

RDA1846S Programming Guide

Contents

Document overview	
Doc. A: Interface	
1. I2C Interface	5
2 Three- wire SPI interface	N.
Doc. B: Programming guide	9
1. Setting RF Frequency	9
	9
3. Setting Tx and Rx	9
4. Deep Sleep	10
5. TX Voice Channel Select	
6. TX PA_bias output Voltage	11
7. Subaudio	11
8. SQ	12
9. VOX	13
10. DTMF	13
11. Tx FM Deviation	16
12. Rx Voice Volume	16
13. TX and RX code	16
14. GPIO	16
15. INT	17

16. Filter	18
17. Only read register	19
18. Flag	19
19. PLL Lock Detection	19
20. LDO	20
21. Initial process	20
22. Register introduction	
Change List	24
Disclaimer	

Document overview

This programming guide has been restructured from previous revisions for clarity. This contains two documents for interface and programmer separately. Interface document contains I2C interface and 3 wire SPI interface. Programmer document contains a complete programming guide for using any interface.

Doc. A: Interface

RDA1846S each register write is 24-bit long, including a r/W bit,7-bit register address, and 16-bit data (MSB is the first bit).

R/W	A[6:0]	D[15:0]	
-----	--------	---------	--

Note

If register address is more than 7FH, first write 0x0001 to 7FH, and then write value to the address subtracted by 80H. Finally write 0x0000 to 7FH

Example: writing 85H register address is 0x001F.

Move 7FH 0x0001;

Move 05H 0x001F; 05H=85H-80H

Move 7FH 0x0000;

1. I2C Interface

RDA1846S enable software programming through I2C interface. Software controls chip working states, For example: Txon or Rxon operation, and reads status register to get operation result through I2C interface.

It includes two pins: SCLK and SDIO.

A I2C interface transfer begins with START condition, a command byte and data bytes, each byte has a followed ACK (or NACK) bit, and ends with STOP condition. The command byte includes a 7-bit chip address and a r/w bit. The 7-bit chip address is 7'b0101110 when SEN is high, or is 7'1110001 when SEN is low. The ACK (or NACK) is always sent out by receiver. When in write transfer, data bytes is written out from MCU, and when in read transfer, data bytes is read out from RDA1846S.

Figure 1. I²C Interface Write Timing Diagram

Figure 3 I²C Interface Write Combined Format

STA	ART	I2C CHIP ADDRESS	W	Α	REGISTER ADDRESS	A/ NA	START	I2C CHIP ADDRESS	R	Α	REGISTER BIT< 15:8>	Α	REGISTER BIT< 7:0>	NA	STOP
	Figure 4 I ² C Interface Read Combined Format														
	From master to slave A = acknowledge (SDA LOW) S= START condition														

NA = not acknowledge (SDA HIGH)

P= STOP condition

Table 2. I2C Timing Characteristics

From slave to master

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Frequency	f _{scl}		0	-	400	KHz
SCLK High Time	t _{high}		0.6	-	-	μS
SCLK Low Time	t _{low}		1.3	-	-	μS
Setup Time for START Condition	t _{su:sta}		0.6	-	-	μS
Hold Time for START Condition	t _{hd:sta}		0.6	-	-	μS
Setup Time for STOP Condition	t _{su:sto}		0.6	-	-	μS
SDIO Input to SCLK↑ Setup	t _{su:dat}		100	-	-	ns
SDIO Input to SCLK↓ Hold	t _{hd:dat}		0	-	900	ns
STOP to START Time	t _{buf}		1.3	-	-	μS
SDIO Output Fall Time	t _{f:out}		20+0.1C _b	-	250	ns
SDIO Input, SCLK Rise/Fall Time	$t_{r:in} / t_{f:in}$		20+0.1C _b	-	300	ns
Input Spike Suppression	t _{sp}		-	-	50	ns
SCLK, SDIO Capacitive Loading	C _b		-	-	50	pF
Digital Input Pin Capacitance					5	pF

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

2 Three- wire SPI interface

RDA1846S enable software programming through three-wire(SPI) interface. Software controls chip working states, For example: Txon or Rxon operation, and reads status register to get operation result through three-wire interface.

Three-wire interface is slave interface. It includes three pins: \overline{SEN} , SCLK and SDIO. \overline{SEN} and SCLK are input pins, SDIO are bi-direction pins.

