

# Machine Learning And Intelligent Systems

#### **MALIS LECTURE SLIDES**

#### PART 1



"Is this needed for a Bayesian analysis?"

#### **Prof. Bernard Merialdo**

Fall 2017

## Data ScienceDepartment EURECOM

# MALIS Machine Learning and Intelligent Systems Fall 2017

#### Prof. Bernard Merialdo

merialdo@eurecom.fr -- Office 423

Documents in MALIS collaborative space in http://my.eurecom.fr/

**MALIS 2017** 

1

## Schedule (indicative)

| DATE                | 8h45 – 12h00 | Topic                           |
|---------------------|--------------|---------------------------------|
| Tuesday 03 October  | Lecture 1    | Machine Learning Theory         |
| Tuesday 10 October  | Lecture 2    | Genetic Algorithms              |
| Tuesday 17 October  | Lecture 3    | Classification                  |
| Tuesday 24 October  | Lecture 4    | Neural Networks                 |
|                     |              |                                 |
| Tuesday 07 November | Lab Session  | Lab Genetic Algorithms          |
| Tuesday 14 November | Lecture 5    | Simulated Annealing             |
| Tuesday 21 November | Lecture 6    | Deep Learning and Deep Networks |
| Tuesday 28 November | Lecture 7    | Support Vector Machines         |
| Tuesday 05 December | Lab Session  | Lab NN - MLP                    |
| Tuesday 12 December | Lecture 8    | Support Vector Machines         |
| Tuesday 19 December | Lecture 9    | Decision Trees                  |
|                     |              |                                 |
| Tuesday 9 January   | Lecture 10   | Decision Trees                  |
| Tuesday 16 January  | Lab Session  | Lab Decision Trees              |
| Tuesday 23 January  | Lecture 11   | Advanced Techniques             |

**MALIS 2017** 

#### MALIS Lab Sessions

- ◆ Labs are for practise, not for evaluation
- ◆ Therefore, lab sessions are not graded
- But labs are mandatory

No lab = No grade at exam

- ◆ You don't need strong programming skills
- You will be asked to write only a few lines of C/C++ code
- ◆ You can get all the assistance that you need
- You have two weeks after the session to complete the assignment

MALIS 2017 3

## This course is not (so) difficult



MALIS 2017

## But this course is not (so) easy

Simple formulas can represent complex mechanisms

$$e^{i\pi} + 1 = 0$$

Sustained attention is required



**MALIS 2017** 

5

## **Content Part 1**

| Introduction                  | 7   |
|-------------------------------|-----|
| Games and intelligence        | 24  |
| Machine Learning Basics       | 33  |
| Optimization                  | 47  |
| Genetic Algorithms            | 65  |
| Genetic Operators             | 90  |
| Schemas                       | 121 |
| Genetic Programming           | 141 |
| Classification and Clustering | 155 |
| K-means Clustering            | 163 |
| Supervised Classification     | 175 |
| Gaussian Model                | 188 |
|                               |     |

**MALIS 2017** 

Why is this course probably the most important one in your whole career?

MALIS 2017

## Introduction

## Criteria for good career plan:

- Enjoy your job
- Have a decent salary
- Sustain the previous two criteria until you retire

#### Criteria for good career plan:

Machine Learning is a (the) solution

- Enjoy your job
   ML is theoretically challenging
- Have a decent salary
   ML is becoming practically indispensable
- Sustain the previous two criteria until you retire
   We are just at the beginning of ML usage

MALIS 2017 9

## Introduction

What is Science about ?
 Modeling for prediction



$$h=-\frac{1}{2}gt^2+h_0$$

Formula-based Modeling





Prediction

|     |        | Object 1 | Object 2 |   | Object M |
|-----|--------|----------|----------|---|----------|
| _   | User 1 | buy      |          |   |          |
| / ~ | User 2 |          | buy      |   | buy      |
| 1/  |        |          |          |   |          |
| U   | User N |          |          |   |          |
| -   | You    |          | buy      | ( | ?        |
|     |        |          |          |   |          |

"Internet advertising revenues in the US soared 22% in 2016 from a year earlier to a record of \$72.5 billion, surpassing for the first time in history the \$69 billion spent on TV ads"

"the need for targeted advertising is increasing because companies aim to minimize wasted advertising by means of information technology"

MALIS 2017 13

## Introduction

Prediction







Prediction

"Google's Artificial Brain Learns to Find Cat Videos"

06.26.12



MALIS 2017 17



NeuralTalk (2015)



**MALIS 2017** 

Applications for machine learning include:

- Automated theorem proving
- Adaptive websites
- Affective computing
- Bioinformatics
- Brain-machine interfaces
- Cheminformatics
- Classifying DNA sequences
- Computational anatomy
- Computer vision, including object recognition
- Detecting credit-card fraud
- General game playing
- Information retrieval
  Internet fraud detection
- Linguistics
- Marketing
- Machine learning control
- Machine perception
- Medical diagnosis

- **Economics**
- Natural language processing
- Natural language understanding
- Optimization and metaheuristic
- Online advertising
- Recommender systems
- Robot locomotion
- Search engines
- Sentiment analysis (or opinion mining)
- Sequence mining
- Software engineering
- · Speech and handwriting recognition
- Financial market analysis
- · Structural health monitoring
- Syntactic pattern recognition
- Time series forecasting
- User behavior analytics
- Translation

(source Wikipedia)

#### **MALIS 2017**

















**MALIS 2017** 

21

## ML and Al Hype

- ◆ Big Data is the fuel
- ◆ But Machine Learning is the engine...
- ◆ And Artificial Intelligence is the car

- In this course, you will (among others):
  - Learn how to find the optimal solution of any problem (but it may take some time)
  - Discover the most amazing theorem of Mathematics
  - Learn how to fit a vector with infinite dimension into the finite memory of a computer
  - Learn what is Deep Learning
  - Learn how I can predict whether you will succeed MALIS without you taking the exam
- And a few other good stuff...

MALIS 2017 23

## Games and intelligence

- 9-15 March 2016: AlphaGo defeats Lee Sedol (9dan professional) by 4 wins to 1.
- Games complexity:

| Game           | Board size | State-space complexity | Game-tree complexity | Average game<br>length | Branching<br>factor |
|----------------|------------|------------------------|----------------------|------------------------|---------------------|
| Tic-tac-toe    | 9          | 10 <sup>3</sup>        | 10 <sup>5</sup>      | 9                      | 4                   |
| Checkers (8x8) | 32         | 10 <sup>20</sup>       | 10 <sup>31</sup>     | 70                     | 2.8                 |
| Chess          | 64         | 10 <sup>47</sup>       | 10 <sup>123</sup>    | 80                     | 35                  |
| Go (19x19)     | 361        | 10 <sup>170</sup>      | 10 <sup>360</sup>    | 150                    | 250                 |

(Number of atoms in the Universe ≈ 1080)

## **Artificial Intelligence**

◆ 1769: Von Kempelen



MALIS 2017 25

## **Artificial Intelligence**

- ◆ 1952-1959: Samuel
- Checkers self-learning program



**MALIS 2017** 

## Artificial Intelligence

♦ 1997: Kasparov vs DeepBlue



## What is Intelligence?

#### Nov 1997

| Game | Kasparov | Deep Blue |
|------|----------|-----------|
| 1    | 1        | 0         |
| 2    | 1        | 1         |
| 3    | 1,5      | 1,5       |
| 4    | 2        | 2         |
| 5    | 2,5      | 2,5       |
| 6    | 2,5      | 3,5       |



MALIS 2017

28

## **Human Chess**



Branching factor: 4-5



◆ Depth: 12-14

**MALIS 2017** 





Branching factor: 30

Depth: 12 (with extensions)

Deep Blue: 200M positions/second

30 **MALIS 2017** 

## AlphaGo

- ◆ Huge search space (10<sup>350</sup>)
  - Monte Carlo Tree Search (MCTS)
  - Policy (Deep) network
  - Value (Deep) network



- Training:
  - Supervised Learning
  - Reinforcement Learning
  - Human players and self-playing

MALIS 2017 31

## AlphaGo



| Rank | Name                          | Elo  |
|------|-------------------------------|------|
| 1    | Google<br>DeepMind<br>AlphaGo | 3608 |
| 2    | Ke Jie                        | 3608 |
| 3    | Park Junghwan                 | 3593 |
| 4    | Lee Sedol                     | 3550 |
| 5    | Iyama Yuta                    | 3536 |
| 6    | Mi Yuting                     | 3528 |
| 7    | Shi Yue                       | 3509 |
| 8    | Kim Jiseok                    | 3504 |
| 9    | Lian Xiao                     | 3504 |
| 10   | Tuo Jiaxi                     | 3501 |

## Machine Learning Basics

- Set of contexts:
- Set of values:

There is an (unknown) relation between X and Y

You only have some examples:

Training set:  $T = \{ (x_i, y_i)_{i=1,...N} \} \subset X \times Y$ 

You want to find the relation:

Prediction: function f:  $x \in X \rightarrow y \in Y$ 

Machine Learning: given (X,Y), T find  $f: X \rightarrow Y$ 

MALIS 2017 33

## Machine Learning Basics

- ◆ There are many functions: {f: X → Y } = Y<sup>X</sup>
- You want a computable function:

$$f \in F_{\Theta} = \{f_{\theta}, \theta \in \Theta\}$$
 family of functions

- ◆ There may not be a perfect function in F<sub>0</sub>
- Penalty if  $f(x) \neq y$ :

◆ Best predictor given T: f<sub>a</sub>

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{(x,y) \in T} loss(f_{\theta}(x), y)$$

## Machine Learning Basics

- There are many functions: {f: X → Y } = YX
- You want a computable function: Modeling  $f \in F_{\Theta} = \{f_{\theta}, \theta \in \Theta\}$  ramily of functions
- ◆ There may not be a perfect function in F<sub>e</sub>
- Penalty if  $f(x) \neq y$ :

