

AD A119834

NAVY EXPERIMENTAL DIVING UNIT

DTC FILE COPY

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT PANAMA CITY, FLORIDA 32407

NAVY EXPERIMENTAL DIVING UNIT

6

REPORT NO. 2-82

EVALUATION OF COMMERCIALLY AVAILABLE, WRIST-WORN DEPTH GAUGES

JAMES R. MIDDLETON JONATHAN F. TOBIAS BILLY E. WEBB

JUNE 1982

Approved for public release; distribution unlimited

Submitted by:

J.R. MIDDLETON
Test & Evaluation

Engineer

J.F. Tobias

J.F. TOBIAS ENS, USN Ass't. Test & Evaluation Engineer

B.E. Webb

ENS, USN Ass't. Test & Evaluation Engineer Reviewed by:

Deniul & B

D.G. WHALL LCDR, USN Senior Projects Officer

E.D. THALMANN CDR, MC, USN Senior Medical Officer

J. Gillan

CDR, USN

Executive Officer

Approved by:

R. A. BORRINOLDT CDR, USN

Commanding Officer

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUME	ENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TEPORT NUMBER	j	3. RECIPIENT'S CATALOG NUMBER
	AD-A119834	
4 TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
EVALUATION OF COMMERCIAL	LLY	
AVAILABLE, WRIST-WORN DI	EPTH GAUGES	Test Report
}		6. PERFORMING ORG. REPORT NUMBER
7 AUTHOR(a)	· · · · · · · · · · · · · · · · · · ·	S. CONTRACT OR GRANT NUMBER(s)
JAMES R. MIDDLETON		
JONATHAN F. TOBIAS		
BILLY E. WEBB		
PERFORMING ORGANIZATION NAME	AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
NAVY EXPERIMENTAL DIVING		
PANAMA CITY, FLORIDA 33		12. REPORT DATE
SUN INGESTRU OFFICE RAME ARU	~ 	June 1982
		13. NUMBER OF PAGES
		4.9
14 MONITORING AGENCY NAME & ADD	RESS(II dillerent trem Centrelling Office)	15. SECURITY CLASS. (of this report)
1		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this	Report)	
· L		
Approved for public rele	ease; distribution unlimit	ed
1		
}		
17. DISTRIBUTION STATEMENT (of the	shetract entered in Block 20, if different fre	m Report)
1		
1		
18. SUPPLEMENTARY NOTES		
İ		
19. KEY WORDS (Continue on reverse side	il necessary and identify by block number,)
	Repeatability	
	Thermal Stability	1
	Readability	
Accuracy		· j
20. ASTRACT (Continue on reverse elde	!! necessary and identify by block number)	
		e, diver, wrist-worn depth
		ving Unit. All gauges were extight integrity, thermal
essitiv durability	racy, repeatability, water readability and luminescen	ce capability. The depth
	ed a comprehensive survey	
		is to have an accuracy of +5

FSW. Under some test conditions, this degraded to +10 FSW or greater. Two

different manufacturers actually had the same internal mechanism. Given the repeatability, size of the gauges, cost and manufacturing techniques available to the industry at the current time, no operational difference was perceived in the performance of any gauge evaluated. Once a calibration check has been performed, all are considered satisfactory for U.S. Navy SCUBA use, with the exception of special explosive ordnance disposal non-magnetic requirements.

UNCLASSIFIED

Acknowledgements

The authors would like to express their appreciation to the following people for their contribution to the testing, data reduction and analysis that contributed to the production of this report.

Karen M. KOHANOWICH, Ensign, United States Navy

Eric RANDALL, Ensign, United States Navy

Jeffrey N. ZERBE, Ensign, United States Navy

Table of Contents

		Page
Acknow Table Glossa Abstra	Documentation Page	iv v vi
Section	<u>on</u>	
I.	INTRODUCTION	1
II.	EQUIPMENT DESCRIPTION	1
III.	TEST PROCEDURE	
	A. Hyperbaric Chamber Tests (1) Accuracy/Repeatability Tests	1 2 2
IV.	RESULTS	3
٧.	DISCUSSION	.6
VI.	CONCLUSIONS	8
VII.	REFERENCES	9
viii.	KEY TO APPENDIXES	9
APPENT	OIX A - List of Gauges and Manufacturers	B-1 thru B-9 C1-1 thru C1-2 C2-1 thru C2-2 D1-1 thru D1-2 D2-1 thru D2-2 E1-1 thru E1-2 E2-1 thru E2-2 F1-1 thru F1-2 F2-1 thru F2-2 G1-1 thru G1-2
APPENI	DIX H - Diver Onestionnaire	

Glossary

Accuracy

The extent to which a given measurement agrees with the standard value for that

measurement

Bourdon Tube

A pressurized sensing element with a curved or twisted metal tube, flatened in cross

section and closed

, =

Degrees Fahrenheit

FSW

Feet-of-Seawater

Mil Spec

Military Specification MIL-G-15214C (Gauge, Depth, Wrist, MARK I, MOD O, Nonmagnetic,

Self-Luminous Dial, 30 March 1965)

NAVSEA

Naval Sea Systems Command

NEDU

Navy Experimental Diving Unit

NO.

Number

OPT

Optional

Percent

psig

Pounds per Square Inch Gauge

Repeatability

The extent to which a given measurement duplicates previous measurements taken under

the same conditions.

USN

Unites States Navy

Watertight Integrity

Ability to prevent water leaks into and/or

air/oil leaks out of

Abstract

Twenty-eight models of commercially available, diver, wrist-worn depth gauges were evaluated by the Navy Experimental Diving Unit. All gauges were tested to determine accuracy, repeatability, watertight integrity, thermal stability, durability, readability and luminescence capability. The depth gauges tested represented a comprehensive survey of the available market. Test results showed the vast majority of the models to have an accuracy of +5 FSW. Under some test conditions, this degraded to +10 FSW or greater. Two samples of each model were tested. In several cases, gauges marketed by different manufacturers actually had the same internal mechanism. Given the repeatability, size of the gauges, cost and manufacturing techniques available to the industry at the current time, no operational difference was perceived in the performance of any gauge evaluated. Once a-calibration check has been performed, all are considered satisfactory for U.S. Navy SCUBA use, with the exception of special explosive ordnance disposal non-magnetic requirements.

I. INTRODUCTION

During January and February 1981, the Navy Experimental Diving Unit (NEDU) tested 28 commercially available, diver wrist-worn depth gauges in accordance with NAVSEA Task Number 79-6. The depth gauge, which allows monitoring of actual depth in FSW, is a vital apparatus on which the diver nust depend at all times. Unmanned tests were performed to determine accuracy, repeatability, watertight integrity, thermal stability, durability, readability and luminescence capability on all depth gauges. Appendix A contains a list of gauges tested and the manufacturers.

The scope of these tests did not include cycle life testing of the gauges or the length of time a gauge may be expected to remain in calibration during normal use. Since Navy use of diver wrist-worn depth gauges requires frequent calibration checks these evaluations were not deemed necessary.

Capillary type depth gauges were not evaluated since there is no internal pressure sensing mechanism involved, and their accuracy is implicit in the design. The only limiting factor in a capillary gauge is that, since it follows Boyles Law, the graduations on the face of the gauge get very close together at depths beyond 60 FSW which effects readability.

II. EQUIPMENT DESCRIPTION

The 28 models tested are described in APPENDIX B and illustrated in FIGURES 1 through 28. The descriptions are those supplied in the manufacturers catalogs and represent features which they feel are unique to their model.

III. TEST PROCEDURE

A. Hyperbaric Chamber Tests:

- l. Accuracy/Repeatability Tests (see definitions in glossary): Each gauge (two of each model) was compressed in an ambient temperature water bath (approximately 70°F) to its maximum working depth in a hyperbaric chamber. The water bath just covered the top of the gauges and was used to check for lesks. Accuracy readings were taken in 10 FSW increments on descent and ascent. Gauge readings were compared to a digital ASHCROFT 0-200 psig Digigauge (+ 0.05% accuracy). A total of three compression/decompression scenarios were recorded on each gauge to determine repeatability. Since the purpose of these tests was to evaluate the performance of new, previously unused gauges, cycle life testing consisting of numerous compressions to maximum depth was not conducted. Two gauges of each model were tested only during the Accuracy and Repeatability Tests. Therefore, one of each model was subjected to all phases of testing, while the other was tested only for accuracy and repeatability in 70°F water. This was done to give an indication of the quality control available in each model.
- 2. Watertight Integrity Tests: Gauges were observed for watertight integrity on all chamber and open-water dives.

3. Thermal Stability Tests: Each gauge (one of each model) was compressed to its maximum operating depth in both a 90°F and 32°F water bath in a hyperbaric chamber. Accuracy was recorded during descent and ascent in 10 FSW increments to determine if changes in accuracy were caused by thermal stress.

4. Durability Tests:

- a. Each gauge (one of each model) was dropped from a height of three feet onto a concrete floor with the dial face up and then placed in a hyperbaric chamber for an accuracy test consisting of a single compression to its maximum operating depth while immersed in 70°F water. Accuracy was recorded during descent and ascent in 10 FSW increments to determine if changes in accuracy had been caused by impact. The test was designed to simulate the type of blow a depth gauge might receive while being moved from place to place in a diver's gear bag or if accidentally dropped.
- b. In addition to the drop test, durability testing also consisted of inspecting each gauge for corrosion following salt water immersion.

NOTES:

- (a) During all chamber tests, depth was controlled to within + 0.23 FSW according to an ASHCROFT Digigauge.
- (b) When evaluating the data tabulated in this report, account must be given to the error the testors make in reading the face of the gauge. The error in reading the depths from the face of the gauge was, at best, \pm 1 FSW and, at worst \pm 2 FSW. Thus, the best accuracy expected from any of these gauges would be in the range of \pm 2 FSW.

B. Open-Water Tests:

l. Readability/Luminescence Tests: A test platform was constructed on which one of each gauge model was mounted. Following mounting, the gauge board was taken to 60 FSW in the Gulf of Mexico. A minimum of 8 Navy-qualified divers judged readability of all gauge models at depth on day and night dives. A questionnaire was filled out at depth by each diver on all dives. On night dives, readability was determined by each gauge's own luminescence after it had been activated by an incandescent, hand-held underwater light. The time of activation for the depth gauges was predetermined in a darkened lab by subjecting the gauges to different periods of direct incandescent light. A nominal time of 15 seconds was chosen to best satisfy overall luminous activation of the depth gauges. In order to standardize the readability testing, each diver's vision was required to be 20/20 or corrected to 20/20 by appropriate means. The distance from which the mounted depth gauges were read underwater was left to the diver's discretion.

IV. Results

A. Accuracy & Repeatability Tests:

The vast majority of gauges tested were accurate to within + 5 to + 10 FSW under most test conditions. Data showed the majority of gauges to be slightly more accurate during descent than ascent. Accuracy on most gauges was best at 70°F. One gauge was off by as much as 20 FSW. Since only two of each model gauge were tested it was not known whether or not performance of this gauge was indicative of this particular brand. However, this particular gauge was identical internally to several other brands which were off by only 2 to 5 FSW at 32°F. This highlights the difficulty in calibrating on a mass produced basis small, wide range depth gauges with current state-of-the-art techniques. These large variations, however, occurred for the most part in 32°F water, an extreme condition where conservative diving practices are already in order.

Three compression/decompression scenarios were run on two gauges of each model at 70°F and repeatability was + 1 FSW for all gauges tested. In addition, most gauges posessed a constant degree of error factor i.e., the gauge varied from true depth by a relatively constant number of FSW. However, all gauges did read zero when on the surface.

