MAT422 Notes

Arjun Vardhan

†

Created: 7th September 2022 Last updated: 16th September 2022

1 Basic Definitions

•

2 Convergence of Sequences

•

3 Open Sets and Interior Points

- Let $x \in X$, r > 0. The open sphere/ball/disc centered at x with radius r, denoted S(x,r) is $\{y \in X : d(y,x) < r\}$.
- Alternate definition of convergence: $(x_n) \to x \Leftrightarrow \forall \epsilon > 0, \exists M : n \geq M \implies d(x_n, x) < \epsilon \implies \forall \epsilon > 0, \exists M : n \geq M \implies x_n \in S(x, \epsilon).$
- Let $a \in X$, $A \subseteq X$. a is said to be an interior point of A if and only if $\exists r > 0 : S(a,r) \subseteq A$.
- The set of all interior points of A is called the interior of A, denoted Int(A) or A° .
- Let $b \in X$. $N \subseteq X$ is said to be a neighborhood of b if and only if $b \in N^{\circ}$.
- $A^{\circ} \subseteq A$. Proof: Let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A$. As $a \in S(a,r)$, $a \in A$.
- $A \subseteq B \implies A^{\circ} \subseteq B^{\circ}$. Proof: Let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A \subseteq B$. So $a \in B^{\circ}$.
- Let $A \subseteq B$, and A be a neighborhood of a. Then B is a neighborhood of a. Proof: $a \in A^{\circ} \implies a \in B^{\circ} \implies B$ is a neighborhood of A.
- $(A^{\circ})^{\circ} = A^{\circ}$. Proof: We know that $(A^{\circ})^{\circ} \subseteq A^{\circ}$. So let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A$.

4 Closed Sets and Limit Points

•