

Computer & Multimedia Network Security (CPE-592WS)

Schaefer School of Engg & Science
Dept of Electrical and Computer Engg
Fall 2025

Instructor: Vidya Sagar

Course Web Address: https://sit.instructure.com/courses/49821

Office Hours: Thursday (10am to 1pm) over Chat (Links to an external site.)

Course Schedule: Course material will be updated weekly

Contact Info: vsagar@stevens.edu

Virtual Office Hours: Thursday 10am -12pm (over Canvas chat)

Prerequisite(s): Probability, Signal Processing and Statistics

COURSE DESCRIPTION

This is an introductory course on security issues in multimedia content (digital image, video), wireless and wired network security. Topics such as digital watermarking, digital steganography, basic cryptography, wireless security protocols, etc. will be discussed.

STUDENT LEARNING OUTCOMES

	Students will understand security issues and threats against computer and ultimedia networks		
	Students will learn to design digital watermarking algorithms for multimedia data		
	Students will implement digital watermarking algorithms		
	Students will understand the basic concepts of encryption and decryption		
	Students will learn to implement at least one encryption and decryption algorithm		
	Students will understand the issues related to wireless security protocols		
	Students will be able to present security issues related to emerging wireless		
technologies			

COURSE FORMAT AND STRUCTURE

This course is organized in three broader yet interrelated sections 1) Watermarking and Steganography 2) Computer and Network Security 3) Wireless Network Security. We will have one week for literature review and discussion upon completion of each of these section.

There will be one Midterm examination and one final Project.

Assignments will have some coding tasks. Please feel free to code in any common programming language (C/C++/JAVA/Matlab/JavaScript). This is not a computer language course, therefore coding assignments will be graded mainly of algorithm and methodologies.

Please reach out for any question and query you may have. I am available over email (<u>vsagar@stevens.edu</u>) and Canvas.

TENTATIVE COURSE SCHEDULE

Topics Covered Each Week:

Introduction to digital watermarking and steganography
Digital watermarking algorithms, analyses, and implementation
Attacks against digital watermarking techniques
State-of-the-art applications of digital watermarking
Introduction to cryptography
Cryptography algorithms and analyses
Implementation of cryptography algorithms
Application of cryptography in the real-world
Mid-term exam
Wireless networking and protocols

	Security issues in wireless networks
	Security vulnerabilities in wireless networks
	•
	Emerging wireless networking standards and related security issues
	Review of the course material
П	
	Final project

COURSE MATERIALS

This course require no textbook. Lecture slides and various literature will be provided weekly.

COURSE REQUIREMENTS

There will be 5 homework assignments,1 mid-term and final project. Please submit them timely fashion. I am will accept email based submission only on case to case basis. Most of assignments will be open-ended. Coding assignments will be optional. Breakdown of various assignments and final project will be as follows

	Homework #1 : 10
	Homework #2 : 10
	Homework #3: 10
	Mid-term Exam #: 50
	Homework #4:10
	Homework #5:10
П	Final Proiect : 50

GRADING PROCEDURES

Α	100 % to 94.0%
A-	94.0 % to 90.0%
B+	90.0 % to 87.0%
В	87.0 % to 84.0%
B-	84.0 % to 80.0%
C+	80.0 % to 77.0%
С	77.0 % to 74.0%
C-	74.0 % to 60.0%
F	60.0 % to 0.0%