COMPUTER SCIENCE

Database Management System

Query Language

Lecture_4

Vijay Agarwal sir

Basic Operators

Derived Operators

Selection (6-) JOIN Projection [T] Natural Join Conditional Join Union (U) Equi Join Intersection (1) Minus Set Difference ExcEPT (-) (MX) (D) ROJ/KL) CROSS Booduct Rename PULL OUTÉR JOIN. (JX

內

Relational Algebra

Basic operators

 π : Projection operator

 σ : Selection operator

×: Cross-product operator

U: Union

-: Set difference

g: Rename operator

Relational Algebra

Derived operators

```
\cap: Intersection {using "_"} 

\bowtie: Join {using X, \sigma}

/ or \div: Division {using \pi, x, -}
```


Let R and S be two relations with the following schema

R(P, Q, R1, R2, R3)

S(P, Q, S1, S2)

Where {P, Q} is the key for both schemas. Which of the following queries are equivalent?

I. $\pi_P(R \bowtie S)$

II. $\pi_P(R) \bowtie \pi_P(S)$

III. $\pi_{P}(\pi_{P,Q}(R) \cap \pi_{P,Q}(S))$

IV. $\pi_P(\pi_{P,Q}(R) - (\pi_{P,Q}(R) - \pi_{P,Q}(S)))$

A Only I and II

B Only I and III

C Only I, II and III

D

Only I, III and IV

Division operator (1): It is Degived observator.

- It is used to retrieve attribute value of R which has paired with every attribute value of other relation S.
- \square $\pi_{AB}(R)/\pi_B(S)$: It will retrieve values of attribute 'A' from R for which there must be pairing 'B' value for every 'B' of S.

Expansion of '/' by using basic operator

- Example: Retrieve sid's who enrolled every course.
- Result:

```
\pi_{\text{sidcid}}(\text{Enroll})/\pi_{\text{cid}}(\text{Course})
```

Step 1: Sid's not enrolled every course of course relation.

(Sid's enrolled proper subset of course)

$$\pi_{sid}((\pi_{sid}(Enroll) \times \pi_{cid}(course)) - \pi_{sidcid}(Enroll))$$

☐ Step 2:

[sid's enrolled every course] = [sid's enrolled some course] - [sid's
not enrolled every course]

$$\therefore \pi_{\text{sidcid}}(E)/\pi_{\text{cid}}(c) = \pi_{\text{sid}}(E) - \pi_{\text{sid}}((\pi_{\text{sid}}(E) \times \pi_{\text{cid}}(C) - \pi_{\text{sidcid}}(E))$$

Retrieve all student who are Enrolled Some course or Any

course or at least one course?

Solution Π_{Sid} (Enrolled)

Enrolled		
Sid	Cid	
S_1	C ₁	
S_1	C ₂	
S_1	C ₃	
S ₂	C ₁	
S ₂	C ₃	
S_3	C ₁	

Course
Cid
C_1
C ₂
C ₃

$$\frac{TT_{AB}(v_1)}{TT_{B}(v_2)} = Quotient(A)$$

Value of A Which Pair With Every Value Bof 52

Division [1]

Gind Sid who empulled.

ALL COURSE

Retrieve all student who are Enrolled every course?

Solution

Enrolled	
Sid	Cid
S_1	C_1
S_1	C ₂
S_1	C ₃
S_2	C_1
S_2	C_3
S_3	C_1

Course	
Cid	
C_1	
C ₂	
C_3	

dividend = Quotient division

TTsid. Cid (Envalled) = Quot. (Sid)
TTcid (Course)

- (a) W.A.D to Find Sid Who enrolled every Course?
- (a) W.A.B to Find STUDENT Who attend every class?

3 Student 3 class

Q.

Retrieve all student who are Enrolled every course?

Solution

Enrolled		
Sid	Cid	
S_1	C_1	
S_1	C ₂	
S_1	C ₃	
S_2	C_1	
S_2	C_3	
S_3	C_1	

Course
Cid
C_1
C ₂
C_3

Q.

Retrieve all student who are Enrolled every course?

