

LYCÉE MICHEL MONTAIGNE

NOTES DE COURS

Physique-Chimie L2

 $R\'egis\ Santet$

Cours réalisé par Professeur N. Choimet

Année scolaire 2015/2016

Table des matières

Ι	\mathbf{M}	écani	que	5		
1	Référentiels non galiléens					
	1.1	iption du mouvement d'un point matériel	8			
		1.1.1	Mouvement d'un référentiel par rapport à l'autre	8		
		1.1.2	Dérivée d'un vecteur exprimée dans deux référentiels			
			en mouvement relatif	8		
		1.1.3	Composition des vitesses. Vitesse d'entraînement	10		
		1.1.4	Composition des accélérations	12		
	1.2	Lois d	le la dynamique du point	13		
		1.2.1	Les trois lois de Newton	13		
		1.2.2	Lois de la dynamique en référentiel non galiléen. Forces			
			d'inertie	13		
		1.2.3	Référentiel entraîné en translation accélérée ($\vec{\omega} = \vec{0}$)	15		

Première partie Mécanique

Chapitre 1

Référentiels non galiléens

La description du mouvement d'un objet dépend de l'observateur. Un observateur lié à un solide (par exemple un train ou un quai) est lié à un système d'axes, c'est-à-dire 3 axes rigidement liés ainsi que d'une horloge (unique en mécanique classique car le temps est universel).

En L1, on étudie les référentiels galiléens vérifiant le principe d'inertie (1ère loi de Newton). En L2, on étudie les référentiels non galiléens dans deux cas :

- les référentiels en translation accélérée,
- les référentiels en rotation uniforme autour d'un axe fixe.

Sommaire

1.1 Descript	ion du mouvement d'un point matériel	8
1.1.1 Mo	uvement d'un référentiel par rapport à l'autre .	8
	rivée d'un vecteur exprimée dans deux référen-	
tiel	s en mouvement relatif	8
1.1.3 Con	mposition des vitesses. Vitesse d'entraı̂nement .	10
1.1.4 Con	mposition des accélérations	12
1.2 Lois de l	a dynamique du point	13
1.2.1 Les	trois lois de Newton	13
1.2.2 Loi	s de la dynamique en référentiel non galiléen.	
For	ces d'inertie	13
1.2.3 Réf	érentiel entraîné en translation accélérée ($\vec{\omega} = \vec{0}$)	15

1.1 Description du mouvement d'un point matériel par rapport à deux référentiels mobiles l'un par rapport à l'autre

1.1.1 Mouvement d'un référentiel par rapport à l'autre Translation

On considère $\mathcal{R}(Oxyz)$ et $\mathcal{R}'(O'x'y'z')$ (trièdres orthonormés directs pour simplifier).

Définition 1.1 (Référentiel en translation par rapport à un autre). \mathcal{R}' est en translation par rapport à \mathcal{R} si ses axes gardent une orientation constante par rapport aux axes du référentiel \mathcal{R} .

Il y a donc une seule inconnue : $\overrightarrow{OO}'(t)$.

Exemple 1.1. Le référentiel géocentrique (origine au centre de la Terre et trois axes pointés vers trois étoiles lointaines « fixes ») est (environ) en translation circulaire par rapport au référentiel de Copernic (origine au centre du système solaire et trois axes pointant vers trois étoiles « fixes »).

Rotation uniforme autour d'un axe fixe

Exemple 1.2. La rotation propre de la Terre (référentiel \mathcal{R}_T) par rapport à l'axe reliant ses pôles, de vitesse angulaire $\omega = \dot{\theta}$ par rapport à l'axe de rotation (supposé selon l'axe z). On note alors le vecteur de rotation instantanée

$$\vec{\omega}(\mathcal{R}_T/\mathcal{R}_G) \coloneqq \dot{\theta}\,\vec{u_z},$$

où \mathcal{R}_G est le référentiel géocentrique, $\dot{\theta}$ est la vitesse angulaire de rotation et $\vec{u_z}$ donne la direction et le sens de rotation.

