

LINUX操作系统(双语)

双语课一课件内容中英混排

File-System Implementation

本讲内容

- ② 文件系统实现
 - ② 文件目录
 - ◎ 分配方法
 - ◎ 空闲空间管理
- @ 文件系统结构

文件系统实现

文件系统要实现什么?

文件系统要实现什么?

partition table

free blocks map

directory entry 1 directory entry 2 directory entry... directory entry n

File Control Block

- file name
- permission
- date&time
- owner/group/ACL
- file size
- pointer to file data

文件系统要实现什么?

partition table

free blocks map

directory entry 1
directory entry 2
directory entry...
directory entry n

- ◎ 文件目录
- ◎ 空间分配方法
- ◎ 空闲空间管理

File Control Block

- file name
- permission
- date&time
- owner/group/ACL
- file size
- pointer to file data

COMMON FILE SYSTEMS

- Many file systems are in use today, and most operating systems support more than one.
 - For example, most CD-ROMs are written in the ISO 9660 format, a standard format agreed on by CD-ROM manufacturers. In addition to removable-media file systems, each operating system has one or more disk-based file systems.
 - UNIX uses the UNIX file system (UFS), which is based on the Berkeley Fast File System (FFS).
 - Windows supports disk file-system formats of FAT, FAT32, and NTFS.
 - Although Linux supports over forty different file systems, the standard Linux file system is known as the extended file system, with the most common versions being ext3 and ext4.
- Another interesting project is the FUSE file system, which allows a user can add a new file system to a variety of operating systems and can use that file system to manage her files.

文件目录

文件控制块

- ② 文件系统通过文件控制块(File Control Blcok)来维护文件结构,FCB包含有关文件的信息,包括所有得、权限、文件内容的位置等。
- ② 文件目录用于组织文件,每个目录项对应一个FCB。
- ◎ 文件目录实现的关键
 - ☞ FCB与文件内容的关联方法
 - ◎ 在目录中"按名"搜索的效率

File Control Block

- file name
- permission
- date&time
- owner/group/ACL
- file size
- pointer to file data

INODES

- □ UFS中的FCB被称作索引结点inode,每个inode都有一个唯一的编号,包含的内容有:
 - The type of the file
 - The mode of the file (ACL)
 - The number of hard links to the file
 - The user ID of the owner of the file
 - The group ID to which the file belongs
 - The number of bytes in the file
 - An array of 15 disk-block addresses
 - The date and time the file was last accessed
 - The date and time the file was last modified
 - The date and time the file was created

inode

- permission
- date&time
- owner/group/ACL
- file size
- . . .
- an array of 15 diskblock address

INODES

- ☑ UFS中的FCB被称作索引结点inode,每个inode都有一个唯一的编号,包含的内容有:
 - The type of the file
 - The mode of the file (ACL)
 - The number of hard links to the file
 - The user ID of the owner of the file
 - The group ID to which the file belongs
 - The number of bytes in the file
 - An array of 15 disk-block addresses
 - The date and time the file was last accessed
 - The date and time the file was last modified
 - The date and time the file was created

inode

- permission
- date&time
- owner/group/ACL
- file size
- . . .
- an array of 15 diskblock address

file name

inode no.

UFS dentry

INODES区

directory

A.file	13
B.file	11
C.file	12

inode-12

- permission
- date&time
- owner/group/ACL
- file size
- . . .
- 61(disk-block address)

分配方法

分配方法

- ② 这里我们讨论如何给文件分配磁盘空间,常用 方法有三种:
 - ◎ 连续分配
 - ₩ 链接分配
 - ◎ 索引分配

连续分配

directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

- 每个文件在磁盘上占用连续的物理块
 - ◎ 优点
 - ₩ 缺点

链接分配

- ② 文件所占用的物理块分散在 磁盘的不同位置,通过指针 将它们链接起来。
 - ₾ 优点
 - ◎ 缺点

簇CLUSTER

☆ 簇(Cluster)指一组物理块的集合。如果以簇作为分配单位,可以节省指针占用的空间比例。

FILE ALLOCATION TABLE

② 文件分配表FAT是一个典型的链接分配方案,不过它没有在物理块或簇的尾部加入指针,而是用一张表来记录文件占用物理块号的顺序。

索引分配

- 》将文件占用的所有物理块 号按逻辑顺序保存在一张 索引表中,存有索引表的 物理块称索引块(index block)
 - ₾ 优点
 - ₩ 缺点

UFS的索引块

空闲空间管理

BIT MAP

- Prequently, the free-space list is implemented as a bit map or bit vector. Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.
- A bit map sample is following:

001111001111110001100000011100000 ...

LINKED LIST

Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to the first free block in a special location on the disk.

free-space list head

文件系统的实现工作

文件系统结构

LAYERED FILE SYSTEM

◎ 你发出一个读写A文件X位置数据 的请求,系统从目录中找到这个 文件并读出相应的FCB, 按照既有 的分配方案计算X位置所在的物理 块号、编制一个对该物理块号的 读写请求,然后发给磁盘控制 器。

VIRTUAL FILE SYSTEM

Lecture 18

The End

实践5 文件链接

硬链接和软链接

☞ 硬链接

◎ 软链接

□ 输入命令: ln-s file2 file2Softlink,为file1文件创建一个软链接(符号链接),使用ls-il命令观察这两个文件有什么联系