EGZAMIN WSTĘPNY Z MATEMATYKI

Zestaw składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 240 minut.

Powodzenia!

- 1. Funkcję kwadratową y = (x+3)(1-x) przedstawić w postaci kanonicznej. Naszkicować jej wykres.
- 2. Rozwiązać równanie $5^x \cdot 5^{x^2} \cdot 5^{x^3} = \frac{1}{5}$.
- 3. Rozwiązać równanie $\log_{\frac{1}{3}}(|x|-1) > 2.$
- 4. Dla jakich parametrów $a \in R$ równanie $\cos^2 x = \frac{2a}{a-2}$ ma rozwiązanie?
- 5. Naszkicować wykres funkcji $y = x \log_{x^2} |x|$.
- 6. Wyznaczyć te wartości x, dla których punkty A(5,5), B(1,3) i C(x,0) są współliniowe.
- 7. Wskazać większą z liczb 0, 4(9) i $\sin\left(\frac{101}{6}\pi\right)$.
- 8. Napisać równanie stycznej do wykresu funkcji $f(x) = \sqrt{2x-3}$ w punkcie o odciętej $x_0 = 6$.
- 9. Dana jest funkcja $f(x) = \cos^2 x$. Narysować wykres funkcji y = f'(x) w przedziale $\langle 0; \pi \rangle$.
- 10. Zbadać monotoniczność funkcji $f(x) = x + \frac{1}{x}$.
- 11. Dany jest ciąg (a_n) , gdzie $a_n = \frac{(n!)^2}{(2n)!}$. Obliczyć $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
- 12. Rozwiązać nierówność $g(f(x)) \ge 1$, jeśli $f(x) = 3^x$ i $g(x) = \sin x$.
- 13. Wyznaczyć wszystkie wielokąty wypukłe, w których liczba przekątnych jest 3 razy większa od liczby wierzchołków.
- 14. Rozwiązać równanie $|\cos x| = \cos x + 2\sin x$ w przedziale $\langle 0; 2\pi \rangle$.
- 15. Rozwiązać nierówność $\frac{x^3-x+6}{r^2}\geqslant 0.$

- 16. Rozwiązać równanie $1 \frac{1}{x} + \frac{1}{x^2} \frac{1}{x^3} + \ldots = x 1$.
- 17. Dla jakich $x \in R$ ciąg $2\log_3 x$, $\log_3(x-1)$, $-\log_3 4$ jest ciągiem arytmetycznym?
- 18. Niech g będzie granicą ciągu (a_n) , gdzie $a_n = \frac{3n+1}{n+1}$. Od jakiego n począwszy wyrazy ciągu (a_n) spełniają nierówność $|a_n-g| < 0,01$?
- 19. Dla jakich $a \in R$ funkcja $f(x) = \begin{cases} \cos x + a & \text{dla } x \geqslant 0 \\ \frac{\sin|2x|}{x} & \text{dla } x < 0 \end{cases}$ jest ciągła?
- 20. Wielomian $x^2 + px + q$ ma pierwiastki x_1 i x_2 . Wskazać trójmian $x^2 + bx + c$, którego pierwiastkami są liczby $x_1 + 1$ i $x_2 + 1$.
- 21. Ze zbioru $\{1, 2, \dots, 1000\}$ losujemy jedną liczbę. Obliczyć prawdopodobieństwo tego, że nie będzie to liczba podzielna ani przez 6, ani przez 8.
- 22. Obliczyć pole trapezu o podstawach długości *a* i *b*, jeżeli wiadomo, że na tym trapezie można opisać okrąg i można w niego wpisać okrąg.
- 23. Znaleźć rzut prostokątny punktu A(1,-1) na prostą $\begin{cases} x=4t \\ y=3t+2. \end{cases}$
- 24. Dane są zbiory $A = \{(x,y): x, y \in R \text{ i } x^2 + y^2 2y \leq 1\}$ i $B = \{(x,y): x, y \in R \text{ i } |x| + y \leq 1\}$. Narysować na płaszczyźnie układu współrzędnych zbiór $A \cap B$ i obliczyć jego pole.
- 25. Wyznaczyć asymptoty funkcji $f(x) = \frac{\sqrt{x^2 1} x}{x}$.
- 26. Obliczyć $|\vec{a}-\vec{b}|$, jeśli $|\vec{a}+\vec{b}|=5$, $|\vec{a}|=3$ i $|\vec{b}|=2\sqrt{2}$.
- 27. Wyznaczyć zbiór wartości funkcji $y = x\sqrt{4-x^2}$.
- 28. Rzucamy symetryczną monetą. Obliczyć prawdopodobieństwo zdarzenia, że w szóstym rzucie otrzymamy trzeciego orła.
- 29. Uzasadnić, że równanie $x^3+x+7=0$ w zbiorze liczb rzeczywistych posiada dokładnie jedno rozwiązanie. Wraz z uzasadnieniem wskazać przedział o długości co najwyżej 1/2, do którego należy to rozwiązanie.
- 30. Ostrosłup przecięto płaszczyzną równoległą do podstawy i dzielącą wysokość w stosunku 2 : 3. Obliczyć stosunek objętości powstałych brył.