Wahrscheinlichkeit und Statistik

David Zollikofer

Teil I

Wahrscheinlichkeit

1. Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsraum Wir definieren (Ω, \mathcal{F}, P) einen Wahrscheinlichkeitsraum, wobei Ω die Ereignismenge aus Elementarereignissen ist, $\mathcal{F}\subseteq 2^\Omega$ eine σ -Algebra und P ein Wahrscheinlichkeitsmass.

 σ -Algebra Wir nennen ein Mengensystem $\mathcal{F}\subseteq 2^{\Omega}$ eine σ -Algebra falls:

- ullet $\Omega \in \mathcal{F}$
- $\forall A \in \mathcal{F} : A^c \in \mathcal{F}$
- für jede Folge $(A_n)_{n\in\mathbb{N}}$ mit $A_n\in\mathcal{F}$ so ist auch $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$

Sicherlich ist somit zum Beispiel die Potenzmenge 2^{Ω} eine σ -Algebra.

Wahrscheinlichkeitsmass Wir definieren eine Abbildung $P: \mathcal{F} \to [0,1]$. Wir nennen $P[A] \in [0,1]$ die Wahrscheinlichkeit, dass A eintritt. Die geforderten Kolmogorov Axiome sind:

- $P[A] \ge 0 \ \forall A \in \mathcal{F}$
- $P[\Omega] = 1$
- $P\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} P[A_i]$, sofern die $A_i \in \mathcal{F}$ paarweise disjunkt sind $(A_i \cap A_k = \emptyset \text{ wenn } i \neq k)$

Beispiele (Formale Definitionen von Wahrscheinlichkeitsräumen)

Grundlegende Prinzipien

Additivität disjunkter Ereignisse Seien A_1, \ldots, A_n paarweise disjunkte Ereignisse, so gilt:

$$P[A_1 \cup \cdots \cup A_n] = P[A_1] + \cdots + P[A_n]$$

Inklusion und Exklusionsprinzip

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B] - P[B \cap C]$$

$$- P[B \cap C] + P[A \cap B \cap C]$$

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Seien A, B Ereignisse und P[A] > 0. Die bedingte Wahrscheinlichkeit von B unter der Bedingung, dass A eintritt, (gegeben A) ist definiert als:

$$P[B|A] = \frac{P[B \cap A]}{P[A]}$$

Multiplikationsregel Seien $A_1, \dots A_n$ Ereignisse mit $P[A_i] > 0$ (div by 0 Problem), dann gilt:

$$P[A_1 \cap A_2 \cap \dots \cap A_n] = P[A_1] \cdot P[A_2 | A_1] \cdot P[A_3 | A_1 \cap A_2] \cdot \dots \cdot P[A_n | A_1 \cap \dots \cap A_{n-1}]$$

Satz der totalen Wahrscheinlichkeit Seien $B_1, \dots B_n$ eine Zerlegung von Ω (d.h. $\bigcup_{i=1}^n B_i = \Omega$ und $B_i \cap B_j = \emptyset$ für $i \neq j$), so gilt für ein beliebiges Ereignis A:

$$P[A] = \sum_{i=1}^{n} P[A \cap B_i] = \sum_{i=1}^{n} P[A|B_i] \cdot P[B_i]$$

Insbesondere folgt daraus:

$$P[A] = P[A \cap B] + P[A \cap B^{c}] = P[A|B] \cdot P[B] + P[A|B^{c}] \cdot P[B^{c}]$$

Satz von Bayes Wenn P[A], P[B]. $P[B^c] > 0$ so folgt:

$$P[B|A] = \frac{P[A \cap B]}{P[A]} = \frac{P[A|B] \cdot P[B]}{P[A|B] \cdot P[B] + P[A|B^c] \cdot P[B^c]}$$

respektive wenn $B_1, \dots B_n$ eine Zerlegung von Ω mit $P[B_i] > 0$ $\forall i$, dann gilt für ein Ereignis A mit P[A] > 0:

$$P[B_k|A] = \frac{P[A \cap B_k]}{P[A]} = \frac{P[A|B_k] \cdot P[B_k]}{\sum_{i=1}^n P[A|B_i] \cdot P[B_i]}$$

Unabhängigkeit

Unabhängigkeit Wir nennen zwei Ereignisse *A*, *B* unabhängig falls

$$P[A \cap B] = P[A] \cdot P[B]$$

Für $P[A] \neq 0$ gilt:

$$A, B$$
 unabhängig $\iff P[B|A] = P[B]$

Stochastische Unabhängigkeit Wir nennen $A_1, \dots A_n$ (stochastisch) unabhängig, falls für alle Kombinationen von $A_i, \dots A_j$ gilt dass

$$P\left[\bigcap_{i=1}^{m} A_{k_i}\right] = \prod_{i=1}^{m} P[A_{k_i}]$$

2. Diskrete Zufallsvariablen und Verteilungen

Diskrete Zufallsvariable (ZV) Sei (Ω, \mathcal{F}, P) ein diskreter Wahrscheinlichkeitsraum.

Wir nennen

$$X: \Omega \to \mathcal{W}(X) = \{x_1, \dots x_n\} \subseteq \mathbb{R}$$

eine Zufallsvariable. mit $\mathcal{W}(X)$ der Wertebereich. Zusätzlich definieren wir die *Gewichtsfunktion* oder *diskrete*

Dichte von *X* als

$$p_X(x_k) = P[X = x_k] = P[\{\omega | X(\omega) = x_k\}]$$

sowie auch die Verteilfunktion

$$F_{\mathcal{X}}(t) = P[X \le t] = P[\{\omega | X(\omega) \le t\}]$$

Verteilungen mehrerer Variablen

Gemeinsame Verteilfunktion Seien $X_1, \dots X_n$ Zufallsvariablen. Die gemeinsame Verteilfunktion $F: \mathbb{R}^n \to [0,1]$ ist definiert durch

$$(x_1, ... x_n) \mapsto F(x_1, ... x_n) = P[X_1 \le x_1, ... X_n \le x_n]$$

= $\sum_{y_1 \le x_1, ..., y_n \le x_n} p(y_1, ..., y_n)$

Gemeinsame Verteilfunktion Seien X, Y ZV, so gilt für $F_X : \mathbb{R} \to [0,1]$:

$$F_X(x) = P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

Gewichtsfunktion der Randverteilung Wir definieren $p_X(x): \mathcal{W}(X) \to [0,1]$ als die Gewichtsfunktion der Randverteilung von X gegeben durch

$$p_X(x) = P[X = x] = \sum_{y_i \in \mathcal{W}(Y)} p(x, y_i)$$

Unabhängigkeit von Zufallsvariable Die ZV $X_1, ..., X_n$ heissen unabhängig, gdw

$$F(x_1,...,x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n) \quad \forall x_1,...,x_n$$
oder analog dazu
$$p(x_1,...,x_n) = p_{X_1}(x_1) \cdots p_{X_1n}(x_n) \quad \forall x_1,...,x_n$$

Bedingte Verteilungen

Bedingte Verteilungen Seien X und Y Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion von X gegeben, dass Y=y ist definiert durch

$$p_{X|Y}(x|y) := P[X = x|Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$$

Bedingte Erwartung Die Erwartung von Y gegeben, dass X = x bereits eingetroffen ist, ist definiert durch:

$$E[Y|X = x] = \sum_{y} y P(Y = y \mid X = x) = \sum_{y} y \frac{P(X = x, Y = y)}{P(X = x)}$$

$$E[Y|X = x] = \int y \cdot f_{Y|X=x}(y) \, dy = \int y \cdot \frac{f_{X,Y}(x,y)}{f_{X=x}(y)} \, dy$$

3. Wichige diskrete Verteilungen

Diskrete Gleichverteilung

Die diskrete Gleichverteilung auf $W(X) = \{x_1, ..., x_n\}$ hat folgende Eigenschaften:

$$p_X(x_k) = P[X = x_k] = \frac{1}{N}$$

 $p_X(x_k) - I[X - x_k] -$ mit

$$E[X] = \frac{1}{n} \sum_{i=1}^{n} x_i \quad Var[X] = \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right)$$

Bernoulli Verteilung

Wir machen ein einziges 0-1 Experiment mit Erfolgswahrscheinlichkeit p. Es gilt demnach $W(X) = \{0,1\}$ mit

$$p_X(1) = P[X = 1] = p$$
 $p_X(0) = P[X = 0] = 1 - p$

Woraus folgt:

$$E[X] = p Var[X] = p(1-p)$$

Wir schreiben dabei $X \sim Be(p)$

Binomialverteilung

Wir möchten gerne die Anzahl Erfolge bei n unabhängigen 0-1 Experimenten mit Erfolgsparameter p beschreiben. Wir schreiben $X \sim \text{Bin}(n, p)$. Dabei ist $W(X) = \{0, 1, ..., n\}$ und

$$p_X(k) = P[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$$

sowie

$$E[X] = np Var[X] = np(1-p)$$

Geometrische Verteilung

Wir betrachten eine unendliche Folge von unabhängigen 0-1 Experimenten mit Erfolgsparameter p. X sei die Wartezeit auf den ersten Erfolg. Wir schreiben $X \sim \text{Geom}(p)$ und haben:

$$p_X(k) = P[X = k] = p(1-p)^{k-1}$$

$$E[X] = \frac{1}{p} \qquad Var[X] = \frac{1-p}{p^2}$$

Für die geometrische Verteilung gilt auch eine Art Gedächtnislosigkeit: $P[X = n + k | X \ge n] = P[X = k]$.

