

MOTOROLA

INTERPACE INTEGRATED CIRCUITS

1	Master Index and Cross-Reference Guide
2	Reliability Enhancement Programs
	Selector Guide
4	Memory/Microprocessor Support
5	Drivers/Receivers
6	Communication Interface (Telephony)
7	Voltage Comparators
8	Data Conversion
9	Voltage References
10	Linear IC Selector Guides
15	Package Information
12	Application Notes and Engineering Bulletins

.

LINEAR INTERFACE INTEGRATED CIRCUITS

Prepared by Technical Information Center

This Linear Interface Data Book contains technical information on a portion of Motorola Linear's product offering. Detailed information on other Linear products is contained in a separate Linear Data Book. For your convenience, this book contains the following:

- Cross-Reference
- Selector Guides (by Product Category)
- Data Sheets
- Package Information
- Abstracts Covering Application Notes and Engineering Bulletins

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its present patent rights nor the rights of others.

Series C Second Printing ©MOTOROLA INC., 1979 Previous Edition© 1976 "All Rights Reserved"

MDTL, MECL, MECL 10,000, MHTL, MRTL, mW MRTL, and MTTL are trademarks of Motorola Inc.

CONTENTS

	Page
CHAPTER 1 — MASTER INDEX AND CROSS REFERENCE GUIDE	1-1
Master Index	
Cross-Reference Guide	-
CHAPTER 2 — RELIABILITY ENHANCEMENT PROGRAMS	
The "Better" Program	
Standard HI-REL Programs	
MIL-M-38510 JAN-Qualified Product	
JEDEC Processed Product	
Screening Procedures	
CHAPTER 3 — SELECTOR GUIDE	
Bus Interface	
Memory Interface	
Computer and Terminal Interface	
Peripheral Interface	3-17
Numeric Display Interface	
Precision Circuits — Data Conversion	3-19
Voltage References	3-20
Voltage Comparators	
Communication Interface (Telephony)	
CHAPTER 4 — MEMORY/MICROPROCESSOR SUPPORT	
Device Listing	
Data Sheets (See Page 4-2 for page numbers.)	
CHAPTER 5 — DRIVERS/RECEIVERS	5-1
Device Listing	
Data Sheets (See Page 5-2 for page numbers.)	5-2
CHAPTER 6 — COMMUNICATION INTERFACE (Telephony)	C 1
the state of the s	
Device Listing	6-2
Data Sheets (See Page 6-2 for page numbers.)	
CHAPTER 7 — VOLTAGE COMPARATORS	
Device Listing	7-2
Data Sheets (See Page 7-2 for page numbers.)	
CHAPTER 8 — DATA CONVERSION	
Device Listing	8-2
Data Sheets (See Page 8-2 for page numbers.)	
CHAPTER 9 — VOLTAGE REFERENCES	9-1
Device Listing	
Data Sheets (See Page 9-2 for page numbers.)	
CHAPTER 10 — LINEAR IC SELECTOR GUIDES	10-1
Operational Amplifiers	10-2
Voltage Regulators	
Circuits for Consumer Applications	
Special-Purpose Circuits	
High-Frequency Amplifiers	
CHAPTER 11 — PACKAGE INFORMATION	
CHAPTER 12 — APPLICATION NOTES AND ENGINEERING RULL ETINS	

	·			
			•	
				1
				1
				1
				1

MASTER INDEX

This index includes *all* devices in Motorola Linear's product line. Devices with *Linear* in the page number column are fully characterized in the separate **Linear Data Book**; however, selection characteristics are given in Chapter 10 of this volume for your convenience.

Device Number	Function	Page
AM26LS31	Quad RS-422 Line with Three-State Output	5-3
CA3054	Dual Differential Amplifier	
CA3059	Zero Voltage Switch	
CA3079	Zero Voltage Switch	Linear
CA3139	TV Tuning Circuit	Linear
DS8641	Quad Unified Bus Transceiver	5-6
HA1199	AM Radio Subsystem	
LF155	Monolithic JFET Operational Amplifier	
LF155A	Monolithic JFET Operational Amplifier	
LF156	Monolithic JFET Operational Amplifier	
LF156A	Monolithic JFET Operational Amplifier	Linear
LF157	Monolithic JFET Operational Amplifier	
LF157A	Monolithic JFET Operational Amplifier	
LF255	Monolithic JFET Operational Amplifier	
LF256	Monolithic JFET Operational Amplifier	
LF257	Monolithic JFET Operational Amplifier	
LF355	Monolithic JFET Operational Amplifier	
LF355A	Monolithic JFET Operational Amplifier	
LF355B	Monolithic JFET Operational Amplifier	
LF356	Monolithic JFET Operational Amplifier	
LF356A	Monolithic JFET Operational Amplifier	
LF356B	Monolithic JFET Operational Amplifier	
LF357	Monolithic JFET Operational Amplifier	
LF357A	Monolithic JFET Operational Amplifier	
LF357B	Monolithic JFET Operational Amplifier	
LM101A	General Purpose Adjustable Operational Amplifier	
LM104	Adjustable Negative Voltage Regulator	
LM105	Adjustable Positive Voltage Regulator	
LM107	General-Purpose Operational Amplifier	
LM108	Precision Operational Amplifier	
LM108A	Precision Operational Amplifier	
LM109	Positive Voltage Regulator	
LM111	Voltage Comparator	
LM117	Positive Voltage Regulator	
LM117L	Positive Voltage Regulator	
LM124	Quad Operational Amplifier	
LM139	Quad Comparator (Single Supply)	
LM139A	Quad Comparator (Single Supply)	7-7
LM140	Series of Positive Voltage Regulators	
LM158	Dual Operational Amplifier	
LM201A	General-Purpose Operational Amplifier	
LM204	Adjustable Negative Voltage Regulator	
LM205	Adjustable Positive Voltage Regulator	
LM207	General-Purpose Operational Amplifier	
LM209	Positive Voltage Regulator	
LM211	Voltage Comparator	
LM217	Adjustable Voltage Regulator	Linear
LM217L	Adjustable Voltage Regulator	
LM224	Quad Operational Amplifier	
LM239	Quad Comparator (Single Supply)	
LM239A	Quad Comparator (Singe Supply)	
LM258	Dual Operational Amplifier	
LM301A	General-Purpose Operational Amplifier	
LM304	Adjustable Negative Voltage Regulator	Linear
LM305	Adjustable Positive Voltage Regulator	∟inear

Device Number	Function	Page
LM307	General-Purpose Operational Amplifier	Linea
LM308	Precision Operational Amplifier	
LM308A	Precision Operational Amplifier	
LM309	Positive Voltage Regulator	
LM311	Voltage Comparator	
LM317	Adjustable Positive Voltage Regulator	
LM317L	Adjustable Positive Voltage Regulator	Linea
LM324	Quad Operational Amplifier	
LM339	Quad Comparator (Single Supply)	
LM339A	Quad Comparator (Single Supply)	
LM340	Series of Positive Voltage Regulators	
LM358	Dual Operational Amplifier	Linear
LM2901	Quad Comparator	
LM2902	Quad Operational Amplifier	
LM2904	Dual Operational Amplifier	
MC8T13 MC8T14	Dual Line Driver	
M C8 T23	Dual Line Driver	5-12
MC8T24	Triple Line Receiver with Hysteresis	
MC8T26A	Quad Three-State Bus Transceiver	4 00
MC8T28	Non-Inverting Bus Transceiver	
MC8T95	Hex Three-State Buffer/Inverter	
MC8T96	Hex Three-State Buffer/Inverter	
MC8T97	Hex Three-State Buffer/Inverter	
MC8T98	Hex Three-State Buffer/Inverter	
MC26S10	Quad Open-Collector Bus Transceiver	
MC26S11	Quad Open-Collector Bus Transceiver	
MC75S110	Dual Line Driver	
MC1302	7-Stage Divider	
MC1302	1/2-Watt Audio Amplifier	
MC1309	FM Stereo Demodulator	
MC1310	FM Stereo Demodulator	
M C1323	Triple Doubly Balanced Chroma Demodulator	
MC1323	Dual Doubly Balanced Chroma Demodulator	
MC1327	Dual Doubly Balanced Chroma Demodulator	
MC1330A	Low-Level Video Detector	
MC1349	IF Amplifier	
MC1350	IF Amplifier	
MC1351	TV Sound Circuit	
M C1352	TV Video IF Amplifier	
MC1355	Limiting FM IF Amplifier	
MC1357	IF Amplifier and Quadrature Detector	Linear
MC1358	TV Sound IF Amplifier	
MC1364	Automatic Frequency Control	
MC1372	Color TV Video Modulator	
MC1373	TV Video Modulator	Linear
MC1391	TV Horizontal Processor	Linear
MC1393A	TV Vertical Processor	Linear
MC1394	TV Horizontal Processor	Linear
MC1398	TV Color Processing Circuit	Linear
MC1399	TV Color Processing Circuit	Linear
MC1400	Precision Voltage Reference	9-3
MC1400A	Precision Voltage Reference	
MC1403	Precision Low-Voltage Reference	
MC1403A	Precision Low-Voltage Reference	
MC1404	Precision Low-Drift Voltage Reference	
MC1404A	Precision Low-Drift Voltage Reference	
MC1405	Analog-to-Digital Converter Subsystem	
MC1406	6-Bit Multiplying Digital-to-Analog Converter	
MC1408	8-Bit Multiplying Digital-to-Analog Converter	
MC1411	Peripheral Driver Array	
MC1412	Peripheral Driver Array	. 5-25

1

Device Number	Function	Page
MC1413	Peripheral Driver Array	
MC1414	Dual Differential Comparator	
MC1416	Peripheral Driver Array	
MC1420	Differential Output Operational Amplifier	
MC1422	Timing Circuit with Adjustable Threshold	
MC1430	Operational Amplifier	
MC1431	Operational Amplifier	
MC1433	Operational Amplifier	Linear
MC1435	Dual Operational Amplifier	
MC1436	High-Voltage Operational Amplifier	
MC1436C	High-Voltage Operational Amplifier	
MC1437	Dual Operational Amplifier	
MC1438	Power Booster	
MC1439	High-Slew-Rate Operational Amplifier	Linear
MC1444	AC-Coupled 4-Channel Sense Amplifier	
MC1445	Wideband Amplifier	
MC1454	1-Watt Power Amplifier	Linear
MC1455	Timing Circuit	Linear
MC1456	High-Performance Operational Amplifier	
MC1456C	High-Performance Operational Amplifier	Linear
MC1458	Dual Operational Amplifier	Linear
MC1458C	Dual Operational Amplifier	Linear
MC1458N	Low-Noise Dual Operational Amplifier	Linear
MC1458S	High-Slew-Rate Dual Operational Amplifier	Linear
MC1463	Adjustable Negative Voltage Regulator	Linear
MC1466	Voltage and Current Regulator	Linear
MC1468	Dual ± 15-Volt Tracking Regulator	Linear
MC1469	Adjustable Positive Voltage Regulator	Linear
MC1472	Dual Peripheral Positive NAND Driver	
MC1488	Quad MDTL Line Driver	5-32
MC1489	Quad MDTL Line Receiver	5-38
MC1489A	Quad MDTL Line Receiver	5-38
MC1494	Four-Quadrant Multiplier	Linear
MC1495	Four-Quadrant Multiplier	Linear
MC1496	Balanced Modulator-Demodulator	Linear
MC1500	Precision Voltage Reference	9-3
MC1500A	Precision Voltage Reference	9-3
MC1503	Precision Low-Voltage Reference	9-4
MC1503A	Precision Low-Voltage Reference	9-4
MC1504	Precision Low-Drift Voltage Reference	
MC1504A	Precision Low-Drift Voltage Reference	9-8
MC1505	Analog-to-Digital Converter Subsystem	
MC1506	6-Bit Multiplying Digital-to-Analog Converter	
MC1508	8-Bit Multiplying Digital-to-Analog Converter	
MC1514	Dual Differential Comparator	
MC1520	Differential Output Operational Amplifier	
MC1530	Operational Amplifier	
MC1531	Operational Amplifier	
MC1533	Operational Amplifier	
MC1535	Dual Operational Amplifier	
MC1536	High-Voltage Operational Amplifier	Linear
MC1537	Dual Operational Amplifier	
MC1538	Power Booster	
MC1539	High-Slew-Rate Operational Amplifier	
MC1544	AC-Coupled 4-Channel Sense Amplifier	
MC1545	Wideband Amplifier	
MC1550	RF-IF Amplifier	
MC1552	Video Amplifier	
MC1553	Video Amplifier	
MC1554	1-Watt Power Amplifier	
MC1555	Timing Circuit	
MC1556	High-Performance Operational Amplifier	

MASTER INDEX

Device Number **Function** Page Dual Operational Amplifier Linear MC1558 MC1558N Low-Noise Dual Operational Amplifier Linear High-Slew-Rate Dual Operational Amplifier Linear MC1558S MC1563 Adjustable Negative Voltage Regulator Linear Voltage and Current Regulator Linear MC1566 Dual ±15-Volt Tracking Regulator Linear MC1568 Adjustable Positive Voltage Regulator Linear MC1569 Wideband Amplifier with AGC Linear MC1590 MC1594 Four-Quadrant Multiplier Linear MC1595 Four-Quadrant Multiplier Linear MC1596 Balanced Modulator-Demodulator Linear MC1709 General-Purpose Operational Amplifier Linear MC1709A General-Purpose Operational Amplifier Linear General-Purpose Operational Amplifier Linear MC1709C MC1710 Differential Comparator 7-19 MC1710C Dual Differential Comparator 7-23 MC1711 MC1711C Wideband DC Amplifier Linear MC1712 MC1712C Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear Adjustable Positive or Negative Voltage Regulator Linear MC1723C Differential Video Amplifier Linear MC1733 MC1733C Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear General-Purpose Operational Amplifier Linear MC1741C MC1741N Low-Noise Operational Amplifier Linear MC1741 NC Low-Noise Operational Amplifier Linear High-Slew-Rate Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741SC MC1747 Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741C Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear Programmable Operational Amplifier Linear MC1776 MC1776C Programmable Operational Amplifier Linear Quad Open-Collector Bus Transceiver 5-16 MC26S10 MC26S11 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 Memory Address Multiplexer and Refresh Address Counter 4-16 MC3242A MC3245 Quad TTL-to-MOS Driver 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Differential-Input Operational Amplifier Linear MC3303 Wide-Band Amplifier Linear MC3310 Automotive Voltage Regulator Linear MC3325 MC3333 Vari-Dwell Ignition Linear Electronic Attenuator Linear MC3340 MC3344 Programmable Frequency Switch Linear General-Purpose Transistor Array Linear MC3346 Low-Power FM IF Linear MC3357 Dual Low-Power Operational Amplifier Linear MC3358 1/4-Watt Audio Amplifier Linear MC3360 MC3370 Zero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear General-Purpose Transistor Array Linear MC3386 MC3393 Two-Modulus Prescaler Linear MC3401 Quad Operational Amplifier Linear Quad Differential-Input Operational Amplifier Linear MC3403 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3405 MC3408 8-Bit Multiplying Digital-to-Analog Converter8-43 MC3410 10-Bit D-to-A Converter 8-49

MASTER II		
Device Number	Function	Page
MC3410C	10-Bit D-to-A Converter	8-49
MC3412	High-Speed 12-Bit D/A Converter	8-60
MC3416	Crosspoint Switch	. 6-3
MC3417	Continuously-Variable-Slope Delta Modulator/Demodulator	6-12
MC3418	Continuously-Variable-Slope Delta Modulator/Demodulator	
MC3419	Subscriber Loop Interface Circuit	
MC3420	Switchmode Regulator Control Circuit Li	
MC3423	Overvoltage Sensing Circuit Li	
MC3430	High-Speed Quad Comparator	
MC3431	High-Speed Quad Comparator	
MC3432	High-Speed Quad Comparator	
MC3433	High-Speed Quad Comparator	_
MC3437	Hex Unified Bus Receiver	
MC3438	Quad Unified Bus Transceiver	
MC3440A	Quad Interface Bus Transceiver	
MC3441A	Quad Interface Bus Transceiver	
MC3443	Quad Interface Bus Transceiver	
MC3446A	Quad Interface Bus Transceiver	
MC3447	Bidirectional Instrumentation Bus Transceiver	
MC3448A	Quad Three-State Bus Transceiver	
MC3449	Triple Bidirectional Bus Switch	
MC3450	Quad Line Receiver	
MC3452	Quad Line Receiver	
MC3453	Quad Line Driver	
MC3456	Dual Timing Circuit	
MC3458	Dual Low-Power Operational Amplifier	
MC3459	Quad NMOS Memory Driver	
MC3461	Dual NMOS Memory Sense Amplifier	
MC3467	Triple Preamplifier	
MC3468	Magnetic Read Amplifier	
MC3470	Floppy Disk Read Amplifier System	
MC3476	Programmable Operational Amplifier	
MC3480	Memory Controller Circuit	
MC3481	Quad Single-Ended Line Driver	
MC3482A	Octal Three-State Buffer/Inverter	
MC3482B	Octal Three-State Buffer/Inverter 4	
MC3482B	Quad Single-Ended Line Driver	-108
MC3486	Quad RS-422/423 Line Receiver	
MC3487	Quad RS-422 Line Driver with Three-State Outputs	
NIC3487	Quad R5-422 Line Driver with Three-State Outputs	

Device		
Number	Function	Page
(14411150)		-
M C6875,A	M6800 Clock Generator/ Driver	
M C6880A	Quad Three-State Bus Transceiver	4-99
M C6881	Triple Bidirectional Bus Switch	1-104
M C6882A	Octal Three-State Buffer/Latch	1-109
M C6882 B	Octal Three-State Buffer/ Latch	
M C6885	Hex Three-State Buffer/Inverter	
M C6886	Hex Three-State Buffer/Inverter	
M C6887	Hex Three-State Buffer/Inverter 4 Hex Three-State Buffer/Inverter 4	
M C6888 M C6889	Noninverting Bus Transceiver	1-118
M C6890	8-Bit Bus-Compatible MPU D/A Converter	
M C75S110	Dual Line Driver	
M C7805	Positive Voltage Regulator (1.5 A) Li	
M C7805A	Positive Voltage Regulator (1.5 A)	inear
M C7805A C	Positive Voltage Regulator (1.5 A) L	inear
M C7805 C	Positive Voltage Regulator (1.5 A) L	
M C7806	Positive Voltage Regulator (1.5 A) Li	
M C7806A	Positive Voltage Regulator (1.5 A) Li	
M C7806A C	Positive Voltage Regulator (1.5 A)	inear
M C7806 C	Positive Voltage Regulator (1.5 A) Li	inear
M C7808	Positive Voltage Regulator (1.5 A) Li	inear
M C7808A	Positive Voltage Regulator (1.5 A) L	
M C7808 A C	Positive Voltage Regulator (1.5 A) Li	inear
M C7808 C	Positive Voltage Regulator (1.5 A) L	
M C7812	Positive Voltage Regulator (1.5 A) L	inear
M C7812A	Positive Voltage Regulator (1.5 A) Li	inear
M C7812A C	Positive Voltage Regulator (1.5 A) Li	inear
M C7812 C	Positive Voltage Regulator (1.5 A) Li	inear
M C7815	Positive Voltage Regulator (1.5 A)	inear
M C7815A	Positive Voltage Regulator (1.5 A)	
M C7815A C	Positive Voltage Regulator (1.5 A) Li Positive Voltage Regulator (1.5 A) Li	incar
M C7815 C M C7818	Positive Voltage Regulator (1.5 A)	
M C7818A	Positive Voltage Regulator (1.5 A)	inear
M C7818A C	Positive Voltage Regulator (1.5 A)	
M C7818 C	Positive Voltage Regulator (1.5 A) Li	inear
M C7824	Positive Voltage Regulator (1.5 A) Li	inear
M C7824A	Positive Voltage Regulator (1.5 A) Li	inear
M C7824A C	Positive Voltage Regulator (1.5 A) Li	inear
M C7824 C	Positive Voltage Regulator (1.5 A) L	inear
M C78 L02 A C	Positive Voltage Regulator (100 mA)Li	inear
M C78 L05 A C	Positive Voltage Regulator (100 mA) Li	inear
M C78 L05 C	Positive Voltage Regulator (100 mA)Li	inear
M C78 L08 A C	Positive Voltage Regulator (100 mA) Li	inear
M C78 L08 C	Positive Voltage Regulator (100 mA) L	inear
M C78 L12 A C	Positive Voltage Regulator (100 mA) L	inear
M C78 L12 C	Positive Voltage Regulator (100 mA) L	ınear
M C78L15AC	Positive Voltage Regulator (100 mA) L	inear
M C78 L15 C	Positive Voltage Regulator (100 mA) Li	inear
M C78 L18 A C	Positive Voltage Regulator (100 mA)	inear
M C78L18 C	Positive Voltage Regulator (100 mA) L Positive Voltage Regulator (100 mA) L	inear
M C78 L24 A C	Positive Voltage Regulator (100 mA)	inear
M C78 L24 C M C78M05 C	Positive Voltage Regulator (100 mA)	inear
M C78M06 C	Positive Voltage Regulator (500 mA)	inear
M C78M08 C	Positive Voltage Regulator (500 mA)	inear
M C78M08 C	Positive Voltage Regulator (500 mA)	inear
M C78M15 C	Positive Voltage Regulator (500 mA)	inear
M C78M18 C	Positive Voltage Regulator (500 mA) Li	inear
M C78M20 C	Positive Voltage Regulator (500 mA)	inear
M C78M24 C	Positive Voltage Regulator (500 mA) L	inear
M C7902 C	Negative Voltage Regulator (1.5 A) L	inear

1

Device Number	Function	Page
M C7905 C	Negative Voltage Regulator (1.5 A)	
M C7905.2 C	Negative Voltage Regulator (1.5 A)	
M C7906 C	Negative Voltage Regulator (1.5 A)	
M C7908 C	Negative Voltage Regulator (1.5 A)	
M C7912 C	Negative Voltage Regulator (1.5 A)	
M C7915 C	Negative Voltage Regulator (1.5 A)	
M C7918 C	Negative Voltage Regulator (1.5 A)	
M C7924 C	Negative Voltage Regulator (1.5 A)	
M C79 L03 A C	Negative Voltage Regulator (100 mA)	
M C79 L03 C	Negative Voltage Regulator (100 mA)	
M C79 L05 A C	Negative Voltage Regulator (100 mA)	
M C79 L05 C M C79 L12 A C	Negative Voltage Regulator (100 mA)	
M C79 L12 C	Negative Voltage Regulator (100 mA)	
M C79L12C	Negative Voltage Regulator (100 mA)	
M C79 L15 C	Negative Voltage Regulator (100 mA)	
M C79 L18A C	Negative Voltage Regulator (100 mA)	
M C79 L18 C	Negative Voltage Regulator (100 mA)	
M C79 L24A C	Negative Voltage Regulator (100 mA)	
M C79 L24 C	Negative Voltage Regulator (100 mA)	
M C8 T13	Dual Line Driver	
M C8 T14	Triple Line Receiver	
M C8 T23	Dual Line Driver	
M C8 T24	Triple Line Receiver	
M C8 T26A	Quad Bus Transceiver/MPU Bus Extender	
M C8 T28	Noninverting Bus Transceiver	4-118
M C8 T95	Hex Three-State Buffer/Inverter	
M C8 T96	Hex Three-State Buffer/Inverter	4-113
M C8 T97	Hex Three-State Buffer/Inverter	4-113
M C8 T98	Hex Three-State Buffer/Inverter	4-113
M C10317L	7-Bit High-Speed A/D Converter	. 8-65
M C10318L	High-Speed 8-Bit D/A Converter	. 8-66
M C10318L9	High-Speed 8-Bit D/A Converter	
M C34001	Single TRIMFET Operational Amplifier	
M C34002	Dual TRIMFET Operational Amplifier	
M C34004	Quad TRIMFET Operational Amplifier	
M C34022	Dual Precision TRIMFET Operational Amplifier	
M C35001	Single TRIMFET Operational Amplifier	
M C35002	Dual TRIMFET Operational Amplifier	
M C35004	Quad TRIMFET Operational Amplifier	
M C35022	Dual Precision TRIMFET Operational Amplifier	
M C55325 M C75107	Dual Memory Driver	
M C75107	Dual Line Receiver	
M C75100	Dual Line Driver	
M C75125	7-Channel Line Receiver	
M C75127	7-Channel Line Receiver	
M C75127	8-Channel Line Receiver	
M C75129	8-Channel Line Receiver	
M C75140P1	Dual Line Receiver	-
M C75325	Dual Memory Driver	
M C75365	Quad MOS Clock Driver	
M C75368	Dual MECL-to-MOS Driver	
M C75450	Dual Peripheral Driver, Positive AND	
M C75451	Dual Peripheral Driver, Positive AND	
M C75452	Dual Peripheral Driver, Positive NAND	
M C75453	Dual Peripheral Driver, Positive OR	5-131
M C75454	Dual Peripheral Driver, Positive NOR	
M C75461	High-Voltage Peripheral Driver	
M C75462	High-Voltage Peripheral Driver	
M C75463	High-Voltage Peripheral Driver	
M C75464	High-Voltage Peripheral Driver	5-135

Device Number	Function	Page
M C75491	Quad Light-Emitting Diode (LED) Driver	5-140
M C75492	Hex Light-Emitting Diode (LED) Driver	5-140
M C C F3326	Flip-Chip Automotive Voltage Regulator	Linear
M C C F3333	Vari-Dwell Ignition Circuit	Linear
MM H0026	Dual MOS Clock Driver	4-137
MM H0026 C	Dual MOS Clock Driver	4-137
NE565	Phase-Locked Loop	Linear
NE592	Video Amplifier	Linear
SE592	Video Amplifier	Linear
SN75431	Dual Peripheral Driver	5-146
SN75432	Dual Peripheral Driver	5-146
SN75451 BP	Dual Peripheral Driver	5-147
SN75452BP	Dual Peripheral Driver	
SN75453BP	Dual Peripheral Driver	
SN75454BP	Dual Peripheral Driver	5-147
TCA4500A	FM Stereo Demodulator	Linear
TDA1190P	TV Sound System	Linear
TDA1190Z	TV Sound System	Linear
TDA2002	Audio Power Amplifier	
TDA2002A	Audio Power Amplifier	Linear

LINEAR INTEGRATED CIRCUITS

MOTOROLA — LINEAR INTEGRATED CIRCUITS CROSS REFERENCE

... provides a complete interchangeability list linking over 3000 devices offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The "Motorola Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and tempera-

ture range. The "Motorola Functional Equivalent" column provides a device which performs the same function but with possible differences in package configurations, pin connections, temperature range or electrical specifications.

709BE -AD559S

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
709BE	MC1709G		9627DM		MC1489AL	75450BDC		MC75450L
709BH	MC1709F		9636AT	MC3488AP		75450BPC		MC75450P
709CE	MC1709CG		9637T		MC3486P	75451APC	MC75451U	
709CH	MC1709CF		9638T		MC3487P	75451ATC	MC75451P	1
709CJ	MC1709CP2		9640J	MC3443P		75451BRC		MC75451U
710BE	MC1710G		9640D		MC3443P	75451BTC	SN75451BP	
710CE	MC1710CG		9640DC		MC3440AP	75452ARC	MC75452U	
711BE	MC1711G ·		9640NC	MC3440AP		75452ATC	MC75452P	
711BN	MC1711L		9665DC	MC1411L		75452BRC		MC75452U
711CE	MC1711CG		9665PC	MC1411P		75452BTC	SN75452BP	
711CJ	MC1711CP		9666DC	MC1412L		75453ARC	MC75453U	
723BE	MC1723G		9666PC	MC1412P		75453ATC	MC75453P	
723CE	MC1723CG		9667DC	MC1413L		75453BRC		MC75453U
723CJ	MC1723CL		9667PC	MC1413P		75453BTC	SN75453BP	
741BE	MC1741G		9668DC	MC1416L		75454ARC	MC75454U	
741BH	MC1741F		9668PC	MC1416P		75454ATC	MC75454P	
741BN	MC1741L		55107ADM	MC55107L		75454BRC		MC75454U
741CE	MC1741CG		55107BDM		MC55107L	75454BTC	SN75454BP	
747BE		MC1747G	55108ADM	MC55108L		75460DC		MC75450L
747BN		MC1747L	55108BDM		MC55108L	75460PC		MC75450P
747CE		MC1747CG	55110DM		MC75S110L	75461RC	MC75461U	
748BE		MC1748G	55121DM		MC8T13L	75461TC	MC75461P	
748CE		MC1748CG	55122DM		MC8T14L	75462RC	MC75462U	
809BE		MC1776G	55207DM		MC55107L	75462TC	MC75462P	
809CE		MC1776CG	55208DM		MC55108L	75463RC	MC75463U	
823AE		MC1723G	55325DM	MC55325L		75463TC	MC75463P	
1458CE	MC1458CG		55325FM	MC55325L		75464RC	MC75464U	
3232		MC3232AL	75107ADC	MC75107L		75464TC	MC75464P	
3245	MC3245L		75107APC	MC75107P		75491DC		MC75491P
6605J		MC3443P	75107BDC		MC75107L	75491PC	MC75491P	
6605L		MC3443P	75107BPC		MC75107P	75491ADC		MC75491P
8216		MC8T26AL	75108ADC	MC75108L		75491APC		MC75491P
8226		MC8T28L	75108APC	MC75108P		75492DC		MC75492P
9614DC		MC75S110L	75108BDC		MC75108L	75492PC	MC75492P	
9614DM		MC75S110L	75108BPC		MC75108P	75492ADC		MC75492P
9615DC		MC75108L	75110DC	MC75S110L		75492APC		MC75492P
9615DM		MC55108L	75110PC	MC75S110P		AD301AL		LM301AH
9615FM		MC55108L	75121DC	MC8T13L		AD505J		MC1776CG
9616CDC		MC1488L	75121PC	MC8T13P		AD505K		MC1776CG
9616EDC		MC1488L	75122DC	MC8T14L		AD505S		MC1776G
9616DM		MC1488L	75122PC	MC8T14P		AD509J		LM301AH
9617DC		MC1489AL	75123DC	MC8T23L		AD509K		LM301AH
9620DC		MC75S110L	75123PC	MC8T23P		AD509S		LM101AH
9620DM		MC75S110L	75124DC	MC8T24L		AD518J		LM301AH
9621DC		MC75108L	75124PC	MC8T24P		AD518K		LM301AH
9621DM		MC55108L	75207DC		MC75107L	AD518S		LM101AH
9622DC		MC75140P1	75207PC		MC75107P	AD530		MC1595L
9622DM		MC75140P1	75208DC		MC75108L	AD531		MC1595L
9624DC		MMH0026CL	75208PC		MC75108P	AD532J		MC1595G
9624DM		MMH0026CL	75325DC	MC75325L		AD559JD	MC1408L8	
9625DC		MMH0026CL	75325PC	MC75325P		AD559K	MC1408L8	
9625DM		MMH0026CL	75450ADC	MC75450L		AD559KD	MC1408L8	
9627CDC		MC1489AL	75450APC	MC75450P		AD559S	MC1508L8	
			•					

AD559SD -- CA3054

PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT
AD559SD	MC1508L8	REPLACEMENT		1393 MC1741CG	REPLACEMENT	CA1458T	MC1458G	REPERCEMENT
	MC IOUOLO	110110011					WC 1436G	MOTERON
AD580J		MC1403U		7312 MC1747G		CA1558S	11045500	MC1558U
AD580K		MC1403P1		7393 MC1747CG		CA1558T	MC1558G	
AD580M		MC1403AP1		8312 MC1748G		CA2111AE	MC1357P	
AD580S		MC1503U	AMU5B774	8393 MC1748CG		CA2111AQ	MC1357PQ	
AD580T		MC1503AU	AMU5R772	3312 MC1723G		CA3000		MC1550G
AD741CJ		MC1741CG	AMU5R772	3393 MC1723CG		CA3001		MC1550G
AD741J		MC1741G		3312 MC1723L		CA3002		MC1550G
AD7416		MC1741G		3393 MC1723CL		CA3004		MC1550G
				3312 MC1733L		CA3005		MC1550G
AD741L		MC1741G						
AD741S		MC1741SG		3393 MC1733CL		CA3006		MC1550G
AD7520D		MC3410L		1312 MC1741L		CA3007		MC1550G
AD7520F		MC3410L	AMU6A774	1393 MC1741CL		CA3008		MC1709F
AD7520N		MC3410L	AMU6A774	8312	MC1748G	CA3008A		MC1709F
AM26S10DC	MC26S10L		AMU6A774	8393	MC1748CP1	CA3010		MC1709G
AM26S10PC				17312 MC1747L		CA3010A		MC1709G
				17393 MC1747CL		CA3011		MC1590G
AM26S11DC								
AM26S11PC	MC26S11P		CA 101AT	LM101AH		CA3012		MC1590G
AM725A31T		MC1556G	CA101T	LM101AH		CA3013		MC1357P
AM166039F		LM301AH	CA107T	LM107H		CA3014		MC1357P
AM166039T		LM301AH	CA108AS	LM108AJ-8		CA3015		MC1709G
AMLM101	LM101AH		CA 108AT	LM108AH		CA3015A		MC1709G
			CA108S	LM108J-8		CA3016		MC1709F
AMLM101A	LM101AH	114404111				CA3016A		MC1709F
AMLM101AD		LM101AH	CA 108T	LM108H				
AMLM101AF		LM101AH	CA 139AG	LM139AJ		CA3020		MC1554G
AMLM101D		LM101AH	CA139G	LM139J		CA3020A		MC1454G
AMLM101F		LM101AH	CA201AT	LM201AH		CA3021		MC1590G
AMLM105	LM105H		CA201T		LM201AH	CA3022		MC1590G
AMLM105F		LM105H	CA207T	LM207H		CA3023		MC1590G
AMLM 105H	LM105H	LINITOON	CA208AT	LM208AH		CA3026		CA3054
			CA208S	LM208J-8		CA3028A		MC1550G
AMLM 107	LM 107H							
AMLM107D		LM 107H	CA208T	LM208H		CA3028AF		MC1550G
AMLM107F		LM 107H	CA239AE	LM239AN		CA3028AS		MC1550G
AMLM111D	LM111J		CA239AG	LM239AJ		CA3028B		MC1550G
AMLM111H	LM111H		CA239E	LM239N		CA3028BF		MC1550G
AMLM201	LM201AH		CA239G	LM239J		CA3028BS		MC1550G
AMLM201A	LM201AH		CA301AT	LM301AH		CA3029		MC1709P2
AMLM201AD		LM201AN	CA307T	LM307H		CA3029A		MC1709P2
			CA308AS	LM308N		CA3030		MC1709P2
AMLM201AF	•	LM201AH						
AMLM201D		LM201AN	CA308AT	LM308AH		CA3030A		MC1709P2
AMLM201F		LM201AH	CA308S .	LM308H		CA3031		MC1712G
AMLM205	LM205H		CA339AE	LM339AN		CA3032		MC1712CG
AMLM205F		LM205H	CA339AG	LM339AJ		CA3033		MC1533L
AMLM205H	LM205H		CA339E	LM339N		CA3033A		MC1533L
AMLM207	LM207H		CA339G	LM339J		CA3035		MC1352P
AMLM207D	LIVIZOTTI	LM207H	CA723CE	MC1723CP		CA3035V1		MC1352P
						CA3037		MC1709L
AMLM207F	1.840.111	LM207H	CA741CS	MC1741CP1				
AMLM211D	LM211J		CA741CT	MC1741CG		CA3037A		MC1709L
AMLM211H	LM211H		CA741S	MC1741U		CA3038		MC1709L
AMLM301	LM301AH		CA741T	MC1741G		CA3038A		MC1709L
AMLM301A	LM301AH		CA747CE	MC1747CL		CA3040		MC1510G
AMLM301AE		LM301AJ	CA747CF	MC1747CL		CA3041		MC1351P
AMLM301D		LM301AJ	CA747CT	MC1747CG		CA3042		MC1357P
	LM305H	LINIOUTTO	CA747E	MC1747L		CA3043		MC1357P
AMLM305	LIVISUSITI	LMOOCH	CA747F	MC1747L		CA3044		MC1364P
AMLM305A		LM305H						
AMLM305F		LM305H	CA747T	MC1747G		CA3044V1		MC1364P
AMLM305H	LM305H		CA748CS	MC1748CP1		CA3045		MC3346P
AMLM311D	LM311J-8		CA748CT	MC1748CG		CA3045F		MC3346P
AMLM311H	LM311H		CA748S	MC1748U		CA3046	MC3346P	
AMU3F77333		MC1733L	CA748T	MC1748G		CA3047		MC1433L
AMU3F77333		MC1733CL	CA758E		MC1310P	CA3047A		MC1433L
			CA1310E	MC1310P	1410 10 101	CA3048		MC3301P
AMU3F77483		MC1748G						
	112 MC1741F		CA1352E	MC1352P		CA3052		MC3301P
	93 MC1741CL		CA1391E	MC1391P		CA3053		MC1550G
AMU5B7733	312 MC1733G		CA1394E	MC1394P		CA3053F		MC1550G
AMU5B7733	393 MC1733CG		CA 1398E	MC1398P		CA3053S		MC1550G
AMU5B7741:	312 MC1741G		CA1458S	MC1458CP1		CA3054	CA3054	
			_					

CA3056 - DS8897N

	MOTOROLA DIRECT	MOTOROLA Similar		MOTOROLA DIRECT	MOTOROLA Similar		MOTOROLA DIRECT	MOTOROLA SIMILAR
PART NO.	REPLACEMENT	REPLACEMENT	PART NO.	REPLACEMENT		PART NO.		REPLACEMENT
CA3056	MC1741CG		DM7897J		MC3494P	DS75107J	MC75107L	
CA3056A	MC1741G		DM7897N		MC3494P	DS75107N	MC75107P	
CA3058		CA3059	DM8820AN		MC75140P1	DS75108J	MC75108L	
CA3059	CA3059		DM8820J		MC75140P1	DS75108N	MC75108P	
CA3064		MC1364P	DM8820N		MC75140P1	DS75110J	MC75S110L	
CA3064E	MC1364P		DM8822J		MC1489AL	DS75110N	MC75S110P	
CA3065	MC1358P	,	DM8822N		MC1489AP	DS75121J	MC8T13L	
CA3066	10001	MC1399P	DM8837N	MC3437P		DS75121N	MC8T13P	
CA3067		MC1323P	DM8838N	MC3438P		DS75122J	MC8T14L	
CA3068		MC1352P	DM8861N	111004001	MC75491P	DS75122N	MC8T14P	
			DM8863N		MC75492P	DS751221V	MC8T23L	
CA3070		MC1399P			MC3490P		MC8T23P	
CA3071		MC1399P	DM8887J			DS75123N		
CA3072		MC1323P	DM8889J		MC3491P	DS75124J	MC8T24L	
CA3076		MC1590G	DM8897J	110751015	MC3494P	DS75124N	MC8T24P	1.075.4071
CA3078AS		MC1776G	DM75491N	MC75491P		DS75207J		MC75107L
CA3078AT		MC1776G	DM75492N	MC75492P		DS75207N		MC75107P
CA3078S		MC1776CG	DS0026CG		MMH0026CG	DS75208J		MC75108L
CA3078T		MC1776CG	DS0026CH	MMH0026CG		DS75208N		MC75108P
CA3079		CA3059	DS0026CJ	MMH0026CL		DS75325J	MC75325L	
CA3085		MC1723G	DS0026CN	DS0026CP1		DS75325N	MC75325P	
CA3085A		MC1723G	DS0026G		MMH0026G	DS75450J	MC75450L	
CA3085AF		MC1723L	DS0026H	DS0026G		DS75450N	MC75450P	
CA3085AS		MC1723G	DS0026J	DS0026L		DS75451H		MC75451U
CA3085B		MC1723G	DS0056CG		MMH0026CG	DS75451N	SN75451BP	
CA3085BF		MC1723L	DS0056CH		MMH0026CG	DS75452H	0.11.0.10.10.	MC75452U
CA3085BS		MC1723E MC1723G	DS0056CJ		MMH0026CL	DS75452N	SN75452BP	1010104020
			DS0056CN		MMH0026CP1	DS75453H	3147 3432 51	MC75453U
CA3085F		MC1723L				DS75453N	CNIZEAEODD	1010134330
CA3085S	11000000	MC1723G	DS0056G		MMH0026G		SN75453BP	1407545411
CA3086	MC3386P		DS0056H		MMH0026G	DS75454H	017545400	MC75454U
CA3086F		MC3346P	DS0056J		MMH0026L	DS75454N	SN75454BP	1407540411
CA3090AQ		MC1310P	DS1488J	MC1488L		DS75461H		MC75461U
CA3091D		MC1594L	DS1488N	MC1488P		DS75461N	MC75461P	
CA3120E		MC1344P	DS1489AJ	MC1489AL		DS75462H		MC75462U
CA3125E		MC1323P	DS1489AN	MC1489AP		DS75462N	MC75462P	
CA3134E		TDA1190Z	DS1489J	MC1489L		DS75463H		MC75463U
CA3134EM		TDA1190Z	DS1489N	MC1489P		DS75463N	MC75463P	
CA3134QM		TDA1190Z	DS3486J	MC3486L		DS75464H		MC75464U
CA3136A		MC3346P	DS3486N	MC3486P		DS75464N	MC75464P	
CA3137E		MC1323P	DS3487J	MC3487L		DS75491J		MC75491P
CA3139	CA3139		DS3487N	MC3487P		DS75491N	MC75491P	
CA3146		MC3346P	DS3612H		MC1472U	DS75492J		MC75492P
CA3401E	MC3401P		DS3612N		MC1472P1	DS75492N	MC75492P	
CA6078AS	111001011	MC1776G	DS3632H		MC1472U	DS7837J		MC3437L
CA6078AT		MC1776G	DS3632J		MC1472U	DS7837W		MC3437L
CA6741S		MC1776G	DS3632N		MC1472P1	DS7838J		MC3438L
			DS3644J		MC3245L	DS7838W		MC3438L
CA6741T	MCCCCC	MC1776G	DS3644N		MC3245P	DS7887J		MC3490P
CA3302E	MC3302P	11015500	DS3650J	MC3450L	WI03243F	DS7889J		MC3491P
CMP-01CJ		MC1556G				DS7897J		
CMP-01CP		MC1556P	DS3650N DS3651J	MC3450P				MC3494P
D555CJ		MC1555G		MC3430L		DS8833J		MC8T28L
D3232	MC3232AP		DS3651N	MC3430P		D\$8833N		MC8T28P
D3242	MC3242AP		DS3652J	MC3452L		DS8834J		MC8T26AL
D3245	MC3245P		DS3652N	MC3452P		DS8834N		MC8T26AP
D8216		MC8T26AL	DS3653J	MC3432L		DS8835J		MC8T26AL
D8226		MC8T28L	DS3653N	MC3432P		DS8835N		MC8T26AP
DAC-01		MC 1506L	DS3674J	MC3460L		DS8837J	MC3437L	
DAC-08		MC1408L8	DS3674N	MC3460P		DS8837N	MC3437P	
DAC-IC10B0	C MC3410L		DS55107J	MC55107L		D\$8838J	MC3438L	
DM7820AD		MC75140P1	DS55107W		MC75107L	DS8838N	MC3438P	
DM7820J		MC75140P1	DS55108J	MC55108L		DS8839J		MC8T28L
DM7822J		MC1489AL	DS55108W	-	MC55108L	DS8839N		MC8T28P
DM7837J		MC3437L	DS55110J		MC75S110L	DS8887J		MC3490P
DM7838J		MC3438L	DS55121J		MC8T13L	DS8887N		MC3490P
DM7887J		MC3490P	DS55121W		MC8T13L	DS8889J		MC3491P
DM7887N		MC3490P	DS55122J		MC8T14L	DS8889N		MC3491P
DM7889J		MC3491P	DS55122W		MC8T14L	DS8897J		MC3494P
DM7889N		MC3491P	DS55325J	MC55325L		DS8897N		MC3494P
DIVI 00314		111 0400111	5555650					

HA1199 -- LM117H

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
HA1199	HA1199		LF156JG	LF156J		LF357L	LF357H	
ICB8000C		LM111J	LF156L	LF156H		LF357N	LF357N	
ICB8001C		LM111J	LF157AH	LF157AH		LF357P	LF357N	
ICB8741C		MC1741CG	LF157AJG	LF157AJ		LH0001ACH		MC1776CG
ICH8500ATV		MC1776CG	LF157AL	LF157AH		LH0001AH		MC1776G
ICH8500TV		MC1776CG	LF157H	LF157H		LH0001ACD		MC1776CG
ICL 101ALND	,	LM101AH	LF157JG	LF 157J		LH0001AD		MC1776G
ICL101ALNFE		LM101AH	LF 157L	LF 157H		LH0001ACF		MC1776CG
ICL 10 1ALNTY		LM101AH	LF252D	21 13711	LF255J	LH0001AG		MC1776G
ICL301ALNPA		LM301AH	LF255H	LF255H	LI 2333	LH0002CH		MC1538R
			LF255JG	LF255J		LH0002CH		MC1538R
ICL301ALNTY		LM301AH	LF255L					MC1336R MC1436G
ICL741CLNP/		MC1741CP1		LF255H		LH0004CH		
ICL741CLNTY		MC1741CP1	LF255P	LF255J		LH0004H		MC1536G
ICL741LNDP		MC1741L	LF256H	LF256H		LH0042CH		MC1776G
ICL741LNFB		MC1741L	LF256JG	LF256J		LH101F		MC1741F
ICL741LNTY		MC1741L	LF256L	LF256H		LH101H		MC1741G
ICL8001CTZ		LM111J	LF256P	LF256J		LH201F		MC1741F
ICL8001MTZ		LM111J	LF257H	LF257H		LH201H		MC1741G
ICL8007CTA		MC1709CG	LF257JG	LF257J		LH740ACH		LF355H
ICL8007MTA		MC1709CG	LF257L	LF257H		LH740AH		LF 155H
ICL8008CPA		LM301AN	LF257P	LF257J		LH2101AD		MC1537L
ICL8008CTY		LM301AN	LF347N	MC34004P		LH2101AF		MC1537L
ICL8013A		MC1594G	LF347AN	MC34004AP		LH2201AD		MC1537L
ICL8013B		MC1594G	LF347BN	MC34004BP		LH2201AF		MC1537L
ICL8013C		MC1594G	LF351H	MC34001G		LH2301AD		MC1437L
ICL8017CTW		LM301AN	LF351AH	MC34001AG		LH2301AF		MC1437L
ICL8017MTW		LM301AN	LF351BH	MC34001BG		LM100F		LM105H
ICL8021C		MC1776G	LF351N	MC34001P		LM100H		LM105H
ICL8021C		MC1776G MC1776G	LF351AN	MC34001AP		LM101AD		LM101AH
			LF351BN	MC34001AP		LM101AF		LM101AH
ICL8022C		MC1776G	LF351BN	WC34001BP	1 5355 1		1 84101 811	LIVITOTAL
ICL8022M		MC1776G		MC24000C	LF355J	LM101AH	LM101AH	1 44404 4 1
ICL8043CDE		MC1776G	LF353H	MC34002G		LM101AJ		LM101AJ
ICL8043CPE		MC1776G	LF353AH	MC34002AG		LM101AJ-14		LM101AJ
ICL8043MDE		MC1776G	LF353BH	MC34002BG		LM101AJG	LM101AJ	
ICL8048CDE		MC1776G	LF353N	MC34002P		LM101AL	LM101AH	
ICL8048DPE		MC1776G	LF353AN	MC34002AP		LM101D		LM101AJ
IH5101IIE		MC 1545G	LF353BN	MC34002BP		LM101F		LM101AH
IH5101MIE		MC1545G	LF355AH	LF355AH		LM101H	LM101AH	
ITT641		MC1385P	LF355AJG	LF355AJ		LM101J-14		LM101AJ
ITT652	MC1411P		LF355AL	LF355AH		LM104F		LM104H
ITT654	MC1412P		LF355AP	LF355AN		LM104H	LM104H	
ITT656	MC1413P		LF355BH	LF355BH		LM104J		LM104H
ITT 1330	MC1330P		LF355BJ	LF355BJ		LM104L	LM104H	
ITT 1352	MC1352P		LF355BN	LF355BN		LM 105F		LM105H
ITT3064	MC1364P		LF355H	LF355H		LM105H	LM105H	
ITT3065	MC1358P		LF355JG	LF355J		LM105JG		LM105H
ITT3066		MC1399P	LF355L	. LF355H		LM105L	LM105H	
ITT3701		TDA1190Z	LF355N	LF355N		LM 106H		MC1710G
ITT3707		MC1399P	LF355P	LF355N		LM107F		LM107H
ITT3710		MC1391P	LF356AH	LF356AH		LM107H	LM107H	
ITT3714		MC1394P	LF356AL	LF356AH		LM107L	LM107H	
L144AP		LM324N	LF356AJG	LF356AJ		LM108AD	LM108AJ	
	MC1411D	LIVISZ4N	LF356AP	LF356AN		LM108AF	LM108AF	
L201	MC1411P		LF356BH	LF356BH		LM 108AH	LM108AH	
L202	MC1412P		LF356BJ			LM108AJ	LM 108J-8	
L203	MC1413P			LF356BJ			LM 1083-8	
LD111CJ	MC1405L	154551	LF356BN	LF356BN		LM108D		
LF152D	. = . =	LF155J	LF356H	LF356H		LM108F	LM 108F	
LF155AH	LF155AH		LF356JG	LF356J		LM108H	LM108H	
LF155AJG	LF155AJ		LF356L	LF356H		LM109H	LM109H	
LF155AL	LF155AH		LF356N	LF356N		LM109K	LM 109K	
LF155H	LF155H		LF356P	LF356N		LM109LA	LM109K	
LF155JG	LF155J		LF357AH	LF357AH		LM111D	LM111J	
LF155L	LF155H		LF357BH	LF357BH		LM111H	LM111H	
LF156AH	LF156AH		LF357BJ	LF357BJ		LM112D		MC1556L
LF156AJG	LF156AJ		LF357BN	LF357BN		LM112F		MC1556L
LF156AL	LF156AH		LF357H	LF357H		LM112H		MC1556G
LF156H	LF156H		LF357JG	ŁF357J		J LM117H	LM 117H	
			-					

LM117K —LM309H

	MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
		REPLACEMENT	PART NO.	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
LM117K	LM117K		LM201AF		LM201AH	LM239D	LM239J	
LM118D		MC1741SL	LM201AH	LM201AH		LM239J	LM239J	
LM118F		MC1741SL	LM201AJ		LM201AJ	LM240LAH-5		MC78L05ACG
LM118H		MC1741SG	LM201AJG	LM201AJ		LM240LAH-6		MC78L06CG
LM120H-5 0	LM 120H-5 0		LM201AL	LM201AH		LM240LAH-8	0	MC78L08ACG
LM120H-5.2		MC7905 2CK	LM201AN		LM201AN	LM240LAH-1	2	MC78L12ACG
LM120H-6 0	LM 120H-6 0		LM201AP	LM201AN		LM240LAH-1	5	MC78L15ACG
LM120H-8 0	LM120H-8 0		LM201AJ-14	ļ	LM201AJ	LM240LAH-1	8	MC78L18ACG
LM120H-12	LM 120H-12		LM201D		LM201AJ	LM240LAH-2	!4	MC78L24ACG
LM120H-15	LM 120H-15		LM201F		LM201AH	LM240LAZ-5	0	MC78L05ACP
LM120H-18	LM 120H-18		LM201H	LM201AH		LM240LAZ-6	0	MC78L06ACP
LM120H-24	LM 120H-24		LM201J	LM201AJ		LM240LAZ-8	0	MC78L08ACP
LM120K-5 0	LM120K-5 0		LM201J-14		LM201AJ	LM240LAZ-1	2	MC78L12ACP
LM120K-5 2		MC7905 2CK	LM204H	LM204H		LM240LAZ-1	5	MC78L15ACP
LM120K-6 0	LM120K-6 0		LM204F		LM204H	LM240LAZ-1	8	MC78L18ACP
LM120K-8 0	LM120K-8.0		LM205F		LM205H	LM240LAZ-2		MC78L24ACP
LM120K-12	LM120K-12		LM205H	LM205H		LM243H		MC1536G
LM120K-15	LM 120K-15		LM206H		MC1710CG	LM245K		MC7905CK
LM120K-18	LM120K-18		LM207F		LM207H	LM248D	LM248J	1110700011
LM120K-16	LM120K-24		LM207H	LM207H	LWZUTT	LM248J	LM248J	
	LIVI 12UN-24	MOTEREO	LM208AD	LM208AJ		LM249D	LIVIZ400	MC4741L
LM122F		MC1555G		LM208AF				MC4741L
LM122H		MC1555G	LM208AF			LM249J		
LM124AD		LM124J	LM208AH	LM208AH		LM258AH	1.1.05011	LM258H
LM124AF		LM124J	LM208AJ	LM208AJ-8		LM258H	LM258H	
LM124AJ		LM124J	LM208D		LM208J-8	LM2901N	LM2901N	
LM124D	LM124J		LM208F	LM208F		LM300F		LM305H
LM124F		LM124J	LM208H	LM208H		LM271H		MC1590G
LM124J	LM 124J		LM209K	LM209K		LM300H		LM305H
LM125H		MC1568G	LM209H	LM209H		LM301AD		LM301AJ
LM126H		MC1568G	LM211D	LM211J		LM301AF		LM301AH
LM128H		MC1568G	LM211H	LM211H		LM301AH	LM301AH	
LM139AD	LM139AJ		LM212D		MC1556L	LM301AJ	LM301AJ	
LM139AJ	LM 139AJ		LM212F		MC1556L	LM301AJG	LM301AJ	
LM139D	LM139J		LM212H		MC1456G	LM301AL	LM301AH	
LM139J	LM 139J		LM217H	LM217H		LM301AN	LM301AN	
LM140K-5 0	LM140K-5 0		LM217K	LM217K		LM301AP	LM301AN	
LM140K-6 0	LM140K-6 0		LM218D	22	MC1741SL	LM302H	LM310H	
LM140K-8.0	LM140K-8 0		LM218F		MC1741SL	LM304F	2	LM304H
LM140K-0.0	LM140K-12		LM218H		MC1741SG	LM304H	LM304H	EMBOTH
	LM140K-15		LM220H-5 0		MC7905CK	LM304J	C14100411	LM304H
LM140K-15			LM220H-5 2		MC7905 2CK	LM304L	LM304H	LWOOTH
LM140K-18	LM140K-18						LW00411	LMODALI
LM140K-24	LM140K-24		LM220H-6 0		MC7906CK	LM304N		LM304H
LM140LAH-5		MC78L05ACG	LM220H-8 0		MC7908CK	LM305AH		LM305H
LM140LAH-6		MC78L06ACG	LM220H-12		MC7912CK	LM305AJG		LM305H
LM140LAH-8		MC78L08ACG	LM220H-15		MC7915CK	LM305AL		LM305H
LM140LAH-1		MC78L12ACG	LM220H-18		MC7918CK	LM305AP		LM305H
LM140LAH-1	5	MC78L15ACG	LM220H-24		MC7924CK	LM305F		LM305H
LM140LAH-1	8 `	MC78L18ACG	LM220K-5 0		MC7905CK	LM305H	LM305H	
LM140LAH-2	4	MC78L24ACG	LM220K-5 2		MC7905.2CK] LM305JG		LM305H
LM143D		MC1536G	LM220K-6 0		MC7906CK	LM305L	LM305H	
LM143F		MC1536G	LM220K-8 0		MC7908CK	LM305P		LM305H
LM143H		MC1536G	LM220K-12		MC7912CK	LM306H		MC1710CG
LM145K		MC7905CK	LM220K-15		MC7915CK	LM307F		LM307H
LM148D	LM148J		LM220K-18		MC7918CK	LM307H	LM307H	
LM148J	LM148J		LM220K-24		MC7924CK	LM307L	LM307H	
LM148F		MC4741L	LM222H		MC1555G	LM307N	LM307N	
LM149D		MC4741L	LM224AD		LM224J	LM307P	LM307N	
LM149F		MC4741L	LM224AF		LM224J	LM308AD	LM308AJ	
LM158AH		LM158H	LM224AJ		LM224J	LM308AF	2111000710	LM308AJ
	I MATEON	FIM 12011	LM224AJ	LM224J	LINCETU	LM308AH	LM308AH	LINOUNU
LM158H	LM158H			LIVIZZ4J	I MOOAI		LIVIDUOATI	I M3Uovi
LM158JG	LM158J		LM224F	1 14004 1	LM224L	LM308AH-1		LM308AH
LM158L	LM158H	1 1100 4501	LM224J	LM224J	MOSECOC	LM308AH-2	144000410	LM308AH
LM163J		MC3450L	LM225H		MC1568G	LM308AJ	LM308AJ-8	
LM171H		MC1590G	LM226H		MC1568G	LM308D	LM308J	
LM200F		LM205H	LM228H		MC1568G	LM308H	LM308H	
LM200H LM201AD		LM205H LM201AJ	LM239AD LM239AJ	LM239AJ LM239AJ		LM308N LM309H	LM308N LM309H	

LM309K —LM741J-14

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT		MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
LM309K	LM309K		LM340K-6 0	LM340K-6 0		LM363N		MC3450P
LM309KC	LM309K		LM340K-8 0	LM340K-8.0		LM371H		MC1590G
LM309LA	LM309K		LM340K-12	LM340K-12		LM376JG		LM305H
LM311D	LM311J		LM340K-15	LM340K-15		LM376L	LM305H	2
LM311H	LM311H		LM340K-18	LM340K-18		LM376N	LINOUUT	LM305H
LM311N	LM311N		LM340K-24	LM340K-24		LM376P		LM305H
LM311N-14	LM311J		LM340KC-5 0	MC7805CK		LM386N		MC1306P
LM311N-14	CIVIO 1 10	MC1456L	LM340KC-6.0	MC7806CK		LM555CH	MC1455G	10001
			LM340KC-8 0	MC7808CK		LM555CN	MC1455P1	
LM312F		MC1456L	LM340KC-12			LM555H	MC1555G	
LM312H	1.840.4711	MC1456G		MC7812CK				
LM317H	LM317H		LM340KC-15	MC7815CK		LM556CD	MC3456L	
LM317K	LM317K		LM340KC-18	MC7818CK		LM556CJ	MC3456L	
LM317P	LM317T		LM340KC-24	MC7824CK		LM556CN	MC3456P	
LM317T	LM317T		LM340LAH-5 0		MC78L05ACG	LM556D	MC3556L	
LM318D		MC1741SCL	LM340LAH-6 0		MC78L06ACG	LM556J	MC3556L	
LM318F		MC1741SCL	LM340LAH-8 0		MC78L08ACG	LM565CH		NE565N .
LM318H		MC1741SCG	LM340LAH-12		MC78L12ACG	LM565CN	NE565N	
LM318N		MC1741SCP1	LM340LAH-15		MC78L15ACG	LM565H		NE565N
LM320H-5 0	LM320H-5 0		LM340LAH-18		MC78L18ACG	LM703LN		MC1350P
LM320H-5 2		MC7905 2CK	LM340LAH-24		MC78L24ACG	LM709AH	MC1709AG	
LM320H-6 0	LM320H-6 0		LM340LAZ-5 0		MC78L05ACP	LM709AJ	MC1709AL	
LM320H-8 0	LM520H-8 0		LM340LAZ-6 0		MC78L06ACP	LM709CH	MC1709CG	
LM320H-12	LM320H-12		LM340LAZ-8 0		MC78L08ACP	LM709CJ	MC1709CL	
			LM340LAZ-12		MC78L12ACP	LM709CN	MC1709CP2	
LM320H-15	LM320H-15		LM340LAZ-15		MC78L15ACP	LM709CN-8		
LM320H-18	LM320H-18					LM709CN-0	MC1709G	
LM320H-24	LM320H-24		LM340LAZ-18		MC78L18ACP			
LM320K-5 0	LM320K-5 0		LM340LAZ-24		MC78L24ACP	LM709J	MC1709L	
LM320K-6 0	LM320K-6 0		LM340T-5 0	MC7805CT		LM710CH	MC1710CG	٠.
LM320K-8 0	LM320K-8 0		LM340T-6 0	MC7806CT		LM710CN	MC1710CP	
LM320K-12	LM320K-12		LM340T-8 0	MC7808CT		LM710H	MC1710G	
LM320K-15	LM320K-15		LM340T-12	MC7812CT		LM711CH	MC1711CG	
LM320K-18	LM320K-18		LM340T-15	MC7815CT		LM711CN	MC1711CP	
LM320K-24	LM320K-24		LM340T-18	MC7818CT		LM711H	MC1711G	
LM320MP-5 (0	MC7905CT	LM340T-24	MC7824CT		LM723CD	LM723CJ	
LM320MP-5		MC7905 2CT	LM341P-50	MC78M05CT		LM723CH	LM723CH	
LM320MP-6		MC7906CT	LM341P-60	MC78M06CT		LM723CJ	LM723CJ	
LM320MP-8		MC7908CT	LM341P-8 0	MC78M08CT		LM723CN	LM723CN	
LM320MP-12		MC7912CT	LM341P-12	MC78M12CT		LM723D	LM723J	
LM320MP-15		MC7915CT	LM341P-15	MC78M15CT		LM723H	LM723H	
LM320MP-18		MC7918CT	LM341P-18	MC78M18CT		LM723J	LM723J	
		MC7924CT	LM341P-24	MC78M24CT		LM733CD	MC1733CL	
LM320MP-24		WO132401	LM342P-5 0	MC78M05CT		LM733CH	MC1733CG	
LM320T-5 0	LM320T-5 0	1107005 0OT				LM733CJ	MC1733CL	
LM320T-5.2	A MAROOT O O	MC7905 2CT	LM342P-6 0	MC78M06CT				
LM320T-6.0	LM320T-6 0		LM342P-8 0	MC78M08CT		LM733CN	MC1733CP	
LM320T-8 0	LM320T-8 0		LM342P-12	MC78M12CT		LM733D	MC1733L	
LM320T-12	LM320T-12		LM342P-15	MC78M15CT		LM733H	MC1733G	
LM320T-15	LM320T-15		LM342P-18	MC78M18CT		LM733J	MC1733L	1101711
LM320T-18	LM320T-18		LM342P-24	MC78M24CT		LM741AD		MC1741L
LM320T-24	LM320T-24		LM343D		MC1436G	LM741AF		MC1741F
LM322H		MC1455G	LM343H		MC1436G	LM741AH		MC1741G
LM322N		MC1455P1	LM345K		MC7905CK	LM741AJ-1	4	MC1741L
LM324AJ		LM324J	LM348D	LM348J		LM741CD	LM1741CJ	
LM324AN		LM324N	LM348J	LM348J		LM741CF	LM741CF	
LM324J	LM324J		LM348N	LM348N		LM741CH	LM741CH	
LM324N	LM324N	MC3403P	LM349D		MC4741CL	LM741CJ	LM741CJ	
LM325AN	Emot m	MC1468L	LM349J		MC4741CL	LM741CJ-1		
LM325H		MC1468G	LM349N		MC4741CL	LM741CN	LM741CN	
Linezon		MC1468L	LM358AH		LM358H	LM741CN-1		
LM325N			LM358AN		LM358N	LM741D	LM741J-14	
LM326H		MC1468G		1 1425011	FINIO COLA	LM741ED	PINI 4 10-14	MC1741CL
LM326N		MC1468L	LMC58H	LM358H				
LM328AN		MC1468L	LMC58JG	LM358J		LM741EH		MC1741CG
LM328H		MC1468G	LM358L	LM358H		LM741EJ		MC1741CU
LM328N		MC1468L	LM358N	LM358N		LM741EJ-1	4	MC1741CL
LM339AD	LM339AJ		LM358P	LM358N		LM741EN		MC1741CP1
LM339AN	LM339AN		LM363AJ		MC3450L	LM741F	LM741F	
LM339N	LM339N		LM363AN		MC3450P	LM741H	LM741H	
LM340K-5 0	LM340K-5.0		LM363J		MC3450L	LM741J-14	LM741J-14	

LM746N - ML107T

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
LM746N	MEFERCEMENT	MC1323P	LM3071N	TIET EXCEMENT	MC1399P	LM75108AJ	MC75108L	IIE. EAGEMENT
LM747CD	LM747CJ	1110 10201	LM3075N	MC1375P		LM75108AN	MC75108P	
LM747CF	LM747CF		LM3086N	MC3386P		LM75110J	MC75S110L	
LM747CH	LM747CH		LM3126		MC1399P	LM75110N	MC75S110P	
LM747CJ	LM747CJ		LM3146		MC3346P	LM75121J	MC8T13L	
LM747CN	LM747CN		LM3146A		MC3346P	LM75121N	MC8T13P	
LM747D	LM747J		LM3301N	MC3301P	111.000 101	LM75122J	MC8T14L	
LM747F	LM747F		LM3302J	MC3302L		LM75122N	MC8T14P	
LM747H	LM747H		LM3302N	MC3302P		LM75123J	MC8T23L	
LM747J	LM747J		LM3401N	MC3401P		LM75123N	MC8T23P	
LM748CH	MC1748CG		LM3900N	W004011	MC3401P	LM75124J	MC8T24L	
LM748CJ	MC1748CU		LM3905N		MC1455P1	LM75124N	MC8T24P	
LM748CN	MC1748CP1		LM4250CH		MC1776CG	LM75207L	111001241	MC75107L
LM748H	MC1748G		LM4250CN		MC1776CP1	LM75207N		MC75107P
LM748J	MC1748U		LM4250H		MC1776G	LM75208J		MC75108L
LM1310N	MC1310P		LM5525J	MC5525L	11100	LM75208N		MC75108P
LM1351N	MC1351P		LM5528J	MC5528L		LM75324J		MC75325L
LM1391N	MC1391P		LM5529J	MC5529L		LM75324N		MC75325P
LM1394N	MC1391P		LM5534J	MC5534L		LM75325J	MC75325P	107 00201
LM1414J			LM5535J	MC5535L		LM75325N	MC75325L	
LM14140	MC1414L MC1414P		LM5538J	MC5538L		LM75450N	MC75450P	,
			LM5529J	MC5539L		LM75451N	MC75451P	
LM1458H	MC1458G		LM7524J	MC7524L		LM75451N	MC75451P	
LM1458J	MC1458U		LM75243	MC7524E MC7524P		LM75452N	MC75452P	
LM1458N	MC1458P1			MC7525L		LM75454N	MC75453P	
LM1458N-14			LM7525J LM7805KC	MC7805CK		MC1310A	MC1310P	
LM1488J	MC1488L		LM7806KC	MC7806CK		MC1408B	MC1408P8	
LM1488N	MC1488P						MC1408L8	
LM1489AJ	MC1489AL		LM7808KC LM7812KC	MC7808CK MC7812CK		MC1408F MC1458JG	MC1458U	
LM1489AN	MC1489AP						MC1458G	
LM1489J	MC1489L		LM7815KC LM7818KC	MC7815CK MC7818CK		MC1458L MC1458P		
LM 1489N	MC1489P		LM7824KC			MC1458P MC1558JG	MC1458P1 MC1558U	
LM1496H	MC1496G			MC7824CK		MC1558L	MC1558G	
LM1496J	MC1496L		LM78L05AC			MH0026H	WC 1556G	MMH0026CG
LM1496N	MC1496P		LM78L05AC			MH0026CH	MMH0026CG	WIWII 10020CG
LM 1514J	MC1514L					MH0026CN	MMH0026CP	1
LM 1558H	MC1558G		LM78L05CZ	MC78L05CP		MH0026CN	WIWITUU26CP	MMH0026CG
LM 1558J	MC1558U		LM78L08AC			MH0026G MH0026CG		MMH0026CG
LM1596H	MC1596G		LM78L08AC			MH0026CG		MMH0026CL
LM1596J	MC1596L	11040400	LM78L08CH			MH0026CF		MMH0026C1
LM 1800AN		MC1310P	LM78L08CZ LM78L12AC			MIC709-1	MC1709G	WWW.HUU26C1
LM 1800N		MC1310P	LM78L12AC			MIC709-5	MC1709G	
LM 1805		MC1385P					MC17109CG MC1710G	
LM 1808N		TDA 1190Z	LM78L12CH			MIC710-1C MIC710-5C	MC1710G	
LM 1828N	14040500	MC1323P	LM78L12CZ LM78L15AC			MIC710-3C	MC1710CG MC1711G	
LM 1841N	MC1356P	1101011	LM78L15AC			MIC711-5C	MC1711G	
LM 1845N		MC1344P				MIC711-3C	MC1711CG	
LM 1848N		MC1323P	LM78L15CH LM78L15CZ			MIC712-1B	MC1712F MC1712G	
LM 1850N		MC3426L				MIC712-1D	MC1712G MC1712L	
LM 1900D	14040570	MC3301L	LM78L18AC			MIC712-18	MC1712CF	
LM2111N	MC1357P	11010570	LM78L18AC					
LM2113N		MC1357P	LM78L18CH			MIC712-5C	MC1712CG	
LM2900J		MC3301L	LM78L18CZ			MIC712-5D	MC1712CL	
LM2900N		MC3301P	LM78L24AC			MIC723-1	MC1723G	
LM2902J	LM2902J		LM78L24AC			MIC723-5	MC1723CG	
LM2902N	LM2902N		LM78L24CH			MIC741-1C MIC741-1D	MC1741G MC1741L	
LM2904N	LM2904N	110115501	LM78L24CZ	MC78L24CP MC55107L			MC 1741L MC 1741CG	
LM2905N		MC1455P1	LM55107AJ		4	MIC741-5C		
LM3011H		MC1550G	LM55108AJ	MC55108L	1407504401	MIC741-5D	MC1741CL	1.14101411
LM3026		CA3054	LM55109J		MC75S110L	ML101AF		LM101AH
LM3045		MC3346P	LM55110J		MC75S110L	ML101AM		LM101AH
LM3046N	MC3346P		LM55121J		MC8T 13L	ML101AT	LM101AH	1140411
LM3054	CA3054		LM55122J		MC8T14L	ML101F		LM101AH
LM3064N	MC1364P	,	LM55123J		MC8T23L	ML101M	1 14404411	LM101AH
LM3065N	MC1358P		LM55124J	110550051	MC8T24L	ML101T	LM101AH	1.140211
LM3066N		MC1399P	LM55325N	MC55325L		ML107F		LM107H
LM3067N		MC1323P	LM75107AJ	MC75107L MC75107P		ML107M ML107T	LM107H	LM107H
LM3070N		MC1399P	LM75107AN					

ML108AF --- OP-08B

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
ML108AF	NEPLACEMENT	MC1556G	ML741AT	REPLACEMENT	MC1556G	N5747F	MC1747CL	HEFEAGEMENT
ML108AM	LM108AJ	WIC 1330G	ML741CP	MC1741CP2	WIO 1000G	N5748A	MOTITIOE	MC1747CG
ML108AT	LM108AH		ML741CS	MC1741CP1		N5748T	MC1748CG	11.0114700
			ML741CT	MC1741CG		N8T13B	MC8T13P	
ML108M	LM108J	•	ML74161			N8T13P	MC8T13L	
ML108T	LM 108H			MC1741F				
ML111M	LM111J		ML741M	MC1741L		N8T14B	MC8T14P	
ML111S		LM111J	ML741T	MC1741G		N8T14E	MC8T14L	14044001
ML111T	LM111H		ML747CP	MC1747CL		N8T15A		MC1488L
ML118F		MC1741SG	ML747CT	MC1747CG		N8T15F		MC1488L
ML118M		MC1741SG	ML747F	MC1747F		N8T16A		MC1489L
ML118T		MC1741SG	ML747M	MC1747L		N8T23B	MC8T23P	
ML201AF		LM201AH	ML747T	MC1747G		N8T23E	MC8T23L	
ML201AM		LM201AH	ML748CP		LM301AN	N8T24B	MC8T24P	
ML201AT	LM201AH		ML748CS	LM301AN		N8T24E	MC8T24L	
ML201F		LM201AH	ML748CT	MC1748CG		N8T26AB	MC8T26AP	
ML201M		LM201AH	ML748F		MC1748G	N8T26AE	MC8T26AL	
ML201T	LM201AH		ML748M		MC1748G	N8T26B	MC8T26AP	
ML207F		LM207H	ML748T	MC1748G		N8T28B	MC8T28P	
ML207M		LM207H	ML1436T	MC1436G		N8T37A	MC3437P	
ML207T	LM207H		ML1437P	MC1437P		N8T38A	MC3438P	
ML208AF	Lineonn	MC1556G	ML1458P	MC1458P2		N8T95B	MC8T95P	
ML208AM	LM208AJ		ML1458S	MC1458P1		N8T95F	MC8T95L	
ML208AT	LM208AH		ML1458T	MC1458G		N8T96B	MC8T96P	
ML208M	LM208J		ML1488M	MC1488L		N8T96F	MC8T96L	
ML208T	LM208H		ML1489AM	MC1489AL		N8T97B	MC8T97P	
ML211M			ML1489M	MC1489L		N8T97F	MC8T97L	
	LM211J		ML1536T	MC1536G		N8T98B	MC8T98P	
ML211S	LM211N		ML1537M	MC1537L		N8T98F	MC8T98L	
ML211T	LM211H	110174400				NE501A	WICOTOOL	MC1733CL
ML218F		MC1741SG	ML1558M	MC1558L			1	MC1733CE MC1733CG
ML218M		MC1741SG	ML1558T	MC1558G		NE501K		MC 1733CG MC 1420G
ML218T		MC1741SG	ML3046P	MC3346P	14047700	NE515A		MC 1420G MC 1520F
ML301AP		LM301AN	ML4250T		MC1776G	NE515G		
ML301AS	LM301AN		ML4250CS		MC1776CG	NE515K		MC1420G
ML301AT	LM301AH		ML4250CT		MC1776CG	NE516A		MC1420G
ML301P		LM301AN	ML4251T		MC1776G	NE516G		MC 1520F
ML301S	LM301AN		ML4251CS		MC1776CG	NE516K		MC 1420G
ML301T	LM301AN		ML4251CT		MC1776CG	NE531G		MC 1439G
ML307P		LM307H	ML6503M		MC1537L	NE531T		MC1439G
ML307S	LM307N		ML7503M		MC1437L	NE531V		MC1439P
ML307T	LM307H		N5065A	MC1358P		NE533G		MC1776CG
ML308AM	LM308AJ		N5070B		MC1399P	NE533T		MC1776CG
ML308AT	LM308AH		N5071A		MC1399P	NE533V		MC1776CG
ML308M	LM308J		N5072A		MC1323P	NE537G		MC 1456G
ML308T	LM308H		N5556T	MC1456G		NE537T		MC 1456G
ML311M	LM311J		N5556V	MC1456P1		NE540L		MC1554G
ML311P	LM311J		N5558F	MC1458L		NE550A		MC1723CP
ML311S	LM311N	_	N5558T	MC1458G		NE550L		MC1723CG
ML311T	LM311H		N5558V	MC1458P1		NE555JG	MC1455U	
ML318M		MC1741SCP1	N5595A	MC1495L		NE555L	MC1455G	
ML318T		MC1741SCG	N5595F	MC1495L		NE555P	MC1455P1	
ML709AF	MC1709AF		N5596A	MC1496L		NE555T	MC1455G	
ML709AM	MC1709AL		N5596K	MC1496G		NE555V	MC1455P1	
ML709AT	MC1709AG		N5709A	MC1709CP2		NE556A	MC3456P	
ML709CP	MC1709CP2		N5709G	MC1709CF		NE556I	MC3456L	
ML709CT	MC1709CG		N5709T	MC1709CG		NE565A	NE565N	
ML709F	MC1709F		N5709V	MC1709CP1		NE565K	,	NE565N
	MC1709L		N5710A	MC1710CP		NE592A	NE592A	
ML709M ML709T	MC1709E MC1709G		N5710X	MC1710CG		NE592K	NE592K	
	MOTOBU	MC170201	N57101	MC1711CP		OP-01C		MC 1536
ML723CF	MC170201	MC1723CL	N5711K	MC1711CG		OP-01G		MC 1536
ML723CM	MC1723CL			IVIO 17 1 TOG	MC1723CP	OP-01H		MC 1536
ML723CP	MC1723CL		N5723A	MC1723CG	WIO 11230F	OP-01A		MC 1536G
ML723CT	MC1723CG	11017001	N5723T					MC 1536G MC 1536G
ML723F		MC1723L	N5733K	MC1733CG		OP-01L OP-01P		
ML723M	MC1723L		N5741A	MC1741CP2				MC1536P
ML723T	MC1723G		N5741T	MC1741CG		OP-08		MC1776
ML741AF		MC1556G	N5741V	MC1741CP1		OP-08A		MC1776
ML741AM		MC1556G	N5747A	MC1747CL		1 OP-08B		MC1776

OP-08C -SG208AM

<u>PART NO.</u> OP-08C OP-08E PA239A	REPLACEMENT			DIRECT	SIMILAR		DIRECT	SIMILAR
OP-08E		MC1776	RC75110DP	MC75S110P	REPLACEMENT	SE533G	REPLACEMENT	MC1776G
			RC75325DD	MC75325L		SE533T		MC1776G
	**	MC1776 MC1303P	REF-01CJ	WIC/3323L	C1404U10	SE537G		MC1776G MC1556G
RC702T	MC1712CG	WIC 1303P	REF-01DJ		C1404U10	SE537T		
			REF-01J		C1504AU10	SE550L		MC1556G
RC709D	MC1709CL						MOJECTI	MC1723G
RC709DN	MC1709CP1		REF-01HJ		C1404AU10	SE555JG	MC1555U	
RC709DP	MC1709CP2		REF-02CJ		C1404U5	SE555L	MC1555G	
RC709T	MC1709CG		REF-02DJ		C1404U5	SE555T	MC1555G	
RC710DC	MC1710CL		REF-02HJ		C1404AU5	SE556A	MC3556L	
RC710DP	MC1710CP		REF-02J		C1504AU5	SE565A		MLM565CP
RC710T	MC1710CG		RM702Q	MC1712F		SE565K		MLM565CP
RC711DC	MC1711CL		RM702T	MC1721G		SE592A	SE592L	
RC711DP	MC1711CP		RM709D	MC1709L		SE592K	SE592G	
RC711T	MC1711CG		RM709Q	MC1709F		SG100T		MC1723G
RC723D	MC1723CL		RM709T	MC1709G		SG101AD		LM101AH
RC723T	MC1723CG		RM710D	MC1710L		SG101AT	LM101AH	
RC733D	MC1733CL		RM710T	MC1710G		SG101J		LM101AH
RC733T	MC1733CG		RM711DC	MC1711L		SG101T	LM101AH	
RC741D	MC1741CL		RM711T	MC1711G		SG104T	LM104H	
RC741DN	MC1741CP1		RM723D	MC1723L		SG105N	2	LM 105H
RC741DP	MC1741CP2		RM723T	MC1723G		SG105T	LM 105H	EM 10011
RC741DF	MC1741CF2		RM733D	MC1733L		SG107J	LIWITOSTI	LM107H
			RM733T	MC1733G		SG1075	LM107H	LIVITOTT
RC741T	MC1741CG							
RC747D	MC1747CL		RM741D	MC1741L		SG 108AJ	LM108AJ	
RC747T	MC1747CG		RM741DP	MC1741P		SG 108AT	LM108AH	
RC748T	MC1748CG		RM741Q	MC1741F		SG 108J	LM 108J	
RC1414DC	MC1414L		RM741T	MC1741G		SG 108T	LM 108H	
RC1414DP	MC1414P		RM747D	MC1747L		SG109K	LM 109K	
RC1488DC	MC1488L		RM747T	MC1747G		SG 109T	LM 109H	
RC1489ADC	MC1489AL		RM748T	MC1748G		SG111D	LM111J	
RC1489DC	MC1489L		RM1514DC	MC1514L		SG111T	LM111H	
RC8T13DD	MC8T13L		RM1537D	MC1537L		SG118J		MC1741SL
RC1437D	MC1437L		RM4136D		MC3503L	SG118T		MC1741SG
RC1437DP	MC1437P		RM4136J		MC3503L	SG120K-05	LM 120K-05	
RC1458DN	MC1458P1		RM4195T		MC1568G	SG120K-5 2		MC7905.2CK
RC1458T	MC1458G		RM4195TK		MC1568R	SG120K-12	LM 120K-12	MO1000.2010
RC1556T	MC1456CG		RM4558D	MC4558U	MO 130011	SG120K-15	LM 120K-15	
			RM4558JG	MC4558U		SG120T-05	LM 120T-05	
RC1558T	MC1558G						LW 1201-03	MC700F 0CK
RC3302DB	MC3302P	11011710004	RM4558L	MC4558G		SG120T-5 2 SG120T-12	1 M 4 4 0 0 T 4 0	MC7905 2CK
RC4131DP		MC1471SCP1	RM4558T	MC4558G			LM 120T-12	
RC4131T		MC1741SG	RM55107AD	MC55107L		SG120T-15	LM120T-15	
RC4136D		MC3403L	RM55325DD	MC55325L		SG124J	LM124J	
RC4136DP		MC3403P	RV3301DB	MC3301P		SG140K-05	LM140K-5 0	
RC4136J		MC3403L	S8T13E		MC8T13L	SG140K-06	LM140K-6 0	
RC4136N		MC3403P	S8T14E		MC8T14L	SG140K-08	LM140K-8 0	
RC4195T		MC1468G	S5556T	MC1556G		SG 140K-12	LM 140K-12	
RC4195TK		MC1468R	S5558E	MC1558L		SG140K-15	LM 140K-15	
RC4444R	MC3416L		S5558T	MC1558G		SG140K-18	LM 140K-18	
RC4558DN	MC4558CP1		S5596F	MC1596L		SG140K-24	LM140K-24	
RC4558JG	MC4558CU		S5596K	MC1596G		SG200T		MC1723G
RC4558L	MC4558CG	•	S5709G	MC1709F		SG201AD		LM201AH
RC4558P	MC4558CP1		S5709T	MC1709G		SG201AM	LM201AN	LINES IALI
			S5710T	MC1710G		SG201AN	LIMZUTAN	LMOOTAN
RC4558T	MC4558CG						444004411	LM201AN
RC8T13MP	MC8T13P		S5711K	MC1711G		SG201AT	LM201AH	
RC8T14DD	MC8T14L		S5723T	MC1723G		SG201J		LM201AH
RC8T14MP	MC8T14P		S5733K	MC1733G		SG201M	LM201AN	
RC8T23DD	MC8T23L		S5741T	MC1741G		SG201N		LM201AN
RC8T23MP	MC8T23P		SE501K		MC1733G	SG201T	LM201AH	
RC8T24DD	MC8T24L		SE515G		MC1520F	SG204T	LM204H	
RC8T24MP	MC8T24P		SE515K		MC1520G	SG205N		LM205H
RC75107AD	MC75107L		SE516A		MC1520G	SG205T	LM205H	
RC75107AD			SE516G		MC1520F	SG207J		LM207H
RC75108AD			SE516K		MC1520G	SG207M		LM207H
RC75108ADI			SE528E		MC1544L	SG207N		LM207H
RC75100AD		MC75S110L	SE528R		MC1544L	SG207T	LM207H	220111
		MC75S110E MC75S110P	SE531G		MC1539G	SG208AJ	LM208AJ	
RC75109DP					1410 13030	i gazaan	LMZUUMJ	

SG208AT —SG3501AT

2427.00	MOTOROLA DIRECT	MOTOROLA SIMILAR	D. D. T. NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR	DART NO	MOTOROLA DIRECT	MOTOROLA SIMILAR
SG208AT		REPLACEMENT	SG710CN	MC1710CP	REPLACEMENT	SG 1456T	MC1456G	REPLACEMENT
	LM208AH							
SG208J	LM208J		SG710CT	MC1710CG		SG1458M	MC1458P1	
SG208M	LM208J-8		SG710D	MC1710L		SG 1458T	MC1458G	
SG208T	LM208H		SG710N	MC1710CP		SG1468J	MC1468L	
SG209K	LM209K		SG710T	MC1710G		SG 1468N	MC1468L	
SG209T	LM209H		SG711CD	MC1711CL		SG 1468T	MC1468G	
SG211D	LM211J		SG711CN	MC1711CP		SG1495D	MC1495L	
SG211M	LM211N		SG711CT	MC1711CG		SG1495N	MC1495L	
SG211T	LM211H		SG711D	MC1711L		SG1496D	MC1496L	
SG218J	LIVILITI	MC1741SL	SG711N	MC1711CP		SG1496N		MC1496L
			,			SG1496T	MC1496G	WIO 1430E
SG218M		MC1741SL	SG711T	MC1711G			WC 1490G	MOTECOL
SG218T		MC1741SG	SG723CD	MC1723CL		SG1501AD		MC1568L
SG224J	LM224J		SG723CN	MC1723CP	*	SG1501AT		MC1568G
SG224N	LM224N		SG723CT	MC1723CG		SG1501D	MC 1568L	
SG300N		MC1723CP	SG723D	MC1723L		SG 1501T	MC 1568G	
SG300T		MC1723CG	SG723T	MC1723G		SG1502D		MC1568L
SG301AD		LM301AH	SG733CD	MC1733CL		SG1502N		MC1568L
SG301AM	LM301AN		SG733CN		MC1733CP	SG 1503	MC 1503U	
SG301AN	LINIOU IT WE	LM301AN	SG733CT	MC1733CG	11101110001	SG1524J		MC3520L
	1.64204.611	LIVIOU IAIN	SG733D	MC1733CG		SG 1536T	MC1536G	111000202
SG301AT	LM301AH			NIC 1733L	11047001		MC 1556G	
SG304T	LM304H		SG733N		MC1733L	SG 1556T		
SG305AT		LM305H	SG733T	MC1733G		SG1558T	MC 1558G	
SG305N		LM305H	SG741CD	MC1741CL		SG1595D	MC 1595L	
SG305T	LM305H		SG741CF	MC1741CF		SG1596D	MC 1596L	
SG307J	1	LM307N	SG741CM	MC1741CP1		SG 1596T	MC 1596G	
SG307M	LM307N		SG741CN	MC1741CP2		SG 1660D		LM301AH
SG307N		LM307N	SG741CT	MC1741CG		SG 1660J		LM308J
SG307T	LM307H	Linoviti	SG741D	MC1741L		SG1660M		LM308N
SG308AJ	LM308AJ		SG741F	MC1741E		SG 1660T		LM308H
		,				SG 1760D		LM307H
SG308AM	LM308AN		SG741T	MC1741G				
SG308AT	LM308AH		SG741SCM	MC1741SCP		SG1760F		LM307H
SG308J	LM308J		SG741SCT	MC1741SCG		SG1760J		LM308J
SG308M	LM308N		SG741ST	MC1741SG		SG1760M		LM&08N
SG308T	LM308H		SG747CJ	MC1747CL		SG1760T		LM308H
SG309K	LM309K		SG747CN	MC1747CP2		SG2118AJ		LM208AJ
SG309T	LM309H		SG747CT	MC1747CG		SG2118AM		LM208AJ-8
SG311D	LM311J		SG747J	MC1747L		SG2118AT		LM208AH
SG311M	LM311N		SG747T	MC1747G		SG2118J		LM208J
				WOTTATO	MC1749CD1	SG2118M		LM208J-8
SG311T	LM311H	1104744001	SG748CD		MC1748CP1	SG2118T		LM208H ·.
SG318J		MC1741SCL	SG748CM		MC1748CP1			
SG318M		MC1741CP1	SG748CN		MC1748CP1	SG2250T		MC1776G
SG318T		MC1741CG	SG748CT	MC1748CG		SG2401N		MC1433G
SG320K-05	LM320K-5.0		SG748D		MC1748G	SG2402N		MC1494L
SG320K-5 2	2	MC7905 2CK	SG748T	MC1748G		SG2402T		MC1494L
SG320K-12			SG777CJ		LM308AJ	SG2501AD		MC1468L
SG320K-15			SG777CM		LM308AN	SG2501AT		MC1468G
SG320T-05	LM320T-5 0		SG777CN		LM308AN	SG2501D	MC1468L	
SG320T-52		MC7905.2CT	SG777CT		LM308AH	SG2501N	MC1468L	
		WIC 7 503.20 I	SG777J		LIA 108AJ	SG2501T	MC1468G	
SG320T-12	LM320T-12						WIO 1400G	MC1468L
SG320T-15			SG777T		LM108AH	SG2502D		
SG324J	LM324J		SG1118AJ		LM108AJ	SG2502N		MC1468L
SG324N	LM324N		SG1118AT		LM 108AH	SG2502T		MC1468G
SG340K-05	MC7805CK		SG1118J		LM 108J	SG2503	MC 1403AU	
SG340K-06	MC7806CK		SG1118T		LM 108H	SG2524J		MC3520L
SG340K-08			SG1217		MC1741G	SG3118AJ		MLM308AL
SG340K-12			SG1217J		MC1741SL	SG3118AM		MLM308AP1
			SG1217T		MC1741SG	SG3118AT		MLM308AG
SG340K-15					MC17413G MC1776G	SG3118J		MLM308L
SG340K-18			SG1250T					
SG340K-24			SG1401N		MC1533G	SG3118M		MLM308P1
SG555CM	MC1455P1		SG1401T		MC1533G	SG3118T		MLM308G
SG555CT	MC1455G		SG1402N		MC1594L	SG3250T		MC1776G
SG555T	MC1555G		SG1402T		MC1594L	SG3401N		MC1433G
SG556CJ	MC3456L		SG1436CT	MC1436CG		SG3401T		MC1433G
SG556CN	MC3456P		SG1436M	MC1436U		SG3402N		MC1494L
SG556J	MC3556L		SG1436T	MC1436G		SG3402T		MC1494L
SG556N			SG1456CT	MC1456CG		SG3501AD	MC1468L	** *=
	MC3556L		30 143001	INIO 14300G		SG3501AT	MC1468G	
SG710CD	MC1710CL		•			JUJJU IA I	WIO 1400G	

SG3501D -SN75127N

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA Similar Replacement	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
SG3501D	MC1468L		SN52709AFA			SN72702L	MC1712CG	***************************************
SG3501N	MC1468L		SN52709AJ	MC1709AL		SN72709J	MC1709CL	
SG3501T	MC1468G		SN52709AL	MC1709AG		SN72709L	MC1709CG	
SG3502D		MC1468L	SN52709FA	MC1709F		SN72709N	MC1709CP2	
SG3502G		MC1468G	SN52709J	MC1709L		SN72709P	MC1709CP1	
SG3502N		MC1468L	SN52709L	MC1709G		SN72710J	MC1710CL	
SG3503	MC1403U		SN52710FA	MC1710F		SN72710L	MC1710CG	
SG3524J	1110111000	MC3420L	SN52710J	MC1710L		SN72710N	MC1710CP	
			SN52710L					
SG4250CM		MC1776CP1		MC1710G		SN72711J	MC1711CL	
SG4250CT		MC1776CG	SN52711FA	MC1711F		SN72711L	MC1711CG	
SG4250T		MC1776G	SN52711J	MC1711L		SN72711N	MC1711CP	
SG4501D	MC1468L		SN52711L	MC1711G		SN72720J		MC1710CL
SG4501N	MC1468L		SN52723FA	MC1723F		SN72720L		MC1710CG
SG4501T	MC1468G		SN52723J	MC1723L		SN72720N		MC1710CP
SG7805CK	MC7805CK		SN52723L	MC1723G		SN72723J	MC1723CL	1410 11 1001
	IVIC/ 603CK	*********						
SG7805K		MC7805CK	SN52733J	MC1733L		SN72723L	MC1723CG	
SG7806CK	MC7806CK		SN52733L	MC1733G		SN72733J	MC1733CL	
SG7806K		MC7806CK	SN52741FA	MC1741F		SN72733L 1	MC1733CG	
SG7808CK	MC7808CK		SN52741J	MC1741L		SN72741FA	MC1741CF	
SG7808K		MC7808CK	SN52741L	MC1741G		SN72741J	MC1741CL	
SG7812CK	MC7812CK	1110100011	SN52747FA	MC1747F		SN74741L	MC1741CG	
	WOTOTZON	MC7010CV	SN52747J	MC1747L		SN72741N		
SG7812K		MC7812CK					MC1741CP2	
SG7815CK	MC7815CK		SN52747L	MC1747G		SN72741P	MC1741CP1	
SG7815K		MC7815CK	SN52748L	MC1748G		SN72747FA	MC1747CF	
SG7818CK	MC7818CK		SN52770L		MC1556G	SN72747J	MC1747CL	
SG7818K		MC7818CK	SN52771L		MC1556G	SN72747L	MC1747CG	
SG7824CK	MC7824CK		SN52810FA		MC1710F	SN72747N	MC1747CP2	
SG7824K	11107021011	MC7824CK	SN52810J		MC1710L	SN72748L	MC1748CG	
SH0013HC			SN52810L		MC1710G	SN72748P	MC1748CP1	
		MMH0026CG	1				WIC 1746CP 1	11044500
SH0013HM		MMH0026G	SN52811FA		MC1711F	SN72770L		MC1456G
SH2001FC		MC75462P	SN52811J		MC1711L	SN72771L		MC1456G
SH2001FM		MC75462P	SN52811L		MC1711G	SN72810J	1	MC1710CL
SH2001HC		MC75462P	SN55107AJ	MC55107L		SN72810L		MC1710CG
SH2001HM		MC75462P	SN55107BJ		MC55107L	SN72810N		MC1710CP
SH2002FC		MC75462P	SN55108AJ	MC55108L		SN72811J		MC1711CL
SH2002FM		MC75462P	SN55108BJ		MC75108L	SN72811L		MC1711CG
SH2002HC		MC75462P	SN55109J		MC75S110L	SN72811N	******	MC1711CP
SH2002HM		MC75462P	SN55110J		MC75S110L	SN72905	MC7905CT.	
SH2002HC		MC75462P	SN55244J	MC1544L		SN72906	MC7906CT	
SH2200FC		MC75462P	SN55325J	MC55325L		SN72908	MC7908CT	
SH2200FM		MC75462P	SN72301AL	LM301AH		SN72912	MC7912CT	
SH2200HC		MC75462P	SN72301AP	LM301AN		SN72915	MC7915CT	
SH2200HM		MC75462P	SN72304L	LM304H		SN72L022P		LM358N
SH2200PC			SN72305AL	EINIOO III	LM305H	SN72L044JA	1	LM324N
		MC75462P		LMOOTH	LIVISOSTI		`	
SH8090FM		MC1508L8	SN72305L	LM305H		SN72L044N		LM324N
SN5510FA	MC1510F		SN72306J		MC1710CL	SN75107AJ	MC75107L	
SN5510L	MC1510G		SN72306L		MC1710CG	SN75107AN	MC75107P	
SN52101AL	LM101AH		SN72306N		MC1710CP	SN75107BJ		MC75107L
SN52104L	LM101H		SN72307L	LM307H		SN75107BN		MC75107P
SN52105L	LM 105H		SN72308AL	LM308AH		SN75108AJ	MC75108L	
SN52106J	LIVITOOTT	MC1710L	SN72308L	LM308H		SN75108AN	MC75108P	
							WIGTSTOOF	140754001
SN52106L		MC1710G	SN72309L	LM309H		SN75108BJ		MC75108L
SN52107L	LM 107H		SN72311L	LM311H		SN75108BN		MC75108P
SN52108AL	LM108AH		SN72311P	LM311N		SN75121J	MC8T13L	
SN52108L	LM108H		SN72376L		LM305H	SN75121N	MC8T13P	
SN52109L	LM109H		SN72440J		MC3370P	SN75122J	MC8T14L	
SN52510J		MC1710L	SN72440N		MC3370P	SN75122N	MC8T14P	
SN52510L		MC1710G	SN72510J		MC1710CL	SN75123J	MC8T23L	
	MC45441	INIO IT IOG			MC1710CG			
SN52514J	MC1514L		SN72510L			SN75123N	MC8T23P	
SN52555L	MC1555G		SN72510N		MC1710CP	SN75124J	MC8T24L	
SN52558L	MC1558G		SN72514J		MC1414L	SN75124N	MC8T24P	'
SN52702AFA	A	MC1712F	SN72514N		MC1414P	SN75125J	MC75125L	
SN52702AJ		MC1712L	SN72555L	MC1455G		SN75125N	MC75125P	
SN52702AL		MC1712G	SN72555P	MC1455P1		SN75126J		MC3481/5L
SN52702FA	MC1712F		SN72558L	MC1458G		SN75126N		MC3481/5P
			SN72558P	MC1458G MC1458P1		SN75120N	MC751271	11100401701
SN52702J	MC1712L						MC75127L	
SN52702L	MC1712G		SN72702J	MC1712CL		SN75127N	MC75127P	

SN75128J -- TL494CN

	MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
PART NO	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT	PART NO	REPLACEMENT	REPLACEMENT
SN75128J	MC75128L		SN76130N		MC1303P	TBA520		MC1327P
SN75128N	MC75128P		SN76131N		MC1303P	TBA920		MC1391P
SN75129J	MC75129L		SN76149N		MC1303P	TBA920S		MC1391P
SN75129N	MC75129P		SN76242N		MC1399P	TBA940		MC1344P
SN75138N		MC3443P	SN76243N		MC1399P	TBA950		MC1344P
SN75138J		MC3443P	SN76246N		MC1323P	TBA990		MC1327P
SN75140P	MC75140P1		SN76298N	MC1398P		TBA1190Z	TBA 1190Z	
SN75150J		MC1488L	SN76514L		MC1496G	TDA1190Z	TDA 1190Z	
SN75150N		MC1488P	SN76514N	MC1496P		TDA2002	TDA2002	
SN75154J		MC1489L	SN76564N	MC1364P		TL022CJG		LM358J
SN75154N		MC1489P	SN76565N	MC1364P		TL022CL		LM358H
SN75188J	MC1488L		SN76591P	MC1391P		TL022CP		LM358N
SN75188N	MC1488P		SN76594P	MC 1394P		TL022MJG		LM158J
SN75189AJ	MC1489AL		SN76600P	MC1350P		TL022ML		LM158H
SN75189J	MC1489L		SN76642N	MC1357P		TL044CJ		LM324J
SN75189AN	MC1489AP		SN76644N		MC1352P	TL044CN		LM324N
SN75189N	MC1489P		SN76650N	MC1352P		TL044MJ		LM124J
SN75207J		MC75107L	SN76651N	MC1351P		TL071ACJG	ı	MC34001BU
SN75207N		MC75107P	SN76653N		MC1352P	TL071ACL		MC34001BG
SN75208J	•	MC75108L	SN76660N		MC1357P	TL071ACP		MC34001BP
SN75208N		MC75108P	SN76665N	MC1364P		TL071BCJG		MC34001AU
SN75261N		MC3245L	SN76666N	MC1358P		TL071BCL		MC34001AG
SN75322N		MC3245P	SN76669N	MC1356P		TL071BCP		MC34001AP
SN75362P		MMH0026CP	SN76675N	MC1375P		TL071CJG		MC34001U
SN75365J	MC75365L	WIWI 1002001	SN76678P	11.010101	MC1355P	TL071CL		MC34001G
SN75365N	MC75365P		SSS101AL		LM101AH	TL071CP		MC34001P
SN75368J	MC75368L		SSS101AJ	LM101AH	LIWI TO TATA	TL072ACJG		MC34002BU
SN75368N	MC75368P		SSS 107J	LM107H		TL072ACL	'	MC34002BG
SN75369P	MMH0026CP1		SSS 107P	LIWITOTTI	LM107H	TL072ACP		MC34002BP
SN75450AJ	MC75450L		SSS201AJ	LM201AH	LIVITOTTI	TL072BCJG		MC34002AU
SN75450AJ	MC75450P		SSS201AL	LIVIZOTATI	LM201AH	TL072BCL		MC34002AG
SN75450AN SN75450BN	WC73430F	MC75450P	SSS201AP		LM201AN	TL072BCP		MC34002AP
	MC75450P	WIC13430F	SSS207J	LM207H	LIVIZO 17114	TL072CJG		MC34002U
SN75450N SN75451AP			SSS207P	LIVIZOTTI	LM207H	TL072000		MC34002G
	MC75451P		SSS301AJ	LM301AH	LIVIZOTTI	TL072CP		MC34002P
SN75451P	MC75451P MC75452P		SSS301AL	LIMOU IAIT	LM301AH	TL074ACJ		MC34004BL
SN75452P		•	SSS301AP	LM301AN	LIVIOU IAIT	TL074ACN		MC34004BP
SN75453P	MC75453P		SSS741BJ	LIVIOUTAIN	MC1741G	TL074BCJ		MC34004BF
SN75454P	MC75454P		SSS741BL		MC1741G	TL074BCN		MC34004A
SN75460AJ	MC75460L		SSS741BP	MC1741P2	WIC 1741F	TL074BCN		MC34004AF
SN75460AN	MC75460P		SSS741CJ	WIC 1741F2	MC1741CG	TL074CN		MC34004P
SN75461	MC75461		SSS741CL		MC1741CG	TL081ACJG		MC34001BU
SN75461AP	MC75461P		SSS741CP	MC1741CP2	IVIC 174 ICI	TL081ACL	!	MC34001BG
SN75462	MC75462					TL081ACP		MC34001BG
SN75462AP	MC75462P		SSS741GJ	MC1741SG	MC1741SG	TL081BCJG		MC34001BF
SN75463	MC75463		SSS741GP		MC17413G MC1741G	TL081BCJG		MC34001AG
SN75463AP	MC75463P		SSS741J			TL081BCP		MC34001AG
SN75464	MC75464		SSS741L		MC1741F	TL081CJG		MC34001U
SN75464AP	MC75464P		SSS741P	14047475	MC1741P2	TL081CJG		MC34001G
SN75466J	MC1411L		SSS747B2	MC1747F	11017171			MC34001G MC34001P
SN75466N	MC1411P		SSS747BP		MC1747L	TL081CP		
SN75467J	MC1412L		SSS747CK		MC1747CG	TL082ACJG	1	MC34002BU
SN75467N	MC1412P		SSS747CM		MC1747CF	TL082ACL		MC34002BG
SN75468J	MC1413L		SSS747CP		MC1747CL	TL082ACP		MC34002BP
SN75468N	MC1413P		SSS747GK		MC1747G	TL082BCJG	ı	MC34002AU
SN75475P	MC1472P1		SSS747GM	MC1747F		TL082BCL		MC34002AG
SN75475JG	MC1472U		SSS747GP		MC1747L	TL082BCP		MC34002AP
SN75491N	MC75491P		SSS747L		MC1747F	TL082CJG		MC34002U
SN75492N	MC75492P		SSS747P		MC1747L	TL082CL		MC34002G
SN76000P		MC1306P	SSS1408A-6			TL082CP		MC34002P
SN76104N		MC1310P	SSS1408A-7			TL084ACJ		MC34004BL
SN76105N		MC1310P	SSS1408A-8			TL084ACN		MC34004BP
SN76111N		MC1310P	SSS1458J	MC1458G		TL084BCJ		MC34004AL
SN76113N		MC1310P	SSS1508A-8			TL084BCN		MC34004AP
SN76115N	MC1310P		SSS1558J	MC1558G		TL084CJ		MC34004L
SN76116N		MC1310P	TAA630		MC1327P	TL084CN		MC34004P
SN76117N		MC1310P	TBA120S		MC1358P	TL494CJ	TL494CJ	
			TBA440		MC1352P	TL494CN	TL494CN	

TL495CJ $-\mu$ A732DC

	MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
TL495CJ		REPLACEMENT	ULS2139D	REPLACEMENT	MC1539G	PART NO. μA555HC	MC1455G	REPLACEMENT
TL495CN	TL495CJ		ULS2139G		MC1539G	μA555HM	MC1555G	
TL497CJ	TL495CN	MC24201	ULS2139H		MC1539L	μA555TC	MC1455P1	
TL497CN		MC3420L	ULS2139M		MC1439P1	μA556DC	MC3456L	
		MC3420P	ULS2151D		MC1741G	μA556DM		
TL497MJ	140447404	MC3520L					MC3556L	
UDN5711M	MC1471P1		ULS2151G		MC1741F	μA556PC	MC3456P	
UDN5712M	MC1472P1		ULS2151H		MC1741L	μA702DC	MC1712CL	
UDN5713M	MC1473P1		ULS2151M		MC1741CP1	μA702DM	MC1712L	
UDN5714M	MC1474P1		ULS2156D		MC1556G	μA702FM	MC1712F	
UDN-6144A		MC3490P	ULS2156G		MC1556G	, A702HC	MC1712CG	
UDN-6164A		MC3490P	ULS2156H		MC1556G	μA702HM	MC1712G	
UDN-6184A		MC3490P	ULS2156M		MC1556G	μA702MJ	MC1712L	
UDN-7183A		MC3491P	ULS2157A		MC1558L	μA702ML	MC1712G	
UDN-7184A		MC3491P	ULS2157H		MC1558L	μA709ADM	MC1709AL	
UDN-7186A		MC3491P	ULS2157K		MC1558G	μA709AFM	MC1709AF	
UHD-490		MC3494P	μA0802DC-1	MC1408L8		μA709AHM	MC1709AG	
UHD-491		MC3494P .	μA0802DC-2	MC1408L7		µA709AMJ	MC1709AL	
UHP-490		MC3494P	μA0802DC-3	MC1408L6		µA709AMJG		
UHP-491		MC3494P	μA0802DM-1	MC1508L8		μA709AML	MC1709AG	
UHP-495		MC3490P	μA0802PC-1	MC1408P8		μA709CJ	MC1709CL	
ULN2001A	ULN2001A		μA0802PC-2	MC1408P7		μA709CJG	MC1709CU	
ULN2002A	ULN2002A		μA0802PC-3	MC1408P6		μA709CL	MC1709CG	
ULN2003A	ULN2003A		μA101AD		LM101AJ	μA709CN	MC1709CP2	
ULN2004A	ULN2004A		μA101AF		LM101AJ	μA709CP	MC1709CP1	
ULN2111A	MC 1357P		μA101AH	LM101AH		μA709DC	MC1709CL	
ULN2111N	MC1357PQ		μA101D		LM101Aj	μA709DM	MC1709L	
ULN2113A		MC1357P	μA101F		LM101AJ	μA709FM	MC1709F	
ULN2113N		MC1357P	μA101H	LM101AH		μA709HC	MC1709CG	
ULN2114A		MC1323P	μA104HM	LM104H		μA709HM	MC1709G	
ULN2114K		MC1323P	μA 105HM	LM105H		μA709MJ	MC1709L	
ULN2114N		MC1323P	μA107H	LM 107H		μA709MJG	MC1709U	
ULN2 120A		MC1310P	μA108AD	LM108AJ		4A709ML	MC1709G	
ULN2121A		MC1310P	μA108AF	LM108AF		μA709TC	MC1709CP1	
ULN2 122A		MC1310P	μA108AH	LM108AH		μA709PC	MC1709CP2	
ULN2124A		MC1399P	μA108D .	LM 108J		μA710DC	MC1710CL	
ULN2 125A		MC1344P	μA108F	LM 108F		μA710DM	MC1710L	
ULN2127A		MC1399P	μA108H	LM 108H		μA710HC	MC1710CG	
ULN2128A		MC13391 MC1310P	μA109KM	LM 109K		μΑ710HM	MC1710G	
ULN2136A	MC1356P	IVIC IS IUF	μA201AD	LIVITOSIX	LM201AJ	μΑ710PC	MC1710CP	
	WIO 1030F	MC1439G	μA201AF		LM201AJ	μA711DC	MC1711CL	
ULN2139D			μA201AF	LM201AH	LIVIZUTAJ	μΑ711DC μΑ711DM	MC1711L	
ULN2139G		MC1439G		LIVIZU IAN	LM201AJ	μΑ711HC	MC1711CG	
ULN2139H		MC1439P2	μA201D					
ULN2 139M		MC1439P1	μA201F	LMOOTAL	LM201AJ	μΑ711HM	MC1711G	
ULN2151D		MC1741CG	μA201H	LM201AH		μA711PC	MC1711CP	1401741001
ULN2151G		MC1741CF	μA207H	LM207H		μA715DC		MC1741SCL
ULN2151H		MC1741CP2	μA208AD	LM208AJ		μA715DM		MC1741SL
ULN2151M		MC1741CP1	μA208AF	LM208AF		μA715HC		MC1741SCG
ULN2 156D		MC1456G	μA208AH	LM208AH		μA715HM		MC1741SG
ULN2 156G		MC1456G	μA208D	LM208J		μA723CJ	MC1723CL	
ULN2 156H		MC1456G	μA208F	LM208F		μA723CL	MC1723CG	
ULN2156M		MC1456G	μA208H	LM208H		μA723CN	MC1723CP	
ULN2157A		MC1458P2	μA209KM	LM209K		μA723DC	μA723DC	
ULN2 157H		MC1458P2	μA301AD		LM301AJ	μA723DM	MC1723L	
ULN2157K		MC1458G	μA301AH	LM301AH		μA723HC	μA723HC	
ULN2 165A	MC1358P		μA301AT	LM301AN		μA723HM	MC1723G	
ULN2165N	MC1358PQ		μA304HC	LM304H		μA723MJ	MC1723L	
ULN2209A		MC1356P	μA305HC		LM305H	μA723ML	MC1723G	
ULN2210A	MC1310P		μA305HC	LM305H		μA723PC	μA723PC	
ULN2224A	MC1324P		μA307H	LM307H		μA725AHM		LM108AH
ULN2228A		MC1323P	μA307T	LM307N		μA725EHC		LM308AH
ULN2244A		MC1310P	μA308AD	LM308AJ		μA725HC		LM308AH
ULN2262A		MC1399P	μA308AH	LM308AH		μA725HM		LM108AH
ULN2264A	MC1364P	III 0 10001	μA308D	LM308J		μA727HC		MC1420G
ULN2267A	1110 100 11	MC1323P	μA308H	LM308H		μA727HM		MC1520G
ULN2298A	MC1398P	1110 10201	μA309KC	LM309K		μA730HC		MC1420G
ULN2741D	WIO 10001	MC1741CG	μA311T	LM311N		μA730HM		MC1520G
ULN2747A		MC1747CL	μA376TC	2007111	LM305H	μΑ732DC		MC1310P
OLINETALK		INIO 1747 OL	μποιίτιο		LINIOUSIII	μπισευσ		MIC IS IUF

μΑ732PC —μΑ78L05ACLP

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
PART NO.	DIRECT REPLACEMENT	SIMILAR REPLACEMENT	PART NO.	DIRECT	SIMILAR REPLACEMENT	PART NO. F	DIRECT EPLACEMENT	SIMILAR REPLACEMENT
μA732PC	TIEF EXOCULERY	MC1310P	μΑ748HC	MC1748CG	TIET EMOLINEITY	μA1458CTC	MC1458CP1	HET ENGLINEIT
μA733CJ	MC1733CL		μA748HM	MC1748G		μA1458E	MC1458G	
μA733CL	MC1733CG		μA748MJ	MC1748L		μA1458HC	MC1558G	
μA733CN	MC1733CP		μA748MJG	MC1748U		μA1458P	MC1458P1	
			μA748ML	MC1748G		μA1458RC	MC1458U	
μA733DC	MC1733CL							
μA733DM	MC1733L		μA748TC	MC1748CP1	14044051	μA1458TC	MC1458P1	
μA733FM	MC1733F		μA749DC		MC1435L	μA1558E	MC1558G	
μA733HC	MC1733CG		μA749DHC		MC1435G	μA1558HM	MC1558G	
μ Α733 ΗΜ	MC1733G		μ A749DM		MC1535L	μA2136PC	MC1356P	
μA733MJ	MC1733L		μA749HC		MC1435G	μA2240DC		MC1455U
μA733ML	MC1733G		μA753TC		MC1356P	μA2240DM		MC1555G
μA734DC		LM311J	μA754HC		MC1355P	μA2240PC		MC1455P1
μA734DM		LM311J	μA754TC		MC1355P	μA3026HM		CA3054
μA734HC		LM311H	μA757DC		MC1350P	μA3045		MC3346P
μA734HM		LM311H	μA757DM		MC1350P	μA3046DC	MC3346P	
μΑ740HC		LF355H	μA758DC		MC1310P	μA3054DC	CA3054P	
μA740HM		LF155H	μA758PC		MC1310P	μA3064PC	MC1364P	
						μA3065PC	MC1358P	
μ Α741ADM		MC1741L	μA767DC		MC1310P			
μA741AFM		MC1741F	μA767PC		MC1310P	μA3086DM	MC3386P	
μA741AHM		MC1741G	μΑ772		MC1741S	μA3301P	MC3301P	
μA741CJ	MC1741CL		μA775DC	LM339J		μA3302P	MC3302P	
μA741CJG	MC1741CU		μA775DM	LM339J		μA3303P	MC3303P	
μA741CL	MC1741CG		μA775PC ·	LM339N		μA3401P	MC3401P	
μA741CN	MC1741CP2		μA776DC		MC1776CG	μA3403D	MC3403L	
μA741CP	MC1741CP1		μA776DM		MC1776G	μA3403P	MC3403P	
μA741DC	μA741DC		μΑ776HC	MC1776CG		μA4136DC		MC4741CL
μA741DM	MC1741L		μA776HM	MC1776G		µА4136DM		MC4741L
μΑ741EDC	MOTITIE	MC1741L	μA776TC	MC1776CP1		иA4136PC		MC4741CP
μΑ741EHC		MC1741G	μΑ777CJ	11101110011	LM308AJ-8	μA4558HC	MC4558CG	
	MC1741CE	WIC 174 IG	μA777CJG		LM308AJ-8	μA4558HM	MC4558G	
μA741FC	MC1741CF							
μA741FM	MC1741F		μA777CL		LM308AH	μA4558TC	MC4558CP1	
μ Α741HC	μA741HC		μA777CN		LM308AN	μA7805CKC	MC7805CT	
μ Α741HM	MC1741G		μA777CP		LM308AN	μA7805KC	MC7805CK	
μA741MJ	MC1741L		μA777DC		LM308AJ-8	μA7805KM	MC7805K	
μA741MJG	MC1741U		μA777HC		LM308AH	μA7805UC	MC7805CT	
μA741ML	MC1741G		μA777MJ		LM108AJ-8	μA7806CKC	MC7806CT	
μA741RC	MC1741CU		μA777MJG		LM108AJ-8	μA7806KC	MC7806CK	
μA741RM	MC1741U		μA777ML		LM108AH	μA7806KM	MC7806K	
μA741PC	MC1741CP2		μΑ777TC		LM308AN	μA7806UC	MC7806CT	
μA741TC	μA741TC		μA780DC		MC1399P	μA7808CKC	MC7808CT	
μA742DC	μ	CA3059	μA780PC		MC1399P	μA7808KC	MC7808CK	
μA746DC		MC1323P	μA781DC		MC1399P	μA7808KM	MC7808K	
μΑ746HC		MC1323P	μA781PC		MC1399P	μA7808UC	MC7808CT	
			μA786DC		MC1327P	μA7812CKC	MC7812CT	
μA747ADM		MC1747L	μΑ787PC		MC1399P	μA7812KC	MC7812CK	
μA747AHM	110474401	MC1747G				μA7812KM	MC7812CK MC7812K	
μΑ747CJ	MC1741CL		μA791KC		MC1438R			
μA747CL	MC1747CG		μA791KM		MC1538R	μA7812UC	MC7812CT	
μA747CN	MC1747CP2		μA791P5	11044000	MC1438R	μA7815CKC	MC7815CT	
μA747DC	MC1747CL		μA796HC	MC1496G		μA7815KC	MC7815CK	
μA747DM	MC1747L		μΑ796НΜ	MC1596G		μA7815KM	MC7815K	
μA747EDC	MC1747CCBM		μA796DC	MC1496L		μA7815UC	MC7815CT	
μA747EHC	MC1747CICM		μA796DM	MC1596L		μA7818CKC	MC7818CT	
μA747HC	MC1747CG		μA798HC	MC3458G		μA7818KC	MC7818CK	
μA747HM	MC1747G		μA798HM	MC3558G		μA7818KM	MC7818K	
μA747MJ	MC1747L		μA798RC	MC3458U		μA7818UC	MC7815CT	
µA747ML	MC1747G		μA798RM	MC3558U		μA7824CKC	MC7824CT	
μA747PC	MC1747CP2		μA798TC	MC3458P1		μA7824KC	MC7824CK	
	WIO 1777012	MC1748F	μA799HC		MC1741G	μA7824KM	MC7824K	
μA748AFM			μA799HM		MC1741G	μA7824UC	MC7824CT	
μA748AHM	110474001	MC1748G		MC4040D	MOTATO		WO102401	I M 1174
μA748CJ	MC1748CL		μA1312PC	MC1312P		μA78GHM		LM117K
μA748CJG	MC1748CU		μA1314PC	MC1314P		μA78GKC		LM117K
μA748CL	MC1748CG		μA1315PC	MC1315P		μA78GKM		LM117K
μΑ748CN	MC1748CP2		μA1391PC	MC1391P		μA78GU1C		LM317T
μA748CP	MC1748CP1		μA1394PC	MC1394P		μA78H05KC		MC7805CK
μA748DC	MC1748CL		μA1458CHC	MC1458CG		μA78L02ACJG	i	MC78L02ACG
μA748DM	MC1748L		μA1458CP	MC1458CP1		μA78L05ACJG	i	MC78L05ACG
μA748FM	MC1748F		μA1458CRC	MC1458CU		μA78L05ACLP	MC78L05ACP	
,								

μΑ78L05AHC —μΑ8T13PC

2.25.110	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR	DART NO	MOTOROLA DIRECT	MOTOROLA SIMILAR
PART NO		REPLACEMENT	,	MC7902CT	REPLACEMENT	PART NO. μΑ79Μ24Η		MC7924CK
μA78L05AHC			μA7902UC	MC7905CK		μΑ79M24U0		
μA78L05AW0			μΑ7905KC μΑ7905KM	MC1903CK	MC7905CK	μΑ/31/1240C	MC8T13L	MC7924CT
μA78L05CJG		MC78L05CG	μΑ7905UC	MC7905CT	WICTSOSON	μA8T13PC	WIGOTISE	
μA78L05CLP			μΑ7906KC	MC7906CK		μλοι 151 Ο		
μA78L05HC	MC78L05CG MC78L05CP		μA7906KM	WOTSOOOK	MC7906CK	l l		
A78L05WCپ A78L06ACJپ		MC78L06ACG	μA7906UC	MC7906CT	MOTOCOCK			
μA78L06ACL			μA7908KC	MC7908CK		1		
μA78L06CJG		MC78L06CG	μA7908KM	MOTOGOTY	MC7908CK			
µA78L06CLP		MOTOLOGG	μA7908UC	MC7908CT				
μA78L08ACJ		MC78L08ACG	μA7912KC	MC7912CK		ľ		
µA78L08ACL			μA7912KM		MC7912CK	ł		
μA78L08CJG		MC78L08CG	μA7912UC	MC7912CT		1		
μA78L08CLP			μA7915KC	MC7915CK		-		
μA78L12ACJ	IG	MC78L12ACG	μA7915KM		MC7915CK	ļ		
μA78L12ACL	P MC78L12ACI	•	μA7915UC	MC7915CT				
μA78L12AH0	MC78L12AC	3	μA7918CKC	MC7918CT				
μA78L12AW	C MC78L12ACI	P	μA7918KC	MC7918CK				
μA78L12CJG	ì	MC78L12CG	μA7918KM		MC7918CK			
μA78L12CLF	MC78L12CP		μA7918UC	MC7918CT		, '		
μA78L12HC	MC78L12CG		μA7924CKC					
μA78L12WC	MC78L12CP		μA7924KC	MC7924CK				
μA78L15ACJ		MC78L15ACG	μA7924KM		MC7924CK			
μA78L15ACL			μA7924UC	MC7924CT	•			
μA78L15AH0			μA79L05AH			1	·	
μA78L15AW			μA79L05AW		•			
μA78L15CJG		MC78L15CG	μA79L05HC μA79L05WC	MC79L05CG MC79L05CP				
μA78L15CLP	MC78L15CP MC78L15CG		μΑ79L03WC		3			
μΑ78L15HC μΑ78L15WC	MC78L15CG MC78L15CP		μA79L12AW					
μA78L26AW			μA79L12HC	MC79L12CG				
μA78MGHC	0 111010027101	LM317H	μA79L12WC					
µA78MGT2C		LM317T	μA79L15AH		3			
µA78MGU10		LM317T	μA79L15AW		P	-		
μA78M05CK			μA79L15HC			}		
μA78M05HC	MC78M05C0	ì	μA79L15WC	MC79L15CP				
μA78M05HN	1	MC78M05CG	μA79M05AH		MC7905CK			
μA78M05UC	MC78M05CT	•	μA79M05AU		MC7905CT			
μA78M06CK			μA79M05CK					
μA78M06HC			μA79M05HN		MC7905CK	1		
μA78M06HN		MC78M06CG	μA79M05UC		MC7905CT			
μA78M06UC			μΑ79M06AH		MC7906CK MC7906CT			
μΑ78M08CK			μΑ79M06AU μΑ79M06CK		MC1300C1			
μΑ78M08HC μΑ78M08HN		MC78M08CG	μΑ79M06HN		MC7906CK	}		
μΑ78M08UC			μA79M06UC		MC7906CT			
μA78M12CK			μA79M08AH		MC7908CK			
μA78M12HC			μA79M08AU		MC7908CT	ļ		
μA78M12HM		MC78M12CG	μA79M08CK	C MC7908CT				
μA78M12UC		•	μA79M08HN	Л	MC7908CK			
μA78M15CK	C MC78M15CT		μA79M08UC	;	MC7908CT			
μA78M15HC	MC78M15C0	3	μA79M12AH		MC7912CK	ı	1	
μA78M15HM		MC78M15CG	μA79M12AU		MC7912CT			
μA78M15UG			μA79M12CK		110704001/	Į		
μA78M18HC			μΑ79M12HN		MC7912CK MC7912CT			
μA78M18HN		MC78M18CG	μΑ79M 12UC μΑ79M 15AH		MC7912C1 MC7915CK			
μΑ78M18UG μΑ78M20CK			μΑ79M 15AF		MC7915CT			
μΑ78M20HC			μA79M15CK		Mororogy	ļ		
μΑ78M20HN		MC78M20CG	μA79M15HN		MC7915CK	1		
μΑ78M20UG			μA79M15UC		MC7915CT		*	
μA78M24CK			μA79M18AH		MC7918CK	i		
μA78M24HC			μA79M18AL		MC7918CT			
μA78M24HN	Л	MC78M24CG	μA79M18HN		MC7918CK			
μA78M24UC		ſ	μA79M18UC		MC7918CT	ļ		
μA7902KC	MC7902K	110705511	μA79M24AH		MC7924CK			
μA7902KM		MC7902K	μA79M24AU	10	MC7924CT	,		

Reliability Enhancement Programs

The "Better" Program

Motorola's reliability and quality-enhancement program was developed to provide improved levels of quality and reliability for standard commercial products.

