

SEQUENCE LISTING

<110> Bayer AG

<120> ATP binding cassette genes and proteins for diagnosis
and treatment of lipid disorders and inflammatory
diseases

<130> ATP binding cassette genes and protein

<140>

<141>

<150> 101706

<151> 1998-09-25

<160> 54

<170> PatentIn Ver. 2.0

<210> 1

<211> 6880

<212> DNA

<213> Human

<220>

<223> cDNA of ABCA1 (ABC1)

<400> 1

caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
tctgttcggc tgagctaccc acccttatgaa caacatgaat gccattttcc aaataaaagcc 120
atgccctctg caggaacact tccttgggtt caggggatta tctgtaatgc caacaacccc 180
tgtttccgtt acccgactcc tggggaggct cccggagttt ttggaaactt taacaaatcc 240
attgtggctc gcctgttctc agatgctcg aggcttcttt tatacagcca gaaagacacc 300
agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaaa atccagctca 360
aacttgaagc ttcaagattt cctgggtggac aatgaaacct tctctgggtt cctgtatcac 420
aacctctctc tcccaaagtc tactgtggac aagatgctga gggctgtatgt cattctccac 480
aaggtagttt tgcaaggcta ccagttacat ttgacaagtc tgtcaatgg atcaaaaatca 540
gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaaggag 600
aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaatcctg 660
agaacactaa actctacatc tcccttccccg agcaaggagc tggccgaagc cacaaaaaca 720
ttgctgcata gtcttgggac tctggcccag gagctgttca gcatgagaag ctggagtgac 780
atgcgacagg aggtgatgtt tctgaccaat gtacatggctt ccagctcctc caccctaaatc 840
taccaggctg tgtctcgat tgcgtcgaaa catccccagg gagggggggct gaagatcaag 900
tctctcaact ggtatgagga caacaactac aaaggccctt ttggaggcaaa tggcaactgag 960
gaagatgctg aaaccttcta tgacaaactct acaactcctt actgcaatga tttgatgaag 1020
aatttggagt ctatgcctt tccccgcatt atctggaaag ctctgaagcc gctgctcggtt 1080
ggaaagatcc tgtatacacc tgacactcca gccacaaaggc aggtcatggc tgaggtaac 1140
aagaccttcc aggaactggc tgcgttccat gatctggaaag gcatgtggga ggaactcagc 1200
cccaagatct ggaccttcat ggagaacagc caagaaatgg accttgcgg gatgctgttg 1260
gacagcaggc acaatgacca cttttggaa cagcagttgg atggctttaga ttggacagcc 1320
caagacatcg tggcggtttt ggccaagcac ccagaggatg tccagtcgg taatggttct 1380
gtgtacacct ggagagaagc tttcaacggc actaaccagg caatccggac catatctcg 1440
ttcatggagt gtgtcaacct gaacaagcta gaaccatag caacagaagt ctggctcatc 1500
aacaagtcca tggagctgct ggatgagagg aagttctggg ctggattgtt gttcaactgga 1560
attactccag gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt 1620
gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680

ttcatctgct tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
ctactttgc tgtatgggtg gtcaatcaca cctctcatgt acccagcctc ctttgttgc 5220
aagatccccca gcacagccta tgtggtgctc accagcgtga acctcttcat tggcattaat 5280
ggcagcgtgg ccaccttgc gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
gatatcctga agtccgtgtt cttgatcttc ccacatttt gcctgggacg agggctcatc 5400
gacatggtga aaaaccaggc aatggctgat gccctggaaa ggtttgggaa gaatcgctt 5460
gtgtcaccat tatctggga ctgggtggga cgaaacctct tcgccatggc cgtggaaagg 5520
gtggtgttct tcctcattac tggctgtatc cagtacagat tcttcattcag gcccagacct 5580
gtaaatgcaa agtatctcc tctgaatgat gaagatgaag atgtgaggcg ggaaagacag 5640
agaattctt atgggtggagg ccagaatgac atcttagaaa tcaaggagtt gacgaagata 5700
tatagaagga agcggaaagcc tgctgttgc aggatttgcg tggcattcc tcctggtgag 5760
tgcttgggc tcctgggagt taatgggct ggaaaatcat caacttcaa gatgttaaca 5820
ggagatacca ctgttaccag aggagatgtt ttcccttaaca gaaatagtat cttatcaa 5880
atccatgaag tacatcagaa catgggctac tgccctcagt ttgatgccat cacagagctg 5940
ttgactggga gagaacacgt ggagttctt gccctttga gaggagtccc agagaaaagaa 6000
gttggcaagg ttggtgagt ggcgattcgg aaactggcc tcgtgaagta tggagaaaaa 6060
tatgctggta actatagtgg aggcaacaaa cgcaagctct ctacagccat ggcttgc 6120
ggcgggcctc ctgtgggtt tctggatgaa cccaccacag gcatggatcc caaagcccg 6180
cggttctgt ggaattgtgc cctaagtgtt gtcaaggagg ggagatcagt agtgcttaca 6240
tctcatagta tggagaatg tgaagctt tgcactagga tggcaatcat ggtcaatgg 6300
agttcaggt gccttggcag tgtccagcat ctaaaaaata ggtttggaga tggttataca 6360
atagttgtac gaatagcagg gtccaaccccg gacctaaggc ctgtccaggaa tttctttgg 6420
cttgcatatc ctggaagtgt tccaaaagag aaacaccgga acatgctaca ataccagctt 6480
ccatcttcat tatcttcctt ggcaggata ttcagcatcc tctcccgag caaaaagcga 6540
ctccacatag aagactactc tgggttcag acaacactt accaagtatt tgtgaactt 6600
gccaaggacc aaagtgtatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
gtatggacg ttgcagttct cacatcttt ctacaggatg agaaaagtgaa agaaaagctat 6720
gtatgaagaa tcctgttcat acgggggtggc tggaaagtaaa gagggacttag actttcctt 6780
gcaccatgtg aagtgttgcg gggaaaagag ccagaagttt atgtggaaag aagtaaaactg 6840
gatactgtac tgatactatt caatgcaatg caattcaatg 6880

<210> 2

<211> 2201

<212> PRT

<213> Human

<220>

<223> Peptide sequence of ABCA1 (ABC1)

<400> 2

Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
1 5 10 15

Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly
20 25 30

Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp
35 40 45

Ala Arg Arg Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp
50 55 60

Met Arg Lys Val Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser
65 70 75 80

Asn Leu Lys Leu Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly
85 90 95

Phe Leu Tyr His Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met
100 105 110

Leu Arg Ala Asp Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln
115 120 125

Leu His Leu Thr Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile
130 135 140

Gln Leu Gly Asp Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Arg Glu
145 150 155 160

Lys Leu Ala Ala Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu
165 170 175

Lys Pro Ile Leu Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys
180 185 190

Glu Leu Ala Glu Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu
195 200 205

Ala Gln Glu Leu Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu
210 215 220

Val Met Phe Leu Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile
225 230 235 240

Tyr Gln Ala Val Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly
245 250 255

Leu Lys Ile Lys Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala
260 265 270

Leu Phe Gly Gly Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp
275 280 285

Asn Ser Thr Thr Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser
290 295 300

Ser Pro Leu Ser Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val
305 310 315 320

Gly Lys Ile Leu Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met
325 330 335

Ala Glu Val Asn Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu
340 345 350

Glu Gly Met Trp Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu
355 360 365

Asn Ser Gln Glu Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp
370 375 380

Asn Asp His Phe Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala
385 390 395 400

Gln Asp Ile Val Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser
405 410 415

Ser Asn Gly Ser Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn
420 425 430

Gln Ala Ile Arg Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn
435 440 445

Lys Leu Glu Pro Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met
450 455 460

Glu Leu Leu Asp Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly
465 470 475 480

Ile Thr Pro Gly Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile
485 490 495

Arg Met Asp Ile Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly
500 505 510

Tyr Trp Asp Pro Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr
515 520 525

Val Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
530 535 540

Ile Arg Val Leu Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln
545 550 555 560

Gln Met Pro Tyr Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met
565 570 575

Ser Arg Ser Met Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val
580 585 590

Ala Val Ile Ile Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys
595 600 605

Glu Thr Met Arg Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser
610 615 620

Trp Phe Ile Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu
625 630 635 640

Val Val Ile Leu Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser
645 650 655

Val Val Phe Val Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln
660 665 670

Cys Phe Leu Ile Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala
675 680 685

Cys Gly Gly Ile Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys
690 695 700

Val Ala Trp Gln Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser
705 710 715 720

Leu Leu Ser Pro Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu
725 730 735

Phe Glu Glu Gln Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser
740 745 750

Pro Val Glu Glu Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met
755 760 765

Leu Phe Asp Thr Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala
770 775 780

Val Phe Pro Gly Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys
785 790 795 800

Thr Lys Ser Tyr Trp Phe Gly Glu Ser Asp Glu Lys Ser His Pro
805 810 815

Gly Ser Asn Gln Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Glu Pro
820 825 830

Thr His Leu Lys Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr
835 840 845

Arg Asp Gly Met Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr
850 855 860

Glu Gly Gln Ile Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr
865 870 875 880

Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr
885 890 895

Ala Tyr Ile Leu Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg
900 905 910

Gln Asn Leu Gly Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu
915 920 925

Thr Val Glu Glu His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser
930 935 940

Glu Lys His Val Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly
945 950 955 960

Leu Pro Ser Ser Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly
965 970 975

Met Gln Arg Lys Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys
980 985 990

Val Val Ile Leu Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg
995 1000 1005

Arg Gly Ile Trp Glu Leu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile
1010 1015 1020

Ile Leu Ser Thr His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg
1025 1030 1035 1040

Ile Ala Ile Ile Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu
1045 1050 1055

Phe Leu Lys Asn Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys
1060 1065 1070

Lys Asp Val Glu Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr
1075 1080 1085

Val Ser Tyr Leu Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp
1090 1095 1100

Ala Gly Leu Gly Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val
1105 1110 1115 1120

Ser Ala Ile Ser Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu
1125 1130 1135

Val Glu Asp Ile Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala
1140 1145 1150

Ala Lys Glu Gly Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg
1155 1160 1165

Leu Ser Asp Leu Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu
1170 1175 1180

Glu Glu Ile Phe Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu
1185 1190 1195 1200

Thr Ser Asp Gly Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly
1205 1210 1215

Asp Lys Gln Ser Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp
1220 1225 1230

Pro Asn Asp Ser Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu
1235 1240 1245

Ser Gly Met Asp Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu
1250 1255 1260

Thr Gln Gln Gln Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala
1265 1270 1275 1280

Arg Arg Ser Arg Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val
1285 1290 1295

Phe Val Cys Ile Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly
1300 1305 1310

Lys Tyr Pro Ser Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr
1315 1320 1325

Thr Phe Val Ser Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu
1330 1335 1340

Leu Asn Ala Leu Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu
1345 1350 1355 1360

Gly Asn Pro Ile Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp
1365 1370 1375

Thr Thr Ala Pro Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly
1380 1385 1390

Asn Trp Thr Met Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp
1395 1400 1405

Lys Ile Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu
1410 1415 1420

Pro Pro Pro Gln Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu
1425 1430 1435 1440

Thr Gly Arg Asn Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile
1445 1450 1455

Ile Ala Lys Ser Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr
1460 1465 1470

Gly Gly Phe Ser Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser
1475 1480 1485

Gln Glu Val Asn Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu
1490 1495 1500

Ala Lys Asp Ser Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe
1505 1510 1515 1520

Met Thr Gly Leu Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn
1525 1530 1535

Lys Gly Trp His Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala
1540 1545 1550

Ile Leu Arg Ala Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly
1555 1560 1565

Ile Thr Ala Phe Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser
1570 1575 1580

Glu Val Ala Pro Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys
1585 1590 1595 1600

Val Ile Phe Ala Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu
1605 1610 1615

Ile Gln Glu Arg Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly
1620 1625 1630

Val Lys Pro Val Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys
1635 1640 1645

Asn Tyr Val Val Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe
1650 1655 1660

Gln Gln Lys Ser Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu
1665 1670 1675 1680

Leu Leu Leu Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala
1685 1690 1695

Ser Phe Val Phe Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser
1700 1705 1710

Val Asn Leu Phe Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu
1715 1720 1725

Glu Leu Phe Thr Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys
1730 1735 1740

Ser Val Phe Leu Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile
1745 1750 1755 1760

Asp Met Val Lys Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly
1765 1770 1775

Glu Asn Arg Phe Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn
1780 1785 1790

Leu Phe Ala Met Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val
1795 1800 1805

Leu Ile Gln Tyr Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys
1810 1815 1820

Leu Ser Pro Leu Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
1825 1830 1835 1840

Arg Ile Leu Asp Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu
1845 1850 1855

Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile
1860 1865 1870

Cys Val Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn
1875 1880 1885

Gly Ala Gly Lys Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr
1890 1895 1900

Val Thr Arg Gly Asp Ala Phe Leu Asn Arg Asn Ser Ile Leu Ser Asn
1905 1910 1915 1920

Ile His Glu Val His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala
1925 1930 1935

Ile Thr Glu Leu Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu
1940 1945 1950

Leu Arg Gly Val Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala
1955 1960 1965

Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn
1970 1975 1980

Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile
1985 1990 1995 2000

Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp
2005 2010 2015

Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys
2020 2025 2030

Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu
2035 2040 2045

Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys
2050 2055 2060

Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr
2065 2070 2075 2080

Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln
2085 2090 2095

Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Pro Lys Glu Lys His
2100 2105 2110

Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala
2115 2120 2125

Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu
2130 2135 2140

Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe
2145 2150 2155 2160

Ala Lys Asp Gln Ser Asp Asp His Leu Lys Asp Leu Ser Leu His
2165 2170 2175

Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln
2180 2185 2190

Asp Glu Lys Val Lys Glu Ser Tyr Val
2195 2200

<211> 1130

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB9

<400> 3

gccaatgnca cggttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
agggcgccca gctgtcaggt ggccagaagc agcgggtggc catggccng gctctgggc 120
ggaacccccc agtcctcatc ctggatgaag ccaccagcgc tttggatgcc gagagcgagt 180
atctgatcca gcaggccatc catggcaacc tgcagaagc acacggtaact catcatcg 240
caccggctga gcaccgtgga gcacgcgcac ctcattgtgg tgctggacaa gggccgcgta 300
gtgcagcagg gcacccacca gcagcttgct tgccccaggg cgggctttt cggcaagctn 360
gttgcagcgg cagatgtggg gttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgttagccaac gggtcacaag gcctgatggg gggccctcc ttgcggcggg ggcagaggac 480
ccggtgcctg cctggcagat gtgcccacgg aggttccag ctgcccattacc gagcccaggc 540
ctgcagcact gaaagacgac ctgcattgtc ccatgatcac cgcttntgca atcttgc 600
tggccctgc cccatttcca gggcaactt accccnnct gggggatgtc caagagcata 660
gtcctctccc cataccctc cagagaaggg gttccctgt ccggagggag acacgggaa 720
cgggattttc cgtctctccc tcttgcacgc tctgtgagtc tggccagggc gggtagggag 780
cgtggagggc atctgtctgc caattgcccctg cgcataatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
cccagcccg caccctgtt tcgcctctcg tcaatcaacc cttggctggc agccgcctc 960
cccacacccg cccctgtctg ctcgtgtctg gaggccacgt ggaccttcat gagatgcatt 1020
ctcttctgtc tttggtgan gggatggtgc aaagcccagg atctggctt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttaccctc 1130

<210> 4

<211> 1304

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA6

<400> 4

tcttagatga gaaacctgtt ataattgcca gctgtctaca caaagaatat gcaggccaga 60
agaaaagttt ctttcaaag aggaagaaga aaatagcagc aaaaatatac tctttctgt 120
ttcaagaagg taaaattttt ggattgctg gaccaatgg tgctggaaaa agttcatcta 180
tttagaatgt atctggatc acaaagccaa ctgctggaga ggtggaaactg aaaggctgca 240
gttcagttt gggccacctg gggtaactgcc ctcaagagaa cgtgctgtgg cccatgctga 300
cggtgagggc acacctggag gtgtatgctg cgcgtcaaggc gctcaggaaa gggacgcga 360
ggctcgccat cgcaagatta gtgagtgtt tcaaactgca tgagcagctg aatgttccctg 420
tgcagaaattt aacagcagga atcacgagaa agttgtttt tgcgtgagc ctcctggaa 480
actcacctgt ctgcgtcctg gatgaaccat ctacggccat aacccacag ggcagcagca 540
aatgttggca ggcaatccag gcgtcgta aaaacacaga gagaggtgtc ctcctgacca 600
cccataaccc ggctgaggcg gaagccttgc tgaccgtgt ggcacatcgatg gtgtctggaa 660
ggcttagatg cattggctcc atccaacacc taaaaaccaa acttggcaag gattacattc 720
tagagctaaa agtgaaggaa acgtctcaag tgactttgtt ccacactgag attctgaagc 780
tttcccaca ggctgcaggc caggaaaggat attccctttt gttaacctat aagctgcccc 840
gtggcagacg tttaccctt atcacagacc tttcacaat tagaagcagt gaaagcataa 900
ctttaacctg gaagaataca gccttctcc agtgcacact gganaaggtn tccttanaac 960
cttccctaaan aacaggaagt taggaaattt tgaatgaaaa nnnaccncccc cccctcattc 1020
agggtggacc taaaacctc aaaccttagta atttttgtt gatctccttat aaaacttatg 1080
tttatgtaa taattaatag tatgtttaat tttaaagatc atttaaaatt aacatcaggt 1140
atattttgtt aatttagtta acaaatacat aaattttaaa attattcttc ctctcaaaca 1200

taggggtgat agcaaacctg tgataaaggc aataaaaaat attagtaaag tcacccaaag 1260
agtcaaggcac tgggtattgt ggaaataaaa ctatataaac tttaa 1304

<210> 5
<211> 65
<212> PRT
<213> Human

<220>
<223> Partial peptide sequence of ABCG1 (ABC8)

<400> 5
Val Ser Phe Asp Thr Ile Pro Thr Tyr Leu Gln Trp Met Ser Tyr Ile
1 5 10 15

