

Λ (. . Ι. . 4 ()

Aufgabe 16

 $-s_{1_{grenz}} \le s_1 \le +s_{1_{grenz}}$

 $S_1 > S_{1_{grenz}}$

 $S_1 < -S_{1_{grenz}}$

Fachbereich Elektrotechnik und Informationstechnik

Nichtlineare Verzerrungen

<u>Definition:</u> Nichtlineare Verzerrungen sind Verzerrungen, die von der Größe der Amplitude des Signals s₁(t) **abhängen.**

$$\Rightarrow H(\omega) = f(\hat{s}_1(t))$$

Fachbereich Elektrotechnik und Informationstechnik

Fachbereich Elektrotechnik und Informationstechnik

Kennzeichen nichtlinearer Verzerrungen:

- Ein ursprünglich sinusförmiges Wechselsignal wird verändert
- Charakter des Klangs verändert sich: "Klirren"
- Es entstehen neue Oberwellen, d.h. es lassen sich im Ausgangssignal Frequenzen nachweisen, die im Eingangssignal nicht vorhanden sind.

Fachbereich Elektrotechnik und Informationstechnik

Weitere Störungen

Beispiele für Störungen:

- Übersprechen durch kapazitive oder induktive Überkopplung von benachbarten Leitungen
- Durch Netzspannung (Netzbrummen) oder Überspannung verursachte Schwingung
- Unregelmäßige Störer, Rauschen, z.B. Wärmerauschen

Aufgabe 12 (teilweise)

Fachbereich Elektrotechnik und Informationstechnik

Energietransport über Leitungen

E: elektrisches FeldH: magnetisches Feld

- Information wird in Form von elektromagnetischen Feldern übertragen
- die elektromagnetischen Felder transportieren Energie
- die Leitung dient nur dazu, die elektromagnetischen Felder zu führen (leiten)
- die Energie der elektromagnetischen Felder wird hauptsächlich zwischen den Leitungen transportiert, nicht in den Leitungen!

Fachbereich Elektrotechnik und Informationstechnik

Poynting-Vektor

 Kennzeichnet Intensität und Richtung des Energietransports durch elektromagnetische Felder

• Berechnung: $\vec{S} = \vec{E} \times \vec{H}$.

- Betrag entspricht:
 - Leistungsdichte/Intensität des Feldes (Energie, die pro Zeit und Fläche auftritt)

Fachbereich Elektrotechnik und Informationstechnik

Ausbreitung eines Signals auf Leitungen

Ausbreitungsgeschwindigkeit max. c

$$c = 300\ 000\ \frac{km}{s} = 30\frac{cm}{ns}$$

Beispiel: $L_{leitung}$ = 300 m; c = 300.000 km/s \Rightarrow Laufzeit $T_{Lauf} \ge \frac{0.3km}{300.000km/s} = 10^{-6} s = 1\mu s$

Fachbereich Elektrotechnik und Informationstechnik

Fachbereich Elektrotechnik und Informationstechnik

Berechnung der Übertragungseigenschaften von Leitungen

Mit dem obigen Modell führt zu den Leitungsgleichungen (Telegraphengleichungen) → DGL 2. Ordnung

1. Erkenntnis aus den Telegraphengleichungen

durch die Längswiderstände und die Querleitwerte wird die Amplitude des Signals exponentiell gedämpft: $\hat{u}(x) \sim e^{-ax}$

Fachbereich Elektrotechnik und Informationstechnik

2. Erkenntnis aus den Telegraphengleichungen

am Ende der Leitung kann es zur Reflexion der Welle kommen, falls die Energie der Welle nicht komplett an den Verbraucher abgegeben werden kann.

Reflexion

Der Ausgang der Leitung muss so beschaltet, sein, dass die gesamte Energie ausgenommen wird.

