Developing a formally verified algorithm for static register allocation

David J. Barker Jesus College

A dissertation submitted to the University of Cambridge in partial fulfilment of the requirements for the degree of Master of Philosophy in Advanced Computer Science

> University of Cambridge Computer Laboratory William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD UNITED KINGDOM

Email: David.Barker@cl.cam.ac.uk

May 17, 2014

Declaration

I David J. Barker of Jesus College, being a candidate for the Part III in Computer Science, hereby declare that this report and the work described in it are my own work, unaided except as may be specified below, and that the report does not contain material that has already been used to any substantial extent for a comparable purpose.

Total word count: TBC

Signed:

Date:

This dissertation is copyright ©2014 David J. Barker. All trademarks used in this dissertation are hereby acknowledged.

Abstract

This is the abstract. Write a summary of the whole thing. Make sure it fits in one page. TODO.

Contents

1	Intr	oduction	1
2	Bac	kground	3
	2.1	The problem of register allocation	3
	2.2	Isomorphism to graph colouring	4
	2.3	Basic approaches to colouring	5
	2.4	Heuristics	6
3	Rela	ated Work	9
4	Live	e variable analysis and clash graph generation	11
	4.1	Three-address code representation	12
		4.1.1 Registers and instructions	12
		4.1.2 Code evaluation	13
		4.1.3 Colourings	13
	4.2		14
		4.2.1 Set representation and proofs	14
		4.2.2 Live variable analysis	17
		4.2.3 Defining correctness of a colouring	17
			22
5	Col	ouring algorithms	27
	5.1	Modelling colouring correctness	28
			28
			28
	5.2	Naive graph colouring	29
			29
			30
	5.3		34
		~	34
			34

	5.4 Heuristics					
	5.4.1	Modelling heuristics	34			
	5.4.2	Simple sort-based heuristics	34			
	5.4.3	More complex heuristics	34			
6	6 Bringing everything together					
7	Extension features					
8	8 Summary and conclusions					

List of Figures

List of Tables

Chapter 1

Introduction

This is the introduction where you should introduce your work. In general the thing to aim for here is to describe a little bit of the context for your work — why did you do it (motivation), what was the hoped-for outcome (aims) — as well as trying to give a brief overview of what you actually did.

It's often useful to bring forward some "highlights" into this chapter (e.g. some particularly compelling results, or a particularly interesting finding).

It's also traditional to give an outline of the rest of the document, although without care this can appear formulaic and tedious. Your call.

Chapter 2

Background

2.1 The problem of register allocation

When compiling code, we generally assume the existence of an infinite number of locations in which to store values. Each variable used by the program is treated as its own location, and temporaries and results are freely allocated to conceptual registers. However, in reality all processors have only finite numbers of physical registers, some of which are reserved for specific purposes, and so the compiler ultimately has to map variables in the code to registers in such a way that ensures the code's behaviour is the same.

There are many issues involved when doing this. The main problem is that code will often use far more 'virtual' registers than actually exist on the target processor. The simplest solution to this is to store any values which won't fit in memory, but this considerably worsens performance. The solution is to find variables which are never in use at the same time and place them in the same register, allowing registers to be re-used when the values originally assigned to them are not in use.

This optimisation is enabled by liveness analysis. Essentially, a variable is live where changing its value will affect the program's future behaviour [ref?]. Because this is difficult to decide with absolute precision, we gener-

ally compute a safe over-approximation of liveness: a variable is live if an instruction reachable from here reads its value, and its value is not written to in a preceding instruction. Liveness is computed by repeatedly iterating over instructions in the code from the end backwards, updating each instruction's set of live variables according the following liveness equation:

$$live(n) = (live(n+1) \setminus write(n)) \cup read(n)$$

(Where live(n) is the set of variables live at instruction n, live(n+1) is those live at the next instruction and read(n) and write(n) are the variables read and written by the instruction.)

This is repeated until the live variable sets stop changing. With this information, we can deduce which variables are live at the same time, and thus which variables cannot occupy the same register because doing so would result in one overwriting the other whilst the other was about to be used.

When no allocation can satisfy these clashes between variables, it becomes necessary to spill variables to memory. This means reading or writing said variables takes considerably longer, and so an effective register allocation algorithm should minimise spills wherever possible.

Another thing to consider is that some target architectures have constraints on what registers can be used for. For instance, a particular operator may require its operands to be stored in particular registers, or may place the output in a designated 'result' register. This means move instructions will be required to satisfy these requirements, slowing the overall program down. Good register allocators allow for this by biasing allocation so that these move instructions can be eliminated wherever possible.

2.2 Isomorphism to graph colouring

The most common approach to register allocation is to reduce the problem to one of graph colouring, where we have a graph which we wish to colour with a maximum of K colours such that no two adjacent vertices share the same colour (TODO ref). Given the knowledge of which variables are live at the same time, we construct a clash graph in which the vertices represent registers and an edge between two vertices exists where the corresponding registers are simultaneously live. Treating a colour as representing a physical register on the target machine, we then attempt to 'colour' the graph with target registers such that vertices which are linked by a clash edge are always given different colours.

A successful colouring will naturally give a mapping from virtual to physical registers enforcing that no registers which are simultaneously live are placed in the same physical register. Formally verifying that the colouring resulting from this process will never affect the behaviour of the code being compiled was the core objective of this project.

