COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

Graph Algorithms

LI Bo
Department of Computing
The Hong Kong Polytechnic University

GREEDY ALGORITHMS

Given a set of jobs $J = \{1, 2, \dots, n\}$

 \triangleright Job j starts at s_j and finishes at $f_j \ge s_j$.

> Two jobs (open intervals) are compatible if they don't overlap.

Goal: find maximum subset of mutually compatible jobs.

Intuition: shorter is better

4

Idea 1:

Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Intuition: earlier is better

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

GREEDY ALGORITHM

- > Repeatedly pick an item until no more feasible choices.
- Among all feasible choices, we always pick the one that minimizes (or maximizes) <u>some</u> <u>property</u>.
 - > length, starting time, ...
- > Such algorithms are called *greedy*.
- > Greedy algorithms may not be optimal.
- ➤ But maybe we have been using the wrong property!

What about earliest-finish-time-first?

Idea 1:

> Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

EARLIEST-FINISH-TIME-FIRST ALGORITHM

```
EARLIEST-FINISH-TIME-FIRST (n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)

SORT jobs by finish times and renumber so that f_1 \le f_2 \le ... \le f_n.

S \leftarrow \emptyset. \longleftarrow set of jobs selected

FOR j = 1 TO n

IF (job j is compatible with S)

S \leftarrow S \cup \{j\}.

RETURN S.
```

Proposition. Can implement earliest-finish-time first in $O(n \log n)$ time.

Switching j_{r+1} by i_{r+1} in 0:

Still *feasible* and *optimal*!

EARLIEST-FINISH-TIME-FIRST ALGORITHM

Theorem. The earliest-finish-time-first algorithm is optimal.

Proof. [by contradiction]

- > Assume Greedy is not optimal.
- \triangleright Let $A = \{i_1, i_2, ..., i_k\}$ be set of jobs selected by Greedy.
- \triangleright Let $O = \{j_1, j_2, ..., j_m\}$ be set of jobs in an optimal solution. Then m > k.
- \blacktriangleright Let r+1 be first index such that $i_{r+1} \neq j_{r+1}$. such a job exists \Longrightarrow $f_{i_{r+1}} \leq f_{j_{r+1}}$

$$i_1 = j_1$$
 $i_2 = j_2$ $i_r = j_r$ $i_{r+1} \neq j_{r+1}$

INTERVAL PARTITIONING

Given a set of lectures (jobs) $L = \{1, 2, ..., n\}$;

- \triangleright Lecture j starts at s_j and finishes at $f_j \ge s_j$.
- > Two lectures are compatible if they don't overlap.

Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room

• Optimal is 3 classrooms.

Definition. The <u>depth</u> of a set of open intervals is the <u>maximum</u> number of intervals that contain any given point.

Key observation. #rooms needed ≥ depth.

Is depth enough???

Can we do earliest-finish-time-first?

Can we do earliest-start-time-first?

INTERVAL PARTITIONING: EARLIEST-Start-time-first algorithm

EARLIEST-START-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start times and renumber so that $s_1 \le s_2 \le ... \le s_n$.

 $d \leftarrow 0$. \leftarrow number of allocated classrooms

For j = 1 to n

IF (lecture *j* is compatible with some classroom)

Schedule lecture j in any such classroom k.

ELSE

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.

 $d \leftarrow d + 1$.

RETURN schedule.

Lemma.

The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Lemma.

The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

The d lectures are incompatible.

INTERVAL PARTITIONING: EARLIEST-START-TIME-FIRST ALGORITHM

Theorem. Earliest-start-time-first algorithm uses #depth rooms and thus is optimal.

- \triangleright Let d = number of classrooms that the algorithm allocates.
- \triangleright Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with a lecture in each of d-1 other classrooms.
- \triangleright Thus, these d lectures each end after s_i .
- \triangleright Since we sorted by start time, each of these incompatible lectures start no later than s_i .

SCHEDULING TO MINIMIZING LATENESS

SCHEDULING TO MINIMIZING LATENESS

 s_j f_j time

Single resource processes one job at a time.