1.1.2 Dérivée d'un vecteur exprimée dans deux référentiels en mouvement relatif

Soit $\mathcal{R}(Oxyz)$ et $\mathcal{R}'(O'x'y'z')$ et \vec{A} quelconque. On se demande quelle est la relation entre $\left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}}$ et $\left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}'}$. Pour cela, projetons \vec{A} sur les vecteurs

de base de $\mathcal{R}'(\vec{u_x}', \vec{u_y}', \vec{u_z}')$:

$$\vec{A}(t) = a(t)\vec{u_x}' + b(t)\vec{u_y}' + c(t)\vec{u_z}'.$$

— Dans \mathcal{R}' , comme $(\vec{u_x}', \vec{u_y}', \vec{u_z}')$ est une base fixe dans \mathcal{R}' , on a

$$\left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{P}'} = \frac{\mathrm{d}a}{\mathrm{d}t}\vec{u_x'} + \frac{\mathrm{d}b}{\mathrm{d}t}\vec{u_y'} + \frac{\mathrm{d}c}{\mathrm{d}t}\vec{u_z'}.$$

— Dans \mathcal{R} , on a

$$\left(\frac{d\vec{A}}{dt}\right)_{\mathcal{R}} = \frac{da}{dt}\vec{u_x}' + \frac{db}{dt}\vec{u_y}' + \frac{dc}{dt}\vec{u_z}' + a(t)\left(\frac{d\vec{u_x}'}{dt}\right)_{\mathcal{R}} + b(t)\left(\frac{d\vec{u_y}'}{dt}\right)_{\mathcal{R}} + c(t)\left(\frac{d\vec{u_z}'}{dt}\right)_{\mathcal{R}}.$$

Si \mathcal{R}' est en translation par rapport à \mathcal{R} , alors $(\vec{u_x}', \vec{u_y}', \vec{u_z}')$ est fixe dans \mathcal{R} et ainsi

$$\left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}} = \left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}'}.$$

Si \mathcal{R}' est en rotation uniforme par rapport à l'axe (Oz), on décompose les vecteurs de base :

$$\begin{cases} \vec{u_x'} = \cos\theta \vec{u_x} + \sin\theta \vec{u_y}, \\ \vec{u_y'} = -\sin\theta \vec{u_x} + \cos\theta \vec{u_y}, \\ \vec{u_z'} = \vec{u_z}. \end{cases}$$

Alors on a

$$\left(\frac{\mathrm{d}\vec{u_x}'}{\mathrm{d}t} \right)_{\mathcal{R}} = -\dot{\theta}\sin\theta\,\vec{u_x} + \dot{\theta}\cos\theta\,\vec{u_y} = \dot{\theta}\,\vec{u_y}' = \dot{\theta}\left(\vec{u_z} \wedge \vec{u_x}'\right),$$

$$\left(\frac{\mathrm{d}\vec{u_y}'}{\mathrm{d}t} \right)_{\mathcal{R}} = -\dot{\theta}\cos\theta\,\vec{u_x} - \dot{\theta}\sin\theta\,\vec{u_y} = -\dot{\theta}\,\vec{u_x}' = \dot{\theta}\left(\vec{u_z} \wedge \vec{u_y}'\right).$$

Or $\vec{\omega}(\mathcal{R}'/\mathcal{R}) := \dot{\theta} \, \vec{u_z}$, on écrit donc simplement

$$\left(\frac{\mathrm{d}\vec{u_x}'}{\mathrm{d}t}\right)_{\mathcal{R}} = \vec{\omega} \wedge \vec{u_x}',$$
$$\left(\frac{\mathrm{d}\vec{u_y}'}{\mathrm{d}t}\right)_{\mathcal{R}} = \vec{\omega} \wedge \vec{u_y}'.$$

Ainsi,

$$\left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}} = \left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t}\right)_{\mathcal{R}'} + \vec{\omega} \wedge (a\vec{u_x}' + b\vec{u_y}' + c\vec{u_z}').$$

De manière générale, on a donc

$$\boxed{ \left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t} \right)_{\mathcal{R}} = \left(\frac{\mathrm{d}\vec{A}}{\mathrm{d}t} \right)_{\mathcal{R}'} + \vec{\omega}(\mathcal{R}'/\mathcal{R}) \wedge \vec{A}. }$$

