Análisis de bases de datos Olist - ECommerce Brazil

¿Cuál es la necesidad o problema a resolver? 🚀

Queremos familiarizarnos con un ecommerce e investigar a las empresas que ya operan para usarlas como referencia. Queremos investigar qué métodos de pago se usan, cuánto tiempo tardan en entregar, cuál es el flujo de los productos, qué categorías se venden mejor, implicaciones que tienen el peso y las fotos de los productos con sus ventas, etc.

¿Cuál es la propuesta para resolver esa necesidad o problema?

Usar un dataset de la empresa Olist para analizar la información de sus clientes, vendedores y en general de su ECommerce, en Brazil, que es un país que se asemeja bastante a México.

¿Cómo lo vas a hacer?

Analizaremos la información real de sus bases de datos para darnos una idea de cómo funciona y conocer mejor el negocio del comercio electrónico.

Estructura de la información

La base de datos cuenta con 9 tablas diferentes:

- 1. orders contiene la siguiente información de las ordenes:
 - a. order_id identificador de la orden hecho de caracteres y números
 - b. customer_id identificador de cliente hecho de caracteres y números
 - c. order status estado de la orden (entregado, en tránsito, etc.)
 - d. order purchase timestamp fecha de compra
 - e. order_approved_at fecha en que se aprobó la orden
 - order_delivered_carrier_date fecha en que se surtió orden a courier
 - g. order_delivered_customer_date fecha de entrega a cliente
 - h. order_estimated_delivery_date fecha estimada de entrega
- 2. order_items
 - a. id llave primaria autoincrementable
 - b. order_id identificador de la orden hecho de caracteres y números
 - c. order_item_id número de ítem dentro de la misma orden
 - d. product_id identificador de producto hecho de caracteres y números
 - e. seller_id identificador de vendedor hecho de caracteres y números

- f. shipping_limit_date fecha límite de envío para cumplir con fecha de entrega estimada
- g. price precio del ítem
- h. freight_value valor del envío

3. customers

- a. customer_id identificador de cliente hecho de caracteres y números
- customer_unique_id identificador único de cliente hecho de caracteres y números (customer_id también es único)
- c. customer_zip_code_prefix prefijo de código postal
- d. customer city ciudad en donde se registró el usuario
- e. customer state estado en donde se registró el usuario

4. order payment

- a. payment_id identificador del pago hecho de caracteres y números
- b. order_id identificador de la orden hecho de caracteres y números
- c. payment_sequential NA
- d. payment_type tipo de pago (tarjeta de crédito, débito, etc.)
- e. payment_installments número de pagos
- f. payment_value valor de cada pago

5. reviews

- a. id llave primaria autoincrementable
- b. review_id identificador de la reseña hecho de caracteres y números
- c. order_id identificador de la orden hecho de caracteres y números
- d. review_score calificación asignada por usuario (de 1 a 5)
- e. review_comment_title título de review (puede quedar vacío)
- f. review_comment_message mensaje de reseña (puede quedar vacío)
- g. review_creation_date fecha de creación de reseña
- h. review_answer_timestamp fecha de respuesta de reseña

6. sellers

- a. seller_id identificador del vendedor hecho de caracteres y números
- b. seller_zip_code_prefix prefijo de código postal
- c. seller_city ciudad en donde se registró el vendedor
- d. seller_state estado en donde se registró el vendedor

7. geolocation

- a. id llave primario autoincrementable
- b. geolocation_zip_code_prefix prefijo de código postal
- c. geolocation_lat coordenadas (longitud)
- d. geolocation_lon coordenadas (latitud)
- e. geolocation_city ciudad a la que pertenecen coordenadas
- f. geolocation_state estado al que pertenecen coordenadas

8. products

- a. product_id identificador de producto hecho de caracteres y números
- b. product_category_name nombre de categoría de producto (en portugués)
 product_name_length longitud de nombre de producto
- c. product_description_length longitud de descripción de producto
- d. product_photos_qty cantidad de fotos asignadas al producto
- e. product_weight_g peso del producto en gramos
- f. product_length_cm largo del producto en cm
- g. product_height_cm alto del producto en cm

- h. product_width_cm ancho del producto en cm
- 9. product_category_name_translation
 - a. id llave primario autoincrementable
 - b. product_category_name nombre de categoría de producto (en portugués)
 - product_category_name_translation traducción de nombre de categoría a inglés.

