QUANTITATIVE ASPECTS OF LINEAR AND AFFINE CLOSED LAMBDA TERMS

PIERRE LESCANNE

ABSTRACT. Affine λ -terms are λ -terms in which each bound variable occurs at most once and linear λ -terms are λ -terms in which each bound variables occurs once. and only once. In this paper we count the number of closed affine λ -terms of size n, closed linear λ -terms of size n, affine β -normal forms of size n and linear β -normal forms of sizese n, for different ways of measuring the size of λ -terms. From these formulas, we show how we can derive programs for generating all the terms of size n for each class. The foundation of all of this is specific data structures, which are contexts in which one counts all the holes at each level of abstractions by λ 's.

Keywords:

1. Introduction

The λ -calculus [1] is a well known formal system designed by Alonzo Church [7] for studying the concept of function. It has three kinds of basic operations: variables, application and abstraction (with an operator λ which is a binder of variables). We assume the reader familiar with the λ -calculus and with de Bruijn indices.¹

In this paper we are interested in terms in which bound variables occur once. A closed λ -term is a λ -term in which there is no free variable. An affine λ -term is a λ -term in which bound variables occur at most once. A linear λ -term is a λ -term in which bound variables occur once and only once

In this paper we propose a method for counting and generating (including random generation) linear and affine closed λ -terms based on a data structure which we call SwissCheese because of its holes. Actually we count those λ -terms up-to α -conversion. Therefore it is adequate to use de Bruijn indices [9], because a term with de Bruijn indices represents an α -equivalence class. An interesting aspect of these terms is the fact that they are simply typed [14, 13]. For instance, generated by the program of Section 5, there are 16 linear terms of natural size 8:

written with explicit variables $\lambda x.x \; (\lambda x.x \; \lambda x.x) \; \; \lambda x.x \; \lambda y.(\lambda x.x \; y) \; \; \; \lambda x.x \; \lambda y.(y \; \lambda x.x) \; \; (\lambda x.x \; \lambda x.x) \; \; \lambda x.x$

$$\lambda y.(\lambda x.x \ y) \ \lambda x.x \quad \lambda y.(y \ \lambda x.x) \ \lambda x.x \quad \lambda y.(\lambda x.x \ (\lambda x.x \ y)) \quad \lambda y.(\lambda x.x \ (y \ \lambda x.x))$$

$$\lambda y.((\lambda x.x \ \lambda x.x) \ y) \quad \lambda y.(\lambda z.(\lambda x.x \ z) \ y) \quad \lambda y.(\lambda z.(z \ \lambda x.x) \ y) \quad \lambda y.(y \ (\lambda x.x \ \lambda x.x))$$

$$\lambda y.(y \ \lambda z.(\lambda x.x \ z)) \quad \lambda y.((\lambda x.x \ y) \ \lambda x.x) \quad \lambda y.((y \ \lambda x.x) \ \lambda x.x)$$

and there are 25 affine terms of natural size 7:

The Haskell programs of this development are on GitHub: https://github.com/PierreLescanne/CountingGeneratingAfffineLinearClosedLambdaterms.

Date: February 23, 2017.

¹If the reader is not familiar with the λ -calculus, we advise him to read the introduction of [12].

Figure 1. Building a SwissCheese by application

Notations. In this paper we use specific notations.

Given a predicate p, the Iverson notation written [p(x)] is the function taking natural values which is 1 if p(x) is true and which is 0 if p(x) is false.

Let $\mathbf{m} \in \mathbb{N}^p$ be the *p*-tuple $(m_0, ..., m_{p-1})$. In Section 5, we consider infinite tuples. Thus $\mathbf{m} \in \mathbb{N}^{\omega}$ is the sequence $(m_0, m_1, ...)$.

- p is the *length* of \mathbf{m} , which we write also length \mathbf{m}
- The p-tuple (0,...,0) is written 0^p . 0^ω is the infinite sequence made of 0's.
- The increment of a p-tuple at i is:

$$\mathbf{m}^{\uparrow i} = \mathbf{n} \in \mathbb{N}^p$$
 where $n_j = m_j$ if $j \neq i$ and $n_i = m_i + 1$

 \bullet Putting an element x as head of a tuple is written

$$x: \mathbf{m} = x: (m_0, ...) = (x, m_0, ...)$$

tail removes the head of an tuple:

$$tail(x : \mathbf{m}) = \mathbf{m}.$$

 \bullet \oplus is the componentwise addition on tuples.

2. SwissCheese

The basic concept is this of **m-SwissCheese** or **SwissCheese** if there is no ambiguity on **m**. That is a λ -term with holes of p levels, which are all counted, using **m**. The p levels of holes are $\square_0, \ldots \square_{p-1}$. A hole \square_i is meant to be a location for a variable at level i, that is under i λ 's. According to the way bound variables are inserted when creating abstractions (see below), we consider linear or affine SwissCheeses. The holes have size 0. An **m**-SwissCheese has m_0 holes at level 0, m_1 holes at level 1, ... m_{p-1} holes at level p. Let $l_{n,\mathbf{m}}$ (resp. $a_{n,\mathbf{m}}$) count the linear (resp. the affine) **m**-SwissCheese of size p. p in p is finite, length p in p in p is finite, length p in p in

2.1. **Growing a SwissCheese.** Given two SwissCheeses, we can build a SwissCheese by application like in Fig 1. In Fig. 1, c_1 is a (0, 1, 0, 0, 0)-SwissCheese, c_2 is a (1, 1, 0, 0, 0)-SwissCheese and $c_1@c_2$ is a (1, 2, 0, 0, 0)-SwissCheese.

Given a SwissCheese, there are two ways to grow a SwissCheese to make another SwissCheese by abstraction.

- (1) We put a λ on the top of a **m**-SwissCheese c. This increases the levels of the holes: a hole \Box_i becomes a hole \Box_{i+1} . λc is a $(0:\mathbf{m})$ -SwissCheese. See Fig 2 on the left. This way, no index is bound by the top λ , therefore this does not preserve linearity (it preserves affinity however). Therefore this construction is only for building affine SwissCheeses, not for building linear SwissCheeses. In Figure 2 (left), we colour the added λ in blue and we call it abstraction with \underline{no} binding.
- (2) In the second method for growing a SwissCheese by abstraction, we select first a hole \square_i , we top the SwissCheese by a λ , we increment the levels of the other holes and we replace the chosen box by S^i0 . In Figure 2 (right), we colour the added λ in green and we call it abstraction <u>with</u> binding.