Ser Tyr Val Arg Tyr Gly Phe Glu Gly Val Ile Leu Ser Ile Tyr Gly
20 25 30

Leu Asp Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe
35 40 45

Gln Lys Ser Glu Ala Ile Leu Arg Glu Leu Asp Val Glu Asn Ala Lys
50 55 60

Leu
65

<210> 6
<211> 4864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC2 (MRP2)

<400> 6
atagaagagt cttcggttcca gacgcagtcc aggaatcatg ctggagaagt tctgcaactc 60
tactttttgg aattcctcat tcctggacag tccggaggca gacctgccac tttgttttga 120
gcaaaactgtt ctggtgttgg ttccccttggg ctccttatgg ctcctggccc cctggcagct 180
tctccacgtg tataaatcca ggaccaagag atcctctacc accaaactct atcttgctaa 240
gcaggtattc gttgggtttc ttcttattct agcagccata gagctggccc ttgtactcac 300
agaagactct ggacaagcca cagtcctgc tgttcgatat accaatccaa gcctctacac 360
aggcacatgg ctccctgggtt tgctgatcca atacagcaga caatgggtgt tacagaaaaa 420
ctcctgggttc ctgtccctat tctggattct ctcgataactc tgtggcaatttcca 480
gactctgatc cggacactct tacagggtga caattctaat ctgcctact cctgcctgtt 540
cttcatctcc tacggattcc agatcctgat cctgatcttt tcagcatttt cagaaaaataa 600
tgagtcatca aataatccat catccatagc ttcatttcctg agtagcatta cctacagctg 660
gtatgacagc atcattctga aaggctacaa gcgtcccttg acactcgagg atgtctggga 720
agttgatgaa gagatgaaaa ccaagacatt agtgagcaag ttgaaacgc acatgaagag 780
agagctgcag aaagccaggc gggcactcca gagacggcag gagaagagct cccagcagaa 840
ctctggagcc aggctgcctg gttgaacaa gaatcagagt caaagccaaatg atgccttgc 900
cctggaagat gttgaaaaaga aaaaaaagaa gtctggacc aaaaaagatg ttccaaaatc 960
ctgggttgatg aaggctctgt tcaaaaacttt ctacatggtg ctccctgaaat cattcctact 1020
gaagcttagt aatgacatct tcacgtttgt gagtccctcag ctgctgaaat tgctgatctc 1080
ctttgcaagt gaccgtgaca catattgtg gattggatat ctctgtgcaa tcctcttatt 1140
cactgcggct ctcattcagt ctccctgcct tcagtttat ttccaaactgt gcttcaagct 1200

gggtgtaaaa gtacggacag ctatcatggc ttctgtatat aagaaggcat tgaccctatc 1260
caacttggcc aggaaggagt acaccgttgg agaaacagtg aacctgtatc ctgtggatgc 1320
ccagaagctc atggatgtga ccaacttcat gcacatgctg tggtaagtg ttctacagat 1380
tgtcttatct atcttcttcc tatggagaga gttgggaccc tcagtccttag caggtgttgg 1440
ggtgatggtg cttgtaatcc caattaatgc gatactgtcc accaagagta agaccattca 1500
ggtaaaaaat atgaagaata aagacaaacg tttaaagatc atgaatgaga ttcttagtgg 1560
aatcaagatc ctgaaatatt ttgcctggga accttcattc agagaccaag tacaaaacct 1620
ccggaagaaa gagctcaaga acctgttggc ctttagtcaa ctacagtgtg tagtaatatt 1680
cgcttccag ttaactccag tcctgttac tggtaacaca ttttctgttt atgtccttgt 1740
ggatagcaac aatattttgg atgcacaaaaa ggccttcacc tccattaccc tcttcaatat 1800
cctgcgttt cccctgagca tgcttccat gatgatctcc tccatgtcc aggccagtgt 1860
ttcacagag cggttagaga agtacttggg agggatgac ttggacacat ctgccattcg 1920
acatagctgc aattttgc aagccatgca gtttctgag gcctccttta cctggaaaca 1980
tgattcggaa gccacagtcc gagatgtgaa cctggacatt atggcaggcc aacttgcggc 2040
tgtgataggc cctgtcggtc ctggaaatc ctccttgata tcagccatgc tggagaaat 2100
ggaaaatgtc cacgggacaca tcaccatcaa gggcaccact gcctatgtcc cacagcagtc 2160
ctggattcag aatggcacca taaaggacaa catcctttt ggaacagagt ttaatgaaaa 2220
gaggtaccag caagtactgg aggcctgtgc tctcctccca gacttggaaa tgctgcctgg 2280
aggagattt gctgagattt gagagaaggg tataaatctt agtgggggtc agaagcagcg 2340
gatcagcctg gccagagcta cctaccaaaaa ttttagacatc tatcttcttag atgaccccct 2400
gtctgcagt gatgctcatg taggaaaaca tatttttaat aaggcttgg gccccaaatgg 2460
cctgtgaaa ggcaagactc gacttgggt tacacatagc atgcacttcc ttcctcaagt 2520
ggatgagatt gtagttctgg ggaatggAAC aattgttagag aaaggatcct acagtgcct 2580
cctggccaaa aaaggagagt ttgctaagaa tctgaagaca tttctaagac atacaggccc 2640
tgaagaggaa gccacagtcc atgatggcag tgaagaagaa gcagatgact atgggctgat 2700
atccagtgtg gaagagatcc cgaagatgc agcctccata accatgagaa gagagaacag 2760
cttcgtcga acacttagcc gcagttcttag gtccaatggc aggcatctga agtcccttag 2820
aaactccctt aaaaactcgaa atgtaatag cctgaaggaa gacgaagaac tagtggaaagg 2880
acaaaaaacta attaagaagg aattcataga aactggaaag gtgaagttct ccacatcacct 2940
ggagtaccta caagcaatag gattgtttc gatattcttc atcatccctt cgtttgcgt 3000
gaattctgtg gcttttattt gatccaaccc tggctcagt gcttggacca gtgactctaa 3060
aatcttcaat agcaccgact atccagcatc tcagaggac atgagatgg gagtctacgg 3120
agctctggga ttagcccaag gtatatttg gttcatagca catttctggta gtgcctttgg 3180
ttcgtccat gcatcaaata tcttgaccaa gcaactgctg aacaatatcc ttgcagcacc 3240
tatgagatt tttgacaccaa caccacacgg ccggattgtg aacaggtttt ccggcgatata 3300
ttccacagtg gatgacaccc tcgcctcagtc cttgcgcacg tggattacat gcttcctggg 3360
gataatcagc acccttgtca tgatctgtcat ggccactcct gtcttcacca tcacatgtcat 3420
tcctcttggc attattttatg tatctgttca gatgttttgc gtgtctaccc cccggccagct 3480
gaggcgtctg gactctgtca ccaggtcccc aatctactct cacttcagcg agaccgtatc 3540
aggtttgcca gttatccgtg cctttgagca ccagcagcga tttctgaaac acaatgaggt 3600
gaggattgac accaaccaga aatgtgtctt ttccctggatc acctccaaaca ggtggcttgc 3660
aattcgcctg gagctgggtt ggaacctgac tgtcttctt tcagccttgc tgatggat 3720
ttatagagat accctaagt gggacactgt tggctttgtt ctgtccaaatg cactcaat 3780
cacacaaacc ctgaactggc tggtaggat gacatcagaa atagagacca acattgtggc 3840
tgttgagcga ataactgagt acacaaaatgg gggaaatggat gcaccctggc tgactgataa 3900
gaggcctccg ccagattggc ccagcaaaagg caagatccag ttacaacaact accaagtgcg 3960
gtaccgaccc gagctggatc tggcctcag agggatcact tggacatcg ttagcatgga 4020
gaagattgggt gtggggcga ggacaggagc tggaaagtca tccctcacaa actgccttcc 4080
cagaatctt aaggctgccg tgggtcagat tattttgtat gggatgatata ttgcttccat 4140
tggctccac gacccctcgag agaagctgac catcatcccc caggacccca tcctgttctc 4200
tggaaaggctg agatgaatc tggccatcc caacaactac ttagatgagg agattggaa 4260
ggccttggag ctggctcacc tcaagtcttt tggccagc ctgcaacttgc ggttatccca 4320
cgaaggtaca gaggctggtg gcaacctgag cataggccag aggcagctgc tggcctggg 4380
caggcgtctg cttcgaaat ccaagatcct ggtccctggat gaggccactg ctgggggtgg 4440
tcttagagaca gacaacccca ttccagacgac catccaaaac gagttcgccc actgcacagt 4500
gatcaccatc gcccacacggc tgcacaccat catggacatg gacaaggtaa tggccttaga 4560
caacggaaat attatagatg gggcagcccc tgaagaactg ctacaaatcc ctggaccctt 4620

ttactttatg gctaaggaag ctggcattga gaatgtgaac agcacaaaat tctagcagaa 4680
ggccccatgg gttagaaaaag gactataaga ataatttctt atttaatttt atttttata 4740
aaatacagaa tacatacaaag aagtgttata aaatgtacgt tttaaaaaag gataagtcaa 4800
caccatgaa cctactaccc aggttaagaa aataaatgtc accaggtact tgaaaaaaaaa 4860
aaaaa 4864

<210> 7
<211> 4646
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB1 (MDR1)

<400> 7
cctactctat tcagatattc tccagattcc taaagattag agatcatttc tcatttcct 60
aggagtactc acttcaggaa gcaaccagat aaaagagagg tgcaacggaa gccagaacat 120
tcctccttggaa aattcaaccc gtttcgcgt ttctcgagga atcagcattc agtcaatccg 180
ggccgggagc agtcatctgt ggtgaggctg attggctggg caccaacagc gcccgggcgt 240
gggtctgagca cagcgcttcg ctctcttgc cacaggaaagc ctgagctcat tcgagtagcg 300
gctcttccaa gctcaaagaa gcagaggccg ctgttcgtt cctttaggtc tttccactaa 360
agtcggagta tcttcttcca agatttcacg tcttggtggc cgttccaagg agcgcgaggt 420
cgggatggat cttgaagggg accgcaatgg aggagcaaag aagaagaact tttttaact 480
gaacaataaaa agtggaaaaag ataagaagga aaagaaacca actgtcagtg tattttcaat 540
gtttcgctat tcaaattggc ttgacaagtt gtatatggg gtggaaactt tggctgccat 600
catccatggg gctggacttc ctctcatgtat gctgggtttt ggagaaatga cagatatctt 660
tgcaaatgca gggaaatttag aagatctgtat gtcaaacatc actaatagaa gtgatataaa 720
tgatcacaggg ttcttcatga atctggagga agacatgacc aggtatgcctt attttacag 780
tggaaattggt gctgggggtgc tgggtgctgc ttacatttcg gtttcattttt ggtgcctggc 840
agctggaaaga caaatacaca aaatttagaaa acagttttt catgctataa tgcgacagga 900
gataggctgg ttgtatgtgc acgatgttgg ggagcttaac acccgactt cagatgtgt 960
ctctaagatt aatgaagttt ttgggtacaa aattggaaatg ttcttcagt caatggcaac 1020
attttcact gggtttatag taggatttc acgtgggtgg aagctaaacc ttgtatttt 1080
ggccatcagt cctgttcttgc gactgtcagc tgctgtctgg gcaaagatac tattttcatt 1140
tactgataaaa gaactcttag cgtatgcaaa agctggagca gttagctgaag aggtcttggc 1200
agcaatttaga actgtgattt cattggagg acaaaagaaa gaacttgaaa ggtacaacaa 1260
aaatttagaa gaagctaaaaa gaattggat aaagaaagctt attacagcca atatttctat 1320
aggtgctgtt ttcctgtatc tctatgcattt ttatgtctgt gccttctggt atgggaccac 1380
cttggccttc tcaggggaaat attctattgg acaagttactc actgtattttt tttctgtatt 1440
aattggggct ttagtgttg gacaggcatc tccaagcattt gaagcatttg caaatgcaag 1500
aggagcagct tatgaaatct tcaagataat tgataataag ccaagtattt acagttttc 1560
gaagagtggg cacaaccag ataatattaa gggaaatttg gaatttcagaa atgttcaattt 1620
cagttaccca tctcgaaaaag aagttaaagat cttgaaggcc ctgaacctga aggtgcagag 1680
tgggcagacg gtggccctgg ttggaaacag tggctgtggg aagagcacaag cagtcagct 1740
gatgcagagg ctctatgacc ccacagagggt gatggctagt gttgtatggc aggttattag 1800
gaccataaaat gtaagggttc tacgggaaat cattgggtgt gttagtcagg aacctgtatt 1860
gtttgccacc acgatagctg aaaacattcg ctatggccgt gaaaatgtca ccatggatga 1920
gattgagaaa gctgtcaagg aagccaaatgc ctatgactttt atcatgaaac tgcctcataa 1980
atttgacacc ctgggtggag agagagggc ccagttgagt ggtggcaga agcagaggat 2040
cgccattgca cgtgccctgg ttcgcaccc caagatcctc ctgctggatg aggcacacgtc 2100
agccttggac acagaaaagcg aagcagtggt tcaggtggct ctggataagg ccagaaaaagg 2160
tcggaccacc attgtgatag ctcatcgat gttacagttt cgtatgtcg acgtcatcg 2220
tggtttcgtat gatggagtca ttgtggagaa aggaaatcat gatgaactca tgaaagagaa 2280
aggcatttac ttcaaaacttg tcacaatgca gacagcaggaa aatgaagttt aatttagaaaa 2340
tgcagctgtat gaatccaaaaa gtgaaatttgaa tgccttggaa atgtcttcaa atgattcaag 2400
atccagtcta ataagaaaaa gatcaactcg taggagtgtc cgtggatcac aagccaaaga 2460
cagaaaagctt agtacccaaag aggctctggaa tgaaagtata cctccagttt cttttggag 2520

gattatgaag ctaaatttaa ctgaatggcc ttatttgtt gttggtgtat tttgtgccat 2580
tataaatgga ggcctgcaac cagcattgc aataatattt tcaaagatta tagggggttt 2640
tacaagaatt gatgatcctg aaacaaaacg acagaatagt aacttggttt cactattgtt 2700
tctagccctt ggaatttattt cttttattac attttcctt cagggttca catttggcaa 2760
agctggagag atcctcacca agcggctccg atacatgggtt ttccgatcca tgctcagaca 2820
ggatgtgagt tgggttgatg accctaaaaa caccactgga gcattgacta ccaggctcgc 2880
caatgatgct gctcaagttt aaggggctat aggttccagg cttgctgtaa ttacccagaa 2940
tatagcaaat cttgggacag gaataattat atccttcatc tatgggtggc aactaacact 3000
gttactctt gcaattgtac ccatcattgc aatagcagga gttgtgaaa tgaaaatgtt 3060
gtctggacaa gcactgaaag ataagaaaaga actagaaggt gctggaaaga tcgctactga 3120
agcaatagaa aacttccgaa ccgttggttc tttgactcag gagcagaagt ttgaacatat 3180
gtatgctcag agtttgcagg taccatacag aaacttggt aggaaagcac acatcttgg 3240
aattacattt tccttcaccc aggcaatgtat gtatttcc tatgctggat gttccgggtt 3300
tggagcctac ttgggtggcac ataaaactcat gagctttag gatgttctgt tagtattttc 3360
agctgttgc tttgggtgcca tggccgtggg gcaagtcagt tcatttgctc ctgactatgc 3420
caaagccaaa atatcagcag cccacatcat catgatcatt gaaaaaaaccc ctttgattga 3480
cagctacagc acggaaggcc taatgcccga cacattggaa ggaaatgtca catttggtga 3540
agttgttattc aactatccca cccgaccggc catcccagtgc cttcagggac tgagcctgga 3600
ggtaagaag ggccagacgc tggctctggt gggcagcagt ggctgtggg agagcacagt 3660
ggtccagctc ctggagcggt tctacgaccc cttggcaggaa aagtgtcgc ttgatggcaa 3720
agaaaataaag cgactgaatg ttcaatggctt ccgagcacac ctgggcacatcg tgcgtccagga 3780
gccatcctg tttgactgca gcattgctga gaacattgccc tatggagaca acagccgggt 3840
gggtgcacag gaagagatcg tgagggcagc aaaggaggcc aacatacatg ctttcatcga 3900
gtcaactgcct aataaaatata gcactaaagt aggagacaaa ggaactcagc tctctgggtgg 3960
ccagaaacaa cgcattgcca tagctgtgc ctttggtaga cagcctata ttttgcgtttt 4020
ggatgaagcc acgtcagctc tggatacaga aagtggaaag gttgtccaag aagccctgga 4080
caaagccaga gaaggccgca cctgcattgt gattgctcac cgcctgtcca ccatccagaa 4140
tgcagactta atagtgggtt ttcaatggc cagactcaag gagcatggca cgcacatcgca 4200
gctgctggca cagaaaggca tctattttc aatggtcagt gtccaggctg gaacaaagcg 4260
ccagtgaact ctgactgtat gagatgttta atactttta atatttgcgtt agatatgaca 4320
tttattcaaa gttaaaagca aacacttaca gaattatgaa gaggtatctg ttacattt 4380
cctcagtcaa gttcagagtc ttcaatggact tcgtaattaa aggaacacagtg tgagagacat 4440
catcaagtgg agagaaatca tagttaaac tgcattataa attttataac agaattaaag 4500
tagattttaa aagataaaaat gtgtatttt gtttatattt tcccatggactgtactg 4560
actgcctgc taaaagatta tagaagttagc aaaaagtattt gaaatgtttt cataaagtgt 4620
ctataataaa actaaacttt catgtg 4646

<210> 8
<211> 864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD2 (ALDR)

