Universidad de San Andrés Práctica C: Optimización y estudio de funciones RESULTADOS

Recordar: cuando hablamos de extremos locales, no interesa saber si además son globales. Los extremos globales también podemos llamarlos extremos absolutos; y los extremos locales también podemos llamarlos extremos relativos.

1. Para cada una de las siguientes funciones determinar sus puntos críticos, ...

	PC	I^{\nearrow}	I^{\searrow}	Clasif. extremos
a)	Ø	\mathbb{R}	Ø	No hay.
b)	$\{-\sqrt{3/2},0,\sqrt{3/2}\}$	$(-\sqrt{3/2},0)$	$(-\infty, -\sqrt{3/2})$	Máx local: $x = 0$, mín
	$\begin{bmatrix} \begin{pmatrix} \sqrt{3/2}, 0, \sqrt{3/2} \end{bmatrix} \end{bmatrix}$	$(\sqrt{3/2},+\infty)$	$(0,\sqrt{3/2})$	globales: $x = \pm \sqrt{3/2}$
c)	$\{e^{-\frac{1}{2}}\}$	$(e^{-\frac{1}{2}}, +\infty)$	$(0,e^{-\frac{1}{2}})$	Mín global: $x = e^{-\frac{1}{2}}$
d)	d) {0,2}	(0,2)	$(-\infty,0)$	Máx local: $x = 2$, mín
(u)	(0, 2)		$(2,+\infty)$	global: $x = 0$.
e)	{0}	$(0,+\infty)$	$(-\infty,0)$	Mín global: $x = 0$
f)	$\{0, \frac{2}{5}\}$	$(-\infty,0)$	$(0, \frac{2}{5})$	Máx local: $x = 0$, mín
		$(2/5,+\infty)$		local: $x = \frac{2}{5}$
g)	{1}	$(1,+\infty)$	$(-\infty,0);(0,1)$	Mín local: $x = 1$
h)	{4}	(0,4)	$(4,+\infty)$	Máx global: $x = 4$
i)	{-3}	(-3,1)	$(-\infty, -3)$	Mín global: $x = -3$
	()	(-) -)	$(1,+\infty)$	9
j)	{-1,1}	(-1,1)	$(-\infty, -1)$	Máx global: $x = -1$,
			$(1, +\infty)$	mín global: $x = 1$

- 2. Hallar los extremos de las siguientes funciones y decidir si son locales o absolutos.
 - (a) En $x = -\frac{1}{2}$ se alcanza un mínimo global.
 - (b) En $x = \frac{16}{5}$ se alcanza un mínimo global.
 - (c) En $x = \pm 1$ se alcanzan mínimos globales, en x = 0 se alcanza un máximo local.
 - (d) En x = 1 se alcanzan un mínimo local.
- 3. Para cada una de las siguientes funciones hallar, si existen, el máximo absoluto y ... Gráficos
 - (a) En x = -1 se alcanza un mínimo global, en x = 1 se alcanza un máximo global.
 - (b) En $x = \sqrt{3/2}$ se alcanza el mínimo global, no hay máximo global.
 - (c) En $x=e^{-\frac{1}{2}}$ se alcanza el mínimo global, en x=1 se alcanza el máximo global.
 - (d) En x = 0 se alcanza el mínimo global, en x = -1 el máximo global.
 - (e) En x=0 se alcanza el mínimo global, en $x=\sqrt{8}$ el máximo global.
 - (f) En x=-1 se alcanza el mínimo global, en x=0 y x=1 se alcanza el máximo global.
 - (g) En x = 1 se alcanza un mínimo global, en x = 10 se alcanza el máximo global.

