

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

The Nuclear Model of the Atom

Question Paper

Course	CIE IGCSE Physics
Section	5. Nuclear Physics
Topic	The Nuclear Model of the Atom
Difficulty	Hard

Time Allowed 50

Score /37

Percentage /100

Question la

Extended tier only

Table 1.1 shows data about nine elements.

Table 1.1

proton number	element	symbol
2	helium	Не
3	lithium	Li
4	beryllium	Ве
5	boron	В
6	carbon	С
7	nitrogen	N
8	oxygen	0
9	fluorine	F
10	neon	Ne

Carbon-14 is a radioactive isotope with a nucleon number of 14. It decays by emitting β -particles.

Use data from Table 1.1 to write down the nuclide equation for this decay.

[4 marks]

Question 1b

A radioactive sample is placed close to a detector. The radioactive isotope in the sample has a long half-life. The detector records a count rate of 597 counts/s.

Fig. 11.2 shows the readings when different materials are placed between the radioactive sample and the detector.

Material	count rate counts / s
a sheet of paper	602
a piece of thin aluminium	598
a piece of thin lead	510

Fig. 11.2

Explain whether any α -particles, β -particles or γ -rays are emitted by the radioactive sample.

[3 marks]

Question 2a

Fig. 10.1 represents a neutral atom of an isotope of element X .

Fig. 10.1

State one similarity between this atom and a neutral atom of a different isotope of element X.

[1 mark]

$Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Question 2b

The isotope of element X is radioactive. It decays to form an isotope of element Y by emitting a β -particle.

(i) Using Fig. 10.1 deduce the nuclide notation for the isotope of Y produced by this decay.

nuclide notation: $\cdots Y$ [3]

(ii) $\beta \text{-particles ionise the air they pass through less strongly than the same number of } \alpha \text{-particles}.$

Suggest why this is so.

[3]

[6 marks]

Question 3a

Extended tier only

When uranium-235 ($^{235}_{92}$ U) is bombarded with a neutron, it forms an isotope of caesium (Cs) and an isotope of rubidium (Rb).

Complete the nuclide notation for this reaction.

$$^{235}_{92}\text{U} + {}^{\square}_{\square}\text{n} \rightarrow ^{144}_{\square}\text{Cs} + {}^{\square}_{37}\text{Rb} + 2{}^{\square}_{\square}\text{n}$$

[2 marks]

Question 3b

Extended tier only

State and explain the process shown by the equation in (a).

[3 marks]

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Describe and give a reason for the difference between the mass of the products and the reactants in the

Question 3c

(i)

reaction from part (a).

[2]
(ii) State the energy transfer that takes place in the products of the reaction from part (a) . [1] [3 marks]
Question 4a
There are three naturally occurring isotopes of hydrogen: hydrogen-1, hydrogen-2 and hydrogen-3.
Hydrogen-1 is the simplest nuclide containing only one proton. Each isotope of hydrogen is represented by the symbol \$H\$.
Write down the symbols, using nuclide notation, for:
hydrogen-1
hydrogen-2
hydrogen-3

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Question 4b

Extended tier only

In a fusion reactor, a nucleus of hydrogen-2 and a nucleus of hydrogen-3 undergo fusion.

(i) State what is meant by nuclear fusion.

(ii) The fusion reaction produces a free neutron and one other particle.

Write down, using nuclide notation, the equation that represents this reaction.

[3] **[5 marks]**

[2]

Question 5a

Extended tier only

Fig 1.1 shows a neutron colliding with a nucleus of uranium-235, producing a number of products.

Fig. 1.1

(i) Name the process shown in the diagram.

(ii) Complete, using nuclide notation, the equation that represents the reaction shown in Fig 1.1.

$$\Box n + \Box_{92}U \rightarrow \Box_{56}Ba + \Box_{92}Kr + \Box_{n}n$$

[3] **[4 marks]**

[1]

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Extended tier only

Explain how the process shown in Fig 1.1 can lead to a chain reaction.

[3 marks]

Question 5c

Extended tier only

This process releases energy.

Explain the energy transfer taking place in this reaction.

[2 marks]