Data Camp

Soutenance de projet

Yao Luc & Coutrot Léos & Madrange Alix

Chargé de Projet : Nicolas Jouvin

Université d'Evry

1 avril 2025

(Université d'Evry) Data Camp 1 avril 2025 1/32

Sommaire

- Introduction
- 2 Analyse exploratoire des données
- Méthodologie : classification supervisée
- 4 Expérimentation et performances des modèles
- 6 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 2 / 32

- Introduction
- 2 Analyse exploratoire des données
- 3 Méthodologie : classification supervisée
- Expérimentation et performances des modèles
- 5 Résultats sur RAMP
- Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 3 / 32

Introduction

- Challenge de Machine Learning (apprentissage supervisé)
- Données de type single-cell RNA-seq
- Jeu de données de test privé
- Métrique du classement cachée

(Université d'Evry) Data Camp 1 avril 2025 4 / 32

- 1 Introduction
- 2 Analyse exploratoire des données
 - Résumé du jeu de données
 - Normalisation et transformation du jeu de données
- 3 Méthodologie : classification supervisée
- 4 Expérimentation et performances des modèles
- 6 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 5 / 32

Notre jeu de données en quelques chiffres

- Jeu de données extrait de scMARK : 100.000 cellules
- 13551 colonnes et 1000 observations
- Aucune donnée manquante
- 4 types de cellules possibles : T_cells_CD4+, T_cells_CD8+, Cancer_cells, NK_cells

Figure 1 – Histogramme du jeu de données

(Université d'Evry) Data Camp 1 avril 2025 6 / 32

- ntroduction *A*
 - 1 Introduction
 - Analyse exploratoire des données
 - Résumé du jeu de données
 - Normalisation et transformation du jeu de données
 - 3 Méthodologie : classification supervisée
 - 4 Expérimentation et performances des modèles
 - 5 Résultats sur RAMP
 - 6 Modèle n'ayant pas abouti
 - Conclusion

(Université d'Evry) Data Camp 1 avril 2025 7 / 32

Transformation des données

- Transformation log1p(X) = log(X + 1)
- Réduire l'impact des valeurs extrêmes

(Université d'Evry) Data Camp 1 avril 2025 8 / 32

Première idée de normalisation des données

Utilisation de StandardScaler de scikit-learn

• Pour chaque gène g dans la cellule c :

$$\hat{x}_{g,c} = \frac{x_{g,c} - \mu_g}{\sigma_g}$$

- $x_{g,c}$: valeur brute d'expression du gène g dans la cellule c
- μ_g : moyenne des valeurs d'expression du gène g à travers toutes les cellules
- σ_g : écart-type des valeurs d'expression du gène g à travers toutes les cellules

(Université d'Evry) Data Camp 1 avril 2025 9 / 32

Deuxième idée de normalisation des données

Utilisation de scanpy.pp.normalize total de Scanpy

• Pour chaque cellule c et chaque gène g :

$$\hat{x}_{g,c} = \frac{x_{g,c}}{\sum_{g'} x_{g',c}} \times \text{total_count}$$

- $\sum_{g'} x_{g',c}$: somme des expressions des gènes dans la cellule c
- total_count est une constante (généralement 10 000)

(Université d'Evry) Data Camp 1 avril 2025 10 / 32

- 2 Analyse exploratoire des données
- Méthodologie : classification supervisée

(Université d'Evry) Data Camp 1 avril 2025 11 / 32

Modèles de classification supervisée

- Random Forest
- Gradient Boosting
- Support Vector Machine (SVM)
- Adaboost
- Régression Logistique

(Université d'Evry) Data Camp 1 avril 2025 12 / 32

Méthode de test

Jeu de données pré-séparé en train set et test set.

Étapes :

- Transformation log1p et normalisation StandardScaler
- Séparation des données du train set en train et valid set
- Entraînement des modèles avec validation croisée sur le train set
- Evaluation des performances sur valid et test en utilisant la balanced accuracy

Data Camp 1 avril 2025 13 / 32

- 2 Analyse exploratoire des données
- Méthodologie : classification supervisée
- 4 Expérimentation et performances des modèles
 - Test avec Filtage par Variance
 - Test avec Régression LASSO
- 5 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 14 / 32

Filtrage par Variance

Élimination des gènes dont la variance d'expression est trop faible entre les échantillons

⇒ Réduction de la dimensionnalité du jeu de données

Figure 2 – Balanced accuracy en fonction de du seuil pour chaque modèle

(Université d'Evry) Data Camp 1 avril 2025 15 / 32

Résultats de nos modèles

Modèle	Seuil optimal	Train BA	Test BA
Random Forest	0.763158	0.702518	0.711541
Gradient Boosting	1.815789	0.807638	0.807525
Régression logistique	1.552632	0.823783	0.803647
Adaboost	1.289474	0.792060	0.738189
SVM RBF	0.763158	0.689861	0.712768
SVM linéaire	1.026316	0.810569	0.802031

Table 1 – Performance des modèles avec filtrage par variance

1 avril 2025 (Université d'Evry) Data Camp 16 / 32

- Introduction
- 2 Analyse exploratoire des données
- 3 Méthodologie : classification supervisée
- 4 Expérimentation et performances des modèles
 - Test avec Filtage par Variance
 - Test avec Régression LASSO
- 5 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 17 / 32

