Lovely Pandas

Contents

- Datasets
 - Data representation
 - Types of variables
- Pandas for Data Analysis
 - The pandas.Series data structure
 - The pandas.DataFrame data structure
 - Read data from files
- Basics of Descriptive Analytics
 - Descriptive measures
 - Visualizing data

Data representation

Example 1: The following table contains a cross-sectional dataset on a number of working individuals for the year 1976. Columns of the data table are summarized as follows.

- wage: average hourly earnings (in dollars)
- educ: years of education
- exper: years of potential experience
- gender: genders of these working individuals
- married: True if married, and False otherwise

- Data representation
 - Variables (fields/attributes) as columns

- Data representation
 - Variables (fields/attributes) as columns
 - Observations (cases/records) as rows

- Data representation
 - Types of variables
 - ✓ Numerical (quantitative) variables
 - √ Categorical (qualitative) variables

```
print(int(True))
print(int(False))
```


0

Row labels

- Introduction to Pandas
 - Labeled data
 - Heterogenous data
- Possible missing values

 Import Pandas

 import pandas as pd

 Column labels

 wage

 0 3.10

 1 3.24

 2 3.00

 3 6.00

 4 5.30

- The pandas. Series data structure
 - A one-dimensional array of indexed data

One-dimensional array

- The pandas. Series data structure
 - A one-dimensional array of indexed data

- The pandas. Series data structure
 - A one-dimensional array of indexed data
 - Create a pandas. Series type object

```
wage = pd.Series([3.10, 3.24, 3.00, 6.00, 5.30, 8.75])
print(wage)

A list

0     3.10
1     3.24
2     3.00
3     6.00
4     5.30
5     8.75
```

dtype: float64

- The pandas. Series data structure
 - A one-dimensional array of indexed data
 - Create a pandas. Series type object

```
educ = pd.Series((11.0, 12.0, 11.0, 8.0, 12.0, 16.0))
print(educ)

A tuple

0 11.0
1 12.0
2 11.0
3 8.0
4 12.0
5 16.0
```

dtype: float64

- The pandas. Series data structure
 - Attributes of series

```
wage = pd.Series([3.10, 3.24, 3.00, 6.00, 5.30, 8.75])
print(wage)
```


Attributes of Charmander

HP: **39**Attack: **52**Defense: **43**Sp. Atk: **50**Sp. Def: **50**Speed: **65**

- The pandas. Series data structure
 - Attributes of series

6.00

5.30

8.75

dtype: float64

- The pandas. Series data structure
 - Attributes of series

- The pandas. Series data structure
 - Attributes of series

Mary 2.0
Ann 22.0
John 2.0
David 44.0
Frank 7.0
Ben 9.0
dtype: float64

Mary 2.0
Ann 22.0
John 2.0
David 44.0
Frank 7.0
Ben 9.0
dtype: float64

- The pandas. Series data structure
 - Attributes of series

- The pandas. Series data structure
 - Attributes of series

- The pandas. Series data structure
 - Attributes of series

- The pandas. Series data structure
 - Attributes of series

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

```
exper
print(exper.iloc[1])
                                                                2.0
                                                      Mary
print(exper.loc['Ann'])
                                                               22.0
                                                      Ann
                                                      John
                                                                2.0
22.0
                                                      David
                                                               44.0
                                                      Frank
                                                                7.0
                                                      Ben
                                                                9.0
                                                      dtype: float64
```

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

Notes: In the slicing expressions for label based indexes, the item indexed by **stop** are included in the selection.

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

```
exper
print(exper.iloc[[0, 2]])
                                                                2.0
                                                      Mary
print(exper.loc[['Mary', 'John']])
                                                               22.0
                                                      Ann
                                                      John
                                                                2.0
Mary
        2.0
                                                      David
                                                               44.0
John
        2.0
                                                      Frank
                                                                7.0
dtype: float64
                                                      Ben
                                                                9.0
                                                      dtype: float64
```

- The pandas. Series data structure
 - Indexing and slicing via iloc[] and loc[] indexers

```
wage
print(wage.iloc[:2])
     3.10
0
     3.24
                                                              3.10
                                                              3.24
Name: wage, dtype: float64
                                                              3.00
                                                              6.00
                                                              5.30
                         Stop index is excluded ←
print(wage.loc[:2])
                                                              8.75
                                                         dtype: float64
0
     3.10
                          Stop index is included
     3.24
     3.00
Name: wage, dtype: float64
```

