Network Layer

Network Layer

Application
Presentation
Session

Transport

Network

Data Link

Physical

Two key function:

Set up routes (control plane)

Forward the packets (data plane)

In networking layer, we will cover

Addressing

Forwarding

Routing

arunab, SBU // CSE 310, Spring 2019: Network Addressing

Two key network-layer functions

network-layer functions:

- •forwarding: move packets from router's input to appropriate router output
- •routing: determine route taken by packets from source to destination
- routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

But first, addressing

Internet Hierarchy

- Internet organized as a three level hierarchy
- First level autonomous systems (AS's)
- domain Examples: Comcast, AT&T, Verizon, Sprint, etc. AS – region of network under a single administrative
- inter-domain routing protocols; Border Gateway Routing (BGP)
- Second level Within the AS
- Distance Vector, e.g., Routing Information Protocol (RIP)
- Link State, e.g., Open Shortest Path First (OSPF)
- Third Level- Local area networks (LANs)

arunab, 80/Utingsat Linkthayer.

Addressing

How to represent source and destination addresses?

- What properties do we want?
- Unique
- Easy to search
- Need to mesh with the Internet hierarchy
- Doesn't necessarily have to be easy to remember

Hierarchical addresses

- The address is divided into two parts: the network part and the host part.
- The packet is forwarded to the corresponding network
- Once the packet is within the network, it if forwarded based on the host address
- multiple networks with different IP addresses Each network has hosts in in LAN; An AS has

IP Address

- Hierarchical, IPv4 uses 32 bit addresses
- "Dotted-Quad" notation

Class-based addressing

- Classes A, B, C
- Class A: The first 8 bits used to address the network
- Class B: The first 16 bits are used to address the network
- Class C: The first 24 bits are used to address the network
- How many Class A addresses can you have?
- How many hosts can you have with a Class A address?

Example class A address

Classless addresses

Addresses are allocated in blocks called prefixes

- Prefix is determined by the network portion
- Has 2^L addresses aligned on 2^L boundary

Classless Inter-Domain Routing (CIDR)

Variable network and host address length. Subnet mask helps get the IP address

Subnet mask = 111111111 1111111 11000000 0000000 = 255.255.192.0

CIDR notation

/XXX is the typically used notation to represent **CIDR** addresses

"/26" (slash 26) means a network address of length 26.

- What is the subnet mask?

How many hosts?

CIDR example

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

arunab, SBU // CSE 310, Spring 2019: Network Addressing

Subnet Mask Example

Network address 172.19.0.0 with /16 network mask

Host	0
Host	0
Network	19
Network	172

If destination is 172.19.1.0, then apply the subnet mask using an AND to get the network part and the host part.

Destination	/16 subnet mask
0	00000000
_	00000000
19	1111111
172	1111111

IP addresses: how is it allocated?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space.

Can be subdivided into more subnetworks.

ISP's block	11001000	00010111	11001000 00010111 00010000 00000000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	11001000 11001000 11001000	00010111 00010111 00010111	$\frac{11001000\ 00010111\ 00010000\ 000000000}{11001000\ 00010111\ 0001010}0\ 000000000$	000000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
:		::		:	:
Organization 7	11001000	00010111	01000 00010111 00011110 00000000	00000000	200.23.30.0/23

arunab, SBU // CSE 310, Spring 2019: Network Addressing

IP addressing continued

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers http://www.icann.org/

allocates addresses

manages DNS

assigns domain names, resolves disputes

Subnetting

223.1.1.0/24

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24

IP addresses: how do I get one?

Q: How does a host get IP address?

hard-coded by system admin in a file

- Windows: control-panel->network->configuration->tcp/ip->properties

UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server

– "plug-and-play"

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- connecting laptop needs its
 IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- But how can I contact the DHCP without an IP address?
 We will discuss this in the next layer.

IP: Internet Protocol

arunab, SBU // CSE 310, Spring 2019: Network Addressing

IP Version 4 Protocol

IPv4 (Internet Protocol) header is carried on all packets and has fields for the key parts

32 Bits-

arunab, SBU // CSE 310, Spring 2019: Network Addressing

How Networks Can Be Connected

Internetworking based on a common network layer – IP

IP Version 6

Major upgrade in the 1990s due to impending address exhaustion, with various other goals:

- Support billions of hosts
- Reduce routing table size
- Permit coexistence of old, new protocols, ...

Use 128 bit address space rather than 32 bits

IPv6 packet

addresses (128 vs. 32 bits) and is simpler IPv6 protocol header has much longer

arunab, SBU // CSE 310, Spring 2019: Network Addressing

NAT: network address translation

network have same single source NAT IP address: 38.76.29.7, different source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

arunab, SBU // CSE 310, Spring 2019: Network

What does a NAT address mean?

- If behind a NAT, I have a private IP address
- No one can contact me, but I can contact public IPs
- In class example of assignment 1 public/private IPs