Web 2.0

Lecture 7: Protocols for the Realtime Web

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/w20

Overview

- Long-polling and Streaming
- WebSocket Protocol
- WebRTC

Pushing and Polling

- Conceptual basis in messaging architectures
 - event-driven architectures (EDA)
- HTTP is a request-response protocol
 - response cannot be sent without request
 - server cannot initiate the communication
- **Polling** client periodically checks for updates on the server
- **Pushing** updates from the server (also called COMET)
 - = long polling server holds the request for some time
 - = **streaming** server sends updates without closing the socket

HTTP Long Polling

- Server holds long-poll requests
 - server responds when an event or a timeout occurs
 - saves computing resources at the server as well as network resources
 - can be applied over HTTP persistent and non-persistent communication
- Issues:
 - maximum time of the request processing at the server
 - concurrent requests processing at the server

HTTP Streaming

- server deffers the response until an event or timeout is available
- when an event is available, server sends it back to client as part of the response; this does not terminate the connection
- server is able to send pieces of response w/o terminating the conn.
 - using transfer-encoding header in HTTP 1.1
 - using End of File in HTTP 1.0
 (server omits content-length in the response)

Chunked Response

- Transfer encoding chunked
 - It allows to send multiple sets of data over a single connection
 - a chunk represents data for the event

```
1 HTTP/1.1 200 OK
2 Content-Type: text/plain
3 Transfer-Encoding: chunked
4 5 25
6 This is the data in the first chunk
7 8 1C
9 and this is the second one
10
11 0
```

- Each chunk starts with hexadecimal value for length
- End of response is marked with the chunk length of 0

• Steps:

- server sends HTTP headers and the first chunk (step 3)
- server sends second and subsequent chunk of data (step 4)
- corner terminates the connection (sten 5)

Issues with Chunked Response

- Chunks vs. Events
 - chunks cannot be considered as app messages (events)
 - intermediaries might "re-chunk" the message stream
 - \rightarrow e.g., combining different chunks into a longer one
- Client Buffering
 - clients may buffer all data chunks before they make the response available to the client application
- HTTP streaming in browsers
 - Server-sent events

Server-Sent Events

- W3C specification
 - part of HTML5 specs, see
 - API to handle HTTP streaming in browsers by using DOM events
 - transparent to underlying HTTP streaming mechanism
 - → can use both chunked messages and EOF
 - same origin policy applies
- EventSource interface
 - event handlers: onopen, onmessage, onerror
 - constructor EventSource(url) creates and opens the stream
 - method close() closes the connection
 - attribute readyState
 - → CONNECTING The connection has not yet been established, or it was closed and the user agent is reconnecting.
 - \rightarrow OPEN The user agent has an open connection and is dispatching events as it receives them.
 - \rightarrow CLOSED The conn. is not open, the user agent is not reconnecting.

Example

Initiating EventSource

```
if (window.EventSource != null) {
   var source = new EventSource('your_event_stream.php');
} else {
   // Result to xhr polling :(
}
```

Defining event handlers

```
source.addEventListener('message', function(e) {
    // fires when new event occurs, e.data contains the event data
}, false);

source.addEventListener('open', function(e) {
    // Connection was opened
}, false);

source.addEventListener('error', function(e) {
    if (e.readyState == EventSource.CLOSED) {
        // Connection was closed
    }
}, false);
```

- when the conn. is closed, the browser reconnects every ~3 seconds
 - → can be changed using retry attribute in the message data

Event Stream Format

- Format
 - response's content-type must be text/event-stream
 - every line starts with data:, event message terminates with 2 \n chars.
 - every message may have associated id (is optional)

```
id: 12345\n
data: first line\n
data: second line\n\n
```

• JSON data in multiple lines of the message

```
data: {\n
data: "msg": "hello world",\n
data: "id": 12345\n
data: }\n\n
```

- Changing the reconnection time
 - default is 3 seconds

```
1 retry: 10000\n
2 data: hello world\n\n
```

Server-side implementation

- Java Servlet
 - method doGet

```
public void doGet(HttpServletRequest req, HttpServletResponse resp)
         throws IOException {
4
         // set http headers
         resp.setContentType("text/event-stream");
6
         resp.setHeader("cache-control", "no-cache");
8
         // current time in milliseconds
9
         long ms = System.currentTimeMillis();
10
         // push data to the client for 20 seconds
11
12
         // client should reconnect when the connection is closed
13
         while (System.currentTimeMillis() - ms < 20000) {</pre>
             resp.getWriter().print("data: servlet runs for " +
14
15
                 (System.currentTimeMillis() - ms)/1000 + " seconds.\n\n");
16
             resp.getWriter().flush();
17
             try {
                 Thread.sleep(4000);
18
             } catch (InterruptedException e) {
19
20
                 // do nothing;
21
22
23
```

