A Comparison of Approaches for Unp	lanned Sample Size	Changes in	Phase II	Clinical
	Trials			

By

Molly Olson

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biostatistics

June 30, 2017

Nashville, Tennessee

Approved:	Date:
Tatsuki Koya	nma, Ph.D.
Jeffrey Blur	me, Ph.D.

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Professor Tatsuki Koyama, for his constant enthusiasm, encouragement, and willingness to teach over the course of my thesis work and my time at Vanderbilt University. Without his continual guidance and assistance, this thesis would not have been possible. I would also like to thank the Director of Graduate Studies and committee member, Professor Jeffrey Blume, for providing me ample opportunities for advancing my education and for being supportive throughout my graduate career.

I would like to thank my family for being unconditionally supportive throughout my endeavors and encouraging me to pursue my ambition. I'm especially thankful to my parents who supported me in so many ways through the years and always believed in me. I would also like to thank my sister for always listening and being there for me when I needed it.

Lastly, my deepest gratitude is expressed to my fellow graduate students. The last two years wouldn't have been possible without their support, help, and encouragement. My time at Vanderbilt has been a wonderful journey, and I'm honored to have shared my time with them.

TABLE OF CONTENTS

]	Page
ACKNOWLEDGMEN	NTS				 	 		ii
LIST OF TABLES .					 	 		iv
LIST OF FIGURES .					 	 		v
ABSTRACT					 	 		vi
Chapter								
1 Introduction					 	 		1
2 Background					 	 		3
3 Deviation from Pla	nned Sample S	Sizes In S	econd S	Stage	 	 		6
4 Deviation from Pla	nned Sample S	Sizes in F	irst Stag	ge	 	 		9
4.1 <i>Chang et al. A</i> 4.2 Likelihood De								
5 Example					 	 		19
6 Results					 	 		22
7 Discussion and Co	nclusion				 	 		32
REFERENCES					 	 		36

LIST OF TABLES

Tabl	le	Pa	ige
5.1	Stopping rules for deviations from first stage planned sample size concrete		
	example		20
6.1	Attained design characteristics from deviation of Admissible II stage design		
	$(p_0 = 0.10, p_1 = 0.25, \alpha = 0.05, \beta = 0.20)$		25
6.2	Attained design characteristics from deviation of Simon's Optimal II stage		
	design $(p_0 = 0.50, p_1 = 0.65, \alpha = 0.05, \beta = 0.20)$		25
6.3	Attained design characteristics from deviation of Simon's Minimax II stage		
	design ($p_0 = 0.75$, $p_1 = 0.90$, $\alpha = 0.05$, $\beta = 0.20$)		26
6.4	Attained design characteristics from deviation of Simon's Optimal II stage		
	design ($p_0 = 0.05$, $p_1 = 0.20$, $\alpha = 0.10$, $\beta = 0.10$)		26
6.5	Attained design characteristics from deviation of Admissible II stage design		
	$(p_0 = 0.30, p_1 = 0.45, \alpha = 0.10, \beta = 0.10)$		27
6.6	Attained design characteristics from deviation of Simon's Minimax II stage		
	design $(p_0 = 0.75, p_1 = 0.90, \alpha = 0.10, \beta = 0.10)$		27

LIST OF FIGURES

Figu	ire	Page
4.1	Likelihood function for probability of response	. 14
6.1	Monte Carlo Simulation of Average Type I Error Rates and Power of 20	
	Two-Stage Designs when Stage I Sample Size Deviates from Planned for	
	Attained Designs $(n_t^{**} = n_1^{**} + n_2)$. Number of Simulations = 10000	. 29
6.2	Monte Carlo Simulation of Average Type I Error Rates and Power of 20	
	Two-Stage Designs when Stage I Sample Size Deviates from Planned for	
	Attained Designs ($n_t^{**} = n_t$). Number of Simulations = 10000	30
6.3	Monte Carlo Simulation of the Average of the Average Type I and Type II	
	Error Rates of 20 Simon-like Designs when Stage I Sample Size Deviates	
	from Planned for Attained Designs $(n_t^{**} = n_t)$ Number of Simulations = 10000). 31

ABSTRACT

Oncology phase II clinical trials are used to evaluate the initial effect of a new regimen to determine if there warrants further study in a phase III clinical trial. Two-stage designs with an early futility stop are commonly used in these phase II trials. It is common for attained sample sizes in these trials to be different from the designed sample sizes due to over- and under- enrollment. Currently, when the attained sample size differs from that planned, common practice is to treat the attained sample sizes as planned, and this practice leads to invalid inference. In this thesis, we examine the problems and solutions in hypothesis testing for two-stage phase II clinical trial designs when attained sample sizes differ from the planned sample sizes. We describe existing methods for redesigning trials when there is over- or under-enrollment in either the first or second stage and introduce a new method for redesigning a two-stage clinical trial when the first stage sample size deviates from planned. We focus our investigation when there is over- or under-enrollment in the first stage. We compare the frequentist methods of Chang et al., Olson and Koyama, and the Likelihood two-stage design by applying these methods to two-stage designs with deviations in the first stage of ± 10 . We examine type I error rates, power, probability of early termination and expected sample size under the null hypothesis in a number of two-stage designs. We also compare error rates in these methods using a Monte Carlo simulation.

Introduction

Oncology phase II clinical trials are often used to evaluate the initial effect of a new regimen to determine if further study is warranted in a phase III clinical trial [1, 2, 3]. Simon's two-stage design [2] is a commonly used design in phase II oncology clinical trials. Koyama and Chen [3] point out that it is common for actual sample sizes of these phase II trials to differ from the planned, pre-specified sample sizes. Under-enrollment happens due to unanticipated accruement speed or drop-out rates, while multi-center trials can be delayed in communication of enrollment and response information causing over-enrollment. Currently, when the attained sample size differs from planned, common practice is to treat the attained sample sizes as planned. Though, this practice leads to invalid inference, and controlling error rates in hypothesis testing in these cases is not straightforward [1, 3]. Therefore, extensions of two-stage designs for hypothesis testing with unplanned sample size changes is essential.

Many traditional frequentist methods have been proposed to handle unplanned sample sizes in the second stage while using the planned stage I sample size; however, our literature review found that only a few traditional frequentist methods handle unplanned sample sizes in stage I. Moreover, when focusing on deviations in sample sizes in the second stage, many proposed methods are adjusting inference procedures rather than proposing a redesign, where a redesign is a new two-stage design based on the original design and attained sample sizes that is used to carry out hypothesis testing. Likelihood based designs, that can be used to extend Simon's design, offer a nice solution to handling sample size deviations because these designs offer flexibility in sample size without inflation of the type I error rate. Because calculations of p-values are complicated when attained sample sizes are different from planned [3], we focus on methods that offer redesigns of a planned

two-stage design that will be prespecified along with the planned design.

In this paper, we discuss the different approaches for two-stage designs when the attained stage II sample size is different from planned and when attained sample sizes in the first stage is different from planned. We review common two-stage designs in chapter 2 and illustrate redesign methods in chapters 3 and 4. In chapter 5, we review a concrete example from a Likelihood-based clinical trial, and in chapter 6, we present results of a numerical and theoretical study comparing traditional frequentist properties of approaches in the setting where stage I sample size differs from planned.

Background

Two-stage designs for clinical trials are common designs for phase II oncology clinical trials [2]. In two-stage designs, the null hypothesis, $H_0: p \leq p_0$, is tested against the alternative, $H_1: p > p_0$, where p is the true response probability and p_0 is the highest probability of response that would indicate that the research regimen is uninteresting. The power is set at p_1 ($p_1 > p_0$), the lowest probability of response that would indicate that the research regimen warrants further investigation. Under these hypotheses, it is required that the type I error rate be less than α and power be greater than $1-\beta$. The general framework of a two-stage design includes a sample size and critical value in each of the two-stages. Let n_1 denote the first stage sample size, n_t the sample size at the end of the second stage, and let n_2 be the sample size for the second stage; $n_2 = n_t - n_1$. Let X_1 be the number of successes observed in the first stage and X_2 be the number of additional successes in the second stage so that $X_1 \sim \text{Binomial}(n_1, p)$ and $X_2 \sim \text{Binomial}(n_2, p)$. Also, let $X_t = X_1 + X_2$. In the first stage, n_1 subjects are enrolled. Let r_1 be the first stage critical value. If r_1 or fewer subjects $(X_1 \le r_1)$ are successes, then the trial is stopped for futility. If $r_1 + 1$ or more subjects are successful, then the trial continues to the second stage by enrolling n_2 additional subjects. Let r_t the critical value for the end of the second stage. If r_t or fewer out of the n_t subjects are successful $(X_t = X_1 + X_2 \le r_t)$, the treatment is considered to be futile, otherwise if $X_t \ge r_t + 1$ subjects succeed, the treatment is considered to be effective and will warrant further study.

