Quantum factorization simulation as a benchmark for HPC

Santiago I Betelu

UNT Mathematics Department (adjunct)

Data Vortex Technologies (chief scientist)

Why quantum factorization as a benchmark

- Quantum factorization a widely known & relevant problem, it is known to be hard to simulate
- Good to quantify the ability of a computer to simulate ideal quantum circuits
- The output is reproducible, easy to validate and understand
- Each additional qubit doubles RAM usage, CPU power and internode communication: excellent to test large machines
- Runs in a reasonable time: 1/2-3 hours
- Minimal portable code with ~300 lines of C and MPI
- It just runs: no input or special knowledge from user

Summary of the benchmark

- Simulates a quantum computer with state $|\psi\rangle = \sum_{\chi=0}^{(2^Q-1)} c_\chi |\chi\rangle$
- The test consists on running a simplified Shor's algorithm* with increasing number of Q qubits until resources are exhausted.
- Only timing of Fourier Transform AQFT, not the modular exponentiation
- For each Q run the simplified Shor's algorithm to factorize an integer n

$$n = p \cdot q$$

- p and q are chosen to maximize the period r of $2^x \mod n$ with the constraints $n^2 \le 2^Q < 2n^2$ with r even and $2^{r/2} \ne -1 \mod n$
- Then verify that the total probability under peaks is larger than 1/2

$$P = \sum_{peaks} |c_x|^2 > \frac{1}{2}$$

• Peaks located at $x = \frac{2^Q}{(p-1)(q-1)} \times \text{integer}$

* PW Shor, "Polynomial-Time algorithms for prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM J. Comp 1997

Use deferred measurement principle to save qubits

This measurement is inconvenient in a benchmark

With deferred measurement principle

This benchmark saves log_2n qubits, only AQFT is timed

Verify location of peaks for each $n = p \cdot q$

List of factorizations used in the test

 $n=p\cdot q$ chosen to maximize period r of $2^x \bmod n$, $n^2\leq 2^Q<2n^2$ with r even and $2^{r/2}\neq -1\bmod n$

Q	$p \times q$
9	3 × 7
10	3 × 7
11	3 × 13
12	5 × 11
13	7 × 11
14	5 × 23
15	11 × 13
16	11 × 23
17	5 × 71
18	19 × 23
19	5 × 139
20	19 × 53
21	23 × 61

Q	$p \times q$
22	29 × 67
23	47 × 61
24	61 × 67
25	29 × 199
26	79 × 103
27	47 × 173
28	83 × 197
29	79 × 293
30	103 × 317
31	149 × 311
32	101 × 647
33	149 × 619
34	269 × 487

Q	$p \times q$
35	167 × 1109
36	479 × 547
37	479 × 773
38	367 × 1427
39	859 × 863
40	563 × 1861
41	1039 × 1427
42	947 × 2213
43	1307 × 2269
44	2047 × 2069
45	2039 × 2909
46	2357 × 3559
47	2237 × 5303

Q	$p \times q$
48	3917 × 4283
49	4127 × 5749
50	4813 × 6971
51	6173 × 7687
52	6029 × 11131
53	7243 × 13103
54	10357 × 12959
55	12757 × 14879
56	11399 × 23549
57	19427 × 19541
58	20771 × 25847
59	24847 × 30557
60	27779 × 38653

Use AQFT* because it is faster than QFT

- For each H gate we compute $1 + log_2Q$ controlled phase gates
- Phase gates computed with one memory access per state
- Complexity AQFT is $O(Q \log Q)$ versus $O(Q^2)$ for QFT

Results in the approximation $f_y \cong \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} c_x e^{2\pi i x y/N}$

^{*} D Coppersmith, An Approximate Fourier Transform Useful in Quantum Factoring, IBM report 1994 A Barenco et al, Approximate Quantum Fourier Transform and Decoherence, 1996

AQFT uses 3 types of gates

Controlled phase

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 Swap qubits

- The essentially heavy part of computation is the Approximate Fourier Transform, computed simulating gates
- Modular exponentiation $a^x \mod n$ is not implemented gate-by-gate and it is not timed. We compute directly in C, and the computation time is negligible.
- Exponentiation could be implemented with stabilizer-group gates, thus simulated efficiently, not in this benchmark

How are the coefficients distributed between nodes

- The state of the quantum registers $|\psi\rangle = \sum_{x=0}^{(2^Q-1)} c_x |x\rangle$ is distributed among nodes
- A basis state is described in binary as

$$|x\rangle = |b_Q b_{Q-1} \dots b_{Q-M+1}\rangle \otimes |b_L b_{L-1} \dots b_2 b_1\rangle$$

- The black digits denote indices of amplitudes within each node.
- The blue digits denote node index.
- The number of nodes is $p = 2^M$ Q = L + M
- For example the Hadamard gate at qubit q combines the amplitudes c_x and c_y where x and y differ only in bit q.
- Depending on the value of q, we may be combining data between nodes or within node

† H(4): Inter node †

How to use the benchmark (MPI version)

This is system dependent. In computers with mpicc and slurm, first prepare a batch file with number of nodes and number of tasks equal to a power of 2 and then launch

```
#SBATCH -o output-8nodesx64cores
#SBATCH --nodes=8  # 8 nodes
#SBATCH -n 256  # 64 cores per node
#SBATCH -p normal  # for KNL processors
#SBATCH -t 02:00:00  # usually less than 2 hours
ibrun ./quansimbench
```

- > mpicc -Ofast quansimbench.c -o quansimbench -lm -Wall
- > sbatch quansimbench.batch

May need to add processor specific options such as

```
-xCORE-AVX512 for SKX
-xMIC-AVX512 for KNL
```

and may use OpenMP as well.

Typical output

- 32768 KNL cores
- 512 nodes
- memory limited
- less than 1h run

Memory exhausted Qubits=42 States/s=1.2124e12

Normalized performance

Number of basis states each core can process in a second

$$States/(s\ core) = \frac{gates \times 2^{Q}}{Rawtime \times cores}$$

- In an ideal computer that should be a constant
- In reality it will vary due to the network and memory access
- Useful to compare cores
- Raw time useful to compare whole systems

One node SKX Xeon 8160 and different core numbers, the metric is nearly constant.

A typical comparison in TACC's Stampede 2

- Compare KNL Xeon Phi 7250 vs. SKX Xeon 8160 nodes
- From 1 to 512 nodes
- Left graph shows overall performance
- Right graph shows memory/switch slowdown in per core basis

Acknowledgments

- Scott Pakin (LANL)
- Texas Advanced Computing Center (TACC)
- UNT High Performance Computing
- Coke Reed
- John Lockman
- Thanks Data Vortex Technologies for providing the hardware and research support for creating this benchmark