Negativbinomiale Verteilung

Wir betrachten eine unendliche Folge von unabhängigen 0-1 Experimenten mit Erfolgsparameter p. So sei X die Wartezeit auf den r-ten Erfolg. Wir schreiben $X \sim \text{NB}(r,p)$.

$$P_X(k) = P[X = k] = {k-1 \choose r-1} p^r (1-p)^{k-r}$$
 $E[X] = \frac{r}{n}$
 $Var[X] = \frac{r(1-p)}{n^2}$

Hypergeometrische Verteilung

In einer Urne seien n Gegenstände, davon r vom Typ 1 und n-r vom Typ 2. Man zieht ohne Zurücklegen m der Gegenstände; die Zufallsvariable X beschreibe die Anzahl der Gegenstände vom Typ 1 in dieser Stichprobe vom Umfang m. Dann hat X eine hypergeometrische Verteilung mit Parametern n, m, r mit $\mathcal{W}(X) = \{0, 1, \dots, \min(m, r)\}$ sowie

$$p_X(k) = \frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$$

$$E[X] = m\frac{r}{n} \qquad Var[X] = m\frac{r}{n}\left(1 - \frac{r}{n}\right)\frac{n-m}{n-1}$$

Poissonverteilung

Mit Parameter $\lambda > 0$ auf $\mathcal{W}(X) = \mathbb{N}_0$ schreiben wir $X \sim \operatorname{Pois}(\lambda)$

$$p_X(k) = P[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$$
 $E[X] = \lambda$ $Var[X] = \lambda$

4. Allgemeine Zufallsvariable

Verteilungsfunktion Wir nennen $F_X : \mathbb{R} \to [0,1]$ mit

$$F_X(t) = P[X \le t] := P[\{\omega | X(\omega) \le t\}]$$

eine Verteilfunktion. Dies hat folgende Eigenschaften:

- F_X ist monoton wachsend $F_X(s) \leq F_X(t)$ für $s \leq t$ und rechtsstetig $F_X(u) \to F_X(t)$ für $u \to t$.
- $\lim_{t \to -\infty} F_X(t) = 0$, $\lim_{t \to +\infty} F_X(t) = 1$

umgekehrt ist jede Funktion mit diesen Eigenschaften eine Verteilungsfunktion F_X einer Zufallsvariablen X.

Wahrscheinlichkeitsmass Wir nennen $\mu_X(B) := P[X \in B]$ das Wahrscheinlichkeitsmass mit $\mu_X((-\infty, t]) = F_X(t)$

Dichtefunktion Falls $F_X(t) = \int_{-\infty}^t f_X(s) ds$ für $\forall t \in \mathbb{R}$ so nennt man $F_X(t)$ absolut stetig und $f_X(s)$ die Dichtefunktion. Mit folgenden Eigenschaften:

- $f_X \ge 0$ und $f_X = 0$ ausserhalb von $\mathcal{W}(X)$.
- $\int_{-\infty}^{\infty} f_X(s) ds = 1$ folgt aus $\lim_{t \to -\infty} F_X(t) = 1$

Umgekehrt kann man aus einer messbaren Funktion $f: \mathbb{R} \to [0,\infty)$ mit $\int_{-\infty}^{\infty} f(s)ds = 1$ eine Zufallsfariable X konstruieren.

Gemeinsame Verteilungen, unabhängige Zufallsvariablen

Gemeinsame Verteilungsfunktion Die gemeinsame Verteilfunktion von n Zufallsvariablen X_1, \ldots, X_n ist die Abbildung $F: \mathbb{R}^n \to [0,1]$ mit

$$F(x_1,...,x_n) := P[X_1 \le x_1,...,X_n \le x_n]$$

$$F(x_1,...,x_n) := \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1,...,t_n) dt_n ... dt_1$$

dabei ist $f: \mathbb{R}^n \to [0, \infty)$ die gemeinsame Dichte für welche gilt:

- $f(x_1,...,x_n) \ge 0$ und = 0 ausserhalb von $\mathcal{W}(X_1,...,X_n)$
- $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \ldots, t_n) dt_n \ldots dt_1 = 1$
- $P[(X_1,\ldots X_n)\in A]=\int_{(x_1,\ldots,x_n)\in A}f(t_1,\ldots,t_n)dt_n\ldots dt_1$

Randverteilung Haben X, Y die gemeinsame Dichtefunktion F, so ist die Funktion $F_X : \mathbb{R} \to [0,1]$ mit

$$F_X(x) := P[Y \le y] = P[x \le Y, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

die sogenannte Randverteilung von X. Falls die Dichte f(x,y) existiert so gilt:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \lim_{y \to \infty} F(x, y)$$

Beispiel zusammengesetzter Zufallsvariablen

- $X = \min\{X_1, \dots, X_n\}$, finde f_X Wir wissen $F_X(t) = P[X \le t] = \prod_{i=1}^n P[X_k \le t] = F(t)^n$. Da $f_X(t) = \frac{dF_X(t)}{dt}$ folgt $f_X(t) = n \cdot F(t)^{n-1} f(t)$.
- $X = \max\{X_1, ..., X_n\}$, finde f_X Wir wissen $F_X(t) = 1 - P[X > t] = 1 - P[X_1 > t, ..., X_n > t] = 1 - (1 - F(t))^n$. Da $f_X(t) = \frac{dF_X(t)}{dt}$ folgt $f_X(t) = n(1 - F(t))^{n-1}f(t)$.

Wahrscheinlichkeiten mehrerer Variablen Angenommen wir möchten P[X > 2Y] ausrechnen so berechnen wir:

$$P[X > 2Y] = \int \int_{A} f_{X,Y}(x,y) dxdy$$

Mit
$$A = \{(x, y) \in \mathbb{R}^2 : x > 2y\}$$

Unabhängigkeit von Zufallsvariablen Die Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt

$$F(x_1, \dots x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$$
 respektive:
 $f(x_1, \dots x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$ $\forall x_1, \dots x_n$

Transformation von stetigen Zufallsvariablen

• Angenommen wir haben die Dichte f(x,y) gegeben und wir suchen die Verteilfunktion und Dichte von Z = X + Y. Wir haben $F_Z(z) = P[Z \le z] = P[X + Y \le z]$. Nun definieren wir $A_z = \{(x,y) \in \mathbb{R}^2 | x + y \le z\}$. Es gilt nun:

$$F_Z(z) = P[(X,Y) \in A_z] = \int_{A_z} \int f(x,y) dy dx$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x,y) dy dx$$

Sowie $f_Z(z) = \frac{d}{dz}F_Z(z)$.

• Sei $U = \frac{X}{X+Y}$ mit $X, Y \sim Exp(\lambda)$; finde f_U, F_U : Es gilt $F_U(u) = P[U \leq u] = P[\frac{X}{X+Y} \leq u]$ woraus $x(u^{-1}-1) \leq y$ folgt. Somit ist das Integral $F_U = \lambda^2 \int_0^\infty e^{-\lambda x} \int_{x(u^{-1}-1)}^\infty e^{-\lambda y} dy dx = u$.

