

AASD 4004 Machine Learning - II

Applied Al Solutions Developer Program

Module 09 Image Processing

Vejey Gandyer

Agenda

Image Processing Tasks of Image Processing Image Basics **Drawing Shapes** Image Math Color Spaces Image Manipulations

Image Processing

What is it?

Image Processing

Refers to the task of processing digital images

Image

Digital Image

Digitization (Sampling)

A digital image is a representation of 2-dimensional image as a finite set of digital values – **picture elements** or **pixels**

Pixel values represent gray levels, colors, ...

Digitization – an approximation of real scene

Image formats

Grayscale – 1 sample per point

RGB – 3 samples per point (Red, Green, Blue)

Alpha – 4 samples per point (Red, Green, Blue, Alpha)

Levels of Image Processing

Low	Level	Pro	cess
-----	-------	-----	------

Input: Image

Output: Image

Examples: Noise

removal, image sharpening

Mid Level Process

Input: Image

Output: Attributes

Examples: Object

recognition,

segmentation

High Level Process

Input: Attributes

Output: Understanding

Examples: Scene

understanding,

autonomous navigation

Tasks of Image Processing

Tasks of Image Processing

Image Acquisition

Image Enhancement

Image Restoration

Image Morphology

Image Segmentation

Image Object Recognition

Image Representation

Image Compression

Image Color Processing

OpenCV

OpenCV Installation

mac

pip install opency-python

conda install opency / conda install –c conda-forge opency

Windows pip install opency-python

Image Basics

Image Basics

Loading an image

Details of an image

Displaying an image

Saving an image

Slicing an image

Loading an image

imread()

Reads an image and stores them in a NumPy array

Details of an image

Width

Height

Channels

Get details about the image

Displaying an image

imshow()

Displays an image in a window

waitKey()

Expects a keypress to hold the display

Saving an image

imwrite()

Saves an image in a file

Slicing an image

Image[0:100, 0:100]

Slices an image with the specified pixels

Drawing Shapes

Drawing Shapes

Line

Rectangle

Circle

Drawing a line

line()

Draws a line

Drawing a rectangle

rectangle()

Draws a rectangle

Drawing a circle

circle()

Draws a circle

Image Math

Image Math

Add

Subtract

Bitwise

Add

add()

Image enhancer

Subtract

subtract()

Image enhancer

Bitwise

bitwise_and()

If both pixel values > 0, pixel is turned ON else turned OFF

bitwise_or()

If either pixel values > 0, pixel is turned ON else turned OFF

Bitwise

bitwise_xor()

If both pixel values > 0, pixel is turned OFF

bitwise_not()

If pixel values == 0, pixel is turned ON
If pixel values == 255, pixel is turned OFF

Color Spaces

Color Spaces

BGR

HSV

LaB

GrayScale

BGR Color Space

Split channels
Display channels
Merge channels
Conversion

Channels

split()

Splits a BGR color image into Blue, Green, Red channels

merge()

Merge different channels

Conversion

cvtColor()

Grayscale – COLOR_BGR2GRAY

HSV - COLOR_BGR2HSV

LaB - COLOR_BGR2LAB

Image Manipulations

Image Manipulations

Crop

Flip

Mask

Crop

Removes the outer parts of the image that we are not interested

Image_array[startY:endY, startX:endX]

Flip

Changes the orientation of the image

- Horizontal
- Vertical
- Both Axes

flip(image, flip code)

Mask

Focus only on the portions of interest in an image

- Create a mask
- Apply mask

bitwise_and(image, image, mask)

Further Reading

Digital Image Processing 4th edition

Rafael Gonzalez & Richard Woods