ARCHITETTURE DI CALCOLO LEZIONE 11

Esercizi su automi di Mealy e Moore

Premessa

- 1. L'esercizio 1 è spiegato nella sbobina precedente
- 2. Non ci saranno esercizi su automi di Mealy nello scritto ma l'argomento potrà ugualmente

essere chiesto all'orale

Esercizio 2

- Progettare una rete sequenziale che comanda l'accensione e lo spegnimento di tre lampadine in sequenza
- L'output del circuito sono tre bit che per comodità chiamiamo: S,C,D. Quando questi sono affermati, le lampadine corrispondenti sono accese
- Il ritmo del circuito è determinato dal periodo di clock
- La rete riceve un segnale di ingresso I tale che: se I=0: le lampadine devono accendersi in sequenza, una alla volta, partendo (la prima volta) da S.

es.
$$100 \rightarrow 010 \rightarrow 0001 \rightarrow 100 \rightarrow ...$$

— se I=1:

le lampadine devono accendersi in sequenza, due alla volta, partendo (la prima volta) da S e C

es.
$$110 \rightarrow 011 \rightarrow 101 \rightarrow 110 \rightarrow ...$$

• Determinare: Macchina a stati di Moore + Tabelle + Equazioni minime

Macchina a stati di Moore

Si è stabilito che gli stadi coincidono con gli output.

La macchina ha 6 stadi, corrispondenti alle possibili combinazioni dell'output (meno le configurazioni 000 e 111 poiché non menzionate dalla traccia).

Tabella di verità "NextState" e mappe di Karnaugh

S0	S1	S2	I	S0*	S1*	S2
0	0	0	0	х	Х	Х
0	0	1	0	1	0	0
0	1	0	0	0	0	1
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	X	X	X
0	0	0	1	X	X	X
0	0	1	1	1	1	0
0	1	0	1	1	1	0
0	1	1	1	1	0	1
1	0	0	1	1	1	0
1	0	1	1	1	1	0
1	1	0	1	0	1	1
1	1	1	1	X	X	X

S0, S1, e S2 rappresentano i 3 bit degli stati mentre I è l'input.

Le configurazioni 000 e 111 sono in rosso perché, come detto prima, non sono menzionate dalla traccia; vanno ugualmente

riportate in quanto possono permettere di creare raggruppamenti più estesi nella mappa di Karnaugh.

Di seguito l'espressione minima ottenuta dalla mappa di Karnaugh di S0*.

$$S0*=(S0)(S1)(\underline{I}) + (S2) + (\underline{S0})(\underline{I}) + (\underline{S1})(\underline{I})$$

$$S1* = (S2)I + (S1)(S2) + (S1)(I)$$

$$S2* = (\underline{S0})(\underline{S2})(\underline{I}) + (S0)(S1)(\underline{I}) + (S1)(S2)(\underline{I})$$

Tabella di verità "Output"

	S0	S1	S2	S	С	D
_	0	0	0	х	X	Х
	0	0	1	0	0	1
	0	1	0	0	1	0
	0	1	1	0	1	1
	1	0	0	1	0	0
	1	0	1	1	0	1
	1	1	0	1	1	0
	1	1	1	X	X	X

Come si può notare gli stati e l'output coincidono, poiché lo abbiamo imposto noi all'inizio dell'esercizio.Di questa tabella non vengono realizzate le tre mappe di Karnaugh in quanto si è preferito applicare delle semplici regole algebriche. Esempio:

S = S0S1S2 + S0S1S2 + S0S1S2

S = S0 (S1S2 + S1S2 + S1S2) le variabili tra parentesi, qualsiasi valore assumano,

daranno sempre 1 (ad eccezione del caso S1 = 1,

S2 = 1, non accettabile), per cui:

 $S0 \times 1 = S0$.

Ripetendo il processo, alla fine si ottiene:

S = S0

C = S1

D = S2

Esercizio 3

Progettare una rete sequenziale di Moore, che:

- riceva in ingresso due segnali I1 e I2
- restituisca in uscita due segnali O1 e O2, tali che:
 - se l'uscita precedente era (O1 O2) = (0 _)→O1O2 dovranno essere il complemento di I1I2 (es. stato:00; input:0, 1; output:10)
 - altrimenti→O1O2 saranno la somma di I1 + I2 (es. stato:10; input:1, 1; output:10)
- O1=O2=0

Si richiede di:

- 1. Disegnare la macchina a stati finiti
- 2. Scrivere la tabella di verità
- 3. Trovare le forme SP minime
- 4. Disegnare il circuito

Macchina a stati finiti di Moore

In questo caso output e stato coincidono.

