Programming Course Lecture 10: Econometrics with R

Diego de Sousa Rodrigues SciencesPo

31 mars 2022

- install.packages("UsingR")
- library(UsingR)
- data(galton)

Working with some other data

- install.packages("UsingR")
- library(UsingR)
- data(galton)
- Let's look at the data first, used by Francis Galton in 1885
- Galton was a statistician who invented the term and concepts of regression and correlation, founded the journal Biometrika, and was the cousin of Charles Darwin
- The idea is to use parents'heights to predict childrens'heights

Working with some other data

 Exercise: Look at the marginal (parents disregarding children) and children disregarding parents) distributions first plotting the histogram and then compare in the same graph childrens' heights and their parents' heights.

Working with some other data

• Exercise: How do you solve the following problem - Why do children of very tall parents tend to be tall, but a little shorter than their parents and why children of very short parents tend to be short, but a little taller than their parents?

- Think of it this way, imagine if you simulated pairs of random normals
- The largest first ones would be the largest by chance, and the probability that there are smaller for the second simulation is high
- In other words P(Y < x | X = x) gets bigger as x heads into the very large values.
- Similarly P(Y > x | X = x) gets bigger as x heads to very small values

Child's Height $= \beta_0 + \text{Parent's Height } \beta_1$

Generalized Linear Models

$$\sum_{i=1}^{n} \{ Y_i - (\beta_0 + \beta_1 X_i) \}^2$$

$$\hat{eta}_1 = \mathsf{Cor}(Y, X) rac{\mathrm{Sd}(Y)}{\mathsf{Sd}(X)} \quad \hat{eta}_0 = \overline{Y} - \hat{eta}_1 \overline{X}$$

• Exercise : Calculate the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ using the formulation above. How do the model above change if you decide to run a regression through the origin (i.e., if we force $\hat{\beta}_0=0$ we have $\hat{\beta}_1=rac{\sum_{i=1}^n Y_i X_i}{\sum_{i=1}^n X_i^2}$). See also the result you have by doing a regression by centering the data first.

• Exercise : Normalize the data $\left\{\frac{X_i - \overline{X}}{\operatorname{Sd}(X)}, \frac{Y_i - \overline{Y}}{\operatorname{Sd}(Y)}\right\}$ and calculate the values of the coefficients of the regression. What can you observe?

• Exercise : Now plot the results and one line with the regression outcome, as well as a line with the outcome assuming the parent is the result, one assuming that corr(X, Y) = 1 and a point with the mean of x and mean of y.

• Exercise: Now plot the results and one line with the regression outcome, as well as a line with the outcome assuming the parent is the result, one assuming that corr(X, Y) = 1 and a point with the mean of x and mean of y.

Generalized Linear Models

• plot(galtonparent,galtonchild,pch=19,col="blue") abline(mean(y) - mean(x) * cor(y, x) * sd(y) /sd(x), sd(y) / sd(x) * cor(y, x), lwd = 3, col ="red") abline(mean(y) - mean(x) * sd(y) / sd(x) / cor(y,x), sd(y)/cor(y, x) / sd(x), lwd = 3, col ="blue") abline(mean(y) - mean(x) * sd(y) / sd(x), sd(y) /sd(x). lwd = 2) points(mean(x), mean(y), cex = 2, pch = 19)

Interpreting the results

Exercise : Now use the following data

data(diamond)

diamond

head(diamond)

Do the following:

- 1. Plot the fitted regression line and data
- 2. Estimate a linear regression model and interpret the coefficients
- 3. Do a regression to the mean and interpret the coefficients of the slope and the intercept
- 4. Reescale the value of x multiplying it by 10 and interpret the coefficients
- 5. Predict the price of the diamond using the following vector newx < -c(0.16, 0.27, 0.34)

Interpreting the results

• Exercise: Obtain the residuals manually using the predict function. After this check by comparing this with R's built-in resid function. Finally, do a residual plot of the data of diamond with the carat data in the x-axis. What can you observe?