(E) Emalled

Solution

Enrolled		
Sid	Cid	
S_1	C ₁	
$S_1 \sim$	~>C₂	
S_1	C ₃	
S ₂ —	$-C_1$	
S_2	C ₃	
S ₃ -	— C ₁	

Course
Cid
$\left(C_{1}\right)$
C ₂
C_3

Tsid (Enrolled) X Tsid (Enrolled) X Tsid (course) - Enrolled)

Not Enrolled

every Course.

TIsid (Enoulled) X Course - Envalled

Sid Avg

Cid CI S₁ =) X SI C2 (3 53 SI C3 CI 52 C2 **C3** CI C2 **C3**

 \Rightarrow

Sid Cid

Student Which Not enrolled these course

UTISia

Sig Student S2 Not Enall S3 ALL Course.

Division [1]

TIsid Cid (Envolled) | Avotient (sid) | Pulled | Sid Who envolled | Ticid (Eurse) every Course (SP)

 Π_{Sid} (Enrolled) – Π_{Sid} [Π_{Sid} (Enrolled) × Π_{Cid} (Course) – Enrolled]

Sid Which Paix Exercy Cid of Course.

$$T_{AB}(R) = T_{A}(R) - T_{A} \left(T_{A}(R) \times T_{B}(S) - R\right)$$

$$T_{B}(S)$$

$$T_{B}(S)$$

Quotient (A)

Getting A' Which Pair With every Value B&S
in Relation R

OR

$$T_A(R) - T_A(T_A(R) \times S - R)$$
.

$$T_{ABCD}(R) = T_{AB}(R) - T_{AB}T_{AB}(R) \times T_{CD}(S) - R$$

$$T_{CD}(S)$$

.

$$\Pi_{AB}(R) / \Pi_{B}(S) = \Pi_{A}(R) - \Pi_{A}[\Pi_{A}(R) \times \Pi_{B}(S) - R]$$

Connection

Find

$$\Pi_{ABCD}(R) / \Pi_{CD}(S) \Rightarrow \Pi_{AB}(R) - \Pi_{AB}[\Pi_{AB}(R) \times \Pi_{CD}(S) - R]$$

 $\frac{1}{T_{AB}(R)} = Quotient(A)$ $\frac{1}{T_{B}(S)}$

gettige 'A' Which Pair With Every B Value of S in Relation P.

 $TI_A(R) - TI_A TI_A(R) \times TI_B(S) - R$ $TI_A(R) - TI_A TI_A(R) \times S - R$ $TI_A(R) \times S - R$

TTAB(R) = Quotient (B) getting 'B' which Pair with Every TTA(S) Avalue of S in Relation R.

 $T_B(R) - T_BT_B(R) \times T_A(S) - R$

$$\frac{\text{TTABCD}(R)}{\text{TTCD}(S)} = Quotient(AB)$$

TABCD (R) = Quotient (AB) getting AB Which Poir With

TCD (S) every value at CD at S in Redation R

TABCD(R) = Quotient (CD) getting CD which foir with every value of AB of S in Relation R

Trooper to
$$T_{CD}(R) \times S - R$$
 Ang

Q.

Consider the following three relations in a relational database:

Employee (eld, Name), Brand (bld, bName), Own(eld, bld)

Which of the following relational algebra expressions return the set of elds who own all the brands?

[GATE: 2022]

- C $\pi_{eld} (\pi_{eld, bld} (Own) / \pi_{bld} (Own))$
- D $\pi_{eld} ((\pi_{eld}(Own) \times \pi_{bld}(Own)/\pi_{bld}(Brand))$

bid brame
b) AT
b2-WC

Are eid eid eid eid eid

Division oberation

Great Varient

Consider the two relation Suppliers and Parts are given below.

Suppliers	Parts		
S _{no} P _{no}	P _{no}	S./. P2	S - 72
$S_1 \qquad P_1$	P ₂		19
S_1 P_2 P_3	F4		
$S_1 \sim P_1$ $S_2 \sim P_1$		SI	151
$S_2 \longrightarrow P_2$,	SZ	Sy
S_4 P_2		>3 Su	
S ₄ Coursell	Donald	7	
π _{Sno} P _{no} (Supplie	rs) / $\pi_{P_{no}}$ (Parts)		

The number of tuples are there in the result when the above relational algebra query executes is _____.

