(2) Consider the group (D,+) (Z),+), the group of rationals (under addition mobile the subgroup of integers. So an element of this group is a coset a + 7/ where a is a rational number.

(a) Find the order of the o (a) Find the order of the element 3+7. Solution: We want to find nows such that (3+7) = e, where e is the identity of (R+) (ZI,+), i.e. e=0+71. take n=4, then. (3+刊)4=(3+刊)+(3+刊)+(3+刊)+(3+刊)=(43+七)=3+七=刊. Hence, the order of 3+7 is 4. (b) SHOW that every element of this group has finite order. Pt: Let $Q+Z=(D_0+)(Z_0+)$; so $Q\in Q$. Write $Q=\frac{Q}{2}$; for P:Q integrals Q:Q. 9.40. Without loss of generality, write & in lowest terms, i.e. gcd(p.f.) Claim: $\theta(q+H) = q \cdot P_F : (q+H)^2 = (\frac{p}{q}+H)^2 = (\frac{p}{q}+H) = (p+H) = H = e$. Horeover let 1< K< & be such that (a+ZI) = ZI. then, K. & E ZI, which means that 9/KP. h. + and a 2)-1 2/KP, but gcd(q,p)=1 so it must be that 2/K but K<2 so 2+K, a contradic there is no such k; so the order of 9+71 is indeed 2. / (two) Pf: Consider the subset $SC(Q_0+)/(U_0+)$ defined by $S=\{\frac{1}{n}+\frac{1}{n}\}$ histortion (C) Prove that the group is infinite Define the function $f:S \rightarrow IN$ by f(h+H) = n. Clearly f is a bijection, so in particular we can conclude that S is an intimite set. But $S \subset (a,+)$, so the group (a,+)/(2l,+) must be inpinite and at least as big as IN. (d) Prove that every finite subgroup of (Q,+)/(Z,+) is cyclic. Pf: Note that the group (Q,+)/(Z,+) is abelian: Let Q+ZI, b+ZI be elements or this area in the group (D, Z). elements of this group, then (9+7)+(b+7)=(a+b)+7=(b+a)+7=(b+7)+(a+b)+1+(b+7)=(a+b)+7=(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(b+7)+(a+b)+1+(a+b)+1+(b+7)+(a+b)+1 therefore, all subgroups of this group are abelian since they inherit the group operation. Let H be a finite subgroup of (a,+) (7)+). +hen H is abelian Moreover; by part (b), we know that every element of this group has finite order, so pick a+21 € (Q,+)/(+); the subgroup < 9+71) is finite and cyclic. Any other finite subgroup must contain at least one element, say b+ 21. But then (b+ 21)+ (c+21) = (b+0+2) u have to be in the group 2(b+c)+7/7, and thus be cyclic. Hence, every finite supgroup is cyclic.

M4.03-Fall 2013	- Enrique Areyar	1- HW6	
(2)(a) Find all	possible cycle structure	tures for elements	es for elements of 5:
e (identity)	, (1,2), (1,6)(119)	, (1) 4 3/6 11 2 // /	
(b) tind all possi	Ple Orders to les	ments of Ss. by the lcm of the ents of Ss as show	longhits of each
in the ogen		lor	1 0 000:
Note that e (this are representatives elements, e.g., we could have (4,5) instead of (1,2) and so. on.	(1,2) (1,2) (1,2) (1,2) (1,2,3) (1,2,3) (1,2,3) (1,2,3,14) (1,2,3,14) (1,2,3,14)	(1) = 1 (2/1)/1) = 2 1(2/2,1) = 2 1(3/2) = 6 1(3/2) = 6 1(3/1)/1 = 3 1(3/1)/1 = 3 1(1)/1 = 4 1(1)/1 = 4 1(1)/1 = 4 1(1)/1 = 4 1(1)/1 = 4 1(1)/1 = 5 1(1)/1 = 1	2,3,4,5,6
(Tind Ilon me	mber a element	s in each conjugace	y class the shuck preserves cycle struction preserves class in Ss injury and class in Ss the same cycle struction the same cycle struction
(C) Find the ne	can obscaration here	is that conjugation	present class in se
Solution: Eve 1	+ Has in maker Al	elements in each co	injugacy class in 35 the same cycle structor
therefore, to co	out the hander of		
1)		IL AL CLOMONTS IN CONT	1999
C			
) b 1) a T	e	- orngible n	anais to 1 1:101 401
Note that	(1,2)	4 per position 2. But	umbers for position to de la
the conjugacy		the fact that (1/2)	=(2(1)30) = 1 by an extr
classes partition	25010	Some reasoning as before	e but divide by an extremy transpositions, so the
55 - therefore (112) (314)	2 to account for order	15 Trans rest
= 1+10+15			
f70+20+30	(1,213)(415)	(5x4x3x/x1)/3xx2 = 2) X
+ 24;50	(1,2,3)	(5×4×B)13 = [20)	
each element of	(123.4)	(5x4x3x2)/4 = 130) /
for.	(1,2,3,4)	(5x4x3x2x1)/8 = [24/

