Natural Language Processing Sequence Labeling and Hidden Markov Models

Felipe Bravo-Marquez

June 23, 2023

Overview

- The Sequence Labeling (or Tagging) Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm

This slides are based on the course material by Michael Collins: http://www.cs.columbia.edu/~mcollins/cs4705-spring2019/slides/tagging.pdf

Sequence Labeling or Tagging Tasks

- Sequence Labeling or Tagging is a task in NLP different from document classification.
- Here the goal is to map a sentence represented as a sequence of tokens x_1, x_2, \ldots, x_n into a sequence of tags or labels y_1, y_2, \ldots, y_n .
- Well known examples of this task are Part-of-Speech (POS) tagging and Named Entity Recognition (NER) to be presented next.

Part-of-Speech Tagging

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ guarter/N results/N ./.

- N = Noun
- V = Verb
- P = Preposition
- Adv = Adverb
- Adj = Adjective
- •

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Named Entity Extraction as Sequence Labeling

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SC = Start Company
- CC = Continue Company
- SL = Start Location
- CL = Continue Location
- SP = Start Person
- CP = Continue Person

Our Goal

Training set:

- Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
- Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
- Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.
- 4. ...

Our Goal: From the training set, induce a function/algorithm that maps new sentences to their tag sequences.

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

"Local":

 e.g., "can" is more likely to be a modal verb MD rather than a noun NN

"Contextual":

 e.g., a noun is much more likely than a verb to follow a determiner

Sometimes these preferences are in conflict:

• The trash can is in the garage

Sequence Labeling as Supervised Learning

- We have a sequence of inputs $x = (x_1, x_2, ..., x_n)$ and corresponding labels $y = (y_1, y_2, ..., y_n)$.
- Task is to learn a function f that maps input sequences to label sequences: $f(x_1, x_2, ..., x_n) = y_1, y_2, ..., y_n$.
- We have a training set of labeled sequences: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}.$

Generative Approach for Sequence Labeling

- Generative models such as Naive Bayes was used for classification can also be used for sequence labeling tasks in NLP.
- Approach:
 - Training: Learn the joint distribution $p(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n)$ of input sequences.
 - Decoding: Use the learned distribution to predict label sequences for new input sequences.
- Decoding in sequence labeling involves finding the label sequence with the highest joint probability: arg maxy1,y2,...,yn p(x1, x2,...,xn, y1, y2,...,yn).

Hidden Markov Models

- Hidden Markov Models (HMMs) provide a principled way to handle sequence labeling problems using generative modeling and efficient decoding algorithms.
- We have an input sentence x = x₁, x₂,..., x_n (x_i is the i-th word in the sentence).
- We have a tag sequence $y = y_1, y_2, \dots, y_n$ (y_i is the i-th tag in the sentence).
- We'll use an HMM to define $p(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n)$ for any sentence $x_1, ..., x_n$ and tag sequence $y_1, ..., y_n$ of the same length. [Kupiec, 1992]
- Then, the most likely tag sequence for x is:

$$\arg\max_{y_1,\ldots,y_n}p(x_1,\ldots,x_n,y_1,\ldots,y_n)$$

Trigram Hidden Markov Models (Trigram HMMs)

For any sentence x_1, \ldots, x_n where $x_i \in V$ for $i = 1, \ldots, n$, and any tag sequence y_1, \ldots, y_{n+1} where $y_i \in S$ for $i = 1, \ldots, n$, and $y_{n+1} = STOP$, the joint probability of the sentence and tag sequence is:

$$p(x_1,\ldots,x_n,y_1,\ldots,y_{n+1})=\prod_{i=1}^{n+1}q(y_i|y_{i-2},y_{i-1})\prod_{i=1}^ne(x_i|y_i)$$

where we have assumed that $x_0 = x_{-1} = *$.

Parameters of the Model

- q(s|u,v) for any $s \in S \cup \{STOP\}$, $u,v \in S \cup \{*\}$
 - The value for q(s|u,v) can be interpreted as the probability of seeing the tag s immediately after the bigram of tags (u,v).
- e(x|s) for any $s \in S$, $x \in V$
 - The value for e(x|s) can be interpreted as the probability of seeing observation x paired with state s.

