第二章 线性电源及开关电源的提出

- 2.1 线性电源(Linear Regulators)
- 2.2 开关电源的提出
- 2.3 开关电源的稳态分析原理

基本工作(控制)原理:

如果电网电压降低或负载增加,输出电压会下降,则放大器的输出将增加(串接晶体管基极电压升高),等效串联电阻减小,使更多的电流流向负载,直流输出电压升高;同样地,如果电网电压升高或负载减少,输出电压升高,则放大器的输出将减小(串接晶体管基极电压减小),等效电阻阻值加大,流向负载的电流减小,直流输出电压降低,使得输出电压Vo恒定。

优点:

- 反馈回路是直流耦合,回路各点的直流电压都可以预测和计算;
- 电路中没有变压器并且不存在引起RFI噪声的瞬态尖峰电压和电流;

缺点:

- 只能降压;
- 制作高效率的线性变换器时,电路非常复杂。
- 体积和重量大。
- 效率低,工作时产生热量大。

晶体管功耗: $(V_{dc}-V_o)I_o$

注意: 串接NPN晶体管的最小压差(V_{dc}-V_o)为2.5V

设次级滤波电容足够大,输入电压纹波忽略。次级整流获得的电压波动范围与交流网压波动范围对应,均为±15%。若网压输入最低(-15%)时,变压器次级电压为(Vo+2.5),则网压输入最高(+15%)时,最大直流输入电压为1.35(Vo+2.5)。

$$V_{dc(\text{max})} = \frac{1 + 0.01T}{1 - 0.01T} (V_o + 2.5 + V_r / 2)$$

									_
V_{o} "	I_o 4	$V_{dc(\mathrm{min})}$	$V_{dc({ m max})}$	最大↓ 压差↓	$P_{in(\max)}$ +	$P_{o(\max)}$	Q 最大 损耗↵	$P_o / P_{in(max)}$	4
$(V)_{\wp}$	$(A)_{e^{j}}$	(V)¢	(V)₽	$(V)_{\circ}$	(W) ₆	(W)₽	(W)₽	效率(%)₽	
5.0₽	10₽	7.5₽	10.1₽	5.1₽	101₽	50.0₽	51₽	50₽	¢)
15.0₽	10₽	17.5₽	23.7₽	8.7₽	237₽	150₽	87₽	63₽	¢)
30.0₽	10₽	32.5₽	44.0₽	14₽	440₽	3000	140₽	68₽	Ç

图2.3 三端稳压电源

输出电流100mA (max)

输出电流0.5A (max)

输出电流1A (max)

78LXX、79LXX

78MXX、**79MXX**

78XX、79XX

2.2 开关电源的提出

A high efficiency power converter

A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency

Devices available to the circuit designer

Power processing: avoid lossy elements

Power loss in an ideal switch

Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

Ideal switch consumes zero power

2.2 开关电源的提出

A simple dc-dc converter example

Input source: 100V

Output load: 50V, 10A, 500W

How can this converter be realized?

Dissipative realization

Resistive voltage divider

Series pass regulator: transistor operates in active region

Use of a SPDT switch

The switch changes the dc voltage level

$$D$$
 = switch duty cycle $0 \le D \le 1$

 T_s = switching period

$$f_s$$
 = switching frequency
= 1 / T_s

DC component of $v_s(t)$ = average value:

$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) dt = DV_g$$

Addition of low pass filter

Addition of (ideally lossless) L-C low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency f_0 much smaller than switching frequency $f_{\rm s}$
- This circuit is known as the "buck converter"

Addition of control system for regulation of output voltage

2.3 开关电源的稳态分析原理

- 1、小纹波近似(small ripple approximation)
- 2、电感伏秒平衡(Inductor volt-second balance)
- 3、电容电荷平衡(capacitor charge balance)

The small ripple approximation

$$v(t) = V + v_{ripple}(t)$$

In a well-designed converter, the output voltage ripple is small. Hence, the waveforms can be easily determined by ignoring the ripple:

$$\|v_{ripple}\| << V$$

$$v(t)\approx V$$

Buck converter analysis: inductor current waveform

Inductor voltage and current Subinterval 1: switch in position 1

Inductor voltage

$$v_L = V_g - v(t)$$

Small ripple approximation:

$$v_{L} \approx V_{g} - V$$

Knowing the inductor voltage, we can now find the inductor current via

$$v_{L}(t) = L \frac{di_{L}(t)}{dt}$$

Solve for the slope:

$$\frac{di_{L}(t)}{dt} = \frac{v_{L}(t)}{L} \approx \frac{V_{g} - V}{L}$$

⇒ The inductor current changes with an essentially constant slope

Inductor voltage and current Subinterval 2: switch in position 2

Inductor voltage

$$v_L(t) = -v(t)$$

Small ripple approximation:

$$v_{L}(t) \approx -V$$

Knowing the inductor voltage, we can again find the inductor current via

$$v_{L}(t) = L \frac{di_{L}(t)}{dt}$$

Solve for the slope:

$$\frac{di_{L}(t)}{dt} \approx -\frac{V}{L}$$

⇒ The inductor current changes with an essentially constant slope

Inductor voltage and current waveforms

Determination of inductor current ripple magnitude

$$(change in i_L) = (slope)(length of subinterval)$$

$$\left(2\Delta i_L\right) = \left(\frac{V_g - V}{L}\right) \left(DT_s\right)$$

$$\Rightarrow \Delta i_{L} = \frac{V_{g} - V}{2L} DT_{s} \qquad L = \frac{V_{g} - V}{2\Delta i_{L}} DT_{s}$$

The principle of inductor volt-second balance: Derivation

Inductor defining relation:

$$v_{L}(t) = L \frac{di_{L}(t)}{dt}$$

Integrate over one complete switching period:

$$i_{\mathcal{L}}(T_{s}) - i_{\mathcal{L}}(0) = \frac{1}{L} \int_{0}^{T_{s}} v_{\mathcal{L}}(t) dt$$

In periodic steady state, the net change in inductor current is zero:

$$0 = \int_0^{T_s} v_{\mathcal{L}}(t) \, dt$$

Hence, the total area (or volt-seconds) under the inductor voltage waveform is zero whenever the converter operates in steady state. An equivalent form:

$$0 = \frac{1}{T_s} \int_0^{T_s} v_L(t) dt = \left\langle v_L \right\rangle$$

The average inductor voltage is zero in steady state.

Inductor volt-second balance: Buck converter example

Inductor voltage waveform, previously derived:

Integral of voltage waveform is area of rectangles:

$$\lambda = \int_0^{T_s} v_L(t) \, dt = (V_g - V)(DT_s) + (-V)(D'T_s)$$

Average voltage is

$$\langle v_L \rangle = \frac{\lambda}{T_s} = D(V_g - V) + D'(-V)$$

Equate to zero and solve for V:

$$0 = DV_g - (D + D')V = DV_g - V \qquad \Rightarrow \qquad V = DV_g$$

The principle of capacitor charge balance: Derivation

Capacitor defining relation:

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$

Integrate over one complete switching period:

$$v_{c}(T_{s}) - v_{c}(0) = \frac{1}{C} \int_{0}^{T_{s}} i_{c}(t) dt$$

In periodic steady state, the net change in capacitor voltage is zero:

$$0 = \frac{1}{T_s} \int_0^{T_s} i_C(t) \, dt = \left\langle i_C \right\rangle$$

Hence, the total area (or charge) under the capacitor current waveform is zero whenever the converter operates in steady state. The average capacitor current is then zero.