A continuación en el esquema se grafican las relaciones entre las tablas:

Preguntas

- 1. ¿Cuántos distintos sellers hay registrados?
 - a. MYSQL

SELECT COUNT(DISTINCT(seller_id)) FROM sellers;

b. MongoDB

- 2. ¿Cuáles son las distintas locaciones (estados) de los Sellers?
 - a. MySQL

SELECT DISTINCT(seller_city), seller_state FROM sellers

ORDER BY seller_city ASC;

		seller_city	seller_state	
	▶	04482255	RJ	Γ
ĺ		abadia de goias	GO	Γ
١		afonso claudio	ES	
1		aguas claras df	SP	
ĺ		alambari	SP	Γ
-		alfenas	MG	
1		almirante tamandare	PR	
ĺ		alvares machado	SP	Γ
-		alvorada	RS	
١		americana	SP	
- 1		amparo	SP	

b. MongoDB [{

```
$group: {
         _id: {
               city: "$seller_city", state: "$seller_state"}
},
        $addFields: {
               City: "$_id.city",
               State: "$_id.state"
        {$project: {
},
               City: 1,
               State: 1,
                _id: 0
        {$sort: {
},
                City: 1
       }, {$match: {
}
               City: {"$ne": "04482255"}
}]
```

City: "alami State: "SP"

- 3. ¿Cuántas órdenes se hicieron por medio del seller registrado en una ciudad invalida?
 - a. MySQL

```
SELECT seller_id, COUNT(order_id) AS ordenes
FROM order_items
WHERE seller_id =
      (SELECT seller_id FROM sellers WHERE seller_city = '04482255')
```

GROUP BY seller id:

```
seller_id ordenes

▶ ceb7b4fb9401cd378de7886317ad1b47 1
```

b. MongoDB

```
[{$lookup: {
 from: 'sellers',
 localField: 'seller_id',
 foreignField: 'seller_id',
 as: 'city_array'
}}, {$addFields: {
 city_object: { $arrayElemAt: ["$city_array", 0] }
}}, {$addFields: {
 seller_city: "$city_object.seller_city"
}}, {$project: {
 seller_city: 1,
 order_id: 1,
 seller_id: 1,
}}, {$match: {
 seller_city: '04482255'
}}, {$group: {
 _id: "$seller_city",
 ordenes: {
  $sum: 1
}}]
```


- 4. ¿Quiénes son los sellers de Sao Paulo (SP)?
 - a. MySQL

SELECT * FROM sellers

WHERE seller_state like "SP";

= '			
seller_id	seller_zip_code_prefix	seller_city	seller_state
3442f8959a84dea7ee197c632cb2df15	13023	campinas	SP
d1b65fc7debc3361ea86b5f14c68d2e2	13844	mogi guacu	SP
c0f3eea2e14555b6faeea3dd58c1b1c3	4195	sao paulo	SP
51a04a8a6bdcb23deccc82b0b80742cf	12914	braganca paulista	SP
1b938a7ec6ac5061a66a3766e0e75f90	16304	penapolis	SP

