PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08198611 A

(43) Date of publication of application: 06.08.96

(51) Int. CI

C01B 31/02 D01F 9/127

(21) Application number: 07005873

(22) Date of filing: 18.01.95

(71) Applicant:

NEC CORP

(72) Inventor:

ICHIHASHI TOSHIYA IIJIMA SUMIO

(54) PURIFYING METHOD OF CARBON NANO-TUBE

(57) Abstract:

PURPOSE: To obtain a high purity carbon nano-tube by adding an acid to a carbon nano-tube, which is produced with a metallic catalyst and contains the metallic catalyst and a metallic carbide as impurities to dissolve the impurities.

CONSTITUTION: The unpurified carbon nano-tube containing the used metallic catalyst and the metallic carbide as the impurities is produced by using a carbon rod as a positive electrode, a mixture of the metallic

catalyst (e.g. iron) with carbon as a negative electrode for discharge electrode and a hydrocarbon as a gaseous starting material and applying a method such as arc discharge. Next, the high purity carbon nano-tube is obtained by adding the acid (e.g. nitric acid) to the unpurified carbon nano-tube and preferably heating to dissolve the impurities wherein a method for removing the impurities by pulverizing, dispersing the unpurified carbon nano-tube in a liquid and introducing and passing the liquid through magnetic field can be also used.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-198611

(43)公開日 平成8年(1996)8月6日

(51) Int.Cl.⁸

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 1 B 31/02

101 Z

D01F 9/127

請求項の数3 OL (全 3 頁) 審査請求 有

(21)出願番号

(22)出願日

特願平7-5873

平成7年(1995)1月18日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 市橋 鋭也

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 飯島 澄男

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 カーボンナノチューブの精製方法

(57)【要約】

【目的】 金属、非晶質炭素、グラファイトを含む単原 子層カーポンナノチューブの精製方法を提供する。

【構成】 金属触媒を用いて製造されたカーポンナノチ ュープ粗生成物を、粉砕し、溶液中に攪拌し、遠心分離 や浮選により非晶質炭素、グラファイトを除去し、さら に酸で溶かす、あるいは磁場中を通過させることにより 金属触媒やその金属の炭化物などの金属不純物を除去 し、カーボンナノチューブの純度を向上させる。

【特許請求の範囲】

【請求項1】 金属触媒を用いて製造された前記金属触媒 と前記金属の炭化物を不純物として含む未精製カーボン ナノチューブに、酸を加えることにより、前記不純物を 溶解することを特徴とするカーボンナノチューブの精製 方法。

【請求項2】金属触媒を用いて製造された前記金属触媒 と前記金属の炭化物を不純物として含む未精製カーボン ナノチューブを、液体中に粉砕、分散し、前記液体を磁 場中を通過させることにより前記不純物を除去すること 10 を特徴とするカーボンナノチューブの精製方法。

【請求項3】 金属触媒を用いて製造された前記金属触媒 と前記金属の炭化物とカーポンナノチューブ以外の炭素 物質を不純物として含む未精製カーボンナノチューブ を、液体中に粉砕、分散し、前記液体中に含まれる前記 炭素物質を遠心分離または浮選により除去し、

前記炭素物質を除去した後の液体に酸を加えて前記金属 不純物を溶解するか、あるいは前記炭素物質を除去した 後の液体を磁場中を通過させることにより前記金属不純 精製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カーボンナノチューブ の精製方法、とりわけ金属触媒を用いて製造されたカー ポンナノチューブの精製方法に関する。

[0002]

【従来の技術】数個以上の円筒状黒鉛層が同心円状に形 成された通常のカーボンナノチュープは、円筒の大きさ が一定でなく、従ってカーボンナノチューブの電気特性 30 や化学特性には大きなばらつきがあった。そこで、チュ ープの形状が単層に制御された単原子層カーボンナノチ ューブの製造方法を、本発明者等は特願平5-3379 37号出願明細書にて提案した。この単原子層カーボン ナノチューブは、放電電極の一方に炭素を、他方の電極 に金属(鉄、コバルト、ニッケルなどの遷移金属)と炭 素の混合物を用い、原料ガスに炭化水素を用いてアーク 放電により製造される。

[0003]

【発明が解決しようとする課題】しかし、上記の方法に 40 より得られる単原子層カーボンナノチューブは、金属触 媒を用いて製造されるため、金属触媒とその炭化物及び 非晶質炭素、グラファイト等のカーボンナノチュープ以 外の炭素物質を不純物として含んでいた。従って、この カーポンナノチューブを産業上利用するためには上記不 純物を取り除く必要があり、カーボンナノチューブの有 する電気特性や化学特性の点を考えると、特に上記不純 物の中でも金属触媒とその金属の炭化物を取り除く必要 がある。しかし、従来技術に、カーボンナノチューブ以 外の炭素物質を、浮選や遠心分離により除去する方法は 50 合には電極が溶けてしまうような温度でも使用可能で、

