## **Pandas**

Το pandas είναι μία βιβλιοθήκη σε python για ανάλυση δεδομένων. Υιοθετεί τη φιλοσοφία της Matlab και R για οργάνωση 2-διάστατων δεδομένων σε μία ειδική δομή που ονομάζεται data frame. Στη βιοπληροφορική το pandas συνήθως είναι χρήσιμο για να κάνουμε εργασίες που συνήθως γίνονται με το excel. Τα πλεονεκτήματα του pandas είναι:

- Πάρα πολύ γρήγορο. Είναι υλοποιημένο σε C (η python "τρέχει" από πάνω) και έχει πολύ καλή απόδοση για πίνακες που έχουν μέχρι και εκατομύρια από γραμμές.
- Παρέχει ένα interface το οποίο προσομοιάζει τις βάσεις δεδομένων. Με αυτόν τον τρόπο μπορούμε να γράφουμε σύντομες εκφράσεις που κάνουν πολύπλοκες διεργασίες.
  - Αναλύοντας σε όρους Computer Science το παραπάνω λέμε ότι η pandas προσφέρει μία "δηλωτική γλώσσα", σε αντίθεση με τη κλασσική python που δηλώνεις τη ροή εκτέλεσης μίας διεργασίας.
- Υποστηρίζεται από τρίτες βιβλιοθήκες για visualization, Machine Learning (π.χ. sci-kit) και στατιστική (π.χ. statmodels).
- Παρέχει δικές του μεθόδους για γρήγορο plotting και στατιστική ανάλυση
- Εύκολη και γρήγορο input / output σε διάφορα formats (excel included)

Συνήθως κάνουμε import το pandas ως εξής:

```
In [1]: import pandas as pd
```

Αν δεν υπάρχει εγκαταστημένων τότε μπορείτε να το εγκαταστείσετε ως εξής:

pip install pandas

Προσοχή. Πρέπει το pip να βρίσκεται στην ίδια τοποθεσία που βρίσκεται και η python

```
In [146... hs = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia
```

To sep='\t' σημαίνει ότι οι στήλες χωρίζονται από tabs.

Οι πρώτες γραμμές:

| n [10]: | h | s.head( |        |        |          |                           |                 |
|---------|---|---------|--------|--------|----------|---------------------------|-----------------|
| ut[10]: |   | #tax_id | GeneID | Symbol | LocusTag | Synonyms                  |                 |
|         | 0 | 9606    | 1      | A1BG   | -        | A1B ABG GAB HYST2477      | MIM:138670 HGN( |
|         | 1 | 9606    | 2      | A2M    | -        | A2MD CPAMD5 FWP007 S863-7 | MIM:103950 HGNC |
|         | 2 | 9606    | 3      | A2MP1  | _        | A2MP                      | HGNC:           |

|          | 3 9                                          | 9606            | 9 NA            | AT1         | -        | AAC1 MN     | AT NAT-1 N | IATI MIM:1083 | 45 HGNC:HG   |  |  |
|----------|----------------------------------------------|-----------------|-----------------|-------------|----------|-------------|------------|---------------|--------------|--|--|
|          | Οι τελε                                      | υταίες:         |                 |             |          |             |            |               |              |  |  |
| In [11]: | hs.t                                         | ail()           |                 |             |          |             |            |               |              |  |  |
| Out[11]: |                                              | #tax_id         | GeneID          | Symbol      | LocusTag | Synonyms    | dbXrefs    | chromosome    | map_location |  |  |
|          | 62011                                        | 741158          | 8923215         | trnD        | -        | -           | -          | MT            |              |  |  |
|          | 62012                                        | 741158          | 8923216         | trnP        | -        | -           | -          | MT            |              |  |  |
|          | 62013                                        | 741158          | 8923217         | trnA        | -        | -           | -          | MT            |              |  |  |
|          | 62014                                        | 741158          | 8923218         | COX1        | -        | -           | -          | МТ            |              |  |  |
|          | 62015                                        | 741158          | 8923219         | 16S<br>rRNA | -        | -           | -          | МТ            |              |  |  |
|          | Το ίδιο μπορούμε να κάνουμε με:              |                 |                 |             |          |             |            |               |              |  |  |
| In [13]: | hs[:                                         | <b>5] #</b> Πρώ | τες <b>5</b> γρ | αμμές       |          |             |            |               |              |  |  |
| Out[13]: | 13]: #tax_id GeneID Symbol LocusTag Synonyms |                 |                 |             |          |             |            |               |              |  |  |
|          | 0 9                                          | 9606            | 1 A1            | BG          | -        | A1B ABG G   | SAB HYST24 | 477 MIM:      | 138670 HGN(  |  |  |
|          | 1 9                                          | 9606            | 2 A:            | 2M          | - A2MI   | D CPAMD5 FV | WP007 S86  | 3-7 MIM:1     | 03950 HGNC   |  |  |
|          | 2 9                                          | 9606            | 3 A2M           | IP1         | -        |             | A2         | MP            | HGNC:        |  |  |
|          | 3 9                                          | 9606            | 9 NA            | AT1         | -        | AAC1 MN     | AT NAT-1 N | IATI MIM:1083 | 45 HGNC:HG   |  |  |
|          | 4 9                                          | 9606            | 10 NA           | Т2          | -        | AAC         | 2 NAT-2 PN | NAT MIM:6121  | 82 HGNC:HG   |  |  |
| In [15]: | hs[-                                         | 5 <b>:</b> ]    |                 |             |          |             |            |               |              |  |  |
| Out[15]: |                                              | #tax_id         | GeneID          | Symbol      | LocusTag | Synonyms    | dbXrefs    | chromosome    | map location |  |  |
|          | 62011                                        |                 | 8923215         | trnD        | -        | -           | -          | MT            |              |  |  |
|          | 62012                                        |                 | 8923216         | trnP        | -        | -           | _          | MT            |              |  |  |
|          | 62013                                        | 741158          | 8923217         | trnA        | -        | -           | -          | MT            |              |  |  |
|          | 62014                                        | 741158          | 8923218         | COX1        | -        | -           | -          | MT            |              |  |  |

#tax\_id GeneID Symbol LocusTag

Synonyms

Ας δούμε όλες τις στήλες:

```
In [16]: hs.columns
Out[16]: Index(['#tax_id', 'GeneID', 'Symbol', 'LocusTag', 'Synonyms', 'dbXrefs', 'chromosome', 'map_location', 'description', 'type_of_gene',
                    'Symbol from nomenclature authority',
                   'Full_name_from_nomenclature_authority', 'Nomenclature_status', 'Other_designations', 'Modification_date', 'Feature_type'],
                  dtype='object')
          Ή σε λίστα:
In [19]:
            list(hs.columns.values)
           ['#tax_id',
Out[19]:
             'GeneID',
             'Symbol',
             'LocusTag
            'Synonyms',
            'dbXrefs',
             'chromosome'
             map_location',
             description'
            'type_of_gene',
            'Symbol_from_nomenclature_authority',
            'Full_name_from_nomenclature_authority',
             'Nomenclature_status',
            'Other_designations',
            'Modification date',
            'Feature_type']
          Ωραία. Ας πάρουμε μόνο τρείς στήλες:
           hs[['Symbol', 'chromosome', 'type_of_gene']][:5]
In [22]:
Out[22]:
              Symbol chromosome
                                     type_of_gene
           0
                A1BG
                                 19 protein-coding
                 A2M
                                 12 protein-coding
           2
               A2MP1
                                 12
                                           pseudo
           3
                NAT1
                                  8 protein-coding
           4
                                  8 protein-coding
                NAT2
          Προσοχή! Το παραπάνω είναι ισοδύναμο με:
           hs[:5][['Symbol', 'chromosome', 'type_of_gene']]
In [23]:
Out[23]:
              Symbol chromosome
                                    type_of_gene
                A1BG
                                 19 protein-coding
           1
                 A2M
                                 12 protein-coding
           2
               A2MP1
                                 12
                                            pseudo
           3
                NAT1
                                  8 protein-coding
                                  8 protein-coding
           4
                NAT2
```

Πόσες γραμμές και πόσες στήλες έχει το Data Frame;

```
In [25]: hs.shape
Out[25]: (62016, 16)
```

#### Indexes

Οι γραμμές 100, 200 και 400:

hs.iloc[[100, 200, 400]]

In [287...

