

COMSATS University Islamabad Department of Computer Science Course Syllabus

Course Information:

Course Code: CSE291 Course Title: Introduction to Software Engineering

Credit Hours: **4**(**3**,**1**) Lecture Hours/Week: **3** Lab Hours/Week: **1** Pre-Requisites: **None**

Catalogue Description:

This course introduces the different software process models by illustrating its phases and principles of software engineering. Topics include: Overview of Software Engineering; Software Process Models; Requirement Engineering Concepts; Software Design; Design Modeling; Software Quality Engineering; Software Project Management; Software Maintenance and Software Evolution.

The main objective of this course is to construct a solid foundation for understanding and application of principles, techniques and technologies utilized in the development of good software systems by individual or teams. The objective of this course is to learn contemporary techniques to develop as well as manage the development of industrial strength software.

Text and Reference Books:

Textbooks:

- 1. Software Engineering: A Practitioner's Approach, Roger S. Pressman &Bruce R. Maxim, McGraw-Hill, 2020.
- 2. Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Global Edition, Pearson Education Limited, 2021.

Reference Books:

1. Software Engineering, Ian Sommerville, Pearson Education Limited, 2016. Software Engineering with UML, Bhuyan Unhelkar, CRC Press, 2018.

Week wise	Plan:		
Lecture	CDF	Topics Covered	Reading Material
#	Unit		
	#		
1.	1	Orientation and general discussion of course structure. Grading	Pressman: Ch1
		policy and Assignments	Sommerville: Ch1
		Introduction.	
		Overview of Software Engineering	
		Professional Software Development, and Software Engineering	
		Practice.	
		Software Engineering Ethics	
2.	1	Introduction to Software Development Life Cycle (SDLC)	Sommerville: Ch2
		Adhoc Development	
		Plan -driven and Agile Approach	
3.	1	Process Models:	Sommerville: Ch2
		Waterfall Model and V Model	
4.	1	Evolutionary Development: Exploratory, Prototyping &	Sommerville: Ch2
		Component-based Software Engineering.	

5.	1	Incremental and Spiral Process Model	Sommerville: Ch2
6.	1	Rapid Application Development	Ref. Material
		 Why we need to develop application earlier 	
		Structure of RAD	
		Essential Aspects of RAD	
		 Application 	
7.	1	Agile Development (Extreme Programming)	Sommerville: Ch3
		Agile Software Development:	
		• What is agility? Agility & the Cost of Change,	
		Agile Process, and Agility Principles. Extreme Agile Process, and Agility Principles.	
8.	2	programming (XP) Introduction to Requirements	Sommerville: Ch4
0.	2	Definition	Sommer vine. Ch4
		Types of requirements	
		 Functional & Non-Functional Requirements. 	
9.	2	Guidelines to specify requirements	Sommerville: Ch4
		 Stakeholders 	
		Requirement Engineering Process	
10.	2	Requirement Elicitation Techniques/ Approaches	Sommerville: Ch4
11.	2	Case studies (to differentiate among requirements and how to	Ref. Material
		write Functional and non-functional requirements of different	
		system)	
12.	3	System Modelling:	Sommerville: Ch5
14.	3	Context Models	Sommer vine. Cits
		Context Models	
13.	3	Data Driven Modelling	Sommerville: Ch5
14.	3	Event Driven Modelling	Sommerville: Ch5
15.	3	Interaction Models:	Sommerville: Ch5
16.	3	 Usecase modelling Practice Case studies 	Ref. Material
17.	3	Mid Term	Ker. Material
18.	3	Architectural Design	Pressman: Ch10
200		 Architectural Design Decisions 	Sommerville: Ch6
		 Architectural views 	
		 Application Architectures 	
19.	3	Architectural Patterns	Sommerville: Ch6
17.		o Repository	Sommer vine. Cho
		Client Server	
		o Layered	
20.	3	Behavioral Modelling	Ref. Material
		 Activity Diagrams 	
21.	3	Interaction Models:	Sommerville: Ch5
		Sequence Diagrams	D 0.75
	•	Structured Analysis Modeling, Data Model: Entity Relationship	Ref. Material
22.	3	· · · · · · · · · · · · · · · · · · ·	Ttor: Tyracoriar
		Diagram (ERD).	
22.	3	Diagram (ERD). Structural Models	Sommerville: Ch5
23.		Diagram (ERD). Structural Models Class Diagrams	Sommerville: Ch5
23.	3	Diagram (ERD). Structural Models Class Diagrams Case Studies of different software to practice UML Diagrams	Sommerville: Ch5 Ref. Material
23.		Diagram (ERD). Structural Models Class Diagrams Case Studies of different software to practice UML Diagrams Quality Management	Sommerville: Ch5 Ref. Material
23.	3	Diagram (ERD). Structural Models Class Diagrams Case Studies of different software to practice UML Diagrams	Sommerville: Ch5