特開平6-228824号公報に示されているが、未精 製カーボンナノチューブから金属触媒とその金属の炭化 物などの金属不純物を取り除く方法はこれまで存在しな かった。

【0004】本発明の目的は、金属触媒を用いて製造さ れたカーポンナノチューブから、特に金属触媒とその炭 化物を、さらにはカーボンナノチュープ以外の炭素物質 をも除去することにある。

[0005]

【課題を解決するための手段】上記課題を解決するた め、本発明の第1の発明は、金属触媒を用いて製造され た金属触媒とその金属の炭化物を不純物として含む未精 製カーポンナノチューブに、酸を加えることにより、前 記不純物を溶解することを特徴とするカーポンナノチュ ープの精製方法である。

【0006】第2の発明は、金属触媒を用いて製造され た金属触媒とその金属の炭化物を不純物として含む未精 製カーボンナノチュープを、液体中に粉砕、分散し、前 記液体を磁場中を通過させることにより前記不純物を除 物を除去することを特徴とするカーポンナノチューブの 20 去することを特徴とするカーポンナノチューブの精製方 法である。

> 【0007】第3の発明は、金属触媒を用いて製造され た金属触媒と金属の炭化物とカーボンナノチュープ以外 の炭素物質を不純物として含む未精製カーボンナノチュ ープを、液体中に粉砕、分散し、前記液体中に含まれる 前記炭素物質を遠心分離または浮選により除去し、炭素 物質を除去した後の液体に酸を加えて前記金属不純物を 溶解するか、あるいは炭素物質を除去した後の液体を磁 場中を通過させることにより前記金属不純物を除去する ことを特徴とするカーボンナノチューブの精製方法であ る。

[0008]

【作用】本発明のカーボンナノチューブの精製方法は、 粗生成物を粉砕、攪拌し、遠心分離、浮選により非晶質 炭素、グラファイト等のカーボンナノチューブ以外の炭 素物質を除去し、さらに酸を加えて金属を溶かす、ある いは磁場中を通過させることにより金属不純物を除去 し、カーボンナノチューブの純度を向上させるものであ る。

[0009]

【実施例】本発明の一実施例を以下に示す。

【0010】 (実施例1) 精製に用いた単原子層カーボ ンナノチューブの粗生成物は、放電電極の一方の電極 (正電極) に炭素棒を、他方の電極(負電極) に金属 (鉄、コパルト、ニッケル等の遷移金属) を含んだ炭素 棒を用い、メタン、水素、ヘリウムの混合ガス雰囲気中 でアーク放電により製造して得た。この時の負電極に は、炭素棒に穴を開け金属線(鉄線など)を挿入したも のを使用し、これにより負電極として金属棒を用いた場

挿入する金属線の本数により、炭素棒表面に露出する炭 素と金属の面積比を制御できるため、金属の蒸発量を制 御できる。本実施例では、鉄線が挿入された炭素棒を負 電極として用い、メタンガス20Torr、ヘリウムガ ス180Torr、水素ガス10Torrの雰囲気で、 放電電圧30V、放電電流50Aでアーク放電させるこ とにより、太さが1~2mで揃った大量の単層カーポン ナノチューブを得た。

【0011】上記方法により得られた単層カーポンナノ チューブ粗生成物は、製造時に使用した金属触媒とその 10 った。本実施例の方法によっても、金属触媒を用いて製 金属の炭化物、および非晶質炭素やグラファイト等のカ ーポンナノチュープ以外の炭素物質を不純物として含ん でいる。そこで、上記方法により得られた粗生成物を、 スチールボールとエタノールを入れた容器に入れ、加振 器(たとえば超音波をかける)で粉砕し、液中に攪拌し た。この溶液を遠心分離器にかけ、上澄みを取り除くこ とにより、非晶質炭素、グラファイト等の微小な球状粒 子を取り除いた。さらに、この上澄みを取り除いた試料 に硝酸を加えることにより鉄を溶かし、単原子層カーボ ンナノチューブの精製を行った。これにより、金属触媒 20 ープが得られる。 を用いて製造されたカーボンナノチューブから、金属触

媒とその炭化物を、さらにはカーポンナノチュープ以外 の炭素物質をも除去することができた。酸としては、硝 酸の他に塩酸なども使用でき、酸を加えて加温する方が 好ましい。この際の温度は、酸が沸騰しない温度(約1 00℃) 以下であればよい。

【0012】 (実施例2) 上澄みを取り除くまでは実施 例1と同じ精製を行った。その後、本実施例では、上澄 みを取り除いた溶液を磁場中を通過させることにより、 鉄を除去し、単原子層カーボンナノチューブの精製を行 造されたカーボンナノチューブから、金属触媒とその炭 化物、およびカーポンナノチューブ以外の炭素物質を除 去することができた。

[0013]

【発明の効果】本発明によれば、金属触媒を用いて製造 されたカーボンナノチュープ中の、金属触媒やその炭化 物を、さらには非晶質炭素、グラファイト等の炭素物質 をも除去することができる。これにより、チューブの形 状が単層に制御され、かつ純度の高いカーボンナノチュ