M403-, Fall 2013 - Enrique Areyan - HWG (2)(d) For each conjugacy class choose a representative of that class and describe its centralizer. (In each case it is a group you know or a product of groups you know). Solution: As previously calculated there are 7 conjugacy classes CHOOSE the following elements as class representatives: e, (1,2), (1,2)(3,4), (1,2,3)(4,5), (1,2,3); (1,2,3,4), (1,2,3,4)s By definition: $C_{35}((1/2)) = \{9 \in 55\} \quad \forall 9 = 9/8$, $\forall a \text{ transposition in } 5$ clearly, every element of So connotes with e, so Ge = Ss. For transpositions (i,i) 1sixjs5. We would need a ix g(i,i) = (i,i)g =) g(i,i)g' = (i,i) =) g is a permutatof 55 that fixes both i.j. But these are exactly permutations over smaller ----Smaller sets. $C_{s}(class of (1/2)) = S_3$; (take two elements out of Ss). Similarly for (1,2,3): $9 \in C_s((11213)) = 9 \cdot (11213) = (11213)$ =) $g(1,7,3)g'=(1,2,3)=)C_{ss}((1,2,3))=\tilde{5}_{2}$. Clearly, the only element of 55 that conmutes with (1)713,415) is & SO C's((1,7,3,4,5)) = e, the trivial group. A similar argument applies to (1,2,3,4), since the only things that conmute with it are 1-cycles, but these are the same as the identity, therefore Css((117,3,4)) = 51 = e, the trivial group. A similar reasoning follows for (1,2)(3,4) and (1,2,3)(45)

M4.03-Fall 2013- Enrique Areyon - HWG (3) Let G be a group and Aut(Gi) denote the group of automorphisms of G: $Aot(G) = \{f: G \rightarrow G \mid f \text{ is an isomorphism}\}$ Let for each xeG, Ix(9) = xgx - for all geG. Finally, Inn(G)=tIx(xe) (a) Prove that if $x \in G_1$ and $G \in Aut(G_1)$ -then $GI_{\times}G^{-1} = I_{G(\omega)}$. 11: Let XEG and GEAUTG). Let 9 = G. then By definition of function composition. $(6I_{\times}6^{-1})(9) = 6(I_{\times}(6^{-1}(9)))$ By definition of Ix Since 6 is an isomorphism. $=6(x(6-(9))\times -1)$ Since 6 is the inverse of 6' Again, 6 is an isom. it preserves muchoss $=(6(x))[6(6'(9))](6(x^{-1}))$ $= 6(x) 96(x^{-1})$ = 600 9 [00] By definition of IGW) $= I_{6(x)}(g)$ = $) 6I_{x}6^{-1} = I_{6(x)}.$ Pf: We wont to show that: \fix\in\Inn(G): \fix\in\EArt(G): \fix\in\Inn(G) (b) Prove that Inn(G) ≥ Aut(G). But we just proved in (a) that given $x \in G_1$ and $G \in Aut(G_1)_1 = G_1 \times G_2 = G_1 \times G_2 = G_2 \times G_3 = G_3 \times G_3$ Since 6 is an isomorphism, 6(x) EG. therefore GIX6'= Io(x) EInn(G) Which means that Inn(G) = Avit(G). / (c) Define a map $\alpha: G \to Inn(G)$ by $\alpha(x) = I_{x}$. Prove that α is a home manufactor of later and its answer. morphism and determine its kernel. Pf: (i) & is a homomorphism. Let x, y ∈ G. Also, Let g ∈ G. Consider $x(xy)(g) = I_{xy}(g) = (xy)g(xy)^{-1} = (xy)g(y^{-1}x^{-1}) = x(ygy^{-1})x^{-1} = x I_y(g)$ $=I_{\mathsf{X}}(I_{\mathsf{Y}}(g))=(I_{\mathsf{X}}\circ I_{\mathsf{Y}})(g)=(\mathcal{A}(\mathsf{X})\circ \mathcal{A}(\mathsf{Y}))(g)=\mathcal{A}(\mathsf{X}\mathsf{Y})=\mathcal{A}(\mathsf{X}\mathsf{Y})=\mathcal{A}(\mathsf{X})\mathcal{A}(\mathsf{Y}).$ (iii) By definition: Ker(d)={xEG/x(x)=e, where e is the identity of Inn(the identity of Inn(Gi) is such that for any Ix & InnG: eIx=Ixe= clearly e = Te, since $TeT_{x}(g) = Te(xgx') = exgx'e' = xgx' = T_{x}(g)$. TxTe(g) = Tx(ege') = Tx(g). Therefore, we can refer the domination TxTe(g) = Tx(ege') = Tx(ege') = Tx(ege')our definition: Ker(x)=1xEG/x(x)=Ie}. Let xEG be such that x(x)=