Let b denote the binomial probability mass function,

$$b(x,n,p) = \binom{n}{x} p^x (1-p)^{n-x}, x = 1, 2, ..., n$$
 (2.1)

and B denote the cumulative binomial distribution function,

$$B(x,n,p) = \sum_{i=0}^{x} {n \choose i} p^{i} (1-p)^{n-i}, x = 1, 2, ..., n$$
 (2.2)

The probability of early termination (PET) with a given probability p in two-stage designs is

$$PET = B(r_1, n_1, p) = P[X_1 \le r_1 | n_1, p]$$
(2.3)

The expected sample size for a given p is then

$$EN = n_1 + (1 - PET)n_2 (2.4)$$

and the conditional power is then

$$CP(x_1, n_2, p) = \sum_{x_2 = r_t - x_1 + 1}^{n_2} b(x_2, n_2, p)$$
 (2.5)

It then follows that unconditional power, UCP(p), given probability p, is given by

$$UCP(p) = 1 - \left(B(r_1, n_1, p) + \sum_{x=r_1+1}^{min[n_1, r_t]} b(x, p, n_1)B(r_t - x, n_2, p)\right)$$

$$= \sum_{x_1=r_1+1}^{n_1} \left\{\sum_{x_2=r_t-x_1+1}^{n_2} b(x_2, n_2, p)\right\} b(x_1, n_1, p)$$
(2.6)

We require $UCP(p_1) \ge 1 - \beta$ and $UCP(p_0) \le \alpha$

Simon introduced Optimal and Minimax criteria for selecting good designs [2]. An Optimal two-stage design is a two-stage design which minimizes the expected sample size under the null hypothesis (EN₀) while still satisfying the type I and type II error probability restrictions. The Minimax design minimizes the maximum sample size ($n_t = n_1 + n_2$) while satisfying error constraints. Jung *et al.* [4] introduced an extension of Simon's designs called Admissible designs that are considered a compromise between Optimal and

Minimax. Admissible designs minimize $q \times n_t + (1-q) \times \text{EN}$ for a given $q \in [0,1]$ [4]. Admissible designs satisfy (α, β) constraints and obtain an expected sample size and maximum sample size somewhere between those of Optimal and Minimax designs. Admissible designs may be attractive because they have agreeable properties of both the Minimax and Optimal design. Simon's designs do not allow for early termination of the trial for efficacy [2], and we do not consider such designs here. We focus this paper on two-stage designs that are either Optimal, Minimax, or Admissible.

Deviation from Planned Sample Sizes In Second Stage

When over-enrollment occurs in the first stage, a straightforward solution is to perform an interim analysis on the planned number of first stage subjects, and adjust the testing procedure for a sample size in the second stage that may be different than planned. Likewise, it is also straightforward to simply wait for the appropriate enrollment for the first stage when under-enrollment occurs in the first stage. This is why much of the literature that handles sample size deviations only consider deviations in the second stage. Literature exists describing point estimation of the response rate and p-values for hypothesis testing when stage two sample size is modified [3][5][6][7][8][9][10]. Porcher *et al.* [1] conducted a comprehensive review of these methods. Among them is Koyama and Chen who have shown that the p-value in two-stage trials will depend on the planned design in addition to the attained data and is complicated in the setting of unplanned sample size [3]. We only focus on methods that recalculate critical values for hypothesis testing or decision-making, called redesigns, and will not focus on p-value calculations.

In the cases where we evaluate stage I as planned and over- or under-enrollment occurs in the second stage, it is possible to adjust the testing procedure for the attained enrollment in the second stage. This is possible under the assumption of non-informative dropouts; stage I is concluded when the number of non-missing subjects is equal to the planned stage I sample size, and if over-enrollment occurs in the first stage, those subjects will only be considered for the second stage analysis [3]. Koyama and Chen propose a method for inference when stage II sample sizes deviate from the planned stage II sample size [3]. Let

 $n_1, n_t, r_1, r_t, \alpha$ and β be the original design parameters as defined earlier. The authors let the first stage remain as planned and propose a redesign of the second stage. Using conditional power evaluated at p_0 , they calculate a new critical value, r_t^* , by finding the maximum integer such that

$$CP(x_1, n_2^*, p_0) \le CP(x_1, n_2, p_0) \equiv P[X_2^* \ge r_t^* | X_1 = x_1, p_0] \le P[X_2 \ge r_t | X_1 = x_1, p_0]$$
 (3.1)

where $X_2^* \sim \text{Binomial}(n_2^*, p_0)$ and n_2^* is the attained stage II sample size. This method will result in a controlled unconditional type I error rate because the new critical value gives a conditional type I error rate that is more conservative than the original conditional type I error rate, regardless of the observed stage II sample size. The authors comment that with the new critical value, r_t^* , the total number of positive responses required to reject the null hypothesis at the end of the study may be different depending on x_1 because it is conditional on the result of the first stage.

Zeng *et al.* [11] propose methodology that attempts to maximize the unconditional power while controlling for the type I error to calculate the stage II critical value for the attained second stage sample size. The authors define r_2^* to be the new second stage critical value when $x_1 \ge r_1$ and $r_t^* \equiv r_2^* + x_1$. The second stage critical value will be the integer that maximizes

Power =
$$\sum_{x_1=r_1}^{n_1} {n_1 \choose x_1} p_1^{x_1} (1-p_1)^{n_1-x_1} \sum_{x_2=r_2^*}^{n_2^*} {n_2^* \choose x_2} p_1^{x_2} (1-p_1)^{n_2^*-x_2}$$
(3.2)

while subject to

Type I error =
$$\sum_{x_1=r_1}^{n_1} \binom{n_1}{x_1} p_0^{x_1} (1-p_0)^{n_1-x_1} \sum_{x_2=r_2^*}^{n_2^*} \binom{n_2^*}{x_2} p_0^{x_2} (1-p_0)^{n_2^*-x_2} \le \alpha$$
 (3.3)

Though it is theoretically possible to find r_2^* , it does not have a closed form solution, and the computation is exhaustive. Instead, the authors propose a normal approximation for the

binomial random variable to ease the computation of power. That is,

$$\sum_{x_2=r_2^*}^{n_2^*} \binom{n_2^*}{x_2} p^{x_2} (1-p)^{n_2^*-x_2} \approx 1 - \Phi\left(\frac{r_2^* - n_2^* p}{\sqrt{n_2^* p(1-p)}}\right)$$
(3.4)

Substituting the above equation in for power and type I error, and using Lagrange multipliers and differentiating with respect to r_2^* , the problem is then equivalent to solving the equation

$$\left(\frac{1}{p_0(1-p_0)} - \frac{1}{p_1(1-p_1)}\right)r_2^{*2} - \frac{2n_2^*(p_0-p_1)}{(1-p_0)(1-p_1)}r_2^* + \frac{n_2^{*2}(p_0-p_1)}{(1-p_0)(1-p_1)} - 2n_2^*log\left(\frac{\lambda a(x_1)}{b(x_1)}\right) = 0$$
(3.5)

where $a(x_1) = \binom{n_1}{x_1} p_0^{x_1} (1-p_0)^{n_1-x_1}$, $b(x_1) = \binom{n_1}{x_1} p_1^{x_1} (1-p_1)^{n_1-x_1}$, and λ is the Lagrange multiplier. The new critical value, r_2^* , is then $\max(0, \min(r_2^*, n_2^*))$. The authors suggest searching over a reasonable range of λ to find a λ such that the type I error is as closed to α as possible.

The authors performed a numerical study to compare and found that, in almost all scenarios that were considered, Zeng *et al.*'s method had higher power than Koyama and Chen, and this is mostly because Koyama and Chen's method most often results in a lower type I error rate due to conservative controlling of conditional type I error.

Deviation from Planned Sample Sizes in First Stage

A straightforward solution to under-enrollment in the first stage is to simply wait until the appropriate enrollment has been reached. Because accruement of subjects can be unexpected in the first stage, and some situations require early evaluation of the first stage, it is still imperative that methods are available to handle situations where attained sample sizes differ from the planned sample size in stage I. Green and Dahlberg [12] and Chen and Ng [13] propose methods for inference when first stage sample sizes differ from those planned. Recall that p_0 is the highest probability of response that would indicate that the research regimen is uninteresting and p_1 is the lowest probability of response that would indicate that the research regimen warrants further investigation. Green and Dahlberg propose a method for sample size deviations by extending the Southwest Oncology Group (SWOG) standard approach to phase II trial design, where the SWOG's standard approach is to use only two-stage designs with a type I error rate of 5% and power of 90%. Southwest Oncology Group's inference method suggestion is to perform a hypothesis test on H_0 : $p = p_1$ versus $H_1: p < p_1$ in the first stage with type I error rate of 2% and concluding futility if the p-value for this test is ≤ 0.02 . They then suggest testing $H_0: p = p_0$ versus $H_1: p > p_0$ in the second stage at the 0.05 level. The type I error rate of 2% corresponds to intuition regarding what constitutes evidence in favor of a hypothesis when the sample size is half of the planned total and we test p_1 in the first stage since one is more concerned with missing an active agent [12]. Green and Dahlberg extend the SWOG approach by applying this testing method on the attained design, but by performing an unadjusted 0.055 level test

of H_0 based on the attained total sample size at the second stage. This means that they perform a hypothesis test on $H_0: p=p_1$ versus $H_1: p < p_1$ at the first stage at the 0.02 level based on the attained sample size (n_1^{**}) and then perform the unadjusted 0.055 level test of H_0 based on the attained total sample size. [12] The 0.055 level was chosen because of the discreteness of the binomial distribution and to achieve a type I error rate closer to 0.05. The authors demonstrated that this approach controls type I error and achieves desired power only in the limited situation when an overall α -level is 0.05, and it is unclear how this method would generalize to any α -level [14]. Li *et al.* also indicate that this limited approach, and particularly testing a hypothesis in the first stage with a type I error rate of 2%, is arbitrary and lacks theoretical justification.

