2 Put there we have two we have a shalf

PERMEABILITY DATA FOR AEROSPACE APPLICATIONS

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS7-388

MARCH 1968

FOREWORD

This handbook was prepared by IIT Research Institute for the National Aeronautics and Space Administration, Western Operations Office, under Contract No. NAS7-388, IITRI Project C6070. The work was administered under the direction of the Jet Propulsion Laboratory, Liquid Propulsion Section, Propulsion Division. Mr. James H. Kelley and Mr. Richard L. Weiner of JPL served as Technical Managers, and Mr. Frank E. Compitello of NASA/Washington, Liquid Propulsion Systems, was Project Manager.

The program was administered by the Technical Information
Research Section of IIT Research Institute under Miss Martha
E. Williams, Manager. Mr. Peter B. Schipma, Associate Engineer,
acted as Project Leader. He was responsible for the coordination of contributions and for the technical and editorial content
of the handbook. The principal technical consultant and the
author of the engineering description of the permeation section
was Mr. William J. Courtney, Research Engineer, Fluid Systems.

We are also indebted to the scientists and technicians of the chemical and aerospace industries for their published reports on permeation, and specifically to the following members of the aerospace industry:

> Mr. N. B. Levine Reaction Motors Division Thiokol Chemical Corporation Denville, New Jersey 07834

Mr. J. Krusas Mr. R. K. Anderson Bell Aerosystems Company Division Bell Aerospace Corp. Buffalo, New York Dr. R. L. Johnson Mr. L. Van Nice TRW Systems Group Redondo Beach, California 90278

Mr. E. E. Stone Dr. Philip Peters General Electric Company Research and Development Center Schenectady, New York

Mr. Mark Constantine Chemical and Material Sciences Rocketdyne Division North American Aviation Canoga Park, California 91304

Mr. William Heller Aerospace Corporation El Segundo, California

Dr. S. A. Stern Linde Corporation Tonawanda, New York

Dr. Ralph Muraca Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025

TABLE OF CONTENTS

		Page
I.	Introduction and Unit Conversion	
	A. Introduction	I-1.1
	B. Handbook Data Organization	1-2.1
	C. Units and Conversion Tables	I-3.1
II.	Test Methods	
	A. Introduction	II-1.1
	B. Concentration-Increasing Method	II-2.1
	C. Volume-Increasing Method	II-3.1
	D. Pressure-Increasing Method	II-4.1
	E. References	11-5.1
III.	Mechanisms of Permeation	III-1.1
IV.	Data for Primary Permeants	
	Ammonia Helium Hydrogen Liquid Hydrogen Mono Methyl Hydrazine Mixed Oxides of Nitrogen Nitrogen Liquid Nitrogen Nitrogen Oxygen Unsymmetrical Dimethyl Hydrazine	IV-1.1 IV-2.1 IV-3.1 IV-3.83 IV-4.1 IV-5.1 IV-6.1 IV-6.68 IV-7.1 IV-8.1 IV-9.1
V.	Data for Additional Permeants Acetone Acetylene Argon Benzene Butane Carbon Dioxide Carbon Disulfide Carbon Monoxide Carbon Tetrachloride Carbonyl Chloride Ethane	V-1.1 V-2.1 V-3.1 V-4.1 V-5.1 V-6.1 V-7.1 V-8.1 V-9.1 V-10.1

TABLE OF CONTENTS (cont.)

			Page
	Ethylene		V-12.1
	Ethylene Oxide		V-13.1
	Formaldehyde		V-14.1
	Freon 11		V-15.1
	Freon 12		V-16.1
	Freon 22		V-17.1
	Freon F113		V-18.1
	Freon 114B2		V-19.1
	Hexane		V-20.1
	Hydrogen Sulfide		V-21.1
	Iodine		V-22.1
	Krypton		V-23.1
	Methane		V-24.1
	Methanol		V-25.1
	Methyl Bromide		V-26.1
	Neon		V-27.1
	Nitric Oxide		V-28.1
	Nitrogen Dioxide		V-29.1
	Nitrous Oxide		V-30.1
	Octane	•	V-31.1
	Pentane	•	V-32.1
	Phenol		V - 33.1
	Propane		V-34.1
	Propene		V-35.1
	Pyradine		V - 36.1
	Sulfur Dioxide		V - 37.1
	Sulfur Hexafluoride		V-38.1
	Toluene		V = 39.1
	Water		V-40.1
	Xenon		V-41.1
VI.	Coordinate Index		VI-1.1
VII.	References		VII-1.1

I-1 INTRODUCTION

The primary purpose of this book is to present a compilation of available information on the permeation of propellants and pressurant gases through metals, non-metals, and composite materials, in a form suitable for use by the designers of space-craft liquid propulsion systems. It is intended that the information contained in this handbook be used in conjuction with the various methodologies currently employed to select component and material combinations and to establish the design details of suitable liquid propulsion systems.

The sections of this guidebook are established in the following order:

Section I, "Introduction" includes directions for use of the data and indices, a discussion of the units in which permeation data were reported, and unit conversion tables.

Section II, "Test Methods" describes the various methods used to measure permeation rates, compare their reliability and validity, and evaluate their utility.

Section III, "Mechanisms of Permeation" defines permeation and describes the mechanism thereof in engineering terms, with a discussion of the theories relating to permeation, and sample analyses and calculations.

Sections IV and V, "Data" present data collected from the literature and the aerospace industry. Factors affecting permeation, such as temperature, diffusivity, solubility, etc., are reported concurrent with permeation data. The data included

in these sections have been evaluated with respect to the literature -- they have not been verified by an experimental program under this contract.

The data are presented in two sections. Data for materials and fluids of primary spacecraft applications have been grouped in Section IV. Section V contains data for the systems which are not presently of primary application. The entire handbook is in looseleaf form to provide a capability for updating.

Section VI, "Coordinate Index" consists of an index to the data in coordinate form, and includes trade names and types as well as chemical nomenclature. The location of data for any permeant-material systems included in the handbook can be found rapidly by use of this index.

Section VII, "References" contains two listings of references used in the preparation of the handbook. The first list is arranged by arbitrarily assigned reference numbers and consists of authors and titles. The second list is arranged alphabetically by author's last name and contains complete bibliographic information.

I-2 HANDBOOK DATA ORGANIZATION

The data in each of the two data sections are ordered alphabetically by permeant and within each permeant group alphabetically by material.

The data for each permeant-material system are presented in the following format:

- A. Column 1 Type or trade name. For example, polychlorotrifluoroethylene may be called Kel F or
 Trithene. Common trade names, such as Mylar, Lexan,
 etc., are also referenced in the coordinate index.

 Data for each type or trade name within a permeantmaterial system are grouped.
- B. Column 2 Temperature in degrees Celsius. This is the secondary order of each group, by ascending order of temperature.
- C. Column 3 Permeability Rate, in $scc cm/cm^2$ sec Bar, with the understanding that each value is to be multiplied by 10^{-8} , e.g., the appearance of 3.46 in this column means that the permeability rate is 3.46×10^{-8} scc cm/cm² sec Bar. Use of the constant factor and units permits direct comparison between systems.
- D. Column 4 Permeability rate as reported. This is merely a transcription of the data found in the literature.

- E. Column 5 Units reported. This number is an arbitrarily chosen integer that refers to the unit system in which the given datum was reported. A complete list of units and their conversion factors to the standard is given in section I-3.
- F. Column 6 Reference. This number refers to the reference(s) in which the datum was found. The references are listed by number in section VI.
- G. Column 7 Solubility. This column gives the solubility in scc/cc Bar, if this datum was available for the system.
- H. Column 8 Diffusivity. This column gives the diffusivity in ${\rm cm}^2/{\rm sec}$, if this datum was available for the system.
- I. Column 9 Comments. Any relevant comments as to membrane composition, thickness, pressures, etc., are given here.

I-3 UNITS AND CONVERSION TABLES

I-3.1 Units Reported

In the course of the literature search and aerospace industry survey which were undertaken to obtain the data presented in this handbook, special attention was paid to the units used for reporting, the reasons for such use, and the desires of industry personnel for unit systems.

At least twenty-eight unit systems are currently in use for expression of permeation rates. It appears that the definitive factors in any experimentor's choice of a unit system are the physical characteristics of his test device and the conditions of his test. Thus, if he uses a small test cell, he chooses an area of one square inch, or one square centimeter. If he is testing large samples he may use 100 square inches or one square meter. Similarly, his collection method for the permeant may require measurements in seconds or days. Therefore, a great variety of combinations of units have arisen. Many of the units systems are not consistent within themselves — cubic cemtimeters (CGS) and mils (English) units appear in the same system.

I-3.2 Standard Unit

With this multiplicity of units, direct comparisons among the data are impossible. We polled the aerospace industry to determine if any single units system was desirable as a standard. However, suggestions were as numerous as replies. Hence, we

have adopted, arbitrarily, the following unit system for this handbook:

$$\text{Unit}_{p} = \frac{\text{cc (S.T.P.) cm}}{\text{cm}^{2} \text{ sec Bar}} \frac{\text{Volume-Thickness}}{\text{Area-Time-}\triangle \text{Pressure}}$$

This is the volume of permeant in cubic centimeters at standard temperature and pressure per square centimeter of area per second per Bar Δp per centimeter thickness of membrane. The abbreviation scc is used for cc(S.T.P.).

This unit system is comprised solely of cgs units, the most widely-accepted system. Any of the systems in use could have been used as a standard. However, we feel that this system is an improvement since it is self-consistent.

I-3.3 Conversion

Since the need currently exists to use other systems Table I-l presents conversion factors to other unit systems. Some unit systems are not convertible, e.g., metal permeability is frequently reported in units inversely proportional to the square root of the Δ -pressure. These systems are listed in the table, with the comment 'Not Convertible.'

Table I-1
UNIT CONVERSION

Number	Units System	Multiplication Factor for Converting to Standard Units
1	cm ² sec cm Hg	7.501×10^{1}
2	scc cm cm² sec mm Hg	7.501×10^2
3	cm ² sec cm Hg	7.501
4	m ² day atm	1.142×10^{-10}
5	10^{-5} ft ³ mil min ft ² atm	1.273×10^{-8}
6	scc mm cm ² sec atm	9.8692×10^{-2}
7	scc mil 100 in. ² day atm	4.497×10^{-11}
8	scc cm cm ² sec atm	9.8692×10^{-1}
9	scc mil cm² day atm	2.901×10^{-8}
10	scc mil in. ² hr lb/in. ²	1.023×10^{-5}
11	liter mm cm ² sec mm Hg	7.501 × 10 ⁴
12	cm ² hr atm	2.741×10^{-5}
13	scc mm cm ² sec atm ^{1/2}	Not convertible

Table I-1 (cont.)

Number	Units System	Multiplication Factor for Converting to Standard Units
14	$\frac{\text{scc mm}}{\text{cm}^2 \text{ hr atm}^{1/2}}$	Not convertible
15	$\frac{\text{scc mm}}{\text{cm}^2 \text{ min atm}^{1/2}}$	Not convertible
16	scc mil 100 in. 2 day 17.3 psi	3.82×10^{-9}
17	mg mil in. ² day atm	Not convertible
18	mg mil in. ² hr atm	Not convertible
19	mg mil in. 2 hr	Not convertible
20	scc mil 100 m ² day 17.7 psi	2.408 × 10 ⁻¹⁴
21	mg cm ² hr	Not convertible
22	in. ² hr	Not convertible
23	in. 2 day atm	2.901×10^{-12}
24		Not convertible
25	scc hr in. ²	Not convertible
26	1b mil 100 in. ² day atm	Not convertible

Table I-1 (conc.)

Number	Units System	Multiplication Factor for Converting to Standard Units
27	$\frac{\text{scc mil}}{\text{cm}^2 \text{ sec atm}^{1/2}}$	Not convertible
28	$\frac{\text{scc mil}}{\text{cm}^2 \text{ hr atm}^{1/2}}$	Not convertible
29	1b in ² hr psi	Not convertible
30	in ² hr	Not convertible

II TEST METHODS

II-1 INTRODUCTION

The research performed for the collection of the data which are presented in this handbook has revealed that there presently exists little standardization in the field of permeability determination. This statement holds true for the test methods employed as well as for test conditions, choice of materials, and selection of unit systems. Indeed, the theories of permeation, and their distinction from leakage phenomena, are themselves diverse.

This situtation has arisen because of the multiplicity of purposes in measuring permeability. Measurements at high pressures, for example, are affected by factors not considered in simple diffusion theory, and experimenters who work with membranes at very high pressures must use different theories and test methods. The very fact that many people have devised methods for measuring permeation for their specific purposes, and have invested considerable time and money in equipment and training, indicate that a single test method will probably not be adopted as a standard in the near future.

There are several test methods currently in use, and these vary greatly in apparatus design and types of devices used to measure parameters. Some long-term methods have been used which involve placing a given weight of gas or liquid into a container made of the material whose permeability is to be

determined, and then weighing the remainder after several days or weeks. Such methods report permeability in terms of per cent of weight lost per day or week.

Most test methods, however, are designed to measure permeability rates for relatively short time periods. These may be used for short-duration tests, which are then reported in units including days as a time factor. Similarly, although most test devices measure the permeability of membranes on the order of thousandths of a centimeter thick and one or a few square centimeters in area, unit systems giving area in terms of square feet or square meters are not uncommon.

The most commonly used test methods can be divided into three primary classifications:

- (1) Concentration-increasing method
- (2) Volume-increasing method
- (3) Pressure-increasing method.

The pressure-increasing method has the distinction of being an ASTM Standard, Method D1434-58. Further, it has been adapted to a continuous-recording form, although this adaptation, using mercury manometry is unsuitable for gases such as N_2O_4 , which reacts with mercury.

The other two methods also enjoy wide use, and probably will continue to do so for some time. Hence, we shall present a brief description of these three methods, and a list of references wherein more complete descriptions may be found.

Since no standard permeabilities are recognized, the relative accuracies of these three methods cannot be determined. However, Taylor, Karel, and Proctor¹ have found that the three methods are fairly well correlated, but that the degree of correlation decreases as the amorphous content of the films tested increases.

 $^{^{\}rm l}$ Taylor, A. A., Karel, M., and Proctor, B. E., "Measurement of $^{\rm O}2$ Permeability."

II-2 CONCENTRATION-INCREASING METHOD

This method consists of the measurement of the increase in concentration of permeant in an isolated compartment of a test cell, with the total pressure difference being zero, and the permeant partial-pressure difference being on the order of one Bar.

The test cell for this method consists of a compartment that can be divided into two sections by a film sample. The area of the sample that is exposed to the permeant is determined by the cross-sectional area of the compartment. The film is not supported over the test area, and hence the pressure difference must be held equal to zero to prevent distortion (and resultant area and volume errors). Each half of the test cell is equipped with an inlet and outlet tube.

Once the film sample is fastened into the cell, the permeant is swept through one compartment, and a collecting gas through the second. A given period of time is arbitrarily chosen as the steady-state time (this time will, of course, vary with the permeant-material system being considered and the test method gives no indication of when steady-state has been reached).

The pressure of the collecting gas is then adjusted to one Bar (or one atm or whatever pressure unit is used in the unit system being employed), and the second compartment is then isolated. The permeant concentration is maintained at 100% through the first compartment for a measured length of time, and then a sample of the second compartment contents is analyzed. Permeability is calculated by:

$$P_{C} = \frac{y \cdot x \cdot c}{t \cdot p}$$

where

 P_c = permeability constant for concentration-increase method (scc cm cm⁻² sec⁻¹ Bar⁻¹)

x = membrane thickness (cm)

c = volumetric concentration of permeant

t = time (sec)

p = partial pressure difference (Bar)

y = cell constant (determined by geometry of cell) (scc sec sec⁻¹ cm⁻²).

II-3 VOLUME-INCREASING METHOD

This method consists of the measurement of the increase in volume of an isolated compartment of a test cell, with the partial-pressure difference being equal to the total-pressure difference of approximately one Bar, the low side being maintained at one Bar pressure.

The membrane divides the test cell into two compartments, one many times larger than the other. The large compartment contains a thermometer, and the pressure in each compartment is measured by means of mercury manometers. The small compartment is connected to a capillary tube constructed with a recess which contains a bead of mercury. The membrane is supported by a screen or perforated metal plate.

Once the membrane is sealed in the cell, a vacuum is drawn in both compartments and then permeant is flushed into the large compartment at approximately 2 Bars pressure. Both sides are then sealed, and the pressure in the capillary side drops rapidly to about 1 Bar. Pressure and temperature are then adjusted to desired levels (e.g., 1 Bar and 25°C) and the capillary is turned so that the mercury falls out of the recess and into the capillary.

The distance the bead of mercury travels for a relatively long time (one day) is then measured. This time will vary with the permeant-material system. Further, a reasonable distance must be traversed to minimize measurement precision errors, irregularities in capillary cross-section, etc.

Permeability is calculated by:

$$P_{V} = \frac{d \cdot u \cdot x \cdot 273^{\circ}K}{A \cdot p \cdot t \cdot T}$$

where

 P_{V} = Permeability constant for volume-increase method (scc cm cm⁻² sec⁻¹ Bar⁻¹)

x = film thickness (cm)

u = volume of 1 cm length of capillary tube (cc)

d = bead movement (cm)

t = time (sec)

T = absolute temperature (°K)

A = area of membrane (cm²)

p = partial-pressure difference (Bar).

II-4 PRESSURE INCREASING METHOD

This method consists of the measurement of an increase in pressure in an isolated compartment of a test cell, with the partial-pressure differential being equal to the total-pressure differential.

The test cell for this method consists of a small volume (\simeq 1 cc) cell which can be divided by a membrane into two compartments, one very much larger than the other. The large compartment has an inlet and outlet for gas, and the small compartment is connected to a mercury manometer. The membrane is supported by a screen or porous metal plate.

Once the film sample is sealed into the cell, the small compartment is evacuated, and the other flushed with permeant at approximately one Bar pressure. Both compartments are then sealed and mercury is tipped into the manometer. The permeability is computed from the steady-state pressure increase, measured by the depression of the mercury level in the capillary of the manometer.

The following formula is used:

$$P_{p} = \frac{Z \cdot \Delta h \cdot x}{t \cdot p}$$

where

 P_p = permeability constant for pressure-increase method (scc cm cm⁻² sec⁻¹ Bar⁻¹)

 Δh = pressure increase (mmHg) (direct measurement)

x = film thickness (cm)

t = time (sec)

- p = partial-pressure difference (mmHg) (converted from Bars to be in same units as measurement of Δh)
- Z = cell constant-dependent on geometry (scc sec sec⁻¹ cm² Bar).

References Cited

Bauman, A. J. and Stembridge, C. W. A continuous recording automatic permeameter, with application to the permeation of nitrogen tetroxide through teflon. Programs Summary no. 37-30. $\frac{4}{2}$, 206-208, December 31, 1964. (IITRI Ref. no. 296)

Brubaker, D. W. and Kammermeyer, K. Separation of gases by means of permeable membranes - permeability of plastic membranes to gases. Ind. Eng. Chem. <u>44</u>, 1465-74, June 1952. (IITRI Ref. no. 243).

Myers, A. W., et al. The gas and vapor permeability of plastic films and coated papers. V. Effect of crystallinity. Tappi 41, 716-20, 1958. (IITRI Ref. no. 340).

Rogers, C., et al. Studies in the gas and vapor permeability of plastic films and coated papers. Part I. Determination of the permeability constant. Tappi 3°, no. 11, 737-41, November 1965. (IITRI Ref. no. 371).

Taylors, E. A., Karel, M. and Proctor, B. E. Measurement of oxygen permeability. Modern Packaging 33, no. 10, p. 131, 1960. (IITRI Ref. no. 399).

Waack, R., et al. Permeability of polymer films to gases and vapors. Ind. Eng. Chem. $\underline{47}$, 2524-7, 1955. (IITRI Ref. no. 242).

I. INTRODUCTION

Diffusion is the process by which a fluid moves through a membrane. There are other processes by which a fluid gets on and off of the membrane. All of these processes together make up permeation. A fluid arrives at one side of a membrane and leaves at the other side by the following steps: (1) condensation on or sorption by the membrane, (2) solution in the membrane, (3) diffusion, (4) dissolution, and (5) evaporation or desorption from the membrane. Gases must go through all five steps; liquids are already condensed so that they only go through steps 2, 3 and 4. Perhaps it is not out of place to emphasize that steps 1, 2, 3, 4 and 5 make up permeation and that step 3 and only step 3 is diffusion. Usually, though not always, step 3, diffusion, is rate controlling.

Diffusion of one species through another is a concentration dependent, molecular flow phenomena. This statement together with Fick's first and second laws:

$$F = -D \frac{dC}{dx}$$
 (1)

$$\frac{dC}{dt} = +D \frac{d^2C}{dx^2} \tag{2}$$

contains a fairly complete definition of simple diffusion.

Simple diffusion is defined as diffusion wherein the diffusion constant is not concentration-dependent. Unless specifically stated, this discussion will pertain to simple diffusion. The following paragraphs will elaborate on these statements.

The system which will be used throughout this chapter is defined as follows (see Figure 1).

- C concentration
- x membrane thickness
- t time
- P flux of diffusion species or Permeation constant
- D constant of diffusion

Diffusion, and hence permeation, is primarily dependent on the concentration gradient. If \mathbf{C}_1 is the entrance side concentration and \mathbf{C}_2 is the exit side concentration, then (C $_1$ - $\mathbf{C}_2) \, \triangle \mathbf{x} =$ $rac{\Delta C}{\Lambda_{f x}}$ is the concentration gradient. If the system obeys Henry's Law, then the concentration (C) is a linear function of pressure. $C = S_p$ where S is the solubility of the permeant in the membrane. Thus, if the pressure gradient is due to an applied pressure of 15 psi on one side of a membrane of unit thickness and vacuum on the other, we obtain a permeation rate; if we raise the pressure to 115 psi on the entrance side and raise the pressure to 115 psi on the entrance side and raise the previously maintained vacuum to 100 psi, then the permeation rate does not change since the pressure gradient (and hence the concentration gradient) does not change. It should be noted that constant temperature must be maintained since the diffusion constant is very temperature-dependent.

A further remark on the concentration gradient is in order. The concentration is determined by the partial pressure of the permeating species. Considering a three gas system, if x, y,

Figure 1 CONCENTRATION GRADIENT AND PERMEANT FLOW

and z are the gases and x is soluble in the membrane and y and z are not, then the pressure gradient (concentration gradient) is determined from the partial pressure p_x where $p = p_x + p_y + p_z$. This remark does not hold true in all cases, since at relatively high pressures additional relationships enter. Since permeation is a molecular flow phenomena, the diffusion of species 'a' in the + x direction is not affected by the presence of another species 'b' diffusing in the opposite direction. However, the membrane can be changed by the permeation of one species, and this history effect would make the transport of species a different than it would have been had not species b previously permeated through the membrane.

Consider the case where a membrane separates two fluids. If simple diffusion pertains, each gas will permeate through the membrane as though the other fluid were not present. The fact that one fluid is permeating through a membrane does not affect the other fluid's permeation rate unless there is a chemical reaction involving the two fluids and/or the membrane.

The following sections will be devoted to two illustrative types of diffusion: (a) permeation of hydrogen through palladium in order to exemplify an activated diffusion, and (b) permeation through plastic membranes, to illustrate permeation through a polymer. Following the illustrative discussion, Part II will consist of a derivation of the Diffusivity and Permeation constants to clarify the relationship between the theoretical development and experimentally determined values.

After this, there is a discussion of leakage compared to permeation flow.

A. Permeation of Hydrogen Through Palladium

The palladium leak is a standard method of introducing hydrogen into a vacuum system. Less well known is the fact that the hydrogen in a vacuum system at a pressure of 10^{-4} torr will permeate back to the outside of the system if the necessary conditions are maintained. If the hydrogen supply source is removed, and, the palladium leak is maintained at temperature, the hydrogen in the vacuum system will permeate back through the palladium even though the total pressure ratio is $\frac{760}{10^{-4}} = 7.6 \times 10^6$. Note that the partial pressure of the hydrogen on the outside of the system is less than hydrogen pressure inside the system.

Hydrogen in contact with palladium dissociates into protons. It can be shown that, if a bi-atomic molecule dissociates upon absorption by a surface, the rate of absorption, and hence the solubility, will be proportional to the square root of the absorbate pressure.

The protons go into the palladium crystal as palladium hydride; they do not travel along the grain boundaries. The palladium lattice expands as more and more sites are filled with hydrogen. The palladium lattice expands from a unit cell with an edge (Pd - Pd) distance of 3.886 A° to 4.020 A° at room temperature.

When the protons arrive at the outer boundary of the palladium they re-combine to become hydrogen molecules and evaporate from the palladium.

Usually the diffusion through the palladium is rate governing. However, the surface condition of the palladium can have an order of magnitude effect. A standard precaution that is used during permeation tests is to maintain the palladium at a high temperature, admit oxygen, oxidize the surface and then admit hydrogen to reduce the oxide. Thus, any contaminants will be "burnt" off and then reduced by the hydrogen.

B. Permeation Through Plastic Membranes

Diffusion into plastics is not different qualitatively from diffusion into metals or glass but can be significantly different in degree.

Flows governed by activated and nonactivated diffusion are not easy to evaluate separately. Permeation that is essentially determined by nonactivated diffusion will be approximately inversely proportional to the square root of the mass divided by the absolute temperature of the permeant. If the permeation is due to activated diffusion then the rate will be a much more complicated function of temperature, solubility and diffusivity; the permeability will be an exponential function of temperature.

For gas-polymer combinations which obey Henry's Law of solution (S = kp), and Fick's Law of Diffusion ($\frac{dC}{dt} = D \frac{d^2C}{dx^2}$), the prediction and/or determination of permeation is relatively

straightforward. There are a considerable number of gas-polymer combinations which do obey the two laws.

Many polymeric compounds consist of crystalline and amorphous components. Diffusion does not take place through the crystallites but through the amorphous matrix. This is quite important since many polymers go through a glass transition point at relatively low temperatures. This can and does have a profound effect on the permeation rate.

If the permeant obeys Henry's Law and Fick's Law, and if the rate of permeation for one simple gas is known, then the rate of permeation for another simple gas can be predicted based on the molecular diameter. This condition holds if the temperature is not close to the critical temperature of the permeant. Also, if there are a number of permeants, each permeates and diffuses independently of the rest, unless one of the permeants has an "effect." on the membrare.

II. THEORETICAL DEVELOPMENT

A. Diffusivity

In order to develop a mathematical model we shall assume the validity of Fick's Laws as a beginning. (For the interested reader a pertinent theoretical discussion of diffusion can be found beginning on p. 185 of "Kinetic Theory of Gases,"

E. H. Kennard, McGraw-Hill Book Co., Inc., New York, 1938.)

This development assumes constant temperature conditions unless specifically noted otherwise. An implied condition pertinent

to this development is that the constant of diffusion governs the transport rate. Usually this is so; however, if the permeant is part of a mixture of fluids (liquids or gases) and there is not some mechanism which operates to maintain the concentration at C then the determined value of the diffusivity constant will not be correct because the concentration at the entrance was not maintained constant. Also, the adsorption rate in some rare cases is lower than the permeation rate determined by the diffusivity constant.

Recall that Fick's Laws are:

I F = -D
$$\left(\frac{\partial C}{\partial x} + \frac{\partial C}{\partial y} + \frac{\partial C}{\partial z}\right)$$
 (1)

II
$$\frac{dC}{dt} = D \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2} \right)$$
 (2)

By definition, a membrane is very small in thickness compared to area. For this reason Fick's Laws will be developed, based on a semi-infinite mathematical model, in uni-dimensional terms; i.e.,

$$F = -D \frac{dC}{dx}$$
 and $\frac{dC}{dt} = D \frac{d^2C}{dx^2}$

Except where specifically noted otherwise, D will be assumed to be independent of concentration. From Fick's Laws, an equation specifying the concentration at any point in the membrane and at a time (t > 0) will be developed (see Figure 1).

We shall start the development for the following conditions:

At, t = 0, for all values of x, $C = C_0$

$$t > 0 \text{ and } x = 0, C = C_1$$

 $t > 0 \text{ and } x = \ell, C = C_2$ (3)

Note that in Figure 1, for the conditions stated in (3), the gradient of C, depicted as a straight line, is just what we are about to develop. This straight-line gradient will be developed for the condition when the time after permeation is initiated has become large.

When t $\rightarrow \infty$, the gradient no longer changes and,

$$\frac{dC}{dt} = 0 = D \frac{d^2C}{dx^2}$$
 (4)

Equation (4) can be integrated twice and we can determine the concentration after a constant rate of permeation has been established as:

$$C = C_1 + (C_2 - C_1) \frac{x}{U}$$
 (5)

Equation (5) not only tells us the concentration after a long period of time but also is a part of the general solution. Recall that we want a general solution for a specific purpose. The purpose is to enable one to rationally evaluate the experimental evidence.

A solution for Equation (2) can be derived by the separation of variables;

Let
$$C = X(x) T(t)$$

then $\frac{dC}{dt} = \mathring{T}(t) X(x) = D T(t) X''(x) = D $\frac{d^2C}{dx^2}$
where $\mathring{T}(t) = \frac{dT(t)}{dt}$ and $X'(x) = \frac{dX(x)}{dx}$ (6)$

When the variables are separated,

$$\frac{\dot{\mathbf{T}}(t)}{\mathbf{T}(t)} = +D \frac{\mathbf{X}''(\mathbf{x})}{\mathbf{X}(\mathbf{x})} = \text{constant} = -\lambda^2 D$$
 (7)

The constant is chosen as $-\lambda^2 D$ in order to simplify the algebra; then

$$\dot{\mathbf{T}}(\mathsf{t}) + \lambda^2 \mathbf{D} \, \mathbf{T}(\mathsf{t}) = 0 \tag{8}$$

$$X''(x) + \lambda^2 X(x) = 0 (9)$$

Equations (8) and (9) can be solved. By using Fourier series, our stated boundary conditions (Equation 3) and the solution for $t \to \infty$ (Equation 5), we have the general solution:

$$C = C_{1} + (C_{1} - C_{2}) \frac{x}{\ell} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{C_{2} \cos n\pi - C_{1}}{n} \right)$$

$$\sin \frac{n\pi x}{\ell} \exp \left(-(\frac{n\pi}{\ell})^{2} \operatorname{Dt} \right) + \frac{4C_{0}}{\pi} \sum_{m=2}^{\infty} \left(\frac{1}{m} \sin \frac{m\pi x}{\ell} \right)$$

$$\exp \left(-\frac{(m\pi)^{2}}{\ell} \operatorname{Dt} \right)$$
(10)

where n = 1, 2, 3...n for $\frac{n\pi}{2}$; m = 2, 4, 6...m for $\frac{m\pi}{2}$,

the rate at which the permeant passes through the membrane which can be determined experimentally can be determined from

$$F = -D \left(\frac{dC}{dx}\right)_{x} = \ell \tag{11}$$

Equation (10) is differentiated with respect to x and then the value of $x=\ell$ is inserted thus determining $\frac{dC}{dx}$. Also a quantity that we can measure is the amount of permeant that passes through the membrane in a time t as

$$q = \int_{O} F dt$$
 (12)

Using our stated conditions (Equation 3), Equations (11) and (12), and $C_2 = 0 = C_0$, we obtain

$$\frac{\mathbf{q}}{\mathbf{D}} = \mathbf{C}_{1} \frac{\mathbf{t}}{\mathcal{L}} - \frac{2\mathbf{C}_{1}\mathcal{L}}{\mathbf{D}\pi^{2}} \sum_{n}^{\infty} \frac{(-1)^{n}}{n^{2}} + \frac{2\mathbf{C}_{1}\mathcal{L}}{\mathbf{D}\pi^{2}} \sum_{n}^{\infty} \frac{(-1)^{n}}{n^{2}} \exp\left(-(\frac{n\pi}{\mathcal{L}})^{2}\right)$$
 Dt) (13)

Now the summation,

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2} = -0.815$$

and

$$\frac{-2}{\pi^2} \quad \sum_{n=0}^{\infty} \quad \frac{(-1)^n}{n^2} = \frac{1}{6}$$

Now let $t \to \infty$ in Equation (13), and then:

$$q = \frac{C_1 Dt}{\ell} - \frac{C_1}{6} = \frac{D C_1}{\ell} (T - \frac{\ell}{6D})$$
 (14)

If (14) is plotted as q versus t, then q will approach a straight line asymptote. If the asymptote is extended to cross the t axis at q=0, we can determine the value of D from the plotted experimentally determined values as:

$$t = \frac{\ell^2}{6D} \quad \text{or } D = \frac{\ell^2}{6t} \tag{15}$$

Note that this is only one solution. There are other solutions such as an error function solution, which is also used. The choice of the solution is determined by the experimental procedure.

It is worthwhile to examine the interplay of the variables. A one-mil-thick membrane is commonly used in permeability studies (1 mil = 0.00254 cm). The diffusivity constant for N₂ in Oppanol B 200 at 25°C is D = 4.2×10^{-8} cm² sec⁻¹.

For this combination,

t = 25 sec.

If the membrane thickness is doubled and the temperature is decreased approximately 20°C, then D = 4×10^{-9} and t ≈ 1000 sec or 16 min.

Recall that the membrane thickness has only been increased by one mil and the change in diffusivity corresponds to about a -20°C decrease in temperature and the time change was much greater than an order of magnitude.

B. Permeation Constant

If the diffusion constant and the solubility of the permeant in the membrane are known, then the permeation constant can be readily determined as will be shown in the following section. This relationship can and should be used to validate the experimental determination of the constant of diffusion.

Note again that equi-temperature conditions must be observed.

For the permeant-membrane combinations that follow Henry's Law:

Now.
$$C = S p$$

$$F = -D \frac{dC}{dx} = P \frac{dp}{dx}$$

$$= -D \frac{d(Sp)}{dx} = P \frac{dp}{dx}$$

$$= -D S \frac{dp}{dx} = P \frac{dp}{dx}$$
(16)

hence -D S = P (17)

Thus, theoretically, if any two of the constants in Equation (17) are known, the third is determined.

C. Units

The following paragraphs on unitsare used explicitly to show the lack of uniformity in the field.

The units in each of the constants in Equation (17) are:

(diffusivity)
$$D - \ell^2 t^{-1}$$

(solubility) $S - \ell^3 \ell^{-3} p^{-1} = p^{-1}$
(Permeability) $P - cm^3 \ell^{-2} \ell^{+1} t^{-1} p^{-1}$
(or $\ell^3 \ell^{-2} \ell^{+1} t^{-1} p^{-1} = \ell^2 t^{-1} p^{-1}$)

The units used to report the permeability constants in the literature vary as much as the instruments available and the imaginations of the researchers permit.

- 1) Area can be, and has been, reported as: ft², in², cm², m², mm² (5 units)
- 2) Thickness: ft, in, mil, cm, mm (5 units)
- 3) Time: sec, min, hour, day (4 units)

4) Pressure: psi, psf, in Hg, in of water, cm of Hg, mm of Hg (torr), μ b, atm (8 units).

There are 30 units and these are not all that are available. The mind boggles at the number of combinations available and at the number which have been used. In this handbook the permeability constant will be reported in two ways: (a) the primary definition of units for permeability which is:

 $P = (scc, cm, cm^{-2}, sec^{-1}, Bar^{-1})$ where scc is cc (STP) (1 Bar is 10^{+6} dynes/cm²),

and (b) that used by the investigator. There is an extensive conversion table on pages I-3.3 to I-3.5.

C. Leakage

When the flow rate is different from the 'a priori' prediction, an argument invariably arises that permeation is not occurring, but leakage. If the hole is assumed to be small enough, the flow will be molecular, i.e., the moving molecule will be affected more by collisions with the passageway walls than with the other molecules of its own kind. The flow is obviously concentration-dependent if it can be even considered a leak. Thus, we come to the explanation that when we have a very large number of very small leaks, such as a porous septa, a nonactivated type of diffusion controls the permeation of the fluid. However, for activated diffusion a small hole cannot be considered as part of the diffusion process. The permeant must be soluble in the membrane. If the permeant is not soluble in

the membrane, any flow will not be due to activated diffusion and hence must be due to a real leak.

When leakage and permeation are discussed qualitatively the phenomenon can be more easily understood if the representative equations are presented in a form that points up the variables of interest. The equation for leakage will be presented for molecular flow, since leakage pin-holes or tortuous capillaries have such small dimensions that, except for quite high pressure differentials, the mass transport will be controlled by wall collision rather than viscous drag. The mass flow rate due to leakage is:

$$Q_{L} = K_{1} (T/M)^{1/2} \frac{\Delta p}{k}$$
 (18)

Where \mathbf{K}_1 includes the number of "holes," their average diameter, and their average length.

In the mathematical development the Permeation has been shown to be,

$$F = D S \frac{dp}{dx}$$

where,

$$D = D_{O} \exp(-K_{2}/T) \tag{19}$$

The units of the constants can be chosen so that Q and F are in the same terms of mass flow rate, then

$$Q_{\Sigma} = Q + F$$

$$= K_{1} (T/M)^{1/2} \frac{\Delta p}{k} + D_{0}S \exp(-K_{2}/T) \frac{\Delta p}{k}$$
(20)

where

$$\frac{\Delta p}{dx} = \frac{dp}{dx}$$

At 25°C the diffusivity of N₂ through Oppanal B200 is $4.2 \times 10^{-8} \text{ cm}^2 - \text{sec}^{-1}$, and at slightly above zero degrees centigrade the diffusivity is $8.4 \times 10^{-8} \text{ cm}^2 - \text{sec}^{-1}$. The solubility of N₂ in Oppanal B200 is also directly proportional to the temperature but the solubility is a weak function of temperature. The change in mass flow due to $\simeq 20^{\circ}\text{C}$ temperature change is about 0.5 to 1 for permeation. For a leak the change is proportional to the square root of the absolute temperature, i.e.,

$$Q = Q_1 \sqrt{T_1/T_2} = Q_1 \sqrt{\frac{253}{298}} \qquad Q = 0.92Q_1 \tag{21}$$

If the mass flow rate is carefully determined at a number of temperatures, a plot of ${\bf Q}_{\Sigma}$ vs T can be used to determine whether the mass flow is due to activated diffusion or is actually a "leakage" flow phenomenon. If ${\bf Q}_{\Sigma}$ = F then the curve will be an exponential function. If ${\bf Q}_{\Sigma}$ = F + ${\bf Q}_{L}$ and ${\bf Q}_{L}$ >> F then ${\bf Q}_{\Sigma}$ vs T will plot as a parabola.

A few illustrations to compare a hole size that would permit a leakage rate proportional to the permeation through a ${\rm cm}^2$ of material are given;

Permeation and Leakage of H_2 at $25 \, ^{\circ}\text{C}^{\, \star}$

No. Hole Diam. Qp ** QL
$$\overline{\chi}$$
/sec $\overline{\chi}$ /s $\overline{\chi}$ /s $\overline{\chi}$ /s $\overline{\chi}$ /sec $\overline{\chi}$ /s $\overline{\chi}$ /s

Of considerable significance is the small size of the hole at which leakage swamps the permeation component. Many propulsion bladders have been coated with aluminum in order to be made impermeable to certain liquids. However, a small hole through the aluminum constitutes a large permeation source.

Figure 2 shows the curve obtained for permeation of hydrogen through H-Film and Mylar (see reference 232). Note that for H-Film the experimentally determined points fall on a straight line between 3 and 4.4 (i.e. between 333°K and 228°K). Since the points fall on a straight line on semi-log graph paper, the equation can be represented in the form $Y = ae^{bx}$.

We can transform the general equation if we let Y = P, $a = P_{o}, b = \frac{A}{R} \text{ and } X = \frac{1000}{T} \text{ where P is the permeation (experimentally determined), A is the activation energy, °K cal/gm Mole of hydrogen with the membrane (H-Film), and R is the gas constant, <math>P_{o}$ is the permeation constant for the equation (not the permeability even though it has the same units).

The straightline relationship observed essentially shows that the activation energy remains constant over this temperature. Therefore, if the permeability data available is only over a limited range it is mandatory to determine the effects which might occur at the temperature of interest. Merely extending the curve in order to extrapolate can lead to gross errors. In the figure the straightline was extended; the experimentally determined value is 1.7×10^{-11} ; the value obtained by extrapolation is 3.4×10^{-11} sec cm sec⁻¹ cm⁻² (cm Hg)⁻¹, a two-fold error in $28\,^{\circ}\text{K}$ temperature excursion.

