Climate Change

Yuchen Wei (201779381)

Apphia Aidoo (201802406)

Aman Bhattacharyya (201711295)

Sungyeon Lim (201764876)

Contents

- 01 Introduction
- 02 Natural Causes
- 03 Greenhouse Gases
- 04 Agricultural Food Production
- 05 Extreme Weather
- 06 Conclusion

01 Introduction

01 Introduction | Climate Change

- Climate change involves long-term shifts in temperatures and weather patterns.
- Can be caused by natural causes and human activities, particularly the burning of fossil fuels such as coal, oil, and gas.
- Burning fossil fuels releases greenhouse gases like carbon dioxide and methane, which act as a blanket around the Earth, trapping heat from the sun and causing temperatures to rise.
- Major sources of greenhouse gas emissions include transportation, energy production, agriculture, and industrial activities.

Temperature Deviation

02 Natural Causes

02 Natural Causes | Natural Gases of Climate Change

Volcanoes:

Volcanoes can influence the climate in substantial ways, primarily through the emission of volcanic gases and ash particle into the atmosphere.

Sulfur Dioxide (SO2):

This is the most significant gas in terms of its impact on the climate. When erupted into the atmosphere, SO2 can form sulfate aerosols which reflect sunlight back into space, leading to a cooling of the Earth's surface.

Ash Particles (Aerosol):

Volcanic ash can also block sunlight directly by creating a thick cloud in the atmosphere.

02 Natural Causes | Effect of Volcanic Eruption

Effect of Volcanic Eruption on the Climate

- > The red line indicates volcanic activity
- The blue line indicates temperature deviation
- Major volcanic eruptions, corresponds to a noticeable temporary dip in global temperatures

02 Natural Causes | Solar Activity

Sun Cycles and Energy Output: The Sun undergoes various cycles that influence its overall energy output.

- Sunspot Variation: Among these cycles, changes in the number of sunspots are significant.
- Impact on Earth's Climate:
 - Periods with higher sunspot activity are associated with increased solar energy reaching Earth, resulting in warmer temperatures.
 - Conversely, periods with fewer sunspots correlate with less solar energy reaching Earth, leading to cooler temperatures.

Chart: Periods of increased solar forcing (peaks) can contribute to warmer global temperatures, while periods of lower solar forcing can contribute to cooler temperatures.

02 Natural Causes | Ocean Currents

Oceans are a major contributor of the climate change, as they store and transport heat and carbon. Changes in ocean currents can influence climate patterns.

El Nino and La Nina are part of the El Nino-Southern Oscillation (ENSO) cycle, which describes temperature fluctuations between the ocean and atmosphere in the east-central Equatorial Pacific.

- ➤ El Nino is warm phase of the ENSO cycle, it leads to warmer than usual sea surface temperatures in the central and eastern Pacific Ocean.
- La Nina, opposite to El Nino, is characterised by usually cold ocean temperatures in the Equatorial Pacific.

02 Natural Causes | Summary

- As we have seen, natural phenomena such as volcanic eruptions, solar activities, El Nino, and La Nina somewhat impact global temperatures.
- There causes are crucial components of the Earth's climate system, leading to fluctuations and shifts in weather patterns across the globe.
- Keynote: While these natural factors do contribute to fluctuations in global temperatures, it is important to recognise that they are not the sole drivers of climate change.

03 Greenhouse Gases

03 Greenhouse Gases | Greenhouse Gas Emissions

Greenhouse Gas Emissions and its Effect on Climate Change

- Emission of human influenced greenhouse gases is a primary driver of climate change
- Greenhouse gases help regulate the Earth's temperature to make it habitable for various organisms
- Greenhouse gases absorb and emit infrared radiation and they are known as infrared active
- Earth's atmosphere is made up of 78% Nitrogen, 21%
 Oxygen and 0.9% Argon, they have symmetry in the distribution of their electrical charges and are almost totally unaffected by infrared thermal radiation

03 Greenhouse Gases | Mechanism of Greenhouse Effect

- Both the Earth and the Sun emit electromagnetic radiation
- For the Sun these emissions peak in the visible region whereas for the Earth it peaks at infrared
- In the present atmosphere, water vapour is the most significant of these greenhouse gases, followed by carbon dioxide and various other minor greenhouse gases.
- Greenhouse gases capture 70-85% of the energy in upgoing thermal radiation emitted from the Earth surface.

