

Schriftliche Ausarbeitung im Modul Projektplanung

Projektplan für das Projekt CVF

Projektplanung

Florian Lubitz

Technische Informatik 85900 lubitzfl@hs-albsig.de

Inhaltsverzeichnis

1	Einleitung	1
1.1	Projektbeschreibung	1
2	Annahmen	1
2.1	Sitze und Örtlichkeiten	1
2.2	Geräte und Anwendungen	1
2.3	Lieferzeiten	2
3	Projektinhalt	3
3.1	Aktivitäten	3
3.2	Work-Breakdown-Strukture	4
3.3	Oranisation Breakdown Strukture	5
4	Zeitmanagement	6
4.1	Aktivitätendauer	6
4.2	Meilensteine	7
4.3	PERT	7
4.4	Gant	7
5	Kommunikationsplan	7
5.1	Stakeholder	7
5.2	Regelmeetings	7
5.3	Statusberichte	7
6	Qualität	7
6.1	Qualitätsprozesse	7
6.2	Qualitätskontrolle der Hardware	8
6.3	Ticketsytem	8
6.4	Versionierungssystem	9
6.5	Codestyle	9
6.6	Bugverlauf	9
6.7	Befestigung des Gerät CONTRACK	9
7	Risikoplan	12
7.1	Annahmen	12
7.2	Risiken mit Priorität	12
7.3	Bewertung	12

PROJEKTPLAN FÜR DAS PROJEKT CVF

Inhaltsverzeichnis

7.4	Risikokosten	12			
8	Human Ressources	12			
8.1	Aufgabenverteilung	12			
8.2	Aktionsplan	13			
8.3	Motivation	13			
9	Beschaffung	13			
10	Kostenmanagement	13			
10.1	Kostenschätzung	13			
10.2	Personalkosten	13			
10.3	Materialkosten	14			
10.4	Risikokosten	14			
10.5	Gewinnmarge	14			
10.6	Kontigenz	14			
10.7	Plankosten	15			
Abbildungsverzeichnis					
Tabel	lenverzeichnis	16			
Α	Anhanα	1			

1 Einleitung

1.1 Projektbeschreibung

Im Januar 2020 wird in den USA ein Gesetz in Kraft treten. Dieses verpflichtet die Firma T dazu, alle Schiffscontainer mit einem Tracking-Gerät auszustatten. Dieses Gerät muss die Position des entsprechenden Container über die letzten 9 Monate dokumentieren. Unsere Geräte CONTRAC mit der zugehörigen Software CONSERV bietet diese Möglichkeit. Aus diesem Grund hat uns KT beauftragt die Container des Schiffs "Event Horizon" mit unserem System auszustatten. Um die Anforderungen der Firma KT zu erfüllen müssen diese Geräte allerdings mit ZigBee ausgestattet werden und die Software entsprechend erweitert werden. Auch übernehmen wir die Verwaltung des Servers CONSERV für KT.

2 Annahmen

2.1 Sitze und Örtlichkeiten

- 1. Der Sitz der Firma EZ ist Albstadt
- 2. Der Sitz der Firma DOTDAT GmbH ist Hamburg
- 3. Der bei KT beschäftigte Projektleiter Lars Haekinson arbeitet in Hamburg

2.2 Geräte und Anwendungen

- 1. Die Firma EZ besitzt einen Vorrat von ca. 100 CONTRAC-Geräten für Test- und Entwicklungszwecke in Hamburg
- 2. Keine Änderungen während des Projektzeitraums
- 3. Kosten für LTE mit E-Sim im Geräte sind Gerätekosten enthalten

2.3 Lieferzeiten

- 1. Die Lieferung großer Frachten aus Shenzhen dauert 40 Tage (1.500\$).
- 2. Die Lieferung kleiner Mengen per Luftfracht dauert 5 Tage (45.000\$).

3 Projektinhalt

3.1 Aktivitäten

ID	Aktivität
Α	Projektmanager
A1	Ausführungen
A2	Reviews
A3	Kommunikation
В	CONTRAC
B1	Entwicklung Verbesserung Hardware (ZigBee und Akku)
B2.X	Einkauf der Teile
B2.1	Produktion beauftragen
B2.2	Produktion
B3.1	QS Shenzhen
B4.1	Versand
B3.2	QS Hamburg
B4.2	Versand Rotterdam
B5.1	Anbauer Suchen
B5.2	Anbau entwerfen
B5.3	Anbau testen
B5.4	Anbau vorstellen
B5.5	Anbau verbessern
B5.6	Anbauteile bestellen
B5.7	Anbau
С	CONSERV
C1.1	Patch-Software optimieren
C1.2	Patch-Software testen
C1.3	Patch-Software Fehler beheben
C2	Mit 5500 Geräten testen
C3.1	Cloud-Anbieter suchen
C3.2	Angebote einholen
C3.3	Cloud einrichten
C3.4	Server einrichten
D	CONTRAC-Firmware
D1	ZigBee einbauen
D2.1	Patch-Funktion optimieren
D2.2	Patch-Funktion testen
D2.3	Patch-Funktion Fehler beheben