The K-colourability problem is known to be NP-complete wherever K is greater than two, and so finding a truly optimal solution is rarely feasible in practice. Instead, register allocation algorithms are designed primarily to find a solution which is correct, and from there use heuristics to find a solution which is as optimal as can be achieved in reasonable time. There are several approaches to this, and many of them were verified in detail in this project. As discussed later, the definitions and proofs in the project are designed to be largely independent of the algorithm and so extending it to verify some of the algorithms not covered would be relatively simple.

2.3 Basic approaches to colouring

The simplest way of colouring a graph is to take each vertex in turn and assign it a new colour until all vertices have been coloured. This approach is guaranteed to generate a valid colouring (as verified in Section (TODO section)), but is also very inefficient as registers are never re-used for variables which could reside in the same register. In a system with few physical registers this will result in registers being spilled to memory, and as the order colours are assigned is arbitrary this could result in frequently-used registers being

stored in memory causing constant loads and stores and poor performance.

An improvement is to take each vertex in turn and assign it the lowest register which isn't already in use by a vertex with which it clashes. This is fairly simple to implement, and significantly improves register utilisation as it reuses old registers whenever the opportunity presents itself (TODO ref?).

However, lowest-first allocation doesn't always find opportunities to re-use old registers. A further refinement is to check whether we can avoid using a new register by swapping colours of already-allocated vertices. This often improves register utilisation further, as sub-optimal decisions made early on in the process can be changed when colouring new vertices later.

The algorithm resulting from applying all these refinements will work fairly well, but in practice the quality of the colouring is often also heavily dependent on the order in which we colour vertices. Decisions made at the beginning naturally constrain decisions made later, even if we allow the algorithm to swap existing colours. We therefore need to use a heuristic ordering step at the beginning to improve the order in which vertices are presented to the main colouring algorithm. Some such heuristics are described in the next section.

2.4 Heuristics

Heuristics are used in graph-colouring algorithms to select a vertex ordering which gives a more optimal solution. There are several heuristics which are used in practice, some of which were formally verified during the course of this project.

One of the simplest heuristics is to order the vertices by their degree. By presenting the vertices to the colouring algorithm in descending order of degree, vertices which are most likely to clash with others are coloured first so that those left over towards the end will be easier to colour without assigning new colours. There are also a few variations on this: saturation degree

ordering, for instance, picks the next vertex to colour based on which vertex is currently adjacent to the most different colours. Incidence degree colouring is another variant which sorts based on the number of adjacent vertices which have already been coloured (TODO ref).

A more complex heuristic, which is useful when attempting to colour with at most K colours, is to pick at each stage the vertex of highest degree less than K (this constraint on its degree ensures that it can definitely be coloured if only K colours are available). This vertex is then removed from the graph and placed on top of a vertex stack. The process repeats, each time removing a vertex which is guaranteed to be colourable, until no vertices of degree less than K remain. Those which have not yet been removed are spilled to memory, and the rest of the vertices are popped off the stack one by one and passed to the colouring algorithm. The heuristic essentially priorities registers with few conflicts, spilling those with many conflicts to memory, and colours those of lowest degree first.

This is not an exhaustive list of the heuristics used in practice, but these two types are very common and so verification focussed primarily on these. As mentioned, most of the verification conditions were designed to be as general as possible such that other more exotic heuristics could also be verified without much additional effort.

Chapter 3

Related Work

TODO

Chapter 4

Live variable analysis and clash graph generation

Introduction

In order to achieve a complete end-to-end verification, it was decided that the verified allocator should take in some representation of three-address code (typical of this stage in the compilation process), and output three-address code with registers allocated. The overall proof would therefore show that the behaviour of the resulting code was exactly the same as that of the source in all situations. For this reason, a simplified representation of three-address code and an evaluation function were developed and an algorithm to generate clash graphs was verified. This chapter explores the representation used, the way 'colouring' registers was represented and the development and verification of the clash graph generator, along with the way a 'correct' register allocation was defined. The proofs showing that these definitions are correct and linking them to the projects overall goal will follow in Chapter (TODO: bringing everything together).

4.1 Three-address code representation

Here we explore the simplified representation of three-address code, how evaluation was defined and how colourings were modelled and applied.

4.1.1 Registers and instructions

In real systems, register naming conventions tend to vary between processors, and there are often multiple groups of registers available. For the purposes of verification, this was simplified by using natural numbers to refer to registers, as in practice these numbers could trivially be mapped to real register names. Furthermore, there will generally be a great many different operations available on a given machine, but as the focus is on register allocation the only thing that matters here is the registers read and those assigned. Compilers commonly use three-address code as an intermediate representation, so a given instruction essentially consists of two source registers and one destination register. This led to the very simplified instruction representation given below:

inst = Inst of num
$$\Rightarrow$$
 num \Rightarrow num

For the main verification task, this was entirely satisfactory as it captures all the information needed. Later work extended this representation slightly: for instance, the addition of preferences meant it was necessary to include move instructions so that these could be used to compute preference graphs. Extensions to the three-address representation are discussed in Chapter (TODO: extensions chapter).

