## Lab07-Amortized Analysis

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

\* If there is any problem, please contact TA Shuodian Yu.

\* Name:Haotian Xue Student ID:518021910506 Email: xavihart@sjtu.edu.cn

1. For the TABLE-DELETE Operation in Dynamic Tables, suppose we construct a table by multiplying its size by  $\frac{2}{3}$  when the load factor drops below  $\frac{1}{3}$ . Using *Potential Method* to prove that the amortized cost of a TABLE-DELETE that uses this strategy is bounded above by a constant.

**Solution.** The solution for this problem is as follows.

Since we only need to calculate the amortized cost of TABLE-DELETE operation, we do not need to take into account the expansion of the table.

We can set the potential function as  $\Phi_i = s_i - n_i$ , where  $n_i$  and  $s_i$  are the number of elements in the table and the size of table after the *i*th operation respectively.  $s_0 - n_0 = 0$  and for any  $i \in \mathbb{N}$ ,  $\Phi_i \geq 0$ .

Then we do the delete operation:

• Case1: The contraction is not triggered.

Then we have:  $n_i = n_{i-1} - 1$ ,  $s_i = s_{i-1}$ , and the amortized cost is:

$$\hat{C}_i = C_i + \Phi_i - \Phi_{i-1}$$

$$= 1 + (s_i - n_i) - (s_{i-1} - n_{i-1})$$

$$= 1 + (s_i - s_{i-1}) + (n_{i-1} - n_i) = 2$$

• Case2: The contraction is triggered.

Then we have:  $n_i = n_{i-1} - 1$ ,  $s_i = \frac{2}{3}s_{i-1}$ ,  $n_i = \frac{1}{3}s_{i-1}$ , and the amortized cost is:

$$\hat{C}_i = C_i + \Phi_i - \Phi_{i-1}$$

$$= n_i + 1 + (s_i - n_i) - (s_{i-1} - n_{i-1})$$

$$= n_i + (s_i - s_{i-1}) + (n_{i-1} - n_i)$$

$$= n_i - \frac{1}{3}s_{i-1} + 1 = 1$$

Considering the two cases above, we can safely get the amortized cost for DELETE-TABLE operation is O(1).

**P.S.** Actually, we can use many other potential functions and their universal form may be  $s_i + kn_i$ , where  $k \in \{x | x \ge -1, x \in \mathbb{Z}\}$ . That is because  $n_i$  always satisfies  $n_i = n_{i-1} - 1$ .

2. A **multistack** consists of an infinite series of stacks  $S_0, S_1, S_2, \cdots$ , where the  $i^{th}$  stack  $S_i$  can hold up to  $3^i$  elements. Whenever a user attempts to push an element onto any full stack  $S_i$ , we first pop all the elements off  $S_i$  and push them onto stack  $S_{i+1}$  to make room. (Thus, if  $S_{i+1}$  is already full, we first recursively move all its members to  $S_{i+2}$ .) An illustrative example is shown in Figure ??. Moving a single element from one stack to the next takes O(1) time.

If we push a new element, we always intend to push it in stack  $S_0$ .



Fig. 1. An example of making room for one new element in a multistack.

- (a) In the worst case, how long does it take to push a new element onto a multistack containing n elements?
- (b) Prove that the amortized cost of a push operation is  $O(\log n)$  by Aggregation Analysis.
- (c) (Optional Subquestion with Bonus) Prove that the amortized cost of a push operation is  $O(\log n)$  by Potential Method.

**Solution.** The solution for this problem is as follows.

We first define the **depth** of an element in a stack: if element a is in Si, then the depth of a is d(a) = i + 1. Also we note the cost for inserting the ith element is  $C_i$  and the total cost spent on specific element a to get the current situation is CT(a).

- (a) In the worst case, the  $S_0$  to  $S_k$  are all full so we need to move every stack to make room for the inserted element, so we have  $n = 1 + 3^2 + ... + 3^i$ , the cost for inserting an element now is:  $C_{n+1} = 1 + 1 + 3 + 3^2 + ... + 3^k = n + 1$ ,  $k = O(\log n)$ . So the cost is O(n) in worst cases.
- (b) To get the amortized cost for each insert operation, we assume now  $S_0$  to  $S_i$  is full and we should calculate the total cost T(n) for inserting  $n = 1 + 3 + ... + 3^i$  elements.

$$T(n) = \sum_{i=1}^{n} C_i = \sum_{a} CT(a)$$

The equation above transfer calculating the sum of cost for each step into calculating the sum of cost for each element, and we actually have:

$$CT(a) = d(a)$$

So we can get the total cost by tranversing each stacks since elements in the same stack share the same depth:

$$T(n) = \sum_{i=0}^{k} 3^{i} * (i+1) = O(k3^{k}) = O(n \log n)$$

The amortized cost is  $C = \frac{T(n)}{n} = O(\log n)$ .

