Решения на задачите по теория на числата

Този материал е изготвен със съдействието на школа Sicademy NT1. Четворка цели ненулеви числа $\{a, b, c, d\}$ ще наричаме (2, 3)-специална, ако едновременно са

NT1. Четворка цели ненулеви числа $\{a, b, c, d\}$ ще наричаме (2, 3)-специална, ако едновременно са изпълнени:

- 1. $a^2 + b^2 = c^3 + d^3 =: n$;
- 2. не съществува четворка цели числа $\{x, y, z, t\}$, такава че $x^6 + y^6 + z^6 + t^6 = n$.
- а) Да се намери най-малката възможна стойност на k := c + d в (2,3)-специална четворка.
- б) Да се докаже, че съществуват безброй много (2,3)-специални четворки, за които минимумът k=c+d от а) се достига.

Решение. Ще покажем, че търсеният минимум е k=1. Тъй като $a,b\neq 0$, имаме, че $n=a^2+b^2>0$. Тогава от $n=(c+d)(c^2-cd+d^2)$ следва, че c+d>0. Следователно $c+d\geq 1$. Ще покажем, че съществуват безброй много (2,3)-специални четворки от вида $\{a,a-1,c,1-c\},\ a,c\geq 2,\ c$ което задачата ще бъде решена. От равенството

$$a^{2} + (a-1)^{2} = c^{3} + (1-c)^{3}$$

последователно получаваме

$$2a^2 - 2a = 3c^2 - 3c \Leftrightarrow (2a - 1)^2 = 6c^2 - 6c + 1 \Leftrightarrow 6c^2 - 6c + 1 - t^2 = 0$$

където сме положили 2a-1=t за краткост. Дискриминантата на последното квадратно (относно c) уравнение е точен квадрат: $D=9-6+6t^2=(3m)^2$ и положителното решение на това уравнение е c=(1+m)/2. Относно променливите m и t получихме следното диофантово уравнение (на Пел):

$$3m^2 - 2t^2 = 1, \quad t, m > 1,$$

$$a = \frac{t+1}{2}, \quad c = \frac{m+1}{2}.$$

За всяко естествено n дефинираме редиците $\{M_n\}$ и $\{T_n\}$ от естествени числа чрез равенствата

$$(\sqrt{3} - \sqrt{2})^{2n-1} = M_n \sqrt{3} - T_n \sqrt{2},$$

$$(\sqrt{3} + \sqrt{2})^{2n-1} = M_n \sqrt{3} + T_n \sqrt{2}.$$

Имаме $3M_n^2 - 2T_n^2 = 1$, $M_1 = T_1 = 1$ и

$$T_{n+1} = 5T_n + 6M_n$$

$$M_{n+1} = 4T_n + 5M_n$$

$$\Rightarrow \frac{a_{n+1} = 5a_{n-1} + 6c_n}{c_{n+1} = 4a_{n-1} + 5c_n}$$

където $T_i=2a_i-1,\ M_i=2c_i-1.$ От полагането следва, че $a_{n+1}^2+(a_{n+1}-1)^2=c_{n+1}^3+(1-c_{n+1})^3,$ т.е. четворките $\{a_n,a_n-1,c_n,1-c_n\}, n\geq 2$ от цели неотрицателни числа, изпълняват условие (1). Тъй като $x^6\equiv 0,1\ (\bmod\ 7),$ то никое число от вида $7\ell+5$ не може да се представи като сума на четири шести степени. Непосредствена проверка ни дава $c^3+(1-c)^3\equiv 5\ (\bmod\ 7),$ когато $c\equiv 3,5\ (\bmod\ 7),$

следователно, ако в редицата $\{c_n\}$ има безброй много членове, даващи остатък 3 или 5 по модул 7, условие (2) е изпълнено за тях и задачата е решена.

