Planche nº 22. Fonctions de plusieurs variables. Corrigé

 $\mathbf{n}^{\mathbf{o}} \mathbf{1} : \mathbf{1}$) f est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

Pour $x \neq 0$, f(x,0) = 0. Quand x tend vers 0, le couple (x,0) tend vers le couple (0,0) et f(x,0) tend vers 0. Donc, si f a une limite réelle en 0, cette limite est nécessairement 0.

Pour $x \neq 0$, $f(x,x) = \frac{1}{2}$. Quand x tend vers 0, le couple (x,x) tend vers (0,0) et f(x,x) tend vers $\frac{1}{2} \neq 0$. Donc f n'a pas de limite réelle en (0,0).

2) f est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Pour $(x,y) \neq (0,0), |f(x,y)| = \frac{x^2y^2}{x^2+y^2} = \frac{|xy|}{x^2+y^2} \times |xy| \leqslant \frac{1}{2}|xy|$. Comme $\frac{1}{2}|xy|$ tend vers 0 quand le couple (x,y) tend vers le couple (0,0), il en est de même de f. f(x,y) tend vers 0 quand (x,y) tend vers (0,0).

3) f est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}.$

Pour $y \neq 0$, $f(0,y) = \frac{y^3}{y^4} = \frac{1}{y}$. Quand y tend vers 0 par valeurs supérieures, le couple (0,y) tend vers le couple (0,0) et f(0,y) tend vers $+\infty$. Donc f n'a pas de limite réelle en (0,0).

4) f est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Pour $x \neq 0$, $f(x,x) = \frac{\sqrt{2x^2}}{2|x|\sqrt{|x|}} = \frac{1}{\sqrt{2|x|}}$. Quand x tend vers 0, le couple (x,x) tend vers le couple (0,0) et f(x,x) tend vers

5) f est définie sur $\mathbb{R}^2 \setminus \{(x, -x), x \in \mathbb{R}\}$

Pour $x \neq 0$, $f(x, -x + x^3) = \frac{(x + x^2 - x^3)(-x + (-x + x^2)^2)}{x^3} \underset{x \to 0}{\sim} -\frac{1}{x}$. Quand x tend vers 0 par valeurs supérieures, le couple $(x, -x + x^3)$ tend vers (0, 0) et $f(x, -x + x^3)$ tend vers $-\infty$. Donc f n'a pas de limite réelle en (0, 0).

$$\frac{1-\cos\sqrt{|xy|}}{|y|} \underset{(x,y)\to(0,0)}{\sim} \frac{(\sqrt{|xy|})^2}{2|y|} = \frac{|x|}{2} \text{ et donc f tend vers 0 quand } (x,y) \text{ tend vers } (0,0).$$

7) f est définie sur \mathbb{R}^3 privé du cône de révolution d'équation $x^2-y^2+z^2=0$.

 $f(x,0,0) = \frac{1}{x}$ qui tend vers $+\infty$ quand x tend vers 0 par valeurs supérieures. Donc f n'a pas de limite réelle en (0,0,0).

8) $f(2+h,-2+k,l) = \frac{h+k}{h^2-k^2+l^2+4h+4k} = g(h,k,l).$ g(h,0,0) tend vers $\frac{1}{4}$ quand h tend vers 0 et g(0,0,l) tend vers $0 \neq \frac{1}{4}$ quand l tend vers 0. Donc, f n'a pas de limite réelle quand (x, y, z) tend vers (2, -2, 0).

 $\mathbf{n}^{\mathbf{o}} \mathbf{2} : \bullet \mathbf{f}$ est définie sur \mathbb{R}^2 .

- f est de classe C^{∞} sur $\mathbb{R}^2 \setminus \{(0,0)\}$ en tant que fraction rationnelle dont le dénominateur ne s'annule pas sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- Continuité en (0,0). Pour $(x,y) \neq (0,0)$,

$$|f(x,y) - f(0,0)| = \frac{|xy||x^2 - y^2|}{x^2 + y^2} \le |xy| \times \frac{x^2 + y^2}{x^2 + y^2} = |xy|.$$

Comme |xy| tend vers 0 quand le couple (x,y) tend vers le couple (0,0), on a donc $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}} f(x,y) = f(0,0)$. On en déduit que f est continue en (0,0) et finalement f est continue sur \mathbb{R}^2 .

f est de classe C^0 au moins sur \mathbb{R}^2 .

 $\bullet \ \mathbf{D\acute{e}riv\acute{e}es} \ \mathbf{partielles} \ \mathbf{d'ordre} \ 1 \ \mathbf{sur} \ \mathbb{R}^2 \setminus \{(0,0)\}. \ f \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ C^1 \ \mathrm{au} \ \mathrm{moins} \ \mathrm{sur} \ \mathbb{R}^2 \setminus \{(0,0)\} \ \mathrm{et} \ \mathrm{pour} \ (x,y) \neq (0,0),$

$$\frac{\partial f}{\partial x}(x,y) = y \frac{(3x^2 - y^2)(x^2 + y^2) - (x^3 - xy^2)(2x)}{(x^2 + y^2)^2} = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2},$$

D'autre part, pour $(x,y) \neq (0,0)$ f(x,y) = -f(y,x). Donc pour $(x,y) \neq (0,0)$,

$$\frac{\partial f}{\partial y}(x,y) = -\frac{\partial f}{\partial x}(y,x) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}.$$

• Existence de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$. Pour $x \neq 0$,

$$\frac{f(x,0)-f(0,0)}{x-0}=\frac{0-0}{x}=0,$$

et donc $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x-0} = 0$. Ainsi, $\frac{\partial f}{\partial x}(0,0)$ existe et $\frac{\partial f}{\partial x}(0,0) = 0$. De même, $\frac{\partial f}{\partial y}(0,0) = 0$. Ainsi, f admet des dérivées partielles premières sur \mathbb{R}^2 définies par

$$\begin{split} \forall (x,y) \in \mathbb{R}^2, \, \frac{\partial f}{\partial x}(x,y) &= \left\{ \begin{array}{l} \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \, \mathrm{si} \, (x,y) \neq (0,0) \\ 0 \, \mathrm{si} \, (x,y) &= (0,0) \end{array} \right. \\ &\frac{\partial f}{\partial y}(x,y) = \left\{ \begin{array}{l} \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \, \mathrm{si} \, (x,y) \neq (0,0) \\ 0 \, \mathrm{si} \, (x,y) &= (0,0) \end{array} \right. \end{split}$$

• Continuité de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0). Pour $(x,y) \neq (0,0)$,

$$\left|\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(0,0)\right| = \frac{|y||x^4 + 4x^2y^2 - y^4|}{(x^2 + y^2)^2} \leqslant |y| \frac{x^4 + 4x^2y^2 + y^4}{(x^2 + y^2)^2} \leqslant |y| \frac{2x^4 + 4x^2y^2 + 2y^4}{(x^2 + y^2)^2} = 2|y|.$$

Comme 2|y| tend vers 0 quand (x,y) tend vers (0,0), on en déduit que $\left|\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(0,0)\right|$ tend vers 0 quand (x,y) tend vers (0,0). Donc la fonction $\frac{\partial f}{\partial x}$ est continue en (0,0) et finalement sur \mathbb{R}^2 . Il en est de même de la fonction $\frac{\partial f}{\partial y}$ et on a montré que

f est au moins de classe C^1 sur \mathbb{R}^2 .

 $\mathbf{n^o}$ 3: On pose $D = \{(x,0), x \in \mathbb{R}\}$ puis $\Omega = \mathbb{R}^2 \setminus D$.

- \bullet f est définie sur \mathbb{R}^2 .
- f est de classe C^1 sur Ω en vertu de théorèmes généraux et pour $(x,y) \in \Omega$,

$$\frac{\partial f}{\partial x}(x,y) = y \cos\left(\frac{x}{y}\right) \text{ et } \frac{\partial f}{\partial y}(x,y) = 2y \sin\left(\frac{x}{y}\right) - x \cos\left(\frac{x}{y}\right).$$

• Etudions la continuité de f en (0,0). Pour $(x,y) \neq (0,0)$,

$$|f(x,y)-f(0,0)| = \left\{ \begin{array}{c} y^2 \left| \sin \left(\frac{x}{y} \right) \right| \text{ si } y \neq 0 \\ 0 \text{ si } y = 0 \end{array} \right. \leqslant \left\{ \begin{array}{c} y^2 \text{ si } y \neq 0 \\ 0 \text{ si } y = 0 \end{array} \right. \leqslant y^2.$$

Comme y^2 tend vers 0 quand (x,y) tend vers 0, $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}} f(x,y) = f(0,0)$ et donc f est continue en (0,0) puis

f est continue sur \mathbb{R}^2 .