RDA1846S samples command byte and data at posedge of SCLK. The turn around cycle between command byte from MCU and data from RDA1846S is a half cycle. RDA1846S samples command byte at posedge of SCLK, and output data also at posedge of SCLK.

Figure 5. Three-wire Interface Write Timing Diagram

Figure 6. Three-wire Interface Read Timing Diagram

Table 2. Three-wire Timing Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Cycle Time	t _{CLK}		35			ns
SCLK Rise Time	t _R				50	ns
SCLK Fall Time	t _F				50	ns
SCLK High Time	t _{HI}		10			ns
SCLK Low Time	t _{LO}		10			ns
SDIO Input, SEN to SCLK↑ Setup	t _s		10	-	-	ns
SDIO Input, to SCLK↑ Hold	t _h		10		-	ns
SCLK↑ to SDIO Output Valid	t _{cdv}	Read	2	-	10	ns
SEN↑ to SDIO Output High Z	t _{sdz}	Read	2	- \	10	ns
Digital Input Pin Capacitance					5	pF

Doc. B: Programming guide

1. Setting RF Frequency

Bit	Name	Function	
29H[13:0]	freq<29:16>	Freq high value (unit 1khz/16)	
2aH[15:0]	freq<15:0>	Freq low value (unit 1khz/16)	

Default frequency is 409.7500MHz

Freq<29:0>= Binary (Freq(MHz)*16000)

For example: frequency is 409.75MHz, Freq<29:0>=409.75*16000=6556000=0x640960,so write 29H [15:0] =0x64 and 2aH [15:0] =0x0960.

2. Reference Clock

RDA1846S takes 12.8 MHz,13MHz,25.6M Hz and 26MHz crystals as its master reference clock. .

Bit	Name	Function
30H[14]	xtal_mode	1: 26MHz/13MHz
		0: 25.6MHz/12.8MHz
04H[0]	clk_mode	1: 12.8MHz /13MHz
		0: 25.6MHz /26MHz

For example: 12.8MHz crystal

04H[0]= clk_mode =1

 $30H[14] = clk_mode = 0$

13MHz crystal

 $04H[0] = clk_mode = 1$

30H[14]= clk_mode =1

26MHz crystal

 $04H[0] = clk_mode = 0$

30H[14]= clk_mode =1

3. Setting Tx and Rx

Bit	Name	Function
30H[13]	filter_band_sel	Analog filter band select
		1 = 25khz band mode

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

		0 = 12.5khz band mode
30H[12]	band_mode	Dsp band mode select
		1 = 25khz band mode
		0 = 12.5khz band mode
30H[6]	tx_on	1 = on
		0 = off
30H[5]	rx_on	1 = on
		0 = off

4. Deep Sleep

Bit	Name	Function
30H[2]	pdn_reg	The same as pdn pin $1 = power_on$ $0 = power_down$

While Normal mode, pdn_reg and PDN pin must be high at the same time. Only one of pdn_reg and PDN pin is low, which can turn into deep sleep.

For example: Sleep programming sequence:

setting 30H[6:5]=00 : shut down Tx or Rx

setting PDN pin is Low or 30H[2]=0; enter into deep sleep state

delay period of sleep time : in sleep state setting PDN pin is High or 30H[2]=1 ; exit sleep state

delay 10ms

Setting 30H[6] or 30H[5]=1 :open Tx or Rx

5. TX Voice Channel Select

Bit	Name	Function
3aH[14:12]	voice_sel<1:0>	000= Tx nothing
		001= Tx signal from frequency of tone1
		010=Tx signal from frequency of tone2
		011= Tx signal from frequency of tone1 and tone2
		100= Tx signal from microphone
		other= reserved

6. TX PA_bias output Voltage

RDA1846S Pa_bias pin output voltage can be controlled by 0aH [5:0].

		-	
Bit	Name]	Function
0aH [5:0]	pabias_voltage<5:0>	000000: 1.04V	
		000001:1.05V	
		000010:1.07V	
		000100: 1.10V	
		001000: 1.22V	
		010000: 1.52V	
		100000: 2.14V	
		111111 :3.28V	

