Expectation Maximization (EM)

Qiang Liu UT Austin

Clustering

□ **Inputs**: *n* objects (data points) $\{x_i\}_{i=1}^n$ and a number K of clusters.

□ **Goal:** Group the points into several groups

• Deciding a group $\text{ID}_{x}(z_{i}) \in \{1, ..., K\}$, for each data point x_{i} .

Probabilistic Modeling of Clustering

□ Probabilistic Approach:

- Assume a joint distribution $p(x, z | \theta)$ that generates data and labels (x, z).
- Estimate parameter θ .
- o Infer the labels from the posterior distribution $p(z \mid x; \theta)$.

$$P(x,z) = P(z)P(x|z)$$

$$P(Z=k) = \pi_{\kappa} \left(\pi_{\kappa} > 0 \right)$$

$$= \pi_{\kappa} = 1$$

$$P(\chi \mid Z=K) = \mathcal{N}(\chi \mid \mathcal{M}_{K} \, \mathcal{T}_{K}^{2})$$

$$Z = 2$$

$$(\mu_1 \sigma_1) \quad (\mu_2 \sigma_2)$$

$$P(x, 2=k) = P(2=k)P(x | 2=k)$$

$$= \pi_k N(x | M_k, \sigma_k^2)$$

$$= P(x, 2 | \theta)$$

$$P(x, 2 | \theta)$$

MLE with Complete Information

Clustering and Mixture Models

If we only observe data $\{x_i\}_{i=1}^n$ (incomplete information), we shall estimate θ by maximizing the marginal probability:

$$\sum_{i=1}^{n} \log p(x_i \mid \theta) = \sum_{i=1}^{n} \log \sum_{z_i} p(x_i, z_i \mid \theta)$$

$$\sum_{i=1}^{n} \log P(x_i \mid Z_i \mid \theta)$$

$$P(x|\theta) = \sum_{k} P(x, Z=k|\theta)$$

$$= \sum_{K} \pi_{K} N(X \mid \mathcal{M}_{K}, \sigma_{K}^{2})$$

mixture
of Gaussian
distributions

$$\sum_{i=1}^{n} \log P(x_i | \theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{n} T_k \mathcal{N}(x | \mathcal{M}_k, \sigma_k^2) \right)$$

$$P(x \mid \theta) = \frac{1}{2} exp(-\frac{(x - M_1)^2}{2\sigma_1^2}) \left(\frac{1}{2\pi}\sigma_1\right)$$

$$+\frac{1}{2}\exp(-\frac{(x-/2)^2}{202^2})(\sqrt{J2\pi}02)$$

Expectation Maximization: Algorithm Procedure

Expectation Maximization (E	EM) s an iterativ	ve method for maximizing
the marginal likelihood.		<u>n</u>
\square Initialize parameter θ_0 .	Mex	$\sum_{i=1}^{n} \log P(x_i \mid \theta)$
☐ For iteration t:	$\boldsymbol{\Theta}$	रहा ।
o Given θ_t , "impute" the missing distribution	$p_{ij} = p_{ij} + p$	

 ${\color{blue} \circ}$ Update θ by maximizing the expected joint likelihood:

$$\theta^{t+1} = \arg\max_{\theta} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim p(\cdot|x_{i}; \; \theta_{t})} [\log p(x_{i}, |z_{i}| \; \theta)].$$

 $\frac{\partial_{t} = \left[\pi_{k}^{t}, \mu_{k}^{t}, \sigma_{k}^{t} \right]_{k=1}^{k}}{P(Z_{i} = k \mid X_{i}, \theta_{t})} = \frac{P(x_{i}, Z_{i} = k \mid \theta_{t})}{\sum_{\ell} P(x_{i}, Z_{i} = \ell \mid \theta_{t})}$ $= \frac{\pi_{k} N(x_{i} \mid \mu_{k}^{t}, \sigma_{k}^{t})}{\sum_{\ell} \pi_{k} N(x_{i} \mid \mu_{k}^{t}, \sigma_{k}^{t})}$ $= \frac{\pi_{k} N(x_{i} \mid \mu_{k}^{t}, \sigma_{k}^{t})}{\sum_{\ell} \pi_{k} N(x_{i} \mid \mu_{k}^{t}, \sigma_{k}^{t})}$

$$P(Z_{i}=|X_{i},\Theta_{t})|_{(X_{i}-M_{i})^{2}} = \frac{\pi_{i} \exp(-\frac{(X_{i}-M_{i})^{2}}{2\sigma_{i}^{2}})(\sqrt{2\pi}\sigma_{i})}{\mathbb{E}^{\pi_{i}} \exp(-\frac{(X_{i}-M_{i})^{2}}{2\sigma_{i}^{2}})/(\sqrt{2\pi}\sigma_{i})}$$

EM algorithm:

Define
$$\begin{cases} \gamma_{ik}^{t+1} = \arg \max \sum_{i=1}^{n} \mathbb{E}_{z_i \sim p(\cdot|x_i; \theta_t)} [\log p(x_i, z_i \mid \theta)]. \end{cases}$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$

$$L(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{n} \log P(x_i, z_i \mid \theta)$$