MAT201A Homework 3 Fall 2019

Professor Qinglan Xia Due Date: Wednesday, October 16th at 9:00am

1. Let $C^1([a,b])$ be the space of continuously differentiable functions on [a,b] with the C^1 -norm:

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

Show that $C^1([a,b])$ is a Banach space.

- 2. Suppose $f_n \in C([0,1])$ is a monotone decreasing sequence (i.e. for each $x \in [0,1]$, $(f_n(x))$ is a monotone decreasing sequence of real numbers) that converges pointwise to $f \in C([0,1])$. Prove that f_n converges uniformly to f. This result is called Dini's monotone convergence theorem.
- 3. Prove that C([0,1]) with the supremum norm $||\cdot||_{\infty}$ is separable.
 - Let B([0,1]) be the space of all bounded functions on [0,1] with the supremum norm $||\cdot||_{\infty}$. Show that B([0,1]) is not separable.
- 4. Let $f \in C([0,1])$ be such that $\int_0^1 f(x)x^n dx = 0$ for all integers $n \ge 0$. Prove that f(x) = 0 for all $x \in [0,1]$.
- 5. Let $P^{even}([a,b])$ be the subspace of polynomial functions on [a,b] containing only even powers:

$$P^{even}([a,b]) = \{ f \in C([a,b]) | f(x) = \sum_{i=0}^{n} a_i x^{2i}, n \ge 0, a_0, a_1, \cdots, a_n \in \mathbb{R} \}.$$

- (a) Prove that $P^{even}([0,1])$ is dense in $(C([0,1]), ||\cdot||_{sup})$.
- (b) Is $P^{even}([-1,1])$ dense in $(C([-1,1]), ||\cdot||_{sup})$? Justify your answer.