Дифференциальная геометрия.

1 Связность в векторном расслоении

Обозначение 1.1. Пусть \mathcal{M} — гладкое многообразие.

Обозначение 1.2. $\tau_{\mathcal{M}} = (T\mathcal{M}, \pi, \mathcal{M}), \ \tau_{\mathcal{M}}^* = (T^*\mathcal{M}, \pi, \mathcal{M})$ — его касательное и кокасательное расслоения соответственно.

Обозначение 1.3. $\xi = (E, p, \mathcal{M})$ — гладкое векторное расслоение над \mathcal{M} со слоем V, который является векторным пространством дод полем \mathbb{R} или \mathbb{C} (будем считать, что \mathbb{R} , иначе нужно будет в нужном месте комплексифицировать).

Обозначение 1.4. Пусть $U \subset \mathcal{M}$ — открыто. Тогда $\Gamma(U,\xi)$ — гладкие сечения ξ над U.

Определение 1.1. Связностью (или ковариантной производной) в гладком векторном расслоении ξ называется \mathbb{R} – линейное отображение

$$\nabla: \Gamma(U,\xi) \to \Gamma(U,\tau_{\mathcal{M}}^* \otimes \xi) = \Gamma(U,T^*\mathcal{M} \otimes \xi), \tag{1}$$

заданное для каждого открытого множества $U\subset\mathcal{M},$ которое удовлетворяет следующим свойствам:

• согласовано с операцией ограничения на подмножество:

$$V \subset U, s \in \Gamma(U, \xi) \Rightarrow (\nabla s)|_{V} = \nabla(s|V);$$
 (2)

• удовлетворяет тождеству Лейбница:

$$\nabla(fs) = df \otimes s + f\nabla(s), \tag{3}$$

где $f \in C^{\infty}$ — гладкая \mathbbm{k} — значная функция на \mathcal{M} , а $s \in \Gamma(U, \xi)$ — гладкое сечение расслоения ξ .

Замечание 1.1. Результат применения к векторному полю. Пусть X — векторное поле на U, тогда $\nabla_X(s)$ — сечения над U, которые удовлетворяют следующим свойствам:

• согласованность с операцией ограничения:

$$(\nabla_X s)|_V = \nabla_{X|_V}(s|_V);$$

• \mathbb{k} – линейность по s:

$$\nabla_X(as_1 + bs_2) = a\nabla_X s_1 + b\nabla_X s_2;$$

• $C^{\infty}(U)$ – линейность по X:

$$\nabla_{(fX_1+gX_2)}s = f\nabla_{X_1}s + g\nabla_{x_2}s;$$

• тождество Лейбница:

$$\nabla_X(fs) = X(f)s + f\nabla_X s.$$

Локальные коэффициенты связности (символы Кристоффеля). Пусть U — тривиализующая окрестность, e_{α} — базис в сечениях ($\alpha=1,\ldots,rk\xi$). Гладкое сечение s можно представить в виде $s(x)=\sum_{\alpha}s^{\alpha}(x)e_{\alpha}$, где s^{α} — гладкие функции.

Тогда

$$\nabla s = \sum_{\alpha} \nabla(s^{\alpha} e_{\alpha}) = \sum_{\alpha} (ds^{\alpha} \otimes e_{\alpha} + s^{\alpha} \nabla(e_{\alpha}))$$
 (4)

Распишем второе слагаемое в этом же базисе:

$$\nabla(e_{\alpha}) = \sum_{\beta} \omega_{\alpha}^{\beta} \otimes e_{\beta},$$

где $\omega_{\alpha}^{\beta} - 1$ – формы на U. Перепишем теперь формулу (4):

$$\nabla s = \sum_{\alpha} \left(ds^{\alpha} \otimes e_{\alpha} + \sum_{\beta} s^{\alpha} \omega_{\alpha}^{\beta} \otimes e_{\beta} \right). \tag{5}$$

Переставим местами во втором слагаемом в (5) α и β , затем вынесем e_{α} за скобки. Получим

$$\nabla s = \sum_{\alpha} \left(ds^{\alpha} + \sum_{\beta} s^{\beta} \omega_{\beta}^{\alpha} \right). \tag{6}$$

Замечание 1.2. ω_{α}^{β} образуют матрицу 1 — форм ω . Таким образом, можно считать ω элементом пространства $\Gamma(U, T^*\mathcal{M} \otimes End(\xi))$. То есть локально связность задается 1 — формой со значениями в эндоморфизмах слоя.

Замечание 1.3. Нетрудно видеть, что формулу (6) можно переписать в виде

$$[\nabla s] = d[s] + \omega[s],$$

тут квадратные скобки обозначают вектор – столбец.