Ένα dataframe πρέπει να έχει ένα index. Ή αλλιώς μία στήλη που έχει μοναδική τιμή για όλες τις γραμμές. Από default η στήλη αυτή είναι ο αύξων αριθμός της γραμμής. Μπορείτε με αυτό τον τρόπο να πάρετε οποιαδήποτε γραμμή με βάση το index της με την iloc:

```
hs.iloc[10]
In [43]:
          #tax id
Out[43]:
          9606
          GeneID
          16
          Symbol
          AARS1
          LocusTag
          Synonyms
                                                                                   AARS | CMT
          2N | DEE29 | EIEE29
          dbXrefs
                                                         MIM:601065 | HGNC:HGNC:20 | Ensembl:
          ENSG00000090861
          chromosome
          16
          map_location
          16q\overline{2}2.1
          description
                                                                                  alanyl-tR
          NA synthetase 1
          type_of_gene
          protein-coding
          Symbol_from_nomenclature_authority
          AARS1
          Full_name_from_nomenclature_authority
                                                                                  alanyl-tR
          NA synthetase 1
          Nomenclature_status
          Other_designations
                                                       alanine--tRNA ligase, cytoplasmic|
          alaRS alanin...
          Modification_date
          20210404
          Feature_type
          New date
                                                                                        2021
          -04-04 00:00:00
          Name: 10, dtype: object
In [286...
           hs.iloc[:2]
             #tax_id GeneID Symbol LocusTag
Out[286...
                                                                Synonyms
          0
               9606
                          1
                               A1BG
                                                    A1B|ABG|GAB|HYST2477 MIM:138670|HGNC:HC
               9606
                                            - A2MD|CPAMD5|FWP007|S863-7 MIM:103950|HGNC:HG
          1
                          2
                               A2M
```

| Out[287 |     | #tax_id | GeneID | Symbol | LocusTag | Synonyms                  |                                |
|---------|-----|---------|--------|--------|----------|---------------------------|--------------------------------|
|         | 100 | 9606    | 119    | ADD2   | -        | ADDB                      | MIM:102681 HGNC:HGNC:244 Enser |
|         | 200 | 9606    | 240    | ALOX5  | -        | 5-LO 5-<br>LOX 5LPG LOG5  | MIM:152390 HGNC:HGNC:435 Ense  |
|         | 400 | 9606    | 479    | ATP12A | -        | ATP1AL1 H-<br>K-ATPase HK | MIM:182360 HGNC:HGNC:13816 E   |

## **Filtering**

7

9606

13

AADAC

Με το όρο filtering εννοούμε το να εισάγουμε φίλτρα στα δεδομένα μας ώστε να εμφανιστούν μόνο αυτά που έχουν (ή δεν έχουν..) μια ιδιότητα. Ένας ανάλογος όρος είναι το query (ή querying), ή αλλιώς "επερώτηση", όπου "ρωτάμε" ποια δεδομένα έχουν μία ιδιότητα.

Η pandas και η numpy (θα τα δούμε σε επόμενη διάλεξη) έχουν έναν κοινό μηχανισμό για να κάνουν filter. Το ενδιαφέρον είναι ότι ο μηχανισμός αυτός είναι, επηρεασμένος από την R. Ας τον δούμε λίγο. Για αρχή πρέπει να φτιάξουμε μία λίστα η οποία να έχει το ίδιο μέγεθος με τις γραμμές του DataFrame. Η λίστα αυτή θα έχει μόνο τιμές True ή False. Στη συνέχεια δηλώνουμε αυτή τη λίστα σαν δείκτης σε μία λίστα. Ας το δούμε στη πράξη αυτό:

Ας υποθέσουμε ότι θέλουμε μόνο τις μονές γραμμές του dataframe. Φτιάχνουμε μία λίστα όπου οι μονές θέσεις περιέχουν τη τιμή True και οι άρτιες τη τιμή False:

```
In [26]: rows = hs.shape[0]
1 = [x%2==1 for x in range(rows)]
```

```
Τώρα το Ι μπορεί να λειτουργήσει σαν φίλτρο άν το περάσουμε σε ένα Data Frame:
In [27]:
             hs_filtered = hs[l]
             \verb|hs_filtered.shape| \# O: \mu | \sigma \acute{\varepsilon} \varsigma | \gamma \rho \alpha \mu \mu \varepsilon \varsigma |
In [28]:
            (31008, 16)
Out[28]:
In [29]:
             hs_filtered.head()
Out[29]:
                #tax_id GeneID Symbol LocusTag
                                                                               Synonyms
             1
                  9606
                                2
                                                         A2MD|CPAMD5|FWP007|S863-7
                                       A2M
                                                                                               MIM:103950|HGNC
            3
                  9606
                                9
                                      NAT1
                                                                  AAC1|MNAT|NAT-1|NATI MIM:108345|HGNC:HG
            5
                  9606
                                                                             AACP|NATP1
                               11
                                      NATP
```

CES5A1|DAC

MIM:600338|HGNC

```
#tax_id GeneID Symbol LocusTag
```

4

5

54

9606

9606

9606

10

11

NAT2

NATP

66 ACTBP6

**Synonyms** 

AAC2|NAT-2|PNAT MIM:612182|HGNC:HC

AACP|NATP1

H8-PSI-BETA-AC3

**9** 9606 15 AANAT - DSPS|SNAT MIM:600950|HGNC:| Παρατηρούμε ότι έχει τους μονούς δείκτες.

ΟΚ, αλλά πως γίνεται αυτό να με βοηθήσει να κάνω filtering; Μπορούμε πολύ απλά να κάνουμε μία λογική πράξη με μία στήλη και το αποτέλεσμα είναι μία λίστα με λογικές τιμες η οποία μπορεί να χρησιμοποιειθεί σαν φίλτρο! Για παράδειγμα. Όλα τα γονίδια που ανήκουν στο χρωμόσωμα 8:

```
filter_chr_8 = hs['chromosome'] == '8'
In [35]:
          filter_chr_8[:10] # Τυπώνουμε τα πρώτα 10d
In [37]:
               False
          0
Out[37]:
          1
               False
          2
               False
          3
                True
          4
                True
          5
                True
          6
               False
               False
          8
               False
               False
          Name: chromosome, dtype: bool
         Επιβεβαιώνουμε με:
          hs['chromosome'][:10]
In [38]:
               19
Out[38]:
          1
               12
          2
               12
          3
                8
          4
5
                8
          6
               14
          7
                3
          8
                2
               17
          Name: chromosome, dtype: object
         τώρα μπορούμε να εφαρμόσουμε αυτό το φίλτρο:
          hs[filter_chr_8][:10] # Τα πρώτα 10 γονίδια στο χρωμόσωμα 8
In [41]:
               #tax_id GeneID Symbol LocusTag
Out[41]:
                                                                Synonyms
            3
                 9606
                            9
                                 NAT1
                                                     AAC1|MNAT|NAT-1|NATI MIM:108345|HGNC:H(
```

