- 9. The symmetric difference of A and B, according to Exercise 15, equals the difference $(A \cup B) (A \cap B)$. By Exercise 5, $A \cap B \subseteq A \cup B$. Therefore $A \oplus B = A \cup B$ if and only if $A \cap B = \emptyset$. In other words, the symmetric difference equals the difference if and only if the sets are disjoint.
- 11. The proof is dual to the proof given in the text for the first half of Theorem 2. We can give it more succinctly in symbols.

$$\overline{\bigcup_{i \in I} A_i} = \left\{ x \mid x \notin \bigcup_{i \in I} A_i \right\} \\
= \left\{ x \mid \neg (x \in \bigcup_{i \in I} A_i) \right\} \\
= \left\{ x \mid \neg (\exists i \in I : x \in A_i) \right\} \\
= \left\{ x \mid \forall i \in I : x \notin A_i \right\} \\
= \left\{ x \mid \forall i \in I : x \in \overline{A}_i \right\} \\
= \bigcap_{i \in I} \overline{A}_i$$

- 13. $\{\{0,1\},\{2,3\},\{4,5\},\ldots\}$
- 15. The idea in this proof is to tear the definition apart to obtain a complete logical description of when an element is in $A \oplus B$, then to use logic to rewrite that description so that it matches the definition of $(A \cup B) (A \cap B)$.

$$A \oplus B = \left\{ x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \right\}$$

$$= \left\{ x \mid (x \in A \lor x \in B) \land (x \in A \lor x \notin A) \right\}$$

$$\land (x \notin B \lor x \in B) \land (x \notin B \lor x \notin A) \right\}$$

$$(\text{this follows from part (c) of Theorem 1 in Section 1.1)}$$

$$= \left\{ x \mid (x \in A \lor x \in B) \land T \land T \land (\overline{x \in B} \lor \overline{x \in A}) \right\}$$

$$= \left\{ x \mid (x \in A \lor x \in B) \land \overline{x \in B} \land x \in \overline{A} \right\}$$

$$= \left\{ x \mid x \in A \cup B \land x \notin A \cap B \right\}$$

$$= (A \cup B) - (A \cap B)$$

17. (a) The double-hatched region is $A \cap (B \oplus C)$.

(b) The entire hatched region is $(A - B) \cup (C - A)$.

(c) In the picture on the left we have shaded A with horizontal hatching and $B \oplus C$ with vertical hatching. The symmetric difference of these two sets is therefore the region which is hatched but not double-hatched. It is redrawn, simply shaded, in the Venn diagram on the right.

- 19. (a) $(A \cap \overline{B \cup C}) \cup (B \cap C \cap \overline{A}) = (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap C)$
 - **(b)** $(A \cap B) \cup (A \cap C) \cup (B \cap C)$
 - (c) $(A \cup B \cup C) (A \cap B) (A \cap C) (B \cap C) = (A B C) \cup (B A C) \cup (C A B)$
 - (d) $(B-A) \cup (A \cap C \cap \overline{B})$

- 21. (a) Suppose that $x \in A \cup B$. Then $x \in A$ or $x \in B$. In either case, $x \in B \cup A$. Hence $A \cup B \subseteq B \cup A$. Similarly $B \cup A \subseteq A \cup B$. Hence $A \cup B = B \cup A$.
 - (b) We need to prove, for an arbitrary x, that $x \in A \cap (B \cup C)$ if and only if $x \in (A \cap B) \cup (A \cap C)$. Suppose that $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. The latter condition means that $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$; and if $x \in C$, then $x \in A \cap C$. In either case $x \in (A \cap B) \cup (A \cap C)$. Conversely, suppose that $x \in (A \cap B) \cup (A \cap C)$. First, assume that $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in B \cup C$ as well, so $x \in A \cap (B \cup C)$. On the other hand, if $x \notin A \cap B$, then $x \in A \cap C$. Thus $x \in A$ and $x \in C$. Hence $x \in B \cup C$ as well, so again $x \in A \cap (B \cup C)$.
 - (c) Suppose that $x \in A \cap U$. Then in particular $x \in A$. Conversely, if $x \in A$, then $x \in A \cap U$, since by convention x is always an element of U.
 - (d) Suppose that $x \in A \cup A$. Then $x \in A$ or $x \in A$, i.e., $x \in A$. Conversely, if $x \in A$, then $x \in A \cup A$.
 - (e) Suppose that $x \in A \cap \overline{A}$. Then $x \in A$ and $x \in \overline{A}$, i.e., $x \in A$ and $x \notin A$. This is impossible, so no such elements x exist. Therefore $A \cap \overline{A} = \emptyset$.
 - (f) Suppose that $x \in \overline{A}$. Then it is not the case that $x \in \overline{A}$, i.e., it is not the case that $x \notin A$. Therefore $x \in A$. Conversely, if $x \in A$, then $x \notin \overline{A}$, whence $x \in \overline{A}$.
 - (g) Suppose that $x \in \overline{A \cup B}$. Then $x \notin A \cup B$. This means that it is not the case that $x \in A$ or $x \in B$, which implies that x is in neither A nor B. Hence $x \in \overline{A}$ and $x \in \overline{B}$, so $x \in \overline{A} \cap \overline{B}$. Conversely, if $x \in \overline{A} \cap \overline{B}$, then $x \notin A$ and $x \notin B$, so it is not the case that $x \in A \cup B$. Thus $x \in \overline{A \cup B}$.
- 23. (a) To see that A B is not equal to B A in general, take $A = \emptyset$ and $B = \{1\}$. Then $A B = \emptyset$, but $B A = \{1\}$. It is also easy to see from the Venn diagrams that $A B \neq B A$.
 - (b) It is true that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$. Each side consists of all those objects that are elements of an odd number of the sets A, B, and C. Indeed,