b. MongoDB db.sellers.find({seller_state:'SP'}, {seller_id:1,seller_state:1}

)			
	_id ObjectId	<pre>seller_id String</pre>	seller_state String
1	5f2779aad4f052b68020a457	"3442f8959a84dea7ee197c632cb2	"SP"
2	5f2779aad4f052b68020a458	"d1b65fc7debc3361ea86b5f14c6{	"SP"
3	5f2779aad4f052b68020a45a	"c0f3eea2e14555b6faeea3dd58c:	"SP"
4	5f2779aad4f052b68020a45b	"51a04a8a6bdcb23deccc82b0b80.	"SP"
5	5f2779aad4f052b68020a45e	"1b938a7ec6ac5061a66a3766e0e.	"SP"
6	5f2779aad4f052b68020a45f	"768a86e36ad6aae3d03ee3c6433c	"SP"
7	5f2779aad4f052b68020a462	"a7a9b880c49781da66651ccf4ba9	"SP"
8	5f2779aad4f052b68020a463	"8bd0f31cf0a614c658f6763bd02c	"SP"
9	5f2779aad4f052b68020a464	"05a48cc8859962767935ab90874:	"SP"
10	5f2779aad4f052b68020a46a	"f9ec7093df3a7b346b7bcf786406	"SP"
11	5f2779aad4f052b68020a46b	"4e6015589b781adaa5ce7f1892d("SP"
12	5f2779aad4f052b68020a46c	"4cf490a58259286ada5ba8525ba9	"SP"
13	5f2779aad4f052b68020a46d	"f7496d659ca9fdaf323c0aae841.	"SP"
14	5f2779aad4f052b68020a46e	"2ff97219cb8622eaf3cd89b7d9c0	"SP"
15	5f2779aad4f052b68020a472	"116ccb1a1604bc88e4d234a8c23	"SP"

5. ¿Cuantos customers distintos hay?

a. MySQL

SELECT COUNT(DISTINCT(customer_unique_id)) AS Dist_Customers FROM customers;

b. MongoDB
 [{\$group: {
 _id: "\$customer_unique_id",
 Dist_Customers: {
 \$sum: 1
 }

- 6. ¿De dónde son los customers (estados)?
 - a. MySQL

SELECT DISTINCT(customer_city), customer_state FROM customers

ORDER BY customer_state;

5.12_1.12.1 odotoootato,			
customer_city	customer_state		
brasileia	AC		
cruzeiro do sul	AC		
epitaciolandia	AC		
manoel urbano	AC		
porto acre	AC		
rio branco	AC		
senador guiomard	AC		
xapuri	AC		
agua branca	AL		
anadia	AL		

b. MongoDB

```
[{$group: {
    _id: "$customer_city",
    Dist_Cities: {
        $sum: 1
    }
}}, {$lookup: {
    from: 'customers',
    localField: '_id',
    foreignField: 'customer_city',
    as: 'string'
}}, {$addFields: {
    state_obj: {$arrayElemAt: ["$string", 0]}
```

- 7. ¿Cuántos usuarios hay de cada estado?
 - a. MySQL

SELECT customer_state, COUNT(*) AS CustomersXState

FROM customers

GROUP BY customer_state

ORDER BY 2 DESC;

	customer_state	CustomersXState
	SP	41746
	RJ	12852
	MG	11635
Ы	RS	5466
	PR	5045
	SC	3637
	BA	3380

b. MongoDB

```
[{$group: {
    _id: {customer: "$customer_id", state: "$customer_state"}
}}, {$unwind: {
    path: "$_id"
}}, {$addFields: {
     customer: "$_id.customer",
     state: "$_id.state"
}}, {$group: {
    _id: "$state",
     customerXstate: {
     $sum: 1
    }
}}, {$sort: {
     customerXstate: -1
}}]
```


- 8. ¿Cuáles son los distintos métodos de pago y cuál es su share general?
 - a. MySQL

SELECT DISTINCT(payment_type),

COUNT(*)/(SELECT COUNT(DISTINCT(order_id)) FROM

order_payment) AS payment_method_share

FROM order_payment

GROUP BY payment_type

ORDER BY payment_method_share DESC;

payment_type	payment_method_sha
credit_card	0.7723
boleto	0.1990
voucher	0.0581
debit_card	0.0154
not_defined	0.0000

b. MongoDB

Para realizar el problema en MongoDB, tuve que dividirlo en 2 partes. Primero calculé el número total de órdenes distintas y después ya calculé el share.

Número total de órdenes:

```
[{$group: {
    _id: "$order_id",
    ordenes: {
    $sum: 1
```

}}, {\$count: order_id'}]

Comentado [1]: Por alguna razón que no logro entender, tengo que son 99,441 órdenes distintas pero sé que son 99,440. Decido seguir adelante porque la diferencia es no significativa.

