

у2018-2-2. Дерево поиска

Statement is not available on English language

А. Простое двоичное дерево поиска

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Реализуйте просто двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- insert X добавить в дерево ключ X. Если ключ X есть в дереве, то ничего делать не надо
- delete X удалить из дерева ключ X. Если ключа X в дереве нет, то ничего делать не надо
- exists X если ключ X есть в дереве выведите «true», если нет «false»
- next X выведите минимальный элемент в дереве, строго больший X, или «none» если такого нет
- prev X выведите максимальный элемент в дереве, строго меньший X, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

входные данные insert 2 insert 5 insert 3 exists 2 exists 4 next 4 prev 4 delete 5 next 4 prev 4 выходные данные true false 5 3 none 3

Statement is not available on English language

В. Сбалансированное двоичное дерево поиска

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Реализуйте сбалансированное двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает 10^5 . В каждой строке находится одна из следующих операций:

- insert X добавить в дерево ключ X. Если ключ X есть в дереве, то ничего делать не надо
- delete X удалить из дерева ключ X. Если ключа X в дереве нет, то ничего делать не надо
- exists X если ключ X есть в дереве выведите «true», если нет «false»

- next X выведите минимальный элемент в дереве, строго больший X, или «none» если такого нет
- prev X выведите максимальный элемент в дереве, строго меньший X, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

Statement is not available on English language

С. Декартово дерево

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вам даны пары чисел (a_i, b_i) . Необходимо построить декартово дерево, такое что i-я вершина имеет ключи (a_i, b_i) , вершины с ключом a_i образуют бинарное дерево поиска, а вершины с ключом b_i образуют кучу.

Входные данные

В первой строке записано число N — количество пар. Далее следует N ($1 \le N \le 300\,000$) пар (a_i, b_i) . Для всех пар $|a_i|$, $|b_i| \le 1\,000\,000$. $a_i \ne a_i$ и $b_i \ne b_i$ для всех $i \ne j$.

Выходные данные

Если декартово дерево с таким набором ключей построить возможно, выведите в первой строке «YES», в противном случае выведите «NO». В случае ответа «YES» выведите N строк, каждая из которых должна описывать вершину. Описание вершины состоит из трёх чисел: номера предка, номера левого сына и номера правого сына. Если у вершины отсутствует предок или какой либо из сыновей, выведите на его месте число 0.

Если подходящих деревьев несколько, выведите любое.

Пример

одные данные
1
эходные данные
S
S 6
S 6 1
S 6 1 7
S 6 1 7 0
S 6 1 7 0 0
S 6 1 7 0

Е. И снова сумма

ограничение по времени на тест: 3 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- — добавить в множество S число i (если он там уже есть, то множество не меняется);
- — вывести сумму всех элементов X из S, которые удовлетворяют неравенству $I \le X \le r$.

Входные данные

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? I r». Операция «? I r» задает запрос .

Если операция «+i» идет во входном файле в начале или после другой операции «+», то она задает операцию . Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция .

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Выходные данные

Для каждого запроса выведите одно число — ответ на запрос.

Пример

Входные данные 6 +1 +3 +3 +3 ?24 +1 ?24 Выходные данные 3 7

Statement is not available on English language

K-й максимум

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Входные данные

Первая строка входного файла содержит натуральное число n — количество команд ($n \le 100\,000$). Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно ($|k_i| \le 10^9$). Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i-й максимум.
- -1: Удалить элемент с ключом k_i.

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Выходные данные

для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

Пример

f. *К*-й максимум

11 +1 5 +1 3 +1 7 0 1 0 2 0 3 -1 5 +1 10 0 1 0 2 0 3 Выходные данные 7 5 3 10 7

Statement is not available on English language

G. Переместить в начало

ограничение по времени на тест: 6 секунд ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вам дан массив $a_1 = 1$, $a_2 = 2$, ..., $a_n = n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2, 3, 6, 1, 5, 4, после операции (2, 4) новый порядок будет 3, 6, 1, 2, 5, 4. А после применения операции (3, 4) порядок элементов в массиве будет 1, 2, 3, 6, 5, 4.

Выведите порядок элементов в массиве после выполнения всех операций.

Входные данные

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Выходные данные

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

Пример

входные данные 63 24 35 22 выходные данные 145236

Statement is not available on English language

Statement is not available on English language

I. Эх, дороги

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

В многострадальном Тридесятом государстве опять готовится дорожная реформа. Впрочем, надо признать, дороги в этом государстве находятся в довольно плачевном состоянии. Так что реформа не повредит. Одна проблема — дорожникам не развернуться, поскольку в стране действует жесткий закон — из каждого города должно вести не более двух дорог. Все дороги в государстве двусторонние, то есть по ним разрешено движение в обоих направлениях (разумеется, разметка отсутствует). В результате реформы некоторые дороги будут строиться, а некоторые другие закрываться на бессрочный ремонт.

Петя работает диспетчером в службе грузоперевозок на дальние расстояния. В связи с предстоящими реформами, ему необходимо оперативно определять оптимальные маршруты между городами в условиях постоянно меняющейся дорожной ситуации. В силу большого количества пробок и сотрудников дорожной полиции в городах, критерием оптимальности маршрута считается количество промежуточных

городов, которые необходимо проехать.

Помогите Пете по заданной последовательности сообщений об изменении структуры дорог и запросам об оптимальном способе проезда из одного города в другой, оперативно отвечать на запросы.

Входные данные

В первой строке входного файла заданы числа n — количество городов, m — количество дорог в начале реформы и q — количество сообщений об изменении дорожной структуры и запросов ($1 \le n$, $m \le 100\,000$, $q \le 200\,000$). Следующие m строк содержат по два целых числа каждая — пары городов, соединенных дорогами перед реформой. Следующие q строк содержат по три элемента, разделенных пробелами. «+ ij» означает строительство дороги от города i до города j, «- ij» означает закрытие дороги от города i до города i, «? ij» означает запрос об оптимальном пути между городами i и j.

Гарантируется, что в начале и после каждого изменения никакие два города не соединены более чем одной дорогой, и из каждого города выходит не более двух дорог. Никакой город не соединяется дорогой сам с собой.

Выходные данные

На каждый запрос вида «?ij» выведите одно число — минимальное количество промежуточных городов на маршруте из города i в город j. Если проехать из i в j невозможно, выведите - 1.

Пример

