

Machine Learning

Clusterin

Cnsupervised learning introduction

Supervised learning

Training set $x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})$

Unsupervised learning

Training set $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market <u>segmentation</u>

Organize computing

Social network

Astronomical data

Andrew No

Which of the following statements are true? Check all that apply. lacksquare In unsupervised learning, the training set is of the form $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ without labels $y^{(i)}$. **Correct Response** Clustering is an example of unsupervised learning. **Correct Response** "structure" in the data. **Correct Response** Clustering is the only unsupervised learning algorithm. **Correct Response**

Machine Learning

Clusterin

K-means algorithm

K-means algorithm

/ assumption

Input:

- K (number of clusters)
- Training set $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop 1)

convention)

K-means algorithm

```
Randomly initialize cluster controls. \mu_K \in \mathbb{R}^n
Repeat {
   for \Rightarrow 1 to m
       := d\hat{n} dex (from 1 to N) of cluster centroid
                         x^{(i)}
          closest to
   for \neq 1 to K
       := pverage (mean) of points assigned to
cluster
```

Suppose you run k-means and after the algorithm converges, you have: $c^{(1)}=3, c^{(2)}=3, c^{(3)}=5, \ldots$

Which of the following statements are true? Check all that apply.

 ${f ec{\mathscr{C}}}$ The third example $x^{(3)}$ has been assigned to cluster 5.

Correct Response

extstyle ext

Correct Response

The second and third training examples have been assigned to the same cluster.

Correct Response

extstyle ext

Correct Response

K-means for non-separated clusters

Machine Learning

Clusterin **9**ptimizati on objective

K-means optimization objective

$$c^{(i)} = \text{index of cluster (1/2,...,}) to which $x = x$ ample currently assigned$$

$$\mu_k$$
 = cluster centroi $\phi_k \in \mathbb{R}^n$

$$\mu_{c^{(i)}}$$
 = cluster centroid of cluster to which $e^{(i)}$ ample has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

is

K-means algorithm

Randomly initialize cluster centroids . $\mu_K \in \mathbb{R}^n$

```
Repeat {
   for \neq 1 to m
      := d\hat{n} dex (from 1 to K) of cluster centroid
                         x^{(i)}
         closest to
   for \neq 1 to K
      := \maketaverage (mean) of points assigned to
cluster
                                                          Andrew No
```

Suppose you have implemented k-means and to check that it is running correctly, you plot the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ as a function of the number of iterations. Your plot looks like this:

What does this mean?

- The learning rate is too large.
- The algorithm is working correctly.
- lacksquare The algorithm is working, but k is too large.
- It is not possible for the cost function to sometimes increase. There must be a bug in the code.

Correct Response

Machine Learning

Clusterin Bandom initializatio

K-means algorithm

Randomly initialize cluster centroids . $\mu_K \in \mathbb{R}^n$

```
Repeat {
   for \neq 1 to m
      := d\hat{n} dex (from 1 to K) of cluster centroid
                         x^{(i)}
         closest to
   for \neq 1 to K
      := \maketaverage (mean) of points assigned to
cluster
                                                          Andrew No
```

Random initialization

Should have < m

Randomly pikk training examples.

$$\mu_1,\ldots,\mu_K$$

Set equal to these examples.

Random initialization

```
For i = 1 to 100 {
```

```
Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K) }
```

Pick clustering that gave lowest c(0) st..., $c^{(m)}, \mu_1, \ldots, \mu_K$

Which of the following is the recommended way to initialize k-means?

- ullet Pick a random integer i from $\{1,\ldots,k\}$. Set $\mu_1=\mu_2=\cdots=\mu_k=x^{(i)}$.
- lacksquare Pick k distinct random integers i_1,\dots,i_k from $\{1,\dots,k\}.$ Set $\mu_1=x^{(i_1)},\mu_2=x^{(i_2)},\dots,\mu_k=x^{(i_k)}.$
- Pick k distinct random integers i_1, \ldots, i_k from $\{1, \ldots, m\}$.

Set
$$\mu_1 = x^{(i_1)}, \mu_2 = x^{(i_2)}, \dots, \mu_k = x^{(i_k)}$$
.

Correct Response

igcirc Set every element of $\mu_i \in \mathbb{R}^n$ to a random value between $-\epsilon$ and ϵ , for some small ϵ .

Machine Learning

Clusterin

Ghoosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Suppose you run k-means using k = 3 and k = 5. You find that the cost function J is much higher for k = 5 than for k = 3. What can you conclude?

- This is mathematically impossible. There must be a bug in the code.
- The correct number of clusters is k = 3.
- In the run with k = 5, k-means got stuck in a bad local minimum. You should try re-running k-means with multiple random initializations.

Correct Response

○ In the run with k = 3, k-means got lucky. You should try re-running k-means with k = 3 and different random initializations until it performs no better than with k = 5.

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

