### Кинематика **ОВ-ассоциаций** в эпоху *Gaia*

#### А.М. Мельник и А.К. Дамбис

#### ГАИШ МГУ

Первый релиз данных со спутника *Gaia*, благодаря большой временной базе (24 года) между наблюдениями Hipparcos и *Gaia*, позволил получить высокоточные собственные движения для примерно 2.5 млн звезд, которые опубликованы в каталоге TGAS (TGAS= Tycho-Gaia Astrometric Solution, описание метода см. Michalik et al . 2015).

Мы использовали данные TGAS для изучения кинематики OB-ассоциаций, выделенных Блаха и Хамфрис (1989).

Всего ОВ-ассоциации включают 500 звезд с собственными движениями из каталога TGAS. (774 звезды в Hipparcos) Средняя ошибка их определения

в каталоге TGAS  $\epsilon_{\mu}$ =0.059 mas/yr,

в каталоге Hipparcos  $\epsilon_{\mu}$ =0.916 mas/yr,

(mas/yr = миллисекунд /год).

Собственные движения в каталоге TGAS определяются почти в 15 раз точнее, чем в каталоге Hipparcos.

# Дисперсия скоростей внутри ОВ-ассоциаций



Дисперсия собственных движений внутри ОВ-ассоциаций

$$\sigma_{\mu}$$
 (TGAS) = 0.4  $\sigma_{\mu}$  (Hipparcos)

Дисперсия скоростей внутри ОВ-ассоциаций имеет средние значение:

$$\sigma_{vl} = 4.3 \text{ km/c}$$

$$\sigma_{\rm vb}$$
 = 3.4 km/c

Для сравнения  $\sigma_{vr}$  = 9.7 км/с !!!

# Вириальная масса молекулярных облаков, из которых родились ОВ-ассоциаций

Предположим, что родительские гигантские молекулярные облака имеют сферическую форму, постоянную плотность, и находятся в вириальном равновесии (Larson, 1981; Solomon et al. 1987; Krumholz et al. 2006)

$$U = -\frac{3GM^2}{5a}$$
 а – радиус гигантского молекулярного облака,  $M$  – его масса

$$K = \frac{3M\sigma^2}{2}$$
  $\sigma$  – дисперсия скоростей в одном направлении

$$M_{vir} = \frac{5a\sigma^2}{G}$$
 а  $\rightarrow$  радиус OB-ассоциации,  $\sigma \rightarrow \frac{\sigma_{vl} + \sigma_{vb}}{2}$ 

#### Вириальная масса родительского молекулярного облака

$$\begin{split} \mathbf{M}_{\text{vir}} &= \ \frac{5a\sigma^2}{G} & \text{при } \rho = \text{const} \\ \mathbf{M}_{\text{vir}} &= \ \frac{9R_{\text{cl}}\sigma^2}{2G} & \text{при } \rho = \begin{cases} \rho_e \, (r/R_{\text{cl}})^{\text{-1}} & \text{при } r < R_{\text{cl}} \\ 0 & \text{при } r \geq R_{\text{cl}} \end{cases} \end{split}$$

Медианное значение вириальной массы молекулярных облаков, из которых появились наблюдаемые OB-ассоциации, равно 6.5 10<sup>5</sup> Ms.

Это согласуется с массами гигантских молекулярных облаков 10<sup>5</sup> – 10<sup>6</sup> Ms (Sanders, Scoville, Solomon 1985).

#### Масса звезд в ОВ-ассоциациях

Многокомпонентное степенное распределение числа звезд  $\Delta N(M)$  в диапазоне масс  $\Delta M$ , полученное Кроупа (2002):

$$\Delta N(M) = C_0 \begin{cases} C_1 M^{-0.3} & \text{при} & 0.01 < M/Ms < 0.08 \\ C_2 M^{-1.3} & \text{при} & 0.08 < M/Ms < 0.5 \\ C_3 M^{-2.3} & \text{при} & 0.5 < M/Ms < \infty \end{cases}$$

 $C_1 = 0.469$ ,  $C_2 = 0.038$ ,  $C_3 = 0.019$  определяются из условия непрерывности

Для определения массы звезд использовалась зависимость масса – абсолютная звездная величина, полученная на основе падуанских изохрон (Брессан 2012). Эта зависимость является монотонной в диапазоне -7.8 < Mv < +0.5<sup>m</sup>, включающем 99.3% звезд ОВ-ассоциаций. Возраст массивных звезд предполагался равным 4 млн лет.