THE "BETTER" program is offered on CMOS, Linear, TTL, TTL/LS, DTL, HTL, and NMOS in dual-in-line ceramic and plastic packages.

Motorola standard commercial integrated circuits are manufactured under stringent in-process controls and quality inspections combined with the industry's finest outgoing quality inspections. The "BETTER" program offers three levels of extra processing, each tailored to meet different user needs at nominal costs.

The program is designed to:

- Eliminate incoming electrical inspection
- Eliminate need for independent test labs and associated extra time and costs
- Reduce field failures
- Reduce service calls
- Reduce equipment downtime
- Reduce board and system rework
- · Reduce infant mortality
- Save time and money
- Increase end-customer satisfaction

BETTER PROCESSING -STANDARD PRODUCT PLUS:

100% SCREEN	LEVEL I "S"	LEVEL II "D"	LEVEL III "DS"
TEMP CYCLE, 10 CYCLES -25°C to +150°C	x		x
BURN-IN - MIL-STD-883		Х	Х
POST BURN-IN ELECTRICAL		Х	Х
100°C FUNCTIONAL	Х		Х
DC PARAMETRIC AT 25°C*	X	Х	Х
TIGHTENED QA SAMPLE	X	Х	Х

*NMOS does Functional and dc 100% at 100°C

"BETTER" AQL GUARANTEES

	00110171011	AQL			
TEST	CONDITION	LEVEL I	LEVEL II	LEVEL III	
HIGH TEMPERATURE FUNCTIONAL	T _A = 100°C	0 15		0.15	
DC PARAMETRIC	T _A = 25°C	0 28	0 28	0.28	
DC PARAMETRIC	TA MIN, TA MAX	0.40	0 40	0 40	
DC PARAMETRIC (LINEAR AND NMOS)	T _A MIN, TA MAX	0.65	0 65	0 65	
AC PARAMETRIC	TA = 25°C	0 65	0.65	0 65	
DYNAMIC TEST (LINEAR AND NMOS)	T _A = 25°C	0 65	0 65	0.65	
EXTERNAL MIGHAL AND MEGHANIGAL	MAJOR	0.11	0.11	0 11	
EXTERNAL VISUAL AND MECHANICAL	MINOR	2.50	2 50	2.50	
HERMETICITY	GROSS	0.40	0 40	0.40	
(NOT APPLICABLE TO PLASTIC PACKAGES)	FINE	1 00	1.00	1 00	

HOW TO ORDER

BETTER
PROCESSING
LEVEL I = SUFFIX S
LEVEL II = SUFFIX D

LEVEL III = SUFFIX DS

PART MARKING

The Standard Motorola part number with the corresponding "BETTER" suffix can be ordered from your local authorized Motorola distributor or Motorola sales offices. "BETTER" pricing will be quoted as an adder to standard commercial product price.

The Motorola Standard HIGH REL Programs

Motorola, a pioneer in the manufacture of *high-reliability* integrated circuits*, now offers you a two-way program for Hi Rel products.

- 1. A growing line of JAN-QUALIFIED integrated circuits.
- 2. An extensive program to supply JEDEC PROCESSED devices that approaches the Qualified Reliability goals without the delay and high cost of the actual qualification program.

Motorola stocks many circuits which meet JAN-QUALIFIED specifications, and is actively pursuing an expansion of this qualification listing with product in all IC categories — encompassing Bipolar Digital, Linear and MOS technologies.

Motorola JEDEC PROCESSED products complement JAN-QUALIFIED products by making available hi-rel versions of nearly all Motorola full-temperature range circuits, while adding the advantage of hi-rel standardization.

The Motorola JEDEC Program offers you these benefits:

- 1. Standardization of environmental and electrical test procedures.
- 2. Less specification writing required.
- 3. Less time required in negotiating specifications.
- 4. Fast delivery.
- 5. Lower costs.

^{*}Motorola, in early 1971, was the first company to be qualified as a MIL-M-38510 approved facility by the Defense Electronics Supply Center of DOD

MIL-M-38510 JAN-Qualified Product

Screening Levels Available: Class B & Class C

How to order MIL-M-38510 JAN-Qualified Product

J	M38510	/XXX	XX	Y	Y	· Y
1	1	. 1	, 1	1		, I
INDICATES A	MILITARY	DETAIL	DEVICE TYPE	CLASS B, OR C	CASE ,	LEAD
QUALIFIED	DESIGNATOR	SPECIFICATION	WITHIN DETAIL	(SEE DEVICE	OUTLINE	FINISH
DEVICE		NUMBER	SPECIFICATION	CLASS TABLE)	(SEE CASE	(SEE LEAD
					OUTLINE TABLE)	FINISH TABLE)

Case Outline Table Source: MIL-M-38510D Amendment I					
Letter	Appendix C Designation	Description			
A B C D	F-1 F-3 D-1 F-2	14-lead FP (1/4" x 1/4") 14-lead FP (3/16" x 1/4") 14-lead DIP (1/4" x 3/4") 14-lead FP (1/4" x 3/8")			
E F G H	D-2 F-5 A-1 F-4	16-lead DIP (1/4" x 7/8") 16-lead FP (1/4" x 3/8") 8-lead can 10-lead FP (1/4" x 1/4")			
I K L	A-2 D-3 F-6 NONE	10-lead can 24-lead DIP (1/4" x 1-1/4") 24-lead FP (3/8" x 5/8") NONE			
M Z P Q	A-3 NONE D-4 D-5	12-lead can NONE 8-lead DIP (1/4" x 3/8") 40-lead DIP (9/16" x 2-1/16")			
RSTU	D-8 NONE NONE NONE	20-lead DIP (1/4" x 1-1/16") NONE NONE NONE			
v W	D-6 D-7	18-lead DIP (.300" x 1") 22-lead DIP (.400" x 1.1")			
X Y Z		with "special" non-standard case e specified in the individual			

Features:

- 1. Manufactured in a governmentapproved facility.
 - 2. G.S.I. (Government Source Inspection)

Example of MIL-M-38510 JAN-Qualified markings

ORDER: JM38510/00104BCB MARKING: JM38510/00104BCB

Lead Finish Table
A—Type A or B Per MIL-M-38510 with hot solder dip
B—Type A or B Per MIL-M-38510 with acid tin plate
C—Type A or B Per MIL-M-38510 with gold plate
X—Any of the above, for ordering purposes only.

JEDEC Processed Product

Screening Levels Available: Class B & Class C

How to order **JEDEC Processed Product**

XXXX/ MOTOROLA CLASS B, OR C DEVICE TYPE (SEE DEVICE (WITHOUT CLASS TABLE) LETTER

PREFIX)

CASE OUTLINE (SEE CASE

LEAD FINISH (SEE LEAD

JEDEC DESIGNATOR PER JEDEC OUTLINE TABLE) FINISH TABLE) PUBLICATION NO 101

Case Outline Table

Source: MIL-M-38510D Amendment I					
Letter	Appendix C Designation	Description			
A B C D	F-1 F-3 D-1 F-2	14-lead FP (1/4" x 1/4") 14-lead FP (3/16" x 1/4") 14-lead DIP (1/4" x 3/4") 14-lead FP (1/4" x 3/8")			
E F G H	D-2 F-5 A-1 F-4	16-lead DIP (1/4" x 7/8") 16-lead FP (1/4" x 3/8") 8-lead can 10-lead FP (1/4" x 1/4")			
K J	A-2 D-3 F-6 NONE	10-lead can 24-lead DIP (1/4" x 1-1/4") 24-lead FP (3/8" x 5/8") NONE			
M N P Q	A-3 NONE D-4 D-5	12-lead can NONE 8-lead DIP (1/4" x 3/8") 40-lead DIP (9/16" x 2-1/16")			
R S T U	D-8 NONE NONE NONE	20-lead DIP (1/4" x 1-1/16") NONE NONE NONE			
V W	D-6 D-7	18-lead DIP (.300" x 1") 22-lead DIP (400" x 1 1")			
X Y Z	Flat packages r	ckages not listed above not listed above gurations not listed above.			

Features:

- 1. Lower cost than JAN-Qualified.
- 2. Devices manufactured using design and processing guidelines contained in MIL-M-38510 and MIL-STD-883
- 3. Product supplied with Motorola standard data sheet electricals

Example of JEDEC **Processed Markings**

DEVICE: 5400/BCBJC ORDER: 5400/BCBJC MARKING: 5400/BCBJC

Lead Finish Table	_
A-Type A or B Per MIL-M-38510	
with hot solder dip	
B—Type A or B Per MIL-M-38510	
with acid tin plate	
C—Type A or B Per MIL-M-38510	
with gold plate	
X—Any of the above, for	
 ordering purposes only. 	

Screening Procedures

For MIL-M-38510 Jan-Qualified and JEDEC Processed Product (To MIL-STD-883 Requirements)

In recognition of the fact that the level of screening has a direct impact on the cost of the product, as well as its quality and reliability, two standard levels of screening are provided to coincide with two device classes, or levels of quality assurance.

Flexibility is provided in the choice of test conditions and stress levels to provide screens tailored to a particular product or

application. Selection of a level better than that required for the specific product and application will result in unnecessary expense. A level less than that required may result in a risk that reliability requirements will not be met. For general hi-rel applications, the Class B screening levels should be considered.

·	CLAS	SB	CLASS	С
SCREEN	METHOD	RQMT	METHOD	RQMT
Internal Visual (Precap)	2010 Condition B and 38510	100%	2010 Condition B and 38510	100%
Stabilization Bake	1008, 24 hrs test Condition C or Equivalent	100 %	1008, 24 hrs test Condition C or Equivalent	100%
Temperature Cycling	1010 Condition C	100%	1010 Condition C	100%
Constant Acceleration	2001 Condition E Y ₁ plane	100%	2001 Condition E Y ₁ plane	100%
Seal (a) Fine (b) Gross	1014	100%	1014 .	100%
Interim Electrical Parameters	specification	1	,	_
Burn-In Test	1015 160 hrs @ 125° C or Equivalent	100%		_
Interim Electrical Parameters	Per applicable device specification	1 100%		_
Final Electrical Tests (a) Static tests (1) 25°C (subgroup 1.	Per applicable device specification	2 100%	Per applicable device 2 specification	100%
table 1, 5005) (2) Max. & min rated operating temp (subgroups 2 & 3, table 1, 5005)		100%		Sample at Group A
(b) Dynamic tests &/or switching tests @ 25°C (subgroup 4 and 9, table 1, 5005)		100%		Sample at Group A
(c) Functional test @ 25°C (subgroup 7, table 1 5005)		100%		100%
Qualification or Quality Conformance Inspection	5005 Class B 3	Sample per 38510	5005 Class C 3	Sample per 38510
External Visual	2009	100%	2009	100%

- 1 When specified in the applicable device specification 100% of the devices shall be tested
- 2 MIL-M-38510 QUALIFIED product is tested per applicable 38510 detail specification JEDEC PROCESSED product is tested per the Motorola standard data sheet electrical specification
- 3 For JEDEC PROCESSED product, Groups A and B per 5005 and JEDEC Publication No 101. Groups C and D are available upon request

BUS INTERFACE

Microprocessor Bus

This family of devices is designed to extend the limited drive capabilities of today's standard 6800 and 8080 type NMOS microprocessors. All devices are fabricated with Schottky TTL technology for high speed.

General features include:

- Single +5.0 V Power Supply Requirement
- Three-State Logic Output
- Low Input Loading 200 μA Max.

DATA BUS EXTENDERS

Quad, Bidirectional, with 3-State Outputs

#These devices may be ordered by either of the paired numbers

Both types T_A = 0 to 75°C Packages L Suffix - Case 620 P Suffix - Case 648

MC6889/MC8T28# - Non-inverting

	Input Current		Input Current IOHL Output Disabled			tPLH, tPHL Propagation Delay Time — High to Low o	
Device	IIΗ	IIL	Leakage Current — High Logic State	Low to High			
Number	μΑ Max	μΑ Max	μΑ Max	ns Max			
MC6880A/MC8T26A	25	-200	100	14			
MC6889/MC8T28	25	-200	100	17			

BIDIRECTIONAL BUS SWITCH

M6800 CLOCK GENERATOR

MC6881/MC3449# - For exchanging TTL level digital information between selected pairs of ports in a 3-port network.

MC6875 - Provides the non-overlapping two-phase clock signals for M6800 MPU systems.

dol

@ Vo = 2.7 V

μΑ Max

25

IIL

@ VIL = 0.4 V

μΑ Max

-200

VOL

© IOL ≈ 8.0 mA Volts Max

0.5

#This device may be ordered by either of the numbers.

> Both types: T_A = 0 to 70°C Packages:

L Suffix - Case 620 P Suffix - Case 648

			\sim		ı	
X1	=	1	•	16		Vcc
X2	ᄅ	2		15	Þ	MPU φ1
Ext In		3		14	Þ	Reset
4 x f _o	\exists	4		13	Þ	ΜΡ U φ2
2 x fo		5		12	Þ	System Reset
Memory Ready		6		11	Þ	DMA/Ref Grant
Bus φ2	\exists	7		10	\vdash	DMA/Ref Req
Gnd		8		9		Memory Clock
					l	

VOLC = 0.3 V Max $V_{OHC} = V_{CC} - 0.3 \text{ V Min}$ fop = 2.0 MHz Typ

MC6881/MC3449 TRUTH TABLE

1	Enable	Select	Control	Data Flow
i	0	0	0	2→3
	0	0	1	3→2
i	0	1	0	1→3
ı	0	1	1	3→1
	1	×	×	High Impedance

μΑ Max X - Don't Care

ΉН

@ VIH = 2.7 V

40

Out 3

In 3

In 4 8

Gnd 10

Output Enable

0

0

0

ADDRESS AND CONTROL BUS EXTENDERS

Octal, Buffer/Latch Unidirectional with 3-State Outputs

Ц

ㅂ

1

0

교

ㅁ

P

Input

٥

15 Out 6

14 In 6

13

12 Out 5

Output

0

 σ^{0}

Latch

#These devices may be ordered by either of the paired numbers.

MC6882B/MC3482B# - Non-inverting

All types:

TA = 0 to 75°C

Packages: L Suffix - Case 732 P Suffix - Case 738

In 2 4		17 In 7
Out 2 5		16 Out 7
Out 3 6	 	15 Out 6
In 3 7		14 In 6
In 4 8		13 In 5
Out 4 9		12 Out 5
Gnd 10		11 Latch

Output Enable	Latch	Input	Outp
0	1	0	0
0	1	1	1
0	0	×	00
1	×	×	Z

Device Number	V _{OL} @ I _{OL} = 48 mA Volts Max	V _{OH} @ I _{OH} = -5.2 mA Volts Min	IOS mA Typ	^t PHL ns Typ
MC6882A/MC3482A	0 5	2.4	-80	8.0
MC6882B/MC3482B	0.5	2.4	-80	10

Hex, Unidirectional, with 3-State Outputs

MC6885/MC8T95# - Non-inverting MC6886/MC8T96# - Inverting

Two-input Enable controls all six buffers.

MC6887/MC8T97# — Non-inverting MC6888/MC8T98# - Inverting

Two Enable inputs, one controlling four buffers and the other controlling the remaining two buffers.

All four types: T_A = 0 to 75°C Packages: L Suffix - Case 620 P Suffix - Case 648

*Add inverter for MC6886/MC8T96.

V_{OH} @ I_{OH} = -5.2 mA Volts Min V_{OL} @ I_{OL} = 48 mA Voits Max IOS mA Typ ^tPLH ns Typ tP(Enable) ns Typ 0.5 -80 2.4 6.0 11

0 0

Minicomputer Bus Transceivers and receivers for bus organized minicomputers employing 120-ohm terminated lines.

HEX RECEIVERS

MC3437 - Hysteresis-equipped for improved noise immunity. DS8837 equivalent.

l _I (R) @ V _{I(R)} = 4.0 V μΑ Μαχ	Hysteresis Volts Min	tpLH(R) @ CL = 15 pF ns Max
50	0.5	30

All three devices: TA = 0 to 70°C

Packages:

MC3437 MC3438 DS8641 L Suffix — Case 620 — J Suffix P Suffix — Case 648 — N Suffix

QUAD TRANSCEIVERS

DS8641-MC3438

Open collector driver outputs allow wire-OR connection. MC3438 has hysteresis-equipped receiver for improved noise immunity (not available with DS8641). MC3438 is equivalent to the DS8838.

Receiver	V _L (BUS)	1 _{BUS}	tpLH(D)	[†] PLH(R)
Hysteresis	@ I _{BUS} =	@ VIH(BUS) =	© CL =	@ C _L =
Volts	50 mA	4.0 V	15 pF	15 pF
Min	Volts Max	μΑ Max	ns Max	ns Max
0.25*	0.7	100	25	30

^{*}MC3438 only.

Computer Bus

NEW IBM 360/370 I/O INTERFACE

Line Receivers and Drivers designed to operate compatibly. The MC75125/MC75127 Seven-Channel Receivers, MC75128/MC75129 Eight-Channel Receivers, and the MC3481/MC3485 Drivers meet the new IBM System 360/370 I/O standard requirements.

SEVEN-CHANNEL LINE RECEIVERS

EIGHT-CHANNEL LINE RECEIVERS

MC75129 - Active-Low Strobe

Device Number	Input Resistance kΩ Min/Max	IH(R) @ V _{IH} = 3.11 V mA Max	[†] PLH @ C _L = 50 pF ns Max
MC75125/75127	7.4/20	0.42	25
MC75128/75129	7.4/20	0.42	. 25

^{*}Fault Protection

GENERAL-PURPOSE I/O INTERFACE

All four devices

TA = 0 to 75°C

L Suffix — Case 620 P Suffix — Case 648

Line drivers and receivers designed to operate compatibly. The MC8T13/MC8T14 combination is specified

for general TTL system applications. The MC8T23/MC8T24 combination is oriented toward older IBM 360/370 system requirements.

DUAL LINE DRIVERS

MC8T13 — Open emitter driver; specified for general TTL systems.

MC8T23 — Open emitter driver; specified to meet older IBM system requirements.

Device Number	V _{OH} @ I _{OH} = -75 mA @ I _{OH} = -59.3 mA* Volts Max	I _{OS} @ V _O = 0 mA Max	tpLH @ CL = 15 pF ns Max
MC8T13	24	-30	20
MC8T23	3.11*	-30	20

TRIPLE LINE RECEIVERS

MC8T14 — Hysteresis equipped receiver; specified for general TTL systems.

MC8T24 — Hysteresis-equipped receiver; specified to meet older IBM system requirements.

Device Number	V _{H(R)} Volts Mın	IH(R) © V _{IH(R)} = 3.8 V @ V _{IH(R)} = 3.11 V* mA Max	tPLH(R) @ CL = 15 pF ns Max
MC8T14	0.3	0.17	30
MC8T24	0.2	0 17*	30

Input B 5

Bus B

Logic Gnd 8

Receiver

Output B

Instrumentation Bus

QUAD INTERFACE TRANSCEIVERS

These devices are designed to meet the GPIB bus specification of IEEE Standard 488-1978, for the interconnection of Measurement Apparatus.

Enable E

6

Driver

Input D Receiver

Output D

Bus D

10

MC3443P - Four drivers with common Enable input: no termination resistors.

MC3446AP - For low-power instruments, including MOS.

MC3448A - For common Send-Receive bus; bidirectional.

10

Device Number	Receiver Input Hysteresis mV Min	Drive Output Voltage @ I _{OL} = 48 mA; Volts Max	[†] PHL (Driver or Receiver) ns Max
MC3440AP	400	0.5	30
MC3441AP	400	0 5	30
MC3443P	400	0.4	25(D) 22 (R)
MC3446AP	400	0.5	50 (D) 40 (R)
MC3448A	400	0.5	17 (D) 23 (R)

Gnd

Instrumentation Bus (continued)

OCTAL LOW-POWER INTERFACE TRANSCEIVER

These devices are designed to meet the GPIB bus specifications of IEEE Standard 488-1978, for the interconnection of Measurement Apparatus.

MC3447 — Open collector, 3-State outputs with terminations.

All types: $T_A = 0 \text{ to } 70^{\circ}\text{C}$

Packages:

L Suffix — Case 623 P3 Suffix — Case 724 (Narrow)

Bus - Indicates Bus Terminations

Device Number	Receiver Input Hysteresis mV Min	Drive Output Voltage @ IOL = 48 mA; Volts Max	tpHL (Driver or Receiver) ns Max
MC3447	400	0.5	30 (D) 22 (R)*

*Fast Channel.

HIGH-CURRENT PARTY-LINE BUS TRANSCEIVERS

Devices for industrial control and data communication.

MC26S10 - Inverting

MC26S11 - Non-inverting

Quad transceivers with open-collector drivers and PNP-buffered inputs for MOS compatibility.

Packages: L Suffix — Case 620 P Suffix — Case 648

Test	Condition	Limits
VOL (D)	I _{OL} = 100 mA	0.8 Volts Max
lo (D)	V _{OH} = 4.5 V	100 μA Max
¹ O1(D)	V _{CC} = 0 V, V _{OH} = 4.5 V	100 μA Max
¹ 1H (D)	V _{IH} = 2.7 V	30 μΑ Max
IL (D)	V _{IL} = 0.4 V	-0.54 mA Max
tp (D)	MC26S10	15 ns Max
	MC26S11	19 ns Max
tp (R)	Both Types	15 ns Max

MEMORY INTERFACE AND CONTROL

NMOS Memories to TTL Systems

MULTIPLEXED 16-PIN RAM CONTROL (For 4K, 16K, and 64K Dynamic Memories)

MC3480 — Memory Controller. Used with all three levels of RAM.

The memory controller chip is designed to greatly simplify the interface logic required to control popular 16-pin 4K, 16K, or 64K dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper RAS and timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in con-

junction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.

With Schottky TTL technology for high performance, and high input impedance for minimum loading of the MPU bus, the MC3480 reduces package count, and reduces system access/cycle times by 30%. The chip enable allows expansion to larger-word capacity.

NMOS Memories to TTL Systems (continued) Multiplexed 16-Pin RAM Control (continued) (For 4K, 16K, and 64K Dynamic Memories)

MC3232A — 6-Bit (4K RAM) Address Multiplexer/Refresh Counter MC3242A — 7-Bit (16K RAM) Address Multiplexer/Refresh Counter MC3482A/B — 8-Bit Address Multiplexer (See Microprocessor Bus Section)

MC3232A — Designed for multiplexing 12 address lines into 6 for the 16-pin multiplexed 4K RAMs, while also containing a 6-bit refresh counter.

MC3242A — Designed for multiplexing 14 address lines into ·7 for the 16-pin multiplexed 16K RAMs, while also containing a 7-bit refresh counter.

NMOS Memories to TTL Systems (continued)

BUS EXTENSION (See Microprocessor Bus)

Data Bus (Bidirectional) Extenders MC6880A/MC8T26A - Inverting MC6889/MC8T28A - Non-inverting

Address Bus (Unidirectional) Extenders MC6885/MC8T95 - Hex Non-inverting MC6886/MC8T96 - Hex Inverting

MC6887/MC8T97 — Hex Non-inverting MC6888/MC8T98 - Hex Inverting MC6882A/MC3482A - Octal Inverting MC6882B/MC3482B - Octal Non-inverting

Bus Switches

MC3449 - Triple Bidirectional

DATA AND ADDRESS LINE DRIVERS (Low Level)

MC3459 - Quad Address Line Driver Input 1A Vcc Input 2 Output 3 12 Input 1B Output Input 5 10 Input 1C Output 6 9 Input 2C Output Gnd 7

MC3245 - Quad Clock Drivers

with Refresh Select Logic

 $T_A = 0 \text{ to } 70^{\circ}\text{C}$ Packages: L Suffix — Case 632 P Suffix - Case 646

Device Number	V _{OH} @ Volts Min	IOH mA	VOL @ Volts Max		Propagation Delay @ CL ns Max		Features
MC3459	2.4	~2.0	0.7	80	26	360	High fan-out capability

16 Vcc1

CLOCK AND CHIP ENABLE LINE DRIVERS (High Level)

Vcc21

T_A = 0 to 70°C

L Suffix - Case 620

P Suffix - Case 648

Packages:

MC75365 - Quad Clock Driver or High-Current NAND Gate

MMH0026 **Dual Clock Driver** MMH0026C 8 NC 15 Output D Input A 2 7 Output A

Output A 2 Input 1A 3 14 Input D 13 Enable 3 Input 2AB 4 13 Input 3CD 12 Input 2CD 11 Input 1C Input 1B 6 Output B 7 10 Output C 9 NC Gnd 8 9 ∨ccз $T_A = 0$ to 70° C Packages:

MMH0026 - -55 to 125°C MMH0026C - 0 to 70°C

MMH0026C only)

(Pin Connections for U or P1 Package)

6 Vcc

5 Output B

Packages

VEE 3

Input B 4

G Suffix - Case 601 L Suffix - Case 632 U Suffix - Case 693 P1 Suffix - Case 626 (For

L Suffix - Case 620 P Suffix - Case 648

Device Number	V _{OH} Volts Min	e IOH	VOL Voits Max	@ IOL mA	[†] DHL ns Max	[©] СL pF	Feature
MC3245	V _{DD} - 0.5	-1.0	0.45	5.0	32	250	Does not require second high voltage supply. Low input loading.
MC75365	V _{CC2} - 0.3	-0.1	03	10	18	200	Derives V_{CC1} power from TTL 5-V supply, and V_{CC2} and V_{CC3} from V_{SS} and V_{BB} supplies from NMOS memories.
MMH0026 MMH0026C	V _C - 1.0	0.4 V*	V _{EE} + 1.0	2.4 V*	12	1000	For very high capacitance loads.

*@ VI - VEE

NMOS Memories to MECL Systems

DRIVER/TRANSLATORS

MECL-to-MOS driver/translators convert standard MECL 10,000 input signals to suitable levels for NMOS

memory systems. The MC75368 may also be used as positive logic NOR or non-inverting gates.

MC75368 - Dual Clock Line Drivers suitable for driving address, control, and timing inputs.

Maximum Supply Voltage: MC75368 = 18 V

T_A = 0 to 70°C

Packages:

L Suffix — Case 632 P Suffix — Case 646

Device Number	V _{OH} Volts Min	_@ IOH	V _{OL} Volts Max	_@ IOL	^t DHL ns Max	_@ СL _{@ pF}
MC75368	V _{CC2} - 0.3	0.1	0.3	10	26	300

SENSE AMPLIFIER

MC3461L — Dual Sense Amplifier with MECL 10,000compatible control inputs and complementary, open-emitter outputs. Designed for 7001 and 2105 type NMOS 1K RAMs.

^I TH	tpp (Amplifier)	tpp (Enable)	
μΑ Max	ns Max	ns Max	
± 200	10	5.0	

T_A = 0 to 75°C Package: Case 620

Magnetic Memories to TTL Systems

SENSE AMPLIFIERS

... for Magnetic Tape Memories

A two-component preamplifier/amplifier combination that provides the interface between magnetic tape heads and digital logic. Suitable for both open reel and cartridge tape systems. Triple preamp has individually adjustable gain controls. LSI Read Amplifier performs peak detection and threshold detection functions, as required for NRZI/phase encoded recording formats.

... for Plated Wire and Thin-Film Memories and other low-level sensing applications.

 $MC1544 - T_A = -55 \text{ to } 125^{\circ}C$ $MC1444 - T_A = 0 \text{ to } 70^{\circ}C$

Features 4-channel input with decoded channel selection and strobed output capability.

Packages: MC1544/MC1444 L Suffix — Case 620

Device Number	V _{TH}	V _{OH} @ I _{OH} = -400 μA Volts Min	V _{OL} @ I _{OL} ≈ 10 mA Volts Max	t _{PD} ns Max
MC1544	0.5 to 1.5	2.4	0.5	25
MC1444	0.3 to 2.3	2.4	0.5	25

Magnetic Memories to TTL Systems (continued)

FLOPPY DISK READ AMPLIFIER SYSTEM

MC3470 — Designed as a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. It combines all the active circuitry to perform the floppy disk READ amplifier function in one circuit, and is guaranteed to have a maximum peak shift of 5.0%, adjustable to zero.

T_A = 0 to 70°C Package: P Suffix -- Case 701

CORE DRIVER

MC55325 - T_A = -55 to 125°C MC75325 - T_A = 0 to 70°C

Contains two source switches and two sink switches. Source and sink selection is determined by one of two logic inputs, and turn-on is determined by the appropriate strobe.

Packages:

L Suffix - Case 620

P Suffix - Case 648 (MC75325 only)

Device Number	V _{sat} @ I _{sink} or I _{source} = 600 mA Volts Max	I _{off} @ V _{CC2} = 24 V μΑ Max	tPLH (Source) ns Max	tPLH (Sink) ns Max
MC55325	0.70	150	50	45
MC75325	0,75	200	50	45

COMPUTER AND TERMINAL INTERFACE

Line Drivers and Receivers for Modem/Terminal Applications (continued)

Differential Current Mode

DRIVERS

MC75S110 - Dual; industry standard.

Outputs VCC 1Y 1Z VEE 0 2Z 2V 14 13 12 11 10 9 8 1 12 11 10 9 8 1 12 12 2C 2A 28 Gnd Logic Inputs Inputs Inputs Logic Inputs Inputs Inputs

T_A = 0 to 70°C (MC75xxx) -55 to 125°C

Packages: L Suffix ~ Case 632 P Suffix ~ Case 646 (MC75xxx only)

(MC55xxx)

RECEIVERS

MC75107/MC55107 — Dual; active pullup output. MC75108/MC55108 — Dual; open collector output.

MC3453 — Quad; common inhibit input; current sink approximately 12 mA.

MC3450 — Quad; active pullup outputs; common threestate enable.

MC3452 - Quad; open collector outputs.

BOTH DRIVERS

	IO (on)		IO (off)	tPHL	
	mA Min		μΑ Max	ns Max	
·	,	6,5	100	15	

ALL RECEIVERS

	Input V _{TH}	I _{IH} @ V _{ID} = 0.5 V μΑ Max		tpLH ns Max
[±25	75	-10	25

PERIPHERAL INTERFACE

Dual Drivers

... for relays, lamps, and other peripherals requiring more power than generally available from logic gates.

Representative Diagrams

Logic gates vary to provide output shown

Logic Output		BVCER				
(Including Transistor Inversion)	30 V	30 V	35 V	70 V Hı-Z İnput		
AND	MC75451	SN75451B*	MC75461			
NAND	MC75452	SN75452B*	MC75462	MC1472		
OR	MC75453	SN75453B*	MC75463)		
NOR	MC75454	SN75454B*	MC75464	1		

*Same as equivalent MC types, but with guaranteed switching limits.

MC75450 — Similar to MC75451, but with uncommitted output transistors.

All Devices

TA = 0 to 70°C

Packaging:

MC75450

L Suffix — Case 632

P Suffix — Case 646

MC75451—54/MC75461—64

P Suffix — Case 626

U Suffix — Case 693

MC1472

P1 Suffix — Case 626

U Suffix — Case 626

U Suffix — Case 626

Driver Arrays

... Seven Darlington transistors with output clamp diodes.

Device Number	Application	Input Element
MC1411	General Purpose	Basic
MC1412	14-25 V PMOS	Zener and Series 10 5 k Ω
MC1413	5 V CMOS or TTL	Series 2.7 kΩ resistor
MC1416	8-18 V MOS	Series 10.5 kΩ resistor

All Types: V_{Max} = 50 V I_{Max} = 500 mA T_A = 0 to 85°C

Packages: L Suffix — Case 620 P Suffix — Case 648

Dual Receiver

MC75140P1 — Dual single-ended receiver with common strobe and reference inputs for maximizing noise immunity. Useful for bus-organized (party line) TTL systems.

V _{TH}	V _{Ref}	^t PLH(L)
±100 V	1.5 to 3.5 V	35 ns

T_A = 0 to 70°C Package — Case 626

NUMERIC DISPLAY INTERFACE

... for mating multiplexed LED or gas discharge numeric displays to MOS or TTL logic systems.

MC75491

3.3

1.2

250

PRECISION CIRCUITS — DATA CONVERSION

Low-cost building blocks for construction of D-A/ A-D systems. Involves use of advanced technologies such as ion implantation, laser trimming and CMOS

processing where necessary to achieve the required functional capability, operating accuracy and production repeatability.

Multiplying D-A converters designed to supply an output current that is a linear product of an analog input reference voltage and a digital input word. Devices for 6-, 8- and 10-bit digital word inputs are available.

Device Number	Error % Max	P _D @ V _{EE} = -5 V mW Max	^t Settling ns Typ	IO @ V _{Ref} = 2 V mA	Suffix	Case
6-Bit						
MC1506*	±0 78	120	150	1.9 to 2.1		600
MC1406	±0 /6	120	150	1.9 to 2.1	L	632
8 Bit						
MC1508L8*	± 0.19				L	620
MC1408L8	10.19					
MC1408L7	±0.39	170	300	1.9 to 2,1	L, P	620, 648
MC1408L6	± 0.78					
MC3408	±05				L	620
10-Bit						
MC3510*	± 0 05				L	690
MC3410	± 0 05	220	250	3.8 to 4.2		
MC3410C	± 0.1				L, P	690, 648

D-A Converters — High Speed

Compen.

Dotted terminals available

on 6- and 8-bit units only

VEE

MC10318 - A high speed 8-bit D/A converter capable of data conversion rates in excess of 25 MHz. It is intended for applications in high speed instrumentation and communication equipment, display processing, storage oscilloscopes, radar processing, and TV broadcast systems. The inputs are compatible with MECL 10,000 series logic, while the complementary current outputs have 51 mA full scale capability. 8-bit accurate (± 1/2 LSB) and monotonic over the full temperature range, the outputs typically settle in less than 15 ns.

Gnd

TA = 0 to 70°C

Packages:

L Suffix - Case 620/690

LSB BO 1	Ü	16	Gnd
B1 2		15	lout
в2 [3		14	out
B3 4		13	NC
B4 5		12	V _{ref} +
B5 6		11	Comp
B6 7		10	V _{ref} -
MSB B7 8		9	VEE

Device Number	Error % Max	P _D @ V _{EE} = -5.2 V mW Max	^t Settling ns Typ	I _O & Ī _O @ V _{Ref} = 10.56 V mA Typ
MC10318L	±0.19	675	15	51
MC10318L9	±0.10	675	15	51

Devices without asterisk. TA = 0 to 70°C.

A-D Subsystems

2-Chip A-D Converter System Functional Diagram

These devices are relatively complex subsystems. The bipolar, dual-ramp A-D converter has up to 4-1/2-digit conversion capability. The CMOS logic subsystem specifically adapts the A-D converter to a 3-1/2-digit DVM function.

MC1505/1405 - A-D Converter

MC14435 — Digital Logic (See CMOS Data Book for data.)

MC1505L - T_A = -55 to 125^oC - Case 620 MC1405L - T_A = 0 to 70^oC - Case 620

Linearity Error % Max	Voltage Reference Volts	Temperature Coefficient of Reference %/ ^O C	I _{CC} © V _{CC} = 5.0 V mA Max
± 0.05	1.15 to 1.35	0.005	12

	PC(quiescent) @ VDD = 5.0 V mW Max	IOL © V _{DD} = 5.0 V (Digit Selects) mA Min	IOL © V _{DD} = 5.0 V (BCD Outputs) mA Min	IOL © VDD = 5.0 V (All Outputs) mA Min	
1	1.75	1.6	1.6	-0.2	l

*MC14435EFL/FL/FP: V_{DD} = 3.0 to 18 Vdc MC14435EVL/VL/VP: V_{DD} = 3.0 to 6.0 Vdc

VOLTAGE REFERENCES

Precision Low-Voltage References

A family of precision low-voltage bandgap voltage reference, these devices are designed for applications requiring low temperature drift.

TRIM

Low Temperature Drift, Low Voltage Reference

V _{out} Volts Typ	I _O mA Max	ΔV _{out} /ΔT ppm/°C Max	Device Number	Regline 4.5< V _I ≤15 V/ 15 V < V _I < 40 V mV Max	Regline Vin = Vout+ 2.5 V to 40 V mV Max	Regload 0.0 mA Io<10 mA mV Max	TA °C
2.5 ± 25 mv	10	40	MC1403	3.0/4.5	N/A	10	0 to +70
		25	MC1403A	}			
		55	MC1503	j			~55 to +125
	1.	25	MC1503A	I			
5.0 ± 50 mV	10	40	MC1404U5	N/A	6.0	10	0 to +70
		25	MC1404AU5				
	1	55	MC1504U5]			~55 to +125
	1	25	MC1504AU5				1
6.25 ± 60 mV	10	40	MC1404U6	N/A	6.0	10	0 to +70
	1	25	MC1404AU6	1	1		
	1	56	MC1504U6]		,	~55 to +125
	1	25	MC1504AU6	1			
10 ± 100 mV	10	40	MC1404U10	N/A	6.0	10	0 to +70
	1	25	MC1404AU10	_		· -	1
		55	MC1504U10				-55 to +125
	1	25	MC1504AU10				33.10.1122

VOLTAGE COMPARATORS

General Purpose Comparators

... for detecting the polarity relationship between two analog levels and giving a corresponding TTL output.

MC1710 $-T_A = -55$ to 125°C MC1710C $-T_A = 0$ to 70°C Single comparators

MC1711 $-T_A = -55$ to 125°C MC1711C $-T_A = 0$ to 70°C

Dual comparators with strobes and wire-ORed outputs

G Suffix - Case 601 (MC1710) G Suffix - Case 603 (MC1711)

L Suffix - Case 632 P Suffix - Case 646 (for

MC1710C, MC1711C only)

(Pin Connections for L or P Package)

14 NC 13 Strobe 1 Inputs1 12 Gnd 11 Vcc 10 Output Inputs 2 Strobe 2 NC.

> *Connected to pin 4 via the substrate on some plastic units.

MC1514 - T_A = -55 to 125°C MC1414 - T_A = 0 to 70°C

*Connected to pin 6 via the substrate on

some plastic units.

Dual comparators with strobes.

Device Number	V _{IO} mV Max	l _{IB} μΑ Max	AVOL V/V Min
MC1710C	5.0	25	1000
MC1710	2.0	20	1250
MC1711C	5.0	100	700
MC1711	3.5	75	700
MC1514	2.0	20	1250
MC1414	5.0	25	1000

L Suffix -- Case 632

P Suffix - Case 646 (MC1414 only)

Precision Comparators

. . . featuring low input loading, high voltage gain, and a choice of either dual or single positive power supply operation.

LM111 - TA = -55 to 125°C LM211 - TA = -25 to 85°C LM311 - TA = 0 to 70°C

Single comparators; high gain, high input impedance; strobe and balance inputs provided.

Gnd 1 8 VCC 7 Output 3 0 6 Balance/Strobe 5 Balance	
(Pin Connections for J-8 or N Package) Packages:	
H Suffix — Case 601	
J-8 Suffix — Case 693	
J Suffix — Case 632	

N Suffix - Case 626 (LM311 only)

Device Number	V _{IO} mV Max	I _{IB}	VOL @ I _{OL} = 50 mA Volts Max
LM111	3.0	100	1.5
LM211	3.0	100	1.5
LM311	7.5	250	1.5

Quad Comparators ... for applications requiring multiple comparators.

MC3430 MC3431 - High-speed quad comparators with three-state Enable common to all four devices; ±5 volt supply; TA = 0 to 70°C.

Packages:
L Suffix — Case 620
P Suffix — Case 648

A + 2

Output A 3

Output C 5

Output C 5

Inputs + 6

Inputs + 6

Output D N Suffix — Case 632
N Suffix — Case 646 (For all devices exceeding the suffix of the suffix

Device Number	V _{IS} mV Max	I _{IB} μΑ Max	tpHL ns Max
MC3430	±6.0	20	45
MC3431	± 10	20	45
MC3432	±6.0	20	50
MC3433	± 10	20	50

LM139 LM139A } - T_A = -55 to 125°C MC3302 LM2901 LM239 LM239A } - T_A = -40 to 85°C

LM339 LM339A $-T_A = 0 to 70°C$

Single supply voltage comparators.

Device Number	V _{IO} @ 25°C mV Max	I _{IB} @ 25°C nA Max	I _{sink} @ V _{OL} = 500 mV mA Min	VOL @ I _{OL} = 2.0 mA* @ I _{OL} = 3.0 mA** @ I _{OL} = 4.0 mA mV Max
MC3302	20	1000		400*
LM2901	7.0	250	6.0	400**
LM139	5.0	100	6.0	500
LM139A	2.0	100	6.0	500
LM239	5.0	250	6.0 ,	500
LM239A	2.0	250	6.0	500
LM339	5.0	250	6.0	500
LM339A	2.0	250	6.0	500

COMMUNICATION INTERFACE (Telephony)

Crosspoint Switch

MC3416 - Low-cost solid-state crosspoint switch offers important advantages in modern telephone exchanges employing space-division switching. Features 4 x 4 two-wire monolithic structure for PABX applications. Select inputs are both CMOS and TTL compatible.

> $T_A = 0$ to 70 C Packages: P Suffix - Case 649 L Suffix - Case 623

	roff	ron	BVAK	VAK
	@ V _{AK} = 10 V	@ I _{AK} = 20 mA	BVKA	@ IAK = 20 mA
	MΩ Min	Ohms Max	Volts Min	Volts Max
ı	100	10	25	1.1

Voice Encoding/ Decoding

Simplified voice encoding/decoding using continuous Variable Slope Delta Modulator (CVSD) technique.

MC3417/MC3517 - 3-bit algorithm; for military secure communication and general-purpose lowsampling rate applications.

MC3418/MC3518 - 4-bit algorithm; telephone quality.

 $T_A = 0$ to $70^{\circ}C - MC3417/MC3418$ = -55 to +125°C - MC3517/MC3518

> Total Loop Offset Voltage

mV Max

Sample Rate

Samples/s

Тур

16 k

Device

Number

MC3417/MC3517

Packages: L Suffix - Case 620 P Suffix - Case 648

		1	
	Analog 2 Feedback 2		15 Encode/ Decode
	Syllabic 3		14 Clock
	Gain 4	i	13 Digital Input
	Ref Input (+) 5		12 Digital Threshold
) ;	Filter Input (-) 6		Coincidence Output
	Analog 7		10 VCC 2 Output
	V€E 8		9 Digital Output
	l		

16 VCC

tpD, Clock Trigger

to Output

μs Max

25

Digital Voice Channel

SUBSCRIBER LOOP INTERFACE CIRCUIT

MC3419/MC3519 — Designed to replace the hybrid transformer in Class 5, PBAX and Subscriber Carrier Equipment, this circuit provides signal separation for two-wire differential to four-wire single-ended conversions and suppression of longitudinal signals at the two-wire input. The transhybrid gain is externally selected

and provides dc line current for powering the telset. It operates from up to a 60 V supply. On-hook power is below 5 mW and current sensing outputs are provided for off-hook status from both tip and ring leads. It offers size and weight reduction over present approaches and is compatible with IEEE and REA specifications.

MEMORY/MICROPROCESSOR SUPPORT

Temperatur	e Range	1	
Commercial	Military		Page
MC1444	MC1544	AC-Coupled 4-Channel Sense Amplifiers	4-3
MC3232A	_	Memory Address Multiplexer/Refresh Address Counter	4-11
MC3242A	_	Memory Address Multiplexer/Refresh Address Counter	4-16
MC3245	_	Quad TTL-to-MOS Driver	4-21
MC3459		Quad NMOS Memory Address Driver	4-24
MC3461	_	High-Speed NMOS/MECL Sense Amplifier	4-28
MC3467	_	Triple Magnetic Tape Memory Preamplifier	4-34
MC3468		Magnetic Tape Memory Read Amplifier	4-39
MC3470		Floppy Disk Read Amplifier System	4-59
MC3480	_	Dynamic Memory Controller	4-73
MC6875	MC6875A	M6800 2-Phase Clock Generator/Driver	4-88
MC6880A/ 8T26A		Quad 3-State Bus Transceiver	4-99
MC6881/ 3449	_	Bidirectional Bus Extender/Switch	4-104
MC6882A, B/		Bidirodional Bao Extendent Officer Control Con	7 10-
MC3482A, B	_	Octal 3-State Buffer/Latch	4-109
MC6885-88/ MC8T95-98	_	Hex 3-State Buffer/Inverters	4-113
MC6889/			
8T28	_	Non-Inverting Bus Transceiver	4-118
MC6890	MC6890A	8-Bit Bus-Compatible MPU D/A Converter	4-123
MC75365	_	Quad MOS Clock Driver	4-124
MC75368		Dual MECL-to-MOS Driver	4-132
MMH0026C	MMH0026	Dual MOS Clock Driver	4-137

MC1444 MC1544

HIGH-SPEED, LOW THRESHOLD SENSE AMPLIFIERS

The MC1444 and MC1544 are high-speed quad sense amplifiers for use with plated wire, thin film or other memory systems requiring very low threshold sensitivity and narrow pulse widths. Both devices feature internal capacitive coupling to reduce the effects of voltage offsets.

- Threshold Level 1.5 mV (Typ), 100 ns Rectangular Pulse
- Decoded Input Channel Selection
- Output Strobe Capability
- DC Level Restore Gate on Internal Capacitors Eliminates Repetition Rate Limitations

FIGURE 1 - BLOCK DIAGRAM VOLTAGE o 12 Vcc 🦠 REGULATOR DC 10 LEVEL O 9 OUTPUT SHIFT 30 CHANNEL 17 X ONE-OF-FOUR SELECT 180 STROBE DECODER O 6 STROBE INPUTS CIRCUIT INPUT → 10 GROUND CAPACITOR, RESTORE 110 INPUT ◆ 5 VEE

AC-COUPLED **FOUR-CHANNEL** SENSE AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLES

	Channel Select					
	Pin	Pin	Channel			
	7(X)	8(Y)	Selected			
1	н.	Н	Α			
	L	н	В			
	н	L	С			
1	L	L	٥			

H = high level (steady state, VI ≥ VIH(min) or VID > Vth

L = low level (steady state), $V_1 \le V_{1L(max)}$ or $V_{1D} \le V_{th}$ X = irrelevant (any input, including transitions)

= transition from low level to high level

T = low-level output pulse

	Output			
		Differential		Cutput
	Capacitor Input		Channel	
Strobe	Restore	*Channel A	Selects	
Ĺ	Х	×	хх	н
×	н	×	××	н
×	×	×	LX	н
×	×	×	ΧL	н
н	L	н	H	J
н	L	н	_J_ H	J
	L	н	нн	7

^{*}Channel A used as an example, other channels function similarly. See channel select table.

MAXIMUM RATINGS (TA = +25°C unless otherwise noted).

Rating		Symbol	Value	Unit
Power Supply Voltages ⁽¹⁾		V _{CC} V _{EE}	+7.0 -8 0	Vdc
Input Common-Mode Voltage Range		VICR	+5 0, -6.0	Vdc
Input Differential-Mode Voltage Range ⁽²⁾		V _{IDR}	+5.0, -6 0	Vdc '
Input Capacitor Restore, Channel Select, and Strobe Voltage		VI(CR) VI(CS) VI(S)	+5.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = 25°C		PD	1.0 6.7	Watt mW/ ^O C
Operating Ambient Temperature Range	MC1444 MC1544	TA	0 to +75 -55 to +125	°c
Storage Temperature Range		T _{stg}	-65 to +150	°C
Operating Junction Temperature		Tj	+175	°C

⁽¹⁾ All voltage values, except differential voltages, are with respect to the network ground terminal.

FIGURE 2 - EQUIVALENT CIRCUIT SCHEMATIC

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	4.75	5.0	5.25	V
	VEE	-5.7	-6.0	-6.30	1

⁽²⁾ Differential input voltages are at A1 with respect to A2, and similarly B1 to B2, C1 to C2, and D1 to D2

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 V < V_{CC} < 5.25 V, -5.7 V > V_{EE} > -6.3 V, T_A = 25°C.)

1A 25 6.7		I	MC1444			MC1544		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Threshold Voltage (Figure 4) $(V_{CC} = 5.0 \text{ V}, V_{EE} = -6.0 \text{ V}, T_{A} = T_{high} \text{ to } T_{low})$ (1)	V _{th}	0.3	1.0	2.3	0.5	1.0	1.5	mV
Input Bias Current (Selected Channel)	Iв	-	20	50	_	20	50	μΑ
Input Offset Current (Selected Channel)	110	-	1.0	10	-	1.0	10	μΑ
Channel Select Input Current-High Logic State, (VIH(CS) = 3 5 V)	IH(CS)	-	-	2.6	_	-	2.6	mA
Channel Select Input Current - Low Logic State, (VIL(CS) = 0 V)	IL(CS)	_	-	1.0	_	_	10	mA
Capacitor Restore Input Current - High Logic State, (VIH(CR) = 3.5 V)	IH(CR)	_		10	_	_	10	μΑ
Capacitor Restore Input Current-Low Logic State, (VIL(CR) = 0 V)	IL(CR)	_	_	-3 5	_	_	-3 5	mA
Strobe Input Current-High Logic State, (VIH(S) = 3.5 V)	IH(S)	_	_	200	-	_	200	μА
Strobe Input Current-Low Logic State (VIL(S) = 0 V)	IL(S)	-	-	200	-	_	200	μА
Channel Select Input Voltage-Low Logic State	VIL(CS)	_		0.7	_	-	07	٧
Channel Select Input Voltage-High Logic State	V _{IH(CS)}	2.1	-	-	2.1	-		V
Capacitor Restore Input Voltage-Low Logic State	VIL(CR)		-	08	-	-	08	V
Capacitor Restore Input Voltage-High Logic State	VIH(CR)	20	-	-	2.0	-	_	٧
Strobe Input Voltage-Low Logic State	VIL(S)	-	_	08	_	_	08	٧
Strobe Input Voltage-High Logic State	V _{IH(S)}	20		-	2.0	_	_	V
Input Common-Mode Voltage Range	V _{ICR+}	-	4.7 -6.0	-	_	4 7 -6 0	-	٧
Input Differential Voltage Range	VIDR	_	±3.7	-	-	±37		V
Output Voltage-Low Logic State (I _{OL} = 10 mA)	VOL		0.4	05		0.4	0.5	V
Output Voltage-High Logic State (IOH = -400 µA)	Voн	2.4	_	-	2.4		-	٧
Positive Power Supply Current	¹cc	_		30	-	_	30	mA
Negative Power Supply Current	IEE	_	_	30	-	—	30	mA

SWITCHING CHARACTERISTICS (unless otherwise noted, $T_A = 25^{\circ}C$, $V_{CC} = 50$ V, $V_{EE} = -6.0$ V)

	T	MC1444				MC1544		
Characteristic	Symbol	Min	Тур	Max	Mın	Тур	Max	Unit
Propagation Delay Time Differential Inputs to High Logic State Output	tPLH(D)	_	40	-	_	40	-	nş
Propagation Delay Time Differential Input to Low Logic State Output	tPHL(D)	_	18	25	-	18	25	ns
Propagation Delay Time Strobe Input to High Logic State Output	tPLH(S)	-	30	-	-	30	-	ns
Propagation Delay Time Strobe Input to Low Logic State Output	tPHL(S)	_	18	25	-	18	25	ns
Lead Time from Channel Select Input to Application of Differential Input Voltage	tL(CS)	_	45		_	45	-	ns
Lead Time from Application of a 50 mV Offset Signal to Application of the Capacitor Restore Signal	tL(CRO)	-	15	_	-	15	-	ns
Lead Time from Application of Strobe Input to Application of Differential Input Signal	t _L (S)	_	10	-	_	10	-	ns
Lead Time from Application of Capacitor Restore Signal to Application of Differential Input Signal	tL(CR)	_	10	-	_	10	-	nş
Common-Mode Recovery Time (e _{in1} = +2 0 V) (e _{in1} = -2.0 V)	tCMR+	_	50 50		-	50 50	_	ns
Differential-Mode Recovery Time (e _{in1} = +1 0 V) (e _{in1} = -1.0 V)	^t DMR+ ^t DMR-	-	65 65	-		65 65	-	ns

⁽¹⁾ $T_{high} = 75^{\circ}C$ for MC1444, 125°C for MC1544. $T_{low} = 0^{\circ}C$ for MC1444, -55°C for MC1544.

νон

FIGURE 8 - tpLH(CS), tpHL(CS) •in1 INPUT SIGNAL e_{in2} CHANNEL 50% SELECT X e_{in3} CHANNEL SELECT Y ein4 CAPACITOR 3 V RESTORE 3 V eins STROBE Vnt COUT OUTPUT VOL TPHL(CS)-NOTE To test other channel select input, reverse ein2 and ein3

ein1 - ein5 tTHL < 10 ns

Output Voltage - Low Logic State

DEFINITIONS tL(CR) Output Voltage - High Logic State

VOL VIH(S) The minimum high-level voltage at the strobe input which The minimum time between the 50% level of the leading will allow normal operation during the threshold test tL(CS) VIL(S) The maximum low-level voltage at the strobe input which will result in VOH at the output regardless of intPLH(CS) put signals The minimum input signal (e_{in1}) required to drive the MTTL III gates to obtain the e₀ waveform shown in V_{th} channel is held at the "1" level as shown in Figure 8 Figure 5 tPHL(CS) VICM+ The maximum common-mode input voltage that will not saturate the amplifier VICM-The minimum common-mode input voltage that will not break down the amplifier tDMR+ The minimum high-level voltage at the capacitor restore VIH(CR) input required to insure that the capacitors are clamped i.e., the input threshold voltage is greater than 10 mV The maximum low-level voltage at the capacitor restore VIL(CR) input which will allow normal operation during the threshold test tPLH(D) VIH(CS) The minimum high-level voltage at a channel select intive edge of the output as shown in Figure 6 put required to insure that the total of the base currents of all unselected inputs is less than 1.0 µA tPHL(D) The maximum low-level voltage at a channel select in-VIL(CS) put required to insure that the total of the base currents of all unselected inputs is less than 1.0 µA tL(S) v_{ID} The maximum differential-mode input voltage that will not saturate the amplifier ЮН Output Source Current - High Logic State tPLH(S) Output Sink Current - Low Logic State **IOL** The current into the strobe input when the input is at a IH(S) as shown in Figure 7 high-level of 3 5 volts tPHL(S) IL(S) The current into the strobe input when the input is at a low-level of 0 valts tCMR± Level as shown in Figure 7 The minimum time between the 50% level of the trailing edge of a + or - 2 volt common-mode signal (tTLH, tTHL IH(CS) ≤ 15 ns) and the 50% level of the leading edge of a is at a high-level of 3.5 volts The current out of the capacitor restore input when the 5 mV input pulse when the capacitor restore and strobe THICK inputs are used in a normal manner as shown in Figure 22 The minimum time between the 50% level of the leading IL(CS) ti (CRO) edge of a 50 mV input offset signal and the 50% level of input is at a high-level of 3.5 volts the leading edge of the capacitor restore pulse as shown ILL(CR) in Figure 9 is at a low-level of 0 volts

FIGURE 9 - tL(CRO)
Fin1 COMPOSITE 5 mV (no scale) 50% (NPUT SIGNAL 0
CHANNEL SELECT X 0
SELECTY 0
CAPACITOR SO%
e _{In5} STROBE 0 VOH
V _{OL}
NOTE e _{in 1} − e _{in 2} { tTLH < 10 ns

The minimum time between the 50% level of the leading edge of the capacitor restore signal and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 6

edge of the channel select and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 6 The delay time from the 50% level of the trailing edge of the channel select signal to the 1.5 volt level of the positive edge of the output when the input to the selected

The delay time from the 50% level of the leading edge of the channel select signal to the 1.5 volt level of the negative edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 8

The minimum time between the 50% level of the trailing edge of a + or - 1 volt differential-mode signal (tTLH, tTHL ≤ 15 ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 23 The delay time from the 50% level of the trailing edge of a 5 mV input signal to the 1.5 volt level of the posi-

The delay time from the 50% level of the leading edge of a 5 mV input signal to the 1.5 volt level of the negative edge of the output as shown in Figure 6

The minimum time between the 50% level of the leading edge of the strobe and the 50% level of the leading edge of the input signal as shown in Figure 6

The delay time from the 50% level of the trailing edge of the strobe to the 1.5 volt level of the positive edge of the output when the input is held at the High Logic Level

> The delay time from the 50% level of the leading edge of the strobe to the 1.5 volt level of the negative edge of the output when the input is held at the High Logic

The current into the channel select input when the input

input is at a low level of 0 volts The input current to a channel select input when that

The current into a channel select input when the input

TYPICAL CHARACTERISTICS

(TA = +25°C unless otherwise noted)

FIGURE 15 - SENSE AMPLIFIER RESPONSE

TYPICAL CHARACTERISTICS (continued)

FIGURE 22 - COMMON-MODE CHARACTERISTICS

Note The 5mV Input Signal (Differential) is superimposed on the Common-Mode Input and is shown separately for reference only

FIGURE 23 - DIFFERENTIAL-MODE CHARACTERISTICS

Note The 5mV Input Signal is superimposed on the Differential Input and is shown separately for reference only

MC3232A

MEMORY ADDRESS MULTIPLEXER

The Motorola MC3232A is an address multiplexer and refresh counter for 16-pin 4K dynamic RAMs that require a 64-cycle refresh. It multiplexes twelve system address bits to the six input address pins of the memory device. The MC3232A also contains a 6-bit refresh counter that is clocked externally to generate the 64 sequential addresses required for refresh. The high performance of the MC3232A will enhance the high speed of the fast N-channel RAMs such as the MCM4027.

- Simplifies 16-Pin 4K Dynamic Memory Design
- Reduces Package Count
- 6-Bit Binary Counter for 64 Refresh Address
- Multiplexing: Row Address/Column Address/Refresh Address
- High Input Impedance for Minimum Loading of Bus:
 IF = 0.25 mA Max
- Schottky TTL for High Performance Address Input to Output Delay

 t_{AO} = 25 ns @ C_L = 250 pF, 9.0 ns Max @ C_L = 15 pF

Second Source to Intel 3232

(Detect Zero Function Not Included and Additional Power Fail Feature Added at Pin 13)

MEMORY ADDRESS MULTIPLEXER AND REFRESH ADDRESS COUNTER

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUITS

Note: A0 Through A5 Are Row Addresses
A6 Through A11 Are Column Addresses
*See Pin Definitions

TRUTH TABLE AND DEFINITIONS

Hefresh Enable	Row Enable	Output
н	Х	Refresh Address (From Internal Counter)
L	Н	Row Address (A0 through A5)
٦	L	Column Address (A6 through A11)

Count - Advances Internal Refresh Counter

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Input Voltage	VI	-0.5 to +7.0	٧
Output Voltage	v _o	-0.5 to +7.0	٧
Output Current	10	100	mΑ
Operating Ambient Temperature	TA	0 to +75	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature Ceramic Package Plastic Package	ТЈ	+175 +150	°C

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < V_{CC} < 5.5 V, 0°C < T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (V ₁ L = 0:45 V)	IIL.		-0.04	-0.25	mA
Input Current, High Logic State (VIH = 5.5 V)	Тін	-	-	10	μΑ
Input Voltage, Low Logic State	VIL	_		0.8	V
Input Voltage, High Logic State	VIH	2.0		_	V
Output Voltage, Low Logic State (IOL = 5.0 mA)	VoL	-	0.25	0.4	V
Output Voltage, High Logic State (I _{OH} = -1.0 mA)	∨он	2.8	4.0	_	V
Input Clamp Voltage (I _{IC} = -12 mA)	Vic		-0.8	-1.5	V
Power Supply Current (VCC = 5.5 V)	Icc	_	75	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < V_{CC} < 5.5 V, 0°C < T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times	1				
Address Input to Output	tAO				ns
(Load = 1 TTL, C _L = 250 pF)		-	12	25	
(Load = 1 TTL, $C_L = 15 pF$, $V_{CC} = 5.0 V$, $T_A = 25^{\circ}C$)		-	6.0	9.0	
Row Enable to Output	t00	-			ns
(Load = 1 TTL, C _L = 250 pF)		12	27	41	
(Load = 1 TTL, $C_L = 15 pF$, $V_{CC} = 5.0 V$, $T_A = 25^{\circ}C$)		7	12	27	
Refresh Enable to Output	tEO				ns
(Load = 1 TTL, C _L = 250 pF)		12	30	45	
(Load = 1 TTL, $C_L = 15 pF$, $V_{CC} = 5.0 V$, $T_A = 25^{\circ}C$)		7	14	27	
Count Pulse Width	twՇ	30	_	_	ns
Counting Frequency	fē	5.0	10	_	MHz

FIGURE 1 - AC WAVEFORMS with MCM6604 NORMAL CYCLE

FIGURE 2 - REFRESH CYCLE

TYPICAL CHARACTERISTICS

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse in.

Refresh Enable Input - Pin 2

Active high input which determines whether the MC3232A is in refresh mode (H) or address enable (L).

A0-A5 Inputs - Pins 7, 3, 5, 18, 20, 22 Row address inputs.

A6-A11 Inputs — Pins 8, 4, 6, 17, 19, 21 Column address inputs.

00-05 Outputs - Pins 9, 11, 10, 16, 15, 14

Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 12

Power supply ground.

CE Input - Pin 13

Optional use, chip enable control pin. Left open, an internal 50 $k\Omega$ pullup resistor keeps this pin high and the MC3232A is a functional replacement for the Intel 3232 (without detect zero function). As an active input, when pulled low, all 3232A outputs go three-state. Regardless of Pin 13 (CE) condition, when power (VCC) is removed, all 3232A outputs go three-state. In addition, the refresh address counter is reset to all 1s so that upon return of supply power, control of refresh addressing can be returned to the MC3232A (by pulling Pin 13 high) at a known address (i.e., all 1s). This option is available tested by consulting factory.

Row Enable Input - Pin 23

High input selects row, low input selects column addresses of the driven memories.

V_{CC} - Pin 24

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μ F capacitor should be used to ground along with careful V_{CC} and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

Note. Numbers in parenthesis indicate part types or values for 16K x 1 RAMs

MC3242A

MEMORY ADDRESS MULTIPLEXER FOR 16K RAMS

The Motorola MC3242A is an address multiplexer and refresh counter for 16-pin 16K dynamic RAMs that require a 128-cycle refresh. It multiplexes fourteen system address bits to the seven address pins of the memory device. The MC3242A also contains a 7-bit refresh counter that is clocked externally to generate the 128 sequential addresses required for refresh. The high performance of the MC3242A will enhance the high speed of the N-channel RAMs such as the MCM4116.

- Simplifies 16-Pin 16K Dynamic Memory Design
- Reduces Package Count
- 7-Bit Binary Counter for 128 Refresh Address
- Multiplexing: Row Address/Column Address/Refresh Address
- High Input Impedance for Minimum Loading of Bus:
 IF = 0.25 mA Max
- Schottky TTL for High Performance Address Input to Output Delay —

tAO = 25 ns @ CL = 250 pF

Second Source to Intel 3242

(Detect Zero Function Not Included and Additional Chip Enable Feature Added at Pin 15)

MEMORY ADDRESS MULTIPLEXER AND REFRESH ADDRESS COUNTER

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUITS

	1 2 3 3 4 4 5 6 6 7 8 8 9 110 111 112 113 114	28 VCC 27 A6 26 A13 25 A5 24 A12 23 A4 22 A11 21 A3 20 A10 19 O6 18 O3 17 O4 16 O5
Gna	14	

Note: A0 Through A6 Are Row Addresses
A7 Through A13 Are Column Addresses
*See Pin Definitions

TRUTH TABLE AND DEFINITIONS

Refresh	Row	0
Enable	Enable	Output
Н	Х	Refresh Address
L		(From Internal Counter)
L	Н	Row Address
		(A0 through A6)
L	L	Column Address
	l .	(A7 through A13)

Count - Advances Internal Refresh Counter

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	v
Input Voltage	V _I	~0.5 to +7.0	V
Output Voltage	٧o	-0.5 to +7.0	V
Output Current	I _O	100	mA
Operating Ambient Temperature	TA	0 to +75	°c
Storage Temperature	T _{stg}	-65 to +150	°С
Junction Temperature Ceramic Package	Тј	+175	°C
Plastic Package		+150	

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4 5 V < V_{CC} < 5 5 V, 0°C < T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (VIL = 0.45 V)	IţL	-	-0 04	-0.25	mA
Input Current, High Logic State (VIH = 5.5 V)	Чн	=	-	10	μА
Input Voltage, Low Logic State	VIL	-	- 1	0.8	V
Input Voltage, High Logic State	VIH	2.0	- 1	_	V
Output Voltage, Low Logic State (IOL = 5.0 mA)	VOL	-	0.25	0.4	V
Output Voltage, High Logic State (IOH = -1.0 mA)	Voн	30	4.0	_	V
Input Clamp Voltage (I _{IK} = -12 mA)	VIK	-	-08	-1.5	٧
Power Supply Current (V _{CC} = 5.5 V)	lcc	-	95	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 55 V, 0°C \leq T_A \leq 75°C, typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times			i		
Address Input to Output	tAO		l		ns
(Load = 1 TTL, C _L = 250 pF)		–	12	25	1
(Load = 1 TTL, C _L = 15 pF, V _{CC} = 5.0 V, T _A = 25 ^o C)	ļ	-	6.0	9.0	
Row Enable to Output	t00		1		ns
(Load = 1 TTL, C _L = 250 pF)		12	27	41	
(Load = 1 TTL, C _L = 15 pF, V _{CC} = 5.0 V, T _A = 25 ^o C)		7	12	27	
Refresh Enable to Output	†EO		Ĭ		ns
(Load = 1 TTL, C _L = 250 pF)		12	30	45	i i
(Load = 1 TTL, C _L = 15 pF, V _{CC} = 5.0 V, T _A = 25°C)		7	14	27	
Count Pulse Width	ŧwō	30		_	ns
Counting Frequency	fC	5.0	10		MHz

FIGURE 1 - AC WAVEFORMS WITH MCM4116 NORMAL CYCLE

FIGURE 2 - REFRESH CYCLE

TYPICAL CHARACTERISTICS

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse in.

Refresh Enable Input - Pin 2

Active high input which determines whether the MC3242A is in refresh mode (H) or address enable (L).

A0-A6 Inputs - Pins 9, 5, 7, 21, 23, 27 Row address inputs.

A7-A13 Inputs - Pins 10, 6, 8, 20, 22, 24, 26 Column address inputs.

00-06 Outputs - Pins 11, 12, 13, 18, 17, 16, 19 Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 14

Power supply ground.

CE Input - Pin 15

Optional use, chip enable control pin. Left open, an internal 50 k Ω pullup resistor keeps this pin high and the MC3242A is a functional replacement for the Intel 3242 (without detect zero function). As an active input, when pulled low, all 3242A outputs go three-state. Regardless of Pin 15 (CE) condition, when power (VCC) is removed, all 3242A outputs go three-state. In addition, the refresh address counter is reset to all 1s so that upon return of supply power, control of refresh addressing can be returned to the MC3242A (by pulling Pin 15 high) at a known address (i.e., all 1s). This option is available tested by consulting factory.

V_{CC} - Pin 28

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μF capacitor should be used to ground along with careful VCC and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicate part types or values for 16K x 1 RAMs

MC3245

QUAD TTL TO MOS DRIVER

This high-speed driver is intended as a clock (high-level) driver for 22-pin and 18-pin dynamic NMOS RAMs and CCD memories. It is designed to operate on nominal +5 V and +12 V power supplies.

The channel control logic is organized so that all four drivers may be deactivated for STANDBY operation, or single driver may be activated for READ/WRITE operation or all four drivers may be activated for REFRESH operation.

- Control Logic Optimized for Use in MOS RAM Systems
- Output Voltages Compatible with Many Popular MOS RAMs
- TTL and DTL Compatible Inputs High-Speed Switching
- Interchangeable with Intel 3245

GATE-CONTROLLED FOUR-CHANNEL MOS CLOCK DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATION WITH '7001 RAM AND TTL SYSTEMS

		Inputs			
	Control		Add	Iress	
Enable 1	Enable 2	Enable 3	Channel Select	Refresh Select	Output
н	1	1		1	Ł
t	н	1		1	L
1	, ,	н.	l (',	1	L
ı	1	1	н	н	L
L	L	L	L	1	н
L	L	L	ı	L	н

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	vcc	-0.5 to +7.0	Vdc
	V _{DD}	-0.5 to +14	Vdc
Output Voltage	v _o	-1.0 to V _{DD} +1.0	Vdc
Input Voltage	Vı	-1.0 to V _{DD}	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°c
Storage Temperature Range	Tstg	-65 to +150	°c
Junction Temperature	TJ	ı	°C
Ceramic Package		175	ļ
Plastic Package		150	

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	4.75	5.0	5.25	Vdc
·	V _{DD}	11.4	12	12.6	Vdc
Operating Ambient Temperature Range	TA	0	<u> </u>	75	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature conditions. Typical values measured at T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage - High Logic State (VIL = 0.8 V, IOH = -1.0 mA)	Voн	V _{DD} - 0.5	-	-	Vdc
Output Clamp Voltage — High Logic State (IOH = 5.0 mA, V _{IL} = 0 V)	Voнc	_		V _{DD} + 1.0	Vdc
Output Voltage — Low Logic State (VIH = 2.0 V, IOL = 5.0 mA)	VOL	-	-	0.45	Vdc
Output Clamp Voltage Low Logic State (V _{IH} = 5.0 V, I _{OL} -5.0 mA)	Volc	-1.0	-	_	Vdc
Input Voltage — High Logic State	VIH	2.0	-	_	Vdc
Input Voltage — Low Logic State	VIL	-	_	0.8	Vdc
Input Clamp Voltage (I _{IK} = -5.0 mA)	Vik	-	-	-1.0	Vdc
Input Current — High Logic State (V _I = 5.0 V)	ЧН				μА
Channel Select Inputs Refresh Select and Enable Inputs		_	-	10 40	
Input Current — Low Logic State (VII = 0.45 V)	lIL.				mA
Channel Select Inputs Refresh Select and Enable Inputs		_	, <u> </u>	-0.25 -1.0	
Power Supply Current — Output High Logic State (V _{CC} = 5.25 V, V _{IL} = 0 V, I _{OH} = 0 mA, V _{DD} = 12.6 V)	ICCH IDDH	_	23 19	30 26	mA
Power Supply Current — Output Low Logic State (VCC = 5.25, VIH = 5.0 V, IOL = 0 mA, VDD = 12.6 V)	ICCL IDDL	=	29 12	39 15	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature conditions. Typical values measured at +25°C.)

Characteristic	Symbol	Min (1)	Typ (2)	Max (3)	Unit
Delay Time					ns
Output High to Low Level (RS = 0Ω)	t DHL	3.0	7.0	-	1
Output Low to High Level (RS = 0Ω)	tDLH	5.0	11	_	
Transition Time					ns
Output High to Low Level ($R_S = 20 \Omega$)	tTHL	50	17	25	
Output Low to High Level (R _S = 20 Ω)	tTLH	10	17	25	
Propagation Delay Time					ns
Output High to Low Level (R _S = 0 Ω)	tPHL	_	18	32	
Output Low to High Level (RS = 0 Ω)	tPLH1	_	20	32	
$(R_S = 20 \Omega)$	tPLH2	_	27	38	

⁽¹⁾ C_L = 150 pF

CAPACITANCE* (Unless otherwise specified, $T_A = +25^{\circ}C$, f = 1.0 MHz, $V_1 = 2.0$ V, and $V_{CC} = 0$ V.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Capacitance Channel Select Inputs	C _{IN} (CS)	-	5.0	8.0	pF
Input Capacitance Refresh or Enable Inputs	C _{in} (Ē)	_	8.0	12	pF

^{*}Periodically sampled, but not 100% tested.

FIGURE 1 - SWITCHING TEST WAVEFORMS

FIGURE 2 - SWITCHING TEST CIRCUIT

⁽²⁾ C_L = 200 pF (3) C_L = 250 pF

MC3459

Specifications and Applications Information

QUAD NMOS MEMORY ADDRESS DRIVER

The MC3459 is designed for high-speed driving of the highly capacitive Address select inputs for NMOS Memories. It is also useful in numerous applications requiring a high-current MTTL NAND gate. It is pin-compatible with the popular MC7400 Quad NAND gate.

- Fast Propagation Delay Time —
 20 ns Typical with 360 pF Load
- Output Voltages Compatible with NMOS Memories
- Inputs Compatible in MTTL and MDTL Logic Families
- Output Loading Factor 50

REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 of Circuit Shown) Vcc R1 R2 ≶R5 **★** D5 03 Q4 D3 D4 OUTPUT INPUTS 02 R4 Q1 **Q5** ▲ D2 ≨R3 D1 🛣 GND

QUAD NMOS ADDRESS
LINE DRIVER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.5	Vdc
Input Voltage	VI	5.5	Vdc
Power Dissipation (Package Limitation Ceramic Package @ T _A = 25°C Derate above T _A = 25°C	P _D 1/R _θ JA	1000 6.6	mW mW/°C
Plastic Package @ $T_A = 25^{\circ}C$. Derate above $T_A = 25^{\circ}C$	PD 1/R _∂ JA	830 6.6	mW/ ^o C
Ceramic Package @ $T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$	P _D 1/R _θ JC	3.0 20	Watts mW/ ^O C
Plastic Package @ $T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$	P _D 1/R _€ JC	1.8 14	Watts mW/ ^O C
Operating Ambient Temperature Range	TA	0 to 70	°C
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 V \leq V_{CC} \leq 5 25 V and 0 \leq T_A \leq 70°C)

Characteristic	Symbol	Min	Typ(1)	Max	Unit
Input Voltage — High Logic State	V _{IH}	2.0	-	-	V
Input Voltage — Low Logic State	VIL		_	0.8	V
Input Current — High Logic State (V _{CC} = 5.25 V, V _{IH} = 2.4 V) (V _{CC} = 5.25 V, V _{IH} = 5 5 V)	I _{IH1}	- -		80 2.0	μA mA
Input Current — Low Logic State (V _{CC} = 5.25 V, V _{IL} = 0.4 V)	116		-	-3.6	mA
Input Clamp Voltage (I _{IC} = -12 mA)	VIC	-	_	-1.5	v
Output Voltage — High Logic State $(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -640 \mu\text{A})$ $(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -2.0 \text{ mA})$	V _{ОН1} V _{ОН2}	3.2 2.4	<u> </u>		V
Output Clamp Voltage (V _{CC} = 5.25 V, V _{IL} = 0 V, I _{OC} = 5.0 mA)	Voc	-	5.8	6.75	V
Output Voltage — Low Logic State (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 640 μA) (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 80 mA)	V _{OL1} V _{OL2}	- -	-	0.3 0.7	v
Power Supply Current — Outputs High Logic State (V _{CC} = 5.25 V, V _{IL} = 0 V)	Іссн	-	12	18	mA
Power Supply Current — Outputs Low Logic State (V _{CC} = 5.25 V, V _{1H} = 5 0 V)	1 _{CCL}	-	85	122	mA -

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V, T_A = 25°C, C_L = 360 pF)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time — High to Low Logic State	^t PHL	_	21	32	ns
Propagation Delay Time - Low to High Logic State	^t PLH	-	16	26	ns

⁽¹⁾ Typical values measured at $T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$.

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES

TYPICAL PREFORMANCE CURVES

APPLICATIONS SUGGESTIONS

A majority of the new N-Channel MOS memories have TTL logic compatible inputs that exhibit extremely low input current and capacitance (typically 5 pF to 10 pF). However, in a typical memory system (Figure 6) where some of the inputs such as Address lines have to be common, the total parallel input capacitance can be over 300 pF. Standard TTL logic gates have insufficient current drive capability to rapidly switch a high capacitive load; a high speed buffer, such as the MC3459, is required.

A considerable amount of noise can be generated during switching due to the high speed and high current drive capability of the MC3459. The high capacitive discharge current during the high to low transition, plus current spikes can result in a considerable amount of noise being generated on the ground lead. Current spikes are due to both the upper and lower output drive transistors being on for a short period of time during switching. This causes a very low impedance path between VCC and ground.

In order to minimize the effects of these currents, the following layout rules should be followed:

- The V_{CC} supply pin of each package should be bypassed with a low inductance 0.01 μF capacitor. The 0.01 μF capacitor will sustain the high surge currents required during switching.
- 2. There is a large amount of current out of the ground node during switching the noise seen at this node

will be proportional to the ground impedance. The impedance of the ground bus can be reduced by increasing its width. At least a 50 mil ground width is recommended.

Some of the NMOS memories with TTL logic compatible inputs do not actually meet the TTL logic level requirements in the input high state voltage (VIH). There are N-Channel MOS memories with a VIH minimum ranging from 2.4 V to 4.0 V. The MC3459 can directly interface with those N-Channel memories having a VIH minimum of 3.0 V. The higher driver output levels can be accomplished by adding a pull-up resistor to VCC or by increasing the VCC voltage. There are some N-Channel MOS memories, such as the MCM7001, that have a supply requirement of 7.5 V. The high maximum supply voltage rating of the MC3459 can accommodate a 7.5 V VCC supply without affecting its input TTL logic compatibility. Figure 4 gives the typical VOH versus IOH characteristics for both VCC = 5.0 V and VCC = 7.5 V. An expanded output characteristic curve of Figure 4 is illustrated in Figure 5.

The MC3459 can be used in a variety of applications including, high fan-out buffer (drives 50 standard TTL loads) and low impedance transmission line driver.

MC3461

HIGH-SPEED NMOS/MECL SENSE AMPLIFIER

The MC3461 is a dual current sense amplifier with MECL 10,000 compatible control inputs and open emitter complementary outputs. The device is designed for use with Motorola MCM7001 or Intel 2105 NMOS 1K RAMs. A common latch input retains information in the amplifier at the time of latch closure. Separate channel output enables are provided to force the outputs to predetermined states until amplifier information exchange is desired.

When the latch input goes to a logic "0" the outputs are locked in their present state unless the output enable is at, goes to, logic "1". In this event, the Output 1 and Output 2 remain at, or go to, logic "0" and logic "1" respectively.

- Complete NMOS Sense Amplifier No External Components Required
- Minimum Propagation Delay —
 Amplifier Response 5.0 ns Typ
 Enable Response 2.5 ns Typ
 Latch Response 1.0 ns Typ
- Power Supplies Compatible With MCM7001/MECL10,000 Systems
- Amplifier Input Termination Voltage Range from Gnd to VREF Supply on MCM7001

APPLICATION WITH MCM7001 MEMORY δ_{RT} ۷cc V_{REF} = 7.5 Vdc MC3461 Output Output o 2 A Enable MCM7001 or equiv. Input 2A Data 0-2.0 Vdc Α Date 50 Input Latch O Output

DUAL NMOS MEMORY SENSE AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLE for latch input at logic 1 Output Output Output Input Enable I(1) ≥ -200 µA 0 0 1 $1(2) = 0 \mu A$ 0 1 1 $I(1) = 0 \mu A$ 0 0 1(2) > 200 HA

Negative Currents Defined as Flowing into Device Pin.

MAXIMUM RATINGS (Unless otherwise noted, T_A = 25°C)

Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc	8.5	V
	VEE	-6.0	V
Termination Voltage	VΤ	0 to V _{CC}	_
Operating Ambient Temperature Range	T_A	0 to 75	οс
Package Power Dissipation			
Still Air	P_{D}	1000	mW
Derate above 25 ^o C		6.7	mW/ ^o C
Transverse Air flow ≥ 500 linear fpm		2000	mW
Derate above 25 ^o C		13.3	mW/ ^o C

ELECTRICAL CHARACTERISTICS

This device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one sense amplifier. The other half is tested in the same manner.

	TEST VOLTAGE/CURRENT VALUES (Volts)										
I _{sense}	sense VIHmax VILmin VIHAmin VILAmax VCC VEE										
≥200µA	-0 850	-1 870	-1 155	-1 485	+75	-52					
≥200µA	-0810	-1 850	-1 105	-1 475	+75	-5.2					
≥200µA	-0 720	-1 830	-1 045	-1 445	+75	-52					
	≥200µA	I _{sense} V _{1Hmax} ≥200μA -0 850 ≥200μA -0 810	I _{sense}	Volts Vol	V ₁ V ₂ V ₃ V ₄ V ₄	Volts Vol					

										75°C	≥200μA	-0 720	-1 830	-1 045	-1 445	+75	-52	
		Pin			,		est Limits				TEET	01.7405/	MIDDEN	T 4001 155	TO PINS I	ICTED 5		
		Under	00	c		+25°C		75°	,c		1521 A	OL TAGE/	JURKEN	I APPLIEL	J TO PINS I	ISTED E	SELOW:	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	Isense	ViHmax	VILmin	VIHAmin	VILAmax	Vcc	VEE	Gnd
Power Supply Drain Current	¹cc	9	-	-	-	40	59		-	mAdc	6 12	-			-	9, 10	8	1, 16
	1EE	8	-	-	-	-50	-73	_		mAdc	6,12	l			-	9, 10	8	1, 16
Input Current	I _{inH}	4	-	<u> </u>	_	_	500	_	_	μAdc	5,11	4	-	-	-	9, 10	8	1, 16
		7		<u> </u>	_	-	500			μAdc	5, 11	7				9, 10	8	1, 16
	l _{in L}	4			0.5	_	-	-	ļ	μAdc	5, 11	-	4		-	9, 10	8	1, 16
		7		-	0.5		-	- '	-	μAdc	5, 11	<u> </u>	7	_		9, 10	8	1, 16
Logic "1" Output Voltage	Voн	3	-1 010	-0 850	-0 960		-0 810	-0 900	-0 720	Vdc	6	7	_	-	_	9, 10	8	1, 16
		2	1	1 1		-	1 1		1 1	1 1	5	7	-	-	-	1	1 1	1
		3	<u> </u>	. T	, ,	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	5	7, 4					<u> </u>	
Logic "0" Output Voltage	VOL	3	-1 870	-1 660	-1 850	-	-1 650	-1 830	-1 620	Vdc	5	7		-	-	9, 10	8	1, 16
		2	1 1	1 1		-	1 1	ΙI	l 1	1 1	6	7	-	_	-	1	1 1	1
		2		7	'				<u> </u>		5	7, 4					<u> </u>	
Logic "1" Threshold Voltage	Vона	3	-1 030	-	-0 980	-	-	-0 920	-	Vdc	6	-	-] 7	4	9, 10	8	1, 16
		3	↓	_	1	_	_	↓	_	↓	5 5	_		4,7	- 1	↓		
Logic "0" Threshold Voltage	VOLA	3	<u> </u>	-1 640	- -		-1 630	-	-1 600	Vdc	5			7	4	9, 10	8	1, 16
Logic o missions contage	1 TOLA	2	l _	1 1	- 1		1 1	_	1 1	l "i	ĕ	_	_	1 7	4	"	Ĭ	1
		2	-	i 🕴	l -	-	†	-	l 🛊	🕴	5	-	- 1	4,7	-		į †	†
Switching Times (50-ohm load)														Pulse In	Pulse Out			
Propagation Delay Amplif	er t	2	-	-	-	50	100	-	-	ns	-	-	-	6	2	9, 10	8	1, 16
	t++	2	1 -	-	- 1	1	1 1	-) –	1	-	-) -		2		1	1 1
	t-+	3	-		-		1 1	-	-	1 1	-	-	-		3		1 1	1
	t+-	3		-	_	1	<u> </u>		<u> </u>		-		-		3			
Enable	t	3	-	-	-	2.5	5.0	-	-	ns	-	-	-	4	3	9, 10	8	1, 16
	t++	3	-	-	-	l i	1	-	-	1	-	_	-		3	li		
	t-+	2	-	-	-	↓		-	-	↓	-	-	-	1 ∤	2	♦	∳	₩
	t+-	2								ı '_	L	ı -		1 '	1 2	I	I	

^{*}Negative currents are defined as currents leaving the device

FIGURE 1 — SWITCHING RESPONSE TEST CIRCUIT AND WAVEFORMS @ 25°C (Other Section Tested Similarly)

^{*}Denotes equal lengths of 50-ohm coaxial cable. Wire length should be ≤ 1/4" from test point to pin or BNC connector.

Data Valid 1/2 MC10171 1/2MC10171 Address A10 003 A Q13 Address A11> Q0 2 Ē0 Q0 1 Write Enable > Q12 000 -o∨_{BB} E1 Q11 1/3 MC10177, 4 places -Q1 0 MCM7001, DOout 32 places 1/2 MC75368 16 places Data V_{BB}o Output MC10161 QO Bay Enable > Q1 ΕO Q2 Chip Select > E1 QЗ Address A12 > Q4 Q5 в Address A13 > Q6 С Address A14 > Q7 V_{BB} o D1_{out} мсм7001, 32 places 1/2 MC3461 8 places Latch Enable > Connect to Connect to all MCM7001's Bottom Array (32K x 1) Top Array (32K x 1) Data Inputs 12 Places

FIGURE 2 - 32K x 2 MEMORY BOARD (MECL SYSTEM)

REPRESENTATIVE CIRCUIT SCHEMATIC

MC3467

TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC)

The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package. Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems. The device is optimized for use in 9-track magnetic tape memory systems where low noise and low distortion are paramount objectives.

The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately 100 V/V.

The MC3467 is intended to mate with the MC3468 read amplifier to provide the entire magnetic tape read function.

- Wide Bandwidth − 15 MHz (Typ)
- Individual Electronic Gain Control
- Differential Input/Output

TYPICAL APPLICATION HIGH PERFORMANCE 9-TRACK OPEN REEL TAPE SYSTEM NRZI/Ø VI(EGC) Select Active Differentiator VIC3468 1/3 MC3467 NRZI Read Amplifier Preamplifier Filters Phase Encode Filters LSI Formatter See MC3468 Data Sheet For MC8500 Systems Applications Information MC8501 MC8502 MC8520

TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages Positive Supply Voltage Negative Supply Voltage	VCC VEE	6.0 9.0	V
EGC Voltages (Pins 1, 6 and 13)	VI(EGC)	-5.0 to V _{CC}	V
Input Differential Voltage	V _{ID}	±5 0	V
Input Common-Mode Voltage	Vic	±5.0	V
Amplifier Output Short Circuit Duration (to Ground)	. t _s	10	S
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	T _J	+150	°c

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = -6.0 \text{ V}$, f = 100 kHz, $T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage	VCCR VEER VI(EGC)	4 75 5.5 0	5 0 6.0 	5.25 -7.0 VCC	V V
Differential Voltage Gain (Balanced) (VI{EGC) = 0, e; = 25 mVp-p) (See Figure 1)	AVD	85	100	120	V/V
Differential Voltage Gain (VI(EGC) = VCC)	AVD	_	0.5	20	V/V
Maximum Input Differential Voltage (Balanced) (T _A = 25 ^o C)	VIDR	0.2	-	_	V _{pp}
Output Voltage Swing (Balanced) (Figure 1) (e; = 200 mVp-p)	VOR	6.0	80	_	V _{pp}
Input Common-Mode Range	VICR	±1.5	±2.0	_	V
Differential Output Offset Voltage $(T_A = 25^{\circ}C)$	VOOD	-	500	-	mV
Common-Mode Output Offset Voltage (T _A = 25 ^o C)	Vooc	-	500	_	mV
Common Mode Rejection Ratio (Figure 2) VI(EGC) = 0, VCM = 1 0 Vpp (f = 100 kHz) (f = 1.0 MHz)	CMRR	60 40	100 100	- -	dB
Small-Signal Bandwidth (Figure 1) (-3 0 dB, e ₁ = 1.0 mVp-p, T _A = 25°C)	BW	10	15	_	MHz
Input Bias Current	IIB	-	5.0	15	μА
Output Sink Current (Figure 5)	los	10	1.4	_	mA
Differential Noise Voltage Referred to Input (Figure 3) (VI(EGC) = 0, R _S = 50 Ω, BW = 10 Hz to 1 0 MHz, T _A = 25°C)	e _n	_	3.5	-	μVRMS
Positive Power Supply Current (Figure 4)	¹cc	_	30	40	mA
Negative Power Supply Current (Figure 4)	¹ EE		-30	-40	mA
Input Resistance (T _A = 25°C)	r,	12	25	_	kΩ
Input Capacitance (T _A = 25°C)	C,	_	2.0	-	pF
Output Resistance (Unbalanced) (T _A = 25°C)	ro	_	30	_	Ohms

FIGURE 1 – DIFFERENTIAL VOLTAGE GAIN, BANDWIDTH AND OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 2 – COMMON-MODE REJECTION RATIO (Channel A under test, other amplifiers tested similarly)

(Channel A under test, other channels tested similarly)

FIGURE 3 – DIFFERENTIAL NOISE VOLTAGE REFERRED TO THE INPUT

FIGURE 4 - POWER SUPPLY CURRENT TEST CIRCUIT

FIGURE 5 — OUTPUT SINK CURRENT TEST CIRCUIT (Channel A under test, other channels tested similarly)

FIGURE 6 – TOTAL HARMONIC DISTORTION
TEST CIRCUIT
(Channel A under test, other channels tested similarly)

TYPICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, T_A = 25° unless otherwise noted)

MC3468

Specifications and Applications Information

LSI MAGNETIC MEMORY READ SUBSYSTEM

The MC3468 READ Subsystem when used with the MC3467 triple preamplifier provides the interface between magnetic tape heads and digital logic. This system is well suited for open-reel and cartridge magnetic tape systems. The MC3468 performs peak detection, and threshold detection functions as required for NRZI, Phase-Encoded or Group-Encoded recording formats. The device consists of: 1) Input Multiplex function, 2) Gain Stage with Electronic Gain Control (EGC), 3) Active Differentiation Amplifier, 4) Zero Crossing Detector (ZCD), 5) Threshold Detector Amplifier with Multiplexed Inputs and 6) Threshold Detector.

- Complete READ Function in One LSI Device
- Two Pair of Differential Inputs Allow Logically Controlled Selection of Input Filter or Tape Head Configuration
- · Low Recovered Error Rate
- Input/Outputs are Low Power Schottky TTL Compatible

MAGNETIC TAPE MEMORY READ AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages Positive Supply Voltage	٠,,	.7.0	V
Negative Supply Voltage	V _{CC}	+7.0 8.0	V
Pin Voltages			
EGC Voltage (Pin 5)	VI(EGC)	-5.0 to +7.0	V
Threshold Voltage (Pin 16)	V _{I(T)}	+1.0 to -3.5	٧
ZCD Output (Pin 15)	VO(ZCD)	+7.0	V
Channel Select A/B Input (Pin 1)	VI(CS)	+7.0 to -2.0	V
Threshold Output TD (Pin 17)	VO(TD)	+7.0	V
Differential Input Voltage	1		
Threshold Amplifier	VID(T)	±5.0	V
Gain Amplifier	V _{ID}	±5.0	V

MAXIMUM RATINGS (continued)

Rating	Symbol	Value	Unit
Common Mode Input Voltage Threshold Amplifier Gain Amplifier	VIC(T) VIC	±5 0 ±5 0	v v
Amplifier Output Short Circuit Duration (Ground Pin 11)	ts	10	s
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c
Junction Temperature	Τj	150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = -6.0 \text{ V}$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
TOTAL DEVICE						
Power Supply Voltage Range @ T _A = 25 ^o C Positive Supply Voltage Negative Supply Voltage		V _{CCR} V _{EER}	4.75 -5.5	5.0 6.0	5.25 7.0	v v
Positive Supply Current (V _{CC} = +5.25 V)	7-13	¹cc	_	35	45	mA
Negative Supply Current (VEE = -7.0 V)	7-13	IEE		30	45	mA
Channel Select Input Voltage — Low Logic State		VIL(CS)	_	-	08	٧
Channel Select Input Voltage — High Logic State	-	VIH(CS)	2.0	_	_	V
Channel Select Input Current — Low Logic State (VIL(CS) = 0, VCC = 5.25 V)	6	IL(CS)	_	_	-100	μА
Channel Select Input Current — High Logic State (VIH(CS) = VCC = 5.25 V)	6	IH(CS)		_	10	μА
GAIN AMPLIFIER SECTION	•		***	•		
Voltage Gaın (Unbalanced @ Max Gain) (e _l ≈ 100 mV _{p-p} , f = 1.0 kHz	1, 14	Av	6.5	7.5	8.5	V/V
Voltage Gain (Unbalanced @ Mın Gain) (VI(EGC) = VCC, e _i = 800 mV _{p-p})	1, 14	Avs	-	0.05	0.1	V/V
Operating EGC Current (V _{EGC} = 0 to +5.25 V)	1,15	I _I (EGC)	_		6.0	mA
Maximum Differential Input Voltage (T _A = 25 ^O C)		V _{IDR}	0.8	-	_	Vpp
Common Mode Rejection Ratio $\{V_{I}(EGC) = 0, V_{CM} = 1.0 \text{ Vpp, } f = 100 \text{ kHz,}$ $T_{A} = 25^{\circ}C\}$	3	CMRR	40	80		dB
Bandwidth (-3.0 dB, T _A = 25°C)	1	BW	-	15		MHz
Input Resistance		ri	30	60		kΩ
Channel Isolation $\{f = 100 \text{ kHz}, e_i \approx 800 \text{ mV}_{p-p}\}$	2, 16		40	60	_	dB
Input Bias Current	4	IIB	-	5.0	15	μА
Input Common Mode Voltage Range		VICR	±1.0	±1.5	_	V
Output Resistance (Pin 11) (T _A = 25 ^o C)		ro	_	15	30	Ohms
Output Sink Current (Pin 11)	5	los-	1.2	2.1	_	mA
Output Voltage Swing (Pin 11) (f = 1.0 kHz, e _i = 800 mV _{p-p})	1	VOR	2.25	3.0	-	Vpp
Output Offset Voltage (T _A = 25 ⁰ C)		v ₀₀	-	±400	_	mV

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, T_A = 0 to +70°C unless otherwise noted) (Continued)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
ACTIVE DIFFERENTIATOR SECTION						
Timing Distortion (I = 1.0 mA, A = 1.5 Vpp, f = 100 kHz, $T_A = 25^{\circ}$ C)	12		-	1.0	3.0	%
Zero Cross Detector — High Level Output Current (VOH = 5.5 V)	8	[†] OH(ZCD)	_	-	150	μА
Zero Cross Detector — Low Level Output (IOL = 8.0 mA)	9	VOL(ZCD)	_	-	0.50	٧
Differentiator Output Sink Current (Pins 12 and 13)	5	10(D)-	1.0	1.4	-	mA
Differentiator Output Resistance (Unbalanced) $(T_A = 25^{\circ}C)$		r _o (D)	-	20	-	Ohms
THRESHOLD AMPLIFIER SECTION					1	
Differential Voltage Gain (e, = 200 mV)		AVD	4.25	5.0	5.75	V/V
Maximum Differential Input Voltage Without Distortion (T _A = 25 ^O C)		V _{IDR(T)}	-	-	400	mVpp
Maximum Differential Input Voltage Before Timing Shift (T _A = 25 ^o C)		V _{IDR(T)}	-	-	1.4	Vpp
Maximum Threshold Voltage (Linear Operation)		V _{IR(T)}	-	_	-1.0	V
Threshold Voltage Required to Disable Threshold Comparators ($V_{TD} > 2.7 \text{ V, T}_{A} = 25^{\circ}\text{C}$)		V _{I(T)}	_	-2.0	-2.5	V
Bandwidth (-3 0 dB, T _A = 25 ^o C)		BW	1	15	-	MHz
Input Resistance		ri(INT)	25	50	-	kΩ
Threshold Amplifier Bias Current	4	IB(T)	-	5.0	15	μА
Channel Isolation Ratio (f = 100 kHz)	2		40	60	-	dB
Threshold Detector Output Voltage — Low Logic State (IOL = 8.0 mA, Pin 17)	10	V _{OL} (T)	_	-	0.50	٧
Threshold Detector Output Current — High Logic State (VOH = 5.5 V, Pin 17)	11	IOL(T)	-	-	150	μА
Threshold Voltage Input Current (Pin 16)		ТНС		25	50	μА

DESCRIPTION OF FUNCTION

Input Multiplex — Input multiplexing allows logic-controlled (TTL compatible) selection of either of a pair of differential gain stages. Two separate tracks or one track processed through different filter networks for different recording formats can be selected (e.g., Phase Encoded/NRZI, Group-Coded/PE).

