# Efficient Robust Design for Thermoacoustic Instability Analysis: A Gaussian Process Approach

S. Guo, C. F. Silva, W. Polifke



ASME Turbo Expo 2019 GT2019-90732



## Robust analysis takes into account input uncertainties to realize risk-free thermoacoustic design





## Robust analysis takes into account input uncertainties to realize risk-free thermoacoustic design



#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks



Conclusions







Distributed Time Lag Model [1]



[1] Komarek, T., Polifke, W., 2010, J Eng Gas Turbines Power.

















Distributed Time Lag Model [1]

| Paramet     | ers        | Nominal                 | Range                                                        |
|-------------|------------|-------------------------|--------------------------------------------------------------|
|             | $	au_1$    | $\tau_1^0 = 2.85$       | $0.9	au_1^0 \sim 1.1	au_1^0$                                 |
| Flame       | $\sigma_1$ | $\sigma_1^0 = 0.7$      | $0.9\boldsymbol{\sigma}_1^0 \sim 1.1\boldsymbol{\sigma}_1^0$ |
| (units: ms) | $	au_{s1}$ | $\tau_{\rm s1}^0 = 1.8$ | $0.9	au_{ m s1}^0 \sim 1.1	au_{ m s1}^0$                     |
|             | $	au_{s2}$ | $\tau_{s2}^0 = 3.3$     | $0.9\tau_{s2}^0 \sim 1.1\tau_{s2}^0$                         |
|             |            |                         |                                                              |



[1] Komarek, T., Polifke, W., 2010, J Eng Gas Turbines Power.







Distributed Time Lag Model [1]

| Paramete          | ers         | Nominal             | Range                              |
|-------------------|-------------|---------------------|------------------------------------|
| Flame (units: ms) | $	au_1$     | $\tau_1^0 = 2.85$   | $0.9	au_1^0 \sim 1.1	au_1^0$       |
|                   | $\sigma_1$  | $\sigma_1^0 = 0.7$  | $0.9\sigma_1^0 \sim 1.1\sigma_1^0$ |
|                   | $	au_c$     | $\tau_{c}^{0} = 3$  | $2\sim4.8$                         |
|                   | $	au_{s1}$  | $\tau_{s1}^0 = 1.8$ | $0.9	au_{s1}^0 \sim 1.1	au_{s1}^0$ |
|                   | $	au_{s2}$  | $\tau_{s2}^0 = 3.3$ | $0.9	au_{s2}^0 \sim 1.1	au_{s2}^0$ |
| Acoustic BC       | $ R_{out} $ | $ R_{out} ^0 = 0.9$ | $0.6 \sim 1$                       |

[1] Komarek, T., Polifke, W., 2010, J Eng Gas Turbines Power.

#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks

Risk Analysis

Gaussian Process

Risk

Diagram



#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks

Risk Analysis

Gaussian Process

Risk

Diagram



## Risk analysis: setting the stage for the subsequent robust design analysis



| Paramete          | ers         | Nominal | Range                              |
|-------------------|-------------|---------|------------------------------------|
| Flame (units: ms) | $	au_1$     |         | $0.9	au_1^0 \sim 1.1	au_1^0$       |
|                   | $\sigma_1$  |         | $0.9\sigma_1^0 \sim 1.1\sigma_1^0$ |
|                   | $	au_c$     |         |                                    |
|                   | $	au_{s1}$  |         | $0.9	au_{s1}^0 \sim 1.1	au_{s1}^0$ |
|                   | $	au_{s2}$  |         | $0.9	au_{s2}^0 \sim 1.1	au_{s2}^0$ |
| Acoustic BC       | $ R_{out} $ |         |                                    |

"Q1: what is the risk factor of the system when uncertainties are presented in the flame parameter  $\tau_1$ ,  $\sigma_1$ ,  $\tau_{s1}$  and  $\tau_{s2}$ ?"

