

CSE5014 CRYPTOGRAPHY AND NETWORK SECURITY

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

What does "pseudorandom" mean?

Informal: cannot be distinguished from uniform ("random")

What does "pseudorandom" mean?

- Informal: cannot be distinguished from uniform ("random")
- Which of the following is pseudorandom?
 - -0101010101010101
 - -0010111011100110
 - -0000000000000000

What does "pseudorandom" mean?

- Informal: cannot be distinguished from uniform ("random")
- Which of the following is pseudorandom?
 - -0101010101010101
 - -0010111011100110
 - -0000000000000000
- Pseudorandomness is a property of a distribution, not a string.

- Fix some distribution *D* on *n*-bit strings
 - $-x \leftarrow D$ means "sample x according to D"

- Fix some distribution D on n-bit strings
 - $-x \leftarrow D$ means "sample x according to D"
- Historically, D was considered pseudorandom if it "passed a bunch of statistical tests"
 - $-\Pr_{x\leftarrow D}[1^{st} \text{ bit of } x \text{ is } 1] \approx 1/2$
 - Pr_{x←D}[parity of x is 1] $\approx 1/2$
 - $-\operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{D}}[A_i(x)=1] \approx \operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{U_n}}[A_i(x)=1]$ for $i=1,\ldots,20$

- Fix some distribution D on n-bit strings
 - $-x \leftarrow D$ means "sample x according to D"
- Historically, D was considered pseudorandom if it "passed a bunch of statistical tests"
 - $-\Pr_{x\leftarrow D}[1^{st} \text{ bit of } x \text{ is } 1] \approx 1/2$
 - $-\Pr_{x\leftarrow D}[\text{parity of }x\text{ is }1]\approx 1/2$
 - $-\operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{D}}[A_i(x)=1] \approx \operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{U_n}}[A_i(x)=1]$ for $i=1,\ldots,20$

This is **not** sufficient, since it is **not** possible to know what statistical test an attacker will use.

- Cryptographic definition of pseudorandomness
 - D is pseudorandom if it passes all efficient statistical tests

- Cryptographic definition of pseudorandomness
 - D is pseudorandom if it passes all efficient statistical tests

(Concrete) Let D be a distribution on p-bit strings. D is (t, ϵ) -pseudorandom if for all A running in time at most t,

$$|\operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{D}}[A(\mathbf{x})=1] - \operatorname{Pr}_{\mathbf{x}\leftarrow \mathbf{U}_{\mathbf{p}}}[A(\mathbf{x})=1]| \leq \epsilon$$

- Cryptographic definition of pseudorandomness
 - D is pseudorandom if it passes all efficient statistical tests

(Concrete) Let D be a distribution on p-bit strings. D is (t, ϵ) -pseudorandom if for all A running in time at most t,

$$|\Pr_{\mathbf{x} \leftarrow \mathbf{D}}[A(\mathbf{x}) = 1] - \Pr_{\mathbf{x} \leftarrow \mathbf{U_p}}[A(\mathbf{x}) = 1]| \le \epsilon$$

(Asymptotic) Security parameter n, polynomial p

Definition 3.2 Let D_n be a distribution over p(n)-bit strings. $\{D_n\}$ is *pseudorandom* if for all probabilistic, polynomial-time (PPT) distinguishers A, there is a negligible function ϵ such that

$$|\mathsf{Pr}_{\mathsf{x}\leftarrow D_n}[A(\mathsf{x})=1] - \mathsf{Pr}_{\mathsf{x}\leftarrow U_{p(n)}}[A(\mathsf{x})=1]| \leq \epsilon(n)$$

■ A *PRG* is an efficient, deterministic algorithm that expands a *short*, *uniform seed* into a *longer*, *pseudorandom* output

A PRG is an efficient, deterministic algorithm that expands a short, uniform seed into a longer, pseudorandom output
 Useful whenever you have a "small" number of true random bits, and want lots of "random-looking" bits

A PRG is an efficient, deterministic algorithm that expands a short, uniform seed into a longer, pseudorandom output
 Useful whenever you have a "small" number of true random bits, and want lots of "random-looking" bits

Let G be a deterministic, poly-time algorithm that is expanding, i.e., |G(x)| = p(|x|) > |x|.

- A PRG is an efficient, deterministic algorithm that expands a short, uniform seed into a longer, pseudorandom output
 - Useful whenever you have a "small" number of true random bits, and want lots of "random-looking" bits

Let G be a deterministic, poly-time algorithm that is expanding, i.e., |G(x)| = p(|x|) > |x|.

G defines a sequence of distributions.

