

Digitat System Design Course

Circuitos secuenciales básicos

- Los *circuitos secuenciales básicos* son de propósito general:
 - * circuitos lógicos que no se diseñan: ICs
 - > Latches
 - > Flop-flops
 - Registros
 - > Registros de desplazamiento
 - Contadores

Consideraciones

- Una colección/arreglo de dos o más flip-flops D (latches
 D) con una entrada de reloj (control) común es llamado un registro
- Los registros son frecuentemente usados para almacenar una colección de bits de información, tal como un byte de datos en un computador

* Símbolo lógico: registro de 4 bits con clear

* Diagrama lógico

* Símbolo lógico: registro de 8 bits con señal de habilitación para la salida

* Diagrama lógico

Transferencia entre Registros

- ☐ Estructura de un *shift register*
 - Un registro de desplazamiento es un registro de n-bit con una disposición para desplazar sus datos almacenados una posición (un bit) en cada flanco de reloj.
 - Existen varias estructuras para un registro de desplazamiento.
 - > Registro de desplazamiento entrada serie / salida serie
 - > Registro de desplazamiento entrada serie / salida paralelo
 - Registro de desplazamiento entrada paralelo / salida serie
 - Registro de desplazamiento entrada paralelo / salida paralelo

- □ Shift register: *serial*—*in* / *serial*-*out*
 - La entrada serie, SERIN, especifica que cada bit nuevo será desplazado una posicion (para cada flip-flop) en cada flanco del reloj.
 - ❖ El bit desplazado aparece en la salida serie, SEROUT, después de *N flancos del reloj*.
 - ❖ El registro puede ser utilizado para desplazar o retardar una señal por N ciclos de reloj.

Diagrama lógico: nivel de bloques

- □ Shift register: *serial*—*in* / *parallel-out*
 - El registro de desplazamiento con entrada serie y salida paralela tiene salidas para todos sus bits almacenados
 - * En cada flanco del reloj el registro carga el bit de información presente en la entrada.
 - El registro puede ser utilizado para realizar la conversión de datos de serie a paralelo

Diagrama lógico: nivel de bloques

- □ Shift register : *parallel-in / serial-out*
 - ❖ En cada ciclo del reloj o en cada flanco, el registro puede cargar nuevos datos desde sus entradas 1D − ND, o este puede desplazar la información actual almacenada, dependiendo del valor de señal de control : LOAD / SHIFT.
 - * Internamente el registro usa un multiplexor de dos entradas en cada una de las entradas del flip-flop D, para seleccionar los dato de las dos condiciones.
 - El registro puede ser usado para realizar la conversión de datos de paralelo a serie.

- ☐ Shift Register : *parallel-in / parallel-out*
 - *Estructuralmente es igual al registro de desplazamiento: parallel-in / serial-out, la diferencia radica en que el registro suministra salidas para todos los bits almacenados.

❖ Diagrama de timing: shift register → Dato: 1011

❖ Diagrama de timing: shift register → Dato: paralelo-1011 / serie-1010

Registros de Desplazamiento de 4 bits

- Implementación
 - Aproximación 1: flip-flops J-K
 - Diagrama lógico: shift register de 4 bits

Registros de Desplazamiento de 4 bits

- Implementación
 - Aproximación 2: flip-flops D
 - Diagrama lógico: shift register de 4 bits

