

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY Rozwiązany! Część I TEST DIAGNOSTYCZNY

TERMIN: marzec 2021 r. Czas pracy: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

WYPEŁNIA ZDAJĄCY	WYBRANE:
	(system operacyjny)
	(program użytkowy)
	(środowisko programistyczne)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. Turniej

W turnieju siatkówki bierze udział n drużyn ponumerowanych kolejnymi liczbami całkowitymi od 0 do n-1, gdzie $n=2^k$ dla pewnej liczby całkowitej k>0. Turniej odbywa się w rundach systemem pucharowym – przegrywający odpada z turnieju. W każdej rundzie drużyny grają w parach i do dalszej rundy przechodzi tylko zwycięzca meczu. W każdej rundzie mecze są ponumerowane kolejnymi liczbami całkowitymi, poczynając od 1. W pierwszej rundzie w meczu nr 1 grają drużyny 0 i 1, w meczu nr 2 – drużyny 2 i 3, w meczu nr 3 – drużyny 4 i 5, w meczu nr i- drużyny $2^*(i-1)$ oraz $2^*(i-1)+1$, itd. W każdej z kolejnych rund w meczu nr 1 grają zwycięzcy meczów o numerach 1 i 2 z poprzedniej rundy, w meczu nr 2- zwycięzcy meczów o numerach 3 i 4 z poprzedniej rundy, w meczu nr i- zwycięzcy meczów o numerach 2^*i- 1 oraz 2^*i z poprzedniej rundy itd. Turniej trwa dokładnie k rund.

Przykład

Przykładową rozgrywkę w turnieju 8-drużynowym przedstawiono w postaci drzewa na rysunku poniżej. Na najniższym poziomie rysunku drzewa zapisano numery drużyn, natomiast w węzłach wewnętrznych – numery zwycięskich drużyn w poszczególnych meczach. Zwycięzcą turnieju została drużyna nr 6, która w meczu finałowym pokonała drużynę o numerze 2.

Numer rundy, w której mogą zmierzyć się dwie drużyny o numerach x i y, można wyznaczyć z zapisów binarnych liczb x i y o długości k (liczba rund). Twoim zadaniem jest odkrycie tej zależności.

Zadanie 1.1. (0-2)

Dla podanej liczby k (liczba rund w turnieju) oraz numerów drużyn x i y wyznacz numer rundy w turnieju, w której te dwie drużyny mogą się zmierzyć ze sobą.

k	х	У	<i>x</i> dwójkowo	<i>y</i> dwójkowo	nr rundy, w której mogą się zmierzyć drużyny x i <i>y</i>
3	2	6	010	110	3
4	0	3	0000	0011	2
4	3	7	0011	0111	3
5	16	30	10000	11110	4

Miejsce na obliczenia:

Przykładowe rozwiązanie 1.	Przykładowe rozwiązanie 2.
funkcja dwojkowe(a,k)	Moźliwe jest też bardzo krótkie rozwiązanie bez wyliczania postaci dwójkowych, na
A[0k-1] – tablica	przykład:
dla i = 0, 1,, k-1	runda ← 0
A[k-i-1] ← a mod 2	dopói x ≠ y powtarzaj
a ← a div 2	runda ← runda +1
podaj wynik A	x ← x/2
X ← dwojkowe(x,k)	$y \leftarrow y/2$
Y ← dwojkowe(y,k)	podaj wynik runda
runda ← k	
dla i = 0, 1,, k-1	
jeżli X[i] = Y[i]	
runda ← runda - 1	Za podobne (prawidłwe) należy przyznać4 punkty
w przeciwnym razie	

przerwij pęlę podaj wynik runda

Zadanie 1.2. (0-4)

Napisz algorytm (w pseudokodzie lub w wybranym języku programowania), który dla danych liczb całkowitych k, x i y obliczy numer rundy w turnieju dla 2^k drużyn, w której mogą się spotkać drużyny x i y.

Uwaga: W zapisie algorytmu możesz korzystać wyłącznie z instrukcji sterujących, operatorów arytmetycznych (w tym dzielenia całkowitego i dzielenia z resztą), operatorów logicznych, porównań i instrukcji przypisywania lub samodzielnie napisanych funkcji i procedur. Zabronione jest używanie funkcji wbudowanych, dostępnych w językach programowania, a zwłaszcza funkcji podnoszącej do potęgi.

Specyfikacja algorytmu

Dane

k − dodatnia liczba całkowita, liczba rund w turnieju

x, y – dwie różne liczby całkowite z przedziału [0, 2^k – 1], numery drużyn

Wynik

runda – nr rundy, w której mogą się spotkać drużyny x i y

Algorytm:

	Nr zadania	2.1.	2.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	4
	Uzyskana liczba pkt.		