• Etudions l'existence et la valeur éventuelle de $\frac{\partial f}{\partial x}(x_0,0)$, x_0 réel donné. Pour $x \neq x_0$,

$$\frac{f(x,0) - f(x_0,0)}{x - x_0} = \frac{0 - 0}{x - x_0} = 0.$$

Donc $\frac{f(x,x_0)-f(x_0,0)}{x-x_0}$ tend vers 0 quand x tend vers x_0 . On en déduit que $\frac{\partial f}{\partial x}(x_0,0)$ existe et $\frac{\partial f}{\partial x}(x_0,0)=0$. Finalement, la fonction $\frac{\partial f}{\partial x}$ est définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \, \frac{\partial f}{\partial x}(x,y) = \left\{ \begin{array}{l} y \cos \left(\frac{x}{y}\right) \, \operatorname{si} \, y \neq 0 \\ 0 \, \operatorname{si} \, y = 0 \end{array} \right..$$

• Etudions l'existence et la valeur éventuelle de $\frac{\partial f}{\partial y}(x_0,0), \, x_0$ réel donné. Pour $y \neq 0$,

$$\frac{f(x_0, y) - f(x_0, 0)}{y - 0} = \frac{y^2 \sin\left(\frac{x_0}{y}\right)}{y} = y \sin\left(\frac{x_0}{y}\right).$$

On en déduit que $\left|\frac{f(x_0,y)-f(x_0,0)}{y-0}\right|\leqslant |y|$ puis que $\frac{f(x_0,y)-f(x_0,0)}{y-0}$ tend vers 0 quand y tend vers 0. Par suite, $\frac{\partial f}{\partial y}(x_0,0)$ existe et $\frac{\partial f}{\partial y}(x_0,0)=0$. Finalement, la fonction $\frac{\partial f}{\partial y}$ est définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \, \frac{\partial f}{\partial y}(x,y) = \left\{ \begin{array}{l} 2y \sin \left(\frac{x}{y}\right) - x \cos \left(\frac{x}{y}\right) \, \sin y \neq 0 \\ 0 \, \sin y = 0 \end{array} \right. .$$

 \bullet Etudions la continuité de $\frac{\partial f}{\partial x}$ en $(x_0,0),\,x_0$ réel donné. Pour $(x,y)\in\mathbb{R}^2,$

$$\left|\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(x_0,0)\right| = \begin{cases} |y| \left|\cos\left(\frac{x}{y}\right)\right| & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases} \leqslant |y|.$$

Quand (x,y) tend vers (0,0), |y| tend vers 0 et donc $\frac{\partial f}{\partial x}(x,y)$ tend vers $\frac{\partial f}{\partial x}(x_0,0)$ quand (x,y) tend vers $(x_0,0)$. La fonction $\frac{\partial f}{\partial x}$ est donc continue en $(x_0,0)$ et finalement

la fonction $\frac{\partial f}{\partial x}$ est continue sur \mathbb{R}^2 .

• Etudions la continuité de $\frac{\partial f}{\partial y}$ en $(x_0,0), x_0$ réel donné. Supposons tout d'abord $x_0=0$. Pour $(x,y)\in\mathbb{R}^2,$

$$\left|\frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,0)\right| = \begin{cases} \left|2y\sin\left(\frac{x}{y}\right) - x\cos\left(\frac{x}{y}\right)\right| & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases} \leqslant 2|y| + |x|.$$

 $\mathrm{Quand}\ (x,y)\ \mathrm{tend}\ \mathrm{vers}\ (0,0),\ |x|+2|y|\ \mathrm{tend}\ \mathrm{vers}\ 0\ \mathrm{et}\ \mathrm{donc}\ \frac{\partial f}{\partial y}(x,y)\ \mathrm{tend}\ \mathrm{vers}\ \frac{\partial f}{\partial y}(0,0)\ \mathrm{quand}\ (x,y)\ \mathrm{tend}\ \mathrm{vers}\ (0,0).$

Supposons maintenant $x_0 \neq 0$. Pour $y \neq 0$, $\frac{\partial f}{\partial y}(x_0,y) = 2y \sin\left(\frac{x_0}{y}\right) - x_0 \cos\left(\frac{x_0}{y}\right)$. Quand y tend vers 0, $2y \sin\left(\frac{x_0}{y}\right)$ tend vers 0 car $\left|2y \sin\left(\frac{x_0}{y}\right)\right|$ et $x_0 \cos\left(\frac{x_0}{y}\right)$ n'a pas de limite réelle car $x_0 \neq 0$. Donc $\frac{\partial f}{\partial y}(x_0,y)$ n'a pas de limite quand y tend vers 0 et la fonction $\frac{\partial f}{\partial y}$ n'est pas continue en $(x_0,0)$ si $x_0 \neq 0$. On a montré que

f est de classe C^1 sur $\Omega \cup \{(0,0)\}$.

 \bullet Etudions l'existence et la valeur éventuelle de $\frac{\partial^2 f}{\partial x \partial y}(0,0).$ Pour $x \neq 0,$

$$\frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = \frac{0 - 0}{x} = 0.$$

 $\operatorname{Donc} \ \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x-0} \ \operatorname{tend} \ \operatorname{vers} \ 0 \ \operatorname{quand} \ x \ \operatorname{tend} \ \operatorname{vers} \ 0. \ \operatorname{On} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \ \frac{\partial^2}{\partial x \partial y}(0,0) \ \operatorname{existe} \ \operatorname{et} \ \frac{\partial^2}{\partial x \partial y}(0,0) = 0.$

 \bullet Etudions l'existence et la valeur éventuelle de $\frac{\partial^2 f}{\partial y \partial x}(0,0).$ Pour $y \neq 0,$

$$\frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = \frac{y \cos\left(\frac{0}{y}\right)}{y} = 1.$$

Donc $\frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y-0}$ tend vers 1 quand y tend vers 0. On en déduit que $\frac{\partial^2}{\partial y \partial x}(0,0)$ existe et $\frac{\partial^2}{\partial y \partial x}(0,0) = 1$. On a montré que $\frac{\partial^2}{\partial x \partial y}(0,0)$ et $\frac{\partial^2}{\partial y \partial x}(0,0)$ existent et sont différents. D'après le théorème de SCHWARZ, f n'est pas de classe C^2 sur $\Omega \cup \{(0,0)\}$.

 $\mathbf{n}^{\mathbf{o}} \mathbf{4} : \text{Soit } (\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}) \in \mathbb{R}^4.$

$$\begin{split} \phi(x,y) &= (z,t) \Leftrightarrow \left\{ \begin{array}{l} e^x - e^y = z \\ x+y = t \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = t-x \\ e^x - e^{t-x} = z \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = t-x \\ (e^x)^2 - ze^x - e^t = 0 \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y = t-x \\ e^x = z - \sqrt{z^2 + 4e^t} \text{ ou } e^x = z + \sqrt{z^2 + 4e^t} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} e^x = z + \sqrt{z^2 + 4e^t} \\ y = t - x \end{array} \right. & \left(\operatorname{car} z - \sqrt{z^2 + 4e^t} < z - \sqrt{z^2} = z - |z| \leqslant 0 \right) \\ \Leftrightarrow \left\{ \begin{array}{l} x = \ln(z + \sqrt{z^2 + 4e^t}) \\ y = t - \ln(z + \sqrt{z^2 + 4e^t}) \end{array} \right. & \left(\operatorname{car} z + \sqrt{z^2 + 4e^t} > z + \sqrt{z^2} = z + |z| \geqslant 0 \right). \end{split}$$

Ainsi, tout élément $(z,t) \in \mathbb{R}^2$ a un antécédent et un seul dans \mathbb{R}^2 par φ et donc φ est une bijection de \mathbb{R}^2 sur lui-même.

La fonction ϕ est de classe C^1 sur \mathbb{R}^2 de jacobien $J_{\phi}(x,y)=\left|\begin{array}{cc} e^x & -e^y \\ 1 & 1 \end{array}\right|=e^x+e^y$. Le jacobien de ϕ ne s'annule pas sur \mathbb{R}^2 . En résumé, ϕ est une bijection de \mathbb{R}^2 sur lui-même, de classe C^1 sur \mathbb{R}^2 et le jacobien de ϕ ne s'annule pas sur \mathbb{R}^2 . On sait alors que

ϕ est un $C^1\text{-diff\'eomorphisme}$ de \mathbb{R}^2 sur lui-même.

 $\mathbf{n}^{\mathbf{o}}$ 5: Soit $n \in \mathbb{N}$. Soit $x \in \mathbb{R}$. La fonction $f_x : y \mapsto y^{2n+1} + y - x$ est continue et strictement croissante sur \mathbb{R} en tant que somme de fonctions continues et strictement croissantes sur \mathbb{R} . Donc la fonction f_x réalise une bijection de \mathbb{R} sur $\lim_{y \to -\infty} f_x(y)$, $\lim_{y \to +\infty} f_x(y) = \mathbb{R}$. En particulier, l'équation $f_x(y) = 0$ a une et une seule solution dans \mathbb{R} que l'on note $\phi(x)$.

La fonction $f:(x,y)\mapsto y^{2n+1}+y-x$ est de classe C^1 sur \mathbb{R}^2 qui est un ouvert de \mathbb{R}^2 et de plus, $\forall (x,y)\in\mathbb{R}^2$, $\frac{\partial f}{\partial y}(x,y)=(2n+1)y^{2n}+1\neq 0$. D'après le théorème des fonctions implicites, la fonction ϕ implicitement définie par l'égalité f(x,y)=0 est dérivable en tout réel x et de plus, en dérivant l'égalité $\forall x\in\mathbb{R},\, (\phi(x))^{2n+1}+\phi(x)-x=0$, on obtient $\forall x\in\mathbb{R},\, (2n+1)\phi'(x)(\phi(x))^{2n}+\phi'(x)-1=0$ et donc

$$\forall x \in \mathbb{R}, \ \phi'(x) = \frac{1}{(2n+1)(\phi(x))^{2n} + 1}.$$

Montrons par récurrence que $\forall p \in \mathbb{N}^*$, la fonction φ est p fois dérivable sur \mathbb{R} .

- C'est vrai pour p = 1.
- Soit $p \ge 1$. Supposons que la fonction ϕ soit p fois dérivable sur $\mathbb R$. Alors la fonction $\phi' = \frac{1}{(2n+1)\phi^{2n}+1}$ est p fois dérivable sur $\mathbb R$ en tant qu'inverse d'une fonction p fois dérivable sur $\mathbb R$ ne s'annulant pas sur $\mathbb R$. On en déduit que la fonction ϕ est p+1 fois dérivable sur $\mathbb R$.

On a montré par récurrence que $\forall p \in \mathbb{N}^*$, la fonction φ est p fois dérivable sur \mathbb{R} et donc que

la fonction φ est de classe C^{∞} sur \mathbb{R} .

