Tables for the Application of Mr Innes's Method. By Frank Robbins.

As an appendix to the preceding paper on "The Computation of Secular Perturbations," the author asked me to compute for each degree of the quadrant the logarithmic values (base 10) of the two functions of *iota* required for the convenient application of his method.

In the hypergeometric series F $(\alpha \beta \gamma x)$ in the first case

a has the value
$$-\frac{1}{6}$$
 $\beta = \frac{7}{6}$ $\gamma = 2$ $x = \sin^2 \frac{\iota}{2}$

and in the second case

$$\alpha = \frac{1}{6}$$
 $\beta = \frac{5}{6}$ $\gamma = 2$ $x = \sin^2 \frac{\iota}{2}$

For convenience of designation the tables are headed Minus F and Plus F according to the sign of a.

Vega's (1794) ten-figure logarithms, corrected by collation with the copy in use at H.M. Nautical Almanac Office, were used, and the natural values of the individual terms were taken out to ten places of decimals. These were obtained in duplicate for each end of the quadrant, and the whole were examined by differencing to the sixth order. Lastly, the seven-figure logarithms of the functions were taken from the eight-figure table of the Service Géographique de l'Armée (Paris, 1891), reference being made to Vega where the eighth figure was approximately five.

The log *Minus* F has been increased by 10 as customary, to avoid the inconvenience of printing negative characteristics.

The whole has been examined by Mr J. Abner Sprigge, of H.M. Nautical Almanac Office, so as to make it possible to use the tables with confidence in their accuracy to the seventh place.

(Iota).	Log plus F.	Δ_1	$\mathbf{\Delta}_2$	Log minus F.	Δ_1	$oldsymbol{\Delta_2}$
i	0.000003	. 60		9 · 9999968	0 =	
2	0092	+ 69	+46	9871	- 97	-63
3	0207	115	45	9711	160	65
4	0367	160	47	9486	225	65
5	0574	207	46	9196	290	64
6	0827	253	46	8842	354	64
7	1126	299	45	8424	418	64
8		344	+3 +46		48 2	- 65
O	0'0001470	+ 390	+ 40	9 *9997 94 2	- 547	- 05

May	1907.	$m{Application}$	of Mr	Innes's Meth	od.	445
(Iota).	Log plus F.	. Δ_1	Δ_2	Log minus F.	Δ_1	Δ_2
9 °	0.0001860		+ 47	9 9997 395	– 611	- 64
10	2297	+437	45	6 784		64
11	27 79	482	46	6109	675	65
12	3307	528	46	5369	740	64
13	3881	574	46	4565	804	65
14	4501	620	46	3696	869	64
15	516 7	666	45	2763	933	64
16	5878	711	47	1766	99 7	65
17	6636	758	45	9 ·9 990704	1062	64
18	7439	803	46	9'9989578	1126	65
τ9	8288	849	47	88387	1191	6 4
20	0'0009184	896	45	87132	1255	6 ₅
21	0.0010122	941	46	8581 2	1320	64
22	11112	987	45	84428	1384	65
23	12144	1032	47	82979	1449	64
24	13223	1079	45	81466	1513	65
25	14347	1124	45 46	79888	1578	64
26	15517	1170	45	78 246	1642	65
		1215			1707	6 ₄
27	16732	1261	46	76539 68	1771	
28	17993	1307	46	74768	1837	66
29	19300	1353	46	72931	1901	64
30	20653	1399	46	71030	1965	64
31	22052	1444	45	690 6 5	2031	6 6
32	23496	1490	46	67034	2095	64
33	24986	1535	45	64939	2160	65
34	26521	1581	46	62779	22 2 4	64
35	28102	1627	46	60555	2290	6 6
36	29 729	1672	45	58265	2354	64
37	31401	1718	46	55911		65
38	0.0033119		+45	9'9953492	2419	-65
		+ 1763			– 2 484	