Gain Stage — The gain stage is controlled by Electronic Gain Control (EGC) and differential outputs are provided for the active differentiator and a single output is available for the threshold function. The EGC range is from essentially zero to 7.5 (unbalanced).

Active Differentiation — Active differentiation requires minimum external passive component count. The procedure for selecting component values insures linear operation and optimum zero-crossing detector performance for excellent noise rejection.

Zero Crossing Detector (ZCD) — The zero-crossing detector generates an output transition corresponding to the peak of the incoming signal to the MC3468. Careful attention has been paid to avoid timing distortion between the outputs of the active differentiator and the inputs of the zero crossing comparator. The output is open collector Schottky TTL.

Threshold Amplifier and Detector - The gain stage output is ac coupled or differentiated into the Threshold Amplifier multiplexer. This allows logic-controlled (TTL compatible) selection of either of a pair of single-ended to differential gain stages. Thus, the possibility of selecting between a differentiated or straight capacitive coupled signal for thresholding. The select line is the same as for the Gain Stage multiplexing. The unbalanced gain of the threshold amplifier is 5. An inverting input is available for balancing the input signal to minimize the effects of offset current. The differential outputs of the threshold amplifier are compared to an external threshold in the threshold comparators. An output signal is provided whenever the signal exceeds the threshold setting in the positive or negative direction. The output is open collector Schottky TTL.

The versatility of the MC3468 facilitates the design of dual mode (NRZI/PE, Group/PE) tape drives with the ability of dynamically switch gain, active differentiator components, and thresholds for different recording speeds or interchanged tapes.

Note: For proper operation a dc path must be provided for all inputs of all amplifiers.

MC3468 BLOCK SCHEMATIC

FIGURE 3 - COMMON MODE **REJECTION RATIO (CMRR)**

FIGURE 5 ~ AMPLIFIER OUTPUT AND DIFFERENTIATOR OUTPUT SINK CURRENT TEST CIRCUIT

FIGURE 2 - CHANNEL ISOLATION RATIO (B Inputs Shown) 20 V 50 V

FIGURE 4 - INPUT BIAS CURRENT TEST CIRCUIT

FIGURE 6 - CHANNEL SELECT INPUT CURRENT TEST CIRCUIT

FIGURE 12 - TIMING DISTORTION TA = 25°C

IEE, NEGATIVE POWER SUPPLY CURRENT (mA)

30

ŧ,

50

VCC = 50 V -

TYPICAL PERFORMANCE CURVES

70

FIGURE 13 – NEGATIVE POWER SUPPLY
CURRENT versus NEGATIVE POWER SUPPLY
VOLTAGE

TA = 25°C
VCC = 5 25 V

FIGURE 14 – NORMALIZED VOLTAGE GAIN versus EGC INPUT VOLTAGE

FIGURE 15 ~ ELECTRONIC GAIN CONTROL INPUT CURRENT versus VOLTAGE

55 6.0 6.5 VEE, NEGATIVE POWER SUPPLY VOLTAGE (VOLTS)

FIGURE 16 - CHANNEL ISOLATION RATIO

FIGURE 17 — GAIN AND PHASE versus FREQUENCY FROM Pins 6, 7 to Pins 12, 13

SYSTEM PARAMETERS

The following system parameters are characteristic of not only the device but external component values and circuit layout. Detailed test circuits and measured

parameters are provided only as a guide to expected system performance. These parameters are not readily measureable on a production volume basis.

FIGURE 18 - TEST CIRCUIT FOR MEASURING PROPAGATION DELAYS

From Gain Stage Input to Zero Crossing Detector Output

(Pin 6 to Pin 15) (Subtract 8 ns from measurement for probe and cable delays)

FIGURE 19 - TEST SETUP FOR MEASURING PHASE JITTER

Note: The jitter window, t, is defined as the $3\ \sigma$ points on a Gussion curve.

FIGURE 20 — TEST SETUP FOR THRESHOLD AMPLIFIER DELAY AND THRESHOLD COMPARATOR EQUIVALENT OFFSET MEASUREMENTS

- Notes: 1. For Delay measurements, V is fixed at -250 mV; for equivalent comparator offset voltage measurements, V is adjusted until Pin 17 goes low. The voltage, V, is the equivalent offset, V₁₀(TD).
 - Some compensation is possible using a resistor from Pin 3 to ground.

FIGURE 21 – TEST SETUP FOR GAIN AND PHASE versus FREQUENCY (5 kHz to 1 MHz) FROM INPUT TO DIFFERENTIATOR (Pin 6, 7 to Pin 12, 13)

Actual Test Measurements (Calibrate Instrumentation for Phase Compensation)

DESIGN SUGGESTIONS

Gain Stage Bias Current

One must consider supplying 15 μA of bias current to the Gain Stage when designing a filter network. A good design value for the equivalent resistance from each input leg to ground is 5 k Ω .

II Adjusting Peak Shift to Zero (See Figure 22)

The worst peak shift observed on the ZCD output occurs for the smallest slaw rate provided by the Active Differentiator at the ZCD inputs. In Turn, the Active Differentiator produces the smallest slaw rate when the gain-bandwidth product applied at its inputs is the smallest. Current source, resistors, and diode imbalances will exhibit the maximum peak shift under this condition. Using the resistor network shown, these imbalances are adjusted out for the worst case condition.

FIGURE 22 -- PEAK SHIFT NETWORK

Note: The 100 $k\Omega$ resistors should be close to the IC to suppress noise.

MC3468 APPLICATIONS INFORMATION

MC3468 For NRZI Encoded Magnetic Tape

NRZI Encoding was one of the first popular recording formats and is formalized as an American National Standard for the purpose of facilitating the interchange of magnetic tapes. Although the Phase-Encoded format is now more widely accepted than NRZI, vast libraries of NRZI tapes still exist. Computers will be reading these tapes for years to come, and in some cases, re-writing them in phase-encoded format. Thus, the ability of the tape drive electronics to read both NRZI and PE tapes is a feature often sought in new designs.

For NRZI recording, the magnetic surface of the tape is magnetized to saturation in one direction or the other each time a logical "1" is to be recorded. The magnetization remains unchanged for a logical "0". The resulting signal from the read head for a typical NRZI data stream is shown in Figure 23. The NRZI data stream consists of a continuum of Fourier components up to a maximum frequency of 5fH, where fH is numerically equal to one-half the maximum flux changes per second (FCPS). For long strings of zeroes, the lowest Fourier component could theoretically be near dc, but on a typical tape a long interval with no "1's" is not allowed. Consequently, most of the energy in the pulse train is around fig and its harmonics (up to the fifth). A suitable corner frequency for ac coupling from the preamplifier is 60 Hz, although for high speed systems it could be considerably higher (1/10 fH). The -3 dB frequency of a low pass filter is usually placed at a frequency greater than fy. In most systems, this low pass filter must do more than provide a roll-off for high-frequency transients. It also equalizes the read amplifier chain and differentiation network for linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated either as part of the ac coupling between the preamplifier and amplifier or as part of the differentiation network.

The American National Standard specifies that NRZI be recorded at 800 BPI (Bits Per Inch) on open reel magnetic tape. Typical read/write tape speeds range from 12.5 to 300 IPS (Inches Per Second). Examples 1 and 4 show MC3468 NRZI designs.

MC3468 For Phase-Encoded (PE) Magnetic Tape

Of the numerous methods for encoding digital data on magnetic tape, phase encoding is currently most popular. As shown in Figure 23, data is represented by transitions occurring in the middle of a "data cell". A low-to-high flux transition (toward the magnetization level representing erased tape) is defined as a logical "one" and a high-to-low transition is defined as a logical "zero". For consecutive "one's" or "zero's" phase transitions are introduced as needed at the "data cell" borders. Phase transitions are not required when the encoded data consists of "one-zero" patterns.

The read head signal resulting from mixed data streams consists of two fundamental frequencies, f_H and f_L which represent most of the harmonic content (with some energy at harmonics up to the fifth). These are numerically equal to $\frac{FCPI}{2}$ x IPS and $\frac{FCPI \times IPS}{4}$ (where

FCPI is maximum flux changes per inch and IPS is tape speed in inches per second). In high-speed, low-level systems, the amplitude of these read head signals is only a few millivolts and conditioning with a preamplifier such as the MC3467 followed by a passive bandpass filter is required. The bandpass characteristic sets the lower -3 dB frequency below $f_{\rm L}$ and the upper -3 dB frequency above $f_{\rm H}$. In most systems, the bandpass filter must do more than filter out noise. The low-pass portion also equalizes the read amplifier chain and differentiation network for a linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated as part of the filter between the preamplifier and amplifier or as part of the differentiation network.

The American National Standard specifies that PE data be recorded at 1600 BPI (Bits Per Inch) on open reel magnetic tape. Typical read/write tape speeds range from 6.25 to 200 IPS (Inches Per Second). Cartridges use 1600 BPI and have tape speeds of 30 IPS for read/write. Examples 2, 3, and 4 show MC3468 designs for PE systems.

MC3468 For Group Code Recorded (GCR) Magnetic Tape

Basically, Group-Coded Recording (GCR) is a high density recording scheme which uses the NRZI convention for "1's" and "0's", but adds the restriction that flux changes occur at least once in every three bit cells (Figure 23). The read head signal resulting from mixed data streams consists primarily of Fourier components from f_L to $3f_L = f_H$ and their harmonics up to the fifth. The frequencies $\frac{\text{fL}}{\text{cPI}}$ and $\frac{\text{fH}}{\text{H}}$ are numerically equal to $\frac{\text{FCPI} \times \text{IPS}}{2}$ and $\frac{\text{FCPI} \times \text{IPS}}{6}$, respectively (where FCPI is maximum flux changes per inch and IPS is tape speed in inches per second). The amplitude of the read head signals is only a few millivolts or less and conditioning with a preamplifier such as the MC3467 followed by a passive bandpass filter is required. The bandpass characteristic sets the lower -3 dB frequency below fL and the upper -3 dB frequency above f_H. The bandpass filter must do more than filter out noise. The low pass portion equalizes the read amplifier chain and differentiation network for linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated as part of the filter between the preamplifier and amplifier or as part of the differentiation network.

The proposed American National Standard specifies that GCR data be recorded at 9042 FCPI (Flux Changes Per Inch). Because of the data format, the usable data density is 6250 BPI rather than 9042 BPI. The "6250 BPI" is a throughput specification and should not be used in read amplifier calculations. The original GCR concept was intended for high speed drives (200 IPS). However, it is also being applied to lower speed (125 IPS) systems. Examples 5 and 6 illustrate the use of the MC3468 in GCR systems.

FIGURE 23 - MOST POPULAR MAGNETIC TAPE RECORDING FORMATS

CIRCUIT OPERATION

(See Figure 24 for component wiring and Figures 25 and 26 for Timing Diagrams)

The operation of the MC3468 is similar for NRZI, PE, and GCR data formats. The preamplifier and filtered signal is applied differentially to either Channel A or B Gain Stages. The Gain Stage output differentially feeds an Active Differentiator and a single-ended output is available for straight capacitive or differentiated (active or passive) coupling into either Channel A or B inputs to the Threshold Amplifier.

For the circuit configuration shown, the Active Differentiator output leads the input by almost 90°. The Active Differentiator output is applied to a Zero-Crossing Detector, which goes low for positive levels and high for negative levels, changing state at the zero crossings. The

Threshold Circuit amplifies the Gain Stage output and compares positive and negative signals to a threshold level. When the level is exceeded, the \overline{TD} output is low. From the waveforms, it is seen that the ZCD output makes a transition approximately in the middle of the period when \overline{TD} is low. Wiring ZCD "anded" with TD to the set input and \overline{ZCD} "anded" with TD to the "reset" input of the R-S type flip-flop reconstructs the data stream encoded on the tape. This circuit works for zero clip (zero threshold) operation, but has the disadvantage that timing distortion results from capacitive loading. Digital circuits for reconstructing the data stream which utilize pipe-line delays to overcome capacitive loading timing distortion are shown in Figure 27.

FIGURE 24 - TYPICAL MC3468 COMPONENT HOOKUP

FIGURE 25 - WAVEFORMS SHOWING MC3468 OPERATION FOR NRZI DATA

FIGURE 26 - TIMING DIAGRAM WAVEFORMS SHOWING MC3468 OPERATION FOR PHASE-ENCODED DATA

FIGURE 27 - OTHER DIGITAL CIRCUITS FOR RECONSTRUCTING DATA STREAMS FROM THE MC3468

1) Dual Output Circuit (Pipeline Delay for Negative Edge Must Be the Same for Both Outputs)

2), Single Output Circuit (Operation Independent of Capacitive Loading Effects on Delays)

Group Delay Distortion

The ultimate purpose of the magnetic read amplifier chain in Figure 28 is to produce a digital signal with transitions corresponding to the peaks of a read head signal. Because the active and passive elements in the chain exhibit phase characteristics, there will be a "pipe-line" delay between peaks at the read head and the digital output from the zero-crossing detector. Variations in this delay with frequency or amplitudes cause timing distortion which translates directly into increasing error rates. The primary consideration in the read chain implementation is to equalize the read chain for almost flat delay over the frequencies and amplitudes of required operation. Figure 28 depicts one of several possible read chain configurations which can be equalized for best-flat time delay performance.

The determination of the component values is relatively straight forward provided the active elements have negligible phase characteristics in the frequency range of operation. Below 1 MHz, the MC3467/MC3468 read chain active elements have negligible phase characteristics. Although phase effects start showing above 1 MHz, phase versus frequency is linear (constant time delay).

Other read chain configurations have a band-pass filter between the preamplifier and Gain Stage. It is possible to move some of the poles of the filter into the active differentiator. The technique suggested in Figure 28 transfers poles into the active differentiator to minimize component count. The insertion loss of the technique is also less than an equalization filter ahead of the READ amplifier.

Determining RD, CD, and LD For the Active Differentiator

For the equalized read chain shown in Figure 28, C_D , R_D and L_D are determined respectively in that order. The phase characteristics of the active elements are assumed to be negligible.

An active differentiator is formed by RD, CD and LD coupling the emitters of a differential amplifier having current sources I_{OD} in each I_{ext} is differential voltage A_vE_p $cos\ \omega t$ is applied to the Active Differentiator, the resulting current through RD and CD is:

$$I = \frac{2A_V E_p}{\sqrt{R_T^2 + \left(\frac{1}{\omega C_D} + \omega L_D\right)^2}} \cos \left\{ \omega t - \arctan\left(\frac{-1/\omega C_D}{R_T}\right) \right\}$$

 $1 \cong 2A_v E_p C_D \omega \sin \omega t$

where $2A_VE_D$ is the product of the differential input to the Gain Stage E_D and its unbalanced gain, A_V . where R_T is the total of R_D and the output impedances of Q1 and Q2. The combined output impedances of Q1 and Q2 is 40 Ohms.

This condition is approximated for $\frac{1}{R_T C_D} = \omega_C = 3\omega_H$ (where ω_H is the maximum applied frequency of appreciable Fourier content).

The peak value of I (i.e., $2A_V E_D C_D \omega$) is important. As I approaches IO(D), the transistor Q2 turns off and the waveform at Pin 12 distorts. The circuit no longer behaves as a differentiator and peak distortion results.

For best zero crossing detector performance, it is essential that I be maximized. A design value of I which results in good noise performance and minimum peak shift is 900 microamperes, 1

$$I = 2A_v E_p C_D \omega = 900 \times 10^{-6}$$

Rearranging the equation for I,

$$C_D = \frac{900 \times 10^{-6}}{2A_V E_P \omega}$$

Also, solving
$$\omega_C = \frac{1}{R_T C_D}$$
 for R_T ,

$$R_T = \frac{1}{\omega_C C_D}$$

Assuming the output impedance of Q1 and Q2 combined is 40 Ohms.

$$R_D = \frac{1}{\omega_C C_D} - 40$$

where $\omega_C = 3 \omega_H$.

As shown in Table 1, the addition of an inductor, L_D, significantly improves phase linearity versus frequency as well as providing a roll off for high frequency noise, This optimum solution requires the following relationships:

$$\frac{2}{RTCD} = \frac{RT}{LD}$$

rearranging,

$$L_{D} = \frac{R_{T}^{2} C_{D}}{2}$$

1 For optimum zero-crossing detector performance, dl/dt should be as large as possible at zero-crossing.

Motorola guarantees a minimum IO(D) of 1.0 mA.

TABLE 1 – PHASE LINEARITY (CONSTANT TIME DELAY) PERFORMANCE FOR RC versus RLC ACTIVE DIFFERENTIATOR NETWORK

$$\omega_{C} = \frac{1}{R_{D}} c_{D}^{-3} \omega_{H}$$

$$\omega_{D} = \frac{\sqrt{2}}{R_{D}} c_{D}^{-3} \omega_{H}$$

$$\omega_{D} = \frac{\sqrt{2}}{R_{D}} c_{D}^{-3} \omega_{H}$$

ω			ω		
$\omega_{\mathbf{C}}$	θ	$\Delta \theta$	ω_{n}	θ	$\Delta \theta$
1.0	+45.00		1.0	0	
0.9	+48.01	+3.01	0.9	+8.49	+8.49
8.0	+51.34	+3.33	0.8	+17.65	+9.16
0.7	+55.01	+3.67	0.7	+27.26	+9.61
0.6	+59.04	+4.03	0.6	+37.03	+9.77
0.5	+63.43	+4.39	0.5	+46.69	+9.66
0.4	+68.20	+4.77	0.4	+56.04	+9.35
0.3	+73.30	+5.10	0.3	+65.00	+8.96
0.2	+78.69	+5.39	0.2	+73.58	+8.58
0.1	+84.29	+5.60	0.1	+81.87	+8.29

Threshold Considerations

The threshold circuitry is used in read after write systems to insure that good data was written, to set up gain during an ID burst, and sometimes to indicate a minimum signal voltage for invalid data. Optimum thresholding requires a large swing at the threshold amplifier inputs. A good design value for VINTA is 1.0 Vp-p, and should not exceed 1.4 Vp-p. If it does, a timing shift results. Internal clipping is provided for all signals greater than 400 mVp-p. The distortion resulting from clipping has no effect on thresholding because only peaks are clipped.

As shown in Figure 24, the Gain Stage output at Pin 11 is ac coupled to the threshold amplifier so that voltage offsets do not influence thresholding. An attenuator R1/R2, is often required in the ac coupling networks because the gain stage output is between 1.6 Vp-p and 2.4 Vp-p for optimum zero-crossing-detector performance.

The magnitude of R1 should be less than 5 k Ω to minimize the effects of Threshold Amplifier Bias current (ITHA = 15 μ A). Also, R1 + R2 must be greater than 3 k Ω because the minimum output sink current (IQS) of the Gain Stage is 1.5 mA. A resistance equal to R1 should be wired to ground from the — leg of the Threshold Amplifier (minimize offset bias current effects).

Note that only the selected amplifier input contributes to bias current. Each output of the Threshold Amplifier is 5 VINTA, and is applied to its resepctive Threshold comparator. Each comparator sees 2.5 VINTA. Thresholding is based on a percentage of the nominal voltage applied to the comparators, 2.5 VINTA. Both positive and negative references are derived from VEE as follows:

R3 should be less than 1 k Ω to minimize the effects of Threshold Comparator Bias Current (ITHC = 50 μ A). A 0.1 μ F decoupling capacitor is required for transients.

The following circuits are useful for multi-channel and/or dynamic threshold switching applications.

Base Line Shift in PE Systems

In phase-encoded recording, the read signal may not make symmetrical transitions about the zero bias level. A lower amplitude signal with a low frequency component is often superimposed. Although a highpass filter attenuates some of this component, its frequency is often close to the -3 dB frequency of the filter and may be only -6 dB down from signal amplitudes. This baseline shift has no adverse effects on the performance of the Active Differentiator, However, the Threshold Detector is sensitive to the unequal signal peaks, Signal-tonoise ratio can be improved by performing a passive differentiation into the Threshold Amplifier. With the corner frequency, fc, placed at fl, the fl signal is attenuated -3 dB; the fH = 2fL signal is for all practical purposes unattenuated. Figure 29 shows the 45° phase lead introduced by passive differentiation. Note that this technique is not directly applicable to high thresholds because the ZCD transitions fall outside the thresholding window. However, the threshold window can be delayed to overcome this drawback.

The design of the attenuator, R1/R2, follows as described previously. Example 3 shows a typical application of passive differentiation to overcome base-line shift

FIGURE 29 - RESULTING OPERATION FOR PASSIVE DIFFERENTIATION INTO THRESHOLD AMPLIFIER

Board Layout and Testing Considerations

An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 30.

- 1. Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in 3dimensions.
- 2. Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.
- 3. Avoid signal runs under the IC, also avoid parallel runs of 1 inch or greater on the opposite or same side of
- 4. Use monolithic ceramic 0.1 µF capacitors for decoupling power supply transients. One from VCC to ground and one from VEE to ground for each IC package. Keep lead lengths to ¼ inch or less and place in close proximity to the IC.

5. Keep all signal runs as short as possible. The lead on Pin 15 will radiate and can couple back into the active differentiator. This will result in excessive phase jitter. The tell-tale behavior is a ringing at Pin 11 corresponding to the transitions at Pin 15. To overcome this coupling problem, keep the lead on Pin 15 short and isolated from the other Input/Output lines to the MC3468. Preferably, put it over or next to a ground plane. For long distance runs, use a twisted pair or coaxial cable.

When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test set-ups must be calibrated at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

FIGURE 30 - POWER AND GROUND DISTRIBUTION FOR MC3468 PRINTED CIRCUIT BOARD LAYOUT

EXAMPLES

Example #1 (See Figure 24 for Component Hookup)

Tape Drive Type: Open Reel

Encoding: NRZ1

Recording Density: 800 BPI (800 FCPI)

Tape Speed: 200 IPS Signal into Gain Stage

Epp = 0.3 to 0.6 Vp-p @ 80 kHz

Threshold: 25% of minimum voltage peaks

The voltage from the Gain Stage is designed for 1.6 Vp-p at Pin 11.

$$\frac{1.6}{0.6}$$
 = A_V = 2.7

Set the EGC for a gain of 2.7, unbalanced.

The maximum p-p voltage to the Threshold Amplifier, V_{1NTA} , is designed for 1 Volt. The required attenuation factor is $\frac{1}{1.6}$

$$\frac{V_{\text{INTA}}}{V_{\text{O}}} = \frac{R1}{R1 + R2} = \frac{1}{1.6}$$

 $R1 + R2 \ge 3 k\Omega$ and $R1 \le 5 k\Omega$ (See text)

These constraints are satisfied when R1 = 4.7 k Ω and R2 = 3 k Ω . This is an optimum solution for a minimum coupling capacitor value

Now consider the minimum voltage applied to the Threshold Amplifier

$$V_{INTA(MIN)} = \frac{1}{1.6} \times 2.7 \times 0.3 = 0.5 \text{ Vp-p.}$$

The threshold comparator reference voltage, V_{R} , is set at 25% of 2.5 $V_{INTA}(MIN)$

$$V_R = 0.25 \times 2.5 \times 0.5 \cong 300 \text{ mV}$$

$$-300 \times 10^{-3} = \frac{R3}{R3 + R4} (-6)$$

 $R3 \le 1 k\Omega$ (See text)

Let R3 = 470 Ω ; then R4 \cong 10 k Ω

The values of R_D and C_D are determined from the equations given in the text

$$\begin{split} C_D &= \frac{900 \times 10^{-6}}{2 A_v \, E_{pp} \, \omega} = \frac{900 \times 10^{-6}}{A_v \, E_{pp} \, \omega} \\ &= \frac{900 \times 10^{-6}}{2.7 \times 0.6 \times 2\pi \times 80 \times 10^3} \\ C_D &\cong 1000 \, \text{pF} \end{split}$$

Assume f_c = 3f

$$R_D = \frac{1}{\omega_C C_D} - 40 = \frac{1}{2\pi \times 3 \times 80 \times 10^3 \times 10^{-9}} - 40$$

 $R_D = 670 - 40 \cong 600 \Omega$

$$L_D = \frac{R_T^2 C_D}{2} = \frac{(670)^2 \times 10^{-9}}{2} = 224 \mu H$$

Example #2 (See Figure 24 for Component Hookup)

Tape Drive Type: Open Reel Encoding: Phase-Encoded

Recording Density: 1600 BPI (3200 FCPI)

Tape Speed: 200 IPS Signal Into Gain Stage

E_{pp} = 0.2 Vp-p @ 320 kHz 0.4 Vp-p @ 160 kHz

Threshold: 25% of minimum voltage peaks

The voltage from the Gain Stage is designed for 1.6 Vp-p at Pin 11.

$$\frac{1.6}{0.4} = A_V = 4$$

Set the EGC for a gain of 4, unbalanced.

The maximum p-p voltage to the Threshold Amplifier, V_{INTA} , is designed for 1 Volt. The required attenuation factor is $\frac{1}{1.6}$.

$$\frac{V_{INTA}}{V_{O}} = \frac{R1}{R1 + R2} = \frac{1}{1.6}$$

R1 + R2 \geq 3 k Ω and R1 \leq 5 k Ω (See text)

These constraints are satisfied when R1 \cong 4.7 k Ω and R2 \cong 3 k Ω . This is an optimum solution for a minimum coupling capacitor value. Now consider the minimum voltage applied to the Threshold Amplifier.

$$V_{INTA(MIN)} = \frac{1}{1.6} \times 4 \times 0.2 = 0.5 \text{ Vp-p}$$

The threshold comparator reference voltage, V_R , is set at 25% of 2.5 VINTA(MIN)

$$V_R = 0.25 \times 2.5 \times 0.5 \approx 300 \text{ mV}$$

-300 × 10⁻³ = $\frac{R3}{R3 + R4}$ (-6)

R3 ≤ 1 kΩ (See text)

Let R3 = 470 Ω ; then R4 \cong 10 k Ω

The values of R_D and C_D are determined from the equations given in the text.

$$C_D = \frac{900 \times 10^{-6}}{2A_V E_{pp}} = \frac{900 \times 10^{-6}}{A_V E_p} = \frac{900 \times 10^{-6}}{4 \times 0.4 \times 2\pi \times 160 \times 10^3}$$

$$C_D \approx 560 \text{ pF}$$

Assume fc = 3fH

$$R_{D} = \frac{1}{W_{C}C_{D}} - 40$$

$$= \frac{1}{2\pi \times 3 \times 320 \times 10^{3} \times 5.6 \times 10^{-10}} - 40$$

$$R_{D} = 295 \text{ ohms} - 40 \approx 250 \Omega$$

$$L_{D} = \frac{R_{T}^{2} C_{D}}{R_{D}^{2}} = \frac{(295)^{2} \times 560 \times 10^{-12}}{R_{D}^{2}} = 24 \mu \text{H}$$

Example #3 (See Figure 24 for Component Hookup)

Same as Example #2, but consider base-line shift.

In addition to ac coupling between the Gain Stage and Threshold, a passive differentiation is performed to attenuate the lower frequencies producing base-line shift. This improves signal-to-noise ratio. The corner frequency is chosen at $f_L=160~\rm kHz$ where the attenuation is 0.707 (–3 dB) and the phase angle is $+45^{\circ}$.

$$f_L = \frac{1}{2\pi C (R1 + R2)} = 160 \times 10^3$$

For C = 200 pF

Now
$$\frac{R1}{R1 + R2} = \frac{1}{1.6 \times 0.707} = 0.9$$

Let R1 = 4.7 k Ω , then R2 = 470 Ω

Example #4 (See Figure 31 for Component Hookup)

Tape Drive Type: Open Reel

Encoding: Dual Mode (Phase-Encoded/NRZI)

Recording Density: 1600 BPI (3200 FCPI) for PE mode and 800 BPI (800 FCPI) for NRZI mode

Tape Speed: 200 IPS Signal Into Gain Stage

Same as Examples 1 and 2

Threshold: 25% of minimum voltage peaks NOTE: Consider base-line shift for PE mode.

This tape drive performs either the NRZI or the PE functions of Examples #1 and #3, under control of the SEL A/B line. Using the Gain Stage and Threshold Amplifier Channel A, Channel B inputs, the hook-up for a single track is implemented as shown in Figure 31. Note that an electronic switch is required for Gain switching when the mode is changed. This particular design did not require the threshold voltage to be switched, although in a typical system it probably would be.

It is necessary to electronically switch differentiator components. A low impedance MOSFET switch is shown.

Example #5 (See Figure 24 for Component Hookup)

Tape Drive Type: Open Reel

Encoding: Group Code

Recording Density: 6250 BPI, 9042 FCPI

Tape Speed: 200 IPS Signal Into Gain Stage

$$E_{pp} = 0.1 \text{ Vp-p } @ 900 \text{ kHz} = f_H$$

 $E_{pp} = 0.3 \text{ Vp-p } @ 300 \text{ kHz} = f_L$

Considerations for setting Gain Stage EGC, coupling (passive dif-

ferentiation for base-line shift or straight ac) into the Threshold Amplifier, and Threshold setting are similar to the previous examples. For Group-coded data the EGC setting can be electronically locked during the ID burst in conjunction with Threshold setting. (See Figure 32.)

Values for CD and RD

$$C_D = \frac{900 \times 10^{-6}}{2A_V E_p \omega}$$

$$= \frac{900 \times 10^{-6}}{A_V E_{pp} \omega} = \frac{900 \times 10^{-6}}{5.3 \times 0.3 \times 2\pi \times 300 \times 10^{3}}$$

$$C_D \approx 300 \text{ pF}$$

Assume fc = 3fH

$$R_D = \frac{1}{\omega_C C_D} - 40 = \frac{1}{2\pi \times 3 \times 900 \times 10^3 \times 300 \times 10^{-12}} - 40$$

$$R_D = 200 - 40 = 160 \text{ Ohms}$$

$$L_D = \frac{R_T^2 C_D}{2} = \frac{(200)^2 \times 300 \times 10^{-12}}{2} = 6 \,\mu\text{H}$$

Example #6 (See Figure 24 for Component Hookup)

Same as Example #5 except 125 IPS tape speed.

Signal Into Gain Stage

$$E_{pp}$$
 = 0.3 Vp-p @ 565 kHz
 E_{pp} = 0.6 Vp-p @ 188 kHz
 C_{D} = 300 pF, R_{D} = 250 Ω
 L_{D} = 12.6 μ H

FIGURE 31 - MC3468 COMPONENT HOOKUP FOR DUAL MODE PE/NRZI EXAMPLE #4

FIGURE 32 - APPLICATIONS CIRCUITS

MC3470

Advance Specifications and Applications Information

FLOPPY DISK READ AMPLIFIER

The MC3470 is a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output.

- Combines All the Active Circuitry To Perform the Floppy Disk Read Amplifier Function in One Circuit
- Guaranteed Maximum Peak Shift of 5.0%

FLOPPY DISK READ AMPLIFIER SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 701-01

This is advance information and specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (Note 1)(TA = 25°C)

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 11)	V _{CC1}	7.0	Vdc
Power Supply Voltage (Pin 18)	V _{CC2}	16	Vdc
Input Voltage (Pins 1 and 2)	V _I	-0.2 to +7.0	Vdc
Output Voltage (Pin 10)	V _O	-0.2 to +7.0	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature Plastic Package	Τj	150	°c

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provices conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4.75 to +5.25	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C, V_{CC1} = 4.75 to 5.25 V, V_{CC2} = 10 to 14 V unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
GAIN AMPLIFIER SECTION						
Differential Voltage Gain (f = 200 kHz, V _{ID} = 5.0 mV(RMS)	2	AVD	80	100	120	V/V
Input Bias Current	3	IIB	_	-10	-25	μА
Input Common Mode Range Linear Operation (5% max THD)		ViCM	-0.1	-	1.0	V
Differential Input Voltage Linear Operation (5% max THD)		νiD	-	_	25	mVp-p
Output Voltage Swing Differential	2	v _{oD}	3.0	4.0	-	Vp-p
Output Source Current, Toggled		10	_	8.0	_	mA
Output Sink Current, Pins 16 and 17	4	los	2,8	4.0	_	mA
Small Signal Input Resistance (T _A = 25°C)		r,	100	250	_	kΩ
Small Signal Output Resistance, Single-Ended (TA = 25°C, V _{CC1} = 5.0 V, V _{CC2} = 12 V		ro	-	15	-	Ω
Bandwidth, $-3.0 \text{ dB (v}_{\text{ID}} = 2.0 \text{ mV(RMS)}$, $T_{\text{A}} = 25^{\circ}\text{C}$, $V_{\text{CC1}} = 5.0 \text{ V}$, $V_{\text{CC2}} = 12 \text{ V}$)	2	BW	5.0	-	-	MHz
Common Mode Rejection Ratio ($T_A = 25^{\circ}C$, $f = 100$ kHz, $A_{VD} = 40$ dB, $v_{in} = 200$ mVp-p, $V_{CC1} = 5.0$ V, $V_{CC2} = 12$ V)	5	CMRR	50	_	_	dB
V _{CC1} Supply Rejection Ratio (T _A = 25°C, V _{CC2} = 12 V, 4.75 < V _{CC1} < 5.25 V, A _{VD} = 40 dB)		-	50	_	-	dB
V_{CC2} Supply Rejection Ratio ($T_A = 25^{\circ}C$, $V_{CC1} = 5.0 \text{ V}$, $10 \text{ V} < V_{CC2} < 14 \text{ V}$, $A_{VD} = 40 \text{ dB}$)		_	60	-	-	dB
Differential Output Offset (T _A = 25°C, v _{iD} = v _{in} = 0 V)		V _{DO}	_	_	0.4	
Common Mode Output Offset (v _{iD} = V _{in} = 0 V, Differential and Common Mode)		Vco	-	3.0	_	V
Differential Noise Voltage Referred to Input (BW = 10 Hz to 1.0 MHz, T _A = 25 ⁰ C)	22	en	-	15	-	μV(RMS)

ELECTRICAL CHARACTERISTICS (continued) (TA = 0 to +70°C, V_{CC1} = 4.75 to 5.25 V, V_{CC2} = 10 to 14 V unless otherwise noted)

	Figure	Symbol	Min	Тур	Max	Unit
ACTIVE DIFFERENTIATOR SECTION	******			*		
Differentiator Output Sink Current, Pins 12 and 13 (VOD = VCC1)	6	lop	1.0	1.4	_	mA
Peak Shift (f = 250 kHz, v_{1D} = 1.0 Vp-p, i_{cap} = 500 μ A, where PS = 1/2 $\frac{tpS1 - tpS2}{tpS1 + tpS2} \times$ 100%,	7,8	PS	_	_	5,0	%
V _{CC1} = 5.0 V, V _{CC2} = 12 V)					į.	1
Differentiator Input Resistance, Differential		L'D		30		kΩ
Differentiator Output Resistance, Differential (TA = 25°C)		roD	_	40	_	Ω
DIGITAL SECTION	<u> </u>			•		·
Output Voltage High Logic Level, Pin 10 ($V_{CC1} = 4.75 \text{ V}$, $V_{CC2} = 12 \text{ V}$, $I_{OH} = -9.4 \text{ mA}$)	9	Voн	2.7	-	_	V
Output Voltage Low Logic Level, Pin 10 (V _{CC1} = 4.75 V, V _{CC2} = 12 V, I _{OL} = 8.0 mA)	10	VOL	_	-	0.5	٧
Output Rise Time, Pin 10	11,12	^t TLH	-		20	ns
Output Fall Time, Pin 10	11,12	^t THL	_	_	25	ns
Timing Range Mono #1 (t _{1A} and t _{1B})	13	t _{1A,B}	500	-	4000	ns
Timing Accuracy Mono #1 (11 = 1.0 μ s = 0.625 R1C1 + 200 ns) (R1 = 6.4 $\kappa\Omega$, C1 = 200 pF)	12,13	E _{t1}	85	=	115	%
Accurancy guaranteed for R1 in the range 1.5 k Ω \leq R1 \leq 10 k Ω and C1 in the range 150 pF \leq C1 \leq 680 pF.					i	
Note: To minimize current transients, C1 should be kept as small as is convenient.						
Timing Range Mono #2	11,12	t2	150		1000	ns
Timing Accuracy Mono #2 (t2 = 200 ns = 0.625 R2C2) (R2 = 1 6 kΩ, C2 = 200 pF)	12, 13	E _{t2}	85	-	115	%
Accuracy guaranteed for 1.5 k Ω \leq R2 \leq 10 k Ω , 100 pF \leq C2 \leq 800 pF						

MC3470 CIRCUIT SCHEMATIC Regulator 3220 250 250 } 50 k 245 Gain Stage 3 k ∱ †8 3 0 V_{CC1} ₹ \$40 k **1.33 k ∮**1.33 k Active Differentiator and Peak Detector Comparator 13 0 12 O P 酌 Digital Section ā

FIGURE 1 – POWER SUPPLY CURRENTS, ICC1 AND ICC2

FIGURE 2 – VOLTAGE GAIN, BANDWIDTH, OUTPUT VOLTAGE SWING

FIGURE 3 - AMPLIFIER INPUT BIAS CURRENT, IJB

FIGURE 4 – AMPLIFIER OUTPUT SINK CURRENT, PINS 16 AND 17

FIGURE 5 – AMPLIFIER COMMON MODE REJECTION RATIO, CMRR

NOTE: Measurements may be made with vector voltmeter hp 8405A or equivalent at 1.0 MHz to guarantee 100 kHz performance.

FIGURE 6 – DIFFERENTIATOR OUTPUT SINK CURRENT, PINS 12 AND 13

FIGURE 8 - PEAK SHIFT, PS Vin = 1.0 Vpp f = 250 kHz

Test schematic on Figure 7

FIGURE 9 - DATA OUTPUT VOLTAGE HIGH, PIN 10

FIGURE 10 - DATA OUTPUT VOLTAGE LOW, PIN 10

FIGURE 11 -- DATA OUTPUT RISE TIME, t_{TLH} DATA OUTPUT FALL TIME, t_{THL} TIMING ACCURACY MONO #2, E_{T2}

V_{in} is same as shown on Figure 13, test schematic on Figure 12

FIGURE 12 – TIMING ACCURACY, E $_{t1}$ AND E $_{t2}$ DATA OUTPUT RISE AND FALL TIMES, t_{TLH} AND t_{THL}

V_{In} shown on Figure 13

FIGURE 13 - TIMING ACCURACY MONO #1, Et1

 $t_{TLH} = t_{THL} < 10 \text{ ns}$ f = 250 kHz 50% Duty Cycle

$$E_{t1A} = \frac{t_{1A}}{1000 \text{ ns}} \times 100\%$$

$$E_{t1B} = \frac{t_{1B}}{1000 \text{ ns}} \times 100\%$$

FIGURE 14 - AMPLIFIER OFFSET DECOUPLING IMPEDANCE, PINS 3 AND 4

 $\rm R_{e} + r_{e}$ and $\rm A_{V}$ with $\rm R_{ext}$ = 500 Ω

FIGURE 22 - DIFFERENTIAL NOISE VOLTAGE

NOTE: Assume uncorrelated noise sources e_n (differential noise at input) = $e_0\sqrt{2/100}$

APPLICATION INFORMATION

The MC3470 is designed to accept a differential ac input from the magnetic head of a floppy disk drive and produce a digital output pulse that corresponds to each peak of the ac input. The gain stage amplifies the input waveform and applies it to a filter network (Figure 23a),

FIGURE 23a – BLOCKING CAPACITORS USED TO ISOLATE THE DIFFERENTIATOR

enabling the active differentiator and time domain filter to produce the desired output.

FILTER CONSIDERATIONS

The filter is used to reduce any high frequency noise present on the desired signal. Its characteristics are dictated by the floppy disk system parameters as well as the coupling requirements of the MC3470. The filter design parameters are affected by the read head characteristics, maximum and minimum slew rates, system transient response, system delay distortion, filter center frequency, and other system parameters. This design criteria varies between manufacturers; consequently, the filter configuration also varies. The coupling requirements of the MC3470 are a result of the output structure of the gain stage and the input structure of the differentiator, and must be adhered to regardless of the filter configuration.

The differentiator has an internal biasing network on each input. Therefore, any dc voltage applied to these inputs will perturbate the bias level. Disturbing the bias level does not affect the waveform at the differentiator inputs, but it does cause peak shifting in the digital output (Pin 10). Since the output of the gain stage has an associated dc voltage level, it, as well as any biasing introduced in the filter, must be isolated from the differentiator via series blocking capacitors. The transient response is minimized if the blocking capacitors C and C' are placed before the filter as shown in Figure 23a. The charging and discharging of C and C' is controlled by the filter termination resistor instead of the high input impedance of the differentiator.

The filter design must also include the current-sinking capacity of the amplifier output. The current source in the output structure (see circuit schematic — pins 16 and 17) is guaranteed to sink a current of 2.8 mA. If the current requirement of the filter exceeds 2.8 mA, the current source will saturate, the output waveform will be distorted, and inaccurate peak detection will occur in the differentiator. Therefore, the total impedance of the

filter must be greater than Zmin as calculated from

$$Z_{min} = \frac{(EpAVD)_{max}}{2.8 \text{ mA}}$$

where $\boldsymbol{E}_{\boldsymbol{p}}$ is the peak differential input voltage to the MC3470.

TRANSIENT RESPONSE

The worst-case transient response of the read channel occurs when dc switching at the amplifier input causes its output to be toggled. The dc voltage changes are a consequence of diode switching that takes place when control is transferred from the write channel to the read channel.

If the diode network is balanced, the dc change is a common mode input voltage to the amplifier. The switching of an unbalanced diode network creates a differential input voltage and a corresponding amplified swing in the outputs. The output swing will charge the blocking capacitor resulting in peak shifting in the digital output until the transient has decayed. Eliminating the differential dc changes at the amplifier input by matching the diode network or by coupling the read head to the amplifier via FET switches, as shown in Figure 23b, will minimize the filter transient response.

FIGURE 23b – FET SWITCHES USED TO COUPLE THE R/W HEAD TO THE MC3470

Two of the advantages FET switches have over diode switching are:

- They isolate the read channel from dc voltage changes in the system; therefore, the transient response of the filter does not influence the system transient response.
- The low voltage drop across the FETs keeps the input signal below the amplifier's internal clamp voltage; whereas, the voltage dropped across a diode switching network adds a dc bias to the input signal which may exceed the clamp voltage.

AMPLIFIER GAIN

For some floppy systems, it may become necessary to either reduce the gain of the amplifier or reduce the signal at the input to avoid exceeding the output swing capability of the amplifier. The voltage gain of the amplifier can be reduced by putting a resistor in series with the capacitor between pins 3 and 4 (Figure 14). The relationship between the gain and the external resistor is given by

$$\frac{AV_O}{AV_R} = \frac{R_{ext}}{2(r_e + R_e)} + 1$$

where $AV_O \stackrel{\triangle}{=}$ voltage gain with the external resistor = 0, $AV_R \stackrel{\triangle}{=}$ voltage gain with the external resistor in, $R_{ext} \stackrel{\triangle}{=}$ the external resistor, and

 $r_e + R_e \stackrel{\Delta}{=}$ the resistance looking into pin 3 or pin 4.

Thus,

$$R_{ext} = 2\left(\frac{AV_O}{AV_R} - 1\right)(r_e + R_e).$$

A plot of $(r_e + R_e)$ versus temperature is shown in Figure 21. Figure 20 shows the normalized voltage gain versus temperature with the external resistor equal to 500 ohms.

ACTIVE DIFFERENTIATOR

The active differentiator in the MC3470 (simplified circuit shown in Figure 24), is implemented by coupling

FIGURE 24 - ACTIVE DIFFERENTIATOR NETWORK

the emitters of a differential amplifier with a capacitor resulting in a collector current that will be the derivative of the input voltage,

If the output voltage is taken across a resistor through which the collector current is flowing, the resulting voltage will be the derivative of the input voltage.

$$V_0 = 2Ri_C = 2RC \frac{dvin(t)}{dt}$$

Vo is applied to a comparator which will provide zero

crossing detection of the current waveform. Since the capacitor shifts the current 90° from the input voltage, the comparator performs peak detection of the input voltage.

The following terms will be used in determining the value of C to be used in the differentiator:

E_p ≜ peak differential voltage applied to MC3470 amplifier input.

E_p sin ωt ^Δ voltage waveform applied to MC3470 amplifier input (for purposes of discussion, assume a sine wave).

AVD [≜] differential voltage gain of input amplifier.

v_{in}(t) ≜ differential voltage waveform applied to the differentiator inputs.

= E_pA_{VD}sinωt (Note: The filter is assumed to be lossless.)

 $i_{c}(t) \stackrel{\Delta}{=} current through capacitor CD.$

 $R_0 \stackrel{\Delta}{=}$ output resistance of Q1 (Q2) at pin 12 (13).

If $v_{in}(t) = E_p A_V D \sin \omega t$, then the current through the capacitor C_D is given by

$$i_{C}(t) = C_{D}A_{VD}E_{p}\omega\cos\omega t$$

and
$$V_O(t) = 2R_CC_DA_{VD}E_p\omega\cos\omega t$$
.

Accurate zero crossing detection of $V_O(t)$ [peak detection of $v_{in}(t)$] occurs when the current waveform $i_C(t)$ crosses through zero in a minimum amount of time. This condition is satisfied by maximizing current slew rate. For a given value of ω , the maximum slew rate occurs for the maximum value of i_C or $\cos \omega t = 1$. Therefore,

$$i_c = C_DA_{VD}E_D\omega$$

The MC3470 current-sourcing capacity will determine the maximum value i_c ; therefore, C_D must be chosen such that the maximum i_c occurs at the maximum $A_{VD}E_p\omega$ product.

$$C_D = \frac{i_c max}{(A_{VD} E_p \omega)_{max}} = \frac{1 mA}{(120)(E_p \omega)_{max}}$$

If the peak value specified for i_C is exceeded, the current source (I_O in Figure 24) will saturate and distort the waveform at pins 12 and 13. Consequently, the differentiator will not accurately locate the peaks and peak shifting will occur in the digital output.

The effective output resistance RO of Q1 (Q2) will create a pole (as shown in Figure 25) at 1/2 ROCD. If this pole is ten times greater than the maximum operating frequency ($\omega_{\rm max}$), the phase shift approaches 84°. Locating the pole at a frequency much greater than 10 $\omega_{\rm max}$ needlessly extends the noise bandwidth thus:

$$2R_O = \frac{1}{C_D 10 \,\omega_{max}}.$$

If RO is not large enough to satisfy this condition, a series

FIGURE 25 — RESPONSE OF DIFFERENTIATOR USING ONLY CD

resistor can be added so that

$$R = 2R_O + R_D = \frac{1}{C_D 10 \omega_{max}}$$

To further reduce the noise bandwidth, a second pole can be added (as shown in Figure 26) by putting an

FIGURE 26 - COMPLETE RESPONSE OF DIFFERENTIATOR

inductor in series with the resistor and the capacitor. The values of R and L are determined by choosing the center frequency (ω_0) and the damping ratio (δ) to meet the systems requirements where

$$\omega_0 = \frac{1}{\sqrt{LC_D}}$$

$$\delta = \frac{RC_D}{2\sqrt{LC_D}}$$

$$\omega_0 = 10 \ \omega_{\text{max}} = \frac{1}{\sqrt{\text{LCD}}}$$

where CD is chosen for maximum i_C as shown previously. Solving for L gives:

$$L = \frac{1}{100 \, C_{\rm D}(\omega_{\rm max})^2}$$

Using this value for L gives:

$$\delta = \frac{RC_D}{\frac{2}{10}\sqrt{\frac{C_D}{C_D(\omega_{max})^2}}}$$

Solving for R gives:

$$R = \frac{\delta}{5 \, C_D \omega_{max}}$$

The total resistance (R) is the effective output resistance (RO) plus the resistor added in the differentiator (RD). Values of δ from 0.3 to 1 produce satisfactory results.

PEAK SHIFT CONSIDERATIONS

Peak shift, resulting from current imbalance in the differentiator, offset voltage in the comparator, etc., can be eliminated by nulling the current in the emitters of the differentiator with a potentiometer as shown in Figure 27.

FIGURE 27 - PEAK SHIFT COMPENSATION

The potentiometer across the differentiator components is adjusted until a symmetrical digital output cycle is obtained at pin 10 for a sinusoidal input with the minimum anticipated $\mathbf{E}_{\mathbf{D}}\omega$ product.

DESIGN EQUATIONS FOR ONE-SHOTS

As shown in Figure 28, the MC3470 input waveform may have distortion at zero crossing, which can result in false triggering of the digital output. The time domain filter in the MC3470 can be used to eliminate the distortion by properly setting the period (t₁) of the one-shot timing elements on pins 6 and 7. The following equation will optimize immunity to this signal distortion at zero crossing of the read head signal.

The timing equation for the time domain filter's one-shot is:

where $K_1 = 0.625$, $T_0 = 200$ ns.

Actual time will be within $\pm 15\%$ of t_1 due to variations in the MC3470.

If ΔT is the maximum period of distortion (see Figure

FIGURE 28 - WAVEFORMS THROUGH THE READ CIRCUIT

28), then choose t₁ such that

$$\Delta T < t_1 > T - \frac{\Delta T}{2}$$

where
$$T = \frac{1}{4f(max)}$$
.

The width of the digital output pulse t_2 (pin 10) is determined by

$$t_2 = R_2C_2K_2$$

where $K_2 = 0.625$.

Actual pulse width will be within $\pm 15\%$ of t₂ due to variations in the MC3470.

To preserve the specified accuracy of the MC3470, R₁, R₂, C₁, and C₂ should remain in the ranges shown in the Electrical Characteristics. Also, to minimize current transients, it is important to keep the values of C₁ and C₂ as small as is convenient. For t₁ = 1 μ s and t₂ = 200 ns, suggested good values for the capacitors are

$$C_1 = 250 pF$$

$$C_2 = 160 pF$$

BOARD LAYOUT AND TESTING CONSIDERATIONS

An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by

the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 29.

- 1. Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in three dimensions.
- Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.
- Avoid signal runs under the IC. Also avoid parallel runs of 1 inch or greater on the opposite or same side of board.
- 4. Use monolithic ceramic 0.1 μ F capacitors for decoupling power supply transients: one from V_{CC1} to ground and one from V_{CC2} to ground for each IC package. Keep lead lengths to 1/4 inch or less and place in close proximity to the IC.
 - 5. Keep all signal runs as short as possible.

When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test setups must be calibrated

at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

FIGURE 29 – POWER AND GROUND DISTRIBUTION FOR MC3470 PRINTED CIRCUIT BOARD LAYOUT

NOTE: Dotted lines outline ground plane on back side of printed circuit board.

MC3480

Specifications and Applications Information

MEMORY CONTROLLER FOR 16 PIN 4K, 16K AND 64K DYNAMIC RAMS

The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin multiplexed dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.

- Greatly Simplify the MPU-Dynamic Memory Interface
- Reduce Package Count and System Access/Cycle Times 30%
- Chip Enable for Expansion to Larger Word Capacity
- Generate 1 of 4 RAS Signals for an Optimum 16K/64K Memory System
- High Input Impedance for Minimum Loading of MPU Bus
- Schottky TTL Technology for High Performance
- Useful with 4K and 16K and Future Expanded Dynamic RAMs

DYNAMIC MEMORY CONTROLLER

SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT

3. High frequency shift registers

4. Delay lines
5. Signals from MPU Clock

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	-0.5 to +7.0	Vdc
Output Voltage	V _O	-0.5 to +7.0	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°С
Operating Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc .	+4.50 to +5.50	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature ranges.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — Low Logic State	VIL	- Y	_	0.8	V
Input Voltage High Logic State	V _{IH}	2.0	-	_	V
Input Current — Low Logic State (V _I L = 0.5 V)	IIL	-	-	-250	μА
Input Current – High Logic State (V _H = 2.7 V) (V _H = 5.5 V)	I _{1H}	_	-	40 100	μА
Input Clamp Voltages (I _{IK} = 18 mA)	VIK		-	-1.5	V
Output Voltage — Low Logic State (IOL = 24 mA for RAS, CAS, and RM) (IOL = 8.0 mA for Row En, Ref En, MC, Ref Req)	VOL		_	0.5 0.5	V
Output Voltage — High Logic State (IOH = -1.0 mA for RAS, CAS, and R/W) (IOH = -0.4 mA for Row En, Ref En, and MC) IOH = -0.2 mA for Ref Req (Note: Ref Req output has internal 5.0 k resistive pullup to V _{CC} .)	Vон	3.0 2.4 2.4	<u>-</u>	- - -	v
Power Supply Current — During R/W or Refresh — During Idle	lcc	-	-	65 40	mA
Output Short-Circuit Current (VOL = 0 V for Row En, Ref En, and MC)	los	-10		-55	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, $4.5 < V_{CC} < 5.5 V$, and $0 < T_A < 70^{\circ}C$

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times (Full AC Load - All Outputs)					ns
MC to MC - Low to High	tPLH(MC)	_	-	14	ŀ
MC to MC High to Low	tPHL(MC)	_	_	17	ĺ
t1 to RAS	tPT1	18	_	40	
t2 to Row En	tPT2	16	-	35	
t3 to CAS	tPT3	17	-	45	
t4 to R/W	tPT4	16		45	į .
t5 to CAS	tPT5C	22	_	42	
to RAS	tPT5R	19		40	
to R/W	tPT5W	30	_	58	
to Row En (Refresh)	tPT5ER	30	_	65	
to Row En (R/W)	tPT5E	25	_	48	
to Refresh En	tPT5F	22	_	46	
Ref Clk to Ref Reg	tPCQ	10	_	27	Ì
Ref Grant to Row En		20	_	43	
to Ref En	tPGS	20	1		1
t1 to Ref Req (Ref only)	tPTQ	22		60	
<u> </u>	1,710			 	
Propagation Delay Times (AC Load, 15 pF — All Outputs) t1 to RAS		10	1	30	ns
t2 to Row En	tPT1	16	1 -	35	\
	tPT2	1	_	25	
t3 to CAS	tPT3	8.0	_	25	
t4 to R/W	tPT4	8.0	_	_	
t5 to CAS	tPT5C	14	-	35	
to RAS	tPT5R	14	_	35	
to R/W	tPT5W	22	_	45	į į
to Row En (Refresh)	tPT5ER	30	_	65	
to Row En (R/W)	tPT5E	25	-	48	
to Refresh En	tPT5F	22	-	46	
Setup Times (Full AC Load - All Pins)					ns
Ref Clk before Ref Grant	t _{su(RC)}	35	_	-	
A12, A13 before t1	t _{su(A)}	10	-	-	
R/W Input before t4	tsu(R/W)	33	-	-	1
CE before t1	t _{su(CE)}	30	-	_	
Ref Grant before t1	t _{su} (RG)	25	l –	- 1	
Hold Times (Full AC Load — All Pins)	1				ns
A12, A13 after t5	15/41	15	l _	l -	""
CE after t1	th(A)	0	l _	l _	
R/W after t4	th(CE)	0	1 _	_	Ì
MC Rising after t1 Rising	th(R/W)	30	1 =	-	
	th(MC)	1 30	 		
Minimum Delay Times (Note 2 — Full AC Load — All Pins)	1	20	1	l	ns
t1 Low to High to t2 Low to High	^t d(1-2)	30	-	_	
t1 Low to High to t4 Low to High	^t d(1-4)	33	! -	_	
t2 Low to High to t3 Low to High	^t d(2-3)	30	l –	-	1
t3 Low to High to t5 Low to High	td(3-5)	30			
Minimum Pulse Widths				l	ns
t1 through t5 , Low	tWL(t)	30	-	–	
High	tWH(t)	30	-	-	
мс	tW(MC)	30	_	<u> </u>	
Ref Grant	tW(RG)	25	-	-	

Note 2: If delays between t1-t5 are less than the minimum specified, the succeeding outputs may not switch.

AC LOADS (Note 3)

R/W and CAS Outputs	450 pF to Gnd*
RAS Outputs	150 pF to Gnd*
MC, Row En, Ref En, and Ref Reg Outputs	15 pF to Gnd*

^{*}Includes probe and jig capacitance.

NOTE 3: All outputs can drive larger capacitive loads than those shown with a small decrease in speed. See Figure 1.

PIN DESCRIPTION TABLE

Name	No.	Function
RAS1 *	16	Row Address Strobe pins which connect to each of the dynamic RAMs to latch in row address on memory chips.
RAS2	15	Decoded to 1 of 4 during R/W cycle. All 4 go low during refresh cycle.
RAS3	14	Decoded to 1 of 4 during N/W cycle. All 4 go low during refresh cycle.
RAS4	13	
CAS *	11	Column Address Strobe pin which connects to each dynamic RAM to latch in column address.
R/W Out *	10	This pin signals the dynamic RAM whether the RAM is to be read from or written into.
Row En	9	Row Enable output which goes to the MC3232A (MC3242A). It signals the Address Multiplexer that the lower half
		(Row Addresses) or the upper half (Column Addresses) of the address lines are to be multiplexed into the dynamic
1 .		RAM address inputs. A Logic 1 on this output indicates the Row Addresses, and a Logic 0 indicates Column Addresses.
Ref En	8	Refresh Enable output. A Logic 1 signals the Address Multiplexer that a refresh cycle is to be done, and a Logic 0 indicates that address multiplexing should be done.
CE	22	Chip Enable Input. A Logic 1 on this pin disables all chip functions, except that of Refresh and the MC output. CE must be low during t1 low to high transition to initiate R/W cycle. Once t1 is initiated, the cycle is independent of CE.
R/W In	7	The Read/Write input pin receives information from the M6800 MPU as to the direction of data exchange in the dynamic RAM. It transmits a Logic 0 to the R/W output for a Write Cycle and a Logic 1 for a Read Cycle.
A13 (A15)	17	Upper Order Address lines from the M6800. These two inputs decode to four signals controlling the four RAS outputs.
A12 (A14)	18	A14 and A15 apply to 16K RAMs.
мс	23	Memory Clock input from MC6875 clock or other signal source. The rising edge of MC must occur after the rising
		edge of t1 to avoid aborting the refresh cycle. When MC rises, it resets an internal flag that will terminate refresh at the end
1 1		of the current cycle. Failure to reset the flag forces the 3480 to refresh every cycle thereafter. MC can be connected to
<u> </u>		12 or t3 in noncritical applications.
MC .	1	The buffered complement output of MC. It is a buffered output which may be used to drive the circuitry creating the time delays used on inputs t1 through t5.
t1 / //	2	These pins use external timing inputs to sequentially select the outputs to be enabled. They are positive-edge triggered
t2 R QUIEN	3	inputs. Assuming a Read/Write cycle is to be executed, a positive edge on t1 forces a logic 0 on one of the four RAS
13 c / 5	4	outputs as determined by the A12/14, A13/15 inputs. After a delay, a positive edge on t2 causes Row En to go to a
14 WRITE	5	Logic 0, providing address-multiplexing information to the MC3232A or MC3242A. t3 enables the CAS output and it
t5 (1/2	6	goes low, t4 enables the R/W output and it goes low, assuming the R/W input was low, t5 resets all the outputs to a
1		Logic 1 (with the exception of MC, Ref En, and Ref Req). The inputs t1, t2, t3, and t5 are daisy-chained, so they must be sequentially driven to obtain the desired output signals, t4 can be driven at any time after t1.
Ref Clk	21	
Hei Cik	21	The 32 kHz (64 kHz) Refresh Clock signals this pin that another refresh cycle is required. It is a positive-edge triggered input, and upon triggering, the Ref Req pin goes to a Logic 0.
Ref Req	20	The Refresh Request output acts as an input to the MPU system, requesting a refresh cycle. This output has
1.00	20	a 5 k Ω pullup resistor to the V _{CC} supply to allow wire-ORing if desired.
Ref Grant	19	Through the Refresh Grant input, the MC6875 initiates a refresh cycle. This input is positive-edge triggered and is
		enabled only after the Ref Req pin has gone low. This allows the MC3480 to discern between a Refresh Grant or a
		DMA Grant even though they appear on the same line. When employing both dynamic memory (refresh) and DMA
		in a microprocessor-based system with a combined Refresh/DMA Request control on the clock, provision must be
		made for holding off a DMA request during a refresh period (and visa versa). If this provision is not made, clock
		stretching (cycle stealing) will continue indefinitely and dynamic microprocessor data will be lost. The positive edge
		on Ref Grant causes Row En output to go low and Ref En output to go high. This signals the MC3232A (MC3242A)
		that a refresh address is required. The refresh cycle occurs with the succeeding pulses on t1-t5. A positive edge on t1
]]		causes Ref Req to go high and all the RAS outputs to go low. A positive going edge on t2 causes no change in the outputs, since it controls the address multiplexing (Row En) during the Read/Write cycles. There is no output change
		when t3 and t4 go high because no CAS or R/W signal is needed during refresh. A positive edge on t5 resets the RAS
		and Row En to a Logic 1 state, and Ref En to a Logic 0 state, ready for the next Read/Write cycle.
Vcc	24	+5.0 V supply. A 0.1 μF capacitor is recommended to bypass pin 24 to ground.
Gnd	12	System Ground.

^{*}These outputs are designed to drive the highly capacitive inputs of multiple dynamic RAMs/(150 pF for \overline{RAS} outputs, and 450 pF for \overline{CAS} and R/W outputs). Consequently, these outputs have no short-circuit limit and must be handled accordingly, Good high capacitance load driving techniques usually include a 10 Ω or greater series damping resistor. It is highly recommended that this be done on \overline{RAS} , \overline{CAS} and R/W outputs of the MC3480. The effect of these series damping resistors on rise and fall times must be included in timing considerations.

NOTE: All other outputs are LS/TTL totem-pole configuration unless otherwise noted.

TIME DELAY INFORMATION

TIMING REQUIREMENT CONSTRAINTS

- At1 Minimum is determined by MPU Address Delay (t_{AD}), plus RAM Row Address Set-Up Time (t_{ASR}), minus MC3480 Propagation Delay (t_{PT1}).
- Δt2 Δt1 Minimum is determined by RAM Row Address Hold Time (t_{RAH}) minus the minimum MC3232A/3242A Row Enable to Output Delay (t_{OOMIN}).
- At3 At2 Minimum is determined by RAM Column Address Set-Up Time (t_{ASC minimum}) plus maximum MC3232A/3242A Row Enable to Output Delay (t_{OO1MAX}).
- Δt4 Δt3 No Minimum
- Δt5 Δt3 Minimum is determined by RAM minimum CAS Pulse Width (t_{CAS}) or Access Time from CAS (t_{CAC}) plus Data Set-Up Time of MPU (t_{DSR}).
- Δt5 Δt4 Minimum is determined by the RAM minimum Write Pulse Width (twp).

Note: Also required in computing time delays are the various delays incurred by the particular delay scheme used; i.e., delays between $4 \times f_0$, $2 \times f_0$, and f_0 from the MC6875 which are used as inputs or the gate delays of the gates used in Figures 5A through 5C.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU Note: Numbers in parenthesis indicate

part types or values for 16K x 1 RAMs Power-On Reset P-OR Ħ X1, X2 φ1 MPU MPU System Clock MC6800 Crystal φ2 MC6875 (4 x MPU fo) Data Ref Control Ref Bus Grant Bus Req мс Address (Merr Bus CIk) A12, A13 (A14, A15) A0-A11 A0 - A13) MC Refresh Address Enable Multiplex Data and Refresh Buffer t2 Counter MC6880A Memory Control MC3232A Row Delay and Timing (MC3242A) t3 Enable Circuit MC3480 t4 32 kHz t5 (64 kHz) Ref Clk Oscillator RASI RAS2 RAS3 RAS4 CAS R/W Address Bus 00-05 (00-06) Data Bus MCM4027 Memory 4K x 8 4K x 8 4K x 8 (16K x 8) Array (16K x 8) (16K x 8) (16K × 8) (MCM6616)

FIGURE 2 - READ/WRITE TIMING CYCLE

NOTE 4: Although t1 and CE are shown as don't care after their respective minimum hold times, t1 may rise again after the initial rising edge in a R/W cycle only if CE is low. Bringing t1 high a second time during a cycle when CE is high will improperly terminate the cycle.

FIGURE 3 - REFRESH TIMING CYCLE

APPLICATIONS INFORMATION

GENERAL DESCRIPTION

The MC3480 uses five general timing inputs in place of a master clock with on-chip timing generation. This gives the system designer optimum flexibility in interfacing with the various microprocessor families and dynamic memories that are available. In simpler slow speed

systems, the timing signals required can be directly obtained from those available from the microprocessor. In systems requiring high speed memory/microprocessor cycle times, timing input t1-t5 can be obtained using delay lines or a range of techniques as shown in Figures 4 thru 8. It is only necessary to maintain the time delay relationships shown under time delay information.

FIGURE 4 - UNIVERSAL TIME DELAY USING MC6875

RAM

Address

Inputs CAS A0-A5

(A0-A6)

A6 - A11

(A7 - A13)

FIGURE 5C - ALTERNATE TIME DELAYS USING MC6875

FIGURE 6 - ONE SHOT TIME DELAY METHOD

FIGURE 7 - DELAY LINE TIME DELAY METHOD

FIGURE 8 - DELAY LINE TIME DELAY (ALTERNATE METHOD)

REFRESH CONSIDERATIONS

The MC3480/MC3232A (MC3242A) memory control system can be used with either cycle steal or transparent refresh methods. Figure 9 shows one transparent technique employing refresh during ϕ 2 low in an M6800 microprocessor-based system. Using this technique requires that the memory be capable of completing a Read/Write Cycle and a Refresh Cycle sequentially during the M6800 cycle. The minimum cycle time at the time of printing for dynamic multiplexed RAMs is 320 ns, therefore limiting the microprocessor to 1.56 MHz operation. The D flipflops of Figure 9 produce a trigger at the beginning of both ϕ 1 and ϕ 2. For a 1.0 MHz system, the t1-t5 inputs should be adjusted for the following delays:

RAS falls at 150 ns (triggered by t1)
Row En falls at 250 ns (triggered by t2)
CAS, R/W falls at 300 ns (triggered by t3)
t5 rises at 500 ns.

A delay line could be used to generate t1-t5 in place of

the four monostables. For the 1.0 MHz system, it would require either two 5 tap delay lines with 50 ns per tap or a 10 tap line with 50 ns/tap. For use with a 600 kHz system, a delay line with 5 taps of 150 ns each could be used. For this case:

RAS falls at 150 ns
Row En falls at 300 ns
CAS, R/W falls at 450 ns
t5 rises at 750 ns

Figure 10 shows typical refresh oscillator configurations for both 32 kHz (fREFmin for 4K) and 64 kHz (fREFmin for 16K). In the case of transparent refresh, if the designer is not concerned with power consumption, the refresh oscillator may be eliminated and the Ref Clk input connected to the MC input yielding a refresh every \$\phi\$1.

For DMA operation combined with cycle stealing refresh, care must be taken not to allow a DMA request during a Refresh Request/Grant period and to hold off a refresh during a DMA operation. See comments under pin descriptions, Pin 19.

FIGURE 9 — EXAMPLE OF φ2 LOW METHOD OF HIDDEN REFRESH ... USING MC3480 AND 4K RAMS

FIGURE 10 - SUGGESTED 32 kHz OSCILLATORS

MC6875A

Specifications and Applications Information

M6800 CLOCK GENERATOR

Intended to supply the non-overlapping $\phi 1$ and $\phi 2$ clock signals required by the microprocessor, this clock generator is compatible with 1.0, 1.5, and 2.0 MHz versions of the MC6800. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.

Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required.

Typical MPU System with Bus Extenders MC6875 CLOCK GND +5 V MC6800 MPU MC6885/MC8T95 MC6880A/MC8T26A thru MC6888/MC8T98 BUS EXTENDER MC6889/MC8T28 MC6830 ROMs ADDRESS MC6810 AND DATA BUS BUS MC6820 PIAs MC6850 MC6860 MODEM

M6800 TWO-PHASE CLOCK GENERATOR/DRIVER

SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted $T_A = 25^{\circ}C$.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _C C	+7.0	Vdc
Input Voltage	V _I	+5.5	Vdc
Operating Ambient Temperature Range MC6875L MC6875AL	TA	0 to +70 -55 to +125	°c
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Operating Junction Temperature Ceramic Package Plastic Package	Tj	175 150	°C

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4.75 to +5.25	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted specifications apply over recommended power supply and temperature ranges. Typical values measured at V_{CC} = 5.0 V and T_A = 25°C.)

Characteristic	Symbol	Mın	Тур	Max	Unit
Output Voltage — High Logic State MPU \$\phi\$1 and \$\phi\$2 Outputs					_ ·
(V _{CC} = 4.75 V, I _{OHM} = -200 μA)	Vонм	VCC - 0.6	-	-	
(V _{CC} = 5.25 V, I _{OHMK} = +5.0 mA)	VOHMK	~	_	V _{CC} + 1.0	
Bus ϕ 2 Output		1			V
(V _{CC} = 4.75 V, I _{OHB} = -10 mA)	VOHB	2.4	÷]]	
(V _{CC} = 5.25 V, I _{OHBK} = +5.0 mA)	VOHBK	- 1	_	V _{CC} + 1.0	
4 x fo Output					V
$(V_{CC} = 4.75 \text{ V, } V_{IH} = 2.0 \text{ V, } I_{OH4X} = -500 \mu\text{A})$	VOH4X	2.4	-		
2 x fo, DMA/Refresh Grant and Memory Clock Outputs	Voн	2.4	_	T - 1	V
$V_{CC} = 4.75 \text{ V, I}_{OH} = -500 \mu\text{A}$					
Reset Output	VOHR	2.4	_	-	٧
$(V_{CC} = 4.75 \text{ V}, V_{IH} = 3.3 \text{ V}, I_{OHR} = -100 \mu\text{A})$	l	1			
Output Voltage — Low Logic State	i				
MPU φ1 and φ2 Outputs	1	1		1	V
$(V_{CC} = 4.75 \text{ V}, I_{OLM} = +200 \mu\text{A})$	VOLM	-	_	0.4	
(VCC = 4.75 V, IOLMK = -5.0 mA)	VOLMK	-	_	-10	
Bus ϕ 2 Output	O Link			1	V
(V _{CC} = 4.75 V, I _{OLB} = +48 mA)	VOLB	-	_	0.5	
(VCC = 4.75 V, IOLBK = -5.0 mA)	VOLBK	-	_	-1.0	
4 x fo Output	- OLDIK			·	V
$(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL4X} = 16 \text{ mA})$	VOL4X	-		0.5	
2 x fo, DMA/Refresh Grant and Memory Clock Outputs	VOL		_	0.5	V
(V _{CC} = 4.75 V, I _{OL} = 16 mA)	"-	1 1		1 . 1	
Reset Output	VOLE		_	0.5	V
$(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OLR} = 3.2 \text{ mA})$					
Input Voltage - High Logic State	†	1			
Ext. In, Memory Ready and DMA/Refresh Request Inputs	∨ _{IH}	2.0	_	_	
	- "			 	v
Input Voltage - Low Logic State		1		08	V
Ext. In, Memory Ready and DMA/Refresh Request Inputs	VIL			08	
Input Thresholds - Power-On Reset Input (See Figure 2)	1]	v
Output Low to High	VILH	1 ~ 1	28	3.6	
Output High to Low	VIHL	0.8	1.4	-	
1 O		1		10	
Input Clamp Voltage MC6875L	Vic "	1 - 1	_	-10	V
(V _{CC} = 4.75 V, I _{IC} = -5.0 mA) MC6875AL				-15	
Input Current — High Logic State				1	
Ext. In, Memory Ready and DMA/Refresh Request Inputs	ЧН	~	-	25	μА
$(V_{CC} = 4.75 V, V_{IH} = 5.0 V)$	1			1	
Power-On Reset	THE	-	_	50	μА
(V _{CC} = 5.0 V, V _{IHR} = 5.0 V)	l				
Input Current — Low Logic State					
Ext. In, Memory Ready and DMA/Refresh Request Inputs	l III	-	_	-250	μΑ
(V _{CC} = 5.25 V, V _{IL} = 0.5 V)	1				
Power-On Reset Input	ILR	-	_	-250	μΑ
(V _{CC} = 5.25 V, V _{IL} = 0.5 V)	1	1		1 1	

OPERATING DYNAMIC POWER SUPPLY CURRENT

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Currents				1]
(V _{CC} = 5.25 V, f _{osc} = 8.0 MHz, V _{IL} = 0 V, V _{IH} = 3.0 V) Normal Operation	1 _{CCN}	_	_	150	mA
(Memory Ready and DMA/Refresh Request Inputs at					
High Logic State)					
Memory Ready Stretch Operation	ICCMR	-	_	135	mA
(Memory Ready Input at Low Logic State;				Į.	
DMA/Refresh Request Input at High Logic State)					
DMA/Refresh Request Stretch Operation	CCDR	_	-	135	mA
(Memory Ready Input at High Logic State;	1			1	
DMA/Refresh Request Input at Low Logic State)			1	1	l

SWITCHING CHARACTERISTICS

(These specifications apply whether the Internal Oscillator (see Figure 9) or an External Oscillator is used (see Figure 10). Typical values measured at V_{CC} = 5.0 V, T_A = 25°C, fo = 1.0 MHz (see Figure 8).

Characteristic	Symbol	Min	Тур	Max	Unit
MPU φ1 AND φ2 CHARACTERISTICS					
Output Period (Figure 3)	to	500	_	-	ns
Pulse Width (Figure 3)	tpwM				ns
(fo = 1.0 MHz)	1	400	_	_	
(fo = 1.5 MHz)		230	_	-	l
(fo = 2,0 MHz)		180	_	<u> </u>	1
Total Up Time (Figure 3)	tupm				ns
(fo = 1.0 MHz)		900	-	-	l
(fo = 1.5 MHz)	1	600	-	1 -	
(fo = 2.0 MHz)		440			
Delay Time Referenced to Output Complement (Figure 3)					
Output High to Low State (Clock Overlap at 1.0 V)	tPLHM	0		_	ns
Delay Times Referenced to 2 x fo (Figure 4 MPU φ2 only)					
Output Low to High Logic State	tPLHM2X	_	_	85	ns
Output High to Low Logic State	tPHLM2X	_	_	70	ns
Transition Times (Figure 3)					
Output Low to High Logic State	tTLHM	_	_	25	ns
Output High to Low Logic State	tTHLM	_	_	25	ns
BUS ¢2 CHARACTERISTICS				· · · · · · · · · · · · · · · · · · ·	·
Pulse Width - Low Logic State (Figure 4)	tPWLB			T	ns
(fo = 1.0 MHz)		430	_	-	
(fo = 1.5 MHz)		280	_	-	1
(fo = 2.0 MHz)	}	210	-	-	
Pulse Width - High Logic State	tpWHB			1	ns
(fo = 1 0 MHz)	''''	450	_	_	
(fo = 1 5 MHz)		295	_	_	1
(fo = 2.0 MHz)		235	_	-	ļ
Delay Times – (Referenced to MPU φ1) (Figure 4)		· · · · · · · · · · · · · · · · · · ·			
Output Low to High Logic State	tPLHBM1			1	ns
(fo = 1.0 MHz)		480		l –	ł
(fo = 1.5 MHz)	1 1	320	_	-	1
(fo = 2 0 MHz)	i i	240	-	1 -	
Output High to Low Logic State	tPHLBM1				
$(C_L = 300 pF)$		_	_	25	
(C _L = 100 pF)		_	-	20	i
Delay Times (Referenced to MPU φ2) (Figure 4)					
Output Low to High Logic State	tPLHBM2	-30	i –	+25	ns
Output High to Low Logic State	tPHLBM2	0	_	+40	ns
Transition Times (Figure 4)					İ
Output Low to High Logic State	tTLHB	-] –	20	ns
Output High to Low Logic State	^t THLB	_	-	20	ns

SWITCHING CHARACTERISTICS (continued)

SWITCHING CHARACTERISTICS (continued)			т =		
Characteristic	Symbol	Min	- Тур	Max	Unit
MEMORY CLOCK CHARACTERISTICS			<u>,</u>	·	
Delay Times (Referenced to MPU ϕ 2) (Figure 4)					1
Output Low to High Logic State	^t PLHCM	-50 0	_	+25 +40	ns
Output High to Low Logic State	tPHLCM		 _	+40	ns
Delay Times (Referenced to 2 x fo) (Figure 4)				05	
Output Low to High Logic State	†PLHC2X	-	_	65 85	ns
Output High to Low Logic State	TPHLC2X		ļ <u> </u>	- 65	ns
Transition Times (Figure 4)				25	ns
Output Low to High State	^t TLHC	-	} -	25	ns
Output High to Low State	tTHLC			25	113
2 x fo CHARACTERISTICS				·	
Delay Times (Referenced to 4 x fo) (Figure 4)			1		1
Output Low to High Logic State	tPLH2X	_	1 -	50	ns
Output High to Low Logic State	[†] PHL2X			65	ns
Delay Time (Referenced to MPU φ1) (Figure 4)					ļ
Output High to Low Logic State	tPHL2XM1		1		ns
(fo = 1.0 MHz)		365	-	-	
(fo = 1.5 MHz)		220	 -	<u> </u>	ļ
Transition Times (Figure 4)	1		1		1
Output Low to High Logic State	tTLH2X	-	-	25 25	ns
Output High to Low Logic State	tTHL2X		1	25	ns
4 x fo CHARACTERISTICS					
Delay Times (Referenced to Ext. In) (Figure 4)			ļ	ļ	
Output Low to High Logic State	tPLH4X	-	-	50	ns
Output High to Low Logic State	tPHL4X		_	30	ns
Transition Time (Figure 4)			' -		
Output Low to High Logic State	tTLH4X	-	-	25	ns
Output High to Low Logic State	tTHL4X			25	ns
MEMORY READY CHARACTERISTICS					
Set-Up Times (Figure 5)					
Low Input Logic State	t SMRL	55	-	-	ns
High Input Logic State	tsmRH	75	l		ns
Hold Time (Figure 5)				1	
Low Input Logic State	tHMRL	10	<u> </u>	_	ns
DMA/REFRESH REQUEST CHARACTERISTICS					
Set-Up Times (Figure 6)					
Low Input Logic State	†SDRL	65	_	-	ns
High Input Logic State	tSDRH	75	-	-	ns
Hold Time (Figure 6)					
Low Input Logic State	tHDRL	10	-	_	ns
DMA/REFRESH GRANT CHARACTERISTICS					1
Delay Time Referenced to Memory Clock (Figure 6)	<u> </u>		T	1	1
Output Low to High Logic State	t _{PLHG}	-15	1 -	+25	ns
Output High to Low Logic State	tPLHG tPHLG	-25	-	+15	ns
Transition Times (Figure 6)	·rnud		 	 	
Output Low to High Logic State	tTLHG	_	_	25	ns
Output High to Low Logic State	tTHLG	_	_	25	ns
RESET CHARACTERISTICS					·
			T		
Delay Time Referenced to Power-On Reset (Figure 7)	 =		l	1000	ns
Output Low to High Logic State Output High to Low Logic State	tPLHR tours	_	_	250	ns
Transition Times (Figure 7)	tPHLR		- 	230	113
Output Low to High Logic State	t _{TLHR}	_	l _	100	ns
Output High to Low Logic State	tTHLR	_	l –	50	ns
	1 JUER		1		

DESCRIPTION OF PIN FUNCTIONS

- A free running oscillator at four times the MPU clock rate useful for a system sync signal
 2 x to
 A free running oscillator at two times the MPU clock rate
 DMA/REF RED
 A maynchronous input used to freeze the MPU clock in the \$1 high, \$2 low state for expension for MEMORY READY
 A maynchronous input used to synchronize the major and a required to set the desired time constant. Internal 50 k resistor to V_{CC} See General Design Suggestions for MEMORY READY
 A maynchronous input used to synchronize the MPU clocks in the \$1 low, \$2 high state for slow in the \$1 low i

FIGURE 1 - BLOCK DIAGRAM

FIGURE 4 — TIMING DIAGRAM FOR NON-STRETCHED OPERATION (Memory Ready and DMA/Refresh Request held high continuously) Ext. In Input Voltage: 0 V to 3.0 V, f = 8.0 MHz, Duty Cycle = 50%, tTLHEX = tTHLEX = 5.0 ns

FIGURE 5 — TIMING DIAGRAM FOR MEMORY READY STRETCH OPERATION (Minimum Stretch Shown)

Input Voltage: 3.0 to 0 V, tTHLMR = tTLHMR = 5.0 ns

FIGURE 6 - TIMING DIAGRAM FOR DMA/REFRESH REQUEST STRETCH OPERATION (Minimum Stretch Shown)

Input Voltage: 3.0 to 0 V, t_{THLDR} = t_{TLHDR} = 5.0 ns 2.0 V Memory Ready irrelevant tSDRL -*SDRH THORL -2.0 V 2.0 V DMA/Refresh Request 0.8 V THLOR -- ^tTLHDR V_{CC} $\frac{\text{Vcc}}{2}$ **ΜΡ**υ φ1 MPU φ2 Bus $\phi 2$ Memory Clock tPLHG tTLHG --tTHLG -2.0 V 20 V DMA/Refresh Grant

0.8 V

FIGURE 7 - POWER ON RESET Input Voltage: 0 to 5.0 V, f = 100 kHz - Pulse Width = 1.0 μ s, t_{TLH} = t_{THL} = 25 ns

FIGURE 8 - LOAD CIRCUITS

APPLICATIONS INFORMATION

FIGURE 10 - TYPICAL RC FREQUENCY versus TEMPERATURE

GENERAL

The MC6875 Clock Generator/Driver should be located on the same board and within two inches of the MC6800 MPU. Series damping resistors of 10-30 ohms may be utilized between the MC6875 and the MC6800 on the ϕ 1 and ϕ 2 clocks to suppress overshoot and reflections.

The VCC pin (pin 16) of the MC6875 should be bypassed to the ground pin (pin 8) at the package with a 0.1 µF capacitor. Because of the high peak currents associated with driving highly capacitive loads, an adequately large ground strip to pin 8 should be used on the MC6875. Grounds should be carefully routed to minimize coupling of noise to the sensitive oscillator inputs. Unnecessary grounds or ground planes should be avoided near pin 2 or the frequency determining components. These components should be located as near as possible to the respective pins of the MC6875. Stray capacitance near pin 2 or the crystal, can affect the frequency. The can of the crystal should not be grounded. The ground side of the crystal or the C of the R-C oscillator should be connected as directly as possible to pin 8.

Unused inputs should be connected to VCC or ground.

Memory Ready, DMA/Refresh Request and Power-On Reset should be connected to VCC when not used.

The External Input should be connected to ground when not used.

OSCILLATOR

A tank circuit tuned to the desired crystal frequency connected between terminals X_1 and X_2 as shown in Figure 12, is recommended to prevent the oscillator from starting at other than the desired frequency. The $1k\Omega$ resistor reduces the Ω sufficiently to maintain stable crystal control. Crystal manufacturers may recommend a capacitance (CL) to be used in series with the crystal for optimum performance at series resonance.

See Figures 9 and 10 for typical oscillator temperature and V_{CC} supply dependence for R-C operation.

FIGURE 12 - OSCILLATOR-CRYSTAL OPERATION

TABLE 1 - OSCILLATOR COMPONENTS

	CIRCUIT METERS	CR		XIMATE ARAMETI	≅RS	CTS KNIGHTS 400 REIMANN AVE. SANDWICH, IL 60548	McCOY ELECT. CO. WATTS & CHESTNUTS STS. MT. HOLLY SPRING, PA 17065	TYCO CRYSTAL PRODUCTS 3940 W. MONTECITO PHOENIX, AZ 85019
L _T μH	C _T	R _S Ohms	Co pF	C ₁ mpF	fo MHz	(815) 786-8411	(717) 486-3411	(602) 272-7945
10	150	15-75	3-6	12	4.0	,MP-04A * 390 pF	113-31	150-3260
4.7	82	8-45	4-7	23	8.0	MP-080 * 47 pF	113-32	150-3270

FIGURE 13

Inductors may be obtained from: Collcraft, Cary, IL 60013 (312) 639-2361

To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capacitance.

The table above shows typical values for C_T and L_T , typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation.

The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency (M ϕ 1) is approximately:

Formula
$$4 \times 6 \approx 320$$
 C in picofarads R in K ohms (See Figure 11) 4 x fo in Megahertz

It would be desirable to select a capacitor greater than 15 pF to minimize the effects of stray capacitance. It is also desirable to keep the resistor in the 1 to 5 k Ω range. There is a nominal 270 Ω resistor internally at X1 which is in series with the external R. By keeping the external R as large as possible, the effects due to process variations of the internal resistor on the frequency will be reduced. There will, however, still be some variation in frequency in a production lot both from the resistance variations, external and internal, and process variations of the input switching thresholds. Therefore, in a production system, it is recommended a potentiometer be placed in series with a fixed R between X1 and X2.

POWER-ON RESET

As the power to the MC6875 comes up, the Reset Output will be in a high impedance state and will not give

a solid VOL output level until VCC has reached 3.5 to 4.0 V. During this time transients may appear on the clock outputs as the oscillator begins to start. This happens at approximately VCC = 3 V. At some VCC level above that, where Reset Output goes low, all the clock outputs will begin functioning normally. This phenomenon of the start-up sequence should not cause any problems except possibly in systems with battery back-up memory. The transients on the clock lines during the time the Reset Output is high impedance could initiate the system in some unknown mode and possibly write into the backup memory system. Therefore in battery backup systems, more elaborate reset circuitry will be required.

Please note that the Power-On Reset input pin of the MC6875 is not suitable for use with a manual MPU reset switch if the DMA/Ref Req or Memory Ready inputs are going to be used. The power on reset circuitry is used to initialize the internal control logic and whenever the input is switched low, the MC6875 is irresponsive to the DMA/Ref Req or Memory Ready inputs. This may result in the loss of dynamic memory and/or possibly a byte of slow static memory. The circuit of Figure 14 is recommended for applications which do not utilize the DMA/Ref Req or Memory Ready inputs. The circuit of Figure 15 is recommended for those applications that do. FIGURE 14 – MANUAL RESET FOR APPLICATIONS NOT USING DMA/REFRESH REQUEST OR MEMORY READY INPUTS

FIGURE 15 – MANUAL RESET FOR SYSTEMS USING DYNAMIC RAM OR SLOW STATIC RAM IN CONJUNCTION WITH MEMORY READY OR DMA/REFRESH REQUEST INPUTS

QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

The MC8T26A is identical to the NE8T26A and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor

MC6880A MC8T26A

This device may be ordered under either of the above type numbers.

QUAD THREE-STATE BUS TRANSCEIVER

MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	V _I	5.5	Vdc
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°c
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to+150	С

ELECTRICAL CHARACTERISTICS (4.75 V < V_{CC} < 5.25 V and 0°C < T_{A} < 75°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current - Low Logic State				1	
(Receiver Enable Input, VIL(RE) = 0.4 V)	IL(RE)	-	-	-200	μА
(Driver Enable Input, VIL(DE) = 0.4 V)	IL(DE)		-	-200	
(Driver Input, VIL(D) = 0.4 V)	IL(D)	_	-	-200	
(Bus (Receiver) Input, VIL(B) = 04 V)	IL(B)	_	-	-200	
Input Disabled Current - Low Logic State	IIL(D) DIS				
(Driver Input, V _{IL(D)} = 0.4 V)	12(8) 818	-	-	- 25	μА
Input Current-High Logic State					
(Receiver Enable Input, VIH(RE) = 5.25 V)	IH(RE)	_	_	25	μА
(Driver Enable Input, VIH(DE) = 5 25 V)	IH(DE)	-	-	25	
(Driver Input, VIH(D) = 5 25 V)	IH(D)	-	-	25	
(Receiver Input, V _{IH(B)} = 5.25 V)	IH(B)	_	-	100	
Input Voltage — Low Logic State					
(Receiver Enable Input)	VIL(RE)	. –	-	0 85	V
(Driver Enable Input	VIL(DE)		-	0.85	
(Driver Input)	VIL(D)	-	-	0 85	
(Receiver Input)	V _{IL(B)}	-	-	0.85	
Input Voltage — High Logic State					
(Receiver Enable Input)	VIH(RE)	2.0	-	_	V
(Driver Enable Input)	VIH(DE)	20	-	i –	
(Driver Input)	VIH(D)	20	-	_	
(Receiver Input)	VIH(B)	2.0	-	_	
Output Voltage — Low Logic State		,			
(Bus Driver) Output, IOL(B) = 48 mA)	V _{OL(B)}	_	-	0.5	V
(Receiver Output, IOL(R) = 20 mA)	VOL(R)	_	_	05	
Output Voltage - High Logic State			ĺ		
(Bus (Driver) Output, IOH(B) = -10 mA)	VOH(B)	2.4	31	_	v
(Receiver Output, IOH(R) = -2.0 mA)	VOH(R)	2.4	31	_	ł
(Receiver Output, I _{OH(R)} = -100 μA, V _{CC} = 5.0 V)		3.5	-	-	
Output Disabled Leakage Current — High Logic State					
(Bus Driver) Output, VOH(B) = 2.4 V)	IOHL(B)	_	_	100	μА
(Receiver Output, VOH(R) = 2.4 V)	OHL(R)	-	_	100	l '
Output Disabled Leakage Current — Low Logic State				1	
(Bus Output, V _{OL(B)} = 0.5 V)	IOLL(B)	_	-	-100	μА
(Receiver Output, V _{OL(R)} = 0.5 V)	OLL(R)	-	_	-100	
Input Clamp Voltage					
(Driver Enable Input I _{ID(DE)} = -12 mA)	VIC(DE)	-	-	-10	V
(Receiver Enable Input I _{IC(RE)} = +12 mA)	VIC(RE)	-	-	-1.0	
(Driver Input I _{IC(D)} = -12 mA)	VIC(D)	-	-	-10	
Output Short-Circuit Current, VCC = 5 25 V (1)				1	1
(Bus (Driver) Output)	I _{OS(B)}	-50	-	-150	mA
(Receiver Output)	IOS(R)	-30		-75	
Power Supply Current	¹cc		-	87	mA
(V _{CC} = 5.25 V)			l		1

⁽¹⁾ Only one output may be short-circuited at a time.

SWITCHING CHARACTERISTICS (Unless otherwise noted, specifications apply at $T_A = 25^{\circ}$ C and $V_{CC} = 5.0 \text{ V}$)

Characteristic	Symbol	Figure	Min	Max	Unit
Propagation Delay Time from Receiver (Bus) Input to High Logic State Receiver Output	[†] PLH(R)	1	_	14	ns
Propagation Delay Time from Receiver (Bus) Input to Low Logic State Receiver Output	tPHL(R)	1	_	14	ns
Propagation Delay Time from Driver Input to High Logic State Driver (Bus) Output	^t PLH(D)	2	-	14	ns
Propagation Delay Time from Driver Input to Low Logic State Driver (Bus) Output	[†] PHL(D)	2	-	14	ns
Propagation Delay Time from Receiver Enable Input to High Impedance (Open) Logic State Receiver Output	tPLZ(RE)	3	-	15	ns
Propagation Delay Time from Receiver Enable Input to Low Logic Level Receiver Output	tPZL(RE)	3	-	20	ns
Propagation Delay Time from Driver Enable Input to High Impedance Logic State Driver (Bus) Output	tPLZ(DE)	4	_	20	ns
Propagation Delay Time from Driver Enable Input to Low Logic State Driver (Bus) Output	tPZL(DE)	4	-	25	ns

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, $t_{PLH(R)}$ AND $t_{PHL(R)}$

FIGURE 2 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tpLH(D) AND tpHL(D)

FIGURE 3 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tplz(RE) AND tpzl(RE)

FIGURE 4 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tpLZ(DE) AND tpZL(DE)

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

TRIPLE BI-DIRECTIONAL BUS SWITCH

The MC6881/3449 is a three channel, non-inverting, bi-directional Bus Extender. It is designed to allow the bi-directional exchange of TTL level digital information between a selected pair of ports in a three port network. All three ports of each channel may be forced to a high impedance condition through that channel's Enable input.

Port pair selection and listener/talker status for the three channels is determined through the Control and Select inputs. All inputs are PNP buffered, M6800 Family compatible, and protected with Schottky-Barrier diode clamps to suppress undershoot voltages.

A summary of MC6881/3449 features include:

- Three Channels
- Non-Inverting Data Exchange
- Bi-Directional Operation
- · Active Pull-Up with Three-State Capability
- High Impedance Inputs
- TTL Compatible
- High Speed Schottky Technology
- · Single Power Supply

MC6881 MC3449

This device may be ordered under either of the above type numbers.

BI-DIRECTIONAL BUS EXTENDER/SWITCH

L SUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

TRUTH TABLE

Enable	Select	Control	Data Flow
0	0	0	2→3
0	0	1	3→2
0	1	0	1→3
0	1	1	3→1
1	×	Х	High Impedance

X - Don't Care

MAXIMUM RATINGS (Unless otherwise noted TA = 25°C.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	Vi	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature Range Ceramic Package Plastic Package	TJ	175 150	°c

ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.75$ to 5.25 Volts and $T_A = 0$ to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL		_	8.0	Vdc
Input Voltage — High Logic State	VIH	2.0	_	-	Vdc
Input Current — Low Logic State (VIL = 0.4 V)	IIL	-	_	-100	μΑ
Input Current — High Logic State (V _{IH} = 2.7 V) (V _{IH} = 5.25 V)	Чн			40 100	μА
Input Clamp Voltage (I _{IC} = -18 mA)	Vic	_	-	-1.5	Vdc
Output Voltage — Low Logic State (IOL = 8.0 mA)	VOL	-	_	0.5	v
Output Voltage — High Logic State (I _{OH} = -400 μA)	Voн	2.7	-	• -	V
Output Disabled Leakage Current ($V_{OZ} = 0.4 \text{ V}$) ($V_{OZ} = 2.7 \text{ V}$) ($V_{OZ} = 5.25 \text{ V}$)	loz	_ _ _	- - -	-40 40 100	μΑ
Output Short Circuit Current	los	-20	-	-55	mA
Crosstalk Current — Low Logic State (V_{IH} = 2.4 V on Node 3, opposite node selected V_{IL} = 0.4 V on node tested)	İXL	_	_	-40	μА
Crosstalk Current — High Logic State (V _{IL} = 0.8 V on Node 3, opposite node selected V _{IH} = 2.4 V on node tested).	Тхн	-	_	40	μА
Power Supply Current (V _{IH} = 2.4 V, V _{CC} = 5.25 V)	¹ cc	-	-	70	mA

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V and T_A = 25°C unless otherwise noted.)

Propagation Delay Times — Nodes 1, 2, 3					ns
Low-to-High Output	tPLH	_	30	_	
High-to-Low Output	tPHL		- 24	_	
Enable Delay Times	1				ns
Disabled to High or Low-Logic State	tEN	-	18	_	
High or Low-Logic State to Disabled	tDIS		10	_	
Select Delay Times					ns
Third-State to High or Low-Logic State	ton	-	25	-	
High or Low-Logic State to Third-State	tOFF	-	25	-	
Control Delay Times					ns
Third-State to High or Low-Logic State	ton	-	25	-	
High or Low-Logic State to Third-State	tOFF	-	25	-	

PROPAGATION DELAY TIME TEST CIRCUITS AND WAVEFORMS FIGURE 1 - NODE TO OUTPUT

FIGURE 2 - THIRD-STATE

		TEST TA	BLE	
Control	Select	Enable	Node 1	Test
VIL	VIH	Pulse	VIL	tEN/tDIS
VIL	V _{IH}	Pulse	VIH	tEN/t DIS

FIGURE 3 - TIMING DIAGRAM

- Note 1: Data is transmitted to only 1 of the 3 ports. Which port acts as an output depends on logic state of the select and control pins when the channel is enabled.
- Note 2 A port chosen to act as the output is either high or low, depending on the logic state of the port chosen to be the input.
- Note 3. The arrow indicates the direction of data flow. Each buffer is non-inverting, so data maintains the same logic state through the buffer.
- Note 4: t_{ON} is the time from third state to active (high or low) state, t_{OFF} is time from active to third state.

TRUTH TABLE

Enable	Select	Control	Data Direction (Note 3)
1	×	×	All Ports are High-Z
0	0	0	Port 2 → Port 3
0	0	1	Port 3 → Port 2
0	1	0	Port 1 → Port 3
0	1	1	Port 3 → Port 1

FIGURE 4 - TYPICAL IOL versus VOL

TYPICAL APPLICATION
FIGURE 5 - TWO MPUs SHARING A COMMON MAIN-MEMORY

Advance Information

OCTAL THREE-STATE BUFFER/LATCH

This series of devices combines four features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows for high-speed operation; 4) 48 mA drive capability.

- Inverting and Non-Inverting Options of Data
- SN74S373 Function Pinouts
- Eight Transparent Latches/Buffers in a Single Package
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- All Inputs Have Hysteresis to Improve Noise Rejection
- High Speed 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74S Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

This is advance information and specifications are subject to change without notice.

MC6882A/MC3482A MC6882B/MC3482B

This device may be ordered under either of the above type numbers.

OCTAL THREE-STATE BUFFER/LATCH

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		Vcc	8.0	Vdc
Input Voltage		VI	5.5	Vdc
Operating Ambient Temperature Range		TA	0 to +75	°C
Storage Temperature Range		T _{stg}	-65 to +150	°c
Operating Junction Temperature	1	Tj		°C
Plastic Package		i .	150	
Ceramic Package			175	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 0° C \leq TA \leq 75 $^{\circ}$ C and 4.75 V \leq V_{CC} \leq 5.25 V)

Character istic	Symbol	Min	Тур	Max	Unit
Input Voltage — High Logic State (V _{CC} = 4.75 V, T _A = 25 ^o C)	VIH	2.0	1.	-	٧
Input Voltage — Low Logic State (V _{CC} = 4.75 V, T _A = 25°C)	VIL	-	_ :	8.0	٧
Input Current — High Logic State (V _{CC} = 5.25 V, V _{IH} = 2.4 V)	¹ıн	-		40	μΑ
Input Current — Low Logic State (V _{CC} = 5.25 V, V _{IL} = 0.5 V, V _{IL} (OE) = 0.5 V)	IIL	_		-250	μΑ
Output Voltage High Logic State (V _{CC} = 4.75 V, I _{OH} = -20 mA)	Voн	2.4	_	-	٧
Output Voltage — Low Logic State (IOL = 48 mA)	VOL	_	-	0.5	٧
Output Current — High Impedance State (V _{CC} = 5.25 V, V _{OH} = 2.4 V) {V _{CC} = 5.25 V, V _{OL} = 0.5 V)	loz	<u>-</u>	-1-1	100 -100	μА
Output Short-Circuit Current (V _{CC} = 5.25 V, V _O = 0) (only one output can be shorted at a time)	los	-30	-80	-130	mA
Power Supply Current MC6882A/MC3482A (V _{CC} = 5 25 V) MC6882B/MC3482B	Icc	-		130 150	mA
Input Clamp Voltage (VCC = 4.75 V, I IK = -12 mA)	V _{IK}	_	-	-1.2	٧

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristics Symbo		MC6882A/ Symbol MC3482A				Unit		
	*	Min	Тур	Max	Min	Тур	Max	
Propagation Delay Times								ns
Data to Output			1		1	}		
Low to High	tPLH(D)		l					
C _L = 50 pF		_	10	-	_	12	-	
Cլ = 250 pF		_	_	-	_	-	-	
C _L = 375 pF		-	l	-	-	-	-	
Cլ = 500 pF,		-	21	_	-	20	-	
High to Low	^t PHL(D)	i						
C ₁ = 50 pF	,2.07	_	8.0	_	_	10	l –	
C ₁ = 250 pF		_	_	_	_	_	_	
C ₁ = 375 pF		-	l –	-	l –	-	_	
C _L = 500 pF		-	17	_	_	18	-	
Propagation Delay Times							·	ns
Latch Disable (Low to High)								
to Output		l	l		Į.			
Low to High	tPLH(L)	1						
C _L = 50 pF		l –	17.	_	_	22	_	
High to Low	^t PHL(L)		ł					
C _L = 50 pF	THL(L)	-	19	-	_	17	_ :	
Propagation Delay Times	,	,						ns
(C _L = 20 pF)		ĺ '	1					
High Output Level to High Impedance	tPHZ(OE)		7.0		-	7.0	-	
Low Output to High Impedance	tPLZ(OE)	l –	18	l –	l ' _	18		
High Impedance to High Output	tPZH(OE)	l –	8.0	l –		15	-	
High Impedance to Low Output	tPZL(OE)	l –	12	_	l –	9.0	-	

AC SETUP CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	MC6882A/ MC3482A				Unit		
		Min	Тур	Max	Min	Тур	Max	
Setup Time (Data to Negative Going Latch Enable)	t _{su} (D)	-	0	-	-	0	-	ns
Hold Time (Data to Negative Going Latch Enable)	th(D)	-	11	-	_	11	-	ns
Minimum Latch Enable Pulse Width (High or Low)	tW(L)	-	15	-	-	15	-	ns

PIN CONNECTIONS AND TRUTH TABLES

FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS

FIGURE 2 – WAVEFORMS FOR PROPAGATION DELAY TIMES DATA TO OUTPUT

FIGURE 3 – WAVE FORMS FOR AC SETUP AND LATCH DISABLE TO OUTPUT DELAY

FIGURE 4 – WAVEFORMS FOR PROPAGATION DELAY
TIMES – OUTPUT ENABLE TO OUTPUT

HEX THREE-STATE BUFFER INVERTERS

This series of devices combines three features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows high-speed operation.

The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs — one controlling four buffers and the other controlling the remaining two buffers.

The units are well-suited for Address buffers on the M6800 or similar microprocessor application.

- High Speed 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74LS Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

MICROPROCESSOR BUS EXTENDER APPLICATION (Clock) GND +5 V φ1 φ2 M6800 MPU MC6885/MC8T95 MC6880A/MC8T26A thru MC6888/MC8T98 BUS EXTENDER BUS EXTENDER MC6830 ADDRESS ROMs AND DATA CONTROL BUS MC6810 BUS RAMe MC6820 PIAs MC6850 ACIAs MC6860 то MODEM DAA

MC6885/MC8T95 MC6886/MC8T96 MC6887/MC8T97 MC6888/MC8T98

This device may be ordered under either of the above type numbers.

HEX THREE-STATE BUFFER/INVERTERS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°С
Operating Junction Temperature	Tj		°С
Plastic Package		150	
Ceramic Package		175	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 0° C \leq T_A \leq 75°C and 4 75 V \leq V_{CC} \leq 5.25 V)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage High Logic State (VCC = 4.75 V, T _A = 25 ⁰ C)	VIH	20	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Input Voltage — Low Logic State (V _{CC} = 4.75 V, T _A = 25 ^o C)	VIL	-	-	08	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Input Current High Logic State (VCC = 5 25 V, VIH = 2 4 V)	ſıн	-		40	μА
Input Current — Low Logic State (VCC = 5 25 V, VIL = 0 5 V, VIL(E) = 0 5 V)	lir.	-	-	-400	μА
Input Current — High Impedance State (VCC = 5 25 V, V _{IL(I)} = 0 5 V, V _{IH(Ē)} = 2.0 V)	IH(E)	, -	-	-40	μА
Output Voltage High Logic State (VCC = 4 75 V, I _{OH} = -5 2 mA)	Voн	24	-	-	V
Output Voltage – Low Logic State (IOL = 48 mA)	VOL	-	-	0.5	V
Output Current - High Impedance State (V _{CC} = 5 25 V, V _{OH} = 2 4 V) (V _{CC} = 5 25 V, V _{OL} = 0 5 V)	loz			40 -40	μА
Output Short-Circuit Current (V _{CC} = 5 25 V, V _O = 0) (only one output can be shorted at a time)	los	-40	-80	-115	mA
Power Supply Current (V _{CC} = 5 25 V) MC8T95, MC8T97, MC6885, MC6887 MC8T96, MC8T98, MC6886, MC6888	Icc ·	-	65 59	98 89	mA
Input Clamp Voltage {VCC = 4 75 V, I ₁ C = -12 mA}	· V _{IC}	-	-	-1.5	V
Output V _{CC} Clamp Voltage (V _{CC} = 0, I _{OC} = 12 mA)	Voc	-	- "	1 5	V
Output Gnd Clamp Voltage (V _{CC} = 0, I _{OC} = -12 mA)	Voc	-	-	-1.5	V
Input Voltage (I ₁ = 1 0 mA)	VI	5 5	-	_	V

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted)

		MC8T95/97 MC6885/87			MC8T96/98 MC6886/88				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Min	Unit	
Propagation Delay Time - High to Low State	tPHL	1						ns	
(C _L = 50 pF)	1	3.0	-	12	4.0	-	11	1	
(C _L = 250 pF)		i –	16	-	_	15	-		
(CL = 375 pF)		-	20	-	-	18	_		
(C _L = 500 pF)		-	23	-	-	22	-	1	
Propagation Delay Time - Low to High State	tPLH							ns	
$(C_L = 50 pF)$		3.0	_	13	3.0	_	10	ł	
(CL = 250 pF)		-	25	_	-	22	_	l	
(C _L = 375 pF)	i i	-	33	-	-	28	-	ł	
(C _L = 500 pF)		-	42	-	-	35	-		
Transition Time - High to Low State	†THL							ns	
(C _L = 250 pF)		-	10	-	-	10	_		
$(C_L = 375 pF)$		_	11	-	-	13	_		
$(C_{L} = 500 pF)$		-	14	-	-	15	-		
Transition Time - Low to High State	^t TLH							ns	
(C _L = 250 pF)	1	-	32	-	-	28	-	1	
$(C_{L} = 375 pF)$	l	-	42	-	-	38	_		
(C _L = 500 pF)	j .	-	60	-	-	53	-		

To Scope (Input)

То Ѕсоре

		MC8T95/97 MC6885/87			MC8T96/98 MC6886/88			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time — High State to Third State (C _L = 5.0 pF)	tPHZ(Ē)	3.0	-	10	3.0	-	10	ns
Propagation Delay Time — Low State to Third State (C _L = 5.0 pF)	tPLZ(Ē)	3.0	-	12	5.0	_	16	ns
Propagation Delay Time — Third State to High State (CL = 50 pF)	tPZH(Ē)	8.0	-	25	7.0	-	22	ns
Propagation Delay Time — Third State to Low State (C _L = 50 pF)	tPZL(Ē)	12	-	25	11	-	24	ns

FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS

TIMES INPUT TO OUTPUT - 0 V Input tPHLtPLH. VOH MC8T96, MC6886 MC8T98 or MC6888

FIGURE 2 - WAVEFORMS FOR PROPAGATION DELAY

FIGURE 3 - WAVEFORMS FOR PROPAGATION DELAY TIMES - ENABLE TO OUTPUT

H = High-Logic State, L = Low-Logic State, Z = High Impedance State

Row Address From MPU

Column Address
From MPU

An

MC8T97

Or

Other

MC8T97

Or

Other

An

MC8T97

An

MC8T97

Or

Other

Column Enable

Column Enable

FIGURE 4 - ADDRESS MULTIPLEXER FOR 16-PIN 4K NMOS MEMORY

NON-INVERTING QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns. The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor
- Non-Inverting

MC6889 MC8T28

This device may be ordered under either of the above type numbers.

