МИНИСТЕРСТВО ОБРАЗОВАНИЯ РУСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О.СУХОГО

Факультет автоматизированных и информационных систем Специальность 1-53 01 05 «Автоматизированные электроприводы» Кафедра «Автоматизированный электропривод»

РАСЧЕТНО-ПОЯНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине: «Электрические машины»

на тему: «Проектирование трёхфазного асинхронного электродвигателя с

короткозамкнутым ротором»

	Рощин М.Ю.
	Руководитель: доцент к.т.н.
	Тодарев В.В.
	Дата проверки
	Дата защиты
	Оценка работы
Подписи членом комиссии	
По защите курсового проекта	

Выполнил: студент гр. ЭП-21

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Задание
1. Определение главных размеров электродвигателя5
2. Расчёт обмотки, паза и ярма статора
3. Расчёт обмотки, паза и ярма ротора
4. Расчёт магнитной цепи асинхронной машины
5. Определение параметров асинхронной машины для рабочего режима27
6. Расчёт постоянных потерь мощности
7. Рабочие характеристики асинхронного двигателя
8. Пусковые характеристики асинхронного двигателя
8.1 Расчёт пусковых характеристик с учётом эффекта вытеснения тока421
8.2. Расчёт пусковых характеристик с учётом насыщения магнитной системы
асинхронной машины486
9. Тепловой расчёт
Заключение
СПИСОК ЛИТЕРАТУРЫ

Изм	Лист	№ докум.	Подпись	Дата
Разр	абот.	Рощин М.Ю.		
Пров	верил	Тодарев В.В		

КП.1-53 01 05.ЭП-21.48.ПЗ

Содержание

 Литер.
 Лист
 Листов

 У
 2

ГГТУ, гр. ЭП-21

ВВЕДЕНИЕ

Целью данного курсового проектирования является расширение и закрепление знаний по курсу "Электрические машины", овладение современными методами расчёта и конструирования электрических машин, приобретение навыков пользования справочной литературой, что потребуется в процессе работы на производстве при пересчёте обмоток электрических машин на другое напряжение или при ремонте машин.

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу электропривода большинства механизмов, используемых во всех отраслях народного хозяйства.

Уже в настоящее время асинхронные двигатели потребляют более 40 % вырабатываемой в стране электроэнергии, на их изготовление расходуется большое количество дефицитных материалов: обмоточной меди, изоляции, электротехнической стали и других, а затраты на обслуживание и ремонт асинхронных двигателей в эксплуатации составляют более 5 % затрат на ремонт и обслуживание всего установленного оборудования. Поэтому создание серий высокоэкономичных и надёжных асинхронных двигателей является важнейшей народнохозяйственной задачей, а правильный выбор двигателей, их эксплуатация и высококачественный ремонт играют первоочередную роль в экономии материальных и трудовых ресурсов в нашей стране.

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	П3
Разр	абот.	Рощин М.Ю				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У	3	
					ВВЕДЕНИЕ	ГГТУ, гр. ЭП-2		ЭП-21
								011-Z 1

Задание

Разработать проект трёхфазного асинхронного электродвигателя с короткозамкнутым ротором со следующими основными параметра-ми в качестве исходных данных:

- номинальная мощность на валу: Р=3 кВт;
- номинальные напряжения: U1ном.ф/U1ном=380/220 В;
- число полюсов: 2p=6;
- конструктивное исполнение: ІМ1;
- исполнение по способу защиты: IP44;
- способ охлаждения: ICO1;
- климатическое исполнение и категория размещения: УЗ;
- установочный размер: М;
- класс нагревостойкости изоляции: Н.

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.ЭП-21.48.ПЗ				
Разр	абот.	Рощин М.Ю.				Литер.	Лист	Листов	
Про	верил	Тодарев В.В				У	4		
					Задание	ГГТУ, гр. ЭП-2 ⁻			
								ЭП-21	

1. Определение главных размеров электродвигателя

Высоту оси вращения h АД предварительно определяют по рисунку $\Pi.1\ [1]$ для заданных P_2 и 2p в зависимости от исполнения двигателя.

Принимает предварительное значение оси вращения (рис. $\Pi.1$, а, стр.121, источник 1):

h=110 MM = 0.11 M.

Принимаем стандартное значение:

h = 112 MM = 0.112 M.

Тогда по таблице П.1 (ист.1, стр.121) принимаем значения внешнего диаметра статора АД: D_a =191 мм = 0,191 м.

Выбираем коэффициент K_D по таблице П.2 (ист.1, стр.121):

 $K_D = 0.7$.

Определяем внутренний диаметр статора:

$$D=K_D \cdot D_a=0,7 \cdot 0,191=0,134$$
 м, где

D – внутренний диаметр статора АД, м;

 K_D — коэффициент, характеризующий отношения внутренних и внешних диаметров сердечников статор асинхронных двигателей серий 4A и АИР при различных числах полюсов.

Находим полюсное деление двигателя, м:

$$\tau = \frac{\pi D}{2p} = \frac{\pi \cdot 0,134}{6} = 0,07$$
 м.

Находим расчетную мощность двигателя:

$$P = P_2 \cdot 10^3 \cdot \frac{k_E}{\eta \cdot \cos \varphi} = 3 \cdot 10^3 \cdot \frac{0.94}{0.79 \cdot 0.72} = 4957.8, \text{B} \cdot \text{A},$$

где P_2 – номинальная мощность на валу АД, кВт;

 k_E — коэффициент, характеризующий отношение ЭДС обмотки статора к номинальному напряжению (приближенно — по рис. П.2, [1], стр.122).

 $k_E = 0.94$.

					КП 1-53 01 05	КП.1-53 01 05.ЭП-21.48.ПЗ			
Изм	Лист	№ докум.	Подпись	Дата	N11.1-03 01 03.011-21.40.113			110	
Разр	абот.	Рощин М.Ю.				Литер.	Лист	Листов	
Про	верил	Тодарев В.В			Определение	У	5		
					главных размеров				
					электродвигателя	ГГТУ, гр. ЭП-21		ЭП-21	
							-		

	ŋ - Kl	ПД машин	ы, о.е., г	іредвар	оительное значения которо	го можі	но опре	делить
ПО		[.3, a ([1], c						
	n=0,7	9.						
	cosφ	– коэффиі	циент мо	щност	и АД, о.е., предварительн	ое значе	ение ко	торого
МО		пределить						
		= 0,72						
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	П3
	абот.	Рощин М.Ю.	7.0071400	Hama		Литер.	Лист	Листов
Про	верил	Тодарев В.В			Определение	У	6	
					главных размеров электродвигателя		y, an	ЭП-21
					RICHIIDOOGUCAIIICIIA	l	, . .	<i></i>

Выбираем электромагнитные нагрузки (предварительные значения по рис. П.5, а, [1], стр.123).

$$B_{\sigma}$$
=0,88 Тл; A= 26,4·10³ A/м.

Выбираем однослойную обмотку исходя из малой мощности двигателя и невысокой оси вращения

$$k_{\text{обм1}}=0,95.$$

Предварительно коэффициент полюсного перекрытия a_{σ} и коэффициент формы поля k_{B} определяем следующим образом:

$$a_{\delta} = \frac{2}{\pi} \approx 0,64.$$

$$k_B = \frac{\pi}{2\sqrt{2}} = 1,11.$$

Синхронная частота вращения двигателя:

$$n_1 = \frac{60 \cdot f_1}{p} = \frac{60 \cdot 50}{6} = 500, oб / мин,$$

где f₁=50 Гц;

р – число пар полюсов

Синхронная угловая частота вращения АД:

$$w = 2\pi \cdot \frac{n_1}{60} = 2\pi \cdot \frac{500}{60} = 52,3, pad/c$$

С учётом выбранных ранее параметров определяем расчётная длина магнитопровода двигателя:

$$l_{\delta} = \frac{P'}{D^2 \cdot w \cdot k_R \cdot k_{\alpha \delta ul} \cdot A \cdot B_{\delta}} = \frac{4957.8}{0.134^2 \cdot 52.3 \cdot 1.11 \cdot 0.95 \cdot 26.4 \cdot 10^3 \cdot 0.88} = 0.21, m$$

Определяем правильность выбора главных размеров D и $l_{\mbox{\tiny 6}}$ по выражению:

$$\lambda = \frac{l_{\delta}}{\tau} = \frac{0.21}{0.07} = 3$$

Данное значение лежит в допустимых пределах для АД принятого исполнения IP44 (рис. П.8, [1], стр.124).

Так как, длина сердечника не превышает 250...300 мм, радиальные вентиляционные каналы отсутствуют, поэтому:

$$l_1 = l_{CT1} = l_6 = 0,21 \text{ M}$$

\vdash					КП.1-53 01 05.ЭП-21.48.ПЗ
Nav	Лист	№ Докум	Подпись	Лата	N11.1-03 01 03.011-21.40.113

Конструктивная длина сердечника ротора в машинах с h < 250 мм принимается равной длине сердечника статора: $l_2 = l_1 = 0,21 \text{ M}$ Длина стали сердечника ротора если вентиляционные каналы отсутствуют $l_{CT2} = l_2 = 0,21 \text{ M}$

2. Расчёт обмотки, паза и ярма статора.

Предварительно по рис. П.9 ([1], стр. 125) определяют диапазон возможных значений зубцового деления статора электродвигателя:

$$t_{z1min}$$
=0,014 м и t_{z1max} =0,016 м.

Находим предельные значения числа пазов статора АД исходя из ранее принятых значений $t_{z1min}\,u\;t_{z1max}$:

$$Z_{1 \min} = \frac{\pi D}{t_{z1 \max}} = \frac{\pi \cdot 0,134}{0,016} = 26,3 \approx 26;$$

$$Z_{1 \max} = \frac{\pi D}{t_{z1 \min}} = \frac{\pi \cdot 0,134}{0,014} = 30,05 \approx 30$$

Окончательное число пазов статора Z_1 выбирается из диапазона между значениями Z_{1min} и Z_{1max} . При этом необходимо учесть два условия:

Число пазов статора Z_1 будет кратно числу фаз m_1 АД (m_1 =3) и число пазов на полюс и фазу q_1 будет целым числом:

$$\frac{Z_1}{m_1} = \frac{27}{3} = 9;$$

$$q_1 = \frac{Z_1}{2pm_1} = \frac{9}{6 \cdot 3} = 1;$$

Окончательно принимаем Z₁=27.

Окончательное значение зубцового деления обмотки статора:

$$t_{z1} = \frac{\pi D}{2pm_1q_1} = \frac{\pi \cdot 0,134}{6 \cdot 3 \cdot 1} = 0,023375 \text{ м} = 23 \text{ м}$$

Номинальный ток обмотки статора АД:

$$I_{1\text{HOM}} = \frac{P_2}{m_1 U_{1\text{HOM.}\phi} \text{pcos}\phi} = \frac{3 \cdot 10^3}{3 \cdot 220 \cdot 0.79 \cdot 0.72} = 7.9 \text{ A}$$

Число эффективных проводников в пазу (предварительное значение при условии, что число параллельных ветвей обмотки a=1 (параллельные ветви отсутствуют):

					Расчёт обмотки, у 9 лаза и ярма статора ГГТУ, гр. ЭП-2		ЭП-21		
Про	верил	Тодарев В.В			Расчёт обмотки,	У	9		
Разр	абот.	Рощин М.Ю.				Литер.	Лист	Листов	
Изм	Лист	№ докум.	Подпись	Дата	KII. I-03 01 00.911-21.40.113			110	
					КП.1-53 01 05.ЭП-21.48.ПЗ				

$$u'_{\text{I}} = \frac{\pi \text{DA}}{I_{1\text{HOM}} Z_1} = \frac{\pi \cdot 0,134 \cdot 26,4 \cdot 10^3}{7,9 \cdot 27} = 52,08$$

Число параллельных ветвей:

$$a = \frac{2p}{k} = 1.$$

Лист	№ докум.	Подпись	Дата
абот.	Рощин М.Ю.		
верил	Тодарев В.В		
	абот.	абот. Рощин М.Ю.	абот. Рощин М.Ю.

КП.1-53 01 05.ЭП-21.48.ПЗ

Расчёт обмотки, паза и ярма статора

Литер.	Лист	Листов
У	10	

ГГТУ, гр. ЭП-21

Тогда фактическое число эффективных проводников в пазу u_{π} при а = 1(в этом случае обмотка однослойная):

$$u_{\rm m} = au'_{\rm m} = 2 \cdot 52,08 = 104,16 \approx 104$$

Таким образом, $u_{\Pi} = 104$

Число витков в фазе обмотки статора:

$$w_1 = \frac{u_{\pi} Z_1}{2am_1} = \frac{104 \cdot 27}{2 \cdot 1 \cdot 3} = 468.$$

Находят окончательное значение линейной нагрузки:

$$A = \frac{2I_{1\text{HOM}}m_1w_1}{\pi D} = \frac{2 \cdot 7.9 \cdot 3 \cdot 468}{\pi \cdot 0.134} = 53322 = 53.322 \cdot 10^3 \frac{A}{M}.$$

Значение А находится в допустимых пределах (рис. П.5, а, [1], стр.123).

Так как в нашем случае однойслойная концентрическая обмотка из круглого изолированного провода (всыпная обмотка), то она выполняется без укорочения шага, поэтому для них $\beta=1$ и $k_{106\text{m}}=1$.

Магнитный поток:

$$\Phi = \frac{k_E U_{1\text{HOM},\varphi}}{4k_B w_1 k_{0\text{GM}} f_1} = \frac{0.94 \cdot 220}{4 \cdot 1.11 \cdot 468 \cdot 1 \cdot 50} = 0.0019 \text{ B}6.$$

Индукция магнитного поля в воздушном зазоре:

$$B_6 = \frac{p\Phi}{Dl_6} = \frac{1 \cdot 0,0019}{0,134 \cdot 0,21} = 0,87 \text{ Тл.}$$

Значение произведения линейной нагрузки на плотность тока AJ найдём по рис. П.11, а ([1], стр.129):

$$AJ=185\cdot 10^9 A^2/M^3$$
.

