Math 10 — Unit 2 Quick Check Mr. Merrick

Instructions. Answer each question. For numeric response, write your final value clearly in the box.

A. Multiple Choice

Select one option.

1. Simplify $\frac{(3 x^2 y^{-1})^2}{(x^{-2} y^3)^2}$ and write with positive exponents.

(A) $\frac{9 x^8}{y^8}$ (B) $\frac{9}{x^8 y^8}$

(A)
$$\frac{9x^8}{y^8}$$

(B)
$$\frac{9}{x^8 y^8}$$

(C)
$$9x^8y^8$$

(D)
$$\frac{9x^4}{y^2}$$

Solution: (A) $\frac{(3^2)x^4y^{-2}}{x^{-4}y^6} = \frac{9x^{4+4}}{y^{2+6}} = \frac{9x^8}{y^8}$

2. Which equals $\frac{1}{(a^{-3}b^2)^{-1}c^{-2}}$ for $a, b, c \neq 0$?

(A)
$$\frac{b^2c^2}{a^3}$$

(A)
$$\frac{b^2c^2}{a^3}$$
 (B) $\frac{a^3}{b^2c^2}$

(C)
$$a^{-3}b^2c^{-2}$$

(D)
$$\frac{b^{-2}}{a^3c^2}$$

Solution: (A) $(a^{-3}b^2)^{-1} = a^3b^{-2}$, so $\frac{1}{a^3b^{-2}c^{-2}} = \frac{b^2c^2}{a^3}$

3. Compute $(3.20 \times 10^{-2})(4.50 \times 10^{5})$ in scientific notation.

(A)
$$1.44 \times 10^4$$

(B)
$$14.40 \times 10^3$$

(C)
$$14.40 \times 10^4$$

(D)
$$1.44 \times 10^3$$

Solution: (A) $(3.20 \cdot 4.50) \times 10^{-2+5} = 14.40 \times 10^3 = 1.44 \times 10^4$

4. Compute $\frac{0.45 \times 10^{-6}}{6.0 \times 10^2}$ in scientific notation.

(A)
$$7.5 \times 10^{-10}$$

(B)
$$0.75 \times 10^{-9}$$
 (C) 7.5×10^{-8}

(C)
$$7.5 \times 10^{-8}$$

(D)
$$0.75 \times 10^{-7}$$

Solution: (A) $\frac{0.45}{6.0} \times 10^{-6-2} = 0.075 \times 10^{-8} = 7.5 \times 10^{-10}$

5. $(32)^{\frac{3}{5}}$ equals

$$(A)$$
 8

$$(C)$$
 6

(D)
$$10$$

Solution: (A) $32^{1/5} = 2 \Rightarrow 2^3 = 8$

6. Simplify $\sqrt{72 x^5 y^4}$ for $x, y \ge 0$.

(A)
$$6x^2y^2\sqrt{2x}$$
 (B) $6xy^2\sqrt{2x}$ (C) $\sqrt{72x^5y^4}$

(B)
$$6xy^2\sqrt{2x}$$

(C)
$$\sqrt{72 x^5 y^4}$$

(D)
$$6x^2y^2\sqrt{2y}$$

Solution: (A) $\sqrt{72} = 6\sqrt{2}$, $\sqrt{x^5} = x^2\sqrt{x}$, $\sqrt{y^4} = y^2$

7. Write $a^{3/4}b^{1/4}$ as a single radical $(a, b \ge 0)$.

Solution: (A) $a^{3/4}b^{1/4} = \sqrt[4]{a^3b}$

8. Which is *not* in proper scientific notation?

(A) 9.99×10^{0}

(B) 1.01×10^9

(C) 12.0×10^{-4}

(D) 6.2×10^{-3}

Solution: (C) Mantissa must be in [1, 10)

9. Simplify $\frac{x^{1/2}y^{-1}z^3}{x^{-3/2}y^2z^{-1}}$ and write with positive exponents.

(A) $\frac{x^2z^4}{v^3}$ (B) $\frac{xz^2}{v^3}$ (C) $\frac{x^2}{vz^4}$

(D) $\frac{x^2y^3}{x^4}$

Solution: (A) $x^{1/2-(-3/2)} = x^2$, $y^{-1-2} = y^{-3}$, $z^{3-(-1)} = z^4$

10. Simplify $(27 a^9 b^6)^{2/3}$ for a, b > 0.

(A) $9a^6b^4$

(B) $3a^6b^4$

(C) $9a^3b^2$

(D) $\sqrt[3]{27}a^9b^6$

Solution: (A) $(27)^{2/3} = 9$, $a^{(9)(2/3)} = a^6$, $b^{(6)(2/3)} = b^4$

11. Write $a^{2/5}b^{3/5}$ as a single radical $(a, b \ge 0)$.

(A) $\sqrt[5]{a^2b^3}$

(B) \sqrt{ab}

(C) $\sqrt[2]{a^5b^5}$

(D) $\sqrt[3]{ab}$

Solution: (A) Common denominator 5

12. Convert to a *simplified* mixed radical: $\sqrt{200 \, x^3 y}$ for $x, y \ge 0$.

(A) $10xy\sqrt{2x}$

(B) $10x\sqrt{2xy}$

(C) $5x\sqrt{8xy}$

(D) $4xy\sqrt{50x}$

Solution: (B) $\sqrt{200x^3y} = \sqrt{200}\sqrt{x^3}\sqrt{y} = 10\sqrt{2} \cdot x\sqrt{x} \cdot \sqrt{y} = 10x\sqrt{2xy}$ (simplified mixed radical)

