

DELPHION

Logout Workfiles Saved Searches

RESEARCH**PRODUCTS****INSIDE DELPHION**

My Account

Help

61324-2000800-10361

The Delphion Integrated View

Get Now:	<input type="checkbox"/> PDF <input type="checkbox"/> File History <input type="checkbox"/> Other choices
View:	<input type="checkbox"/> Expand Details <input type="checkbox"/> INPADOC <input type="checkbox"/> Jump to: <u>Top</u>
<input type="checkbox"/> Go to: <u>Derwent</u> <input type="checkbox"/> Email this to a friend	
Tools: Add to Work File: <input type="checkbox"/> Create new Work File <input type="checkbox"/> Add	

>Title: **EP0569802A1: Arylacetamides** [German][French]

Derwent Title:
New aryl-acetamide derivs. contg. pyrrolidino-methyl gp. - have high binding affinity for kappa receptors and are useful as analgesics, neuroprotective agents, etc. e.g. to treat cerebral oedema and CNS ischaemic states [Derwent Record]

Country: Country: EP European Patent Office (EPO)
 Kind: Kind: A1 Publ. of Application with search report i (See also: EP0569802B1)

Inventor: Inventor: Gottschlich, Rudolf, Dr.;
 Ackermann, Karl-August;
 Prücher, Helmut;
 Seyfried, Christoph, Dr.;
 Greiner, Hartmut, Dr.;
 Bartoszyk, Gerd;
 Mauler, Frank, Dr.;
 Stohrer, Manfred, Dr.;
 Barber Andrew, Dr.;

Assignee:

MERCK PATENT GmbH
 Corporate Tree data: Merck KGaA (Germany) (MERCKKG);
[News](#), [Profiles](#), [Stocks](#) and More about this company

Published / Filed: 1993-11-18 / 1993-05-01

Application Number: EP199300107103

IPC Code: Advanced: **A61K 31/17; A61K 31/40; A61K 31/4025; A61K 31/435; A61K 31/472; A61K 31/495; A61K 31/535; A61P 7/10; A61P 11/08; A61P 11/14; A61P 25/04; A61P 25/08; A61P 25/28; A61P 29/00; A61P 43/00; C07C 233/05; C07C 233/08; C07D 207/08; C07D 207/09; C07D 207/12; C07D 217/14; C07D 311/84; C07D 401/06; C07D 403/06; C07D 405/06; C07D 405/12; C07D 409/06; C07D 413/06; Core: **A61P 7/00; A61P 11/00; A61P 25/00; C07C 233/00; C07D 207/00; C07D 217/00; C07D 311/00; C07D 401/00; C07D 403/00; C07D 405/00; C07D 409/00; C07D 413/00; more...**; IPC-7: **A61K 31/35; A61K 31/40; A61K 31/47; C07D 207/12; C07D 217/06; C07D 217/14; C07D 295/12; C07D 311/84; C07D 401/06; C07D 405/06;****

• ECLA Code: C07D207/09; C07D207/12; C07D217/14; C07D311/84; C07D405/06+311+217; C07D405/12+311+207;

• Priority Number: 1992-05-09 DE1992004215213

• Abstract: Novel arylacetamides of the formula I in which Q, R₁, R₂ and R₃ have the meaning indicated in Patent Claim 1 exhibit analgesic and neuroprotective properties and bind with high affinity to kappa receptors. [German]

• INPADOC

Legal Status:

• Designated

Country:

• Family:

Show legal status actions

Get Now: Family Legal Status Report

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

Show 34 known family members

• First Claim:

Show all claims

Q

R⁴-CH(CH₂Z)-NA⁻,

R¹ Ar, Cycloalkyl mit 3-7 C-Atomen oder
Cycloalkyl-alk mit 4-8 C-Atomen,

R²

Ar,

R¹ und R² zusammen auch

R³

H, OH, OA oder A,

R⁴

A oder Phenyl, welches gegebenenfalls
ein- oder zweifach durch F, Cl, Br, I, OH,
OA, CF₃, NO₂, NH₂, NHA, NHCOA,
NHCO₂A oder NA₂ substituiert sein kann,

R⁵ und R⁶

jeweils unabhängig voneinander H, F, Cl,
Br, I, OH, OA, CF₃, NH₂, NHA, NA₂,
NHCOA, NHCONH₂, NO₂ oder
Methylenedioxy,

A

Alkyl mit 1-7 C-Atomen,

B

CH_2 , O, NH, NA, N-COOA oder
eine Bindung,

C ein ankondensiertes Ringsystem mit 3-5 C-Atomen, wobei gegebenenfalls ein C-Atom durch S, N oder O ersetzt sein kann und welches gegebenenfalls einmal oder zweifach durch F, Cl, Br, I, OH, OA, NH₂, NHA, NA₂, NH-COA, NA-COA oder NH-CO NH_2 substituiert sein kann,

D CH_2 , O, S, NH, NA, - $\text{CH}_2\text{-CH}_2$ -, -CH=CH-, - CH_2O -, - CH_2NH -, - CH_2NA - oder eine Bindung,

Z 1-Pyrrolidinyl, welches gegebenenfalls einfach durch OH, OA, O-COCH₃ oder CH₂OH substituiert sein kann,

Ar einen mono- oder bicyclischen aromatischen Rest, der gegebenenfalls ein N-, O- oder S-Atom enthalten kann und ein-, zwei- oder dreifach durch A, Hal, OH, OA, CF₃, NH₂, NHA, NA₂, NHCOA und/oder NHCONH₂ substituiert sein kann,

-alk einen Alkylrest mit 1-7 C-Atomen

und

n 1 oder 2

bedeuten,
sowie deren Salze.

Description
 Expand description

Die Erfindung betrifft neue Arylacetamide der Formel I

- + [Beispiel 1](#)
- + [Beispiel 2](#)
- + [Beispiel 3](#)
- + [Beispiel 4](#)
- + [Beispiel 5](#)
- + [Beispiel 6](#)
- + [Beispiel 7](#)
- + [Beispiel 8](#)
- + [Beispiel 9](#)
- + [Beispiel 10](#)
- + [Beispiel 11](#)
- + [Beispiel 12](#)

- + Beispiel A: Injektionsgläser
- + Beispiel B: Suppositorien
- + Beispiel C: Lösung
- + Beispiel D: Salbe
- + Beispiel E: Tabletten
- + Beispiel F: Dragees

Forward References:

[Go to Result Set: Forward references \(3\)](#)

Patent	Pub.Date	Inventor	Assignee	Title
 US6960612	2005-11-01	Kruse; Lawrence I.	Adolor Corporation	Kappa agonist compounds, pharmaceutical formulations and method of prevention and treatment of pruritus therewith
 US5837720	1998-11-17	Ito; Fumitaka	Pfizer Inc.	N-(2-(pyrrolidinyl-1)-1-phenethyl)-acetanilides as kappa receptor antagonists
 US5472961	1995-12-05	Gottschlich; Rudolf	Merck Patent Gesellschaft mit beschränkter Haftung	Acetamides

