What is special about GBF?

Expanded water quality concept

> water chemistry + aquatic life + water appreciation

Broadcasting

> site specific realtime data available on any mobile computer

Mobility

>maps out paths of least contamination and greatest swimming pleasure

-> the swimming pleasure measure (SPM)

water quality (YSI)

- > dissolved oxygen
- > turbidity
- > dissolved solids
- > chlorophyll
- > conductivity
- > salinity
- > pH
- > water temperature

NOAA weather

- > current 5km grind (today)
- > forecast on a grid (space: 5km, time: today + tomorrow)

<u>hydrophone</u>

- > 20hz 40khz data
- > mp3 audio (15 sec) segments

real-time local weather

- > air temperature
- > wind speed
- > wind direction
- > barometric pressure
- > rainfall (1hr, 24 hr)

sonar-based fish detector

- > gps location
- > water depth -> wave height
- > heading (degrees)
- > presence of fish (small and large)

Tiered approach to establish the swimming pleasure measure

<u>established</u>

day of year, time of day, conductivity, water and air temperature, pH, dissolved oxygen, dissolved solids, chlorophyll, turbidity, ammonium-nitrogen

narrative-accepted

wave motion, micro-climate and macro-climate, insolation

numeric-experimental

realtime direct e-coli, real time caffeine (invited research)

second order narrative-experimental

presence of fish, crustaceans, presence of human artifacts (motorboats) audio and sonar, antidepressants

post experience survey

how was the water?

Source: http://www.epa.gov/waterscience/criteria/recreation/experts/

Typical performance specifications				
	Range	Resolution	Accuracy	
Rapid Pulse dissolved oxygen % air saturation	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading	
Rapid Pulse dissolved oxygen mg/L	0 to 50 mg/L	0.01 mg/L	0 to 20 mg/L: ±2% of reading or 0.2 mg/L, whichever is greater; 20 to 50 mg/L: ±6% of reading	
ROX optical dissolved oxygen# % air saturation	0 to 500%	0.1%	0 to 200%: ±1% of reading or 1% air saturation, whichever is greater; 200 to 500%: ±15% of reading; relative to calibration gases	
ROX optical dissolved oxygen* $\rm mg/l$	0 to 50 mg/L	0.01 mg/L	0 to 20 mg/L: ±1% of reading or 0.1 mg/L, whichever is greater; 20 to 50 mg/L: ±15% of reading; relative to calibration gases	
Conductivity ⁺	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range-dependent)	$\pm 0.5\%$ of reading + 0.001 mS/cm	
Temperature	-5 to 50°C	0.01°C	±0.15°C	
рН	0 to 14 units	0.01 unit	±0.2 unit	
Shallow depth	0 to 9.1 m (0 to 30 ft)	0.001 m (0.001 ft)	±0.018 m (±0.06 ft)	
Medium depth	0 to 61 m (0 to 200 ft)	0.001 m (0.001 ft)	±0.12 m (±0.4 ft)	
Deep depth	0 to 200 m (0 to 656 ft)	0.001 m (0.001 ft)	±0.3 m (±1 ft)	
Vented level	0 to 9.1 m (0 to 30 ft)	0.001 m (0.001 ft)	±0.003 m (±0.01 ft)	
Open-channel flow	Calculated measurement, requires vented level			
Free chlorine	0 to 3 mg/L	0.01 mg/L	±15% of reading or 0.05 mg/L, whichever is greater	
ORP	-999 to +999 mV	0.1 mV	±20 mV in Redox standard solutions	
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater	
Nitrate/nitrogen*	0 to 200 mg/L-N	0.001 to 1 mg/L-N (range dependent)	±10% of reading or 2 mg/L, whichever is greater	
Ammonium/ammonia/ nitrogen*	0 to 200 mg/L-N	0.001 to 1 mg/L-N (range dependent)	±10% of reading or 2 mg/L, whichever is greater	
Chloride*	0 to 1000 mg/L	0.001 to 1 mg/L (range dependent)	$\pm 15\%$ of reading or 5 mg/L, whichever is greater	
Turbidity#	0 to 1,000 NTU	0.1 NTU	±2% of reading or 0.3 NTU, whichever is greater in YSI AMCO-AEPA Polymer Standards	
Rhodamine WT#	0-200 μg/L	0.1 μg/L	$\pm 5\%$ of reading or $\pm 1~\mu g/L$, whichever is greater	
Chlorophyll***	Range 0 to 400 µg/L chl a 0 to 100 RFU	Resolution 0.1 µg/L chl <i>a</i> 0.1% FS; 0.1 RFU	$\label{eq:linearity} \begin{array}{l} \text{R}^2 > 0.9999 \text{ for serial dilution of Rhodamine} \\ \text{WT solution from 0 to 500 $\mu g/L} \end{array}$	
Blue-green algae# phycocyanin	Range 0-280,000 cells/mL	Detection limit 220 cells/mL§	Linearity $R^2 = 0.9999$ for serial dilution of Rhodamine WT from 0 to 400 μ g/L	
Blue-green algae # phycoerythrin	0-200,000 cells/mL	450 cells/mL ^{§§}	R^2 = 0.9999 for serial dilution of Rhodamine WT from 0 to 8 $\mu g/L$	
PAR	Range 400-700 nm waveband Linearity	Calibration ±5% Sensitivity	Stability <±2% change over 1 year	
	Max. deviation of 1%	Typically 3μA per 100	00 μmol s-1 m-2 in water	

