Capitolo 2: spazi vettoriali #GAL

Definizione: uno spazio vettoriale è un insieme V dotato di due operazioni:

- 1. Somma: dati $\underline{v},\underline{w} \in V \Rightarrow \underline{v} + \underline{w} \in V$ proprietà:
 - 1. Associativa: $(\underline{v} + \underline{w}) + \underline{u} = \underline{v} + (\underline{w} + \underline{u})$
 - 2. Commutativa: v + w = w + v
 - 3. Elemento neutro: $\exists \underline{0} \in V : \underline{v} + \underline{0} = \underline{v} \quad \forall \underline{v} \in V$
 - 4. Elemento opposto: $\forall \underline{v} \in V \quad \exists (-\underline{v}) \in V : \underline{v} + (-\underline{v}) = \underline{0}$
- 2. Prodotto per uno scalare dati $v \in V$, $c \in R \Rightarrow cv \in V$
 - 1. Associativa: c(d*v) = (cd)*v
 - 2. Elemento neutro: $1*v = v \forall v \in V$
 - 3. Distributiva scalare: $c(\underline{v} + \underline{w}) = c^*\underline{v} + c^*\underline{w}$
 - 4. Distributiva vettore: $(c + d)\underline{v} = c^*\underline{v} + d^*\underline{v}$

L'algebra lineare è lo studio degli spazi vettoriali gli elementi $\underline{v} \in V$ si dicono vettori

Osservazioni:

- Per ogni v,w ∈V, c ∈R => v + w, cv sono definiti e sono elementi di V
- Il concetto di spazio vettoriale non prevede alcuna operazione di prodotto tra vettori
- La conseguenza generale degli assiomi di spazio vettoriale: l'algebra dei vettori colonna/riga vale in qualsiasi spazio vettoriale

Esempi:

- Se $\underline{v} + \underline{w} = \underline{v} + \underline{u} => \underline{w} = \underline{u}$ (aggiungete a entrambi - \underline{v})
- 0w = 0 Dimostrazione: 0 + 0w = 0w -> (0 + 0)w = 0

Esempi di spazi vettoriali:

- 1. Rⁿ = {vettori riga/colonna}
- 2. Mat(m,n)
 - Somma di matrici è una matrice
 - Prodotto tra uno scalare e una matrice è una matrice
 - 8 proprietà delle operazioni
- 3. Spazio dei polinomi $R[t] = \{insieme dei polinomi nella variabile t\} = \{p(t) = insieme dei polinomi nella variabile t\}$

$$a_0 + a_1 t + a_2 t^2 + ... + a_p t^p : a_i \in \mathbb{R}, p \in \mathbb{N}$$

- Somma di polinomi è un polinomio
- Prodotto tra uno scalare e un polinomio è un polinomio
- 8 proprietà delle operazioni
- 4. Spazio dei polinomi di grado limitato: fissiamo d \in N R[t] $_{< d}$ = {polinomi in t

con grado
$$\leq$$
 d} = {p(t) = a₀ + a₁t + ... + a_dt^d : a_i \in R, p \in N}

- Somma di polinomi di grado ≤ d ha ancora grado ≤ d
- Prodotto tra uno scalare e un polinomio di grado ≤ d non aumenta il

- grado
- 8 proprietà delle operazioni
- 5. Spazi di funzioni V = {funzioni f: R->R} è uno spazio vettoriale
 - Somma di funzioni è una funzione
 - Prodotto tra uno scalare e una funzione è una funzione
 - 8 proprietà delle operazioni
- 6. Sottospazio delle funzioni continue V = {funzioni continue F : R->R} è uno spazio vettoriale
 - Somma di funzioni continue è ancora una funzione continua
 - Prodotto tra uno scalare e una funzione continua è ancora una funzione continua
 - 8 proprietà delle operazioni
- 7. Spazio delle funzioni derivabili V = {funzioni derivativi f : R->R} è uno spazio vettoriale
 - Somma di funzioni derivabili è ancora una funzione derivabile
 - Prodotto tra uno scalare e una funzione derivabile è ancora una funzione derivabile
 - 8 proprietà delle operazioni
- 8. Spazio di successioni infinite $V = \{(x_r)_{r \in R} : x_r \in R\}$ è uno spazio vettoriale
 - Somma di successioni infinite è ancora una successione infinita
 - Prodotto tra uno scalare e una successione infinita è ancora una successione infinita
 - 8 proprietà delle operazioni