### VV186: Honors Mathematics

#### Vector Space & Sequence of Real Functions

#### Xingjian Zhang

Univerity of Michigan-Shanghai Jiao Tong University Joint Institute

November 18, 2020



### Outline



- Vector Space
  - Definition
  - Subspace
  - Norm

- Sequences of Functions
  - Convergence of Function Sequences
  - Results
- 3 Tips

# Vector Space I



- 3.3.1. Definition. A triple  $(V, +, \cdot)$  is called a *real vector space* (or *real linear space*) if
  - 1. V is any set;
  - 2.  $+: V \times V \to V$  is a map (called addition) with the following properties:
    - (u+v)+w=u+(v+w) for all  $u,v,w\in V$  (associativity),
    - ▶ u + v = v + u for all  $u, v \in V$  (*commutativity*),
    - ▶ there exists an element  $e \in V$  such that v + e = v for all  $v \in V$  (existence of a neutral element),
    - ▶ for every  $v \in V$  there exists an element  $-v \in V$  such that v + (-v) = e;
  - 3.  $\cdot$ :  $\mathbb{R} \times V \to V$  is a map (called scalar multiplication) with the following properties:
    - ▶  $1 \cdot u = u$  for all  $u \in V$ ,
    - $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$  for all  $\lambda \in \mathbb{R}$ ,  $u, v \in V$ ,
    - $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u \text{ for all } \lambda, \mu \in \mathbb{R}, \ u \in V,$
    - $(\lambda \mu) \cdot u = \lambda \cdot (\mu \cdot u)$  for all  $\lambda, \mu \in \mathbb{R}$ ,  $u \in V$ .

### Vector Space II



#### Remark:

- ▶ Remember all of the 9 properties in the definition.
- ► For both of "+" and "·", the *codomain* is *V*. i.e. Both operators should map into original set *V*.
- ▶ Distinguish clearly a *complex* and a *real* vector space. It is determined by the *domain* of *scalar multiplication*. (Is  $\mathbb{C}^n$  a complex or a real vector space?)
- Some common notation:
  - 1.  $\mathbb{R}^n$
  - 2.  $\mathbb{C}^n$
  - 3.  $\mathcal{P}_n$
  - 4.  $C(\Omega, \mathbb{R})$
  - 5.  $C^k(\Omega,\mathbb{R})$
  - 6.  $C^{\infty}(\Omega,\mathbb{R})$
  - 7.  $\ell^{\infty}$
  - 8.  $c_0^1$

<sup>&</sup>lt;sup>1</sup>See Slide p.340 if you forget them.

### Subspace



#### We defined the *subspace*:

3.3.4. Definition. Let  $(V, +, \cdot)$  be a real or complex vector space. If  $U \subset V$  and  $(U, +, \cdot)$  is also a vector space, then we say that  $(U, +, \cdot)$  is a *subspace* of  $(V, +, \cdot)$ .

We have a simple way to verify a candidate  $(U, +, \cdot)$  is indeed a subspace of  $(V, +, \cdot)$ , given that  $(V, +, \cdot)$  is a vector space:

3.3.6. Lemma. Let  $(V, +, \cdot)$  be a real (complex) vector space and  $U \subset V$ . If  $u_1 + u_2 \in U$  for  $u_1, u_2 \in U$  and  $\lambda u \in U$  for all  $u \in U$  and  $\lambda \in \mathbb{R}$  ( $\mathbb{C}$ ), then  $(U, +, \cdot)$  is a subspace of  $(V, +, \cdot)$ .

True or False? (Give counter-examples or prove.)

