Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 6. Practical Dirty-Paper Codes

Lecturer: Jin HUANG

6.1 Practical Considerations for Dirty-Paper Codes

Practical

- Efficiently find the closest code to:
 - The cover work.
 - The received work.
- High payload.

Efficient Encoding Algorithms

Low cost:

- Low distortion to the cover work.
 - Many different measurements: perceptual models.
- Efficiently in computation/searching.

Efficient Decoding Algorithms

Good metric:

- Robust against some distortions: brightening etc.
- Efficiently in computation/searching.

Tradeoff between Robustness and **Encoding Cost**

- code separation: distance between different messages.
 - Larger for better robustness.
- coset formation: structure between codes for each message.
 - Good structure for efficient search, e.g. lattice.
 - Wide but close spacing for low cost.

6.3 A Simple Lattice Code

N-Dimensional Lattice

N unit orthogonal basis $\mathbf{w_{r1}}, \cdots, \mathbf{w_{r}}_N$

- Points in the lattice $\mathbf{p} = \sum_i k_i \mathbf{w_r}_i, k_i \in \mathbb{Z}$.
- A template sub-lattice $2\mathbf{w}_{\mathbf{r}1}, \cdots, 2\mathbf{w}_{\mathbf{r}N}$.
 - Points in the template sub-lattice:

$$\sum_{i} k_i(2\mathbf{w}_{\mathbf{r}i}), k_i \in \mathbb{Z}.$$

- Shifting it along bases according to $(b_1, \cdots, b_n), b_i \in \{0, 1\}.$
- Points in the sub-lattice with message (b_1, \cdots, b_n) :

$$\sum (b_i + 2k_i) \mathbf{w_r}$$

档成交互为(0,0)

Attende Potten

1 = (0, 1)

3 = (1, 1)

1	3	1	3	1	3	1	3	1	3
0	2	0	2	0	2	0	2	0	2
1	3	1	3	1	3	1	3	1	3
0	2	0	2	0	2	0	2	0	2
1	3	1	3	1	3	1	3	1	3
0	2	0	2	0	2	0	2	0	2
1	3	1	3	1	3	1	3	1	3
0	2	0	2	0	2	0	2	0	2
1	3	1	3	1	3	1	3	1	3
0	2	0	2	0	2	0	2	0	2

N-Dimensional Lattice

Can be 2^N messages

ullet Encoded as length N binary sequences.

N-Dimensional Lattice

大利: LSB中 reterence pattern Coole.

Can be 2^N messages 2-15计1支系数20

ullet Encoded as length N binary sequences.

How about use template sub-lattice $(h\mathbf{w}_{\mathbf{r}1}, \cdots, h\mathbf{w}_{\mathbf{r}N})$ for h = 3?

龙州; 没什 artice code bank.

Embedding

Embed a message $m = (b_1, \dots, b_N)$ into \mathbf{v} :

Project along each basis i:

$$p[i] = \mathbf{v} \cdot \mathbf{w_{r}}_i.$$

Quantize to the nearest code (Book has error):

$$q[i] = 2 \left| \frac{p[i] - b_i + 1}{2} \right| + b_i.$$

 $\mathbf{v}_m = \left(\mathbf{v} - \sum_i p[i] \mathbf{w}_{\mathbf{r}i}\right) + \sum_i q[i] \mathbf{w}_{\mathbf{r}i}$ $= \mathbf{v} + \sum_i (q[i] - p[i]) \mathbf{w}_{\mathbf{r}i}.$

In one-dimensional case $w_r = 1$.

Encode message into 47:

\boxed{m}	p	q	\mathbf{v}_m
0	47	48	48
1	47	47	47

Detection

Giving a vector v

Project/Measure along ith basis:

$$p[i] = \mathbf{v} \cdot \mathbf{w}_{\mathbf{r}i}.$$

• Quantize to the nearest lattice point:

$$q[i] = \lfloor p[i] + 0.5 \rfloor.$$

Decode the message:

$$m = (q[1] \mod 2, \cdots, q[N] \mod 2).$$

A Question

Why not

$$\mathbf{v}_m = \sum_i q[i] \mathbf{w}_{\mathbf{r}i}.$$

A Question

Why not

$$\mathbf{v}_m = \sum_i q[i] \mathbf{w}_{\mathbf{r}i}.$$

Number of basis is less than the dimension of v.

Embedding one bit into \mathbb{R}^2 vector (7,4) with

$$w_r = [0.6, 0.8].$$
 $m \quad p \quad q \quad \mathbf{v}_m \quad q \mathbf{w}_r$
 $0 \quad 7.4 \quad 8 \quad (7.36, 4.48) \quad (4.8,6.4)$

Be Careful of Rounding

\boxed{m}	p	\overline{q}	\mathbf{v}_m	$[\mathbf{v}_m]$	
0	7.4	8	(7.36, 4.48)	(7, 4)	

$$(7,4)$$
 with $w_r = [0.6, 0.8]$.

View rounding as noise.

$$(\mathbf{v}_m + \mathbf{n}) \cdot \mathbf{w_r}$$

• In high dimensional space ... 梯度多时形。

System 9: E_LATTICE/D_LATTICE

- \bullet N bits (b_1, \cdots, b_N) .
- $lackbox{ } N \text{ bases } \mathbf{w}_{\mathbf{r}1}, \cdots \mathbf{w}_{\mathbf{r}N}.$
 - Orthogonality by spatial division.

$\mathbf{w_{r}}_{(0,0)}$			

System 9: E_LATTICE/D_LATTICE

- ullet N bits (b_1, \cdots, b_N) .
- $lackbox{ } N$ bases $\mathbf{w}_{\mathbf{r}1}, \cdots \mathbf{w}_{\mathbf{r}N}$.
 - Orthogonality by spatial division.

	$\mathbf{w_{r}}_{(3,4)}$	

High Payload

Indeed

One block one bit.

High Payload

Indeed

- One block one bit.
- ullet Or, N images N bit.

High Payload

Indeed

- One block one bit.
- ullet Or, N images N bit.

But we can use other way for orthogonality.

- Gram-Schmidt process.

Performance

Presentation: 8.3.1

- Basic idea of DCT
 - Kinds of Fourier transformation
- Watsons DCT-Based Visual Mode