→ Abschlusswiderstände verwenden

Reflexion

(z.B. 50Ω Koaxialkabel / 75Ω Antennenleitung)

Fachbereich Elektrotechnik und Informationstechnik

Pegel- und Dämpfungsmaße

Verhältnis zwischen zwei Signalgrößen, z.B.

$$\frac{Eingangsleistung}{Ausgangsleistung} = \frac{P_1}{P_2} \qquad \text{oder} \quad \frac{Eingangsspannung}{Ausgangsspannung} = \frac{U_1}{U_2}$$

- "Maße": Angabe in logarithmischer Form, da
 - Bei linearem Signalabfall ergeben sich lineare Diagramme
 - Dämpfungen und Verstärkungen "hintereinandergeschalteter" Systeme können addiert statt multipliziert werden
 - Einfachere Darstellung bei Werten über mehrere Wertebereiche

Fachbereich Elektrotechnik und Informationstechnik

Leistungspegel Lp (L – Level , P-Power)

Verhältnis einer Leistung P_x im Vergleich zu einer Bezugsleistung P₀

$$Lp = 10 \cdot lg \left| \frac{P_x}{P_0} \right| dB$$

Einheit von Lp:

Bel (B) oder Dezibel (dB) mit 1B = 10 dB

Fachbereich Elektrotechnik und Informationstechnik

Leistungspegel

$$Lp = 10 \cdot lg \left| \frac{P_x}{P_0} \right| dB$$

Einheit von Lp: Bel (B) oder Dezibel (dB) mit 1B = 10 dB

Für die Bezugsleistung P₀ gibt es zwei Ansätze:

- P₀ ist eine beliebige Bezugsleistung, z.B. an einer bestimmten Stelle im Übertragungssystem → relativer Pegel
 - P₀ kann damit grundsätzlich unterschiedliche Werte annehmen.
 - P₀ und P_x beziehen sich aber auf ein gemeinsames System.
- 2. P₀ hat einen festen (willkürlich) festgelegten Wert. → absoluter Pegel

Festlegung: Ist P₀=1mW

$$|\boldsymbol{L}\boldsymbol{p}' = 10 \cdot lg \left| \frac{P_{\chi}}{1mW} \right| dBm$$

→ besondere Kennzeichnung: Lp'

→Einheit: [Lp'] = dBm

Fachbereich Elektrotechnik und Informationstechnik

Leistungspegel

$$Lp = 10 \cdot lg \left| \frac{P_2}{P_1} \right| dB$$

P ₂ / P ₁	dB	
0,001	-30 dB	
0,01	-20 dB	Abschwächung
0,1	-10 dB	
1	0 dB	1:1
2	3 dB	Verstärkung
10	10 dB	
100	20 dB	
1000	30 dB	

Dezibel-Tabelle

Schallpegel bekannter Umgebungsgeräusche

Rascheln von Laub	0	Lüftergeräusch Computer Mücke
Ticken einer Uhr	10	Leichter Regen Kühlschrank aus 1 Meter Entfemun Flüstern Atemgeräusche
hinter Doppelgasfenstern	20	
Geringer Straßenverkehr	30	
Quakende Frösche	40	Laichtar Bagan
Normales Gespräch	50 50	Straßenverkehr
Motorrad	60	Vorbeifahrender Zug Gewitter, Rasenmäher Normaler
	70	
in 10 Meter Entfernung	80	Varbaifabuandar 7.m
Presslufthammer	100 90	Kreissäge Discothek
Wasserfall	110	W. C. P.
11/	120	Silvesterböller nahe am Ohr Düsenflugzeug
	130	
in unmittelbarer Nähe	140	
Airbag-Entfaltung	150	
am Ohr abgefeuert	160	Ohrfeige aufs Ohr
Spielzeugpistole	170	
	180	

Fachbereich Elektrotechnik und Informationstechnik

! Dämpfung - in der Nachrichtentechnik oft verwendet !