- 1. Given a vector space V, and its two non-empty subspaces  $V_1, V_2$ , then  $V_1 \cup V_2$  is a subspace of V
- 2. Given a vector space V, and its two subspaces  $V_1, V_2$ , then  $V_1 \cap V_2$  is a subspace of V

## Normed Vector Space I



*Norm* is the "generalized length function" in a vector space. We defined it by three properties:

- 3.3.8. Definition. Let V be a real (complex) vector space. Then a map  $\|\cdot\|:V\to\mathbb{R}$  is said to be a **norm** if for all  $u,v\in V$  and all  $\lambda\in\mathbb{R}$  ( $\mathbb{C}$ ),
  - 1.  $\|v\| \ge 0$  for all  $v \in V$  and  $\|v\| = 0$  if and only if v = 0,
  - $2. \|\lambda \cdot v\| = |\lambda| \cdot \|v\|,$
  - 3.  $||u+v|| \le ||u|| + ||v||$ .

The pair  $(V, \|\cdot\|)$  is called a *normed vector space* or a *normed linear space*.

# Normed Vector Space II



#### Remark:

- A norm is a (unary) function. So we can naturally investigate into it as considering a function. (e.g. How to prove a norm is continous?)
- Any normed vector space can also be considered as a metric space. (How should we define the metric  $\rho(x, y)$  according to  $\|\cdot\|$ ?)
- ► Some common notation:
  - 1.  $||x||_2$  in  $\mathbb{R}^n$  (Euclidean norm)
  - 2.  $||x||_p$  in  $\mathbb{R}^n$  for  $p \in \mathbb{N}^+$
  - 3.  $||x||_{\infty}$  in  $\mathbb{R}^n$
  - 4.  $\|(a_n)\|_{\infty}$  in  $\ell^{\infty}$  or  $c_0$
  - 5.  $||f||_{\infty}$  in C([a, b])

True or False? (Give counter-examples or prove.)

1. Given a vector space V, given two norms  $\|\cdot\|_1:V\to\mathbb{R};\|\cdot\|_2:\mathbb{R}\to\mathbb{R}$ , then the  $\|\cdot\|:=\|\cdot\|_2\circ\|\cdot\|_1$  is a norm of V

# Pointwise vs. Uniform Convergence



3.4.1. Definition. Let  $\Omega \subset \mathbb{R}$  and  $(f_n)$  be a sequence of functions  $f_n \colon \Omega \to \mathbb{C}$ . We say that the sequence  $(f_n)$  converges pointwise to the function  $f \colon \Omega \to \mathbb{C}$  if

$$\bigvee_{x\in\Omega}|f_n(x)-f(x)|\xrightarrow{n\to\infty}0.$$

If f is the pointwise limit of  $(f_n)$ , we say that  $(f_n)$  converges *uniformly* to f on  $\Omega$  if

$$\sup_{x\in\Omega}|f_n(x)-f(x)|\xrightarrow{n\to\infty}0.$$

#### Remark:

- ▶ What are the differences between them?
- ▶ What are the relations between them?
- Can you come up with some examples to illustrate them?

### How to Calculate



Here is a general procedure to find the limit of a function sequence  $(f_n)$ 

- 1. Fix each  $x \in \Omega$ , find the pointwise limit of  $(f_n)$ , denoted by f.
- 2. Fix each  $k \in \mathbb{N}$ , find an explicit expression of  $||f_k(x) f(x)||$ , or an estimate of it.
- 3. If 2.  $\to$  0 as  $k \to \infty$ , we have  $(f_n)$  converges uniformly to f. Otherwise, the convergence is pointwise but not uniform.

### Results That You Should Know



- 1. A uniform convergent sequence of continous functions converges to a continous function.<sup>2</sup>
- 2. The metric space  $(C([a,b]), \rho)$  is complete, where  $\rho(f,g) = \|f-g\|_{\infty}$ . <sup>3</sup>

<sup>&</sup>lt;sup>2</sup>3.4.3. Theorem. Slides p.353

<sup>&</sup>lt;sup>3</sup>3.4.4. Theorem. Slides p.355

## Sample Solution to Ex.9 I



#### Exercise 9.

Define the functions

$$f_n \colon \mathbb{R} \to \mathbb{R},$$
  $f_n(x) = \frac{|x|^n}{1 + |x|^n}$ 

for  $n \in \mathbb{N}$ .