FIGURE 2. Abstracting SwissCheeses without and with binding

- 2.2. **Measuring SwissCheese.** We considers several ways of measuring the size of a SwissCheese derived from what is done on λ -terms. In all these sizes, applications @ and abstractions λ have size 1 and holes have size 0. The differences are in the way variables are measured.
 - Variables have size 0, we call this **variable size** 0.
 - Variables have size 1, we call this variable size 1.
 - Variables (or de Bruijn indices) S^{i0} have size i+1, we call this **natural size**.

3. Counting linear closed terms

We start with counting linear terms since they are slightly simpler. We will give recursive formulas first for the numbers $l_{n,\mathbf{m}}^{\nu}$ of linear SwissCheeses of natural size n with holes set by \mathbf{m} , then for the numbers $l_{n,\mathbf{m}}^0$ of linear SwissCheeses of size n, for variable size 0, with holes set by \mathbf{m} , eventually for the numbers $l_{n,\mathbf{m}}^1$ of linear SwissCheeses of size n, for variable size 1, with holes set by \mathbf{m} . When we do not want to specify a chosen size, we write only $l_{n,\mathbf{m}}$ without superscript.

- 3.1. Natural size. First let us count linear SwissCheeses with natural size. This is given by the coefficient l^{ν} which has two arguments: the size n of the SwissCheese and a tuple \mathbf{m} which specifies the number of holes of each level. In other words we are interested by the quantity $l_{n,\mathbf{m}}$. We assume that the length of \mathbf{m} is p, greater than n.
 - $\mathbf{n} = \mathbf{0}$: whatever size is considered, there is only one SwissCheese of size 0 namely \square_0 . This means that the number of SwissCheeses of size 0 is 1 if and only if $\mathbf{m} = (1, 0, 0, ...)$:

$$l_{0,\mathbf{m}} = [m_0 = 1 \land \bigwedge_{j=1}^{p} m_j = 0]$$

 $\mathbf{n} \neq \mathbf{0}$ and application: if a λ -term of size n has holes set by \mathbf{m} and is an application, then it is obtained from a λ term of size k with holes set by \mathbf{q} and a λ term of size n-k-1 with holes set by \mathbf{r} , with $\mathbf{m} = \mathbf{q} \oplus \mathbf{r}$:

$$\sum_{\mathbf{q}\oplus\mathbf{r}=\mathbf{m}}\sum_{k=0}^n l_{k,\mathbf{q}}\,l_{n-1-k,\mathbf{r}}$$

 $\mathbf{n} \neq \mathbf{0}$ and abstraction with binding: consider a level i, that is a level of hole \square_i . In this hole we put a term S^{i-1} 0 of size i. There are m_i ways to choose a hole \square_i . Therefore there are $m_i \, l_{n-i-1,\mathbf{m}}^{\nu}$ SwissCheeses which are abstractions with binding in which a \square_i has been replaced by the de Bruijn index S^{i-1} 0 among $l_{n,0:\mathbf{m}^{\downarrow i}}^{\nu}$ SwissCheeses, where $\mathbf{m}^{\downarrow i}$ is \mathbf{m} in which m_i is decremented. We notice that this refers only to an \mathbf{m} starting with 0. Hence by summing over i and adjusting \mathbf{m} , this part contributes as:

$$\sum_{i=0}^{p} (m_i + 1) \ l_{n-i,\mathbf{m}^{\uparrow i}}^{\nu}$$

to $l_{n+1,0:\mathbf{m}}^{\nu}$

We have the following recursive definitions of $l_{n,\mathbf{m}}^{\nu}$:

$$l_{n+1,0:\mathbf{m}}^{\nu} = \sum_{\mathbf{q}\oplus\mathbf{r}=0:\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{\nu} l_{n-k,\mathbf{r}}^{\nu} + \sum_{i=0}^{p} (m_{i}+1) l_{n-i,\mathbf{m}\uparrow i}^{\nu}$$

$$l_{n+1,(h+1):\mathbf{m}}^{\nu} = \sum_{\mathbf{q}\oplus\mathbf{r}=(h+1):\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{\nu} l_{n-k,\mathbf{r}}^{\nu}$$

3.2. Variable size 0. The only difference is that the inserted de Bruijn index has size 0. Therefore we have $m_i l_{n-1,\mathbf{m}}^0$ where we had $m_i l_{n-i-1,\mathbf{m}}^{\nu}$ for natural size. Hence the formulas:

$$l_{n+1,0:\mathbf{m}}^{0} = \sum_{\mathbf{q} \oplus \mathbf{r} = 0:\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{0} l_{n-k,\mathbf{r}}^{0} + \sum_{i=0}^{p} (m_{i} + 1) l_{n,\mathbf{m}^{\uparrow i}}^{0}$$

$$l_{n+1,(h+1):\mathbf{m}}^{0} = \sum_{\mathbf{q} \oplus \mathbf{r} = (h+1):\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{0} l_{n-k,\mathbf{r}}^{0}$$

The sequence $l_{n,0^n}^0$ of the numbers of closed linear terms is 0,1,0,5,0,60,0,1105,0,27120,0,828250, which is sequence A062980 in the On-line Encyclopedia of Integer Sequences with 0's at even indices.

