Exercice 1: (5 points)

Soit
$$f(x) = \frac{x+1}{2x+3}$$

1. Donner le plus grand ensemble de réels sur lequel f est définie et dérivable.

$$]-\infty; -\frac{3}{2}[\cup]-\frac{3}{2}; +\infty[(1pt)$$

2. Calculer la dérivée de la fonction f(x).

$$f'(x) = \frac{(x+1)'(2x+3) - (x+1)(2x+3)'}{(2x+3)^2} = \frac{(2x+3) - (x+1)(2)}{(2x+3)^2} = \frac{2x+3-2x-2}{(2x+3)^2} = \frac{1}{(2x+3)^2}$$
(2 pts)

3. Étudier le signe de f'(x).

Pour tout réel x différent de $-\frac{3}{2}$, f'(x) > 0. (1 pt)

4. Réaliser le tableau des variations de f(x).

f est croissante sur] $-\infty$; $-\frac{3}{2}$ [. f est aussi croissante sur] $-\frac{3}{2}$; $+\infty$ [. (1 pt)

Exercice 2: (3 points)

Soit C la courbe représentative de la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

Soit *T* la droite d'équation
$$T: y = \frac{1}{6}x + \frac{3}{2}$$
.

T est-elle tangente à la courbe *C*?

$$f'(x) = \frac{1}{2\sqrt{x}}, (1 \text{ pt}) f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6}, (1 \text{ pt}) f(9) = 3$$

$$T_{f,9}: y = \frac{1}{6}(x-9) + 3 = \frac{1}{6}x + \frac{3}{2}$$

 $T = T_{f,9}$ est bien tangente à C . (1 pt)

Exercice 3: (9 points)

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^3 - \frac{9}{2}x^2 + 6x + 5$$

1. Calculer f'(x).

$$f'(x) = 3x^2 - 9x + 6$$
 (2 pts)

2. Étudier le signe du trinôme $3x^2 - 9x + 6$

$$\Delta = 81 - 4(3)(6) = 81 - 72 = 9 = 3^2$$
, $x_1 = \frac{9 - 3}{6} = 1$, $x_2 = \frac{9 + 3}{6} = 2$. La suite dans le tableau de la question 3). (3 pts)

3. Dresser le tableau de variation de f.

x	-∞		1		2		+∞
f'(x)		+	0	_	0	+	
f(x)			/ \				
							(

4. Déterminer les extremums locaux de f.

$$f(1) = 1^3 - \frac{9}{2}1^2 + 6 + 5 = \frac{15}{2}$$

 $\frac{15}{2}$ est un maximum local. (1 pt)

$$f(2) = 2^3 - \frac{9}{2}2^2 + 6(2) + 5 = 7$$
, 7 est un minimum local pour f . (1pt)

- **5.** Donner le meilleur encadrement possible pour f(x) lorsque
 - **a.** x appartient à [2,3].
 - **b.** x appartient à [0,2]

$$f(3) = -25$$
 et pour $x \in [2,3]$, $7 \le f(x) \le \frac{19}{2}$.
 $f(-3) = -79$ et pour $x \in [0,2]$, $5 \le f(x) \le \frac{15}{2}$.

Exercice 4: (3 points)

Montrer en utilisant l'expression du taux d'accroissement que la dérivée de la fonction $f(x) = x^2$ au point d'abscisse a est f'(a) = 2a.

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{a^2 - 2ah + h^2 - a^2}{h} = \frac{2ah + h^2}{h} = 2a + h \text{ qui tend vers 2a quand h tend vers 0.}$$

Exercice 5: (Bonus)

Montrer par un calcul de dérivée que le sommet d'une parabole d'équation $\mathcal{P}: y = ax^2 + bx + c$ a pour abscisse $-\frac{b}{2a}$.

Exercice 6: (Bonus)

Calculer la dérivée de la fonction définie sur $]-\frac{1}{3}$, $+\infty[$ par $g(x)=\sqrt{3x+1}$.

Exercice 7: (Bonus)

Montrer que pour toute fonction h dérivable sur un intervalle I, la fonction $i(x) = [h(x)]^2$ est aussi définie et dérivable sur I et $i'(x) = 2h'(x) \times h(x)$.