Calculons maintenant $I = \int_0^2 \phi(t) dt$. On note tout d'abord que, puisque $0^{2n+1} + 0 - 0 = 0$, on a $\phi(0) = 0$ et puisque $1^{2n+1} + 1 - 2 = 0$, on a $\phi(2) = 1$.

Maintenant, pour tout réel x de [0,2], on a $\phi'(x)(\phi(x))^{2n+1} + \phi'(x)\phi(x) - x\phi'(x) = 0$ (en multipliant par $\phi'(x)$ les deux membres de l'égalité définissant $\phi(x)$) et en intégrant sur le segment [0,2], on obtient

$$\int_0^2 \phi'(x) (\phi(x))^{2n+1} \ dx + \int_0^2 \phi'(x) \phi(x) \ dx - \int_0^2 x \phi'(x) \ dx = 0 \ (*).$$
 Or,
$$\int_0^2 \phi'(x) (\phi(x))^{2n+1} \ dx = \left[\frac{(\phi(x))^{2n+2}}{2n+2}\right]_0^2 = \frac{1}{2n+2}.$$
 De même,
$$\int_0^2 \phi'(x) \phi(x) \ dx = \left[\frac{(\phi(x))^2}{2}\right]_0^2 = \frac{1}{2} \ et \ donc$$

$$\int_0^2 \phi'(x) (\phi(x))^{2n+1} \ dx + \int_0^2 \phi'(x) \phi(x) \ dx = \frac{1}{2n+2} + \frac{1}{2} = \frac{n+2}{2n+2}.$$
 D'autre part, puisque les deux fonctions $x \mapsto x$ et $x \mapsto \phi(x)$ sont de classe C^1 sur le segment $[0,2]$, on peut effectuer une intégration par parties qui fournit

$$-\int_0^2 x \phi'(x) \ dx = [-x\phi(x)]_0^2 + \int_0^2 \phi(x) \ dx = -2 + I.$$

L'égalité (*) s'écrit donc $\frac{n+2}{2n+2} - 2 + I = 0$ et on obtient $I = \frac{3n+2}{2n+2}$.

$$\int_0^2 \varphi(x) \, dx = \frac{3n+2}{2n+2}.$$

 $\mathbf{n}^{\mathbf{o}}$ 6 : Soit $\mathbf{x} \in \mathbb{R}$. La fonction $\mathbf{f}_{\mathbf{x}} : \mathbf{y} \mapsto e^{\mathbf{x}+\mathbf{y}} + \mathbf{y} - 1$ est continue et strictement croissante sur \mathbb{R} en tant que somme de fonctions continues et strictement croissantes sur \mathbb{R} . Donc la fonction $\mathbf{f}_{\mathbf{x}}$ réalise une bijection de \mathbb{R} sur $\mathbf{f}_{\mathbf{x}}(\mathbf{y})$, $\lim_{\mathbf{y} \to -\infty} \mathbf{f}_{\mathbf{x}}(\mathbf{y})$, $\lim_{\mathbf{y} \to +\infty} \mathbf{f}_{\mathbf{x}}(\mathbf{y})$ [= \mathbb{R} . En particulier, l'équation $\mathbf{f}_{\mathbf{x}}(\mathbf{y}) = 0$ a une et une seule solution dans \mathbb{R} que l'on note $\mathbf{o}(\mathbf{x})$.

La fonction $f:(x,y)\mapsto e^{x+y}+y-1$ est de classe C^1 sur \mathbb{R}^2 qui est un ouvert de \mathbb{R}^2 et de plus, $\forall (x,y)\in \mathbb{R}^2$, $\frac{\partial f}{\partial y}(x,y)=e^{x+y}+1\neq 0$. D'après le théorème des fonctions implicites, la fonction ϕ implicitement définie par l'égalité f(x,y)=0 est dérivable en tout réel x et de plus, en dérivant l'égalité $\forall x\in\mathbb{R},\ e^{x+\phi(x)}+\phi(x)-1=0$, on obtient $\forall x\in\mathbb{R},\ (1+\phi'(x))e^{x+\phi(x)}+\phi'(x)=0$ ou encore

$$\forall x \in \mathbb{R}, \ \phi'(x) = -\frac{e^{x + \phi(x)}}{e^{x + \phi(x)} + 1} \ (*).$$

On en déduit par récurrence que φ est de classe C^{∞} sur \mathbb{R} et en particulier admet en 0 un développement limité d'ordre 3. Déterminons ce développement limité.

1ère solution. Puisque $e^{0+0}+0-1=0$, on a $\varphi(0)=0$. L'égalité (*) fournit alors $\varphi'(0)=-\frac{1}{2}$ et on peut poser $\varphi(x) = -\frac{1}{2}x + \alpha x^2 + bx^3 + o(x^3)$. On obtient

$$\begin{split} e^{x+\phi(x)} &\underset{x\to 0}{=} e^{\frac{x}{2}+\alpha x^2+bx^3+o(x^3)} \\ &\underset{x\to 0}{=} 1+\left(\frac{x}{2}+\alpha x^2+bx^3\right)+\frac{1}{2}\left(\frac{x}{2}+\alpha x^2\right)^2+\frac{1}{6}\left(\frac{x}{2}\right)^3+o(x^3) \\ &\underset{x\to 0}{=} 1+\frac{x}{2}+\left(\alpha+\frac{1}{8}\right)x^2+\left(b+\frac{\alpha}{2}+\frac{1}{48}\right)x^3+o(x^3). \end{split}$$

 $\text{L'\'egalit\'e } e^{x+\phi(x)}+\phi(x)-1=0 \text{ fournit alors } a+\frac{1}{8}+a=0 \text{ et } b+\frac{\alpha}{2}+\frac{1}{48}+b=0 \text{ ou encore } a=-\frac{1}{16} \text{ et } b=\frac{1}{192}.$

2ème solution. On a déjà $\phi(0)=0$ et $\phi'(0)=0$. En dérivant l'égalité (*), on obtient

$$\phi''(x) = -\frac{(1+\phi'(x))e^{x+\phi(x)}(e^{x+\phi(x)}+1)-(1+\phi'(x))e^{x+\phi(x)}(e^{x+\phi(x)})}{\left(e^{x+\phi(x)}+1\right)^2} = -\frac{(1+\phi'(x))e^{x+\phi(x)}}{\left(e^{x+\phi(x)}+1\right)^2},$$

et donc $\frac{\varphi''(0)}{2} = -\frac{\frac{1}{2}}{2 \times 2^2} = -\frac{1}{16}$. De même,

$$\phi^{(3)}(x) = -\phi''(x) \frac{e^{x + \phi(x)}}{\left(e^{x + \phi(x)} + 1\right)^2} - (1 + \phi'(x))e^{x + \phi(x)} \frac{(1 + \phi'(x))}{\left(e^{x + \phi(x)} + 1\right)^2} + (1 + \phi'(x))e^{x + \phi(x)} \frac{2(1 + \phi'(x))e^{x + \phi(x)}}{\left(e^{x + \phi(x)} + 1\right)^3},$$

et donc $\frac{\phi^{(3)}(0)}{6} = \frac{1}{6} \left(\frac{1}{8} \times \frac{1}{4} - \frac{1}{2} \times \frac{1/2}{4} + \frac{1}{2} \times \frac{1}{8} \right) = \frac{1}{192}.$ La formule de Taylor-Young refournit alors

$$\varphi(x) \underset{x \to 0}{=} -\frac{x}{2} - \frac{x^2}{16} + \frac{x^3}{384} + o(x^3).$$

 $\mathbf{n}^{\mathbf{o}}$ 7: On dérive par rapport à λ les deux membres de l'égalité $f(\lambda x) = \lambda^r f(x)$ et on obtient

$$\forall x=(x_1,...,x_n)\in\mathbb{R}^n,\,\forall \lambda>0,\,\sum_{i=1}^nx_i\frac{\partial f}{\partial x_i}(\lambda x)=r\lambda^{r-1}f(x),$$

et pour $\lambda = 1$, on obtient

$$\forall x=(x_1,...,x_n)\in \mathbb{R}^n \ \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x)=rf(x).$$

 $\mathbf{n}^{\mathbf{o}}$ 8: 1) f est de classe C^1 sur \mathbb{R}^2 qui est un ouvert de \mathbb{R}^2 . Donc si f admet un extremum local en un point (x_0, y_0) de \mathbb{R}^2 , (x_0, y_0) est un point critique de f.

$$df_{(x,y)} = 0 \Leftrightarrow \left\{ \begin{array}{l} 3x^2 + 6xy - 15 = 0 \\ 3x^2 - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 2 \\ y = \frac{1}{4} \end{array} \right. \text{ ou } \left\{ \begin{array}{l} x = -2 \\ y = -\frac{1}{4} \end{array} \right. .$$

Réciproquement, r = 6x + 6y, t = 0 et s = 6x puis $rt - s^2 = -36x^2$. Ainsi, $(rt - s^2)\left(2, \frac{1}{4}\right) = (rt - s^2)\left(-2, -\frac{1}{4}\right) = -144 < 0$ et f n'admet pas d'extremum local en $\left(2, \frac{1}{4}\right)$ ou $\left(-2, -\frac{1}{4}\right)$.

f n'admet pas d'extremum local sur \mathbb{R}^2 .

