目录

— 、	问题重述	1
	1.1 问题背景	1
	1.2 问题概述	1
二、	模型假设	1
三、	符号说明	1
四、	问题一模型的建立与求解	1
	4.1 问题描述与分析	1
	4.2 模型的建立	2
	4.2.1 灰度预测 GM(1,1)	2
五、	问题二模型的建立与求解	3
	5.1 问题描述与分析	3
	5.2 模型的建立	3
	5.3 模型的求解	3
六、	灵敏度分析	3
七、	模型的评价	3
	7.1 模型的优点	3
	7.2 模型的缺点	3
	7.3 模型改进	3
附录	A 模型的代码实现	5
	A.1 数据可视化-python 源代码	5

一、问题重述

1.1 问题背景

1.2 问题概述

围绕相关附件和条件要求,研究海运装载行动输送兵力任务的合理安排,依次提出以下问题:

问题一:根据合适的指标建立模型,

问题二:基于 2004-2016 年每隔三年的不同地

问题三:结合地区经济发展的相关数据,

二、模型假设

(1) 为保证预测结果精确性,假设题目所给出数据真实可信。

(2) 假设重点防控的区域和人群中,发病、死亡人数的增长率比其基数更加重要

三、符号说明

符号 说明	
人数时间序列	
发展灰度	
内生控制灰度	

四、问题一模型的建立与求解

4.1 问题描述与分析

其思维流程图如图 1 所示:

图 1 问题一思维流程图

4.2 模型的建立

4.2.1 灰度预测 GM(1,1)

设 2004-2016 年总发病人数为时间序列:

$$X^{(0)} = [x^{(0)}(1), x^{(0)}(2), \cdots, x^{(0)}(13)]$$

其误差状态区间如表 1 所示:

表 1 发病人数状态区间划分

状态	E_1	E_2	E_3
残差区间	[-66389, -22130]	(-22130, 22130]	(22130, 66389]

五、问题二模型的建立与求解

- 5.1 问题描述与分析
- 5.2 模型的建立
- 5.3 模型的求解

六、灵敏度分析

七、模型的评价

7.1 模型的优点

- (1) 利用马尔可夫模型改进后的灰度预测值与实际值拟合度更高,波动性保持一致,预测的效果更好。
- (2) 针对支持向量回归参数选取,利用灰色关联度筛选合适指标,相较于主观选取指标具有客观性、严谨性。

7.2 模型的缺点

问题一、二中的灰色预测模型只能做短期预测,并不适用于长期预测。

7.3 模型改进

可以通过序列最小优化算法 (Sequential Minimal Optimization,SMO) 作为样本的训练算法,进而建立序列最小优化支持向量回归模型,从而减小算法复杂度,提高算法的求解速度。

参考文献

- [1] Saad Ahmed Javed, Sifeng Liu. Correction to: Predicting the research output/growth of selected countries: application of Even GM (1, 1) and NDGM models[J]. Scientometrics, 2019, 120(3).
- [2] 李立欣, 文海东, 许健开. 基于灰色马尔可夫模型的能源消耗预测 [J]. 中国科技信息,2018(15):74-75.

附录 A 模型的代码实现

A.1 数据可视化-python 源代码

```
_xtick_labels = ["{}年".format(int(i)) for i in x]
plt.xticks(x, _xtick_labels, fontproperties=my_font)
# plt.yticks(range(0, 9))

# 绘制网格
plt.grid(alpha=0.3, linestyle="--") # alpha为透明度 0-1
plt.title("三种重点检测职业分析图", fontproperties=my_font)
plt.xlabel("年份", fontproperties=my_font)
plt.ylabel("患病人数", fontproperties=my_font)
# 标注图例
plt.legend(prop=my_font, loc=0)
plt.show()
```