Other Abstract Info:

[Nominate this for the Gallery...](#)

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 569 802 A1**

⑫

EUROPÄISCHE PATENTANMELDUNG

㉑ Anmeldenummer: 93107103.9

㉑ Int. Cl. 5: **C07D 207/12, C07D 217/06,
C07D 217/14, C07D 295/12,
C07D 311/84, C07D 401/06,
C07D 405/06, A61K 31/40,
A61K 31/47, A61K 31/35**

㉓ Priorität: 09.05.92 DE 4215213

㉔ Veröffentlichungstag der Anmeldung:
18.11.93 Patentblatt 93/46

㉕ Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

㉖ Anmelder: MERCK PATENT GmbH
Postfach,
Frankfurter Strasse 250
D-64271 Darmstadt(DE)

㉗ Erfinder: Gottschlich, Rudolf, Dr.
Buchenweg 1
W-6109 Reinheim(DE)
Erfinder: Ackermann, Karl-August
Am Pfarrweiher 40
W-6105 Ober-Ramstadt(DE)
Erfinder: Prücher, Helmut

Königsbergerstrasse 9
W-6148 Heppenheim(DE)
Erligner: Seyfried, Christoph, Dr.
Mathildenstrasse 6
W-6104 Seehelm(DE)
Erligner: Greiner, Hartmut, Dr.
Dieburgerstrasse 218
W-6100 Darmstadt(DE)
Erligner: Bartoszyk, Gerd
Heinrich-Fulda-Weg 22
W-6100 Darmstadt(DE)
Erligner: Mauler, Frank, Dr.
Am Geisgalgen 2
W-6104 Seehelm(DE)
Erligner: Stohrer, Manfred, Dr.
Kreyssigstrasse 11
W-6500 Mainz 1(DE)
Erligner: Barber Andrew, Dr.
Rudolf-Diesel-Strasse 158
W-6108 Weiterstadt(DE)

㉘ Arylacetamide.

㉙ Neue Arylacetamide der Formel I

I

worin Q, R¹, R² und R³ die in Patentanspruch 1 angegebene Bedeutung haben,
zeigen analgetische und neuroprotektive Eigenschaften und binden mit hoher Affinität an Kappa-Rezeptoren.

EP 0 569 802 A1

Die Erfindung betrifft neue Arylacetamide der Formel I

I

10 worin
Q $\text{R}^4\text{-CH}(\text{CH}_2\text{Z})\text{-NA-}$,

R¹ Ar, Cycloalkyl mit 3-7 C-Atomen oder Cycloalkyl-alk mit 4-8 C-Atomen,
R² Ar,
R¹ und R² zusammen auch

40 R³ H, OH, OA oder A,
R⁴ A oder Phenyl, welches gegebenenfalls ein- oder zweifach durch F, Cl, Br, I, OH, OA, CF₃, NO₂, NH₂, NHA, NHCOA, NHSO₂A oder NA₂ substituiert sein kann,
R⁵ und R⁶ jeweils unabhängig voneinander H, F, Cl, Br, I, OH, OA, CF₃, NH₂, NHA, NA₂, NHCOA, NHCONH₂, NO₂ oder Methylendioxy,

45 A Alkyl mit 1-7 C-Atomen,
B CH₂, O, NH, NA, N-COA, N-COOA oder eine Bindung,
C ein ankondensiertes Ringsystem mit 3-5 C-Atomen, wobei gegebenenfalls ein C-Atom durch S, N oder O ersetzt sein kann und welches gegebenenfalls ein- oder zweifach durch F, Cl, Br, I, OH, OA, NH₂, NHA, NA₂, NH-COA, NA-COA oder NH-CONH₂ substituiert sein kann,

50 D CH₂, O, S, NH, NA, -CH₂-CH₂-, -CH=CH-, -CH₂O-, -CH₂NH-, -CH₂NA- oder eine Bindung,
Z 1-Pyrrolidinyl, welches gegebenenfalls einfach durch OH, OA O-COCH₃ oder CH₂OH substituiert sein kann,

55 Ar einen mono- oder bicyclischen aromatischen Rest, der gegebenenfalls ein N-, O- oder S-Atom enthalten kann und ein-, zwei- oder dreifach durch A, Hal, OH, OA, CF₃, NH₂, NHA, NA₂, NHCOA und/oder NHCONH₂ substituiert sein kann,
-alk einen Alkylenrest mit 1-7 C-Atomen

und

n = 1 oder 2

bedeuten,

sowie deren Salze.

5 Ähnliche Verbindungen sind in DE-A1-39 35 371 beschrieben.

Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.

Es wurde gefunden, daß die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze wertvolle pharmakologische Eigenschaften besitzen. Sie zeigen eine analgetische Wirkung und antagonisieren insbesondere die entzündungsbedingte Hyperalgesie. So wirken die Verbindungen im "Writhing Test" an Mäusen oder Ratten (Methode vgl. Siegmund et al., Proc. Soc. Exo. Biol. 95, (1957), 729-731). Die analgetische Wirkung läßt sich ferner im "Tail-Flick-Test" an Mäusen oder Ratten nachweisen (Methodik vgl. d'Amour und Smith, J. Pharmacol. Exp. Ther. 72, (1941), 74-79), ferner im "Hot plate test" (vgl. Schmauss und Yaksh, J. Pharmacol. Exp. Ther. 228, (1984), 1-12 und die dort zitierte Literatur). Besonders starke Wirkungen sind an Ratten im Modell der Carrageenin-induzierten Hyperalgesie (vgl. Bartoszyk und Wild, Neuroscience Letters 101 (1989) 95) zu beobachten. Dabei zeigen die Verbindungen keine oder nur geringe Neigung zu physischer Abhängigkeit. Außerdem treten antiinflammatorische, antiasthmatische, diuretische, antikonulsive, neuroprotektive und/oder antitussive Wirkungen auf, die ebenfalls nach hierfür geläufigen Methoden nachgewiesen werden können. Die Verbindungen zeigen eine hohe Affinität in bezug auf das Bindungsverhalten an kappa-Rezeptoren. Sie eignen sich ferner zum Schutz vor und zur Behandlung von Hirnödemen und Unterversorgungszuständen des Zentralnervensystems, vor allem Hypoxie.

Die Verbindungen können daher als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin verwendet werden. Ferner eignen sie sich als Zwischenprodukte zur Herstellung anderer Verbindungen mit wertvollen Eigenschaften.

