Prova-Modelo de Exame de Matemática A

2021 / 2022

Prova-	-Mode	lo de	Exame
--------	-------	-------	-------

Matemática A

Duração da Prova: 150 minutos.	Tolerância: 30 minutos.
--------------------------------	-------------------------

12.º Ano de Escolaridade

Nome do aluno:	N.º:	Turma:
----------------	------	--------

A prova inclui 12 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g$ (r - raio da base; g - geratriz)

Área de uma superfície esférica: $4 \pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3}$ × Área da base × Altura

Volume de uma esfera: $\frac{4}{3} \pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

Complexos

$$\left(\rho e^{i\theta}\right)^n=\rho^n\;e^{in\theta}$$

$$\sqrt[n]{\rho\,e^{\,i\theta}} = \sqrt[n]{\rho}\,e^{i\frac{\theta+2k\pi}{n}} \quad (k\,\in\,\{0,\ldots,n-1\}\,\mathrm{e}\,\,n\in\mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{r\to 0} \frac{\sin x}{r} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Considere a sucessão (u_n) definida por $u_n = \frac{(-1)^{n-1}}{n+1}$.

Em relação a uma certa função f, de domínio $\mathbb{R}\setminus\{0\}$, sabe-se que $\lim f(u_n)$ não existe.

Em qual das opções seguintes pode estar definida uma expressão analítica de f?

- (A) $f(x) = \ln|x|$
- **(B)** $f(x) = \frac{e^x}{x}$
- (C) $f(x) = \frac{\operatorname{sen}(x)}{x}$
- **(D)** $f(x) = \frac{e^{x}-1}{x}$
- **2.** Seja (u_n) uma progressão geométrica.

Sabe-se que, relativamente a (u_n) , o primeiro, o segundo e o terceiro termos são p-2, -2p e -2p-2, respetivamente, para um certo número real negativo p.

Determine, sem recorrer à calculadora, a soma de todos os termos da sucessão (u_n) .

3. Sejam p e n números naturais tais que p < n. Sabe-se que ${}^nC_{p+1} - {}^6C_{p+1} = {}^6C_p$.

Considere que se inscreveu cada um dos elementos da linha de ordem n do triângulo de Pascal num cartão e se colocou num saco cada um desses cartões, indistinguíveis ao tato.

Retiram-se, simultaneamente e ao acaso, três cartões do saco.

Qual é a probabilidade de saírem dois cartões com números iguais?

- (A) $\frac{1}{7}$
- **(B)** $\frac{2}{7}$
- (C) $\frac{3}{7}$
- (D) $\frac{4}{7}$
- 4. Uma caixa contém bolas de várias cores, indistinguíveis ao tato, umas numeradas e outras não. Das bolas existentes na caixa, sabe-se que:
 - o número de bolas azuis é o dobro do número de bolas numeradas;
 - das bolas numeradas, metade são azuis;
 - cinco em cada oito bolas são azuis ou numeradas;
 - três são azuis e numeradas.

Determine o número de bolas que a caixa contém.

5. Num congresso internacional de Matemática, que se realiza nos Países Baixos, participam 15 palestrantes de diferentes nacionalidades: 5 chineses, 4 brasileiros, 3 neerlandeses, 1 português, 1 espanhol e 1 francês.

Os palestrantes estão instalados no mesmo hotel, e vão ser transportados para o hotel utilizando uma carrinha de dez lugares e um automóvel de cinco lugares.

Escreva uma expressão que dê o número de maneiras diferentes de distribuir os 15 palestrantes pelos 15 lugares disponíveis, de modo que os condutores sejam neerlandeses, os palestrantes chineses viajem no mesmo veículo e que, no automóvel, viajem palestrantes de nacionalidades todas distintas.

6. Na figura está representado, num referencial o.n. Oxyz, um cubo [ABCDEFGH].

Sabe-se que:

- cada aresta do cubo é paralela a um dos eixos coordenados;
- o vértice B tem coordenadas (0, 3, 6);
- o vetor \overrightarrow{BE} tem coordenadas (3,3,-3).
- **6.1.** Qual das condições seguintes define a superfície esférica que passa nos oito vértices do cubo?

(A)
$$\left(x + \frac{3}{2}\right)^2 + \left(y + \frac{9}{2}\right)^2 + \left(z + \frac{9}{2}\right)^2 = \frac{27}{2}$$
 (B) $\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{9}{2}\right)^2 + \left(z - \frac{9}{2}\right)^2 = \frac{27}{2}$

(B)
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{9}{2}\right)^2 + \left(z - \frac{9}{2}\right)^2 = \frac{27}{2}$$

(C)
$$\left(x + \frac{3}{2}\right)^2 + \left(y + \frac{9}{2}\right)^2 + \left(z + \frac{9}{2}\right)^2 = \frac{27}{4}$$

(D)
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{9}{2}\right)^2 + \left(z - \frac{9}{2}\right)^2 = \frac{27}{4}$$

- **6.2.** Seja α o plano que passa por G e é perpendicular à reta OE, e seja P o ponto de interseção do plano α com a reta *BE*. Determine a distância do ponto *P* ao plano xOy.
 - **7.** Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = x e^{\frac{1}{x}} 2$. Estude, sem recorrer à calculadora, a função f quanto à existência de assíntotas ao seu gráfico e, caso estas existam, escreva as respetivas equações.