Code blocks were then represented as simple lists of these instructions, to simplify verification. The extension to more complex code featuring basic blocks is not too great a leap, and is discussed in Section (TODO: extensions-complex code). The main difference in using this representation is that live variable analysis is somewhat simpler.

4.1.2 Code evaluation

As mentioned, it was not necessary for verification to have a wide range of instructions. The register allocation can be proven correct simply by showing that evaluating each instruction with an arbitrary binary operator and storing the result in the destination register has the same effect as it did before allocation. The precise meaning of 'has the same effect' is explained in Section (TODO bringing together - proving stuff about code evaluation), where it is proven to hold for the register allocator built during this project. The evaluation function used is given below:

```
eval f s [] = s
eval f s (Inst w r_1 r_2::code) =
eval f ((w =+ f (s r_1) (s r_2)) s) code
```

Here f is an arbitrary binary operator and s is the store, a total function representing the values of all registers. Each instruction is evaluated by looking up the two source registers in the store and applying the binary operation to them, then updating the store function to map the destination register to the resulting value. The base case, where we have reached the end of the code block, simply returns the store as it is.

4.1.3 Colourings

With the basic code type defined, it was then necessary to model a register allocation abstractly in order to reason about allocations conveniently. An allocation was defined as a 'colouring', in keeping with the focus on graph-colouring approaches, mapping registers to registers. It thus made sense simply to use a total function of type $num \rightarrow num$. This made it very easy to later define properties of colourings – most importantly, the notion of a colouring not mapping conflicting virtual registers to the same target register. This definition is discussed in Section (TODO: LVA-colouring_ok).

Applying a colouring is then very simple: the function iterates through instructions, applying the colouring function to each register as it goes. The definition is given below:

```
apply c [] = [] apply c (Inst w r_1 r_2::code) = Inst (c w) (c r_1) (c r_2)::apply c code
```

This completes the definition of the basic primitives used to represent code in the proofs.

4.2 Live variables and clash graphs

This section describes the definitions and functions used in producing a verified clash graph generator, and covers the lemmas and proofs used to prove its correctness. The first subsection demonstrates the representation of sets using lists, which was adopted to simplify definitions and proofs, and many of the properties proved of such sets which were vital in later proofs. Verifying a clash graph generator was then handled in two stages: first, a live variable analysis was implemented and proven correct. A clash graph generator was then developed using the live variable analysis, and various important properties were verified to aid later proofs. Section (TODO: LVA-colouring_ok_def) details how the correctness of a generated colouring was defined, a definition which was fundamental to the rest of the project.

4.2.1 Set representation and proofs

As mentioned, it was decided that for the purposes of the project it would be most convenient to represent sets as lists rather than using HOLs set primitives. Using lists made it considerably easier to define functions iterating over elements of a set, and made many of the proofs and definitions a lot easier to work with. Furthermore, lists allow for an ordering to exist, which was particularly useful when applying heuristics to vertices of clash graphs. The downside was that a number of properties of sets had to be verified, and showing that various set operations preserved its duplicate-freeness took a

lot of extra effort. (The necessary proofs and definitions related to duplicate-freeness are given in Section (TODO: colouring_ok_def - duplicate_free stuff).)

The two basic operations on sets are insertion and deletion of elements. The definitions of these for 'list sets' are given below:

```
insert x xs = if MEM x xs then xs else x::xs delete x xs = FILTER (\lambda y. x \neq y) xs
```

Insertion simply tests for membership and places the new element at the head of the list if it is not a member, and deletion filters the list by inequality to the element to be removed. Several properties were then proven to demonstrate that these definitions work:

```
\vdash MEM x (insert x list)
```

This just states that inserting an element does indeed add it – it is correct with respect to MEM. The proof is a simple induction.

```
\vdash MEM x (insert y list) \land x \neq y \Rightarrow MEM x list
```

This states that if x is a member of a set with a value inserted, and it is not equal to that value, then it must be a member of the original set. The proof is a trivial case split on whether y belongs to the original set, simplifying definitions in each case to prove the goal.

```
\vdash MEM x xs \Rightarrow MEM x (insert y xs)
```

The proof of this is a simple expansion of the definition of insertion, and shows that inserting an element retains the elements already there.

```
\vdash a \notin \text{set (insert } x \text{ } xs\text{)} \Rightarrow a \notin \text{set } xs
```

The contrapositive of the above, this is a useful way of simplifying goals where some value isn't an element of a generated set.

```
\vdash x \notin \mathsf{set} (\mathsf{delete} \ x \ \mathit{list})
```

The basic proof of delete's correctness, this shows that deleting a value from a set does in fact remove it. The proof follows by expanding the definitions of delete and filter.

It was also necessary to implement set union, and union over multiple sets. The definition of set union is given below:

```
list_union [] ys = ys
list_union (x::xs) ys = insert x (list_union xs ys)
```

It was necessary to show that this definitely contains all elements from both sets. The relevant property is given below, and was proven by induction on the size of the first set in the union by demonstrating that once x is reached it is guaranteed to be included in the result.

```
\vdash MEM x list \lor MEM x list' \Rightarrow MEM x (list_union list list')
```

Union over multiple sets, here referred to as a flattening union, is defined by recursively applying list_union to pairs of sets from the end of the list forwards:

```
list_union_flatten [] = []
list_union_flatten (l::ls) =
list_union l (list_union_flatten ls)
```

Again, a completeness proof was required for later proofs. This is given below:

```
\vdash MEM list\ lists \land MEM x\ list \Rightarrow MEM x\ (list\_union\_flatten\ lists)
```

The proof used the same technique as the last one, combined with the fact that the union of two lists contains all elements from both lists (as was just proved).