9. ¿Cuántas órdenes hay por mes?

a. MySQL

SELECT MONTH(order_purchase_timestamp) AS Month, YEAR(order_purchase_timestamp) AS Year, COUNT(*) AS Sales FROM orders GROUP BY 1, 2

ORDER BY 2 ASC, 1 DESC;

	Month	Year	Sales
▶	12	2016	1
	10	2016	324
	9	2016	4
	12	2017	5673
	11	2017	7544
	10	2017	4631
	9	2017	4285

b. MongoDB

En MongoDB no encontré la manera de quitar duplicados de las órdenes y al mismo tiempo agruparlas, pero sí encontré cómo contar las órdenes por año usando \$Buckets y se me hizo interesante:

```
[{$addFields: {
    Month: {$month:["$order_purchase_timestamp"]},
    Year: {$year:["$order_purchase_timestamp"]}
}}, {$addFields: {
    formated_date: { $dateFromParts: { 'year' : "$Year", 'month' : "$Month", 'day':
    1} },
    Month_Year: {$concat: [{ $toString: "$Year"},".",{ $toString: "$Month" }]}
}}, {$bucket: {
    groupBy: "$Year",
```

En teoría con esto ya debería de salir la opción de órdenes por mes pero MongoDB no logra sacar el output. Usé \$addToSet en vez de \$push para quitar duplicados:

```
[{$group: {
 _id: "$order_id",
 ordenes: {
  $addToSet: "$order_id"
}}, {$project: {
 ordenes: 1,
 _id: 0
}}, {$unwind: {
 path: "$ordenes"
}}, {$lookup: {
 from: 'orders',
 localField: 'ordenes',
 foreignField: 'order_id',
 as: 'order_array'
}}, {$addFields: {
 order_obj: {$arrayElemAt: ["$order_array",0]}
}}, {$addFields: {
 order_date: "$order_obj.order_purchase_timestamp"
}}, {$addFields: {
 month: {\$month: ["\$order_date"]},
 year: {$year: ["$order_date"]}
}}, {$addFields: {
 new_date:
```

```
{ $dateFromParts: {
       'year' : "$year",
'month' : "$month",
       'day': 1
          }
}}, {$project: {
  ordenes: 1,
  month: 1,
  year: 1,
  new_date: 1
}}, {$group: {
  _id: "$new_date",
  ordenes_mes: {
    $sum: 1
}}]
||| ∨ $project ▼
                                                   + Output after $project stage () (Sample of 20 documents)
                                                                         ordenes: "7a70b827ebc6ab85bd4e28739619bb2d"
month: 8
year: 2018
new_date: 2018-08-01T00:00:00.000+00:00
                                                                                                                                         ordenes: "64f166c3f77ffed0t
month: 12
year: 2017
new_date: 2017-12-01T00:00:
 | $group
                          -
                                                  B +
                                                                   Output after $group stage () (Sample of 0 documents)
   1 - /**
2 *_id: The id of th
3 * fieldN: The first
5 * {
6 _ id: "$new_date",
7 * ordenes_mes: {
8 | $sum: 1
9 }
10 }
                                                                                                 C Loading Preview Documents...
    Error in $cursor stage :: caused by :: operation exceeded time limit
```

10. ¿Cuál es el tiempo promedio de espera en pedidos que sí fueron entregados?

a. MySQL

Se creó una vista orden para hacer consultas más fáciles:

SELECT MONTH(Purchase_Date) AS Purchase_Month,
YEAR(Purchase_Date) AS Purchase_Year,
AVG(DATEDIFF(Delivered_Date, Purchase_Date)) AS
AVG_Delivery_Days

FROM orden

WHERE Delivered_Date IS NOT NULL GROUP BY Purchase_Month, Purchase_Year ORDER BY Purchase Month ASC:

Purchase_Month	Purchase_Year	AVG_Delivery_Days
1	2017	12.7487
1	2018	14.0120
2	2017	13.3675
2	2018	16.8007
3	2017	13.0997
3	2018	15.9345
4	2017	14.9047
MongoDB		

```
[{$match: {
    order_status: "delivered"
}}, {$addFields: {
    date_diff_milliseconds: {
    $subtract: ["$order_delivered_customer_date",
        "$order_purchase_timestamp"]
}
}}, {$addFields: {
    date_diff_days: {$divide: [
```

"\$date_diff_milliseconds", 1000 * 60 * 60 * 24

]},

(Existen pequeñas diferencias porque en MySQL se creó una vista con órdenes que tenían fecha de entrega y en MongoDB se filtraron las órdenes con order_status de entregado).