◆ Best predictor given T: f<sub>a</sub>

Optimization

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbf{T}} loss(f_{\theta}(\mathbf{x}), \mathbf{y})$$

MALIS 2017 35

## Machine Learning Example

- Predicting stock value
  - Training:



Linear model:  $y = a_1x + a_0$ 

## Machine Learning Example

- Predicting stock value
  - Training:



```
Linear model:

y = a_1x + a_0

Polynomial d° 2:

y = a_2x^2 + a_1x + a_0
```

Polynomial d° 5:  $y = a_5x^5 + a_4x^4 + ... + a_1x + a_0$ 

 $Error_1 = 3.5$   $Error_2 = 2.7$   $Error_5 = 2.4$ 

37

## Machine Learning Example

Predicting stock value

#### Are we done?

 No, because we build a model to be used for prediction of future (test) data





## Machine Learning Example

- The best model on training data can be worse on test data
  - This is a problem known as « overfitting »
  - It is a MAJOR problem
  - It means that the model is too specific to the training data and does not generalize well
- We are interested in the performance on test data
- But we don't know the test data during training

MALIS 2017 41

## Machine Learning in a nutshell

- We will define several interesting families of functions
- We will study some techniques for optimization
- We will see how to avoid overfitting

## Machine Learning Theory

- Other important aspects of Machine Learning:
- Supervised Learning:
  - We learn a predictor using training data from (X,Y)
- Unsupervised Learning:
  - Sometimes we just have X and not Y, and we want to find some structure in X.
  - Clustering: partition X into subsets of « similar » objects
  - Discover Latent factors: explain the distribution of objects using small number of variables
  - Discover **relations** between objects (data mining)

MALIS 2017 43

## Machine Learning Theory

- Supervised: classification
  - Objects have labels
  - Find a model to label new objects
  - Example: diagnosis  $x_i$ =symptoms,  $c_i$ =disease
- Unsupervised: clustering
  - Objects have no labels
  - · Find optimal clusters
  - Example: marketing group similar customers







**MALIS 2017** 

45

## **Optimization**

• An important tool in ML is optimization Function f(x) defined on  $X \to \mathbb{R}$  find:

$$\hat{x} = \underset{x \in X}{\operatorname{argmax}} f(x)$$

- We will study many techniques
- Depends on properties of X and f
- Sometimes intractable, need for approximate solutions

## **Optimization**

Simple problem, but generally difficult solution:

Function f(x) defined on  $X \to \mathbb{R}$  find:

$$\hat{x} = \underset{x \in X}{\operatorname{argmax}} f(x)$$

- ◆ X is not necessarily R<sup>n</sup>
- Equivalent problem with argmin and -f
- Often too difficult, so find good instead of best

MALIS 2017 47

## **Optimization**

Example: Least squares

$$\hat{x} = \underset{x}{\operatorname{argmin}} \|Ax - B\|^2$$

Common problem, easy solution

$$\hat{\mathbf{x}} = \left(\mathbf{A}^{\mathsf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{B}$$

◆ More difficult if there are constraints on x

$$C_i x \le \theta_i$$





## Hill-Climbing

- ♦ Find  $x \in X$  such that max f(x)
- Basic idea:
  - Start with initial guess
  - Try to improve it by looking around
- Hill-Climbing algorithm:
  - N(x) is the neighborhood of x



- find  $x_{i+1} \in N(x_i)$  such that  $f(x_{i+1}) > f(x_i)$
- If no such x<sub>i+1</sub> exist, stop
- iterate

MALIS 2017 51

## Hill-Climbing

 Greedy variant: try to improve as much as possible at each step

$$x_{i+1} = \underset{x \in N(x_i)}{argmax} \ f(x)$$

- ◆ Often, N(x) is finite and small
  - Computing max is easy by enumeration
- ♦ When the algorithm stops: local maximum  $f(x_i) \ge f(x) \quad \forall x \in N(x_i)$ 
  - No guarantee to find the global maximum
- Sometimes, problems with plateaux:
  - $f(x) = f(x_i)$   $\forall x \in N(x_i)$  where to go?







## Hill-Climbing

- Example: TSP shortest path
  - Example run:

```
a-e-b-d-c cost=31
[e-a]b-d-c cost=28
e-a[d-b]c cost=29
c]a-b-d[e cost=24
c-a-b[e-d] cost=25
c-a[d-b]e cost=28
[a-c]b-d-e cost=28
c[b-a]d-e cost=23
```

## Hill Climbing and Gradient Search

• In the case where  $X=\mathbb{R}^n$  and f is differentiable

$$x = (x_1, x_2, ... x_n)$$
  
 $h = (h_1, h_2, ... h_n)$ 

Gradient: 
$$\nabla f(x) = df(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots \frac{\partial f(x)}{\partial x_n}\right)$$

Then:

$$f(x+h)=f(x)+df(x)\cdot h+o(h)\quad with\ \lim_{\|h\|\to 0}\frac{\left\|o(h)\right\|}{\left\|h\right\|}=0$$

• if  $\|\mathbf{h}\| = \varepsilon$  small:

$$f(x+h) \approx f(x) + df(x).h$$

MALIS 2017 57

#### Hill Climbing and Gradient Search

Maximum value of f(x+h):

$$f(x+h) \approx f(x) + df(x).h$$

• Obtained for  $h = \varepsilon \frac{df(x)}{\|df(x)\|}$ 



 We can increase f by moving in the direction of the gradient

We can decrease f by moving in the opposite direction

# Hill Climbing and Gradient Search♦ How far to go ?f(x) = constant

$$x_{i+1} = x_i + \alpha \cdot df(x_i)$$

- If α too small
  - Very little change of f
  - Slow convergence
- If α too large
  - Value of f may decrease
  - May not converge
- lacktriangle Often adaptive tuning of  $\alpha$

**MALIS 2017** 

59

df(x)

 $f(x + \alpha . df)$ 

α



- Major drawback: trapped in local maximum
  - Depend Pavily on I point



**MALIS 2017** 

## Hill-Climbing

- ◆ How to avoid a local maximum ?
- No perfect solution…
- Random restart:
  - Try several initial points, keep best local maximum
- Allow ups and downs:
  - This is randomly walking in X
  - Generally, X is too large: exhaustive search not feasible
- Allow all ups, limit downs:
  - see later lecture on Simulated Annealing



**MALIS 2017** 

61

## Escape from local maximum

- Need to make non-optimal decision:
  - Choose  $x_{i+1} \in N(x_i)$  with  $f(x_{i+1}) < f(x_i)$
  - This is contrary to the objective !!!
  - This leads to random walk in X
  - So this cannot be done forever



- Need to get back to optimality
  - Problem: avoid cycle  $x_{i+k} = x_i$
  - Problem: when to stop?





## **Genetic Algorithms**

Goal: find

$$\underset{x \in X}{\operatorname{argmax}} f(x)$$

- Approach:
  - Inspired by theory of evolution
  - Consider a population P
  - Let population P evolve:
    - Create offspring m parents
    - Let fittest ( f(x)) individuals survive
  - Iterate

MALIS 2017 65

## Genetic Algorithms: Basic Example

- Population P ⊂ X (finite size)
  - Initialize P<sub>0</sub> randomly
  - Evolution:
    - Selection: choose parents in P<sub>i</sub> (based on f(x))
    - Generate offsprings with genetic operators
    - Selection: produce new population P<sub>i+1</sub>
  - Iterate for N evolutions
- ◆ Final result: approximate

$$\underset{x \in X}{\operatorname{argmax}} f(x) \approx \underset{i, x \in P_i}{\operatorname{argmax}} f(x_i)$$

MALIS 2017

## Genetic Algorithms: Terminology

- Chromosome:
  - Structure to encode a object in X
- A chromosome is composed of genes
- Population
  - Set of chromosomes (individuals)
- Genetic operators
  - Combine chromosomes (<u>parents</u>) to create <u>offsprings</u> (children)
- Selection
  - Procedure to choose chromosomes based on <u>fitness</u> (objective function)

MALIS 2017 67

## Genetic Algorithms: Intuitive Ideas

- Assumption:
  - Transmission of 'good genes': combining pieces of 'good' chromosomes will often create 'better' chromosomes
- Natural Selection:
  - The strongest have a better chance to survive...
- Genetic Operators:
  - Combinations with some randomness
- Many Variations:
  - When should the selection occur,
  - How should the selection be made,
  - Which operators to choose...