2) La fonction f est de classe C^1 sur \mathbb{R}^2 en tant que polynôme à plusieurs variables. Donc, si f admet un extremum local en $(x_0,y_0)\in\mathbb{R}^2$, (x_0,y_0) est un point critique de f. Soit $(x,y)\in\mathbb{R}^2$.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} -4(x-y) + 4x^3 = 0 \\ 4(x-y) + 4y^3 = 0 \end{cases} \Leftrightarrow \begin{cases} x^3 + y^3 = 0 \\ -4(x-y) + 4x^3 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x \\ x^3 - 2x = 0 \end{cases}$$
$$\Leftrightarrow (x,y) \in \left\{ (0,0), \left(\sqrt{2}, \sqrt{2} \right), \left(-\sqrt{2}, -\sqrt{2} \right) \right\}.$$

Réciproquement, f est plus précisément de classe C^2 sur \mathbb{R}^2 et

$$r(x, y)t(x, y) - s^{2}(x, y) = (-4 + 12x^{2})(-4 + 12y^{2}) - (4)^{2} = -48x^{2} - 48y^{2} + 144x^{2}y^{2} = 48(3x^{2}y^{2} - x^{2} - y^{2})$$

 $\bullet \ (rt-s^2) \left(\sqrt{2},\sqrt{2}\right) = 48(12-2-2) > 0. \ \text{Donc f admet un extremum local en } \left(\sqrt{2},\sqrt{2}\right). \ \text{Plus précisément, puisque } \\ r\left(\sqrt{2},\sqrt{2}\right) = 2\times 12 - 4 = 20 > 0, \ \text{f admet un minimum local en } \left(\sqrt{2},\sqrt{2}\right). \ \text{De plus, pour } (x,y) \in \mathbb{R}^2,$

$$\begin{split} f(x,y) - f\left(\sqrt{2},\sqrt{2}\right) &= -2(x-y)^2 + x^4 + y^4 - 8 = x^4 + y^4 - 2x^2 - 2y^2 + 4xy + 8 \\ &\geqslant x^4 + y^4 - 2x^2 - 2y^2 - 2(x^2 + y^2) + 8 = (x^4 - 4x^2 + 4) + (y^4 - 4y^2 + 4) = (x^2 - 2)^2 + (y^2 - 2)^2 \\ &\geqslant 0. \end{split}$$

et f $(\sqrt{2}, \sqrt{2})$ est un minimum global.

- Pour tout $(x,y) \in \mathbb{R}^2$, f(-x,-y) = f(x,y) et donc f admet aussi un minimum global en $\left(-\sqrt{2},-\sqrt{2}\right)$ égal à 8.
- f(0,0) = 0. Pour $x \neq 0$, $f(x,x) = 2x^4 > 0$ et donc f prend des valeurs strictement supérieures à f(0,0) dans tout voisinage de (0,0). Pour $x \in \left] -\sqrt{2}, \sqrt{2} \right[\setminus \{0\}, \ f(x,0) = x^4 2x^2 = x^2(x^2 2) < 0$ et f prend des valeurs strictement inférieures à f(0,0) dans tout voisinage de (0,0). Finalement, f n'admet pas d'extremum local en (0,0).

f admet un minimum global égal à 8, atteint en
$$\left(\sqrt{2},\sqrt{2}\right)$$
 et $\left(-\sqrt{2},-\sqrt{2}\right)$.

 $n^o 9$: On munit $\mathcal{M}_n(\mathbb{R})$ d'une norme sous-multiplicative $\| \|$. Soit $A \in GL_n(\mathbb{R})$. On sait que $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$ et donc pour $H \in \mathcal{M}_n(\mathbb{R})$ de norme suffisamment petite, $A + H \in GL_n(\mathbb{R})$. Pour un tel H

$$(A + H)^{-1} - A^{-1} = (A + H)^{-1}(I_n - (A + H)A^{-1}) = -(A + H)^{-1}HA^{-1}$$

puis

$$(A + H)^{-1} - A^{-1} + A^{-1}HA^{-1} = -(A + H)^{-1}HA^{-1} + A^{-1}HA^{-1} = (A + H)^{-1}(-HA^{-1} + (A + H)A^{-1}HA^{-1})$$

$$= (A + H)^{-1}HA^{-1}HA^{-1}.$$

 $\mathrm{Par} \; \mathrm{suite}, \; \left\| \mathsf{f}(\mathsf{A} + \mathsf{H}) - \mathsf{f}(\mathsf{A}) + \mathsf{A}^{-1}\mathsf{H}\mathsf{A}^{-1} \right\| = \left\| (\mathsf{A} + \mathsf{H})^{-1} - \mathsf{A}^{-1} + \mathsf{A}^{-1}\mathsf{H}\mathsf{A}^{-1} \right\| \leqslant \left\| (\mathsf{A} + \mathsf{H})^{-1} \right\| \left\| \mathsf{A}^{-1} \right\|^2 \left\| \mathsf{H} \right\|^2.$

Maintenant, la formule $M^{-1} = \frac{1}{\det(M)}{}^t(\operatorname{com}(M))$, valable pour tout $M \in GL_n(\mathbb{R})$, et la continuité du déterminant montre que l'application $M \mapsto M^{-1}$ est continue sur l'ouvert $GL_n(\mathbb{R})$. On en déduit que $\|(A+H)^{-1}\|$ tend vers $\|A^{-1}\|$ quand H tend vers 0. Par suite,

$$\lim_{H\to 0} \left\| (A+H)^{-1} \right\| \left\| A^{-1} \right\|^2 \|H\| = 0 \ \mathrm{et} \ \mathrm{donc} \ \lim_{H\to 0} \frac{1}{\|H\|} \left\| (A+H)^{-1} - A^{-1} + A^{-1} H A^{-1} \right\| = 0.$$

Comme l'application $H\mapsto -A^{-1}HA^{-1}$ est linéaire, c'est la différentielle de f en A.

$$\forall A\in GL_n(\mathbb{R}),\,\forall H\in \mathscr{M}_n(\mathbb{R}),\,df_A(H)=-A^{-1}HA^{-1}.$$

 n^{o} 10: Pour tout complexe z tel que $|z| \leq 1$,

$$|\sin(z)| = \left| \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \right| \leqslant \sum_{n=0}^{+\infty} \frac{|z|^{2n+1}}{(2n+1)!} = \operatorname{sh}(|z|) \leqslant \operatorname{sh} 1,$$

l'égalité étant obtenue effectivement pour z=i car $|\sin(i)|=\left|\frac{e^{i^2}-e^{-i^2}}{2i}\right|=\frac{e-e^{-1}}{2}=\operatorname{sh}(1).$

$$\max\{|\sin z|,\ z\in\mathbb{C},\ |z|\leqslant 1\}=\sinh(1).$$

 $\begin{array}{l} \mathbf{n^o~11:~~1)}~\mathrm{Pour}~(x,y) \in \mathbb{R}^2,~\mathrm{on~pose}~P(x,y) = 2x + 2y + e^{x+y} = Q(x,y).~\mathrm{Les~fonctions}~P~\mathrm{et}~Q~\mathrm{sont~de~classe}~C^1~\mathrm{sur}~\mathbb{R}^2\\ \mathrm{qui~est~un~ouvert~\'etoil\'e}~\mathrm{de}~\mathbb{R}^2.~\mathrm{Donc,~d'apr\`es~le~th\'eor\`eme~de~Schwarz,}~\omega~\mathrm{est~exacte~sur}~\mathbb{R}^2~\mathrm{si~et~seulement~si}~\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}\\ \mathrm{et~comme}~\frac{\partial P}{\partial y} = 2 + e^{x+y} = \frac{\partial Q}{\partial x},~\mathrm{la~forme~diff\'erentielle}~\omega~\mathrm{est~une~forme~diff\'erentielle}~\mathrm{exacte~sur}~\mathbb{R}^2. \end{array}$

Soit f une fonction f de classe C^1 sur \mathbb{R}^2 .

$$\begin{split} df &= \omega \Leftrightarrow \forall (x,y) \in \mathbb{R}^2, \, \left\{ \begin{array}{l} \frac{\partial f}{\partial x}(x,y) = 2x + 2y + e^{x+y} \\ \\ \frac{\partial f}{\partial y}(x,y) = 2x + 2y + e^{x+y} \end{array} \right. \\ &\Leftrightarrow \exists g \in C^1(\mathbb{R},\mathbb{R})/ \, \forall (x,y) \in \mathbb{R}^2, \, \left\{ \begin{array}{l} f(x,y) = x^2 + 2xy + e^{x+y} + g(y) \\ 2x + e^{x+y} + g'(y) = 2x + 2y + e^{x+y} \end{array} \right. \\ &\Leftrightarrow \exists \lambda \in \mathbb{R}/ \, \forall (x,y) \in \mathbb{R}^2, \, \left\{ \begin{array}{l} f(x,y) = x^2 + 2xy + e^{x+y} + g(y) \\ g(y) = y^2 + \lambda \end{array} \right. \\ &\Leftrightarrow \exists \lambda \in \mathbb{R}/ \, \forall (x,y) \in \mathbb{R}^2/ \, f(x,y) = (x+y)^2 + e^{x+y} + \lambda. \end{split}$$

Les primitives de ω sur \mathbb{R}^2 sont les fonctions de la forme $(x,y)\mapsto (x+y)^2+e^{x+y}+\lambda,\,\lambda\in\mathbb{R}$

Remarque. On pouvait aussi remarquer immédiatement que si $f(x,y) = (x+y)^2 + e^{x+y}$ alors $df = \omega$.