- 11. ¿Cuántos ítems promedio tiene cada orden?
 - a. MySQL

SELECT AVG(items) FROM (SELECT order_id, COUNT(*) AS items FROM order_items

GROUP BY order_id) AS sq;

b. MongoDB

Añadiré pregunta extra 1 para reponer.

- 12. ¿Cuáles son las órdenes que tienen más de 1 item?
 - a. MySQI

SELECT id, order_id, order_item_id FROM order_items
WHERE order_id IN (SELECT DISTINCT(order_id) FROM order_items
WHERE order_item_id > 1
ORDER BY order_id);

b. MongoDB

[{\$match: {
 order_item_id: {\$gt: 1}
}}, {\$group: {
 _id: "\$order_id"
}}]

- 13. ¿Cuál es la orden con más items y cuántos tiene?
 - a. MySQL

SELECT order_id, items FROM

(SELECT order_id, COUNT(*) AS items
FROM order_items
GROUP BY order_id) AS sq

WHERE items =

(SELECT MAX(items) FROM

(SELECT order_id, COUNT(*) AS items
FROM order_items
GROUP BY order_id) AS sq2

);

order_id

items

order_id items | 8272b63d03f5f79c56e9e4120aec44ef | 21

b. MongoDB

Primero ordene los registros por order_item_id de mayor a menor para ver cuál era el índice más alto, y después sólo hice un match para que me trajera sólo la(s) órden(es) con 21 items.

```
[{$sort: {
    order_item_id: -1
}}, {$match: {
    order_item_id: 21
}}]
```


- 14. ¿Cuál es el tiempo promedio de entrega por Seller?
 - a. MySQL

Usando la vista orden que se creó anteriormente, queda de la siguiente manera:

SELECT seller, AVG(DATEDIFF(Delivered_Date, Purchase_Date)) AS tpe FROM orden GROUP BY seller

ORDER BY tpe ASC;

seller	tpe	
101921376b577a4540dc30e9009133ca	NULL	
139157dd4daa45c25b0807ffff348363	1.0000	
6561d6bf844e464b4019442692b40e02	1.0000	
5e063e85d44b0f5c3e6ec3131103a57e	1.0000	
702835e4b785b67a084280efca355756	2.0000	
26562f211dd1364af2a8596dc945e8ae	2.0000	
Zooo62f1ZEh1ooohfoodd9hEoh0009oZ	2 0000	

(Trae registros en NULL porque hay sellers que no han registrado entregas)

b. MongoDB

Añadiré pregunta extra 2 para reponer.

- 15. ¿Cuántos productos tiene cada seller?
 - a. MySQL

SELECT COUNT(DISTINCT(product_id)) AS Dist_Products, seller_id FROM order_items
GROUP BY seller_id
ORDER BY 1 DESC;

		Dist_Products	seller_id	
1	•	399	4a3ca9315b744ce9f8e9374361493884	Γ
		322	cca3071e3e9bb7d12640c9fbe2301306	
		315	d91fb3b7d041e83b64a00a3edfb37e4f	
		289	fa1c13f2614d7b5c4749cbc52fecda94	
		266	7142540dd4c91e2237acb7e911c4eba2	
		256	6560211a19b47992c3666cc44a7e94c0	
		222	da8622b14eb17ae2831f4ac5b9dab84a	

b. MongoDB

Añadiré pregunta extra 3 para reponer.

Preguntas Extra MongoDB

2. ¿Cuántas reviews hay con cada calificación? Crear vista.

```
[{$group: {
    _id: "$review_score",
    total_reviews: {
    $sum: 1
    }
}}]
```

BEDU2.review_scores (view on: BEDU2.reviews

3. ¿Cuántas reviews hay con un mensaje escrito?

