PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-326278

(43)Date of publication of application: 12.11.2002

(51)Int.CI.

B29C 55/06 CO8J 5/18 G02B 5/30 G02F 1/1335 B29K 29:00 B29L 11:00 CO8L 29:04

(21)Application number: 2001-136111

(71)Applicant: NITTO DENKO CORP

(22)Date of filing:

07.05.2001

(72)Inventor: NISHIDA AKIHIRO

TSUCHIMOTO KAZUYOSHI

KONDO SEIJI

(54) METHOD FOR PRODUCING ORIENTED FILM, POLARIZING FILM, POLARIZING PLATE, AND LIQUID CRYSTAL DISPLAY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a dry orientation method for producing an oriented polyvinyl alcohol film which can obtain a high degree of orientation even when a wide original film is used. SOLUTION: In the method for producing the oriented film, when a heated unoriented polyvinyl alcohol film is subjected to dry longitudinally unjaxial orientation with tension applied by the difference between the circumferential speeds of rolls, the distance L between the rolls, when the width of the unoriented film is W, is set up to be L/W ≤0.6, and the film is oriented and then heat-treated at 60-160°C after being stretched further.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-326278A) (P2002-326278A) (43)公開日 平成14年11月12日(2002.11.12)

(51) Int. Cl. 7		識別記号	-		FΙ			テーマコード(参考)	
B 2 9 C	55/06				B 2 9 C	55/06		2H049	
C 0 8 J	5/18	CEX			C 0 8 J	5/18	CEX	2H091	
G 0 2 B	5/30				G O 2 B	5/30		4F071	
G 0 2 F	1/1335				G 0 2 F	1/1335		4F210	
		5 1 0					510		
	審査請求	未請求 請	求項の数7	OL			(全6頁)	最終頁に続	<
(21)出願番号	特』	顏2001~1361	11 (P2001-136111))	(71)出願人		964 工株式会社		
(22)出願日	平成13年5月7日 (2001.5.7)				大阪府	茨木市下穂積	1丁目1番2号		
					(72)発明者		灰木市下穂積:	[丁目1番2号 日東電	E
					(72)発明者		灰木市下穂積:	工目1番2号 日東電	Ē
					(74)代理人		266 鈴木 崇生	(外4名)	
								最終頁に続く	<_

(54) 【発明の名称】配向フィルムの製造方法、偏光フィルム、偏光板および液晶表示装置

(57)【要約】

【課題】 乾式延伸法によるポリビニルアルコール系フィルムの配向フィルムの製造方法であって、原反フィルムの幅が広幅になった場合においても、配向度の高い配向フィルムを製造しうる方法を提供すること。

【解決手段】 未配向のポリビニルアルコール系フィルムを加熱した状態で、ロール間の周速差により張力を付与して乾式縦一軸延伸するにあたり、前記ロール間距離しを、前記未配向のポリビニルアルコール系フィルムの幅をWとした場合に、L/Wの値が0.6以下となるように設置して前記延伸を行い、さらに延伸した後に60~160℃で加熱処理することを特徴とする配向フィルムの製造方法。

2

【特許請求の範囲】

【請求項1】 未配向のポリビニルアルコール系フィルムを、ロール間の周速差により張力を付与して乾式縦一軸延伸するにあたり、前記ロール間距離しを、前記未配向のポリビニルアルコール系フィルムの幅をWとした場合に、L/Wの値が0.6以下となるように設置して前記延伸を行い、さらに延伸した後に60~160℃で加熱処理することを特徴とする配向フィルムの製造方法。

