- 1. A) $-\frac{x_2}{x_1}$ B) $-\frac{3x_2}{x_1}$ C) $-\frac{x_2}{x_1}$ D) $-\frac{2}{3}x_1$ E) $-\frac{x_2}{x_1}$ F) $-\frac{1+x_2}{x_1}$

A,C,E have the same preferences.

- 2) A) L-shaped graphs with kinks along the 45-degree line $x_1=x_2$
- B) Same as part A.
- C) L-shaped graphs that bend the opposite way as part A with kinks along the line $x_2 = 2x_1$.
- D) This utility function represents the same preferences as x_1x_2 and so the indifference curves are nice convex curvy graphs that approach but never reach either the X or Y axis.

E) These indifference curves look like the ones above but are all shifted down by one. This means they are nice and curvy convex shapes but they do intercept the x-axis.

- 3) A) Any amount of x_1 and x_2 that cost 10.
- B) $x_1 = 5, x_2 = 2.5$
- C) $x_1 = 6$, $x_2 = 2$ D) $x_1 = \frac{10}{3}$, $x_2 = \frac{10}{3}$ E) $x_1 = 2$, $x_2 = 4$