Examination of the data also shows that most gauges had much better accuracy at depths of 130 FSW and shallower. Most gauges at 70°F were within + 5 FSW accuracy to a depth of 130 FSW. Deeper than 130 FSW, accuracy diminished to between + 5 FSW and + 10 FSW for most models. This is important since 0 to 130 FSW is the depth range for the vast majority of SCUBA dives.

TABLE 1 Range of Error (FSW) vs Depth and Temperature, contains a summary of data taken under all test conditions for each gauge. Depths are divided into two depth ranges, 0-50 FSW and 51-200 FSW. The numbers contained in the blocks beside each model represent the minimum and maximum deviations in FSW from true depth for a particular depth range and water temperature. For example, the DACOR LFG-300 at 70°F between 0 and 50 FSW was always at least 5 FSW deeper than true depth and had a maximum deviation from a true depth of 7 FSW. Data is tabulated to a maximum depth in TABLE 1 of 200 FSW since 130 FSW is the maximum limit for open-circuit SCUBA diving in the U.S. Navy. APPENDIXES C1 and C2 and D1 and D2 contain a complete tabulation of data for each of the two gauges tested in every model at depths to 300 FSW.

NOTE: Data contained in APPENDIXES D1 and D2 is for the control gauges which were tested only at 70°F for accuracy and repeatability. The gauges tabulated in APPENDIXES C1 and C2 were also tested at 32 and 90°F, respectively, and dropped from 3 feet onto a concrete floor after the initial evaluation at 70°F. By comparing the data in APPENDIXES C1 and C2 with D1 and D2, there are many obvious differences between two gauges of the same model at the same depth. This provides a realistic indication of the comparative performance that a diver can expect from two identical gauges. Variations between the same gauge ranged from 0 to 15 FSW under identical test conditions. This made normal statistical analysis of the data impractical. Consequently, statistical data such as correlation coeffiants, standard diviations, linear regressions and degree of confidence are not included in the data presented.

IABLE

HANGE OF LINCOR (FSW) VS DEPTH AND TEMPLIFICATION

-		•						•
	32.F	<u>u</u> .	1.07	-	1,06	÷-	DURABILITY TEST 70°F	70°F
	0-50 FSW	51-200 FSW	050 F SW	51-200 FSW	0-50 F SW	51-200 FSW	0-50 F SW	51-200 FSW
DACOR SFG 150	1/2	1/5	2/4	2/10	3/5	11/4	2/3	2/10
DACOR LFG 150	3/5	3/7	4/5	5/10	4/6	5/11	6/1	7/12
DACOR SFG 300	0/1	0/4	0/2	10/-2	1/0	0/10	0/2	0/10
DACOR LFG 300	2/6	2/10	1/5	5/14	1/8	3/15	1/8	3/15
FARRALLON 04-1610	-1/-4	-3/-5	2/5	2/5	2//5	2/3	1/0	1/-1
FARRALLON 04-1630	8/9	1/5	0/2	0/-5	0/2	2/-5	1/3	0/3
FARRALLON 04-1620	0/5	9/1	1/1	4/7	1/5	1/2	5/-5	3/8
PARM AYS 801900	1/2	1/3	1/4	2/4	0/2	1/4	0/0	1/0
PRINCETON TECTONICS DG-10	2/5	9-/0	1/5	8/-10	2/-1	1-/9	1/4	4/-7
SCUBAPR0 28-849	-1/-3	-2/-5	1/-1	6/2	1/-1	0/2	2/0	14/-8
SCUBAPR0 28-850	-1/1	0/2	2/-2	5/-2	0/3	3/7	1/-1	1/5
SCUBAPR0 28-503	9/1	1/-10	0/5	5/-10	5/-1	5/-5	2/5	2/-10
SCUBAPR0 28-012	6/-3	8-/0	0/2	6/-2	0/3	8/0	2/0	5/-1
SCUBAPRO 28-507	0/-5	0/-10	1/4	3/-13	1/0	1/-10	0/2	0/-10
SEAPRO DM-250	-10/-20	-10/-20	1-/2	2/-6	1/6	1/0	1/-10	1/-1
SEAQUEST 8010	1/4	+4/-5	5/-5	9/-2	1/5	6/-2	0/4	5/-1
SEAQUEST 8012	0/0	د/0	1/3	3/-5	1/-1	8/0	0/2	4/-2
SHEMMOOD DG350	1/3	0/5	1/5	5/10	1/8	4/9	9/0	2/8
SPORTSWAY 1406	1/2	1/4	-1/-5	0/-11	0/2	0/4	1/3	0/3
SAS 2069	0/-3	0/-3	0/2	2/4	0/3	1/4	2/-1	0/4
								•

I VIRITE 1

KANGE OF ERROR (FSM) VS DEPTH AND TEMPERATURE (Continued)

						:	DURABILITY TEST	YY TEST
	32,F	<u>.</u>	1.0 <i>i</i>	<u>.</u>	1.06	-	2	70,1
	0-50 FSW	51-200 FSW	0-50 FSW	51-200 FSW	0-50 FSW	51-200 FSW	0-50 FSM	51-200 f SM
SAS 2069	1/5	6/2	1/-2	1/-5	0/-4	1/-4	1-/2	
TEKNA 1-2600	0/2	6/0	6/3	1/-4	. 0/-3	5/-3	0/2	6/-3
U.S. DIVERS 7044	1/2	0/2	2/2	0/2	1/2	0/2	1/2	0/2
U.S. DIVERS	1/0	1/-4	0/2	2/-3	1/2	3/-1	1/0	1/-4
U.S. DIVERS 7043	-1/20	2/-2	2/-1	8/1	2/-1	2/5	1/0	0/4
U.S. DIVERS 7045	1/0	3/-3	0/2	1/5	1/0	2/5	0/2	1,3
WHITE STAG	-5/-5	-4/-7	1/-1	1-/1	5	1/0	0/-1	0/0
WHITE STAG 51247	-9/-10	-3/-15	7-/0	1-/0	2/-2	2/-5	-1/-10	8-/9

3. Watertight Integrity Tests:

Each gauge was pressurized underwater a total of 14 times including 2 open-water dives. All gauges tested maintained 100% watertight integrity throughout the evaluation.

C. Thermal Stability Tests:

All models were evaluated in 32 and 90°F water, respectively, to determine the effects of thermal stress. At 32°F, there was a distinct trend observed where the majority of the gauges read shallower than they did at "0°F. Some varied by only 1 to 3 FSW, but several read as much as 10 to 15 FSW shallower at 32°F than measured at 70°F. In most cases however, the shift was not significant.

In 90°F water, the trend was reversed to a lesser degree. Most gauges gained 1 to 3 FSW over the 70°F reading, but no major accuracy changes were noted as was the case in 32°F water.

TABLE 1 provides a summary of the range of errors at 90 and 32°F. APPENDIXES E1, E2 and F1, F2 tabulate complete results for 90 and 32°F temperatures, respectively, for one gauge of each model tested.

D. Durability Tests:

All of the gauges passed the durability tests with minimal variations in accuracy and repeatability as compared to the 70°F tests.

No corrosion problems were observed with any gauge after salt water immersion as long as they were washed thoroughly in fresh water following each dive.

TABLE 1 summarizes the accuracy tests performed after the 3 foot drop to a concrete floor. APPENDIXES G1 and G2 gives a complete tabulation of accuracy data following the pressure drop test from 0 to 300 FSW.

E. Readability/Luminescence Tests:

All of the gauges tested were found to be adequately readable, i.e. ease of determining the actual depth reading from the dial face. In addition, all models which were advertised as being luminescent, were in fact, highly readable under low-light conditions after activation by an incandescent light source such as a divers hand held light. The gauges remained highly luminescent for approximately 5 minutes after activation. The only gauges tested which was not designed for luminescence were the DACOR SFG 150 and SFG 300.

V. Discussion.

Since 1965, depth gauges have been evaluated for accuracy according to MIL-G-15214C (see References). This specification was developed in order to build, under contract, an extremely accurate, nonmagnetic depth gauge

specifically for use by U.S. Navy Explosive Ordnance Disposal Divers. This Mil Specialled for a gauge accuracy of \pm 1 FSW between 0 and 50 FSW and \pm 3 FSW between 50 and 200 FSW. This is an extreme requirement and cannot be met by mass-produced, commercial depth gauges in price ranges generally considered affordable. Consequently, the gauges evaluated in this report are not compared to this Mil Spec.

The majority of the gauges tested read deeper than true depth under all test conditions. This is an obvious safety advantage to the diver from a decompression standpoint, but cannot be assumed carte blanc, since some models read shallower than true depth.

Importantly, when analysing the data contained in this report, remember that all models use a very similar mechanism for sensing pressure. Many gauges, marketed by different companies, are exactly the same gauge with different dial faces and commercial logos. This becomes significant when two models with the same internal mechanisms read + 10 FSW different under identical test conditions. This makes it difficult to state categorically that one model is superior to another when, in fact, they may be exactly the same gauge.

In addition, test results showed repeatability of all gauges tested to be excellent (i.e. identical test conditions yielded nearly identical results on the same gauge after multiple compression/decompression scenarios). Consequently, any of the gauges tested may be used safely after comparing them to a known standard. This standard may be a calibration check in a hyperbaric chamber, use of a descent line marked in 10 FSW increments or comparing the gauge against known sea floor depths.

A 0 to 150 FSW depth gauge is commonly believed to be more accurate than a 0 to 300 FSW depth gauge in the 0 to 150 FSW range. The data in this report does not support this belief. While there is a definite trend in all gauges tested to become somewhat less accurate as depth increases, the deeper indicating gauges are normally as accurate as the shallower indicating gauges at corresponding depths.

Durability testing showed the rubber covers which protected all models against impact to be effective as long as the gauges were dropped in the dial face up position. This is significant since any blow to the side of a gauge is likely to cause the gears in the mechanism to jump and ruin its calibration permanently. This is considered reasonable and acceptable when considering the type of internal mechanisms found in these gauges. Any depth gauge should have a calibration check when it has been subject to an unusual shock or if performance is suspect for any reason. No corrosion problems were encountered during the evaluation.

Gauges were tested to a maximum depth of 300 FSW even though several models indicated depths substantially deeper, well beyond realistic safe limits with open-circuit SCUBA. The U.S. Navy Diving Manual limits open-circuit SCUBA dives to 130 FSW. No descernable difference was observed between types of sensing mechanisms, i.e. bourbon tube, diaphram or a

remaination of the two. However, two models, the TEKNA T-2600 and the FRINCETON TECHTONICS DG-10 had a zero-adjust mechanism, which allows the gauge to be re-zeroed at altitude or specifically calibrated for a given depth. These features, while not affecting the overall accuracy as tested by NEDU, may be useful in special situations. However, important to note is that this re-zeroing capability does not correct these gauges for changes in decompression calculations considered inherent in altitude diving.

The FARALLON 04-1630 has a maximum depth indication feature which automatically records the maximum depth reached on a given dive. This could prove effective and become quite useful in a multi-depth dive scenario.

Several gauges had expanded scales at the shallower depths. While this feature definitely enhances readability, these gauges were found to be no more accurate than the other models tested.

Finally, important to understand is that depth gauges, either military or commercial, are delicate instruments and cannot be expected to maintain any degree of accuracy if not treated as such.