Estimating the variance

- Suppose you have the model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where $\epsilon_i \sim N(0, \sigma^2)$
- The ML estimate of σ^2 is $\frac{1}{n} \sum_{i=1}^{n} e_i^2$, the average squared residual. Most people use

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2$$

Generalized Linear Models

so that we have $E\left[\hat{\sigma}^2\right] = \sigma^2$

• Exercise: Estimate the variance of the previous model using the data(diamond). To calculate the residuals estimate first the following : $\hat{\beta}_1 = \text{Cor}(Y, X) \frac{\text{Sd}(Y)}{\text{Sd}(X)}, \quad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}, \text{ and}$ finally the residuals.

$$\begin{split} &\sigma_{\hat{\beta}_1}^2 = \mathsf{Var}\left(\hat{\beta}_1\right) = \sigma^2/\sum_{i=1}^n \left(X_i - X\right)^2 \\ &\sigma_{\hat{\beta}_0^2}^2 = \mathsf{Var}\left(\hat{\beta}_0\right) = \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}\right)\sigma^2 \end{split}$$

• Exercise: Calculate the variance and the standard errors for the estimators of the model using data(diamond).

Results

By knowing the t-statistic is given by :

$$\frac{\hat{eta}_{
m j}-eta_{
m j}}{\hat{\sigma}_{\hat{eta}_{
m i}}}$$

Generalized Linear Models

and that it follows a t distribution with n-2 degrees of freedom and a normal distribution for large n we can calculate the p-values using the following formulation:

 $pBeta0 \leftarrow 2 * pt(abs(tBeta0), df = n - 2, lower.tail =$ FALSE)

 Exercise: Calculate the t-values and the p-values for both estimates using data(diamond).

Results

Organizing your results:

- coefTable <- rbind(c(beta0, seBeta0, tBeta0, pBeta0), c(beta1, seBeta1, tBeta1, pBeta1))
- colnames(coefTable) <- c("Estimate", "Std. Error", "t value". "P(>|t|)")
- rownames(coefTable) <- c("(Intercept)", "x")
- coefTable

Exercise: Check whether your results are the same as the ones in: fit <-lm(y~x);summary(fit)coefficients.

Prediction of outcomes

Exercise: Can someone explain what the code below is doing?

```
library(ggplot2)
 newx = data.frame(x = seq(min(x), max(x), length =
  100))
 p1 = data.frame(predict(fit, newdata=
 newx,interval = ("confidence")))
 p2 = data.frame(predict(fit, newdata =
 newx,interval = ("prediction")))
```

Multivariate Regression

- require(datasets); data(swiss); ?swiss
- install.packages("GGally")
- library(datasets); data(swiss); require(stats); require(graphics)

Generalized Linear Models

• pairs(swiss, panel = panel.smooth, main = "Swiss data", col = 3 + (swiss\$Catholic > 50))

Exercise: What is the graph generated about? Do a regression of fertility against the other variables and interpret the coefficient of agriculture. After run a regression of fertility against agriculture only and explain the coefficient.

Multivariate regression

- Why does the signal reverse?
- Exercise: Now add the following variable z <swiss\$Agriculture + swiss\$Education and then run lm(Fertility ~ . + z, data = swiss). What does it happen?

Multivariate regression

- require(datasets); data(InsectSprays); require(stats); require(ggplot2)
- summary(lm(count ~ spray, data = InsectSprays))\$coef

Exercise: Solve the problem by hard coding the dummy variable using as the reference group the spray A. How do you interpret the results?

- require(datasets); data(InsectSprays); require(stats); require(ggplot2)
- summary(lm(count ~ spray, data = InsectSprays))\$coef

Exercise: Solve the problem by hard coding the dummy variable using as the reference group the spray A. How do you interpret the results?

- 1. What happens if you include all the 6 variables?
- 2. And what about when you omit the intercept?
- 3. Do a reordering of level using the function relevel we had used previously and using as a reference group the group C.

Model selection

Exercise: Run the following code

- fit1<-lm(Fertility Agriculture, data=swiss)
- fit3 <- update(fit1, Fertility Agriculture + Examination + Education, data=swiss)
- fit5 <- update(fit1, Fertility Agriculture + Examination + Education + Catholic + Infant.Mortality, data=swiss)
- anova(fit1, fit3, fit5)

Which model do you select based on this result?

