Álgebra Linear e Geometria Analítica

Agrupamento IV (ECT, EET, EI)

Capítulo 7

Aplicações Lineares

Sejam \mathcal{V} e \mathcal{W} espaços vetoriais reais.

Uma aplicação linear (ou transformação linear) de ${\cal V}$ em ${\cal W}$ é uma função

$$\phi: \mathcal{V} o \mathcal{W} \ X \mapsto \phi(X)$$

tal que

1.
$$\phi(X+Y)=\phi(X)+\phi(Y), \quad \forall \ X,Y\in \mathcal{V};$$

2.
$$\phi(cX) = c \phi(X), \quad \forall \ c \in \mathbb{R}, \ \ \forall \ X \in \mathcal{V}.$$

Se $\mathcal{W} = \mathcal{V}$, então ϕ diz-se um operador linear (ou endomorfismo) de \mathcal{V} .

1. Em \mathbb{R}^2 , a reflexão em relação ao eixo dos xx é dada pelo operador linear

$$\phi: \mathbb{R}^2
ightarrow \mathbb{R}^2 \ (x,y) \mapsto (x,-y)$$

2. A rotação em \mathbb{R}^3 em torno do eixo dos zz de ângulo heta é o operador linear

$$egin{array}{ll} \phi: & \mathbb{R}^3 &
ightarrow & \mathbb{R}^3 \ (x,y,z) & \mapsto (x\cos(heta)-y\sin(heta),x\sin(heta)+y\cos(heta),z) \end{array}$$

3. A derivada de polinómios (funções deriváveis) é a aplicação linear

$$\phi: \mathcal{P}_n \to \mathcal{P}_{n-1}$$
 $p(x) \mapsto p'(x)$

4. A primitiva (nula em a) de um polinómio é obtida pela aplicação linear

$$\phi: \mathcal{P}_n \to \mathcal{P}_{n+1}$$
 $p(x) \mapsto \int_a^x p(t) dt$

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então $\phi(0_{\mathcal{V}}) = 0_{\mathcal{W}}$.

Demonstração: Para qualquer $X \in \mathcal{V}$, $\phi(0_{\mathcal{V}}) = \phi(0X) = 0\phi(X) = 0_{\mathcal{W}}$.

Teorema: $\phi: \mathcal{V} \to \mathcal{W}$ é uma aplicação linear se e só se

$$\phi\left(c_1X_1+\cdots+c_kX_k\right)=c_1\phi(X_1)+\cdots+c_k\phi(X_k),$$

para quaisquer $X_1, \ldots, X_k \in \mathcal{V}$ e $c_1, \ldots, c_k \in \mathbb{R}$.

Corolário: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear e $\mathcal{B}_{\mathcal{V}} = (X_1, \dots, X_n)$ uma base de \mathcal{V} . Então, ϕ é completamente determinada por $\phi(X_1), \dots, \phi(X_n)$.

Determinar a aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$, com $\mathcal{V} = \mathbb{R}^2$ e $\mathcal{W} = \mathbb{R}^3$, sabendo que $\phi(1,1) = (2,3,1)$ e $\phi(1,0) = (1,2,1)$.

- (1,1) e (1,0) são l.i. e, portanto, $\mathcal{B}_{\mathcal{V}} = ((1,1),(1,0))$ é base de \mathbb{R}^2 ;
- $ullet \phi(c_1(1,1)+c_2(1,0))=c_1\phi(1,1)+c_2\phi(1,0)$, para todo $c_1,c_2\in\mathbb{R}$;
- ullet se $(x_1,x_2)=c_1(1,1)+c_2(1,0)=(c_1+c_2,c_1)$, então

$$\begin{cases} c_1 + c_2 = x_1 \\ c_1 = x_2 \end{cases} \Leftrightarrow \begin{cases} c_1 = x_2 \\ c_2 = x_1 - x_2 \end{cases}$$

Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $X \in \mathcal{V}$ e $\phi(X) \in \mathcal{W}$,

 $\mathfrak{B}_{\mathcal{V}}=(X_1,\ldots,X_n)$ uma base de \mathcal{V} e $\mathfrak{B}_{\mathcal{W}}$ uma base de \mathcal{W} .