<400> 8
aaatggacca gatccgggtgc tgtaaaggagg gctgcctgcc tgggtggctgc ggcataatgct 60
ctgaaaaccc tctatcccat cattggcaag cgatggaaatgc aatctggcca cggaaagaaaa 120
aaagcagcag cttaccctgc tgcagagaac acagaaatac tgcattgcac cgagaccatt 180
tggaaaaac cttcgccctgg agtgaatgca gatttttca aacagctact agaacttcgg 240
aaaattttgtt tccaaaaact tggaccact gaaacagggt ggctctgcct gcactcagtgc 300
gctctaatttca caagaacctt tctttctatc tatgtggctg gtctggatgg aaaaatcgtg 360
aaaagcatttgc tggaaaagaa gcctcgact ttcatcatca aattaatcaa gtggcttgc 420
atggccatcc ctgtacccctt cgtaacacgt gcaataaggt acctggatgc caaattggct 480
ttggccttca gaactcgccctt agtagaccac gcctatgaaa cttatatttac aaatcagact 540
tattataaaatg tggatggggagg ctggcaaacc ctgaccatc tcttacggag 600
gatattatgatgatcaat ggtatggggagg ctggcaaacc ctgaccatc tcttacggag 660

ttagatgtaa tgctgaccc tcatacactc attcaaactg ctacatccag aggaggcaagc 720
ccaattgggc ccaccctact agcaggactt gtgggtatg ccactgctaa agtgttaaaa 780
gcctgttctc ccaaatttgg caaactggtg gcagaggaag cacatagaaa aggctatttgc 840
cggtatgtgc actcgagaat tata 864

<210> 9
<211> 2750
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD1 (ALDP)

<400> 9
gcggacggac ggcgcctggc ccccgaaaa gggcgccacc gggggaggag gaggaggaga 60
agggtggagag gaagagacgc cccctctgcc cgagacctct caaggccctg acctcagggg 120
ccagggcact gacaggacag gagagccaag ttccctccact tgggctgcc gaagaggccg 180
cgacccttgg gggcccttgg cccaccgcac cagggggcccc agcaccaccc cggggcccta 240
aagcgacagt ctcagggccc atcgcaaggt ttccctttgc cttagacaaca ggcccagggt 300
cagagcaaca atccttcag ccacctgcct caactgtgc cccaggcacc agccccagtc 360
cctacgcggc agccagccca ggtgacatgc cggtgtctc caggccccgg ccctggcg 420
ggaacacgct gaagcgcacg gccgtgtcc tggccctcgc ggcctatgg accccacaag 480
tctaccctt ggtgcggccag tgcctggccc cggccagggg tcttcaggcg cccggccggg 540
agcccacgca ggaggccccc ggggtcgccg cggccaaagc tggcatgaac cgggtattcc 600
tgcagcggct cctgtggctc ctgcggctgc tggcccttgc ggtcctgtgc cgggagacgg 660
ggctgctggc cctgcactcg gccgccttgg tgagccgcac cttccctgtcg gtgtatgtgg 720
cccgcccttgg cggaaaggctg gcccgttgc tgcctcccaa ggaccggcgg gctttggct 780
ggcagctgtc gcagtggttc ctcatcgccc tccctgtctc cttcgtaaac agtgcacatcc 840
gttaccttgg gggccaaactg gcccgttgc tccgcagccg tctgggtggcc cacgcctacc 900
gcctctactt ctcccagcag acctactacc gggtcagcaa catggacggg cggcttcgca 960
accctgacca gtctctgtac gaggacgtgg tggcccttgc ggcctctgtg gcccacctct 1020
actccaaacct gaccaagcca ctccctggacg tggctgtgac ttccctacacc ctgcttcggg 1080
cggcccgctc ccgtggagcc ggcacagcc ggcctcgcc catgcggcc ctcgtgggt 1140
tcctcacggc caacgtgtc cggcccttgc cggccaaagtt cggggagctg gtggcagagg 1200
aggcgccggc gaagggggag ctgcgttaca tgcactcgcg tgggtggcc aactcgagg 1260
agatcgccct ctatggggc catgagggtgg agctggccct gctacagcgc tcctaccagg 1320
acctggccctc gcagatcaac ctcatccttc tggAACGCT gtggatgtt atgctggagc 1380
agttcctcat gaagtatgtg tggagcgcct cggccctgtc catggtggct gtccccatca 1440
tcactgcccac tggctactca gagtcatgtc cagaggccgt gaagaaggca gccttggaaa 1500
agaaggagga ggagctgggtg agcgagcgc cagaaggccct cactattgcc cgcaacctcc 1560
tgacagccgc tgcaatgtcc attgagcggc tcatgtcgcc gtacaaggag gtgacggagc 1620
tggctggcta cacagccccc gtgcacgaga tggccctaggat atttgaagat gttcagcgct 1680
gtcaactcaa gaggcccagg gagctagagg acgctcaggc ggggtctggg accataggcc 1740
ggctgggtg ccgtgtggag gggcccccgtga agatccgagg ccaggtgggt gatgtggaaac 1800
aggggatcat ctgcgagaac atccccatcg tcacgcctc aggagagggt gtggtggcca 1860
gcctcaacat cagggtggag gaaggcatgc atctgtcat cacaggcccc aatggctgct 1920
gcaagagctc cctgtccgg atccctgggtg ggctctggcc cacgtacggt ggtgtgtct 1980
acaagcccccc accccagcgc atgttctaca tcccgccagag ggcctacatg tctgtggct 2040
ccctgcgtga ccaggtgtatc taccggact cagtggagga catgcaaagg aagggtact 2100
cgagcggcggc cctggaaagcc atccctggacg tcgtgcaccc gcaccacatc ctgcagcg 2160
agggagggtg ggaggctatg tggactggc aggacgtctt gtcgggtggc gagaagcaga 2220
gaatcgccat ggcccgcatg ttctaccaca gggccaaatg cgccttcgt gatgaatgca 2280
ccagcgccgt gacatcgac gtggaaaggca agatcttcca ggcggccaaag gacgcgggca 2340
ttggccctgtc ctccatcacc caccggccct ccctgtggaa ataccacaca cacttgcac 2400
agttcgatgg ggagggccggc tggaaagttcg agaagctggc ctcagctgccc cgcctgagcc 2460
tgacggagga gaagcagcgg ctggagcggc agctggccgg cattcccaag atgcagcgcc 2520
gcctccagga gctctggccatccctggccaggccgtggc cccagcgcat gtgcccggc 2580

ctagccccca aggcctcggt ggcctccagg gtgcctccac ctgacacaac cgtccccggc 2640
ccctcccccg cccccaagct cggatcacat gaaggagaca gcagcacca cccatgcacg 2700
caccggcccc ctgcatgcct ggcccctcct cctagaaaac ccttcccgcc 2750

<210> 10
<211> 5011
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC1 (MRP1)

<400> 10
ccaggcgccg ttgcggccccc ggccccggct ccctgcgccc cccgcgcgc cgccgcccggc 60
gccgcgcgcg ccgcgcgcag cgctagcgcc agcagccggg cccgatcacc cgccgccccgg 120
tgccccggcc cgccccggcc agcaaccggg cccgatcacc cgccgccccgg tgccccggcc 180
cgccccggcc accggcatgg cgctccgggg cttctgcagc gccgatggct ccgaccggct 240
ctgggactgg aatgtcacgt ggaataccag caacccgac ttcaccaagt gctttcagaa 300
cacggtcctc gtgtgggtgc cttgtttta cctctggcc tgtttccct tctacttcct 360
ctatcttcctc cgacatgacc gaggctacat tcagatgaca cctctcaaca aaaccaaaaac 420
tgccttggga ttttgcgtgt ggatcgctg ctgggcagac ctcttctact ctttctggga 480
aagaagtcgg ggcattttcc tggcccccagt gtttctggc agcccaactc tcttggcat 540
caccacgctg ctgtctaccc ttttaattca gctggagagg aggaaggag ttcagtcttc 600
aggatcatg ctcaacttct ggctggtagc cctagtggt gccctagcca tcctgagatc 660
caaaattatg acagccttaa aagaggatgc ccaggtggac ctgttcgtg acatcacttt 720
ctacgtctac tttccctct tactcattca gtcgtcttg tcctgtttt cagatcgctc 780
accctgttc tcggaaacca tccacgaccc taatccctgc ccagagtcca ggcgttcctt 840
cctgtcgagg atcaccttct gggtggatcac agggttgatt gtccggggct accggccagcc 900
cctggagggc agtgacccctt ggtccttaaa caaggaggac acgtcggaac aagtctgccc 960
tgttttggta aagaacttgg aagaaggaatg cgccaagact aggaaggcagc cggtaaggt 1020
tgtgtactcc tccaaggatc ctgcccagcc gaaagagagt tccaagggtgg atgcaatga 1080
ggaggtggag gctttgatcg tcaagtccttcc acagaaggag tggaaacccct ctctgtttaa 1140
ggtgttatac aagacctttg ggcctactt cctcatgagc ttcttcttca aggccatcca 1200
cgacctgatg atgtttccg gggcgagat cttaaagttt ctcataatgt tcgtgaatga 1260
cacgaaggcc ccagactggc agggtactt ctacaccgtg ctgtgtttt tcactgcctg 1320
cctgcagacc ctcgtgtgc accagtactt ccacatctgc ttctgtcgtg gcatgaggat 1380
caagaccgct gtcattgggg ctgtctatcg gaaggccctg gtgatcacca attcagccag 1440
aaaatctcc acggtcgggg agattgtcaa ctcataatgt gtggacgctc agaggatcat 1500
ggacttggcc acgtacatta acatgatctg gtcagccccctt ctgcaagtca tccttgctct 1560
ctacctctgt tggctgaatc tggcccttc cgtcctggct ggagtggccg tggatggctt 1620
catggtgccc gtcaatgtcg tcatggcgat gaagaccaag acgtatcagg tggccacat 1680
gaagagcaaa gacaatcgga tcaagctgtat gaacgaaaatt ctcaatggga tcaaagtgt 1740
aaagctttat gcctgggagc tggcattcaa ggacaagggt ctggccatca ggcaggagga 1800
gctgaagggtg ctgaagaagt ctgcctaccc gtcagccgtg ggcacccatca cctgggtctg 1860
caccccttt ctggtggcct tggcacatt tggccgtctac gtgaccattt acgagaacaa 1920
catcctggat gcccagacag cttcgtgtc tttggccttgc ttcaacatcc tccggttcc 1980
cctgaacatt ctccccatgg tcatcagcag catcggtcg gcgagtgtct ccctcaaaccg 2040
cctgaggatc ttctctccctt atgaggagct ggaacctgac agcatcgagc gacggcctgt 2100
caaagacggc gggggcacga acagcatcac cgtgaggaat gccacattca cctggggccag 2160
gagcgaccct cccacactga atggcatcac cttctccatc cccgaagggtg ctggatggc 2220
cgtggggcc caggtgggt gggaaagtc gtcctgtc tggccctct tggctgagat 2280
ggacaaagtg gaggggcacg tggctatcaa gggctccgtg gcctatgtgc cacagcaggc 2340
ctggattcag aatgattctc tccgagaaaa catcctttt ggtatgtcagc tggaggaacc 2400
atattacagg tccgtgatac aggctgtgc cttcccttca gacctggaaa tcctgcccag 2460
tggggatcgg acagagattg gcgagaaggg cgtgaacctg tctggggcc agaaggcagcg 2520
cgtgagcctg gcccggccg tggactccaa cgctgacatt taccttcctc atgatcccct 2580
ctcagcagtg gatgcccattt tggaaaaca catcttggaa aatgtgattt gcccccaagg 2640

gatgctgaag aacaagacgc ggatcttggc cacgcacagc atgagctact tgccgcagg 2700
ggacgtcatc atcgcatcgt gtcggcggca gatctctgag atgggcctt accaggagct 2760
gctggctcga gacggcgcct tcgctgagtt cctgcgtacc tatgccagca cagagcagga 2820
gcaggatgca gaggagaacg gggtcacggg cgtcagcgtt ccagggaaagg aagcaaagca 2880
aatggagaat ggcatgtgg tgacggacag tgcaggaaag caactgcaga gacagctcag 2940
cagctcctcc tcctatagtg gggacatcag caggcaccac aacagcaccc cagaactgca 3000
gaaagcttag gccaagaagg aggagacctg gaagctgatg gaggctgaca aggcgcagac 3060
agggcaggta aagcttccg tgcactggaa ctacatgaag gccatcgac tcttcattctc 3120
cttcctcage atcttcctt tcatgtgtaa ccatgtgtcc ggcgtggctt ccaactattg 3180
gctcgcctc tggactgatg accccatcgt caacggact caggagcaca cgaaagtccg 3240
gctgagcgtc tatggagccc tgggcatttc acaaggatc gccgtgtttt gctactccat 3300
ggccgtgtcc atcggggggaa tcttgcgttc ccgcgtgtcg cacgtggacc tgctgcacag 3360
catcctgcgg tcacccatga gcttcttga gcggaccccc agtggaaacc tggtaaccg 3420
cttctccaag gagctggaca cagtggactc catgatccc gaggtcatca agatgttcat 3480
gggctccctg ttcaacgtca ttggcgttc catcgatcc tgcgtggcca cgcccatcgc 3540
cgccatcatc atcccgcccc ttggcctcat ctacttctc gtccagaggt tctacgtggc 3600
ttcccccgg cagctgaagc gcctcgagtc ggtcagccgc tccccggctt attcccat 3660
caacgagacc ttgctggggg tcagcgtcat tcgagccttc gaggagcagg agcgttcat 3720
ccaccagagt gacctaagg tggacgagaa ccagaaggcc tattacccca gcatcggtc 3780
caacaggtgg ctggccgtgc ggctggagtg tggggcaac tgcacatgtt tggctgtgc 3840
cctgttgcg gtgatcttca ggacacgcct cagtgcgtgc ttggggggcc tctcgtgtc 3900
ttactcattt caggtcacca cgtacttgaa ctggctgggtt cggatgtcat ctgaaatgga 3960
aaccacatc gtggccgtgg agaggctaa ggagtattca gagactgaga aggaggcgcc 4020
ctggcaacatc caggagacag ctccgcccc cagctggccc caggtggggc gaggtaatt 4080
ccggaactac tgcctgcgtc accgagagga cctggacttc gttctcaggc acatcaatgt 4140
cacgatcaat gggggagaaa aggtcggtat cgtggggcgg acgggagctg ggaagtcgtc 4200
cctgaccctg ggcttatttc ggcataacga gtctggccaa ggagagatca tcatcgatgg 4260
catcaacatc gccaagatcg gcctgcacga cctccgcctt aagatcacca tcatccccca 4320
ggaccctgtt ttgttttgcg gttccctccg aatgaacctg gaccattca gccagtaactc 4380
ggatgaagaa gtctggacgt ccctggagct ggcccacctg aaggacttcg tgcagccct 4440
tcctgacaag cttagaccatg aatgtgcaga aggccccgg aacctcagtg tggggcagcg 4500
ccagcttgtg tgcctagccc gggccctgct gaggaagacg aagatcctt tggatgtc 4560
ggccacggca gccgtggacc tggaaacggc cgacccatc cagtcacca tccggacaca 4620
gttcgaggac tgcaccgtcc tcaccatcgc ccacccgtc aacaccatca tggactacac 4680
aagggtgatc gtcttgacca aaggagaaat ccaggagatc ggccggccat cggacccct 4740
gcagcagaga ggtctttctt acagcatggc caaagacgc ggcttgggtt gagccccaga 4800
gctggcatat ctggtcagaa ctgcaggggcc tatatgccag cgcccaggaa ggagtcatgt 4860
cccctggtaa accaaggctc ccacactgaa accaaaaat aaaaacaaaa cccagacaac 4920
caaaacatcat tcaaaggcgc agccaccgc atccggtccc ctgcctggaa ctggctgtga 4980
agacccagga gagacagaga tgcgaaccac c 5011

<210> 11
<211> 3924
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB4 (MDR3)