Плотность тока в обмотке статора (предварительное значение):

$$J_1 = \frac{AJ}{A} = \frac{185 \cdot 10^9}{13,214 \cdot 10^3} = 3,46 \cdot 10^6 \frac{A}{M^2} = 3,46 \frac{A}{MM^2}.$$

Площадь поперечного сечения эффективного проводника (предварительное значение):

$$q_{\vartheta \varphi} = \frac{I_{1\text{HOM}}}{aJ_1} = \frac{7.9}{2 \cdot 3.46 \cdot 10^6} = 0.23 \text{ mm}^2.$$

При таком сечении диаметр эффективного проводника будет равен:

Изм.	Лист	№ Докум	Подпись	Дата

$$d_{\pi p} = \sqrt{\frac{4q_{9\phi}}{\pi}} = \sqrt{\frac{4 \cdot 0.23}{\pi}} = 0,54 \text{ m} = 5,4 \text{ mm}.$$

В качестве обмоточного провода принимаем круглый медный изолированных провод марки ПЭТВ сечением $q_{\scriptscriptstyle 3л}$ =0,221 мм² и диаметром $d_{\scriptscriptstyle 3л}$ =0,53 мм (таблица 6, [1], стр.127). Диаметр провода с учетом изоляции $d_{\scriptscriptstyle и3}$ =0,585 мм

С учетом рекомендаций на странице 13 и 14 ([1]), принимаем число элементарных проводников $n_{\text{эл}}=1$. Тогда уточнённое значение площади поперечного сечения эффективного проводника:

$$q_{\ni \varphi} = q_{\ni \pi} n_{\ni \pi} = 0,221 \cdot 1 = 0,221$$
 мм².

Плотность тока в обмотке статора (уточнённое значение):

$$J_1 = \frac{I_{1\text{HOM}}}{\text{aq}_{\text{эл}} n_{\text{эл}}} = \frac{7,9}{1 \cdot 0,23 \cdot 1} = 36,1 \frac{A}{\text{мм}^2}.$$

Всыпную обмотку статора с круглыми обмоточным проводом будем укладывать в пазы трапецеидальной формы (рисунок П.13, а; [1], стр. 130).

Длина стали сердечника статора $l_{CT1}=l_{6}=0,21$ м.

Коэффициент заполнения сталью магнитопровода статора (таблица П.8, [1], стр. 132) k_{C1} =0,97.

По таблице П.7 ([1], стр.131) предварительно принимаем значения:

- Магнитной индукции в зубцах статора при постоянном сечении B_{Z1} =1,65 Тл.
- Магнитной индукции в ярме статора В_а=1,6 Тл.

Лист

№ Докум

Подпись

КГ	7.1	-53	01	05.3	ЭП-2	21.4	<i>48.1</i>	73
, ,,			\cup ι	00.0	<i></i>	<u> </u>	<i>10.1</i>	10

Рис. 2.1. Размеры трапецеидальных полузакрытых пазов статора асинхронного двигателя

Ширина зубца статора (предварительное значение):

$$b_{Z1} = \frac{B_{\delta}t_{Z1}l_{\delta}}{B_{Z1}l_{CT1}k_{C1}} = \frac{0.87 \cdot 23 \cdot 0.21}{1.65 \cdot 0.21 \cdot 0.97} = 12.5 \text{ MM}.$$

Высота ярма статора:

$$h_a = \frac{\Phi}{2B_a l_{CT1} k_{C1}} = \frac{0,0019}{2 \cdot 1,6 \cdot 0,21 \cdot 0,97} = 29,1 \cdot 10^{-3} \text{ m} = 29,1 \text{ mm} \,.$$

Размеры паза в штампе определим с учётом приведённых на стр. 15 и 16 ([1]) рекомендаций и рассчитаем по соответствующим выражениям (рис. 2.1).

- Ширина шлица паза $b_{m1} = 3,5$ мм.
- Высота шлица паза $h_{m1} = 1$ мм.
- Угол наклона грани клиновой части паза β_к=45°.
- Высота паза:

$$h_{\pi 1} = \frac{D_a - D}{2} - h_a = \frac{191 - 134}{2} - 0.29 = 28.2 \text{ MM}.$$

• Меньшая ширина паза:

$$b_2 = \frac{\pi (D + 2h_{\text{III}1} - b_{\text{III}1}) - Z_1 b_{Z1}}{Z_1 - \pi} = \frac{\pi (134 + 2 \cdot 1 - 3, 5) - 27 \cdot 12, 5}{27 - \pi} = 4,2 \text{ MM}.$$

Большая ширина паза:

$$b_1 = \frac{\pi(D+2h_{\pi 1})}{Z_1} - b_{Z1} = \frac{\pi(134+2\cdot28,2)}{27} - 12,5 = 9,64 \text{ mm}.$$

Высота клиновой части паза:

$$h_k = \frac{b_1 - b_{iii1}}{2} = \frac{4,2-3,5}{2} = 0,35 \text{ MM}.$$

Высота паза без учёта высота клиновой части и высота шлица:

$$h_{\pi.\kappa.} = h_{\pi 1} - \left(h_{\text{ш}1} + \frac{b_1 - b_{\text{ш}1}}{2}\right) = 28,2 - \left(1 + \frac{4,2 - 3,5}{2}\right) = 26,8 \text{ MM}.$$

					КП.1-53 01 05.ЭП-21.48.ПЗ
140	П.,,,,,,	Мо. Пенни	По	П	

Припуски на сборку по ширине $\Delta b_{\pi 1}$ и высоте $\Delta h_{\pi 1}$ паза (таблица П.9, [1], стр.

132):

$$\Delta b_{\pi 1} = 0,1$$
 mm; $\Delta h_{\pi 1} = 0,1$ mm.

Размеры паза «в свету»:

Высота паза:

$$h'_{\pi 1} = h_{\pi 1} - \Delta h_{\pi 1} = 28,2 - 0,1 = 28,1$$
 mm.

Высота паза без учёта высоты клиновой части и высота шлица:

$$h'_{\text{п.к.}} = h_{\text{п.к.}} - \Delta h_{\text{п1}} = 26.8 - 0.1 = 26.7$$
 мм.

Меньшая ширина паза:

$$b'_2=b_2-\Delta b_{\pi 1}=4,2-0,1=4,1$$
 MM.

Большая ширина паза:

$$b'_1=b_1-\Delta b_n=9,64-0,1=9,54$$
 mm.

Односторонняя толщина изоляции в пазу (таблица П.11, [1], стр. 133):

$$b_{\mu 3} = 0.25 \text{ MM}.$$

Площадь, занимаемая корпусной изоляцией в пазу:

$$S_{\text{H3}} = b_{\text{H3}}(2h_{\text{H1}} + b_1 + b_2) = 0.25 \cdot (2 \cdot 28.2 + 4.2 + 9.64) = 17.6 \text{ mm}^2.$$

Площадь, занимаемая прокладками для однослойной обмотки:

$$S_{np}=0$$
.

Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки:

$$S_{\Pi}^{'} = \frac{b_{1}^{'} - b_{2}^{'}}{2} h_{\Pi.K}^{'} - (S_{\text{M3}} + S_{\Pi p}) = \frac{9,54 - 4,1}{2} \cdot 26,7 - (17,6 + 0) = 90,97 \text{ mm}^{2}.$$

Коэффициент заполнения паза статора:

$$k_{3} = \frac{d_{\text{из}}^{2} u_{\Pi} n_{_{9\Pi}}}{s_{\Pi}'} = \frac{0.585^{2} \cdot 104 \cdot 1}{90.97} = 0.39.$$

Который находится в допустимом диапазоне для 2р=6 (0,72..0,74).

Уточняем среднее значение ширины зубца статора, приняв его в качестве расчётного:

					VE 4 50 04 05 0E 04 40 E0
					КП.1-53 01 05.ЭП-21.48.ПЗ
Изм.	Лист	№ Локум	Полпись	Лата	

$$b_{Z1}^{'} = \pi \frac{D + 2(h_{III1} + h_{k)}}{Z_1} - b_1 = \pi \frac{134 + 2(1 + 0.35)}{27} - 4.2 = 11.69 \text{ MM}.$$

$$b_{Z1}^{"} = \pi \frac{D + 2h_{\pi 1}}{Z_1} - b_2 = \pi \frac{134 + 2 \cdot 28,2}{27} - 9,64 = 12,5 \text{ MM}.$$

Поскольку расхождение между $\dot{b_{Z1}}$ и $\dot{b_{Z1}}$ до 0,5 мм, то

$$b_{\ddot{Z}1} = \frac{b_{Z1}^{'} + b_{Z1}^{''}}{2} = \frac{11,69 + 12,5}{2} = 12,09$$

Пользуясь рекомендациями на странице 19 и рисунком П.14 ([1], стр. 134) определим величину воздушного зазора между статором и ротором:

б=0,35 мм.

3. Расчёт обмотки, паза и ярма ротора

Выбираем Z_2 =44, поскольку для машин небольшой мощности обычно выполняется условие Z_2 < Z_1 (Z_1 =54). Выбор пазов ротора выбирали из таблица $\Pi.12([1], \text{ стр. } 134)$.

Внешний диаметр ротора:

$$D_2=D-26=134-2\cdot 0,35=133,3$$
 мм.

Длина сердечника ротора:

$$l_2 = l_{CT1} = l_{CT2} = l_6 = 0,21$$
 м.

Зубцовое деление ротора:

$$t_{Z2} = \frac{\pi D_2}{Z_2} = \frac{\pi \cdot 133,3}{44} = 9,5 \text{ MM}.$$

Сердечник ротора выполнен с непосредственной посадкой на вал $(D_2 < 990$ мм), а так как $h \le 250$ мм (h=112), то при непосредственной посадке на вал не используем шпонку.

Внутренний диаметр сердечника ротора:

$$D_i = D_B = k_B D_a = 0.19 \cdot 0.191 = 0.036 \text{ M}.$$

где D_B – диаметр вала

 $k_{\text{\tiny B}}\!\!=\!\!0,\!19$ – коэффициент, выбранный по табл. П.13 ([1], стр. 135).

Коэффициент, учитывающий влияние тока намагничивания на отношение токов I_1/I_2 (предварительное значение):

$$k_i = 0.2 + 0.8\cos\varphi = 0.2 + 0.8 \cdot 0.72 = 0.776$$

Выполняем скос пазов ротора. Ширину скоса выбираем из условия:

$$b_{ck} = (0,5..1)t_{Z2} = 0,5 \cdot 9,5 = 4,75 \text{ mm}.$$

Относительная ширина скоса пазов в долях зубцового деления:

$$\beta_{\text{CK}} = \frac{b_{\text{CK}}}{t_{72}} = \frac{4,75}{9,5} = 0,5.$$

Угол скоса в электрических радианах:

Проверил					Расчёт обмотки, паза и ярма ротора	ГГТУ, гр. ЭП-21			
Про	верил	Тодарев В.В			Doguëm of Momen	У	16		
Разработ.		Рощин М.Ю				Литер.	Лист	Листов	
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.ЭП-21.48.ПЗ				

·		
·		
КП.1-53 01 05.ЭП	-21.48	.ПЗ
Изм Лист № докум. Подпись Дата	on divers	(I) (and a c
Разработ. Рощин М.Ю Лит Проверил Тодарев В.В Подарев В.В Тодарев В.В		Листов
Pacqem oomomku,	_	00.04
Traca a ripina porriopa	ТУ, гр.	<i>311-</i> 21

Рис. 3.1. Скос пазов ротора асинхронной машины

Коэффициент скоса:

$$k_{\text{CK}} = \frac{2\sin(\frac{\gamma_{CK}}{2})}{\gamma_{CK}} = \frac{2\cdot\sin(\frac{0.136}{2})}{0.136} = 0.9992.$$

Коэффициент приведения токов:

$$v_i = \frac{2m_i w_1 k_{o6\text{M}1}}{Z_2 k_{c\text{K}}} = \frac{2 \cdot 3 \cdot 468 \cdot 1}{44 \cdot 0,9992} = 64.$$

Ток в обмотке ротора (предварительное значение):

$$I_2=k_iI_{1\text{HOM}}v_i=0,776\cdot7,9\cdot64=392,3 \text{ A}.$$

В качестве обмотки ротора принимаем литую конструкцию с алюминиевыми стержнями и короткозамкнутыми кольцами (страница 20, [1]).

Задаёмся плотностью тока в алюминиевых стержнях ротора (страница 22, [1]):

$$J_2=2,5\cdot 10^6 \text{ A/m}^2$$
.

Площадь поперечного сечения стержня (предварительное значение):

$$q_c = \frac{I_2}{J_2} = \frac{392,3}{2,5 \cdot 10^6} = 156,9 \cdot 10^{-6} \text{ m}^2 = 156,9 \text{ m}^2.$$

В данном двигателе применяем трапецеидальные полузакрытые пазы (страница 23, рис. 3.2, а; [1]):

Изм.	Лист	№ Докум	Подпись	Дата

Лист

Рис. 3.2. Размеры трапецеидальных полузакрытых пазов ротора асинхронной машины

Ширина шлица паза $b_{m2}=1,5$ мм.

Высота шлица паза h_{m2} =0,75 мм.

Высота перемычки над пазом $h'_{m2} = 0.3$ (так как паз полузакрытый).

По таблице П.7 ([1], стр. 131) принимаем значение магнитной индукции в зубцах ротора при постоянном сечении B_{Z2} =1,7 Тл.

Допустимая ширина зубца статора:

$$b_{Z 2.\mathcal{A}} = \frac{B_{\sigma} t_{Z2} l_{\sigma}}{B_{Z2} l_{CT2} k_{C2}} = \frac{0.87 \cdot 9.5 \cdot 0.21}{1.7 \cdot 0.21 \cdot 0.97} = 5.01 \text{ mm}.$$

 Γ де k_{C2} =0,97 — коэффициент заполнения сталью магнитопровода ротора (таблица Π .8, [1], стр. 132).

