COMP S264F Unit 2: Methods of Proof

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Overview

- Proof by inference rules
- Direct proof
- Indirect proof / Proof by contraposition
- Non-proof
- Proof by cases
 - > Exhaustive proof / Proof by exhaustion
- Proof by contradiction
- Mathematical induction

Theroem

- A theorem (lemma) is a statement that can be shown to be true.
- A theorem often takes the following form:
 - >p is true.
 - e.g., $\sqrt{2}$ is an irrational number.
 - >p \rightarrow q is-true.
 - e.g., For any integer x, if x is a prime number and x > 3, then \exists n (x = 6n 1 or 6n + 1).
 - $>p \leftrightarrow q is-true$.
 - e.g., $\forall x$ (x is a prime number and x > 3 if and only if $\exists n (x = 6n 1 \text{ or } 6n + 1)$).
- A lemma is a theorem for helping prove another theorem. It is a step in the direction of proof of another theorem.

Proof

- A proof is a sequence of statements demonstrating a theorem is true.
 - >We want to a proof to be correct, precise, concise.
- Some of these statements are assumed to be true (axioms, known fact, definitions), while the truth of other statements is established based on logical deduction.

Proof: Example

Prove: If $\exists x \forall y P(x, y)$, then $\forall y \exists x P(x, y)$.

- 1. Assume $\exists x \forall y P(x, y)$.
- 2. $\forall y P(x_0, y)$, for some x_0 .
- 3. $\forall y \exists x P(x, y)$.

Prove: If $\forall x \exists y P(x, y)$, then $\exists y \forall x P(x, y)$.

Counterexample: Consider P(x, y) as x = y.

Deduction / Inference Rules

Conclude: Q

Given: $P \Rightarrow Q$ and $Q \Rightarrow R$

Conclude: $P \Rightarrow R$

Modus ponens

Given: P and $P \Rightarrow Q$

Conclude: Q

Modus tollens

Given: $P \Rightarrow Q$ and $\neg Q$

Conclude: - P

Why? Given: $P \Rightarrow Q$ and $\neg P \Rightarrow Q$ $[(P \Rightarrow Q) \land (\neg P \Rightarrow Q)] \Rightarrow Q$ is a tautology.

Quiz:

Given: $\neg P \Rightarrow$ false

Conclude:

Given: $\neg P \Rightarrow P$

Conclude:

Given: $P \Rightarrow \neg P$

Conclude:

Recall that $p \Rightarrow q$ is false only when p is true but q is false.

More Inference Rules

Given: $\forall x P(x)$.

Conclude: $\exists x P(x)$.

Given: $\exists x P(x)$.

Conclude: $P(x_0)$, where x_0 is a particular element (an

element, some element) in the domain.

Given: Let x_0 be a particular element in the domain. $P(x_0)$.

Conclude: $\exists x P(x)$.

To prove a proposition **p** (to be true),

we can start with some proposition p' that is known to be true and show that $p' \Rightarrow p$ (is true).

Then it follows that **p** is true. (**Modus ponens**)

This is equivalent to the tautology

$$[p' \land (p' \Rightarrow p)] \Rightarrow p$$

Given:

- If you study in OUHK, you have a student card.
- You study in OUHK.

Conclude: You have a student card.

Modus tollens

Given: $p \Rightarrow q$ and $\neg q$

Conclude: ¬p

This is equivalent to the tautology

$$[(p \Rightarrow q) \land \neg q] \Rightarrow \neg p$$

Given:

- If Tom studies in OUHK, Tom has a student card.
- Tom does not have a student card.

Conclude: Tom does not study in OUHK.

Hypothetical Syllogism

Given: $p \Rightarrow q$ and $q \Rightarrow r$

Conclude: $p \Rightarrow r$

This is equivalent to the tautology

$$[(\boldsymbol{p} \Rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \Rightarrow \boldsymbol{r})] \Rightarrow (\boldsymbol{p} \Rightarrow \boldsymbol{r})$$

Given:

- If you pass the course, then you pass the exam.
- If you pass the exam, then you have attended the exam.

Conclude: If you pass the course, then you have attended the exam.

Disjunctive Syllogism

Given: $p \vee q$ and $\neg p$

Conclude: q

This is equivalent to the tautology

$$[(p \lor q) \land \neg p] \Rightarrow q$$

Given:

- I study before exam or I fail the course.
- I do not study before exam.

Conclude: I fail the course.