M403-Fall 2013 - Enrique Areyan - HW6 But by definition $\alpha(x) = Ix = Ie$. this leads our thinking to the following Pt: (E) Let XE Ker (2). then, for any gea, Ix(9) = 9. So then, Petge $9x = I_{x}(9x) = x(9x)x^{-1} = (x9)(xx^{-1}) = x9 = x \in Z(G).$ (2) Let y ∈ Z(G). By definition, for any g ∈ G: gy=yg. Let g ∈ G: $I_{y}(9) = y(9)y^{-1} = (y(9)y^{-1} - 9(y(y^{-1})) = 9 = y \in \text{Ker}(\alpha)$. (d) Prove that the quotient group G/Z(G) is isomorphic to Inn(G). Pt: First note that & is onto. By definition, for each xear we have the automorphism Ix. Moreover, we proved in cc) that & is a homomorphism therefore, by the first isomorphism theorem its Kernel is isomorphic to The diagram:

G = X = Inn(G)

Po TT = X by first isom. theorem its image. As a diagram: Ker(d) = 6/2(61) So we have a unique isomorphism $\varphi: G/Z(G) \to Inn(G)$, such that φ_{att-} . (4) (a). Prove that Sn is generated by (1,2) and (1,2,.., n) i.e., Sn=(40,2),(1,2,... PE: It suffices to show that we can produce all transpositions with elemen from {(112), (112, 17)}. Then, by theorem showed in class, any permutation can be writen as the product of transpositions and we will be done. By another proposition showed in class, we know that conjugation preserves Cycle structure. therefore, conjugating (112) by the cycle (1,2,..., n) will Yield another transposition. So, if we conjugate (112) by the n-cycle repeatedly we will get all transpositions of the form: $(1,2,...,n)(1,2)(n_1n_1,...,1) = (1)(2,3)(4)...(n) = (2,3).$ $(1,2,...,n)(2,3)(n_1n_1,...,1) = (1)(2)(3,4)(5)...(n) = (3,4)$ $(1,2,...,n)(n-1,n)(n_1n-1,...,1) = (1,n)(2)(3)...(n-1) = (1,n) = (n,1).$

M403- Fall 2013 - Enrique Areyan - HW6 this shows that repeated conjugation produces the following transposition (1, Z), (2,3), (3,4), ..., (n,1). Note that these are the same as: (2,1), (3,2), ..., (1, n Finally, we can get any transposition from the above type of transposition. Without loss of generality, QIT us unite a transposition (i,j) where $1 \le i < j \le n$ as follow: $(i+1) = (i,i+1)(i+1,i+2) \cdots (j-1,j)(n-1,j)(n-1,j)(i+1,i+1)(i+1,i+1)$ therefore, you can generate all transpositions, which shows that (1,2),(1,2,...,n) = Sn. (b) Let 1 \(i < j \in n \). Find necessary and sufficient conditions on i, j so that (i,i) and (1,2,...,n) generate Sn. Solution: claim: Let 15i4jen, the transposition (ii) and (1,2,...,n) generate Sn is and only if gcd(j-i,n)=1. P(=(=)) Suppose that (ij) and (1,2,..,n) generate Sn. Also, suppose that gcd(j-i,n)=d71. Let 6 = Sn. We know that that 6 can be writen as a product of transpositions. 6=TITZ. Tk; Moreover, the permutation is either even or od If d71, then (ij) together with (1,2,0) won't be able to generate all of Sn. In fact, ((ij)(1,2,..,n)) < Sn. the reason is that repeated Conjugation of [ii]) by (1/2,..., N) will not generate all transpositions of the Kind (12) the Kind (12),(23), (n,1), but only a subset of these. therefore, we won't be able to appoint be able to generate all transpositions and hence all of Sn. (E) suppose that gcd(j-i,n)=1. Let $(i,j) \in Sn$ and $C(1/2,...,n) \in Sn$. Following a similar reasoning as in (a), take (ii) and conjugate in reported in the conjugate in the conjuga repeatedly by (1,2,..,n). Since gcd(j-i,n)=1, eventually we will get all normations all permutations of the kind (1,2)(2,3)... (n.11) (maybe not in the From these produce all transpositions to be able to generate Sn. order). $S_{n} = \langle \{(i,j), (i,2,...,n)\} \rangle \Leftrightarrow gcd(j-i,n) = 1, j>i.$ therefore,

