1- توابع زیر را بر حسب افزایش مرتبه مرتب کنید. (5 نمره، تنها به جواب کاملا درست نمره تعلق می گیرد)

$$n^{1000}$$
, $n!$, $(1.001)^n$

n!	>	(1.001) ⁿ	>	n ¹⁰⁰⁰
----	---	----------------------	---	-------------------

2- درستی هر یک از عبارات و روابط زیر را بررسی کنید.

(هر عبارت 2 نمره، نمره منفى 1 نمره)

T/F	عبارت	T/F	عبارت
	<u> </u>		<u> </u>
\mathbf{F}	$3^n = O(2^n)$ (ب	T	$\sum_{i=0}^{n} i^2 = O(n^3)$ (الف
F	$\frac{n^2}{\log n} = O(n^2)$ ت	F	$n^2 \log n = O(n^2)$ پ
	$\frac{1}{\log n} = O(n^{-1})$		
F	0(1) > 0(5)	T	0(1) (0(5)
r	$O(\log n) > O(\sqrt{n})$	1	$O(\log n) < O(\sqrt{n})$ ث)
F	$O\left(\sqrt{n^3}\right) < O(n)$	F	$O(n!) < O(a^n)_{(\bar{c})}$
F	(১	F	('
	$(n+1)(n^2-2n+1) \in \theta(n)$		$(n+1)(n^2-2n+1) \in O(2^n)$
F	ر)	F	(3)
	$O(n!) = O(n^n)$		$(n+1)(n^2-2n+1) \in \Omega(n^4)$
		T	(;
			$O(10^6) < O(n) < O(n \log n)$

3- توابع زیر را بر حسب رشد مرتب کنید. (هر بخش 5 نمره، نمره تنها به جواب کاملا درست تعلق میگیرد)

	توابع				
الف	$O(n\log n), O(1.001)^n, O(\frac{n^2}{\log n})$				
	$O(1.001)^n$	>	$O(\frac{n^2}{\log n})$	>	$O(n\log n)$
٠.	$\log^2 n$, $\log(\log(n))$, $4^{\log(n)}$				
	4^log (n)	\	$\log^2 n$	>	$\log(\log(n))$

4- What are the time complexities of finding 8th element from beginning and 8th element from end in a linked list? Let n be the number of nodes in linked list, you may assume that n > 8.

(5-point, 2 negative points)

O (1) and O(n)	*
O (1) and O(1)	
O(n) and O(1)	
O(n) and O(n)	

5- You are given pointers to first and last nodes of a singly linked list, which of the following operations are dependent on the length of the linked list? (5 points, 2 negative points)

Delete the first element	
Insert a new element as a first element	
Delete the last element of the list	*
Add a new element at the end of the list	

6- Which of the following operations is not O(1) for an array of sorted data. You may assume that array elements are distinct. (5 points, 2 negative points)

Find the ith largest element	
Delete an element	*
Find the ith smallest element	
All of the above	

7- How many stacks are needed to implement a queue. Consider the situation where no other data structure like arrays, linked list is available to you. (5 points, 2 negative points)

1 stack	
2 stacks	*
3 stacks	
4 stacks	

8- Which of the following is a Hamilton circuit of the graph? (5 points, 2 negative points)

ABCDEFGA	
ACBEGFDA	
CBGEDFAC	*
CEGBADFC	

9- This graph will have a Euler's Circuit (2 points, 2 negative points)

T/F
T

10- What is the time complexity of following code? (5 points, 2 negative points)

کد:

$$a = 0;$$

$$i = N;$$
while $(i > 0)$ {
$$a = a + i;$$

$$i = i / 2;$$
}

شىه كد:

a برابر هست با 0

N برابر هست با i

تا زمانی که i بزرگ تر از 0 است دستور زیر را انجام بده:

a برابر هست با a به اضافه 1

i برابر است با i تقسیم بر i

O(N)	
O(Sqrt(N))	
O(N / 2)	
O(log N)	*

11- What is the time complexity of following code? (5 points, 2 negative points)

کد:

شبه کد:

0 برابر است با X

برای i در بازه اعداد صحیح 0 تا N دستور زیر را اجرا کن:

برای
$$j$$
 در بازه اعداد صحیح 0 تا N دستور زیر را اجرا کن: X برابر است با X به اضافه X

O(N)	
O(N log N)	
O(N^2)	*
O(2^N)	