Mathematics for Neural Network implementation

Martin Lazo

April 2022

1 Notation

 \mathbf{X}

Features

\odot	Hadamard (element-wise) product
\mathbf{v}	Vector, vectors are denoted in lower case and bold
\mathbf{M}	Matrix, matrices are denoted in upper case and bold
\mathbf{v}_i	i th element of a vector ${f v}$
$\mathbf{M}_{i,j}$	Element in the <i>i</i> th row and <i>j</i> th column of a matrix M
$\mathbf{M}_{i,}$	i th row of a matrix ${f M}$
$\mathbf{M}_{,i}$	i th column of a matrix ${f M}$
\mathbf{o}_i	Vector which preserves only the <i>i</i> th element of a vector

$$\mathbf{o}_3 \mathbf{v} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = c$$

 \mathbf{O}_i Square matrix which preserves only the *i*th element of a vector

$$\mathbf{O}_3\mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$$

Hidden layers are indexed from 0 to n with n being the output layer and 0 being the input layer.

\mathbf{Y}	Labels
x	Features data point
\mathbf{y}	Labels data point
\mathbf{b}^m	Bias vector of the m th layer
\mathbf{W}^m	Weights matrix of the m th layer
ϕ^m	Activation function of the m th layer, applied element-wise
$\phi^{m'}$	Derivative of the activation function of the mth layer

2 Overview

Neural network output for input \mathbf{x} :

$$\hat{\mathbf{y}} = \phi^n(\mathbf{W}^n \phi^{n-1}(..\phi^0(\mathbf{W}^0 \mathbf{x} + \mathbf{b}^0)..) + \mathbf{b}^n)$$

Partial derivatives w.r.t. weights:

$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{W}_{i,j}^{m}} = \phi^{n\prime}(..) \odot .. \odot (\mathbf{W}^{m+2}(\phi^{m+1\prime}(..) \odot (\mathbf{W}^{m+1}(\mathbf{O}_{i}\phi^{m\prime}(..)\mathbf{o}_{j}\phi^{m-1}(..)))))
\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{W}_{i,j}^{0}} = \phi^{n\prime}(..) \odot .. \odot (\mathbf{W}^{2}(\phi^{1\prime}(..) \odot (\mathbf{W}^{1}(\mathbf{O}_{i}\phi^{0\prime}(..)\mathbf{x}_{j}))))
\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{W}_{i,j}^{n}} = \mathbf{O}_{i}\phi^{n\prime}(..)\mathbf{o}_{j}\phi^{n-1}(..)$$

Partial derivatives w.r.t. biases:

$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{b}_{i}^{m}} = \phi^{n'}(..) \odot .. \odot (\mathbf{W}^{m+2}(\phi^{m+1'}(..) \odot (\mathbf{W}^{m+1}(\mathbf{O}_{i}\phi^{m'}(..)))))
\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{b}_{i}^{0}} = \phi^{n'}(..) \odot .. \odot (\mathbf{W}^{2}(\phi^{1'}(..) \odot (\mathbf{W}^{1}(\mathbf{O}_{i}\phi^{0'}(..)))))
\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{b}_{i}^{n}} = \mathbf{O}_{i}\phi^{n'}(..)$$