25 Gegenstand der Erfindung sind Verbindungen der Formel I sowie ihre Salze.

Die Gruppe A steht für Alkyl mit 1, 2, 3, 4, 5, 6 oder 7 C-Atomen, insbesondere für Methyl oder Ethyl aber auch für Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl. Die Gruppe OA ist dementsprechend vorzugsweise Methoxy oder Ethoxy, ferner Propoxy, Isoproxy, Butoxy, Isobutoxy, sek.-Butoxy oder tert.-Butoxy, die Gruppe -NA- vorzugsweise N-Methyl-, die Gruppe -NHA Methyl-NH und die Gruppe -NA₂ N,N-Dimethylamino.

Dementsprechend haben die nachstehenden Gruppen die im folgenden genannten bevorzugten Bedeutungen:

-NH-CO-A: Acetamido, Propionamido;

-NA-CO-A: N-Methylacetamido, N-Methylpropionamido.

35 Ar ist bevorzugt unsubstituiertes Phenyl, ferner bevorzugt o-, m- oder p-Aminophenyl, weiterhin bevorzugt o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Chlorphenyl, o-, m- oder p-Trifluormethyl-phenyl. Unter den substituierten Phenylresten sind die in p-Stellung, aber auch die in m-Stellung bevorzugt.

Die Gruppe -alk bedeutet vorzugsweise -CH₂- oder -CH₂-CH₂-.

40 R¹ und R² sind jeweils unabhängig voneinander besonders bevorzugt Phenyl, ferner auch p-Fluorphenyl oder p-Chlorphenyl.

Ebenso können R¹ und R² vorzugsweise auch über ihre ortho-Positionen durch eine direkte Bindung oder über eine O- oder eine Methylenbrücke miteinander verbunden sein.

R³ bedeutet besonders bevorzugt H oder OH, ferner auch OA oder Methyl.

45 R⁴ bedeutet vorzugsweise Phenyl, p-Hydroxyphenyl, p-Methoxyphenyl, ferner p-F-, p-Cl- oder p-Trifluormethylphenyl, aber auch Alkyl, wie z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl oder Pentyl.

R⁵ und R⁶ bedeuten vorzugsweise jeweils unabhängig voneinander Wasserstoff, F oder Cl, ferner OH oder Methoxy.

50 Der Rest Q besitzt vorzugsweise die folgenden Bedeutungen:

N-Methyl-N-(1-phenyl-2-pyrrolidino-ethyl-amino;

N-Methyl-N-[1-phenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

N-Methyl-N-(1-p-hydroxyphenyl-2-pyrrolidino-ethyl-amino;

N-Methyl-N-[1-p-hydroxyphenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

55 N-Methyl-N-[1-(p-methoxyphenyl)-2-pyrrolidino-ethyl]-amino;

N-Methyl-N-[1-(p-methoxyphenyl)-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-amino;

N-Methyl-N-[2-(3-hydroxy-pyrrolidino)-3-methyl-butyl]-amino;

N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-amino;
 N-Methyl-N-[2-(3-hydroxy-pyrrolidino)-4-methyl-pentyl]-amino;

2-(Pyrrolidino-methyl)-piperidino;

2-(3-Hydroxy-pyrrolidino-methyl)-piperidino;

5 2-(Pyrrolidino-methyl)-4-ethoxycarbonyl-piperazino;

2-(3-Hydroxy-pyrrolidino-methyl)-4-ethoxycarbonyl-piperazino;

2-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin-1-yl;

2-(3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin-1-yl;

2-(Pyrrolidino-methyl)-pyrrolidino oder

10 2-(3-Hydroxy-pyrrolidino-methyl)-pyrrolidino.

Z bedeutet Pyrrolidino, welches vorzugsweise unsubstituiert oder in 3-Position durch OH substituiert ist; ferner aber auch durch OA, -O-COCH₃ oder -CH₂OH substituiert sein kann.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die nachstehenden Formeln Ia bis Ih ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in Ia R¹ und R² jeweils Phenyl bedeuten;

in Ib R¹ und R² jeweils p-Fluor- oder p-Chlorphenyl bedeuten;

20 in Ic R¹ und R² jeweils Phenyl und R³ H bedeuten;

in Id R¹ und R² jeweils Phenyl und R³ Methyl bedeuten;

in Ie R¹ und R² jeweils p-Fluor- oder p-Chlorphenyl und R³ H bedeuten;

in If R¹ und R² zusammen

bedeuten;

25 in Ig R¹ und R² zusammen

bedeuten;

in Ih R¹ und R² zusammen die in If oder Ig angegebene Bedeutung haben und R³ H bedeutet

Weiterhin sind bevorzugt Verbindungen der Formeln I', sowie Ia' bis Ih', die den Formeln I bzw. Ia bis Ih entsprechen, worin jedoch jeweils zusätzlich Q

30 (a) N-Methyl-N-(1-phenyl-2-pyrrolidino-ethyl)-amino;

(b) N-Methyl-N-[1-phenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

(c) N-Methyl-N-[1-(p-hydroxyphenyl)-2-pyrrolidino-ethyl]-amino;

(d) N-Methyl-N-[1-(p-hydroxyphenyl)-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

(e) N-Methyl-N-[1-(p-methoxyphenyl)-2-pyrrolidino-ethyl]-amino;

35 (f) N-Methyl-N-[1-(p-methoxyphenyl)-2-(3-hydroxy-pyrrolidino)-ethyl]-amino;

(g) N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-amino;

(h) N-Methyl-N-[2-(3-hydroxy-pyrrolidino)-3-methyl-butyl]-amino;

(i) N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-amino;

(k) N-Methyl-N-[2-(3-hydroxy-pyrrolidino)-4-methyl-pentyl]-amino;

40 (l) 2-(Pyrrolidino-methyl)-piperidino;

(m) 2-(3-Hydroxy-pyrrolidino-methyl)-piperidino;

(n) 2-(Pyrrolidino-methyl)-4-ethoxycarbonyl-piperazino;

(o) 2-(3-Hydroxy-pyrrolidino-methyl)-4-ethoxycarbonyl-piperazino;

(p) 2-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin-1-yl;

45 (q) 2-(3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin-1-yl;

(r) 2-(Pyrrolidino-methyl)-pyrrolidino oder

(s) 2-(3-Hydroxy-pyrrolidino-methyl)-pyrrolidino bedeutet.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung von Arylacetamiden der Formel I gemäß Anspruch 1 sowie von deren Salzen, dadurch gekennzeichnet, daß man eine Verbindung der Formel

50 II

Q-H II

worin Q die bei der Formel I angegebene Bedeutung hat mit einer Verbindung der Formel III

55

worin

10 X Cl, Br, OH, OA, NH₂, -N₃, Acyloxy, Ar-alkoxy mit 7-11 C-Atomen oder Aroyloxy mit 6-10 C-Atomen
bedeutet

und

R¹, R² und R³ die bei Formel I angegebenen Bedeutungen haben, umsetzt,

oder daß man in einer Verbindung der Formel I einen Rest Q, R¹, R² und/oder R³ in einen anderen Rest Q,

15 R¹, R² und/oder R³ umwandelt,

oder daß man eine sonst der Formel I entsprechende Verbindung, die jedoch anstelle eines oder mehrerer Wasserstoffatome eine oder mehrere solvolysierbare Gruppe(n) enthält, mit einem solvolysierenden Mittel behandelt,

und/oder daß man eine basische Verbindung der Formel I durch Behandeln mit einer Säure in eines ihrer 20 Salze umwandelt.