TTAB(R)
TTB(S)

16 R has m Tuple & Shasn Tuple then what is Minimum & Maximum # Tuples in the off? (Assume R&S Roth)
are Non Empty?

Minimum = 0

Maximum = m

R: 8 Tubles

S: 3 Tuble (C) (2) (3) = (2) Ang.

16 R has m Tuple & Shasn Tuple then what is Minimum & Maximum # Tuples in the off? (Assume & Non Empty) 2 Sis Empty. Minimum maximum: m

Consider the Database with relations:

PW

- S Supplier (Sid, Sname, Rating)
- P Parts (Pid. Pname, Color)
- S Catalog (Sid Pid, Cost)

Find the Sid of Supplier whose Rating greater than 9?

Find the Pid of Red Color Parts?

Retrieve Sid of Supplier who supplied some Red color parts?

Note: Let an Attribute A belongs to R only then

$$\sigma_{A='a'}(R \bowtie S) = \sigma_{A='a'}(R) \bowtie S \rightarrow More efficiency query$$

Note: Let an Attribute A belongs to R only and Attribute B belongs to S only then

$$\sigma_{A='a' \wedge B='b'}(R \bowtie S) = \sigma_{A='a'}(R) \bowtie \sigma_{B='b'}(S)$$

Consider the following relation schemas:

b-Schema = (b-name, b-city, assets)

a-Schema = (a-num, b-name, bal)

d-Schema = (c-name, a-number)

Let branch, account and depositor be respectively instances of the above schemas. Assume that account and depositor relations are much bigger than the branch relation.

Consider the following query:

 $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"agra"} \land \text{bal} < 0} \right) \text{ (branch } \bowtie \text{ account } \bowtie \text{ depositor}$

- A $\Pi_{\text{c-name}} \left(\sigma_{\text{bal} < 0} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch} \bowtie \text{account} \right) \bowtie \text{depositor} \right)$
- B $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch} \bowtie \left(\sigma_{\text{bal} < 0} = \text{account} \right) \bowtie \text{depositor} \right)$
- $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch } \bowtie \sigma_{\text{b-city} = \text{"Agra} \land \text{bal} < 0} \text{ account } \bowtie \text{ depositor} \right)$
- $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch } \bowtie (\sigma_{\text{b-city} = \text{"Agra} \land \text{bal} < 0} \text{ account } \bowtie \text{ depositor} \right) \right)$

Consider two relations $R_1(A, B)$ with the tuples (1, 5), (3, 7) and $R_2(A, C) = (1, 7)(4, 9)$

Assume that R(A, B, C) is the full natural outer join of R_1 and R_2 . Consider the following tuples of the form (A, B, C); a = (1, 5, null), b = (1, null, 7), c = (3, null, 9), d = (4, 7, null), e = (1, 5, 7), f = (3, 7, null), g = (4, null, 9). Which one of the following statements is correct? [GATE-2015: 1 Mark]

- A R contains a, b, e, f, g, but not c, d
- B R contains all of a, b, c, d, e, f, g
- C R contains e, f, g, but not a, b
- P R contains e but not f, g

Q.

Consider the following relations given below:

R

A	В
6	6
7	6
8	8

S

C	D
6	7
8	9
8	10

$$\Pi_{AD}(R \times S) - P_{A \leftarrow B}(\Pi_{BD}(R \bowtie_{B=C} S))$$

Number of tuples return by the above query when it is executed on the above instance of relation R and S is ____

Summary

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R.	σ _{<selection condition=""></selection>} (R)
PROJECT	Produces a new relation with only some of the attributes of R, and removes duplicate tuples.	π _{<attribute list=""></attribute>} (R)
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	R ₁ ⋈ _{<join condition=""></join>} R ₂
EQUIJOIN	Produces all the combinations of tuples from R ₁ and R ₂ that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{< join condition>} R_2$, $OR R_1 \bowtie_{(< join condition 1)} R_2$ >), (< join condition 1 >) R_2
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R ₂ are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	R_1^* <pre></pre>

OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 and that are not in R_2 ; R_1 and R_2 must be union compatible.	R ₁ - R ₂
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation R(X) that includes all tuples t[X] in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$	R ₁ (Z) ÷ R ₂ (Y)

NAT

Consider a database that has the relation schema CR(StudentName, CourseName). An instance of the schema CR is as given below:

The following query is made on the database.