<400> 11
cctgccagac acgcgcgagg ttgcaggctg agatggatct tgaggcggca aagaacggaa 60
cagcctggcg cccacgcgc gcccggggcg actttgaaact gggcatcagc agcaaaacaaa 120
aaaggaaaaaa aacgaagaca gtaaaaatga ttggagtatt aacattgttt cgataactccg 180
atggcggaga taaattgttt atgtcgctgg gtaccatcat ggccatagct cacggatcag 240
gtctccccct catgatgata gtatggag agatgactga caaatttggt gatactgcag 300
gaaacttctc cttccagtg aactttccct tgcgtgtct aaatccaggc aaaattctgg 360
aagaagaaat gactagatc actcaggatt ggggtgttca gttcttgg 420

ctgcctatat acaagttca tttggactt tggcagctgg tcgacagatc agaaaaatta 480
ggcagaagtt tttcatgct attctacgac aggaaatagg atggtttgc atcaatgaca 540
ccactgaact caatacgcgg ctaacagatg acatctccaa aatcagtcaa ggaattgggt 600
acaaggttgg aatgttcttt caagcagtag ccacgtttt tgcaggattc atagtggt 660
tcatcagagg atggaagctc acccttgtga taatggccat cagccctatt ctaggactct 720
ctgcagccgt ttgggcaaag atactctcg catttagtga caaagaacta gctgcttatg 780
caaaaagcagg cgccgtggca gaagaggctc tggggccat caggactgtg atagcttcg 840
ggggccagaa caaagagctg gaaaggtatc agaaacattt agaaaatgcc aaagagattg 900
gaattaaaaa agctatttca gcaaacattt ccatgggtat tgccttcctg ttaatataatg 960
catcatatgc actggcccttc tggtatggat ccactctagt catabaaaaa gaatatacta 1020
ttggaaatgc aatgacagtt ttttttcaa tcctaattgg agctttcagt gttggccagg 1080
ctgccccatg tattgatgct tttgccaatg caagaggagc agcatatgtg atctttgata 1140
ttattgataa taatcctaaa attgacagtt tttcagagag aggacacaaa ccagacagca 1200
tcaaaggaa ttggaggttc aatgatgttc acttttctta cccttctcg gctaacgtca 1260
agatcttcaa gggcctcaac ctgaaggtgc agagtggca gacggtggcc ctgggtggaa 1320
gtagtggctg tgggaagagc acaacggtcc agctgataca gaggctctat gaccctgatg 1380
agggcacaat taacattgtat gggcaggata ttaggaactt taatgtaaac tatctgaggg 1440
aaatcattgg tgggtgagt caggagccgg tgctgtttc caccacaatt gctgaaaata 1500
tttggatgg ccgtggaaat gtaaccatgg atgagataaa gaaagctgtc aaagaggcca 1560
acgcctatga gtttatcatg aaattaccac agaaatttga caccctgggt ggagagagag 1620
ggggccagct gagttgggg cagaagcaga ggatcgccat tgcacgtgcc ctgggtcgca 1680
accccaagat cttctgctg gatgaggcca cgtcagcatt ggacacagaa agtgaagctg 1740
aggtacaggc agctctggat aaggccagag aaggccggac caccattgtg atagcacacc 1800
gactgtctac ggtccgaaaat gcagatgtca tgcgtgggt tgaggatgga gtaattgtgg 1860
agcaaggaag ccacagcgaa ctgatgaaga aggaagggt gtacttcaa cttgtcaaca 1920
tgcagacatc aggaagccag atccagtcg aagaatttga actaaatgt gaaaaggctg 1980
ccactagaat ggccccaaat ggctggaaat ctcgcctatt taggcattt actcagaaaa 2040
acctaaaaa ttcacaaatg tgcagaaga gccttgatgt ggaaaccgat ggacttgaag 2100
caaatgtgcc accagtgtcc tttctgaagg tcctgaaact gaataaaaaca gaatggccct 2160
actttgtcgt gggAACAGTA tgcgtccattt ccaatgggg gcttcagccg gcattttcag 2220
tcatattctc agagatcata gogattttt gaccaggcga tgatgcagtg aagcagcaga 2280
agtcaacat attctctttt atttcttat ttctggaaat tatttctttt tttactttct 2340
tccttcaggg tttcacgttt gggAAAGCTG gcgagatcct caccagaaga ctgcggtaa 2400
tggctttaa agcaatgtca agacaggaca tgagctgggt tgatgaccat aaaaacagta 2460
ctgggtcact ttctacaaga cttgccacag atgctgccc agtccaaggaa gccacaggaa 2520
ccaggttggc tttaattgca cagaatatacg ctaaccttgg aactggatt atcatatcat 2580
ttatctacgg ttggcagttt accctattgc tattagcagt tggttcaattt attgctgtgt 2640
caggaattgt tgaaatgaaa ttgttggctg gaaatgcca aagagataaa aaagaactgg 2700
aagctgtgg aaagattgca acagaggca tagaaaaat taggacagtt gtgtcttga 2760
cccaggaaag aaaatttcaa tcaatgtatg ttgaaaaattt gtatggaccc tacaggaatt 2820
ctgtgcagaa ggcacacatc tatggattt cttttagtat ctcacaagca tttatgtatt 2880
tttcctatgc cgggtttt cgtttgggt catatctcat tgcgtatggc catatgcgt 2940
tcagagatgt tattctgggt tttctgcaat ttgtatttttgg tgcagtggct ctaggacatg 3000
ccagttcatt tgctccagac tatgctaaag ctaagctgtc tgcagccac ttattcatgc 3060
tggcttggaaag acaacctctg attgacagct acagtgaaga ggggctgaag cctgataaat 3120
ttgaaggaaa tataacattt aatgaagtcg tggtaacta tcccacccga gcaaacgtgc 3180
cagtgcattca ggggctgagc ctggagggtga agaaaggcca gacactagcc ctgggtggca 3240
gcagtggtcg tgggaagagc acgggtggcc agtcctggc gcggttctac gacccttgg 3300
cggggacagt gcttctcgat ggtcaagaag caaagaaaact caatgtccag tggctcagag 3360
ctcaactcg aatcgtgtct caggagccta tccttatttgc ctgcagcatt gcccggaaaata 3420
ttgcctatgg agacaacagc cgggttgtat cacaggatga aattgtgagt gcagccaaag 3480
ctgccaacat acatcccttc atcgagacgt tacccacaa atatgaaaca agagtggag 3540
ataaggggac tcagctctca ggaggtcaaa aacagaggat tgctattggc cgaccctca 3600
tcagacaacc tcaaattctc ctgttggat aagctacatc agctctggat actgaaagtg 3660
aaaaggttgtt ccaagaagcc ctggacaaag ccagagaagg ccgcacctgc attgtgattg 3720
ctcaccgcct gtccaccatc cagaatgcag acttaatagt ggttgcctg aatgggagag 3780
tcaaggagca tggcacgcat cagcagctgc tggcacagaa aggcatctat tttcaatgg 3840

tcagtgtcca ggctgggaca cagaacttat gaactttgc tacagtatat tttaaaaata 3900
aattcaaatt attctaccca tttt 3924

<210> 12
<211> 1725
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB6

<400> 12
ccttcctgtg gatccgggtg cagcagttca cgtctcgcg ggtggagctg ctcatcttct 60
cccacctgca cgagctctca ctgcgctggc acctggggcg ccccacagg gagggtgctgc 120
ggatcgccga tcggggcaca tccagtgtca cagggctgct cagctacctg gtgttcaatg 180
tcatccccac gctggccgac atcatcattt gcatcatcta cttcagcatg ttcttcaacg 240
cctggtttg cctcattgtg ttctgtgca tgagtctta cctcaccctg accattgtgg 300
tcactgagt gagaaccaag tttcgtcggt ctatgaacac acaggagaac gctacccggg 360
cacgagcagt ggactctctg ctaaaacttcg agacgggtgaa gtattacaac gccgagagtt 420
acgaagtggaa acgctatcga gaggccatca tcaaataatca gggtttggag tggaagtgcg 480
gcgcttactt ggtttacta aatcagaccc agaacctggt gattgggctc gggctcctcg 540
ccggctccct gcttgcgcgca tactttgtca ctgagcagaa gctacaggtt ggggactatg 600
tgctctttgg cacctacatt atccagctgt acatccccct caattgggtt ggcacctact 660
acaggatgt ccagaccaac ttcatgtaca tggagaacat gtttgacttg ctgaaagagg 720
agacagaagt gaaggacattt cctggagcag ggccccctcg ctttcagaag ggccgtattt 780
agtttgagaa cgtgcacttc agctatgccc atggggggaa gactctgcag gacgtgtctt 840
tcactgtgt gcttggacag acacttgcctt tgggtggccc atctggggca gggaaagagca 900
caattttcgcc cctgctgttt cgcttctacg acatcagctc tggctgcattc cgaatagatg 960
ggcaggacat ttcacaggtg acccaggcct ctctccggc tcacatttggaa gttgtgcccc 1020
aagacactgt cctctttaat gacaccatcg ccgacaatat ccgttacggc cgtgtcacag 1080
ctggaaatga tgaggtggag gctgctgctc aggctgcagg catccatgtat gccattatgg 1140
ctttccctga agggtacagg acacagggtt gcgagcgggg actgaagctg agcggcgggg 1200
agaagcagcg cgtcgccatt gcccgcacca tcctcaaggc tccgggcattt attctgctgg 1260
atgaggcaac gtcagcgctg gatacatcta atgagagggc catccaggct tctctggcca 1320
aagtctgtgc caaccgcacc accatcgtag tggcacacag gctctcaact gtggtaatg 1380
ctgaccagat cctcgcatc aaggatggct gcatcggtt gaggggacga caccggctc 1440
tgttgtcccg aggtgggtt tatgtgtaca tgtggcagct gcagcaggaa caggaagaaa 1500
cctctgaaga cactaaggctt cagaccatgg aacgggtgaca aaagtttggc cacttccctc 1560
tcaaagacta acccagaagg gaataagatg tgtctctttt ccctggctt tttcatcctg 1620
gtcttgggtt atgggtgttagt ctatggtaag ggaaaggac ctttccgaaa aacatctttt 1680
ggggaaataa aaatgtggac tgtgaaaaaa aaaaaaaaaa aaaaa 1725

<210> 13
<211> 4776
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB11

<400> 13
gaatgatgaa aaccgagggtt ggaaaagggtt gtgaaaacctt ttaactctcc acagtggagt 60
ccattatttc ctctggcttc ctcaaaattca tattcacagg gtcgttggtt gtgggttgc 120
attaccatgt ctgactcagt aattcttcga agtataaaga aatttgaga ggagaatgtat 180
ggttttgagt cagataaaatc atataataat gataagaaat caaggttaca agatgagaag 240
aaaggtgatg gcgttagagt tggcttctt caattgttcc ggtttcttc atcaactgac 300
atttggctga tggttgtggg aagtttggat gcatcttcc atggaatagc ccagccaggc 360

gtgctactca ttttggcac aatgacagat gttttattt actacgacgt tgagttacaa 420
gaactccaga ttccaggaaa agcatgtgt aataacacca ttgttatggac taacagttcc 480
ctcaaccaga acatgacaaa tggAACACGT tgtgggttc tgaacatcga gagcgaaatg 540
atcaaatttgc ccagttacta tgctgaaatt gctgtcgcag tacttacatc aggatatatt 600
caaataatgc tttgggtcat tgccgcagct cgtagatac agaaaatgag aaaattttac 660
tttaggagaa taatgagaat gggAAATAGGG tggTTTgact gcaattcagt gggggagctg 720
aatacaagat tctctgtatga tattaataaa atcaatgtatg ccatagctga ccaaataggcc 780
cttttcattc agcgcatgac ctgcaccatc tgtggTTCC tggggatttttcc 840
tggAAACTGA ctttggttat tatttctgtc agccctctca ttgggattgg agcagccacc 900
attggctgtga gtgtgtccaa gtttacggac tatgagctga aggccatgc caaaggcagg 960
gtggggctg atgaagtcat ttcataatg agaacagtgg ctgTTTgg tggtagaaaa 1020
agagagggtt aaaggatgtaa gaaaatctt gtgttcggcc accgttgggg aattagaaaa 1080
ggaatagtga tgggattttt tactggattc gtgtgggtc tcattttttt gtgttatgca 1140
gtggcTTCTC ggtacggctc cacactgtc ctggatgtaa gagaatatac accaggaacc 1200
cttgtccaga ttttcctcag tgtcatagta ggagcttta atcttggcaa tgcctctcct 1260
tgtttggaaag ctttgcac ac tggacgtgca gcagccacca gcatttttga gacaatagac 1320
agggaaaccca tcattgtactg catgtcagaa gatggttaca agttggatcg aatcaagggt 1380
gaaattgaat tccataatgt gacccatcat tattttccca gaccagagg gaagattcta 1440
aatgacctca acatggtcat taaaccaggg gaaatgacag ctctggtagg acccagtgg 1500
gctggaaaaaa gtacagact gcaactcatt cagcgattct atgaccctgt tgaaggaatg 1560
gtgaccgtgg atggccatga cattcgctct cttAACATTG agtggcttag agatcagatt 1620
gggatagtgg agcaagagcc agttctgttc tctaccacca ttgcagaaaaa tattcgctat 1680
ggcagagaag atgcaacaat ggaagacata gtccaaagctg ccaaggaggc caatgcctac 1740
aatttcatca tggacctgac acagcaattt gacacccttgg tgggagaagg aggaggccag 1800
atgagtggg gccagaaaca aagggttagt atcgccagag ccctcatccg aaatcccaag 1860
attctgctt tggacatggc cacctcagct ctggacaatg agagtgtaaac catggtgca 1920
gaagtgtgtca gtaagattca gcatgggac acaatcattt cagttgtca tgccttgtc 1980
acggtcagag ctgcagatac catcattggt tttgaacatg gcaactgcagt ggaaagagg 2040
accatgtca aattactgga aaggaaaggt gtttacttca ctcttagtgc tttgcaagc 2100
cagggaaatc aagctttaa tgaagaggac ataaaggatg caactgtaa tgacatgctt 2160
gcgaggaccc ttagcagagg gagctaccag gatagttaa gggctccat ccggcaacgc 2220
tccaaagtctc agctttctta cctgggtc ac gaaaccttcat tagctgtt agatcataag 2280
tctacctatg aagaagatag aaaggacaag gacattccat tgcagggaaa agttgaacct 2340
gccccagttt ggaggattct gaaattcagt gctccagaat gcccctacat gctggtaggg 2400
tctgtgggtg cagctgtgaa cggacagtc acacccttgc atgcctttt attcagccag 2460
attcttggga cttttcaat tcctgataaa gaggaacaaa ggtcacagat caatgggtg 2520
tgccctactt ttgttagcaat gggctgtgt tctctttca cccaaatttct acaggatata 2580
gccttgcta aatctggga gtcctaaaca aaaaggctac gtaaatttgg tttcagggca 2640
atgctggggc aagatattgc ctggtttgc gacccatgtt gatggggatg 2700
acaagacttg ctacagatgc ttcccaggat caagggctg ccggctctca gatggggatg 2760
atagtcaatt ctttcaactt cgtcactgtg gccatgtatca ttgccttctc cttagctgg 2820
aagctgagcc tggcatctt gtccttcttcc ccttcttgg ctttatcagg agccacacag 2880
accaggatgt tgacaggatt tgctctcga gataaggcagg ccctggagat ggtggacag 2940
attacaatg aaggccatcg taacatccgc actgttgctg gaattggaaa ggagaggccg 3000
ttcatttgaag cacttgagac ttagctggag aagccatcg agacagccat tcagaaagcc 3060
aatatttacg gattctgtt tgccttgc cagtgtatca tgtttatttgc gaattctgtc 3120
tcctacagat atggaggatca cttaatctcc aatgggggc tccatttcag ctatgtgttc 3180
agggtgtatct ctgcaggatgt actgagtgca acagcttttgc gaaaggcctt ctcttacacc 3240
ccaaagtatg caaaagctaa aatatcagct gcaacgtttt ttcactgtct ggaccgacaa 3300
cccccaatca gtgtatacaa tactgcaggat gaaaatggg acaacttcca gggaaagatt 3360
gattttgtt atgttaatt tacatatcct ttcgcaccc actcgcaagt tctgaatgg 3420
ctctcagtgt cgatttagtcc agggcagaca ctggcgTTTG tggatgtggc 3480
aaaagcacta gcattcagct gttggAACGT ttctatgtatc ctgtatcaagg gaaggatgt 3540
atagatggtc atgacagcaaa aaaaatgtttt gtcctgttcc tccgctcaaa catttggaaatt 3600
gtttcccagg aaccaggatgtt gttgcctgtt agcataatgg acaatatcaa gtatggagac 3660
aacaccaaaag aaattccat gggAAAGAGTC atgacgtgtc caaaacagggc tcagctgtcat 3720
gattttgtca tgcactccc agagaaatat gaaactaacg ttgggtccaa ggggtctcaa 3780

ctctcttagag gggagaaaaca acgcattgct attgctcggtt ccattgtacg agatcctaaa 3840
atcttgcac tagatgaagc cacttctgcc tttagacacag aaagtaaaaa gacggtgac 3900
gttgctctag acaaaggccag agagggtcgg acctgcattt tcattgccc tcgcttgtcc 3960
accatccaga acgcggatat cattgctgtc atggcacagg gggtggtat tgaaaaggaa 4020
accatgtaa aactgtatggc ccaaaaaggaa gcctactaca aactagtac cactggatcc 4080
cccatcgtt gacccaatgc aagaatctca gacacacatg acgcaccagt tacagggtt 4140
gtttttaaag aaaaaaaca tcccagcacg agggattgtt gggattgtt tttttttaaa 4200
gaagaatntn nntattttac ttttacnnnc ntttcctac atcgaatcc aanctaattt 4260
ctaattggcct tccataataa ttctgtttt gatgtgtata cagaaaatgt aagaaactag 4320
ggtcctatgtg agggaaaaacc caatgtcaag tggcagctca gccaccactc agtgcttctc 4380
tgtcaggag ccagtcctga ttaatatgtg ggaatttagt agacatcagg gagtaagtga 4440
cacttgaac tcctcaagga cagagaactg tcttcattt ttgaaccctc ggtgtacaca 4500
gaggcgggtc tgtaacagggc aatcaacaaa cgtttcttga gctagaccaa ggtcagattt 4560
gaaaaagaaca gaaggactga agaccagctg tgtttcttaa ctaaattttgt ctttcaagtg 4620
aaaccagctt ccttcatttc taaggctaag gataggaaa gggtggtatg ctctcangct 4680
gagggaggca naaaggggaaa gtattancat gagcttcca nttagggctg ttgatttatg 4740
ctttaacttc anantgagtg tagggtggtg anncta 4776

<210> 14
<211> 5838
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC5 (MRP5)