This completes the basic definitions and proofs for list-based sets. An intersection operation was not required for the sets used, as there was no function in the algorithm which used it. Additionally, only completeness of unions was required – interestingly, it was not necessary to prove that they didnt introduce any extra elements for any later proofs. This is a side-effect of all live variable analysis methods generally computing safe over-approximations: an algorithm which satisfies an overly large set of conflicts will automatically satisfy a smaller, more precise set.

4.2.2 Live variable analysis

As mentioned earlier, the decision to represent a block of code as a simple list of instructions makes live variable analysis noticeably less complex. The definition used is given below:

```
get_live [] live = live
get_live (Inst w \ r_1 \ r_2::code) live =
insert r_1 (insert r_2 (delete w (get_live code \ live)))
```

This is an implementation of the liveness equation given in Section (TODO background bit), which also allows for some variables to be live at the end of the program (which can be used to link together analyses for adjacent blocks of code, or specify which registers hold program results). Showing that this definition is correct is subtle: correctness with respect to register allocation is shown later by demonstrating that colourings satisfying constraints built up from this definition will not change code behaviour. However, another way of showing correctness is by proving that only the variables returned by get_live will affect the evaluation of a program, a property which is stated below:

```
\vdash (MAP s (get_live code\ live) = MAP t (get_live code\ live)) \Rightarrow (MAP (eval f\ s\ code) live = MAP (eval f\ t\ code) live)
```

The antecedent states that the two stores s and t agree on the variables which are live at the start of the code. The consequent then claims that the stores at the end of the programs evaluation will agree on whatever variables are designated as live at the end. The proof of this statement is fairly complex, and is (TODO write up proof).

4.2.3 Defining correctness of a colouring

In order to be able to prove that generated colourings are correct, and that correct colouring do not affect code behaviour, defining the concept of a 'correct' colouring was essential. Fundamentally, a valid colouring is one which will not map two simultaneously live variables to the same target register. That is to say, for the set of variables live at any given instruction, mapping the colouring over them will not result in any duplicates. To facilitate this sort of definition, the property of being duplicate-free was defined as a function and a number of properties were proven of this. These are outlined in the next subsection.

Duplicate-freeness and associated lemmas

Duplicate-freeness of a list was defined using the following function:

```
\label{eq:duplicate_free} \begin{array}{ll} \text{duplicate\_free} & [] & \Longleftrightarrow & \texttt{T} \\ \text{duplicate\_free} & (x \colon : xs) & \Longleftrightarrow & x \notin \texttt{set} \ xs \ \land \ \texttt{duplicate\_free} \ xs \end{array}
```

To open up more options for proving duplicate-freeness, a pair of lemmas describing its behaviour in terms of element equality were also proved. The first shows that if no two different elements of the list are equal, it is duplicate-free:

The second comes from the other side, stating that if a list is duplicate-free, no two elements will be equal:

```
\vdash \texttt{duplicate\_free} \ \textit{list} \ \land \ x \ < \texttt{LENGTH} \ \textit{list} \ \land \ y \ < \texttt{LENGTH} \ \textit{list} \ \land \\ x \ \neq \ y \ \Rightarrow \\ \texttt{EL} \ x \ \textit{list} \ \neq \ \texttt{EL} \ y \ \textit{list}
```

The proof was fairly long as there were several details to account for, but essentially boiled down to an induction where the inductive step case splits on x or y being equal to zero. If neither is, the inductive hypothesis proves the goal; otherwise, the other must be greater than zero and the definition of duplicate-freeness shows that the value at zero cannot be a member of the rest of the list.

It was then necessary to prove that the set operations defined on list sets preserve duplicate-freeness, as required. The statements for insertion and deletion follow:

```
\vdash duplicate_free (insert n list) \iff duplicate_free list \vdash duplicate_free (delete n list) \iff duplicate_free list
```

The first follows from the definitions, and the second was shown by induction.

Duplicate-freeness was then proven for unions of duplicate-free sets, first by proving that it holds for a simple union of two list sets:

```
\vdash duplicate_free xs \land duplicate_free ys \Rightarrow duplicate_free (list_union xs \ ys)
```

This was shown by induction, using the fact that unions rely on insertion which preserves duplicate-freeness.

This was then extended to general unions. The proof works by induction, using the above lemma and expanding definitions.

```
\vdash EVERY (\lambda \ list. duplicate_free list) lists \Rightarrow duplicate_free (list_union_flatten lists)
```

The next objective was to show that the set of registers returned by get_live contains no duplicates, assuming there are no duplicates in the set of registers considered to be live at the end of the code. This was a fairly simple proof by induction, using the lemmas duplicate_free_insertion and duplicate_free_deletion and the definition of get_live:

```
\vdash duplicate_free live \Rightarrow duplicate_free (get_live code\ live)
```

Finally, the following useful property was proved:

```
\vdash duplicate_free (MAP c live) \land x \neq y \land MEM x live \land MEM y live \Rightarrow c x \neq c y
```

This states that if the result of mapping a function over a list is duplicatefree, and two elements of the original list are not equal, then the function maps them to different things. This lemma was particularly useful in proving injectivity properties of valid colourings later. The proof is by induction on the list live, where in the inductive case we expand the definitions and case split on whether x or y is equal to the current head of the list. In either case, the other must be behind in the list and inequality of cx and cy follows by the definition of duplicate-freeness.

