

DAT303

Oracle on AWS and Amazon RDS

Secure, Fast, and Scalable

Sergei Sokolenko, AWS Senior Product Manager Jeremiah Wilton, AWS Principal Engineer October 2015

What to expect from the session

Learn how to

- Secure database environments on AWS and Amazon RDS
- Migrate Oracle databases into AWS
- Build fast, scalable workloads on Amazon RDS
- Build Oracle RAC on AWS

Setting up secure database environments on AWS and Amazon RDS

Encryption of data at rest

Amazon RDS for Oracle Now HIPAA-Eligible

PHI and Health Insurance Portability and Accountability Act (HIPAA)

Sign Business Associate Agreement with AWS

Benefit from audits of operational and security processes

Migrating Oracle databases into AWS

Purposes of data migration

One-time data migration

Between on premises and AWS

Between Amazon EC2 and Amazon RDS

Ongoing Replication

Replicate on premises to AWS

Replicate AWS to on premises

Replicate OLTP to BI

Replicate for query offloading

Ways to migrate data

Bulk Load

AWS Database Migration Service

Oracle Import/Export
Oracle Data Pump Network Mode
Oracle SQL*Loader
Oracle Materialized Views
CTAS / INSERT over dblink

Ongoing Replication

AWS Database Migration Service

Oracle Data Pump Network Mode Oracle Materialized Views Oracle GoldenGate

High-speed database migration prior to AWS DMS

AWS Database Migration Service

Amazon Aurora

Amazon **Redshift**

Start your first migration in 10 minutes or less
Keep your apps running during the migration
Replicate within, to, or from Amazon EC2 or RDS
Move data to the same or different database engine
Sign up for preview at aws.amazon.com/dms

Keep your apps running during data migration

Start a replication instance

Connect to source and target databases

Select tables, schemas or databases

Let the AWS Database Migration Service create tables, load data and keep them in sync

Switch applications over to the target at your convenience

AWS Database Migration Service best practices

Use dbms_metadata.get_ddl or SQL Developer for schema

Divide schema DDL into 2 parts Apply secondary indexes and triggers after data load

Choose bigger C4 instances
Optimize network path

Building fast, scalable workloads on Amazon RDS

Start with metrics

M3.large (2 vCPU, 7.5GiB RAM) with 400GB storage

Scaling instance components

Compute Capabilities vCPUs

Memory Capabilities GB of RAM

Network
Performance
MB/s (Throughput)

Storage
Performance
I/O Throughput
Max Size

Instance Families: T1, M1, M2, M3

T2 and R3 instance support

T2.large support

Minimize unavailability during scaling

M3.large (2 vCPU, 7.5GiB RAM) >> M3.xlarge (4 vCPU, 15GiB RAM)

4:30:58 PM ... 4:56:17 PM : 25 minutes 4:43:31 PM ... 4:45:16 PM : 105 seconds

Performance after instance scaling

Performance after scaling: duration and CPU

Performance after scaling: writes

Performance after scaling: reads

Performance after scaling: comparison

	Before: m3.large	After: m3.xlarge
Duration	36 min.	23 min.
Avg CPU	82%	53%
Avg Write Operations (/Sec)	690	850
Avg Write Throughput (MB/Sec)	10.4	16.0
Avg Read Operations (/Sec)	270	400
Avg Read Throughput (MB/Sec)	9.0	14.0

Scaling instance components

Compute Capabilities vCPUs

Memory Capabilities GB of RAM

Network
Performance
MB/s (Throughput)

Storage
Performance
I/O Throughput
Max Size

6 TiB Max Size

Instance Families: T1, M1, M2, M3

T2 and R3 instance support

T2.large support

Storage system I/O performance

Туре	Size	Performance	Burst Capacity	Pricing Model
Magnetic Storage	10 GiB–3 TiB	~100 IOPS	Yes, several hundred IOPS	Allocated storage; I/O operations
General Purpose (SSD)	10 GiB–6 TiB (min. 100 GiB recommended)	3 IOPS/GiB	Yes, up to 3000 IOPS, subject to credits	Allocated storage
Provisioned IOPS (SSD)	100 GiB–6 TiB	10 IOPS/GiB, up to max. 30,000 IOPS	No, fixed allocation	Allocated storage; Provisioned IOPS
Instance Storage	not available		n/a	Included in instance type

Amazon RDS for Oracle I/O best practices

- Amazon RDS maximum channel bandwidth: 1000 Mbps each direction = ~105MiB/s per direction and ~210MiB/s for a 50% read/50% write balanced workload
- First touch penalty for network-attached RDS storage

3 Small general purpose SSD Storage sizes (~30Gb) deliver low baseline I/O throughput

Building Oracle RAC on AWS

RAC on Amazon EC2 would be useful

- Test / dev / non-prod; allow testing to cover RAC-related regression cases
- Scale out and back elastically; a good match for the cloud
- Scale beyond the largest instances
- High-RTO redundancy at the host/instance level; App continuity for near zero downtime
- Test scaling limits; a given workload scales only to n nodes on RAC
- Some applications "require" RAC
- Some customers don't want to re-engineer everything just to move to AWS
- Customers want it!

Why no RAC on EC2?

Shared storage with iSCSI

Why no RAC on EC2?

Multicast Network

Multicast on EC2

N2n VPN

ntop.org/n2n

ntop

RAC on EC2 prototype: aws.amazon.com/articles

What you've learned today

- Securing database environments on AWS and Amazon RDS
- Migrating Oracle databases into AWS

Preview AWS Database Migration Service aws.amazon.com/dms

- Building fast, scalable workloads on Amazon RDS
- Building Oracle RAC on AWS

Review RAC article aws.amazon.com/articles

Thank you!

Remember to complete your evaluations!

Q & A

Related Sessions