An Example

If we have n = 3, x_1 , x_2 , x_3 equal to the sentence "the dog laughs", and y_1 , y_2 , y_3 , y_4 equal to the tag sequence "D N V STOP", then:

$$\begin{aligned} p(x_1,\ldots,x_n,y_1,\ldots,y_{n+1}) = & q(D|*,*) \times q(N|*,D) \\ & \times q(V|D,N) \times q(\mathsf{STOP}|N,V) \\ & \times e(\mathsf{the}|D) \times e(\mathsf{dog}|N) \times e(\mathsf{laughs}|V) \end{aligned}$$

- STOP is a special tag that terminates the sequence.
- We take $y_0 = y_{-1} = *$, where * is a special "padding" symbol.

Independence Assumptions in Trigram HMMs

- Trigram Hidden Markov Models (HMMs) are derived by making specific independence assumptions in the model.
- Consider two sequences of random variables: X_1, \ldots, X_n and Y_1, \ldots, Y_n , where n is the length of the sequences.
- Each X_i can take any value in a finite set V of words, and each Y_i can take any value in a finite set K of possible tags (e.g., $K = \{D, N, V \dots\}$).
- Our goal is to model the joint probability:

$$P(X_1 = x_1, ..., X_n = x_n, Y_1 = y_1, ..., Y_n = y_n)$$

• We define an additional random variable Y_{n+1} that always takes the value "STOP."

Independence Assumptions in Trigram HMMs

The key idea in HMMs is the factorization of the joint probability:

$$P(X_1 = X_1, ..., X_n = X_n, Y_1 = Y_1, ..., Y_{n+1} = Y_{n+1})$$

$$= \prod_{i=1}^{n+1} P(Y_i = y_i | Y_{i-2} = y_{i-2}, Y_{i-1} = y_{i-1}) \times \prod_{i=1}^{n} P(X_i = x_i | Y_i = y_i)$$

We first assume that:

$$P(Y_i = y_i | Y_{i-2} = y_{i-2}, Y_{i-1} = y_{i-1}) = q(y_i | y_{i-2}, y_{i-1})$$

- This assumes that the sequence Y₁,..., Y_{n+1} is a second-order Markov sequence, where each state depends only on the previous two states.
- And we also assume that:

$$P(X_i = x_i | Y_i = y_i) = e(x_i | y_i)$$

- This assumes that the value of the random variable X_i depends only on the value of Y_i.
- These independence assumptions allow for the derivation of the joint probability equation.

Why the Name?

$$p(x_1, \dots, x_n, y_1, \dots, y_n) = q(STOP|y_{n-1}, y_n)$$

$$\times \prod_{j=1}^n q(y_j|y_{j-2}, y_{j-1})$$

$$\times \prod_{i=1}^n e(x_j|y_j)$$

• Markov Chain:

$$q(STOP|y_{n-1}, y_n) \times \prod_{i=1}^n q(y_i|y_{j-2}, y_{j-1})$$

Observed:

$$e(x_j|y_j)$$

Smoothed Estimation

$$\begin{split} q(\mathit{Vt}|\mathit{DT},\mathit{JJ}) = & \lambda_1 \times \frac{\mathsf{Count}(\mathit{Dt},\mathit{JJ},\mathit{Vt})}{\mathsf{Count}(\mathit{Dt},\mathit{JJ})} \\ & + \lambda_2 \times \frac{\mathsf{Count}(\mathit{JJ},\mathit{Vt})}{\mathsf{Count}(\mathit{JJ})} \\ & + \lambda_3 \times \frac{\mathsf{Count}(\mathit{Vt})}{\mathsf{Count}()} \end{split}$$
 where $\lambda_1 + \lambda_2 + \lambda_3 = 1$, and for all $i, \lambda_i \geq 0$.

$$e(\mathsf{base}|Vt) = \frac{\mathsf{Count}(Vt,\mathsf{base})}{\mathsf{Count}(Vt)}$$

Dealing with Low-Frequency Words

A common method is as follows:

- Step 1: Split vocabulary into two sets
 - Frequent words = words occurring ≥ 5 times in training
 - Low frequency words = all other words
- Step 2: Map low frequency words into a small, finite set, depending on prefixes, suffixes, etc.