In Figure 2, the straightline labeled P is a hypothetical permeation curve; the one labeled L is a hypothetical leak which at that point alone transfers the same mass flow as permeation does. At any other point the flow through the leak would be considerably different from the permeation.

III. REFERENCES

It would be of considerable value to check the references from which each of the permeation data points are abstracted whenever the tabulated values are used. Most of these references have specific analyses incorporated. Among others the following references are of considerable value in the study of diffusion and permeation.

A very important point to note is that specific permeation and diffusion references cannot answer specifically any questions pertaining to a new permeation pair. If the diffusivity,

permeation constant and solubility cannot be found in the literature they must be determined experimentally. However, orders of magnitude type estimates can be made based on purely theoretical considerations. These theoretical models can be found in the literature. Note that a model is built for specific consideration and a model for hydrogen through palladium would not be useful for hydrazine through teflon.

- 1. Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford, 1956.
- Dushman, S. K., "Scientific Foundations of Vacuum Technique," Second Edition, Wiley, New York, 1962.
- 3. Kinnard, E. H., "Kinetic Theory of Gases," McGraw-Hill Book Company, New York, 1938.
- 4. Engelhard Industries, Inc., Technical Bulletin (specifically H₂ through Palladium and Palladium base alloys), see Vol. VII, pp. 32, No. 1-2, Sept/June, 1960.
- 5. Barrer, R. M. J., Chemical Society (1934), 378.
- 6. Van Amerongen, G. J., The permeability of different rubbers to gases and its relation to diffusivity and solubility. J. Appl. Phys. 17, 972, 1946.
- 7. Tuwiner, S. A., "Diffusion and Membrane Technology," Reinhold Publishing Corp., New York, 1962.

The data in this section are for propellants and pressurant gases presently applicable to use in the aerospace industry.

These are:

IV - 1 Ammonia

IV - 2 Helium

IV - 3 Hydrogen

IV - 4 Mono Methyl Hydrazine

IV - 5 Mixed Oxides of Nitrogen

IV - 6 Nitrogen

IV - 7 Nitrogen Tetroxide

IV - 8 Oxygen

IV - 9 Unsymmetrical Dimethyl Hydrazine

Permeability is reported in Standard Units x 10^8 , i.e., Value x 10^{-8} (Standard Units). The Standard Unit is:

scc cm

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 2)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	2067	181000	4	383			
				·				
	1.						·	
	12							
	· ·							
	,							
						:		
							4. 19	

References Reporting: 383

PERMEANT: Ammonia NH₃

MATERIAL: Cellulose Acetate

PERMEANT: Ammonia

MATERIAL: Polyethylene Terephthalate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Mylar	NG	22.04	1930	4	383			
						·			
-									
						· · · · · · · · · · · · · · · · · · ·			

References Reporting: 383

Permeability Permeability . Units Ref. Solubility Diffusivity Type Temp. Comments Std. Units (Value x 10⁻⁸) or cm²/sec scc/cc Bar as Reported Trade Name ٥C Rptd. 519.6 45400 383 .95g/cc NG 4

References Reporting: 383

PERMEANT: Ammonia NH₃
MATERIAL: Polyolefin

PERMEANT: Ammonia NH₃

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

	i i							
Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility		Comments
Trade Name	°C	(Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
VYHH	1.2				221		1.14 x 10 ⁻⁴	125 mmHg
VYHH	26.3				221		7.02×10^{-4}	379 mmHg
VYHH	51.2				221		26.5 x 10 ⁻⁴	203 mmHg
VYHH	51.2				221		55.9 x 10 ⁻⁴	506 mmHg
VYHH	74.0				221		73.7×10^{-4}	193 mmHg
VYHH	74.0				221		67.8×10^{-4}	173 mmHg
			-					
					· ·			
	OT Trade Name VYHH VYHH VYHH VYHH VYHH VYHH	or oc VYHH 1.2 VYHH 26.3 VYHH 51.2 VYHH 74.0 VYHH 74.0	Or Trade Name °C Std. Units (Value x 10 m) VYHH 1.2 VYHH 26.3 VYHH 51.2 VYHH 74.0 VYHH 74.0	or Std. Units_8 (Value x 10^-8) as Reported VYHH 1.2 as Reported VYHH 26.3 as Reported VYHH 51.2 as Reported VYHH 51.2 as Reported VYHH 74.0 as Reported	Or Trade Name °C Std. Units (Value x 10 8) as Reported Rptd. VYHH 1.2	Or Trade Name °C Std. Units (Value x 10°8) as Reported Rptd. VYHH 1.2 221 VYHH 26.3 221 VYHH 51.2 221 VYHH 74.0 221 VYHH 74.0 221 VYHH 74.0 221	or Trade Name °C Std. Units (Value x 10^8) as Reported Rptd. scc/cc Bar VYHH 1.2 221 221 VYHH 51.2 221 221 VYHH 51.2 221 221 VYHH 74.0 221 221 VYHH 74.0 221 221	Or Trade Name °C Std. Units (Value x 10^-8) as Reported Rptd. scc/cc Bar cm²/sec VYHH 1.2 221 1.14 x 10^-4 VYHH 26.3 221 7.02 x 10^-4 VYHH 51.2 221 26.5 x 10^-4 VYHH 74.0 221 73.7 x 10^-4 VYHH 74.0 221 67.8 x 10^-4

References Reporting: 221

References Reporting:

IV-1.5

203, 206, 297

Ammonia NH_3 PERMEANT:

Rubber, Dimethylsilicone MATERIAL:

Permeability Permeability Units Ref. Solubility Diffusivity Type Temp. Comments Std. Units (Value x 10⁻⁸) or cm²/sec Trade Name °C as Reported scc/cc Bar Rptd. 1250- 5×10^{-10} 1600 3750 , ... 11 284 IV-2.1

References Reporting: 294

PERMEANT: Helium He

MATERIAL: Alumina (ceramic)

MATERIAL: Buna S

		 				 		
Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	(Value x 10 ⁻⁰)	as Reported	Rptd.	<u> </u>	scc/cc Bar	cm ² /sec	<u> </u>
	25	17.3	17.5×10^{-7}	6	378			in applications
							# :	
	·	·						
							1	
		A.						'G
	-							

References Reporting: 378

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
T	rađe Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Pe	rbunan 18	25	12.7	12.9×10^{-8}	8	390	.0082	15.5 x 10 ⁻⁶	
Pe	erbunan 18	50	30.8	31.2 x 10 ⁻⁸	8	390	.0116	26.6 x 10 ⁻⁶	
	erman erbunan	25	9.20	9.32 x 10 ⁻⁸	8	390	.0079	11.7 x 10 ⁻⁶	
Pe	erman erbunan	50	23.1	23.4 x 10 ⁻⁸	8	390	.0101	23 x 10 ⁻⁶	
Ну	car-OR-15	25	5.13	5.20 x 10 ⁻⁸	8	390	.0065	7.92×10^{-6}	
1	car-OR-15	50	14.0	14.2 x 10 ⁻⁸	8	390	.0087	16.2 x 10 ⁻⁶	
НУ	/car-OR-25	25	7.40	7.50 x 10 ⁻⁸	8	390	.0066	11.2 x 10 ⁻⁶	
НУ	ycar-OR-25	50	19.3	19.6 x 10 ⁻⁸	8	390	.0088	22.1 x 10 ⁻⁶	

References Reporting: 390

PERMEANT: Helium He

MATERIAL: Butadiene-Acrylonitrile Copolymer

MATERIAL: Cellulose Acetate Butyrate

				L			· · · · · · · · · · · · · · · · · · ·		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Kodapak II	0	5.51	0.735 x 10 ⁻⁹	1,	211 219			.001 in. thick
	Kodapak II	25	10.7	1.43 x 10 ⁻⁹	1	211 219	•		.001 in. thick
-	Kodapak II	25	10.8	10.9 x 10 ⁻⁷	6	378	·		
	Kodapak II	50	20.6	2.75×10^{-9}	1	211 219			.001 in. thick
,	3 parts Plasticizer	0	14.2	1.89 x 10 ⁻⁹	1	211 219			.0018 in. thick
.	3 parts Plasticizer	25	21.0	2.80 x 10 ⁻⁹	1	211 219			.0018 in. thick
	3 parts Plasticizer	50	29.3	3.90 x 10 ⁻⁹	1	211 219			.0018 in. thick
			·						

References Reporting:

211, 219, 378

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	5.1	5.2 x 10 ⁻⁷	6	378			
					-			
						·		
							1	

References Reporting: 378

PERMEANT: Helium He

MATERIAL: Cellulose Nitrate

MATERIAL: Ethyl Cellulose

			L					•
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	27.8	19.1	2.55 x 10 ⁻⁹	1	208			Cast from Ethanol
	27.8	19.0	2.53 x 10 ⁻⁹	1	208			Cast from te trahydrofura
	30	23.3	3.1 x 10 ⁻⁹	1	214			4
	NG	26.7	21	5	346			
						·		
					·			

References Reporting: 208, 214, 346

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	15.8	2.1 x 10 ⁻⁹	1	214			
H									
IV-2.7									
	· · · · · · · · · · · · · · · · · · ·								
-									

References Reporting: 214

PERMEANT: Helium He

MATERIAL: Ethylene-Vinylacetate Copolymer

MATERIAL: Glass

	Type or	Temp.	Permeability	Permeabili jt ý	Units	Ref.	Solubility	Diffusivity	Comments
	or 🦠 Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Fused Silica	25	.75	.76 x 10 ⁻⁷	6	378			
	Vycor	25	1.13	1.14 x 10 ⁻⁷	6	378			
	Vycor	400	3.6	4.8 x 10 ⁻¹⁰	1	214			
-	Pyrex	25	.09	.91 x 10 ⁻⁸	6	378			
TV_2 8	Soda Line	25	.00056	5.7 x 10 ⁻¹²	6	378			
~	X-ray Shield	25	.00000031	3.1×10^{-14}	6	378			
	5 . T								
		4							

References Reporting: 214, 378

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cn ² /sec	
	Hydropol	25				222	.0122		
	Hydropol	25	11.8	1.20 x 10 ⁻⁷	8	225		151 x 10 ⁻⁷	
	Hydropol	25	11.8	12.0×10^{-7}	6	378			
) -									
									.:
-									·

References Reporting: 222, 225, 378

PERMEANT: Helium He

MATERIAL: Hydropol

MATERIAL: Inconel

	-	<u> </u>	· · · · · · · · · · · · · · · · · · ·			 		
Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	1225	4500	6 x 10 ⁻¹⁰	11	294			
						-		
			·					
				4	agent, de la Companie			

References Reporting: 294

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	5.9	5.93 x 10 ⁻⁸	8	390	.0073	8.01 x 10 ⁻⁶	
		50	15.9	16.1 x 10 ⁻⁸	8	390	.0106	15.1 x 10 ⁻⁶	
)									
		,							

References Reporting: 390

PERMEANT: Helium He

MATERIAL: Isoprene-Acrylonitrile Copolymer

PERMEANT: Helium He MATERIAL: Molybdenum

Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability		Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	(Valué x 10 °)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	1150	2250	3 x 10 ⁻¹⁰	11	294			.0035 in. disilicide coating
	1500	7500	1 × 10 ⁻⁹	11	294			.0005 in. disilicide coating
					**			
						·		
·							-	
					d.	·		

References Reporting: 294

PERMEANT:

MATERIAL:

Type	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Vulcanized	0	1.7	.0022 x 10	6 ₃	401			
	25	7.5	100 x 10 ⁻¹⁰	3	348		·	
	25	.6	.6 x 10 ⁻⁷	6	266 425			
G	25	3.38	45 x 10 ⁻¹⁰	3	212			
G	25	3.38	3.4×10^{-7}	6	378			
Vulcanized	30.4	5.9	.0078 x 10	6 3	401			
Vulcanized	41.5	11.8	.0157 x 10	6 3	401			
Vulcanized	57	26.3	$.035 \times 10^{-6}$	3	401			
Vulcanized	73	36.0	.048 x 10 ⁻⁶	3	401			
Vulcanized	101.3	70.5	.094 x 10 ⁻⁶	3	401			

References Reporting: 212, 266, 348, 378, 401, 425

PERMEANT: Helium He MATERIAL: Neoprene

MATERIAL: Platinum

ТУ	r	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade	Name	°C	(Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
·		1400	1500	2 x 10 ⁻¹⁰	11	288 294			
							:		
:									
									.*
-									;
		·							

References Reporting: 288, 294

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Solubility Diffusivity Temp. Units Ref. Туре Comments or cm²/sec Trade Name ٥C as Reported Rptd. scc/cc Bar 2×10^{-10} 1400 1500 11 294 85% Pt IV-2.15

References Reporting: 294

PERMEANT: Helium He

MATERIAL: Platinum-Rhodium-Alloy

MATERIAL: Polycarbonate

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
T	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	50.3	6.7 x 10 ⁻⁹	1	214			
L	exan	25	.099	1.0 x 10 ⁻⁸	6	388	1		
I	l exan	50	.19	1.9 x 10 ⁻⁸	6	388			
L	exan	75	.33	.3 x 10 ⁻⁸	6	388			
L	exan	100	. 47	4.8 x 10 ⁻⁸	6	388			
L	exan	125	.70	7.1 x 10 ⁻⁸	6	388			

References Reporting: 214, 388

Permeability Std. Units (Value x 10⁻⁸) Туре Permeability Units Ref. Solubility Diffusivity Temp. Comments or ${\rm cm}^2/{\rm sec}$ Trade Name °C as Reported Rptd. scc/cc Bar 3.4×10^{-9} Trithene B 30 25.5 1 214 IV-2.17

References Reporting: 214

PERMEANT: Helium He

MATERIAL: Polycholortrifluoroethylene

MATERIAL: Polyethylene

_									
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Report ed	Rptd.		scc/cc Bar	cm ² /sec	
	Alathon 14	25	3.7	3.75×10^{-7}	6	225 378		68 x 10 ⁻⁷	
		25				222	.0122		
		27.2	3.15	$.42 \times 10^{-9}$	1	208			Biaxially Orientated
	Alathon 15	0	2.89	3.85 x 10 ⁻¹⁰	1	223			
	Alathon 15	0	2.55	3.4×10^{-10}	1	223			
$\left[\right]$	Alathon 15	0	1.50	2.0×10^{-10}	1	223			Variable pressure test
	Alathon 15	0	1.65	2.2 x 10 ⁻¹⁰	1	223			Variable volume test
	Alathon 15	0	2.63	3.5 x 10 ⁻¹⁰	1	209			
	Alathon 15	15	5.1	6.8 x 10 ⁻¹⁰	1	223			
	Alathon 15	30	9.38	1.25 x 10 ⁻⁹	1	223			

V-2.18

٠				· · · _					
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Report ed	Rptd.		scc/cc Bar	cm ² /sec	
	Alathon 15	30	6.15	8.2 x 10 ⁻¹⁰	1	223			Variable pressure test
	Alathon 15	30	7.5	1.0 x 10 ⁻⁹	1	223			Variable volume test
	Alathon 15	- 30	9.75	1.3 x 10 ⁻⁹	1	223			
1	Alathon 15	30	10.5	1.4 x 10 ⁻⁹	1	209			
2 10	Alathon 15	50	22.5	3.0×10^{-9}	1	223			
1	Alathon 15	50	21.8	2.9 x 10 ⁻⁹	1	223			Variable volume test
	Alathon 15	50	13.5	1.8 x 10 ⁻⁹	1	223			Variable pressure test
	DE 2400	0	1.10	.147 x 10 ⁻⁹	1	211 219			.00156 in. thick
	DE 2400	0	1.35	.180 x 10 ⁻⁹	1	211 219			.0013 in. thick
	DE 2400	25	3.86	.515 x 10 ⁻⁹	1	211 219			.00156 in. thick

PERMEANT: Helium He MATERIAL: Polyethylene

PERMEANT: Helium He MATERIAL: Polyethylene

_				L			<u> </u>		
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	DE 2400	25	4.61	.615 x 10 ⁻⁹	1	211 219		·	.0013 in. thick
	DE 2400	50	11.0	1.47×10^{-9}	1	211 219	7		.00156 in. thick
	DE 2400	50	13.1	1.74×10^{-9}	1	211 219			.0013 in. thick
	DE 2500	0	1.22	.163 x 10 ⁻⁹	1	211 219			.0015 in. thick
TV-2 20	DE 2500	25	4.16	.555 x 10 ⁻⁹	1	211 219			.0015 in. thick
0 [DE 2500	50	11.7	1.56 x 10 ⁻⁹	1	211 219			.0015 in. thick
	.964g/cc	25	.86	.87 x 10 ⁻⁷	6	378			·

References Reporting: 208, 209, 211, 219, 222, 223, 225, 378

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	DE 2400	0	1.73	.23 x 10 ⁻⁹	1	211 219			.0022 in. thick
	DE 2400	0	2.25	.30 x 10 ⁻⁹	1	211 219			.0039 in. thick
	DE 2400	- 25	6.15	.82 x 10 ⁻⁹	1	211 219			.0022 in. thick
	DE 2400	25	7.50	1.00 x 10 ⁻⁹	1	211 219	·		.0039 in. thick
3	DE 2400	50	18.4	2.45 x 10 ⁻⁹	1	211 219			.0022 in. thick
2	DE 2400	50	21.4	2.85 x 10 ⁻⁹	1	211 219			.0039 in. thick

References Reporting: 211, 219

PERMEANT: Helium He

MATERIAL: Polyethylene Laminates

MATERIAL: Polyethylene Terephthalate

			·	:			·		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Mylar	25	. 75	1.0 x 10 ⁻¹⁰	1	214			
	Mylar 25-V-200	0	.315	.042 x 10 ⁻⁹	1	211 219			
	Mylar 25-V-200	25	.760	.101 x 10 ⁻⁹	1	211 219			
	Mylar 25-V-200	50	1.58	.210 x 10 ⁻⁹	1	211 219			
	Mylar 50-V-200	25	.863	.115 x 10 ⁻⁹	1	219			
-	Mylar 50-V-200	50	1.79	0.238×10^{-9}	1	211 219			
	Mylar 100-V-200	25	.825	.110 x 10 ⁻⁹	1	211 219			
	Mylar 100-V-200	50	1.73	$.230 \times 10^{-9}$	1	211 219			
	Mylar 100-V-200	25	.803	.107 x 10 ⁻⁹	1	211 219			
	Mylar 200-V-200	50	1.76	.235 x 10 ⁻⁹	1	211 219			

				T				
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Nam	e °C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Mylar 500-V-200	25	.810	.108 x 10 ⁻⁹	1	211 219		·	
Mylar 500-V-200	50	1.62	.216 x 10 ⁻⁹	1	211 219			
Mylar Coated	25	.503	.067 x 10 ⁻⁹	1	211 219	·		
Mylar Coated	50	1.35	.180 x 10 ⁻⁹		211 219			
Mylar A	25	.73	$.74 \times 10^{-7}$	6	378			
3								
			·					

References Reporting: 211, 214, 219, 378

PERMEANT: Helium He

Polyethylene Terephthalate MATERIAL:

PERMEANT: Helium He
MATERIAL: Polypropanol

			L			<u> </u>		
. Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Escon	27.2	3.23	0.43 x 10 ⁻⁹	1	208			Biaxially Orientated
Escon	27.2	7.35	.98 x 10 ⁻⁹	1	208	·		Monaxially Orientated
					• '			
-								
					İ			

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	26.3	3.5 x 10 ⁻⁹	1	214			
	NG	30.6	24	5	346			
			·					

References Reporting: 214, 346

PERMEANT: Helium He

MATERIAL: Polystyrene

MATERIAL: Polyvinyl Chloride

			·					
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	· °C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	32.3	3.45	0.46×10^{-9}	1	208			.00508 cm thick
16.8% Plasticizer	31.1	5.63	0.75×10^{-9}	1	208	,		.00788 cm thick
19.3% Plasticizer	31.1	7.58	1.01 x 10 ⁻⁹	1	208			.00457 cm thick
Plasticized	NG	10.5	1.4 x 10 ⁻⁹	1	214	- September -		
-								

References Reporting: 208, 214

ſ			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	_	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Plasticized	0	2.29	0.305 x 10 ⁻⁹	1	211 219			
	Plasticized	25	6.90	0.920 x 10 ⁻⁹	1	211 219			
, i	Plasticized	50	18.4	2.45 x 10 ⁻⁹	1	211 219	:		
H.	VYHH	0				221		234 x 10 ⁻⁴	
IV-2.27	VYHH	24.7				221		574 x 10 ⁻⁴	
7	VYHH	33				221		706 x 10 ⁻⁴	
	VҮНН	55				221		2370 x 10 ⁻⁴	
	VYHH	70.5				221		3150 x 10 ⁻⁴	
	VҮНН	90.5				221		5161 x 10 ⁻⁴	

References Reporting: 211, 219, 221

PERMEANT: Helium He

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

Page Intentionally Left Blank

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Saran 517	25	.01	.011 x 10 ⁻⁷	6	378	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Saran	25	.05	6.6 x 10 ⁻¹²	1	214			
:	Saran	31.1	.263	.035 x 10 ⁻⁹	1	208		1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (
ΛΙ									
V-2.29									
9		·							
							i di		-
								·	

References Reporting: 208, 214, 378

PERMEANT: Helium He

MATERIAL: Polyvinylidene Chloride

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

		h	L					
Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility		Comments
Trade Nam	e °C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Viton A	30	12.8	1.7 x 10 ⁻⁹	1	214			
						,		
			·		-			
								;
			·					

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility		Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	263	35 x 10 ⁻⁹	1	203 206 297			
									
H									
IV-2.31								·	: :
7									
									:

References Reporting: 203, 206, 297

PERMEANT: Helium He

MATERIAL: Rubber, Dimethylsilicone

MATERIAL: Rubber, Methyl

Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
	25	10.9	11 x 10 ⁻⁷	6,8	378 390			
	50	26.6	27 x 10 ⁻⁷	8	390			
		·						
						·		

٢		 	<u> </u>	<u> </u>	,	<u>.</u>	· - · · · · · · · · · · · · · · · · · · 		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10-8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	17.25	230 x 10 ⁻¹⁰	3	212		·	
		25	23.4	23.7 x 10 ⁻⁸	8	390	.011	21.6 x 10 ⁻⁶	
		25	32.3	430 x 10 ⁻¹⁰	3	348			
		25				225		216 x 10 ⁻⁷	
IV-		25	22.7	23 x 10 ⁻⁷	6	378			
IV-2.33		25	29.6	3.0×10^{-6}	6	266 425			
		30	27.0	3.6 x 10 ⁻⁹	1	214			
		34	43.0	43.6 x 10 ⁻⁸	8	342			
		50	51.6	52.3 x 10 ⁻⁸	8	390	.014	38.0×10^{-6}	

References Reporting: 212,214,225, 266,342,348, 378,390,425

PERMEANT: Helium He

MATERIAL: Rubber, Natural

MATERIAL: Rubber, Nitrile Silicone

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	59.3	.79 x 10 ⁻⁸	1	214			
		·				·		
								·

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
٠	Thiokol	NG	1050	1.03	10	298			
٧I									
IV-2.35								·····	
	· · · · · · · · · · · · · · · · · · ·								
-									

References Reporting: 298

PERMEANT: Helium He

MATERIAL: Rubber, Nitroso

MATERIAL: Rubber, Phenylene-Silicone

·····	3					 		,
Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	30	113	1.5 x 10 ⁻⁸	1	214			
		·						
· · · · · · · · · · · · · · · · · · ·					·			<u> </u>
					,			· · · · · · · · · · · · · · · · · · ·

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	173	2.3 x 10 ⁻⁸	1	214			
Н									
IV-2.37									
7									

References Reporting: 214

PERMEANT: Helium He

MATERIAL: Rubber, Silicone

MATERIAL: Rubber, (Sulfur added)

		·	<u> </u>					
Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C .	(Value x 10 ⁻⁶)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
2% S	19.5	.085	.0086 x 10 ⁻⁶	6	401			
					·			
-					·			
				٠. ٠				
· · · · · · · · · · · · · · · · · · ·								

Permeability Units Ref. Solubility Diffusivity Type Temp. Permeability Comments Std. Units (Value x 10⁻⁸) cm²/sec Trade Name as Reported scc/cc Bar ° C Rptd. 1×10^{-12} 800 7.5 11 380 Austenitic $.9 \times 10^{-9}$ 600 6800 11 381 Austenitic 1×10^{-12} Nickel 7.5 380 800 11 $.9 \times 10^{-9}$ 6800 11 381 Nickel 600 IV-2.39 1×10^{-12} 7.5 11 Pearlitic 800 380

References Reporting: 380, 381

PERMEANT: Helium He

MATERIAL: Steel

MATERIAL: Teflon

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	TFE	NG	58.3	12960	7	271			3.2 mils thick
	TFE	NG	61.3	13630	7	271			
	TFE	NG	57.9	12870	7	271			
	TFE	NG	58.3	12960	7	271			
TV	TFE	NG	61.3	13632	7	271			,
3 7	TFE	NG	57.9	12865	7	271			
	TFE	25	523	530 x 10 ⁻⁷	6	378			
	TFE	30	NC	0.22	24	333			
	TFE	30	90.0	12 x 10 ⁻⁹	1	209			
								-	

IV-2.4

ſ				·			· 		·
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	~ C	(value x 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
	TFE	30	90	1.2 x 10 ⁻⁸	1	209			
	TFE	50	128	1.7 x 10 ⁻⁸	1	209			
	FEP	NG	33.1	7360	7	271			3.2 mils thick
	FEP	NG	29.6	6583	7	271			2.9 mils thick
TV-2.41	FEP	25	30.1	6700	7	334			
41	FEP	30	46.5	6.2 x 10 ⁻⁹	1	214			
	FEP	50	58.5	13000	7	334			
	FEP	75	94.4	21000	7	334			
	FEP	100	157	35000	7	334			

References Reporting: 209, 214, 271,

333, 334, 378

PERMEANT: Helium He

MATERIAL: Teflon

MATERIAL: Teflon Laminates

						·		
Type or	Temp.	Permeability Std. Unitso	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	(Value x 10 ²⁸)	as Reported	Rptd.		scc/cc Bar	cm²/sec	
TFE/FEP	NG	86.3	11.5 x 10 ⁻⁹	1	307			
TFE/FEP	NG	34.4	7648	7	271			6.0 mils thick
TFE/FEP	NG	34.9	7755	7	271			6.5 mils thick
TFE/FEP	NG	35.0	7775	7	271			6.2 mils thick
TFE/FEP	20.1	NC	0.0037	26	332			
FEP/TFE	22	NC	.0086	26	332			6 mils thick
FEP/Al/FEP	NG	NC	.03 x 10	9 ₂₅	307			.002/.0005/.002 in's. thick
FEP/Al/FEP	NG	0.225	3×10^{-11}	1	307			.002/.0005/.002 in's. thick
FEP/Al/FEP	NG	0.225	3×10^{-11}	1	307			.002/.002/.002 in's. thick
FEP/TFE/Al	22	NC	.0004	26	332			336 hr. test
	Trade Name TFE/FEP TFE/FEP TFE/FEP TFE/FEP TFE/FEP FEP/TFE FEP/Al/FEP FEP/Al/FEP	Trade Name °C TFE/FEP NG TFE/FEP NG TFE/FEP NG TFE/FEP 20.1 FEP/TFE 22 FEP/Al/FEP NG FEP/Al/FEP NG	or Std. Units Trade Name °C (Value x 10 ⁻⁸) TFE/FEP NG 86.3 TFE/FEP NG 34.4 TFE/FEP NG 34.9 TFE/FEP NG 35.0 TFE/FEP 20.1 NC FEP/TFE 22 NC FEP/Al/FEP NG NC FEP/Al/FEP NG 0.225 FEP/Al/FEP NG 0.225	or Trade Name °C Std. Units (Value x 10^-8) as Reported TFE/FEP NG 86.3 11.5 x 10^-9 TFE/FEP NG 34.4 7648 TFE/FEP NG 34.9 7755 TFE/FEP NG 35.0 7775 TFE/FEP 20.1 NC 0.0037 FEP/TFE 22 NC .0086 FEP/Al/FEP NG 0.225 3 x 10^-11 FEP/Al/FEP NG 0.225 3 x 10^-11	Or Trade Name °C Std. Units (Value x 10^-8) as Reported Rptd. TFE/FEP NG 86.3 11.5 x 10^-9 1 TFE/FEP NG 34.4 7648 7 TFE/FEP NG 34.9 7755 7 TFE/FEP NG 35.0 7775 7 TFE/FEP 20.1 NC 0.0037 26 FEP/TFE 22 NC .0086 26 FEP/Al/FEP NG NC .03 x 10^-9 25 3 x 10^-11 1 FEP/Al/FEP NG 0.225 3 x 10^-11 1 1 FEP/Al/FEP NG 0.225 3 x 10^-11 1	Trade Name °C Std. Units (Value x 10^8) as Reported Rptd. TFE/FEP NG 86.3 11.5 x 10^9 1 307 TFE/FEP NG 34.4 7648 7 271 TFE/FEP NG 34.9 7755 7 271 TFE/FEP NG 35.0 7775 7 271 TFE/FEP 20.1 NC 0.0037 26 332 FEP/TFE 22 NC .0086 26 332 FEP/Al/FEP NG NC .03 x 10^925 307 FEP/Al/FEP NG 0.225 3 x 10^-11 1 307 FEP/Al/FEP NG 0.225 3 x 10^-11 1 307	Or Trade Name °C (Value x 10 ⁻⁸) as Reported Rptd. scc/cc Bar TFE/FEP NG 86.3 11.5 x 10 ⁻⁹ 1 307 TFE/FEP NG 34.4 7648 7 271 TFE/FEP NG 34.9 7755 7 271 TFE/FEP NG 35.0 7775 7 271 TFE/FEP 20.1 NC 0.0037 26 332 FEP/TFE 22 NC .0086 26 332 FEP/Al/FEP NG NC .03 x 10 ⁻⁹ 25 307 FEP/Al/FEP NG 0.225 3 x 10 ⁻¹¹ 1 307 FEP/Al/FEP NG 0.225 3 x 10 ⁻¹¹ 1 307	Trade Name °C (Value x 10°8) (Value x 10°8) as Reported Rptd. scc/cc Bar cm²/sec TFE/FEP NG 86.3 11.5 x 10°9 1 307 TFE/FEP NG 34.4 7648 7 271 TFE/FEP NG 34.9 7755 7 271 TFE/FEP NG 35.0 7775 7 271 TFE/FEP 20.1 NC 0.0037 26 332 FEP/TFE 22 NC .0086 26 332 FEP/Al/FEP NG NC .03 x 10°925 307 FEP/Al/FEP NG 0.225 3 x 10°11 1 307 FEP/Al/FEP NG 0.225 3 x 10°11 1 307

ſ				 			1		1
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	FEP/TFE/Al	22	NC	.0008	26	332			162 hr. test
	TFE/Al/FEP	20.1		.00039	26	332			1/4 mil Al 336 hr. test
	TFE/Al/FEP	20.1		.0077	26	332			1/4 mil Al 162 hr. test
1	TFE/FEP/- Al/FEP	ŊG	NC	.015 x 10 ⁻⁹	25	307			
TV-2.43	TFE/FEP	22	NC	3.80 x 10 ⁻⁹	29	264			Joclin Teflon
ω	TFE/FEP	21	NC .	2.08	30	261			Joclin Teflon 14 mils thick
***********					·				
			: -						

References Reporting: 261,264,271, 307,332

PERMEANT: Helium He

MATERIAL: Teflon Laminates PERMEANT: Helium He MATERIAL: Vitreosil

Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	30	.480	6.4×10^{-11}	1	214			
	400	24.0	3.2×10^{-9}	1	214			
			·					
				·				
								· · · · · · · · · · · · · · · · · · ·

				<u>, 1 </u>	· · · · · · · · · · · · · · · · · · ·				
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	, °C	Std. Units (Value x 10 8)	as Reported	Rptd.	·	scc/cc Bar	cm ² /sec	
		0	.593	.079 x 10 ⁻⁹	1	211	A .		.00188 in. thick
	Sec.	0	.653	$.087 \times 10^{-9}$	1	211			.0026 in. thick
		25	2.70	$.360 \times 10^{-9}$	1	211			.00188 in. thick
		25	2.70	$.360 \times 10^{-9}$	1	211			.0026 in. thick
717 3 7		50	9.90	1.320 x 10 ⁻⁹	1	211			.00188 in. thick
		50	10.1	1.350×10^{-9}	1	211			.0026 in. thick
		·							
				·					

References Reporting: 211

PERMEANT: Hydrogen H₂
MATERIAL: Acrylonitrile

PERMEANT: Hydrogen H₂

MATERIAL: Adhesives

	ype or e Name	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
		°C	1/8					_	COMMICITED
			(Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
37			0074	3.65×10^{-12}	_	0.50			Average of
Narmc	O A	NG	.0274	3.65 X 10	1	268			8 samples
FM-10	00	NG	1.31	1.74×10^{-10}	1	268			Average of
FM-TO		ING	1.31	1.74 X 10	T	208			8 samples
NT 2000 G		NG	2.00	2.66 x 10 ⁻¹⁰	7	260			Average of
Narmc		NG	2.00	2.00 X 10	1	268			9 samples
77.00	,	270	6.45	8.6 x 10 ⁻¹¹	-	060			Average of
BR-92		NG	.645	8.6 X 10	1	268			8 samples
V . X-424			701000	0 24 10-5	_	0.60			Average of
ω X-424	•	NG	701000.	9.34×10^{-5}	1	268			4 samples
	<u> </u>		3.1.60000	1.55 x 10 ⁻⁴	_				Average of
HT-42	4	NG	1160000.	1.55 x 10	1	268			9 samples
			5 3.0000	2 1 4	_			·	Average of
HT-42	4u	NG	7100000.	9.47×10^{-4}	1	268			8 sample s
				3	_				Average of
Aerob	ond 430	NG	12800000.	1.71×10^{-3}	1	268			10 samples
			·						
						· .			
					·		,		

•	· · · · · · · · · · · · · · · · · · ·								
	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		1250- 1600	225000	3 x 10 ⁻⁸	11	294			
-									
-									
<u> </u>									
IV-3.3									
ω <u> </u>									
								·	
								:	

References Reporting: 294

PERMEANT: Hydrogen H₂

MATERIAL: Alumina (ceramic)

PERMEANT: Hydrogen H₂

MATERIAL: Aluminum

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
-		427	.75	1.0 x 10 ⁻⁹	3	265			
		25	.0000000000 0000306	3.1×10^{-22}	6	266, 425			
		25	NC	7.5 x 10 ⁻¹¹	27	378			
								·	
IV-3.4									
4									
						:			
			·			1	*		

References Reporting: 265,266,378, 425

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		800- 900				427		9 x 10 ⁻¹⁰	

	·	·		19					
,	*								
					-		, , , , , , , , , , , , , , , , , , ,		
								X.	
						,			

References Reporting: 427

PERMEANT: Hydrogen H₂
MATERIAL: Beryllium

PERMEANT: Hydrogen H₂

MATERIAL: Buna S

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Trace Name	25	30.1	30.5 x 10 ⁻⁷	6	378	Jee, ee Bui	Citi / BCC	
		-						

۲	77
•	4
١	
(u
•	
	. 1
	_

						h			
	Type or	Temp.	Permeability Std. Units $_{\Omega}$	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	$(Value \times 10^{-8})$	as Reported	Rptd.		scc/cc Bar	cm ² /sec	-
	Perbunan 18	25	18.9	19.2 x 10 ⁻⁸	8	378,390	.030	6.43×10^{-6}	
	Perbunan 18	50	48.5	49.1 x 10 ⁻⁸	8	390	.033	14.5 x 10 ⁻⁶	
	German Rubber	0	2.4	.0032 x 10 ⁻⁶	3	401			
7	German Rubber	20	6.4	.0085 x 10 ⁻⁶	3	401			
TV_3_7	German Perbunan	25	11.3	11.5 x 10 ⁻⁸	8	378			
	German Perbunan	25	12.0	12.1 x 10 ⁻⁸	8	390	.027	4.50×10^{-6}	
	German Perbunan	50	33.3	33.7×10^{-8}	8	390	.030	11.1 x 10 ⁻⁶	
	German Rubber	50	23.6	.0315 x 10 ⁻⁶	3	401			
	German Rubber	78	56.3	.075 x 10 −6	3	401			
	Hycar-OR-15	25	5.35	5.42 x 10 ⁻⁸	8	378,390	.022	5.42×10^{-6}	

PERMEANT: Hydrogen H₂
MATERIAL: Butadiene-Acrylonitrile Copolymer

PERMEANT: Hydrogen H₂

MATERIAL: Butadiene-Acrylonitrile Copolymer

C		 	 		 	+		
Type or	Temp	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Nam	e °C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Hycar-OR-15	50	16.8	17.0 x 10 ⁻⁸	8	390	.026	6.56×10^{-6}	
Hycar-OR-25	25	8.85	8.97 x 10 ⁻⁸	8	378 390	.023	3.85 x 10 ⁻⁶	
Hycar-OR-25	50	26.0	26.3 x 10 ⁻⁸	8	390	.027	9.60 x 10 ⁻⁶	
	0				401	.039	.061 x 10 ⁻⁵	5
	29				401	.035	$.27 \times 10^{-5}$	
				,				

References Reporting: 378, 390, 401

References Reporting: 401

PERMEANT: Hydrogen H₂

MATERIAL: Butadiene-Methyl Methacrylate Polymer

PERMEANT: Hydrogen H₂
MATERIAL: Cellulose Acetate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Trade Name	0	2.68	as Reported $.357 \times 10^{-9}$	Rptd.	219	scc/cc Bar	cm /sec	Average of 6
	Room	7.26	.97 x 10 ⁻⁹	1	241			Average of 6
	Room	7.5	1.0 x 10 ⁻⁹	1	385			samples Average of 3 samples
	25	6.35	.846 x 10 ⁻⁹	1	219			Average of 6 samples
	50	13.9	1.85 x 10 ⁻⁹	1	219			Average of 5 samples
CA-43	0	4.09	$.320 \times 10^{-9}$	1	211			.001 in. thick
CA-43	25	9.23	.800 x 10 ⁻⁹	1	211			.001 in. thick
CA-43	50	10.4	1.39 x 10 ⁻⁹	1	211			.001 in. thick
CA-48	0	1.95	$.260 \times 10^{-9}$	1	211			.001 in. thick
CA-48	25	4.36	.581 x 10 ⁻⁹	1	211			.001 in. thick

Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
CA-48	50	12.8	.170 x 10 ⁻⁸	1	211			.001 in. thick
Celanese P903	0	4.09	$.545 \times 10^{-9}$	1	211			.00125 in. thick
Celanese P903	25	9.23	1.23×10^{-9}	1	211			.00125 in. thick
Celanese P903	50	18.8	2.50×10^{-9}	1	211			.00125 in. thick
Celanese P904	0	2.81	$.375 \times 10^{-9}$	1	211			.00125 in. thick
Celanese P904	25	6.00	.800 x 10 ⁻⁹	1	211			.00125 in. thick
Celanese P904	50	11.5	1.53×10^{-9}	1	211			.00125 in. thick
Celanese P911	0	2.54	.338 x 10 ⁻⁹	1	211			.0012 in. thick
Celanese P911	25	6.52	.87 x 10 ⁻⁹	1	211			.0012 in. thick
Celanese P911	50	14.6	1.95 x 10 ⁻⁹	1	211			.0012 in. thick

PERMEANT: Hydrogen H₂
MATERIAL: Cellulose Acetate

PERMEANT: Hydrogen H₂
MATERIAL: Cellulose Acetate

Γ					T - 1				
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Celanese P912	0	2.99	.398 x 10 ⁻⁹	1	211			.00125 in. thick
	Celanese P912	25	6.60	.880 x 10 ⁻⁹	1	211		·	.00125 in. thick
	Celanese P912	25	6.6	6.7 x 10 ⁻⁷	6	378			
	Celanese P912	50	13.4	1.78 x 10 ⁻⁹	1	211			.00125 in. thick
TV-	Celanese S600	0	2.84	.379 x 10 ⁻⁹	1	211			.00113 in. thick
3.12	Celanese C600	25	5.84	$.779 \times 10^{-9}$	1	211			.00113 in. thick
	Celanese S600	50	10.7	1.43 x 10 ⁻⁹	1	211			.00113 in. thick
	Kodapak I regular	0	2.78	$.370 \times 10^{-9}$	1	211			.001 in. thick
	Kodapak I regular	25	6.68	.89 x 10 ⁻⁹	1	211			.001 in. thick
	Kodapak I regular	50	14.1	1.88 x 10 ⁻⁹	1	211			.001 in. thick

