Artificial Bee Colony アルゴリズムによる サポートベクターマシンのハイパーパラメータ 最適化

2131007 安達 拓真

千葉工業大学 情報科学部 情報工学科 4 年 山口研究室

2024年1月24日

- 機械学習にとってハイパーパラメータはモデルの性能を 決める重要な値
- ハイパーパラメータを自動で調整する研究が行われている
- 先行研究として、Artificial Bee Colony(ABC) アルゴリズムを 用いて、サポートベクターマシン (SVM) のハイパーパラ メータ最適化と特徴選択を行った研究がある
- 本研究では、先行研究で最適化対象ではなかったカーネル関数をハイパーパラメータとして扱う手法を提案する

サポートベクターマシン(SVM)

- 1995 年に提案された、分類や回帰に使用される機械学習 アルゴリズム¹
- 非線形データを高次元空間に写像し、線形分離可能にする
- データを分類する最適な境界線(超平面)を探す

¹Cortes, C. and Vapnik, V. Support-vector networks, Ma-chine Learning, Vol.20, No.3, pp.273-297, 1995.

Artificial Bee Colony(ABC) アルゴリズム

- 蜂の採餌行動に着目した最適化アルゴリズム²
- 働き蜂,追従蜂,偵察蜂の三種類の蜂によって各食物源の 探索を行い,最適解を求める
- 最適化対象は実数値
- ABC 自体の設定パラメータは少ない

²Karaboga, Dervis. An idea based on honey bee swarm for numerical optimization. Vol. 200. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.

- カーネル関数を RBF カーネルに固定
- 最適化には ABC を使用
- 最適化したハイパーパラメータ
 - > SVM の C
 - ightharpoonup RBF カーネルの γ

³近藤 久,浅沼 由馬"人工蜂コロニーアルゴリズムによるランダムフォレストとサポートベクトルマシンのハイパーパラメータ最適化と特徴選択",人工知能学会論文誌, vol34-2, pp.1-11, 2019.

問題点

- カーネル関数を RBF カーネルに固定している
 - ► SVM には RBF カーネル以外にも様々なカーネル関数が適用 できる
 - ▶ カーネル関数によってハイパーパラメータが異なる
- ハイパーパラメータ空間の探索範囲が限定的

提案手法

以下の4つのカーネル関数とそのハイパーパラメータも最適 化対象とする

線形カーネル:
$$K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \boldsymbol{x_i}^T \cdot \boldsymbol{x_j}$$

RBF カーネル:
$$K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \exp\left(-\gamma_0 \|\boldsymbol{x_i} - \boldsymbol{x_j}\|^2\right)$$

シグモイドカーネル:
$$K(\boldsymbol{x_i}, \boldsymbol{x_j}) = \tanh(\gamma_1 \boldsymbol{x_i}^T \cdot \boldsymbol{x_j} + \mathsf{coef0}_0)$$

多項式カーネル:
$$K(\boldsymbol{x_i}, \boldsymbol{x_j}) = (\gamma_2 \boldsymbol{x_i}^T \cdot \boldsymbol{x_j} + \mathsf{coef0}_1)^d$$

カーネル関数が持つハイパーパラメータの扱い

- ABC でハイパーパラメータが異なるカーネル関数を同時に扱う必要がある
- 同じ性質のハイパーパラメータが存在することに着目
 - ▶ 4 つのカーネル関数のハイパーパラメータの合計は 6 個
 - ▶ 性質ごとに分けると3個
- 他のカーネル関数で使用するパラメータの値をそのまま使用
 - ▶ ランダム性により解の多様性が生まれる

食物源の形とハイパーパラメータの扱い

ABC における食物源は5個の数値で表す

食物源の形

変数	カーネル関数	C	γ	coef0	d
型	文字列	実数	実数	実数	整数
数值	{1,2,3,4}	[0,1]	[0,1]	[0,1]	[0,1]