Qual a relação entre os vetores de coordenadas $[X]_{\mathfrak{B}_{\mathcal{V}}}$ e $[\phi(X)]_{\mathfrak{B}_{\mathcal{W}}}$?

$$[X]_{\mathcal{B}_{\mathcal{V}}} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \Rightarrow X = a_{1}X_{1} + \dots + a_{n}X_{n}$$

$$\Rightarrow \phi(X) = a_{1}\phi(X_{1}) + \dots + a_{n}\phi(X_{n})$$

$$\Rightarrow [\phi(X)]_{\mathcal{B}_{\mathcal{W}}} = a_{1}[\phi(X_{1})]_{\mathcal{B}_{\mathcal{W}}} + \dots + a_{n}[\phi(X_{n})]_{\mathcal{B}_{\mathcal{W}}}$$

$$\Rightarrow [\phi(X)]_{\mathcal{B}_{\mathcal{W}}} = \left[[\phi(X_{1})]_{\mathcal{B}_{\mathcal{W}}} \dots [\phi(X_{n})]_{\mathcal{B}_{\mathcal{W}}} \right] \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}$$

$$[\phi]_{\mathcal{B}_{\mathcal{W}} \leftarrow \mathcal{B}_{\mathcal{V}}} [X]_{\mathcal{B}_{\mathcal{V}}}$$

Teorema: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $\mathcal{B}_{\mathcal{V}} = (X_1, \dots, X_n)$ uma base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ uma base de \mathcal{W} .

Para cada
$$X\in \mathcal{V}$$
, $[\phi(X)]_{\mathcal{B}_{\mathcal{W}}}=[\phi]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}[X]_{\mathcal{B}_{\mathcal{V}}}$

onde

$$[\phi]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}=\left[[\phi(X_1)]_{\mathcal{B}_{\mathcal{W}}}\quad\cdots\quad [\phi(X_n)]_{\mathcal{B}_{\mathcal{W}}}\right]$$

é a matriz representativa de ϕ relativamente às bases $\mathfrak{B}_{\mathcal{V}}$ e $\mathfrak{B}_{\mathcal{W}}$

cujas colunas são os vetores das coordenadas na base $\mathcal{B}_{\mathcal{W}}$ das imagens dos vetores da base $\mathcal{B}_{\mathcal{V}}$.

Determinar a matriz da aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$ do exemplo 1 relativa às bases $\mathcal{B}_{\mathcal{V}}$ de $\mathcal{V}=\mathbb{R}^2$ e $\mathcal{B}_{\mathcal{W}}=((1,0,1),(1,1,0),(0,1,1))$ de $\mathcal{W}=\mathbb{R}^3$. Pela definição, $[\phi]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}=\left\lceil [\phi(\mathbf{1},\mathbf{1})]_{\mathcal{B}_{\mathcal{W}}}\ [\phi(\mathbf{1},\mathbf{0})]_{\mathcal{B}_{\mathcal{W}}}\right\rceil$. Basta calcular

$$[\phi({f 1},{f 1})]_{\mathcal{B}_{\mathcal{W}}} = egin{bmatrix} lpha_1 \ lpha_2 \ lpha_3 \end{bmatrix} \Leftrightarrow (2,3,1) = lpha_1(1,0,1) + lpha_2(1,1,0) + lpha_3(0,1,1)$$

$$[\phi(\mathbf{1},\mathbf{0})]_{\mathcal{B}_{\mathcal{W}}} = egin{bmatrix} eta_1 \ eta_2 \ eta_3 \end{bmatrix} \Leftrightarrow (1,2,1) = eta_1(1,0,1) + eta_2(1,1,0) + eta_3(0,1,1)$$

Obtêm-se os sistemas
$$\begin{cases} \alpha_1+\alpha_2=2\\ \alpha_2+\alpha_3=3\\ \alpha_1+\alpha_3=1 \end{cases} \quad \text{e} \quad \begin{cases} \beta_1+\beta_2=1\\ \beta_2+\beta_3=2\\ \beta_1+\beta_3=1 \end{cases}$$

que se podem resolver em simultâneo utilizando a matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \Rightarrow [\phi]_{\mathcal{B}_{\mathcal{W}} \leftarrow \mathcal{B}_{\mathcal{V}}} = \begin{bmatrix} \alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2} \\ \alpha_{3} & \beta_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, com $\mathcal{B}_{\mathcal{V}}$ base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ e \mathcal{B} bases de \mathcal{W} . Então, $\left[M_{\mathcal{B}\leftarrow\mathcal{B}_{\mathcal{W}}}\Big|[\phi]_{\mathcal{B}\leftarrow\mathcal{B}_{\mathcal{V}}}\right]\sim\left[I_{m}\Big|[\phi]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}\right]$.