- \triangleright Job j requires t_j units of processing time and is due at time d_j .
- \triangleright If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- \triangleright Lateness: $l_j = \max\{0, f_j d_j\}$.

Goal: schedule all jobs to minimize maximum lateness $L = \max_{j} l_{j}$.

 $l_1 = 2$

		d_{j}	time
t_{j}	1	- 1	
	d_j	f_j	time
	$l_j = f_j$	$-d_j$	

 $l_4 = 6$

	1	2	3	4	5	6
tj	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

 $d_6 = 15$

 $d_3 = 9$

 $d_2 = 8$

Maximum latency L = 6

SCHEDULING TO MINIMIZING LATENESS

 $t + t_i$

SCHEDULING TO MINIMIZING LATENESS

EARLIEST-DEADLINE-FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

SORT jobs by due times and renumber so that $d_1 \le d_2 \le ... \le d_n$.

$$t \leftarrow 0$$
.

For j = 1 To n Process the ordered jobs one by one (immediately)

Assign job j to interval $[t, t + t_j]$.

$$s_j \leftarrow t$$
; $f_j \leftarrow t + t_j$.

$$t \leftarrow t + t_j$$
.

RETURN intervals $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n].$

	1	2	3	4	5	6
t _j	3	2	1	4	3	2
d_j	6	8	9	9	14	15

 $l_4 = 1$

SCHEDULING TO MINIMIZING LATENESS

Properties for optimal schedules.

Observation 1. There exists an optimal schedule with no idle time.

Observation 2. The earliest-deadline-first schedule has no idle time.

SCHEDULING TO MINIMIZING LATENESS

or i < j for ordered jobs

Definition. Given a schedule S, an inversion is a pair of jobs i and j such that: $d_i < d_j$ but j is scheduled before i.

swap makes the schedule better!

Observation 3. The earliest-deadline-first schedule is the *unique* idle-free schedule with no inversions.

SCHEDULING TO MINIMIZING LATENESS

Observation 4. If an idle-free schedule has an inversion, then it has an adjacent inversion.

two inverted jobs scheduled consecutively

Proof.

- \triangleright Let i-j be a closest inversion. $d_j > d_i$
- \triangleright Let k be element immediately to the right of j.
 - \triangleright Case 1: $d_j > d_k$. Then j k is an adjacent inversion.
 - ightharpoonup Case 2. $d_i < d_k$. Then i k is a closer inversion.

SCHEDULING TO MINIMIZING LATENESS

Key Claim. Exchanging two adjacent, inverted jobs i and j reduces the number of inversions by 1 and does not increase the max lateness.

 $f_j' = f_i \qquad i < j : d_i \le d_j$

 \triangleright Let l be the lateness before the swap, and let l' be it afterwards.

$$> l'_k = l_k \text{ for all } k \neq i, j.$$

$$> l_i' \leq l_i$$

$$\triangleright$$
 If job j is late, $l'_j = f'_j - d_j = f_i - d_j \le f_i - d_i \le l_i$.

SCHEDULING TO MINIMIZING LATENESS

Theorem. The earliest-deadline-first schedule S is optimal.

Proof. [by contradiction]

- \triangleright Define S^* to be an optimal schedule with the fewest inversions.
- \triangleright Can assume S^* has no idle time. \longrightarrow Observation 1
- \triangleright Case 1: S^* has no inversions. Then $S = S^*$. Observation 3
- \triangleright Case 2: S^* has an inversion.
 - \triangleright Let i j be an adjacent inversion \longrightarrow Observation 4
 - \triangleright Exchanging jobs i and j decreases the number of inversions by 1 without increasing the max lateness \longrightarrow Key Claim
 - \triangleright Contradicts "fewest inversions" part of the definition of S^* .

GREEDY ANALYSIS STRATEGIES

Greedy algorithm stays ahead.

- ➤ Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- > [Interval scheduling]

Structural.

- Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
- > [Interval partitioning]

Exchange argument.

- > Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- > [Minimizing lateness, Interval scheduling]

Shortest Path Problem

Single-pair:

Given a digraph G = (V, E), edge lengths $l_e \ge 0$, source $s \in V$, and destination $t \in V$, find a shortest directed path from s to t.