### Selection

- Selection is an operator to choose chromosomes by favoring the fittest
- Can be used for the choice of parents or the choice of offsprings
- Several algorithms:
  - Deterministic selection
  - Proba stic selection
  - Selection by ranking
  - Tournament selection
  - Stoch c tournament selection

MALIS 2017 69

#### **Deterministic Selection**

- Keep best k chromosomes
  - Advantage: fast
  - Drawbacks: no randomness
- If we select k parents and want to generate N offsprings, each parent should generate N/k offsprings
- ◆ For complete replacement of the population, we need k = N

### **Probabilistic Selection**

- Probabilistic Selection
  - Select x with probability p(x) based on f(x)
    - If f(x) high, then p(x) high
    - If f(x) low, then p(x) low
- Assuming f(x) > 0 (otherwise use f C)

$$p(x) = \frac{f(x)}{\sum_{y \in P} f(y)}$$

C=large enough constant

 If f(x<sub>1</sub>) = 2 f(x<sub>2</sub>), x<sub>1</sub> will be selected twice more often than x<sub>2</sub>

MALIS 2017 71

### **Probabilistic Selection**

Example:

$$p(x_1)=0.08$$

$$p(x_2)=0.20$$

$$p(x_3)=0.24$$

$$p(x_4)=0.16$$

$$p(x_5)=0.32$$



72

MALIS 2017

# Probabilistic Selection: Implementation

- Roulette Wheel Selection
  - Using uniform random generator r:

- Split [0,1] in bins of size p(x<sub>i</sub>)
- Dr random number r in [0,1] (uniformly)



MALIS 2017 73

### Probabilistic Selection: Implementation

- Stochastic Universal Sampling
  - To sele N samples:



- Split [0,1] in bins of size p(x<sub>i</sub>)
- Draw random number r in [0,1] (uniformly)
- Delect all bins containing  $r + k/N \pmod{1}$  for  $k = 0, 1, \dots N-1$
- Advantage over RWS: lower variance on the set of selected samples





 $p(x_1)=0.5$   $p(x_2)=0.5$ 

|              | RWS | SUS |
|--------------|-----|-----|
| $(x_1, x_1)$ | 1/4 | 0   |
| $(x_1, x_2)$ | 1/4 | 1/2 |
| $(x_2, x_1)$ | 1/4 | 1/2 |
| $(x_2, x_2)$ | 1/4 | 0   |



**MALIS 2017** 

# Probabilistic Selection: Example

 $p(x_1)=0.9$   $p(x_2)=0.1$ 

|              | RWS    | SUS |
|--------------|--------|-----|
| $(x_1,x_1)$  | 0.81   | 0.8 |
| $(x_1,x_2)$  | 0.09   | 0.1 |
| $(x_2, x_1)$ | 0.09   | 0.1 |
| $(x_2,x_2)$  | 0.0001 | 0   |



**MALIS 2017** 

77

# Probabilistic Selection: Example

 $p(x_1)=0.2$   $p(x_2)=0.3$   $p(x_3)=0.5$ 

|                   | RWS   | SUS |
|-------------------|-------|-----|
| $(x_1, x_1, x_1)$ | 0.008 | 0   |
| $(x_1, x_1, x_2)$ | 0.012 | 0   |
| $(x_1, x_1, x_3)$ | 0.020 | 0   |
| $(x_1, x_2, x_1)$ | 0.012 | 0   |
|                   |       |     |
| $(x_1, x_2, x_3)$ | 0.03  | 1/6 |
|                   |       |     |
| $(x_3, x_3, x_3)$ | 0.125 | 0   |



**MALIS 2017** 

#### **Probabilistic Selection**

- Problem:  $p(x) = \frac{f(x)}{\sum_{y \in P} f(y)}$ 
  - p(x) dependent on function scale:
    - If we change f(x) to h(f(x)), with h monotonic, we have the same optimization problem, but a different selection
  - If h(f(x)) "flat"
    - Low discrimination
    - Almost uniform sampling
  - If h(f(x)) "sharp"
    - Too much focus
    - Almost no search



MALIS 2017 79

### **Selection Pressure**

$$\hat{f} = \max_{x \in P} f(x)$$

$$\bar{f} = \frac{1}{\left|P\right|} \sum_{y \in P} f(y)$$



- p<sub>S</sub> = expected number of selections for best chromosome (based on fitness value)
- For probabilistic selection:  $p_S = \frac{\hat{f}}{\bar{f}}$ 
  - If p<sub>s</sub> too high, presture convergence
    - Local search around best chromosome
  - If p<sub>S</sub> too close to 1, no improvement
    - All chromosomes selected, no discrimination
    - May happen after many iterations

### Selection Pressure: Fitness adjustement

- Linear adjustment of f:
- of f:  $p(x) = \frac{a f(x) + b}{a \sum_{y \in P} f(y) + b}$   $p'_{s} = \frac{a \hat{f} + b}{a \bar{f} + b} = \frac{\frac{\hat{f}}{\bar{f}} + \frac{b}{a \bar{f}}}{1 + \frac{b}{a \bar{f}}} = \frac{p_{s} + b'}{1 + b'}$ • Selection pressure:
  - We can achieve any value for p's by adjusting b'
- Other possible adjustment formulas:
  - Exponential: replace f with f<sup>k</sup>
  - Botlzman: replace f with exp(f/T)
    - Reduce T (temperature) with iterations

81 **MALIS 2017** 

### Selection by Ranking

Order P by decreasing f:

$$f(x_0) \ge f(x_1) \ge ... \ge f(x_{n-1})$$

Select with probability based on rank:

$$p(x_i) = \lambda \left(1 - \frac{i}{n}\right)^k$$

◆ Example: k = 1

$$\sum_{x_i \in P} p(x_i) = 1 = \lambda \sum_{i=0}^{n-1} \left(1 - \frac{i}{n}\right) = \frac{\lambda}{n} \sum_{i=0}^{n-1} \left(n - i\right) = \lambda \frac{\left(n + 1\right)}{2}$$

 $p(x_i) = \frac{2(n-i)}{n(n+1)}$ therefore:

### Selection by Ranking: Selection Pressure

• 
$$\hat{p} = \max_{i} p(x_i) = p(x_0) = \lambda$$

• So 
$$p_s = \frac{\hat{p}}{p} = k+1$$

• Note: this requires  $k \ge -1$ 



#### **Tournament Selection**

- Tournament:
  - Select k random chromosomes
  - Keep the best one (highest f(x))
  - Iterate until desired number of selections is made
- ◆ Often used with k = 2



MALIS 2017 85

### Tournament Selection: Selection Pressure

 Probability that the best chromosome is among the k selected

$$p=1-\left(\frac{n-1}{n}\right)^k \approx \frac{k}{n}$$

 Expected number of selection of the best chromosome after n tournaments:

$$p_s = k$$

- Pressure increases with k
- Note that  $p_s \ge 2$

### **Stochastic Tournament Selection**

- Select two chromosomes at random
- Keep the best one with fixed probability q  $(0,5 \le q \le 1)$
- Probability to select the best chromosome:
  - $\approx 2/N$
  - And that this one wins: 2q/N



- Selection pressure:
  - $p_s = 2 q$

87 **MALIS 2017** 

### **Data Representation**

 A common representation for chromosomes is fixed length bit strings

- Other data types may be converted:
- Integers:
  - x = 0, 1, 2, ... N-1 encoded as  $\lceil \log_2 N \rceil$  bit string
  - Example: numbers 0 99 require 7 bits
    - = 000000
    - = 000001 1

    - **99** = 1100011

88 **MALIS 2017** 

### **Data Representation**

- Reals:
- $\bigcirc$
- Usual: x = n . 2-k n ∈ [0, N [
- Allow to code reals from 0 to N . 2-k with 2-k precision
- Negative values can also be encoded n ∈ [ -N, N [
- Alphanumeric (or finite size symbols):
  - Code index of symbol in list of possible symbols
  - One value among N encoded as \[ log\_2N \] bit string

MALIS 2017 89

### **Genetic Operators**

- Generate offsprings from parents
- Many variations
- Basic types:
  - Mutation
    - 1 parent → 1 offspring
  - Crossover (coupling)
    - 2 parents → 1 offspring
    - 2 parents → 2 offsprings
- Often include some randomness

#### Mutation

Randomly invert bits:



$$b_i = \begin{cases} a_i & \text{with prob } 1 - p_m \\ 1 - a_i & \text{with prob } p_m \end{cases}$$

- p<sub>m</sub> mutation probability
- p<sub>m</sub> typically very small (0.1 0.01)
- Ensures that every chromosome can be transformed into any other with non-zero probability

MALIS 2017 91

# **Crossover Operators**

• 1 point crossover: choose random split location



• 2 points crossover: choose random segment



Random crossover: random choice for each bit



### Example

- ◆ Maximize f(x) = x² X=[0,1[
- Data representation:
  - $x = 0, b_1 b_2 ... b_1$  with precision  $1/2^1$



Crossover: assume x ≥ y

- If  $b_{i+1}...b_l \ge c_{i+1}...c_l$  then  $f(y) \le f(y')$  ,  $f(x') \le f(x)$
- If  $b_{i+1}...b_1 < c_{i+1}...c_1$  then  $f(y') \le f(y) \le f(x) \le f(x')$
- In the second case, an element x' was added which improves over x and y

MALIS 2017 93

#### **Genetic Evolution**

- Many variations:
  - Type and combinations of selection, operators
- General Principle: keep P of fixed size



Parents may survive or die

### Genetic Evolution: Replacement Strategies

- Global replacement
  - New population is composed of all offsprings
    - Generate exactly N offsprings
    - Generate M (> N) offsprings, keep the N best
- ♦ Steady state replacement
  - Generate small number of offsprings
  - Replace some parents (random or worst)
- Elitism
  - Keep k best parents, add new offsprings

MALIS 2017 95

### **Genetic Example**

- ◆ (from Goldberg '89)
- ◆ Problem: max x² over {0,1,...,31}
- Formalization:
  - Representation: binary code, e.g.  $01101 \leftrightarrow 13$
  - Population size: 4
  - 1-point crossover, bitwise mutation
  - Roulette wheel selection
  - Random initialisation
- Run for one cycle

# X<sup>2</sup> example: Selection

|        |            |    | Selection  |        |       |       |
|--------|------------|----|------------|--------|-------|-------|
| String | Initial    |    | Fitness    | Prob i | · .   |       |
| no     | Population | Х  | $f(x)=x^2$ | 2      | count | count |
| 1      | 01101      | 13 | 169        | 0.14   | 0.58  | 1     |
| 2      | 11000      | 24 | 576        | 0.49   | 1.97  | 2     |
| 3      | 01000      | 8  | 64         | 0.06   | 0.22  | 0     |
| 4      | 10011      | 19 | 361        | 0.31   | 1.23  | 1     |
| Sum    |            |    | 1170       |        |       |       |
| Avge   |            |    | 293        |        |       |       |
| Max    |            |    | 576        |        |       |       |