Da nun $0 \le U = \frac{X}{X+Y} \le 1 \text{ folgt } f_U(u) = 1_{u \in [0,1]}$

ullet Sei nun zusätzlich noch V=X+Y und wir möchten $f_{U,V}$ berechnen, so gilt

$$f_{U,V} = \lambda^2 \int_0^\infty e^{-\lambda x} \left(\int_0^\infty 1_{\left\{ \frac{x}{x+y} \le u, x+y \le v \right\}} e^{-\lambda y} dy \right) dx$$

Wichtige stetige Verteilungen

Gleichverteilung

Die Gleichverteilung auf [a,b] mit $\mathcal{W}(X) = [a,b]$, genannt $X \sim \mathcal{U}(a,b)$:

$$f_X(t) = \begin{cases} \frac{1}{b-a} & \text{für } a \le t \le b \\ 0 & \text{sonst} \end{cases} \qquad F_X(t) = \begin{cases} 0 & \text{für } t < a \\ \frac{t-a}{b-a} & \text{für } a \le t \le b \\ 1 & \text{für } t > b \end{cases}$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = \frac{1}{b-a} \int_{a}^{b} x \cdot 1 dx = \frac{1}{2} \frac{b^2 - a^2}{b-a} = \frac{a+b}{2}$$

$$Var[X] = \frac{1}{b-a} \int_{a}^{b} x^2 \cdot 1 \, dx - \left(\frac{a+b}{2}\right)^2 = \frac{1}{3} \frac{b^3 - a^3}{b-a} - \left(\frac{a+b}{2}\right)^2$$

Exponentialverteilung

Die Exponentialverteilung mit Parameter $\lambda > 0$ mit $\mathcal{W}(X) = [0, \infty)$, genannt $X \sim Exp(\lambda)$:

$$f_X(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases} \qquad F_X(t) = \begin{cases} 1 - e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases}$$
$$E[X] = \int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$$
$$Var[X] = \frac{1}{\lambda^2}$$

Die Exponentialverteilung ist Gedächtnislos:

$$P[X > t + s | X > s] = P[X > t]$$

Beispiel (Casinogewinn) Wenn $Z \sim Exp(\lambda)$ dürfen wir c wählen so dass wenn Z > c gewinnen wir c. Berechne maximal erwartete Auszahlung: $G(c) = \mathrm{E}[c1_{\{Z>c\}}] = cP[Z>c] = ce^{-\lambda c}$. Nun maximiere c.

Normalverteilung

Die Normalverteilung mit Parameter σ^2 , der Varianz, μ , dem Erwartungswert sowie $\mathcal{W}(X) = \mathbb{R}$. Man schreibt $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Problem: Das Integral ist mühsam. Trick Wir plotten die Dichte $\varphi(t)$ sowie Verteilfunktion $\Phi(t)$ von $\mathcal{N}(0,1)$ und benutzen dass $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$.

Es gilt
$$\Phi(-x) = 1 - \Phi(x)$$
 sowie $\Phi^{-1}(x) = -\Phi^{-1}(1 - x)$

Zudem gilt für $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$ mit Z = X + Y dass $Z \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Ist
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 so gilt für $Z = \frac{X - \mu}{\sigma}$ dass $Z \sim \mathcal{N}(0, 1)$

Paretoverteilung

Die Paretoverteilte Variable $X \sim \text{Par}(x_0, \alpha)$ mit

$$f_X(t) = \begin{cases} \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}} & \text{für } x \ge x_0 \\ 0 & \text{sonst} \end{cases} \qquad F_X(t) = \begin{cases} 1 - \left(\frac{x}{x_0}\right)^{-\alpha} & \text{für } x \ge x_0 \\ 0 & \text{sonst} \end{cases}$$

$$E[X] = \begin{cases} x_0 \frac{\alpha}{\alpha - 1} & \text{für } \alpha > 1 \\ \infty & \text{sonst} \end{cases} \quad \text{Var}[X] = \begin{cases} \frac{x_0^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)} & \text{für } \alpha > 2 \\ \infty & \text{für } 1 < \alpha \le 2 \end{cases}$$

Diese Verteilung modelliert zum Beispiel die Krankenkosten eines Versicherten pro Jahr.

Bekannte Verteilungen

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \Rightarrow S_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

Erwartungswerte und Varianzen

$$E(S_n) = n \cdot E(X_1) \qquad E(\overline{X}_n) = E(X_1)$$

$$Var(S_n) = n \cdot Var(X_1) \qquad Var(\overline{X}_n) = \frac{1}{n} Var(X_1)$$

$$\sigma_{S_n} = \sqrt{n} \cdot \sigma_{X_1} \qquad \sigma_{\overline{X}_n} = \frac{1}{\sqrt{n}} \cdot \sigma_{X_1}$$

5. Kennzahlen von Zufallsvariablen

Erwartungswert

• Diskret

$$\mu = E[X] = \sum_{\substack{x_i \in \mathcal{W}(X)}} x_i \cdot P(X = x_i) = \sum_{\substack{x_i \in \mathcal{W}(X)}} x_i \cdot p(x_i)$$
$$E(g(X)) = \sum_{\substack{x_i \in \mathcal{W}(X)}} g(x_i) \cdot P(X = x_i)$$

• Stetig:

$$\mu = E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

• Allgemein:

$$E(aX + b) = a E[X] + b$$

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

Sind X_i , X und Y unabhängig, so gilt

$$E(XY) = E[X] E(Y)$$
$$E(\prod X_i) = \prod E(X_i)$$

Bedingte Erwartung Die Erwartung von Y gegeben, dass X = x bereits eingetroffen ist, ist definiert durch:

$$E[Y|X = x] = \sum_{y} yP(Y = y \mid X = x) = \sum_{y} y \frac{P(X = x, Y = y)}{P(X = x)}$$

$$E[Y|X = x] = \int y \cdot f_{Y|X=x}(y) \, dy = \int y \cdot \frac{f_{X,Y}(x,y)}{f_{X=x}(y)} \, dy$$

Beispiel (nicht konvergenter Erwartungswert): Sei X eine Cauchy-verteilte Zufallsvariable, mit $\mathcal{W}(X) = \mathbb{R}$ und

$$f_X(t) = \frac{1}{\pi} \frac{1}{1+t^2}$$
 $F_X(t) = \frac{1}{2} + \frac{1}{\pi} \arctan(t)$

Dann gilt:

$$\int_{-\infty}^{\infty} |x| f_X(x) dx = \lim_{b \to \infty} \frac{1}{\pi} \log(1 + b^2) = +\infty$$

Varianz

Diskret

$$Var[X] = \sum_{x_i \in W(X)} (x_i - \mu)^2 \cdot P(X = x_i)$$
$$Var[X] = E((X - \mu)^2) = E(X^2) - E[X]^2$$

• Stetig:

$$Var[X] = E[X^{2}] - E[X]^{2} = \int_{-\infty}^{\infty} (x - E[X])^{2} \cdot f_{X}(x) dx$$

• Allgemein:

$$Var(aX + b) = a^{2} \cdot Var[X]$$

$$Var[X] = E(X^{2}) - E[X]^{2}$$

$$Var[X] = E((X - \mu)^{2})$$

$$Var(aX + bY + c) = a^{2} Var[X] + b^{2} Var(Y) + 2ab Cov(X, Y)$$

Für unkorrelierte Zufallsvariablen X_i gilt

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$
$$\operatorname{Var}(\overline{X}_{n}) = \frac{\sigma^{2}}{n}$$

Standardabweichung

$$\sigma = \sqrt{\operatorname{Var}[X]}$$

$$\sigma_{aX+b} = |a| \cdot \sigma_X$$

α -Quantile, Median

Sei
$$0 < \alpha < 1$$

$$P(X \le q(a)) = \alpha \implies F_X(q(a)) = \alpha$$

$$\implies q(a) = F_X^{-1}(a)$$
Median: $\frac{1}{2}$ -Quantil

Lineare Transformation

$$Y = aX + b \implies f_Y(x) = \frac{1}{|a|} f_X\left(\frac{x-b}{|a|}\right)$$

Kovarianz und Korrelation

Kovarianz

$$Cov(X,Y) = E((X - E[X])(Y - E(Y)))$$

$$= E[XY] - E[X]E[Y]$$

$$Cov(X,X) = Var(X)$$

Korrelation

$$\operatorname{Corr}(X,Y) = \rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)}} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

$$\rho_{XY} \in [-1,1] \text{ als dimensions loses Mass des linearen Zusammenhanges}$$

$$\rho_{XY} = \pm 1 \quad \Longleftrightarrow \quad Y = a \pm bX \quad \text{mit } b > 0, a \in \mathbb{R}$$

Rechenregeln

$$Cov(X,Y) = E(X \cdot Y) - E[X] \cdot E(Y)$$

$$Cov(\cdot, \cdot) \text{ ist bilinear:}$$

$$Cov(a + bX, c + dY) = b \cdot d \cdot Cov(X, Y)$$

$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$$

$$Cov \text{ ist symmetrisch}$$

Sind die Zufallsvariablen X und Y unabhängig, so gilt Cov(X,Y) = Corr(X,Y) = 0. Die Umkehrung gilt jedoch im Allgemeinen nicht.

unabhängig \Longrightarrow paarweise unabhängig \Longrightarrow unkorreliert

Beispiel Unkorreliert aber nicht unabhängig:

Sei $X \sim \mathcal{N}(0,1)$ und $Y = X^2$. Dann gilt $E[XY] = E[X^3] = 0 = E[X] E[Y]$. Somit sind X, Y unkorreliert \rightarrow offensichtlich aber nicht unabhängig.