	 			,				
Type	Temp.	Permeability Std. Unitso	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Kodapak I rigid	0	2.85	.380 x 10 ⁻⁹	1	211			.001 in. thick
Kodapak I rigid	25	5.81	.775 x 10 ⁻⁹	1	211			.001 in. thick
Kodapak I rigid	50	10.7	1.42×10^{-9}	1	211			.001 in. thick
			·					

References Reporting: 211, 219 241, 378 385

PERMEANT: Hydrogen H₂

MATERIAL: Cellulose Acetate

PERMEANT: Hydrogen H₂

MATERIAL: Cellulose Acetate Butyrate

	Type or Trade Name	.qmeT	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Commen	its
	Kodapak II regular	0	9.00	1.2 x 10 ⁻⁹	1	211			.001 in.	thick
	Kodapak II regular	25	15.8	2.10×10^{-9}	1	211			.001 in.	thick
	Kodapak II regular	50	28.9	3.85×10^{-9}	1	211			.001 in.	thick
4										
TV_3 7/										
>										
			·							

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		32			·	401	.113	$.33 \times 10^{-5}$	
		50	8.7	.0116 \times 10 ⁻⁶	3	401			
		70				401	.082	2.1×10^{-5}	
T.		74	30.8	$.0411 \times 10^{-6}$	3	401			
TV 2 15									
ן ו									

PERMEANT: Hydrogen H₂

MATERIAL: Chloroprene Polymer

PERMEANT: Hydrogen H₂
MATERIAL: COHR-Coated Glass Fabric

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	3010	Room	187	25 x 10 ⁻⁹	1	203			
4									
777 3 16									
ا ہ									
						· · · · · · · · · · · · · · · · · · ·			
						ryan gayadaphamid is a mana a minamban a			

Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
3010	Room	188	25 x 10 ⁻⁹	1	241			

PERMEANT: Hydrogen H₂
MATERIAL: Cohrlastic

MATERIAL: Copper

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	_	Comments
		427	12.0	1.6 x 10 ⁻⁸	3	265		4 - 1	
-		25	NC	2.6 x 10 ⁻¹⁴	27	378			
								·	

References Reporting: 265, 378

	Type or Trade Nam	Temp	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	36.9	29	5	346			
		Roo	n 24.0	3.20 x 10 ⁻⁹	1	241 385			
	·	25	25.1	3.34×10^{-9}	1	243			
H.	Ethocel	20	19.5	2.60×10^{-9}	1	243			
IV-3.19	Ethocel	30	24.0	3.20×10^{-9}	1	243			·
9	Ethocel	40	30.0	4.00×10^{-9}	1	243			
	Ethocel 610	25	22.4	22.7×10^{-7}	6	378			
				•					

References Reporting: 241, 243, 346, 378 385

PERMEANT: Hydrogen H₂
MATERIAL: Ethyl Cellulose

MATERIAL: Glass

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Fused Silica	25	.00011	1.12×10^{-12}	6	378			
	Vycor	25	.00038	3.9×10^{-12}	6	378			

A					-				
						angular paga ang ang ang ang ang ang ang ang ang			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	В	25	NC	2.7 x 10 ⁻¹³		378			
	В	NG	NC	1810	28	403			
-	N	NG	NC	190	28	403			
			·						
717 2 3									:
ر ا									

References Reporting: 378, 403

PERMEANT: Hydrogen H₂

MATERIAL: Hastelloy

MATERIAL: H-film

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		-73	.0128	.17 x 10 ⁻¹¹	1	232			
-		-46	.128	1.7×10^{-11}	1	232			
	·	-18	.405	5.4×10^{-11}	1	232			
		10	1.05	14 x 10 ⁻¹¹	1	232			
3	•	38	2.18	29 x 10 ⁻¹¹	1	232			
3		66	4.35	58 x 10 ⁻¹¹	1	232			
									· ·
									4

[Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	NC	4.0×10^{-13}	27	378			
		710	18750000	2.5×10^{-6}	11	294			Methane measured
		800	41300000	5.5 x 10 ⁻⁶	11	294			
		810	15000000	2.0 x 10 ⁻⁶	11	294			

References Reporting: 294, 378

PERMEANT: Hydrogen H₂

MATERIAL: Inconel

MATERIAL: Iron

٦					1		1		
	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
-	11440 114110	<u> </u>	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ds hopozood	Ttp out.		Dec, de Bar		
		NG	NC	144	28	403			
		25	.049 to	5 to 15 x 10 ⁻⁹	6	266 425			
		25	NC	2.6 x 10 ⁻⁸	27	378			
		245	23.7	8.65 x 10 ⁻³	12	300			Fine grained
IV-3.2		413	174	63.4×10^{-3}	12	300			Fine grained
24		621	915	334×10^{-3}	12	300			Fine grained
		797	20000	7300×10^{-3}	12	300			Fine grained
		245	11.8	4.32×10^{-3}	12	300			Single grained
		413	169	61.6×10^{-3}	12	300			Single grained
		621	882	322×10^{-3}	12	300			Single grained

·						+		4
Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity 2.	Comments
Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	7 97	20200	7370 x 10 ⁻³	12	300			Single grained
	800	1350	1.8×10^{-6}	3	265			
Low carbon	25	.003	3 x 10 ⁻¹⁰	6	266			
27 % chrome	25	.00001	1 x 10 ⁻¹²	6	266			
		·						

265, 266, 300, 378, 403, 425

PERMEANT: Hydrogen H₂

MATERIAL: Iron

MATERIAL: Isoprene-Acrylonitrile Copolymer

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	5.59	5.66 x 10 ⁻⁸	8	390	.023	2.47×10^{-6}	
	50	18.3	18.5 x 10 ⁻⁸	8	390	.029	6.50 x 10 ⁻⁶	
					-			
			· ·					
					-			
				-				

			2	<u>. </u>					
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	10.22	10.36×10^{-8}	8	390	.029	3.55×10^{-6}	
-		50	29.6	30.0×10^{-8}	8	390	.034	8.74×10^{-6}	
-									
2									
3									

PERMEANT: Hydrogen H₂
MATERIAL: Isoprene-Methacrylonitrile Copolymer

MATERIAL: Kovar

_			<u> </u>						
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.		Solubility scc/cc Bar		Comments
		25	NC	4.1×10^{-13}	27	378			
									·
								:	
,									
						·			
						·			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	MP	25	4.3	4.4×10^{-7}	6	378			
		·							
								·	
7V_3 7									
20						-			
						·			
-									

PERMEANT: Hydrogen H₂
MATERIAL: Mipolam MP

PERMEANT: Hydrogen H₂ MATERIAL: Molybdenum

				 					
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	_	Comments
Tra	de Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	NC	950	28	403			
		350	NC	2.55 x 10 -8:	27	429			
		1100	225000000	3×10^{-5}	11	294			.0005 in. disilicide
		1150	375000000	5 x 10 ⁻⁵	11	294			.0035 in. disilicide
		1200	68.5	2.5×10^{-2}	12	331			
		1600	329	1.2 x 10 ⁻¹	12	331			
	.								<i>#</i>
								,	1

294, 331, 403, 429 References Reporting:

PERMEANT:

MATERIAL:

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	NC	5.9 x 10 ⁻¹¹	27	378			·
7.									
T 7 2 2 1									
				·					
								·	

PERMEANT: Hydrogen H₂

MATERIAL: Monel

MATERIAL: Monochlorotrifluoroethylene

ſ		1		<u></u>	,				* · · · · · · · · · · · · · · · · · · ·
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		0	.241	$.0321 \times 10^{-9}$	1	211			Average of 2 samples
	1	25	.732	.098 x 10 ⁻⁹	1	211			Average of 2 samples
		50	1.79	.239 x 10 ⁻⁹	1	211			Average of 2 samples
i	Plasticized	0	.606	.081 x 10 ⁻⁹	1	211			Average of 2 samples
1	Plasticized	25	2.60	$.346 \times 10^{-9}$	1	211			Average of 2 samples
ပ ၁	Plasticized	50	8.97	1.20×10^{-9}	1	211			Average of 2 samples
					·			:	

# [<u> </u>		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		17.5	6.38	.0085 x 10 ⁻⁶	3	401			
		25	9.9	1.0 x 10 ⁻⁶	6	266			
		27	9.6	.0128 x 10 ⁻⁶	3	401			
Н		52	27.8	$.037 \times 10^{-6}$	3	401			
IV-3.33		64	40.1	$.0534 \times 10^{-6}$	3	401			
ω	G	25	10.2	10.3×10^{-7}	6	378			
					· · · · · · · · · · · · · · · · · · ·				!

References Reporting: 266, 378, 401

PERMEANT: Hydrogen H₂

MATERIAL: Neoprene

MATERIAL: Nickel

ſ	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or		Std. Units (Value x 10	Lermeanirich		ver.		_	Commencs
	Trade Name	°C	(Value x 10 ⁻⁰)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	NC	1000	14	403			
		25	NC	6.9 x 10 ⁻¹¹	13	378			
		427	750	1.0×10^{-6}	3	265			
IV-3.34									
4		·							
									:

References Reporting: 265, 378, 403

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	NC	1040	14	403			
	· ·	25	NC	8.7×10^{-5}	13	378			
-		950	NC	238	14	274			.094 in. thick
		1010	NC	266	14	274			.094 in. thick
IV-3.35		1065	NC	287	14	274			.094
ת									

References Reporting: 274, 378, 403

)3 PERMEANT:

PERMEANT: Hydrogen H₂

MATERIAL: Niobium

MATERIAL: Nylon

		-	•					
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
3	0	.218	$.029 \times 10^{-9}$	1	211			.001 in. thick
3	25	.75	.100 x 10 ⁻⁹	1	211			.001 in. thick
3	50	2.21	$.295 \times 10^{-9}$	1	211			.001 in. thick

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		NG	NC	6100	14	403			
		25	NC	1.7 x 10 ⁻⁸	13	378			
		25	8.15	8.26 x 10 ⁻⁷	6	246			Coated on polyethylene
Į.		427	6300000	8.4×10^{-3}	3	265			
IV-3.37									
		·							

246, 265, 378, 403 References Reporting:

Hydrogen H₂ PERMEANT:

Palladium MATERIAL:

MATERIAL: Platinum

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	NC	1840	14	403			
		25	NC	2.1×10^{-14}	13	378			
J									
							·		
TV_3									
ر ۵			-						
					·				·
									1 124
		·							

References Reporting: 378, 403

 ·	·		I					
Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	_	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	25	31.6	32 x 10 ⁻⁸	8	378 390	.033	9.6 x 10 ⁻⁶	
	50	76.0	77 x 10 ⁻⁸	8	390	.042	18 x 10 ⁻⁶	
								·
		-						

References Reporting: 378, 390

PERMEANT: Hydrogen H₂
MATERIAL: Polybutadiene

PERMEANT: Hydrogen H₂
MATERIAL: Polycarbonate

Permeability Temp. Permeability Ref. Solubility Diffusivity Type Units Comments Std. Units (Value x 10 8) or cm²/sec °C as Reported Trade Name Rptā. scc/cc Bar 1.2×10^{-8} 6.4×10^{-7} 9.0 3 25 388 .14 Lexan 1.1×10^{-6} 2.5×10^{-8} 50 18.8 3 Lexan 388 4.5×10^{-8} 3 Lexan 33.8 3.88 75 7.1×10^{-8} 100 53.3 3 Lexan 388 1.1×10^{-7} Lexan 125 82.5 3 388 1.7×10^{-7} 150 127.5 3 Lexan 388 2.4×10^{-7} 175 180 3 Lexan 388

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	solubility	Diffusivity cm ² /sec	Comments
	Kel-F	25	.73	$.74 \times 10^{-7}$	6	378		·	
	Kel-F 8105	-18	.072	.96 x 10 ⁻¹¹	1	232			, .
	Kel-F 8105	10	.375	5.0×10^{-11}	1	232			
777	Kel-F 8105	39	1.43	19 x 10 ⁻¹¹	1	232			
7 2 11	Kel-F 8105	66	4.95	66 x 10 ⁻¹¹	1	232			
_	Kel-F 8105	93	12.8	170 x 10 ⁻¹¹	1	232			
	Kel-F 8205	-46	.0098	.13 x 10 ⁻¹¹	1	232			
	Kel-F 8205	-18	.083	1.1 x 10 ⁻¹¹	1	232			
	Kel-F 8205	10	.39	5.2 x 10 ⁻¹¹	1	232			
	Kel-F 8205	38	1.43	19 × 10 ⁻¹¹	1	232			

PERMEANT: Hydrogen H₂
MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Hydrogen H₂
MATERIAL: Polychlorotrifluoroethylene

					1				
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Ke	el-F 8205	66	4.58	16 × 10 ⁻¹¹	1	232			
Ke	1-F 8205	93	12.9	172 x 10 ⁻¹¹	1	232			
Tr	rithene	0	2.45	.326 x 10 ⁻⁹	1	219			
	ithene	25	.73	.098 x 10 ⁻⁹	1	219			
1	ithene	50	1.79	.238 x 10 ⁻⁹	1	219			
Tr	rithene-B	0	.606	.081 x 10 ⁻⁹	1	219			
Tr	rithene-B	25	2.60	.346 x 10 ⁻⁹	1	219			
Tr	ithene-B	30	4.43	5.9×10^{-10}	1	223			
Tr	ithene-B	30	4.5	6.0 x 10 ⁻¹⁰	1	209			
Tr	ithene-B	50	8.97	1.20 x 10 ⁻⁹	1	219			

			•	_				
Type	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ⁻ /sec	
Trithene-B	60	15.8	2.1 × 10 ⁻⁹	1	223			
Trithene-B	60	15.0	2.0×10^{-9}	1	209			

209, 219, 223, 232, 378

PERMEANT:

Hydrogen H₂ Polychlorotrifluoroethylene MATERIAL:

. ,	·						+		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	≎C .	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Alathon 14	25	5.88	5.96×10^{-7}	6	378		·	
	Alathon 15	0	3.9	5.2 x 10 ⁻¹⁰	1	209 223			
	Alathon 15	15	7.5	1.0 x 10 ⁻⁹	1	223		·	
	Alathon 15	30	15.0	2.0 x 10 ⁻⁹	1	209 223	1		
TV-3.	Alathon 15	50	34.5	4.6×10^{-9}	1	209 223			
44	DE-2400	0	1.59	.212 x 10 ⁻⁹	1	211			.0013 in. thick
	DE-2400	0	1.52	$.202 \times 10^{-9}$	1	211			.00156 in. thick
	DE-2400	25	6.4	.855 x 10 ⁻⁹	1	211			.0013 in. thick
	DE-2400	25	5.96	.794 x 10 ⁻⁹	1	211			.00156 in. thick
	DE-2400	50	20.7	2.76 x 10 ⁻⁹	1	211			.0013 in. thick

IV-3.4

								• • • • • • • • • • • • • • • • • • •
Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
DE-2400	50	18.6	2.48 x 10 ⁻⁹	1	211			.00156 in. thick
DE-2500	0	1.73	$.230 \times 10^{-9}$	1	211			.0015 in. thick
DE-2500	25	6.15	.82 x 10 ⁻⁹	1	211			.0015 in. thick
DE-2500	50	18.5	2.46 x 10 ⁻⁹	1	211			.0015 in. thick
Mol. Wt. 17-18,000	0	3.0	$.40 \times 10^{-9}$	1	211			.00111 in.
Mol. Wt. 17-18,000	25	10.1	1.35×10^{-9}	1	211			.00111 in.
Mol. Wt. 17-18,000	50	28.9	3.85 x 10 ⁻⁹	1	211			.00111 in.
Mol. Wt. 20,000	0	1.8	$.24 \times 10^{-9}$	1	211			.00225 in. thick
Mol. Wt. 20,000	0	2.1	.280 x 10 ⁻⁹	1	211			.00082 in. thick
Mol. Wt. 20,000	25	6.38	.85 x 10 ⁻⁹	1	211			.00225 in. thick

Type or	Temp.		Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Mol. Wt. 20,000	25	7.43	.99 x 10 ⁻⁹	1	211			.00082 in. thick
Mol. Wt. 20,000	50	19.5	2.60 x 10 ⁻⁹	1	211	,		.00225 in. thick
Mol. Wt. 20,000	50	22.5	3.00 x 10 ⁻⁹	1	211			.00082 in. thick
Mol. Wt. 21,000	0	2.1	.28 x 10 ⁻⁹	1	211			.00206 in. thick
Mol. Wt. 21,000	0	2.67	.3555 x 10 ⁻⁹	1	211			.001 in. thick
Mol. Wt. 21,000	0	2.1	.28 x 10 ⁻⁹	1	211			.0015 in. thick
Mol. Wt. 21,000	25	6.98	.930 x 10 ⁻⁹	1	211			.00206 in. thick
Mol. Wt. 21,000	25	8.93	1.19 x 10 ⁻⁹	1	211	·		.001 in. thick
Mol. Wt. 21,000	25	7.5	1.00 x 10 ⁻⁹	1	211			.0015 in. thick
Mol. Wt. 21,000	50	27.4	3.65 x 10 ⁻⁹	1	211			.00206 in. thick

	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
ı	iol. Wt. 21,000	50	25.5	3.40×10^{-9}	1	211			.001 in. thick
	101. Wt. 21,000	50	21.8	2.90 x 10 ⁻⁹	1	211			.0015 in. thick
	Mol. Wt. 23,000	0	1.8	$.340 \times 10^{-9}$	1	211			.00125 in. thick
	Mol. Wt. 23,000	25	6.23	1.10 x 10 ⁻⁹	1	211			.00125 in. thick
	Mol. Wt. 23,000	50	18.8	3.10×10^{-9}	1	211			.00125 in. thick
,	4ol. Wt. 27,000	0	2.55	$.33 \times 10^{-9}$	1	211			.001 in. thick
•	Mol. Wt. 27,000	25	8.25	1.05 x 10 ⁻⁹	1	211			.001 in. thick
1	Mol. Wt. 27,000	50	23.3	3.85 x 10 ⁻⁹	1	211)	.001 in. thick
	4o1. Wt. 29-30,000	0	2.48	.305 x 10 ⁻⁹	1	211		,	.00 2 5 in. thick
	Mol. Wt. 29-30,000	25	7.88	1.05 x 10 ⁻⁹	1	211			.0025 in. thick

MATERIAL: Polyethylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Mol. Wt. 29-30,000	50	28.9	3.10 x 10 ⁻⁹	1.	211			.0025 in. thick
						·		
				÷				
:								

References Reporting: 209, 211, 223, 378

IV-3.

				1	4				
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	DE-2400	0	2.4	.32 x 10 ⁻⁹	1	211			.0022 in. thick
	DE-2400	0	2.93	.39 x 10 ⁻⁹	1	211			.0039 in. thick
	DE-2400	25	9.4	1.25 x 10 ⁻⁹	1	211			.0022 in. thick
÷**	DE-2400	25	10.66	1.421×10^{-9}	1	211			.0039 in. thick
7 2 40	DE-2400	·50	30.0	4.00 x 10 ⁻⁹	1	211			.0022 in. thick
	DE-2400	50	33.0	4.40 x 10 ⁻⁹	1	211			.0039 in. thick
						s.			
-			,						
			. :						

PERMEANT: Hydrogen H₂

MATERIAL: Polyethylene Laminates

PERMEANT: Hydrogen H₂
MATERIAL: Polyethylene Terephthalate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
N	Mylar	-4 6	.0135	0.18×10^{-11}	1	232			
1	Mylar	-18	.0728	0.97×10^{-11}	1	232			
I	Mylar	10	.225	3.4 x 10 ⁻¹¹	1	232			
	Mylar	38	.705	9.4 x 10 ⁻¹¹	1	232			
1	Mylar	66	1.73	23 x 10 ⁻¹¹	1	232			
ו	Mylar	93	3.75	50 x 10 ⁻¹¹	1	232			
I	Mylar A	25	.44	$.445 \times 10^{-7}$	1	378			
	Mylar 25-V-200	0	.188	$.025 \times 10^{-9}$	1	211			
	fylar 25-V-200	25	.435	.058 x 10 ⁻⁹	1	211			
	fylar 25-V-200	50	.900	$.120 \times 10^{-9}$	1	211			

References Reporting: 211, 232, 378

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	37.4	37.9×10^{-8}	8	390	.037	10.03 x 10 ⁻⁶	
		50	87.8	89.0 x 10 ⁻⁸	8	390			
1									
TV 2 5]									
7									
	· .								
•									

References Reporting: 390

PERMEANT: Hydrogen H₂
MATERIAL: Polyisoprene

MATERIAL: Polymethylpentadiene

Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	_	Comments
Trade Name	°C	(Value x 10 ⁻⁰)		Rptd.		scc/cc Bar	cm ² /sec	
	25	32.0	32.4×10^{-8}	8	390			
	50	81.0	82.1 x 10 ⁻⁸	8	390			
							4	

References Reporting: 390

_				1					· · · _
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
L	Trade Name	٦	(varue x 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
		NG	42.0	33	5	346			·
		20	67.5	9.00 x 10 ⁻⁹	1	243			
		30	68.3	9.1 x 10 ⁻⁹	1	241 243 385			
		40	69.0	9.2 x 10 ⁻⁹	1	243			_
777 2 53	Dow 0641	25	67.6	68.5×10^{-7}	6	378			

References Reporting:

241, 243, 346, 378, 385

PERMEANT: Hydrogen H₂

MATERIAL:

Polystyrene

MATERIAL: Polystyrene-Butadiene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar		Comments
		21	.84	.0112 x 10 ⁻⁶	3	401			
								·	
h								·	
J									
-									

References Reporting: 401

Г		 				·	 		
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
	-	20	60.0	8.00 x 10 ⁻⁹	1	243			
		30	61.9	8.25×10^{-9}	1	243			·
		40	63.8	8.50 x 10 ⁻⁹	1	243			
VI	Plasticized	0	3.6	.480 x 10 ⁻⁹	1	219			
V-3.55	Plasticized	25	9.68	1.290 x 10 ⁻⁹	1	219			
5	Plasticized	50	22.5	3.00×10^{-9}	1	219			
	Geon-101	25	2.57	2.6 x 10 ⁻⁷	6	378			

References Reporting: 219, 243, 378

PERMEANT: Hydrogen H₂
MATERIAL: Polyvinyl Chloride

PERMEANT: Hydrogen H₂
MATERIAL: Polyvinyl Chloride-Dioctyl Phthalate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
70-30	0	3.6	$.48 \times 10^{-9}$	1	211			.00175 in. thick
70-30	25	9.68	1.29×10^{-9}	1	211			.00175 in. thick
70–30	50	22.5	3.00×10^{-9}	1	211			.00175 in. thick
101-EP-100	30	2.4	$.32 \times 10^{-9}$	1	243			
101-EP-100	30	2.7	$.36 \times 10^{-9}$	1	243			
101-EP-100	40	3.0	$.40 \times 10^{-9}$	1	243			
101-EP-100 GP-261-5	20	91.5	12.2 x 10 ⁻⁹	1	243			
101-EP-100 GP-261-5	.30	84.8	11.3 x 10 ⁻⁹	1	243			
101-EP-100 GP-261-5	40	81.0	10.8 x 10 ⁻⁹	1	243			·
101-EP-100 GP-261-20	20	63.8	8.5 x 10 ⁻⁹	1	243			

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	solubility	Diffusivity cm ² /sec	Comments
101-EP-100 GP-261-20	30	64.5	8.6 x 10 ⁻⁹	1	243			
101-EP-100 GP-261-20	40	66.0	8.8 x 10 ⁻⁹	1	243			

References Reporting: 211, 243

PERMEANT: Hydrogen H₂

MATERIAL: Polyvinyl Chloride-Dioctyl Phthalate

PERMEANT: Hydrogen H₂
MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	0	2.40	$.320 \times 10^{-9}$	1	219			
	25	7.43	.99 x 10 ⁻⁹	1	219			
	Room	7.50	1.0 x 10 ⁻⁹	1	241			
	Room	7.5	1.0 x 10 ⁻⁹	1	385			
VYHH	91				221		1.78	
	50	19.9	2.65×10^{-9}	1	219			
VYHH	4				221		.082	
VYHH	27				221		.227	
VYHH	33				221		. 294	
VYHH	66				221		1.16	

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	VYHH	81				221		1.67	
4									
7V7 2 50								-	
P									

References Reporting: 219, 221, 241, 385 PERMEANT: Hydrogen H₂

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

PERMEANT: Hydrogen H₂
MATERIAL: Polyvinylidene Chloride

		, 							
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Tr	ade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Sara	an 517	25	.05	.05 x 10 ⁻⁷	6	368	`		
Sara	an	31	.120	.016 x 10 ⁻⁹	1	208			.00254 in. thick
	·								
						,			
						-			
						general graph of the second of			

References Reporting: 208, 368

<u></u>				 	·		+		
	Type	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	5.4	5.50×10^{-8}	8	390	.035	1.52 x 10 ⁻⁶	
<u></u>		50	17.0	17.2×10^{-8}	8	390	.039	4.38×10^{-6}	
	Oppanol-B -2 00	25	4.8	4.9×10^{-7}	6	378			
, ,		·							
<u> </u>									
-									

References Reporting: 378, 390

PERMEANT: Hydrogen H₂
MATERIAL: Rubber, Butyl

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	488	65 x 10 ⁻⁹	1	203,297			
		25	495	66 x 10 ⁻⁹		206			
-									
77 3 63									
) 						·			
						·	·		
						-			

References Reporting: 203, 206, 297

_									
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value $\times 10^{-8}$)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Pliofilm	Room	1.2 to 1.7	.16 to .23 x 10 ⁻⁹	1	240 241			
	Pliofilm 120-P4	0	.439	.0585 x 10 ⁻⁹	1	211 219			.00125 in. thick
	Pliofilm 120-P4	25	1.70	.226 x 10 ⁻⁹	1	211 219			.00125 in. thick
777	Pliofilm 120-P4	50	5.33	.710 x 10 ⁻⁹	1	211 219			.00125 in. thick
(7 2 K2	Pliofilm 140-N2	0	.506	.0675 x 10 ⁻⁹	1	211 219			.00125 in. thick
u ا	Pliofilm 140-N2	25	1.20	.160 x 10 ⁻⁹	1	211 219 385			.00125 in. thick
	Pliofilm 140-N2	25	1.19	1.21×10^{-7}	6	370 378			
	Pliofilm 140-N2	50	2.51	$.335 \times 10^{-9}$	1	211 219 385			.00125 in. thick
		·							
			: :						

References Reporting: 211, 219, 240, 241, 370, 378, 385

PERMEANT: Hydrogen H₂
MATERIAL: Rubber Hydrochloride

MATERIAL: Rubber, Methyl

ſ		1			T		 	 	r
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	12.8	13 x 10 ⁻⁸	8	378 390	.033	3.9 x 10 ⁻⁶	
		50	37.5	38 x 10 ⁻⁸	8	390	.035	10.5 x 10 ⁻⁶	
					-				
4									
TV 2 6/									
^									

References Reporting: 378, 390

		m	D	*			3 3 3 3 3 4 1	D4.55	
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value \times 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	36.9	37.4×10^{-8}	8	390	.037	10.2 x 10 ⁻⁶	
		25	38.5	39 x 10 ⁻⁷	6	378			
		25	39.5	4.0×10^{-6}	6	266			
TV		50	89.6	90.8 x 10 ⁻⁸	8	390	.040	22.2 x 10 ⁻⁶	
TV 3 65						·			
						٠.			

266, 378, 390 References Reporting:

PERMEANT: Hydrogen H₂
MATERIAL: Rubber, Natural

PERMEANT: Hydrogen H₂
MATERIAL: Rubber, Polysulfide

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.		Solubility scc/cc Bar	Diffusivity	Comments
	Thiokol-B	25	1.2	1.2 x 10 ⁻⁷	6	378			
						*. · · · · · · · · · · · · · · · · · · ·			
33 C ***									
7									
						٠.			
									·
									:
		·				anaumput Mentelettinus da, acceptis makin d	k -		·

References Reporting: 378

Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
GE SE450	Room	488	65 x 10 ⁻⁹	1	203 241 385			
Coated on fabric	Room	188	25 x 10 ⁻⁹	1	385			
	· **							
		_	*		·			
of the second se								
		, at						
		·			٠.			

References Reporting: 203, 241, 385

PERMEANT: Hydrogen H₂

MATERIAL: Rubber, Silicone

MATERIAL: Steel

		· · · · · · · · · · · · · · · · · · ·						
Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Trade Name	°C	$(Value \times 10^{-8})$	as Reported	Rptd.		scc/cc Bar	cm ⁻ /sec	
303 Stainless	25	NC	4.6×10^{-13}	13	378			
303 Stainless	1200	NC	2.25×10^{-1}	14	331			
303 Stainless	1200	NC	1.5×10^{-2}	14	331			Oxidized
303 Stainless	1200	NC	2.2×10^{-2}	14	331			Solaramic coating
303 Stainless	1600	NC	4.2×10^{-1}	14	331			Oxidized
303 Stainless	1600	NC	9.0×10^{-2}	14	331			Solaramic coating
303 Stainless	1600	NC	8.1	14	331			
30 4 Stainless	25	NC	1.3 x 10 ⁻¹³	13	378			
304 Stainless	NG	.016	2.1 x 10 ⁻¹²	1	434			
304 Stainless	NG	NC	850	14	403			

IV-3.68

							<u> </u>		
Typ	:	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Trade	Name	°C	(Value x 10)	as Report ed	Rptd.		scc/cc Bar	cm /sec	
304 Stainle	ss	1200	NC	1.2 x 10 ⁻¹	14	331			
304 Stainle	ss	1600	NC	6.3×10^{-1}	14	331			
316-321 Stainle	,	NG	NC	1526	14	403			
316-321 Stainle	ss	25	NC	2.3×10^{-12}	13	378			
347 Stainle	ss	25	NC	9.2 x 10 ⁻¹³	13	37.8			
410 Stainle	ss	25	NC	5.7 x 10 ⁻¹²	13	378			
430 Stainle	ss	NG	NC	360	14	403			
PH15-7M Stainle		NG	NC	7800	14	403			
Cold dr	awn	25	NC	1.8 x 10 ⁻⁸	13	378			
Low car	bon	25	NC	4.2 x 10 ⁻¹⁰	13	378		·	

MATERIAL: Steel

MATERIAL: Steel

				T		 		·
Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	(Value x 10 °)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Low carbon	25	.003	3 x 10 ⁻¹⁰	6	425			
EN58B	NG	NC	.463	13	430			
27% Chrome	25	.0000099	1 x 10 ⁻¹²	6	425	·		
Haynes-25	NG	NC	327	14	403	·		
Haynes-25	1200	NC	7.1×10^{-2}	14	331			
Haynes-25	1200	NC	1.5×10^{-2}	14	331			Oxidized
Haynes-25	1200	NC	5.0×10^{-3}	14	331		·	Aluminized
Haynes-25	1600	NC	5.8×10^{-1}	14	331			
Haynes-25	1600	NC	4.2×10^{-1}	14	331			Oxidized
Haynes-25	1600	NC	2.0×10^{-1}	14	331			Aluminized

IV-3.

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Maraging	250	NC	2.16 x 10 ⁻⁶	13	417	.085 scc cc atm 1/2	2.55×10^{-6}	
			·					
							3	
				·				

References Reporting:

PERMEANT: Hydrogen H₂

331, 378, 403, 417, 425, 430, 434

MATERIAL: Steel

MATERIAL: Tedlar

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		-18	.024	.32 x 10 ⁻¹¹	1	232			
		10	.158	2.1×10^{-11}	1	232			
		38	.720	9.6×10^{-11}	1	232			
		66	2.70	36 x 10 ⁻¹¹	1	232			
TV-3.72		93	7.50	100 x 10 ⁻¹¹	1	232			
72									
				·		4			
									:
	-								
						and the second seco			

References Reporting: 232

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	FEP	74	.0113	.15x10 ⁻¹¹	1	232			
	FEP	-46	.180	2.4x10 ⁻¹¹	1	232			
	FEP	-18	1.05	14×10^{-11}	1	232			
1	FEP	10	3.90	52 x 10 ⁻¹¹	1	232			
777 2 7	FEP	25	9.89	2200	7	334			
u	FEP	38	10.1	135×10^{-11}	1	232			
	FEP	50	24.7	5500	7	334			
	FEP	66	22.5	300 x 10 ⁻¹¹	1	232			
	FEP	75	49.5	11000	7	334			
	FEP	100	89.9	20000	7	334			

MATERIAL: Teflon

MATERIAL: Teflon

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
TFE	25	17.8	18 x 10 ⁻⁷	6	378			
TFE	30	42.0	5.6×10^{-9}	1	209			
TFE	50	63.8	8.5 x 10 ⁻⁹	1	209			
								·
					. * 4			
-								

References Reporting: 209, 232, 334, 378

IV-3.7

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	NC	1840	14	403			
Arc-Cast	1500	NC	.0024	15	432			
Arc-Cast	2000	NC	.021	15	432			
Arc-Cast	2500	NC	.88	15	432			
					4.			
		:						

References Reporting: 403, 432

PERMEANT: Hydrogen H₂

MATERIAL: Tungsten

PERMEANT: Hydrogen H₂ MATERIAL: Vinyl Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar		Comments
		0	3.71	.495 x 10 ⁻⁹	1	219			
		25	10.2	1.36 x 10 ⁻⁹	1	219			
1		50	24.2	3.22 x 10 ⁻⁹	1	219			
				·					
TV_3 76									
7			·					·	
						4.			
	· .								

References Reporting: 219

ſ	· · · · · · · · · · · · · · · · · · ·						 		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value $\times 10^{-8}$)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Bakelite VB-1300	20	3.17	.422 x 10 ⁻⁹	1	243			
	Bakelite VB-1300	30	3.60	.48 x 10 ⁻⁹	1	243			
	Bakelite VB-1300	40	3.90	.52 x 10 ⁻⁹	1	243			
177	Bakelite VB-1920	20	37.4	4.99 x 10 ⁻⁹	1	243			
7 2 77	Bakelite VB-1920	30	37.5	5.00 x 10 ⁻⁹	1	243			
7	Bakelite VB-1920	40	37.9	5.05×10^{-9}	1	243			
	Bakelite VB-1925	20	3.45	.46 x 10 ⁻⁹	1	243			
	Bakelite VB-1925	30	5.25	.70 x 10 ⁻⁹	1	243			
	Bakelite VB-1925	40	7.73	1.03 x 10 ⁻⁹	1	243			
	Bakelite VB-1930	0	2.40	$.320 \times 10^{-9}$	1	211		·	

PERMEANT: Hydrogen H₂
MATERIAL: Vinyl Chloride-Polyvinyl Acetate

MATERIAL: Vinyl Chloride-Polyvinyl Acetate

							<u> </u>		
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value $x 10^{-6}$)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Bakelite VB-1930	20	5.03	.67 x 10 ⁻⁹	1	243	·		
	Bakelite VB-1930	25	7.43	.99 x 10 ⁻⁹	1	211			
	Bakelite VB-1930	25	3.36	3.4×10^{-7}	6	378			
၂.	Bakelite VB-1930	30	7.20	.96 x 10 ⁻⁹	1	243			
TV-3.78	Bakelite VB-1930	40	10.2	1.36 x 10 ⁻⁹	1	243		·	
Φ	Bakelite VB-1930	50	19.9	2.65 x 10 ⁻⁹	1	211			· · · · · · · · · · · · · · · · · · ·
i	·								

References Reporting: 211, 243, 378

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	0	3.71	.495 x 10 ⁻⁹	1	211			.00155 in. thick
	25	10.2	1.36 x 10 ⁻⁹	1	211			.00155 in. thick
	50	24.2	3.22×10^{-9}	1	211			.00155 in. thick
					, · · · · · · · · · · · · · · · · · · ·	·		
		·	·					
-		·						

References Reporting: 211

PERMEANT: Hydrogen H₂

MATERIAL: Vinyl Chloride-Vinyl Maloate

MATERIAL: Visqueen

				L					
7	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trac	de Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.	·····	scc/cc Bar	cm ² /sec	
		20	6.75	.90 x 10 ⁻⁹	1	243			
		20	6.3	1.84 x 10 ⁻⁹	1	243			7.5 mils thick
		30	9.98	1.33 x 10 ⁻⁹	1	243			
		30	9.75	1.30×10^{-9}	1	243			7.5 mils thick
		40	14.5	1.93×10^{-9}	1	243			
٠.		40	22.1	2.95 x 10 ⁻⁹	1	243			7.5 mils thick
						•			
									1

References Reporting: 243

Г				 	r				
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	A	0	.593	$.079 \times 10^{-9}$	1	219			
	A	25	2.7	$.36 \times 10^{-9}$	1	219			
	A	50	9.9	1.32×10^{-9}	1	219		·	
	В	0	.653	.087 x 10 ⁻⁹	1	219			
3 01	В	25	2.7	$.36 \times 10^{-9}$	1	219			
31	В	50	10.1	1.35 x 10 ⁻⁹	1	219			
						•			
-				-					

References Reporting: 219

PERMEANT: Hydrogen H₂

MATERIAL: Visten

MATERIAL: Vulcaprene

	1	1		1				
Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
А	25	4.72	4.78 x 10 ⁻⁸	8	390 378	.018	2.60×10^{-6}	
А	50	15.4	15.6 × 10 ⁻⁸	8	390	.022	7.0×10^{-6}	
					×			
			·					
				·				

References Reporting: 378, 390

٠. ا	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	FM-1000	NG	1.41	1.88 x 10 ⁻¹⁰	1	268			.1422 in thick
	FM-1000	NG	1.16	1.55×10^{-10}	1	268			.1724 in thick
	BR-92	NG	1.32	1.77 x 10 ⁻¹⁰	1	268			.1501 in thick
ΛΙ	BR-92	NG	1.43	1.91 x 10 ⁻¹⁰	1	268			.1396 in thick
IV-3.83	Narmco A	NG	.80	1.07 x 10 ⁻¹⁰	1	268			.2485 in thick
	Narmco A	NG	.56	7.45×10^{-11}	1	268			.3594 in thick
	Narmco C	NG	1.06	1.41 x 10 ⁻¹⁰	1	268			.1895 in thick
	Narmco C	NG	1.32	1.76 x 10 ⁻¹⁰	1	268			.1521 in thick
	Narmco C	NG	6.65	8.87 x 10 ⁻⁹	1	268			.0301 in thick

References Reporting: 268

PERMEANT: Liquid Hydrogen

MATERIAL: Adhesives

References Reporting: 434

PERMEANT: MMH (Monomethyl-Hydrazine)

MATERIAL: Aluminum

PERMEANT: MMH (Monomethyl-Hydrazine)

MATERIAL: Steel

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.	NCI.	scc/cc Bar	cm ² /sec	COMMETTES
30)4 Stainless		.000000011	1.4 x 10 ⁻¹⁸	1	434			
,									
				·					
		-							

References Reporting: 434

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
ſ	TFE/FEP	NG	NC	0.12	19	332			.0076 cm ea.
-	rfe/fep	NG	NC	.02	22	332			3 mils ea.
	Al/TFE/FEP	NG	NC	.002	22	332			3 mils ea.
- 1	TFE/FEP/Al	NG	NC	0.012	19	332			
			·			*			
									:

References Reporting: 332

PERMEANT: MMH (Monomethyl-Hydrazine)

MATERIAL: Teflon laminate

VI
Ç
•

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or		Std. Units (Value x 10 ⁻⁸)	1 C2 MCGD211 Cy				2	Continue
L	Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
	not annealed	NG NG	.76	2	16	247			l mil thick
	not annealed	l NG	.35	.9	16	247		Zarija Sarija Sarija	3 mils thick
	not annealed	l NG	1.2	3	16	247	-		3 mils thick
	annealed 1/2 hr. at 1600F	NG	5.4	14	16	247			2 mils thick
	Σ.						·	in the second se	
						-			
-									
	-								

References Reporting: 247

PERMEANT: MON (Mixed oxides with nitrogen)

MATERIAL: Nickel

PERMEANT: MON (Mixed oxides with nitrogen)

MATERIAL: Teflon

	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10^{-8})	as Reported	Rptd.		scc/cc Bar	cm ² /sec	143
	Cast TFE	NG	3475	9096	16	247			4 mils thick
	Sprayed TFE	NG	2235	5850	16	247			10 mils thick
	Sprayed TFE	NG	2158	5648	16	247			16 mils thick
	Extruded FEP	NG	485	1270	16	247			10 mils thick
IV-5.	Sprayed FEP	NG	409	1070	16	247			10 mils thick
2	Sprayed CO dispersion of TFE/FEP	NG	1673	4380	16	247			10 mils thick
						. ~			

References Reporting:

247

۲	Z
1	7
•	ىر

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Sprayed TFE/TFE	NG	1406	3680	16	247	SCC/CC Bai		20 mils 2-10 mil. plys.
	Sprayed FEP/FEP	NG	267	700	16	247			20 mils 2-10 mil. plys.
	Sprayed TFE-FEP	NG	711	1860	16	247			3 mils ea.
	Sprayed IFE/FEP	NG	679	1778	16	247			10 mils TFE 4 mils FEP
'	TFE/FEP	NG	NC	5.44	19	332			3 mils ea.
	Sprayed TFE- FEP Codisper- sion/FEP(CO2 quenched)	NG	348	912	16	247			3 mils ea.
Ţ	FEP/Al/FEP	NG	20	51	16	247			7 mils FEP 1/4 Al 3 mils FEP
	Al/TFE/FEP	NG	NC	.46	19	332			3 mils ea.