1

【請求項2】 延伸後の加熱処理を、熱ロールにより行うことを特徴とする請求項1記載の配向フィルムの製造 10方法。

【請求項3】 未配向のポリビニルアルコール系フィルムを、ヨウ素または二色性染料で染色しておくことを特徴とする請求項1または2記載の配向フィルムの製造方法。

【請求項4】 加熱処理後に、配向フィルムをヨウ素または二色性染料で染色することを特徴とする請求項1または2記載の配向フィルムの製造方法。

【請求項5】 請求項3または4記載の配向フィルムの 製造方法により得られた配向フィルムからなる偏光フィ 20 ルム。

【請求項6】 請求項5記載の偏光フィルムの少なくとも片面に、光学透明保護層を設けた偏光板。

【請求項7】 請求項6記載の偏光板を用いた液晶表示 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、偏光フィルム等に 用いられるポリビニルアルコール系フィルムの配向フィ ルムの製造方法、当該製造方法により得られる偏光フィ 30 ルム、さらには偏光板、液晶表示装置、に関する。

[0002]

【従来の技術】従来、液晶表示装置等に用いる偏光フィルムとして、ポリビニルアルコール系フィルムの配向フィルムが用いられている。当該配向フィルムの製法としては、湿潤延伸法と乾式延伸法とがある。湿潤延伸法ではフィルムの含水率が延伸に影響を及ぼすため配向フィルムに延伸ムラが生じやすい。一方、乾式延伸法では、ガラス転移点以上に加熱したフィルムをロール間の周速比で引張力を付与して延伸を施すため、延伸応力により薄肉化される際に、引張応力による変形により不均一さが生じて延伸ムラが生じ易い。このような延伸ムラを有する配向フィルムを用いた偏光フィルムでは色ムラ・性能ムラに問題がある。前記乾式延伸法による配向フィルムの製造方法の問題に対しては、特許2731813号公報、特許1524033号公報等が提案されている。

【0003】しかし、前記乾式延伸法において、従来原 反として用いられている未配向のポリビニルアルコール 系フィルムの幅は、通常、400~2700mm程度で あり、これよりも原反の未配向フィルムの幅が広幅にな 50

ると、延伸時のネッキングが大きくなり、得られる配向 フィルムの幅が狭くなる。また、幅方向の配向ムラ、厚 みムラが発生し易く高い配向度の配向フィルムが得られ ない。

[0004]

【発明が解決しようとする課題】本発明は、乾式延伸法によるポリビニルアルコール系フィルムの配向フィルムの製造方法であって、原反フィルムの幅が広幅になった場合においても、配向度の高い配向フィルムを製造しうる方法を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明者らは、前記課題 を解決すべく鋭意検討を重ねた結果、以下に示す方法に より前記目的を達成できることを見出し、本発明を完成 するに至った。

【0006】すなわち本発明は、未配向のポリビニルアルコール系フィルムを、ロール間の周速差により張力を付与して乾式縦一軸延伸するにあたり、前記ロール間距離Lを、前記未配向のポリビニルアルコール系フィルムの幅をWとした場合に、L/Wの値が0.6以下となるように設置して前記延伸を行い、さらに延伸した後に60~160℃で加熱処理することを特徴とする配向フィルムの製造方法、に関する。

【0007】上記本発明では、ネッキングを抑制するた めに、原反の未配向のポリビニルアルコール系フィルム を延伸するために張力を付与しているロール間距離し を、原反の未配向フィルムの幅をWとした時、L/Wの 値が0.6以下となるように短くしている。これにより 延伸時のネッキングを抑えている。 L/Wの値が 0.6 より大きくなると、延伸時のネッキングが大きくなり、 得られる配向フィルムの幅が狭くなる傾向がある。前記 L/Wの値は、O. 2以下となるように、さらにロール 間の距離を短くするのが好ましい。一方、前記L/Wの 値を0.6以下にしてロール間距離しを短くするとネッ キングが少ない状態で未配向フィルムを延伸できるが、 得られる配向フィルムの一軸性が低下して配向性が低下 し、幅方向の配向ムラ、厚みムラが発生する。そこで、 本発明では、前記延伸後に、さらに加熱処理を施すこと により配向性を向上させている。このように前記L/W の値を限定してロール間の距離を短くするとともに、延 伸後に加熱処理を施すことにより、原反フィルムの幅が 広幅になった場合においても、配向度の高い配向フィル ムを得ることができる。