NON-INVERTING BUS TRANSCEIVER

MONOLITHIC SCHOTTKY
INTEGRATED CIRCUITS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	8.0	Vdc	
Input Voltage	V _I	5.5	Vdc	
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°C	
Operating Ambient Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to+150	°C	

ELECTRICAL CHARACTERISTICS (4.75 V < V_{CC} < 5.25 V and 0° C < T_A < 75°C unless otherwise noted.)

Characteristic	Symbol	Mın	Тур	Max	Unit
Input Current — Low Logic State (Receiver Enable Input, VIL(RE) = 0.4 V)	IL(RE)	_	-	-200	μА
(Driver Enable Input, VIL(DE) = 0.4 V)	IL(DE)	_	-	-200	
(Driver Input, VIL(D) = 0 4 V)	IL(D)	-	~	-200	
(Bus (Receiver) Input, V _{1L(B)} = 0.4 V)	IL(B)			-200	
Input Disabled Current — Low Logic State	IL(D) DIS				
(Driver Input, V _{IL(D)} = 0.4 V)	12(0) 510	_	-	-25	μА
Input Current-High Logic State					
(Receiver Enable Input, VIH(RE) = 5 25 V)	IH(RE)	-	-	25	μΑ
(Driver Enable Input, VIH(DE).= 5 25 V)	IH(DE)	_	_	25	, i
(Driver Input, V _{IH(D)} = 5.25 V)	IH(D)	_	-	25	
Input Voltage — Low Logic State					
(Receiver Enable Input)	VIL(RE)	_	_	085	V
(Driver Enable Input	VIL(DE)		~	0.85	
(Driver Input)	VIL(D)	_	_	0 85	
(Receiver Input)	VIL(B)	_	~	0.85	
Input Voltage - High Logic State					
(Receiver Enable Input)	VIH(RE)	20	-	_	l v
(Driver Enable Input)	VIH(DE)	20	~	l –	
(Driver Input)	VIH(D)	2.0	_	l _	
(Receiver Input)	V _{IH(B)}	2.0		_	
Output Voltage – Low Logic State				-	
(Bus Driver) Output, IOL(B) = 48 mA)	VOL(B)	_	_	0.5	v
(Receiver Output, I _{OL(R)} = 20 mA)	VOL(B)	_	-	05	
Output Voltage - High Logic State	VOL(R)				
(Bus (Driver) Output, I _{OH} (B) ≈ −10 mA)	Varian	2.4	3 1	i I	v
(Receiver Output, I _{OH} (R) = -2.0 mA)	Vон(в)		31	-	·
	Voh(R)	2.4	1	-	
(Receiver Output, I _{OH(R)} = -100 μA, V _{CC} = 5.0 V)		3.5			
Output Disabled Leakage Current - High Logic State	l .				
(Bus Driver) Output, V _{OH} (B) = 2.4 V)	OHL(B)		_	100	μA
(Receiver Output, V _{OH(R)} = 2.4 V)	IOHL(R)		_	100	
Output Disabled Leakage Current - Low Logic State	1				
(Bus Output, V _{OL(B)} = 0.5 V)	OLL(B)	_	~	-100	μΑ
(Receiver Output, V _{OL(R)} = 0.5 V)	IOLL(R)		-	-100	
Input Clamp Voltage					
(Driver Enable Input I _{ID(DE)} = -12 mA)	VICIDE)	_	-	-10	v l
(Receiver Enable Input I _{IC(RE)} = +12 mA)	VIC(RE)	_	-	-1.0	
(Driver Input I _{IC(D)} = -12 mA)	VIC(D)	-	-	-1.0	
Output Short-Circuit Current, VCC = 5.25 V (1)					
(Bus (Driver) Output)	los(B)	-50	_	-150	mA
(Receiver Output)	IOS(R)	-30	_	-75	
Power Supply Current	lcc l		_	110	mA
(V _{CC} = 5.25 V)					

⁽¹⁾ Only one output may be short-circuited at a time.

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 25°C)

Characteristic	Symbol	Min	Max	Unit
Propagation Delay Time—Receiver (C _L = 30 pF)	tPLH(R) tPHL(R)	_	17 17	ns
Propagation Delay Time—Driver (C _L = 300 pF)	tPLH(D) tPHL(D)	-	17 17	ns
Propagation Delay Time-Enable (C _L = 30 pF) - Receiver - Driver Enable (C _L 300 pF)	tPZL(R) tPLZ(R) tPZL(D) tPZL(D)	- - -	23 18 28 23	ns

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, tplH(R) AND tpHL(R)

FIGURE 2 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tplH(D) AND tpHL(D)

FIGURE 3 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tplz(RE) AND tpzl(RE)

FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tplz(DE) AND tpzl(DE)

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

MC6890

FOR COMPLETE DATA SEE PAGE 8-61

Product Preview

BUS-COMPATIBLE 8-BIT MPU D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8-bit (\pm 0.19% accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high-stability, laser-trimmed, thin-film resistors for both reference input and output span and offset control.

A reset pin provides for overriding stored data and forcing $l_{\mbox{\scriptsize out}}$ to zero.

- ±1/2 LSB Nonlinearity
- Available in Military Temperature Range
- Direct Data Bus Link
- Low Power: 130 mW Typ
- Fast Settling Time. 140 ns Typ
- Single Enable: 10 ns Max Data Hold Time
- Self-Contained 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Reset Pin to Override Data
- Output Voltage Ranges: +5 0, +10, +20, or ±2.5, ±5.0, ±10 Volts

OPERATION WITH MC6800 MC6800 Microprocessor Data Bus Reset Address Bus VMA DO-D7 1-8 Decoder Reset 15/16 MC6890 Enable 12 v_{out}

This is advance information and specifications are subject to change without notice.

8-BIT BUS-COMPATIBLE MPU DAC

MC75365

Specifications and Applications Information

QUAD MOS CLOCK DRIVER OR HIGH-VOLTAGE, HIGH-CURRENT NAND DRIVER

The MC75365 is intended for driving the highly capacitive Address, Control and Timing inputs on a variety of MOS RAMs such as the "1103" and "7001" types. It is designed to operate from the MTTL 5.0 V power supply and the VSS and VBB power supplies used with the memories in most applications. Operation is recommended at VCC3 \simeq VCC2 + 3 V, but the part is useable over a wide latitude of supply voltages. VCC2 may be tied directly to VCC3 in many conditions.

- Pin Compatible with Intel 3207 and Interchangeable with T. I. SN75365
- MTTL and MDTL Compatible, Diode-Clamped Inputs
- Two Common Enable Inputs per Gate Pair
- Low Standby Power Consumption Transient
- Capable of Driving High Capacitive Loads
- Fast Switching Operation

TYPICAL APPLICATION with "7001" Type 1 K RAM Vссз ф A2_0-АЗ V_{ССЗ} '7001" Type Chip A5 O NMOS MTTL MC75365 0.A6 RAM Ω. MC75365 Inputs (MCM7001) Α7 Λ⁹0 Data In MC75365 ∳Gnd -3 n v

QUAD MOS CLOCK DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUITS

P SUFFIX PLASTIC PACKAGE CASE 648

PIN CONNECTIONS

Where:

H = High Logic State L = Low Logic State

| = | = | Irrelevant

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC1} V _{CC2} V _{CC3}	-0.5 to 7.0 -0.5 to 25 -0.5 to 30	V
Input Voltage	V _I	5.5	V
Input Differential Voltage (see Note 1)	V _{ID}	5.5	V
Power Dissipation (Package Limitation) Ceramic Package @ T _A = 25°C Derate above T _A = 25°C Plastic Package @ T _A = 25°C Derate above T _A = 25°C Ceramic Package @ T _C = 25°C Derate above T _C = 25°C Plastic Package @ T _C = 25°C Plastic Package @ T _C = 25°C Derate above T _C = 25°C	PD 1/R _{ØJA} PD 1/R _{ØJA} PD 1/R _{ØJC} PD 1/R _{ØJC}	1000 6 6 830 6 6 3.0 20 1.8	mW mW/°C mW mW/°C Watts mW/°C
Operating Ambient Temperature Range	TA	0 to 70	οС
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°С
Storage Temperature Range	T _{stq}	-65 to +150	°C

Note 1. This is the differential voltage between any two inputs to any single gate.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC1}	4.75	50	5.25	V
	V _{CC2}	4.75	20	24	
	V _{CC3}	V _{CC2}	24	28	
Difference between V _{CC3} and V _{CC2}	VCC3-VCC2	0	4.0	10	V
Operating Temperature Range	TA	0	T -	70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted TA = 25°C, V $_{CC1}$ = 5.0 V, V $_{CC2}$ = 20 V, V $_{CC3}$ = 24 V, C $_{L}$ = 200 pF, R $_{D}$ = 24 $_{\Omega}$, See Figures 1 and 2.)

Characteristic	Symbol	Min	Typ*	Max	Unit
Input Voltage - High Logic State	VIH	2.0	-	-	V
Input Voltage — Low Logic State	VIL	=	-	0.8	V
Input Clamp Voltage (I _{IC} = -12 mA)	Vic	-	_	1.5	V
Input Current — Maximum Input Voltage (VIH = 5.5 V)	Ч н1		_	1.0	mA
Input Current High Logic State (V _{IH} (1) = 2.4 V) (V _{IH} (2) or V _{IH} (3) = 2.4 V)	Ін2			40 80	μΑ
Input Current — Low Logic State (V (1) = 0.4 V) (V (2) or V (3) = 0.4 V)	ll.	_ _	-1.0 -2.0	-1.6 -3.2	mA
Output Voltage — High Logic State (VCC3 = VCC2 + 3.0 V, V _I L = 0.8 V, I _{OH} = -100 μA) (VCC3 = VCC2 + 3.0 V, V _I L = 0.8 V, I _{OH} = -10 mA) (VCC3 = VCC2 · V _I L = 0.8 V, I _{OH} = -50 μA) (VCC3 = VCC2 · V _I L = 0.8 V, I _{OH} = -50 μA)	V _{OH1} V _{OH2} V _{OH3} V _{OH4}	V _{CC2} -0.3 V _{CC2} -1.2 V _{CC2} -1.0 V _{CC2} -2.3	V _{CC2} -0.1 V _{CC2} -0.9 V _{CC2} -0.7 V _{CC2} -1.8	- - -	V
Output Clamp Voltage (VIL = 0 V, IOC = 20 mA)	Voc	-	_	V _{CC2} +1.5	V
Output Voltage — Low Logic State (V _{IH} = 2.0 V, I _{OL} = 10 mA) (15 V \leq V _{CC3} \leq 28 V, V _{IH} = 2.0 V, I _{OL} = 40 mA)	VOL1 VOL2	-	0.15 0.25	0.3 0.5	V
Power Supply Currents Outputs High Logic State (V _{CC1} = 5.25 V, V _{CC2} = 24 V, V _{CC3} = 28 V, V _{IL} = 0 V, I _{OH} = 0 mA) (V _{CC1} = 5.25 V, V _{CC2} = 24 V, V _{CC3} = 24 V V _{IL} = 0 V, I _{OH} = 0 mA)	ICC1(H) ICC2(H) ICC3(H) ICC2(H) ICC3(H)	- - - - -	4.0 -2.2 2.2 - -	8.0 -3.2/+0.25 3.5 0.25 0.5	mA
Power Supply Currents – Output Low Logic State (V _{CC1} = 5.25 V, V _{CC2} = 24 V, V _{CC3} = 28 V V _{IH} = 5.0 V, I _{OL} = 0 mA)	ICC1(L) ICC2(L) ICC3(L)	- - -	31 - 16	47 2.5 25	mA
Power Supply Currents — Standby Condition ($VCC1 = 0 \text{ V}, VCC2 = 24 \text{ V}, VCC3 = 24 \text{ V}$ $V_{IH} = 5.0 \text{ V}, I_{OL} = 0 \text{ mA}$)	ICC2(S) ICC3(S)	_ _	- -	0.25 0.5	mA

^{*}Typical Values at 25° C, $V_{CC1} = 5.0 \text{ V}$, $V_{CC2} = 20 \text{ V}$ and $V_{CC3} = 24 \text{ V}$

SWITCHING CHARACTERISTICS (Unless otherwise noted T_A = 25° C, V_{CC1} = 5.0 V, V_{CC2} = 20 V, V_{CC3} = 24 V, C_L = 200 pF, R_D = 24Ω , See Figures 1 and 2.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time, Low to High State Output	tPLH	10	31	48	ns
Propagation Delay Time, High to Low State Output	tPHL	10	30	46	i
Delay Time, Low to High State Output	tDLH	_	11	20	ns
Delay Time, High to Low State Output	tDHL		10	18	
Transition Time, Low to High State Output	^t TLH	_	20	33	ns
Transition Time, High to Low State Output	tTHL.	-	20	33	11, 1

FIGURE 1 - SWITCHING CHARACTERISTIC TEST CIRCUIT

FIGURE 2 - SWITCHING CHARACTERISTICS WAVEFORMS

TYPICAL PERFORMANCE CURVES

FIGURE 3 — OUTPUT VOLTAGE — HIGH LOGIC STATE versus OUTPUT CURRENT

FIGURE 4 – OUTPUT VOLTAGE – HIGH LOGIC STATE
Versus OUTPUT CURRENT

FIGURE 5 - OUTPUT VOLTAGE - LOW LOGIC STATE versus OUTPUT CURRENT

FIGURE 6 — TOTAL POWER DISSIPATION versus FREQUENCY
(All Four Drivers)

TYPICAL PERFORMANCE CURVES

FIGURE 9 – PROPAGATION DELAY TIME – LOW TO HIGH STATE OUTPUT versus V_{CC2} SUPPLY VOLTAGE

FIGURE 11 – PROPAGATION DELAY TIME – LOW TO HIGH LOGIC STATE versus LOAD CAPACITANCE

FIGURE 8 – PROPAGATION DELAY TIME – HIGH TO LOW STATE OUTPUT

FIGURE 10 — PROPAGATION DELAY TIME — HIGH TO LOW STATE OUTPUT versus V_{CC2} SUPPLY VOLTAGE

FIGURE 12 – PROPAGATION DELAY TIME --HIGH TO LOW STATE OUTPUT Versus LOAD CAPACITANCE

APPLICATIONS SUGGESTIONS

POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$T_{J} = T_{A} + P_{D} (R_{\theta JC} + R_{\theta CA})$$
 (1)

or

$$T_{J} = T_{A} + P_{D} (R_{\theta JA})$$
 (2)

where

T_J = junction temperature
T_A = ambient temperature
P_D = power dissipation

 $R_{\theta JC}$ = thermal resistance, junction to case $R_{\theta CA}$ = thermal resistance, case to ambient $R_{\theta JA}$ = thermal resistance, junction to ambient.

Power Dissipation for the MC75365 MOS Clock Driver: The power dissipation of the device (PD) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. The variation of power dissipation with frequency and load capacitance for the MC75365 is illustrated in Figure 6. The power dissipation, when substituted into equation (2), should not yield a junction temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for two integrated circuit packages in the maximum ratings section of this data sheet.

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (1) and (2) and the maximum thermal resistance values given in Table 1 shown on the following page.

TABLE 1 – THERMAL CHARACTERISTICS OF "L" AND "P" PACKAGES

PACKAGE TYPE	R _{θ JA} (^o C/W) Still Air			(^o C/W) II Air
(Mounted in Socket)	MAX	TYP	MAX	TYP
"L" (Ceramic Package)	150	100	50	27
"P" (Plastic Package)	150	100	70	40

If the power dissipation determined by a given system produces a junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring TJ to an acceptable value. Secondly, the $R_{\theta}CA$ term can be reduced. Lowering the $R_{\theta}CA$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 13.

FIGURE 13 - THERMALLOY* HEAT SINKS

From Table 1, $R_{\theta}J_{A}(max)$ for the ceramic package with no heat sink and in a still air environment is 150°C/W.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the $R_{\theta}CA$ for natural convection from Figure 14 is 44°C/W. From Table 1 $R_{\theta}JC(max)$ = $50^{\circ}C/W$ for the ceramic package. Therefore, the new $R_{\theta}JA(max)$ with the 6012B heat sink added becomes:

 $R_{\theta JA}(max) = 50^{\circ}C/W + 44^{\circ}C/W = 94^{\circ}C/W$. Thus the addition of the heat sink has reduced $R_{\theta JA}$

Thus the addition of the neat sink has reduced H_0^a JA (max) from 150°C/W down to 94°C/W. With the heat sink, the maximum power dissipation by equation (2) at $T_A = +70$ °C is:

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{+94^{\circ}C/W} = 1.11 \text{ watts.}$$

This gives approximately a 60% increase in maximum power dissipation over the power dissipation which is allowable with no heat sink.

FIGURE 14 – CASE TEMPERATURE RISE ABOVE
AMBIENT versus POWER DISSIPATED USING
NATURAL CONVECTION

Forced Air Considerations:

As illustrated in Figure 15, forced air can be employed to reduce the $R_{\theta JA}$ term. Note, however, that this curve is expressed in terms of typical $R_{\theta JA}$ rather than maximum $R_{\theta JA}$. Maximum $R_{\theta JA}$ can be determined in the following manner:

From Table 1 the following information is known:

(a)
$$R_{\theta}JA(typ) = 100^{\circ}C/W$$

(b) $R_{\theta} JC(typ) = 27^{\circ}C/W$ Since:

 $R_{\theta}JA = R_{\theta}JC + R_{\theta}CA \tag{3}$

Then:

 $R_{\theta}CA = R_{\theta}JA \sim R_{\theta}JC \tag{4}$

Therefore, in still air

 $R_{\theta CA}(typ) = 100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$

From Curve 1 of Figure 14 at 500 LFPM and equation (4),

 $R_{\theta} CA(typ) = 53^{\circ}C/W - 27^{\circ}C/W = 26^{\circ}C/W.$

Thus R $_{\theta}$ CA(typ) has changed from 73°C/W (still air) to 26°C/W (500 LFPM), which is a decrease in typical R $_{\theta}$ CA by a ratio of 1:2.8. Since the typical value of R $_{\theta}$ CA was reduced by a ratio of 1:2.8, R $_{\theta}$ CA(max) of 100°C/W should also decrease by a ratio of 1:2.8.

This yields an R θ CA(max) at 500 LFPM of 36°C/W. Therefore, from equation (3):

 $R_{\theta JA}(max) = 50^{\circ}C/W + 36^{\circ}C/W = 86^{\circ}C/W.$

Therefore the maximum allowable power dissipation at 500 LFPM and $T_A = +70^{\circ}C$ is from equation (2):

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{86^{\circ}C/W} = 1.2 \text{ watts.}$$

FIGURE 15 — TYPICAL THERMAL RESISTANCE ($R_{\theta J A}$) OF "L" PACKAGE versus AIR VELOCITY

Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of $R_{\theta CA}$ for still air and forced air such as illustrated in Figure 16. For example the 6012B heat sink has an $R_{\theta CA} = 17^{\circ}\text{C/W}$ at 500 LFPM as noted in Figure 15. From equation (3):

Max $R_{\theta JA} = 50^{\circ}C/W + 17^{\circ}C/W = 67^{\circ}C/W$ From equation (2) at $T_{A} = +70^{\circ}C$

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{67^{\circ}C/W}$$
 1.57 watts.

FIGURE 16 – THERMAL RESISTANCE R_{θCA} versus AIR VELOCITY

Note from Table 1 and Figure 15 that if the 16-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical $R_{\partial JA}$ is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine the maximum power dissipation for this condition.

Given data from Table 1:

typical $R_{\theta JA} = 100^{\circ} C/W$ typical $R_{\theta JC} = 27^{\circ} C/W$

From Curve 2 of Figure 15, $R_{\theta JA}(typ)$ is $75^{\circ}C/W$ for a PC mount and no air flow. Then the typical $R_{\theta CA}$ is $75^{\circ}C/W - 27^{\circ}C/W = 48^{\circ}C/W$. From Table 1 the typical value of $R_{\theta CA}$ for socket mount is $100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$. This shows that the PC board mount results in a decrease in typical $R_{\theta CA}$ by a ratio of 1:1.5 below the typical value of $R_{\theta CA}$ in a socket mount. Therefore, the maximum value of socket mount $R_{\theta CA}$ of $100^{\circ}C/W$ should also decrease by a ratio of 1:1.5 when the device is mounted in a PC board. The maximum $R_{\theta CA}$ becomes:

$$R_{\theta CA} = \frac{100^{\circ}C/W}{1.5} = 66^{\circ}C/W$$
 for PC board mount

Therefore the maximum $R_{\theta JA}$ for a PC mount is from equation (3).

 $R_{\theta JA} = 50^{\circ} C/W + 66^{\circ} C/W = 116^{\circ} C/W.$

With maximum $R_{\theta JA}$ known, the maximum power dissipation can be found. If $T_A = 70^{\circ}C$ then from equation (2) the maximum power dissipation may be found to be 905 mW.

In most cases, heat sink manufacturer's publish only RACA socket mount data. Although data for PC mounting is generally not available, this should present no problem. Note in Figure 15 that an air flow greater than 250 LFPM yields a socket mount RAJA approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of $R_{\theta}CA$ of the type environment and measurement techniques employed. For example, RACA would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

MC75368

DUAL MECL-to-MOS DRIVER

The MC75368 is a dual MECL-to-MOS driver and interface circuit. The device accepts standard MECL 10,000 and IBM grounded-reference ECL input signals and creates high-current and high-voltage output levels suitable for driving MOS circuits. Specifically, it may be used to drive address, control, and timing inputs for several types of MOS RAMs. The device may also be used as a MECL-to-MTTL translator.

The MC75368 is optimized for higher voltage capability.

- Dual MECL-to-MOS Driver
- Dual MECL-to-MTTL Driver
- Versatile Interface Circuit for Use Between MECL and High-Current, High-Voltage Systems

FIGURE 1 - TYPICAL APPLICATION WITH 7001 1K NMOS RAM MC75368 Ó Output Enable MC75368 Data С Output М (MECL MC75368 Matrix of 10,000) 7001 $\stackrel{\frown}{\sim}$ 1K 000 MC75368 RAMS Data Output MC75368 L 0 G Latch Enable Write Enable MC75368 Data Input Chip Select MC10161 MC75368 Chip Select *MC3461 Dual Sense Amplifier

DUAL MECL-to-MOS DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

Input Voltage Cor	nditions	
Differential	Logic Level	Output
(More positive of A or B) -C	АВС	Y
(V _{ID} ≥ 150 mV)	L H L H L H H H L	L
(-150 mV ≤ V _{ID} ≤ 150 mV)	x x x	Indeter- minate
(V _{ID} ≤ -150 mV)	LLH	н

X = irrelevant

MAXIMUM RATINGS (Unless otherwise noted, voltages measured with respect to GND terminals, T_A = 25°C.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC1}	-0 5 to 7.0	Vdc
	V _{CC2}	-0.5 to 22	Vdc
	V _{CC3}	-0.5 to 30	Vdc
	VEE	-8.0 to 0.5	Vdc
Most Negative of V _{CC1} , V _{CC2} , or V _{CC3} with respect to V _{EE}	-	-0.5	Vdc
Input Voltage	V _I	-8 0 to 0.5	- Vdc
Inter-Input Voltage(1)		5 5	Vdc
Most negative Input Voltage with respect to VEE	VI - VEE	-5.0	Vdc
Power Dissipation (Package Limitation)			
Ceramic Package @ T _A = 25 ^o C Derate above T _A = 25 ^o C	. P _D 1/R _{θJA}	1000 6 6	mW mW/ ^O C
Plastic Package @ T _A = 25 ^o C Derate above T _A = 25 ^o C	P _D 1/R _θ JA	830 6.6	mW mW/ ^o C
Ceramic Package @ T _C = 25 ^O C Derate above T _C = 25 ^O C	P _D 1/R _∂ JC	3 O 20 ,	Watts mW/ ^O C
Plastic Package @ T _C = 25 ^o C Derate above T _C = 25 ^o C	P _D 1/R _θ JC	1 8 14	Watts mW/ ^O C
Operating Ambient Temperature Range	TA	0 to 70	°C
Storage Temperature Range	T _{stg}	-65 to 150	°c

⁽¹⁾ With respect to any pair of inputs to either of the input gates.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC1}	4.75	5.0	5 25	V
	V _{CC2}	4 75	20	22	v
	V _{CC3}	V _{CC2}	24	28	v
	VCC3 · VCC2	0	4.0	10	\ \ \
	VEE	-4.68	-5.2	-5.72	V
Operating Ambient Temperature Range	TA	0	_	70	°C
DEFINITION OF INPUT LOGIC LEVELS					

Input Voltage - High Logic State (Any Input) (1)	V _{IH}	-1.5	-	-0.7	V
Input Voltage — Low Logic State (Any Input) (1)	VIL	VEE	_	V _{IH} -150	mV
Input Differential Voltage - High Logic State (2)	VIDH	150	_	_	mV
Input Differential Voltage — Low Logic State (2)	VIDL	-150			mV

⁽¹⁾ The definition of these Logic Levels use Algebraic System of notation

⁽²⁾ The input differential voltage is measured from the more positive inverting input (A or B) with respect to the non-inverting input (C) of the same gate.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended power supply and temperature ranges. Typical values measured at V_{CC1} = 5.0 V, V_{EE} = -5.2 V, T_A = 25°C and V_{CC2} = 20, V_{CC3} = 24 V.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage - High Logic State					٧
$(V_{CC3} = V_{CC2} + 3.0 \text{ V, } V_{IDL} = -150 \text{ mV, } I_{OH} = -100 \mu\text{A})$	V _{ОН1}	V _{CC2} - 0.3	V _{CC2} - 0.1	-	
(V _{CC3} = V _{CC2} + 3.0 V, V _{IDL} = -150 mV, I _{OH} = -10 mA)	VOH2	V _{CC2} - 1.2	V _{CC2} - 0.9	-	V
(V _{CC3} = V _{CC2} , V _{IDL} = -150 mV, I _{OH} = -50 μA)	Vонз	V _{CC2} - 1.0	V _{CC2} - 0.7	_	V
(V _{CC3} = V _{CC2} , V _{IDL} = -150 mV,	VOH4	V _{CC2} - 23	V _{CC2} - 1.8	_	٧
Output Voltage — Low Logic State (VIDH = 150 mV, IQL = 10 mA)	V _{OL1}	_	0.15	0.3	V
$(V_{IDH} = 150 \text{ mV}, I_{OL} = 30 \text{ mA})$ $10 \text{ V} \le V_{CC3} \le 22 \text{ V}$ $10 \text{ V} \le V_{CC2} \le 28 \text{ V}$	V _{OL2}		- 0.2	 0.4	V
			-		V
Output Clamp Voltage (V _{IDH} = 500 mV, I _{OC} = 20 mA)	Voc			V _{CC2} +1.5 V	v
Input Current - High Logic State (VEE = -5.72 V, V _{IL} = -5.72 V, V _{IH} = -0.7 V)	IH	-	300	800	μА
Input Current - Low Logic State					μА
$(V_{IH} = -0.7 \text{ V, } V_{IL} = -2.0 \text{ V})$	l1L1	_	-	-10	
(VEE = -5 72 V, V _{IH} = -0.7 V, V _{IL} = -5.72 V)	I _{IL2}	_	_	-100	
Power Supply Current — Both Outputs					
High Logic State					
$(V_{CC} = 5.25 \text{ V}, V_{CC2} = 22 \text{ V}, V_{CC3} = 26 \text{ V})$	¹ CC1(H)	_	21	38	mA
V _{EE} = -5.72 V,	¹ CC2(H)		-1.1	+0 25	mA
V _{IL} (A) and (B) = -2 0 V, V _{IH} (C) = -0.7 V, I _{OH} = 0)			0.6	10	
VIH(C) = 0.7 V, IOH = 07	ICC3(H)	1 -	-21	-38	mA mA
Power Supply Current - Both Outputs					
Low Logic State				į l	
(V _{CC1} = 5 25 V, V _{CC2} = 22 V, V _{CC3} = 28 V, V _{EE} = -5.72 V,	CC1(L)	-	13	24	mA
$V_{IH(A)}$ and $(B) = -0.7 \text{ V}$, $V_{II}(C) = -2.0 \text{ V}$, $I_{OI} = 0$)	ICC2(L)	-	0.5	1.0	mA
12(0)	1CC3(L)	_	4.0	7.0	mA.
	1EE(L)	_	-21	-38	ˈ mA
Power Supply Current — Both Outputs High Logic State					
(V _{CC1} = 5.25 V, V _{CC2} = 22.V, V _{CC3} = 22 V, V _{EE} = -5.72 V,	ICC2(H)	-	-	0.25	mA
$V_{IL(A)}$ and $(B) = -2.0 \text{ V}$, $V_{IH(C)} = -0.7 \text{ V}$, $I_{OL} = 0$)	ICC3(H)	-	_	0.25	mA
Power Supply Current — Stand By Condition		{			
(V _{CC1} = 0 V, V _{CC2} = 22 V, V _{CC3} = 22 V, V _{EE} = 0 V,	CC2(S)	-	_	0.25	mA
$V_{IH(A)}$ and (B) = -0.7 V, $V_{IL(C)}$ = -2.0 V, I_{OL} = 0)	(cc3(s)	_	_	0 25	mA

Duty Cycle = 50%

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC1} = 5.0 V, V_{EE} = -5.2 V, T_A = 25°C and V_{CC2} = 20 V.)

Characteristic	Symbol	Min	Тур	Max	Unit
Delay Time — Low to High Output, Logic Level (VCC3 = 24 V) (VCC3 = 20 V)	, ^t DLH	-	12 13	24 25	ns
Delay Time – High to Low Output Logic Level (V _{CC3} = 24 V) (V _{CC3} = 20 V)	t _{DHL}	-	13 15	24 26	ns
Transition Time, Low-to-High Output Logic Level (VCC3 = 24 V) (VCC3 = 20 V)	tTLH	<u>-</u>	19 20	30 30	ns
Transition Time, High-to-Low Output Logic Level (VCC3 = 24 V) (VCC3 = 20 V)	ТHL	-	20 18	33 30	ns
Propagation Delay Time, Low-to-High Logic Level (VCC3 = 24 V) (VCC3 = 20 V)	[†] PLH		31 33	54 · 55	ns
Propagation Delay Time, High-to-Low Logic Level (V _{CC3} = 24 V) (V _{CC3} = 20 V)	^t PHL		33 33	57 56	ns

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT FIGURE 3 - SWITCHING TIMES WAVEFORM ^tTLH ^tTHL ≤5 ns -| ≤ 5 ns -0.90 V 90% 90% To Scope (Input) -1.3 V _{-2.0} V Input To Scope (Output) 1.30 V -1 30 V 10% 10% -1.70 V TOHL м TLH VOH C 7 V_{CC2} -3 0 V 10 5 Output to LH 3 $(V_{CC3} = V_{CC2})$ 6 / 20V — — VOL **₹50** 390 斤木 Pulse + tPHL-Generato tDHL-(Includes Probe tTLH VOH VCC2 -2 0 V H tTHL and Jig V_{CC2} -2 0 V Capacitance) to LH Output The pulse generator has the $(V_{CC3} = V_{CC2} + 4.0 V)$ following characteristics. PRR = 1 MHz. $z_0 \approx 50~\Omega$.

APPLICATIONS INFORMATION MODES OF OPERATION

FIGURE 4 - POSITIVE-NOR GATE

FUNCTION TABLE

	INPUTS		OUTPUT
CONFIGURATION	ΑВ	С	Y
	LL	V _{BB}	н
Cat V _{BB}	нх	VBB	L
	х н	VBB	L

$$\begin{split} &H-\text{High Level, L}-\text{Low Level, X}-\text{Irrelevant}\\ &V_{BB}-\text{Reference Supply voltage for MECL 10,000} \end{split}$$

FIGURE 6 - NON-INVERTING GATE

FUNCTION TABLE

	INPUTS OUTPUT
CONFIGURATION	A BC Y
A and B at V _{BB}	V _{BB} V _{BB} L L V _{BB} V _{BB} H H
A at V _{BB} , B connected low	V _{BB} L L L V _{BB} L H H
B at V _{BB} , A connected low	L V _{BB} L L L V _{BB} H H

The need for four separate power supplies V_{CC1}, V_{CC2}, V_{CC3} and V_{EE} can be avoided in many cases by tying V_{CC2} to V_{CC3}. However, performance advantages can be obtained by connecting either one or both V_{CC3} pins to additional power supply of higher voltage than V_{CC2}. Both V_{CC3} pins do not have to be held at the same voltage. For MECL-to-TTL level converter applications both V_{CC2} and V_{CC3} are generally connected to a +5.0 V power source.

By providing two out-of-phase (A and B) inputs and one in-phase (C) input, each gate can be used as positive NOR, or as a inverting or non-inverting gate. This flexibility is achieved by connecting an externally supplied MECL 10,000 Series reference supply voltage (VBB) to the appropriate input as shown in Figures 4 thru 6. An unused out-of-phase input should be tied low or connected to the other out-of-phase input of the same gate. The

FIGURE 5 - DIFFERENTIAL MECL LINE RECEIVER

FUNCTION TABLE

	INPUTS	OUTPUT
CONFIGURATION	АВС	Υ
A and B connected together	H H L L L H	L H
A not used but connected low	L H L L L H	L H
B not used but connected low	H L L L L H	L H

FIGURE 7 – USE OF DAMPING RESISTOR TO REDUCE OR ELIMINATE OUTPUT TRANSIENT OVERSHOOT IN CERTAIN MC75368 APPLICATIONS

Note $\,{\rm R}_{\,D}\approx 10\Omega$ to $30\Omega\,$ (optional)

required VBB voltage source may be obtained from MECL 10,000 Series devices such as the MC10115 line receiver, or by connecting the output of a MECL 10,000 gate, like the MC10102, to the respective out-of-phase inputs (as an example connect pins 4 and 5 to 2 of the MC10102 to obtain a VBB reference voltage).

When driven differentially, the MC75368 may be used as a differential MECL line receiver, without the need for the VRR reference voltage.

Undesirable output transient overshoot due to load or wiring inductance and the fast switching speeds of the MC75368 can be eliminated or reduced by adding a small amount of series resistance. The value of this damping resistance is dependent on specific load characteristics and switching speed but typical values lie in the range of 10 to 30 ohms. This is illustrated in Figure 7.

Specifications and Applications Information

DUAL MOS CLOCK DRIVER

 \dots designed for high-speed driving of highly capacitive loads in a MOS system.

- Fast Transition Times − 20 ns with 1000 pF Load
- High Output Swing − 20 Volts
- High Output Current Drive − ± 1.5 Amperes
- High Repetition Rate 5.0 to 10 MHz Depending on Load
- MTTL and MDTL Compatible Inputs
- Low Power Consumption when in MOS "0" State 2.0 mW
- +5.0-Volt Operation for N-Channel MOS Compatibility

MMH0026 MMH0026C

DUAL MOS CLOCK DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol		Value		Unit
Differential Supply Voltage	V _{CC} -V _{EE}		+22		Vdc
Input Current	11		+100		mA
Input Voltage	VI		VEE + 5 5		Vdc
Peak Output Current	l _{Opk}		±1.5		A
Junction Temperature	Tj	+175	+175	+150	°С
Operating Ambient Temperature Range	TA	G	U,L	P1	°С
MMH0026		-55 to +125	-55 to +125	-	
MMH0026C		0 to +70	0 to +70	0 to +70	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°c

ELECTRICAL CHARACTERISTICS ($V_{CC}-V_{EE}=10 \text{ V to } 20 \text{ V, C}_L=1000 \text{ pF, T}_A=-55 \text{ to } +125^{\circ}\text{C}$ for MMH0026 and 0 to $+70^{\circ}\text{C}$ for MMH0026C for min and max values; $T_{A}=+25^{\circ}\text{C}$ for all typical values unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Logic "1" Level Input Voltage VO = VEE + 1.0 Vdc	VIH	VEE + 2.0	VEE + 1.5	-	Vdc
Logic "1" Level Input Current VI -VEE = 2 4 Vdc, VO = VEE + 1 0 Vdc	ЧН	-	10	15	mA
Logic "0" Level Input Voltage VO = V _{CC} -1.0 Vdc	VIL	_	VEE + 0 6	V _{EE} + 0.4	Vdc
Logic "O" Level Input Current VI -VEE = 0 Vdc, VO = V _{CC} -1.0 Vdc	lIL.	-	-0.005	-10	μА
Logic "0" Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _I = -11.6 Vdc V _I -V _{EE} = 0 4 Vdc	Voн	4.0 V _{CC} -1.0	4.3 V _{CC} -0.7	-	Vdc
Logic "1" Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _I = -9.6 Vdc V _I -V _{EE} = 2.4 Vdc	VOL	_ _	-11.5 VEE + 0.5	-11 V _{EE} + 1.0	Vdc
'On'' Supply Current (Note 1) VCC-VEE = 20 Vdc, VI -VEE = 2 4 Vdc	ICCL	-	30	40	mA
'Off" Supply Current MMH0026C V _{CC} -V _{EE} = 20 Vdc, V _I -V _{EE} = 0 V MMH0026	І ссн		10 -	100 500	μА

SWITCHING CHARACTERISTICS (V_{CC}-V_{EE} = 10 V to 20 V, C_L = 1000 pF, T_A = 25° C)

Propagation Time						
High to Low	(Figure 2)	tPHL	50	7.5	12	ns
	(Figure 3)	1	-	11	_	
Low to High	(Figure 2)	tPLH	5.0	12	15	ļ
-	(Figure 3)		-	13	-	1
Transition Time (High to Low)		tTHL				ns
$V_{CC}-V_{EE} = 20 \text{ Vdc}, C_{L} = 250 \text{ pF}$	(Figure 2)		-	12	-	1
$V_{CC}-V_{EE} = 20 \text{ Vdc}, C_{L} = 500 \text{ pF}$	(Figure 2)		-	15	18	
=	(Figure 3)	į	-	30	40	
V _{CC} -V _{EE} = 20 Vdc, C _L = 1000 pF	(Figure 2)	į	-	20	35	
	(Figure 3)		. –	36	50	
Transition Time (Low to High)		[†] TLH				ns
$V_{CC}-V_{EE} = 20 \text{ Vdc}, C_{L} = 250 \text{ pF}$	(Figure 2)		-	10	-	1
V _{CC} -V _{EE} = 20 Vdc, C _L = 500 pF	(Figure 2)	١,	-	12	16	
	(Figure 3)		-	28	35	
V _{CC} -V _{EE} = 20 Vdc, C _L = 1000 pF	(Figure 2)		_	17	25	
55 22	(Figure 3)	ļ	-	31	40	ļ

Note 1: Tested with one output on at a time.

TEST CIRCUIT

FIGURE 3 - AC TEST CIRCUIT AND WAVEFORMS

TYPICAL CHARACTERISTICS

(V_{CC} = + 20 V, V_{EE} = 0 V, T_A = +25°C unless otherwise noted.)

TYPICAL CHARACTISTICS (continued)

(V_{CC} = + 20 V, V_{EE} = 0 V, T_A = +25°C unless otherwise noted.)

FIGURE 10 — TRANSITION TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)

FIGURE 11 — PROPAGATION DELAY TIME versus TEMPERATURE FOR +5 VOLT DC-COUPLED OPERATION (See Figure 4.)

FIGURE 12 - DC-COUPLED SWITCHING RESPONSE versus R_{in} (See Figure 4.)

FIGURE 13 - DC-COUPLED SWITCHING versus Cin

FIGURE 14 — MAXIMUM DC POWER DISSIPATION Versus DUTY CYCLE (SINGLE DRIVER)

FIGURE 15 - AC POWER DISSIPATION versus FREQUENCY (SINGLE DRIVER)

APPLICATIONS INFORMATION

OPERATION OF THE MMH0026

The simplified schematic diagram of MMH0026, shown in Figure 16, is useful in explaining the operation of the device. Figure 16 illustrates that as the input voltage level goes high, diode D1 provides an 0.7-volt "dead zone" thus ensuring that Q2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of Q2.

As the input voltage level goes low, the stored charge in $\Omega 2$ is used advantageously to keep $\Omega 2$ "on" and $\Omega 4$ "off" until $\Omega 7$ is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of C_{in} goes negative with respect to $V \in C$ causing $\Omega 9$ to conduct momentarily thus assuring rapid turn "off" of $\Omega 7$.

FIGURE 16 - SIMPLIFIED SCHEMATIC DIAGRAM
(Ref.: Figure 1)

The complete circuit, Figure 1, basically creates Darlington devices of transistors Q7, Q4 and Q2 in the simplified circuit of Figure 16. Note in Figure 1 that when the input goes negative with respect to VEE, diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one VBE voltage drop of the VCC supply.

SYSTEM CONSIDERATIONS

Overshoot:

In most system applications the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_S = 2\sqrt{L/C_L}$ where L is the inductance of the line and C_L is the load capacitance. In most cases a series of damping resistor in the range of 10-to-50 ohms will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:

 $t_{THL} \approx t_{TLH} = 2.2 \text{ RS CL (RS is the damping resistor)}.$ Crosstalk:

The MMH0026 is sensitive to crosstalk when the output voltage level is high (VQ \approx VCC). With the output in the high voltage level state, Q3 and Q4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q4 turns "on" sufficiently to pull the output back towards VCC. This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q4 conducts only a few milliamperes. Thus, when noise is coupled, Q4 is already "on" and the line is quickly clamped by Q4. Also note that in Figure 1 D6 clamps the output one diode-voltage drop above VCC for positive-going crosstalk.

Power Supply Decoupling:

The decoupling of VCC and VEE is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a $0.1\text{-}\mu\text{F}$ to $1.0\text{-}\mu\text{F}$ low inductive capacitor should be placed as close to each driver package as the layout will permit.

Input Driving:

For those applications requiring split power supplies (VEE < GND), ac coupling, as illustrated in Figure 23, should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at

the input of the MMH0026 discharges to just above the device's threshold voltage (about 1.5 V). Figure 6 shows optimum values for C_{in} versus the desired output pulse width. The value for C_{in} may be roughly predicted by:

$$C_{ID} = (2 \times 10^{-3}) \text{ (PWO)}.$$
 (1)

For an output pulse width of 500 ns, the optimum value for C_{in} is:

$$C_{in} = (2 \times 10^{-3}) (500 \times 10^{-9}) = 1000 \text{ pF}.$$

If single supply operation is required (VEE = GND), then dc coupling as illustrated in Figure 24 can be employed. For maximum switching performance, a speed-up capactor should be employed with dc coupling. Figures 12 and 13 show typical switching characteristics for various values of input resistance and capacitance.

POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$T_{J} = T_{A} + P_{D} (R_{\theta J}C + R_{\theta}CA)$$
 (2)

or

$$T_{J} = T_{A} + P_{D} (R_{\theta JA})$$
 (3)

where

T_J = junction temperature

TA = ambient temperature

PD = power dissipation

 $R_{\theta,JC}$ = thermal resistance, junction to case

 $R_{\theta CA}$ = thermal resistance, case to ambient

 $R_{\theta}JA$ = thermal resistance, junction to ambient.

Power Dissipation for the MMH0026 MOS Clock Driver:

The power dissipation of the device (PD) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for three integrated circuit packages in the maximum ratings section of this data sheet.

TABLE 1 - THERMAL CHARACTERISTICS OF "G", "L", "P1", AND "U" PACKAGES

PACKAGE TYPE	R _{θ JA} (^O C/W) Still Air		R ₀ JC (^c Stil	PC/W) I Air
(Mounted in Socket)	MAX	TYP	MAX	TYP
"G" (Metal Package)	220	175	70	40
"L" (Ceramic Package)	150	100	50	27
"P1" (Plastic Package)	150	100	70	40
"U" (Ceramic Package)	150	100	50	27

FIGURE 17 — MAXIMUM POWER DISSIPATION versus AMBIENT TEMPERATURE (As related to package)

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 17. If, however, the power dissipation determined by a given system produces a calculated junction temperature in excess of the recomended maximum rating for a given package type, something must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring T_J to an acceptable value. Secondly, the R θ CA term can be reduced. Lowering the R θ CA term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

The following examples illustrate the thermal considerations necessary to increase the power capability of the MMH0026.

Assume that the ceramic package is to be used at a maximum ambient temperature (T_A) of +70°C. From Table 1: $R_0JA(max)$ = 150°C/watt, and from the maximum rating section of the data sheet: $T_J(max)$ = +175°C. Substituting the above values into equation (3) yields a maximum allowable power dissipation of 0.7 watts. Note that this same value may be read from Figure 17. Also note that this power dissipation value is for the device mounted in a socket.

Next, the maximum power consumed for a given system application must be determined. The power dissipation of the MOS clock driver is conveniently divided into dc and ac components. The dc power dissipation is given by:

$$P_{dc} = (V_{CC} - V_{EE}) \times (I_{CCL}) \times (Duty Cycle)$$

$$where I_{CCL} = 40 \text{ mA} \left(\frac{V_{CC} - V_{EE}}{20 \text{ V}}\right).$$
(4)

Note that Figure 14 is a plot of equation (4) for three values of (V_{CC}-V_{EE}). For this example, suppose that the MOS clock driver is to be operated with V_{CC} = +16 V and V_{EE} = GND and with a 50% duty cycle. From equation (4) or Figure 14, the dc power dissipation (per driver) may be found to be 256 mW. If both drivers within the package are used in an identical way, the total dc power is 512 mW. Since the maximum total allowable power dissipation is 700 mW, the maximum ac power that can be dissipated for this example becomes:

$$P_{ac} = 0.7 - 0.512 = 188 \text{ mW}$$

The ac power for each driver is given by:

$$P_{ac} = (V_{CC} - V_{EE})^2 \times f \times C_L$$
 (5)

where f = frequency of operation

C_L = load capacitance (including all strays and wiring).

Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with V_{CC} = 16 V and V_{EE} = GND. Under the above conditions, and with the aid of Figure 15, the safe operating area beneath Curve A of Figure 18 can be generated.

Since both drivers have a maximum ac power dissipation of 188 mW, the maximum ac power per driver becomes 94 mW. A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 15 will yield the maximum frequency of operation for each of the capacitive loads at the specified power level. By using the previous formulas and constants, a new safe operating area can be generated for any output voltage swing and duty cycle desired.

Note from Figure 18, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:

- (a) decrease TA
- (b) decrease the duty cycle
- (c) lower package thermal resistance (RθJA)

In most cases conditions (a) and (b) are fixed due to system requirements. This leaves only the thermal resistance $R_{\theta,JA}$ that can be varied.

Note from equation (2) that the thermal resistance is comprised of two parts. One is the junction-to-case thermal resistance (R θ JC) and the other is the case-to-ambient thermal resistance (R θ CA). Since the factor R θ JC is a function of the die size and type of bonding employed, it cannot be varied. However, the R θ CA term can be changed as previously discussed, see Page 7.

FIGURE 18 – LOAD CAPACITANCE versus FREQUENCY
FOR "L" PACKAGE ONLY
(Both drivers used in identical way)

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 19. In the previous example, with the ceramic package, no heat sink and in a still air environment, $R_{\theta}JA(max)$ was 150°C/W.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the $R_{\theta CA}$ for natural convection from Figure 20 is 44°C/W. From Table 1 $R_{\theta JC}(max)$ = 50°C/W for the ceramic

FIGURE 19 - THERMALLOY* HEAT SINKS

package. Therefore, the new $R_{\theta JA}(\text{max})$ with the 6012B heat sink added becomes:

 $R_{\theta}JA(max) = 50^{\circ}C/W + 44^{\circ}C/W = 94^{\circ}C/W$. Thus the addition of the heat sink has reduced $R_{\theta}JA(max)$ from 150°C/W down to 94°C/W. With the heat sink, the maximum power dissipation by equation (3) at $T_{A} = +70^{\circ}C$ is:

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{94^{\circ}C/W} = 1.11 \text{ watts.}$$

This gives approximately a 58% increase in maximum power dissipation. The safe operating area under Curve C of Figure 18 can now be generated as before with the aid of Figure 15 and equation (5).

FIGURE 20 — CASE TEMPERATURE RISE ABOVE AMBIENT versus POWER DISSIPATED USING NATURAL CONVECTION

Forced Air Considerations:

As illustrated in Figure 21, forced air can be employed to reduce the $R_{\theta JA}$ term. Note, however, that this curve is expressed in terms of typical $R_{\theta JA}$ rather than maximum $R_{\theta JA}$ can be determined in the following manner:

From Table 1 the following information is known:

(a)
$$R_{\theta}JA(typ) = 100^{\circ} C/W$$

(b)
$$R_{\theta}JC(typ) = 27^{\circ} C/W$$

Since:

$$R_{\theta,IA} = R_{\theta,IC} + R_{\theta,CA} \tag{6}$$

Then:

$$R_{\theta}CA = R_{\theta}JA - R_{\theta}JC \tag{7}$$

Therefore, in still air

 $R_{\theta}CA(typ) = 100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$ From Curve 1 of Figure 21 at 500 LFPM and equation (7),

 $R_{\theta}CA(typ) = 53^{\circ}C/W - 27^{\circ}C/W = 26^{\circ}C/W.$

Thus R $_{\theta CA}$ (typ) has changed from 73°C/W (still air) to 26°C/W (500 LFPM), which is a decrease in typical R $_{\theta CA}$ by a ratio of 1:2.8. Since the typical value of R $_{\theta CA}$ was reduced by a ratio of 1:2.8, R $_{\theta CA}$ (max) of 100°C/W should also decrease by a ratio of 1:2.8.

This yields an R $_{\theta CA(max)}$ at 500 LFPM of 36°C/W.

Therefore, from equation (6):

 $R_{\theta JA(max)} = 50^{\circ}C/W + 36^{\circ}C/W = 86^{\circ}C/W.$

Therefore the maximum allowable power dissipation at 500 LFPM and $T_A = +70^{\circ}C$ is from equation (3):

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{+86^{\circ}C/W} = 1.2 \text{ watts.}$$

FIGURE 21 — TYPICAL THERMAL RESISTANCE (R $_{\theta}$ JA) OF "L" PACKAGE versus AIR VELOCITY

As with the previous examples, the dc power at 50% duty cycle is subtracted from the maximum allowable device dissipation (PD) to obtain a maximum P_{ac} . The safe operating area under Curve D of Figure 18 can now be generated from Figure 15 and equation (5).

Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of R_0CA for still air and forced air such as illustrated in Figure 22. For example the 6012B heat sink has an $R_0CA = 17^{\circ}C/W$ at 500 LFPM as noted in Figure 22. From equation (6):

Max R
$$_{\theta}$$
JA = 50°C/W + 17°C/W = 67°C/W
From equation (3) at TA = +70°C

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{67^{\circ}C/W}$$
 1.57 watts.

FIGURE 22 – THERMAL RESISTANCE $R_{\theta CA}$ versus AIR VELOCITY

As before this yields a safe operating area under Curve E in Figure 18.

Note from Table 1 and Figure 21 that if the 14-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical $R_{\theta,JA}$ is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine a safe operating area for this condition.

Given data from Table 1:

typical R
$$\theta$$
JA = 100°C/W
typical:R θ JC = 27°C/W

From Curve 2 of Figure 21, $R_{\theta JA}$ (typ) is 75° C/W for a PC mount and no air flow. Then the typical $R_{\theta CA}$ is 75° C/W -27° C/W $=48^{\circ}$ C/W. From Table 1 the typical value of $R_{\theta CA}$ for socket mount is 100° C/W -27° C/W $=73^{\circ}$ C/W. This shows that the PC board mount results in a decrease in typical $R_{\theta CA}$ by a ratio of 1:1.5 below the typical value of $R_{\theta CA}$ in a socket mount. Therefore, the maximum value of socket mount $R_{\theta CA}$ of 100° C/W should also decrease by a ratio of 1:1.5 when the device is mounted in a PC board. The maximum $R_{\theta CA}$ becomes:

$$R_{\theta\,CA} = \frac{100^{o}\text{C/W}}{1.5} = 66^{o}\text{C/W for PC board mount}$$

Therefore the maximum $R_{\theta JA}$ for a PC mount is from equation (6).

$$R_{\theta,1A} = 50^{\circ}C/W + 66^{\circ}C/W = 116^{\circ}C/W.$$

With maximum $R_{\theta,JA}$ known, the maximum power dissipation can be found and the safe operating area determined as before. See Curve B in Figure 18.

CONCLUSION

In most cases, heat sink manufacturer's publish only RACA socket mount data. Although RACA data for PC mounting is generally not available, this should present no problem. Note in Figure 21 that an air flow greater than 250 LFPM yields a socket mount ROJA approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of RACA on the type environment and measurement techniques employed. For example, RACA would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

TYPICAL APPLICATIONS

FIGURE 23 - AC-COUPLED MOS CLOCK DRIVER

FIGURE 24 — DC-COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE-SUPPLY ONLY)

DRIVERS/RECEIVERS

Temperatur	e Range		
Commercial	Military		Page
AM26LS31	_	Quad RS-422 Line with 3-State Outputs	5-3
DS8641	_	Quad Unified Transceiver	5-6
MC8T13/			
8T23	_	Dual Line Drivers	5-9
MC8T14/ 8T24		Trinta Lina Bassivara with Hustarasia	E 10
MC26S10/11	_	Triple Line Receivers with Hysteresis	
MC75S110		Dual Line Driver	
MC1411.	_	Dual Line Driver	5-19
12, 13, 16*	_	Peripheral Driver Arrays	5-25
MC1472	_	Dual Peripheral Positive "NAND" Driver	5-29
MC1488		Quad MDTL Line Driver	5-32
MC1489. A	_	Quad MDTL Line Receivers	5-38
MC3437	_	Hex Bus Receiver	5-44
MC3438	_	Quad Bus Transceiver	5-47
MC3440A/	_	Quad bus fransceiver	5-47
41A/43	_	Quad Interface Bus Transceivers	5-50
MC3446A	_	Quad General Purpose Interface Bus Tranceiver	5-54
MC3447		Bidirectional Instrumentation Bus Transceiver	5-57
MC3448A	_	Quad 3-State Bus Transceiver	5-63
MC3450/52	_	Quad MTTL Compatible Line Driver	5-68
MC3453	`	MTTL Compatible Quad Line Driver	5-75
MC3481/85		Quad Single Ended Line Driver	5-79
MC3486	_	Quad RS-422/423 Line Receiver	5-80
MC3487	_	Quad Line Driver with 3-State Outputs	5-83
MC3488A. B	<u> </u>	Dual RS-423/232C Drivers	5-87
MC3490/94	_	7-Digit Gas-Discharge Display Drivers	5-90
MC3491/92		8-Segment Visual Display Drivers	5-96
MC75107/108		Dual Line Receivers	5-103
MC75125/127		7-Channel Line Receivers	5-108
MC75128/129		8-Channel Line Receivers	5-112
MC75140P1		Dual Line Receiver	5-116
MC75325	MC55325	Dual Memory Drivers	5-120
MC75450	- WOODOZO	Dual Peripheral Positive "AND" Driver	5-126
MC75451-454	_	Dual Peripheral Drivers	5-131
MC75461-464	_ `	Dual High-Voltage Peripheral Drivers	5-135
MC75491/92		Multiple Light-Emitting Diode Drivers	5-140
SN75431/432		Dual Peripheral Drivers	5-140
SN75451BP-			J-140
454BP		Dual Peripheral Drivers	5-147
		•	

^{*}Industrial

AM26LS31

QUAD LINE DRIVER WITH NAND ENABLED THREE-STATE OUTPUTS

The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA Standard RS-422 and Federal Standard 1020.

The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 RS-422 driver.

The high impedance output state is assured during power down.

- Full RS-422 Standard Compliance
- Single +5 V Supply
- Meets Full $V_O = 6.0 \text{ V, } V_{CC} = 0 \text{ V, } I_O < 100 \,\mu\text{A}$ Requirement
- Output Short Circuit Protection
- Complementary Outputs for Balanced Line Operation
- High Output Drive Capability
- Advanced LS Processing
- PNP Inputs for MOS Compatibility

QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLE					
Input	Control Inputs (E/E)	Non-Inverting Output	Inverting Output		
Н	H/L	Н	Ļ		
L	H/L	L	н		
x	L/H	z	z		
I = Low Logic State					

- H ≈ High Logic State
- X = Irrelevant
- Z = Third-State (High Impedance)

*ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Power Supply Voltage Vcc 8.0 Vdc Input Voltage ٧ı 5.5 Vdc T_A Operating Ambient Temperature Range 0 to +70 °C Operating Junction Temperature Range Tj °С Ceramic Package 175 Plastic Package 150 Storage Temperature Range T_{stg} -65 to +150

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V \leq V_{CC} \leq 5 25 V and 0°C \leq T_A \leq 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL	_		0.8	Vdc
Input Voltage - High Logic State	VIH	2.0	_	-	Vdc
Input Current — Low Logic State (V _{IL} = 0 4 V)	IIL	_	_	-360	μА
Input Current High Logic State (V _{IH} = 2.7 V) (V _{IH} = 7 0 V)	lін	<u>-</u> -	_ _	+ 20 + 100	μΑ
Input Clamp Voltage (I _{IK} = -18 mA)	VIK	-	_	-15	V
Output Voltage - Low Logic State (IOL = 20 mA)	VOL	-	-	0.5	V
Output Voltage - High Logic State (IOH = -20 mA)	V _{OH}	2 5	·	-	V
Output Short-Circuit Current (VIH = 2.0 V) 2	los	-30	-	-150	mA
Output Leakage Current – Hi-Z State (V _{OL} = 0.5 V, V _{IL(E)} = 0 8 V, V _{IH(E)} = 2 0 V) (V _{OH} = 2.5 V, V _{IL(E)} = 0.8 V, V _{IH(E)} = 2.0 V)	¹ O(Z)	-	-	-20 +20	μА
Output Leakage Current — Power OFF (VOH = 6.0 V, VCC = 0 V) (VOL = -0.25 V, VCC = 0 V)	lO(off)	-		+100 -100	μΑ
Output Offset Voltage Difference1	vos-vos	_	_	±0.4	V
Output Differential Voltage 1	VT	2.0	_	-	V
Output Differential Voltage Difference 1	VT - VT		_	±0.4	V
Power Supply Current (Output Disabled) ³	ссx	-	60	80	mA

- 1. See EIA Specification RS-422 for exact test conditions.
- 2. Only one output may be shorted at a time.
- 3. Circuit in three-state condition.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times			7 7		ns
High to Low Output	t _{PHL}	_	-	20	l
Low to High Output	tPLH			20	Ĺ
Output Skew				6 0	ns
Propagation Delay - Control to Output					ns
$(C_L = 10 pF, R_L = 75 \Omega \text{ to Gnd})$	tPHZ(E)	_	-	30	ľ
$(C_L = 10 \text{ pF}, R_L = 180 \Omega \text{ to V}_{CC})$	tPLZ(E)	_	-	35	ļ
$(C_L = 30 pF, R_L = 75 \Omega \text{ to Gnd})$	tPZH(E)	_	1 - 1	40	1
$(C_L = 30 \text{ pF}, R_L = 180 \Omega \text{ to VCC})$	tPZL(E)	-	J - I	45	l

[&]quot;Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

DS8641

QUAD UNIFIED TRANSCEIVER

Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission system employing terminated 120 Ω lines. A disable function consisting of a two-input NOR gate is provided to control all four drivers. Up to 27 driver/receiver pairs can share a common line.

- Receiver Input Threshold Is Not Affected by Temperature
- Open Collector Driver Outputs Allow Wire-OR
- TTL Compatible Receiver Outputs and Disable and Driver Inputs
- Driver Propagation Delay = 15 ns
- Receiver Propagation Delay = 20 ns
- Guaranteed Minimum Bus Noise Immunity = 0.6 V
- Low Bus Terminal Current (Supply On or Off) = 30 μA typ

TRUTH TABLES

RECEIVER SECTION

Bus	Output
V _{IH(R)} > 1.7 V	L
V _{IL(R)} < 1.3 V	н

Where L = Low Logic State H ≈ High Logic State

DRIVER SECTION

Disable 1	Disable 2	Input	Bus
L	L	L	н
L	L	н	L
L	н	L	н
L	н	н	н
н	L	L	н
н	L	н	н
н	н	L	н
Н	Н	Н	н

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating		Symbol	Value	Unit
Supply Voltage		Vcc	7.0	Vdc
Input and Output Voltage		V _O , V _I	5.5	Vdc
Junction Temperature	Plastic Ceramic	Тј	150 175	°C
Operating Ambient Temperature Range		TA	0 to +70	°c
Storage Temperature Range		T _{stg}	-65 to +150	°C

QUAD UNIFIED BUS TRANSCEIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

J SUFFIX CERAMIC PACKAGE CASE 620

N SUFFIX
PLASTIC PACKAGE
CASE 648

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $0 \le T_A \le 70^{\circ}$ C and $4.75 \le V_{CC} \le 5.25 \text{ V.}$)

	Complete		T	1 11	Unit
Characteristic	Symbol	Min	Тур	Max	
Disable Input Voltage - High Logic State	VIH(DA)	20			V
Disable Input Voltage — Low Logic State	VIL(DA)			8.0	V
Driver Input Voltage - High Logic State	VIH(D)	2.0	-		V
Driver Input Voltage - Low Logic State	VIL(D)	_		0.8	V
Receiver Input Threshold Voltage — High Logic State $(V_{JL}(D) = 0.8 \text{ V}, I_{OL}(B) = 16 \text{ mA}, V_{OL}(B) \leq 0.4 \text{ V})$	V _{ILH(R)}	1.70	1 50	_	٧
Receiver Input Threshold Voltage — Low Logic State $(V_{IL}(D) = 0.8 \text{ V, } I_{OH}(R) = -400 \mu\text{A}, V_{OH}(R) \ge 2.4 \text{ V})$	VIHL(R)	-	1.50	1.30	V
Disable Input Current — High Logic State (VIH(D) = 2.4 V, VIH(DA) = 2.4 V) (VIH(D) = 5.5 V, VIH(DA) = 5.5 V)	IH(DA)	_	-	40 1 0	μA mA
Driver Input Current — High Logic State (VIH(DA) = 2.4 V, VIH(D) = 2.4 V) (VIH(DA) = 5.5 V, VIH(D) = 5.5 V)	liH(D)	· 	-	40 1.0	μA mA
Disable Input Current — Low Logic State (V _{IL} (DA) = 0.4 V, V _{IL} (D) = 0.4 V)	IL(DA)			-1.6	mA
Driver Input Current — Low Logic State (V _{IL} (D) = 0.4 V, V _{IL} (DA) = 0.4 V)	IIL(D)			-1.6	mA
Bus Current (VIL(DA) = 0.8 V, VIL(D) = 0.8, VIH(BUS) = 4.0 V) (VCC = 5.25 V) (VCC = 0 V)	BUS	_	30 2.0	100 100	μA
Bus Voltage — Low Logic State {V ₁ L(DA} = 0.8 V, V ₁ H(D) = 2.0 V, I _{BUS} = 50 mA)	V _L (BUS)	-	0.4	07	V
Receiver Output Voltage — High Logic State $(V_{IL}(DA) = 0.8 \text{ V}, V_{IL}(D) = 0.8 \text{ V}, V_{IL}(BUS) = 0.5 \text{ V}, IOH(R) = -400 \mu A)$	VOH(R)	2.4	_		V
Receiver Output Voltage — Low Logic State (VIL(DA) = 0 8 V, VIL(D) = 0.8 V, VIH(BUS) = 4.0 V, IOL(R) = 16 mA)	V _{OL(R)}	_	0.25	0.4	V
Receiver Output Short Circuit Current (Note 1) (VIL(DA) = 0.8 V, VIL(D) = 0.8 V, VIL(BUS) = 0.5 V, VCC = 5.25 V)	Ios(R)	-18	~	-55	mA
Power Supply Current $(V_{LL}(DA) = 0 V, V_{LH}(D) = 2.0 V)$	¹cc	-	50	70	mA
Input Clamp Diode Voltage – (T _A = 25°C) (I ₁ (DA) = I ₁ (D) = I _B US = -12 mA)	VI		-1.0	-1.5	V

NOTE 1: Only one output at a time

SWITCHING CHARACTERISTICS (T_A = 25° C, V_{CC} = 5.0 V unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Disable Input to High Logic Level Output	^t PLH(DA)	-	19	30	ns
Propagation Delay Time from Disable Input to Low Logic Level Output	[†] PHL(DA)	_	15	23	ns
Propagation Delay Time from Driver Input to High Logic Level Output	tPLH(D)	_	17	25	ns
Progpgation Delay Time from Drive Input to Low Logic Level Output	tPHL(D)	-	9.0	15	ns
Propagation Delay Time from Bus Input to High Logic Level Output	tPLH(R)		20	30	ns
Propagation Delay Time from Bus Input to Low Logic Level Output	tPHL(R)	=	18	30	ns

FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - RECEIVER TEST CIRCUIT AND WAVEFORM

REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 Shown)

MC8T13 MC8T23

DUAL LINE DRIVERS

The MC8T13 and MC8T23 are designed to drive transmission lines with impedances of 50 Ω to 500 Ω . The MC8T23 specifically meets all of the input/output requirements of the IBM System 360/System 370 specifications (IBM Specification GA 22-6974-0).

- High Output Drive Capability –
 IO = -75 mA (Min) @ VO = 2.4 V MC8T13
 IO = -59.3 mA (Min) @ VO = 3.11 V MC8T23
- High Speed Operation $tp \bot H = tp \bot L = 20 \text{ ns (Max) with 50 } \Omega \text{ Load}$
- MTTL and MDTL Compatible Inputs
- Uncommitted Emitter Output Structures Permit Party-Line Operation
- Designed to Operate with MC8T14 or MC8T24 Line Receivers
- Outputs are Short-Circuit Protected
- Equivalent to SN75121 and SN75123 Respectively.

TYPICAL APPLICATION 1/2 MC8T13 or 1/2 MC8T23 Coaxial Cable 1/3 MC8T14 or 1/3 MC8T24 RT

DUAL LINE DRIVERS SILICON MONOLITHIC INTEGRATED CIRCUIT

MC8T13, MC8T23

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Output Voltage	v _o	7.0	Vdc
Power Dissipation @ T _A = +25°C Derate above 25°C	PD	1000 6.7	mW. mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°С

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 V \leq V $_{CC}$ \leq 5.25 V and 0°C \leq T $_{A}$ \leq 75°C)

		N	1C8T1	3	MC8T23			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage — Low Logic State	VIL	_	-	08	_	_	8.0	V
Input Voltage — High Logic State	V _{IH}	2.0	-	_	2.0	_	_	V
Input Current — Low Logic State (V _{IL} = 0.4 V)	IIL	-0.1	-	-1.6	-0.1	-	-1.6	mA
Input Current — High Logic State {V _{IH} = 4.5 V}	¹ 1H1	- 1		40		_	40	μΑ
(V _{IH} = 5.5 V, V _{CC} = 5.0 V)	IH2	_	_	10	_		10	mA
Input Clamp Voltage (I _I = -12 mA, V _{CC} = 5.0 V)	VI(clamp)	-	-	-1.5	-	-	-1.5	٧
Output Voltage — High Logic State (V _{IH} = 2.0 V, I _{OH} = -75 mA) (V _{CC} = 5.0 V, V _{IH} = 2.0 V, I _{OH} = -59.3 mA)	V _{OH1}	2.4	<u> </u>	_	2.9		-	٧
$(T_A = 25^{\circ}C)$	V _{OH2}	_	_	-	3.11	-	_	٧
Output Current — High Logic State (V _{IH} = 4.5 V, V _{CC} = 5.0 V, V _O = 2.0 V, T _A = 25°C)	Іон	-100	-	-250	-100	-	-250	mA
Output Current — Low Logic State (V _{I L} = 0 8 V, V _O = 0.4 V)	loL1	_	_	-800	-		-	μΑ
(V _{IL} = 0.8 V, V _O = 0.15 V)	lOL2		_	_			-240	μА
Output Reverse Leakage Current — Low Logic State (V _{IL} = 0 V, V _O = 3.0 V)	lon1			80	_			μА
$(V_{IL} = 0 V, V_O = 3.0 V, V_{CC} = 0 V)$	lon2	_	_	500	_	_	40	μΑ
Output Short-Circuit Current (V _{1H} = 4.5 V, V _{CC} = 5.0 V, V _O = 0 V, T _A = 25°C)	los	-	-	-30	-	-	-30	mA
Power Supply Currents (IO = 0 mA)								
Outputs - Low Logic State, VIL = 0.8 V	ICCL		<u> </u>	60	_		60	mΑ
Outputs - High Logic State, VIH = 2.0 V	ICCH	-	-	28	-		28	mA

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.) Figure 1

		MC8T13			MC8T23			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time - Low to High Level Output	tPLH							ns
$(R_L = 37 \Omega, C_L = 15 pF)$		-	11	20	_	l –	-	
$(R_{L} = 37 \Omega, C_{L} = 1000 pF)$		I -	22	50	_	_	-	
$(R_L = 50 \Omega, C_L = 15 pF)$		-	-	-	_	12	20	
$(R_L = 50 \Omega, C_L = 100 pF)$		-	-	-	-	20	35	
Propagation Delay Time - High to Low Level Output	tPHL							ns
$(R_{L} = 37 \Omega, C_{L} = 15 pF)$		-	8.0	20	_		-	
$(R_L = 37 \Omega, C_L = 1000 pF)$		-	20	50	_	-	-	
$(R_L = 50 \Omega, C_L = 15 pF)$		-	l	-	-	12	20	ľ
$(R_L = 50 \Omega, C_L = 100 pF)$		-	l –	l – l	-	15	25	•

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS

FIGURE 2 -- REPRESENTATIVE SCHEMATIC DIAGRAM (1/2 Shown)

FIGURE 3 – TYPICAL OUTPUT CURRENT versus OUTPUT VOLTAGE

MC8T14 MC8T24

TRIPLE LINE RECEIVERS WITH HYSTERESIS

... specifically designed to meet the input/output specifications for IBM 360/370 Systems (IBM specification GA 22-6974-0). Each receiver incorporates hysteresis to provide high noise immunity and also high input impedance to minimize loading on the related driver.

- Each Channel Can Be Independently Strobed
- High Speed tpLH = tpHL = 20 ns
- Input Gating Provided on Each Line
- Operates on a Single +5.0 V Power Supply
- Fully Compatible with MTTL or MDTL Logic Systems
- Input Hysteresis Results in High Noise Immunity

TYPICAL APPLICATION 1/2 MC8T13 or 1/2 MC8T23 Coaxial Cable RT RT

TRIPLE LINE RECEIVERS WITH HYSTERESIS SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Receiver Input Voltage (V _{CC} = 0)	V _{I(R)}	7.0 6.0	Vdc
Strobe or Gate Input Voltage	VI(S) or (G)	5.5	Vdc
Output Voltage	vo	7.0	Vdc
Output Current	10	±100	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above 25 ⁰ C	PD	1000 6.7	mW mW/ ^O C
Plastic Package Derate above 25 ⁰ C		830 6.7	mW mW/ ^o C
Junction Temperature Ceramic Package Plastic Package	ТЈ	175 150	°C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 < V_{CC} < 5.25 V and 0°C < T_A < 75°C)

•		MC8T14 MC8T24			4			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Gate or Strobe Input Voltage - High Logic State	VIH(G) or (S)	2.0	-	-	2.0	-	- 1	٧
Gate or Strobe Input Voltage — Low Logic State	VIL(G) or (S)	-	-	08	_	-	0.8	V
Receiver Input Voltage - High Logic State	V _{IH(R)}	2.0	-	_	1.7	-	-	Vdc
Receiver Input Voltage - Low Logic State	VIL(R)	-	_	0.8	-	-	0.7	Vdc
Receiver Input Hysteresis (1) ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $V_{IL}(G) = 0$, $V_{IH}(S) = 4.5 \text{ V}$)	VH(R)	0.3	0.5		0.2	0.4	_	>
Input Clamp Voltage ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $I_I = -12 \text{ mA}$) (Strobe or Gate Inputs)	VIC(G) or (S)	_		1.5	-		1.5	V
Input Breakdown Voltage (VCC = 5.0 V, I ₁ = 10 mA) (Strobe or Gate Inputs)	VI(G) or (S)	5.5	_	1	5.5	1	-	>
Receiver Input Current — High Logic State (VIH(R) = 3 8 V) (VIH(R) = 3.11 V)	Iн(R)	-	_ 	0.17	-	_	- 0.17	mA
(VIH(R) = 70 V) (VIH(R) = 6.0 V, V _{CC} = 0 V)		_ _	_ 	-	-	-	5.0 5.0	
Gate or Strobe Input Current — High Logic State (VIH(S) = 4.5 V, VIH(R) = 3.11 V) (VIH(G) = 4.5 V)	IH(G) or (S)	-	-	40 40	-	 - -	40 40	μА
Gate or Strobe Input Current — Low Logic State (VIL(G) or (S) = 0.4 V, VIL(R) = 0 V)	IL(G) or (S)	-0.1		-1.6	-0.1	-	-1.6	mA
Output Voltage — High Logic State (VIH(R) = 2 0 V, VIH(S) = 2.0 V, VI _L (G) = 0.8 V, I _{OH} = -800 μA) (VIH(R) = 0 8 V, VI _L (S) = 0 8 V, VI _L (G) = 0.8 V, I _{OH} = -800 μA) (VIH(R) = 1.7 V, VIH(S) = 2.0 V, VI _L (G) = 0.8 V, I _{OH} = -800 μA) (VIH(R) = 0.7 V, VI _L (S) = 0.8 V, VI _L (G) = 0.8 V, I _{OH} = -800 μA)	Voн	2.6 2.6 -	3.5 3.5 - -		- 2.6 2.6	- 3.4 3.4	- - -	>
Output Voltage — Low Logic State (VIL(R) = 0.8 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, I _{OL} = 16 mA) (VIL(R) = 0.8 V, VIL(S) = 0.8 V, VIH(G) = 2.0 V, I _{OL} = 16 mA) (VIL(R) = 0.7 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, I _{OL} = 16 mA) (VIL(R) = 0.7 V, VIL(S) = 0.8 V, VIH(G) = 20 V, I _{OL} = 16 mA)	VoL			0.4 0 4 - -		- - - -	- 0.4 0.4	>
Output Short-Circuit Current (2) $ (V_{IH(R)} = 3.8 \text{ V, } V_{IL(G)} = 0 \text{ V, } V_{IL(S)} = 0 \text{ , } V_{CC} = 5.0 \text{ V, } T_A = 25^{\circ}\text{C}) \\ (V_{IH(R)} = 3.11 \text{ V, } V_{IL(G)} = 0 \text{ V, } V_{IL(S)} = 0 \text{ V, } V_{CC} = 5.0 \text{ V, } T_A = 25^{\circ}\text{C}) $	los	-50 -	<u>-</u>	-100 -	- -50	-	_ -100	mA
Power Supply Current (V _{CC} = 5.25 V, T _A = 25 ^o C)	¹cc	_	60	72		60	72	mA

⁽¹⁾ The Input Hysteresis is defined as the difference the input voltage at which the output begins to go from the high logic state to the low logic state and the input voltage which causes the output to begin to go from the low logic state to the high logic state.

⁽²⁾ Only one output may be shorted at a time.

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

		MC8T14, MC8T24			
Parameter	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Receiver Input to High Logic State Output	tPLH(R)	,-	20	30	ns
Propagation Delay Time Receiver Input to Low Logic State Output	tPHL(R)	-	20	30	ns
Propagation Delay Time Strobe Input to High Logic State Output	tPLH(S)	-			ns
Propagation Delay Time Strobe Input to Low Logic State Output	tPHL(S)] -	ns
Propagation Delay Time Gate Input to High Logic State Output	tPLH(G)				ns
Propagation Delay Time Gate Input to Low Logic State Output	tPHL(G)	-	_		ns

FIGURE 1 – RECEIVER PROPAGATION DELAY TIMES $\phi_{LH(R)}$ and $\phi_{HL(R)}$ TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - GATE AND STROBE PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 – TYPICAL RECEIVER HYSTERESIS CHARACTERISTIC

FIGURE 4 - HYSTERESIS TEST CIRCUIT

REPRESENTATIVE CIRCUIT SCHEMATIC

MC26S10 MC26S11

QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

These quad transceivers are designed to mate Schottky TTL or NMOS logic to a low impedance bus. The $\overline{\text{Enable}}$ and Driver inputs are PNP buffered to ensure low input loading. The Driver (Bus) output is open-collector and can sink up to 100 mA at 0.8 V, thus the bus can drive impedances as low as 100 $\Omega.$ The receiver output is active pull-up and can drive ten Schottky TTL loads.

An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connected together for party-line operation. The line can be terminated at both ends and still give considerable noise margin at the receiver. Typical receiver threshold is 2.0 V.

Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground current handling and allow close decoupling between VCC and ground at the package. Both ground pins should be tied to the ground bus external to the package.

- Driver Can Sink 100 mA at 0.8 V (Max)
- PNP Inputs for Low-Logic Loading
- Typical Driver Delay = 10 ns
- Typical Receiver Delay = 10 ns
- Schottky Processing for High Speed
- Inverting Driver MC26S10
 Non-Inverting MC26S11

TYPICAL APPLICATION 50V Enable O O Enable ₹100 **₹100 ₹100 ₹100** O Driver Driver Inputs O O Inputs MC26S10/ MC26S10/ 11 11 Receiver -0 Receiver O Outputs Outputs O 0 Driver O 0 Driver Inputs O O Inputs MC26S10/ MC26S10/ 11 11 Receiver • Receiver Outputs Outputs **₹100 ₹100 ₹100 ₹100** Enable o O Enable 5.0 V

QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUIT

TRUTH TABLE

	Driver	В	Receiver	
Enable	Input	26S10	26S11	Output
L	L	Н		L
L	н	L	н	н
н	×	Υ	Υ .	Y

- L = Low Logic State
- H = High Logic State
- X = Irrelevant
- Y = Assumes condition controlled by other elements on the bus

MC26S10, MC26S11

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0 5 to +7.0	Vdc
Input Voltage	V _I	-0 5 to +5 5	Vdc
Input Current	l ₁	-3.0 to +5 0	mA
Output Voltage - High Impedance State	Vo (HI-z)	-0.5 to V _{CC}	V
Output Current-Bus	¹ o(B)	200	mA
Output Current-Receiver	lo(R)	30	mA
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	TJ		°C
Ceramic Package		175	l
Plastic Package		150	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted V_{CC} = 4.75 to 5.25 V and T_A = 0 to +70°C. Typical values measured at V_{CC} = 5.0 V and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL	-	-	0.8	V
(Driver and Enable Inputs)				Į.	1
Input Voltage - High Logic State	VIH	2.0	T		V
(Driver and Enable Inputs)					ļ
Input Clamp Voltage	VIK	_	-	-1.2	V
(Driver and Enable Inputs)			l		
$(I_{IK} = -18 \text{ mA})$		i			
Input Current — Low Logic State	IIL				mA
$(V_{IL} = 0.4 V)$			ł	ŀ	
(Enable Input)		-	_	-0.36	
(Driver Inputs)		_	-	-0.54	
Input Current - High Logic State (VIH = 2.7 V)	Чн			l	μΑ
(Enable Input)		_	_	20	ì
(Driver Inputs)	1	_	_	30	
Input Current - Maximum Voltage	¹ IH1	_	_	100	μΑ
$(V_{1H1} = 5.5 V)$, '				
(Enable or Driver Inputs)	İ	1	Į		
Driver Output Voltage — Low Logic State	V _{OL(D)}			Ì	V
$(I_{OL} = 40 \text{ mA})$		-	0 33	05	
$(I_{OL} = 70 \text{ mA})$		-	0.42	0.7	
$(I_{OL} = 100 \text{ mA})$		-	0.51	0.8	l
Driver (Bus) Leakage Current	¹ O(D)				μΑ
$(V_{OH} = 4.5 V)$		_	-	100	
$(V_{OL} = 0.8 V)$			-	-50	
Driver (Bus) Leakage Current	^I O1(D)			100	μΑ
$(V_{CC} = 0 \text{ V}, V_{OH} = 4.5 \text{ V})$					
Receiver Input High Threshold	V _{TH(R)}	2.25	2.0	_	٧
$(V_{IH}(\overline{E}) = 2.4 V)$		l			
Receiver Input Low Threshold	VTL(R)	_	2.0	1.75	V
$(V_{IH}(\overline{E}) = 2.4 \text{ V})$,,		ŀ		
Receiver Output Voltage Low Logic State	VOL(R)	_		0.5	V
$(I_{OL} = 20 \text{ mA})$	"""	l			
Receiver Output Voltage - High Logic State	VOH(R)	2.7	3.4	_	V
$(I_{OH} = -1.0 \text{ mA})$	011,117				
Receiver Output Short-Circuit Current (Note 1)	I _{OS(R)}	-18	_	-60	mA
Power Supply Current — Output Low State	lcc		-	 	mA
(V _{IL} (E) = 0 V) MC26S10		_	45	70	
MC26S11		_	_	80	

NOTE 1: One output shorted at a time Duration not to exceed 1.0 second

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

			MC26\$10)		MC26S11		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time Driver Input to Output	[†] PLH(D) [†] PHL(D)	-	10 10	15 15		12 12	19 19	ns
Propagation Delay Time Enable Input to Output	[‡] PLH(<u>E</u>) †PHL(<u>E</u>)	-	14 13	18 18	-	15 14	20 20	ns
Propagation Delay Time Bus to Receiver Output	[†] PLH(R) [†] PHL(R)	<u>-</u>	10 10	15 15	-	10 10	15 15	ns
Rise and Fall Time of Driver Output	tTLH(D) tTHL(D)	4.0 2.0	10 4 0	-	4.0 2.0	10 4.0	_	ns

SWITCHING WAVEFORMS AND CIRCUITS

FIGURE 1 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 2 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - BUS INPUT TO RECEIVER OUTPUT

Vсс

280 \$

To 'Scope (Output) 1N916

50

or

Equivalent

15 pF (Total)

Pulse

MC75S110

MONOLITHIC DUAL LINE DRIVERS

The MC75S110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally twelve milliamperes for the MC75S110.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IO(off) is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (12 mA Typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V)
- Inhibitor Available for Driver Selection

DUAL LINE DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

	TI	RUTH T	ABLE		
		INHIE	ITOR		
LOGIC	INPUTS	INP	ÙTS	OUT	PUTS
Α	В	С	D	Y	Z
L or H	LorH	L.	L or H	H	Н
LorH	LorH	L or H	L	н	н
L	LorH	н	н	L	н
LorH	L	н	н	L	н
Н	н	н	н	Н	L

Low output represents the "on" state High output represents the "off" state

MAXIMUM RATINGS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted)

Ratings	Symbol	Value	Unit
Power Supply Voltages (See Note 1)	V _C C V _E E	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages (See Note 1)	V _{in}	5.5	Volts
Common-Mode Output Voltage Range (See Note 1)	Vocr	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ^o C	PD	1000 3.85	iωM∖ _O C mM
Operating Temperature Range	TA	0 to +70	°c
Storage Temperature Range Ceramic Dual In-Line Package Plastic Dual In-Line Package	T _{stg}	-65 to +150 -35 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	VCC VEE	+4.75 -4.75	+5 0 -5.0	+5.25 -5 25	Volts
Common-Mode Output Voltage Range	VOCR				Volts
Positive	i i	0	-	+10	1
Negative		0	_	-3.0	İ

Note 1. These voltage values are in respect to the ground terminal

Note 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	1,2	20	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	1,2	0	0.8	Volts

The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C unless otherwise noted.)

		l	MC75S110			
Characteristic # #	Symbol	Test Fig.	Min	Тур#	Max	Unit
High-Level Input Current to 1A, 1B, 2A or 2B	ΙΗL	1				
(VCC = Max, VEE = Max, VIHL = 2.4 V)#			-	-	40	μΑ
(VCC = Max, VEE = Max, VIHE = VCC Max)		l	_	_	10	mA
Low-Level Input Current to 1A, 1B, 2A or 2B	ILL	1				mA
(VCC = Max, VEE = Max, VILL = 0.4 V)			-	-	-30	
High-Level Input Current into 1C or 2C	Чн	2				
(VCC = Max, VEE = Max, VIH ₁ = 2.4 V)	1	1	\	-	40	μА
(VCC = Max, VEE = Max, VIHI = VCC Max)			-	-	1.0	mA
Low-Level Input Current into 1C or 2C	IILI	2				mA
$(V_{CC} = Max, \dot{V}_{EE} = Max, V_{IL_I} = 0.4 \text{ V})$		1	_	_	-30	
High-Level Input Current into D	Чн	2				
$(V_{CC} = Max, V_{EE} = Max, V_{H_1} = 2.4 \text{ V})$		Ì	-	-	80	μΑ
(VCC = Max, VEE = Max, VIHI = VCC Max)			-	1	20	mA _
Low-Level Input Current into D	IILI	2				mA
(VCC = Max, VEE = Max, VILI = 0.4 V)			-	1	-60	
Output Current ("on" state)	IO(on)	3				mA
(VCC = Max, VEE = Max)			-	12	15	
(VCC = Min, VEE = Min)	İ	Ì	65		- 1	
Output Current ("off" state)	¹ O(off)	3				μА
(VCC = Min, VEE = Min)			_		100	
Supply Current from V _{CC} (with driver enabled)	ICC(on)	4				mA
(VILL = 0.4 V, VIHI = 2.0 V)			-	28	35	
Supply Current from VEE (with driver enabled)	IEE(on)	4				mA
$(V_{IL_L} = 0.4 \text{ V}, V_{IH_I} = 2.0 \text{ V})$			-	-41	-50	
Supply Current from V _{CC} (with driver inhibited)	ICC(off)	4				mA
$(V_{1L_{L}} = 0.4 \text{ V}, V_{1L_{1}} = 0.4 \text{ V})$			-	21	_	
Supply Current from VEE (with driver inhibited)	IEE (off)	4				mA
(V _{1LL} = 0.4 V, V _{1L1} = 0.4 V)			-	-41	-50	

[#]All typical values are at V_{CC} = +5 0 V, V_{EE} = -5 0 V

SWITCHING CHARACTERISTICS (V_{CC} = +5 0 V, V_{EE} = -5 0 V, T_A = +25°C.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input A or B to Output Y or Z (R = 50 ohms, C = 40 pF)		5				ns
	tPLH ₁	[_	l 9.0 l	15	Į.
	tPHL_		-	9.0	15	
Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (R ₁ = 50 ohms, C ₁ = 40 pF)		5				ns
	tPLH ₁		_	16	25	
	tPHL;		-	13	25	

^{##}For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions,

TEST CIRCUITS

FIGURE 1 - $V_{IH},$ $V_{IL},$ $I_{IH},$ and I_{IL}

TEST TABLE

TEST AT ANY LOGIC INPUT	LOGIC INPUTS NOT UNDER TEST	ALL INHIBITOR INPUTS	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
VIНL	Open	v _{IHI}	H (See Note 1)	L (See Note 1)
VILL	Vcc	V _{IHI}	L (See Note 1)	H (See Note 1)
Инц	4.5 V	V _{IH}	Gnd	Gnd
IILL	Gnd	V _{IHI}	Gnd	G nd

NOTES. 1. Low output represents the "on" state, high output represents the "off" state.

Each input is tested separately.
 Arrows indicate actual direction of current flow.

FIGURE 2 – V_{IH} , V_{IL} , I_{IH} , I_{IL}

TEST TABLE

		1 201 1/10 22		
TEST AT ANY INHIBITOR INPUT	ALL LOGIC INPUTS	INHIBITOR INPUTS NOT UNDER TEST	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
V	VIHL	Open	H(See Note 1)	L(See Note 1)
V _{IHI}	VILL	Open	L(See Note 1)	H(See Note 1)
V	VIHL	Vcc	H(See Note 1)	H(See Note 1)
VILI	۷۱۲	Vcc	H(See Note 1)	H(See Note 1)
¹IH _I	Gnd	4 5 V	Gnd	Gnd
liri.	Gnd	Gnd	Gnd	Gnd

TEST CIRCUITS (continued)

FIGURE 3- IO(on) and IO(off)

TEST TABLE

TEST Ground all output pins not under test.		LOGIC	LOGIC INPUTS		R INPUTS
		1A or 2A	1B or 2B	1C or 2C	D
IO(on)	at output 1Y or 2Y	VIL VIL VIH	V _{IL} V _{IH} V _{IL}	VIН	VIH
IO(on)	at output 1Z or 2Z	VIH	VIH	VIH	VIH
^I O(off)	at output 1Y or 2Y	VIH	VIН	V _{IH}	>i H
IO(off)	at output 1Z or 2Z	VIL VIL VIH	V _{IL} V _{IH} V _{IL}	VIH	ViH
IO(off)	at output 1Y, 2Y, 1Z, or 2Z	Either state	Either state	VIL VIH	VIL VIH VIL

FIGURE 4 - ICC and IEE

TEST TABLE

	TEST	ALL LOGIC INPUTS	ALL INHIBITOR INPUTS
ICC(on)	Driver enabled	VIL	V _{1H}
IEE(on)	Driver enabled	VIL _	VIH
Icc(off)	Driver inhibited	VIL	V _I L_
IEE(off)	Driver inhibited	VIL	VIL

TEST CIRCUITS (continued)

FIGURE 5 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \ \Omega$, $t_r = t_f = 10 \pm 5 \ ns$, $t_{p1} = 500 \ ns$, PRR = 1 MHz, $t_{p2} = 1 \ ms$, PRR = 500 kHz.

2. C_L includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

The seven NPN Darlington-connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 600 mA permit them to drive incandescent lamps.

The MC1411 device is a general-purpose array for use with DTL, TTL, PMOS, or CMOS Logic. The MC1412 contains a zener diode and resistor in series with the input to limit input current for use with 14 to 25 Volt PMOS Logic. The MC1413 with a 2.7 k Ω series input resistor is well suited for systems utilizing 5 Volt TTL or CMOS Logic. The MC1416 uses a series 10.5 k Ω resistor and is useful in 8–18 Volt MOS systems.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ and rating apply to any one device in the package unless otherwise noted.)

Rating	Symbol	Value	Unit
Output Voltage	v _o	50*	٧
Input Voltage (Except MC1411)	V _I	30	٧
Collector Current Continuous	lс	500	mA
Base Current — Continuous	I _B	25	mA
Operating Ambient Temperature Range	TA	0 to +85	°c
Storage Temperature Range	T _{stg}	-55 to +150	°c
Junction Temperature	TJ	150	°c

Maximum Package Power Dissipation (See Thermal Information Section)
*Higher voltage selection available. See your local representative.

DEVICE CROSS-REFERENCE LISTING

9665 — SN75476 — ULN2001A — order MC1411P 9666 — SN75477 — ULN2002A — order MC1412P 9667 — SN75478 — ULN2003A — order MC1413P 9668 — ULN2004A — order MC1416P MC1411 (ULN2001A)
MC1412 (ULN2002A)
MC1413 (ULN2003A)
MC1416 (ULN2004A)

PERIPHERAL DRIVER ARRAYS

SILICON MONOLITHIC INTEGRATED CIRCUITS

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
Output Leakage Current		ICEX				μА
$(V_{O} = 50 \text{ V}, T_{\Delta} = +70^{\circ}\text{C})$	All Types	1 327	_	-	100	
*($V_0 = 50 \text{ V}, T_A = +25^{\circ}\text{C}$)	All Types	i 1	_	-	50	
* $(V_0 = 50 \text{ V}, T_A = +70^{\circ}\text{C}, V_1 = 60 \text{ V})$	MC1412	i 1	_	-	500	
$*(V_0 = 50 \text{ V}, T_A = +70^{\circ}\text{C}, V_1 = 1.0 \text{ V})$	MC1416	,	_		500	j
Collector-Emitter Saturation Voltage		V _{CE(sat)}				V
$(IC = 350 \text{ mA}, IB = 500 \mu\text{A})$			_	1.1	1.6	
$(I_C = 200 \text{ mA}, I_B = 350 \mu\text{A})$		1 1	_	0.95	, 1.3	
$(I_C = 100 \text{ mA}, I_B = 250 \mu\text{A})$			_	0.85	1.1	
Input Current — On Condition		11(on)				mA
(V _j = 17 V)	MC1412	1 1	_	0.85	1.3	
(V ₁ = 3.85 V)	MC1413		_	0.93	1.35	1
$(V_j = 5.0 \text{ V})$	MC1416	1 i	_	0.35	0.5	
(V ₁ = 12 V)	MC1416	_		1.0	1.45	
Input Voltage — On Condition		VI(on)				V
$(V_{CE} = 2.0 \text{ V, I}_{C} = 300 \text{ mA})$	MC1412	1 1	_	-	13	
$(V_{CE} = 2.0 \text{ V, I}_{C} = 200 \text{ mA})$	MC1413	1	_	-	2.4	
$(V_{CE} = 2.0 \text{ V, I}_{C} = 250 \text{ mA})$	MC1413	l l	. –	-	2.7	1
$(V_{CE} = 2.0 \text{ V, I}_{C} = 300 \text{ mA})$	MC1413	1 1	- '	-	3.0	
$(V_{CE} = 2.0 \text{ V, I}_{C} = 125 \text{ mA})$	MC1416	1 1	· —	1 - 1	5.0	ł
(V _{CE} = 2.0 V, I _C = 200 mA)	MC1416	1 1	-	-	6.0	
(V _{CE} = 2.0 V, I _C = 275 mA)	MC1416	1 1	_	1 - 1	7.0	
$(V_{CE} = 2.0 \text{ V, I}_{C} = 350 \text{ mA})$	MC1416		_	-	8.0	
Input Current — Off Condition		II(off)	50	100	_	μА
$(I_C = 500 \mu A, T_A = +70^{\circ}C)$						1
DC Current Gain		hFE	1000	-	_	_
$(V_{CE} = 2.0 \text{ V, I}_{C} = 350 \text{ mA})$	MC1411	1 - 1				
Input Capacitance		CI		15	30	pF
Turn-On Delay Time		ton	_	0.25	1.0	μs
(50% E _I to 50% E _O)		1 1				1
Turn-Off Delay Time		toff	_	0.25	1.0	μs
(50% E _I to 50% E _O)		1 - 1		1 1		i
Clamp Diode Leakage Current	T _A = +25°C	I _R	_	T-	50	μΑ
(V _R = 50 V)	TA = +70°C	"			100	1
Clamp Diode Forward Voltage		V _F		1.5	2.0	V
(IF = 350 mA)		1 ' 1		1		ł

^{*}Higher voltage selections available, contact your local representative.

TYPICAL PERFORMANCE CURVES - TA = 25°C

FIGURE 1 – OUTPUT CURRENT versus INPUT VOLTAGE

MC1411

MC1416

MC1416

MC1412

MC1412

V_I, INPUT VOLTAGE (VOLTS)

TYPICAL CHARACTERISTIC CURVES $-T_A = 25^{\circ}C$ (continued)

(AND NUMBER OF DRIVERS IN USE) 1000 700 500

FIGURE 7 - MAXIMUM COLLECTOR CURRENT versus DUTY CYCLE

1/7 MC1411 1/7 MC1413 1/7 MC1413 1/7 MC1413 1/7 MC1416 Pin 9 5.0 k 3 k 1/7 MC1416 Pin 9

MC1472

DUAL PERIPHERAL-HIGH-VOLTAGE POSITIVE "NAND" DRIVER

The dual driver consists of a pair of PNP-buffered AND gates connected to the bases of a pair of high-voltage NPN transistors. They are similar to the MC75452 drivers but with the added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays.

- 300 mA Output Capability (each transistor)
- 70 Vdc Breakdown Voltage
- Internal Output Clamp Diodes
- Low Input Loading for MOS Compatibility (PNP buffered)

CROSS REFERENCE UDN-5712 — SN75475 — MC1472

MAXIMUM RATINGS (TA = 25°C, Note 1).

Rating	Value	Unit
Supply Voltage	7.0	Volts
Input Voltage	5.5	Volts
Output Voltage	80	Volts
Clamp Voltage	80	Volts
Output Current (Continuous)	300	mA
Operating Junction Temperature		°C
Ceramic Package	+175	
Plastic Package	+150	
Storage Temperature Range	-65 to +150	°C

Note 1: "Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	Volts
Operating Ambient Temperature	TA	0	70	°C
Output Voltage	v _o	Vcc	70	Volts
Clamp Voltage	٧c	v _o	70	Volts

DUAL PERIPHERAL POSITIVE "NAND" DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUITS

CERAMIC PACKAGE CASE 693 P1 SUFFIX
PLASTIC PACKAGE
CASE 626

Positive Logic: Y=AB*

TRUTH TABLE

Α	В	Υ
L	L	H ("OFF" STATE)
L	Н	H ("OFF" STATE)
н	L	H ("OFF" STATE)
н	Н	L ("ON" STATE)

H = Logic One

L = Logic Zero

ELECTRICAL CHARACTERISTICS Unless otherwise noted min/max limits apply accross the 0° C to 70° C temperature range with 4.5 V ± V_{CC} ± 5.5 V. All typical values are for T_A = 25° C, V_{CC} = 5 Volts.

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - High Logic State	VIH	2.0	-	5.5	Vdc
Input Voltage — Low Logic State	VIL	0	_	0.8	Vdc
Input Current — Low Logic State (V _{IL} = 0.4V) A Input B Input	IIL	_	-	-0.3 -0.15	mA
Input Current High Logic State (V _{IH} = 2.4V) A input B Input (V _{IH} = 5.5V) A Input B Input	ин	1 1 1	1 2 -	40 20 200 100	μΑ
Input Clamp Voltage (I _{IC} = -12mA)	V _{IC}	_	_	-1.5	V
Output Leakage Current — High Logic State (VO = 70V, See test Figure)	юн	_	_	100	μΑ
Output Voltage — Low Logic State (I _{OL} = 100 mA) (I _{OL} = 300 mA)	VOL	_	-	0.4 0.7	v
Output Clamp Diode Leakage Current (V _C = 70V, See test Figure)	loc	-	_	100	μΑ
Output Clamp Forward Voltage (IFC = 300 mA See test Figure)	V _{FC}	_	_	1.7	v
Power Supply Current (All Inputs at V _{IH}) (All Inputs at V _{IL})	lcc	-	-	15 70	mA

NOTE: All currents into device pins are shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted.

SWITCHING CHARACTERISTICS V_{CC} = 5.0V, T_A = 25°C

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time Output High to Low Output Low to High	tPHL tPLH	<u>-</u> -		1.0 0.75	μς
Output Transition Time Output High to Low Output Low to High	^t THL ^t TLH		_ _	0.1 0.1	μς

MC1488

QUAD LINE DRIVER

The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

Features:

- Current Limited Output ±10 mA typ
- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families

TYPICAL APPLICATION LINE DRIVER INTERCONNECTING LINE RECEIVER MC1489 MDTL LOGIC INPUT INTERCONNECTING CABLE MDTL LOGIC OUTPUT

QUAD MDTL LINE DRIVER RS-232C SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+15 -15	Vdc
Input Voltage Range	VIR	- 15 ≤ V _{IR} ≤ 70	Vdc
Output Signal Voltage	v ₀	±15	Vdc
Power Derating (Package Limitation, Ceramicand Plastic Dual-In-Line Package) Derate above T _A = +25 ^o C	P_{D} 1/R $_{ heta}$ JA	1000 6.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +9 0 ± 1% Vdc, V_{EE} = -9 0 ± 1% Vdc, T_A = 0 to +75°C unless otherwise noted.)

Characteristic	Figure	Symbol	Mın	Тур	Max	Unit
Input Current — Low Logic State (VIL = 0)	1	HL	_	10	1.6	mA
Input Current - High Logic State (VIH = 5.0 V)	1	ЧН	_	-	10	μΑ
Output Voltage - High Logic State $(V_{IL} = 0.8 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V_{CC} = +9.0 \text{ Vdc}, V_{EE} = -9.0 \text{ Vdc})$	2	Vон	+6 0	+7 0	-	Vdc
(V _{1L} = 0.8 Vdc, R _L = 3 0 kΩ, V _{CC} = +13.2 Vdc, V _{EE} = -13.2 Vdc)	:		+9.0	+10 5	-	
Output Voltage - Low Logic State	2	VOL				Vdc
$(V_{IH} = 1.9 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V_{CC} = +9.0 \text{ Vdc}, V_{EE} = -9.0 \text{ Vdc})$			-6.0	-70	~	
(V _{IH} = 1.9 Vdc, R _L = 3 0 kΩ, V _{CC} = +13.2 Vdc, V _{EE} ≈ -13.2 Vdc)			-9.0	-10 5	~	
Positive Output Short-Circuit Current (1)	3	los+	+6.0	+10	+12	mA
Negative Output Short-Circuit Current (1)	3	los-	-6 0	-10	-12	mA
Output Resistance (VCC = VEE = 0, VO = ±2.0 V)	4	ro	300	~	~	Ohms
Positive Supply Current (R₁ = ∞)	5	¹ cc				mA
(V _{IH} = 1.9 Vdc, V _{CC} = +9.0 Vdc)		[.	_	+15	+20	
(V _{IL.} = 0.8 Vdc, V _{CC} = +9.0 Vdc)		1	-	+4 5	+60	
(V _{IH} = 1.9 Vdc, V _{CC} = +12 Vdc)		[-	+19	+25	
(V _{IL} = 0.8 Vdc, V _{CC} = +12 Vdc)		<u> </u>	_	+5 5	+7 0	
(V _{IH} = 1.9 Vdc, V _{CC} = +15 Vdc)		(_	-	+34	
(V _{IL} = 0.8 Vdc, V _{CC} = +15 Vdc)			_	_	+12	
Negative Supply Current (R _L = ∞)	5	lEE.				
(VIH = 1.9 Vdc, VEE = -9.0 Vdc)		1	-	-13	-17	mA
$(V_{IL} = 0.8 \text{ Vdc}, V_{EE} = -9.0 \text{ Vdc})$			_	_	-15	μА
(V _{IH} = 1.9 Vdc, V _{EE} = -12 Vdc)			_	-18	-23	mA
(V _{IL} = 0.8 Vdc, V _{EE} = -12 Vdc)			_		-15	μΑ
(VIH = 1.9 Vdc, VEE = -15 Vdc)				_	-34	mA
(V _{IL} = 0.8 Vdc, V _{EE} = -15 Vdc)			_	_	-2 5	mA
Power Consumption		PC				mW
(VCC = 9.0 Vdc, VEE = -9.0 Vdc)]		-	333	
(V _{CC} = 12 Vdc, V _{EE} = -12 Vdc)		L			576	

SWITCHING CHARACTERISTICS (V_{CC} = +9.0 \pm 1% Vdc, V_{EE} = -9.0 \pm 1% Vdc, T_A = +25°C.)

Propagation Delay Time	(z = 3.0 k and 15 pF)	6	t _{PLH}	-	275	350	ns
Fall Time	(z _j = 3.0 k and 15 pF)	6	tTHL	-	45	75	ns
Propagation Delay Time	(z _j = 3.0 k and 15 pF)	6	tPHL	-	110	175	ns
Rise Time	(z _j = 3.0 k and 15 pF)	6	t _{TLH}	-	55	100	ns

⁽¹⁾ Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously.

CHARACTERISTIC DEFINITIONS

FIGURE 1 – INPUT CURRENT

+9 V -9 V

14 01

2 10

11 17

FIGURE 2 - OUTPUT VOLTAGE

FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)

FIGURE 5 - POWER-SUPPLY CURRENTS

FIGURE 6 - SWITCHING RESPONSE

5

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 7 – TRANSFER CHARACTERISTICS versus POWER-SUPPLY VOLTAGE

FIGURE 8 — SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE

FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE

FIGURE 10 – OUTPUT VOLTAGE

FIGURE 11 — MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE

APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15-volts in magnitude and are positive for a logic "0" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488 is much too

FIGURE 12 – SLEW RATE versus CAPACITANCE
FOR I_{SC} = 10 mA

fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship $C = l_{OS} \times \Delta T/\Delta V$ from which Figure 12 is derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., VCC>9.0 V: VEE<-9.0 V). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300-ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the ±25-volt limits specified in the earlier Standard RS2328.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

Other Applications

The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

- 1. Output Current Limiting this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
- 2. Power-Supply Range as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately —2.5 volts to the minimum specified —15 volts. The MC1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR

FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS

MC1489L MC1489AL

QUAD LINE RECEIVERS

The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

- Input Resistance 3.0 k to 7.0 kilohms
- Input Signal Range ±30 Volts
- Input Threshold Hysteresis Built In
- Response Control
 - a) Logic Threshold Shifting
 - b) Input Noise Filtering

TYPICAL APPLICATION LINE RECEIVER MC1488 INTERCONNECTING CABLE INTERCONNECTING CABLE MOTL LOGIC INPUT CABLE MOTL LOGIC OUTPUT

QUAD MDTL LINE RECEIVERS RS-232C

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	10	Vdc
Input Voltage Range	VIR	±30	Vdc
Output Load Current	ır.	20	mA
Power Dissipation (Package Limitation, Ceramic and Plastic Dual In-Line Package) Derate above T _A = +25 ^O C	P _D 1/ _{θ JA}	1000 6.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +75	°С
Storage Temperature Range	T _{stg}	-65 to +175	°С

ELECTRICAL CHARACTERISTICS (Response control pin (s open.) (V_{CC} = +5.0 Vdc ±1%, T_A = 0 to +75°C unless otherwise noted)

C	naracteristics		Figure	Symbol	Min	Тур	Max	Unit
Positive Input Current		(V _{IH} = +25 Vdc) (V _{IH} = +3.0 Vdc)	1	Чн	3.6 0.43	-	83	mA
Negative Input Current		(V _{IL} = -25 Vdc) (V _{IL} = -3.0 Vdc)	1	IL	-3 6 -0.43	-	-8 3 -	mA
Input Turn-On Threshold Voltage $(T_A = +25^{\circ}C, V_{OL} \le 0.45 \text{ V})$		MC1489 MC1489A	2	VIHL	1.0 1 75	- 1.95	1.5 2.25	Vdc
Input Turn-Off Threshold Voltage (T _A = +25°C, V _{OH} ≥ 2.5 V, I _L = -0 5 mA) MC1489 MC1489A		2	VILH .	0.75 0.75	_ 08	1.25 1.25	Vdc	
Output Voltage High .		, I_ = -0.5 mA) ircuit, I_ = -0.5 mA)	2	Voн	2.6 2.6	4 0 4 0	5 0 5 0	Vdc
Output Voltage Low	(VIL = 3.0 V, I	L = 10 mA)	2	VOL	-	02.	0.45	Vdc
Output Short-Circuit Current		3	los	-	3.0	_	mA	
Power Supply Current		(V _{1H} = +5 0 Vdc)	4	¹cc		20	26	mA
Power Consumption		(V _{IH} = +5.0 Vdc)	4	PC		100	130	mW

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc} \pm 1\%$, $T_A = +25^{\circ}\text{C}$)

Propagation Delay Time	$(R_L = 3.9 k\Omega)$	5	tPLH	-	25	85	ns
Rise Time	(R _L = 39 kΩ)	5	^t TLH	-	120	175	ns
Propagation Delay Time	(R _L = 390 Ω)	5	tPHL.		25	50	ns
Fall Time	(R _L = 390 Ω)	5	tTHL.		10	20	ns

TEST CIRCUITS

FIGURE 1 - INPUT CURRENT

FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

FIGURE 4 - POWER-SUPPLY CURRENT

FIGURE 5 - SWITCHING RESPONSE

CT = 15 pF = total parasitic capacitance, which includes probe and wiring capacitances

FIGURE 6 - RESPONSE CONTROL NODE

C, capacitor is for noise filtering R, resistor is for threshold shifting

TYPICAL CHARACTERISTICS

(V_{CC} = 5.0 Vdc, T_A = +25°C unless otherwise noted)

APPLICATIONS INFORMATION

General Information

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one V_{BE} (Ref. Sect. 2.4).