Dämpfungsmaß a

$$a = 10 \cdot lg \left| \frac{P_1}{P_2} \right| dB$$
 mit $a > 0$: Dämpfung

a < 0: Verstärkung

Übertragungsqualität – Signal-Rausch-Abstand

Fachbereich Elektrotechnik und Informationstechnik

Gesendetes Nutzsignal P₁, Lp₁'

Empfangenes Nutzsignal P2, Lp2

Störsignal P_N , Lp_N '

Der Empfänger muss das Nutzsignal deutlich vom Rauschsignal unterscheiden können, um Informationen sicher aus einem (Gesamt)-Signal zu extrahieren

Signal-Rausch-Abstand a_R (Störabstand a) (signal-to-noise ratio SNR)

- Maß für technische Qualität des Nutzsignals, das in einem Rauschsignal eingebettet ist oder Maß für technische Qualität eines (analogen) Übertragungskanals
- Spezifische Angabe für Empfänger, z.B. Mensch: 6dB um Sprache noch heraushören zu können

$$a_R = \frac{Nutzleistung}{Rauschleistung} = \frac{P_2}{P_N}$$

$$a_R = 10 \lg \left(\frac{P_2}{P_N}\right) dB$$

Da Signalleistung oft um mehrere Größenordnungen größer ist als Rauschleistung: logarithmischer Maßstab (**Einheit dB**)

Fachbereich Elektrotechnik und Informationstechnik

Rechnen mit Pegeln = Rechnen mit Logarithmen

Es gilt:
$$\lg(a \cdot b) = \lg a + \lg b$$
 $\lg\left(\frac{a}{b}\right) = \lg a - \lg b$

$$a = 10 \cdot lg \left| \frac{P_1}{P_2} \right| = 10 \cdot lg \left| \frac{P_1}{P_2} \cdot \frac{P_0}{P_0} \right| = 10 \cdot \left| \frac{P_1}{P_0} : \frac{P_2}{P_0} \right|$$

$$\rightarrow a = 10 \cdot \left(\lg \frac{P_1}{P_0} - \lg \frac{P_2}{P_0} \right) = 10 \lg \frac{P_1}{P_2} - 10 \lg \frac{P_2}{P_0} = Lp_1 - Lp_2$$

Haben zwei Pegel die gleiche Bezugsleistung P₀, so entspricht die Dämpfung der Differenz der beiden Pegel

$$a = 10 \cdot lg \left| \frac{P_1}{P_2} \right| = Lp_1 - Lp_2$$

Fachbereich Elektrotechnik und Informationstechnik

Rechnen mit Pegeln = Rechnen mit Logarithmen

Haben zwei Pegel die gleiche Bezugsleistung P₀, so entspricht die Dämpfung der Differenz der beiden Pegel

$$a = 10 \cdot lg \left| \frac{P_1}{P_2} \right| = Lp_1 - Lp_2$$

Damit gilt auch für den Signal-Rausch-Abstand

$$a_R = 10 \lg \left(\frac{P_2}{P_N}\right) dB = L'_{p2} - L_N'$$

Fachbereich Elektrotechnik und Informationstechnik

Einschub Verstärkung

Eine negative Dampfung stellt eine Verstarkung dar.

Dämpfung
$$a = 10 lg\left(\frac{P_1}{P_2}\right)$$

Verstärkung $V = 10 lg \left(\frac{P_2}{P_1}\right)$

Übertragungsqualität – Rechnen mit Dämpfung + Leis

Verhāltuis Ausgangsleistung PD zu Eingangsleistung PD

Einzel-und gesamtdampfung a

Übertragungsqualität – Rechnen mit Dämpfung + Leist-Curreity of Applied Sciences Fachbereich Elektrotech & und Informationstechnik

Kurze eigene libring

Fachbereich Elektrotechnik und Informationstechnik

1. Bezugspunkt ist ein Punkt leine leistung im System (hier Po=Pc=10mW)

Fachbereich Elektrotechnik und Informationstechnik

Fachbereich Elektrotechnik und Informationstechnik

- Übung 11 Pegelrechnung allg.
- Übung 17 Pegelrechnung mit Störungen

Kap 4 - Folie **4 4 g**