(c) We define  $N_i^n$  as the number of elements in  $S_i$  after n push operation. And we define D(n) to be the maximum depth of elements after n push operations. Also we make  $f(n) = \log(2n+1)$  and it is obvious that: D(n) < f(n).

To get the amortized cost, we define the potential function as:

$$\Phi_n = \sum_{i=1}^{D(n)} N_i^n (f(n) - i)$$

 $\Phi_0 = 0$ ,  $\Phi_i(i = 1, 2, ...)$  is always positive since D(n) < f(n).

Then we have  $\hat{C}_n = C_n + \Phi_n - \Phi_{n-1}$ :

$$\hat{C}_n = C_n + \sum_{i=1}^{D(n)} N_i^n (f(n) - i) - \sum_{i=1}^{D(n-1)} N_i^{n-1} (f(n-1) - i)$$

$$= (f(n) \sum_{i=1}^{D(n)} N_i^n - f(n-1) \sum_{i=1}^{D(n-1)} N_i^{n-1}) + (\sum_{i=1}^{D(n-1)} i N_i^{n-1} - \sum_{i=1}^{D(n)} i N_i^n + C_n)$$

$$= (nf(n) - (n-1)f(n-1)) + C_n + P_n = O(\log n) + (P_n + C_n)$$

We can see  $C_n + P_n$  from the angle of elements, we want to calculate the **effect of one element** a and then tranverse all of the elements, that is:

$$C_n + P_n = \sum_a c_a - \sum_a \Delta N_a = \sum_a (c_a - \Delta N_a)$$

where  $\Delta N_a$  is the effect a has caused to the change of  $P_n$ . Then there are two cases for states of a:

- Case 1: a is not moved from one stack to another. Then we have  $c_a - \Delta N_a = 0 - 0 = 0$ .
- Case 1: a is not moved from one stack to another. Suppose we move a from  $S_i$  to  $S_{i+1}$ , then we have  $c_a - \Delta N_a = 1 - (i \times (0-1) + (i+1) \times (1-0)) = 0$ .

So finally we have:  $\hat{C}_n = O(\log n)$ . Which in fact prove the amortized cost to be  $O(\log n)$ .

- 3. Given a graph G = (V, E), and let V' be a strict subset of V. Prove the following propositions.
  - (a) Let T be a minimum spanning tree of a G. Let T' be the subgraph of T induced by V', and let G' be the subgraph of G induced by V'. Then T' is a minimum spanning tree of G' if T' is connected.
  - (b) Let e be a minimum weight edge which connects V' and  $V \setminus V'$ . There exists a minimum weight spanning tree which contains e.

**Solution.** We can prove these two problems by contradction.

(a) If T' is not the MST of G', then there must exists one subtree T'' of T which is the MST of G' and the sum of weights of T'' is less than that of T'. We think about  $T_0 = (T \setminus T') \cup T''$ 

which is a spanning tree for G. However the total weights of  $T_0$  is less than that of T, which contradicts the fact that T is the MST of G.

(b) If there is no MST that contains e, then we just pick one MST T which satisfies  $e \notin T$ . Then we add e to T to get  $T_0 = \{e\} \cup T$ . It is obvious that it will generate a cycle  $C \subset T_0$  and  $e \in C$ . If all vertex of edges in  $C - \{e\}$  is in either V' or  $V \setminus V'$ , then we note  $u \in V'$ ,  $v \in V \setminus V'$  are the two vertexes of e, if we start from u then we can only get to vertexes in V, such that we cannot get to v. So there must exists another edge  $e_0$  in the cycle which connects V' and  $V \setminus V'$ . If we replace  $e_0$  with e in T to get  $T' = T \setminus \{e_0\} \cup \{e\}$ , then T' is obviously a spanning tree and its weight is less than that of T, which is contradictory with the fact that T is a MST.



Fig. 2. An illustration for (b) in Problem3.

**Remark:** Please include your .pdf, .tex files for uploading with standard file names.