Sampling from $N(\mu,\sigma^2)$ (what if σ^2 is unknown? I. $X \sim N(\mu,\sigma^2)$ $= \sum_{i=1}^{n} O_i X_i$ $= \sum_{i=1}^{n} O_i X_i$ $= \sum_{i=1}^{n} O_i X_i$ $= \sum_{i=1}^{n} O_i X_i$

2. If $V=Z^2$, then $V, N, \chi^2(1)$.

If $V=\sum_{i=1}^{\infty} \frac{(x_i-\mu_i)^2}{(because of independence)}$.

3. $S^2 = \frac{1}{n-1} \sum_{i} (x_i - \overline{x})^2$ $E[S^2] = \sigma^2 \quad (ie, S^2 \text{ is an unbiased stringfor of } S^2)$

 $\frac{(n-1)S^{2}}{6^{2}} = \frac{\sum (x_{1}-\overline{x})^{2}}{6^{2}} \sim \sqrt{2(n-1)}$