VI. CONCLUSIONS

The overall conclusions which can be drawn from the results of this test are as follows:

- A. Accuracy of the vast majority of gauges tested was + 5 FSW from 0 to 50 FSW and + 10 FSW from 51 to 130 FSW under all test conditions.
- 3. While accuracy of identical depth gauges may vary from unit to unit, repeatability of all models tested is essentially the same.
- C. Accuracy of current diver wrist-worn depth gauges is reasonable considering the state-of-the-art in manufacturing techniques and the unit price increase which would occur if a higher accuracy were required.
- D. A custom calibration, i.e. a comparison of the depth gauge against a known standard on each individual gauge, should be performed by the user (including new gauges). This known standard may include hyperbaric chamber testing, a descent line marked in 10 FSW increments or by comparing the gauge against various known depth areas of the sea floor. The diver should then dive by his calibration sheet rather than the actual reading on the gauge.
- E. Gauges should be checked for accuracy, at least, once every six ronths or any time the calibration is in question.
- F. The fact that a depth gauge is reading zero on the surface and is correct at a known depth does not necessarily mean that its calibration is still intact over its entire depth range.
- G. Commercially produced diver depth gauges are considered sufficiently accurate and durable for U.S. Navy use as long as the limitations outlined herein are recognized and the diver responds accordingly.

VIII REFERENCES

Military Specification MIL-G-15214C, Gauge, Depth, Wrist, Mark I Mod 0 Nonmagnetic, Self-Luminous Dial, 30 March 1965.

VIII. KEY TO APPENDIXES

The values in APPENDIXES C1 through G2 were obtained by comparing the test depth gauge to the ASHCROFT 0-200 psig Digigauge. If the difference between the test gauge compared to the Digigauge was shallow, it is represented by the corresponding value in negative FSW. If the difference was deeper, it is represented by the corresponding value in positive FSW.

The appendixes are subdivided into descending and ascending data with APPENDIX Cl containing descending data and APPENDIX C2 containing ascending data. APPENDIXES Cl through G2 are designated in this manner.

APPENDIX A

LIST OF GAUGES AND MANUFACTURERS

MANUFACTURER	MODEL NAME/NO.	ADDRESS
I. DACOR	SFG 150	DACOR CORPORATION 161 Northfield Road
2. DACOR	LFG 150	Northfield, IL 60093 (312) 446-9555
3. DACOR	SFG 300	(312) 440 7333
DACOR	LFG 300	•
5. FARALLON	04-1610	FARALLON/OCEANIC 14275 Catalina Street
5. FARALLON	04-1630 200' MAX DEPTH GAUGE	San Leandro, CA 94577 (415) 352-5007
7. FARALLON	04-1620	
3. PARKWAY	801900	PARKWAY FABRICATORS, INC. 241 Raritan Street South Amboy, NJ 08879 (201) 721-5301
PRINCETON TECTONICS	DG-10	PRINCETON TECTONICS P.O. Box 8057 Trenton, NJ 08650 (609) 298-9331
10. SCUBAPRO	CAPSULE DEPTH GAUGE 150 FSW 28-849	SCUBAPRO USA 3105 E. Harcourt
11. SCUBAPRO	CAPSULE DEPTH GAUGE 230 FSW 28-850	Rancho Dominguez, CA 90221 (213) 639-7850
12. SCUBAPRO	ALTITUDE ADJUSTABLE DEPTH GAUGE 250 FSW 28-503	
13. SCUBAPRO	CAPSULE DEPTH GAUGE 325 FSW 28-012	
14. SCUBAPRO	ALTITUDE ADJUSTABLE DEPTH GAUGE 500 FSW 28-507	

APPENDIX A

LIST OF GAUGES AND MANUFACTURERS (Continued)

MANUFACTURER	MODEL NAME/NO.	ADDRESS
13. SEAPRO	DM-250	SEAPRO, INC. 18030 South Euclid Street Fountain Valley, CA 92708 (914) 979-6730
lo. SEAQUEST	3010	SEAQUEST, INC. 722 Genevieve Street
17. SEAQUEST	8012	Suite N Solona Beach, CA 92075 (714) 979-6730
13. SHERWOOD	DG-350	SHERWOOD SELPAC CORP. 120 Church Street Lockport, NY 14094 (716) 433-3891
19. SPORTSWAYS	1406	WATERLUNG (SPORTSWAYS) P.O. Box 2407 Huntington Park, CA 90255 (213) 379-2491
20. SUB-AQUATIC SYSTEMS	2089	SUB-AQUATIC SYSTEMS P.O. Box 711
21. SUB-AQUATIC SYSTEMS	2069	530 Sixth Street Hermosa Beach, CA 90254 (213) 379-2491
22. TEKNA	T-2600	TEKNA 3549 Haven Avenue Menlo Park, CA 94025 (415) 365-5112

APPENDIX A

LIST OF GAUGES AND MANUFACTURERS (Continued)

MANUFACTURER	MODEL NAME/NO.	ADDRESS
23. T.S. DIVERS	DEPTH MASTER II 7044	U.S. DIVERS COMPANY 3323 West Warner Avenue Santa Ana, CA 92702
24. T.S. DIVERS	DEPTH MASTER I 7042	(714) 540-8010
25. T.S. DIVERS	DEPTH MASTER I 7043	
26. U.S. DIVERS	DEPTH MASTER II 7045	
27. WHITE STAG *	51246	OCEAN DYNAMICS INT. 363 W. Victoria Street
16. WHITE STAG *	51247	Gardena, CA 90248 (213) 538-9540

^{*} WHITE STAG is now OCEAN DYNAMICS INTERNATIONAL

APPENDIX IS

GALKAL DE SCHEIPER FONS

		1					(A.C.)		-				
Manufacturer With Depth Gauge Model Number	Dia i Markings	Gauge Range Feet	Gauge Gradua- † Ions	Maximum Depth (Feet)	Maximum Depth (Meters)	Luminous Dial Face	pression Zone Colored	face S12e	01 1 F1 1 fud (S1 Hconu)	Machanism	Flousing	Strap	Rap taca ab fo Bazo t
DACOR SFG 150	BLK	0-150	51	1501	45		×	1 3/4"	×	3	1 ;	×	ı
DACOR LFG 150	BLK	0-150	51	150	45	×	×	2"	×	В	2	¥	1
DACOR SFG 300	BLK	0-300	104	3001	06	-	×	1 3/4"	×	В	1	¥	11
DACOR LFG 300	BLK	0-300	101	3001	90	×	×	2"	×	В	1	×	1
FARRALLON	BLK	0-150	5,	1501	•	×	1	2"	×	B	×	×	
FARRALLON 04-1630	BLK	0-200	5.	2001	•	×	1	2"	×	B	×	æ	
FARRALLON 04-1620	BLK	0-250	51	2501		×	ſ	2"	×	В	x	×	1 ,
PARKITAYS 801900	9LK	0-150	51	1501	45	×	•	2"	×	8	۵	>	
PRINCETON TECTONICS DG-10	ВЦК	0-260	51/	2601	-	×		2"	1	Q	1	×	-
SCIBAPRO 28-849	BLK	0-150	51	1501	•	×	1	2"	×	В	α	٤	
SCUBAPRO 28-850	BLK	0-230	51	230		×	1	2"	×	8	æ	×	
SCUBAPRO 28-503	ВГК	0-250	51	2501	1	×	i	2"	×	8	œ	æ	
SCUBAPRO 28-012	BLK	0-300	51	3251	1	×	•	2"	×	В	œ	×	-
SCUBAPR0 28-507	Ŧ	0-500	51	5001		•		2"	×	8	α	æ	_
SEAPRO DM-250	BLK	0-250	51	250	1	×	×	2"	×	æ	œ	œ	1
SEAQUEST 8010	BLK	0-150	51	1501	1	×	×	2"	×	8	œ	~	ı
SEAQUEST 8012	BLK	0-250	51	2501	1	×	×	2"	×	9	α	œ	-
SHERWOOD DG-350	BLK	0-250	51	250	1	×		2"	×	89	۵	>	-
							•						

D - DIAPHRAM
B - BOURBON TURE TYPE
R - RUBBER
M - METAL
P - PLASTIC
V - VELCRO KEY:

APPPRUDIX IS

GALKSE IN SCHOLLTING (Contlined)

	-	_	-	•	•								
Manufacturor Mith Dayth Gauge Mode! Number SPORTSEAYS	Uaugu C Ulai Rangu G Markings Fuet t	Cauge Range Feet	Cauge Gradua- † fons	Maximum Depth (feet)	Maximum Dupth (Moters)	Lum Incus Ola I Face	Decom- pression Zone Colored	face Slze	01 1 1 1 1 1 1 (5)	Mochanism	Housting		Buptoro ab to Bozo I
1406	BAK	0-150	5.	150	,	×	1	2"	×	£	×	*	,
SAS 2089	BLK	0-150	51	150	45 0PT	×	×		×		ء .	×	
SAS 2069	BLK	0-250	5,	2501	89 T-0	×	×	2"	· ×	2	- 3	<u>*</u>	
TEKNA 1-2600	BLK	0-240	51	2401	3	×	1	2 1/2"	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	2	3	. >	: ; ,
0.3. DI VERS 7044	BLK	9-150	51	1501	-	×		2"	×	8		2	
0.3. DIVERS 7042	BLK	0-150	51	1501	•	×		24	×	3	d	3	,
0. 5. UI VERS 7043	BLK	0-250	101	250	09 140	×		24	×	3		2	
7045	BLK	0-250	0	250'	-	×	,	24	×	30	a	×	×
51246 WHITE STAG	BLK	0-150	51	1501		×		5"	×	8	۵	>	
51247	BLK	0-250	51	2501	,	×		2"	×	æ	2	>	