- $-D_n$ = the distribution on p(n)-bit strings defined by choosing $x \leftarrow U_n$ and outputting G(x)
- $-\Pr_{D_n}[y] = \Pr_{U_n}[G(x) = y] = \sum_{x: G(x)=y} \Pr_{U_n}[x]$ $= \sum_{x: G(x)=y} 2^{-n}$ $= |\{x: G(x) = y\}|/2^n$

PRGs

■ A *PRG* is an efficient, deterministic algorithm that expands a *short*, *uniform seed* into a *longer*, *pseudorandom* output Let *G* be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|.

• For all efficient distinguishers A, there is a negligible function ϵ such that

$$|\operatorname{Pr}_{x \leftarrow U_n}[A(G(x)) = 1] - \operatorname{Pr}_{y \leftarrow U_{p(n)}}[A(y) = 1]| \le \epsilon(n)$$

No efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

PRGs

■ For all efficient distinguishers A, there is a negligible function ϵ such that

$$|\operatorname{Pr}_{x \leftarrow U_n}[A(G(x)) = 1] - \operatorname{Pr}_{y \leftarrow U_{p(n)}}[A(y) = 1]| \le \epsilon(n)$$

No efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

PRGs

• For all efficient distinguishers A, there is a negligible function ϵ such that

$$|\operatorname{Pr}_{x \leftarrow U_n}[A(G(x)) = 1] - \operatorname{Pr}_{y \leftarrow U_{p(n)}}[A(y) = 1]| \le \epsilon(n)$$

No efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

- PRGs are limited
 - They have fixed-length output
 - They produce the entire output in "one shot"
 - In practice, PRGs are based on *stream ciphers*
 - Can be viewed as producing an "unbounded" stream of pseudorandom bits, on demand
 - Will revisit later

Do PRGs/stream ciphers exist?

- We don't know ...
 - We will assume certain algorithms are PRGs
 - Can construct PRGs from weaker assumptions (later)

Do PRGs/stream ciphers exist?

- We don't know ...
 - We will assume certain algorithms are PRGs
 - Can construct PRGs from weaker assumptions (later)

Linear Feedback Shift Register (LFSR)

Example

 $\mathbf{s} = (000100110101111)^{15}$

$$LC(\mathbf{s}) = 4$$

$$P_{\mathbf{s}}(x) = x^4 + x + 1$$

Practical "PRGs"

RC4

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    swap values of S[i] and S[j]
    K := S[(S[i] + S[j]) mod 256]
    output K
endwhile
```

i j 0 1 2 S[i]+S[j] i j 253 254 255 S[i]+S[j] K S[i]+S[j]

Blum-Blum-Shub