Мы считаем, что каталог Блаха и Хамфрис (1989) включает все звезды с массой M > 20 Ms, т. е. он ~полон до  $M_v < -4.0^m$ .

$$N_{20} = C_0 C_3 (20^{-1.3} - 50^{-1.3})/1.3,$$

где  $N_{20}$  – число звезд OB-ассоциации с массой M > 20 Ms.

Медианное значение звездной массы OB-ассоциаций  $M_{\rm st}$  равно 8.7  $10^3$  Ms.

Если использовать только распределение Солпитера (1955) в диапазоне масс 0.08 – 50 Мs, то медианное значение звездной массы ОВ-ассоциаций получается равным 19 10<sup>3</sup> Мs.

# Эффективность звездообразования

Средняя эффективность звездообразования & в родительском молекулярном облаке равна отношению звездной массы к массе газа в облаке.

$$\varepsilon = \frac{M_{st}}{M_{vir}}$$

Значения Є для 18 рассмотренных ОВ-ассоциаций изменяются в пределах от 0.1% до 7%, медиана составляет 1.8%.

Это согласуется с другими оценками:

Myers et al. 1986  $\rightarrow$  2%

Evans et al.  $2009 \rightarrow 3-6\%$ 

Garcia et al. 2014 → 3%

#### Вириальная и звездная масса, эффективность звездообразования

| Name     | $\sigma_{vl}$ | $\sigma_{vb}$   | a   | $M_{vir}$          | $n_{\mu}$ | $M_{st}$           | $N_{20}$ | $\epsilon 100\%$ |  |
|----------|---------------|-----------------|-----|--------------------|-----------|--------------------|----------|------------------|--|
|          | $\rm km/s$    | $\mathrm{km/s}$ | pc  | $M_{\odot}$        |           | $M_{\odot}$        |          |                  |  |
| SGR OB1  | 1.3           | 4.6             | 42  | 4.3 105            | 13        | $9.2 \ 10^3$       | 22       | 2.1              |  |
| CYG OB3  | 2.9           | 1.6             | 49  | $2.9  10^{5}$      | 15        | $11.7 \ 10^{3}$    | 28       | 4.0              |  |
| CYG OB1  | 3.8           | 2.5             | 32  | $3.7 10^{5}$       | 12        | $15.8 \ 10^{3}$    | 38       | 4.3              |  |
| CYG OB8  | 3.7           | 13.9            | 42  | $37.5 \ 10^5$      | 10        | $7.1 \ 10^3$       | 17       | 0.2              |  |
| CYG OB7  | 11.4          | 2.1             | 53  | $28.0 \ 10^{5}$    | 16        | $3.3 \ 10^3$       | 8        | 0.1              |  |
| CEP OB2  | 3.2           | 4.2             | 45  | $7.2  10^{5}$      | 34        | $8.3 \ 10^{3}$     | 20       | 1.1              |  |
| CEP OB1  | 9.0           | 4.7             | 178 | $97.8  10^{5}$     | 20        | $16.7 \ 10^3$      | 40       | 0.2              |  |
| CEP OB3  | 1.3           | 1.3             | 12  | $0.2  10^{5}$      | 12        | $1.2 \ 10^{3}$     | 3        | 5.7              |  |
| PER OB1  | 5.0           | 3.1             | 59  | $5.7 \cdot 10^{5}$ | 58        | $35.8 \ 10^3$      | 86       | 6.3              |  |
| CAS OB6  | 2.4           | 3.9             | 78  | $9.1\ 10^{5}$      | 11        | $7.9 \ 10^{3}$     | 19       | 0.9              |  |
| CAM OB1  | 4.7           | 3.4             | 86  | 16.7 105           | 26        | $5.0\ 10^3$        | 12       | 0.3              |  |
| AUR OB1  | 2.6           | 1.5             | 69  | $3.3 \ 10^{5}$     | 12        | $3.7 \cdot 10^{3}$ | 9        | 1.1              |  |
| MON OB2  | 1.3           | 2.6             | 71  | $3.2  10^5$        | 10        | $5.8 \ 10^{3}$     | 14       | 1.8              |  |
| NGC 2439 | 7.2           | 3.0             | 155 | $46.6 \ 10^{5}$    | 10        | $7.9 \cdot 10^{3}$ | 19       | 0.2              |  |
| CAR OB1  | 7.0           | 2.3             | 63  | $12.8  10^{5}$     | 15        | $21.2 \ 10^3$      | 51       | 1.7              |  |
| CAR OB2  | 1.9           | 2.2             | 27  | $1.4  10^{5}$      | 10        | 9.6 103            | 23       | 7.0              |  |
| CRU OB1  | 3.1           | 2.0             | 40  | $3.1  10^5$        | 17        | $9.6 \ 10^{3}$     | 23       | 3.1              |  |
| CEN OB1  | 5.4           | 1.9             | 70  | $11.0 \ 10^{5}$    | 27        | $20.8 \ 10^{3}$    | 50       | 1.9              |  |

