Corrigé: Examen novembre 2018

- 1. Maximum de vraisemblance
 - (a) La fonction de répartition est continue et de classe C_1 par morceaux sur \mathbb{R} donc la densité est obtenue en la dérivant, d'où la densité pour une observation :

$$p_{\theta}(x) = \mathbb{1}_{\{x > u\}} \theta \frac{u^{\theta}}{x^{\theta+1}}$$

Pour une observation, on a $\log p_{\theta}(x) = \log \theta + \theta \log u - (\theta + 1) \log x$, d'où

$$\log p_{\theta}^{\otimes n}(\mathbf{x}) = n(\log \theta + \theta \log u) - (\theta + 1) \sum_{i=1}^{n} \log x_i$$

Cette quantité est finie si et seulement si $x_i > 0$ pour $i \in \{1, \dots n\}$.

(b) On obtient le MV est annulant la dérivée partielle en θ de la log vraisemblance (qui est bien différentiable et strictement concave sur $]0, +\infty[$, en tant que fonction de θ):

$$\frac{\partial}{\partial \theta} (\log p_{\theta}^{\otimes n}(\mathbf{x})) = n \left(\frac{1}{\theta} + \log u \right) - \sum_{i} \log X_i = \frac{n}{\theta} - \sum_{i} \log(X_i/u),$$

d'où le résultat :

$$\widehat{\theta}_{MV}(X) = \frac{n}{\sum_{i=1}^{n} \log\left(\frac{X_i}{u}\right)}.$$

- 2. Risque quadratique
 - (a) Pour y > 0,

$$\mathbb{P}_{\theta}(\log(X_i/u) > y) = \mathbb{P}_{\theta}(X_i > ue^y) = 1 - F_{\theta}(ue^y) = (u/(ue^y))^{\theta} = e^{-\theta y}$$

donc $Y_i := \log(X_i/u) \sim \mathcal{E}(\theta)$.

- (b) D'après le point 2, $V_i := \frac{1}{n} \log(X_i/u) \sim \mathcal{E}(n\theta)$: on l'obtient en calculant $\mathbb{P}_{\theta}(V_i > y)$ pour y > 0. Ainsi, par le point 2. donné dans l'énoncé, $\frac{1}{n} \sum_{i=1}^{n} \log(X_i/u) \sim \mathcal{G}amma(n, n\theta)$, d'où le résultat.
- (c) Par définition le biais de $\widehat{\theta}_{MV}$ est

$$\mathbb{E}_{\theta}(\theta_{MV}(X)) - \theta = \frac{n\theta}{n-1} - \theta = \frac{\theta}{n-1}$$

où la deuxième égalité vient de l'expression de l'espérance d'un inverse Gamma donnée dans l'énoncé. Le risque quadratique de $\hat{\theta}_{MV}$ est donc, d'après l'expression de la variance d'un inverse gamma,

$$R(\theta, \widehat{\theta}_{MV}) = \text{biais}^2(\theta) + \text{var}_{\theta}(\widehat{\theta}_{MV}(X)) = \frac{\theta^2}{(n-1)^2} + \frac{n^2 \theta^2}{(n-1)^2(n-2)} = \frac{\theta^2}{(n-1)^2} (1 + \frac{n^2}{n-2}).$$

(d) pour une observation,

$$I_1(\theta) = \mathbb{E}_{\theta}\left[\left(\frac{-\partial}{\partial \theta} \log p_{\theta}(X_1)\right)^2\right] = \mathbb{E}_{\theta}\left[\left(\frac{1}{\theta} - \log(X_1/u)\right)^2\right]$$
$$= \mathbb{V}ar_{\theta}(Y)$$

où $Y \sim \exp(\theta)$ d'où

$$I_1(\theta) = \frac{1}{\theta^2}$$

puis

$$I_n(\theta) = \frac{n}{\theta^2}.$$

(e) Puisque $\hat{\theta}_c = \frac{n-1}{n}\hat{\theta}$, on a directement

$$\operatorname{Var}_{\theta}(\widehat{\theta}_{c}(X)) = \frac{(n-1)^{2}}{n^{2}} \operatorname{Var}_{\theta}(\widehat{\theta}_{MV}) = \frac{\theta^{2}}{n-2}$$