Régression LASSO

Optimisation de la robustesse et de la généralisation des modèles en éliminant les caractéristiques les moins pertinentes

Fonction de coût de la régression LASSO

$$J(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \alpha \sum_{j=1}^{p} |\beta_j|$$

- $X \in \mathbb{R}^{n \times p}$: Matrice des variables explicatives.
- $y \in \mathbb{R}^n$: Vecteur des valeurs cibles.
- $\beta \in \mathbb{R}^p$: Vecteur des coefficients du modèle.
- α ≥ 0 : Paramètre de régularisation qui contrôle la pénalisation des coefficients.

(Université d'Evry) Data Camp 1 avril 2025 18 / 32

Hyperparamètre α

Figure 3 – Évolution du nombre de gènes sélectionnés en fonction de α

(Université d'Evry) Data Camp 1 avril 2025 19 / 32

Performance des modèles

Figure 4 – Évolution de la balanced accuracy en fonction de α pour chaque modèle.

(Université d'Evry) Data Camp 1 avril 2025 20 / 32

Résultats de nos modèles

Modèle	α optimal	Train BA	Test BA
Random Forest	0.076791	0.846119	0.812646
Gradient Boosting	0.007164	0.808643	0.805519
Regression logistique	0.064682	0.874163	0.848152
Adaboost	0.094955	0.782285	0.760364
SVM RBF	0.074773	0.875308	0.867072
SVM linéaire	0.075782	0.851672	0.822069

Table 2 – Performance des modèles après sélection du meilleur alpha via **LASSO**

(Université d'Evry) Data Camp 1 avril 2025 21 / 32

- Introduction
- 2 Analyse exploratoire des données
- 3 Méthodologie : classification supervisée
- Expérimentation et performances des modèles
- Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 22 / 32

Classement des méthodes sur RAMP

Classement	Modèle	Méthode	Hyperparamètres	BA
1	SVM RBF	LASSO	$\alpha = 0.005$	0.87
2	SVM RBF $+$ LDA $+$ Rég. log.	LASSO	$\alpha = 0.005$	0.86
3	SVM linéaire	LASSO	$\alpha = 0.005$	0.85
3	Régression logistique	LASSO	$\alpha = 0.005$	0.85
4	Gradient Boosting	LASSO	$\alpha = 0.01$	0.84
5	Régression logistique	Filtrage variance	seuil = 1.5	0.83
5	Gradient Boosting	Filtrage variance	seuil = 1.5	0.83

Table 3 – Classement des modèles avec leur méthode et leur performance

(Université d'Evry) Data Camp 1 avril 2025 23 / 32

- Introduction
- 2 Analyse exploratoire des données
- 3 Méthodologie : classification supervisée
- Expérimentation et performances des modèles
- 5 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 24 / 32

Réduction de dimension

---- Approche plutôt orientée classification non supervisée

Pourquoi?

- Approche largement étudiée : La réduction de dimension est une technique largement utilisée dans la littérature scientifique.
- Frugalité computationnelle : Réduire la dimensionnalité permet d'accélérer l'entraînement des algorithmes.
- Facilitation des visualisations : En projetant des données en 2D ou 3D, il devient plus facile d'explorer et d'interpréter des structures sous-jacentes.
- Réduction du bruit : En éliminant les dimensions non pertinentes ou redondantes, on peut obtenir une représentation plus pertinente des données.

(Université d'Evry) Data Camp 1 avril 2025 25 / 32

Méthodes testées

- Analyse en compasantes principales (ACP)
- t-SNE
- UMAP

(Université d'Evry) Data Camp 1 avril 2025 26 / 32

Figure 5 – Résultat de l'analyse en composantes principales

(Université d'Evry) Data Camp 1 avril 2025 27 / 32

t-SNE 3D

Figure 6 – Résultats de t-SNE 3D

(Université d'Evry) Data Camp 1 avril 2025 28 / 32

UMAP

Figure 7 – Résultats de UMAP

(Université d'Evry) Data Camp 1 avril 2025 29 / 32

Résultats

Malheureusement bien que les projections semblaient plutôt prometteuses, les modèles perdaient beaucoup en précision en utilisant ces méthodes de réduction de dimension.

---- Perte d'information inévitable avec ces méthodes.

Remarque: Certaines modèles ont malgré tout atteint des performances honorables allant jusqu'à 0.80 d'accuracy.

(Université d'Evry) Data Camp 1 avril 2025 30 / 32

- Introduction
- 2 Analyse exploratoire des données
- 3 Méthodologie : classification supervisée
- Expérimentation et performances des modèles
- 6 Résultats sur RAMP
- 6 Modèle n'ayant pas abouti
- Conclusion

(Université d'Evry) Data Camp 1 avril 2025 31 / 32

Conclusion

- Résultats satisfaisants
- 4ème place au classement final
- Des modèles performants et rapides
- Des pistes qui pourraient être intéressantes à explorer par la suite (TDA)

Data Camp 1 avril 2025 32 / 32