References Reporting: 247,332

PERMEANT: MON (Mixed oxides with nitrogen)

MATERIAL: Teflon laminates

PERMEANT: MON (Mixed oxides with nitrogen)

MATERIAL: Tin

Tyr or Trade	:	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	1.2	1	16	247			3 mils thick
							·		
	,								
							·		

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Units Ref. Solubility Diffusivity Comments Type Temp. or cm²/sec as Reported scc/cc Bar Trade Name ି C Rptd. 5×10^{-9} 1250 37500 11 294 IV-6.1

References Reporting: 294

PERMEANT: Nitrogen N₂

MATERIAL: Alumina (ceramic)

PERMEANT: Nitrogen N₂
MATERIAL: Beryllium

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	1025				427		5 x 10 ⁻¹⁰	
						-		
							·	

IV-6.3

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	4.7	4.8 x 10 ⁻⁷	6	378			
	30	4.76	63.5 x 10 ⁻⁷	3	325			
			· · · · .					
					· · · · · · · · · · · · · · · · · · ·			
					·			
·								

References Reporting: 325, 378

PERMEANT: Nitrogen N₂

MATERIAL: Buna S

MATERIAL: Butadiene-Acrylonitrile Copolymer

		·						
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	© C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Hycar-OR-15	25	.177	.179 x 10 ⁻⁸	8	390	.028	$.064 \times 10^{-6}$	
Hycar-OR-15	25	.178	.18 x 10 ⁻⁷	6	378			
Hycar-OR-15	30	.176	2.35 x 10 ⁻¹⁰	3	325			
Hycar-OR-15	50	1.07	1.08 x 10 ⁻⁸	8	390	.032	$.34 \times 10^{-6}$	
Hycar-OR-25	25	.45	$.46 \times 10^{-7}$	6	378			
Hycar-OR-25	25	.45	.46 x 10 ⁻⁸	8	390	.030	.152 x 10 ⁻⁶	
Hycar-OR-25	30	.453	6.04×10^{-10}	3	325			
Hycar-OR-25	50	2.27	2.30 x 10 ⁻⁸	8	390	.033	$.70 \times 10^{-6}$	
	17				401	.062	.0066 x 10	,
	60				401	.039	$.088 \times 10^{-5}$	

References Reporting: 325, 378, 390, 401

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Perbunan	30	.795	10.6 x 10 ⁻¹⁰	3	325			
Perbunan 18	25	1.89	1.92 x 10 ⁻⁷	6	378			
Perbunan 18	25	1.89	1.92 x 10 ⁻⁸	8	390	.037	$.51 \times 10^{-6}$	
Perbunan 18	50	6.9	7.00 x 10 ⁻⁸	8	390	.044	1.55 x 10 ⁻⁶	2.
German Rubber	20	.46	.00061 x 10	6 3	401			
German Perbunan	25	.88	.89 x 10 ⁻⁷	6	378	·		
German Perbunan	25	.80	.81 x 10 ⁻⁸	8	390	.032	.25 x 10 ⁻⁶	
German Rubber	49	2.2	.0029 x 10 ⁻⁶	3	401			
German Perbunan	50	3.53	3.58 x 10 ⁻⁸	8	390	.036	.98 x 10 ⁻⁶	
German Rubber	79	13.4	.0178 x 10 ⁻⁶	3	401		·	

MATERIAL: Butadiene Acrylonitrile Copolymer

MATERIAL: Butadiene-Methyl Methacrylate Polymer

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	21	2.1	.0028 x 10 ⁻⁶	3	401			
	54	6.5	.0087 x 10 ⁻⁶	3	401			
	77	1.73	.023 x 10 ⁻⁶	3	401			
	78				401	.057	$.29 \times 10^{-5}$	
				_				
		:						

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	.0026	3.5×10^{-13}	1	275			
						!	·	
				·				
								·
						`		
-								

References Reporting: 275

PERMEANT: Nitrogen N₂

MATERIAL: Cellophane-Aluminum-Polyvinylidene Chloride Laminate

MATERIAL: Cellulose Acetate

			_						
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	_	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
I	Plasticized	30	.21	.28 x 10 ⁻⁹	. 3	216 240 311	1		
	Lumarith 2-912	-25	.021	.28 x 10 ⁻⁸	3	242			
	Lumarith P-912	0	.064	.85 x 10 ⁻¹⁰	3	242			
]	Lumarith P-912	30	.21	2.8 x 10 ⁻¹⁰	3	242 325			
	Lumarith P-912	60	.65	8.6 x 10 ⁻¹⁰	3	325			
					·				

References Reporting: 216, 240, 242, 311, 325

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Kodapak II	25	1.1	1.1 x 10 ⁻⁷	6	378			
								. •	
7 7								·	
۱٥									
							,		

References Reporting: 378

PERMEANT: Nitrogen N₂
MATERIAL: Cellulose Acetate Butyrate

MATERIAL: Cohrlastic

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Comments
	3010	Room	75	10 x 10 ⁻⁹	1	241		:
	2804	Room	120	16 x 10 ⁻⁹	1	241		
7,							:	
10 % VI								
		:	:					
						:		

Diffusivity Solubility Type Temp. Permeability Permeability Units Ref. Comments Std. Units (Value x 10⁻⁸) or cm²/sec as Reported scc/cc Bar Trade Name ₽ C Rptd. 8.4×10^{-9} 6.3 3 216 30 Plasticized IV-6.

References Reporting: 216

PERMEANT: Nitrogen N₂

MATERIAL: Ethyl Acetate

PERMEANT: Nitrogen N2 MATERIAL: Ethyl Cellulose

الربياء المدافهان فإفران

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
1	Trade Name	°C	(Value X 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
		NG	2.47	1.94	5	346			
		25	6.21	.828 x 10 ⁻⁹	1	243			
		Room	6.3	.84 x 10 ⁻⁹	1	241 385			
Į,		30	6.3	84 x 10 ⁻¹⁰	3	240 325			
TV_6 12		30	2.1	.28 x 10 ⁻⁹	1	214	·		
		70	36.3	4.84 x 10 ⁻⁹	1	393			
	Ethocel	20	5.0	.66 x 10 ⁻⁹	1	243			
	Ethocel	30	6.3	.84 x 10 ⁻⁹	1	243			
	Ethocel	40	7.9	1.05 x 10 ⁻⁹	1	243 393			
	Ethocel 610	25	5.5	5.6 x 10 ⁻⁷	6	378			

References Reporting: 214, 240, 241, 243, 325, 346, 378, 385, 393

Permeability
Std. Units
(Value x 10⁻⁸) Solubility Diffusivity Permeability Units Ref. Type Temp. Comments or cm²/sec Trade Name i d as Reported Rptd. scc/cc Bar $.28 \times 10^{-9}$ 2.1 30 1 214 IV-6.

References Reporting: 214

PERMEANT: Nitrogen N₂

MATERIAL: Ethylene-Vinylacetate Copolymer

MATERIAL: Glass

			 					
Type	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	_	Comments
Trade Name	: c	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Vycor	400	.00047	.063 x 10 ⁻¹²	1	214			
								-
						-		
		·						
							·	
			!					

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25				222	.057		
		25	3.0	$.304 \times 10^{-7}$	8	225		7.4×10^{-7}	
		25	3.0	3.0 x 10 ⁻⁷	6	378			
1									
									·

References Reporting: 222, 225, 378
PERMEANT: Nitrogen N2

MATERIAL: Hydropol

MATERIAL: Inconel

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
	1225	75000	1 x 10 ⁻⁸	11	294			
		:						
			·					
					·			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Trace Name	25	.0004	4.2 x 10 ⁻¹⁰	6	266	Sec, ce Bul	em / Bee	
		25	NC	4.3 x 10 ⁻¹⁹	13	378			
			·						
H									
IV-6.17								·	
7	·								
	· · · · · · · · · · · · · · · · · · ·				·				
	- '				·		·		

References Reporting: 266, 378

PERMEANT: Nitrogen N₂

MATERIAL: Iron

PERMEANT: Nitrogen N_2

MATERIAL: Isoprene-Acrylonitrile Copolymer

	1			T				
Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	25	.136	.138 x 10 ⁻⁸	8	390	.031	.045 x 10 ⁻⁶	
	50	.98	.99 x 10 ⁻⁸	8	390	.033	$.30 \times 10^{-6}$	
	:				*			
							,	

			<u> </u>					
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	25	.449	.445 x 10 ⁻⁸	8	390	.036	.123 x 10 ⁻⁶	
	50	2.40	2.43 x 10 ⁻⁸	8	390	.042	.56 x 10 ⁻⁶	
			·					
							·	

References Reporting: 390

PERMEANT: Nitrogen N_2

MATERIAL: Isoprene-Methacrylonitrile Copolymer

MATERIAL: Kovar

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments.
		NG	128	.125	10	307			
						~			
00 9-MI									
						·		,	•
	de la esta e e e e								

Permeability
Std. Units
(Value x 10⁻⁸) Solubility Diffusivity Permeability Units Ref. Туре Temp. Comments or cm²/sec Trade Name ° C as Reported Rptd. scc/cc Bar $.2 \times 10^{-7}$ 25 .2 6 378 MΡ IV-6.21

References Reporting: 378

PERMEANT: Nitrogen N₂
MATERIAL: Mipolam MP

MATERIAL: Molybdenum

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	NC	4.4×10^{-33}	13	378			
	1150	75000	1 x 10 ⁻⁸	11	294			.0035 in. disilicide coating
	1500	225000	3 x 10 ⁻⁸	11	294			coating .0005 in. disilicide coating
								ш
					· 			
					· · · · · · · · · · · · · · · · · · ·			

References Reporting: 294, 378

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		24	2.14	2.87×10^{-11}	2	418			
		25	.01	.1 x 10 ⁻⁷	6	266 425			
		27	1.03	.00137 x 10	-6 ₃	401	.052	$.019 \times 10^{-5}$	
-4 +		54	4.35	.0058 x 10 ⁻⁶	3	401			
TV-6.23		85	16.7	.02222 x 10	6 3	401			
ω		30	.885	11.8 x 10 ⁻¹⁰	3	325			
	G	25	.88	.89 x 10 ⁻⁷	6	378			

References Reporting: 266, 325, 378, 401, 418, 425 PERMEANT: Nitrogen N₂

MATERIAL: Neoprene

PERMEANT: Nitrogen No

MATERIAL: Nylon

Permeability Permeability Units Ref. Solubility Diffusivity Comments Type Temp. Std. Units (Value x 10 8) or cm²/sec as Reported ° C Rptd. scc/cc Bar Trade Name $.028 \times 10^{-10}$.0021 242 6 0 $.0064 \times 10^{-7}$ 25 .0063 6 378 6 $.095 \times 10^{-10}$ 30 .0071 3 242 6 240 .10 \times 10⁻¹⁰ 311 30 .0075 3 6 325 $.47 \times 10^{-10}$ 60 .035 3 242 6 1.47×10^{-10} 80 .11 3 242 6 2.87×10^{-10} 90 .22 3 242 6 $.02 \times 10^{-9}$ 3 216 Polyamide 30 .015

References Reporting: 216, 240, 242, 311, 325, 378

IV-6.24

Permeability Units Ref. Solubility Diffusivity Temp. Permeability Comments Type Std. Units (Value x 10⁻⁸) or cm²/sec as Reported scc/cc Bar Trade Name $^{\circ}$ C Rptd. 4×10^{-9} 1400 30000 11 294 15% Rhodium 3×10^{-9} 85% PT 1400 22500 11 294 IV-6.25

References Reporting: 294

PERMEANT: Nitrogen N2

MATERIAL: Platinum

MATERIAL: Polybutadiene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	4.85	4.9 x 10 ⁻⁷	6	378			
		25	4.85	4.9 x 10 ⁻⁸	8	390	.044	1.1 x 10 ⁻⁶	
		Room	4.85	.645 x 10 ⁻⁹	1	241 385			
H		30	4.85	64.5×10^{-10}	3	325			
IV-6.26		50	14.3	14.5×10^{-8}	8	390	.049	2.9×10^{-6}	
D)									

References Reporting: 241, 325, 378, 385, 390

-	···				, 				
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Lexan	0	.083	1.1 x 10 ⁻¹⁰	3	388			
	Lexan	25	.23	3.0 x 10 ⁻¹⁰	3	388			
	Lexan	30	3.45	1.46 x 10 ⁻⁹	1	214	·		
TV_6 27	Lexan	50	.503	6.7 x 10 ⁻¹⁰	3	388			
	Lexan	75	.98	1.3 x 10 ⁻⁹	3	388			
7	Lexan	100	1.65	2.2 x 10 ⁻⁹	3	388			
	Lexan	125	2.78	3.7×10^{-9}	3	388		2.0 x 10 ⁻⁷	
	Lexan	150	6.75	9.0 x 10 ⁻⁹	3	388			
	Lexan	175	14.3	1.9 x 10 ⁻⁸	3	388	,		

References Reporting: 214, 388

PERMEANT: Nitrogen N₂
MATERIAL: Polycarbonate

PERMEANT: Nitrogen N₂
MATERIAL: Polychlorotrifluoroethylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Ke1-F-300	25	.004	.05 x 10 ⁻¹⁰	3	311			30% Crystallinity
Kel-F-300	25	.002	.03 x 10 ⁻¹⁰	3	311			80% Crystallinity
Kel-F-300	40	.016	.20 x 10 ⁻¹⁰	3	311			30% Crystallinity
Kel-F-300	40	.007	.09 x 10 ⁻¹⁰	3	311			80% Crystallinity
Kel-F-300	50	.014	.18 x 10^{-10}	3	311			Extruded 2 mils thick Unplasticized
Kel-F-300	50	. 26	.35 x 10 ⁻¹⁰	3	311			30% Crystallinity
Kel-F-300	50	.09	.12 x 10 ⁻¹⁰	3	311			80% Crystallinity
Kel-F-300	50	.413	5.5 x 10 ⁻¹⁰	3	311			Plasticized
Kel-F-300	75	.065	.86 x 10 ⁻¹⁰	3	311	,		Extruded 2 mils thick Unplasticized
Ke1-F-300	75	.71	.94 x 10 ⁻¹⁰	3	311			Extruded 5 mils thick

				1					
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units ₈ (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Kel-F-300	75	.135	1.8 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	75	19.3	25.7×10^{-10}	3	311			Plasticized
	Kel-F-300	75	.38	.51 x 10 ⁻¹⁰	3	311			80% Crystallinity
	Kel-F	25	.0025	.0025 x 10	⁷ 6	378		, i	
	Kel-F	30	.0026	.0035 x 10 ⁻⁹	3	216			
	Kel-F	30	.098	1.3 x 10 ⁻¹⁰	3	325			
	Kel-F	30	.006	.008 x 10 ⁻⁹	3	340 374			30% Crystallinity
	Kel-F	30	.003	$.004 \times 10^{-9}$	3	340 374			80% Crystallinity
	Trithene B	-25	.0027	.036 x 10 ⁻¹⁰	3	242			
	Trithene	0	.012	.16 x 10 ⁻¹⁰	3	242			

PERMEANT: Nitrogen N_2 MATERIAL: Polychlorotrifluoroethylene

MATERIAL: Polychlorotrifluoroethylene

ŀ	Type or de Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Trith	nene B	30	.105	1.4 x 10 ⁻¹⁰	3	242			
Tritl	nene B	30	.009	.012 x 10 ⁻⁹	1	214			
Tritl	nene B	60	.83	11.0 x 10 ⁻¹⁰	3	242			
Trith	nene B	70	1.65	22.0×10^{-10}	3	242			
Tritl	nene	80	3.00	40 x 10 ⁻¹⁰	3	242			

References Reporting: 214, 216, 242,

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25				222	.0412		
	30	12	16 x 10 ⁻⁹	3	374			60% Crystallinity
	30	1.43	1.9 x 10 ⁻⁹	3	374			69% Crystallinity
	30	.50	.66 x 10 ⁻⁹	3	374			78% Crystallinity
	30	. 25	.33 x 10 ⁻⁹	3	374			81% Crystallinity
	30	.20	.27 x 10 ⁻⁹	3	374			83% Crystallinity
Alathon 14	25	.73	.74 x 10 ⁻⁷	6	378			
Alathon 14	25	.73	.074 x 10	7 8	225		3.2×10^{-7}	
Alathon 15	0	.31	4.1 × 10 ⁻¹¹	1	209 223			
Alathon 15	0	.20	2.6 x 10 ⁻¹¹	1	223			Variable Volume test

open til state og til state og skale o

PERMEANT: Nitrogen N₂
MATERIAL: Polyethylene

PERMEANT: Nitrogen N₂
MATERIAL: Polyethylene

Permeability Solubility Diffusivity Type Temp. Permeability Units Ref. Comments Std. Units (Value x 10 8) or cm²/sec as Reported scc/cc Bar Trade Name ≥ C Rptd. 9.4×10^{-10} 1 Alathon 15 50 7.1 223 2 mils thick 1.0×10^{-10} Alathon 15 15 .75 1 223 209 2.5×10^{-10} Alathon 15 30 1.9 1 223 2.8×10^{-10} Alathon 15 2.1 1. 30 223 2 mils thick Variable 1.9×10^{-10} Alathon 15 30 1.43 volume test 1 223 Variable 1.6×10^{-10} Alathon 15 30 1.2 1 223 pressure test 2.3×10^{-10} 1.7 Alathon 15 31 1 209 209 8.0×10^{-10} Alathon 15 50 6.0 1 223 9.4×10^{-10} Alathon 15 50 7.1 1 223 2 mils thick Variable 6.4×10^{-10} 50 Alathon 15 4.8 223 1 volume test

ſ					r		<u> </u>	_	
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Trade Name		(Value X 10)	as Reported	Kpcu.		SCC/CC Bai	Chi / Sec	
	Alathon 15	50	4.2	5.6×10^{-10}	1	223			Variable pressure test
	.922g/cc	30	1.43	19 x 10 ⁻¹⁰	3	240			
	.922g/cc	30	1.58	2.1 x 10 ⁻⁹	3	386			
	.922g/cc	30	1.65	22 x 10 ⁻¹⁰	3	311			:
١.	.938g/cc	30	1.50	6.6×10^{-10}	3	311			
J	.953g/cc	30	. 25	3.3 x 10 ⁻¹⁰	3	311			
	.954g/cc	30	. 25	.33 x 10 ⁻⁹	3	386			
	.964g/cc	30	.11	.11 x 10 ⁻⁷	6	378			
	Grex	25				237	.012		`

References Reporting:209,222,223 225,237,240 311,374,378, 336

PERMEANT: Nitrogen N₂

MATERIAL: Polyethylene

MATERIAL: Polyethylene Terephthalate

	 'уре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or le Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	9 3.12 .13.13
Myla	r	25	.0045	.006 x 10 ⁻¹⁰	1	214			
Myla	r A	-25	.00034	.0045 x 10 ⁻¹⁰	3	242			
Myla	r A	0	.0017	$.022 \times 10^{-10}$	3	242			
Myla	r A	25	.0031	.0031 x 10^{-7}	6	378			
Myla	r A	30	.0038	.005 x 10 ⁻⁹	3	216,225 240,311	. •		
Myla	r A	30	.0083	.11 x 10 ⁻¹⁰	3	242			
Myla	r A	60	.014	.18 x 10 ⁻¹⁰	3	242			
Myla	r A	70	.018	.24 x 10 ⁻¹⁰	3	242			
Myla	r A	80	.028	$.37 \times 10^{-10}$	3	242			
						224	.043		

References Reporting: 214,216,224, 225,240,242, 311,378

V-6.34

Permeability Ref. Solubility Diffusivity Temp. Permeability Units Type Comments Std. Units
(Value x 10⁻⁸) or cm²/sec scc/cc Bar Trade Name as Reported °C Rptd. $.94 \times 10^{-6}$ 5.37×10^{-8} 25 5.3 8 390 .056 2.53×10^{-6} 17.0×10^{-8} 16.8 .066 50 8 390 IV-6.35

References Reporting: 390

PERMEANT: Nitrogen N₂
MATERIAL: Polyisoprene

PERMEANT: Nitrogen N₂
MATERIAL: Polymethylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	2	Comments
	30	.11	.15 x 10 ⁻⁹	3	374			
<u> </u>							:	
					·		.:	
		·						

References Reporting: 374

Solubility Diffusivity Temp. Permeability Units Ref. Туре Permeability Comments Std. Units (Value x 10⁻⁸) or cm²/sec Trade Name as Reported scc/cc Bar Rptd. °C 2.09×10^{-8} .30 x 10^{-6} 8 .069 25 2.06 390 1.28×10^{-6} 9.04×10^{-8} .070 50 8.92 8 390 IV-6.37

Anna de la companya d

References Reporting: 390

PERMEANT: Nitrogen N₂

MATERIAL: Polymethylpentadiene

PERMEANT: Nitrogen N₂
MATERIAL: Polypropylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	.32	.42 x 10 ⁻⁹	3	374			
.907g/cc	30	.33	$.44 \times 10^{-9}$	3	216 386			
								,
			:				* .	
		<i>.</i> .						

References Reporting: 216, 374, 386

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
II ade Name	NG	1.9	as Reported	Rptd.	346	scc/cc Bar	Citi / Sec	
· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·
	20	5.9	.78 x 10 ⁻⁹	1	243			· · · · · · · · · · · · · · · · · · ·
	Room	5.9	.78 x 10 ⁻⁹	1	385			· .
	30	1.7	$.22 \times 10^{-9}$	1	214			
	30	5.9	.78 x 10 ⁻⁹	1	241 243			:
	40	5.8	.77 x 10 ⁻⁹	1	243 393			
DOW 0641	25	5.8	5.92×10^{-7}	6	378			
	er s							

References Reporting:214, 240, 241, 243, 311, 346, PERMEANT: 378, 385, 393 MATERIAL: Nitrogen N₂

Polystyrene

PERMEANT: Nitrogen N₂
MATERIAL: Polystyrene-Butadiene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20	2.2	.0029 x 10 ⁻⁶	3	401			
		50	7.7	.0102 x 10 ⁻⁶	3	401			
-									
777 6 40					·				
				-					
		·							

References Reporting: 401

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or . Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		40	.38	5 x 10 ⁻¹¹	1	393			
;									
IV-6.4							·		
41									
		·							

References Reporting: 393

PERMEANT: Nitrogen N₂

MATERIAL: Polyvinyl Acetate

PERMEANT: Nitrogen N₂
MATERIAL: Polyvinyl Butyral

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	.19	2.5 x 10 ⁻¹⁰	3	325			
		·							
TV_6 43									· .
7									
			·			:			

References Reporting: 325

IV-6.43

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	.003	.40 x 10 ⁻¹⁰	3	240 311			
			·					

References Reporting: 240, 311

PERMEANT: Nitrogen N₂

MATERIAL: Polyvinyl Chloride

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	0	.0735	.0098 x 10 ⁻⁹	1	219		,	,
	Room	.053	.007 x 10 ⁻⁹	1	241 385		,	
	25	.488	.065 x 10 ⁻⁹	1	219	·		
	50	2.55	$.34 \times 10^{-9}$	1	219			
								·
						·		
				·				

References Reporting: 219, 241, 385

Permeability
Std. Units
(Value x 10⁻⁸) Solubility Diffusivity Permeability Units Ref. Comments Type Temp. or cm^2/sec as Reported Trade Name ° C Rptd. scc/cc Bar 1.8×10^{-12} .0135 30 1 209 $.019 \times 10^{-10}$ 30 .014 1 214 6.7×10^{-12} 50 .05 1 209 IV-6.45

and the second of the second o

References Reporting: 209, 214

PERMEANT: Nitrogen N₂

MATERIAL: Polyvinyl Fluoride

MATERIAL: Polyvinylidene Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Saran	NG	.00049	.11	7	389			
	Saran	25	.00014	.018 x 10 ⁻¹²		214			
	Saran	30	.0008 to .0011	.001 to .0015		216			
7.7	Saran 517	0	.0007	.0094 x 10 ⁻¹⁰) 3	240,242 311,325			
77 6 16	Saran 517	60	.001	.15 x 10 ⁻¹⁰	3	240,242 311,325		:	. a
	Saran 517	80	.041	.54 x 10 ⁻⁹	3	240,242 311,325			
	Saran 517	90	.059	.79 x 10 ⁻¹⁰	3	240,242 311,325	·		
					·				

References Reporting: 214, 216, 240, 242, 311, 325, 389

IV-6.4

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Viton A	30	.203	2.7 x 10 ⁻¹¹	1	209			
Viton A	30	.233	.031 x 10 ⁻⁹	1	214			
Viton A	50	.975	1.3 x 10 ⁻¹⁰	1	209			¥.
						1		
								•
					•			

References Reporting: 209, 214

PERMEANT: Nitrogen N₂

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

PERMEANT: Nitrogen N₂
MATERIAL: Rubber, Butyl

	1	<u> </u>		,	·			
Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	25	.244	.24 x 10 ⁻⁸	8	390	.054	$.045 \times 10^{-6}$	
	30	.234	3.12×10^{-10}	3	240 311 325			
	50	1.25	1.27 x 10 ⁻⁸	8	390	.056	.22 x 10 ⁻⁶	
Oppanol B-200	25	.22	$.22 \times 10^{-7}$	6	378			
		-						

References Reporting: 240, 311, 325, 378, 390

IV-6.4

Permeability Std. Units (Value x 10⁻⁸) Permeability Ref. Solubility Diffusivity Temp. Units Comments Type or cm²/sec scc/cc Bar as Reported Trade Name Rptd. ° C 28×10^{-9} 210 1 297 Room IV-6.49

References Reporting: 297

PERMEANT: Nitrogen N_2

MATERIAL: Rubber, Dimethylsilicone

MATERIAL: Rubber Hydrochloride

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Pliofilm FM-l	-25	.0037	$.049 \times 10^{-10}$	3	242			
Pliofilm FM-1	0	.033	.44 x 10 ⁻¹⁰	3	242			
Pliofilm FM-1	25	.109	.11 x 10 ⁻⁷	6	378			
Pliofilm FM-1	30	.113	1.5×10^{-10}	3	242			
Pliofilm FM-1	60	.555	7.4×10^{-10}	3	242			
Pliofilm FM	30	.105	1.4×10^{-10}	3	325			
Pliofilm NO	30	.006	$.08 \times 10^{-10}$	3	216,240 311,325			
Pliofilm P4	30	.47	6.2×10^{-10}	3	240 311 325			
				·				
								,

References Reporting: 216, 240, 242, 311, 325, 378

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity 2,	Comments
	Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	.36	.36 x 10 ⁻⁷	6	378			
		25	.36	.36 x 10 ⁻⁸	8	390	.044	.079 x 10 ⁻⁶	
	:	30	.36	4.8 x 10 ⁻¹⁰	3	325			
 		50	2.2	2.2 x 10 ⁻⁸	8	390	.052	.41 x 10^{-6}	
777 6 51									
]									

References Reporting: 325, 378, 390
PERMEANT: Nitrogen N₂ MATERIAL: Rubber, Methyl

MATERIAL: Rubber, Natural

Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability		Ref.	Solubility	_ ·[Comments
Trade Name	□ C	$(Value x 10^{-6})$	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
,	Room	6.1	.81 x 10 ⁻⁹	1	241 385			
	25				222	.07		
	25	7.1	.72 x 10 ⁻⁷	8	225		11.7 x 10 ⁻⁷	
	25	9.9	1.0 x 10 ⁻⁶	6	266 425			
	25	6.5	6.6 x 10 ⁻⁷	6	378	·		
	25	6.04	6.12 x 10 ⁻⁸	8	390	.052	1.10 x 10 ⁻⁶	
	30	7.9	1.05 x 10 ⁻⁹	1	214			
	30	6.06	80.8 x 10 ⁻¹⁰	3	240 325			
	50	19.1	19.4 x 10 ⁻⁸	8	390	.053	3.42 x 10 ⁻⁶	

References Reporting:214,222,225, 240,241,266, 325,378,385, 390,425

IV-6.52

Solubility Temp. Permeability Permeability Units Ref. Diffusivity Comments Type Std. Units (Value x 10⁻⁸) or ${\rm cm}^2/{\rm sec}$ Trade Name ° C as Reported Rptd. scc/cc Bar .21 x 10^{-8} 30 .16 1 214

References Reporting: 214

PERMEANT: Nitrogen N₂

MATERIAL: Rubber, Nitrilesilicone

MATERIAL: Rubber, Nitroso

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Thiokol	NG	108	.106	10	298			73 hr. test
	-							
			• • • • • • • • • • • • • • • • • • •		•			
:						`		
			· · · · · · · · · · · · · · · · · · ·					*

References Reporting: 298

Permeability Ref. Solubility Diffusivity Temp. Permeability Units Comments Туре Std. Units (Value x 10⁻⁸) or cm²/sec Trade Name °C as Reported Rptd. scc/cc Bar .40 x 10^{-8} 1 214 .3 30

References Reporting: 214

PERMEANT: Nitrogen N₂

MATERIAL: Rubber, Phenylenesilicone

PERMEANT: Nitrogen N₂
MATERIAL: Rubber, Silicone

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	164	2.19 x 10 ⁻⁸	1	223			
	30	113	1.5 x 10 ⁻⁸	1	214			
	30	188	2.5×10^{-8}	1	209			
	50	240	3.2×10^{-8}	1	209			
Coated-on fabric	Room	750 to 1200	10 to 16 x 10	-9 1	385			
RTV-11	29	185	24.6×10^{-9}	1	409			
RTV-11	33	191	25.5 x 10 ⁻⁹	1	409			
RTV-11	44	218	29 x 10 ⁻⁹	1	409			
RTV-20	29	141	18.8 x 10 ⁻⁹	1	409			
RTV -20	33	149	19.8 x 10 ⁻⁹	1	409			

PERMEANT: Nitrogen N₂

MATERIAL: Rubber, Silicone

MATERIAL: Rubber, Silicone

	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	RTV-502	33	224	29.9 x 10 ⁻⁹	1	409			
	RTV-502	43	256	34.1 x 10 ⁻⁹	1	409			
	RTV-601	33	338	45.0×10^{-9}	1	409			
H	RTV-601	43	356	47.5 x 10 ⁻⁹	1	409			
IV-6.5	Eccosil 47-12	21	98	13.0×10^{-9}	1	409			
58	Eccosil 47-12	32	114	15.2 x 10 ⁻⁹	1	409			
:	Eccosil 47-12	44	131	17.4×10^{-9}	1	409			
	Sylgard 182	21	136	18.1×10^{-9}	1	409			
	Sylgard 182	34	163	21.7×10^{-9}	1	409			
	Sylgard 182	44	187	24.9×10^{-9}	1	409			

References Reporting: 209, 214, 223, 385, 409

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Stainless 304	NG	.000014	1.9 x 10 ⁻¹⁵	1	434			
2									
IV-6.59									
9									
									:
									:

References Reporting: 434

PERMEANT: Nitrogen N₂

MATERIAL: Steel

MATERIAL: Teflon

ſ					r		1		
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	TFE	NG	7.4	1650	7	247			
	TFE	NG	.013	1.32 x 10 ⁻¹⁰	8	434			
į	TFE	25	2.4	2.4×10^{-7}	6	378			
	TFE	29				292	.092	2.5×10^{-7}	
10 8 80	TFE	30	NC	.11		333			
S	TFE	30	3.9	5.2×10^{-10}	1	209			.
	TFE	50	7.5	1.0 x 10 ⁻⁹	1	209			
	FEP	NG	.7	156	7	247			
	FEP	23	NC	.18		333			
	FEP	25	1.44	320	7	334			•

V-6.60

				rt		+		
Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
				_				
FEP	29				292	.092	1×10^{-7}	
FEP	30	1.9	.25 x 10 ⁻⁹	1	214			
FEP	50	4.4	975	7	334			
FEP	75	9.2	2050	7	334			
FEP	93				292	.065	1.5 x 10 ⁻⁶	
FEP	100	18.5	4100	7	334			
FEP	21	NC	.75	30	261			10 mils thick
				·				
•								
	Trade Name FEP FEP FEP FEP FEP FEP	Trade Name °C FEP 29 FEP 30 FEP 50 FEP 75 FEP 93 FEP 100 FEP 21	Or Trade Name °C Std. Units8 (Value x 10-8) FEP 29 FEP 30 1.9 FEP 50 4.4 FEP 75 9.2 FEP 93 FEP 100 18.5 FEP 21 NC	Or Trade Name °C Std. Units (Value x 10^8) as Reported FEP 29 .25 x 10^9 FEP 30 1.9 .25 x 10^9 FEP 50 4.4 975 FEP 75 9.2 2050 FEP 93 .75 FEP 100 18.5 4100 FEP 21 NC .75	Trade Name °C Std. Units (Value x 10^-8) as Reported Rptd. FEP 29	Trade Name °C Std. Units (Value x 10^8) as Reported Rptd. FEP 29 292 FEP 30 1.9 .25 x 10^-5 1 214 FEP 50 4.4 975 7 334 FEP 75 9.2 2050 7 334 FEP 93 292 292 FEP 100 18.5 4100 7 334 FEP 21 NC .75 30 261	Or Trade Name °C (Value x 10°8) as Reported Rptd. scc/cc Bar FEP 29 .092 .092 FEP 30 1.9 .25 x 10°5 1 214 FEP 50 4.4 975 7 334 FEP 75 9.2 2050 7 334 FEP 93 2050 7 334 FEP 100 18.5 4100 7 334 FEP 21 NC .75 30 261	Or Trade Name °C (Value x 10^-8) as Reported Rptd. scc/cc Bar cm²/sec FEP 29 .092 1 x 10^-7 FEP 30 1.9 .25 x 10^-6 1 214 FEP 50 4.4 975 7 334 FEP 75 9.2 2050 7 334 FEP 93 292 .065 1.5 x 10^-6 FEP 100 18.5 4100 7 334 FEP 21 NC .75 30 261

References Reporting: 209,214,247, 261,292,333, PERMEANT: 334,378,434 MATERIAL:

Nitrogen N_2

MATERIAL: Teflon

MATERIAL: Teflon Laminates

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	TFE/FEP	NG	NC	0.13	25	307			.005 in. thick
	TFE/FEP/Al	NG	NC	.06	26	332			1/4 mil Al
	TFE/FEP	21	NC	.60	30	261			Joclin Mfg. 14 mils thick
I	TFE/Al/FEP	21	NC	.38	30	261			10 mils thick
IV-6.6	TFE/FEP	22	NC	1.50 x 10 ⁻⁹	29	264			Joclin Mfg.
62	TFE/Al/FEP	22	NC	.84 x 10 ⁻⁹	29	264			Dielectrix Mfg
				-					

References Reporting: 261,264, 307,332

Permeability Solubility Diffusivity Temp. Units Ref. Type Permeability Comments Std. Units (Value x 10⁻⁸) or cm²/sec as Reported Trade Name ° C Rptd. scc/cc Bar 7 F218 NG .0038 .084 389 .422 7 389 .0019 F220 NG

References Reporting: 389

PERMEANT: Nitrogen N₂

MATERIAL: Vinylidene Chloride-Acrylonitrile

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	X-500	25	.0083	.11 x 10 ⁻¹⁰	3	311			3% VF
	X-500	50	.039	.52 x 10 ⁻¹⁰	3	311			3% VF
	X-500	75	. 22	2.92 x 10 ⁻¹⁰	3	311			3% VF
Н	X-800	0	.0022	.029 x 10 ⁻¹⁰	3	311			25% VF
IV-6.64	X-800	25	.023	$.30 \times 10^{-10}$	3	311			25% VF
4	X-800	50	.176	2.34 x 10 ⁻¹⁰	3	311			25% VF
	X-800	75	.983	13.1 x 10 ⁻¹⁰	3	311			25% VF
	X-3700	0	.019	.25 x 10 ⁻¹⁰	3	311			70% VF
	X-3700	25	.122	1.62 x 10 ⁻¹⁰	3	311			70% VF
	X-3700	50	.953	12.7 x 10 ⁻¹⁰	3	311			70% VF

Solubility Diffusivity Permeability Ref. Comments Туре Temp. Permeability Units Std. Units (Value x 10⁻⁸) or ${\rm cm}^2/{\rm sec}$ Trade Name \circ C as Reported Rptd. scc/cc Bar 56.2×10^{-10} x-3700 75 4.22 3 311 IV-6.65

References Reporting: 311

PERMEANT: Nitrogen N_2

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

MATERIAL: Visqueen

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20	.83	.110 x 10 ⁻⁹	1	243			
		30	1.35	.18 x 10 ⁻⁹	1	243			
	3 2	40	2.40	$.32 \times 10^{-9}$	1	243			
1									a t
	· · ·	÷					·		
			·						. :
								· ·	
						:	·		

References Reporting: 243

							·		
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	.37	4.9×10^{-10}	3	325			
	Α	25	.37	$.37 \times 10^{-7}$	6	378			
1	A	25	.368	.373 x 10 ⁻⁸	8	390	.026	$.145 \times 10^{-6}$	·
н	A	50	1.81	1.83 x 10 ⁻⁸	8	390	.027	$.67 \times 10^{-6}$	
IV-6.67							·		
								:	

References Reporting: 325, 378, 390
PERMEANT: Nitrogen N2 MATERIAL: Vulcaprene

PERMEANT: Liquid Nitrogen LN₂

MATERIAL: Adhesives

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
Aerobond 430	NG	503000000.	6.7×10^{-2}	1	268			.652 in thick
Aerobond 430	NG	900000000.	1.2 x 10 ⁻¹	1	268			.647 in thick
HT-424	NG	90000000.	1.2 x 10 ⁻²	1	268			.892 in thick
HT-424	NG	30800000.	4.1×10^{-3}	1	268			.904 in thick
					:			

References Reporting: 268

Diffusivity Permeability Units Ref. Solubility Permeability Comments Туре Temp. Std. Units (Value x 10 8) or ${\rm cm}^2/{\rm sec}$ Trade Name ° C as Reported Rptd. scc/cc Bar 3.3×10^{-18} .000000025 434

THE AND A REPORT OF THE PERSON OF THE

References Reporting: 434

PERMEANT: $N_2^0_4$ Nitrogen Tetroxide

MATERIAL: Aluminum

PERMEANT: Nitrogen Tetroxide N₂0₄
MATERIAL: Polyvinylidene Chloride

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Kynar	NG	NC	95	17	413			48 hr. test
Kynar	NC	NC	100	17	413			100 hr. test
Kynar	NG	NC	160	17	413			21 hr. test
					-			
					• •			

References Reporting: 413

		<u> </u>		·	<u>.</u>			
Type or	Temp.	Permeability Std. Unitso	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	NG	NC	227	21	204			l hr. test
	NG	NC	90.6	21	204			4 hr. test
	NG	NC	17.1	21	204	·		24 hr. test
	NG	NC	12.6	21	204			48 hr. test
glass cloth reinforced	NG	NC	263	21	204			l hr. test
glass cloth reinforced	NG	NC	104	21	204		·	4 hr. test
glass cloth reinforced	NG	NC	117.6	21	204			30 hr. test
Al laminate welded on	NG	NC	0	21	204			48 hr. test
Au laminate welded on	NG.	NC NC	0	21	204			96 hr. test

References Reporting: 204

PERMEANT: N204 Nitrogen Tetroxide

MATERIAL: Rubber, Nitroso

PERMEANT: Nitrogen Tetroxide N2O4

MATERIAL: Steel

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	,	Comments
	304 Stainless	NG	.000000015	2.1 x 10 ⁻¹⁸	1	434			
1									
Щ									
IV-7.4							·		
			· · · · · · · · · · · · · · · · · · ·						
						·			

References Reporting: 434

VI
ï
ŲΊ

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
TFE	NG	NC	10.	18	422			
TFE	NG	ИС	.67	18	338	·		Vacuum Sintered
TFE	NG	NC	.41	18	338		_	Air Sintered
TFE	NG	.13	53100.	20	271			.0076 cm thick
TFE	NG	.10	41729.	20	271			.0084 cm thick
TFE	NG	.065	26937.	20	271			.018 cm thick
TFE Sprayed Dispersion	NG	NC	2.49	22	428			Average of 7 24 hr. tests
TFE Sample #1	25	NC	.66	19	200			144 hr. test
TFE Sample #2	25	NC	1.96	19	200			50 hr. test
TFE Sample #2	25	NC	2.31	19	200			92 hr. test

PERMEANT: Nitrogen Tetroxide N₂O₄
MATERIAL: Teflon

PERMEANT: Nitrogen Tetroxide N2O4

MATERIAL: Teflon

Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	≥ C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
TFE	0.5	NG	20		200			41 1
Sample #3	25	NC	.29	19	200			41 hr. test
TFE								
Sample #3	25	NC	.53	19	200			144 hr. test
TFE							· · · · · · · · · · · · · · · · · · ·	
Sample #5	25	NC	1.38	19	200			49 hr. test
TFE								
Sample #7	25	NC	2.10	19	200			49 hr. test
TFE	25	.099	40920.	20	271			3.1 mils thick
TFE	25	.077	31930.	20	271			3.1 mils thick
TFE	25	.080	33330.	20	271			3.3 mils thick
TFE	25	.053	21900.	20	271			6.1 mils thick
TFE	25	.050	20800.	20	271			6.5 mils thick
TFE	25	.128	53100.	20	271			3.0 mils thick

IV-7.6

٢					 		1		1
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 °)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	TFE	25	1.00	41729.	20	271			3.3 mils thick
	TFE	25	.065	26937.	20	271			7.1 mils thick
	TFE	27				357	3.25*		
	TFE Sample #7	28	12.4	2759.	7	416			10 mils thick
	TFE	74				357	•625*		
	TFE	99				357	.257*		
	FEP extruded Type A	NG	NC	. 583	22	428			Average of 5 24 hr. tests
	FEP extruded Type 506	NG	NC	.418	22	428			Average of 8 24 hr. tests
	FEP	NG	NC	1.90	21	204			24 hr. test
	FEP	NG	NC	1.60	21	204			48 hr. test

 $*mg cm^{-2} atm^{-1}$

PERMEANT: Nitrogen Tetroxide $^{\rm N}2^{\rm O}4$ MATERIAL: Teflon

PERMEANT: Nitrogen Tetroxide N2O4

MATERIAL: Teflon

Ty o: Trade	r	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
FEP		NG	NC	95.	17	413			21 hr. test
FEP		NG	.00022	2.89×10^{-14}	1	434			55 psia pres.
FEP		NG	.00029	3.87×10^{-14}	1	434			75 psia pres.
FEP		NG	NC	4.93	21	204			4 hr. test
FEP		28	3.9	3 67 .	7	416			
FEP	·	28	NC	17.	22	218	,		Sample #1
FEP		28	NC	26.	22	218		•	Sample #2
FEP		28	NC	26.	22	218			Sample #3
FEP		28	NC	47.	22	218			Sample #4
FEP		28	NC	14.	22	218			Sample #5

IV-7.