Single-source:

Given a digraph G = (V, E), edge lengths $l_e \ge 0$, source $s \in V$, find a shortest directed path from s to every node.

Question:

Suppose that you change the length of every edge of G as follows. For which is every shortest path in G a shortest path in G'?

- A. Multiply by 10.
- B. Add 10.

Dijkstra's algorithm

$$d[w] = 4$$

Why?
$$w = \min_{x \neq s} \left| d[s] + l_{(s,x)} \right|$$

The minimum distance from s to x without using other nodes

For $u \in V$, d[u] = length of a shortest path from s to u.

$$d[u] = 16?$$

$$s \to v \to u \text{ has length } 15 < 16$$

$$d[u] = 15?$$

$$s \to w \to v \to u \text{ has length } 14 < 15$$

$$d[u] = 14? \quad \Rightarrow d[v] \neq 8?$$

$$s \to w \to v \to z \to u \text{ has length } 13 < 14$$

$$d[u] = 13?$$

$$s \rightarrow w \rightarrow v$$
 has length $7 < 8$

$$d[v] = 7?$$

$$\pi(x) = \min_{r \in \{s,w\}} d[r] + l_{(r,x)}$$

$$v = \min_{x \neq s,w} \pi(x)$$

The minimum distance from *s*, *w* to others

31

Dijkstra's algorithm

 $S \rightarrow$ explored nodes

For $u \in S$, d[u] = length of a shortest path from s to u.

the length of a shortest path from s to some node r in explored part s, followed by a single edge s = s, s

The closest distance to x without using $V \setminus S$

$$\pi(z) = \min \{d[w] + l_{(w,z)}, d[v] + l_{(v,z)}\}$$

$$\pi(u) = \min \{d[s] + l_{(s,u)}, d[v] + l_{(v,u)}\}$$

Action

- \triangleright Choose unexplored node $v \notin S$ which minimizes $\pi(v)$.
- \triangleright Add v to S.

Dijkstra's algorithm

Dijkstra's algorithm

- Maintain a set of explored nodes S for which algorithm has determined d[u] = "length of a shortest path from S to u".
- ightharpoonup Initialize $S \leftarrow \{s\}, \ d[s] \leftarrow 0$.
- \triangleright Repeatedly choose unexplored node $x \notin S$ which *minimizes*

$$\pi(x) = \min_{(r,x): r \in S} d[r] + l_{(r,x)}$$

add x to S and set $d[x] \leftarrow \pi(x)$.

Invariant.

For each node $u \in S : d[u] = \text{length of a shortest path from } s \text{ to } u$.

Invariant. For each node $u \in S : d[u] = \text{length of a shortest path from } s \text{ to } u$.

Proof [by induction on |S|]

- \triangleright Base case: |S|=1 is easy since $S=\{s\}$ and d[s]=0.
- \triangleright Inductive hypothesis: Assume true for |S|≥1.
- \triangleright Let v be next node added to S, and let (u, v) be the final edge.
- A shortest $s \to u$ path plus (u, v) is an $s \to v$ path of length $\pi(v)$.
- \triangleright Consider any other $s \to v$ path P. We show that it is no shorter than $\pi(v)$.
- Let e = (x, y) be the first edge in P that leaves S, and let P' be the subpath from S to X.
- \triangleright The length of P is already $\ge \pi(v)$ as soon as it reaches y:

$$l(P) \geq l(P') + l_e \geq d[x] + l_e \geq \pi \ (y) \geq \pi(v).$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$lengths \qquad lengths \qquad length$$

$$\pi(y) = \min_{(r,y): r \in S} d[r] + l_{(r,y)}$$

$$\pi(v) = d[u] + l_{(u,v)}$$
$$v = \min_{a \notin S} \pi(a)$$

Dijkstra's algorithm

$$d[s] = 0$$

Dijkstra's algorithm

- Maintain a set of explored nodes S for which algorithm has determined d[u] = "length of a shortest path from S to u".
- ightharpoonup Initialize $S \leftarrow \{s\}, \ d[s] \leftarrow 0$.
- \triangleright Repeatedly choose unexplored node $x \notin S$ which *minimizes*

$$\pi(x) = \min_{(r,x):r \in S} d[r] + l_{(r,x)}$$

add x to S and set $d[x] \leftarrow \pi(x)$.