26.	4	Software Testing	Sommerville: Ch8
		Black Box vs. White Box Testing	
		Verification vs. Validation	
		Unit Testing	
		 Component Testing 	
		 System Testing 	
27.	5	Software Project Management	Sommerville: Ch22
		Introduction and concept	
		 Risk Management 	
		Team Work	
28.	4	Software Measurement	Sommerville: Ch24
		 Software Size Estimation 	Pressman: Ch33
29.		Software Measurement	Sommerville: Ch24
		 Software Pricing 	
30.	6	Software Configuration Management	Sommerville: Ch25
		Change and version management	
31.		Final Term Exam	

Students	Outcomes (SOs)
S.#	Description
1	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and
	mathematics, science, and domain knowledge appropriate for the computing specialization to the
	abstraction and conceptualization of computing models from defined problems and requirements
	Acquired an in-depth knowledge of software development processes and the role of design in the
	software development life-cycle.
2	Identify, formulate, research literature, and solve complex computing problems reaching substantiated
	conclusions using fundamental principles of mathematics, computing sciences, and relevant domain
	disciplines
	understand about systems modelling, analysis and design across both architectural and behavioral
	specifications.
3	Design and evaluate solutions for complex computing problems, and design and evaluate systems,
	components, or processes that meet specified needs with appropriate consideration for public health and
	safety, cultural, societal, and environmental considerations
4	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to
	complex computing activities, with an understanding of the limitations
	Students should have learned the Fundamental principles of formal specifications. Students should have
	clear understanding about software Management and Testing approaches.

Course l	Course Learning Outcomes (CLO)									
Sr. #	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning	SOs						
			Level							
		CLO's for Theory								
CLO-1	1	Explain the concept of software engineering	Remembering	1						
		along with its processes and deliverable								
CLO-2	1	Explain the concept of software engineering processes and deliverable	Understanding	1						
CLO-3	2	Identify functional and non-functional requirements for a medium sized software system.	Analyzing	2						
CLO-4	3	Construct appropriate design models for the structure and behavior of a medium sized software system.	Applying	2-4						
CLO-5	4	Apply software testing and quality assurance techniques to medium sized software.	Applying	2,4						
CLO-6	5,6	Demonstrate software project management skills and maintenance process.	Applying	2,4						

				CLO's for Lab				
_			lop UML Diagrams and mentation related to as	nd other associated	d	Creating		2,4
CLO Ass	sessme	ent Mecha		C 1 J				
Assessme Tool	ent	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	CLO-6	CLO-7
Quizzes		Quiz1	Quiz1	Quiz2	Quiz3	Quiz4	Quiz4	
Assignme	ents		Assignment 1	Assignment 2	Assignment 3 & Lab Assignment	Assign ment 4	Lab Assign ment	Lab Assign ment
Midterm		Midterm	Midterm	Midterm	Midterm			
Exam		Exam	Exam	Exam	Exam			
		Final tern Exam	n	Final Term Exam	Final	Final Term Exam		
Project		-	-	-	-	-	-	Lab Project

Policy & Procedures

• **Attendance Policy:** Every student must attend 80% of the lectures as well as laboratory in this course. The students falling short of required percentage of attendance of lectures/laboratory work, is not allowed to appear in the terminal examination.

• Course Assessment:

	Quizzes	Assignments	Mid Term Exam	Terminal Exam	Total
Theory(T)	15	10	25	50	100
Lab(L)		25	25	50	100

• **Grading Policy:** The minimum passing marks for each course is 50% (In case of LAB; in addition to theory, student is also required to obtain 50% marks in the lab to pass the course). The correspondence between letter grades, credit points, and percentage marks at CUI is as follows:

Grade	A	A-	B+	В	B-	C+	C	C-	D+	D	F
Marks	>= 85	80 - 84	75 –	71 - 74	68 –	64 –	61 - 63	58 - 60	54 - 57	50-53	< 50
			79		70	67					
Cr.	3.67-	3.34-	3.01-	2.67-	2.34-	2.01-	1.67-	1.31-	1.01-	0.10-	0.00
Points	4:00	3.66	3.33	3.00	2.66	2.33	2.00	1.66	1.30	1.00	

- **Missing Exam:** No makeup exam will be given for final exam under any circumstance. When a student misses the mid-term exam for a legitimate reason (such as medical emergencies), his grade for this exam will be determined based on the Department policy. Further, the student must provide an official excuse within one week of the missed exam.
- **Academic Integrity:** All CUI policies regarding ethics apply to this course. The students are advised to discuss their grievances/problems with their counsellors or course instructor in a respectful manner.
- **Plagiarism Policy:** Plagiarism, copying and any other dishonest behavior is prohibited by the rules and regulations of CUI. Violators will face serious consequences.