# Adaboost for Multilabel Classification

Hongyu Su

Aalto University February 11, 2013

### 1 Notations

$$S = \{(x_1, y_1), \cdots, (x_m, y_m)\} \in \{X, Y\}^m$$

is a sequence of training examples where each **instance**  $x_i$  belongs to a instance space  $\mathcal{X}$  and **label**  $y_i$  belongs to a finite label space  $\mathcal{Y}$ . We first focus on **binary** classification and put constraints on label space  $\mathcal{Y} \in \{-1, +1\}$ .

We further assumes a **distribution**  $\mathcal{D}$  over training examples  $\{1, \dots, m\}$ , indices of  $\mathcal{S}$ . The distribution  $\mathcal{D}$  is the weight of the training examples, reveals the importances during training phase. Naturally, we have

$$\sum_{i=1}^{m} D(i) = 1$$

Given training examples S and distribution D, a **weak**(or **base**) learner computes a **weak**(or **base**) hypothesis h. In general, h has the form  $h: \mathcal{X} \to \mathcal{R}$ . We interpret the sign of  $h(X_i)$  as the predicted label  $\{-1, +1\}$  of instance  $x_i$ .

## 2 Adaboost

The idea of adaboost[1] is to use weak learner to form a highly accurate prediction rule by calling the weak leaner repeated on different distribution  $\mathcal{D}$  of the training examples  $\mathcal{S}$ .

Let

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x),$$

where T is number of iteration,  $h_t$  is the tth weak hypothesis. Prediction from adaboost is given by |f(x)|.

### 2.1 Algorithm

A generalised version of Adaboost is shown in Algorithm 1.

# Algorithm 1 Generalised version of Adaboost

**Require:**  $\{S = \{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathcal{X}, y_i \in \{-1, +1\}\}$ 

Ensure: Output  $H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$ 

1: initialisation:  $D_1(i) = \frac{1}{m}, i \in \{1, \dots, m\}$ 

2: for t = 1 to T do

3: Train weak leaner using distribution  $D_t$ 

4: Get weak hypothesis  $h_t: (X) \to \mathcal{R}$ 

5: Choose  $\alpha_t \in \mathcal{R}$  {introduce later}

6: Update:

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

7: for i = 1 to m do

8: Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

9: end for

10: **end for** 

#### 2.2 Loss Bound

The following **loss bound** holds on training errors of H.

$$\frac{1}{m}|H(x_i) \neq y_i, \forall i| \leq \prod_{t=1}^{T} Z_t$$

#### Proof

According to update rule in Algorithm 1, we have

$$D_{T+1}(i) = \frac{\exp(-\sum_t \alpha_t y_i h_t(x_i))}{m \prod_t Z_t}$$

In addition, we have

$$\frac{1}{m} \sum_{i} |H(x_i) \neq y_i| \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$
$$= \sum_{i=1}^{m} D_{T+1}(i) \left(\prod_{t} Z_t\right)$$
$$= \prod_{t} Z_t$$

This tells us that, in order to minimise training error, a reasonable approach is to minimise the bound give above by minimising  $Z_t$  in each boosting iteration.

#### 2.3 Choose $\alpha_t$

Let  $u_t(i) = y_t h_t(x_i)$ , in the iteration we have

$$Z_{t} = \sum_{i=1}^{m} D(i) \exp(-\alpha_{t} u_{t}(i))$$

$$\leq \sum_{i=1}^{m} D(i) \left( \frac{1 + u_{t}(i)}{2} e^{\alpha_{t}} + \frac{1 - u_{t}(i)}{2} e^{\alpha_{t}} \right)$$

Therefore, a solution that minimizes  $Z_t$  is given by

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 + \sum_{i=1}^m D_t(i) u_t(i)}{1 - \sum_{i=1}^m D_t(i) u_t(i)} \right)$$

## 2.4 Compute Weak hypothesis

If we choose

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 + \sum_{i=1}^m D_t(i) u_t(i)}{1 - \sum_{i=1}^m D_t(i) u_t(i)} \right),\,$$

training loss is bounded by

$$\frac{1}{m} \sum_{i} |H(x_i) \neq y_i| \leq \prod_{t} Z_t$$

$$\leq \sqrt{1 - (\sum_{i=1}^{m} D_t(i)u_t(i))^2}$$

$$= \sqrt{1 - (\sum_{i=1}^{m} D_t(i)y_i h_t(x_i))^2}$$

This means, in order to minimise training error, we minimise the error made by weak hypothesis in each boosting iteration.

