ESc201: Introduction to Electronics

Amit Verma

Dept. of Electrical Engineering

IIT Kanpur

Recap: Techniques of Circuit Analysis

Concept of equivalent circuits

Two circuits are equivalent if they have the same current-voltage behavior

Series combination

Parallel combination

Voltage Division

A voltage applied to resistors connected in series is divided among them

Current Division

The total current flowing into a parallel combination of resistors is divided among them

Nodal Analysis

- 1. Identify and number the nodes
- 2. Pick Ground node/Reference node wisely, if it is not already specified
- 3. Writing KCL Equations in Terms of the Node Voltages

Mesh Analysis

- Mesh analysis provides another general procedure for analyzing circuits using mesh currents as the circuit variables.
- 2. Mesh analysis applies KVL to find unknown currents.
- 3. A mesh is a loop which does not contain any other loop within it.

A loop is a closed path that does not go twice over any node. This circuit has three loops

A mesh is a loop that does not enclose any other loop. fabef, ebcde are meshes

 i_1 and i_2 are mesh current (imaginary, not measurable directly) I_1 , I_2 and I_3 are branch current (real, measurable directly)

Mesh Currents

$$I_2 = i_1 - i_3$$

$$I_3 = i_1 - i_2$$

Mesh Currents

How many meshes?

Mesh Analysis

Steps to determine the mesh currents:

- 1. Assign mesh currents i_1 , i_2 , ..., in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting n simultaneous equations to get the mesh currents.

$$R_2(i_1-i_3)+R_3(i_1-i_2)-v_A=0$$

Mesh-2

$$R_3(i_2 - i_1) + v_B + R_4 i_2 = 0$$

$$R_2(i_3 - i_1) + R_1i_3 - v_B = 0$$

Mesh-1
$$R_{\scriptscriptstyle 1} i_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2} \left(i_{\scriptscriptstyle 1} - i_{\scriptscriptstyle 4} \right) + R_{\scriptscriptstyle 4} \left(i_{\scriptscriptstyle 1} - i_{\scriptscriptstyle 2} \right) - v_{\scriptscriptstyle A} = 0$$

Mesh-2
$$R_5 i_2 + R_4 (i_2 - i_1) + R_6 (i_2 - i_3) = 0$$

Mesh-3

$$R_7 i_3 + R_6 (i_3 - i_2) + R_8 (i_3 - i_4) = 0$$

Mesh-4

$$R_3 i_4 + R_2 (i_4 - i_1) + R_8 (i_4 - i_3) = 0$$

Solve for the currents in each element in the circuit

mesh 1:
$$20i_1 + 10(i_1 - i_2) - 150 = 0$$

mesh 2: $10(i_2 - i_1) + 15i_2 + 100 = 0$

$$30 i_1 - 10 i_2 = 150$$
 $i_1 = 4.231 A$
- $10 i_1 + 25 i_2 = -100$ $i_2 = -2.308 A$

The current in the $10 - \Omega$ is $i_1 - i_2 = 6.539$ A

Mesh Currents in Circuits Containing Current Sources

$$15i_1 + 10(i_1 - i_2) + ? = 0$$

$$i_1 = 2A$$
 $10(i_2 - i_1) + 5i_2 + 10 = 0$

Current source common to 2 mesh

$$i_1 + 2(i_1 - i_3) + ? = 0$$

Super Mesh

$$i_1 + 2(i_1 - i_3) + 4(i_2 - i_3) + 10 = 0$$

$$3i_3 + 4(i_3 - i_2) + 2(i_3 - i_1) = 0$$
$$i_2 - i_1 = 5$$

$$-20 + 4i_1 + 6i_2 + 2i_2 = 0$$

$$\frac{\mathbf{v}_x}{4} = i_2 - i_1 \qquad \mathbf{v}_x = 2i_2$$

Exercise!

Example: Identify the super mesh

Example contd..:

Identify the super mesh

$$-6 + 2(i_1 - i_3) + 4(i_2 - i_3) + 8i_2 = 0$$

$$2i_3 + 4(i_3 - i_2) + 2(i_3 - i_1) = 0$$

$$i_1 - i_2 = 3$$

$$2i_1 + 4i_3 + 8(i_3 - i_4) + 6i_2 = 0$$

$$i_2 - i_1 = 5$$

$$i_2 - i_3 = 3I_O$$

$$I_O = -i_4$$

Nodal vs. Mesh Analysis

To select the method that results in the smaller number of equations. For example:

- 1. Choose nodal analysis for circuit with fewer nodes than meshes.
 - *Choose mesh analysis for circuit with fewer meshes than nodes.
 - *Networks that contain many series connected elements, voltage sources, or supermeshes are more suitable for mesh analysis.
 - *Networks with parallel-connected elements, current sources, or supernodes are more suitable for nodal analysis.
- 2. If node voltages are required, it may be expedient to apply nodal analysis. If branch or mesh currents are required, it may be better to use mesh analysis.

Some more circuit analysis techniques

- Superposition Method
- Thevenin Method
- Norton Method

Applicable to <u>only</u> linear circuits

Homogeneity Superposition

Linear circuits

Homogeneity

Superposition

Example: Our favorite element 'Resistor'

$$V = IR$$

Increasing the current by a constant k

$$kIR = kV$$

Homogeneity

Response to two excitations:

$$V_1 = I_1 R \qquad V_2 = I_2 R$$

$$V = (I_1 + I_2)R = I_1R + I_2R = V_1 + V_2$$

Superposition

Superposition Principle

The superposition principle states that the total response is the sum of the responses to each of the independent sources acting individually.

- 1. Find circuit response to each source acting alone
- 2. Sum up the individual/partial responses to get the total response

1. Find circuit response to each source acting alone

2. Sum up the individual/partial responses to get the total response

Vs1
$$\longrightarrow$$
 v1+v2 = vT Inputs Output

 $v_s = 15 \text{ V}$

Circuit with only voltage source active. Current source is open circuited.

$$i_T = i_1 + i_2$$

Circuit with only current source active. Voltage source is short circuited.

$$v_T = v_1 + v_2$$

$$v_1 = 15 \frac{5}{15} = 5V$$

$$v_2 = 5 \times \left(2 \times \frac{10}{15}\right) = \frac{20}{3}V$$

$$v_s = 15 \text{ V}$$

$$v_s = 15 \text{ V}$$

$$i_T$$

$$R_2 = \underbrace{v_T}_{5 \Omega}$$

$$v_T$$

$$i_s = 2 \text{ A}$$

$$v_T = v_1 + v_2$$

$$i_T = i_1 + i_2$$

$$v_T = v_1 + v_2 = 5 + \frac{20}{3} = \frac{35}{3}V$$

Example-2 10Ω 15 Ω $v_T \lessgtr 5 \Omega$ $v_{s1} = 20 \text{ V}$ ($v_{s2} = 10 \text{ V}$ $10\,\Omega$ 15 Ω $10\,\Omega$ 15Ω $v_{s2} = 10 \text{ V}$ $v_1 \leqslant_{5\Omega}$ $v_{s1} = 20 \text{ V}$

$$i_T = i_1 + i_2$$

$$v_T = v_1 + v_2$$

10V is discarded by short circuit

2A is discarded by open circuit