Throughout, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

1 Conditional expectation

Theorem 1.1 (Existence and uniqueness of conditional expectation). Let $X \in L^1$, and $\mathcal{G} \subseteq \mathcal{F}$. Then there exists a random variable Y such that

- Y is G-measurable
- $Y \in L^1$, and $\mathbb{E}X\mathbf{1}_A = \mathbb{E}Y\mathbf{1}_A$ for all $A \in \mathcal{G}$.

Moreover, if Y' is another random variable satisfying these conditions, then Y' = Y almost surely.

We call Y a (version of) the conditional expectation given \mathcal{G} .

Proof. (Existence)

Case 1: $X \in L^2$.

Recall that L^2 is a Hilbert space, and that the set of \mathcal{G} -measurable random variables is a closed subspace of L^2 (it is closed because the space $L^2(\Omega, \mathcal{G}, \mathbb{P})$ is complete). The projection theorem then gives us the existence and uniqueness of $Y \in L^2 \subseteq L^1$.

Case 2: $X \ge 0 \in L^1$.

Let $X_n = X \wedge n \in L^2$. Then by case 1, we can define $Y_n = \mathbb{E}(X_n \mid \mathcal{G}) \in L^2$. We make the following observation

Lemma 1.1.1. Suppose (X, Y) and (X', Y') are two pairs of random variables satisfying the conditions of the theorem, then $X \ge X'$ implies $Y \ge Y'$ almost surely.

Proof. Let
$$A = \{Y < Y'\}$$
. Then $\mathbb{E}Y \mathbf{1}_A = \mathbb{E}X \mathbf{1}_A \ge \mathbb{E}X' \mathbf{1}_A = \mathbb{E}Y' \mathbf{1}_A$, so $\mathbb{E}(Y - Y') \mathbf{1}_A \ge 0$ and $\mathbb{P}(A) = 0$.

It follows that there is some random variable Y such that $Y_n \uparrow Y$. Clearly Y is \mathcal{G} -measurable. For any $A \in \mathcal{G}$, we have

$$\mathbb{E}Y\mathbf{1}_{A} = \lim_{n \to \infty} \mathbb{E}Y_{n}\mathbf{1}_{A}$$

$$= \lim_{n \to \infty} \mathbb{E}X_{n}\mathbf{1}_{A}$$

$$= \mathbb{E}X\mathbf{1}_{A}$$
(MCV)

Case 3: $X \in L^1$.

Write $X = X^+ - X^-$, and apply case 2 to X^+ and X^- .

(Uniqueness) Suppose Y and Y' are two random variables satisfying the conditions of the theorem. The $\{Y > Y'\}$ is in \mathcal{G} so $\mathbb{E}Y\mathbf{1}_{\{Y>Y'\}} = \mathbb{E}Y'\mathbf{1}_{\{Y>Y'\}} \implies \mathbb{E}(Y-Y')\mathbf{1}_{\{Y>Y'\}} = 0 \implies \mathbb{P}(Y>Y') = 0$. Similarly, $\mathbb{P}(Y'>Y) = 0$.

Remark. The above can also be proved using the Radon-Nikodym theorem.

(Proof via Radon-Nikodym) First recall the Radon-Nikodym theorem

Proposition. Let μ, ν be two σ -finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$. Then there exists a unique (up to a.e. equivalence) $f \in L^1(\Omega, \mathcal{F}, \mu)$ such that $\nu(A) = \int_A f \, d\mu$ for all $A \in \mathcal{F}$.

Consider the measure on (Ω, \mathcal{G}) given by

$$\mu(A) = \mathbb{E}X\mathbf{1}_A, \quad A \in \mathcal{G}$$

so $\mu \ll \mathbb{P}$. By the Radon-Nikodym theorem, there exists a unique $Y \in L^1(\Omega, \mathcal{G}, \mathbb{P})$ such that $\mu(A) = \int_A Y \, d\mathbb{P}$ for all $A \in \mathcal{G}$.

For general
$$X \in L^1$$
, we can write $X = X^+ - X^-$ and apply the above to X^+ and X^- .

