Mengenal Matriks

IF2110/IF2111 – Algoritma dan Struktur Data Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Definisi

Matriks

- Sekumpulan informasi yang setiap individu elemennya terdefinisi berdasarkan dua buah indeks (yang biasanya dikonotasikan dengan baris dan kolom)
- Setiap elemen matriks dapat diakses secara langsung jika kedua indeks diketahui
- Indeksnya harus bertype yang mempunyai keterurutan (suksesor/predesesor), misalnya integer.

Matriks adalah struktur data dengan memori internal. Struktur ini praktis untuk dipakai tetapi memakan memori!

Matriks integer 100×100 memakan 10000× tempat penyimpanan integer.

Memori Matriks (1/2)

Matriks adalah struktur data statik (ukurannya ditentukan dari awal)

Untuk keperluan ini, sering kali memori dipesan "berlebihan" untuk kemudian dipakai sebagian saja

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	as a			A F			6 5
2	2	2	2	40 0	5				3	E S
3	3	3	3	60 0	5				3	8 5
4	4	4	4						3 3	8 5
5		3							9	
6		1	27	24 3			5.			
7		1	2	24						
8										
9										
10	5		1	20 0						

Memori Matriks (2/2)

Struktur Matriks adalah struktur internal yang statis dan kontigu

Alokasi ukuran matriks yaitu N×M selalu dilakukan sekaligus. Dari N×M, mungkin hanya sebagian yang digunakan, sehingga harus dibedakan antara:

Definisi ruang memori seluruh matriks

Memori yang efektif dipakai

matHari [1..7,1..3]: Nama hari ke-1 s.d. 7 dalam 3 bahasa (Indonesia, Inggris, Prancis)

	1 = INDONESIA	2 = INGGRIS	3 = PRANCIS
1	Senin	Monday	Lundi
2	Selasa	Tuesday	Mardi
3	Rabu	Wednesday	Mercredi
4	Kamis	Thursday	Jeudi
5	Jumat	Friday	V endredi
6	Sabtu	Saturday	Samedi
7	Minggu	Sunday	Dimanche

a[1..5,1..5]: Matriks bilangan real

	1	2	3	4	5
1	12.1	7.0	8.9	0.7	6.6
2	0.0	1.6	2.1	45.9	55.0
3	6.1	8.0	0.0	3.1	21.9
4	9.0	1.0	2.7	22.1	6.2
5	5.0	0.8	0.8	2.0	8.1

matFrek ['A'..'E',1..7]: Matriks frekuensi kemunculan huruf 'A' s.d. 'E' pada 7 body of text

	1	2	3	4	5	6	7
'A'	12	71	82	0	62	30	11
"B"	0	1	2	45	5	3	10
"C"	6	8	0	3	21	3	6
'D'	9	1	2	22	6	9	7
"E"	5	0	0	2	8	45	23

matSurvey [1..7,1..4]: Matriks hasil survey pada titik kordinat. MatSurvey[i,j] adalah hasil pengukuran <temperatur, kecepatan angin> pada titik koordinat i, j.

	1	2	3	4
1	<24,5>	<24,5>	<30,5>	<25,5>
2	<23,56>	<3,6>	<40,5>	<2,2>
3	<22,73>	<7,3>	<60,6>	<8,3>
4	<21,56>	<8,5>	<9,8>	<7,4>
5	<23,56>	<12,50>	<3,36>	<30,6>
б	<20,0>	<2,56>	<5,46>	<20,99>
7	<30,0>	<9,0>	<15,0>	<27,0>

Contoh pemakaian matriks (1/2)

Matriks banyak digunakan dalam komputasi numerik untuk representasi dalam finite element.

Penggunaan matriks dalam matematika untuk perhitungan "biasa" terhadap matriks: penjumlahan, perkalian, menentukan determinan, menginvers sebuah matriks, *transpose*, dll.

Semua "perhitungan" itu menjadi tidak primitif, harus diprogram.

Contoh pemakaian matriks

Dalam perhitungan ilmiah di mana suatu sistem diwakili oleh matriks (elemen hingga dalam teknik sipil dan mesin).

Dalam persoalan pemrograman linier dan operational research.

Dalam persoalan algoritmik: untuk menyimpan informasi yang cirinya ditentukan oleh 2 komponen (yang nantinya diterjemahkan dalam baris dan kolom) dan diakses langsung. Contoh: merepresentasi "cell" pada sebuah *spreadsheet*, merepresentasi "ruangan" pada sebuah gedung bertingkat dan sebagainya.