Размеры паза ротора:

Диаметр закругления верхней части паза:

$$b_1 = \frac{\pi \left(D_2 - 2h_{\text{III}2} - 2h_{\text{III}2}'\right) - Z_2 b_{\text{Z 2.}\text{\mathcal{I}}}}{Z_2 + \pi} = \frac{\pi (133, 3 - 2 \cdot 0, 75 - 2 \cdot 0, 3) - 44 \cdot 5, 01}{44 + \pi} = 7,1 \text{ MM}.$$

Диаметр закругления нижней части паза:

$$b_2 = \sqrt{\frac{b_1^2 \left(\frac{Z_2}{\pi} + \frac{\pi}{2}\right) - 4q_c}{\frac{Z_2}{\pi} + \frac{\pi}{2}}} = \sqrt{\frac{7,1^2 \left(\frac{44}{\pi} + \frac{\pi}{2}\right) - 4 \cdot 156,9}{\frac{44}{\pi} + \frac{\pi}{2}}} = 3,3 \text{ MM}.$$

Расстояние между центрами закруглений верхней и нижней частей паза:

$$h_1 = (b_1 - b_2) \frac{Z_2}{2\pi} = (7,1-3,3) \frac{44}{2\pi} = 26,60 \text{ MM}.$$

					КП.1-53 01 05.ЭП-21.48.ПЗ
Изм.	Лист	№ Докум	Подпись	Дата	

Полная высота паза ротора для полузакрытого паза:

$$h_{\pi 2} = h_1 + h_{\text{III}2} + \frac{b_1}{2} + \frac{b_2}{2} = 26,60 + 0,75 + \frac{7,1}{2} + \frac{3,3}{2} = 32,6 \text{ MM}.$$

Уточняем ширину зубцов ротора:

$$b_{Z2}' = \pi \frac{D_2 - 2(h_{\text{III}2} + h_{\text{III}}') - b_1}{Z_2} - b_1 = \pi \frac{133,3 - 2(0,75 + 0) - 7,1}{44} - 7,1 = 7,8 \text{ MM}$$

$$b_{Z2}^{\prime\prime} = \pi \frac{D_2 - 2h_{\pi 2} + b_2}{Z_2} - b_2 = \pi \frac{133,3 - 2 \cdot 32,6 + 3,3}{44} - 3,3 = 7,9 \text{ mm}.$$

Уточнённое значение ширины зубца ротора:

$$b_{z2} = \frac{b'_{Z2} + b''_{Z2}}{2} = \frac{7,8 + 7,9}{2} = 7,85 \text{ mm}.$$

Уточнённое значение площади поперечного сечения стержня:

$$q_c = \frac{\pi}{8} \left(b_1^2 + b_2^2 \right) + \frac{1}{2} \left(b_1 + b_2 \right) h_1 = \frac{\pi}{8} \left(7, 1^2 + 3, 3^2 \right) + \frac{1}{2} \left(7, 1 + 3, 3 \right) \cdot 26,60 = 162,4 \text{ мм.}$$

Плотность тока в стержне ротора (уточнённое значение):

$$J_2 = \frac{I_2}{q_c} = \frac{392,3}{162,4} = 2,4 \frac{A}{\text{mm}^2}.$$

Рис. 3.3. Замыкающее кольцо короткозамкнутого ротора с литой алюминиевой обмоткой и его размеры

Коэффициент для расчёта тока короткозамкнутого кольца:

$$\Delta = 2\sin\frac{\pi p}{Z_2} = 2\sin(\frac{\pi \cdot 6}{44}) = 1,6.$$

Ток короткозамкнутого кольца ротора:

$$I_{\text{\tiny KJI}} = \frac{I_2}{\Delta} = \frac{392,3}{1.6} = 245,2A.$$

					11
					K
Изм.	Лист	№ Докум	Подпись	Дата	

Плотность тока в короткозамкнутых кольцах принимаем согласно рекомендациям на странице 27 ([1]):

$$J_{\text{KJ}} = (J_2 \cdot 0.85) = 2.33 \cdot 0.85 = 1.98 \text{ A/mm}^2.$$

Площадь поперечного сечения короткозамкнутого кольца:

$$q_{\text{KJ}} = \frac{I_{\text{KJ}}}{I_{\text{KJ}}} = \frac{245,2}{1,98} = 123,8 \text{ mm}^2.$$

Размеры замыкающих колец:

Высота кольца:

$$h_{\text{кл}}=1,2h_{\pi 2}=1,2\cdot 32,6=39,12 \text{ MM}.$$

Ширина кольца:

$$b_{\kappa\pi} = \frac{q_{\kappa\pi}}{h_{\kappa\pi}} = \frac{123,8}{39,12} = 3,16$$
 mm.

Средний диаметр кольца:

$$D_{\text{кл.cp}} = D_2 - h_{\text{кл}} = 133,3 - 39,12 = 94 \text{ MM}.$$

Уточняем площадь поперечного сечения замыкающего кольца, принимая полученное значения в качестве расчётного:

$$q_{\text{кл}} = b_{\text{кл}} h_{\text{кл}} = 3,16 \cdot 39,12 = 140,8 \text{ мм}^2.$$

Лист

4. Расчёт магнитной цепи асинхронной машины

Марку стали магнитопровода принимаем согласно рекомендациям таблицы П.14([1], стр. 135): сталь марки 2013.

Коэффициент для расчёта магнитного напряжения воздушного зазора:

$$\gamma_1 = \frac{(\frac{b_{\text{iii}1}}{\sigma})^2}{5 + \frac{b_{\text{iii}1}}{\sigma}} = \frac{(\frac{3.5}{0.35})^2}{5 + \frac{3.5}{0.35}} = 7$$

Коэффициент для расчёта магнитного напряжения воздушного зазора:

$$k_{\delta} = \frac{t_{Z1}}{t_{Z1} - \gamma_1 \sigma} = \frac{23}{23 - 7 \cdot 0.35} = 0.4.$$

Магнитное напряжение воздушного зазора:

$$F_{\delta} = \frac{2}{\mu_0} B_{\sigma} \sigma k_{\sigma} = \frac{2}{12,56 \cdot 10^{-7}} 0,88 \cdot 0,35 \cdot 0,4 = 196,2 \text{ A}.$$

Где μ_0 – магнитная проницаемость (стр. 28, [1]).

Расчётная высота зубца статора:

 $h_{Z1}=h_{\pi 1}=28,2$ MM.

Расчётная индукция в зубцах статора:

$$B'_{Z1} = \frac{B_{\delta} t_{Z1} l_{\sigma}}{b_{Z1} l_{CT1} k_{C1}} = \frac{0.88 \cdot 23 \cdot 0.21}{12.5 \cdot 0.21 \cdot 0.97} = 1.66 \text{ Тл.}$$

Если индукция в зубцах статора B'_{Z1} , будет меньше 1,8 Тл, то её фактическое уточнённое значение:

$$B_{Z1} = B'_{Z1}$$

Тогда напряжённости магнитного поля H_{Z1} :

$$H_{Z1}=982 \text{ A/m}.$$

Магнитное напряжение зубцовой зоны статора:

$$F_{Z1} \!\!=\!\! 2h_{Z1}H_{Z1} \!\!=\!\! 2\!\cdot\! 28,\! 2\!\cdot\! 10^{\text{--}3}\!\cdot\! 982 \!\!=\!\! 55,\! 3~A.$$

Расчётная высота зубца ротора:

					цепи асинхронной машины	ГГТУ, гр. ЭП-21			
	абот. верил	Рощин М.Ю. Тодарев В.В			Расчёт магнитной	Литер. У	Лист 22	Листов	
Изм	Лист	№ докум.	Подпись	Дата	N11.1-33 01 03.311-21.40.113				
					КП.1-53 01 05.ЭП-21.48.ПЗ				

 $h_{Z2} = h_{\pi 2} - 0.1b_2 = 32.6 - 0.1 \cdot 3.3 = 32.27$ mm.

Расчётная индукция в зубцах ротора:

$$B_{Z2}' = rac{B_{\delta}t_{Z2}l_{\sigma}}{b_{Z2}l_{CT2}k_{C2}} = rac{0,88\cdot 9,5\cdot 0,21}{7,85\cdot 0,21\cdot 0,97} = 1$$
 Тл

Проверил					цепи асинхронной машины	ГГТУ, гр. ЭП-21			
Про	верил	Тодарев В.В			Расчёт магнитной	У	23		
Разработ.		Рощин М.Ю.				Литер.	Лист	Листов	
Изм	Лист	№ докум.	Подпись	Дата	KI I. 1-53 01 05. J I I-21.48.I I 3				
					КП.1-53 01 05.ЭП-21.48.ПЗ				

Так как расчётная индукция в зубцах ротора B'_{Z2} , равна 1,0 Тл, то её фактическое уточнённое значение:

$$B_{Z2}=B'_{Z2}$$

Тогда напряжённости магнитного поля H_{Z1}:

$$H_{Z2}=185 \text{ A/m}.$$

Магнитное напряжение зубцовой зоны статора:

$$F_{Z2}=2h_{Z2}H_{Z2}=2\cdot32,27\cdot10^{-3}\cdot185=12 A.$$

Коэффициент насыщения зубцовой зоны:

$$k_z = 1 + \frac{F_{z1} + F_{z2}}{F_{\sigma}} = 1 + \frac{55,3 + 12}{196,2} = 1,22.$$

Значение коэффициента насыщения зубцовой зоны находится о пределах 1,2 до 1,6, что предварительно говорит о правильности выбранных размерных соотношений и обмоточных данных АД (стр. 31, [1]).

Длина средней силовой линии магнитного поля в ярме статора:

$$L_a = \pi \frac{D_a - h_a}{2p} = \pi \frac{0,191 - 0,0291}{6} = 0,084$$
 м.

Проектируемый АД имеет длину сердечника статора $1_{\text{СТI}}$ =0,21 м < 300 мм, поэтому вентиляционные каналы в статоре отсутствуют (стр. 31, [1]). В этом случае расчётная высота ярма статора:

$$h_a$$
= h_a = $0,0291$ м. (при m_{k1} = 0).

Индукция в ярме статора:

$$B_a = \frac{\Phi}{2h_a'l_{CT1}k_{C1}} = \frac{0,0019}{2\cdot 0,0291\cdot 0,21\cdot 0,97} = 0,4$$
 Тл.

Напряжённость поля ярма статора при индукции B_a (таблица П.16, [1], стр. 136):

Магнитное напряжение ярма статора:

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	.ПЗ
Разр	абот.	Рощин М.Ю.			Определение	Литер.	Лист	Листов
Про	верил	Тодарев В.В			параметров	У	24	
					асинхронной машины для рабочего режима	ררד	⁄, гр.	ЭП-21

 $F_a = L_a H_a = 0.084 \cdot 56 = 5 A.$

Сердечник ротора проектируемого АД является сердечником с непосредственной посадкой на вал. Определим значение следующего выражения и оценим выполнения условия:

$$0.75\left(\frac{D_a}{2} - h_{\Pi 2}\right) = 0.75\left(\frac{0.191 \cdot 10^3}{2} - 32.6\right) = 47.2 \text{ MM}.$$

 $47,2>(D_B=36 \text{ mm}).$

Поэтому для АД с 2p=6 расчётная высота ярма ротора определится по выражению:

$$h'_j = \frac{D_2 - D_B}{2} - h_{\pi 2} = \frac{133,3 - 36}{2} - 32,6 = 16,05 \text{ mm} = 0,016 \text{ m}.$$

Длина средней силовой линии магнитного поля в ярме ротора:

$$L_j = \pi \cdot \frac{D_j - h'_j}{2 \cdot p} = \pi \cdot \frac{36 - 16,05}{2 \cdot 6} = 5,2 \text{ mm} = 0,052 \text{ m}.$$

Индукция в ярме ротора:

$$\mathrm{B_{j}} = \frac{\Phi}{2\mathrm{h_{i}^{\prime}l_{CT2}k_{C2}}} = \frac{0,0019}{2\cdot0,052\cdot0,21\cdot0,97} = 0,896\ \mathrm{T}$$
л.

Напряжённость поля ярма ротора при индукции B_j (таблица П.16, [1], стр. 136):

 $H_i = 97 \text{ A/m}.$

Магнитное напряжение ярма ротора:

$$F_j = L_j H_j = 0.052 \cdot 97 = 5.044 A.$$

Суммарное магнитное напряжение магнитной цепи на одну пару полюсов:

$$F_{II}=F_6+F_{Z1}+F_{Z2}+F_a+F_i=196,2+55,3+12+5+5,044=273,544$$
 A.

Коэффициент насыщения магнитной цепи:

$$k_{\mu} = \frac{F_{\text{tt}}}{F_{\sigma}} = \frac{273,544}{196,2} = 1,31$$

Намагничивающий ток АД:

					КП.1-53 01 05.	ЭП-2	1.48.	.ПЗ
Изм	Лист	№ докум.	Подпись	Дата				
Разр	абот.	Рощин М.Ю.			Определение	Литер. Лист Листов		Листов
Проверил		Тодарев В.В			параметров	У	25	
					параметров асинхронной машины для рабочего режима	ררד	V, гр.	ЭП-21

$$I_{\mu} = \frac{pF_{\text{II}}}{0.9m_1w_1k_{\text{OGM1}}} = \frac{4 \cdot 273,544}{0.9 \cdot 3 \cdot 468 \cdot 1} = 1,4A.$$

Относительное значение намагничивающего тока:

$$I_{\mu}^* = \frac{I_{\mu}}{I_{1\text{HOM}}} = \frac{1.4}{7.9} = 0.18.$$

Данное значение находится в пределах от 0,18 до 0,4, что говорит о корректном выборе размеров двигателя и параметров его обмоток (стр. 35, [1]).

