Normed space

Xie Zejian

Contents

Existence of bias														1
Inequality														1
Normed Vector spaces														2

Existence of bias

Every non-zero vector space has a basis.

Proof Let \mathcal{X} be the class of all independent subsets of space V. Then (\mathcal{X}, \subset) is a poset. Forall chain $\mathcal{Y} \subset \mathcal{X}$, note $\cup \mathcal{Y} \in \mathcal{X}$ is a upper bound of \mathcal{Y} . Apply Zorn's lemma we can find a maximal element $B \in \mathcal{X}$ and $\langle B \rangle = V$, so B forms a basis of V.

Inequality

Young's inequality

Let f be a continues and strictly increasing function with f(0) = 0, then we have

$$ab \le \int_0^a f(x)dx + \int_0^b f^{-1}(x)dx$$

Take $f(x) = x^{p-1}$, then $f^{-1}(x) = x^{q-1}$ if $(p-1)(q-1) = 1 \iff \frac{1}{p} + \frac{1}{q} = 1$. Hence we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Holder's inequality

For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{\ltimes}$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\sum |a_i b_i| = |\mathbf{a}|' |\mathbf{b}| \le ||\mathbf{a}||_p ||\mathbf{b}||_q$$

Minkowski's inequality

For $\mathbf{a}, \mathbf{b} \in \mathbb{F}^n$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\|\mathbf{a} + \mathbf{b}\|_p \le \|\mathbf{a}\|_p + \|\mathbf{b}\|_p$$

Normed Vector spaces

Let $(X, +, \cdot)$ be a vector space over \mathbb{F} . A norm on X is a function from $X \to \mathbb{R} \ge \mathcal{F}$ satisfy:

- 1. $||x|| \ge 0$ and = occurs iff x = 0
- $2. ||x+y|| \le ||x|| + ||y||$
- 3. ||cx|| = |c|||x||

A vector space with a norm is **normed vector space**.

Let **c** is $n \times 1$ and $\mathbf{X} = \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \cdots & \mathbf{x_n} \end{bmatrix}$ is $n \times n$ where x_i is n vector. Then

$$\|\mathbf{X}\mathbf{c}\| = \|\sum c_i \mathbf{x_i}\|$$

$$\leq \sum \|c_i \mathbf{x_i}\|$$

$$= \sum |c_i|\|\mathbf{x_i}\|$$

$$= \|\mathbf{X}\||\mathbf{c}|$$

where

$$\|\mathbf{X}\| = \begin{bmatrix} \|\mathbf{x_1}\| & \|\mathbf{x_2}\| & \cdots & \|\mathbf{x_n}\| \end{bmatrix}, |\mathbf{c}| = \begin{bmatrix} |c_1| \\ |c_2| \\ \vdots \\ |c_n| \end{bmatrix}$$

Then we give some examples of normed space:

Let $\ell^p, 1 \leq p < \infty$, be collection of sequence satisfying

$$\sum_{1}^{\infty} |x_i|^p < \infty$$

It's a vector space and

$$||x||_p = (\sum_{1}^{\infty} |x_i|^p)^{\frac{1}{p}}$$

defines a norm on ℓ^p

Let ℓ^{∞} be the collection of all $\mathbb F$ valued bounded sequences, it's a vector space and

$$||x||_{\infty} = \sup_{i} |x_i|$$

defines a proper norm.

Let $(X, \|\cdot\|)$ be a normed space, define $d(x,y) = \|x-y\|$, one can check d is a metric and is called as induced metric of the form. Then we can talk about convergence in this space. Clearly, the norm is a continuous function and + and \cdot are also continuous.

If $x_n \to x$ in $\|\cdot\|_1 \Longrightarrow x_n \to x$ in $\|\cdot\|_2$, we say $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$. If they are stonger than each other, we say they are equivalent.

All norm on finite dimensional space are equivalent.

Proof It's sufficient to show that every norm is equivalet to $\|\cdot\|_2$:

$$\|\mathbf{x}\| = \|\mathbf{E}\mathbf{x}\| \le \|\mathbf{E}\| \|\mathbf{x}\| \le \|\mathbf{x}\|_2 \|(\|\mathbf{E}\|')\|_2 = c\|\mathbf{x}\|_2$$

where

$$\mathbf{E} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \cdots & \mathbf{e_n} \end{bmatrix} = \mathbf{I}$$

This state that $\|\cdot\|$ stronger than any norm. On the other hand, consider

$$\alpha = \inf\{\|\mathbf{x}\| : \|\mathbf{x}\|_2 = 1\}$$

It's positive since $\{\|\mathbf{x}\|_2 = 1\}$ is compact. Then we have

$$\alpha \leq \|\frac{\mathbf{x}}{\|\mathbf{x}\|_2}\| = \frac{\|\mathbf{x}\|}{\|\mathbf{x}\|_2} \implies \|\mathbf{x}\| \geq \alpha \|\mathbf{x}\|_2$$

For any abstract space X, $x \in X$ can be presented as linear combinations of bias, say $x = \sum a_i e_i$, then $x \mapsto (a_1, \dots, a_n)$ is isomorph from X to \mathbb{R}^{\times} . And any norm iduced a norm on \mathbb{R}^{\times} by

$$||x|| = ||(a_1, \cdots, a_n)\widetilde{|}|$$

Hence all norm is equivalent.

Separability

A subset E of (X, d) is a **dense set** if its closure is X:

$$\overline{E} = X$$

A metric space is called **separable** if it has a countable dense subset.

${\bf Completeness}$

A metric space (X, d) is **complete** if every Cauchy sequence converges.

Every metric space has a completion