- (f) L'estimateur $\hat{\theta}_{MV}$ est biaisé : il ne peut pas être efficace. L'estimateur $\hat{\theta}_c$ est non-biasé mais sa variance $\frac{\theta^2}{n-2}$ est strictement supérieure à la borne de Cramér-Rao $\frac{1}{I_n(\theta)} = \frac{\theta^2}{n}$. Il n'est donc pas non plus efficace.
- (g) En comparant $R(\theta, \widehat{\theta}_{MV})$ et $R(\theta, \widehat{\theta}_c) = \mathbb{V}ar_{\theta}(\widehat{\theta}_c(X))$, on constate que le premier est supérieur au second, pour tout θ , dès que $n \geq 4/3$. Or on a supposé n > 2 donc on choisit $\widehat{\theta}_c$.
- 3. Intervalle de confiance
 - (a) Puisque $\sum \log(X_i/u) \sim \mathcal{G}amma(n,\theta)$, on obtient par un calcul de densité par changement de variable,

$$Z = \varphi(X, \theta) = \theta \sum \log(X_i/u) \sim \mathcal{G}amma(n, 1).$$

- (b) la densité de la loi Gamma est strictement positive et continue sur \mathbb{R}^{+*} donc la fonction de répartition est continue et strictement croissante sur \mathbb{R}^{+*} . Elle est donc injective (d'où l'unicité du quantile) et admet un inverse F^{-1} : $]0,1[\to\mathbb{R}^{+*}$. Le quantile existe donc et est donné par $q_n(\alpha = F^{-1}(\alpha))$.
- (c) soit $\alpha_1 = \alpha/2$ et $\alpha_2 = (1 \alpha/2)$, notons $q_1 = q_n(\alpha_1)$ et $q_2 = q_n(\alpha_2)$. On a,

$$\forall \theta \in \Theta, \quad \mathbb{P}_{\theta}(q_2 \le Z \le q_1) = 1 - \alpha,$$

c'est-à-dire en inversant $\varphi_X : \theta \mapsto \varphi(X, \theta)$ (et en utilisant le fait que $\sum_i \log(X_i/u) > 0$ avec probabilité 1,

$$\mathbb{P}_{\theta} \left(\frac{q_1}{\sum \log(X_i/u)} \le \theta \le \frac{q_2}{\sum \log(X_i/u)} \right) = 1 - \alpha$$

d'où l'intervalle cherché :

$$I(X) = \left[\frac{q_1}{\sum \log(X_i/u)}, \frac{q_2}{\sum \log(X_i/u)}\right]$$

- 4. Test d'hypothèses
 - (a) Puisque l'on donne s > u, $g(\theta) = \mathbb{P}_{\theta}(X_1 > s) = 1 F_{\theta}(s) = (u/s)^{\theta}$.
 - (b) d'après le point précédent

$$g(\theta) \le \rho_0 \iff \theta \log(u/s) \le \log \rho_0 \iff \theta \ge \theta_0 = \frac{\log \rho_0}{\log(u/s)}$$

(puisque $\log(u/s) < 0$)

A.N: $\theta_0 = \log(1/1000)/\log(1/10) = 3/1 = 3$. $g(\theta) = 10^{-\theta}$.

(c) d'après la question 1, en notant $p_1 = p_{\theta_1}^{\otimes n}$ et $p_0 = p_{\theta_0}^{\otimes n}$, le rapport de vraisemblance

$$\Phi_{\theta_0,\theta_1}(X) = \frac{p_1(X)}{p_0(X)} = \exp(\log p_1(X) - \log p_0(X))$$
$$= \exp\left(C_n(\theta_0, \theta_1) + (\theta_0 - \theta_1) \sum_{i=1}^n \log(X_i/u)\right)$$

où $C_n(\theta_0, \theta_1)$ est une constante ne dépendant pas de X. Le test de Neyman-Pearson, d'après le cours, est de type $\delta(X) = \mathbb{1}_{\Phi_{\theta_0,\theta_1}(X) \geq c'}$. Or, $\theta_0 > \theta_1$, donc le rapport de vraisemblance est une fonction strictement croissante de $W = \sum \log(X_i/u)$. Il existe donc $c \in \mathbb{R}$ tel que $\Phi_{\theta_0,\theta_1}(X) \geq c' \iff W \geq c$, d'où le résultat.

(d) D'après la question 3., sous \tilde{H}_0 , $\theta_0 W \sim \mathcal{G}amma(n, 1)$. On a donc

$$\mathbb{P}_{\theta_0}(\theta_0 W > q_n(1-\alpha)) = \alpha.$$

i.e.

$$\mathbb{P}_{\theta_0}(W > \frac{q_n(1-\alpha)}{\theta_0}) = \alpha.$$

d'où $c = \frac{q_n(1-\alpha)}{\theta_0}$. Ce test est U.P.P. de niveau α d'après le cours.