3.3. Variable size 1. The inserted de Bruijn index has size 1. We have $m_i l_{n-2,\mathbf{m}}^1$ where we had $m_i l_{n-i-1,\mathbf{m}}^{\nu}$ for natural size. Moreover we have to give the value of $l_{1,\mathbf{m}}^1$ which is

$$l_{1,\mathbf{m}}^1 = [m_0 = 2 \land \bigwedge_{j=1}^p m_j = 0]$$

since there is only one SwissCheese of size 1, namely \square_0 \square_0 , which corresponds to the tuple [2,0,...].

$$l_{n+1,0:\mathbf{m}}^{1} = \sum_{\mathbf{q} \oplus \mathbf{r} = 0:\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{1} l_{n-k,\mathbf{r}}^{1} + \sum_{i=0}^{p} (m_{i} + 1) l_{n-1,\mathbf{m}^{\uparrow i}}^{1}$$

$$l_{n+1,(h+1):\mathbf{m}}^{1} = \sum_{\mathbf{q} \oplus \mathbf{r} = (h+1):\mathbf{m}} \sum_{k=0}^{n} l_{k,\mathbf{q}}^{1} l_{n-k,\mathbf{r}}^{1}$$

There are no linear closed λ -terms of size 3k and 3k+1. However for the values 3k+2 we get the sequence: 1, 5, 60, 1105, 27120, ... which is again sequence A062980 of the On-line Encyclopedia of Integer Sequences. Zeilberger [16] notices that this sequence counts the closed linear λ -terms when the size of a term is the number of applications. The resurgence of sequence A062980 can be explained as follows: closed linear λ -terms have the same number of variables (de Bruijn indices) as the number of abstractions and as the number of applications minus 1. Variable size 1 counts the number of applications + the number of abstractions + the number of variables, wherever variable size 0 counts the number of applications + the number of abstractions. Due to the above restrictions on closed linear λ -terms, there cannot exist closed linear λ -terms of odd variable size 0 and there cannot exist closed linear λ -terms of variable size 1 equal to 3k and 3k+1. And the other non 0 values are counted by sequence A062980.

4. Counting affine closed terms

We have just to add the case $n \neq 0$ and abstraction without binding. Since no index is added, the size increases by 1. The numbers are written $a_{n,\mathbf{m}}^{\nu}$, $a_{n,\mathbf{m}}^{0}$, $a_{n,\mathbf{m}}^{1}$, and $a_{n,\mathbf{m}}$ when the size does not matter. There are $(0:\mathbf{m})$ -SwissCheeses of size n that are abstraction without binding. We get the recursive formulas:

Natural size:

$$\begin{array}{lcl} a^{\nu}_{n+1,0:\mathbf{m}} & = & \displaystyle\sum_{\mathbf{q}\oplus\mathbf{r}=0:\mathbf{m}} \, \displaystyle\sum_{k=0}^{n} \, a^{\nu}_{k,\mathbf{q}} \, a^{\nu}_{n-k,\mathbf{r}} + \displaystyle\sum_{i=0}^{p} (m_{i}+1) \, \, a^{\nu}_{n-i,\mathbf{m}^{\uparrow i}} + a^{\nu}_{n,\mathbf{m}} \\ \\ a^{\nu}_{n+1,(h+1):\mathbf{m}} & = & \displaystyle\sum_{\mathbf{q}\oplus\mathbf{r}=(h+1):\mathbf{m}} \, \displaystyle\sum_{k=0}^{n} \, a^{\nu}_{k,\mathbf{q}} \, a^{\nu}_{n-k,\mathbf{r}} \end{array}$$

Variable size 0:

$$a_{n+1,0:\mathbf{m}}^{0} = \sum_{\mathbf{q}\oplus\mathbf{r}=0:\mathbf{m}} \sum_{k=0}^{n} a_{k,\mathbf{q}}^{0} a_{n-k,\mathbf{r}}^{0} + \sum_{i=0}^{p} (m_{i}+1) \ a_{n,\mathbf{m}\uparrow i}^{0} + a_{n,\mathbf{m}}^{0}$$

$$a_{n+1,(h+1):\mathbf{m}}^{0} = \sum_{\mathbf{q}\oplus\mathbf{r}=(h+1):\mathbf{m}} \sum_{k=0}^{n} a_{k,\mathbf{q}}^{0} a_{n-k,\mathbf{r}}^{0}$$

Variable size 1:

$$a_{1,\mathbf{m}}^{1} = [m_{0} = 2 \land \bigwedge_{j=1}^{p} m_{j} = 0]$$

$$a_{n+1,0:\mathbf{m}}^{1} = \sum_{\mathbf{q} \oplus \mathbf{r} = 0:\mathbf{m}} \sum_{k=0}^{n} a_{k,\mathbf{q}}^{1} a_{n-k,\mathbf{r}}^{1} + \sum_{i=0}^{p} (m_{i} + 1) \ a_{n-1,\mathbf{m}^{\uparrow i}}^{1} + a_{n,\mathbf{m}}^{1}$$

$$a_{n+1,(h+1):\mathbf{m}}^{1} = \sum_{\mathbf{q} \oplus \mathbf{r} = (h+1):\mathbf{m}} \sum_{k=0}^{n} a_{k,\mathbf{q}}^{1} a_{n-k,\mathbf{r}}^{1}$$

5. Generating functions

Consider families $F_{\mathbf{m}}(z)$ of generating functions indexed by \mathbf{m} , where \mathbf{m} is an infinite tuple of naturals. In fact, we are interested in the infinite tuples \mathbf{m} that are always 0, except a finite number of indices, in order to compute $F_{0\omega}(z)$, which corresponds to closed λ -terms. Let \mathbf{u} stands for the infinite sequences of variables (u_0, u_1, \ldots) and $\mathbf{u}^{\mathbf{m}}$ stands for $(u_0^{m_0}, u_1^{m_1}, \ldots, u_n^{m_n}, \ldots)$ and tail (\mathbf{u}) stand for (u_1, \ldots) . We consider the series of two variables z and \mathbf{u} or double series associated with $F_{\mathbf{m}}(z)$:

$$\mathcal{F}(z, \mathbf{u}) = \sum_{\mathbf{m} \in \mathbb{N}^{\omega}} F_{\mathbf{m}}(z) \, \mathbf{u}^{\mathbf{m}}.$$

Natural size. $L_{\mathbf{m}}^{\nu}(z)$ is associated with the numbers of closed linear Swiss Cheeses for natural size:

$$L_{0:\mathbf{m}}^{\nu}(z) = z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = 0:\mathbf{m}} L_{\mathbf{m}'}^{\nu}(z) L_{\mathbf{m}''}^{\nu}(z) + z \sum_{i=0}^{\infty} (m_i + 1) z^i L_{\mathbf{m}^{\uparrow i}}^{\nu}(z)$$

$$L_{(h+1):\mathbf{m}}^{\nu}(z) = [h = 0 + \bigwedge_{i=0}^{\infty} m_i = 0] + z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = (h+1):\mathbf{m}} L_{\mathbf{m}'}^{\nu}(z) L_{\mathbf{m}''}^{\nu}(z)$$

