

INFLUENCE OF DRUG-POLYMER INTERACTIONS ON RELEASE KINETICS OF PLGA AND PLA/PEG NPS

Merve Gul^{1,2}, Ida Genta¹, Maria M. Perez Madrigal², Carlos Aleman^{2,3}, Enrica Chiesa¹

¹Department of Drug Sciences, University of Pavia ²Department of Chemical Engineering, Universitat Politècnica de Catalunya (UPC-EEBE) ³Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya

INTRODUCTION

Antimicrobial resistance (AMR) is a growing global health threat, requiring novel drug delivery strategies (1). Microfluidic-based synthesis of nano-sized carriers for drug delivery systems (NDDS) offers precise control over nanocarrier characteristics and improves encapsulation efficiency (2,3).

(1) ANTIMICROBIAL RESISTANCE

3. Mutation of Binding **Sides**

2. Drug 1. Efflux Inhibition Pump

(2) NPs SYNTHESIS BY MICROFLUIDICS

(3) DRUG DELIVERY SYSTEM

METHODS

An ad hoc custom-built device was used, comprising a pumping module with two syringe pumps and an infusion setup designed to place a Passive Herringbone Mixer (PHBM) chip.

Figure 1: Representative scheme of a) outer and b) inner side of microfluidic chip (3).

Table 1: Drug loading into NPs and micelles.

	Type of Syringes	Final Volume (mL)	Rate (TFR)	Flow Rate Ratio (FRR) (aqueous/
	T		(mL/min)	organic phase)
PLGA	Terumo 5 mL	2	8	4:1
NPs	Terumo 5 mL	2	8	4:1
PLA/PEG	Terumo 5 mL	2	3	3:1
NPs	Terumo 5 mL	2	3	3:1

RESULTS

1.Physical Properties of NPs

• NPs had uniform size distribution with PDI ≤ 0.2, consistent with TEM observations.

Figure 2: Physical features of PLGA NPs and PLA/PEG micelles.

Figure 3: TEM images of a) PLGA NPs, b) CURC loaded PLGA NPs, c) PLA-PEG micelles, and d) CURC loaded PLA-PEG micelles.

2. Release Kinetics of NPs

Table 2: Drug loading into NPs and micelles.

	%		
Loading	PLGA	PLA/PEG	
Curcumin	61.91 ± 1.86	13.74 ± 0.97	
	Payload (% μg/mg)		
	2.81 ± 0.81	2.51 ± 0.57	
Highe Encapsul	ation 🚶	Slower Release	
Efficiency	(EE%)	Rate	

Figure 4: Release profiles of CURC from PLGA NPs and PLA/PEG micelles.

3. Cytotoxicity & Antimicrobial Activity

Time (h) Figure 6: Bacterial reduction of S.epidermidis after 72h of treatment with CURC loaded PLGA NPs with a MIC of 0.1 mg/mL.

PLGA-CURC

PLGA

Figure 7: Fluorescence microscope images of placebo and CURC loaded PLGA NPs on NHDFs after 2, 4 and 24 h indicating cellular uptake.

CONCLUSION

- CURC loaded PLGA NPs were better candidates for controlled drug delivery due to hydrophobic interactions between the drug and the polymer.
- No or slight cytotoxic effect of CURC NPs was observed on NHDFs with progressive cellular internalization of NPs.
- The choice of polymer composition plays a key role in drug-polymer interactions and release kinetics to achieve more controlled delivery and improved therapeutic efficacy in regenerative medicine.

- (1) Vega-Vásquez, P. et al. Front. Bioeng. Biotechnol. 2020, 8, 2296-4185.
- (2) Fu, Y. S. et al. *Biomed. Pharmacother*. 2021, 141, 111888. (3) Chiesa et al., International Journal of Pharmaceutics, Volume 629, 2022, 122368, ISSN 0378-5173.
- Acknowledgements

"This project has received funding from the European Union's research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101072645".