Dealing with Low-Frequency Words: An Example

Below is an example of word classes for named entity recognition [Bikel et al., 1999]:

Word class	Example	Intuition
twoDigitNum	90	Two-digit year
fourDigitNum	1990	Four-digit year
containsDigitAndAlpha	<i>A</i> 8956 – 67	Product code
containsDigitAndDash	09 — 96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	<i>M</i> .	Person name initial
firstWord	First word of sentence	No useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example

Original Sentence:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

Transformed Sentence:

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

- NA = No entity
- SC = Start Company
- CC = Continue Company
- SL = Start Location
- CL = Continue Location
- SP = Start Person
- CP = Continue Person

Decoding Problem

Decoding Problem: For an input $x_1 \dots x_n$, find

$$\arg\max_{y_1\dots y_{n+1}} p(x_1\dots x_n,y_1\dots y_{n+1})$$

where the arg max is taken over all sequences $y_1 ldots y_{n+1}$ such that $y_i \in S$ for i = 1 ldots n, and $y_{n+1} = STOP$. We assume that p takes the form:

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^n e(x_i|y_i)$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = *$, and $y_{n+1} = STOP$.

Naive Brute Force Method

The naive, brute force method for finding the highest scoring tag sequence is to enumerate all possible tag sequences y_1, \ldots, y_{n+1} , score them under the function p, and select the sequence with the highest score.

- Example:
 - Input sentence: the dog barks
 - Set of possible tags: $K = \{D, N, V\}$
- Enumerate all possible tag sequences:
 - D D D STOP
 - D D N STOP
 - D D V STOP
 - D N D STOP
 - D N N STOP
 - D N V STOP
 - ..

Naive Brute Force Method

- In this case, there are $3^3 = 27$ possible sequences.
- However, for longer sentences, this method becomes inefficient.
- For an input sentence of length n, there are $|K|^n$ possible tag sequences.
- The exponential growth makes brute-force search infeasible for reasonable length sentences.

Viterbi Decoding Dynamic Programming

- The algorithm used by HMMs to perform efficient decoding is called Viterbi decoding.
- · Viterbi decoding uses dynamic programming.
- Dynamic programming is a technique for solving optimization problems by breaking them down into overlapping subproblems.
- It stores the solutions to these subproblems in a table so that they do not have to be recalculated.
- Dynamic programming can greatly improve the efficiency of algorithms.
- Next, we show how dynamic programming works with two examples: Factorial and Fibonacci

Factorial

Recursive implementation:

```
def recur_factorial(n):
      # Base case
       if n == 1:
           return n
      else:
           return n * recur_factorial(n-1)

    Dynamic programming implementation:

  def dynamic_factorial(n):
       table = [0 \text{ for } i \text{ in } range(0, n+1)]
      # Base case
       table[0] = 1
      for i in range(1, len(table)):
           table[i] = i * table[i-1]
       return table[n]
```

Fibonacci

Recursive implementation:

```
def recur_fibonacci(n):
       if n == 1 or n == 0:
           return 1
      else:
           return recur_fibonacci(n-1) + recur_fibonacci(n-2)

    Dynamic programming implementation:

  def dynamic_fibonacci(n):
       table = [0 \text{ for } i \text{ in range}(0, n+1)]
      # Base case
       table[0] = 1
       table[1] = 1
       for i in range(2, len(table)):
           table[i] = table[i-1] + table[i-2]
       return table[n]
```

Complexity

- In recursive implementations, the complexity can be quite high due to repeated calculations of the same subproblems.
- However, dynamic programming can significantly reduce the complexity by storing the solutions to subproblems in a table or array and reusing them when needed.
- This approach eliminates the redundant calculations and allows for a more efficient computation.
- For the case of Fibonacci the complexity is reduced from exponential to linear.

The Viterbi Algorithm

The Viterbi algorithm efficiently computes the maximum probability of a tag sequence by using dynamic programming. **Steps:**

- Define n as the length of the sentence.
- Define S_k for $k = -1 \dots n$ as the set of possible tags at position k: $S_{-1} = S_0 = \{*\}$, $S_k = S$ for $k \in \{1 \dots n\}$.
- Define $r(y_{-1}, y_0, y_1, \dots, y_k) = \prod_{i=1}^k q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^k e(x_i|y_i).$
- Define a dynamic programming table: $\pi(k, u, v) =$ maximum probability of a tag sequence ending in tags u, v at position k.