					I		1_ , , , , , , ,		
	ype or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	e Name	°C	Std. Units (Value x 10 -8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
FEP		30				357	2.16*		
FEP		74	NC	6.7×10^{-5}	30	261			10 mils thick Standard Test screen-backed
FEP		74	NC	6.1 x 10 ⁻⁵	30	261			10 mils thick Standard Test disk-backed
FEP		74	NC	13.7×10^{-5}	30	261			Zero delta P init. 110psi N 10 mils thick ²
FEP		74	NC	13.6 x 10 ⁻⁵	30	261			Zero delta P init. 280psi N 10 mils thick 2
FEP		77				357	1.733*		
FEP		93				357	.345*		
TFE/Al Codisp	l/FEP persion	22	NC	.92 x 10 ⁻⁷	29	264			Dielectrix Mfg.
TFE/FI Codisp	EP persion	NG	NC	.963	22	428			Average of 4 24 hr. tests
		NG	NC	3.34	22	299			Sample #1

 $*_{mg cm}^{-2} atm^{-1}$

PERMEANT: Nitrogen Tetroxide N_2O_4

MATERIAL: Teflon

PERMEANT: Nitrogen Tetroxide N₂O₄

MATERIAL: Teflon

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	NC	3.23	22	299			Sample #2
- A	·							
			:					
	·							
				·				
		·			-	:		

References Reporting: 200,204,218, 261,264,271, 299,338,257, 413,416,422, 428,434

_							 		
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Ĺ	Trade Name	٠	(value x 10)	as Reported	Rpta.		SCC/CC Bar	CIII / Sec	
	TFE/FEP	NG	NC	5.	19	332			5 mils thick
	TFE/FEP	NG	NC	25.	18	332			
	TFE/FEP	NG	.020	8430.	20	271			Average of 5 samples
ij	TFE/FEP	25	.019	7891.	20	271			6.5 mils thick
IV-7.11	TFE/FEP	25	.020	8221.	20	271			6.7 mils thick
	TFE/FEP	25	.019	7930.	20	271			6.4 mils thick
	TFE/FEP	25	.022	9074.	20	271			6.9 mils thick
	TFE/FEP	25	.022	9062.	20	271			6.4 mils thick
	TFE/FEP RB-0130-010	74	NC	4.62 x 10	5 30	261			14 mils thick Standard Test screen-backed
	TFE/FEP RB-0130-010	74	NC	5.37 x 10	5 30	261			14 mils thick Standard Test disk-backed

PERMEANT: Nitrogen Tetroxide N2O4

MATERIAL: Teflon Laminates

PERMEANT: Nitrogen Tetroxide N₂O₄

MATERIAL: Teflon Laminates

,							 		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	TFE/FEP				5				14 mils thick
	RB-0130-010	74	NC	11.7 x 10	30	261			Zero delta P
}	TFE/FEP		,			······································			init. 110psi N
	·	74	NC	15.2 x 10	5 30	261			Zero delta P
	RB-0130-010	/ -	NO	13.2 X 10	30	201			init. 280psi N
	TFE/FEP								14 mils thick 2
İ	RB-013 0 -010	74	NC	8.7 x 10	P 30	261	·		Zero delta P
1	KD-012A-010								init. 280psi He
	TFE/FEP		17.4		5	261			14 mils thick
⊣	RB-0130-010	74	NC	$1.7 \times 10^{-}$	30	261			Standard Test
₹					-				disk-backed 14 mils thick
7	TFE/FEP	74	NC	1.4 x 10	5 30	261			Zero delta P
5	RB-0130-010	, -	21.0			201			init. 52psi N ₂
Ť				· · · · · · · · · · · · · · · · · · ·	-,			· · · · · · · · · · · · · · · · · · ·	2
	FEP/Al	22	NC	.3 x 10	29	364			Schjeldahl Mfg.
1									
	mmm /mmm /x 3	NG	NC	NT 1 d d 1- 1 -	10	220			4 5
	TFE/FEP/Al	NG	NC	Negligible	19	332	,		4.5 mils thick
ŧ									10 mils thick
	TFE/A1/FEP	74	NC	8.1 x 10	-5 ₃₀	261			Standard Test
L			·						screen-backed
	/- 1 /	- 1		4 0	5				10 mils thick
	TFE/Al/FEP	74	NC	$4.0 \times 10^{-}$	30	261			Standard Test
-									disk-backed
	TFE/Pb	NG	NC	.003	18	422			Teflon in con-
	112/12	110	110	•000	10	144			tact with N ₂ O ₄
Ł		L							

V-7.12

Permeability Solubility Diffusivity Comments Permeability Type Temp. Units Ref. Std. Units (Value x 10⁻⁸) or cm^2/sec Trade Name ٥C as Reported Rptd. scc/cc Bar Lead in con-TFE/Pb NG NC .03 18 332 tact with N2O4 Avg. of 2 smpls. .01 Tfln.-.001Ai Teflon/Al Heat-bonded NG .002 NC 22 428 96 hr. test Avg. of 2 smpls. .002 Tfln. - .003 Teflon/Ta Heat-bonded NG .000 NC 22 428 Ta, 24 hr. test

Light Street and the

References Reporting: 261, 271, 332 364, 422, 428 PERMEANT: Nitrogen Tetroxide $\rm N_2O_4$

MATERIAL: Teflon Laminates

PERMEANT: Nitrogen Tetroxide $^{\rm N}2^{\rm O}4$ MATERIAL: Teflon Metal-Plated

					 1				1
	ype	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
1 -	or e Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
TFE wit	th Ni h sides	NG	NC	1.050	22	428			Ni 100% rmvd. from N ₂ O ₄ side .0001 in. Ni
TFE wit	th Ni h sides	NG	NC	1.720	22	428			Ni 100% rmvd. from both sides .0001 in. Ni
TFE wit	th Ni h sides	NG	NC	0.050	22	428			Ni 20% rmvd. .0002 in. Ni
TFE wit	th Ni h sides	NG	NC	0.005	22	428			Avg. of 2 smpls
TFE wit on Ni o sides	th Au on both	NG	NC	0.043	22	428			Avg. of 3 smpls .0002 in. Ni and Au
TFE wit	th Au h sides	NG	NC	1.500	22	428			Avg. of 2 smpls
TFE wit		NG	NC	1.685	22	428			Avg. of 4 smpls
TFE wit	th Al h sides	NG	NC	1.240	22	428			
TFE wit Ni and both si	Al oń ides	NG	NC	.205	22	428			Avg. of 3 smpls .00015 in. plating
TFE wit	on	NG	NC	.064	428				.0002 in. plating

H
\triangleleft
T.
7
•
\vdash
ÜΠ

			 	r		· 		
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
TFE with Au and Al on both sides	NG	NV	1.650	22	428			.00001 in. plating
TFE with Au and Al on both sides	NG	NC	1.310	22	428			.0001 in. plating
FEP-Stainless steel com- posite	NG	NC	.960	22	428			" .
FEP-Al Composite	NG	· NC	.340	22	428			6 layers
FEP-Al Composite	NG	NC	.250	22	428			6 layers
FEP-Al Cpmposite	NG	NC	.280	22	428			4 layers
								Section 1

References Reporting: 428

PERMEANT: Nitrogen Tetroxide N_2O_4

MATERIAL: Teflon, Metal-Plated

Note:

Some ${\rm N_2O_4}$ storage tests, which do not result in a permeability value, but may still be of benefit, were reported by Reference #291. The data are given below:

							D	āys		osed	
	<u>Material</u>	Thicl	kness(inches))	°C	<u>1</u>	<u> 2</u>	<u>3</u>	<u>7</u>	<u>14</u>	<u>28</u>
Teflon	FEP		0.005		16	. 4	. 4		58		
Teflon	FEP/TFE				Room	2		4	Rup	ture	d
Kynar-	Teflon fabric		0.020		21	5		21			
EPR 13	2/Teflon fabr	ic	0.013		16	10	21				
Butyl :	112/Teflon fal	bric	0.013		16	15	32				
Butyl :	112		0.085		16	1	-5		92		
Teflon	/Al foil, laye	ered	0.008		16	. 4	. 4	5	13	14	
Al/Tef	lon		0.008		16					0	
Al/But	yl 112				Room						0
Au/But	yl 112				Room						0

Permeability
Std. Units
(Value x 10) Diffusivity Permeability Units Ref. Solubility Type or Temp. Comments cm²/sec Trade Name °C as Reported Rptd. scc/cc Bar 13×10^{-7} 25 6 12.8 378 IV-8.1

References Reporting: 378

PERMEANT: Oxygen O2

MATERIAL: Buna S

PERMEANT: Oxygen O₂
MATERIAL: Butadiene-Acrylonitrile Copolymer

		_ , , , , ,		T			-: 55	
Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Perbunan 18	25	6.1	6.2 x 10 ⁻⁷	6	378			
Perbunan 18	25	6.15	6.23 x 10 ⁻⁸	8	390	.077	.79 x 10 ⁻⁶	
Perbunan 18	50	18.9	19.1 x 10 ⁻⁸	8	390	.083	2.30×10^{-6}	
German Perbunan	25	3.2	3.2×10^{-7}	6	378			
German Perbunan	25	2.90	2.94 x 10 ⁻⁸	8	390	.067	.43 x 10 ⁻⁶	
German Perbunan	50	10.4	10.5 x 10 ⁻⁸	8	390	.072	1.44×10^{-6}	
Hycar-OR-15	25	.72	.73 x 10 ⁻⁷	6	378	·		
Hycar-OR-15	25	.72	.73 x 10 ⁻⁸	8	390	.053	.136 x 10 ⁻⁶	
Hycar-OR-15	30	.72	9.6 x 10 ⁻¹⁰	3	325			
Hycar-OR-15	50	3.45	3.50×10^{-8}	8	390	.061	.565 x 10 ⁻⁶	

References Reporting: 325, 378, 390

PERMEANT: Oxygen 02

MATERIAL: Butadiene-Acrylontrile Copolymer

PERMEANT: Oxygen O₂

MATERIAL: Cellophane-Aluminum-Saran Laminate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptā.	Ref.	Solubility scc/cc Bar	6	Comments
		NG	.0008	11 × 10 ⁻¹³	3	275			
					,				
							·		
IV-8.									
4									
							·		
						-			
									1

References Reporting: 275

-		,						· · · · · · · · · · · · · · · · · · ·	
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	· -	Comments
	Trade Name	€ C	(Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	.6	.08 x 10 ⁻⁹	1	203			
	***	20-30	.3 to .59	.4 to .78 x 10	-9 ₃	210			
1		23	.102	.0136 x 10 ⁻⁹	1	207			.001 in. thick
		30	.53	7.0 x 10 ⁻¹⁰	3	311			
TV-8.5	Lumarith P-912	-25	.17	2.30×10^{-10}	3	242			
	Lumarith P-912	0	.405	5.40×10^{-10}	3	242			
	Lumarith P-912	30	.59	7.8×10^{-10}	3	240 325			·
	Lumarith P-912	60	2.07	27.6 x 10 ⁻¹⁰	3	242			
	Celanese P-912	25	.81	.82 x 10 ⁻⁷	6	378			

References Reporting: 203, 207, 210, 240, 242, PERMEANT:

Oxygen 0₂

311, 325, 378 Cellulose Acetate MATERIAL:

PERMEANT: Oxygen O₂
MATERIAL: Cellulose Acetate Butyrate

	Type or Trade Nam	Temp	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		29	4.2	.56 x 10 ⁻⁹	1	208		· ·	.0026 cm thick
	Kodapak II	25	2.8	2.8 × 10 ⁻⁷	6	378			
7 C 7.7									
,	,								
						·			

References Reporting: 208, 378

Temp. Permeability Permeability Units Ref. Solubility Diffusivity Туре Comments Std. Units (Value x 10⁻⁸) or cm²/sec as Reported Trade Name ٥С Rptd. scc/cc Bar 1.5×10^{-7} 6 1.48 378 25 IV-8.7

References Reporting: 378

PERMEANT: Oxygen O2

MATERIAL: Cellulose Nitrate

PERMEANT: Oxygen O₂
MATERIAL: Chlorinated Polyether

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	_	Comments
	Penton	24	.054	.0072 x 10 ⁻⁹	1	208			.00183 cm thick
The same agency									
a a_vi									
α		·					·		
								:	
	and a gradient of the first property and a second contract of the contract of					nervan ng. andré d'antique rainnin qué minime que de calcular			
	·								

References Reporting: 208

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
-	Trade Name		(varue x 10)	as Reported	Rptd.		SCC/CC Bar	CM / Sec	
	2804	Room	360	48 x 10 ⁻⁹	1	203 206 241			
	3010	Room	158	21 x 10 ⁻⁹	1	203 206 241			
IV-8.9							4 4		
						·			
							·		

References Reporting: 203, 206, 241
PERMEANT: Oxygen 02

MATERIAL: COHR-Coated Glass Fabric

PERMEANT: Oxygen O₂
MATERIAL: Delrin (acetal)

To play the same of the same o	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	. 29	.038 x 10 ⁻⁹	1	208			.024 cm thick
1V 8 10									
									,

References Reporting: 208

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	° C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20-30	.04 to 1.2	.049 to 1.6 x 10-9	3	210			
1	Epon-1001	29	.04	.0049 x 10 ⁻⁹	1	208			.0022 cm thick
	Hysol	31	1.2	.16 x 10 ⁻⁹	1	208			.026 cm thick
H									
IV-8.11									
1					·				
<u> </u>									

References Reporting: 208, 210

PERMEANT: Oxygen O2

MATERIAL: Epoxy

PERMEANT: Oxygen O₂
MATERIAL: Ethyl Cellulose

		L	<u> </u>					
Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	NG	8.4	6.6	, 5	346			
	20-30	19.9	26.5 x 10 ⁻⁹	3,1	210 241 385			
	Room	15.8	2.1 x 10 ⁻⁹	1	203 206			
	25	13.8	1.84 x 10 ⁻⁹	1	243			Average of 4 samples
Plasticized	30	19.9	265 x 10 ⁻¹⁰	3.	240 325			
Ethocel	2 0	16.1	2.15 x 10 ⁻⁹	1	243			
Ethocel	30	19.9	2.65×10^{-9}	1	243			
Ethocel	40	25.5	3.40×10^{-9}	1	243			
Ethocel 610	25	17.9	18.1 x 10 ⁻⁷	6	378			
Ethanol-cast	28	6.0	.80 x 10 ⁻⁹	1	208			.00241 cm thic

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	THF-cast	28	6.5	.87 x 10 ⁻⁹	1	208			.00254 cm thick
τV									
а 13									
					. ^			*	
-									

References Reporting: 203, 206, 208, 210, 240, PER 241, 243, 325, 346, MAT 378, 385

PERMEANT: Oxygen 02

MATERIAL: Ethyl Cellulose

PERMEANT: Oxygen O₂
MATERIAL: Ethylene-Propylene (florinated)

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20-30	4.4	5.9 x 10 ⁻⁹	3	210			
Н									
IV-8.14									
4									
			•						

References Reporting: 210

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	8.5	.86 x 10 ⁻⁷	8,6	225 378		12.0 x 10 ⁻⁷	
		25				222	.102		
IV-									
IV-8.15									
								-	
+									
			·						

References Reporting: 222, 225, 378

PERMEANT: Oxygen 02

MATERIAL: Hydropol

PERMEANT: Oxygen O2

MATERIAL: Isoprene-Acrylonitrile Copolymer

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	.64	.65 x 10 ⁻⁸	8	390	.070	.092 x 10 ⁻⁶	
		50	3.39	3.43 x 10 ⁻⁸	8	390	.075	$.45 \times 10^{-6}$	
TV-8-16									
16									
								·	
	namengan ngang nganggan dibugu milihin pada ma 199-1944, pada dibugunda milihin ka								

References Reporting: 390

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	1.77	1.79 x 10 ⁻⁸	8	390	.074	$.24 \times 10^{-6}$	
		50	7.42	7.52 x 10 ⁻⁸	8	390	.090	.83 x 10 ⁻⁶	
									·
. +									
TV 8 17									·
7									. :

References Reporting: 390

PERMEANT: Oxygen O₂

MATERIAL: Isoprene-Methacrylonitrile Copolymer

PERMEANT: Oxygen O₂
MATERIAL: Methyl Cellulose

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
L		23	.379	.0505 x 10 ⁻⁹	1	207			.00254 cm thick
-		Room	.525	.07 x 10 ⁻⁹	1	203 206			
						The street of th			. [
TV-8.18									
တ			·						
d-119-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-									
						er gargeria problèmenta. Este acción de la casa de la casa de la casa de la casa de la casa de la casa de la c La casa de la casa de			

References Reporting: 203, 206, 207

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	.69	.70 x 10 ⁻⁷	6	378			
1							·		
7.1			•	:					
7V_8_16									
Ω									
			·						

References Reporting: 378

PERMEANTL Oxygen O₂
MATERIAL: Mipolam MP

PERMEANT: Oxygen O2

MATERIAL: Neoprene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
*		23	3.1	4.12×10^{-11}	2	418			
	G	25	3.0	3.0×10^{-7}	6	266 378 425			
	·							٤	
T									
TV_8.20								!	
								•	
A						•			
						•			

References Reporting: 266,378, 418, 425

er i pe episepisemanne juge, propare describ andre son er er	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.		Solubility	Diffusivity cm ² /sec	Comments
	6	0	.0071	.095 x 10 ⁻¹⁰	3	242			
	6	25	.023	.023 x 10 ⁻⁷	6	378			
	6	26	.03	.004 x 10 ⁻⁹	1	208			
HL	6	30	.029	.38 x 10 ⁻¹⁰	3	210,240 311,325			
IV-8.21	6	60	.147	1.96 x 10 ⁻¹⁰	3	210,240 311,325			
	6	80	.411	5.48×10^{-10}	3	210,240 311,325			
	6	90	.637	8.49 x 10 ⁻¹⁰	3	210,240 311,325			
				:					

References Reporting: 208, 210, 240, 242, 311, PERMEANT: 325, 378 MATERIAL:

Oxygen O2

MATERIAL: Nylon PERMEANT: Oxygen O2

MATERIAL: Polybutadiene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar		Comments
		20-30	14.3	19.1 x 10 ⁻⁹	3	210			
		Room	14.3	1.9 x 10 ⁻⁹	1	241 385			
		25	14.3	14.5 x 10 ⁻⁷	6	378			
-		25	14.3	14.5 x 10 ⁻⁸	8	390	.096	1.5 x 10 ⁻⁶	
TV_A		30	14.3	191 x 10 ⁻¹⁰	3	325			
22		50	35.5	36 x 10 ⁻⁸	8	390	.096	3.7×10^{-6}	
								_	
	,								
								<u> </u>	

References Reporting: 210, 241, 325, 378, 385, 390

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	20–30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.96 to 8.2 x 10-9	3	210	sec/ec Bar	Cit / Sec	
T 7 7									
TV7 0 73	*								
				·	·				

References Reporting: 210

PERMEANT: Oxygen 02

MATERIAL: Polybutadiene-Acrylonitrile

PERMEANT: Oxygen O2

MATERIAL: Polybutadiene-Styrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20-30	12.9	17.2 x 10 ⁻⁹	3	210			
	_								
7									
TV &									
2								r".	A A
									h
									-
1					,	and the second s			

References Reporting: 210

	Type or	Temp.		Permeability	Units	Ref.	Solubility	_	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20-30	1.5	2.0 x 10 ⁻⁹	3	210		6.7 x 10 ⁻⁹	
	Lexan	0	.50	6.7 x 10 ⁻¹⁰	3	388			
	Lexan	25	1.1	1.4 x 10 ⁻⁹	3	388	.50	2.1 x 10 ⁻⁸	
	Lexan	28	1.5	.20 x 10 ⁻⁹	1	208			
Ĺ	Lexan	50	1.95	2.6 x 10 ⁻⁹	3	388		5.4 x 10 ⁻⁸	
n	Lexan	75	3.4	4.5 x 10 ⁻⁹	3	388		1.3×10^{-7}	
	Lexan	100	5.1	6.8 x 10 ⁻⁹	3	388		2.4 x 10 ⁻⁷	
	Lexan	125	7.5	1.0 x 10 ⁻⁸	3	388			
	Lexan	150	13.5	1.8 x 10 ⁻⁸	3	388			
	Lexan	175	22.5	3.0 x 10 ⁻⁸	3	388			

PERMEANT: Oxygen O₂
MATERIAL: Polycarbonate

PERMEANT: Oxygen 02

MATERIAL: Polycarbonate

Type or Trade 1	remp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
BPA	Room	1.2	.16 x 10 ⁻⁹	1	203 206			
Mobay	31	2.0	.26 x 10 ⁻⁹	1	208	·		.0042 cm thick
200								
9								
		÷1						

References Reporting: 203,206,208, 210,388

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	.0075	.10 x 10 ⁻¹⁰	3	240			
Kel-F	25	.0075	.001 x 10 ⁻⁹	1	208			Unplasticized
Kel-F	25	.028	.028 x 10 ⁻⁷	6	378			•
Kel-F	30	.038	.05 x 10 ⁻⁹	3	340 374			30% Crystallinity
Kel-F	30	.0098	.013 x 10 ⁻⁹	3	340 374			80% Crystallinity
Kel-F-300	0	.0053	.07 x 10 ⁻¹⁰	3	311			30% Crystallinity
Kel-F-300	0	.082	1.1 x 10 ⁻¹⁰	3	311			Plasticized
Kel-F-300	0	.003	$.04 \times 10^{-10}$	3	311			Unplasticized
Kel-F-300	25	.03	.40 x 10 ⁻¹⁰	3	311			30% Crystallinity
Kel-F-300	30	.039	$.52 \times 10^{-10}$	3	311			Unplasticized

PERMEANT: Oxygen O₂

MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Oxygen O₂
MATERIAL: Polychlorotrifluoroethylene

τ		,			r:		 		
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
h.m	Kel-F-300	30	.42	5.6 x 10 ⁻¹⁰	3	311 325			Plasticized
	Kel-F-300	40	.069	.92 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	40	.019	.25 x 10 ⁻¹⁰	3	311			80% Crystallinity
.t	Kel-F-300	50	.032	$.43 \times 10^{-10}$	3	311			80% Crystallinity
TV7 0 70	Ke1-F-300	50	.108	1.44 x 10 ⁻¹⁰	3	311			30% Crystallinity
ა ი	Kel-F-300	60	.051	.68 x 10 ⁻¹⁰	3	311			80% Crystallinity
***************************************	Kel-F-300	60	.218	2.90 x 10 ⁻¹⁰	3	311			Unplasticized
-	Ke1-F-300	60	2.1	28 x 10 ⁻¹⁰	3	311 325			Plasticized
	Kel-F-300	75	.431	5.74 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	80	.139	1.85 x 10 ⁻¹⁰	3	311			80% Crystallinity

<u></u>			` <u>`</u>	I					
	ype or	Temp.	Permeability Std. Units (Value x 10-8)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Trade	e Name	ਂ C	(Value x 10)	as Reported	Rptd.	·	scc/cc Bar	cm /sec	
Trith	ene B	-25	.015	.20 x 10 ⁻¹⁰	3	242			
Trith	ene B	0	.83	1.1 x 10 ⁻¹⁰	3	242			
Trith	ene B	30	.42	5.6 x 10 ⁻¹⁰	3	242			
Trith	ene B	60	2.1	28.0 x 10 ⁻¹⁰	3	242			
Trith	ene	23	.0038	13	23	399			Concentration varying test
Trith	ene	23	.0052	18	23	399			Volume vary- ing test
Trith	ene	23	.0067	23	23	399			Pressure vary- ing test
		·							
				-					
								•	

References Reporting: 208,240,242, 311,325,340, 374,378,399

11,325,340, PERMEANT: Oxygen 0

MATERIAL: Polychlorotrifluororthylene

PERMEANT: Oxygen O2 MATERIAL: Polydimethyl-Butadiene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	20-30	1.6	2.1 x 10 ⁻⁹	3	210			
					·			
							٠.	
		.						

References Reporting: 210

Į
<u></u>
φ
3

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
Alathon 14	25	1.65	2.20×10^{-7}	6	378			
Alathon 14	25	1.65	.220 x 10 ⁻⁷	8	225		4.6 x 10 ⁻⁷	
Alathon 15	0	1.2	1.6 x 10 ⁻¹⁰	1	209 223			
Alathon 15	0	.75	1.0 x 10 ⁻¹⁰	1	223			Variable volume test
Alathon 15	0	.50	6.7 x 10 ⁻¹¹	1	223			Variable pressure test
Alathon 15	15	2.85	3.8 x 10 ⁻¹⁰	1	223			
Alathon 15	30	6.75	9.0 x 10 ⁻¹⁰	1	209 223			
Alathon 15	30	4.5	6.0 x 10 ⁻¹⁰	1	223			Variable volume test
Alathon 15	30	3.6	4.8 x 10 ⁻¹⁰	1	223			Variable pressure test
Alathon 15	50	15.0	2.0 x 10 ⁻⁹	1	209 223			

PERMEANT: Oxygen O₂
MATERIAL: Polyethylene

PERMEANT: Oxygen O2 MATERIAL: Polyethylene

Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Alathon 15	50	12.4	1.65 x 10 ⁻⁹	1	223			Variable volume test
Alathon 15	50	10.9	1.45 x 10 ⁻⁹	1	223			Variable volume test
	25				222	.0769		
	30	4.1	5.5 x 10 ⁻⁹	3	374			60% Crystallinity
	30	1.6	2.1 x 10 ⁻⁹	3	374			69% Crystallinity
	30	.83	1.1 x 10 ⁻⁹	3	374			78% Crystallinity
	30	.795	1.06 x 10 ⁻⁹	3	374			81% Crystallinity
	30	.38	.5 x 10 ⁻⁹	3	374			83% Crystallinity
Hypalon	20-30	2.1	2.8 x 10 ⁻⁹	3	210			
Hypalon	30	2.5	$.33 \times 10^{-9}$	1	208			.0069 cm

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
L-film	26	3.5	.47 x 10 ⁻⁹	1	208			.0024 cm thick
Monaxially Orientated	32	3.5	.46 x 10 ⁻⁹	1	208		·	.00483 cm thick
Biaxially Orientated	27	1.8	.24 x 10 ⁻⁹	1	208			.00254 cm thick
DE 2400	0	.581	$.0774 \times 10^{-9}$	1	211		·	.0013 in. thick
DE 2400	0	.431	$.0575 \times 10^{-9}$	1	211			.00156 in. thick
DE 2400	25	2.63	$.350 \times 10^{-9}$	1	211			.0013 in. thick
DE 2400	25	2.09	.278 x 10 ⁻⁹	1	211			.00156 in. thick
DE 2400	50	9.45	1.26 x 10 ⁻⁹	1	211			.0013 in. thick
DE 2400	50	7.95	1.06 x 10 ⁻⁹	1	211			.00156 in. thick
DE 2500	0	.521	.0695 x 10 ⁻⁹	1	211			.0015 in. thick

PERMEANT: Oxygen O₂
MATERIAL: Polyethylene

PERMEANT: Oxygen O₂
MATERIAL: Polyethylene

			·	•					
	Type or	Temp.	Permeability Std. Unitso	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C '	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	DE 2500	25	2.30	.306 x 10 ⁻⁹	1	211			.0015 in. thick
	DE 2500	50	8.03	1.07×10^{-9}	1	211			.0015 in. thick
	.917g/cc	23	.7839	.1045 x 10	9 1	207			.00254 cm thick
	.922g/cc	30	4.13	55 x 10 ⁻¹⁰	3	240			
	.922g/cc	30	5.2	69 x 10 ⁻¹⁰	3	311			, ·
, [.929g/cc	32	.83	.11 x 10 ⁻⁹	1	208			.0023 cm thick
	.938g/cc	30	1.6	21 x 10 ⁻¹⁰	3	311			
	.950g/cc	23	.50	.066 x 10 ⁻¹	0 1	207			.00254 cm thick
	.953g/cc	30	.83	11 x 10 ⁻¹⁰	3	311			
	.960g/cc	30	.47	.062 x 10 ⁻⁹	1	207			

PERMEANT:

MATERIAL:

_				1				- 6:	
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	.961g/cc	27	2.2	.29 x 10 ⁻⁹	1	208			.0018 cm thick
	.964g/cc	25	.31	$.31 \times 10^{-7}$	6	378			
	.960g/cc	30	.80	10.6×10^{-10}	3	240		:	
	Alathon 14	25				237	.0395		
777	Alathon 34	25				237	.031		
TY 8 35	Grex	25	1			237	.022		

References Reporting: 207,208,209, 210,211,222, PERMEANT: Oxygen O 223,225,237, 240,311,374, 378

PERMEANT: Oxygen O2

MATERIAL: Polyethylene Terephthalate

_		 		<u> </u>					
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20–30	.023	.03 x 10 ⁻⁹	3	210			
		23	.014	.0019 x 10 ⁻⁹	1	203, 207			.001 in. thick
		NG	.023	.30 x 10 ⁻¹⁰	3	275			Average of 3 samples
7	Mylar A	-25	.0035	.046 x 10 ⁻¹⁰	3	242			
TAT O 35	Mylar A	0	.0098	.13 x 10 ⁻¹⁰	3	242			
	Mylar A	23	.017	59	23	399			Concentration varying test
	Mylar A	23	.017	59	23	399	·		Volume vary- ing test
	Mylar A	23 /-	.014	48	23	399			
	Mylar A	25	.019	$.019 \times 10^{-7}$	6	378			
	Mylar A	30	.034	.45 x 10 ⁻¹⁰	3	242			

IV-8.3

					·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 °)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Mylar A	30	.017	.22 x 10 ⁻¹⁰	3	240 311 325			
	Mylar A	60	.083	1.1 x 10 ⁻¹⁰	3	242			
	Mylar 25-V-200	50	Very low			211		:	
		25				224	.075		
TV_8 37									
7									
		·							

References Reporting: 203,207,210

211,224,240 PERMEANT: Oxygen O2
242,275,311
325,378,399 MATERIAL: Polyethylene Terephthalate

PERMEANT: Oxygen O₂
MATERIAL: Polyformaldehyde (acetal)

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported		Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20-30	.029	.038 x 10 ⁻⁹	3	210			
	_					yan ya raya da da 1 Maya yada da 200 a			
1									
TV/ 0 3									
ລ									
			· ·						
A									

References Reporting: 210

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		20-30	.98	1.3 x 10 ⁻⁹	3	210			
7,1									
TV_8 30			¥				·		
اد									
						:			
						· · · · · · · · · · · · · · · · · · ·			

References Reporting: 210

PERMEANT: Oxygen O₂

MATERIAL: Polyisobutylene-Isoprene

PERMEANT: Oxygen O₂
MATERIAL: Polymethylpentadiene

Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or	_	Std. Units (Value x 10)	retweaptitcy		Rel.	}	_	Conditiones
Trade Name	°C	(Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	25	7.52	7.62 x 10 ⁻⁸	8	390	.136	.55 x 10 ⁻⁶	
	50	25.6	25.9 x 10 ⁻⁸	8	390	.129	1.98 x 10 ⁻⁶	
		-						
			į					
-								

References Reporting: 390

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		20-30	1.7	2.3×10^{-9}	3	210			
		23	.702	2420	23	399			Volume vary- ing test
i		23	.720	2483	23	399			Concentration test
H		23	.673	2320	23	399			Pressure vary- ing test
IV-8.41		25	1.2	1.2×10^{-7}	6	378			
		30	1.6	2.1×10^{-9}	3	374			
	Profax	28	1.05	.14 x 10	1	208			.0015 cm thick
	Cryovac	30	.83	.11 x 10	1	208			.0015 cm thick
	Escon	27	1.05	.14 x 10	1	208			Monaxial
	Escon	27	.58	.077 x 10	-9 1	208			Biaxial

PERMEANT: Oxygen O₂
MATERIAL: Polypropylene

PERMEANT: Oxygen O2

MATERIAL: Polypropylene

1	Type or le Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	•	Comments
.907	g/cc	30	1.72	2.29 x 10 ⁻⁹	3	385			
							·	·	
					·				
								:	
		·					_		
	۵.								