Proposition (Equivalent definition for conditional expectation). Let X, \mathcal{G} be as above. Then there exists a random variable Y such that

- Y is \mathcal{G} -measurable
- $Y \in L^1$ and $\mathbb{E}XZ = \mathbb{E}YZ$ for all $Z \in L^\infty(\mathcal{G})$

Moreover, $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proof. (Existence) Set $Y = \mathbb{E}(X \mid \mathcal{G})$. It is straightforward to see that Y satisfies the conditions of the proposition for simple functions Z. Note that simple functions that are in L^p are dense in L^p for $1 \leq p \leq \infty$. Let $Z_n \in L^{\infty}(\mathcal{G})$ be a sequence of simple functions such that $Z_n \to Z$ in L^{∞} (in particular, we have almost sure pointwise convergence). Then

$$\mathbb{E}XZ = \lim_{n \to \infty} \mathbb{E}XZ_n$$

$$= \lim_{n \to \infty} \mathbb{E}YZ_n$$

$$= \mathbb{E}YZ$$
(DCT)

(Uniqueness) Note that any two random variables satisfying the conditions of the proposition are versions of the conditional expectation given \mathcal{G} , which was shown to be unique.

Lemma 1.1.2 (Conditional expectation as a function). Let $X,Y:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Then Y is measurable with respect to $\sigma(X)$ if and only if there exists a Borel-measurable function $f:\mathbb{R}\to\mathbb{R}$ such that $Y(\omega)=f(X(\omega))$ for all $\omega\in\Omega$.

Proposition (Properties of conditional expectation). All (in)equality relations below hold almost surely.

- 1. If $X \geq 0$ a.s., then $\mathbb{E}(X \mid \mathcal{G}) \geq 0$
- 2. If X and \mathcal{G} are independent, then $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}[X]$

3. If $\alpha, \beta \in \mathbb{R}$ and $X_1, X_2 \in L^1$, then

$$\mathbb{E}(\alpha X_1 + \beta X_2 \mid \mathcal{G}) = \alpha \mathbb{E}(X_1 \mid \mathcal{G}) + \beta \mathbb{E}(X_2 \mid \mathcal{G}).$$

4. Tower property: If $\mathcal{H} \subseteq \mathcal{G}$, then

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H}).$$

5. If Z is bounded and \mathcal{G} -measurable, then

$$\mathbb{E}(ZX \mid \mathcal{G}) = Z\mathbb{E}(X \mid \mathcal{G}).$$

6. Let $X \in L^1$ and $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$. Assume that $\sigma(X, \mathcal{G})$ is independent of \mathcal{H} . Then

$$\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X \mid \sigma(\mathcal{G}, \mathcal{H})).$$

Proof. 1. Follows from the proof of existence and uniqueness of conditional expectation, or just use monotonicity.

- 2. Let $A \in \mathcal{G}$. Then $\mathbb{E}(\mathbb{E}(X)\mathbf{1}_A) = \mathbb{E}X\mathbb{E}\mathbf{1}_A = \mathbb{E}(X\mathbf{1}_A)$
- 3. Use linearity of conditional expectation.
- 4. Let $A \in \mathcal{H}$. Then $\mathbb{E}\left[\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})\mathbf{1}_A\right] = \mathbb{E}\left[\mathbb{E}(X \mid \mathcal{G})\mathbf{1}_A\right] = \mathbb{E}(X\mathbf{1}_A)$
- 5. Easy if Z is an indicator function. Then use linearity and covergence theorems.
- 6. Note $\mathbb{E}(X \mid \mathcal{G})$ is $\sigma(\mathcal{G}, \mathcal{H})$ -measurable and $\sigma(\mathcal{G}, \mathcal{H})$ is generated by the π -system $\{A \cap B : A \in \mathcal{G}, B \in \mathcal{H}\}$. We show that $\mathbb{E}(X \mid \mathcal{G})$ satisfies the defining property of $\mathbb{E}(X \mid \sigma(\mathcal{G}, \mathcal{H}))$. Let $A \in \mathcal{G}$ and $B \in \mathcal{H}$. Then for any element of the π -system, we have

$$\mathbb{E}(\mathbb{E}(X\mid\mathcal{G})\mathbf{1}_{A\cap B}) = \mathbb{E}[\mathbb{E}(X\mid\mathcal{G})\mathbf{1}_{A}\mathbf{1}_{B}] = \mathbb{E}[\mathbb{E}(X\mathbf{1}_{A}\mid\mathcal{G})\mathbf{1}_{B}] = \mathbb{E}(\underbrace{X\mathbf{1}_{A}}_{\in\sigma(\mathcal{G},X)})\mathbb{E}(\mathbf{1}_{B}) = \mathbb{E}(X\mathbf{1}_{A\cap B})$$

Since finite measures extend uniquely from π -systems, the above holds if $A \cap B$ is replaced by any element of $\sigma(\mathcal{G}, \mathcal{H})$

Proposition (Properties of conditional expectation). All (in)equality relations below hold almost surely.

