Эконометрика, 2020-2021, 2 модуль Семинары 6-7 30.11.20, 7.12.20 для Группы Э_Б2018_Э_3 Семинарист О.А.Демидова

Мультиколлинеарность данных. Метод главных компонент

- 1) Признаком мультиколлинеарности служит:
 - 1. маленькие t-статистики при R2, близком к 1
 - 2. близкое к 0 значение коэффициента множественной детерминации
 - 3. значительные изменения в оценках коэффициентов регрессии при небольших изменениях в данных
 - 4. близкие к 0 значения коэффициентов корреляции регрессоров
 - 5. все ответы верны
- 2) Оцененная с помощью МНК зависимость заработной платы индивида EARNINGS от его возраста AGE, опыта EXP, пола MALE, длительности обучения S, длительности обучения матери SM имеет вид (в скобках стандартные отклонения коэффициентов):

$$EA\hat{R}N = -24 - 0.099 AGE + 2.49 S + 0.26 SM + 0.46 EXP + 6.23 MALE, R^2 = 0.247$$

Были оценены также вспомогательные регрессии:

$$\begin{split} A\hat{G}E &= -.007 + 0.53AGE - 0.6S + 0.23SM + 1.23MALE, R^2 = 0.2, \\ \hat{S} &= 8.47 + 0.095AGE + 0.4SM - 0.2EXP + 0.12MALE, R^2 = 0.25, \\ S\hat{M} &= 6.16 - 0.045AGE + 0.42S + 0.08EXP + 0.42MALE, R^2 = 0.18, \\ E\hat{X}P &= -.07 + 0.53AGE - 0.6S + 0.23SM + 1.23MALE, R^2 = 0.2, \end{split}$$

VIF для переменной EXP равен .

Ответ. 1.25

3) При применении к модели, результаты оценки которой приведены ниже,

EARNINGS	Coef.	Std. Err.	t	P> t	[95% Cont	f. Interval
S AGE Agesq EXP ETHHISP ETHBLACK MALE _cons	2.578227 -10.70493 .1300605 .4429137 -1.078255 -4.014172 6.364055 193.7202	.2288185 9.211662 .1125515 .1442633 2.268688 2.152185 1.111968 187.6859	11.27 -1.16 1.16 3.07 -0.48 -1.87 5.72 1.03	0.000 0.246 0.248 0.002 0.635 0.063 0.000	2.128729 -28.80062 0910395 .159518 -5.534941 -8.241996 4.179668 -174.9761	3.027726 7.390769 .3511605 .7263094 3.378432 .2136528 8.548442 562.4165

. vif

1/VIF	VIF	Variable
0.000708 0.000709 0.778114 0.875122 0.962602 0.966488 0.983851	1411.96 1411.13 1.29 1.14 1.04 1.03	AGE Agesq EXP S ETHBLACK MALE ETHHISP
	404.09	Mean VIF

метода последовательного исключения, на ближайшем шаге из уравнения регрессии будет удалена переменная

- 1) S 2) AGE 3) EXPSQ 4) EXP 5) ETHWHITE 6)ETHHISP 7) FEMALE 8) ни одна из перечисленных
- 4) Первой главной компонентой системы показателей $X_1,...,X_k$ называется такая линейная комбинация этих показателей
- 1. в которой коэффициент при X_1 равен 1 2. которая обладает наименьшей дисперсией 3. которая обладает наибольшей дисперсией 4. которая ортогональна всем X_j , j = 1,...,k

5) (Д.А.Борзых, Б.Б.Демешев, задача 7.4)

Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g- для Крокодила Гены, вектор h- для Чебурашки и вектор x- для пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $c\hat{o}r(g,h)=-0.9$. Гена и Чебурашка собирали независимо от пионеров, поэтому $c\hat{o}r(g,x)=0$, $c\hat{o}r(h,x)=0$. Если регрессоры g,h,x центрировать и нормировать, то получится матрица \tilde{X} .

- 1) Найдите параметр обусловленности матрицы $\widetilde{X}\widetilde{X}$.
- 2) Вычислите одну или две главные компоненты (выразите их через векторстолбцы матрицы \widetilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров.

3. Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите оценки коэффициентов регрессии $y = \beta_1 + \beta_2 g + \beta_3 h + \beta_4 x + \varepsilon$ через оценки коэффициентов регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.

Otbet.
$$(\widetilde{X}_1 - \widetilde{X}_2)/\sqrt{2}; \quad \widetilde{X}_3$$

6) (Демешев, Борзых, 7.13)

Известно, что выборочная корреляция между переменными x и z равна 0.9.