References Reporting: 208,210,374, 378,385,399

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	5.6	4.4	5	346			
	·	Room	18	2.40 x 10	1	241 385	·		
		Room	.9	.12 x 10	9 1	203			
, T		20	1.3	.174 x 10	-9 1	207			.001 in. thick
TV-8.43		20	18.2	2.42 x 10	9 1	243			
ω		20-30	1.13 to 18.8	1.5 to 25 x 1	o ⁻⁹ 3	210			
		23	.213	745	23	399			Concentration varying test
		23	.294	1015	23	399			Volume vary- ing test
		23	.272	937	23	399			Pressure vary- ing test
		30	.83	11 x 10 ⁻¹⁰	3	240 311			

PERMEANT: Oxygen O₂
MATERIAL: Polystyrene

PERMEANT: Oxygen O2 MATERIAL: Polystyrene

Γ		 			r		_		<u> </u>
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C,	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	18.0	2.40 x 10 ⁻⁹	1	243			
		40	17.6	2.35 x 10 ⁻⁹	1	243	·		
-	Polyflex	25	1.6	.21 x 10 ⁻⁹	1	208			.00303 cm thick
	DOW 0641	25	18.3	18.5 x 10 ⁻⁷	. 6	378			
1									

References Reporting: 203, 207, 208, 210, 240, 241, 243, 311, 346, 378, 385, 399

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20-30	.26	$.34 \times 10^{-9}$	3	210			
-									
717 0 15									
ק ק									
					·				
<u> </u>	-								
h									