Предложение 1.1. Замена базиса. Пусть T — матрица перехода e_{α} к новому базису

$$[\widetilde{e}] = [e]T.$$

Тогда матрица $\widetilde{\omega}$ выражется через ω по формуле

$$\widetilde{\omega} = T^{-1} \cdot \omega \cdot T + T^{-1} \cdot dT.$$

Доказательство. Это достаточно просто проверяется. Вывод аналогичен выводу формулы смены базиса для символов Кристоффеля.

П

Обозначение 1.5. Будем обозначать пространство k – форм со значениями в сечениях ξ через $\Omega^k(U,\xi)$, то есть

$$\Omega^k(U,\xi) = \Gamma(U,\Lambda^k T^* \mathcal{M} \otimes \xi).$$

Обозначение 1.6. Пространство ξ – значных форм всех степеней обозначается через $\Omega(U,\xi)$.

Замечание 1.4. Пространство $\Omega(U,\xi)$ является $\Omega(U)$ – модулем. Умножение можно определить так:

$$\omega \wedge (\theta \otimes s) = (\omega \wedge \theta) \otimes s,$$

по линейности можно продлить на все ξ – значные формы.

Замечание 1.5. На связность можно смотреть как на оператор

$$\Omega^0(U,\xi) \xrightarrow{\nabla} \Omega^1(U,\xi).$$

Возникает естественное желание продлить это дело и дальше.

Продолжение связности на все формы. Теперь мы хотим определить

$$\Omega^k(U,\xi) \xrightarrow{\nabla} \Omega^{k+1}(U,\xi).$$

Достаточно определить это дело на разложимых ξ – формах, сделаем это по правилу Лейбница:

$$\nabla(\theta\otimes s)=d\theta\otimes s+(-1)^{\deg\theta}\theta\wedge\nabla s.$$

Упражнение. Проверить, что эта формула действительно задает связность. **Пространство связностей.** Пусть ∇^1 и ∇^2 — две связности на расслоении ξ . Тогда из определения связности следует, что

$$(\nabla^1 - \nabla^2)(fs) = f(\nabla^1 - \nabla^2)s.$$

Таким образом, разность двух связностей — бесконечно гладкая линейная по s, иными словами

$$\nabla^1 - \nabla^2 \in \Gamma(\mathcal{M}, T^*\mathcal{M} \otimes End(\xi)) = \Omega^1(\mathcal{M}, End(\xi)).$$

Замечание **1.6.** В силу всего вышесказанного пространство связностей — аффинное пространство.

2 Кривизна связности

В силу замечания 1.3. мы знаем, что локально связность устроена следующим образом:

$$\nabla = d + \omega,$$

на разложимых тензорах соответственно

$$\nabla(\alpha \otimes s) = d\alpha \otimes s + (-1)^{\deg \alpha} \alpha \wedge \nabla s.$$

Посмотрим на квадрат оператора:

$$\nabla s = (d+\omega)^2 s = (d+\omega)(ds+\omega \wedge s) = d(\omega \wedge s) + \omega \wedge ds + \omega \wedge \omega \wedge s =$$
$$= d\omega \wedge s - \omega \wedge ds + \omega \wedge ds + \omega \wedge \omega \wedge s = (d\omega + \omega \wedge \omega) \wedge s = F \wedge s.$$

Определение 2.1. $F = d\omega + \omega \wedge \omega$ — матрица из 2 — форм называется *кри-* визной связности (или форма кривизны) ∇ .

Предложение 2.1. При смене координат в сечениях кривизна менятся по правилу:

$$\widetilde{F} = T^{-1} \cdot F \cdot T.$$

Доказательство.

$$\widetilde{F} = d\widetilde{\omega} + \widetilde{\omega} \wedge \widetilde{\omega} =$$

По предложению 1.1 имеем

$$= d(T^{-1} \cdot \omega \cdot T + T^{-1} \cdot dT) + (T^{-1} \cdot \omega \cdot T + T^{-1} \cdot dT) \wedge (T^{-1} \cdot \omega \cdot T + T^{-1} \cdot dT) =$$

$$= T^{-1} \cdot d\omega \cdot T + T^{-1} \cdot (\omega \wedge \omega) \cdot T = T^{-1} \cdot F \cdot T.$$

П

Замечание 2.1. Если в кривизну подставить векторные поля X и Y соответственно, получится

$$F(X,Y)(s) = \nabla_X \nabla_Y s - \nabla Y \nabla X s = \nabla_{[X,Y]} s,$$

иначе это можно переписать как

$$F(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}.$$

3 Связности, согласованные с метрикой

Предположим, расслоение $\xi = (E, \rho, B)$ — евклидово (эрмитово) векторное расслоение