Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard V1.	

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 1))$

- (a) Show that this vector space has an additive identity element $\mathbf{0}$ satisfying $(x,y) \oplus \mathbf{0} = (x,y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$; then $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element. Now we will show the other seven properties. Let $(x_1, y_1), (x_2, y_2) \in V$, and let $c, d \in \mathbb{R}$.

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) The additive identity is (1,1).
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c(dx_1-(d-1))-(c-1),c(dy_1-(d-1)))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + y_1 - 1, x_2 + y_2 - 1)$$

$$= (c(x_1 + y_1 - 1) - (c - 1), c(x_2 + y_2 - 1) - (c - 1))$$

$$= (cx_1 + cx_2 - 2c + 1, cy_1 + cy_2 - 2c + 1)$$

$$= (cx_1 - (c - 1), cy_1 - (c - 1)) \oplus (cx_2 - (c - 1), cy_2 - (c - 1))$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

= $(cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$
= $c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$

Therefore V is a vector space.

Standard V3.

Mark:

Determine if the vectors $\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & -3 & -1 & 4 \\ 21 & -8 & -3 & 11 \\ -7 & 3 & 2 & -5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

Standard V4.

Mark:

Let W be the set of all complex numbers that are purely real (i.e of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of \mathbb{C} .

Solution: No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Additional Notes/Marks