CLAIMS

What is claimed is:

1	1. A data-retention circuitry comprising:
2	data-retention subcircuits in a feedback loop; and
3	a supply-switching subcircuit to provide current to the data-retention
4	subcircuits from a supplemental voltage supply through a well tap during a
5	standby mode.
1	2. The data-retention circuitry of claim 1 further comprising an isolation
2	subcircuit to isolate the data-retention subcircuits from a pass-gate subcircuit in
3	response to a sleep signal,
4	wherein the supply-switching subcircuit is to switch from a regular
5	voltage supply to the supplemental voltage supply in response to the sleep signal,
6	and
7	wherein the isolation subcircuit is to pass data signals between the data-
8	retention subcircuits and the pass-gate subcircuit when voltage from the regular
9	voltage supply is present.
1	3. The data-retention circuitry of claim 1 wherein the data-retention
2	subcircuits are to retain a state when receiving current from the supplemental
3	voltage supply.
1	4. The data-retention circuitry of claim 2 wherein the pass-gate subcircuit
2	is to pass a latched state signal to the isolation subcircuit in response to a clock
3	signal.
1	5. The data-retention circuitry of claim 2 wherein the data-retention
2	subcircuits, the switching subcircuit and the isolation subcircuit comprise lower-
3	leakage semiconductor devices.

1	6. The data-retention circuitry of claim 2 wherein the data-retention
2	subcircuits are coupled in series in the feedback loop, and wherein the data-
3	retention circuitry comprises an output inverter to receive a state signal from one
4	of either the isolation subcircuit or the pass-gate subcircuit and to provide an
5	output signal.

- 7. The data-retention circuitry of claim 1 wherein the supply-switching subcircuit comprises a semiconductor switching subcircuit that is part of a semiconductor die, the semiconductor die having a well-tap to provide the current from the supplemental voltage supply, and
- wherein the semiconductor switching subcircuit is to couple the dataretention subcircuits to the regular voltage supply when the semiconductor switching subcircuit receives a first state of the sleep signal, and wherein current is to flow to the data-retention subcircuits from the well-tap when the semiconductor switching subcircuit receives a second state of the sleep signal.
 - 8. The data-retention circuitry of claim 2 wherein the regular and supplemental voltage supplies are provided by a single voltage source, the regular voltage supply being decoupled from the supplemental voltage supply during the standby mode.
- 9. The data-retention circuitry of claim 2 further comprising a master latch to latch a state signal, and wherein the pass-gate subcircuit, the data-retention subcircuits, the isolation subcircuit and the supply-switching subcircuit are part of a slave latch, and wherein the pass-gate subcircuit is to pass the latched state signal to the
 - wherein the pass-gate subcircuit is to pass the latched state signal to the isolation subcircuit from the master latch in response to a clock signal.
 - 10. The data-retention circuitry of claim 9 wherein circuits of the master latch are to receive power from the regular voltage supply, and wherein during the standby mode the regular voltage supply is turned off.

1

2

3

4

1

2

3

4

6

1

2

3

1	11. The data-retention circuitry of claim 9 wherein the data-retention
2	subcircuits, switching subcircuit and the isolation subcircuit comprise lower-
3	leakage semiconductor devices, and wherein the pass-gate subcircuit and master
4	latch comprise higher-leakage semiconductor devices, the lower-leakage devices
5	having at least one of either a longer channel length, a thicker gate-oxide layer or a
6	higher threshold voltage than the higher-leakage semiconductor devices.
1	12. A processing system comprising:
2	a processor on a semiconductor die; and
3	a data-retention circuitry on the semiconductor die to retain state
4	information for the processor during a standby mode, wherein the data-retention
5	circuitry comprise data-retention subcircuits to receive current through a well tap
6	in the semiconductor die during the standby mode to retain the state information.
1	13. The system of claim 12 wherein the data-retention circuitry further
2	comprise an isolation subcircuit to isolate the data-retention subcircuits from a
3	pass-gate subcircuit in response to a sleep signal, and a supply-switching
4	subcircuit to provide current to the data-retention subcircuits from a supplemental
5	voltage supply through the well tap during the standby mode.
1	14. The system of claim 12 wherein the data-retention circuitry are
2	arranged in cells on the semiconductor die, the cells having at least one well tap to
3	provide the current from the supplemental voltage supply of an associated one of
4	the cells.
1	15. The system of claim 13 wherein the supply-switching subcircuit is to
2	switch from a regular voltage supply to the supplemental voltage supply in
3	response to a sleep signal, and

