Digital VLSI Design Project

TEAM-SVMS
Sathya Sravya 20161121
Meghna 20161132

Sidhant 20161051 Sri Vyshnavi 20161235

Aim

To train multiple models on the given Datasets and get accurate results

Neural Network without Deep Learning libraries

We have created a neural network using only numpy library

The loss is in the range 10^-9

```
weight arr = train(hidden layers, nodes in layer, 10000, Train X, Train y,alpha= 10e-5, activation="tanh")
             '6.907995640510365e-09'
('Error: ', '6.907995638529308e-09')
('Error: ', '6.907995638146193e-09')
('Error: ', '6.907995637768617e-09')
0.0000014
 0.0000012
0.0000010
0.0000008
0.0000006
0.0000004
0.0000002
 0.0000000
                 2000
                         4000
                                 6000
                                          8000
                                                 10000
```

Keras Implementation of Neural Network

This is a sequential model that is made up of 3 layers

The Activation Function used in the Neural - Network is Tanh. Usage of other Activation functions causes the loss to go to Positive infinity

Ran 128 epochs

Loss is mean_squared_error

Optimizer is Adamax

Keras Implementation of Neural Network

```
Epoch 118/128
 - 0s - loss: 9.3880e-10 - mean absolute error: 1.2767e-05 - categorical accuracy: 0.3788
Epoch 119/128
 - 0s - loss: 1.8245e-09 - mean absolute error: 2.5853e-05 - categorical accuracy: 0.4961
Epoch 120/128
 - 0s - loss: 9.9969e-10 - mean absolute error: 1.2504e-05 - categorical accuracy: 0.4879
Epoch 121/128
 - 0s - loss: 5.3198e-11 - mean absolute error: 3.0471e-06 - categorical accuracy: 0.5199
Epoch 122/128

    0s - loss: 1.0170e-09 - mean absolute error: 1.4550e-05 - categorical accuracy: 0.4961

Epoch 123/128
 - 0s - loss: 1.0900e-09 - mean absolute error: 1.3773e-05 - categorical accuracy: 0.464
Epoch 124/128
 - 0s - loss: 1.0066e-09 - mean absolute error: 1.4005e-05 - categorical accuracy: 0.4961
Epoch 125/128
 - 0s - loss: 1.1310e-09 - mean absolute error: 1.4820e-05 - categorical accuracy: 0.4908
Epoch 126/128
 - 0s - loss: 1.5553e-12 - mean absolute error: 5.6282e-07 - categorical accuracy: 0.4825
Epoch 127/128
 - 0s - loss: 9.5501e-10 - mean absolute error: 1.3348e-05 - categorical accuracy: 0.4612
Epoch 128/128
 - 0s - loss: 9.0488e-10 - mean absolute error: 1.2968e-05 - categorical accuracy: 0.4428
Test loss: [2.0112630547564763e-13, 4.0620684608256854e-07, 1.0]
```

In the First model we used **Linear Regression**

This had the maximum accuracy of 100% 100% 98%

Considering the data's sparsity it is intuitive the classic Linear Regression will work the best

Ridge Regression

Since the data is sparse we could not get good results on Leakage

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of coefficients. The ridge coefficients minimize a penalized residual sum of squares,

$$\min_{w} ||Xw - y||_{2}^{2} + \alpha ||w||_{2}^{2}$$

Lasso Regression

This model also had high accuracy

Mathematically, it consists of a linear model trained with ℓ_1 prior as regularizer. The objective function to minimize is:

$$\min_{w} rac{1}{2n_{samples}} ||Xw-y||_2^2 + lpha ||w||_1$$

LassoLars

is piecewise linear as a function of the norm of its coefficients.

The Results are pretty good on this model as well

Neural Network with dropout

Including dropout layers,to reduce overfitting,make the system work on any dataset given,this implementation is done, results were obtained.

Neural Network with SGD optimizer

Using Stochastic gradient descent optimiser and mentioned, along with gradient clipping and momentum inclusion, results were obtained.

Conclusion

- With an average accuracy of around 99.xx% we have implemented hspice like models using machine learning algorithms
- The objective or the criteria of error being less than 1% is attained.