Filtres

Loïc Barbaresco, Rémi Barbaste, Robin Degironde, Émeric Tosi $7~{\rm mars}~2015$

Sommaire

1	Introduction	2
2	calcul de la pulsation	2
3	calcul de beta	2
4	calcul de gamma	2
5	calcul de R	2
6	calcul de Ak	3
7	calcul de Bk	3
8	calcul de Gk	3
9	calcul de L	4
10	calcul de C	4

1 Introduction

lolilol!

2 calcul de la pulsation

. . .

Pulsation $Wc = 2 * \pi *$ Fréquence de coupure

```
/* pulsation */
Wc = 2 * Math.PI * freqCoup;
```

3 calcul de beta

...

Béta
$$\beta = \log(\frac{\cosh(\frac{Ondulation}{17,37})}{\sinh(\frac{Ondulation}{17,37})})$$

```
1  /* beta */
2  beta = Math.log( ( cosh( ondulation / 17.37 ) ) / ( sinh( ondulation / 17.37 ) ) );
```

4 calcul de gamma

• • •

Gamma
$$\gamma = \sinh(\frac{\beta}{2*\text{Ordre}})$$

```
/* gamma */
gamma = sinh( beta / (2 * ordre ));
```

5 calcul de R

Si l'ordre est pair

Résistance équivalente Rn = $(\tanh \frac{\beta}{4})^2 * Impédance$

Si l'ordre est impair

Résistance équivalente Rn = Impédance

6 calcul de Ak

•••

$$Ak = (\tanh \frac{\beta}{4})^2 * Imp\'edance$$

7 calcul de Bk

...

$$Bk = 0$$

8 calcul de Gk

• • •

$$Gk = 0$$

```
/* calcul des Gk */
Gk[1] = 2 * Ak[1] / gamma;

for( k = 2; k <= ordre ; k++ )

Gk[k] = ( 4 * Ak[k-1] * Ak[k] ) / ( Bk[k-1] * Gk[k-1] );

}
```

9 calcul de L

...

L = 0

10 calcul de C

•••

C = 0

```
/* calcul des C */
for( k = 1; k <= ordre ; k++ )
{
      c[k] = Gk[k] / ( ( impedance * Wc ) );
}</pre>
```