Tabella di verità "NextState" e mappe di Karnaugh

S0	S1	11	12	S0*	S1*
0	0	0	0	1	1
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	0
				1	

Mappa di Karnaugh di S0* S_0 * = $S_0I_1 + I_1I_2S_0$

Mappa di Karnaugh di S_1 * S_1 * = $S_0I_2 + I_1I_2 + S_0I_1I_2$

Tabella di verità "Output"

S0	S1	01	02
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Output e stato coincidono, quindi:

$$O_1 = S_0S_1 + S_0S_1 = S_0(S_1 + S_1) = S_0$$

$$O2 = S0S1 + S0S1 = S1(S0 + S0) = S1$$

Circuito finale

Dalle espressioni scritte in precedenza otteniamo il seguente circuito.

Esercizio 4

Progettare una rete sequenziale che:

- riceva in input un segnale I
- rilevi la presenza delle sequenze 101 e 110, anche sovrapposte.

La rete ha un solo segnale di output R, tale che:

• R = 1 se una delle due sequenze è stata rilevata • R = O altrimenti

Si richiede di:

- 1. Disegnare la macchina a stati finiti
- 2. Scrivere la tabella di verità
- 3. Trovare le forme SP minime
- 4. Disegnare il circuito

Macchina a stati finiti di Mealy

Le principali differenze con gli automi di Moore sono:

- •Gli output non sono più posti negli stati (cerchi)
- •Gli stati sono contrassegnati con un'etichetta (in questo caso a, b, c, d)
- •Sugli archi troviamo input/output

Tabella di verità "NextState" e mappe di Karnaugh

	F ₁	F_2	I	R	F_1^*	F ₂ *
_	0	0	0	0	0	0
a						
	0	0	1	0	0	1
b	0	1	0	0	1	0
	0	1	1	0	1	1
d	1	0	0	0	0	0
	1	0	1	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1

$$F1* = F2$$

F1 I F2	2 00	01	11	10
o		1	1	
1		1	1	

F2* = I

Tabella di verità "Output" e mappa di Karnaugh

	$\mathbf{F_1}$	F_2	ı	R	F ₁ *	F ₂
a	0	0	0	0	0	0
	0	0	1	0	0	1
b	0	1	0	0	1	0
	0	1	1	0	1	1
d	1	0	0	0	0	0
_	1	0	1_	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1
				1		

L'output è influenzato non solo dall'input ma anche dallo stato.

$$R = F_1 F_2 I + F_1 F_2 I$$

F1 I	2 00	01	11	10
0			1	
1				1

Circuito finale

Esercizio 5

Disegnare una macchina a stati finiti di Mealy per il controllo di un distributore automatico di bibite.

- Il costo di una bibita è di 50 centesimi
- Il distributore accetta monete da 10, 20, 50 centesimi.
- I segnali di ingresso 110, 120 e 150 vengono settati in corrispondenza della moneta
 - introdotta. Può essere introdotta una sola moneta alla volta.
- L'uscita O vale
 - 1 se la cifra totale introdotta è \geq 50
 - 0 altrimenti
- Quando 0=1→ la cifra introitata viene ridotta di 50 centesimi e la bibita viene restituita
- Fare in modo che l'eventuale resto possa essere utilizzato dal cliente successivo.
 - Scrivere le tabelle di verità relative alla macchina a stati finiti progettata.

Macchina a stati finiti di Mealy

Se al clock non vi è alcun inserimento di monete, si può interpretare questa situazione come un input pari a "000".

Tabella di verità parziale

In questo caso sia le tavole di verità che le mappe di Karnaugh risultano "complicate" poiché:

	S0	S1	S2	I10	120	150	0	S1*	S2*	S3*
а	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	1	0	0	0	1	0
	0	0	0	0	1	1	X	X	X	X
	0	0	0	1	0	0	0	0	0	1
	0	0	0	1	0	1	X	X	X	X
	0	0	0	1	1	0	X	X	X	X
	0	0	0	1	1	1	X	X	X	X
b	0	0	1	0	0	0				
	eto	C								

•nelle tavole per ogni stato ci sono otto combinazioni di possibili input; •per le mappe, sarebbe necessario costruirne quattro (visto che ci sono sei variabili) per ogni stato successivo.