2) La forme différentielle ω est de classe C^1 sur $\Omega = \{(x,y) \in \mathbb{R}^2 / y > x\}$ qui est un ouvert étoilé de \mathbb{R}^2 car convexe. Donc, d'après le théorème de Schwarz, ω est exacte sur Ω si et seulement si ω est fermée sur Ω .

$$\frac{\partial}{\partial x} \left(\frac{x}{(x-y)^2} \right) = \frac{\partial}{\partial x} \left(\frac{1}{x-y} + y \frac{1}{(x-y)^2} \right) = -\frac{1}{(x-y)^2} - \frac{2y}{(x-y)^3} = -\frac{x+y}{(x-y)^3} = \frac{x+y}{(y-x)^3}.$$

$$\frac{\partial}{\partial y} \left(-\frac{y}{(x-y)^2} \right) = \frac{\partial}{\partial y} \left(-\frac{1}{y-x} - x \frac{1}{(y-x)^2} \right) = \frac{1}{(y-x)^2} + \frac{2x}{(y-x)^3} = \frac{x+y}{(y-x)^3} = \frac{\partial}{\partial x} \left(\frac{x}{(x-y)^2} \right).$$

Donc ω est exacte sur l'ouvert Ω . Soit f une fonction f de classe \mathbb{C}^1 sur \mathbb{R}^2 .

$$\begin{split} df &= \omega \Leftrightarrow \forall (x,y) \in \Omega, \, \begin{cases} &\frac{\partial f}{\partial x}(x,y) = -\frac{y}{(x-y)^2} \\ &\frac{\partial f}{\partial y}(x,y) = \frac{x}{(x-y)^2} \end{cases} \\ &\Leftrightarrow \exists g \in C^1(\mathbb{R},\mathbb{R})/\ \forall (x,y) \in \Omega, \, \begin{cases} &f(x,y) = \frac{y}{x-y} + g(y) \\ &\frac{x}{(x-y)^2} + g'(y) = \frac{x}{(x-y)^2} \end{cases} \\ &\Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall (x,y) \in \Omega, \, f(x,y) = \frac{y}{x-y} + \lambda. \end{split}$$

Les primitives de ω sur Ω sont les fonctions de la forme $(x,y)\mapsto \frac{y}{x-y}+\lambda,\,\lambda\in\mathbb{R}.$

3) ω est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ qui est un ouvert de \mathbb{R}^2 mais n'est pas étoilé. On se place dorénavant sur $\Omega = \mathbb{R}^2 \setminus \{(x,0), x \in]-\infty, 0]\}$ qui est un ouvert étoilé de \mathbb{R}^2 . Sur Ω , ω est exacte si et seulement si ω est fermée d'après le théorème de SCHWARZ.

$$\frac{\partial}{\partial x} \left(\frac{y}{x^2 + y^2} - y \right) = -\frac{2xy}{(x^2 + y^2)^2} = \frac{\partial}{\partial y} \left(\frac{x}{x^2 + y^2} \right).$$
 Donc ω est exacte sur Ω . Soit f une application de classe C^1 sur Ω .

$$\begin{split} df &= \omega \Leftrightarrow \forall (x,y) \in \Omega, \left\{ \begin{array}{l} \frac{\partial f}{\partial x}(x,y) = \frac{x}{x^2 + y^2} \\ \frac{\partial f}{\partial y}(x,y) = \frac{y}{x^2 + y^2} - y \end{array} \right. \\ &\Leftrightarrow \exists g \in C^1(\mathbb{R},\mathbb{R})/\ \forall (x,y) \in \Omega, \left\{ \begin{array}{l} \frac{\partial f}{\partial x}(x,y) = \frac{1}{2}\ln(x^2 + y^2) + g(y) \\ \frac{y}{x^2 + y^2} + g'(y) = \frac{y}{x^2 + y^2} - y \end{array} \right. \\ &\Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall (x,y) \in \Omega, \ f(x,y) = \frac{1}{2}(\ln(x^2 + y^2) - y^2) + \lambda. \end{split}$$

 $\text{Les primitives de }\omega \text{ sur }\Omega \text{ sont les fonctions de la forme }(x,y) \mapsto \frac{1}{2}(\ln(x^2+y^2)-y^2) + \lambda,\, \lambda \in \mathbb{R}.$

Les fonctions précédentes sont encore des primitives de ω sur $\mathbb{R}^2\setminus\{(0,0)\}$ et donc ω est exacte sur $\mathbb{R}^2\setminus\{(0,0)\}$.

4) ω est de classe C^1 sur $]0, +\infty[^2$ qui est un ouvert étoilé de \mathbb{R}^2 . Donc ω est exacte sur $]0, +\infty[^2$ si et seulement si ω est fermée sur $]0, +\infty[^2$ d'après le théorème de SCHWARZ.

$$\frac{\partial}{\partial x} \left(-\frac{1}{xy^2} \right) = \frac{1}{x^2y^2} \text{ et } \frac{\partial}{\partial y} \left(\frac{1}{x^2y} \right) = -\frac{1}{x^2y^2}. \text{ Donc } \frac{\partial}{\partial x} \left(-\frac{1}{xy^2} \right) \neq \frac{\partial}{\partial y} \left(\frac{1}{x^2y} \right) \text{ et } \omega \text{ n'est pas exacte sur }]0, +\infty[^2].$$

On cherche un facteur intégrant de la forme $h:(x,y)\mapsto g(x^2+y^2)$ où g est une fonction non nulle de classe C^1 sur $]0,+\infty[$.

$$\frac{\partial}{\partial x} \left(-\frac{1}{xy^2} g(x^2 + y^2) \right) = \frac{1}{x^2 y^2} g(x^2 + y^2) - \frac{2}{y^2} g'(x^2 + y^2) \text{ et } \frac{\partial}{\partial y} \left(\frac{1}{x^2 y} g(x^2 + y^2) \right) = -\frac{1}{x^2 y^2} g(x^2 + y^2) + \frac{2}{x^2} g'(x^2 + y^2).$$

$$\begin{split} \text{hw est exacte sur }]0, +\infty [^2 &\Leftrightarrow \forall (x,y) \in]0, +\infty [^2, \ \frac{1}{x^2y^2} g(x^2+y^2) - \frac{2}{y^2} g'(x^2+y^2) = -\frac{1}{x^2y^2} g(x^2+y^2) + \frac{2}{x^2} g'(x^2+y^2) \\ &\Leftrightarrow \forall (x,y) \in]0, +\infty [^2, \ \frac{1}{x^2y^2} g(x^2+y^2) - \frac{x^2+y^2}{x^2y^2} g'(x^2+y^2) = 0 \\ &\Leftrightarrow \forall t>0, \ -tg'(t) + g(t) = 0 \Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall t>0, \ g(t) = \lambda t. \end{split}$$

La forme différentielle $(x^2 + y^2)\omega$ est exacte sur $]0, +\infty[^2]$. De plus,

$$d\left(\frac{x}{y} - \frac{y}{x}\right) = \left(\frac{1}{y} + \frac{y}{x^2}\right)dx - \left(\frac{x}{y^2} + \frac{1}{x}\right)dy = (x^2 + y^2)\omega.$$

 $\mathbf{n}^{\mathbf{o}}$ 13: 1) Soit f une application de classe C^1 sur \mathbb{R}^2 . Posons f(x,y) = g(u,v) où u = x + y et v = x + 2y. L'application $(x,y) \mapsto (x+y,x+2y) = (u,v)$ est un automorphisme de \mathbb{R}^2 et en particulier un C^1 -difféormorphisme de \mathbb{R}^2 sur lui-même.

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(g(u, v)) = \frac{\partial u}{\partial x} \times \frac{\partial g}{\partial u} + \frac{\partial v}{\partial x} \times \frac{\partial g}{\partial v} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$

De même, $\frac{\partial f}{\partial u} = \frac{\partial g}{\partial u} + 2 \frac{\partial g}{\partial v}$ et donc

$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 2\frac{\partial g}{\partial u} + 2\frac{\partial g}{\partial v} - \frac{\partial g}{\partial u} - 2\frac{\partial g}{\partial v} = \frac{\partial g}{\partial u}$$

Par suite, $2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0 \Leftrightarrow \frac{\partial g}{\partial u} = 0 \Leftrightarrow \exists h \in C^1(\mathbb{R}, \mathbb{R}) / \forall (u, v) \in \mathbb{R}^2, \ g(u, v) = h(v) \Leftrightarrow \exists h \in C^1(\mathbb{R}, \mathbb{R}) / \forall (x, y) \in \mathbb{R}^2, \ f(x, y) = h(x + 2y).$

Les solutions sont les
$$(x,y)\mapsto h(x+2y)$$
 où $h\in C^1(\mathbb{R},\mathbb{R}).$

Par exemple, la fonction $(x, y) \mapsto \cos \sqrt{(x+2y)^2+1}$ est solution.

2) Soit f une application de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Posons $f(x,y) = g(r,\theta)$ où $x = r\cos\theta$ et $y = r\sin\theta$. L'application $(r,\theta) \mapsto (r\cos\theta, r\sin\theta) = (x,y)$ est un C^1 -difféormorphisme de $]0, +\infty[\times[0,2\pi[$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus,

$$\frac{\partial g}{\partial r} = \frac{\partial}{\partial r}(f(x,y)) = \frac{\partial x}{\partial r}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial r}\frac{\partial f}{\partial y} = \cos\theta\frac{\partial f}{\partial x} + \sin\theta\frac{\partial f}{\partial y},$$

et

$$\frac{\partial g}{\partial \theta} = \frac{\partial}{\partial \theta}(f(x,y)) = \frac{\partial x}{\partial \theta}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial \theta}\frac{\partial f}{\partial y} = -r\sin\theta\frac{\partial f}{\partial x} + r\cos\theta\frac{\partial f}{\partial y} = x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x}$$

Donc

$$\begin{split} \frac{\partial f}{\partial y} - y \frac{\partial f}{\partial x} &= 0 \Leftrightarrow \frac{\partial g}{\partial \theta} = 0 \Leftrightarrow \exists h_1 \in C^1(]0, +\infty[,\mathbb{R}]/\ \forall (r,\theta) \in]0, +\infty[\times[0,2\pi[,\ g(r,\theta) = h_1(r)]] \\ &\Leftrightarrow \exists h_1 \in C^1(]0, +\infty[,\mathbb{R}]/\ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},\ f(x,y) = h_1\left(\sqrt{x^2 + y^2}\right) \\ &\Leftrightarrow \exists h \in C^1(]0, +\infty[,\mathbb{R}]/\ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},\ f(x,y) = h(x^2 + y^2). \end{split}$$

Les solutions sont les
$$(x,y)\mapsto h(x^2+y^2)$$
 où $h\in C^1(]0,+\infty[,\mathbb{R}).$