 Frequently we care about outcomes that have two values : Alive/dead, win/loss, success/failure

- This case is called Binary, Bernoulli or 0/1 outcomes
- A collection of exchangeable binary outcomes for the same covariate data are called Binomial outcomes
- We will use the Ravens Baltimore win and loss data

Linear Regression

$$RW_i = b_0 + b_1 RS_i + e_i,$$

- RW_i 1 if Ravens win and 0 otherwise
- RS_i number of points Ravens scored
- b₀ probability of Ravens win if they score 0 points
- b_1 increase in probability of Ravens win for each additional point
- e_i residual variation

Linear Regression

Exercise: Run a linear model in R using the model above and explain the main problems with the results.

Odds

Binary outcome 0/1

$$RW_i$$

Generalized Linear Models

Probability (0,1)

$$Pr(RW_i \mid RS_i, b_0, b_1)$$

• Odds $(0, \infty)$

$$\frac{\mathsf{Pr}\left(\mathrm{RW}_{\mathrm{i}}\mid\mathrm{RS}_{\mathrm{i}},\mathrm{b}_{0},\ \mathrm{b}_{1}\right)}{1-\mathsf{Pr}\left(\mathrm{RW}_{\mathrm{i}}\mid\mathrm{RS}_{\mathrm{i}},\mathrm{b}_{0},\ \mathrm{b}_{1}\right)}$$

• Log odd $(-\infty, \infty)$

$$\mathsf{log}\left(\frac{\mathsf{Pr}\left(\mathrm{RW}_{i}\mid\mathrm{RS}_{i},\mathrm{b}_{0},\ \mathrm{b}_{1}\right)}{1-\mathsf{Pr}\left(\mathrm{RW}_{i}\mid\mathrm{RS}_{i},\mathrm{b}_{0},\ \mathrm{b}_{1}\right)}\right)$$

Linear versus Logistic Regression

Linear

$$\begin{aligned} RW_i &= b_0 + b_1 RS_i + e_i \\ E\left[RW_i \mid RS_i, b_0, \ b_1\right] &= b_0 + b_1 RS_i \end{aligned}$$

Generalized Linear Models

Logistic

$$\begin{array}{l} \text{Pr}\left(\mathrm{RW}_{i} \mid \mathrm{RSS}_{i}, \mathrm{b}_{0}, \ \mathrm{b}_{1}\right) = \frac{\text{exp}\left(\mathrm{b}_{0} + \mathrm{b}_{1}\mathrm{RS}_{i}\right)}{1 + \text{exp}\left(\mathrm{b}_{0} + \mathrm{b}_{1}\mathrm{RS}_{i}\right)} \\ \text{log}\left(\frac{\text{Pr}\left(\mathrm{RW}_{i} \mid \mathrm{RS}_{i}, \mathrm{b}_{0}, \ \mathrm{b}_{1}\right)}{1 - \text{Pr}\left(\mathrm{RW}_{i} \mid \mathrm{RS}_{i}, \mathrm{b}_{0}, \ \mathrm{b}_{1}\right)}\right) = \mathrm{b}_{0} + \mathrm{b}_{1}\mathrm{RS}_{i} \end{array}$$

Interpreting Logistic Regression

$$\log \left(\frac{\text{Pr}\left(RW_i \mid RS_i, b_0, \ b_1 \right)}{1 - \text{Pr}\left(RW_i \mid RS_i, b_0, \ b_1 \right)} \right) = b_0 + b_1 RS_i$$

- b_0 Log odds of Ravens win if they score zero points
- b₁ Log odds ratio of win probability for each point scored (compared to zero points)
- $exp(b_1)$ Odds ratio of win probability for each point scored (compared to zero points)

Interpreting Logistic Regression

- Imagine that you are playing a game where you flip a coin with success probability p
- If it comes up heads, you win X. If it comes up tails, you lose
- What should we set X and Y for the game to be fair?

