ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СП6ГУ)

Образовательная программа бакалавриата "Математика"

Отчет о практике

на тему

Эргодические свойства процессов кристаллизации

Выполнил студент 4 курса бакалавриата группа 21.Б02-мкн Югай Александр Германович

Научный руководитель: доктор физико-математических наук, Давыдов Юрий Александрович

 ${
m Cahkt-} \Pi$ етербург 2024

Содержание

Краткий обзор	3
. Введение	3
2. Предположения о процессах рождения и роста	3
2.1. Процесс рождения	3
2.2. Процесс роста	4
3. Абсолютная регулярность	4
4. Основной результат	5
Список литературы	6

Краткий обзор

В работе изучаются оценки коэффициента абсолютной регулярности для процессов кристаллизации, введенных Колмогоровым [2]. Была улучшена нижняя оценка [1].

1. Введение

Процесс кристаллизации, который мы рассматриваем здесь, имеет дело с центрами кристаллизации $g=(x_g,t_g)$, которые появляются в случайные моменты времени t_g в случайном месте x_g . Процесс рождения \mathcal{N} - это точечный процесс Пуассона на $\mathbb{R}^d \times \mathbb{R}^+$ с мерой интенсивности, обозначаемой Λ . Как только появляются центры кристаллизации, кристаллы начинают расти, если их местоположение еще не занято другим кристаллом, и когда два кристалла встречаются, рост прекращается в точках соприкосновения. Существует множество способов описать процесс роста кристаллов. Первый подход заключается в рассмотрении случайных множеств (называемых состояниями кристаллизации), которые соответствуют доле пространства, занимаемого кристаллами в данный момент времени. В этом случае кристаллизация изучается с помощью теории точечных процессов. Другой способ описать рост кристалла - вывести выражение для скорости роста из характерных свойств локальной среды в пространстве состояний. Можно рассмотреть для зародыша $g \in \mathbb{R}^d \times \mathbb{R}^+$ и точки $x \in \mathbb{R}^d$ время $A_g(x)$, при котором x достигается свободным кристаллом, связанным с зародышем g. Затем процесс кристаллизации характеризуется случайным полем ξ , задающим для местоположения $x \in \mathbb{R}^d$ время кристаллизации:

$$\xi(x) = \inf_{g \in \mathcal{N}} A_g(x)$$

Далее мы будем изучать процессы кристализации через поле ξ . Будем также предполагать, что процесс рождения однороден по координате. Это условие выражается в равенстве для меры интенсивности пуассоновского процесса:

$$\Lambda = \lambda^d \times m$$

где λ^d — мера Лебега на \mathbb{R}^d , а m - мера на \mathbb{R}^+ конечная на ограниченных борелевских множествах. Этот процесс стационарен и далее мы будем оценивать коэффицент равномерной регулярности этого процесса.

2. ПРЕДПОЛОЖЕНИЯ О ПРОЦЕССАХ РОЖДЕНИЯ И РОСТА

2.1. Процесс рождения. Центры кристаллизации рождаются в соответствии с пуассоновским точечным процессом на $E = \mathbb{R}^d \times \mathbb{R}^+$ обозначаемом \mathcal{N} . То есть центры кристаллизации - это случайные точки $g = (x_g, t_g)$ в $\mathbb{R}^d \times \mathbb{R}^+$, где x_g местоположение в пространстве \mathbb{R}^d и t_g это время рождения на временных осях \mathbb{R}^+ . Поскольку мера Лебега инвариантна к трансляции, \mathbb{R}^d , мы имеем, что \mathcal{N} однороден в пространстве, и достаточно рассмотреть множества вокруг начала координат. Таким образом, для любого времени t мы вводим так называемый причинный конус:

$$K_t = \{ g \in E \mid A_g(0) \le t \}$$

который состоит из всех возможных центров кристаллизации, которые могут захватить источник до истечения времени t. Мера $\Lambda(K_t)$ причинного конуса K_t обозначается за F(t).

2.2. **Процесс роста.** Мы говорим, что кристалл является свободным кристаллом, если он происходит из центра кристаллизации, родившегося в месте, которое на момент его рождения еще не было занято другими кристаллами. Мы связываем с каждым центром кристаллизации g в E функцию A_g :

$$\begin{array}{cccc} A_g: & \mathbb{R}^d & \to & \mathbb{R}^+ \\ & x & \mapsto & A_g(x) \end{array}$$

где $A_g(x)$ это время, когда кристалл, относящийся к центру кристаллизации g и считающийся свободным, достигает точки x. Как следствие, свободный кристалл в момент времени t определяется набором

$$C_a(t) = \{x \mid A_a(x) \le t\}.$$

Далее мы сделаем несколько предположений относительно семейства свободных кристаллов $\{C_g, g \in \mathcal{N}\}$ и семейства функций $\{A_g, g \in \mathcal{N}\}$. При необходимости мы также уточним связь между допущениями и ростом кристаллов.

