Linguaggi Formali e Traduttori

- automi finiti e espressioni regolari -

alcuni esercizi risolti

- 1. Definire degli automi finiti che riconoscano i seguenti linguaggi:
 - a. Insieme delle stringhe sull'alfabeto {a, b, c} che contengano almeno una a e almeno una b

b. Insieme delle stringhe di 0 e 1 con al massimo una coppia di 1 consecutivi.

- 2. Definire automi a stati finiti non deterministici che accettino i seguenti linguaggi. Si sfrutti il più possibile il non determinismo.
 - a) Insieme di tutte le stringhe sull'alfabeto {0, 1, 2, 3} tali che la cifra finale non sia comparsa in precedenza.

3. Progettare un ε-NFA che riconosca l'insieme delle stringhe formate da 01 ripetuto una o più volte oppure da 010 ripetuto una o più volte, sfruttando le ε-transizioni per renderlo semplice.

4. Costruire un automa deterministico equivalente al seguente automa non deterministico:

$$ECLOSE(A) = {A, B, C, E}$$
 $ECLOSE(D) = {D}$

$$ECLOSE(B) = \{B, E\}$$
 $ECLOSE(E) = \{E\}$

 $ECLOSE(C) = \{B, C, E\}$

	0	1	2
→ * [A,B,C,E]	[B,C,E]	[E]	[D]
*[B,C,E]	[B,C,E]	[E]	[D]
*[E]	[B,C,E]	[E]	[D]
*[D]	/	/	/

5. Calcolare, seguendo la definizione passo per passo, la $\hat{\delta}(q_0, bba)$ per l'automa M dell'esercizio precedente.

$$\begin{split} & \hat{\delta}(q_0,\,bba) = \mathsf{ECLOSE}(\delta(\hat{\delta}(1,\,bb),\!a)) = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\hat{\delta}(1,\!b),\!b)),\!a)) = \\ & = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\hat{\delta}(1,\!\epsilon),\!b)),\,b)),\!a)) = \\ & = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\{1,\!2\},\!b)),\,b)),\!a)) = \\ & = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(3),\,b)),\!a)) = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\delta(\{2,\!3\},\,b)),\!a)) = \\ & = \mathsf{ECLOSE}(\delta(\mathsf{ECLOSE}(\{3,\!4\}),\!a)) = \mathsf{ECLOSE}(\delta(\{2,\!3,\!4\}),\!a)) = \mathsf{ECLOSE}(\{3,\!4\}) = \{2,\!3,\!4\} \end{split}$$

- 6. Scrivere delle espressioni regolari che denotino i seguenti linguaggi:
 - a) Insieme delle stringhe sull'alfabeto {a, b, c} che contengano almeno una a e almeno una b.

$$(a+b+c)$$
* $a (a+b+c)$ * $b (a+b+c)$ * $+ (a+b+c)$ * $b (a+b+c)$ * $a (a+b+c)$ *

7. Per la seguente espressione regolare, costruire un NFA che accetti il linguaggio da essa denotato. $(a+b)ab^*$

Costruire un automa deterministico equivalente.

8. Dato il seguente automa:

Costruire un automa finito che riconosca il linguaggio inverso.

9. Data la seguente espressione regolare:

$$(aa)*aba^+ + (ab)*b^+a*$$

trovare un'espressione regolare che denoti il linguaggio inverso.

$$a*b^{+}(ba)* + a^{+}ba(aa)*$$

10. Costruire degli automi che riconoscano i linguaggi unione, concatenazione, inversione, intersezione e differenza dei linguaggi riconosciuti dai due automi seguenti:

12. Costruire l'automa minimo equivalente al seguente automa:

Automa deterministico:

		а	b
1	[A]	[A,B]	[A]
2	[A,B]	[A,B]	[A,C]
3	[A,C]	[A,B,D]	[A,B]
4	[A,B,D]	[A,B]	[A,C]

$$\Pi_0 = \{1, 2, 3\}, \{4\}$$

$$\Pi_1 = \{1,\ 2\},\ \{3\},\ \{4\}$$

$$\Pi_1 = \{1\}, \ \{2\}, \ \{3\}, \ \{4\}$$

L'automa è minimo