

The key components

Neural membrane

Membrane potential summary

- Equilibrium potential
 - single ion
 - concentration gradinet
 - remains constant
 - difference of charge
 - permeability
- Membrane potential
 - Equilibrium potential across all ions
- Changes in permeability for individual ions change membrane potential

Memrane Channels

ION CHANNEL

Neurotransmitters

How to abstract everything we learned?

Leaky integrate and fire model

Blackboard time

Question

What will be the evolution of Vm to

1. step current

2. pulse current

Response to step and pulse current

Blackboard time

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$
$$u_i(t) = \mathcal{G} \Rightarrow \text{Fire+reset}$$

Question

What will be the response to a

Question

1. What will be response to constant current

2. what is minimal d for a spike?

Caveats

Other cells in CNS

- Neurons: 10%
- Glia: 90%
 - astrocyty: cca 80%
 - ependymal cells: cca 5%
 - oligodendrocyty: cca 5%
 - mikroglie: cca 10%
- Glia as a support system for neural substrate

Glia

Gap junctions

Gap junctions

- Present throughout neural system
- Hypothesized in formation of neural rythms
- Weak neural-to-glial coupling via gap junctions
- Astrocytes and Oligodendrocytes coupled via gap junctions

Other

- Probabilistic nature of vesicle release failure to initiate PSP
- Threshold is not fixed
- Dendritic integration