The receiver shall detect a voltage between -3 0 and -25 volts as a logic "1" and inputs between +3.0 and +25 volts as a logic "0" (Ref. Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic "1" input.

Device Characteristics

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise

rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MC1489A has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 6, 8 and 9 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of highfrequency, high-energy noise pulses. Figures 12 and 13 show typical noise-pulse rejection for external capacitors of various sizes

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

FIGURE 12 - TURN-ON THRESHOLD VERSUS CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

FIGURE 13 – TURN-ON THRESHOLD Versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

APPLICATIONS INFORMATION (continued)

FIGURE 14 - TYPICAL TRANSLATOR APPLICATION - MOS TO DTL OR TTL

FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489, A RECEIVERS TO MEET RS-232C

MC3437

HEX BUS RECEIVER WITH INPUT HYSTERESIS

These high-speed bus receivers are useful in bus organized data transmission systems employing terminated 120 Ω lines. The receivers feature input hysteresis to obtain improved noise immunity. The receivers low input current requirement allows up to 27 driver/ receiver pairs to share a common bus. A pair of Disable Inputs are provided. These Disable Inputs along with the receiver outputs are MTTL compatible.

- Built in receiver hysteresis
- Receiver input threshold is not affected by temperature
- Propagation delay time 20 ns (Typ)
- Direct Replacement for DS8837

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.) Rating Symbol

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V ₁	5.5	Vdc
Power Dissipation Derate above 25°C	PD	625 3.85	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to 70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

HEX BUS RECEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $0 \le T_A \le 70^{\circ}$ C and $4.75 \lor \le V_{CC} \le 5.25 \lor$.)

Characteristic	Symbol	Min	Тур	Max	Unit
Receiver Input Threshold Voltage — High Logic State (V _{IL(DA)} = 0.8 V, I _{OL} = 16 mA, V _{OL} ≤ 0.4 V)	VILH(R)	1.80	2.25	2.50	٧
Receiver Input Threshold Voltage — Low Logic State (V _{IL} (DA) = 0.8 V, I _{OH} = -400 µA, V _{OH} ≥ 2.4 V)	V _{IHL(R)}	1.05	1.30	1,55	V
Receiver Input Current (VI(R) = 4.0 V, V _{CC} = 5.25 V) (VI(R) = 4.0 V, V _{CC} = 0 V)	l _{1(R)}	_	15 1.0	50 50	μΑ
Disable Input Voltage – High Logic State $(V_{1\{R\}} = 0.5 \text{ V, } V_{OL} \leq 0.4 \text{ V, } I_{OL} = 16 \text{ mA})$	V _{IH(DA)}	2.0	-	-	V
Disable Input Voltage — Low Logic State $\{V_{I\{R\}} = 0.5 \text{ V, } V_{OH} \geqslant 2.4 \text{ V, } I_{OH} = -400 \mu\text{A}\}$	VIL(DA)	_	-	0.8	٧
Output Voltage — High Logic State {VI{R} = 0.5 V, VIL(DA) = 0.8 V, I _{OH} = -400 µA)	Voн	2.4	-	-	V
Output Voltage — Low Logic State {V _I {R} = 4.0 V, V _{IL} {DA} = 0.8 V, I _{OL} = 16 mA}	VOL	_	0.25	0.4	V
Disable Input Current — High Logic State (V _I H(DA) = 2.4 V) (V _I H(DA) = 5.5 V)	lih(DA)	-		80 2.0	μA mA
Disable Input Current — Low Logic State {V ₁ {R} = 4.0 V, V ₁ L(DA) = 0.4 V}	IL(DA)	-	-	-3.2	mA
Output Short Circuit Current (VI{R} = 0.5 V, VIL(DA) = 0 V, VCC = 5.25 V)	los	-18	-	-55	mA
Power Supply Current $(V_{I\{R\}} = 0.5 \text{ V, } V_{IL(DA)} = 0 \text{ V})$	¹cc	_	45	70	mA
Input Clamp Diode Voltage $(I_{I(R)} = -12 \text{ mA}, I_{I(DA)} = -12 \text{ mA},$	V _I	_	-1.0	-1.5	٧

SWITCHING CHARACTERISTICS (T_A = 25° C, V_{CC} = 5.0 V unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Receiver Input to High Logic State Output	tPLH(R)	-	20	30	ns
Propagation Delay Time from Receiver Input to Low Logic State Output	tPHL(R)	-	18	30	ns
Propagation Delay Time from Disable Input to High Logic State Output	tPLH(DA)	-	9.0	15	ns
Propagation Delay Time from Disable Input to Low Logic State Output	tPHL(DA)	-	4.0	15	ns

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - TYPICAL HYSTERESIS

REPRESENTATIVE CIRCUIT SCHEMATIC (1/6 Shown) o∨cc R10 \$ я13 ₹ D2 Q8 Q13 ≶R5 **Q**3 04 Input O 89≸ R12 ₹ ВЗ₹ R7 € Output D1 🛣 09 010 O Disable R6 ₹ 01 Q12 02 105 06 Q7 R11≸ • Ground

MC3438

QUAD BUS TRANSCEIVER

Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission system employing terminated 120 Ω lines. The receivers feature hysteresis to improve noise immunity. A disable function consisting of a two-input NOR gate is provided to control all four drivers.

- · Receiver input threshold is not affected by temperature
- Receiver input hysteresis 1.0 V (Typ)
- Open collector driver outputs allow wire-OR
- MTTL compatible receiver outputs and disable and driver inputs
- Driver propagation delay 20 ns
- Receiver propagation delay 20 ns
- Direct replacement for DS8838

QUAD BUS TRANSCEIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

CASE 620

P SUFFIX PLASTIC PACKAGE **CASE 648**

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	7.0	Vdc
Input and Output Voltage	V _O , V _I	5.5	Vdc
Power Dissipation Derate above 25°C	PD	625 3.85	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

TRUTH TABLES

DRIVER SECTION

Disable 1	Disable 2	Input	Bus				
L	L	L	Н				
L	L	н	L				
L	н	L	н				
L	н	н	н				
н	L	L	н				
∫ н.	L	н	н				
н ,	н	L	н				
н	н	н	н				

RECEIVER SECTION

Bus	Output
V _{IH(R)} >2.5 V	L
V _{IL(R)} <1.05 V	н

Where:

L = Low Logic State

H = High Logic State

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $0 \leqslant T_A \leqslant 70^{\circ}C$ and $4.75 \leqslant V_{CC} \leqslant 5.25 \text{ V.}$)

Characteristic	Symbol	Min	Тур	Max	Unit
Disable Input Voltage — High Logic State $(V_{IH(D)} = 2.0 \text{ V}, V_{IH(BUS}) = 4.0 \text{ V}, I_{BUS} < 100 \mu\text{A})$	VIH(DA)	2.0	-	_	V
Disable Input Voltage — Low Logic State (V _{IH} (D) = 2.0 V, V _{IL} (BUS) ≤ 0.7 V, I _{BUS} = 50 mA)	VIL(DA)	_	-	0.8	٧
Driver Input Voltage — High Logic State $(V_{IL(DA)} = 0.8 \text{ V, } I_{BUS} = 50 \text{ mA, } V_{IL(BUS)} \leq 0.7 \text{ V})$	V _{IH(D)}	2.0	T -	_	V
Driver Input Voltage — Low Logic State (VIL(DA) = 0.8 V, VIH(BUS) = 4.0 V, IBUS < 100 μA)	V _{IL(D)}	_	-	0.8	٧
Receiver Input Threshold Voltage — High Logic State $(V_{IL(D)} = 0.8 \text{ V}, I_{OL(R)} = 16 \text{ mA}, V_{OL(R)} \leq 0.4 \text{ V})$	VILH(R)	1.80	2.25	2 50	٧
Receiver Input Threshold Voltage — Low Logic State (V _{IL(D)} = 0.8 V, I _{OH(R)} = -400 μA, V _{OH(R)} ≥ 2.4 V)	V _{IHL(R)}	1.05	1.30	1.55	٧
Disable Input Current — High Logic State (VIH(D) = 2.4 V, VIH(DA) = 2.4 V) (VIH(D) = 5.5 V, VIH(DA) = 5.5 V)	lH(DA)	-	<u>-</u>	40 1.0	μA mA
Driver Input Current High Logic State (V _{IH} (DA) = 2.4 V, V _{IH} (D) = 2.4 V) (V _{IH} (DA) = 5.5 V, V _{IH} (D) = 5.5 V)	IH(D)	1 4	_ _	40 1.0	μA mA
Disable Input Current — Low Logic State $(V_{IL}(DA) = 0.4 \text{ V}, V_{IL}(D) = 0.4 \text{ V})$	IIL(DA)	-	_	-1.6	mA
Driver Input Current — Low Logic State (VIL(D) = 0.4 V, VIL(DA) = 0.4 V)	IL(D)	_	-	-1.6	mA
Bus Current (V _{1L} (DA) = 0.8 V, V _{1L} (D) = 0.8, V _{1H} (BUS) = 4.0 V) (V _{CC} = 5.25 V) (V _{CC} = 0 V)	IBUS	- -	20 2.0	100 100	μА
Bus Voltage — Low Logic State (V ₁ L(DA) = 0 8 V, V ₁ H(D) = 2 0 V, I _{BUS} = 50 mA)	V _L (BUS)	-	0.4	0.7	V
Receiver Output Voltage — High Logic State (V L(DA) = 0.8 V, V L(D) = 0.8 V, V L(BUS) = 0.5 V, OH(R) = -400 µA)	VOH(R)	2.4	_	-	V
Receiver Output Voltage — Low Logic State (V L(DA) = 0.8 V, V L(D) = 0.8 V, V H(BUS) = 4.0 V, IOL(R) = 16 mA)	V _{OL(R)}	-	0 25	0 4	V
Receiver Output Short Circuit Current (VIL(DA) = 0.8 V, VIL(D) = 0.8 V, VIL(BUS) = 0.5 V, VCC = 5.25 V)	IOS(R)	-18	-	-55	mA
Power Supply Current $(V_{IL}(DA) = 0 V, V_{IH}(D) = 2.0 V)$	lcc	-	50	70	mA
Input Clamp Diode Voltage (II(DA) = II(D) = IBUS = -12 mA)	٧١		-1.0	-1,5	V

SWITCHING CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Disable Input to High Logic Level Output	tPLH(DA)	-	19	27	ns
Propagation Delay Time from Disable Input to Low Logic Level Output	[†] PHL(DA)	-	15	27	ns
Propagation Delay Time from Driver Input to High Logic Level Output	^t PLH(D)	·-	17	25	ns
Propagation Delay Time from Driver Input to Low Logic Level Output	[†] PHL(D)	_	9.0	20	ns
Propagation Delay Time from Bus Input to High Logic Level Output	^t PLH(R)	-	20	30	ns
Propagation Delay Time from Bus Input to Low Logic Level Output	tPHL(R)	-	18	30	ns

FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - RECEIVER TEST CIRCUIT AND WAVEFORM

REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 Shown)

QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVERS

The MC3440A, MC3441A, MC3443 are quad bus transceivers intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis.

The MC3440A version consists of three drivers controlled by a common Enable input and a single driver without an Enable input. Terminations are provided in the device.

The MC3441A differs in that all four drivers are controlled by the common Enable input. Again, the terminations are provided.

The MC3443 is identical to the MC3441A except that the terminations have been omitted. As such it is pin compatible, and functionally equivalent to the SN75138. It does offer the advantage of receiver input hysteresis.

- Receiver Input Hysteresis Provides Excellent Noise Rejection
- Open-Collector Driver Outputs Permit Wire-OR Connection
- Tailored to Meet the Proposed Standards Set by the IEEE and IEC Committees on Instrument Interface (488-1978)
- Terminations Provided (except MC3443 version)
- Provides Electrical Compatibility with General-Purpose Interface Bus

MAXIMUM RATINGS (TA 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	70	/ Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	10(D)	150	mA
Power Dissipation (Package Limitation) Derate above 25°C	PD	830 6.7	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C

MC3440A MC3441A MC3443

QUAD INTERFACE BUS TRANSCEIVERS SILICON MONOLITHIC INTEGRATED CIRCUITS

MC3440A

Output and

Termination -

P SUFFIX PLASTIC PACKAGE CASE 648

ਡ vcc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.5 V \leq V_{CC} \leq 5.5 V and 0 \leq T_A \leq 70°C, typical values are at T_A = 25°C, V_{CC} = 5 0 V)

T _A = 25°C, V _{CC} = 5 0 V)					
Characteristic	Symbol	Mın	Тур	Max	Unit
DRIVER PORTION .					
Input Voltage – High Logic State	V _{IH(D)}	20	-		V
input Voltage – Low Logic State	VIL(D)	_		0.8	V
Input Current — High Logic State	liH(D)	-	-	40	μА
(V _{IH} = 24 V)			ļ		
Input Current – Low Logic State MC3443	llL(D)	-	-	-16	mA
$(V_{1L} = 0.4 \text{ V}, V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C})$ MC3440A, 3441A				-0.25	
Input Clamp Voltage	VIK(D)	-	-	-1 5	٧
(I _{IK} = -12 mA)			ļ		
Output Voltage High Logic State (1) (MC3440A, 3441A only)	VOH(D)	2.5	_	i -	V
(V _{IH(S)} = 24 V or V _{IL(D)} = 08 V)	<u> </u>	ļ	ļ		
Output Voltage — Low Logic State (VIH(S) = 2 0 V, VIL(E) = 0 8 V, IOL(D) = 48 mA) MC3443	VOL(D)	l _		0.4	V
MC3440A, 3441A	ł	_	ł	0.5	
(V _{IH} (D) = 20 V, V _{IL} (E) = 0 8 V, I _{OL} (D) = 100 mA)			_	0.5	
Output Leakage Current — MC3443 Only	 	ļ <u>-</u>	ļ	+	
(VIH(E) = 20 V or VIL(D) = 08 V)	'Он(D)	_	-	250	μΑ
RECEIVER PORTION	L	l	1	J	
Input Hysteresis		400	580		
1	-	400			mV
Input Threshold Voltage — Low to High Output Logic State	VILH(R)	08	0.98	-	V
(V _{CC} = 5.0 V, T _A = 25°C)					
Input Threshold Voltage — High to Low Output Logic State	VIHL(R)	-	1.56	2.0	V
(V _{CC} = 5.0 V, T _A = 25 ^o C)			L		
Output Voltage - High Logic State	VOH(R)	2 4	-	-	V
(V _{IL} (R) = 0 8 V, I _{OH} (R) = -400 μA)					
Output Voltage - Low Logic State MC3440A, 3441A (VIH(R) = 2 0 V, IOL(R) = 16 mA) MC3443	VOL(R)	-	_	0.5	V
(V _{IH} (R) = 2 0 V, I _{OL} (R) = 16 mA) MC3443 Output Short-Circuit Current	·	-		0.4	
(V _{IL} (R) = 0.8 V) (Only one output may be shorted at a time)	IOS(R)	-20	1 -	-55	mA
			l	<u> </u>	
BUS TERMINATION PORTION (Does not apply to MC3443)	,,		T		
Bus Voltage (V _{IL(D)} = 0 8 V) (I _{BUS} = -12 mA)	v _{BUS}	_	_	-1.5	V
(No Load)		2.50	_	3.70	
Bus Current	IBUS			1	mA
(V _{IL(D)} = 08 V, V _{BUS} ≥ 50 V)	.009	0.7	-	_	
(V _{IL} (D) = 0.8 V, V _{BUS} ≤ 5.5 V)		_	-	2.5	
$(V_{IL(D)} = 0.8 \text{ V}, V_{BUS} = 0.5 \text{ V})$		-1.3	-	-3 2	
$(V_{CC} = 0, 0 \le V_{BUS} \le 2.75 \text{ V})$ (MC3440A, 3441 A only)	1			+0.04	
TOTAL DEVICE POWER CONSUMPTION					
Power Supply Current	¹cc	30	56	75	mA
$(V_{IH}(D) = 24 \text{ V}, V_{IL}(E) = 0 \text{ V})$	100	"	30	"	11175
		l	<u> </u>	1	

SWITCHING CHARACTERISTICS (V_{CC} = 5 0 V, T_A = 25 ^{o}C)

		мсз4	141A,3	3441A	_	/IC344	3	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
DRIVER PORTION								
Propagation Delay Time from Driver Input to Low Logic State Bus Output	tPHL(D)	-	13	30	-	13	25	ns
Propagation Delay Time from Driver Input to High Logic State Bus Output	tPLH(D)	-	17	30	-	17	25	ns
Propagation Delay Time from Enable Input to Low Logic State Bus Output	tPHL(E)	_	25	40	-	25	32	ns
Propagation Delay Time from Enable Input to High Logic State Bus Output	₱LH(E)	_	25	40	-	25	32	ns
RECEIVER PORTION								
Propagation Delay Time from Bus Input to High Logic State Receiver Output	tPLH(R)	-	15	30	-	15	22	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	tPHL(R)	_	15	30	-	15	22	ns

^{(1) 12} k resistor from the bus terminal to $V_{\mbox{CC}}$ required on the MC3443 version.

GENERAL PURPOSE INTERFACE BUS APPLICATION INSTRUMENT B INSTRUMENT A DI01 DI01 D102 D102 MC3441A To instruments MC3440A D103 D103 Logic (Typical) D104 REN (Always Enabled) D104 D105 ر 106 D105 MC3441A MC3440A ر 01<u>07</u> D106 SRQ (Always Enabled) D107 DIOS EOI MC3441A <u>ح ۲۸</u> MC3440A DAV ا<u>FC</u> EOI (Always Enabled) (Always (Always Enabled) Enabled) SRO DAV IFC MC3440A MC3440A NRFD NRFD

NDAC

- 8 Line Data Bus: DI01 DI08
- 5 General Interrupt Transfer Control Bus: REN - Remote Enable SRQ - Service Request
 - SRQ Service Request EOI — End or Identify ATN — Attention IFC — Interface Clear

- 3 Data Byte Transfer Control Bus DAV — Data Valid NRFD — Not Ready for Data NDAC — Not Data Accepted
- 16 Total Signal Lines

NDAC

16 Lines

FIGURE 1 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

MC3440A/3441A uses 100 Ω

FIGURE 3 – TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

MC3446A

QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVER

The MC3446A is a quad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the various instruments. The transceiver provides four open-collector drivers and four receivers featuring hysteresis.

- Tailored to Meet the IEEE Standard 488-1978 (Digital Interface for Programmable Instrumentation) and the Proposed IEC Standard on Instrument Interface
- Provides Electrical Compatibility with General-Purpose Interface Bus (GPIB)
- MOS Compatible with High Impedance Inputs
- Driver Output Guaranteed Off During Power Up/Power Down
- Low Power Average Power Supply Current = 12 mA
- Terminations Provided

QUAD INTERFACE BUS TRANSCEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648

MAXIMUM RATINGS ($T_{\Delta} = 25^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Driver Output Current	IO(D)	150	mA
Junction Temperature	TJ	150	٥С
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	. T _{stq}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.5 V \leq V_{CC} \leq 5.5 V and 0 \leq T_A \leq 70°C, typical values are at T_A = 25°C, V_{CC} = 5.0 V)

	naracteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION						
Input Voltage - High Logic State	}	V _{IH(D)}	2.0	_		v
Input Voltage - Low Logic State		VIL(D)		-	0.8	V
Input Current - High Logic State (VIH = 2.4 V)		lH(D)	-	5.0	40	μА
Input Current - Low Logic State (V _{IL} = 0.4 V, V _{CC} = 5.0 V,		lL(D)	_	-0.2	-0.25	mA
Input Clamp Voltage (I _{IK} = -12 mA)		VIK(D)	-	_	-1.5	٧
Output Voltage - High Logic Sta (VIH(S) = 2.4 V or VIH(D) =		Vон(D)	2.5	3.3	3.7	\ \
Output Voltage — Low Logic Sta (V _{IL} (S) = 0 8 V, V _{IL} (D) = 0.8		V _{OL(D)}	-	-	0.5	
Input Breakdown Current (V _I (D) = 5.5 V)	IB(D)	-	_	10	mA	
RECEIVER PORTION						
Input Hysteresis		_	400	625	l	mV
Input Threshold Voltage — Low	to High Output Logic State	VILH(R)	_	1.66	2.0	V
Input Threshold Voltage — High to Low Output Logic State		VIHL(R)	0.8	1.03	-	V
Output Voltage — High Logic State (VIH(R) = 2.0 V, IOH(R) = -400 µA)		VOH(R)	2.4	-		\ \
Output Voltage — Low Logic Sta (V _{IL(R)} = 0.8 V, I _{OL(R)} = 8		VOL(R)	-	-	0.5	V
Output Short-Circuit Current (VIH(R) = 2 0 V) (Only one o	utput may be shorted at a time)	los(R)	40	-	14	mA
BUS LOAD CHARACTERISTIC	3					
Bus Voltage	(V _{IH(E)} = 2 4 V) (I _{BUS} = -12 mA)	V(BUS)	25 -	33	3.7 -1.5	V
Bus Current	(V _{IH} (D)= 24 V, V _{BUS} ≥ 50 V) (V _{IH} (D) = 2.4 V, V _{BUS} = 0.5 V) (V _{BUS} ≤ 5.5 V) (V _{CC} = 0, 0 V ≤ V _{BUS} ≤ 2.75 V)	I(BUS)	0.7 -1.3 - -	-	-3 2 2.5 0.04	m#
TOTAL DEVICE POWER CONS	UMPTION					
Power Supply Current (All Drivers OFF) (All Drivers ON)		lcc	-	12 32	19 40	m <i>A</i>

SWITCHING CHARACTERISTICS (VCC = 5 0 V, TA = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION					
Propagation Delay Time from Driver Input to Low Logic State Bus Output	tPHL(D)	-	_	50	ns
Propagation Delay Time from Driver Input to High Logic State Bus Output	tPLH(D)	_	_	40	ns
Propagation Delay Time from Enable Input to Low Logic State Bus Output	tPHL(E)	-		50	ns
Propagation Delay Time from Enable Input to High Logic State Bus Output	tPLH(E)	_	_	50	ns
RECEIVER PORTION					
Propagation Delay Time from Bus Input to High Logic State Receiver Output	tPLH(R)	_	-	50	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	tPHL(R)	_	_	40	ns

FIGURE 1 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

• Includes Probe and Jig Capacitance

FIGURE 4 - TYPICAL BUS LOAD LINE

MC3447

BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Low power consumption has been achieved by trading a minimum of speed for low current drain on non-critical channels. A fast channel is provided for critical ATN and EOI paths.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by a Send/Receive input with the disabled output of the pair forced to a high impedance state. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Low Power Average Power Supply Current = 30 mA Listening
 75 mA Talking
- Eight Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typ)
- Fast Propagation Times 15−20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output with Terminations
- Power Up/Power Down Protection (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power is Removed From Device
- Required Termination Characteristics Provided

MAXIMUM RATINGS (T_A ≈ 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V ₁	5.5	Vdc
Driver Output Current	IO(D)	150	mA
Junction Temperature	TJ	150	°С
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

OCTAL BIDIRECTIONAL BUS TRANSCEIVER WITH

TERMINATION NETWORKS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS

 $\underbrace{(Unless \ otherwise \ noted \ 4.50 \ V \leqslant V_{CC} \leqslant 5.50 \ V \ and \ 0 \leqslant T_{A} \leqslant 70^{O}C; \ typical \ values \ are \ at \ T_{A} = 25^{O}C, \ V_{CC} = 5.0 \ V)}$

Characteristic — Note 2	Symbol	Min	Тур	Max	Unit
Bus Voltage	1				V
· (Bus Pin Open)(VI(S/R) = 0.8 V)	V _(Bus)	25	_	3.7	
$(I_{(Bus)} = -12 \text{ mA})$	V _{IC(Bus)}	_	_	-1.5	
Bus Current	l(Bus)				mA
$(5.0 \text{ V} \le \text{V}_{(Bus)} \le 5.5 \text{ V})$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.7	_	2.5	
(V _(Bus) ≈ 0.5 V)		-13	_	-3.2	
$(V_{CC} = 0 \text{ V}, 0 \text{ V} \le V_{(Bus)} \le 2.75 \text{ V})$		_	_	+0.04	
Receiver Input Hysteresis	_	400	600	-	m۷
$(V_{I(S/R)} = 0.8 \text{ V})$		1			
Receiver Input Threshold					V
$(V_{I(S/\overline{R})} = 0.8 \text{ V})$ Low to High	VILH(R)	i –	1.6	20	
High to Low	VIHL(R)	08	10	_	
Receiver Output Voltage - High Logic State	V _{OH(R)}	24		_	V
$(V_{I(S/\overline{R})} = 0.8 \text{ V}, I_{OH(R)} = -200 \mu A, V_{(Bus)} = 20 \text{ V})$	0,,,,,,				
Receiver Output Voltage - Low Logic State	VOL(R)	_	_	0.5	V
$(V_{1(S/\overline{R})} = 0.8 \text{ V}, I_{OL(R)} = 4.0 \text{ mA}, (V_{Bus}) = 0.8 \text{ V}$	"""	1	1	1	
Receiver Output Short Circuit Current	IOS(R)	-40		-20	mA
$(V_{1(S/\overline{R})} = 0.8 \text{ V}, V_{(Bus)} = 2.0 \text{ V})$	55(11)			1	
Driver Input Voltage — High Logic State	V _{IH(D)}	2.0			V
$(V_{I(S/\overline{R})} = 2.0 \text{ V})$	"""				
Driver Input Voltage — Low Logic State	VIL(D)	_		0.8	
$(V_{I(S/\overline{R})} = 2.0 \text{ V})$	""	1			
Driver Input Current — Data Pins	 				μΑ
$(V_{1(S/\overline{R})} = 2.0 \text{ V})$		ļ		1	,-
$(0.5 \le V_{1(D)} \le 2.7 \text{ V})$	J1(D)	-100	_	40	
$(V_{1}(D) = 5.5 \text{ V})$	IB(D)	-	-	200	
Input Current - Send/Receive	1		_	 	μА
$(0.5 \le V_{1(S/R)} \le 2.7 \text{ V})$	1(S/R)	-250	_	20	, , , , ,
$(V_{I(S/\overline{R})} = 55V)$	IB(S/R)		_	100	
Driver Input Clamp Voltage	V _{IC(D)}			-1.5	
$(V_{I(S/\overline{R})} = 20 \text{ V}, I_{IC(D)} = -18 \text{ mA})$	10(0)	1			-
Driver Output Voltage — High Logic State	VOH(D)	2.5	 	 _	V
(V _{IS/南}) = 20 V, V _{IH(D)} = 2.0 V)	I .OH(D)] -5			ĺ
Driver Output Voltage — Low Logic State (Note 1)	V _{OL(D)}		 	0.5	V
$(V_{1(S/\overline{R})} = 20 \text{ V}, V_{1L(D)} = 0.8 \text{ V}, I_{OL(D)} = 48 \text{ mA})$, OLID)		_] 5.5	l
Power Supply Current	 	-	 	-	mA
(Listening Mode – All Receivers On)	l loo	_	30	45	"'^
(Talking Mode — All Drivers On)	ICCL		75	95	l
(Talking Mode — All Drivers Onl)	1ссн		/5	ا عن	

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted)

Propagation Delay of Driver					ns
(Output Low to High)	tPLH(D)	_	70	15	
(Output High to Low)	tPHL(D)	_	16	30	
Propagation Delay of Receiver (Channels 0 to 5, 7)					ns
(Output Low to High)	tPLH(R)		28	50	
(Output High to Low)	tPHL(R)	_	15	30	
Propagation Delay of Receiver (Channel 6, Note 3)					ns
(Output Low to High)	TPLH(R)	_	17	30	
(Output High to Low)	tPHL(R)	_	12	22	

- NOTES 1. The IEEE 488-1978 Bus Standard Changes VOL(D) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.
 - 2. Specified test conditions for $V_{I(S/\overline{R})}$ are 0.8 V (Low) and 2.0 V (High). Where $V_{I(S/\overline{R})}$ is specified as a test condition, $V_{I(\overline{S}/R)}$ uses the opposite logic levels.
 - In order to meet the IEEE 488-1978 standard for total system delay on the ATN and EOI channels, a fast receiver has been provided on Channel 6 (pins 9 and 16).

-30V

n v

۷он

VOL

- tPHL(D)

SWITCHING CHARACTERISTICS (continued) (V_{CC} = 5 0 V, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receiver to Data					ns
Logic High to Third State	tPHZ(R)	_	15	30	
Third State to Logic High	tPZH(R)	_	15	30	ŀ
Logic Low to Third State	tPLZ(R)		15	25	ļ
Third State to Logic Low	tPZL(R)	-	10	25	1
Propagation Delay Time - Send/Receiver to Bus					ns
Logic Low to Third State	tPLZ(D)	_	13	25	ļ
Third State to Logic Low	tPZL(D)	-	30	50	

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 5 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

50

V_{CC} = 5 0 V

T_A = 25°C

0

0

0

0

10

0

15

20

V_I, input voltage (volts)

FIGURE 7 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT USING MC3447s AND MC68488

IEEE 488-1978 BUS

+5 V T/R 1 DBØ Data T/R 2 DB7 D7 2 MC3447s R/W DAV R/W MC6802 RSØ RS2 or MC6800 ΑØ IBO A15 MPU Address ĪB2 DIO3 D105 1B4 ĪRQ IRQ 186 D107 NDAC DAC EOI ĒŌĪ ĪFC MC68488 GPIA SRO sra D102 ĪB1 ĪB3 D106 IB5 IB7 NOTE 1: Although the MC3447 transceivers NRFD RFD are non-inverting, the 488-1978 bus callouts appear inverted with respect to the MC68488 pin designations. This is because the 488-1978 ĀTN Standard is defined for negative logic, while all M6800 MPU components make use of positive logic format. REN Trig

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

5-61

FIGURE 9 - SUGGESTED PIN DESIGNATIONS FOR USE WITH MC68488

	8488 ections	MC3447 Pin Designations				_		MC6 Conne	8488 ctions
Α	В						Α	В	
T/R 2	v _{CC}	S/R (0)	1		24	vcc	vcc	vcc	
DAV	SRO	Data 0 0	2		23	Bus 0	DAV	SRQ	
180	ĪB1	Data 1	3		22	Bus 1	DIO 1	DIO 2	
ĪB2	ĪB3	Data 2	4		21	Bus 2	DIO 3	DIO 4	
184	1B5	Data 3	5		20	Bus 3	D10 5	DIO 6	
īB6	ĪB7	Data 4	6	Octal	19	Bus 4	DIO 7	8 010	
DAC	RFD	Data 5	7	GPIB Transceiver	18	Bus 5	NDAC	NRFD	
T/R 2	T/R 2	S/R (5)	8		17	S/R (1-4)	T/R 2	T/R 2	
ĒŌĪ	ATN	Data 6	9		16	Bus 6	EOI	ATN	
ĪĒC	REN	Data 7	10		15	Bus 7	IFC	REN	
T/R 1	Gnd	S/R (6)	11		14	S/R (7)	Gnd .	Gnd	
Gnd	Gnd	Logic Gnd	12		13	Bus Gnd	Gnd	Gnd '	

BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector⁽¹⁾ or active pull-up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Four Independent Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typ)
- Fast Propagation Times 15-20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output Option(1)
- Power Up/Power Down Protection

(No Invalid Information Transmitted to Bus)

- No Bus Loading When Power Is Removed From Device
- Required Termination Characteristics Provided

(1) Selection of the "Open Collector" configuration, in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1978 Bus Standard.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	I _{O(D)}	150	mA
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°С
Storage Temperature Range	T _{stg}	-65 to +150	°C

MC3448A

QUAD THREE-STATE
BUS TRANSCEIVER WITH
TERMINATION NETWORKS

SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLE							
Send/Rec	Enable	Info Flow	Comments				
0	×	Bus → Data	-				
1	1	Data → Bus	Active Pull Up				
1	0	Data → Bus	Open Col				

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted 4.75 V < V_{CC} < 5.25 V and 0 < T_{A} < 70° C; typical values are at T_{A} = 25°C, V_{CC} = 5.0 V)

Characteristic	Symbol	Min	Тур	Max	Unit
Bus Voltage					V
(Bus Pin Open)(V _{I(S/R)} = 0.8 V)	V _(BUS)	2.75] -	3.7	1
$(I_{BUS}) = -12 \text{ mA}$	VIC(BUS)	_	-	-1.5	
Bus Current	I(BUS)				mA
$(5.0 \text{ V} \leq \text{V}_{(BUS)} \leq 5.5 \text{ V})$		0.7	-	2.5	ĺ
(V _(BUS) = 0.5 V)		-1.3	- 1	-3.2	1
(V _{CC} = 0 V, 0 V ≤ V _(BUS) ≤ 2.75 V)		_		+0.04	
Receiver Input Hysteresis	-	400	600	-	mV
(V _{I(S/R)} = 0.8 V)					
Receiver Input Threshold	1		l		٧
$(V_{I(S/R)} = 0.8 \text{ V, Low to High})$	VILH(R)	_	1.6	1.8	
(V _{I(S/R)} = 0.8 V, High to Low)	VIHL(R)	0.8	1.0		
Receiver Output Voltage - High Logic State	Voh(R)	2.7	-	_	V
$(V_{I(S/R)} = 0.8 \text{ V}, I_{OH(R)} = -800 \mu\text{A}, V_{(BUS)} = 2.0 \text{ V})$					
Receiver Output Voltage — Low Logic State	Vol(R)	-	-	0.5	V
$(V_{I(S/R)} = 0.8 \text{ V}, I_{OL(R)} = 16 \text{ mA}, V_{(BUS)} = 0.8 \text{ V})$.1				
Receiver Output Short Circuit Current	los(R)	-15		-75	mA
$(V_{I(S/R)} = 0.8 \text{ V}, V_{(BUS)} = 2.0 \text{ V})$					
Driver Input Voltage - High Logic State	VIH(D)	2.0	-	-	\ \
$(V_{I(S/R)} = 2.0 \text{ V})$					
Driver Input Voltage - Low Logic State	VIL(D)		-	0.8	V
$(V_{I(S/R)} = 2.0 V)$					i
Driver Input Current — Data Pins					μΑ
$(V_{I(S/R)} = V_{I(E)} = 2.0 \text{ V})$					
$(0.5 \leqslant V_{ (D)} \leqslant 2.7 \text{ V})$	l(D)	-200	-	40	
(V _{I(D)} = 5.5 V)	IB(D)	_	_	200	
Input Current - Send/Receive					μΑ
$(0.5 \le V_{I(S/R)} \le 2.7 \text{ V})$	I(S/R)	-100	_	20	i
(V _I (S/R) = 5.5 V)	IB(S/R)	-		100	
Input Current — Enable					μA
$(0.5 \le V_{ (E)} \le 2.7 \text{ V})$	(E)	-200	-	20	
(V _{I(E)} = 5.5 V)	IB(E)			100	
Driver Input Clamp Voltage	VIC(D)	-	-	-1.5	٧
(V _I (S/R) = 2.0 V, I _{IC(D)} = ~18 mA)				l	
Driver Output Voltage - High Logic State	VOH(D)	2.5	-	-	
$(V_{I(S/R)} = 2.0 \text{ V}, V_{IH(D)} = 2.0 \text{ V}, V_{IH(E)} = 2.0 \text{ V}, I_{OH} = -5.2 \text{ mA})$					
Driver Output Voltage - Low Logic State (Note 1)	VOL(D)	_	-	0.5	V
$(V_{I(S/R)} = 2.0 \text{ V, } I_{OL(D)} = 48 \text{ mA})$			ŀ		
Output Short Circuit Current	los(D)	-30	_	-120	mA
$(V_{I(S/R)} = 2.0 \text{ V}, V_{IH(D)} = 2.0 \text{ V}, V_{IH(E)} = 2.0 \text{ V})$					
Power Supply Current					mA
(Listening Mode - All Receivers On)	ICCL	_	63	85	
(Talking Mode — All Drivers On)	Іссн	_	106	125	
SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless oth	erwise noted)				
Propagation Delay of Driver				T	ns
(Output Low to High)	tPLH(D)	-	-	15	
(Output High to Low)	tPHL(D)	_	-	17	
Propagation Delay of Receiver			1		ns
(Output Low to High)	tPLH(R)	-	-	25	
(Output High to Low)	tPHL(R)	_	-	23	
				•	

NOTE 1. A modification of the IEEE 488-1978 Bus Standard changes V_{OL(D)} from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

SWITCHING CHARACTERISTICS (continued) (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receive to Data					ns
Logic High to Third State	tPHZ(R)	-	-	30	
Third State to Logic High	tPZH(R)		-	30	
Logic Low to Third State	tPLZ(R)	-	-	30	
Third State to Logic Low	tPZL(R)	-	-	30	
Propagation Delay Time - Send/Receive to Bus					ns
Logic High to Third State	tPHZ(D)	-	l -	30	
Third State to Logic High	tPZH(D)	-	! -	30	
Logic Low to Third State	tPLZ(D)	-	 -	30	
Third State to Logic Low	tPZL(D)		L	30	
Turn-On Time — Enable to Bus					ns
Pull-Up Enable to Open Collector	tPOFF(E)	_	-	30	
Open Collector to Pull-Up Enable	tPON(E)	-	-	20	

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 5 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

MC3450 MC3452

Specifications and Applications Information

QUAD MTTL COMPATIBLE LINE RECEIVERS

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance

The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices.

- Receiver Performance Identical to the Popular MC75107/MC75108 Series
- Four Independent Receivers with Common Strobe Input
- Implied "AND" Capability with Open Collector Outputs
- Useful as a Quad 1103 type Memory Sense Amplifier

FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

QUAD LINE RECEIVERS WITH COMMON THREE-STATE STROBE INPUT

SILICON MONOLITHIC INTEGRATED CIRCUITS

CASE 620

CASE 648

TRUTH TABLE OUTPUT INPUT STROBE MC3450 MC3452 V_{ID}≥ Off +25 mV н z Off -25 mV ≤ ι 1 <u>VID</u> ≤+25 mV Off 7 V_{ID} ≤ L L -25 mV Off

- L ≈ Low Logic State
- H = High Logic State
- Z = Third (High Impedance) State
- I = Indeterminate State

MAXIMUM RATINGS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages .	V _{CC} , V _{EE}	±7.0	Vdc
Differential-Mode Input Signal Voltage Range	V _{IDR}	±6.0	Vdc
Common-Mode Input Voltage Range	VICR	±5.0	Vdc
Strobe Input Voltage	V _I (S)	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	Ро	1000 6.6 1000 6.6	mW mW/ ^O C mW mW/ ^O C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS ($T_{\Delta} = 0$ to $+70^{\circ}$ C unless otherwise noted.)

Symbol	Min	Тур	Max	Unit
V _{CC} V _{EE}	+4.75 -4.75	+5 0 -5.0	+5.25 -5 25	Vdc
lor			16	mA
VIDR	-5.0	-	+5 0	Vdc
VICR	-3.0	_	+3.0	Vdc
VIR	-5.0		+30	Vdc
	V _{CC} V _{EE} I _{OL} V _{IDR} V _{ICR}	VCC +4.75 VEE -4.75 IOL - VIDR -5.0 VICR -3.0	VCC +4.75 +5 0 VEE -4.75 -5.0 IOL VIDR -5.0 - VICR -3.0 -	VCC +4.75 +5 0 +5.25 VEE -4.75 -5.0 -5 25 IOL - - 16 VIDR -5.0 - +5 0 VICR -3.0 - +3.0

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $V_{EE} = -5.0 \text{ Vdc}$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted.)

			[MC3450		Γ	MC3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High Level Input Current to Receiver Input	¹ (H(I)	7			75	_		75	μА
Low Level Input Current to Receiver Input	IIL(I)	8	-		-10	-		-10	μА
High Level Input Current to Strobe Input VIH(S) = +2.4 V VIH(S) = +5.25 V	¹ 1H(S)	5	-	_	40 1.0	_	-	40 1.0	μA mA
Low Level Input Current to Strobe Input VIH(S) = +0.4 V	IL(S)	5		-	-1.6	-	-	-1.6	mA
High Level Output Voltage	Voн	3	2.4		_			_	Vdc
High Level Output Leakage Current	ICEX	3		-		-		250	μА
Low Level Output Voltage	VOL	3			0.4			0.4	Vdc
Short-Circuit Output Current	los	6	-18		-70	-	-	_	mA
Output Disable Leakage Current	loff	9			40				μА
High Logic Level Supply Current from V _{CC}	^I CCH	4		45	60	-	45	60	mA
High Logic Level Supply Current from VEE	IEEH	4	-	-17	-30	_	-17	-30	mA

SWITCHING CHARACTERISTICS ($V_{CC} \approx +5.0 \text{ Vdc}$, $V_{EE} = -5.0 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

·				MC3450			MC3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs)	tPHL(D)	10	_	-	25	-		25	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs)	^t PLH(D)	10	-	-	25	_	-	25	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tPZH(S)	11	-	-	21	-	-	_	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	11	-	_	18	-	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	11	-	_	27	_	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	11	-	-	29		-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	12	_	-	_	_	-	25	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	^t PLH(S)	12	_	-	-	_	-	25	ns

FIGURE 2 - CIRCUIT SCHEMATIC (1/4 Circuit Shown) vcc ∽ ₹850 **\$**850 **\$ 190** -O OUTPUT **≨440** 750 INPUT -O GND 120 OSTROBE ' TO OTHER RECEIVERS VEE O Dashed components apply to the MC3450 circuit only.

TEST CIRCUITS

FIGURE 3 - I_{CEX}, V_{OH}, AND V_{OL}

FIGURE 4 - ICCH AND IEEH

TEST TABLE

		1	\ 	/2		V3 V4		V4	
	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	- 11
	+2 975 V	-	+3 0 V	-	+3 0 V	-	GND	-	+0 4 mA
VOH	-3 0 V	-	-2 975 V	-	GND	-	-3 0 V	-	+U 4 MA
		+2 975 V	_	+3 0 V	-	+3 0 V	-	GND	
CEX		-3 0 V	-	-2 975 V	-	GND	-	-30 V	
	+3 0 V	+3 0 V	+2 975 V	+2 975 V	GND	GND	+3 0 V	+3 0 V	-16 mA
VOL	-2 975 V	-2 975 V	-3 0 V	-3 0 V	-3 0 V	-3 0 V	GND	GND	

Channel A shown under test. Other channels are tested similarly

FIGURE 5 - ILH(S) AND ILL(S)

5

TEST CIRCUITS (continued)

FIGURE 6 - IOS

Channel A shown under test, other channels are tested similarly. Only one output shorted at a time $% \left\{ 1,2,\ldots,n\right\}$

FIGURE 7 - ILH

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from +3.0~V to -3.0~V.

FIGURE 8 - IIL

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from ± 3.0 V to ± 3.0 V.

FIGURE 9 - Ioff

Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4 V and +2.4 V.

FIGURE 10 - RECEIVER PROPAGATION DELAY tPLH(D) AND tPHL(D)

Output of Channel B shown under test, other channels are tested similarly.

- S1 at "A" for MC3452
- S1 at "B" for MC3450
- CL = 15 pF total for MC3452
- CL = 50 pF total for MC3450

 E_{in} waveform characteristics. t_{TLH} and $t_{THL} \leqslant$ 10 ns measured 10% to 90% PRR = 1.0 MHz. \leq 10 uty Cycle = 500 ns

TEST CIRCUITS (continued)

FIGURE 11 - STROBE PROPAGATION DELAY TIMES TPLZ(S) TPZL(S) TPHZ(S) and TPZH(S)

	V1	V2	\$1	S2	CL
tPLZ(S)	100 mV	GND	Closed	Closed	15 pF
tPZL(S)	100 mV	GND	Closed	Open	50 pF
tPHZ(S)	GND	100 mV	Closed	Closed	15 pF
tPZH(S)	GND	100 mV	O pen	Closed	50 pF

CL includes jig and probe capacitance

E_{in} waveform characteristics

 t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90%

Duty Cycle = 50%

FIGURE 12 - STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

Ein waveform characteristics t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90% PRR = 1 0 MHz Duty Cycle = 500 ns

5

APPLICATIONS INFORMATION

FIGURE 13 - IMPLIED "AND" GATING

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5 0 volts in this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.

FIGURE 14 - BIDIRECTIONAL DATA TRANSMISSION

The three-state capability of the MC3450 permits bidirectional data transmission as illustrated.

FIGURE 15 — SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as are encountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates $V_{\rm ref}$, should be designed so that the $V_{\rm ref}$ voltage is halfway between $V_{\rm OH}({\rm min})$ and $V_{\rm OL}({\rm max})$. The maximum input overdrive required to guarantee a given logic state is extremely small, 25 meV maximum. This low-input overdrive enhances differential noise immunity. Also the high-input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.

FIGURE 16 – WIRED "OR" DATA SELECTION USING THREE-STATE LOGIC

APPLICATIONS INFORMATION (continued)

FIGURE 17 – PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

MC3453

MTTL COMPATIBLE QUAD LINE DRIVER

The MC3453 features four MC75110 type line drivers with a common inhibit input. When the inhibit input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the inhibit is low, all channel outputs are nonconductive (transistors biased to cut-off). This minimizes loading in party-line systems where a large number of drivers share the same line.

- Four Independent Drivers with Common Inhibit Input
- -3.0 Volts Output Common Mode Voltage Over Entire Operating Range
- Improved Driver Design Exceeds Performance of Popular MC75110

FIGURE 1 – PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING STROSE OATA OATA OATA NPUTS OATA NPUTS STROSE OATA

QUAD LINE DRIVER WITH COMMON INHIBIT INPUT

SILICON MONOLITHIC INTEGRATED CIRCUIT

CASE 648

	TRUTH 1		
LOGIC	INHIBIT		PUT RENT
INPUT	INPUT	Z	Y
н	н	On	Off
L	Н	Off	On
н	L	Off	Off
L	L	Off	Off

MAXIMUM RATINGS (TA = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages	V _{in}	5.5	Volts
Common-Mode Output Voltage Range	Vocr	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25°C	P _D	1000 6.6	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C .
Storage Temperature Range Plastic and Ceramic Dual In-Line Packages	T _{stg}	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Volts
	VEE	-4.75	-5.0	-5.25	1
Common-Mode Output Voltage Range	Voca				Volts
Positive		0	_	+10	
Negative		0	_	-3.0	ŀ

Note 1. These voltage values are in respect to the ground terminal.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic ,	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	V _{IH}	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	0	0.8	Volts

^{*}The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C unless otherwise noted.)

Characteristic##	Symbol	Min	Тур#	Max	Unit
High-Level Input Current (Logic Inputs)	liHi.				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)		_	_	40	μА
(VCC = Max, VEE = Max, VIHL = VCC Max)		_	i –	1.0	mA
Low-Level Input Current (Logic Inputs)	IILL	-	-	-1.6	mA
$(V_{CC} = Max, V_{EE} = Max, V_{IL} = 0.4 V)$					
High-Level Input Current (Inhibit Input)	ин				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)	'	_	_	40	μΑ
(VCC = Max, VEE = Max, VIHI = VCC Max)		_	_	1.0	mA
Low-Level Input Current (Inhibit Input)	IILI	_		-1.6	mA
$(V_{CC} = Max, V_{EE} = Max, V_{IL_{1}} = 0.4 \text{ V})$	'				
Output Current ("on" state)	IO(on)				mA
(VCC = Max, VEE = Max)		_	11	15	
(V _{CC} = Min, V _{EE} = Min)		6.5	11	_	
Output Current ("off" state)	lO(off)	_	5.0	100	μΑ
(V _{CC} = Min, V _{EE} = Min)					
Supply Current from V _{CC} (with driver enabled)	¹ CC(on)	_	35	50	mA
(V _{ILL} = 0.4 V, V _{IHI} = 2.0 V)			ŀ		l
Supply Current from VEE (with driver enabled)	IEE(on)	_	65	90	mA
$\{V_{IL_L} = 0.4 \text{ V}, V_{IH_I} = 2.0 \text{ V}\}$					ł
Supply Current from V _{CC} (with driver inhibited)	CC(off)	_	35	50	mA
$(V_{1}L_{L} = 0.4 \text{ V}, V_{1}L_{1} = 0.4 \text{ V})$]		ļ
Supply Current from VEE (with driver inhibited)	IEE(off)	_	25	40	mA
$(V_{ L_L} = 0.4 \text{ V}, V_{ L_I} = 0.4 \text{ V})$					1

[#]All typical values are at VCC = +5.0 V, VEE = -5.0 V, TA = +25 $^{\rm o}{\rm C}$.

Note 2. When not using all four channels, unused outputs must be grounded.

^{##}For conditions shown as Minor Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

Ground unused inputs and outputs.

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input to	tPLH _L	_	9.0	15	ns
Output Y or Z ($R_L = 50$ ohms, $C_L = 40$ pF)	tPHL_	~	9.0	15	ns
Propagation Delay Time from Inhibit Input	tPLH ₁	-	16	25	ns
to Output Y or Z ($R_L = 50$ ohms, $C_L = 40$ pF)	tPHL _i	~	20	25	

FIGURE 2 – LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 3 — INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

TEST CIRCUITS

FIGURE 4 – LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 5 – INHIBIT INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

MC3481 MC3485

Product Preview

QUAD SINGLE-ENDED LINE DRIVER

The MC3481 and MC3485 are quad single-ended line drivers specifically designed to meet the IBM 360/370 I/O specification. The two options of enable, fault flag and output configuration provide the designer flexibility in system configuration and simplifies fault flagging.

Output levels are guaranteed over the full range of output load and fault conditions. Compliance with the IBM requirements for fault protection, flagging, and power up/power down protection for the bus make this an ideal line driver for party line operation.

- Separate Enable and Fault Flags MC3481
- Common Enable and Fault Flag MC3485
- Power Up/Down Does Not Disturb Bus
- Schottky Circuitry for High-Speed
- Internal Bootstraps for Faster Rise Times
- 10% Supply Tolerance
- MC3485 has LS Totem Pole Driver Output

IBM 360/370 QUAD LINE DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice.

MC3486

QUAD RS-422/423 LINE RECEIVER

Motorola's Quad RS-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:

- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis 30 mV (Typ) @ Zero Volts Common Mode
- TTL Compatible
- Single 5 V Supply Voltage
- DS 3486 Second Source

QUAD RS-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Common Mode Voltage	VICM	±15	Vdc
Input Differential Voltage	VID	± 25	Vdc
Three-State Control Input Voltage	VI	8.0	Vdc
Output Sink Current	I _O	50	mA
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature	Tj		°c
Ceramic Package		+175	
Plastic Package		+150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.75 to 5.25	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Input Common Mode Voltage Range	Vice	-7.0 to +7.0	Vdc
Input Differential Voltage Range	VIDR	6.0	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for T_A = 25°C, V_{CC} = 5.0 V and V_{IK} = 0 V. See Note 1.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - High Logic State	VIH	2.0	_		V
(Three-State Control)					ŀ
Input Voltage - Low Logic State	VIL		_	8,0	V
(Three-State Control)					i
Differential Input Threshold Voltage (Note 4)	V _{TH(D)}				V
$(-7.0 \text{ V} \le \text{V}_{1\text{C}} \le 7.0 \text{ V}, \text{V}_{1\text{H}} = 2.0 \text{ V})$					
$(I_O = -0.4 \text{ mA}, V_{OH} \ge 2.7 \text{ V})$		-	-	0.2	
$(I_O = 8.0 \text{ mA}, V_{OL} \ge 0.5 \text{ V})$		-		-0.2	
Input Bias Current	IB(D)	, and the second			mA
(V _{CC} = 0 V or 5,25) (Other Inputs at 0 V)					
$(V_1 = -10 \text{ V})$ $(V_1 = -3.0 \text{ V})$		_	-	-3.25	
$(V_1 = +3.0 \text{ V})$		_	_	-150	
(V _I = +10 V)		_	_	+1.50 +3.25	
Input Balance and Output Level				+3.25	v
(-7.0 V ≤ V _{IC} ≤ 7.0 V, V _{IH} = 2.0 V,					·
See Note 3)					
$(I_{O} = -0.4 \text{ mA}, V_{ID} = 0.4 \text{ V})$	Vон	2.7	_	_	
$(I_O = 8.0 \text{ mA}, V_{ID} = -0.4 \text{ V})$	VOL	-	_	0.5	
Output Third State Leakage Current	loz				μΑ
$(V_{I(D)} = +3.0 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{OL} = 0.5 \text{ V})$		_	_	-40	
$(V_{I(D)} = -3.0 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{OH} = 2.7 \text{ V})$		-	_	40	
Output Short-Circuit Current	Ios	-15	- ""	-100	mA
$(V_{1(D)} = 3.0 \text{ V}, V_{1H} = 2.0 \text{ V}, V_{0} = 0 \text{ V})$					
See Note 2)					
Input Current - Low Logic State	IL	_	_	-100	μA
(Three-State Control)					
(V _{IL} = 0.5 V)					
Input Current — High Logic State	Iн				μΑ
(Three-State Control)			1		
(V _{IH} = 2.7 V)		-	-	20	
(V _{IH} = 5.25 V)				100	
Input Clamp Diode Voltage (Three-State Control)	VIK	_	_	-1.5	V
(I _{IK} = -10 mA)					
Power Supply Current			1	85	
(V _{IL} = 0 V)	Icc	_	, -	85	mA
(AIT - AA)			I	L	

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Differential					ns
Inputs to Output	f 1		ĺ	1	
(Output High to Low)	tPHL(D)	_	_	35	
(Output Low to High)	tPLH(D)	_	_	30	
Propagation Delay time - Three-State					ns
Control to Output			1		
(Output Low to Third State)	tPLZ	_	_	35	
(Output High to Third State)	tPHZ	_	_	35	
(Output Third State to High)	tPZH	- '	_	30	
(Output Third State to Low)	tPZL		· · · -	30	

NOTES:

- All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted
- 2. Only one output at a time should be shorted

- 3 Refer to EIA RS422/3 for exact conditions input balance and guaranteed output levels are done simultaneously for worst case.
- 4. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS

Propagation Delay Differential Input to Output

FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT

MC3487

QUAD LINE DRIVER WITH THREE-STATE OUTPUTS

Motorola's Quad RS-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down. A summary of MC3487 features include:

- Four Independent Driver Chains
- Three-State Outputs
- PNP High Impedance Inputs (PIA Compatible)
- Fast Propagation Times (Typ 15 ns)
- TTL Compatible
- Single 5 V Supply Voltage
- Output Rise and Fall Times Less Than 20 ns
- DS 3487 Second Source

QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

	Inu	IN IMPLE	
Input	Control Non-Inverting		Inverting Output
н	Н	н	L
L	н	L	н
X	L L	z	z
	L = Low Logic	State	
	H = High Logi	c State	
	X = Irrelevant		

Z = Third-State (High Impedance)

DRIVER BLOCK DIAGRAM

*ABSOLUTE MAXIMUM RATINGS						
Rating	Symbol	Value	Unit			
Power Supply Voltage	Vcc	8.0	Vdc			
Input Voltage	VI	5.5	Vdc			
Operating Ambient Temperature Range	TA	0 to +70	°С			
Operating Junction Temperature Range Ceramic Package Plastic Package	ТЈ	175 - 150	°C			
Storage Temperature Range	T _{stg}	-65 to +150	°C			

^{*&}quot;Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — Low Logic State	VIL	-		0.8	Vdc
Input Voltage - High Logic State	VIH	2.0	-	_	Vdc
Input Current — Low Logic State (V _{IL} = 0.5 V)	Iμ	_	_	-400	μА
Input Current High Logic State (V _{IH} = 2.7 V) (V _{IH} = 5.5 V)	Чн		=	+50 +100	μΑ
Input Clamp Voltage (I _{IK} = -18 mA)	VIK	-	-	-1.5	V
Output Voltage — Low Logic State (IOL = 48 mA)	VOL	-	_	0.5	V
Output Voltage — High Logic State (IOH = -20 mA)	Voн	2.5		-	٧
Output Short-Circuit Current (V _{IH} = 2.0 V) ²	los	-40	_	-140	mA
Output Leakage Current — Hi-Z State (V _{IL} = 0.5 V, V _{IL} (Z) = 0.8 V) (V _{IH} = 2.7 V, V _{IL} (Z) = 0.8 V)	I _{OL} (Z)		<u>-</u>	± 100 ± 100	μА
Output Leakage Current — Power OFF (VOH = 6.0 V, VCC = 0 V) (VOL = -0.25 V, VCC = 0 V)	IOL(off)	_	=	+100 -100	μΑ
Output Offset Voltage Difference1	V _{OS} −V _{OS}	_	-	±0.4	V
Output Differential Voltage 1	VT	2.0	_		V
Output Differential Voltage Difference 1	$V_T - \overline{V}_T$	-	<u> </u>	±0.4	V
Power Supply Current (Control Pins = Gnd) ³	lccx	-	_	105	mA
(Control Pins = 2.0 V)	¹cc	_		85	

^{1.} See EIA Specification RS-422 for exact test conditions.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times				•	ns
High to Low Output	tPHL	_	-	20	1
Low to High Output	tPLH		-	20	
Output Transition Times — Differential					ns
High to Low Output	tTHL	_	1 - 1	20	1
Low to High Output	tTLH	_	-	20	1
Propagation Delay - Control to Output					ns
$(R_L = 200 \Omega, C_L = 50 pF)$	tPHZ(E)	-	-	25	
(R _L = 200 Ω, C _L = 50 pF)	tPLZ(E)	_	1 -	25	1
(R_ = ∞, C_ = 50 pF)	tPZH(E)	_	-	30	
$(R_{L} = 200 \Omega, C_{L} = 50 pF)$	tPZL(E)	-	1 - 1	30	i

Only one output may be shorted at a time.
 Circuit in three-state condition.

- o v

3.0 V or Gnd To Scope To Scope (Input) Input Output Inv Open for tpZH(E) Test Only Pulse generator characteristics Output $z_o = 50 \Omega$ 0 PRR = 1.0 MHz Non-Inv 50% Duty Cycle Output Control t_{TLH} , $t_{THL} \le 5$ ns 50 pF 1N3064 or Equivalent Pulse Generator 1.0 k Open for tpZL(Ē) Test Only Ct Includes Probe and Jig Capacitance 3.0 V 3.0 V Control Control Input Input tPZL(E) tPHZ(E) Output ۷он 0.5 V VOL Output - o v ≤1.5 V tPZH(E) ٧он ≈1.5 V tPLZ(E) 1.5 V Output 0.5 V Output

FIGURE 1 – THREE-STATE ENABLE TEST CIRCUIT AND WAVEFORMS

FIGURE 2 – PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT

V_{OL}

FIGURE 3 – OUTPUT TRANSITION TIMES TEST CIRCUIT AND WAVEFORMS

MC3488A MC3488B

Product Preview

DUAL RS-423/RS-232C LINE DRIVERS

The MC3488A and MC3488B dual single-ended line drivers have been designed to satisfy the requirements of EIA standards RS-423 and RS-232C, as well as CCITT X.26, X.28 and Federal Standard FIDS1030. They are suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from 1.0 μ s to 100 μ s by a single external resistor. Output level and slew rate are independent of power supply variations or matching. Input undershoot diodes limit transients below ground; output current limiting is provided in both output states. They can be operated with supply voltages from ± 9.0 to ± 15 V.

The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility. The MC3488B input logic threshold is set at $V_{CC}/2$ for use with CMOS logic systems.

- PNP Buffered Inputs to Minimize Input Loading
- Wide Power Supply Operating Range
- Adjustable Slew Rate Limiting
- Option of Either 1.5 V or V_{CC}/2 Input Threshold
- MC3488A Equivalent to 9636A
- Logic Levels and Slew Rate Independent of Power Supply Voltages or Matching

DUAL RS-423/RS-232C DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit	
Power Supply Voltages	Vcc	+15	V	
	VEE	-15		
Output Current			mA	
Source	10+	+150		
Sink	10-	~150		
Operating Ambient Temperature	TA	0 to +70	°c	
Junction Temperature Range	Tj		°C	
Ceramic Package		175		
Plastic Package		150		
Storage Temperature Range	T _{stg} ,	-65 to +150	°c	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITION

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	VCC VEE	10.8 10.8	12 -12	13.2 -13.2	٧
Operating Temperature Range	τ _A	0	25	70	°c
Wave Shaping Resistor	R _w	10	-	500	kΩ

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over $0^{\circ}\text{C} < \text{T}_{A} < 70^{\circ}\text{C}, 9.0 \text{ V} < |\text{V}_{CC},\text{V}_{EE}| < 15 \text{ V}$ and 2.0 k < R_W < 400 k)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL				V
MC3488A			-	0.8]
MC3488B		_		V _{CC} /2 -2.0	
Input Voltage - High Logic State	VIH				V
MC3488A		2.0	-	-	Ì
MC3488B		V _{CC} /2 + 2.0		-	
Input Current - Low Logic State	l IIL				μА
(V _{IL} = 0.4 V)		–	_	-80	
Input Current - High Logic State	чн		1		μА
(V _{IH} = 2.4 V) MC3488A		_	-	10	ł
(V _{1H} = 5.5 V) MC3488A	1	_	-	100	
(VIH = VCC) MC3488B		-	_	100	
Input Clamp Diode Voltage	VIK				V
(I _{IK} = -15 mA)	"	_	-	-1.5	
Output Voltage - Low Logic State	VOL				V
(R _L = ∞) RS-423		-5.0	_	-6.0	
(R _L = 3.0 kΩ) RS-232C	1	-5.0	-	-6.0	1
(R _L = 450 Ω) RS-423		-4.0	-	-6.0	<u> </u>
Output Voltage - High Logic State	VoH				V
(R _L = ∞) RS-423	"	5.0	_	6.0	ŀ
(R _L = 3.0 kΩ) RS-232C		5.0	· -	6.0	
(R _L = 450 Ω) RS-423	1	4.0	-	6.0	
Output Short-Circuit Current	I _{SC+}	+15	_	150	mA
	Isc-	-15	-	-150	,
Output Leakage Current	lox	-100	-	100	μА
$(V_{CC} = V_{EE} = 0 \text{ V}, -6.0 \text{ V} < V_{O} < 6.0 \text{ V})$	"0"		ł		
Power Supply Current			 	 	mA
rower Supply Current ($R_W = 2.0 \text{ k}\Omega$)	laa			+18	mA
	¹cc	_	-	_	1
$(R_W = 2.0 \text{ k}\Omega)$	IEE			-18	<u> </u>
Output Resistance	Ro			1	Ω
$(R_{\perp} \geqslant 450 \Omega)$	1	_	25	50	ì

Note: A diode is connected in series with $V_{\mbox{\scriptsize EE}}$ for all test conditions.

TRANSITION TIMES (Unless otherwise noted, C_L = 30 pF, f = 1.0 kHz, V_{CC} = 12 V, V_{EE} = -12 V, T_A = 25°C, R_L = 450 Ω . Transition times measure 10% to 90% and 90% to 10%)

Characteristic	Symbol	Min	Тур	Max	,Unit
Transition Time, Low to High State Output	tTLH				μς
$(R_W = 10 \text{ k}\Omega)$	i l	0.8	-	1.4	
$(R_W = 100 \text{ k}\Omega)$		8.0	1 - 1	14	1
$(R_W = 500 \cdot k\Omega)$	1 1	40	1 - 1	70	1
$(R_W = 1000 \text{ k}\Omega)$		80	-	140	1
Transition Time, High to Low State Output	tTHL		1		μs
$(R_W = 10 k\Omega)$		8.0	1 - 1	1.4	ì
$(R_W = 100 k\Omega)$		8.0	-	14	
$(R_W = 500 k\Omega)$		40	-	70	1
$(R_W = 1000 \text{ k}\Omega)$	1 1	80	1 - 1	140	1

FIGURE 1 – TEST CIRCUIT & WAVEFORMS FOR TRANSITION TIMES

FIGURE 2 — OUTPUT TRANSISTION TIMES versus WAVE SHAPE RESISTOR VALUE

MC3490 MC3494

ANODE (DIGIT) DRIVERS FOR GAS-DISCHARGE DISPLAYS

SILICON MONOLITHIC INTEGRATED CIRCUIT

SEVEN-DIGIT GAS-DISCHARGE DISPLAY DRIVERS

Seven channel digit (anode) drivers, the MC3490 and MC3494 are specifically conceived to be used with high-voltage, gas-discharge numeric displays such as the Burroughs' Panaplex®, Beckman (Sperry) Cherry, or Diacon displays.

The MC3490 version is configured such that a high logic level input causes the driver to turn on while the MC3494 requires a low logic level to turn the drivers on. Both devices are designed to mate with the MC3491 cathode (segment) driver.

With a low input current requirement of only 300 μ A typically, these devices are compatible with popular MOS chips.

Minimum breakdown voltage is specified at 48 V and output drive current capability is typically 30 mA per channel.

- High Breakdown Voltage − 55 V Typical
- Low Input Current for MOS Compatibility
- Available with Either Active High or Active Low Inputs
- Operable from Either Positive or Negative Supply Voltages
- Input Clamp Diodes on MC3494 Version for DC Restoration
- Internal Pull-down Resistors

Registered Trademark of Burroughs Corporation

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Negative Supply Voltage (Current Limited to -5 mA)	VEE	-60	Vdc
Negative Supply Current	1EE	-5.0	mAdc
Input Voltage	٧ı	V _{CC} -20,V _{CC}	Vdc
Output Current (VO = -5 V)	10	-50	mAdc
Package Power Dissipation Derate above 25°C	PD	830 6.7	mW mW/ ^o C
Junction Temperature	TJ	150	°c
Operating Ambient Temperature Range	TA	0 to +70	°С
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = Gnd V_{EE} = -60 V thru 5.0 k Ω , unless otherwise noted.)

		MC3490			MC3494			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Substrate Breakdown Voltage	V _{S(BR)}	-48	-55	_	-48	-55	-	Vdc
Input Current – On State V _I = 0.0 V (See Figure 4) V _I = -7.0 V (See Figure 3)	II(on)		250	700 —	_ _	_ -200	_ -350	μА
Input Current — Off State V _I = -15 V V _I = 0.0 V	l(off)		<-1.0	-45 -		_ <1.0	_ 50	μА
Input Voltage — Off State VO≈VEE (See Figures 3 and 4)	VI(off)	-	-	-5.0	-2.0	-	-	Vdc
Input Voltage — On State VO ≈ V _{CC} -5.0 V (See Figures 3 and 4)	V _{I(on)}	-2.0	-	-	-	-	-5.0	Vdc
Output Voltage Off State VI = 0 0 V VI = -7.0 V	VO(off)	_ -48	-	_	-48 -		_	Vdc
Output Voltage — On State I _O = -20 mA, V _I = 0.0 V I _O = -20 mA, V _I = -7.0 V	VO(on)	_	-	-3.5 -	_ _		_ -5.0	Vdc

NOTE: Minimums and maximums are relative to absolute values.

SYSTEM DISCUSSION

The MC3491 and MC3490/MC3494 high voltage driver system is designed such that it can be floated and any point in the system may be tied to circuit ground. In a MOS system, normally either the ground pin on the MC3491 is tied to the most negative MOS voltage; or the V_{CC} pin on the MC3490/MC3494 is connected to the most positive MOS voltage. In the electrical characteristics table, this V_{CC} voltage is assumed to be 0.0 volts.

The MC3490/MC3494 provides its own internal voltage reference when a current (-100 μ A to -5 mA) is drawn at the VEE pin (Pin 8). This can be provided by connecting a resistor from Pin 8 to the high voltage reference on the cathode driver or any other voltage more negative than VCC -60 V. This voltage (Pin 8) is approximately -55 V and provides a reference for the pull-down function for each channel.

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 4 - INPUT CURRENT and OUTPUT VOLTAGE

versus INPUT VOLTAGE

FIGURE 3 - OUTPUT VOLTAGE and INPUT CURRENT versus INPUT VOLTAGE

-70 700 -70 -60 -600 600 -60 V₀, OUTPUT VOLTAGE (VOLTS) VO. OUTPUT VOLTAGE (VOLTS) -200 -300 -300 -300 -1, INPUT CURRENT (µA) 11, INPUT CURRENT (μA) -50 -50 -20 -20 -100 -10 -10 -70 Vcc Vcc -40 VI, INPUT VOLTAGE (VOLTS) VI, INPUT VOLTAGE (VOLTS)

(1/7 Shown)

12-DIGIT CMOS GAS DISCHARGE DISPLAY

When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -180 V respectively.

The positive logic CMOS address circuits are powered by -10 V (VDD = 0, VSS = -10 V) with the MC14558 decoder outputs capacitor-coupled to the MC3491 Segment Drivers and the scan circuit directly-coupled to the MC3490 Anode Drivers. Thus, only eight capacitors (seven segments, one decimal point) are required as compared to 12 capacitors, if the strobed digit drivers were ac coupled.

The MC3491 has input clamp diodes allowing for do restoration of the segment address pulse. This high voltage driver (80 V) also features programmable segment current by the selection of a single external resistor.

The MC3490 Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494 Anode Driver should be used.) The internal zener diode string of the MC3490 references the off

drivers (and display anodes) to -50 V without the need of pull-down resistors.

Digit scanning for this example is derived from two cascaded MC14022 Octal Counter/Drivers. The 12 sequenced output pulses are achieved by resetting the counters with the second counter Q7 output. In addition to driving the two MC3490s, the counter output should also control the system multiplexer (not shown) to properly synchronize the entire display system.

The MC14558 BCD-to-Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and maintained off for some period after the next anode is strobed.

This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and inverter Gate 3.

The high voltage power supply rise and fall times should be greater than the charge time of the coupling capacitors to prevent large transients from possible degrading the interface electronics.

For this example, power supply rise and fall time of 50 ms minimum will suffice.

FIGURE 5 - 12-DIGIT CMOS GAS DISCHARGE DISPLAY SYSTEM

3-1/2 DIGIT VOLTMETER

This specific application provides a 3-1/2 digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3-1/2 Digit DVM uses directly coupled high voltage (200 V) transistors to translate upwa-d to the MC3494 i Anode Drivers. Three of the transistors comprising the MPQ7042 high voltage quad transistor are used for this function. These transistors, connected in a common-base, constant-current configuration, are turned on by the negative going digit select output pulses of the MC14435 The current of approximately 330 µA is compatible with 200 µA typical input current of the MC3494 and the sink current capability of the MC14435

The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 Segment Driver. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment current is increased accordingly to 1.1 mA (manufacturers maximum specified current

equals 1.25 mA) for this relatively large cathode blanking period.

The positive and negative polarity signs are direct driven by the fourth transistor of the MPQ7043 and MPS-A42 transistor, Q2, respectively. Their dc segment currents are scaled to produce the same brightness as the multiplexed digits

The 1/2 digit segments are driven by transistor Q1. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Overrange Oscillator.

When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8 Hz). This is accomplished by blanking the 1/2 digit through Q1 and the multiplexed digits through diode D1 to the decoder enable input.

See the MC1405 and MC14435 data sheets for more details of DVM system.

+180 V +Vcc * MC3494 VDD DS 0 01 #F MC14435 MC1405 ВC 3% Digit /D Logic lubsystem DS: Outputs Beckman SP 355 260 k 22 1 or SP351 nd SP 352 Polarity -180 V Overrange 2 2 I Typ (7) Q1 MC14572 (1/6) G 1 (2) 1N914 MC3491 MC14558 BCD To 7 Segment Decoder Overrange Oscillator

FIGURE 6 - 3-1/2 DIGIT DIGITAL VOLTMETER

12-HOUR CLOCK WITH GAS DISCHARGE DISPLAYS

The MC3491 cathode driver and MC3494 anode driver, greatly simplify the interfacing of a clock chip (MOSTEK MK50250) to a gas discharge clock display (Burroughs CD60733-CM).

The MK50250 has a 6 digit clock display with multiplexed 7 segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and +75 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491. The +75 Volt reference is obtained from a 75-Volt zener diode, Z1. R1, and a 50-Volt zener diode internal to the MC3494 anode driver.

The programming current is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through these smaller digits of the display. Four diodes attached to each of the "hours" and "minutes" digits, provide a voltage of +180 Volts across the 680 k Ω resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programming current.

The anodes for each of the six digits are switched between the +180 Volt positive supply and +130 Volts via the MC3494 anode drivers. Inter-digit blanking is

provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494 uses two MPQ7042 quad high voltage transistor packages operating in an emitter follower current source mode. Each current source turns on one of the MC3494 drivers by sinking 300 μ A to ground for the proper "on" digit.

The AM/PM clock output is in the high state when PM is indicated and has a 85% duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indicator during the D6 digit. These Gates control the AM/PM display indicators with the remaining MPQ7042 high voltage transistors which were not used in anode selection.

The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via T1 during the D5 digit time while the anodes are switched between +180 and +130 Volts.

Further information concerning operation or technical specifications on the MOSTEK clock chip, MK50250, and the Burroughs clock display, CD60733-CM is obtainable from the manufacturers.

FIGURE 7 – 12 HOUR CLOCK WITH GAS DISCHARGE DISPLAY SYSTEM

MC3491 MC3492

EIGHT-SEGMENT VISUAL DISPLAY DRIVERS

The MC3491 and MC3492 are eight-segment cathode drivers for use with gas-discharge displays, such as the Burroughs' Panaplex $^{\oplus}$, Beckman, Cherry or Diacon types. Both devices are directly compatible with MOS logic outputs due to their low 300 μ A input current requirement.

All eight driver output currents are simultaneously programmable by selection of a single external resistor. As programmed, all eight currents match to within typically 1% of each other.

Both devices provide dc restoration. The units are specified for a minimum breakdown voltage of 80 V.

The MC3492 device is made for larger and higher intensity displays requiring higher segment current.

- High Breakdown Voltage 80 V Min*
- Drives Seven Cathode Segments plus Decimal Point
- All Currents Simultaneously Programmable with One Resistor
- MC3491 is Pin-for-Pin and Functionally Equivalent to DM8889
- Output Current/Programming Current Ratio Typically 4.5:1 for MC3491

9:1 for MC3492

- Companion with MC3490 and MC3494 Anode Drivers
- MC3492 Provides Increased Output Current for High Intensity Displays

*Higher Voltage Selection Available

SEGMENT DRIVERS FOR GAS-DISCHARGE DISPLAYS

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 701

[®] Registered Trademark of Burroughs Corporation

MAXIMUM RATINGS (Unless otherwise noted, $T_A = 25^{\circ}C$)

Rating		Symbol	Value	Unit
Output OFF Voltage (Current Limited to 0.5 mA)	,	VO(off)	95	٧
Output ON Voltage (Current Limited to 2 0 mA)		VO(on)	50	٧
Input Voltage		V _I	20	V
Programming Current	MC3491 MC3492	I _{prog}	400 2500	μА
Junction Temperature		Тј	150	°C
Operating Ambient Temperature Ran	ge	T _A .	0 to 70	°С
Storage Temperature Range		T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V_{CC} < 80 V, T_A = 25°C, Pin 10 = Gnd. All voltages with respect to Gnd.)

<u> </u>			MC3491			MC3492			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Current (VIH = 7.0 V)	ін.	200	300	400	200	300	400	μА	
Input Clamp Voltage (I _{IK} = -1.0 mA)	VIK	-	-	-1.0	-	_	-1.0	V	
Input OFF Voltage	VIL	1.0	1.5	_	1.0	1.5		V	
Input ON Voltage	ViH		2.4	3.5	_	2.4	3.5	V	
Output OFF Current (V ₁ L = 0 V, V _O = V _{CC})	IO(off)	_	_	5.0	-	-	5.0	μА	
Output ON Current (at V _{IH} = 7.0 V)* (Iprog = 100 µA) (Iprog = 350 µA) (Iprog = 200 µA) (Iprog = 500 µA)	IO(on)	400 1450 	450 1650 	500 1850 —	- - 1.3 3.75	- 1.6 4.5	- - 1 9 5.25	μA mA	
Output Current Matching (All eight outputs)	ΔΙΟ	_	≤ 1	≤ 10	-	≤ 1	≤ 10	%	
Output OFF Voltage (Iprog = 100 μA, R _L = 1.0 MΩ, V _I L = 0 V) (Iprog = 200 μA, R _L = 1.0 MΩ, V _{IL} = 0 V)	VO(off)	V _{CC} -5.0	v _{cc}	-	- V _{CC} -5 0	v _{cc}	-	V	
Output Saturation Voltage (I _{prog} = 100 μA, R _L = 1.0 MΩ, V _{IH} = 7.0 V) (I _{prog} = 200 μA, R _L = 1 0 MΩ, V _{IH} = 7.0 V)	VO(sat)	· -	3.0	50	-	3.0	_ 5.0	V	
Output Voltage Compliance Range (I _{prog} = 100 μΑ, I _{O(on)} = 450 μΑ, V _{IH} = 7.0 V) (See Figure 3)	VOR(on)	5.0	_	50	_	_	-	V	
$(I_{prog} = 200 \mu A, I_{O(on)} = 1.6 mA, V_{IH} = 7.0 V)$ (See Figure 3)		-	_		5.0	_	50		

^{*}Measured one channel at a time

TYPICAL PERFORMANCE CHARACTERISTICS FIGURE 2 — OUTPUT CURRENT Versus PROGRAMMING CURRENT (TA = 25°C)

FIGURE 4 - TYPICAL INPUT CURRENT AND OUTPUT VOLTAGE versus INPUT VOLTAGE 80 800 MC3491 AND MC3492 700 VO, OUTPUT VOLTAGE (VOLTS) 600 1), INPUT CURRENT (µA) 200 200 200 200 200 200 50 40 TA = 250C 30 20 10 100 Vο 8.0 VI, INPUT VOLTAGE (VOLTS)

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 5 — TYPICAL PROGRAMMING CURRENT versus VOLTAGE ON PROGRAMMING PIN (TA = 25° C)

REPRESENTATIVE CIRCUIT SCHEMATIC

3-1/2-DIGIT VOLTMETER

This specific application provides a 3-1/2-digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3-1/2-digit DVM uses directly coupled high voltage (200 V) transistors to translate upward to the MC3494 Anode Drivers. Three of the transistors comprising the MPQ7042 high voltage quad transistor are used for this function. These transistors connected in a common-base, constant-current configuration are turned on by the negative-going digit select output pulses of the MC14435. The current of approximately 330 μ A is compatible with 200 μ A typical input current of the MC3494 and the sink current capability of the MC14435

The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 or MC3492 Segment Drivers. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment

current is increased accordingly to 1 1 mA (manufacturers maximum specified current equals 1.25 mA) for this relatively large cathode blanking period.

The positive and negative polarity signs are direct driven by the fourth transistor of the MPO7043 and MPS-A42 transistor, Q2, respectively Their dc segment currents are scaled to produce the same brightness as the multiplexed digits.

The 1/2-digit segments are driven by transistor Q1 lts emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Overrange Oscillator.

When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8 Hz). This is accomplished by blanking the 1/2 digit through Q1 and the multiplexed digits through diode D1 to the decoder enable input

See the MC1405 and MC14435 data sheets for more details of DVM system.

+Vcc MC3494 ome Von ns MC14435 MC1405 RC A/D Converter οÃ A/D Los Outputs กร Beckman SP 355 or SP 351 **≨** 260 k and SP 352 -180 V MC14572 1/6 G1 Outputs MC3491 or MC3492 Overrange Oscillator Inputs BCD To 7 Segment Decoder

FIGURE 6 - 3-% DIGIT DIGITAL VOLTMETER

12-DIGIT CMOS GAS DISCHARGE DISPLAY

When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -180 V respectively.

The positive logic CMOS address circuits are powered by -10 V (VDD = 0, VSS = -10 V) with the MC14558 decoder outputs capacitor-coupled to the MC3491 Segment Drivers and the scan circuit directly-coupled to the MC3490 Anode Drivers. Thus, only eight capacitors (seven segments, ohe decimal point) are required as compared to 12 capacitors, if the strobed digit drivers were ac coupled.

The MC3491 and MC3492 have input clamp diodes allowing for dc restoration of the segment address pulse. These high voltage drivers (80 V) also feature programmable segment current by the selection of a single external resistor.

The MC3490 Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494 Anode Driver should be used.) The internal

zener diode string of the MC3490 references the off drivers (and display anodes) to -50 V without the need of pull-down resistors.

Digit scanning for this example is derived from two cascaded MC14022 Octal Counter/Drivers. The 12 sequenced output pulses are achieved by resetting the counters with the second counter Q7 output. In addition to driving the two MC3490's, the counter output should also control the system multiplexer (not shown) to properly synchronize the entire display system.

The MC14558 BCD-to-Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and maintained off for some period after the next anode is strobed.

This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and inverter Gate 3.

The high voltage power supply rise and fall times should be greater than the charge time of the coupling capacitors to prevent large transients from possible degrading the interface electronics.

For this example, power supply rise and fall time of 50 ms minimum will suffice.

FIGURE 7 - 12-DIGIT CMOS GAS DISCHARGE DISPLAY SYSTEM

12-HOUR CLOCK WITH GAS DISCHARGE DISPLAYS

The MC3491 or MC3492 cathode drivers and MC3494 anode driver, greatly simplify the interfacing of a clock chip (MOSTEK MK50250) to a gas discharge clock display (Burroughs CD60733-CM).

The MK50250 has a 6-digit clock display with multiplexed 7-segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and +75 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491 or MC3492. The +75 Volt reference is obtained from a 75-Volt zener diode, Z1, R1, and a 50-Volt zener diode internal to the MC3494 anode driver.

The programming current is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through these smaller digits of the display. Four diodes attached to each of the 'hours' and "minutes" digits, provide a voltage of +180 Volts across the 680 k Ω resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programming current.

The anodes for each of the six digits are switched between the +180 Volt positive supply and +130 Volts via the MC3494 anode drivers. Inter-digit blanking is

provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494 uses two MPO7042 quad high voltage transistor packages operating in an emitter-follower current source mode. Each current source turns on one of the MC3494 drivers by sinking $300\,\mu\text{A}$ to ground for the proper "on" digit.

The AM/PM clock output is in the high state when PM is indicated and has an 85% duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indicator during the D6 digit. These Gates control the AM/PM display indicators with the remaining MPQ7042 high voltage transistors which were not used in anode selection.

The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via T1 during the D5 digit time while the anodes are switched between +180 and +130 Volts.

Further information concerning operation or technical specifications on the MOSTEK clock chip, MK50250, and the Burroughs clock display, CD60733-CM is obtainable from the manufacturers.

FIGURE 8 - 12-HOUR CLOCK WITH GAS DISCHARGE DISPLAY SYSTEM MPQ7042 O + 180 V MC3494 260 k +180 V ٧EI Outputs D6 D5 D4 D3 D2 D1 MK50250 56 k 1/4 MC 14001 Color AM/PN CD 60733 CM 680 k Color ~~ 100 k 1/4 1/4 MC14001 w 1/4 100 6 390 k ō C D E G E n MC3491 DP MC3492 c i В Current Program From MK50250

5-102

MC75107 MC75108

DUAL LINE RECEIVERS

The MC75107 and MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC75107 circuit features an active pull-up (totem-pole) output. The MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC75108 receivers). Thus a level of logic is implemented without extra delay.

The MC75107 and MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.

- High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of ±3.0 V
- Differential Input Common-Mode Voltage of More Than ± 15 V Using External Attenuator
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- . MTTL or MDTL Drive Capability
- High DC Noise Margins
- MC55107 Available as JM38510/10401

DUAL LINE RECEIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX
CERAMIC PACKAGE
CASE 632
TO-116

P SUFFIX PLASTIC PACKAGE CASE 646

DIFFERENTIAL INPUTS	STR	OBES	ОИТРИТ
A-B	G	S	Y
V _{1D} ≥ 25 mV	L or H	L or H	н
	L or H	7	н
-25 mV < V _{ID} < 25 mV	L	L or H	н
[н	н	INDETERMINAT
	LorH	L	н
V _{ID} ≤ - 25 mV	L	L or H	н
Ī	н	н	L L

MAXIMUM RATINGS (TA = 0°C to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} V _{EE}	+7.0 -7.0	Vdc
Differential-Mode Input Signal Voltage Range	V _{ID}	<u>+</u> 60	Vdc
Common-Mode Input Voltage Range	V _{ICR}	<u>+</u> 50	Vdc
Strobe Input Voltage	V _{I(S)}	5.5	Vdc
Power Dissipation (Package Limitation) Plastic and Ceramic Dual-In-Line Packages Derate above T _A = +25°C	, P _D	625 3.85	mW mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to ±150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4 75 -4 75	+5 0 -5 0	+5.25 -5.25	Vdc
Output Sink Current	los	-		-16	mA
Differential-Mode Input Voltage Range	VIDR	-50	_	÷5.0	Vdc
Common-Mode Input Voltage Range	VICR	-30		+30	Vdc
Input Voltage Range, any differential input to ground	VIR	-50	_	+30	Vdc
Operating Temperature Range	TA	0	-	+70	°c

DEFINITIONS OF INPUT LOGIC LEVELS

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (between differential inputs)	VIDH	1	0 025	50	Vdc
Low-Level Input Voltage (between differential inputs)	VIDL	1	-5 Ot	-0 025	Vdc
High-Level Input Voltage (at strobe inputs)	V _{IH(S)}	3	20	55	Vdc
Low-Level Input Voltage (at strobe inputs)	V _{IL(S)}	3	0	0.8	Vdc

[†]The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (V_{IDL})

ELECTRICAL CHARACTERISTICS (T_A = 0°C to +70°C unless otherwise noted)

Characteristic	Symbol	Test Fig.	Min	Тур#	Max	Unit
High-Level Input Current to 1A or 2A Input (VCC = Max, VEE = Max, VID = 05 V, VIC = -30 V to +3.0 V) ‡	Itн	2	-	30	75	μА
Low-Level Input Current to 1A or 2A Input (VCC = Max, VEE = Max, VID = -2.0 V, VIC = -3 0 V to +3 0 V) ‡	, IIL	2	_	-	-10	μА .
High-Level Input Current to 1G or 2G Input (VCC = Max, VEE = Max, VIH(S) = 2.4 V)‡ (VCC = Max, VEE = Max, VIH(S) = VCC Max)‡	ЧН	4	=	_	40 1.0	μA mA
Low-Level Input Current to 1G or 2G Input {VCC = Max, VEE = Max, VIL(S) = 0.4 V);	IIL	4	-	_	-1.6	mA
High-Level Input Current to S Input {VCC = Max, VEE = Max, VIH(S) = 2 4 V); {VCC = Max, VEE = Max, VIH(S) = VCC Max);	¹ tH	4	- -	-	80 2.0	μA mA
Low-Level Input Current to S Input (VCC = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	ηL	4	-	-	-32	mA
High-Level Output Voltage (V_{CC} = Min, V_{EE} = Min, I_{load} = $-400 \mu\text{A}$, V_{IC} = -3.0V to $+3.0 \text{V}$)‡	Voн	3	-	-	_	V
Low-Level Output Voltage $V_{CC} = M_{IR}, V_{EE} = M_{IR}, I_{sink} = 16 \text{ mA}$ $V_{IC} = -3.0 \text{ V to } +3.0 \text{ V)}$	VOL	3	_	-	0.4	V
High-Level Leakage Current (VCC = Min, VEE = Min, VOH = VCC Max);	1CE X	3	_	_	250	μА
Short-Circuit Output Current # # (VCC = Max, VEE = Max) ‡	losc	5	_	_	_	mA
High Logic Level Supply Current from V _{CC} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25°C) ‡	ICCH+	6	_	18	30	mA
High Logic Level Supply Current from V _{EE} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25°C)‡	IccH-	6	0	8.4	-15	mA

[‡]For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type. #All typical values are at $V_{CC} = +5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$, $V_{AE} = +25^{\circ}\text{C}$. # #Not more than one output should be shorted at a time

SWITCHING CHARACTERISTICS ($V_{CC} = +5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time, low-to-high level from differential inputs A and B to output	tPLH(D)	7				ns
(R _L = 390 Ω, C _L = 50 pF) (R _L = 390 Ω, C _L = 15 pF)			_	19	_ 25	
Propagation Delay Time, high-to-low level from differential inputs A and B to output	tPHL(D)	7				ns
$\{R_L = 390 \ \Omega, C_L = 50 \ pF\}$ $\{R_L = 390 \ \Omega, C_L = 15 \ pF\}$			_	_ 19	_ 25	
Propagation Delay Time, low-to-high level, from strobe input G or S to output	tPLH(S)	7				ns
(R _L = 390 Ω, C _L = 50 pF) (R _L = 390 Ω, C _L = 15 pF)				13	_ 20	
Propagation Delay Time, high-to-low level, from strobe input G or S to output	tPHL(S)	7				ns
$(R_L = 390 \Omega, C_L = 50 pF)$ $(R_L = 390 \Omega, C_L = 15 pF)$				13	20	

TEST CIRCUITS

FIGURE 1 - V_{IDH} and V_{IDL}

NOTE: When testing one channel, the inputs of the other channel are grounded.

FIGURE 2 - IIH and IIL

NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair are grounded

FIGURE 3 - VIH(S), VIL(S), VOH, VOL, and IOH

TEST TABLE

MC75107	MC75108	VID	STROBE 1G or 2G	STROBE S
TE	ST			
Voн	CEX	+25 mV	VIH(S)	VIH(S)
VOH	CEX	-25 mV	VIL(S)	V _{IH} (S)
Voн	CEX	-25 mV	V _{IH} (S)	VIL(S)
VOL	VOL	-25 mV	VIH(S)	VIH(S)

NOTES 1. V_{IC} = -3 0 V to +3 0 V.
2. When testing one channel, the inputs of the other channel should be grounded.

TEST CIRCUITS (continued)

FIGURE 4 - IIH(G), IIL(G), IIH(S), and IIL(S)

TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
I _{IH} at Strobe 1G	+25 mV	Gnd	V _{IH(S)}	Gnd	Gnd
I _{IH} at Strobe 2G	Gnd .	+25 mV	Gnd	Gnd	VIH(S)
I _{IH} at Strobe S	+25 mV	+25 mV	Gnd	V _{IH(S)}	Gnd
I _{IL} at Strobe 1G	-25 mV	Gnd	VIL(S)	4.5 V	Gnd
IIL at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	VIL(S)
IL at Strobe S	-25 mV	-25 mV	4.5 V	VIL(S)	4.5 V

2. Not more than one output should be tested at one time.

TEST CIRCUITS (continued) FIGURE 7 — PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz $t_{p2} = 1 \mu_s$, PRR = 500 kHz.

- Strobe input pulse is applied to Strobe 1G when Inputs 1A-1B are being tested, to Strobe S when Inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
- 3. C_L includes probe and jig capacitance.
- 4. All diodes are 1N916 or equivalent.

MC75125 MC75127

SEVEN CHANNEL LINE RECEIVERS

The MC75125 and MC75127 are seven-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370.

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The MC75125 and MC75127 are characterized for operation from 0 to 70° C.

- Meets IBM 360/370 I/O Specification
- Input Resistance 7 kΩ to 20 kΩ
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tPLH/tPHL
- Seven Channels in One 16-Pin Package
- Standard VCC and Ground Positioning on MC75127

TYPICAL APPLICATIONS IBM 360/370 INTERFACE MC75125/127 LINE RECEIVER FOR PARTY-LINE APPLICATIONS IBM 360/370 I/O Interface

SEVEN CHANNEL LINE RECEIVERS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	V
Input Voltage	V _I	-2.0 to +7.0	V
Power Dissipation (Package Limitation) Ceramic Package Plastic Package Derate Above T _A = 25°C	P _D	1150 960 7.7	mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°c
Junction Temperature Ceramic Package Plastic Package	Тл	+175 +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
High Level Output Current	IOH	_	_	-0.4	mA
Low Level Output Current	lOL	_		16	mA
Operating Ambient Temperature Range	TA	0	_	+70	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{O}C$ and $V_{CC} = +5.0 \text{ V}$)

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH	1.7	-	_	V
Low-Level Input Voltage	VIL		_	0.7	V
High-Level Output Voltage ($V_{CC} = 4.5 \text{ V}$, $V_{IL} = 0.7 \text{ V}$, $I_{OH} = -0.4 \text{ mA}$)	VOH	2.4	3.1	_	V
Low-Level Output Voltage (V _{CC} = 4,5 V, V _{IH} = 1.7 V, I _{OL} = 16 mA)	VOL		0.4	05	V
High-Level Input Current (VCC = 5.5 V, V = 3.11 V)	ЧН	0.2	0.3	0.42	mA
Low-Level Input Current (V _{CC} = 5.5 V, V _I = 0.15 V)	lir.	-	-	-0.24	mA
Short Circuit Output Current* (V _{CC} = 5.5 V, V _O = 0)	ios	-18	-	-60	mA
Input Resistance (V _{CC} = 4 5 V, 0 V, or Open, ΔV _I = 0.15 V to 4.15 V)	rı	7.4	_	20	kΩ
Power Supply Current Outputs High-Logic State (V _{CC} = 5.5 V, I _{OH} = -0.4 mA, all inputs at 0.7 V)	Іссн		15	25	mA
Power Supply Current Outputs Low-Logic State (V_{CC} = 5.5 V, I_{OL} = 16 mA, all inputs at 4.0 V)	CCL	_	28	47	mA

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25° C, R_L = $400~\Omega$, C_L = 50 pF, unless otherwise noted. See Figure 1)

Characteristic	Symbol	MC75125			MC75127			T
		Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time Low-to-High-Level Output	tPLH	7.0	14	. 25	7.0	14	25	ns
High-to-Low-Level Output	tPHL	10	18	30	10	18	30	
Ratio of Propagation Delay Times	tPLH/tPHL	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Time, Low-to-High-Level Output	^t TLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low Level Output	t _{THL}	1.0	3.0	12	1.0	3.0	12	ns

^{*}No more than one output should be shorted at a time.

FIGURE 1 - PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - SCHEMATIC (EACH RECEIVER) To Other Channels Vcc Input 12 kΩ Nom Gnd To Other Channels Output Y Common Circuitry

5

TYPICAL CHARACTERISTICS

MC75128 MC75129

EIGHT-CHANNEL LINE RECEIVERS

The MC75128 and MC75129 are eight-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The MC75128 has an active-high strobe; the MC75129 has an active-low strobe.

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. Both devices are characterized for operation from 0 to 70°C.

- Meets IBM 360/370 I/O Specification
- Input Resistance 7 kΩ to 20 kΩ-
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tpLH/tpHL
- Common Strobe for Each Group of Four Receivers
- MC75128 Strobe Active-High MC75129 Strobe — Active-Low

TYPICAL APPLICATIONS IBM 360/370 INTERFACE DRIVER MC8T13/23 OR MC3481/85 LINE RECEIVER FOR PARTY-LINE APPLICATIONS IBM 360/370 I/O Interface

EIGHT-CHANNEL LINE RECEIVERS

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	V
A Input Voltage	VIA	-0.15 to +7.0	
Strobe Input Voltage	VIS	+7.0	V
Power Dissipation (Package Limitation) Ceramic Package Plastic Package Derate Above T _A = 25°C	P _D	1150 960 -7.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C
Junction Temperature Ceramic Package Plastic Package	Тј	+175 +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Mın	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	50	5.5	Vdc
High Level Output Current	IOH	T -	_	-04	mA
Low Level Output Current	lor	-		16	mA
Operating Ambient Temperature Range	TA	0	_	+70	°c

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{\circ}C$ and $V_{CC} = +5.0 \text{ V}$)

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH				V
A Inputs	1	1.7	_	-	
S Inputs		2.0			
Low-Level Input Voltage	VIL				V
A Inputs	'-	_	_	0.7	
S Inputs		_	-	0.7	
High-Level Output Voltage (V _{CC} = 4.5 V, V _{IL} = 0.7 V, I _{OH} = -0.4 mA)	Voн	2.4	3.1	_	V
Low-Level Output Voltage (VCC = 4.5 V, VIH = 1.7 V, IOL = 16 mA)	VoL		0.4	0.5	V
Input Clamp Voltage (VCC = 4.5 V, I _I = -18 mA, S Inputs)	VIK	_	_	-1.5	V
High-Level Input Current (V _{CC} = 5.5 V, V _I = 3.11 V, A Inputs)	Uн	_	0.3	0.42	mA
$(V_{CC} = 5.5 \text{ V}, V_{I} = 2.7 \text{ V}, \text{S Inputs})$		-	-	20	μΑ
Low-Level Input Current (V _{CC} = 5.5 V, V _I = 0.15 V, A Inputs)	. IIL	_		-0.24	mA
$(V_{CC} = 5.5 \text{ V}, V_{I} = 0.4 \text{ V}, \text{S Inputs})$		_	l	-0.4	
Short Circuit Output Current * (VCC = 5.5 V, VO = 0)	los	-18	-	-60	mA
Input Resistance ($V_{CC} = 4.5 \text{ V}$, 0 V, or Open, $\Delta V_{I} = 0.15 \text{ V}$ to 4.15 V)	rı	7.0	_	20	kΩ
Power Supply Current - Outputs High-Logic State, all inputs at 0.7 V	Іссн				mΑ
$(V_{CC} = 5.5 \text{ V}, \text{Strobe at } 2.4 \text{ V} - \text{MC75128})$		_	19	31	
$(V_{CC} = 5.5 \text{ V, Strobe at } 0.4 \text{ V} - \text{MC75129})$		_	19	31	
Power Supply Current — Outputs Low-Logic State, all inputs at 4.0 V	ICCL.				mA
$(V_{CC} = 5.5 \text{ V, Strobe at } 2.4 \text{ V} - \text{MC75128})$	"	_	32	53	
$(V_{CC} = 5.5 \text{ V, Strobe at } 0.4 \text{ V} - \text{MC75129})$	1	_	32	53	

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_L = 400 \Omega$, $C_L = 50 \text{ pF}$, unless otherwise noted, See Figures 1 and 2)

Characteristic	Symbol	MC75128			MC75129			Unit
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time - From A Inputs								ns
Low-to-High-Level Output	tPLH(A)	7.0	14	25	7.0	14	25	
High-to-Low-Level Output	tPHL(A)	10	18	30	10	18	30	
Propagation Delay Time - From S Inputs	1		<u> </u>	1	 	İ		ns
Low-to-High-Level Output	tPLH(S)	_	26	40	l –	20	35	
High-to-Low-Level Output	tPHL(S)	-	22	35	-	16	30	1
Ratio of Propagation Delay Times - A Inputs	tpLH(A)/tpHL(A)	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Time, Low-to-High-Level Output	[‡] TLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low-Level Output	[†] THL	1.0	3.0	12	1.0	3.0	12	ns

^{*}No more than one output should be shorted at a time.

FIGURE 1 - PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - SCHEMATIC (EACH RECEIVER)

TYPICAL CHARACTERISTICS

FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE

FIGURE 6 — LOW-LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT

MC75140P1

DUAL LINE RECEIVER

The MC75140P1 is a dual line receiver with common Strobe and Reference inputs. The Reference voltage is externally applied. This voltage may range from 1.5 to 3.5 volts, thus allowing for adjustment of maximum noise immunity in a given system design. The MC75140P1 is intended for use as a single-ended receiver in MTTL systems. Use in a party-line (bus-organized) system is aided by the low input current of the receiver.

- Single +5.0-Volts Power Supply
- ±100-mV Sensitivity
- Low Input Current
- MTTL Compatible Outputs
- Adjustable Reference Voltage
- Common Output Strobe

CIRCUIT SCHEMATIC (1/2 Circuit Shown) Vcc -O 8 2 6 k 15 k 4 k 130 INPUTS 470 470 OUTPUTS REFERENCE INPUT 100 100 4 GND 2 & STROBE

DUAL LINE RECEIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

Positive Logic
H = High Level, L = Low Level,
X = Nonsignificant

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	70	Volts
Reference Voltage	V _{ref}	5.5	Volts
Line Input Voltage (with respect to Ground)	VI(L)	-2.0 to +5.5	Volts
Line Input Voltage (with respect to V _{ref})	V _{I(L)} -V _{ref}	±5.0	Volts
Strobe Input Voltage	V _{I(S)}	55	Volts
Power Dissipation (Package Limitation) Plastic Dual In-Line Package Derate above T _A = +25 ^O C	PD	830 6.6	mW mW/ ^O C
Operating Temperature Range (Ambient)	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Nom	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Volts
Reference Voltage Range	V _{ref} R	1.5		3.5	Volts
Input Voltage Range (Line or Strobe)	VIR	0		5.5	Volts
Operating Ambient Temperature Range	ΤA	0		+70	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5 0 V ±10%, V_{ref} = 1.5 to 3.5 V, T_A = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Typ*	Max	Unit
High-Level Line Input Voltage	VIH(L)	V _{ref} + 100			mV
Low-Level Line Input Voltage	VIL(L)		_	V _{ref} - 100	mV
High-Level Strobe Input Voltage	V _{IH(S)}	20		-	Volts
Low-Level Strobe Input Voltage	V _{IL(S)}			08	Volt
High-Level Output Voltage $V_{IL}(L) = V_{ref} - 100 \text{ mV}, V_{IL}(S) \approx 0.8 \text{ V}, I_{OH} = -400 \mu\text{A}$	Voн	2.4	_	_	Volts
Low-Level Output Voltage $V_{IH(L)} = V_{ref} + 100 \text{ mV}, V_{IL(S)} = 0.8 \text{ V}, I_{OL} = 16 \text{ mA}$ $V_{IL(L)} = V_{ref} - 100 \text{ mV}, V_{IH(S)} \approx 2.0 \text{ V}, I_{OL} = 16 \text{ mA}$	VOL		_	0.4 0.4	Volt
Strobe Input Clamp Voltage II(S) = -12 mA	V _I (S)	_		-1.5	Volts
Strobe Input Current (at max Input Voltage) VI(S) = 5.5 V	11(8)	-		20	mA
High-Level Input Currents Strobe (V _I (g) = 2.4 V) Line (V _I (L) = V _{CC} , V _{ref} = 1.5 V) Reference (V _{ref} = 3.5 V, V _I (L) = 1.5 V)	liH(S) liH(L) liH(ref)		 35 70	80 100 200	μΑ
Low-Level Input Currents Strobe (V _I (S) = 0.4 V) Line (V _I (L) = 0 V, V _{ref} = 1.5 V) Reference (V _{ref} = 0 V, V _I (L) = 1.5 V)	IL(S) IL(L) IL(ref)	- - -	- - -	-3.2 -10 -20	mA μA μA
Short-Circuit Output Current** VCC = 5.5 V	los	-18		-55	mA
Supply Current (output high) $V_{I}(S) = 0 \text{ V, } V_{I}(L) = V_{ref} - 100 \text{ mV}$	ССН	_	18	30	mA
Supply Current (output low) VI(S) = 0 V, VI(L) = V _{ref} + 100 mV	ICCL		20	35	mA

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, V_{ref} = 2.5 V, C_L = 15 pF, R_L = 400 Ω , T_A = +25°C unless otherwise noted.) See Figure 1.

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time (low-to-high level output from Line input)	tPLH(L)	_	22	35	ns
Propagation Delay Time (high-to-low level output from Line input)	tPHL(L)		22	30	ns
Propagation Delay Time (low-to-high level output from Strobe input)	tPLH(S)	-	12	22	ns
Propagation Delay Time (high-to-low level output from Strobe input)	tPHL(S)	-	8.0	15	ns

^{*}All typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$.

^{**}Only one output should be shorted at a time.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — OUTPUT VOLTAGE versus LINE INPUT VOLTAGE

VCC = 50 V Vref = 25 Vref = 25 Vref =

SIGNAL OUTPUT (MTTL LEVELS)

STROBE

FIGURE 3 - SCHMITT TRIGGER

FIGURE 5 - GATED OSCILLATOR

FIGURE 6 — GATE OSCILLATOR FREQUENCY
Versus RC TIME CONSTANT

FIGURE 7 - DUAL BUS TRANSCEIVER

MC55325 MC75325

Specifications and Applications Information

DUAL MEMORY DRIVER

The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.

The device contains two 600-mA source-switch pairs and two 600-mA sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by the source strobe. Likewise, sink selection is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn-on with minimum time skew of the output current rise.

- 600-mA Output Capability
- Fast Switching Times
- Input Clamp Diodes
- Dual Sink and Dual Source Outputs
- MDTL and MTTL Compatibility
- 24-Volt Output Capability

DUAL MEMORY DRIVER SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (TA = 250 unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage (Note 1)	V _{CC1}	7.0	Vdc
	V _{CC2}	25	Vdc
Input Voltage	VI	5.5	Vdc
Power Dissipation (Package Limitation)	PD		
Ceramic and Plastic Packages	1	1.0	W
Derate above T _A ≈ +25 ^o C		6.6	mW/ ^o C
Operating Ambient Temperature Range	TA		°C
MC55325	- 1	-55 to +125	
MC75325		0 to +70	
Storage Temperature Range	T _{sta}	-65 to +150	°C

Note 1. Voltage values are with respect to the network ground terminal.

TRUTH TABLE

ADD	RESS	INPL	JTS	STROBE I	STROBE INPUTS OUTPUTS				
sou	RCE	SII	NK	SOURCE	SINK	sou	RCE	SII	ΝK
Α	В	C	D	St	S2	w	х	Y	z
L	н	×	×	L	Н	On	Off	Off	
н	L	×	×	L	н	Off	On	Off	
×	×	L	н	н	l L	Off	Off		Off
×	×	н	L	н	1 6	Off	Off	Off	On
×	×	l x	x	н	н	Off	Off	Off	Off
н	н	н	н	×	x	Off	Off	Off	Off

H = high level, L = low level, X = irrelevant

NOTE: Not more than one output is to be on at any one time.

ELECTRICAL CHARACTERISTICS ($T_A = T_{low}$ to T_{high} unless otherwise noted⁽¹⁾)

			N	AC5532	25	_ N	AC7532	25	
Character	istic	Symbol	Min	Typ(2	Max	Min	Typ(2	Max	Unit
Input Voltage - High Logic State		VIH	2.0	_	-	2.0	_	-	V
Input Voltage - Low Logic State		VIL		-	0.8		-	0.8	V
Input Clamp Voltage (VCC1 = 4.5 V, VCC2 = 24 V, I ₁ = -10 r	nA, T _A = 25 ⁰ C)	VI	_	-1.3	-1.7	-	-1.3	-1.7	V
Output Current - Off State (V _{CC1} = 4.5 V, V _{CC2} = 24 V)	TA = T _{low} to T _{high} TA = 25°C	loff	_	_ 3.0	500 150	-	3.0	200 200	μА
Output Voltage - High Logic State (VCC1 = 4.5 V, VCC2 = 24 V, IO = 0)		Voн	19	23	-	19	23	_	V
Saturation Voltage(3) Source Outputs (VCC1 = 4.5 V, VCC2 = 15 V, I _{source} Note 4)	$_{10} \approx -600 \text{ mA}, \text{R}_{\perp} = 24 \text{ ohms},$ $T_{A} = T_{low} \text{ to } T_{high}$ $T_{A} = 25^{\circ}\text{C}$	V _{sat}	_	0,43	0.9	_	0.43	0.9 0.75	V
Sink Outputs (VCC1 = 4.5 V, VCC2 = 15 V, I _{sink} (Note 4)	•		_	- 0.43	0.9 0.7	1 -	0.43	0.9 0.75	
Input Current at Maximum Input Voltage (VCC1 = 5.5 V, VCC2 = 24 V, V _I = 5.5 V)	V) Address Inputs Strobe Inputs	=	1 1	-	1.0 2.0	-	1 1	1.0 2.0	mA
Input Current — High Logic State (VCC1 = 5.5 V, VCC2 = 24 V, V ₁ = 2.4 V	V) Address Inputs Strobe Inputs	1 _{IH}	- 1	3.0 6.0	40 80	1 1	3.0 6.0	40 80	μΑ
Input Current — Low Logic State (VCC1 = 5.5 V, VCC2 = 24 V, V _I = 0.4	V) Address Inputs Strobe Inputs	IιL	_	-1.0 -2.0		-	-1.0 -2.0	-1.6 -3.2	mA
	From V _{CC2}	ICC(off)	1 1	14 7.5	22 20	-	14 7.5	22 20	mA
Supply Current from V_{CC1} , Either Sink "Or $V_{CC1} = 5.5 \text{ V}$, $V_{CC2} = 24 \text{ V}$, $I_{sink} = 50 \text{ V}$	mA, T _A = 25°C)	lcc1	-	55	70	_	55	70	mA
Supply Current from V _{CC2} , Either Source " (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{source} =	-50 mA, T _A = 25°C)	¹CC2	-	32	50	-	32	50	mA

⁽¹⁾ T_{low} = -55°C for MC55325, 0°C for MC75325

Thigh = +125°C for MC55325, +70°C for MC75325

⁽²⁾ All typical values are at T_A = 25°C

⁽³⁾ Not more than one output is to be "on" at any one time.