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	П3
Разработ. Проверил		Рощин М.Ю.			Определение	Литер.	Лист	Листов
		Тодарев В.В			параметров	У	26	
					асинхронной машины для рабочего режима	ГГТУ, гр. ЭП-21		

5. Определение параметров асинхронной машины для рабочего режима

Длина пазовой части катушки обмотки статора:

$$l_{\pi 1}=l_1=l_2=0,21$$
 M.

Средняя ширина катушки обмотки статора:

$$b_{\text{KT}} = \frac{\pi(D + h_{\Pi 1})}{2p} \beta = \frac{\pi(134 + 28,2)}{2 \cdot 6} \cdot 1 = 42 \text{ MM} = 0,042 \text{ M}.$$

Коэффициенты $k_n=1,4$ и $k_{выл}=0,5$ для расчёта длины лобовой части катушки обмотки статора (таблица $\Pi.24$, обмотка всыпная с неизолированными лобовыми частями, [1], стр. 141).

Длина вылета прямолинейной части катушек обмотки статора из паза от торца сердечника до начала отгиба лобовой части (стр.37, [1], когда всыпная обмотка укладывается в пазы до запрессовки сердечника в корпус):

$$B=0.01 \text{ M}.$$

Длина изогнутой лобовой части катушки обмотки статора:

$$1_{\text{л}1}=k_{\text{л}}b_{\text{кт}}+2B=1,4\cdot0,042+2\cdot0,01=0,079$$
 м.

Длина вылета лобовой части катушки обмотки статора:

$$l_{\text{выл}1} = k_{\text{выл}} b_{\text{кт}} + B = 0,5 \cdot 0,042 + 0,01 = 0,031$$
 м.

Средняя длина витка обмотки фазы статора:

$$l_{cp1}=2(l_{\pi 1}+l_{\pi 1})=2(0,21+0,079)=0,578 \text{ M}.$$

Длина проводников фазы обмотки статора:

$$L_1 = l_{cp1}w_1 = 0,578 \cdot 468 = 270,50$$
 мм.

Расчётная температура и удельное сопротивление материала проводника медной обмотки статора при расчётной температуре (стр. 37, табл. П.26, [1]):

V_{расч}=115°С (для класса изоляции F);

$$\rho_{\scriptscriptstyle M} = \frac{1}{41} \cdot 10^{-6} \; \text{Om} \cdot \text{M}.$$

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	П3
Разр	абот.	Рощин М.Ю.			Определение	Литер.	Лист	Листов
Про	верил	Тодарев В.В			параметров	У	27	
					асинхронной машины для рабочего режима	ГГТУ, гр. ЭП-2°		ЭП-21

Активное сопротивление обмотки статора:

$$r_1 = k_R \rho_M \frac{L_1}{q_{\ni \varphi} a} = 1 \cdot \frac{1}{41} \cdot 10^{-6} \cdot \frac{270,50}{0,23 \cdot 10^{-6} \cdot 1} = 2,8 \text{ Om.}$$

где k_R =1 — коэффициент увеличения активного сопротивления фазы обмотки статора от действия эффекта вытеснения тока.

					КП.1-53 01 05.	20.2	1 10	ПЭ
Изм	Лист	№ докум.	Подпись	Дата	KI I. I - 33 0 1 03.	<i>311-2</i>	1.40.	113
Разработ. Проверил		Рощин М.Ю.			Определение	Литер.	Лист	Листов
		Тодарев В.В			параметров	У	28	
					параметров асинхронной машины для рабочего режима	ГГТУ, гр. ЭП-2 ⁻		ЭП-21

Относительное значение активного сопротивления обмотки статора:

$$r_1^* = r_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},0}} = 2.8 \cdot \frac{7.9}{220} = 0.100 \text{ o. e.}$$

Удельное сопротивление материала алюминиевой литой обмотки ротора и короткозамкнутого кольца при расчётной температуре V_{pacq} =115°C (стр. 37, [1]):

$$\rho_a = \frac{1}{22} \cdot 10^{-6} \text{ Om} \cdot \text{m} \ (\Pi.\ 26, [1], \text{ctp.}\ 142).$$

Активное сопротивление алюминиевого стержня ротора:

$$r_c = k_R \rho_a \frac{l_2}{q_c} = 1 \cdot \frac{1}{22} \cdot 10^{-6} \cdot \frac{0.21}{164.2 \cdot 10^{-6}} = 5.8 \cdot 10^{-6} \text{ Om}.$$

 $k_R=1$ (crp. 38, [1]).

Активное сопротивление фазы алюминиевого короткозамкнутого кольца:

$$r_{\scriptscriptstyle K,I} = \rho_a \frac{\pi D_{\scriptscriptstyle K,I,cp}}{Z_2 q_{\scriptscriptstyle K,I}} = \frac{1}{22} \cdot 10^{-6} \ \cdot \frac{\pi \cdot 94 \cdot 10^{-3}}{44 \cdot 140.8 \cdot 10^{-6}} = \text{2,16} \cdot 10^{-6} \ \text{Om}.$$

Активное сопротивление фазы алюминиевой обмотки ротора:

$$r_2 = r_c + \frac{2r_{_{\mathrm{KJ}}}}{\Delta^2} = 5.8 \cdot 10^{-6} + \frac{2 \cdot 2.16 \cdot 10^{-6}}{0.16^2} = 17.45 \cdot 10^{-6} \ \mathrm{Om}.$$

Активное сопротивление ротора, приведённое к числу витков обмотки статора:

$$r_2' = r_2 \frac{4m_1(w_1k_{\text{OGM1}})^2}{Z_2k_{\text{CK}}^2} = 17,45 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (468 \cdot 1)^2}{44 \cdot 0.9992^2} = 1,04 \text{ Om}.$$

Относительное значение приведённого активного сопротивления ротора:

$$r'_{2*} = r'_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM}.\phi}} = 1,04 \cdot \frac{7,9}{220} = 0.037 \text{ o. e.}$$

Радиальные вентиляционные каналы в данном АД отсутствуют, поэтому расчётная длина магнитопровода статора (при n_{κ} =0).

$$1_6=1_1=0,21$$
 M.

Обмотка без укорочения шага (β=1): (стр. 39, [1]):

$$k_{\beta}=k'_{\beta}=1;$$

Коэффициент магнитной проводимости пазового рассеяния статора (стр.40, формула (5.20), рис. П.15, [1], стр. 142):

Изм.	Лист	№ Докум	Подпись	Дата

$$\lambda_{\Pi 1} = \frac{h_2}{3b_1} k_{\beta} + \left(\frac{h_1}{b_1} + \frac{3h_k}{b_1 + 2b_{\Pi 1}} + \frac{h_{\Pi 1}}{b_{\Pi 1}}\right) k_{\beta}' = \frac{26.2}{3.7.1} \cdot 1 + \left(\frac{0}{7.1} + \frac{3.0.35}{7.1 + 2.3.5} + \frac{1}{3.5}\right) \cdot 1 = 1.59$$

где h_1 =0 (проводники закреплены пазовой крышкой), и

$$h_2 = h_{\text{п.к}} - 2b_{\text{из}} = 26,7 - 2 \cdot 0,25 = 26,2 \text{ MM}.$$

Коэффициент магнитной проводимости лобового рассеяния статора:

$$\lambda_{\pi 1} = 0.34 \frac{q_1}{l_{\delta}'} (l_{\pi 1} - 0.64 \beta \tau) = 0.34 \cdot \frac{1}{0.21} (0.079 - 0.64 \cdot 1 \cdot 0.07) = 0.55.$$

Коэффициент ξ (паз статора – полузакрытый, скос пазов ротора присутствует $\beta_{c\kappa}$ =0,75).

$$\xi = 2k_{cK}^{'}k_{\beta} - k_{o6M1}^{2} \left(\frac{t_{Z2}}{t_{Z1}}\right)^{2} (1 + \beta_{cK}^{2}) = 2 \cdot 1.8 \cdot 1 - 1^{2} \left(\frac{14.5}{10.6}\right)^{2} (1 + 0.75^{2}) = 0.676$$

где $k_{c\kappa}=1,0$ — коэффициент, который находят по рис. П.16 ([1], стр. 143) в зависимости от отношения t_{Z2}/t_{Z1} и $\beta_{c\kappa}$.

$$\frac{\mathsf{t}_{\mathrm{Z2}}}{\mathsf{t}_{\mathrm{71}}} = \frac{9.5}{23} = 0.61.$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора:

$$\lambda_{\text{Д1}} = \frac{t_{Z1}}{12\delta k_s} \xi = \frac{23}{12 \cdot 0.35 \cdot 0.4} \cdot 0.733 = 1.03$$

Индуктивное сопротивление фазы обмотки статора:

$$\begin{split} \mathbf{x}_1 &= 15,8 \frac{f_1}{100} \Big(\frac{w_1}{100}\Big)^2 \frac{l_\delta'}{pq_1} \Big(\lambda_{\Pi 1} + \lambda_{J\!\Pi 1} + \lambda_{J\!\Pi 1} + \lambda_{J\!\Pi 1} \Big) \\ &= 15,8 \cdot \frac{50}{100} \cdot (\frac{468}{100})^2 \cdot \frac{0,21}{6 \cdot 1} \cdot (1,59 + 0,55 + 1,03) = 1,9 \text{ Ом.} \end{split}$$

Относительное значение индуктивного сопротивления фазы статора: ξ

$$x_{1*} = x_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM}, \phi}} = 1.9 \cdot \frac{7.9}{220} = 0.068 \text{ o. e.}$$

Коэффициент магнитной проводимости пазового рассеяния короткозамкнутого ротора: (рис. П.18 а-д, рекомендации на стр. 41-42, [1], стр. 144):

Изм.	Лист	№ Докум	Подпись	Дата

$$\lambda_{\Pi 2} = \left[\frac{h_0}{3b_1} \cdot \left(1 - \frac{\pi b_1^2}{8q_c}\right)^2 + 0,66 - \frac{b_{\text{III}2}}{2b_1}k_{\text{Д}} + \frac{h_{\text{III}2}}{b_{\text{III}2}} \right] =$$

$$= \left[\frac{27,92}{3 \cdot 9,64} \cdot \left(1 - \frac{\pi \cdot 9,64^2}{8 \cdot 162,4}\right)^2 + 0,66 - \frac{1,5}{2 \cdot 9,64}\right] \cdot 1 + \frac{0,75}{1,5} = 1,66$$

где h_0 =27,92 мм — параметр паза по рис. П.18, а ([1], стр. 1444):

$$h_0 = h_1 + \frac{b_2}{2} - 0.1b_2 = 26.6 + \frac{3.3}{2} - 0.1 \cdot 3.3 = 27.92 \text{ mm}.$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{\text{JI}2} = \frac{2,3D_{\text{к.л.cp}}}{Z_2l_{\text{A}}^{'}\Delta^2} lg(\frac{4,7D_{\text{к.л.cp}}}{h_{\text{к.л.}} + 2b_{\text{к.л.}}}) = \frac{2,3 \cdot 94 \cdot 10^{-3}}{44 \cdot 0,21 \cdot 0,16^2} lg(\frac{4,7 \cdot 94 \cdot 10^{-3}}{39,12 \cdot 10^{-3} + 2 \cdot 3,16 \cdot 10^{-3}}) = 0,902$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{\text{Д2}} = \frac{t_{\text{Z2}}}{12\delta k_{\delta}} \xi = \frac{9.5}{12 \cdot 0.35 \cdot 0.4} \cdot 0.062 = 0.140$$

Где коэффициент ξ равен:

$$\xi = 1 + \frac{1}{5} \cdot \left(\frac{\pi \cdot P}{Z2}\right) - \frac{\Delta z}{1 - \left(\frac{p}{Z2}\right)} = 1 + \frac{1}{5} \cdot \left(\frac{\pi \cdot 6}{44}\right) - \frac{0.4}{1 - \left(\frac{6}{44}\right)} = 0.062$$
, где

 Δz =0.4 - коэффициент, который находят по рис. П.17 ([1], стр. 143) в зависимости от отношения t_{Z2}/t_{Z1} и b_{m2}/σ

Коэффициент проводимости скоса:

$$\lambda_{\text{ck}} = \frac{t_{Z2}\beta_{\text{ck}}^2}{12k_{\delta}k_{\mu}} = \frac{23 \cdot 0.75^2}{12 \cdot 0.4 \cdot 0.4} = 0.673$$

Индуктивное сопротивления фазы обмотки ротора:

$$\begin{split} \mathbf{x}_2 &= 7.9 f_1 l_\delta' \cdot 10^{-6} \big(\lambda_{\Pi 2} + \lambda_{J 12} + \lambda_{J 12} + \lambda_{\mathsf{CK}} \big) = \\ &= 7.9 \cdot 50 \cdot 0.21 \cdot 10^{-6} (1.66 + 0.902 + 0.140 + 0.673) = \\ &= 27.9 \cdot 10^{-6} \ \mathsf{Om}. \end{split}$$

Индуктивное сопротивление фазы обмотки ротора, приведённое к числу витков обмотки статора:

$$x_2' = x_2 \frac{4m_1(w_1k_{06\text{M}1})^2}{Z_2k_{\text{CK}}^2} = 27.9 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (468 \cdot 1)^2}{44 \cdot 0.9992^2} = 1.70 \text{ Om}.$$

					КП.1-53 01
Изм.	Лист	№ Докум	Подпись	Дата	

05.ЭП-21.48.ПЗ

Относительное значение индуктивного сопротивления фазы ротора: $\mathrm{x_{2*}} = \mathrm{x_2} \frac{\mathrm{I_{1 hom}}}{\mathrm{U_{1 hom. \varphi}}} = 1{,}70 \cdot \frac{7{,}9}{220} = 0.061 \ \mathrm{o.\,e.}$