Proving a theorem in the form of $p \Rightarrow q$

<u>Direct proof</u>: To prove $p \Rightarrow q$, we assume that p is true, then show that q is true.

Example: For any integer n, if n is odd, then n² is odd. *Proof.*

- Suppose that n is odd.
- Then, n = 2k + 1 for some integer k.
- It follows that

$$n^{2} = (2k+1)^{2} = (2k)^{2} + 2(2k)(1) + 1^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1$$

Therefore, n² is odd.

Indirect Proof / Proof by Contraposition

- Note that $p \Rightarrow q$ is equivalent to $\neg q \Rightarrow \neg p$ (*contrapositive*).
- To prove "p \Rightarrow q", we can prove " \neg q \Rightarrow \neg p".

Example 1: For any integer n, if 3n + 2 is odd, then n is odd.

Proof. Assume that n is even (i.e., not odd).

Then 3n, as well as 3n+2, is even (i.e., not odd).

Therefore, 3n + 2 is odd \Rightarrow n is odd.

Example 2: For any integer n, if n² is even, then n is even.

Proof. We proved its contrapositive in the previous slide:

If n is odd, then n^2 is odd.

Therefore, if n² is even, then n is even.

Non-proof

 Failure to note the justification for each step can lead easily to non-proofs.

Theorem. (not!) 1 = -1

Proof.
$$1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = \sqrt{-1}^2 = -1$$
.

- At least one of the above steps is false, but each looks reasonable to the author of the proof.
- Writing out the full justifying axioms for each step reveals: it is not incorrect that for any x and y, $\sqrt{xy} = \sqrt{x}\sqrt{y}$.

Proof by Cases

• To prove " $p_1 \vee p_2 \vee ... \vee p_n \Rightarrow q$ " is true, we note that

$$p_{1} \lor p_{2} \lor \dots \lor p_{n} \Rightarrow q$$

$$\equiv \neg (p_{1} \lor p_{2} \lor \dots \lor p_{n}) \lor q$$

$$\equiv (\neg p_{1} \land \neg p_{2} \land \dots \land \neg p_{n}) \lor q \text{ [by De Morgan's law]}$$

$$\equiv (\neg p_{1} \lor q) \land (\neg p_{2} \lor q) \land \dots \land (\neg p_{n} \lor q) \text{ [by distributive law]}$$

$$\equiv (p_{1} \Rightarrow q) \land (p_{2} \Rightarrow q) \land \dots \land (p_{n} \Rightarrow q)$$

• That means, we should prove each $(p_i \Rightarrow q)$ one by one.

Proof by Cases: Example

(more commonly written as " $n^2 \equiv 1 \mod 3$ ").

If n is an integer not divisible by 3, then $n^2 \mod 3 = 1$.

- \equiv If (n mod 3 = 1 or n mod 3 = 2), then n^2 mod 3 = 1.
- \equiv If (n mod 3 = 1), then n² mod 3 = 1, and if (n mod 3 = 2), then n² mod 3 = 1.

Case 1: If n mod 3 = 1, n = 3k + 1 for some integer k. It follows that $n^2 = (3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Therefore, $n^2 \mod 3 = 1$.

Case 2: If n mod 3 = 2, n = 3k + 2 for some integer k. It follows that $n^2 = (3k+2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$. Therefore, $n^2 \mod 3 = 1$.

Exhaustive proof / Proof by Exhaustion

 Exhaustive proof is a special type of proof by cases, where each case involves checking a single example.

Example: All integers between 10 and 15 exclusive are not square of another integer.

Proof.

- The numbers between 10 and 15 exclusive 11, 12, 13,14.
- We can check each of these numbers and show that

$$\sqrt{11} \approx 3.316$$

$$\sqrt{12} \approx 3.464$$

$$\sqrt{13} \approx 3.605$$

$$\sqrt{14} \approx 3.741$$

•

Proof by contradiction

A popular way to prove a proposition.

```
To prove p, we show that "\neg p \Rightarrow false" is true. Note that "\neg p \Rightarrow false" is equivalent to p. Thus, it follows that p is true.
```

- More specifically, we show that for some proposition r, $\neg p \Rightarrow (r \text{ and } \neg r)$ (is true).
- Note that $(r \text{ and } \neg r) \Leftrightarrow false$.
- Therefore, $\neg p \Rightarrow false$ (is true).
- NB. We say that <u>a contradiction occurs</u> when both *r* and <u>r</u> can be deduced.