03 Greenhouse Gases | Effect of Greenhouse Gases

Greenhouse Gases and Effect on Climate Change

- Water vapours cause about 50% of the greenhouse effect, but humans do not directly influence the amount of water vapour in the environment hence it doesn't add to climate change unlike the emission of other greenhouse gases.
- It is observed that carbon dioxide has the most effect on global temperatures out of all greenhouse gases (other than water vapours which isn't compared here as it doesn't contribute to man made climate change)

03 Greenhouse Gases | Effect of Greenhouse Gases

The experiments were carried forward by quantifying the impact of each individual long wave (LW) absorbers which is done by examining the net amount of long-wave radiation absorbed in the atmosphere while holding the climate properties fixed

Contributor	K&T (1997)		Schmidt (2010)		
	Clear Sky	With Clouds	Clear Sky	With Clouds	
Water vapor	60	41	67	50	
Clouds		31		25	
CO2	26	18	24	19	
Tropospheric ozone (O3)	8				
N2O + CH4	6				
Other		9		7	

First 2 columns are from :Kiehl, J.T.; Kevin E. Trenberth (1997). "Earth's annual global mean energy budget". Bulletin of the American Meteorological Society. Last 2 columns are from: Schmidt, G.A.; R. Ruedy; R.L. Miller; A.A. Lacis (2010), "The attribution of the present-day total greenhouse effect" (

03 Greenhouse Gases | Concentration of CO2

Concentration of CO2 and Global Temperature Deviations Analysis

- Emissions of CO2 is the major human influenced factor affecting global climate change
- Datasets used for analysis: IMF data of carbon dioxide level in part per million and global temperature deviation data given for assignment 4
- Similar upward trend, correlation between the variables found to be 0.957

03 Greenhouse Gases | Concentration of CO2

```
Call:
lm(formula = TempChangeSince1958 ~ PartsPerMillion, data = merged_df)
Residuals:
            10 Median
    Min
-2.0838 -1.4854 -0.3441 1.3424 2.9517
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -64.9433
                            2.7889 -23.29
PartsPerMillion 0.1971
                            0.0079 24.95
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.592 on 57 degrees of freedom
Multiple R-squared: 0.9161, Adjusted R-squared: 0.9147
F-statistic: 622.6 on 1 and 57 DF, p-value: < 2.2e-16
```

- A general linear model used due to high correlation and visible linear relationship between variables
- For increase in 1 PPM of CO2 concentration in the atmosphere it's predicted that the temperature will increase by 0.1971°C in global temperature (there is standard error of 0.008 °C)

03 Greenhouse Gases | Human Activities

data collected from https://worldemissions.io/

Sector	Sub Sector	Emission (GT)	Total Emission Sector (GT)
Energy Systems	Electricity Production: Coal	10.9	21.3
	Fossil Fuels Production	5	
	Electricity Production: Gas	3.5	
	Other Energy Use/Combustion	0.93	
	Heating	0.53	
	Electricity Production: Oil	0.44	
Industry	Metal	3.6	14.4
	Chemicals	2.7	
	Waste	1.9	
	Cement	1.8	
	Others	4.4	
Agriculture	Land Use Change	5.5	12
	Live Stock	3.7	
	Crops	2.8	
Transport	Cars/Buses/Trucks	6.2	8
	Rail & Others	0.7	
	Ships & International Shipping	0.7	
	Air Travel	0.4	
Building	Heating & Cooking	2.65	3.2
	Cooling	0.55	

03 Greenhouse Gases | Efforts to Mitigate Climate Change

- Ban of CFCs and other Ozone depleting substances after the formulation of Montreal Protocol in 1987 to curb the usage by half
- In 1990, the Montral Protocol underwent substantial reinforcement, mandating the complete cessation of CFC usage in industrialised nations by 2000 and and in developing nations by 2010
- Presently, the Montral Protocol has been embraced by 197 nations worldwide
- In recent years, 196 countries got tougher to sign the Paris Agreement it is an international treaty on climate change that was adopted in 2015
- To limit the increase in global surface temperature to well below 2 °C and to stay within the 1.5 °C limit, greenhouse emissions must be slashed by approximately 50% by 2030