3) Soit f une fonction de classe C^2 sur $]0,+\infty[\times\mathbb{R}.$ D'après le théorème de Schwarz, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. Soit $\phi:]0,+\infty[\times\mathbb{R} \to]0,+\infty[\times\mathbb{R}$. Donc si on pose f(x,y)=g(u,v), on a $g=f\circ\phi.$ $(u,v)\mapsto (u,uv)=(x,y)$

Soit $(x, y, u, v) \in]0, +\infty[\times \mathbb{R} \times]0, +\infty[\times \mathbb{R}$.

$$\varphi(\mathfrak{u},\mathfrak{v})=(\mathfrak{x},\mathfrak{y}) \Leftrightarrow \left\{ \begin{array}{l} \mathfrak{u}=\mathfrak{x} \\ \mathfrak{u}\mathfrak{v}=\mathfrak{y} \end{array} \right. \left\{ \begin{array}{l} \mathfrak{u}=\mathfrak{x} \\ \mathfrak{v}=\frac{\mathfrak{y}}{\mathfrak{x}} \end{array} \right. .$$

Ainsi, φ est une bijection de $]0,+\infty[$ sur lui-même et sa réciproque est l'application

$$\begin{array}{cccc} \phi^{-1} & : &]0, +\infty[\times \mathbb{R} & \to &]0, +\infty[\times \mathbb{R} \\ & (x,y) & \mapsto & \left(x, \frac{y}{x}\right) = (u, v) \end{array}$$

De plus, φ est de classe \mathbb{C}^2 sur $]0, +\infty[\times \mathbb{R}$ et son jacobien

$$J_{\varphi}(u,v) = \begin{vmatrix} 1 & 0 \\ v & u \end{vmatrix} = u$$

ne s'annule pas sur $]0, +\infty[\times\mathbb{R}]$. On sait alors que φ est un \mathbb{C}^2 -difféomorphisme de $]0, +\infty[\times\mathbb{R}]$ sur lui-même.

Puisque $g=f\circ \phi$ et que ϕ est un C^2 -difféomorphisme de $]0,+\infty[\times\mathbb{R}$ sur lui-même, f est de classe C^2 sur $]0,+\infty[\times\mathbb{R}$ si et seulement si g est de classe C^2 sur $]0,+\infty[\times\mathbb{R}$.

•
$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial g}{\partial v} = \frac{\partial g}{\partial u} - \frac{y}{x^2} \frac{\partial g}{\partial v}$$

•
$$\frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial y} \frac{\partial g}{\partial v} = \frac{1}{x} \frac{\partial g}{\partial v}$$
.

$$\bullet \ \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial u} - \frac{y}{x^2} \frac{\partial g}{\partial v} \right) = \left(\frac{\partial^2 g}{\partial u^2} - \frac{y}{x^2} \frac{\partial^2 g}{\partial u \partial v} \right) + \left(\frac{2y}{x^3} \frac{\partial g}{\partial v} - \frac{y}{x^2} \frac{\partial^2 g}{\partial u \partial v} + \frac{y^2}{x^4} \frac{\partial^2 g}{\partial v^2} \right) = \frac{\partial^2 g}{\partial u^2} - \frac{2y}{x^2} \frac{\partial^2 g}{\partial u \partial v} + \frac{y^2}{x^4} \frac{\partial^2 g}{\partial v^2} + \frac{2y}{x^4} \frac{\partial^2 g}{\partial v^2} + \frac{2y$$

•
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial u} - \frac{y}{x^2} \frac{\partial g}{\partial v} \right) = \frac{1}{x} \frac{\partial^2 g}{\partial v \partial v} - \frac{1}{x^2} \frac{\partial g}{\partial v} - \frac{y}{x^3} \frac{\partial^2 g}{\partial v^2}.$$

•
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{1}{x} \frac{\partial g}{\partial v} \right) = \frac{1}{x^2} \frac{\partial^2 g}{\partial v^2}.$$

Ensuite.

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}} = x^{2} \frac{\partial^{2} g}{\partial u^{2}} - 2y \frac{\partial^{2} g}{\partial u \partial v} + \frac{y^{2}}{x^{2}} \frac{\partial^{2} g}{\partial v^{2}} + \frac{2y}{x} \frac{\partial g}{\partial v} + 2y \frac{\partial^{2} g}{\partial v \partial v} - \frac{2y}{x} \frac{\partial g}{\partial v} - \frac{2y^{2}}{x^{2}} \frac{\partial^{2} g}{\partial v^{2}} + \frac{y^{2}}{x^{2}} \frac{\partial^{2} g}{\partial v^{2}}$$
$$= x^{2} \frac{\partial^{2} g}{\partial u^{2}}.$$

Ainsi,

$$\begin{split} \forall (x,y) \in]0, +\infty[\times \mathbb{R}, \, x^2 \frac{\partial^2 f}{\partial x^2}(x,y) + 2xy \frac{\partial^2 f}{\partial x \partial y}(x,y) + y^2 \frac{\partial^2 f}{\partial y^2}(x,y) = 0 \Leftrightarrow \forall (u,v) \in]0, +\infty[\times \mathbb{R}, \, \frac{\partial^2 g}{\partial u^2}(u,v) = 0 \\ \Leftrightarrow \exists h \in C^2(\mathbb{R},\mathbb{R})/ \, \forall (u,v) \in]0, +\infty[\times \mathbb{R}, \, \frac{\partial g}{\partial u}(u,v) = h(v) \\ \exists (h,k) \in (C^2(\mathbb{R},\mathbb{R}))^2/ \, \forall (u,v) \in]0, +\infty[\times \mathbb{R}, \, g(u,v) = uh(v) + k(v) \\ \exists (h,k) \in (C^2(\mathbb{R},\mathbb{R}))^2/ \, \forall (x,y) \in]0, +\infty[\times \mathbb{R}, \, f(x,y) = xh(xy) + k(xy). \end{split}$$

Les fonctions solutions sont les $(x,y)\mapsto xh(xy)+k(xy)$ où h et k sont deux fonctions de classe C^2 sur \mathbb{R} .

nº 13 : On munit $(\mathbb{R}^3)^2$ de la norme définie par $\forall (x,y) \in (\mathbb{R}^3)^2, \|(x,y)\| = \text{Max}\{\|h\|_2, \|k\|_2\}.$

• Soit $(a,b) \in (\mathbb{R}^3)^2$. Pour $(h,k) \in (\mathbb{R}^3)^2$

$$f((a,b) + (h,h)) = (a+h).(b+k) = a.b + a.h + b.k + h.k,$$

et donc f((a,b)+(h,h))-f((a,b))=(a.h+b.k)+h.k. Maintenant l'application $L:(h,k)\mapsto a.h+b.k$ est linéaire et de plus, pour $(h, k) \neq (0, 0)$,

$$|f((a,b)+(h,h))-f((a,b))-L((h,k))| = |h.k| \le ||h||_2 ||k||_2 \le ||(h,k)||^2$$

et donc $\frac{1}{\|(h-k)\|}|f((\mathfrak{a},\mathfrak{b})+(h,h))-f((\mathfrak{a},\mathfrak{b}))-L((h,k))|\leqslant \|(h,k)\| \text{ puis }$

$$\lim_{(h,k)\to(0,0)}\frac{1}{\|(h,k)\|}|f((\alpha,b)+(h,h))-f((\alpha,b))-L((h,k))|=0.$$

Puisque l'application $(h, k) \mapsto a.h + b.k$ est linéaire, on en déduit que f est différentiable en (a, b) et que $\forall (h, k) \in (\mathbb{R}^3)^2$, $df_{(a,b)}(h,k) = a.h + b.k.$

La démarche est analogue pour le produit vectoriel :

$$\frac{1}{\|(h,k)\|}\|(a+h) \wedge (b+k) - a \wedge b - a \wedge h - b \wedge k\|_2 = \frac{\|h \wedge k\|_2}{\|(h,k)\|} \leqslant \frac{\|h\|_2 \|k\|_2}{\|(h,k)\|} \leqslant \|(h,k)\|.$$

Puisque l'application $(h, k) \mapsto a \wedge h + b \wedge k$ est linéaire, on en déduit que g est différentiable en (a, b) et que $\forall (h, k) \in (\mathbb{R}^3)^2$, $dg_{(a,b)}(h,k) = a \wedge h + b \wedge k.$

 $\begin{aligned} &\mathbf{n^o} \ \mathbf{14:} \quad \bullet \ \mathrm{Pour} \ \mathrm{tout} \ x \in E, \ \|f(x)\| = \frac{\|x\|}{1+\|x\|} < \frac{\|x\|+1}{\|x\|+1} = 1. \ \mathrm{Donc} \ f \ \mathrm{est} \ \mathrm{bien} \ \mathrm{une} \ \mathrm{application} \ \mathrm{de} \ E \ \mathrm{dans} \ B. \\ & \bullet \ \mathrm{Si} \ y = 0, \ \mathrm{pour} \ x \in E, \ f(x) = y \Leftrightarrow \frac{1}{1+\|x\|} x = 0 \Leftrightarrow x = 0. \end{aligned}$

Soit alors $y \in B \setminus \{0\}$. Pour $x \in E$,

$$f(x) = y \Rightarrow x = (1 + ||x||)y \Rightarrow \exists \lambda \in \mathbb{K}/x = \lambda y.$$

Donc un éventuel antécédent de y est nécessairement de la forme $\lambda y, \lambda \in \mathbb{R}$. Réciproquement, pour $\lambda \in \mathbb{R}$, $f(\lambda y) =$ $\frac{\lambda}{1+|\lambda|||y||}y$ et donc

$$\begin{split} f(\lambda y) &= y \Leftrightarrow \frac{\lambda}{1 + |\lambda| \|y\|} = 1 \Leftrightarrow \lambda = 1 + |\lambda| \|y\| \\ &\Leftrightarrow (\lambda \geqslant 0 \text{ et } (1 - \|y\|)\lambda = 1) \text{ ou } (\lambda < 0 \text{ et } (1 + \|y\|)\lambda = 1) \\ &\Leftrightarrow \lambda = \frac{1}{1 - \|y\|} \text{ (car } \|y\| < 1). \end{split}$$