MALIS 2017 97

# X<sup>2</sup> example: Crossover

| String<br>no | Population<br>after<br>selection | Xover point | Offsprings<br>after Xover | Value x | Fitness f(x)=x <sup>2</sup> |            |
|--------------|----------------------------------|-------------|---------------------------|---------|-----------------------------|------------|
| 1            | 0110 1                           | 4           | 01100                     | 12      | 144                         |            |
| 2            | 1100 0                           |             | 11001                     | 25      | 625                         |            |
| 2            | 11 000                           | 2           | 11011                     | 27      | 729                         |            |
| 4            | 10 011                           |             | 10000                     | 16      | 256                         |            |
| Sum          |                                  |             |                           |         | 1754                        |            |
| Avge         |                                  |             |                           |         | 439                         | $\bigcirc$ |
| Max          |                                  |             |                           |         | 729                         |            |
|              |                                  |             |                           |         |                             |            |

**MALIS 2017** 

# X<sup>2</sup> example: Mutation

| String<br>no | Population after Xover | Offsprings<br>after mutation | Value x  | Fitness f(x)=x <sup>2</sup> |
|--------------|------------------------|------------------------------|----------|-----------------------------|
| 1 2          | 01100                  | 1 1 1 0 0<br>1 1 0 0 1       | 26<br>25 | 676<br>625                  |
| 3            | 11011                  | 11011                        | 27       | 729                         |
| 4            | 10000                  | 1 0 1 0 0                    | 18       | 324                         |
| Sum          |                        |                              |          | 2354                        |
| Avge<br>Max  |                        |                              |          | 588.5<br>729                |
|              |                        |                              |          |                             |

MALIS 2017 99

### Crossover OR mutation?

- It is considered good to have both
- Each has its own role:
  - Crossover is explorative: makes big jump
  - Mutation is exploitative: creates small diversion
- Only crossover can combine information from two parents
- Only mutation can introduce new information
- Mutation-only is possible, crossover-only does not work (why?)

### **Partially Defined Operators**

- f(x) not always defined everywhere:
  - Example: three possible values Blue, Red, Green
    - coded as 00 Blue
    - Red coded as 01
    - coded as 10 Green
  - Crossover or mutation may create 11 which is invalid
- Need to check operator result
- Sometimes using data representation other than binary is useful

101 **MALIS 2017** 

### Hamming Cliff problem

Example:

$$f(x) = 256 - x^2 \qquad \text{if } x \le 0$$

$$0 \qquad \text{else}$$

- For x = -16, -15, ..., -1, 0, 1, 2, ..., 15
- Encoded on 5 bits from  $b_{-16} = 00000$  to  $b_{15} = 11111$



- Optimum: x = 0,  $b_0 = 10000$ 
  - Second best: x = -1, b<sub>-1</sub> = 01111
  - No possible crossover to generate b<sub>0</sub> from b<sub>-1</sub>
  - Mutation from b<sub>-1</sub> to b<sub>0</sub> unprobable (requires to flip all positions)

### Hamming Cliff problem

- Neighbors of optimum:
  - $b_{-16} = 00000$  f(-16) = 0
  - $b_8 = 11000$  f(8) = 0
  - $b_4 = 10100$  f(4) = 0
  - $b_2 = 10010$  f(2) = 0
  - $b_1 = 10001$  f(1) = 0
- All neighbors have poor performance (are likely to disappear)
- Problem: small variation in value causes large variation in bit string (Hamming Cliff)

MALIS 2017 103

# **Gray Coding**

- Let b(i) binary coding of integers
- ♦ Define g(i) = b(i) xor b(i)/2
- Then g(i) and g(i+1) only differ by one bit
- In previous example:
  - b(0) = 10000 g(0) = 11000
  - b(-1) = 01111 g(-1) = 01000
  - mutation may switch g(-1) into g(0)

# Gray coding

| Integer | Binary | Gray |
|---------|--------|------|
| 0       | 000    | 000  |
| 1       | 001    | 001  |
| 2       | 010    | 011  |
| 3       | 011    | 010  |
| 4       | 100    | 110  |
| 5       | 101    | 111  |
| 6       | 110    | 101  |
| 7       | 111    | 100  |

MALIS 2017 105

# Other possible representations

- Permutations (ex TSP)
  - Each position is a number: [1, 4, 5, 2, 3]
- Crossover:
  - Select random segment in first chromosome
  - Copy to offspring
  - Fill remaining slots in order of the second chromosome



[3, <mark>4, 5</mark>, 1, 2]

[4, 3, 1, <mark>5,</mark> 2]

### **Permutations**

- Mutation:
  - Invert random segment

• Switch 2 random positions

MALIS 2017 107

# Real Value encoding

- Use base 2 encoding with fixed precision
  - $x = b_n b_{n-1} ... b_1 b_0, b_{-1} b_{-2} ... b_{-m}$
- Crossover:
  - Regular bit strings
- Mutation:
  - Add or substract small value

# Tree Encoding

Programs or expressions:



- Mutation:
  - Change operator, value or variable
  - Replace subtree by random subtree

MALIS 2017 109

# Tree Encoding

- Crossover:
  - Select one subtree in each parent
  - Exchange subtrees



MALIS 2017

# Example 1: Formula One optimization

#### [Wloch, Bentley 2004]

- Problem:
  - Tuning a F1 car is a key issue to success
  - Lots of parameters (suspension, engine, ...)
  - Performance is measured by lap time, no closedform formula
  - Optimal values depend on track, weather, ...
- Idea:
  - Use F1 simulator software and GA to optimize car settings for a given track

MALIS 2017 111

# Example 1: Formula One optimization

| Setting name       | Its function                                                                                                      |
|--------------------|-------------------------------------------------------------------------------------------------------------------|
| Suspension         |                                                                                                                   |
| Anti-Sway          | Has an effect on the under/oversteer of the car, and the contact that the tyres have with the ground. The         |
|                    | value relates to the stiffness of the anti-sway bar.                                                              |
| Toe In settings    | Relates to the angle of the wheels in relation to each other. The variable alters how much the wheels point       |
|                    | forwards. This has an effect on directional stability.                                                            |
| Camber settings    | Camber is the angle of the wheel relative to the vertical. The variable alters this angle, and affects the tyres' |
|                    | performance while cornering.                                                                                      |
| Spring rates.      | The spring rates determine how stiff the springs are and how the vehicle responds in cornering and bumpier        |
|                    | surfaces. The can affect understeer/oversteer also. Measured in N/mm.                                             |
| Packer settings.   | Useful in high-speed situations the packers are related to the spring and ride height.                            |
| Ride height.       | This can be varied in millimetres and affects the down force of the car on the track.                             |
| Bump damping.      | There are several variables associated with these settings, with ranges from 0-40. They affect how quickly the    |
|                    | suspension responds to the road surface.                                                                          |
| Engine             |                                                                                                                   |
| Rev Limit          | Variations to how many revolutions per minute the engine can reach. Affects acceleration in certain rev           |
|                    | ranges.                                                                                                           |
| Gear Ratios        | There are 15 variables associated with changing the gear ratios. They effect the acceleration of the vehicle.     |
|                    | They vary in range up to 0-75.                                                                                    |
| Aerodynamics       |                                                                                                                   |
| Brake duct size    | Relates to the size of the ducts, and affects cooling.                                                            |
| Radiator size      | Also affects cooling, and the aerodynamics of the car.                                                            |
| Wings              | Varies the height and position of the wings, changing the down force of the vehicle and its grip on the road.     |
| Other              |                                                                                                                   |
| Tyre pressure      | Can be set individually for each tyre.                                                                            |
| Brake pressure and | Varies how hard the brakes are applied, and the distribution between front and rear break pressure. Several       |
| bias               | variables associated with this ranging from 0-45.                                                                 |

**MALIS 2017** 



**MALIS 2017** 



# Example 2: Formula One optimization

 Schematic layup of the composite structure of the wing



**MALIS 2017** 

115

### Example 2: Formula One optimization

 Optimization problem: minimize mass subject to displacement constraints (FIA and aerodynamics)



- Result of optimization:
  - Design obtained by GA optimization: 4.95 Kg
  - Baseline design weight: 5.2 Kg
  - Improvement: 4.8%

MALIS 2017

### Example 3: Antenna Design

- Problem: design an antenna with given characteristics (size, bandwidth, gain, directivity)
- NASA Mars Odyssey UHF antenna:





**MALIS 2017** 

117

# Example 3: Antenna Design

 GA could generate an antenna with similar performance and only 1/4<sup>th</sup> of the volume of initial antenna





### Example 3: Antenna Design

NASA ST5 Spacecraft



New antennas with higher gain





119

MALIS 2017

### Summary: Genetic Theory

- Fact: genetic algorithms work
  - Generally slow
    - Many many iterations
  - Can be applied to any problem (vs gradient)
- Intuitive idea based on nature
- Less prone to local maximum than hill-climbing
- Not much theory to support this:
  - Schema interpretation
  - The N<sup>3</sup> argument

### **Schemas**

- Definition:
  - $s = s_1 s_2 ... s_i$  with  $s_i = 0$ , 1 or \*
- Facts:
  - There are 3<sup>l</sup> different schemas

s

| $S_1 S_2$ |  | Sı |
|-----------|--|----|
|-----------|--|----|

| 0 | 0 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| * | * | * |

**MALIS 2017** 

121

# **Counting Schemas**

- A schema s represents a subset of X
- Let o(s) = nb of defined bits (order of s):
   s contains 2<sup>I-o(s)</sup> chromosomes

s

0 1 \* 1 \*

x∈s



o(s)=3, l=5, l-o(s)=2, s contains 4 chromosomes

# **Counting Schemas**

A chromosome belongs to 2<sup>I</sup> schemas;

x 0 1 0 1 1

s (x∈s)

| S <sub>1</sub> | S | 2 S | 3 S4 | <b>S</b> <sub>5</sub> |
|----------------|---|-----|------|-----------------------|
| 0              | 1 | 0   | 1    | 1                     |
| *              | * | *   | *    | *                     |

 A population with n chromosomes contains chromosomes from k schemas, with:

