XIX OLIMPIADA DE FÍSICA. FASE LOCAL DE MADRID. 29 de febrero de 2008

(tómese, donde se necesite, g= 10,0 m s⁻²)

kmn	n un instante dad , con un motoris ue el farolillo rojo	sta que :	se desplaza	paralela	mente a la v	ía. Pasados	10.0 s el mo	ue circula a 144 otorista está a la m s ⁻¹ , es:
a)	4	b)	20	c)	24	d)	30	
vertica	n la Luna la ace almente en la Tie la tardaría:	eleración erra un o	ı de la grave bjeto con vel	edad es ocidad v	aproximadar , tardaría T s	mente 1/6 de egundos en d	e la terrestre caer al suelo,	. Si lanzásemos mientras que en
a)	12T	b)	6T	c)	T/6	d)	T/12	
3 Una partícula sale desde el origen en t= 0 s con una velocidad de 6 m/s según el semieje OY positivo; su aceleración está dada por $a=(2i-3j)$ m s ⁻² . Cuando la partícula alcanza su coordenada y máxima, la velocidad de la partícula, en m s ⁻¹ , es:								
a)	2	b)	4	c)	6	d)	36	
4 Cuatro décimas de segundo después de haber saltado desde un trampolín, situado a 15 m sobre el agua de la piscina, un saltador lleva una velocidad vertical de 6,0 m s ⁻¹ . La altura máxima, medida desde el agua, a la que llega el deportista es (en m):								
a)	10	b)	15	c)	20	d)	25	
5 Una bomba cae desde un avión cuando vuela horizontalmente a 1080 kmh ⁻¹ y a 500 m de altura. El tiempo que tarda el piloto en oír el sonido de la explosión desde que apretó el disparador será (en s): (Dato: velocidad del sonido = 340 m s ⁻¹)								
a)	9,2	b)	12,5	c)	13,1	d)	20,0	
6 Seis fuerzas de valor 1, 2, 3, 4, 5 y 6 (en N) se aplican a una partícula de 2 kg formando sus direcciones 60° entre ellas. La aceleración de la partícula (en m s ⁻² , y en $^\circ$ respecto a la dirección y sentido de la fuerza de 6 N) será:								
a)	3; 60°	b)	6; 45°	c)	9; 60°	d)	15; 0°	3
	6 m	/ la bo	olita está unic	da a una I dibujo.	cuerda que Si el extrem	atraviesa un	orificio en la	m con 20 m s ⁻¹ ; mesa, tal como stá unida a una
	$\Box_{\mathbf{M}}$	a)	6 b) 8	c)	10 d)	12	
8 Dentro de un ascensor está situada una mesa horizontal, y sobre ella se encuentra un cuerpo de 3,0 kg. Si el ascensor sube con 2,0 ms ⁻² , la fuerza paralela a la superficie de la mesa, necesaria para que el cuerpo tenga una aceleración horizontal de 2,5 m s ⁻² vale (en N): (Dato: el coeficiente de rozamiento dinámico es 0,4)								
a)	18,5	b)	19,3	c)	20,6	d)	21,9	
un trin	ra mover un trine eo de 50,0 kg p la forma un ángu le que tire del	ara con ulo de 30	seguir una v)° con el suel	elocidad o, en ser	constante d	le 6,0 kmh ⁻¹ . dente cuando	En ambos o empuja y as	casos, la fuerza scendente en el

270

d)

necesaria será (en W):

225

c)

240

b)

160

a)