1.1.3 Composition des vitesses. Vitesse d'entraînement

Translation

Soit M un point matériel et $\mathcal{R}'(O'x'y'z')$ un référentiel en translation par rapport à un autre référentiel $\mathcal{R}(Oxyz)$. La vitesse de M dans le référentiel \mathcal{R} est

$$\vec{v}(M)_{/\mathcal{R}} \coloneqq \left(\frac{\mathrm{d}\vec{OM}}{\mathrm{d}t}\right)_{\mathcal{R}} = \underbrace{\left(\frac{\mathrm{d}\vec{OO'}}{\mathrm{d}t}\right)_{\mathcal{R}}}_{\vec{v}(O')_{/\mathcal{R}}} + \underbrace{\left(\frac{\mathrm{d}\vec{O'M}}{\mathrm{d}t}\right)_{\mathcal{R}}}_{\vec{v}(M)_{/\mathcal{R}'}}.$$

Définition 1.2 (Vitesse d'entraı̂nement). $\vec{v_e} := \vec{v}(O')_{/\mathcal{R}}$ est appelée la **vitesse d'entraı̂nement**, qui est indépendante de n'importe quel point matériel considéré, mais vient juste du fait que \mathcal{R}' est en translation par rapport à \mathcal{R} .

On a donc

$$\vec{v}(M)_{/\mathcal{R}} = \vec{v}(M)_{/\mathcal{R}'} + \vec{v}_e.$$

Mouvement de translation rectiligne uniforme. On considère qu'à t = 0, O = O' et que le référentiel \mathcal{R}' est en translation rectiligne uniforme à la vitesse V selon l'axe (Ox).

— Dans le cas non relativiste $v \ll c$, on a

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x'}{\mathrm{d}t} + V,$$

d'où x=x'+Vt : c'est une transformation de Galilée. Comme on a $y=y',\,z=z'$ et t=t', on a

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & V \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix}.$$

— Dans le cas relativiste $v \lesssim c$, c'est la transformation de Poincaré-Lorentz :

$$\begin{pmatrix} x \\ y \\ z \\ xt \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta \gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ ct' \end{pmatrix},$$

où
$$\beta := \frac{v}{c} \lesssim 1$$
 et $\gamma := \frac{1}{\sqrt{1 - \beta^2}} > 1$.

- Dans la limite $\beta \ll 1$, on a $\gamma \approx 1$ et on retrouve la transformation de Galilée.
- \longrightarrow Le temps n'est plus absolu.
- \longrightarrow Il y a une « dilatation » des temps. En effet, soit un intervalle de temps propre dans \mathcal{R}' (i.e. séparant deux évènements ayant lieu au même endroit dans \mathcal{R}'). Alors

$$c\Delta t = \beta \gamma \underbrace{\Delta x'}_{-0} + \gamma c\Delta t' = \gamma c\Delta t'.$$

Ainsi, si $\Delta x = 0$, Δt est « impropre ». On note que dans ce cas, $\Delta t_{\text{impropre}} = \gamma \Delta t_{\text{propre}}$ (et $\gamma > 1$ donc il y a une « dilatation »).

Rotation uniforme autour d'un axe fixe

On note $\vec{\omega}(\mathcal{R}'/\mathcal{R}) = \dot{\theta}\vec{u_z}$. On a déjà vu que l'on a

$$\vec{v}(M)_{/\mathcal{R}} = \vec{v}(M)_{/\mathcal{R}'} + \vec{v}_e(M),$$

avec
$$\vec{v}_e(M) = \vec{\omega}(\mathcal{R}'/\mathcal{R}) \wedge \vec{OM}$$
.

Pour simplifier, on notera $\vec{v'}$ quand la vitesse sera calculée par rapport au référentiel \mathcal{R}' , et \vec{v} quand la vitesse sera calculée par rapport au référentiel \mathcal{R} (ce qui sera le cas par défaut).

