

Actividad 2 Trabajo Colaborativo 1

Jeisson Camilo José Romero Roman

Universidad Nacional Abierta y a Distancia – UNAD

Notas del autor

Jeisson Camilo José Romero Román, Ingeniería de Sistemas, Universidad Nacional Abierta y a Distancia - UNAD

Este trabajo ha sido financiado por recursos propios del estudiante

La correspondencia relacionada con este trabajo debe ser dirigida al tutor Alkigner Cuesta,

Universidad Nacional Abierta y a Distancia – UNAD, CEAD José Acevedo y Gómez,

Transversal 31 No. 12 – 38 Sur,

Contacto: camilojeison2016@gmail.com

Cuadros Comparativos

Diferencias y Similitudes entre IPV4 vs IPV6		
IPv4	IPv6	
Fue lanzado en 1981	Fue lanzado en 1999	
En el tamaño de las direcciones se	En el tamaño de las direcciones se	
encuentra conformado por un numero de	encuentra conformado por un numero de	
32 bits.	128 bits.	
En el formato de las direcciones se	En el formato de las direcciones se	
hace en grupos de 8 bits en notación	hace en grupos de 16 bits en notación	
decimal separados por puntos Ejemplo:	hexadecimal separados por dos puntos	
192.168.10.10	Ejemplo: EF80::A:BBBA:EE:1	
En la notación de prefijos se añade	Se usa de manera similar pero debido	
una barra con un número esto ayuda a	a la gran cantidad de numero de bits	
separar la dirección de red de la dirección	incrementados se usa una cantidad de	
del host 192.168.0.0/24	números mayores ejemplo:	
	EF80::A:BBBA:EE:1::/48	
En la cantidad de direcciones por tener	Por tener separado 128 bits tiene 2 a	
32 bits separados para sus direcciones	128 direcciones que son	
posee una cantidad de 12 a 32		

direcciones que aproximadamente son	aproximadamente 340 sextillones de
como 4.000 millones de direcciones.	direcciones.
4.000 minones de direcciones.	directiones.
En cuanto a seguridad la	Todas las implementaciones de IPv6,
implementación de Ipsec (ip security) era	en un futuro deben permitir la opción de
opcional, aunque bastante usual.	utilizar Ipsec.
Utiliza el ARP para encontrar una	Incrusta estas funciones dentro de la
dirección física, como la dirección MAC	propia IP como parte de los algoritmos
o de enlace, dependiendo de una	para autoconfiguración sin estado y
dirección IP este protocolo se encuentra	descubrimiento de vecino utilizando un
en IPv4 inicialmente para lograr una	nuevo protocolo como lo es ICMP v6.
comunicación cuando recién se hayan	
encendido dispositivos en una red	
ICMP se utiliza en el famoso PING	Existe ICMPv6 añade tipos y códigos
para poder comunicarse con otro	nuevos para dar soporte al
dispositivo	descubrimiento de vecinos y funciones
	relacionadas.
Existe un encabezado con muchos más	El encabezado es mucho más simple,
campos lo cual lo hace más complejo sin	pero con mayor tamaño.
embargo es menor en tamaño.	

NAI se utiliza para poder reutilizar	Desaparece las NAT debido a la gran
una misma dirección IP pública debido a	cantidad de IPS que esta conlleva.
la falta de direcciones IPv4 que había.	
No proporciona garantía en la entrega	Tiene encriptación de la información.
de datos.	
Utiliza una configuración manual al	Su configuración es automática y se
momento de conectarse.	puede configurar a su misma red usando
	mensaje ISMP al ser conectado por
	primera vez enviando una solicitud
	usando un multicast.

Diferencias		Similitudes
TCP (Protocolo de Control de Transmisión)	OSI (Modelo para la Interconexión de Sistemas Abiertos)	ТСР
Es más simple porque tiene menos capas o niveles.	Es más complejo al tener más capas.	La tecnología es de conmutación por paquetes.
No distingue claramente	OSI: identifica	Los dos sistemas se
los servicios, las interfaces	objetivamente los servicios, las	dividen en capas que
y los protocolos.	interfaces, y los protocolos.	contienen servicios
		diferentes.
Se acopla a los	OSI: presenta fallas o no es	Las capas de transporte y
protocolos sin problema.	completo en los protocolos.	de red son similares.
TCP fue concebido por	Fue concebido por una casa	El sistema OSI se
el compartir de varias	matriz que es la ISO.	debe implementar como
personas o empresas por lo	personas o empresas por lo	
		arquitectura real.

cual no tiene una cada matriz única.	
	Los dos sistemas tienen capas de aplicación.
	TCP se implementa a partir del modelo OSI.

