

Our Best Model

- Algorithm: xgboost whose minimum MSE was 1395373 on Kaggle
- ➤ Variables: 102 total in training set
 - All but 2 variables were recoded into dummy/binary variables
 - 85 variables based on original dataset
 - 17 variables based on outside data source (LAFD website)

Some parameters:

o eta: 0.4

o **gamma**: **10**

o max_depth: 4

o min_child_weight: 20

o nrounds: 65

Dataset Transformation: Variables Used

- Datasets: training_dummy & testing_dummy
- Variables: training_dummy has 102 variables, from which 100 were recoded as dummy/binary variables
 - 4 variables for year
 - 1 (non-dummy) numeric variable for dispatch sequence
 - 11 variables for dispatch status
 - 40 variables for unit type
 - 3 variables for PPE level (EMS, non-EMS, NA)
 - 25 variables for hour (24 recreated from original time variable + NA)
 - o 17 variables for **battalion** (outside data source from LAFD website)
 - 1 (non-dummy) numeric response variable for elapsed time

Dataset Transformation: Refining Dataframe

- We only used complete cases (no NAs in rows) of training_dummy which reduced our observations from 2774370 to 2315071
- Then from training_dummy, we further split it into 80% training and 20% testing data because of R's memory limitations
- Finally, we ran xgboost on training data and predicted on our testing data and chose model with lowest MSE

xgboost parameters

list function

- booster: "gbtree"
- objective: "reg:linear"
- o eta: **0.4** (looked into range from 0.4 to 1)
- o gamma: **10** (looked into range from 0 to 50)
- o max_depth: **4** (looked into range from 4 to 40)
- o min_child_weight: **20** (looked into range from 5 to 30)
- o subsample: **0.5** (looked into range from 0.5 to 1)
- o colsample_bytree: **0.5** (looked into range from 0.5 to 1)
- o lambda: 1

xgb.train function

- o nrounds: 65
- o print_every_n: 10
- early_stop_round: 5
- o maximize: F

xgboost algorithm

- > Basic Idea: tree-based model and a variant on gradient boosting machine
- ➤ Advantages:
 - Accurate/good results on most datasets
 - Tunable parameters
 - Regularization allows it to avoid overfitting
 - Enabled, internal cross validation
 - Efficient tree pruning
 - Reduces misclassification error from boosting method (builds upon boosting algorithm)
 - Almost 10 times faster than random forest (RF algorithms took us 6-12 hours to compute)

Other variables/algorithms we considered

Variables

- Grouping Dispatch Sequence into smaller factors by frequency
- Grouping Unit Type by similar boxplot distributions
- Grouping Unit Type by frequency
- Creating new variable: # of distinct incident.ID since multiple same incident.IDs were present
- Using Bureau instead of Battalion (but Bureau was too general)
- Using area square mile, shape area, and shape length of each battalion (data from LAFD site)

Algorithms

- Boosting
- Random Forests