Tabelle 1: Aktivitäten im Projekt

3.2 Work-Breakdown-Strukture

Abbildung 1: Work-Breakdown-Strukture

3.3 Oranisation Breakdown Strukture

Abbildung 2: Organisation-Breakdown-Strukture

4 Zeitmanagement

4.1 Aktivitätendauer

ID	Aktivität	Dauer in d
Α	Projektmanager	
A1	Ausführungen	120
A2	Reviews	22
A3	Kommunikation	120
В	CONTRAC	
B1	Entwicklung Hardware	
B2.1	Produktion beauftragen	1
B2.2	Produktion	30
B3.1	QS Shenzhen	8
B4.1	Versand	30
B3.2	QS Hamburg	8
B4.2	Versand Rotterdam	7
B5.1	Anbauer Suchen	2
B5.2	Anbau entwerfen	5
B5.3	Anbau testen	2
B5.4	Anbau vorstellen	2
B5.5	Anbau verbessern	5
B5.6	Anbauteile bestellen	1
B5.7	Anbau	3
С	CONSERV	
C1.1	Patch-Software optimieren	30
C1.2	Patch-Software testen	20
C1.3	Patch-Software Fehler beheben	20
C2	Mit 5500 Geräten testen	10
C3.1	Cloud-Anbieter suchen	5
C3.2	Angebote einholen	10
C3.3	Cloud einrichten	10
C3.4	Server einrichten	10
D	CONTRAC-Firmware	
D1	ZigBee einbauen	10
D2.1	Patch-Funktion optimieren	20
D2.2	Patch-Funktion testen	20
D2.3	Patch-Funktion Fehler beheben	10

Tabelle 2: Dauer der Aktivitäten im Projekt

4.2 Meilensteine

- **4.3 PERT**
- **4.4 Gant**

5 Kommunikationsplan

5.1 Stakeholder

Stakeholder Kürzel

Tabelle 3: Stakeholder

5.2 Regelmeetings

- **5.2.1 Dayly**
- 5.2.2 Weekly Review
- 5.3 Statusberichte
- 5.3.1 Template für Statusberichte

6 Qualität

6.1 Qualitätsprozesse

Um die Qualität der Hardware und Software werden bei EZ verschieden Prozesse eingesetzt. Dazu gehört eine doppelte Qualitätskontrolle der Hardware, Code Reviews sowie ausführliche und automatisierte Tests für die Software.

6.2 Qualitätskontrolle der Hardware

Alle CONTRAC-Geräte werden in Shenzhen und in Hamburg durch eine elektrische Kontrolle auf ihre Funktionalität geprüft.

6.2.1 Code Review

Jeder Code muss vor dem Mergen in den master-Branch durch einen zweiten Entwickler getestet und kontrolliert werden.

6.2.2 Unit Test

Für jede Softwarekomponente muss ein Unit-Test erstellt werden, der vor jedem Einchecken erfolgreich durchgeführt werden muss. Auch der Build-Server des Continuous-Integration-Zyklus muss die Tests erfolgreich ausführen. Bei einem Fehlschlag muss dieser zeitnah behoben werden.

6.2.3 Test

Jede erstellte Komponente muss vom Entwickler ausführlich getestet werden. Jede Komponente muss auch von einem zweiten Mitarbeiter getestet werden.

6.3 Ticketsytem

Als Ticktsystem kommt das firmeneigene Jira zum Einsatz. Dieses ist über die Adresse https://jira.ez.de verfügbar. Alle Entwickler und Product Owner besitzen ein Zugang zu diesem System.

6.4 Versionierungssystem

Als Versionierungssystem für das Projekt wird Git eingesetzt. Dieses ist allen Entwicklern auf ihren Computern verfügbar. Als Git-Remote dient der firmeneigene Bitbucket-Server, der unter der Adresse git.ez.de verfügbar ist. Auch aus dem Internet ist der Server unter dieser Adresse verfügbar.