 $2^l \le k \le n \cdot 2^l$ 



- Provides an estimate of the number of schemas during evolution
- Definitions:
  - Population P, size n, at time t
  - Schema s
  - m(s,t) = number of chromosomes of s in P at time t
- Assume probabilistic selection, 1 point crossover, mutation
- Analyze how chromosomes in s vary

MALIS 2017 125

#### Schema Theorem Genetic evolution: • First: selection • Then: crossover • Then: mutation P(t+1) P(t) $P_2(t)$ selection crossover mutation m(s,t) $m_1(s,t)$ $m_2(s,t)$ 126 **MALIS 2017**

1. Selection



- Select x with probability p(x)
- Independent selections: x might be selected several times
- Keep size constant

127 **MALIS 2017** 

### Schema Theorem

• Probabilistic selection:  $p(x) = \frac{f(x)}{\sum_{y \in P} f(y)}$ 

• Let: 
$$\bar{f}(t) = \frac{1}{n} \sum_{y \in P} f(y)$$

• Let: 
$$\bar{f}(t) = \frac{1}{n} \sum_{y \in P} f(y)$$
 average value of f over P  

$$\hat{u}(s,t) = \underbrace{\frac{1}{m(s,t)}}_{x \in s \cap P} \underbrace{\sum_{x \in s \cap P} f(x)}_{x \in s \cap P}$$
 average value of f over s

$$p(\text{select 1 chromosome of s}) = \sum_{x \in s \cap P} p(x) = \sum_{x \in s \cap P} \frac{f(x)}{\sum_{y \in P} f(y)} = \sum_{x \in s \cap P} \frac{f(x)}{n \bar{f}(t)}$$

$$= \frac{1}{n\bar{f}(t)} \sum_{x \in s \cap P} \!\! f(x) \! = \! \frac{1}{n\bar{f}(t)} \hat{u}(s,t) \!\! m(s,t) \! = \! \frac{\hat{u}(s,t) \!\! m(s,t)}{n\bar{f}(t)}$$

128 **MALIS 2017** 

p(select 1 chromosome of s) =  $\frac{\hat{u}(s,t)m(s,t)}{n\bar{f}(t)} = \alpha$ 

 Average value of the number of chromosomes of s after 1 selection:

 $E_1 = \sum_{k=0}^{1} k.p(\text{select k chromosomes of s}) = 0.(1-\alpha) + 1.\alpha = \alpha$ 

 Average value of the number of chromosomes of s after n (independent) selections:

$$E_n = nE_1 = n\alpha$$

$$E\big(m_{\scriptscriptstyle 1}(s,t)\big) = E_{\scriptscriptstyle n} = n \frac{\hat{u}(s,t) m(s,t)}{n \, \bar{f}(t)} = \left\lceil \frac{\hat{u}(s,t)}{\bar{f}(t)} \right\rceil m(s,t)$$

MALIS 2017 129

### Schema Theorem

2. Crossover



- Arrange chromosomes in pairs
- Apply crossover with prob p<sub>c</sub>, put offsprings in P<sub>2</sub>
- With prob 1- p<sub>c</sub>, pair is just copied
- Use 1 point crossover

- Crossover:
  - d(s) = max distance between defined binary values
     (non \*)
  - Suppose x is in schema s

If i is outside d(s):

- At least one offspring is in s
- Schema is preserved



If i is inside d(s):

- It is possible that both offsprings are not in s
- Schema can be destroyed

MALIS 2017 131

#### Schema Theorem

- How many chromosomes of s survive crossover?
  - If the pair is just copied (1-p<sub>c</sub>): same number
  - If crossover is applied (p<sub>c</sub>):
    - If both parents are in s, both offsprings are in s
    - If one parent is in s
      - If i outside d(s): one offspring is in s (at least)
      - If i within d(s): schema can be destroyed
  - The probability that a chromosome of s does not produce a chromosome of s is at most p<sub>c</sub>.d(s)/(l-1)

 n<sub>1</sub> = Number of chromosomes of s that are destroyed when generating P<sub>2</sub>

$$E(n_1) \! \le \left(p_c \frac{d(s)}{l-1}\right) \! m_1(s,t)$$

Remaining chromosomes after crossover:

$$E(m_2(s,t)) \ge \left(1 - p_c \frac{d(s)}{l-1}\right) m_1(s,t)$$

MALIS 2017 133

#### Schema Theorem

- ♦ 3. Mutation:
  - o(s) = number of defined bits (non \*)
  - p<sub>m</sub> = mutation probability
  - Each x is processed in sequence
  - If x belongs to s, survival probability s<sub>m</sub>(s) that its mutated also belongs to s:

$$s_{m}(s) = (1 - p_{m})^{o(s)}$$

So:

$$E(m(s,t+1)) \ge m_2(s,t) \cdot [1-p_m]^{o(s)}$$

Conclusion:

$$E(m(s,t+1)) \ge m(s,t) \cdot \frac{\hat{\mathbf{u}}(s,t)}{\bar{\mathbf{f}}(t)} \cdot \left[1 - p_c \frac{\mathbf{d}(s)}{I-1}\right] \cdot \left[1 - p_m\right]^{o(s)}$$

- Interpretation:
  - When  $\frac{\hat{u}(s,t)}{\bar{f}(t)} >>1$  size of schema will increase
  - When  $\frac{\mathbf{\hat{u}}(s,t)}{\bar{f}(t)} < 1$  size of schema is likely to decrease
  - Evolution will increase the size of "good" schemas

MALIS 2017 135

# The N<sup>3</sup> Argument

Theorem:

Under reasonable assumptions, a random population of size N "samples" N³ schemas

(example: 100 chromosomes  $\rightarrow$  1,000,000 schemas)

- Demonstration:
  - "samples" = number of chromosomes ≥ θ
  - Let s be a schema of order k (k defined bits):
    - There are 2<sup>l</sup> chromosomes, 2<sup>l-k</sup> belong to s
    - If we randomly select N chromosomes, on the average, N.2<sup>l-k</sup>/2<sup>l</sup> = N.2<sup>-k</sup> belong to s
  - When is  $N.2^{-k} \ge \theta$ ?

136

**MALIS 2017** 





# The N<sup>3</sup> Argument

$$\frac{N}{2^k} \ge \theta \iff k \le \log_2 \frac{N}{\theta} = k_0$$

♦ How many schemas of order k<sub>0</sub>?

 $\binom{I}{k_0} 2^{k_0}$  to be compared with  $N^3 = (\theta \ 2^{k_0})^3$ 

Reasonable assumptions:

$$\theta = 8 \quad 2^6 \le N \le 2^{20} \quad (3 \le k_0 \le 17)$$

Computations:

when 
$$l \ge 60$$
, then  $\binom{l}{k_0} 2^{k_0} \ge 2^{3k_0} 8^3$ 



# The N<sup>3</sup> Argument

- So more than N³ schemas have more than θ chromosomes in a population of size N
- Intuitive interpretation:
  - By evolving a population of size N, we also sample many more schemas, so we have greater chances to get good schemas in.
  - Since good schemas will be favored during evolution, we have greater chances to find a global maximum.

MALIS 2017 139

### Pros/Cons of GA

- Advantages:
  - Global Maximum
  - No restriction on f (the fitness function)
  - Easy to implement in parallel
- Drawbacks:
  - Slow and computationally demanding
  - In many situations a method exists which will lead to good solution more rapidly

# **Genetic Programming**

 Searching for computer program with a given behaviour:



Use examples of (input,output) pairs

MALIS 2017 141

# **Program Representation**

- ◆ Chromosome: tree structure
  - Nodes: operators
  - Leaves: constants or variables
- Example:

$$2 \cdot \pi + \left( (x+3) - \frac{y}{5+1} \right)$$



**MALIS 2017** 

# **Program Representation**

Programming example:

MALIS 2017 143

# **Genetic Programming**

- Choose operators, constants, variables
- Choose fitness function
- Initialize population
- Let population evolve:
  - Selection
  - Crossover
  - Mutation
- Until stopping criterion is met

# **GP** Example

Discover Pythagore's theorem:

$$c = \sqrt{a^2 + b^2}$$



Input-output samples:

| а  | b  | С     |
|----|----|-------|
| 3  | 5  | 5.83  |
| 8  | 14 | 16.12 |
| 18 | 2  | 18.11 |
| 4  | 3  | 5.00  |

**MALIS 2017** 

145

# **GP** Example

- Operators:
  - + \* / \sqrt{
- Variables:
  - a, b
- Constants:
  - 1, 2, 3, 4, 5.
- Fitness:
  - Inverse of sum of output error on input samples





### **Evolution**

Ultimate solution:



MALIS 2017 149

# Issues in GP

- Crossover and mutation may produce invalid expressions
  - If operators are not defined everywhere
  - Example: square root
- ◆ Trees size tend to grow
  - Penalize size
- Fitness may be expensive to compute
- But sometimes provides competitive results



# GP Example 2

- Operators:
  - + \* / sign(), abs(), sqrt(), square(), cube()
- Variables:
  - ν, θ, ω
- Constants:
  - 0.
  - Apply mutation operator to add random gaussian

# GP Example 2

- Fitness:
  - Generate random initial state:

$$-0.5 \le x(0) \le +0.5$$

$$-0.5 \le v(0) \le +0.5$$

$$-0.5 \le \theta(0) \le +0.5$$

$$-0.5 \le \omega(0) \le +0.5$$

- Compute time to reach balanced state
- Fitness = average time over 10 experiments
- Result:  $F = sign \left( \theta + \omega + v + v^2 \omega \sqrt{\frac{(\omega^3 + 1)^3}{0.0808 \sqrt{|\omega|}}} \right)$

MALIS 2017 153

Classification

# Classification and Clustering

- Idea: organize a set of objects into classes
  - A set X of objects  $x \in X$
  - A partition of X into classes: X = C1 U C2 U ... U Ck
  - Every x is in a class x ∈ Ci
- Why:
  - To make a problem simpler!
  - For example, you want to define f(x)
  - But there are too many x
  - So, you define f(x) = f(Ci) if  $x \in Ci$
- Advantages:
  - Less parameters, less storage, less computation
  - Sometimes allows generalization to new data
  - Sometimes more robust
  - Etc...