<400> 14
ccgggcagggt ggctcatgtt cgggagcgtg gttgagcggc tggcgcggtt gtcctggagc 60
aggggcccggc gaaattctgtat gtgaaactaa cagtctgtt gcccctggaaac ctccgctcag 120
agaagatgaa ggatatcgac atagggaaaag agtataatcat cccccagtcctt gggtatagaa 180
gtgtgaggaa gagaaccaggc acttctggaa cgcacagaga ccgtgaagat tccaagttca 240
ggagaactcg accgttggaa tgccaaatgtt ccttggaaac agcagccgc gcccggggcc 300
tctcttgc tgcctccatg cattctcagc tcagaatcctt ggatgaggag catcccaagg 360
gaaagtacca tcatggctt agtgcctgtt agcccatccg gactacttcc aaacaccaggc 420
accagggttca caatgttggg ctttttcctt gtatgacttt ttcgtggctt tcttctctgg 480
ccctgttggc ccacaagaag ggggagctctt caatggaaaga cgtgtggctt ctgttccaaac 540
acgagtcttc tgacgtgaac tgccaaatgtt agtgcctgtt gtcctggctt gagctgaatg 600
aagggtggcc agacgtgtt tccctgcgaa gggttgtgtt gatcttctgc cgcaccaggc 660
tcatcctgttca catcggtgtc ctgtatgtca cgcagctggc tggcttcagt ggaccaggct 720
tcatgggttca acaccttgc tggatatacc aggcaacaga gtctaacctt cagtagactt 780
tgttgttagt gctgggcctt ctccctgacgg aaatcggtcg gtcttggctt cttgcactga 840
cttgggcattt gaattaccga accgggtgtcc gcttgcgggg ggcacatccat accatggcat 900
ttaagaagat ccttaagttt aagaacatta aagagaaaatc cctgggttagt ctcatcaaca 960
tttgctccaa cgatgggcag agaatgtttt aggcagcgc cgttggcagc ctgctggctt 1020
gaggaccctgtt tggtgccatc ttaggcattttt tttataatgtt aattattctt ggaccaacag 1080
gcttcctggg atcagctgtt tttatcctt tttaccaggc aatgtatgtt gcatcacggc 1140
tcacagcata tttcaggaga aaatcggtgg ccggccacggc tgaacgtgtc cagaagatgt 1200
atgaagttct tacttacatt aaatttatca aaatgtatgtc ctgggtcaaa gcatcttc 1260
agagtgttca aaaaatccgc gaggaggagc gtcggatatt ggaaaaagcc gggtaacttcc 1320
agggtatcac tgggggtgtt gctcccattt tggtgggtat tgccagcgtt gtgaccttct 1380
ctgttcatat gaccctggc ttcgtatgtt cagcagcaca ggcttcaca gtggtgacag 1440
tcttcaatttccatc catgactttt gctttgaaatg taacaccgtt ttcgttaaaatg tccctctc 1500
aaggctcagt ggctgttgac agatgttca gtttgggtt aatggaaagag gttcacatgt 1560
taaagaacaa accagccagt cctcacatca agatagagat gaaaaatgcc accttggcat 1620
gggactccctc ccactccagt atccagaact cggccaaatgtt gaccccaaaa atgaaaaaag 1680
acaagaggcc ttccaggggc aagaaagaga aggtgaggca gctgcagcgc actgagcatc 1740
aggcggtctt ggcagagcgc aaaaaaaaaaaaaatggcc accttggcat 1800

ccgaaggagga agaaggcaag cacatccacc tgggcacact gcgcttacag aggacactgc 1860
acagcatgca tctggagatc caagagggtt aactggttgg aatctgcggc achtgtggaa 1920
gtggaaaaac ctctctcatt tcagccattt taggcccattt gacgcttcta gagggcagca 1980
ttgcaatcag tggAACCTTC gcttatgtgg cccagcaggc ctggatcctc aatgtactc 2040
tgagagacaa catcctgttt gggaaaggaaat atgatgaaga aagataacaac tctgtgctga 2100
acagctgctg cctgaggcct gacctggcca ttcttccag cagcgcaccc acggagattg 2160
gagagcggg agccaaacctg agcggtggc agcgccagag gatcagcctt gcccgggcct 2220
tgtatagtga caggagcatc tacatcctgg acgacccctt cagtcctta gatgccatg 2280
tggcaacca catcttcattt agtgcattcc ggaaacatct caagtccaaag acagttctgt 2340
ttgttaccca ccagttacag tacctgggtt actgtgatga agtgcatttc atgaaagagg 2400
gctgtattac ggaaagaggc acccatgagg aactgtatgaa tttaaatggt gactatgcta 2460
ccatTTTAA taacctgttg ctggagaga caccggcagg ttagatcaat tcaaaaaagg 2520
aaaccagtgg ttcacagaag aagtccaaag acaagggtcc taaaacagga tcagtaaaga 2580
agaaaaaagc agtaaaagcca gaggaaaggc agcttgcgc gctggaaagag aaaggcagg 2640
gttcagtgcc ctggtcagta tatgggtgtt acatccaggc tgctgggggc cccttggcat 2700
tcctggttat tatggccctt ttcatgctga atgtaggcag caccgcctt cagcaccttgt 2760
ggttgagttt ctggatcaag caaggaagcg ggaacaccac tgcgtactcg gggaaacgaga 2820
cctcggtgag tgacagcatg aaggacaatc ctcatatgca gtactatgccc agcatctacg 2880
ccctctccat ggcagtcatg ctgatcctga aagccattcg aggagttgtc tttgtcaagg 2940
gcacgctgcg agttccctcc cggctgcatg acgagctttt cccaggatc cttcgaagcc 3000
ctatgaagtt tttgacacg acccccacag ggaggattctt caacaggttt tccaaagaca 3060
tggatgaagt tgacgtgcgg ctggcggtcc agggcgagat gttcatccag aacgttatcc 3120
tgggttctt ctgtgtgggaa atgatgcag gagtcttccc gtgggttccctt gtggcagtgg 3180
ggccccctgtt catcctttt tcagtcctgc acattgtctc cagggtcctt attcgggagc 3240
tgaagcgtct ggacaatatc acgcagtcac ctttcctctc ccacatcactc tccagcatac 3300
aggcccttgc caccatccac gcctacaata aaggccaggat gttctgcac agataccagg 3360
agctgctgga tgacaaccaa gtcctttt tttgtttac gtgtgcgtat cgggtggctgg 3420
ctgtgcggct ggacctcattc agcatcgccc tcatcaccac cacggggctg atgatcggtt 3480
ttatgcacgg gcagattccc ccagcctatg cgggtctcgcatcttcatat gctgtccagt 3540
taacggggctt gttccagttt acggtcagac tggcatctga gacagaagct cgattcacct 3600
cggtggagag gatcaatcac tacattaaga ctctgtcctt ggaaggacactt gccagaatta 3660
agaacaaggc tccctccctt gactggcccc aggaggagaa ggtgacctt gagaacgcag 3720
agatgaggtt ccgagaaaac tccctcttgc tcctaaagaa agtacccctt acgatcaaac 3780
ctaaagagaa gattggcatt gtggggcgga caggatcagg gaagtcctcg ctggggatgg 3840
ccctcttccg tctggtgag ttatctggag gtcgtatcaa gattgtatgaa gtgagaatca 3900
gtgatattgg cttggccgac ctccgaagca aactctctat cattcctcaa gagccggcgc 3960
tgttcagttt cactgtcaga tcaaattttgg acccccttcaa ccagtcactt gaagaccaga 4020
tttggatgc cctggagagg acacacatga aagaatgtat tgctcagctt cctctgaaac 4080
ttgaatctga agtgcattgggaaatgggata acttcctactt gggggaaacgg cagctttgt 4140
gcatacgtag agccctgctc cggccactgttca agattctgtat ttttagatgaa gccacagctg 4200
ccatggacac agagacagac ttattgattt aagagaccat ccgagaagca tttgcagact 4260
gtaccatgtt gaccattgcc catcgcccttgc acacggtttctt aggctccgtt aggattatgg 4320
tgctggccca gggacaggtt gttggagtttgc acacccatc ggtccttctg tccaaacgaca 4380
gttcccgattt ctatgccatg tttgctgttgc cagagaacaa ggtcgctgtc aagggtgcac 4440
tcctccctgt tgacgaagtc tctttctt agagcattgc cattccctgc ctggggcggtt 4500
ccctctatcg cgtccttcata ccgaaacctt gccttctgtt attttatctt tcgcacagca 4560
gttccggattt ggcttgcgtt tttcactttt agggagagtc atatttgtat tattgtat 4620
attccatattt catgtaaaca aaatttgtt tttgttcttta attgcactt aaaaggttca 4680
ggaaaccgtt attataattt tttcagaggc ctataatgaa gctttatacg ttttagtata 4740
tctatataattt attctgttaca tagccttataat ttacagtggaa aatgtaaatgtt gtttattttt 4800
tattaaaata agcactgttca taataacagt gcatattctt ttctatcatt tttgtacagt 4860
ttgtgtactt agagatctgg ttttgcattt agactgttggg aagagtagca tttcattctt 4920
ctctagctgg tggtttacgtt gtcggcagggtt ttctgggtgtt cccaaaggaaac acgtgtggca 4980
atagtggcc ctcggacacgc cccctctgcgc gcctccccc acgcgcgttca ggggtggctg 5040
gagacgggtt ggcggcttgcg gaccatgcag agcgccgttca gttctcagggtt ctcctgcctt 5100
ctgtcctgtt gtcacttactt gttctgttca ggagagcaggc gggggcgaagc ccaggcccctt 5160
tttcaacttttcc tccatcaaga atggggatca cagagacattt cctccgagcc gggggatttc 5220

tttcctgcct tcttctttt gctgttgtt ctaaacaaga atcagtctat ccacagagag 5280
tcccactgccc tcaggttcct atggctggcc actgcacaga gctctccagc tccaagacct 5340
gttggttcca agccctggag ccaactgctg cttttgagg tggacttt tcattgcct 5400
attccccacac ctccacagtt cagtggcagg gctcaggatt tcgtgggtct gtttcctt 5460
ctcaccccgag tcgtcgaca gtctctctt ctctctcccc tcaaagtctg caactttaag 5520
cagcttgc taatcagtgt ctacacactgg cgtagaaagtt ttgtactgt aaagagacct 5580
acctcaggtt gctggttgct gtgtggttt gtgtgttccc gcaaaccccc tttgtgtgt 5640
ggggctggta gctcagggtgg gctcagggtac tgctgtcatc agttgaatgg tcagcgttgc 5700
atgtcgtgac caactagaca ttctgtcgcc ttagcatgt tgctgaacac cttgtggaag 5760
caaaaatctg aaaatgtgaa taaaattatt ttggattttg taaaaaaaaaaaaaaa 5820
aaaaaaaaaaa aaaaaaaaaa 5838

<210> 15
<211> 7323
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA5

<400> 15
gccagaggcg ctcttaacgg cgtttatgtc ctttgctgtc tgaggggcct cagctctgac 60
caatctggtc ttcgtgtggt cattagcatg ggcttcgtga gacagataca gctttgctc 120
tggaaaact ggaccctgctg gaaaaggca aagattcgct ttgtgggtgaa actcgtgtgg 180
cctttatctt tatttctggt ctgtatctgg ttaaggaaatg ccaaccgcgt ctacagccat 240
catgaatgcc atttcccaa caaggcgatg ccctcagcag gaatgctgcc gtggctccag 300
gggatcttct gcaatgtgaa caatccctgt tttcaaaagcc ccaccccccagg agaatctcct 360
ggaattgtgt ccaaactataa caactccatc ttggcaaggg tatatcgaga ttttcaagaa 420
ctcctcatga atgcaccaga gagccagcac cttggccgtt tttggacaga gctacacatc 480
ttgtcccaat tcatggacac cctccggact caccggaga gaatttgcagg aagaggaata 540
cgaataaggaa atatcttgcgaa agatgaagaa acactgacac tatttctcat taaaaacatc 600
ggcctgtctg actcagtggc ctaccttctg atcaactctc aagtccgtcc agagcgttc 660
gctcatggag tcccgacact ggcgtgaag gacatgcct gcagcggaggc cctcctggag 720
cgcttcatca tcttcagcca gagacgcggg gcaaagacgg tgctgtatgc cctgtgtcc 780
ctctcccagg gcaccctaca gtggatagaa gacactctgt atgccaacgt ggacttctc 840
aagctttcc gtgtgcttcc cacactccta gacagccgtt ctcaaggatca atactgaga 900
tcttgggag gaatattatc tgatatgtca ccaagaattc aagagtttccatcggccg 960
agtatgcagg acttgctgtg ggtgaccagg cccctcatgc agaatgggttgc tccagagacc 1020
tttacaaagc tgatggcat cctgtctgac ctctgtgtg gctaccccgaa gggaggtggc 1080
tctcgggtgc tctccttcaa ctggatgaa gacaataact ataaggcctt tctggggatt 1140
gactccacaa ggaaggatcc tatctattct tatgacagaa gaacaacatc cttttgtaat 1200
gcattgatcc agagcctgga gtcaaaatcct ttaacaaaaa tcgctggag ggcggcaaaag 1260
ccttgctga tggaaaaat cctgtacact cctgattcac ctgcagcagc aaggatactg 1320
aagaatgccca actcaacttt tgaagaactg gaacacgtt ggaagttgtt caaagcctgg 1380
gaagaagtag ggccccagat ctggacttcc tttgacaaca gcacacagat gaacatgatc 1440
agagatacccttgggaaccc aacagtaaaaa gacttttgcgatcgt tggtaagaa 1500
ggtattactg ctgaaggccat cctaaacttc ctctacaagg gcccctggga aagccaggct 1560
gacgacatgg ccaacttcga ctggagggac atatttaaca tcactgtatcg caccctccgc 1620
ctggtaatc aatacctgga gtgcttggtc ctggataagt ttgaaagctt caatgtatcg 1680
actcagctca cccaaacgtgc ctctctcttca ctggaggaaa acatgttctg ggccggagtg 1740
gtattccctg acatgtatcc ctggaccaggc tctctaccac cccacgtgaa gtataagatc 1800
cgaatggaca tagacgtggt ggagaaaacc aataagatta aagacaggtt ttggattct 1860
ggtcccagag ctgatccctg ggaagatttc cggtacatct ggggcgggtt tgccttatctg 1920
caggacatgg ttgaacacagg gatcacaagg agccaggtgc aggccggaggc tccagttgg 1980
atctacctcc agcagatgcc ctacccctgc ttctgtggacg attcttcatc gatcatcctc 2040
aaccgctgtt tccctatctt catggatctg gcatggatct actctgtctc catgactgtg 2100
aagagcatcg tcttggagaa ggagttgcga ctgaaggaga ccttggaaaaa tcaggggtgtc 2160

tccaatgcag tgatttggtg tacctgggtc ctggacagct tctccatcat gtcgatgagc 2220
atcttcctcc tgacgatatt catcatgcat gtaagaatcc tacattacag cgaccattc 2280
atcccttcc tggttcttgc ggcttctcc actgccacca tcattgtgt ctttctgctc 2340
agcacctct tctccaaggc cagtctggca gcagcctgta gtgggtcat ctatttcacc 2400
ctctacctgc cacacatcct gtgcttcgccc tggcaggacc gcatgaccgc tgagctgaag 2460
aaggctgtga gcttactgtc tccgggtggca tttggatttgc gactgagta cctggttcg 2520
tttgaagagc aaggcctggg gctgcagtgg agcaacatcg ggaacagtcc cacggaaagg 2580
gacgaattca gcttcctgtc gtccatgcat atgatgtcc ttgatgtgc tgtctatggc 2640
ttactcgctt ggtaccttga tcaggtgttt ccaggagact atggaacccc acttccttgg 2700
tactttcttc tacaagagtc gtattggctt ggcgggtgaag ggttcaac cagagaagaa 2760
agagccctgg aaaagaccga gcccctaaca gaggaaacgg aggatccaga gcacccagaa 2820
ggaatacacg actccttctt tgaacgttag catccagggt gggttctgg ggtatgcgtg 2880
aagaatctgg taaagattt tgagccctcc ggccggccag ctgtggaccg tctgaacatc 2940
accttctacg agaaccagat caccgcattc ctggggcaca atggagctgg gaaaaccacc 3000
accttgcacca tcctgacggg tctgttgcac ccaacctctg ggactgtgtc cgttgggg 3060
agggacattg aaaccagcct ggtatgcgtc cggcagagcc ttggcatgtg tccacagcac 3120
aacatcctgt tccaccaccc cacgggtggct gggcacatgc tggtctatgc ccagctgaaa 3180
ggaaagtccc aggaggaggc ccagctggag atggaagcca tggtggagga cacaggcctc 3240
caccacaagc ggaatgaaga ggctcaggac ctatcagggt gcatgcagag aaagctgtcg 3300
gttgcatttgc ctttgcatttgc agatgccaag gtgggtatttgc tggacgaacc cacctctggg 3360
gtggaccctt actcgagacg ctcaatctgg gatctgtcc tgaagtatcg ctcaggcaga 3420
accatcatca tgcacttca ccacatggac gaggccgacc tccttgggg ccgcatttgc 3480
atcattgccc agggaaaggct ctactgtca ggcacccccc tcttcctgaa gaactgcttt 3540
ggcacaggct tgcacttaac ctgggtgcgc aagatgaaaa acatccagag ccaaaggaaaa 3600
ggcagtgagg ggacctgcag ctgctgtct aagggtttct ccaccacgtg tccagccac 3660
gtcgatgacc taactccaga acaagtccctg gatggggatg taaatgagct gatggatgt 3720
gttctccacc atgatccaga ggcaaaagctg gtggagtgtca ttggcaaga acttatcttc 3780
cttcttccaa ataagaactt caagcacaga gcatatgcca gccttttcag agagctggag 3840
gagacgctgg ctgaccttgg tctcagcagt tttggaaattt ctgacactcc cctggaaagag 3900
atttttctga aggtcacgga ggattctgat tcaggaccc tgggttgcggg tggcgtc 3960
cagaaaagag aaaacgtcaa cccccgacac ccctgttgg gtcccagaga gaaggctgga 4020
cagacacccc aggactccaa tgcactgtcc ccaggggcgc cggctgtca cccagaggc 4080
cagccctcccc cagagccaga gtgcccaggc ccgcagctca acacggggac acagctggc 4140
ctccagcatg tgcaggcgct gctggtaag agattccaa acaccatccg cagccacaag 4200
gacttcctgg cgcagatcgt gctccggct acctttgtgt tttggctct gatgtttct 4260
atgttatcc ctcccttgg cgaataacccc gctttgaccc ttcacccctg gatatatggg 4320
cagcagtaca cttcttcag catggatgaa ccaggcagtg agcagttcac ggtacttgca 4380
gacgtcctcc tgaataagcc aggctttggc aaccgctgca tgaaggaagg gtggcttcc 4440
gagtaaccct gtggcaactc aacaccctgg aagactcctt ctgtgtcccc aaacatcacc 4500
cagctgttcc agaaggcagaa atggacacag gtcaaccctt caccatcctg caggtgcagc 4560
accagggaga agtcacccat gctgccagag tgcccccagg gtggccgggg cctcccgccc 4620
ccccagagaa cacagcgcag cacggaaatt ctacaagacc tgacggacag gaacatctcc 4680
gacttcctgg taaaacgtt tccgtctt ataagaagca gcttaaaggag caaattctgg 4740
gtcaatgaac agaggtatgg aggaatttcc attggaggaa agctcccagt cgtccccatc 4800
acggggaaag cacttgggg gttttaagc gaccttggcc ggatcatgaa tggatgtcggg 4860
ggcccttatca cttagagggc ctctaaagaa atacctgatt tccttaaaca tctagaaact 4920
gaagacaaca ttaaggtgtg gtttaataac aaaggctggc atgcccgggt cagcttctc 4980
aatgtggccc acaacccat cttacggggcc agcctgccta aggacaggag ccccgaggag 5040
tatggaatca cgcgtttag ccaacccctg aacctgacca aggagcagct ctcagagatt 5100
acagtgtga ccacttcagt ggatgtgtg gttgcatttgc gtgtgatattt ctccatgtcc 5160
ttcgcccttgc ccagctttgt ctttatttgc atccaggagc gggtaaccaa atccaagcac 5220
ctccagtttgc tcaatgtggatg gagccccacc acctactggg tgaccaactt cctctggac 5280
atcgtaatt atccgttag tgctgggtgt gttgggtggca tttcatcggt gtttcaagaa 5340
aaagcctaca cttctccaga aaaccccttgc gcccttggcactgtcc gctgtatgg 5400
tggccgtca ttcccatgtat gtaaccagca tccttcctgt ttgatgtccc cagcacagcc 5460
tatgtggctt tatcttgc taaatctgttca atcggcatca acagcagtc tattaccttc 5520
atcttggaaat tatttggagaa taaccggacg ctgctcagggt tcaacccgt gctgaggaag 5580