Мы предполагаем, что для любого центра кристаллизации $g=(x_g,t_g)$ и $t>t_g$ выполнено:

$$C_g(t) = x_g \oplus (t - t_g)K$$

где K is а выпуклое тело (компактное множество с непустой внутренностью), и обозначает суммирование по Минковскому множеств A и B:

$$A \oplus B = \{x + y \mid x \in A, y \in B\}.$$

Легко видеть, что, причинный конус K_t имеет следующую структуру: его горизонтальный участок $K_t(s)$ на уровне $s, 0 \le s \le t$, представляет собой множество C(0,ts), симметричное множеству C(0,ts). Следовательно

$$F(t) = \Lambda(K_t) = \lambda^d(K) \int_0^t (t - s)^d m(ds)$$

3. Абсолютная регулярность

Для подмножества T из \mathbb{R}^d , мы обозначаем через \mathcal{F}_T σ -поле порожденное случайными величинами $\xi(x)$ для всех x в T. Теперь рассмотрим два непересекающихся множества T_1 и T_2 в \mathbb{R}^d и определим абсолютный коэффициент регулярности для σ -поля \mathcal{F}_{T_1} и \mathcal{F}_{T_2} как:

$$\beta(T_1, T_2) = \|\mathcal{P}_{T_1 \cup T_2} - \mathcal{P}_{T_1} \times \mathcal{P}_{T_2}\|_{var}$$

где $\|\mu\|_{var}$ общая норма вариации знаковой меры μ и \mathcal{P}_T распределение ограничения $\xi_{|T}$ как элемента $\mathcal{C}(T)$ непрерывных вещественно-значных функций на Т. Если $T_1 \cap T_2 = \emptyset$, обозначим за $\mathcal{C}(T_1 \cup T_2)$ которое совпадает с $\mathcal{C}(T_1) \times \mathcal{C}(T_2)$.

Коэффициент сильного смешивания определяется следующим образом:

$$\alpha(T_1, T_2) = \sup_{\substack{A \in \mathcal{F}_{T_1} \\ B \in \mathcal{F}_{T_2}}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$

Процесс ξ называется абсолютно регулярным (соответственно α -перемешиванием), если коэффициент абсолютной регулярности (соответственно коэффициент сильного перемешивания) стремится к нулю, когда расстояние между T_1 и T_2 стремится к бесконечности, причем T_1 и T_2 принадлежат определенному классу множеств.

Хорошо известно, что

$$\alpha(T_1, T_2) \le \frac{1}{2}\beta(T_1, T_2)$$

, так что абсолютная регулярность процесса ξ влечет α -перемешивание.

В случае d=1, обычно выбирают $T_1=(-\infty,0]$ и $T_2=[r,+\infty)$ в случае $d\geq 2$, выбор более вариативен. В статье [1] для процесса кристализации ξ приводится оценка коэффициента сильной регулярности:

$$\left| e^{-2F\left(\frac{r}{\rho}\right)} - e^{-F\left(\frac{(1+\rho)}{\rho}\right)} \right| \le \beta(r) \le 8e^{-F\left(\frac{r}{2}\right)}$$

где $\rho \in \mathbb{R}$.

4. Основной результат

В предыдущих предположениях верен следующий результат

Теорема 1.
$$\beta(r) \ge 2e^{-F(\frac{r}{2})}$$

Доказательство. Рассмотрим $A = \{\xi(0) \notin (a,b)\}; B = \{\xi(r) \notin (a,b)\}.$ Ясно, что

$$\beta(r) \ge 2|\mathbf{P}(A \cap B) - \mathbf{P}(A)\mathbf{P}(B)|$$

Так как ξ стационарный мы получаем, что

$$\mathbf{P}(A) = \mathbf{P}(B) = \mathbf{P}\{\xi(0) < a\} + \mathbf{P}\{\xi(r) > b\} = \mathbf{P}\{\xi(0) < a\} + \mathbf{P}\{\xi(0) > b\} = e^{-F(b)} + 1 - e^{-F(a)}$$
$$\mathbf{P}(A)\mathbf{P}(B) = \left(1 - \left(e^{-F(a)} - e^{-F(b)}\right)\right)^2 = 1 - 2\left(e^{-F(a)} - e^{-F(b)}\right) + \left(e^{-F(a)} - e^{-F(b)}\right)^2$$