 $T2 \leftarrow CR \div T1;$

The number of rows in T2 is

[GATE-2017-CS: 2M]

C	R
Student Name	Course Name
SA -	— CA
SA ~~	∼→ CB
SA	-> cc
SB	СВ
SB	CC
SC -	— CA
sc ~	✓ CB
SC -	CC
SD	(CA)
SD ~	→ CB

Student Name	Course Name
SD	→ cc
SD	CD
SE	CD
SE	— CA
SE ~	→ CB
SF -	CA
SF ∽	~> CB
SF —	CC

CR = T CA CC

CR = CA

Stepl

SA

SD

SE

CR = CB

SAV

SDV

SFX

SF

Pink Now Extension

Steps CR: CR: CR

SA SCAS SD CR + CB CD Then Aus?

MCQ

The following relation records the age of 500 employees of a company, where empNo {indicating the employee number} is the key:

empAge(empNo, age)

Consider the following relational algebra expression:

 $\prod_{empNo} (empAge \bowtie_{(age>age1)} \rho_{empNo1,age1} (empAge))$ What does the above expression generate? [GATE-2020-CS: 1M]

- A Employee numbers of only those employees whose age is the maximum
- B Employee numbers of only those employees whose age is more than the age of exactly one other employee
- Employee numbers of all employees whose age is not the minimum
- D Employee numbers of all employees whose age is the minimum

NAT

Consider the following relations P(X, Y, Z), Q(X, Y, T) and R(Y, V)

P		
Х	Y	Z
X1	Y1	Z1
X1	Y1	Z2
X2	Y2	Z2
X2	Y4	Z4

	Q		
Х	Y	T	
X2	Y1	2	
X1	Y2	5	
X1	Y1	6	
Х3	Y3	1	

R	
Y	v
Y1	V1
Y3	V2
Y2	V3
Y2	V2

How many tuples will be returned by the following relational algebra query?

 $[\Pi_X(\sigma_{(P,Y=R,Y \land R,V=V2)}(P\times R))-\Pi_X(\sigma_{(Q,Y=R,Y \land Q,T>2)}(Q\times R))];$

[GATE-2019-CS: 2M]

MCQ

Suppose $R_1(\underline{A}, B)$ and $R_2(\underline{C}, D)$ are two relation schemes. Let r_1 and r_2 be the corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in r_1 and r_2 satisfy referential integrity constraints, which of the following is ALWAYS TRUE?

[GATE-2013-CS: 2M]

A
$$\Pi_B(r_1)-\Pi_C(r_2)=\varphi$$

B
$$\Pi_{C}(r_{2})$$
- $\Pi_{B}(r_{1})$ =φ

$$\Pi_B(r_1)=\Pi_C(r_2)$$

D
$$\Pi_B(r_1)-\Pi_C(r_2) \neq \phi$$

NAT

Consider the following table named Student in a relational database. The primary key of this table is rollNum. Student

Roll Num	Name	Gender	Marks	
1	Naman	M	62	
2	Aliya	F	70	
3	Aliya	F	80	
4	James	M	82	
5	Swati	F	65	

The SQL query below is executed on this database.

SELECT *

FROM Student

WHERE gender = 'F' AND marks > 65;

The number of rows returned by the query is

[GATE-2023-CS: 2M]

MCQ

Consider the following relation A, B and C:

A		
ID	Name	Age
12	Arun	60
15	Shreya	24
99	Rohit	11

	В		
ID	Name	Age	
15	Shreya	24	
25	Hari	40	
98	Rohit	20	
99	Rohit	11	

C		
ID	Phone	Area
10	2200	02
99	2100	01

How many tuples does the result of the following relational algebra expression contain? Assume that the schema of $A \cup B$ is the same as that of A.

(A∪B) M A.Id > 40 vC.Id < 15 C

[GATE-2012-CS: 2M]

A)

B

C

D