13. Evaluate $\sqrt[3]{-125 x^7}$ for $x \ge 0$ and write in simplest radical form.

(A) $-5x^2\sqrt[3]{x}$ (B) $-5x^2\sqrt{x}$ (C) $-5x^{7/3}$

(D) $5x^{7/3}$

Solution: (A) $\sqrt[3]{-125} = -5$, $x^{7/3} = x^2 \sqrt[3]{x}$

14. Choose the simplest equivalent form of $(a^4b^5)^{1/2}$ for $a, b \ge 0$.

(A) $a^2b^2\sqrt{b}$

(B) $ab^2\sqrt{ab}$

(C) $a^2\sqrt{b^5}$

(D) $\sqrt{a^4b^5}$

Solution: (A) $a^{4/2} = a^2$, $b^{5/2} = b^2 \sqrt{b}$

15. Which is **improper** scientific notation?

(A) 7.1×10^{-3}

(B) 0.91×10^7

(C) 9.99×10^{0}

(D) 1.0×10^{-9}

Solution: (B) Mantissa must be in [1, 10)

16. Evaluate $(5.0 \times 10^3) (2.0 \times 10^{-3}) x^0, x > 0.$

(A) 10

(B) 1

(C) 0

(D) 10^0

Solution: (A) $(5.0 \cdot 2.0) \times 10^{3+(-3)} \cdot 1 = 10$ since $x^0 = 1$ for $x \neq 0$.

B. Numeric Response

Write your final answer clearly in the box.

1. Evaluate $(64)^{\frac{3}{6}}$.

Solution: $(64)^{1/2} = 8$

2. Evaluate $(81)^{-\frac{1}{4}}$.

Solution: $\frac{1}{3}$

3. Compute $(3.20 \times 10^6) + (4.50 \times 10^5)$ in scientific notation.

Solution: 3.65×10^6

4. Compute $\frac{7.2 \times 10^3}{8.0 \times 10^{-2}}$ in scientific notation.

Solution: 9.0×10^4

5. If $(2^{x-1})(2^{2x+5}) = 2^{25}$, find x.

Solution: $(x-1) + (2x+5) = 25 \Rightarrow 3x + 4 = 25 \Rightarrow x = 7$

6. Evaluate $\frac{(6 \times 10^{-1})^2}{3 \times 10^{-4}}$ in scientific notation.

Solution: $\frac{36 \times 10^{-2}}{3 \times 10^{-4}} = 12 \times 10^2 = 1.2 \times 10^3$

C. Written Response

Show full reasoning; express final answers with positive exponents and/or radicals.

1. Simplify completely:

$$\frac{18\,x^4y^{-2}}{9\,x^{-1}y^3}.$$

Solution: $\frac{18}{9} \cdot x^{4-(-1)} \cdot y^{-2-3} = 2x^5y^{-5} = \frac{2x^5}{y^5}$

2. Write the product in scientific notation and name the exponent rule used:

$$(3.2 \times 10^3)(4.5 \times 10^2).$$

 $Solution: \ (3.2 \cdot 4.5) \times 10^{3+2} = 14.40 \times 10^5 = 1.44 \times 10^6; \ \mathrm{rule} \ 10^m \cdot 10^n = 10^{m+n} \ \mathrm{with \ normalization}$

3. Write $4\sqrt{6}$ as an *entire* radical.

Solution:
$$4\sqrt{6} = \sqrt{4^2 \cdot 6} = \sqrt{96}$$

4. Rewrite using radicals and simplify (assume $x, y \ge 0$):

$$x^{\frac{7}{3}}y^{\frac{5}{4}}$$
.

Solution: $x^{7/3} = x^2 \sqrt[3]{x}$, $y^{5/4} = y \sqrt[4]{y}$, so $x^2 y \sqrt[3]{x} \sqrt[4]{y}$

5. Simplify $(144 x^{10} y^7)^{1/2}$ for $x, y \ge 0$.

Solution:
$$12 x^5 y^3 \sqrt{y}$$

6. Rationalize and simplify: $\frac{7}{3\sqrt{5}}$.

Solution:
$$\frac{7}{3\sqrt{5}} = \frac{7\sqrt{5}}{3\cdot 5} = \frac{7\sqrt{5}}{15}$$

7. Order from least to greatest:

$$0.00034$$
, 3.4×10^{-4} , 5.0×10^{-5} .

Solution:
$$5.0 \times 10^{-5} < 3.4 \times 10^{-4} = 0.00034$$

8. Solve for t > 0: $t^{3/2} = 16\sqrt{t}$.

Solution: Divide by
$$t^{1/2}$$
: $t = 16$

9. A bacterium has diameter 2.8×10^{-6} m. Using $\pi \approx 3.14$, express the area of its circular cross-section in scientific notation.