ctgctcattg tcttccccca cttctgcctg ggccggggcc tcattgacct tgcactgagc 5640
caggctgtga cagatgtcta tgcccgtt ggtgaggagc actctgcaaa tccgttccac 5700
tgggacctga ttggaaagaa cctgttgcc atgggtgtgg aagggtgtt gtacttcctc 5760
ctgaccctgc tggccagcg ccacttcttc ctctccaaat ggattgccga gcccactaag 5820
gagccattg ttgatgaaga tcatgtatgtg gctgaagaaa gacaaagaat tattacttgt 5880
ggaaataaaa ctgacatctt aaggctacat gaactaacca agatttatcc gggcacctcc 5940
agcccagcag tggacaggct gtgtgtcgga gttcgcctg gagagtgc tggcctcctg 6000
ggagtgaatg gtgcggcaa aacaaccaca ttcaagatgc tcactggggca acacacgtg 6060
acctcagggg atgccaccgt agcaggcaag agtattttaa ccaatatttc tgaagtccat 6120
caaaaatgg gctactgtcc tcagtttgc gcaatcgatg agctgctcac aggacgagaa 6180
catcttacc tttatgccc gcttcgaggt gtaccagcag aagaaatcga aaagggtgca 6240
aactggagta ttaagagcct gggcctgact gtctacgccc actgcctggc tggcacgtac 6300
agtggggca acaagggaa actctccaca gccatcgac tcattggctg cccaccgctg 6360
gtgctgctgg atgagccac cacagggatg gaccccccagg cacgcccgt gctgtggaaac 6420
gtcatcgta gcatcatcag agaagggagg gctgtggtcc tcacatccca cagcatggaa 6480
gaatgtgagg cactgtgtac ccggctggcc atcatggtaa agggcgcctt tcgatgtatg 6540
ggcaccattc agcatctcaa gtccaaattt ggagatggct atatcgctac aatgaagatc 6600
aaatccccga aggacgaccc gcttcctgac ctgaaccctg tggagcagg tttccagggg 6660
aacttcccgag gcagtgtgca gagggagagg cactacaaca tgctccagg ccaggctc 6720
tcctcctccc tggcgaggat ctccagctc ctcctctccc acaaggacag cctgctcatc 6780
gaggagact cagtcacaca gaccacactg gaccagggtt ttgtaaattt tgctaaacag 6840
cagactgaaa gtcatgaccc ctctctgcac cctcgagctg ctggagccag tcgacaagcc 6900
caggactgat ctccacacc gttcgccct gcagccagaa aggaactctg ggcagctgga 6960
ggcgcaggag cctgtgccc tatggtcata caaatggact ggccagcgt aatgacccca 7020
ctgcagcaga aaacaaacac acgaggagca tgcagcgaat tcaaaaaagag gtcttcaga 7080
agggaaaccga aactgacttg ctcacctgga acacctgatg gtgaaaccaa acaaatacaa 7140
aatccttctc cagaccccg aactagaaac cccggccat cccactagca gcttggcct 7200
ccatattgct ctcatttcaa gcagatctgc ttttctgcat gtttgcgt gtgtctgcgt 7260
tgtgtgtat tttcatggaa aaataaaaatg caaatgcact catcacaaaaa aaaaaaaaaa 7320
aaa 7323

<210> 16
<211> 2930
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCG1 (ABC8)

<400> 16
gaattccggt ttcttcctaa aaaatgtctg atggccgctt tctcggtcgga caccgcctg 60
aatgccagca gttactctgc agagatgacg gagcccaagt cggtgtgtgt ctccggat 120
gagggtgtgt ccagcaacat ggaggccact gagacggacc tgctgaatgg acatctgaaa 180
aaagtagata ataacccac ggaagcccgag cgcttccct cttgcctcg gagggcagct 240
gtgaacattt aattcaggga ctttcctat tcgggtccctg aaggaccctg gtggaggaag 300
aaaggataca agaccctcct gaaaggaatt tccggaaagt tcaatagtgg tgagttgg 360
gccattatgg tccctccgg ggcgggaag tccacgctga tgaacatcc ggctggatac 420
agggagacgg gcatgaaggg ggcgtccctc atcaacggcc tgccccggga cctgcgtgc 480
ttccggaaagg tgcctgcta catcatgcag gatgacatgc tgctgcccga tctcaactgt 540
caggaggcca tgatgggtgc ggcacatctg aagcttcagg agaaggatga aggcagaagg 600
gaaatggtca aggagatact gacagcgctg ggcttgctgt cttgcgc当地 caccgcggacc 660
gggagcctgt cagggtgtca ggcgaagcgc ctggccatcg cgctggagct ggtgaacaac 720
cctccagtc ttttcttgc tgagccacc agccggctgg acagcgcctc ctgcattcc 780
gtggtctgc tgatgaaagg gctcgctca ggggtcgct ccatcattt caccatccac 840
cagcccgccg ccaaacttcc cgagctgtt gaccagctt acgtccctgag tcaaggacaa 900
tgtgtgtacc gggaaaaagt ctgcaatctt gtgcctatt tgagggattt gggctgaac 960
tgcccaacctt accacaaccc agcagattt gtcatggagg ttgcattccgg cgagtcgg 1020

gatcagaaca gtcggctggt gagagcggtt cgggaggca tgtgtactc agaccacaag 1080
agagacctcg ggggtgatgc cgaggtAAC cctttctt ggacccGCC ctctgaagag 1140
gtaaagcaga caaaacgatt aaagggttg agaaaggact cctcgatcc ggaaggctgc 1200
cacagcttct ctgccagctg cctcacgag ttctgatcc tcttcaagag gacccctc 1260
agcatcatga gggactcggt cctgacacac ctgcgcata cctcgacat tggatcgac 1320
ctcctcattg gcctgctgta cttgggatc gggAACaaa ccaAGAAAGGT cttagac 1380
tccggcttcc tcttcttctc catgctgttc ctcatgttc cggccctcat gcctactgtt 1440
ctgacatttc ccctggagat gggagtctt cttcggaac acctgaacta ctggatcagc 1500
ctgaaggcct actacctggc caagaccatg gcagacgtgc ccttcagat catgttccc 1560
gtggcctact gcagcatcgt gtactggatc acgtcgac cgtccgacgc cgtgcgc 1620
gtgtgtttc cccgcgtggg caccatgacc tccctgggtt cacagtccct gggcctgc 1680
atcgagccg cctccacgtc ctcgcagggt gccaacttgc tggcccaact gacagccatc 1740
ccgggtctcc tggtctcggt gttcttcgtc agttcgaca ccatccccac gtacccatc 1800
tggatgtctt acatctccta tgcaggatc gggttcgaag gggtcatcc ctccatctat 1860
ggcttagacc gggaaagatct gcactgtgac atcgacgaga cgtgccactt ccagaagtgc 1920
gaggccatcc tgcgggagct ggacgtggaa aatgccaagc tgcacccatc cttcatcgta 1980
ctcgggattt tcttcatctc ctcgcctc attgcattt tggtcctcgt gtacaaaatc 2040
ccggcagaga ggtaaaacac ctgaatgcca gggaaacagga agattagaca ctgtggccga 2100
gggcacgtct agaatcgagg aggcaagcct gtgcggacc gacgacacag agactcttct 2160
gatccaaccc ctagaaccgc gttgggtttt tgggtgtctc gtgcctcgtt actctgccc 2220
gctgggttgg atcttcctc cattccctt tctagctta acttaggaaga tgcgtggcaga 2280
tttgtgtttttt ttttacatc agaattttaa ataccacaac tggggcagaa 2340
tttaaagctg caacacagct ggtgatgaga ggcttcctca gtccagtcgc tccttagcac 2400
caggcaccgt gggccttgg tggggactg caagcgcct ctcagctgtt ggcgtgcac 2460
tcagatgtct ggtggcagag agtccgagca tggagcgatt ccattttatg actgttgttt 2520
ttcacatccc catcttcata aggtgtgtt ctttccat gagaagtcat ttttgc 2580
caaaagtcga tcaatcgat tcattttaa aattatacc tttttatgtt tgcgtgaaga 2640
atgattcagg gtaaatcaca tactttgtt agagaggcga ggggttaac ccgagtcacc 2700
cagctggctc catacataga cagcaactgt gaaggattga atgcaggttc cagggtggagg 2760
gaagacgtgg acaccatctc cactgagcca tgcagacatt tttaaaagct atacacaaaa 2820
tttgagaag acattggcca actcttcata agtcttcgtt tttccacgtg cttcttattt 2880
taagcgaat atattgtttt tttcttcata aaaaaaaaaa aaaaaaaaaa 2930

<210> 17
<211> 400
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 17
gagatcctga ggctttccc ccaggctgct cagcaggaaa gtttccttc cctgatggc 60
tataagttgc ctgttgagga tgcgcacctt tttcacagg ctttcttcaa attagagata 120
gttaaacaga gtttcgcacctt ggaggagttac agcctctcac agtctaccct ggagcagggtt 180
ttcctggagc tctccaagga gcaggagctg ggtgatctt aagaggactt tgatccctcg 240
gtgaagtggaa aactcctcctt gcaggaagag cttaaagct ccaaataccc tatatcttc 300
tttaatcctg tgactctttt aaagataata ttttatagcc ttaatatgcc ttatatcaga 360
ggtggtacaa aatgcatttgc aaactcatgc aataattatc 400

<210> 18
<211> 235
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 18
tttcagtt catgtataac caagaaatcg aattgtttc cggttcttat gggaaattgtt 60
agcaatgcc ttattgaaat tttaacttc acagagctt ttcaaattgga gagcacctt 120
tttttcgtg atgacatagt gctggatctt ggtttataag atgggtccat atttttgtt 180
ttgatcacaa actgcatttc tccttatatt ggcataagca gcatcagtga ttatt 235

<210> 19
<211> 636
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC4 (MRP4)

<400> 19
atggataagt ttatactagt gttggcacat ggcggcatgt atagatatac taggaggacc 60
tagttgtatt ccttgtatga aaaagcgtcc ctggtaactac aataagtctt tcgtgaaagg 120
agttaatcc taacaacaac tcaggaaagt attttggaaa gaataactgga taaggaaaaa 180
cctgcagcta ctccctgtat ttcaagacat tgcctacaag tgggttgtt ggtctctgtg 240
gctgtggccg tgattccctt gatcgcaata cccttggttc cccttggaaat cattttcatt 300
tttcttcggc gatattttt ggaaacgtca agagatgtga agcgccctgga atctacaagt 360
gagatggaa actcgggttg gtatagacat gctagctgtt ttccatttat gccataaatt 420
acagagaccc cctgaaaattt ggcagactct gtcttccaga atttctctaa cattaggtaa 480
ttgaacgtat tggccattat gaatcattgt gtcccttaga gcatgtggaa ttgatagcct 540
gcaacgtgtat actttgcatt tggataaagg aaggagtgaa ggcataatgg ggagtaatat 600
tctacaggaa tgtcagcact gtgaagacag ggactc 636

<210> 20
<211> 2911
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA8 (ABC-new)

<400> 20
cggnngagca cgtctggttc tatgggcggc tgaagggtct gagtgccgt gtagtggcc 60
ccgagcagga ccgtctgtc caggatgtgg ggctggctc caagcagagt gtgcagactc 120
gccaccttc tggtggatg caacggaagc tgcctgtggc cattgcctt gtggcggct 180
cccaagttgt tattctggac gaggctacgg ctggcgtggc tcctgttcc cgccgcggta 240
tttggagct gctgctaaa taccgagaag gtcgcacgt gatcctctcc acccaccacc 300
tggatgggc agagctgtc ggagacgtg tggctgtggt ggcaggtggc cgcttgcgt 360
gctgtggctc cccactcttc ctgcgcgtc acctggctc cggctactac ctgacgctgg 420
tgaaggcccg cctgcccctg accaccaatg agaaggctga cactgacatg gagggcagtg 480
tggacaccag gcaggaaaag aagaatggca gccaggccag cagactggc actcctcagc 540
tgctggccct ggtacagcac tgggtgccc gggcacggct ggtggaggag ctgccacacg 600
agctgggtct ggtgctgccc tacacgggtg cccatgacgg cagttcgcc acactttcc 660
gagagctaga cacgcggctg gggagctga ggctcaactgg ctacggatc tccgacacca 720
gcctcgagga gatcttctg aagggtggc aggagtgtgc tgcggacaca gatatggagg 780
atggcagctg cggcagcac ctatgcacag gcattgtgg cctagacgtt accctgcggc 840
tcaagatgcc gccacaggag acagcgctgg agaacgggaa accagctggg tcagccccag 900
agactgacca gggctctgg ccagacgccc tgggcgggt acagggctgg gcaactgaccc 960
gccagcagct ccaggccctg ctctcaagc gctttctgtc tgcccgccgc agccgcccgg 1020
gcctgttcgc ccagatcggt ctgcctgccc tctttgtggg cttggccctc gtgttcagcc 1080
tcatcggtcc tcctttcggg cactaccgg ctctgcggct cagttccacc atgtacggtg 1140
ctcaggtgtc ctcttcagt gaggacgccc caggggaccc tggacgtgcc cggctgtcg 1200

aggcgctgct gcaggaggca ggactggagg agccccagt gcagcatagc tcccacaggt 1260
tctcggcacc agaagttcct gctgaagtgg ccaagggtctt ggccagtgcc aactggaccc 1320
cagagtctcc atccccagcc tgccagtgtt gccagcccg tgcccgccgc ctgctgccc 1380
actgcccggc tgcagcttgtt ggtccccctc cgccccaggc agtgcacccggc tctgggaaag 1440
tggttcagaa cctgacagggc cggAACCTGT ctgacttcctt ggtcaagacc taccggcgcc 1500
tggtgccca gggcctgaag actaagaagt gggtaatga ggtcaggtac ggaggcttct 1560
cgctgggggg ccgagaccca ggcctgcctt cgggccaaga gttggggccgc tcagtggagg 1620
agttgtggc gctgctgagt ccctgcctt gccccccctt cgaccgtgtc ctgaaaaacc 1680
tcacagcctt ggctcacagc ctggacgctc aggacagtct caagatctgg ttcaacaaca 1740
aaggctggca ctccatggt gctttgtca accgagccag caacgcata ctcgtgctc 1800
acctgccccc aggccggcc cggccacgccc acagcatcac cacactcaac cacccttga 1860
acctcaccaa ggagcagctg tttgaggctg cattgatggc ctcctcggtg gacgtcctcg 1920
tctccatctg tgggtcttt gccatgtctt ttgtcccgcc cagcttcaactt cttgtcctca 1980
ttgaggagcg agtcacccga gccaaggcacc tgcagctcat gggggggccctg tccccccaccc 2040
tctactggct tggcaacttt ctctggaca tgtgttaacta cttggtgcca gcatgcata 2100
tggtgctcat ctttctggcc ttccagcaga gggcatatgt gggccctgccc aacctgcctg 2160
ctctcctgtt gttgtacta ctgtatggct ggtcgtatcac accgctcatg taccctggct 2220
ccttcttctt ctccgtgccc agacagcct atgtgggtctt cacctgcata aacctttta 2280
ttggcatcaa tggaaagcatg gccacctttg tgcttggact cttctctgtat cagaagctgc 2340
aggaggttag cccgatctt aaacaggctt tccttatctt cccctacttcc tgcttggcc 2400
gggggcttat tggatgggtt cggaaaccagg ccatggctga tgcctttgag cgcttggag 2460
acaggcagtt ccagtccccc ctgcgtggg aggtggtcgg caagaaccc tcggccatgg 2520
tgatacaggg gccccctttc cttctttca cactactgtt gcagcaccga agccaaactcc 2580
tgccacagcc cagggtgagg tctctgcccac tcctggaga ggaggacgag gatgtagccc 2640
gtgaacggga gcgggtggc caaggagcca cccaggggga tgtgtgggt ctgaggaact 2700
tgaccaaggt ataccgtggg cagaggatgc cagctgttga ccgttgcgtc ctggggattc 2760
cccctggta agtgtttgg gctgctgggt gtgaacggag cagggaaagac gtccacgttt 2820
cgcatggta cgggggacac attggccagc agggggcagg ctgtgctggc aggccacagc 2880
ggggccggga acccagtgtt cgcacactna g 2911