- (h) En $x=\frac{1}{4}$ se alcanza un mínimo global y en x=4 un máximo global.
- (i) En x = -2 se alcanza el mínimo global y en x = 0 el máximo global.
- (j) En x = 0 se alcanza el mínimo global y en x = 1 el máximo global.
- (k) En x=0 se alcanza un mínimo global, en $x=\pm 1$ se alcanza un máximo global.
- 4. Mostrar que las siguientes funciones son o bien crecientes o bien decrecientes ...
 - (a) $f'(x) = 1 + x^{-\frac{2}{3}} + \frac{2}{3}x^{-\frac{4}{3}} \ge 1 > 0$ y f es creciente estricta en $(0, +\infty)$.
 - (b) $f'(x) = \frac{e^{-\frac{1}{x}}}{x^2} > 0$ y f es creciente estricta.
 - (c) Dom $f = \{x \in \mathbb{R} \mid |x 3| < 2\} = (1, 5)$. $f'(x) = \frac{x + 1}{(-x^2 + 6x 5)^{\frac{3}{2}}}$ que es positiva en (1, 5), por lo que f es creciente estricta.
- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable en todo punto y que además cumple las ... En x = -1 y $x = \frac{3}{2}$ f alcanza máximos locales, en x = 0 se alcanza un mínimo local. Un posible ejemplo de dibujo.
- 6. Mostrar que valen las siguientes desigualdades: ...
 - (a) $f(x) = x^3 x 6$ tiene mínimo global en x = 2. Entonces $f(x) \ge f(2) = 0$.
 - (b) $f(x) = e^{2x} 2e^x$ alcanza mínimo global en x = 0; $f(x) \ge f(0) = -1 > -2$.
 - (c) $f(x) = \frac{x^2}{x-1} \frac{3}{4}x$ alcanza máximo global en x = -1 con dominio $(-\infty, 1)$; $f(x) \le f(-1) = \frac{1}{4}$.
 - (d) $f(x) = \ln(1+x) \frac{x}{x+1}$ alcanza mínimo global en x = 0 con dominio $[0, +\infty)$; $f(x) \ge f(0) = 0$. Como f(x) = 0 s \tilde{A}^3 lo en x = 0 se tiene que f(x) > f(0) si x > 0.
 - (e) $f(x) = (x-1)^{-1} \ln(x-1)$ alcanza un máximo global en x = e+1 con dominio $(1,+\infty)$; $f(x) < f(e+1) = e^{-1}$.
- 7. Sea $f(x) = x^2 + px + q$.
 - (a) p = -2, q = 4
 - (b) Es mínimo global.
- 8. Sea $f(x) = \frac{1}{e^x(e^x 4)}$. Hallar dominio y calcular la imagen de f. Dom $f = \mathbb{R} \setminus \{\ln 4\}$; Im $f = (-\infty, -\frac{1}{4}] \cup (0, +\infty)$.
- 9. Sea $f(x) = \sqrt{x}e^{-36x^2+2}$. Hallar dominio e imagen de f. Dom $f = [0, +\infty)$; Im $f = [0, \frac{e^{7/4}}{2\sqrt{3}}]$.
- 10. Hallar $a \in \mathbb{R}$ para que $f(x) = \frac{\sqrt{ax^2+1}}{x-2}$ tenga un punto crítico en $x = -\frac{1}{4}$... a=2. Para ese valor de $a,I^{\nearrow}: (-\infty,-\frac{1}{4}),I^{\searrow}: (-\frac{1}{4},2); (2,+\infty)$ y se alcanza un máximo local en $x=-\frac{1}{4}$.
- 11. Hallar todos los valores de $k \in \mathbb{R}$ de modo que $f(x) = (5x 4) \ln(5x 4) 5x + k \dots$ $k \in [5, +\infty)$

12. Determinar los intervalos de concavidad/convexidad y los puntos de inflexión
--

	I^{\cup}	I^{\cap}	Ptos. inflexión
a)	$(0, +\infty)$	$(-\infty,0)$	{0}
b)	$(-\infty,-\sqrt{2}/2);(\sqrt{2}/2,+\infty)$	$(-\sqrt{2}/2,\sqrt{2}/2)$	$\{-\sqrt{2}/2,\sqrt{2}/2\}$
c)	$(e^{-3/2}, +\infty)$	$(0,e^{-3/2})$	$\{e^{-3/2}\}$
d)	$(-\infty, 2-\sqrt{2}); (2+\sqrt{2}, +\infty)$	$(2-\sqrt{2},2+\sqrt{2})$	$\left \{2 - \sqrt{2}, 2 + \sqrt{2}\} \right $
e)	\mathbb{R}	Ø	Ø
f)	$(-1/5,0);(0,+\infty)$	$(-\infty,-1/5)$	$\{-1/5\}$
g)	$(-\infty, -\sqrt[3]{2}); (0, +\infty)$	$(-\sqrt[3]{2},0)$	$\{-\sqrt[3]{2}\}$
h)	$(2^{10/3}, +\infty)$	$(0,2^{10/3})$	$\{2^{10/3}\}$
i)	$(-5,1);(1,+\infty)$	$(-\infty, -5)$	{-5}
j)	$(-\sqrt{3},0);(\sqrt{3},+\infty)$	$(-\infty, -\sqrt{3}); (0, \sqrt{3})$	$\{-\sqrt{3},0,\sqrt{3}\}$