Изразявайки a_n-1 чрез c_n и c_{n-1} и замествайки във формулата за c_{n+1} , получаваме рекурентната връзка $c_{n+1}=10c_n-c_{n-1}-4$, откъдето

$$c_{n+1} \equiv 3(c_n+1) - c_{n-1} \pmod{7}, \quad c_1 \equiv 1 \pmod{7}, \quad c_2 \equiv 5 \pmod{7}.$$

Така, по модул 7 остатъците на c_n образуват следната периодична редица:

$$1, 5, 3, 0, 0, 3, 5, 1, 1, 5, 3, 0, 0, 3, 5, 1, \dots$$

и, например четворките от вида $\{a_{8\ell+2}, a_{8\ell+2}-1, c_{8\ell+2}, 1-c_{8\ell+2}\}$ са (2,3)-специални за всяко естествено число ℓ . Най-малката такава четворка е $\{6,5,5,-4\}$.

NT2. Ще казваме, че естественото число q е добро за апроксимиране на реалното число α , ако съществува цяло число p, такова, че

$$\left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}.$$

За фиксирано $\alpha \in \mathbb{R}$ означаваме с D_{α} множеството от всички естествени числа, които са добри за апроксимиране на α . Да се докаже, че ако D_{α} съдържа всички числа от вида $2^k + 1$, където $k \in \mathbb{N}$, то $D_{\alpha} = \mathbb{N}$.

Peшение. Ще докажем, че числото α е цяло, което очевидно води до $D_{\alpha} = \mathbb{N}$.

Да допуснем първо, че α е ирационално. Тогава за всяко $q \in D_{\alpha}$ от неравенствата в условието следва, че дробната част $\{q\alpha\}$ принадлежи на някой от интервалите (0,1/q) и (1-1/q,1). Нека естественото число r е такова, че

$$2^r > \max\left(\frac{1}{\{\alpha\}}, \frac{1}{1 - \{\alpha\}}\right).$$

Ако $0 < \{(2^r + 1)\alpha\} < 1/(2^r + 1)$, то

$$\{\alpha\} > \frac{1}{2^r + 1} > \{(2^r + 1)\alpha\} = \{\{2^r \alpha\} + \{\alpha\}\}.$$

Това означава, че

$$1 - \{\alpha\} < \{2^r \alpha\} < 1 - \{\alpha\} + \frac{1}{2^r + 1}.$$

Ако пък $1 > \{(2^r+1)\alpha\} > 1 - \frac{1}{2^r+1}$, аналогично получаваме, че

$$1 - \{\alpha\} - \frac{1}{2^r + 1} < \{2^r \alpha\} < 1 - \{\alpha\}$$

(използваме и неравенството $\{2^r\alpha\}+\{\alpha\}<2-\frac{1}{2^r+1},$ което следва от избора на r).

Получихме, че за всички достатъчно големи r е са изпълнени неравенствата

$$1 - \{\alpha\} - \frac{1}{2^r + 1} < \{2^r \alpha\} < 1 - \{\alpha\} + \frac{1}{2^r + 1}.$$

Това лесно води до противоречие (с разглеждане поотделно на случаите $\{\alpha\} < 1/2$ и $\{\alpha\} > 1/2$).

Нека сега $\alpha = a/b$ е рационално число, $b \in \mathbb{N}$, $a \in \mathbb{Z}$ и (a,b) = 1. Тогава неравенството в условието казва, че за всяко $q_n = 2^{2^n} + 1$ съществува $p_n \in \mathbb{Z}$, такова, че

$$\left| \frac{a}{b} - \frac{p_n}{q_n} \right| \le \frac{1}{q_n^2},$$

тоест $|aq_n-p_nb|<\frac{b}{q_n}$. Оттук при $q_n>b$ заключаваме $aq_n=p_nb$, което води до $b|q_n$, за всеко n>b и тъй като $(q_n,q_{n+1})=1$, заключаваме, че b=1, т.е. α е цяло число.

NT3. Нека P и Q са неконстантни полиноми с цели неотрицателни кофициенти и старши кофициент 1, а k е естествено число. Естествените числа $a_1, a_2, \ldots, a_k; a_i \geq 2$ за $i = 1, 2, \ldots, k$, са такива, че за всяко естествено число n числото

$$(a_1^{P(n)} + Q(n))(a_2^{P(n)} + Q(n)) \cdots (a_k^{P(n)} + Q(n))$$

е точен квадрат. Да се докаже, че числото $a_1 a_2 \dots a_k$ също е точен квадрат.