OSI (Modelo para la Interconexión de	TCP (Protocolo de Control de	
Sistemas Abiertos) se compone de siete	Transmisión) es un protocolo utilizado	
niveles de proceso, mediante el cual los	por todas las computadoras conectadas a	
datos se empaquetan y se transmiten	una red, de manera que estos puedan	
desde una aplicación emisora, viajando a	comunicarse entre sí.	
través de medios físicos hasta llegar a		
una aplicación receptora.		
La capa de aplicación: proporciona los	Capa de acceso a la red: específica la	
servicios utilizados por las aplicaciones	forma en la que los datos deben	
para que los usuarios se comuniquen a	enrutarse, sea cual sea el tipo de red	
través de la red. Es el nivel más cercano	utilizado.	
al usuario.		
La capa física: controla las señales por		
donde viajaran los datos (cable de par		
trenzado, fibra óptica, radio frecuencia)		

La capa de enlace de datos: se ocupa
del direccionamiento físico dentro de
cualquier topología de red, esta capa nos
permite activar, mantener y deshabilitar
la conexión, así como la notificación de
errores.

Control de acceso al medio: permite compartir el enlace por varios dispositivos.

La capa de presentación: define el formato de los datos que se van a intercambiar entre las aplicaciones, ofreciendo un conjunto de servicios para la transformación de datos.

Capa de Internet: es responsable de proporcionar el paquete de datos (datagrama).

La capa de sesión: proporciona los mecanismos para controlar el diálogo entre las aplicaciones de los sistemas finales: abre, mantiene y cierra la sesión entre dos sistemas.

Capa de aplicación: incorpora aplicaciones de red estándar (Telnet, SMTP, FTP, etc.)

La capa de transporte: permite intercambiar datos entre sistemas finales, dividiendo el mensaje en varios fragmentos. El servicio de transporte puede ser orientado o no orientado a conexión, tomando en cuenta la unidad de transferencia máxima (MTU).

FUNCIONES Control de errores:

detecta y retransmite tramas con error,
tramas pérdidas y detecta también tramas
duplicadas.

La capa de red: se encarga de definir
el camino que seguirán los datos desde el
origen hasta su destino a través de una o
más redes conectadas mediante
dispositivos de enrutamiento (router).

Control de flujo: se encarga de controlar el flujo del receptor cuando el emisor transmite los datos.

Medios de transmisión			
		Similitudes	Diferencias
Guiados	No guiados	Ambos son medios	Velocidad de los
		de transmisión de	datos y su integridad
		datos	
Par trenzado	Microondas	Ambos medios de	Par trenzado [Sin
	Terrestres	transmisión son	blindaje (UTP)y con
		básicos en las	blindaje (STP)]
		telecomunicaciones,	
		ambos medios son los	Microondas
		más económicos de	terrestres [Para la
		utilizar	comunicación de
			microondas terrestres
			se deben usar antenas
			parabólicas]
Cable Coaxial	Satélites	Ambos medios de	Cable coaxial
		transmisión son	(Trasporta señales
		capaces de enviar	con rangos de
		señal de televisión,	frecuencias más altas)
		Telefonía a larga	
		distancia	

			Satélites [Las
			microondas por
			satélite manejan un
			ancho de banda entre
			los 3 y los 30 Ghz. El
			satélite en si no
			procesan información,
			sino que actúa como
			un repetidor-
			amplificador y puede
			cubrir un amplio
			espacio de espectro
			terrestre]
Fibra Óptica	Ondas de radio	Actualmente	Fibra óptica
		ambos medios de	(Inmunidad al ruido,
		transmisión son los	Mayor ancho de
		más utilizados	banda)
			Ondas de radio
			[Ancho de banda
			entre 3 Khz y los 300
			Ghz, Son poco
			precisas]

Solución al problema

 Dibuje el esquema de la red, y haga la descripción del mismo, teniendo en cuenta lo antes mencionado en la descripción del problema.