Other Technologies

Cross-document messaging

- The use of Cross Document Messaging for streaming
 - 1. The client loads a streaming resource in a hidden iframe
 - 2. The server pushes a JavaScript code to the iframe
 - 3. The browser executes the code as it arrives from the server
 - 4. The embedded iframe's code posts a message to the upper document

Channel API

- Google Technology for streaming API for AppEngine
- not based on HTTP streaming
- utilizes XMPP capabilities + hidden iframe at client-side

Overview

- Long-polling and Streaming
- WebSocket Protocol
- WebRTC

WebSocket

- Specifications
 - *IETF* defines
 - W3C defines
- Design principles
 - a new protocol
 - → browsers, web servers, and proxy servers need to support it
 - a layer on top of TCP
 - bi-directional communication between client and servers
 - → low-latency apps without HTTP overhead
 - Web origin-based security model for browsers
 - → same origin policy, cross-origin resource sharing
 - support multiple server-side endpoints
- Two phases
 - Handshake as an **upgrade** of a HTTP connection
 - data transfer the protocol-specific on-the-wire data transfer

Handshake – Request

Request

 client sends a following HTTP request to upgrade the connection to WebSocket

```
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 7
```

- Connection request to upgrade the protocol
- − Upgrade − protocol to upgrade to
- Sec-WebSocket-Key a client key for later validation
- ─ Sec-WebSocket-Origin origin of the request
- Sec-WebSocket-Protocol $list\ of\ sub$ -protocols that $client\ supports\ (proprietary)$

Handshake – Response

Response

- server accepts the request and responds as follows

```
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=
Sec-WebSocket-Protocol: chat
```

- \rightarrow 101 Switching Protocols status code for a successful upgrade
- \rightarrow Sec-WebSocket-Protocol a sub-protocol that the server selected from the list of protocols in the request
- → Sec-WebSocket-Accept a key to prove it has received a client WebSocket handshake request
- Formula to compute Sec-WebSocket-Accept

```
Sec-WebSocket-Accept = Base64Encode(SHA-1(Sec-WebSocket-Key +
"258EAFA5-E914-47DA-95CA-C5AB0DC85B11"))
```

- \rightarrow SHA-1 hashing function
- \rightarrow Base64Encode Base64 encoding function
- ightarrow "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" $magic\ number$

Data Transfer

- After successful handshake
 - socket between the client and the "resource" at the server is established
 - client and the server can both read and write from/to the socket
 - No HTTP headers overhead
- Data Framing
 - Data transmitted in TCP packets (see RFC6455:)
 - Contains payload length, closing frame, ping, pong, type of data (text/binary), etc. and payload (message data)

0 1 2 2 4 5 6 7 8 0 6		2 6 7 8 9 0 1 2 3 4 5 6 7	3
+-+-+-+	+	Extended payload le (16/64)	+
N V V S K K K K K K K K K	(7)	(if payload len==126	5/127)
Extended payload length continued, if payload len == 127			
ļ	į	Masking-key, if MASK se	et to 1
Masking-key (continued)		Payload Data	
: Payload Data continued :			
Payload Data continued			

WebSocket API

- Client-side API
 - clients to utilize WebSocket, supported by Chrome, Safari
 - Hides complexity of WebSocket protocol for the developer
- JavaScript example

```
// ws is a new URL schema for WebSocket protocol; 'chat' is a sub-protocol
    var connection = new WebSocket('ws://server.example.org/chat', 'chat');
    // When the connection is open, send some data to the server
    connection.onopen = function () {
      // connection.protocol contains sub-protocol selected by the server
      console.log('subprotocol is: ' + connection.protocol);
      connection.send('data');
    };
10
11
   // Log errors
12
    connection.onerror = function (error) {
13
      console.log('WebSocket Error ' + error);
14
    };
15
   // Log messages from the server
16
    connection.onmessage = function (e) {
17
      console.log('Server: ' + e.data);
18
19
    };
20
21
22
23
    // closes the connection
    connection.close()
24
```

Sockets.IO

- Many options for streaming
 - long-polling, streaming, iframe, WebSockets
 - Not all browsers support WebSockets
 - − − a layer providing a unified API
- Sockets.IO
 - API and JavaScript implementation
 - checks the availability of WebSocket protocol
 - → fallback to long-polling or other technologies when not available

```
// creates a new socket
var socket = new io.Socket();

// event handlers
socket.on('connect', function(){
    socket.send('hi!');
})
socket.on('message', function(data){
    alert(data);
})
socket.on('disconnect', function(){})
```