- 1. Tracking the shortest paths.
- 2. Running time = $O(n^2)$

MINIMUM SPANNING TREES

Basic Definitions

A *cut* is a partition of the nodes into two nonempty subsets S and V-S, denoted by (S, V-S).

The *cutset* of a cut S is the set of edges with exactly one endpoint in S.

Cut
$$S = \{4,5,8\}$$
Cutset $D = \{(3,4), (3,5), (5,6), (5,7), (8,7)\}$

Spanning Tree

Let H = (V, T) be a subgraph of an undirected graph G = (V, E). H is a **spanning tree** of G if H is both acyclic and connected.

Proposition.

Let H = (V, T) be a subgraph of an undirected graph G = (V, E). Then, the following are equivalent:

- \triangleright H is a spanning tree of G.
- ➤ *H* is acyclic and connected.
- \succ H is connected and has |V|-1 edges.
- \triangleright *H* is acyclic and has |V| 1 edges.
- \triangleright *H* is minimally connected: removal of any edge disconnects it.
- H is maximally acyclic: addition of any edge creates a cycle.

Minimum spanning tree (MST)

Given a <u>connected</u>, <u>undirected</u> graph G = (V, E) with edge costs c_e , a *minimum spanning tree* (V, T) is a spanning tree of G such that the sum of the edge costs in T is minimized.

$$Tree\ cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$

Minimum spanning tree (MST)

Cayley's theorem. The complete graph on n nodes has n^{n-2} spanning trees.

can't solve by brute force

Both give the optimal solution!

Kruskal's Algorithm

Idea.

> Starts without any edges and insert edges from *E* in order of increasing cost:

$$c_1 < c_2 < \dots < c_i < \dots < c_m$$

For edge e_i , insert it if it does not create a cycle with all inserted edges, and discard otherwise.

Prim's Algorithm

Idea (inspired by Dijkstra's Algorithm).

- Start with a root node $S = \{s\}$, and try to greedily grow a tree from S outward.
- At each step, we add the node v connected with S that can be attached as cheaply as possibly.

$$\min_{e=(u,v):u\in S} c_{u}$$

When Is It Safe to Include an Edge in the Minimum Spanning Tree?

Cut Property (Assume that all edge costs are distinct.) Let S be **any** subset of nodes $S \neq V$ or \emptyset .

Let edge e = (v, w) be the minimum cost edge with one end in S and the other in V - S.

Then \underline{every} MST contains the edge e.

Proof. [contradiction + exchange argument]

- ➤ Let *T* be an MST that does not contain e.
- \triangleright There must be a path P in T from v to w.
- \triangleright Exchange e' for e, get a set of edges

$$T' = T - \{e'\} \cup \{e\}.$$

- $\succ T'$ is a spanning tree:
 - \triangleright Connected: any path in (V, T) that used e' can now be "rerouted" by using e.
 - \triangleright Contains |V| 1 edges.
- $> c_e < c_e : \text{cost of } T' < \text{cost of } T \longrightarrow \text{a contradiction}.$

Prim's Algorithm

- Start with a root node $S = \{s\}$, and try to greedily grow a tree from S outward.
- At each step, we add the node v connected with S that can be attached as cheaply as possibly.

Theorem. Prim's Algorithm produces an MST of *G*.

Prim's Algorithm outputs a spanning tree.

- Contains no cycles: by the design
- Connected: otherwise can add an edge between two components.

Prim's Algorithm outputs an MST.

At each step, we add the node v connected with S that can be attached as cheaply as possibly.

$$\min_{e=(u,v):u\in S} c_e$$

- Thus, e is the cheapest edge connecting S and V S.
- > By Cut Property, e belongs to every MST.

