

Contents

Introduction of CMP Pads

" Similar but Different "

CMP Performance

Lower Defect and Scratch

Eco-Friendly CMP Pad Composition Design Flexibility Adjusting CMP performance Pore Design variety To meet customer needs Casting Process Uniformity Stack structure Control Softer composition and Small pore Longer Lifetime New Conditioning System Lower Defect and Scratch (shape memory) CI (Chlorine) Free CMP Pad Hazardous chemical reduction CMP Pad Recycling System Recyclable CMP Pad

Development Concept

Material Properties Control

Molecular Design Optimization

Pad Hardness Control
(Surface Hardness, Pad Stiffness)

Wear Characteristics Optimization (Modulus, Tensile Stress, Elongation)

Thermal Properties Control
(Hardness as temperature, DMA)

+ Window design

Contact Properties Control

Pore Structure Groove / Stack Dimension Optimization

Pore Structure Optimization

Groove Design Optimization

Real Contact Area Control as compressive force

Surface Roughness Optimization by CMP Conditioning

Target Pad Development

Key Technology_Composition Design

Material property control

♦ Polyurethane

- Prepolymer Design
 - · Isocyanate tech.
 - Polyol structure design/Synthesis
- Extender tech.
- Additive tech.
- Curing Agent Design
- Reaction type selection
- Eco-friendly concept adoption

Prepolymer self-designed and manufacturing

: physical, wear and thermal property controllable through own polyurethane system

Internal business network for raw material to ensure supply and development

Key Technology_Pore Control

Contact property control

- ◆ Pore generation method
- Gas foaming tech.
- Liquid foaming tech.
- Solid foaming tech.
- Mixed foaming tech.

Pore system (hybrid pore system)

- : adjust various range of pore size (15~60um) and distribution via
- 4 types of pore foaming technology gas, liquid, solid, mixture
- Inorganic contamination reduced compared to micro-filler (solid) only system

Key Technology_ High Dispersion Mixing System

Advanced Mixing Control

- ◆ Inline Feeding Homogenizing
- Improve dispersion effect
- Minimizing contamination

♦ High Dispersion Mixing System

: More uniform pore distribution and lower contamination of the pad

01 Introduction of CMP Pads

Key Technology_ Sheet Casting System

Manufacturing System

- Sheet casting by continuous feeding
- Uniform temp. control in whole sheet
- Minimize sheet-to-sheet difference
- Good at quality monitoring/tracing
- Enable wide range of composition
 and various type of pore structure

Sheet Casting System

: provide minimized quality variation through continuous single sheet casting system

Uniform Temp. control

Uniform sheet material property (within Sheet & Sheet to Sheet)

01 Introduction of CMP Pads **Key Technology_Casting Process**

♦ Manufacturing Process for CMP Pad

Major Product
Hard Pad Portfolio

03 Major Product (Hard Pad) Portfolio

Product Portfolio

CMP Pads

: Hardness (40~65D), Pore Size (15~50 \(m\)), Window/Non-window type

03 Major Product (Hard Pad) Portfolio Major Product_HD-319B

◆ Conventional Type CMP Pads

Composition and Physical Properties

- Composition
 - : Polyurethane-based composition (SKe self-developed)
- Physical Properties
 - : Similar to Reference Pads

 (Hardness, Tensile Strength, Elongation and

Thermal Properties etc)

- Size and Density

: Similar to Reference Pads

- 1:1 Mixed Pore System (Micro capsule and Inert gas)
- Contamination Controlled Pore System
 (Less Inorganic content)

Stack Structure and Groove Design

HD-319B

Manufacturing Process

Sheet Type Process
 Uniformity increases
 and Good Quality
 Control

Stack Structure

: Similar to Reference Pads

(Controllable for customer needs)

Pore Generation concept

Groove Design

: Circle type, 10% more in Depth for Pad Lifetime

(Controllable for customer needs, XY, Radial also Possible)

♦ Advanced Type CMP Pads (Lower Defect and Scratch Performance)

Composition and Physical Properties

- Composition
 - : Polyurethane-based composition (SKe self-developed)
- Physical Properties
 - : Softer Hardness (-3~4 Shore D)

(Tensile Strength, Elongation and Thermal Properties

similar to Reference Pad)

- Size and Density

: Smaller size and higher Pore Density (Stress Mitigation for Each contact)

- 1:1 Mixed Pore System (Micro Capsule and Inert gas)
- Contamination Controlled Pore System

Stack Structure and Groove Design

Pore Generation concept

———— (HD-500C

Manufacturing Process

Sheet Type ProcessUniformity Increasesand Good QualityControl

- Stack Structure
- : Similar to Reference Pads (Controllable for customer needs)
- Groove Design
 - : Circle type, 10% more in Depth for Pad Lifetime

(Controllable for customer needs, XY, Radial also Possible)

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C

♦ Basic Property Comparison

	Item	Unit	Dow (IC-1010_AT6)	极思新材料(HD-319B)	极思新材料(HD-500C)
Top Pad Physical Properties	Thickness	mm	2.0	2.0	2.0
	Density	g/cm³	0.80	0.80	0.75
	Hardness	Shore D	55~58	56~59	53~57
	Tensile Strength	N/mm²	19~22	20~22	20~22
	Elongation	%	70~100	80~100	70~100
	Pore Image (SEM)	_			
Groove	Pattern	-			
	Width/Depth/Pitch	mm	0.44/0.75/3.0	0.46/0.85/3.0	0.46/0.85/3.0
Sub Pad	Thickness	mm	1.3~1.4	1.3~1.4	1.3~1.4
	Hardness	Asker C	-	68~76	68~76
	Compressibility	%	-	8~11	8~11
Stack Pad	Thickness	mm	3.4~3.6	3.3~3.5	3.3~3.5
	Compressibility	%	0.6~1.2	0.8~1.2	0.8~1.2
	Recommend Use		Standard Pad	For Silica Slurry	For Ceria Slurry