Die Verbindungen der Formel I werden in der Regel nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier 25 nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe sind in der Regel bekannt, oder sie können in Analogie zu bekannten Stoffen nach an sich bekannten Verfahren hergestellt werden. Sie können gewünschtenfalls auch *in situ* gebildet werden, derart, daß man aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt. Andererseits ist es möglich, die Reaktion stufenweise durchzuführen, wobei man weitere 30 Zwischenprodukte isolieren kann.

Die einzelnen Verfahrensvarianten werden im folgenden näher erläutert.

Die Verbindungen der Formel I sind bevorzugt herstellbar durch Reaktion der Verbindungen der Formel II mit Carbonsäuren der Formel III oder ihren funktionellen Derivaten. Als funktionelle Derivate der Verbindungen der Formel III eignen sich insbesondere die entsprechenden Ester, vor allem die Methyl- oder Ethylester, die Halogenide, Anhydride oder Azide; die Chloride sind bevorzugt.

Verbindungen der Formel II sind beispielsweise erhältlich durch Umsetzung von 1-(Chlormethyl)-1,2,3,4-tetrahydroisochinolin mit Pyrrolidin oder 3-Hydroxypyrrolidino-ethan, von 1-Amino-1-phenyl-2-pyrrolidino-ethan mit Methyliodid, von 1-N-Methylamino-1-phenyl-2-halogen-ethan (Halogen entspricht vorzugsweise Cl od. Br) mit Pyrrolidin oder 3-Hydroxypyrrolidin oder von 1-Halogen-2-N-methylamino-4-methyl-pentan mit Pyrrolidin oder dessen 3-Hydroxyderivat.

Ferner kann man Verbindungen der Formel II auch durch Umsetzung von 2-Halogemethyliden-derivaten des Piperazins oder Piperidins mit Pyrrolidin oder 3-Hydroxypyrrolidin erhalten.

Typische Verbindungen der Formel III sind z.B. Diphenylacetylchlorid, -bromid und -azid, Diphenylessigsäure-methyl- und -ethylester, (Diphenylessigsäure)-anhydrid, Diphenylacetonitril sowie die 45 entsprechenden Derivate der Di-(p-Cl-phenyl)-u. Di-(p-F-phenyl)-essigsäure sowie die entsprechenden Derivate der Hydroxy-diphenylessigsäure bzw. der 2,2-Diphenylpropionsäure.

Die Umsetzung von II mit III bzw. III-Derivaten gelingt zweckmäßig in Anwesenheit oder Abwesenheit eines inerten organischen Lösungsmittels, z.B. eines halogenierten Kohlenwasserstoffs wie Dichlormethan, Chloroform oder Trichlorethen, eines Alkohols wie Methanol, Ethanol oder Butanol, eines Ethers wie 50 Tetrahydrofuran (THF) oder Dioxan, eines Amids wie Dimethylformamid (DMF), eines Sulfoxids wie Dimethylsulfoxid (DMSO) und/oder in Gegenwart oder Abwesenheit eines Kondensationsmittels, z.B. einer Base, bei Temperaturen zwischen -20 und 200°, vorzugsweise 0 und 100°. Als Basen eignen sich z.B. Alkalimetallhydroxide wie NaOH oder KOH, Alkalimetallcarbonate wie Na₂CO₃ oder K₂CO₃, tertiäre Amine wie Triethylamin oder Pyridin. Als Lösungsmittel ist Dichlormethan, als Base Triethylamin besonders bevorzugt.

Ferner kann man in einer Verbindung der Formel I einen oder mehrere der Reste Q, R¹, R² und/oder R³ in einen oder mehrere andere Reste Q, R¹, R² und/oder R³ umwandeln.

So kann man Ethergruppen (z.B. OA-Gruppen) unter Bildung von OH-Gruppen spalten, z.B. durch Behandeln mit Dimethylsulfid-Bortribromid-Komplex, z.B. in Toluol, THF oder DMSO, oder durch Verschmelzen mit Pyridin- oder Anilinhydrohalogeniden, vorzugsweise Pyridinhydrochlorid, bei etwa 150-250°, oder durch Behandeln mit Diisobutylaluminumhydrid in Toluol bei etwa 0-110°.

5 Weiterhin kann man OH-Gruppen verethern, z.B. indem man zunächst die entsprechenden Alkalimetalle (z.B. Na- oder K-)alkoholate, -phenolate oder Salze herstellt und diese mit entsprechenden Halogenverbindungen umsetzt, z.B. mit Alkylhalogeniden wie Methylchlorid, -bromid oder -iodid, Chlor- oder Bromacetamid, zweckmäßig in Gegenwart eines der oben angegebenen Lösungsmittel bei Temperaturen zwischen 0 und 100°.

10 Nitrogruppen können zu Aminogruppen reduziert werden, zweckmäßig durch katalytische Hydrierung unter den oben angegebenen Bedingungen, z.B. mit Raney-Ni im Methanol oder Ethanol bei 15-40° und Normaldruck.

Aminogruppen können acyliert werden, z.B. mit Säurechloriden wie Acetyl-, Methansulfonyl-, Oxalsäure- oder Bernsteinsäurehalbester-chlorid, zweckmäßig in inerten Lösungsmitteln wie Dichlormethan bei 15-40°.

15 Ferner können Aminogruppen nach an sich bekannten Methoden alkyliert werden.

Eine Base der Formel I kann weiterhin mit einer Säure in das zugehörige Säureadditionssalz überführt werden. Für diese Umsetzung kommen Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoff-säuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure,

20 Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Benzoësäure, Salicylsäure, 2- oder 3-Phenylpropionsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder

25 Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalinmono- und disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Aufreinigung der Verbindungen der Formel I verwendet werden.

Die freien Basen der Formel I können, falls gewünscht, aus ihren Salzen durch Behandlung mit starken Basen wie Natrium- oder Kaliumhydroxid, Natrium- oder Kaliumcarbonat in Freiheit gesetzt werden.