| #tax_id | GeneID                               | Symbol                                                   | LocusTag                                                                                                   | Synonyms                                                                                                               |                                                                                                                                                                                                                         |
|---------|--------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9606    | 114                                  | ADCY8                                                    | -                                                                                                          | AC8 ADCY3 HBAC1                                                                                                        | MIM:103070 HGNC:F                                                                                                                                                                                                       |
| 9606    | 148                                  | ADRA1A                                                   | -                                                                                                          | ADRA1C ADRA1L1 ALPHA1AAR                                                                                               | MIM:104221 HGNC:F                                                                                                                                                                                                       |
| 9606    | 155                                  | ADRB3                                                    | -                                                                                                          | BETA3AR                                                                                                                | MIM:109691 HGNC:F                                                                                                                                                                                                       |
| 9606    | 284                                  | ANGPT1                                                   | -                                                                                                          | AGP1 AGPT ANG1                                                                                                         | MIM:601667 HGNC:F                                                                                                                                                                                                       |
|         |                                      | ANGPT?                                                   | -<br>r_chr_8                                                                                               | ΔGPT2IΔNG2<br>μετο hs['chromosome']                                                                                    | ΜΙΜ:601922ΙΗGΝΟ:Η<br>== '8' (δες και                                                                                                                                                                                    |
|         | 9606<br>9606<br>9606<br>9606<br>9606 | 9606 114<br>9606 148<br>9606 155<br>9606 284<br>9606 285 | 9606 114 ADCY8  9606 148 ADRA1A  9606 155 ADRB3  9606 284 ANGPT1  9606 285 ANGPT2  πικαταστήσουμε το filte | 9606 114 ADCY8 - 9606 148 ADRA1A - 9606 155 ADRB3 - 9606 284 ANGPT1 - 9606 285 ANGPT2 - πικαταστήσουμε το filter_chr_8 | 9606 114 ADCY8 - AC8 ADCY3 HBAC1 9606 148 ADRA1A - ADRA1C ADRA1L1 ALPHA1AAR 9606 155 ADRB3 - BETA3AR 9606 284 ANGPT1 - AGP1 AGPT ANG1 9606 285 ANGPT2 - AGPT2IANG2 πκαταστήσουμε το filter_chr_8 με το hs['chromosome'] |

In [42]: hs[hs['chromosome'] == '8'][:10]

| Out[42]: |     | #tax_id | GeneID | Symbol | LocusTag | Synonyms                 |                    |
|----------|-----|---------|--------|--------|----------|--------------------------|--------------------|
|          | 3   | 9606    | 9      | NAT1   | -        | AAC1 MNAT NAT-1 NATI     | MIM:108345 HGNC:H( |
|          | 4   | 9606    | 10     | NAT2   | -        | AAC2 NAT-2 PNAT          | MIM:612182 HGNC:H6 |
|          | 5   | 9606    | 11     | NATP   | -        | AACP NATP1               |                    |
|          | 54  | 9606    | 66     | ACTBP6 | -        | H8-PSI-BETA-AC3          |                    |
|          | 95  | 9606    | 114    | ADCY8  | -        | AC8 ADCY3 HBAC1          | MIM:103070 HGNC:F  |
|          | 125 | 9606    | 148    | ADRA1A | -        | ADRA1C ADRA1L1 ALPHA1AAR | MIM:104221 HGNC:F  |
|          | 131 | 9606    | 155    | ADRB3  | -        | BETA3AR                  | MIM:109691 HGNC:F  |
|          | 237 | 9606    | 284    | ANGPT1 | -        | AGP1 AGPT ANG1           | MIM:601667 HGNC:F  |
|          | 238 | 9606    | 285    | ANGPT2 | -        | AGPT2 ANG2               | MIM:601922 HGNC:H  |
|          | 239 | 9606    | 286    | ANK1   | -        | ANK SPH1 SPH2            | MIM:612641 HGNC:H  |

Αυτό:

hs[hs['chromosome'] == '8']

Αξίζει να το ξαναδούμε. Καταρχήν μπορεί να "ξενίζει" η διπλή αναφορά στο hs και η διπλή χρήση του ..[..[ . Αλλά αν προσέξουμε μας δίνει ένα πολύ δυνατό και εκφραστικό εργαλείο να ορίζουμε φίλτρα δεδομένων. Επίσης δεν πρέπει να ξεχνάμε ότι ακριβώς τον ίδιο μηχανισμό χρησιμοποιεί η R και η Matlab. Αφού λοιπόν τα φίλτρα είναι πίνακες από λογικές τιμές, μπορούμε να κάνουμε λογικές πράξεις!

Τα γονίδια που ανήκουν στο χρωμόσωμα 8 και είναι pseudo genes:

| In [45]: | hs[ ( | hs['chro | omosome'] : | == '8') & (hs | '8') & (hs['type_of_gene'] == 'pseudo |                   |               |  |  |
|----------|-------|----------|-------------|---------------|---------------------------------------|-------------------|---------------|--|--|
| Out[45]: |       | #tax_id  | GeneID      | Symbol        | LocusTag                              | Synonyms          |               |  |  |
|          | 5     | 9606     | 11          | NATP          | -                                     | AACP NATP1        |               |  |  |
|          | 54    | 9606     | 66          | ACTBP6        | -                                     | H8-PSI-BETA-AC3   |               |  |  |
|          | 568   | 9606     | 693         | BTF3P1        | -                                     | HUMBTFA           |               |  |  |
|          | 1289  | 9606     | 1587        | ADAM3A        | -                                     | ADAM3 CYRN1 tMDCI | HGNC:HGNC:    |  |  |
|          | 2019  | 9606     | 2503        | FTH1P11       | -                                     | FTHL11            |               |  |  |
|          |       |          |             |               |                                       |                   |               |  |  |
|          | 58933 | 9606     | 112268397   | LOC112268397  | -                                     | -                 |               |  |  |
|          | 58934 | 9606     | 112268399   | LOC112268399  | -                                     | -                 |               |  |  |
|          | 59895 | 9606     | 112935968   | PTMAP15       | -                                     | -                 |               |  |  |
|          | 60739 | 9606     | 115482726   | H2AZP7        | -                                     | -                 | HGNC:HGNC:544 |  |  |
|          | 61434 | 9606     | 117751737   | HIKESHIP3     | -                                     | -                 | HGNC:HGNC:549 |  |  |

690 rows × 16 columns

ΠΡΟΣΟΧΗ! Οι παρενθέσεις είναι υποχρεωτικές:

Για μια στιγμή, γιατί δεν χρησιμοποιήσαμε τον αγαπημένο μας τελεστή and και χρησημοποιήσαμε αυτό το &; Θυμόμαστε ότι το αποτέλεσμα της and είναι **πάντα** (ακόμα και στη pandas) λογικές τιμές (δηλαδή είτε True είτε False). Ναι αλλά εμείς δεν

θέλουμε True ή False θέλουμε λίστες από True ή False. Για να κάνουμε αυτή τη διάκριση χρησιμοποιούμε το &.

