MATH 4041 HW 5

David Chen, dc3451

October 11, 2020

Problem 1

We can induct on n for nonnegative n: we have that for n = 0, $f(g^0) = f(e_1)$, where e_1 is the identity element of G_1 . Further, since we have that for every $g \in G_1$, $f(g) = f(e_1g) = f(e_1)f(g)$, we have that $f(e_1)$ must be the identity of G_2 , as we know that identities are unique in groups. Then, $f(g^0) = f(e_1) = (f(g))^0$.

Now, if $f(g^n) = (f(g))^n$, then

$$f(g^{n+1}) = f(g^n g) = f(g^n) f(g) = (f(g))^n f(g) = (f(g))^{n+1}$$

So we have that $f(g^n) = (f(g))^n$ holds for $n \ge 0$. Now for n < 0, we have by the result for n > 0 that $f(g^n) = f((g^{-1})^{-n}) = (f(g^{-1}))^{-n}$. Further, since we have that $f(e_1) = f(g^{-1}g) = f(g^{-1})f(g)$, and since the identity element in G_2 is exactly $f(e_1)$, as shown earlier, by the definition of inverses, $f(g^{-1}) = f(g)^{-1}$. Then, we have that $f(g^n) = (f(g^{-1}))^{-n} = (f(g))^n$.

Thus, if g has finite order in G_1 , then there is some $n \in \mathbb{Z}$ such that $g^n = e_1$. Then $f(e_1) = f(g^n) = (f(g))^n$, and since $f(e_1)$ is the identity in G_2 , we have that f(g) has also order at most n, and thus has finite order. The same result holds, since f admits another isomorphism $f^{-1}: G_2 \to G_1$, so if f(g) has finite order, then there is some $m \in \mathbb{Z}$ such that $(f(g))^m = f(e_1)$, so $f^{-1}((f(g))^m) = f^{-1}(f(e_1)) = e_1$. Then, $f^{-1}((f(g))^m) = f^{-1}(f(g^m)) = g^m$, so $g^m = e_1$ so we have that g has finite order of at most m.

From above, we also can see that the order of f(g) is at most n, the order of g, and the order of g is at most m, the order of f(g). Thus, $n \le m$ and $m \le n \implies n = m$.

Problem 2

Write 1 as the identity element in G.

The least common multiple of d_1 and d_2 is the least $n \in \mathbb{N}$ such that $n = d_1k_1$ and $n = d_2k_2$ for integers k_1, k_2 . Then, we have that $(gh)^n = g^nh^n = g^{d_1k_1}h^{d_2k_2} = (g^{d_1})^{k_1}(h^{d_2})^{k_2} = 1^{k_1}1^{k_2} = 1$

(commutativity is used in the first equality), so gh has order at most n. Since we know that the least common multiple of d_1 and d_2 for finite d_1, d_2 is at most d_1d_2 , gh must have finite order when g, h have finite order.

This is not always true: consider in \mathbb{Z}_2 that [1] has order 2, but [1] + [1] = [0] has order 1, whereas the least common multiple of 2 and 2 > 1.

If g has finite order and h has finite order, then gh cannot have finite order. To see this, note that $h^n = 1 \implies (h^{-1})^n = (h^n)^{-1} = 1^{-1} = 1$ (the first equality follows from $h^n h^{-n} = (hh^{-1})^n = 1 \implies (h^{-1})^n = h^{-n} = (h^n)^{-1}$), so h^{-1} is of order n as well. Then, if gh has finite order, we have that $g = (gh)h^{-1}$ as the product of two elements of finite order must have finite order, so \implies and gh cannot have finite order.

If g, h both have infinite order, gh may have finite order: consider that -1 and 1 both have infinite order in \mathbb{Z} under addition, but -1 + 1 = 0 has order 1 in \mathbb{Z} .

Problem 3

We need to show that $H = \{g \in G \mid g^n = 1\}$ contains the identity, inverses, and is closed. The identity satisfies that $1^n = 1$, so $1 \in H$. Then, we have that $g^n = 1 \implies (g^{-1})^n = (g^n)^{-1} = 1^{-1} = 1$ (first equality was shown in one of the proofs for a question in problem 2) so every element in H has an inverse in H. Lastly, if $g^n = 1$, $h^n = 1$, we have that since G is abelian $1 = g^n h^n = (gh)^n$, so $gh \in H$ as well.

Problem 4

Again, we need to check that $H = \{g \in G \mid \exists N \in \mathbb{N} \text{ s.t. } g^N = 1\}$ contains the identity, inverses, and is closed. First, we have that $1^1 = 1$, so $1 \in H$. Again, if $g^N = 1$, we have from the last problem that $(g^{-1})^N = 1$ and so $g^{-1} \in H$. Lastly, we have from problem 2 that since $g, h \in H$ have finite order, gh must also have finite order at most the lcm of the orders of g and $gh \in H$.

Problem 5

i

We have that $A_{\theta}A_{\theta} = A_{2\theta}$ from earlier homework, so $(A_{\theta})^n = A_{n\theta}$. Then, we have that $(A_{2\pi/n})^n = A_{2\pi} = I$. If 0 < m < n, then we have that $(A_{2\pi/n})^m = A_{2m\pi/n}$, where 0 < m/n < 1. However, as shown in earlier homework, $A_{\theta} = I$ if and only if $\theta = 2\pi k$ for some integer k. Since there is no such integer m/n where 0 < m/n < 1, we have that $(A_{2\pi/n})^m \neq I$, so we have that n is the least positive integer such that $(A_{2\pi/n})^n = I$, so $A_{2\pi/n}$ has order n.

