap \dots = \bigcap_{n=0}^{\infty} G_n$$

$$\implies \bigcap_{n=0}^{\infty} G_n \neq \emptyset.$$

Exercise 3.23. Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges. (Hint: For any m, n,

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n);$$

it follows that

$$|d(p_n, q_n) - d(p_m, q_m)|$$

is small if m and n are large.)

Proof. Given any $\varepsilon > 0$.

(1) Since $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences, there exists N such that

$$d(p_n, p_m) < \frac{\varepsilon}{2}$$
 and $d(q_m, q_n) < \frac{\varepsilon}{2}$

whenever $m, n \geq N$.

(2) Note that

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n).$$

It follows that

$$|d(p_n,q_n)-d(p_m,q_m)| \le d(p_n,p_m)+d(q_m,q_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $\{d(p_n, q_n)\}$ is a Cauchy sequence in \mathbb{R}^1 (not in X).

(3) Since \mathbb{R}^1 is a complete metric space, $\{d(p_n,q_n)\}$ converges.

Exercise 3.24. Let X be a metric space.

(a) Call two Cauchy sequences $\{p_n\}$, $\{q_n\}$ in X equivalent if

$$\lim_{n \to \infty} d(p_n, q_n) = 0.$$

Prove that this is an equivalence relation.

(b) Let X^* be the set of all equivalence classes so obtained. If $P \in X^*$, $Q \in X^*$, $\{p_n\} \in P$, $\{q_n\} \in Q$, define

$$\Delta(P,Q) = \lim_{n \to \infty} d(p_n, q_n);$$

by Exercise 3.23, this limit exists. Show that the number $\Delta(P,Q)$ is unchanged if $\{p_n\}$ and $\{q_n\}$ are replaced by equivalent sequences, and hence that Δ is a distance function in X^* .

- (c) Prove that the resulting metric space X^* is complete.
- (d) For each $p \in X$, there is a Cauchy sequence all of whose terms are p; let P_p be the element of X^* which contains this sequence. Prove that

$$\Delta(P_p, P_q) = d(p, q)$$

for all $p, q \in X$. In other words, the mapping φ defined by $\varphi(p) = P_p$ is an isometry (i.e., a distance-preserving mapping) of X into X^* .

(e) Prove that $\varphi(X)$ is dense in X^* , and that $\varphi(X) = X^*$ if X is complete. By (d), we may identify X and $\varphi(X)$ and thus regard X as embedded in the complete metric space X^* . We call X^* the **completion** of X.

Proof of (a). Given Cauchy sequences $\{p_n\}$, $\{q_n\}$, $\{r_n\}$ in X.

(1) (Reflexivity)

$$\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} 0 = 0$$

by the reflexivity of the metric function d.

(2) (Symmetry)

$$\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(q_n, p_n) = 0$$

by the symmetry of the metric function d.

(3) (Transitivity) Suppose that $\lim_{n\to\infty} d(p_n, q_n) = \lim_{n\to\infty} d(q_n, r_n) = 0$. By the triangle inequality of the metric function d, we have

$$0 \le d(p_n, r_n) \le d(p_n, q_n) + d(q_n, r_n).$$

Take limit to get

$$\begin{split} 0 & \leq \lim_{n \to \infty} d(p_n, r_n) \\ & \leq \lim_{n \to \infty} (d(p_n, q_n) + d(q_n, r_n)) \\ & = \lim_{n \to \infty} d(p_n, q_n) + \lim_{n \to \infty} d(q_n, r_n) \\ & = 0 \end{split}$$

or $\lim_{n\to\infty} d(p_n, r_n) = 0$.

Proof of (b).

- (1) Show that Δ is well-defined. Given any $\{p_n\}, \{p'_n\} \in P$ and $\{q_n\}, \{q'_n\} \in Q$.
 - (a) $\lim_{n\to\infty} d(p_n, p'_n) = 0$ since $\{p_n\}$ and $\{p'_n\}$ are in the same equivalence class.