Οι τελεστές που μπορούμε να χρησιμοποιήσουμε είναι:

- & --> and
- | --> or
- ~ --> not

Για παράδειγμα: Όλα τα γονίδια που ΔΕΝ ανήκουν στο χρωμόσωμα 8 ή 9 και είναι pseudo genes (τυπώνουμε τα πρώτα 5):

| In [54]: | hs | [-((hs[ | 'chromos | some'] = | = 8)   (h | s['chromoso | ome'] == 9)) & (hs['type_of_gene |
|----------|----|---------|----------|----------|-----------|-------------|----------------------------------|
| Out[54]: |    | #tax_id | GeneID   | Symbol   | LocusTag  | Synonyms    | dbXı                             |
|          | 2  | 9606    | 3        | A2MP1    | -         | A2MP        | HGNC:HGNC:8 Ensembl:ENSG00000256 |
|          | 5  | 9606    | 11       | NATP     | -         | AACP NATP1  | HGNC:HGNC                        |
|          | 51 | 9606    | 62       | ACTBP2   | -         | -           | HGNC:HGNC:                       |
|          | 52 | 9606    | 63       | ACTBP3   | -         | -           | HGNC:HGNC:                       |
|          | 53 | 9606    | 64       | ACTBP4   | -         | -           | HGNC:HGNC:                       |

Υπάρχουν πολλές συναρτήσεις της pandas οι οποίες επιστρέφουν φίλτρα (λίστες από τιμές που είναι True / False). Για παράδειγμα:

Αν ένα πεδίο περιέχει ένα string:

| In [19]: | hs[hs['description'].str.contains('membrane')][:5] |         |        |        |          |                                     |        |
|----------|----------------------------------------------------|---------|--------|--------|----------|-------------------------------------|--------|
| Out[19]: |                                                    | #tax_id | GeneID | Symbol | LocusTag | Synonyms                            |        |
|          | 243                                                | 9606    | 290    | ANPEP  | -        | APN CD13 GP150 LAP1 P150 PEPN       | MIM:15 |
|          | 411                                                | 9606    | 490    | ATP2B1 | -        | PMCA1 PMCA1kb                       | MIM:1C |
|          | 412                                                | 9606    | 491    | ATP2B2 | -        | PMCA2 PMCA2a PMCA2i                 | MIM:10 |
|          | 413                                                | 9606    | 492    | ATP2B3 | -        | CFAP39 CLA2 OPCA PMCA3 PMCA3a SCAX1 | MIM:30 |
|          | 414                                                | 9606    | 493    | ATP2B4 | _        | ATP2B2 MXRA1 PMCA4 PMCA4b PMCA4x    | MIM:10 |

Το ίδιο με πριν αλλά κάνει match αγνοώντας μικρά/κεφαλαία:

| In [18]: | hs[hs['description'].str.contains('membrane', case=False)][:5] |         |        |        |          |                                     |                     |
|----------|----------------------------------------------------------------|---------|--------|--------|----------|-------------------------------------|---------------------|
| Out[18]: |                                                                | #tax_id | GeneID | Symbol | LocusTag | Synonyms                            |                     |
|          | 243                                                            | 9606    | 290    | ANPEP  | -        | APN CD13 GP150 LAP1 P150 PEPN       | MIM:15 <sup>-</sup> |
|          | 411                                                            | 9606    | 490    | ATP2B1 | -        | PMCA1 PMCA1kb                       | MIM:10              |
|          | 412                                                            | 9606    | 491    | ATP2B2 | -        | PMCA2 PMCA2a PMCA2i                 | MIM:10              |
|          | 413                                                            | 9606    | 492    | ATP2B3 | -        | CFAP39 CLA2 OPCA PMCA3 PMCA3a SCAX1 | MIM:30              |
|          | 414                                                            | 9606    | 493    | ATP2B4 | -        | ATP2B2 MXRA1 PMCA4 PMCA4b PMCA4x    | MIM:10              |

#### **Series**

Μία στήλη σε pandas ονομάζεται Series. Με τη describe μπορούμε να έχουμε μία καλή εικόνα των τιμών που περιέχει:

```
In [9]: hs['type_of_gene'].describe()
Out[9]: count 62016
    unique 11
    top protein-coding
    freq 19696
    Name: type_of_gene, dtype: object
```

Οι πράξεις που μπορούμε να κάνουμε σε μία στήλη είναι

```
Nα βρούμε όλες τις μοναδικές τιμές που έχει:

In [13]: hs['type_of_gene'].unique()

Out[13]: array(['protein-coding', 'pseudo', 'other', 'unknown', 'ncRNA', 'tRNA', 'rRNA', 'scRNA', 'sncRNA', 'biological-region'], dtype=object)

Nα βρούμε το πλήθος από γραμμές που έχουν κάθε μοναδική τιμή:

In [16]: hs['type_of_gene'].value_counts()
```

```
Out[16]: protein-coding
                                19696
          ncRNA
                                17513
          pseudo
                                16556
          biological-region
                                 4754
          unknown
                                 1383
          other
                                  840
          tRNA
                                  595
                                  541
          snoRNA
                                   71
          snRNA
```

```
rRNA 63
scRNA 4
```

## Προσθέτοντας στήλες

Μπορούμε να φτιάξουμε ένα νέο Series από ένα άλλο χρησιμοποιώντας την apply. Η apply παίρνει μία συνάρτηση και την εφαρμόζει σε όλες τις γραμμές επιστρέφοντας ένα νέο Series. Μπορείτε να χρησιμοποιείσετε αυτό το Series σαν μία νέα στήλη.

Για παράδειγμα παρατηρούμε ότι η στήλη dbXrefs περιέχει πολλούς κωδικούς σε άλλες βάσεις δεδομένων. Μπορούμε να βάλουμε κάποιον από αυτούς τους κωδικούς σε μία νέα στήλη:

```
import re
In [150...
           def create ensembl(row):
               m = re.search(r'Ensembl:(ENSG\d+)', row['dbXrefs'])
               if not m:
                   return pd.NA
               return m.group(1)
           hs['ENSEMBL'] = hs.apply(create ensembl, axis=1)
          hs[:5]
In [17]:
             #tax_id GeneID Symbol LocusTag
                                                               Synonyms
Out[17]:
          0
               9606
                          1
                              A1BG
                                                    A1B|ABG|GAB|HYST2477
                                                                             MIM:138670|HGN(
          1
               9606
                          2
                               A2M
                                             A2MD|CPAMD5|FWP007|S863-7
                                                                            MIM:103950|HGNC
          2
               9606
                          3
                             A2MP1
                                                                   A2MP
                                                                                      HGNC:
          3
               9606
                          9
                              NAT1
                                                     AAC1|MNAT|NAT-1|NATI MIM:108345|HGNC:HG
          4
               9606
                         10
                              NAT2
                                                         AAC2|NAT-2|PNAT MIM:612182|HGNC:HG
```

Παρατηρούμε ότι η τελευταία στήλη περιέχει το ENSEMBL.