13. Calcular las asíntotas verticales, horizontales y oblicuas de las siguientes funciones

	AV	AH	AO	
a)	$x = \frac{2}{3}$	$y = 7/3 \text{ para } \pm \infty$	no hay	
b)	x = 3/5 a derecha	no hay	no hay	
c)	x = -3	no hay	$y = x - 5 \text{ para } \pm \infty$	
d)	no hay	no hay	$y = x + \frac{1}{2} \text{ para } +\infty,$ $y = -x + \frac{1}{2} \text{ para } -\infty$	
e)	no hay	$y = 0$ para $+\infty$, no hay en $-\infty$	no hay	
f)	x = 0	no hay	no hay	
g)	x = -1/3 a derecha	$y = 1 \text{ para } +\infty$	no hay	
h)	x = -1	no hay	$y = 2x - 5$ para $-\infty$ y no hay para $+\infty$.	
i)	no hay	$y = 0$ para $-\infty$, no hay en $+\infty$	no hay	

14. Trazar los gráficos de las siguientes funciones, haciendo el estudio de f', f'', ... Gráficos

(a)
$$f(x) = \frac{x^2 - 1}{x}$$
.
Dom $f = \mathbb{R} \setminus \{0\}$,

AV: x = 0, AO: y = x para $\pm \infty$,

No tiene extremos. $I^{\nearrow}: (-\infty, 0); (0, +\infty),$

No tiene puntos de inflexión. $I^{\cup} = (-\infty, 0), I^{\cap} = (0, +\infty).$

(b)
$$f(x) = \frac{2x^2 - 1}{x - 1}$$
.

 $Dom f = \mathbb{R} \setminus \{1\},\$

AV: x = 1, AO: y = 2x + 2 para $\pm \infty$,

Mín local en $x = 1 + \sqrt{2}$, máx local en $x = 1 - \sqrt{2}$.

 $I^{\nearrow}: (-\infty, 1 - \sqrt{2}); (1 + \sqrt{2}, +\infty), \ I^{\searrow}: (1 - \sqrt{2}, 1); (1, 1 + \sqrt{2}),$ No tiene puntos de inflexión. $I^{\cup} = (1, +\infty), \ I^{\cap} = (-\infty, 1).$

(c)
$$f(x) = (x-1)^{\frac{2}{3}} + 3$$
.

Dom
$$f = \mathbb{R}$$
,

No hay asíntotas,

Mín global en x = 1. $I^{\nearrow} = (1, +\infty)$, $I^{\searrow} = (-\infty, 1)$,

No tiene puntos de inflexión. $I^{\cap}: (-\infty, 1); (1, +\infty)$.

(d)
$$f(x) = \frac{4x}{x^2 - 9}$$
.

$$Dom f = \mathbb{R} \setminus \{-3, 3\},\$$

AV:
$$x = \pm 3$$
, AH: $y = 0$ para $\pm \infty$,

No tiene extremos.
$$I^{\searrow}: (-\infty, -3); (-3, 3); (3, +\infty),$$

En x = 0 hay un punto de inflexión. $I^{\cup}: (-3,0); (3,+\infty), I^{\cap}: (-\infty,-3); (0,3).$

(e)
$$f(x) = \frac{x}{\ln x}$$
.

Dom
$$f = (0, 1) \cup (1, +\infty),$$

AV:
$$x = 1$$
,

Mín local en
$$x = e$$
. $I^{\nearrow} : (e, +\infty), I^{\searrow} : (0, 1); (1, e),$

Punto de inflexión en $x = e^2$. $I^{\cup}: (1, e^2), I^{\cap}: (0, 1); (e^2, +\infty)$.

(f)
$$f(x) = \ln(\frac{1+x}{1-x}), x \in (-1,1).$$

No tiene asíntotas.

No tiene extremos. $I^{\nearrow} = (-1, 1)$.

Punto de inflexión en x = 0. $I^{\cup} = (0,1)$, $I^{\cap} = (-1,0)$.