 $L_{0\mathbf{w}}^{\nu}$ is the generating function for the closed linear λ -terms. $\mathcal{L}^{\nu}(z, \mathbf{u})$ is the double series associated with $L_{\mathbf{m}}^{\nu}(z)$ and is solution of the equation:

$$\mathcal{L}^{\nu}(z, \mathbf{u}) = u_0 + z(\mathcal{L}^{\nu}(z, \mathbf{u}))^2 + z u_0 \sum_{i=1}^{\infty} z^i \frac{\partial \mathcal{L}^{\nu}(z, (\mathsf{tail}(\mathbf{u})))}{\partial u^i}$$

 $\mathcal{L}^{\nu}(z,0^{\omega})$ is the generating function of closed linear λ -terms.

For closed affine SwissCheeses we get:

$$A^{\nu}_{0:\mathbf{m}}(z) = z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = 0:\mathbf{m}} A^{\nu}_{\mathbf{m}'}(z) A^{\nu}_{\mathbf{m}''}(z) + z \sum_{i=0}^{\infty} (m_i + 1) z^i A^{\nu}_{\mathbf{m}^{\uparrow i}}(z) + z A^{\nu}_{\mathbf{m}}(z)$$

$$A^{\nu}_{(h+1):\mathbf{m}}(z) = [h = 0 + \bigwedge_{i=0}^{\infty} m_i = 0] + z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = (h+1):\mathbf{m}} A^{\nu}_{\mathbf{m}'}(z) A^{\nu}_{\mathbf{m}''}(z)$$

 $A_{0\omega}^{\nu}$ is the generating function for the affine linear λ -terms. $\mathcal{A}^{\nu}(z,\mathbf{u})$ is the double series associated with $A_{\mathbf{m}}^{\nu}(z)$ and is solution of the equation:

$$\mathcal{A}^{\nu}(z,\mathbf{u}) = u_0 + z(\mathcal{A}^{\nu}(z,\mathbf{u}))^2 + zu_0 \sum_{i=1}^{\infty} z^i \frac{\partial \mathcal{A}^{\nu}(z,\mathsf{tail}\,(\mathbf{u}))}{\partial u^i} + z\mathcal{A}^{\nu}(z,\mathsf{tail}\,(\mathbf{u}))$$

 $\mathcal{A}^{\nu}(z,0^{\omega})$ is the generating function of closed linear λ -terms.

Variable size 0. $L_{\mathbf{m}}^{0}$ is associated with the numbers of closed linear Swiss Cheeses for variable size 0:

$$L_{0:\mathbf{m}}^{0}(z) = z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = \mathbf{m}} L_{\mathbf{m}'}^{0}(z) L_{\mathbf{m}''}^{0}(z) + z \sum_{i=0}^{\infty} (m_i + 1) L_{\mathbf{m}^{\uparrow i}}^{0}(z)$$

$$L^0_{(h+1):\mathbf{m}}(z) = [h = 0 + \bigwedge_{i=0}^{\infty} m_i = 0] + \sum_{\mathbf{m}' \oplus \mathbf{m}'' = \mathbf{m}} z L^0_{\mathbf{m}'}(z) L^0_{\mathbf{m}''}(z)$$

 $L_{0\omega}^0$ is the generating function for the closed linear λ -terms. $\mathcal{L}^0(z, \mathbf{u})$ is the double series associated with $L_{\mathbf{m}}^0(z)$ and is solution of the equation:

$$\mathcal{L}^{0}(z, \mathbf{u}) = u_{0} + z(\mathcal{L}^{0}(z, \mathbf{u}))^{2} + z u_{0} \sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{0}(z, (\mathsf{tail}(\mathbf{u})))}{\partial u^{i}}$$

 $\mathcal{L}^0(z,0^\omega)$ is the generating function of closed linear λ -terms.

For closed affine SwissCheeses we get:

$$A_{0:\mathbf{m}}^{0}(z) = z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = 0:\mathbf{m}} A_{\mathbf{m}'}^{0}(z) A_{\mathbf{m}''}^{0}(z) + z \sum_{i=0}^{\infty} (m_{i} + 1) A_{\mathbf{m}^{\uparrow i}}^{0}(z) + z A_{\mathbf{m}}^{0}(z)$$

$$A_{(h+1):\mathbf{m}}^{0}(z) = [h = 0 + \bigwedge_{i=0}^{\infty} m_{i} = 0] + \sum_{\mathbf{m}' \oplus \mathbf{m}'' = (h+1):\mathbf{m}} z A_{\mathbf{m}'}^{0}(z) A_{\mathbf{m}''}^{0}(z)$$

 $A_{0\omega}^0$ is the generating function for the affine linear λ -terms. $\mathcal{A}^0(z,\mathbf{u})$ is the double series associated with $A_{\mathbf{m}}^0(z)$ and is solution of the equation:

$$\mathcal{A}^{0}(z, \mathbf{u}) = u_{0} + z(\mathcal{A}^{0}(z, \mathbf{u}))^{2} + z u_{0} \sum_{i=1}^{\infty} \frac{\partial \mathcal{A}^{0}(z, \mathsf{tail}(\mathbf{u}))}{\partial u^{i}} + z \mathcal{A}^{0}(z, \mathsf{tail}(\mathbf{u}))$$

 $\mathcal{A}^0(z,0^\omega)$ is the generating function of closed linear λ -terms. We do not present variable size 1, since it goes exactly the same way.

