V. Storme May 2019

**VARIA** 

| Outcome                                          | Are the observations independent or correlated?                           |                                                                  | Alternatives (assumptions                                                                                |  |
|--------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Variable                                         | independent                                                               | correlated                                                       | violated)                                                                                                |  |
| Continuous (e.g. pain scale, cognitive function) | Ttest ANOVA Linear correlation Linear regression                          | Paired ttest  Repeated-measures ANOVA  Mixed models/GEE modeling | Wilcoxon sign-rank test Wilcoxon rank-sum test Kruskal-Wallis test Spearman rank correlation coefficient |  |
| Binary or categorical (e.g. fracture yes/no)     | Risk difference/Relative risk<br>Chi-square test<br>Logistic regression   | McNemar's test Conditional logistic regression GEE modeling      | Fisher's exact test McNemar's exact test                                                                 |  |
| Count data                                       | Poisson regression<br>Negative binomial regressio                         | GEE modeling                                                     |                                                                                                          |  |
| Time-to-event (e.g. time to fracture)            | Rate ratio Kaplan-Meier statistics (Parametric regression) Cox regression | Frailty model .                                                  | Time-varying effects if PH assumption violated                                                           |  |

## Modelling counts the Poisson distribution

 Famous example by von Bortkiewicz (1898): observe the number of soldiers in the Prussian army who got kicked by horses over a number of years and corps

| # kicks (=k) | # soldiers | fraction | Expected fraction |
|--------------|------------|----------|-------------------|
| 0            | 109        | 0.545    | 0.543             |
| 1            | 65         | 0.325    | 0.331             |
| 2            | 22         | 0.110    | 0.101             |
| 3            | 3          | 0.015    | 0.021             |
| 4            | 1          | 0.005    | 0.003             |

Average nr of horsekicks per soldier:

$$\bar{X} = \frac{0*109+1*65+2*22+3*3+4*1}{200} = 0.61$$

The probability that the nr of kicks=k

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \hat{\lambda} = \bar{X}$$

#### Generalized linear models (GLM)

- A glm consists of 3 parts
  - A distribution, specifying the conditional distribution of the the response Y given the predictor variables

$$\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

A linear predictor

$$g(E[Y|X]) = \eta$$

• A *link function* g, linking the conditional expected value of Y to  $\eta$ 

## Poisson regression: link function

- Distribution: Poisson
- Link function: log
  - The link function transforms the mean, not the observed values

$$log(E[Y|X]) \neq E[log(Y|X)]$$

 Transforming the observed values changes the association between mean and variance



#### offset

- Incorporate normalization factor as offset
  - Eg in lateral root data: count nr of lateral roots and normalize by root length

$$log(E[Y|X]) = \beta_0 + \beta_1 X_1 + log(rootlength)$$

The counts are not explicitly scaled

$$log(E[\frac{Y}{rootlength}|X]) = \beta_0 + \beta_1 x_1$$

# Longitudinal analysis

- Measurements on the same subject ifo time
- Measurements done on the same subjects are correlated

## Logistic regression

- Binary response
- The residuals are non-normal and heteroscedastic
- Predictions can take values >1 of <0</li>
- Logit model  $\ln[p/(1-p)] = \beta_0 + \beta_1 X + \varepsilon$  solves this problem
- p the probability of Y=1 P(Y=1|X)
- p/(1-p)=odds ratio
- ln[p/(1-p)]=ln(odds ratio)="logit"

# Survival analysis

- Binary response
- Analyses time to event
- Censored data
- examples:
  - Time till death
  - Time till recidivism
  - Time until 70% of the machines break down
- The survival function is the probability to survive beyond
   S(t)
- Univariate
  - Kaplan-Meier curve
- Multivariate
  - Cox proportional hazards

# Looking for courses or consulting

- @UGent
  - Faculty of Medicine:
     <a href="https://www.ugent.be/ge/en/services/biostatistics-unit">https://www.ugent.be/ge/en/services/biostatistics-unit</a>
  - Faculty of Veterinary Medicine: contact <u>Luc Duchateau</u>
  - Department of Plant Biotechnology and Bioinformatics, contact: <u>Veronique Storme</u>
  - Faculty of Psychology and Educational Sciences <u>Statistics support</u>
  - Other faculties: FIRE
- https://lstat.kuleuven.be/consulting
- <a href="https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/statua/who-we-are/">https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/statua/who-we-are/</a>
- https://www.flames-statistics.com/! Flames Summer School
   @UGent
- https://www.ugent.be/we/en/services/ICES

#### Useful R links

- https://onlinecourses.science.psu.edu/stat464/
- http://www.r-tutor.com/
- http://www.cookbook-r.com/
- https://www.datacamp.com/
- http://www.statmethods.net/index.html
- http://www.rdocumentation.org/
- https://www.zoology.ubc.ca/~schluter/R/
- http://www.sr.bham.ac.uk/~ajrs/R/index.html
- http://www.r-bloggers.com/
- http://r4stats.com/
- http://www.ats.ucla.edu/stat/r/
- http://manuals.bioinformatics.ucr.edu/home