•

Interpreting Logistic Regression

- \bullet Imagine that you are playing a game where you flip a coin with success probability p
- If it comes up heads, you win X. If it comes up tails, you lose
- What should we set X and Y for the game to be fair?

$$\text{E[earnings]} = \text{Xp} - \text{Y}(1 - \text{p}) = 0 \\ \frac{\text{Y}}{\text{X}} = \frac{\text{p}}{1 - \text{p}}$$

Interpreting Logistic Regression

- Imagine that you are playing a game where you flip a coin with success probability p
- If it comes up heads, you win X. If it comes up tails, you lose
- What should we set X and Y for the game to be fair?

$$\begin{array}{c} \mathrm{E}[\text{ earnings }] = \mathrm{Xp} - \mathrm{Y}(1-\mathrm{p}) = 0 \\ \frac{\mathrm{Y}}{\mathrm{X}} = \frac{\mathrm{p}}{1-\mathrm{p}} \end{array}$$

- The odds can be said as "How much should you be willing to pay for a p probability of winning a dollar?"
 - If p > 0.5 you have to pay more if you lose than you get if you win
 - If p < 0.5 you have to pay less if you lose than you get if you win

Visualizing fitting logistic regression curves

Exercise: Create a vector x from (-10, 10) with length = 1000, create a variable called beta0=0 and the vector beta1s = seq(.25, 1.5, by = .1). After this create the vector y = 1 / ... $(1 + \exp(-1 * (beta0 + beta1 * x)))$ and plot in the same graph all the possible results of (x,y) for each one of the beta1s with the x-axis varying from (-10,10) and the y axis from (0,1).

Exercise: Create a vector x from (-10, 10) with length = 1000, create a variable called beta1=1 and the vector beta0s = seq(-2, 2, by = .5). After this create the vector y = 1 / (1 + .5) $+ \exp(-1 * (beta0 + beta1 * x)))$ and plot in the same graph all the possible results of (x,y) for each one of the beta0s with the x-axis varying from (-10,10) and the y axis from (0,1).

Simulating data and seeing the fitted value

```
Exercise: Create a vector x = seq(-10, 10, length = 1000),
set beta0 = 0; beta1 = 1 and create a vector p = 1 / (1 + 1)
\exp(-1 * (beta0 + beta1 * x))). Plot the results.
```

Simulating data and seeing the fitted value

```
Exercise: Create a vector x = seq(-10, 10, length = 1000), set beta0 = 0; beta1 = 1 and create a vector p = 1 / (1 + exp(-1 * (beta0 + beta1 * x))). Plot the results.
```

- 1. Now do the following simulation y = rbinom(prob = p, size = 1, n = length(p)). Plot the results of this simulation.
- 2. Finally use the glm to run a regression of y from x using the following code fit = $glm(y \tilde{x}, family = binomial)$. Plot in the same graph the points of your simulation and the fitted values of the regression above. What can you observe?

Coming back to the data

Exercise: Run a glm simulation of the following model using the binomial family of the model below:

$$RW_i = b_0 + b_1 RS_i + e_i$$

Generalized Linear Models

Coming back to the data

Exercise: Run a glm simulation of the following model using the binomial family of the model below:

$$RW_i = b_0 + b_1 RS_i + e_i$$

- Plot the fit of the model
- To interpret the coefficients we need to take the exponential of them. Do this procedure
- What is the interpretation of the coefficient in this case?
- Run the following code anova(logRegRavens, test="Chisq") . What can you conclude?

Generalized Linear Models

Interpreting odds ratio

- They are not probabilities
- Odds ratio of 1 = no difference in odds
- Log odds ratio of 0 = no difference in odds
- Odds ratio < 0.5 or > 2 commonly seen as having a "Moderate effect"

Using Poisson distribution

Revisiting the linear model

Exercise: Use the data grogger and do a linear regression of average duration of sentence against duration of unemployment. What is the problem with this specification?

Using Matrix Algebra

Revisiting the linear model

Exercise: In this exercise our goal is to estimate the coefficients using matrix algebra. We know that the following is true for a model $y = X\beta + \epsilon$

Generalized Linear Models

- Estimates : $\hat{\beta} = (X^T X)^{-1} X^T y$
- Fitted values : $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- Residuals : $\hat{\epsilon} = y \hat{y}$
- Residual sum of squares : $RSS = \hat{\epsilon}^T \hat{\epsilon}$

Now use the data(mtcars). The goal is to estimate a regression in which y = mpg and X = (1, hp, wt). Create those variables and estimate the coefficients of this regression. Compute also the fitted values and the residuals. After finish compare your results to the Im function in R.