Variable size 1. The generating functions for $l_{n,\mathbf{m}}^1$ are:

$$\begin{split} L^1_{0:\mathbf{m}}(z) &= z \sum_{\mathbf{m}' \oplus \mathbf{m}'' = \mathbf{m}} L^1_{\mathbf{m}'}(z) L^1_{\mathbf{m}''}(z) + z^2 \sum_{i=0}^{\infty} (m_i + 1) L^1_{\mathbf{m}^{\uparrow i}}(z) \\ L^1_{(h+1):\mathbf{m}}(z) &= [h = 0 + \bigwedge_{i=0}^{\infty} m_i = 0] + z [h = 1 + \bigwedge_{i=0}^{\infty} m_i = 0] + \sum_{\mathbf{m}' \oplus \mathbf{m}'' = \mathbf{m}} z L^1_{\mathbf{m}'}(z) L^1_{\mathbf{m}''}(z) \end{split}$$

Then we get as associated double series:

$$\mathcal{L}^{1}(z, \mathbf{u}) = u_0 + zu_0^2 + z(\mathcal{L}^{1}(z, \mathbf{u}))^2 + z^2 u_0 \sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{1}(z, (\mathsf{tail}(\mathbf{u})))}{\partial u^i}$$

6. Effective computations

The definition of the coefficients $a_{\mathbf{m}}^{\nu}$ and others is highly recursive and requires a mechanism of memoization. In Haskell, this can be done by using the call by need which is at the core of this language. Assume we want to compute the values of $a_{\mathbf{m}}^{\nu}$ until a value bound for n. We use a recursive data structure:

```
data Mem = Mem [Mem] | Load [Integer]
```

in which we store the computed values of a function

```
am :: Int -> [Int] -> Integer
```

In our implementation the depth of the recursion of Mem is limited by bound, which is also the longest tuple m for which we will compute $a_{\mathbf{m}}^{\nu}$. Associated with Mem there is a function

```
access :: Mem -> Int -> [Int] -> Integer access (Load 1) n [] = 1 !! n
access (Mem listM) n (k:m) = access (listM !! k) n m
```

The leaves of the tree memory, corresponding to Load, contains the values of the function:

```
memory :: Int -> [Int] -> Mem
memory 0 m = Load [am n (reverse m) | n<-[0..]]
memory k m = Mem [memory (k-1) (j:m) | j<-[0..]]</pre>
```

```
The memory relative to the problem we are interested in is
theMemory = memory (bound) []
and the access to the Memory is given by a specific function:
acc :: Int -> [Int] -> Integer acc n m = access theMemory n m
Notice that am and acc have the same signature. This is not a coincidence, since acc accesses values of
am already computed. Now we are ready to express am:
am 0 m = iv (head m == 1 && all ((==) 0) (tail m))
am n m = amAPP n m + amABSwB n m + amABSnB n m
amAPP counts affine terms that are applications:
amAPP n m = sum (map (\((q,r),(k,nk))->(acc k q)*(acc nk r))
                        (allCombinations m (n-1))
where all combinations returns a list of all the pairs of pairs (\mathbf{m}', \mathbf{m}'') such \mathbf{m} = \mathbf{m}' \oplus \mathbf{m}'' and of pairs
(k, nk) such that k + nk = n. amABSwB counts affine terms that are abstractions with binding.
amABSwB n m
   | head m == 0 = sum [amABSAtD n m i |i \leftarrow [1..(n-1)]]
    otherwise = 0
amabsatd counts affine terms that are abstractions with binding at level i:
amABSAtD n m i = (fromIntegral (1 + m!!i))*(acc (n-i-1) (tail (inc i m) ++ [0]))
amABSnB counts affine terms that are abstractions with no binding:
amABSnB n m
     \mid head m == 0 = (acc (n-1) (tail m ++ [0]))
      otherwise = 0
```

Anyway the efficiency of this program is limited by the size of the memory, since for computing $a_{n,0}^{\nu}$, for instance, we need to compute $a_{\mathbf{r}}^{\nu}$ for about n! values.

7. Generating affine and linear terms

By relatively small changes it is possible to build programs which generate linear and affine terms. For instance for generating affine terms we get.

```
amg :: Int -> [Int] -> [SwissCheese]
amg 0 m = if (head m == 1 && all ((==) 0) (tail m)) then [Box 0] else []
amg n m = allAPP n m ++ allABSwB n m ++ allABSnB n m
allAPP :: Int -> [Int] -> [SwissCheese]
allAPP n m = foldr (++) [] (map (\((q,r),(k,nk))-> appSC (cartesian (accAG k q))
                                                                      (accAG nk r))
                             (allCombinations m (n-1))
allABSAtD :: Int -> [Int] -> Int -> [SwissCheese]
allABSAtD n m i = foldr (++) [] (map (abstract (i-1)) (accAG (n - i - 1)
                                                       (tail (inc i m) ++ [0])))
allABSwB :: Int -> [Int] -> [SwissCheese]
allABSwB n m
  | head m == 0 = foldr (++) [] [allABSAtD n m i |i \leftarrow [1..(n-1)]]
  otherwise = []
allABSnB :: Int -> [Int] -> [SwissCheese]
allABSnB n m
  | head m == 0 = map (AbsSC . raise) (accAG (n-1) (tail <math>m ++ [0]))
  otherwise = []
memoryAG :: Int -> [Int] -> MemSC
memoryAG 0 m = LoadSC [amg n (reverse m) \mid n<-[0..]]
memoryAG k m = MemSC [memoryAG (k-1) (j:m) | j < -[0..]]
```

theMemoryAG = memoryAG (upBound) []

```
accAG :: Int -> [Int] -> [SwissCheese]
accAG n m = accessSC theMemoryAG n m
```

There is similar programs for generating all the terms of size n for variable size 0 and variable size 1. From this, we get programs for generating random affine terms or random linear terms.

8. Normal forms

From the method used for counting affine and linear closed terms, it is easy to deduce method for counting affine and linear closed normal forms. Like before, we use SwissCheeses. In this section we consider only natural size.