⁽⁴⁾ Saturation voltage must be measured using pulse techniques: Pulse Width = 200 μ s, Duty Cycle \leq 2%

SWITCHING CHARACTERISTICS (V_{CC1} = 5.0 V, C_L = 25 pF, T_A = 25°C)

			M	C55325/MC75	325	
Characte	ristics	Symbol	Min	Тур	Max	Unit
Propagation Delay Time to Source (Collectors					
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High Level	tPLH	-	25	50	ns
,	High-to-Low Level	tPHL.	_	25 ·	50	ns
Transition Time						
$(V_{CC2} = 20 \text{ V, R}_{L} = 1 \text{ k ohms})$	Low-to-High Level	tTLH	- 1	55	-	ns
	High-to-Low Level	tTHL_		70		ns
Propagation Delay Time to Sink Ou	tputs					
(VCC2 = 15 V, RL = 24 ohms)	Low-to-High Level	tPLH	i – '	20	45	ns
	High-to-Low Level	tPHL.	_	20	45	ns
Transition Time		1				
(VCC2 = 15 V, RL = 24 ohms)	Low-to-High Level Output	tTLH	_	7.0	15	ns
	High-to-Low Level Output	tTHL.	_	9.0	20	ns
Storage Time to Sink Outputs (VCC2 = 15 V, R _L = 24 ohms)		t _s	-	15	30	ns

FIGURE 1 - SWITCHING TIMES TO SOURCE COLLECTORS AND SINK OUTPUTS

FIGURE 2 – PROPAGATION TIME TO SOURCE COLLECTORS

FIGURE 3 – PROPAGATION TIME, TRANSITION TIME AND STORAGE TIME TO SINK OUTPUTS

Sink Z Shown Under Test

FIGURE 4 - SWITCHING TIMES ON SOURCE OUTPUTS (See Figure 5)

Input Pulse Characteristics $t_{THL} = t_{TLH} \leqslant 10 \text{ ns, Duty Cycle} \leqslant 1\%$ Pulse Width = 200 ns

FIGURE 5 - TRANSITION TIME ON SOURCE OUTPUTS

Source X Shown Under Test

TYPICAL PERFORMANCE CURVES

FIGURE 6 — SOURCE COLLECTOR CURRENT (Off-State) versus AMBIENT TEMPERATURE

FIGURE 7 – SINK OUTPUT VOLTAGE-HIGH STATE V_{OH}
versus AMBIENT TEMPERATURE

FIGURE 8 – SOURCE OR SINK SATURATION VOLTAGE versus AMBIENT TEMPERATURE

FIGURE 9 – SOURCE OR SINK SATURATION VOLTAGE versus SOURCE OR SINK CURRENT

APPLICATIONS INFORMATION BASE DRIVE RESISTOR

An internal 575 Ω resistor connected between the V_{CC2} and the R_{int} terminals is provided in the MC55325/75325 to supply sufficient base drive for source currents to 375 mA at V_{CC2} of 15 Volts or 600 mA at V_{CC2} of 24 Volts. Connecting the R node to the R_{int} node selects this internal resistor. If source currents greater than 375 mA are required, the R_{int} node should be left open and an appropriate resistor connected between V_{CC2} and the R node. This method allows source base drive currents regulated to typically within ± 5%. This has an added advantage of removing the power dissipated in the resistor from the IC package, allowing the device to source greater currents at a given junction temperature.

The value of the required external resistor in a particular memory application may be computed using the following equation:

$$R_{ext} = \frac{16 \text{ (V}_{CC2 \text{ min}} \cdot \text{Vs-}2.2)}{I_L - 1.6 \text{ (V}_{CC2 \text{ min}} \cdot \text{Vs-}2.9)}$$
(1)

Where: $R_{ext} = k\Omega$.

Vs = the source output voltage referred to ground.

IL = mA.

During the load current pulse the power dissipated in the resistor, R_{ext} is

$$P_{\text{Rext}} \approx \frac{I_{\text{L}} \left(V_{\text{CC2 min}} \cdot V_{\text{S}} \cdot 2 \right)}{16} \tag{2}$$

Where: $P_{Rext} = mW$.

The source collector current I_{CS} is approximately 94% of total load current, I_L. The remaining current flows in the base of the source transistor through the external resistor R_{ext} or the source gate. See Figure 10 for added details.

An internal pull-up resistor in parallel with a clamping diode to V_{CC2} is provided at each sind-output collector to protect against voltage surges generated by switching reduction loads.

FIGURE 10 – TYPICAL CIRCUIT USED FOR R_{ext} CALCULATION

SELECTION MATRIX

The combination of current source and sink pairs within the MC75325 is often utilized to implement a selection matrix for core memory systems. A typical, simplified system is shown in Figure 11.

The selection of any particular line (line 7, for example) is made by activating a particular, unique combination of two source/sink pairs. For an example, with the Mode Select input high and \$\overline{B1}\$ low, current source X of #1 MC75325 will be activated. This selects lines 4-7. When input C4 goes low, on #4 MC75325, current will

flow through line 7 from source X (of device #1) to sink Y of device #4.

Changing the logic state of device #1 to input $\overline{D1}$ low, device #4 to input $\overline{A4}$ low, and applying a low to the Mode Select input, reverses the direction of the current in line 7 with the #1 MC75325 sinking the current and the #4 device sourcing it.

Drive line inductance and capacitance only limits the number of drive lines a source/sink pair can drive and thus the size of a matrix possible.

FIGURE 11 – TYPIĆAL

APPLICATION - CORE MEMORY

SELECTION MATRIX

MC75450

DUAL PERIPHERAL POSITIVE "AND" DRIVER

The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- Separate Gate and Output Transistor for Maximum Design Flexibility
- High Output Breakdown Voltage:
 VCER = 30 Volts minimum

MAXIMUM RATINGS (TA = 0 to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Note 1)	Vin	5.5	Vdc
V _{CC} -to-Substrate Voltage		35	Vdc
Collector-to-Substrate Voltage		35	Vdc
Collector-Base Voltage	VCB	35	Vdc
Collector-Emitter Voltage (See Note 2)	VCE	30	Vdc
Emitter-Base Voltage	VEB	5.0	Vdc
Collector Current (continuous) (See Note 3)		300	mA
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ^O C	PD	830 6.6	mW/ ^o C
Operating Temperature Range	TA	0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

NOTES: 1. Voltage values are with respect to network ground terminal.

- 2. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 500 ohms.
- Both halves of these dual circuits may conduct the rated current simultaneously.

DUAL PERIPHERAL POSITIVE "AND" DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX
CERAMIC PACKAGE
CASE 632
(TO-116)

P SUFFIX PLASTIC PACKAGE CASE 646

RECOMMENDED OPERATING CONDITIONS (See Note 4)

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	v _{cc}	4.75	5.0	5.25	Vdc

Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation.

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур*	Max	Unit
MTTL GATES						
High-Level Input Voltage	V _{IH}	1	2.0	-	-	Vdc
Low-Level Input Voltage	VIL	2	-	_	08	Vdc
High-Level Output Voltage $(V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -400 \mu\text{A})$	Voн	2	2.4	3.3	-	Vdc
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 16 mA)	VoL	1	_	0.22	0.4	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) Input A input G (V _{CC} = 5.25 V, V _{in} = 5.5 V) Input A Input G	¹IH	3		- - -	40 80 1.0 2.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V) Input A Input G	IIL	4	-	_	-1.6 -3.2	mA
Short-Circuit Output Current** (VCC = 5.25 V)	los	5	-18	_	-55	mA
Supply Current High-Level Output (V_{CC} = 5.25 V, $V_{i\eta}$ = 0) Low-Level Output (V_{CC} = 5.25 V, $V_{i\eta}$ = 5.0 V)	ICCH ICCL	6		2.0 6.0	4.0 11	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I _{In} = -12 mA)	V _{in}	4	_	_	-1.5	V

OUTPUT TRANSISTORS

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (IC = 100 µA, IE = 0)	V _{CBO}	35	_	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 µA, RBE = 500 ohms)	VCER	30	_	_	Vdc
Emitter-Base Breakdown Voltage $\{I_E = 100 \mu A, I_C = 0\}$	V _{EBO}	5.0	_	_	Vdc
Static Forward Transfer Ratio (See Note 5) (V _{CE} = 3.0 V , I _C = 100 mA , T _A = $+25^{\circ}\text{C}$) (V _{CE} = 3.0 V , I _C = 300 mA , T _A = $+25^{\circ}\text{C}$) (V _{CE} = 3.0 V , I _C = 100 mA , T _A = 0°C) (V _{CE} = 3.0 V , I _C = 300 mA , T _A = 0°C)	hFE	25 30 20 25	- - - -		
Base-Emitter Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	V _{BE}		0.85 1.05	1.0 1.2	Vdc
Collector-Emitter Saturation Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	VCE(sat)		0.25 0.5	0.4 0.7	Vdc

Note 5. These parameters must be measured using pulse techniques; $t_W = 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.

^{*}All typical values at V_{CC} = 5.0 V, T_A = +25°C.

**Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
MTTL GATES						
Propagation Delay Time (C ₁ = 15 pF, R ₁ = 400 ohms)		7				ns
Low-to-High-Level Output	tPLH	ŀ	_	14	_	
High-to-Low-Level Output	tPHL		_	6.0	-	
OUTPUT TRANSISTORS #				•		
Switching Times (I _C = 200 mA, I _{B(1)} = 20 mA, I _{B(2)} = -40 mA, $V_{BE(off)} = -1.0 \text{ V}$, C _L = 15 pF, R _L = 50 ohms)		8				ns
Delay Time	t _d		-	9.0	-	1
Rise Time	l t _r	[-	[11]	_	Į
Storage Time	t _s		-	14	_	
Fall Time	tf		-	8.0	_	l
GATES AND TRANSISTORS COMBINED #				•		·
Propagation Delay Time (IC = 200 mA, CL = 15 pF, RL = 50 ohms)		9				ns
Low-to-High-Level Output	tPLH	1	l –	21	-	1
High-to-Low Level Output	tPHL.	ł	-	16	-	ŀ
Transition Time# (IC = 200 mA, CL = 15 pF, RL = 50 ohms)	_	9				ns
Low-to-High-Level Output	†TLH	}	-	7.0	_	1
High-to-Low-Level Output	tTHL.	1	-	8.0	_	1

⁼Voltage and current values are nominal, exact values vary slightly with transistors parameters

DC TEST CIRCUITS FOR MTTL GATES

Vcc SUBSTRATE Both inputs are tested simultaneously.

FIGURE 2 - VIL, VOH

FIGURE 4 - I_{IL}, V_{in}

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 3 - I_{IH}

Each input is tested separately.

5

DC TEST CIRCUITS FOR MTTL GATES (continued)

FIGURE 6 - ICCH, ICCL

Both gates are tested simultaneously.

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE

NOTES. A. The pulse generator has the following characteristics. t_W = 0.5 μ s, PRR = 1.0 MHz, $z_0\approx$ 50 Ω . B. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

TEST CIRCUITS (continued)

FIGURE 8 - SWITCHING TIMES, EACH TRANSISTOR

NOTES: A. The pulse generator has the following characteristics: t_W = 0.3 μ s, duty cycle \leq 1%, z_0 \approx 50 Ω . B. C_L includes probe and Jig capacitance.

VOLTAGE WAVEFORMS

FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR

NOTES: A. The pulse generator has the following characteristics: t_W = 0.5 μ s, PRR = 1.0 MHz, z_0 \approx 50 Ω . B. C_L includes probe and Jig capacitance.

VOLTAGE WAVEFORMS

MC75451 MC75452 MC75453 MC75454

DUAL PERIPHERAL DRIVERS

These versatile devices are useful for interfacing digital logic to industrial electronic systems. They are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.

Each of these devices consists of a pair of MTTL gates with the output of each gate internally connected to the base of a transistor.

MC75451 provides the AND function MC75452 provides the NAND function MC75453 provides the OR function MC75454 provides the NOR function

- 300 mA Output Current Capability
- Output Breakdown Voltage 30 V Min
- MTTL compatible Inputs

DUAL PERIPHERAL DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

U SUFFIX CERAMIC PACKAGE CASE 693

P SUFFIX PLASTIC PACKAGE CASE 626

H ("off" state)
H ("off" state)

H ("off" state)
L ("on" state)

MC75451 - Positive AND

TRUTH TABLE

А	В	Y
L	L	L ("on" state)
L	Н	L ("on" state)
Н	L	L ("on" state)
Н	Н	H ("off" state)

H = high level, L = low level

MC75452 ~ Positive NAND

H = high level, L = low level

TRUTH TABLE

R

н

L

н

Positive Logic: Y = AB

MC75453 - Positive OR

Positive Logic: Y = A + B

TRUTH TABLE

Α	В	Ÿ
٦	L	L ("on" state)
L	Н	H ("off" state)
H	L	H ("off" state)
Н	Н	H ("off" state)

H = high level, L ≈ low level

MC75454 - Positive NOR

TRUTH TABLE

Α	В	Y
L	L	H ("off" state)
L	Н	L ("on" state)
H	L	L ("on" state)
Н	Η	L ("on" state)

H = high level, L = low level

MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	7.0	Vdc
Input Voltage	Vı	55	Vdc
Interemitter Voltage(2)		5.5	Vdc
Output Voltage(3)	ν _o	30	Vdc
Output Current(4)	lo	300	mA
Power Dissipation @ $T_A = 25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	PD	830 6.6	mW mW/ ⁰ C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

- (1) Voltage values are with respect to network ground terminal.
- (2) This is the voltage between two emitters of a multiple-emitter transistor.
- (3) This is the maximum voltage which should be applied to any output when it is in the "off" state.
- (4) Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 > V_{CC} ≥ 5.25 V and 0°C < T_A < 70°C)

Characteristic		Figure	Symbol	Min	Typ (1)	Max	Unit
Input Voltage - High Logic State		1,2	VIH	2.0	-	1	Vdc
Input Voltage - Low Logic State		1,2	VIL		-	8.0	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _I = -12 mA)		4	٧ı	-	-1.2	-1.5	Vdc
Output Current — High Logic State (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IH} = 2 0 V) (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IL} = 0.8 V)	MC75451, MC75453 MC75452, MC75454	2	Іон	_	-	100	μА
Output Voltage — Low Logic State (V _{CC} = 4.75 V, V _{IL} = 0.8 V) (V _{CC} = 4.75 V, V _{IH} = 2.0 V) (I _{OL} = 100 mA) (I _{OL} = 300 mA)	MC75451, MC75453 MC75452, MC75454	1	VoL	1 1	0.25 0.5	0.4 0.7	Vdc
Input Current — High Logic State (VCC = 5 25 V, V ₁ = 2.4 V) (VCC = 5.25 V, V ₁ = 5.5 V)		3	ин	1 1	1 1	40 1.0	μA mA
Input Current — Low Logic State (V _{CC} = 5.25 V, V ₁ = 0.4 V)		4	ī	1	-1.0	-1.6	mA
Power Supply Current — Output High Logic State (V _{CC} = 5.25 V, V _I = 5 0 V) (V _{CC} = 5.25 V, V _I = 0) (V _{CC} = 5.25 V, V _I = 5.0 V) (V _{CC} = 5.25 V, V _I = 0)	MC75451 MC75452 MC75453 MC75454	5	ССН	1 1 1 1	7.0 11 8 0 13	11 14 11 17	mA
Power Supply Current — Output Low Logic State (V _{CC} = 5 25 V, V _I = 0) (V _{CC} = 5 25 V, V _I = 5 0 V) (V _{CC} = 5.25 V, V _I = 0) (V _{CC} = 5.25 V, V _I = 5 0 V)	MC75451 MC75452 MC75453 MC75454	5	CCL	1111	52 56 54 61	65 71 68 79	mA

(1) Typical Values Measured with $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

TEST CIRCUITS

(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.)

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time						
$(I_O \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$			ľ			ł
MC75451						l
Low-to-High-Level Output	tPLH	6	· - ·	17	-	ns
High-to-Low-Level Output	tPHL		-	18	-	1
MC75452			[ĺ
Low-to-High-Level Output	tPLH	6	_	18	_	ns
High-to-Low-Level Output	tPHL		-	16	-	ĺ
MC 75453						ļ
Low-to-High-Level Output	tPLH	6	-	15	_	ns
High-to-Low-Level Output	tPHL.		-	17	-	
MC75454						
Low-to-High-Level Output	tPLH	6	- 1	25	-	ns
High-to-Low-Level Output	^t PHL		-	19	-	
Transition Time						
$(I_0 \approx 200 \text{ mA, C}_L = 15 \text{ pF, R}_L = 50 \text{ ohms})$						
MC75451			1			ľ
Low-to-High-Level Output	t th	6	- 1	6.0	-	ns
High-to-Low-Level Output	t _{THL}		- !	11	- 1	
MC 75452						
Low-to-High-Level Output	tTLH	6	-	8.0	_ '	ns
High-to-Low-Level Output	THL		-	9.0	-	
MC 75453						
Low-to-High-Level Output	tTLH	6	_	5.0	_	ns
High-to-Low-Level Output	†THL		-	8.0	-	
MC75454						
Low-to-High-Level Output	tTLH !	6	-	50	-	ns
High-to-Low-Level Output	†THL		- 1	8.0	_	

TEST CIRCUITS (Continued)

(Current into terminal is shown as a positive value.

Arrows indicate actual direction of current flow.)

FIGURE 3 – I_{IH} (ALL DEVICE TYPES)

Each input is tested separately.

MC75451 4 5 V VCC Open MC75453 VI

Each input is tested separately.

FIGURE 5 – ICCH, ICCL (ALL DEVICE TYPES)

^{*}See page 1 for specific gate type.

Both gates are tested simultaneously.

FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

REPRESENTATIVE SCHEMATIC DIAGRAMS

MC75461 MC75462 MC75463 MC75464

HERAL DRIVERS

similar to the MC75451; however, the MC75461 allowing operation with

SILICON MONOLITHIC INTEGRATED CIRCUITS

DUAL HIGH-VOLTAGE PERIPHERAL DRIVERS

The MC75461 thru MC75464 series is similar to the MC75451 thru MC75454 series peripheral drivers; however, the MC75461 series features greater voltage capability allowing operation with higher output voltages or with inductive loads. These devices are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.

Each of these devices consists of a pair of MTTL gates with the output of each gate internally connected to the base of a transistor.

MC75461 provides the AND function MC75462 provides the NAND function MC75463 provides the OR function MC75464 provides the NOR function

- 300 mA Output Current Capability
- No Output Latch-up-at 30 V
- MTTL compatible Inputs

CERAMIC PACKAGE CASE 693

P SUFFIX PLASTIC PACKAGE CASE 626

H = high level, L = low level

MC75462 - Positive NAND

Positive Logic: $Y = \overline{AB}$

. H = high level, L = low level

MC75463 — Positive OR

TRUTH TABLE

Α	В	Y
L	L	L ("on" state)
L	Н	H ("off" state)
н	L	H ("off" state)
н	Н	H ("off" state)

H = high level, L = low level

MC75464 - Positive NOR

TRUTH TABLE

Α	В	Υ
L	L	H ("off" state)
L	Ι	L ("on" state)
н	اد	L ("on" state)
н	I	L ("on" state)

H = high level, L = low level.

MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	70	Vdc
Input Voltage	V _I	5.5	Vdc
Interemitter Voltage (2)		55	Vdc
Output Voltage(3)	V _O	35	Vdc
Output Current(4)	10	300	mA
Power Dissipation @ T _A = 25°C Derate above T _A = +25°C	PD	830 6.6	mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

- (1) Voltage values are with respect to network ground terminal.
- (2) This is the voltage between two emitters of a multiple-emitter transistor.
- (3) This is the maximum voltage which should be applied to any output when it is in the "off" state.
- (4) Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4 75 ≥ V_{CC} ≥ 5.25 V and 0°C ≤ T_A ≤ 70°C)

Characteristic		Figure	Symbol	Min	Typ ⁽¹⁾	Max	Unit
Input Voltage - High Logic State		1,2	V _{IH}	20	_	-	Vdc
Input Voltage - Low Logic State		1,2	VIL	_	_	8.0	Vdc
Input Clamp Voltage		4	Vı		-1.2	-1.5	Vdc
$(V_{CC} = 4.75 \text{ V, I}_{I} = -12 \text{ mA})$							
Output Current — High Logic State		2	ТОН	_		100	μА
$(V_{CC} = 4.75 \text{ V}, V_{OH} = 35 \text{ V}, V_{IH} = 2.0 \text{ V})$	MC75461, MC75463		1				
$(V_{CC} = 4.75 \text{ V}, V_{OH} = 35 \text{ V}, V_{IL} = 0.8 \text{ V})$	MC75462, MC75464						
Output Voltage — Low Logic State		1	VOL				Vdc
$(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V})$	MC75461, MC75463						
$(V_{CC} = 4.75 \text{ V}, V_{IH} = 2.0 \text{ V})$	MC75462, MC75464						
IOL = 100 mA			1	_	0.15	0.4	
IOL = 300 mA			ļ		0.35	0.7	
Input Current — High Logic State		3	ЧΗ				
$(V_{CC} = 5.25 \text{ V}, V_1 = 2.4 \text{ V})$			1	_	-	40	μΑ
(V _{CC} = 5 25 V, V _I = 5 5 V)	· · · · · · · · · · · · · · · · · · ·			-		10	mA
Input Current - Low Logic State		4	l IIL	-	-1.0	-1.6	mA
(V _{CC} = 5.25 V, V _I = 0.4 V)							
Power Supply Current — Output High Logic State		5	1ссн				mA
(V _{CC} = 5.25 V, V _{IH} = 5.0 V)	MC75461			_	8.0	11	
$(V_{CC} = 5.25 \text{ V}, V_{IL} = 0)$	MC75462		1	_	13	17	
$(V_{CC} = 5.25 \text{ V}, V_{IH} = 5.0 \text{ V})$	MC75463	1	1	-	8.0	- 11	
(V _{CC} = 5.25 V, V _{IL} = 0)	MC75464				14	19	
Power Supply Current — Output Low Logic State		5	ICCL				mA
$(V_{CC} = 5.25 \text{ V}, V_{IL} = 0)$	MC75461		1 .	_	61	76	
(V _{CC} = 5.25 V, V _{IH} = 5.0 V)	MC75462			_	65	76	
(V _{CC} = 5.25 V, V _{IL} = 0)	MC75463	1	1	_	63	76	ĺ
(V _{CC} = 5.25 V, V _{IH} = 5.0 V)	MC75464				72	85	

⁽¹⁾ Typical Values Measured with V_{CC} = 5.0 V, T_A = 25°C

TEST CIRCUITS

(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.) FIGURE 1 - VOL FIGURE 2 – I_{OH}, VIH - MC75462 and MC75464 VIH - MC75461 and MC75463 VIL - MC75461 and MC75463 VIL - MC75462 and MC75464 MC75461 MC75462 юн MC75461 v_{IH} MC75464 MC75462 MC75463 MC75463 *See Page 1 for specific gate type. Each input is tested separately.

MC75461, MC75462, MC75463, MC75464

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time						
$(1_0 \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$	1 .					l
MC75461		1				
Low-to-High-Level Output	tPLH	6	-	45	55	ns
High-to-Low-Level Output	tPHL.			30	40	
MC75462				1		
Low-to-High-Level Output	tPLH	6	-	50	65	ns
High-to-Low-Level Output	tPHL	l		40	50	
MC75463						1
Low-to-High-Level Output	tPLH	6	-	45	55	ns
High-to-Low-Level Output	tPHL.		_	30	40	
MC75464		i				
Low-to-High-Level Output	tPLH	6	-	50	65	ns
High-to-Low-Level Output	tPHL.		-	40	50	
Transition Time						
$(I_0 \approx 200 \text{ mA}, C_L = 15 \text{ pF}, R_L = 50 \text{ ohms})$				_	1	ĺ
MC75461					1	ì
Low-to-High-Level Output	tTLH	6	-	8.0	20	ns
High-to-Low-Level Output	tTHL.	i	- 1	10	20	l
MC75462	İ				1	1
Low-to-High-Level Output	tTLH	6	-	12	25	ns
High-to-Low-Level Output	tTHL	Ι'	-	15	20	J
MC75463						1
Low-to-High-Level Output	tTLH	6	-	8.0	25	ns
High-to-Low-Level Output	†THL		-	10	25	1
MC75464		1			ĺ	ĺ
Low-to-High-Level Output	tTLH	6		12	20	ns
High-to-Low-Level Output	THL		-	15	20	
Output Voltage — High Logic Level after Switching (Latch-up Test)	Voн	7	V _S -10	-	-	mV
$(V_S = 30 \text{ V } I_O \approx 300 \text{ mA})$			_			l

TEST CIRCUITS (Continued)

(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.)

Each input is tested separately.

FIGURE 4 – I₁L,V₁ (ALL DEVICE TYPES) MC75461 MC75462 MC75464 VIL

Each input is tested separately.

FIGURE 5 - I_{CCH}, I_{CCL} (ALL DEVICE TYPES)

*See page 1 for specific gate type.

Both gates are tested simultaneously.

FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 7 – OUTPUT VOLTAGE AFTER SWITCHING TEST CIRCUIT AND WAVEFORMS (LATCH-UP TEST)

NOTES: A. The pulse generator has the following characteristics PRR = 12 5 kHz, Z_{out} = 50 Ω B. C_L includes probe and jig capacitance.

REPRESENTATIVE SCHEMATIC DIAGRAMS

(1/2 Circuits Shown)

MC75491 MC75492

Specifications and Applications Information

QUAD LED SEGMENT DRIVER — MC75491 HEX LED DIGIT DRIVER — MC75492

The MC75491 and MC75492 are designed to interface MOS logic to common cathode light-emitting diode readouts in serially addressed multi-digit displays. Using a segment address and digit scan LED drive method in a time multiplexing system results in a minimizing of the number of required drivers.

- Low Input Current Requirement for MOS Compatibility
- · Low Standby Power Drain
- Source or Sink Current Capability of 50 mA for MC75491
- Sink Current Capability of 250 mA for MC75492
- Four High-Gain Darlington Drivers in a Single Package MC75491
- Six High-Gain Darlington Drivers in a Single Package MC75492

MULTIPLE LIGHT-EMITTING DIODE (LED) DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

P SUFFIX PLASTIC PACKAGE CASE 646

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

		Va	lue	
Rating	Symbol	MC75491	MC75492	Unit
Bias Supply Voltage (See Note 1)	V _{SS}	10	10	Vdc
Input Voltage (See Note 2)	Vin	-5.0 to V _{SS}	-5.0 to V _{SS}	Vdc
Collector Voltage (See Note 3)	v _c	10	10	Vdc
Collector-to-Emitter Voltage	V _{CE}	10		Vdc
Collector-to-Input Voltage	V _{CI}	10	10	Vdc
Emitter Voltage (V _{in} ≥5.0 Vdc)	٧Ę	10	_	Vdc
Emitter-to-Input Voltage	VEI	5.0	_	Vdc
Continuous Collector Current (Each Collector) (All Collectors)	lc	50 200	250 600	mA mA
Power Dissipation (Package Limitation) Ceramic and Plastic Dual In-Line Packages Derate above T _A = +25°C	PD	830 6.6		mW mW/ ^o (
Operating Temperature Range	Τ _A	0 to +70		°င
Storage Temperature Range	T _{stg}	-65 to	+150	°c

Note 1. VSS terminal voltage is with respect to any other device terminal.

ELECTRICAL CHARACTERISTICS ($V_{SS} = 10 \text{ Vdc}$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted.)

			MC75491			MC75492		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Low-Level Collector-to-Emitter Voltage (V_{in} = 8.5 V thru 1.0 k Ω , I_{OL} = 50 mA, V_{E} = 5.0 V)	VCEL							Vdc
T _A = +25 ^o C T _A = 0 to +70 ^o C		_	0.9 –	1.2 1.5	_	_	-	
High-Level Collector Current V _{CH} = 10 V, V _E = 0, I _{in} = 40 μ A V _{CH} = 10 V, V _E = 0, V _{in} = 0.7 V	'сн	-		100 100	_ _	- -		μА
Low-Level Output Voltage $ (V_{in} = 6.5 \text{ V thru } 1.0 \text{ k}\Omega, I_{OL} = 250 \text{ mA}) $ $ T_{A} = +25^{\circ}\text{C} $ $ T_{A} = 0 \text{ to } +70^{\circ}\text{C} $	VoL	<u>-</u>	<u>-</u>	-	-	0.9 —	1.2 1.5	Vdc
High-Level Output Current $V_{OH} = 10 \text{ V, I}_{in} = 40 \mu\text{A}$ $V_{OH} = 10 \text{ V, V}_{in} = 0.5 \text{ V}$	ЮН	- -	-	<u>-</u>	-	_ _	200 200	μΑ
Input Current at Maximum Input Voltage Vin = 10 V, IOL = 20 mA	lin	-	2.2	3.3	-	2.2	3.3	mA
Emitter Current — Reverse Bias I _C = 0, V _{in} = 0, V _E = 5.0 V	1 _{ER}	-	_	100	_	_	-	μА
Bias Supply Current (VSS = 10 V)	Iss	_		1.0		_	1.0	mA

SWITCHING CHARACTERISTICS ($V_{SS} = 7.5 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

Propagation Delay Time, High-to-Low Level	^t PHL							ns
$R_L = 200 \Omega$, $V_{IH} = 4.5 V$, $C_L = 15 pF$, $V_E = 0$		- '	20*	-	-	-	-	
$R_L = 39 \Omega$, $V_{IH} = 7.5 V$, $C_L = 15 pF$		-	- 1	_	_	40	-	
Propagation Delay Time, Low-to-High Level	^t PLH							ns
$C_L = 15 pF$, $V_E = 0$, $R_L = 200 \Omega$, $V_{IH} = 4.5 Vdc$		-	40*	-	-	-	-	
$C_L = 15 pF, R_L = 39 \Omega, V_{IH} = 7.5 Vdc$		_	-			80	_	

^{*}To collector output.

Note 2. With the exception of the inputs, the GND terminal must always be the most negative device voltage for proper operation.

Note 3. Voltage values are with respect to GND terminal unless otherwise noted.

TYPICAL CHARACTERISTICS

(V_{SS} = +10 Vdc, T_A = +25°C unless otherwise noted.)

Ŀ

TYPICAL CHARACTERISTICS and SWITCHING TIME CIRCUITS

FIGURE 8 - MC75491 SWITCHING CIRCUIT

FIGURE 9 - SWITCHING WAVEFORM DEFINITIONS

FIGURE 10 - MC75492 SWITCHING CIRCUIT

TYPICAL APPLICATIONS

FIGURE 11 - QUAD-OR-HEX RELAY DRIVER

FIGURE 12 - OUAD-OR-HEX LAMP DRIVER

TYPICAL APPLICATIONS (continued)

FIGURE 13 - MOS-TO-MTTL LEVEL TRANSLATOR

FIGURE 14 – QUAD HIGH-CURRENT NPN TRANSISTOR DRIVER

FIGURE 15 — QUAD-OR-HEX HIGH-CURRENT PNP TRANSISTOR DRIVER

FIGURE 16 - BASE-EMITTER SELECT TRANSISTOR DRIVER

FIGURE 17 - MOS CALCULATOR CHIP-TO-LED INTERFACE CIRCUIT

D

TYPICAL APPLICATIONS (continued)

FIGURE 18 - STROBED "NOR" DRIVER

FIGURE 19 - DC MOTOR SPEED/DIRECTION CONTROL CIRCUIT

SN75431 SN75432

Product Preview

DUAL POSITIVE AND/NAND PERIPHERAL DRIVERS

The SN75431 and SN75432 are dual peripheral drivers designed for systems employing either TTL or DTL logic. The SN75431 provides a positive AND function and the SN75432 provides the positive NAND.

These devices provide a high-speed interface to medium-voltage peripherals requiring drive currents up to 300 mA. Applications include high-speed buffers, line drivers, MOS drivers, memory drivers, and power drivers.

Both parts are mechanically and functionally the same as the $75450B,\,460$ and 470 equivilents.

- Characterized for Currents Up to 300 mA
- · Very Fast Switching Speed
- TTL or DTL Compatible
- Standard 5.0 V Supply
- Available in Both Plastic and Ceramic Package

DUAL PERIPHERAL DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice.

SN75451BP SN75452BP SN75453BP SN75454BP

DUAL PERIPHERAL DRIVERS

These versatile devices are useful for interfacing digital logic to industrial electronic systems. They are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.

Each of these devices consists of a pair of MTTL gates with the output of each gate internally connected to the base of a transistor.

SN75451BP provides the AND function SN75452BP provides the NAND function SN75453BP provides the OR function SN75454BP provides the NOR function

- 300 mA Output Current Capability
- Output Breakdown Voltage 30 V Min
- MTTL compatible inputs
- Guaranteed AC Limits

DUAL PERIPHERAL DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

U SUFFIX
CERAMIC PACKAGE
CASE 693

P SUFFIX
PLASTIC PACKAGE
CASE 626

SN75451BP - Positive AND

TRUTH TABLE A B Y

L	L	L ("on" state)
L	Н	L ("on" state)
Н	L	L ("on" state)
Н	Н	H ("off" state)

H = high level, L = low level

SN75452BP - Positive NAND

INUIN TABLE							
А	В	Y					
L.	L	H ("off" state)					
L	н	H ("off" state)					
Н	L	H ("off" state)					
н	н	L ("on" state)					

H ≈ high level, L ≈ low level

Positive Logic Y = \overrightarrow{AB}

SN75453BP - Positive OR

TRUTH TABLE

Α	В	Y
L	L	L ("on" state)
L	н	H ("off" state)
H	L	H ("off" state)
Н	Ξ	H ("off" state)

H high level, L - low level

SN75454BP -- Positive NOR

TRUTH TABLE

Α	В	Y
٦	L	H ("off" state)
L	н	L ("on" state)
Ħ	L	L ("on" state)
Н	н	L ("on" state)

H = high level, L = low level

SN75451BP, SN75452BP, SN75453BP, SN75454BP

MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	70	Vdc
Input Voltage	V _I	5.5	Vdc
Interemitter Voltage(2)	_	5.5	Vdc
Output Voltage(3)	V _O	30	Vdc
Output Current(4)	10	300	mA
Power Dissipation @ T _A = 25°C Derate above T _A = +25°C	PD	830 6 6	mW mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

- (1) Voltage values are with respect to network ground terminal.
- (2) This is the voltage between two emitters of a multiple-emitter transistor.
- (3) This is the maximum voltage which should be applied to any output when it is in the "off" state
- (4) Both halves of these dual circuits may conduct rated current simultaneously, however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $4.75 > V_{CC} > 5.25 \, V$ and $0^{\circ}C < T_{A} < 70^{\circ}C$)

Characteristic		Figure	Symbol	Min	Typ (1)	Max	Unit
Input Voltage — High Logic State		1,2	VIH	2.0	_	_	Vdc
Input Voltage - Low Logic State		1,2	VIL	_	_	08	Vdc
Input Clamp Voltage (V _{CC} = 4 75 V, I ₁ = -12 mA)		4	٧ı	-	-1.2	-1.5	Vdc
Output Current — High Logic State (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IH} = 2.0 V) (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IL} = 0.8 V)	SN75451BP, SN75453BP SN75452BP, SN75454BP	2	ГОН	-	-	100	μА
Output Voltage — Low Logic State (V _{CC} = 4.75 V, V _{IL} = 0 8 V) (V _{CC} = 4.75 V, V _{IH} = 2.0 V) (I _{OL} = 100 mA) (I _{OL} = 300 mA)	SN75451BP, SN75453BP SN75452BP, SN75454BP	1	VOL	-	0.25 0 5	0 4 0.7	Vdc
Input Current — High Logic State (V _{CC} = 5.25 V, V ₁ = 2.4 V) (V _{CC} = 5.25 V, V ₁ = 5 5 V)		3	Ή	-	_	40 1.0	μA mA
Input Current — Low Logic State (VCC = 5 25 V, V _I = 0 4 V)		4	ΊL		-1.0	-1.6	mA
Power Supply Current — Output High Logic State $(V_{CC} = 5.25 \text{ V}, \text{ V}_1 = 5.0 \text{ V})$ $(V_{CC} = 5.25 \text{ V}, \text{ V}_1 = 0)$ $(V_{CC} = 5.25 \text{ V}, \text{ V}_1 = 5.0 \text{ V})$ $(V_{CC} = 5.25 \text{ V}, \text{ V}_1 = 0)$	SN75451BP SN75452BP SN75453BP SN75454BP	5	Іссн	- - - -	7 0 11 8 0 13	11 14 11 17	mA
Power Supply Current — Output Low Logic State (V _C C = 5.25 V, V _I = 0) (V _C C = 5.25 V, V _I = 5.0 V) (V _C C = 5.25 V, V _I = 0) (V _C C = 5.25 V, V _I = 0) (V _C C = 5.25 V, V _I = 5.0 V)	SN75451BP SN75452BP SN75453BP SN75454BP	5	ICCL	_ _ _ _	52 56 54 61	65 71 68 79	mA

⁽¹⁾ Typical Values Measured with V_{CC} = 5 0 V, T_A = 25°C.

TEST CIRCUITS

(Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.) FIGURE 1 - VOL, FIGURE 2 - IOH, VIH -- SN75452BP and SN75454BP VIH - SN75451BP and SN75453BP VIL - SN75451BP and SN75453BP VIL - SN75452BP and SN75454BP ٧cc V_CC SN75452BP SN75451BF Іон SN75451BP Voн SN75454BP v_{IH} VIH or VIL SN75452BP SN75453BP SN75453BP *See Page 1 for specific gate type. Each input is tested separately.

SN75451BP, SN75452BP, SN75453BP, SN75454BP

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time						
$(1_{O} \approx 200 \text{ mA}, C_{L} = 15 \text{ pF}, R_{L} = 50 \text{ ohms})$						
SN75451BP						ŀ
Low-to-High-Level Output	tPLH .	6	-	17	25	ns
High-to-Low-Level Output	tPHL.		-	18	25	
SN75452BP						
Low-to-High-Level Output	tРLН	6	_	18	35	ns
High-to-Low-Level Output	tPHL		-	16	35	İ
SN75453BP						
Low-to-High-Level Output	tPLH	6	_	15	25	ns
High-to-Low-Level Output	tPHL			17	25	İ
SN75454BP	'=		· ·			ĺ
Low-to-High-Level Output	t _{PLH}	6		25	35	ns
High-to-Low-Level Output	tPHL		-	19	35	
Transition Time						
$(1_{O} \approx 200 \text{ mA}, C_{L} = 15 \text{ pF}, R_{L} = 50 \text{ ohms})$						
SN75451BP						
Low-to-High-Level Output	tTLH .	6		6.0	8.0	ns
High-to-Low-Level Output	tTHL		-	8.0	12	
SN75452BP	=					
Low-to-High-Level Output	t _{TLH}	6		6.0	8.0	ns
High-to-Low-Level Output	tTHL		-	9.0	12	
SN75453BP						
Low-to-High-Level Output	tTLH	6		50	80	ns
High-to-Low-Level Output	₹THL		-	8.0	12	ļ
SN75454BP	1112					
Low-to-High-Level Output	tTLH	6	_	50	8.0	ns
High-to-Low-Level Output	tthL		_	8.0	12	

TEST CIRCUITS (Continued)

(Current into terminal is shown as a positive value

FIGURE 3 – $I_{\mbox{\scriptsize IH}}$ Arrows indicate actual direction of current flow.) (ALL DEVICE TYPES)

Each input is tested separately

Each input is tested separately.

FIGURE 5 – I_{CCH}, I_{CCL} (ALL DEVICE TYPES)

*See page 1 for specific gate type.

Both gates are tested simultaneously.

SN75451BP, SN75452BP, SN75453BP, SN75454BP

FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

REPRESENTATIVE SCHEMATIC DIAGRAMS (1/2 Circuits Shown)

Communication Interface (Telephony)

COMMUNICATION INTERFACE (Telephony)

Temperati	ıre Range		
Commercial	Military		Page
MC3416	_	4 x 4 x 2 Crosspoint Switch	6-3
MC3417/	MC3517/	Continuously-Variable-Slope Delta	
3418	3518	Modulator / Demodulator	6-12
MC3419	MC3519*	Subscriber Loop Interface Circuit	6-30
*Inductrial			

MC3416

Specifications and Applications Information

4 x 4 x 2 CROSSPOINT SWITCH

The MC3416 consists of a pair of 4 x 4 matrices of dielectrically isolated SCR's, triggered by a common selection matrix. The device is intended for switching analog signals in communication systems. The use of dielectric isolation processing provides excellent crosstalk isolation while maintaining minimal insertion loss.

The selection array consists of PNP transistors with the input thresholds compatible with either CMOS or TTL logic families.

The MC3416 is a monolithic pin-for-pin replacement for the discontinued MCBH7601 hybrid device.

- Low Series Resistance ron = 6.0 Ohms (Typ) @ IAK = 20 mA
- High Series Resistance r_{off} = 100 M Ω (Min)
- Pin Compatible with MCBH7601 or RC4444
- High Breakdown Voltage 30 V (Typ)
- · Selection Matrix Compatible with TTL or CMOS Logic Levels
- Dielectric Isolation Insures Low Crosstalk and Low Insertion Loss

FIGURE 1 - REPRESENTATIVE CELL SCHEMATIC

4 x 4 x 2 CROSSPOINT SWITCH

DIELECTRICALLY ISOLATED
MONOLITHIC
INTEGRATED CIRCUIT

(Repeated 16 Times) Anode A1 Anode A2 (B2,C2,D2 (B1,C1,D1 Row Select are Equivalent) are Equivalent) (X,Y,Z are Equivalent) Cathode SCR2 (X1, Y1, Z1 are Equivalent) O O Cathode W2 ه وم D2 (X2,Y2,Z2 are Equivalent) Column Select A (B,C,D are Equivalent) FIGURE 2 - MATRIX CONFIGURATION AND NOMENCLATURE (X Indicates a Possible Connection) B Columns C 2 2 Associated Pairs Triggered Simultaneously Rows

MAXIMUM RATINGS (Unless otherwise noted, T_A = 25°C)

Rating	Symbol	Value	Unit
Anode-Cathode Current — Continuous (only one SCR at a time)	IAK	150	mA
Enable Current	1 _{En}	10	mA
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature Range	TJ	150°C	οс

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, T_A = 0 to 70°C)

Characteristic	Symbol	Min	Max	Unit
Anode Cathode Breakdown Voltage (I _{AK} = 25μA)	BVAK	25	_	Vdc
Cathode-Anode Breakdown Voltage (I _{KA} = 25µA)	BVKA	25	-	Vdc
Base-Cathode Breakdown Voltage (IBK = 25µA)	BVBK	25	-	Vdc
Cathode-Base Breakdown Voltage (I _{KB} = 25µA)	BVKB	25	_	Vdc
Base-Emitter Breakdown Voltage (I _{BE} = 25μA)	BVBE	25	_	Vdc
Emitter-Cathode Breakdown Voltage (I _{EK} = 25µA)	BVEK	25	_	Vdc
OFF State Resistance (V _{AK} = 10 V)	roff	100	-	MΩ
Dynamic ON Resistance (Center Current = 10 mA) (See Figure 8) (Center Current = 20 mA)	ron	4.0 2.0	12 10	Ω
Holding Current (See Figure 10)	lн	0.7	3.0	mA
Enable Current (V _B = 1.5 V) (See Figure 7)	1 _{En}	4.0	_	mA
Anode-Cathode ON Voltage (I _{AK} = 10 mA) (I _{AK} = 20 mA)	VAK	<u>-</u> .	1.0	V
Gate Sharing Current Ratio @ Cathodes (Under Select Conditions with Anodes Open) (See Figure 3)	GSh	8.0	1.25	mA/mA
Inhibit Voltage (V _B = 3.0 V) (See Figure 9)	Vinh	-	0.3	V
Inhibit Current (V _B = 3.0 V) (See Figure 9)	linh	-	0.1	mA
OFF State Capacitance (V _{AK} = 0 V) (See Figure 6)	Coff	-	2.0	pF
Turn-ON Time (See Figure 4)	^t on	-	1.0	μs
Minimum Voltage Ramp (Which Could Fire the SCR Under Transient Conditions)	dv/dt	800	_	V/µs

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - TEST CIRCUIT FOR dv/dt AND ton

FIGURE 6 - TEST CIRCUIT FOR OFF-STATE CAPACITANCE

FIGURE 7 — ENABLE CURRENT (Both SCR's Must Turn On)

FIGURE 8 - THE CROSSPOINT SCR I-V CHARACTERISTIC (IG = 0)

FIGURE 9 — INHIBIT VOLTAGE AND INHIBIT CURRENT (Both SCR's Must Remain OFF)

TYPICAL CHARACTERISTICS

FIGURE 11 — ANODE-CATHODE ON VOLTAGE versus CURRENT AND TEMPERATURE

FIGURE 12 — DIFFERENCE IN ANODE-CATHODE ON VOLTAGE (Between Associate Pairs of SCR's) versus ANODE-CATHODE CURRENT

FIGURE 13 - OFF-STATE CAPACITANCE versus ANODE-

FIGURE 14 — DYNAMIC ON RESISTANCE versus ANODE-CATHODE CURRENT

FIGURE 15 -- DYNAMIC ON RESISTANCE versus
AMBIENT TEMPERATURE

FIGURE 18 - TEST CIRCUIT FOR FEEDTHROUGH versus FREQUENCY

FIGURE 19 - TEST CIRCUIT FOR CROSSTALK versus FREQUENCY

FIGURE 20 — REPRESENTATIVE SCHEMATIC DIAGRAM

TELEPHONE APPLICATION OF THE CROSSPOINT SWITCH

The MC3416 crosspoint switch is designed to provide a low-loss analog switching element for telephony signals. It can be addressed and controlled from standard binary decoders and is CMOS compatible. With proper system organization the MC3416 can significantly reduce the size and cost of existing crosspoint matrices.

SIGNAL PATH CONSIDERATIONS

The MC3416 is a balanced 4 x 4 2-wire crosspoint array. It is ideal for balanced transmission systems, but may be applied effectively in a number of single ended applications. Multiple chips may be interconnected to form larger crosspoint arrays. The major design constraint in using SCR crosspoints is that a forward dc current must be main-

tained through the SCR to retain an ac signal path. This requires that each subscriber-input to the array be capable of sourcing dc current as well as its ac signal. With each subscriber acting as a dc source, each trunk output then acts as a current sink. The instrument-to-trunk connection in Figure 21 shows this configuration. However, with each subscriber acting as a dc source, some method of interconnecting them without a trunk must be provided. Such a local or intercom termination is shown in Figure 22. Here both subscribers source dc current and exchange ac signals. The central current sink accepts current from both subscribers while the high output impedance of the current sink does not disturb the system.

These configurations are system compatible. The dc

FIGURE 22 - TYPICAL INSTRUMENT TO INSTRUMENT CONNECTION

current restriction is not a restriction in the design of an efficient crosspoint array. Because of the current sink terminations, a signal path may use differing numbers of crosspoints in any connection or in two sides of the same connection further relaxing restrictions in array design.

Figure 23 demonstrates circuit operation. S1, S2, and S3 are open. The Crosspoint SCR's are off as they have no gate drive or dc current path through S1. By closing S2 and S3, gate drive is provided, but the SCR's still remain off as there is no do current path to hold them on. Close S1 and the circuit is enabled, but with S2 and S3 off there is still no signal path, Closing S2 and S3 with S1 closed - current is injected into both gates and they switch on, DC current through RL splits around the center-tapped winding and flows through each SCR, back through the lower winding and through S1 to ground. If S2 and S3 are opened, that current path still remains and the SCRs remain on. If an ac signal is injected at either G1 or G2, it will be transmitted to the other signal port with negligible loss in the SCR's. To disconnect the ac signal path the SCR's must be commutated off. By opening S1 the dc current path is interrupted and the SCR's switch off. The ac signal path is disconnected. With S1 closed the circuit is enabled and may be addressed again from S2 and S3. This circuit demonstrates a balanced transmission configuration. The transmission characteristics of the SCR's simulate a relay contact in that the ac signal does not incur a contact voltage drop across the crosspoint. The memory characteristics of the crosspoint are demonstrated by the selective application of S1, S2, and S3.

The selection of R_L is governed by the power supply voltage and the desired dc current. If 10 mA is to flow through each SCR then R_L must pass 20 mA. Thus (VCC - VAK)/R_L = 20 mA. The selection of Rp is governed by the characteristics for crosspoint turn on. Adequate enable current must be injected into the column select and Rp should drop at least 1.5 Volts. The PNP transistor has a typical gain of one. Thus, Rp should pass at least 2 mA to provide 4 mA column select current.

FIGURE 23 -- CROSSPOINT OPERATION DEMONSTRATION CIRCUIT

S1	S2	S3	LINE CONDITION		
ON	Х	OFF	Enabled, Not Connected		
ON	OFF	X	Enabled, Not Connected		
ON	ON	ON	Addressed and Connected		
ON	х	X	G1 Connected to G2		
OFF	х	×	Disconnected.		
X = irrelevant					

ADDRESSING CONSIDERATIONS

The MC3416 crosspoint switch is addressed by selecting and turning on the PNP transistor that controls the SCR pair desired. The drive requirements of the MC3416 can be met with standard CMOS outputs. A particular crosspoint is addressed by putting a logical "1" on the emitter and a logical "0" on the base of the appropriate transistor. A resistor in the base circuit of the transistor is required to limit the current and must also drop 1.5 Volts to assure forward bias of the two diodes in the collector circuits.

The gate current required for SCR turn on is 1 mA typically. The CMOS one-of-n decoders listed in Table I provide both active high and active low outputs and are well suited for standard addressing organizations. The major design constraint in organizing the addressing structure is that any signal path which is to be addressed must create a dc path from a source to a sink. If that path requires two crosspoints they must be addressed simultaneously. Of course, once the path is selected, the addressing hardware is free to initiate other signal paths. To meet the dc path

6

APPLICATIONS INFORMATION (continued)

requirement, crosspoint arrays should be designed in blocks such that any given dc path requires only one crosspoint per block. A signal path, however, may still use two crosspoints in the same block by sequentially addressing two dc paths to the same terminator. For example, the left or right pairs of crosspoints in Figure 22 must be addressed simultaneously but the left pair may be addressed in sequence after addressing the right pair. This is not a difficult constraint to meet and it does not require unnecessary addressing hardware.

TABLE I

	Active High Outputs	Active Low Outputs
Dual Binary to 1 of 4	MC14555	MC14556
4-bit latch/4 to 16	MC14514	MC14515
BCD to Decimal Decode	MC14028	

DISCONNECT TECHNIQUES

Since the crosspoint switch maintains signal paths by keeping dc currents through active SCR's, disconnects are easily accomplished by interrupting the dc current path. This can be done anywhere in the circuit, but if the disconnect is done at the terminator then all signal paths established to that terminator are broken simultaneously. In both Figures 21 and 22 this is done by turning off the current sink circuit with a CMOS buffer gate. MC14049 or MC14050 buffers will drive the transistor switch. Once a disconnect is completed, the terminator may be re-enabled and used for another call. Usage of the terminators may be easily monitored with optoelectronic couplers in the collectors of the current sinks without disturbing transmission characteristics.

See Application Note AN-760 for additional applications suggestions.

MC3417, MC3517 MC3418, MC3518

Specifications and Applications Information

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

Providing a simplified approach to digital speech encoding/ decoding, the MC3517/18 series of CVSDs is designed for military secure communication and commercial telephone applications. A single IC provides both encoding and decoding functions.

- Encode and Decode Functions on the Same Chip with a Digital Input for Selection
- Utilization of Compatible I²L Linear Bipolar Fechnology
- CMOS Compatible Digital Output
- Digital Input Threshold Selectable (VCC/2 reference provided on chip)
- MC3417/MC3517 has a 3-Bit Algorithm (General Communications)
- MC3418/MC3518 has a 4-Bit Algorithm (Commercial Telephone)

CVSD BLOCK DIAGRAM Encode Decode Clock 15 **1**14 Analog Input Comparato Analog Feedback 2 3. or 4.Bit Digital Data Input 13 Shift Register ه ا ق ه ا ق ه ا م Digital 12 Threshold VTH Coincidence Logic Digital V/I Output Slope Converte Syllabic Integrator Filter Amplifier Polarity 4 Gain Control V_{CC}/2 € Vcc/2 Switch Ref Output Ref Filter Analog Output Input Input (+) (-)

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

LASER-TRIMMED INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 620

MC3417, MC3418, MC3517, MC3518

MAXIMUM RATINGS

(All voltages referenced to V_{EE} , T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.4 to +18	Vdc
Differential Analog Input Voltage	VID	± 5.0	Vdc
Digital Threshold Voltage	Vтн	-0.4 to V _{CC}	Vdc
Logic Input Voltage (Clock, Digital Data, Encode/Decode)	V _{Logic}	-0.4 to +18	Vdc
Coincidence Output Voltage	VO(Con)	-0.4 to +18	Vdc
Syllabic Filter Input Voltage	V _I (Syl)	-0.4 to V _{CC}	Vdc
Gain Control Input Voltage	VI(GC)	-0.4 to V _{CC}	Vdc
Reference Input Voltage	V _{I(Ref)}	V _{CC} /2 - 1.0 to V _{CC}	Vdc
V _{CC} /2 Output Current	^I Ref	-25	mA

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 12 \text{ V}, V_{EE} = \text{Gnd}, T_A = 0^{\circ}\text{C to } + 70^{\circ}\text{C for MC3417/18}, T_A = -55^{\circ}\text{C to } + 125^{\circ}\text{C for MC3517/18 unless otherwise noted.})$

	j	MC3417/MC3517		М	MC3418/MC3518			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Power Supply Voltage Range (Figure 1)	VCCR	4.75	12	16 5	4.75	12	16.5	Vdc
Power Supply Current (Figure 1) (Idle Channel)	¹ cc							mA
(V _{CC} = 5.0 V) (V _{CC} = 15 V)		_	3 7 6.0	5 0 10	1]	3.7 6.0	5.0 10	
Clock Rate	SR		16 k		1	32 k	_	Samples/s
Gain Control Current Range (Figure 2)	IGCR	0.001		3.0	0.001	-	3.0	mA
Analog Comparator Input Range (Pins 1 and 2) (4.75 V ≤ V _{CC} ≤ 16 5 V)	Vı	1.3		V _{CC} - 1.3	1.3	_	V _{CC} - 1.3	Vdc
Analog Output Range (Pin 7) (4.75 V \leq V _{CC} \leq 16 5 V, I _O = ± 5.0 mA)	v _o	13	_	V _{CC} - 1.3	1.3	-	V _{CC} - 1.3	Vdc
Input Bias Currents (Figure 3) (Comparator in Active Region)	IВ							μA
Analog Input (I1)	1 1	-	0.5	15	-	0.25	1.0	
Analog Feedback (I2)	i	_	0.5	1.5	_	0.25	1.0	
Syllabic Filter Input (I3) Reference Input (I5)	1	_	0.06 -0.06	0.5 -0.5	_	0.06 -0.06	0.3 -0.3	
Input Offset Current	110			0.0				μА
(Comparator in Active Region) Analog Input/Analog Feedback		-	0.15	0.6	-	. 0.05	0.4	
11-12 — Figure 3 Integrator Amplifier 15-16 — Figure 4		_	0.02	0.2	1	0.01	0.1	
Input Offset Voltage V/I Converter (Pins 3 and 4) — Figure 5	V ₁₀	_	2.0	6.0	1	2.0	6.0	mV
Transconductance	gm			1				mA/mV
V/I Converter, 0 to 3.0 mA	i	0.1	0.3	-	0.1	0.3	-	
Integrator Amplifier, 0 to ± 5.0 mA Load		1.0	10		1.0	10		
Propagation Delay Times (Note 1) Clock Trigger to Digital Output	[†] PLH	-	1 0 0.8	2.5 2.5	-	1.0 0.8	2.5 2.5	μς
(C _L = 25 pF to Gnd)	tPHL .	_			_		3.0	
Clock Trigger to Coincidence Output (C _L = 25 pF to Gnd) (R _L = 4 kΩ to V _{CC})	^t PLH ^t PHL		1.0 0.8	3.0 2.0	-	1.0 0.8	2.0	
Coincidence Output Voltage — Low Logic State (IOL(Con) = 3 0 mA)	V _{OL} (Con)	_	0.12	0.25	_	0.12	0.25	Vdc
Coincidence Output Leakage Current — High Logic State (VOH = 15.0 V, 0°C < T _A < 70°C)	IOH(Con)	_	0.01	0.5	_	0.01	0.5	μΑ

NOTE 1. All propagation delay times measured 50% to 50% from the negative going (from V_{CC} to +0.4 V) edge of the clock.

ELECTRICAL CHARACTERISTICS (continued)

		МС	3417/MC35	17	MC	418/MC351	8	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Applied Digital Threshold Voltage Range (Pin 12)	∨тн	+1.2	-	V _{CC} - 2.0	+1.2	_	V _{CC} - 2.0	Vdc
Digital Threshold Input Current	l(th)							μА
$(1.2 \text{ V} \le \text{V}_{th} \le \text{V}_{CC} - 2.0 \text{ V})$								
(V _{IL} applied to Pins 13, 14 and 15) (V _{IH} applied to Pins 13, 14 and 15)		_	- - 10	5.0 -50	_	-10	50 -50	
Maximum Integrator Amplifier Output Current		± 5.0	- 10	-30	±5.0			mA
V _{CC} /2 Generator Maximum Output Current	<u>'o</u>	+10			+10			mA
(Source only)	Ref							
V _{CC} /2 Generator Output Impedance (0 to +10 mA)	^z Ref	-	3.0	6.0	-	3.0	6.0	Ω
$V_{CC}/2$ Generator Tolerance (4.75 V \leq V _{CC} \leq 16.5 V)	€r	-	-	±3.5	-	-	± 3.5	%
Logic Input Voltage (Pins 13, 14 and 15)								Vdc
Low Logic State	VIL	Gnd	-	V _{th} - 0.4	Gnd	-	V _{th} - 0.4	
High Logic State	VIH	V _{th} + 0.4		18.0	V _{th} + 0.4		18.0	
Dynamic Total Loop Offset Voltage	ΣV_{offset}							mV
(Note 2) - Figures 3, 4 and 5				1	·			
$I_{GC} = 120 \mu A, V_{CC} = 12 V$						± 0.5	± 1.5	
$T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$ MC3417/18		_	_	_		± 0.75	± 2.3	
-55°C ≤ T _A ≤ +125°C MC3517/18		_	_	_	_	± 1.5	± 4.0	
IGC = 33.0 µA, V _{CC} = 12 V				}				
$T_A = 25^{\circ}C$		_	± 2.5	± 5 0	_	_		
0°C ≤ TA ≤ +70°C MC3417/18	'	_	± 3.0	± 7.5	-	-	-	
-55°C ≤ T _A ≤ +125°C MC3517/18		-	± 4.5	± 10		-	- 1	
$I_{GC} = 12.0 \mu\text{A}, V_{CC} = 5.0 \text{V}$ $T_A = 25^{\circ}\text{C}$		_		_	_	± 1 0	± 2.0	
$0^{\circ}C \le T_{A} \le +70^{\circ}C$ MC3417/18	ļ		_	- 1	-	± 1.3	± 28	
-55° C \leq T _A \leq +125 $^{\circ}$ C MC3517/18		-	_	-	-	± 2.5	± 5.0	
$I_{GC} = 330 \mu A, V_{CC} = 5.0 V$	ĺ		1	1			\ 	
T _A ≈ 25°C		-	± 4.0	± 6.0	-	_	-	
0° C \leq T _A \leq +70°C MC3417/18 -55°C \leq T _A \leq +125°C MC3517/18		-	± 4.5	± 8.0 ± 10	-	_	-	
			± 5.5	± 10				
Digital Output Voltage		٠.	١.,	0.4	1	0.1	0.4	Vdc
(I _{OL} = 3.6 mA) (I _{OH} = -0.35 mA)	VOH	V00 = 1 0	0.1 V _{CC} - 0.2	0.4	V00 = 10	V _{CC} - 0.2	0.4	
Syllabic Filter Applied Voltage (Pin 3)	V _{I(SyI)}	+3.2	VCC - 0.2	Vcc	+3.2	VCC - 0.2	Vcc	Vdc
(Figure 2)	VI(Syl)	+3.2		vcc	+3.2		VCC	Vuc
Integrating Current (Figure 2)	linti		40	40		٠	40	
(I _{GC} = 12.0 µA) (I _{GC} = 1.5 mA)	ļ	8.0 1.45	10 1.50	12 1.55	8.0 1.45	10 1.50	12 1.55	μA mA
(IGC = 3.0 mA)		2.75	3.0	3.25	2.75	3.0	3.25	mA
Dynamic Integrating Current Match	V _{O(Ave)}		± 100	± 250		± 100	± 250	mV
(IGC = 1.5 mA) Figure 6	- U(Ave)	Ì	00	- 255	1		- 200	
Input Current - High Logic State	ин		 		 			μΑ
(V _{IH} = 18 V)	·'''		ĺ	ĺ				
Digital Data Input		-	-	+5.0	 -	-	+5.0	
Clock Input		-	-	+5.0	-	-	+5.0	
Encode/Decode Input				+5.0	<u> </u>		+5,0	
Input Current — Low Logic State	Կև		ĺ	1	1			μΑ
(V _{IL} = 0 V)					1		4.0	
Digital Data Input Clock Input				-10 -360	l	_	-10 -360	
Encode/Decode Input	ļ	· _	_	-36	-	-	-36	
Clock Input, VIL = 0.4 V		_	_	-72	_	_	-72	
OTE O. Business and J. a. a. Was draw	L	L	L	L	L	L		L

NOTE 2. Dynamic total loop offset (£V_{Offset}) equals V_{IO} (comparator) (Figure 3) minus V_{IOX} (Figure 5). The input offset voltages of the analog comparator and of the integrator amplifier include the effects of input offset current through the input resistors. The slope polarity switch current mismatch appears as an average voltage across the 10 k integrator resistor. For the MC3417/MC3517, the clock frequency is 16.0 kHz. For the MC3418/MC3518, the clock frequency is 32.0 kHz. Idle channel performance is guaranteed if this dynamic total loop offset is less than one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser trimming is used to insure good idle channel performance.

DEFINITIONS AND FUNCTION OF PINS

Pin 1 - Analog Input

This is the analog comparator inverting input where the voice signal is applied. It may be ac or dc coupled depending on the application. If the voice signal is to be level shifted to the internal reference voltage, then a bias resistor between pins 1 and 10 is used. The resistor is used to establish the reference as the new dc average of the ac coupled signal. The analog comparator was designed for low hysteresis (typically less than 0.1 mV) and high gain (typically 70 dB).

Pin 2 - Analog Feedback

This is the non-inverting input to the analog signal comparator within the IC. In an encoder application is should be connected to the analog output of the encoder circuit. This may be pin 7 or a low pass filter output connected to pin 7. In a decode circuit pin 2 is not used and may be tied to $V_{CC}/2$ on pin 10, ground or left open.

The analog input comparator has bias currents of $1.5~\mu A$ max, thus the driving impedances of pins 1 and 2 should be equal to avoid disturbing the idle channel characteristics of the encoder.

Pin 3 - Syllabic Filter

This is the point at which the syllabic filter voltage is returned to the IC in order to control the integrator step size. It is an NPN input to an op amp. The syllabic filter consists of an RC network between pins 11 and 3. Typical time constant values of 6 ms to 50 ms are used in voice codecs.

Pin 4 - Gain Control Input

The syllabic filter voltage appears across Cg of the syllabic filter and is the voltage between V_{CC} and pin 3. The active voltage to current (V-I) converter drives pin 4 to the same voltage at a slew rate of typically 0.5 V/ μ s. Thus the current injected into pin 4 (I_{GC}) is the syllabic filter voltage divided by the R_X resistance. Figure 6 shows the relationship between I_{GC} (x-axis) and the integrating current, I_{Int} (y-axis). The discrepancy, which is most significant at very low currents, is due to circuitry within the slope polarity switch which enables trimming to a low total loop offset. The R_X resistor is then varied to adjust the loop gain of the codec, but should be no larger than 5.0 k Ω to maintain stability.

Pin 5 - Reference Input

This pin is the non-inverting input of the integrator amplifier. It is used to reference the dc level of the output signal. In an encoder circuit it must reference the same voltage as pin 1 and is tied to pin 10.

Pin 6 - Filter Input

This inverting op amp input is used to connect the integrator external components. The integrating current

 (l_{Int}) flows into pin 6 when the analog input (pin 1) is high with respect to the analog feedback (pin 2) in the encode mode or when the digital data input (pin 13) is high in the decode mode. For the opposite states, l_{Int} flows out of Pin 6. Single integration systems require a capacitor and resistor between pins 6 and 7. Multipole configurations will have different circuitry. The resistance between pins 6 and 7 should always be between 8 k Ω and 13 k Ω to maintain good idle channel characteristics.

Pin 7 - Analog Output

This is the integrator op amp output. It is capable of driving a 600-ohm load referenced to $V_{CC}/2$ to +6 dBm and can otherwise be treated as an op amp output. Pins 5, 6, and 7 provide full access to the integrator op amp for designing integration filter networks. The slew rate of the internally compensated integrator op amp is typically 0.5 $V/\mu s$. Pin 7 output is current limited for both polarities of current flow at typically 30 mA.

Pin 8 - VEE

The circuit is designed to work in either single or dual power supply applications. Pin 8 is always connected to the most negative supply.

Pin 9 - Digital Output

The digital output provides the results of the delta modulator's conversion. It swings between VCC and VEE and is CMOS or TTL compatible. Pin 9 is inverting with respect to pin 1 and non-inverting with respect to pin 2. It is clocked on the falling edge of pin 14. The typical 10% to 90% rise and fall times are 250 ns and 50 ns respectively for VCC = 12 V and CL = 25 pF to ground.

Pin 10 - V_{CC}/2 Output

An internal low impedance mid-supply reference is provided for use of the MC3417/18 in single supply applications. The internal regulator is a current source and must be loaded with a resistor to insure its sinking capability. If a +6 dBmo signal is expected across a 600 ohm input bias resistor, then pin 10 must sink 2.2 V/600 $\Omega=3.66$ mA. This is only possible if pin 10 sources 3.66 mA into a resistor normally and will source only the difference under peak load. The reference load resistor is chosen accordingly. A 0.1 μF bypass capacitor from pin 10 to VEE is also recommended. The VCC/2 reference is capable of sourcing 10 mA and can be used as a reference elsewhere in the system circuitry.

Pin 11 - Coincidence Output

The duty cycle of this pin is proportional to the voltage across C_S. The coincidence output will be low whenever the content of the internal shift register is all 1s or all 0s. In the MC3417 the register is 3 bits long

DEFINITIONS AND FUNCTIONS OF PINS (continued)

while the MC3418 contains a 4 bit register. Pin 11 is an open collector of an NPN device and requires a pull-up resistor. If the syllabic filter is to have equal charge and discharge time constants, the value of Rp should be much less than Rs. In systems requiring different charge and discharge constants, the charging constant is RsCs while the decaying constant is (Rs + Rp)Cs. Thus longer decays are easily achievable. The NPN device should not be required to sink more than 3 mA in any configuration. The typical 10% to 90% rise and fall times are 200 ns and 100 ns respectively for RL = 4 k Ω to +12 V and CL = 25 pF to ground.

Pin 12 - Digital Threshold

This input sets the switching threshold for pins 13, 14, and 15. It is intended to aid in interfacing different logic families without external parts. Often it is connected to the V_{CC}/2 reference for CMOS interface or can be biased two diode drops above V_{EE} for TTL interface.

Pin 13 - Digital Data Input

In a decode application, the digital data stream is applied to pin 13. In an encoder it may be unused or may be used to transmit signaling message under the control of pin 15. It is an inverting input with respect to pin 9. When pins 9 and 13 are connected, a toggle flip-flop is formed and a forced idle channel pattern

FIGURE 1 - POWER SUPPLY CURRENT

can be transmitted. The digital data input level should be maintained for 0.5 μ s before and after the clock trigger for proper clocking.

Pin 14 - Clock Input

The clock input determines the data rate of the codec circuit. A 32K bit rate requires a 32 kHz clock. The switching threshold of the clock input is set by pin 12. The shift register circuit toggles on the falling edge of the clock input. The minimum width for a positive-going pulse on the clock input is 300 ns, whereas for a negative-going pulse, it is 900 ns.

Pin 15 - Encode/Decode

This pin controls the connection of the analog input comparator and the digital input comparator to the internal shift register. If high, the result of the analog comparison will be clocked into the register on the falling edge at pin 14. If low, the digital input state will be entered. This allows use of the IC as an encoder/decoder or simplex codec without external parts. Furthermore, it allows non-voice patterns to be forced onto the transmission line through pin 13 in an encoder.

Pin 16 - VCC

The power supply range is from 4.75 to 16.5 volts between pin VCC and VEE.

FIGURE 2 — I_{GCR}, GAIN CONTROL RANGE and I_{Int} — INTEGRATING CURRENT

FIGURE 3 — INPUT BIAS CURRENTS, ANALOG COMPARATOR OFFSET VOLTAGE AND CURRENT

FIGURE 5 - V/I CONVERTER OFFSET VOLTAGE,
VIO and VIOX

FIGURE 4 – INTEGRATOR AMPLIFIER OFFSET VOLTAGE AND CURRENT

6

FIGURE 6 - DYNAMIC INTEGRATING CURRENT MATCH

TYPICAL PERFORMANCE CURVES

FIGURE 9 — NORMALIZED DYNAMIC INTEGRATING CURRENT MATCH versus CLOCK FREQUENCY

FIGURE 10 — DYNAMIC TOTAL LOOP OFFSET versus CLOCK FREQUENCY

FIGURE 11 - BLOCK DIAGRAM OF THE CVSD ENCODER

FIGURE 12 - CVSD WAVEFORMS

FIGURE 13 - BLOCK DIAGRAM OF THE CVSD DECODER

FIGURE 14 – 16 kHz SIMPLEX VOICE CODEC (Using MC3417, Single Pole Companding and Single Integration)

CIRCUIT DESCRIPTION

The continuously variable slope delta modulator (CVSD) is a simple alternative to more complex conventional conversion techniques in systems requiring digital communication of analog signals. The human voice is analog, but digital transmission of any signal over great distance is attractive. Signal/noise ratios do not vary with distance in digital transmission and multiplexing, switching and repeating hardware is more economical and easier to design. However, instrumentation A to D converters do not meet the communications requirements. The CVSD A to D is well suited to the requirements of digital communications and is an economically efficient means of digitizing analog inputs for transmission.

The Delta Modulator

The innermost control loop of a CVSD converter is a simple delta modulator. A block diagram CVSD Encoder is shown in Figure 11. A delta modulator consists of a comparator in the forward path and an integrator in the feedback path of a simple control loop. The inputs to the comparator are the input analog signal and the integrator output. The comparator output reflects the

sign of the difference between the input voltage and the integrator output. That sign bit is the digital output and also controls the direction of ramp in the integrator. The comparator is normally clocked so as to produce a synchronous and band limited digital bit stream.

If the clocked serial bit stream is transmitted, received, and delivered to a similar integrator at a remote point, the remote integrator output is a copy of the transmitting control loop integrator output. To the extent that the integrator at the transmitting locations tracks the input signal, the remote receiver reproduces the input signal. Low pass filtering at the receiver output will eliminate most of the quantizing noise, if the clock rate of the bit stream is an octave or more above the bandwidth of the input signal. Voice bandwidth is 4 kHz and clock rates from 8 k and up are possible. Thus the delta modulator digitizes and transmits the analog input to a remote receiver. The serial, unframed nature of the data is ideal for communications networks. With no input at the transmitter, a continuous one zero alternation is transmitted. If the two integrators are made leaky, then during any loss of contact the receiver output decays to

CIRCUIT DESCRIPTION (continued)

zero and receive restart begins without framing when the receiver reacquires. Similarly a delta modulator is tolerant of sporadic bit errors. Figure 12 shows the delta modulator waveforms while Figure 13 shows the corresponding CVSD decoder block diagram.

The Companding Algorithm

The fundamental advantages of the delta modulator are its simplicity and the serial format of its output. Its limitations are its ability to accurately convert the input within a limited digital bit rate. The analog input must be band limited and amplitude limited. The frequency limitations are governed by the nyquist rate while the amplitude capabilities are set by the gain of the integrator.

The frequency limits are bounded on the upper end; that is, for any input bandwidth there exists a clock frequency larger than that bandwidth which will transmit the signal with a specific noise level. However, the amplitude limits are bounded on both upper and lower ends. For a signal level, one specific gain will achieve an optimum noise level. Unfortunately, the basic delta modulator has a small dynamic range over which the noise level is constant.

The continuously variable slope circuitry provides increased dynamic range by adjusting the gain of the integrator. For a given clock frequency and input bandwidth the additional circuitry increases the delta modulator's dynamic range. External to the basic delta modulator is an algorithm which monitors the past few outputs of the delta modulator in a simple shift register. The register is 3 or 4 bits long depending on the application. The accepted CVSD algorithm simply monitors the contents of the shift register and indicates

if it contains all 1s or 0s. This condition is called coincidence. When it occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single pole low pass filter. The voltage output of this syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.

The simplicity of the all ones, all zeros algorithm should not be taken lightly. Many other control algorithms using the shift register have been tried. The key to the accepted algorithm is that it provides a measure of the average power or level of the input signal. Other techniques provide more instantaneous information about the shape of the input curve. The purpose of the algorithm is to control the gain of the integrator and to increase the dynamic range. Thus a measure of the average input level is what is needed.

The algorithm is repeated in the receiver and thus the level data is recovered in the receiver. Because the algorithm only operates on the past serial data, it changes the nature of the bit stream without changing the channel hit rate.

The effect of the algorithm is to compand the input signal. If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. Thus the algorithm at the output is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.

The delta modulator encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communications requirements.

APPLICATIONS INFORMATION CVSD DESIGN CONSIDERATIONS

A simple CVSD encoder using the MC3417 or MC3418 is shown in Figure 14. These ICs are general purpose CVSD building blocks which allow the system designer to tailor the encoder's transmission characteristics to the application. Thus, the achievable transmission capabilities are constrained by the fundamental limitations of delta modulation and the design of encoder parameters. The performance is not dictated by the internal configuration of the MC3417 and MC3418. There are seven design considerations involved in designing these basic CVSD building blocks into a specific codec application.

These are listed below:

1. Selection of clock rate

- 2. Required number of shift register bits
- 3. Selection of loop gain
- 4. Selection of minimum step size
- 5. Design of integration filter transfer function
- 6. Design of syllabic filter transfer function
- 7. Design of low pass filter at the receiver

The circuit in Figure 14 is the most basic CVSD circuit possible. For many applications in secure radio or other intelligible voice channel requirements, it is entirely sufficient. In this circuit, items 5 and 6 are reduced to their simplest form. The syllabic and integration filters are both single pole networks. The selection of items 1 through 4 govern the codec performance.

CVSD CIRCUIT SCHEMATIC

CVSD DESIGN CONSIDERATIONS (continued)

Layout Considerations

Care should be exercised to isolate all digital signal paths (pins 9, 11, 13, and 14) from analog signal paths (pins 1–7 and 10) in order to achieve proper idle channel performance.

Clock Rate

With minor modifications the circuit in Figure 14 may be operated anywhere from 9.6 kHz to 64 kHz clock rates. Obviously the higher the clock rate the higher the S/N performance. The circuit in Figure 14 typically produces the S/N performance shown in Figure 15. The selection of clock rate is usually dictated by the bandwidth of the transmission medium. Voice bandwidth systems will require no higher than 9600 Hz. Some radio systems will allow 12 kHz. Private 4-wire telephone systems are often operated at 16 kHz and commercial telephone performance can be achieved at 32K bits and above. Other codecs may use bit rates up to 200K bits/sec.

FIGURE 15 – SIGNAL-TO-NOISE PERFORMANCE OF MC3417 WITH SINGLE INTEGRATION, SINGLE-POLE AND COMPANDING AT 16K BITS – TYPICAL

Shift Register Length (Algorithm)

The MC3417 has a three-bit algorithm and the MC3418 has a four-bit algorithm. For clock rates of 16 kHz and below, the 3-bit algorithm is well suited. For 32 kHz and higher clock rates, the 4-bit system is preferred. Since the algorithm records a fixed past history of the input signal, a longer shift register is required to obtain the same internal history. At 16 bits and below, the 4-bit algorithm will produce a slightly wider dynamic range at the expense of level change response. Basically the MC3417 is designed for low bit rate systems and the MC3418 is intended for high performance, high bit rate system. At bit rates above 64K bits either part will work well.

Selection of Loop Gain

The gain of the circuit in Figure 14 is set by resistor R_X . R_X must be selected to provide the proper integrator step size for high level signals such that the companding ratio does not exceed about 25%. The companding ratio is the active low duty cycle of the coincidence output on pin 11 of the codec circuit. Thus the system gain is dependent on:

- The maximum level and frequency of the input signal.
- 2. The transfer function of the integration filter.

For voice codecs the typical input signal is taken to be a sine wave at 1 kHz of 0 dBmo level. In practice, the useful dynamic range extends about 6 dB above the design level. In any system the companding ratio should not exceed 30%.

To calculate the required step size current, we must describe the transfer characteristics of the integration filter. In the basic circuit of Figure 14, a single pole of 160 Hz is used.

$$R = 10 \text{ k}\Omega, C = 0.1 \mu\text{F}$$

$$\frac{V_0}{I_i} = \frac{1}{C(S + 1/RC)} \equiv \frac{K}{S + \omega_0}$$

$$\omega_0 = 2\pi f$$

$$10^3 = \omega_0 = 2\pi f$$

$$f = 159.2 \text{ Hz}$$

Note that the integration filter produces a single-pole response from 300 to 3 kHz. The current required to move the integrator output a specific voltage from zero is simply:

$$I_i = \frac{V_o}{R} + \frac{C_d V_o}{dt}$$

Now a 0 dBmo sine wave has a peak value of 1.0954 volts. In 1/8 of a cycle of a sine wave centered around the zero crossing, the sine wave changes by approximately its peak value. The CVSD step should trace that change. The required current for a 0 dBm 1 kHz sine wave is:

$$I_{i} = \frac{1.1 \text{ V}}{*2(10 \text{ k}\Omega)} + \frac{0.1 \mu\text{F}(1.1)}{0.125 \text{ ms}} = 0.935 \text{ mA}$$

*The maximum voltage across RI when maximum slew is required is:

Now the voltage range of the syllabic filter is the power supply voltage, thus:

$$R_X = 0.25(V_{CC}) \frac{1}{0.935 \text{ mA}}$$

A similar procedure can be followed to establish the proper gain for any input level and integration filter type.

CVSD DESIGN CONSIDERATIONS (continued)

Minimum Step Size

The final parameter to be selected for the simple codec in Figure 14 is idle channel step size. With no input signal, the digital output becomes a one-zero alternating pattern and the analog output becomes a small triangle wave. Mismatches of internal currents and offsets limit the minimum step size which will produce a perfect idle channel pattern. The MC3417 is tested to ensure that a 20 mVp-p minimum step size at 16 kHz will attain a proper idle channel. The idle channel step size must be twice the specified total loop offset if a one-zero idle pattern is desired. In some applications a much smaller minimum step size (e.g., 0.1 mV) can produce quiet performance without providing a 1-0 pattern.

To set the idle channel step size, the value of R_{min} must be selected. With no input signal, the slope control algorithm is inactive. A long series of ones or zeros never occurs. Thus, the voltage across the syllabic filter capacitor (C_S) would decay to zero. However, the voltage divider of R_S and R_{min} (see Figure 14) sets the minimum allowed voltage across the syllabic filter capacitor. That voltage must produce the desired ramps at the analog output. Again we write the filter input current equation:

$$I_i = \frac{V_0}{R} + C \frac{dV_0}{dt}$$

For values of V_0 near $V_{CC}/2$ the V_0/R term is negligible; thus

$$I_i = C_S \frac{\Delta V_O}{\Delta T}$$

where ΔT is the clock period and ΔV_0 is the desired peak-to-peak value of the idle output. For a 16K-bit system using the circuit in Figure 14

$$l_i = \frac{0.1 \,\mu\text{F} \, 20 \,\text{mV}}{62.5 \,\mu\text{s}} = 33 \,\mu\text{A}$$

The voltage on C_S which produces a 33 μ A current is determined by the value of R_x.

$$I_iR_X = V_Smin$$
; for 33 μ A, $V_Smin = 41.6 \text{ mV}$

In Figure 14 Rs is 18 k Ω . That selection is discussed with the syllabic filter considerations. The voltage divider of Rs and R_{min} must produce an output of 41.6 mV.

$$V_{CC} \frac{R_S}{R_S + R_{min}} = V_{Smin} \qquad R_{min} \simeq 2.4 \text{ M}\Omega$$

Having established these four parameters — clock rate, number of shift register bits, loop gain and minimum step size — the encoder circuit in Figure 14 will function at near optimum performance for input levels around 0 dBm.

INCREASING CVSD PERFORMANCE

Integration Filter Design

The circuit in Figure 14 uses a single-pole integration network formed with a 0.1 μ F capacitor and a 10 k Ω resistor. It is possible to improve the performance of the circuit in Figure 14 by 1 or 2 dB by using a two-pole integration network. The improved circuit is shown.

The first pole is still placed below 300 Hz to provide the 1/S voice content curve and a second pole is placed somewhere above the 1 kHz frequency. For telephony circuits, the second pole can be placed above 1.8 kHz to exceed the 1633 touchtone frequency. In other communication systems, values as low as 1 kHz may be selected. In general, the lower in frequency the second pole is placed, the greater the noise improvement. Then, to ensure the encoder loop stability, a zero is added to keep the phase shift less than 180°. This zero should be placed slightly above the low-pass output filter break frequency so as not to reduce the effectiveness of the second pole. A network of 235 Hz, 2 kHz and 5.2 kHz is typical for telephone applications while 160 Hz, 1.2 kHz and 2.8 kHz might be used in voice only channels. (Voice only channels can use an output low-pass filter which breaks at about 2.5 kHz.) The two-pole network in Figure 16 has a transfer function of:

$$\frac{V_o}{I_i} = \frac{R_0 R_1 \left(S + \frac{1}{R_1 C_1}\right)}{R_2 C_2 (R_0 + R_1) \left(S + \frac{1}{(R_0 + R_1) C_1}\right) S + \left(\frac{1}{R_2 C_2}\right)}$$

FIGURE 16 - IMPROVED FILTER CONFIGURATION

These component values are for the telephone channel circuit poles described in the text.The R2, C2 product can be provided with different values of R and C. R2 should be chosen to be equal to the termination resistor on pin 1

INCREASING CVSD PERFORMANCE (continued)

Thus the two poles and the zero can be selected arbitrarily as long as the zero is at a higher frequency than the first pole. The values in Figure 16 represent one implementation of the telephony filter requirement.

The selection of the two-pole filter network effects the selection of the loop gain value and the minimum step size resistor. The required integrator current for a given change in voltage now becomes:

$$\begin{split} I_{i} &= \frac{V_{o}}{R_{0}} + \left(\frac{R_{2}C_{2}}{R_{0}} + \frac{R_{1}C_{1}}{R_{0}} + C_{1}\right)\frac{\Delta V_{o}}{\Delta T} + \\ &\left(R_{2}C_{2}C_{1} + \frac{R_{1}C_{1}R_{2}C_{2}}{R_{0}}\right)\frac{\Delta V_{o}^{2}}{\Delta T^{2}} \end{split}$$

The calculation of desired gain resistor R_X then proceeds exactly as previously described.

Syllabic Filter Design

The syllabic filter in Figure 14 is a simple single-pole network of 18 $k\Omega$ and 0.33 $\mu F.$ This produces a 6.0 ms time constant for the averaging of the coincidence output signal. The voltage across the capacitor determines the integrator current which in turn establishes the step size. The integrator current and the resulting step size determine the companding ratio and the S/N performance. The companding ratio is defined as the voltage across Cs/Vcc.

The S/N performance may be improved by modifying the voltage to current transformation produced by $R_{\rm X}$. If different portions of the total $R_{\rm X}$ are shunted by diodes, the integrator current can be other than $(V_{\rm CC} - V_{\rm S})/R_{\rm X}$. These breakpoint curves must be designed experimentally for the particular system application. In general, one would wish that the current would double with input level. To design the desired curve, supply current to pin 4 of the codec from an external source. Input a signal level and adjust the current until the S/N performance

is optimum. Then record the syllabic filter voltage and the current. Repeat this for all desired signal levels. Then derive the resistor diode network which produces that curve on a curve tracer.

Once the network is designed with the curve tracer, it is then inserted in place of $R_{\rm X}$ in the circuit and the forced optimum noise performance will be achieved from the active syllabic algorithm.

Diode breakpoint networks may be very simple or moderately complex and can improve the usable dynamic range of any codec. In the past they have been used in high performance telephone codecs.

Typical resistor-diode networks are shown in Figure 17.

FIGURE 17 - RESISTOR-DIODE NETWORKS

If the performance of more complex diode networks is desired, the circuit in Figure 18 should be used. It simulates the companding characteristics of nonlinear $\mathbf{R}_{\mathbf{X}}$ elements in a different manner.

Output Low Pass Filter

A low pass filter is required at the receiving circuit output to eliminate quantizing noise. In general, the lower the bit rate, the better the filter must be. The filter in Figure 20 provides excellent performance for 12 kHz to 40 kHz systems.

TELEPHONE CARRIER QUALITY CODEC USING MC3418

Two specifications of the integrated circuit are specifically intended to meet the performance requirements of commercial telephone systems. First, slope polarity switch current matching is laser trimmed to guarantee proper idle channel performance with 5 mV minimum step size and a typical 1% current match from 15 μ A to 3 mA. Thus a 300 to 1 range of step size variation is possible. Second, the MC3418 provides the four-bit algorithm currently used in subscriber loop telephone systems. With these specifications and the circuit of Figure 18, a telephone quality codec can be mass produced.

The circuit in Figure 18 provides a 30 dB S/Nc ratio over 50 dB of dynamic range for a 1 kHz test tone at a 37.7K bit rate. At 37.7K bits, 40 voice channels may be multiplexed on a standard 1.544 megabit T1 facility. This codec has also been tested for 10-7 error rates with asynchronous and synchronous data up to 2400 baud and for reliable performance with DTMF signaling. Thus, the design is applicable in telephone quality subscriber loop carrier systems, subscriber loop concentrators and small PABX installations.

TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

The Active Companding Network

The unique feature of the codec in Figure 18 is the step size control circuit which uses a companding ratio reference, the present step size, and the present syllabic filter output to establish the optimum companding ratios and step sizes for any given input level. The companding ratio of a CVSD codec is defined as the duty cycle of the coincidence output. It is the parameter measured by the syllabic filter and is the voltage across Cs divided by the voltage swing of the coincidence output. In Figure 18, the voltage swing of pin 11 is 6 volts. The operating companding ratio is analoged by the voltage between pins 10 and 4 by means of the virtual short across pins 3 and 4 of the V to I op amp within the integrated circuit. Thus, the instantaneous companding ratio of the codec is always available at the negative input of A1.

The diode D1 and the gain of A1 and A2 provide a companding ratio reference for any input level. If the output of A2 is more than 0.7 volts below $V_{CC}/2$, then the positive input of A1 is $(V_{CC}/2 - 0.7)$. The on diode drop at the input of A1 represents a 12% companding ratio (12% = 0.7 V/6 V).

The present step size of the operating codec is directly

related to the voltage across R_X , which established the integrator current. In Figure 18, the voltage across R_X is amplified by the differential amplifier A2 whose output is single ended with respect to pin 10 of the IC.

For large signal inputs, the step size is large and the output of A2 is lower than 0.7 volts. Thus D1 is fully on. The present step size is not a factor in the step size control. However, the difference between 12% companding ratio and the instantaneous companding ratio at pin 4 is amplified by A1. The output of A1 changes the voltage across $R_{\rm X}$ in a direction which reduces the difference between the companding reference and the operating ratio by changing the step size. The ratio of R4 and R3 determines how closely the voltage at pin 4 will be forced to 12%. The selection of R3 and R4 is initially experimental. However, the resulting companding control is dependent on $R_{\rm X}$, R3, R4, and the full diode drop D1. These values are easy to reproduce from codec to codec.

For small input levels, the companding ratio reference becomes the output of A2 rather than the diode drop. The operating companding ratio on pin 4 is then compared to a companding ratio smaller than 12% which is determined by the voltage drop across $R_{\rm X}$ and the gain of A2

FIGURE 18 – TELEPHONE QUALITY DELTAMOD CODER
(Both double integration and active companding control are used to obtain improved CVSD performance.

Laser trimming of the integrated circuit provides reliable idle channel and step size range characteristics.)

TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

FIGURE 19 — SIGNAL-TO-NOISE PERFORMANCE AND FREQUENCY RESPONSE (Showing the improvement realized with the circuit in Figure 18.)

a. SIGNAL-TO-NOISE PERFORMANCE OF TELEPHONY QUALITY DELTAMODULATOR

b. FREQUENCY RESPONSE versus INPUT LEVEL (SLOPE OVERLOAD CHARACTERISTIC)

and A1. The gain of A2 is also experimentally determined, but once determined, the circuitry is easily repeated.

With no input signal, the companding ratio at pin 4 goes to zero and the voltage across $R_{\rm X}$ goes to zero. The voltage at the output of A2 becomes zero since there is no drop across $R_{\rm X}$. With no signal input, the actively controlled step size vanished.

The minimum step size is established by the 500 k resistor between V_{CC} and $V_{CC}/2$ and is therefore independently selectable.

The signal to noise results of the active companding network are shown in Figure 19. A smooth 2 dB drop is realized from +12 dBm to -24 under the control of A1. At -24 dBm, A2 begins to degenerate the companding reference and the resulting step size is reduced so as to extend the dynamic range of the codec by 20 dBm.

The slope overload characteristic is also shown. The active companding network produces improved performance with frequency. The 0 dBm slope overload point is raised to 4.8 kHz because of the gain available in controlling the voltage across $R_{\rm X}$. The curves demonstrate that the level linearity has been maintained or improved.*

The codec in Figure 18 is designed specifically for 37.7K bit systems. However, the benefits of the active companding network are not limited to high bit rate systems. By modifying the crossover region (changing the gain of A2), the active technique may be used to improve the performance of lower bit rate systems.

The performance and repeatability of the codec in Figure 18 represents a significant step forward in the art and cost of CVSD codec designs.

^{*}A larger value for C2 is required in the decoder circuit than in the encoder to adjust the level linearity with frequency. In Figure 18, 0.050 µF would work well.

FIGURE 21 - FULL DUPLEX/32K BIT CVSD VOICE CODEC USING MC3517/18 AND MC3503/6 OP AMP

Codec Components

 $\begin{array}{l} {\rm R}_{X,1}, {\rm R}_{X,2} - 3.3 \ k\Omega \\ {\rm R}_{\rm P1}, {\rm R}_{\rm P2} - 3.3 \ k\Omega \\ {\rm R}_{\rm S1}, {\rm R}_{\rm S2} - 100 \ k\Omega \\ {\rm R}_{\rm II}, {\rm R}_{\rm I2} - 20 \ k\Omega \\ {\rm R}_{\rm I1}, {\rm R}_{\rm I2} - 20 \ k\Omega \\ {\rm R}_{\rm M1}, {\rm R}_{\rm M2} - 5 \ M\Omega \ (MC3417) \\ {\rm Minimum \ step \ size = 20 \ mV} \\ {\rm M}_{\rm M1}, {\rm R}_{\rm M2} - 15 \ M\Omega \ (MC3418) \\ {\rm Minimum \ step \ size = 6 \ mV} \end{array}$

 C_{S1} , $C_{S2} - 0.05 \,\mu\text{F}$ C_{11} , $C_{12} - 0.05 \,\mu\text{F}$

2 MC3417 (or MC3418) 1 MC3403 (or MC3406)

Note: All Res 5% All Cap 5%

Input Filter Specifications

12 dB/Octave Rolloff above 3.3 kHz 6 dB/Octave Rolloff below 50 Hz

Output Filter Specifications Break Frequency — 3.3 kHz Stop Band — 9 kHz

Stop Band — 9 kHz Stop Band Atten — 50 dB Rolloff — > 40 dB/Octave

Filter Components

R1 - 965 Ω	C1 - 33 µF
R2 – 72 kΩ	C2 - 837 pF
R3 $-$ 72 k Ω	C3 - 536 pF
$R4 - 63.46 \text{ k}\Omega$	C4 - 1000 pF
R5 $-$ 127 k Ω	C5 - 222 pF
$R6 - 365.5 k\Omega$	C6 - 77 pF
$R7 - 1645 M\Omega$	C7 - 38 pF
R8 – 72 kΩ	C8 837 pF
R9 - 72 kΩ	C9 - 536 pF
$R10-295 k\Omega$	
R11 - 72 kΩ	

Note All Res. 0 1% to 1%. All Cap 1.0%

COMPARATIVE CODEC PERFORMANCE

The salient feature of CVSD codecs using the MC3517 and MC3518 family is versatility. The range of codec complexity tradeoffs and bit rate is so wide that one cannot grasp the interdependency of parameters for voice applications in a few pages.

Design of a specific codec must be tailored to the digital channel bandwidth, the analog bandwidth, the quality of signal transmission required and the cost objectives. To illustrate the choices available, the data in Figure 22 compares the signal-to-noise ratios and dynamic range of various codec design options at 32K bits. Generally, the relative merits of each design feature will remain intact in any application. Lowering the bit rate will reduce the dynamic range and noise performance of all techniques. As the bit rate is increased, the overall performance of each technique will improve and the need for more complex designs diminishes.

Non-voice applications of the MC3517 and MC3518 are also possible. In those cases, the signal bandwidth and amplitude characteristics must be defined before the specification of codec parameters can begin. However, in general, the design can proceed along the lines of the voice applications shown here, taking into account the different signal bandwidth requirements.

FIGURE 22 — COMPARATIVE CODEC PERFORMANCE — SIGNAL-TO-NOISE RATIO FOR 1 kHz TEST TONE

These curves demonstrate the improved performance obtained with several codec designs of varying complexity.

Curve a — Complex companding and double integration (Figure 18 — MC3418)

Curve b — Double integration (Figure 21 using Figure 6 — MC3418)

Curve c — Single integration (Figure 21 – MC3418) with 6 mV step size

Curve d — Single integration (Figure 21 – MC3417) with 25 mV step size

MC3419 MC3519

Product Preview

TELEPHONE LINE FEED AND 2- TO 4-WIRE CONVERSION CIRCUIT

. . . designed to replace the hybrid transformer circuit in Class 5, PABX and Subscriber carrier equipment, providing signal separation for two-wire differential to four-wire single-ended conversions and suppression of longitudinal signals at the two-wire input. It provides dc line current for powering the telset, operating from up to a 60 V supply.

- Transmit and Receive Gain is Externally Selected
- On-Hook Power Below 5.0 mW
- Current Sensing Outputs Provided for Off-Hook Status from Both Tip and Ring Leads
- Size and Weight Reduction Over Present Approaches
- Compatible with IEEE and REA Specifications
- The sale of this product is licensed under patent No. 4,004,109.
 All royalties related to this patent are included in the unit price.

SUBSCRIBER LOOP INTERFACE CIRCUIT (SLIC)

BIPOLAR LASER-TRIMMED INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice.

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Maximum Rated Voltage		V _{EE1} , V _{EE2}	60	Vdc
Maximum Power Dissipation T _A = 25°C Derate above +25°C		PD	1.5	Watts
	MC3419 MC3519	TA	0 to +70 -40 to +85	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Operating Junction Temperature		Tj	150	°C

ELECTRICAL CHARACTERISTICS (V_{EE1} = V_{EE2} = -48 V, V_{CC} = 0, V_{AG} = -6.0 V, T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Loop Current Range (R _{Loop} = 0 - 1900 Ω)	ILp	20	-	120	mA
Transhybrid Reception Ratio — Figure 2 (R _L = 900 Ω , V _{RX} , = 0.775 V _{RMS} , V _G = 0)	V _{RL} /V _{RX}	-0.1	0	+0.1	dB
Transhybrid Transmission Ratio — Figure 2 (R _L = 900Ω , V _{RX} = 0, V _G = 0.775 V _{RMS})	V _{TX} /V _{RL}	-0.1	.0	+0.1	dB
Transhybrid Rejection Ratio – Figure 2 $(R_L = 900 \Omega, V_{RX} = 0.775 V_{RMS}, V_G = 0)$	V _{TX} /V _{RX}	1	-46	-	dB
Input Resistance (@R and T)—Figure 2	R _{in}	1	900		Ω
In-Band Longitudinal Suppression Ratio — Figure 3 (eLon = 0.775 V_{RMS} , f = 1 kHz, R_L = 900 Ω)	V _{TX} /eLon	_	-66	_	dB
60 Cycle Longitudinal Suppression Ratio — Figure 3 (eLon = 30 V _{RMS} , f = 60 Hz, R _L = 1900 Ω)	V _{TX} /e _{Lon}	-	-66	-	dB
Longitudinal Capacity — Figure 3 (60 Hz)	^j Lon	1	35	_	mARMS
Level Linearity (f = 300 Hz to 3400 Hz, Reception V_{RX} = 0.775 V_{RMS} , Transmission V_{RL} = 0.775 V_{RMS})	V _{RX} /V _{RL} V _{RL} /V _{TX}	-0.1 -0.1	<u>-</u>	+0.1 +0.1	dB dB
Idle Noise		<u>' - </u>	00		dBrnC _o
Off-Hook Power Dissipation (IC) (ILoop = 120 mA)	PD (Off)		06	_	Watts
On-Hook Power Dissipation	P _D (On)		50	<u> </u>	mW
Tip Status Current (I _{Loop} = 0 to 120 mA)	ITS/IT		0.0104		mA/mA
Ring Status Current (ILoop = 0 to 120 mA)	IRS/IR	-	0.0104	_	mA/mA
Voltage Range of Analog Ground	V _R	0	-	-12	Volts
Analog Ground Input Current	^I Gnd		10	-	μА
Fault Currents (Tip to V_{CC} — Figure 2) (Ring to V_{CC} — Figure 2) (Ring and Tip to V_{CC} — Figure 2) (Tip to Ring Short — Figure 2)	T R IT + IR T+ R	-	0 5.0 5.0 120		mA mA mA
Power Down Input Levels				 	Vdc
Logic High Logic Low	V _{IH} V _{IL}	V _{CC} -1.0	<u> </u>	- V _{CC} -2 0	Vuc

18 v_{cc} 1TS тs MJE271 ¹RS -12 V RS MC3419 (SLIC) PD R1 -**W**-16.4 k R3 ₩ 30 450 СР 10 µF 10 k RХ VRX VRX MC1458 R2 TX1 14.65 k 14.65 k 450 16.4 k 1 0 μF TX2 $R_o = 900 \Omega$ MC1458 I_{МЈЕ270} VAG ΕN R = 400 Ω MDA 220 VEE1 VEE2 _6.0 ∨ -48 V

FIGURE 2 - AC TRANSMISSION TESTS OF MC3419 AT BALANCE

FIGURE 3 - LONGITUDINAL TEST

FIGURE 4 - DESIGN EQUATIONS

Internal to the MC3419 are three precise gain constants

K5 and K5' are selected by connecting TX1 or TX2 to RX respectively. The remaining TX pin is connected to R6 and R7.

1. The dc feed resistance is Rf

$$R_f = \frac{R1 + R2}{1 + K1K2} + R3 + R4$$

2 The termination resistance is R_O

$$R_0 = \frac{R1 + R2}{1 + K1K2K5} + R3 + R4$$

FIGURE 5 — HYBRID LOOP CURRENT versus LOOP RESISTANCE (FOR 24 AND 48 V SUPPLY)

FIGURE 6 - RING TRIP USING MC3419

FIGURE 7 - MOTOROLA 3-CHIP SUBSCRIBER CHANNEL UNIT

FIGURE 8 - SUBSCRIBER LOOP INTERFACE CIRCUIT, MC3419

NOTE: The sale of this product is licensed under patent No. 4,004,109. All royalties related to this patent are included in the unit price.

DESCRIPTION OF MC3419 SUBSCRIBER LOOP INTERFACE CIRCUIT

Figure 8 depicts a complete subscriber loop interface circuit for standard end-office telephone loop connections. The circuit consists of an 18 pin dual in-line MC3419, MJE271 PNP and MJE270 NPN power darlington transistors, an MDA220 bridge rectifier and six resistors. This composite circuit provided the following line interface functions:

- 2-wire balanced to 4-wire single-ended signal conversion.
- 2. Independent Receive Gain selection (R5).
- 3. Independent Transmit Gain selection (R8).
- 4. Independent Transhybrid null selection (R6 + R7)*
- 5. 600 to 900 Ω resistance ac loop termination (R1, R2, R3, R4)*.
- 6. Resistive dc power-feed from 400 to 800 Ω (R1, R2, R3, R4).
- 7. Ring to ground, Tip to ground, Ring and Tip to ground fault current limiting (10 mA).
- Rejection of longitudinal or common mode interference from 50 to 3400 Hz (30 mA RMS),
- 9. 1500 volt secondary lightning protection.
- 10. Temporary power line fault protection.
- 11. Proportional ring current sense indication in RS.
- 12. Proportional tip current sense indication in TS.
- Suppression of longitudinal component in RS and TS normal connections.
- Independent 4-wire common input for noise isolation.
- Independent quiet battery supply input for battery noise rejection.
- Near zero power dissipation in normal on-hook condition.
- Level linearity of better than 0.1 dB over the entire level and frequency range.

DC CHARACTERISTICS

The first function the SLIC must perform is to enable and disable itself on the basis of the switch-hook condition in the attached instrument. With the station on-hook, the Ring and Tip terminals are open. No metallic current can flow in resistors R1 and R2, thus the input and various outputs of circuit A and A' are zero. The control outputs of A and A' are off, causing the op amps B and B' and the voltage reference to have no bias. The reference pull down resistor pulls the reference voltage to V_{EE}. No current flows in any part of the circuit if the Tip and Ring terminals are open. The power dissipation in this state is back bias leakage only.

When a load resistance (R_L) is connected to Tip and Ring, the dc current flows in R1, R2, and circuits A and A', The control outputs, op amps B, B', and the voltage reference are now on. The current gain of circuit A and A' to the TX outputs is K2 = 4. The current gain of circuits B and B' is K1 = 23.75. For a current in R1 and R2 of I_N , the current in the collector of circuits B and B' is K1K2 I_N . The total current in the load is (1+K1K2) I_N . The dc feed resistance at the Tip and Ring terminals is

$$R_f = \frac{(R1 + R2)}{1 + K1K2} + R3 + R4$$

The current which flows in the load will be:

$$I_{Loop} = \frac{V_{CC} - V_{EE2}}{R_1 + R_f}$$

The dc feed current is thus determined by the loop resistance.

The dc component of i_X is a measure of the mismatch between the source and the sink current of the various differential stages. Circuit C and C' source or sink current through CN and CP until the dc component of $i_X=0$. C and C' also keep the mid-point voltage of the load at $V_{CC}/2$. Thus, with a metallic current in the load, the SLIC supplies current to the load with impedance R_f .

Various fault dc conditions must be accounted for in practice. The Tip and Ring leads can be shorted to ground in the field in any combination. The SLIC limits these fault currents by the arrangement of the control outputs of circuit A and A'. If the Ring lead is tied to ground, a current through R2 will turn on the control output of circuit A. This enables op amp B' and provides a sinking path for the voltage reference. If the Tip lead is open or connected to ground, the current in R1 is zero. The i_x control lead is sinking current but cannot turn on circuit C' because the voltage reference is V_{EE}. Circuit B is also off since the control output of circuit A' is off. The current in the Ring lead is now [(V_{CC}·V_{EE})/(R4 + R2)]. The Ring fault current in the SLIC is less than 10 mA.

SMALL SIGNAL AC CHARACTERISTICS

With a load R_{L} applied across Tip and Ring, the flow of metallic current in R_{L} enables and biases the SLIC circuit. Now consider an ac generator in series with R_{L} causing differential signal across Ring and Tip at a frequency between 300 and 3400 Hz. The impedance presented to the generator is $R_{L}+R_{o}$ where R_{o} is the ac input impedance of the SLIC at the two-wire part. R_{o} is derived by a method similar to R_{f} .

The gain of circuits A, A', B, and B' is K1 = 4 and K2 = 23.75 as before. However, the TX2 path to i_{TX} is an

^{*}Reflected complex impedances may also be provided with an additional capacitor.

added load for ac signals and the current returned to R_X is divided by the current divider of 2.5 k Ω and 1.66 k Ω . As connected, the ratio of these resistors creates another constant K5 = 0.4. (TX1 and TX2 connection can be reversed to produce K5' = 0.6).

The ac termination is thus:

$$R_f = \frac{R1 + R2}{1 + K1K2K5} + R3 + R4$$

The accurrent in SLIC is then

$$i_g = \frac{v_g}{R_L + R_o}$$
 where v_g is the generator voltage.

The current in R1 and R2 is given by $\frac{i_g}{1+K1K2K5}$

and the output signal current is

$$i_{TX} = \frac{K1(1-K5)}{i_g (1+K1K2K5)}$$
 thus

$$\frac{V_{TX}}{v_g} = \frac{K1(1-K5)}{1+K1K2K5} \left(\frac{R8}{R_L + R_o}\right)$$

The differential signal in the load is input, as two out of phase signals, into circuits A' and A. The A' signal is inverted and summed in phase with the output of A in A". The transmit gain voltage of the SLIC can be set at any arbitrary value by selecting R8.

Now assume a two-wire load R_L and a generator v_g at V_{RX} . The generator sees a low impedance at R_X , assuming V_{AG} is connected to a dc potential. The current into R_X is simply $i_{RX} = v_0/R5$.

This current is multiplied by K1 in circuits B and B'. The output transistors drive a load $R_L+R3+R4$ in parallel with (R1+R2)/(1+K1K2K5) so that the voltage gain from V_{RX} to Tip and Ring is

$$\frac{V_{RL}}{V_{RY}}$$
 = -K2 $\frac{R_L}{R5}$ x C₁ where

$$c_1 = \left[\frac{\text{R1} + \text{R2}}{(\text{R1} + \text{R2}) + (\text{R}_L + \text{R3} + \text{R4})(1 + \text{K1} \times 2 \times 5)} \right]$$

The signal current across the load is in phase with V_{RX} and out of phase with the termination R_{o} . The current in R_{o} causes a signal at i_{TX} .

This current may be cancelled for any load R_L by selecting the sum of (R6 + R7).