- The pandas.DataFrame data structure
 - Create a pandas.DataFrame object

```
data dict = {'wage': [3.10, 3.24, 3.00, 6.00, 5.30, 8.75],
                 'educ': [11.0, 12.0, 11.0, 8.0, 12.0, 16.0],
                  'exper': [2.0, 22.0, 2.0, 44.0, 7.0, 9.0],
                  'gender': ['F', 'F', 'M', 'M', 'M', 'M'],
                  'married': [False, True, False, True, True]}
   data frame = pd (DataFrame)(data_dict)
                                                  wage educ exper gender married
                                                   3.10 11.0
                                                0
                                                                           False
                                                               2.0
Function that creates a data frame
                                                   3.24
                                                        12.0
                                                              22.0
                                                                            True
                                                   3.00 11.0
                                                               2.0
                                                                           False
                                                                      М
                                                   6.00
                                                         8.0
                                                              44.0
                                                                            True
                                                   5.30 12.0
                                                               7.0
                                                                      М
                                                                            True
                                                   8.75
                                                        16.0
                                                               9.0
                                                                            True
```

- The pandas.DataFrame data structure
 - Create a pandas.DataFrame object

```
data dict = {\'wage': [3.10, 3.24, 3.00, 6.00, 5.30, 8.75],
                     educ': [11.0, 12.0, 11.0, 8.0, 12.0, 16.0],
                    'exper': [2.0, 22.0, 2.0, 44.0, 7.0, 9.0],
     Dictionary keys
                    'gender': ['F', 'F', 'M', 'M', 'M', 'M'],
become column labels
                    'married'/: [False, True, False, True, True]}
     data frame = pd.DataFrame(data dict)
                                                      wage educ exper gender married)
                                                      3.10
                                                            11.0
                                                   0
                                                                  2.0
                                                                               False
                                                      3.24
                                                            12.0
                                                                 22.0
                                                                               True
                                                      3.00
                                                            11.0
                                                                  2.0
                                                                               False
                                                                          М
                                                       6.00
                                                            8.0
                                                                 44.0
                                                                               True
                                                            12.0
                                                      5.30
                                                                  7.0
                                                                          М
                                                                               True
                                                       8.75
                                                            16.0
                                                                  9.0
                                                                          М
                                                                               True
```

Six rows

- The pandas.DataFrame data structure
 - Attributes of data frames

Two-dimensional array

wage educ exper gender married 3.10 11.0 0 2.0 **False** 3.24 12.0 1 22.0 True 3.00 11.0 2.0 М **False** 6.00 8.0 44.0 True 5.30 12.0 7.0 М True 5 8.75 16.0 9.0 M True

Five columns

- The pandas.DataFrame data structure
 - Attributes of data frames

```
print(data_frame.columns)
print(data_frame.index)
```

Index(['wage', 'educ', 'exper', 'gender', 'married'], dtype='object')
RangeIndex(start=0, stop=6, step=1)

(wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	11.0	2.0	М	False
3	6.00	8.0	44.0	М	True
4	5.30	12.0	7.0	М	True
5	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Attributes of data frames

```
print(data_frame.columns)
    print(data_frame.index)
```

```
Index(['wage', 'educ', 'exper', 'gender', 'married'], dtype='object')
RangeIndex(start=0, stop=6, step=1)
```

		wage	educ	exper	gender	married
	0	3.10	11.0	2.0	F	False
	1	3.24	12.0	22.0	F	True
	2	3.00	11.0	2.0	М	False
;	3	6.00	8.0	44.0	М	True
,	4	5.30	12.0	7.0	М	True
	5	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Attributes of data frames

```
index = ['Mary', 'Ann', 'John', 'David', 'Frank', 'Ben']
data_frame_new = pd.DataFrame(data_dict, index=index)
```

Specify data frame row indexes via the keyword argument

	wage	educ	exper	gender	married
Mary	3.10	11.0	2.0	F	False
Ann	3.24	12.0	22.0	F	True
John	3.00	11.0	2.0	М	False
David	6.00	8.0	44.0	М	True
Frank	5.30	12.0	7.0	М	True
Ben	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Attributes of data frames

```
print(data_frame_new.columns)
print(data_frame_new.index)
```

```
Index(['wage', 'educ', 'exper', 'gender', 'married'], dtype='object')
Index(['Mary', 'Ann', 'John', 'David', 'Frank', 'Ben'], dtype='object')
```