- (b) $\lim_{n\to\infty} d(q_n, q'_n) = 0$ (similar to (a)).
- (c) Show that $\lim_{n\to\infty} d(p_n, q_n) \leq \lim_{n\to\infty} d(p'_n, q'_n)$. Since $d(p_n, q_n) \leq d(p_n, p'_n) + d(p'_n, q'_n) + d(q'_n, q_n)$, take limit to get

$$\lim_{n \to \infty} d(p_n, q_n) \le \lim_{n \to \infty} (d(p_n, p'_n) + d(p'_n, q'_n) + d(q'_n, q_n))$$

$$= \lim_{n \to \infty} d(p_n, p'_n) + \lim_{n \to \infty} d(p'_n, q'_n) + \lim_{n \to \infty} d(q'_n, q_n)$$

$$= 0 + \lim_{n \to \infty} d(p'_n, q'_n) + 0$$

$$= \lim_{n \to \infty} d(p'_n, q'_n)$$

since (a)(b).

(d) Show that $\lim_{n\to\infty} d(p_n, q_n) \ge \lim_{n\to\infty} d(p'_n, q'_n)$. Similar to (c).

By (c)(d), $\lim_{n\to\infty} d(p_n, q_n) = \lim_{n\to\infty} d(p'_n, q'_n)$, or $\Delta(P, Q)$ is well-defined.

- (2) Show that Δ is a metric.
 - (a) Show that $\Delta(P,Q) > 0$ if $P \neq Q$; $\Delta(P,P) = 0$. It is the definition of Δ .
 - (b) Show that $\Delta(P,Q) = \Delta(Q,P)$. Similar to the argument in (a)(2).
 - (c) Show that $\Delta(P,Q) \leq \Delta(P,R) + \Delta(R,Q)$. Similar to the argument in (a)(3).

Proof of (c). Show that $\{P_k\}_{k=1}^{\infty}$ converges to P in (X^*, Δ) for any given Cauchy sequence $\{P_k\}$.

- (1) Take a Cauchy sequence $\{p_n^{(k)}\}_{n=1}^{\infty}$ to represent P_k for each k. We will construct a Cauchy sequence $\{p_k\}$ in (X,d) such that $\{P_k\}$ converges to P which is the equivalent class of $\{p_k\}$.
- (2) For each k, there exists N_k such that

$$d\left(p_m^{(k)}, p_n^{(k)}\right) < \frac{1}{k} \text{ whenever } m, n \ge N_k.$$

Especially,

$$d\left(p_m^{(k)},p_{N_k}^{(k)}\right)<\frac{1}{k} \text{ whenever } m\geq N_k.$$

Let $p_k = p_{N_k}^{(k)}$ and collect all p_k as $\{p_k\}_{k=1}^{\infty}$.

(3) Show that $\{p_k\}$ is a Cauchy sequence in (X,d). Note that for any k, we have

$$d(p_m, p_n) = d\left(p_{N_m}^{(m)}, p_{N_n}^{(n)}\right)$$

$$\leq d\left(p_{N_m}^{(m)}, p_k^{(m)}\right) + d\left(p_k^{(m)}, p_k^{(n)}\right) + d\left(p_k^{(n)}, p_{N_n}^{(n)}\right).$$

Let $k \to \infty$, we have

$$d(p_m, p_n) \le \limsup_{k \to \infty} \left[d\left(p_{N_m}^{(m)}, p_k^{(m)}\right) + d\left(p_k^{(m)}, p_k^{(n)}\right) + d\left(p_k^{(n)}, p_{N_n}^{(n)}\right) \right]$$

$$\le \frac{1}{m} + \Delta(P_m, P_n) + \frac{1}{n}$$

for any m, n (by (2)). Let $m, n \to \infty$, we establish the result (since $\{P_k\}$ is Cauchy).