Notasi algoritmik dari matriks

```
namaMatriks[indeks1, indeks2]
```

Domain:

Domain matriks sesuai dengan pendefinisian indeks Domain isi matriks sesuai dengan jenis matriks

Cara mengacu melalui indeks: contoh:

```
matHari[i,j] jika i dan j terdefinisi
matHari[1,7]
matSurvey[3,5] untuk mengacu satu data survey
matSurvey[3,5].temp untuk mengacu data temperatur
```

Implementasi Fisik Matriks 1

Penggunaan type primitif matrix (jika tersedia)

Contoh:

```
matFrek: matrix ['A'...'E', 0..6] of integer
```

Sebuah matriks yang merepresentasi frekuensi huruf 'A' s.d. 'E', untuk 7 buah teks

```
a: matrix [0..4, 0..4] of real
```

Sebuah matriks seperti dalam matematika biasa

Implementasi Fisik Matriks 2

Penggunaan type <u>array</u> of <u>array</u> (array 2 dimensi)

Contoh:

```
matFrek: array ['A'..'E'] of array [0..6] of integer
```

Sebuah matriks yang merepresentasi frekuensi huruf 'A' s.d. 'E', untuk 7 buah teks

```
a: array [0..4] of array [0..4] of real
```

Sebuah matriks seperti dalam matematika ditulis sebagai: a(i,j)

ADT Matrix

IF2110/IF2111 – Algoritma dan Struktur Data Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Contoh ADT Matrix (eksplisit)

Spesifikasi Operasi ADT Matrix

```
{ ********* DEFINISI PROTOTIPE PRIMITIF ******** }

{ *** Konstruktor membentuk Matrix *** }

procedure CreateMatrix(output m: Matrix, input nRows, nCols: integer)

{ Membentuk sebuah Matrix "kosong" berukuran nRows x nCols di "ujung kiri" memori }

{ I.S. nRows dan nCols adalah valid untuk memori matriks yang dibuat }

{ F.S. sebuah matriks m sesuai dengan def di atas terbentuk }
```

Spesifikasi Operasi ADT Matrix

```
{ *** Untuk sebuah matriks m yang terdefinisi: *** }
function getRowEff(m: Matrix) → integer
{ Mengirimkan jumlah baris Matriks m }
function getCollEff(m: Matrix) → integer
{ Mengirimkan jumlah kolom Matriks m }
function isMatrixIdxValid(i, j: integer) → boolean
{ Mengirimkan true jika i, j adalah indeks yang valid sesuai kapasitas maksimum sebuah Matrix, ROW_CAP dan COL_CAP }
function isIdxEff (m: Matrix, i, j: integer) → boolean
{ Mengirimkan true jika i, j adalah indeks efektif bagi m }
function getElmt (m: Matrix, i, j: integer) → ElType
{ Mengirimkan elemen m dg nomor baris i dan nomor kolom j }
```

Spesifikasi Operasi ADT Matrix

```
{ *** Operasi mengubah nilai elemen matriks: Set / Assign *** }

procedure setRowEff (input/output m: Matrix, input nRows: integer)

{ I.S. m sudah terdefinisi }

{ F.S. Nilai m.rowEff diisi dengan nRows, }

procedure setColEff (input/output m: Matrix, input nCols: integer)

{ I.S. m sudah terdefinisi }

{ F.S. Nilai m.colEff diisi dengan nCols }

procedure setElmt (input/output m: Matrix, input i, j: integer, input x: ElType)

{ I.S. m sudah terdefinisi }

{ F.S. m(i,j) bernilai x }

{ Proses: Mengisi m(i,j) dengan x }

{ ********* Assignment Matrix ********* }

procedure copyMatrix(input source: Matrix, output target: Matrix)

{ Melakukan assignment target ← source }
```

Implementasi di C: Array 2 Dimensi (Statik)

Notasi Algoritmik

Bahasa C

```
/* Deklarasi Array */
type_array nama_array[ncol][nrow];

/* Cara mengacu elemen */
nama_array[idx_col][idx_row]

/* Contoh: */
int mat[3][4];

mat[i][j] = 9;
x = mat[2][3];
```

Latihan Soal ADT Matrix

IF2110/IF2111 – Algoritma dan Struktur Data Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

```
function isMatrixEqual(m1,m2: Matrix) → boolean
```

{ Mengirimkan true jika m1 = m2, yaitu ukuran efektif m1 dan m2 sama dan untuk setiap i,j yang merupakan indeks baris dan kolom, m1[i,j]=m2[i,j] }

```
function isSparse (m: matrix) → boolean

{ Mengirimkan true jika m adalah matriks sparse: matriks "jarang" dengan definisi: hanya maksimal 5% dari memori matriks yang efektif bukan bernilai 0 }
```

```
function transpose (m: Matrix) → Matrix
{ Menghasilkan transpose dari m yaitu setiap elemen m[i,j] ditukar nilainya dengan elemen m[j,i] }
```

STEI-ITB IF2110/Latihan ADT Matrix