1.1.4 Composition des accélérations

Translation

On a

$$\vec{a}(M)_{/\mathcal{R}} = \left(\frac{\mathrm{d}\vec{v}(M)}{\mathrm{d}t}\right)_{/\mathcal{R}} = \underbrace{\left(\frac{\mathrm{d}\vec{v}'}{\mathrm{d}t}\right)_{\mathcal{R}}}_{\left(\frac{\mathrm{d}\vec{v}'}{\mathrm{d}t}\right)_{\mathcal{R}'} + \vec{0} := \vec{a'}(M)_{/\mathcal{R}'}} + \underbrace{\left(\frac{\mathrm{d}\vec{v}_e}{\mathrm{d}t}\right)_{\mathcal{R}}}_{\vec{a}_e}.$$

Ainsi,

$$\vec{a}(M) = \vec{a'}(M) + \vec{a}_e,$$

où
$$\vec{a}_e = \frac{\mathrm{d}^2 \vec{OO'}}{\mathrm{d}t^2}$$
.

Rotation uniforme

On a

$$\vec{a}(M)_{/\mathcal{R}} = \left(\frac{\mathrm{d}\vec{v}(M)}{\mathrm{d}t}\right)_{\mathcal{R}} = \left(\frac{\mathrm{d}\vec{v'}}{\mathrm{d}t}\right)_{\mathcal{R}} + \left(\frac{\mathrm{d}}{\mathrm{d}t}\left(\vec{\omega} \wedge \vec{OM}\right)\right)_{\mathcal{R}},$$

$$= \left(\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}\right)_{\mathcal{R}'} + \vec{\omega} \wedge \vec{v'} + \vec{\omega} \wedge \left(\frac{\mathrm{d}\vec{OM}}{\mathrm{d}t}\right)_{\mathcal{R}},$$

où l'on a utilisé le fait que $\vec{\omega}$ est une constante. Comme

$$\left(\frac{\mathrm{d}\vec{OM}}{\mathrm{d}t}\right)_{\mathcal{R}} = \vec{v}(M) = \vec{v'} + \vec{\omega} \wedge \vec{OM},$$

on a donc

$$\vec{a}(M)_{/\mathcal{R}} = \vec{a}(M)_{/\mathcal{R}'} + \vec{\omega} \wedge \left(\vec{\omega} \wedge \vec{OM}\right) + 2\vec{\omega} \wedge \vec{v'}.$$

On note alors $\vec{a}_e(M) = \vec{\omega} \wedge (\vec{\omega} \wedge \vec{OM})$ et $\vec{a}_c(M) = \vec{\omega} \wedge \vec{v'}$ l'accélération de Coriolis.

Exemple 1.3. Dans le cas d'une rotation autour de l'axe (Oz), on a

$$\begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \land \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\omega y \\ \omega x \\ 0 \end{pmatrix},$$

13

puis

$$\begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \wedge \begin{pmatrix} -\omega y \\ \omega x \\ 0 \end{pmatrix} = \begin{pmatrix} -\omega^2 x \\ -\omega^2 y \\ 0 \end{pmatrix} = -\omega^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Donc $\vec{a}_e(M) = -\omega^2 H \vec{M}$ où H est le projeté orthogonal sur l'axe (Oz) du point M.

1.2 Lois de la dynamique du point en référentiel non galiléen

1.2.1 Les trois lois de Newton

- 1. Principe d'inertie.
- 2. La dérivée de la quantité de mouvement est égal à la somme des forces extérieures s'appliquant sur le système considéré dans un référentiel galiléen, c'est-à-dire

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}^{\mathrm{ext}}, \qquad \vec{p} = \gamma m \vec{v} \text{ dans } \mathcal{R}_{\mathrm{galil\acute{e}en}}.$$

3. Principe d'action-réaction.

On se place dans le cadre classique ou $\gamma = 1$.

1.2.2 Lois de la dynamique en référentiel non galiléen. Forces d'inertie

Loi de la quantité de mouvement

On considère un référentiel \mathcal{R}' en mouvement accéléré par rapport à un référentiel galiléen $\mathcal{R}_{\text{galiléen}} \equiv \mathcal{R}$. Dans \mathcal{R} , on a

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m\vec{a}(M) = \vec{F},$$

$$= m(\vec{a}'(M) + \vec{a}_e(M) + \vec{a}_c(M)) = \vec{F}.$$

On obtient ainsi

$$m\vec{a'}(M) = \vec{F} + \vec{F_e} + \vec{F_c},$$

où $\vec{F}_e = -m\vec{a}_e$ et $\vec{F}_e = -m\vec{a}_e$. Ce sont des « pseudo » forces d'inertie.

