Preface

感谢

首先感谢大家的信任。

作者仅仅是在学习应用数学科学和机器学习算法时,多读了几本数学书,多做了些思考和知 识整理而已。知者不言,言者不知。知者不博,博者不知。水平有限,把自己有限所学所思斗胆 和大家分享,作者权当无知者无畏。希望大家在 B 站视频下方和 Github 多提意见,让这套书成为 作者和读者共同参与创作的优质作品。

特别感谢清华大学出版社的栾大成老师。从选题策划、内容创作、装帧设计,栾老师事无巨 细、一路陪伴。每次和栾老师交流,我都能感受到他对优质作品的追求、对知识分享的热情。

出来混总是要还的

曾几何时,考试是我们学习数学的唯一动力。考试是头悬梁的绳,是锥刺股的锥。我们中的 绝大多数人从小到大为各种考试埋头题海、数学味同嚼蜡、甚至让人恨之入骨。

数学给我们带来了无尽的折磨。我们憎恨数学,恐惧数学,恨不得一走出校门就把数学抛之 脑后、老死不相往来。

可悲可笑的是,我们其中很多人可能会在毕业的五年或十年以后,因为工作需要,不得不重 新学习微积分、线性代数、概率统计,悔恨当初没有学好数学、走了很多弯路、没能学以致用, 从而迁怒于教材和老师。

这一切不能都怪数学,值得反思的是我们学习数学的方法、目的。

再给自己一个学数学的理由

为考试而学数学,是被逼无奈的举动。而为数学而数学,则又太过高尚而遥不可及。

相信对于绝大部分的我们来说,数学是工具、是谋生手段,而不是目的。我们主动学数学, 是想用数学工具解决具体问题。

现在,这套书给大家一个"学数学、用数学"的全新动力——数据科学、机器学习。

数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥 匙。不是所有人生来都握有一副好牌,但是掌握"数学 + 编程 + 机器学习"绝对是王牌。这次,学 习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。

未来已来, 你来不来?

本套丛书如何帮到你

为了让大家学数学、用数学,甚至爱上数学,作者可谓颇费心机。在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。

为此, 丛书在内容创作上突出以下几个特点:

- **数学** + **艺术**——全彩图解,极致可视化,让数学思想跃然纸上、生动有趣、一看就懂,同时提高大家的数据思维、几何想象力、艺术感;
- ▼基础——从零开始学习 Python 编程,从写第一行代码到搭建数据科学和机器学习应用;
- 知识网络——打破数学板块之间的壁垒,让大家看到数学代数、几何、线性代数、微积分、概率统计等板块之间的联系,编织一张绵密的数学知识网络;
- 动手——授人以鱼不如授人以渔,和大家一起写代码、用 Streamlit 创作数学动画、交互 App;
- ◆ 学习生态——构造自主探究式学习生态环境"微课视频 + 纸质图书 + 电子图书 + 代码文件 + 可视化工具 + 思维导图",提供各种优质学习资源;
- **▼ 理论** + **实践**——从加减乘除到机器学习,丛书内容安排由浅入深、螺旋上升,兼顾理论和实践;在编程中学习数学,学习数学时解决实际问题。

虽然本书标榜"从加减乘除到机器学习",但是建议读者朋友们至少具备高中数学知识。如果读者正在学习或曾经学过大学数学(微积分、线性代数、概率统计),这套书就更容易读了。

聊聊数学

数学是工具。锤子是工具,剪刀是工具,数学也是工具。

数学是思想。数学是人类思想的高度抽象的结晶体。在其冷酷的外表之下,数学的内核实际上就是人类朴素的思想。学习数学时,知其然,更要知其所以然。不要死记硬背公式定理,理解背后的数学思想才是关键。如果你能画一幅图、用大白话描述清楚一个公式、一则定理,这就说明你真正理解了它。

数学是语言。就好比世界各地不同种族有自己的语言,数学则是人类共同的语言和逻辑。数学这门语言极其精准、高度抽象,放之四海而皆准。虽然我们中绝大多数人没有被数学女神选中,不能为人类的对数学认知开疆扩土;但是,这丝毫不妨碍我们使用数学这门语言。就好比,我们不会成为语言学家,我们完全可以使用母语和外语交流。