The elements of finite order are exactly A_{θ} where $\theta = 2\pi r$ for some $r \in \mathbb{Q}$. To see that this is sufficient, we have that if r = p/q, then $(A_{2\pi r})^q = A_{2p\pi} = I$, so $A_{2\pi r}$ has order at most q. Further, if $\theta \neq 2\pi r$ for any $r \in \mathbb{Q}$, we have that $\theta = 2\pi x$ for some irrational $x \in \mathbb{R}$. Then, we have that if there is some $n \in \mathbb{N}$ such that $(A_{2\pi x})^n = I$, then $2\pi nx = 2\pi k$ for some $k \in \mathbb{Z}$, so $x = n/k \implies x \in \mathbb{Q}$, so $x = n/k \implies x \in \mathbb{Q}$, so $x = n/k \implies x \in \mathbb{Q}$.

In the second homework, we showed that $B_{\theta}B_{\theta} = I$, so $(B_{\theta})^2 = I$ and thus B_{θ} always has order 2 (note that the only element in a group with order 1 is the identity, and $B_{\theta} \neq I$ for any θ , as we would need that $\cos(\theta) = -\cos(\theta) = 1$, which is clearly impossible).

ii

We have from the second homework that $B_{\theta_1}B_{\theta_2}=A_{\theta_1-\theta_2}$. Then, from earlier, we know that this has finite order if and only if $\theta_1-\theta_2=2\pi r$ for some $r\in\mathbb{Q}$.

Problem 6

i

Every element of $\langle (3,-5) \rangle$ is given by n(3,-5) for some n. Then, since the operation is defined componentwise, we have that n(3,-5) = (n3,n(-5)) = (3n,-5n), so we have that

$$\langle (3,-5) \rangle = \{ (3n,-5n) \mid n \in \mathbb{Z} \} = \{ \dots, (-6,10), (-3,5), (0,0), (3,-5), (6,-10) \dots \}$$

ii

To show that it is a proper subgroup, we only need to show that there is some element in $\mathbb{Z} \times \mathbb{Z}$ that is not contained in $\langle (a,b) \rangle$ for any given (a,b) (in particular, we already showed that this would be a subgroup in class).

If (a,b) = (0,0), then $\langle (a,b) \rangle = \{(0,0)\}$, as we have that n(0,0) = (0n,0n) = (0,0) for any n. This is clearly a proper subgroup of $\mathbb{Z} \times \mathbb{Z}$.

If $(a,b) \neq (0,0)$, then we can show that $(-b,a) \notin (a,b)$. Suppose that n(a,b) = (-b,a) for some $n \in \mathbb{Z}$. Then, we have that since 0(a,b) = (0,0), we have that $n \neq 0$ as well. Since we have that for any n, n(a,b) = (na,nb), if we have n(a,b) = (-b,a), then na = -b and nb = a. Then, $na(a) = -b(nb) \implies na^2 = -nb^2 \implies a^2 = -b^2$ (we can cancel the n since we already know $n \neq 0$). However, $b \in \mathbb{Z} \implies b^2 \geq 0 \implies a^2 = -b^2 \leq 0$, but $a \in \mathbb{Z} \implies a^2 \geq 0$. Thus, the only option is that $a^2 = -b^2 = 0 \implies a = b = 0$, but is contrary to the initial assumption that $(a,b) \neq (0,0)$. $\Rightarrow \Leftarrow$, so $\langle (a,b) \rangle$ does not contain (-b,a), and is thus a proper subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Problem 7

Note that repeated addition in \mathbb{Q} is just multiplication by an integer, so $\sum_{i=1}^{n} r = nr$ in the sense of multiplication in \mathbb{Q} , so being able to cancel something like r/2 = nr to 1/2 = n is not just a coincidence of notation.

Suppose that $r/2 \in \langle r \rangle$, such that r/2 = nr for some $n \in \mathbb{Z}$. Then, 1/2 = n, which clearly is not an integer, so r/2 cannot be generated by r.

Problem 8

Write 1 as the identity of G.

We need to show it contains the identity, inverses, and is closed. First, since H_1, H_2 are subgroups, $1 \in H_1$ and $1 \in H_2$, so $1 \in H_1 \cap H_2$. Next, $g \in H_1 \cap H_2 \implies g \in H_1$ and $g \in H_2$, and since H_1, H_2 are subgroups, each much contain inverses for their elements, so $g \in H_1 \implies g^{-1} \in H_1$ and $g \in H_2 \implies g^{-1} \in H_2$, so $g^{-1} \in H_1 \cap H_2$. Lastly, if $g, h \in H_1 \cap H_2$, we have that since subgroups are closed, $g, h \in H_1 \implies gh \in H_1$ and $g, h \in H_2 \implies gh \in H_2$, so $gh \in H_1 \cap H_2$.

Problem 9

We have that H is a subgroup, so it contains the identity, inverses, and is closed. We want to show the same things for f(H). Earlier in the homework (problem 1) we showed that if f is an isomorphism and e_1 is the identity of G_1 , then $f(e_1)$ is the identity of G_2 , so $e_1 \in H \implies f(e_1) \in f(H)$, so f(H) contains the identity of G_2 , which will be written e_2 . Since $e_2 = f(e_1) = f(gg^{-1}) = f(g)f(g^{-1})$, we have that $(f(g))^{-1} = f(g^{-1})$. Thus, given any $f(g) \in f(H)$, we have that since H is a subgroup $g^{-1} \in H \implies (f(g))^{-1} = f(g^{-1}) \in f(H)$. Lastly, given any two $f(g), f(h) \in f(H)$, we have that f(g)f(h) = f(gh). However, $g, h \in H \implies gh \in H$ since H as a subgroup is closed, so $f(g)f(h) = f(gh) \in f(H)$.