Transformation von Zufallsvariablen Sei X eine Zufallsvariable und Y = g(X) eine weitere. Ist X stetig mit Dichte $f_X(x)$ so ist:

$$E[Y] = E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$

Falls X,Y zwei stetige Zufallsvariablen sind $g(x,y): \mathbb{R}^2 \to \mathbb{R}$ eine Funktion, dann gilt:

$$E[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Mehrere i.i.d Zufallsvariablen

Seien $X_1, ..., X_n \stackrel{iid}{\sim} F$. Dann ist $Y = g(X_1, ..., X_n)$ mit $g : \mathbb{R}^n \longrightarrow \mathbb{R}$ eine neue Zufallsvariable. Wichtige Vertreter sind die Summe von Zufallsvariablen und die relative Häufigkeit.

$$S_n = X_1 + \ldots + X_n \qquad \overline{X}_n = \frac{1}{n} S_n$$

Die Verteilungen von S_n und \overline{X}_n sind im allgemeinen aber schwierig zu bestimmen.

Bekannte Verteilungen

$$X_i \stackrel{iid}{\sim} \text{Exponential}(\lambda) \Rightarrow S_n \sim \text{Exponential}(n \cdot \lambda)$$
 $X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda_i) \Rightarrow S_n \sim \text{Poisson}(\sum \lambda_i)$
 $X_i \stackrel{iid}{\sim} \text{Bernoulli}(p) \Rightarrow S_n \sim \text{Binomial}(n, p)$
 $X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \Rightarrow S_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$

Erwartungswerte und Varianzen

$$E(S_n) = n \cdot E(X_1) \qquad E(\overline{X}_n) = E(X_1)$$

$$Var(S_n) = n \cdot Var(X_1) \qquad Var(\overline{X}_n) = \frac{1}{n} Var(X_1)$$

$$\sigma_{S_n} = \sqrt{n} \cdot \sigma_{X_1} \qquad \sigma_{\overline{X}_n} = \frac{1}{\sqrt{n}} \cdot \sigma_{X_1}$$

6. Ungleichungen und Grenzwertsätze

Wir bezeichnen in der folgenden Diskussion X_i, \ldots, X_n Zufallsvariablen. (welche meistens i.i.d sind). Dann definieren wir

$$S_n = \sum_{i=1}^n X_i$$
 $\overline{X_n} = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$

i.i.d. Zufallsvariablen Dies sind Zufallsvariablen die unabhängig und identisch verteilt sind.

Allgemeine Ungleichungen

Markov Ungleichung Sei X eine Zufallsvariable und $g:W(X)\to [0,\infty)$ eine wachsende Funktion. Für jedes $c\in\mathbb{R}$ gilt dann

$$P[X \ge c] \le \frac{\mathrm{E}[g(X)]}{g(c)}$$

Chebyshev Ungleichung Sei X eine Zufallsvariable mit endlicher Varianz. Für jedes b>0 gilt:

$$P[|X - E[X]| \ge b] \le \frac{\operatorname{Var}[X]}{b^2}$$

Schwache Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von *unabhängigen* Zufallsvariablen mit gleichem Erwartungswert $E[X_i] = \mu$ sowie gleicher Varianz $Var[X_i] = \sigma^2$.

Sei $\overline{X}_n = \frac{1}{n}S_n = \frac{1}{n}\sum_{i=1}^n X_i$. Dann konvergiert \overline{X}_n für $n \to \infty$ stochastisch gegen $\mu = \mathrm{E}[X_i]$, respektive:

$$P[|\overline{X}_n - \mu| > \epsilon] \xrightarrow{n \to \infty} 0 \text{ für jedes } \epsilon > 0$$

Bemerkung: Es reicht wenn die X_i nur paarweise unkorreliert sind (d.h. $Cov(X_i, X_k) = 0$ für $i \neq k$)

Starke Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von *unabhängigen* Zufallsvariablen die alle die gleiche Verteilung haben mit Erwartungswert $\mathrm{E}[X_i] = \mu$ endlich. Für $\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$ gilt dann

$$\overline{X_n} \stackrel{n \to \infty}{\longrightarrow} \mu$$
 P-fastsicher.

respektive

$$P\left[\left\{\omega\in\Omega|\overline{X_n}(\omega)\stackrel{n\to\infty}{\longrightarrow}\mu\right\}\right]=1$$

Unterschied zwischen starkem und schwachem Gesetz der grossen Zahlen: Beim ersten Gesetz ist die Wahrscheinlichkeit, dass $|\overline{X}_n - \mu| > \epsilon$ nie 0 sondern nur asymptotisch mit $n \to \infty$ 0. Somit gibt es eine sehr kleine Wahrscheinlichkeit, dass $|\overline{X}_n - \mu| > \epsilon$. Beim starken Gesetz ist jedoch die Wahrscheinlichkeit, dass dies passiert 0. In anderen Worten wenn wir unendlich viele \overline{X}_n anschauen werden nur endlich viele nicht nach μ konvergieren.

Zusammengefasst: Beim schwachen ist die Chance von Nichtkonvergenz sehr klein, beim zweiten 0.

Der zentrale Grenzwertsatz

Zentraler Grenzwertsatz Sei $X_1, X_2, ...$ eine Folge von *i.i.d* Zufallsvariablen (independent and identically distributed random variables) mit $E[X_i] = \mu$ und $Var[X_i] = \sigma^2$. Für die Summe $S_n = \sum_{i=1}^n X_i$, respektive $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$ gilt dann:

$$\lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \lim_{n \to \infty} P\left[\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le x\right] = \Phi(x)$$

Wobei Φ die Verteilungsfunktion von $\mathcal{N}(0,1)$ ist.

In Praxis definiert man $S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - \mathrm{E}[S_n]}{\sqrt{\mathrm{Var}[S_n]}} \,\mathrm{da}\,\,\mathrm{E}[S_n] = n\mu$ sowie $\mathrm{Var}[S_n] = n\sigma^2$. Als auch definieren wir $\overline{X_n} = \frac{1}{n}S_n$. Nun gilt

$$P[S_n^* \le x] \approx \Phi(x)$$
 für n gross
 $S_n^* \stackrel{\text{approx}}{\sim} \mathcal{N}(0,1)$
 $S_n \stackrel{\text{approx}}{\sim} \mathcal{N}(n\mu, n\sigma^2)$
 $\overline{X_n} \stackrel{\text{approx}}{\sim} \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$

Kontinuitätskorrektur

Angenommen $S_n \stackrel{\text{approx.}}{\sim} \mathcal{N}(np, np(1-p))$ sowie

$$P[a < S_n \le b] = P\left[\frac{a - np}{\sqrt{np(1-p)}} < S_n^* \le \frac{b - np}{\sqrt{np(1-p)}}\right]$$

$$\approx \Phi\left(\frac{b + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

wobei $S_n^* \sim \mathcal{N}(0,1)$, so haben wir die Untere Schranke um $\frac{1}{2}$ nach oben verschoben, da a nicht drin ist, und b auch, da b drin ist. Intuitiv wollen wir damit die Stäbe aus dem Histogramm der Binomialverteilung zentriert über die Werte von a bis b setzten.

