M-Estimation and Median of Means for Robust Machine Learning

Name: Timothée Mathieu (Laboratoire de Mathématiques d'Orsay)

~]\$_

>>> Outline

- 1. What is robustness ?
- 2. Robust Mean Estimation
- 3. Robust Machine Learning
- 4. Conclusion

>>> What is robustness ?

Dataset is either

In [1]: From an heavy-tailed distribution

Out[1]: $X \sim Pareto(\alpha, \beta)$, $X \sim \mathcal{T}(3)$, or more generally X satisfies

only moments conditions.

In [2]: Corrupted by outliers

 $\mathtt{Out}[2]:\ X_1,\ldots,X_n$ contains abnormal data.

>>> Corrupted Dataset

Formally,

Adversarial corruption:

 X_1,\ldots,X_n are corrupted if there exist $X_1',\ldots,X_n'\in\mathbb{R}^d$ i.i.d. following a law P that have been modified by an "adversary" to obtain X_1,\ldots,X_n . The adversary can modify at most $|\mathcal{O}|$ points.

- * $X_i = X_i'$ for $i \notin \mathcal{O}$ called inliers
- * X_i for $i \in \mathcal{O}$ are called outliers
- * We don't make any assumptions on $(X_i)_{i\in\mathcal{O}}$
- * $(X_i)_{i \neq 0}$ and $(X_i)_{i \in 0}$ may not be independent
- st $(X_i)_{i
 ot\in\mathcal{O}}$ may not be jointly independent.

Ex: if the adversary modify $|\mathcal{O}|$ points closer to 0.

>>> Examples

Here are some results of outlier detection on real datasets. Handwritten 0-1 digits.

Rk: these outliers are not detected as such by a CNN.

Outlier detection + rejection is not always optimal

¹Frank R Hampel et al. Robust statistics: the approach based on influence functions.

>>> Empirical mean

Gaussian data: X_1, \ldots, X_n i.i.d $\mathcal{N}(\mu, \sigma^2)$.

Empirical mean gives optimal rate of convergence: for all t > 0,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\sigma\sqrt{\frac{t}{n}}\right)\leq2\exp\left(-t\right)$$

Heavy-tail data: if we only have $\mathbb{E}[X^2] < \infty$, Chebychev inequality is tight².

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\sigma\sqrt{\frac{t}{n}}\right)\leq\frac{2}{t}$$

Corrupted data: one outlier is sufficient to make $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ arbitrarily large.

²Olivier Catoni. "Challenging the empirical mean and empirical variance: A deviation study". In: Ann. Inst. H. Poincaré Probab. Statist. (2012).

>>> Robust Mean Estimation

Median of Means³. Let X_1,\ldots,X_n be i.i.d, let $K\in\mathbb{N}$ and suppose that K divides n. Let B_1,\ldots,B_K be an equi-partition of $\{1,\ldots,n\}$. Define

$$MOM_K(X_1^n) = Med\left(\frac{1}{|B_k|} \sum_{i \in B_k} X_i, \quad 1 \le k \le K\right). \tag{1}$$

³A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. John Wiley & Sons, Inc., New York, 1983.

>>> MOM's Properties

By property of the median, we have

$$\begin{split} \mathbb{P}\left(\mathrm{MOM}_{K}(X_{1}^{n}) - \mathbb{E}[X] > \varepsilon\right) &= \mathbb{P}\left(\mathrm{Med}\left(\frac{1}{|B_{k}|}\sum_{i \in B_{k}}X_{i} - \mathbb{E}[X]\right) > \varepsilon\right) \\ &\leq \mathbb{P}\left(\sum_{k=1}^{K}\mathbb{1}\left\{\frac{1}{|B_{k}|}\sum_{i \in B_{k}}X_{i} - \mathbb{E}[X] > \varepsilon\right\} \geq \frac{K}{2}\right). \end{split}$$

This is the deviations of a sum of bounded, i.i.d rvs. Then, via Hoeffding's inequality,

Theorem (Deviation Median of Means)

Let X_1, \ldots, X_n, X be i.i.d real-valued random variables, with finite variance σ^2 . Then, for all $K \in \{1, \ldots, n\}$,

$$\mathbb{P}\left(\left|\mathrm{MOM}_{K}(X_{1}^{n}) - \mathbb{E}[X]\right| > 2\sigma\sqrt{\frac{K}{n}}\right) \le 2e^{-K/8} \tag{2}$$

>>> M-estimators

 $T(\widehat{P}_n)$ such that

$$T(\widehat{P}_n) \in \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \rho(X_i - \theta)$$

where ρ is even, convex, non-negative and $\rho(0)=0$.

