Efficient External Memory Algorithms for Binary Decision Diagram Manipulation

Steffan Christ Sølvsten, Jaco van de Pol, Anna Blume Jakobsen, and Mathias Weller Berg Thomasen November 26, 2021

Figure 1: The I/O model by Aggarwal and Vitter '87

For any realistic values of N, M, and B we have that

$$N/B < \operatorname{sort}(N) \triangleq N/B \cdot \log_{M/B} N/B \ll N$$
,

Theorem (Aggarwal and Vitter '87) N elements can be sorted in $\Theta(sort(N))$ I/Os.

Theorem (Arge '95)

N elements can be inserted in and extracted from a Priority Queue in $\Theta(sort(N))$ I/Os.

Figure 2: Examples of (Reduced Ordered) Binary Decision Diagrams.

Theorem (Bryant '86)

For a fixed variable order, if one exhaustively applies the two rules below, then one obtains the Reduced OBDD, which is a unique canonical form of the function.

(a) Rule 1: Remove redundant nodes

(b) Rule 2: Merge duplicate nodes

Figure 4: Cache behaviour for the *N*-Queens problem.

Figure 5: Running time for *Tic-Tac-Toe* with N = 21.

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

0 0

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

1

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

2

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
 3

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$4 3$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$4 3$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$4 3$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$4 3$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

 3

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$5 4$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

6 4

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

6 4

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

6 4

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
6 4

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

7

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
8

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

8 5

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups

8 6

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

8 6

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

7

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

7

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$10 7$$

Figure 6: Blocks active in memory

$$M = 4$$
, $B = 2$

node I/Os cache lookups

7

Let every node be uniquely identified by a tuple (label, id) : $\mathbb{N} \times \mathbb{N}$.

Nodes are ordered based on their *uid* as follows

$$(i_1, id_1) < (i_2, id_2) \equiv i_1 < i_2 \lor (i_1 = i_2 \land id_i < id_j)$$

Figure 7: Node-based representation of prior shown BDDs

CountPaths Example

Figure 8: In-order traversal of BDD

Figure 8: In-order traversal of BDD

Figure 8: In-order traversal of BDD

Figure 8: In-order traversal of BDD

Seek Sum Result
$$(1,0)$$
 0 0 0

Figure 8: In-order traversal of BDD

Figure 8: In-order traversal of BDD

Figure 8: In-order traversal of BDD

Result

5

(0,0)

Output:

Level: 3 [$(3,2)\mapsto \bot$]


```
Level: 3  [(3,2) \mapsto \bot]   [(3,1), \top, \bot)
```



```
Level: 3  [ (3,2) \mapsto \bot ]   [ ((3,1), \top, \bot) \\ ((3,0), \top, \bot) ]
```


Output:

Output:

Reduce Example

Level: 1 Level: 2 Level: 3

$$\left[(0,0) \xrightarrow{\top} ((1,0),(2,1)) \right]$$

$$[(0,0) \xrightarrow{\perp} ((2,0),(2,0)) ,$$

Level: 1

$$\left[(0,0) \xrightarrow{\top} ((1,0),(2,1)) \right]$$

Level: 2

$$\left[(0,0) \xrightarrow{\perp} ((2,0),(2,0)) \quad , \quad (1,0) \xrightarrow{\perp} ((2,0),(2,1)) \quad , \quad (1,0) \xrightarrow{\top} ((3,1),(2,1)) \quad \right]$$

Level: 1

Level: 2

 $\left[\quad (0,0) \xrightarrow{\bot} ((2,0),(2,0)) \quad , \quad (1,0) \xrightarrow{\bot} ((2,0),(2,1)) \quad , \quad (1,0) \xrightarrow{\top} ((3,1),(2,1)) \quad \right]$

Level: 1

$$\left[\begin{array}{ccc} (2,0) \xrightarrow{\bot} ((3,0),\top) & , & (2,0) \xrightarrow{\top} ((3,1),(3,0)) & , \end{array} \right.$$

Level: 1

1

Level: 2

, $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$, $(1,0) \xrightarrow{\top} ((3,1),(2,1))$

Level: 3

 $\left[\begin{array}{ccc} (2,0) \stackrel{\bot}{\longrightarrow} ((3,0),\top) & , & (2,0) \stackrel{\top}{\longrightarrow} ((3,1),(3,0)) \end{array} \right. ,$

Level: 1

Level: 2

$$\left[\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \end{array}, \quad (1,0) \xrightarrow{\top} ((3,1),(2,1)) \quad \right]$$

Level: 1

.

Level: 2

, $(1,0)\stackrel{ op}{\longrightarrow} ((3,1),(2,1))$

Level: 3

Level: 2

 $(1,0) \xrightarrow{\top} ((3,1),(2,1))$

Level: 3

$$(2,0) \xrightarrow{\perp} ((3,0),\top$$

Level: 1 Level: 2 Level: 3

Level: 1 Level: 2 Level: 3

Level: 1 Level: 2 Level: 3

, $(2,2)\stackrel{\perp}{\longrightarrow} ((3,1),(3,0))$, $(2,0)\stackrel{\perp}{\longrightarrow} ((3,0),\top)$

Level: 1 Level: 2 Level: 3

, $(2,0) \xrightarrow{\perp} ((3,0),\top)$

Level: 1 Level: 2 Level: 3

Memory layout and efficient sorting

The unique identifier of nodes and leafs can be represented in a single 64-bit integer.

The f bit-flag is used to store the *is_high* boolean inside of the source of an arc.

Adiar

github.com/ssoelvsten/adiar

Figure 11: Minimum running times for the *N*-Queens problem.

Figure 11: Minimum running times for the *N*-Queens problem.

Figure 11: Minimum running times for the *N*-Queens problem.

Figure 11: Minimum running times for the *N*-Queens problem.

Figure 11: Minimum running times for the *N*-Queens problem.

Algorithm		Depth-first	Time-forwarded		
Reduce		O(N)	$O(\operatorname{sort}(N))$		
BDD Manipulation					
Apply	f ⊙ g	$O(N_f \cdot N_g)$	$O(\operatorname{sort}(N_f \cdot N_g))$		
If-Then-Else	f ? g : h	$O(N_f \cdot N_g \cdot N_h)$	$O(\operatorname{sort}(N_f \cdot N_g \cdot N_h))$		
Restrict	$f _{x_i=v}$	O(N)	$O(\operatorname{sort}(N))$		
Negation	$\neg f$	O(1)	O(1)		
Quantification	$\exists / \forall v : f _{x_i = v}$	$O(N^2)$	$O(\operatorname{sort}(N^2))$		
Counting					
Count Paths	#paths in f to $ op$	O(N)	$O(\operatorname{sort}(N))$		
Count SAT	#x:f(x)	O(N)	$O(\operatorname{sort}(N))$		
Other					
Equality	$f \equiv g$	O(1)	$O(\operatorname{sort}(N))$		
Evaluate	f(x)	O(L)	O(N/B)		
Min/Max SAT	$\min / \max\{x \mid f(x)\}$	O(L)	O(N/B)		

 $\textbf{Table 1:} \ I/O\text{-}complexity of depth-first algorithms compared to our time-forwarded}.$