Grosse Abweichungen und Chernoff-Schranken

Momenterzeugende Funktion Wir definieren die momenterzeugende Funktion einer Zufallsvariable X als

$$M_X(t) = \mathrm{E}\left[e^{tX}\right]$$

welche auf $[0, \infty)$ wohldefiniert ist aber unendlich gross werden kann.

Aufgrund der Definition gilt:

- Diskret: $M_X(t) = \sum_{i=1}^{\infty} e^{tx_i} p_i$
- Stetig: $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

Beispiel Sei $X \sim Exp(\lambda)$. Dann gilt $M_X(t) = E[e^{tX}] = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \lambda \int_0^\infty e^{-(\lambda - t)x} dx = -\frac{\lambda}{\lambda - t} e^{-(\lambda - t)x} \Big|_0^\infty$

Abschätzung mit momenterzeugender Funktion Seien X_1, \ldots, X_n i.i.d. Zufallsvariablen für welche die momenterzeugende Funktion $M_X(t)$ für alle $t \in \mathbb{R}$ endlich ist. Für jedes b gilt dann:

$$P[S_n > b] \le \exp\left(\inf_{t \in \mathbb{R}} (n \log M_X(t) - tb)\right)$$

Chernoff Schranke Seien X_1, \ldots, X_n unabhängig mit $X_i \sim Be(p_i)$ und $S_n = \sum_{i=1}^n X_i$. Sei ferner $\mu_n = E[S_n] = \sum_{i=1}^n p_i$ und $\delta > 0$. Dann gilt:

$$P[S_n \ge (1+\delta)\mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

Alternativ gibt es auch folgende Abschätzungen: (nicht im Skript!)

$$P[X \ge (1+\delta)\mu] \le e^{-\frac{\delta^2}{2+\delta}\mu} \text{ für alle } \delta > 0$$

$$P[X \le (1-\delta)\mu] \le e^{-\mu\delta^2/2} \text{ für } 0 < \delta < 1$$

Teil II

Statistik

7. Schätzer

Grundbegriffe

- $\vartheta = (\vartheta_1, \dots, \vartheta_n)$ ist ein Vektor an Parameter die wir gerne Schätzen möchten. Sie müssen Teil von der Dichtefunktion sein.
- $T=(T_1,\ldots,T_n)$ sind Schätzer, das sind Zufallsvariablen die ϑ bestmöglichst schätzen. Dabei gilt $T_i=t_i(X_1,\ldots,X_n)$ für ein geeignetes $t_i:\mathbb{R}^n\to\mathbb{R}$
- Wir nennen x_1, \ldots, x_n Daten/Realisationen von Zufallsvariablen mit $x_i = X_i(\omega)$.
- $T_i(\omega) = t_i(X_1(\omega), \dots, X_n(\omega)) = t_i(x_1, \dots, x_n)$ heisst Schätzwert.

Gütebegriffe

Erwartungstreue & Bias

$$E_{\vartheta}[T] = \vartheta \iff \text{Erwartungstreu}$$

$$bias = E_{\vartheta}[T] - \vartheta$$

Konsistenz Wir nennen eine Folge von Schätzern $T^{(n)}$ konsistent für ϑ falls

$$\lim_{n \to \infty} P_{\vartheta}[|T^{(n)} - \vartheta| > \epsilon] = 0 \quad \forall \epsilon > 0$$

→ versuche es mit Chebychev

Mean Squared Error (MSE)

$$MSE_{\vartheta}[T] = E_{\vartheta}[(T - \vartheta)^{2}] = Var_{\vartheta}[T] + (E_{\vartheta}[T] - \vartheta)^{2}$$

= $Var_{\vartheta}[T] + (bias^{2})$

Maximum-Likelihood-Methode

Maxmium-Likelihood-Schätzer Seien $X_1, ..., X_n$ Zufallsvariablen von n Stichproben und $x_1, ..., x_n$ die Realisationen dieser Zufallsvariablen.

Wir definieren die Likelihood-Funktion als

$$L(x_1, \dots x_n; \vartheta) = \begin{cases} p(x_1, \dots, x_n; \vartheta) & \text{diskreter Fall} \\ f(x_1, \dots, x_n; \vartheta) & \text{stetiger Fall} \end{cases}$$

Wenn die X_1, \ldots, X_n i.i.d. sind, so gilt $p(x_1, \ldots, x_n; \vartheta) = \prod_{i=1}^n p_X(x_i; \vartheta)$ respektive $f(x_1, \ldots, x_n; \vartheta) = \prod_{i=1}^n f_X(x_i; \vartheta)$ Wenn die X_1, \ldots, X_n i.i.d. sind, dann verwenden wir oft die log-likelihood-Funktion $\log(L)$ welche das \prod in ein \sum verwandelt.

Nun maximiere die Funktion (meistens reicht die Nullstelle): Die gibt dann z.B. eine Funktion wie $\vartheta = \frac{1}{n} \sum_{i=1}^{n} x_i$, wir ersetzten nun x_i durch X_i und ϑ durch T zu $T = \frac{1}{n} \sum_{i=1}^{n} X_i$

Beispiel 1:

Seien $X_1, ..., X_n$ i.i.d und das Modell $P_\theta \sim Poisson(\theta)$. Wir bauen log-Likelihood Funktion:

$$\log(L(x_1, \dots, x_n)) = \log\left(\prod_{i=1}^n e^{-\theta} \frac{\theta^{x_i}}{x_i!}\right)$$
$$= -\theta n + \log(\theta) \sum_{i=1}^n x_i - \sum_{i=1}^n \log(x_i!)$$

nun leiten wir ab:

$$\frac{\partial}{\partial \theta} \log(L(x_1, \dots, x_n)) = -n + \frac{\sum_{i=1}^n x_i}{\theta} \stackrel{!}{=} 0$$

$$\Longrightarrow \theta = \frac{\sum_{i=1}^n x_i}{n}$$

Beispiel 2 (nicht ableitbar):

Sei $f_X(x) = \begin{cases} e^{\alpha - x} & x \ge \alpha \\ 0 & \text{sonst} \end{cases}$ Wir möchten den MLS berechnen:

$$L(\vec{x}, \theta) = \prod_{i=1}^{n} f_{\alpha}(x_{i}) = \prod_{i=1}^{n} e^{\alpha - x_{i}} 1_{x_{i} \ge \alpha}$$

$$= \exp\left(n\alpha - \sum_{i=1}^{n} x_{i}\right) \cdot \prod_{i=1}^{n} 1_{x_{i} \ge \alpha}$$

$$= \exp\left(n\alpha - \sum_{i=1}^{n} x_{i}\right) \cdot 1_{\min x_{i} \ge \alpha}$$

$$= \begin{cases} \exp(n\alpha - \sum_{i=1}^{n} x_{i}) & \alpha \le \min x_{i} \\ 0 & \text{sonst} \end{cases}$$

Somit ist der MLS $\hat{\alpha} = \min x_i$, da dann α den obigen Ausdruck maximiert.

Momentenschätzer

Momentenschätzer

Die Idee ist, dass wir ein Gleichungssystem auflösen bei welchen:

- Das *j*-te Moment $m_j(\vartheta) = E_{\vartheta}(X_1^j)$
- Das *j*-te Stichprobenmoment $m_j(x) = \frac{1}{n} \sum_{i=1}^n x_i^j$

Dann setzen wir die Momente gleich und lösen nach ϑ auf.

Es gilt bekanntlicherweise dass $E[X] = \mu$ sowie $E[X^2] = \mu^2 + \sigma^2$. Wir können somit das folgende System auflösen:

$$\frac{x_1 + \dots + x_n}{n} = \mu$$

$$\frac{x_1^2 + \dots + x_n^2}{n} = \mu^2 + \sigma^2$$

Zentrale Lemmata Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$ dann gilt:

- $\overline{X_n}$ ist Normalverteilt $\sim \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$ und $\frac{\overline{X_n} \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$
- $\frac{n-1}{\sigma^2}S^2 = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i \overline{X_n})$ ist χ^2 Verteilt mit n-1 Freiheitsgraden.
- $\overline{X_n}$ und S^2 sind unabhängig.
- Der Quotient

$$\frac{\overline{X_n} - \mu}{S/\sqrt{n}} = \frac{\overline{X_n} - \mu}{S/\sigma} = \frac{\overline{X_n} - \mu}{\sqrt{\frac{1}{n-1}} \frac{n-1}{\sigma^2} S^2}$$

ist t-verteilt mit n-1 Freiheitsgraden.