446 Tables for the Application of Mr Innes's Method. LXVII. 7,

(Iota).	Log plus F.	${f \Delta}_1$	$oldsymbol{\Delta_2}$	Log minus F.	Δ_1	$oldsymbol{\Delta_2}$
3°9	0'0034882		+45	9*9951008		- 65
40	36690	+ 1808	46	48459	- 2549	64
41	38544	1854	46	45846	2613	66
42	40444	1900	45	43167	2679	65
43	423 89	1945	45	40423	2744	64
44	44379	1990	45	37615	2808	66
45	46414	2035	46	34741	2874	64
46	48 495	2081	44	31803	2938	66
47	50620	2125	46	2 8799	3004	64
48	52791	2171	46	25731	3068	66
49	55008	2217	. 44	22597	3134	65
50	57269	2261	45	19398	3 19 9	6 5
51	59575	2 306	45	1 61 3 4	3264	64
52	61926	2351	45	12806	3328	66
53	64322	2396	45	09412	3394	65
5 4	66763	244 I	45	o 59 53	3459	66
55	69 249	2486	45	9'9902428	3525	64
5 6	71780	2531	44	9.9898839	3589	66
57	74355	2575	45	95184	3655	64
58	76975	2620	45	91465	3719	66
5 9	79 640	2665	44	8 768 0	37 ⁸ 5	6 5
60	82349	2709	44	83830	3850	65
6 1	85102	2753	45	79915	3915	65
62	87900	2798	44	75935	39 80	65
63	90 742	2842	44	71890	4045	65
64	93628	2 886	4 4	67780	4110	65
65	96558	2930	4 4	63 6 0 5	4175	65
66	0.0099532	2974	45	59365	4240	6 5
67	0'0102551	3019	43	55060	4305	6 5
6 8	0.0102613	3062	+43	9.9850690	4370	- 65
	J J	+3105	• 43	J 3-3-3-	-4435	~3

May 1907. Description of 30-inch Photographic Reflector. 447

(Iota).	Log plus F.	$\Delta_{ m I}$	$oldsymbol{\Delta}_2$	Log minus F.	Δ_1	$oldsymbol{\Delta_2}$
. 6 9	.0'0108718		+45	9 9846255		- 65
70	111868	+3150	42	41755	- 4500	65
71	115060	3192	.44	37190	4 5 65	64
72	118 2 96	3236	43	32561	46 2 9	65
73	121575	3 27 9	44	27867	4694	65
74	124898	3323	43	23108	4759	64
75	128264	3366	42	18285	4823	66
76	131672	3408	43	13396	4889	63
		3451			4952	_
77 52	135123	3494	43	. 08444	5016	64
78	138617	3536	42	9·9 9803428	5081	* 65
79	142153	3578	42	9*99798347	5145	64
80	145731	3621	43	93202	5209	64
81	149352	3662	41	87993	5273	64
82	153014	3704	42	82720	5336	63.
83	156718	3746	42	77384		64
, 84	160464	3740 3787	41	71984	5400	64
85	164251		42	66520	5464	62
86	168080	3829	40	60994	5526	64
87	171949	3869	40	55404	5590	62
88	175858	390 9	42	49 752	5652	64
89	179809	3951	+40	44036	5716	- 6 2
90	0.0183800	+3991		9 .9 738258	- 57 78	r

Description of the 30-inch Photographic Reflector of the Helwan Observatory. By J. H. Reynolds.

There has recently been added to the equipment of the Khedivial Observatory at Helwân, near Cairo, a photographic equatorial reflector of 30-inch aperture: before giving a description of this instrument, a little explanation as to its origin would not be out of place. About five years ago one of the 30-inch Mirrors of Standard Astrographic focal length, which were ground and figured by the late Dr Common, came into my hands. I originally purposed to employ the mirror for nebular photography in this country, and commenced designing a suitable mounting. A visit to Egypt in