

LÓGICA Y REPRESENTACIÓN I

Programa de Ingeniería de Sistemas

CONTENIDO

ESTRUCTURAS DE CONTROL

- Condicional Simple
- Condicional Doble
- Condicional Anidado
- Condicional Múltiple

INTRODUCCIÓN

EJERCICIO: El profesor de matemáticas básicas requiere que usted programe una calculadora con las 4 operaciones básicas para que sus estudiantes puedan usarla desde el celular. Nota: la calculadora es básica así que solo opera de a dos números.

INTRODUCCIÓN

ANÁLISIS DEL PROBLEMA: Identifique el cliente, usuario, los requisitos funcionales, las entidades del mundo, las entradas, salidas y los procesos asociados al problema.

CLIENTE Y USUARIO

ENTIDADES DEL MUNDO

- .

REQUERIMIENTOS FUNCIONALES

ENTRADAS, SALIDAS Y EL PROCESO

- .

INTRODUCCIÓN

CLIENTE	El profesor de matemáticas básicas	
Usuario	Los estudiantes de matemáticas básicas	
REQUERIMIENTOS FUNCIONALES	El sistema debe permitir: Sumar dos números Restar dos números Multiplicar dos números Dividir dos números	
ENTIDADES DEL MUNDO	 Calculadora: tiene dos atributos reales (n1 y n2) que representan los números que se van a operar 	
ENTRADAS	Dos números que serán operados, los cuales deben ser reales	
SALIDAS	 Un número que es el resultado de una de las cuatro operaciones 	
PROCESO	 Se piden los dos números a y b que será operados Se calcula la suma como c = a+b Se calcula la resta como c = a-b Se calcula la multiplicación como c = a*b Se calcula la división como c = a/b Se muestra el resultado almacenado en c 	

Introducción

DISEÑO DE LA SOLUCIÓN: una vez identificadas las entidades definimos las clases con sus atributos y métodos, además de pintar las relaciones en las clases a desarrollar.

Introducción

Diseño de la Solución: ahora se hacen los algoritmos de las clases:

```
Clase Calculadora
 publico Real a, b #Atributos de la clase
 publico vacio pedir_datos()
    Escribir("Ingrese el primer número: ")
    Leer(a)
    Escribir("Ingrese el segundo número: ")
    Leer(b)
 Fin Metodo
 publico Real sumar()
   Real c
   c = a + b
   Retornar c
 Fin metodo
publico Real restar()
   Real c
   c = a - b
   Retornar c
 Fin metodo
```


ESTRUCTURAS DE CONTROL

ESTRUCTURAS DE CONTROL SELECTIVAS: <u>CONDICIONAL SIMPLE</u>

CONDICIONAL SIMPLE:

Representa la forma más sencilla de tomar una decisión en el programa.

CONDICIONAL SIMPLE:

Representa la forma más sencilla de tomar una decisión en el programa.

Algoritmo	Python
Si (condición) Entonces	if (condición):
intrucción_1 intrucción_2	intrucción_1 intrucción_2
 Fin_Si	

EJERCICIO: El profesor de matemáticas también le ha pedido que agregue a la calculadora una funcionalidad que le indique a los estudiantes si cada uno de los números ingresados es positivo. En caso de serlo debe mostrar el mensaje: El numero xx es positivo!

ALGORITMO: para dar solución al problema agregamos un método que muestre un mensaje indicando si esos números son positivos.

<u>Algoritmo</u>

```
publico vacio verificar_positivos()

Si (a > 0) Entonces
    Escribir("El número ",a," es positivo!")
Fin_Si

Si (b > 0) Entonces
    Escribir("El número ",b," es positivo!")
Fin_Si

Fin_Metodo
```

Python

```
def verificar_positivos():
    if (a > 0):
        print(f"El número {a} es positivo!")
    if (n2 > 0):
        print(f"El número {b} es positivo!")
```


EJERCICIO: Ahora haga un método que verifique si los dos números ingresados en la calculadora son iguales, de serlo deben mostrar el mensaje Los números son iguales

ALGORITMO: para dar solución al problema agregamos un método que muestre un mensaje indicando si esos números son positivos.

🎽 ALGORITMO: para dar solución al problema agregamos un método que muestre un mensaje indicando si esos números son positivos.

Algoritmo

```
publico vacio verificar_si_son_iguales()

Si (a == b) entonces
    Escribir("Los dos números son iguales")
    Fin_Si

Fin Metodo
```

Python

```
def verificar_si_son_iguales():
    if (a == b):
        print("Los dos números son iguales")
```


ESTRUCTURAS CONTROL SELECTIVAS: CONDICIONAL DOBLE

CONDICIONAL DOBLE:

Este tipo de condicionales considera <u>una bifurcación de dos caminos</u> en una decisión dentro del programa. Los caminos son excluyentes, es decir, se toma uno u otro, nunca se pueden tomar ambos caminos al tiempo.

