Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

6 settembre 2018

Nota Bene: Non saranno corretti compiti scritti con una grafia poco leggibile.

Problema 1. Dimostrare che l'insieme dei linguaggi decidibili è chiuso rispetto alla riducibilità many-to-one (o a quella polinomiale).

Problema 2. Si consideri il seguente problema: dati tre numeri interi $p, a, b \in \mathbb{N}$, decidere se $p = a \cdot b$. Si consideri inoltre, il seguente algoritmo che decide il problema in esame:

 $r \leftarrow 0$;

for $i \leftarrow 1$; $i \leq b$: $1 \leftarrow i + 1$ do

 $r \leftarrow r + a;$

if r = p then Output: accetta;

else Output: rigetta.

Dopo aver calcolato la complessità computazionale del precedente algoritmo, rispondere alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) L'algoritmo opera in tempo polinomiale nella dimensione dell'istanza?
- b) Il problema è in **P**?
- c) Il problema è in **NP**?
- d) Il problema è in co**NP**?

Problema 3. Si consideri il seguente problema Γ : dati un insieme $X = \{x_1, x_2, \dots x_n\}$, una collezione $T \subseteq X \times X \times X$ di triple di elementi distinti di X (ossia, per ogni $(u, v, z) \in T$, $u \neq v \neq z$) e un intero $k \in \mathbb{N}$, decidere se esiste un sottoinsieme X' di X di cardinalità al più k tale che, per ogni $k \in T$, $k \in X' \neq \emptyset$.

Formalizzare il suddetto problema Γ mediante la tripla $\langle I,S,\pi\rangle$. Successivamente, si consideri la funzione f che traasforma istanze $\langle G=(V,E),k\rangle$ del problema VERTEX COVER in istanze di Γ tale che $f(G,k)=\langle X,T,k\rangle$) con $X=V\cup E$ e $T=\{(u,v,e):u\in V\ \land\ v\in V\ \land\ e=(u,v)\in E\}$ e si dimostri che f è una riduzione polinomiale da VERTEX COVER a Γ .