数学是体系。代数、几何、线性代数、微积分、概率统计、优化方法等等,看似一个个孤岛,实际上都是数学网络的一条条织线。建议大家学习时,特别关注不同数学板块之间的联系,见树,更要见林。

数学是基石。拿破仑曾说"数学的日臻完善和这个国强民富息息相关。"数学是科学进步的根基,是经济繁荣的支柱,是保家卫国的武器,是探索星辰大海的航船。

数学是艺术。数学和音乐、绘画、建筑一样,都是人类艺术体验。通过可视化工具,我们会在看似枯燥的公式、定理、数据背后,发现数学之美。

数学是历史,是人类共同记忆体。"历史是过去,又属于现在,同时在指引未来。"数学是人类的集体学习思考,她把人的思维符号化、形式化,进而记录、积累、传播、创新、发展。从甲

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

骨、泥板、石板、竹简、木牍、纸草、羊皮卷、活字印刷、纸质书、到数字媒介,这一过程持续 了数千年,至今绵延不息。

数学是无穷无尽的**想象力**,是人类的**好奇心**,是自我挑战的**毅力**,是一个接着一个的**问题**, 是看似荒诞不经的**猜想**,是一次次胆大包天的**批判性思考**,是敢于站在前人的臂膀之上的**勇气**, 是孜孜不倦地延展人类认知边界的不懈努力。

家园、诗、远方

诺瓦利斯曾说:"哲学就是怀着一种乡愁的冲动到处去寻找家园。"

在纷繁复杂的尘世,数学纯粹的就像精神的世外桃源。数学是,一束光,一条巷,一团不灭 的希望,一股磅礴的力量,一个值得寄托的避风港。

打破陈腐的锁链,把功利心暂放一边,我们一道怀揣一分乡愁、心存些许诗意、踩着艺术维 度,投入数学张开的臂膀,驶入她色彩斑斓、变幻无穷的深港,感受久违的归属,一睹更美、更 好的远方。

Acknowledgement

致谢

To my parents.

谨以此书献给我的父母

How to Use the Book

使用本书

丛书资源

本系列丛书提供的配套资源有以下几个:

- ◀ 纸质图书;
- ▼ PDF 文件,方便移动终端学习;请大家注意,纸质图书经过出版社五审五校修改,内容细节上会和 PDF 文件有出入。
- 每章提供思维导图,纸质书提供全书思维导图海报;
- ▼ Python 代码文件,直接下载运行,或者复制、粘贴到 Jupyter 运行;
- ◀ Python 代码中有专门用 Streamlit 开发数学动画和交互 App 的文件;
- ◀ 微课视频、强调重点、讲解难点、聊聊天。

在纸质书中为了方便大家查找不同配套资源,作者特别设计了如下几个标识。

微课视频

本书配套微课视频均发布在 B 站——生姜 DrGinger:

https://space.bilibili.com/513194466

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com 微课视频是以"聊天"的方式,和大家探讨某个数学话题的重点内容,讲讲代码中可能遇到的 难点,甚至侃侃历史、说说时事、聊聊生活。

本书配套的微课视频目的是引导大家自主编程实践、探究式学习,并不是"照本宣科"。

纸质图书上已经写得很清楚的内容,视频课程只会强调重点。需要说明的是,图书内容不是视频的"逐字稿"。

代码文件

本系列丛书的 Python 代码文件下载地址为:

→ https://github.com/Visualize-ML

Python 代码文件会不定期修改,请大家注意更新。图书配套的 PDF 文件和勘误也会上传到这个 GitHub 账户。因此,建议大家注册 GitHub 账户,给书稿文件夹标星 (star) 或分支克隆 (fork)。

考虑再三,作者还是决定不把代码全文印在纸质书中,以便减少篇幅,节约用纸。

本书编程实践例子中主要使用"鸢尾花数据集",数据来源是 Scikit-learn 库、Seaborn 库。此外,系列丛书封面设计致敬梵高《鸢尾花》,要是给本系列丛书起个昵称的话,作者乐见"鸢尾花书"。

App 开发

本书几乎每一章都至少有一个用 Streamlit 开发的 App,用来展示数学动画、数据分析、机器学习算法。

Streamlit 是个开源的 Python 库,能够方便快捷搭建、部署交互型网页 App。Streamlit 非常简单易用、很受欢迎。Streamlit 兼容目前主流的 Python 数据分析库,比如 NumPy、Pandas、Scikitlearn、PyTorch、TensorFlow 等等。Streamlit 还支持 Plotly、Bokeh、Altair 等交互可视化库。

