

Figure 1

Figure 2

Sheet 2 of 11

Title: APPARATUS AND METHOD FOR COMPOSING HIGH DENSITY MATERIALS onto TARGET SUBSTRATES BY A RAPID SEQUENCE
Inventor: Roger O. WILLIAMS
Application No.: To Be Assigned
Docket No.: 514542001500

410 3
400

416. 4A

Title: APPARATUS AND METHOD FOR COMPOSING HIGH DENSITY MATERIALS onto TARGET SUBSTRATES BY A RAPID SEQUENCE Application No.: To Be Assigned
Inventor: Roger O. WILLIAMS
Docket No.: 514542001500

FIG 5

FIG. 6

FIG. 9A

Nc	Nr	Run	C _{TAin}		C _{TAm}		C _{TBm}		C _{TBn}		C _{TAm}		C _{TBm}	
			N.A.	X	N.A.	X	N.A.	X	N.A.	X	N.A.	X	N.A.	X
20	X	1.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	1.0	X
20	X	2.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	3.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	4.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	6.0	N.A.	X	5.4	X	2.2	X	5.4	X	2.4	X	2.0	X
20	X	7.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	8.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	9.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	10.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	12.0	N.A.	X	1.8	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	14.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	16.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	18.0	1.8	X	1.6	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	19.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	20.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	21.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	24.0	1.8	X	2.1	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	26.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	28.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	31.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	33.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	36.0	1.8	X	3.2	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	38.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	40.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	43.2	N.A.	X	4.3	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	48.0	1.8	X	5.2	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	50.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	52.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	55.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	57.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	60.0	1.8	X	5.4	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	62.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	64.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	67.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	69.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	72.0	1.8	X	6.4	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	74.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	76.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	79.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	81.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	84.0	N.A.	X	7.5	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	86.4	N.A.	X	8.6	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	88.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	91.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	93.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	96.0	1.8	X	8.6	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	100.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	103.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	105.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	108.0	1.8	X	9.7	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	110.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	112.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	115.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	117.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	120.0	1.8	X	10.0	X	2.2	X	N.A.	X	2.4	X	2.0	X
20	X	122.4	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	124.8	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	127.2	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	129.6	N.A.	X	N.A.	X	N.A.	X	N.A.	X	2.4	X	2.0	X
20	X	132.0	1.8	X	11.8	X	2.2	X	N.A.	X	2.4	X	2.0	X

F/G. 93

Figure 9C

Figure 10A

Figure 10B