Tamir Krief, Iaian Milton, Blessing Abumere COSC 336 9/26/2024

Assignment 3

Exercise 1.

- (a) $T(n) = 3T(\frac{n}{4}) + 3$. a = 3, b = 4, f(n) = 3. $n^{\log_4^3}$ vs. 3. $n^{\log_4^3}$ is the winner because f(n) = 3 is a constant function and doesn't grow. Therefore the Theta evaluation for the recurrence is $T(n) = \Theta(n^{\log_4^3})$.
- (b) $T(n) = 2T(\frac{n}{2}) + 3n$. a = 2, b = 2, f(n) = 3n. $n^{\log_2^2}$ or n vs. 3n. This is a tie because f(n) = 3n has proportional growth to n. Therefore the Theta evaluation for the recurrence is $T(n) = \Theta(n \log n)$.
- (c) $T(n) = 9T(\frac{n}{3}) + n^2$. a = 9, b = 3, $f(n) = n^2$. $n^{\log_3^9}$ or n^2 vs. n^2 . This is a tie because both functions are equivalent. Therefore the Theta evaluation for the recurrence is $T(n) = \Theta(n^2 \log n)$.

Exercise 2:

- (a) $T(n) = \Theta(2^n)$
- (b) $T(n) = \Theta(n)$
- (c) $\Theta(n \log n)$
- (d) $\Theta(n)$

Programming Task.