Dans tous les cas, y admet un antécédent par f et un seul à savoir $x = \frac{1}{1 - ||y||} y$. Ainsi,

$$f \text{ est bijective et } \forall x \in B, \, f^{-1}(x) = \frac{1}{1 - \|x\|} x.$$

• On sait que l'application $x \mapsto ||x||$ est continue sur \mathbb{R}^2 . Donc l'application $x \mapsto \frac{1}{1+||x||}$ est continue sur \mathbb{R}^2 en tant qu'inverse d'une fonction continue sur \mathbb{R}^2 à valeurs dans \mathbb{R} , ne s'annulant pas sur \mathbb{R}^2 . L'application $x\mapsto \frac{1}{1-\|x\|}$ est continue sur B pour les mêmes raisons. Donc les applications f et f^{-1} sont continues sur \mathbb{R}^2 et B respectivement et on a montré que

l'application f : E
$$\rightarrow$$
 B est un homéomorphisme. $x \mapsto \frac{x}{1+\|x\|}$

$$\frac{\partial f}{\partial x_i}(x) = \frac{x_i}{\sqrt{\sum_{i=1}^n x_i^2}} = \frac{x_i}{\|x\|_2}.$$

On en déduit que f est différentiable sur $\mathbb{R}^n \setminus \{0\}$ et pour $x \in \mathbb{R}^n \setminus \{0\}$ et $h \in \mathbb{R}^n$

$$df_{x}(h) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)h_{i} = \frac{1}{\|x\|_{2}} \sum_{i=1}^{n} x_{i}h_{i} = \frac{x|h}{\|x\|_{2}}.$$

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \, \forall h \in \mathbb{R}^n, \, df_x(h) = \frac{x|h}{\|x\|_2}.$$

2 ème solution. Soit $x \in \mathbb{R}^n \setminus \{0\}$. Pour $h \in \mathbb{R}^n$

$$\|x + h\|_2 - \|x\|_2 = \frac{(\|x + h\|_2 - \|x\|_2)(\|x + h\|_2 + \|x\|_2)}{\|x + h\|_2 + \|x\|_2} = \frac{2(x|h) + \|h\|_2^2}{\|x + h\|_2 + \|x\|_2},$$

puis

$$\|x + h\|_2 - \|x\|_2 - \frac{x|h}{\|x\|_2} = \frac{2(x|h) + \|h\|_2^2}{\|x + h\|_2 + \|x\|_2} - \frac{x|h}{\|x\|_2} = \frac{-(\|x + h\|_2 - \|x\|_2)(x|h) + \|x\|_2 \|h\|_2^2}{(\|x + h\|_2 + \|x\|_2)\|x\|_2}$$

 $\begin{aligned} & \text{Maintenant, on sait que l'application } x \mapsto \|x\|_2 \text{ est continue sur } \mathbb{R}^n. \text{ On en déduit que } \frac{1}{(\|x+h\|_2+\|x\|_2)\|x\|_2} & \underset{h \to 0}{\overset{\sim}{\sim}} \frac{1}{2\|x\|_2^2} \\ & \text{et aussi que } \|x+h\|_2-\|x\|_2 \text{ tend vers 0 quand h tend vers 0. Ensuite, puisque } |(x|h)| \leqslant \|x\|_2\|h\|_2 \text{ (inégalité de Cauchy-Schwarz), on a } x|h \underset{h \to 0}{\overset{\sim}{=}} O(\|h\|_2) \text{ puis } (\|x+h\|_2-\|x\|_2)(x|h) \underset{h \to 0}{\overset{\sim}{=}} o(\|h\|_2). \end{aligned}$

Finalement, $\frac{-\left(\|x+h\|_2-\|x\|_2\right)(x|h)+\|x\|_2\|h\|_2^2}{\left(\|x+h\|_2+\|x\|_2\right)\|x\|_2}\underset{h\to 0}{=} o(\|h\|_2) \text{ et donc}$

$$\|x+h\|_2 \underset{h\to 0}{=} \|x\|_2 + \frac{x|h}{\|x\|_2} + o(\|h\|_2).$$

Puisque l'application $h \mapsto \frac{x|h}{\|x\|_2}$ est linéaire, on a redémontré que f est différentiable en tout x de $\mathbb{R}^n \setminus \{0\}$ et que $\forall x \in \mathbb{R}^n \setminus \{0\}$, $\forall h \in \mathbb{R}^n$, $df_x(h) = \frac{x|h}{\|x\|_2}$.

Soit L une application linéaire de \mathbb{R}^n dans \mathbb{R} c'est-à-dire une forme linéaire.

$$\frac{1}{\|h\|_2} (\|0 + h\|_2 - \|0\|_2 - L(h)) = 1 - L\left(\frac{h}{\|h\|_2}\right).$$

Supposons que cette expression tende vers 0 quand h tend vers 0. Pour u vecteur non nul donné et t réel non nul, l'expression $1-L\left(\frac{tu}{\|tu\|_2}\right)=1-\frac{t}{|t|}L\left(\frac{u}{\|u\|_2}\right)$ tend donc vers 0 quand t tend vers 0. Mais si t tend vers 0 par valeurs supérieures, on obtient $L(u)=\|u\|_2$ et si t tend vers 0 par valeurs inférieures, on obtient $L(u)=-\|u\|_2$ ce qui est impossible car $u\neq 0$. Donc f n'est pas différentiable en 0.

 ${\bf n^o}$ 16 : On pose BC = ${\mathfrak a}$, CA = ${\mathfrak b}$ et AB = ${\mathfrak c}$ et on note ${\mathcal A}$ l'aire du triangle ABC. Soit M un point intérieur au triangle ABC. On note I, J et K les projetés orthogonaux de M sur les droites (BC), (CA) et (AB) respectivement. On pose ${\mathfrak u}=$ aire de MBC, ${\mathfrak v}=$ aire de MCA et ${\mathfrak w}=$ aire de MAB. On a

$$d(M, (BC)) \times d(M, (CA)) \times d(M, (AB)) = MI \times MJ \times MK = \frac{2u}{a} \times \frac{2v}{b} \times \frac{2w}{c} = \frac{8}{abc}uv(\mathscr{A} - u - v).$$

Il s'agit alors de trouver le maximum de la fonction $f:(u,v)\mapsto uv(\mathscr{A}-u-v)$ sur le domaine

$$T = \left\{ (u, v) \in \mathbb{R}^2 / \ u \geqslant 0, \ v \geqslant 0 \ \mathrm{et} \ u + v \leqslant \mathscr{A} \right\}.$$

T est un compact de \mathbb{R}^2 . En effet :

- $\forall (u, v) \in T^2$, $\|(u, v)\|_1 = u + v \leq \mathscr{A}$ et donc T est bornée.
- Les applications $\varphi_1: (u,v) \mapsto u, \ \varphi_2: (u,v) \mapsto v \ \text{et} \ \varphi_3: (u,v) \mapsto u+v \ \text{sont continues sur} \ \mathbb{R}^2 \ \text{en tant que formes linéaires sur un espace de dimension finie. Donc les ensembles } P_1 = \{(u,v) \in \mathbb{R}^2/\ u \geqslant 0\} = \varphi_1^{-1}([0,+\infty[),P_2 = \{(u,v) \in \mathbb{R}^2/\ v \geqslant 0\} = \varphi_2^{-1}([0,+\infty[)) \ \text{et} \ P_3 = \{(u,v) \in \mathbb{R}^2/\ u+v \leqslant 0\} = \varphi_3^{-1}([-\infty,0]) \ \text{sont des fermés de} \ \mathbb{R}^2 \ \text{en tant qu'images réciproques de fermés par des applications continues. On en déduit que } T = P_1 \cap P_2 \cap P_3 \ \text{est un fermé de} \ \mathbb{R}^2 \ \text{en tant qu'intersection de fermés de} \ \mathbb{R}^2.$

Puisque T est un fermé borné de \mathbb{R}^2 , T est un compact de \mathbb{R}^2 puisque \mathbb{R}^2 est de dimension finie et d'après le théorème de BOREL-LEBESGUE.

f est continue sur le compact T à valeurs dans $\mathbb R$ en tant que polynôme à plusieurs variables et donc f admet un maximum sur T.

Pour tout (u, v) appartenant à la frontière de T, on a f(u, v) = 0. Comme f est strictement positive sur $\overset{\circ}{T} = \{(u, v) \in \mathbb{R}^2 \mid u > 0, v > 0 \text{ et } u + v < 0\}$, f admet son maximum dans $\overset{\circ}{T}$. Puisque f est de classe C^1 sur $\overset{\circ}{T}$ qui est un ouvert de \mathbb{R}^2 , si f admet un maximum en $(u_0, v_0) \in \overset{\circ}{T}$, (u_0, v_0) est nécessairement un point critique de f. Soit $(u, v) \in \overset{\circ}{T}$.

$$\left\{ \begin{array}{l} \frac{\partial f}{\partial u}(u,v) = 0 \\ \frac{\partial f}{\partial v}(u,v) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} v(\mathscr{A} - 2u - v) = 0 \\ u(\mathscr{A} - u - 2v) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2u + v = \mathscr{A} \\ u + 2v = \mathscr{A} \end{array} \right. \Leftrightarrow u = v = \frac{\mathscr{A}}{3}.$$

Puisque f admet un point critique et un seul à savoir $(u_0, v_0) = \left(\frac{\mathscr{A}}{3}, \frac{\mathscr{A}}{3}\right)$, f admet son maximum en ce point et ce maximum vaut $f(u_0, v_0) = \frac{\mathscr{A}^3}{27}$. Le maximum du produit des distances d'un point M intérieur au triangle ABC aux cotés de ce triangle est donc $\frac{8\mathscr{A}^3}{27abc}$.

