

Mapping logs – mapping efficiency

- Program specific how the output will be (STAR, Bowtie, BWA, Tophat...)
- Always gives:
 - % uniquely mapping ideally around 90% for 100 bp reads
 - % multi-mapping will depend on read length
 - % unmapped could indicate contaminations, adaptors
- Also statistics on:
 - Mismatches / indels
 - Splice junctions

Bad mapping – what to do?

- First step try to figure out why it failed. With the use of FastQC/RseQC/Mapping logs.
 - Perhaps also look for contaminant species
 - Redo library prep controlling for possible errors
- Low mapping, but not completely failed.
 - Figure out why!
 - Is it equal for all samples?
 - Could it introduce any bias in the data?

SAM/BAM file formats

- All mapped reads with location in genome, mapping information etc.
- SAM (Sequence Alignment/Map) format alignment.sam
- BAM is a compressed sam format alignment.bam
- A bam-file (always) needs to be indexed and sorted alignment.bam.bai
- Samtools a simple program for converting between bam/sam, indexing, sorting, filtering, etc.

Code

```
$ module load bioinfo-tools
```

^{\$} module load samtools

SAM/BAM file format

```
115275270
HWI-ST1018:7:1101:1648:2188#0
                                    chr1
                                                          255
                                                                 1S100M =
                                                                                115275321
                                                                                               152
\tt NTTCTATATTGGTTGCTCGCTCTAATTTGTCACGTCGGTCTGTTGAAATATTAAACCTAACATGGTCACCTTCCAGCAGGGTCACCTTGGATTTCGTATCT
NH:i:1
HI:i:1 AS:i:194
                      nM:i:0
HWT-ST1018:7:1101:1648:2188#0
                                           115275321
                                                                                               -152
                             147
                                    chr1
                                                          255
                                                                 101M
                                                                                115275270
AAACCTAACATGGTCACCTTCCAGCAGGGTCACCTTGGATTTCGTATCTTTGTCTCCAAAGGGAAGTTCTTTAGGGATCACAAAGTCNANTTTGNTNNGTC\\
BBccbdccccccbbcccccddcddeeeeccqqqqqhihiiiiifhihfqiiihhhihiiiiihhiiiiihhihinqd]RBRBec]QBQBBbbb
                                                                                               NH:i:1
HT:i:1 AS:i:194
HWI-ST1018:7:1101:2039:2206#0
                             99
                                    chr19 14574483
                                                          255
                                                                 1S72M85N28M
                                                                                       14574529
232
       NCCTTCCGCAACCCTGTCATTGAGAGGATTCCTCGGCTCCGACGGCAGAAGAAAATTTTCTCCAAGCAGCAAGGGAAGGCGTTCCAGCGTGCTAGGCAGAT
BP\cceeefqqqghhighiiiiiiiihhhiiiiihiiiiihiggeeedddddbbbcccbbccb^[`aaccccccccX]accccc^acc]bc^b a]
                                                                                               NH:i:1
HT:i:1 AS:i:203
                      nM:i:0 XS:A:+
                                    chr19
HWI-ST1018:7:1101:2039:2206#0
                             147
                                           14574529
                                                                  26M85N75M
                                                                                       14574483
       GAAGAAAATTTTCTCCAAGCAGCAAGGGAAGGCGTTCCAGCGTGCTAGGCAGATGAACATCGATGTCGCCACGTGGGTGCGCTGCTCCGGAGGCTCATCC
]ccdcccbbbacbcaccccbcccccccbcccacccccdd dddeeeeeeeggggiiiiihihiiiiiiiihihiiiiiiiifigggeeeeebbb
HT:i:1 AS:i:203
                     nM:i:0 XS:A:+
```

More details on:

http://samtools.github.io/hts-specs/SAMv1.pdf http://genome.sph.umich.edu/wiki/SAM

After mapping - RseQC package

- General sequence QC:
 - sequence quality
 - nucleotide composition bias
 - PCR bias and
 - GC bias
- RNA-seq specific QC:
 - evaluate sequencing saturation
 - mapped reads distribution
 - coverage uniformity
 - strand specificity
 - Etc..
- Some tools for file manipulations

Code

- \$ module load bioinfo-tools
- \$ module load rseqc/2.4

```
$ geneBody_coverage.py -r
ref.bed12 -i mappedReads.bam -o
genecoverage
```

http://rseqc.sourceforge.net/

Soft clipping - clipping profile.py

clipping profile

Gene coverage - geneBody_coverage.py

Not degraded

Degraded

Distance between PE-reads - inner_distance.py

Where in the genome do your reads map? - read_distribution.py

Group	Total_bases	Tag_count	Tags/Kb
CDS_Exons	33302033	20002271	600.63
5'UTR_Exons	21717577	4408991	203.01
3'UTR_Exons	15347845	3643326	237.38
Introns	1132597354	6325392	5.58
TSS_up_1kb	17957047	215331	11.99
TSS_up_5kb	81621382	392296	4.81
TSS_up_10kb	149730983	769231	5.14
TES_down_1kb	18298543	266161	14.55
TES_down_5kb	78900674	729997	9.25
TES_down_10kb	140361190	896882	6.39

Known and novel splice junctions — junction_saturation.py or junction_annotation.py

Gene detection subsampling - RPKM_saturation.py How deep do you need to sequence?

Bad RseQC output – what to do?

- Try to figure out what went wrong.
 - Redo library prep controlling for possible errors
 - Is it equal for all samples?
 - Could it introduce any bias in the data?
- RNA-degradation in some samples
 - Possible to use a region at 3' end for expression estimates.

MultiQC – summary of QC stats

