说明(使用原来的数据)

• 迭代的自相关系数退化得很慢,见https://nicercode.github.io/guides/mcmc/,http://sbfnk.github.io/mfiidd/mcmc_diagnostics.html 考虑修改建议分布的参数

训练结果是3类

- z=[1 1 1 0 0 0 2 2 2]
- rmse =0.0434 rmse.each = [0.0587 0.0251 0.0465]
- ocrr corr.each = [0.9906 0.9981 0.9948] -对比原来的方法:

EM算法

	50 次试验的 RMSE 的平均
mix-GP	0.0850
split-mix-GP	0.0877
mix-GPFR	0.0735
split-mix-GPFR	0.0734↓

fix MC和变化的MC

表 3.1 真实值和预测值之间的 RMSE 和相关系数 (r)

7,77	1月969日人		
训练数据: 前	9条曲线	让的一半数据	
模型: 固定分量数目的高斯过程混合回归模型			
测试数据	RMSE	r	
第一类 GP	0.2329	0.9485	
第二类 GP	0.3612	0.8520	
第三类 GP	0.2266	0.9024	
第10条曲线	0.2037	0.7566	
训练数据: 前	9条曲线	让 的一半数据	
		让的一半数据]高斯过程混合回归模型	
模型:变化分	量数目的	高斯过程混合回归模型	
模型:变化分测试数据	量数目的 RMSE	高斯过程混合回归模型 r 0.9900	
模型:变化分测试数据 第一类 GP	量数目的 RMSE 0.0602	n高斯过程混合回归模型 r 0.9900 0.9982	

rmse全部变小,相关性除第二类和之前的方法差不多,第一类和第三类相关性变大。

o log likelihood

预测结果

-参数的收敛过程

\$\pi\$ = [1/3,1/3,1/3]

计算结果的均值[0.33 0.33 0.33]

w= [0.5 1.0 10]

计算结果的均值[0.3557 0.5397 7.7200]

众数[0.2451 0.5800 6.9631]

中位数=[0.3438 0.5362 7.6531] 中位数和均值差不多,比众数更加接近真实值

v=[1.0 0.2 0.2]

计算结果的均值[0.4759 0.3513 0.2261]

众数[0.3373 0.2679 0.2078]

中位数=[0.4229 0.2905 0.2062]

中位数和均值差不多,中位数优于均值

sigma2=[0.001 0.0025 0.0005]

计算结果的均值[0.001 0.0025 0.0005]

众数=[0.0008 0.0033 0.001]

中位数=[0.0008 0.0034 0.001]

中位数和众数差不多,都比均值更接近峰值

Trace of sigma21 000 5000 10000 15000 20000 Iterations

综上,选择中位数代表收敛的结果。

• 收敛性分析

mean se_mean sd 25% 50% 75% n_eff Rhat
pi1=1/3 0.33 0 0.1 0.26 0.33 0.4 11062 1

mean se_mean sd 25% 50% 75% n_eff Rhat 0.33 0 0.1 0.26 0.33 0.4 10481 1

mean se_mean sd 25% 50% 75% n_eff Rhat w1=0.5 6.04 0.73 1.54 5.49 5.57 5.77 4 1.47

mean se_mean sd 25% 50% 75% n_eff Rhat $_{\text{W2=1.0}}$ 0.52 0.01 0.04 0.5 0.52 0.55 20 1.06

mean se_mean sd 25% 50% 75% n_eff Rhat 7.84 0.34 1.31 6.96 7.67 8.28 15 1

mean se_mean sd 25% 50% 75% n_eff Rhat v1=1.0 0.47 0.03 0.23 0.36 0.42 0.52 52 1.06

mean se_mean sd 25% 50% 75% n_eff Rhat $_{\mbox{\tiny $v2=0.2$}}$ 0.32 0.01 0.06 0.29 0.31 0.37 15 1.13

mean se_mean sd 25% 50% 75% n_eff Rhat $_{\mbox{\tiny v3=0.2}}$ 0.22 0.01 0.04 0.19 0.22 0.24 45 1.01

s1=0.001 mean se_mean sd 25% 50% 75% n_eff Rhat 0 0 0 0 0 344 0.0009 s2=0.0025 mean se_mean sd 25% 50% 75% n_eff Rhat 0 0 0 0 0 53 0.0034 s3=0.0005 mean se_mean sd 25% 50% 75% n_eff Rhat 0 0 0 0 0 111 0.0010 pi全部收敛: Rhat均为1,且n_eff非常大 w1,w2还未收敛:w1,w2的Rhat均大于1,而且三个w的有效数目都非常小 v2未收敛,v1和v3已收敛:v2的Rhat大于1,还未收敛,而v1和v3的Rhat均为1,说明已经收敛;v2的n_eff较小 sigma2未收敛,sigma1和sigma3已收敛:sigma2的Rhat大于1,而且n_eff较小,sigma1和sigma3的Rhat接近1,且n_eff较大。

● 由于v2,w1,w2,sigma2的Rhat显示还未收敛,继续迭代过程。