Kruskal's Algorithm

> Starts without any edges and insert edges from *E* in order of increasing cost:

$$c_1 < c_2 < \dots < c_i < \dots < c_m$$

For edge e_i insert it if it does not create a cycle with all inserted edges, and discard otherwise.

Theorem. Kruskal's Algorithm produces an MST of G.

Kruskal's Algorithm outputs a spanning tree.

- Contains no cycles: by the design
- Connected; otherwise can add an edge between two components.

Kruskal's Algorithm outputs an MST.

- \triangleright Consider any edge e = (v, w) added by Kruskal's Algorithm.
- Let S be the set of nodes to which v has a path before e is added. Clearly $v \in S$, but $w \notin S$.
- No edge from S to V S has been considered: any such edge could have been added without creating a cycle.
- Thus, e is the cheapest edge connecting S and V S.
- By Cut Property, e belongs to every MST.

Reverse-Delete Algorithm

Start with the full graph (V, E) and begin deleting edges in order of decreasing cost.

$$c_1 > c_2 > \cdots > c_i > \cdots > c_m$$

As we get to each edge *e* (starting from the most expensive), we delete it as long as doing so would not actually disconnect the graph we currently have.

Theorem.

The Reverse-Delete Algorithm produces an MST of G.

Cycle Property

(Assume that all edge costs are distinct.)

Let C be any cycle in G.

Let edge e = (v, w) be the most expensive edge on C. Then e does not belong to any MST of G.

Proof [by contradiction].

- \triangleright Let T be an MST that contains e = (v, w).
- \blacktriangleright Deleting e from T and partition the nodes into S and V-S.
- \triangleright There is another edge e' crosses from S to V-S.
- Consider the set of edges

$$T = T - \{e\} \cup \{e'\}$$

which is a spanning tree of G with smaller cost.

DIVIDE AND CONQUER

Divide and Conquer

- > Divide up problem into several subproblems (of the same kind).
- > Solve (conquer) each subproblem recursively.
- > Combine solutions to subproblems into overall solution

Most common usage:

- \triangleright Divide problem of size n into two subproblems of size n/2.
- > Solve (conquer) each subproblem recursively.
- > Combine two solutions into overall solution.

Consequence:

- \triangleright Brute force: $\Theta(n^2)$.
- \triangleright Divide-and-conquer: $O(n \log n)$.

Brute-force algorithm may already be polynomial time, and the divide and conquer strategy is to reduce the running time to a lower polynomial.

THE MERGESORT ALGORITHM

47

The Mergesort Algorithm

Problem. Given a list L of n elements from an ordered universe, rearrange them in ascending order.

The algorithm

- > Divide into left and right smaller problems.
- > Recursively sort left half.
- > Recursively sort right half.
- ➤ Merge two halves to make sorted whole.

How to do this?

48

The Mergesort Algorithm

Goal. Combine two sorted lists A and B into a sorted whole C.

The algorithm

- > Scan A and B from left to right.
- \triangleright Compare a_i and b_j .
- ▶ If $a_i < b_j$, append a_i to C (no larger than any remaining element in B).
- > If $a_i > b_j$, append b_j to C (smaller than every remaining element in A).

The Mergesort Algorithm

Definition. $T(n) = \max \text{ number of compares to Mergesort a list of length } n$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n & \text{if } n > 1 \end{cases}$$

Solving this recurrence: assume n is a power of 2 and replace \leq with = in the recurrence.

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

The Mergesort Algorithm

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

51

The Mergesort Algorithm

Proposition. If T(n) satisfies the recurrence, then $T(n) = n\log_2 n$.

Proof. [by induction on n]

- Base case: when $n = 1, T(1) = 0 = n \log_2 n$.
- ightharpoonup Inductive hypothesis: assume $T(n) = n \log_2 n$.
- **Coal**: show that $T(2n) = 2n\log_2 2n$. ▶

$$T(2n) = 2T(n) + 2n$$
inductive hypothesis
$$= 2n\log_2 n + 2n$$

$$= 2n[\log_2 2n - 1] + 2n$$

$$= 2n\log_2 2n$$

What if n is not a power of 2??

Thank You!