8.1. Natural size.

Affine closed normal forms. Let us call $anf_{n,\mathbf{m}}^{\nu}$ the numbers of affine SwissCheeses with no β -redex and $ane_{n,\mathbf{m}}^{\nu}$ the numbers of neutral affine SwissCheeses, i.e., affine SwissCheeses with no β -redexes that are sequences of applications starting with a de Bruijn index. In addition we count:

- $anf^{\nu}\lambda w_{n,m}$ the number of affine SwissCheeses with no β -redex which are abstraction with a binding of a de Bruijn index,
- $anf^{\nu}\lambda n_{n,m}$ the number of affine SwissCheeses with no β -redex which are abstraction with no binding.

$$anf_{0,\mathbf{m}}^{\nu} = ane_{0,\mathbf{m}}^{\nu}$$

$$anf_{n+1,\mathbf{m}}^{\nu} = ane_{n+1,\mathbf{m}}^{\nu} + anf^{\nu}\lambda w_{n+1,m} + anf^{\nu}\lambda n_{n+1,m}$$

where

$$ane_{0,\mathbf{m}}^{\nu} = m_0 = 1 \wedge \bigwedge_{j=1}^{p} m_j = 0$$

$$ane_{n+1,\mathbf{m}}^{\nu} = \sum_{\mathbf{q} \in \mathbf{r} = 0 : \mathbf{m}} \sum_{k=0}^{n} ane_{k,\mathbf{q}}^{\nu} anf_{n-k,\mathbf{r}}^{\nu}$$

and

$$anf^{\nu}\lambda w_{n,m} = \sum_{i=0}^{p} (m_i + 1) \ anf^{\nu}_{n-i,\mathbf{m}^{\uparrow i}}$$

and

$$anf^{\nu}\lambda n_{n+1,m} = anf^{\nu}_{n,m}$$

There are two generating functions, \mathcal{A}^{nf} and \mathcal{A}^{ne} , which are associated to $anf_{n,\mathbf{m}}^{\nu}$ and $anf_{n,\mathbf{m}}^{\nu}$:

$$\mathcal{A}^{nf}(z, \mathbf{u}) = \mathcal{A}^{ne}(z, \mathbf{u}) + z u_0 \sum_{i=1}^{\infty} z^i \frac{\partial \mathcal{A}^{nf}(z, (\mathsf{tail}\,(\mathbf{u}))}{\partial u^i} + z \mathcal{A}^{nf}(z, (\mathsf{tail}\,(\mathbf{u})))$$

$$\mathcal{A}^{ne}(z, \mathbf{u}) = u_0 + z \mathcal{A}^{ne}(z, \mathbf{u}) \mathcal{A}^{nf}(z, \mathbf{u})$$

Linear closed normal forms. Let us call $lnf_{n,\mathbf{m}}^{\nu}$ the numbers of linear SwissCheeses with no β -redex and $lne_{n,\mathbf{m}}^{\nu}$ the numbers of neutral linear SwissCheeses, linear SwissCheeses with no β -redexes that are sequences of applications starting with a de Bruijn index. In addition we count $lnf^{\nu}\lambda w_{n,m}$ the number of linear SwissCheeses with no β -redex which are abstraction with a binding of a de Bruijn index.

$$\begin{array}{ccc} lnf^{\nu}_{0,\mathbf{m}} & = & lne^{\nu}_{0,\mathbf{m}} \\ lnf^{\nu}_{n+1,\mathbf{m}} & = & lne^{\nu}_{n+1,\mathbf{m}} + lnf^{\nu}\lambda w_{n+1,m} \\ & & & \end{array}$$

where

$$lne_{0,\mathbf{m}}^{\nu} = m_0 = 1 \wedge \bigwedge_{j=1}^{p} m_j = 0$$

$$lne_{n+1,\mathbf{m}}^{\nu} = \sum_{\mathbf{q} \oplus \mathbf{r} = 0 : \mathbf{m}} \sum_{k=0}^{n} lne_{k,\mathbf{q}}^{\nu} lnf_{n-k,\mathbf{r}}^{\nu}$$

and

$$lnf^{\nu}\lambda w_{n,m} = \sum_{i=0}^{p} (m_i + 1) \ lnf^{\nu}_{n-i,\mathbf{m}^{\uparrow i}}$$

with the two generating functions:

$$\mathcal{L}^{nf,\nu}(z,\mathbf{u}) = \mathcal{L}^{ne,\nu}(z,\mathbf{u}) + z u_0 \sum_{i=1}^{\infty} z^i \frac{\partial \mathcal{L}^{nf,\nu}(z,(\mathsf{tail}\,(\mathbf{u}))}{\partial u^i}$$

$$\mathcal{L}^{ne,\nu}(z,\mathbf{u}) = u_0 + z \mathcal{L}^{ne,\nu}(z,\mathbf{u}) \mathcal{L}^{nf,\nu}(z,\mathbf{u})$$

We also deduce programs for generating all the closed affine or linear normal forms of a given size from which we deduce programs for generating random closed affine or linear normal forms of a given size. For instance, here are three randoms linear closed normal forms (using de Bruijn indices) of natural size 28:

$$\lambda\lambda\lambda\lambda(2\ \lambda((1\ 2)\ \lambda(0\ (5\ 1))))\quad \lambda(0\ \lambda\lambda(1\ \lambda\lambda((0\ (2\ \lambda\lambda((1\ \lambda0)\ 0)))\ 1)))\quad \lambda((0\ \lambda0)\ \lambda\lambda((0((1\ \lambda0)\lambda\lambda(1\ (0\ \lambda0))))\lambda0)))$$

8.2. Variable size 0.

Linear closed normal forms. A little like previously, let us call $lnf_{n,\mathbf{m}}^0$ the numbers of linear SwissCheeses with no β -redex and $lne_{n,\mathbf{m}}^0$ the numbers of neutral linear SwissCheeses, linear SwissCheeses with no β -redexes that are sequences of applications starting with a de Bruijn index. In addition we count $lnf^0\lambda w_{n,m}$ the number of linear SwissCheeses with no β -redex which are abstraction with a binding of a de Bruijn index. We assume that the reader knows now how to proceed.

$$\begin{array}{ccc} lnf^0_{0,\mathbf{m}} & = & lne^0_{0,\mathbf{m}} \\ lnf^0_{n+1,\mathbf{m}} & = & lne^0_{n+1,\mathbf{m}} + lnf^0 \lambda w_{n+1,m} \end{array}$$

where

$$lne_{0,\mathbf{m}}^{0} = m_{0} = 1 \wedge \bigwedge_{j=1}^{p} m_{j} = 0$$

$$lne_{n+1,\mathbf{m}}^{0} = \sum_{\mathbf{q} \oplus \mathbf{r} = 0 : \mathbf{m}} \sum_{k=0}^{n} lne_{k,\mathbf{q}}^{0} lnf_{n-k,\mathbf{r}}^{0}$$

$$lnf^{0}\lambda w_{n,m} = \sum_{i=0}^{p} (m_{i}+1) lnf_{n,\mathbf{m}^{\uparrow i}}^{0}$$

and the two generating functions:

$$\mathcal{L}^{nf,0}(z, \mathbf{u}) = \mathcal{L}^{ne,0}(z, \mathbf{u}) + z \, u_0 \sum_{i=1}^{\infty} \frac{\partial \mathcal{L}^{nf,0}(z, (\mathsf{tail}\,(\mathbf{u}))}{\partial u^i}$$

$$\mathcal{L}^{ne,0}(z, \mathbf{u}) = u_0 + z \mathcal{L}^{ne,0}(z, \mathbf{u}) \mathcal{L}^{nf,0}(z, \mathbf{u})$$