(wage	educ	exper	gender	married
Mary	3.10	11.0	2.0	F	False
Ann	3.24	12.0	22.0	F	True
John	3.00	11.0	2.0	М	False
David	6.00	8.0	44.0	М	True
Frank	5.30	12.0	7.0	М	True
Ben	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Attributes of data frames

```
print(data_frame_new.columns)
    print(data_frame_new.index)
```

```
Index(['wage', 'educ', 'exper', 'gender', 'married'], dtype='object')
Index(['Mary', 'Ann', 'John', 'David', 'Frank', 'Ben'], dtype='object')
```

	wage	educ	exper	gender	married
Mary	3.10	11.0	2.0	F	False
Ann	3.24	12.0	22.0	F	True
John	3.00	11.0	2.0	М	False
David	6.00	8.0	44.0	М	True
Frank	5.30	12.0	7.0	М	True
Ben	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Attributes of data frames

data_frame.dtypes

wage
 educ float64
exper float64
gender object
married bool
dtype: object

	wage	educ	exper	gender	married
Mary	3.10	11.0	2.0	F	False
Ann	3.24	12.0	22.0	F	True
John	3.00	11.0	2.0	М	False
David	6.00	8.0	44.0	М	True
Frank	5.30	12.0	7.0	М	True
Ben	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

Column selections

- A single column index
- A slice of column indexes
- A list of column indexes

The stop index is excluded from the row/column selection

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

Column selections

- A single column label
- A slice of column labels
- A list of column labels

The stop index is included in the row/column selection

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing and slicing via iloc[] and loc[] indexers

- The pandas.DataFrame data structure
 - Indexing of columns

```
data frame['educ']
                                    data frame new['educ']
    11.0
                                            11.0
                                    Mary
0
    12.0
                                            12.0
                                    Ann
                                    John 11.0
  11.0
   8.0
                                    David 8.0
                                    Frank 12.0
    12.0
4
    16.0
                                            16.0
                                    Ben
Name: educ, dtype: float64
                                    Name: educ, dtype: float64
```

- The pandas.DataFrame data structure
 - Change pandas.DataFrame object in-place
 - √ Similar syntax as other mutable data types

- The pandas.DataFrame data structure
 - Change pandas.DataFrame object in-place

```
data_frame.loc[2:3, 'educ'] = 9.0
```

	wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	11.0	2.0	М	False
3	6.00	8.0	44.0	М	True
4	5.30	12.0	7.0	М	True
5	8.75	16.0	9.0	М	True

	wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	9.0	2.0	М	False
3	6.00	9.0	44.0	М	True
4	5.30	12.0	7.0	М	True
5	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Change pandas.DataFrame object in-place

data_frame.iloc[2, 1:3]

4

False

True

False

True

True

True

F

- The pandas.DataFrame data structure
 - Change pandas.DataFrame object in-place

```
data_frame.loc[:, 'remarks'] = 'none'
```

	wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	1.0	1.0	М	False
3	6.00	9.0	44.0	М	True
4	5.30	12.0	7.0	М	True
5	8.75	16.0	9.0	М	True

- The pandas.DataFrame data structure
 - Change pandas.DataFrame object in-place

```
data_frame.loc[:, 'remarks'] = ['none']
```

	wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	1.0	1.0	М	False
3	6.00	9.0	44.0	М	True
4	5.30	12.0	7.0	М	True
5	8.75	16.0	9.0	М	True

		wage	educ	exper	gender	married	remarks	
	0	3.10	11.0	2.0	F	False	none	
	1	3.24	12.0	22.0	F	True	none	
	2	3.00	1.0	1.0	М	False	none	
l	3	6.00	9.0	44.0	М	True	none	
	4	5.30	12.0	7.0	М	True	none	
	5	8.75	16.0	9.0	М	True	none	