References Reporting: 210

PERMEANT: Oxygen 02

MATERIAL: Polystyrene-Acrylonitrile

PERMEANT: Oxygen O₂
MATERIAL: Polystyrene-Methacrylonitrile

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20-30	.12	.16 x 10 ⁻⁹	3	210			
			~~~						
\T									
TV_8_46									

References Reporting: 210

Γ	····		<del></del>		r		<del> </del>	- <del>-</del>	
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20-30	1.14 to 3.6	1.52 to 4.8 x 10 ⁻⁹	3	210			
	Estane	32	1.3	.17 x 10 ⁻⁹	1	208			.0025 cm thick
	Adiprene	29	3.6	.48 x 10 ⁻⁹	1	208			.0021 cm thick
Н	PC-6	30	1.6	.21 x 10 ⁻⁹	1	208			.010 cm thick
IV-8.47									
7									
		·							
1									
				·	·				

References Reporting: 208, 210

PERMEANT: Oxygen O₂
MATERIAL: Polyurethane

PERMEANT: Oxygen O₂
MATERIAL: Polyvinyl Butyral

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Butbar B76	27	18.2	2.42 x 10 ⁻⁹	1	208			.00094 cm thick
),T									
TV Q /A									
~									
								·	

References Reporting: 208

٢							1:		
1	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	.105	.014 x 10 ⁻⁹	1	203			
		28	1.88	.25 x 10 ⁻⁹	1	208			
		20-30	.09 to 4.5	.12 to .6 x 10 ⁻⁹	3	210			
-i		30	.09	$1.2 \times 10^{-10}$	3	240 311			
777 0 10	Plasticized	23	.066	226	23	399			Concentration varying test
٥	Plasticized	23	.064	219	23	399			Volume vary- ing test
	Plasticized	23	.062	212	23	399			Pressure vary- ing test
	Plasticized	23	.056 to .9	.0074 ₉ to .120 x 10 ⁻⁹	1	207		!	
	Rigid	23	.035	.0047 x 10 ⁻⁹	1	207			
	THF Cast Unplasticized	32	. 26	.034 x 10 ⁻⁹	1	208			.00508 cm thick

PERMEANT: Oxygen O₂
MATERIAL: Polyvinyl Chloride

		<del></del>				<del> </del>		4		
	Type or	Temp.	Permea	ability Units	Permeability	Units	Ref.	Solubility	_	Comments
r	Prade Name	°C	(Value	Units x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	F Cast 16.89 asticized	6 31	.75		.10 x 10 ⁻⁹	1	208			.00788 cm thick
	F Cast 19.39 asticized	6 31	1.35		.18 x 10 ⁻⁹	1	208			.00457 cm thick
8 50 50										
5'			· · · · · · · · · · · · · · · · · · ·							
	·									
	·									

References Reporting:203,207,208, 210,240,311, 399

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units		Solubility	Diffusivity cm ² /sec	Comments
	Fluorinax	28	6.98	.93 x 10 ⁻⁹	1	208			.00256 thick
4									
TV-8.51									

References Reporting: 208

PERMEANT: Oxygen O2

MATERIAL: Polyvinyl Chloride (fluorinated)

PERMEANT: Oxygen O₂
MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	_	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
		0	.46	.061 x 10	.9 1	211 219			
	VYHH	2				221		$1.74 \times 10^{-4}$	
-	VYHH	11				221		$6.12 \times 10^{-4}$	1
_ _ _	VYHH	14				221		$9.50 \times 10^{-4}$	
TV_8 5		23	.96	3300	23	399			Concentration varying test
٥		23	.43	1470	23	399			Volume vary- ing test
		23	.46	1590	23	399			Pressure vary- ing test
		Room	2.3	.3 x 10 ⁻⁹	1	241 385	·		
	VYHH	24				221		12.6 x 10 ⁻⁴	
		25	2.0	$.27 \times 10^{-9}$	1	211 219			

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 ⁻⁶ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		50	7.1	.95 x 10 ⁻⁹	1	221			
	VYHH	54				221		75.5 x 10 ⁻⁴	
	VYHH	66						129.5 x 10 ⁻⁴	
ij	VYHH	88				221		291.8 x 10 ⁻⁴	
IV-8.53									
ω									
					·				
		. ,							
							·		

References Reporting: 211,219,221, 241,385,399 PERMEANT: Oxygen O2

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

PERMEANT: Oxygen O₂
MATERIAL: Polyvinyl Fluoride

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
2		23	.013	44	23	399	·		Concentration varying test
		23	.014	47	23	399			Volume vary- ing test
		23	.015	52	23	399			Pressure vary- ing test
н		20-30	.015	.02 x 10 ⁻⁹	3	210			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
IV-8.5				·					
54			·						( )

References Reporting: 210, 399

Туре	е	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade 1		°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		Room	.023	$.003 \times 10^{-9}$	1	203			
	-	20-30	.004	.005 x 10 ⁻⁹	3	210			
		30	.004	.053 x 10 ⁻¹⁰	3	240 311 325			
Saran		NG	.0025	.56	7	389	1.0		
Saran		23	.0045	.0006 x 10 ⁻⁹	1	207			.001 in. thick
Saran		31	.0083	.0011 x 10 ⁻⁹	1	208			.001 in. thick
Saran 5	17	0	.0012	.016 x 10 ⁻¹⁰	3	242			
Saran 5	17.	25	.0018	.0018 x 10 ⁻⁷	6	378			
Saran 5	17	30	.004	.051 x 10 ⁻¹⁰	3	242			
Saran 5	17	60	.49	.65 x 10 ⁻¹⁰	. 3	242		·	

PERMEANT: Oxygen 02

MATERIAL: Polyvinylidene Chloride

PERMEANT: Oxygen O2

MATERIAL: Polyvinylidene Chloride

ſ	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
IV-8.56	or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	<u></u>	
	Saran 517	90	.30	4.0 x 10 ⁻¹⁰	3	242			
								·	
	·						·		

References Reporting: 203, 207, 208, 240, 242, 311, 325, 378, 389

Diffusivity Permeability Units Ref. Solubility Comments Type Temp. Permeability Std. Units (Value x 10⁻⁸) or cm²/sec Trade Name °C as Reported Rptd. scc/cc Bar  $1.5 \times 10^{-9}$ 20-30 1.1 3 210  $.22 \times 10^{-9}$ 1.7 Viton A 1 208 .02 cm thick 26 IV-8.57

References Reporting: 208, 210

PERMEANT: Oxygen O2

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

PERMEANT: Oxygen O₂
MATERIAL: Polyvinyl Toluene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		23	1.66	.221 x 10 ⁻⁹	1	207			.00254 cm thick
				·					
1,1									
22 8 77									
١									
			·						

References Reporting: 207

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	1.05	.14 x 10 ⁻⁹	1	203	,	<u> </u>	
		25	.977	.99 x 10 ⁻⁸	8	390	.121	.081 x 10 ⁻⁶	
		26	4.2	.56 x 10 ⁻⁹	1	208			.034 cm thick
		30	.98	13.0 x 10 ⁻¹⁰	3	240 311 325			
		50	3.98	4.03 x 10 ⁻⁸	8	390	.104	$.384 \times 10^{-6}$	
0	ppanol B-200	25	.89	.90 x 10 ⁻⁷	6	378			
				·					

References Reporting: 203,208,240,
311,325,378, PERMEANT:
390

Oxygen O₂

Rubber, Butyl MATERIAL:

PERMEANT: Oxygen O₂
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	450	60 x 10 ⁻⁹	1	203 206 297			
				,		,			
Ī									
						<u>.</u> .			
-			·		,				
		, , , , , , , , , , , , , , , , , , ,							
							·		

References Reporting: 203, 206, 297

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	82.5	11 x 10 ⁻⁹	1	203 206			
7									
17 0 61									
1									
-									
				-					

References Reporting: 203, 206

PERMEANT: Oxygen O2 MATERIAL: Rubber, Fluorosilicone

PERMEANT: Oxygen O₂
MATERIAL: Rubber Hydrochloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
]	Pliofilm	27	1.9	$.25 \times 10^{-9}$	1	208			.0183 cm thick
	Pliofilm FM-1	<b>-</b> 25	.026	$.34 \times 10^{-10}$	3	242			
	Pliofilm FM-1	0	.16	2.1 × 10 ⁻¹⁰	3	242			
	Pliofilm FM-1	25	.40	$.40 \times 10^{-7}$	6	378			
	Pliofilm FM-l	30	.41	$5.4 \times 10^{-10}$	3	242	·		
	Pliofilm FM-1	60	1.9	25.0 × 10 ⁻¹⁰	3	242			
	Pliofilm FM	30	.41	$5.4 \times 10^{-10}$	3	325			
		23	.113	.0151 x 10 ⁻⁹	1	207			.001 in. thick
		20 <b>-</b> 30	.019 to .41	.025 to _9	3	210			
	Pliofilm NO	30	.023	.30 x 10 ⁻¹⁰	3	240			

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
Pliofilm P4	30	1.8	24 x 10 ⁻¹⁰	3	311			
						·		
		·						
		·						
,					•			
		·	· .					

PERMEANT: Oxygen 02

207, 208, 210, 240, 242, 311, 325, 378 Rubber Hydrochloride MATERIAL:

PERMEANT: Oxygen  ${\rm O}_2$  MATERIAL: Rubber, Methyl

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	1.6	1.6 x 10 ⁻⁷	6	378			
		25	1.6	1.6 x 10 ⁻⁸	8	390	.113	.14 x 10 ⁻⁶	
		30	1.58	$21.1 \times 10^{-10}$	3	325			
빍		50	7.0	$7.1 \times 10^{-8}$	8	390	.115	.61 x 10 ⁻⁶	
IV-8.64			·						
	-								
		,	·						
						····			

References Reporting: 325, 378, 390

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
		Room	17.3	2.3 x 10 ⁻⁹	1	241 385			·
		Room	18.0	2.4 × 10 ⁻⁹	1	203 206			
Ĺ		20 <b>-</b> 30	17.3	23.0 x 10 ⁻⁹	3	210			
7,		25	17.8	1.8 x 10 ⁻⁶	6	266 378 425	·		
7.7 0 7.7		25	17.57	$1.78 \times 10^{-7}$	8	225		$17.3 \times 10^{-7}$	
`		25				222	.10		
		25	17.5	17.7 x 10 ⁻⁸	8	390	.111	1.58 x 10 ⁻⁶	
<u></u>		30	17.48	233 x 10 ⁻¹⁰	3	240 325			
		50	46.4	47.0 x 10 ⁻⁸	8	390	.099	$4.70 \times 10^{-6}$	
		-							

PERMEANT: Oxygen O2

MATERIAL: Rubber, Natural

203, 206, 210, 222, 225, 240, 241, 266, 325, 378, 385, 390, 425

PERMEANT: Oxygen O2

MATERIAL: Rubber, Nitrile Silicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
		Room	63.8	8.5 x 10 ⁻⁹	1	203 206			
		31	218	29 x 10 ⁻⁹	1	208			Cured 16 hr
		31	225	30 x 10 ⁻⁹	1	208			Cured 1 hr
4									
0 66				·					
									44

References Reporting: 203, 206, 208

	Type or Trade N		Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Thiokol ZR-300		23	5.78	.77 x 10 ⁻⁹	1	208			.2 cm thick
	Thiokol 1	В	25	.22	$.22 \times 10^{-7}$	6	378			
-										
7,4										
77 a 77										
7										
-	· ·	<u> </u>								
1	•.									

References Reporting: 208, 378

PERMEANT: Oxygen O₂
MATERIAL: Rubber, Polysulfide

PERMEANT: Oxygen O₂
MATERIAL: Rubber, Silicone

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	NG	269	$3.59 \times 10^{-8}$	1	223			
	Room	195	26 x 10 ⁻⁹	1	385			
	20- 30	75 to 450	100 to 600 x 10 ⁻⁹	3	210			
Coated on fabric	Room	158 to 360	21 to 48 x 10 ⁻⁹	1	385			
RTV-11	29	380	50.6 x 10 ⁻⁹	1	409			
RTV-11	33	386	51.4 x 10 ⁻⁹	1	409			
RTV-11	44	428	57.1 x 10 ⁻⁹	1	409			
RTV-20	29	299	39.9 x 10 ⁻⁹	1	409			
RTV-20	33	308	41.0 x 10 ⁻⁹	1	409			
RTV-20	43	342	45.6 x 10 ⁻⁹	1	409			

	<del></del>			·				***
Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
RTV-40	24	320	42.6 x 10 ⁻⁹	1	409			
RTV-40	34	344	45.8 x 10 ⁻⁹	1	409			
RTV-40	43	351	46.8 x 10 ⁻⁹	1	409			
RTV-90	23	398	53 x 10 ⁻⁹	1	208			.031 cm in.
RTV-501	23	404	53.8 x 10 ⁻⁹	1	409			
RTV-501	33	445	59.3 x 10 ⁻⁹	1	409			
RTV-501	43	493	65.7 x 10 ⁻⁹	1	409		-	
RTV-501	6	319	42.5 x 10 ⁻⁹	1	409			
RTV-502	11	344	45.9 x 10 ⁻⁹	1	409			
RTV-502	24	270	36 x 10 ⁻⁹	1	208			.0141 cm thick

PERMEANT: Oxygen O₂
MATERIAL: Rubber, Silicone

PERMEANT: Oxygen O₂
MATERIAL: Rubber, Silicone

		<u> </u>	<u> </u>					
Type or	Temp.		Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
RTV-502	23	415 .	55.3 x 10 ⁻⁹	1	409			·
RTV-502	33	453	60.4 x 10 ⁻⁹	1	409	·		
RTV-502	43	497	66.3 x 10 ⁻⁹	1	409			
RTV-601	33	567	75.6 x 10 ⁻⁹	1	409			
RTV-601	43	583	77.7 x 10 ⁻⁹	1	409			
Eccosil 4712	2 21	210	28.0 x 10 ⁻⁹	1	409			
Eccosil 4712	2 32	234	$31.2 \times 10^{-9}$	1	409			
Eccosil 471:	2 44	257	$34.3 \times 10^{-9}$	1	409			
Sylgard 182	21	300	40.0 x 10 ⁻⁹	1	409			
Sylgard 182	34	346	46.1 x 10 ⁻⁹	1	409			

_		<del></del>		<u> </u>			<del> </del>		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Sylgard 182	44	384	51.2 x 10 ⁻⁹	1	409			
	G.E. SE450	Room	443	59 x 10 ⁻⁹	1	203 206			
	Silastic-50	Room	195	26 x 10 ⁻⁹	1	203 206 241			
ł	Silastic	25	443	59 x 10 ⁻⁹	1	208			.0136 cm thick
	Silastic LS-63	26	78	10.4 x 10 ⁻⁹	1	208		-	.23 cm thick
]									:
		,							
								`	

PERMEANT: Oxygen O₂

203, 206, 208, 210, 223, 241, 385, 409

Rubber, Silicone MATERIAL:

PERMEANT: Oxygen O2

MATERIAL: Silver

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	NC	1.5 x 10 ⁻¹⁷	13	378			
						····			
IV.									
IV-8.72									
				·		- 1 - <del>1</del>			

References Reporting: 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		23	.262	$.0349 \times 10^{-9}$	1	207			.00254 cm
WT	· · · · · · · · · · · · · · · · · · ·						·		
TV_8 73									
						· · · · · · · · · · · · · · · · · · ·			
		7							
	· · · · · · · · · · · · · · · · · · ·								

PERMEANT: Oxygen O₂
MATERIAL: Styrene-Acrylonitrile

PERMEANT: Oxygen O2

MATERIAL: Teflon

_				· · · · · · · · · · · · · · · · · · ·					
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		Room	.003	.0004 x 10	9 1	203 206			
	TFE	25	7.5	$7.6 \times 10^{-7}$	6	378			
1	FEP	23	NC	.39	24	333			
VI	FEP	25	3.37	750	7	334			
IV-8.74	FEP	50	9.22	2050	7	334			
	FEP	75	17.99	4000	7	334			
	FEP	100	31.48	7000	7	334			
								·	

References Reporting: 203,206,333, 334,378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Arc-cast	2100	NC	.10	15	432			
	Arc-cast	2200	NC	.15	15	432			
	Arc-cast	2300	NC	.14	15	432			
H	Arc-cast	2600	NC	.12	15	432			·
IV-8.75									
σ									
						entrege seggeste de distribute de describit de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de l			

PERMEANT: Oxygen O₂
MATERIAL: Tungsten

PERMEANT: Oxygen O₂
MATERIAL: Vinylidene-Acrylonitrile

_	· · · · · · · · · · · · · · · · · · ·				,	·····	<b>-</b>		
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	F218	NG	.0032	.710	7	389			
	F220	NG	.0154	3.42	7	389			
IV-8.7									
76									
		·							
1						÷			

References Reporting: 389

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	Room	.0038	as Reported .0005 x 10 ⁻⁹	Rptd.	203 206	scc/cc Bar	cm /sec	
-									
TV_8.77									
7									
						nga kandinga dalah dalah dangan sa sa sa sa dalah sa ka			
***************************************									

References Reporting: 203, 206

PERMEANT: Oxygen 02

MATERIAL: Vinylidene Chliride-Vinylchloride

PERMEANT: Oxygen O2

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value $\times 10^{-6}$ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	x-500	25	.015	.20 x 10 ⁻¹⁰		311			
	X-500	40	.089	1.18 x 10 ⁻¹⁰	3	311			
	x-500	50	.154	2.05 x 10 ⁻¹⁰	3	311		,	
-	X-500	75	.580	7.73 x 10 ⁻¹⁰	3	311			
70 70	X-5500	0	.083	1.11 x 10 ⁻¹⁰	3	311		Ì	
	x-5500	13	.281	3.74 x 10 ⁻¹⁰	3	311			
	x-5500	25	.701	9.34 x 10 ⁻¹⁰	3	311			
	<b>x</b> –5500	50	3.79	50.5 x 10 ⁻¹⁰	3	311			
	x_3700	0	.047	.62 x 10 ⁻¹⁰	3	311			
	x-3700	25	.410	$5.46 \times 10^{-10}$	3	311			

V - 8.78

Permeability Units Solubility Diffusivity Type Temp. Permeability Ref. Comments Std. Units (Value x 10⁻⁸) or cm²/sec as Reported scc/cc Bar Trade Name °C Rptd. 34.1 x 10⁻¹⁰ 3 311 2.56 X-3700 50  $111 \times 10^{-10}$ 3 311 8.33 X-3700 75 IV-8.79

References Reporting: 311

PERMEANT: Oxygen 02

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

PERMEANT: Oxygen O2

MATERIAL: Visqueen

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20	2.44	.325 x 10 ⁻⁹	1	243			
		30	4.13	.55 x 10 ⁻⁹	1	243			
		40	6.9	.92 x 10 ⁻⁹	1	243			
H									
IV-8.80									·
	:								
						-			
	:		-						

References Reporting: 243

Type or Trade Na		Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar		Comments
	30	1.13	15.1 × 10 ⁻¹⁰	3	325			
A	25	1.13	1.15 x 10 ⁻⁷	6	378			
A	25	1.13	1.15 x 10 ⁻⁸	8	390	.047	.24 x 10 ⁻⁶	
A	50	4.73	4.79 x 10 ⁻⁸	8	390	.051	.92 x 10 ⁻⁶	
						***		
1 : 								

References Reporting: 325,378,390

PERMEANT: Oxygen O₂
MATERIAL: Vulcaprene

	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		NG	.526	117	7	247	· · ·		
IV-9.								**************************************	
<b></b>									
			Á			house the of association in the second			

PERMEANT: Unsymmetrical Dimethyl Hydrazine

MATERIAL: Nickel

PERMEANT: Unsymmetrical Dimethyl Hydrazine

MATERIAL: Teflon

					, · · · · · · · · · · · · · · · · · ·		<del></del>		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	٥C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Sprayed TFE	NG	1.26	280	7	247			10 mils thick
	Sprayed co- dispersion of TFE and FEP		1.21	270	7	247	·		10 mils thick
	Sprayed High Density TFE	NG	.620	137.8	7	247			16 mils thick
	Sprayed FEP	NG	.270	60	7	247			10 mils thick
IV-9.		NG	NC	.028	22	299	·	-	Sample #1
2		NG	NC	.003	22	299			Sample #2
	•								
				·				-	•
•									

References Reporting:247,299

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	FEP/Al/FEP Laminate	NG	.031	7	7	247			7-1/4-3 mils thick
	Sprayed TFE/FEP Laminate	NG	.755	168	7	247			3 mils each
IV-9.3									
						· · · · · · · · · · · · · · · · · · ·			
***************************************		·							

PERMEANT: Unsymmetrical Dimethyl Hydrazine

MATERIAL: Teflon Laminates

PERMEANT: Unsymmetrical Dimethyl Hydrazine

MATERIAL: Tin

		···		. P					•
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	<u> </u>	Comments
	Trade Name	° C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec_	e e e e e e e e e e e e e e e e e e e
		NG	.153	34	7	247			Section 1. Section 2.
-									
						personal de l'Albanda de la companya			
IV-9.									
4									
						and the second			

References Reporting: 247

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	4390	586 x 10 ⁻⁹	1	203			
		25	14850	1980 x 10 ⁻⁹	1	206	हर्ड : ( कर्रो		
V_1 .1									

References Reporting: 203, 206

PERMEANT: Acetone (CH₃ COH₃)
MATERIAL: Rubber, Dimethylsilicone

PERMEANT: Acetylene  $(C_{22}^{H})$ 

MATERIAL: Butadiene Acrylonitrile

PERMEANT: Acetylene  $(C_2H_2)$ 

MATERIAL: Polystyrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		NG	3.8	3.0	5	346			
V_2 2							·		
						····			
					·				

References Reporting: 346

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity  cm ² /sec	Comments
		25	1.26	1.28 x 10 ⁻⁸	8	390			
		50	5.74	5.82 x 10 ⁻⁸	8	390			
							·		
	<b>8</b>								
ر د د									
-									

The second second

References Reporting: 390

PERMEANT: Acetylene (C₂H₂)
MATERIAL: Rubber, Butyl

PERMEANT: Acetylene (C2H2)

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	19800	2640 x 10 ⁻⁹	1	203			
								i .	
3									
-									
					·				
						2			

References Reporting: 203

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	74.5	75.5 x 10 ⁻⁸	8	390			
		50	192	195 x 10 ⁻⁸	8	390			
V-2 5									
	\								
					·				

PERMEANT: Acetylene  $(C_2H_2)$  MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
		1250	.75	1 x 10 ⁻¹¹	11	290 294		1.9 E.S. 25.12 SE 24.4 DE	
						······································			A A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S
V-3.1	•								
	· · · · · · · · · · · · · · · · · · ·								
				·					
		:							
	·								

References Reporting: 290, 294

PERMEANT: Argon A

MATERIAL: Alumina (ceramic)

PERMEANT: Argon A

MATERIAL: Butadiene-Methyl Methacrylate Polymer

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20	.58	.0059 x 10 ⁻⁶	3	401			
		52	2.7	$.027 \times 10^{-6}$	3	401			
C E_W							-		
`					·				
								-	
							·		

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	5.7	4.5	5	346	-		
V-3.									
3						·			
						· · · · · · · · · · · · · · · · · · ·			
	-								

References Reporting: 346

PERMEANT: Argon A

MATERIAL: Ethyl Cellulose

PERMEANT: Argon A

MATERIAL: Hydropol

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar		Comments
		25				222	.142		
		25	8.3	$.84 \times 10^{-7}$	8	225		9.6 x 10 ⁻⁷	
	-								
		·							
	-					·			
			<u></u>						
<u> </u>									

References Reporting: 222, 225

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Solubility Diffusivity Type Temp. Units Ref. Comments or cm²/sec ٥С as Reported Rptd. scc/cc Bar Trade Name  $.0068 \times 10^{-6}$  $.033 \times 10^{-5}$ 36 .67 3 401 .153  $.0144 \times 10^{-6}$ 1.42 52 3 401  $.0655 \times 10^{-6}$ 86 6.46 3 401

References Reporting: 401

PERMEANT: Argon

MATERIAL: Neoprene

PERMEANT: Argon A

MATERIAL: Polycarbonate

ſ	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Commonia
	or	_	Std. Units (Value x 10 )	Permeanificy		Rel.	_	_	- Comments
	Trade Name	°C	(Value x 10 ⁻⁶ )	as Reported	Rptd.	· · · · · · · · · · · · · · · · · · ·	scc/cc Bar	cm ² /sec	
	Lexan	0	.32	$4.3 \times 10^{-10}$	3	388			
	Lexan	25	.60	$8.0 \times 10^{-10}$	3:	388	:	1	
	Lexan	50	1.24	1.65 x 10 ⁻⁹	3	388			
	Lexan	75	2.4	$3.2 \times 10^{-9}$	3	388			
7 Z	Lexan	100	3.8	5.0 x 10 ⁻⁹	3	388			
	Lexan	125	6.0	$8.0 \times 10^{-9}$	3	388			• • • •
	Lexan	150	13.5	1.8 x 10 ⁻⁸	3	388			
	Lexan	175	32.3	$4.3 \times 10^{-8}$	3	388			
		: . :							

Diffusivity Туре Permeability Permeability Units Ref. Solubility Comments Temp. Std. Units (Value x 10⁻⁸) or  $cm^2/sec$ as Reported Trade Name ٥C Rptd. scc/cc Bar  $3.6 \times 10^{-7}$  $.208 \times 10^{-7}$ 8 2.05 225 25 Alathon 14 222 .102 25  $1.05 \times 10^{-8}$ 387 Grex 25 .104 6

References Reporting: 222,225,387

PERMEANT: Argon A

MATERIAL: Polyethylene

PERMEANT: Argon A

MATERIAL: Polyethylene Terephthalate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25				224	.0076		
						· · · · · · · · · · · · · · · · · · ·			
4									
0  -									
					-				
	:								

Permeability

Units

Ref.

Solubility

Diffusivity

Comments

References Reporting: 346

Туре

Temp.

PERMEANT: Argon A

MATERIAL: Polystyrene

PERMEANT: Argon A

MATERIAL: Polystyrene-Butadiene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20	1.08	.0109 x 10 ⁻⁶	3	401			
		51	4.0	.041 x 10 ⁻⁶	3	401			
		65	7.3	$.074 \times 10^{-6}$	3	401			: :
_		·		•					
V-3 10		,							

Solubility Diffusivity Permeability Permeability Units Ref. Type Temp. Std. Units (Value x 10 8) or cm²/sec as Reported scc/cc Bar Trade Name °C Rptd. 203  $60 \times 10^{-9}$ 450 1 297 Room

References Reporting: 203, 297

PERMEANT: Argon A

MATERIAL: Rubber, Dimethylsilicone

Comments

PERMEANT: Argon A

MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25				222	.13		
		25	17.2	$1.74 \times 10^{-7}$	8	225		$13.6 \times 10^{-7}$	
		35	21.7	22 x 10 ⁻⁸	8	342			#**
<-									
V-3 12									; :
					·				
-									

References Reporting: 222, 225, 342

Permeability Solubility Diffusivity Temp. Permeability Units Ref. Comments Type Std. Units (Value x 10⁻⁸) or cm²/sec as Reported Trade Name Rptd. scc/cc Bar °C 1080 x 10⁻⁹ Room 8100 1 203 1910 x 10⁻⁹ 14300 25 1 206

References Reporting: 203, 206

PERMEANT: Benzene (C6H6)

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	6750	900 x 10 ⁻⁹	1	203	-		
		25	6750	900 x 10 ⁻⁹	1	206			
V-5.1		·							
	-							1 1 1	

References Reporting: 203, 206

PERMEANT: Butane CH₃ (CH₂)₂ CH₃ MATERIAL: Rubber, Dimethylsilicone

PERMEANT: Butane CH₃(CH₂)₂CH₃
MATERIAL: Rubber, Polydimethylsiloxane

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
		30	12980	1.73 x 10 ⁻⁶	1	284			Average of 3 samples
		40	12380	1.65 x 10 ⁻⁶	1	284			Average of 3 samples
فسيوستوليباء ب		50	11630	1.55 x 10 ⁻⁶	1	284			Average of 3 samples
		60	11030	$1.47 \times 10^{-6}$	1	284			Average of 3 samples
		70	11330	1.51 x 10 ⁻⁶	1	284		a sacra e e e	Average of 3 samples
V-5-2									e ja se e se jeze se kreser

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	7250	.967 x 10 ⁻⁶	1	284			Average of 3 samples
		40	7058	.941 x 10 ⁻⁶	1	284			Average of 3 samples
		50	6861	.916 x 10 ⁻⁶	1	284			Average of 3; samples
		60	6691	.892 x 10 ⁻⁶	1	284			Average of 3 samples
V-5.3		70	6541	.872 x 10 ⁻⁶	1	284			Average of 3 samples

References Reporting: 284

PERMEANT: iso-Butane (CH₃)₃ CH

MATERIAL: Rubber, Polydimethylsiloxane

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
		1250	7500	1.00 x 10 ⁻⁹	11	294	-	(2004) (2004)	X
					·			Park Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the C	•
								The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
V-6.1								And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	
								Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Sectio	

References Reporting: 294

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Alumina Ceramic

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: Buna S

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	92.8	94 x 10 ⁻⁷	6	378			
		30	93.0	1240 x 10 ⁻¹⁰	3	325			
V-6 2									

References Reporting: 325, 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	0.06	80 x 10 ⁻¹³	1	275			
1									
4									
V-6.3									
									·

References Reporting: 275

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Cellophane-Aluminum-Saran Laminate

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Cellulose Acetate

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		0	1.58	2.11 x 10 ⁻¹⁰	1	219			
		0	2.35	3.13 x 10 ⁻¹⁰	1	219			
		0	2.40	$3.20 \times 10^{-10}$	1	219			
		0	2.61	$3.48 \times 10^{-10}$	1	219			2 samples had this value
7 2 4		0	4.32	$5.76 \times 10^{-10}$	1	219			
		0	7.20	$9.60 \times 10^{-10}$	1	219			
		20	1.8	$2.4 \times 10^{-9}$	3	210			
		25	4.24	$5.65 \times 10^{-10}$	1	219			
		25	4.73	$6.31 \times 10^{-10}$	1	219			
		25	6.31	$8.41 \times 10^{-10}$	1	219			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	solubility	Diffusivity cm ² /sec	Comments
	·	25	6.92	9.23 x 10 ⁻¹⁰	1	219			
		25	9.08	12.1 x 10 ⁻¹⁰	1	219			
		25	14.1	18.8 x 10 ⁻¹⁰	1	219			
		25	6.31	8.41 x 10 ⁻¹⁰	1	211			
77 /		Room	4.50	6.0 x 10 ⁻¹⁰	1	241			
		Room	5.25	7.0 x 10 ⁻¹⁰	1	241			
		Room	6.00	8.0 x 10 ⁻¹⁰	1	241			
		Room	6.75	9.0 x 10 ⁻¹⁰	1	241			
		Room	10.5	14.0 x 10 ⁻¹⁰	1	241			
		Room	15.8	21.0 x 10 ⁻¹⁰	1	241			

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Cellulose Acetate

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Cellulose Acetate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
·	Room	6.75	0.9 x 10 ⁻⁹	1	385			
	Room	5.25	$0.7 \times 10^{-9}$	1	385			
	Room	9.0	1.2 x 10 ⁻⁹	1	385			
	30	5.1	68 x 10 ⁻¹⁰	3	311			
	30	13.5	18 x 10 ⁻⁹	3	210			
	50	6.90	9.20 x 10 ⁻¹⁰	1	219			
	50	12.2	16.3 x 10 ⁻¹⁰	1	219			
	50	13.7	18.3 x 10 ⁻¹⁰	1	219			
	50	17.9	$23.9 \times 10^{-10}$	1	219			
	50	24.8	33.1 x 10 ⁻¹⁰	1	219			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Celanese P-912	25	6.91	$7.0 \times 10^{-7}$	6	378			
V-6.7									
						<del></del>			
	<u>-</u>								
l						·			

References Reporting: 210, 211, 219, 241, 311, 378, 385

PERMEANT: Carbon Dioxide ( $CO_2$ )

MATERIAL: Cellulose Acetate

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Cellulose Acetate (plasticized)

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		0	1.58	2.11 x 10 ⁻¹⁰	1	211			.001 in. thick
		0	2.40	3.20 x 10 ⁻¹⁰	1	211			.001 in. thick
		0	3.68	4.91 x 10 ⁻¹⁰	1	211			.001 in. thick
		0	4.28	5.71 x 10 ⁻¹⁰	1	211			.001 in. thick
V_6 8		0	4.32	5.76 x 10 ⁻¹⁰	1	211			.0012 in. thick
~		0	7.20	9.60 x 10 ⁻¹⁰	1	211			.00125 in. thick
		0	2.35	3.13 x 10 ⁻¹⁰	1	211			.00125 in. thick
		0	2.96	$3.95 \times 10^{-10}$	1	211			.00125 in. thick
		0	3.00	4.00 x 10 ⁻¹⁰	1	211			.00113 in. thick
		25	4.24	5.65 x 10 ⁻¹⁰	1	211			.001 in. thick

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	·
		25	4.73	$6.31 \times 10^{-10}$	1	211			.001 in. thick
		25	6.16	8.21 x 10 ⁻¹⁰	1	211			.001 in. thick
		25	8.93	11.9 x 10 ⁻¹⁰	1	211			.001 in. thick
		25	9.08	$12.1 \times 10^{-10}$	1	211			.0012 in. thick
7		25	4.84	$6.45 \times 10^{-10}$	1	211			.00125 in. thick
		25	6.92	$9.23 \times 10^{-10}$	1	211			.00125 in. thick
		25	14.1	18.8 x 10 ⁻¹⁰	1	211			.00125 in. thick
		25	5.49	$7.32 \times 10^{-10}$	1	211			.00113 in. thick
		30	5.1	68 x 10 ⁻¹⁰	3	240			
		50	6.90	$9.20 \times 10^{-10}$	1	211			.001 in. thick

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Cellulose Acetate (plasticized)

PERMEANT: Carbon Dioxide ( $CO_2$ )

MATERIAL: Cellulose Acetate (plasticized)

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		50	9.68	12.9 x 10 ⁻¹⁰	1	211			.001 in. thick
		50	12.2	16.3 x 10 ⁻¹⁰	1	211			.001 in. thick
		50	16.7	22.3 x 10 ⁻¹⁰	1	211			.001 in. thick
		50	9.15	12.2 x 10 ⁻¹⁰	1	211			.00113 in. thick
V-6 10		50	17 <b>.</b> 8	23.7 x 10 ⁻¹⁰	1	211			.0012 in. thick
		50	7.46	9.95 x 10 ⁻¹⁰	1	211			.00125 in. thick
		50	17.9	23.9 x 10 ⁻¹⁰	1	211			.00125 in. thick
		50	24.8	33.1 x 10 ⁻¹⁰	1	211			.00125 in. thick

References Reporting: 211, 240

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		0	12.8	17.1 x 10 ⁻¹⁰	1	211 219			.001 in. thick
		0	21.8	29.1 x 10 ⁻¹⁰	1	219			
		25	23.9	31.9 x 10 ⁻¹⁰	1	211 219			.001 in. thick
		25	30.2	40.3 x 10 ⁻¹⁰	1	219			
V-6.11		29	24.8	$3.30 \times 10^{-9}$	1	208			.0026 cm thick
7		50	42.5	56.7 x 10 ⁻¹⁰	1	211 219			.001 in. thick
		50	39.8	53.1 x 10 ⁻¹⁰	1	219			
				-					

References Reporting: 208, 211, 219
PERMEANT:

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Cellulose Acetate Butyrate

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Cellulose Acetate Butyrate (plasticized)

	Type or	Temp.	Permeability Std. Units (Value x 10)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		0	22.4	29.9 x 10 ⁻¹⁰	1	211			.0018 in. thick
		25	30.2	40.3 x 10 ⁻¹⁰	1	211			.0018 in. thick
		50	39.8	53.1 x 10 ⁻¹⁰	1	211			.0018 in. thick
V_6 13									
١									
								· .	

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity  cm ² /sec	Comments
	3010	Room	975	130 x 10 ⁻⁹	1	203			
	2804	Room	1500	200 x 10 ⁻⁹	1	203			
						Salami and an analysis and an analysis and an analysis and an analysis and an analysis and an analysis and an a			
4		·				······································			
V-6.13									2
						· · · · · · · · · · · · · · · · · · ·			

References Reporting: 203

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: COHR-Coated Glass Fabric

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Delrin (acetal)

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	29.5	1.43	0.19 x 10 ⁻⁹	1	208			.024 cm thick

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Epon-1001	29	.0645	.0086 x 10 ⁻⁹	1	208			.0022 cm thick
		30	.0645	.086 x 10 ⁻⁹	3	210			
	Нуро1	30	1.05	0.14 x 10 ⁻⁹	1	208			.026 cm thick
		30	1.05	1.4 x 10 ⁻⁹	3	210			
V-6.15									

References Reporting: 208, 210

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Epoxy

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Ethyl Cellulose

ſ				<del> </del>	<del>, ;</del>		+		
	Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	° C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		NG	35.6	28	5	346			
		Room	33.0	$4.4 \times 10^{-9}$	1	241 385			
		25	33.2	4.43 x 10 ⁻⁹	1	243			
1		25	35.6	4.75 x 10 ⁻⁹	1	243			
71 6 16		27.8	35.5	$4.73 \times 10^{-9}$	1	208			.00254 cm thick
P1.	Ethocel	20	30.8	$4.1 \times 10^{-9}$	1	243			·
	Ethocel	30	33.0	$4.4 \times 10^{-9}$	. 1	243			から、 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
	Ethocel	40	35.3	$4.7 \times 10^{-9}$	1	243			1
	Ethocel- 610	25	31.6	$32 \times 10^{-7}$	6	378			
	Plasticized	30	150	2000 x 10 ⁻¹⁰	3	240			

References Reporting: 208, 240, 241, 243, 346, 378, 385

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity  cm ² /sec	Comments
Hydropol	25	36.3	$3.68 \times 10^{-7}$	8	225		$9.1 \times 10^{-7}$	
Hydropol	25				222	0.578		
Hydropol	25	36.3	36.8 x 10 ⁻⁷	6	378			
		·						
		·						

References Reporting: 222, 225, 378

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: Hydropol

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Isoprene-Acrylonitrile-Copolymer

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
		25	3.26	3.3 x 10 ⁻⁸	8	390			
		50	16.7	16.9 x 10 ⁻⁸	8	390			
V_6 18									
"									
					·				

Г	- <del></del>	<u> </u>		<del></del>		······································	<del>                                     </del>	<del></del>	
	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	10.7	10.8 x 10 ⁻⁸	8	390			
		50	39.9	40.4 x 10 ⁻⁸	8	390			
V-6.19									
						-			
			:						
						. , <u></u> ,			

References Reporting: 390

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Isoprene-Methacrylonitrile-Copolymer

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: Mipolam MP

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
		25	3.95	$4.0 \times 10^{-7}$	6	378			
4									
00 %						<del></del>			

				<b>.</b>					
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		0	.024	.0032 x 10 ⁻⁹	1	211			.002 in. thick
		0	.0263	.0035 x 10 ⁻⁹	1	211			.001 in. thick
		25	.104	.0139 x 10 ⁻⁹	1	211			.002 in. thick
<		25	.104	.0139 x 10 ⁻⁹	1	211			.001 in. thick
V-6.21		50	.181	.0241 x 10 ⁻⁹	1	211			.002 in. thick
		50	.179	.0238 x 10 ⁻⁹	1	211			.001 in. thick
	Plasticized	0	.233	.031 x 10 ⁻⁹	1	211			.0065 in. thick
	Plasticized	0	.263	.035 x 10 ⁻⁹	1	211			.0035 in. thick
	Plasticized	25	1.34	.178 x 10 ⁻⁹	1	211			.0065 in. thick
	Plasticized	25	1.37	.182 x 10 ⁻⁹	1	211			.0035 in. thick

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Monochlorotrifluoroethylene

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Monochlorotrifluoroethylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Plasticized	50	6.00	.80 x 10 ⁻⁹	1	211			.0065 in. thick
Plasticized	50	5.63	.75 x 10 ⁻⁹	1	211			.0035 in. thick
				·				
			ž					
							:	
							# 1	

References Reporting: 211

		<u> </u>	<u> </u>	·				
Type	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	<u>.</u>
	22.3	9.98	13.3 x 10 ⁻¹¹	2	418			
G	25	19.2	$19.5 \times 10^{-7}$	6	378			
	30	18.8	250 x 10 ⁻¹⁰	3	325			
	·							
								- : : : : : : : : : : : : : : : : : : :

References Reporting: 325, 378, 418

Carbon Dioxide (CO₂) PERMEANT:

MATERIAL: Neoprene

MATERIAL: Nylon

Г	· · · · · · · · · · · · · · · · · · ·	<del></del>		<del> </del>		·	<del> </del>		,
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	0.12	1.6 x 10 ⁻¹⁰	3	325			
	3 (DuPont)	0	0.0204	0.00272 x 10	9 1	211			.001 in. thick
	3 (DuPont)	25	0.223	$0.031 \times 10^{-9}$	1	211	·		.001 in. thick
<b>V</b>	3 (DuPont)	50	1.09	$0.145 \times 10^{-9}$	1	211			.001 in. thick
V-6.24	6(Polyamide)	0	0.024	$0.32 \times 10^{-10}$	3	242			.113 mm thick
	6(Polyamide)	20	0.066	$0.88 \times 10^{-10}$	3	242			.113 mm thick
	6	25	.92	.093 x 10 ⁻⁷	6	378			
	6(Polyamide)	30	.12	1.6 x 10 ⁻¹⁰	3	210 240 311		·	: 
	6(Polyamide)	60	0.76	10.13 x 10 ⁻¹⁰	3	242		·	.113 mm thick
	6(Polyamice)	80	1.34	17.8 x 10 ⁻¹⁰	3	242			.113 mm thick

References Reporting: 210, 211, 240, 242, 311, 325, 378

			,						
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		Room	104	13.8 x 10 ⁻⁹	1	241			
		Room	103.5	13.8 x 10 ⁻⁹	1	385			
-	· · · · · · · · · · · · · · · · · · ·	25	103.6	105 x 10 ⁻⁸	8	390			
<		25	103.6	105 x 10 ⁻⁷	6	378			· · · · · · · · · · · · · · · · · · ·
V-6 25		30	103.5	1380 x 10 ⁻¹⁰	3	325			
		50	197.4	200 x 10 ⁻⁸	8	390			
									· · · · · · · · · · · · · · · · · · ·

References Reporting: 241, 325, 378, 385, 390

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Polybutadiene

MATERIAL: Polybutadiene-Acrylonitrile

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	20	5.63	7.5 x 10 ⁻⁹	3	210			
	30	47.7	63.6 x 10 ⁻⁹	3	210			
					·			

References Reporting: 210

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Lexan	25	6.0	8.0 x 10 ⁻⁹	3	388	·		
	Lexan	26	6.00	0.8 x 10 ⁻⁹	1	208			.008 cm thick
	Lexan	50	9.75	1.3 x 10 ⁻⁸	3	388			
<	Lexan	75	16.5	2.2 x 10 ⁻⁸	3	388			
V-6.27	Lexan	100	20.25	2.7 x 10 ⁻⁸	3	388			
	Mobay	31	8.40	1.12 x 10 ⁻⁹	1	208			.0042 cm thick
		20	6.4	8.5 x 10 ⁻⁹	3	210			

References Reporting: 208, 210,

388

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Polycarbonates

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polychlorotrifluoroethylene

_			L				<u> </u>		
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 ⁻⁶ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Kel-F-300	20	.036	$0.048 \times 10^{-9}$	3	210			
	Kel-F-300	30	.940	1.25 x 10 ⁻⁹	3	210			
	Kel-F-300	30	.054	$0.72 \times 10^{-10}$	3	240			
- 1	Ke1-F-300	30	.083	0.11 x 10 ⁻⁹	3	340 374			30% Crystallinity
70 70	Kel-F-300	30	.023	0.03 x 10 ⁻⁹	3	340 374			80% Crystallinity
	Ke1-F-300	40	.158	$2.11 \times 10^{-10}$	3	311			30% Crystallinity
	Ke1-F-300	40	.036	$0.48 \times 10^{-10}$	3	311			80% Crystallinity
	Ke1-F-300	50	.278	$3.7 \times 10^{-10}$	3	311			Unplasticized
	Ke1-F-300	50	5.63	75 x 10 ⁻¹⁰	3	311			Plasticized
	Kel-F-300	50	.067	0.89 x 10 ⁻¹⁰	3	311			80% Crystallinity

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Kel-F-300	60	.459	6.12 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	60	.103	1.37 x 10 ⁻¹⁰	3	311			80% Crystallinity
	Kel-F-300	75	.435	5.8 x 10 ⁻¹⁰	3	311			2 mm Extruded
4	Kel-F-300	75	.461	$6.15 \times 10^{-10}$	3	311			5 mm Extruded
V-6.29	Kel-F-300	75	1.09	14.5 x 10 ⁻¹⁰	3	311			30% Crystallinity
(J)	Kel-F-300	75	.225	$3.0 \times 10^{-10}$	3	311			80% Crystallinity
	Kel-F-300	80	1.39	$18.5 \times 10^{-10}$	3	311			30% Crystallinity
	Kel-F-300	80	.275	$3.67 \times 10^{-10}$	3	311			80% Crystallinity
	Trithene	0	.248	.033 x 10 ⁻⁹	1	219			Plasticized
	Trithene	0	.0250	.0034 x 10	9 1	219			

MATERIAL: Polychlorotrifluroethylene

MATERIAL: Polychlorotrifluoroethylene

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.	·	scc/cc Bar	cm ² /sec	
-	Trithene	25	.109	$0.11 \times 10^{-7}$	6	378			
	Trithene	25	1.36	.180 x 10 ⁻⁹	1	219			Plasticized
	Trithene	25	.104	.0139 x 10 ⁻⁹	1	219			
·	Trithene	50	5.81	.78 x 10 ⁻⁹	1	219			Plasticized
V-6.30	Trithene	50	.180	.0240 x 10 ⁻⁹	1	219			
			•						

References Reporting: 210, 219, 240, 311, 340, 374, 378

	•			•					
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Alathon-14	25	9.5	9.6 x 10 ⁻⁷	6,8	225 378		$3.72 \times 10^{-7}$	·
	Alathon-15	0	2.85	$3.8 \times 10^{-10}$	1	223			Variable Pressure Test
	Alathon-15	0	3.83	5.1 x 10 ⁻¹⁰	1	223			Variable Volume Test
; ; <u>, ,</u>	Alathon 15	30	28.5	3.8 x 10 ⁻⁹	1	209			
V A 3 1	Alathon-15	30	15.0	2.0 x 10 ⁻⁹	1	223			Variable Pressure Test
	Alathon-15	30	18.4	$2.45 \times 10^{-9}$	1	223			Variable Volume Test
	Alathon-15	50	65.3	8.7 x 10 ⁻⁹	1	209			
	Alathon-15	50	37.5	5.0 x 10 ⁻⁹	1	223			Variable Pressure Test
	Alathon-15	50	40.5	$5.4 \times 10^{-9}$	1	223			Variable Volume Test
	DE2400	0	2.4	$.32 \times 10^{-9}$	1	211			.00156 in. thick

MATERIAL: Polyethylene

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyethylene

ſ									
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	DE2400	25	8.9	1.18 x 10 ⁻⁹	1	211			.00156 in. thick
	DE2400	50	27.0	$3.60 \times 10^{-9}$	1	211			.00156 in. thick
	Visking DE2400	0	3.3	.44 x 10 ⁻⁹	1	211			.0013 in. thick
	Visking DE2400	25	10.5	1.4 x 10 ⁻⁹	1	211			.0013 in. thick
V-6.32	Visking DE2400	50	28.1	$3.75 \times 10^{-9}$	1	211			.0013 in. thick
.~	DE2500	0	3.0	.405 x 10 ⁻⁹	1	211			.0015 in. thick
	DE2500	25	9.9	$1.32 \times 10^{-9}$	1	211			.0015 in. thick
	DE2500	50	27.4	3.65 x 10 ⁻⁹	1	211			.0015 in. thick
	DuPont	0	5.1	.681 x 10 ⁻⁹	1	211			.001 in. thick
	DuPont	25	14.3	1.9 x 10 ⁻⁹	1	211			.001 in. thick

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	DuPont	50	35.5	$4.73 \times 10^{-9}$	1	211			.001 in. thick
	DuPont-B	33	20.4	$2.72 \times 10^{-9}$	1	286			.004 in. thick
	Grex	25	.276	$0.28 \times 10^{-7}$	6	378			.964g/cc
	Hypalon	30	12.5	$1.67 \times 10^{-9}$	1	208			.0069 cc thick
V_6 33	Philips	27	8.03	$1.07 \times 10^{-9}$	1	208			.961g/cc
	Philips	31	2.47	$.33 \times 10^{-9}$	1	208			.929g/cc
	.922g/cc	30	21.0	28 x 10 ⁻⁹	3	311 386			
	.922g/cc	30	18 <b>.9</b>	252 x 10 ⁻¹⁰	3	240			
	.938g/cc	30	5.6	$74 \times 10^{-10}$	3	311			
	.953g/cc	30	3.2	43 x 10 ⁻¹⁰	3	311			

PERMEANT: Carbon Dioxide ( $CO_2$ )

MATERIAL: Polyethylene

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: Polyethylene

1					r		1		
	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Trade Name		(value x 10 )	as Reported	Kpta.		SCC/CC Bal	Cit / Sec	
	.960g/cc	30	2.64	$35.2 \times 10^{-10}$	3	240			
	Mol. Wt.								.00111 in.
	1700-1800	0	3.83	$0.51 \times 10^{-9}$	1	211			thick
:	Mol. Wt.			_					.00111 in.
	1700-1800	25	13.9	$1.85 \times 10^{-9}$	1	211			thick
	Mol. Wt.								.00111 in.
_	1700-1800	50	42.8	$5.7 \times 10^{-9}$	1	211			thick
V-6.	M = 7 7.71								
34	Mol. Wt. 20000	o	4.13	.55 x 10 ⁻⁹	1	211			00225 in. thick
4									CHICK
	Mol. Wt.	25	10.5	$1.80 \times 10^{-9}$	-	011			.00225 in.
	20000	25	13.5	1.80 x 10	1	211			thick
	Mol. Wt.			٥					.00225 in.
	20000	50	39.8	$5.30 \times 10^{-9}$	1	211			thick
	Mol. Wt.								
	21000	0	3.75	$.50 \times 10^{-9}$	1	211			.001 in.thick
	Mol Wh								
	Mol. Wt. 21000	25	12.0	$1.60 \times 10^{-9}$	1	211			.001 in.thick
						<u> </u>	<del> </del>		. JOI III. CHICK
	Mol. Wt.	E0	36.0	4.80 x 10 ⁻⁹	1	011			
Į	21000	50	36.0	4.80 X 10	1	211			.001 in.thick

References Reporting: 208, 209, 211, 223, 225, 240, 286, 311, 378

_		i				h	-		· · · · · · · · · · · · · · · · · · ·
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	ಿ೦	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Mylar	0	.0345	.0046 x 10 ⁻⁹	1	211 219			.0025 in. thick
	Mylar	20-30	.075	.10 x 10 ⁻⁹	3	210			
	Mylar	25	.0885	.0118 x 10 ⁻⁹	1	211 219			.0025 in. thick
-	Mylar	50	.203	$.027 \times 10^{-9}$	1	211 219			.0025 in. thick
77 6 35	Mylar-A	25	.888	0.90 x 10 ⁻⁷	6	378			
	Mylar-A	30	.115	1.53 x 10 ⁻¹⁰	3	240 311 325			
		55				314		$3.29 \times 10^{-9}$	
		65				314		5.96 x 10 ⁻⁹	
		75				314		9.56 x 10 ⁻⁹	·

References Reporting: 210, 211,

219, 240, PERMEANT: Carbon Dioxide (CO₂)

311, 314, MATERIAL: Polyethylene Terephthalate

MATERIAL: Polyformaldehyde

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	°C	(Value x 10 )	as Reported	Rptd.		scc/cc Bar	cm /sec	
		20	.143	$0.19 \times 10^{-9}$	3	210			
-									·
+						<del> </del>		· · · · · · · · · · · · · · · · · · ·	
V_6 36									
3									
-									

References Reporting: 210

Permeability Ref. Solubility Diffusivity Temp. Units Comments Type Permeability Std. Units (Value x 10 8) or  ${\rm cm}^2/{\rm sec}$ °C as Reported scc/cc Bar Trade Name Rptd.  $5.2 \times 10^{-9}$ 20 3.9 3 210 V-6.37

References Reporting: 210

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyisobutylene-Isoprene

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polymethylbutadiene

Permeability Solubility Diffusivity Temp. Permeability Units Ref. Comments Type Std. Units (Value x 10⁻⁸) or  $cm^2/sec$ as Reported Rptd. scc/cc Bar Trade Name °C  $34.2 \times 10^{-8}$ 390 33.8 25  $100.8 \times 10^{-8}$ 8 390 99.5 50 V-6.38

References Reporting: 390

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	° C	(Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	5.13	$5.2 \times 10^{-7}$	6	378			
		30	6.3	8.4 x 10 ⁻⁹	3	374			.907g/cm ³
		30	6.9	9.2 x 10 ⁻⁹	3	210 386			.907g/cm ³
	Escon	27.2	3.38	0.45 x 10 ⁻⁹	1	208			Monoaxial
77 7 30	Escon	27.2	1.35	0.18 x 10 ⁻⁹	1	208			Biaxial
7	Cryovac	24	12.4	1.65 x 10 ⁻⁹	1	208			.0024 cm thick
	Cryovac	30	2.48	$0.33 \times 10^{-9}$	1	208			.0015 cm thick
	Profax	28	3.38	$0.45 \times 10^{-9}$	1	208			.0015 cm thick

References Reporting: 208, 210, 374, 378, 386

PERMEANT: Carbon Dioxide ( $CO_2$ )

MATERIAL: Polypropylene

MATERIAL: Polystyrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	17.4	13.7	5	346			
		20	26.3	$3.50 \times 10^{-9}$	1	243			
		30	27.8	$3.70 \times 10^{-9}$	1	241 243			
ر ا ب		40	<b>29.</b> 3	$3.90 \times 10^{-9}$	1	243			
V-6.40	Polyflex	25	<b>6.</b> 15	0.82 x 10 ⁻⁹	1	208			Biaxial
		30	6.6	88 x 10 ⁻¹⁰	3	240 311			
		Room	27.8	$3.70 \times 10^{-9}$	1	385			
	DOW 0641	20	5.63	$7.5 \times 10^{-9}$	3	210			
		30	27.8	37.0 x 10 ⁻⁹	3	210			

References Reporting: 208, 210, 240, 241, 243, 311, 346, 385

_					,		· · · · · · · · · · · · · · · · · · ·		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility		Comments
ĺ	Trade Name	°C	Std. Units (Value x 10 )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20-30	.81	1.08 x 10 ⁻⁹	3	210			
1									
; ;									
-									
4									
V-6.41									
"									
-									
-									

References Reporting: 210

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polystyrene-Acrylonitrile

PERMEANT: Carbon Dioxide ( $CO_2$ )

MATERIAL: Polyurethane

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20	10.5	14 x 10 ⁻⁹	3	210			
		30	30.0	40 x 10 ⁻⁹	3	210	\$ 		
	Estadene	32	10.5	1.40 x 10 ⁻⁹	1	208			.0025 cm thick
	Adidene-L	29	30.0	4.00 x 10 ⁻⁹	1	208			.0021 cm thick
V-6.42	PC 6	30	5.40	0.72 x 10 ⁻⁹	1	208			.010 cm thick
		·							
.		٠							-

References Reporting: 208, 210

					_				
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value $x = 10^{-8}$ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Butacite-10	20	33.8	4.50 x 10 ⁻⁹	1	208			.038 cm thick
	Butvar B-76	26.5	19.4	$2.59 \times 10^{-9}$	1	208			.00094 cm thick
									×
V-6.43									
J.									:

References Reporting: 208

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Butyral

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Chloride

ſ			D	Damashilite	77-3:		7-01-1-1-1-1-	Diffusivity	Commanda
	Type or	Temp.		Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		20	.77	1.02 x 10 ⁻⁹	3	210			
		29	10.5	1.40 x 10 ⁻⁹	1	208			.0067 cm thick
		30	2.78	$3.7 \times 10^{-9}$	3	210			
		30	.75	10 x 10 ⁻¹⁰	3	240 311			
V -6 11	Commercial	20	23.6	3.15 x 10 ⁻⁹	1	243			
	Commercial	30	31.7	4.22 x 10 ⁻⁹	1	243			
	Commercial	40	42.0	5.60 x 10 ⁻⁹	1	243			
	THF - 16.8% Plasticizer	31.1	3.45	$0.46 \times 10^{-9}$	1	208			.00788 cm thick
	THF - 19.2% Plasticizer	31.1	5.33	$0.71 \times 10^{-9}$	1	208			.00457 cm thick
- 1	THF no- Plasticizer	32.3	1.20	$0.16 \times 10^{-9}$	1	208			.00508 cm thick

7 - 6.44

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	TIGGE NGME	C	(Value x 10 )	ds Reperced	Rpcu.		Sec/ee Bar	Citi / DCC	
	Plasticized	0	1.86	.248 x 10 ⁻⁹	1	219			
	Plasticized	25	6.98	.930 x 10 ⁻⁹	1	219			
ļ	Plasticized	50	22.1	2.95 x 10 ⁻⁹	1	219			
⋖	Geon 101	25	.75	$0.762 \times 10^{-7}$	6	378			4
V-6-45						·			
								,	
						-			

References Reporting: 208, 210, 219, 240, 243, 311, 378

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Chloride

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Chloride-Dioctyl Phthalate

<del></del>		<del> </del>	<del> </del>			<del>+</del>		T
Type or	Temp.		Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value $x \cdot 10^{-8}$ )	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Geon-100-EP- 100, GP-261- 30	0	1.86	.248 x 10 ⁻⁹	1	211			.0045 cm thick
Geon-100-EP- 100, GP-261- 30	25	6.98	.930 x 10 ⁻⁹	1	211			.0045 cm thick
Geon-100-EP- 100, GP-261- 30	50	22.1	2.95 x 10 ⁻⁹	1	211			.0045 cm thick
101-EP-100	20	.720	.096 x 10 ⁻⁹	1	243			
101-EP-100	30	.765	.102 x 10 ⁻⁹	1	243			
101-EP-100	40	.818	.109 x 10 ⁻⁹	1	243			·
101-EP-100, GP-261-5	20	30.0	4.00 x 10 ⁻⁹	1	243			
101-EP-100, GP-261-5	30	28.9	3.85 x 10 ⁻⁹	1	243			
101-EP-100, GP-261-5	40	27.8	3.70 x 10 ⁻⁹	1	243			
101-EP-100, GP-261-20	20 1	050	140 x 10 ⁻⁹	1	243			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	101-EP-100, GP-261-20	30	975	130 x 10 ⁻⁹	1	243			
	101-EP-100, GP-261-20	40	885	118 x 10 ⁻⁹	1	243			
4								-	i san
V-6.47									
7									

References Reporting: 211, 243

PERMEANT: Carbon Dioxide  $(CO_2)$ 

MATERIAL: Polyvinyl Chloride-Dioctyl Phthalate

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Chloride (fluorinated)

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸ )	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Fluorinax	27.5	10.5	1.4 x 10 ⁻⁹	1	208			.00256 cm thick
								~~~~	
ν_									·
V-6.48						·· .			
						· · · · · · · · · · · · · · · · · · ·			

								· · · · · · · · · · · · · · · · · · ·	

References Reporting: 208

ſ		·					 		
	Туре	Temp.		Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		0	3.60	.480 x 10 ⁻⁹	1	211 219			
		25	12.7	1.69 x 10 ⁻⁹	1	211 219			
		Room	12.8	1.7 x 10 ⁻⁹	1	241 385			
4		50	37.1	4.95 x 10 ⁻⁹	1	211 219			
V-6 49	VYHH	1				221		.16 x 10 ⁻⁴	
	VҮНН	10				221		$.247 \times 10^{-4}$	
	VYHH	26.5				221		$.48 \times 10^{-4}$	
	VYHH	33				221		1.12×10^{-4}	
	VYHH	45				221		3.41×10^{-4}	
	VYHH	50				221		4.88 x 10 ⁻⁴	

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Polyvinyl Chloride - Polyvinyl Acetate

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	2	Comments
	VYHH	90.8			221			63.1 x 10 ⁻⁴	
V_6 50									
									:
					·				
-									

References Reporting: 211, 219, 221, 241, 385

Comments

References	Reporting:	210
100-01-011-00	TOPOL CALLO	

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Polyvinyl Fluoride

MATERIAL: Polyvinylidene Chloride

	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Saran	NG	.011	2.4	7	389			
	Saran	30	.022	.029 x 10 ⁻⁹	3	210,240 311,325			
	Saran	31.1	.0248	.0033 x 10	9 1	208			.00254 cm thick
<	Saran 517	0	.0046	.061 x 10 ⁻¹	0 3	242			.0025 cm thick
V-6.52	Saran 517	25	.024	.024 x 10 ⁻⁷	6	378			
	Saran 517	30	.022	.29 x 10 ⁻¹⁰	3	242			.0025 cm thick
	Saran 517	60	. 23	3.1 x 10 ⁻¹⁰	3	242			.0025 cm thick
	Saran 517	80	.38	5.0 x 10 ⁻¹⁰	3	242			.0025 cm thick
	Saran 517	90	1.1	14.7×10^{-10}	3	242			.0025 cm thick

References Reporting: 208, 210, 240, 242, 311, 325, 378, 389

1.2		
- 18 July 1988	 200	

Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility		Comments
Trade Name	a.G	(Value X 10)	as Reported	Rpta.		scc/cc Bar	cm /sec	
	20-30	5.85	7.8 x 10 ⁻⁹	3	210			
Viton A	26	3.83	0.51×10^{-9}	1	208		April 100 and	0.02 cm thick

	or Trade Name	or Trade Name °C 20-30	or Trade Name C Std. Units (Value x 10 ⁻⁸)	Trade Name $^{\circ}$ C $^{\circ}$ C $^{\circ}$ (Value x 10 $^{-8}$) as Reported $^{\circ}$ 20-30 5.85 $^{\circ}$ 7.8 x 10 $^{-9}$	or Trade Name °C (Value x 10 as Reported Rptd. 20-30 5.85 7.8 x 10 9 3 Viton A 26 3.83 0.51 x 10 9 1	Trade Name C (Value x 10 ⁻⁸) as Reported Rptd. 20-30 5.85 7.8 x 10 ⁻⁹ 3 210 Viton A 26 3.83 0.51 x 10 ⁻⁹ 1 208	Or Trade Name Std. Units (Value x 10 ⁻⁸) as Reported Rptd. scc/cc Bar 20-30 5.85 7.8 x 10 ⁻⁹ 3 210 Viton A 26 3.83 0.51 x 10 ⁻⁹ 1 208	Or Trade Name **C Std. Units (Value x 10^-8) as Reported Rptd. scc/cc Bar cm²/sec 20-30 5.85 7.8 x 10^-9 3 210 Viton A 26 3.83 0.51 x 10^-9 1 208

References Reporting: 208, 210

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Rubber Hydrochloride

٢		 	<u> </u>	<u> </u>	I		1		<u> </u>
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.	······································	scc/cc Bar	cm ² /sec	
		20	.13	.17 x 10 ⁻⁹	3	210			·
		30	1.37	1.82 x 10 ⁻⁹	3	210			
	Pliofilm	Room	.45 to 68.6	.06 to 9.15 x 10 ⁻⁹	1	241 385			
	Pliofilm	27	6.6	0.88 x 10 ⁻⁹	1	208			.0183 cm thick
7 7 7	Pliofilm 140-N2	0	.107	$.0143 \times 10^{-9}$	1	211 219			2 units plasticized
^	Pliofilm 140-N2	25	.480	.064 x 10 ⁻⁹	1	211 219			2 units plasticized
	Pliofilm 140-N2	25	.48	0.49×10^{-7}	6	378			
	Pliofilm 140-N2	50	1.73	$.230 \times 10^{-9}$	1	211 219			2 units plasticized
	Pliofilm 120-P4	0	.255	.0340 x 10 ⁻⁹	1	211 219			4 units plasticized
	Pliofilm 120-P4	25	1.11	0.148 x 10 ⁻⁹	1	211 219			4 units plasticized

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Pliofilm 120-P4	30	13.7	182 x 10 ⁻¹⁰	3	240 311 325			
	Pliofilm 120-P4	50	3.96	.528 x 10	9 1	211 219			4 units plasticized
	Pliofilm NO	30	.13	1.7 x 10 ⁻¹⁰	3	240 311 325			
_	Pliofilm FMl	25	.70	.71 x 10 ⁻⁷	6	378			
V-6.55									
וט									

References Reporting:208,210,211, 219,240,241, 311,325,378, 385

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Rubber Hydrochloride

MATERIAL: Rubber, Methyl

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Trace Name	25	10.9	11 x 10 ⁻⁷	6	378	Sec, ee Bul	Citt / BCC	
	· · · · · · · · · · · · · · · · · · ·	25	5.63	5.7 x 10 ⁻⁸	8	390			
		30	5.63	75 x 10 ⁻¹⁰	3	325			
<		50	23.7	24 x 10 ⁻⁸	8	390			
V-6.56									
	<u>,</u>								
 		,							

References Reporting: 325, 378, 390

_					,		<u> </u>		
	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar		Comments
		25	98.3	99.6 x 10 ⁻⁸	8	390			