8. Considere a função g, de domínio $\mathbb{R}\setminus\{5\}$, definida por:

$$g(x) = \begin{cases} \frac{x e^x - 5e^5}{x - 5} & \text{se } x < 5\\ x \log(x - 5) & \text{se } x > 5 \end{cases}$$

- **8.1.** Sem recorrer à calculadora, averigue se existe $\lim_{x \to 5} g(x)$.
- **8.2.** Em] $5, +\infty$ [o gráfico de g tem pontos cuja ordenada é inferior à abcissa.

Determine, sem recorrer à calculadora, as abcissas desses pontos.

Apresente a resposta na forma de intervalo de números reais.

9. Um foguetão, ao ser lançado, é impulsionado pela expulsão dos gases que resultam da queima do combustível. Admita que a velocidade de um foguetão, em quilómetros por segundo, desde o arranque até se esgotar o combustível é dada por:

$$v(t) = -4\ln(1 - 0.004t) - 0.001t$$
, com $0 \le t \le 150$

A variável t designa o tempo, em segundos, após o arranque.

9.1. A massa inicial do foguetão é 140 toneladas, das quais 75% correspondem à massa do combustível.

Sabe-se ainda que o foguetão demora 150 segundos a esgotar o combustível.

Qual é a taxa média de consumo do combustível em toneladas por segundo, desde o arranque até se esgotar o combustível?

(A) 0,65 toneladas por segundo

(B) 0,7 toneladas por segundo

(C) 0,75 toneladas por segundo

- (D) 0,8 toneladas por segundo
- 9.2. Decorridos t₁ minutos após o arranque, a velocidade do foguetão é igual a um certo valor. Sabe-se que, passado igual período de tempo, a velocidade do foguetão é de mais 1,1 km/s do que esse valor.

Determine, recorrendo às capacidades gráficas da calculadora, a velocidade do foguetão no instante t_1 .

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas;
- apresente o valor pedido em quilómetros por segundo, arredondado às centésimas.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

10. Na figura está representado, no plano complexo, o triângulo equilátero [*OAB*].

Sabe-se que o ponto A é o afixo de um número complexo z.

Qual é o número complexo cujo afixo é o ponto B?

- **(A)** $(\sqrt{3} + i) z$
- **(B)** $(1 + \sqrt{3} i) z$
- **(C)** $\left(\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) z$
- **(D)** $\left(\frac{\sqrt{3}}{2} + \frac{1}{2} i\right) z$
- **11.** Em \mathbb{C} , conjunto dos números complexos, considere os números complexos $z_1 = \sqrt{2} e^{i\frac{\pi}{4}} + i^{2023}$ e $z_2 = e^{i\theta}$, para um certo número real θ .

Sem recorrer à calculadora, prove que qualquer que seja o número real θ , $|z_1 + \overline{z_2}|^2 \in [0, 4]$.

12. Seja f uma função, de domínio \mathbb{R}^+ , cuja derivada, f', de domínio \mathbb{R}^+ , é dada por:

$$f'(x) = \ln(e^x + 12e^{-x} + x)$$

Recorrendo a métodos exclusivamente analíticos, estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta apresente:

- ullet o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para baixo;
- ullet o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f, caso este(s) exista(m).
- **13.** Seja h a função, de domínio \mathbb{R} , definida por:

$$h(x) = 3^{\cos(\pi + 2x) - 4\sin^2 x}$$

Determine, sem recorrer à calculadora, uma expressão geral para as abcissas dos pontos do gráfico da função h cuja ordenada é $\frac{1}{9}$.

14. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \sin^2 x - \cos(2x)$$

Seja g a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $g(x)=\frac{1}{x}$.

Sem recorrer à calculadora, prove que existe pelo menos um $c \in \left] \frac{\pi}{4}, \frac{3\pi}{4} \right[$ tal que a reta tangente ao gráfico de f em c é perpendicular à reta tangente ao gráfico de g em c.

★ 15. Na figura estão representados, num referencial o.n. Oxy, a circunferência trigonométrica e o quadrado [OABC].

Sabe-se que:

- o ponto B pertence à circunferência;
- o declive da reta $OA \in m$.

Prove que a abcissa do ponto B é dada, em função de m, por $\frac{\sqrt{2}(1-m)}{2\sqrt{1+m^2}}$.

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obrigatoriamente para a classificação final.	1.	3.	4.	6.1.	6.2.	8.1.	8.2.	9.1.	9.2.	10.	12.	15.	Subtotal
Cotação (em pontos)	12	12	14	12	14	14	14	12	14	12	14	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2	2.	į	5.	7	7.	1	1.	1:	3.	1	4.	Subtotal
Cotação (em pontos)	3 × 14 pontos								42				
TOTAL							200						