


```
Numpy are excellent but run on CPU only

Tensors in Tensorflow and PyTorch are attempts to make it run on GPU.

Why Tensors!
```


Formats are near similar!	Formats are near similar!	
Numpy	TensorFlow	
a = np.zeros((2,2)); b = np.ones((2,2))	a = tf.zeros((2,2)), b = tf.ones((2,2))	
np.sum(b, axis=1)	tf.reduce_sum(a,reduction_indices=[1])	
a.shape	a.get_shape()	
np.reshape(a, (1,4))	tf.reshape(a, (1,4))	
b * 5 + 1	b * 5 + 1	
np.dot(a,b)	tf.matmul(a, b)	
a[0,0], a[:,0], a[0,:]	a[0,0], a[:,0], a[0,:]	
11/22/2024	Dr	

```
TensorFlow requires explicit evaluation!

a = np.zeros((2,2))

ta = tf.zeros((2,2))

print(a)

[[ 0. 0.]

[ 0. 0.]]

print(ta)

TensorFlow computations define a computation graph that has no numerical value until evaluated!

print(ta)

Tensor("zeros_1:0", shape=(2, 2), dtype=float32)

print(ta.eval())

[[ 0. 0.]

[ 0. 0.]
```

```
Session Object

Itil version 1:

"A Session object encapsulates the environment in which Tensor objects are evaluated"

TensorFlow Docs

a = tf.constant (5.0)
b = tf.constant (6.0)

c = a * b

with tf.Session() as sess:
    print(sess.run(c))
    print(c.eval())
```


Features	PyTorch	TensorFlow 2.0
Created by	FAIR Lab (Facebook AI Research Lab)	Google Brain Team
Based on	Torch	Theano
Production	Research focused	Industry-focused
Visualization	Visdom	Tensorboard
Deployment	Torch Serve (experimental)	TensorFlow Serve
Mobile Deployment	Yes (experimental)	Yes
Device Management	CUDA	Automated
Graph Generation	Dynamic and static mode	Eager and static mode
Learning Curve	Easier for developers and scientists	Easier for industry-level projects
Use Cases	Facebook CheXNet Tesla Autopilot Uber PYRO	Google Sinovation Ventures PayPal China Mobile

Defining a Simple Neural Network TensorFlow PyTorch □ Recently Keras, a neural network framework □ Neural network will be a class and using which uses TensorFlow as the backend was torch.nn package merged into TF Repository. □ Import the necessary layers that are needed to ☐ From then on the syntax of declaring layers in build your architecture. TensorFlow was similar to the syntax of Keras. □ All the layers are first declared in the init () ☐ First, we declare the variable and assign it to method, and then in the forward() method we the type of architecture we will be declaring, in define how input x is traversed to all the layers this case a "Sequential()" architecture. in the network. □ Next, we directly add layers in a sequential □ Declare a variable model and assign it to the manner using model.add() method. defined architecture (model = NeuralNet()) □ The type of layer can be imported from tf.layers

Reflect... Loss Function: Used to evaluate how well our algorithm is modeling training data. If our prediction is completely off, then the function will output a higher number else it will output a lower number. Activation function A neuron should be activated or not, is determined by an activation function Neuron has two functions—an Aggregation function and an Activation function. Perceptron: Perceptron is a single neuron neural network. Perceptron is a binary classifier, and it is used in supervised learning. A simple model of a biological neuron in an artificial neural network is known as Perceptron. Backpropagation: Backpropagation: Backpropagation of error to learn model parameters. Algorithms are a set of methods to solve NN as optimization problem.