本书中很多 App 设计都采用 Streamlit + Plotly 方案。此外,本书专门配套教学视频手把手和大家一起做 App。

大家可以参考如下页面, 更多了解 Streamlit:

- https://streamlit.io/gallery
- https://docs.streamlit.io/library/api-reference

实践平台

本书作者编写代码时采用的 IDE (integrated development environment) 是 Spyder,目的是给大家提供简洁的 Python 代码文件。

但是,建议大家采用 JupyterLab 或 Jupyter notebook 作为本系列丛书配套学习工具。

简单来说, Jupyter 集合"浏览器 + 编程 + 文档 + 绘图 + 多媒体 + 发布"众多功能与一身, 非常适合探究式学习。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

运行 Jupyter 无需 IDE,只需要浏览器。Jupyter 容易分块执行代码。Jupyter 支持 inline 打印结 果,直接将结果图片打印在分块代码下方。Jupyter 还支持很多其他语言,比如 R 和 Julia。

使用 markdown 文档编辑功能,可以编程同时写笔记,不需要额外创建文档。Jupyter 中插入 图片和视频链接都很方便。此外,还可以插入 Latex 公式。对于长文档,可以用边栏目录查找特 定内容。

Jupyter 发布功能很友好,方便打印成 HTML、PDF 等格式文件。

Jupyter 也并不完美,目前尚待解决的问题有几个。Jupyter 中代码调试不方便,需要安装专门 插件 (比如 debugger)。Jupyter 没有 variable explorer,要么 inline 打印数据,要么将数据写到 csv 或 Excel 文件中再打开。图像结果不具有交互性,比如不能查看某个点的值,或者旋转 3D 图形, 可以考虑安装 (jupyter-matplotlib)。注意,利用 Altair 或 Plotly 绘制的图像支持交互功能。对于自 定义函数,目前没有快捷键直接跳转到其定义。但是,很多开发者针对这些问题都开发了插件, 请大家留意。

大家可以下载安装 Anaconda,JupyterLab、Spyder、PyCharm 等常用工具都集成在 Anaconda 中。下载 Anaconda 的地址为:

https://www.anaconda.com/

学习步骤

大家可以根据自己的偏好制定学习步骤,本书推荐如下步骤。

学完每章后,大家可以在平台上发布自己的 Jupyter 笔记,进一步听取朋友们的意见,共同进 步。这样做还可以提高自己学习的动力。

意见建议

欢迎大家对本系列丛书提意见和建议, 丛书专属邮箱地址为:

jiang.visualize.ml@gmail.com

也欢迎大家在B站视频下方留言互动。

Contents

Introduction

绪论

图解+编程+实践+数学板块融合

(). 本册在全套丛书的定位

本系列丛书有三大板块——编程、数学、实践。数据科学、机器学习各种算法离不开数学,本册《矩阵力量》是"数学"板块的第二本,主要介绍常用线性代数工具。任何数学工具想要从一元推广到多元,比如多元微积分、多元统计,都绕不开线性代数。

大家在学习《矩阵力量》之前,请先完成《数学要素》一册的学习。《数学要素》一册见缝插针地讲解了很多线性代数概念,特别是"鸡兔同笼三部曲"给本书主要内容埋了伏笔。《数学要素》还介绍了很多 Python 编程工具,这些都是《矩阵力量》的基础。

图 1. 本系列丛书板块布局

0.2 结构: 7 大板块

本书可以归纳为7大板块——向量、矩阵、向量空间、矩阵分解、微积分、空间几何、数据。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 2. 《矩阵力量》板块布局

向量

"向量"部分首先介绍向量这个多面手在数据、矩阵、几何、统计、空间等领域扮演的角色, 第2章讲解各种和向量相关的运算法则。

第3章专门讲解向量范数,向量范数无非就是一种描述向量"大小"的尺度。请大家格外注意 L^0 范数和"距离度量"、"超椭圆"等数学概念的联系。

矩阵

矩阵两个大功能:表格、映射。"矩阵"这个版块首先介绍了围绕矩阵的各种计算。各种计算中,矩阵乘法居于核心位置。请大家务必掌握矩阵乘法的两个视角。

此外, 第 5 章介绍了大量矩阵乘法形态, 以及它们的应用场合。希望大家一边学习本书后续内容, 一边回顾第 5 章矩阵乘法形态。第 6 章介绍分块矩阵, 请大家格外留意分块矩阵的乘法规则。