(g)
$$f(x) = x(\ln(x))^2$$
.

$$Dom f = (0, +\infty).$$

No tiene asíntotas.

Máx local en $x = e^{-2}$, mín global en x = 1. $I^{\nearrow}: (0, e^{-2}); (1, +\infty), I^{\searrow}: (e^{-2}, 1)$.

Punto de inflexión en $x = e^{-1}$. $I^{\cup} = (e^{-1}, +\infty)$, $I^{\cap} = (0, e^{-1})$.

(h)
$$f(x) = x - e^x$$
.

$$\mathrm{Dom}\, f=\mathbb{R}$$

AO:
$$y = x \text{ para } -\infty$$
.

Máx global en
$$x = 0$$
. $I^{\nearrow} = (-\infty, 0)$, $I^{\searrow} = (0, +\infty)$.

No hay punto de inflexión. $I^{\cap} = \mathbb{R}$.

(i)
$$f(x) = \frac{e^x + e^{-x}}{2}$$
.

$$Dom f = \mathbb{R}^2$$

No tiene asíntotas.

Mín global en
$$x = 0$$
. $I^{\nearrow} = (-\infty, 0)$, $I^{\searrow} = (0, +\infty)$.

No tiene puntos de inflexión. $I^{\cup} = \mathbb{R}$.

(j)
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

$$Dom f = (-1, +\infty).$$

AV:
$$x = -1$$
.

Mín global en
$$x = 0$$
. $I^{\nearrow} = (0, +\infty)$, $I^{\searrow} = (-1, 0)$.

No tiene puntos de inflexión. $I^{\cup} = (1, +\infty)$.

15. Hallar dos números no negativos que sumen 1 y tales que la suma de sus cuadrados ... Optimizar $f(x) = x^2 + (1-x)^2$ con dominio $x \in [0,1]$. En $x = y = \frac{1}{2}$ se alcanza el mínimo absoluto, en x = 0 (y = 1) y x = 1 (y = 0) el máximo absoluto.

- 16. Una caja rectangular tiene una base cuadrada y no tiene tapa ... Optimizar $V(x)=x^2\cdot\frac{48-x^2}{4x}$ con dominio $x\in(0,4\sqrt{3})$. En x=4 se alcanza el máximo. Las dimensiones de la caja son 4 cm \times 4 cm \times 2 cm.
- 17. Entre todos los rectángulos de área 100 m^2 , determine las dimensiones del que posee: ...
 - (a) Optimizar $P(x)=2(x+\frac{100}{x})$ con dominio $x\in(0,+\infty)$. En x=10 se alcanza el mínimo absoluto. El rectángulo es de $10\ m\times 10\ m$.
 - (b) Optimizar $D(x) = \sqrt{x^2 + (\frac{100}{x})^2}$ con dominio $x \in (0, +\infty)$. En x = 10 se alcanza el mínimo absoluto. El rectángulo es de $10 \ m \times 10 \ m$.
- 18. Hallar las coordenadas de los puntos del gráfico de la función $f(x) = \sqrt{16 3x}$... Optimizar $D(x) = \sqrt{x^2 + (16 3x)}$ con dominio $x \in [0, 16/3]$. En x = 3/2 se alcanza el mínimo absoluto y en x = 16/3, el máximo absoluto. El punto del gráfico de f más cercano al origen es $(3/2, \sqrt{23/2})$ y el más lejano, (16/3, 0).
- 19. En la producción y comercialización de un producto ... Optimizar D(x) con dominio $x \in [0, 15]$. En x = 5 se alcanza el máximo absoluto.
- 20. Un empresa de alquiler de autos tiene una flota de 120 vehículos que alquila a ... Optimizar B(p) = p.q(p) 4q(p), donde q(p) = 120 2(p-40) es la cantidad de autos alquilados a precio p. El dominio es $p \in [40, +\infty)$. En p = 52 se alcanza un máximo absoluto (es una cuadrática cóncava). Debe alquilar cada auto a p = \$52.
- 21. El triángulo rectángulo de la figura adjunta tiene área 18 y el cateto b verifica ... Optimizar $A(b) = \frac{\pi}{8}(b^2 + (\frac{36}{b})^2)$ con dominio $b \in [1,12]$. En b=6 se alcanza el mínimo absoluto, y en x=1 el máximo absoluto. Las dimensiones del triángulo son 6×6 el de área mínima, y 1×36 el de área máxima.