Corolário: Generalizando o exemplo 2, sejam $\mathcal{B}_{\mathcal{V}}=(X_1,\ldots,X_n)$ uma base de $\mathcal{V}=\mathbb{R}^n$ e $\mathcal{B}_{\mathcal{W}}=(Y_1,\ldots,Y_m)$ uma base de $\mathcal{W}=\mathbb{R}^m$. Logo, $\left[M_{\mathfrak{C}_m\leftarrow\mathcal{B}_{\mathcal{W}}}\Big|[\phi]_{\mathfrak{C}_m\leftarrow\mathcal{B}_{\mathcal{V}}}\right]=\left[Y_1\cdots Y_m\Big|\phi(X_1)\cdots\phi(X_n)\right]\sim \left[I_m\Big|[\phi]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}\right]$

método de eliminação de Gauss-Jordan

As matrizes da aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$ relativas às bases $\mathcal{S}_{\mathcal{V}}$ de \mathcal{V} e $\mathcal{S}_{\mathcal{W}}$ de \mathcal{W} e, respetivamente, às bases $\mathcal{T}_{\mathcal{V}}$ de \mathcal{V} e $\mathcal{T}_{\mathcal{W}}$ de \mathcal{W} , satisfazem

$$[\phi]_{\mathfrak{I}_{\mathcal{W}}\leftarrow\mathfrak{I}_{\mathcal{V}}}=M_{\mathfrak{I}_{\mathcal{W}}\leftarrow\mathfrak{S}_{\mathcal{W}}}\,[\phi]_{\mathfrak{S}_{\mathcal{W}}\leftarrow\mathfrak{S}_{\mathcal{V}}}\,M_{\mathfrak{S}_{\mathcal{V}}\leftarrow\mathfrak{I}_{\mathcal{V}}}$$

onde $M_{S_{\mathcal{V}}\leftarrow \mathfrak{I}_{\mathcal{V}}}$ e $M_{\mathfrak{I}_{\mathcal{W}}\leftarrow S_{\mathcal{W}}}$ são as matrizes de mudança da base $\mathfrak{I}_{\mathcal{V}}$ para a base $S_{\mathcal{V}}$ de \mathcal{V} e, respetivamente, da base $S_{\mathcal{W}}$ para a base $\mathfrak{I}_{\mathcal{W}}$ de \mathcal{W} .

Determinar $\phi: \mathcal{V} \to \mathcal{W}$ do exemplo 1 usando mudanças de bases.

Como $\phi(1,1)=(2,3,1)$, $\phi(1,0)=(1,2,1)$ e $\mathcal{B}_{\mathcal{V}}=((1,1),(1,0))$, tem-se:

- \bullet $\phi(X) = [\phi(X)]_{\mathcal{C}_3} = [\phi]_{\mathcal{C}_3 \leftarrow \mathcal{C}_2}[X]_{\mathcal{C}_2} = [\phi]_{\mathcal{C}_3 \leftarrow \mathcal{C}_2}X$, sendo
- ullet $[\phi]_{\mathcal{C}_3\leftarrow\mathcal{C}_2}=[\phi]_{\mathcal{C}_3\leftarrow\mathcal{B}_\mathcal{V}}M_{\mathcal{B}_\mathcal{V}\leftarrow\mathcal{C}_2}$, com