Basic definition of colouring correctness

As discussed earlier, a colouring is deemed 'correct' if for any instruction's set of live variables, the result of mapping the colouring function over it is duplicate-free. This is relatively easy to define:

```
colouring_ok c [] live \iff duplicate_free (MAP c live) colouring_ok c (Inst w r_1 r_2::code) live \iff duplicate_free (MAP c (get_live (Inst w r_1 r_2::code) live)) \land colouring_ok c code live
```

An important property of colouring correctness is that it is also correct for a subset of the code block, and this statement is given below. The proof of this is a trivial expansion of the definition of colouring_ok.

```
\vdash colouring_ok c (Inst n n_0 n_1::code) live \Rightarrow colouring_ok c code live
```

This definition works nicely for the proofs involving working directly with three-address code, and was used for most of the later proofs regarding code evaluation behaviour. However, it is very strongly tied to the code definitions and doesn't clearly reflect the conflicts graph colouring is working with, making proofs relating graph colourings to valid register allocations particularly difficult.

For this reason, an alternative definition of colouring_ok was created and proved to be equivalent to the original definition. This alternative definition was much easier to work with when reasoning about clash graphs, as demonstrated later in Section (TODO bringing together - satisfactory implies ok).

Alternative colouring_ok definition

The alternative colouring_ok definition was designed to be slightly more abstract than the original one: rather than directly working with get_live, it uses a function colouring_respects_conflicting_sets to determine whether a colouring respects an arbitrary list of conflicting sets. Here we say a colouring respects a conflicting set if mapping it over the elements of the set produces a duplicate-free result. The definition of this function is given below:

```
colouring_respects_conflicting_sets c [] \iff T colouring_respects_conflicting_sets c (s::ss) \iff duplicate_free (MAP c s) \land colouring_respects_conflicting_sets c ss
```

This can also be conveniently expressed using HOLs EVERY function, as shown in the following theorem:

```
\vdash colouring_respects_conflicting_sets c sets \iff EVERY (\lambda list. duplicate_free (MAP c list)) sets
```

The proof is a trivial induction on the number of conflicting sets where each case is solved by expanding definitions and using METIS_TAC.

Clearly the conflicting sets to use in this case are just the sets of live variables at each instruction. To keep things abstract, this was pulled into a separate function, defined as shown below:

```
conflicting_sets [] live = [live]
conflicting_sets (Inst w r_1 r_2::code) live =
get_live (Inst w r_1 r_2::code) live::conflicting_sets code live
```

With this in hand, colouring_ok_alt can be defined by passing the results of this function into colouring_respects_conflicting_sets:

```
colouring_ok_alt c code live \iff colouring_respects_conflicting_sets c (conflicting_sets \ code \ live)
```

The advantage of abstracting details in this way is that we can prove properties of conflicting_sets and colouring_respects_conflicting_sets which allow us to avoid working directly with instructions altogether. This makes it easier to make changes to the way code is represented, as is done for some of the extensions in Chapter (TODO extensions).

For these two definitions to be used interchangeably in proofs, it was necessary to prove that they were equivalent:

```
\vdash colouring_ok_alt c code live \iff colouring_ok c code live
```

The proof is a trivial induction where the inductive case is shown by simplification.

4.2.4 Clash graph generation

With the verified live variable analysis complete, the next step was to use this to generate clash graphs which could be fed to the graph colouring algorithms, and to verify that these graphs accurately reflected the register conflicts present in the code.

Initial work here focussed on finding the graph representation which would make the definitions and proofs easiest to work with. A number of alternatives were considered, but it was ultimately decided that the best option would be a set of (v, es) pairs where v is a vertex and es is the set of vertices with which v shares an edge. This works best because it allows vertices to be considered in any order and lets the code quickly look up which vertices it conflicts with without having to traverse the graph. Representing conflicts between vertices using a HOL relation (that is, a function of type $num \times num \rightarrow bool$) was considered, but this made it difficult to iterate over conflicting registers and was more awkward to construct given the results of live variable analysis.

Computing conflicts for a register

The first step in generating such a graph was to generate a list set of all the conflicts for a particular register. This used the following function:

```
conflicts_for_register r code live = delete r (list_union_flatten (FILTER (\lambda set. MEM r set) (conflicting_sets code live)))
```

The definition is slightly complex. The function first finds the list of conflicting sets for the code using the conflicting_sets function defined in the previous subsection. It then filters these down to only those sets which the current register is a member of, and applies list_union_flatten to combine these into a single set of all registers belonging to a conflicting set which the current register also belongs to. Finally, it removes the current register, as a register should not appear in its own list of conflicts, and returns the result.