[{\$match: {
 review_comment_message: {
 \$ne: ""
 }
}}, {\$count: 'id'}]

Vistas

- Creando una vista "orden", ¿cuántos usuarios distintos realizan una compra cada mes?
 - a. MySQL CREATE VIEW orden AS (SELECT o.order_id AS Order_id,

o.order_purchase_timestamp AS Purchase_Date,
o.order_delivered_customer_date AS Delivered_Date,
o.customer_id AS customer_id,
op.payment_type AS Payment_Type,
op.payment_value AS Payment_Value,
s.seller_id AS seller
FROM orders o
LEFT JOIN order_payment op
ON o.order_id = op.order_id
RIGHT JOIN order_items s
ON o.order_id = s.order_id
ORDER BY s.order_id ASC);

SELECT DATE_FORMAT(Purchase_Date, '%Y %m') AS date, COUNT(DISTINCT(customer_id)) AS dist_customers FROM orden
GROUP BY DATE_FORMAT(Purchase_Date, '%Y %m')
ORDER BY 1;

date	dist_custome	
2016 12	1	
2017 01	789	
2017 02	1733	
2017 03	2641	
2017 04	2391	
2017 05	3660	
0047.00	0047	

- 2. Crear vista para agregar traducción a la tabla de products
 - a. MySQL

CREATE VIEW productos AS

(SELECT p.product_id, p.product_category_name, t.product_category_name_english, p.product_photos_qty, p.product_weight_g, p.product_length_cm, p.product_height_cm, p.product_width_cm

FROM products p

LEFT JOIN product_category_name_translation t

ON p.product_category_name = t.product_category_name WHERE p.product_category_name IS NOT null ORDER BY product_category_name ASC);

Conclusiones

Las conclusiones las dividiré en 2 grupos, las relativas al *Tipos de Bases de Datos* y las relativas al dataset de *Olist-Ecommerce Brazil*.

Tipos de Bases de datos:

- 1. Dentro de los tipos de bases de datos que cubrimos en el curso, tenemos las relacionales y no relacionales. Las relacionales son aquellas que por diseño buscan referenciar las tablas que las componen a través de la relación de campos en común. Las no relacionales, no necesitan tener una estructura predefinida, por lo que da un poco más de flexibilidad a la hora de llenarlas con información.
- Para escoger entre un tipo o el otro, hay que fijarse entonces en la estructura de los datos. Si buscamos tener flexibilidad y no casarnos con una estructura de base de datos, es más recomendable MongoDB (o NOSQL). Pero si se tienen tablas que se relacionan entre sí, es mucho más sencillo gestionarlo con SQL.

Olist-Ecommerce Brazil:

- 1. La estructura de la base de datos está hecha en base a tablas y la relación entre ellas, por lo que debería de gestionarse en SQL.
- Las localidades con más customers son aquellas que albergan grandes ciudades como:
 - a. Sao Paulo
 - b. Rio de Janeiro
 - c. Minas Gerais.
- El método de pago favorito es por medio de tarjeta de crédito (contando con un 77% de las órdenes).
- Cuándo las personas realizan compras en Olist, lo más común es que compren únicamente un producto por transacción. El promedio de ítems por transacción es de 1.4 ítems.
- Menos de la mitad de las reseñas tienen escritas un comentario, por lo que existe la posibilidad de separar asignar una calificación de escribir un comentario y así podríamos tener mayor número de calificaciones (al no ser tan invasivos).
- Alrededor del 11% de las reseñas califican con la peor calificación su pedido (1), por lo que existe una gran ventana de oportunidad para conseguir que esas personas estén más conformes con sus pedidos.
- 7. El tiempo promedio de entrega de los sellers que sí han registrado entregas es de 8.35 días. Existen clientes que no han registrado entregas pero también existen entregas atípicas de más de un año, por lo que si eliminamos la única entrega que existe de 1,900 días, baja a 6.35. Habría que investigar bien por qué hay tiempos de entrega tan grandes.