Overview

- Long-polling and Streaming
- WebSocket Protocol
- WebRTC

WebRTC

- Web Real-Time Communication
 - API to eachange media and arbitrary data between peers inside Web pages
 - It uses peer-to-peer principles
 - Supported by Google, Mozilla, Microsoft, Opera
- Specifications
- History
 - Google acquires company Global IP Solutions (GIPS) in 2010
 - GIPS developed underlying technology (codecs, echo cancellation techniques), released as open source
 - Google promoted the work around GIPS to W3C and IETF

WebRTC Main Tasks

- Acquiring audio and video
 - JavaScript API: MediaStream (aka getUserMedia)
- Communicating audio and video
 - JavaScript API: RTCPeerConnection
- Communicating arbitrary data
 - JavaScript API: RTCDataChannel

GetUserMedia

JavaScript code

```
var constraints = {video: true};

function successCallback(stream) {
   var video = document.querySelector("video");
   video.src = window.URL.createObjectURL(stream);
}

function errorCallback(error) {
   console.log("navigator.getUserMedia error: ", error);
}

navigator.getUserMedia(constraints, successCallback, errorCallback);
```

Constraints

- Control the contents of the MediaStream
- Media type, resolution, frame rate
- JavaScript app can read and manipulate the stream.
- It is also possible to acquire audio as well as screen capture.

RTCPeerConnection

- Allows to communicate media stream acquired by getUserMedia
 - Video chat, audio chat, screen sharing
- Some capabilities of RTCPeerConnection
 - Signal processing
 - Code handling
 - Peer to peer communication
 - Security
 - Bandwidth management

WebRTC Architecture

Communication

- Two phases
 - 1. Signaling
 - WebRTC defines abstract signalling
 - apps can use any singaling protocol, can use any such as SIP, XMPP, or custom using XHR or Websockets
 - 2. Exchange of real-time data in peer-to-peer manner
- Abstract signaling
 - Need to exhange session description objects
 - → Formats, codecs the peers want to use
 - → Network information for peer-to-peer communication
 - \rightarrow This information is captured as RTCSessionDescription (also SDP) structure
 - Any messaging mechanism and protocol

SIP and **SDP**

- Standards
 - SIP Session Initiation Protocol, protocol to establish and modify sessions.
 - SDP Session Description Protocol, describes media for a session, defined in

• SDP Example

```
v=0
o=- 7614219274584779017 2 IN IP4 127.0.0.1
s=-
t=0 0
a=group:BUNDLE audio video
a=msid-semantic: WMS
m=audio 1 RTP/SAVPF 111 103 104 0 8 107 106 105 13 126
c=IN IP4 0.0.0.0
a=rtcp:1 IN IP4 0.0.0.0
a=ice-ufrag:W2TGCZw2NZHuwlnf
a=ice-pwd:xdQEccP40E+P0L5qTyzDgfmW
a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
a=mid:audio
a=rtcp-mux
a=crypto:1 AES_CM_128_HMAC_SHA1_80 inline:9c1AHz27dZ9xPI91YNfSlI67/EMkjHHIHORiClQe
a=rtpmap:111 opus/48000/2
...
```

Signaling Diagram

JavaScript Session Establishment (JSEP)

- JSEP is a protocol to create a session between two parties
- JSEP steps between Alice and Bob
 - 1. Alice creates an offer that contains her local SDP.
 - 2. Alice attaches that offer to RTCPeerConnection object.
 - 3. Alice sends the offer to a singaling server using custom-built mechanism (WebSocket, XHR, etc.)
 - 4. Bob receives Alice's offer from the signaling server
 - 5. Bob creates an answer using his local SDP.
 - 6. Bob attaches his answer along with Alice's offer to his own RTCPeerConnection object.
 - 7. Bob returns his answer to the singaling server.
 - 8. Alice receives Bob's offer from the singaling server.

Interactive Connectivity Establishment

- ICE Interactive Connectivity Establishment
 - Allows WebRTC to overcome complexities of real-world networking
 - Finds the best path to connect peers such as
 - \rightarrow direct P2P communication.
 - \rightarrow by using STUN or TURN servers.
- STUN Session Traversal Utilities for NAT
 - Allows to discover the presence of a NAT server.
 - Allows to discover the public IP address and a port that the NAT has allocated for UDP flows.
 - It is provided as a third-party network server (STUN server) located on the public side of the NAT.
- TURN Traversal Using Relays around NAT
 - Communication relay for hosts behind NAT when STUN does not work.

STUN

- → STUN is a simple server, cheap to run
- → Data flows peer-to-peer

TURN

- → a cloud fallback when peer-to-peer does not work
- → data sent via a relay server, uses server bandwidth