Dabei galt $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ sowie $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$ die empirische Stichprobenvarianz.

8. Tests

Für einen Test definieren wir:

- Hypothese $H_0: \vartheta \in \Theta_0$
- Alternative $H_A: \vartheta \in \Theta_A$

Wir bauen eine Teststatistik T. Wir verwerfen die Hypothese wenn $T(\omega) \in K$ liegt, wobei K ein Intervall, der Verwerfungsbereich ist.

- Signifikanzniveau $\alpha \in (0,1)$ wird gewählt mit $\sup_{\vartheta \in \Theta_0} P_{\vartheta} [T \in K] \le \alpha$. Es gilt $\alpha = P[\text{Typ 1 Fehler}|H_0 \text{ ist wahr}]$
- Die Macht des Testes ist $\beta: \Theta_A \to [0,1]$ mit $\beta(\vartheta) = P_{\vartheta}[T \in K]$ mit $P[\text{Typ 2 Fehler}] = \beta$

mit

- **Typ 1 Fehler:** verwerfe H_0 obwohl sie stimmte
- Typ 2 Fehler: bestätige H_0 obwohl sie eigentlich falsch ist

Dabei gilt:

Zuerst wählt man das Signifikanzniveau dann maximiert man die Macht des Testes.

Macht Berechnen: Beispiel

Angenommen wir haben einen Test $T=\frac{X-\mu_0}{\sigma/\sqrt{9}}$ sowie ein Verwerfungsbereich $K=[1.28,\infty)$ (einseitiger Test) mit $H_0:\mu=84$. Nun wollen wir die Macht des Testes zugunsten der konkreten Alternativhypothese $H_A:\mu=85$ testen.

Nun rechnen wir

$$P_{\mu=85}[T \in K] = P_{\mu=85}[T \ge 1.28]$$

$$= P_{\mu=85} \left[\frac{\overline{X} - 85}{\sigma/\sqrt{9}} - \frac{\mu_0 - 85}{\sigma/\sqrt{9}} \ge 1.28 \right]$$

$$= P_{\mu=85} \left[\frac{\overline{X} - 85}{\sigma/\sqrt{9}} \ge 0.28 \right]$$

$$= 1 - \Phi(0.28) \approx 38.97\%;$$

Kommentar: Mit $\frac{\overline{X}-85}{\sigma/\sqrt{9}} - \frac{\mu_0-85}{\sigma/\sqrt{9}}$ verschieben wir die Verteilung wie gewollt, so dass sie nun über μ_2 zentriert ist. Der Fehler 2ter Art ist (1 - Macht) oder $P_{\theta}[T \notin K]$

Neyman-Pearson-Lemma Wenn $\Theta_0 = \{\vartheta_0\}$, $\Theta_A = \{\vartheta_A\}$, K = [0,c) sowie $\alpha^* = P_{\vartheta_0}[T \in K] = P_{\vartheta_0}[T < c]$. Jeder andere Test als

$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_A) = \frac{L(x_1, \dots, x_n; \vartheta_0)}{L(x_1, \dots, x_n; \vartheta_A)}$$

der Likelihood Koeffizient, mit Signifikanzniveau $\alpha \leq \alpha'$ hat kleinere Macht.

Statistische Testverfahren

 $z extbf{-} extbf{Test}$ Ein Test für den Erwartungswert bei bekannter Varianz. Seien $X_1,\ldots,X_n\sim\mathcal{N}(\mu,\sigma^2)$ unter P_{ϑ} mit bekanntem σ^2 . Es ist $H_0:\vartheta=\vartheta_0$ Möglich Variationen sind:

- $H_A: \vartheta > \vartheta_0: K = (c_>, \infty), c_> = z_{(1-\alpha)}$
- $H_A: \vartheta < \vartheta_0: K = (-\infty, -c_<), c_< = z_\alpha.$
- $H_A: \vartheta \neq \vartheta_0: K = (-\infty, -c_{\neq}) \cup (c_{\neq}, \infty), c_{\neq} = z_{1-\frac{\alpha}{2}}.$

Mit
$$T = \frac{\overline{X_n} - \vartheta_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$
 sowie $z_x = \Phi^{-1}(x)$.

Beachte dass $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$

t-Test Ein Test für den Erwartungswert bei unbekannter Varianz. Seien $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ unter $P_{\vec{\vartheta}}$ mit $\vec{\vartheta} = (\mu, \sigma^2)$. Wir haben $\Theta_0 = \{\sigma\} \times (0, \infty)$. Die Teststatistik ist gegeben durch $T = \frac{\overline{X_n} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$ mit $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$ für σ^2

- $H_A: \vartheta > \vartheta_0: K = (c_>, \infty), c_> = t_{n-1, 1-\alpha}$
- $H_A: \vartheta < \vartheta_0: K = (-\infty, c_<), c_< = t_{n-1,\alpha} = -t_{n-1,1-\alpha}.$
- $H_A: \vartheta > \vartheta_0: K = (-\infty, -c_{\neq}) \cup (c_{\neq}, \infty), c_{\neq} = t_{n-1, 1-\frac{\alpha}{2}}.$ wobei $t_{m,\gamma}$ das γ -Quantil der t_m Verteilung ist.

Gepaarte Zweistichproben-Test bei Normalverteilung Wenn X_1, \ldots, X_n i.i.d $\sim \mathcal{N}(\mu_X, \sigma^2)$ sowie Y_1, \ldots, Y_n i.i.d $\sim \mathcal{N}(\mu_Y, \sigma^2)$ mit gleicher Anzahl Proben und gleicher Varianz, so definiert man $Z_i = X_i - Y_i$ die unter $P\theta$ i.i.d zu $\sim \mathcal{N}(\mu_X - \mu_Y, 2\sigma^2)$ sind. Dann verwende entweder z-Test oder t-Test.

Ungepaarter Zweistichproben-Test bei Normalverteilung Seien unter $P\vartheta X_1, \ldots, X_n$ i.i.d. $\sim \mathcal{N}(\mu_X, \sigma^2)$ sowie Y_1, \ldots, Y_m i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma^2)$ wobei $m \neq n$ sein kann.

- Ungepaarter Zweistichproben-z-Test wenn σ^2 bekannt ist: Es ist $T = \frac{(\overline{X_n} \overline{Y_m}) (\mu_X \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$
- Ungepaarter Zweistichproben-t-Test wenn σ^2 unbekannt ist: Wir haben die beiden empirischen Varianzen $S_X^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X_n})^2$ und $S_Y^2 = \frac{1}{n-1}\sum_{i=1}^n (Y_i \overline{Y_n})^2$. Es gilt $S^2 = \frac{1}{m+n-2}\left((n-1)S_X^2 + (m-1)S_Y^2\right)$ mit der Teststatistik $T = \frac{(\overline{X_n} \overline{Y_m}) (\mu_X \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$

9. Konfidenzbereiche

Konfidenzbereich Ein Konfidenzbereich ist eine Menge $C(X_1, ..., X_n) \subseteq \Omega$ zum Niveau $1 - \alpha$ falls gilt

$$P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] \ge 1-\alpha$$
 für alle $\vartheta \in \Omega$

Bekannte Konfidenzbereiche

- μ unbekannt, σ^2 bekannt:
 - μ zum Niveau 1 α :

$$\left[\overline{X_n} - z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}; \overline{X_n} + z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}\right]$$

- μ , σ^2 unbekannt:
- μ zum Niveau 1 α :

$$\left[\overline{X_n} - t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X_n} + t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$$

 $-\sigma^2$ zum Niveau 1 $-\alpha$:

$$\left[\frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}, \frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2}\right]$$

Konstruktion von Konfidenzintervallen

Angenommen wir haben 8 Gewichte gegeben die wir als Realisationen von X_1, \ldots, X_8 i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$. Als Schätzer verwenden wir $\mu = \overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ und als Stichprobenvarianz $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$.

Wir machen den Ansatz $C(X_1, ..., X_n) = [\overline{X_n} - \cdots, \overline{X_n} + \cdots]$ und wollen erreichen dass $1 - \alpha \le P_{\vartheta}[\vartheta \in C(X_1, ..., X_n)] = P_{\vartheta}[\mu \in [\overline{X_n} - \cdots, \overline{X_n} + \cdots]] = P_{\vartheta}[|\overline{X_n} - \mu| \le \cdots]$

Da $\frac{\overline{X_n} - \mu}{S/\sqrt{n}} \sim t_{n-1}$ brauchen wir $\frac{\dots}{S/\sqrt{n}} = t_{n-1,1-\frac{\alpha}{2}}$.