<sup>\*</sup> Values of  $M_{vir}$  and  $\epsilon$  are corrected for the expansion effect

#### Несвязанность ОВ-ассоциаций

 $M_{vir}$  превышает  $M_{st}$  OB-ассоциаций более, чем в 70 раз, что свидетельствует в пользу их несвязанности.

Однако ОВ-ассоциации могут содержать газ внутри своего объема.

$$M_t = M_{st} + M_g$$

Какова масса этого газа?

$$\mathbf{M}_{\mathrm{g}} = \frac{4\pi}{3} \, \mathbf{a}^3 \, \rho_{\mathrm{H}}$$

**ОВ-ассоциации вполне могут содержать ионизованный и нейтральный газ** 

# Dale, Ercolano & Bonnell (2012) N-body + simulated star formation, HII regions, photoionization

 $M=10^6$  Ms, r=180 pc, T=3 Myr  $M=10^4$  Ms, r=10 pc, T=2 Myr





Медианная оценка массы нейтрального газа внутри объема ОВ-ассоциаций:

$$M_{g} = 18 \ 10^{3} \ Ms,$$

что в ~2 раза превышает их звездную массу

$$M_{st} = 8.7 \ 10^3 \ Ms.$$

Но даже в этом случае вириальная масса  $M_{vir}$  OB-ассоциаций превышает их полную массу  $M_t = M_{st} + M_g$  в ~10 раз.

Таким образом, ОВ-ассоциации должны быть несвязанными объектами, при условии, что они не содержат много плотного газа в своем объеме.

# Приливные радиусы ОВ-ассоциаций

Зная массу OB-ассоциаций в настоящее время, мы можем оценить ее приливной радиус:

$$r_{td} = \left(\frac{GM}{4A\Omega}\right)^{1/3}$$

где  $A=-0.5R\Omega'(R)$  -- постоянная Оорта

Если M = M<sub>st</sub>, то:

$$r_{td} = 14 - 36 \, \pi \kappa$$

медиана  $r_{td}$  = 26 пк,

61% звезд ОВ-ассоциаций лежит внутри r<sub>td</sub>

Если  $M = M_t$ , то:

$$r_{td} \propto a, r_{td} < a,$$

медиана r<sub>td</sub> =40 пк, медиана а =56 пк

73% звезд ОВ-ассоциаций лежит внутри  $r_{td}$ 

#### Расширение ОВ-ассоциаций

Blaauw (1964) обнаружил расширение ОВ-ассоциаций по собственным движениям в системе FK4.

