

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICA

Departamento de Matemática

Primer Semestre de 2019

Profesor: Fernando Quintana – Ayudante: Rubén Soza

Modelos Probabilísticos - EYP1026 Ayudantía 9

9 de Mayo de 2019

1. Sea X una variable aleatoria absolutamente continua con densidad

$$f_X(x) = \frac{1}{2}e^{|x|}, \quad x \in \mathbb{R}.$$

- a) Calcule Var(X).
- b) Sea $Y = \mu + \lambda^{-1}X$. Encuentre su función de densidad, E(Y) y Var(Y).
- c) Sea $Z = e^X$. Muestre que $E(Z) = \infty$.
- 2. Sean $X \sim U(0,1), \mu = E(X), \sigma^2 = Var(X)$.
 - a) Calcule $P(|X \mu| > k\sigma)$.
 - b) Encuentre cotas para la expresión en a) utilizando desigualdades vistas en clases. Compare ambas cotas tomando k=1.
- 3. Sea $X \sim \text{Beta}(\alpha, \beta)$. Calcule $E(X^k)$ para $k \in \mathbb{N}$.
- 4. Sean X,Y dos variables aleatorias independientes, positivas. Si $E(|X|)<\infty$ y $E(|Y|)<\infty$ demuestre que

$$E\left(\frac{Y}{X}\right) \geqslant \frac{E(Y)}{E(X)}.$$

5. Sea $X \sim \text{Log-Normal}(\mu, \sigma^2)$ con función de densidad

$$f_X(x) = \frac{1}{\sigma x \sqrt{\pi}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}.$$

- a) Muestre que $E(X^k)$ existe para $k \in \mathbb{N}$.
- b) Muestre que la función generadora de momentos no existe para ningún t>0.
- 6. Sea $X \sim NB(r, p)$ con $r \in \mathbb{N}, p \in (0, 1)$.
 - a) Encuentre la función generadora de momentos de X y deje explícito el intervalo donde t vive.
 - b) Calcule Var(X).
 - c) Considere Y=2pX. Demuestre que la distribución de Y cuando $p\to 0$ tiende a una χ^2_{2r} . **Nota:** La función generadora de momentos de una $X\sim\chi^2_1$ es

$$M_X(t) = \frac{1}{\sqrt{1-2t}}, \quad t < \frac{1}{2}.$$