Lycée Buffon TD 21
MPSI Année 2020-2021

Applications linéaires

Exercice 1:

- 1. Déterminer l'unique application $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ telle que f(1,0,0) = (0,1), f(1,1,0) = (1,0) et f(1,1,1) = (1,1). Déterminer l'image et le noyau de f.
- 2. Déterminer l'unique application $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ telle que f(1,2) = (1,1,0) et f(2,1) = (0,0,1). Déterminer l'image et le noyau de f.

Exercice 2 : Dans \mathbb{R}^3 , on considère $F = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}$, $G = \text{Vect}\{(1, 1, 1)\}$ et $H = \text{Vect}\{(1, 0, 0)\}$.

- 1. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 et déterminer la projection sur F parallèlement à G.
- 2. Montrer que F et H sont supplémentaires dans \mathbb{R}^3 et déterminer la projection sur F parallèlement à H.

Exercice 3 : Soit $f \in \mathcal{L}(E)$

- 1. Comparer $\operatorname{Ker} f$ et $\operatorname{Ker} f^2$.
- 2. Comparer Im f et $\text{Im} f^2$.
- 3. Montrer que $\operatorname{Ker} f = \ker f^2 \Leftrightarrow \operatorname{Im} f \cap \operatorname{Ker} f = \{0\}.$
- 4. Montrer que $\operatorname{Im} f = \operatorname{Im} f^2 \Leftrightarrow \operatorname{Im} f + \operatorname{Ker} f = E$.

Exercice 4:

- 1. Soit $(f,g) \in \mathcal{L}(E)^2$ tels que $f \circ g = g \circ f$. Montrer que Kerf et Imf sont stables par g.
- 2. Soit p un projecteur. Montrer que f et p commutent si et seulement si Kerp et Imp sont stables par f.

Exercice 5 : Soit $f \in \mathcal{L}(E)$ telle que pour tout $x \in E$, (x, f(x)) soit liée. Montrer que f est une homothétie.

Exercice 6: Soit $(f,g) \in \mathcal{L}(E)^2$ tel que $f \circ g = Id$.

- 1. Prouver que $g \circ f$ est une projection.
- 2. Montrer que $\operatorname{Ker} f = \operatorname{Ker} (g \circ f)$ et $\operatorname{Im} g = \operatorname{Im} (g \circ f)$
- 3. Prouver que $\operatorname{Ker} f$ et $\operatorname{Im} g$ sont supplémentaires.
- 4. Prouver que $\operatorname{Ker} g$ et $\operatorname{Im} f$ sont supplémentaires.
- 5. La relation $f \circ g = Id$ implique-t-elle que $g = f^{-1}$.

Exercice 7: Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$

- 1. Comparer $\operatorname{Ker} f$ et $\operatorname{Ker} (g \circ f)$.
- 2. Comparer $\operatorname{Im} g$ et $\operatorname{Im} (g \circ f)$.
- 3. On suppose que E = F = G.
 - (a) Montrer que $\operatorname{Ker} f = \operatorname{Ker} (g \circ f)$ si et seulement si $\operatorname{Ker} g \cap \operatorname{Im} f = \{0\}$
 - (b) Montrer que $\text{Im}g = \text{Im}(g \circ f)$ si et seulement si E = Imf + Kerg.

Exercice 8 : Soit p et q deux projecteurs de E.

- 1. Montrer que Id p est un projecteur.
- 2. Montrer que p+q est un projecteur si, et seulement si, $p \circ q = q \circ p = 0$. Dans ce cas, prouver que $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$ et $\operatorname{Im}(p+q) = \operatorname{Im} p + \operatorname{Im} q$.
- 3. On suppose qu'il existe $\lambda \in \mathbb{K} \setminus \{0,1\}$ tel que $p \circ q = \lambda q \circ p$. Montrer que $p \circ q = q \circ p = 0$.

Exercice 9: Soit $(f,g) \in \mathcal{L}(E,F)^2$, $h \in \mathcal{L}(F,G)$ et $\phi \in \mathcal{L}(H,E)$

- 1. Montrer que $\operatorname{Ker}(f \circ \phi) \subset \operatorname{Ker}(g \circ \phi)$ si et seulement si $\operatorname{Im} \phi \cap \operatorname{Ker} f \subset \operatorname{Im} \phi \cap \operatorname{Ker} g$.
- 2. Montrer que $\text{Im}(h \circ f) \subset \text{Im}(h \circ g)$ si et seulement si $\text{Im} f + \text{Ker} h \subset \text{Im} g + \text{Ker} h$.