

Topics

Dense prediction

- ► Semantic image segmentation
- ► Keypoint detection
- Image restoration

Building blocks

- Upsampling layers
- ▶ U-Nets & Conditional GANs

This Week in Al Drag Your GAN

Image from youtube

We often want to predict something for every input image pixel

- ► This is called dense prediction
- ► How can we achieve that?

Obvious solution is to avoid pooling

- We already established this is too slow
- Also receptive field increases slowly so missing context

Solution is to use an encoder-decoder architecture

- ► Encoder learns high-level features
- ▶ Decoder maps these features back to original size

Layer types

- ► Encoder: conv and pooling layers (e.g. ResNet)
- Decoder: conv and upsampling layers

Dense Prediction Upsampling – Interpolatuion

One way is to utilize standard 2D upsampling techniques

- ► Nearest neighbor or bilinear interpolation
- Independently per channel

Fast and simple

Usually paired with a conv layer

► To learn useful features / transformations

Dense Prediction Upsampling – Interpolation

Example ("inverse max-pooling")

- ▶ Upsampling by factor of 2
- Nearest neighbor interpolation

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix}$$

Dense Prediction Upsampling - Transposed Convolutions

Transposed convolutions are convolutions with stride 1/s

- ► Also called fractionally strided convolutions
- See link below for animations of variants

Image from github

Dense Prediction Upsampling - Transposed Convolutions

Learnable upsampling

- ► More powerful than pure interpolation
- But often leards to artifacts due to overlapping kernel

Image from github

Subpixel convolutions are most recent upsampling method

- Usually outperforms other methods covered
- Also called pixel shuffle

Operation

- ▶ Given input of size $(C \cdot r^2) \times H \times W$
- ▶ Rearange (shuffle) to $C \times rH \times rW$
- ▶ Then do a stride 1 convolution

Dense Prediction Upsampling – Subpixel Convolutions

Example with r=3 and $9\times7\times7$ input

We can train such networks like we did before

- ► Gradient descent and backpropagation
- Just define a suitable loss depending on task

However this would probably not work very well because

- ► The network has no idea how objects look like
- Spatial information is lost due to excessive downsampling

To address this we

- ▶ Pre-train the encoder (e.g. ImageNet classification)
- ▶ Use skip-connections across the two parts

Dense Prediction U-Nets

A popular method for defining these connections is U-Net [2]

- ► Skip from before every downsampling layer
- ► To after every corresponding upsampling layer
- ► Concatenate (not sum) signals

Skip-connections forward high-resolution data

- ► Makes spatial information available to decoder
- Signals are concatenated due to different nature

Modern U-Nets often use

- ► A ResNet for downsampling
- ► Subpixel convolutions for upsampling

Dense Prediction Applications

We now have all we need to solve various tasks

- ightharpoonup Simply choose C of output accordingly
- And use a suitable loss function
- ► Always pre-train the encoder

We will cover three popular applications

Semantic Image Segmentation

Task definition

- ► Given T classes
- Assign a class label to each image pixel

Image from cocodataset.org

Semantic Image Segmentation

Implementation

- Configure last layer to output T channels
- lackbox Use cross-entropy loss $L_p(oldsymbol{ heta})$ for every pixel p
- lacksquare Minimize $L(oldsymbol{ heta}) = \sum_p L_p(oldsymbol{ heta})$

Keypoint detection task definition

- ightharpoonup Given K keypoints
- Locate each keypoint in image (multiple times)

A popular application is (sparse) human pose estimation

Keypoints for hands, feet, shoulders etc.

Implementation

- ightharpoonup Configure last layer to output K channels
- ► Each channel encodes keypoint confidences (confidence map)
- ▶ Use e.g. L2 loss $L_c(\theta)$ (MSE loss) for every channel c
- Minimize $L(\boldsymbol{\theta}) = \sum_{c} L_c(\boldsymbol{\theta})$

Supporting multiple instances requires keypoint matching

► Can be done in post-processing step

Note that dense prediction is not mandatory

Could simply regress keypoint coordinates

But dense prediction is more flexible & powerful

- Confidences facilitate downstream tasks
- Can predict additional dense data (e.g. part affinity fields)

Image from [3]

Human pose estimation with OpenPose [3]

link

Image restoration aims to improve image quality

Common tasks

- ► Remove overlays and compression artifacts
- Sharpen or upscale

mage from medium.com

Implementation

- ▶ Configure last layer to output C_0 channels (usually $C_0 = 3$)
- Train on pairs of low-quality and high-quality images
- ▶ Use L2 loss $L_p(\theta)$ for every pixel p
- lacksquare Minimize $L(oldsymbol{ heta}) = \sum_p L_p(oldsymbol{ heta})$

Generating large datasets is comparatively easy

- ► Take high-quality images
- Degrade them automatically depending on task (e.g. blur)

Image from medium.com

The resulting network would probably be

- ► Good at removing text and compression artifacts
- ► Not so good at sharpening the image

Image from medium.com

Because L2 loss does not capture sharpness well

- ▶ Blurring has little effect on most pixel values
- Per-pixel losses cannot capture overall sharpness

Image from [4]

Unclear how to define a good loss for sharpness

► Maybe we can "learn" it?

To do so we use an adversarial loss

- ► Loss function is a binary classifier \mathcal{D} (discriminator or critic)
- ► That answers "is the given image real or fake?"

In our context of image restoration

- "real" means an original high-quality image
- "fake" means one processed by the network

Image Restoration GANs

This is a Conditional Generative Adversarial Network (GAN)

- ightharpoonup Generator $\mathcal G$ (our encoder-decoder) learns to fool the critic
- Critic learns not to be fooled

Image Restoration GANs

If ${\mathcal G}$ can reliably fool ${\mathcal D}$

- ▶ Processed images look just like high-quality ones
- ► And thus must be high-quality themselves

Image from sigmoidal.io

Image Restoration GANs

 ${\cal G}$ and ${\cal D}$ form a single network during training

- ightharpoonup Gradients flow from $\mathcal D$ to $\mathcal G$
- ightharpoonup So ${\cal G}$ learns via (cross-entropy) loss on ${\cal D}$

Image from sigmoidal.io

Training is an iterative process

- ▶ Train \mathcal{D} (but not \mathcal{G}) on real and fake images
- ▶ Train \mathcal{G} (but not \mathcal{D}) on fake images
- Repeat

Loss usually does not converge

- Look at generated images during training
- Accuracy of $\mathcal D$ should eventually be pprox 0.5

Typical training loop (many variants exist)

ightharpoonup k is a hyperparameter (often k=1 works fine)

```
while not done:
   for k iterations:
     sample half of mini-batch from dataset (class real)
     sample half of mini-batch from G (class fake)
     train D on mini-batch (but not G)

sample mini-batch from G (class real (!))
train G trough D on mini-batch (but not D itself)
```


GANs

GANs are a flexible framework with many applications

More in next lecture

Make sure to pre-train both $\mathcal G$ and $\mathcal D$ (if possible)

Training GANs from scratch is a pain

Bibliography

- [1] Noh et al. Deconvolution Networks. 2015
- [2] Ronneberger et al. U-Net. 2015
- [3] Cao et al. OpenPose. 2018
- [4] Shi et al. Subpixel Convolutions. 2016