

Organización del Computador 2025

Basel - Ferreyra - Laprovitta - Vélez - Vodanovic

Introduction

- Computer systems functionality aspects
 - Processing
 - Transformation of data
 - Implemented using processors
 - Storage
 - Retention of data
 - Implemented using memory
 - Communication
 - Transfer of data between processors and memories
 - Implemented using buses
 - Called interfacing

A simple bus

→ Wires:

- Uni-directional or bi-directional
- One line may represent multiple wires

Bus

- Set of wires with a single function
 - Address bus, data bus
- Or, entire collection of wires
 - Address, data and control
 - Associated protocol: rules for communication

^{*} Embedded Systems Design: A Unified Hardware/Software Introduction, © 2000 Vahid/Givargis

Semiconductor Memory Classification

Read-Writ	te Memory	Non-Volatile Read-Write Memory	Read-Only Memory
Rando maccess	Non-Rando m Access	EPRO M E PRO	Mask-Programmed Programmable (PROM)
SRAM DRA M	FIF O EIFO Shift Register CACHE	M FLAS H	

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Control Inputs to a Memory Chip

Chip Select CS	Read/Write R/W	Memory Operation		
1	×	None		
0	0	Write to selected word		
0	1	Read from selected word		

Memory Organization

Example organization for 1Kword x 8 bits = 8K bits memory

Memory Architecture: Decoders

Intuitive architecture for K x M
memory
Too many select signals:
K words == K select signals

Decoder reduces the number of select signals $N = log_2K$

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Hierarchical Memory Architecture

Advantages

1. Shorter wires within Block => power

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Addressable Space

- It's defined as the <u>total number</u> of addresses the CPU can access.
- It depends on the width (number of bits) of the address bits: n bits -> 2ⁿ addresses

Size prefixes and symbols

N bits (2 ^N)		(en words)		Simbolo [Prefijo]		
2 10	=	1024 words	=	1Kw	[Kilo]	
2 20	=	1024 Kw	=	1Mw	[Mega]	
2 30	=	1024 Mw	=	1Gw	[Giga]	
2 40	=	1024 Gw	=	1Tw	[Tera]	
2 50	=	1024 Tw	=	1Pw	[Peta]	

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	2^{10}	Kibi-	Ki
10^{6}	Mega-	M	2^{20}	Mebi-	Mi
10 ⁹	Giga-	G	2^{30}	Gibi-	Gi
10^{12}	Tera-	T	2^{40}	Tebi-	Ti
10^{15}	Peta-	P	2^{50}	Pebi-	Pi
10^{18}	Exa-	Е	2^{60}	Exbi-	Ei
10^{21}	Zetta-	Z	2^{70}	Zebi-	Zi
10^{24}	Yotta-	Y	2^{80}	Yobi-	Yi
10 ⁻³	milli-	m	10 ⁻¹⁵	femto-	f
10 ⁻⁶	micro-	μ	10 ⁻¹⁸	atto-	a
10 ⁻⁹	nano-	n	10 ⁻²¹	zepto-	Z
10 ⁻¹²	pico-	р	10 ⁻²⁴	yocto-	у

Memory Addressing (data bus)

Memory Addressing (address bus)

Memory Addressing (parallel)

Example organization for bank of 1Kword x 16 bits from 2 x 1Kx8bits

Memory Addressing (serial)

Example organization for bank of 4Kword x 8 bits from 4 x 1Kx8bits

Example: Conventional PC Memory map

'Espejos' en el mapa de memoria

DECODER 2 a 4 A14 d0b 11 A13 d1 10 d2 A15 EN d3 0 CS A12 - A0 RAM#1 8K x 8 A15 CS

Caso: Hallar el mapa de memoria del circuito indicando las posiciones de memoria ocupadas por cada CI RAM.

A15	A14	A13	Decoder	Mem Posición en el mapa		Bytes
	0	0	d0	-	H0000 – H1FFF	8K
0	0	1	d1	RAM1	H2000 – H3FFF	8K
0	1	0	d2	RAM1	H4000 – H5FFF	8K
	1	1	d3	2 - 2	H6000 – H7FFF	8K
1	Х	Х		RAM2	H8000 - HFFFF	32K

D7 - D0

D7 - D0

RAM #2 8K x 8

Bibliografía: M. Morris Mano, Charles R. Kime, and Tom Martin, "Logic and computer design fundamentals" 5th Edition (2015).