

뉴스의 제목과 본문 내 낚시 탐지

: 특화 데이터셋 학습 및 앙상블 기법을 통해서

인공지능융합학과

우영석

● by 우영석 성균관대

Introduction.

1. 낚시성 기사 탐지의 시의성

: 인터넷 포털 기사의 가파른 상승세와 언론의 LLM 활용

=> 낚시성 기사 역시 양산될 가능성 농후

Introduction.

2. 낚시성 기사 탐지의 추가 연구가 필요한 지점

좌희정, 오동석, & 임희석. (2019). **자동화기반의 가짜 뉴스 탐지를 위한 연구 분석.** 한국융합학회논문지, 10(7), 18-19.

• 가짜 뉴스 탐지 방법

1 가짜 뉴스 탐지 : 뉴스 헤드라인과 본문의

: 뉴스 헤느라인과 본문의 관계를 보는 것이 대부분 2 클릭베이트 탐지

: 뉴스 헤드라인과 본문의 관계를 보는 것이 대부분 3 루머 탐지: SNS 데 0 더 활용 필요

=> 뉴스 본문 내 가짜/낚시성 문구 탐지는 추가적인 연구가 필요

□Method.

1. 데이터셋 이해

: Al Hub 데이터셋 "낚시성 기사 탐지 데이터"

세부구분↓							가공패턴유형↓												
	ų.	2								의문	2 5	발	(부	호)	ٍ لہ		5		
		*8	::: :::					23477		의문	2 9	발	를 (은	닉)	Ų,				*
		13								선	정프	현.	사용	형,	J,				
	.1	세.부	ل							속안	/풀	임말	사	日言	IJ,				
테목과	본문	의들	일치	기시						사:	일 구	바대	亜克	형.	. ل		501	,	
Sec.	3	•8	-		Į.	19				의두	적.	주어	와	곡형	L.	e 18			¥.
32.	(*)	10	12	23	-			1250	35	*	i	<u> </u>	4				58	et.	*:
	12	\$3	8	121	28		Ç	. 1	상품	판	매정	보.	노출	광	I e	لم إ			ş
	*		29	*	•0	1.0		부	동	<u>ا</u>		털보	노	1	ł	형	J		
	-2	세부	Ł.	0		10.0 21.0	¥	*	바	스 판	나마	정보	上	£ 5	랑고	형+	J		*3
군의 5		01 01:	라서	ㅂ조	711	L	×	100	의	도적	상	할 요	곡/	전환	· 형	٠	-16	*	*
	E-III	. 5	10	77	- 1	4		161	-2	30		<u> </u>	لها	-			21		

현실의 낚시성 기사를 대응하기 위해 생성 유형이 다채로움

- ∴ 같은 클래스의 데이터라도 완전히 다른 특징을 가지고 있음
- => 전체 데이터셋을 학습한 모델과 더불어 각 세부 데이터셋을 따로 학습한 모델 앙상블

Method.

2. Data Load

• 1 세부의 제목 낚시성 기사

: JSON 파일에서 원본 기사를 제목만 가공된 것으로 대체해서 저장

• 2 세부의 본문 낚시성 기사

: JSON 파일에서 원본 기사는 제목만 가져오고 개별 문장 합쳐서 저장

=> 학습 데이터 약 16만개, 테스트 데이터 약 2만개 구축

Method & Results.

3.□EDA

- 클래스 1: 비낚시성 기사(원본 기사)
- 클래스 0: 낚시성 기사(가공된 기사)

모델 훈련의 핵심 목표는?

- 최대한 많은 낚시성 기사를 예측!
- 즉, 클래스 0을 최대한 많이 예측하는 재현율 향상이 중요!

Method & Results.

