Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 5

Esercizi svolti

Es. 1. Si converta in base 16 il seguente numero decimale 1364,37 usando 4 cifre per la parte intera e 6 cifre per la parte frazionaria. Avendo a disposizione più cifre per la parte frazionaria, il procedimento terminerebbe? Perché?

SOLUZIONE:

La parte intera è ottenuta col metodo delle divisioni iterate

1364:16 = 85 con resto di 4 85:16 = 5 con resto di 5 5:16 = 0 con resto di 5

ottenendo quindi il numero esadecimale 554. La parte frazionaria è ottenuta col metodo delle moltiplicazioni iterate

 $0.37 \times 16 = 5.92$ $0.92 \times 16 = 14.72$ $0.72 \times 16 = 11.52$ $0.52 \times 16 = 8.32$ $0.32 \times 16 = 5.12$ $0.12 \times 16 = 1.92$

ottenendo quindi il numero esadecimale 0,5EB851. Pertanto il numero cercato è 554,5EB851.

Avendo un arbitrario numero di cifre a disposizione il procedimento non terminerebbe comunque poiché la rappresentazione esadecimale del numero dato è periodica (si noti infatti che un'eventuale settima moltiplicazione sarebbe nuovamente 0.92×16).

Es. 2. Sono dati due numeri positivi rappresentati in base quattro: 32,012 e 0,0123. Li si converta in base 2 con rappresentazione in virgola mobile (normalizzata), avendo a disposizione 10 bit per la mantissa e 4 bit per l'esponente. Nella conversione c'è stata perdita di cifre significative?

SOLUZIONE:

I numeri possono essere convertiti direttamente, ottenendo 32,012 $_4$ \rightarrow 1110,000110 $_2$ \rightarrow < 0 , 1110000110 , 0100 > 0,0123 $_4$ \rightarrow 0,00011011 $_2$ \rightarrow < 0 , 1101100000 , 1101 > senza perdere alcuna cifra significativa.

Es. 3. E' dato il seguente numero rappresentato in base 5: 321,041. Convertirlo in base 2, usando 8 bit per la parte intera e 8 bit per la parte frazionaria. Darne poi la rappresentazione in virgola mobile normalizzata, usando 12 bit per la mantissa e 4 per l'esponente.

SOLUZIONE:

```
Convertiamo il numero in base 10:
```

```
321,041_5 = 3 \times 25 + 2 \times 5 + 1 \times 1 + 4 \times 5^{-2} + 1 \times 5^{-3} = 86,168
che convertito in base 2 è
         86: 2 = 43 \text{ con resto } 0
```

43:2=21 con resto 1

21:2=10 con resto 1

10:2 = 5 con resto 0

5:2=2 con resto 1

2:2=1 con resto 0

1:2=0 con resto 1

 $0.168 \times 2 = 0.336$

 $0.336 \times 2 = 0.672$

 $0,672 \times 2 = 1,344$

 $0.344 \times 2 = 0.688$

 $0,688 \times 2 = 1,376$

 $0.376 \times 2 = 0.752$

 $0.752 \times 2 = 1.504$

 $0.504 \times 2 = 1.008$

che quindi genera 01010110, 00101011 che convertito in virgola mobile dà <0,101011000101,0111>

Esercizi da svolgere

- Es. 1. Convertire in base 5 con rappresentazione in virgola fissa il numero decimale 214,1362 avendo a disposizione 5 cifre per la parte intera e 6 per la parte decimale. La rappresentazione ottenuta è precisa o è un'approssimazione del numero decimale di partenza?
- Es. 2. Si esprima in virgola fissa il numero decimale 61,81 arrestandosi al 6° bit dopo la virgola. Si esprima poi lo stesso numero normalizzato in virgola mobile. Qual è il minimo numero di bit necessari complessivamente per rappresentare il numero nel primo e nel secondo caso?