Data Sizes

Data sizes in assembly have slightly different terminology to get used to:

- A byte is 1 byte.
- A word is 2 bytes.
- A double word is 4 bytes.
- A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

- b means byte
- w means word
- 1 means double word
- q means quad word

Data Sizes

Data sizes in assembly have slightly different terminology to get used to:

- A **byte** is 1 byte.
- A word is 2 bytes.
- A double word is 4 bytes.
- A quad word is 8 bytes.

C Type	Suffix	Byte	Intel Data Type
char	b	1	Byte
short	W	2	Word
int	1	4	Double word
long	q	8	Quad word
char *	q	8	Quad word
float	S	4	Single precision
double	1	8	Double precision

Register Sizes

Bit:	63	31	15	7 0
	%rax	%eax	%ax	%al
	%rbx	%ebx	%bx	%b1
	%rcx	%ecx	%cx	%c1
	%rdx	%edx	%dx	%d1
	%rsi	%esi	%si	%sil
	%rdi	%edi	%di	%dil

Register Sizes

Bit:	63	31	15	7 0
	%rbp	%ebp	%bp	%bpl
	%rsp	%esp	%sp	%spl
	%r8	%r8d	%r8w	%r8b
	%r9	%r9d	%r9w	%r9b
	%r10	%r10d	%r10w	%r10b
	%r11	%r11d	%r11w	%r11b

Register Sizes

Bit:	63	31	15	7 0
	%r12	%r12d	%r12w	%r12b
	%r13	%r13d	%r13w	%r13b
	%r14	%r14d	%r14w	%r14b
	%r15	%r15d	%r15w	%r15b

Register Responsibilities

Some registers take on special responsibilities during program execution.

- %rax stores the return value
- %rdi stores the first parameter to a function
- %rsi stores the second parameter to a function
- %rdx stores the third parameter to a function
- **%rip** stores the address of the next instruction to execute
- %rsp stores the address of the current top of the stack

See **Stanford CS107 x86-64 Reference Sheet** on Resources page of the course website! https://aykuterdem.github.io/classes/comp201/index.html#div_resources

Practice #1: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix based on the operands (e.g. movb, movw, movl or movq).

mov

- The movabsq instruction is used to write a 64-bit Immediate (constant) value.
- The regular **movq** instruction can only take 32-bit immediates.
- 64-bit immediate as source, only register as destination.

movabsq \$0x0011223344556677, %rax

Practice #2: mov And Data Sizes

For each of the following **mov** instructions, determine how data movement instructions modify the upper bytes of a destination register.

movz and movs

- There are two mov instructions that can be used to copy a smaller source to a larger destination: movz and movs.
- movz fills the remaining bytes with zeros
- movs fills the remaining bytes by sign-extending the most significant bit in the source.
- The source must be from memory or a register, and the destination is a register.

movz and movs

MOVZ S,R

R ← ZeroExtend(S)

Instruction	Description
movzbw	Move zero-extended byte to word
movzbl	Move zero-extended byte to double word
movzwl	Move zero-extended word to double word
movzbq	Move zero-extended byte to quad word
movzwq	Move zero-extended word to quad word

movz and movs

MOVS S,R

 $R \leftarrow SignExtend(S)$

Instruction	Description	
movsbw	Move sign-extended byte to word	
movsbl	Move sign-extended byte to double word	
movswl	Move sign-extended word to double word	
movsbq	Move sign-extended byte to quad word	
movswq	Move sign-extended word to quad word	
movslq	Move sign-extended double word to quad word	
cltq	Sign-extend %eax to %rax	
	%rax ← SignExtend(%eax)	

lea

The **lea** instruction <u>copies</u> an "effective address" from one place to another.

lea src,dst

Unlike **mov**, which copies data <u>at</u> the address src to the destination, **lea** copies the value of src *itself* to the destination.

The syntax for the destinations is the same as **mov**. The difference is how it handles the **src**.

lea vs. mov

Operands	mov Interpretation	lea Interpretation
6(%rax), %rdx	Go to the address (6 + what's in %rax), and copy data there into %rdx	Copy 6 + what's in %rax into %rdx .
(%rax, %rcx), %rdx	Go to the address (what's in %rax + what's in %rcx) and copy data there into %rdx	Copy (what's in %rax + what's in %rcx) into %rdx.
(%rax, %rcx, 4), %rdx	Go to the address (%rax + 4 * %rcx) and copy data there into %rdx.	Copy (%rax + 4 * %rcx) into %rdx.
7(%rax, %rax, 8), %rdx	Go to the address $(7 + %rax + 8 * %rax)$ and copy data there into $%rdx$.	Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike **mov**, which copies data <u>at</u> the address src to the destination, **lea** copies the value of src itself to the destination.