【0008】前記配向フィルムの製造方法において、延伸後の加熱処理を、熱ロールにより行うことが好ましい。熱ロールにより効率よく加熱処理を行うことができる。

【0009】前記配向フィルムの製造方法において、未配向フィルムを、ヨウ素または二色性染料で染色しておくことができる。また、前記配向フィルムの製造方法に

おいて、未配向フィルムを延伸し、さらに加熱処理後した後に、配向フィルムをヨウ素または二色性染料で染色することができる。

【0010】また本発明は前記配向フィルムの製造方法により得られた配向フィルムからなる偏光フィルム、に関する。また本発明は前記偏光フィルムの少なくとも片面に、光学透明保護層を設けた偏光板、に関する。さらには本発明は、前記偏光板を用いた液晶表示装置、に関する。

[0011]

【発明の実施の形態】本発明の配向フィルムの製造方法 に用いるポリビニルアルコール系フィルムの材料には、 ポリビニルアルコールまたはその誘導体が用いられる。 ポリビニルアルコールの誘導体としては、ポリビニルホ ルマール、ポリビニルアセタール等があげられる他、エ チレン、プロピレン等のオレフィン、アクリル酸、メタ クリル酸、クロトン酸等の不飽和カルボン酸そのアルキ ルエステル、アクリルアミド等で変性したものがあげら れる。ポリビニルアルコールの重合度は、1000から 10000程度、ケン化度は80~100モル%程度の 20 ものが一般には用いられる。未配向のポリビニルアルコ ール系フィルムの厚みは特に制限されないが、通常、3 0~150μm程度のものが用いられる。また、その幅 Wも特に制限されず、400~3000mm程度のもの を使用できる。特に1000~2500mmの幅広の場 合に特に有用である。

【0012】その他、前記ポリビニルアルコール系の未配向フィルム中には可塑剤等の添加剤を含有することもできる。可塑剤としては、ポリオールおよびその縮合物等があげられ、たとえばグリセリン、ジグリセリン、ト30リグリセリン。エチレングリコール、プロピレングリコール、ポリエチレングリコール等があげられる。可塑剤の使用量は、特に制限されないが未配向フィルム中20重量%以下とするのが好適である。

【0013】前記ポリビニルアルコール系フィルムの未配向フィルムは、乾式延伸法による適するように、その含水率を適宜に調整する。本発明の未配向フィルムの含水率は10%以下であるのが好ましい。なお、含水率は絶乾状態の未配向フィルムの重量に対する水分重量の割合をいう。未配向フィルムの含水率の調整法は特に限定40されないが、たとえば、フィルムライン用の高温のオーブン等を用いる熱風加熱式、熱板等を用いる熱板加熱式、赤外線加熱等を用いる輻射加熱式、熱ロールを用いるロール加熱方式等の各種方法等により乾燥させる方法を採用できる。乾燥温度は、生産性がよいことから50℃以上とするのが好ましい。前記含水率は、好ましくは8%以下、さらには5%以下である。なお、延伸ムラの点で、含水率は0.5%以上とするのが好ましい。

【0014】本発明の配向フィルムの製造では、前記未 配向のポリビニルアルコール系フィルムを、ロール間の 50

周速差により張力を付与して縦一軸延伸する。前記加熱状態で延伸されたフィルムは、縦一軸延伸、薄膜化されて配向フィルムとなる。延伸手段は特に制限されず、各種の乾式延伸法における一軸延伸を行うことができる。延伸方法としては、たとえば、ロール間延伸方法、加熱ロール延伸方法等があげられる。延伸は多段で行うこともできる。配向フィルムの延伸倍率は目的に応じて適宜に設定できるが、延伸倍率は2~6倍、好ましくは3~5.5倍、さらに好ましくは3.5~5倍とするのが望ましい。延伸された配向フィルムの厚さは5~40μm程度が好適である。