Dies gibt uns dann das Konfidentintervall für μ zum Niveau $1-\alpha$:

$$C(X_1,...,X_n) = \left[\overline{X_n} - t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X_n} + t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$$

Um ein Konfidenzintervall für σ^2 zu konstruieren verwenden wir $\frac{1}{\sigma^2}(n-1)S^2 = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X_n})^2 \sim \chi_{n-1}^2$

Wir rechnen wieder $1 - \alpha = P_{\vartheta} \left[\chi_{n-1,\frac{\alpha}{2}}^2 \le \frac{1}{\sigma^2} (n-1) S^2 \le \chi_{n-1,1-\frac{\alpha}{2}}^2 \right] = 0$

$$P_{\vartheta} \left[\frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2} \right]$$

Dies impliziert

$$C(X_1,\ldots,X_n) = \left[\frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}, \frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2}\right]$$

10. Kombinatorik

Wir definieren die

• Auf wie viele Arten kann man *n* Objekte (z.B. nebeneinander) anordnen?

Dies ist die Anzahl Permutationen von n Elementen und ist n!.

• Auf wie viele Arten kann man k aus n Objekten auswählen (mit $k \leq n$ ohne Zurücklegen)?

Dies ist die Anzahl Kombinationen ist $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

• Wie viele Sequenzen der Länge m kann ma mit den n Symbolen bilden?

Dies ist die Anzahl der Variationen (mit Wiederholung) und ist n^m

Teil III

Analysis

11. Ableitung

Ableitung Sei $D \subset \mathbb{R}$, $f:D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D. f ist in x_0 differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Alternativ nutzt man auch $x = x_0 + h$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Konvexität

Konvex $f: I \to \mathbb{R}$ ist konvex (auf I) falls für alle $x \leq y$ $x, y \in I \text{ und } \lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Zudem gilt für $x_0 < x < x_1$ in I:

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

Man beweist dies indem man $x = (1 - \lambda)x_0 + \lambda x_1$ wählt und somit $\lambda = \frac{x - x_0}{x_1 - x_0}$

Wichtige Taylorapproximationen um
$$x = 0$$

• $\frac{1}{1-x}$ Für alle $x \in (1,0)$ gilt:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$$

$$= \sum_{n=0}^{\infty} x^n$$

• e^x Für alle $x \in \mathbb{R}$ gilt:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}$$

$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

• $|\cos(x)|$ Für alle $x \in R$ gilt:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

• $|\sin(x)|$ Für alle $x \in R$ gilt:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{(2n-1)!}$$

•
$$\ln(1+x)$$
 Für alle $x \in (-1,1]$ gilt:

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

$$= \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{x^n}{n}$$

•
$$[arctan(x)]$$
 Für alle $x \in [-1,1]$ gilt:
 $arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$
 $= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$

• $|(1+x)^{\alpha}|$ Für alle $x \in \mathbb{R}$ gilt:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots$$
$$= \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

• $|\sinh(x)|$ Für alle $x \in \mathbb{R}$ gilt:

$$\sinh(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^7)$$

$$= \sum_{k=0}^{\infty} \frac{x^{1+2k}}{(1+2k)!}$$

• $|\cosh(x)|$ Für alle $x \in \mathbb{R}$ gilt:

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \mathcal{O}(x^7)
= \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

Fundamentalsatz

Fundamentalsatz der Differentialrechnung Sei $f : [a, b] \rightarrow$ \mathbb{R} stetig. Dann gibt es eine Stammfunktion F von f, die bis auf eine additive Konstante eindeutig bestimmt ist und es gilt:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Beweis: Existenz folgt aus Stammfunktionssatz. Seien F_1, F_2 Stammfkt., dann gilt $F'_1 - F'_2 = 0$. Somit ist $F_1 - F_2 = C$ mit $F(x) = C + \int_a^x f(t)dt$. Es folgt auch $F(a) = \int_a^a f(t)dt + C$ und somit F(a) = C. Es folgt daraus $F(b) - F(a) = \int_a^b f(t) dt$

Ableitung des Integrals

Mit der Kettenregel folgt aus dem Fundamentalsatz:

$$\frac{d}{dx}\left(\int_{u(x)}^{v(x)} f(t)dt\right) = f(v)\frac{dv}{dx} - f(u)\frac{du}{dx}$$

Integrale Ausrechnen

Integrationskonstante C nicht vergessen!

Direkte Integrale

Diese sind vom Typ $\int f(g(x))g'(x)dx = F(g(x))$.

Partielle Integration

Partielle Integration

$$\int f' \cdot g \, dx = f \cdot g - \int f \cdot g' \, dx$$

Integrale rationaler Funktionen

Partielle Integration

$$\int \frac{p(x)}{q(x)} dx$$

Wenn nun $deg(p) \ge deg(q)$ dann machen wir eine Polynomdivision p:q, sonst mache eine Parzialbruchzerlegung

Substitutionsregel

Substitutionsregel Ist *f* stetig und *g* erfüllt:

$$y = g(x) \iff x = g^{-1}(y)$$

Dann gilt:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Als Merksatz gilt dy = g'(x)dx respektive $dx = \frac{1}{t}dt$

Integrale der Form $\int F(e^x, \sinh(x), \cosh(x)) dx$

Substituiere mit $e^x = t$, $(dx = \frac{1}{t}dt)$

Beispiel:

$$\int \frac{e^{2x}}{e^x + 1} dx = \int \frac{t^2}{t + 1} \frac{1}{t} dt = \int \frac{t + 1 - 1}{t + 1} dt$$

$$\int \frac{1}{\cosh(x)} dx = \int \frac{1}{\frac{1}{2}(e^x + e^{-x})} dx = \int \frac{2}{t + \frac{1}{t}} \frac{1}{t} dt = \frac{2}{t^2 + 1} dt$$

Integrale der Form $\int F(\log(x))dx$

Substituiere mit log(x) = t, $(dx = e^t dt)$

Beispiel:

$$\int (\log(x))^2 dx = \int t^2 e^t dt = t^2 e^t - \int 2t e^t dt$$
$$= x(\log(x))^2 - 2x \log(x) + 2x + C$$

Integrale der Form $\int F(\sqrt[\alpha]{Ax+B})dx$

Substituiere mit $t = \sqrt[\alpha]{Ax + B}$

Beispiel:

$$\int \frac{1}{\sqrt{x}\sqrt{1-x}} = \int \frac{1}{t\sqrt{1-t^2}} 2tdt = \int \frac{2}{\sqrt{1-t^2}}$$

Integrale die sin, cos, tan in geraden Potenzen enthalten

Substituiere mit tan(x) = t, $(dx = \frac{1}{1+t^2}dt)$. Es gilt zudem:

$$\sin^2(x) = \frac{t^2}{1+t^2} \qquad \qquad \cos^2(x) = \frac{1}{1+t^2}$$

Integrale die sin, cos, tan in ungeraden Potenzen enthalten

Substituiere mit $\tan(\frac{x}{2}) = t$, $(dx = \frac{2}{1+t^2}dt)$. Es gilt zudem:

$$\sin(x) = \frac{2t}{1+t^2} \qquad \cos(x) = \frac{1-t^2}{1+t^2}$$

Integrale mit $\sqrt{Ax^2 + Bx + C}$ im Nenner

Mithilfe quadratischer Ergänzung auf einen der folgenden Fälle zurückführen:

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \arcsin(x) + C$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \arcsin(x) + C$$

Integrale mit $\sqrt{Ax^2 + Bx + C}$ im Zähler

Mithilfe quadratischer Ergänzung auf einen der folgenden Fälle zurückführen, dann substituieren

$$\int \sqrt{1 - x^2} dx \quad \text{substitution: } x = \sin(t) \Leftarrow dx = \cos(t) dt$$

$$\int \sqrt{x^2 - 1} dx \quad \text{substitution: } x = \cosh(t) \Leftarrow dx = \sinh(t) dt$$

$$\int \sqrt{1 + x^2} dx \quad \text{substitution: } x = \sinh(t) \Leftarrow dx = \cosh(t) dt$$

Sonstiges

Binomialsatz
$$\forall x, y \in \mathbb{C}, n \ge 1 \text{ gilt:}$$
 $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

Binomialkoeffizienten $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

ABC / Mitternachtsformel

Gegeben: $ax^2 + bx + c = 0$ Lösung: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Logarithmus Regeln

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y)$$
$$\log_b(M^k) = k \cdot \log_b(M)$$

Summenformeln

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} (2k-1) = n^{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Gerade & Ungerade Funktion Eine Funktion heisst:

- GERADE wenn f(-x) = f(x)
- Ungerade wenn f(-x) = -f(x)

Dabei sind f(x) = 1, f(x) = |x|, $f(x) = x^2$, $f(x) = \cos(x)$ alles gerade Funktionen.