30 Die Verbindungen der Formel I enthalten ein oder mehrere chirale Zentren und können daher in racemischer oder in optisch-aktiver Form vorliegen. Erhaltene Racemate können nach an sich bekannten Methoden mechanisch oder chemisch in die Enantiomeren getrennt werden. Vorzugsweise werden aus dem racemischen Gemisch durch Umsetzung mit einem optisch-aktiven Trennmittel Diastereomere gebildet. Als Trennmittel eignen sich z.B. optisch aktive Säuren, wie die D- und L-Formen von Weinsäure, Diacetylweinsäure, Dibenzoylweinsäure, Mandelsäure, Äpfelsäure, Milchsäure oder die verschiedenen optischaktiven Camphersulfonsäuren wie β-Camphersulfonsäure.

Vorteilhaft ist auch eine Enantiomerentrennung mit Hilfe einer mit einem optisch aktiven Trennmittel (z.B. Dinitro-benzoyl-phenyl-glycin) gefüllten Säule; als Laufmittel eignet sich z.B. ein Gemisch Hexan/Isopropanol/Acetonitril, z.B. im Volumenverhältnis 82:15:3.

40 Natürlich ist es auch möglich, optisch-aktive Verbindungen der Formel I nach den oben beschriebenen Methoden zu erhalten, indem man Ausgangsstoffe (z.B. solche der Formel II) verwendet, die bereits optisch-aktiv sind.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf 45 nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

Gegenstand der Erfindung sind ferner Mittel, insbesondere pharmazeutische Zubereitungen, enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze.

50 Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die

erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und/oder Aromastoffe enthalten. Sie können, falls erwünscht, auch einen oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.

Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können bei der Bekämpfung von Krankheiten, insbesondere von Schmerzzuständen aber auch zur Minderung der Folgeschäden nach einer Ischämie verwendet werden.

Dabei werden die erfundungsgemäßen Substanzen in der Regel in Analogie zu bekannten Analgetika verabreicht, vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden bestimmten Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabfolgungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. Die Verbindungen der Formel I neigen bei Erhitzen zur Zersetzung, so daß keine eindeutigen Schmelzpunkte ermittelt werden können und dafür ersetztweise die entsprechenden R_f-Werte (Dünnschichtchromatographie) angegeben werden. In den nachfolgenden Beispielen bedeutet "Übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser oder verdünnte Natronlauge hinzu, extrahiert mit Dichlormethan, trennt ab, trocknet die organische Phase mit Natriumsulfat, filtriert, dampft ein und reinigt durch Chromatographie an Kieselgel und/oder durch Kristallisation.

HCl' = Hydrochlorid. Rf = Rf-Wert auf Dünnschicht-Kieselgel 60 F₂₅₄ (E. Merck, Art.-Nr. 5715).
 $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}$ 9:1
 $[\alpha] = [\alpha]^{20}_B$, c = 1 in Methanol.

Beispiel 1

Eine Lösung von 2,3 g Diphenylessigsäurechlorid in 100 ml THF wird bei Raumtemperatur mit 2,2 g (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan [erhältlich aus (1S)-1-Amino-1-phenyl-2-chlorethan durch Umsetzung mit (3S)-3-Hydroxypyrrolidin und anschließender Methylierung mit Methyliodid], gelöst in 20 ml THF, tropfenweise versetzt und 10 Minuten gerührt. Nach üblicher Aufarbeitung erhält man N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid, Rf: 0,60.

Analog erhält man durch Umsetzung von Diphenylessigsäure-chlorid mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid, Rf: 0,61;
mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-diphenylacetamid, Rf: 0,71;
mit (1S)-1-Methyl-amino-1-(o-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(o-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin:
2-Diphenylacetyl-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin, Rf: 0,50;
mit 2-(Pyrrolidino-methyl)-pyrrolidin:
(2S)-1-Diphenylacetyl-2-(pyrrolidino-methyl)-pyrrolidin, Rf: 0,20;
mit N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-amin:
N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-2,2-diphenylacetamid, Rf: 0,61;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:
N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-diphenylacetamid, Rf: 0,64;
mit N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-amin:
N-Methyl-N-[2-pyrrolidino-3-methyl-butyl]-2,2-diphenylacetamid;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-diphenylacetamid;
mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenylacetamid;

- mit 1-((3S)-3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin:
 2-Diphenylacetyl-1-((3S)-3-hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydro-isochinolin;
- mit (1S)-1-Methyl-amino-1(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[1S]-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
- 5 mit (1S)-1-Methyl-amino-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino) -ethan:
 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-(3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
- mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
- mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
- 10 mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
- mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-difluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid.

15

Beispiel 2

- Analog Beispiel 1 erhält man durch Umsetzung von Bis-(p-Fluor-phenyl)-essigsäure
- mit (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 20 H-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-(3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
 25 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin:
 30 2-Bis-(p-fluor-phenyl)-acetyl-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydro-isochinolin;
- mit 2-(Pyrrolidino-methyl)-pyrrolidin:
 (2S)-1-Bis-(p-fluor-phenyl)-acetyl-2-(pyrrolidino-methyl)-pyrrolidin;
- mit N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-amin:
 N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-2,2-bis-(p-fluor-phenyl)-acetamid;
- 35 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-amin:
 N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
 40 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
 45 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit 1-((3S)-3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin:
 2-[Bis-(p-fluor-phenyl)-acetyl]-1-((3S)-3-hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydro-isochinolin;
- mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[1S]-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-
- 50 acetamid;
- mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-
- 55 phenyl)-acetamid;
- mit (1S)-1-Methyl-amino-1-p-methyl-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;

- mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 5 N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
 mit (1S)-1-Methyl-aminol-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid.

¹⁰
Beispiel 3

- Analog Beispiel.1 erhält man durch Umsetzung von Bis-(p-chlor-phenyl)-essigsäure mit (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 15 N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
 20 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
 25 2-[Bis-(p-chlor-phenyl)-acetyl]-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydro-isoquinolin;
 mit 2-(Pyrrolidino-methyl)-pyrrolidin:
 (2S)-1-Bis-(p-chlor-phenyl)-acetyl-2-(pyrrolidino-methyl)-pyrrolidin;
 mit N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-amin: N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-2,2-bis-(p-chlor-phenyl)-acetamid;
 30 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit N-Methyl-N-[2-pyrrolidino-methyl-butyl]-amin: N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
 35 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
 40 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit 1-(3S)-3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
 45 2-[Bis-(p-chlor-phenyl)-acetyl]-1-(3S)-3-hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydro-isoquinolin;
 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethan:
 50 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-aminol-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 55 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-

- acetamid;
 mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 5 mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid.