$$(A \oplus B) \oplus C = \left\{ x \mid (x \in A \oplus B \land x \notin C) \lor (x \in C \land x \notin A \oplus B) \right\}$$

$$= \left\{ x \mid (x \in A \land x \notin B \land x \notin C) \lor (x \in B \land x \notin A \land x \notin C) \right\}$$

$$\lor (x \in C \land x \in A \land x \in B) \lor (x \in C \land x \notin A \land x \notin B) \right\}.$$

The calculation for $A \oplus (B \oplus C)$ is similar. See the Venn diagram for the solution to Exercise 17c.

- (c) To see that $A \cup (B \oplus C) \neq (A \cup B) \oplus (A \cup C)$ in general, take $A = \{1\}$ and $B = C = \emptyset$. Then $A \cup (B \oplus C) = \{1\}$, but $(A \cup B) \oplus (A \cup C) = \{1\} \oplus \{1\} = \emptyset$. One can also look at the Venn diagrams for these two expressions.
- (d) The double-hatched region on the left is $A \cap (B \oplus C)$. The shaded but not double-hatched region on the right is $(A \cap B) \oplus (A \cap C)$. These two sets are equal.

(e)
$$A \times (B \cap C) = \{ (x,y) \mid x \in A \land y \in B \cap C \}$$

 $= \{ (x,y) \mid x \in A \land y \in B \land y \in C \}$
 $= \{ (x,y) \mid (x \in A \land y \in B) \land (x \in A \land y \in C) \}$
 $= \{ (x,y) \mid x \in A \land y \in B \} \cap \{ (x,y) \mid x \in A \land y \in C \}$
 $= (A \times B) \cap (A \times C)$

(f)
$$A \times (B \cup C) = \{ (x, y) \mid x \in A \land y \in B \cup C \}$$

 $= \{ (x, y) \mid x \in A \land (y \in B \lor y \in C) \}$
 $= \{ (x, y) \mid (x \in A \land y \in B) \lor (x \in A \land y \in C) \}$
 $= \{ (x, y) \mid x \in A \land y \in B \} \cup \{ (x, y) \mid x \in A \land y \in C \}$
 $= (A \times B) \cup (A \times C)$

- 25. These operations correspond in the sense that $x \in A B$ if and only if it is not the case that $x \in A$ implies $x \in B$. (This follows from the definition of the difference of sets and part (k) of Theorem 1 in Section 1.1.)
- 27. (a) The \subseteq relation for sets is analogous to the logical implication relation for propositions. Just as A = B means that $A \subseteq B$ and $B \subseteq A$, so $P \iff Q$ means that $P \implies Q$ and $Q \implies P$.
 - (b) Analogous to $P \Longrightarrow P \lor Q$ is $A \subseteq A \cup B$. This is clear: If $x \in A$, then $x \in A \cup B$. Analogous to $P \land Q \Longrightarrow P$ is $A \cap B \subseteq A$. Again this is clear: If $x \in A \cap B$, then $x \in A$.

