Cluster Expansion

Solvers

Results

Conclusion and

Cluster Expansion of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 19, 2021

Problem Statement
Tensor Networks
Overview Thesis

. .

Results

Conclusion and

Introduction

Introductior

Problem Statement
Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Conclusion

Overview condensed matter physics

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials [1]
 - Superconductors
 - Quantum spin liquids
 - Strange metals
 - Quantum Criticality
 - Correlated topological matter

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials
- How to proceed
 - Material synthesis and discovery
 - Numerical methods
 - Analytical methods

Simulating Quantum Many-body Systems

Introduction

Problem Statement
Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Conclusion and

- Equations are known
- Curse of dimensionality
- Tensor networks

Tensor Networks: Introduction

oductio

Problem Statement

Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Conclusion an

$$|\Psi\rangle = \sum_{i_1 i_2 \cdots i_n} C^{i_1 i_2 \cdots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle. \tag{1}$$

$$C^{i_1i_2\cdots i_n}=Tr(C^{i_1}C^{i_2}\cdots C^{i_n}M).$$
 (2)

Tensor Networks: Graphical Notation

Introductior

Problem Statement
Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

conventional	Einstein	tensor notation
\vec{x}	x_{α}	<u>x</u> —
М	$M_{lphaeta}$	<u> </u>
$\vec{x} \cdot \vec{y}$	$x_{\alpha}y_{\alpha}$	<u>x</u> — <u>y</u>

Tensor Networks: MPS

Introduction

Problem Statement

Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Tensor Networks: Operators

Introduction

Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Conclusion and

$$\hat{O} = \cdots \longrightarrow \cdots$$
 (5)

(6)

Operator exponential

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- (Real) Time evolution: $\hat{O} = e^{-i\hat{H}t}$
- Statistical ensembles: $\hat{O} = e^{-\beta \hat{H}}$

Cluster Expansion

Solvers

Results

Conclusion and

Cluster Expansion

Introduction

Cluster Expansion

Solvers

Results

Conclusion and

Introduction

Cluster Expansion

Solvers

Results

Conclusion and

- \bullet $e^{-\beta \hat{H}} = \sum_{\{B_i\}} \bigotimes_i B_i$
- Finite number of blocks
- Encoded by 1 tensor

$$O^{abcd} = \begin{array}{c} \begin{array}{c} b \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\$$

$$\mathcal{O}^{0010} = \bigcirc \boxed{1} \qquad (8)$$

Introduction

Cluster Expansion

Solvers

Results

Introduction

Cluster Expansion

Solvers

Results

- Multiple choices for encoding
- Doesn't break symmetry
- Thermodynamic limit
- Tensor Network toolbox

Cluster Expansion

Solvers

Linear Solver

quential Linear Sol

sults

Conclusion an Outlook

Solvers

Linear solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Monlinear Solver

Sequential Linear Solver

Results

Conclusion and

- Invert leg per leg
- Pseuodinverse

Linear Solver: Applicability

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Conclusion and

Nonlinear Solver

Introduction

Cluster Expansion

Solvers

Linear Solve

Nonlinear Solver

Sequential Linear Solver

Results

Conclusion and

- Nonlinear least squares
- Jacobian
- Permutations

(10)

Sequential Linear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Based on linear solver
- Sweep over unknown tensors
- Permutations

Cluster Expansion

Solvers

00.....

Results

1D exact

ZD CXGCC

Conclusion ar

Results

1D: Cluster expansions

Introduction

Cluster Expansion

Solvers

Results

1D exact

2D exact

2D Transverse Ising model

Re	lative	error	ϵ

- Different encodings blocks
 - A: small bond dimension
 - E: no spurious blocks
 - F: well conditioned

		χ	
		Encoding	
		Α	E/F
	3	5	10
)rder	5	21	42
0	7	85	170

1D: Transverse Field Ising

Introduction

Cluster Expansion

Solvers

Result

1D exact

2D exact

2D Transverse Ising

1D: Heisenberg XXX

1D exact

2D: Cluster expansions

- Introduction
- Cluster Expansion
- Solvers

Pocult

1D avaa

2D exact

2D Transverse Ising

- Relative error ϵ
- Encodings based on A (order 5)

	χ
no loops	21
loops	27
extensions	43

2D: TFI

Introduction

Cluster Expansion

Solvers

10

2D exact

2D Transverse Ising

TFI: Phase Diagram

Introduction

Cluster Expansior

Solvers

Resul

1D evac

2D Transverse Ising model

Conclusion and

Figure taken from [2] $\mathbb{R} \times \mathbb{R} \times$

2D: Classical Ising

Introduction

Cluster Expansion

Solvers

...