Beispiel 4

- 10 Eine Lösung von 4,6 g (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan [erhältlich aus (1S)-1-Amino-1-phenyl-2-chlorethan durch Umsetzung mit (3S)-3-Hydroxypyrrolidin und anschließende Methylierung mit Methyljodid] in 200 ml Dichlormethan wird mit 30 ml Trimethylamin-Lösung (33%ig) versetzt. Anschließend tropft man unter Rühren eine Lösung von 1 Äquivalent 9-Fluoren-carbonsäurechlorid in 200 ml Dichlormethan hinzu, röhrt 2Std. bei Raumtemperatur und erhält nach üblicher Aufarbeitung N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid, Rf: 0,61.
 Analog erhält man durch Umsetzung von 9-Fluoren-carbonsäure-chlorid
 mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino]-ethan: N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-9-fluoren-carboxamid, Rf: 0,67;
- 20 mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
 2-(9-Fluoren-carbonyl)-1-(pyrrolidinomethyl)-1,2,3,4-tetrahydroisoquinolin, Rf: 0,77;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-pyrrolidino-ethan:
 25 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-pyrrolidino-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-ethoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-ethoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit 1-[(3S)-3-Hydroxy-pyrrolidino-methyl]-1,2,3,4-tetrahydroisoquinolin:
 2-(9-Fluoren-carbonyl)-1-[(3S)-3-Hydroxy-pyrrolidino-methyl]-1,2,3,4-tetrahydroisoquinolin;
- 30 mit (2S)-2-(Pyrrolidino-methyl)-pyrrolidin:
 (2S)-1-(9-Fluoren-carbonyl)-2-(pyrrolidino-methyl)-pyrrolidin;
 mit N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-amin:
 N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-9-fluoren-carboxamid;
 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:
 35 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-9-fluoren-carboxamid;
 mit N-Methyl-N-(2-(pyrrolidino-3-methyl-butyl)-amin:
 N-Methyl-N-[2-(1-pyrrolidino-3-methyl)-butyl]-9-fluoren--carboxamid;
 mit N-Methyl-N-(2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl)-amin:
 N-Methyl-N-(2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl)-9-fluoren-carboxamid;
- 40 mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 45 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-9-fluoren-carboxamid;
- 50 mit (1S)-1-Methyl-amino-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 55 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:

N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-fluorencarboxamid.

Beispiel 5

- 5 Analog Beispiel 4 erhält man durch Umsetzung von 9-Xanthencarbonsäure-chlorid mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-9-xanthen-carboxamid, Rf: 0,77;
 mit (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid, Rf: 0,64;
- 10 mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin:
 2-(9-Xanthen-carbonyl)-1-(pyrrolidinomethyl)-1,2,3,4-tetrahydroisochinolin;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-pyrrolidino-ethyl]-9-xanthencarboxamid;
- 15 mit (1S)-1-Methyl-amino-1-(p-ethoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-ethoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit 1-[3(S)-3-Hydroxy-pyrrolidino-methyl]-1,2,3,4-tetrahydro-isochinolin:
 2-(9-Xanthen-carbonyl)-1-[(3S)-3-hydroxy-pyrrolidino-methyl]-1,2,3,4-tetrahydroisochinolin;
- 20 mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydro-isochinolin:
 2-(9-Xanthen-carbonyl)-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydroisochinolin, Rf: 0,76;
 mit (2S)-2-(Pyrrolidino-methyl)-pyrrolidin:
 (2S)-1-(9-Xanthen-carbonyl)-2-(pyrrolidino-methyl)-pyrrolidin;
 mit N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-amin;
 25 N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-9-xanthen-carboxamid;
 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-9-xanthencarboxamid;
 mit N-Methyl-N-(2-pyrrolidino-3-methyl-butyl)-amin: M-Methyl-N-(2-(pyrrolidino-3-methyl-butyl)-9-xanthen-carboxamid;
- 30 mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
 35 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
- 40 mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
- 45 mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
- 50 mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid;
 mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-9-xanthencarboxamid.

Beispiel 6

- 55 Analog Beispiel 1 erhält man durch Umsetzung von 2,2-Di-phenyl-propionsäurechlorid mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
 mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:

- N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
5 2-(2,2-Diphenylpropionyl)-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin, Rf: 0,65;
mit 2-(Pyrrolidino-methyl)-pyrrolidin:
(2S)-1-(2,2-Diphenylpropionyl)-2-(pyrrolidino-methyl)-pyrrolidin;
mit N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-amin;
N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-2,2-diphenyl-propionamid;
10 mit N-Methyl-N-[2-(1-((3S)-hydroxy-pyrrolidino)-4-methyl)-pentyl]-amin:
N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-diphenyl-propionamid;
mit N-Methyl-N-(2-(pyrrolidino-3-methyl-butyl)-amin:
N-Methyl-N-2-(pyrrolidino-3-methyl)-butyl)-2,2-diphenyl-propionamid;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
15 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-diphenyl-propionamid;
mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-pyrrolidino-ethan:
N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenylpropionamid
20 mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit 1-((3S)-3-Hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
2-2-Diphenylpropionyl)-1-((3S)-3-hydroxy-pyrrolidino-methyl)-1,2,3,4-tetrahydro-isoquinolin;
mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
25 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethan:
N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
30 N-Methyl-N-[(1S)-1-(p-trifluormethyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methyl-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
35 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid;
mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylpropionamid.
40

Beispiel 7

- Analog Beispiel 1 erhält man durch Umsetzung von 2,2-Bis-(p-fluor-phenyl)-propionsäure
mit (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
45 N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-propionamid;
mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-
propionamid;
mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
50 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-propionamid;
mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-
propionamid;
mit 1-(Pyrrolidino-methyl)-1,2,3,4-tetrahydroisoquinolin:
55 2-[2,2-Bis-(p-fluor-phenyl)-propionyl]-1-(pyrrolidino-methyl)-1,2,3,4-tetrahydro-isoquinolin;
mit N-Methyl-N-(2-(pyrrolidino-4-methyl-pentyl)-amin:
N-Methyl-N-2-(pyrrolidino-4-methyl-pentyl)-2,2-bis-(p-fluor-phenyl)-propionamid;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-amin:

N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-bis-(p-fluor-phenyl)-propionamid;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-bis-(p-fluor-phenyl)--propionamid;
mit (1S)-1-Methyl-amino-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
5 N-Methyl-N-[(1S)-1-(p-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-
propionamid;
mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N [(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-fluor-phenyl)-pro-
pionamid.

10 Beispiel 8

Analog Beispiel 1 erhält man durch Umsetzung von 2,2-Bis-(p-chlor-phenyl) propionylchlorid
mit (1S)-1-Methyl-amino-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
15 N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-di-(p-chlor-phenyl)-propionamid;
mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-di-(p-chlor-phenyl)-
propionamid;
mit (1S)-1-Methyl-amino-1-phenyl-2-pyrrolidino-ethan:
20 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-di-(p-chlor-phenyl)-propionamid;
mit (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-di-(p-chlor-phenyl)-
propionamid;
mit N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-amin:
25 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-bis(p-chlor-phenyl)--propionamid;
mit (1S)-1-Methyl-amino-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-
propionamid;
mit (1S)-1-Methyl-amino-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
30 N-Methyl-N-[(1S)-1-(p-amino-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-
propionamid;
mit (1S)-1-Methyl-amino-1-(p-chlor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-
propionamid;
35 mit (1S)-1-Methyl-amino-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan:
N-Methyl-N-[(1S)-1-(2,4-di-fluor-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-
propionamid.