MALIS 2017 155

# Classification vs Clustering

- Classification
  - Objects have labels
  - Find a model to label new objects
  - Example: diagnosis  $x_i$ =symptoms,  $c_i$ =disease
  - Supervised approach
- Clustering
  - Objects have no labels
  - Find optimal clusters
  - Example: marketing group similar customers
  - Unsupervised approach



**MALIS 2017** 

### Clustering

- Given:  $x_1, x_2, ..., x_n \in X$
- ◆ Assume distance in X: d(x,x')
- Optimal clustering:
  - Elements in the same cluster should be close
  - Elements in different clusters should be far apart
  - → Many ways to define optimality
  - → k<sup>n</sup>/k! possible clusterings with k clusters
  - → Difficult to build optimal solution
- Issue (generally unsolved):
  - What is the optimal number of clusters?

MALIS 2017 157

### **Hierarchical Clustering**

- Bottom-up approach (agglomerative):
  - Initially: every sample is in a single cluster
  - Iterate: merge the two closest clusters into one
  - Until only one cluster is left
- Top-down approach (divisive):
  - Initially: all objects are in the same cluster
  - Iterate: a cluster is divided in two
  - Until all clusters contains only one object



# Distances between clusters

$$x_1 \in C_1, x_2 \in C_2$$

• 
$$d(C_1,C_2) = min \{d(x_1,x_2)\}$$

- $d(C_1,C_2) = \max \{d(x_1,x_2)\}$
- $d(C_1, C_2) = avg \{d(x_1, x_2)\}$
- $d(C_1,C_2) = d(c_1,c_2)$ 
  - $c_1 = centroid(C_1)$
  - $c_2 = centroid(C_2)$

centroid(C) = argmin 
$$\frac{1}{|C|} \sum_{x \in C} d(x, x_i)$$

 $\underbrace{\text{centroid}(C) = \underset{x \in X}{\operatorname{argmin}} \frac{1}{|C|} \sum_{x_i \in C} d(x, x_i)}$ 



160

**MALIS 2017** 



# **Hierarchical Clustering**

- Bottom-up clustering (agglomerative)
  - Simple to implement
  - Cost is O(n<sup>3</sup>), sometimes O(n<sup>2</sup> Log n)
  - Based on local decisions, sometimes not globally optimal
- Top-down clustering (divisive)
  - Decisions based on whole data
  - More difficult to split clusters
- For both:
  - Possibility to choose the number of clusters

- Partitioning algorithm:
  - For a given k, creates one set of k clusters
- Iterative:
  - Initial assignment to k clusters
  - Algorithm progressively improves by moving elements
- Assumes:
  - The number of clusters is given a priori: k
  - Euclidian vector space (addition exists)

MALIS 2017 163

### K-means Clustering

- Assume the domain is  $X = \mathbb{R}^d$   $x_i = (x_{i1}, x_{i2}, \dots x_{id})$
- The centroid of a cluster C is:

$$centroid(C) = \underset{y \in X}{argmin} \frac{1}{|C|} \sum_{x_i \in C} d(y, x_i) = \underset{y \in X}{argmin} \frac{1}{|C|} \sum_{x_i \in C} \left\| y - x_i \right\|^2$$

For the minimum, partial derivatives are zero:

$$\frac{\partial \sum_{x_i \in C} \left\| \mathbf{y} - \mathbf{x}_i \right\|^2}{\partial \mathbf{y}_m} = 2 \sum_{x_i \in C} \left( \mathbf{y}_m - \mathbf{x}_{i,m} \right) = 0 \qquad \rightarrow \qquad \mathbf{y}_m = \frac{1}{\left| \mathbf{C} \right|} \sum_{x_i \in C} \mathbf{x}_{i,m}$$

• So the centroid of C is also the mean:

$$centroid(C) = \frac{1}{|C|} \sum_{x_i \in C} x_i$$

**MALIS 2017** 

- Algorithm:

  - Given:  $x_1, x_2, \dots x_n \in \mathbb{R}^d$  and k• Initial: define initial clusters  $C_1^0, C_2^0 \dots C_k^0$
  - - $\mu_j^t = \frac{1}{\left|C_j^t\right|} \sum_{x_i \in C_j^t} \! x_i$  $_{\bullet}$  Compute mean  $\mu_j^{\,t}$  of cluster  $C_j^{\,t}$ j=1,2...k
    - For each x<sub>i</sub> find closest mean:

$$m(i) = \underset{i}{\operatorname{argmin}} d(x_i, \mu_j^t)$$

- $x_i\!\in C^{t+1}_{m(i)}$ Move x<sub>i</sub> to cluster m(i)
- Iterate until stopping criterion

165 **MALIS 2017** 



◆ Proof of convergence: distorsion D<sub>t</sub>

$$\begin{split} D_t &= \sum_{j=1}^k \sum_{x_i \in C_j^t} \!\! d\! \left( x_i, \mu_j^t \right) \\ D_t &\geq \sum_{j=1}^k \sum_{x_i \in C_j^t} \!\! d\! \left( x_i, \mu_{m(i)}^t \right) \\ &= \sum_{j=1}^k \sum_{x_i \in C_j^{t+1}} \!\! d\! \left( x_i, \mu_j^t \right) \\ &\geq \sum_{j=1}^k \sum_{x_i \in C_j^{t+1}} \!\! d\! \left( x_i, \mu_j^t \right) \\ &\geq \sum_{j=1}^k \sum_{x_i \in C_j^{t+1}} \!\! d\! \left( x_i, \mu_j^t \right) \\ &= D_{t+1} \end{split} \quad \text{because } \sum_{x_i \in C_j^{t+1}} \!\! d\! \left( x_i, \mu_j^t \right) \leq \sum_{x_i \in C_j^{t+1}} \!\! d\! \left( x_i, \mu_j^t \right) \end{split}$$

MALIS 2017 167

# K-means Clustering

- Proof of convergence: distorsion D<sub>t</sub>
  - D<sub>t</sub> is decreasing during the iterations
  - It can only take a finite number of values
    - k<sup>n</sup>/k! different clusterings
  - So it reaches a (local) minimum after a finite (but maybe large) number of steps
- Stopping criteria:
  - When no element moves
    - Why not try again ?
  - When maximum number of iterations is reached
  - When distortion improvement falls under threshold

$$D_t - D_{t+1} < \theta$$

- Strength:
  - Fast method: linear with k, n, number of iterations
- Limitations:
  - Requires computation of the mean
    - Cannot be applied to non-scalar data
  - Need to specify k
  - Sensitive to outliers
    - An object with a large coordinate may shift the mean dramatically

MALIS 2017 169

# K-medoids Clustering

- Instead of mean, consider the most central object of the cluster
  - Mean:

$$\underset{y \in X}{\operatorname{argmin}} \frac{1}{|C|} \sum_{x_i \in C} d(y, x_i)$$



### Medoid:





- More robust to outliers
- Can be used with space X without addition

### Minimum Description Length

- How to find the right number of clusters k?
- We want a minimum distorsion:

$$D_k = \sum_{j=1}^k \sum_{x \in C_j} d(x, C_j)$$

- But if k increases, then Dk decreases
- Which is better?

 $k=2, D_k = 4$ 

+

 $k=4, D_k=0$ 



•

**MALIS 2017** 

171

### Minimum Description Length

- ◆ How to find the right number of clusters k?
  - $\bullet$  When k increases,  $D_k$  decreases, so we cannot simply minimize  $D_k$
  - Idea: add a penalty for larger k: cost(k) and minimize
     D<sub>k</sub> + cost(k)



- Minimum Description Length principle:
  - Penalty based on transmitting centroid information

Note: this is an example of regularization

### Minimum Description Length

- Assume that we want to transmit the data exactly (N points with k centroids):
  - First, transmit the k centroids

k.A

- Then, transmit the cluster id for each point
- Then, transmit the error for each point

N.B $D_k.C$ 

- Minimize the amount of data to be transmitted:
   min (k.A + N.B + D<sub>k</sub>.C) = min (k.A + D<sub>k</sub>.C)
- MDL principle for k-means:
  - Find k which minimizes  $\min D_k + k.C_0$  where  $C_0$  is a constant to be adjusted

MALIS 2017 173

### Minimum Description Length

◆ Find k which minimizes min D<sub>k</sub> + k.C<sub>0</sub>

 $k=4, D_k=0$ 





Assume  $C_0 = 3$ 

$$D_k + k.C_0 = 10$$

$$D_k + k.C_0 = 12$$

# **Supervised Classification**

- The set of possible classes is known:
  - $E = \{C_1, C_2, ... C_k\}$
- Training examples:
  - We know the class for each sample
  - $(x_i, C_{i(i)})$  i=1, 2, ... N
- Problem:
  - Find a decision rule to assign a class c to an arbitrary  $x \in X$

MALIS 2017 175

# **Supervised Classification**

- ◆ Classes: blue and red
- Training examples



• Rule to decide class of a new element

# Nearest Neighbor Rule NN Rule: assign x to class C(x<sub>i\*</sub>), where i\* = argmin d(x,x<sub>i</sub>) Nearest neighbor Here: assign x to class blue





### Pros and Cons of kNN

- Pros:
  - Flexible, data driven
  - Simple (if not weighted)
  - Good performance (provided large amount of data)
  - Can be used for regression (average instead of vote)
- Cons:
  - Needs lots of data
  - Computationally intensive
  - Hard to speed-up, specially in high dimension
  - Difficult to choose weight/distance

Bayes formula:

$$p(C|x) = \frac{p(x|C) p(C)}{p(x)}$$

- p(C|x) posterior probability of class C given x
- p(C) prior probability of class C
- p(x|C) probability of x given class C
- Idea:
  - We want to compute p(C|x) for a given x
    - Which classes are probable for a given x?
  - We create a model p(x|C) of each class C
    - What x values are probable for a given class C?