- i) Find the pointwise limit of  $(f_n)$ .
- ii) Show that the convergence is not uniform on  $\mathbb{R}$ .
- iii) Show that for any q>1 the convergence on  $I_q=\{x\in\mathbb{R}\colon |x|\leq 1/q\}\cup\{x\in\mathbb{R}\colon |x|\geq q\}$  is uniform.

$$(1+1+2 \text{ Marks})$$

# Sample Solution to Ex.9 II



i) Fix  $x = x_0$ ,

$$\text{If } |x_0| < 1, \ \lim_{n \to \infty} |x_0|^n = 0, \ \lim_{n \to \infty} f_n(x_0) = \frac{\lim\limits_{n \to \infty} |x_0|^n}{1 + \lim\limits_{n \to \infty} |x_0|^n} = 0.$$

If 
$$|x_0| = 1$$
,  $\lim_{n \to \infty} |x_0|^n = 1$ ,  $\lim_{n \to \infty} f_n(x_0) = \frac{n \to \infty}{1 + \lim_{n \to \infty} |x_0|^n} = 1/2$ .

If 
$$|x_0| = 1$$
,  $\lim_{n \to \infty} |x_0|^n = 1$ ,  $\lim_{n \to \infty} f_n(x_0) = \frac{\lim_{n \to \infty} |x_0|^n}{1 + \lim_{n \to \infty} |x_0|^n} = 1/2$ .  
If  $|x_0| > 1$ ,  $\lim_{n \to \infty} \frac{1}{|x_0|^n} = 0$ ,  $\lim_{n \to \infty} f_n(x_0) = \frac{1}{1 + \lim_{n \to \infty} \frac{1}{|x_0|^n}} = 1$ .

In conclusion, the pointwise limit is 
$$f(x) = \begin{cases} 0, & |x| < 1 \\ 1/2, & |x| = 1. \\ 1, & |x| > 1 \end{cases}$$

# Sample Solution to Ex.9 III



ii) We then show the convergence is not uniform.

$$||f - f_n||_{\infty} = \sup_{x \in \mathbb{R}} |f(x) - f_n(x)|$$

$$\geq |f(3^{-1/n}) - f_n(3^{-1/n})|$$

$$= |f_n(3^{-1/n})|$$

$$= 1/4 \to 0.$$

Thus, the convergence is not uniform.

# Sample Solution to Ex.9 IV



iii) Notice that  $f_n(x)=1-\frac{1}{1+|x|^n}$  increases as |x| increases. Similarly,  $1-f_n(x)=\frac{1}{1+|x|^n}$  decreases as |x| increases. Since

$$\begin{split} \|f - f_n\|_{\infty} &= \sup_{x \in I_q} |f(x) - f_n(x)| \\ &= \max \left\{ \sup_{|x| \le 1/q} |f(x) - f_n(x)|, \sup_{|x| \ge q} |f(x) - f_n(x)| \right\} \\ &= \max \left\{ \sup_{|x| \le 1/q} |f_n(x)|, \sup_{|x| \ge q} |1 - f_n(x)| \right\} \\ &= \max \left\{ \frac{|1/q|^n}{1 + |1/q|^n}, \frac{1}{1 + |q|^n} \right\} \\ &= \frac{1}{1 + |q|^n} \xrightarrow{n \to \infty} 0, \end{split}$$

the sequence is uniformly convergent on  $I_a$ .

### **Tips**



#### Some general tips for the exams:

- ▶ Do **not** stay up too late tonight. You want to have a clear mind at 8 am. tomorrow morning.
- ► The sample exams do not contain exercises regarding vector spaces. However, this does not mean you will not encounter this concept in the exam.
- ▶ Allocate your time (100mins) wisely in the exam. Finish the easy problems first, focus on tough ones then. The problems are possibly not arranged in the order of difficulty.



# KEEP CALM AND TRUST MATHEMATICIANS

(and you, of course!)