Chen and Ng [13] suggest an approach to unplanned sample sizes by considering a range of sample sizes in both the first and second stages. They search these ranges for the Minimax and Optimal designs that satisfy error constraints using the average probability of termination for all possible first stage sample sizes and average expected sample size for all possible stage I and stage II sample size combinations that they consider [13]. Some limitations of this approach are that attained sample sizes may fall outside of the specified ranges, and only the average error probabilities are controlled rather than the actual error probabilities corresponding to the attained sample sizes.

4.1 *Chang et al.* Alternative Designs and Adaptation

Chang *et al.* [15] proposed an alternative design that is an extension of two-stage designs in order to handle unplanned sample sizes in both the first and second stages, though we only consider this extension for over- and under-enrollment in the first stage. Their method calculates new critical values for attained sample sizes *a priori*, and thus one is able to create and pre-specify a new design based on a preferred Simon or Admissible design in defense of the events of unplanned sample sizes.

We use this method to pre-specify new designs; that is, we calculate new critical values

for different combinations of possible deviations in sample sizes pre-attainment. Again, let n_1 , n_t , r_1 , r_t , p_0 , p_1 , α , and β be the original, planned design parameters. Now, let n_1^{**} be the attained sample size for the first stage and let n_2^{**} be the attained sample size for the second stage.

Chang *et al.* propose a method for updating the stage I critical value based on the following β -spending function, where m is the attained sample size in the first stage.

$$\beta(m) = \begin{cases} \beta_1 m / n_1 & \text{if } m \le n_1 \\ \beta_1 + (\beta - \beta_1)(m - n_1) / n_2 & \text{if } m > n_1 \end{cases}$$
(4.1)

Where $\beta_1 = P(X_1 \le r_1 | n_1, p = p_1)$ is the stage I type II error probability. They then find a new stage one critical value, s_1 , using this probability spending function such that $P(X_1 \le s_1 | n_1^{**}) \approx \beta(n_1^{**})$, where \approx means "closest to." After s_1 is selected, they then search for an integer for the second stage critical value, s_t , that satisfies

$$P(X_1 > s_1, X_t > s_t | n_1^{**}, n_2^{**}, p_0)$$

$$= \sum_{s_1}^{n_1^{**}} P(X_2 > s_t - X_1 | X_1 = x_1) P(X_1 > s_1)$$

$$\leq \alpha$$
(4.2)

Chang *et al.*'s design can be used for any α -level and is flexible, close to the original design, and preserves the desired traditional frequentist type I error rate.

We modify Chang *et al.*'s method because we prefer to be conservative when straying from a desired Simon's or Admissible design. We modify the Chang *et al.*'s approach by selecting s_1 such that the new design's probability of early termination under the null, (PET_0^{**}) , is closest to the planned PET under the null (PET_0) . This is conservative because when the attained stage I sample size deviates further from the planned sample size, the PET_0^{**} in Chang *et al.*'s designs can get further from the original design's. By selecting the

closest integer such that the PET_0^{**} is closest to planned, the probability of early termination is greater under large deviations. We select s_1 such that

$$P(X_1 \le s_1 | n_1^{**}, p_0) \approx P(X_1 \le r_1 | n_1, p_0)$$
(4.3)

We then select the stage two critical value, s_t , in the same fashion as Chang *et al.*'s design. Another conservative option would be to be choose s_1 such that the probability of early termination under the null with the redesign is greater than or equal to the original design. In either case, these conservative designs tend to be close when the attained sample size is close to the original, so we consider the case where the probability of early termination is closest to the original. We call this adaptation to Chang *et al.*'s design "Olson and Koyama's design (OK design)."

4.2 Likelihood Design

Briefly, likelihood methods in phase II designs use the likelihood ratio as a measure of evidence [16]. The Law of Likelihood states that "if the first hypothesis, H_1 , implies that the probability that a random variable X takes the value x is $P_1(X)$, while the second hypothesis, H_2 , implies that the probability is $P_2(x)$, then the observation X = x is evidence supporting H_1 over H_2 if and only if $P_1(x) > P_2(x)$, and the likelihood ratio measures the strength of evidence." [17] Define the likelihood function $L_n(p)$ in phase II trials to be

$$L_n(p) = P(X|p,n)$$

$$= \binom{n}{x} p^x (1-p)^{n-x}$$

$$\approx p^x (1-p)^{n-x}$$
(4.4)

Here, the likelihood ratio is

$$LR_{n} = \frac{L_{n}(p_{1})}{L_{n}(p_{2})}$$

$$= \frac{p_{1}^{x}(1-p_{1})^{n-x}}{p_{2}^{x}(1-p_{2})^{n-x}}$$
(4.5)

The hypothesis that is better supported is the hypothesis that assigns a higher probability to the observed events [17]. If the likelihood ratio is greater than 1, the evidence favors H_1 over H_2 , and if the likelihood ratio is less than 1, the evidence favors H_2 over H_1 . The likelihood ratio is continuous on the scale of $(0,\infty)$, and this scale can be broken up into categories such as 'weak' and 'strong' evidence [17]. We make the following decision at the conclusion of the study. If the $LR_n \in [0,1/k]$, there is evidence for the null hypothesis, if $LR_n \in [1/k,k]$, there is weak evidence for either hypothesis, and if $LR_n \in [k,\infty]$, there is evidence for the alternative hypothesis, where k is a value that is a benchmark for distinguishing strength of evidence.

To illustrate the use of the likelihood ratio as a measure of evidence, consider a study with the response rate of patients. Suppose a researcher is interested in looking at the response (yes/no) of 50 patients, while testing the null hypothesis, $H_0: p = 0.3$, versus $H_1: p = 0.45$. Because the response of each patient is independent and binary, the probability model is binomial, as in equation (4.4), where p is the unknown probability of response. Suppose 17 responses were observed. Then equation (4.5) gives us the likelihood ratio

$$\frac{0.3^{17}(1-0.3)^{50-17}}{0.45^{17}(1-0.45)^{50-17}} = 2.90$$
(4.6)

This likelihood ratio means that the data support H_0 over H_1 by a factor of 2.90. If we used a benchmark of k = 8, this would mean the evidence in favor of H_0 over H_1 is weak because 2.90 < 8. Figure 4.1 is the likelihood function standardized by the maximum value (a constant) and gives a visual representation of the evidence about p over the parameter space. We see that the null hypothesis value is represented by the circle on the likelihood function x-axis where the alternative hypothesis is represented by the square. The ratio of

Figure 4.1: Likelihood function for probability of response

SI means support interval. Red line represents the 1/8 support interval where blue line represents the 1/32 support interval. Circle represents the value of the null hypothesis where square represents the value of the alternative hypothesis.

their y-axis values is the likelihood ratio. The maximum occurs at the peak of the likelihood function with a value of 0.34, and this is called the maximum likelihood estimator (MLE). A 1/8 support interval, shown by the red line, is (0.21, 0.48), and a 1/32 support interval, shown by the blue line, is (0.18,0.52). A support interval identifies all parameter values for p that are consistent with the data at a certain level (k), and the values that are most consistent with the data occur at the crest of the likelihood function – near the MLE [17].

Furthermore, the probability of observing weak evidence is

$$\gamma_i = P(k_a \le LR_n \le k_b | H_i), k_a \le 1 \le k_b \tag{4.7}$$

i=0 for null hypothesis and i=1 for alternative hypothesis, where k_a and k_b are lower and upper benchmarks, respectively, for description of evidence. Usually, $k_b = k$ and $k_a = 1/k$.

The probability of observing strong evidence is

$$\tau_i = \begin{cases} P(LR_n > k_b | H_i) & \text{if } i = 1\\ P(LR_n < k_b | H_i) & \text{if } i = 0 \end{cases}$$

$$(4.8)$$

and the probability of observing misleading evidence is

$$\lambda_i = \begin{cases} P(LR_n > k_b | H_i) & \text{if } i = 0\\ P(LR_n < k_b | H_i) & \text{if } i = 1 \end{cases}$$

$$(4.9)$$

Misleading evidence is observing strong evidence for the incorrect hypothesis over the correct hypothesis, similar to a type I or a type II error. One advantage of a likelihood sequential design is that the universal bound of misleading evidence under the null hypothesis is $P(LR_n > k_b|H_0) \le \frac{1}{k_b}$ for any $n \ge 1$ when $\frac{1}{k_a} = k_b = k > 1$. This is advantageous because the probability that the trial is stopped with misleading evidence under the null hypothesis at any point in time is less than or equal to $\frac{1}{k_b}$. As data accumulate, the probability of misleading evidence converges to 0, and this probability is often much less than $\frac{1}{k_b}$ [18] [19].