【0015】前記延伸にあたり前記未配向フィルムは通 常加熱状態とする。加熱状態とする手段は特に制限され ず、従来より使用されている各種のフィルムライン用の 加熱方法を採用できる。ロール間延伸方法では、加熱手 段として高温のオーブン等を用いる熱風加熱式、熱板等 を用いる熱板加熱式、赤外線加熱等を用いる輻射加熱式 等を採用でき、加熱ロール延伸方法では熱ロールが加熱 手段として用いられる。加熱温度は、70~120[℃]程 度が好ましく、さらに好ましくは90~110℃であ る。加熱温度が70℃未満では、フィルムの引張降伏点 応力が破断応力値に近くなるため連続した配向フィルム の製造が困難となる。一方、加熱温度が高くなるとフィ ルムに含まれている可塑剤の蒸発が激しくなるおそれが あり、また加熱手段として、熱ロールを用いる場合に は、熱ロールとフィルムとの間に浮きが発生し、均一に 延伸するうえでも好ましくない。なお、熱ロールを用い る場合には熱ロールの表面温度を前記範囲に調整する。 熱ロールは複数本を設けることもできる。熱ロールの表 面材質はポリビニルアルコールフィルムとすべりの生じ ない材質であれば特に制限されないが、金属やセラミッ ク質が好適である。また熱ロールの表面粗度については 鏡面仕上げに近いほど好ましい。

【0016】図1、図2は、未配向のポリビニルアルコール系フィルムを、ロール間の周速差により張力を付与して縦一軸延伸する概念図の一例である。ロール間距離しは、ポリビニルアルコール系フィルムとロールとが接触している距離をいう。

【0017】図1は、未配向フィルム1aを、ロール11 (低速)とロール12 (高速)のロール間で加熱するとともに、ロール間の周速差により延伸を行って配向フィルム1bとしている側面(a)および上面(b)の概念図である。図1における加熱手段13としては、高温のオーブン等を用いる熱風加熱式、熱板等を用いる熱板加熱式、赤外線加熱等を用いる輻射加熱式等の各種方法を採用できる。図1のロール間距離しは、ロール11とポリビニルアルコール系フィルムとの最終接触点とロール12とポリビニルアルコール系フィルムとの最始接触点との直線距離をいう。

【0018】図2は、未配向フィルム1aを、熱ロール

22を用いて加熱し、ロール21またはロール23のロ ール間の周速差により延伸を行って配向フィルム1bと している側面(a)および上面(b)の概念図である。 ロール21 (低速) と熱ロール22 (高速) の周速差に より延伸を行う場合には後方に張力が付与され、ロール 23 (高速)と熱ロール22 (低速)の周速差により延 伸を行う場合には前方に張力が付与される。図2のロー ル間距離しは、後方に張力を付与する場合には、ロール 21とポリビニルアルコール系フィルムとの最終接触点 と熱ロール22とポリビニルアルコール系フィルムとの 10 最始接触点との直線距離をいい、前方に張力を付与する 場合には、熱ロール22とポリビニルアルコール系フィ ルムとの最終接触点とロール23とポリビニルアルコー ル系フィルムとの最始接触点との直線距離をいう。

【0019】前記延伸後には、さらに60~160℃で 加熱処理を施して、配向性を向上させる。加熱処理温度 は、効果、効率を考慮すると好ましくは80~140℃ である。加熱処理の方法は、高温のオーブン等を用いる 熱風加熱式、熱板等を用いる熱板加熱式、赤外線加熱等 等の各種方法を使用できる。前記加熱手段の中でも熱ロ ールは、瞬時に熱処理を行なえるので生産性が良く好ま しい。加熱処理時間は2~20秒程度である。

【0020】前記配向フィルムの製造方法において、未 配向フィルム1aには、ヨウ素または二色性染料で染色 しておくことができる。また、未配向フィルムを延伸 し、さらに加熱処理した後に、配向フィルム1bをヨウ 素または二色性染料で染色することもできる。染色方法 は特に制限されないが、ヨウ素を用いる場合には、ヨウ 素ーヨウ化カリウム水溶液を用いるのが一般的であり、 二色性染料を用いる場合には染料水溶液を用いるのが一 般的である。ヨウ素または二色性染料で染色処理さえて いる配向フィルムは、偏光フィルムとして用いられる。 また、延伸されたポリビニルアルコール系フィルムは、 ホウ酸等により耐久化処理を行うことができる。染色方 法、ホウ酸処理等が行われた配向フィルム(偏光フィル ム)は、常法に従って乾燥させる。

