Arrays 2: Two Dimensional

Buestiens

liver a now-wise & column-wise sosted matrix, find whether element K is present or not?

$$K=13$$

$$K=0$$

$$K=-1$$

$$X$$

Bruteforce -> firj check aussi)

T(- D(Nom)

 $-5<\mathcal{D}$

=> go to larger value

-5 -> increasing

z) go to smaller value

decreasing 13

increasing

K=0

	0	1	2	3	star4
O	-5	-2	1	-13	
1	2	0	3	Vy	
2	-3	2	6	12	

13 70

=> go 1cH

	0	1	2
0	-5	-24	
1	5	0	RAN
2	-3	2	6

1 >0

=> 80 1cH

	0	١
0	**	-2
1	7	0
2	-3	2

-2 40

=> Go down

	0	1	
O			
	-4	0	
ı	-3	2	

LOUNDII

sepon your

code

$$i=0$$
, $j=M-1$ // top right

while ($i < n$ let $j > = 0$) g

if $(a \cup i)(j) = = K$) return the

clock if ($a \cup i(j) > K$) $j=-1/80$ lett

else i + 1/80 down

3

return false

 $i \rightarrow 0$ to MH

 $i \rightarrow 0$ to MH

 $j \rightarrow M-1$ to 0

M times

 $T(:OU+M)$
 $S(=O(1)$

Suguon 2

liver the square matrix, print boundary element

output: 12369874

(ode

$$i=0, j=0$$

$$for(K=0 + p - n-2) \leq \rightarrow N-1 + innes$$

$$first$$

$$first$$

$$now$$

$$j \neq 1 / left \rightarrow right$$

$$3$$

$$for(K=0 + p - n-2) \leq \rightarrow N-1 + innes$$

$$last$$

$$print(au)(j))$$

$$i \neq 1 / top \Rightarrow down$$

$$3$$

$$j \neq 1 / top \Rightarrow down$$

$$3$$

$$j \neq 1 / left \rightarrow right$$

for(K=0 + p - 1) = N-1 + inco for(K=0 + p - 1) = N-1 for(K=0 + p - 1) = N-1 + inco for

TC = O(N-1+N-1+N-1+N-1) = O(N) SC=O(1)

Suerion 3

Print elements in Spiral order in Lockwish direction. (Square matrix).

$$r < N$$
 $+160002+152-2$
 $+160002+152-2$
 $+160002+152-2$

$$Y=0$$
, $C=0$

while $(N>1)$ 3
 $i=Y$, $j=C$
 $for(K=0 + 0 -2)$ 3
 $for(K=0 + 0 -2)$ 3
 $for(K=0 + 0 -2)$ 3

$$TC = O(N^2)$$

$$SC = O(1)$$

0 9 1 2 3 4

Sub matrix

Subarray: continous para of array

sub-matrix: continous part of matrix

N=5

Sues trou

find the # Submatrices in which ali)(j) is present for given inj.

am=12

(1+1) p(2+1) p (3-1) r (3-2) 2 x 3 p 2x 1 = 12

				j=3	pos	sible $top_{cells} = (i+1)\pi(j+1)$
	0	ſ	2	3	ч	cells = ((4)/h() 1)
0	1	2	3	4	5	
	6	7	8	9	10	
i=22	rt.	12	13	14	12]
3	16	17	18	19	20	
ч	21	22	23	24	25	posible 60 How right
		٥١ - ١				CAME = (N-i)p

ceus = (N-i)p(N-j) N=5

submatricies containing a (i)) =
$$(i+1)^{n}(j+1) * (n-i)(n-j)$$

Suin
$$N=4$$
, $M=5$ (i.e.) $*(N-i)*(M-j)$
 $(1/2)=?$
 $(1+1)*(2+1) * (4-1)* (5-2)$
 $2*3*3*3=54$

Sustion Sun of all submatrices sum.

And the second of the N-1) $\frac{1}{3}$ for (j=0 to M-1) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{3}{7}$ $\frac{3}{52-0(1)}$