MALIS 2017 181

# **Bayesian Classification**

- Example: characters and height:
  - Hobbits have an average height between 2' and 4'
  - Elves have an average height between 5' and 7'
  - Trolls have an average height between 8' and 10'
  - (1' = 1 foot = 30.48 cm)

p(height|C)



- Why is it sometimes interesting to use Bayes?
- ◆ If we want to model directly p(C|height):
  - For some heights, we need a lot of training examples to estimate p(H|height), p(E|height), p(T|height)
  - We have to guess how these probabilities evolve with the height
  - It maybe difficult to find a reasonable formula for this
- With Bayes:
  - For each class, we need several samples
  - A Gaussian distribution is a good parametric model (in this case) for p(height|C), easy to estimate
  - Bayes rule allows to derive p(C|height)

MALIS 2017 183

### **Bayesian Classification**

Bayes formula:

$$p(C|height) = \frac{p(height|C) p(C)}{p(height)}$$

- p(C|height) posterior probability of C given height
- p(C) prior probability of C
- p(height|C) probability of height given C

p(height|C) p(C) = p(height,C) p(height)=  $\sum_{C}$  p(height|C)p(C) )=  $\sum_{C}$  p(height,C)

- Modeling:
  - p(C|height) is a discriminative model
  - p(height,C) is a generative model

- Pros and cons
  - If models were perfect, there would be no difference
- Generative model:
  - + Can model classes independently
  - + Easy to add one class
  - Does not focus on ambiguities
- Discriminative model:
  - + Focuses on ambiguities
  - + Generally more accurate
  - Sometimes more difficult to implement

MALIS 2017 185

# **Bayesian Classification**

- Example: find character from height
  - C = Hobbit or Elf or Troll
  - x = height
- Prior: p(C=H) = p(C=E) = p(C=T) = 1/3
- Example: x=7'
  - p(x=7|H) = 0, p(x=7|E) = 0.51, p(x=7|T) = 0.07
  - p(x=7) = 0x1/3 + 0.51x1/3 + 0.07x1/3 = 0.19
  - p(H|x=7) = 0
  - p(E|x=7) = 0.51x1/3 / 0.19 = 0.88
  - p(T|x=7) = 0.07x1/3 / 0.19 = 0.12

- Maximum Likelihood (ML) classification
  - Assign x to class C\* such that

$$C^* = \underset{C}{\operatorname{argmax}} P(C|x) = \underset{C}{\operatorname{argmax}} \frac{P(x|C)P(C)}{P(x)} = \underset{C}{\operatorname{argmax}} P(x|C)P(C)$$

- Example: x=7, C\* = Elf
- ML classification minimizes the chances of error

187 **MALIS 2017** 

### **Gaussian Model**

- ◆ Assume X=Rd,
- Normal (Gaussian) distribution:

$$P(x|C) = N(\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}$$

- μ = mean vector
- Σ = covariance matrix
- Problem: how to estimate model parameters from training data (samples  $x_1, x_2, ... x_N$ )?
- Approximate solution:

$$\mu = \frac{1}{|C|} \sum_{\mathbf{x}_i \in C} \mathbf{x}_i \qquad \qquad \Sigma = \frac{1}{|C|} \sum_{\mathbf{x}_i \in C} (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T$$

**MALIS 2017** 

# **Gaussian Model**

- ◆ 1-D example:
- $P(x) = N(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- True distribution
- Sample points (10)
- Estimated distribution



**MALIS 2017** 

# Gaussian Model

◆ 100 samples



1000 samples



The more training samples, the better the estimate

**MALIS 2017** 





### Gaussian Mixture Model GMM

- Combination of K Gaussian distributions G<sub>i</sub>=N(μ<sub>i</sub>,Σ<sub>i</sub>) with weight w<sub>i</sub>:
  - Parameters:

$$\Theta = \{w_1, \, \mu_1, \, \Sigma_1, w_2, \, \mu_2, \, \Sigma_2, \ldots \, , \, w_K, \, \mu_K, \, \Sigma_K \}$$

$$\begin{split} \mathsf{P}(\mathsf{x} \big| \Theta) &= \sum_{i=1}^{\mathsf{K}} \mathsf{w}_{i} \mathsf{N}(\mathsf{x} \mid \mu_{i}, \Sigma_{i}) \\ &= \sum_{i=1}^{\mathsf{K}} \mathsf{w}_{i} \, \frac{1}{(2\pi)^{\mathsf{d}/2} \big| \Sigma_{i} \big|^{1/2}} \, e^{-\frac{1}{2} (x - \mu_{i})^{T} \, \Sigma_{i}^{-1} (x - \mu_{i})} \end{split}$$
 with  $\mathsf{w}_{i} > 0$ ,  $\sum_{i=1}^{\mathsf{K}} \mathsf{w}_{i} = 1$ 

MALIS 2017 193

### Gaussian Mixture Model

- ◆ Example: 3 Gaussian mixtures on R<sup>2</sup>
  - Probability density:



MALIS 2017

### Gaussian Mixture Model

- ◆ Question: given training samples x₁, x₂, ... x<sub>N</sub>, how to estimate  $\Theta$ ?
- Maximum Likelihood criteria:

$$L(\Theta) = \prod_{j=1}^{N} P(x_{j}|\Theta) = \prod_{j=1}^{N} \sum_{i=1}^{K} w_{i} \frac{1}{(2\pi)^{d/2} |\Sigma_{i}|^{1/2}} e^{-\frac{1}{2}(x_{j} - \mu_{i})^{T} \Sigma_{i}^{-1}(x_{j} - \mu_{i})}$$

$$\Theta^{*} = \underset{\Theta}{\operatorname{argmax}} L(\Theta)$$

- Problem: no direct solution to find the best Θ
- Solution: iterative EM algorithm

195 **MALIS 2017** 

### **EM Algorithm**

- ◆ Given x<sub>1</sub>, x<sub>2</sub>, ... x<sub>N</sub> we want  $\Theta^* = \underset{\Theta}{\operatorname{argmax}} L(\Theta) = \underset{\Theta}{\operatorname{argmax}} \prod_{j=1}^{N} P(x_j | \Theta)$   $\bullet \text{ Idea: introduce latent (non observable)}$
- variables
  - (Here: which gaussian produced each x<sub>i</sub>?)
- Algorithm:
  - E-step: find expectation of latent variables values
  - M-step: compute maximum likelihood estimate (MLE) of parameter values
  - iterate

# **EM Algorithm for GMM**

- ◆ If we knew which gaussian G<sub>i</sub> produced each x<sub>i</sub>
  - Latent variable  $\delta_{ii} = 0$  or 1

|                | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>x</b> <sub>3</sub> |               | x <sub>N</sub>       |                             |
|----------------|-----------------------|-----------------------|-----------------------|---------------|----------------------|-----------------------------|
| G <sub>1</sub> | 1                     | 0                     | 0                     |               | 0                    | $N(G_1)=\sum \delta_{1j}$   |
| G <sub>2</sub> | 0                     | 0                     | 0                     |               | 1                    | $N(G_2) = \sum \delta_{2j}$ |
|                |                       |                       |                       | $\delta_{ij}$ |                      | •                           |
| G <sub>k</sub> | 0                     | 0                     | 1                     |               | 0                    | $N(G_k) = \sum \delta_{kj}$ |
|                | $\sum \delta_{i1}=1$  | $\sum \delta_{i2}=1$  | $\sum \delta_{i3}=1$  |               | $\sum \delta_{iN}=1$ |                             |

lues:  $w_i = \frac{1}{N} \sum_{j=1}^{N} \delta_{ij}$   $\mu_i = \sum_{j=1}^{N} \delta_{ij}$   $x_j / \sum_{j=1}^{N} \delta_{ij}$   $\Sigma_i = ...$ 

MALIS 2017 197

### **EM Algorithm for GMM**

 $\bullet$  E-step: we compute the expected value of latent variable  $\delta_{ij}$ 

|                | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub>              | <b>X</b> <sub>3</sub> | <br>X <sub>N</sub> |                    |
|----------------|-----------------------|------------------------------------|-----------------------|--------------------|--------------------|
| G <sub>1</sub> | $P(G_1 X_1)$          | P(G <sub>1</sub>  x <sub>2</sub> ) | $P(G_1 X_3)$          | $P(G_1 x_N)$       | p(G <sub>1</sub> ) |
| $G_2$          | $P(G_2 X_1)$          | $P(G_2 x_2)$                       | $P(G_2 x_3)$          | $P(G_2 x_N)$       | p(G <sub>2</sub> ) |
|                |                       |                                    |                       |                    |                    |
| $G_k$          | $P(G_k x_1)$          | $P(G_k x_2)$                       | $P(G_k x_3)$          | $P(G_k x_N)$       | p(G <sub>k</sub> ) |
|                | <b>Σ</b> =1           | <b>Σ</b> =1                        | <b>Σ</b> =1           | <b>Σ</b> =1        |                    |

• M-step: then the new parameter values are:

$$w_{i} = \frac{1}{N} \sum_{i=1}^{N} P(G_{i} \mid x_{j}) \quad \mu_{i} = \sum_{i=1}^{N} P(G_{i} \mid x_{j}) x_{j} / \sum_{i=1}^{N} P(G_{i} \mid x_{j}) \Sigma_{i} = ...$$

### EM: Expectation step

- Assume  $\Theta^t = \{ \mathbf{w}_i^t, \mu_i^t, \Sigma_i^t \}$
- E step:
  - The sample x<sub>i</sub> is produced by the model with:

$$P(x_j \mid \Theta^t) = \sum_{v=1}^K W_v^t P(x_j \mid \mu_v^t, \Sigma_v^t)$$

• The contribution of gaussian G<sub>i</sub> is:

$$W_i^t P(X_i | \mu_i^t, \Sigma_i^t)$$

 $\bullet\,$  The posterior probability of the gaussian  $G_i$  is:

$$P(G_i | X_j, \Theta^t) = \frac{W_i^t P(X_j | \mu_i^t, \Sigma_i^t)}{\sum_{v=1}^K W_v^t P(X_j | \mu_v^t, \Sigma_v^t)}$$