7. Subaudio

Bit	Name	Function
4aH[15:0]	ctcss1_freq<15:0>	ctcss1 frequency for tx and tx
		$Ctcss1 freq = ctcss_freq(Hz)*100$
		Default value is 100Hz
		It must be set to 134.4Hz when use standard cdcss
		mode
4dH[15:0]	ctcss2_freq<15:0>	ctcss2 frequency for tx and rx
		Ctcss2 freq = ctcss_freq(Hz)*100
		Default value is 100Hz
4bH[7:0]	4bH[7:0]=cdcss_code<23:16>	cdcss bit for tx and rx
4cH[15:0]	4cH[15:0]=cdcss_code<15:0>	When use cdcss, this register must be set both in rx
		and tx state
		For example: When tx or rx Cdcss023
		4bH=0x0076 and 4cH=0x3813
4eH[15:14]	shift_sel<1:0>	shift phase for tx and rx tail elimination
		00= no phase shift,
		01=120 degree phase shift,
		10=180 degree phase shift,
		11=240 degree phase shift.
4eH[10:9]	ctcss/cdcss_sel<1:0>	Select Ctcss/Cdcss mode for tx
		11=ctcss with 1846S
		10=cdcss with 1846S
		01=ctcss/cdcss from GPIO0

		00= not Tx ctcss/cdcss
4eH[8:6]	cdcss_sel<2:0>	Select cdcss mode for tx/rx
		4eH[8]=1 invert cdcss;
		=0 not invert cdcss
		4eH[7]=1 should be 1
		4eH[6]=1 24bit cdcss;
		=0 23bit cdcss
3aH[5]	ctcss/cdcss_out_sel	Select Ctcss/Cdcss mode for rx
		1: output ctcss/cdcss wave to GPIO0
		0: output ctcss/cdcss compared result to GPIO0
3aH[4:0]	ctcss/cdcss _dten<4:0>	Select Ctcss/Cdcss detect mode for rx
		3aH[4]=1 detect phase shift
		3aH[3]=1 detect ctcss2 frequency
		3aH[2]=1 detect invert cdcss
		3aH[1]=1 detect normal cdcss
		3aH[0]=1 detect ctcss1 frequency
5bH[15:8]	ctcss_threshold_in<7:0>	detect ctcss1 and ctcss2 match_threshold
5bH[7:0]	ctcss_threshold_out<7:0>	detect ctcss1 and ctcss2 unmatch_ threshold
		Note:
		5bH setting refer to the ctcss threshold of the
		'RDA1846S _register_table'
30H[11]	tail_elim_en	1 = on, enable 1846S tail elimination function
		0 = off disable 1846S tail elimination function

8. SQ

Bit	Name	Function
30H[3]	sq_on	1 = on, enable 1846S auto sq function
		0 = off
3aH[10:6]	sq_dten<4:0>	sq condition enable
		3aH[6]=1 rssi detect enable
		=0 rssi detect disable
		3aH[7] =1 noise detect enable
		=0 noise detect disable
		3aH[8]=1 rssi&noise(block) enable
		=0 rssi&noise(block) disable
		3aH[9]=1 adjacent channel, detect enable
		=0 adjacent channel,detect disable
		3aH[0]=1 fm modu signal detect enable

		=0 fm modu signal detect disable
49H[13:7]	th_h_sq<6:0>	Sq detect high th, rssi_cmp will be 1 when
	Sq open threshlod	rssi>th_h_sq, unit 1dB
		49H[13:7]=Binary (137+ Sq open threshlod)
49H[6:0]	th_l_sq<6:0>	Sq detect low th, rssi_cmp will be 0 when
		rssi <th_l_sq &&="" 1="" db<="" delay="" meet,="" td="" time="" unit=""></th_l_sq>
		49H[6:0]=Binary (137+ Sq shut threshlod)
3aH[11]	sq_out_sel	=1 output of gpio6=sq_cmp & sub_audio_cmp;
		=0 output of gpio6= sq_cmp.

For example: Sq open threshold=-120dBm and Sq shut threshold=-122dBm

So 49H[13:7]= Binary (137+(-120))=0010001,

49H[6:0] = Binary (137+(-122))=0001111,

49H[15:0]=00 0010001 0001111=0x088F

9. VOX

Bit	Name	Function
30H[4]	vox_on	1 = on, enable 1846S Vox detect
		0 = off, disable 1846\$ Vox detect
64H[13:7]	th_h_vox<6:0>	Vox open threshold
64H[6:0]	th_l_vox<6:0>	Vox Shut threshold
		Note:
		64H setting refer to the vox of the 'RDA1846S
		_register_table'