Proof by contradiction: Example

Definition. A real number is rational if and only if it can be expressed as a quotient of two integers with a non-zero denominator. More formally, if *r* is a real number, then

r is rational $\Leftrightarrow \exists$ integers **a**, **b** such that $\mathbf{r} = \frac{a}{b}$ and $\mathbf{b} > 0$

Theorem. $\sqrt{2}$ is irrational (i.e., not a rational number).

Proof plan:

Assume $\sqrt{2}$ is rational.

 $\sqrt{2} = a/b$ for some integers a, b > 0 such that

- a, b are relatively prime (i.e., don't have a common factor except 1). false
- a, b are not relatively prime.

Proof by contradiction: Example (cont')

Theorem. $\sqrt{2}$ is irrational (i.e., not a rational number).

Proof.

Suppose, for the sake of contradiction, $\sqrt{2}$ is rational.

 \exists integers a, b > 0 such that $\sqrt{2} = \frac{a}{b}$ and $\underline{a}, \underline{b}$ are relatively prime.

Thus, $\sqrt{2}b = a \implies 2b^2 = a^2 \implies a^2$ is even.

In slide 12, we have shown that: If a^2 is even, then a is even.

Therefore, a is even. (modus ponens)

 \Rightarrow a = 2c for some integer c.

$$\Rightarrow b^2 = a^2/2 = (4c^2)/2 = 2c^2$$

 \Rightarrow b is also even.

As both a and b are even, they have a common factor of 2 and are not relatively prime. A contradiction occurs.

Puzzle: Halting problem

Is it possible to write a Python function *H* that

- takes two inputs (arguments): a Python function (binary string) P and an input (binary string) x;
- and reports "loop forever" if P loops forever with input x, and "halt" if P halts eventually?

Theorem. There doesn't exist such a function *H*.

Proof. Suppose, for the sake of contradiction, that *H* exists.

We construct another function **K** that takes <u>only one input</u>, which is a Python function P, and works as follows:

- 1. Call *H*(P, P)
- 2. Then, do the following based on the output of H(P, P):
 - if H(P, P) returns "halt", K executes a simple loop forever;
 (e.g., b = 2
 while b <= 2:
 a = 1
 - if H(P, P) returns "loop forever", K halts immediately.
- PS. *H* takes two inputs, and *K* takes one input only.

Proof. Suppose, for the sake of contradiction, that *H* exists.

Program K

Fact. *K*(P) does not loop forever.

if and only if

H(P, P) reports "loop forever" (by definition of K) if and only if

P, when given P as input, loops forever (by definition of H)

Puzzle: Halting problem - Contradiction

Consider running the function *K* with K as input. *K*(K) either loops forever or halts.

- K(K) loops forever: This happens only when H(K, K) reports "halt"; i.e., K(K) does not loop forever.
- K(K) halts: This happens only when H(K, K) reports "loop forever", i.e., K(K) does not halt.

In both cases, contradiction occurs. Therefore, *H* cannot exist.

Example: Barber paradox

A town has only 1 male barber. A man in the town is shaved by the barber if an only if he does not shave himself.

Theorem. Such a barber does not exist.

Assume, for the sake of contradiction, that such a barber exists. Denote this barber by **B**.

Does B shave himself?

- Yes: B doesn't shave himself.
- No: B shaves himself.

Proving a theorem in the form of $p \Rightarrow q$ (revisited)

- We can also use proof by contradiction.
- p \Rightarrow q is false \Leftrightarrow p is true and q is false.
- We can show that

$$(p \land \neg q) \Rightarrow (r \text{ and } \neg r) \text{ for some } r$$
.

N.B. "r and ¬ r" is a contradiction (i.e., always false).

Example 2: For any integer n, if n² is even, then n is even.

Proof. Assume that n² is even and n is odd.

Thus, n = 2k + 1 for some k.

Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Thus, <u>n² is odd</u>, which contradicts that <u>n² is even</u>.

Proving a theorem in the form of $p \Rightarrow q$ (Summary)

In summary, three possible ways to prove $\mathbf{p} \Rightarrow \mathbf{q}$:

- Assume **p**. ... **q**.
- Assume ¬q. ... ¬p.
- Assume **p** and \neg **q**. ... **r** and \neg **r**. A contradiction occurs.

Proving a theorem in the form of $p \Leftrightarrow q$

To prove $\mathbf{p} \Leftrightarrow \mathbf{q}$, there are many possible ways.