Im Gegenzug sind f(x) = sgn(x), f(x) = x, f(x) = tan(x), f(x) = sin(x) ungerade Funktionen.

Injektiv

$$\forall x_1, x_2 \in M : f(x_1) = f(x_2) \implies x_1 = x_2$$

or $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

Surjektiv

$$\forall y \in N \ \exists x \in M : y = f(x)$$

Umkehrsatz - Beispiel Zeige dass $x + e^x$ bijektiv von \mathbb{R} auf \mathbb{R} abbildet. Es gilt $f'(x) = 1 + e^x > 0$, somit ist f streng monoton wachsend in \mathbb{R} und Umkehrbar. Weil $\lim_{x \to -\infty} f(x) = -\infty$ und $\lim_{x \to \infty} f(x) = \infty$ ist f bijektiv von \mathbb{R} nach \mathbb{R}

Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Wichtige Integrale

$$\int \sin^n ax \, dx = \frac{1}{2} - \frac{1}{4a} \sin^n 2ax + C - \frac{1}{2} - \frac{1}{2a} \sin^n 2ax + C - \frac{1}{2a} - \frac{1}{2a} \cos^n 2ax + C - \frac{1}{2a} \cos^n 2ax + C - \frac{1}{2a} \cos^n 2ax + C - \frac{1}{2a} - \frac$$

•
$$\int \cos^n ax \, dx = \frac{\cos^{n-1} ax \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax \, dx$$
 (for $n > 0$) $\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax)$

•
$$\int (\sin^n ax)(\cos ax) dx = \frac{1}{a(n+1)} \sin^{n+1} ax + C$$
 (for $n \neq -1$) • $\int x \sin(ax) dx = \frac{\sin(ax)}{a^2} - \frac{x \cos(ax)}{a}$

•
$$\int (\sin ax)(\cos^n ax) dx = -\frac{1}{a(n+1)}\cos^{n+1} ax + C$$
 (for $n \neq -1$) • $\int \cos^2(ax) dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$ • $\int \frac{1}{\cos^2(x)} dx = \tan x$

$$\int (\sin^n ax)(\cos^m ax) \, dx = -\frac{(\sin^{n-1} ax)(\cos^{m+1} ax)}{a(n+m)}$$

$$+ \frac{n-1}{n+m} \int (\sin^{n-2} ax)(\cos^m ax) \, dx$$

$$+ \frac{n-1}{n+m} \int (\sin^{n-2} ax)(\cos^m ax) \, dx$$
(for $m \neq n > \sin(ax) \cos(ax) \, dx = -\frac{\cos^2(ax)}{2a}$

•
$$\int \sin^2(x) \cos^2(x) dx = \frac{1}{4} \int \sin^2(2x) dx = \frac{1}{4} \int \frac{1 - \cos(4x)}{2} dx = \frac{x}{8} - \frac{1}{8} \frac{\sin(4x)}{4} + C$$

Typische Integrale

- $\int \frac{1}{x} dx = \ln|x|$
- $\bullet \int \frac{1}{x^2} dx = -\frac{1}{x}$
- $\bullet \int \frac{1}{x+a} dx = \ln|x+a|$
- $\bullet \int \ln(x) \, dx = x(\ln(x) 1)$
- $\int \ln(ax+b) dx = \frac{(ax+b)\ln(ax+b)-ax}{a}$
- $\bullet \int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$
- $\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$
- $\int \sqrt{1-x^2} dx = \frac{\arcsin(x) + x\sqrt{1-x^2}}{2} + C$
- $\bullet \int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b|$
- $\bullet \int \frac{1}{1+x^2} dx = \frac{1}{2} \ln|1+x^2|$
- $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a}, (n \neq -1)$
- $\int x(ax+b)^n dx = \frac{(ax+b)^{n+2}}{(n+2)a^2} \frac{b(ax+b)^{n+1}}{(n+1)a^2}$

•
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a})$$

$$\bullet \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

$$\int \sqrt{x} \, dx = \frac{2}{3} \sqrt{x^3}$$

Trionometrische Funktionen

$$\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax)$$

- $\int \cos(ax) dx = \frac{1}{a}\sin(ax)$
- $\int \sin(ax)^2 dx = \frac{x}{2} \frac{\sin(2ax)}{4a}$
- $\bullet \int \frac{1}{\sin^2 x} dx = -\cot x$

- $\int \frac{1}{\cos^2(x)} dx = \tan x$
- $\int \cos(ax) dx = \frac{\cos(ax)}{a^2} + \frac{x \sin(ax)}{a}$

• $\int \tan(ax) dx = -\frac{1}{a} \ln|\cos(ax)|$

Exponentialfunktion

- $\int e^{ax} dx = \frac{1}{a}e^{ax}$
- $\int xe^{ax} dx = e^{ax} \cdot \left(\frac{ax-1}{a^2}\right)$
- $\int x \ln(x) dx = \frac{1}{2}x^2(\ln(x) \frac{1}{2})$
- $\bullet \int_{-\infty}^{\infty} e^{-\frac{1}{a}x^2} dx = \sqrt{a\pi}$

Vektoranalysis

$$\Delta f = \operatorname{div} (\operatorname{grad} f),$$

$$\Delta f = \nabla \cdot (\nabla f) = (\nabla \cdot \nabla) f = \nabla^2 f.$$

$$\nabla f = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \cdot f$$

Integral der Normalverteilung

$$\int_{-\infty}^{\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$$

Funktion	Ableitung	Bemerkung / Regel
\boldsymbol{x}	1	
x^2	2x	
x^n	$n \cdot x^{n-1}$	$n \in \mathbb{R}$
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2}$	
$\sqrt{x} = x^{\frac{1}{2}}$ $\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{1}{2\sqrt{x}}$	
$\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{\frac{1}{2\sqrt{x}}}{\frac{x^{\frac{1}{n}-1}}{n}}$	$\int x^{1/n} dx = \frac{nx^{1/n+1}}{n+1} + C$
e^{χ}	e^{x}	
a^{x}	$\ln(a) \cdot a^{x}$	
$x^x = e^{x \log(x)}$	$x^{x} \cdot (\log(x) + 1)$	Kettenregel $e^{x \log(x)}$
ln(x)	$\frac{1}{x}$	
$x \ln(x) - x$	ln(x)	
sin(x)	$\cos(x)$	
$\cos(x)$	$-\sin(x)$	
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	
$\cot(x) = \frac{\cos(x)}{\sin(x)}$	$-\frac{1}{\sin^2(x)}$	
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$\arccos:[-1,1]\to[0,\pi]$
arctan(x)	$\frac{1}{1+x^2}$	$\arctan: (-\infty, \infty) \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$	$\operatorname{arccot}: (-\infty, \infty) \to (0, \pi)$
cosh(x)	sinh(x)	
sinh(x)	cosh(x)	
tanh(x)	$\frac{1}{\cosh^2(x)}$	
arsinh(x)	$\frac{1}{\sqrt{1+x^2}}$	$\forall x \in R$
$\operatorname{arcosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$	$\forall x \in (1, \infty)$
$\operatorname{artanh}(x)$	$\frac{1}{1-x^2}$	$\forall x \in (-1,1)$
$g(x) \cdot h(x)$	$g(x) \cdot h'(x) + g'(x) \cdot h(x)$	Produktregel
$(g(x))^n$	$n \cdot (g(x))^{n-1}$ $g'(x)$	Potenzregel
$\frac{g(x)}{h(x)}$	$\frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{(h(x))^2}$	Quotientenregel
1 / / \\		

h(g(x))

 $h'(g(x)) \cdot g'(x)$

Kettenregel