These conditions are obviously analogous, and we can make this analogy more precise as follows. If $p_U: V \to U$ is the projection map onto U, we have the following chain of equivalences:

$$u \in U$$
 and $J(u) = \inf_{v \in U} J(v)$ iff $u \in U$ and $\langle \nabla J_u, v - u \rangle \ge 0$ for every $v \in U$, iff $u \in U$ and $\langle u - (u - \rho \nabla J_u), v - u \rangle \ge 0$ for every $v \in U$ and every $\rho > 0$, iff $u = p_U(u - \rho \nabla J_u)$ for every $\rho > 0$.

In other words, for every $\rho > 0$, $u \in V$ is a fixed-point of the function $g: V \to U$ given by

$$g(v) = p_U(v - \rho \nabla J_v).$$

The above suggests finding u by the method of successive approximations for finding the fixed-point of a contracting mapping, namely given any initial $u_0 \in V$, to define the sequence $(u_k)_{k>0}$ such that

$$u_{k+1} = p_U(u_k - \rho_k \nabla J_{u_k}),$$

where the parameter $\rho_k > 0$ is chosen at each step. This method is called the *projected-gradient method with variable stepsize parameter*. Observe that if U = V, then this is just the gradient method with variable stepsize. We have the following result about the convergence of this method.

Proposition 49.18. Let $J: V \to \mathbb{R}$ be a continuously differentiable functional defined on a Hilbert space V, and let U be nonempty, convex, closed subset of V. Suppose there exists two constants $\alpha > 0$ and M > 0 such that

$$\langle \nabla J_v - \nabla J_u, v - u \rangle \ge \alpha \|v - u\|^2$$
 for all $u, v \in V$,

and

$$\|\nabla J_v - \nabla J_u\| \le M \|v - u\|$$
 for all $u, v \in V$.

If there exists two real numbers $a, b \in \mathbb{R}$ such that

$$0 < a \le \rho_k \le b \le \frac{2\alpha}{M^2}$$
 for all $k \ge 0$,

then the projected-gradient method with variable stepsize parameter converges. Furthermore, there is some constant $\beta > 0$ (depending on α, M, a, b) such that

$$\beta < 1$$
 and $||u_k - u|| \le \beta^k ||u_0 - u||$,

where $u \in M$ is the unique minimum of J.