Examples:

* If $\rho(x) = x^2$: $T(\hat{P}_n) = \frac{1}{n} \sum_{i=1}^n X_i$.

* If $\rho(x) = |x|$: $T(\hat{P}_n)$ is the sample median.

* Huber: Let $\beta > 0$, $\rho_H(x) = \frac{1}{2}x^2 \, \mathbb{1}\{|x| \le \beta\} + \beta(x - \beta/2) \, \mathbb{1}\{|x| > \beta\}.$

>>> Deviations of Huber estimator

Theorem (Deviations of Huber estimator⁴)

Suppose that
$$\varepsilon_n=|\mathcal{O}|/n\leq 1/32$$
 and $\mathbb{E}_P\left[|X-\mathbb{E}_P[X]|^q\right]<\infty$, $q\geq 2$. Then, there exist $C_1,C_2,C_3,\beta>0$ s.t. with probability $1-4e^{-t}-e^{-n/32}$,
$$|T_H(X_1^n)-\mathbb{E}_P[X]|\leq C_1\sigma\sqrt{\frac{t}{n}}+C_2\varepsilon_n^{1-1/q}\mathbb{E}[|X-\mathbb{E}[X]|^q]^{1/q}$$

$$\label{eq:for any temperature} \textit{for any } t \leq C_3 n^{\frac{q-2}{2q-2}} \left(\frac{\mathbb{E}\left[|X - \mathbb{E}[X]|^2\right]}{\mathbb{E}\left[|X - \mathbb{E}[X]|^q\right]} \right)^{\frac{1}{q-1}}.$$

we recover a sub-gaussian behavior when $\varepsilon_n = 0$ with only 2 moments.

Remark: the theorem can be extended to weaker moment assumptions, multivariate setting and to more general ρ .

⁴Timothée Mathieu. Concentration study of M-estimators using the influence function. 2021. arXiv: 2104.04416 [math.ST].

>>> Wrap up of Robust Mean estimation part

- * We achieve sub-gaussian rates, even if the data are heavy-tailed
- * We achieve optimal rates in a corrupted setting
- * MoM and Huber's estimator are fast to compute and can be used in place of the sample mean

>>> Robust Machine Learning

Collaboration with: Matthieu Lerasle, Guillaume Lecué, Stanislav Minsker.

Risk Minimization framework.

Let (X,Y) be a (feature, label) couple. We are searching for $f\in \mathcal{F}$ such that $f(X)\simeq Y$.

Let

$$f^* \in \arg\min_{f \in \mathcal{F}} \mathbb{E}[\ell(f(X), Y)]. \tag{3}$$

where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a loss function.

Empirical Risk minimization

The population law is unknown, we can't compute $\mathbb{E}[\ell(f(X),Y)]$. Instead we use a sample $(X_1,Y_1),\ldots,(X_n,Y_n)$.

$$\hat{f} \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i)$$

Problem: the empirical mean is not robust and $\ell(f(X),Y)$ can be heavy-tailed/corrupted.

>>> Robust Risk Minimization

$$\hat{f} \in \arg\min_{f \in \mathcal{F}} \hat{E} \left[\ell(f(X_i), Y_i); 1 \le i \le n \right]$$

where \hat{E} is a robust estimator of the mean (Huber or MOM).

Examples:

In [1]: Robust Logistic Regression

Out[1]:

$$\widehat{\beta}_{MOM,K} \in \arg\min_{\beta \in \mathbb{R}^d} \mathrm{MOM}_K \left(\log(1 + \exp(-\langle \beta, X_i \rangle Y_i)) \right)$$

In [2]: Robust Least Squares Regression

Out[2]:

$$\widehat{\beta}_{MOM,K} \in \arg\min_{\beta \in \mathbb{R}^d} \mathrm{MOM}_K \left((\beta^T X_i - Y_i)^2 \right)$$

These problems can also be stated as Huber minimizations.

MOM Risk minimization

For the Logistic Regression problem, we have Theorem (5 and 6)

Suppose X has covariance Σ_X . Assume $n>K>8|\mathcal{O}|$. Then, with probability greater than $1-2e^{-K/32}$,

$$R(\widehat{\beta}_{MOM,K}) \leq \inf_{\beta \in \mathbb{R}^d} R(\beta) + 4\sqrt{\|\Sigma_X\|_{op}} \max\left(4\sqrt{\frac{d}{n}}, 2\sqrt{\frac{K}{n}}\right)$$

Example: If $\Sigma_X = \sigma^2 I_d$, its largest eigenvalue is $\|\Sigma_X\|_{op} = \sigma^2$.