6.Расчёт постоянных потерь мощности

Удельные потери мощности в стали марки 2013 при индукции 1 Тл и частоте перемагничивания 50 Гц (табл. П.27, [1], стр. 144):

$$P_{1,0/50}=2,5 \text{ BT/K}\Gamma.$$

Масса стали ярма статора:

 $m_a = \pi (D_a - h_a) h_a l_{CT1} k_{C1} \gamma_c = \pi (0,191 - 0.0291) \cdot 0.0291 \cdot 0,21 \cdot 0,97 \cdot 7,8 \cdot 10^3 = 2,530 \ \, \text{кг},$ где $\gamma_c = 7,8 \cdot 10^3 \, \text{кг/m}^3 - \text{удельная масса стали (стр. 44, источник 1).}$

Масса стали зубцов статора:

 $m_{Z1} = h_{Z1} b_{Z1} Z_1 l_{CT1} \ k_{C1} \gamma_c = 0,0282 \cdot 0,00125 \cdot 54 \cdot 0,21 \cdot 0,97 \cdot 7,8 \cdot 10^3 = 2,464 \ \text{kg}.$

Коэффициенты для нахождения основных потерь в стали (стр. 44, ист-ик 1): $k_{\text{да}}=1,6;\ k_{\text{дz}}=1,8;\ b=1,3.$

Основные потери активной мощности в стали статора АД:

$$\begin{split} \mathrm{P_{ct.och}} &= \mathrm{p}_{\frac{1,0}{50}} \left(\frac{f_1}{50} \right)^b \left(k_{\mathrm{Aa}} \mathrm{B}_\mathrm{a}^2 m_a + k_{\mathrm{AZ}} B_{z1}^2 m_{z1} \right) \\ &= 2.5 \cdot \left(\frac{50}{50} \right)^{1.5} \left(1.6 \cdot 1.6^2 \cdot 2.530 + 1.8 \cdot 1.65^2 \cdot 2.464 \right) = 56.09 \; \mathrm{Bt}. \end{split}$$

Отношение ширины шлица пазов статора АД к воздушному зазору:

$$\frac{b_{\text{III}1}}{\delta} = \frac{3.5}{0.35} = 10.$$

По рис. П.19, б ([1], стр. 145) находим значения коэффициента β_{02} :

$$\beta_{02} = 0.4$$

Амплитуда пульсации индукции в воздушном зазоре над коронками зубцов ротора:

$$B_{02} = \beta_{02} k_{\sigma} B_{\sigma} = 0,4 \cdot 0,4 \cdot 0,88 = 0.141 \text{ Тл.}$$

Удельные поверхностные потери, т.е. потери, приходящиеся на 1 m^2 поверхности головок ротора:

					КП.1-53 01 05.	ЭП-2	1 48	П.З	
Изм	Лист	№ докум.	Подпись	Дата	747:7 00 07 00:	<u> </u>	1.10.	110	
Разработ. Проверил		Рощин М.Ю.				Литер.	Лист	Листов	
		Тодарев В.В			Расчёт у зз постоянных		33		
					потерь мощности	ГГТУ, гр. ЭП-21			
						<i>''</i>			

$$p_{\text{пов2}} = 0.5k_{02} \left(\frac{Z_1 n}{10000}\right)^{1.5} (B_{02}t_{z1} \cdot 10^3)^2 =$$

$$= 0.5 \cdot 1.4 \cdot \left(\frac{54 \cdot 500}{10000}\right)^2 \cdot (0.141 \cdot 23)^2 = 53.7 \frac{\text{BT}}{\text{M}^2}.$$

где k_{02} =1,4 (стр. 45, [1]); $n\approx n_1$ =500 об/мин.

 Изм Лист № докум. Подпись Дата Рощин М.Ю. Проверил Тодарев В.В 					
Разработ. Рощин М.Ю.					
Разработ. Рощин М.Ю.					
	Изм	Лист	№ докум.	Подпись	Дата
Проверил Тодарев В.В	Разработ.		Рощин М.Ю.		
	Проверил		Тодарев В.В		

КП.1-53 01 05.ЭП-21.48.ПЗ

Расчёт постоянных потерь мощности

Литер.	Лист	Листов
У	34	

ГГТУ, гр. ЭП-21

Полные поверхностные потери ротора:

$$P_{\text{пов2}} = p_{\text{пов2}}(t_{\text{Z2}} - b_{\text{III}2}) Z_2 l_{\text{CT2}} = 53,7 \cdot (0,0095 - 0,0015) \cdot 44 \cdot 0,21 = 3,96 \text{ Bt.}$$

Амплитуда пульсаций индукции в среднем сечении зубцов ротора:

$$B_{\text{пул.2}} = \frac{\gamma_1 \delta}{2 t_{72}} B_{Z2} = \frac{7 \cdot 0,35 \cdot 10^{-3}}{2 \cdot 0,0095} \cdot 1,0 = 0,128 \text{ Тл.}$$

Масса стали зубцов ротора:

$$m_{Z2} = h_{Z2} b_{Z2} Z_2 l_{CT2} k_{C2} \gamma_c = 0.03227 \cdot 0.00785 \cdot 44 \cdot 0.21 \cdot 0.97 \cdot 7.8 \cdot 10^3 = 1.770 \ \text{kg}.$$

Пульсационные потери в зубцах ротора:

$$P_{\text{пул2}} = 0.11 \left(\frac{Z_1 n}{1000} B_{\text{пул.2}}\right)^2 m_{Z2} = 0.11 \cdot \left(\frac{54 \cdot 500}{1000} \cdot 0.128\right)^2 \cdot 1.770 = 2.32 \text{ Bt}.$$

Поверхностные и пульсационные потери в статоре АД с короткозамкнутым ротором незначительны, поэтому принимаем:

$$P_{\text{пов 1}}=0$$
 и $P_{\text{пул 1}}=0$ (стр. 45, [1]).

Добавочные потери в стали:

$$P_{\text{ст.доб.}} = P_{\text{пов1}} + P_{\text{пул1}} + P_{\text{пов2}} + P_{\text{пул2}} = 0 + 0 + 3,96 + 2,32 = 6,28 \text{ Bt.}$$

Обычно $P_{\text{ст.доб}}$ в 4...8 раз меньше, чем $P_{\text{ст.осн.}}$

$$\frac{P_{\text{CT.OCH}}}{P_{\text{CT.DO}}} = \frac{56,09}{6,28} = 8,3.$$

Полные потери в стали:

$$P_{ct} = P_{ct.och} + P_{ct.dof} = 56,09 + 6,28 = 62,37 Bt.$$

Асинхронные двигатели с системой охлаждения IC0141 имеют внешний обдув от центробежного вентилятора (рекомендации на стр. 46-49, [1]), поэтому механические потери:

$$P_{\text{Mex}} = K_{\text{T}} (\frac{n}{10})^2 D_a^4 = 1,05 \cdot \left(\frac{500}{10}\right)^2 \cdot 0,191^4 = 3,49 \text{ Bt.}$$

где
$$K_T=1,3\cdot (1-D_a)=1,05$$
 (стр. 48, [1]).

Электрические потери в статоре в режиме холостого хода АД:

$$P_{91.x}=m_1I_{\mu}^2r_1=3\cdot 1,4^2\cdot 2,8=16,5$$
 Bt.

Активная составляющая тока холостого тока:

$$I_{x.a} = \frac{P_{cT} + P_{mex} + P_{\vartheta 1.x}}{m_1 U_{1HOM \Phi}} = \frac{62,37 + 3,49 + 16,5}{3 \cdot 220} = 0,124 \text{ A}.$$

Изм.	Лист	№ Докум	Подпись	Дата

Реактивная составляющая тока холостого тока:

$$I_{x.p} \approx I_{\mu} = 1,4 A.$$

Ток холостого хода АД:

$$I_x = \sqrt{I_{x.a}^2 + I_{x.p}^2} = \sqrt{0.124^2 + 1.4^2} = 1.4 \text{ A}.$$

Коэффициент мощности АД в режиме холостого хода:

$$\cos \varphi_{x} = \frac{I_{x.a}}{I_{x}} = \frac{0,124}{1,4} = 0.088$$

7. Рабочие характеристики асинхронного двигателя

Методы расчёта рабочих характеристик асинхронных машины базируются на Г-образной схеме замещения: (рис. 7.1).

Рисунок 7.1. Г-образная схема замещения асинхронной машины.

Параметры схемы замещения (рис.7.1):

$$\begin{split} r_{12} &= \frac{P_{\text{ст.осн}}}{m_1 I_{\mu}^2} = \frac{56,\!09}{3 \cdot 1,\!4^2} = 9,\!5 \text{ Ом;} \\ x_{12} &= \frac{U_{\text{1ном.}\varphi}}{I_{\mu}} - x_1 = \frac{220}{1,\!4} - 1,\!9 = 155,\!2 \text{ Ом.} \end{split}$$

Угол ү:

$$\begin{split} \gamma &= arctg(\frac{r_1x_{12} - r_{12}x_1}{r_{12}(r_1 + r_{12}) + x_{12}(x_1 + x_{12})}) = \\ &= arctg(\frac{2,8 \cdot 155,2 - 9,5 \cdot 1,9}{9,5 \cdot (2,8 + 9,5) + 155,2 \cdot (1,9 + 155,2)}) = 1.01^\circ > 1^\circ. \end{split}$$

Тогда (рекомендации на стр. 52, [1]):

Определим величины c_1 , a, a', b и b':

Активная C_{1p} и реактивная C_{1p} составляющие коэффициента c_1

$$C_{1a} = \frac{r12(r1+r12) + x12(x1+x12)}{r_{12}^2 + x_{12}^2} = \frac{9,5(2,8+9,5) + 155,2(1,9+155,2)}{9,5^2 + 155,2^2} = 0,4$$

$$C_{1p} = \frac{x1r12 - r1x12}{r_{12}^2 + x_{12}^2} = \frac{1,9 \cdot 9.5 - 2.8 \cdot 155.2}{9,5^2 + 155,2^2} = 0.017$$

·					характеристики асинхронного двигателя	ГГТ	У, гр. ЭП-21			
Про	Проверил	Тодарев В.В				У	37			
Разр	абот.	Рощин М.Ю.	Рабочие		Литер.	Лист	Листов			
Изм	Лист	№ докум.	Подпись	Дата						
					КП.1-53 01 05.ЭП-21.48.ПЗ					

Модуль коэф3фициента с1

$$c_1 = \sqrt{c_{1a}^2 + c_{1p}^2} = 0.41$$

Параметры а' и b', о.е.

$$a' = c_{1a}^2 - c_{1p}^2 = 0.4^2 - 0.017^2 = 0.16$$

$$b' = 2c_{1a}c_{1p} = 2 \cdot 0.4 \cdot 0.017 = 0.0136$$

Параметры а и в , Ом

$$a = c_{1a}r_1 - c_{1p}x_1 - b'x_2' = 0.4 \cdot 2.8 - 0.017 \cdot 1.9 -$$

$$0.0136 \cdot 1.7 = 1.06$$

$$b = c_{1a}x_1 + c_{1p}r_1 + a'x_2' = 0.4 \cdot 1.9 + 0.017 \cdot 2.8 + 0.16 \cdot 1.7 = 1.08$$

Активная и реактивная составляющие тока синхронного холостого хода АД:

$$I_{0a} = \frac{P_{\text{ct.och}} + 3I_{\mu}^{2}r_{1}}{3U_{1\text{HOM},\Phi}} = \frac{56.09 + 3 \cdot 1.4^{2} \cdot 2.8}{3 \cdot 220} = 0,111.$$

 $I_{0p} \approx I_{\mu}$.

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	ПЗ
Разр	абот.	Рощин М.Ю.			Рабочие ^{Литер}		Лист	Листов
Про	верил	Тодарев В.В			1 010 0 1010	У	38	
					характеристики асинхронного двигателя	ГГТУ, гр. ЭП-21		

Сумма потерь мощности в АД, не зависящих от скольжения:

$$P_{ct}+P_{mex}=62.37+3.49=65.86 B_{T}$$
.

Выражения для расчёта рабочих характеристик в порядке вычисления и результаты расчёта приведены в табл. 7.1.

На рис. 7.2. приведены сами рабочие характеристики АД, представляющие собой графики зависимостей P_1 = $f(P_2)$, I_1 = $f(P_2)$, $cos\phi$ = $f(P_2)$, p= $f(P_2)$, s= $f(P_2)$.

Реактивное сопротивление X правой ветви Γ -образной схемы замещения АД (рис.7.1.):

$$X = b + \frac{b'r_2'}{s}$$

Таблица 7.1. Расчётные выражения и результаты расчёта рабочих характеристик асинхронного двигателя.