Ayers and Blume [16] consider a phase II two-stage design based on the likelihood. Their likelihood two-stage design will enroll n_1 subjects into the first stage. If we observe a likelihood ratio that is $k_{a_1} < LR_{n_1} < k_{b_1}$, where k_{a_1} and k_{b_1} are benchmarks for description of evidence in the first stage, we continue to the second stage. If we observe $LR_{n_1} \le k_{a_1}$, the study will stop for futility and if we observe $LR_{n_1} \ge k_{b_1}$, the study will stop for efficacy. In stage II, n_2 subjects are enrolled, and the decision is based on $LR_{n_t} = LR_{n_1}LR_{n_2}$. If LR_{n_t} is $k_{a_t} < LR_{n_t} < k_{b_t}$, where k_{a_t} and k_{b_t} are benchmarks at the end of stage II, then the study will conclude with weak evidence. The study will conclude with evidence for the alternative hypothesis if $LR_{n_t} \ge k_{b_t}$ and evidence for the null hypothesis if $LR_{n_t} \le k_{a_t}$. Because these designs are not restricted by error rates, this method offers favorable flexibility for unplanned sample sizes in the first stage. Likewise, one is able to add cohorts and the end

of the second stage when there proves to be weak evidence without penalization because the strength of evidence is unaffected by the number of looks at the data [17].

We compare traditional frequentist and Likelihood two-stage designs by adapting the Likelihood two-stage design to emulate conventional two-stage designs such as Optimal, Minimax, or Admissible designs with binary evidential zones: reject the null or fail to reject the null. In order to do this, one can start with a Simon-like two-stage design and redesign with a likelihood ratio approach by setting

$$k_{a_{1}} = \left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)^{r_{1}} \left(\frac{1-p_{1}}{1-p_{0}}\right)^{n_{1}} = \left(\frac{1-p_{0}}{1-p_{1}}\right)^{r_{1}-n_{1}} \left(\frac{p_{1}}{p_{0}}\right)^{r_{1}},$$

$$k_{a_{t}} = \left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)^{r_{t}} \left(\frac{1-p_{1}}{1-p_{0}}\right)^{n_{t}} = \left(\frac{1-p_{0}}{1-p_{1}}\right)^{r_{t}-n_{t}} \left(\frac{p_{1}}{p_{0}}\right)^{r_{t}},$$

$$k_{b_{1}} = \infty,$$

$$k_{b_{t}} = \infty,$$

$$(4.10)$$

where n_1, n_t, r_1, r_2 are two-stage design parameters. Then, using k_{a_j} and k_{b_j} , we recalculate the critical values, s_1 and s_t , using

$$s_{1} = \frac{log(k_{a_{1}}) - n_{1}^{**}log\left(\frac{1-p_{1}}{1-p_{0}}\right)}{log\left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)}$$

$$s_{t} = \frac{log(k_{a_{t}}) - n_{t}^{**}log\left(\frac{1-p_{1}}{1-p_{0}}\right)}{log\left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)}$$

$$(4.11)$$

where n_t^{**} is the total attained sample size at the end of stage II. If $s_1 < 0$ or $s_t < 0$, they are set equal to zero. It is possible for these critical values to be less than 0 when the study design has small sample sizes and deviation from the planned sample size is extreme. Under the traditional frequentist two-stage design conditions and using these critical values, we can calculate design characteristics for any attained n_1 and n_t for a given p. The probability

of weak evidence for a probability p at the end of the first stage is

$$\gamma_{1,p} = 1 - B(s_1, n_1^{**}, p) \tag{4.12}$$

and the probability of strong evidence for a given p at the end of stage one is

$$\tau_{1,p} = B(s_1, n_1^{**}, p) \tag{4.13}$$

At the end of the second stage, the probability of weak evidence is

$$\gamma_{t,p} = \sum_{x=s_1+1}^{n_1^{**}} b(x, n_1^{**}, p) - B(s_1 - x, n_t^{**} - n_1^{**}, p)$$
(4.14)

and the probability of strong evidence is

$$\tau_{t,p} = \tau_{1,p} + \sum_{x=s_1+1}^{n_1^*} \left(b(x, n_1^*, p) \times B(s_1 - x, n_t^{**} - n_1^*, p) \right) \tag{4.15}$$

The probability of early termination under the null hypothesis is then

$$PET_0 = \tau_{1,p_0} \tag{4.16}$$

and the expected sample size under the null hypothesis is

$$EN_0 = n_1^{**} + \gamma_{1,p_0} \times (n_t^{**} - n_1^{**})$$
(4.17)

Ayers and Blume [16] show that the Likelihood designs often preserve type I error rates, although, some cases exceed nominal rates with an increase in power. Under the Likelihood design, error rates tend to be less of an issue because the average of the error rates, $\frac{\alpha+\beta}{2}$, is minimized with the likelihood approach [16]. For the purpose of comparing methods, we do not consider the cases in which cohorts can be added after the second stage. We

also only consider Likelihood redesign methods to emulate traditional frequentist designs

– to calculate new critical values – and do not consider pure likelihood method two-stage
design as formerly introduced.

We consider new approaches to unplanned sample sizes in the first stage in both the traditional frequentist and likelihood settings. In the interest of prespecifying designs, we focus on deviation from the planned sample size only in the first stage because it is impractical to prespecify limitless combinations of unplanned sample sizes in both the first and second. Because it is desired to stay as closely to the original design as possible for financial and resource planning reasons, we investigate this method while maintaining the original second stage sample size (n_2) or original total sample size (n_t) . Then, the two situations we consider are 1. $n_2^{**} = n_t - n_1^{**}$ and 2. $n_t^{**} = n_1^{**} + n_2$. Lastly, we refer to Chang et al., OK, and Likelihood designs as "attained designs".

Example

In order to compare these new methods for deviation of sample size in the first stage, we first introduce an example. An actual phase II cancer clinical trial was designed using a Likelihood two-stage design. In order to follow the convention, the trial would only stop early for futility. The planned design parameters are $n_1 = 17$, $n_t = 41$, $r_1 = 7$, $r_t = 21$, $p_0 \le 0.4$, and $p_1 \ge 0.6$. This study design has an expected sample size of 25.6 and a probability of early termination of 64% under the null hypothesis. This is considered an Admissible design and meets the nominal type I error rate, $\alpha = 0.05$, and type II error rate, $\beta = 0.2$ where the actual type I error rate is 0.047. The authors provide alternative interim stopping rules for sample sizes that deviate from the planned design using the Likelihood approach as shown in Table 5.1. These new designs have a probability of early termination under the null that exceed 50% and preserve type I and type II error rates. Using the original likelihood design, but varying n_1 , one can use Chang et al.'s method and Olson and Koyama's method to obtain similar results. The total sample size is equal to the planned total sample size, $n_t^{**} = n_t$ in this case. We compare attained methods' characteristics, in particular, type I error, power, probability of early termination under the null hypothesis, and expected sample size under the null hypothesis. Recall that s_1 is the new stage I critical value, n_1^{**} is the attained stage I sample size, and PET₀^{**} is the probability of termination under the null hypothesis for the attained design. Let EN_0^{**} be the expected sample size under the null hypothesis for the attained design.

This example illustrates the comparability of the three attained design methods. Generally, the stopping rules between the Chang *et al.* design, OK design, and the Likelihood design are the same when the probability of early termination under the null exceeds 50%.

Table 5.1: Stopping rules for deviations from first stage planned sample size concrete example

Design	s_1	n_1^{**}	PET ₀ **	EN ₀ **	Likelihood ratio favoring <i>H</i> ₀ that corresponds to Simon's futility stopping rule
Likelihood	6	16	53%	27.8	1/5.062
Chang et al.	6	16	53%	27.8	
Olson and Koyama	7	16	72%	23.1	
Likelihood	7	17	64%	25.6	1/3.375
Chang <i>et al</i> .	7	17	64%	25.6	
Olson and Koyama	7	17	64%	25.6	
Likelihood	7	18	56%	28	1/5.062
Chang <i>et al</i> .	7	18	56%	28	
Olson and Koyama	7	18	56%	28	
Likelihood	8	19	67%	26.3	1/3.375
Chang <i>et al</i> .	8	19	67%	26.3	
Olson and Koyama	8	19	67%	26.3	
Likelihood	8	20	60%	28.5	1/5.062
Chang et al.	8	20	60%	28.5	
Olson and Koyama	8	20	60%	28.5	
Likelihood	9	21	69%	27.2	1/3.375
Chang et al.	9	21	69%	27.2	
Olson and Koyama	9	21	69%	27.2	
Likelihood	10	23	71%	28.2	1/3.375
Chang et al.	10	23	71%	28.2	
Olson and Koyama	10	23	71%	28.2	

When $n_1 = 16$, the Olson and Koyama's design gives a more conservative critical value; this is expected by design and the discreteness of the binomial distribution.

Results

We compare the methods of Chang $et\ al.$, Olson and Koyama, and the Likelihood by first selecting either an Admissible, Minimax, or Optimal two-stage design. Each method is applied to deviations in first stage sample size of up to ± 10 . We suggest keeping the original total planned sample size or the original planned second stage sample size the same when utilizing Chang $et\ al.$'s and Olson and Koyama's methods to stay close to the original design. We choose to keep total sample size the same in our investigation because this approach is more realistic when resources and budget are fixed for the planned total sample size and this inhibits the ability to stray radically from the planned design.

We present results that are limited to our primary problem of interest in Tables 6.1 through 6.6. In each design table, the planned design is specified, and the first stage sample size varies from planned, while maintaining the original total sample size. We compare attained methods' characteristics, in particular, type I error, power, probability of early termination under the null hypothesis, and expected sample size under the null hypothesis.