40 Beispiel 9

Man löst 4,3 g Bis-(p-chlorphenyl)-essigsäurehydrazid [z.B. erhältlich aus dem entsprechenden Ethylester durch Umsetzung mit Hydrazin] in 200 ml stark verdünnter Salzsäure, tropft unter Rühren bei 0° eine Lösung von 2,0 g NaNO₂ in 40 ml Wasser hinzu, röhrt 30 Min. und extrahiert das gebildete Azid mit Dichlormethan. Nach Trocknen über MgSO₄ und Konzentrieren auf 50 ml wird das so erhaltene Reagenz zu einer Lösung von (1S)-1-Methyl-amino-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethan und 4 ml Triethylamin in 100 ml Dichlormethan zugetropft. Man röhrt noch 2 Std. bei 20° und erhält nach üblicher Aufarbeitung N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid.

50 Beispiel 10

Man hydriert eine Lösung von 1 g N-Methyl-N-[(1S)-1-(p-benzyloxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-acetamid in 25 ml Ethylacetat an 0,5 g 5%iger Pd-C bei 20° und 1 bar bis zum Stillstand der Wasserstoffaufnahme, filtriert, dampft ein und erhält N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-di-phenyl-acetamid.
Analog erhält man aus den entsprechenden o- und m-Benzylxy-derivaten:
N-Methyl-N-[(1S)-1-(o-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-acetamid;
N-Methyl-N-[(1S)-1-(m-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-acetamid;

- N-Methyl-N-[(1S)-1-(o-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenyl-acetamid;
 N-Methyl-N-[(1S)-1-(m-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenyl-acetamid;
 N-Methyl-N-[(1S)-1-(o-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 N-Methyl-N-[(1S)-1-(m-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 5 N-Methyl-N-[(1S)-1-(o-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid;
 N-Methyl-N-[(1S)-1-(m-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid.
 Analog erhält man aus den entsprechenden p-Benzoyloxy-derivaten:
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenyl-acetamid;
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-chlor-phenyl)-acetamid;
 10 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-pyrrolidino-ethyl]-2,2-bis-(p-fluor-phenyl)-acetamid.

Beispiel 11

- Man löst 3,2 g N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid in 150 ml
 15 Dichlormethan tropft unter Rühren 1 Äquivalent Methyliodid, gelöst in 10 ml Dichlormethan, hinzu,
 konzentriert die Lösung und erhält nach üblicher Aufarbeitung N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-
 pyrrolidino)-ethyl]-2,2-diphenylacetamid, Rf: 0,60.
 Analog erhält man durch Umsetzung mit Methyliodid
 aus
 20 N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid: N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid, Rf: 0,61;
 aus
 N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-diphenylacetamid: N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-
 ethyl]-2,2-diphenylacetamid, Rf: 0,71;
 25 aus
 N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)ethyl]-2,2-diphenylacetamid: N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)ethyl]-2,2-diphenylacetamid, Rf: 0,61.

Beispiel 12

- 30 Analog Beispiel 10 erhält man durch Hydrierung von N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-
 pyrrolidino)-ethyl]-2,2-di-phenyl-2-benzoyloxy-acetamid:
 N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-di-phenyl-2-hydroxy-acetamid.
 Analog erhält man durch Hydrierung der entsprechenden 2,2-Diphenyl-2-benzoyloxy-acetamide:
 35 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-2-hydroxy-
 acetamid;
 N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino-ethyl]-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-2-hydroxy-
 acetamid;
 40 N-Methyl-N-(2-pyrrolidino-4-methyl-pentyl)-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-4-methyl-pentyl]-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-(2-(pyrrolidino-3-methyl-butyl)-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-[2-((3S)-hydroxy-pyrrolidino)-3-methyl-butyl]-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-[(1S)-1-(p-hydroxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-2-hydroxy-
 45 acetamid;
 N-Methyl-N-[(1S)-1-(p-chlor-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenyl-2-hydroxy-acetamid;
 N-Methyl-N-[(1S)-1-(p-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-2-hydroxy-
 acetamid;
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-((3S)-3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenyl-2-hydroxy-
 50 acetamid;
 N-Methyl-N-[(1S)-1-(2,4-di-methoxy-phenyl)-2-pyrrolidino-ethyl]-2,2-diphenyl-2-hydroxy-acetamid.

Die nachstehenden Beispiele betreffen pharmazeutische Zubereitungen.

Beispiel A: Injektionsgläser

- 55 Eine Lösung von 100 g N-Methyl-N-[1-phenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-diphenylessigsäureamid und 5 g Dinatrium-hydrogenphosphat in 3 l zweifach destilliertem Wasser wird mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril

verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

Beispiel B: Suppositorien

- Man schmilzt ein Gemisch von 20 g 2-(2,2-Diphenyl-propionyl)-1-(1-pyrrolidinylmethyl)-1,2,3,4-tetrahydroisoquinolin mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und lässt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

- 10** Man bereitet eine Lösung aus 1 g N-Methyl-N-[(1S)-(4-methoxy-phenyl)-2-((3S)-3-hydroxypyrrolidino)-ethyl]-2,2-diphenylacetamid, 9,38 g NaH₂PO₄ • 2 H₂O, 28,48 g Na₂HPO₄ • 12 H₂O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

- Man mischt 500 mg N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxypyrrolidino)-ethyl]-2,2-diphenylacetamid mit 99.5 g Vaseline unter aseptischen Bedingungen.

- Ein Gemisch von 1 kg N-Methyl-N-[(1S)-1-phenyl-2-((3S)-hydroxy-pyrrolidino)-ethyl]-9-fluoren-carboxamid, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verarbeitet, derart, daß jede Tablette 10 mg Wirkstoff enthält.

Beispiel E: Dragoes

- Analog Beispiel E werden Tabletten gepr st, die anschlie end in  ublicher Weise mit einem  berzug aus Saccharose, Kartoffelst rke, Talk, Tragant und Farbstoff  berzogen werden.