Μπορούμε να προσθέσουμε και μία νέα στήλη με τη map:

```
In [284... hs['is_pseudo'] = hs['type_of_gene'].map(lambda x : x=='pseudo')

In [285... hs[:5]

Out[285... #tax_id GenelD Symbol LocusTag Synonyms

O 9606 1 A1BG - A1B|ABG|GAB|HYST2477 MIM:138670|HGNC
```

| #tax id | GeneID | Symbol | LocusTag |
|---------|--------|--------|----------|

hs['ENSEMBL'].isna().value\_counts()

| _  |     |     |    |
|----|-----|-----|----|
| S١ | /nc | วทง | ms |

| MIM:103950 HGNC    | - A2MD CPAMD5 FWP007 S863-7 | A2M    | 2  | 9606 | 1 |
|--------------------|-----------------------------|--------|----|------|---|
| HGNC:              | - A2MP                      | A2MP1  | 3  | 9606 | 2 |
| MIM:108345 HGNC:HG | - AAC1 MNAT NAT-1 NATI      | Mitsos | 9  | 9606 | 3 |
| MIM:612182 HGNC:HG | - AAC2 NAT-2 PNAT           | NAT2   | 10 | 9606 | 4 |

#### NA = Not Available

Τι είναι ομως αυτό το pd.NA; Είναι η σταθερά της pandas για όταν δεν υπάρχει (Not Available) μία τιμή. Η pandas έχει μία μεγάλη συλλογή από συναρτήσεις για να διαχειριστείτε αυτή τη τιμη:

#### Έλεγχος:

In [151...

```
False
                    35145
Out[151...
          True
                    26871
          Name: ENSEMBL, dtype: int64
         Διέγραψε τις γραμμές που η στήλη ENSEMBL είναι ΝΑ:
In [152...
           hs.dropna(subset=['ENSEMBL'])[:5]
Out[152...
             #tax_id GeneID Symbol LocusTag
                                                                Synonyms
          0
               9606
                               A1BG
                                                     A1B|ABG|GAB|HYST2477
                          1
                                                                              MIM:138670|HGN(
               9606
          1
                          2
                               A2M
                                            - A2MD|CPAMD5|FWP007|S863-7
                                                                              MIM:103950|HGNC
               9606
                              A2MP1
                                                                    A2MP
                                                                                        HGNC:
               9606
                                                      AAC1|MNAT|NAT-1|NATI MIM:108345|HGNC:HG
                              Mitsos
               9606
                         10
                               NAT2
                                                          AAC2|NAT-2|PNAT MIM:612182|HGNC:HG
```

Αντικατέστησε τις ΝΑ με μία τιμή:

```
In [153... hs['ENSEMBL'].fillna('Does not exist')
```

```
ENSG00000121410
Out[153...
                   ENSG00000175899
                   ENSG00000256069
          2
                   ENSG00000171428
          3
                   ENSG00000156006
          62011
                    Does not exist
          62012
                    Does not exist
          62013
                    Does not exist
          62014
                    Does not exist
          62015
                    Does not exist
          Name: ENSEMBL, Length: 62016, dtype: object
```

### Αλλάζοντας μία τιμή

Για να αλλάξουμε μία τιμή πρέπει να ξέρουμε τη γραμμή και τη στήλη. Για την ακρίβεια πρέπει να ξέρουμε το index της γραμμής.

```
hs.at[3, 'Symbol'] = 'Mitsos'
In [155...
           hs[:5]
In [156...
Out[156...
             #tax_id GeneID Symbol LocusTag
                                                                 Synonyms
          0
               9606
                           1
                               A1BG
                                                     A1B|ABG|GAB|HYST2477
                                                                               MIM:138670|HGN0
           1
               9606
                           2
                                A2M
                                             - A2MD|CPAMD5|FWP007|S863-7
                                                                               MIM:103950|HGNC
           2
               9606
                          3
                              A2MP1
                                                                     A2MP
                                                                                         HGNC:
          3
               9606
                              Mitsos
                                                      AAC1|MNAT|NAT-1|NATI MIM:108345|HGNC:HG
               9606
                          10
                               NAT2
                                                           AAC2|NAT-2|PNAT MIM:612182|HGNC:HG
```

## Μετονομασία στήλης

```
In [157_ hs = hs.rename(columns={'ENSEMBL': 'ENSEMBL genes'})
```

## Διαγραφή στήλης:

```
In [159... hs = hs.drop('ENSEMBL genes', axis=1)
```

## Ημερομηνίες

Πρατηρούμε ότι η στήλη: hs ['Modification\_date'] έχει ημερομηνίες αλλά η pandas τα βλέπει σαν string. Μπορούμε να αλλάξουμε τον τύπο μίας στήλης και να δηλώσουμε ότι περιέχει ημερομηνίες.

Για να το κάνουμε αυτό πρέπει να δηλώσουμε το format της ημερομηνίας:

```
https://docs.nuthon.org/2/library/datatime.html#etrftime_and_etrntime_hebayion
```

In [34]: hs['New\_date'] = pd.to\_datetime(hs['Modification\_date'], format='%Y%m%d')

Προσέξτε τη διαφορά

```
In [35]: hs[['New_date', 'Modification_date']][:10]
```

| Out[35]: |   | New_date   | Modification_date |
|----------|---|------------|-------------------|
|          | 0 | 2021-03-02 | 20210302          |
|          | 1 | 2021-04-04 | 20210404          |
|          | 2 | 2021-03-02 | 20210302          |
|          | 3 | 2021-03-02 | 20210302          |
|          | 4 | 2021-03-22 | 20210322          |
|          | 5 | 2021-03-02 | 20210302          |
|          | 6 | 2021-03-07 | 20210307          |
|          | 7 | 2021-03-02 | 20210302          |
|          | 8 | 2021-03-02 | 20210302          |
|          | 9 | 2021-03-02 | 20210302          |

Τώρα μπορούμε να κάνουμε ταξινόμηση, filtering, κτλ με βάση την ημερομηνία. Ποιο είναι το γονίδιο το οποίο ανανεώθηκε πιο παλιά:

```
hs.iloc[hs['New date'].idxmin()]
In [45]:
Out[45]: #tax_id
                                                                                  9606
         GeneID
                                                                                  7909
         Symbol
                                                                                  HEMC
         LocusTag
         Synonyms
                                                                                   HCI
                                                                           MIM:602089
         dbXrefs
         chromosome
         map_location
                                                    hemangioma, capillary, hereditary
         description
         type of gene
                                                                               unknown
         Symbol from nomenclature authority
         Full name from nomenclature authority
         Nomenclature status
         Other designations
         Modification_date
                                                                              20170402
         Feature_type
                                                                  2017-04-02 00:00:00
         New_date
         Name: 6234, dtype: object
```

## Ταξινόμηση

Χρησημοποιούμε τη sort\_values:

| In [50]: | hs.sort_values('description')[:5] |         |           |              |          |                 |  |  |
|----------|-----------------------------------|---------|-----------|--------------|----------|-----------------|--|--|
| Out[50]: |                                   | #tax_id | GeneID    | Symbol       | LocusTag | Synonyms        |  |  |
|          | 57645                             | 9606    | 110599572 | LOC110599572 | -        | -               |  |  |
|          | 2120                              | 9606    | 2632      | GBE1         | _        | APBD GBE GSD4 1 |  |  |

| Synonyms                                 | LocusTag | Symbol | GeneID | #tax_id |       |
|------------------------------------------|----------|--------|--------|---------|-------|
| 1-AGPAT1 G15 LPAAT-alpha LPAATA          | -        | AGPAT1 | 10554  | 9606    | 8277  |
| 1-AGPAT2 BSCL BSCL1 LPAAB LPAAT-<br>beta | -        | AGPAT2 | 10555  | 9606    | 8278  |
| 1-AGPAT 3 LPAAT-GAMMA1 LPAAT3            | -        | AGPAT3 | 56894  | 9606    | 13332 |

1

## Aπó python --> pandas

Αν έχετε μία δομή σε python μπορείτε να τη μετασχηματίσετε ώστε να μπορεί να μπει σαν είσοδο στη DataFrame και να επιστρέψει ένα DataFrame.