		25	116	11.7 x 10 ⁻⁷	8	225		12.5 x 10 ⁻⁷	
-		25	100.7	102 x 10 ⁻⁷	6	378			
		25				222	0.96		
V-6.57		Room	90.8	12.1 x 10 ⁻⁹	1	385			
7		30	98.3	13.1 x 10 ⁻⁹	1	240 241 325			
		50	218	221 x 10 ⁻⁸	8	390			

References Reporting: 222, 225, 240, 241, 325, 378, 385, 390

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Rubber, Natural

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Rubber, Polysulfide

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Thiokol ZR-300	23	7.95	1.06 x 10 ⁻⁹	1	208			.2 cm thick
	Thiokol B	25	2.37	2.4 x 10 ⁻⁷	6	378			
					·				
4						······································			i
V-6.58						· · · · ·			
}									
						:			

References Reporting: 208, 378

ſ					· · · · · · · · · · · · · · · · · · ·				r
	Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	RTV-510	6	2025	270 x 10 ⁻⁹	1	409			
	RTV-501	23	2138	285 x 10 ⁻⁹	1	409			
:	RTV-501	32.5	2085	278 x 10 ⁻⁹	1	409		•	
	RTV-501	43.0	2100	280 x 10 ⁻⁹	1	409			
V-6.59	RTV-502	10.5	2018	269 x 10 ⁻⁹	1	409			
	RTV-502	23	2145	286 x 10 ⁻⁹	1	409			
	RTV-502	24	1410	188 × 10 ⁻⁹	1	208			0.0141 cm thick
	RTV-502	33	2100	280 x 10 ⁻⁹	1	409			
	RTV-502	43	2115	282 x 10 ⁻⁹	1	409			
	RTV-40	24	1538	205 x 10 ⁻⁹	1	409			

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Rubber, Silicone

PERMEANT: Carbon Dioxide (CO₂)
MATERIAL: Rubber, Silicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	RTV-40	33.5	1523	203 x 10 ⁻⁹	1	409			
	RTV-40	43	1478	197 x 10 ⁻⁹	1	409			
	RTV-601	33	2145	286 x 10 ⁻⁹	1	409			
_	RTV-601	43	2115	282 x 10 ⁻⁹	1	409			
V-6.60	RTV-11	29	1800	240 x 10 ⁻⁹	1	409 .			
	RTV-11	33	1785	238 x 10 ⁻⁹	1	409			
	RTV-11	43.5	1763	235 x 10 ⁻⁹	1	409			
	RTV-20	28.5	1433	191 x 10 ⁻⁹	1	409			
	RTV-20	33	1425	190 x 10 ⁻⁹	1	409			
	RTV-20	43	1418	189 x 10 ⁻⁹	1	409			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	RTV-90	23	2150	287 x 10 ⁻⁹	1	208	,		0.031 cm thick
	Eccosíl 4712	20.5	1028	137 x 10 ⁻⁹	1	409			
	Eccosil 4712	32	1035	138 x 10 ⁻⁹	1	409			·
<	Eccosil 4712	43.5	1043	139 x 10 ⁻⁹	1	409			
V-6.61	Sylgard 182	20.5	1530	204 x 10 ⁻⁹	1	409			
	Sylgard 182	33.5	1545	206 x 10 ⁻⁹	1	409			
	Sylgard 182	43.5	1538	205 x 10 ⁻⁹	1	409			
	Silastic	25	2280	304 x 10 ⁻⁹	1	208			0.0136 cm thick
	Silastic LS-63	26	444	59.2 x 10 ⁻⁹	1	208			0.23 cm thick
	Silastic 50	Room	780	104 x 10 ⁻⁹	1	241			

MATERIAL: Rubber, Silicone

MATERIAL: Rubber, Silicone

	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Silastic 50	NG	788	105 x 10 ⁻⁹	1	203			
	GE #SE 450	NG	2030	270 x 10 ⁻⁹	1	203			
	Cohrlastic 2804	Room	1500	200 x 10 ⁻⁹	1	241			
	Cohrlastic 3010	Room	975	130 x 10 ⁻⁹	1	241			
V-6.62	Nitrile	31	1290	172 x 10 ⁻⁹	1	208			.02 cm cured
	Nitrile	31	1340	178 x 10 ⁻⁹	1	208			.02 cm cured 1 hr
		Room	2030	270 x 10 ⁻⁹	1	241			
	-	Room	2025	270 x 10 ⁻⁹	1	385			·
		Room	975	130 x 10 ⁻⁹	1	385			Fabric Coated
		Room				375		3 x 10 ⁻⁵	

References Reporting: 203,208,241, 375,385,409

	47	- 2	ď	15

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
FEP	25	7.51	1670	7	334			
TFE	30	NC	0.66	24	333			
	Room				375		4 x 10 ⁻⁷	

References Reporting: 333,334,375

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Teflon

MATERIAL: Vinyl Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		0	2.39	0.31 x 10 ⁻⁹	1	219			
		25	6.00	0.80 x 10 ⁻⁹	1	219			
1		50	13.1	1.75 x 10 ⁻⁹	1	219			
V									
V-6.64									

MATERIAL: Vinyl Chloride-Polyvinyl Acetate

MATERIAL: Vinyl Chloride-Polyvinyl Acetate

	Type or	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Trade Name VB 1930	25	4.8	0.49 x 10 ⁻⁷	6	378	SCC/CC Bar	ent /sec	.0039 cm thick
-	VB 1930	30	8.85	1.18 x 10 ⁻⁹	1	243			.0039 cm thick
.	VB 1930	40	14.3	1.90 x 10 ⁻⁹	1	243			.0039 cm thick
4									·
V-6 66									
-									

References Reporting: 243, 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rpta.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		0	2.39	.318 x 10 ⁻⁹	1	211			
		25	6.00	.80 x 10 ⁻⁹	1	211			
		50	13.1	1.75 x 10 ⁻⁹	1	211			
V-6.67									
7									

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Vinyl Chloride-Vinyl Maloate

MATERIAL: Vinylidene Chloride-Acrylonitrile

ſ	Trans	Tomp	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Type or	Temp.	Std. Units (Value x 10 ⁻⁸)	Permeanilicy		Ker.			Continencs
	Trade Name	°C	(Value x 10 ⁻⁶)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	F218	NG	.008	1.77	7	389			
					·				
	F220	NG	.036	7.91	7	389			
4									
9									·
V-6.68						··· .			
				*					
-									
-									
-									
l								<u> </u>	

ĺ	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)		Rptd.		scc/cc Bar	cm ² /sec	
	X-500	0	.0075	.10 x 10 ⁻¹⁰	3	311			
	X-500	25	.06	.80 x 10 ⁻¹⁰	3	311			
	x-500	50	.394	5.25 x 10 ⁻¹⁰	3	311			
	x-500	75	1.46	19.5 x 10 ⁻¹⁰	3	311			
V-6.69	x-800	0	.014	.19 x 10 ⁻¹⁰	3	311			
	X-800	25	.14	1.83 x 10 ⁻¹⁰	3	311			
	X-800	50	1.14	15.2 x 10 ⁻¹⁰	3	311			
	x-800	75	5.31	70.8 x 10 ⁻¹⁰	3	311			
	x-5500	25	2.99	39.8 x 10 ⁻¹⁰	3	311		,	
	X-5500	50	18.6	248 x 10 ⁻¹⁰	3	311			

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Vinylidene Fluoride-Chlorotrifluoroethylene

۳-		1		 		· · · · · · · · · · · · · · · · · · ·	 		,
	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusi vity	Comments
	Trade Name	°C	(Value x 10 ⁻⁶)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	X-3700	0	. 205	2.73×10^{-1}	0 3	311			
	x-3700	25	2.04	27.2 x 10 ⁻¹⁰	3	311			
	x-3700	50	10.3	137 x 10 ⁻¹⁰	3	311			
	x-3700	75	33.0	440 x 10 ⁻¹⁰	3	311			
V 6 70									
				N.					
	·								

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		20	9.15	1.22 x 10 ⁻⁹	1	243			.019 cm thick
		20	10.9	1.45 x 10 ⁻⁹	1	243			
		30	14.9	1.98 x 10 ⁻⁹	1	243			.019 cm thick
		30	16.5	2.20×10^{-9}	1	243			
V-6.71		40	23.3	3.10×10^{-9}	1	243			.019 cm thick
		40	24.0	3.20×10^{-9}	1	243			

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Visqueen

PERMEANT: Carbon Dioxide (CO_2)

MATERIAL: Visten

Γ	/T		D	Downshilita	77	D-f	Colubilita	Diffusionit	Comments
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Ī						···			
	A	0	.274	$.0365 \times 10^{-9}$	1	219			
	A	25	1.50	$.200 \times 10^{-9}$	1	219			
1		ļ		0					
	A	50	6.30	$.84 \times 10^{-9}$	1	219			
				0					
<	В	0	.75	$.100 \times 10^{-9}$	1	219			·
V-6.72				a					
72	<u>B</u>	25	3.14	$.419 \times 10^{-9}$	1	219			
	_			_9					
-	В	50	10.6	1.41×10^{-9}	1	219			
-									
	-								
+									
-									
L		L		<u></u>	L		<u> </u>		

_		<u> </u>							
	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	·	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	14.0	186 x 10 ⁻¹⁰	3	325			
	A	25	13.9	14.1 x 10 ⁻⁸	8	378 390			
	A	50	47.6	48.2 x 10 ⁻⁸	8	390			
V_6 73						-			
ا د									
							2.		
ŧ.		L	<u> </u>		4		 		

References Reporting: 325, 378,

390

PERMEANT: Carbon Dioxide (CO₂)

MATERIAL: Vulcaprene

				I			<u></u>		
	Type or	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		Room	67500	9000 x 10 ⁻⁹	1	203 297			
-									
V-7.1									
							A STATE OF THE STA		
					-				
Ĺ				<u> </u>	L		ļ		<u>.</u>

References Reporting: 203, 297

PERMEANT: Carbon Disulfide CS₂
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		1250	3750	5 x 10 ⁻⁹	11	294			
						····			
٧-									
V-8.1	· .								
									-
								·	1
						The same of the sa	·		

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Alumina (ceramic)

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Ethyl Cellulose

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
,	NG	2.7	2.1	5	346			
		:						
						·		
			<u> </u>			·		
,	·							

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
		25				222	.069		
		25	4.64	.47 x 10 ⁻⁷	8	225		8.2×10^{-7}	·
-									
V-8.3									
									, i gazaran

eri er saal liste een keel Listeriaanse atte een te

References Reporting: 222, 225

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Hydropol

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Inconel

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		1225	75000	1 x 10 ⁻⁸	11	294			
									,
V									
V-8.4									
-									
					·				
							·		

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
		25	NC	8.1 x 10 ⁻¹⁶	13	378			
						<u> </u>			
V-8.5	,								
							·		
1									÷
									i

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Iron

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Molybdenum

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		1150	75000	1 x 10 ⁻⁸	11	294			.0083 cm disilicide coating
	:								
				:					
				·			-		
V-8.6	· .								
	•								

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Units Ref. Solubility Diffusivity Comments Type Temp. or cm^2/sec as Reported Rptd. ം scc/cc Bar Trade Name 25 222 .065 .113 \times 10⁻⁷ 3.32×10^{-7} Alathon 14 1.12 25 8 225 V-8.7

References Reporting: 222, 225

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Polyethylene

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Polystyrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	2.4	1.9	5	346			
V-8.8									
			·						

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
-	Trade Name		(value x 10)	as Reported	Kpta.		SCC/CC Bar	Cill / Sec	
	VYHH	10.4				221		0.25×10^{-4}	
	VYHH	24.7				221		1.53 x 10 ⁻⁴	
	VYHH	26.7				221		1.96 x 10 ⁻⁴	
	VYHH	51.0				221		17.4×10^{-4}	
V-8.9	VYHH	70.0				221		53.4 x 10 ⁻⁴	
	VYHH	88.0				221		170.2 x 10 ⁻⁴	
					·				
			·						

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Polyvinyl Chloride-Polyvinyl Acetate

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Rubber, Dimethylsilicone

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility		Comments
	Trade Name	°C	(Value x 10 ⁻⁶)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		Room	255	34 x 10 ⁻⁹	1	203 297			
-									
									·
V_8 10									

References Reporting: 203, 297

ſ					[
	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25				222	.08		
		25	11.8	1.20 x 10 ⁻⁷	8	225		13.5 x 10 ⁻⁷	
V-8.11									
						, , , , , ,			
				·				·	
				<u> </u>					
					·				

References Reporting: 222, 225

PERMEANT: Carbon Monoxide (CO)

MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	52500	7000 x 10 ⁻⁹	1	290 297			
							·		
									4. (a)
									1
V-9.1							8		
							4		
			,						
								(*) : (*) : (*) : (*) : (*) :	

References Reporting: 290, 297

PERMEANT: Carbon Tetrachloride CCl₄
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	11250	1500 x 10 ⁻⁹	1	203			
									~
V-10.1									
					-				Marie Marie

PERMEANT: Carbonyl Chloride COCl₂
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	24.97	2.53×10^{-7}	8	225		2.40×10^{-7}	
		25				222	1.49		
		·					-		
1									
77							7.1 11.4		

References Reporting: 222, 225

PERMEANT: Ethane C₂H₆
MATERIAL: Hydropol

PERMEANT: Ethane C₂H₆
MATERIAL: Polyethylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Alathon 14	25	5.13	.52 x 10 ⁻⁷	8	225		0.68 x 10 ⁻⁷	
	25				222	1.27		
	33	18.6	2.48 x 10 ⁻⁹	1	286			
					·			

References Reporting: 222, 225, 286

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	:	ŊG	1.9	1.5	5	346			
V-						······································			
V-11.3									
						· · · · · · · · · · · · · · · · · · ·			

PERMEANT: Ethane C₂H₆
MATERIAL: Polystyrene

PERMEANT: Ethane C₂H₆
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	1875	250 x 10 ⁻⁹	1	203			
		25	1875	250 x 10 ⁻⁹	1	206			
V-11-4									
	.								

References Reporting: 203, 206

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25				225		4.0×10^{-7}	
V									
V-11.5							·		

PERMEANT: Ethane C₂H₆
MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		NG	8.9	7.0	5	346		and the second	
-									1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
٧_									
V-12.1									
						 		1. A. 32	
						· · · · · · · · · · · · · · · · · · ·			
l									

PERMEANT: Ethylene C₂H₄
MATERIAL: Ethyl Cellulose

PERMEANT: Ethylene C₂H₄

MATERIAL: Polystyrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		NG	2.0	1.6	5	346			
		·							
۷-	:		<u>:</u>						·
V-12.2						······································			
+						· · · · · · · · · · · · · · · · · · ·			

Permeability Ref. Solubility Diffusivity Temp. Permeability Units Type Comments Std. Units (Value x 10 8) or ${\rm cm}^2/{\rm sec}$ °C as Reported Rptd. scc/cc Bar Trade Name 135×10^{-9} 1013 1 203 Room V-12.3

References Reporting: 203

PERMEANT: Ethylene C2H4

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Lumarith P-912	0	55.5	7.4×10^{-8}	3	242			163 mmHg
	Lumarith P-912	30	30.0	4.0 x 10 ⁻⁸	3	242			163 mmHg
-	Lumarith P-912	60	26.3	3.5 x 10 ⁻⁸	3	242			_163 mmHg
<									
V-13.1									
•									
								58.63	
-									
									·

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Cellulose Acetate

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Ethyl Cellulose

	Type or Trade Name	Temp. °C	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Ethocel	30	308	41 x 10 ⁻⁸	3	242			
-	·								
V_13									
2									
			·						
	·								

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Trithene B	0	.90	.12 x 10 ⁻⁸	3	242			383 mmHg
Trithene B	30	.98	.13 x 10 ⁻⁸	3	242			383 mmHg
Trithene B	60	3.3	.44 x 10 ⁻⁸	3	242			383 mmHg
	·		·					

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Polyethylene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		0	24	3.2 x 10 ⁻⁸	3	242			237 mmHg
		30	75	10.0 x 10 ⁻⁸	3	242			237 mmHg
		60	263	35 x 10 ⁻⁸	3	242			237 mmHg
< -									
V-13.4									
							·		

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Mylar	30	.098	.013 x 10 ⁻⁸	3	242			340 mmHg
Mylar	60	.195	.026 x 10 ⁻⁸	3	242			340 mmHg
Mylar	80	.33	$.044 \times 10^{-8}$	3	242			340 mmHg
			·					:
								

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Polyethylent Teraphthalate

PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Polyvinyl Alcohol

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
1		0	.0015	.0002 x 10 ⁻⁸	3	242			
					·				
							·	·	
V-13.6									
9									

References Reporting: 242

100

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Saran	30	.48	.064 x 10 ⁻⁸	3	242			
*** ***********************************									
1									
77 2 7									
				4.					
		·			·				
									<i>j.</i>

PERMEANT: Ethylene Oxide (CH₂)₂O MATERIAL: Polyvinylidene Chloride PERMEANT: Ethylene Oxide (CH₂)₂O

MATERIAL: Rubber Hydrochloride

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	်င	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Pliofilm	0	31.5	4.2 x 10 ⁻⁸	3	242			123 mmHg
	Pliofilm	0	548	73 x 10 ⁻⁸	3	242			343 mmHg
V-13.8									
ω									
		`							
f									

Permeability
Std. Units
(Value x 10-8) Solubility Permeability Diffusivity Units Ref. Comments Туре Temp. or ${\rm cm}^2/{\rm sec}$ Trade Name ٥C as Reported Rptd. scc/cc Bar 1110×10^{-9} 8330 1 203 Room

References Reporting: 203

PERMEANT: Formaldehyde HCHO

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	11250	1500 x 10 ⁻⁹	1	206			
									3. - 2 3. - 2 3. - 3 4.
\ -\						 			
V-15.1									100 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m
}						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-									

PERMEANT: Freon 11

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	8.78	117 × 10 ⁻¹⁰	3	374			
4									
V-16.1									
							- Za		
	· · · · · · · · · · · · · · · · · · ·								
								193 193	

PERMEANT: Freon 12
MATERIAL: Neoprene

PERMEANT: Freon 12

MATERIAL: Polybutadiene Nitrile

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	.3 to 5.5	4 to 73 x 10	.o ₃	374			
V-16.					·				
2	·		:						
							·		

Permeability Solubility Diffusivity Units Ref. Туре Temp. Permeability Comments Std. Units (Value x 10 8) or cm^2/sec Trade Name as Reported Rptd. scc/cc Bar °C 60×10^{-10} Hypalon 25 4.5 3 374 V-16.3

ita kangga

References Reporting: 374

PERMEANT: Freon 12

MATERIAL: Polyethylene

PERMEANT: Freon 12

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Viton	25	2.4 to 63	32 to 840 x 10	-10 13	374			
7 2 7									
>									
		·							
						:			

Permeability Permeability Units Ref. Solubility Diffusivity Comments Type Temp. Std. Units (Value x 10 8) or cm²/sec as Reported Rptd. Trade Name ° C scc/cc Bar 14 to 740 x 10 -10 3 1.05 to 55.5 25 374 V-16.5

References Reporting: 374

PERMEANT: Freon 12

MATERIAL: Rubber, Butyl

PERMEANT: Freon 12

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	1035	138 x 10 ⁻⁹	1	206			·
V-16-6									
								·	

Solubility Diffusivity Permeability Permeability Units Ref. Comments Type Temp. Std. Units (Value x 10⁻⁸) or cm²/sec °C as Reported Rptd. scc/cc Bar Trade Name 194×10^{-10} 14.55 3 374 25

References Reporting: 374

PERMEANT: Freon 12

MATERIAL: Rubber, Urethane

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity	Comments
	Trace Name	25	19.5	260 x 10 ⁻¹⁰	3	374			
1									
V-									
V-17.1								A Section of the Control of the Cont	
									
									
	·		:						
ł									

PERMEANT: Freon 22 MATERIAL: Neoprene PERMEANT: Freon 22

MATERIAL: Polybutadiene-Acrylonitrile

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	353	4700 x 10 ⁻¹⁰	3	374			
			,						
V-17.								-	
17.2						· · · · · · · · · · · · · · · · · · ·			
	·								
			<u> </u>	·					

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Solubility Diffusivity Temp. Units Ref. Comments Type or cm²/sec Trade Name ° C as Reported Rptd. scc/cc Bar 107×10^{-10} Hypalon 3 25 8.03 374 102×10^{-10} .92 g/cc 25 7.65 3 374

References Reporting: 374

PERMEANT: Freon 22

MATERIAL: Polyethylene

PERMEANT: Freon 22

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Comments
Viton	25	57	760 x 10 ⁻¹⁰	3	374		
					····		
1						·	
					·		

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
+		25	3.0	40 x 10 ⁻¹⁰	3	374			
	·			, -, -					
۷ ا						·			
V_17 5									
	· · · · · · · · · · · · · · · · · · ·								
						·			
		·							
								-	

PERMEANT: Freon 22

MATERIAL: Rubber, Butyl

PERMEANT: Freon 22

MATERIAL: Rubber, Urethane

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	225	3000 x 10 ⁻¹⁰	3	374			
								
								
								
							· · · · · · · · · · · · · · · · · · ·	
	or Trade Name	or Trade Name °C	or Trade Name °C Std. Units ₈ (Value x 10 ⁻⁸)	or Trade Name °C (Value x 10 ⁻⁸) as Reported 25 225 3000 x 10 ⁻¹⁰	or Trade Name °C (Value x 10 ⁻⁸) as Reported Rptd. 25 225 3000 x 10 ⁻¹⁰ 3	or Trade Name °C (Value x 10 ⁻⁸) as Reported Rptd. 25 225 3000 x 10 ⁻¹⁰ 3 374	Or Trade Name °C Std. Units (Value x 10^8) as Reported Rptd. scc/cc Bar 25 225 3000 x 10^{-10} 3 374	Or Trade Name °C Std. Units (Value x 10^-8) as Reported Rptd. scc/cc Bar cm²/sec 25 225 3000 x 10^-10 3 374

Permeability Permeability Units Ref. Solubility Diffusivity Comments Temp. Туре Std. Units (Value x 10⁻⁸) or cm²/sec as Reported scc/cc Bar ° C Rptd. Trade Name FEP 22.3 300 <u>+</u> 40 NC 18 334 V-18.1

omen (April 2004)

References Reporting: 334

PERMEANT: Freon F113 (TF)

MATERIAL: Teflon

	Type or Trade Name	Temp. °C	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	FEP	22.3	NC	70 <u>+</u> 8	18	334			
						· · · · · · · · · · · · · · · · · · ·			
									e de la companya de l
V-]									
19.1									
									4
								i i i i i i i i i i i i i i i i i i i	

PERMEANT: Freon 114B2

MATERIAL: Teflon

	-
_	

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		25	7050	940 x 10 ⁻⁹	1	203 206			
<									
V-20 1									
		_							

References Reporting: 203, 206

PERMEANT: η -Hexane $\text{CH}_3(\text{CH}_2)_4^{\text{CH}}_3$ MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	15% Plasticized	30	4.2	56 x 10 ⁻¹⁰	3	325			
		NG	198	17300	4	383			
V									
V-21.1	·								
			<u> </u>					1986 20 Jul 10 Jul 10 Aug 20 Aug 1	
									44 () () () () () () () () () (
							,		eta sa

References Reporting: 325, 383

PERMEANT: Hydrogen Sulfide H₂S

MATERIAL: Cellulose Acetate

PERMEANT: Hydrogen Sulfide H₂S

MATERIAL: Nylon

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	6	30	.26	3.4×10^{-10}	3	325			
		·							
7 21									
ا									
		·							

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	32.3	430 x 10 ⁻¹⁰	3	325			
V-21.									
ω									
								·	

PERMEANT: Hydrogen Sulfide H_2 S

MATERIAL: Polyethylene

PERMEANT: Hydrogen Sulfide H_2S

MATERIAL: Polyethylene Terephthalate

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Mylar	30	.05	$.71 \times 10^{-10}$	3	325			
		NG	.34	30	4	383			
-	·								
V_21									
Δ									
									·
									4.

References Reporting: 325, 383

Permeability Std. Units₈ (Value x 10⁻⁸) Diffusivity Permeability Units Ref. Solubility Comments Туре Temp. or cm²/sec scc/cc Bar Trade Name ŮC. as Reported Rptd. NG 680 59500 383 4 V-21.5

References Reporting: 383

PERMEANT: Hydrogen Sulfide H_2S

MATERIAL: Polyolefin

PERMEANT: Hydrogen Sulfide H₂S

MATERIAL: Polyvinyl Butyral

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		30	4.9	65 x 10 ⁻¹⁰	3	325			
	•								
7									
_									

References Reporting: 325

14. July

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Saran	30	.02	.27 x 10 ⁻¹⁰	3	325			
	•								
_									
V-21 7				·					
7									
		·							
			·						

PERMEANT: Hydrogen Sulfide H_2S MATERIAL:

Polyvinylidene Chloride

PERMEANT: Hydrogen Sulfide H₂S

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	7500	1000 x 10 ⁻⁹	1	203			
		25	4870	650 x 10 ⁻⁹	1	203 297			
		!							
			.'						
V-21.8									
00					·				

References Reporting: 203, 297

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Pliofilm NO	30	.10	1.33×10^{-10}	3	325			
								e e e e e e e e e e e e e e e e e e e

PERMEANT: Hydrogen Sulfide H₂S MATERIAL: Rubber Hydrochloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	75000	1000 x 10 ⁻⁹	1	297			
	•								
V-22.1									
									in and the

PERMEANT: Iodine I₂

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		Room	735	98 x 10 ⁻⁹	1	297			
<									
V-23.1		·							
		·							
								9 - <i>3</i>	
7				·				· · · · · · · · · · · · · · · · · · ·	

PERMEANT: Krypton Kr

MATERIAL: Rubber, Dimethylsilicone

PERMEANT: Krypton Kr

MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
1		35	47.8	48.4 x 10 ⁻⁸	8	342			
	•								
V-23									
٥									
		·							
		-							
								·	

References Reporting: 342

A sature sele

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		30	4.80	.64 x 10 ⁻⁹	1	214			
	,	NG	5.6	4.4	5	346			
-									
		-							

References Reporting: 214, 346

PERMEANT: Methane CH₄
MATERIAL: Ethyl Cellulose

MATERIAL: Ethylene-Vinyl Acetate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	8.25	1.1 x 10 ⁻⁹	1	214			
	·								

V-24.2									
					·				
						·			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	9.77	.99 x 10 ⁻⁷	8	225		5.4 x 10 ⁻⁷	
		25				222	. 26		
-									
۷_									
V-24.3									
						· 			
	· · · · · · · · · · · · · · · · · · ·			·		· · · · · · · · · · · · · · · · · · ·			

References Reporting: 222, 225

PERMEANT: Methane CH₄

MATERIAL: Hydropol

MATERIAL: Inconel

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	12000 1101110	710	18800000.	2.5 x 10 ⁻⁶	11	294	300,00 541	J. 7 2 3 3	
+		810	15000000.	2.0 x 10 ⁻⁶	11	294		The same of the sa	
4								,	
V-24 4	· ·					· · · · · ·			
		·							
								-4	
					,	· · · · · · · · · · · · · · · · · · ·			
									·

Permeability
Std. Units
(Value x 10-8) Diffusivity Permeability Solubility Units Ref. Туре Temp. Comments or cm²/sec as Reported Rptd. scc/cc Bar Trade Name °C 34×10^{-10} 25 2.6 3 -374 V - 24.5

References Reporting: 374

PERMEANT: Methane CH₄

MATERIAL: Neoprene

MATERIAL: Platinum

 	1					 	,	
Type or	Temp.	Permeability Std. Units.	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	915	52500000	7 x 10 ⁻⁶	11	288 294			
•								
							·	
			:					
	Caldana grant	r Se					general and	\$1 - 24 + 1 - 12

References Reporting: 288, 294

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	2.4	32 x 10 ⁻¹⁰	3	374			
		·							
									. 14
V-24.7									

PERMEANT: Methane CH₄

MATERIAL: Polybutadiene-Acrylonitrile

MATERIAL: Polybutadiene-Styrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	15.8	211 x 10 ⁻¹⁰	3	374			
V-24									
α									
				•					

References Reporting: 374

_

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	30	2.70	.36 x 10 ⁻⁹	1	214			
					·			

PERMEANT: Methane CH₄
MATERIAL: Polycarbonate

PERMEANT: Methane CH4

MATERIAL: Polychlorotrifluoroethylene

•			·			, 	·	+		
	Type or		Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Na	ame	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Trithene	В	30	.0585	7.8×10^{-12}	1	223			
	Trithene	В	30	.06	8.0×10^{-12}	1	209			
	Trithene	В	30	.063	.0084 x 10 ⁻⁹	1	214			
	Trithene	В	60	.98	1.3×10^{-10}	1	223			
V-24.	Trithene	В	60	.83	1.1 x 10 ⁻¹⁰	1	209			
10										
		,					_			

References Reporting: 209, 214, 223

	Type or Trade Name	Temp. °C	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25				222	.202		
	Alathon 14	25	2.17	.220 x 10 ⁻⁷	8	225		1.93 x 10 ⁻⁷	
	DuPont B	33	12.4	1.65 x 10 ⁻⁹	1	214			
\$ <u></u>	Hypalon	25	1.7	22 x 10 ⁻¹⁰	3	374			
3/ 11	.92g/cc	25	2.18	29 × 10 ⁻¹⁰	3	374			
7	.96g/cc	25	.29	3.9×10^{-10}	3	374			
									:
	٠								

References Reporting: 214, 222, 225, 374

PERMEANT: Methane CH₄

MATERIAL: Polyethylene

MATERIAL: Polyethylene Terephthalate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Mylar	25	.0045	.006 x 10 ⁻¹⁰	1	214			
	_	25				224	.197		:
		40				224	.128		
		45				314		1.17 x 10 ⁻⁹	
V-24		55				224	.086		
12		64				314		3.35×10^{-9}	
			·			-			
			·						
								egit i i i i i i i i i i i i i i i i i i	

References Reporting: 214, 224, 314

	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		30	1.73	.23 x 10 ⁻⁹	1	214			
		NG	2.04	1.6	5	346			
		125				347		1.8631 x 10)
۷-									
V-24.13								·	
ļ					·				
		·							

References Reporting: 214, 346, 347
PERMEANT: Methane CH₄ MATERIAL: Polystyrene

MATERIAL: Polyvinyl Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Plasticized	30	1.5	.2 x 10 ⁻⁹	1	214			
	•			1 10 700					
		·		*					
4									
34	·			P					
	·								
					·				
		_							

	Type	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	(Value x 10 °)	as Reported	Rptd.	· · · · · · · · · · · · · · · · · · ·	scc/cc Bar	cm ² /sec	
		25	.0043	$.057 \times 10^{-10}$	3	374			
	•	30	.0049	.0065 x 10 ⁻¹⁰	1	214			
<	-1. -1.								
V-24.15									
יט									
					÷				
	. :								·.

References Reporting: 214, 374

PERMEANT: Methane CH₄

MATERIAL: Polyvinyl Fluoride

PERMEANT: Methane CH₄
MATERIAL: Polyvinylidene Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Saran	25	.00014	.00018 x 10 ⁻¹	p ₁	214			
-									
V-24.16									
16									

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Viton A	30	.12	.016 x 10 ⁻⁹	1	214			
V-24.17									
17									

PERMEANT: Methane CH₄

MATERIAL: Polyvinylidene Fluoride-Hexafluoropropylene

PERMEANT: Methane CH₄
MATERIAL: Rubber, Butyl

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
		25	.56	7.4 x 10 ⁻¹⁰	3	374			
	·								
4								,	
7 A C									
0									
				·					

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Units Solubility Diffusivity Ref. Comments Type Temp. or cm^2/sec as Reported °C Rptd. scc/cc Bar Trade Name 94×10^{-9} 25 705 1 206 203 95 \times 10⁻⁹ 713 Room 1 297

References Reporting: 203, 206, 297

PERMEANT: Methane CH₄

MATERIAL: Rubber, Dimethylsilicone

MATERIAL: Rubber, Methyl

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
		25	.60	7.9×10^{-10}	3	374			
									·
V-24.20								,	
0							·		

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25				222	.26		
	25	22.7	2.3×10^{-7}	8	225		8.9×10^{-7}	·
	25	21.8	290 x 10 ⁻¹⁰	3	374			
			·					
					· · · · · · · · · · · · · · · · · · ·		·	

References Reporting: 222, 225, 374

PERMEANT: Methane CH₄

MATERIAL: Rubber, Natural

MATERIAL: Rubber, Nitrile Silicone

	Type or de Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		30	75	1.0 x 10 ⁻⁸	1	214			
;									
						·			

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	;
		30	150	2.0 x 10 ⁻⁸	1	214			
						·			
:									
24 22									

PERMEANT: Methane CH₄

MATERIAL: Rubber, Phenylene silicone

MATERIAL: Rubber, Silicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		30	443	5.9 x 10 ⁻⁸	1	214			
VC 17									
2		·							
		·						-	

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	FEP	25	.83	11 x 10 ⁻¹⁰	3	374			
	FEP	25	.702	156	7	334			
	FEP	30	1.05	.14 x 10 ⁻⁹	1	214			
√	FEP	50	2.02	450	7	334			
V-24 25	FEP	75	4.50	1000	7	334			# 19
	FEP	100	8.99	2000	7	334			
	TFE	30	1.13	1.5 x 10 ⁻¹⁰	1	209			
	TFE	50	3.0	4.0×10^{-10}	1	209			

References Reporting: 209, 214, 334, 374

PERMEANT: Methane CH₄

MATERIAL: Teflon

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Kel-F-300	60	.061	.81 x 10 ⁻¹⁰	3	311		*.:	30% Crystallinity
	Kel-F-300	67	.11	1.4 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	75	.18	2.4×10^{-10}	3	311			30% Crystallinity
	Kel-F-300	85	.38	5.1 x 10 ⁻¹⁰	3	311			30% : Crystallinity
V-25.	Kel-F-300	95	.65	8.7 x 10 ⁻¹⁰	3	311			30% Crystallinity
l	Kel-F-300	105	.68	9.1 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	115	.71	9.4×10^{-10}	3	311			30% Crystallinity
-									

PERMEANT: Methanol CH₃OH
MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Methanol CH₃OH

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	2	Comments
		Room	10430	1390 x 10 ⁻⁹	1	203			
	•								
						·			
V-25			·						
2									

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Lumarith P-912	20	4.4	.58 x 10 ⁻⁸	3	242			394 mmHg
	Lumarith P-912	60	5.1	.68 x 10 ⁻⁸	3	242			405 mmHg
	Lumarith P-912	80	7.2	.96 x 10 ⁻⁸	3	242			386 mmHg
۷-	Lumarith P-912	90	9.8	1.3 x 10 ⁻⁸	3	242			378 mmHg
-26.1									
:									

PERMEANT: Methyl Bromide CH₃Br

MATERIAL: Cellulose Acetate

PERMEANT: Methyl Bromide CH₃Br

MATERIAL: Nylon

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		60	.63	.084 x 10 ⁻⁸	3	242			380 mmHg
	·	70	.90	.12 x 10 ⁻⁸	3	242			389 mmHg
		80	2.1	.28 x 10 ⁻⁸	3	242			387 mmHg
		90	3.1	.41 x 10 ⁻⁸	3	242			388 mmHg
V-26.2									
	!				·				

	Type or Trade Na	ame	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Trithene	В	30	.068	.009 x 10 ⁻⁸	3	242			314 mmHg
	Trithene	В	60	3.5	.46 x 10 ⁻⁸	3	242			393 mmHg
	Trithene	В	80	4.7	.63 x 10 ⁻⁸	3	242			393 mmHg
.	Trithene	В	90	10.5	1.4 x 10 ⁻⁸	3	242		,	370 mmHg
V = 26.3										
-										

PERMEANT: Methyl Bromide CH₃Br

MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Methyl Bromide CH₃Br

MATERIAL: Polyethylene

Γ			D	D 1 - 1 - 1 - 1 - 1	T 77- 2 4 - 1	D - £	7-7-1-1-1-1-1	Diffusion	Common :=
-	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
Ì	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	.922g/cc	0	37.6	501 x 10 ⁻¹⁰	3	372			
	.922g/cc	15	73.1	975 x 10 ⁻¹⁰	3	372			
	.922g/cc	30	140.3	187 x 10 ⁻⁹	3	372 386			
	.922g/cc	45	237	316 x 10 ⁻⁹	3	372			
V-26.4	.922g/cc	0	16.8	224×10^{-10}	3	372			Irradiated by 10 ⁸ Roentgens
42	.922g/cc	15	33.5	446 x 10 ⁻¹⁰	3	372			Irradiated by 10 ⁸ Roentgens
	.922g/cc	30	66.5	887 x 10 ⁻¹⁰	3	372			Irradiated by 10 ⁸ Roentgens
	.922g/cc	45	122.3	163 x 10 ⁻⁹	3	372			Irradiated by 10 ⁸ Roentgens
						·			

References Reporting: 372, 386

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Mylar	30	.017	.0022 x 10 ⁻⁸	3	242			314 mmHg
	Mylar	60	.06	.008 x 10 ⁻⁸	3	242			403 mmHg
	Mylar	80	.11	.015 x 10 ⁻⁸	3	242			391 mmHg
V-26.									
ഗ								·	
							·		
				·					

PERMEANT: Methyl Bromide CH_3 Br

MATERIAL: Polyethylene Teraphthalate

PERMEANT: Methyl Bromide CH₃Br

MATERIAL: Polypropylene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity	Comments
.907g/cc	30	15	20 x 10 ⁻⁹	3	386			
							,	

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Saran	30	.22	.029 x 10 ⁻⁸	3	242			385 mmHg
Saran	60	.59	.079 x 10 ⁻⁸	3	242			397 mmHg
Saran	90	3.0	.40 x 10 ⁻⁸	3	242			375 mmHg
			·					
				-				
					·			

PERMEANT: Methyl Bromide CH₃Br MATERIAL: Polyvinylidene Chloride PERMEANT: Methyl Bromide CH₃Br MATERIAL: Rubber Hydrochloride

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Pliofilm	20	38.3	5.1 x 10 ⁻⁸	3	242			399 mmHg
Pliofilm	60	25.5	3.4 x 10 ⁻⁸	3	242			392 mmHg
					· · · · · · · · · · · · · · · · · · ·		,	
								· · · · · · · · · · · · · · · · · · ·
							·	

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Lexan	100	10.9	1.45 x 10 ⁻⁸	3	388			
,								
		:						

PERMEANT: Neon Ne

MATERIAL: Polycarbonate

PERMEANT: Neon Ne

MATERIAL: Rubber, Natural

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
1		35	8.5	8.6 x 10 ⁻⁸	. 8	342			
-									
<									·
V-27.2				**************************************					
						:			

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10	Permeability) as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Room	450	60 x 10 ⁻⁹	1	203 297			
					·			
							1. 3. 3.	
 		,						
 ·								

References Reporting: 203, 297

PERMEANT: Nitric Oxide NO

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	5701	760 x 10 ⁻⁹	1	203 297			
	······································								
۷-									
V-29.1							-		
								*	
ŀ	-								
								· · · · · · · · · · · · · · · · · · ·	

References Reporting: 203, 297

PERMEANT: Nitrogen Dioxide NO2

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Fused Silicone	25	.0000000000000061	6.2×10^{-20}	6	378			1912 1914 1914 - 1880
-									
						· · · · · · · · · · · · · · · · · · ·			
V-30-1									
								14	

PERMEANT: Nitrous Oxide N₂O

MATERIAL: Glass

PERMEANT: Nitrous Oxide N_2^{O}

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	3263	435 x 10 ⁻⁹	1	203 297			
	·								
Ĺ									
									·
)									
			·						
						•			

References Reporting: 203, 297

Permeability Ref. Solubility Diffusivity Temp. Permeability Units Comments Туре Std. Units (Value x 10⁻⁸) or ${\rm cm}^2/{\rm sec}$ Trade Name as Reported ٥С Rptd. scc/cc Bar 203 860×10^{-9} 25 6450 1 206

References Reporting: 203, 206

PERMEANT: Octane C8H18

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	15000	2000 x 10 ⁻⁹	1	203 206			
							, T. C.		
									!
ا ہے							4		
V-32.1									
							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
								il wile	

References Reporting: 203, 206

PERMEANT: Pentane C₅H₁₂

MATERIAL: Rubber, Dimethylsilicone

PERMEANT: Pentane C₅H₁₂
MATERIAL: Rubber, Polydimethylsiloxane

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Traco Mano	30	32600	4.34×10^{-6}	1	284	300,000 201	G.II. / 200	Average of 3 samples
	•	40	28900	3.85×10^{-6}	1	284			Average of 3 samples
-		50	25700	3.42×10^{-6}	1	284			Average of 3 samples
		60	22900	3.06×10^{-6}	1	284			Average of 3 samples
V-32.		70	20700	2.76×10^{-6}	1	284			Average of 3 samples
2									
				·					

Type or Trade 1	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity	·Comments
	25	8100	1080 x 10 ⁻⁹	1	206			

PERMEANT: Phenol C₆H₅OH
MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Kodapak II	31	2.0	.27 x 10 ⁻⁹	1	208			
	·								
								1.42 1.44 1.45	
V-34									
			·						
	<u> </u>								

PERMEANT: Propane C₃H₈

MATERIAL: Cellulose Acetate Butyrate

PERMEANT: Propane C₃H₈
MATERIAL: Cellulose Nitrate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	.0057	.0058 x 10 ⁻⁷	6	378			
	·								
-									
<u></u>	·								
V-34.2									
				•					
						······································			

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
		25	22			222	4.67		
		25	40.5	4.1×10^{-7}	8	225 378		1.20 x 10 ⁻⁷	
								,	
2/									
N -									
				,					
-									

References Reporting: 222, 225, 378

PERMEANT: Propane C₃H₈

MATERIAL: Hydropol

Adams Side of the Comment of the Com

PERMEANT: Propane C₃H₈

MATERIAL: Neoprene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
GN	25	5.4	5.5×10^{-7}	6	378			

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25				222	3.92		
	Alathon 14	25	7.1	.72 x 10 ⁻⁷	8	225		$.322 \times 10^{-7}$	
	Alathon 14	25	.41	$.41 \times 10^{-7}$	6	378			
72 7									4.
л									
+						<u> </u>			

References Reporting: 222, 225, 378

PERMEANT: Propane C₃H₈ MATERIAL: Polyethylene

PERMEANT: Propane C₃H₈
MATERIAL: Polyvinylidene Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units		Solubility scc/cc Bar	2	Comments
	Saran 517	25	.00027	$.00027 \times 10^{-7}$		378			
<u> </u>									
V-34.6									

Permeability
Std. Units
(Value x 10⁻⁸) Permeability Units Ref. Solubility Diffusivity Comments Туре Temp. or cm^2/sec as Reported scc/cc Bar Trade Name °C Rptd. 1.3×10^{-7} 25 1.28 6 378

References Reporting: 378

PERMEANT: Propane C₃H₈
MATERIAL: Rubber, Butyl

PERMEANT: Propane C₃H₈

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	3080	410 x 10 ⁻⁹	1	203 206			
-						· · · · · · · · · · · · · · · · · · ·			
17	· · · · · · · · · · · · · · · · · · ·								
3									
-		·							
-									
				<u> </u>					<u> </u>

References Reporting: 203, 206

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
		25				220 222	6.1		
		25	126	12.8 x 10 ⁻⁷	8	225 378		2.1 x 10 ⁻⁷	
V-34.9									
							·		

References Reporting: 220, 222,

225, 378

PERMEANT: Propane $C_3^H_8$ MATERIAL: Rubber, Natural

PERMEANT: Propane C₃H₈
MATERIAL: Rubber, Polysulfide

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Thiokol 3000ST	25	1.09	1.1 x 10 ⁻⁷	6	378			
٧_`									
34 10									
						Parada alika aliku da alika			

-	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
			2.0	1.6	5	346			
						at along the same of the same			
۷-						···		<u> </u>	
V-35.1						· · · · · · · · · · · · · · · · · · ·			
									:
			,						
	· · ·								
						····			

PERMEANT: Propene $^{\text{C}_3^{\text{H}}_6}$ MATERIAL: Polystyrene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	1430	1910 x 10 ⁻⁹	1	203			
	·	25	1580	2100 x 10 ⁻⁹	1	206			
4									
V-36.			,						
							·		
								+ 217	

References Reporting: 203, 206

PERMEANT: Pyridine C₅H₅

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		Room	11250	1500 x 10 ⁻⁹	1	203			
								· · · · · · · · · · · · · · · · · · ·	i e paren
V = 37.1									
	-		·					1.1	

PERMEANT: Sulfur Dioxide SO₂

MATERIAL: Rubber, Dimethylsilicone

_							<u> </u>		
	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 8)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Lexan	25	.0000049	6.5 x 10 ⁻¹⁵	3	388			
	Lexan	50	.000025	3.3×10^{-14}	3	388			
-	Lexan	75	.000090	1.2 x 10 ⁻¹³	3	388			
1	Lexan	100	.00038	5.0×10^{-13}	3	388			
77 30 1	Lexan	125	.00098	1.3×10^{-12}	3	388			
_	Lexan	150	.0083	1.1 x 10 ⁻¹¹	3	388			
	Lexan	175	.075	1.0 x 10 ⁻¹⁰	3	388			

PERMEANT: Sulfur Hexafluoride SF 6

MATERIAL: Polycarbonate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	2	Comments
		25	6850	913 x 10 ⁻⁹	1	203 206		(2) (2) (3)	
<-									
V-39.1	···								
	-								:
	·								
						· · · · · · · · · · · · · · · · · · ·			

References Reporting: 203, 206

PERMEANT: Toluene C₆H₅CH₃

MATERIAL: Rubber, Dimethylsilicone

	Type or	Temp.	Permeability Std. Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value x 10 ⁻⁸)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
		25	5100	6800 x 10 ⁻¹⁰	3	311		en e State	
	. :	25	4125	4180 x 10 ⁻⁷	6	378			
	Unplasticized	25	4130	550 x 10 ⁻⁸	3	216			
	Plasticized	25	5630	750 x 10 ⁻⁸	3	240			90% R.H.
V-40.1	Plasticized	30	5550	7500 x 10 ⁻⁹	3	216			
	15% Plasticized	25	5550	740 x 10 ⁻⁸	3	216		in and	
									4 1 M 20 M 20 M
-									
			·		·				

References Reporting: 216, 240, 311, 378

PERMEANT: Water H₂O

MATERIAL: Cellulose Acetate

PERMEANT: Water H₂O
MATERIAL: Cellulose Nitrate

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	4740	4800 x 10 ⁻⁷	6	378			
<u>ا</u>									
V_40_2	<u>:</u>								
	·								

Type	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
or Trade Name	°C	Std. Units (Value x 10)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
Plasticized	25	9800	1300 x 10 ⁻⁸	3	216 240			
Plasticized	30	9800	13000 x 10 ⁻⁹	3	216			
Ethocel 610	25	9750	9880 x 10 ⁻⁷	6	378			<u> </u>
N-100	25	6530	870 x 10 ⁻⁸	3	423			

References Reporting: 216, 240, 378, 423

PERMEANT: Water H₂O

MATERIAL: Ethyl Cellulose

PERMEANT: Water H₂O

MATERIAL: Lucite

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	2171	2200 x 10 ⁻⁷	6	378			
-									
۱									
V-40-4									
				· · · · · · · · · · · · · · · · · · ·					
			_						

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	6	25	133	1770 × 10 ⁻¹⁰	3	311			
	6	25	53	70 × 10 ⁻⁹	3	240			90% R.H.
	6	25	53 to 510	7.0 to 68 x 1	o ⁻⁸ 3	216			Dependent upon humidity
	6	30	54	72 x 10 ⁻⁹	3	216			90% R.H.
V-40.5	66	25	2453	327 x 10 ⁻⁸	3	423			
	610	25	2040	272 x 10 ⁻⁸	3	423			

References Reporting: 216, 240, 311, 423

PERMEANT: Water H₂O

MATERIAL: Nylon

PERMEANT: Water H₂O
MATERIAL: Polycarbonate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units		Solubility scc/cc Bar	2	Comments
Lexan	25	51	68 x 10 ⁻⁹	3	388			
·								
1	·							
								
								· · · · · · · · · · · · · · · · · · ·

ſ									
	Type or	Temp.	Permeability Std Units	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	Trade Name	°C	Std. Units (Value $x \cdot 10^{-8}$)	as Reported	Rptd.		scc/cc Bar	cm ² /sec	
	Kel-F	30	.22	.29 x 10 ⁻⁹	3	216 240			
	Kel-F-300	25	.022	.29 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	25	.22	$.22 \times 10^{-7}$	6	378			
1	Kel-F-300	45	.064	.85 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	60	.11	1.5 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Ke1-F-300	75	.21	2.8 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	80	. 25	3.3 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	85	.32	4.3 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	95	.57	7.6 x 10 ⁻¹⁰	3	311			30% Crystallinity
	Kel-F-300	105	.98	13 x 10 ⁻¹⁰	3	311			30% Crystallinity

PERMEANT: Water H₂O

MATERIAL: Polychlorotrifluoroethylene

PERMEANT: Water H₂O

MATERIAL: Polychlorotrifluoroethylene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
-	Kel-F-300	115	1.5	20 x 10 ⁻¹⁰	3	311	Secret Bar	Cm / Sec	30% Crystallinity
- -									
7 10 8									
Σ -									
			·						
						di makamalaka da maga aya aya aya aya aya aya aya aya aya			
						·			

References Reporting: 216, 240,

311, 378

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
.922g/cc	25	68	9.0 x 10 ⁻⁸	3	216			
.922g/cc	25	75	1000 x 10 ⁻¹⁰	3	311			
.922g/cc	25	60	8.0 x 10 ⁻⁸	3	240			
.922g/cc	25	67.5	68.4×10^{-7}	6	378			
.922g/cc	30	93	124 x 10 ⁻⁹	3	386		:	
.922g/cc	30	60	80 x 10 ⁻⁹	3	216			
.938g/cc	25	18.8	2.5 x 10 ⁻⁸	3	216			
.938g/cc	25	22.4	298 x 10 ⁻¹⁰	3	311			
.953g/cc	25	12.0	160 x 10 ⁻¹⁰	3	311			
.954g/cc	30	13.5	18 x 10 ⁻⁹	3	216 386		*	

PERMEANT: Water H₂O MATERIAL: Polyethylene

PERMEANT: Water H₂O MATERIAL: Polyethylene

		·			,			,	
	Туре	Temp.	Permeability	Permeability	Units	Ref.	Solubility	Diffusivity	Comments
	or	0.5	Std. Units (Value x 10 ⁻⁸)	D	D - 1 - 3			cm ² /sec	
	Trade Name	°C	(Value X 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
	.954g/cc	25	9.8	1.3×10^{-8}	3	240			90% R.H.
	.960g/cc	25	9.0	9.1×10^{-7}	6	378			
					<u> </u>				
	.960g/cc	25	9.0	1.2×10^{-8}	3	216			
٠									
V-40									
Ö									
10									
İ									
						· · · · · · · · · · · · · · · · · · ·			
				!					
								· · · · · · · · · · · · · · · · · · ·	
ļ									
						ĺ			

References Reporting: 216, 240, 311, 378, 386

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Mylar A	25	98	13 x 10 ⁻⁸	3	216 240 311			
	Mylar A	25	97.5	98.8 x 10 ⁻⁷	6	378			
	Mylar A	30	98	130 x 10 ⁻⁹	3	216 240 311	·	4	
,									
77 10 11									
									:
					·				

References Reporting: 216, 240, 311, 378

11, 378 PERMEANT: Water H₂O

MATERIAL: Polyethylent Terephthalate

PERMEANT: Water H20

MATERIAL: Polymethyl Methacrylate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	1050	140 x 10 ⁻⁸	3	240			90% R.H.
					·			
								· · · · · · · · · · · · · · · · · · ·

References Reporting: 240

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	.907g/cc	25	38.3	5.1 x 10 ⁻⁸	3	216			
	.907g/cc	25	35.2	35.7×10^{-7}	6	378			
	.907g/cc	30	51.0	68 x 10 ⁻⁹	3	216 386	:		
<									
V-40.13									
W				·					
	-								
		,							
									

References Reporting: 216, 378, 386

PERMEANT:

Water H₂O

MATERIAL:

Polypropylene

PERMEANT: Water H₂O MATERIAL: Polystyrene

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	25	900	120 x 10 ⁻⁸	3	240			90% R.H.
	25	622	630 x 10 ⁻⁷	6	378			
	`							
	·							

References Reporting: 240, 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	7500	1000 x 10 ⁻⁸	3	240			90% R.H.
;						·			
			:	,					
	· · · · · · · · · · · · · · · · · · ·			a de la companya de l					
	- 1945 -								

References Reporting: 240

PERMEANT: Water H₂O

MATERIAL: Polyvinyl Acetate

PERMEANT: Water H₂O

MATERIAL: Polyvinyl Chloride

	Type or	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	Trade Name	°C	(Value x 10)	as Reported	Rptd.		scc/cc Bar	cm /sec	
		25	117	15.6 x 10 ⁻⁸	3	240 311			90% R.H.
	Geon 101	25	109	110 x 10 ⁻⁷	6	378			
			·						
†									
	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
							·		

References Reporting: 240, 311, 378

Permeability Ref. Solubility Diffusivity Permeability Units Comments Type Temp. Std. Units (Value x 10⁻⁸) or ${\rm cm}^2/{\rm sec}$ as Reported scc/cc Bar Trade Name °C Rptd. Vinylite 275×10^{-7} VYNWO 271 6 378 25 V-40.17

References Reporting:

378

PERMEANT: Water H₂O

Polyvinyl Chloride-Polyvinyl Acetate MATERIAL:

PERMEANT: Water H₂O

MATERIAL: Polyvinylidene Chloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
	11 200 11011	25	1.1	.14 x 10 ⁻⁸	3	240	300,00 341	J / 200	90% R.H.
	Saran	25	2.3 to 7.5	.3 to 1.0 x 10) ⁻⁸ 3	216			
	Saran	25	. 75	10.0 x 10 ⁻¹⁰	3	311			
	Saran	30	1.1 to 7.5	1.4 to 10.0 x	10 ⁻⁹ 3	216			
V-40 1	Saran 517	25	7.4	7.5×10^{-7}	6	378			
8									
	· · · · · · · · · · · · · · · · · · ·					·			
						. !			

References Reporting: 216, 240, 311, 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		Room	22500	3000 x 10 ⁻⁹	1	297			
	·	Room	27000	3600 x 10 ⁻⁹	1	203			
		25	28500	3800 x 10 ⁻⁹	1	206			
4									
10 10						• ·			
			-						
						-			
		·							

References Reporting: 203, 206, 297

PERMEANT: Water H₂O

MATERIAL: Rubber, Dimethylsilicone

PERMEANT: Water H₂O

MATERIAL: Rubber Hydrochloride

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	Pliofilm NO	25	18.8	19 × 10 ⁻⁷	6	378			
	Pliofilm NO	25	18.8	2.5 x 10 ⁻⁸	3	216			
	Pliofilm NO	25	18.0	2.4 x 10 ⁻⁸	3	240			
	Pliofilm NO	25	19.5	260 x 10 ⁻¹⁰	3	311			
V-40.	Pliofilm No	30	18.8	25 x 10 ⁻⁹	3	216			
20				-					

References Reporting: 216, 240,

311, 378

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units Rptd.	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	1800	240 x 10 ⁻⁸	3	240			90% R.H.
	• .	25	2570	2600 x 10 ⁻⁷	6	378			
d								:	
V_40		.,					·	·	
2			The second secon						
-									
	· · · · · · · · · · · · · · · · · · ·		.:						

References Reporting: 240, 378

PERMEANT: Water H₂O

MATERIAL: Rubber, Natural

PERMEANT: Water H₂O

MATERIAL: Teflon

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
	TFE	NG	NC	0.2	24	410			
				~/					
<				-					
V-40 22									
٥									
						······································			

References Reporting: 410

Permeability Diffusivity Type Temp. Permeability Units Ref. Solubility Comments Std. Units (Value x 10⁻⁸) or cm²/sec Trade Name °C as Reported Rptd. scc/cc Bar VYHH 32 mmHa 3.3×10^{-6} 32 351 pressure (unplasticized) VYHH · 39.6 mmHq 9.9×10^{-6} 60 351 unplasticized) pressure VYHH 15.6×10^{-6} 33 mmHa 32 351 (plasticized) pressure VYHH 21.4×10^{-6} 39.6 mmHg 60 351 (plasticized) pressure V-40.23

References Reporting: 351

PERMEANT: Water H₂O

MATERIAL: Vinyl-Chloride - Vinyl Acetate

Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
Perbunan	25	.60	8 x 10 ⁻⁸	3	212		* 1	.50
Perbunan	25	2.85	38 x 10 ⁻¹⁰	3	348			
								en en en en en en en en en en en en en e

References Reporting: 212, 348

PERMEANT: Xenon Xe

MATERIAL: Butadiene-Acrylonitrile Copolymer

PERMEANT: Xenon Xe

MATERIAL: Neoprene

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	Diffusivity cm ² /sec	Comments
		25	7.5	100 × 10 ⁻¹⁰	3	212			
		25	3.4	45 x 10 ⁻¹⁰	3	348			
						1 70 180 (1814 - 1814)			
						·			
V-41.									
2									
		·							

References Reporting: 212, 348

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	•	Comments
		25	.83	11 × 10 ⁻¹⁰	3	212			
		25	3.0	40 x 10 ⁻¹⁰	3	348			
4									
3						· ····································			
						· · · · · · · · · · · · · · · · · · ·			
						·			· · · · · · · · · · · · · · · · · · ·

References Reporting: 212, 348

PERMEANT: Xenon Xe

MATERIAL: Rubber, Butyl

PERMEANT: Xenon Xe

MATERIAL: Rubber, Dimethylsilicone

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10-8)	Permeability as Reported	Units	Ref.	Solubility	Diffusivity cm ² /sec	Comments
		Room	1523	203 x 10 ⁻⁹	1	297			
							·		
V-41.						-			
4									

References Reporting: 297

	Type or Trade Name	Temp.	Permeability Std. Units (Value x 10 ⁻⁸)	Permeability as Reported	Units	Ref.	Solubility scc/cc Bar	2	Comments
		25	32.2	430 x 10 ⁻¹⁰	3	212			
		25	17.3	230 x 10 ⁻¹⁰	3	348			
		35	72.5	73.5 x 10 ⁻⁸	8	342			
<									
V-41.5									
			·						
								24 24	

References Reporting: 212, 342, 348

PERMEANT: Xenon Xe

MATERIAL: Rubber, Natural

VI Coordinate Index

The following index to the data content of this hand-book is a cross-coordinate index. On the left side of each page is a listing of materials and the numbers of the pages on which data for these materials can be found. On the right side of each page is a listing of permeants and the numbers of the pages on which data for these permeants can be found.

Each page is cut down the center. Thus, to find the page on which data for a given permeant-material combination is recorded, for example, N_2O_4 -Teflon Laminates, the following procedure is used:

- A. Leaf through left-hand pages until 'Teflon Laminates' section is located.
- B. Leaf through right-hand pages until 'N204' section is located.
- C. Compare page numbers in these two sections. If a page number common to both is found, that is the number of the page on which data for N₂O₄-Teflon Laminates begin. If no common number is found, data for that combination are not in the handbook.