1. Jensen's inequality: If $c: \mathbb{R} \to \mathbb{R}$ is convex, then

$$\mathbb{E}(c(X) \mid \mathcal{G}) \ge c(\mathbb{E}(X) \mid \mathcal{G}).$$

2. For $p \geq 1$,

$$\|\mathbb{E}(X \mid \mathcal{G})\|_p \le \|X\|_p.$$

3. Monotone convergence theorem Suppose $X_n \uparrow X$ is a sequence of non-negative random variables. Then

$$\mathbb{E}(X_n \mid \mathcal{G}) \uparrow \mathbb{E}(X \mid \mathcal{G}).$$

4. Fatou's lemma: If X_n are non-negative measurable, then

$$\mathbb{E}\left(\liminf_{n\to\infty}X_n\mid\mathcal{G}\right)\leq \liminf_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G}).$$

5. Dominated convergence theorem: If $X_n \to X$ and $Y \in L^1$ such that $Y \ge |X_n|$ for all n, then

$$\mathbb{E}(X_n \mid \mathcal{G}) \to \mathbb{E}(X \mid \mathcal{G}).$$

Proof. 1. Note that a convex function is the supremum of countably many affine functions $c(x) = \sup_{i \in I} a_i x + b_i$. Then

$$\mathbb{E}(c(X) \mid \mathcal{G}) = \mathbb{E}\left(\sup_{i \in I} (a_i X + b_i) \mid \mathcal{G}\right)$$

$$\geq \mathbb{E}(a_i X + b_i \mid \mathcal{G}) \quad \forall i \in I$$
 (monotonicity)

So
$$\mathbb{E}(c(X) \mid \mathcal{G}) \ge \sup_{i \in I} \mathbb{E}(a_i X + b_i \mid \mathcal{G}) = c(\mathbb{E}(X \mid \mathcal{G})).$$

- 2. Jensen
- 3. By monotonicity, $\mathbb{E}(X_n \mid \mathcal{G}) \uparrow Y$ for some Y. By the usual monotone convergence theorem, $\mathbb{E}\mathbb{E}(X_n \mid \mathcal{G}) = \mathbb{E}X_n \to \mathbb{E}Y \leq \mathbb{E}X$ so $Y \in L^1$. Since each of the $\mathbb{E}(X_n \mid \mathcal{G})$ are \mathcal{G} -measurable, so is Y. Finally, for any $A \in \mathcal{G}$,

$$\mathbb{E}Y \mathbf{1}_{A} = \lim_{n \to \infty} \mathbb{E}\mathbb{E}(X_{n} \mid \mathcal{G}) \mathbf{1}_{A}$$

$$= \lim_{n \to \infty} \mathbb{E}X_{n} \mathbf{1}_{A}$$

$$= \mathbb{E}X \mathbf{1}_{A}$$
(MCV)

4.

$$\mathbb{E}\left(\liminf_{n\to\infty} X_n \mid \mathcal{G}\right) = \mathbb{E}\left(\lim_{n\to\infty} \inf_{\substack{m\geq n \\ increasing}} X_m \mid \mathcal{G}\right)$$

$$= \lim_{n\to\infty} \mathbb{E}\left(\inf_{m\geq n} X_m \mid \mathcal{G}\right) \qquad (MCV)$$

$$= \liminf_{n\to\infty} \mathbb{E}\left(\inf_{\substack{m\geq n \\ \leq X_n}} X_m \mid \mathcal{G}\right)$$

$$\leq \liminf_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G}) \qquad (monotonicity)$$

5. Use Fatou's lemma on $Y + X_n$ and $Y - X_n$.