CONDICIONAL DOBLE:

Considera una bifurcación de dos caminos en una decisión dentro del programa. Los caminos son excluyentes, es decir, se toma

uno u otro, nunca se pueden tomar ambos caminos al tiempo.

Algoritmo	Python
Si (condición) Entonces Bloque A de Instrucciones	if (condición): Bloque A de Instrucciones
Sino	else:
Bloque B de Instrucciones Fin_Si	Bloque B de Instrucciones

La condición es una expresión lógica

El Bloque A de instrucciones se ejecuta sólo cuando la condición es verdadera.

El Bloque B de instrucciones se ejecuta sólo cuando la condición es falsa.

EJERCICIO: Mejore el método del ejercicio anterior para que muestre un mensaje indicando si los números son iguales o diferentes.

ALGORITMO: Mejore el método del ejercicio anterior para que muestre en pantalla si los números son iguales o si son diferentes

Algoritmo

```
publico vacio verificar_si_son_iguales()

Si (a == b) entonces
    Escribir("Los dos números son iguales")
Sino
    Escribir("Los dos números son diferentes")
Fin_Si

Fin_Metodo
```

Python

```
def verificar_si_son_iguales():
    if (a == b):
        print("Los dos números son iguales")
    else:
        print("Los dos números son diferentes")
```


EJERCICIO: Ahora el profesor de matemáticas le ha pedido que desarrolle un método que indique si el primero número ingresado a la calculadora es par o no.

ALGORITMO: Desarrolle un método que indique si el primer número ingresado en la calculadora es par o no

Algoritmo

```
publico vacio verificar_si_es_par()

Si (a MOD 2 == 0) entonces
    Escribir("El primer número ingresado es par")
Sino
    Escribir("El primer número ingresado NO es par")
Fin_Si
Fin_Metodo
```

Python

```
def verificar_si_es_par():
    if (a % 2 == 0):
        print("El primer número ingresado es par")
    else:
        print("El primer número ingresado NO es par")
```


ESTRUCTURAS CONTROL: CONDICIONALES ANIDADOS

CONDICIONAL ANIDADO:

Es la estructura más compleja entre los condicionales y se usan para tomar decisiones, dentro de otras decisiones ya tomadas.

CONDICIONAL ANIDADO:

Es la estructura más compleja entre los condicionales y se usan para tomar decisiones, dentro de otras decisiones ya tomadas.

EJERCICIO: Ahora haga un método llamado **verificar_numero** que verifique y muestre un mensaje en la pantalla indicando si el primer número de la calculadora es positivo, negativo o igual a cero

ALGORITMO: Desarrolle un algoritmo que pida un número y verifique si éste es positivo, negativo o igual a cero

Algoritmo

```
publico vacio verificar_numero()

Si (a == 0) entonces
    Escribir("El número es igual a 0")
Sino
    Si (a > 0) entonces
    Escribir("El número es POSITIVO")
Sino
    Escribir("El número es NEGATIVO")
Fin_Si
Fin_Si
Fin_Metodo
```

Python

```
def verificar_numero():
    if (a == 0):
        print("El número es igual a 0")
    elif (a > 0):
        print("El número es POSITIVO")
    else:
        print("El número es NEGATIVO")
```


ALGORITMO: Desarrolle un algoritmo que compare dos números e indique si estos son iguales, o si uno es mayor que el otro.

Algoritmo

```
publico vacio mostrar_el_mayor()

Si (n1 == n2) entonces
    Escribir("Los dos números en la calculadora son iguales")
Sino
    Si (n1 > n2) entonces
    Escribir(n1, " es mayor que ", n2)
    Sino
    Escribir(n2, " es mayor que ", n1)
    Fin_Si
    Fin_Si
Fin_Metodo
```

Python

```
def mostrar_el_mayor():
    Si (a == b):
        print("Los dos números en la calculadora son iguales")
    elif (n1 > n2):
        print(f"{a} es mayor que {b}")
    else:
        print(f"{b} es mayor que {a}")
```


