2ª Lista de Exercícios de Pesquisa e Ordenação Prof. Glauber Cintra - Entrega: 07/dez/2015

Alunos: Levi Moreira de Albuquerque

Marcus Reuber

Matheus Vasconcelos - Utilizamos a matrícula e os dados deste aluno

	d ₁
Número de matrícula	
Mulliero de matriodia	13

d ₂	d_3	d ₄	d_5	d ₆
2	0	2	2	1
	d ₂	d ₂ d ₃ 2 0	d ₂ d ₃ d ₄ 2 0 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ano de nascimento

a ₁	a ₂	a_3	a4
1	9	9	0

			61.71	-Cd 17d	V6d-+7d-	v ₇ =6a ₁ +7d ₆	v ₈ =6a ₂ +7a ₁	v ₉ =6a ₃ +7a ₂	v ₁₀ =6a ₄ +7a ₃
v1=6d1+7a4	$v_2 = 6d_2 + 7d_1$	$v_3 = 6d_3 + 7d_2$	V4=604+/03		V6-0061105	12	61	117	63
00	12	14	12	26	20	13	01		Assessed 1

1) Escreva uma versão não recursiva do algoritmo de busca binária.

Algoritmo BB_Iterativa

Entrada: um vetor L em ordem crescente, um valor x e as posições inicio e fim

Saída: Sim, se x existe no vetor Não, caso contrário

se inicio> fim devolva não e pare enquanto inicio<=fim //divisão inteira meio = (inicio+fim)/2se x = L[meio]devolva sim e pare se x < L[meio] fim = meio - 1senão inicio = meio + 1 devolva não e pare

2) Insira as chaves v₁, v₂, ..., v₁₀, nessa ordem, numa árvore AVL. Em seguida, remova v₁, v₂, e v₃, nessa ordem, da árvore. Desenhe como ficou a árvore, incluindo o bal de cada nó.

Após inserções

A chave v4 não foi inserida, pois já existia na árvore. Após Remoções

3) Escreva uma função que receba um ponteiro para a raiz de uma árvore AVL e devolva a altura da árvore.

Podemos utilizar dois métodos para resolver este problema.

Por ser uma árvore binária de busca, a árvore AVL pode utilizar o mesmo procedimento que se usaria para calcular a altura de uma árvore de busca binária qualquer. Uma modificação foi necessária, visto que o algoritmo originalmente considera uma árvore que só contém a raiz da árvore com altura 0. Na árvore AVL a altura de uma árvore que só tem a raiz é 1.

Algoritmo alturaAVL

Entrada: r, um ponteiro para a raiz da árvore AVL

Saída: 0 se a árvore estiver vazia ou a altura da árvore caso contrário.

```
se r = nulo
      devolva 0
senão
1
      he = alturaAVL(r.esq)
      hd = alturaAVL(r.dir)
       se he<hd
            [devolva hd+1]
      senão
            [devolva he+1]
1
```

4) Mostre como ficaria uma árvore trie de ordem 2 após a inserção da representação binária (com 7 bits) das chaves v₁, v₂, ..., v₁₀. Em seguida, remova a representação binária de v₂, v₃ e v₄ e mostre como ficaria a árvore.

Após inserções

5) Mostre como ficaria uma árvore patricia de ordem 2 após a inserção da representação binária (com 7 bits) das v₁, v₂, ..., v₁₀. Em seguida, remova a representação binária de v₃, v₄ e v₅ e mostre como ficaria a árvore.

Após as inserções

Após as remoções

6) Escreva um algoritmo que receba um ponteiro para a raiz de uma árvore patricia de ordem 2 (baseada no alfabeto binário) e um valor x e devolva Sim se x ocorre na árvore; Não, caso contrário.

Um nó em nossa árvore Patricia contém os seguintes campos:

- Bit: se esse valor for 0, esse nó é uma folha (uma chave válida), se for 1 é um nó interno.
- Info: Caso o campo bit seja 0, esse campo contém uma chave válida. Caso seja 1, esse campo contém a posição do bit que deverá ser olhado no momento da busca.

- Esq: um ponteiro para o filho esquerdo do nó, associado ao símbolo de bit 0
- Dir: um ponteiro para o filho direito do nó, associado ao símbolo de bit 1

Algoritmo BuscaP

Entrada: r, um ponteiro para a raiz de uma árvore Patricia. x um valor a ser pesquisado.

Saída: Sim, se x ocorre na árvore. Não, caso contrário

se r = nulodevolva não e pare se r.bit = 0se x = r.infodevolva sim e pare senão devolva não e pare senão bit = extraibit(x, r.info) se bit = 0buscaP (r.esq, x) DYVOLVA senão

A função extraibit:

Algoritmo extraiBit

Entrada: Um número inteiro com M bits, e a posição K do bit que deve ser extraído. Saída: O bit da posição K

bit = x << (k-1)Devolva bit>> (M-1)

Dr.xxx buscaP (r.dir, x)

7) Mostre como ficaria uma árvore B de ordem 1 após a inserção das chaves v₁, v₂, ..., v₁₀, nesta ordem. Em seguida, remova v₄, v₅, e v₆ e mostre como ficaria a árvore. Após inserções

Após remoções

8) Mostre como ficaria uma árvore B+ de ordem 1 após a inserção das chaves v₁, v₂, ..., v₁₀, nesta ordem. Em seguida, remova v₅, v₈ e v₇ e mostre como ficaria a árvore. Após inserções

Apos remoções

9) Escreva uma função que receba um ponteiro para a raiz de uma árvore B de ordem m e devolva a quantidade de chaves contidas na árvore.

Algoritmo ContaC

Entrada: O ponteiro para a raiz de uma árvore B, C uma variável passada por referência inicialmente igual a

Saida: A quantidade de chaves nessa árvore armazenada em C

devolva 0 e pare //árvore vazia

senão

c+=r.numchaves

para i = 0 até r.numchaves contac(r->p[i], c)

10) Mostre como ficaria uma tabela de *hashing fechado* com 11 posições, após a inserção das chaves v₁, v₂, ..., V₁₀, nesta ordem (nessa e na próxima questão, os valores associados às chaves devem ser ignorados). Utilize a seguinte função de hashing: $h(x) = x \mod 11$. Em seguida, remova v_1 , v_2 e v_3 (nesta ordem) e

Anás income

0]	00	/
1	12	4
2 3 4 5 6 7 8	13	V
3	14	V
4	26	V
5		1
6	61	/
7	117	1/
8	63	7 /
9	20	7/
10)	7

0	remo	
1		7
2	13	
3		
4	26	
5		
6	61	

117 8 63 9 20

¹¹⁾ Mostre como ficaria uma tabela de *hashing aberto* com 7 posições, após a inserção das chaves v₁, v₂, ..., V_{10} , nesta ordem. Utilize a seguinte função de hashing: $h(x) = x \mod 7$. Em seguida, remova v_7 , v_8 e v_9 (nesta ordem) e mostre como ficaria a tabela.

0	00 -	-	14	 63
1				
2				
3				
4				
5	12 -	-	26	
6	20			

12) Explique o que é a carga de uma tabela de hashing e diga quando ela é considerada baixa. Explique também o que é uma boa função de hashing.

A carga de uma tabela de hasing é a razão entre a quantidade de chaves na tabela e a quantidade de posições. Numa tabela que implementa o Hashing Fechado uma carga é considerada baixa se ela é inferior a 50%, já em uma tabela de Hashing Aberto a carga é baixa se limitada por uma constante. Uma boa função de hashing é aquela que pode ser computada em tempo constante e que faz um bom espalhamento das chaves na tabela.

1,0