Figure 1. DACOR SFG 150

Figure 2. DACOR LFG 150

Figure 3. DACOR SFG 300 Figure 4. DACOR LFG 300

Figure 5. FARALLON 04-1610 Figure 6. FARALLON 04-1630 200' MAX DEPTH GAUGE

Figure 7. FARALLON 04-1620

Figure 8. PARKWAYS 801900

Figure 9. PRINCETON TECTONICS DG-10

Figure 10. SCUBAPRO CAPSULE DEPTH GAUGE - 150' 28-849

Figure 11. SCUBAPRO CAPSULE DEPTH GAUGE - 230' 28-850

Figure 12. SCUBAPRO ALTITUDE
ADJUSTABLE DEPTH GAUGE
- 250' 28-503

Figure 13. SCUBAPRO CAPSULE DEPTH GAUGE - 325' 28-012

Figure 14. SCUBAPRO ALTITUDE
ADJUSTABLE DEPTH GAUGE
- 500' 28-507

Figure 15. SEAPRO DM-250

Figure 16. SEAQUEST 8010

Figure 17. SEAQUEST 8012 Figure 18. SHERWOOD DG-350

Figure 19. SPORTSWAY 1406 Figure 20. SUB-AQUATIC SYSTEMS 2089

Figure 21. SUB-AQUATIC SYSTEMS 2069

Figure 22. TEKNA T-2600

Figure 23. U.S. DIVERS DEPTH MASTER II 7044

Figure 24. U.S. DIVERS 7042

Figure 25. U.S. DIVERS 7043

Figure 26. U.S. DIVERS DEPTH MASTER II 7045

Figure 27. WHITE STAG 51246 Figure 28. WHITE STAG 51247

MAXIMIN DEVIATIONS - DESCRIDING AT 70'1

				į			!				-			E P I H	1	<u>.</u>			-			-	_	-	-	_	-	-	
NAMER	2	2	2	\$	2	3	٤	2	2	8	0.1	130	8	150	92	2	<u>š</u> i	8	8	210	220	2:	240	8	3	0,7	<u>8</u>	8	<u> </u>
130 130 130	2		~	2	~	7	~	-	•	-	9	7	7	7	2		-	-			-	7	Ť		:	<u>:</u> :	-		_
051 951 30 30	-	•	-	-	~	~	•	•	~	2	-	-	œ:	01	:	-	-	- !		į		-	-	:		i		:	_
i	~	0	0		0	7	-7	~	7	-	7	7.	0	-	-			7	~	<u> </u>	7	<u>~</u>	7]	•	6	2	2;	2.	• :
INCHES SOO		~	5	-	~	~	~	2	•	-5	•		_	-	8	60	-!	-	•	의	2	=	2	=	=!	21	=	Ξ,	2.
F ABOUT LOW	- 2	~	~	-	-	•	~	~	_	7	~	- 2	7	7	2	_			:						;			:	
FARALEN G4-16 NO	~	-	<u> </u>	0	0	۰	7	7	7	7	7	7	-2	- <u>!</u> !	<u></u>		1	-	0		i					1	-		;
TARRALIAN	-	_	-	~		~	~	•	5	~	~	~	-	-	7	2 - 2	<u> </u>	1	<u>-!</u>	•	7	-	•	7		!	;	-	1
PARKHAYS A01900	-	7	7	7	~	7	7	~	7	~	-	~		<u> </u>		-	4	-		-	:	:		:	-	-	-	-	-
TRINCETON 10-10	-	2	~	2	~	~	2	-2	7	-	7	-	7	7	5	<u>₹</u>		?	6	?	?	۴.	위	٠.	7	-	-	:	:
SCHBAPRO 26-649	-	0	7	0	٥	0	0	0	•	0	0	0	0	-	\$	+	+			!	-	i		-	İ	-	-		•
28-850	-2	0	-	-	-	~	7	7	7	~	~	7	7	5	2	<u>`</u>	7	7		1	₹] -	<u>~</u>	;	:	Ì	-	1	-	i
\$C! II) ATRO 28-503	-	•	-	~	7	~	7	-	0	0	0	7	- <u>;</u>		ارد ارد	16	인	약	위	의	미	9	9	<u>با</u>	I	-	-	;	-
5010 APRO 28-012	0	٥	2	2	0	-	-1	7	7	-7	7-	7	7	-5	7		2	~! ——	7-	0	٥:	7	7:	~:		<u>~:</u> :		^; ;	^: :
\$CifiAFR6 26-507	- 2	2	7	-	2	-	-	7	7	7	7	7	<u>۱۲</u>	5	9-	0	9:	일:	2	위	<u> </u>	1.	일.	2	φį	으:	Ŧ	? ;	;·
SF A1163 DM-250	7	7	7	7	7	7	0	0	-	0,	7	-2	~	7	7	T: Ti	7) Ti	?!	7	<u>::</u>	<u>دُ!</u>	<u>۲</u>	<u>~ [</u>	q:			;	-	;
's AVXIS \$1 6010	•	٠.	•	-	•	~	^	5	^	5	~	7:	7	_ <u>-</u>	0	-	+	:	-	-	<u>:</u>		<u>, ,</u>		-		:	:	:
1 A A WH ST 8012	-	-	-	~	2	2	~	7	7	~;	~:	~	_		3 :	-	-	7:	1	7	7	7.		<u>:</u>		;	:	:	
7,4 TW/34D	•	•	^	•	٠		•	~	60	œ,	Φ.	Œ	-	8	•	6 :	-:		-:	<u>^</u>	e .	<u>^:</u>	<u> </u>	<u>۰</u> :				:	
THEFT	۴.	7	7-	-5	₹,	7	Ŷ	7	φ;	*	7	7.	~		· •.	-	<u>:</u>	<u>:</u>				;		1		-	•	:	
.v. 2049	•	-	-	Ξ	- :	~	~	2	7	2.	7	7	- ;	-	<u>_</u> :	_	<u>:</u>	_;		_			_:	:			_	_	_

TAN 2009 . LOLD TO TO TO THE STRAIN CONTROLL STATE OF SHEET STATE OF SHEET STRAINS AND CONTROLLED OF SHEET SHEET.

ANTHORY CT. MARNING BEVIALIONS - PESCRIPTES AT 1078. ROUTEINGED.

M PA 13 F 12		_	_	_	-	-		-				•				•			•										_
	2	8	9.	\$.	8	8	2	96	90 100	8	9 .	120 130	2	<u></u>	<u>8</u>	140 150 160 170 180	2	<u></u>	2	<u> </u>	3	<u>~</u> ~	190 200 210 220 230 240 250 260 270 280 290	<u>,</u>	78.0	<u> </u>	7€	3	ŝ
5AS 2069	-2	7- 2-	7	٥.	-	0	0;		_	_	-	0			- -	-2 -5		7	-3	-5	7- 5	7	÷.	~					_
EKNA 1-2600	0	-1	7	-5	<u>ئ</u> :	7	7	7	7	7	7.	o				~.					-	-	-7	_					
044 5. htv:RS	~.	7	~.	۸.	7	7	7,	 ;		0	c	0.		o;	_														
S. DIVIRS	۵.	-		~ :	~;	- i	-	_	0;	0,			7:	7	η.		:												
U.S. MARS	7	0	0	5.		7	7	~	7	-		4				-	<u></u>						_						
UTF STAR	0	0:	ο,	٥,		7	-	2	2	- 	-		<u>.</u>	<u>~;</u>		-	-			-,7			-	_	<u> </u>				
1246 1178 STAG	7	÷	7	7	_	<u> </u>	7	-	-:	 .	0		1-0																
	~	η:	:	7	~	~	7	<u>'</u>	<u>.</u>	<u>_</u>	<u>'</u>	- 7	-1 -2 -3 -2 -3 -2 -3 -3 -4 -4 -4	- 2		<u>_</u>	<u>_</u>	-	_					_					

ANTROPECS MAXIMIM DEVIATORS - ASTROPRE AT 70%

(AUCE)				-	•	-	•	-		-			5	dana maka	7	•	-	-	-	-	-	•	-	-	-	-		-	
HARE	2	₽;	2	\$	2	3	2	- 08	00 06	<u> </u>	0 120	2	140	32	10.0	2	<u> </u>	061	7:	210 27	220 230	0 /40	0 230		260 270 280	Ç.	35.	3	
DALCHE STG. 150	*	^	~	-	*	-	<u>.</u>	6	<u></u>	-	<u>.</u>	-5.	0		_														
DALCH 11G 150	\$	\$	•	~	٠,	5	•		~	-	8	8	0.		1		1	_			_	_		_			_		
DACOR SEG 300	2	-	7			-	-		<u> </u>	~	-	-	2	2	2	7	7	•	3	2	•	æ	٠.	-	9	2	2		
DACOR LFG 300	9	•	-	\$	_	~	~	~		•	-	æ	8	5	6	20	2	2	2	2	2	- <u>-</u> -	10	12	2 2	=			
FABRALLON 04-1610	~	•	7	٠	•	•	•	_	_							_		_											_
FASRALL DW 04-1630	7	-	7	~	0	0	0	0	0	-2	0	0	7	5	7	0	0	0		- ;				-					
04-1620	_	2	~	•	~	•	۰,	'n	-		· .		6		10	-5	Δ.	\$	<u>~</u>	~		<u>,</u>							
PARKIFAYS 801900	2	2	7	- 7	-	~	-	_	-		-	-	•			:		- 1	-					_					_
PRINCETON ILCIONICS (KG-10		•	-	-	~	~	3					_	; ص	٥	ŝ	3	-5	-5	-	٠.	-	-2	_	<u></u>					_
28-849		0	0	•	•	_	~	2	~	- 7		7							-	-			_		_				_
	·	. 0	-	7	7	-	-	-			_				•		~	•	~	- C ;	-								
		-	2	•	2	~	5	-	_		2 3	٠ ا	•	-	-	-	-	0	7	0.	•	-	-2						
70:0496 28-012	0	0	~	~	~	~	~	-	- 2		2 2	~	2	7	0	2	Υ.	~	-	7	-	<u>.</u>		<u></u>	9	<u> </u>			
70,15,470 28-507	2	2	~	~	-		7	7		-T:	-	7.	₹.			-2	-2	-2	7	7	7		7		-5.	01-	2		_
16 APRO 184-250	Ξ	_	7	Ξ	7			_	_	-			0		_	-2	-2	7	7.	-2	7	7	φ.						_
SEAQUESE BOTO	•	\$	- 2	2	•	•	<u>~</u>	3	٠,		2	7	G.																_
STAGEST BOLZ	_	7.	~	~		~	~	~	~	~	2 2	~	2,	-		0.	0	0	•	<u> </u>	7.	-	_		_				_
146550	~	ν.	_	•	80	-	•	6	-	_	6.		•	2	6	6.	6	•	3 0	£		-	<u> </u>						_
1406	٠.	7	~	7	7	Ş	-5-	<u>-</u>	-10-	1 -2	- 1	c	0																_
.A., 7080	•	-	_	_	_	_	_	_	_			-	4					_	_						_	_			_

The zone | of the zero of the short of the second of the s

APPENDIX C2

MAXIMIM DEVIATIONS - ASCENDING AT 70°F (Continued)

					1111		1	1	-	1	1		1						-										
GAUGE/					•	4				•	-	•	-	OPPTH (FEET)*	IH FE	ET.)	-	-	-								: '	:	
A MORE	0	8	_	Ş	Я	8	9	8	8	8	2	2	8	50 60 20 60 90 100 110 120 130 140 150 150 170 160 190 200 210 220 230 240 250 260 230 280 290 300	2	2	91	-	, Š	9 216	220	28	\$ 7	250	260	2.70	280	280	9
SAS 2069	-	7		٥	-	-	7	-	2	-	-	-	-	-	0	0 -1 -2 -1 -1 -1 -5 -2	-	~		 	-		7						
TEKNW 1-2600	٥	0	-	7	-2	£-	-2 -3 -2	-3	-2	7	0	0 0 2	~	2	-	~	7	3 5	2		•		! ! 	-					
0.5. DI VERS	7	~	2	2	2	2	~	2	-	0	8	-	-	0			-	-	-	<u> </u>	-	<u> </u>	-	_					
U.S. DIVERS 7042	-	-	7	2	-	7	~	-	-	0	0	•	-2	-2	-	-	-	-	 	-	-	-		-					
U. S. DIVERS 7043	•	0		-	7	~	7	2	-	•	5	-	9	-	-	* * *	-		-	5 3	2		2	-					
U.S. DIWERS 7045	0	٥	٥	-	2	7	*	-	8	•	-	-	-	4 5 5	-	-	-		-	-	1	1	2	_	-				!
\$1246	٥	0	7	0	0	0	-	0	0 0 0	٥	0	-	0	٥		<u> </u>	-	_	-	_	_	_		!				İ	
\$1247	Ŷ	7	₹	7	0	7	7	0	-	0	-7	7	-	0 -1 -1 0 -1 0 -2 -1 -3 -3 -2 -3 -3 -4 -4 -4 -4 -5 -5 -5	-2	.3	3	-	7	7	•	î	3	_					1

