

WHAT IS CLAIMED IS:

1. An electronic device comprising:

two transmission-receiving antennas respectively
adapted to different frequency bands;

5 a receiving antenna for the frequency bands which
forms two diversity antennas together with the
transmission-receiving antennas; and

a wireless communication unit, connected to the
transmission-receiving antennas and the receiving
10 antenna, which performs wireless communication in each
of the frequency bands.

2. The electronic device according to claim 1,

wherein

the receiving antenna is provided between the
15 transmission-receiving antennas.

3. The electronic device according to claim 1,

wherein

the transmission-receiving antennas include
a first transmission-receiving antenna adapted to
20 a relatively high frequency band and a second
transmission-receiving antenna adapted to a relatively
low frequency band; and

the receiving antenna is disposed at a
predetermined distance from the first and second
25 transmission-receiving antennas, thereby constituting
the diversity antenna adaptive to each of the frequency
bands.

4. The electronic device according to claim 1,
wherein

the transmission-receiving antennas include the
first transmission-receiving antenna adapted to a first
frequency band on a wavelength λ_a and the second
transmission-receiving antenna adapted to a second
frequency band on a wavelength λ_b ; and

5 the receiving antenna is
 disposed at a distance of " $(2n + 1) * \lambda_a/4$
10 (however, n = 1, 2, 3, ...) from the first
 transmission-receiving antenna, and

 disposed at a distance of " $(2n + 1) * \lambda_b/4$
 (however, n = 1, 2, 3, ...) from the second
 transmission-receiving antenna.

15 5. The electronic device according to claim 1,
 wherein

 the wireless communication unit includes a filter
 circuit for separating a radio frequency signal
 received by the receive-dedicated antenna into signals
20 in the respective frequency bands.

 6. An electronic device comprising:
 a display unit which hold a display panel;
 an antenna unit including three antennas provided
 at a portion of the display unit; and
25 a wireless communication unit which is connected
 to the antennas and achieves a wireless communication
 function in first and second frequency bands,

wherein the antenna unit has:

two transmission-receiving antennas respectively adapted to the first and second frequency bands; and
5 a receiving antenna for the frequency bands and disposed at a predetermined distance from each of the transmission-receiving antennas, thereby constituting a diversity antenna adaptive to the frequency bands.

7. The electronic device according to claim 6,
wherein

10 the receiving antenna is provided between the two transmission-receiving antennas.

8. The electronic device according to claim 6,
wherein

15 the antenna unit is provided at a portion of the display unit on a side opposite to the display panel;

the transmission-receiving antennas include a first transmission-receiving antenna adapted to a first frequency band on a wavelength λ_a and a second transmission-receiving antenna adapted to a second frequency band on a wavelength λ_b ; and
20

the receive-dedicated antenna is disposed at a distance of " $(2n + 1) * \lambda_a / 4$ " (however, $n = 1, 2, 3, \dots$) from the first transmission-receiving antenna, and

25 the receive-dedicated antenna is disposed at a distance of " $(2n + 1) * \lambda_b / 4$ " (however, $n = 1, 2, 3, \dots$) from the second transmission-receiving antenna.

9. The electronic device according to claim 6,
wherein

the transmission-receiving antennas include the
first transmission-receiving antenna adapted to the
5 first frequency band on the wavelength λ_a and the
second transmission-receiving antenna adapted to
the second frequency band on the wavelength λ_b ;

the receive-dedicated antenna is
configured to be disposed at a distance of " $(2n +$
10 $1) * \lambda_a/4$ (however, $n = 1, 2, 3, \dots$) from the first
transmission-receiving antenna, and disposed at a
distance of " $(2n + 1) * \lambda_b/4$ (however, $n = 1, 2, 3, \dots$)
from the second transmission-receiving antenna; and
the antenna unit is provided at a portion of the
15 display unit to adapt to space diversity effects and
polarization diversity effects.

10. The electronic device according to claim 6,
wherein

the wireless communication unit includes a filter
20 circuit for separating a radio frequency signal
received by the receive-dedicated antenna into signals
in the respective frequency bands.

11. An antenna unit for achieving a wireless
communication function in different frequency bands are
25 first and second frequency bands, the antenna unit
comprising:

a first transmission-receiving antenna adapted to

the first frequency band;

a second transmission-receiving antenna adapted to
the second frequency band;

5 a receiving antenna for the first and second
frequency bands and disposed at a predetermined
distance from each of the first and second
transmission-receiving antennas, thereby constituting
a diversity antenna adaptive to the frequency bands.

12. The electronic device according to claim 11,
10 wherein

 the receiving antenna is provided between the
first and second transmission-receiving antennas.

13. The antenna unit according to claim 11,
wherein

15 when a wavelength in the first frequency band
is λ_a , and a wavelength in the second frequency band
is λ_b ,

 the receive-dedicated antenna is
 disposed at a distance of " $(2n + 1) * \lambda_a / 4$ "
20 (however, $n = 1, 2, 3, \dots$) from the first
 transmission-receiving antenna, and
 disposed at a distance of " $(2n + 1) * \lambda_b / 4$ "
 (however, $n = 1, 2, 3, \dots$) from the second
 transmission-receiving antenna.