•
$$[\phi]_{\mathcal{C}_3 \leftarrow \mathcal{C}_2} = [\phi]_{\mathcal{C}_3 \leftarrow \mathcal{B}_{\mathcal{V}}} M_{\mathcal{B}_{\mathcal{V}} \leftarrow \mathcal{C}_2}$$
, com
• $[\phi]_{\mathcal{C}_3 \leftarrow \mathcal{B}_{\mathcal{V}}} = \left[[\phi(1,1)]_{\mathcal{C}_3} \quad [\phi(1,0)]_{\mathcal{C}_3} \right] = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$ e
• $M_{\mathcal{B}_{\mathcal{V}} \leftarrow \mathcal{C}_2} = M_{\mathcal{C}_2 \leftarrow \mathcal{B}_{\mathcal{V}}}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

$$\bullet \ \ M_{\mathcal{B}_{\boldsymbol{\mathcal{V}}}\leftarrow \mathfrak{C}_{\mathbf{2}}} = M_{\mathfrak{C}_{\mathbf{2}}\leftarrow \mathcal{B}_{\boldsymbol{\mathcal{V}}}}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1}.$$

$$\text{Logo, } \phi(X) = [\phi]_{\mathfrak{C}_3 \leftarrow \mathfrak{B}_{\boldsymbol{\mathcal{V}}}} M_{\mathfrak{B}_{\boldsymbol{\mathcal{V}}} \leftarrow \mathfrak{C}_{\boldsymbol{2}}} X = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + x_2 \\ x_1 \end{bmatrix}.$$

De um operador linear $\phi: \mathcal{V} \to \mathcal{V}$ consideram-se, geralmente, matrizes relativas a uma única base. Assim, sendo \mathcal{S} e \mathcal{T} duas bases de \mathcal{V} ,

$$[\phi]_{\mathfrak{I}\leftarrow\mathfrak{I}}=M_{\mathfrak{I}\leftarrow\mathfrak{I}}[\phi]_{\mathfrak{S}\leftarrow\mathfrak{S}}M_{\mathfrak{S}\leftarrow\mathfrak{I}}=(M_{\mathfrak{S}\leftarrow\mathfrak{I}})^{-1}[\phi]_{\mathfrak{S}\leftarrow\mathfrak{S}}M_{\mathfrak{S}\leftarrow\mathfrak{I}}.$$

Teorema: Duas matrizes são semelhantes se e só se são matrizes representativas do mesmo operador linear relativas a duas bases diferentes.

A aplicação (operador) identidade de $\mathcal V$ é $\operatorname{id}_{\mathcal V}\!:\!\mathcal V\!\to\!\mathcal V$ tal que $\operatorname{id}_{\mathcal V}(X)\!=\!X.$

- A matriz da aplicação identidade relativa a qualquer base S de V é a matriz identidade: $[\mathrm{id}_{\mathcal{V}}]_{S\leftarrow S}=I.$
- A matriz da aplicação identidade relativa às bases S e T de V é a matriz de mudança da base S para a base T: $[\mathrm{id}_{\mathcal{V}}]_{\mathcal{T}\leftarrow S}=M_{\mathcal{T}\leftarrow S}$.

Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. O núcleo de ϕ é o conjunto

$$\ker(\phi) = \{X \in \mathcal{V}: \ \phi(X) = 0_{\mathcal{W}}\}.$$

Nota: $\ker(\phi) \neq \emptyset$, já que $0_{\mathcal{V}} \in \ker(\phi)$.

A imagem de ϕ é o conjunto

$$\operatorname{im}(\phi) = \{\phi(X) \in \mathcal{W} : X \in \mathcal{V}\}\$$

de todos os vetores de \mathcal{W} que são imagem de algum vetor de \mathcal{V} .

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

- $\ker(\phi)$ é um subespaço vetorial de \mathcal{V} ;
- $\operatorname{im}(\phi)$ é um subespaço vetorial de \mathcal{W} .

Recordar que uma função $\phi: \mathcal{V} o \mathcal{W}$ é injetiva se, $orall \ X_1, X_2 \in \mathcal{V}$,

$$X_1 \neq X_2 \Rightarrow \phi(X_1) \neq \phi(X_2),$$

ou equivalentemente, $\phi(X_1) = \phi(X_2) \ \Rightarrow \ X_1 = X_2$.

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

$$\phi$$
 é injetiva $\Leftrightarrow \ker(\phi) = \{0_{\mathcal{V}}\} \Leftrightarrow \dim \ker(\phi) = 0.$

Recordar que uma função $\phi: \mathcal{V} \to \mathcal{W}$ é sobrejetiva se $\operatorname{im}(\phi) = \mathcal{W}$.