## → Risk Analysis



Known:  $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$   $au_c = au_c^*, |R_{out}| = |R_{out}|^*$ 

Solve:  $P_f^I = \int_0^\infty PDF(\alpha)d\alpha = ?$   $P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ?$ 



## Applying Monte Carlo directly on acoustic solvers is very expensive

#### Flame model



 $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$ Known:

$$au_c = au_c^*$$
,  $|R_{out}| = |R_{out}|^*$ 

 $\tau_c=\tau_c^*,\ |R_{out}|=|R_{out}|^*$  Solve:  $P_f^I=\int_0^\infty PDF(\alpha)d\alpha=?$ 

$$P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ?$$

"Q1: what is the risk factor of the system when uncertainties are presented in the flame parameter  $\tau_1$ ,  $\sigma_1$ ,  $\tau_{s1}$  and  $\tau_{s2}$ ?"

## → Risk Analysis







## Surrogate modeling technique can significantly improve the efficiency of risk analysis

#### Flame model



 $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$ Known:

$$\tau_c = \tau_c^*, |R_{out}| = |R_{out}|^*$$

 $\tau_c=\tau_c^*,\ |R_{out}|=|R_{out}|^*$  Solve:  $P_f^I=\int_0^\infty PDF(\alpha)d\alpha=?$ 

$$P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ?$$

"Q1: what is the risk factor of the system when uncertainties are presented in the flame parameter  $\tau_1$ ,  $\sigma_1$ ,  $\tau_{s1}$  and  $\tau_{s2}$ ?"

## → Risk Analysis







## Gaussian Process is employed as the surrogate model in our study







#### **Prior**

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

m(x): Polynomial

**Data** 



#### **Posterior**

$$f^*(x) \sim \mathcal{GP}(m^*(x), k^*(x, x'))$$





## Gaussian Process is employed as the surrogate model in our study

#### Goal

$$\alpha^{I} \approx GP^{I}(\tau_1, \sigma_1, \tau_c, \tau_{s1}, \tau_{s2}, |R_{out}|)$$

$$\alpha^{C} \approx GP^{C}(\tau_1, \sigma_1, \tau_c, \tau_{s1}, \tau_{s2}, |R_{out}|)$$

## Training

- → A total of 102 samples are used
- → Reuse for all design tasks

## Gaussian Process models have delivered highly accurate risk analysis

### Q1: Risk Analysis

Known:  $\tau_1, \sigma_1, \tau_{s1}, \tau_{s2} \sim \mathcal{U}$ 

$$au_c = au_c^0$$
 ,  $|R_{out}| = |R_{out}|^0$ 

Solve:  $P_f^I = \int_0^\infty PDF(\alpha)d\alpha = ?$ 

$$P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ?$$







## Risk diagram visualizes the risk pattern over the entire parameter space

## **Risk Diagram**



| Parameter   | rs         | Nominal | Range                                                        |
|-------------|------------|---------|--------------------------------------------------------------|
|             | $	au_1$    |         | $0.9	au_1^0 \sim 1.1	au_1^0$                                 |
| Flame       | $\sigma_1$ |         | $0.9\boldsymbol{\sigma}_1^0 \sim 1.1\boldsymbol{\sigma}_1^0$ |
| (units: ms) | $	au_{s1}$ |         | $0.9	au_{s1}^0 \sim 1.1	au_{s1}^0$                           |
|             | $	au_{s2}$ |         | $0.9\tau_{s2}^0 \sim 1.1\tau_{s2}^0$                         |
| Acoustic BC |            |         |                                                              |

$$au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$$

## Risk diagram visualizes the risk pattern over the entire parameter space





## Each point in risk diagram has two associated PDFs





#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks

Risk Analysis

Gaussian Process

Risk

Diagram

Ideal Control Design
Realistic Control Design
Tolerance Design



#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks





#### Both modes have certain level of risk to be unstable

### Q1: Risk Analysis

Known:

$$\tau_1, \sigma_1, \tau_{s1}, \tau_{s2} \sim \mathcal{U}$$

$$\tau_c = \tau_c^0, |R_{out}| = |R_{out}|^0$$

Solve:  $P_f^I = \int_0^\infty PDF(\alpha)d\alpha = ? \quad \blacksquare$   $P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ? \quad \blacksquare$ 

$$P_f^C = \int_0^\infty PDF(\alpha)d\alpha = ?$$







#### Cavity Mode





## Ideal control design: A first step towards risk mitigation





 $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$ Known:  $|R_{out}| = |R_{out}|^0$ 