Table 6.1 displays a planned Admissible design with varying first stage sample size \pm 10. We notice that under low p_0 and p_1 (0.1 and 0.25, respectively), s_1 will vary between each method. Though, power and type I error are likely to be similar between and within each attained method, and expected sample size is also consistent. The Likelihood and Chang *et al.* method are more at risk of low probability of early termination, especially when the sample size is lower than planned. Table 6.2 shows an Optimal design when p_0 is 0.5. Between attained designs, particularly when there is under-accrual, s_1 is moderately inconsistent. We particularly see a disagreement in designs when $n_1^{**} = n_1 - 10$ or more. The Likelihood design is anticonservative in type I error and conservative in type II error in

some cases, displaying a $\alpha^{**} > \alpha$ and $1 - \beta^{**} > 1 - \beta$. The Chang *et al.* and OK designs both have a conservative type I error for all sample size deviations, though Chang *et al.* and Likelihood designs often maintain higher power than Olson and Koyama's. Probability of early termination is closest to the original under Olson and Koyama's and thus have a much lower expected sample size under the null hypothesis, with as much as a difference of approximately 23.

Table 6.3 displays results from a planned Minimax design when p_0 is larger than 0.5. Here, the Likelihood design has desirable properties where type I error and power are consistently close to the planned design for all deviations in sample size. Though, when the sample size is severely under-accrued, the probability of early termination nearly halves. The expected sample size is consistent between designs. The OK designs stray from the planned nominal type I and type II error rates when there is over-accrual. When there is moderate to large over-accrual, the error rates in the Chang *et al.* designs can be much lower than the planned error rates and the PET₀** can reach above 90%.

Table 6.4 through 6.6 display results for planned designs when $\alpha = \beta = 0.1$. Table 6.4 displays attained design characteristics for deviations in sample size when the planned first stage sample size is low. In all three attained designs, we see that when the attained sample size is lower than planned, there is a significant drop in power and a moderate to severe drop in type I error. The probability of early termination almost occurs with probability 1 when the attained sample size is $n_1^{**} = 1$. In practice, though, accrual lower than planned here is not practical. When there is over-accrual, attained design characteristics are not concerning.

Table 6.5 illustrates the similarity between attained designs when $p_0 = 0.3$. All designs and their deviations are relatively consistent in type I error, power, and PET₀. Though, the Olson and Koyama's design is most consistent in the probability of early termination with the planned design, but we see a conservative deviation in type I error for large overaccrual. Table 6.6 displays similar results as Table 6.3.

Table 6.1: Attained design characteristics from deviation of Admissible II stage design ($p_0 = 0.10, p_1 = 0.25, \alpha = 0.05, \beta = 0.20$)

PET0 n_1^{**} s_1 α^{**} α^{**} $Like$ lithood Design Likelithood Design PET0 n_1^{**} s_1 α^{**} $1 - \beta^{**}$ PET0* s_1 α^{**} $1 - \beta^{**}$ PET0* s_1 α^{**} $1 - \beta^{**}$ α^{**}	Planned Design		Attained Sample Si	d Sampl	e Size						Red	esign									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Ü	ang Des	ign				Olsc	on and	l Koyam	a Design			Ξ	eliho	od Desig	mg		
26.7 5 0 7 0.034 0.671 0.590 19.7 0 7 0.034 0.671 0.590 19.7 0 7 0.040 0.754 0.478 24.7 0 7 0.040 0.754 0.478 24.7 0 7 0.040 0.754 0.478 24.7 0 7 26.7 1 0 7 0.043 0.797 0.387 28.6 0 7 0.043 0.797 0.381 28.6 0 7 0.043 0.797 0.384 28.6 0 7 0.043 0.897 28.7 1 7 0.043 0.097 0.043 0.097 0.071 0.097 0.071 0.097 0.071 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.042 0.072 0.043 0.083 0.054	$r_1 - r_t$	${ m PET}_0$		\imath_1^{**}	s_1	S_t	$1 - \beta^{**}$	PET_0^{**}	$\overset{*}{\mathrm{EN}}\overset{*}{\overset{*}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ$	S_1	S_t	α^*_*	$1 - \beta^{**}$	PET_0^{**}	$\overset{*}{\mathbf{E}}\overset{0}{\mathbf{N}_{0}^{*}}$	S_1	S_t	$lpha_*^*$	$1 - \beta^{**}$	$\operatorname{PET}_0^{**}$	$\overset{*}{\mathrm{EN}}^{*}_{0}$
26.7 7 0 7 0.040 0.754 0.478 24.7 0 7 0.040 0.754 0.478 24.7 0 7 0.040 0.754 0.478 24.7 0 7 0.042 0.797 0.387 28.6 0 7 0.043 0.797 0.387 28.6 0 7 0.043 0.797 0.387 28.6 0 7 0.043 0.045 0.314 31.6 1 7 0.043 0.049 0.711 0.621 28.6 0 7 0.049 0.71 0.621 23.6 0 7 0.04 0.71 0.040 0.71 0.041 0 7 0.040 0.72 0.041 0.72 0.042 26.7 1 7 0.042 0.042 0.042 0.042 0.042 0.044 0.044 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0		0.549		5	0	7	0.671	0.590	19.7	0	7	0.034	0.671	0.590	19.7	0	7	0.034	0.671	0.590	19.7
26.7 9 0 7 0.043 0.797 0.387 28.6 0 7 0.043 0.797 0.387 28.6 0 7 0.045 0.819 0.314 31.6 1 7 0.045 0.71 0.045 0.819 0.314 31.6 1 7 0.040 0.771 0.621 20.1 0 7 26.7 13 0 7 0.046 0.830 0.254 33.9 1 7 0.040 0.771 0.621 23.6 0 7 26.7 15 1 7 0.040 0.782 25.4 1 7 0.042 0.549 26.7 1 7 0.042 26.7 1 7 0.042 26.7 1 7 0.042 0.831 0.442 0.831 0.442 0.831 0.442 0.831 0.442 0.831 0.442 0.442 0.831 0.442 0.842 0.74 0.744 0.814 0.648 </td <td></td> <td>0.549</td> <td></td> <td>7</td> <td>0</td> <td>7</td> <td>0.754</td> <td>0.478</td> <td>24.7</td> <td>0</td> <td>7</td> <td>0.040</td> <td>0.754</td> <td>0.478</td> <td>24.7</td> <td>0</td> <td>7</td> <td>0.040</td> <td>0.754</td> <td>0.478</td> <td>24.7</td>		0.549		7	0	7	0.754	0.478	24.7	0	7	0.040	0.754	0.478	24.7	0	7	0.040	0.754	0.478	24.7
26.7 11 0 7 0.045 0.819 0.314 31.6 1 7 0.035 0.718 0.697 20.1 0 7 26.7 13 0 7 0.046 0.830 0.254 33.9 1 7 0.040 0.771 0.621 23.6 0 7 26.7 15 1 7 0.043 0.803 0.549 26.7 1 7 0.043 0.803 0.549 26.7 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.705 25.5 1 7 0.045 0.831 0.420 31.8 1 7 26.7 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.744 0.814 0.648 2 7 0.044 0.834 0.834 0.837 32		0.549		6	0	7	0.797	0.387	28.6	0	7	0.043	0.797	0.387	28.6	0	7	0.043	0.797	0.387	28.6
26.7 13 0 7 0.046 0.830 0.254 33.9 1 7 0.040 0.771 0.621 23.6 0 7 26.7 15 15 1 7 0.043 0.830 0.549 26.7 1 7 0.043 0.803 0.549 26.7 1 7 0.043 0.803 0.549 26.7 1 7 0.043 0.829 26.7 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.705 25.5 1 7 0.046 0.831 0.420 31.8 1 7 26.7 21 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.834 0.837 32.4 2 7 0.044 0.834 0.837 32.4 2 7 0.044 0.834 0.837 32		0.549		11	0	7	0.819	0.314	31.6	-	7	0.035	0.718	0.697	20.1	0	7	0.045	0.819	0.314	31.6
26.7 15 1 7 0.043 0.839 0.549 26.7 1 7 0.043 0.839 0.549 26.7 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.420 1 7 26.7 19 2 7 0.041 0.705 2.5.5 1 7 0.046 0.831 0.420 31.8 1 7 26.7 21 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 2 7 0.046 0.837 30.3 2 7 26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.044 0.834 2 3 3 2 3 4 0.043		0.549	26.7	13	0	7	0.830	0.254	33.9	_	7	0.040	0.771	0.621	23.6	0	7	0.046	0.830	0.254	33.9
26.7 17 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.821 0.482 29.4 1 7 0.045 0.831 0.420 31.8 1 7 26.7 19 2 7 0.041 0.705 25.5 1 7 0.046 0.831 0.420 31.8 1 7 26.7 21 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 2 7 0.046 0.827 0.837 30.3 2 7 26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.047 0.834 23.7 3 7 2 7 2 2 2 2 2 2		0.549	26.7	15	1	7	0.803	0.549	26.7	_	7	0.043	0.803	0.549	26.7	_	7	0.043	0.803	0.549	26.7
26.7 19 2 7 0.041 0.792 0.705 25.5 1 7 0.046 0.831 0.420 31.8 1 7 26.7 21 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 1 7 26.7 23 3 7 0.040 0.785 0.807 26.5 2 7 0.046 0.827 0.592 30.3 2 7 26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.047 0.837 32.4 2 7		0.549		17	1	7	0.821	0.482	29.4	-	7	0.045	0.821	0.482	29.4	1	7	0.045	0.821	0.482	29.4
26.7 21 2 7 0.044 0.814 0.648 28.0 2 7 0.044 0.814 0.648 28.0 1 7 26.7 23 3 7 0.040 0.785 0.807 26.5 2 7 0.046 0.827 0.592 30.3 2 7 26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.047 0.834 0.537 32.4 2 7	_	0.549	26.7	19	2	7	0.792	0.705	25.5	_	7	0.046	0.831	0.420	31.8	-	7	0.046	0.831	0.420	31.8
26.7 23 3 7 0.040 0.785 0.807 26.5 2 7 0.046 0.827 0.592 30.3 2 7 26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.047 0.834 0.537 32.4 2 7	~	0.549		21	2	7	0.814	0.648	28.0	7	7	0.044	0.814	0.648	28.0	_	7	0.047	0.836	0.365	33.7
26.7 25 3 7 0.043 0.810 0.764 28.8 2 7 0.047 0.834 0.537 32.4 2 7	7	0.549	26.7	23	3	7	0.785	0.807	26.5	7	7	0.046	0.827	0.592	30.3	7	7	0.046	0.827	0.592	30.3
	_	0.549	•	25	3	7	0.810	0.764	28.8	7	7	0.047	0.834	0.537	32.4	7	7	0.047	0.834	0.537	32.4