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C

♦ Evaluation Pads

♦ Evaluation Instrument

CMP Tool	Pad Analysis		
I			
Polisher (CTS, AP-300)	3D-Roughness SEM (Bruker, Contour GT) (JEOL, JSM-IT300)		
Removal Rate, Polishing Parameter, Defect Inspection	Surface Roughness, Surface Image		

♦ Polishing Condition : W/Oxide (Si, Ce)

Category	Detail	Spec.
	Wafer type	PETEOS
Wafer	Dummy (Polishing time/Number of time)	40s/8
	Monitoring (Polishing time/Number of time)	60s/2
Break In	Time	15min
	Head speed(rpm)	87
	Head pressure(psi)	3.5
Head & Platen	Platen speed(rpm)	93.0
	Spindle sweep speed(sw/min)	19.0
	Conditioner type	CI45(Shinhan)
	Conditioning type	In situ + Ex situ
Conditioner	Conditioner force(lb)	6.0
	Conditioner rpm(rpm)	101.0
	Conditioner sweep speed(sw/min)	19.0
	Slurry type	W7573/LSW /ACS-580/DIW
Slurry	Slurry recipe	Pure/Slurry: DIW(1:9)/Pure
	Flow rate(cc/min)	200/200/500

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Removal Properties

♦ Target application layer

CMP Layer		DRAM		FLASH (3D)		
		Reference	SKe	Reference	SKe	
Oxide	STI	IC-1010(D)	HD-500C	IC-1010(D)	HD-500C	
	ILD			E6088(C)		
	Bulk					
W	BM Buffing	HD-319B				
	Touch	HD-319B				
Cu	Bulk					

◆ Removal Rate (Å/min)

◆ Pore Image (SEM)

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: W CMP Performance

◆ WRR: Comparable (IC1010 ≒ HD-319B ≒ HD-500C)

◆ Wafer Profile: Comparable (IC1010 = HD-319B = HD-500C)

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Silica Slurry

- ◆ Oxide RR w/Silica Slurry: Comparable (IC1010 ≒ HD-319B ≒ HD-500C)
- ◆ Wafer Profile : Comparable (IC1010 = HD-319B = HD-500C)

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Ceria Slurry

- ◆ Oxide RR w/Ceria Slurry: Comparable (IC1010 ≒ HD-319B ≒ HD-500C)
- ◆ Wafer Profile: Comparable (IC1010 = HD-319B = HD-500C)

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Cu CMP Performance

♦ Similar Cu removal performance to IC-1010

- Slurry: 9044C [DI 875.3ml: Slurry 94.3ml: 30ml], flow Rate 250 ml/min

- Conditioning disk: D92, disk speed 108 rpm (in-situ), disk down force 7 lbf

- Head pressure: 2.6 psi, Head speed 87 rpm, Platen speed 99 rpm

- Polishing time: 60sec

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Longer Pad Lifetime

◆ Pad wear rate and debris size comparison (Results from internal test)

- HD-319B pad: longer lifetime with 10% lower PWR
- HD-500C pad: lower defectivity made by smaller debris (comparable PWR to IC 1010)

Test Conditions for PWR measuring

Time (min)	30 (4times)
Platen Speed (rpm)	93
DIW Flow Rate (cc/min)	300
Disk type	DI45 (Saesol)
Conditioner Force (lbf)	6
Conditioner rpm (rpm)	87

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Longer Pad Lifetime

◆ 极思新材料HD-319B Pad

- CMP Application: Cu Bulk CMP
- Lower pad wear rate(PWR) compared to IC1010 in the same process conditions

 Confirmed by the used pad up to the available pad lifetime in MFG Fab. line

- Different pad lifetime depending on the applied process conditions
- Used for Cu bulk CMP application in MFG customer's site up to
 120hrs in pad using time

03 Major Product (Hard Pad) Portfolio Hard Pad_HD-319B & HD-500C: Longer Pad Lifetime

◆ 极思新材料HD-500C Pad

- CMP Application: Oxide CMP (ILD3)
- Comparable pad wear rate(PWR) to IC1010 in the same process conditions

Confirmed by the used pad up to the available pad lifetime in MFG Fab. line

- Different pad lifetime depending on the applied process conditions
- Used for Oxide CMP application in MFG customer's site up to
 24hrs in pad using time

Lower defectivity than IC1010 with the same pad using time

03 Major Product (Hard Pad) Portfolio Product Summary

◆ 极思新材料Hard Pad Products

- Proposal pad against IC1010: HD-319B and HD-500C

CMP Performance	HD-319B	HD-500C
Removal Rate	Comparable	Comparable
Defectivity	Comparable	Better
Pad Wear Rate	Lower	Comparable
Pad Lifetime	Longer	Comparable

Advantages of CMP Pad

Why 极思新材料 CMP Pad?

Material Composition

Raw material Self-Design

- Synthesize own pre-polymer
- Fast response to customer request
- Easy to optimize

Pore Structure

Hybrid Pore System

- Solid microsphere and inert gas
- Various pore size implementation
- Contamination Controlled(Lower inorganic contamination)

Manufacturing Process

Single sheet casting

- Uniform Temp, control
- Uniform sheet material property(within Sheet & Sheet to Sheet)

We can make more uniform with less defect/Scratch CMP pad We can quickly develop and deliver customized pad customers want

