Theory Portion

I. A) $z = w_0 + w_1 x_1 + \dots + w_n x_n$ or $\langle w, x \rangle$, $sigmoid(z) = \frac{1}{1 + e^{-z}}$, $y = \begin{cases} 1, & sigmoid(z) \\ 0, & 1 - sigmoid(z) \end{cases}$ B) $P(y = 1|x) = \frac{P(x|y = 1) * P(x)}{P(y = 1)}$, $P(y = 0|x) = \frac{P(x|y = 0) * P(x)}{P(y = 0)}$ C) $P(x; |d_i) = \frac{1}{1 + e^{-z}} \exp\left(-\frac{(x_j - \mu_{ji})^2}{2}\right)$

C)
$$P(x_j | d_i) = \frac{1}{\sigma_{ji}\sqrt{2\pi}} \exp\left(-\frac{(x_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

D)
$$P(y = 1|x) = \frac{P(x_j|d_i) * P(d_i)}{P(y=1)} \propto P(x_j|d_i) * P(d_i)$$

- E) huh?
- II. Cross-Verification Failure:

Since we know that the $P(y=1) = P(y=0) = \frac{1}{2}$ or the $loss_D(h) = \frac{1}{2}$ is used when choosing the label, and that the learning predictor:

$$h(x) = \begin{cases} 1, & \text{if number of 1s in training set labels is odd} \\ & 0, & \text{otherwise} \end{cases}$$

Let say that the number of 1s in training set labels is odd, then you leave-one-out, thus making the predictor constantly output 0, so since the output is all the same then the $loss_S(h)=1$. And vice versa this is true when training set labels is even. So $loss_S(h)-loss_D(h)=1/2$

III. Decision Tree:

Labels = $\{0, 1\}$, and data points of x_i $i \in (1, ..., d)$. Decision tree is a recursive algorithm that build the tree based on test or question (is $x_i = 0$) we recursively find best feature x and split on it, since there is d numbers of x we split on it d+1 because each split we would remove the used feature.