An Example

 $\pi(k, u, v)$ = maximum probability of a tag sequence ending in tags u, v at position k

The man saw the dog with the telescope

An Example

$$S = \{D, N, P, V\}$$

 $\Pi(7,P,D) = \begin{array}{l} \mbox{This is the maxmimum probability of any} \\ \mbox{of those tag sequences ending in P D} \\ \mbox{at position 7, the path represents the} \\ \mbox{sequence with the maximum} \\ \mbox{probability.} \end{array}$

A Recursive Definition

Base case:

$$\pi(0,*,*)=1$$

Recursive definition: For any $k \in \{1 ... n\}$, for any $u \in S_{k-1}$ and $v \in S_k$:

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$

Justification for the Recursive Definition

For any $k \in \{1 \dots n\}$, for any $u \in S_{k-1}$ and $v \in S_k$:

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$

The man saw the dog with the telescope

Justification for the Recursive Definition

$$\begin{split} \mathcal{S}_5 &= \mathcal{S} = \{D, N, V, P\} \\ \Pi(7, P, D) &= \max_{w \in \mathcal{S}_5} \left(\Pi(6, w, P) \times q(D|w, P) \times e(\text{the}|D)\right) \end{split}$$

If we think of any tag sequence that ends with tags P and D at position 7, it must contain some tag at position 5. We are basically searching for the tag that maximizes the probability at position 5.

The Viterbi Algorithm

Algorithm 1: Viterbi Algorithm

```
Input: a sentence x_1 	ldots x_n, parameters q(s|u,v) and e(x|s) Initialization: Set \pi(0,*,*)=1; S_{-1}=S_0=\{*\}, S_k=S for k\in\{1\ldots n\}.
```

$$\begin{array}{c|c} \text{for } k=1 \text{ to } n \text{ do} \\ & \text{for } u \in S_{k-1}, v \in S_k \text{ do} \\ & & \\ & \pi(k,u,v) = \max_{w \in S_{k-2}} (\pi(k-1,w,u) \times q(v|w,u) \times e(x_k|v)) \\ & \text{end} \\ & \text{end} \end{array}$$

 $\texttt{return}\,(\mathsf{max}_{u\in\mathcal{S}_{n-1},v\in\mathcal{S}_n}(\pi(n,u,v)\times q(STOP|u,v)))$

The Viterbi Algorithm with Backpointers

Algorithm 2: Viterbi Algorithm with Backpointers

```
Input: a sentence x_1 \dots x_n, parameters q(s|u,v) and e(x|s)
Initialization: Set \pi(0,*,*) = 1; S_{-1} = S_0 = \{*\}, S_k = S for k \in \{1 \dots n\}.
for k = 1 to n do
     for u \in S_{k-1}, v \in S_k do
                  \pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))
               bp(k, u, v) = \arg\max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))
     end
end
(y_{n-1}, y_n) = \arg\max_{(u,v)} (\pi(n, u, v) \times q(\mathsf{STOP}|u, v));
                                                           // Find maximum
 probability and corresponding tags
for k = (n-2) to 1 do
    y_k = bp(k+2, y_{k+1}, y_{k+2});
                                          // Retrieve tag seguence using
     backpointers
end
return (the tag sequence y_1 \dots y_n); // Return the final tag sequence
```

The Viterbi Algorithm: Running Time

- $O(n|S|^3)$ time to calculate $q(s|u,v) \times e(x_k|s)$ for all k, s, u, v.
- $n|S|^2$ entries in π to be filled in.
- O(|S|) time to fill in one entry.
- $\Rightarrow O(n|S|^3)$ time in total.

Pros and Cons

- Hidden Markov Model (HMM) taggers are simple to train (compile counts from training corpus).
- They perform relatively well (over 90
- Main difficulty is modeling e(word|tag), which can be very complex if "words" are complex.

Questions?

Thanks for your Attention!

References I

Bikel, D. M., Schwartz, R. M., and Weischedel, R. M. (1999). An algorithm that learns what's in a name. Mach. Learn., 34(1-3):211-231.

Kupiec, J. (1992). Robust part-of-speech tagging using a hidden markov model.

Computer speech & language, 6(3):225-242.