Table 6.2: Attained design characteristics from deviation of Simon's Optimal II stage design ($p_0 = 0.50$, $p_1 = 0.65$, $\alpha = 0.05$, $\beta = 0.20$)

	$\overset{*}{\mathrm{EN}}^{*}_{0}$	44.5	46.0	47.4	48.7	50.1	43.7	45.5	47.2	48.9	50.5	52.1
	$\operatorname{PET}_0^{**}$	0.593	0.588	0.584	0.581	0.577	0.714	0.708	0.702	969.0	0.691	989.0
	$-\beta^{**}$	0.796	0.811	0.824	0.835	0.845	0.802	0.816	0.828	0.839	0.848	0.856
Design												
hood	s_t	∞ ∞	∞ ∞	∞ ∞	_	_	∞ ∞	_	∞ ∞	∞ ∞	∞ ∞	∞ ∞
ikeli		7 6	7 01	7 []	7 2		7 2	7 91	7 []	7 81	⁷ 61	7 02
_	***	9	~	0	0			5	2	9	5	-
	Ë	33.	35.	38.	40	41.	43.	45.	47.	48	50.	52.1
	$\operatorname{PET}_0^{**}$	092.0	0.748	0.738	0.729	0.721	0.714	0.708	0.702	0.696	0.691	0.686
a Design	$1 - \beta^{**}$	0.685	0.716	0.743	0.765	0.785	0.802	0.816	0.793	0.803	0.811	0.818
Koyama	α^{**}	0.037	0.039	0.042	0.044	0.045	0.047	0.049	0.033	0.034	0.035	0.035
n and	S_t	48	48	48	48	48	48	48	49	49	49	49
Olso	s_1	10	Ξ	12	13	14	15	16	17	18	19	20
	$\stackrel{*}{\mathrm{EN}}^*_0$	5.95	46.0	47.4	48.7	41.9	43.7	45.5	47.2	43.6	45.5	47.4
	PET_0^{**}	0.407	0.588	0.584	0.581	0.721	0.714	0.708	0.702	0.804	0.797	0.791
	$1 - \beta^{**}$	0.815	0.811	0.788	0.798	0.785	0.802	0.816	0.793	0.782	0.798	0.813
	α^*_*	0.036	0.050	0.034	0.034	0.045	0.047	0.049	0.033	0.043	0.045	0.047
ign	S_{I}	49	48	49	49	48	48	48	49	48	48	48
Thang Des	s_1	~	10	11	12	14					20	21
<u> </u>		18	20	22	24	26	28	30	32	34	36	38
		l										
	PET_0	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714
	r_t	48	48	48	48	48	48	48	48	48	48	48
	7	15	15	15	15	15	15	15	15	15	15	15
	u	83	83	83	83	83	83	83	83	83	83	83
	n_1	28	28	28	28	28	28	28	28	28	28	28
	p_1	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	p_0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Design Olson and Koyama	Chang Design Chang Design Olson and Koyama Design Olson and Koyama Design Likelihood Design $p_1 \ n_1 \ n_1 \ r_1 \ r_2 \ \text{EN}_0^{**} \ s_1 \ s_1 \ \alpha^{**} \ 1-\beta^{**} \ \text{PET}_0^{**} \ \text{EN}_0^{**} \ s_1 \ s_1 \ \alpha^{**} \ 1-\beta^{**} \ \text{PET}_0^{**} \ PE$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chang Design Probability Chang Design Probability Chang Design Probability Pr	Chang Design Probability Chang Design Probability Properties n_1 Probability Properties Probability Probability Properties Probability				Chang Design A constant Royarma Design B co	Chang Design A constant Royalma Design B co		Chang Design Chan

Table 6.3: Attained design characteristics from deviation of Simon's Minimax II stage design ($p_0 = 0.75$, $p_1 = 0.90$, $\alpha = 0.05$, $\beta = 0.20$)

	FIR	Planned Design	Pesig	E.		Attain	Attained Sample Siz	ple Size							Rec	Redesign									
							_	Chang De	sign					Olsc	n and	Koyama	Design			ĽĚ	eliho	od Design			
	1 n1					EN_0	n_1^{**}	s_1	S_{t}	$lpha_*^*$	$1 - \beta^{**}$	PET_0^{**}	$\overset{*}{\mathrm{EN}}^{*}_{0}$	s_1	S_{I}	$lpha_*^*$	$1 - \beta^{**}$	$\operatorname{PET}_0^{**}$	$\overset{*}{\mathrm{EN}}\overset{*}{\overset{*}{0}}$	s_1	S_{I}	$lpha_*^*$	$1 - \beta^{**}$	$\operatorname{PET}_0^{**}$	$\mathbf{E}\mathbf{N}_0^*$
0.75 0.9		39	17	33	-	27.5	12	∞	34	0.019	0.648	0.351	29.5	6	33	0.045	0.763	0.609	22.5	∞	33	0.050	0.805	0.351	29.5
0.75 0.9	9 22	39	17	33	_	27.5	14	10	33	0.050	0.800	0.479	27.0	Ξ	33	0.042	0.738	0.719	21.0	10	33	0.050	0.800	0.479	27.0
	9 22	39	17	33	0.677	27.5	16	12	33	0.048	0.792	0.595	25.3	12	33	0.048	0.792	0.595	25.3	Ξ	33	0.051	0.809	0.370	30.5
0.75 0.9	9 22	39	17	33	_	27.5	18	13	34	0.019	0.650	0.481	28.9	4	33	0.047	0.782	0.694	24.4	13	33	0.051	0.807	0.481	29.0
0.75 0.9	9 22	39	17	33	0.677	27.5	20	15	34	0.019	0.650	0.585	27.9	15	34	0.019	0.650	0.585	27.9	15	33	0.050	0.805	0.585	27.9
0.75 0.9	9 22	39	17	33	_	27.5	22	17	33	0.050	0.802	0.677	27.5	17	33	0.050	0.802	0.677	27.5	17	33	0.050	0.802	0.677	27.5
	9 22	39	17	33	0.677	27.5	24	19	33	0.049	0.798	0.753	27.7	19	33	0.049	0.798	0.753	27.7	18	33	0.051	0.810	0.578	30.3
	9 22	39	17	33	0.677	27.5	56	21	33	0.048	0.791	0.816	28.4	20	34	0.019	0.650	0.663	30.4	20	33	0.051	0.810	0.663	30.4
0.75 0.9		39	17	33	_	27.5	28	23	33	0.046	0.782	0.865	29.5	22	34	0.019	0.650	0.736	30.9	22	33	0.051	0.810	0.736	30.9
0.75 0.9	9 22	39	17	33	0.677	27.5	30	25	33	0.043	0.770	0.902	30.9	23	34	0.019	0.650	0.652	33.1	23	33	0.051	0.810	0.652	33.1
0.75 0.9	9 22	39	17	33	0.677	27.5	32	26	34	0.019	0.650	0.847	33.0	25	34	0.019	0.650	0.722	33.9	25	33	0.051	0.810	0.722	33.9

Table 6.4: Attained design characteristics from deviation of Simon's Optimal II stage design ($p_0 = 0.05$, $p_1 = 0.20$, $\alpha = 0.10$, $\beta = 0.10$)