- 29. (a) This is true. If $A \in F$, then A is finite, so certainly $A \cap B$, which is a subset of A, is finite.
 - (b) This is false. Let A be the set of even natural numbers, and let B be the set of odd natural numbers together with 0 and 2. Then $A \cap B = \{0, 2\} \notin I$.
 - (c) This is true since $|A \cup B| \le |A| + |B|$.
 - (d) This is true. If either A or B is infinite, then certainly $A \cup B$ is infinite. On the other hand, $\emptyset \cup \emptyset = \emptyset$.
- 31. (a) Q, since $\bigcap_{\epsilon>0}(x-\epsilon,x+\epsilon)=\{x\}$
 - (b) R, since $\bigcup_{\epsilon>0} (x-\epsilon,x+\epsilon) = R$ for each x
 - (c) R, since $\bigcup_{x \in \mathbf{Q}} (x \epsilon, x + \epsilon) = \mathbf{R}$ for each $\epsilon > 0$
 - (d) \emptyset , since $\bigcap_{x \in Q} (x \epsilon, x + \epsilon) = \emptyset$ for each $\epsilon > 0$
 - (e) Ø, as in part (d)
 - (f) R, as in part (c)
- 33. For each prime number p, let $A_{\tilde{p}} = \{pq \mid q \text{ is prime}\}$. For example, $A_2 = \{4, 6, 10, 14, \ldots\}$, and $A_3 = \{4, 9, 15, 21, \ldots\}$. The collection of all such sets A_p is an example with the desired property. Indeed, for every distinct p and q, $A_p \cap A_q = \{pq\} \neq \emptyset$. On the other hand, it is impossible for any number to have three distinct prime factors if it has only two prime factors, so $A_p \cap A_q \cap A_r = \emptyset$ whenever p, q, and r are distinct primes.
- 35. (a) C is closed under complementation, since if A is finite, then \overline{A} has a finite complement (namely A), and if \overline{A} is finite, then A has a finite complement.
 - (b) Suppose that A and B are both in C. If either is finite, then $A \cap B$ is finite, hence in C. Otherwise both \overline{A} and \overline{B} are finite, so $\overline{A} \cup \overline{B}$ is finite. But $\overline{A} \cup \overline{B} = \overline{A \cap B}$, so $A \cap B$ has a finite complement and hence is an element of C.
 - (c) Since $A \cup B = \overline{A \cap B}$, the fact that C is closed under complementation and intersection implies that C is closed under union.
 - (d) Similar to part (c), since $A B = A \cap \overline{B}$.

- 29. (a) This is true. If $A \in F$, then A is finite, so certainly $A \cap B$, which is a subset of A, is finite.
 - (b) This is false. Let A be the set of even natural numbers, and let B be the set of odd natural numbers together with 0 and 2. Then $A \cap B = \{0, 2\} \notin I$.
 - (c) This is true since $|A \cup B| \le |A| + |B|$.
 - (d) This is true. If either A or B is infinite, then certainly $A \cup B$ is infinite. On the other hand, $\emptyset \cup \emptyset = \emptyset$.
- 31. (a) Q, since $\bigcap_{\epsilon>0}(x-\epsilon,x+\epsilon)=\{x\}$
 - (b) R, since $\bigcup_{\epsilon>0} (x-\epsilon,x+\epsilon) = \mathbf{R}$ for each x
 - (c) R, since $\bigcup_{x \in Q} (x \epsilon, x + \epsilon) = R$ for each $\epsilon > 0$
 - (d) \emptyset , since $\bigcap_{x \in Q} (x \epsilon, x + \epsilon) = \emptyset$ for each $\epsilon > 0$
 - (e) 0, as in part (d)
 - (f) R, as in part (c)
- 33. For each prime number p, let $A_p = \{pq \mid q \text{ is prime}\}$. For example, $A_2 = \{4, 6, 10, 14, \ldots\}$, and $A_3 = \{4, 9, 15, 21, \ldots\}$. The collection of all such sets A_p is an example with the desired property. Indeed, for every distinct p and q, $A_p \cap A_q = \{pq\} \neq \emptyset$. On the other hand, it is impossible for any number to have three distinct prime factors if it has only two prime factors, so $A_p \cap A_q \cap A_r = \emptyset$ whenever p, q, and r are distinct primes.
- 35. (a) C is closed under complementation, since if A is finite, then \overline{A} has a finite complement (namely A), and if \overline{A} is finite, then A has a finite complement.
 - (b) Suppose that A and B are both in C. If either is finite, then $A \cap B$ is finite, hence in C. Otherwise both \overline{A} and \overline{B} are finite, so $\overline{A} \cup \overline{B}$ is finite. But $\overline{A} \cup \overline{B} = \overline{A \cap B}$, so $A \cap B$ has a finite complement and hence is an element of C.
 - (c) Since $A \cup B = \overline{A \cap B}$, the fact that C is closed under complementation and intersection implies that C is closed under union.
 - (d) Similar to part (c), since $A B = A \cap \overline{B}$.

