

Project Initialization and Planning Phase

Date	20 june 2024	
Team ID	740145	
Project Title	Doctor's Annual Salary Prediction	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview				
Objective	The project aims to develop a machine learning model to accurately predict doctors' annual salaries based on factors like experience, specialization, and location. This will help healthcare administrators with reliable salary forecasts for better budgeting, salary planning, and competitive compensation strategies.			
Scope	The scope of this project includes data collection, preprocessing, model development, validation, and deployment. It encompasses the creation of a user-friendly interface for healthcare administrators to input data and obtain salary predictions. The project will also ensure data security and compliance with relevant regulations.			
Problem Stateme	nt			
Description	Healthcare administrators face challenges in predicting doctors' annual salaries due to the complexity and variety of factors that influence salary levels. This difficulty in prediction leads to challenges in budgeting, salary planning, and maintaining competitive compensation packages.			

Impact

Accurate salary predictions will enable healthcare administrators to make informed decisions regarding budgeting and salary planning. It will help maintain competitive compensation packages, thus attracting and retaining skilled medical professionals.

Proposed Solution

Approach	□ Data Collection:			
	 Gather historical salary data from multiple healthcare facilities. Collect additional relevant data such as doctors' experience, specialization, location, education, and performance metrics. 			
	□ Data Preprocessing:			
	 Clean and normalize the data to ensure consistency. Handle missing values and outliers appropriately. Encode categorical variables and scale numerical features. 			
	☐ Model Training: • Split the dataset into			
	training and testing sets.			
	 Explore various machine learning algorithms (e.g., linear regression, decision trees, random forests, and gradient boosting) to identify the best-performing model. Fine-tune the model using cross-validation and hyperparameter optimization. 			
	☐ Model Validation:			
	 Evaluate the model's performance using metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). Conduct validation with unseen data to ensure generalizability. 			
	□ Deployment:			
	 Deploy the final model in a cloud-based or on-premise environment. Develop a user-friendly interface for healthcare administrators to input data and obtain salary predictions. Implement security measures to protect sensitive data. 			
Key Features	 Accurate Salary Predictions: Utilize advanced machine learning algorithms to provide reliable salary predictions. User-Friendly Interface: Create an intuitive interface for easy data input and result interpretation. 			

•	Scalability: Ensure the solution can handle large datasets and
	scale as needed.

• **Security:** Protect sensitive salary data with robust security measures.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask		
Libraries	Additional libraries	e.g., tensorflow		
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git		
Data				
Data	Source, size, format	e.g., historical salary data, doctors' profiles, CSV format		