The result is a duplicate-free set list containing all the registers a given register conflicts with. Its duplicate-freeness is verified below, and was essential in later proofs:

```
\vdash duplicate_free live \Rightarrow duplicate_free (conflicts_for_register r code live)
```

To prove this we need the following property of conflicting sets, which is a simple induction using the fact that get_live is duplicate-free:

```
\vdash duplicate_free live \Rightarrow EVERY (\lambda \, list. duplicate_free list) (conflicting_sets code \, live)
```

We can then show that filtering this set yields a duplicate-free set using the following property of EVERY, verified by trivial induction:

```
\vdash EVERY P list \Rightarrow EVERY P (FILTER Q list)
```

The goal then follows as the flattening union function and deletion both preserve duplicate-freeness.

Constructing the graph

Once the function to determine a registers conflicts had been defined, the function to construct the whole graph was fairly simple to construct:

```
get_conflicts code live =
MAP (λ reg. (reg,conflicts_for_register reg code live))
  (get_registers code live)
```

This just maps the conflicts_for_register function over all registers used in the program, putting the results into a tuple with the number of the register. The result is a graph of the following form:

```
[(r_1, [c_1, \ldots, c_n]), \ldots, (r_n, [c_1, \ldots, c_n])]
```

Here r_n is the n^{th} register and c_n is the n^{th} conflicting register. The definition depends on a supporting function which finds the set of all registers used by a block of code:

```
get_registers [] live = live
get_registers (Inst r_0 r_1 r_2::code) live =
insert r_0 (insert r_1 (insert r_2 (get_registers code live)))
```

Note that this is trivially duplicate-free where *live* is duplicate-free, because it only uses set insertions and these have been proven to preserve duplicate-freeness:

```
\vdash duplicate_free live \Rightarrow duplicate_free (get_registers code\ live)
```

Proof of correctness

This section contains the necessary proofs demonstrating that the clash graph generator works as it should. Three properties were shown: registers not included in the results of get_registers do not feature in any program instruction, in get_live or in any conflicting set (and so no vertices are missing from the graph), registers do not conflict with themselves, and any

pair of registers in the same conflicting set will appear in each others list of conflicts. These theorems are revisited later in Section (TODO bringing it all together), where they are used to help connect the graph colouring proofs to the proofs about code and prove the overall goal of the project.

The first thing to prove was that registers not included in **get_registers** are never used in any program instruction:

```
\vdash r \notin \text{set (get\_registers } code \ live) \land
\text{MEM (Inst } w \ r_1 \ r_2) \ code \Rightarrow
r \neq w \land r \neq r_1 \land r \neq r_2
```

The proof of this statement is by induction and expanding definitions.

It follows that an unused register will never feature in the results of get_-live, as get_live only inserts registers which are used in instructions:

```
\vdash r \notin \text{set (get\_registers } code \ live) \Rightarrow r \notin \text{set (get\_live } code \ live)
```

Using the above two theorems, it was possible to prove that an unused register does not feature in any conflicting set by induction on the code:

```
\vdash r \notin \text{set (get\_registers } code \ live) \land \\ \text{MEM } set \text{ (conflicting\_sets } code \ live) \Rightarrow \\ r \notin \text{set } set
```

A consequence of the last theorem is that evaluating get_conflicts on an unused register will yield the empty list, a property which allows us to specify definitions over all registers without caring about those which don't get used in the code. This useful property is given below:

```
\vdash r \notin \text{set (get\_registers } code \ live) \Rightarrow (conflicts_for_register r \ code \ live = [])
```

Having effectively shown that get_registers covers all the registers that need to be handled, the next stage in verifying the clash graph generator was to show that a register never appears in its own list of conflicts. This proof follows easily from the definition of conflicts_for_register as the

function removes the register at the end:

```
\vdash r \notin \text{set (conflicts\_for\_register } r \ code \ live)
```

The proof uses the following simple lemma, proved by induction on the list:

```
\vdash x \notin \text{set (FILTER } (\lambda y. x \neq y) \text{ list)}
```

To complete the correctness proof, we now verify that generated clash graphs are complete in that any two registers in the same conflicting set will appear in each other's list of conflicts:

```
\vdash MEM c (conflicting_sets code\ live) \land MEM r\ c\ \land MEM s\ c\ \land r \neq s \Rightarrow MEM r (conflicts_for_register s\ code\ live)
```

The proof depends on the following lemma, which states that if a list of lists is being filtered for whether they contain x, and x is in list, list is in the result:

```
\vdash MEM list\ lists \land MEM x\ list \Rightarrow MEM list\ (FILTER\ (\lambda\ list\ . MEM x\ list)\ lists)
```

This can be shown by induction, case splitting on whether the current list head is equal to the list containing x. The goal above now follows by using this lemma to show that both registers appear in the result of filtering conflicting sets by membership, and by simplifying definitions they can be shown to appear in the overall result of conflicts_for_register.

This concludes the proof of correctness of the clash graph generator. These theorems will be used later to help prove the overall correctness of the register allocator in Section (TODO bringing it all together).

Colouring algorithms

Introduction

The core verification task of this project is, of course, to prove the correctness of the algorithms that perform the register allocation. In this chapter the focus is on the algorithms and heuristics used to colour clash graphs, how correctness was modelled and how it was verified for the algorithms used. In the interests of having a minimal algorithm verified early on, a simple colouring algorithm which simply assigned each vertex its own colour was verified first. The next objective was to verify an algorithm which re-uses old colours wherever possible by assigning to each vertex the lowest register which doesn't conflict with its neighbours. From there, the work focussed on extra heuristics which could improve the performance of the lowest-first greedy algorithm by considering vertices in a different order.