Zadanie 2. Analiza algorytmu

Wykonaj analizę funkcji *Algo*(*n*), której argumentem jest dodatnia liczba całkowita *n*.

```
Algo(n)

jeżeli n \le 2 to

wynikiem jest 1

w przeciwnym przypadku

p \leftarrow 1

k \leftarrow n

dopóki k - p > 1 wykonuj

s \leftarrow (p + k) \text{ div } 2

jeżeli s * s \le n to

p \leftarrow s

w przeciwnym przypadku

k \leftarrow s

wynikiem jest p
```

Uwaga: *div* oznacza dzielenie całkowite.

Zadanie 2.1. (0-2)

Uzupełnij tabelę – podaj wynik funkcji *Algo* dla podanych w tabeli wartości *n*.

n	Wynik otrzymany po wywołaniu <i>Algo</i> (<i>n</i>)
5	2
35	5
1025	32

Miejsce na obliczenia:

Zadanie 2.2. (0-3)

Uzupełnij tabelę – podaj liczbę wykonań instrukcji " $s \leftarrow (p + k)$ div 2" podczas obliczania wartości funkcji Algo(n) dla podanych wartości n.

n	Liczba wykonań instrukcji "s ← (p + k) div 2" podczas obliczania wartości funkcji <i>Algo</i> (<i>n</i>)
5	2
2	0
63	6
1024	10

Miejsce na obliczenia

	Nr zadania	2.1.	2.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	3
	Uzyskana liczba pkt.		

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F** – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

W komórce C1 arkusza kalkulacyjnego zapisano formułę:

=JEŻELI(ORAZ(MOD(A1;2)=1;MOD(B1;2)=1);A1+B1;A1*B1)

1.	Jeśli w A1 wpisano liczbę 1, a w B1 liczbę 3, to w C1 w wyniku obliczenia formuły pojawi się liczba 4.	P	F
2.	Jeśli w A1 wpisano liczbę 4, a w B1 liczbę 3, to w C1 w wyniku obliczenia formuły pojawi się liczba 3.	Р	F
3.	Jeśli w A1 i B1 wpiszemy dowolną liczbę całkowitą dodatnią, to w wyniku obliczenia formuły w C1 zawsze pojawi się liczba parzysta.	P	F
4.	Jeśli w A1 i B1 wpiszemy dowolną liczbę całkowitą dodatnią, to w wyniku obliczenia formuły w C1 zawsze pojawi się liczba większa niż 1.	P	F

Zadanie 3.2. (0-1)

Mamy dane operacje (bramki) logiczne na bitach: not oraz and opisane poniżej:

а	not a
1	0
0	1

а	b	a and b
1	1	1
0	1	0
1	0	0
0	0	0

not((not 0) and 0)) and (not(0 and (not 0)))
not(1 and 0) and (not (0 and 1))
not 0 and not 0
1 and 1

oraz wyrażenie W(a,b):

(not ((not a) and b)) and (not (a and (not b)))

1.	W(0,0)=0	Р	F
2.	W(1,0)=0	P	F
3.	W(0,1)=1	Р	F
4.	W(1,1)=1	P	F

Zadanie 3.3. (0-1)

Różnica 1011101₂ – 10111₂ dwóch liczb zapisanych w systemie binarnym jest:

1.	mniejsza niż 100111 ₂	Р	F
2.	równa 1000110 ₂	P	F
3.	większa niż 10111 ₂	P	F
4.	równa 1001000 ₂	Р	F

Zadanie 3.4. (0-1)

W bazie danych istnieje tabela *oceny(id_oceny, id_ucznia, przedmiot, ocena)*, zawierająca następujące dane:

id_oceny	id_ucznia	_ucznia przedmiot	
1	1	matematyka	3
2	1	informatyka	4
3	1	fizyka	2
4	2	matematyka	6
5	2	fizyka	3
6	2	informatyka	5
7	3	matematyka	4
8	3	fizyka	2
9	3	informatyka	3

1.	Wynikiem zapytania SELECT COUNT(id_ucznia) FROM oceny; jest	Р	F
	3		
	Wynikiem zapytania SELECT COUNT (id_ucznia) FROM oceny		
2.	WHERE przedmiot="fizyka";	P	F
	jest		
	3		
	Wynikiem zapytania		
3.	SELECT COUNT(przedmiot) FROM oceny;	P	F
0.	jest	•	•
	9		
	Wynikiem zapytania		
	SELECT COUNT(przedmiot) FROM oceny		
4.	WHERE ocena > 3;	P	F
	jest		
	4		

	Nr zadania	3.1.	3.2.	3.3.	3.4.
Wypełnia	Maks. liczba pkt.	1	1	1	1
egzaminator	Uzyskana liczba pkt.				

BRUDNOPIS (nie podlega ocenie)