TD2 - Rappels d'intégration et théorie de la mesure II

Exercice 1. Soit $f, g \in \mathcal{L}_1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), dx)$ où dx désigne la mesure de Lebesgue. Montrer que la fonction

$$f * g(x) = \int_{\mathbb{R}^d} f(x - u)g(u) du$$

est bien définie presque partout et appartient à $\mathcal{L}_1(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d),dx)$ avec

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

Exercice 2. Soit $p \ge 1$ et $q \in]1, \infty]$ tel que 1/p + 1/q = 1. Soit $f \in \mathcal{L}_p(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), dx)$ et $g \in \mathcal{L}_q(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), dx)$ où dx désigne la mesure de Lebesgue.

(a) Montrer que la fonction

$$f * g(x) = \int_{\mathbb{R}^d} f(x - u)g(u) du$$

est bien définie pour tout $x \in \mathbb{R}^d$ et que c'est une fonction bornée sur \mathbb{R}^d .

(b) Montrer que $x \mapsto f * q(x)$ est uniformément continue sur \mathbb{R}^d .

Exercice 3. Sur l'espace mesuré $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda_d)$ où $\lambda_d(dx) = dx$ désigne la mesure de Lebesgue, on considère la sphère unité

$$S^{d-1} = \{ x \in \mathbb{R}^d, |x| = 1 \}$$

où $|x| = \sqrt{x_1^2 + \dots + x_d^2}$ désigne la norme euclidienne. L'exercice vise à définir une mesure de Lebesgue sur $(S^{d-1}, \mathcal{B}(S^{d-1}))$ où $\mathcal{B}(S^{d-1}) = \{A \cap S^{d-1}, A \in \mathcal{B}(\mathbb{R}^d)\}$. Pour tout $A \in \mathcal{B}(S^{d-1})$ on note

$$\Gamma(A) = \{rx, \ r \in [0, 1] \text{ et } x \in A\} \in \mathcal{B}(\mathbb{R}^d)$$

et on pose

$$\omega_d(A) = d \lambda_d (\Gamma(A)).$$

(a) Montrer que ω_d est une mesure positive finie sur S^{d-1} qui est la mesure image de la restriction de la mesure $d\lambda_d$ sur la boule unité de \mathbb{R}^d par l'application $x\mapsto x/|x|$. Montrer que ω_d est invariante par isométrie et que sa masse totale est

$$\omega_d(S^{d-1}) = \frac{2\pi^{d/2}}{\Gamma(d/2)}.$$

Sur $(\mathbb{R}^d \setminus \{0\}, \mathcal{B}(\mathbb{R}^d \setminus \{0\}))$, on définit la mesure μ_d par

$$\mu_d(B) = \int_0^\infty \int_{S^{d-1}} \mathbf{1}_B(rz) \, r^{d-1} dr \, \omega_d(dz)$$

pour tout $B \in \mathcal{B}(\mathbb{R}^d \setminus \{0\})$.

(b) Montrer que si $B \in \mathcal{B}(\mathbb{R}^d \setminus \{0\})$ est de la forme

$$B = \{x \in \mathbb{R}^d \setminus \{0\}, \ a < |x| < b \text{ et } x/|x| \in A\}$$

où $A \in \mathcal{B}(S^{d-1})$ et 0 < a < b, alors on a

$$\mu_d(B) = \left(\frac{b^d - a^d}{d}\right) \omega_d(A) = \lambda_d(B).$$

- (c) En déduire que $\mu_d = \lambda_d$ sur $(\mathbb{R}^d \setminus \{0\}, \mathcal{B}(\mathbb{R}^d \setminus \{0\}))$.
- (d) En déduire que pour toute fonction $f: \mathbb{R}^d \to \mathbb{R}^+$ borélienne, on a

$$\int_{\mathbb{R}^d} f(x) \, dx = \int_0^\infty \int_{S^{d-1}} f(rz) \, r^{d-1} dr \, \omega_d(dz).$$

Discuter le cas d=2 et retrouver la formule de changement de variables en coordonnées polaires.

(e) Soit $f: \mathbb{R}^d \to \mathbb{R}^+$ une fonction borélienne et radiale au sens où il existe $g: \mathbb{R}^+ \to \mathbb{R}^+$ borélienne telle que f(x) = g(|x|) pour tout $x \in \mathbb{R}^d$. Déduire de tout ce qui précède que

$$\int_{\mathbb{R}^d} f(x) \, dx \ = \ \frac{2\pi^{d/2}}{\Gamma(d/2)} \, \int_0^\infty g(r) \, r^{d-1} dr.$$

(f) Le rayon de la Terre étant de 6371km, quelle est sa surface?

Exercice 4. Pour tout $d \geq 3$, on considère la transformation

$$\varphi_{d}: (r, \theta_{1}, \dots, \theta_{d-1}) \mapsto \begin{cases} x_{1} &= r \cos(\theta_{1}) \\ x_{2} &= r \sin(\theta_{1}) \cos(\theta_{2}) \\ x_{3} &= r \sin(\theta_{1}) \sin(\theta_{2}) \cos(\theta_{3}) \\ \vdots \\ x_{d-1} &= r \sin(\theta_{1}) \dots \sin(\theta_{d-2}) \cos(\theta_{d-1}) \\ x_{d} &= r \sin(\theta_{1}) \dots \sin(\theta_{d-2}) \sin(\theta_{d-1}) \end{cases}$$

de $U =]0, \infty[\times]0, \pi[^{d-2}\times] - \pi, \pi[$ vers $V = \mathbb{R}^d \setminus \{x_{d-1} \le 0, x_d = 0\}$ ouverts de \mathbb{R}^d .

- (a) Montrer que φ_d est un difféomorphisme de U sur V et calculer son inverse.
- (b) Soit J_d le Jacobien de φ_d . Montrer que

$$|J_d| = r \sin(\theta_1) \dots \sin(\theta_{d-2}) |J_{d-1}|.$$

(c) En déduire que pour toute fonction $f: \mathbb{R}^d \to \mathbb{R}^+$ borélienne, on a

$$\int_{\mathbb{R}^d} f(x) dx = \int_U f \circ \varphi_d(r, \theta_1, \dots, \theta_{d-1}) \left(r^{d-1} \sin^{d-2}(\theta_1) \dots \sin(\theta_{d-2}) \right) dr d\theta_1 \dots d\theta_{d-1}.$$