Lecture 10

QFT Continued...

Summary From Last Time

Only have a hope of Lorentz invariance if we start at $-\infty$ and go to $+\infty$.

Throw particles in from ∞ let them scatter & go back out to ∞ .

Define S-Matrix

$$\underbrace{|p_1\sigma_1,...p_n\sigma_n\rangle}_{t=-\infty} \to \underbrace{\mathcal{S}|p_1\sigma_1,...p_n\sigma_n\rangle}_{t=+\infty}$$

S might be (at least a hope) Lorentz Invariant.

Massive:

 $|P,\sigma\rangle$ and $U[\Lambda]|P,\sigma\rangle = \sum_{\sigma'} R_{\sigma,\sigma'} |\Lambda P,\sigma'\rangle$, where the R is a rotation matrix.

Mass-less:

 $|P,h\rangle$ and $U[\Lambda]|P,h\rangle = e^{ih\Theta(W)}|\Lambda P,h\rangle$, where the coefficient is just a phase.

Now talk about all these particles states in a more convenient way.