10 El cañón de una escopeta tiene una longitud de 0,75 m y la fuerza que impulsa al proyectil viene dada por la expresión F= 0,1(200-x), donde F está en N y x en m, y siendo la masa del proyectil 5,0 g. La velocidad con la que sale lanzado el proyectil vale (en m s ⁻¹):								
a)	77,4	b)	80,5	c)	83,7	d)	89,6	
11 Se lanza una pelota verticalmente hacia arriba con una velocidad inicial v_0 ; el aire ejerce una fuerza de rozamiento constante F_a sobre la pelota. La velocidad con la que regresa al punto de partida es:								
a) v = -	$v_0 \sqrt{\frac{mg - F_a}{mg + F_a}}$	b) v = \	$\sqrt{\frac{mg+F_a}{mg-F_a}}$	c) v=	$v_0 \sqrt{\frac{mg - F_a}{mg + 2F_a}}$	d) v=	$F_{V_0}\sqrt{\frac{mg+2F_a}{mg-F_a}}$	
12 Un termómetro mal calibrado indica 2,0 °C para la temperatura del hielo fundente y 98,0 °C para la temperatura del agua en ebullición. La temperatura en la escala Celsius correcta cuando este termómetro defectuoso marcase -10,0 °C es:								
a)	-10,5 °C	b)	-11,0 °C	c)	-12,5 °C	d)	-13,5 °C	
13 En un calorímetro de aluminio de 200 g, se ponen 500 g de agua a 20 °C y 300 g de hielo a -20 °C. La cantidad de hielo sin fundir que hay una vez alcanzado el equilibrio térmico es (en g): $c_{e \ hielo} = 0,50 \ cal \ g^{-1} \ ^{\circ}C^{-1}; \ L_{f} = 80 \ cal \ g^{-1}; \ c_{e \ agua} = 1 \ cal \ g^{-1} \ ^{\circ}C^{-1}; \ c_{e \ Al} = 0,88 \ cal \ g^{-1} \ ^{\circ}C^{-1}$								
a)	132,5	b)	140,0	c)	160,3	d)	168,5	
14 Se conecta una bombilla A en serie con una resistencia variable R a un generador de $r=2\Omega$; cuando R= 18 Ω la bombilla A luce normalmente. Se coloca una segunda bombilla B en paralelo con A, ambas bombillas son idénticas; se reajusta el valor de la resistencia R de tal forma que las dos bombillas lucen idénticas, e igual que cuando solo estaba la A. El nuevo valor de R es: (en Ω):								
a)	4	b)	8	c)	10	d)	16	
15 Cuando una batería de resistencia interna r se une a una resistencia R su rendimiento es del 60%. Si se uniese a una resistencia 6R, el rendimiento sería (en %):								
a)	75	b)	80	c)	85	d)	90	
16 Un recipiente de la forma dibujada está lleno de agua hasta los bordes, y se encuentra en reposo sobre un suelo perfectamente horizontal. La altura del recipiente es 5,00 m y su superficie superior es circular de 10,0 m de radio; sobre esta superficie la presión atmosférica es 1,01x10 ⁵ Pa. Si las fuerzas que soportan sus superficies superior e inferior son idénticas, el radio de la base es, en m: (Dato: d _{agua} = 1 000 kg m ⁻³								
recipie sobre e soporta	nte es 5,00 m y esta superficie la an sus superficie	su supe presión s superio	erficie superior atmosférica es or e inferior son	1,01x10 ⁵	ar de 10,0 m de Pa. Si las fuerz	radio; as que		
recipie sobre e soporta	nte es 5,00 m y esta superficie la an sus superficie	su supe presión s superio	erficie superior atmosférica es or e inferior son	1,01x10 ⁵	ar de 10,0 m de Pa. Si las fuerz	radio; as que		
sobre e soporta en m: a)	nte es 5,00 m y esta superficie la an sus superficie (Dato: d _{agua} = 1 7,2 b)	r su supe presión s superio 000 kg r 8,2	erficie superior atmosférica es or e inferior son m ⁻³ c) 9,2	1,01x10 ^t idénticas	ar de 10,0 m de Pa. Si las fuerz , el radio de la ba	e radio; as que ase es,	sión aumenta un 0,4%. La	
sobre e soporta en m: a)	nte es 5,00 m y esta superficie la an sus superficie (Dato: d _{agua} = 1 7,2 b) i un gas conteni	r su supe presión s superio 000 kg r 8,2	erficie superior atmosférica es or e inferior son m ⁻³ c) 9,2	1,01x10 ^t idénticas	ar de 10,0 m de Pa. Si las fuerz , el radio de la ba	e radio; as que ase es,	sión aumenta un 0,4%. La	

5,0

d)

10

a)

2,5

b)

4,0

19.- Un astro se aproxima al Sol. Cuando está a una distancia muy, muy grande, su velocidad es de 500 m s⁻¹ y su dirección se encuentra a una distancia b= 10¹² m del centro del Sol (ver dibujo). La velocidad del astro en el punto de su trayectoria más próximo al centro del Sol vale (en km s $^{-1}$): (Datos: G= 6,67x10 $^{-11}$ N m 2 kg $^{-2}$; M_{Sol}= 2,00x10 30 kg)

- a) 280 c) 495 d) 534 b)
- 20.- La energía mínima necesaria para expulsar a la Luna de su órbita vale (expresada en 10^{27} J): (Datos: G= $6,67x10^{-11}$ N m² kg⁻²; M_T= $5,98x10^{24}$ kg; M_L= $7,35x10^{22}$ kg; r_{orbital lunar medio}= $3,85x10^8$ m)
- a) 19
- 38 b)
- 76
- 21.- Tres cargas, dos de ellas +Q y la otra -q, se encuentran en equilibrio inestable. La relación Q/q es:
- a) 1/3
- b) 1/2
- c)

2

- d) 4
- 22.- 50 gotas idénticas de mercurio se cargan simultáneamente con 100 V cada una. Si se unen estas 50 gotas, el potencial de la gota resultante será (en V):
- a) 100
- b)

1123

- c) 1357
- d) 5000

PROBLEMAS EXPERIMENTALES

1.- El período T del movimiento de un cuerpo de masa m en el extremo de un muelle, de constante k, viene dado por $T=2\pi\sqrt{\frac{m}{k}}$. Si m = (210 ± 5) g y T =(1,1 ± 0,1) s. a) Calcular el valor de la constante elástica k y su incertidumbre; b) ¿en cuál de las dos magnitudes medidas directamente se debería minimizar su incertidumbre para que afecte menos a la incertidumbre en el valor de k?

(1,5 puntos)

2.- Se han realizado medidas de la temperatura que va alcanzando 1 L de agua, calentada en una tetera eléctrica, y así va transcurriendo el tiempo desde que esta se enchufa. Los resultados obtenidos han sido:

t (min)	1,0	2,0	3,0	4,0	5,0
T(°C)	28,5	41,2	49,7	50,0	62,2

- Si la tetera está conectada a la red de 220 V, y recordando la ley de Joule para el calor disipado en una resistencia eléctrica (Q=V2 t/R), y que el valor del calor específico del agua es constante e igual a kJ kg⁻¹ K⁻¹, efectuar:
- a) Dibujar correctamente los datos sobre papel milimetrado, y la línea de regresión adecuada al fenómeno que se estudia.
- b) Mediante un análisis de regresión lineal, basándose en métodos gráficos, determinar el valor de la resistencia R de la tetera y la temperatura inicial To del agua. Se puede completar el cálculo indicando los datos que se obtienen con calculadora.
- c) Hacer una estimación de las incertidumbres de R y $T_{\rm o}$.