* ALL GAIKES INDICATED O FOW THEN ON THE SURFACE, CONSEQUENTLY, DATA COLUMN FOR O FOW IS ENCLUMED,

ANTERIOR 1.2

MAXIMEN IN VIALIDING CONTROL GOOM! - DESCENDENCE AT 70%

· · · · · · · · · · · · · · · · · · ·	1	;	;		. •				•	•	. •		•	11.13	. 115 11	1.01				-		-							
MINISER	2	2	2	3	3	3	2	3	3	- -	2	<u>=</u>	2	9	—	2	- <u>1</u>		- 07. 07.	077 017 007	77	- X - C	47	3,	3	?`	747	3	3
DALUR SEG 190	2	2	_	-	-	-	-	7	~	2	-	5	٥			_		_		-									
DACON LEG 150	-	-	-	-	7	2	~	~	~	~	~	7		-	ای														
DALCR SFG 300	-	0	-	0	0	0	7	-	7	-	0	0	0	٥,	0	0	-	_	-	- 2	2		· -;	~	~				
DACOR LFG 300	2	3	5	•	2	\$	9	~	20	-	6				2	=	12	12	12	5		<u>9</u>	20		2	2	₹	3	3
F AMEAL LON 04-1610	-	2	2	2	2	2	2	7	7	7	~	;		~	7	-	-		_										
FARALLON 04-1630	3	-	-	7	Ŧ	-2	-3	٠ <u>.</u>		_	-	ş	7	4	9	ان	<u>'</u>	7	٠ <u>٠</u>	ائ	_		-						
F ANTALLON 04-1620	-	-	2	~	2	•	2	4	7	5	•	2	9	~		-	-5			-	5		ر ک	اه					
PARGE AYS 801900	2	3	2	2	2	2	2	3	2	~	~	-	-	-					_	_									
TECTONICS DG-10	-	7	~	2	2	3	2	7	0		_	-	-2	-2	-5	-2	4	7	20	6-	٠-	ا-د	-10	-7					
SCUBAPRO 28-949	0	0	0	0	0	0	0	o	٥	-	0	-	0	2	2		_		_		_		_	_		_			
SCUBAPRO 28-850	-	0	-	-	-	2	~	2	2	-	2	2	~	2	-	_	_	-	0	9		3	0						
SCUBAPRO 28-503	-	3	3	•	-	-	Ē	-	-	-	•	0		-	-2	٠,	P	-10	0! 0	Ī	7.	-10	2	2					
SCIBAPRO 28-012	-	-2	-2	-5	-2	-2	-1	-2	•	-	0		•	-	0	0	0		٥	2	_		2 2	7	^	•	•	•	^
SCUBAPRO 26-507	7	-	0	0	0	-	-	-	0	0	0	0	0	0	0	-			-		-5						٦		7
SEAPRO DH-250	-	-	-	0	_	-	0	٥	۰	7	-	-2	·	-3	-2	7	5	7	7	7	7	_ 4		7					
SEAQUEST 8010	-5	q	?	7	ę	٩	임	9	01-	의	=	-12	-15	- 5	-51				_						_	_	_	_	
SEAQUEST 8012	-	-	-	-	-	7	2	2	2	7	- 7	- 2	_		_	-	0	0	-	-	0	1	-	. 7					
SHENWOOD 06350	-	2	-	~	~	7	7	•	7	7	•	4	\$	-\$	~	2	•	•		2		-							
SPORTSWAY 1406	ę	î	ş	٠	٦	٠	7	ئ.	9-	7	ارً		Ş.	-	7								Щ.	_					
SAS 2089	3	CHET UNE HAS	MAS	165760	0								 į			.				

* ALL GAUGES INDICATED O FOR WHEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR O FOR 15 EXCLUDED.

MAXIMIM DEVIATIONS CONTROL GROUP - DESCENDING AT 70°F (Continued)

															1		1	1		-	-		Ì		-		}		
										'			•	90	H LFE	£1,3	-	1	-		-	-	Ī	06PTH (FEET)* 1 1 1 1 1 1 1 1			1	-	1
CAUCK/	Ī	+	+	†	+	+	+	Ť	+	+	-	-	-	-	-	_			-		-	,	240	2.0	960	22	280	280	90
	9	8	9	\$	2	8	2	8	8	8	2	2	ِ چ	9	밁	<u>-</u>	2	2	8	2	3	3	\$	20 60 70 60 90 100 110 120 130 140 130 160 170 190 100 100 100 100 100 100 100 100 10	3				
				5	7	1	•	1	5	-	9	8	چ	<u>ئ</u>			6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 10-101-101-101-101-101-101-101-101-101	٦	7	9	?	?	?	?			1	1	
SAS 2009	1	? -		2 3	, ,	1	1 7	1	1 -1 -1 -1 -1 -0 0	+-	-	-	-		0	-	0 1 -1 -1 -2 -2 -5 -5	7	-7	-? -		?	9					1	
U.S. DIVERS	•		+-	• •	,	-	-	1	3 3 3 2 2 2 2	-	~	2	2	2	~			-		_	_	_	-					1	1
U.S. DIVERS	-	-	• 7	• 7	7	7	1	7	-1 -1 -4 -3 -4 -3 -3 -3 -3 -3 -3 -3	7	7	7	7	7	-	-	-		-	\dashv	\dashv	-	_					1	
U.S. DINENS	-	•	0	1-	~	7	~	2	2	7	Ŧ	~	-	-	-	5	2 3 2 2 4 4 5 4 4 5 5 4 4 5 5 2 2 2	-	4		7	7	7	7					
U.S. DIVERS	0	•	-	-	2	2	~	7	2 5 2 5 4 3 3 2	*	~	7	~	7	7	+	1 1 1 -1 -1 -1 -1 -1	-	4	<u> </u>	-	7	4	1					Ī
21246	7	7	-	7	7	7	7	7	-1 -1 -1 -1 -1 -1 0	-	0	0	0	0	0	+	+	+	+	+	\downarrow	4	\downarrow	+					1
WHITE STAG	91-	-2	7	•	-	•	v	7	₹	7	~	3	7	1	3	4	5	_	_	-	2		-	1 4 4 4 4 5 5 5 6 5 5 5 5 5 6 5 5 10 5 10	-			7	

* ALL GAUGES INDICATED O FSW WHEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR D FSW IS EXCLUDED.

APPENDIX DZ CONTROL CACCES = ASCENDING AT 10"?

4	į				1	1	;				•		1	1	1	: : : :	:		1					•	:				
/ # 1142	•	•	•	•	•	•	•	•	•	-	1	4	1	11.11	11/11	(ftt.).	:	+	-	-	<u>:</u>	<u>.</u>			-	-	_	_	
NIMBER	2	8	Я	\$	S	3	2	8	8	8	2	120	2	5	5	27	3	31	3	27	<u> </u>	3	2	3	97	270	96 7	35	3
040 050 000	2	7	2	2	~	~	~	7	~	2	-	~	-	6		- !	-	-				_				-			
951 951 90.000	^	_	1	7	-	-	5	2	~	~	~	7	~	-		-	\dashv		+	-				: 	-			:	:
000 955 80340	7	-	~	-	=	-	-	-	-	_	2	-	-		2		2	7	2	7 7	-2	7	7	7	7	7	2	•	:
DACOR LEG XOO	•	•	-	•	-	~	2	9	,	6	٥	2	2	=	2	12 12	2	=	2	2	=	=	2	2	8	S	ଥ	3	:
FARTALLON	-	2	~	~	-	~	3	,	٢	~	-	-	+	-	-	\dashv	+	_	_	-	+	-		_	_	j		i	
FARMITON 04-1630	•	-	-	0	7	7	-2	-3	7	ş	٠	-5	ائ	?	<u>ن</u>	7	3	-5 -1	_	4	-	+	_	_	-	_			
PARALLON 04-1620	-	-	~	~	-	•	•	3	,	~	۰	~	-	9	0	-	9	~	-	7	_	7	٥		_	-			
PARENTATS ACT 900	7	3	-	2	~	~	~	•	r	'n	3	~	7	2	-	-	-	+	+	-	+	\dashv	-	_	_	_			- [
PRINCETON DE-10				-	-	0	0	60	٥		6	,	~	•	-	-	-	-	_	7	-	7	2	^	_	_		İ	1
SCIENTED 20-640	1		0	-	-	-	-	-	-	2	2	2	2	7	\dashv		-	-		_	_	-	-	_	\dashv	_			1
SCHOOL STATE	•			-	2	2	^	^	7	7	2	^	7	^	7	~		-	- 7	2	2	2	-	_		_	-		
20-303			•	•	~	•	•	°	î	~	2	3	2	7		0	-	-	0	-	0	7	7	_	_	-			
SC-612	-	-	0	-	-	2	2	7	7	2	ì	~	3	_	3	•		-	~	~	-	-	2	5	^	٥	^	5	1
2018/8/10 2018/8/10		-	-	2	^	^	3	7	~	2	7	2	2	2	~	2	-	7	- 7	2	7	2	7	2 2	2			0	
SEAPRO DR-250		2	~	2	2	_	-	-	-	2	-	Ξ	-	-	0		-	-2	-	-		7	-	-	\dashv	-	_		
SEACHEST BOID	2		12	=	=	12	=	12	01	01	3	-	2	~	1	-	-	+	-	-	-	-	-	+	4	-	_		
SEAQUEST #012	_	<u> </u>	2	2	~	^	ŝ	3	•	~	3	7	-2	7	-	_	-	ᆜ	-	_	_	_	-	_	4	_	_		
94576000	*	MEDIAMISE FA	1 5.	1 =	= =	TIAL	INJTIAL, DESCENT	ENT						†	1	+	+	+	+	+	+	+	+	+	+	+	1		
SPORTSYAY 1406	-,	-,	•		-,	6-	-5	5	7	-2	7	-7	ş	-2	-	\dashv	-		-	-		-	-	_	4	_	4		_
SAS 2009 ***	8	ONLY ONE WAS	E NAS	TESTED	9												İ												

* ALL GAUGES INDICATED O FSW WHEN ON THE SUMFACE. CONSEQUENTLY, DATA COLUMN FOR O FSW IS EXCLUDED.

** MECHANISH JAMMED AT 30 FS# ON INITIAL TEST RUM, NO FURTHER TESTING POSSIBLE.

*** ONLY ONE GAUGE WAS SUPPLIED BY DISTRIBUTOR. UNMBLE TO PROCURE SECOND GAUGE PRIOR TO TESTING.

MAXIMAN DEVIATIONS CONTROL GROUP - ASCENDING AT 70°F (Confined)

10 20 1	-	-			-		اِ	•	13331 H1430	•	ö	17 HT	EE134	,		1	-	1		•	4.	-	-		-	
-9 -2	2	\$	8	2	2	8	홍	2	90 100 110 120 130 140 150 160	2	읗	8	8	170 180		8	190 200 210 220	23		240	230 240 250 260 270 280 290	8	270	280		ş
-		7	7	7	-3 -4 -4 -4 15	2		7	5	7	7	7	7	5 -3 -5 -4 -4 -4 -5 -5	카	انه	-9 -4 -4 -7		-	9		-				:
	-1 -1	1 -2	2 -3	-	-1 -2 -1	7	7	-	0	2	-	7	7	-	0	٥	0	-	1 -2	_	_	_		ļ	-	
7044		~	3 3	-	•	*	•	2	,	2	2			-	-				_	-	_	_				
0.5. DI WERS -3 -2 -2	-2 -2		2	7	-2 -3 -3 -3 -3 -3 -3	7		5,	5-	<u> </u>	·-	_		_			_		_							
DIVERS	-	~	-	•	•	•	•	•	7	•	•	7	•	4	-	-	5 4									
10.5. DI WERS 0 1 1	-	_	•	•	3		•	3	^	2	2	2	_	2	-	-	0	0		7						
S1246 -1 0 -1	-1-	1 -1			-	0	٥	0	۰	۰	0			_		-	_		_	_		_	_			
91247 57AG -5 0 -1	-	-	•		4 5 5 6 6 6	9	۰	٠	•	-	-	-	-	9	~	•	7 7 7 7 6 5 6 6 5 5				_	_	_			

* ALL GAUGES INDICATED O FSM WHEN ON THE SUBFICE, CONSEQUENTLY, DATA COLUMN FOR O FSM IS EXCLUDED.