10. DTMF

Bit	Name	Function
3aH[14:12]	voice_sel<1:0>	011= Tx signal from frequency of tone1 and tone2
79H[15]	dtmf_direct	0= dtmf
		1= single tone
79H[14]	dtmf_tx	0= tx dtmf
		1= tx single tone
7aH[15]	dtmf_en	1=enable dtmf
		0=disable dtmf
7aH[14]	single_tone	1=enable single tone
		0=disable single tone
7bH[11:6]	dtmf_time0<5:0>	Time interval for dtmf idle state
		Time = dtmf_time0*2.5ms

7bH[5:0]	dtmf_time1<5:0>	Time interval for dual tone transmission
		Time = dtmf_time1*2.5ms
35H[15:0]	tone1_freq<15:0>	=tone1 frequency(Hz)*10
36H[15:0]	tone2_freq<15:0>	=tone2 frequency(Hz)*10
7eH[5]	dtmf_idle	only for tx
		1= dtmf code request for tx
		0= dtmf code idle
7eH [4]	dtmf_sample	only for Rx
		1= dtmf code ready for read
		0= dtmf code not ready for read
67H[15:0]	dtmf_c0<15:0>	697Hz
		=0x0628 12.8MHz and 25.6MHz
		=0x0628 13MHz and 26MHz
68H[15:0]	dtmf_c1<15:0>	770Hz
		=0x059F 12.8MHz and 25.6MHz
		=0x05e5 13M and 26MHz
69H[15:0]	dtmf_c2<15:0>	852 Hz
		=0x0555 12.8MHz and 25.6MHz
		=0x0555 13MHz and 26MHz
6aH[15:0]	dtmf_c3 <15:0>	941 Hz
		= 0x04B8 12.8MHz and 25.6MHz
		= 0x04B8 13MHz and 26MHz
6bH[15:0]	dtmf_c4 <15:0>	1209 Hz
		=0x029F 12.8MHz and 25.6MHz
		=0x02FE 13MHz and 26MHz
6cH[15:0]	dtmf_c5<15:0>	1336 Hz
		=0x01DD 12.8MHz and 25.6MHz
		=0x01DD 13MHz and 26MHz
6dH[15:0]	dtmf_c6<15:0>	1477 Hz
		=0x00B1 12.8MHz and 25.6MHz
		=0x00B1 13MHz and 26MHz
6eH[15:0]	dtmf_c7<11:0>	1633 Hz
		=0x0F81 12.8MHz and 25.6MHz
		=0x0F81 13MHz and 26MHz
6fH[15:0]	dtmf_c0_2nd_harm<15:0>	=0x017A 12.8MHz and 25.6MHz
		=0x017A 13MHz and 26MHz
70H[15:0]	dtmf_c1_2nd_harm<150>	=0x004C 12.8MHz and 25.6MHz
		=0x004C 13MHz and 26MHz
71H[15:0]	dtmf_c2_2nd_harm<15:0>	=0x0EB8 12.8MHz and 25.6MHz
		=0x0F1C 13MHz and 26MHz
72H[15:0]	dtmf_c3_2nd_harm<15:0>	=0x0D91 12.8MHz and 25.6MHz

		=0x0D91 13MHz and 26MHz
73H[15:0]	dtmf_c4_2nd_harm<15:0>	=0x09F9 12.8MHz and 25.6MHz
		=0x0A3E 13MHz and 26MHz
74H[15:0]	dtmf_c5_2nd_harm<15:0>	=0x08DE 12.8MHz and 25.6MHz
		=0x090E 13MHz and 26MHz
75H[15:0]	dtmf_c6_2nd_harm<15:0>	=0x081F 12.8MHz and 25.6MHz
		=0x0833 13MHz and 26MHz
76H[15:0]	dtmf_c7_2nd_harm<15:0>	=0x0810 12.8MHz and 25.6MHz
		=0x0806 13MHz and 26MHz
7eH [3:0]	dtmf_code<3:0>	Dtmf code out
		Usually, F0~F7 is selected as 697, 770, 852, 941,
		1209, 1336, 1477, 1633 Hz (default)
		F4 F5 F6 F7
		F0 1 2 3 A
		F1 4 5 6 B
		F2 7 8 9 C
		F3 E(*) 0 F(#) D

Note:

DTMF setting refer to the DTMF of the 'RDA1846S _register_table'

Run the code in Matlab for calculate dtmf_code: Coef means dtmf_coef_0~7 Coef 2means dtmf_coef_0~7_2nd_harm

close all

clear all

% Frequency tones of the telephone pad (Hz)

f = [697 770 852 941 1209 1336 1477 1633]