(e) Pour $t > \theta_0$, on a, sous $H_0(t)$, $tW \sim \mathcal{G}amma(n, 1)$, d'où

$$\mathbb{P}_t(W > c) = \mathbb{P}_t(tW > \frac{t}{\theta_0}q_n(1 - \alpha)) < \mathbb{P}_t(tW > q_n(1 - \alpha))$$

car $t/\theta_0 > 1$, et car la densité de la loi Gamma ne s'annulant pas sur $]0, \infty[$, $\mathbb{P}_t(tW \in [q_n(1-\alpha), \frac{t}{\theta_0}q_n(1-\alpha)]) > 0$.

(f) D'après le point précédent, avec $\Theta_0 = [\theta_0, \infty[$, on a

$$\sup_{\theta \in \Theta_0} R(\theta, \delta) = \sup_{\theta \ge \theta} \mathbb{P}_{\theta}(W > c) = \mathbb{P}_{\theta_0}(W > c) = \alpha.$$

Le niveau du test δ pour l'hypothèse composite H_0 est donc bien α . Soit δ' un autre test de niveau α pour H_0 . en particulier, $R(\theta_0, \delta') \leq \alpha$ donc δ' est de niveau α pour \tilde{H}_0 . Mais on sait que δ est U.P.P. pour \tilde{H}_0 donc $\beta(\theta_1, \delta') \leq \beta(\theta_1, \delta)$. Ceci étant vrai pour tout autre test δ' de niveau α pour H_0 , le test δ et bien U.P.P. pour H_0 contre \tilde{H}_1 .

- (g) Le raisonnement ci-dessus étant valide pour tout $\theta_1 < \theta_0$, on a bien, pour tout autre test δ' , pour tout $\theta_1 \in \Theta_1$, $\beta(\theta_1, \delta') \leq \beta(\theta_1, \delta)$. Le test δ est donc U.P.P de niveau α pour tester H_0 contre H_1 .
- 5. (a) On résout

$$\begin{cases} \alpha/\lambda = 2\\ \alpha/\lambda^2 = 100 \end{cases}$$

c'est à dire ($\alpha = 1/25, \lambda = 1/50$).

(b) La densité a posteriori est proportionnelle à $p_{\theta}^{\otimes n}(x) \times \pi(\theta)$, c'est-à-dire, (à une constante multiplicative près ne dépendant pas de θ)

$$\pi(\theta|x) \propto \theta^{n} \left(\prod_{i=1}^{n} x_{i} \right)^{-(\theta+1)} u^{n\theta} \times \theta^{a-1} e^{-\lambda \theta}$$

$$\propto \theta^{n} e^{-(\theta+1) \left(\sum_{i=1}^{n} \log(X_{i}) \right) + n\theta \log u} \times \theta^{a-1} e^{-\lambda \theta}$$

$$\propto \theta^{a+n-1} e^{-(\lambda + \sum_{i=1}^{n} \log(x_{i}/u))\theta}$$

$$\propto f_{\alpha',\lambda'}^{\mathcal{G}}(\theta)$$

Où $f_{\alpha',\lambda'}^{\mathcal{G}}$ désigne la densité de la loi $\mathcal{G}amma(\alpha',\lambda')$, et où

$$\alpha' = \alpha + n$$
 ; $\lambda' = \lambda + \sum_{i=1}^{n} \log(\frac{x_i}{u})$.

(c) D'après la question précédente,

$$\mathbb{E}(\boldsymbol{\theta}|x) = \frac{\alpha'}{\lambda'} = \frac{\alpha + n}{\lambda + \sum_{i=1}^{n} \log(\frac{x_i}{u})}$$

(d) D'après l'expression de la loi a posteriori et la question 2.b, la loi conditionnelle de $\lambda' \boldsymbol{\theta}$ sachant X = x est une $\mathcal{G}amma(\alpha', 1)$. On a donc, en notant $q_{\alpha'}(q)$ le quantile d'ordre p de la loi $\mathcal{G}amma(\alpha', 1)$,

$$\mathbb{P}_{\pi}(\lambda'\boldsymbol{\theta} < q_{\alpha'}(p)|X = x) = p,$$

avec α', λ' comme à la réponse de la question (b). D'où

$$\mathbb{P}_{\pi}(\boldsymbol{\theta} < q_{\alpha'}(p)/\lambda' | X = x) = p.$$

La borne inférieure cherchée est donc

$$m(x) = \frac{q_{a+n}(p)}{\lambda + \sum_{i=1}^{n} \log(x_i/u)}$$