MALIS 2017 199

### EM: Maximization step

M step:

$$W_{i}^{t+1} = \frac{1}{N} \sum_{j=1}^{N} P(G_{i} \mid x_{j}, \Theta^{t}) = \frac{1}{N} \sum_{j=1}^{N} \frac{W_{i}^{t} P(x_{j} \mid \mu_{i}^{t}, \Sigma_{i}^{t})}{\sum_{v=1}^{N} W_{v}^{t} P(x_{j} \mid \mu_{v}^{t}, \Sigma_{v}^{t})}$$

$$\mu_{i}^{t+1} = \frac{\sum_{j=1}^{N} P(G_{i} \mid x_{j}, \Theta^{t}) x_{j}}{\sum_{j=1}^{N} P(G_{i} \mid x_{j}, \Theta^{t})}$$

$$\Sigma_{i}^{t+1} = \frac{\sum_{j=1}^{N} P(G_{i} \mid x_{j}, \Theta^{t}) (x_{j} - \mu_{i}^{t+1}) (x_{j} - \mu_{i}^{t+1})^{T}}{\sum_{j=1}^{N} P(G_{i} \mid x_{j}, \Theta^{t})}$$

**MALIS 2017** 

- There are 3 coins: 0, 1 and 2
  - Coin 0 has a probability of  $\lambda$  for Heads
  - Coin 1 has a probability of p₁ for Heads
  - Coin 2 has a probability of p<sub>2</sub> for Heads
- Game:
  - I toss Coin 0
  - If Coin 0 turns up Heads, I toss coin 1
  - If Coin 0 turns up Tails, I toss coin 2
- I tell the result of coin 1 or 2, but not coin 0
  - The result of coin 0 is a latent variable

MALIS 2017 201

# EM: Example



- We perform three trials and observe HTH
  - But we can't see wether they come from 1 or 2.
- What are the best values for λ, p<sub>1</sub> and p<sub>2</sub>?
  - (in practise, we would observe lots of trials)

• We start with initial values, for example:

$$\Theta = \{\lambda = 0.5, p_1 = 0.6, p_2 = 0.4\}$$

$$p_1 \qquad H_1$$

$$1 - p_1 \qquad T_1 \qquad H_2$$

$$p_2 \qquad H_2 \qquad T$$

$$p(H) = p(H_0H_1) + p(T_0H_2)$$

$$= \lambda p_1 + (1-\lambda)p_2 = 0.5 \times 0.6 + 0.5 \times 0.4 = 0.5$$

$$p(T) = p(H_0T_1) + p(T_0T_2)$$

$$= \lambda (1 - p_1) + (1 - \lambda)(1 - p_2) = 0.5$$

MALIS 2017 203

# EM: Example

If we could open the box, we would see something like:

|        | Н                 | Т                 | Н                 | New                |
|--------|-------------------|-------------------|-------------------|--------------------|
|        |                   |                   |                   | values             |
| Coin 0 | H <sub>0</sub> :1 | H <sub>0</sub> :1 | H <sub>0</sub> :0 | $\lambda = 2/3$    |
| Coin 1 | H₁:1              | H₁:0              | -                 | $p_1 = 0.5$        |
| Coin 2 | -                 | -                 | H <sub>2</sub> :0 | p <sub>2</sub> = 1 |

 But we can't, so instead, we use expected values

Total probability of observing H:

$$p(H) = \lambda p_1 + (1 - \lambda)p_2 = 0.5 \times 0.6 + 0.5 \times 0.4 = 0.5$$

◆ Probability that coin 0 turns H<sub>0</sub> given H is seen:

$$p(H_0H_1|H) = \frac{p(H_0H_1)}{p(H)} = \frac{\lambda p_1}{\lambda p_1 + (1-\lambda)p_2} = \frac{0.3}{0.5} = 0.6$$

◆ Probability that coin 0 turns T₀ given H is seen:

$$p(T_0H_2|H) = \frac{p(T_0H_2)}{p(H)} = \frac{(1-\lambda)p_2}{\lambda p_1 + (1-\lambda)p_2} = \frac{0.2}{0.5} = 0.4$$

Similarly:

$$p(H_0T_1|T) = \frac{p(H_0T_1)}{p(T)} = 0.4, \quad p(T_0|T) = \frac{p(T_0T_2)}{p(T)} = 0.6$$

MALIS 2017 205

### EM: Example

With the expected values:

$$\begin{array}{ll} p(\mbox{$H_0$}\mbox{$H_1$}|\mbox{$H$}) = 0.6, & p(\mbox{$T_0$}\mbox{$H_2$}|\mbox{$H$}) = 0.4 \\ p(\mbox{$H_0$}\mbox{$T_1$}|\mbox{$T$}) = 0.4, & p(\mbox{$T_0$}\mbox{$T_2$}|\mbox{$T$}) = 0.6 \end{array}$$

|        | Н                   | Т                   | Н                   | New values                                |
|--------|---------------------|---------------------|---------------------|-------------------------------------------|
| Coin 0 | H <sub>0</sub> :0.6 | H <sub>0</sub> :0.4 | H <sub>0</sub> :0.6 | $\lambda = \frac{0.6 + 0.4 + 0.6}{3}$     |
| Coin 1 | H <sub>1</sub> :0.6 | T <sub>1</sub> :0.4 | H₁:0.6              | $p_1 = \frac{0.6 + 0.6}{0.6 + 0.4 + 0.6}$ |
| Coin 2 | H <sub>2</sub> :0.4 | T <sub>2</sub> :0.6 | H <sub>2</sub> :0.4 | $p_2 = \frac{0.4 + 0.4}{0.4 + 0.6 + 0.4}$ |

$$p(H_0H_1|H) = 0.6,$$
  $p(T_0H_2|H) = 0.4$   
 $p(H_0T_1|T) = 0.4,$   $p(T_0T_2|T) = 0.6$ 

- ♦ When we observe H, the probability of H<sub>0</sub> is 0.6
- ♦ When we observe T, the probability of H<sub>0</sub> is 0.4
- New estimate for λ when we observe HTH:

$$\frac{p(\textbf{H}_0\textbf{H}_1|\textbf{H}) + p(\textbf{H}_0\textbf{T}_1|\textbf{T}) + p(\textbf{H}_0\textbf{H}_1|\textbf{H})}{3} = \frac{0.6 + 0.4 + 0.6}{3} = 0.533 \dots$$

New estimate for p₁:

$$\frac{p(\textbf{H}_0\textbf{H}_1|\textbf{H}) + p(\textbf{H}_0\textbf{H}_1|\textbf{H})}{p(\textbf{H}_0\textbf{H}_1|\textbf{H}) + p(\textbf{H}_0\textbf{T}_1|\textbf{T}) + p(\textbf{H}_0\textbf{H}_1|\textbf{H})} = \frac{0.6 + 0.6}{0.6 + 0.4 + 0.6} = 0.75$$

New estimate for p<sub>2</sub>:

$$\frac{p(\textbf{T}_0H_2|H) + p(\textbf{T}_0H_2|H)}{p(\textbf{T}_0H_2|H) + p(\textbf{T}_0\textbf{T}_2|T) + p(\textbf{T}_0H_2|H)} = \frac{0.4 + 0.4}{0.4 + 0.6 + 0.4} = 0.57...$$

MALIS 2017 207

### EM: Example

|                | λ                                               | p <sub>1</sub> | p <sub>2</sub> |  |  |
|----------------|-------------------------------------------------|----------------|----------------|--|--|
| Initial values | 0.5                                             | 0.6            | 0.4            |  |  |
| Estimation     | $p(H_0 H,\Theta) = 0.6, p(T_0 H,\Theta) = 0.4,$ |                |                |  |  |
| Maximization   | 0.533                                           | 0.75           | 0.57           |  |  |
| Estimation     |                                                 |                |                |  |  |
| Maximization   |                                                 |                |                |  |  |

 EM will converge to a local maximum of the likelihood (of the observations given the parameter values)



# Learning and generalization

- Now we have complex models (GMM)
- We can approximate complex distributions
- With more gaussians, the model better fits the training data
- But is the model better?
- Problem: how will the model generalize to new data?





### Learning and generalization

- If we estimate too many model parameters from too few training data, the estimates will be bad:
  - Very good fit on training data
  - Very bad prediction on new test data
  - This is a major problem known as "overfitting"
- Occam's razor heuristic principle:

"All things being equal, the simplest solution tends to be the best one"

MALIS 2017 213

# Learning and generalization

- One solution to (try to) avoid overfitting:
  - Split training data into estimation and validation
  - Use training to estimate model parameters
  - Use validation to estimate performance on new data
  - Stop estimation when performance on validation does not improve (enough)



**MALIS 2017** 

# Learning and generalization

- How to split between estimation and validation?
  - It depends how much validation is needed
  - · Keep as much estimation data as possible
- k-fold Cross-Validation:
  - Split data into k folds  $F_1$ ,  $F_2$ , ... $F_k$



- Use  $F_i$  for validation,  $F_1, F_{i-1}, F_{i+1}, ..., F_k$  for estimation
- Try all possible i and average all models
- Advantages: All the data is used for estimation and validation

MALIS 2017 215

# Learning and generalization

- Sometimes models have Hyper-parameters:
- Example: polynomials
  - Degree is an hyper-parameter
  - Coefficients are parameters
- Learning has two stages:
  - Consider different values for the degree
  - For each value, train a model to get best model on k-1 folds,
  - Compare all best models over last fold (validation)
  - Select best degree