Remarque. On peut démontrer que pour tout point M intérieur au triangle ABC, on a M = bar((A, aire de MBC), (B, aire de MBC)). Si maintenant M est le point en lequel on réalise le maximum, les trois aires sont égales et donc le maximum est atteint en G l'isobarycentre du triangle ABC.

 $\mathbf{n^o}$ 17: Soient A et B les points du plan de coordonnées respectives (0, a) et (a, 0) dans un certain repère $\mathcal R$ orthonormé. Soit M un point du plan de coordonnées (x,y) dans $\mathcal R$. Pour $(x,y) \in \mathbb R^2$,

$$f(x,y) = \left\| \overrightarrow{MA} \right\|_2 + \left\| \overrightarrow{MB} \right\|_2 = MA + MB \geqslant AB \text{ avec \'egalit\'e si et seulement si } M \in [AB].$$

Donc f admet un minimum global égal à $AB = a\sqrt{2}$ atteint en tout couple (x,y) de la forme $(\lambda a, (1-\lambda)a), \lambda \in [0,1]$.

 $\mathbf{n^o}$ 18: Puisque la fonction ch ne s'annule pas sur \mathbb{R} , g est de classe C^2 sur \mathbb{R}^2 et pour $(x,y) \in \mathbb{R}^2$,

$$\frac{\partial g}{\partial x}(x,y) = -2\frac{\sin(2x)}{\operatorname{ch}(2y)}f'\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right)$$

puis

$$\begin{split} \frac{\partial^2 g}{\partial x^2}(x,y) &= -4\frac{\cos(2x)}{\operatorname{ch}(2y)}f'\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right) + 4\frac{\sin^2(2x)}{\operatorname{ch}^2(2y)}f''\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right) \\ &= -4\frac{\cos(2x)}{\operatorname{ch}(2y)}f'\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right) + 4\frac{1-\cos^2(2x)}{\operatorname{ch}^2(2y)}f''\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right). \end{split}$$

De même,

$$\frac{\partial g}{\partial y}(x,y) = -2\frac{\cos(2x)\operatorname{sh}(2y)}{\operatorname{ch}^2(2y)}f'\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right)$$

puis

$$\begin{split} \frac{\partial^2 g}{\partial y^2}(x,y) &= -2\cos(2x)\frac{2\mathop{\mathrm{ch}}\nolimits^3(2y) - 4\mathop{\mathrm{sh}}\nolimits^2(2y)\mathop{\mathrm{ch}}\nolimits(2y)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}f'\left(\frac{\cos(2x)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}\right) + 4\frac{\cos^2(2x)\mathop{\mathrm{sh}}\nolimits^2(2y)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}f''\left(\frac{\cos(2x)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}\right) \\ &= -4\frac{\cos(2x)}{\mathop{\mathrm{ch}}\nolimits^3(2y)}(-\mathop{\mathrm{ch}}\nolimits^2(2y) + 2)f'\left(\frac{\cos(2x)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}\right) + 4\frac{\cos^2(2x)(\mathop{\mathrm{ch}}\nolimits^2(2y) - 1)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}f''\left(\frac{\cos(2x)}{\mathop{\mathrm{ch}}\nolimits^4(2y)}\right). \end{split}$$

Donc, pour tout $(x, y) \in \mathbb{R}^2$,

$$\frac{\operatorname{ch}^2(2y)}{4}\Delta g(x,y) = -2\frac{\cos(2x)}{\operatorname{ch}(2y)}f'\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right) + \left(1 - \frac{\cos^2(2x)}{\operatorname{ch}^2(2y)}\right)f''\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right).$$

 $\begin{array}{l} \text{Maintenant, pour } (x,y) \in \mathbb{R}^2, \, -1 \leqslant \frac{\cos(2x)}{\operatorname{ch}(2y)} \leqslant 1 \,\, \text{et d'autre part, l'expression} \,\, \frac{\cos(2x)}{\operatorname{ch}(2\times)} = \cos(2x) \,\, \text{décrit } [-1,1] \,\, \text{quand } x \,\, \text{décrit } \mathbb{R}. \,\, \text{Donc} \,\, \left\{ \frac{\cos(2x)}{\operatorname{ch}(2\times)}, \,\, (x,y) \in \mathbb{R}^2 \right\} = [-1,1]. \,\, \text{Par suite,} \end{array}$

$$\forall (x,y) \ \mathbb{R}^2, \ \Delta g(x,y) = 0 \Leftrightarrow \forall t \in [-1,1], \ (1-t^2)f''(t) - 2tf'(t) = 0.$$

On cherche une application f de classe C^2 sur] -1,1[. Or $\left|\frac{\cos(2x)}{\operatorname{ch}(2y)}\right|=1\Leftrightarrow |\cos(2x)|=\operatorname{ch}(2y)\Leftrightarrow |\cos(2x)|=\operatorname{ch}(2y)=1\Leftrightarrow y=0$ et $x\in\frac{\pi}{2}\mathbb{Z}$. Donc

$$\begin{split} \forall (x,y) \ \mathbb{R}^2 \setminus \left\{ \left(\frac{k\pi}{2},0\right), \ k \in \mathbb{Z} \right\}, \ \Delta g(x,y) &= 0 \Leftrightarrow \forall t \in]-1,1[, \ (1-t^2)f''(t)-2tf'(t)=0 \\ &\Leftrightarrow \forall t \in]-1,1[, \ ((1-t^2)f')'(t)=0 \Leftrightarrow \exists \lambda \in \mathbb{R}/\ \forall t \in]-1,1[, \ f'(t)=\frac{\lambda}{1-t^2} \\ &\Leftrightarrow \exists (\lambda,\mu) \in \mathbb{R}^2/\ \forall t \in]-1,1[, \ f(t)=\lambda \ \mathrm{argth} \ t+\mu. \end{split}$$

De plus, f n'est pas constante si et seulement si $\mu = 0$.

 $\mathbf{n^o} \ \mathbf{19}: \ \mathrm{Soit} \ (x,y) \in \mathbb{R}^2. \ \mathrm{La \ matrice \ jacobienne \ de \ f \ en \ } (x,y) \ s'\'{e}\mathrm{crit} \left(\begin{array}{cc} c(x,y) & -s(x,y) \\ s(x,y) & c(x,y) \end{array} \right) \ o\`{u} \ c \ \mathrm{et \ } s \ \mathrm{sont \ } \mathrm{deux \ fonctions} \ \mathrm{de \ classe} \ C^1 \ \mathrm{sur} \ \mathbb{R}^2 \ \mathrm{telle \ que} \ c^2 + s^2 = 1 \ (*). \ \mathrm{Il \ s'agit \ dans \ un \ premier \ temps \ de \ v\'{e}rifier \ que \ les \ fonctions \ c \ et \ s \ sont \ constantes \ \mathrm{sur} \ \mathbb{R}^2.$

Puisque f est de classe C^2 sur \mathbb{R}^2 , d'après le théorème de Schwarz, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$. Ceci s'écrit encore $\frac{\partial}{\partial y} \begin{pmatrix} c \\ s \end{pmatrix} = \frac{\partial}{\partial x} \begin{pmatrix} -s \\ c \end{pmatrix}$ ou enfin

$$\forall (x,y) \in \mathbb{R}^2, \left(\begin{array}{c} \frac{\partial c}{\partial y}(x,y) \\ \frac{\partial s}{\partial y}(x,y) \end{array} \right) = \left(\begin{array}{c} -\frac{\partial s}{\partial x}(x,y) \\ \frac{\partial c}{\partial x}(x,y) \end{array} \right) \ (**).$$

En dérivant (*) par rapport à x ou à y, on obtient les égalités $c\frac{\partial c}{\partial x} + s\frac{\partial s}{\partial x} = 0$ et $c\frac{\partial c}{\partial y} + s\frac{\partial s}{\partial y} = 0$. Ceci montre que les

deux vecteurs $\begin{pmatrix} \frac{\partial c}{\partial x} \\ \frac{\partial s}{\partial x} \end{pmatrix}$ et $\begin{pmatrix} \frac{\partial c}{\partial y} \\ \frac{\partial s}{\partial y} \end{pmatrix}$ sont orthogonaux au vecteur non nul $\begin{pmatrix} c \\ s \end{pmatrix}$ et sont donc colinéaires. Mais l'égalité

(**) montre que les deux vecteurs $\begin{pmatrix} \frac{\partial c}{\partial x} \\ \frac{\partial s}{\partial x} \end{pmatrix}$ et $\begin{pmatrix} \frac{\partial c}{\partial y} \\ \frac{\partial s}{\partial y} \end{pmatrix}$ sont aussi orthogonaux l'un à l'autre. Finalement, pour tout

$$(x,y) \in \mathbb{R}^2$$
, les deux vecteurs $\left(\begin{array}{c} \frac{\partial c}{\partial x}(x,y) \\ \frac{\partial s}{\partial x}(x,y) \end{array}\right)$ et $\left(\begin{array}{c} \frac{\partial c}{\partial y}(x,y) \\ \frac{\partial s}{\partial y}(x,y) \end{array}\right)$ sont nuls. On en déduit que les deux applications c et s

sont constantes sur \mathbb{R}^2 et donc, il existe θ dans \mathbb{R} tel que pour tout $(x,y) \in \mathbb{R}^2$, la matrice jacobienne de f en (x,y) est $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.

Soit g la rotation d'angle θ prenant la même valeur que f en (0,0). f et g ont mêmes différentielles en tout point et coïncident en un point. Donc f=g et f est une rotation affine.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ de classe C^2 dont la différentielle en tout point est une rotation. Montrer que f est une rotation affine.