Introduction to Artificial Intelligence

COMP307/AIML420

3K & Decision Tree: Tutorial

Dr Fangfang Zhang

fangfang.zhang@ecs.vuw.ac.nz

COMP307/AIML420 Week 3 (Tutorial)

1. Announcements

- Assignment 1 (<u>15%</u>)
- Helpdesk sessions

2. Sets

- Training and Test sets
- Validation set

3. Datasets

- Instances
- Features and feature vectors
- Class label

4. 3-K

- k-Nearest Neighbour
- k-fold Cross Validation
- k-Means Clustering

5. Decision Trees

- DT learning
- Impurity measure Conditions

Tips

- The goal of this course is to learn how to design/implement algorithms (keys) rather than using tools (except for reading data)
- Doing assignments (high level):
 - o understand
 - o implement

Datasets and Instances

		Fe	atures	5	L	abels	
f_1	f_2	f_3	f_4	f_5	• • •	class	
10	2.2	45	3.7	22.1		A	Each row is an instance
3.7	7.9	12	2.1	17.5		A	
22.8	27.9	11.4	36	77		В	
90.4	6.34	2.77	15.8	53.7		A	
74.6	4.78	84.9	15.9	103		В	
2.89	14.7	3.11	10	52		В	

K-Nearest Neighbour

- Predict class label of an instance (in test data) based on the closest k neighbours (from training data)
- Doing assignments (part 1):
 - store training instance --- this is a KNN model! (lazy learning)
 - normalise the data. i.e., both training and test (data preprocessing)
 - o find the k nearest instances (neighbours) for each test instance
 - set the majority class label of found neighbours (voting) as the predicted class label of an instance
 - predicted label VS true label to calculate classification accuracy

K-Nearest Neighbour

Training Set

$$d\left(\cdot,\cdot
ight)=$$
 14.84

$$d\left(\cdot,\cdot\right) =$$
 47.40

$$d\left(\cdot,\cdot\right)=$$
 24.57

$$d\left(\cdot,\cdot\right)=$$
 33.65

$$d\left(\cdot,\cdot\right)=$$
 33.88

$$d\left(\cdot,\cdot\right)=$$
 21.19

$$d\left(\cdot,\cdot\right)=$$
 22.24

Distance measure (Euclidean distance)

$$d = \sqrt{\sum_{i=1}^{n} \frac{(a_i - b_i)^2}{R_i^2}} = \sqrt{\frac{(a_1 - b_1)^2}{R_1^2} + \frac{(a_2 - b_2)^2}{R_2^2} + \dots + \frac{(a_n - b_n)^2}{R_n^2}}$$

Range of the ith feature

$$d = \sum_{i=1}^{n} (a_i - b_i)^2$$

Normalise to [0, 1], based on each column

33.5 2.1 4.7

K-means Clustering: Algorithm

- 1. Initialise k initial "means" randomly from the data set
- 2. Create k clusters by assigning every instance to the nearest cluster: based on the nearest mean according to the distance measure
- 3. Replace the old means with the centroid (mean) of each cluster
- 4. Repeat the above two steps until convergence (no change in each cluster centroid).
- Centroid is not an instance

k-fold Cross Validation

- Less number of training instances
- Avoid training instance selection biases

Training Dataset

Approve/Reject a loan application?

Applicant	Job	Deposit	Family	Class
1	true	low	single	Approve
2	true	low	couple	Approve
3	true	low	single	Approve
4	true	high	single	Approve
5	false	high	couple	Approve
6	false	low	couple	Reject
7	true	low	children	Reject
8	false	low	single	Reject
9	false	high	children	Reject

Binary classification task

Class Label: Approve and Reject

Three features

Job: true and false

Deposit: low and high

• Family: single

couple

children

An Example Decision Tree

Applicant	Job	Deposit	Family	Class
1	true	low	single	Approve
2	true	low	couple	Approve
3	true	low	single	Approve
4	true	high	single	Approve
5	false	high	couple	Approve
6	false	low	couple	Reject
7	true	low	children	Reject
8	false	low	single	Reject
9	false	high	children	Reject

Node: features (blue), or classes (pink)

Edge: values of the parent nodes

1. How to choose feature

Greedy design: should make the nodes as pure as possible

- Node (im)purity: can be defined in different ways
 - Probability based

Node Impurity Measure

- Assume there are two classes A and B
- At a node: m instances class A, n instances class B
- Impurity: $imp(node) = P(A)P(B) = \frac{m}{m+n} \times \frac{n}{m+n} = \frac{mn}{(m+n)^2}$ The smaller the better
 - o If pure (m = 0 or n = 0): imp = 0
 - \circ If m = n, imp is maximum
 - Smooth

Node Impurity Measure

$$imp(node) = P(A)P(B) = \frac{m}{m+n} \times \frac{n}{m+n} = \frac{mn}{(m+n)^2}$$

• Weighted impurity = $\sum_{i=1}^{2} w(node_i) \times impurity(node_i)$

Weighted Impurity

$$= 0.5 * 0.16 + 0.5 * 0.16 = 0.16$$

Weighted Impurity

$$= 0.1 * 0 + 0.9 * 0.24 = 0.22$$

Applicant	Job	Deposit	Family	Class
1	true	low	single	Approve
2	true	low	couple	Approve
3	true	low	single	Approve
4	true	high	single	Approve
5	false	high	couple	Approve
6	false	low	couple	Reject
7	true	low	children	Reject
8	false	low	single	Reject
9	false	high	children	Reject

Applicant	Job	Deposit	Family	Class
1	true	low	single	Approve
2	true	low	couple	Approve
3	true	low	single	Approve
4	true	high	single	Approve
5	false	high	couple	Approve
6	false	low	couple	Reject
7	true	low	children	Reject
8	false	low	single	Reject
9	false	high	children	Reject

Applicant	Job	Deposit	Family	Class
1	true	low	single	Approve
2	true	low	couple	Approve
3	true	low	single	Approve
4	true	high	single	Approve
5	false	high	couple	Approve
6	false	low	couple	Reject
7	true	low	children	Reject
8	false	low	single	Reject
9	false	high	children	Reject

$$imp(Deposit)$$

= $\frac{3}{9} * \frac{2}{3} * \frac{1}{3} + \frac{6}{9} * \frac{3}{6} * \frac{3}{6} = 0.24$

$$imp(Family)$$

= $\frac{4}{9} * \frac{3}{4} * \frac{1}{4} + \frac{3}{9} * \frac{2}{3} * \frac{1}{3} + \frac{2}{9} * \frac{0}{2} * \frac{2}{2} = 0.15$

imp(Family) < imp(Job) < imp(Deposit)

- Recurse on impure nodes
 - ---> Consider attributes "Job" and "Deposit"

Summary

- Part 1 and part 2 of assignment 1
- Part 3: Neural Networks:
 - --- Perceptron learning (Monday)
 - --- Back Propagation (Tuesday)