voltage supply is provided.

4

5

wherein the isolation subcircuit is to pass data signals between the data-

retention subcircuits and the pass-gate subcircuit when voltage from the regular

1	16. The system of claim 13 wherein the pass-gate subcircuit is to pass a
2	latched state signal to the isolation subcircuit in response to a clock signal.
1	17. The system of claim 16 wherein the data-retention circuitry further
2	comprise a master latch to latch a state signal, and
3	wherein the pass-gate subcircuit, the data-retention subcircuits, the
4	isolation subcircuit and the supply-switching subcircuit are part of a slave latch,
5	and
6	wherein the pass-gate subcircuit is to pass the latched state signal to the
7	isolation subcircuit from the master latch in response to a clock signal.
1	18. The system of claim 17 wherein circuits of the master latch are to
2	receive current from the regular voltage supply, and wherein during the standby
3	mode the regular voltage supply is turned off.
1	19. The system of claim 17 wherein the data-retention subcircuits,
2	switching subcircuit and the isolation subcircuit comprise lower-leakage
3	semiconductor devices, and wherein the pass-gate subcircuit and the master latch
4	comprise higher-leakage semiconductor devices, the lower-leakage devices having
5	at least one of either a longer channel length, a thicker gate-oxide layer or a higher
6	threshold voltage than the higher-leakage semiconductor devices.
1	20. A method comprising:
2	isolating data-retention subcircuits in response to a sleep signal;
3	switching the data-retention subcircuits to receive current from a
4	supplemental voltage supply in response to the sleep signal; and
5	retaining state information by the data-retention subcircuits when receiving
6	the current from the supplemental voltage supply during a standby mode.
1	21. The method of claim 20 further comprising providing the current from

2

the supplemental voltage supply through a well-tap on a semiconductor die.

- 22. The method of claim 20 wherein switching further comprises
 switching from a regular voltage supply to the supplemental voltage supply in
 response to the sleep signal.
- 23. The method of claim 22 further comprising passing state information between the data-retention subcircuits and a pass-gate subcircuit when the regular voltage supply is present at an isolation subcircuit.
- 1 24. A wireless communication device comprising: 2 an omnidirectional antenna to communicate radio-frequency signals; 3 a processor on a semiconductor die to convert between the radio-frequency 4 signals and data signals; and 5 a data-retention circuitry on the semiconductor die to retain state 6 information for the processor during a standby mode, wherein the data-retention 7 circuitry comprise data-retention subcircuits to receive current through a well tap 8 in the semiconductor die during the standby mode to retain the state information.
- 25. The device of claim 24 wherein the data-retention circuitry further comprise an isolation subcircuit to isolate the data-retention subcircuits from a pass-gate subcircuit in response to a sleep signal, and a supply-switching subcircuit to provide current to the data-retention subcircuits from a supplemental voltage supply through a well tap during the standby mode.
 - 26. The device of claim 25 wherein the data-retention subcircuits, switching subcircuit and the isolation subcircuit comprise lower-leakage semiconductor devices, and wherein the pass-gate subcircuit comprises higher-leakage semiconductor devices, the lower-leakage devices having at least one of either a longer channel length, a thicker gate-oxide layer or a higher threshold voltage than the higher-leakage semiconductor devices.

1

2

3

4

5

6