• Algoritmus strojového učení na základě analýzy konvexního obalu

Obr. 2: Konvexní a nekonvexní množina

- Příznakové prostory (podobné rysy)
 - o početní matematika a statistika
 - Analýza bodů
 - o početní geometrie
 - Analýza konvexních obalů
- nejmenší možný konvexní obal
 - o Graham, Jarvis, Chan

Obr. 1: Vzdálenost bodů x1 a x2 od konvexního obalu conv(X)

• měření vzdálenosti bodu od konvexního obalu

- o SVM, SK-algoritmus, MDM-algoritmus
- hloubka průniku (F=1) conToConv or pointToConv
 - nejmenší vzdálenosti vektoru takového, že objekt A posuneme tak, aby s objektem B měly prázdný průnik.
- více dimenzí -> hodně dat
- místo zpracování všech bodů množiny v daném prostoru zpracujeme pouze vrcholy konvexního obalu
- Lineární program -> MINIMAX -> odhad bodu na conv obalu pomoci těžiště

Obr. 3: Množina X (2D); konvexní obal P; těžiště c; testované body/vektory b₁, b₂, b₃; optimální hodnoty

LP pro tvto body označené z*

- \circ z * < 1: Bod b leží uvnitř conv(X)
- \circ z * = 1: Bod b leží na hranici conv(X)
- \circ z * > 1: Bod b leží vně conv(X)

$$D = ||b|| |z^* - 1|/z^*$$

Rovnice 2: Určení vzdálenosti bodu b od hranice konvexního obalu

- testován na známém problému diagnózy rakoviny prsu
 - o ušetřit výpočetní výkon a zároveň zmenšit chybu při výsledné klasifikaci.