No	Расчётная	Ед.				Скольжен	ие s		
№	формула	изм.	0,004	0,011	0,018	0,025	0,032	0,039	S _{HOM} = 0,17
1	$\frac{a'r'_2}{s}$	Ом	41.6	15.127	9.24	6.656	5.2	4.26	6,48
2	$R = a + \frac{a'r'_2}{s}$	Ом	42.66	16.18	10.304	7.716	6.26	5.33	2,038
3	X	Ом	4.616	4.616	4.616	4.616	4.616	4.616	4.616
4	$Z=\sqrt{R^2+X^2}$	Ом	42.90	16.82	11.3	8.99	7.78	7.05	5,046
5	$I_{2}^{"} = \frac{U_{1\text{hom}.\phi}}{Z}$	A	5.12	13.6	19.46	24.5	28.28	31.20	43,60
6	$\cos \phi_2 = \frac{R}{Z}$	-	0.994	0,961	0,911	0,858	0,804	0,756	0,40
7	$\sin \phi_2 = \frac{X}{Z}$	-	0,107	0,274	0,408	0,513	0,593	0,654	0,914
8	I_{0a}	A	0,111	0,111	0,111	0,111	0,111	0,111	0,111
9	I_{0p}	A	1.4	1.4	1.4	1.4	1.4	1.4	1.4
10	$I_{1a}=I_{0a}+I_2^{"}\cos\varphi_2$	A	2,903	7.899	12.039	16.132	19.732	22.81	40,26
11	$I_{1p} = I_{0p} + I_2'' \sin \varphi_2'$	A	0.765	5.15	10.809	16.83	22.12	26.57	48,34
12	$I_1 = \sqrt{I_{1a}^2 + I_{1p}^2}$	A	3.002	9.429	16.17	23.31	29.64	35.02	62,909
13	$I_2'=c_1I_2''$	A	2.099	5.576	7.978	10.045	11.594	12.79	17,876

Изм.	Лист	№ Докум	Подпись	Дата

NG	Расчётная	Ед.				Скольжен	ше s		
No	формула	изм.	0,004	0,011	0,018	0,025	0,032	0,039	$S_{HOM} = 0.17$
14	P ₁ =3U _{1ном.ф} I _a ·10 ⁻³	кВт	1.91	5.21	7.945	10.647	13.023	15.05	26,571
15	$P_{91} = 3I_1^2 r_1 \cdot 10^{-3}$	кВт	0.075	0.746	2.19	4.564	7.38	10.30	33,24
16	$P_{92}=3(I_2)^2r_2\cdot 10^{-3}$	кВт	0,013	0,097	0.198	0,314	0,42	0,51	0,997
17	$P_{cr} + P_{mex}$	кВт	65.86	65.86	65.86	65.86	65.86	65.86	65.86
18	$P_{\text{доб}} = 0.005 P_1$	кВт	0,009	0,026	0,039	0,053	0,065	0,075	0,13
19	$\sum_{P=P_{cT}+P_{MeX}+} + P_{91}+P_{92}+P_{доб}$	кВт	0,184	0,201	0.262	0.345	0.455	0.531	0.485
20	$P_2=P_1-\sum P$	-	1.72	5.009	7.683	10.302	12.57	14.52	26.086
21	$p=1-\frac{\sum P}{P_1}$	-	0,801	0,833	0,828	0,899	0,911	0,945	0,90
22	$\cos\varphi = \frac{I_{1a}}{I_1}$	-	0,901	0,921	0,974	0,985	0,989	0,999	0.988

P ₂ (s)		0	0.768	1.537 P ₂ (s)	2.3
(8)				(2	?)

Изм.	Лист	№ Докум	Подпись	Дата

Puc. 7.2. Рабочие характеристики АД: (a) - $P_1 = f(P_2)$; (б) - $I_1 = f(P_2)$; (в) - $\cos \varphi = f(P_2)$; (г) - $\eta = f(P_2)$; (д) - $s = f(P_2)$

По рабочим характеристикам (рис. 7.2.) уточняем номинальные параметры двигателя по известной из условия проектирования номинальной мощности

 $P_{2.\text{ном}} = 26 \text{ кВт}$:

Номинальный ток (рис 7.2., б):

 $I_{1.HOM} = 62 A;$

Номинальный коэффициент мощности (рис. 7.2., в):

 $\cos \varphi_{\text{HOM}} = 0.988;$

номинальный КПД (рис.7.2., г):

_{лном}=0.90;

номинальное скольжение (рис. 7.2., д):

 $s_{HOM} = 0.17$.

Для уточнённого значения номинального скольжения рассчитываем параметры в табл. 7.1 и заносим результаты в последний столбец.

Изм.	Лист	№ Докум	Подпись	Дата

Лист

8. Пусковые характеристики асинхронного двигателя

8.1 Расчёт пусковых характеристик с учётом эффекта вытеснения тока

Вначале выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока, но без учёта влияния насыщения от полей рассеяния.

Расчёт проведём для рада скольжений, который будет начинаться со значения чуть ниже критического и заканчиваться s=1. Значение критического скольжения также необходимо включить в расчётный ряд (стр. 62, [1]).

Ниже покажем подробный расчёт для значения скольжения s=1.

Расчётная высота стержня ротора (полузакрытый паз):

$$h_{c2} = h_{\pi 2} - h_{\text{ш}2} = 32,6 - 0,75 = 31,85$$
 мм

Определяют «приведённую высоту» алюминиевого стрежня ротора литой короткозамкнутой обмотки в зависимости от расчётной температуры обмотки (п.5.)

$$v_{pacy}=115$$
°C.

$$\zeta = 63,61h_{c2}\sqrt{s} = 63,61 \cdot 31,85 \cdot 10^{-3} \cdot \sqrt{1} = 2,0$$

По рис. П.22 и П.23 ([1], страница) соответственно находим значения величин ϕ и ϕ' .

$$\varphi = f(\zeta) = 0.48$$

$$\phi' = f(\zeta) = 0.72$$

Глубина проникновения тока:

$$h_{\rm r} = \frac{h_{\rm c2}}{1+\phi} = \frac{31,\!85}{1+0,\!48} = 21,\!52$$
 мм $= 0,\!0215$ м

Проверяем условие (стр. 58, источник 1):

$$\frac{b_1}{2} \le h_r \le h_1 + \frac{b_1}{2}$$
, или $\frac{6,9}{2} \le 21,52 \le 26,6 + \frac{6,9}{2}$, или $3,45 \le 21,52 \le 30,05$

Условие выполняется, поэтому площадь сечения верхней части стрежня ротора, по которому распространяется ток при пуске:

Проверил					характеристики асинхронного двигателя	ГГТУ, гр. ЭП-21			
<u> </u>		Тодарев В.В			Пусковые	У	42	714611166	
Разп	абот.	Рощин М.Ю.			Пусков на Лите		Лист	Листов	
Изм	Лист	№ докум.	Подпись	Дата	KIT.T-03 0 T 00.011-21.40.113				
					КП.1-53 01 05.ЭП-21.48.ПЗ				

$$q_r = \frac{\pi b_1^2}{8} + \frac{b_1 + b_r}{2} \left(h_r - \frac{b_1}{2} \right) = \frac{\pi \cdot 6.9^2}{8} + \frac{6.9 + 4.45}{2} \cdot \left(21.52 - \frac{6.9}{2} \right) = 121.24 \text{ mm}^2.$$

где ширина паза на глубине проникновения тока b_r:

$$b_r = b_1 - \frac{b_1 - b_2}{h_1} \left(h_r - \frac{b_1}{2} \right) = 6.9 - \frac{6.9 - 3.3}{26.6} \cdot \left(21.52 - \frac{6.9}{2} \right) = 4.45 \text{ MM}.$$

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.48.	ПЗ
Разр	работ.	Рощин М.Ю.			Пусковые Литер. Лист Лист		Листов	
Про	верил	Тодарев В.В				У	43	
					характеристики асинхронного двигателя	ГГТУ, гр. ЭП-21		

Коэффициент k_r:

$$k_r = \frac{q_c}{q_r} = \frac{156,9}{121,24} = 1,3$$

Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока:

$$K_{r} = \frac{r_{2} + r_{c}'(k_{r} - 1)}{r_{2}} = \frac{17,45 \cdot 10^{-6} + 5,8 \cdot 10^{-6} \cdot (1,3 - 1)}{17,45 \cdot 10^{-6}} = 1,1$$

где $r_c = r_c = 5.8 \cdot 10^{-6}$ Ом.

Приведённое активное сопротивление ротора с учётом влияния эффекта вытеснения тока:

$$r'_{2\zeta} = K_r r'_2 = 1.1 \cdot 1.04 = 1.144 \text{ Om.}$$

Коэффициент магнитной проводимости участка паза ротора, занятого проводником с обмоткой:

$$\lambda'_{\Pi 2} = \frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c}\right)^2 + 0.66 - \frac{b_{\Pi 2}}{2b_1} = \frac{27.92}{3 \cdot 6.9} \cdot \left(1 - \frac{\pi \cdot 6.9^2}{8 \cdot 156.9}\right)^2 + 0.66 - \frac{1.5}{2 \cdot 6.9} = 1.59$$

Коэффициент магнитной проводимости пазового рассеяния с учетом эффекта вытеснения тока:

$$\lambda_{\pi2\zeta}=\lambda_{\pi2}-\Delta\lambda_{\pi2\zeta}=1,\!66-0,\!44=1,\!22$$
 где $\Delta\lambda_{\pi2\zeta}=\lambda_{\pi2}'\left(1-k_{\text{Д}}\right)=1,\!59\cdot\left(1-0,\!72\right)=0,\!44$ к $_{\text{Д}}\!\!=\!\!\phi'\!\!=\!\!0,\!72$

Коэффициент, показывающий изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока:

$$K_{X} = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}} = \frac{1,22 + 0,902 + 0,140}{1,66 + 0,902 + 0,140} = 0,83$$

Приведенное индуктивное сопротивление ротора с учетом эффекта вытеснения тока:

$$x'_{2\zeta} = K_X x'_2 = 0.83 \cdot 1.7 = 1.41$$

В пусковом режиме активным сопротивлением r_{12} схемы замещения АД на рис. П.20, б (страница, [1]), пренебрегают, то есть r_{12n} =0. (стр. 60, [1]).

Изм.	Лист	№ Докум	Подпись	Дата

Индуктивное сопротивление взаимоиндукции в схеме замещения АД (рис.

П.20, б, страница, [1]) в пусковом режиме:

$$x_{12\pi} = k_{\mu}x_{12} = 1,31 \cdot 155,2 = 203 \text{ Ом}$$

Коэффициент с1 в пусковом режиме АД:

$$c_{1\pi} = 1 + \frac{x_1}{x_{12\pi}} = 1 + \frac{1.9}{203} = 1,009$$

Активное и реактивное сопротивления правой ветви Г-образной схемы замещения АД (рис.7.1) в пусковом режиме с учётом вытеснения тока:

$$R_{\pi} = r_1 + \frac{c_{1\pi}r'_{2\zeta}}{s} = 2.8 + \frac{1,009 \cdot 1,144}{1} = 4,95 \text{ Om}$$

$$X_{\Pi} = x_1 + c_{1\Pi} x'_{2\zeta} = 1,9 + 1,009 \cdot 1,41 = 3,32 \text{ Ом}$$

Ток в обмотке ротора с учётом вытеснения тока в пусковом режиме:

$$I'_{2\pi} = \frac{U_{1\text{HOM.}\phi}}{\sqrt{R_{\pi}^2 + X_{\pi}^2}} = \frac{220}{\sqrt{4,95^2 + 3,32^2}} = 36,9 \text{ A}$$

Пусковой ток статора с учётом вытеснения тока:

$$I_{1\pi} = I_{2\pi}^{'} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + X_{12\pi})^{2}}}{c_{1\pi} X_{12\pi}} = 36.9 \cdot \frac{\sqrt{4.95^{2} + (3.32 + 203)^{2}}}{1,009 \cdot 203} = 37.17 \text{ A}.$$

Кратность пускового тока АД с учётом вытеснения тока:

$$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}} = \frac{37,17}{7,9} = 4,70$$

Кратность пускового момента АД с учётом вытеснения тока при скольжении:

$$M^* = \left(\frac{I'_{2\pi}}{I'_{2\text{HOM}}}\right)^2 K_r \frac{S_{\text{HOM}}}{S} = \left(\frac{36.9}{17.876}\right)^2 \cdot 1.1 \cdot \frac{0.17}{1} = 0.8$$

Предварительно значение критического скольжения можно оценить по формуле:

$$s_{\text{kp}} = \frac{r_2'}{\frac{X_1}{c_{1\Pi}} + x_2'} = \frac{1,04}{\frac{1,9}{1.009} + 1,70} = 0,290$$

Соответственно, выберем расчётный ряд скольжений s: 0,05; 0,144; 0,3; 0,5; 0,7; 1.

Значение критического скольжения уточник после расчёта и построения пусковых характеристик.

Изм.	Лист	№ Докум	Подпись	Дата

Таблица 8.1. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока.

No	Расчётная формула	Ед. изм.			Скольж	сение s		
215	т асчетная формула	Ед. изм.	0,05	0,144	0,3	0,5	0,7	1
1	ζ =63,61 $h_{c2}\sqrt{s}$	-	0.358	0.607	0.876	1.131	1.338	1.6
2	$\varphi = f(\zeta)$	-	0.058	0.063	0.07	0.14	0.245	0.1
3	$h_r = \frac{h_{c2}}{1 + \varphi}$	MM	23.761	23.669	23.334	22.055	20.196	17.839
4	$k_r = \frac{q_c}{q_r}$	-	1.364	1.362	1.356	1.332	1.299	1.259
5	$K_{r} = \frac{r_{2} + r_{c}(k_{r} - 1)}{r_{2}}$	-	1.266	1.265	1.26	1.243	1.218	1.189
6	$r'_{2\zeta}=K_Rr'_2$	Ом	2.152	2.15	2.142	2.113	2.071	2.022
7	$k_{\mathcal{A}} = \phi' = f(\zeta)$	-	0.992	0.98	0.967	0.948	0.921	0.86
8	$\lambda_{\pi 2\zeta} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2\zeta}$	-	1.79	1.774	1.757	1.732	1.698	1.618
9	$K_X = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}}$	-	0.998	0.995	0.992	0.988	0.982	0.968
10	$\mathbf{x}_{2\zeta}^{'} = \mathbf{K}_{\mathbf{x}} \mathbf{x}_{2}^{'}$	Ом	8.256	8.232	8.208	8.172	8.123	8.008
11	$R_{\pi} = r_1 + \frac{c_{1\pi} r_{2\zeta}}{s}$	Ом	48.348	19.363	11.332	8.326	7.021	6.055
12	$X_{\pi} = x_1 + c_{1\pi} x_{2\zeta}$	Ом	12.182	12.157	12.132	12.096	12.045	11.926
13	$I_{2\pi}' = \frac{U_{1\text{HOM}}}{\sqrt{R_{\pi}^2 + X_{\pi}^2}}$	A	4.412	9.622	13.252	14.982	15.78	16.448
14	$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^2 + (X_{\pi} + X_{12\pi})^2}}{c_{1\pi} X_{12\pi}}$	A	5.02	10.388	14.205	16.028	16.866	17.558
15	$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}}$	-	0.801	1.657	2.266	2.556	2.69	2.8
16	$M^* = (\frac{I'_{2\Pi}}{I'_{2\text{HOM}}})^2 K_r \frac{S_{\text{HOM}}}{S}$	кВт	1.258	2.076	1.883	1.424	1.106	0.821

Изм.	Лист	№ Докум	Подпись	Дата

Рис 8.1. Пусковые характеристики АД с учётом эффекта вытеснения тока:

(a) -
$$M^* = f(s)$$
; (6) - $I^*_{In} = f(s)$

По построенным пусковым характеристикам (рис.) уточняем, что $s_{\kappa p}$ =0,171.