Patentansprüche

1. Arylacetamide der Formel I

5 R¹ Ar, Cycloalkyl mit 3-7 C-Atomen oder Cycloalkyl-alk mit 4-8 C-Atomen,
 R² Ar,
 R¹ und R² zusammen auch

10

15 R³ H, OH, OA oder A,
 R⁴ A oder Phenyl, welches gegebenenfalls ein- oder zweifach durch F, Cl, Br, I, OH, OA, CF₃, NO₂, NH₂, NHA, NHCOA, NSO₂A oder NA₂ substituiert sein kann,
 R⁵ und R⁶ jeweils unabhängig voneinander H, F, Cl, Br, I, OH, OA, CF₃, NH₂, NHA, NA₂, NHCOA, NHCONH₂, NO₂ oder Methylendioxy,
 A Alkyl mit 1-7 C-Atomen,
 B CH₂, O, NH, NA, N-COA, N-COOA oder eine Bindung,
 C ein ankondensiertes Ringsystem mit 3-5 C-Atomen, wobei gegebenenfalls ein C-Atom
 durch S, N oder O ersetzt sein kann und welches gegebenenfalls ein- oder zweifach
 durch F, Cl, Br, I, OH, OA, NH₂, NHA, NA₂, NH-COA, NA-COA oder NH-CONH₂
 substituiert sein kann,
 D CH₂, O, S, NH, NA, -CH₂-CH₂-, -CH=CH-, -CH₂O-, -CH₂NH-, -CH₂NA- oder eine
 Bindung,
 Z 1-Pyrrolidinyl, welches gegebenenfalls einfach durch OH, OA, O-COCH₃ oder CH₂OH
 substituiert sein kann,
 Ar einen mono- oder bicyclischen aromatischen Rest, der gegebenenfalls ein N-, O- oder
 S-Atom enthalten kann und ein-, zwei- oder dreifach durch A, Hal, OH, OA, CF₃, NH₂,
 NHA, NA₂, NHCOA und/oder NHCONH₂ substituiert sein kann,
 -alk einen Alkylenrest mit 1-7 C-Atomen
 und
 n 1 oder 2
 35 bedeuten,
 sowie deren Salze.

2.

- 40 a) N-Methyl-N-[1-phenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-2,2-diphenylacetamid;
 b) 2-(2,2-Diphenylpropionyl)-1-(1-pyrrolidinylmethyl)-1,2,3,4-tetrahydroisochinolin;
 c) N-Methyl-N-[(1S)-1-(4-methoxyphenyl)-2-((3S)-3-hydroxypyrrolidino)-ethyl]-2,2-diphenylacetamid;
 d) N-Methyl-N-[(1S)-1-phenyl-2-((3S)-3-hydroxypyrrolidino)-ethyl]-2,2-diphenylacetamid;
 e) N-Methyl-N-[(1S)-1-phenyl-2-((3S)-hydroxypyrrolidino)-ethyl]-9-fluoren-carboxamid;
 f) N-Methyl-N-[(1S)-1-phenyl-2-pyrrolidino]-ethyl-2,2-di-(4-fluorophenyl)-acetamid;
 g) N-Methyl-N-[1-(2-methylpropyl)-2-pyrrolidino-ethyl]-2,2-diphenylacetamid;
 h) N-Methyl-N-[1-phenyl-2-(3-hydroxy-pyrrolidino)-ethyl]-2,2-bis-(4-fluorophenyl)-acetamid.

45

3. Verfahren zur Herstellung eines Arylacetamids der Formel I nach Anspruch 1, dadurch gekennzeichnet,
 daß man eine Verbindung der Formel II

50

Q-H II,

worin Q die in Anspruch 1 angegebene Bedeutung hat,
 mit einer Verbindung der Formel III

55

worin

10 X Cl, Br, OH, OA, NH₂, N₃, Acyloxy, Ar-alkoxy mit 7-11 C-Atomen oder Aroyloxy mit 6-10 C-Atomen bedeutet

und

R¹, R² und R³ die angegebenen Bedeutungen haben,

umsetzt,

15 oder daß man in einer Verbindung der Formel I nach Anspruch 1 einen Rest Q, R¹, R² und/oder R³ in einen anderen Rest Q, R¹, R² und/oder R³ umwandelt,

oder daß man eine sonst der Formel I entsprechende Verbindung, die jedoch anstelle eines oder mehrerer Wasserstoffatome eine oder mehrere solvolysierbare Gruppe(n) enthält, mit einem solvolysierenden Mittel behandelt,

20 und/oder daß, man eine basische Verbindung der Formel I durch Behandeln mit einer Säure in eines ihrer Salze umwandelt.

4. Verfahren zur Herstellung einer pharmazeutischen Zubereitung, dadurch gekennzeichnet, daß man eine Verbindung der Formel I gemäß Anspruch 1 und/oder eines ihrer physiologisch unbedenklichen Salze zusammen mit mindestens einem festen, flüssigen oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Darreichungsform bringt.

25 5. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel I, gemäß Anspruch 1, und/oder einem ihrer physiologisch unbedenklichen Salze.

30 6. Verwendung einer Verbindung der Formel I gemäß Anspruch 1 und/oder eines ihrer physiologisch unbedenklichen Salze bei der Bekämpfung von Krankheiten.

35 7. Verwendung einer Verbindung der Formel I gemäß Anspruch 1 und/oder eines ihrer physiologisch unbedenklichen Salze zur Herstellung von Arzneimitteln.

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 93 10 7103

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betritt Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
A	EP-A-0 374 756 (MERCK PATENT GMBH) * Ansprüche 1,3-8; Beispiele *	1,3-7	C07D207/12 C07D217/06 C07D217/14 C07D295/12
D	& DE-A-3 935 371 ---		C07D311/84 C07D401/06 C07D405/06
A	EP-A-0 483 580 (MERCK PATENT GMBH) * Beispiel 1; Beispiele A-D; Ansprüche *	1,3-7	A61K31/40 A61K31/47 A61K31/35
A	WO-A-9 108 206 (DR. LO. ZAMBELETTI S.P.A.) * Ansprüche; Tabelle II *	1,3-7	
A	EP-A-0 330 467 (GLAXO GROUP LTD.) * Seite 4, Zeile 6 - Seite 5, Zeile 41; Ansprüche; Beispiele 1,20 *	1,3-7	
A	EP-A-0 232 989 (DR. LO. ZAMBELETTI S.P.A.) * Ansprüche; Tabellen 1,2 *	1,3-7	
A	WO-A-9 108 205 (DR. LO. ZAMBELETTI S.P.A.) * Ansprüche; Tabelle II *	1,3-7	
A	US-A-4 192 883 (H. COUSSE ET AL.) * Beispiele 1,2,5 *	1,3	RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
A	FR-A-2 421 891 (PIERRE FABRE S.A.) * Seite 2, Reaktionsschema *	1,3	C07D
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchort	Abschlußdatum der Recherche	Prüfer	
BERLIN	09 AUGUST 1993	HAS C.	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelddatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet			
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie			
A : technologischer Hintergrund			
O : nichtschriftliche Offenbarung			
P : Zwischenliteratur			