For hand analysis of circuits, we need simpler models!

- Analysis using a non-linear diode model is relatively difficult and time consuming.
- It also does not give a symbolic expression that can provide insight and help in the design of the circuit.

Need SIMPLER and LINEAR Device Models

What should we take as diode drop?....0.7V?

$$I = I_S \times \{ \exp(\frac{V}{V_T}) - 1 \}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT / q \cong 26 \text{ mV} \text{ at T} = 300 \text{K}$$

 $R: 10\Omega \rightarrow 1M\Omega$

Simple 0.7V model would predict:

$$I = \frac{1}{R}$$

 $(100mA - 1\mu A)$

Different Diode: ~1N4148

$$I = I_S \times \{ \exp(\frac{V}{nV_T}) - 1 \}$$

 $I_S = 5.9 \times 10^{-9} A ; n = 1.91$

Constant diode voltage approximation becomes worse as applied voltage approaches the diode drop!

As
$$V_s$$
 approaches $V_D \rightarrow \left(\frac{\Delta I}{I}\right)$ increases

Error was ~9% with 1.7 V but 63% with 0.8V supply

A better Diode Model

Piece-Wise Linear Model

 V_γ is called cut-in or turn-on voltage and depends on nature of diode and range of current considered

For most of our analysis, we will take $V_{\gamma} = 0.7V$ and $r_{f} \sim 10\Omega$

Even Simpler Diode Models

Ideal diode model

Diode Models

Use the simplest model that will yield results with desired accuracy

Use the simplest model that will yield results with desired accuracy

Small Signal Model

Diode: Small Signal Model (dc or low frequency)

Forward Bias

$$\begin{split} I_d &= I_s e^{\frac{V_d}{nV_T}} \\ I_D + i_d &= I_s e^{\frac{V_D + V_d}{nV_T}} \\ i_d &= I_D \left(e^{\frac{V_d}{nV_T}} - 1 \right) \\ i_d &= I_D \left(\frac{v_d}{nV_T} + \frac{{V_d}^2}{2\left(nV_T\right)^2} + \dots \right) \end{split}$$

Small signal approx: $\frac{v_d}{nV_T} \ll 1$

$$i_d = I_D \left(\frac{v_d}{nV_T} + \frac{{v_d}^2}{2(nV_T)^2} + \dots \right)$$

$$i_d \cong \left(\frac{I_D}{nV_T} \right) v_d$$

$$i_d \cong \left(\frac{I_D}{nV_T}\right) V_d$$

$$i_d = \frac{v_d}{r_d}$$
; $r_d = \frac{nV_T}{I_D}$

Temperature dependence of diode characteristics

$$I_D = I_S \times \{ e \times p \left(\frac{V_d}{V_T} \right) - 1 \}$$

$$V_T = \frac{kT}{q} \qquad I_S \propto n_i^2 \propto e^{-\frac{E_S}{kT}}$$

Reverse saturation current increases with temperature. For forward bias, even though V_T increases, current still increases because of greater influence of I_S

For a diode in forward bias at a fixed current I_0 : $v_D = V_T \times \ln(I_0/I_s + 1)$

For Silicon diodes, v_D decreases at the rate of ~ -2mV/°C

If the diode voltage is 0.7 at 27°C, then at 100°C it would be only:

$$0.7 - 2 \times 10^{-3} \times (100 - 27) = 0.554V$$

Measurement of temperature using a pn junction diode

$$v_{D1} = V_T \times \ln(I_1/I_S + 1)$$

$$v_{D2} = V_T \times \ln(I_2/I_s + 1)$$

$$v_O = C \times (v_{D2} - v_{D1})$$

$$v_o = C \times (v_{D2} - v_{D1})$$

$$v_o = (C \times \frac{k}{q} \times \ln(\frac{I_2}{I_1})) \times T$$