5.1 Modelling colouring correctness

5.1.1 Defining correctness

Much as correctness of colouring was defined in terms of code with colouring_ok and colouring_ok_alt, correctness with respect to a clash graph was defined through the function colouring_satisfactory¹:

```
colouring_satisfactory col [] \iff T colouring_satisfactory col ((r,rs)::cs) \iff col r \notin set (MAP col rs) \land colouring_satisfactory col cs
```

This simply states that colouring a vertex and all its neighbours will not lead to it having the same colour as any of its neighbours, as required for a correct colouring. It thus breaks the proof that a given colouring is correct into two steps: it needs to respect the set of conflicts for the current vertex, and it needs to work for the rest of the vertices of the graph. As the colouring algorithms colour one vertex at a time, the second part of the proof should intuitively be correct as the current set of conflicts represent all the constraints on the current vertex. However, it was fairly difficult to verify in practice, as discussed in some of the later sections in this chapter.

5.1.2 Requirements on clash graphs

For colouring algorithms to work properly, the clash graphs need to be *well-formed* in that every edge list is well-formed according to the following definition:

```
edge_list_well_formed (v, edges) \iff v \notin \text{set } edges \land \text{duplicate\_free } edges
```

This specifies that a vertex cannot be linked to itself, and the set of vertices it is adjacent to cannot have any duplicates. Overall well-formedness is then given by the following definition:

¹The proof that this is equivalent follows in Section (TODO bringing it all together)

```
graph_edge_lists_well_formed es \iff EVERY (\lambda x. edge_list_well_formed x) es
```

In Section (TODO bringing it all together - generated graphs have required properties), the proof that graphs generated by get_conflicts have these required properties is described, but for now it is assumed that they will hold of any graph passed in to the colouring algorithms.

5.2 Naive graph colouring

A very naive graph colouring algorithm was verified first to obtain a complete proof as early into the project as possible which could be built upon later. This section describes the definition and verification of this simple colouring approach.

5.2.1 The algorithm

The naive algorithm simply allocates a colour for every register and assigns them in ascending order. This uses an auxiliary function, naive_-colouring_aux:

```
naive_colouring_aux [] n = (\lambda x. n)
naive_colouring_aux ((r,rs)::cs) n = (r =+ n) (naive_colouring_aux cs (n + 1))
```

This algorithm assigns registers from n upwards. The main naive colouring function simply calls this starting from zero:

```
naive_colouring constraints = naive_colouring_aux constraints 0
```

The result is a very simple colouring method which is intuitively correct. However, verifying its correctness was slightly harder than expected, relying on several lemmas about naive_colouring_aux.

5.2.2 Correctness proof

Correctness of the algorithm was proved through correctness of naive_colouring_aux. The two statements of correctness follow:

```
\vdash graph_edge_lists_well_formed cs \Rightarrow \forall n. colouring_satisfactory (naive_colouring_aux cs n) cs \vdash graph_edge_lists_well_formed cs \Rightarrow colouring_satisfactory (naive_colouring cs) cs
```

The second clearly follows from the first by expanding definitions and instantiating variables:

```
\vdash (\forall n. colouring_satisfactory (naive_colouring_aux cs n) cs) \Rightarrow colouring_satisfactory (naive_colouring cs) cs
```

Thus we need only prove correctness of naive_colouring_aux. This required several lemmas describing the behaviour of the function and related definitions.

The first main goal was to show that each colour assigned by the algorithm has not been used before:

```
\vdash naive_colouring_aux cs (n + 1) x \neq n
```

To prove this, consider first the following lemma equating two evaluations of naive_colouring_aux starting from separate values:

```
\vdash \text{ (naive\_colouring\_aux } cs \text{ (} n \text{ + 1) } x \text{ = }
\text{naive\_colouring\_aux } cs \text{ (} n \text{ + 1) } x \text{ = }
\text{(naive\_colouring\_aux } cs \text{ (} n \text{ + 1) } x \text{ = }
\text{naive\_colouring\_aux } cs \text{ n } x \text{ + 1)}
```

This is a clear consequence of the definition: assigned colours starting from n+1 are either equal to or one greater than those found by starting from n. They are equal in the case where the register is unused (and so is simply mapped to itself by the base case of the definition), and one greater in all other cases. This was shown by induction on the graph. From this we can prove that all assigned colours are greater than the starting value by

induction, using the last lemma to link the result of the inductive hypothesis to the goal:

```
\vdash naive_colouring_aux cs (n + 1) x > n
```

The original lemma is a simple consequence of this:

```
\vdash naive_colouring_aux cs (n + 1) x \neq n
```

The second main lemma specifies that updating the mapped value of a function f for a value not featured in list means mapping the updated f over list is the same as mapping f over list:

```
\vdash x \notin \text{set } list \Rightarrow (MAP ((x =+ n) f) list = MAP f list)
```

This was proved by inducting on the list and showing that the function's update couldnt affect any element. From this a useful lemma for updating naive_colouring_aux was deduced, stating that colouring an unused vertex will not affect the result of applying the colouring:

```
\vdash q \notin \text{set } r \Rightarrow
(\text{MAP } ((q =+ n) \text{ (naive\_colouring\_aux } cs \text{ } (n + 1))) \text{ } r =
\text{MAP } (\text{naive\_colouring\_aux } cs \text{ } (n + 1)) \text{ } r)
```

The third lemma to be proved is as follows:

```
\vdash (\forall x. f x \neq n) \Rightarrow n \notin set (MAP f list)
```

This just states that if a function is never equal to n, n will not feature in the result of mapping f over a list. The proof is a simple induction using the definitions of MEM and MAP.

