

2008级《微积分A》第一学期期末

参考答案及评分标准

2009.1.16

一、每小题 3 分, 共 30 分.

1.
$$e^4$$
;

2.
$$\frac{1}{2}\arctan^2 x + x \ln x - x + C$$
;

3.
$$x=1$$
. 第一类;

3.
$$x=1$$
, 第一类; 4. $y'=10^{x\tan(2x)}[\tan(2x)+2x\sec^2(2x)]\ln 10$;

5.
$$y = \frac{1}{x}$$
; 6. $\frac{16}{15}$;

6.
$$\frac{16}{15}$$

7.
$$\frac{d^2y}{dx^2} = \frac{1}{t^3}$$
;

9.
$$a=1$$
, $b=-\frac{3}{2}$; 10. $-e^2$.

10.
$$-e^2$$
.

二、
$$(9 \, \text{分})$$
解:对应齐次方程的特征方程: $r^2 + 1 = 0$

.....2 分

对应齐次方程的特征根:
$$r_1 = -i, r_2 = i$$

$$r_1 = -i, r_2 = i$$

对应齐次方程的通解: $Y(x) = C_1 \cos x + C_2 \sin x$ 5 分

由于w=0不是对应齐次方程的特征根,故非齐次方程的特解可设为:

$$\overline{y} = ax^2 + bx + c,$$

.....7 分

$$\overline{y}' = 2ax + b, \quad \overline{y}'' = 2a,$$

代入原方程,得

$$2a + ax^2 + bx + c = x^2 + x$$

比较 x 的同次幂系数, 得 a=1, b=1, 2a+c=0, $\Rightarrow c=-2$

故原方程的特解为: $\bar{y} = x^2 + x - 2$

$$\overline{y} = x^2 + x - 2$$

故原方程的通解为:
$$y = C_1 \cos x + C_2 \sin x + x^2 + x - 2$$
9 分

三、(9分)解: 1. 连续性: f(0) = 0, $f(0+) = \lim_{x \to 0+} f(x) = 0 = f(0-)$

故
$$f(x)$$
在 $x=0$ 处连续。

.....4分

2. 可导性: 由于 f(x) 在 x = 0 处连续, 所以

所以F(x)是周期为2的周期函数。

.....10 分

$$=\frac{8}{3}\pi$$
10 \Rightarrow

X	(-∞,1)	1	(1,2)	2	(2,+∞)
f'(x)	_	0	+	0	+
f(x)	\	极小值	↑	非极值	↑

X	$(-\infty, \frac{4}{3})$	4/3	(4/3,2)	2	(2,+∞)
f''(x)	+	0	_	0	+
f(x)	U	拐点	Λ	拐点	U

方程化简得:
$$\frac{dv}{dt} = -\frac{g}{16}(v-16)$$