Η DataFrame υποστηρίζει δύο διαφορετικές δομές:

Δομή 1η: Λίστα από dictionaries. Κάθε κλειδί στο dictionary είναι το όνομα μίας στήλης:

```
        Out[52]:
        col_1 col_2 col_3

        0
        1
        1 test_1

        1
        2
        4 test_2

        2
        3
        5 test_5

        3
        1
        1 test_2

        4
        1
        2 test_4
```

#### Δομή 2η: Dictionaries με λίστες:

```
In [54]: 1 = {
        'col_1': [1,2,3,1,1],
        'col_2': [1,4,5,1,2],
        'col_3': ['test_1', 'test_2', 'test_5', 'test_2', 'test_4'],
}
df = pd.DataFrame(1)
df
```

```
        out[54]:
        col_1 col_2 col_3

        0
        1
        1 test_1

        1
        2
        4 test_2

        2
        3
        5 test_5
```

```
col_1 col_2 col_3

1 1 test_2
```

### Aπó pandas --> python

Με τη μέθοδο to\_dict μπορείτε να μετατρέψετε σε dictionary ή λίστα:

```
In [57]:
           df.to_dict('records') # Λίστα από dictionaries
{'col_1': 1, 'col_2': 1, 'col_3': 'test_2'}, {'col_1': 1, 'col_2': 2, 'col_3': 'test_4'}]
In [59]:
           df.to dict('index') # Dictionaies από dictionaries. Τα κλειδιά είναι τα ind
Out[59]: {0: {'col_1': 1, 'col_2': 1, 'col_3': 'test_1'},
1: {'col_1': 2, 'col_2': 4, 'col_3': 'test_2'},
2: {'col_1': 3, 'col_2': 5, 'col_3': 'test_5'},
3: {'col_1': 1, 'col_2': 1, 'col_3': 'test_2'},
            4: {'col_1': 1, 'col_2': 2, 'col_3': 'test_4'}}
In [62]: df.to_dict('dict') # Dictionary από dictionaries. Τα κλειδιά είναι οι στήλε
          {'col_1': {0: 1, 1: 2, 2: 3, 3: 1, 4: 1},
Out[62]:
            'col_2': {0: 1, 1: 4, 2: 5, 3: 1, 4: 2},
'col_3': {0: 'test_1', 1: 'test_2', 2: 'test_5', 3: 'test_2', 4: 'test_4'
           ' } }
           df.to dict('list') # Dictionary από λίστες. Τα κλειδιά είναι οι στήλες
In [63]:
In [64]:
           pd.DataFrame({0: {'col_1': 1, 'col_2': 1, 'col_3': 'test_1'},
            1: {'col_1': 2, 'col_2': 4, 'col_3': 'test_2'},
            2: {'col_1': 3, 'col_2': 5, 'col_3': 'test_5'},
            3: {'col_1': 1, 'col_2': 1, 'col_3': 'test_2'},
             4: {'col 1': 1, 'col 2': 2, 'col 3': 'test 4'}})
Out[64]:
                                               4
           col_1
                           2
                                  3
                                               1
          col_2
                    1
                           4
                                  5
          col_3 test_1 test_2 test_5 test_2 test_4
```

## Σώζοντας ένα pandas DataFrame

Τα pandas είναι μία "εξωστρεφής" βιβλιοθήκη. Αυτό σημαίνει ότι μπορεί να σώζει και να φορτώνει από/σε πολλά φορμάτ. Το πιο κοινό είναι το csv:

```
In [65]: df.to_csv('test.csv')

In [67]: !cat test.csv # Για windows: !type test.csv

,col_1,col_2,col_3
0,1,1,test_1
1,2,4,test_2
2,3,5,test 5
```

```
3,1,1,test_2
In [69]:
          df.to csv('test.csv', index=None) # Σώζουμε χωρίς το index
          !cat test.csv # Για windows: !type test.csv
In [70]:
          col 1,col 2,col 3
          1,1,test_1
          2,4,test_2
          3,5,test_
          1,1,test_2
          1,2,test 4
         Μπορούμε να σώσουμε ένα αρχείο σε φορμάτ excel:
          df.to excel('test.xlsx')
In [71]:
         Και να διαβάσουμε από excel:
          df2 = pd.read excel('test.xlsx')
In [72]:
In [74]:
          df2
Out[74]:
             Unnamed: 0 col_1 col_2 col_3
          0
                      0
                                 1 test_1
          1
                      1
                           2
                                 4 test_2
          2
                      2
                           3
                                 5 test_5
          3
                      3
                                 1 test_2
          4
                      4
                            1
                                 2 test_4
```

Διαβάστε εδώ: https://pandas.pydata.org/pandas-docs/stable/user\_guide/io.html για τα διαφορετικά φορμάτ που μπορούμε να διαβάσουμε και να γράψουμε.

#### Iteration

Αν και σπάνια το χρειαζόμαστε (..και προσπαθούμε να αντίσταθούμε στον πειρασμό να το χρησιμοποιήσουμε) μπορούμε να κάνουμε iterate (επανάληψη) σε κάθε γραμμή του DataFrame. Αν και υπάρχουν πολλοί τρόποι για να το κάνουμε αυτό, εδω δείχνουμε το itertuples:

## Grouping

Το grouping είναι μία από τις πιο βασικές λειτουργίες των βιβλιοθηκών που χειρίζονται 2-διάστατα δεδομένα. Στην ουσία με το grouping χωρίζουμε τις γραμμές σε groups. Από κάθε group παίρνουμε κάποιες στήλες και σε όλες τις τιμές του group της κάθε στήλης εφαρμόζουμε μία συνάρτηση. Με αυτόν τον τρόπο μπορούμε να κάνουμε πολύ χρήσιμες ερωτήσεις όπως: "για κάθε χρωμόσωμα ποιο είναι το μεγαλύτερο γονίδιο;", "για κάθε

νομό ποια είναι η μεγαλύτερη πόλη", "ποιος είναι ο μέσος όρος των γονιδίων που έχουν συσχετιστεί με τον καρκίνο για κάθε χρωμόσωμα;" κτλ..

Η pandas έχει μία βασική δομή για το grouping:

Ας δούμε μερικά παραδείγματα. Φτιάχνουμε ένα random dataframe με 3 στήλες 20 γραμμές και τιμές από 1-4·

| Out[78]: |    | col_1 | col_2 | col_3 |
|----------|----|-------|-------|-------|
| _        | 0  | 4     | 4     | 3     |
|          | 1  | 1     | 4     | 3     |
|          | 2  | 4     | 4     | 1     |
|          | 3  | 2     | 2     | 1     |
|          | 4  | 1     | 1     | 3     |
|          | 5  | 1     | 4     | 2     |
|          | 6  | 1     | 1     | 2     |
|          | 7  | 2     | 3     | 3     |
|          | 8  | 4     | 3     | 2     |
|          | 9  | 4     | 4     | 2     |
|          | 10 | 4     | 4     | 1     |
|          | 11 | 2     | 3     | 3     |
|          | 12 | 2     | 4     | 2     |
|          | 13 | 1     | 2     | 4     |
|          | 14 | 4     | 3     | 2     |
|          | 15 | 2     | 4     | 3     |
|          | 16 | 3     | 4     | 3     |
|          | 17 | 1     | 2     | 4     |
|          | 18 | 1     | 3     | 3     |
|          | 19 | 1     | 2     | 1     |

Για κάθε διαφορετική τιμή της στήλης col\_1, ποια είναι η μικρότερη τιμή της col\_2;

Για κάθε διαφορετική τιμή της στήλης col\_1, ποια είναι η μικρότερη και μεγαλύτερη

```
τιμή της col 2:
          df.groupby(['col_1'])[['col_2']].aggregate(['min', 'max'])
In [85]:
                    col_2
Out[85]:
                min max
          col_1
                  1
                       4
             1
             2
                  2
                       4
             3
                  4
                       4
             4
                  3
                       4
```