- First assume \mathbf{p} \mathbf{q} . That is, $\mathbf{p} \Rightarrow \mathbf{q}$. And then assume \mathbf{q} \mathbf{p} . That is, $\mathbf{q} \Rightarrow \mathbf{p}$.
- First assume \mathbf{p} \mathbf{q} . That is, $\mathbf{p} \Rightarrow \mathbf{q}$. And then assume $\neg \mathbf{p}$ $\neg \mathbf{q}$. That is, $\neg \mathbf{p} \Rightarrow \neg \mathbf{q}$.
- $p \Leftrightarrow r_1 \Leftrightarrow r_2 \Leftrightarrow ... \Leftrightarrow q$.

• ...

Recap: Negation

```
Is \neg(\forall x P(x)) equivalent to \exists x \neg P(x)?

I.e., \neg(\forall x P(x)) \Leftrightarrow \exists x \neg P(x) is true or false?
```

- YES.
- Suppose "¬(∀x P(x))" is true.
 ∀x P(x) is false.
 There exists x such that P(x) is false.
 "∃ x ¬P(x)" is true.
- Suppose "¬(∀x P(x))" is false.
 ∀x P(x) is true.
 "∃ x ¬P(x)" is false.

Mathematical Induction

- Many theorems have the form P(n) for all positive integers.
- A proof by mathematical induction consists of two steps:
- Basis step (base case): P (1) is true.
- Induction step: for any positive integer i, if P (i) is true,
 then P (i+1) is true.

hypothesis

- When we complete both steps, we have proved that P(n) is true for all positive integers n.
- Why?

Why Mathematical Induction works?

Let k be any integer. Is P(k) true?

- P(1) (is true).
- $P(1) \Rightarrow P(2)$.
- Thus, P(2).
- $P(2) \Rightarrow P(3)$.
- Thus, P(3).
- $P(3) \Rightarrow P(4)$.
- Thus, P(4).
- •
- Thus, P(k).

Mathematical Induction: Example

Show that any 2ⁿ x 2ⁿ chessboard with one square removed

can be covered using L-shaped pieces

(each occupying 3 squares) only.

n = 1

n = 2

n = 2

Mathematical Induction: Proof

- Basis step, n = 1: No matter where the missing square is, the remaining three squares can be covered by one L-shaped piece.
- Inductive step: Assume the claim is true for some n ≥ 1.
 Consider a chessboard of size 2ⁿ⁺¹ x 2ⁿ⁺¹.
 - ➤ Divide the board into 4 quadrants, each containing 2ⁿ x 2ⁿ squares.

By the induction hypothesis, the quadrant containing the missing square can be covered using L-shaped pieces.

What about the remaining three?

Mathematical Induction: Proof (cont')

Cover the center using one L-shaped piece.

Then apply the induction hypothesis to cover each individual quadrant using L-shaped pieces.

Inductive Step

Inductive step: for any positive integer i, if P(i) is true, then P(i+1) is true.

Another form of inductive step: for any positive integer i, if $P(1) \land P(2) \land ... \land P(i)$ is true, then P(i+1) is true.

Both forms of inductive step can lead to the same conclusion (i.e., P(n) is true for all n). However in some cases, the second form is easier to prove.

Example: Big O Notation

- Consider an algorithm A.
- Let f(n) be the number of steps required by an algorithm A when the input is of size n.
- When we way f(n) = O(n), what does it mean?
- What is O(n)? E.g., 66 n, 23n+1234, 100n, log n, ...
- Roughly speaking, f(n) = O(n) if f(n) is at most n multiplied by a constant.
- Example: MergeSort takes O(n log n) steps to sort n numbers.

Induction

- The following mathematical induction shows that $n^2 = O(n)$
- Basis step: n = 1, 1 = O(1)
- Induction step:

If
$$n^2 = O(n)$$
, then $(n+1)^2 = n^2 + 2n + 1 = O(n) + 2n + 1 = O(n)$

Big O Notation: Definition

In general, if a function $f(n) = O(n \log n)$, what does it mean?

- Asymptotically, f(n) is at most $n \log n$ multiplied by a constant. (E.g., $f(n) = 3 n \log n + 1000$).
- There exists a constant c such that for all n, $f(n) \le c n \log n$. $\exists c \forall n f(n) \le c n \log n$. (Too restricted!)
- There exists a constant c such that for all sufficiently large n,
 f(n) ≤ c n log n.

 $\exists c \exists n_o \forall n \text{ if } n > n_o \text{ then } f(n) \le c n \log n.$