04. Agricultural Food Production

04 Agricultural Food Production | Background

Global greenhouse gas emissions from food production

"Food production is responsible for one-quarter of the world's greenhouse gas emissions"

04 Agricultural Food Production | Data

Temperature Deviation Data

Agri-food CO2 Emission Data

agrifood = pd.read_csv('agrifood.csv')
agrifood.head()

	Year	Savanna fires	Forest fires	Rice Cultivation	Drained organic soils (CO2)	Pesticides Manufacturing
0	1990	265533.1965	203871.7269	929823.919130	752445.9744	55011.031460
1	1991	265533.1965	203871.7269	930480.142397	752445.9744	54433.936841
2	1992	265533.1965	203871.7267	939513.173286	752445.9743	57481.699902
3	1993	265533.1964	203871.7267	924193.393558	752878.5072	57749.542893
4	1994	265533.1964	203871.7267	927782.202763	752547.1299	62186.034696
4						

18 variables 27 instances (1990-2016)

04 Agricultural Food Production | Correlation Analysis

Fertilizers Manufacturing: 0.8621

Food Transport: 0.8443

Manure left on Pasture: 0.8370

Food Household Consumption: 0.8338

IPPU: 0.8230

Mostly, positively correlated

04 Agricultural Food Production | Time Series Analysis

Vector Autoregressive (VAR) Model

- 1. A multivariate time series model used for analysing the dynamic relationships among multiple variables over time
- 2. It offers a flexible way to capture complicated real-world behaviours
- 3. An assumption made on stationary data
 Stationary: properties of a time series do not depend on the time

04 Agricultural Food Production | Time Series Analysis

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-13.97	-13.83*	8.543e-07*	-13.98
1	-13.87	-13.30	9.849e-07	-13.88
2	-14.06	-13.07	9.915e-07	-14.07
3	-14.23*	-12.82	1.506e-06	-14.25*

Results for equation TemperatureDeviation

	coefficient
const	0.094591
L1.Agrifood Systems Waste Disposal	-0.443538
L1.IPPU	0.100636
L1.TemperatureDeviation	-0.599433
L2.Agrifood Systems Waste Disposal	0.181634
L2.IPPU	0.020895
L2.TemperatureDeviation	-0.528061
L3.Agrifood Systems Waste Disposal	0.121606
L3.IPPU	-0.414678
L3.TemperatureDeviation	-0.384541

$$\begin{split} x_{TD}(t) &= 0.095 - 0.44 \times x_{ASWD}(t-1) + 0.10 \times x_{IPPU}(t-1) - 0.60 \times x_{TD}(t-1) \\ &+ 0.18 \times x_{ASWD}(t-2) + 0.021 x_{IPPU}(t-2) - 0.53 \times x_{TD}(t-2) \\ &+ 0.12 \times x_{ASWD}(t-3) - 0.41 \times x_{IPPU}(t-3) - 0.39 \times x_{TD}(t-3) \end{split}$$

04 Agricultural Food Production | Time Series Analysis

Forecasting temperature deviation

04 Agricultural Food Production | Summary

Correlation Analysis

The agricultural food production is one of the causes of the climate change

Time Series Analysis

Based on two main CO2 emission factors of agricultural food production process, it is forecasted that the temperature deviation will increase rapidly in the future

Decreasing the amount of CO2 emissions from the agricultural food production process will help to slow down the climate change

05 Extreme Weather

05 Extreme Weather | Overview

Global climate change is caused by a number of factors, one of the most notable consequences is a significant increase in the frequency of extreme weather.

05 Extreme Weather | Basic Visualisation

On the IMF website there is data on the frequency of extreme weather over nearly last 40 years.

All of analyses were based on RStudio.

05 Extreme Weather | Correlation Analysis

Same trend

Correlation analysis

> print(correlation_result)

Pearson's product-moment correlation

low p-value: reject hypothesis some correlation exists

cor = 0.8038668: there is a strong positive correlation between the two variables

05 Extreme Weather | Modelling

Five different time series forecasting methods:

(1) Averaging (2) Naive (3) Drift (4) Exponential smoothing (5) ARIMA Finally, use "accuracy" to evaluate.