Balance is achieved for a load R_I by designing

$$(R6 + R7) = \frac{R5(1+K1K2K5)}{K1K2(1-K5)} \times C_2$$
 where

$$\mathbf{C_2} = \left[\frac{(\mathsf{R1+R2}) + (\mathsf{R_L+R3+R4})(1 + \mathsf{K1K2K5})}{\mathsf{R1+R2}} \right]$$

The current amplifiers within the SLIC are all wide-band amplifiers such that essentially no group delay occurs for 4 kHz band limited signals and resistive loads. Thus, the SLIC functions as a near ideal transimpedance converter for ports V_{RX}, V_{RL} , and V_{TX} . Complex loads Z_L may be balanced by replacing (R6 + R7) with a complex balance network z.

LONGITUDINAL SIGNAL SUPPRESSION

Both low frequency and voice-band longitudinal rejection are produced by the same mechanisms within this SLIC.

A longitudinal interference from 0 to 3400 Hz in the loop produces a common mode voltage at Ring and Tip. Circuit A and A' sense these in phase currents in R1 and R2 and cause an ac signal $i_{\rm X}$. Circuit C and C' are driven by the Class B transistor pair to produce currents which will reduce the common mode component at nodes CN and CP by the open loop ac gain of the circuit C and C'. The high compliance of the $i_{\rm X}$ output and a large current gain in circuit C and C' allow the open loop gain to be quite large.

Constants K1, K2 are held in close tolerance within the integrated circuit. If R1 + R3 = R2 + R4, then the longitudinal balance at Tip and Ring will be good. Thus, the remaining component of common mode signal at CP and CN will be equal. The phase inversion in A" will cause the common mode remainder to sum out of phase at TX2 and thus will contribute little output at V_{TX} . The overall performance of this common mode rejection loop is determined by the matching of R1 + R3 and R4 + R2, as well as the matching of constants within the chip. 60 dB appears readily achievable.

The circuit C and C' outputs are limited to 30 mA to insure longitudinal capacity for both the IEEE and REA standards.

LOOP CONDITION SENSING

Three analog sensing outputs are provided for detecting the condition of the subscriber loop. Each output consists of the open collector of a current sourcing device. The RS and TS outputs are derived from the sense currents in circuits A and A'. Thus, in a normal metallic connection the TS and RS currents are related to Ring and Tip currents by constants.

DC Metallic

$$I_{RS} = \frac{I_R}{1 + K1K2} = \frac{V_{CC} - V_{EE}}{(R_L + R_f)(1 + K1K2)}$$

$$I_{TS} = \frac{I_T}{1+K1K2} = \frac{V_{CC} - V_{EE}}{(R_L + R_f)(1+K1K2)}$$

AC Metallic

$$i_{RS} = \frac{V_{RL}}{(R_L + R_o)(1 + K1K2K5)}$$
 $i_{TS} = \frac{V_{RL}}{(R_L + R_o)(1 + K1K2K5)}$

Note that if the current has a metallic path from Tip to Ring, but also an unbalanced load to ground in Ring or Tip, that the RS current will be proportional to the Ring current and the TS current will be proportional to the Tip current. Second party detection and ground start detection can be handled using this feature. Providing a metallic path does exist, the longitudinal component in RS and TS will be suppressed in RS and TS by circuit C and C'. With no metallic connection, circuit B and B' are off such that the longitudinal impedance is R1 + R3 and the induced current from a given source will be decreased by 1 + K1K2. In this case, the longitudinal current will produce peak outputs at RS and TS which are less than the average output of a long-loop metallic current.

The longitudinal sense output provides a full-wave rectified current proportional to the longitudinal loop current once metallic connection has been established. Simple filtering of this lead can produce a dc measure of the longitudinal status of an operating loop. Excessive longitudinal current can produce a fault indication.

NOISE AND POWER SUPPLY REJECTION

The main 48-volt battery in a large office can supply considerable power but is often quite noisy and difficult to filter. Without a means of rejecting supply noise, the channel to channel crosstalk can also become excessive. In this SLIC, two VEE pins are provided to allow for quiet battery and power battery connection. Circuits A and A'

support the sensing resistors and control all other current in the SLIC. If the voltage across V_{CC} and V_{EE2} is filtered, noise at V_{CC} will not effect the performance of the loop. In a short circuit condition, the V_{EE} current will be about 130 mA while the V_{EE2} current is 3 mA. It is, therefore, possible to supply V_{EE2} from a far quieter supply.

Furthermore, an analog ground input (V_{AG}) is provided to allow for proper noise grounding for the V_{RX} and V_{TX} terminals. The true input signal is the ac voltage between V_{AG} and V_{RX} . The true output voltage should be taken between V_{AG} and V_{TX} .

PROTECTION

Two types of electrical hazards can be expected at the Ring and Tip terminals of the SLIC. Transient currents caused by electrical storms and power line cross connects during installation and maintenance. The diode bridge, coupled with R3 and R4, provide this protection. Ring and Tip are normally protected by a gas tube or carbon blocks against the primary effects of a near lightning strike. The SLIC itself must provide secondary protection for 1500-volt transients. A transient voltage at Ring or Tip will turn on one of the four diodes. The resistors limit the maximum current to 50 amps, which is the rated surge current of the diodes. A typical turn on time of 200 ns is readily achievable with silicon rectifiers.

Power line faults from 120-volt lines will be half-wave rectified by the upper and lower pair resulting in a current of 2 amp RMS in each with 30 ohm source resistors.

Extended short circuit conditions will cause R3 and R4 to burn open, eliminating the fault and causing no further damage. The externalization of the R3 and R4 resistors from the SLIC's feedback loop is a critical step in providing sufficient electrical hazard protection.

6

Voltage Comparators

VOLTAGE COMPARATORS

Temperatur	re Range		
Commercial	Military		Page
LM311/211*	LM111	High-Performance Voltage Comparators	7-3
LM339, A/			
239, A*	LM139, A	Quad Single-Supply Comparators	7-7
LM2901*	_	Quad Comparator	7-11
MC1414	MC1514	Dual Differential Voltage Comparator	7-15
MC1710C	MC1710	Differential Voltage Comparators	7-19
MC1711C	MC1711	Dual Differential Voltage Comparators	7-23
MC3302P*	MC3302L	Quad Single-Supply Comparator	7-27
MC3430-3433	_	Quad High-Speed Voltage Comparators	

^{*}Industrial

HIGHLY FLEXIBLE VOLTAGE COMPARATORS

The ability to operate from a single power supply of 5.0 to 30 volts or $\pm 15 \cdot \text{volt}$ split supplies, as commonly used with operational amplifiers, makes the LM111 / LM211 / LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the VCC or the VEE supply. This flexibility makes it possible to drive MDTL, MRTL, MTTL, or MOS logic. The output can also switch voltages to 50 volts at currents to 50 mA. Thus the LM111 / LM211 / LM311 can be used to drive relays, lamps or solenoids.

SUGGESTED COMPARATOR DESIGN CONFIGURATIONS

SPLIT POWER-SUPPLY with OFFSET BALANCE

SINGLE SUPPLY

GROUND-REFERRED LOAD

Input polarity is reversed when GND pin is used as an output.

LOAD REFERRED to NEGATIVE SUPPLY

Input polarity is reversed when GND pin is used as an output.

LOAD REFERRED to POSITIVE SUPPLY

STROBE CAPABILITY

LM111 LM211 LM311

HIGH PERFORMANCE
VOLTAGE COMPARATORS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

J8 SUFFIX CERAMIC PACKAGE CASE 693

H SUFFIX METAL PACKAGE CASE 601

N SUFFIX PLASTIC PACKAGE CASE 626 (LM311 Only)

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

		Va	lue		
Rating	Symbol	LM111 LM211	LM311	Unit	
Total Supply Voltage	V _{CC} + V _{EE}	36	36	Vdc	
Output to Negative Supply Voltage	VO -VEE	50	50 40		
Ground to Negative Supply Voltage	VEE	30	30	Vdc	
Input Differential Voltage	V _{ID}	±30	±30	Vdc	
Input Voltage (See Note 1)	V _{in}	±15	±15	Vdc	
Power Dissipation (Pkg. Limitation) Metal Package Derate above T _A = +25°C Plastic* and Ceramic Dual In-Line Packages Derate above T _A = +25°C	PD	6 4 6 5	mW mW/ ^O C mW mW/ ^O C		
Operating Ambient Temperatures Range LM111 LM211 LM311	TA	-55 to +125 -25 to +85 -	– – 0 to +70	°c	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C	

^{*}LM311N only is available in the plastic dual in-line package.

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted.)

			LM111 LM211			LM311		
Characteristic	Symbol	Min	Тур	Max	Mın	Тур	Max	Unit
Input Offset Voltage (See Note 2.)	IVIOI							mV
$R_S \leqslant 50 \text{ k}\Omega$, $T_A = +25^{\circ}\text{C}$		-	07	30	l – i	20	7.5	
$R_S \leq 50 \text{ k}\Omega$, $T_{low}^* \leq T_A \leq T_{high}^*$	l			40	-	_	10	
Input Offset Current (See Note 2.)	loll							nΑ
T _A = +25°C	ļ	-	40	10	-	60	50	
T _{low} ≤T _A ≤T _{high}	<u> </u>	-	_	20			70	
Input Bias Current	1 _{IB}]						nA
T _A = +25°C		-	60	100	- 1	100	250	
T _{low} ≤T _A ≤T _{high}	<u> </u>		-	150			300	,,,,,,,
Voltage Gain	Av	-	200			200		V/mV
Response Time (See Note 3.)	^t TLH		200			200		ns
Saturation Voltage	VOL							V
$T_A = +25^{\circ}C$, $V_{ID} \le -5.0 \text{ mV}$, $I_O \approx 50 \text{ mA}$		_	0.75	15	-			
$V_{ID} \leqslant -10 \text{ mV}, I_O = 50 \text{ mA}$	ļ.	-	' -	-	- 1	0.75	1.5	
$T_{low} \leqslant T_A \leqslant T_{high}$, $V_{CC} \geqslant 45 \text{ V}$, $V_{EE} = 0$			1					
$V_{ID} \leqslant -60 \mathrm{mV}$, $I_{sink} \leqslant 80 \mathrm{mA}$		-	0.23	0.4			-	
$V_{ID} \leqslant -10 \text{ mV}, I_{sink} \leqslant 8.0 \text{ mA}$						0.23	04	
Strobe "On" Current	Is		3.0		_	30	-	mA
Output Leakage Current	OL	 	1				1	
$T_A = +25^{\circ}C$, $V_{ID} \ge 5.0 \text{ mV}$, $V_O = 35 \text{ V}$		-	02	10	-	-	-	nΑ
V _{ID} ≥ 10 mV, V _O = 35 V		-	_		- 1	0.2	50	nA
$T_{low} \leqslant T_A \leqslant T_{high}$, $V_{ID} \geqslant 50 \text{ mV}$, $V_O = 35 \text{ V}$			0.1	05			<u> </u>	μΑ
Input Voltage Range	VIR							V
T _{low} ≤T _A ≤T _{high}	.l		±14		-	±14		
Positive Supply Current	1cc_		+5.1	+60	_	+5.1	+75	mA
Negative Supply Current	IEE		-4.1	-50	_	-4.1	-5.0	mA

Note 1. This rating applies for ±15-volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.

Note 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0-mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.

Note 3. The response time specified is for a 100-mV input step with 5.0-mV overdrive.

FIGURE 1 - CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

FIGURE 6 – ZERO-CROSSING DETECTOR DRIVING MOS LOGIC

FIGURE 7 - RELAY DRIVER WITH STROBE CAPABILITY

7

LM139 LM139A LM239 LM239A LM339 LM339A

QUAD SINGLE-SUPPLY COMPARATORS

These comparators are designed for use in level detection and low-level sensing applications in Consumer, Automotive and Industrial electronic applications.

- Power Supply Options —
 Single Supply = 2.0 to 36 Vdc
 Split Supplies = ± 1.0 ±18 Vdc
- Wide Operating Temperature Range ~55 to +125°C
- Low Supply Current Drain 2.0 mA (Max)
- Low Input Biasing Current 25 nA (Typ)
- Low Input Offset Voltage 5.0 mV (Max) LM139, 239, 339
 2.0 mV (Max) LM139A, 239A, 339A
- TTL and CMOS Compatible

QUAD COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

N SUFFIX
PLASTIC PACKAGE
CASE 646
LM239/239A,
LM339/339A only

JSUFFIX CERAMIC PACKAGE CASE 632 TO-116

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+36 or ±18	Vdc
Input Differential Voltage Range	VIDR	36	Vdc
Input Common Mode Voltage Range	V _{ICR}	-0.3 to +36	Vdc
Output Sink Current	Isink	20	mA
Power Dissipation @ T _A = 25°C Ceramic Package Derate above 25°C Plastic Package Derate above 25°C	PD	1.25 10 1.25 10	Watts mW/ ^O C Watts mW/ ^O C
Operating Ambient Temperature Range LM139, 139A LM239, 239A LM339, 339A	TA	-55 to +125 -40 to +85 0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +5 0 Vdc, T_A = 25°C unless otherwise noted.)

		LI	M139,	A	L	M239,	Α	ı	M339,	A]
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _{ref} = 1.4 Vdc, V _O = 1.4 Vdc, R _S = 0) LM139, 239, 339 LM139A, 239A, 339A	V ₁₀	- -	±2.0 ±1.0	±5 0 ±2.0	-	±2 0 ±1.0	±5.0 ±2.0	- -	±2.0 ±1.0	±5.0 ±2.0	mVdc
Input Offset Current	110	l –	±3 0	±25	_	±5.0	±50	_	±50	±50	nΑ
Input Bias Current	¹ IВ	-	25	100	_	25	250	-	25	250	nΑ
Input Common Mode Voltage Range (Note 1)	VICR	0	-	V _{CC} -1.5	0	_	V _{CC} -1.5	0	-	V _{CC} -1.5	٧
Supply Current (R _L = ∞)	ICC IEE		8.0	2.0		0.8	2.0	-	0.8	2.0	mA
Response Time (Note 2) $(V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega)$	_	-	13	-	-	13	-	_	1.3	_	μς
Output Sink Current $\{V_{\{\{-\}\}} > +1.0 \text{ Vdc}, V_{\{\{+\}\}} = 0, V_{O} \le +1.5 \text{ Vdc}\} $ $\{V_{\{\{-\}\}} > +1.0 \text{ Vdc}, V_{\{\{+\}\}} = 0, V_{O} \le 500 \text{ mVdc}\}$	Isink	6 0 6 0	16 -	-	6.0 6.0	16	-	6.0 6.0	16 -	-	mA
Saturation Voltage $\{V_{1\{-\}} \ge +1.0 \text{ Vdc}, V_{1\{+\}} = 0, I_{sink} \le 4.0 \text{ mAdc}\}$ $\{V_{1\{-\}} \ge +1.0 \text{ Vdc}, V_{1\{+\}} = 0, I_{sink} \le 6.0 \text{ mAdc}\}$	V _{sat}	_		400 500	-	_	400 500	-	_	400 500	mV
$\begin{tabular}{lll} Voltage Gain (V_{CC} = 15 \ V) & & LM139, 239, 339 \\ (R_L \geqslant 15 \ k\Omega) & & LM139, 239A, 339A \\ \hline \end{tabular}$	Av	 50	200 200	-	_ 50	200 200	_ _	_ 50	200 200	-	k
Output Leakage Current $(V_{\parallel}(+) \ge +1.0 \text{ Vdc}, V_{\parallel}(-) = 0, V_{\parallel} = 5.0 \text{ Vdc})$	¹ OL	-	0.1	-	-	0.1	-	-	01	-	μА

PERFORMANCE CHARACTERISTICS — Guaranteed Over Temperature Range (V_{CC} = +5.0 Vdc)

		-55 to +125°C		+125°C -40°C to +85°C		85°C	0° to 70°C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _{ref} = +1.4 Vdc, V _O = 1.4 Vdc, R _S = 0) LM139, 239, 339 LM139A, 239A, 339A	VIO	_	-	±9 0 ±4.0		1 1	±9 0 ±4 0			±9.0 ±4.0	
Input Offset Current	110	-	-	±100	_	-	± 150	-	-	±150	nΑ
Input Bias Current	IВ	<u> </u>	_	300	-		400	-	_	400	nΑ
Input Common Mode Voltage Range	VICR	0	-	V _{CC} -2.0	0	_	V _{CC} -2.0	0	-	V _{CC} -2.0	Vdc
Saturation Voltage $(V_{1(-)} \ge 1.0 \text{ Vdc}, V_{1(+)} = 0, I_{sink} \le 4.0 \text{ mAdc})$	V _{sat}	_	-	700	1	-	700	ı	-	700	m∨
Output Leakage Current $(V_{1(+)} \ge 1.0 \text{ Vdc}, V_{1(-)} = 0, V_0 = 30 \text{ Vdc})$	lor	_	_	1.0	1	_	1.0	-	_	1.0	μА
Input Differential Voltage (All V _I ≥ 0 Vdc)	VID	-	_	36	-	_	36	-	_	36	Vdc

Notes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The

upper end of the common-mode voltage range is V_{CC} -1.5 V, but either or both inputs can go to +30 Vdc without damage.

2. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger signals, 300 ns is typical.

FIGURE 2 - INVERTING COMPARATOR WITH HYSTERESIS

 $V_{REF} \approx \frac{V_{CC} R1}{R_{REF} + R1}$ $R3 \approx R1 // R_{REF} // R1$

 $V_{H} = \frac{R1//R_{REF}}{R1//R_{REF} + R2} \quad (V_{Omax} - V_{Omin})$

Amount of Hysteresis V_M

R2 ≈ R1//RREF

FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS

$$V_{H} = \frac{R2}{R2 + R3} (V_{Omax} - V_{Omin})$$

$TYPICAL\ CHARACTERISTICS$ $(V_{CC} = +15\ Vdc, T_A = +25^{o}C\ (each\ comparator)\ unless\ otherwise\ noted.)$

FIGURE 9 - SQUAREWAVE OSCILLATOR

Z

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors <10 k Ω should be used. The

addition of positive feedback (<10~mV) is also recommended.

It is good design practive to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.

FIGURE 10 - ZERO CROSSING DETECTOR (Single Supply)

D1 prevents input from going negative by more than 0.6 V.

R1 + R2 = R3

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

FIGURE 11 – ZERO CROSSING DETECTOR (Split Supplies)

V_{INmin} ≈0.4 V peak for 1% phase distortion (△Θ).

LM2901N

QUAD SINGLE-SUPPLY COMPARATOR

This comparator is designed for use in level detection and lowlevel sensing applications in Consumer, Automotive and Industrial electronic applications.

- Power Supply Options –
 Single Supply = 2.0 to 36 Vdc
 Split Supplies = ±1.0 to ±18 Vdc
- Wide Operating Temperature Range -40 to +85°C
- Low Supply Current Drain − 2 0 mA (Max)
- Low Input Biasing Current − 25 nA (Typ)
- Low Input Offset Voltage 2.0 mV (Max)
- TTL and CMOS Compatible

QUAD COMPARATOR SILICON MONOLITHIC INTEGRATED CIRCUIT

N SUFFIX PLASTIC PACKAGE CASE 646

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+36 or ±18	Vdc
Input Differential Voltage Range	VIDR	36	Vdc
Input Common Mode Voltage Range	VICR	-0 3 to +36	Vdc
Output Sink Current	Isink	20	mA
Power Dissipation @ T _A = 25 ^o C Plastic Package Derate above 25 ^o C	PD	1 25 10	Watts mW/ ^O C
Operating Ambient Temperature Range	TA	-40 to +85	°С
Storage Temperature Range	T _{stg}	-65 to +150	°С

ELECTRICAL CHARACTERISTICS (V_{CC} = +5 0 Vdc, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _{ref} = 1.4 Vdc, V _O = 1.4 Vdc, R _S = 0)	v _{IO}	_	2.0	7.0	mVdc
Input Offset Current	10	-	±5.0	±50	nA
Input Bias Current	I _{IB}		25	250	nA
Input Common Mode Voltage Range (Note 1)	V _{ICR}	0		V _{CC} -1.5	V
Supply Current (R _L = ∞)	ICC IEE	_	0.8	2.0	mA
Response Time (Note 2) $(V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega)$	-	_	1.3	-	μς
Output Sink Current $(V_{ \{-\}} \ge +1.0 \text{ Vdc}, V_{ \{+\}} = 0, V_{ \{-\}} \le +1.5 \text{ Vdc})$	I _{sink}	6.0	, 16	_	mA
Saturation Voltage $\{V_{ \{-\}} \ge +1.0 \text{ Vdc}, V_{ \{+\}} = 0, I_{sink} = 4.0 \text{ mAdc}\}$	V _{sat}	_	_	400	mV
Output Leakage Current . $(V_{ \{+\}} \ge +1.0 \text{ Vdc}, V_{ \{-\}} = 0, V_{ \{-\}} = 5.0 \text{ Vdc})$	lor		0.1		μΑ

- Notes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The upper end of the common-mode voltage range is V_{CC} -1.5 V, but either or both inputs can go to +30 Vdc without damage.
 - 2. The response time specified is for a 100 mV input step with 5 mV overdrive. For large signals, 300 ns is typical.

FIGURE 2 – INVERTING COMPARATOR WITH HYSTERESIS

V_{IN} 0 10 k V_{IN} 0 10 k V_{REF} 10 k V_{REF} ≈ V_{CC} R1 R_{REF} + R1 V_{REF} ≈ V_{CC} R1 R_{REF} + R1

$$v_{REF} \sim R_{REF} + R_1$$
 $R_3 \simeq R_1 / / R_{REF} / R_1$
 $V_H = \frac{R_1 / R_{REF}}{R_1 / R_{REF} + R_2} (V_{Omax} - V_{Omin})$

FIGURE 3 -- NON-INVERTING COMPARATOR WITH HYSTERESIS

 $V_{H} = \frac{R2}{R2 + R3} \left(V_{Omax} - V_{Omin} \right)$

TYPICAL CHARACTERISTICS

(VCC = +15 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted.)

FIGURE 6 - NORMALIZED OFFSET CURRENT

FIGURE 8 - DRIVING LOGIC

TA, AMBIENT TEMPERATURE (°C)

VIN O RI = 1/4 LM2901N

R_S = Source Resistance
R1 ~ R_S

0 20 L -40

-20

LOGIC	DEVICE	V _C C Volts	R _L kΩ
CMOS	1/4 MC14001	+15	100
TTL	1/4 MC7400	+5	10

+80

+100

FIGURE 9 - SQUAREWAVE OSCILLATOR

7

APPLICATIONS INFORMATION

The LM2901N is a quad comparator having high gain, wide bandwidth character istics. This gives the device oscillator tendencies if the outputs capacitively couple to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors <10 k Ω should

not be used. The addition of positive feedback ($<10\,\text{mV}$) is also recommended

It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages.

More negative than -300 mV should not be used.

FIGURE 10 - ZERO CROSSING DETECTOR (Single Supply)

D1 prevents input from going negative by more than 0.6 V

R1 + R2 = R3

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

FIGURE 11 - ZERO CROSSING DETECTOR (Split Supplies)

V_{INmin} ≈0.4 V peak for 1% phase distortion (△Θ)

MC1414 MC1514

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

...designed for use in level detection, low-level sensing, and memory applications.

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current 2.8 mA Minimum (Each Comparator) for MC1514 1.6 mA minimum (Each Comparator) for MC1414
- Differential Input Characteristics Input Offset Voltage = 1.0 mV for MC1514 = 1.5 mV for MC1414

Offset Voltage Drift = $3.0 \,\mu\text{V/}^{\circ}\text{C}$ for MC1514 = $5.0 \,\mu\text{V}/^{\circ}\text{C}$ for MC1414

- Short Propagation Delay Time − 40 ns typical
- Output Compatible with All Saturating Logic Forms $V_0 = +3.2 \text{ V to } -0.5 \text{ V typical}$

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc	+14	Vdc
	VEE	-7.0	
Differential Mode Input Voltage Range	VIDR	±5.0	Vdc
Common Mode Input Voltage Range	VICR	±7.0	Vdc
Peak Load Current	IL.	10	mA
Power Dissipation (Package Limitation)	PD	l l	
Ceramic Dual In-Line Package		1000	mW
Derate above T _A = 25 ^o C		6.0	mW/ ^o C
Plastic Dual In-Line Package	i	625	mW
Derate above T _A = 25 ^o C		5.0	mW/°C
Operating Temperature Range MC1514	TA	-55 to +125	°C
MC1414		0 to +75	
Storage Temperature Range	T _{stg}	-65 to +150	°C

 ${\rm R_X}$ = Low Resistance Value, usually < 100 Ω , not specified.

DUAL DIFFERENTIAL **COMPARATOR** (DUAL MC1710)

SILICON MONOLITHIC INTEGRATED CIRCUIT

CERAMIC PACKAGE

PSUFFIX PLASTIC PACKAGE CASE 646 (MC1414 only)

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6 Vdc, T_A = 25^oC unless otherwise noted.) (Each Comparator)

ELECTRICAL CHARACTERISTICS (VCC = +12 Vdc	, , , , , , , , , , , , , , , , , , , ,	MC1514			MC1414	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	г	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO							mVdc
$(V_O = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C})$. 10	-	1.0	2.0	_	1.5	5.0	
(V _O = 1.8 Vdc, T _A = T _{low} *)		_	-	3.0	- 1	-	6.5	
(VO = 1.0 Vdc, TA = Thigh*)	i	-	-	3.0	- 1	-	6.5	
Temperature Coefficient of Input Offset Voltage	ΔV10/ΔΤ	_	3.0	-	_	5.0	_	μV/°C
Input Offset Current	110							μAdc
(V _O = 1.4 Vdc, T _A = 25 ^o C)		-	1.0	3.0	-	1.0	5.0	1
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low})$		-	- '	7.0	-	-	7.5	
(V _O = 1.0 Vdc, T _A = T _{high})		-		3.0	_	_	7.5	
Input Bias Current	Iв							μAdc
(V _O = 1.4 Vdc, T _A = 25 ⁰ C)		-	12	20	-	15	25	ĺ
$(V_O = 1.8 \text{ Vdc}, T_A = T_{low})$		-	-	45	-	18	40	
(V _O = 1.0 Vdc, T _A = T _{high})			-	20			40	<u> </u>
Open Loop Voltage Gain	A _{vol}							V/V
$(T_A = 25^{\circ}C)$	1	1250	1700	-	1000	1500	-	
(TA = T _{low} to T _{high})		1000	-		800	-		
Output Resistance	R _O		200			200		ohms
Differential Voltage Range	V _{IDR}	±5.0		-	±5.0		_	Vdc
High Level Output Voltage	∨он	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
$(V_{1D} \ge 5.0 \text{ mV}, 0 \le I_{O} \le 5.0 \text{ mA})$								
Low Level Output Voltage	VOL							Vdc
$(V_{ID} \ge -5.0 \text{ mV}, I_{OS} = 2.8 \text{ mA})$		-1.0	-0.5 ·	0	-	_	-	
$(V_{ID} \ge -5.0 \text{ mV}, I_{OS} = 1.6 \text{ mA})$			_		-1.0	-0.5	0	
Output Sink Current	los	2.8	3.4	-	1.6	2.5	-	mAdc
$(V_{ID} \geqslant -5.0 \text{ mV}, V_{OL} \leqslant 0.4 \text{ V}, T_A = T_{low} \text{ to } T_{high})$								
Input Common Mode Voltage Range	VICR	±5.0	_	-	±5.0	_	_	Vdc
(VEE = -7.0 Vdc)								
Common-Mode Rejection Ratio	CMRR	80	100	-	70	100	_	dB
$(V_{EE} = -7.0 \text{ Vdc}, R_S \leq 200 \Omega)$								
Strobe Low Level Current	112	-	_	2.5	_	_	2.5	mA
(V _{IL} = 0)			i	1	!			
Strobe High Level Current	ЧН			1.0	1 -		1.0	μА
(V _{IH} = 5.0 Vdc)	'''	i	\	11	1	Ì	1	1
Strobe Disable Voltage	VIL	_	-	0.4	_	_	0.4	Vdc
(V _{OL} ≤ 0.4 Vdc)	'-							
Strobe Enable Voltage	VIH	3.5	-	6.0	3.5		6.0	Vdc
(V _{OH} ≥2.4 Vdc)			l	ĺ		ļ		
Propagation Delay Time (Figure 1)	tPLH	_	20		_	20	-	ns
	tPHL	-	40	-	l –	40	-	l
Strobe Response Time (Figure 2)	t _{so}		15		 -	15		ns
-	t _{sr}	-	6.0	-	-	6.0	_	1
Total Power Supply Current, Both Comparators	1 _{CC}	_	12.8	18	<u> </u>	12.8	18	mAdc
(V _O ≤0)	IEE	_	11	14	-	. 11	14	l
Total Power Consumption, Both Comparators	PD		230	300		230	300	mW

^{*}T_{low} = -55°C for MC1514, 0°C for MC1414 Thigh= +125°C for MC1514, +75°C for MC1414

FIGURE 1 - PROPAGATION DELAY TIME

FIGURE 2 - STROBE RESPONSE TIME

7

TYPICAL CHARACTERISTICS

(Each Comparator)

MC1710 MC1710C

DIFFERENTIAL VOLTAGE COMPARATORS

...designed for use in level detection, low-level sensing, and memory applications.

• Differential Input Characteristics —

Input Offset Voltage = 1.0 mV - MC1710

= 1.5 mV - MC1710C Offset Voltage Drift = 3.0 μ V/OC - MC1710

 $= 5.0 \,\mu\text{V/}^{\circ}\text{C} - \text{MC1710C}$

- Fast Response Time 40 ns
- Output Compatible with all Saturating Logic Forms V_O = +3.2 V to –0.5 V (Typ)
- Low Output Impedance − 200 Ohms

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC(max)} V _{EE(max)}	+14 -7.0	Vdc Vdc
Differential Input Signal Voltage	V _{ID}	±5.0	Volts
Common Mode Input Swing Voltage	VICR	±7.0	Volts
Peak Load Current	ΙŁ	10	mA
Power Dissipation (Package Limitations)	PD		
Metal Package Derate above T _A = +25 ⁰ C		680 4.6	mW mW/ ^O C
Ceramic Dual In-Line Package Derate above T _A = +25 ^o C		625 5.0	mW mW/ ^O C
Operating Temperature Range MC1710 MC1710C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

EQUIVALENT CIRCUIT

DIFFERENTIAL COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 TO-116

P SUFFIX
PLASTIC PACKAGE
CASE 646
(MC1710C Only)

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted)

Characteristic	-0, VEE 0.0	Symbol	Min	Тур	Max	Unit
Input Offset Voltage		ViO				mVdc
$(V_0 = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C})$	MC1710		-	1.0	20	
	MC1710C	1	-	1.0	50	1
$(V_0 = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710	1	-	-	3.0	ì
$(V_0 = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}$	MC1710	1	-	-	30	1
(V _O = 1.5 Vdc, T _A = 0°C)	MC1710C		-	-	6.5	1 '
(V _O = 1.2 Vdc, T _A = +75°C)	MC1710C				65	<u> </u>
Temperature Coefficient of Input Offset Voltage		ΔV _{IO} /ΔΤ	-	3 0		μV/°C
Input Offset Current		10				μAdc
(V _O = 1.4 Vdc, T _A = +25 ^o C)	MC1710		-	10	30	1
	MC1710C		-	10	50	
$(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710		-	_	7.0	1
$(V_0 = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C})$	MC1710]	_	_	3.0	,
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		-		7.5	
(V _O = 1.2 Vdc, T _A = +75°C)	MC1710C				7.5	
Input Bias Current		IIB				μAdc
$(V_0 = 1 \text{ 4 Vdc}, T_A = +25^{\circ}\text{C})$	MC1710		_	12	20	1
	MC1710C	1	_	12	25	l
$(V_0 = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710	1] -	_	45	1
$(V_0 = 1 \ 0 \ Vdc, T_A = +125^{\circ}C)$	MC1710		_	_	20	
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		_	_	40	1
(V _O = 1.2 Vdc, T _A = +75°C)	MC1710C				40	1
Voltage Gain		A _{vol}				V/V
$(T_A = +25^{\circ}C)$	MC1710		1250	1700	i –	
(4)	MC1710C	1	1000	1700	լ –	ì
(TA = Tlow to Thigh) (1)	MC1710	ł	1000		-	ŀ
	MC1710C		800			
Output Resistance		ro		200		Ohms
Differential Voltage Range		VID	±5 0		_	Vdc
Positive Output Voltage		Voн	2.5	3.2	4.0	Vdc
(V _{ID} ≥ 5 0 mV, 0 ≤ I _O ≤ 5 0 mA)		<u> </u>				
Negative Output Voltage		VOL	-1 0	-0 5	0	Vdc
(V _{ID} ≥ -5.0 mV)			[
Output Sink Current		los	i			mAdc
$(V_{1D} \geqslant -50 \text{ mV}, V_{0} \leqslant 0)$	MC1710		2.0	25	-	(*), i
	MC1710C	į	1.6	2.5	l –	ı
$(V_{1D} \ge -5.0 \text{ mV}, V_{O} \ge 0, T_{A} = T_{low})$	MC1710		1.0	2.0	-	
	MC1710C		05			
Input Common-Mode Voltage Range		VICR	±5 0		_	Volts
(VEE = -7.0 Vdc)						
Common-Mode Rejection Ratio		CMRR				dB
$(V_{EE} = -7.0 \text{ Vdc}, R_S \leq 200 \text{ Ohms})$	MC1710	1	80	100	-	1
	MC1710C	1	70	100	_	
Propagation Delay Time for Positive and Negative Going	Input Pulse	tPLH		40		ns
(V _{ID} = 5 0 mV + V _{IO})		tPHL.	-	35	-	1
Power Supply Current		T				mAdc
(V _O ≤0)		I _D +		64	90	
· ·		10-		55	7.0	1
		PD				+

⁽¹⁾ T_{low} = -55°C for MC1710, 0°C for MC1710C T_{high} = +125°C for MC1710, +75°C for MC1710C

TYPICAL CHARACTERISTICS

FIGURE 3 – INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 5 - GAIN VARIATION

FIGURE 2 ~ INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 4 — INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 6 - VOLTAGE GAIN versus TEMPERATURE

TYPICAL CHARACTERISTICS (Continued)

10

RS, SERIES RESISTANCE (k DHMS)

50

10

MC1711 MC1711C

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

 \dots designed for use in level detection, low-level sensing, and memory applications.

Typical Characteristics:

- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 μV/°C
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms
 Vout = +4.5 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Уcc	+14 -7.0	Vdc
	VEE		
Differential Input Signal Voltage	VIDR	±5.0	Volts
Common-Mode Input Swing Voltage	VICR	±7.0	Volts
Peak Load Current	I L	50	mA
Power Dissipation (package limitation)	PD		
Metal Package	_	680	mW
Derate above T _A = +25°C		4.6	mW/ ^o C
Ceramic and Plastic Dual In-Line Packages	ł	625	mW
Derate above T _A = +25°C		5.0	mW/ ^o C
Operating Temperature Range MC1711	TA	-55 to +125	°C
MC1711C	I	0 to +75	
Storage Temperature Range	T _{stg}	-65 to +150	°C

DUAL DIFFERENTIAL COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

G SUFFIX METAL PACKAGE CASE 603 TO-100

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

P SUFFIX
PLASTIC PACKAGE
CASE 646
(MC1711C only)

*Connected to pin 4 via the substrate on some plastic units.

		MC1711					711C	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (VICR = 0 Vdc, T _A = +25°C) (VICR ≠ 0 Vdc, T _A = +25°C) (VICR = 0 Vdc, T _A = +25°C) (VICR = 0 Vdc, T _A = T _{low} to T _{high} *) (VICR ≠ 0 Vdc, T _A = T _{low} to T _{high})	Vio	1	1.0 1.0 -	3.5 5.0 4.5 6.0	-	1.0 1.0 - -	5.0 7.5 6.0 10	mVdc
Temperature Coefficient of Input Offset Voltage	ΔV _{IO} /ΔΤ	_	5.0	-	_	5.0		μV/°C
Input Offset Current (V _O = 1.4 Vdc, T _A = +25°C) (V _O = 1.8 Vdc, T _A = -55°C) (V _O = 1.5 Vdc, T _A = 0°C) (V _O = 1.0 Vdc, T _A = +125°C) (V _O = 1.2 Vdc, T _A = +75°C)	100	-	0.5 - - -	10 20 - 20 -		0.5 - - -	15 25 25	μAdc
Input Bias Current	- I _{IB}		25 - - -	75 150 — 150		25 	100 - 150 - 150	μAdc
Voltage Gain (T _A = +25°C) (T _A = T _{low} to T _{high})	A _{voi}	700 500	1500 	- 1	700 500	1500 	_	V/V
Output Resistance	R _O -		200	-		200	_	ohms
Differential Voltage Range	VIDR	±5.0	_	-	±5.0	-	,-	Vdc
High Level Output Voltage $(V_{ID} \ge 10 \text{ mVdc}, 0 \le I_O \le 5.0 \text{ mA})$	Voн	2.5	3.2	50	2.5	3.2	50	Vdc
Low Level Output Voltage (V _{ID} ≥-10 mVdc)	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc
Strobed Output Level (V _{strobe} ≤ 0.3 Vdc)	VOL(st)	-1.0	-	0	-1.0	-	0	Vdc
Output Sink Current $(V_{in} \geqslant -10 \text{ mV}, V_{O} \geqslant 0)$	lOs	0.5	8.0	-	0.5	0.8	-	mAdc
Strobe Current (V _{strobe} = 100 mVdc)	I _{st}	-	1.2	2.5	_	1.2	2.5	mAdc
Input Common-Mode Range (VEE = -7.0 Vdc)	VICR	±5.0	-	-	±5.0	-	-	Volts
Response Time $(V_b = 5.0 \text{ mV} + V_{10})$	tR	-	40	_	_	40	_	ns
Strobe Release Time	t _{SR}		12	_	_	12		ns
Power Supply Current $(V_0 \le 0 \text{ Vdc})$	ICC IEE	1 1	8.6 3.9	-	-	8.6 3.9	-	mAdc
Power Consumption		_	130	200	-	130	200	mW

^{*}T_{low} = -55°C for MC1711, 0°C for MC1711C T_{high} = +125°C for MC1711, +75°C for MC1711C

TYPICAL CHARACTERISTICS

FIGURE 7 - COMMON-MODE PULSE RESPONSE

FIGURE 9 — RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

FIGURE 8 -- OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING

FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING

MC3302

QUAD SINGLE-SUPPLY COMPARATOR

These comparators are designed specifically for single positive-power-supply Consumer Automotive and Industrial electronic applications. Each MC3302 contains four independent comparators—suiting it ideally for usages requiring high density and low-cost.

- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation − +2.0 to +28 Vdc
- Differential Input Voltage = ±VCC
- Compare Voltages at Ground Potential
- MTTL Compatible
- Low Current Drain 700 μA typical @ V_{CC} +5.0 to +28 Vdc
- Outputs can be Connected to Give the Implied AND Function

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Range	Vcc	+2.0 to +28	Vdc
Output Sink Current (See Note 1)	IО	20	mA
Differential Input Voltage	VIDR	±VCC	Vdc
Common-Mode Input Voltage Range (See Note 2)	VICR	-0.3 to +V _{CC}	Vdc
Power Dissipation @ T _A = 25°C Plastic Package — P Suffix Derate above 25°C Ceramic Package — L Suffix Derate above 25°C	P _D	1.2 10 1.2 10	Watts mW/ ^O C Watts mW/ ^O C
Operating Ambient Temperature Range Plastic Package Ceramic Package	TA	-40 to +85 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

Note 1. Requires an external resistor, R_L, to limit current below maximum rating.

Note 2. If either (+) or (-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.

QUAD COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, T_A = +25°C (each comparator) unless otherwise noted.)

Cheracteristic Definitions (1/4 Circuit Shown)	Characteristic	Symbol	Min	Тур	Max	Unit
VCC ***********************************	Input Offset Voltage (V _{ref} = 1.2 Vdc) (T _A = +25°C) (T _A = -40 to +85°C)	V _{IO}	-	3.0	20 40	mVdc
v₀	Input Offset Current	10	_	3.0	_	nAdc
V _{ret} = 1/2 1/0 * [1/81-1/82] 1/2 1/8 1/1-1/82 1/8 1/1-1/82 1/8 1/1-1/82 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9	Input Bias Current (T _A = +25°C) (T _A = -40 to +85°C)	۱ιв	-	30 	500 1000	nAdc
VCC A _{VOI} · 6 0 · 60	Voltage Gain $(T_A = +25^{\circ}C, R_L = 15 \text{ k}\Omega)$	A _{vol}	2,000	.30,000	-	V/V
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Transconductance	gm	-	20	_	mhos
	Input Differential Voltage Range	V _{IDR}	±VCC		_	Vdc
VCC I Iott	Output Leakage Current (Output Voltage High)	ЮL	-		10	μAdc
V ₁₁₁	Output Voltage - Low Logic State (I _s = 2.0 mA, V _{CC} = +5 0 to +28 Vdc)	VOL	_	150	400	mVdc
<u>→</u>	Output Sink Current (V _{CC} = +5.0 Vdc) (T _A = +25°C, V _{OL} = 400 mV) (T _A = -40 to +85°C, V _{OL} = 800 mV)	l _{sink}	 2.0	6.0 -	-	mAdc
Vcc R _L	Input Common-Mode Voltage Range (VCC = +28 Vdc)	VICR	0-26	-	_	Volts
√ v _{in}	Common-Mode Rejection Ratio	CMRR	_	60	_	dB
VCC • RL • RL • RL • RL • RL • RL • RL •	Propagation Delay Time For Positive and Negative-Going Input Pulse $(R_L = 15 \text{ k}\Omega)$	tPHL/LH	-	20	-	μς
-300 mV	Transition Time $(R_L = 15 \text{ k}\Omega)$	[‡] THL [‡] TLH		0.15 0.8	- -	μς
V _m = 10 V _{CC} 10 V _{CC} 12 12 12 12 12 12 12 1	Power Supply Current (Total of four comparators) (R _L = ∞, V _{CC} = +5.0 to +28 Vdc)	ICC IEE	_	0.7	1.8	mAdc

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, T_A +25°C (each comparator) unless otherwise noted.)

FIGURE 3 - NORMALIZED INPUT OFFSET VOLTAGE

FIGURE 4 - NORMALIZED OFFSET CURRENT

FIGURE 5 - INPUT BIAS CURRENT

TYPICAL APPLICATIONS

The MC3302 is a quad comparator having high gain, wide bandwidth characteristics. This gives the device oscillator tendencies if the outputs capacitively couple to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors < 10 k Ω should

be used. The addition of positive feedback (1 to 10 mV) is also recommended.

It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages.

More negative than -300 mV should not be used.

TYPICAL APPLICATIONS (continued)

FIGURE 6 - FREE-RUNNING SQUARE-WAVE OSCILLATOR

FIGURE 7 - TIME DELAY GENERATOR

FIGURE 8 - COMPARATOR WITH HYSTERESIS

5

QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS

The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature variations and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series.

The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 and MC3432 versions are specified for a $\pm 7.0~\text{mV}$ input sensitivity over the 0 to 70°C temperature range, while the MC3431 and MC3433 are specified for $\pm 12~\text{mV}$.

- Propagation Delay Time 40 ns
- Outputs Specified for a Fanout of 10 (MC7400 type loads)
- Specified for all conditions of ±5% Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V, and R_S ≤ 200 ohms.

FIGURE 1 – A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

MC3430 thru MC3433

QUAD HIGH-SPEED VOLTAGE COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUITS

TRUTH TABLE MC3430 and MC3432									
Input	Strobe	Output	Device						
		Н	MC3430						
V _{ID} ≥ 70 mV	н	2	MC3430						
- 0. 2000	L	Off	MC3432						
T _A = 0 to 70°C	н	Off	MC3432						
-7 0 mV ≤V _{1D}	L	Ĭ	MC3430						
-10 mo = 01D	н	Z	MC3430						
70 mV	L .	_	MC3432						
TA = 0 to 70°C	н	Off	MC3432						
V _{ID} ≤-70 mV	L	Ţ	MC3430						
AID #-10WA	H	Ž	MC3430						
TA = 0 to 70°C		On	MC3432						
1A - 0 10 70 C	H	Off	WC3432						

TRUTH TABLE MC3431 and MC3433 Output Strobe Device MC3431 V_{1D} ≥ 12 mV Off TA = 0 to 70°C MC343 Off MC343 -12 mV ≤V_{ID} ≤+12 mV MC3433 A = 0 to 70°C н Off V_{ID} ≤~12 mV MC3431 Ĥ On A = 0 to 70°C MC3433 Off

L = Low Logic State Z = Third (High Impedance) H = High Logic State RS \leq 200 Ω

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±7.0	Vdc
Differential Mode Input Signal Voltage Range	V _{IDR}	±6.0	Vdc
Common-Mode Input Voltage Range	VICR	±5.0	Vdc
Strobe Input Voltage	V _{1(S)}	5.5	Vdc
Output Voltage (MC3432 - 33 versions)	v _o	+7.0	Vdc
Junction Temperature Ceramic Package , Plastic Package	τJ	175 150	°c
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc VEE	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Vdc
Output Load Current	^I OL	-	_	16	mA
Differential-Mode Input Voltage Range	V _{IDR}	-5.0	_	+5 0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0		+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-50	_	+3.0	Vdc

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = 0°C to +70°C unless otherwise noted.) Typical Values are Measured at T_A = 25°C

		мсз	430, MC34	131	мсз	432, MC3	433	[
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Sensitivity (See Discussion on Page 3) (R _S ≤ 200 Ohms) (Common Mode Voltage Range = -3.0 V ≤ V _{in} ≤ 3.0 V)	VIS							mV
4 75 ≤ V _{CC} ≤ 5.25 V -4.75 ≥ V _{EE} ≥ -5.25 V T _A = 25°C		_ _	_ _	±6.0 ±10	-	- -	±6.0 ±10	}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		-	-	±7.0 ±12	- -	<u>-</u>	±7.0 ±12	
Input Offset Voltage (R _S ≤ 200 Ohms)	V _{IO}		2.0	-		20	-	mV
Input Bias Current (V _{CC} = 5.25 V, V _{EE} = -5.25 V) MC3430, MC3432 MC3431, MC3433	IB	_	20 20	40 40	-	20 20	40 40	μA
Input Offset Current	110		1.0		_	1.0		μА
Voltage Gain	A _{vol}		1200	_		1200		V/V
Strobe Input Voltage (Low State)	V _{IL(S)}	-	-	0.8	-		0.8	V
Strobe Input Voltage (High State)	VIH(S)	2.0	-	-	2.0	_	-	V
Strobe Current (Low State) (V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{In} = 0.4 V)	IL(S)	_	_	-1.6		_	-1.6	mA
Strobe Current (High State) {VCC = 5.25 V, VEE = -5.25 V, V _{in} = 2.4 V) (VCC = 5.25 V, VEE = -5.25 V, V _{in} = 5.25 V)	(IH(S)	-		40 1.0	-	-	40 1.0	μA mA
Output Voltage (High State) (I _O = -400 μA, V _{CC} = 4.75 V, V _{EE} = -4.75 V)	∨он	2.4	-		-	-	_	V
Output Voltage (Low State) (IO = 16 mA, V _{CC} = 4.75 V, V _{EE} = 4.75 V)	VOL	_	_	0.4	_	_	0.4	V
Output Leakage Current (V _{CC} = 4.75 V, V _{EE} = -4.75 V, V _O = 5.25 V)	ICEX		-	-	-	-	250	μА
Output Current Short Circuit (V _{CC} = 5.25 V, V _{EE} = -5 25 V)	Ios	-18	-	-70	-	_	_	mA
Output Disable Leakage Current (VCC = 5.25 V, VEE = -5.25 V)	loff	_	-	40				μА
High Logic Level Supply Currents (V _{CC} = 5.25 V, V _{EE} = -5.25 V)	Icc IEE		45 -17	60 -30		45 -17	60 -30	mA mA

A UNIQUE FUNCTIONAL PARAMETER FOR COMPARATORS

A unique approach is used in specifying the MC3430-33 quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain (A_{VO}) , input offset voltage (V_{1O}) , input offset current (I_{1O}) and common-mode rejection ratio (CMRR). This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain comparator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage.

The most desirable comparator parameter is what minimum differential input voltage is required at the comparator's input terminals to guarantee a given output logic state. This new and important parameter has been called input sensitivity (V_{IS}) and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current and eliminates the need for specifying these three parameters.

In order to make this parameter as inclusive as possible on the MC3430-33 series quad comparators, the input sensitivity is specified within the following conditions:

Commercial Temperature Range — 0 to 70°C Power Supply Variations — ±5% (all conditions) Input Source Resistance — ≤200 Ohms Common-Mode Voltage Range — -3 0 V to +3.0 V

Note Typical values have been included on the omitted parameters for applications where the offset voltages are externally nulled.

Voltage gain is defined as the ratio of the resulting ΔV_O to a change in the VIDR using conditions at which the VID and IID are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is 2.0 V (VOHmin — VOLmax = 2.4 V —

0.4 V). If 2.0 mV are required at the input terminals to induce this change in logic state, the voltage gain would be 1000 V/V.

Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to ±10 µA flowing through the matched 200-Ohm source resistors at the input terminals which can create an additional error of ±2.0 mV. In order to determine a worst case input sensitivity, it must be assumed that minimum specified gain and maximum specified offset voltage and current conditions exist. Also it must be assumed that these three factors are cumulative, requiring a worst case input of:

Logic Transition = 2.0 mV

V₁₀ = 7.5 mV

I_{IO} of $\pm 10 \,\mu\text{A}$ thru 200-Ohm resistor = 2 0 mV

Therefore, 2 + 7.5 + 2 = 11.5 mV.

The effects of power supply voltage variations, temperature changes and common-mode input voltage conditions have not been considered, as they are not present in the gain and offset specifications on most comparators.

Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type.

Table 1 compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range (0 to 70°C). This sensitivity was computed from the specified voltage gain, offset voltage and offset current limits.

TABLE I - WORST CASE COMPARISONS

	T _A = 25°C					T _A = 0 to 70°C						
Type Number	VIO mV Max	A _{voi} * V/V Typ	Differential Input Voltage Required for 3 0 V Output Change	110 R _S = 200 Ω μA Max	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV	V _{IO} mV Max	A _{vol} * V/V Typ	Differential Input Voltage Required for 3 0 V Output Change	I 10 RS = 200 Ω μΑ Max	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV
MC3430, MC3432	-	-	-	-	-	60	-	-	-	-	-	7 0
MC3431, MC3433	_	-	_	-	-	10	-	~	_	-	-	12
MC1711C MLM311	5 0 7 5	1500 200 k	2 0 mV 0 015 mV	15 60**	3 0 mV 0 0012 mV	10 7 516	5 0 10	1000 100 k	3 0 mV 0 030 mV	25 70**	5 0 mV 0 014 mV	13 10 04

^{*}Typical values given, as minimum gain not always specified

FIGURE 2 — GUARANTEED OUTPUT STATE versus
DIFFERENTIAL INPUT VOLTAGE

FIGURE 3 – GUARANTEED OUTPUT STATE versus INPUT VOLTAGE

^{**}IO measured in nA

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = +25°C unless otherwise noted.)

		MC3430, MC3431		431	MC3432, MC3433				
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs) 5 0 mV + VIS	tPHL(D)	6,8-11	-	20	45	_	27	50	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs) 5.0 mV + VIS	tPLH(D)	6,8-11	-	33	55	_	40	65	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tPZH(S)	4	-	-	35	_	-	1	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	. 4	-	_	35		_	_	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	4	-	-	40	_	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	4	-	_	35	_	-	_	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	5	-	-	-	_	-	40	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	tPLH(S)	5	-	-	_	-	-	35	ns

TEST CIRCUITS

FIGURE 4 - STROBE PROPAGATION DELAY TIMES tpLZ(S), tpZL(S), tpHZ(S), and tpZH(S)

	VI	V2	S1	S2	CL
tPLZ(S)	100 mV	GND	Closed	Closed	15 pF
tPZL(S)	100 mV	GND	Closed	Open	50 pF
tPHZ(S)	GND	100 mV	Closed	Closed	15 pF
tPZH(S)	GND	100 mV	Open	Closed	50 pF

 t_{TLH} and t_{THL} < 10 ns measured 10% to 90%.

Duty Cycle = 50%

FIGURE 5 - STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

 $E_{\rm in}$ waveform characteristics tTLH and tTHL ≤ 10 ns measured 10% to 90%. PRR = 1 0 MHz Duty Cycle = 50%

FIGURE 6 - DIFFERENTIAL INPUT PROPAGATION DELAY tPLH(D) AND tPHL(D)

Output of Channel B shown under test, other channels are tested similarly

S1 at "A" for MC3430, MC3431 S1 at "B" for MC3432, MC3433 C_L = 50 pF total for MC3430, MC3431 C_L = 15 pF total for MC3432, MC3433 Device VREF mV
MC3430 11
MC3431 15
MC3432 11
MC3433 15

 E_{in} waveform characteristics tTLH and tTHL \leq 10 ns measured 10% to 90%. PRR = 1 0 MHz Duty Cycle = 50%

FIGURE 7 — CIRCUIT SCHEMATIC (1/4 Circuit Shown)

Dashed components apply to the MC3430 and MC3431 circuits only.

7

TYPICAL PERFORMANCE CURVES

RESPONSE TIME versus OVERDRIVE - MC3430, MC3431

RESPONSE TIME versus OVERDRIVE - MC3432, MC3433

APPLICATIONS INFORMATION

FIGURE 15 - LEVEL DETECTOR WITH HYSTERESIS

FIGURE 16 – TRANSFER CHARACTERISTICS AND EQUATIONS FOR FIGURE 15

FIGURE 17 - DOUBLE ENDED LIMIT DETECTOR

FIGURE 18 - VOLTAGE TRANSFER FUNCTION

DATA CONVERSION

Temperatus	e Range		
Commercial	Military		Page
MC1405	MC1505	Dual Ramp A/D Converter Subsystem	8-3
MC1406	MC1506	6-Bit Multiplying D/A Converter	8-17
MC1408	MC1508	8-Bit Multiplying D/A Converter	8-29
MC3408	. —	8-Bit Multiplying D/A Converter	8-43
MC3410, C	MC3510	10-Bit Multiplying D/A Converter	8-49
MC3412		High-Speed 12-Bit D/A Converter	8-60
MC6890	MC6890A	8-Bit Bus-Compatible MPU D/A Converter	8-61
MC10317L		7-Bit High-Speed A/D Flash Converter	8-65
MC10318L/L9	_	High-Speed 8-Bit D/A Converter	8-66

MC1405 MC1505

DUAL RAMP A/D CONVERTER SUBSYSTEM

The MC1505/MC1405 is intended to perform the dual ramp function for either a 3-1/2 or 4-1/2 digit DVM or use as a general-purpose analog-to-digital (A/D) converter. It can be combined with the CMOS MC14435 logic system to produce the complete 3-1/2 digit DVM function.

The MC1505 uses the proven dual ramp A/D conversion technique. The subsystem consists of an on-chip voltage reference, a pair of voltage/current converters, an integrator, a comparator, a current switch and associated control and calibration circuitry. Only one capacitor and two calibration potentiometers are required for normal operation.

- Accuracies to 13 Bits
- Low Power Consumption: 42 mW @ +5.0 V
- Single Power Supply Operation +5.0 V to +15 V
- Low Power Supply and Temperature Sensitivity
- Digital Inputs and Outputs Compatible with Both MTTL and CMOS
- Accepts Either Positive or Negative Input Voltages
- Combines with MC14435 to Produce 3-1/2 Digit A/D Converter

FIGURE 1 — COMPLETE A/D CONVERTER SYSTEM Full Scale Calibration MC1505 Analog Subsystem Comparator Reference Ramp Control Control Loge Control Log

ANALOG-TO-DIGITAL CONVERTER SUBSYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

BCD A/D Converter: 2-1/2 to 4-1/2 Digits (LSI or MSI Logic)

Panel Meters Digital Voltmeters

Portable Instruments

Industrial Measurement and Control

Binary A/D Converter: 8-to-13 Bits (LSI or MSI Logic)

Industrial Measurement and Control

High Noise Environments (Integrating Converter with MTTL, MHTL, and CMOS Compatibility)

Other Uses:

Data Acquisition Systems with Remote MC1505
Voltage to Frequency Conversion
Delta Modulation and Signal Generation

MAXIMUM RATINGS

Chafacteristic	Symbol	Value	Unit
Power Supply Voltage	Vcc	+16.5	Vdc
Digital Input Voltage	V ₁₀	+16.5	Volts
Reference Input Voltage	V _R	2.0	Volts
Unknown Input Voltage Range	V1 V2	±5.0 ±5.0	Volts
Zero Calibration Control Pin Voltage	V4	5.0	Volts
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	PD	1000 6.0	mW mW/ ^o C
Operating Ambient Temperature Range MC1505L MC1405L	ТА	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_R = 1.000 Vdc, V1 = 2.000 Vdc, V2 = 0.000 Vdc, V10 \geqslant 2.0 Vdc,

T_A = 25^oC unless otherwise noted.)

MC1405

			MC1505		MC1405				
Characteristic	Symbol	Figure	Min	Тур	Max	Min	Тур	Max	Unit
A/D CONVERSION SYSTEM (1)									
Linearity: Deviation from Straight Line through Zero and Full Scale (2)	Er	9, 11	-	±0 01	±0 05	_	±0.01	±0.05	%F S.
Mid-Scale Power Supply Sensitivity (PSS of IR-(IX + I _O), V1 = 1.0 V)	PSSF	3	_	0.002	±0 02	-	0.002	±0.02	%/%
Zero Calibration Power Supply Sensitivity (V1 = V2 = 0 V)	PSSZ	9	-	0 001	-	1	0.001	-	%F.S./%
Input Common Mode Sensitivity $(V_X = 2.0 \text{ V}, V_{CM} = V2 \text{ is varied})$	CMSIX	3	-	0.0006	0.0012	_	0.0006	0.0018	%/mV
Full Scale Temperature Drift (3)	TCF	9	_	0.004	-	_	0.004	-	%/°C
Zero Calibration Temperature Drift (3)	TCZ	9	_	0.001	-	_	0.001		%F.S./°C
VOLTAGE REFERENCE									
Reference Voltage, Pin 11	VREF	3	1.15	1.25	1 35	1,1	1.25	1.4	Vdc
Reference Voltage Power Supply Sensitivity	PSSVREF	3		0.003	±0 01	_	0.003	±0.02	%/%
Reference Voltage Temperature Drift	TCVREFI	3		0.015	-	_	0 015	-	%/°C
REFERENCE CURRENT CONVERTER									
Reference Current	I _R	3		250			250	_	μА
Input Bias Current	114	3		10	40	_	10	40	nΑ
Input Range of VR	V14	3	0.8		1.2	0.8	_	12	Vdc
Input Offset Voltage (V14-V15)	IVRRI	3		10	2.5		2.0	5.5	m۷
INPUT CURRENT CONVERTER									
Unknown Current	1x	3	_	500	-		500	_	μА
Input Resistance	RI	3	_	4.0	-	-	4.0	-	kΩ
Input Differential Range	V _X	3,10	0	20	-	0	2.0	_	Volts
Input Common Mode Range	CMR	3,10,12	-1.5		+1.5	-1.5	ı	+1.5	Volts
Input Bias Currents	11 12	3,9		200 -300	-	_	200 -300	_	μА
Input Offset Voltage (V13-V3)	V _X X	3	_	1.0	2.5		2.0	5.5	mV
RAMP OFFSET SOURCE									
Ramp Offset Current	lo.	4	_	25		-	25	_	μА

⁽¹⁾ System parameters measured using external voltage reference, independent of V11 = VREF.

Integrator Capacitor = 2.0 µF

Clock Frequency = 30 kHz

V_{CC} = 15 V

⁽²⁾ Does not include quantizing error. See Figure 10 for calibration.

ELECTRICAL CHARACTERISTICS	(VCC = +15 Vdc, VR = 1.000 Vdc, V1	= 2.000 Vdc, V2 = 0.000 Vdc, V10 ≥ 2.0 Vdc,
	T _A = 25°C unless otherwise noted.)	

	MC1505				MC1405				
Cheracteristic	Symbol	Figure	Min	Тур	Max	Min	Тур	Max	Unit
CURRENT SWITCH									
Digital Input Logic Levels, Pin 10									
High Level, Logic "1"	V _{IH}	3,18	2.0	-	-	2.0	j -	-	Vdc
Low Level, Logic """	VIL	3,18	-	_	8.0		-	0.8	Vdc
Digital Input Current						'			
High Level, Logic "1"	11H	3] -	0	1.0	-	0	1.0	μΑ
Low Level, Logic "0"	կլ	3		-5.0	-50		-5.0	~50	μΑ
INTEGRATOR									
Input Bias Current	16	5] -	10	30		10	50	nA
Output Voltage Swing	V7	T -							Volts
High			12.8	13.0	-	12.8	13.0	-	l
Low			-	0.2	0.35		0.2	0.35	
COMPARATOR								•	
Output Logic Levels, Pin 9									Volts
High Level, Logic "1" Ta -T. to T	VOH	3	13.5	14.0	-	13.5	14.0	_	
Low Level, Logic "1" TA = Tlow to Thigh	VOL	3	-	0.35	0.5	-	0.35	0.5	
(Sink Current = 1.6 mA)	[i	}	l	1	1			
Input Threshold	VTH(7)	T -	0.9	1.0	1.1	0.9	1.0	1.1	Volts
POWER SUPPLY									
Power Supply Current	¹cc				7			1	mA
(V _{CC} = +5.0 Vdc)		3] -	8.4	12.0	_	8.4	12.0	
(V _{CC} = +15.0 Vdc)		3	-	90	13.0	-	9.0	13.0	
Power Supply Voltage Range	Vcc	-	4.75	1 -	165	4.75	-	16.5	Vdc
Power Consumption	Pc	T							mW
(V _{CC} = +5.0 Vdc)		-	-	42	60	-	42	60	1
(V _{CC} = +15.0 Vdc)	l	-	-	135	195	-	135	195	j

 T_{low} = -55°C for MC1505L, 0°C for MC1405L Thigh = +125°C for MC1505L, +70°C for MC1405L

FIGURE 3 - STANDARD TEST CONFIGURATION

GENERAL INFORMATION

Dual Ramp Analog-to-Digital Conversion

The dual ramp method of A/D conversion is a proven system which is capable of very high accuracy. The conversion is an integrating process which offers high noise rejection and immunity to changes in the clock rate and integrator capacitor value. The particular method used in the MC1505 is a noniterating dual slope technique which produces an accurate result after one conversion period.

Dual ramp conversion is accomplished with the system of Figure 2. The conversion begins at time t1, when current IX causes the integrator output, or ramp, to cross the comparator threshold, as shown in Figure 6. The clock is activated and the counters begin counting from zero. The system counts for a fixed period T, with a ramp slope which depends on the input voltage, i.e., a steep slope is caused by a high input voltage. When the counters have reached full scale, the overflow count triggers a ÷ 2 flipflop which changes the ramp control polarity current. IR

A/D Subsystem Circuit Description

The MC1505 incorporates special circuit features which allow all the analog functions of the dual ramp system to be performed on a single monolithic chip using standard bipolar processing.

Voltage-to-current conversion for both the input and reference voltages allows the use of a high-speed current switch and single supply operation. The unbuffered differential inputs have sufficiently high input impedance for power supply monitoring applications, and provide flexibility for other input formats since they will accept either positive or negative voltages.

The voltage reference, shown in Figure 7, is one of the six basic circuits in the subsystem. It provides a low impedance output which has excellent temperature stability, and high power supply rejection. Biasing for the other circuits in the MC1505 is derived from the voltage reference circuitry.

FIGURE 6 - DUAL RAMP A/D CONVERSION WAVEFORMS

now controls the integrator and the down ramp begins at t2. This ramp continues at a fixed slope for a time period which depends on the amplitude achieved by the up ramp. Thus T2 is determined by the input voltage. When the ramp crosses the comparator threshold at t3, the clock stops and the counter holds a digital value which is proportional to the unknown input voltage.

After the down ramp crosses the comparator threshold, a timing sequence in the digital section strobes the latches to store the data, resets the counters, and reverses the ramp at t4 to begin a new conversion.

Since the voltage change across the capacitor is equal on the up and down ramps, an equal amount of charge is exchanged. The equations of Figure 6 show that the system output is the ratio of the unknown and reference currents, and long term changes in the clock rate and integrator capacitor do not effect the reading.

The same basic amplifier circuit is used in both the reference and input voltage-to-current converters. It is an extremely well balanced amplifier with low input offset voltage temperature drift. The reference converter uses a pair of PNP transistors to derive current IR, in conjunction with a reference resistor which has the same temperature coefficient as those used in the input converter. The value of the reference current is VR/R5. The collectors of transistors Q1, Q2 and Q3 in Figure 7 all track with a two diode temperature coefficient, which assures constant current ratios.

The reference resistor value can vary by 30% of 4.0 k Ω due to process variations. Moreover, these variations will also affect the input bridge resistors. Thus, the ratio of reference to unknown current has a close tolerance for a wide range of resistor values.

The input voltage-to-current converter is a bridge or bilateral current source whose output current is Vx/R1. If the bridge is perfectly balanced, its output impedance and common mode rejection are infinite. However, the design has the ability to tolerate bridge mismatches of approximately 0.5%. In order to tolerate this mismatch, the output of the bridge current source is connected to the current switch which is a low temperature coefficient, low impedance source of 1.25 volts. This technique effectively eliminates output current changes due to finite output impedance which is caused by resistor mismatch. This input current converter makes possible the use of a single supply voltage and differential inputs which can be used at or below ground potential.

An important feature of the MC1505 is the ramp offset current source which is added to the unknown current and does not allow the ramp to reach zero slope when the input voltage is zero. The ramp range is shown in Figure 8. The ramp offset current has a value of IR/10, so that the minimum ramp slope is 5% of the full scale slope. This allows reliable conversion at low input voltages by assuring a nearly constant comparator propagation delay and a good ramp signal-to-noise ratio. It also prevents turn-off

Input

of the diode in the current switch at low levels, restricting the voltage change at the output of the resistor bridge. Still another feature is that it provides a convenient temperature compensated zero adjust which can correct errors in the resistor bridge and input buffer amplifiers when they are used. The ramp offset current is compensated by 100 extra counts in the digital logic during ramp down, so it does not appear in the digital output (see Figure 8).

The current switch uses current steering for very high speed operation. A smooth transition occurs as one current is turned on while the other is turned off. This minimizes error during the ramp reversal at its peak, especially since the reference current source has a very high output impedance and does not change value when switched. The settling time of the input current converter is not a factor in system accuracy. At the ramp peak, Ix is turned off, so the amplifier settles after the unknown current is decoupled from the integrator. When the ramp is below the comparator threshold, the unknown current is switched on and thus the current can settle before the ramp enters the active conversion range. The switch operates into a voltage of 1.95 volts and is translated by a follower so its input

Vсс Reference Output 16 VREF = 1.25 V Voltage 2X Reference 2 X Reference Input V_P 03 01 റാ Reference 15 0 Test Reference R5 1_R V-I Converter V_{BE} Comparator Current Output Switch Ramo Control Comparator Integrator Input ١×١ ١o V-I Converter VX = V1-V2 40 k VR = V14 R4 R2 0 k Analog (-) 2 c VREF = V11 Input (+) 1 o **R1** $I_X = V_X/R1$ 4 0 k R3 $I_{\mathsf{R}} = V_{\mathsf{R}}/\mathsf{R}5$ $I_0 = I_R/10$ 3 13 4 5 12

FIGURE 7 - A/D CONVERTER ANALOG SUBSYSTEM

lo Input

Output

Integrator

Zero

١x Adjust

FIGURE 8 - MC1505 SYSTEM TIMING DIAGRAM

(2.0 Volt Full Scale Input)

threshold is 1.25 volts.

The integrator is a single stage, wide bandwidth amplifier. Its low propagation delay and low output impedance minimize ramp spikes due to output current reversal during ramp turn-around. The input bias current is typically one part in 50,000 of the full scale current, so that its temperature change contributes negligible error. Gain and input offset voltage are not critical since the integrator is driven from current sources.

The comparator is designed for low hysteresis by maintaining a constant power dissipation regardless of output state. This hysteresis is typically 0.1 mV and remains constant with temperature variations, so that no measurable system error is contributed. Temperature variations

ations in the value of the comparator threshold are not an error factor, since the only requirement is that the threshold remain constant during a given conversion cycle. Voltage gain of the comparator is 2,000,000 when driving CMOS, and 40,000 with one TTL load. The comparator output is slew rate controlled to provide output rise and fall times of approximately 80 ns. This minimizes noise generation which could affect system stability.

The system is zeroed and full scale calibrated by potentiometers which provide temperature compensation. All the other resistors are diffused in close proximity, yielding reference and unknown currents which have a closely tracking resistive temperature coefficient.

APPLICATIONS INFORMATION

The input configurations for the MC1505 are shown in Figure 11. Note that the differential input voltage must always remain the same polarity with Pin 1 positive with respect to Pin 2. Figures 11 and 13 will aid in the understanding of the input circuitry.

The input common mode rejection of the MC1505 is high enough to maintain rated accuracy with small changes in common mode voltage, such as would be seen with ground errors and noise. The system must be recalibrated, however, for larger changes in common mode input voltage.

The MC1505 is arranged so that $I_X = I_R$ when $V_X = V_R$, or so that the ramp slopes are equal for input and reference voltages of 1 volt. As shown in Figure 8, a system with a 2 volt full-scale input requires twice as many digital counts during T2 as for T1. A system with a 1 volt full scale would require an equal number of counts in T1 and T2. Figure 9 illustrates a 3-1/2 digit system, but typical accuracies of the MC1505 allow its use in 4 digit applications. It can also be used in systems which require 4-1/2 digit resolution.

The ramp offset current and 100 count delay are shown in Figure 8. In certain applications, a different number of counts may be used. The system will not always operate properly, however, with a 10 count delay since the ramp offset current is used to zero the system and compensate

for error in the input resistor bridge. This error, known as I_{XO} , is current which flows to or from the input converter with zero volts applied to the input. It is typically between $\pm 5.0~\mu A$, which is 1% of full scale in a 2 volt system. A 10 count delay would need a 0.5% ramp offset current, which would not always be able to cancel this error. Also, a 10 count delay does not provide enough signal-to-noise margin for consistently accurate low-level conversion.

The integrating capacitor is chosen with the equations shown in Figure 9. The maximum ramp voltage should be used for best signal-to-noise ratio, but temperature changes in IX, IR and the capacitor should be anticipated to prevent integrator saturation. Variations in clock frequency should also be considered. A polar capacitor with Pin 7 at the + terminal may be used. However, settling time will be increased when electrolytics are used, Tantalum electrolytics are preferred.

The lower half of the diode current switch is split with separate diodes for $I_{\rm X}$ and $I_{\rm O}$. In most applications Pins 12 and 13 will be connected so that the two device emitters are effectively one, since the main purpose of these pins is for testing. Connecting these pins allows proper system zero adjustment and prevents turn-off of the switch diode with low unknown current levels. This yields better conversion accuracy.

FIGURE 10 - CALIBRATION SET-UP

At initial turn-on, set Pin 14 to ≈1.0 Volt with full scale potentiometer

The input circuit for the MC1505 has a unipolar differential

FIGURE 12 – CIRCUIT TO PREVENT POSSIBLE LATCHUP WITH APPLICATION OF NEGATIVE INPUT VOLTAGES

The MC1405/1505 A/D analog subsystem is intended for positive input voltages only (i.e., pin 1 positive with respect to pin 2). However, should pin 2 become more than 100 mV positive with respect to pin 1, the internal input amplifier may go into a latchup mode which will require that the system power be turned off and then reapplied to reset the system. To prevent this problem a PNP transistor can be used as shown in the accompanying figure. The base-emitter junction of the transistor clamps pin 13 at one diode drop above the reference voltage (pin 11) to prevent the latchup. The gain of the transistor insures that the reference need not sink more than 500 µA of current.

The 47 k Ω resistor is required only if the A/D system is to continue to convert under reverse polarity conditions such as for autopolarity schemes.

*47 k Ω resistor required if conversions are to continue during input polarity reversal, otherwise tie pins 12 and 13 together.

TYPICAL PERFORMANCE CURVES

CHARACTERISTIC

FIGURE 19 - CURRENT SWITCH TRANSFER

FIGURE 20 - INTEGRATOR OUTPUT SWING versus TEMPERATURE

FIGURE 21 - COMPARATOR THRESHOLD versus TEMPERATURE

FIGURE 22 - RAMP CURRENT RATIO versus POWER SUPPLY

FIGURE 23 - CURRENT MEASUREMENT CIRCUITRY

If a voltage drop of 20 V full scale can be tolerated the resistors may be increased by a factor of ten and a unity gain buffer may be employed.

FIGURE 24 - DVM VOLTAGE RANGING

FIGURE 25 - MTTL DIGITAL SUBSYSTEM

12 Bit Binary A/D Converter (1.0 Volt Full Scale, 512 Count Delay)

FIGURE 26 – 12-BIT BINARY A/D LOGIC SUBSYSTEM USING CMOS

MC1406L MC1506L

Specifications and Applications Information

SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

... designed for use where the output current is a linear product of a six-bit digital word and an analog input voltage.

- Digital Inputs are MDTL and MTTL Compatible
- Relative Accuracy ±0.78% Error maximum
- Low Power Dissipation − 85 mW typical @ ±5.0 V
- Adjustable Output Current Scaling
- Fast Settling Time -- 150 ns typical
- Standard Supply Voltage: +5.0 V and -5.0 V to -15 V

SIX BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Digital-to-Analog Meter
 Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems

- Stepping Motor Drive
- CRT Character Generation
- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
 Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+5.5 -16 5	Vdc
Digital Input Voltage	V ₅ thru V ₁₀	+8.0, V _{EE}	Vdc
Applied Output Voltage	v _o	±5.0	Vdc
Reference Current	112	5.0	mA
Reference Amplifier Inputs	V ₁₂ , V ₁₃	V _{CC} , V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^O C	PD	1000 6.7	mW mW/ ^O C
Operating Temperature Range MC1506L MC1406L	,T _A	-55 to +125 0 to +70	°c
Storage Temperature Range	T _{stg}	-65 to +150	оС

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $V_{EE} = -15 \text{ Vdc}$, $\frac{V_{ref}}{R12} = 2.0 \text{ mA}$, all logic inputs in low logic state, $T_A = T_{high}$ to T_{low} , unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale IO)	10	Er	_		±0 78	%
Settling Time (within 1/2 LSB [includes t _d] T _A = +25°C)	9	tS	_	150	300	ns
Propagation Delay Time TA = +25°C	9	tPHL, tPLH	_	10	50	ns
Output Full Scale Current Drift		TCIO	_	80	_	PPM/OC
Digital Input Logic Levels High Level, Logic "1" Low Level, Logic "0"	3,14	VIH VIL	2.4 _	_	- 08	Vdc
Digital Input Current High Level, V _{IH} = 5 0 V Low Level, V _{IL} = 0.8 V	3,13	IIH IIL	-	0 -0 7	+0.01 -1 5	mA
Reference Input Bias Current (Pin 13)	3	¹ 13	_	-0.002	-0.01	mA
Output Current Range VEE = -5 0 V VEE = -6 0 to -15 V	3	IOR	0	2 0 2 0	2.1 4.2	mA
Output Current $V_{ref} = 2.000 \text{ V}$, $R_{12} = 1.000 \text{ k}\Omega$	3	10 ,	19	1.97	2.1	mA
Output Current (all bits high)	3	IO(min)	-	0	10	μА
Output Voltage Compliance ($E_r \le \pm 0.78\%$ at $T_A = +25^{\circ}C$)	3,4,5	V _{O+}	_	+0.25 -0 45	+0 1 -0.3	Vdc
Reference Current Slew Rate $(T_A = +25^{\circ}C)$	8,15	SR I _{ref}	_	2.0	_	mA/μs
Output Current Power Supply Sensitivity	10	PSRR(-)	-	0 002	0 010	mA/V
Power Supply Current A1 thru A6; V _{IL} = 0 8 V A1 thru A6; V _{IH} = 2.4 V	3,11,12	ICC IEE	-	+7 2 -9.0	+11 -11	mA
Power Dissipation (all bits high) VEE = -5 0 Vdc VEE = -15 Vdc		PD	_	85 175	120 240	mW

 $^{^{*}}T_{high} = +70^{\circ}C$ for MC1406L $T_{low} = 0^{\circ}C$ for MC1406L $= +125^{\circ}C$ for MC1506L $= -55^{\circ}C$ for MC1506L

The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.

COMPLETE CIRCUIT SCHEMATIC (Digital Inputs; pins 5,6,7,8,9,10) LSB MSB A195 A5 q 9 A6 o 10 VCC+11 GUTPUT 10 800 800 \$800 800 800 800 R 2R LADDER 400 400 400 400 400 REFERENCE CURRENT AMPLIFIER 20 k V_{ref} (+) Pin 1 no connection BIAS ļз compensation 13 14 V_{ref} (-) ٧EE

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

FIGURE 4 — OUTPUT CURRENT versus OUTPUT VOLTAGE

FIGURE 5 — MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 6 - POSITIVE V_{ref}

FIGURE 7 - NEGATIVE V_{ref}

FIGURE 8 — REFERENCE CURRENT SLEW RATE MEASUREMENT TEST CIRCUIT

8

TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)

FIGURE 9 ~ TRANSIENT RESPONSE

FIGURE 10 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 12 - TYPICAL POWER SUPPLY CURRENT versus VEE

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 14 - MSB TRANSFER CHARACTERISTICS versus TEMPERATURE (MSB IS "WORST CASE")

FIGURE 15 - REFERENCE INPUT FREQUENCY RESPONSE

GENERAL INFORMATION

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.

Output Voltage Compliance

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at $+25^{\circ}$ C the allowable voltage compliance on Pin 4 to maintain six-bit accuracy is +0.1 to -0.3 Volts. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from Pin 4 to ground is 150 ohms.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31 μ A that is the ladder remainder shunted to ground. The input current to Pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA, allowing

GENERAL INFORMATION (continued)

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of $\pm 1/2$ of one part in 4096, or $\pm 0.012\%$, which is more accurate than the $\pm 0.78\%$ specification provided by the MC1506L.

Multiplying Accuracy

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of 64.1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 60 μ A to 4.0 mA, the 6.0 μ A contributes an error of 0.1 LSB. This is well within six-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within $\pm 1/2$ LSB, while the turn "off" is typically under 50 ns.

The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at Pin 12 for converting the reference voltage to a current, and a turn-

around circuit or current mirror for feeding the ladder. The reference amplifier input current, 112, must always flow into Pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current 112. Compensation is accomplished by Miller feedback from Pın 14 to Pin 13. This compensation method yields the best slew rate, typically better than 2.0 mA/ μ s, and is independent of the value of R 12. R 13 must be used to establish the proper impedance for compensation at Pin 13. For bipolar reference signals, as in the multiplying mode, R 13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to VEE. The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of 1.0, 2.5, and 5.0 kilohms, minimum capacitor values are 50, 125, and 250 pF.

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to VEE on Pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above VEE. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at Pin 13.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R12 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between Pin 12 and ground.

If Pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

VEE

Theoretical VO $V_0 = \frac{V_{ref}}{R12}(R_0)(\frac{\bar{A}1}{2} + \frac{\bar{A}2}{4} + \frac{\bar{A}3}{8} + \frac{\bar{A}4}{16} + \frac{\bar{A}5}{32} + \frac{\bar{A}6}{64}) = K \; R_0 \left\{ \bar{A} \right\}$ Adjust R_{ref} so that VO with all digital inputs at low level is equal to 9 844 volts

 $V_0 = \frac{2 \text{ V}}{1 \text{ K}} (5 \text{ K}) (\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}) = 10 \text{ V} (\frac{63}{64}) = 9 844 \text{ V}$

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the LM301AG $\$ can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0 μs .

FIGURE 18

The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

The output voltage range for this circuit is 0 volts to BVCBO of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

APPLICATIONS INFORMATION (continued)

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a commonde signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since ±15 V and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing RO and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. $C_{\rm O}$ may be decreased to maintain the same $R_{\rm O}C_{\rm O}$ product if maximum speed is desired.

Programmable Power Supply

The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-volt increments, ±0.05 volt; or 0 to 31.5 volts in 0.5-volt increments, ±0.25 volt.

FIGURE 19 — COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "1's" complement offset binary. Vref may be used as this auxiliary reference. Note that RQ has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.

FIGURE 20 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 21 — POLARITY SWITCHING CIRCUIT (6-Bit Magnitude Plus Sign D-to-A Converter)

APPLICATIONS INFORMATION (continued)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15.

The best frequency response is obtained by not allowing l₁₂ to reach zero. R_S can be set for a ±1.0 mA variation in relation to l₁₂. l₁₂ can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 22 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or V_{ref}.

FIGURE 23 - PANEL METER READOUT CIRCUIT

FIGURE 24 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R121 and R122 or R131 and R132. Vo will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R121 and R122 to a positive reference higher than the most positive input, and drive R131 and R132. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.

8

APPLICATIONS INFORMATION (continued)

FIGURE 25 – DIGITAL SUMMING and CHARACTER GENERATION

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D-to-A converter (see Accuracy Section).

FIGURE 27 - PROGRAMMABLE PULSE GENERATOR

Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input

FIGURE 29 -- ANALOG DIVISION BY DIGITAL WORD

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I $_{\rm O}$ can be set at $62~\mu{\rm A}$ so that I $_{\rm 12}$ will have a maximum value of 3.938 mA for a digital bit input configuration of 111110.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

FIGURE 26 — PEAK DETECTING SAMPLE and HOLD (Features infinite hold time and optional digital output.)

Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

FIGURE 30 – ANALOG QUOTIENT OF TWO DIGITAL WORDS

APPLICATIONS INFORMATION (continued)

FIGURE 31 - ANALOG PRODUCT OF TWO DIGITAL WORDS
(High-Speed Operation)

Two Digit BCD Conversion

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.

FIGURE 32 – DIGITAL QUOTIENT of TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

R

Specifications and Applications Information

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

. . . designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.

- Eight-Bit Accuracy Available in Both Temperature Ranges Relative Accuracy: ±0.19% Error maximum (MC1408L8, MC1408P8, MC1508L8)
- Seven and Six-Bit Accuracy Available with MC1408 Designated by 7 or 6 Suffix after Package Suffix
- Fast Settling Time 300 ns typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible
- Output Voltage Swing +0 4 V to -5.0 V
- High-Speed Multiplying Input Slew Rate 4.0 mA/μs
- Standard Supply Voltages +5.0 V and -5.0 V to -15 V

MC1408 MC1508

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation

- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+5 5 -16.5	Vdc
Digital Input Voltage		V ₅ thru V ₁₂	0 to +5 5	Vdc
Applied Output Voltage		v _o	+0 5,-5.2	Vdc .
Reference Current		114	5.0	rnA
Reference Amplifier Inputs		V ₁₄ ,V ₁₅	V _{CC} ,V _{EE}	Vdc
Operating Temperature Range	MC1508 MC1408 Series	ТА	-55 to +125 0 to +75	°C
Storage Temperature Range		T _{stg}	-65 to,+150	, °C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5 0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R14}$ = 2 0 mA, MC1508L8 T_A = -55°C to +125°C. MC1408L Series. T_A = 0 to +75°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O) MC1508L8, MC1408L8, MC1408P8	4	E _r	_	_	±0 19	%
MC1408P7, MC1408L7, See Note 1 MC1408P6, MC1408L6, See Note 1		İ	_	_ _	±0 39 ±0.78	
Settling Time to within $\pm 1/2$ LSB[includes tpLH](TA=+25°C)See Note 2	5	ts		300		ns
Propagation Delay Time $T_A \approx +25^{\circ}C$	5	tPLH,tPHL		30	100	ns
Output Full Scale Current Drift		TCIO	_	- 20	<u> </u>	PPM/ ^O C
Digital Input Logic Levels (MSB) High Level, Logic ''1'' Low Level, Logic ''0''	3	VIH VIL	20	_	_ 08	Vdc
Digital Input Current (MSB) High Level, V _{IH} = 5 0 V Low Level, V _{IL} = 0 8 V	3	. ИН ИС		0 -0 4	0 04 -0 8	mA
Reference Input Bias Current (Pin 15)	3	¹ 15		-1.0	-5 0	μА
Output Current Range VEE = -5.0 V VEE = -15 V, T _A = 25 ^o C	3	OR .	0	2.0 2 0	2.1 4 2	mA
Output Current $V_{ref} = 2000V$, R14 = 1000 Ω	3	10	19	1 99	2.1	mA
Output Current (All bits low)	3	¹ O(min)	_	0	4 0	μА
Output Voltage Compliance ($E_r \le 0.19\%$ at $T_A = +25^{\circ}C$) Pin 1 grounded Pin 1 open, VEE below -10 V	3	Vo	- -	-	-0 55, +0 4 -5 0, +0 4	Vdc
Reference Current Slew Rate	6	SR I _{ref}	1	40	-	mA/μs
Output Current Power Supply Sensitivity		PSRR(-)	-	05	27	μA/V
Power Supply Current (All bits low)	3	ICC IEE	-	+13 5 -7 5	+22 -13	mA
Power Supply Voltage Range (T _A = +25°C)	3	V _{CCR} V _{EER}	+4 5 -4 5	+5 0 -15	+5 5 -16.5	Vdc
Power Dissipation All bits low VEE = -5 0 Vdc VEE = -15 Vdc All bits high	3	PD	_ _	105 190	170 305	mW
VEE = -5 0 Vdc VEE = -15 Vdc Note 1. All current switches are tested			-	90 160		

Note 1. All current switches are tested to guarantee at least 50% of rated output current

Note 2. All bits switched

TEST CIRCUITS

FIGURE 3 -- NOTATION DEFINITIONS TEST CIRCUIT

V₁ and I₁ apply to inputs A1 thru A8

The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

$$\begin{split} I_{O} &= K \, \left\{ \, \frac{A1}{2} \, + \, \frac{A2}{4} \, + \, \frac{A3}{8} \, + \, \frac{A4}{16} \, + \, \frac{A5}{32} \, + \, \frac{A6}{64} \, + \, \frac{A7}{128} \, + \, \frac{A8}{256} \, \right\} \\ &\text{where } K \cong \frac{V_{\text{ref}}}{R14} \end{split}$$

and $A_N = "1"$ if A_N is at high level $A_N = "0"$ if A_N is at low level

FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 5 - TRANSIENT RESPONSE and SETTLING TIME

TEST CIRCUITS (continued)

FIGURE 6 – REFERENCE CURRENT SLEW RATE MEASUREMENT

FIGURE 7 — POSITIVE V_{ref}

FIGURE 8 - NEGATIVE V_{ref}

FIGURE 9 - MC1408, MC1508 SERIES EQUIVALENT CIRCUIT SCHEMATIC

DIGITAL INPUTS

CIRCUIT DESCRIPTION

The MC1408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides

a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1 992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, I14, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin, for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be tied to $V_{\mbox{\footnotesize{EE}}}$ as this increases negative supply rejection,

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to $V_{\rm EE}$ on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3 0-volts above the $V_{\rm EE}$ supply Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 µF to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.55 to +0.4 do to the current switching methods employed in the MC1408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1408 may be extended to -5 0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases "worst case" settling time to 1 2 µs (when all bits are switched on)

Refer to the subsequent text section on Settling Time for more details on output loading

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing

Output Current Range

The output current maximum rating of 4 2 mA may be used only for negative supply voltages typically more negative than –8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1408 has a very low full scale current drift with temperature.

The MC1408/MC1508 Series is guaranteed accurate to with $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 μ A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC1408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or ± 0 00076%, which is much more accurate than the $\pm 0.19\%$ specification provided by the MC1408x8.

Multiplying Accuracy

The MC1408 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256 1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 16 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μ A to 4.0 mA, the 16 μ A contributes an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0 mA.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1408 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

8

GENERAL INFORMATION (Continued)

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within $\pm 1/2$ LSB, for 8-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when R $_{L} \leqslant$ 500 ohms and $C_{0} \leqslant$ 25 pF.

The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns, while bit A6 turns "on" in 150 ns and "off" in 80 ns

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC-1408. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 µF supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS

 $(V_{CC} = +5 \text{ O V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C}$ unless otherwise noted)

FIGURE 10 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 11 — TRANSFER CHARACTERISTIC versus TEMPERATURE (A5 thru A8 thresholds lie within range for A1 thru A4)

FIGURE 12 — OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)

FIGURE 13 - OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +5.0 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted.)

FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE

FIGURE 15 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE (all bits low)

Unless otherwise specified

R14 = R15 = 1 0 kΩ C = 15 pF, pin 16 to VEE RL = 50 Ω, pin 4 to GND

Large Signal Bandwidth Method of Figure 7

Vref = 20 V(p p) offset 10 V above GND

Curve B · Small Signal Bandwidth Method of Figure 7 RL = 250 Ω Vref = 50 mV(p p) offset 200 mV above GND

Curve C Large and Small Signal Bandwidth

Method of Figure 25 (no op-ampl, R $_{\rm L}$ = 50 Ω) Rs = 50 Ω

VS = 100 mV(p p) centered at 0 V

FIGURE 16 - TYPICAL POWER SUPPLY CURRENT

APPLICATIONS INFORMATION

FIGURE 17 - OUTPUT CURRENT TO VOLTAGE CONVERSION

$$V_O = \frac{V_{ref}}{R14} (R_O) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$
Adjust V_{ref} , R14 or R_O so that V_O with all digital inputs at high

$$\begin{aligned} &V_{O} = \frac{2V}{1k} \quad (5k) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] \\ &= 10V \left[\frac{255}{256} \right] = 9.961 \text{ V} \end{aligned}$$

8

APPLICATIONS INFORMATION (continued)

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the LM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 20 μs .

FIGURE 18

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of $2.0 \,\mu s$.

FIGURE 19

The positive voltage range may be extended by cascading the output with a high beta common base transistor. Q1, as shown.

FIGURE 20 – EXTENDING POSITIVE VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BVCBO of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to VEE maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1408 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded

Since ±15 V and +5.0 V are normally available in a combination digital-to-analog system, only the -5 0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2 0 to -8.0 volts. The 5 0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by noceasing R_O and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_O may be decreased to maintain the same R_OC_O product if maximum speed is desired.

APPLICATIONS INFORMATION (continued)

Programmable Power Supply

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to \pm 25.5 volts in 0.1-volt increments, \pm 0.05 volt, or 0 to 5.1 volts in 20 mV increments, \pm 10 mV.

FIGURE 21 – COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8-bit "11's" complement offset binary. $V_{\rm ref}$ may be used as this auxiliary reference. Note that R_O has been doubled to 10 kilohms because of the anticipated 20 V(p-p) output range.

FIGURE 22 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

$$V_{O} = \frac{V_{ref}}{R14} (R_{O}) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right] - \frac{V_{ref}}{R_{B}} (R_{O})$$

FIGURE 23 -- BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT

Decrease R_Q to 2 5 $k\Omega$ for a 0 to -5 0-volt output range This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information

8

APPLICATIONS INFORMATION (continued)

Polarity Switching Circuit, 8-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8-bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 24 — POLARITY SWITCHING CIRCUIT (8-Bit Magnitude Plus Sign D-to-A Converter)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1408 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if Rg. = 50 ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing l_{14} to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. R_S can be set for a ± 1.0 mA variation in relation to l_{14} l_{14} can never be negative.

The output current is always unipolar. The quiescent do output current level changes with the digital word which makes ac coupling necessary.

FIGURE 25 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

The MC1408 can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or Vref.

FIGURE 26 - PANEL METER READOUT CIRCUIT

FIGURE 27 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

APPLICATIONS INFORMATION (continued)

This digital subtraction application is useful for indicating when one digital word is approaching another in value More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R141 and R142 or R151 and R162 /Q will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R141 and R142 to a positive reference higher than the most positive input, and drive R151 and R152. This yields high input impedance, bipolar differential and common-mode range.

FIGURE 28 - DIGITAL SUMMING and CHARACTER GENERATION

FIGURE 30 - NEGATIVE PEAK DETECTING SAMPLE AND HOLD

FIGURE 31 - PROGRAMMABLE PULSE GENERATION

Fast rise and fall times require the use of high-speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input

In a character generation system one MC1408 circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 16-bit D-to-A converter (see Accuracy Section).

FIGURE 29,— POSITIVE PEAK DETECTING SAMPLE and HOLD (Features indefinite hold time and optional digital output.)

FIGURE 32 - PROGRAMMABLE CONSTANT CURRENT SOURCE

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

•

8

APPLICATIONS INFORMATION (continued)

FIGURE 33 - ANALOG DIVISION BY DIGITAL WORD

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I $_0$ can be set at 16 μ A so that I $_1$ 4 will have a maximum value of 3.984 mA for a digital bit input configuration of 00000001.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If the MC1733, MC1520 or any other wideband amplifier are used, the reference amplifier should always be overcompensated.

FIGURE 34 - ANALOG QUOTIENT OF TWO DIGITAL WORDS

FIGURE 35 — ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

FIGURE 36 - TWO-DIGIT BCD CONVERSION

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10 1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of

 $4.0\,mA$ and $0.4\,mA$ with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word

FIGURE 37 – DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

8

MC3408

LOW-COST EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

. . . designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.

- Relative Accuracy: ±0.5% Error Maximum
- Low Price Allows Use of a D/A in Many New Applications
- Monotonicity Guaranteed to 8 Bits
- Fast Settling Time 300 ns typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible
- Output Voltage Swing +0.4 V to -5.0 V
- High-Speed Multiplying Input
 Slew Rate 4.0 mA/μs
- Standard Supply Voltages +5.0 V and -5.0 V to -15 V

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation

- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7 0 -16 5	Vdc
Digital Input Voltage	V ₅ thru V ₁₂	0 to +15	Vdc
Applied Output Voltage	V _O	+0.5,-5.2	Vdc
Reference Current	114	5.0	mA
Reference Amplifier Inputs	V ₁₄ ,V ₁₅	V _C C,V _{EE}	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	тл	+175	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +5 0 Vdc, V_{EE} = -15 Vdc, V_{EE} = -15 Vdc, V_A = 0 to +70°C unless otherwise noted.

All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale IO) Note 1	4	Er	_	-	±0.5	%
Monotonicity See Multiplying Accuracy on Page 6	_	_	Guaranteed to		8 bits	-
Settling Time to within ±0.5% of Full Scale [includes tpLH] (TA=+25°C)See Note 2	5	ts		300	_	ns
Propagation Delay Time T _A = +25°C	5	tPLH,tPHL	_	30	100	ns
Output Full Scale Current Drift		TCIO		-30	-	PPM/OC
Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "0"	3	V _{IH} V _{IL}	20	_ _	_ 08	Vdc
Digital Input Current (MSB) High Level, $V_{ H}$ = 5.0 V Low Level, $V_{ L}$ = 0.8 V	3	IIН IIL	-	0 -04	0 04 -0 8	mA
Reference Input Bias Current (Pin 15)	3	¹ 15	_	-1.0	-5.0	μΑ
Output Current Range VEE = -5.0 V VEE = -15 V (T _A = 25°C)	3	IOR	0	2 0 2.0	2.1 4 2	mA
Output Current V_{ref} = 2 000 V, R14 = 1000 Ω	3	10	19	1.99	21	mA
Output Current (All bits low)	3	¹ O(min)		0	4 0	μА
Output Voltage Compliance ($E_r \le 0.5\%$ at $T_A = +25^{\circ}C$) Pin 1 grounded Pin 1 open, VEE below -10 V	3	V _O	-	-	-0 5,+0 4 -5 0,+0 4	Vdc
Reference Current Slew Rate	6	SR I _{ref}	-	40		mA/μs
Output Current Power Supply Sensitivity		PSRR(-)	_	0.5	40	μA/V
Power Supply Current (All bits low)	3	ICC IEE	-	+13 5 -7 5	+22 -13	mA
Power Supply Voltage Range (T _A = +25 ^o C)	3	V _{CCR} VEER	+4 5 -4.5	+5 0 -15	+5 5 -16.5	Vdc
Power Consumption All bits low VEE = -5 0 Vdc VEE = -15 Vdc All bits high VEE = -5.0 Vdc	3	PC		105 190 90	170 305	mW
V _{EE} = -15 Vdc				160		

Note 1. For devices with greater accuracy, see MC1508 Series data sheet.

Note 2. All bits switched

8

TEST CIRCUITS

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

V₁ and I₁ apply to inputs A1 thru A8

The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications

$$I_{O} = K \left\{ \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right\}$$
where $K \cong \frac{V \text{ ref.}}{R14}$

and A_N = "1" if A_N is at high level A_N = "0" if A_N is at low level

FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 5 ~ TRANSIENT RESPONSE and SETTLING TIME

TEST CIRCUITS (continued)

FIGURE 6 — REFERENCE CURRENT SLEW RATE MEASUREMENT

FIGURE 7 -- POSITIVE V_{ref}

FIGURE 8 - NEGATIVE V_{ref}

FIGURE 9 - MC3408 EQUIVALENT CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC3408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides

a low impedance termination of equal voltage for all legs of the ladder. $% \label{eq:continuous}$

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin, for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be tied to V_{EE} as this increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the VEE supply Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μF to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.5 to +0.4 volts at +25°C, due to the current switching methods employed in the MC3408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC3408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.952 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases "worst case" settling time to 1 2 µs (when all bits are switched on).

Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC3408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC3408 has a very low full scale current drift with temperature

The MC3408 is guaranteed accurate to within ±0.5% at +25°C at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 µA which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC3408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC3408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.5\%$ specification provided by the MC3408.

Multiplying Accuracy

The MC3408 may be used in the multiplying mode with good accuracy when the reference current is varied over a range of 256·1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 μA extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μA to 2.0 mA, the 1.6 μA contributes an error of 0.2 LSB with respect to the 2.0 mA.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC3408 is monotonic for all values of reference current above $0.5\,\mathrm{mA}$. The recommended range for operation with a dc reference current is $0.5\,\mathrm{to}\,2.0\,\mathrm{mA}$.

Specifications and Applications Information

TEN BIT D TO A CONVERTER

The MC3410 series devices are low-cost, high-accuracy monolithic D/A converter subsystems. Like their MC1408 series predecessors, they provide the logic controlled current switches, the R-2R resistor ladder network and output termination networks. The output buffer amplifier and reference voltage have been omitted from the circuit to allow greatest system speed, flexibility and lowest cost. This device is useful in industrial control and microprocessor based systems.

- Relative Accuracy ±0.05% Error Maximum (MC3510 and MC3410)
- Fast Settling Time 250 ns Typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible (from 5 to 15 V CMOS)
- Output Voltage Swing +0.2 V to -2.5 V
- High Speed Multiplying Input Slew Rate 20 mA/μs
- Standard Supply Voltages +5 V and 15 V
- All Categories Guaranteed Monotonic Across Temperature
- Reference Amplifier Internally Compensated

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 3-Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector

- Programmable Gain and Attenuation
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Speech Compression and Expansion
- Sample Data Systems

MC3410 MC3510 MC3410C

LASER TRIMMED

TEN BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC3410, MC3510, MC3410C

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	+7.0	Vdc	
•	VEE	-18		
Digital Input Voltage	VI	+15	Vdc	
Applied Output Voltage	V _O	+0.5, -5 0	Vdc	
Reference Current	IREF(16)	2.5	mA	
Reference Amplifier Inputs	VREF	V _{CC} , V _{EE}	Vdc	
Reference Amplifier Differential Inputs	VREF(D)	0.7	Vdc	
Operating Temperature Range	TA		°c	
MC3510	1 1	-55 to +125		
MC3410,C		0 to +70		
Junction Temperature	TJ		°c	
Ceramic Package	1 (+175		
Plastic Package	! L	+150		

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{tef}}{R16}$ = 2.0 mA, MC3510 T_A = -55°C to +125°C. MC3410 Series: T_A = 0 to +70°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O) T _A = 25°C MC3510, MC3410 MC3410C	E _r	_		±0.05 ±0.1	%
Relative Accuracy Temperature Drift (Relative to Full Scale IO)	TCE	_	2.5	-	PPM/O
Monotonicity (Full Temperature Range)	_	Mon	otonic to 10	Bits	
Settling Time to within ±1/2 LSB (T _A = 25°C) (All Bits Low to High)	ts	_	250	_	ns
Propagation Delay Time TA = +25°C	tPLH tPHL	_	35 20	_	ns
Output Full Scale Current Drift MC3410, MC3410C MC3510	TCIO	_	-	60 70	PPM/°
Digital Input Logic Levels (All Bits) High Level, Logic "1" Low Level, Logic "0"	V _{IH} V _{IL}	2.0	-	_ 0.8	Vdc
Digital Input Current (All Bits) High Level, $V_{IH} = 5.5V$ Low Level, $V_{IL} = 0.8V$	liH liC	_ _	- 0.05	0.04 0.4	mA
Reference Input Bias Current (Pin 15)	[†] REF(15)	_	-1.0	-5.0	μА
Output Current Range	IOR	0	4.0	5.0	mA
Output Current V _{ref} = 2.000 V, R ₁₆ = 1000 Ω	lo	3.8	3.996	4.2	mA
Output Current MC3510, MC3410 (All bits low) (T _A = 25°C) MC3410C	IO(min)	_	0	2.0 4.0	μΑ
Output Voltage Compliance (T $_{\rm A}$ 25°C) $E_{\rm r} < 0.05\%$ relative to FS — MC3510, MC3410 $E_{\rm r} < 0.10\%$ relative to FS — MC3410C	Vo	_	_	-2.5,+0.2 -2.5,+0.2	Vdc
Reference Amplifier Slew Rate	SR I _{ref}	-	20		mA/μ
Reference Amplifier Settling Time (0 ta 4.0 mA, ±0.1%)	STIREF	-	2.0	-,	μς
Output Current Power Supply Sensitivity MC3510, MC3410 MC3410C	PSRR(-)	_	0.003 0.003	0.01 0.02	%/%
Output Capacitance (VO = 0)	co	_	25	-	pF
Digital Input Capacitance (All Bits, Inputs High)	CI	-	4.0		pF
Power Supply Current (All Bits low)	ICC IEE	_	+10 -11.4	+18 20	mA
Power Supply Voltage Range (T _A = +25°C)	VCCR VEER	+4.75 -14.25	+5.0 15	+5.25 -15.75	Vdc
Power Consumption All Bits low All Bits high	PC	_	220 200	380	mW

TEST CIRCUITS VCC O I I CC FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUITS V_i and I_i apply to inputs A1 A205 A3 06 The resistor tied to pin 15 is to temperature compensate the A40⁷ bias current and may not be necessary for all applications. A508 MC3510/ Digital MC3410 A609 $I_0 = K + \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} + \frac{A9}{512} + \frac{A10}{1024}$ Inputs A7010 ٧o A8 011 O Output A9012 A10013 Typical Values: R15 = R16 = 1 k and A_N = "1" if A_N is at high level A_N = "0" if A_N is at low level V_{ref} (+) = +2.0 V V_{ref} (-) = Gnd I_O = 4.0 mA VEE VEE

CIRCUIT DESCRIPTION

The MC3410 consists of a reference current amplifier, a diffused R-2R ladder, a laser trimming network, and ten high-speed current switches. The trimming method employed makes it possible to improve the linearity attainable with modern diffusion technology by as much as a factor of ten so that a highly linear part results. The trim is performed by cutting aluminum links arranged to give incremental variations in voltage at the ladder termination amplifiers (See Figure 10). This yields a highly stable trim with no increase in fabrication complexity.

The switches are non-inverting in operation, so that a high state on an input turns on the specific component of output current. The switches use current steering for speed, and inter-

face the R-2R ladder through unity gain feedback termination amplifiers, which provide low impedance terminations of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the current switches. The three least-significant bit switches derive their current through emitter scaling from the last leg of the ladder. The remaining current, equal to one LSB, is shunted to VCC at the LSB switch. Therefore, the maximum output current is 1023/1024 of the reference amplifier current, or nominally 3.996 mA for a 2.000 mA reference input current.

Reference Voltage

To generate the precision voltage reference input for the MC3410, either the MC1403 or the MC1404 may be used. The MC1403 produces a 2.5 V ±1% output voltage while the MC1404 produces a 10 V ±1% output. Both have excellent temperature and long term stability. In order to reduce the effect of reference amplifier offset voltage on overall accuracy, the highest possible stability reference voltage should be used. Therefore, in systems with a + 15 V supply, the MC1404 (10 V) is recommended. Where the most positive supply is only +5 V, the MC1403 provides a 2.5 V reference. To set the reference current exactly, a low temperature coefficient potentiometer in series with R1 should be used.

GENERAL INFORMATION

Reference Amplifier

The reference amplifier allows the user to provide a voltage and a resistor to Pin 16 to convert the reference voltage to a current. A current mirror doubles this reference current and feeds it to the R-2R ladder. Thus for a reference voltage of 2.0 Volts and 1 k Ω resistor tied to Pin 16, the full-scale current is approximately 4.0 mA. The reference input current, 116, must flow into Pin 16 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 8. The reference voltage source supplies the full current 116. For bipolar refererence signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level.

The reference amplifier is internally compensated with a 10 pF feed-forward capacitor, which gives it its high slew rate and fast settling time. Proper phase margin is maintained with all possible values of R16 and reference voltages which supply 2.0 mA reference current into Pin 16. The reference current also be supplied by a high impedance current source of 2.0 mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling time increases. For a current source with dynamic output impedance of 1.0 M Ω , the bandwidth of the reference amplifier is approximately half what it is in the case of R16 = 1.0 k Ω , and settling time is \approx 10 μ s. The reference amplifier phase margin decreases as the current source value decreases in the case of a current source reference, so that the minimum reference current supplied from a current source is 0.5 mA for stability.

A negative reference voltage may be used if R16 is grounded and the reference voltage is applied to R15 as shown in Figure 9. A high input impedance is the main advantage of this method. The negative reference voltage must be at least 3 Volts above the VEE supply for proper operation. Bipolar input signals may be handled by connecting R16 to a positive voltage equal to the peak positive input level at Pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the +5.0 V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1 µF capacitor to ground.

Output Voltage Range

The voltage on Pin 3 is restricted to a range of -2.5 V to +0.2 V due to the current switching methods employed in the MC3410. When a current switch is turned off, the positive voltage at the output terminal can turn on the output diode and increase the output current. When a current switch is on, the negative output voltage range is restricted to the point at which the low current device of the termination amplifier Darlington begins to saturate, resulting in a decrease in output current.

The output voltage compliance is guaranteed at 25°C. Note from Figure 14 that the output compliance of the MC3410 is nearly constant over temperature.

Accuracy

Absolute accuracy is a measure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the measure of each output current with respect to its intended fraction of the full scale current. The relative accuracy of the MC3410 is fairly constant over temperature due to the excellent temperature tracking, of the diffused resistors. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the MC3410 has a low full scale current drift with temperature.

The MC3510 and MC3410 are guaranteed accurate to within $\pm 1/2$ LSB at 25°C and at a full scale current of 3 996 mA. Input reference current to Pin 16 is guaranteed to be between

1.9 and 2.1 mA to produce a full scale output current of 3.996 mA. The relative accuracy test circuit is shown in Figure 4. The 14 bit D/A converter is calibrated for a full scale output of 3.996 mA. This is an optional step as the relative accuracy of the MC3410 is nearly constant between 3mAand 5 mAfull scale current. The MC3410 is calibrated at full scale with the 14-bit reference D/A by adjusting R16 until the error voltage goes to zero. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored on a peak detector.

Monotonicity

The MC3510, MC3410 and MC3410C are all guaranteed to be monotonic at temperature. This guarantees that for every increase in the input digital word, the output current either remains the same or increases, but never decreases. The MC3510 and MC3410 are monotonic over their respective temperature ranges. In the multiplying mode (when the reference current is varied), monotonicity is typically maintained for all values of input reference current above 0.5 mA.

Settling Time

The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 250 ns for the output to settle to within \pm 1/2 LSB for 10-bit accuracy, and 200 ns for 8-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (< 0.7 Volt) swing and the external output capacitance is under 25 pF.

The major carry (MSB off-to-on, all others on-to-off) settles in approximately the same time as when all bits are switched off-to-on.