- C, γ , coef0, d は以下の式によって SVM に適用される値に変換される
 - ▶ 整数である d は四捨五入を行う

$$A = a(a_{max} - a_{min}) + a_{min}$$

カーネル関数によって異なるハイパーパラメータはカーネル 関数の値によって活性、非活性となる

カーネル関数の扱い

- カーネル関数は文字列であるため ABC の更新式が適用でき ない
- カーネル関数の更新はランダムに選ばれた個体との ルーレット選択

$$P = \frac{\operatorname{fit}(\boldsymbol{x_j})}{\operatorname{fit}(\boldsymbol{x_i}) + \operatorname{fit}(\boldsymbol{x_j})}$$

i: 更新個体 j: ランダムに選ばれた値

実験

- 侵入検知問題である KDD'99 データセットを, デフォルトパラメータ,既存手法,提案手法で解く
- 既存手法,提案手法は10回ずつ実行し,平均値をとる
- データセットはランダムに10%抽出した物を3つ使用する
 - ▶ 学習セット: SVM の学習に使用
 - ▶ 検証セット: SVM の評価に使用
 - ▶ テストセット: 最終的に得られた最良解の評価に使用

実験パラメータ

ABC の実験パラメータ

パラメータ	値
コロニーサイズ	20
LIMIT	100
サイクル数	500

SVM の実験パラメータ

パラメータ	値	
kernel	[linear, RBF, sigmoid, poly]	
C	$[10^{-6}, 35000]$	
γ	$[10^{-6}, 32]$	
coef0	[0, 10]	
d	[1, 3]	

実験結果(分類精度と実行時間)

- 提案手法はデフォルトパラメータ, 既存手法よりも分類精度 が高くなった.
- 実行時間は既存手法よりも長くなった.

分類精度と実行時間

	線形	RBF	シグモイド	多項式	既存手法	提案手法
分類精度 [%]	99.68	99.78	96.12	99.76	99.88	99.91
実行時間 [h]	-	-	-	-	11.8	15.5

評価指標

• モデルの評価指標として検知率,誤警報率,適合率, F値を 使用する

混同行列

実際のクラス

		攻撃	通常
予測クラス	攻撃	TP	FP
アミンノへ	通常	FN	TN

検知率 =
$$\frac{TP}{TP + FN}$$
, 誤警報率 = $\frac{FP}{TN + FP}$

適合率 =
$$\frac{TP}{TP + FP}$$
, F値 = $\frac{2*検知率*適合率}{校知率 + 適合率}$

実験結果(評価指標)

- 提案手法では TP, TN が向上し, FP, FN は減少したため, 検知率が向上し,誤警報率は減少した
 - ▶ 侵入検知問題におけるモデルの性能が向上した

混同行列の値

	先行研究	提案手法
TP	39602.4	39609.7
TN	9743.8	9748.9
FP	22.2	17.1
FN	33.6	26.3

モデルの評価指標

	先行研究	提案手法
検知率 [%]	99.91	99.93
誤警報率 [%]	0.23	0.17
適合率 [%]	99.94	99.96
F 値 [%]	99.93	99.95

データの有意性

- 既存手法と提案手法の実験結果に有意差があるかどうかを、 t 検定により検証した
- すべての評価指標で p 値が 0.05 未満のため, 有意水準 5%で 有意差ありと言える

t検定のp値

	p 値
分類精度	0.00020
検知率	0.028
誤警報率	0.0076
適合率	0.013
F値	0.0025

考察

- 提案手法で実行時間が長くなってしまった原因
 - ▶ カーネル関数をハイパーパラメータとして扱い探索範囲を 広げたこと
- 既存手法では RBF カーネルのみを使用
- RBF カーネルは汎用性が高く、他のカーネル関数に比べて学習時間が短い傾向にある
 - ► RBF カーネル以外のカーネル関数の個体の評価に時間が かかった可能性

おわりに

- カーネル関数もハイパーパラメータとして扱い、SVM の ハイパーパラメータを最適化する手法を提案
- 提案手法は先行研究よりも分類精度が高くなったが、 実行時間は長くなった
- 探索範囲を広げたことで、データセットに応じた柔軟なモデル構築が可能となる
 - ▶ 様々なデータセットで提案手法の汎用性を検証する必要がある