Paper presentation: "Combinatorial algorithm for counting small induced graphs and orbits" (Demšar & Hočevar, 2017) Graphlets and Orbits

Brandon Barton

Department of Computer Science, Colorado School of Mines

Fall 2021

Paper

► Combinatorial algorithm for counting small induced graphs and orbits (Demšar, and Hočevar) 2017.

Background

- Network motifs
- ▶ What is a small induced graph?
- What is an orbit?

Background

- Network motifs
- ▶ What is a small induced graph?
- What is an orbit?
- ▶ Triangles in $O(n^3)$ (Itai and Rodeh, 1978)

Background

- Network motifs
- What is a small induced graph?
- ► What is an orbit?
- ▶ Triangles in $O(n^3)$ (Itai and Rodeh, 1978)
- $ightharpoonup O(n^{k/3})$ (Nesetril and Poljak, 1985)

Motivation

Node similarity

Motivation

- ▶ Node similarity
- ► Role of the node

Overview

Overview

Induced Subgraphs

ightharpoonup Let H = (V, E) be the host graph

Induced Subgraphs

- ightharpoonup Let H = (V, E) be the host graph
- ► Remove vertices and maintain edges

(Figure 2 - Demšar & Hočevar)

So far we've covered,

Isomorphisms

▶ **Definition:** Graphs G and H are isomorphic if there is a structure that preserves a one-to-one correspondence between the vertices and edges

Isomorphisms

- ▶ **Definition:** Graphs G and H are isomorphic if there is a structure that preserves a one-to-one correspondence between the vertices and edges
- ► Same # of vertices
- ► Same # of edges
- Same vertex degree

So far we've covered,

Definition: The set of all simple graphs (graphlets) on k nodes is G_k .

- **Definition:** The set of all simple graphs (graphlets) on k nodes is G_k .
- Additional contraints
- ► "Small" graphlets
- ▶ $k \in [1, 5]$

- **Definition:** The set of all simple graphs (graphlets) on k nodes is G_k .
- Additional contraints
- ► "Small" graphlets
- ▶ $k \in [1, 5]$
- ▶ Graphlets on k = 4 nodes,

(Figure 1 - Demšar & Hočevar)

So far we've covered,

Graph Automorphisms

► **Recall:** graph isomorphisms

Graph Automorphisms

- ► **Recall:** graph isomorphisms
- $\blacktriangleright \operatorname{Aut}(\mathsf{G}) = \operatorname{Iso}(\mathsf{G}, \, \mathsf{G})$

So far we've covered,

Automorphism Orbit (aka Orbit)

▶ What do graph automorphisms tell us about node orbit?

Automorphism Orbit (aka Orbit)

- ▶ What do graph automorphisms tell us about node orbit?

$$Orb(G, v) = \{ \omega \in V \mid \exists \sigma \in Aut(G) : \sigma(v) = \omega \}$$
 (1)

■ "The orbit of a node v in a graphlet G is the set of nodes that can be mapped onto v by some automorphism of the graphlet."

Automorphism Orbit (aka Orbit)

So far we've covered,

Applications of Automorphism Orbit

Applications of Automorphism Orbit

Dynamic Trade Networks (Yaverogolu et al. 2014)

References

Tomaž Hočevar and Janez Demšar.

Combinatorial algorithm for counting small induced graphs and orbits.

PLOS ONE, 12(2):1-17, 02 2017.

Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet.

Efficiently counting all orbits of graphlets of any order in a graph using autogenerated equations.

Bioinformatics, 34(8):1372-1380, 11 2017.

Ömer Nebil Yaveroäa Lu, Noël Malod-Dognin, Darren Davis, Zoran Levnajic, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and Nataša Pržulj.

Revealing the hidden Language of complex networks.

Scientific Reports, 4:1-9, 2014.