The slowest switches are bit A10 (LSB) and bit A9, which turn on and settle in typically 200 ns, and turn off in 100 ns.

In the test circuit of Figure 5, the output voltage is internally clamped in the MC3410 at about 0.7 Volts above ground. The output is thus limited to a 0.7 Volt swing. If a load resistor of 625 Ohms is connected to ground, allowing the output to swing to –2.5 Volts, the settling time increases to 1.5 μ s.

Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100\mu F$ supply bypassing, and minimum scope lead length are all necessary.

MC3510 TERMINOLOGY

- RELATIVE ACCURACY Maximum output deviation from the straight line connecting zero and full scale, expressed as a percentage of full scale.
- RELATIVE ACCURACY DRIFT The average change in linearity error that will occur with a change in ambient temperature, expressed in parts per million of full scale per degree C.
- MONOTONICITY For every increase in the input digital word, the output current either remains the same or increases
- SETTLING TIME The elapsed time from the input transition until the output has settled within an error band about its final value.
- OUTPUT FULL SCALE CURRENT DRIFT The average change in full scale current between 25° C and either temperature extreme, expressed in parts per million of full scale per degree C.
- REFERENCE AMPLIFIER SLEW RATE The maximum rate of change of the full scale output current expressed in milliamperes per microsecond.
- OUTPUT VOLTAGE COMPLIANCE The maximum voltage that can be applied to the output pin so that the specified change in output current is not exceeded.
- POWER SUPPLY SENSITIVITY The change in full scale current caused by a change in V_{EE}, expressed as a percent of full scale current per percent change in V_{EE}.

TYPICAL CHARACTERISTICS

04 06

0.8 1.0

VI, LOGIC INPUT VOLTAGE (VOLTS)

APPLICATIONS INFORMATION

Voltage outputs are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC3410 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the LM301A can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μs .

FIGURE 17

An alternative method is to use the MC1539 and input compensation. Response of this circuit is also on the order of $2.0~\mu s$.

FIGURE 19 – EXTENDING POSITIVE VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because Pin 3 is held at a constant voltage. The resistor (R) to V_{EE} maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

FIGURE 18

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

FIGURE 20 – OUTPUT CURRENT TO VOLTAGE CONVERSION

$$V_{O} = \frac{2R_{O}}{R_{1}} V_{ref} \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} + \frac{A9}{512} + \frac{A10}{1024} \right]$$

for 10 volt fullscale calibration

$$V_O = \frac{2(2.5 \text{ k})}{5.0 \text{ k}} 10 \text{ Volts} \left[\frac{1023}{1024} \right]$$
 $V_O = 10 \text{ Volts } \{0.9990\}$

$$R_O = \text{Full Scale Adjust}$$

ė

8

APPLICATIONS INFORMATION (Continued)

Bipolar or Negative Output Voltage

The circuit in Figure 21 is a variation of the standard output voltage circuit in Figure 20. A negative or offset binary output may be obtained by sourcing current from the reference into the output through Rg. If Rg allows 2 mA (Rg = 5 k Ω from 10 Volts) then 1000000000 input will generate zero output voltage.

FIGURE 21 - OFFSET BINARY OR BIPOLAR DAC Vcc 0 мс 1404 14 16 4 5 6 7 8 9 10 11 MC3410 3 For Offset Binary Output From +5 V to -5 V $V_{O} = \frac{2R_{0}}{R_{1}} V_{ref} \left[\left(\frac{A_{1}}{2} + \frac{A_{2}}{4} + \frac{A_{3}}{8} + \frac{A_{4}}{16} + \frac{A_{5}}{16} + \frac{A_{6}}{64} + \frac{A_{7}}{128} + \frac{A_{8}}{256} + \frac{A_{9}}{512} + \frac{A_{10}}{1024} \right) - \frac{2R_{1}}{R_{B}} \right]$

Successive Approximation A to D

The fastest and most efficient means of A to D conversion using D to A convertors is successive approximation (SA). Similar in appearance to staircase devices, the SA converter is capable of 100 times faster conversions for a 10-bit result. A complete 10-bit SA coverter using MC3410 and MC14559B/49B successive approximation registers is shown in Figure 22. The complexity which results in higher conversion speeds is contained in the MC14559B/49B registers. Quite simply, the register compares the DAC output resulting from activating each bit with the input voltage. This is done starting with most significant bit and after 10 comparisons generates the 10-bit binary output representing that input. The accuracy of the conversion is fixed by the accuracy of the MC3410 and is not dependent on tolerances of the other components. An EOC outout is available and can be used to latch the parallel output or to synchronize the serial output which is also available. For more details on SA converters, see AN-716.

R_B≅ 5 kΩ

 $\text{R}_\text{O}\cong\text{2.5}\;\text{k}\Omega$

FIGURE 22 - SUCCESSIVE APPROXIMATION CONVERTER USING MC3410 AND MC1404

APPLICATIONS INFORMATION (Continued)

Staircase A to D

If high conversion speed is not required, a staircase A to D convertor can be built for somewhat lower cost. A complete staircase A/D convertor is shown in Figure 23. Here the complicated SA registers are replaced with simple binary counters. With an input voltage applied, the binary counter is reset by the convert command pulse and the begin accumulating counts. The DAC output steps upward until the comparator detects that the input is equal to the DAC output. The counters are disabled and the conversion result is held at the output until the circuit is reset by the convert command input.

One advantage of staircase convertors is the ease with which BCD outputs may be obtained Figure 24 shows a 3-digit panel meter using the staircase technique and an MC14553B 3-decade counter. The circuit function is similar to Figure 23 but Multiplexed BCD output is available from the MC14553B counters. Parallel BCD may be obtained with equal ease using the MC14518B 2-decade CMOS counters.

In both these staircase designs the system accuracy is determined by the specified accuracy of the MC3410.

FIGURE 23 - 10-BIT STAIRCASE A to D USING MC3410 AND MC1403

FIGURE 24 - 3-DIGIT DVM USING MC3410 AND MC1403

8

MC3410, MC3510, MC3410C

APPLICATIONS INFORMATION (Continued)

FIGURE 25 - ALTERNATE APPROACH STAIRCASE A TO D

BCD D to A Converter

BCD output A to D conversions are most easily accomplished by accumulating the digital results in two different counters, but that concept does not extend to BCD Dto A techniques. Using the circuit in Figure 26 a three-digit BCD number can be converted to a 10-bit accurate voltage. The MC14008B's perform the combinational BCD-to-Binary conversion. The accuracy of this circuit is also solely dependent on the accuracy of the MC3410.

FIGURE 26 - 3-DECADE BCD DAC

MC3412

Product Preview

COMPLETE 12-BIT HIGH-SPEED MONOLITHIC D/A CONVERTER

The MC3412 is a monolithic single-chip 12-bit D/A converter. It contains a high-stability voltage reference and both offset and span resistors. Active laser trimming of the thin-film ladder network and voltage reference provide accuracy and linearity of better than ± ½ LSB. 12-bit accuracy and fast settling time (typically better than 200 ns to ± ½ LSB) make this converter an ideal display driver or fast A/D converter building block.

- Fast Settling Time: ± ½ LSB in 200 ns Typ
- Fully Monotonic Over Temperature Range
- Single-Chip Construction
- · High-Stability Voltage Reference on Chip
- Linearity Guaranteed Over Temperature
- Low Power Consumption
- Replaces AD565

HIGH-SPEED 12-BIT D/A CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice

MC6890

Product Preview

BUS-COMPATIBLE 8-BIT MPU D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8-bit (±0.19% accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

ing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high-stability, laser-trimmed, thin-film resistors for both reference input and output span and offset control.

A reset pin provides for overriding stored data and forcing $l_{\mbox{\scriptsize out}}$ to zero.

- ±1/2 LSB Nonlinearity
- Available in Military Temperature Range
- Direct Data Bus Link
- Low Power: 130 mW Typ
- Fast Settling Time: 140 ns Typ
- Single Enable: 10 ns Max Data Hold Time
- Self-Contained 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Reset Pin to Override Data
- Output Voltage Ranges: +5.0, +10, +20, or ±2.5, ±5.0, ±10 Volts

OPERATION WITH MC6800 MC6800 Microprocessor Data Bus Reset DO-D7 Decoder 1-8 Reset 15/16 MC6890 12

This is advance information and specifications are subject to change without notice.

8-BIT BUS-COMPATIBLE MPU DAC

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+7.0 -18	Vdc
Digital Input Voltage, Pins 1-9, 12	V _{in}	-3.0 to +7.0	Vdc
Applied Output Voltage	V _{out}	VEE to +17	Vdc
Reference Current	I _{ref} (19)	3.5	mA
Reference Amplifier Input	V17	±7.5	Vdc
Operating Temperature Range MC6890 MC6890A	T _A	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -12 V, V_{ref} = 2.5 V, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Digital Input Logic Levels (Each Bit) High Level, Logic 1 Low Level, Logic 0	VIH VIL	 2.0	_	0.8	Vdc
Digital Input Current Data (VI _H = 3.0 V) (VI _L = 0.4 V)	liH lir		=	100	nΑ μΑ
Enable, Reset (V _{IH} = 3.0 V) (V _{IL} = 0.4 V)	կը Մ			100 -50	nA μA
Full Scale Output Current — Unipolar	0	-1.50	-1.992	-2.50	mA
Output Resistance — Exclusive of Span Resistors		7.0	10		MΩ
Unipolar Zero Output — All Bits Off	_		0.10	1.0	μΑ
Full Scale Output (Unipolar Zero) Temperature Coefficient (With Internal Reference) Unipolar Zero Blpolar Zero Gain			± 2.0 ± 35 ± 35	=	ppm/°C
Resolution		80	8.0	8.0	Bits
Monotonicity (0°C ≤ T_A ≤ +70°C) MC6890 (-55°C ≤ T_A ≤ +125°C) MC6890A			8 Bits Over	Temperature	
Relative Accuracy (Error Relative to Full-Scale Output Current)	€r		_	±0.19 (±1/2 LSB)	%
Differential Nonlinearity	-	_	-	± 0.29 (± 3/4 LSB)	%
Output Voltage, Full Scale — Unipolar with Internal Reference (10 V Span) (20 V Span) (5.0 V Span)	v _o	9.951 19.902 4.976	9.961 19.922 4 981	9.971 19.941 4.985	Vdc
Output Voltage, Half Scale — Bipolar Offset Tied to Internal Reference Direct — Input Code = 10000000 (10 V Span) (20 V Span) (5.0 V Span)	Vo	-9.8 -19.5 4.9	0 0	9.8 19.5 4.9	mV
Power Supply Range	V _{CC} V _{EE}	4 5 16 5	5.0 -12	5.5 -4.5	Vdc
Power Supply Current (V _C C = 5.0 V) (V _E E = -5.0 V) (V _E E = -15 V)	ICC IEE IEE	 	15 11 12	_ _ _	mA
Power Supply Sensitivity To V _{CC} (V _{CC} = 4.5 to 5 5 V, V _{EE} = -5.0 V) To V _{EE} (V _{CC} = 5.0, V _{EE} = -5.0 to -15 V)	PSS		±5.0 ±10	±50 ±100	ppm/FS*
Power Dissipation — All Bits Low For V _{CC} = 5.0 V @ V _{EE} = -5.0 V For V _{EE} = -15 V @ V _{CC} = 5.0 V	PD		130 255		. mW
Reference Input Resistor	R _{ref}	4.0	5.0	6.25	kΩ
Reference Output Voltage I _{Load} = 0 to 3.0 mA	V _{ref}	_	2.500	_	Vdc
Reference Output Current	I _{ref}	_		3.0	mA
Reference Output Voltage Temperature Coefficient	TCvo		±25		ppm/°C

^{*}Full Scale

AC SPECIFICATIONS (V_{CC} = 5.0 V, V_{EE} = -12 V, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Settling Time (Enable Positive Edge to ±1/2 LSB Output)	tg	_	140	_	ns
Data Setup Time	t _{su(D)}		80	-	ns
Data Hold Time	th(D)	-10		_	ns
Minimum Pulse Widths Enable Reset	tW(Ē) tW(R)	_	50 100	_	ns
Propagation Delays Enable, Low to High Reset, High to Low (IO $<$ 1.0 μ A)	^t PLH(Ē) ^t PHĽŘ)	=	60 140	_	ns

FIGURE 2 — BLOCK DIAGRAM

D7	D6	D5	D4	D3	D2	D1	DO	E _O (V	olts)	
J 57	D0	ויס	"	1 03	1 52	, ,	1 20 [Ros ≈ 25Ω	Ros=0	
1	1	1	1	1	1	1	1	+ 2.490	+ 2.480	
1 1	1	1	1	1 1	1	1 1	0	+ 2.470	+ 2.460	
1	0	0	0	0	0	0	0	+ 0.010	+ 0.000	
0	1	1	1	1	1 1	1	1	-0.010	- 0.020	
0	0	0	0	0	0	0	1	- 2.470	- 2.480	
0	0	0	0	0	0	0	0	- 2.490	- 2.500	

FIGURE 4 — TYPICAL APPLICATION FOR OFFSET BINARY ±5.0 V OUTPUT OPERATION

:

MC10317L

Product Preview

SEVEN BIT PARALLEL HIGH SPEED A/D CONVERTER (WITH OVERRANGE)

The MC10317L is a 7-bit high speed parallel A/D converter which employs ECL processing. The device consists of 128 parallel latched comparators across a high quality input reference network. The 128 comparator outputs are then fed to a 128-to-7 encoder and latched to the outputs which are ECL compatible. An overrange bit is provided to allow overrange sensing, or to facilitate the connection of two 7-bit converters to produce an 8-bit A/D converter.

Applications include video display and radar signal processing, high speed instrumentation, and TV broadcast video encoding.

- 7-Bit Resolution/8-Bit Accurate Plus Overrange
- Direct Interconnection for 8-Bit Conversion
- → 30 MHz Sampling Rate
- · Binary or 2's Compliment Output
- Fully Monolithic ECL 10K Compatible
- Standard 24-Pin Package
- Wide Range of Input Voltage ± 2.0 Volts

HIGH SPEED 7-BIT ANALOG-TO-DIGITAL FLASH CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 623

This is advance information and specifications are subject to change without notice.

MC10318L MC10318L9

Advance Specifications and Applications Information

HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER

The MC10318 is a high speed 8-bit D/A converter capable of data conversion rates in excess of 25 MHz. It is intended for applications in high speed instrumentation and communication equipment, display processing, storage oscilloscopes, radar processing, and TV broadcast systems. The inputs are compatible with MECL 10,000 series logic, while the complementary current outputs have 51 mA full scale capability 8-bit accurate (±1/2 LSB) and monotonic over the full temperature range, the outputs typically settle in less than 10 ns.

- FAST! Settling Time 15 ns Typ
- 8-Bit Accuracy (±0.19%) MC10318L
 9-Bit Accuracy (±0.1%) MC10318L9
- Inputs MECL 10,000 Compatible
- Complementary Current Outputs
- Output Compliance: -1.3 V to +2.5 V
- Standard: ~5.2 V Supply
- Standard 16 Pin Ceramic Package
- Low Dissipation Typically Less Than 500 mW
- Low Cost

HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 620

L SUFFIX CERAMIC PACKAGE CASE 690

Motorola reserves the right to supply this device in either of the above packages.

TYPICAL MC10318 TO MC10800 PROCESSOR INTERFACE Timing and Control Address Bus Buffer/Filter Holding Register Reg Cik Address and Timing Decode Network

This is advance information and specifications are subject to change without notice.

MC10318L, MC10318L9

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

· Rating	Symbol	Value	Unit
Power Supply Voltage	VEE	-6.0 to +0.5	Vdc
Digital Input Voltage	V ₁	0 to VEE	Vdc
Applied Output Voltage	V _O	+5.0	Vdc
Reference Current	I _{ref} (12)	5.0	mA
Output Current	IFS	75	mA
Reference Amplifier Input Range	V _{ref}	+0.5 to VEE	Vdc
Reference Amplifier Differential Inputs	V _{ref} (D)	±5.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	~65 to +150	°C
Junction Temperature Ceramic Package	TJ	+175	°C

^11	 AC.	 	. ~ ~

These specifications apply for V_{EE} = ~5.2 V, $I_{FS} = 51 \text{ mA}, T_A = 0^{\circ}\text{C to} + 70^{\circ}\text{C after thermal}$ equilibrium is reached.

@ Test Temperature 0°C 25°C 70°C

	TEST VOLTAGE VALUES (Note 1)								
	Volts								
V _{IH} max	VILmin	VIHAmin	VILAmax	VEE					
-0.845	-1.868	-1.151	-1516	-5.2					
-0.810	-1.850	-1.105	-1.505	-52					
-0.727	-1 830	-1.052	-1 480	-52					

Characteristics		Symbol	Min	Тур	Max	Unit
Power Supply Voltage Range	VEE	-5.46	-5.2	-4.94	V	
Power Supply Current		I _{EE}	-	90	130	mA
(Pins 1 thru 8 Open, IFS = 51 mA)			ļ		}	
Monotonicity			8.0	8.0		Bits
Nonlinearity	MC10318L		_		±0.19	% FS
	MC10318L9	_	1 -		±010	J
Settling Time to 1/2 LSB		ts	_	15		ns
(All Bits Switched On or Off, T _A = 25°C,	Note 3)			, ,		1
Full Scale Output Temperature Drift		TCIFS	_	±50	± 150	ppm/OC
Full Scale Current - Figure 1		^I FS	46.000	51	56.000	mA
$(R3, R4 = 3.300 \text{ k}\Omega, V_{ref} = 10.560 \text{ V}, No.$	ote 2)	_			1	
Zero Scale Current (Note 2)		^I zs	_	5.0	50	μА
Full Scale Symmetry (IFS15 - IFS14, Note 2)		^I FSS	-	15	100	μА
Half Scale Accuracy	MC10318L	HSA	_		±50	μΑ
(I _{HS} = 25.5 mA)	MC10318L9		-	-	±25	
Output Voltage Compliance (Note 2)		Voc	-1.3	-	2.5	V
Full Scale Current Change ≤ 99 μA	MC10318L,	[-		1	1
50 μΑ	MC10318L9					
Power Supply Sensitivity (of Full Scale Curre	nt)	PSSIFS		±0.002	±0.02	%/%
$(V_{EE} = -4.94 \text{ V to } -5.46 \text{ V})$		[Ĭ	1
Reference Bias Current, Pin 10		110	-	6.0	15	μА
(I _{ref} = 3.2 mA)]				
Propagation Delay 50% to 50%		tp	-	3.0		ns
(All Bits Switched Low to High, High to L	.ow)	1	1	}	1	Į.

NOTES. 1. Logic input levels are compatible with MECL 10,000 logic series.

- Output characteristics apply to both pins 14 and 15, lout and out.
 See comments on construction and evaluation techniques in Figure 2 and text.

FIGURE 2 – TYPICAL CONNECTIONS FOR 50 Ω TRANSMISSION LINE

NOTE. Line impedances and termination impedance must be homogeneous 50 00 Ω. Any deviation will cause reflections which will seriously affect settling time. Optimum performance cannot be realized with sockets, Good 1.0 GHz microstripline techniques must be used

Γ:

 $\frac{51 \text{ mA } \times 75 \Omega}{}$)/51 mA = 270 Ω 5% 0.01 µF -5.2 V +5.0 V 16 75 75 0.01% 0 01% 0.01% 0.01 % MC10124 TTL TL to ECI 15 Compatible Quad Inputs Translator 14 75 Ω Transmission Line -5.2 V O 13 + 5.0 V O MC10318L MC10124 0 1 uF Bradley TTL TTL to ECL Type RT Compatible Quad Cermet Inputs Trimpot Translator •R3 3 k MC1404U-10 or better 10 Volt Reference

FIGURE 3 — TYPICAL CONNECTIONS FOR 75 Ω TRANSMISSION LINE AND TTL-COMPATIBLE INPUTS

NOTE. See caution on line and termination impedance in Figure 2 and text

APPLICATION INFORMATION

0 1 µF

Functional Test Circuit Construction

Test circuits used to evaluate this device or circuit designs used in actual practical situations must employ good 1.0 GHz RF microstripline practices if optimum performance is to be achieved from this device. Both line and termination impedances must be matched to within $\pm 0.19\%$ to minimize reflections which will appear as increased settling time. The use of sockets for initial evaluation is not recommended if specified settling time is to be obtained.

Applications information can be obtained by contacting:

Application Engineering (602) 244-3021

If desired, test circuit artwork and board specifications will be supplied by contacting:

Linear Interface Marketing (602) 962-2294

Successive Approximation A/D Converter

*R2 and R3 are < 50 ppm/⁰C

The circuit shown in Figure 4 uses the MC10318 in a successive approximation analog-to-digital converter. The circuit as shown will operate at a clock frequency above 30 MHz if proper attention is given to layout.

The full-scale voltage (VFS) for the circuit as shown is 10.20 V. This full-scale voltage may be changed by changing the 200 Ω resistor to a value given by:

$$R = \frac{VFS}{IFS} = \frac{VFS}{51 \text{ mA}}$$

However, at low values of VFS the resolution of the comparator must be considered to maintain a $\pm 1/2$ LSB accuracy.

FIGURE 4 - SUCCESSIVE APPROXIMATION A/D CONVERTER USING MC10318

FIGURE 5 – MC10318 EQUIVALENT CIRCUIT 7 6 5 4 2nd MSB 0 0 0 0

•

VOLTAGE REFERENCES

Temperatu	ıre Range		
Commercial	Military		Page
MC1400, A	MC1500, A	Precision Voltage References	9-3
MC1403, A	MC1503, A	Precision Low-Voltage References	9-4
MC1404 A	MC1504 A	Precision Low-Drift Voltage References	9-8

MC1400 MC1400A MC1500 MC1500A

Product Preview

TIGHT-TOLERANCE, LOW-DRIFT VOLTAGE REFERENCE FAMILY

The MC1400 series of ICs is a family of temperature-compensated voltage references for precision data conversion and instrumentation applications. Advances in thin-film resistors, laser-trimming techniques, ion-implanted devices, and monolithic fabrication techniques make this reference both temperature and time stable in applications demanding accuracy to the 16-bit level.

These devices offer simple, no-external-component operation as three-terminal, positive-voltage references, and also simple, one-external-resistor operation as either positive or negative references. Unique circuitry permits these devices to either source or sink greater than 10 mA of load current with excellent regulation. This feature means that the buffer amplifiers and current sources normally required for precision zener references can be eliminated.

- Four Different Output Voltages: 2.5, 5.0, 6.25, 10 V
- Tight Absolute Accuracy: ±0.2% Maximum Initial Tolerance
- Single-Component Output Trimming Without Degrading Temperature Coefficient
- Wide Input Voltage Range: VREF +1.0 V to +40 V
- Three-Terminal Operation:

Positive References That Can Source and Sink Current

- Two-Terminal Operation:
 - Positive or Negative References
 - Floating References
- Low Current Consumption: 0.75 mA Typical
- Very Low Temperature Coefficient: 5 ppm / °C Typical
- Low Output Noise Voltage
- Excellent Ripple Rejection: 100 dB Typical at 120 Hz
- Excellent Long Term Stability: 25 ppm / 1000 Hrs Typical

This is advance information and specifications are subject to change without notice.

PRECISION VOLTAGE REFERENCES

2.5, 5.0, 6.25, and 10-VOLT OUTPUT VOLTAGES

LASER-TRIMMED SILICON
MONOLITHIC INTEGRATED CIRCUIT

ORDERING	ORDERING INFORMATION									
	(ALL TYPES) amic DIP									
Device	Temperature Range									
2.5 Volts										
MC1500U2 MC1500AU2 MC1400U2 MC1400AU2	-55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C									
5.0 Volts										
MC1500U5 MC1500AU5 MC1400U5 MC1400AU5	-55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C									
6.25 Volts										
MC1500U6 MC1500AU6 MC1400U6 MC1400AU6	-55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C									
10 Volts										
MC1500U10 MC1500AU10 MC1400U10	-55°C to +125°C -55°C to +125°C 0°C to +70°C									

0°C to +70°C

MC1400AU10

MC1403,A MC1503,A

LOW-VOLTAGE REFERENCE

A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC1506, MC1508, and MC3510 D/A converters, and MC14433 A/D systems. Low temperature drift is a prime design consideration.

- Output Voltage = 2.5 V ±25 mV
- Input Voltage Range = 4.5 V to 40 V
- Quiescent Current = 1.2 mA typ
- Output Current = 10 mA
- Temperature Coefficient = 10 ppm/OC typ
- Guaranteed Temperature Drift Specification
- Equivalent to AD580
- Standard 8-Pin DIP Package

Typical Applications

- Voltage Reference for 8-12 Bit D/A Converters
- Low T_C Zener Replacement
- High Stability Current Reference
- Voltmeter System Reference

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	V _I	40	٧
Storage Temperature	T _{stq}	-65 to 150	°C
Junction Temperature	TJ	+175	°C
Operating Ambient Temeprature Range MC1503,A MC1403,A	TA	-55 to +125 0 to +70	°c °c

PRECISION LOW-VOLTAGE REFERENCE

LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - A REFERENCE FOR MOTOROLA MONOLITHIC D/A CONVERTERS

PROVIDING THE REFERENCE CURRENT FOR MOTOROLA MONOLITHIC D/A CONVERTERS

The MC1403/1503 makes an ideal reference for the Motorola monolithic D/A converters. The MC1406/1506, MC1408/1508, MC3410/3510 and MC3408 D/A converters all require a stable current reference of nominally 2.0 mA. This can be easily obtained from the MC1403/1503 with the addition of a series resistor, R1. A variable resistor, R2, is

recommended to provide means for full-scale adjust on the D/A converter

The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference.

A single MC1403/1503 reference can provide the required current input for up to five of the monolithic D/A converters.

ELECTRICAL CHARACTERISTICS ($V_I = 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage (IO = 0 mA)	٧o	2.475	2.50	2.525	V	
Temperature Coefficient of Output Voltage MC1503 MC1503A MC1403 MC1403A	ΔV _O /ΔΤ	_ _ _	 10 10	55 25 40 25	ppm/ ^Q C	
Output Voltage Change (over specified temperature range) MC1503 MC1503A -55°C to +125°C MC1403 MC1403 MC1403A 0°C to +70°C	ΔV0	111	- - -	25 11 7.0 4.4	mV	
Line Regulation (15 V < V _I < 40 V) (4.5 V < V _I < 15 V)	Reg _{in}	-	1.2 0.6	4.5 3.0	mV	
Load Regulation (0 mA < 1 ₀ < 10 mA)\	Regload	_	_	10	mV	
Quiescent Current (IO = 0 mA)	£ ₁	-	1.2	1.5	mA	

FIGURE 2 - MC1403/1503 SCHEMATIC

FIGURE 4 - CHANGE IN OUTPUT VOLTAGE versus LOAD CURRENT (NORMALIZED TO $V_{out} @ V_{in} = 15 V$, $I_{out} = 0 mA$) ΔV_{out} Change in output voltage (mV) 90 125°C 8 0 70 -55°C 60 50 75°C. 40 30 20 noc. 90 10 20 30 50 60 80 I_{out}, OUTPUT CURRENT (mA)

9

3-1/2-DIGIT VOLTMETER – COMMON ANODE DISPLAYS, FLASHING OVERRANGE

An example of a 3-1/2-digit voltmeter using the MC14433 is shown in the circuit diagram of Figure 8. The reference voltage for the system uses an MC1403 2.5 V reference IC. The full scale potentiometer can calibrate for a full scale of 199.9 mV or 1.999 V. When switching from 2 V to 200 mV operation, R_{\parallel} is also changed, as shown on the diagram.

When using RC equal to 300 k Ω , the clock frequency for the system is about 66 kHz. The resulting conversion time is approximately 250 ms.

When the input is overrange, the display flashes on and off. The flashing rate is one-half the conversion rate.

This is done by dividing the EOC pulse rate by 2 with 1/2 MC14013B flip-flop and blanking the display using the blanking input of the MC14543B.

The display uses an LED display with common anode digit lines driven with an MC14543B decoder and an MC1413 LED driver. The MC1413 contains 7 Darlington transistor drivers and resistors to drive the segments of the display. The digit drive is provided by four MPS-A12 Darlington transistors operating in an emitter-follower configuration. The MC14543B, MC14013B and LED displays are referenced to VEE via pin 13 of the MC14433. This places the full power supply voltage across the display. The current for the display may be adjusted by the value of the segment resistors shown as 150 ohms in Figure 8.

FIGURE 8 - 3-1/2-DIGIT VOLTMETER

MC1404 MC1404A MC1504 MC1504A

VOLTAGE REFERENCE FAMILY

The MC1404 series of ICs is a family of temperature-compensated voltage references for precision data conversion applications, such as A/D, D/A, V/F, and F/V. Advances in laser-trimming and ionimplanted devices, as well as monolithic fabrication techniques, make these devices stable and accurate to 12 bits over both military and commercial temperature ranges. In addition to excellent temperature stability, these parts offer excellent long-term stability and low noise.

Output Voltages: Standard, 5.0 V, 6.25 V, 10 V

• Trimmable Output: > ± 6%

Wide Input Voltage Range: VREF + 2.5 V to 40 V

Low Quiescent Current: 1.25 mA Typical
 Temperature Coefficient: 10 ppm/OC Typical

Low Output Noise: 12 μV p-p Typical
 Excellent Ripple Rejection: > 80 dB Typical

TYPICAL APPLICATIONS

- Voltage Reference for 8 12 Bit D/A Converters
- Low T_C Zener Replacement
- High Stability Current Reference
- MPU D/A and A/D Applications

FIGURE 1 - VOLTAGE OUTPUT 10-BIT DAC USING MC1404U10 200 k Ŷ14 Cermet 20 Turn 5 k 16 MSB MC1404U10 смоѕ MC3410 150 pF TTL 10 11 12 2.5 k LSB -

PRECISION LOW-DRIFT VOLTAGE REFERENCES

5.0, 6.25, and 10-VOLT OUTPUT VOLTAGES

LASER TRIMMED SILICON
MONOLITHIC INTEGRATED CIRCUIT

UNDERING	UNDERTING INFORMATION										
	E (ALL TYPES)										
Device	Temperature Range										
5.0 Volts											
MC1504U5	-55°C to +125°C										
MC1504AU5	-55°C to +125°C										
MC1404U5	0°C to +70°C										
MC1404AU5	0°C to +70°C										
6.25 Volts											
MC1504U6	-55°C to +125°C										
MC1504AU6	-55°C to +125°C										
MC1404U6	0°C to +70°C										
MC1404AU6	0°C to +70°C										
10 Volts											
MC1504U10	-55°C to +125°C										
MC1504AU10	-55°C to +125°C										
MC1404U10	0°C to +70°C										
MC1404AU10	0°C to +70°C										

ORDERING INFORMATION

MC1404, MC1404A, MC1504, MC1504A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input Voltage	Vi	40		
Storage Temperature	T _{stg}	-65 to +150	°C	
Junction Temperature	Tj	+175	°C	
Operating Ambient Temperature Range MC1504,A MC1404,A	ТА	-55 to +125 0 to +70	°C	

ELECTRICAL CHARACTERISTICS (V_{in} = 15 Volts, T_A = 25°C and Trim Terminal not connected unless otherwise noted)

	ļ	N	AC1404,	A	N			
Characteristic	Symbol	Mın	Тур	Max	Min	Тур	Max	Unit
Output Voltage	V _o							Volt
$(I_0 = 0 \text{ mA})$	1	}		1 .		j	ļ	j
U5, AU5	Į.	4.95	5 00	5.05	4.95	5 00	5 05	Į.
U6, AU6		6.19	6 25	6.31	6.19	6 25	6.31	1
U10, AU10		9.90	10	10.10	9.90	10	10.10	j
Output Voltage Tolerance		-	±0.1	±10	~	±01	±10	%
Output Trim Range (Figure 10) (Rp = 100 kΩ)	ΔVTRIM	±60		-	± 6.0	-	-	%
Output Voltage Temperature Coefficient,	ΔV _O /ΔΤ				-			ppm/°C
Over Full Temperature Range		ł ·				1)
MC1404, MC1E04	J	~	10	40	~	-	55	l
MC1404A, MC1504A			10	25			25	
Maximum Output Voltage Change	ΔVo	ł	ł	ł	1	l	ļ	m∨
Over Temperature Range	Į.	l				1	!	
MC1404U5, MC1504U5		~	-	14	~	-	50	ĺ
MC1404AU5, MC1504AU5	i		-	9.0	-	-	23]
MC1404U6, MC1504U6	} .	~	~	17.5	~	~	62	
MC1404AU6, MC1504AU6		-	~	11	~	_	28	[
MC1404U10, MC1504U10	İ		-	28	~	-	99	1
MC1404AU10, MC1504AU10				18			45	ļ
Line Regulation (1) $(V_{in} = V_{out} + 2.5 \text{ V to 40 V, } I_{out} = 0 \text{ mA})$	RegLINE	-	2.0	6.0	~	2.0	60	mV
Load Regulation (1)	RegLOAD	-	_	10	-	~	10	mV
$(0 \le I_0 \le 10 \text{ mA})$							l	
Quiescent Current	l _l	_	1 2	15	-	1.2	15	mA
$(I_0 = 0 \text{ mA})$	1	1		l		l	l	
Short Circuit Current	I _{sc}	15	20	30	_		30	mA
Long Term Stability		-	25		_	25	_	ppm/1000 h

Note 1. Includes thermal effects.

DYNAMIC CHARACTERISTICS (V_{ID} = 15 V, T_A = 25°C all voltage ranges unless otherwise noted)

		N	AC1404,	A	M	IC1504,		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Turn-On Settling Time (to ± 0.01%)	ts	-	50	-		50	-	μς
Output Noise Voltage - P to P (Bandwidth 0 1 to 10 Hz)	e _n	-	12	-		12	-	μ∨
Small-Signal Output Impedance 120 Hz 500 Hz	ro	=	0.15 0 2	-	-	0.15 0 2	=	Ω
Power Supply Rejection Ratio	PSRR	70	80	-	70	80	-	dB

TYPICAL CHARACTERISTICS

FIGURE 2 - SIMPLIFIED DEVICE DIAGRAM

25 V_{In} = V_{REF} + 25 V to 40 V I_{out} = 0 mA V_{In} = V_{REF} + 25 V to 40 V I_{out} = 0 mA T_A, AMBIENT TEMPERATURE (°C)

FIGURE 3 - LINE REGULATION versus TEMPERATURE

FIGURE 4 — OUTPUT VOLTAGE versus TEMPERATURE MC1404U10

FIGURE 6 – POWER SUPPLY REJECTION RATIO

Versus FREQUENCY

Ŀ

FIGURE 8 - SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 10 - OUTPUT TRIM CONFIGURATION

The MC1404 trim terminal can be used to adjust the output voltage over a $\pm 6\%$ range. For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type $3059,\,100$ k Ω or 200 k Ω trimpot is recommended.

Although Figure 10 illustrates a wide trim range, temperature coefficients may become unpredictable for trim $> \pm 6.0\%$.

FIGURE 9 - VTEMP OUTPUT versus TEMPERATURE

FIGURE 11 - PRECISION SUPPLY USING MC1404

The addition of a power transistor, a resistor, and a capacitor converts the MC1404 into a precision supply with one ampere current capability. At $V + \approx 15 \, V$, the MC1404 can carry in excess of 14 mA of load current with good regulation if the power transistor current gain exceeds 75, a one ampere supply can be realized

FIGURE 12 - ULTRA STABLE REFERENCE FOR MC1723 VOLTAGE REGULATOR

+10 to +30 In 120 µH 2N5879 +5.0 Out 200 mA to 6.0 Amps T 50 V Cerai - 0 01 μF 1000 µF 5000 µF 0.01 µF 1N3889 50 V _ 6.8 V Ceramic Ceramic (Low ESR) **⋛130** Motorola TL495CN Pulse Width Modulator 2.2 k MC1404U5 100 k TRIM Oscillator (opt) 220 k 5 0 005 μF \$10 k 0.001 µF **⋛2.2** k

FIGURE 13 - 5.0 V, 6.0 AMP, 25 kHz SWITCHING REGULATOR WITH SEPARATE ULTRA-STABLE REFERENCE

*40 Turns #16 Wire, Arnold A-894075-2 Ferrite Core

FIGURE 14 - HIGH SPEED 8-BIT D/A CONVERTER USING MC1404U10

Linear IC Selector Guides

OPERATIONAL AMPLIFIERS

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost industry-standard types to high precision circuits, the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard chips.

Single Operational Amplifiers

NONCOMPENSATED

Device	I _{IB} μΑ max	V _{IO} mV	TC _{VIO} μV/°C typ	I _{IO} nA max	A _{vol} V/V	BW(Av=1) MHz typ	SR(Av=1) V/μs typ	Supply Voltage V min max		Description	Packages
Military T											
LM101A	0.075	2.0	10	10	50K	1.0	0.5	±3.0	±22	General Purpose	601, 693
LM108	0.002	20	3.0	0.2	50K	1.0	0.3	±30	±20	Precision	601, 606, 693
LM108A	0.002	0.5	1.0	0.2	80K	1.0	03	±3.0	±20	Precision	601, 606, 693
MC1520	2.0	10	15	100	1K	10	5.0	±40	±8.0	Differential Output	603, 606
MC1530	10	5.0	15	2.0µA	4.5K	3.0	1.0	±4.0	±9.0	General Purpose	603B, 606, 632
MC1531	15	10	15	25	2.5K	2.0	1.0	±4.0	±9 0	General Purpose	603B, 606, 632
l i	ĺ							l		(Darlington Input)	
MC1533	1.0	50	15	150	40K	0.8	2.0	±4.0	±20	General Purpose	603B, 606, 632
MC1539	0.5	3.0	15	60	50K	2.0	4.2	±4.0	±18	High Slew Rate	601,632
MC1709	0.5	5.0	15	200	25K	1.0	0.3	±3.0	±18	General Purpose	601, 606,
				1				i .			632, 693
MC1709A	0.6	3.0	5.0	100	25K	1.0	0.5	±3.0	±18	High Performance MC1709	601, 606, 632
MC1712	5.0	2.0	15	500	2.5K	7.0	1.5	+6.0	+14	Wideband DC	601, 606, 632
Į į	i		Į.				}	-3.0	-7.0	Amplifier	1
MC1748	05	5.0	15	200	50K	1.0	05	±3.0	±22	General Purpose	601,693
Industrial	Tempera	ture R	ange (0°	C to +7	70°C)						
LM301A	0.25	7.5	10	50	25K	1.0	0.5	±30	±18	General Purpose	601, 626, 693
LM308	7.0	7.5	15	1.0	25K	1.0	0.3	±3.0	±18	Precision	601, 606,
			i			1	ĺ				626, 693
LM308A	7.0	0.5	5.0	1.0	80K	1.0	0.3	±3.0	±18	Precision	601, 606,
					l	l	ļ				626, 693
MC1420	40	15	15	200	750	10	5.0	±4.0	±8.0	Differential Output	603, 606
MC1430	15	10	15	4.0μΑ	3K	3.0	1.0	±4.0	±8.0	General Purpose	603B, 606,
						1	ľ				632, 646
MC1431	03	15	15	100	1.5K	2.0	1.0	±4.0	±8 0	General Purpose	603B, 606,
		1				1	1			(Darlington Input)	632, 646
MC1433	2.0	7.5	15	50	30K	0.8	2.0	±4.0	±18	General Purpose	603B, 606,
					ļ	l	ŀ	[632, 646
MC1439	1.0	7.5	15	100	15K	2.0	4.2	±6.0	±18	High Slew Rate	601, 626,
						,	{	·			632, 646
MC1709C	1.5	7.5	15	500	15K	1.0	0.3	±30	±18	General Purpose	601, 606,
1		1	1		i	1	ì	1			626, 632,
j					!	1	l				646, 693
MC1712C	7.5	5.0	15	2 0µA	2K	7.0	1.5	+6.0	+14	Wideband DC	601, 606, 632
1			[l	l .	(-3.0	-7.0	Amplifier	1
MC1748C	0.5	6.0	15	200	20K	1.0	0.5	±3 0	±18	General Purpose	601, 626, 693

Single Operational Amplifiers

INTERNALLY COMPENSATED

Device	i _{IB} μΑ max	V _{IO} mV max	TC _{VIO} μV/°C typ	IO nA max	A _{vol} V/V min	BW(Av=1) MHz typ	SR(Av=1) V/μs typ	Supply V	Voltage / max	Description	Packages
Military Te	mperatu	re Rang	ge (-55°C	to +125	°C)						
LF 155	100pA	5.0	5.0	20pA	50K	1.0	5.0	±5.0	±22	FET Input	601
LF155A	50pA	20	3.0	10pA	50K	1.0	5.0	±5.0	±22	FET Input	601
LF156	100pA	5.0	5.0	20pA	50K	2.0	15	±5.0	±22	FET Input	601
LF156A	50pA	2.0	3.0	10pA	50K	2.0	15	±5.0	±22	FET Input	601
LF157	100pA	5.0	5.0	20pA	50K	30	75	±5.0	±22	Wideband FET Input	601
LF157A	50pA	20	3.0	10pA	50K	3.0	75	±50	±22	Wideband FET Input	601
LM107	0.075	2.0	10	10	50K	1.0	0.5	±3.0	±22	General Purpose	601, 693
MC1536	0.02	5.0	10	3.0	100K	1.0	2.0	±15	±40	High Voltage	601
MC1556	0.015	40	10	2.0	100K	1.0	2.5	±30	±22	High Performance	601, 632
MC1733	0.20	-	-	3.0μΑ	90	90	_	±4.0	±8.0	Differential Wideband Video Amp	603, 632
MC1741	0.5	5.0	15	200	50K	1.0	0.5	±3.0	±22	General Purpose	601, 606, 632, 693
MC1741N	0.5	5.0	15	200	50K	1.0	0.5	±30	±22	Low Noise	601, 606, 632, 693
MC1741S	0.5	5.0	15	200	50K	1.0	10	±30	±22	High Slew Rate	601, 632, 693
MC1776	0 0075	5.0	15	3.0	200K	1.0	0.2	±1.5	±18	μPower Programmable	601, 632
MC35001	100pA	10	10	100pA	25K	40	13	±5.0	±22	TRIMFET Input	601, 693
MC35001A		2.0	10	25pA	50K	4.0	13	±5.0	±22	TRIMFET Input	601, 693
MC35001B	100pA	5.0	10	50pA	50K	4.0	13	±5.0	±22	TRIMFET Input	601, 693
Industrial 1	Temperat	ure Ra	nge (0°C	to +70°	C)						
LF355	200pA	10	5.0	50pA	50K	10	5.0	±5.0	±18	FET Input	601
LF355A	50pA	2.0	10	10pA	50K	1.0	5.0	±5.0	±18	FET Input	601
LF356	200pA	10	5.0	50pA	50K	2.0	15	±50	±18	FET Input	601
LF356A	50pA	2.0	10	10pA	50K	2.0	15	±5.0	±18	FET Input	601
LF357	200pA	10	5.0	50pA	50K	3.0	75	±5.0	±18	Wideband FET Input	601
LF357A	50pA	2.0	1.0	10pA	50K	3.0	75	±5.0	±18	Wideband FET Input	601
LM307	0.25	7.5	10	50	25K	1.0	05	±3.0	±18	General Purpose	601, 626, 693
MC1436	0.04	10	12	10	70K	10	20	±15	±34	High Voltage	601
MC1456	0.03	10	12	10	70K	1.0	25	±3.0	±18	High Performance	601,632
MC1733C	30	-	-	5 0μA	80	90		±4.0	±80	Differential Wideband Video Amp	601, 632, 646
MC1741C	05	60	15	200	20K	1.0	0.5	±3.0	±18	General Purpose	601, 632, 626, 646, 693
MC1741NC	0.5	60	15	200	20K	1.0	05	±30	±18	Low Noise	601, 632, 626, 646, 693
MC1741SC	0.5	6.0	15	200	20K	1.0	10	±3.0	±18	High Slew Rate	601, 632, 626, 646, 693
MC1776C	0.003	6.0	15	3.0	100K	1.0	0.2	±1.5	±18	μPower, Programmable	601
MC3476	0.05	6.0	15	25	50K	1.0	0.2	±1.5	±18	Low Cost µPower, Programmable	601,626
MC34001	200pA	10	10	100pA	25K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693
MC34001A	100pA	2.0	10	50pA	50K	4.0	13	±5 0	±18	TRIMFET Input	601, 626, 693
MC34001B	200pA	50	10	100pA	50K	40	13	±50	±18	TRIMFET Input	601, 626, 693

Dual Operational Amplifiers

INTERNALLY COMPENSATED

	^I IΒ μΑ	V _{IO}	TC _{VIO} μV/°C	I _{IO} nA	A _{vol} V/V	BW(Av=1) MHz	V/μs	Supply Voltage						
Device	max	max	typ	max	min	typ	typ	min	max	Description	Packages			
Military Te	mperatu	re Kan	ge (-55°C	to +125	<u> </u>									
LM158	0.15	5.0	10	30	50K	1.0	06	±15 +30	±18 +36	Split Supplies Single Supply (Low Power Consumption)	601, 632, 693			
MC1558	0.5	50	10	200	50K	1.1	0.8	±30	±22	Dual MC1741	601, 632, 693			
MC1558N	0.5	50	10	200	50K	1.1	0.8	±3.0	±22	Low Noise	601, 632, 693			
MC1558S	0.5	50	10	200	50K	10	10	±30	±22	High Slew Rate	601, 632, 693			
MC1747	0.5	5.0	10	200	50K	1.0	0.5	±30	±22	Dual MC1741	601,632			
MC3558	05	50	10	50	50K	1.0	0.6	±1.5 +3.0	±18 +36	Split Supplies Single Supply	601, 632, 693			
MC4558	0.5	50	10	200	50K	40	1.5	±30	±22	High Frequency	601, 632, 693			
MC35002	100pA	10	10	100pA	25K	40	13	±5.0	±22	TRIMFET Input	601, 693			
MC35002A	75pA	20	10	25pA	50K	40	13	±5.0	±22	TRIMFET Input	601, 693			
MC35002B	100pA	5.0	10	50pA	50K	40	13	±5.0	±22	TRIMFET Input	601, 693			
MC35022	150pA	20	50	70pA	25K	4.0	13	±50	±22	Precision TRIMFET Input	601,693			
MC35022A	60pA	05	5.0	25pA	50K	4.0	13	±50	±22	Precision TRIMFET Input	601,693			
MC35022B	75pA	10	5 0	50pA	50K	40	1 13	±50	±22	Precision TRIMFET Input	601,693			
Industrial	Industrial Temperature Range (0°C to +70°C)													
LM358	0 25	60	7.0	50	25K	1.0	06	±1.5 +3.0	±18 +36	Split Supplies Single Supply	601, 626, 693			
MC1458	05	60	10	200	20K	1.1	08	±3.0	±18	(Low Power Consumption) Dual MC1741	601, 626, 632,			
MC1458N	05	6.0	10	200	20K	11	08	±30	18	Low Noise	646, 693 601, 626, 632,			
MC1458S	05	60,	10	200	20K	1.0	10	±30	±18	High Slew Rate	646, 693 601, 626, 632 646, 693			
MC1747C	0.5	60	10	200	25K	1.0	0.5	±30	±18	Dual MC1741	603, 632, 646			
MC3458	05	10	70	50	20K	1.0	0.6	±1.5 +30	±18 +36	Split Supplies Single Supply	601, 626, 693			
ł	[ł	1			(Low Crossover				
MC4558C	05	6.0	10	200	20K	3.0	15	±30	+18	Distortion) High Frequency	601,626,693			
MC34002	100pA	10	10	100pA	25K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693			
MC34002A	75pA	2.0	10	50pA	50K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693			
MC34002B	100pA	50	10	70pA	25K	40	13	±5.0	±18	TRIMFET Input	601, 626, 693			
MC34022	150pA	20	50	70pA	25K	4.0	13	±50	±18	Precision TRIMFET Input	601, 626, 693			
MC34022A	75pA	05	50	30pA	50K	4.0	13	±50	±18	Precision TRIMFET Input	601, 626, 693			
MC34022B	150pA	1.0	5.0	70pA	50K	4 0	13	±50	± 18	Precision TRIMFET Input	601, 626, 693			
Automotiv	e Tempe	rature	Range (-	10°C to +	85°C)									
MC3358	50	8.0	10	. 75	20K	10	06	±15 +30	±18 +36	Split Supplies Single Supply	626			
NONCO	MPEN	SATI	ED		L		L			<u></u>				
Military Te	mperatu	re Ran	ge (-55°C	to +125	°C)									
MC1535	30	30	10	300	4K	1.0	0 01	±20	±10	General Purpose	603B, 606, 632			
MC1537	0.5	50	10	200	25K	1.0	0 25	±30	±18	Dual MC1709	632			
Industrial 7	Temperat	ure Ra	nge (0°C	to +70°C	c)									
MC1435	5.0	50	10	500	3 5K	1.0	0.01	±20	±9 0	General Purpose	603B, 607, 632			
MC1437	1.5	7.5	10	500	15K	1.0	0.25	±3.0	± 18	Dual MC1709	632, 646			

Quad Operational Amplifiers

INTERNALLY COMPENSATED

` Device	^I IΒ μΑ max		TC _{VIO} μV/°C typ	lo nA max	A _{vol} V/V min	BW(Av=1) MHz typ	SR(Av=1) V/μs typ	Supply \ min	Voltage / max	Description	Packages		
Military Te	mperatu	re Rang	je (-55°C	to +125	,C)								
LM124	0.15	50	70	30	50K	10	06	±1.5 +3 0	±16 +32	Low Power Consumption	632, 646		
MC3503	0.5	5.0	7.0	50	50K	1.0	0.6	±15 +3.0	±18 +36	General Purpose Low Power	632, 646		
MC4741 MC35004	0.5 100pA	5 0 10	15 10	200 100pA		1 0 4.0	0,5 13	±3.0 ±5.0	±22 ±22	Quad MC1741 Trimmed FET Input	632, 646 632		
MC35004A MC35004B	75pA 100pA	2.0 5 0	10 10	25pA 50pA	50K 50K	4.0 4.0	13 13	±50 ±50	±22 ±22	Trimmed FET Input Trimmed FET Input	632 632		
Industrial	Industrial Temperature Range (0°C to 70°C)												
LM324	0 25	6.0	70	50	25K	1.0	06	±15 +30	±16 +32	Low Power Consumption	632, 646		
MC3401	0.3	-	-	-	1K	50	0.6	±15	±18 +36	Norton Input	632, 646		
MC3403	0.5	10	7.0	50	20K	1.0	06	±15	±18 +36	No Crossover Distortion	632, 646		
MC4741C MC34004	0.5 200pA	6.0 10	15 10	200 100pA	20K 25K	1 0 4 0	0 5 13	±30 ±50	±18 ±18	Quad MC1741 Trimmed FET Input	632, 646 632, 646		
MC34004A MC3400B	100pA 200pA	2 0 5 0	10 10	50pA 100pA	50K 50K	4.0 4.0	13 13	±5.0 ±5.0	±18 ±18	Trimmed FET Input Trimmed FET Input	632, 646 632, 646		
Automotiv	e Tempe	rature F	Range (-4	0°C to +	85°C)						·		
LM2902	05	10		50	-	10	06	±15 +30	±13 +26	Differential Low Power	646		
MC3301	0.3	-	-	-	1K	40	06	±2.0 +4.0	±15 +28	Norton Input	646		
MC3303	05	8.0	10	75	20K	1.0	06	±15 +30	± 18 +36	Differential General Purpose	646		

Package Styles

CASE	601	603	603B	606	626
MATERIAL	Metal	Metal	Metal	Ceramic	Plastic
SUFFIX after type number	G, H	G, H	G, H	F	P, P1, N

	14	14	8
CASE	632	646	693
MATERIAL	Ceramic	Plastic	Ceramic
SUFFIX after type number	J, L	P, P2	J, U

VOLTAGE REGULATORS

Fixed Output Voltage Regulators

- Low-cost monolithic circuits for positive and/or negative regulation at currents from 100 mA to 1.5A
- Ideal for on-card regulation of subsystems
- Internal current limiting thermal shutdown and safe-area compensation

FIXED-VOLTAGE, 3-TERMINAL REGULATORS FOR POSITIVE OR NEGATIVE POLARITY POWER SUPPLIES.

V _{out} Volts	Tol.† Volts	I _O mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Mın/Məx	Reg _{line} mV	Reg _{load} mV	ΔV _O /ΔT mV/°C Typ	Case
2	±0.1	1500		MC7902C	5.5/35	40	120	1 0	1, 221A
3	±0 15 ±0 3	100	_	MC79L03AC MC79L03C	4 7/30	60 80	72	_	29, 79
5	±05	100	MC78L05C	MC79L05C	6 7/30	200	60	_	29, 79
	±0 25		MC78L05AC	MC79L05AC		150	ļ <u> </u>		
		500	MC78M05C		7/35	100	100	10	79, 221A
	±0 4	1500	LM109	-	<u>.</u>			1.1	1, 79
			LM209				4	10	
	±0 25		LM309			50			
	±0 35		**MC7805*		8 0/35		1	0.6	1 1
ļ.	±0 25		MC7805C	MC7905C	7/35	100		10	1, 221A
	±0 2		**MC7805A*		7 5/35	10	50	0.6	1
			**MC7805AC	-	ļ	l	100	1	1, 221A
1	±0 25		**LM140 5*		7/35	50	50		1
			**LM340-5	_					1
5 2	±0 26	1500		MC7905 2C	7 2/35	105	105	10	1, 221A
6	±03	500	MC78M06C		8/35	100	120	10	79, 221A
	±0 35	1500	**MC7806*		9/35	60	100	0.7	1
l	±0 3	l	MC7806C	MC7906C	8/35	120	120	1	1, 221A
	±0 24	1	**MC7806A*		8 6/35	11	50	1	1
i			**MC7806AC	_	1	1	100	1	1, 221A
1	±0.3	1	"LM140 6"	_	8/35	60	60	1	1
<u> </u>			**LM340 6			<u> </u>			L
8	±08	100	MC78L08C		9 7/30	200	80	_	29, 79
ļ	ļ		MC78L08AC	_	1	175		i	
ĺ	±04	500	MC78M08C	_	10/35	100	160	10	79, 221A
ŀ		1500	**MC7808*	-	11 5/35	80	100	1	1
ļ	L		MC7808C	MC7908C	10/35	160	160]	1, 221A
	±03		**MC7808A*	_	10 6/35	13	50		1
			**MC7808AC	_		l	100]	1, 221A
Į	±04	1	**LM140-8*		10 5/35	80	80	1	1
			**LM3408_						l
12	±1.2	100	MC78L12C	MC79L12C	13 7/35	250	100	_	29, 79
	±06	1	MC78L12AC	MC79L12AC	1	1	1	1	1 1
		500	MC78M12C	_	14/35	100	240	10	79, 221A
		1500	**MC7812*	-	15 5/35	120	120	1.5	1
	1	1	MC7812C	MC7912C	14 5/35	240	240	1	1, 221A
l	±05	1	**MC7812A*	-	14.8/35	18	50	1	1
			**MC7812AC		1	1	100	1	1, 221A
ļ.	±06	1	**LM140-12*		14.5/35	120	120	15	1
İ			**LM340-12		1			1	1

^{**1979} New Product Introductions

(continued)

^{*}T_J = -55 to +150°C

[†]Output Voltage Tolerance for Worst Case

Fixed Output Voltage Regulators (continued)

V _{out} Volts	Tol.† Volts	I _O mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Min/Max	Reg _{line} mV	Reg _{ioad} mV	ΔV _O /ΔT mV/°C Typ	Case
15	±1.5	100	MC78L15C	MC79L15C	16.7/35	300	150	[<u>-</u> -	29, 79
	±0.75		MC78L15AC	MC79L15A			L	<u> </u>	
		500	MC78M15C		17/35	100	300	1.0	79, 221A
	ł	1500	**MC7815*		18.5/35	150	150	1.8	1
]	MC7815C	MC7915C	17.5/35	300	300]	1, 221A
	±0.6]	**MC7815A*		17.9/35	22	50		1
			**MC7815AC		l	1	100]	1, 221A
	±0.75		**LM140-15*	_	17.5/35	150	150		1
			**LM340-15			.L	L	<u> </u>	L
18	±1.8	100	MC78L18C	MC79L18C	19.7/35	325	170		29, 79
	±0.9	L	MC78L18AC	MC79L18AC	Ī		Í	l	1
)	500	MC78M18C	_	20/35	100	360	1.0	79, 221A
		1500	**MC7818*	-	22/35	180	180	2.3	1
	<u> </u>]	MC7818C	MC7918C	21/35	360	360		1, 221A
	±0.7		**MC7818A*	_	i	31	50		1
	·		**MC7818AC	-	1		100		1, 221A
	±0.9	1	**LM140-18*]	180	180	}	1
		<u> </u>	**LM340-18		l	L		Ĺ	
20	±1.0	500	MC78M20C		22/40	10	400	1,1	79, 221A
24	±2 4	100	MC78L24C	MC79L24C	25.7/40	350	200		29, 79
	±1.2	1	MC78L24AC	MC79L24AC	1	300]	ľ	
	1	500	MC78M24C		26/40	100	480	1.2	79, 221A
		1500	**MC7824*	_	28/40	240	240	3 0	1
]	MC7824C	MC7924C	27/40	480	480]	1, 221A
	±1.0		**MC7824A*		27.3/40	36	50]	1
]	**MC7824AC		27/40	l	100]	1, 221A
	±1.2	1	**LM140-24*]	240	240		1
	Į.	1	**LM340-24		1	1			

^{**1979} New Product Introductions

Variable Output Voltage Regulators

POSITIVE OUTPUT REGULATORS

IO mA Max	Device Type	S U F I X	V _c Vc	out Its Max		in olts Max	V _{in} — V _{out} Differ- ential Volts Min	P _I Wa M T _C = 25°C	_		lation out @ 25°C /p	TC V _{out} Typ %/°C	Tj≠ °C Max	Case
20	LM305 LM205 LM105	Н	4.5	40	8 5	50	3.0	0 4	1 3 1 6 2.7	0 06	0.1	0.007	85 100 150	601
100	**LM317L **LM217L **LM117L*	H,Z	1.2	37	5.0	40	3.0	Interi Limi		0 04 0 02	0 5 0.3	0 006 0.004 0 003	125 150	29,79
150	MC1723	CP CG G	2.0	37	9.5	40	30	0 65	2.1	0.1 0.1 0.2	03	0.003 0.003 0.002	150	646 603C
		CL L						1.0	-	0.1		0.003 0.002	175	632
250	MC1469 MC1569	G	2.5	32 37	9 8 5	35 40	3 0 2 7	0.68	1.8	0 03 0 015	0.13	0 002	150	603
600	MC1469 MC1569	R	2.5	32 37	9 0 8 5	35 40	30	3.0	14 0	0 03 0 015	0.05	0 002	150	614
1500	LM317 LM317 LM217	Т Н, К	1.2	37	5.0	40	3.0	Intern Limit		0.07	1.5	0.006	125	221A 79, 1
	LM117*				<u> </u>	<u></u>				0 05	1.0	0 003	150	L

^{*}T_J = -55 to +150°C

[•]T_J = -55 to +150°C

tOutput Voltage Tolerance for Worst Case

^{**1979} New Product Introductions

NEGATIVE OUTPUT REGULATORS

I _O	Device	S U F F	V _c	out olts		in olts	V _{in} – V _{out} Differ- ential Volts	P _I Wa M	tts	% V.	lation out [@] 25°C /P	TC V _{out}	т _ј = °с	
Max	Туре	X	Min	Max	Min	Max	Min	25°C	25°C	Line	Load	%/°C	Max	Case
20	LM304	н	0 035	30	8.0	40	2.0	0.4	1.3	01	0 05	0.007	80	603
1	LM204	1	0 015	40	1	50	1	0 68	1.6	1		l	100	
	LM104			<u> </u>	l	<u> </u>	<u> </u>	l	2.7	L			150	
250	MC1463	G	3.8	32	90	35	30.	0 68	1.8	0 03	0.05	0 002	150	603
<u></u>	MC1563	1	3.6	33	8 5	40	2.7			0.015	0 13			
600	MC1463	R	3.8	34	90	35	3.0	24	9.0	0.03	0 05	0.002	175	614
	MC1563	1	3.6	37	8.5	40	2.7	1	ļ	0 015	l		l	

Switching Regulators

Used as the control circuit in PWM, push-pull, bridge and series type switchmode supplies. The devices include the reference, oscillator, pulse-width modulator, phase splitter and output sections. Frequency and duty cycle are independently adjustable.

IO ±mA		CC		o . Iz	Device		TA	
Max	Min	Max	Min	Max	Number	Suffix	°C	Case
40	10	30	2.0	100	MC3420	Р	0 to +70	648
		ì)	1	1	L		620
			l		MC3520	L	-55 to +125	620

Special Regulators

FLOATING VOLTAGE AND CURRENT REGULATORS

Designed for laboratory type power supplies. Voltage is limited only by the breakdown voltage of associated, external, series-pass transistors.

Vo	out	lo mA	Device	SUFFI	V _a Vo	ux ilts Max	P _D Watts Max		f/V _{ref}	۵۱۱را % Max	TC V _{out} %/°C Typ	Case
Min	Max	Max	Type	X	Milu	IVIAX	Max	Line	Load	IVIAX	тур	Case
0		•	MC1466	L	21	30	0.75	0 015	0 015	0.2	0 0 1	632
	1		MC1566	L	20	35		0 004	0 004	0 1	0 006	

^{*}Dependent on characteristics of external series-pass elements

DUAL ±15 V TRACKING REGULATORS.

Internally, the device is set for ± 15 V, but an external adjustment can change both outputs simultaneously, from 8.0 V to 20 V.

	out oits Max	IO mA Max		in olts Max	Device Type	SUFFIX	PD Watts Max	Reg _{line} mV	Reg _{load}	TC %/°C (T _{low to} T _{high})	T _A °C	Case
, IVILII	14107	17702	1	11100		+		-	 	+	 	
14.8	15.2	±100	17	30	MC1468	G_	0.8	10	10	3.0	0 to +75	603C
	1	Į	Į.		Į.	L.	1.0_	i	1	ł	1	632
	1	l			i	R	2.4	1	1			614
	1	l		1	MC1568	G	0.8	1	1	ł	-55 to +125	603C
				1		L	10	1	l .	1	(632
	1	1	l	1	1	B	2.4	1				614

Special Regulators (continued)

LOW TEMPERATURE DRIFT, LOW VOLTAGE REFERENCE

V _{out} Volts Typ	I _O mA Max	ΔV _{out} /ΔT ppm/°C Max	Device Type	Suffix	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
2 5 ± 25 mV	10	40	MC1403	U	3/4 5	10	0 to +70	693
1		25	MC1403A	ì	(Note 1)	(Note 3)		
,	j	55	MC1503			1	-55 to +125	
		25	MC1503A]		
50 ± 50 mV	1	40	MC1404U5		60	1	0 to +70	
1	ļ.	25	MC1404AU5]	(Note 2)			
	1	55	MC1504U5	Ì	1	l	-55 to +125	
		25	MC1504AU5			ĺ		
6.25 ± 60 mV	1	40	MC1404U6			i	0 to +70	
i	1	25	MC1404AU6	1	ì	1		
		55	MC1504U6		İ		-55 to +125	
	1	25	MC1504AU6	ì				
10 ± 100 mV	1	40	MC1404U10	į	1	1	0 to +70	
l		25	MC1404AU10					
		55	MC1504U10				-55 to +125	
	<u> </u>	25	MC1504AU10		!		L	

Notes 1 4 5 \leq V₁ \leq 15 V/15 V \leq V₁ \leq 40 V 2. V_{1n} = V_{out} + 2 5 V to 40 V 3. OmA < I₀ < 10 mA

	16	\$000	14	14	16	8	18	18 \$\frac{1}{2}2000000000000000000000000000000000000
CASE	620	626	632 (TO-116)	646	648	693	701	726
MATERIAL	Ceramic	Plastic	Ceramic	Plastic	Plastic	Ceramic	Ceramic	Plastic
SUFFIX	J, L	P or P1	L	P or P2	N, P	U	J	N

CIRCUITS FOR CONSUMER APPLICATIONS

... reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to simplify first-order selection of consumer integrated circuit devices that satisfy the primary functions for Television, Audio, Radio, Citizens Band, Automotive and Organ applications.

Television Circuits

Function	Feature s	Case	Туре
Sound IF, Detector, Limiter, Audio Preamplifier	80 μ V, 3 dB Limiting Sensitivity, 3.5 V (RMS) Output, Sufficient for Single Transistor Output Stage	646	MC1351
Sound IF Detector	Interchangeable with ULN2111A	646	MC1357
Sound IF Detector, dc Volume Control, Preamplifier	Excellent AMR, Interchangeable with CA3065	646	MC1358
Sound IF, Low Pass Filter, Detector, dc Volume Control, Preamplifier,	Complete TV Sound System; 100 μ V, 3 dB Limiting Sensitivity; 4 Watts Output; V_{CC} = 24 V; R_L = 16 Ω	722A	TDA1190Z
Power Amplifier	750 mW Output	648	TDA1190P
VIDEO			
1st and 2nd Video IF	IF Gain @ 45 MHz = 60 dB typ, AGC Range = 70 dB min	626	MC1349
Amplifier	IF Gain @ 45 MHz =50 dB typ, AGC Range = 60 dB min	626	MC1350
1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ 45 MHz = 53 dB typ, AGC Range = 75 dB min, "Forward AGC" Provided for Tuner	646	MC1352
3rd IF, Video Detector, Video Buffer, and AFC Buffer	Low-Level Detection, Low Harmonic Generation, Zero Signal dc Output Voltage of 7.0 to 8.2 V	626	MC1330A1
	Same as MC1330A1 except zero signal dc output voltage of 7.8 to 9.0 V	626	MC1330A2
Automatic Fine Tuning	High Gain AFT System, Interchangeable with CA3064	646	MC1364
Automatic Fine Tuning with Intercarrier Mixer/Amplifier	AFT Circuit that Provides an AFT Voltage and an Amplified 4.5 MHz Intercarrier Sound Signal	646	CA3139
CHROMA			
Chroma IF Amplifier and Subcarrier System	Includes Complete Chroma IF, AGC, dc Gain and Tint Controls Injection Locked Oscillator, Low Peripheral Parts Count	646	MC1398
Chroma IF Amplifier and Subcarrier System (PLL)	Includes Complete Chroma IF, AGC, dc Chroma and Hue Controls, Phase-Locked Loop (PLL) Oscillator, Color Killer Threshold Adjustment	648	MC1399
Dual Chroma Demodulators	Dual Doubly-Balanced Demodulator with RGB Matrix and Chroma Driver Stages	646	MC1324
	Dual Doubly-Balanced Demodulator with RGB Matrix and PAL Switch	646	MC1327
Triple Chroma Demodulator	Triple Doubly-Balanced Demodulator with Adjustable Output Matrix, Contains Three Independent Demodulators	648	MC1323
DEFLECTION			
Horizontal Processor	Includes Linear Balanced Phase Detector, Oscillator and Predriver, Adjustable dc Loop Gain	626	MC1391
	Same as MC1391 except designed to accept negative sawtooth sync pulse	626	MC1394
Vertical Processor	Includes Oscillator and Complementary Driver, Low Thermal Drift, Retrace Pulse for Effective Blanking	648	MC1393A
TV GAMES/DISPLAY			
Color TV Video Modulator	Includes Chroma Oscillator and Clock Driver, Lead and Lag Network, Chroma Modulator, RF Oscillator, and Modulator.	646	MC1372
j	Includes RF Oscillator and Modulator	626	MC1373

Audio Circuits

POWER AMPLIFIERS

Features	P _O Watts	V _{CC} Vdc Max	V _{in} @ rated P _O mV Typ	I _D mA Typ	R _L Ohms	Case	Туре
Audio Power Amplifiers	0.5	15	3.0	4.0	80	626	MC1306
i	0.25	12	3.0	3.0	16	626	MC3360
	8.0	28	50	55	2.0	314A, 314B	TDA2002

Radio Circuits

IF AMPLIFIERS

Function	Gain @ 10.7 MHz dB Typ	3 dB Limiting @ 10.7 MHz mV (RMS) typ	AMR	Recovered Audio Output f = ±75 kHz mV (RMS)	Power Supply Volts Max	Case	Туре
IF Amplifier	58	0.175	60	690	18	626	MC1350
Limiting FM-IF Amplifier	_	0.600	45	480	18	646	MC1355
Limiting IF Ampl/Quad Detector	53	0.4	45	480	16	646	MC1357
IF Amplifier	42	60	50	500	18	626	MC3310
Low-Power FM-IF for Dual Conversion Scanning Receivers	_	0.005	50	350 (f = ±3.0 kHz)	8.0	648	MC3357

DECODERS

Function	Channel Separation dB Typ	THD % Typ	Stereo—Indicator Lamp Driver mA Max	Features	Case	Туре
FM Multiplex Stereo Decoder	47	0.06	50	Coilless Operation; 4.5 V Operation	646	MC1309
	40	0.3	75	Coilless Operation	646	MC1310
	45	0.2	100	Variable Separation	648	TCA4500A

AM RECEIVER

Features	Function	Case	Туре
AM Radio Subsystem	RF Amplifier, AGC, Mixer, Oscillator, 1st IF Amplifier, 2nd IF Amplifier and Detector	648	HA1199

10

Organ Circuits

FREQUENCY DIVIDER

Function	VCC Range Vdc	f _{Tog} MHz Typ	VOH Vdc Min	Case	Туре
7-Stage Divider	6-16	1.0	12.0/15.0	646	MC1302

ATTENUATOR

, Function	V _{CC} Range Vdc	THD % Typ	Ay dB Typ	Attenuation Range dB Typ	Case	Туре
Electronic Attenuator	9.0-18	0.6	13	90	626	MC3340

Automotive Circuits

OPERATIONAL AMPLIFIER

Function	V _{CC} Range Vdc	AVOI V/V Min	IIB μΑ Max	Unity Gain Bandwidth MHz Typ	Case	Type
Quad Operational Amplifier	4.0-28	1000	03	4.0	646	MC3301
	3.0-26	_	0.25	1.0	646	LM2902
Dual Operational Amplifier	3.0-26	-	0.25	1.0	626	LM2904

COMPARATORS

Function	V _{CC} Range Vdc	V _{IO} mV Max	IIO nA Max	I _{IB} nA Max	Sink Current mA Typ	Case	Туре
Quad Comparators	2.0-28	±20		500	6.0	646, 632	MC3302
		±7.0				646	LM2901
	2.0-36	±5.0	±50	250	16.0	646, 632	LM239
		±2.0	1			646, 632	LM239A

VOLTAGE REGULATOR

Function	Features	Case	Туре
Automotive Voltage Regulator	Designed for use with NPN Darlington; Overvoltage Protection; "Open Sense" Shut Down; Selectable Temperature Coefficient for Use in a Floating Field Alternator Charging System	646	MC3325
Flip-Chip Automotive Voltage Regulator	Same as MC3325		MCCF3326

ELECTRONIC IGNITION

Electronic Ignition Circuit	Designed for use in High Energy Variable Dwell Electronic Ignition Systems with Variable Reluctance Sensors. Dwell and Spark Energy are Externally Adjustable	646	MC3333
Flip-Chip Electronic Ignition Circuit	Same as MC3333	-	MCCF3333

SPECIAL FUNCTION

Programmable Frequency	Wide Input Frequency Range (10 Hz to 100 kHz)	646, 632	MC3344
Switch	Adjustable Hysteresis	i '	
(Engine RPM Switch)	Wide Supply Operating Range (7 to 24 V)		

Transistor Arrays

GENERAL-PURPOSE

Function	I _{C (max)} mA	V _{CEO} Volts Max	V _{CBO} Volts Max	V _{EBO} Volts Max	Case	Туре
One Differentially Connected pair and Three Isolated Transistors	50	15	20	5.0	646	MC3346 MC3386
Dual Independent Differential Amplifiers with Associated Constant Current Transistors	50	15	20	5.0	646	CA3054

Special Functions

Function Features		Case	Туре
Emitter-Coupled Astable Multivibrator	Useful as DC-DC Converter, Power Regulator or Multivibrator. Toggle Freq = 100 kHz (typ)	626	MC3380
Phase-Locked Loop	Contains Voltage Controlled Oscillator and Double Balanced Phase Detector	646	NE565

Package Styles

Lead Configuration	8	14	14 		18
Case	626	632	646	648	701
Material	Plastic	Ceramic	Plastic	Plastic	Plastic
Suffix after Type Number	P or PL	L	Р	Р	Р

 Case
 722A
 724
 314A
 314B

 Material
 Plastic
 Plastic
 Plastic
 Plastic
 Plastic
 Plastic

 Suffix after Type Number
 P
 P
 H
 V

SPECIAL PURPOSE CIRCUITS

The linear-integrated-circuits listed in this section were developed by Motorola for the system design engineer to fill special-purpose requirements. Temperature ranges and package availability are tailored to provide price/performance versatility.

Linear Four-Quadrant Multipliers

MC1594/1494

This device is designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MC1594/MC1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.

MC1595/MC1495

Similar to the MC1594/1494, but without internal level shift and voltage regulator circuits.

Balanced Modulator-Demodulator

MC1596/MC1496

Designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection and chopper applications.

Timing Circuits

MC1555/MC1455/MC1422

These devices are highly stable timing circuits capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits. Timing from Microseconds through Hours. The MC1422 has variable threshold level, adjustable externally.

	Timing Error (typ)
MC1555	0.5%
MC1455	1.0%
MC1422	1.0%

MC3556/MC3456

Dual Version of the MC1555/MC1455

Low Frequency Power Amplifier

MC1554/MC1454

One-watt power amplifier for single or split supply operation. Typical voltage gain of 10, 18, or 36 V/V with 0.4% THD.

Power Control Circuits

MC3370

Electronic switch for triac triggering applications. Features zero-crossing detector to eliminate RFI, differential input with dual sensor inputs, input open and short protection, and built-in regulator permitting AC line operation.

CA3059/3079

Zero voltage switches designed for thyristor control in a variety of ac power switching applications for ac input voltages of 24 V, 120 V, 208/230 V, and 277 V at 50/60 and 400 Hz.

Monolithic Dual OP Amp and Dual Comparator

MC3505/MC3405

This device contains two differential input operational amplifiers and two comparators each set capable of single supply operation. This operational amplifier-comparator circuit will find its applications as a general purpose product for automotive circuits and as an industrial "building block".

- Op Amp Equivalent in Performance to MC3403
- Comparator Similar in Performance to LM339
- Op Amps are Internally Frequency Compensated
- Supply Operation 3 0 Volts to 36.0 Volts
- Dual Supply Operation also Available

Package Styles

Opera Temperatu		
-55 to +125°C	0 to +70°C	Case
MC1554	MC1454	603B
MC1555		601, 693
	MC1455	601, 626, 693
MC1594	MC1494	620
MC1595	MC1495	632
MC1596		603, 632
	MC1496	603, 632, 646
	MC1422	601, 626
MC3505		632
T	MC3405	632, 646
MC3523		693
	MC3423	626, 693
MC3556		632
	MC3456	632, 646
	MC3370	626
	CA3059* CA3079*	646

^{*-40} to +85°C

Overvoltage Protection Circuit

MC3523/MC3423

OVPs protect sensitive circuitry from transients or regulator failures when used with an external "crowbar" SCR. They sense the overvoltage and quickly "crowbar" or short circuit the supply, forcing it into current limiting or opening fuse or CB.

Voltage threshold is adjustable and OVPs can be programmed for minimum duration before tripping, supplying noise immunity.

IO ±mA	V _{CC} Volts		V _{Sense} Volts		V _{Sense} Volts		V _{Sense} Volts		V _{Sense} Volts		V _{CC} Volts V _{Sense} Volts					
Max	Min	Max	Min	Max	Device Number	Suffix	TA °C	Case								
300	4.5	40	2.45	2.75	MC3423	Р	0 to +70	626								
		ì	i	1		U	0 to +70	693								
		l	1	1	, MC3523	U	-55 to +125	693								

CASE	601	603	603B	626	632	646	693
MATERIAL	Metal	Metal	Metal	Plastic	Ceramic	Plastic	Ceramic
SUFFIX	G	G	G	Por P1	L	Р	U
after type number						·	

HIGH FREQUENCY AMPLIFIERS

A variety of high-frequency circuits with features ranging from low-cost simplicity to multi-function versatility marks Motorola's line of integrated RF/IF amplifiers. Devices described here are intended for industrial and communications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio, see "Circuits for Consumer Applications".

NON-AGC Amplifiers

SE/NE592 - Differential Two Stage Video Amplifier

A monolithic, two state differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

MC1733/MC1733C - Video Amplifier

Differential input and output amplifier provides three fixed gain options with bandwidth to 120 MHz. External resistor permits any gain setting from 10 to 400 v/v. Extremely fast rise time (2.5 ns typ) and propagation delay time (3.6 ns typ) makes this unit particularly useful as pulse amplifier in tape, drum, or disc memory read applications.

MC1552/MC1553 - Low Distortion Amplifier

A high performance amplifier with internal series feedback for stable voltage gain and low distortion. Temperature compensation stabilizes operating point. Has selectable gain option and well characterized data that permits accurate response shaping. Useful for critical applications such as wideband linear amplifiers or fast-rise pulse amplifiers.

AGC Amplifiers

MC1550 - Low Cost Building Block

Single-stage cascade connected amplifier with delayed AGC characteristics, for operation at frequencies to 100 MHz. Has typical power gain of 25 dB @ 60 MHz.

MC1545/MC1445 - Gated 2-Channel Input

Differential input and output amplifier with gated 2-channel input for a wide variety of switching purposes. Typical 75 MHz bandwidth makes it suitable for high-frequency applications such as video switching, FSK circuits, multiplexers, etc. Gating circuit is useful for AGC control.

MC1590 - Wide-Band General Purpose

Has differential inputs and outputs with unneutralized power gain as high as 35 dB typical at 100 MHz in tuned amplifier service. Effective AGC voltage range from 5 to 7 volts for a 30 dB gain reduction.

Electrical Specifications

AGC AMPLIFIERS

Operating Temperature Range			Band		Vcc/	
-55 to +125°C	0 to +75°C	48 AV		idth /IHz	VCC/ VEE Vdc	Case
MC1550	_	22 Min		22	+6/-	6038,606
MC1590	-	44 Typ 4 Typ		10 100	+12/-	601
MC1545	MC1445	19 Typ	@	75	+5/-5	603,607 632

NON AGC AMPLIFIERS

MC1733	MC1733C	52	@	40	+6/-6	603,632
ł	1	40		90	1]
l	<u> </u>	20		120		
MC1653	_	46	@	35	+6/-6	603B
Į.	(52		15	}	1
MC1552	_	34	@	40	+6/-6	603B
}	i	40	@	35	1	1
SE592	NE592	55	Q	40	+6/-6	603,632
ì]	45	@	90	ļ	

Package Styles

CASE	601	603	6038	606	607	632
MATERIAL	Metal	Metal	Metal	Ceramic	Ceramic	Ceramic
SUFFIX	G	G	G	F	F	L
after type number						

Package Information

CASE OUTLINE DIMENSIONS

The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section. Outline dimensions for non-encapsulated standard linear device chips and flip-chip devices are found in the Chips Data Book.

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:

$$P_{D(T_A)} = \frac{T_{J(max)} - T_A}{R_{\theta JA}(Typ)}$$

where: $P_{D(T_A)}$ = Power Dissipation allowable at a given operating ambient temperature.

This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.

T_J(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for T_J(max) information.

TA = Maximum Desired Operating Ambient Temperature

 $R_{\theta}JA(T_{VD}) = Typical Thermal Resistance Junction to Ambient$

CASE 601-04

Metal Package

	MILLIMETERS			HES
DIM	MIN	MAX	MIN	MAX
Α	8.51	9.40	0.335	0.370
В	7.75	8.51	0.305	0.335
C	4.19	4.70	0.165	0.185
D	0.41	0.48	0.016	0 019
_ E	0.25	1.02	0.010	0.040
F	0 25	1.02	0 0 1 0	0.040
G	5 08	BSC	0.200 BSC	
Н	0.71	0.86	0 028	0.034
J	0.74	1.14	0.029	0.045
K	12.70	-	0 500	1
L	3 05	4.06	0.120	0.160
M	45º BSC		450	BSC
N	2.41	2.67	0.095	0 105

CASE 603-04

Metal Package

NOTE-LEADS WITHIN 0.18 mm (0.007) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8 51	9.39	0 335	0 370	
В	7.75	8.51	0.305	0 335	
С	4 19	470	0 165	0.185	
D	0 407	0.533	0 016	0 021	
E		1.02		0 040	
F	0 406	0.483	0 016	0 019	
G	5 84	BSC	0 230 BSC		
H	0712	0.864	0.028	0 034	
J	0.737	1.14	0.029	0 045	
K	12.70	-	0.500		
L.	6 35	12 70	0.250	0.500	
M	360	BSC	360	BSC	
P	_	1.27		0 050	
a	3.56	4.06	0.140	0 160	
R	0.254	1.02	0 010	0.040	

All JEDEC dimensions and notes apply

Ceramic Package

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	19 05	1981	0.750	0 780
В	6.22	698	0.245	0.275
C	4.06	5 08	0.160	0 200
D	0.38	051	0.015	0.020
F	1.40	1 65	0.055	0.065
G	2.54 BSC		0.100 BSC	
н	0.51	1.14	0.020	0 045
J	0.20	0.30	0.008	0 012
K	3.18	4.06	0.125	0.160
L	7 37	7.87	0.290	0 310
M		15 ⁰	-	150
N	0.51	1.02	0.020	0 040

NOTES.

- 1 LEADS WITHIN 0.13 mm (0 005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION
- 2 PKG. INDEX. NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT
- 3 DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL

CASE 620-06

Ceramic Package

- 1. LEADS WITHIN 0.13 mm (0 005) RADIUS
- OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. PACKAGE INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT. 3. DIM "L" TO CENTER OF LEADS WHEN
- FORMED PARALLEL. 4. DIM "A" AND "B" DO NOT INCLUDE
- GLASS RUN-DUT. 5. DIM "F" MAY NARROW TO 0 76 mm (0 030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

1	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
В	6 10	7 49	0 240	0.295
C	ı,	5 08	_	0 200
_D	0.38	0.53	0 0 1 5	0.021
F	1.40	1.78	0 055	0 070
G	2.54 BSC		0.100 BSC	
H	0.51	1.14	0.020	0 045
J	0 20	0.30	0 008	0 012
K	3.18	5 08	0 125	0 200
_L	7 62 BSC		0 300 BSC	
M		15 ⁰	_	150
N	0.51	1 02	0 020	0 040

CASE 623-04

NOTES:

- 1. DIM "L" TO CENTER OF **LEADS WHEN FORMED** PARALLEL.
- 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (WHEN FORMED PARALLEL)

DIM	MIN	MAX	MIN	MAX
Α	31 24	32.77	1.230	1.290
В	12.70	15 49	0.500	0 610
С	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54 BSC		0.100 BSC	
J	0.20	0.30	0.008	0.012
К	2.29	4.06	0.090	0.160
L	15.24 BSC		0.600 BSC	
M	00	150	00	150
N	0.51	1.27	0.020	0.050

MILLIMETERS

INCHES

Plastic Package

NOTES

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE **POSITION AT SEATING** PLANE AT MAXIMUM MATERIAL CONDITION.

DIM	MIN	MAX	MIN	MAX
A	9 40	10.16	0 370	0.400
В	6.10	6.60	0 240	0.260
C	3.94	4 45	0.155	0.175
D	0 38	0 51	0 015	0.020
F	1.02	1.52	0.040	0 060
G	2.54	BSC	0.100 BSC	
H	0.76	1.27	0.030	0 050
_	0 20	0.30	0.008	0.012
K	2.92	3 43	0 115	0.135
L	7 62	BSC	0 300 BSC	
M		10 ⁰	_	100
N	0 51	0.76	0.020	0.030

INCHES

MILLIMETERS

2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

3. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS)

CASE 632-02

Ceramic Package

<u> </u>	A
7	
1	(B P
44444	7 T
A	

	MILLIM	ETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	16.8	19.9	0.660	0.785
В	5.59	7.11	0.220	0.280
C	_	5 08		0 200
D	0.381	0.584	0.015	0.023
F	0.77	1.77	0 030	0.070
G	2.54 BSC		0.100 BSC	
J	0.203	0.381	0.008	0.015
K	2.54	_	0.100	-
L.	7.62	BSC	0.300	BSC
M		15 ⁰	_	150
N	0 51	0.76	0.020	0.030
P	-	8.25	-	0.325

NOTES:

- 1. ALL RULES AND NOTES ASSOCIATED WITH MO-001 AA OUTLINE SHALL APPLY.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. LEADS WITHIN 0.25 mm (0.010) DIA OF TRUE POSITION AT SEATING PLANE AND MAXIMUM MATERIAL CONDITION.

All JEDEC dimensions and notes apply.

CASE 646-05

Plastic Package

DIM	MIN	MAX	MIN	MAX
Α	18.16	19.56	0.715	0.770
В	6.10	6 60	0 240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100	BSC
H	1.32	2 4 1	0.052	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0 115	0 135
	7.62	BSC	0 300 BSC	
M	00_	100	00	100
N	0 51	1.02	0.020	0 040

INCHES

MILLIMETERS

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH
- 4 ROUNDED CORNERS OPTIONAL

CASE 648-05

Plastic Package

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH,
- 4. "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 8, 9, and 16).
- 5. ROUNDED CORNERS OPTIONAL.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	18.80	21.34	0.740	0.840
В	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0 070
G	2 54 BSC		0.100 BSC	
H	0.38	2.41	0.015	0.095
J	0.20	0 38	0 008	0 015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M	00	100	00	100
N	0.51	1.02	0.020	0.040

В

CASE 649-03

Plastic Package

DIM	MIN	MAX	MIN	MAX
Α	31 50	32.13	1 240	1.265
8	13 21	13.72	0 520	0 540
С	4 70	5 21	0.185	0 205
D	0.38	0.51	0 015	0.020
F	1 02	1 52	0.040	0 060
G	2 54	BSC	0.100 BSC	
Н	1.65	2 16	0.065	0 085
J	0.20	0 30	0.008	0.012
K	2 92	3.43	0 115	0 135
L	14.99	15 49	0.590	0.610
M		10 ⁰		10 ⁰
N	0 51	1 02	0 020	0.040
P	0 13	0.38	0.005	0.015
a	0 51	0.76	0.020	0 030

INCHES

INCHES MIN MAX

0 015 0.021

0 030 | 0.055 0 100 BSC

0 030 | 0 070

20 57 | 0 790 | 0 810 7 62 0 280 0 300 3 94 0 105 0 155

MILLIMETERS

NOTES.

- 1. LEADS WITHIN 0.13 mm (0 005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM
- MATERIAL CONDITION.
 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

MILLIMETERS

2 54 BSC

0.53

0 20 | 0 30 | 0 008 | 0.012

DIM MIN MAX

A 20 07

B 7.11 2 67 C

D | 0.38

0.76 1 40

CASE 690-12

Ceramic Package

1. LEADS WITHIN 0 13 mm (0 005) RADIUS OF TRUE POSITION, AT SEATING PLANE AND MAXIMUM MATERIAL CONDITION.

A	N U38 140 U
N-J	L
	N.
	- " "
G SEATING PLAN	VE '

Ceramic Package

N	OT	ES
---	----	----

- 1. LEADS WITHIN 0.13 mm (0 005) RAD OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIN	METERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.91	10 92	0.390	0 430
В	6.22	6.99	0.245	0.275
C	4.32	5.08	0.170	0.200
D	0.41	0.51	0.016	0.020
F	1.40	1.65	0.055	0.065
G	2.54 BSC		0.100 BSC	
Н	1.14	1.65	0.045	0.065
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	7.37	7 87	0.290	0.310
M		15 ⁰	_	150
N	0.51	1.02	0 020	0.040

CASE 701-01

Plastic Package

NOTES:

- 1. LEADS WITHIN 0.13 mm (0 005) RADIUM OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM "G").
- 2 DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL

<u>^^ ^ ^ ^ ^ </u>	7	
\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\2\)\(\frac	B	
		(

Α	23 11	23 88	0 910	0 940
В	6 10	6 60	0 240	0 260
С	4 06	4 57	0 160	0 180
D	0 38	0 51	0 015	0 020
F	1 02	1 52	0 040	0 060
G	2 54	BSC	0 100 BSC	
H	1 32	1 83	0 052	0 072
J	0.20	0.30	0 008	0 012
K	2.92	3 43	0 115	0 135
L	7 37	7 87	0 290	0 310
M	00	100	00	100
N	0.51	1 02	0 020	0 040

DIM MIN MAX MIN MAX

INCHES

MILLIMETERS

MILLIMETERS

D

DIM MIN MAX MIN MAX A 36.45 37.21 1.435 1.465

30.49 37.21 1.433 1.403 13 72 14 22 0 540 0.560 3.94 508 0.155 0 200 0 36 0.56 0.014 0.022 1.02 1.52 0 040 0 060 2.54 85C 0.100 85C

| 1.65 | 2 16 | 0.065 | 0.085 | 0.020 | 0.38 | 0.008 | 0.015 | 0.292 | 3.43 | 0.115 | 0.135 | 0.1524 | BSC | 0.600 | BSC | 0.000 | 150 | 0.000

1.02 0.020 0.040

INCHES

N SEATING M
PLANE

CASE 710-02

Plastic Package

NOTES:

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

000000000000000000000000000000000000000	
AC	
	\Rightarrow
HH + G F F D SEATING	J -
DIANE	

3 5

Plastic Package

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	31.24	32.13	1.230	1.265
В	6.35	6.86	0.250	0.270
C	4.06	4.57	0.160	0.180
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100 BSC	
Н	1.60	2.11	0.063	0.083
J	0.18	0.30	0.007	0.012
K	2.92	3.43	0.115	0.135
L	7.37	7.87	0.290	0.310
M		10°	_	10°
N	0.51	1.02	0.020	0.040

NOTE:

1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) DIA AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM D).

CASE 726-01

Ceramic Package

NOTES:

- 1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) DIA. AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
- 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIM "A" & "B" INCLUDES MENISCUS.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	22.35	23.11	0.880	0 9 1 0
В	6.63	7.24	0 261	0.285
C		5 08		0 200
۵	0.41	0 51	0 0 1 6	0 020
F	1.40	_1 65_	0 055	0 065
G	2.54 BSC		0.100 BSC	
H	0.76	1 02	0.030	0 040
_	0 13	0.38	0.005	0 0 1 5
K		4 44		0.175
Ĺ	7.37	8.00	0 290	0 315
M	Qo	15 ⁰	00	15 ⁰
N	0 51	0.76	0.020	0 030

CASE 732-02

Ceramic Package

NOTES:

- 1. LEADS WITHIN 0.25 mm (0.010)
 DIA, TRUE POSITION AT
 SEATING PLANE, AT MAXIMUM
 MATERIAL CONDITION.
- 2. DIM L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIM A AND B INCLUDES MENISCUS.

V V V V	В	M	50 0.51	
A				
F	C C	· L -		
	t _n			,
- <u>H</u> - G	- K	`	- M\	

INCHES

MILLIMETERS

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	36 45	37.85	1.435	1 490	
В	12.70	15.37	0.500	0.605	
С	4 06	5.84	0.160	0.230	
D	0.38	0.56	0.015	0 022	
F	1.27	1.65	0.050	0.065	
G	2.54 BSC		0.100 BSC		
J	0.20	0 30	0 008	0.012	
K	2.54	4.06	0.100	0.160	
L	15.24 BSC		0 600 BSC		
M	50	150	5º	15 ⁰	
N	0.51	1 27	0 020	0 050	

- 1. DIM A IS DATUM
 2. POSITIONAL TOL FOR LEADS:

- 6. DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973.

CASE 738-01

Plastic Package

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	25 65	27.18	1 010	1 070
В	6 10	6 60	0.240	0 260
C	3.94	4.19	0.155	0.165
D	0.38	0 56	0 015	0 022
F	1.27	1.78	0.050	0 070
G	2.54 BSC		0.100 BSC	
J	0.20	0.38	0.008	0 015
K	2.79	3.56	0.110	0.140
L	7 62 BSC		0.300 BSC	
M	00	150	00	15 ⁰
N	0.51	1 02	0 020	0 040

NOTES.

- 1. DIM A. IS DATUM.
- 2. POSITIONAL TOL FOR LEADS,

♦ Ø 0.25 (0 010)⊚ T A⊚

- 3. T. IS SEATING PLANE.
- 4. DIM "B" DOES NOT INCLUDE MOLD FLASH.
- 5. DIM L- TO CENTER OF LEADS WHEN
- FORMED PARALLEL
 6. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

The state of the s

Activation of the many representation of the property of the p

And the second of the second o

And the second of the second o

The state of the s

The same of the sa

A STATE OF THE STA

Application Notes and Engineering Bulletins

APPLICATION NOTE ABSTRACTS

The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

AN-245A An Integrated Core Memory Sense Amplifier

This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty region (6 mV max), adjustable voltage gain, and fast cycle time (0.5 µs).

AN-273A More Value out of Integrated Operational Amplifier Data Sheets

The operational amplifier is rapidly becoming a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also, each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset circuits are also reviewed with respect to closed loop operation.

AN-290B Mounting Procedure for, and Thermal Aspects of, Thermopad Plastic Power Devices

Many Motorola power devices are now available in the Plastic Thermopad packages. Three package types are presently available. This application note provides information concerning the handling and mounting of these packages, as well as information on some thermal aspects.

AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including DC characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-404 A Wideband Monolithic Video Amplifier

This note describes the basic principles of AC and DC operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

AN-411 The MC1535 Monolithic Dual Op Amp

This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate for the MC1535. A complete AC and DC circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.

AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figure-frequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

AN-471 Analog-to-Digital Conversion Techniques

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is intended to assist the reader in determining which conversion technique is best suited for a given application.

AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

APPLICATION NOTE ABSTRACTS (Continued)

AN-491 Gated Video Amplifier Applications Using The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

AN-513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

AN-522 The MC1556 Operational Amplifier and its Applications

This application note discusses the MC1556, a second generation, internally compensated monolithic operational amplifier. Particular emphasis is placed on its distinct advantages over the early 709-type amplifier and the more recent 741-type amplifier.

Along with a description of its operation this note presents a discussion on various applications of the MC1556, highlighting its capabilities, and points out its characteristics so the reader may make effective use of the device.

AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators for AM, SSB, and suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and HF/VHF double balanced mixers.

AN-533 Semiconductors for Plated-Wire Memories

An introduction to the operation and electrical characteristics of plated-wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.

Devices discussed include drivers, sense amplifiers, and decoders. Memory organization and memory-related semiconductor applications are also mentioned.

AN-543A Integrated Circuit IF Amplifiers for AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

AN-545 Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, MC1353 and the MC1330.

AN-547 A High-Speed Dual Differential Comparator, The MC1514

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multibubrators, and peak level detectors are presented.

AN-553 A New Generation of Integrated Avionic Synthesizers

The need to generate signals of a multitude of different frequencies for avionic systems has resulted in complex solutions in the past. With the introduction of certain standard product integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution. Several different types of servo phase locked loop systems are discussed and a practical design example is given. Results of design examples are presented along with possible applications.

AN-557 Analog-to-Digital Cyclic Converter

The A/D cyclic converter discussed in this note provides medium speed $(1-5\mu s/bit)$ and medium accuracy (7 or 8 bits) operation. A Cyclic converter uses the successive approximation technique in which an unknown analog input voltage is successively compared to a reference voltage to determine each bit of the digital output.

The cyclic converter offers continuous operation, automatic generation of the digital output in Graycode form, and a building block structure. This structure uses a separate but identical circuit for each resolution bit. The cyclic converter finds use primarily in control and process applications.

AN-559 Simple Ramp A/D Converter

A simple single ramp A/D converter which incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part—the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.

AN-564 An ADF Frequency Synthesizer Utilizing Phase-Locked Loop Integrated Circuits

This application note describes an IC phase locked-loop frequency synthesizer suitable for the local osciallator function in aircraft Automatic Direction Finder (ADF) equipment.

AN-587 Analysis and Design of the Op Amp Current Source

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

AN-590 Servo Motor Drive Amplifiers

The design of transformerless, AC servo amplifiers using power darlington transistors and IC op amps are discussed. Two types of power amplifiers are illustrated, one using single +28 Volt power supply, the second using high voltage transistors in complementary configuration for operating directly off the line.

Four different op amp preamplifiers and 90° phase shifters are also described.

AN-599 Mounting Techniques for Metal Packaged Power Semiconductors

For cooler, more reliable operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minimized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.

AN-702 High Speed Digital-To-Analog and Analog-To-Digital Techniques

A brief overview of some of the more popular techniques for accomplishing D/A and A/D techniques. In particular those techniques which lead themselves to high speed conversion.

AN-703 Designing Digitally-Controlled Power Supplies

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in an application.

AN-708A Line Driver and Receiver Considerations

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and application examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

AN-710 Communication System Transmission Losses

This report shows the derivation of the equations used to calculate the insertion loss associated with various component parts of a communications channel. The combinations of components form a system whose overall loss may not be equal to the sum of the losses of the various parts.

AN-711 The Recovery of Recorded Digital Information in Drum, Disk and Tape Systems

The use of magnetic recording techniques has long been an important means of sorting digital information, as evidenced by the wide variety of equipment currently in use. Representative systems utilize drums, disks and tape as the recording medium.

All three techniques share the common problem of recovering the recorded digital information. The analog signal obtained by passing the recording medium by a magnetic sensor (Read Head) must be converted to a suitable digital format.

This application note reviews the general problem and discusses a number of specific circuit approaches.

AN-713 Binary D/A Converters can Provide BCD-Coded Conversion

This note describes the application and use of integrated circuit D/A converters for use in providing a BCD-coded conversion. The technique is illustrated using a 2-1/2 digit digital voltmeter.

AN-714 A Personalized Heart-Rate Monitor with Ditigal Readout

Using the micropower operational amplifier MC1776 and CMOS digital integrated circuits, entirely self-contained portable electro-medical monitoring equipment can be built. This note details the construction of a heart-rate monitor giving a digital indication, beat-by-beat.

AN-716 Successive Approximation A/D Conversion

Recent advances in integrated circuit design and technology have resulted in reduced cost of high performance successive approximation analog to digital converters. This note describes and illustrates two examples of how modern IC components have changed this well known technique.

AN-717 Battery Powered 5-MHz Frequency Counter

This application note describes a battery-powered 5-MHz frequency counter using the McMOS logic family for low-power operation. The basic counter is optimized, at a 12-volt supply for maximum performance with a linear input-signal

APPLICATION NOTE ABSTRACTS (Continued)

conditioner. Several options are discussed which optimize the basic counter for minimum power dissipation. These options include a CMOS input signal-conditioner and multiplexed LED displays.

AN-719 A New Approach to Switching Regulators

This article describes a 24-Volt, 3-Ampere switching mode supply. It operates at 20 kHz from a 120 Vac line with an overall efficiency of 70%. New techniques are used to shape the load line. The control portion uses a quad comparator and an opto coupler and features short circuit protection.

AN-720 Interfacing with MECL 10,000

This article describes some of the MECL circuits used to interface with signals not meeting MECL input or output requirements. The characteristics of these circuits such as; input impedance, output drive, gain and bandwidth allow the system designer to use these parts to optimize his system. MECL interface circuits overcome a problem area of many system designs, which is the efficient coupling of non-compatible signals.

AN-732A A Non-Volatile Microprocessor Memory Using 4K N-Channel MOS RAMs

NMOS semiconductor technology has made inroads into high density/high performance circuit design. The one-chip microprocessor, Random Access Memories, and Read Only Memories, are changing system implementation from random logic designs to software and firmware programmable microcomputing systems. Such systems frequently require relatively large amounts of memory.

This paper describes the design of an 8192-byte non-volatile Random Access Memory system using the MCM6605A 4Kx1 RAM. The syste is designed to work with the Motorola MC6800, an 8-bit microprocessor.

AN-737A Switched Mode Power Supplies—Highlighting A 5-V, 40-A Inverter Design

This application note identifies the features of various regulator circuits that are in use today in AC to DC power supplies. The note also illustrates how these circuits may be used as complementary building blocks in a system design. Primary emphasis is on switched mode regulators because they fill the present need for energy and space savings.

A complete 5-V, 40-A line operated inverter supply is described in detail including design procedures for the magnetic components. The inverter itself is a "state-of-the-art" design which features CMOS logic, high voltage power transistors, Schottky rectifiers and an optoelectronic coupler. It operates with a full load efficiency of 80% at a frequency of 20 kHz.

AN-739 A Synthetic Spectrum Tuning System for TV

A tuning system is described which uses a complete spectrum of TV channel markers to achieve precise tuning to any channel.

AN-741 Interface Considerations for Numeric Display Systems

This application note describes several methods of multiplexing multi-digit, seven-segment displays. The logic devices illustrated are primarily CMOS with two examples describing TTL. The displays discussed are liquid crystal, LED, gas discharge, incandescent and fluorescent. How to interface between the logic and these displays, and what the interface considerations are, are described in detail.

AN-744 A Phase-Locked Loop Tuning System for Television

This note describes a frequency domain tuning system which utilizes direct digital countdown of the varactor tuner's local oscillator to obtain the proper local oscillator frequency for the channel number selected. The system features direct-channel access with equal ease of tuning and an exact channel readout for all VHF and UHF channels.

AN-746 A 3½ Digit DVM Using an Integrated Circuit Dual Ramp System

This application note describes the design of a $3\frac{1}{2}$ -digit DVM (digital voltmeter) using the MC1405 and the MC14435 dual ramp A/D system. The performance criteria is that of a lab quality DVM with both $3\frac{1}{2}$ -digit resolution and accuracy while still retaining a low cost and low parts count instrument. Features of the DVM include circuitry for a high impedance input, autopolarity and overrange indication.

AN-751 A Disassociated Intercarrier Television Video IF Amplifier

This application note discusses a unique video IF system, incorporating the MC1331, low-level multiplier detector. Problem areas in IF design are discussed and the specific solutions are shown.

AN-752 An 80-Watt Switching Regulator for CATV and Industrial Applications

This application note describes a 24-Volt, 3-Ampere switching, regulated power supply that operates above 18 kHz from a 40-to 60-Volt, 60-Hz square wave source (CATV power line from a ferroresonant transformer) or a dc standby source with input output isolation. The control circuit consists of a dual operational amplifier and a linear integrated circuit timer which are used to vary the on time of a new high-speed power transistor. The circuit provides good efficiency, good regulation, low output ripple and incorporates input and output voltage over shutdown protection.

AN-757 Analog-to-Digital Conversion Techniques with the MC6800 Microprocessor System

This application note describes several analog-to-digital conversion systems implemented with the M6800 microprocessor and external linear and digital IC's. Systems consisting of an 8- and 10-bit successive approximation approach, as well as dual ramp techniques of $3\frac{1}{2}$ -and $4\frac{1}{2}$ digit BCD and 12-bit binary, are shown with flow diagrams, source programs and hardware schematics. System tradeoffs of the various schemes and programs for binary-to-BCD and BCD-to-7 segment code are discussed.

AN-760 Application of The MC3416 Crosspoint Switch

The operation and application of the MC3416 4 x 4 balanced crosspoint switch is described in detail. Special emphasis is given to balanced switching systems like those in space division PABX. Discussion of the total system design using the MC3416 is also included.

AN-763 The MC1323—A Fully Programmable Demodulator

The MC1323 is a monolithic integrated circuit demodulator specifically designed for decoding the NTSC color television signal, even when nonstandard receiver display tube phosphor primaries are used. The unique design allows independent adjustment of demodulator conversion gains and demodulation axes. This note describes the circuit operation of the MC1323 and several applications including low cost driving of unitized gun picture tubes and obtaining R-G-B demodulated outputs.

AN-765 An Approach To A Low-Noise TV IF System

This note describes a technique of measurement of the IF contribution and ways of minimization of the IF noise. An IF design, following these procedures, is described to meet the desired noise performance.

AN-767 A Line Operated, Regulated 5V/50A Switching Power Supply

This application note describes a regulated 220 V ac to 5 Vdc converter using high voltage switching transistors and Schottky barrier rectifiers. The control functions are all performed by integrated circuits.

AN-775 M6800 Systems Utilizing the MC6875 Clock Generator/Driver

This application note describes the use of the MC6875 clock generator/driver in M6800 based systems. Design examples will demonstrate the capabilities of the driver in systems using slow and/or dynamic memories. Multiprocessing and DMA methods are also covered.

AN-781 Revised Data-Interface Standards

Revised data-interface standards permit faster data rates and longer cables. New chips, and RS232 adapters, simplify their use.

AN-787 An M6800 Clock System That Handles DMA and Memory Refresh Cycle Stealing

Dynamic memory and three-state cycle stealing for Direct Memory Access transfers require a clock generator and priority logic to maintain proper refresh times of the dynamic MPU and dynamic memory. The design presented here demonstrates use of the MC6875 clock generator with an MC6800 MPU.

ENGINEERING BULLETIN ABSTRACTS

EB-20 Multiplier/Op Amp Circuit Detects True RMS

Two op amps and two multipliers are used in the circuit described by EB-20 to obtain the true rms of an input voltage ranging from 2 to 10 Vpk.

EB-21 DAC Key To Inexpensive 2% Digit Voltmeter.

EB-21 presents an idea for the core of an economical 2¹/₂ digit voltmeter. Built around Motorola's MC1408 8-bit D/A converter, the meter can measure to 2.55 V in 10 mV steps.

EB-24A Input Buffer Circuits For The MC1505 Dual Ramp A-To-D Converter Subsystem

Several bipolar op amp buffers of medium-high impedance are described in this bulletin. It also discusses FET input op amp buffers providing high impedance and temperature drift under 1 mV over the 0°C to 50°C range.

EB-50 Build This Simple, Battery-Powered 3½ Digit DVM From Standard Parts

EB-50 describes a simple, battery-powered 3½ digit DVM capable of measuring up to 20 volts that can be built from readily obtained standard parts. Sufficient information is provided to construct the circuit including schematic, PC board layout, parts list and calibration instructions.

EB-51 Successive Approximation BCD A/D Converter

A successive approximation A/D converter in which a digital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB-51.

EB-52 Control Your Switching Regulator With The MC3380 Astable Multivibrator

Engineering Bulletin EB-52 describes the operation and characteristics of the MC3380 astable multivibrator and details the design of a 200 volt switching regulator circuit for gas discharge displays using this device as the control element.

EB-57 An Economical FM Transmitter Voice Processor from a Single IC

An MC3401 Quad OP-Amp is used as a Microphone/Modulation interface in an FM transmitter.

EB-58 Analog Data Acquisition Network for Digital Processing Using the MC1405-MC14435 A/D System

An MC1405-MC14435 combination is used to form a dual-slope A/D converter for analog data acquisition.

EB-66 A Symmetry Correcting Circuit for Use with the MC3420

EB-66 shows a method of implementing an external symmetry-correction circuit with the MC3420 Switchmode Regulator Control IC to insure balanced operation of the power transformer in pushpull inverter configurations.

EB-78 NEW ICs In Switching Supplies

This bulletin describes a regulated 220 Vac to 5 Vdc converter design incorporating the MC3420 and MC3423 for the control and ancillary functions.

EB-85 Full-Bridge Switching Power Supplies

This bulletin provides selection information on devices for a full-bridge configuration supply in the 500-1000 watt power range.

EB-86 Half-Bridge Switching Power Supplies

This bulletin provides selection information on devices for a half-bridge configuration supply in the 100-500 watt power range.

EB-87 Flyback Switching Power Supplies

This bulletin provides selection information on devices for a flyback configuration supply in the 100-250 watt power range.

EB-88 Push-Pull Switching Power Supplies

This bulletin provides selection information on devices for a push-pull configuration supply in the 100-500 watt power range.

Master Index and Cross-Reference Guide **Reliability Enhancement Programs Selector Guide** Memory/Microprocessor Support **Drivers/Receivers** Communication Interface (Telephony) **Voltage Comparators Data Conversion** Voltage References **Linear IC Selector Guides Package Information Application Notes and Engineering Bulletins**

,		