		$\overset{*}{\mathbf{N}}_{0}^{0}$	2.2	0.9	9.3	2.1	4.5	9.9	8.4	8.6	1.1
		PET_0^*	0.950	0.857	0.774	969.0	0.63	0.569	0.513	0.463	0.418
	gu	$1 - \beta^{**}$	0.192	0.465	0 2 0.064 0.635	0.741	0.805	0.843	0.864	0.876	0.882
	ood Desig	$lpha_*^*$	0.016	0.043	0.064	0.081	0.093	0.102	0.108	0.112	0.114
	eliho	S_{t}	2	7	7	7	7	7	7	7	7
	ĽĚ	s_1	0	0	0	0	0	0	0	0	0
		$ ext{EN}_0^*$	2.2	0.9	9.3	12.1	14.5	16.6	18.4	19.8	18.5
	u				0.774						
	ma Design	$1 - \beta^{**}$	0.200	0.484	0 2 0.064 0.635	0.741	0.805	0.714	0.727	0.733	0.842
design	nd Koya	α_*^*	0.050	0.097	0.064	0.081	0.093	0.028	0.029	0.029	0.098
Re	on a	S_t	0	_	7	7	7	8	\mathcal{E}	κ	7
	OIs	s_1	0	0	0	0	0	0	0	0	-
		$\mathbf{E}\mathbf{N}_0^*$	2.2	0.9	9.3	12.1	14.5	16.6	18.4	16.5	18.5
					0.774						
		$1 - \beta^{**}$	0.200	0.484	0.635	0.741	0.805	0.714	0.727	0.802	0.842
		α^*_*	0.050	0.097	0.064	0.081	0.093	0.028	0.029	0.086	0.098
	sign	S_{I}	0	_	7	7	7	3	κ	7	7
Attained Sample Size	Chang De	s_1	0	0	0	0	0	0	0	1	1
ed San		n_1^{**}	1	κ	2	7	6	Ξ	13	15	17
Attain		\mathbf{EN}_0	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
		PET_0	0.630	0.630	0.630	0.630	0.630	0.630	0.630	0.630	0.630
		r_t	2	7	7	7	0 2	7	7	7	7
esign		7.1	0	0	0	0	0	0	0	0	0
Planned Design		и	24	24 0	24 0 2	24	24	24	24	24	24
lann		n_1	6	6	6	6	6	6	6	6	6
Ч		p_1	0.2 9 24 0 2	0.2	0.2 9	0.2	0.2	0.2	0.2	0.2	0.2
					0.05						0.05

Table 6.5: Attained design characteristics from deviation of Admissible II stage design ($p_0 = 0.30$, $p_1 = 0.45$, $\alpha = 0.10$, $\beta = 0.10$)

		$^*N^{\Xi}_0$	53.5	51.4	56.2	54.5	53.1	52.2	56.1	55.4	55.0	58.2	58.1
					0.386								
	,	$1-\beta^{**}$	0.902	0.897	0.910	0.907	0.904	0.901	0.912	0.910	0.908	0.915	0.914
	d Design	$lpha_*^*$	0.099	0.097	0.101	0.100	0.099	0.097	0.101	0.100	0.099	0.103	0.102
	elihoc	S_I	56	56	56	56	56	56	56	56	56	56	26
	Lik	s_1	7	∞	∞	6	10	Ξ	Ξ	12	13	13	14
		$\overset{*}{\mathrm{EN}}^*_0$	46.0	44.7	49.8	48.6	53.1	52.2	51.6	55.4	55.0	58.2	58.0
		$\operatorname{PET}_0^{**}$	0.577	0.636	0.542	0.599	0.510	0.566	0.618	0.536	0.587	0.509	0.559
	Design	$1-\beta^{**}$	0.871	0.862	0.892	988.0	0.904	0.901	0.897	0.871	0.908	0.875	0.874
lesign	Koyama	$lpha_*^*$	060.0	0.087	0.095	0.093	0.099	0.097	0.095	0.065	0.099	990.0	990.0
Rec	n and	S_{t}	56	56	56	56	56	56	56	27	56	27	27
	Olsc	s_1	∞	6	6	10	10	11	12	12	13	13	14
		$\stackrel{*}{\mathrm{EN}}^*_0$	53.5	51.4	56.2	54.5	53.1	52.2	51.6	51.4	51.5	54.9	55.1
		PET_0^{**}	0.411	0.479	0.386	0.450	0.510	0.566	0.618	0.665	0.708	0.635	0.678
		$1-\beta^{**}$	0.902	0.897	0.870	0.907	0.904	0.901	0.897	0.893	0.889	906.0	0.904
		$lpha_*^*$	0.099	0.097	0.065	0.100	0.099	0.097	0.095	0.094	0.091	0.098	0.097
	sign	S_I	56	56	27	56	56	56	56	56	56	56	56
ple Size	Chang Des	s_1	7	8	8	6	10	11	12	13	14	14	15
Attained Sample Si	0	n_1^{**}	27	29	31	33	35	37	39	41	43	45	47
Attaine		EN_0		52.2	52.2	52.2	52.2	52.2	52.2	52.2	52.2	52.2	52.2
		\mathbf{PET}_0	0.566	0.566	0.566	0.566	0.566	0.566	0.566	0.566	0.566	0.566	0.566
			56	56	56	56	56	56	56	56	56	56	26
Planned Design		7.	=	Π	Ξ	11	11	Π	Ξ	11	Π	Ξ	11
Jed D		и	72	72	72	72	72	72	72	72	72	72	72
Plan		n_1	37	37	37	37	37	37	37	37	37	37	37
		p_1	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
					0.3								0.3

Table 6.6: Attained design characteristics from deviation of Simon's Minimax II stage design ($p_0 = 0.75$, $p_1 = 0.90$, $\alpha = 0.10$, $\beta = 0.10$)

		$\operatorname{PET}_0^{**}$	0.235	0.332 33.0	0.256	0.346	0.439	0.529	0.443	0.527	909.0	0.526	0.600
	υź			0.900									
	od Desig	$lpha_*^*$	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096
	eliho	S_t	33	33	33	33	33	33	33	33	33	33	33
	Ε̈́Ε	s_1	Ξ	13	14	16	18	20	21	23	25	26	28
		$\overset{*}{\mathrm{EN}}\overset{*}{\overset{*}{0}}$	30.2	28.8	31.8	31.0	33.4	33.1	33.3	35.3	35.8	37.4	38.2
		$\operatorname{PET}_0^{**}$	0.426	0.535	0.433	0.532	0.439	0.529	0.613	0.527	909.0	0.526	0.600
	a Design			0.890									
design	d Koyam	$lpha_*^*$	0.094	0.092	0.095	0.095	0.096	0.096	0.096	0.096	0.096	0.096	0.096
Re	on and	S_{f}	33	33	33	33	33	33	33	33	33	33	33
	Ols	s_1	12	4	15	17	18	20	22	23	25	56	78
		$\overset{*}{\mathbf{E}}\overset{0}{\mathbf{N}}$	34.6	33.0	31.8	34.1	33.4	33.1	33.3	33.8	34.7	36.0	37.4
		PET_0^{**}	0.235	0.332	0.433	0.346	0.439	0.529	0.613	0.688	0.753	0.808	0.853
		$1 - \beta^{**}$	0.900	0.900	0.899	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900
		$lpha_*^*$	960.0	960.0	0.095	960.0	960.0	960.0	0.096	960.0	0.096	960.0	0.096
	sign	S_{f}	33	33	33	33	33	33	33	33	33	33	33
Attained Sample Size	Chang De	s_1	=	13	15	16	18	20	22	24	56	28	30
ed Sar		n_1^{**}	17	19	21	23	25	27	59	31	33	35	37
Attain		EN_0	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1	33.1
		PET_0	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529
		r_t	33	33	33	33	33	33	33	33	33	33	33
esign		7	20	20	20	20	20	20	20	50	20	20	20
Planned Design		и	9	40	4	9	40	4	9	40	9	4	9
Plan			27	27	27	27	27	27	27	27	27	27	27
		p_1	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0
		p_0	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

Figures 6.1 and 6.2 display Monte Carlo simulation results for an average of 20 two-stage designs that are Minimax, Optimal, or Admissible with $\alpha = 0.05$, $\beta = 0.20$ and $n_t^{**} = n_1^{**} + n_2$ and $n_t^{**} = n_t$, respectively. Therefore, each point will be an average of attained type I error or power for 20 two-stage designs under different sample size deviations. These simulations further support our choice to keep the planned total sample size as planned because the error rates are closer to the original design more often for sample size deviations ± 10 when maintaining the original total sample size rather than original second stage sample size (Figures 6.1 and 6.2). In Figure 6.1 we see that the average type I error rate for the Likelihood design is often above 0.05; we see a parabolic decrease in power in Chang *et al.*'s method and a sharp linear increase in power in the OK method, which is not a fruitful result.

When keeping the original total sample size as planned, Figure 6.2 shows that, on average, the Likelihood two-stage design has power above the nominal power and type I error rate below the nominal α -level for all sample size deviations ± 10 . Both Chang *et al.*'s and Olson and Koyama's methods are conservative in type I error for all sample size deviations and thus are more likely to suffer in power. Figure 6.3 shows a similar Monte Carlo simulation, though it displays the average of the average type I error rate and the average type II error rate. The simulation confirms that the Likelihood design minimizes the average of the error rates, while Chang *et al.*'s method performs better in this sense when there is under-enrollment, while Olson and Koyama performs better when there is over-enrollment.