ID CAUC

model

2D Transverse Ising

Conclusion and

2D: TFI $\Gamma = 2.5$

2D Transverse Ising model

Cluster Expansion

Solvers

Results

Conclusion and Outlook

Conclusion

Introductior

Cluster Expansion

Solvers

Results

- Construction fast and stable
- Cluster expansions work well in 1D and 2D
- Real time evolution

Outlook

roductior

Ciustei Expansio

Solvers

Results

- 3D?
- Internal symmetries

References I

Introduction

Cluster Expansion

Solvers

Results

Conclusion and Outlook

A. Alexandradinata, N. P. Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov, E. H. d. S. Neto, L. Delacretaz, I. E. Baggari, G. M. Ferguson, W. J. Gannon, S. A. A. Ghorashi, B. H. Goodge, O. Goulko, G. Grissonnanche, A. Hallas, I. M. Haves, Y. He, E. W. Huang, A. Kogar, D. Kumah, J. Y. Lee, A. Legros, F. Mahmood, Y. Maximenko, N. Pellatz, H. Polshyn, T. Sarkar, A. Scheie, K. L. Sevler. Z. Shi, B. Skinner, L. Steinke, K. Thirunavukkuarasu, T. V. Trevisan, M. Vogl, P. A. Volkov, Y. Wang, Y. Wang, D. Wei, K. Wei, S. Yang, X. Zhang, Y.-H. Zhang, L. Zhao, A. Zong, The Future of the Correlated Electron Problem (oct 2020). arXiv:2010.00584. URL http://arxiv.org/abs/2010.00584

References II

Introduction

Cluster Expansion

Solvers

 $\mathsf{Results}$

Conclusion and Outlook

S. Hesselmann, S. Wessel, Thermal Ising transitions in the vicinity of two-dimensional quantum critical points, PHYSICAL REVIEW B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

P. Czarnik, P. Corboz, Finite correlation length scaling with infinite projected entangled pair states at finite temperature, Physical Review B 99 (2019) 245107.

doi:10.1103/PhysRevB.99.245107.

Linear Solver Construction

Linear Solver

Linear Solver

Linear Solver

- Fast
- Numerically unstable

Linear Solver

- Fast
- Numerically unstable

Linear Solver

- Slow
- Stable for pseudoinverse

Linear Solver

Sparse full inversion

$$A^i = U^i \Sigma^i V^{i\dagger}$$

Linear Solve

 ${\sf Construction}$

10

2D

Notation

Linear Solve

Construction

10

$$O^{00} = \begin{array}{c} \stackrel{i}{\longrightarrow} 0 \\ \stackrel{j}{\longrightarrow} \end{array} = \begin{array}{c} \stackrel{i}{\longrightarrow} 0 \\ \stackrel{i}{\longrightarrow} \end{array}$$

(13)

Construction

$$\bigcirc = \exp(-\beta H(\bigcirc))$$

(16)

(15)

Linear Solve

Construction

10

Linear Solve

Construction

10

Linear Solve

Construction

10

(17)

1D: Variant A

Linear Solve

Construction

2D

 $\begin{array}{c}
(18a) \\
1 \\
1
\end{array}$

(18c)

(18d)

(18e)

1D: Variant E

Linoar Salva

Construction

1**D** 2D $\begin{array}{c} (19a) \\ 1 \\ (19b) \end{array}$

(19b) (19c)

(19d)

 \bigcirc

1' _

(19e)

1D: Variant F

Linear Solve

Construction 1D

$$\begin{array}{cccc}
 & (20a) \\
 & 1' & + & 1 \\
 & (20b)
\end{array}$$

$$\bigcirc \ \ \, \frac{1}{\bigcirc} \bigcirc \ \ \, \frac{2}{\bigcirc} \bigcirc \ \ \, \frac{1}{\bigcirc} \bigcirc \ +$$

$$\bigcirc \quad 1 \quad \bigcirc \quad 2' \quad \bigcirc \quad 1 \quad \bigcirc$$

4□ ▷ ◆□ ▷ ◆ ≧ ▷ ◆ 를 ▷ ◆ 역

(20c)

(20d)

(20e)

$$D^{0000} = \frac{0}{j_0} | i_0 = 0$$
 (21)

2D: Linear Blocks

(22a)

(22b)

(22c)

2D: Nonlinear Blocks

Linear Solve

Construction

1D

$$\begin{array}{c|c}
 & \alpha \\
 & \beta^{\alpha}
\end{array}$$