CHAPTER 3 FUNCTIONS AND RELATIONS

SECTION 3.1 Functions

- 1. (a) no (it is not even a set)
 - (b) no (it is a function from {2} to {1, 2, 3, 4}, however)
 - (c) yes
 - (d) no (3 is missing from the domain)
 - (e) no (1 has two associated values)
 - (f) no (5 is not in the given codomain)
- 3. (a) $\{(1,2), (2,3), (3,4), (4,5)\}$
 - (b) $\{(1,8), (2,8), (3,8), (4,8)\}$
 - (c) $\{(1,2), (2,2), (3,4), (4,4)\}$
- 5. (a) $\ln 5 \div \ln 2 = 2.32193$
 - (b) $\ln 10 \div \ln 2 = 3.32193$ (note that this is $1 + \log 5$, since $\log(2 \cdot 5) = (\log 2) + (\log 5)$)
 - (c) $50 \log 10 = 50 \ln 10 \div \ln 2 = 166.09640$
- 7. (a) $6+5=11\equiv 4$ (b) 1+1=2 (c) $6\cdot 4=$
 - (d) $0 \cdot 2 = 0$ (e) $5^6 = (5^2)^3 = 25^3 \equiv 4^3 = 64 \equiv 1$
- 9. Each entry is the sum or product in N, reduced modulo 5.

		0	1	2	3	4			
	0	0	1	2	3	4			
	1	1	2	3	4	0			
	2	2	3	4	0	1			
	3	3	4	0	1	2			
	4	4	0	1	2	3			

X	0	1	2	3	4
0	0	0	0	Q	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- 11. (a) Let q be Prince William of Great Britain. Since q has no children, $\neg \exists p: f(p) = q$.
 - (b) Since f is a function, this cardinality is always 1. Everybody has exactly one father.
 - (c) Since f is a function, this cannot happen. A person cannot have two different fathers.
 - (d) This can happen. Let q be Prince Charles of Great Britain, and let p and p' be his sons William and Harry.
- 13. $\forall a \in A: \exists! b \in B: (a, b) \in f$
- **15.** $\{(\{1,2,3\},1), (\{1,2\},1), (\{1,3\},1), (\{2,3\},2), (\{1\},1), (\{2\},2), (\{3\},3)\}$
- 17. $D: \mathbb{R} \times (\mathbb{R} \{0\}) \to \mathbb{R}$ given by D(x,y) = x/y is a function of two variables.
- 19. $\odot = \{ ((a,b),c) \mid (c=a \land a \ge b) \lor (c=b \land a \le b) \}; \text{ or } x \odot y = (x+y+|x-y|)/2 \}$
- 21. (a) no $(3-7 \notin N)$
 - (b) yes
 - (c) yes ((a/b) + (c/d) = (ad + bc)/(bd)
 - (d) yes $(\sqrt{a} \text{ is a positive real number for all positive real numbers } a)$
 - (e) yes (see Exercise 3a in Section 1.3)
 - (f) no (3+5=8)
- 23. The answer is 1 if $1 \le n < 10$, 2 if $10 \le n < 100$, and so on. Taking common (base 10) logarithms, we have

$$\begin{split} 0 & \leq \log_{10} < 1 & \text{if } 1 \leq n < 10 \,, \\ 1 & \leq \log_{10} < 2 & \text{if } 10 \leq n < 100 \,, \end{split}$$

and so on. It is then easy to see that in general the number of digits is $\lfloor \log_{10} n \rfloor + 1$.

- 25. (a) $\log 2 + \log x = 1 + y$
 - (b) $2\log x = 2y$
 - (c) $(\log x)/(\log 4) = y/2$
 - (d) x
 - (e) $4^{\log x} = (2^2)^{\log x} = 2^{2\log x} = 2^{\log(x^2)} = x^2$
 - (f) Since $\log(x^{1/\log x}) = (1/\log x) \cdot \log x = 1$, we see that $x^{1/\log x} = 2$.