Για κάθε διαφορετική τιμή της στήλης  $col_1$ , ποια είναι η μικρότερη τιμή της στήλης  $col_2$  και μεγαλύτερη τιμή της στήλης  $col_3$ ;

```
df.groupby(['col_1'])[['col_2', 'col_3']].aggregate({'col_2': 'min', 'col_3'}
In [88]:
Out[88]:
                col_2 col_3
          col_1
             1
                   1
                         4
             2
                   2
                         3
             3
                   4
                         3
             4
                   3
                         3
```

Για κάθε διαφορετική τιμή της στήλης col\_1, ποια είναι η μικρότερη και μεγαλύτερη τιμή της στήλης col\_2 και μικρότερη και μεγαλύτερη τιμή της στήλης col\_3;

```
In [89]:
          df.groupby(['col_1'])[['col_2', 'col_3']].aggregate(['min', 'max'])
Out[89]:
                   col_2
                             col_3
                min max min max
          col_1
             1
                  1
                       4
                            1
                                 4
             2
                  2
                       4
                            1
                                 3
             3
                       4
                           3
                                 3
             4
                 3
                       4
                                 3
                            1
```

Ένα group μπορεί να έχει παραπάνω από μία στήλες. Σε αυτή τη περίπτωση κάθε group περιέχει όλες τις διαφορετικές τιμές που προκύπτουν από τους συνδυασμούς των διαφορετικών τιμών των 2 (ή παραπάνω) στηλών.

Για όλες τις διαφορετικές τιμές της στήλης col\_1 και col\_2 ποια είναι η μικρότερη τιμή της στήλης col\_3;

```
In [91]: df.groupby(['col_1', 'col_2'])[['col_3']].aggregate('min')
Out[91]: col_3
```

| col_1 | col_2 |   |
|-------|-------|---|
| 1     | 1     | 2 |
|       | 2     | 1 |
|       | 3     | 3 |
|       | 4     | 2 |
| 2     | 2     | 1 |
|       | 3     | 3 |
|       | 4     | 2 |
| 3     | 4     | 3 |
| 4     | 3     | 2 |
|       | 4     | 1 |

Σαν aggregate functions μπορείτε να βάλετε [πηγή]:

- mean(): Compute mean of groups
- sum(): Compute sum of group values
- size(): Compute group sizes
- count(): Compute count of group
- std(): Standard deviation of groups
- var(): Compute variance of groups
- sem(): Standard error of the mean of groups
- describe(): Generates descriptive statistics
- first(): Compute first of group values
- last(): Compute last of group values
- nth(): Take nth value, or a subset if n is a list
- min(): Compute min of group values
- max(): Compute max of group values

Ας δούμε μερικά παραδείγματα από τα "δικά μας" δεδομένα.

Πόσα γονίδια έχει κάθε χρωμόσωμα;

```
In [96]: hs.groupby('chromosome')[['GeneID']].aggregate('count')

Out[96]: GeneID

chromosome

- 146

1 5826
```

#### GeneID chromosome МТ Un Χ

Για κάθε ένα από τα χρωμοσώματα Χ και Υ, πόσα διαφορετικά γονίδια υπάρχουν;

```
In [102... hs[hs['chromosome'].isin(['X', 'Y'])].groupby(['chromosome', 'type_of_gene'
```

Out[102... GeneID

| chromosome | type_of_gene      |     |
|------------|-------------------|-----|
| Х          | biological-region | 157 |
|            | ncRNA             | 442 |
|            | other             | 10  |
|            | protein-coding    | 830 |
|            | pseudo            | 906 |
|            | snoRNA            | 16  |
|            | tRNA              | 5   |
|            | unknown           | 126 |
| Υ          | biological-region | 11  |
|            | ncRNA             | 107 |
|            | other             | 29  |
|            | protein-coding    | 46  |

#### GeneID

chromosomo tuno of gono

Ας αλλάξουμε τη σειρά των στηλών στο grouping:

In [104... hs2 = hs[hs['chromosome'].isin(['X', 'Y'])].groupby(['type\_of\_gene', 'chrom'
hs2

Out[104... GeneID type\_of\_gene chromosome biological-region 157 Χ Υ 11 ncRNA Χ 442 Υ 107 other Χ 10 Υ 29 protein-coding 830 Υ 46 pseudo X 906 Υ 389 **snoRNA** Χ 16

Κάτι αρκετά εξεζητημένο είναι ότι μπορούμε να εφαρμόσουμε μία συνάρτηση σε κάθε group με την apply. Για παράδειγμα Για κάθε type\_of\_gene ποιο είναι το ποσοσότ που ανήκει στο χρωμόσωμα Χ και ποιο το αντίστοιχο για το χρωμόσωμα Υ;

In [108... hs2.groupby(level=0).apply(lambda x: 100 \* x / float(x.sum()))

5

6

126

Out[108... GeneID

**tRNA** 

unknown

Χ

Χ

Υ

| type_of_gene      | chromosome |           |
|-------------------|------------|-----------|
| biological-region | х          | 93.452381 |
|                   | Υ          | 6.547619  |
| ncRNA             | X          | 80.510018 |
|                   | Υ          | 19.489982 |
| other             | X          | 25.641026 |
|                   | Υ          | 74.358974 |
| protein-coding    | X          | 94.748858 |
|                   | Υ          | 5.251142  |
| pseudo            | X          | 69.961390 |
|                   | Υ          | 30.038610 |

#### GeneID

#### type\_of\_gene chromosome

 snoRNA
 X
 100.000000

 tRNA
 X
 100.000000

Το level σημαίνει σε ποιο "group" (από τα δύο που έχουμε εφαρμόσουμε) να γίνει το apply. Η αλήθεια είναι οτι αφού το X έχει πολύ περισσότερα γονίδια από το Y ο παραπάνω πίνακας δεν μας λέει και πάρα πολλά. Ας κάνουμε apply με τη function στο δεύτερο level:

GeneID

In [111...

hs3 = hs2.groupby(level=1).apply(lambda x: 100 \* x / float(x.sum())) hs3

Out[111...

|                   |            | 000.5     |
|-------------------|------------|-----------|
| type_of_gene      | chromosome |           |
| biological-region | Х          | 6.300161  |
|                   | Υ          | 1.870748  |
| ncRNA             | Х          | 17.736758 |
|                   | Υ          | 18.197279 |
| other             | Х          | 0.401284  |
|                   | Υ          | 4.931973  |
| protein-coding    | Х          | 33.306581 |
|                   | Υ          | 7.823129  |
| pseudo            | X          | 36.356340 |
|                   | Υ          | 66.156463 |
| snoRNA            | X          | 0.642055  |
| tRNA              | X          | 0.200642  |
| unknown           | Х          | 5.056180  |
|                   | Υ          | 1.020408  |

Ενδιαφέρον: Στο χρωμόσωμα X το 33.3% των γονίδιων που περιέχει είναι protein-coding. Το αντίστοιχο ποσοστό για το Y είναι 7.8%. Ενώ για το Y το 66.2% των γονιδίων είναι pseudo και για το X είναι 36.3%. Μάλλον δεν κάνει και πολλά πράγματα το Y..