Ожидается во многих сценариях звездообразования.

Быстрая потеря газа гигантским молекулярным облаком, вызванная давлением горячего газа в HII областях, может сделать молодую звездную группировку несвязанной.

Если >50% массы уходят из системы за 1 "crossing time", то звездная система становится несвязанной (Hills 1980).

Более аккуратный учет релаксационных процессов и близких взаимодействий показывает, что система формирует расширяющуюся ОВ-ассоциацию и связанное скопление в ее центре (Kroupa и др. 2001; Boily & Kroupa 2003ab; Baumgardt & Kroupa 2007).

#### Закон расширения/сжатия:

$$V_{l} - V_{l0} = pl \cdot \Delta x$$
  $p > 0 - расшир$   $V_{b} - V_{b0} = pb \cdot \Delta y$   $p < 0 - сжатие$ 

$$V_b - V_{b0} = pb \cdot \Delta y$$

 $\Delta x = r \cdot \sin(I - I_0) / \cos b - расстояние в направлении долготы I$ 

$$\Delta y = r \cdot \sin(b-b_0)$$
 — расстояние в направлении широты b

от центра ОВ-ассоциации

Характерные скорости расширения / сжатия:

$$u_1 = pl \cdot a$$

$$u_b = pb \cdot a$$

Рассматриваем только звезды с собственными движениями из каталога TGAS

#### Параметры расширения/сжатия ОВ-ассоциаций

| Name     | $p_l$          | $p_b$          | a   | ut              | $u_b$           | $n_{\mu}$ |
|----------|----------------|----------------|-----|-----------------|-----------------|-----------|
|          | $\rm km/s/kpc$ | $\rm km/s/kpc$ | pc  | $\mathrm{km/s}$ | $\mathrm{km/s}$ |           |
| Sgr OB1  | $70 \pm 38$    | $238 \pm 26$   | 42  | $2.9 \pm 1.6$   | $10.0\pm1.1$    | 13        |
| Cyg OB3  | $139 \pm 138$  | $159 \pm 116$  | 49  | $6.9 \pm 6.8$   | $7.9 \pm 5.8$   | 15        |
| Cyg OB1  | $-57 \pm 102$  | $112\pm131$    | 32  | $-1.8 \pm 3.3$  | $3.6 \pm 4.2$   | 12        |
| Cyg OB8  | $-45\pm55$     | $186 \pm 152$  | 42  | $-1.9 \pm 2.3$  | $7.7 \pm 6.3$   | 10        |
| Cyg OB7  | $-39 \pm 85$   | $63 \pm 26$    | 53  | $-2.1 \pm 4.5$  | $3.4 \pm 1.4$   | 16        |
| Cep OB2  | $77 \pm 25$    | $11 \pm 26$    | 45  | $3.5 \pm 1.1$   | $0.5 \pm 1.2$   | 34        |
| Cep OB1  | $56 \pm 19$    | $1 \pm 39$     | 178 | $9.9 \pm 3.4$   | $0.1 \pm 6.9$   | 20        |
| Cep OB3  | $-39 \pm 48$   | $71 \pm 67$    | 12  | $-0.5 \pm 0.6$  | $0.8 \pm 0.8$   | 12        |
| Per OB1  | $45 \pm 15$    | $103 \pm 22$   | 59  | $2.7 \pm 0.9$   | $6.1 \pm 1.3$   | 58        |
| Cas OB6  | $9 \pm 47$     | $227 \pm 80$   | 78  | $0.7 \pm 3.7$   | $17.8 \pm 6.3$  | 11        |
| Cam OB1  | $34 \pm 20$    | $3 \pm 28$     | 86  | $2.9 \pm 1.8$   | $0.3 \pm 2.4$   | 26        |
| Aur OB1  | $-36 \pm 27$   | $19 \pm 10$    | 69  | $-2.5 \pm 1.9$  | $1.3 \pm 0.7$   | 12        |
| Mon OB2  | $-278 \pm 77$  | $232 \pm 203$  | 71  | $-19.7 \pm 5.4$ | $16.5\pm14.4$   | 10        |
| NGC 2439 | $64 \pm 42$    | $-106 \pm 21$  | 155 | $10.0 \pm 6.6$  | $-16.4\pm3.2$   | 10        |
| Car OB1  | $118\pm43$     | $111 \pm 28$   | 63  | $7.5 \pm 2.7$   | $7.0 \pm 1.8$   | 15        |
| Car OB2  | $-100 \pm 136$ | $42 \pm 64$    | 27  | $-2.7 \pm 3.7$  | $1.2 \pm 1.7$   | 10        |
| Cru OB1  | $-29 \pm 47$   | $29 \pm 23$    | 40  | $-1.2 \pm 1.9$  | $1.2 \pm 0.9$   | 17        |
| Cen OB1  | $-87 \pm 33$   | $35 \pm 18$    | 70  | $-6.1 \pm 2.3$  | $2.4 \pm 1.3$   | 27        |