Fs = 6.4e6/1024 % 12.8M and 25.6M crystal or Fs = 6.5e6/1024 % 123M and 26M crystal

N = 127;

LEN = 10;

$$\begin{split} k = floor(f/Fs*N+0.5); & \% \ Indices \ of \ the \ DFT \\ coef = round(2*cos(2*pi*k/N)*2^LEN)/2^LEN; \end{split}$$

disp('COEF');

coef*2^LEN

dec2bin(coef*2^LEN,12)

% 2nd harmonious

k2 = floor(2*f/Fs*N+0.5); % Indices of the DFT

coef2 = round(2*cos(2*pi*k2/N)*2^LEN)/2^LEN; disp('COEF_2nd_harm'); coef2*2^LEN

11. Tx FM Deviation

Bit	Name	Function
0aH[10:6]	pga_gain<4:0>	Voice analog gain.
41H[6:0]	voice_gain_tx<6:0>	Voice digital gain.
44H[11:8]	gain_tx<3:0>	Voice digital gain after tx ADC down sample
59H [15:6]	xmitter_dev<9:0>	Ctcss/cdcss + voice dev setting
59H [5:0]	c_dev<5:0>	Ctcss/cdcss dev setting

Adjusting 59H [15:6] (xmitter_dev) can change Tx FM deviation of voice and subaudio.

Adjusting 59H [5:0] (c_dev) can only change Tx FM deviation of CTCSS and CDCSS.

Note:

Please refer to the deviation of the 'RDA1846S _register_table'

12. Rx Voice Volume

Bit	Name	Function
44H[7:4]	dac_vgain_<3:0>	Analog DAC gain
44H[3:0]	volume<3:0>	Digital Voice gain

Adjusting 44H [3:0] and 44H [7:4] can change Rx voice range.

Please refer to volume of 'RDA1846S_register_table'.

13. TX and RX code

14. **GPIO**

Register 1fh.

Bit	Name	Function
15:14	gpio7<1:0>	00 =hi-z
		01 = vox
		10 = low
		11 = high
13:12	gpio6<1:0>	00 =hi-z

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

		01 = sq,
		sq&ctcss/cdcss,when sq_out_sel=1
		10 = low
		11 = high
11:10	gpio5<1:0>	00 =hi-z
		$01 = txon_rf$
		10 = low
		11 = high
9:8	gpio4<1:0>	00 =hi-z
		01 = rxon_rf
		10 = low
		11 = high
7:6	gpio3<1:0>	00 =hi-z
		01 =dtmf_flag/code_flag
		10 = low
		11 = high
5:4	gpio2<1:0>	00 =hi-z
		01 = int
		10 = low
		11 = high
3:2	gpio1<1:0>	00 =hi-z
		01 = code_out/code_in
		10 = low
		11 = high
1:0	gpio0<1:0>	00 =hi-z
		01 = css_out/css_in/css_cmp
		10 = low
		11 = high

15. INT

Register 2dh.

16' b0000_0000_0000_0000

Bit	Name	Function
15:12	others <3:0>	000000
11	code_flag_int	1=enable
		0=disable
10	other	0
9	sub_audio_compared_flag_int	1=enable
		0=disable

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

8	rxon_rf _int	1=enable
		0=disable
7	txon_rf_int	1=enable
		0=disable
6	dtmf_idle int	1=enable
		0=disable
5:3	others	000
2	sq_flag_int	1=enable
		0=disable
1	other	0
0	vox_int	1=enable
		0=disable

Note

Only one INT mode can be chosen at one time.

16. Filter

Register 58h.

Name	Function
others	10
rssi_lpfil_bw	1=bypass
	0=normal
vox_lowpass_filter_bypass	1=bypass
$A\lambda$	0= normal
vox_highpass_filter_bypass	1=bypass
	0= normal
others	100
pre/de-emph_bypass	1=bypass
	0= normal
voice_highpass_filter_bypass	1=bypass
	0= normal
voice_lowpass_filter_bypass	1=bypass
	0= normal
ctcss_lowpass_filter_bypass	1=bypass
	0= normal
ctcss_highpass_filter_bypass	1=bypass
	0= normal
others	10
ctcss_lpfil_bw	1=250Hz BW
	0=110Hz BW
	others rssi_lpfil_bw vox_lowpass_filter_bypass vox_highpass_filter_bypass others pre/de-emph_bypass voice_highpass_filter_bypass ctcss_lowpass_filter_bypass ctcss_lowpass_filter_bypass others

17. Only read register

Bit	Name	Function
1bH[15:8]	rssi_db<7:0]>	Received RF signal strength ,unit 1dB
1bH[7:0]	noise_db<7:0]>	Received noise signal strength ,unit 1dB
1aH [15:8]	vox_db<7:0>	Tx path digital signal strength, unit 0.5dB
1aH [7:0]	mic_db<7:0>	Mic signal strength, unit 0.5dB

18. Flag

Register 1ch.