Eine Commit-Message muss immer die getätigte Arbeit beschreiben und eine eindeutige Zuordung zu einem Ticket oder ein User Story ermöglichen. Dazu werden diese über ihre eindeutige Bezeichnung (US-3, BUG-5) erwähnt.

6.5 Codestyle

Der geschriebene Code muss den Stylerichtlinien der Firma entsprechen. Diese können dem hausinternen Wiki unter wiki.ez.de entnommen werden. Konfigurationsdateien für verschiedene IDEs und Formatierer können dort auch heruntergeladen werden. Diese Richtlinien werden auch an externe Firmen weitergegeben.

6.6 Bugverlauf

Jeder entdeckte Bug muss in Jira dokumentiert werden. Die Bugs fließen dann in die Backlogs für die Entwicklung ein. Dort werden sie mit erhöhter Priorität belegt.

6.7 Befestigung des Gerät CONTRACK

Das Gerät CONTRACK muss am 15. Oktober innerhalb von 72h an 5000 Containern befestigt werden.

Die Geräte werden an den Containern mit Spezialkleber befestigt. Der Kleber wird von der Firma Sika hergestellt und regulär für das Verkleben von Fahrzeugkarosserien verwendet. Er wir dort als Ersatz von Schweißnähten verwendet und hält großen Belastungen und Temperaturschwankungen stand.

Die Montage wird von Zweierteams durchgeführt. Dieses reinigt zuerst mit einem sich verflüchtigendem Reinigungsmittel die Montagestelle am Container. Dann wird ein CONTRACK-Geräte in das Aufpresswerkzeug gesetzt. Der Kleber wird mit einer Spritze aufgetragen

6 Qualität

und das Gerät an den Container angepresst. Dieser Vorgang kann in 2 Minuten durchgeführt werden. Die Arbeiter stehen für die Montage auf einer erhöhten Fläche, um den Montagepunkt leichter zu erreichen. Das Aufpresswerkzeug besitzt wie ein Drehmomentschlüssel einen Auslösemechanismus um den optimalen Druck zu gewährleisten.

Für die Montage in Rotterdam werden externe Mitarbeiter akquiriert, die diese Arbeit unter Aufsicht durchführen. Diese werden am Tag vor der Montage geschult. Die Montage findet an 6 Containerbrücken statt. Da für die Verladung eines Containers ca. 3,2 min benötigt werden, dauert die Montage entsprechend 45 Stunden. In dieser Zeit wechseln sich Zweiterteams im Dreischichtbetrieb ab. Damit sind für die Montage 36 Arbeiter notwendig.

29. Juni 2019

7 Risikoplan

7.1 Annahmen

7.2 Risiken mit Priorität

7.3 Bewertung

7.4 Risikokosten

8 Human Ressources

8.1 Aufgabenverteilung

		D
	_A	Projektmanager
	_A1	Ausführungen
	A2	Reviews
	A3	Kommunikation
	В	CONTRAC
	B1	Entwicklung Verbesserung Hardware (ZigBee und Akku)
	B2.1	Produktion beauftragen
	B2.2	Produktion
	B3.1	QS Shenzhen
	B4.1	Versand
	B3.2	QS Hamburg
	B4.2	Versand Rotterdam
	B5.1	Anbauer Suchen
	B5.2	Anbau entwerfen
	B5.3	Anbau testen
	B5.4	Anbau vorstellen
	B5.5	Anbau verbessern
	B5.6	Anbauteile bestellen
	B5.7	Anbau
	С	CONSERV
	C1.1	Patch-Software optimieren
	C1.2	Patch-Software testen
29. Juni 20	1 6 1.3	Patch-Software Fehler beheben
	C2	Mit 5500 Geräten testen
	C3.1	Cloud-Anbieter suchen

8.2 Aktionsplan

8.3 Motivation

9 Beschaffung

Bei der Firma DOTDAT GmbH wird die Entwicklung der Hardware eingekauft. Die von DOTDAT angefragten UserStories lauten wie folgt:

10 Kostenmanagement

10.1 Kostenschätzung

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.2 Personalkosten

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.3 Materialkosten

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.4 Risikokosten

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.5 Gewinnmarge

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.6 Kontigenz

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi

PROJEKTPLAN FÜR DAS PROJEKT CVF

10 Kostenmanagement

ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

10.7 Plankosten

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Abbildungsverzeichnis

1 2	Work-Breakdown-Strukture	
Tak	bellenverzeichnis	
1	Aktivitäten im Projekt	3
2	Dauer der Aktivitäten im Projekt	6
3	Stakeholder	7
4	Aufgahenverteilung im Projekt	12

A Anhang

29. Juni 2019