Распределение относительных скоростей  $V_1 - V_{10}$  и  $V_b - V_{b0}$  в ассоциации Per OB1, 58 звезд из TGAS оо -- двойное скопление h и  $\chi$  Персея.

Максимальное расширение по оси Y' перпенди-кулярной плоскости h и χ Персея.

-- красные сверхгиганты

 $u_1 = 2.7 \pm 0.9 \text{ km/c}, u_b = 6.1 \pm 1.3 \text{ km/c}.$ 



Распределение относительных скоростей в ассоциации Car OB1, 15 звезд из TGAS.

Расширение по осям X и Y.

 $u_1 = 7.5 \pm 2.7 \text{ km/c}$ 

 $u_b = 7.0 \pm 1.8 \text{ km/c}.$ 



Распределение относительных скоростей в ассоциации Сер ОВ2, 34 звезд из TGAS.

Расширение по оси X в направлении Галактических долгот L.

 $u_1 = 3.5 \pm 1.1 \text{ km/c}$ 



Распределение относительных скоростей в ассоциации Sgr OB1, 13 звезд из TGAS.

Расширение по оси Y в направлении галактических широт b.

 $u_b = 10.0 \pm 1.1 \text{ km/c}$ 



Распределение относительных скоростей в ассоциации Cep OB1, 20 звезд из TGAS.

Расширение по оси X в направлении галактических долгот L,  $u_1 = 9.9 \pm 3.4 \text{ км/c}$ 

### Кинематическое время

#### Первый способ:

$$S_1 = t \cdot V_1$$

$$S_2 = t \cdot V_2$$

$$S_3 = t \cdot V_3$$

. . . . . .



$$\Delta S = 1/p \cdot V_{rel}$$

$$T = 1/p$$

#### Второй способ:

(Brown, Dekker & de Zeeuv 1997)

Зная скорости звезды в настоящий момент, мы вычисляем координаты звезды в прошлом и ищем время, когда размеры ассоциации были минимальны.

#### Определение кинематического времени вторым



#### Минимальны размер ОВ-ассоциаций

|         | sl     | sb    |
|---------|--------|-------|
| Per OB1 | 26 пк  | 27 пк |
| Cep OB2 | 23 пк  |       |
| Car OB1 | 36 пк  | 11 пк |
| Sgr OB1 |        | 6 пк  |
| Cep OB1 | 100 пк |       |