Μπορούμε να του πούμε: Το πρώτο group κάντο στήλες:

In [114...

hs3.unstack(0)

Out[114...

| type_of_gene | biological-<br>region | ncRNA     | other    | protein-<br>coding | pseudo    | snoRNA   | tRNA     |  |
|--------------|-----------------------|-----------|----------|--------------------|-----------|----------|----------|--|
| chromosome   |                       |           |          |                    |           |          |          |  |
| Х            | 6.300161              | 17.736758 | 0.401284 | 33.306581          | 36.356340 | 0.642055 | 0.200642 |  |
| Υ            | 1.870748              | 18.197279 | 4.931973 | 7.823129           | 66.156463 | NaN      | NaN      |  |

Ή το 2ο group κάντο στήλες:

In [115... hs3.unstack(1)

Out[115...

|                   |           | GeneID    |
|-------------------|-----------|-----------|
| chromosome        | X         | Υ         |
| type_of_gene      |           |           |
| biological-region | 6.300161  | 1.870748  |
| ncRNA             | 17.736758 | 18.197279 |
| other             | 0.401284  | 4.931973  |
| protein-coding    | 33.306581 | 7.823129  |
| pseudo            | 36.356340 | 66.156463 |
| snoRNA            | 0.642055  | NaN       |
| tRNA              | 0.200642  | NaN       |
| unknown           | 5.056180  | 1.020408  |

To unstacking είναι σημαντικό γιατί μας επιτρέπει να κάνουμε τα groups μπάρες (δες και συνέχεια)

```
In [117... hs3.unstack(1).plot(kind='bar')
```

Out[117\_ <AxesSubplot:xlabel='type\_of\_gene'>



Εδώ βλέπουμε πως κάναμε μία "επεξεργασία" των δεδομένων χωρίς να κάνουμε ούτε μία for, if, κτλ.. Αυτός είναι ο "δηλωτικός τρόπος προγραμματισμού". Συνιθίζεται όταν γράφουμε πολλές εντολές που κάνουν διαδοχικές επεξεργασίες να τις γράφουμε με αυτό το στυλ (method chaining):

Out[125\_ <AxesSubplot:xlabel='type\_of\_gene'>



## **Plotting**

Η pandas υποστηρίζει ένα μεγάλο πλήθος από plots. Σε μελλοντικό μάθημα θα ασχοληθούμε περισσότερο με το πως κάνουμε plots χωρίς της pandas.

Barplots: πλήθος απο γονίδια ανά χρωμόσωμα:

Το ίδιο σε piechart. **ΠΡΟΣΟΧΗ!!** Αποφεύγουμε να χρησιμοποιούμε piechart σε επιστημονικές δημοσιεύσεις! Google: why are pie charts bad

```
In [6]: hs['chromosome'].value_counts().plot(kind='pie')
```

Out[6]: <AxesSubplot:ylabel='chromosome'>



# Ένα παράδειγμα με GWAS

Ας χρησιμοποιήσουμε έναν κατάλογο από GWA studies. Ο κατάλογος βρίσκεται σε αυτό το link: https://www.ebi.ac.uk/gwas/api/search/downloads/full για να το φορτώσετε τρέξτε (κάνει πολύ ώρα!):

```
In [160... gwas = pd.read_csv('https://www.ebi.ac.uk/gwas/api/search/downloads/full',
```

/Users/admin/anaconda3/lib/python3.8/site-packages/IPython/core/interactive shell.py:3146: DtypeWarning: Columns (9,11,12,23,27) have mixed types.Speci fy dtype option on import or set low\_memory=False.

has raised = await self.run ast nodes(code ast.body, cell name,

Οι στήλες:

Ποια είναι τα 10 γονίδια στα οποία έχουν γίνει τα περισσότερα GWAS;

```
In [162__ gwas["MAPPED_GENE"].value_counts()[:10].plot(kind="bar")
Out[162__ <AxesSubplot:>
```



Μετατροπή του DATE από string σε datetime

```
In [163... gwas['DATE'] = pd.to_datetime(gwas["DATE"]) # Μετατροπή του DATE από string
```

Ας δούμε μερικά χαρακτηριστικά της στήλης P-VALUE;

```
In [194_ gwas['PVALUE_MLOG'].describe()
```

```
251401.000000
          count
Out[194...
          mean
                         17.671208
          std
                         66.731631
                          5.000000
          min
          25%
                          7.000000
          50%
                          9.301030
          75%
                         14.698970
                      22135.221849
          max
```

Name: PVALUE\_MLOG, dtype: float64

Ας τη κάνουμε plot με βάση τον χρόνο:

```
In [198... gwas.plot(x='DATE', y='PVALUE_MLOG')
```

Out[198\_ <AxesSubplot:xlabel='DATE'>



```
In [208_ gwas[gwas['PVALUE_MLOG']<1000].plot(x='DATE', y='PVALUE_MLOG')</pre>
```

Out[208\_ <AxesSubplot:xlabel='DATE'>



Πόσα gwas δημοσιεύονται κάθε χρόνο;

```
In [217_ gwas.groupby(gwas['DATE'].dt.year)['DATE'].count().plot(kind='bar')
Out[217_ <AxesSubplot:xlabel='DATE'>
```



Ένας άλλος τρόπος να τα πλοτάρουμε:

```
In [218... gwas.groupby(gwas['DATE'].dt.year)['DATE'].count().plot()
Out[218... <AxesSubplot:xlabel='DATE'>
```



Ας πάρουμε όλα τα GWAS που έχουν γίνει σε ασθένειες ή φαινότυπους που έχουν μέσα

τη λέξη "Breast", και τα SNPs που έχουν βρεθεί έχουν συσχετιστεί με p-value<10<sup>-10</sup>, και ας τα κατατάξουμε σε χρωμοσώματα:

Out[220\_ <AxesSubplot:xlabel='CHR\_ID'>



Λογικό ότι το χρωμόσωμα 5 που έχει το BRCA2 gene είναι #1

Ποιος είναι ο ερευνητής που έχει τις περισσότερες δημοσιεύσεις στο Nature Genetics;

Out[221... 'Lee JJ'

Ποιο region περιέχει τις περισσότερες μελέτες σχετικά με καρκίνο;

Ποιος είναι ο μέσος όρος και το median του allele\_frequency για όλα τα variants που ανακαλύπτοντε κάθε χρόνο;

Out[277...

| DATE   |          |          |
|--------|----------|----------|
| 2005.0 | NaN      | NaN      |
| 2006.0 | 0.370000 | 0.370000 |
| 2007.0 | 0.415373 | 0.400000 |
| 2008.0 | 0.389350 | 0.350000 |
| 2009.0 | 0.362769 | 0.320000 |
| 2010.0 | 0.358266 | 0.330000 |
| 2011.0 | 0.384316 | 0.340000 |
| 2012.0 | 0.340888 | 0.300000 |
| 2013.0 | 0.414986 | 0.380000 |
| 2014.0 | 0.420903 | 0.390000 |
| 2015.0 | 0.498522 | 0.477000 |
| 2016.0 | 0.367788 | 0.338245 |
| 2017.0 | 0.382940 | 0.335076 |
| 2018.0 | 0.473471 | 0.474000 |
| 2019.0 | 0.403819 | 0.381000 |
| 2020.0 | 0.438670 | 0.416900 |
| 2021.0 | 0.385103 | 0.359920 |

mean

median

Ας κάνουμε ένα scatter plot με τον x να είναι το YEAR και το y να είναι τα mean και median

```
In [279_ gwas_2.plot(style='.')
Out[279_ <AxesSubplot:xlabel='DATE'>
```

```
0.500 - mean
```

Και ένα scatter plot με το  $\chi$  να είναι το mean και το  $\gamma$  το median:

```
gwas_2.plot.scatter(x='mean', y='median')
In [280...
Out[280...
           <AxesSubplot:xlabel='mean', ylabel='median'>
              0.475
              0.450
              0.425
           0.400
0.375
              0.350
              0.325
              0.300
                    0.34
                                0.38
                                                              0.48
                                                                    0.50
                          0.36
                                      0.40
                                            0.42
                                                        0.46
```

mean

## Περισσότερα

- Cheatsheet
- Introduction to Pandas . plotting with pandas
- 100 pandas puzzles

```
In [ ]:
```