With no surprise we get for $lnf_{n,0}^0$ the sequence:

$$0, 1, 0, 3, 0, 26, 0, 367, 0, 7142, 0, 176766, 0, 5304356, \dots$$

mentioned by Zeilberger in [16] which are the coefficients of the generating function $\mathcal{L}^{nf,0}(z,0^{\omega})$.

We let the reader deduce how to count closed affine normal forms for variable size 0 and closed linear and affine normal forms for variable size 1 alike. Notice that the Haskell programs are on the GitHub site.

9. Related works and Acknowledgement

There are several works on counting λ -terms, for instance on natural size [3, 2], on variable size 1 [8, 15], on variable size 0 [11], on affine terms with variable size 1 [6, 5], on linear λ -terms [18, 16, 17], also on a size based binary representation of the λ -calculus [12] (see [10] for a synthetic view of both natural size and binary size).

We would like to thank Olivier Bodini, Maciej Bendkowski, Katarzyna Grygiel and Noam Zeilberger for stimulating discussions.

10. Conclusion

This work on counting opens new perspective on the generation, for instance the random generation of closed lambda terms in the line of [12, 4].

References

- [1] Henk P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in Logic and the Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 1984. Second edition.
- [2] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Combinatorics of λ -terms: a natural approach. CoRR, abs/1609.07593, 2016.
- [3] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. A natural counting of lambda terms. In Rusins Martins Freivalds, Gregor Engels, and Barbara Catania, editors, SOFSEM 2016: Theory and Practice of Computer Science 42nd International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January 23-28, 2016, Proceedings, volume 9587 of Lecture Notes in Computer Science, pages 183-194. Springer, 2016.
- [4] Maciej Bendkowski, Katarzyna Grygiel, and Paul Tarau. Boltzmann samplers for closed simply-typed lambda terms. In Yuliya Lierler and Walid Taha, editors, Practical Aspects of Declarative Languages - 19th International Symposium, PADL 2017, Paris, France, January 16-17, 2017, Proceedings, volume 10137 of Lecture Notes in Computer Science, pages 120-135. Springer, 2017.
- [5] Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, and Alice Jacquot. Enumeration of generalized BCI lambdaterms. *Electr. J. Comb.*, 20(4):P30, 2013.
- [6] Olivier Bodini, Danièle Gardy, and Alice Jacquot. Asymptotics and random sampling for BCI and BCK lambda terms. Theor. Comput. Sci., 502:227–238, 2013.
- [7] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
- [8] René David, Christophe Raffalli, Guillaume Theyssier, Katarzyna Grygiel, Jakub Kozik, and Marek Zaionc. Some properties of random lambda terms. Logical Methods in Computer Science, 9(1), 2009.
- [9] Nicolaas G. de Bruijn. Lambda calculus with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. *Proc. Koninkl. Nederl. Akademie van Wetenschappen*, 75(5):381-392, 1972
- [10] Bernhard Gittenberger and Zbigniew Golebiewski. On the number of lambda terms with prescribed size of their de Bruijn representation. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 40:1-40:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
- [11] Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms. J. Funct. Program., 23(5):594-628, 2013.
- [12] Katarzyna Grygiel and Pierre Lescanne. Counting and generating terms in the binary lambda calculus. J. Funct. Program., 25, 2015.
- [13] J. Roger Hindley. BCK-combinators and linear lambda-terms have types. Theor. Comput. Sci., 64(1):97-105, 1989.
- [14] J. Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1997.
- [15] Pierre Lescanne. On counting untyped lambda terms. Theor. Comput. Sci., 474:80-97, 2013.
- [16] Noam Zeilberger. Counting isomorphism classes of β -normal linear lambda terms. CoRR, abs/1509.07596, 2015.
- [17] Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. J. Funct. Program., 26:e21, 2016.
- [18] Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and normal planar lambda terms. Logical Methods in Computer Science, 11(3), 2015.

DATA

In the appendix, we give the first values of $l_{n,0^n}^{\nu}$, $a_{n,0^n}^{\nu}$, and $anf_{n,0^n}^{\nu}$.

University of Lyon, École normale supérieure de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), 46 allée d'Italie, 69364 Lyon, France

 $E\text{-}mail\ address: \texttt{pierre.lescanne@ens-lyon.fr}$

0	0	51	51496022711337536
1	0	52	124591137939086496
2	1	53	299402908258405410
3	0	54	721839933329222924
4	0	55	1747307145272084192
5	3	56	4211741383777966592
6	2	57	10165998012602469888
7	0	58	24620618729658655936
8	16	59	59482734150603634286
9	24	60	143764591607556354344
10	8	61	348379929166234350008
11	117	62	843169238563254723200
12	252	63	2040572920613086128400
13	180	64	4948102905207104837424
14	1024	65	11992521016286173712196
15	2680	66	29059897435554891991144
16	2952	67	70516464312280927105392
17	10350	68	171105110698292441423968
18	29420	69	415095704639682396539232
19	42776	70	1008016383720573882885792
20	116768	71	2448305474519849567597826
21	335520	72	5945721872300885649415632
22	587424	73	14449388516068567845838736
23	1420053	74	35125352062243788817753856
24	3976424	75	85382289240293493116120064
25	7880376	76	207650379931166057815603296
26	18103936	77	505172267243918348155299780
27	48816576	78	1229005880128485245247395000
28	104890704	79	2991079243470267667831893408
29	237500826	80	7281852742753184123608419712
30	617733708	81	17729171587798767750815341440
31	1396750576	82	43177454620325445122944305984
32	3171222464	83	105185452787117035266315446868
33	8014199360	84	256273862465425158211948020048
34	18688490336	85	624527413292252904584121980208
35	42840683418	86	1522355057007327280427270436480
36	106063081288	87	3711429775030704772089070886624
37	251769197688	88	9050041253711022076275958636128
38	583690110208	89	22073150301758857110072042919800
39	1425834260080	90	53844910909398928990641101351664
40 41	3417671496432 8007221710652	91	131371135544173914537076774932576
		92	320588677238085642820920910555968
42	19404994897976	93	782465218885869813183863213231424
43	46747189542384	94	1910077425906069707804966102543936
44	110498345360800	95	4663586586924802791117231052636349
45 46	266679286291872	96	11388259565942452837717688743953504
	644021392071840	97	27813754361897984543467478917223008
47 48	1533054190557133 3693823999533360	98	67941781284113201998645699501746176
49	8931109667692464	99	165989485724048964272023600773271424
49 50	21375091547312128	100	405588809305168453963137377442321728
50	21313031341312120		