Среднее 25±5 пс

6 пк -- очень мало,

100 пк -- очень много для

гигантского молекулярного облака

# Кинематические возраста, определенные двумя способами

| Name    | $T_l$ Myr             | $T_{ m b}$<br>Myr   | $T_l^*$ Myr          | $T_b^*$<br>Myr      |
|---------|-----------------------|---------------------|----------------------|---------------------|
| PER OB1 | $21.7^{+10.9}_{-5.4}$ | $9.5_{-1.7}^{+2.5}$ | $13.2^{+1.8}_{-3.9}$ | $8.9^{+7.6}_{-3.4}$ |
| CEP OB2 | $12.5_{-3.1}^{+6.3}$  | ====                | $9.2^{+1.1}_{-0.3}$  | :=:                 |
| CAR OBI | $8.3_{-2.2}^{+4.7}$   | $8.8_{-2.2}^{+4.7}$ | < 10                 | $7.4^{+1.1}_{-5.1}$ |
| SGR OB1 |                       | $4.1_{-0.4}^{+0.5}$ | ***                  | $3.3^{+2.7}_{-3.3}$ |
| CEP OB1 | $17.5^{+8.9}$         | : <del>-</del> :    | < 23                 | Anie As             |

Среднее значение кинематического возраста для Per OB1, Cep OB2 и Car OB1 равно 10±5 млн лет.

#### Выводы:

Среднее значение дисперсии скоростей звезд внутри 18 ОВ-ассоциаций, включающих не менее 10 звезд с собств. движ. из каталога TGAS, составляет 3.9 км/с.

Медианные значение вириальной и звездной масс OB-ассоциаций оказались равными  $M_{vir} = 6.5 \ 10^5 \ и \ M_{st} = 8.7 \ 10^3 \ Ms.$  OB-ассоциации должны быть несвязанными объектами.

Медианное значение эффективности звездообразования в ОВ-ассоциациях равно 1.8%.

Обнаружено расширение ассоциаций Per OB1, Cep OB2 и Car OB1, которое началось в малой области 25±5 пк 10±5 млн лет назад. Средняя скорость расширения равна 5.4 км/с.

Медианное значение минимального приливного радиуса ОВ-ассоциаций составляет 26 пк.