<210> 21
<211> 100
<212> DNA
<213> Human

<220>
<223> human Intron-Sequence of ABCA8 (ABC-new)

<400> 21
ctcctgccac agtttagtgag gtctatggag aggggtggcag gggccaagga cctactttaa 60
gcccacagat attctgtccc caggcccagg gtgaggtctc 100

<210> 22
<211> 15
<212> DNA
<213> Human

<400> 22
tgccgaccga gaaag 15

<210> 23
<211> 372
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 23
atcgccgata tctccccttc gggctgcggc aagagcacct tcctgaaagt gctgccggg 60
ttctatgccc tggacaccgg gcgcgtcagg atcaacggcc aggcgatgcg gcatttcggt 120
ttgcgctcgta accgccagag cgtggcctat gtcacggccc acgacgagat catgccggg 180
acggtgatcg agaacatcct gatggacagc gacccgctgg acggcacggg tttgcagagc 240
tgtgtcgagc aggccgggtt gctggaaagc atcctgaaac tgagcaatgg cttcaatacc 300
ttgctcgac ccatggcggt gcaattgtcc tcggccaga agcaacgcct gttgatcgcc 360
cggggtcgac gc 372

<210> 24
<211> 281
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 24
aaaaccaaag attctcctgg agttttctct aaactgggtg ttctccttag gagagttgac 60
aagaaaacttg gtgagaaaata agctggcagt gattacgcgt ctccctcaga atctgatcat 120
gggttggttc ctcccttctc tcgttctgcg ggtccgaagc aatgtctaa agggtgctat 180
ccaggaccgc gtaggtctcc tttaccagtt tgtggcgcc accccgtaca caggcatgct 240
gaacgctgtg aatctgtttc ccgtgctgcg agctgtcagc a 281

<210> 25
<211> 2258
<212> DNA
<213> Human

<220>
<223> human cDNA of Huwhite2

<400> 25
atggccgtga cgctggagga cggggcggaa cccccctgtgc tgaccacgca cctgaagaag 60
gtggagaacc acatcactga agcccgacgc ttctcccacc tgcccaagcg ctcagccgtg 120
gacatcgagt tcgtggagct gtccttattcc gtgcgggagg ggccctgctg ggcggaaaagg 180
ggttataaga cccttctcaa gtgcctctca ggtaaattct gccgcggga gctgattggc 240
atcatgggcc cctcaggggc tggcaagtct acattcatga acatcttggc aggatacagg 300
gagtcctggaa tgaaggggca gatcctgggtt aatggaaaggc cacgggagct gaggaccttc 360
cgcaagatgt cctgctacat catgcaagat gacatgctgc tgccgcacct cacgggtgtt 420
gaagccatga tggctctgc taacctgaat cttactgaga atcccgatgt gaaaaacgt 480
ctcgtgacag agatcctgac ggcactgggc ctgatgtcgt gctcccacac gaggacagcc 540
ctgctctctg gcgggcagag gaagcgtctg gccatcgccc tggagctggt caacaacccg 600
cctgtcatgt tctttgatga gcccaccagt ggtctggata ggcctctt tttccaagtg 660
gtgtccctca tgaagtccct ggacacgggg ggcacgtacca tcatctgcac catccaccag 720
cccagtgcac agctcttga gatgtttgac aagctctaca tcctgagcca gggtcagtgc 780
atcttcaaag gcgtggtcac caacctgatc ccctatctaa agggactcgg cttgcattgc 840
cccacctacc acaacccggc tgaactcagt gagtgggggt ctgttgcctc tggcgagtt 900
ggacacctga accccatgtt gttcagggtt gtgcagaatg ggctgtgcgc tatggctgag 960
aagaagagca gcccgtgagaa gaacgaggc cctgccccat gcccctcttgc tcctccggaa 1020
gtggatccca ttgaaagcca caccttgcc accagcaccc tcacacagtt ctgcattcctc 1080
ttcaagagga cttccctgtc catcctcagg gacacggtcc tgacccacct acgggtcatg 1140
tcccacgtgg ttattggcgt gtcatcgcc ctccttctacc tgcatattgg cgacgatgcc 1200
agcaaggtct tcaacaacac cggctgcctc ttcttctcca tgctgttccat catgttcgccc 1260
gccctcatgc caactgtgct cacctcccc tttagagatgg cggcttccat gaggagcac 1320
ctcaactact ggtacagcct caaaagcgtat tacctggcca agaccatggc tgacgtgccc 1380

tttcaggtgg tgcgtccggc ggtctactgc agcattgtgt actggatgaa cggccagccc 1440
gctgagacca gccgcttcct gctcttctca gccctggcca cggccaccgc cttggtgcc 1500
caatcttgg ggctgctgat cgagactgct tccaactccc tacaggtggc cactttgtg 1560
ggcccagttt ccgcacatccc tgcctcttgc ttctccggct tctttgtcag cttcaagacc 1620
atccccactt acctgcaatg gagctccat ctctccatg tcaggtatgg ctttgagggt 1680
gtgatcctga cgatctatgg catggagcga ggagacctga catgtttaga ggaacgctgc 1740
ccgttccggg agccacagag catcctccga ggcgtggatg tggaggatgc caagctctac 1800
atggacttcc tggatcttggg catcttcttc ctgcctgc ggctgctggc ctaccttgc 1860
ctgcgttacc gggtaagtc agagagatag aggcttgcggc cagcctgtac cccagccct 1920
gcagcaggaa gccccccatgc ccagccctt gggactgtt tanctctata cacttggca 1980
ctggttcctg gcggggctat cctctcctcc cttggctctt ccacaggctg gctgtcgac 2040
tgcgtccca gcctgggctc tggagtgaaa ggctccaacc ctccccacta tgcccaggag 2100
tctcccaag ttgatgcggg tttagtcttgc ctccctactc tctccaacac ctgcatgcaa 2160
agactactgg gaggctgctg cctcccttgc gcccattggca ccctcccttg ctgtctgcct 2220
gggagcccta ggctcttat gcccccaactt acaactga 2258

<210> 26
<211> 820
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 26
tttaaggatt tcagccttgc cattccgtca ggatctgtca cggcactggc tggcccaagt 60
ggttctggca aatcaacagt gctttcactc ctgctgaggt tgcgtggaccc tgcttctgga 120
actatttagtc ttgatggcca tgacaatccg tcagctaaac ccagtgtgt gctgagatcc 180
aaaattggga cagtcagtca ggaacccatt ttgtttctt gctctattgc tgagaacatt 240
gcttatgggt ctgatgaccc ttccctgtg accgctgagg aaatccagag agtggctgaa 300
gtggccaatg cagtggttcc tccggaattt ccccaaggt tcaacactgt ggttggagaa 360
aagggtgttc tcctctcagg tggcagaaa cagcggattt cgattgccc tgctctgcta 420
aagaatccca aaattcttct cctagatgaa gcaaccagtg cgctggatgc cgaaaatgag 480
tacttgttc aagaagctt agatgcctg atggatggaa gaacgggttt agttattgcc 540
catagcctgt ccaccattaa gaatgctaattt atggatgtc ttcttgacca agaaaaattt 600
actgaatatg gaaaacatga agagctgtt tcaaaaccaa atggatata cagaaaacta 660
atgaacaaac aaagtttat tttagtcttgc ggaagcaatt actggtaaac aatatgagac 720
tttaatgcaa aacagtgttgc cgaaaaaaaaa ctcagagact atgaaataca taaaccatatt 780
atcaagttat ttgaaaaata cctattttt ccaaagtgtg 820

<210> 27
<211> 575
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 27
gctctccaca cagagatttt gaagcttttc ccacaggctg cttggcagga aagatattcc 60
tcttaatgg cgtataagtt acctgtggag gatgtccacc ctctatctcg ggccttttc 120
aagtttaggg cgatgaaaca gaccttcaac ctggaggaat acagcctctc tcaggctacc 180
ttggagcagg tattcttgc actctgtaaa gagcaggagc tggaaaatgt tgatgataaa 240
atggatcacaa cagttgaatg gaaacttctc ccacaggaag acccttaaaa tgaagaacct 300
cctaacatcc aatttttaggt cctactacat tgtagtttc cataattcttca caagaatgtt 360
tcctttact tcagttaca aaagaaaaca ttaataaac attcaataat gattacagtt 420
ttcattttta aaaatttagg atgaaaggaaa caaggaaata tagggaaaag tagtagacaa 480

aattaacaaa atcagacatg ttattcatcc ccaacatggg tctatTTgt gctaaaaat 540
aatttaaaaa tcatacaata ttaggttggt tatcg 575

<210> 28
<211> 300
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 28
gtggaagatg tgcaaccttt agcccaagct ttcttcaaatt tagagaaggtaaaacagagc 60
tttgaccttag aggagtacag cctctcacag tctaccctgg agcagggttt cctggagctc 120
tccaaggagc aggagctggg tgatTTtag gaggatttg atccctcagt gaagtggaaag 180
ctcctccccc aggaagagcc taaaaacccc aaattctgtt ttcctgttta aaccctgttgt 240
ttttttaaa tacatttatt tttatAGCAG caatgttcta ttttagaaaa ctatattata 300

<210> 29
<211> 2719
<212> DNA
<213> Human

<220>

<220>
<223> human cDNA of ABCG2

<400> 29
tttaggaacg caccgtgcac atgcttggtg gtcttggtaa gtggaaactg ctgctttaga 60
gtttgtttgg aaggTCCGGG tgactcatcc caacatttac atccttaatt gttaaAGCGC 120
tgcctccgag cgacgcac tctgagatcct gagccttgg ttaagaccga gctctattaa 180
gctgaaaaga taaaaactct ccagatgtct tccagtaatg tcgaagttt tatcccagtg 240
tcacaaggaa acaccaatgg ctcccccgcg acagttcca atgacctgaa ggcatttact 300
gaaggagctg tggtaagttt tcataacatc tgctatcgag taaaactgaa gagtggctt 360
ctaccttgc taaaaccagt tgagaaaagaa atattatcga atatcaatgg gatcatgaaa 420
cctggctca acgccatcct gggacccaca ggtggaggca aatctcgtt attagatgtc 480
ttagctgcaa ggaaaagatcc aagtggatta tctggagatg ttctgataaaa tggagcaccg 540
cgacctgcca atttcaaatg taattcaggta cactgtgtac aagatgtatgt tggatggc 600
actctgacgg tgagagaaaa cttacagttc tcagcagctc ttccggcttgc aacaactatg 660
acgaatcatg aaaaaaacga acggattAAC agggcatttgc aagatgttgg tctggataaaa 720
gtggcagact ccaagggtgg aactcagttt atccgtggtg tgcgtggagg agaaagaaaa 780
aggacttagta taggaatgga gcttatcaact gatccttcca tcttgcctt ggatgagcct 840
acaactggct tagactcaag cacagcaaatt gctgtccctt tgctcctgaa aaggatgtct 900
aagcagggac gaacaatcat cttctccatt catcagcctc gatattccat cttcaagttg 960
tttgatagcc tcaccttatt ggctcagga agacttatgt tccacgggccc tgctcaggag 1020
gccttggat acttgaatc agctggttat cactgtgagg cctataataa ccctgcagac 1080
ttcttcttgg acatcattaa tggagattcc actgctgtgg cattaaacag agaagaagac 1140
tttaaagcca cagagatcat agagccttcc aagcaggata agccactcat agaaaaattt 1200
gcggagattt atgtcaactc ctccttctac aaagagacaa aagctgaatt acatcaactt 1260
tccgggggtg agaagaagaa gaagatcaca gtcttcaagg agatcagcta caccacctcc 1320
ttctgtcatc aactcagatg ggttccaag cgttcattca aaaacttgc gggtaatccc 1380
caggcctcta tagctcagat cattgtcaca gtcgtactgg gactgggtt aggtgccatt 1440
tacTTggc taaaaaatga ttctactgga atccagaaca gagctgggt tctttcttc 1500
ctgacgacca accagtgttt cagcagtgtt tcagccgtgg aactcttgc ggttagagaag 1560
aagcttca tacatgaata catcagcggaa tactacagag tgcgtatctt tttccttgg 1620
aaactgttat ctgatttatt acccatgagg atgttaccaa gtattatatt tacctgtata 1680

gtgtacttca tgtaggatt gaagccaaag gcagatgcct tttcggttat gatgttacc 1740
cttatgatgg tggcttattc agccagtcc atggcactgg ccatagcagc aggtcagagt 1800
gtggttctg tagcaacact tctcatgacc atctgtttt tgtttatgt gatTTTCA 1860
ggctgttgg tcaatctcac aaccattgca tcttgctgt catggcttc gtacttcagc 1920
attccacgat atggatttac ggcttgcag cataatgaat tttgggaca aaacttctgc 1980
ccaggactca atgcaacagg aaacaatcct tgtaactatg caacatgtac tggcgaagaa 2040
tatttggtaa agcagggcat cgatctctca ccctggggct tggaaagaa tcacgtggcc 2100
ttggcttcta tgattgttat ttccctcaca attgcctacc tggaaattgtt atttcttaaa 2160
aaatattctt aaattcccc ttaattcagt atgatttac ctcacataaa aaagaagcac 2220
tttggattgaa gtattcaatc aagttttt gttgttttgc ttcccttgc catcacactg 2280
ttgcacagca gcaattgttt taaagagata cattttaga aatcacaaca aactgaatta 2340
aacatgaaag aacccaagac atcatgtatc gcatattatg taatctcctc agacagtaac 2400
catggggaaag aaatctggtc taatttatta atctaaaaaa ggagaattga attctggaaa 2460
ctcctgacaa gttattactg tctctggcat ttgtttcctc atctttaaaa tgaataggtt 2520
ggtagtagc cttcagtc taatacttta tggatgtatg gtttgccatt atttaatata 2580
tgacaaatgt attaatgcta tactggaaat gtaaaattga aaatatgtt gaaaaaagat 2640
tctgtcttat aggtaaaaaa aagccaccgg tggatgaaaaaaaatcttt tgataagcac 2700
attaaagtta atagaactt 2719

<210> 30
<211> 6491
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA3 (ABC3)

<400> 30
ccggcccgcc gcccaggctc ggtgctggag agtcatgcct gtgagccctg ggcacccct 60
gatgtcctgc gaggtcacgg tggcccaaa cctcagggtt gcccgtcccc actccagagg 120
ctctcaggcc ccaccccgga gccctctgtg cggagccgcc tcctcctggc cagttcccc 180
gtagtcctga agggagacct gctgtgttga gcctttctg ggacccagcc atgagtgtgg 240
agctgagcaa ctgaacctga aactcttcca ctgtgagtca aggaggctt tccgcacatg 300
aaggacgctg agcgggaagg actcctctc gcctgcagtt gtagcggatg gaccagcacc 360
aggggctctc tagactgccc ctccctccatc gccttccctg cctctccagg acagagcagc 420
cacgtctgca cacctcgccc tctttacact cagtttcag agcacgttcc tcctatttcc 480
tgcgggttgc aggcctact tgaacttact cagaccacct acttctctag cagcactggg 540
cgccctttc agcaagacga tggctgttgc caggcagctg gcgctctcc tctggaaagaa 600
ctacaccctg cagaagcggaa aggtcctggt gacggcctg gaacttccc tgccattgt 660
gtttcctggg atccctcatct ggctccgctt gaagattcag tcggaaaatg tgcccaacgc 720
caccatctac cccggccagt ccatccagga gctgcctctg ttcttcaccc tccctccggc 780
aggagacacc tggagacttgc cctacatccc ttctcacagt gacgctgcca agaccgtcac 840
tgagacagtg cgcaggccac ttgtatcaa catgcgagtg cgcggcttcc cctccgagaa 900
ggacttttag gactacatta ggtacgacaa ctgctctcc agcgtgttgg ccggcgttgt 960
cttcgagcac cccttcaacc acagcaagga gcccgtccg ctggcgttga aatatcacct 1020
acggttcagt tacacacggaa gaaattacat gtggacccaa acaggctctt ttttctgaa 1080
agagacagaa ggctggcaca ctactccct tttcccgctt ttcccaaacc caggaccaag 1140
ggaactaaca tccctgtatg gggagaacc tgggtacatc cgggaaggct tcctggccgt 1200
gcagcatgtc gtggacccggg ccatcatggaa gtaccatgcc gatgccgcca cacggcagct 1260
gttccagaga ctgacgggtga ccatcaagag gttcccgatc cccgcgttca tcgcagaccc 1320
cttcctcggt gccatccagt accagctgcc cctgctgtc ctgctcagct tcaccatcac 1380
cgcgctcacc attgcccgtt ctgtcgatc ggagaaggaa aggaggctga aggagtacat 1440
gcccgtatgt gggctcagca gctggctgca ctggagtgcc tgggttccctt tggatgttcc 1500
cttcctccctc atcgccgcct cttcatgac cctgctctt tggatgttcaagg tgaaggccaa 1560
tgttagccgtt ctgtcccgca gggacccctc cctgggtgctc gccttcctgc tggatgttcc 1620
catctctacc atctccttca gcttcatggt cagcaccttc ttccatggaa ccaacatggc 1680
agcaggccctc ggaggcttcc tctacttctt cacctacatc ccctacttct tcgtggcccc 1740