Решение. Ще използваме следната лема.

Лема. Нека f е неконстантен полином с цели коефициенти и нека A е множеството от прости числа p, за които $v_p(f(n))$ е нечетно за някое $n \in \mathbb{N}$. Ако множеството A е крайно, то съществуват полином g с цели коефициенти и константа c, такива, че $f = cg^2$.

Доказателство. Можем да считаме, че полиномът f е свободен от квадрати (т.е. не се дели на квадрат на полином с цели коефициенти). От условието следва, че множеството от простите числа, които делят точно в четни степени стойности на f, е безкрайно. Нека p е такова просто число и $p^{2k} \parallel f(n)$ за някои естествени числа n и k.

Да разгледаме $f(n + \ell p^{k+1})$, където $\ell \in \mathbb{N}$. Лесно се вижда, че

$$f(n + \ell p^{k+1}) \equiv f(n) + \ell p^{k+1} f'(n) \pmod{p^{2k+2}}.$$

Ако (p, f'(n)) = 1, то сравнението $\ell f'(n) + \frac{f(n)}{p^{k+1}} \equiv p^k \pmod{p^{k+1}}$ има решение. Това означава, че съществува естествено число n_1 , за което $p^{2k+1} \| f(n_1)$, т.е. $p \in A$, което е противоречие. Следователно съществуват безбройно много прости числа p, за които съществува естествено число n, такова, че p|(f(n),f'(n)). Сега от лемата на Безу за полиноми следва, че съществуват полиноми $u,v \in \mathbb{Z}[x]$, такива че uf + vf' = T, където $T \in \mathbb{Z}[x]$ е най-големият общ делител на f и f', като при това f не е константа. Нека f е неразложим делител на f и нека f е негов (комплексен) корен. Тъй като f е общ корен на f и f', то f е кратен корен на f . Тъй като f няма кратни корени (защото е неразложим), всеки негов корен е корен и на f/R, тоест f0, което противоречи на избора на f в началото. Следователно f1 е f2 за някои f2 и f3, с което лемата е доказана.

Обратно към решението да отбележим първо, че можем да считаме, че числата a_1, a_2, \ldots, a_k са две по две различни. Нека c = P(1) > 0 и да разгледаме полинома $g(x) = Q(x) + a_1^c$. Да допуснем, че g(x) не е точен квадрат на полином с цели коефициенти. Тогава от горната лема и от лемата на Шур следва, че съществуват безбройно много прости числа p, за които съществува естествено число n_0 , за което $v_p(g(n_0)) = 2k + 1$ е нечетно число. За всяко такова p по Китайската теорема за остатъците можем да изберем естествено число n, за което $n \equiv 1 \pmod{p-1}$ и $n \equiv n_0 \pmod{p^{2k+2}}$. Тогава $p^{2k+1} \| g(n) = Q(n) + a_1^{P(n)}$. Последното означава, че $p|a_i^{P(n)} + Q(n)$ за някое $i \neq 1$, откъдето $p|a_1^c - a_i^c$. Тъй като можем да изберем $p > \max\{|a_1^c - a_i^c| : i = 2, 3, \ldots, k\}$, заключаваме, че $a_1^c = a_i^c$ за някое $i \neq 1$, т.е. $a_1 = a_i$, противоречие.

Нека $Q(x) + a_1^c = R_1^2(x)$ е точен квадрат на неконстантен полином с цели коефициенти. С d = P(2) > P(1) = c и разсъждения както по-горе заключаваме, че и $Q(x) + a_1^d = R_2^2(x)$ е точен квадрат на неконстантен полином с цели коефициенти. Тогава

$$a_1^c - a_1^d = (R_1(x) - R_2(x))(R_1(x) + R_2(x)),$$

откъдето лесно следва, че $R_1 \equiv R_2$ и $a_1^c = a_1^d$, т.е. $a_1 = 1$.