# Спасибо за внимание!

| Name     | ı      | b     | r    | R    | $\sigma_{vl}$ | $\sigma_{vb}$ | a          | $r_{td}$ | $M_{vir}$          | $n_{\mu}$ | $M_{st}$        | $N_{20}$ | $M_g$               | $\epsilon$ 100% |             |  |
|----------|--------|-------|------|------|---------------|---------------|------------|----------|--------------------|-----------|-----------------|----------|---------------------|-----------------|-------------|--|
| de       |        | deg.  | deg. | deg. | kpc           | kpc           | $\rm km/s$ | km/s     | $_{\rm pc}$        | pc        | $M_{\odot}$     |          | $M_{\odot}$         |                 | $M_{\odot}$ |  |
| SGR OB1  | 7.55   | -0.77 | 1.26 | 6.25 | 1.3           | 4.6           | 42         | 24       | $4.3 \ 10^{5}$     | 13        | 9.2 103         | 22       | 7.6 10 <sup>3</sup> | 2.1             |             |  |
| CYG OB3  | 71.47  | 2.01  | 1.83 | 7.13 | 2.9           | 1.6           | 49         | 28       | $2.9 \ 10^{5}$     | 15        | $11.7 \ 10^3$   | 28       | $12.4 \ 10^3$       | 4.0             |             |  |
| CYG OB1  | 75.84  | 1.12  | 1.46 | 7.28 | 3.8           | 2.5           | 32         | 31       | $3.7  10^{5}$      | 12        | $15.8 \ 10^3$   | 38       | $3.5 \ 10^3$        | 4.3             |             |  |
| CYG OB8  | 77.91  | 3.36  | 1.83 | 7.34 | 3.7           | 13.9          | 42         | 24       | $37.5 \ 10^{5}$    | 10        | $7.1 \ 10^3$    | 17       | $7.4  10^3$         | 0.2             |             |  |
| CYG OB7  | 88.99  | 0.03  | 0.63 | 7.52 | 11.4          | 2.1           | 53         | 19       | $28.0 \ 10^{5}$    | 16        | $3.3 \ 10^3$    | 8        | $15.6 \ 10^3$       | 0.1             |             |  |
| CEP OB2  | 101.59 | 4.64  | 0.73 | 7.68 | 3.2           | 4.2           | 45         | 26       | $7.2 \ 10^{5}$     | 34        | $8.3 \ 10^3$    | 20       | $9.4 \ 10^{3}$      | 1.1             |             |  |
| CEP OB1  | 104.14 | -0.97 | 2.78 | 8.61 | 9.0           | 4.7           | 178        | 36       | $97.8 \ 10^{5}$    | 20        | $16.7 \ 10^3$   | 40       | $576.4 \ 10^3$      | 0.2             |             |  |
| CEP OB3  | 110.73 | 3.01  | 0.70 | 7.77 | 1.3           | 1.3           | 12         | 14       | $0.2  10^{5}$      | 12        | $1.2\ 10^3$     | 3        | $0.2 \ 10^3$        | 5.7             |             |  |
| PER OB1  | 134.67 | -3.15 | 1.83 | 8.88 | 5.0           | 3.1           | 59         | 48       | $5.7 \cdot 10^{5}$ | 58        | $35.8 \ 10^3$   | 86       | $20.9 \ 10^{3}$     | 6.3*            |             |  |
| CAS OB6  | 135.02 | 0.75  | 1.75 | 8.83 | 2.4           | 3.9           | 78         | 29       | $9.1  10^5$        | 11        | $7.9 \ 10^3$    | 19       | $49.4 \ 10^3$       | 0.9             |             |  |
| CAM OB1  | 141.08 | 0.89  | 0.80 | 8.14 | 4.7           | 3.4           | 86         | 23       | 16.7 105           | 26        | $5.0\ 10^3$     | 12       | $66.0\ 10^3$        | 0.3             |             |  |
| AUR OB1  | 173.83 | 0.14  | 1.06 | 8.55 | 2.6           | 1.5           | 69         | 22       | $3.3 \ 10^{5}$     | 12        | $3.7 \ 10^3$    | 9        | $33.9 \ 10^3$       | 1.1             |             |  |
| MON OB2  | 207.46 | -1.65 | 1.21 | 8.59 | 1.3           | 2.6           | 71         | 25       | $3.2  10^{5}$      | 10        | $5.8 \ 10^{3}$  | 14       | 36.6 103            | 1.8             |             |  |
| NGC 2439 | 245.27 | -4.08 | 3.50 | 9.50 | 7.2           | 3.0           | 155        | 31       | $46.6 \ 10^{5}$    | 10        | $7.9 \ 10^3$    | 19       | $384.7 \ 10^3$      | 0.2             |             |  |
| CAR OB1  | 286.45 | -0.46 | 2.01 | 7.19 | 7.0           | 2.3           | 63         | 34       | $12.8 \ 10^{5}$    | 15        | $21.2 \ 10^3$   | 51       | $26.2 \ 10^3$       | 1.7*            |             |  |
| CAR OB2  | 290.39 | 0.12  | 1.75 | 7.08 | 1.9           | 2.2           | 27         | 26       | 1.4 105            | 10        | $9.6 \ 10^{3}$  | 23       | $2.1\ 10^3$         | 7.0             |             |  |
| CRU OB1  | 294.87 | -1.06 | 2.01 | 6.90 | 3.1           | 2.0           | 40         | 25       | $3.1 \ 10^{5}$     | 17        | $9.6 \ 10^3$    | 23       | $6.8 \ 10^{3}$      | 3.1             |             |  |
| CEN OB1  | 304.06 | 1.44  | 1.92 | 6.62 | 5.4           | 1.9           | 70         | 32       | $11.0 \ 10^{5}$    | 27        | $20.8 \ 10^{3}$ | 50       | $34.9 \ 10^3$       | 1.9             |             |  |

<sup>\*</sup> Values of  $M_{vir}$  and  $\epsilon$  for Per OB1 and Car OB1 are corrected for the expansion effect (Section 4.3)





















# Сравнение медианных значений собственных движений OB-ассоциаций $\mu_{l}$ и $\mu_{b}$ , вычисленных с TGAS и Hipparcos каталогами.