Name	Function
Others	00000
ctcss1_cmp	ctcss1 compared result.
ctcss2_cmp	ctcss2 compared result.
cdcss1_cmp	cdcss positive code compared result
cdcss2_cmp	cdcss negative code compared result.
invert_det	Ctcss phase shift result
ctcss_shift<1:0>	00=0 degree phase shift,
	01=120 degree phase shift
	10=180 degree phase shift
	11=240 degree phase shift
ctcss/cdcss_cmp	ctcss/cdcss compared result
vox_cmp	vox compared result.
sq_cmp	Sq compare result.
	Others ctcss1_cmp ctcss2_cmp cdcss1_cmp cdcss2_cmp invert_det ctcss_shift<1:0> ctcss/cdcss_cmp vox_cmp

19. PLL Lock Detection

Bit	Name	Function
24H[15]	pll_lock_det_sel	1=disable pll lock detection function
		If PLL unlock, RDA146S will not shutdown RF
		signal.
		0=enable pll lock detection function.
		If PLL unlock, RDA146S will shutdown RF signal
24H[14:13]	reset_pll_lock_delay<1:0>	00=10us
		01=20us

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

		10=30us
		11=40us
0dH [15]	pll_lock_det_flag	Read only
		0=Pll unlock
		1=Pll lock

20. LDO

Bit	Name	Function
08H[14]	ldo_master_bypass	1=bypass all LDOs inside RDA1846S.
		Note: Setting RDA1846S in VHF band , 08H[14]
		must be 0.
		0=normal
09H [9:7]	ldo_dig_vbit<2:0>	If 08H[14]=0, control LDO Vout for digital.
		When supply voltage for RDA1846S is 3.30V
		100=2.20V
		101=2.40V
		110=2.80V
		111=3.30V

21. Initial process

Refer to the 'RDA1846S _register_table'

22. Register introduction

Register 00h. default value=0x1846

Bit	Name	Function
15:0	Chip_ID<15:0>	Chip ID

Register 01h. default value=0x003F

Bit	Name	Function
15:0	mr_id<15:0>	Metal revison ID

Register 30h. default value=0x0000

Bit	Name	Function
15	other	

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

14	xtal_mode	1: 26MHz/13MHz
	_	0: 25.6MHz/12.8MHz
13	filter_band_sel	Analog filter band select
		1 = 25khz band mode
		0 = 12.5khz band mode
12	band_mode_sel	Dsp band mode select
		1 = 25khz band mode
		0 = 12.5khz band mode
11	tail_elim_en	1 = on, enable 1846S tail elimination function
		0 = off disable 1846S tail elimination function
10	direct_reg	1=enable direct_reg
		0=disable direct_reg
9:8	others	
7	mute	1 = mute when rxno
		0 = no mute
6	tx_on	1 = on
		0 = off
5	rx_on	1 = on
		0 = off
4	vox_on	1 = on, enable 1846S Vox detect
		0 = off, disable 1846S Vox detect
3	sq_on	1 = on, then chip auto sq
		0 = off
2	pdn_reg	The same as pdn pin
		1 = enable
		0 = disable
1	chip_cal_en	1 = cal enable
		0 = cal disable
0	soft_reset	1 = reset, then all the registers are reset to default
		value
		0 = normal

Register 03h. default value=0x2B51

Bit	Name	Function
15:14	others	
12	tx_adc_reset_dr	1=enable direct reg
		0=disable direct reg
11	tx_adc_reset_reg	1=enable reset adc
		0=disable reset adc
10:9	others	

Register 04h. default value=0x0FD1

Bit	Name	Function
15:1	others	
0	clk_mode	1: 12.8MHz /13MHz
		0: 25.6MHz /26MHz

Register 08h. default value=0x02A0

Bit	Name	Function
15	other	
14	ldo_master_bypass	1=bypass all LDOs inside RDA1846S. Note: Setting RDA1846S in VHF band , 08H[14] must be 0. 0=normal
13:0	others	