Зафиксируем $\rho < \alpha < 2$. Положим $a = \frac{r}{\alpha}, b = \frac{r}{\alpha}$

Для вычисления $\mathbf{P}(A\cap B)$, заметим, что искомая вероятность на картинке, это вероятность того, что центры кристализации не попали в темно-серую область, которую обозначим за Z_1 . За Z_2 для удобства обозначим светло-серую область. Тогда по формуле включений исключений

$$\mathbf{P}(\mathcal{N} \cap Z_1 \neq \emptyset) = \mathbf{P}\left(\xi(0) < \frac{(1+\rho)}{\rho}r\right) - \mathbf{P}(\mathcal{N} \cap Z_2 \neq \emptyset) - 2\mathbf{P}\left(\xi(0) < \frac{r}{\alpha}\right) + \mathbf{P}\left(\xi(0) < \frac{r}{\alpha} - \frac{r}{2}\right) = \mathbf{P}\left(\xi(0) < \frac{r}{\alpha}\right) + \mathbf{P}\left(\xi$$

$$=1-e^{-F(\frac{(1+\rho)}{\rho}r)}-2(1-e^{-F(\frac{r}{\alpha})})+1-e^{-F(\frac{r}{\alpha}-\frac{r}{2})}-\mathbf{P}(\mathcal{N}\cap Z_2\neq\emptyset)$$

 $\mathbf{P}(\mathcal{N} \cap Z_2 \neq \emptyset)$ посчитаем аналогично по формуле включений-исключений:

$$\mathbf{P}(\mathcal{N} \cap Z_2 \neq \emptyset) = \mathbf{P}\left(\xi(0) < \frac{(1+\rho)}{\rho}r\right) - 2\mathbf{P}\left(\xi(0) < \frac{r}{\rho}\right) + \mathbf{P}\left(\xi(0) < \frac{r}{2}\right) = 1 - e^{-F(\frac{(1+\rho)}{\rho}r)} - 2(1 - e^{-F(\frac{r}{\rho})}) + 1 - e^{-F(\frac{r}{2})}$$

Суммируя, получаем

$$\mathbf{P}(\mathcal{N} \cap Z_1 \neq \emptyset) = 2e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\alpha} - \frac{r}{2})} - 2e^{F(\frac{r}{\rho})} + e^{-F(\frac{r}{2})}$$

 $\mathbf{P}(A\cap B)) = \mathbf{P}(\mathcal{N}\cap Z_1 = \emptyset) = 1 - \mathbf{P}(\mathcal{N}\cap Z_1 \neq \emptyset) = 1 - 2e^{-F(\frac{r}{\alpha})} + e^{-F(\frac{r}{\alpha} - \frac{r}{2})} + 2e^{F(\frac{r}{\rho})} - e^{-F(\frac{r}{2})}$ Теперь соберем все и оценим $\beta(r)$

$$\beta(r) \ge 2|\mathbf{P}(A \cap B) - \mathbf{P}(A)\mathbf{P}(B)| = 2|2e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\alpha} - \frac{r}{2})} - 2e^{F(\frac{r}{\rho})} + e^{-F(\frac{r}{2})} - 2e^{F(\frac{r}{\rho})} + e^{-F(\frac{r}{2})} - 2e^{F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\alpha})} + e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}$$

Так как мы выбрали α и ρ произвольно, то устремим α к ρ и получим

$$\beta(r) \ge 2|e^{-F(\frac{r}{2})} - e^{-F(\frac{r}{\rho} - \frac{r}{2})}|$$

Теперь устремим ρ к 0. Тогда $F(\frac{r}{\rho}-\frac{r}{2})\longrightarrow\infty$ и $e^{-F(\frac{r}{\rho}-\frac{r}{2})}\longrightarrow0$. Тогда получили оценку $\beta(r)>2e^{-F(\frac{r}{2})}$

Список литературы

- [1] Yu. Davydov, A. Illig, Ergodic properties of crystallization processes, Journal of Mathematical Sciences (2009), 163(4):375-381.
- [2] A. N. Kolmogorov, Statistical theory of crystallization of metals, Bull. Acad. Sci. USSR Mat. Ser. 1 (1937) pp. 355-359.