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction	Effect	Description
inc D	D ← D + 1	Increment
dec D	D ← D - 1	Decrement
neg D	D ← -D	Negate
not D	D ← ~D	Complement

Examples: incq 16(%rax)

dec %rdx

not %rcx

Binary Instructions

The following instructions operate on two operands (both can be register or memory, source can also be immediate). Both cannot be memory locations. Read it as, e.g. "Subtract S from D":

Instruction	Effect	Description
add S, D	$D \leftarrow D + S$	Add
sub S, D	D ← D - S	Subtract
imul S, D	D ← D * S	Multiply
xor S, D	D ← D ^ S	Exclusive-or
or S, D	D ← D S	Or
and S, D	D ← D & S	And

```
Examples: addq %rcx,(%rax)
xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)
```

Large Multiplication

- Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64 support this with only 64-bit registers?
- If you specify two operands to imul, it multiplies them together and truncates until it fits in a 64-bit register.

imul S, D D
$$\leftarrow$$
 D * S

 If you specify one operand, it multiplies that by %rax, and splits the product across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64 bits in %rax.

Instruction	Effect	Description
imulq S	$R[%rdx]:R[%rax] \leftarrow S \times R[%rax]$	Signed full multiply
mulq S	$R[%rdx]:R[%rax] \leftarrow S \times R[%rax]$	Unsigned full multiply

Division and Remainder

Instruction	Effect	Description
idivq S	R[%rdx] ← R[%rdx]:R[%rax] mod S; R[%rax] ← R[%rdx]:R[%rax] ÷ S	Signed divide
divq S	R[%rdx] ← R[%rdx]:R[%rax] mod S; R[%rax] ← R[%rdx]:R[%rax] ÷ S	Unsigned divide

- Terminology: dividend / divisor = quotient + remainder
- x86-64 supports dividing up to a 128-bit value by a 64-bit value.
- The high-order 64 bits of the dividend are in **%rdx**, and the low-order 64 bits are in **%rax**. The divisor is the operand to the instruction.
- The quotient is stored in %rax, and the remainder in %rdx.

Division and Remainder

Instruction	Effect	Description
idivq S	R[%rdx] ← R[%rdx]:R[%rax] mod S; R[%rax] ← R[%rdx]:R[%rax] ÷ S	Signed divide
divq S	R[%rdx] ← R[%rdx]:R[%rax] mod S; R[%rax] ← R[%rdx]:R[%rax] + S	Unsigned divide
cqto	R[%rdx]:R[%rax] ← SignExtend(R[%rax])	Convert to oct word

- Terminology: dividend / divisor = quotient + remainder
- The high-order 64 bits of the dividend are in **%rdx**, and the low-order 64 bits are in **%rax**. The divisor is the operand to the instruction.
- Most division uses only 64-bit dividends. The **cqto** instruction sign-extends the 64-bit value in **%rax** into **%rdx** to fill both registers with the dividend, as the division instruction expects.

Shift Instructions

The following instructions have two operands: the shift amount **k** and the destination to shift, **D**. **k** can be either an immediate value, or the byte register **%c1** (and only that register!)

Instruction	Effect	Description
sal k, D	D ← D << k	Left shift
shl k, D	D ← D << k	Left shift (same as sal)
sar k, D	$D \leftarrow D >>_A k$	Arithmetic right shift
shr k, D	D ← D >> _L k	Logical right shift

Shift Amount

Instruction	Effect	Description
sal k, D	D ← D << k	Left shift
shl k, D	D ← D << k	Left shift (same as sal)
sar k, D	D ← D >> _A k	Arithmetic right shift
shr k, D	D ← D >> _L k	Logical right shift

- When using %c1, the width of what you are shifting determines what portion of %c1 is used.
- For w bits of data, it looks at the low-order log2(w) bits of %cl to know how much to shift.
 - If **%cl** = 0xff (0b11111111), then: **shlb** shifts by 7 because it considers only the low-order log2(8) = 3 bits, which represent 7. **shlw** shifts by 15 because it considers only the low-order log2(16) = 4 bits, which represent 15.