1 Задача

a)
$$n = 10$$

Индекс безысходности: 0.75, 0.82, 1.12, -0.83, -0.14, -0.81, -0.1, 0.97, 0.34, 1.21

Число дедлайнов в ближайшие два дня: 2, 2, 3, 0, 0, 1, 1, 2, 0, 2

Индекс	Число	K	L	d	d^2
безысходности	дедлайнов			(K-L)	$ (K-L)^2 $
0,75	2	6	7,5	-1,5	2,25
0,82	2	7	7,5	-0,5	0,25
1,12	3	9	10	-1	1
-0,83	0	1	2	-1	1
-0,14	0	3	2	1	1
-0,81	1	2	4,5	-2,5	6,25
-0,1	1	4	4,5	-0,5	0,25
0,97	2	8	7,5	0,5	0,25
0,34	0	5	2	3	9
1,21	2	10	7,5	2,5	6,25

$$R_{\text{Спирмена}} = 1 - \frac{6 \cdot \sum_{i=1}^{n} d^2}{n(n^2 - 1)} = 1 - \frac{6 \cdot 27,5}{990} = 1 - \frac{165}{990} = 1 - 0,167 \approx 0,833$$

b) Уровень значимости: $\alpha = 1\% = 0,01$

 H_0 : признаки независимы (связи нет)

 H_1 : признаки не независимы (связь есть)

с)
$$z_{\text{набл}} = R_{\text{Спирмена}} \sqrt{n-1} = 0,833 \cdot 3 \approx 2,5$$

p-value =
$$2(1 - \Phi(z_{\text{набл}})) = 2(1 - \Phi(2, 5)) = 2(1 - 0, 9938) = 0,0124$$

Статистический вывод: 0,0124 > 0,01 (p-value $> \alpha$) \Rightarrow на имеющемся уровне значимости (1%) нет основания отвергнуть нулевую гипотезу \Rightarrow признаки независимы (связи нет)

Содержательный вывод: Между индексом безысходности и числом дедлайнов в ближашие два дня нет связи

2 Задача

а) H_0 : признаки независимы (связи нет)

 H_1 : признаки не независимы (связь есть)

	Да	Нет	
Городская	30	35	$n_{1.} = 65$
Сельская	60	30	$n_{2.} = 90$
	$n_{.1} = 90$	$n_{.2} = 65$	

b) Уровень значимости: $\alpha = 5\% = 0,05$

$$N = 155$$

$$\chi^2 = \frac{(n_{11} \cdot n_{22} - n_{12} \cdot n_{21})^2 \cdot N}{n_1 \cdot n_2 \cdot n_{11} \cdot n_{22}} = \frac{(30 \cdot 30 - 60 \cdot 35)^2 \cdot 155}{90 \cdot 90 \cdot 65 \cdot 65} \approx 6,52$$

p-value
$$P(|z| > \sqrt{6,52}) = 2(1 - \Phi(2,55)) = 2(1 - 0,9946) = 0,0108$$

Статистический вывод: 0,0108 < 0,05 (p-value $< \alpha$) \Rightarrow на имеющемся уровне значимости (5%) есть основания отвергнуть нулевую гипотезу \Rightarrow признаки не независимы (связь есть)

Содержательный вывод: Между умением плавать и местом рождения есть связь