AZENDIK EL HAKIMIN DEVIATIONS - DESCRIPTION AF 90°F

	!				:	1				1	1	:	-	11.0	1449		;		:	: ·		•	•		. -	•	•	•	
MABER /	2	8	2	\$	8	3	2	3	35 00 00 00	0110	071	2	=	3	3	2	9	3	3	210	977	95.7	240	95	3	270	087	35.	360
DACOR SFG 150	~	•	~	~	5	^	-	~	٥	9	_	2	=	8							:		- :			-	-		
DACOR LFG 150	•	-	•	7	^	~	•	- 9		_	0	9	=	8				-		-			;	:		:	+	•	_
DACOR SFG 300	0	0	•	0	٥	0	0	0	0	0	0	-	0	-	-	2	0	-	2	2	~!	7:	+	©	2	의	2	21	3
DACOR LFG 300	^	-	•	_	4	-	5	7	9	_		-	8	٥	6	9	0]	의	2	2	2	2	의	2	2	2	2	2	3
FAWALLON 04-1610	2	2	2	~	Ī	-	7	2	_	2		2	2 2	2	_							-				:	- :		:
FARKILON 04-1630	٥	-	-	0	•	•	•	0	- 0	-	-2 -:	-2 -1	-	-2	-	0	0	-5	0								1		-
F AMERITON 04-1620	-	-	2	~	•	~	7	7	3	•	-	3	^	-	*	`	2	5	+	^	^	7	7	7			_		
PARETATS 801900	0	0	0	-	-	-	-	2	2	2	2	2	3		_														
TECTONICS DG-10	0	-	0	٥	7	-	-	-2	-2 -	2	-3	-2 -3	3 -2	?	-5	-5	-	-5	ę	?	7	-	7	7					
20-849	-	-	0	•	7	1	7	-2	-2	-2	2-	-2	2 -2	-2							i						-	1	
501574RU 28-850	-	0	-	-	-	2	7	2	7	~	2	~	3 3	,	3	3	4	7	3	~	-	~							
5CUSAPRO 28-203	7	7	0	~	-	2	2	٥	0	- 0	7	-1 -2	2 -2	-5	<u>ئ</u>	5	-7	-	9-	9	9	우	P	9					
3005740 28-012	٥	0	2	-	•	-	7	0	-		0	0	0 0	٥	٥	٥	0	0	0	0	0	-	~	^	7	~	~	~	٥
20-507	٥	°	٥	٥	•	0	0	0	- -	-2 -	-5	-5	وم 1	6	١٩	٠	2	9	9	-1	2	9	2	은	9-	9-	위	위	2
SEAPRO DIN-250	-	-	2	~	7	3	7	7	3	-	2	3	3		2	2	-	Э	-	0	0	٥	ė	0			1		i
SEAQUEST 8010	-	•	7	~	3	•	3	~	4	-	71	-5	0	0															
SEAQUEST 8012	-	-	1-	~	5	2	,	2	2	۶		,	4	2	2	-	2	-	2	-	9	٥	9	0				1	
54EN#000	-	7	1	3	9	8	1	0	-	6		8	9	-			1	7	-	-	0	3	9	7					
SPORTSHAY 1406	2	2		-	-	-	-	-	-	2	-	0	3	7	_												1		
SAS 2089	٥	-	-	-	-	-	2	2	2	2	2	2	,	?	_														
			, 	<u>'</u>			' '		. :		1		4		3	ş													

* ALL GAUGES INDICATED O FSWINEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR O FSW IS EXCLUDED.

MAXIMIM DEVIATIONS - DESCENDING AT 90°F (Continued)

GAUGE/									06PTH (FEET)*					HT 4	FEE	2						•		1		-		1
M.MBCR	9	8	Я	Ş	8	8	2	2	50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 270 260 270 260 290 300	= 8	12	2	1	<u>3</u>	3	2	<u>8</u>	8	200	210	230 230	S.	240	, 2	2	20	2 2	3
\$AS 2069	7	7	-2	~	-	-7	-	0	-2 -1 -2 -1 0 0 0 -2 0 -1 -1 -3 -4 -3 -4 -3 -4 -3 -3 -4 -3	0	~	-	7	<u>.</u>	7	Ŷ	7	٠.	7	-3	î	Ţ	7	Ţ		-		
TEKNM T-2600	7	-2	-5	7	•	7	7	7	-3 -3 -4 -3 -3 -2 -1 -2 0 0 0 0 0 0 0 0 0 0 0 -1 -2 0		- 7	•	-	•	-	•	٥	٥	٥	·	7	-2	•	-		_	_	_
U. S. DI VERS 7044	-	-	-	-	-	-	-	-	0 0 1 1 1 1	0		-	-	7										-		_	-	_
U.S. DI WERS 7042	-	-	-	2	7	2	2	~	2 2 2 2 2 1 1 1 0 -1 -2	-	_	-	-	-2												-	-	_
U.S. DI VERS 7043	7	0	-	-	-	2	2	~	1 2 2 3 3 4 5 4 4 4 5 4 4 3 3 3 3 3 2 3 2	-	~	•	-		Ľ	•	~	^	n		~	7	~	~	-	-	-	_
U.S. DI VERS 7045	0	-	-	-	-	2	2	7	2	3	3	2		-	^	^	r	~	_^	~	S.	~	~	2	_	-		
WHITE STAG	-	-	-	-	-	_	-	-		-	-	-		-	_								_	_	-	-	-	
WHITE STAG 51247	-5	-	٥	٥	٥	2	7	~	0 0 2 2 2 2 0 1 2 2 2 0 0 0 0 0 0 -2 -3 -3 -3 -5	0	-	2	7	۰	٥	٥	0	0	0	-5	÷	Ţ	7	ş				_

" ALL GAUGES INDICATED O FSW WIEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR O FSW IS EXCLUDED.

APPENDIX EZ

MAXIMUM DEVIATIONS - ASCENDING AT 90"!

			-	!			-			1	:	:	-	1104		:	:		:	:								
NABER NABER	2	8	2	1 2	. 8	3	2	- 3	96	2110	0 120	1 2	-	2	3	22	081	3	2002	2107	7 027	- 057	240	2 0 0 2	707	210 78	04.7 097	- 200
UACOR SFG 150	-	-	5	1 5	∔	.	<u> </u>			_	ــــــــــــــــــــــــــــــــــــــ		-						_	_	_	_	_	_	_	_		 -
DACOR LFG 150	2	•	٥	9	٥	9	-	-				-						- :		-				:			- -	
UACUR SFG 300	-	-	-	-	0	-	-	-					-	-	-	2	7	7	~[0		201	5	2	-21	2	0	<u>_</u>
DACOR LFG 300	9	2	2	-	-	^		7		-6	-6	6	8	اد	2	의	2	의	2	2	의	믜	2	=	- 2	- 21	- 21	5
F AREAL LON	2	3	``	3	~	3	1	3						_										-				;
FAREALLON 04-1630	2	2	2	7	-	~	0	•						-	-	-	0	0							_			
FARTILON 04-1620	-	2	~	-	S	3	s	•		2	2				>	٢	ŝ	-	5	2	اء	~	٠					_
PARGUAYS 601900	-	-	2	2	7	2	~	~	3				-					_				_	_			-		_
PRINCETON TECTONICS DG-10	-	2	2	-	2	~	7	0	-	-	_	9	0	٥	9	٥	٩	7	7	-	-	-7				-		_
SCUBAPRO 28-849	-	-	-	-	-	0	0	0	0	0	-2	2-2	<u> </u>	<u> </u>	L.,						-	-		-		-		
SCUBAPRO 28-650	٥	-	7	_	~	-	-	•	-	-	L_	3	7	•	٥	•	S	•	~	~	٥		-	-	_	-	-	
SCUBAPRO 28-503	0	2	2	7	2	-	~	2	3	2	2	2 2	7	٥	<u>_</u>	0	0	٥	7	7	2	7	-	_	_	-		
SCUBAPRO 28-012	ı	-	-	~	~	-	-	7						_	_	3	•	~	•	4	s	4	~	2	-	\$	-	2
SCUB/PR0 28-507	ō		-	0	0	0	0	0	-	- 0	-2 -1	1	-2	•	-5		-	7	7	-2	-	9	_	_		_		-
SEAPRO DM-250	2	~	9	٥	9	~	•	~	-	9	9	2	5	2	2	٥	5	`	7	2	_	-	_					
SEAQUEST 8010	^	2	-	~	~	9	•	-	2	- 2	2 -1		-											_	_			
SEAQUEST 8012	5	•	5	5	,	8	7	60	8	8	8	7	5	~	2	3	2	2	7	2	2	2	2			_	_	
SHEPHOOD 06350	5	9	,	80	8		-	6	8	•	•	6	9	•	0	8	٥	50	•			_	8	-	_	<u> </u>	<u> </u>	-
SPORTSMAY 1406	2	-	0	0	0	0	0	0	0		_	2	2 2									_			_	_		
SAS 2089	٥	-	7	7	-	7	_	_	•		2	-	4									_		_	_			_

* ALL GAUGES INDICATED O FSM WHEN ON THE SUMFACE. CONSEQUENTLY, DATA COLUMN FOR U FSM IS EXCLUDED.

MAXIMUM DEVIATIONS - ASCENDING AT 90°F. (Continued)

										1	1					1		1	i	:	;		:		-		;	:	_
CAUGE/				4	1	-	-	4	7	4		4	-	L TOEPTH JFEETJ* 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	JEE.		7	7	1	4	4	-	-	-	-	-		1	_
MMBER	2	2	×	Ç	ያ	8	2	8	40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 240 250 260 270 280 290 500	2	0 12	٥ ک	1	- 5 5	3	20	08	190	200	210	220	2,20	240	250	200	270	280	8	8
SAS 2069	7	٥	٥	0	0	0	0	٥	0 0 0 1- 1 0 0 0	-	0	0	0	0 0 -1 -2 -2 -2 -2 -2 -3 -3 -2	7	-2	-5	-5	-5	-7	7	7	7						
TEKNA 1-2600	0	0	7	-2	-2	7	-2	-2 -2 -3 -2 0	•	-		_	_	~	_	3 2 2	2	2	2	5	^	•	2	-		_	_	_	- :
U.S. DIVERS 7044	2	2	-	7	2 2 2	2	7	2 1	-		2	2	2 2																
U, S. DI VERS 7042	-	2	2	2	2	~		2 2	2	2	~	_	7																
0.5. DIVERS 7043	0	0	-	=	2	r	-	~	8 9 9 8 8 8 8 8 8 8	-6	-	2	-,	2	•	•	•	7	3	•	3	7	~						
U.S. DIVERS 7045	٥	٥	-	-	-	2	2	•	3 5 4 4 5 4 4 5	-	•	•	7	-	•	5 4 4 3	*	•	3	3	3	2							-
WHITE STAG	-	-	-	=	-	-	-	-	-	-	0	٥	_	_											_				
WHITE STAG	0	٥	٥	٥	7	7	~	2	0 2 2 2 2 1 2 2 3 2 3 0 2 0 0 0 0 0 -2 -3	2	7		2	٥	2	°	0	٥	0	٥	-5	-2	7						

" ALL GAUGES INDICATED O FSM WHEN ON THE SUPFACE, CONSEQUENTLY, DATA COLUMN FOR O FSM IS EXCLUDED.