EJERCICIO: Considere una clase **Persona** que tiene un atributo denominado **edad**: desarrolle un método en la clase persona que **retorne** una cadena indicando si la persona es un niño (con menos de 10 años), adolescente (entre 10 y 17 años), adulto joven (entre 18 y 25), adulto (entre 26 y 34), adulto contemporáneo (entre 35 y 55) o adulto mayor (más de 55).


```
Clase Persona
publico Entero edad
publico Cadena obtener tipo persona()
   Si (edad > 0 AND edad < 10) entonces
        Retornar "La persona es considerada un niño"
    Sino
       Si (edad >= 10 AND edad <= 17) entonces
          Retornar "La persona es considerada un adolescente"
      Sino Si (edad >= 18 AND edad <= 25) entonces
             Retornar "La persona es considerada un adulto joven y ya puede votar!"
          Sino Si (edad >= 26 AND edad <= 34) entonces
                Retornar "La persona es considerada es un adulto en plenitud"
             Sino Si (edad >= 35 AND edad <= 55) entonces
                   Retornar "La persona es considerada un adulto contemporáneo ..."
                Sino Si (edad >= 56) entonces
                      Retornar "La persona es considerada un adulto mayor ..."
                   Sino
                      Retornar "Error: parece que la edad de la persona no es válida!"
                   Fin Si
                 Fin Si
              Fin Si
           Fin Si
       Fin Si
    Fin Si
 Fin Metodo
Fin_Clase
```


- ALGORITMO: El almacén "Aprenda a vestirse" ha iniciado su temporada de rebajas. Durante este periodo a las compras se le pueden aplicar diferentes descuentos así:
 - Si el total de la compra es mayor o igual a 850.001 se le aplica un descuento del 40%.
 - Si el total de la compra está entre 500.001 y 850.000 se le aplica un descuento del 30%.
 - Si el total de la compra está entre 200.001 y 500.000, se le aplica un descuento del 20%.
 - Para compras inferiores a 200.000 el descuento es del 5%.

Además, el almacén está promoviendo la política del buen vestir en los adultos mayores, por lo que está dando un descuento adicional que corresponde a una tercera parte de la edad del comprador más un 5%. Esto cuando la edad del cliente es mayor o igual a 60 años.

El programa debe mostrar el valor original de la compra, el valor de cada descuento aplicado y el total a pagar por el cliente.

ANÁLISIS DEL PROBLEMA: Identifique el cliente, usuario, los requisitos funcionales, las entidades del mundo, las entradas, salidas y los procesos asociados al problema.

CLIENTE Y USUARIO

- .

ENTIDADES DEL MUNDO

REQUERIMIENTOS FUNCIONALES

ENTRADAS, SALIDAS Y EL PROCESO

- .

CLIENTE	El almacén aprenda a vestirse
USUARIO	El cajero del almacén
REQUERIMIENTOS FUNCIONALES	El sistema debe permitir: Calcular un descuento por el valor de la compra Calcular un descuento por la edad del comprador Calcular el valor a pagar con base en los descuentos obtenidos
ENTIDADES DEL MUNDO	 Compra: que representa a la compra que se está haciendo y que tiene como atributos, el valor de la compra y la edad del cliente
ENTRADAS	El valor de la compra, el cual es un número entero mayor a cero
SALIDAS	 El valor aplicado por el descuento del valor de la compra El valor aplicado por el descuento de la edad El valor neto a pagar
PROCESO	 Se pide el valor de la compra Se calcula los descuentos siguiendo las siguientes fórmulas: d1 = valorCompra * porcentajeDescuento d2 = valorCompra * (edadCliente/3 + 5)/100 El valor a pagar neto a pagar se calcula como: valorCompra – d1 – d2

DISEÑO DE LA SOLUCIÓN: una vez identificadas las entidades definimos las clases con sus atributos y métodos, además de pintar las relaciones en las clases a desarrollar.

- **ALGORITMO:** Escribe un programa que permita predecir el estado del tiempo con base en la temperatura, el viento y la humedad. La predicción debe usar las siguientes reglas:
 - Si la temperatura > 25 °C, viento < 10 km/h, humedad < 33% => soleado
 - Si la temperatura está entre 20 y 30 C, viento < 10 km/h, humedad > 90% => húmedo
 - Si la temperatura está entre 0 y 10 C, viento > 5 km/h, humedad entre 40% y 80% => frío
 - Si la temperatura está entre -5 y 0 C y el viento < 5 km/h o humedad > 50% => nieve

El programa debe mostrar el estado de cada posible estado del clima, por ejemplo: El Día estará soleado pero no húmedo, ni frío, ni habrá nieve. Además, el programa debe funcionar para cualquier valor de temperatura, viento y humedad. Sin embargo, si no se cumple ninguna condición se debe indicar que el estado del clima es incierto.

ESTRUCTURAS CONTROL: CONDICIONAL MÚLTIPLE

CONDICIONALES MÚLTIPLES:

© Este tipo de condicional es utilizado para seleccionar una, entre muchas alternativas disponibles. Básicamente, esta expresión evalúa una variable, llamada variable de control, y con base en su valor selecciona el caso que debe ejecutarse. Si el valor de la variable no es igual a ninguno de los casos, se ejecutan las instrucciones del bloque en otro caso.