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

$$\phi$$
 é sobrejetiva $\Leftrightarrow \dim \operatorname{im}(\phi) = \dim \mathcal{W}$.

Uma aplicação linear injetiva e sobrejetiva é um isomorfismo.

Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $\dim \mathcal{V} = n$, $\dim \mathcal{W} = m$, $\mathfrak{B}_{\mathcal{V}}$ uma base de \mathcal{V} , $\mathfrak{B}_{\mathcal{W}}$ uma base de \mathcal{W} e $A = [\phi]_{\mathfrak{B}_{\mathcal{W}} \leftarrow \mathfrak{B}_{\mathcal{V}}}$ $(m \times n)$.

Então,

$$X \in \ker(\phi) \ \Leftrightarrow \phi(X) = 0_{\mathcal{W}} \Leftrightarrow \ A[X]_{\mathcal{B}_{\mathcal{V}}} = 0_{\mathbb{R}^m} \ \Leftrightarrow \ [X]_{\mathcal{B}_{\mathcal{V}}} \in \mathcal{N}(A),$$

$$Y \in \operatorname{im}(\phi) \Leftrightarrow Y = \phi(Z) \Leftrightarrow [Y]_{\mathcal{B}_{\mathcal{W}}} = A[Z]_{\mathcal{B}_{\mathcal{V}}} \Leftrightarrow [Y]_{\mathcal{B}_{\mathcal{W}}} \in \mathcal{C}(A),$$

onde $\mathcal{N}(A)$ e $\mathcal{C}(A)$ são, respetivamente, o espaço nulo e o espaço das colunas da matriz representativa de ϕ e $Z \in \mathcal{V}$ é um vetor oportuno.

Teorema: Usando a notação anterior, sendo $\mathfrak{B}_{\mathcal{V}}$ e $\mathfrak{B}_{\mathcal{W}}$ bases quaisquer,

$$\dim \ker(\phi) = \dim \mathcal{N}(A) = \operatorname{nul}(A)$$
 e

$$\dim \operatorname{im}(\phi) = \dim \mathcal{C}(A) = \operatorname{car}(A).$$

Teorema (das dimensões): Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então $\dim \ker(\phi) + \dim \operatorname{im}(\phi) = \dim \mathcal{V}$.

Corolário: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear.

- Se $\dim \mathcal{V} < \dim \mathcal{W}$, então ϕ não \acute{e} sobrejetiva (pode ser injetiva);
- se $\dim \mathcal{V} > \dim \mathcal{W}$, então ϕ <u>não é</u> injetiva (pode ser sobrejetiva);
- se $\dim \mathcal{V} = \dim \mathcal{W}$ (por exemplo, quando ϕ é um operador linear), ϕ é injetiva $\Leftrightarrow \phi$ é sobrejetiva $\Leftrightarrow \phi$ é um isomorfismo;
- se ϕ é um isomorfismo, então $\dim \mathcal{V} = \dim \mathcal{W}$.

Teorema: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $\dim \mathcal{V} = \dim \mathcal{W} = n$, $\mathcal{B}_{\mathcal{V}}$ uma base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ uma base de \mathcal{W} . Então,

 ϕ é um isomorfismo $\Leftrightarrow [\phi]_{\mathcal{B}_{\mathcal{W}} \leftarrow \mathcal{B}_{\mathcal{V}}}$ é invertível.

Para além disso, se ϕ é um isomorfismo, então ϕ é invertível e $\phi^{-1}: \mathcal{W} \to \mathcal{V}$ é uma aplicação linear, sendo

$$\left[\phi^{-1}\right]_{\mathcal{B}_{\mathcal{V}}\leftarrow\mathcal{B}_{\mathcal{W}}}=\left(\left[\phi\right]_{\mathcal{B}_{\mathcal{W}}\leftarrow\mathcal{B}_{\mathcal{V}}}\right)^{-1}.$$

Exercício: Sejam ${\mathfrak B}$ uma base de ${\mathcal V}$, com $\dim {\mathcal V}=n$, e

$$\phi: \mathcal{V}
ightarrow \mathbb{R}^n, \ X \mapsto [X]_{\mathcal{B}}.$$

Verifique que ϕ é um isomorfismo e que $[\phi]_{\mathcal{C}_n\leftarrow\mathcal{B}}=I_n$.