APPENDIX F1
MAXIMUM DEVIATIONS - DESCENDING AT 32*F

- Causa			}							1				DEPTH		(64611)	:	-	;	!			:	:	:	:			
MMOFR	2	8	Я	2	2	8	2	8	3	8	= =	20	. <u> </u>	<u>-</u>		- 20	<u> </u>	<u>§</u>	200	20	220	. S	240	, X	- S	2.70	38	- 8	2
DACUR SFG 150	-	-	-	-	-	-	-	-	2	~	-	_	+5	_	_				$\overline{}$	_	_	_	_	_	_				
DACOR LFG 150	•	3	7	•	•	-	-	•	•	2	<u>.</u>	2	- 5	7	8	_										_			
DACOR SFG 300	0	-	0	0	0	٥	0	0	0	٥	0	-	-			0	-	-	0	0	۰	0	7	-!	-	٥	2	^	7
DACOR LFG 300	\$	2	-	r	2	3	2	2	2	2	2	2	2	2	2	2		_	- 9		;	2		2	2	2	2	2	8
F ABBOAL LOW 04-1610	7	-3	-2	-5	-2	7	7	7	٠ <u>٠</u>		-5							_									_		
F-AMMALLTHM 04-1630	۰	-	9	-	۰	~	2	-	—	<u> </u>	_		_	-	2		7	2	~										
FARRALLON 04-1620	-	-	2	7	~	~	~	7	7	7	_	_	-	-	7	-	_			7	_	2	_	_					
PARRATAYS 801900	-	-	2	-	7	~	7	2	~	~	~	-	7	~	2	_													
PRINCETON TECTONICS DG-10	•	2	2	~	2	~	-	0	٥	0	0	0		7	-	-1		0	2-	7	7	40	0	•	0				
SCIBAPRO 28-849	7	7	2-	î	Ŷ	7	7	7	7	-5	-5	-5	-5		-5-				_										
28-650	-	0	0	0	٥	0	0	0	0				0	0		2 0	_		-	_	-	_							
SCUEAPRO 28-503	~	~	r	•	-	-	~	~	-	-	-	_		_	<u> </u>		2		7	9			۰	~					
SCUBAPRO 26-012	7	0	÷	٥	0	0	7	-3	ņ	-2	7			<u> </u>	7					7		-5			-,	7	.,	9	0
SCUB/FR0 28-507	0	-	2	•	•	•	2	•	0	٥	0	-	7	5,	_		01 - 0			-10	-				9			-10	2
SEAPRO DM-250	- 10	8	Ŧ	I	-10	-11		_		Ξ			- -	-15 -15			_	_	_		-1	_	Ş	_		1	_		
SEAQUEST 8010	0	-	•	2	2	~	~	7	~	•	•	<u>'</u>	-5	•	-3		_							_					
SEAQUEST BO12	0	•	0	0	0	•	•	٥	0	•	-		•	•	_	7	7		-1	7	-5	~`	7	7					
54ER#000 0G350	0	-	-	-	2	2	2	2	~	_	-						_	-	1 2	_		_							
SPORTS#AY 1406	2	2	-	-	-	~	~	4	_	~	~	~		2	_		_	_	-		:		:						
SAS 2089	.3	-2	•	-5		-5	-5	-2	~		-7-	~	-2-	-2			_	_	_		_			_					

The second secon

MAXIMUM DEVIATIONS - DESCENDING AT 32'F (Continued)

GAUGE/										-	-	-	4	0691	OEPTH (FEET)	1						•		-	-	• •	•	-	,
MIMBER	2	R	2	Ş	8	3	2	99	8	8	2	20	2	15	40 50 60 70 60 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 250 270 280 290 500	130	70 180 190 200 210	8	200	210	220	220 230 240	240	2,20	260	250 260 270 280 290	. 60	8	. 8
SAS 2069	1	-	-	~	2 0	0	•	9	2	-	·	3	2	1	5 4 5 5 2 3 1 2 0	-	0	°	٥	0 0 0 0 0	0	0	0	0				-	-
TEKNA 1-2600	2	۰	٥	٥	۰	•	0	•	0 0 2	•	7	_	•	2	2 4 3 4 3 1 3 2 0		•	_		2	0	0	0	_	_				
U. S. DI VERS 7044	2	~	2	2	-	-	-	۰	•	0	0	0	0	0	0	-	<u> </u>	_	_							-	-		
U.S. DI WERS 7042	0	0	-	-	-	-	-	0	0 0 0 -1 -2 -3 -4	0	-	-	2,	-	-	<u> </u>		_	L							-		-	:
U.S. DIVERS 7043	7	0	0	•	-	-	-	-	-	-	-	-	-	-	0 0 1	<u> </u>	0	0	0	0	•	0	0	0		-	-	 	
U. S. DI VERS	0	0	0	٥	0	0	0	0	0	•	0	0	0	0	0 0 0 0 0 0 0 0 0	٦	٥	°	0	7	-2	7	0 0 0 -1 -2 -1 -2 -3	?		-	-	-	1
WHITE STAG	S-	-3	-5	-5	-5 -5 -5	-\$-	-5	9-	1- 9- 9- 9- 5-	ę	φ	9	ų,	9- /	9	_											-	-	
WHITE STAG 91247	2	-10 -10	_	우	6-	6	-	ę	6	6	9	2	9	,	-10 -9 -3 -6 -9 -9 -10 -10 -10 -9 -10 -10 -10 -11 -11 -11 -11 -11 -15 -15	- 2	9	7	=	=	£-	9	-15	-13	 	-	-	-	

" ALL GAUGES INDICATED O FSH WHEN ON THE SURFACE, CONSEQUENTLY, DATA COLUMN FOR O FSH IS EXCLUDED.

APPENDIX F.2 MAXIMUM DEVIATIONS - ASCENDING AT 32°F

								ļ											•			:	1		!		:	į	
NIMBER			5	1	5	+	5	1	8		9	1 8	5	3		ئے ا	-	1 5	1 8	-	3.5	1	-	- 5	- 52]	380		5
DACOR SFG 150	-	-	-	-	1 ~	3 -	,	-	+-	+	+		$\dot{m{-}}$	-	+		4-	+	-		-	3	-	3	3	3	3	3	3
DACOR LFG 150	-	-	-	-	2	-	-	-	-	-	-	-	↓_	-	-	-	_	<u> </u>	_	<u> </u>		-							<u> </u>
UNCOR SFG X00	٥	٥	0	0	0	0	٥	0	0	0	0	0			0	0	0	٥	7	٥	-	_	-	-	-	2	2	-	i]
DACOR LFG 300	9	٤	3	5	5	~	9	7	7	2	3	2	5	_	_	9	•				2	2	2	2	2	2	01	2	
F ANDALLON 04-1610	ŗ	-5	7	7	7	~	7	٠	-5	7	_	<u> </u>	-5	_				_											
FARMILON 04-1630	ſ	•	^	ľ	•	9	7	2	~	-	2	-	_	_	-	~	~	-		_			_						<u>.</u>
F JAREAL LON 04-1620	0	2	~	8	•	'n	2	~	n	~	•	~	2	2	2		7	2	2	2	2	_	-						
PARMITAYS BO1900	-	Ξ	~	2	2	2	~	~	2	2	7	-	7	2	_			_	_				_						<u> </u>
PRINCETON TECTONICS DG-10	•	s	•	2	~	'n	•	7	2	~	-	0	<u> </u>		0	0	0	0	-	٥	0	0	°	٥					!
SCUBAPRO 26-649	7	7	7	-2	7	-2	-5	7	7	7	7	7		<u> </u>	<u> </u>			_	_				<u> </u>		_				<u> </u>
SCUBAPRO 28-650	-	•	٥	٥	٥	-	-	-	-	-	-	7		-	-	2 2	2	7	_	7	2	٥	-						<u> </u>
5CUBAPRO 28-503	•	ŧ	•	3	9	-	~	-	8	•	•	2	2		0	0	٥		0	٥	_	0	2						Ĺ
SCUBAPRO 26-012	7	0	0	٥	0	٥	0	0	-2		<u> </u>	٠ <u>.</u>	<u>.</u>	7	3 -2	7	٩	2	0	?	Ŷ	7	<u> '</u>	-	?	°	0	0	!
SCIBMPRO 28-507	0	S	ŝ	•	•	~	-	~	-	•	-	0	0	-	—	<u> </u>	Ŷ	_	٥	3.	_	<u> </u>	-	-10	⊢	-	ş	Ŷ	
SEAPRO DM-250	-10	- 10	9-	9-	-10	-10	-10	-10	-10	0	- 10	-10	10 -14	4 -15	5 -15	3 -15	-15	-15	-15	-13	-15	<u> </u>							
SEAQUEST 8010	0	7	Ŧ	~	-	~	•	7	7	•	0	٠ <u>.</u>	7	7															
SEAQUEST 8012	0	0	0	0	٥	0	0	۰	0	0	•	•	•	0	0	-		۱	7	-		7	7						
SHERMODD DG350	0	S	7	2	2	~	2	2	2	3	3	•	3		2	2 2	7	,	2	2	-	٥	_						
SPORTSWAY 1406	2	Ξ	-	-	-	2	2	3	-	2	~	-																	
SAS 2089	-5	۰	•	0	0	0	0	۰	-	-5	-2	-7	-	-	_		_												

APPENDIX F2

MAXIMIM DEVIATIONS - ASCENDING AT 32°F (Continued)

	-		1								1		į			-	-		-	1	-	-	1	-	-	-	1	1	-
GAUGE/		1	-	-	-	-	-	1		-		4 - 4 - 1		DEPTH /	(FEET)		Ì]	1	1		Ì	-			1		-	
NIMBER	10	8	Я	Ş	50 60	3	.02	90	8	= 2	0 12	5	Ξ	130	150 160 170 180 190 200 210 220 230 240 250 260 270 280 290	2	8	8	8	210	220	82	240	22	98	2,02	98 28	8	300
SAS 2069	2	٦	~	~	2	~	3	~	3	2	-	6	5 5 0 4	2	-	-	٥	0	٥	-	0	0	٥						
TEKNA 1-2600	2	2	-	-	•	0	0	0	7	7	2	3 6	9	7 8 8	•	,	7 4 8	80	6	8	,	1		_			_		
U. S. DI VERS 7044	2	~	2	2	-	-	7	-	0	0	0	0	0 0	-												Н			
U. S. DI VERS 7042	0	0	-	0	-	-	-	0	•	0	-	0 -1 -2	2 -3																
U. S. DI VERS 7043	8	8	2	=	_	2 2	7	2	-	7	_	2 1 2 2	2	0 1 -2 0 0 0 0 0 0 0	-2	°	٥	0	0	0	0	0	0						
U. S. DI VERS	٥	•	-	-	-	-	2	~	2	2 0 2	-	2 2	2	2 2 1 2 0	-	2	٥	2	3	2	0	0	0						
WHITE STAG	ş	-5	ş	÷.	-\$	7	-5	-5	-5 -6 -5 -5 -5		9	9	9- 9																
WHITE STAG	- 10	- 10 - 10	9	91-	9	٩	ę	9	6	6		9	- 10 - 11 - 11 - 10 - 10 - 10 - 10 - 10	- 10	2	9-	-10	-10	01	=	-12	-13	-15				-		

• ALL GAUGES INDICATED 0 FOR WHEN ON THE SURFACE, CONSEQUENTLY, DATA COLUMN FOR 0 FOR 15 EXCLUDED.

