

Skoltech

Skolkovo Institute of Science and Technology

Arofenitra Rarivonjy Gregoire Ouerdane Team : LES DEUX GENIES

Arofenitra Karivonjy Gregoire Ouerdane Team: LES DEUX GENIES

2025

October

The Team: Les deux genies

Presentation, Data Visualization, Feature engineering, modelling

Arofenitra Rarivonjy

Feature engineering, Modelling, Evaluation, RF, XGBoost, GBM

Gregoire Ouerdane

Skoltech

Skolkovo Institute of Science and Technology

Let's get started!

Project Presentation

Skolkovo Institute of Science and Technology

Skoltech

PROBLEM DESCRIPTION

Prediction of user churn (inactivity) for a knowledge-sharing platform (Zindi). We need to identify which users are at risk of not engaging with the platform in the coming month.

Importance of the research

Retaining existing users is

5-25x cheaper than acquiring new ones.

Returning customers generate

65% of a brand's revenue.

Sources: Business.com & hbr.org

Customer Name	Status	Prediction	Action
Christa Sanders	Active	Active	✓ No Action
Lucas Garcia	Active	Churned	⚠ At-Risk!
Holly Tucker	Inactive	Churned	✓ No Action
Rebecca Presland	Active	Active	✓ No Action
James Moore	Inactive	Active	◎ Marketing Target
Michael Farren	Active	Active	✓ No Action

Proactive steps to re-engage non-active users via personalized emails, notifications about new relevant competitions, etc.

How Machine learning help?

Reduces cost by focusing on most important

TRANSFORMATIVE POWER OF MACHINE LEARNING

Data Visualization

Data Visualization

Data Visualization

Data Summary and Methods

- Severe Class Imbalance Class 0 (Inactive): 86.0% (223,526 samples); Class 1 (Active): 14.0% (36,306 samples)
- Accuracy would be a terrible metric (a model that always predicts "0" would get 86% accuracy but be useless). We will use F1-score or ROC-AUC. Need for handling class imbalance by SMOTE.
- Feature Types Categorical: User_ID (object type)
- Numerical: month, year, CompPart, Comment, Sub, Disc
- Dropping User_ID: adding it may cause overfitting

Findings

- Strong Predictors CompPart (Competition Participation): 0.919 correlation with Target → EXTREMELY STRONG PREDICTOR
- Sub (Submissions): 0.654 correlation with Target → STRONG PREDICTOR
- Comment and Disc (Discussion): ~0.30 correlation → MODERATE PREDICTORS
 - Weak/Negligible Predictors: month and year: Very weak correlations (-0.07 to -0.13)
- Feature Relationships: No highly correlated feature pairs (all < 0.7), so no redundancy issues</p>
 - CompPart and Sub have inter-feature correlation (0.520) submitting requires participation
- Activity Feature Distribution: All activity features are binary (0/1) and highly imbalanced:
 - Comment and Disc: Very rare (only 1.5% of users)
 - CompPart: 12.1% of users participate
 - Sub: 6.5% of users make submissions

First implementation

```
F1 Score: 1.0
Classification Report:
       precision recall f1-score support
     0
          1.00
                 1.00
                         1.00
                                44706
          1.00
                 1.00
                         1.00
                                7261
                        1.00
                               51967
 accuracy
               1.00
                      1.00
                             1.00
                                    51967
 macro avg
weighted avg
                1.00
                       1.00
                              1.00
                                     51967
```

- Model: Random Forest (balanced class weight)
- Existence of data leakage
- The provided features in train.csv directly reveal the target variable"

Investigating data leakage

Torgot	CompPart		Comment		Sı	ıb	Disc	
Target	0	1	0	1	0	1	0	1
0	178820	0	178820	0	178820	0	178820	0
1	3959	25086	25937	3108	15556	13489	26023	3022

Solution: Rebuild from scratch raw data to build meaningful features that do not leak.

users: (22407, 8)

competitions: (154, 17)

comp_participation: (48565, 7)

submissions: (375763, 6) discussions: (6211, 6)

comments: (11751, 4)

- Static features we'll use: UserID;
 Country; Points;
 user_tenure_months; FeatureX;
 FeatureY
- Merging features with targets...
- Final modeling dataset shape: (20218, 7)
- Class distribution in final dataset: Target (1 <-> 0.751; 0 <-> 0.249)

Metrics

- Categorical columns: ['UserID', 'Country', 'Points']
- Numerical columns: ['user_tenure_months', 'FeatureX', 'FeatureY']
- Features shape: (20218, 6)
- Target shape: (20218,)
- Train set: (16174, 6)
- Validation set: (4044, 6)
- Train class distribution: {1: 0.751, 0: 0.249}
- Val class distribution: {1: 0.751, 0: 0.249}

Random Forest Output

F1 Score: 0.7081 ROC AUC: 0.7722

	precision	recall	f1-score	support
0	0.40	0.86	0.55	1005
1	0.93	0.57	0.71	3039
accuracy			0.64	4044
macro avg	0.66	0.72	0.63	4044
weighted av	rg 0.80	0.64	0.67	4044

