OPTIMIZACION. TAREA 6

OSCAR DALMAU

Comentarios:

- Favor de seguir las indicaciones generales sobre las tareas que se comentaron al inicio del curso.
- Se espera que los estudiantes hagan comentarios y saquen conclusiones de los experimentos realizados.

Listado de problemas:

- (1) Implementa los metodos de Newton y Newton Modificado.
- (2) Realice 30 corridas, de los algoritmos de Maximo descenso, Newton y Newton Modificado a las funciones que aparecen abajo. Reporte los promedios de tiempo de ejecución y numero de iteraciones, segun aparece en las tablas 1 y 2. Seleccione los puntos iniciales de modo que cada entrada se obtenga de la siguiente forma

$$x_i^0 = x_i^* + \eta$$

donde x_i^* es la i-ésima entrada del óptimo \boldsymbol{x}^* proporcionado mas abajo para cada función, y $\eta \sim \mathcal{U}(-1,1)$

	Maximo descenso	Newton	Newton Modificado
Función de Rosembrock			
Función de Wood			

Table 1. Promedio de tiempo de 30 corridas seleccionando puntos iniciales de forma aleatoria.

	Maximo descenso	Newton	Newton Modificado
Función de Rosembrock			
Función de Wood			

Table 2. Promedio de iteraciones de 30 corridas seleccionando puntos iniciales de forma aleatoria.

 \bullet Función de Rosembrock para n=100

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right]$$

$$\mathbf{x}^* = \left[1, 1, \dots, 1, 1 \right]^T$$

$$f(\mathbf{x}^*) = 0$$

• Función de Wood

$$f(\mathbf{x}) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2 + (x_3 - 1)^2 + 90(x_3^2 - x_4)^2$$
$$10.1[(x_2 - 1)^2 + (x_4 - 1)^2] + 19.8(x_2 - 1)(x_4 - 1)$$
$$\mathbf{x}^* = [1, 1, 1, 1]^T$$
$$f(\mathbf{x}^*) = 0$$