MAXIMUM DEVIATIONS FOLLOWING DURABILITY TEST - DESCENDING AT 70°E

GAUGE/				'		'	'	'	'	.			.	DEPTH	CLESTY HI	103			.		.	 						į .	
MMBER	10	2	2	Ş	8	8	. 2	8	8	8	01	20	1 30	10		021	180	8	200	210	220	230	240	28	- % - %	270	38 0	28	. 3
DACOR SFG 150	3	2	2	2	2	2	2	-	7	4	۰	7	,	0	8										_		_		
DACOR LFG 150	,	7	1	,	1	•	•		6	2	2	Ξ	12	0	90														
DACOR SFG 300	-	-	0	0	0	•	0	-	_	-	-	0	0	0	_	_		•		2	_	1	9	_	•		2	^	ŝ
DACOR LFG 300	7	•	3	~	3	3	`	r	7	9	9	1	1	8	8	8	5	9	01	2	2	2	=	Ξ	Ξ	12	2	2	8
F ABRALLON 04-1610	0	0	0	-	-	0	0	0	0	-	-	-1	-1	0	7														
F APRALLON 04-1630	2	2	2	2	-	-	0	-	-	•	•	0	0	0	0	0	_	_	_	_	_								
FAGRALLON 04-1620	-	_	3	2	-2	3		3	2	7	•	*	9	٦	9		2	-	8	5		•	-	~	<u> </u>				
PARC/AYS 801900	0	0	0	0	0	0	-	0	-	-	-	-	_					-						_					
PRINCETON TECTONICS DG-10	2	2	2	-	•	-	0	0	0	0	0	0	-	-2	-	7	7	7	<u>.</u>	7	-7		3	0	_				
28-849	0	0	-	-2	-5	7	£-	7	-5	60	Ŷ	-4	•	-3					-			_	_						
SCJBAPRO 28-850	-1	0	0	0	0	•	-	-	-	_	_	2	2	۳	2	2	N.			3	_	3 2		_	_		_		
SCJBAPR0 28-503	2	2	•	~	2	•	•	-	0	0	0	0	0	0	-	-4		9	-9	01-	-10	- 10	°	2					
SCJBAPR0 28-012	0	0	-	2	-	-	٥	0	0	-	•	0	0	•	0	0	0	0	0	0		1	2	2	^	*		^	2
26-507	٥	-	-	٥	٥	٥	٥	٥	٥	0	0	Ş	6	9	-9	Ī	-10	٥- ١٥	01-10	- 10	-10	-10	Ī	- 10		₽	-7	-10	-10
SEAPRO DM-250	-10	7	7	7	7	٥	7	7	7	7	~	7	-2	·	Ţ	7	٢.		ž.	9	<u>-</u>	9	٠,	۴	÷.	-			
SEAQUEST 8010	٥	2	•	~	2	-	-	*	7	~	7	7	-5	0	-	-	_												
SEAQUEST 8012	٥	0	0	0	-	7	2	2	-	-	-	0	0	-	•	0	•	-	0	-1	-5	-1	2	0					
SMENBOOD DG350	0	2	7	7	2	~	7	2	~	~		7	-	-	_	8				3	2								
1406	3	2	7	2	7	~	7	7	~	2	-	-	_	_	0	0	- :		_	_	_								
SAS 2089	7	7	0	•	0	•	0	-	_	0	•	0	0	0	-	-	_	_	_	_			_	_					
																			,	,	,	,	,	,	;	•			:

" ALL GAUGES INDICATED O FSW WHEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR O FSW IS EXCLUDED.

MAXIMUM DEVIATIONS FOLLOWING DURABILITY TEST - DESCENDING AT 70°F (Continued)

GAMGE/		i '		, ·		'	ļ ·							CERTH AFEETS	1FEE	100			'									• ; .
MEMBER	2	8	Я	\$	2	8	2	8	8	8	01	2	-	40 50 60 70 80 90 100 110 120 130 140 150 150 170 180 190 200 210 220 230 240 250 250 270 280 290 300	3	120	190	8	200	210	220	8	40	250 2	8	260 270 280	58	ğ
SAS 2069	7	7	•	0	0	0	0	-	-	•	0	0	0	0 0 0 0 0 0 1	٥	-5	0 -2 -2	-2	7	Ŷ	-2 -1 -3 -2 -3	÷	7	٥		_		
TEKNA 1-2600	0	-1	7	7	-1 -2 -3 -2 -2 -2 -1 0 0	-	-2	-2	7-7	7	0	0	0	0	0	۰	٥	0	0	0	0 0 0 -2		0	-				
0.5. DIVERS	-	-	2	2	2	2	2	2	2	2	-	0 1	0 2	2		L							-		_	_	_	_
U.S. DIVERS 7042	٥	°	-	-	-	-	-	_	-	-		-	2	0 -1 -2 -2 -4													_	
U.S. DIVERS 7043	7	0	0	۰	-	0	7	-	2	-	2	2 2	2	2 4 2 3 2	2	^	2	2	2	2	-	~	-	2			_	
U.S. DIVERS	0	0	2	-	-	2	2	2	2	2	3	2 2 2 2 2 2	2	2 2 3 2 2	2	Ŷ	2	2	2 2	2	-	2	-	2				
9HITE STAG 51246	0	0	0	1-	0	0	0 0 0	0	0	0	0	0 0 0 0	0	0	<u> </u>							-	-	_	_		-	_
WHITE STAG	-10	-1	7	7	7	0	•	0	-	-	-	-	3	8- 9- 9- 9- 9- 5- 5- 5- 5- 5- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8-	7	-5	5	-5	-5	Ŷ	φ	ę	9	60				_

* ALL GALGES INDICATED O FSW WHEN ON THE SLIFFACE, CONSF'2JENTLY, DATA COLUMN FOR O FSW IS EXCLUTED.

APPENDIX GZ

MAXIMUM DEVIATIONS FOLLOWING DURABILITY TEST - ASCENDING AT 70°F

												'	190	DEPTH AF	FEETS		-	-	1	-			1	+	+	+	+	
GAUGE/ MIMBER	19	8	9	9	3	3	2	8	2	130	22	2	9	$\overline{}$	38	170 180	8	200	210	220	230	240	8	8	270 2	200 2	280	8
021 035 0000	,	╄	-	٠	Ц_	<u> </u>	-	-	9	,	0	2	2	-	-	4	4	+	4					+	-	-	-	
OCT OF WORLD	†•	١.	-	-	-	ļ.,	L	2	2	_	12	12	8		-	-	-	-	-+	-				-	+		+	Ţ
DACAR LIFE 150	9	+-	-	-	+-	-	↓_	├	!	-	-	-	-	-	-	7	-	_	-	1	-	7	6	•	-	~	2	
DAC 376 300	,	+	+-	-	- v	-	-	-	0	8	•	80	60	0	2	9	2	의	2	의	2	의	2	의	의	ᆿ	=	T
FARKITON 04-1610		0	0	-	-	-	_	0	0	0	0	0	0	+	-	+	+	+	4	1				+	+	+	+	į
FARRALLON	7	-	-	2	2	2	2		-		2	2	2	2	2	2	7	7	+	-				Ť	+	\dagger	+	
FARRALLON	-	-	5	 	~	•	•	-	7	^	9	-	-	9	0	-	+	-	1		1	9		1	+	\dagger	+	Ţ
PARKITAYS	0	0	0	0	0		-	2	2	7	2	2	2	7	+	\dashv	+	+	+	-	_			1	†	+	+	T
PRINCETON	1	1	-	~	-	•	2	-	1	-	-	-	-	7	0	0	-		0			٥			+	+	+	
SCUBAPRO 26-649	ı	0	0	0	0	0	0	7	7	-	-5	?	-5	+	+	+	+	+	+	\downarrow					†	+	+	i
SCUBAPRO	1	6	,	-	-	~	3		FT.	_	+	7	7	7	7	-	+	•	2	1	\perp				+	\dagger	+	Ī
SCIENTED	,	, ~	-	- "	-	-	3	-	7	2	2	-	-	0	0	-	+	-	0		긔	?			+	Ť	+	-
SCHEWERO	-	,	, ,	+-	-	7	-	-	7	-	-	-	-	-	-	2	7	2	3	1	1	•	2	6	~	1	2	1
SCIENTED		-	,	-	7	-	0	0	0	0	0	0	-1	<u>-</u>	7	7		2-	7	7		0	0	7-	?	7	27	İ
CEADO DM-250	0	0	0	0	-	0	-	-	0	0	0	٥	٥	0	0	0	0	-	7	-	7	?				\top	+	i
SEADING T BOILD	~	-	-	•	-	-		•	*	7	7	٥	=	i		+	+	\dashv	4	4	4	\perp			Ť	1	Ť	
SEADIFST 8012	٥	0	-	7	~	~		2	2 2	2 2	7	0	0	0	0	0	0	-	0	0	1	9				1	Ť	,
SIERROOD 06350	-	2	2	2	9	3	3	9	9	80	•	8	80	60	8	7	+	7	+	2	٥	1			1			
SPORT SMAY 1406	2	-	-	~	~	2	-	~		0	0	0	0		+	+	+	+	+	+	+	+					+	
SAS 2089	٥	•	•	0	7	~	-	<u> </u>	2	-	1	0			7	4	-	+	+		<u> </u>	_	_		1	7	-	
													2	5	200													

" ALL GAMES INDICATED O FSW MIEN ON THE SIRFACE. CONSECUENTLY, DATA COLUMN FOR O FSM IS EXCLUDED.

APPENDIX 62

MAXIMUM DEVIATIONS FOLLOWING DURABILITY TEST - ASCENDING AT 70°F (Confinued)

GAUGE/					•	1	-	-	-	•	•	-	•	DEP	347 11.	DEPTH AFEETS"		-							·	•		
MIMBER	10	8	Я	\$	S	8	2	8	8	8	10	20	2	0	9	80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 250 270 280 290 500		8	190 200	2.0	220	230	230 240 250	8	82	260 270 280 290	98	8
SAS 2069	0	0	0	-	2	2	-	~	4 3 3 2	7	-	-	-	0 0 1 1 1	0	0 0 0	۔ ا	0	0	0	٥	٥	٥					-
TEKNA 1-2600	٥	0	٥	-	-	-	-1	0	•	0	•	-	-	_	2	2	2 0	2	``		•	\$				-	-	-
U.S. DIVERS 7044	2	7	-	2	2	2	2 2	2	2	2	-	-	-	-	-	_	_	_	_	<u> </u>	L							-
U.S. DIVERS 7042	۰	0	0	-	-	-	-	-	-	_	-	0 02	2	7	-	-	L	_	Ĺ	L								-
U.S. DIVERS 7043	0	0	0	•	0	٥	0	-	-	2	~	2	2	2	-	2	2	7	2	~	7	2	7				 	
0.5. DIVERS 7045	۰	0	-	-	-	-	2 2	2	1	~	3	3 3 3	3	3	3	3 3 3 2 2 2	-	_	7	2	2	_^	^					-
WHITE STAG 51246	°	0	•	0	0	•	•	0	0	0	0	0	۰	•	\vdash	_	_		_									-
WHITE STAG 51247	2	7	7	7	7	0	•	0	0	0	0	+	 	- 2	-	-1 -1 0 0 0 0 0 0 -1 -1 -2 -3 -4 -5 -5 -5 -5 -5 -5 -5	7	1	· ·	1	-5	-5	٥					

* ALL GAUGES INDICATED O FSW WHEN ON THE SURFACE. CONSEQUENTLY, DATA COLUMN FOR O FSW IS EXCLUDED.

APPENDIX H

DIVER QUESTIONNAIRE

Poor 010 012 -1610 -1620 -1630 G-350	Readabi II ty Ri	Good Excellent
-1610 -1620 -1630		
-1610 -1620 -1630		
-1610 -1620 -1630		
-1620 -1630		
-1620 -1630		
-1620 -1630		
-1630		
3-350		
		1
3		
2600		
246		
247		
089		
069		
G 150		
3 300		
3 150		
300		
406		
-849		
-850		
-012		
-507		
-503		
142		
		
044		
045		
150 }		
0	1503 142 143 144 145	1503 142 143 144 145

DIVER'S NAME:	
RATE/NEC:	
TYPE OF DIVE:	NIGHT
SIGNATURE:	