Register 09h. default value=0x03C2

Bit	Name	Function	
15:10	others		
9:7	ldo_dig_vbit<2:0>	If 08H[14]=0, control LDO Vout for digital.	
6:0	others		

Register 0ah. default value=0x7C20

Bit	Name	Function
15	other	
14:11	padrv_ibit<3:0>	output of RF power control
10:6	pga_gain<4:0>	voice analog gain.
5:0	pabias_voltage<5:0>	pabiase_pin output voltage control

Register 15h. default value=0x1100

Bit	Name	Function
15:13	others	
12:9	tuning_bit<3:0>	Tuning IF filter center frequency and bw
8:0	others	

Register 24h. default value=0x0001

Bit	Name	Function
15	pll_lock_det_sel	1: bypass pll lock det function
14:13	reset_pll_lock_delay<1:0>	
12:8	others	
7	dsp_resetn_dr	1=enable direct reg
		0=disable direct reg
6	dsp_resetn_reg	1=enable reset dsp
		0=disable reset dsp
5:0	others	

Register 29h. default value=0x2486

Bit	Name	Function			
15:14	others				
13:0	freq<29:16>	Freq high value (unit 1khz/16)			
Register 2ah.	default value=0x 3A84				
Bit	Name	Function			
15:0	freq<15:0>	Freq low value (unit 1khz/16)			
Register 32h.	default value=0x 7497				
Bit	Name	Function			
15:12	others				
11:6	agc_target_pwr[5:0]	AGC target power, unit 2dB			
5:0	others				
Register 3ah.	default value=0x40C3				
Bit	Name	Function			
15	code_out_sel	1: output code sample signal via GPIO3			
		0: output dtmf_sample/dtmf_idle signal via GPIO3			
14:12	voice_sel<1:0>	voice path select			
11	sq_out_sel	=1 output of gpio6=sq_cmp & sub_audio_cmp;			
		=0 output of gpio6= sq_cmp.			
10:6	sq_dten<4:0>	sq condition enable			
5	ctcss/cdcss_out_sel	Select Ctcss/Cdcss mode for rx			
4:0	ctcss/cdcss _dten<4:0>	Select Ctcss/Cdcss detect mode for rx			
Register 41h.	default value=0x4006				
Bit	Name	Function			
15:7	others	y			
6:0	voice_gain_tx<6:0>	Voice digital gain.			
Register 44h.	default value=0x00FF				
Bit	Name	Function			
15:12	others				
11:8	gain_tx<3:0>	Voice digital gain after tx ADC down sample			
7:4	dac_vgain_<3:0>	Analog DAC gain			
3:0	volume<3:0>	Digital Voice gain			
Register 4eh.	Register 4eh. default value=0x20C2				
Bit	Name	Function			
15:14	shift_sel<1:0>	shift phase for tx and rx tail elimination			
13:11	others				
100					

Select Ctcss/Cdcss mode for tx

Select cdcss mode for tx

10:9

8:6

5:0

ctcss/cdcss_sel<1:0>

cdcss_sel<2:0>

others

Change List

Rev	Date	Author	Change Description
0.1	2010-8-22	Liu Ge	Original draft
0.2	2010-10-8	Liu Ge	Modify 0x4E
	_		
	_		

Disclaimer

The information provided here is believed to be reliable; RDA Microelectronics assumes no liability for inaccuracies and omissions. RDA Microelectronics assumes no liability for the use of this information and all such information should entirely be at the user's own risk. Specifications described and contained here are subjected to change without notice for the purpose of improving the design and performance. All of the information described herein shall only be used for sole purpose of development work of RDA1846S, no right or license is implied or granted except for the above mentioned purpose. RDA Microelectronics does not authorize or warrant any RDA products for use in the life support devices or systems.

Copyright@2006 RDA Microelectronics Inc. All rights reserved

For technical questions and additional information about RDA Microelectronics Inc.:

Website: www.rdamicro.com Mailbox: info@rdamicro.com

RDA Microelectronics (Shanghai), Inc.

Tel: +86-21-50271108 Fax: +86-21-50271099 RDA Microelectronics (Beijing), Inc.

Tel: +86-10-63635360 Fax: +86-10-82612663