INFO 100 Left Right 100 pero 797c* Œ 68.4°F 2.4 mph | 103°t

Sonar View

water quality analysis: standard EPA approach: measure fecal contaminants (e-coli and other fecal coliforms)

water quality analysis: alternate approaches for fecal contaminant assessment

- nowcasting / mathematical modeling
- photochemistry based methods
- antibody based methods
- others ...

nowcasting: prediction model based approach

Francy et al, 2006

	FIS	ANN	EA	Symbolic Logic	Control Theory
mathematical model	SG	В	В	SB	G
learning ability	В	G	G	В	В
knowledge representation	G	В	SB	G	SB
expert knowledge	G	В	В	G	SB
nonlinearity	G	G	G	SB	В
optimization ability	В	G	G	В	SB
fault tolerance	G	G	G	В	В
uncertainty tolerance	G	G	G	В	В
realtime operation	G	SG	SB	В	G

KEY: good: G slightly good: SG slightly bad: SB bad: B

Source: Evolutionary Design of Neuro-Fuzzy Systems - A Generic Framework, Ajith Abraham et al

temperature

Fuzzy System

wave height rainfall turbidity

probabilistic e-coli

If > 235 CFU -> 0 else > 0 1

health

appearance

turbidity chlorophyll tot dis solids turbidity:
0.1 1.0
Chlorophyll
0.1 1.0
tot dis solids
0 1.0

swimming

measure

wave height rainfall water temp air temp wind chill forecast

wave height 0 1.0 rainfall 0.1 ... 1.0 water temp 0.1 1.0 air temp 0.1 1.0 wind chill 0.1 ... 1.0 forecast 0.2 ... 1.0

comfort

fish pres sounds noises fish 0.2 ... 1.0 noises 0.2 ... 1.0 curiosity

fuzzy logic modeling

prob e-coli

turbidity chlorophyll tot dis solids

wave height rainfall water temp air temp wind speed forecast

no	air temp lower limit	air temp upper limit	quantative value	fuzzy value
1	-20	0	0	very low
2	0	10	0.25	low
3	10	15	0.5	medium
4	15	20	0.75	high
5	20	25	1	veryhigh
6	25	28	0.75	high
7	28	34	0.5	medium
8	34	36	0.25	low
9	36	100	0	very low

fish pres sounds noises

fuzzy logic modeling

	lower limit	upper limit		
1	-20	5	0	very low
2	5	10	0.25	low
3	10	15	0.5	medium
4	15	20	0.75	high
5	20	25	1	veryhigh
6	25	28	0.75	high
7	28	34	0.5	medium
8	34	45	0.25	low
9	45	100	0	very low

.. 5 45

fuzzy logic modeling - differentiable functions

fuzzy modeling + evolution strategies (ES) for parameter adjustment with feedback from beach visitors

surveys location? N?

TEST (normal operation)

normalized data (training and testing)

Possible alternative to backpropagation for supervised learning:

support vector machines

Backpropagation Neural Net (python version) – highlevel functions only

#training

inputlayer = 11 hiddenlayer = 6 outputlayer = 1

iterations = 3000

learningrate = 0.8 momentum = 0.1 errorlimit = 0.001

inputdata = readdata(filename)
trainingdata = normalizedata(inputdata)
currentNN = NN(inputlayer, hiddenlayer, outputlayer)
currentNN.train(trainingdata, iterations, learningrate, momentum, errorlimit, printint)

GBF SPM after training NNspm = currentNN.evaluateSPM(sampledata)

#human SPM via mobile phone for correction and retraining currentNN.train(trainingdata, iterations, learningrate, momentum, errorlimit, printint)