"Q2: using  $\tau_c$  as a control factor, what is the required minimum modification of  $\tau_c$  to eliminate the risk of instability of both cavity and ITA mode simultaneously?"



$$\min_{\tau_c} f(\tau_c) = (\tau_c - \tau_c^0)^2$$

$$\min_{ au_c} f( au_c) = ( au_c - au_c^0)^2$$
 $\text{subject to}: P_f^{(I)}( au_c) \leq 0.1\%$ 
 $P_f^{(C)}( au_c) \leq 0.1\%$ 

$$2\text{ms} \le \tau_c \le 4.8\text{ms}$$



## Ideal control design: A first step towards risk mitigation



"Q2: using  $\tau_c$  as a control factor, what is the required minimum modification of  $\tau_c$  to eliminate the risk of instability of both cavity and ITA mode simultaneously?"



$$\min_{ au_c} f( au_c) = ( au_c - au_c^0)^2$$
 $\mathrm{subject\ to}: P_f^{(I)}( au_c) \leq 0.1\%$ 
 $P_f^{(C)}( au_c) \leq 0.1\%$ 
 $2\mathsf{ms} \leq au_c \leq 4.8\mathsf{ms}$ 

## Gaussian Process models have delivered highly accurate design

#### Q2: Ideal control design

$$\min_{\tau_c} f(\tau_c) = (\tau_c - \tau_c^0)^2$$

subject to:  $P_f^{(I)}(\tau_c) \leq 0.1\%$ 

$$P_f^{(C)}(\tau_c) \le 0.1\%$$

 $2\text{ms} \le \tau_c \le 4.8\text{ms}$ 





$$au_c^{opt} = 3.52 \ ms$$
  $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$   $( au_c^0 = 3 \ ms)$   $|R_{out}| = |R_{out}|^0$ 



## Risk diagram offers straightforward determination of the optimum design



#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks





## Realistic control design: further enhance the robustness of the design







## Realistic control design: further enhance the robustness of the design





$$\min_{\bar{\tau}_c} f(\bar{\tau}_c) = (\bar{\tau}_c - \tau_c^0)^2$$

$$\text{subject to}: \quad P_f^{(I)}(\tau_c) \le 0.1\%$$

$$P_f^{(C)}(\tau_c) \le 0.1\%$$

$$\tau_c \sim \mathcal{N}(\bar{\tau}_c, (0.05\tau_c^0)^2)$$

"Q3: in reality, we cannot perfectly control  $\tau_c$ . Meanwhile,  $|R_{out}|$  is also uncertain. Then how would these affect the decision made from Q2?"





## Gaussian Process models have delivered highly accurate design

#### Q3: Realistic control design

$$\min_{\bar{\tau}_c} f(\bar{\tau}_c) = (\bar{\tau}_c - \tau_c^0)^2$$

subject to:  $P_f^{(I)}(\tau_c) \le 0.1\%$ 

$$P_f^{(C)}(\tau_c) \le 0.1\%$$

$$\tau_c \sim \mathcal{N}(\bar{\tau}_c, (0.05\tau_c^0)^2)$$





$$ar{ au_c}^{opt} = 4.06 \ ms$$
  $au_c \sim \mathcal{N}(ar{ au_c}^{opt}, (0.05 au_c^0)^2)$   
 $( au_c^{opt} = 3.52 \ ms)$   $|R_{out}| \sim \mathcal{U}(0.7, 0.9)$   
 $au_1, \sigma_1, au_{s1}, au_{s2} \sim \mathcal{U}$ 



## Risk diagram indicates the direction for determining the optimum design





#### **Presentation overview**

- Motivation
- ☐ Thermoacoustic problem settings
- Robust design tasks





## Tolerance design: A perspective of an inverse problem



"Q4: given a certain threshold for risk factor, what are the maximum allowable variational ranges for  $\tau_c$  and  $|R_{out}|$ ?"