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
is_female = data_frame['gender'] (== 'F')
print(is female)
0
      True
      True
                                                              is female
                               data frame['gender']
     False
     False
     False
     False
                                                                  True
Name: gender, dtype: bool
                                              'F'
                                                                  True
                                              'F'
                                                                 False
                                                                 False
                                              'F'
                                                                 False
                                              'F'
                                                                  False
                                 dtype: object
                                                            dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
is_high_wage = data_frame['wage'](> 4_
print(is high wage)
     False
0
     False
                                                            is female
                               data_frame['wage']
     False
      True
      True
      True
                                      3.10
                                                                False
Name: wage, dtype: bool
                                     3.24
                                                                False
                                     3.00
                                                                False
                                     6.00
                                            > 4
                                                                 True
                                     5.30
                                            > 4
                                                                 True
                                      8.75
                                                                 True
                                dtype: float64
                                                          dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
not_female = data_frame['gender'](!= 'F')
print(not female)
     False
0
     False
                                                             not female
                               data frame['gender']
      True
      True
      True
      True
                                                                  False
                                               'F'
Name: gender, dtype: bool
                                              'F'
                                                                  False
                                               'F'
                                                                   True
                                               'F'
                                                                   True
                                              'F'
                                       М
                                                                   True
                                              'F'
                                                                   True
                                 dtype: object
                                                             dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing
 - √ Bitwise "and" logic: &
 - √ Bitwise "or" logic: |
 - √ Bitwise "not" logic: ~

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
cond1 = data frame['gender'](== 'F'
cond2 = data frame['married']
is wife = cond1 & cond2
print(is wife)
     False
0
             data frame['gender']
                                              cond1
      True
     False
3
     False
     False
                                                True
     False
                     F
                                                True
dtype: bool
                             'F'
                                                False
                                                False
                             'F'
                                                False
                     M
                            'F'
                                                False
                dtype: object
                                          dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
cond1 = data frame['gender'] == 'F'
cond2 = data frame['married']
is_wife = cond1 & cond2
print(is wife)
     False
0
                                           cond2
      True
     False
  False
   False
                                            False
     False
                                              True
dtype: bool
                                            False
                                              True
                                              True
                                              True
                                       dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
cond1 = data frame['gender'] == 'F'
cond2 = data frame['married']
is wife = cond1 & cond2
print(is wife)
     False
0
                      cond1
                                          cond2
      True
     False
   False
     False
                        True
                                            False
     False
                       True
                                             True
dtype: bool
                     False
                                            False
                     False
                                             True
                       False
                                             True
                       False
                                             True
                  dtype: bool
                                       dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
cond1 = data frame['educ'] > 9
cond2 = data frame['exper'] > 3
is skillful = cond1 | cond2
print(is_skillful)
0
      True
                      cond1
                                            cond2
      True
     False
3
      True
      True
                                             False
                         True
      True
                         True
                                               True
dtype: bool
                     False
                                             False
                        False
                                               True
                         True
                                               True
                         True
                                               True
                   dtype: bool
                                        dtype: bool
```

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
is_female = data_frame['gender'] == 'F'
females = data_frame.loc[is_female]
```


- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

```
is_female = data_frame['gender'] == 'F'

females = data_frame.loc[is_female]
```


- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

Question 1: Make changes to the data frame above such that:

- Values for married males in the column 'remarks' are changed to the string 'Husband'.
- Values for unmarried males or unmarried females in the column 'remarks' are changed to the string 'Single'.

- The pandas.DataFrame data structure
 - Boolean series and boolean indexing

Question 1: Make changes to the data frame above such that:

- Values for married males in the column 'remarks' are changed to the string 'Husband'.
- Values for unmarried males or unmarried females in the column 'remarks' are changed to the string 'Single'.

```
cond1 = data_frame['gender'] == 'F'
cond2 = data_frame['married']
is_husband = ~cond1 & cond2
data_frame.loc[is_husband, 'remarks'] = 'Husband'
is_single = ~cond2
data_frame.loc[is_single, 'remarks'] = 'Single'
```

Read data from files

```
data = pd.read_csv('wage.csv')
```


	wage	educ	exper	gender	married
0	3.10	11.0	2.0	F	False
1	3.24	12.0	22.0	F	True
2	3.00	11.0	2.0	М	False
3	6.00	8.0	44.0	М	True
4	5.30	12.0	7.0	М	True
521	15.00	16.0	14.0	F	True
522	2.27	10.0	2.0	F	False
523	4.67	15.0	13.0	М	True
524	11.56	16.0	5.0	М	True
525	3.50	14.0	5.0	F	False
526 rows × 5 columns					

