No. 2					
		0	()	

5)(6)くマクローリンの定理>	/0
関数fen: 0を含む お閉区間 I=(いら)で C***後関数	•
二のとき、*スモ(o.b)に対して、	
=0 c(0,1) 3.7. f(n) = f(0) + f(0) x + f(0) x2+ + f(n)(0)	Xu+ (nt) [(nt) [(DS) Xut1
(で)マクロ・リンの定理とり 30 6(0.1). 8.大.	8
$e^{x}=1+x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^n+\frac{e^{0x}}{(n+1)!}x^{n+1}$	·
=012, x=-26736	
$e^{-2} = 1 - 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{(-2)^n}{n!} + \frac{e^{-20}}{(n+1)!} + \frac{2^n}{(n+1)!}$	n-1 j
2200	
$ e^{-2} $ $ -2+\frac{2^{\epsilon}-2^{3}}{2!}+ +\frac{(-2)^{n}}{n!} = \frac{(-2)^{n}}{(n+1)!} e^{20} = \frac{2^{n}}{(n+1)!} e^{20}$	HI < 2.
でも3がら、2くをた対して、それを例: これを例:	
$ e^{-2}-\{1-2+\frac{2^{2}}{2^{2}}-\frac{3^{2}}{2^{2}}+\frac{(-2)^{n}}{n!} <\varepsilon.$	
tr. 10-2 - {1-2+21-31+ + \frac{(-2)^n}{n!} \d 0 \chi 2 \frac{1}{21}}	
このとき、 n=13 と定めると	
$ e^{-2}-\{1-2+\frac{2!}{2!}-\frac{2^3}{3!}+\cdots-\frac{2^{13}}{13!} <1.65679$ X/c	-7 < 0.000001.
(c) n=0	' 6
P= 1	
8 = 1	
Sum= 1	
Wite (abs (2*P/(n+1))>0.000001):	
n= n+1	
P=2*p/n.	
9 = - 96	
Sum = sum + p x 8	
print (n, sum)	

-4-

(4)(a) - f(xx) = f'(xx) (x-xx)
二のとき、(x.の)=(xk+1.0)を代又すると、
0-f(xk)=f'(xk)(xk1-xk)
=> xxf'(xx) -f(xx) = f'(xx). xx+1.
- Xk+1 - Xk- f(xk) (:. f(xk) +0).
$(b). (a) \pm i) \times_k > \times_{k+1}.$
よて、χ1>χ2.>χ3>··· > Xk7XH1>···
したがって得られた数列(なりかチャル)-0の解に収ますることが期待される。
(5) の=[0]*3より配列[0.0.0]力生成される. (6)
[0.0.0]出力. > O[2]= O[2]+1 > [0.0.1]出力 > O[2]= O[2]+1 > [0.0.2]出力
> a[2] = a[2]+1 &1) [0.0.3] → while x: ([0.0.0] → k=1 → CI[] = 0[1]+1 → [0.1.0]/12
$\rightarrow [0.10]$ $\pm \rightarrow \alpha[2] = \alpha[2] + 1 \rightarrow [011]$ $\pm \rightarrow \alpha[2] = \alpha[2] + 1 \rightarrow [0.12]$ $\pm b$
+ > a[2] = a[2]+1 &1 [0.1.3] > white x: [0.10] > k=1 > a[1] = a[1]+1 > [0.2.0] \}_{15}
→[0.2.0]出力→の[2]=の[2]+1,→[0.2.1]出力→の[2]=の[2]+1,→[0.2.2]出力
$\rightarrow \alpha[2] = \alpha[2] + \alpha [0.2.3] \rightarrow \text{While} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\rightarrow [0.0!0] \rightarrow k20 \rightarrow 0[0] = \alpha[0] + 1 \rightarrow [1.0.0] \downarrow_{B} \rightarrow [1.0.0] \pm 1 \rightarrow 0[2] = \alpha[2] + 1 \downarrow_{Q}$
[紀果] [0.0.0]
[0.0,1]
[0.0,2]
[0.1,0]
[0,1,1]
[0.1.2]
[6, 2, 0]
[0.2.1]
[0, 2, 2]
(2)(d) 教3時点(STEP4)でf(c)=0 計は b-a < 0.00000 2か放立する.
f(c)=00/t2(t) B=cty B-c1=0<0,000001(t) B-5%; b-a<0,000002012. fax<0<06)
であるので中間値の治理よりがありとなるなの(はん)か存在するか、二てはまりとなって

(13.7まり、Be(0.6)、まなわち、0KB<bまり、時間から Cを引いて. - ちゅ= a-CKB-C<b-c= を立となり、1B-d < かっくし、0.00001か示される

PUNIV