## Tolerance design: A perspective of an inverse problem



"Q4: given a certain threshold for risk factor, what are the maximum allowable variational ranges for  $\tau_c$  and  $|R_{out}|$ ?"

## → Tolerance Design





### Pareto front visualizes the trade-off between two objectives

## Q4: Tolerance design $\max_{\boldsymbol{\sigma}_{\tau_c}} f(\boldsymbol{\sigma}_{\tau_c}) = \frac{\boldsymbol{\sigma}_{\tau_c}}{\tau_c^0} \min_{R_L} g(R_L) = \frac{R_L}{|R_{out}|^0}$ subject to: $P_f^{(I)}(\tau_c, |R_{out}|) \le 0.1\%$ $P_f^{(C)}(\tau_c, |R_{out}|) \le 0.1\%$ $au_c \sim \mathscr{N}(ar{ au}_c, (oldsymbol{\sigma}_{ au_c})^2)$ $|R_{out}| \sim \mathcal{U}(R_L, 0.9)$ $\bar{\tau_c}^{opt}$ $R_{out}$ 0.9





## Risk diagram illustrates the trade-off between uncertainties of $au_c$ and $R_{out}$





## Conclusions



## https://github.com/ShuaiGuo16/ASME19



## Back-up: GP model training process

Leave-one-out cross validation

$$GE = \frac{1}{N} \sum_{i=1}^{N} (f_i - \hat{f}_i^{(-i)})^2$$

N Total number of training samples

 $f_i$  the known response of the training sample  $\pmb{x}^i$ 





 $\widehat{f_i}^{(-i)}$  the prediction at  $\mathbf{x}^i$  using the GP model constructed upon all training samples except  $(\mathbf{x}^i, f_i)$ 



## Back-up: time costs

Laptop PC, CPU 2.30GHz

GP model training: 93s

Risk analysis (MC on acoustic solver): 271s

Risk analysis (MC on GP model): 1.3s



## Back-up: Sensitivity analysis

| Parameters | Case A                                                                       | Case B                                          | Case C                                       |
|------------|------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| $	au_1$    | $\mathcal{U}(0.9\tau_1^0, 1.1\tau_1^0)$                                      | $\mathcal{N}(\tau_1^0, (0.03\tau_1^0)^2)$       |                                              |
| $\sigma_1$ | $\mathscr{U}(0.9\boldsymbol{\sigma}_{\!1}^0,1.1\boldsymbol{\sigma}_{\!1}^0)$ | $\mathscr{N}(\sigma_1^0,(0.03\sigma_1^0)^2)$    | $\mathcal{N}(\boldsymbol{M},\boldsymbol{C})$ |
| $	au_{s1}$ | $\mathcal{U}(0.9\tau_{s1}^0, 1.1\tau_{s1}^0)$                                | $\mathcal{N}(\tau_{s1}^0, (0.03\tau_{s1}^0)^2)$ | J (M,C)                                      |
| $	au_{s2}$ | $\mathcal{U}(0.9\tau_{s2}^0, 1.1\tau_{s2}^0)$                                | $\mathcal{N}(\tau_{s2}^0, (0.03\tau_{s2}^0)^2)$ |                                              |



ITA
CAV



## Back-up: take into account both parametric uncertainty and GP model uncertainty

#### **Posterior**

$$f^*(x) \sim \mathcal{GP}(m^*(x), k^*(x, x'))$$