3. Data Preprocessing

• spaCy의 한국어 형태소 분석기 vs Kiwi 한국어 형태소 분석기

0	공동+주택 하자분+쟁 조정 본격화	최종+구 금융+위원 회 의 안착 정부+가 기금+을 위원+장은 사회적금융포럼추진 +위원+
1	강자 코오롱 글로+벌 드 리+미 국내	요즘 형 사회 공헌 활 동+을 회사+가 회사 +를 기업에+서 능력

newsTitle	n
택 하자 분쟁 조 정 본격	최종 구 금융 위원회 우 금융 사회 금융 안착 차
소기 강자 코오 벌 드리미 W 국 내 론칭	요즘 프로보노 사회 공 사 늘 회사 경영 기업 갖

spaCy 전처리 예

표제어 처리 지원 but, 의미 형태소만 남기지 않음

Kiwi 전처리 예

표제어 처리 지원하지 않음 but, 품사태깅만 가능

• 두 전처리 후 성능 비교

LGBMClassifier (TF-idf) - Classification Report: validation_accuray: 0.6640461819055591 test_accuracy: 0.7178832654263414

spaCy 전처리의 LGBM 성능

VS

LGBMClassifier (TF-idf) - Classification Report: validation accuray: 0.7217145770689051 test accuracy: 0.7742869765843601

Kiwi 전처리의 LGBM 성능

=> Kiwi 형태소 분석기를 통해,

"일반명사/고유명사, 동사, 형용사, 일반 부사, 감탄사, 어근, 알파벳" 추출

Method & Results.

4.□Feature Extraction & Modeling

• Feature Extraction 성능 비교(spaCy 전처리, LogisticRegression 기준)

	CountVectorizer	TF-idf Vectorizer
검증 정확도	0.6346	0.6531
예측 정확도	0.6804	0.6954

• Model 선정(spaCy - 명사 추출, CounterVectorizer, GridSearhCV 기준)

```
LogisticRegression (Bow) - Classification Report: validation accuray: 0.6531299000905214 test_accuracy: 0.6954494133817682
```

VS

```
LGBMClassifier (Bow) - Classification Report: validation_accuray: 0.6640461819055591 test accuracy: 0.7178832654263414
```

= LGBMClassifier 근소한 차이로 승!

Method.

4. Feature Extraction & Modeling

Modeling: Weighted Majority Voting

50%

25%

25%

전체 데이터셋 학습 모델 1세부 데이터셋 학습 모델 2세부 데이터셋 학습 모델

• LGBM 단일 모델 vs LGBM 앙상블 모델

재현율 0.76 => 0.81 (5% 상승!)

^{*}모든 모델은 LGBM으로 통일

Method.

5.00Results

번호	학습모델	지표명	목표값 점수	측정값 점수
1	HAND(Al-Hub)	Accuracy	60 %	87.1 %
2	LGBM	Accuracy(, Recall)	60%	77.4%(<mark>76.3%</mark>)
3	LGBM 앙상블	Accuracy(, Recall)	60%	73.7%(<mark>80.9%</mark>)

- ※ 목표값점수: 한글기반, 과제 난이도 고려 조정
- HAND = Hirerarchical Attention Network for Fake News Detection

요약 및 정리.

1

2

3

선행연구와 현실 간극

현실: 제목 낚시, 본문 낚시 모두 존재

선행연구: 제목 낚시 탐지 위주 로 접근

=> 다양한 유형의 낚시성 기사 탐지 필요!

"특화 데이터셋"

- 1) 제목 기반 클릭유도성 기사 포함 데이터셋
- 2) 본문 기반 상품 정보 노출 기 사 포함 데이터셋
- 3) 1), 2)를 모두 포함하는 데이터 셋

"앙상블 모델링"

- 각 데이터셋을 학습한 모델 들을 통해 majority voting
- 단일 모델보다 더 많은 낚시 성 기사 식별!!(높은 재현율)

Istoler handest nes go touto Mentionalis

인사이트 및 개선점.

- 1 자연어 데이터의 전처리 중요성 2 딥러닝 모델 활용
 - 図정확도 약 6% 높임
 - ex. 학습 모델 대체,
 - 임베딩 방식 대체 등은 2% 내외

- 3 □다른 형태의 앙상블 시도
 - 연구 목표인 재현율 향상 성취
 - but, 전체 데이터셋을 학습한 여러 모델의 앙상블과 비교해볼 필요 있음
 - => 모델 다양성을 통한 재현율 향상은 얼마나 일어나는지 확인