Algoritmo	Python
Segun_Sea(variable) haga	
caso valor1:	
instrucciones1	
Interrumpir	
caso valor2:	NO EXISTE!
instrucciones2	
Interrumpir	Se emula con condicionales
caso valor3:	anidados!
instrucciones3	
Interrumpir	
en_otro_caso:	
instruccionesOtras	
Fin Segun_sea	

<u>Algoritmo</u>

```
publico vacio convertir_a_romano()
   Entero a
   Escribir("Ingrese un número del 1 al 10: ")
  Leer(a)
  Según_sea (a) haga
    caso 1:
       Escribir(a, " en romanos es: I")
        Interrumpir
     caso 2:
        Escribir(a, " en romanos es: II")
        Interrumpir
     caso 3:
        Escribir(a, " en romanos es: III")
     caso 10:
        Escribir(a, " en romanos es: X")
        Interrumpir
     en otro caso
         Escribir("El valor es deconocido")
   Fin Según sea
Fin Metodo
```

Python

```
def convertir_a_romano():
  a = int(input("Ingrese un número del 1 al 10:"))
  if (a == 1):
    romano = "I"
  elif (a==2):
    romano = "II"
  elif (a==3):
    romano = "II"
  else:
    romano = "desconocido"
  print(f"{a} en número romanos es {romano}")
```


EJERCICIO: Desarrolle un programa que implemente las operaciones básicas de una calculadora. La operación a realizar debe ser seleccionada de un menú en pantalla.

Recuerde que ya tenemos la clase diseñada. El menú de operación es debe ser como el siguiente:

- 1. Sumar
- 2. Restar
- 3. Multiplicar
- 4. Dividir

Calculadora

- + Real b
- + Real a
- + vacio pedir_datos()
- + Real sumar()
- + Real restar()
- + Real multiplicar()
- + Real dividir()

Algoritmo

```
Clase AppCalculadora
  publico vacio iniciar()
   Calculadora cal = nueva Calculadora()
   Entero opc
   Real resul
   Logico hizoLaOperacion = true
   Escribir("Seleccione la operación a realizar: ")
   Escribir("1. Sumar")
   Escribir("2. Restar")
   Escribir("3. Multiplicar")
   Escribir("4. Dividir ")
   Leer(opc)
   cal.pedirDatos()
```

```
Según sea (opc) haga
  caso 1:
      resul = cal.sumar()
      Interrumpir
   [...]
   caso 4:
      Si (cal.n2 != 0) entonces
        resul = cal.dividir()
      sino
        Escribir("Error de división por 0")
        hizoLaOperacion = false
      Fin si
      Interrumpir
    En otro caso
      Escribir("Seleccionó una opción incorrecta")
     hizoLaOperacion = false
 Fin Según Sea
 Si (hizoLaOperacion == true) entonces
   Escribir("El resultado de la operación es: ", resul)
 Fin Si
Fin Metodo
Fin_clase
```


EJERCICIO: Escriba una clase principal que permita a un conductor determinar el valor que debe pagar en un peaje, dependiendo del tipo de vehículo que este tiene. Considere las siguientes categorías de autos y los precios correspondientes:

B. Camioneta: 11800

C. Camión: 18700

D. Bus: 17400

E. Otros: 23000

Algoritmo

```
Clase ValorPeaje

publico vacio calcular_valor_peaje()
Entero peaje
Cadena opc

Escribir("Seleccione el tipo de su vehículo: ")
Escribir("A. Automovil")
Escribir("B. Camioneta")
Escribir("C. Camión")
Escribir("D. Bus ")
Escribir("E. Otro")
Leer(opc);
```

```
Según sea (opc) haga
   caso "A":
      peaje = 10200
    caso "B":
      peaje = 11800
    caso "C":
      peaje = 18700
    caso "D":
      peaje = 17400
     en otro caso
      Escribir("No se sabe el tipo de auto")
      peaje = 18700
  Fin_segun_sea
   Escribir("El valor del peaje es de: ", peaje)
Fin metodo
Fin_clase
```


Python

```
peaje = 0

opc = input("Seleccione el tipo de vehículo: A. Automovil \nB. Camioneta \nC. Camión \nD. Bus \nE. Otro")

if (opc == "A"):
    peaje = 10200
elif (opc == "B"):
    peaje = 11800
elif (opc == "C"):
    peaje = 18700
elif (opc == "D"):
    peaje = 17400
else:
    print("No se sabe el tipo de auto")
    peaje = 18700

print(f"El valor del peaje es de: {peaje}")
```


EJERCICIO: Haga un algoritmo que dado el número del mes y el año indique cuantos días tiene dicho mes

LÓGICA Y REPRESENTACIÓN I

Programa de Ingeniería de Sistemas