向量空间

"向量空间"这个版块主要有三大主题——空间、几何转换、正交投影。

第7章中我们用 RGB 给向量空间"涂颜色",帮助大家理解向量空间相关概念。第8章讲解以线性变换为主的几何变换,大家务必掌握平移、投影、旋转、缩放这三类几何变换。鉴于其重要性,接下来用两章内容讲解正交投影。第9章主要从几何视角介绍正交投影,第10章从数据角度讲解。

第 10 章是本书的一个分水岭,这章使用了前九章大部分线性代数工具,并开启了"矩阵分解" 这个版块。因此,如果大家阅读第 10 章感到吃力,请务必重温前九章内容。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

矩阵分解

"矩阵分解"好比代数中的"因式分解",矩阵分解也可以理解为特殊的矩阵乘法。矩阵分解是很多数据科学、机器学习算法的基础,因此本书分配了六章篇幅讲解矩阵分解。大家务必要掌握特征值分解(第 13、14 章)和奇异值分解(第 15、16 章)。

学习这六章的"诀窍"就是——几何视角!大家要从几何视角理解不同矩阵分解。本书之后还 会介绍理解矩阵分解的其他视角,比如优化视角、空间视角、数据视角等等。

微积分

有了线性代数工具,我们可以轻松把微积分从一元推广到多元。本书第 17 章主要讲解多元微分,请大家务必掌握梯度向量、方向性导数、多元泰勒展开这三个工具。

第 18 章则接力《数学要素》第 19 章,继续探讨如何用拉格朗日乘子法解决"有约束优化问题"。此外,第 18 章还提供了观察特征值分解、奇异值分解、正交投影的"优化视角"。

空间几何

第 19、20、21 三章主要介绍如何用线性代数工具解决空间几何问题。第 19 章将直线扩展到了超平面。第 20 章用线性代数工具重新分析圆锥曲线,请大家格外注意"缩放 → 旋转 → 平移"这一连串几何操作,以及它们和多元高斯分布概率密度函数的关系。第 21 章将曲面和正定性联系起来,并介绍正定性在优化问题求解中扮演的角色。

数据

本书最后四章以数据收尾。第22章用线性代数工具再次解释了统计中重要概念。

第 23、24、25 三章是"数据三部曲"。第 23 章从奇异值分解引出四个空间。第 24 章从数据、几何、空间、优化等视角总结了本书前文介绍的矩阵分解。第 25 章展望了数据及线性代数工具在数据科学和机器学习领域的几个应用场景。

这部分内容既是本册所有核心内容的总结,也为《统计至简》一册做了内容预告和铺垫。

0.3 特点: 多重视角

《矩阵力量》一册最大特点就是,跳出传统线性"代数"的框架,从第1章开始就引入"多重视角"思维方式。

本书中常用的视角有:数据视角、几何视角、空间视角、优化视角、统计视角等等。"多重视角"把代数、线性代数、几何、解析几何、概率统计、微积分、优化方法等编织成一张绵密的网络。作者认为"多重视角"是掌握线性代数各种工具的最佳途径,没有之一。

本书在内容安排上会显得"瞻前顾后"、"左顾右盼",因为线性代数虽然是"代数",但是她的手却紧紧牵着数据、几何、微积分、优化、概率统计。因此,为了让大家看到线性代数的"伟力",本书不厌其烦地介绍各种应用场景,在内容上读起来可能有点"磨叽",希望大家理解。

"图解 + 编程 + 机器学习应用"是丛书的核心特点,《矩阵力量》一册也当然不例外。本书在讲解线性代数工具时,会穿插介绍其在数据科学和机器学习领域应用场景,让大家学以致用。

希望大家在学习《矩阵力量》时,能够体会到下面这几句话的意义。

有数据的地方,就有矩阵!

有矩阵的地方,就有向量!

有向量的地方,就有几何!

有向量的地方,就有空间!

有数据的地方,必有统计!

下面开始本册学习。