Top 10 most important features:

	teature	importance	
2	FeatureY	0.104580	
0	user_tenure_months	0.055111	
16277	Country_ID_Q02	0.050819	
16313	Points_group 3	0.050304	
16276	Country_ID_PLTE	0.049867	
16197	Country_ID_50WN	0.029669	
16245	Country_ID_HIXK	0.020542	
16246	Country_ID_HWRH	0.017824	
1	FeatureX	0.016830	
16311	Country_ID_ZXLV	0.014823	
10011	OCCITICIO_ID_EALL	OIO I TOLO	

Optimized Model

1. Creating advanced Features

```
Original features: ['Country', 'Points', 'user_tenure_months', 'FeatureX', 'FeatureY', 'Target']
```

New features created: ['tenure_group', 'points_group', 'log_tenure', 'sqrt_points', 'points_per_month', 'high_points_long_tenure', 'new_user_high_points', 'tenure_squared', 'points_squared', 'feature_ratio', 'activity_score', 'is_new_user', 'is_established_user']

Total features after engineering: 18

2. Advanced Preprocessing and selection of most important features

- Final feature matrix shape: (20218, 18)
- Training set: (16174, 18), Validation set: (4044, 18)
- Selected 7 most important features: 'Country', 'Points',
 'points_group', 'log_tenure', 'sqrt_points', 'points_per_month',
 'points_squared']

3. Hyperparameters tuning and building of super ensemble

1. Tuning Random Forest model ...

Fitting 3 folds for each of 12 candidates, totalling 36 fits

Best rf params: {'class_weight': 'balanced', 'max_depth': None, 'min_samples_split': 2, 'n_estimators': 200}

Best rf CV F1: 0.7988

2. Tuning Gradient Boosting ...

Fitting 3 folds for each of 8 candidates, totalling 24 fits
Best gb params: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200}
Best gb CV F1: 0.8610

3. Tuning XGBoost ...

Fitting 3 folds for each of 16 candidates, totalling 48 fits
Best xgb params: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200, 'subsample': 0.9}
Best xgb CV F1: 0.8630

RANDOM FO	ANDOM FOREST Confusion matrix			Gradient	Boosting	Confusion matrix			
F1-score	roc-auc	Acc.	842	163	F1-	roc-auc	Acc.	474	531
0.7880	0.8389	0.723	957	2082	0.859	0.847	0.781	353	2686
	Precision	Recall	F1-	Support		Precision	Recall	F1-	Support
0	0.47	0.84	0.60	1005	0	0.57	0.47	0.52	1005
1	0.93	0.69	0.79	3039	1	0.83	0.88	0.86	3039
accuracy			0.72	4044	асс			0.78	4044
Macro avg	0.70	0.76	0.69	4044	Macro avg	0.70	0.68	0.69	4044
Weighted avg	0.81	0.72	0.74	4044	Weight ed avg	0.77	0.78	0.77	4044

XGBOOST			Confusion matrix							
F1-	roc-auc	Acc.	497	508	ENSEMBLE RESULTS					
0.86	0.847	0.785	362	2677	ENSEMBLE RESULTS					
	Precisio n	Recall	F1-	Support	F1-	roc-auc	Acc.			
0	0.58	0.49	0.53	1005						
1	0.84	0.88	0.86	3039	0.8464	0.8468	0.7762			
асс			0.78	4044						
Macro avg	0.71	0.69	0.70	4044						
Weighted avg	0.78	0.78	0.78	4044						

FEATURE IMPORTANCE ANALYSIS AND SUMMARY

TOP 15 MOST IMPORTANT FEATURES (XGBoost):

	feature	importance
1	Points	0.962874
3	log_tenure	0.022328
0	Country	0.011952
5	points_per_month	0.002846
2	points_group	0.00
4	sqrt_points	0.00
6	points_squared	0.00

Baseline F1 Score: 0.7705

Best Optimized F1 Score: 0.8602 Improvement: +0.0897 (11.6%)

@ BEST OVERALL MODEL: XGBoost

 BEST F1 SCORE: 0.8602

STACKING ENSEMBLE RESULTS:

F1 Score: 0.8523 ROC AUC: 0.8311

TINAL BEST F1 SCORE: 0.8602

TOTAL IMPROVEMENT: +0.0897 (11.6%)

CONCLUSION

1. DATA LEAKAGE DISCOVERY:

- Initial model had perfect F1-score (1.0) due to data leakage
- Activity features directly revealed the target variable
- This taught us the importance of proper temporal feature engineering

2. VALID SOLUTION:

- Switched to static user features only (no leakage possible)
- Used: Country, Points, User Tenure, FeatureX, FeatureY
- Achieved realistic basic F1-score of 0.7705 and optimized F1-score of 0.8602

3. BUSINESS IMPACT:

- Model can identify users likely to become inactive based on profile characteristics
- Platform can target retention efforts more effectively
- Countries like ID_Q02 and longer tenure users show different activity patterns

4. TECHNICAL ACHIEVEMENT:

- Built a valid predictive model without data leakage
- Handled class imbalance using class weights
- Used appropriate metrics (F1, ROC-AUC) for imbalanced data