- Determine la cantidad de Routers, Switches, Access Point u otros equipos que usted y su grupo creen que deben adicionar a la red propuesta. Esto con el fin de soportar la red alámbrica actual y también para diseñar nuevas inalámbricas que soportarían todo el campus universitario.
- Esquema del direccionamiento IP que ustedes proponen para todo el campus universitario, en IPv6.

Debido a los 51.000 estudiantes con los que cuenta la universidad, con el fin satisfacer la demanda y necesidad de los estudiantes de acceder a los servicios de Internet y contando con el anillo de fibra óptica que interconecta los edificios entre sí, se solicitaría instalar un router por cada edificio. Este router se configurará con una dirección ip fija en ipv6. Teniendo en cuenta que IPv6 la longitud de las direcciones es de 128 bits existiendo 2 elevado a 128 posibles direcciones. Este número es tan grande, que puede considerarse infinito. Con este rango de direcciones se puede facilitar sin problemas una dirección IP a cada usuario de la red.

Lo comentado anteriormente daría un total de 10 routers ya que la universidad cuenta con 10 edificios.

Se necesitaran tres switches troncales de altas prestaciones, por edificio y 10 para distribuir la red con las aulas de informática. Este tipo de switches cuenta con un alto rendimiento y una alta modularidad. El formato habitual es de tipo chasis donde se instalan los módulos que se necesitan. Altamente modulares mediante un chasis con un número variable de slots donde se insertan módulos con los elementos requeridos. Normalmente suelen admitir la inserción de módulos "en caliente" (hot swappable) de forma que no hay que desconectar el switch para realizar dicha operación, garantizando así una alta disponibilidad.

Niveles 2/3/4. Además de cubrir funciones de conmutación avanzadas del nivel 2 también proporcionan funciones de enrutamiento y gestión en los niveles 3 y 4.

Fuentes de alimentación redundantes.

Admiten módulos con todos los tipos de puertos, tanto de cobre como de fibra con velocidades 10/100/1000 Mbps hasta 10Gbps.

Alta densidad de puertos. Pueden llegar a más de 500 puertos 10/100, hasta 200 puertos Gigabit o sobre unos 25 puertos 10GbE.

Características avanzadas de configuración y gestión en el nivel 2.

Enrutamiento en el nivel 3 (IPv4 e IPv6).

Cada piso del edificio contara con modem inalámbrico doble banda AC 1200 Archer C50 el cual El incorpora el estándar Wi-Fi de última generación - 802.11ac, 3 veces más rápido que las velocidades inalámbricas N entregando una velocidad de transferencia inalámbrica combinada de hasta 1.2Gbps. Con velocidades inalámbricas de 300Mbps sobre la banda de 2.4GHz y 867Mbps sobre la banda cristalina de 5GHz. Soportando la siguiente generación del protocolo de internet IPv6.

Bibliografías

Kuhlmann, F. y Alonso, A (2005). Información y telecomunicaciones. Recuperado de: http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=101&docID=10431199&tm=1480111966315

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=16&docID=11038861&t m=1480118467357

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=16&docID=11038861&t m=1480118467357

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=16&docID=11038861&t m=1480118467357

Feria, A. (2009). Modelo OSI. Recuperado de:

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=3&docID=10316456&tm =1480435835707

Rodríguez J. (2014). Desarrollo del proyecto de la red telemática (UF1870). Recuperado de: http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=65&docID=11148759&t m=1480436076986

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

 $http://bibliotecavirtual.unad.edu.co: 2077/lib/unadsp/reader.action?ppg=16\&docID=11038861\&t\\ m=1480118467357$

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=16&docID=11038861&t m=1480118467357

Kuhlmann, F. y Alonso, A (2005). Información y telecomunicaciones. Recuperado de: http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=101&docID=10431199&tm=1480111966315

Santos, M. (2014). Sistemas telemáticos. Recuperado de:

 $http://bibliotecavirtual.unad.edu.co: 2077/lib/unadsp/reader.action?ppg=16\&docID=11038861\&t\\ m=1480118467357$

Cuadro Comparativo. TCP y OSI (08 de marzo de 2018). "Elaborado por Fredy Leonardo Penagos."

Cuadro Comparativo. Medios de transmisión guiados y No guiados (11 de marzo de 2018).
"Elaborado por Daniel Alejandro Guerrero Suárez."

Imagen Cuadro comparativo. Direccionamiento IPV4 y Direccionamiento IPv6. (09 de marzo de 2018). "Elaboración Propia"