Proof idea: reduce the problem to studying the maximum deviation of a sum of indicator functions.

We get a similar result for Huber risk minimizer, and for more general ERM problems.

⁵Matthieu Lerasle, Timothée Mathieu, and Guillaume Lecue. "Robust classification via MOM minimization". In: *Machine Learning* (2020).

⁶Stanislav Minsker and Timothée Mathieu. "Excess risk bounds in robust empirical risk minimization". In: To appear in Information and Inference: A Journal of the IMA (2020).

>>> MOM risk minimization in practice

Algorithm to find $\widehat{eta}_{MOM,K}$ such that

$$\widehat{\beta}_{MOM,K} \in \arg\min_{\beta \in S^{d-1}} \mathsf{MOM}_K \left(\log(1 + \exp(-\langle \beta, X_i \rangle Y_i)) \right)$$

At iteration t,

- * Construct the blocks B_1, \ldots, B_K uniformly at random.
- * Compute the losses

$$\ell_i(\beta_t) = \log(1 + \exp(-\langle \beta_t, X_i \rangle Y_i)).$$

* Find the block $B_{
m med}$ such that

$$MOM_{K}\left(\ell_{i}(\beta_{t})\right) = \frac{1}{|B_{\text{med}}|} \sum_{i \in B_{\text{med}}} \ell_{i}(\beta_{t}).$$

* Do a gradient step of size $\eta_t > 0$ on $B_{
m med}$

$$\beta_{t+1} = \beta_t - \eta_t \frac{1}{|B_{\text{med}}|} \sum_{i \in B_{\text{med}}} \nabla_{\beta} \mathcal{E}_i(\beta_t).$$

More generally: iterative reweighting algorithm to estimate Huber minimizers or MOM minimizers.

>>> Robust module in scikit-learn-extra

- * Robust linear classification
- * Robust linear regression
- * Robust KMeans clustering

https://github.com/scikit-learn-contrib/scikit-learn-extra

>>> Illustrations on Real dataset; Example 1

Prediction of area burnt by Forest Fires.

- * X x-axis spatial coordinate
- * Y y-axis spatial coordinate
- * month month of the year
- st day day of the week
- * FFMC FFMC index
- * DMC DMC index
- * DC DC index

- * ISI ISI index
- * temp the temperature
- * RH relative humidity in %
- * wind wind speed in km/h
- * rain outside rain in mm/m2
- * area the burned area of the forest (in ha).

>>> Evaluation

Main problem in evaluation robust ML algorithms:

There can be outliers in the test set

Solutions: Robust cross validation

- * robust score function to estimate the error on a fold (i.e. median absolute error)
- * robust aggregation of the error on all the folds (i.e. median of means squared errors on folds)

Figure: Median Residuals for 10 folds

>>> Illustrations on Real dataset; Example 2

Prediction of Heart Diseases.

Binary classification problem: predict heart disease or not using features such as cholesterol, age, sex...

The outliers in the target variables Y have a bounded influence.

There can still be highly influencial outliers in the feature space X.

Features:

- * age
- * sex
- * chest pain type (4 values)
- * resting blood pressure
- * serum cholestoral in mg/dl
- * fasting blood sugar > 120 mg/dl
- * resting
 electrocardiographic results
 (values 0.1.2)

- * maximum heart rate achieved
- * exercise induced angina
- * oldpeak = ST depression
 induced by exercise relative
 to rest
- * the slope of the peak exercise ST segment
- * number of major vessels (0-3) colored by flourosopy
- * thal: 3 = normal; 6 =
 fixed defect; 7 = reversable
 defect

>>> Evaluation

Classification problem: accuracy is a robust score. Classical CV is alright.

Algorithm	Accuracy (in %)
Logistic Regression	85.8
Random Forest	84.5
SVM	83.8
RWE	85.1
Polynomial Feature + RWE	86.8
Polynomial Feature + Logistic Regression	79.8
Polynomial Feature + outlier removal via RWE + Logistic Regression	86.7

Remark: the outliers in the features are not apparent in one or two dimension visualizations.

>>> Conclusion

Other applications: Robust Multivariate Mean Estimation, Robust Kernel Methods (Robust MMD Computation and two sample testing), Robust KMeans, Outlier detection.

All codes of algorithms: on Github.

Future works

- * Prove the algorithms
- * More advanced robust CV
- * Robust preprocessing and feature engineering
- * Adaptive choice of parameters
- * Robust Time series
- *

[4. Conclusion ~]\$ _

Thank you for your attention