## 2.5 Base Learner

Base learner should be able to work on weighted training data (e.g Decision, KNN, Naive Bayes).

## 2.6 An Example with Decision Tree

## 3 AdaboostMH

In multilabel classification setting we have training examples

$$S = \{(x_1, y_1), \cdots, (x_m, y_m)\} \in \{\mathcal{X}, \mathcal{Y}\}^m.$$

# 4 Hongyu Su



 ${\bf Fig.\,1.}$  An Example of Adaboost with decision tree as base learner.

Instead of  $\mathcal{Y} \in \{-1, +1\}$ , we have  $\mathcal{Y} \in \{-1, +1\}^k$ .

We define a **distribution**  $\mathcal{D}$  over training examples  $\{1, \dots, m\}$  (indices of  $\mathcal{X}$ ) and labels  $\{1, \dots, k\}$  (indices of  $\mathcal{Y}$ ). The distribution  $\mathcal{D}$  is the weight of the training examples and labels, reveals the importances during training phase. Naturally, we have

$$\sum_{i=1}^{m} \sum_{l=1}^{k} D(i,l) = 1$$

#### 3.1 **Multilabel Hamming Loss**

To minimise multilabel hamming loss, one way is to decompose the problem into k orthogonal binary classification problem, which we think  $Y \in \{-1, +1\}^k$  as k binary labels defined as Y[l]. Multilabel Hamming loss is regarded as the average error rate on k binary problems.

#### 3.2 Algorithm

A generalised version of AdaboostMH is shown in Algorithm 2.

```
Algorithm 2 Generalised version of Adaboostmh
```

```
Require: S = \{(x_i, y_i), \dots, (x_m, y_m)\}, x_i \in \mathcal{X}, y_i \in \{-1, +1\}^k
Ensure: Output H(x,l) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x,l)\right)
     initialisation: D_1(i) = \frac{1}{mk}
     for t = 1 to T do
         Train weak leaner using distribution D_t
         Get weak hypothesis h_t : \mathcal{X} \times \mathcal{Y} \to \mathcal{R}
         Choose \alpha_t \in \mathcal{R}
         Update:
                                    Z_{t} = \sum_{i=1}^{m} \sum_{l=1}^{k} D_{t}(i, l) \exp(-\alpha_{t} Y_{i}[l] h_{t}(x_{i}, l))
         for i = 1 to m do
             for l = 1 to k do
                                        D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l] h_t(x_i,l))}{Z_t}
             end for
         end for
     end for
```

#### 3.3 Loss Bound

Multilabel hamming loss for training data is bounded by

$$hloss(H) \le \prod_{t=1}^{T} Z_t,$$

where  $Z_t = \sum_{i,l} D_t(i,l) \exp(-\alpha_t Y_t[l] h_t(x_i,l))$ .

### 3.4 Choose $\alpha$

 $\alpha$  can be chosen by minimizing Z as

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 + r_t}{1 - r_t} \right),\,$$

where  $r_t = \sum_{i,l} D_t(i,l)(Y_t[l]h_t(x_i,l))$ 

# 3.5 Compute Weak Hypothesis

Set  $\alpha$  to optimal value, we have

$$Z_t = \sqrt{1 - r_t^2}$$

As a result, the goal of weak learner is to minimize weighted hamming loss with respect to  $D_t$ 

# References

1. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. In: Machine Learning. pp. 80–91 (1999)