tcggtacaac tggatgactc tgagccagaa gctctgctcc tgccctcgt ctaatgtcgc 1800
catggcaatg ggagcccagc tcattggaa atttgaggcg aaaggcatgg gcatccagt 1860
gcgagacctc ctgagtcctc tcaacgtgga cgacgacttc tgcttcgggc aggtgctggg 1920
gatgctgctg ctggactctg tgctctatgg cctggtgacc tggtacatgg aggccgtctt 1980
cccagggcag ttccggcgtgc ctcagccctg gtacttcttc atcatgccct cctattggg 2040
tgggaagcca agggcggtt cagggaaagga ggaagaagac agtgcacccg agaaagcact 2100
cagaaaacgag tactttgaag ccgagccaga ggacctggg gcggggatca agatcaagca 2160
cctgtccaag gtgttcaggg tggaaataa ggacagggcg gccgtcagag acctgaacct 2220
caacctgtac gagggacaga tcaccgtcct gctggccac aacggtgccg ggaagaccac 2280
caccctctcc atgctcacag gtctcttcc ccccaccagt ggacgggcat acatcagcgg 2340
gtatgaaatt tcccaggaca tggttcagat ccgaaagagc ctgggcctgt gcccgcagca 2400
cgacatcctg tttgacaact tgacagtgc agagcacctt tatttctacg cccagctgaa 2460
gggcctgtca cgtcagaagt gccctgaaga agtcaagcag atgctgcaca tcattggcct 2520
ggaggacaag tggaaactcac ggagccgctt cctgagcggg ggcattgaggc gcaagctctc 2580
catcgccatc gcccctcatcg caggctccaa ggtgctgata ctggacgagc ccacccctggg 2640
catggacgcc atctccagga gggccatctg ggtatctt cagcggcaga aaagtgaccg 2700
caccatcgtg ctgaccaccc acttcatgga cgaggctgac ctgctggag accgcacatcgc 2760
catcatggcc aagggggagc tgactgtctg cgggtcctcg ctgttcctca agcagaataa 2820
cggtgccggc tatcacatga cgctggtaa ggagccgcac tgcaacccgg aagacatctc 2880
ccagctggc caccaccacg tgcccaacgc cacgctggag agcagcgtg gggccgagct 2940
gtcttcatc cttcccaagag agagcacgca caggttggaa ggtctctttt ctaaactgga 3000
gaagaagcag aaagagctgg gcattgccag ctttggggca tccatcacca ccatggagga 3060
agtcttcctt cgggtcgga agctggtaa cagcagtatg gacatccagg ccatccagct 3120
ccctgcccgt cagtaccacg acgagaggcg cgccagcgcac tggctgtgg acagcaacct 3180
ctgtggggcc atggaccctt ccgcacggcat tggagccctc atcgaggagg agcgcacccgc 3240
tgtcaagctc aacactggc tcgcccgtca ctggcagcaa ttctgggcca tggctctgaa 3300
gaaggccgca tacagctggc gcgagtgaa aatggtgccg gcacaggccc tggctctct 3360
gacctgcgtc accctggccc tcctggccat caactactcc tcggagctc tcgacgaccc 3420
catgctgagg ctgaccccttgg gcgagttacgg cagaaccgtc gtgccttctt cagttcccg 3480
gacctcccgat ctgggtcagc agctgtcaga gcatctgaaa gacgcactgc aggctgaggg 3540
acaggagccc cgcgagggtgc tgggtgaccc ggaggagttc ttgatcttca gggcttctgt 3600
ggagggggggc ggcttaatg agcggtgcct tggcagcg tccttcagag atgtgggaga 3660
gcmcacggcgtc gtcaacgcct tggcaacaa ccaggcgtac cactctccag ccactgcct 3720
ggccgtcggt gacaaccctt tggcaagct gctgtcgccg ctcacgcct ccattgtgg 3780
ctccaacttc ccccaaaaaa ggagccccc gcaggctgcc aaggaccagt ttaacgaggg 3840
ccggaaggga ttgcacattt ccctcaaccc gctctcgcc atggcatttc tggccacgcac 3900
gttctccatc ctggcggtca gcgagaggcc cgtgcaggcc aagcatgtgc agtttgtag 3960
tggagtccac gtggccagtt tctggctctc tgctctgtc tggacactca tctcccttct 4020
catccccagt ctgctgtgc tgggtgttt taaggcttc gacgtgcgtg cttcacgcg 4080
ggacggccac atggctgaca ccctgtgtc gctcctgtc tacggctggg ccacatccc 4140
cctcatgtac ctgtatgaaact tcttcttcc tggggccggcc actgcctaca cgaggctgac 4200
catcttcaac atccgtcag gcatgcaccc ctccctgtatg gtcaccatca tgccatccc 4260
agctgtaaaa ctggaaagaac ttccaaaac cctggatcac gtgttcctgg tgctgccc 4320
ccactgtctg gggatggcag tcagcgtttt ctacgagaac tacgagacgc ggaggtaact 4380
caccctctcc gaggtcgccg cccactactg caagaaatat aacatccagt accaggagaa 4440
cttctatgcc tggagccccc cgggggtcgg ccgggttgcg gcctccatgg ccgcctcagg 4500
gtgcgcctac ctcatccgtc tcttcctcat cgagaccaac ctgcttcaga gactcagggg 4560
catccctctgc gcccctccga ggaggccggac actgacagaa ttatacaccc ggtgcctgt 4620
gcttccttag gaccaagatg tagcgacga gaggaccgc atccctggccc ccagccgg 4680
ctccctgtctc cacacaccc tggatccaa ggagctctt aagggttacg agcagcgggt 4740
gccctccctg gccgtggaca ggctccctt cgcggcgtc aaaggggagt gcttcggcct 4800
gtgggccttc aatggagccg ggaagaccac gactttcaaa atgctgaccc gggaggagag 4860
cctcacttctt gggatgcct ttgtcgccgg tcacagaatc agctctgtatg tcggaaaggt 4920
gcggcagccg atcggctact gcccgcgtt tgatgccttgc tgacaggccg 4980
ggagatgctg gtcatgtacg ctggcgtccg gggccatccct gaggccacca tcggggcctg 5040
cgtggagaac actctgcggg gcccgtgtc ggagccacat gccaacaagc tggtcaggac 5100
gtacagtggt ggtacaacaagc ggaagctgag caccggcatac gcccgtatgc gagagcctgc 5160

tgtcatcttc ctggacgagc cgtccactgg catggacccc gtggcccgcc gcctgctttg 5220
ggacaccgtg gcacgagccc gagagtctgg caaggccatc atcatcacct cccacagcat 5280
ggaggagtgt gaggccctgt gcacccggct ggccatcatg gtgcaggggc agttcaagtg 5340
cctgggcagc cccccagcacc tcaagagcaa gttcggcagc ggctactccc tgccggccaa 5400
ggtgcagagt gaagggcaac aggaggcgct ggaggagttc aaggcctcg tggacctgac 5460
cttccaggc agcgtctgg aagatgagca ccaaggcatg gtccattacc acctgccggg 5520
ccgtgaccc agctggcga aggtttcgg tattctggag aaagccaagg aaaagtacgg 5580
cgtggacgc tactccgtga gccagatctc gctggAACAG gtcttcctga gcttcgccc 5640
cctgcagccg cccaccgcag aggaggggCGC atgaggggtg gccgcgtgtc cgccatcagg 5700
cagggacagg acgggcaagc agggcccatc ttacatcctc tctctccaag tttatctcat 5760
cctttatTTT taatcacTTT tttctatgtat ggatatgaaa aattcaaggc agtatgcaca 5820
gaatggacga gtgcagccca gcctcatgc ccaggatcatc catgcgcata tccatgtctg 5880
catactctgg agttcacTTT cccagagctg gggcaggCCG ggcagtctgc gggcaagctc 5940
cggggctctc ggggtggagag ctgaccCAGG aagggtctgca gctgagctgg gggTTGAATT 6000
tctccaggca ctccctggag agaggaccca gtgacttgc caagtttaca cacgacacta 6060
atctcccctg gggaggaAGC gggAAGCCAG ccaggttgaa ctgttagcgag gccccccaggc 6120
cgccaggaat ggaccatgca gatcactgtc agtggaggga agtgcgtac tgtgattagg 6180
tgctgggtc ttagcgTCCA ggcgcagCCG ggggcattct ggaggctctg ctcccttagg 6240
gcatggtagt caccgcgaag cccggcaccgc tcccacagca tctccttagaa gcagccggca 6300
caggagggaa ggtggccagg ctgcgaagcag tctctgtttc cagcactgca ccctcaggaa 6360
gtcgcccGCC ccaggacacg cagggaccac cctaagggtc gggTGGCTGT ctcaaggaca 6420
cattgaatac gttgtgacca tccagaaaaat aaatgctgag gggacacaaaa aaaaaaaaaa 6480
aaaaaaaaaa a 6491

<210> 31
<211> 2923
<212> DNA
<213> Human

<220>
<223> human genomic DNA of 5'-UTR of ABCG1

<400> 31
ttgcctgggt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccagt ctttctgcag ggtcccattg gggtaacct tctcatttca tcccatgtga 120
accaggccag gcccattcagg gttggcaac cccctgatgc agtgggtgt gccaggtgac 180
aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgcccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggtctttgg teccagttagt cctgaaacca ctgcactccg aacctttctg tacttagctt 360
aaggcagttg gagtttctgt cctttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct tttcccgatcg ggcgctggag gggAACACAG cagtgactac 480
agtgggatgc ttactcggtg ctgggcattgc tagaaagtgc ttgcctatgcc ttatttccca 540
cgtgggtgggg atttgtaccc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaAGC caacaaggGC ccagcatagc atcttccctc 660
tctgacttca tcctcacgtt ccacacacca tccccctggc cattttccagc agcccagtaa 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctgga tggggccat 780
ccaccggctg aagccaatttgc cctattctcg agtgcagggt gaatcaatcc cgcataaaatc 840
ttcgggcaga gaactnggggt ggggggtaga agagggggaa tgcctagaag gaaattctgg 900
ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcacttgc cttggccaca tggacagttc ctccccggct gtgttccgng cctccctctg 1020
tgctccaggc cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcggcc 1080
atctccagcc atcaggcact ttctctctg tgttttggcg taaaacacntc ccttaggtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgctg ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagccctc caaggcctgg cacccgggca gtggccaccc ggtAAACACA 1260
gcagtccat ttcctcattt cagccaaagtg taaaatcaag gtaatggatc tacnctttt 1320
tttttnntt ttttccaggg ggntnnnttt tttttgagac ggagtctcac tctgtcancc 1380
ccggcgttgc gtcagtgcc tcaatctcg tccanctggc aagctccgccc tcccaagggttc 1440

atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgttattt ttagtagaga cggggtttca tcacgttagc caggatggtc 1560
tcgatctcct gaccccca aagtgggtggg ttacaggtgt gagccactgc gccccgctgg 1620
atgactcttg agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccttc gatttgagcg gctgaattt gttacagtca tctgacctgt 1740
gggtgtgaag tccacctgcc tggcataaaa agctgtgcct ccttcttagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggg tgggaggggg gaccagggtg tgctggaaat 1860
gaaaaagaaat gcattcctgt tttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattcctt tcaccatgga taccaggaaa tggcccaact 1980
tatataaat aagggcttta gagatgctgg accatctgat attccagcct ggggccacat 2040
gggagtgtgc cctgggttta ttccctatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacagag ggcagaggcc 2160
tgggcattt cactcagcac ccctttgtaa cccagcactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgatg cctcactgccc aggggtcacc ccacacccgt 2280
gctgttgggg gcgttggagt gtttatctct tcttttagtcc tcaagctcct acctggcaga 2340
gagctgcccac acaccgtcgg ggtgggggtgg gcgggaaggg aagaagcagc agcaagaaag 2400
aagccccctg gccctcactc tccctccctg gacgccccctt cttcgacccc atcacacagc 2460
cgcttggcc ttggagnacag tggatttccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtcccccgca gcctcaccnn cgtgctggcc cagccccccgc gagttcggga cccgggggttt 2580
ccgggggtggc aggggggttcc catggccctc gcgaggcctc ggctcggggc gctcccgaa 2640
cctgcacttc aggggtcctg gtccgcgc cccagcagga gcaaaacaag agcacgcgca 2700
cctgcccggcc cgcccccccc cttgggtggc gccaatcgcg cgctcggggc ggggtcgggc 2760
gcgttggAAC cagagccgga gccggatccc agccggagcc caagcgcagc ccgcaccccg 2820
cgcagcggct gagccgggag ccagcgcagc ctcggccccc cagctcaagc ctcgtccccg 2880
ccggccggcgc cgacacccgc cgccggccccc cccggggcat ggc 2923

<210> 32

<211> 13

<212> DNA

<213> Human

<220>

<223> human DNA of 5'-end of ABCG1 cDNA

<400> 32

ccggggcatg gcc

13

<210> 33

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 33

cgtcagcact ctgatgatgg cctg

24

<210> 34

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 34

tctctgctat ctccaacctc a

21

<210> 35

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 35

caaacatgtc agctgttact gga

23

<210> 36

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 36

tagccttgca aaaatacctt ctg

23

<210> 37

<211> 25

<212> DNA

<213> Human

<220>

<223> Primer

<400> 37

gttggaaaga ttctctatac acctg

25

<210> 38

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 38

cgtcagcaact ctgatgatgg cctg

24

<210> 39

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 39

tctctgctat ctccaacctc a

21

<210> 40
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 40
acgtcttcac caggtaatct gaa 23

<210> 41
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 41
ctatctgtgt catctttgcg atg 23

<210> 42
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 42
cgcttcctcc tatacatctt ggt 23

<210> 43
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 43
aagagagcat gtggaggatct ttg 23

<210> 44
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 44
ccctgtatc gaatttgttt ctc 23

<210> 45
<211> 22

<212> DNA
<213> Human

<220>
<223> Primer

<400> 45
aaccttctct gggttcctgt at 22

<210> 46
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 46
agttcctgga aggtcttggtt cac 23

<210> 47
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 47
gctgaccctt ttgaggacat gcg 23

<210> 48
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 48
ataggtaaggc tcatacccta tgt 23

<210> 49
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 49
gctgcctcct ccacaaagaa aac 23

<210> 50
<211> 24
<212> DNA
<213> Human

<220>
<223> Primer

<400> 50
gctttgctga cccgctcctg gatc 24

<210> 51
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 51
gaggccagaa tgacatctta gaa 23

<210> 52
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 52
cttgacaaca cttagggcac aat 23

<210> 53
<211> 15
<212> PRT
<213> Human

<220>
<223> amino acid residues 613-628 of ABCG1

<400> 53
Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe Gln
1 5 10 15

<210> 54
<211> 2923
<212> DNA
<213> Human

<220>
<223> human genomic DNA of 5'-UTR of ABCG1

<400> 54
ttgcctgggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccagt ctttctgcag ggtcccattg gggtaacct ttcatttca tcccatgtga 120
accaggccag gccccatcagg gtttggcaac cccctgatgc agtgggtgct gccaggtgac 180
aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggctttgg tcccaagtgt cctgaaacca ctgcactccg aaccttctg tacttagtt 360

aagccagttg gagtttctgt cctttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct ttcccgtatcg ggcgctggag gggAACACAG cagtactac 480
agtggatgc ttactcggtg ctgggcatgc tagaaagtgc ttgcctatgcc ttatttccca 540
cgtgggtggg attttgaccc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggc ccagcatagc atcttccctc 660
tctgacttca tcctcactcgt ccacacacca tccccctggc cattcccagc agcccagtaa 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctggta tgggggccat 780
ccaccggctg aagccaattt cctattctcg agctgaaggt gaatcaatcc cgccataaatc 840
ttcgggcaga gaactngggt ggggggtttaga agagggggaa tgtctagaag gaaattctgg 900
ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcaattgc cctggccaca tggacagttc ctccccggct gtgttccng cctccctctg 1020
tgctccaggg cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcccc 1080
atctccagcc atcaggcact ttccctctcg tggtttggcg taaacacntc cctaggtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgctg ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagcctc caaggcctgg cacccggca gtggccaccc ggttaaacaca 1260
gcagtcagat ttccctcattt cagccaaagtg taaaatcaag gtaatggatc tacnctttt 1320
tttttntttt ttttccaggg ggntnnnttt tttttgagac ggagtctcac tctgtcancc 1380
ccggctctgga gtgcagtggc tcaatctcg ctcancgttgc aagctccggc tcccaagggtt 1440
atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgtattt ttagtagaga cgggggttca tcatgttagc caggatggtc 1560
tcgatctccct gacccccaa agtgggtgggaa ttacaggtgt gagccactgc gcccggctgg 1620
atgactcttgc agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccccc gatttgagcg gctgaatttgc gttacagtca tctgacctgt 1740
gggtgtgaag tccacctgccc tggcataaaaa agctgtgcct ctttcttagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggg tgggaggggg gacccagggtg tgctggaaat 1860
gaaaagaaaat gcattccctgt ttttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattcccttgc tcaccatggta taccaggaaa tggcccccact 1980
tatataataat aagggccttta gagatgtcg accatctgat attccagctt gggccacat 2040
gggagtgtgc cctgggttta ttcccttatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacacagag ggcagaggcc 2160
tggcatctt cactcagcac cccttgcataa cccagactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgtat cctcaactgc aggggtcacc ccacaccgg 2280
gctgtgggg gcggtggagt ggttatctct tcttttagtcc tcaagctctt acctggcaga 2340
gagctgccc acaccgtcggtt ggtgggggtgg gcgggaaaggaa aagaagcagc agcaagaaag 2400
aagccccctg gcccctcaactc tccctccctg gacgccccctt cttcgaccctt atcacacagc 2460
cgcttggcc ttggagnac tggatttccg agcctggaa ccccccgggt ctgtcccggt 2520
gtcccccgca gcctcaccctt cgtgtggcc cagccccccgc gagttcggtt cccgggggtt 2580
ccgggggtggc aggggggttcc catgcccgcct gcgaggcctt ggctcggtt gctcccgaa 2640
cctgcacttc aggggttctg tcccgccgc cccagcaggaa gaaaaacaag agcacgcgca 2700
cctgcccggcc cgcccgcccc cttgggtggcc gccaatcgcg cgctcggtt ggggtcggtt 2760
gcgctggaaac cagagccgga gccggatccc agccggagcc caagcgccagc ccgcaccccg 2820
cgccagccgct gaggccggag ccagcgccagc ctcggccccc cagctcaagc ctcgtccccg 2880
ccggccgcccgc cgacacggccgc cggccggccat ggc 2923