Loi du moment cinétique par rapport à O' fixe dans \mathcal{R}' non galiléen.

Dans \mathcal{R}' , on a

$$(\vec{L}_{O'})_{\mathcal{R}'} := \overrightarrow{O'M} \wedge \overrightarrow{p'} = \overrightarrow{O'M} \wedge \overrightarrow{mv'}(M).$$

Ainsi,

$$\left(\frac{d\vec{L}_{O'}}{dt}\right) = m \underbrace{\left(\frac{dO'\vec{M}}{dt}\right)_{\mathcal{R}'}}_{\vec{v'}} \wedge \vec{v'} + O'\vec{M} \wedge \left(\frac{d\vec{p}}{dt}\right)_{\mathcal{R}'},$$

$$= \underbrace{O'\vec{M} \wedge \vec{F}}_{\vec{M}_{O'}} + \underbrace{O'\vec{M} \wedge \vec{F}_e}_{\vec{M}_{O'}} + \underbrace{O'\vec{M} \wedge \vec{F}_c}_{\vec{M}_{O'}}.$$

Loi de l'énergie cinétique dans un référentiel non galiléen

Puissance des forces de Coriolis. On a

$$\vec{P}_{\text{cor}} = \vec{F}_e \cdot \vec{v'} = -m \left(2\vec{\omega} \wedge \vec{v'} \right) \wedge \vec{v'} = 0.$$

Loi de l'énergie cinétique dans \mathcal{R}' . On a

$$\frac{\mathrm{d}E'_c}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m v'^2 \right),$$

$$= m \vec{v} \cdot \left(\frac{\mathrm{d}\vec{v'}}{\mathrm{d}t} \right)_{\mathcal{R}'},$$

$$= \left(\vec{F} + \vec{F}_e + \vec{F}_c \right) \cdot \vec{v'},$$

$$= \left(\vec{F} + \vec{F}_e \right) \cdot \vec{v'},$$

$$= P' + P'_e.$$

Ainsi, on a

$$dE'_c = P'dt + P'_e dt = \vec{F} \cdot \underbrace{\vec{v'}dt}_{d\vec{l'}} + \vec{F}_e \cdot \underbrace{\vec{v'}_e dt}_{d\vec{l'}} = \delta W' + \delta W'_e.$$

En intégrant, on obtient donc

$$\Delta E_c' = W' + W_e'.$$

15

Formulation en terme d'énergie mécanique. Dans le cas où il existe des forces conservatives, on a $W_{\rm cons} = -\Delta E_p$ (ou $\delta W_{\rm cons} = -{\rm d} E_p$). Dans ce cas, on définit l'énergie mécanique par

$$E_m := E_c + E_p.$$

Ainsi, d $E_c'=\delta W_{\rm nc}-{\rm d}E_p'+\delta W_e'$ où $W_{\rm nc}$ représente le travail venant de forces non conservatives. Alors

$$dE'_m = \delta W'_{\rm nc} + \delta W'_e,$$

et on a donc

$$\Delta E_m' = W_{\rm nc}' + W_e'.$$

1.2.3 Référentiel entraîné en translation accélérée ($\vec{\omega} = \vec{0}$)

On a $\vec{F}_e = -m\vec{a}(O')$, force indépendante du point matériel M considéré, et $\vec{F}_c = \vec{0}$.