Среднее значение разности  $|\mu_{TGAS} - \mu_{Hipparcos}| = 0.67$  mas/yr, что сравнимо с ошибками в каталоге Hipparcos  $\epsilon_{\mu}$ =0.916 mas/yr. На расстояни 1.5 кпс  $\rightarrow$  4.7 км/с.



| Sample |                                                          | $\Omega_{	extsf{0}}$ | $\Omega'_0$           | $\Omega^{\prime\prime}{}_{0}$ | u <sub>0</sub> | V <sub>0</sub> | $\sigma_0$ | N <sub>eq</sub> |
|--------|----------------------------------------------------------|----------------------|-----------------------|-------------------------------|----------------|----------------|------------|-----------------|
|        |                                                          | км/с/кпк             | км/с/кпк <sup>2</sup> | км/с/кпк <sup>3</sup>         | км/с           | км/с           | км/с       |                 |
| 1      | nvr ≥ 2<br>nμ ≥ 2                                        |                      | -4.71<br>±0.18        | 1.13<br>±0.22                 | 7.5<br>±1.0    | 10.9<br>±0.4   | 7.69       | 126             |
| 2      | $\begin{array}{c} nvr \geq 5 \\ n\mu \geq 5 \end{array}$ | 31.1<br>±1.1         | -4.63<br>±0.23        | 1.19<br>±0.32                 | 7.5<br>±1.3    | 12.9<br>±1.9   | 8.08       | <b>82</b> 33    |

# Остаточные скорости ОВ-ассоциаций ( $V_{res} = V_{obs} - V_{rot} - V_{ap}$ )



| Vres     | VR                         | VT                      |
|----------|----------------------------|-------------------------|
| Персей   | <b>-5.9</b><br>-6.7        | -4.7 <b>G</b><br>-5.9 H |
| Мест. С. | <b>+5.2 +5.3</b>           | -0.1 G<br>+0.6 H        |
| Лебедь   | <b>-5.8</b><br><b>-5.0</b> | -11.7 G<br>-10.4 H      |
| Киль     | <b>-6.0</b><br>-5.8        | +5.1 G<br>+4.7 H        |
| Стрелец  | <b>+9.8 +9.9</b>           | -1.2 G<br>-1.0 H        |

Остаточные скорости ОВ-ассоциаций в звездно-газовых комплексах, вычисленные по собственным движениям из каталогов TGAS и Hipparcos, отличаются в среднем на 0.7 км/с.

# Движения ОВ-ассоциаций по Z-координате

$$V_z = 4.74 \mu_b \cos(b) r + V_r \sin(b) + w_0$$

Для 53 ОВ-ассоциаций с известными собственными движениями и лучевыми скоростями значение скорости Солнца по z-координате  $w_0$  и дисперсия  $\sigma_{vz}$  имеют значения:

$$w_0 = 7.7 \pm 0.43 \text{ km/c}$$
  $\sigma_{vz} = 3.8 \text{ km/c}$  TGAS

После исключения трех ОВ-ассоциаций:

ARA OB1B (2.8 кпк) 
$$Vz = -9$$
 км/c R 103 (3.2 кпк)  $Vz = -15$  км/c Cyg OB8 (2.3 кпк)  $Vz = +11$  км/c

$$W_0 = 7.5 \pm 0.4 \text{ km/c}$$
  $\sigma_{vz} = 2.6 \text{ km/c}$ 

Всего ОВ-ассоциации включают 500 звезд с собственными движениями из каталога TGAS. (774 звезды в Hipparcos) Средняя ошибка их определения

в каталоге TGAS  $\epsilon_{\mu}$ =0.059 mas/yr,

в каталоге Hipparcos  $\epsilon_{\mu}$ =0.916 mas/yr,

(mas/yr = миллисекунд /год).

Собственные движения в каталоге TGAS определяются почти в 15 раз точнее, чем в каталоге Hipparcos.

Мы вычислили медианные значения собственных движений звезд для 56 ОВ-ассоциаций, включающих, как минимум, 2 звезды из каталога TGAS.