The final lemma claims that a satisfactory naive colouring starting from n+1 will still be satisfactory after mapping a register to n, as n will not have been used by any other register:

```
\vdash graph_edge_lists_well_formed cs \land colouring_satisfactory (naive_colouring_aux cs (n + 1)) cs \Rightarrow colouring_satisfactory ((q = + n) (naive_colouring_aux cs (n + 1))) cs
```

The proof is fairly simple: n is never used, as proved earlier, and intuitively using a colour which has never been used will not cause any clashes. Thus the update is guaranteed to be safe. However, the intuitive statement here was more difficult to prove. A full statement of it is given below:

```
\vdash graph_edge_lists_well_formed cs \land colouring_satisfactory c cs \land (\forall x. c \ x \neq n) \Rightarrow colouring_satisfactory ((q =+ n) c) cs
```

The proof depends on three lemmas:

Outputs cannot exist without being mapped to

```
\vdash f \ x \notin \text{set (MAP } f \ list) \land f \ x \neq n \Rightarrow f \ x \notin \text{set (MAP (} (q \implies n) \ f) \ list)
```

This statement is slightly complex, but essentially says that if a value is not in the result of mapping a function over a list and it is not equal to n, then it will still not be in the result if we update the function to map something to n. The proof depends on the following lemma:

$$\vdash$$
 $(q =+ n) f h \neq f h \Rightarrow (h = q)$

This can be shown by case splitting on h = q and simplifying. The proof of the original statement now follows using this lemma by induction on the list. We show show that if the head of the list, h, contradicts the goal then we must have (q = +n)fh = fx and thus not equal to n, and also $fh \neq fx$. However, this means $(q = +n)fh \neq fh$ and thus h = q by the lemma. Therefore fh = n, contradicting the above.

Map output only contains values mapped from inputs

```
\vdash x \notin \text{set } list \land (\forall y. \ y \neq x \Rightarrow f \ y \neq n) \Rightarrow n \notin \text{set (MAP } f \ list)
```

Simply put, if only one value x maps to a particular output value n, mapping the function over a list which does not contain x will give a list not containing n. The proof is by induction, and is trivial using the

induction hypothesis and expanding the definitions of MEM and MAP.

Applying an update only changes the updated value

```
\vdash (\forall x. f x \neq n) \Rightarrow \forall x. x \neq w \Rightarrow (w =+ n) f x \neq n
```

That is, if a function is never equal to n, updating it so one value is mapped to n does not affect any other inputs. The proof is trivial by case splitting on x = w in the conclusion.

These three sub-lemmas are sufficient to prove the lemma. We induct on the graph, and do a case split on whether the current vertex is equal to the one being updated. If it is, we use the fact that the new colour will not have been used before and the current vertex is not in its conflicts list to show that it is satisfactory on the current vertex, and the inductive hypothesis to prove the remainder of the goal. If it is not, we use the fact that the current vertex does not belong to its list of conflicts to show that its colour cannot conflict with anything in the set, and we again use the inductive hypothesis to prove the rest.

It is now possible to prove the original statement of naive_colouring_aux being satisfactory:

```
\vdash graph_edge_lists_well_formed cs \Rightarrow \forall n. colouring_satisfactory (naive_colouring_aux cs n) cs
```

As mentioned when defining colouring_satisfactory in Section (TODO defining colouring_satisfactory), proving a colouring satisfactory consists of two goals: showing that an update doesn't violate the constraints on its vertex, and showing that if the previous colouring was valid for the rest of the graph then the updated one will be too. This latter goal follows from the lemma proved earlier:

```
\vdash graph_edge_lists_well_formed cs \land colouring_satisfactory c cs \land (\forall x. c \ x \neq n) \Rightarrow colouring_satisfactory ((q =+ n) c) cs
```

The assumption that the original colouring is never equal to n follows from the lemma proved earlier:

```
\vdash naive_colouring_aux cs (n + 1) x \neq n
```

The first goal was then proved using the assumption that graph edge lists are well-formed and a combination of the other lemmas proved here.

Thus the verification of naive_colouring_aux is complete, and by the implication shown at the start of this section we have that the overall algorithm is correct:

```
\vdash graph_edge_lists_well_formed cs \Rightarrow colouring_satisfactory (naive_colouring cs) cs
```

5.3 Lowest-first colouring

5.3.1 The algorithm

Termination of smallest_nonmember

5.3.2 Correctness proof

5.4 Heuristics

- 5.4.1 Modelling heuristics
- 5.4.2 Simple sort-based heuristics
- 5.4.3 More complex heuristics

Bringing everything together

TODO

Extension features

TODO

Summary and conclusions

TODO