Computerstøttet beregning

Lektion 1. Introduktion

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009

people.math.aau.dk/~qvist/teaching/csb-09

Computerstøttet beregning (på engelsk, Scientific Computing), er:

Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter

Computerstøttet beregning (på engelsk, Scientific Computing), er:

- Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter
- Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne

Computerstøttet beregning (på engelsk, Scientific Computing), er:

- Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter
- Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne
- Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener

Computerstøttet beregning (på engelsk, Scientific Computing), er:

- Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter
- Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne
- Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener

Det handler om algoritmer til beregning af approksimationer til eksakte matematiske objekter og om vurdering af den følgende fejl

Tværfagligt snit

CSB er et hastigt voksende felt indenfor anvendt matematik, som indeholder elementer af

- Ingeniørvidenskab: Problemerne er hentet fra virkelighedens verden og formuleret i matematisk terminologi (differentialligninger, integralligninger etc.)
- Datalogi: Problemerne kan ikke løses eksakt (i modsætning til det I har set på Matematik 1!), så derfor må vi bruge computere til at beregne en numerisk løsning
- Matematik: Matematikken fortæller os hvordan en numerisk løsning kan beregnes og hvor god den er. Eller måske vigtigere: at det ikke går galt.

Eks. på CSB

- Vejrudsigt: Gigantisk dynamisk system. Begyndelsesbetingelserne er kendt (vejret lige nu) og dynamikken er (delvis) fastlagt af systemer af differentialligninger (www.dmi.dk)
- Simulering af komplekse mekaniske systemer: Ballistik, fjedersystemer, stive legemers bevægelse. Fænomenets fysik er beskrevet udfra Newtons mekanik (www.myphysicslab.com/collision.html)
- Computerspil og animerede tegnefilm: "Physically based modelling". For at lave realistiske animationer modelleres fysiske fænomener og deres interaktion (delvist) ved differentialligninger.
- CERN

Fra studieordningen

Formålet med CSB er

Teori: At de studerende opnår et grundlæggende kendskab til nogle metoder og algoritmer for computerstøttede beregninger...

Praktisk: ...at de opnår erfaring med anvendelsen af disse metoder og algoritmer på konkrete store beregninger

Indhold

- Introduktion til Maple og Matlab
- Repræsentation af tal i en computer. Afrundingsfejl
- Løsning af ikke-lineære ligninger
- Taylors formel og approksimation af funktioner
- Interpolation
- Numerisk integration
- Numerisk løsning af differentialligninger
- Numerisk lineær algebra
- Eksempler på store beregninger

Materialer

- Peter R. Turner, Guide to Scientific Computing, Macmillan Press 2000
- Maple og Matlab. Kan hentes gratis på tnb.aau.dk/EDB/software
- Hjemmeside med spisesedler, eksempler osv.: people.math.aau.dk/~qvist/teaching/csb-09

 Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning
 - Spørg hjælpelæreren og mig

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning
 - Spørg hjælpelæreren og mig
 - Frygt ikke Maple (eller Matlab)

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning
 - Spørg hjælpelæreren og mig
 - Frygt ikke Maple (eller Matlab)
 - Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning
 - Spørg hjælpelæreren og mig
 - Frygt ikke Maple (eller Matlab)
 - Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof
- Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde!

- Samme form som i andre matematikkurser: Repetition -Opgaveregning - Forelæsning
- Hvordan du kommer igennem kurset:
 - Arbejd seriøst under opgaveregning
 - Spørg hjælpelæreren og mig
 - Frygt ikke Maple (eller Matlab)
 - Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof
- Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde!
- Eksamen: SE-kursus = eksamen.

Repræsentation af reelle tal

Problem:

- Repræsentation af et reelt tal på computer.
- Balancegang mellem præcision og hukommelse.

Repræsentation af reelle tal

Problem:

- Repræsentation af et reelt tal på computer.
- Balancegang mellem præcision og hukommelse.

Eksempel

$$x = e^5 = 148,413159102577...$$

Med 4 betydende cifre:

$$x \approx 148, 4$$

Notation:

$$148, 4 = +1, 484 \times 10^{2}$$
$$= 1 \cdot 10^{2} + 4 \cdot 10^{1} + 8 \cdot 10^{0} + 4 \cdot 10^{-1}$$

Repræsentation af reelle tal

Problem:

- Repræsentation af et reelt tal på computer.
- Balancegang mellem præcision og hukommelse.

Eksempel

$$x = e^5 = 148,413159102577...$$

Med 4 betydende cifre:

$$x \approx 148, 4$$

Notation:

$$148, 4 = +1,484 \times 10^{2}$$

$$= 1 \cdot 10^{2} + 4 \cdot 10^{1} + 8 \cdot 10^{0} + 4 \cdot 10^{-1}$$

fortegn mantissa base eksponent

Binær repræsentation

Binær repræsentation:

$$x \approx +1,001010001101 \times 2^7$$

Det vil sige:

$$x = \left(2^7 + 2^4 + 2^2 + 2^{-2} + 2^{-3} + 2^{-5}\right)$$
$$= 148,40625$$
$$= +1,4840625 \times 10^2$$

Binær repræsentation benyttes i de fleste computere.

Generel base

Sætning: Givet et grundtal $\beta \in \mathbb{N}, \beta > 1$. Da findes for ethvert reelt tal x en repræsentation

$$x = \pm f \times \beta^{E} = \sum_{k=0}^{\infty} d_{k} \beta^{-k+E}$$
$$= d_{0} \cdot \beta^{E} + d_{1} \cdot \beta^{-1+E} + d_{2} \cdot \beta^{-2+E} + \cdots,$$

hvor mantissaen

$$f = d_0, d_1 d_2 d_3 \dots, d_k \in \mathbb{N}, 0 \le d_k < \beta, d_0 \ne 0$$

og eksponenten $E \in \mathbb{Z}$.

Flydende tal

Givet en base β (eks.: 2, 10, 16, ...) og x > 0,

$$x = f \times \beta^E$$
 mantissa eksponent

Repræsentationen kaldes normaliseret hvis

$$1 \le f < \beta$$

Opgave: Angiv den normaliserede flydende decimaltals-repræsentation af

$$x = \frac{25}{2}$$

og den binære ...

Afrunding af flydende tal

Der opereres med fire typer af afrunding. I Maple er det styret af system-variablen **Rounding**.

Type	Maple	retning
symmetrisk	Rounding:=nearest	\uparrow
afskære	Rounding:=0	$\rightarrow 0$
nedrunde	Rounding:=-infinity	$\downarrow -\infty$
oprunde	Rounding:=infinity	$\uparrow \infty$

IEEE standard

Acceptabel løsning: IEEE-standard for (binær) repræsentation af flydende tal, der benyttes i mange arkitekturer.

single-precision: bruger 32 bits per tal double-precision: bruger 64 bits per tal

Fordeling:

Antal bits	Single-precision	Double-precision
Fortegn	1	1
Eksponent	8	11
Mantissa	24	53

Bemærk: Det første 1-tal i den normaliserede binære repræsentation er unødvendig at gemme (implicit bit).

Flydende tal i Maple

- I Maple håndteres tallene helst eksakt som brøker
- Med kommandoen evalf(x) konverteres tallet x til et flydende tal, et såkaldt software float. Antal betydende cifre er styret af variablen Digits; basen er 10.
- Med kommandoen evalhf(x) konverteres tallet x til et flydende tal, et såkaldt hardware float. Repræsentationen afhænger da af maskinens arkitektur. Basen vil typisk være 2.

Opgaveregning

Vi ses igen kl. 15:30.