【0021】前記偏光フィルムは、常法に従って、その 少なくとも片面に光学透明保護保護層を設けた偏光板と することができる。光学透明保護保護層はポリマーによ 40 る塗布層として、またはフィルムのラミネート層等とし て設ることができる。透明保護層を形成する、透明ポリ マーまたはフィルム材料としては、適宜な透明材料を用 いうるが、透明性や機械的強度、熱安定性や水分遮断性 などに優れるものが好ましく用いられる。前記透明保護 層を形成する材料としては、例えばポリエチレンテレフ タレートやポリエチレンナフタレート等のポリエステル 系ポリマー、二酢酸セルロースや三酢酸セルロース等の セルロース系ポリマー、ポリメチルメタクリレート等の アクリル系ポリマー、ポリスチレンやアクリロニトリル 50

·スチレン共重合体 (AS樹脂) 等のスチレン系ポリマ 一、ポリカーボネート系ポリマーなどがあげられる。ま た、ポリエチレン、ポリプロピレン、シクロ系ないしは ノルボルネン構造を有するポリオレフィン、エチレン・ プロピレン共重合体の如きポリオレフィン系ポリマー、 塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等 のアミド系ポリマー、イミド系ポリマー、スルホン系ポ リマー、ポリエーテルスルホン系ポリマー、ポリエーテ ルエーテルケトン系ポリマー、ポリフェニレンスルフィ ド系ポリマー、ビニルアルコール系ポリマー、塩化ビニ リデン系ポリマー、ビニルブチラール系ポリマー、アリ レート系ポリマー、ポリオキシメチレン系ポリマー、エ ポキシ系ポリマー、あるいは前記ポリマーのブレンド物 なども前記透明保護層を形成するポリマーの例としてあ げられる。

【0022】前記偏光板は液晶パネル最表面のガラス基 板に貼り合わせて液晶表示装置に用いられるが、偏光板 は位相差フィルム等を積層した反射型偏光フィルム、半 透過層型偏光フィルム、偏光分離偏光フィルム等とする を用いる輻射加熱式、熱ロールを用いるロール加熱方式 20 ことができる。また、偏光板には、光学補償フィルム、 その他の各種視野角拡大フィルムを積層することもでき る。また、偏光板の表面上に微細凹凸構造の反射層を設 けて防眩シートとすることもできる。

[0023]

【実施例】以下、本発明の構成と効果を具体的に示す実 施例等について説明する。

【0024】実施例1

厚み75μm、幅1000mmのポリビニルアルコール フィルム(平均重合度2400)を調湿オーブンによ り、水分率1.5%に調整した。これを、図2に示すよ うな方式で、ロール間距離100mmの表面温度30℃ の外径250mmのロール (21: 低速) と表面温度1 05℃の外径350mmの熱ロール (22:高速) との 周速を変えて、4.0倍に縦一軸延伸を行った。さらに 表面温度130℃の加熱ロールで10秒間熱処理を行な い厚み21μmの配向フィルムを得た。

【0025】実施例2

厚み75μm、幅1000mmのポリビニルアルコール フィルム(平均重合度2400)を調湿オーブンによ り、水分率1.5%に調整した。これを、図1に示すよ うな方式で、ロール間距離300mmの間で、105℃ の熱風式オーブン内で加熱して、4.0倍に縦一軸延伸 を行った。さらに表面温度105℃の加熱ロールで10 秒間熱処理を行ない厚み 2 2 μ m の配向フィルムを得 た。