Figure 6.1: Monte Carlo Simulation of Average Type I Error Rates and Power of 20 Two-Stage Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_1^{**} + n_2)$. Number of Simulations = 10000. Olson and Koyama Chang et al. Likelihood Design Deviation from planned sample size 0.85 0.80 0.75-0.70 Average Power Olson and Koyama Chang et al. Likelihood Design Deviation from planned sample size 0.04 -0.08 Average Type I Error 0.05 0.07

Figure 6.2: Monte Carlo Simulation of Average Type I Error Rates and Power of 20 Two-Stage Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_t)$. Number of Simulations = 10000. Olson and Koyama Chang et al. Likelihood Design Deviation from planned sample size Average Power 0.80 0.70 Olson and Koyama Chang et al. Likelihood Design Deviation from planned sample size Average Type I Error 0.050 -0.045 -0.035 -

Figure 6.3: Monte Carlo Simulation of the Average of the Average Type I and Type II Error Rates of 20 Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_t)$ Number of Simulations = 10000.

Discussion and Conclusion

Deviations from the planned second stage sample size has been better studied than deviations from the planned first stage sample size. Some methods have been proposed on decision rules, and Koyama and Chen had introduced a redesign when the first stage sample size is as planned. Because the calculation of a proper p-value in this case is more straightforward than when stage I differs, there may be less literature proposing these redesigns. Though, one could calculate a p-value ignoring the sample paths for deviations in either the first or second stage as if the two-stage design were a single stage with attained values. If this were done, the decision could be different than that of the proper p-value which considers sample paths, and how to decide how small the p-value is needed in order to determine statistical significance is unclear.

We focused our investigation and results on deviations from the planned first stage sample size. One argument against redesigning these trials in the first place could be that researchers always have the option to simply wait until stage I sample size is met. In practice, though, some ethical matters may arise that would give the researcher incentive to evaluate the first stage prematurely. For instance, if a new regimen appears to be more beneficial than historical treatments, but statistical requirements prevent new subjects from being enrolled until all currently enrolled subjects record responses, a researcher may consider this unethical. In this case, $n_1^{**} < n_1$ where n_1^{**} would be subjects who have recorded responses. Having a decision rule for a case such as this would alleviate some discomfort from both the researcher and statistician, though abuse of new decision rules would be discouraged.

We suggest a redesign of a trial for attained sample sizes using the planned total sample size for practical reasons such as resources and inability to stray far from the planned design. A numerical study also suggested that it may be desirable to redesign trials using the planned total sample size because it better controls type I error for all attained methods and power is closer to the nominal power more often. Furthermore, if one employs Chang *et al.*'s method, the sample size is radical in the first stage, and the resulting probability of continuing is less than 0.05, it will be impossible for a type I error to occur. This will then reduce the two-stage design to a one-stage design which is considerably different than the planned design, so this is further support for using the planned total sample size. Assuming that redesigns use the planned total sample size, results from different two-stage designs were presented. Chang *et al.* and the Olson and Koyama methods primarily differ when there are extreme sample size shifts. This is most likely due to the nature of their methods and their primary goals of maintaining type II error spending versus probability of early termination.

Recommending the use of these designs in practice will depend on the desire of statistical approach of the researcher. Blume states, "Hypothesis testing procedures do not place any interpretation on the numerical value of the likelihood ratio. The extremeness of an observation is measured, not by the magnitude of the likelihood ratio, but by the probability of observing a likelihood ratio that large or larger. It is the tail area, not the likelihood ratio, that is the meaningful quantity in hypothesis testing" [17]. Thus, the primary argument for using Chang *et al.*'s or the OK method is in the case that the researcher does not want to abandon hypothesis testing. If the researcher prefers to use a traditional frequentist approach with hypothesis testing, it may be recommended that the Olson and Koyama's approach is used because it results in higher average power across deviations. Because it may be of concern that researchers take advantage of the ability to deviate from the planned design, Olson and Koyama's method also penalizes deviation by resulting in a higher probability of early termination when there is under-accrual than Chang *et al*'s method.

Overall, there are many advantages to using a Likelihood two-stage design. One advantage to the Likelihood design is that it is able to add cohorts of subjects at the end of the

second stage if weak evidence is obtained without threatening frequentist properties such as type I error. Another advantage to the Likelihood approach is that inference is more straightforward because one is not concerned with error rates or p-values. The likelihood is unaffected by the number of looks at the data and the evidence is independent of the probability of observing misleading evidence [17]. Though we don't consider calculating p-values when stage I differs from planned, it would be complicated if one wished to do so, whereas Likelihood methods would not require this because evidence is represented by a simple calculation of the likelihood ratio. Likelihood designs are also more generalizable. The Likelihood two-stage approach could be generalized easily to three stages, whereas the Chang *et al.* and OK designs would not be able to generalize in such a way. In this paper, though, we are very much restricting the Likelihood design and not taking full advantage of its natural characteristics. One could simply use a pure Likelihood design and avoid traditional frequentist issues altogether.

In general, though, if a researcher wanted to design a study using the restricted designs as described in this paper, the OK design and the Likelihood design are highly competitive and achieve similar results when the probability of early termination is reasonable (i.e. above 50%). One design may be more favorable than the other depending on the hypotheses being tested and the amount of over- or under-enrollment.

We do not consider redesigns when both the first and second stage accrual are not as planned because if one is interested in prespecifying stopping criteria for sample size deviations, the number of combinations needed to be specified in order to prespecify the exact combination that will occur is unreasonable. Though, these attained designs are able to accommodate if this is desired. Lastly, a primary concern that we have with redesigning trials for unplanned sample sizes is that researchers could take advantage of the these new stopping criteria and stray from the planned design too often. It is for this reason that one may consider adapting Chang *et al.*'s design using a very conservative rule in the first stage and have the probability of early termination under the null always be higher than planned.

When deviations are extreme, especially where there is underacrrual, evaluating the trial early would be highly penalized by potentially having a very high probability of early termination. Overall, intentional early or late evaluation of the first stage without sound reason is highly discouraged and will not result in optimal statistical properties.

REFERENCES

- [1] R. Porcher and K. Desseaux, "What inference for two stage phase II trials?," *BMC Medical Research Methodology*, vol. 12, p. 117, 2012.
- [2] R. Simon, "Optimal two-stage designs for phase II clinical trials," *Controlled Clinical Trials*, vol. 10, pp. 1–10, 1989.
- [3] T. Koyama and H. Chen, "Proper inference from simon's two-stage designs," *Statistics In Medicine*, vol. 27, pp. 3145–3154, 2008.
- [4] S.-H. Jung, Y. Lee, K. Kim, and S. L. George, "Admissible two-stage designs for phase II cancer clinical trials," *Statistics In Medicine*, vol. 23, pp. 561–569, 2004.
- [5] J. Whitehead, "On the bias of maximum likelihood estimation following a sequential test," *Biometrika*, vol. 73, pp. 573–581, 1986.
- [6] M. Chang, H. Wieand, and V. Chang, "The bias of the sample proportion following a group sequential phase II trial," *Statistics in Medicine*, vol. 24, pp. 1009–1027, 1989.
- [7] H. Guo and A. Liu, "a simple and efficient bias-reduced estimator of response probability following a group sequential phase II trial," *J Biopharm Stat*, vol. 15, pp. 773–781, 2005.
- [8] S. Jung and K. Kim, "On the estimation of the binomial probability in multistage clinical trials," *Statistics in Medicine*, vol. 23, pp. 881–896, 2004.
- [9] W. Tsai, Y. Chi, and C. Chen, "Interval estimation of binomial proportion in clinical trials with a two-stage design," *Statistics in Medicine*, vol. 23, pp. 15–35, 2008.
- [10] S. Jung, K. Owzar, S. George, and T. Lee, "P-value calculation for multistage phase II cancer clinical trials," *J Biopharm Stat*, vol. 16, pp. 765–775, 2006.

- [11] D. Zeng, F. Gao, K. Hu, C. Jia, and J. Ibrahim, "Hypothesis testing for two-stage designs with over or under enrollment," *Statistics in Medicine*, vol. 34, pp. 2417–2426, 2015.
- [12] S. Green and S. Dahlberg, "Planned versus attained design in phase II clinical trials," *Statistics in Medicine*, vol. 11, pp. 853–862, 1992.
- [13] T. Chen and T. Ng, "Optimal flexible designs in phase II clinical trials," *Statistics in Medicine*, vol. 17, pp. 2301–2312, 1998.
- [14] Y. Li, R. Mick, and D. Heitjan, "A bayesian approach for unplanned sample sizes in phase II clinical trials," *Clinical Trials*, vol. 9, pp. 293–302, 2012.
- [15] M. Chang, Y. Li, and Q. An, "Alternative designs for phase II clinical trials when attained sample sizes are different from planned sample sizes," *Biometrics and Biostatistics*, vol. 6, p. 229, 2015.
- [16] D. Ayers and J. Blume, "Likelihood designs for single-arm phase II clinical trials with a binary endpoint," Manuscript in preparation.
- [17] J. Blume, "Tutorial in biostatistics, likelihood methods for measuring statistical evidence," *Statistics in Medicine*, vol. 21, pp. 2563–2599, 2002.
- [18] J. Blume *Personal Communication*, Spring 2016.
- [19] J. Blume, "How often likelihood ratios are misleading in sequential trials," *Communications in Statistics Theory and Methods*, vol. 37, no. 8, pp. 1193–1206, 2008.