NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2018-2019

MH1812 - DISCRETE MATHEMATICS

December 2018 TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **SEVEN** (7) questions and comprises **FOUR** (4) printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the end of each question.
- 3. Answer each question beginning on a **FRESH** page of the answer book.
- 4. This **IS NOT** an **OPEN BOOK** exam.
- 5. Candidates may use calculators. However, they should write down systematically the steps in the workings.

QUESTION 1.

(a) Prove that $\neg p \rightarrow \neg q$ and its inverse are not logically equivalent. (10 marks)

Solution: Truth values differ when p is false and q is true.

An alternative solution is to use the truth table.

(b) Prove that $(q \land (p \to \neg q)) \to \neg p$ is a tautology using propositional equivalence and the laws of logic. (10 marks)

Solution: $(q \land (p \rightarrow \neg q)) \rightarrow \neg p \equiv (q \land (\neg p \lor \neg q)) \rightarrow \neg p \equiv ((q \land \neg p) \lor (q \land \neg q)) \rightarrow \neg p \equiv (q \land \neg p) \rightarrow \neg p \equiv \neg (q \land \neg p) \lor \neg p \equiv (\neg q \lor p) \lor \neg p \equiv \neg q \lor (p \lor \neg p)$, which is always true.

QUESTION 2.

Prove that $\sum_{j=n}^{2n-1} (2j+1) = 3n^2$ for all positive integers n. (12 marks)

Solution: The basis step holds since $\sum_{j=1}^{1} (2j+1) = 3 = 3 \cdot 1^2$. Now assume that $\sum_{j=k}^{2k-1} (2j+1) = 3k^2$. It follows that $\sum_{j=k+1}^{2(k+1)-1} (2j+1) = \sum_{j=k}^{2k-1} (2j+1) - (2k+1) + (4k+1) + (4k+3) = 3k^2 + 6k + 3 = 3(k+1)^2$.

QUESTION 3.

Find the solution to the recurrence relation $a_n = a_{n-1} + 2n + 1$ with $a_0 = 2$.

(10 marks)

Solution: $a_n = a_{n-1} + 2n + 1 = a_{n-2} + 2((n-1)+n) + 2 = a_{n-3} + 2((n-2)+(n-1)+n) + 3 = a_{n-n} + 2(1+2+\dots(n-1)+n) + n = 2+n(n+1)+n = n^2+2n+2.$

QUESTION 4.

(a) x_1, x_2, \ldots, x_k are positive integers such that $\sum_{i=1}^k x_i = n$, for some positive integers k, n and $n \ge k$. How many distinct tuples of (x_1, x_2, \ldots, x_k) are there? (6 marks)

Solution: Assume there are n '1's, and we are to place k-1 separators to split the n '1's into k blocks, with the number of '1's in each block corresponding to x_i . Hence k-1 separators to be placed in n-1 possible positions, $\binom{n-1}{k-1}$.

(b) How many distinct tuples of $(x_1, x_2, ..., x_k)$ are there for the above question if $x_1, x_2, ..., x_k$ are non-negative integers, rather than positive integers?

(4 marks)

Solution: This corresponds to the above question with $x_i' = x_i + 1$ (so x_i' are positive numbers) and n' = n + k, hence $\binom{n+k-1}{k-1}$.

(c) How many bit strings contain exactly 5 '0's and 9 '1's if every '0' must be immediately followed by a '1'?

(4 marks)

Solution: This is an instance of the question above. The 5 '0's must be followed by '1's, hence there are 5 '01's, and extra 4 '1's (n=4), which are to be inserted into 5+1 places (k=6). $\binom{4+6-1}{6-1}=\binom{9}{5}$.

QUESTION 5.

Prove by the method of membership table that

$$\overline{(A-B)\cup(B-A)}=(A\cap B)\cup(\overline{A}\cap\overline{B}).$$

(14 marks)

Solution:

 $\mathrm{MH}1812$

A	$\mid B \mid$	A - B	B-A	$(A-B)\cup (B-A)$	$\overline{(A-B)\cup(B-A)}$	$(A \cap B)$	$\overline{A} \cap \overline{B}$	$(A \cap B) \cup (\overline{A} \cap \overline{B})$
0	0	0	0	0	1	0	1	1
0	1	0	1	1	0	0	0	0
1	0	1	0	1	0	0	0	0
1	1	0	0	0	1	1	0	1

It is easy to see the two columns for $\overline{(A-B)\cup(B-A)}$ and $\overline{(A\cap B)\cup(\overline{A}\cap\overline{B})}$ are identical.

QUESTION 6.

Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and define the relation R as follows: $\forall x, y \in A, x R y$ iff $3^x \equiv 3^y \mod 5$.

(a) Prove R is an equivalence relation.

(8 marks)

Solution: Reflexive: $\forall x \in A, 3^x - 3^x = 0 = 0 \times 5$, i.e., $3^x \equiv 3^x \mod 5$, hence x R x. Symmetric: $\forall x, y \in A$, if $(x, y) \in R$, then $3^x \equiv 3^y \mod 5$, $3^y \equiv 3^x \mod 5$, hence y R x

Transitive: $\forall x, y, z \in A$, if $3^x \equiv 3^y \mod 5$ and $3^y \equiv 3^z \mod 5$, then $3^x \equiv 3^z \mod 5$, i.e., x R z.

Hence, the relation is an equivalence relation.

(b) List all the equivalence classes and all the elements in each class. (8 marks)

Solution:

$$[1] = \{1, 5, 9\}$$

$$[2] = \{2, 6\}$$

$$[3] = \{3, 7\}$$

$$[0] = \{0, 4, 8\}$$

QUESTION 7.

(b) Find f^{-1} .

Define a function $f: D \to \mathbb{Z}$ by $f(x) = x^2 + 5$, where $D = \{-4, -3, -2, -1, 0\}$.

(a) Find the range of the function.

(8 marks)

Solution: $R = \{21, 14, 9, 6, 5\}.$

(6 marks)

Solution:
$$f^{-1}(x) = -\sqrt{x-5}$$
.

END OF PAPER