- 1. Найдите коэффициенты VIF для x и z в регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$.
- 2. В каких пределах могут лежать коэффициенты VIF для x и z в регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$?
- 7) (Демешев, Борзых, 7.11)

Эконометресса Алевтина перешла от исходных регрессоров к трём главным компонентам, z_1 , z_2 и z_3 . И далее посчитала коэффициенты вздутия дисперсии, VIF_j , для главных компонент. Чему они оказались равны?

Проблемы мультиколлинеарности при моделировании продаж одежды

В файле clothing (STATA) содержатся данные о продажах одежды в 400 немецких магазинах одежды.

Переменные:

tsales – среднегодовые продажи в гульденах,

sales - продажи в расчете на квадратный метр,

margin – маржинальная валовая прибыль,

nown – количество собственников (менеджеров),

nfull – количество полностью занятых,

npart - количество частично занятых,

naux – количество временно работающих,

hoursw - общее число отработанных часов,

hourspw – количество отработанных часов в расчете на одного работающего,

inv1 – капиталовложения в помещения,

inv2 - капиталовложения в автоматизацию,

ssize - размер магазина в м²,

start – год открытия магазина.

- 1) Оцените зависимость среднегодовых продаж (переменная tsales) или продаж в расчете на квадратный метр (sales) или маржинальной валовой прибыли (margin) от всех остальных переменных.
- 2) Проверьте адекватность регрессии. Если регрессия адекватна, то переходите к следующим пунктам.
- 3) Рассчитайте VIF-ы. Существует ли для построенной регрессии проблема мультиколлинеарности?

- 4) Выберите факторы, которые должны быть исключены из уравнения регрессии, используя метод пошагового исключения незначимых переменных.
- 5) Выберите факторы, которые должны быть включены в уравнение регрессии, используя метод пошагового включения переменных.
- 6) Сравните результаты, полученные в пунктах 1, 4, 5. В качестве показателя качества подгонки регрессии используйте коэффициент множественной детерминации, скорректированный на число степеней свободы. Дайте экономическую интерпретацию полученным результатам.

Методические рекомендации по выполнению упражнения в пакете STATA 1) Для оценки, например, параметров уравнения регрессии $sales = \beta_1 + \beta_2 nown + \beta_3 nfull + \beta_4 npart + \beta_5 naux + \beta_6 hoursw + \beta_7 hourspw + \beta_8 inv1 + \beta_9 inv2 + \beta_{10} ssize + \beta_{11} start + \varepsilon$

наберите в командном окне

reg sales nown nfull npart naux hoursw hourspw inv1 inv2 ssize start

2) Для нахождения VIFов после оценки уравнения регрессии необходимо набрать команду vif

и воспользоваться выданной таблицей..

- 3) Для применения метода пошагового исключения незначимых переменных из уравнения регрессии, наберите в командном окне
- stepwise, pr(0.1): reg имя зависимой переменной имена независимых переменных Выбранный в скобках уровень значимости 0.1 можно изменить.
- 4) Для применения метода пошагового включения переменных в уравнение регрессии, наберите в командном окне

stepwise, py(0.1): reg имя зависимой переменной имена независимых переменных Выбранный в скобках уровень значимости 0.1 можно изменить.

LASSO и Ridge оценки

- 1) Используя данные файла Dougherty, оцените LASSO регрессию с зависимой переменной EARNING.
- 2) Найдите оптимальное значение параметра регуляризации с помощью кросс-валидации.
- 3) Постройте графики оценок коэффициентов при выбранных факторов при различных значениях параметра регуляризации.
- 4) Какие из оценок коэффициентов отличны от нуля при оптимальном значении параметра регуляризации?

Команды в статистическом пакете STATA

```
lasso linear EARNINGS S MALE и т.д.
cvplot
lassocoef
coefpath
coefpath, lineopts(lwidth(thick)) legend(on position(3) cols(1)) xsize(4.2) xunits(rlnlambda)
xline(надо вписать конкретное оптимальное значение параметра регуляризации)
```

Прогнозирование по регрессионной модели

1. На основании 5 наблюдений получена МНК оценка уравнения регрессии $\hat{Y}_i = 1.56 + 0.21 X_i \text{ и оценка остаточной дисперсии } \hat{\sigma}_{\varepsilon}^2 = 0.04 \text{ . Матрица наблюдений регрессоров имеет вид: } X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 6 & 8 \end{pmatrix}'.$

Построить 95% доверительный интервал для прогноза, если прогнозное значение X=2.

2. На основании наблюдений получена МНК оценка уравнения регрессии $\hat{Y} = 0.2Z + 0.3W \text{ и оценка дисперсии ошибок } \hat{\sigma}_{\varepsilon}^2 = 0.04 \text{ .}$

Матрица наблюдений регрессоров имеет вид: $X' = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & 5 & 6 \end{pmatrix}$.

Ошибки имеют нормальное распределение. Постройте 95% доверительный интервал для индивидуального прогноза в точке Z = -2, W = 5.