- 11. (a) Let q be Prince William of Great Britain. Since q has no children, $\neg \exists p : f(p) = q$.
 - (b) Since f is a function, this cardinality is always 1. Everybody has exactly one father.
 - (c) Since f is a function, this cannot happen. A person cannot have two different fathers.
 - (d) This can happen. Let q be Prince Charles of Great Britain, and let p and p' be his sons William and Harry.
- 13. $\forall a \in A: \exists! b \in B: (a,b) \in f$
- **15.** $\{(\{1,2,3\},1), (\{1,2\},1), (\{1,3\},1), (\{2,3\},2), (\{1\},1), (\{2\},2), (\{3\},3)\}$
- 17. $D: \mathbb{R} \times (\mathbb{R} \{0\}) \to \mathbb{R}$ given by D(x,y) = x/y is a function of two variables.
- 19. $\odot = \{ ((a,b),c) \mid (c=a \land a \ge b) \lor (c=b \land a \le b) \}; \text{ or } x \odot y = (x+y+|x-y|)/2 \}$
- 21. (a) no $(3-7 \notin N)$
 - (b) yes
 - (c) yes ((a/b) + (c/d) = (ad + bc)/(bd))
 - (d) yes $(\sqrt{a} \text{ is a positive real number for all positive real numbers } a)$
 - (e) yes (see Exercise 3a in Section 1.3)
 - (f) no (3+5=8)
- 23. The answer is 1 if $1 \le n < 10$, 2 if $10 \le n < 100$, and so on. Taking common (base 10) logarithms, we have

$$0 \le \log_{10} < 1$$
 if $1 \le n < 10$,
 $1 \le \log_{10} < 2$ if $10 \le n < 100$,

and so on. It is then easy to see that in general the number of digits is $\lfloor \log_{10} n \rfloor + 1$.

- 25. (a) $\log 2 + \log x = 1 + y$
 - (b) $2\log x = 2y$
 - (c) $(\log x)/(\log 4) = y/2$
 - (d) x
 - (e) $4^{\log x} = (2^2)^{\log x} = 2^{2\log x} = 2^{\log(x^2)} = x^2$
 - (f) Since $\log(x^{1/\log x}) = (1/\log x) \cdot \log x = 1$, we see that $x^{1/\log x} = 2$.

- 27. (a) We can write the real number x as $\lfloor x \rfloor + \epsilon$, so that ϵ is a real number satisfying $0 \le \epsilon < 1$. Since $\epsilon = x \lfloor x \rfloor$, we have $0 \le x \lfloor x \rfloor < 1$. The desired inequalities, $\lfloor x \rfloor \le x$ and $x 1 < \lfloor x \rfloor$, follow algebraically.
 - (b) This is similar to part (a), but this time we write $x = \lceil x \rceil \epsilon$, where again $0 \le \epsilon < 1$. Then $0 \le \lceil x \rceil x < 1$, and again the desired inequalities, $x \le \lceil x \rceil$ and $\lceil x \rceil < x + 1$, follow by trivial algebra.
- 29. The easiest way to accomplish this is to add 1/2 and then round down. This has the effect of rounding up if the original number was more than half way to the next highest integer. Thus round(x) = $\lfloor x + 0.5 \rfloor$.
- 31. If $x \equiv 0 \pmod{6}$ or $x \equiv 3 \pmod{6}$, then x = 6k or x = 6k + 3; in either case, x is divisible by 3, and therefore (since x > 3), x is not prime. Similarly, if $x \equiv 2 \pmod{6}$ or $x \equiv 4 \pmod{6}$, then x is divisible by 2, hence not prime. Thus every prime number must be congruent to either 1 or 5, modulo 6. Numbers of the former form can be written as 6k + 1, and numbers of the latter form (since $5 \equiv -1 \pmod{6}$) can be written as 6k 1.
- 33. This is false. Let m = 5, a = b = 2, c = 1, and d = 6. Then $2 \equiv 2 \pmod{5}$ and $1 \equiv 6 \pmod{5}$, but $2^1 = 2 \not\equiv 64 = 2^6 \pmod{5}$.
- 35. The number 2 has no multiplicative inverse modulo 6, since 2k is always congruent to 0, 2, or 4 (mod 6), never 1.
- 37. (a) yes, since multiplication of integers is associative
 - (b) no, since $a \odot (b \odot c) = a \odot (b + 2c) = a + 2(b + 2c) = a + 2b + 4c$, whereas $(a \odot b) \odot c = (a + 2b) \odot c = (a + 2b) + 2c = a + 2b + 2c$
 - (c) yes, since $a \odot (b \odot c) = a \odot b = a$ and $(a \odot b) \odot c = a \odot c = a$
- 39. The domain is $\mathcal{P}(N) \{\emptyset\}$. For each S in the domain, the image n of S under this function is an element of S that satisfies $n \leq m$ for all $m \in S$. Thus we can describe this function as the following set of ordered pairs: $\{(S,n) \mid S \in \mathcal{P}(N) \{\emptyset\} \land n \in S \land \forall m \in S: n \leq m\}$.