05 Extreme Weather | Modelling

```
> accuracy(ifit1, test1)
                                RMSE
                                                             MAPE
                                                                      MASE
                                                                                ACF1
                           90.78959 80.89993 -17.81048 41.32693 2.261178 0.8463522
Training set -6.155455e-15
              9.596396e+01 102.20553 95.96396 26.96462 26.96462 2.682223 0.3527967
Test set
             Theil's U
Training set
Test set
              2.318763
> accuracy(ifit2, test1)
                           RMSE
                                                                 MASE
                                                                            ACF1
Training set 5.277778 44.26185 35.77778 1.305386 14.27108 1.000000 -0.4553323
             51.666667 62.50067 54.00000 14.008131 14.82114 1.509317 0.3527967
Test set
             Theil's U
Training set
                    NA
              1.444846
Test set
> accuracy(ifit3, test1)
                                                                               ACF1
                              RMSE
Training set 6.317092e-15 43.94606 35.77778 -1.112888 14.25855 1.000000 -0.4553323
Test set
             3.319444e+01 44.65717 39.04630 8.795784 10.83476 1.091356 0.1678298
             Theil's U
Training set
                    NA
              1.048232
Test set
> accuracy(forecast(ifit4), test1)
                                                        MAPE
                    ME
                           RMSE
                                     MAE
                                                                   MASE
Training set -4.276338 38.33662 31.61479 -3.040578 12.724269 0.8836432 0.04249808
             -3.801901 28.40921 25.53800 -1.941734 7.690618 0.7137951 0.06279851
Test set
             Theil's U
Training set
                    NA
Test set
            0.6787064
> accuracy(forecast(ifit5), test1)
                           RMSE
                                                                  MASE
                                                                              ACF1
Training set 0.1256925 37.81524 30.7579 -0.893327 12.168092 0.8596929 -0.07405552
             9.4590446 30.92593 26.4312 1.872444 7.642277 0.7387604 0.14491986
Test set
             Theil's U
Training set
```

Test set

0.7434717

With low "MAPE" and "MASE" on both training set and test set, and the lowest Theil's U value, ifit4 (Exponential smoothing) is the best model.

05 Extreme Weather | Prediction

Select ifit4 model: exponential smoothing.

The forecast will base on available historical data from 1980 to 2022, predict the trend of extreme weather from 2023 to 2032.

Forecasts from ETS(M,A,N)

> print(forecast_ifit4)							
Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95		
2023	375.7332	302.7418	448.7246	264.1025	487.3639		
2024	383.2785	303.4906	463.0664	261.2535	505.3036		
2025	390.8238	304.5371	477.1106	258.8596	522.7880		
2026	398.3691	305.8141	490.9241	256.8185	539.9198		
2027	405.9144	307.2737	504.5552	255.0564	556.7725		
2028	413.4597	308.8799	518.0396	253.5187	573.4008		
2029	421.0050	310.6055	531.4046	252.1635	589.8466		
2030	428.5503	312.4289	544.6717	250.9580	606.1427		
2031	436.0956	314.3330	557.8582	249.8758	622.3155		
2032	443.6409	316.3038	570.9780	248.8957	638.3862		

In 2023, the forecast begins with a total frequency 375, already higher than 347 in 2022.

From about 383 in 2024 to 444 in 2032, the frequency of extreme weather will continue to increase. There is a trend of increasing extreme weather year on year.

05 Extreme Weather | Summary

Conclusion:

According to the data analysis of extreme weather, there is an increasing trend from the stacked bar chart, especially the flood. By correlation analysis, the increase in the frequency of extreme weather is closely related to the temperature deviation. By using the exponential smoothing method to predict the frequency of extreme weather, it can be found it will continue to increase.

Future:

Because there is a strong link between extreme weather and global climate change, and according the prediction of future, it is imperative to take some practical measures to face this challenge:

- 1) Strengthen international community cooperation.
- 2) Governments should establish and improve the emergency management system to deal with extreme weather.
- 3) Strengthening public education and raise the awareness of the seriousness of climate change.

06 Conclusion

06 Conclusion

- Natural causes play a crucial role in shaping global climate patterns, with three main natural influences: volcanic eruptions, solar variability, and El Nino and La Nino
- The emission of human-influenced greenhouse gases is the primary factor causing climate change
- The CO2 emissions from agricultural food production have a significant impact on the climate change
- One of the most notable consequences of climate change is a significant increase in the frequency of extreme weather
- Based on various data analyses, it can be concluded that the climate is significantly changing, and the causes and effects of climate change have been discovered

Thank you for listening