Максимальный момент АД, соответствующий критическому скольжению, с учётом вытеснения тока:

$$M_{\text{max}}^* = (\frac{I_{2\pi(s_{\text{kp}})}'}{I_{2\text{HOM}}'})^2 K_{R(s_{\text{kp}})} \frac{s_{\text{HOM}}}{s_{\text{kp}}} = (\frac{36.9}{17.876})^2 \cdot 1, 1 \cdot \frac{0.17}{0,290} = 2.103$$

Изм.	Лист	№ Докум	Подпись	Дата

8.2. Расчёт пусковых характеристик с учётом насыщения магнитной системы асинхронной машины

Определим необходимость учёта влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД. Для этого найдём значение полного тока паза статора в начальный момент времени пуска двигателя, то есть при s=1.

$$I_{1\pi a 3 a} = \frac{I_{1\pi} u_{\pi}}{a} = \frac{37.17 \cdot 104}{1} = 386.68 \text{ A}.$$

Полученное значение $I_{1\pi a 3 a} > 400 \text{ A}$, поэтому учёт влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД необходим. (стр. 64, [1]).

Выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока и влияния насыщения от полей рассеяния.

Расчётный ряд скольжений s примем таким же, что и при расчёте с учётом только вытеснения тока: 0.05, 0, 144, 0.3, 0.5, 0.7, 1.

Покажем подробный расчёт для значения скольжений s=1.

Первоначально зададимся значением коэффициента увеличения тока от насыщения зубцовой зоны полями рассеяния (рекомендации на стр. 65, [1]);

$$k_{\text{Hac}} = 1,45$$

Средняя МДС обмотки, отнесенная к одному пазу обмотки статора:

$$F_{\pi,cp} = 0.7 \frac{k_{\text{Hac}} I_{1\pi} u_{\pi}}{a} \left(k_{\beta}' + k_{y} k_{\text{o}6\text{M}1} \frac{Z_{1}}{Z_{2}} \right) =$$

$$= 0.7 \cdot \frac{1.45 \cdot 37.17 \cdot 104}{1} \cdot \left(1 + 1 \cdot 1 \cdot \frac{54}{44} \right) = 886.7 \text{ A}$$

Коэффициент C_N:

$$C_N = 0.64 + 2.5 \sqrt{\frac{\delta}{t_{Z1} + t_{Z2}}} = 0.64 + 2.5 \cdot \sqrt{\frac{0.35}{23 + 9.5}} = 0.89$$

Фиктивная индукция потока рассеяния в воздушном зазоре:

$$B_{\varphi\delta} = \frac{F_{\pi.cp}}{1,6\delta C_N} \cdot 10^{-3} = \frac{886.7}{1,6 \cdot 0,35 \cdot 0.89} \cdot 10^{-3} = 1.77 \, T\pi$$

Коэффициент К₆, характеризующий отношение потока рассеяния при насыщении к потоку рассеяния ненасыщенной машины (рис. П.26, [1], страница):

$$K_6 = f(B_{\phi 6}) = 0.42$$

Изм. Лист № Докум Подпись	Дата

Дополнительное эквивалентное раскрытие пазов статора:

$$c_{31} = (t_{Z1} - b_{III})(1 - K_{\delta}) = (23 - 3.5) \cdot (1 - 0.42) = 11.31 \text{ MM}$$

Дополнительное эквивалентное раскрытие пазов ротора:

$$c_{\text{32}} = (t_{\text{Z2}} - b_{\text{III}2})(1 - K_{\delta}) = (9,5 - 1,5) \cdot (1 - 0,42) = 4,64$$
 мм

Уменьшение коэффициента магнитной проводимости рассеяния паза статора для полузакрытых пазов (рис. П.27, в,г, стр. 148, [1]):

$$\Delta\lambda_{\text{\tiny II.Hac}} = \frac{h_{\text{\tiny III}} + 0.58h_{\text{\tiny k}}}{b_{\text{\tiny III}}} \frac{c_{19}}{c_{19} + 1.5b_{\text{\tiny III}}} = \frac{1 + 0.58 \cdot 0.95}{3.5} \cdot \frac{11.31}{11.31 + 1.5 \cdot 3.5} = 0.30$$

Уменьшение коэффициента магнитной проводимости рассеяния пазов ротора для полузакрытых пазов:

$$\Delta\lambda_{\text{\tiny II2.Hac}} = \frac{h_{\text{\tiny III2}}}{b_{\text{\tiny III2}}} \cdot \frac{c_{92}}{b_{\text{\tiny III2}} + c_{92}} = \frac{0.75}{1.5} \cdot \frac{4.64}{1.5 + 4.64} = 0.38$$

Коэффициенты проводимости дифференциального рассеяния при насыщении участков зубцов статора и ротора соответственно:

$$\lambda_{\text{п1.нас}} = \lambda_{\text{п1}} - \Delta \lambda_{\text{п1.нас}} = 1,18 - 0,19 = 0,99$$

$$\lambda_{\text{m2}\zeta.\text{Hac}} = \lambda_{\text{m2}\zeta} - \Delta\lambda_{\text{m2.Hac}} = 1,62 - 0,42 = 1.2$$

Коэффициенты проводимости дифференциального рассеяния при насыщении участков зубцов статора и ротора соответственно:

$$\lambda_{\text{д1.нас}} = \lambda_{\text{д1}} K_{\delta} = 1,82 \cdot 0,42 = 0,764$$

$$\lambda_{\pi 2. \text{Hac}} = \lambda_{\pi 2} K_{\delta} = 3.69 \cdot 0.42 = 1.55$$

Индуктивные сопротивления обмоток статора и ротора с учетом насыщения от полей рассеяния:

$$x_{1.\text{Hac}} = x_1 \frac{\lambda_{\Pi 1.\text{Hac}} + \lambda_{\Pi 1.\text{Hac}} + \lambda_{\Pi 1}}{\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{\Pi 1}} = 3.67 \cdot \frac{0.99 + 0.764 + 0.749}{1.18 + 1.82 + 0.749} = 2.45 \text{ Om}$$

$$\dot{x_{2\zeta,\text{Hac}}} = \dot{x_2} \frac{\lambda_{\pi 2\zeta,\text{Hac}} + \lambda_{\pi 2,\text{Hac}} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}} = 8.27 \cdot \frac{1.2 + 1.55 + 0.257}{1.8 + 3.69 + 0.257} = 4.33 \text{ Om}$$

Коэффициент с1 в пусковом режиме АД с учётом насыщения:

$$c_{1\pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\pi}} = 1 + \frac{2.45}{120} = 1,02$$

Изм.	Лист	№ Докум	Подпись	Дата

Находим активное $R_{\text{п.нас}}$ и реактивное $X_{\text{п.нас}}$ сопротивления правой ветви Γ образной схемы замещения АД (рис. 7.1) в пусковом режиме с учётом вытеснения
тока и насыщения:

$$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}}r_{2\zeta}'}{s} = 0,277 + \frac{1,02 \cdot 2.02}{1} = 6.03 \text{ Ом}$$
 $X_{\text{п.нас}} = x_{1.\text{наc}} + c_{1\text{п.наc}}x_{2\zeta,\text{наc}}' = 2.45 + 1,02 \cdot 4.33 = 6.87 \text{ Ом}$

Ток в обмотке ротора в пусковом режиме с учётом вытеснения тока и насыщения:

$$I'_{2\pi,\text{Hac}} = \frac{U_{1\text{Hom},\varphi}}{\sqrt{R_{\pi,\text{Hac}}^2 + X_{\pi,\text{Hac}}^2}} = \frac{220}{\sqrt{6.03^2 + 6.87^2}} = 24.07 \text{ A}$$

Ток статора с учётом вытеснения тока и насыщения:

$$\begin{split} I_{1\pi,\text{hac}} &= I_{2\pi,\text{hac}}' \frac{\sqrt{R_{\pi,\text{hac}}^2 + (X_{\pi,\text{hac}} + x_{12\pi})^2}}{c_{1\pi,\text{hac}} x_{12\pi}} = 24.07 \cdot \frac{\sqrt{6.03^2 + (6.87 + 120)^2}}{1,02 \cdot 120} = \\ &= 24.98 \text{ A} \end{split}$$

Кратность тока статора АД с учётом вытеснения тока и насыщения:

$$I_{1\pi}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1\text{HOM}}} = \frac{24.98}{6.27} = 3.984 \text{ o. e.}$$

Кратность пускового момента АД с учётом вытеснения тока и насыщения:

$$M^* = \left(\frac{I'_{2\pi,\text{HaC}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{s_{\text{HOM}}}{s} = \left(\frac{24.07}{3.703}\right)^2 \cdot 1,19 \cdot \frac{0,035}{1} = 1.8$$

Фактическое значение коэффициента насыщения:

$$k'_{\text{Hac}} = \frac{I_{1\pi,\text{Hac}}}{I_{1\pi}} = \frac{24.98}{17.558} = 1,423$$

Данное значение не отличается от принятого изначально на 10.... 15%, что допустимо и означает, что уточняющий перерасчёт пусковых параметров АД не требуется (стр. 68, [1]).

$$k_{\text{нас}} = 1,45$$
 для $s = 1$

Таблица 8.2. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока и насыщения:

Изм.	Лист	№ Докум	Подпись	Дата

No	Dooring domage	Ед.			Сколья	кение s		
110	Расчётная формула	изм.	0,05	0,144	0,3	0,5	0,7	1
1	Кнас	-	1	1	1.183	1.25	1.317	1.45
2	$F_{\text{п.cp}}$ $= 0.7 \frac{k_{\text{Hac}} I_{1\pi} u_{\pi}}{a}$ $\cdot \left(k_{\beta}' + k_{y} k_{\text{обм1}} \frac{Z_{1}}{Z_{2}} \right)$	кА	1.312	1.312	1.552	1.639	1.727	1.902
3	$B_{\phi\delta} = \frac{F_{\text{n.cp}}}{1,6\delta C_N} \cdot 10^{-3}$	Тл	3.684	3.684	4.36	4.605	4.851	5.342
4	$K_6 = f(B_{\phi 6})$	-	0.999	0.998	0.997	0.994	0.99	0
5	$c_{91} = (t_{Z1} - b_{III})(1 - K_{\delta})$	MM	2.681	2.681	3.173	3.35	3.522	3.833
6	$\Delta \lambda_{\text{m1.Hac}} = \frac{h_{\text{m1}} + 0.58h_k}{b_{\text{m1}}} \cdot \frac{c_{19}}{c_{19} + 1.5b_{\text{m1}}}$	-	0.015	0.15	0.167	0.173	0.178	0.187
7	$\lambda_{\Pi 1. \text{Hac}} = \lambda_{\Pi 1} - \Delta \lambda_{\Pi 1. \text{Hac}}$	-	1.03	1.03	1.013	1.007	1.002	0.993
8	$\lambda_{\text{д1.нас}} = \lambda_{\text{д1}} K_{\delta}$	-	1.133	1.133	1.007	0.961	0.917	0.837
9	$\begin{aligned} \mathbf{x}_{1.\text{Hac}} &= \mathbf{x}_{1} \cdot \\ \frac{\lambda_{\text{n1.Hac}} + \lambda_{\text{д1.Hac}} + \lambda_{\text{л1}}}{\lambda_{\text{n1}} + \lambda_{\text{д1}} + \lambda_{\text{л1}}} \end{aligned}$	Ом	2.85	2.85	2.71	2.66	2.612	2.525
10	$c_{92} = (t_{Z2} - b_{III2})(1 - K_{\delta})$	MM	4.91	4.91	5.809	6.134	6.448	7.018
11	$\Delta \lambda_{_{\mathrm{II2.HaC}}} = \frac{h_{_{\mathrm{III2}}}}{b_{_{\mathrm{III2}}}} \frac{\mathrm{c}_{_{92}}}{b_{_{\mathrm{III2}}} + \mathrm{c}_{_{92}}}$	-	0.383	0.383	0.397	0.402	0.406	0.412
12	$\lambda_{\Pi 2\zeta. Hac} = \lambda_{\Pi 2\zeta} - \Delta \lambda_{\Pi 2. Hac}$	-	1.237	1.237	1.223	1.218	1.214	1.208
13	$\lambda_{\rm J2.Hac} = \lambda_{\rm J2} K_{\delta}$	-	2.296	2.296	2.041	1.949	1.86	1.698
14	$x'_{2\zeta,\text{Hac}} = x'_{2} \frac{\lambda_{\Pi 2\zeta,\text{Hac}} + \lambda_{\Pi 2,\text{Hac}} + \lambda_{\Pi 2}}{\lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2}}$	Ом	5.454	5.454	5.066	4.927	4.794	4.552
15	$c_{1\pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\pi}}$	-	1.024	1.024	1.023	1.022	1.022	1.021
16	$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}}r_{2\zeta}'}{s}$	Ом	45.33	18.331	10.855	8.1	6.919	6.033