【0026】 実施例3

厚み75μm、幅400mmのポリビニルアルコールフ ィルム (平均重合度2400) を調湿オーブンにより、 水分率1.5%に調整した。これを、図2に示すような 方式で、ロール間距離 40 mmの表面温度 30℃の外径

180mmのロール (21:低速) と表面温度105℃ の外径180mmの熱ロール (22: 高速) との周速を 変えて、4.0倍に縦一軸延伸を行った。さらに表面温 度105℃の加熱ロールで10秒間熱処理を行ない厚み 22μmの配向フィルムを得た。

7

【0027】比較例1

厚み75μm、幅1000mmのポリビニルアルコール フィルム (平均重合度2400) を調湿オーブンによ り、水分率1.5%に調整した。これを、図1に示すよ うな方式で、ロール間距離2000mmの間で、105 10 なっていない。 ℃の熱風式オーブン内で加熱して、4.0倍に縦一軸延 伸を行った。さらに表面温度90℃の加熱ロールで10 秒間熱処理を行ない厚み33μmの配向フィルムを得 た。

*【0028】比較例2

厚み75μm、幅1000mmのポリビニルアルコール フィルム(平均重合度2400)を調湿オーブンによ り、水分率1.5%に調整した。これを、図2に示すよ うな方式で、ロール間距離100mmの表面温度30℃ の外径250mmのロール (21:低速) と表面温度1 05℃の外径350mmの熱ロール (22:高速) との 周速を変えて、4.0倍に縦一軸延伸を行い厚み21μ mの配向フィルムを得た。なお、延伸後には熱処理を行

【0029】上記実施例および比較例の製造条件は表1 に示す通りである。

【表1】

	原反幅W (mm)	延伸倍率(倍)	ロール間距離L(mm)	L/W	熱処理条件
実施例1	1000	4. 0	100	0. 1	130 ℃×10秒
実施例 2	1000	4. 0	300	0. 3	105 ℃×10秒
実施例3	400	4. 0	4 0	0. 1	105 ℃×10秒
比較例1	1000	4. 0	2000	2. 0	90℃×10秒
比較例 2	1000	4. 0	100	0. 1	なし

【0030】実施例および比較例で得られた配向フィル ムのフィルム幅およびフィルムの幅方向のΔn (複屈折 30 率) を表 2 に示す。 Δn (複屈折率) は、ne: 異常光 屈折率とno:常光屈折率を測定し、Δn=ne-no から求めた。なお、これら値は、王子計測機器(株)製 自動複屈折計KOBRA-21ADHを用いて測定し た。

[0031] 【表2】

	配向フィルムのフィルム幅(mm)	Δn
実施例1	920	0. 0285
実施例2	900	0. 0282
実施例3	360	0.0283
比較例1	510	0.0280
比較例 2	922	0. 0241

40

表2に示す通り、実施例ではフィルム原反として幅広の ものを用いた場合にも得られる配向フィルムの幅はあま り狭くなっていない。また、配向フィルムの幅方向のΔ nも高く高配向であると認められる。

【図面の簡単な説明】

【図1】本発明の配向フィルムの製造方法におけるの縦 一軸延伸の一態様である。

【図2】本発明の配向フィルムの製造方法におけるの縦

10

一軸延伸の一態様である。

【符号の説明】

1 ポリビニルアルコール系フィルム

【図1】

L ロール間距離

W ポリビニルアルコール系フィルムの幅

【図2】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコート*(参考)

// B 2 9 K 29:00

B 2 9 L 11:00

CO8L 29:04

B 2 9 K 29:00 B 2 9 L 11:00

CO8L 29:04

Z

(72)発明者 近藤 誠司

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

Fターム(参考) 2H049 BA02 BA06 BA25 BA27 BB23

BB27 BB28 BB33 BB34 BB43

BB51 BB62 BC03 BC09 BC14

BC22

2H091 FA08X FA08Z FB02 FC08

LA30

4F071 AA29 AF29 AF36 AH12 BA01

BB07 BC01

4F210 AA19 AE10 AG01 AH73 QA03

QC02 QM02 QM20 QW06 QW31