Solution:
$$r = 1.4 \times 10^{-6}$$
, $A \approx 3.14 \times (1.4)^2 \times 10^{-12} = 6.15 \times 10^{-12} \text{ m}^2$

10. Simplify

$$\frac{(27a^{-3}b^6)^{1/3}}{(3a^{-1}b^2)^2} \qquad (a, b \neq 0).$$

Solution: Num =
$$3a^{-1}b^2$$
, Den = $9a^{-2}b^4$, result = $\frac{a}{3b^2}$

11. If $x^3y^2 = 2^73^6$ and $\frac{x}{y} = 2^{-1}3^2$, find x and y in prime-power form.

Solution: Let $x=2^a3^b$, $y=2^c3^d$. Then 3a+2c=7, 3b+2d=6, and a-c=-1, b-d=2. Solve $\Rightarrow a=1, b=2, c=2, d=0$. So $x=2^13^2=18, y=2^2=4$

12. The power model $y = ax^r$ passes through (2, 12) and (5, 75). Find r.

Solution:
$$\frac{75}{12} = (\frac{5}{2})^r \Rightarrow r = 2$$

13. Solve for integers x, y: $2^{x+1} + 2^x = 3^{y+1} - 3^y$.

Solution:
$$2^x(2+1) = 3^y(3-1) \Rightarrow 3 \cdot 2^x = 2 \cdot 3^y \Rightarrow 3^{1-y} = 2^{1-x} \Rightarrow x = 1, y = 1$$

14. Let $f(x) = 2^{4x-6}$. Compute f(x) f(3-x) and explain briefly.

Solution:
$$2^{4x-6} \cdot 2^{12-4x-6} = 2^0 = 1$$
 (exponents add to 0)

15. Solve: $3^{x+1} + 2^{x+2} + 2^x = 2^{x+3} + 3^x$.

Solution:
$$3^x(3-1) + 2^x(4+1-8) = 0 \Rightarrow 2 \cdot 3^x - 3 \cdot 2^x = 0 \Rightarrow \left(\frac{3}{2}\right)^x = \frac{3}{2} \Rightarrow x = 1$$

16. Evaluate the following expression:

$$\frac{3^9+3^8}{3^6+3^6+3^6}.$$

Solution:
$$\frac{3^8(3+1)}{3 \cdot 3^6} = \frac{4 \cdot 3^8}{3^7} = 12$$

17. Arrange the numbers below in ascending order:

$$2^{30}$$
, 3^{24} , 6^{12} , 5^{18} .

Solution: Write each as $(\cdot)^6$: $32^6, 36^6, 81^6, 125^6 \Rightarrow 32 < 36 < 81 < 125$; hence $2^{30} < 6^{12} < 3^{24} < 5^{18}$.

18. Simplify the following expressions:

(a)
$$\left(\frac{\sqrt[3]{x^3y^6}}{16x^8y^{-2}}\right)^{-\frac{2}{5}}$$
, $x, y > 0$

Solution: $\sqrt[3]{x^3y^6} = xy^2$, so inside $=\frac{xy^2}{16x^8y^{-2}} = \frac{y^4}{16x^7}$. Then raising to $-\frac{2}{5}$ gives

$$\left(\frac{y^4}{16x^7}\right)^{-\frac{2}{5}} = \left(\frac{16x^7}{y^4}\right)^{\frac{2}{5}} = 16^{\frac{2}{5}} \, x^{\frac{14}{5}} \, y^{-\frac{8}{5}} = \frac{2x^2}{y} \, \sqrt[5]{\frac{8x^4}{y^3}} \, .$$

(b)
$$\sqrt[3]{\frac{9a^2b}{4c^3} \left(\frac{4c^3}{9a^2b}\right)^4}$$
, $a \neq 0, b \neq 0, c \neq 0$

Solution:
$$\frac{9a^2b}{4c^3} \cdot \frac{4^4c^{12}}{9^4a^8b^4} = \frac{4^3c^9}{9^3a^6b^3} = \left(\frac{4}{9}\right)^3 \cdot \frac{c^9}{a^6b^3}$$
, so the cube root is $\frac{4}{9} \cdot \frac{c^3}{a^2b} = \frac{4c^3}{9a^2b}$.

19. Simplify (assume $m \neq 0$).

(a)
$$y^5 \div y^{-2} \times y$$

Solution: $y^{5-(-2)+1} = y^8$

(b)
$$\frac{42a^{-3}b^2c}{-14a^2b^{-1}c^{-2}}$$

Solution:
$$\frac{42}{-14} \cdot a^{-3-2} \cdot b^{2-(-1)} \cdot c^{1-(-2)} = -3a^{-5}b^3c^3 = -\frac{3b^3c^3}{a^5}$$

(c)
$$\frac{m \cdot m \cdot m \cdot m}{m + m + m + m}$$

Solution:
$$\frac{m^4}{5m} = \frac{m^3}{5}$$