(4) Show that $\{P_k\}$ converges to $P \ni \{p_k\}$. Given any $\varepsilon > 0$. Since $\{p_k\}$ is Cauchy (3), there is $N > \frac{2}{\varepsilon}$ such that

$$d(p_m, p_n) < \frac{\varepsilon}{2}$$
 whenever $m, n \ge N$.

Note that

$$d\left(p_n^{(k)}, p_n\right) = d\left(p_n^{(k)}, p_{N_n}^{(n)}\right)$$

$$\leq d\left(p_n^{(k)}, p_{N_k}^{(k)}\right) + d\left(p_{N_k}^{(k)}, p_{N_n}^{(n)}\right).$$

For any $k \geq N$, let $n \to \infty$ to get

$$\Delta(P_k, P) = \lim_{n \to \infty} d\left(p_n^{(k)}, p_n\right)$$

$$\leq \limsup_{n \to \infty} d\left(p_n^{(k)}, p_{N_k}^{(k)}\right) + \limsup_{n \to \infty} d\left(p_{N_k}^{(k)}, p_{N_n}^{(n)}\right)$$

$$< \frac{1}{k} + \frac{\varepsilon}{2}$$

$$\leq \frac{1}{N} + \frac{\varepsilon}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Hence, (X^*, Δ) is complete. \square

Proof of (d).

- (1) Define $\{p_n\}$ by $p_n = p$ (n = 1, 2, ...) for any $p \in X$.
- (2) Show that $\{p_n\}$ is a Cauchy sequence. $d(p_m, p_n) = d(p, p) = 0$.
- (3) Take $\{p\} \in P_p$ and $\{q\} \in P_q$. Then

$$\Delta(P_p, P_q) = \lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(p, q) = d(p, q).$$

Proof of (e).

(1) Show that $\varphi(X)$ is dense in X^* . Given any $P \in X^*$, any $\{p_n\} \in P$ and any $\varepsilon > 0$. Since $\{p_n\}$ is Cauchy, there is N such that

$$d(p_m, p_n) < \frac{\varepsilon}{64}$$
 whenever $m, n \ge N$.

Note that $p_N \in X$. Pick $\{p_N\} \in P_{p_N} = \varphi(p_N) \in \varphi(X)$. So

$$\Delta(P, P_{p_N}) = \lim_{n \to \infty} d(p_n, p_N) \le \frac{\varepsilon}{64} < \varepsilon.$$

Hence $\varphi(X)$ is dense in X^* .

(2) Show that $\varphi(X) = X^*$ if X is complete. Given any $P \in X^* \ni \{p_n\}$. Since X is complete, a Cauchy sequence $\{p_n\}$ converges to $p \in X$. Pick $\{p\} \in P_p = \varphi(p) \in \varphi(X)$. So

$$\Delta(P, P_p) = \lim_{n \to \infty} d(p_n, p) = 0,$$

or
$$P = P_p$$
, or $\varphi(X) = X^*$.

Exercise 3.25. Let X be the metric space whose points are rational numbers, with the metric d(x,y) = |x-y|. What is the completion of this space? (Compare Exercise 3.24.)

Proof. By Exercise 3.24, we can identify one completion (X^*, Δ) with $(\mathbb{R}, |\cdot|)$ (Theorem 3.11(c) and Theorem 1.20(b)). \square

Supplement (Uniqueness of completion). Show that a completion of a metric space is unique up to isometry.

Outline. Suppose there are two completions $\{\varphi_i,(X_i^*,d_i^*)\}\ (i=1,2)$ of (X,d). Let

$$\psi = \varphi_2 \circ \varphi_1^{-1} : \varphi_1(X) \to \varphi_2(X)$$

be an isometry from $\varphi_1(X)$ into $\varphi_2(X)$ The sets $\varphi_i(X)$ (i=1,2) are dense in X_i^* . So we can extend ψ (continuously) to a map $\psi: X_1^* \to X_2^*$.