Descriptive measures

Descriptive measures

```
data_num = data.drop(columns='gender')
```

doto num					
data_num	1	wage	educ	exper	married
	0	3.10	11.0	2.0	False
	1	3.24	12.0	22.0	True
	2	3.00	11.0	2.0	False
	3	6.00	8.0	44.0	True
	4	5.30	12.0	7.0	True
		• • •	• • •	• • •	• • •
	521	15.00	16.0	14.0	True
	522	2.27	10.0	2.0	False
	523	4.67	15.0	13.0	True
	524	11.56	16.0	5.0	True
	525	3.50	14.0	5.0	False

- Descriptive measures
 - Measures of centers

- ✓ Median
- ✓ Mode

- Descriptive measures
 - Measures of centers

- Descriptive measures
 - Measures of centers

- Descriptive measures
 - Measures of centers

- Descriptive measures
 - Measures of variations
 - √ Variance
 - √ Standard deviation

```
data_num.var()

wage     13.638884
educ     7.667485
exper     184.203516
married     0.238711
```

```
data_num.std()

wage 3.693086
educ 2.769022
exper 13.572160
married 0.488580
```

dtype: float64

dtype: float64

- Descriptive measures
 - Extreme points
 - ✓ Minimum value
 - ✓ Maximum value

```
data.min()

wage 0.53
educ 0.0
exper 1.0
gender F
married False
dtype: object
```

```
wage 24.98
educ 18.0
exper 51.0
gender M
married True
dtype: object
```

- Descriptive measures
 - Counts of categorical values

- Descriptive measures
 - ► The corr() and cov() methods

```
data.corr()
```

data.cov()

	wage	educ	exper	married
wage	1.000000	0.405903	0.112903	0.228817
educ	0.405903	1.000000	-0.299542	0.068881
exper	0.112903	-0.299542	1.000000	0.316984
married	0.228817	0.068881	0.316984	1.000000

	wage	educ	exper	married
wage	13.638884	4.150864	5.659076	0.412871
educ	4.150864	7.667485	-11.257266	0.093188
exper	5.659076	-11.257266	184.203516	2.101952
married	0.412871	0.093188	2.101952	0.238711

- Descriptive measures
 - ► The describe() method

```
wage_summary = data.describe()
```


A data frame

- Descriptive measures
 - ► The describe() method

```
wage_summary = data.describe()
```

The 1st quartile (Q1)

The 2nd quartile (Q2)

The 3rd quartile (Q3)

Visualizing data

- Visualizing data
 - The boxplot: five-value summary

- Visualizing data
 - The boxplot: five-value summary

Visualizing data

Histogram

```
plt.hist(data['wage'], bins=20, color='b', alpha=0.3)
plt.xlabel('Hourly wages ($)', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.show()
```


- Visualizing data
 - Scatterplots

```
plt.scatter(data['educ'], data['wage'], color='b', alpha=0.4)
plt.xlabel('Education (Years)', fontsize=14)
plt.ylabel('Hourly Salary (Dollars)', fontsize=14)
plt.show()
```


Visualizing data

Question 2:

Visualize how workers' potential experiences affect their hourly wages.

```
plt.scatter(data['exper'], data['wage'], alpha=0.5, color='b')
plt.xlabel('Potential Experience (Years)', fontsize=14)
plt.ylabel('Hourly Salary (Dollars)', fontsize=14)
plt.show()
```


Visualizing data

Question 2:

Visualize how married male workers' education years affect their hourly wages.

```
subset = data.loc[data['married'] & (data['gender'] == 'M')]

plt.scatter(subset['educ'], subset['wage'], alpha=0.5, color='b')
plt.xlabel('Education (Years)', fontsize=14)
plt.ylabel('Hourly Salary (Dollars)', fontsize=14)
plt.show()
```

Visualizing data

Question 2:

Visualize the distribution of female workers' wages.

```
subset = data.loc[data['gender'] == 'F']

plt.hist(subset['wage'], bins=20, alpha=0.5, color='b')
plt.xlabel('Hourly Salary (Dollars)', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.show()
```