Изм.	Лист	№ Докум	Подпись	Дата

No	Расчётная формула	Ед.			Скольх	кение s		
115	т асчетная формула	изм.	0,05	0,144	0,3	0,5	0,7	1
17	$X_{\text{п.нас}}$ $= x_{1.\text{наc}} + c_{1\text{п.наc}} x'_{2\zeta.\text{наc}}$	Ом	8.434	8.434	7.891	7.697	7.51	7.172
18	$I'_{2\pi,\text{Hac}} = \frac{U_{1\text{HoM},\phi}}{\sqrt{R_{\pi,\text{Hac}}^2 + X_{\pi,\text{Hac}}^2}}$	A	4.771	10.903	16.393	19.689	21.545	23.474
19	$I_{1\pi,\text{Hac}}$ $= I'_{2\pi,\text{Hac}} \frac{\sqrt{R_{\pi,\text{Hac}}^2 + (X_{\pi,\text{Hac}} + x_{12\pi})^2}}{c_{1\pi,\text{Hac}} x_{12\pi}}$	A	5.29	11.514	17.146	20.539	22.439	24.392
20	$k'_{\text{Hac}} = \frac{I_{1\pi.\text{Hac}}}{I_{1\pi}}$	-	0.301	0.656	0977	1.17	1.278	1.389
21	$I_{1\pi}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1\text{HOM}}}$	-	0.844	1.836	2.735	3.276	3.579	3.89
22	$M^* = (\frac{I'_{2\Pi,Hac}}{I'_{2HOM}})^2 K_R \frac{S_{HOM}}{S}$	-	1.383	2.507	2.721	2.355	2.014	1.674

Рис. 8.2. Пусковые характеристики АД с учётом эффекта вытеснения тока и насыщения: (a) - $M^*=f(s)$; (б) - $I^*_{ln}=f(s)$

По построенным пусковым характеристикам определяем критическое скольжение и максимальный момент, соответствующий критическому скольжению:

 $s_{\kappa p} = 0.288; \ {M_{max}}^* = 2.735$

Изм.	Лист	№ Докум	Подпись	Дата

9. Тепловой расчёт

Электрические потери в пазовой части обмотки статора:

$$P_{\mathfrak{I}_{1}}' = k_{\rho} P_{\mathfrak{I}_{1}} \frac{2l_{1}}{l_{\mathtt{CD1}}} = 1,07 \cdot 288 \cdot \frac{2 \cdot 0,21}{0,403} = 104.6$$

где: k_p=1,07 для класса H.

Превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя:

$$\Delta \theta_{\text{пов1}} = K \frac{P'_{\text{эп}} + P_{\text{ст.осн}}}{\pi D l_1 \alpha_1} = 0.22 \cdot \frac{104.6 + 60.86}{\pi \cdot 134 \cdot 0.077 \cdot 180} = 5.19^{\circ} \text{C}.$$

где: K=0,22 – коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду (табл. П.29, [1], стр. 148);

$$\alpha_1 = 180 \frac{\text{Вт}}{\text{м}^2 \cdot \text{°C}}$$
 коэффициент теплоотдачи с поверхности (рис. П. 28, [1], стр. 149)

Расчётный периметр поперечного сечения паза статора (стр. 71, [1], полузакрытый трапецеидальный паз).

$$\Pi_{\Pi 1} = 2h_{\Pi.K.} + b_1 + b_2 = 2 \cdot 14,7 + 6,9 + 3,3 = 39,6 \text{ mm} = 0,0396 \text{ m}$$

Перепад температуры в изоляции пазовой части обмотки статора:

$$\Delta \vartheta_{\text{\tiny M3.\Pi1}} = \frac{P_{\text{\tiny 9\Pi1}}'}{Z_1 \Pi_{\text{\tiny \Pi1}} l_1} \left(\frac{b_{\text{\tiny M3}}}{\lambda_{\text{\tiny 9KB}}} + \frac{b_1 + b_2}{16 \lambda_{\text{\tiny 9KB}}'} \right) \cdot 10^{-3}$$

$$= \frac{104.6}{48 \cdot 0.04 \cdot 0.077} \cdot \left(\frac{0.25}{0.16} + \frac{6.9 + 3.3}{16 \cdot 1.3} \right) \cdot 10^{-3} = 1.5^{\circ}\text{C}.$$

где: средняя эквивалентная теплопроводность пазовой изоляции

$$\lambda_{_{9KB}} = 0.16 \frac{BT}{M^2 \cdot ^{\circ} (CTp. 72, [1].)$$

среднее значение коэффициента теплопроводности внутренней изоляции катушки всыпной обмотки из эмалированных проводников с учетом неплотного прилегания проводников друг к другу

					WELA 50 04 05	00.0	4 40	<i></i>
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	<i>311-2</i>	1.48.	113
Разр	абот.	Рощин М.Ю.				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У	53	
					Тепловой расчёт	ררדי	V, гр.	ЭП-21

$$\lambda'_{9KB} = 1,3 \frac{\text{Вт}}{\text{м}^2 \cdot {}^{\circ}\text{С}}$$
 (по рис. П.30, стр. 151, [1], для $\frac{d}{d_{y3}} = \frac{1.06}{1,14} = 0.93$)

Электрические потери в лобовых частях катушек обмотки статора:

$$\mathrm{P'_{9\pi1}} = k_{\rho} \mathrm{P_{91}} \frac{2l_2}{l_{\mathrm{cp1}}} = 1,07 \cdot 288 \cdot \frac{2 \cdot 0,125}{0,403} = 191.2 \; \mathrm{Bt}.$$

	-							
Прове	ерил	Тодарев В.В				У	54	
Разра	бот.	Рощин М.Ю.				Литер.	Лист	Листов
Изм ,	Лист	№ докум.	Подпись	Дата	M11.1-33 01 03.	011-2	1.40.	113
					КП.1-53 01 05.	ЭП-2	1 18	ПЗ

Периметр условной поверхности охлаждения лобовой части одной катушки обмотки статора:

$$\Pi_{\pi 1} \approx \Pi_{\pi 1} = 0.04 \text{ m} = 40 \text{ mm. (ctp. 72, [1])}.$$

Перепад температуры по толщине изоляции лобовых частей обмотки статора:

$$\begin{split} \Delta \vartheta_{_{\mathrm{H3.Л1}}} &= \frac{P_{_{\mathrm{9Л1}}}'}{2Z_{1}\Pi_{_{\mathrm{Л1}}}l_{_{\mathrm{Л1}}}} \Big(\frac{b_{_{\mathrm{H3.Л1}}}}{\lambda_{_{\mathrm{9KB}}}} + \frac{h_{_{\mathrm{\Pi1}}}}{16\lambda_{_{\mathrm{9KB}}}'} \Big) \cdot 10^{-3} \\ &= \frac{191.2}{2 \cdot 48 \cdot 0.04 \cdot 0.125} \cdot \Big(\frac{0}{0.16} + \frac{16.6}{16 \cdot 1.3} \Big) \cdot 10^{-3} = 0.3^{\circ} \mathrm{C}. \end{split}$$

где $b_{\text{из.л1}}$ =0, т.к. лобовые части обмотки без изоляции (стр.72, [1]).

Превышение температуры наружной поверхности изоляции лобовых частей обмотки статора над температурой воздуха внутри машины:

$$\Delta \theta_{\text{пов.л1}} = K \frac{P'_{\text{эл1}}}{2\pi Dl_{\text{Выл1}}\alpha_1} = 0.22 \cdot \frac{191.2}{2\pi \cdot 0.134 \cdot 0.045 \cdot 180} = 5.1$$
°C.

Среднее повышение температуры обмотки статора над температурой воздуха внутри двигателя:

$$\Delta\vartheta_1' = \frac{(\Delta\vartheta_{\text{пов1}} + \Delta\vartheta_{\text{из.п1}})2l_1 + (\Delta\vartheta_{\text{из.л1}} + \Delta\vartheta_{\text{пов.л1}})2l_{\text{л1}}}{l_{\text{ср1}}} = \frac{(5.19 + 1.5) \cdot 2 \cdot 0,077 + (0,3 + 5.1) \cdot 2 \cdot 0,125}{0,403} = 5.89^{\circ}\text{C}.$$

Эквивалентная поверхность охлаждения корпуса АД (поскольку двигатель имеет степень защиты IP44, то с учётом поверхности рёбер станины – стр.73, [1]):

 Π_p =0,24 м — условный периметр поперечного сечения ребер корпуса двигателя (по рис. П.31., [1], стр. 151).

$$S_{\text{кор}} \! = \! \big(\pi D_a \! + \! 8 \Pi_p \big) (l_1 \! + \! 2 l_{\text{выл1}}) \! = \! (\pi \cdot 0.191 \! + \! 8 \cdot 0.24) \cdot (0.21 \! + \! 2 \cdot 0.045) \! = \! 0.437 \; \text{m}^2$$

Сумма потерь, отводимых в воздух внутри двигателя (стр.73, [1], двигатель имеет внешний вентилятор).

АД с внешним вентилятором (степень защиты двигателя IP44, система охлаждения IC0141):

Изм.	Лист	№ Докум	Подпись	Дата

$$\begin{split} \Sigma P_{\text{B}}' &= \Sigma P + \left(k_{\rho} - 1\right) (P_{\text{91}} + P_{\text{92}}) - (1 - \text{K}) (P_{\text{9\Pi}1}' + P_{\text{CT.OCH}}) - 0.9 P_{\text{Mex}} = \\ &= 475 + (1.07 - 1) \cdot (288 + 82.5) - (1 - 0.22) \cdot (104.6 + 60.86) \\ &- 0.9 \cdot 14.52 = 358.81 \text{ BT} \end{split}$$

Превышение температуры воздуха внутри машины над температурой окружающей среды:

 $\alpha_{\scriptscriptstyle B} = 25 \; \frac{{\sf BT}}{{\sf m}^2 \cdot {}^{\circ}{\sf C}} -$ коэффициент подогрева воздуха (рис. П.28, [1], стр. 149).

$$\Delta \theta_{\rm B} = \frac{\sum P_{\rm B}'}{s_{\rm KOD} \alpha_{\rm B}} = \frac{32.8}{0.437 \cdot 25} = 32.8$$
°C

Среднее превышение температуры обмотки статора над температурой окружающей среды:

$$\Delta \theta_1 = \Delta \theta_1' + \Delta \theta_B = 5.89 + 32.8 = 38.69$$
°C.

Значение величины $\Delta \theta_1$ не выше допустимого превышения температуры обмотки для изоляции класса H, равного 100°C (табл. П.30, стр. 152, [1]), поэтому нагрев двигателя находится в допустимых значениях.

Коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором (стр. 75, [1]):

$$k_{\rm m} = m' \sqrt{\frac{n_1}{100} D_a} = 1.8 \cdot \sqrt{\frac{500}{100} \cdot 0.191} = 1.75.$$

где m'=2.8 для АД с 2p=8 и h≤132 мм;

Требуемый для охлаждения расход воздуха:

$$Q_{_B} = \frac{k_m \sum P_{_B}'}{1100 \Delta \vartheta_{_B}} = \frac{1.75 \cdot 358.81}{1100 \cdot 32.8} = 0,017 \ \frac{\text{m}^3}{c}.$$

Расход воздуха, обеспечиваемый наружным вентилятором:

$$Q_{\scriptscriptstyle B}' = 0.6D_{a}^{3} \frac{n_{1}}{100} = 0.6 \cdot 0.191^{3} \cdot \frac{500}{100} = 0.020 \ \frac{{\scriptscriptstyle M}^{3}}{c}.$$

Фактически обеспечиваемый расход воздуха должен быть больше требуемого, то есть должно выполняться условие:

 $Q_{\rm B}$ > $Q_{\rm B}$ или 0,020>0,017 – в нашем случае условие выполняется.

Изм.	Лист	№ Докум	Подпись	Дата

Заключение

При проектировании данного электродвигателя были рассчитаны размеры статора и ротора, выбраны типы обмоток, обмоточные провода, изоляция, материалы активных и конструктивных частей машины. Отдельные части машины были сконструированы так, чтобы при изготовлении машины трудоёмкость и расход материалов были наименьшими, а при эксплуатации машина обладала наилучшими энергетическими показателями. При этом данная электрическая машина соответствует условиям применения её в электроприводе.

При выполнении проекта учитывалось соответствие технико-экономических показателей машины современному мировому уровню. Проектирование производилось с учётом требований государственных и отраслевых стандартов. При проектировании пришлось учесть назначение и условия эксплуатации, стоимость активных И конструктивных материалов, КПД, технологию производства, надёжность в работе и патентную чистоту.

					Заключение	ГГТУ, гр. ЭП-2		ЭП-21
Проверил	Тодарев В.В				У	<i>57</i>		
Разр	абот.	Рощин М.Ю.			Литер. Лист Лис		Листов	
Изм	Лист	№ докум.	Подпись	Дата	KI1.1-03 01 03.011-21.40.113			110
					КП.1-53 01 05.ЭП-21.48.ПЗ			

СПИСОК ЛИТЕРАТУРЫ

- 1. Электрические машины: Курсовое проектирование. Учебное пособие по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение (по отраслям)» дневной и заочной форм обучения / В.В. Тодарев, В.В. Брель. Гомель: ГГТУ им. П.О. Сухого, 2019. 158 с.
- 2. Проектирование электрических машин: учебник для вузов/ И.П. Копылов; под ред. И.П. Копылова. 4-е изд., перераб. и доп. М.: Издательство Юрайт, 2011. 767 с.
- 3. Обмотки электрических машин: метод. указания к практ. занятиям и курсовому проекту по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение» днев. и заоч. форм обучения / авт.-сост.: В. С. Захаренко, В. В. Тодарев. Гомель: ГГТУ им. П. О. Сухого, 2007. 49 с.

					ЛИТЕРАТУРЫ	ГГТУ, гр. ЭП-21		ЭП-21
Проверил		Тодарев В.В			СПИСОК	У	58	
Разр	абот.	Рощин М.Ю.				Литер. Лист Ли		Листов
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.ЭП-21.48.ПЗ			
					VD 1 52 01 05 2D 21 10 D2			