M403-Fall 2013 - Enrique Areyan - HWG (5) (2) Prove that GL3(112) is isomorphic to 112× Sl3(112). Pf: Consider the following function: f: GL3(IR) -> IRX SL3(IR), for MEGL3(IR) given by: f(M) = (det(M), [det(m)]"3.M). First note that this is a well-defined function on its range gince $(i) \cap GGL3(IR) \Rightarrow det(n) \neq 0$, so $\frac{1}{[det(n)]^{1/3}} \in IR$. (ii) $\det\left(\frac{1}{[\det(n)]^{1/3}}\cdot M\right) = \left[\frac{1}{[\det(n)]^{1/3}}\cdot \det(M) = \frac{1}{\det(n)}\cdot \det(M) = 1\cdot \frac{1}{[\det(n)]^{1/3}}\cdot \det(M)\right]$ <u>clam</u>: f is a homomorphism. Pf. Let Mistize Gl3(1R). Hon. $f(n_1n_2) = \left(\det(n_1n_2), \frac{1}{\left[\det(n_1n_2)\right]^{1/3}}, (n_1n_2)\right) = \left(\det(n_1)\det(n_2), \frac{1}{\left[\det(n_1n_2)\right]^{1/3}}, (n_1n_2)\right)$ = (det(m)det(m), [det(m)]13 [det(m)]13) by properties of det and algebra of ratio = $\left(\det(n_1), \frac{\Delta}{\left[\det(n_1)\right]^{1/3}} n_1\right) \circ \left(\det(n_2), \frac{\Delta}{\left[\det(n_2)\right]^{1/3}} n_2\right)$ $= f(n_1) \circ f(n_2).$ (a) f is 1-1. Let Thinh = Eq13(112) be such that f(m) = f(m2). the <u>Claim</u>: f is a bijection. <u>Rf</u>: (det(M)), (det(m)]1/3. M) = (det(M2), [det(M2)]1/3. M2) by deficition of => $\det(n_i) = \det(n_2)$ and $\frac{\Delta}{\det(n_1)} |_{13}^{1/2} = \frac{\Delta}{\det(n_2)} |_{13}^{1/2}$ => $\frac{\Delta}{(det(\pi_i))^{1/3}} \pi_i = \frac{\Delta}{(det(\pi_i))^{1/3}} \pi_2 => \pi_i = \pi_2 \text{ (since det(\pi_i))} = det(\pi_i)$. (ii) f is onto. Let (X, A) E IR × 5L3(IR). So XEIR, X to, AESL3(IR) = $\det(A) = 1 \cdot \text{Pick} \quad \Pi \in \text{Gl}_3(\Pi \text{R}) \text{ to be such that } \Pi = \chi^{1/3} \cdot A \cdot \text{then} \cdot \chi^{1/3} \text{f}$ $f(A) = f(\chi^{1/3} A) = \left(\det(\chi^{1/3} A), \left[\det(\chi^{1/3} A) \right]^{1/3} \chi^{1/3} A \right) = \left((\chi^{1/3})^3 \det(A), \left[\chi^{1/3} \right]^3 \det(A) \right)^{1/3}$ $=\left(\mathsf{X}\cdot\mathsf{1},\frac{\mathsf{\Delta}}{\mathsf{x}^{1/3}}\cdot\mathsf{x}^{1/3}.\mathsf{A}\right)=\left(\mathsf{x},\mathsf{A}\right).$ (2)8(ii)=) f is 9 bijection. Is also a homomorphism. So, f is an isomorphism, => G12/117)= GL3(112) = RXX5L31

M403 - F211 2013 - Enrique Areyan - HW6

(5)(b) this is not true if you replace 3 by 2. What's the explanation - no proof required.

Solution: the group Gl2(112) is the group of all invertible 2x2 matrix ces, i.e., matrices with determinat distinct from zero. If a matrix (2x2), has determinat other than zero, its determinat represent the signed area of the parallelepiped spanned by the rows of the motive interpreted as vectors.

Area =
$$det([ab]) \neq 0$$
.

If GL2(IR) = IR × SL3(IR) then the area of the parallelepiped spanned by each matrix in GLz(IR) would be mapped into Two differ pieces of information (112x, SLz(112)); but the area of only element of 512(112) is one and by properties of determinants, if A ∈ GIZCII det (aA) = a2 det(A); so it won't be possible to cover all of the product group 112× × Stz(IR) by members of GLZ(IR).

this is precisely the reason why it works in the 3-dimensional case In this case, the volume of the parallelepiped is mapped into a real number which is possible because if MEGIR3(1R), then det (a M) = a3 det(n); and ()3 is a bijection; wherean ()2 is not Hence, the function f as defined in 5 (a) would not work in this case.