Proof.

(1) Given any $P \in X_1^*$, there is a Cauchy sequence $\{P_{p_n}\} = \{\varphi_1(p_n)\}$ in $\varphi_1(X)$ converging to P. Define $\psi(P)$ by

$$\psi(P) = \lim_{n \to \infty} \psi(P_{p_n}).$$

(2) Show that ψ is well-defined. Note that

$$\begin{split} \Delta_2(\psi(P_{p_m}), \psi(P_{p_n})) &= \Delta_2(\psi(\varphi_1(p_m)), \psi(\varphi_1(p_n))) \\ &= \Delta_2(\varphi_2(p_m), \varphi_2(p_n)) \\ &= d(p_n, p_m) & (\varphi_2 \text{ is isometric}) \\ &= \Delta_1(\varphi_1(p_m), \varphi_1(p_n)) & (\varphi_1 \text{ is isometric}) \\ &= \Delta_1(P_{p_m}, P_{p_n}). \end{split}$$

So $\{\psi(P_{p_n})\}$ is a Cauchy sequence in $\varphi_2(X)$ if (and only if) $\{P_{p_n}\}$ is a Cauchy sequence in $\varphi_1(X)$. Since X_2^* is complete, $\{\psi(P_{p_n})\}$ converges to $\psi(P)$. The limit $\psi(P)$ is uniquely determined since Δ_2 is a metric function.

(3) Since ψ is an isometry from $\varphi_1(X)$ into $\varphi_2(X)$,

$$\psi^{-1} = \varphi_1 \circ \varphi_2^{-1} : \varphi_2(X) \to \varphi_1(X)$$

is an isometry from $\varphi_2(X)$ into $\varphi_1(X)$. Besides, $\psi^{-1} \circ \psi = 1_{\varphi_1(X)}$ and $\psi \circ \psi^{-1} = 1_{\varphi_2(X)}$.

(4) Show that ψ is surjective. Given any $Q \in X_2^*$, there is a Cauchy sequence $\{P_{q_n}\} = \{\varphi_2(q_n)\}$ in $\varphi_2(X)$ converging to Q. Define

$$P_{p_n} = \psi^{-1}(P_{q_n}) \in \varphi_1(X).$$

 $\psi(P_{p_n}) = 1_{\varphi_2(X)}(P_{q_n}) = P_{q_n}$. Besides, similar to argument in (2), $\{P_{p_n}\}$ is a Cauchy sequence in $\varphi_1(X)$. Since X_1^* is complete, $\{P_{p_n}\}$ converges to $P \in X_1^*$. It is easy to verify that $\psi(P) = Q$.

(5) Show that ψ is injective. Given any $P \in X_1^*$ and $Q \in X_1^*$, there are Cauchy sequences

$$\{P_{p_n}\} = \{\varphi_1(p_n)\} \to P \text{ and } \{P_{q_n}\} = \{\varphi_1(q_n)\} \to Q.$$

So

$$\psi(P) = \psi(Q) \Longrightarrow \lim_{n \to \infty} \psi(P_{p_n}) = \lim_{n \to \infty} \psi(P_{q_n})$$

$$\Longrightarrow 0 = \lim_{n \to \infty} \Delta_2(\psi(P_{p_n}), \psi(P_{q_n}))$$

$$\Longrightarrow 0 = \lim_{n \to \infty} \Delta_2(\psi(\varphi_1(p_n)), \psi(\varphi_1(q_n)))$$

$$\Longrightarrow 0 = \lim_{n \to \infty} \Delta_2(\varphi_2(p_n), \varphi_2(q_n))$$

$$\Longrightarrow 0 = \lim_{n \to \infty} d(p_n, q_n). \qquad (\varphi_2 \text{ is isometric})$$

Thus $\{p_n\} \in P$ and $\{q_n\} \in Q$ in the same equivalence class. Thus P = Q.