FIGURE 3. Natural size: numbers of closed linear terms of size n from 0 to 100

0	0		
1	0	51	803928779462727941247
2	1	52	2314623127904669382002
3	1	53	6667810436356967142481
4	2	54	19218411059885449257096
5	5	55	55421020161661024650870
6	12	56	159899218321197381984561
7	25	57	461557020400062903560120
8	64	58	1332920908954281811200519
9	166	59	3851027068336583693412910
10	405	60	11131032444503136571789527
11	1050	61	32186581221116996967632029
12	2763	62	93108410048006285466998584
13	7239	63	269446191702411420790402033
14	19190	64	780043726186403167392453886
15	51457	65	2259043189995515315930349650
16	138538	66	6544612955390252336187266873
17	374972	67	18966737218108971681014445025
18	1020943	68	54985236298270057405776629352
19	2792183	69	159455737350384637847783055311
20	7666358	70	462562848624435724964181323484
$\frac{20}{21}$	21126905	71	1342251884451664733064283251627
$\frac{21}{22}$	58422650	72	3896065622127200625653134100538
23	162052566	73	11312117748805772104795220337816
$\frac{23}{24}$	450742451	74	32853646116456632492645965741531
$\frac{24}{25}$	1256974690	75	95442534633482460553801961967438
26	3513731861	76	277342191547330839640289978813667
$\frac{20}{27}$	9843728012	77	806125189457291902863848267463755
28	27633400879	78	2343682130911232279285707290604156
29	77721141911	79	6815564023736534208079367816340359
30	218984204904	80	19824812322145727566417303371819466
31	618021576627	81	57679033022808238913186144092831856
32	1746906189740	82	167851787082561392384648248846390041
33	4945026080426	83	488574368670832093243802790464796207
34	14017220713131	84	1422426342380883254459783410845365006
35	39784695610433	85	4142104564089044203901190817275864665
36	113057573020242	86	12064305885705003967881526911560653106
37	321649935953313	87	35145647815239737143373764367447378676
38	916096006168770	88	102406303052123097062053564818109468705
39	2611847503880831	89	298446029598661205216170897850336550644
40	7453859187221508	90	869935452705023302189031644932803990417
41	21292177500898858	91	2536229492704354513309696228592784181158
42	60875851617670699	92	7395518143425160073537967606298755947391
43	174195916730975850	93	21568776408467701927134211542478146593789
44	498863759031591507	94	62915493935623036562559989770249004382816
45	1429753835635525063	95	183553775888862113259168150130266362416356
46	4100730353324163138	96	535600661621556969155453544692826625532079
47	11769771167532816128	97	1563109720672526919899689366626240867515144
48	33804054749367200891	98	4562542818801138452310024131223304186909233
49	97151933333668422006	99	13319630286623965617386598746472280781972745
50	279385977720772581435	100	38890520391341859449843201188612375394153776
00	210000011120112001400		

FIGURE 4. Natural size: numbers of closed affine terms of size n from 0 to 100

```
0
                              3037843646560
                         41
1
    0
                         42
                              6895841598615
2
                         43
                              15666498585568
3
    1
                         44
                              35620848278448
4
                         45
                              81052838239593
5
    3
                         46
                              184564847153821
6
                         47
                              420564871255118\\
7
    10
                         48
                              958975854646984\\
8
    20
                              2188068392529104
                         49
9
    40
                         50
                              4995528560788451\\
10
    77
                              11411921511827547
                         51
11
    160
                         52
                              26084524952754538\\
    318
12
                         53
                              59654682828889245
13
    671
                         54
                              136500653558490261\\
14
    1405
                         55
                              312496493161999851
    2981
15
                         56
                              715760763686417314\\
16
    6312
                         57
                              1640194881084692664
17
    13672
                         58
                              3760284787917366081\\
18
    29399
                         59
                              8624561382605096780
    63697
19
                              19789639944299656346\\
                         60
20
    139104
                         61
                              45427337308377290201\\
21
    304153
                         62
                              104320438668034814453
22
    667219
                         63
                              239656248361374562433\\
23
    1469241
                         64
                              550769764273325683828
24
    3247176
                         65
                              1266217774600330829940\\
25
    7184288
                         66
                              2912050679107531357883
26
    15949179
                         67
                              6699418399886008666265\\
27
    35480426
                         68
                              15417663698156810292010\\
28
    79083472
                         69
                              35492710197462925262295\\
29
    176607519
                         70
                              81732521943462960197057\\
30
    395119875
                              188270363628099910161436\\
                         71
    885450388
                         72
                              433807135012774797924026\\
32
    1987289740
                         73
                              999851681931974600766994
33
    4466760570
                         74
                              2305129188866501774481545\\
34
    10053371987
                              5315847675735178072941600
                         75
35
    22656801617
                         76
                              12262083079763320881047944\\
36
    51121124910
                              28292248892584567512609357
                         77
37
    115478296639
                         78
                              65294907440089718078048829\\
38
    261139629999
                         79
                              150729070403767032817820543
39
    591138386440
                              348031015577337732605480908\\
40
    1339447594768
```

FIGURE 5. Natural size: numbers of closed affine normal forms of size n from 0 to 80