Freinage d'une voiture

On suppose que la voiture roule initialement à 50 km/h et qu'elle s'arrête en 1 seconde. Alors

$$\|\vec{a}_e\| \approx \frac{\Delta v}{\Delta t} = 14 \ m.s^{-2} > g,$$

 $\|\vec{F}_e\| = m \|\vec{a}_e\| = 1400 \ N.$

Pendule secoué

On considère un pendule secoué, voir la Figure 1.1. Le référentiel est $\mathcal{R}' = (Axyz)$ (y est orienté vers nous). On suppose que le pendule situé en A est secoué selon l'axe x : $x_a(t) = \alpha \cos(\omega t)$. Le théorème du moment cinétique par rapport à A dans \mathcal{R}' donne

$$\vec{L_A'} = J\dot{\theta}\vec{u_y} = ml^2\dot{\theta}\vec{u_y},$$

où J est le moment d'inertie. On calcule la force d'entraı̂nement :

$$\begin{cases} \vec{a}_e = \ddot{x_A}(t)\vec{u_x} = -\omega^2\alpha\cos(\omega t)\vec{u_x}, \\ \vec{F}_e = m\omega^2\alpha\cos(\omega t)\vec{u_x}. \end{cases}$$

FIGURE 1.1 – Pendule secoué.

Le théorème du moment cinétique selon $\vec{u_y}$ donne alors

$$ml^2\ddot{\theta} = -mgl\sin\theta + m\omega^2\alpha\cos(\omega t)l\cos\theta.$$

En notant $\omega_0^2 = \frac{g}{l}$, on a donc

$$\ddot{\theta} + \omega_0^2 \sin \theta = \frac{\omega^2 \alpha}{l} \cos(\omega t) \cos \theta.$$

Pour des petits mouvements, on a $|\theta|\ll 1$ et on linéarise :

$$\ddot{\theta} + \omega_0^2 \theta = \frac{\omega^2 \alpha}{l} \cos(\omega t).$$

En régime sinusoïdal forcé, $\underline{\theta}(t) \propto {\rm e}^{{\rm j}\omega t}$ (où j
 est le nombre imaginaire tel que $j^2=-1$). Ainsi,

$$\left(\omega_0^2 - \omega^2\right)\underline{\theta}(t) = \frac{\omega^2 \alpha}{l} e^{j\omega t}.$$

En prenant la partie réelle, on obtient donc

$$\theta(t) = \frac{\omega^2}{\omega_0^2 - \omega^2} \frac{\alpha}{l} \cos(\omega t).$$

FIGURE 1.2 – Pendule dans un train en accélération uniforme.

Si l'on suppose que le pendule est secoué selon l'axe z avec $z_A(t) = \alpha \cos(\omega t)$, on trouve pour équation du mouvement

$$\ddot{\theta} + \omega_0^2 \left(1 + \frac{\alpha \omega^2}{g} \cos(\omega t) \right) \sin \theta = 0.$$

En posant $\Omega^2(t) = 1 + \frac{\alpha \omega^2}{g} \cos(\omega t)$, on voit qu'il s'agit d'un oscillateur paramétrique.

Énergie potentielle d'entraînement par translation uniformément accélérée

On a $\vec{a}_e = a\vec{u}_x$ et $\vec{F}_e = -ma\vec{u}_x$. Soit un déplacement élémentaire $d\vec{l}' = \begin{pmatrix} \mathrm{d}x' \\ \mathrm{d}y' \\ \mathrm{d}z' \end{pmatrix}$ dans \mathcal{R}' . Alors

$$\delta W_e' = \vec{F}_e \cdot d\vec{l}' = -madx' = -d(max') = -dE_p^{\text{ent}}.$$

Ainsi, l'énergie potentielle d'entraı̂nement vaut $E_p^{\text{ent}} = \max'$ (à une constante près).

Exemple 1.4. On considère un pendule dans un train, voir la FIgure 1.2. On cherche la valeur de $\theta_{\rm eq}$.

— <u>Première méthode</u>: on utilise $\mathcal{M}_A^{\text{tot}} = \vec{0}$. En projetant, on trouve alors $mgl\sin\theta_{\text{eq}} = mal\cos\theta_{\text{eq}}$ d'où

$$\tan \theta_{\rm eq} = \frac{a}{q}.$$

— <u>Deuxième méthode</u> : On a $E_p^{\rm ent}=-mal\sin\theta$ et $E_p^{\rm poids}=-mgl\cos\theta$ (avec éventuellement des constantes). Alors

$$\frac{\mathrm{d}E_p^{\text{tot}}}{\mathrm{d}\theta} = 0 = -mal\cos\theta + mgl\sin\theta,$$

d'où le résultat.