```
num_outputted = 0;
while num_outputted < m:
    X := X*X mod N
    num_outputted := num_outputted + 1
    output least-significant-bit(X)
```

SIAM J. COMPUT. Vol. 15, No. 2, May 1986 © 1986 Society for Industrial and Applied Mathematics 003

A SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR*

L. BLUM†, M. BLUM‡ AND M. SHUB\$

Abstract. Two closely-related pseudo-random sequence generators are presented: The 1/P generator, with input P a prime, outputs the quotient digits obtained on dividing 1 by P. The $x^2 \mod N$ generator with inputs N, x_0 (where $N = P \cdot Q$ is a product of distinct primes, each congruent to 3 mod 4, and x_0 is a quadratic residue mod N), outputs $b_0b_1b_2\cdots$ where $b_i = \text{parity }(x_i)$ and $x_{i+1} = x_i^2 \mod N$.

From short seeds each generator efficiently produces long well-distributed sequences. Moreover, both generators have computationally hard problems at their core. The first generator's sequences, however, are completely predictable (from any small segment of 2|P|+1 consecutive digits one can infer the "seed," P, and continue the sequence backwards and forwards), whereas the second, under a certain intractability assumption, is unpredictable in a precise sense. The second generator has additional interesting properties: from knowledge of x_0 and N but not P or Q, one can generate the sequence forwards, but, under the above-mentioned intractability assumption, one can not generate the sequence backwards. From the above-mentioned intractability assumption, one can not generate the sequence backwards. From the above-mentioned intractability assumption, one can generate the sequence backwards; one can even "jump" about from any point in the sequence to any other. Because of these properties, the x^2 mod N generator promises many interesting applications, e.g., to public-key cryptography. To use these generators in practice, an analysis is needed of various properties of these sequences such as their periods. This analysis is begun here.

Key words. random, pseudo-random, Monte Carlo, computational complexity, secure transactions, public-key encryption, cryptography, one-time pad, Jacobi symbol, quadratic residuacity

Where things stand

- We saw that there are some inherent limitations if we want perfect security
 - In particular, key must be as long as the message

Where things stand

- We saw that there are some inherent limitations if we want perfect security
 - In particular, key must be as long as the message

We defined *computational security*, a relaxed notion of security

Q: Can we overcome prior limitations?

Recall: one-time pad

Recall: one-time pad

Pseudo one-time pad

Pseudo one-time pad

Let G be a deterministic, with |G(k)| = p(|k|) $Gen(1^n)$: output uniform n-bit key k

– Security parameter $n \Rightarrow$ message space $\{0,1\}^{p(n)}$

 $Enc_k(m)$: output $G(k) \oplus m$

 $Dec_k(m)$: output $G(k) \oplus c$

Proof by reduction

- 1. Assume that G is a PRG
 - 2. Assume toward a contradiction that there is an efficient attacker A who "breaks" the pseudo-OTP scheme
 - 3. Use A as a subroutine to build an efficient D that "breaks" pseudorandomness of G
 - By assumption, no such D exists!
 - \Rightarrow No such A can exist

Proof by reduction

- 1. Assume that G is a PRG
 - 2. Assume toward a contradiction that there is an efficient attacker A who "breaks" the pseudo-OTP scheme
 - 3. Use A as a subroutine to build an efficient D that "breaks" pseudorandomness of G
 - By assumption, no such D exists!
 - \Rightarrow No such A can exist

Theorem 3.3 If G is a pseudorandom generator (PRG), then the pseudo one-time pad (pseudo-OTP) Π is *EAV-secure* (i.e., *computationally secure*)

Proof.

Proof.

Fix Π , A

Define a randomized experiment $PrivK_{A,\Pi}(n)$:

- 1. $A(1^n)$ outputs $m_0, m_1 \in \{0,1\}^*$ of equal length
- 2. $k \leftarrow Gen(1^n), b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$
- 3. $b' \leftarrow A(c)$

Adversary A succeeds if b = b', and we say the experiment evaluates to 1 in this case.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that $\Pr[PrivK_{A,\Pi}(n) = 1] \leq 1/2 + \epsilon(n)$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t. $Pr[PrivK_{A,\Pi}(n) = 1] > 1/2 + 1/poly(n)$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t.

$$\Pr[PrivK_{A,\Pi}(n) = 1] > 1/2 + 1/poly(n)$$

This means,
$$\Pr[A(Enc_{U_n}(m)) = 1] - \Pr[A(U_{p(n)}) = 1] > 1/poly(n)$$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t.

$$\Pr[PrivK_{A,\Pi}(n)=1] > 1/2 + 1/poly(n)$$

This means, $\Pr[A(Enc_{U_n}(m)) = 1] - \Pr[A(U_{p(n)}) = 1] > 1/poly(n)$

$$|\Pr[A(G(U_n)\oplus m)=1]-\Pr[A(U_{p(n)})=1]|>1/poly(n)$$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t.

$$\Pr[PrivK_{A,\Pi}(n) = 1] > 1/2 + 1/poly(n)$$

This means, $\Pr[A(Enc_{U_n}(m)) = 1] - \Pr[A(U_{p(n)}) = 1] > 1/poly(n)$

$$|\mathsf{Pr}[\mathsf{A}(\mathsf{G}(U_n) \oplus m) = 1] - \mathsf{Pr}[\mathsf{A}(U_{p(n)}) = 1]| > 1/poly(n)$$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t.

$$Pr[PrivK_{A,\Pi}(n)=1] > 1/2 + 1/poly(n)$$

This means, $\Pr[A(Enc_{U_n}(m)) = 1] - \Pr[A(U_{p(n)}) = 1] > 1/poly(n)$

$$|\mathsf{Pr}[\mathsf{A}(\mathsf{G}(U_n) \oplus \mathsf{m}) = 1] - \mathsf{Pr}[\mathsf{A}(U_{p(n)}) = 1]| > 1/\mathsf{poly}(\mathsf{n})$$
 $\mathsf{Enc}_{U_n}()$ is not pseudorandom

Define $D: \{0,1\}^{p(n)} \to \{0,1\}$ as: $D(y) = A(y \oplus m)$, which means $A(z) = D(z \oplus m)$. Note that D is also efficient. But we have

$$|\mathsf{Pr}[D(G(U_n)) = 1] - \mathsf{Pr}[D(U_{p(n)} \oplus m) = 1]| \geq 1/poly(n)$$

Proof.

Definition 3.1 Π is *computationally indistinguishable* (aka *EAV-secure*) if for all PPT attackers (algorithms) A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Suppose to the contrary that there exists an efficient attacker A, s.t.

$$\Pr[PrivK_{A,\Pi}(n)=1] > 1/2 + 1/poly(n)$$

This means, $\Pr[A(Enc_{U_n}(m)) = 1] - \Pr[A(U_{p(n)}) = 1] > 1/poly(n)$

$$|\mathsf{Pr}[\mathsf{A}(\mathsf{G}(U_n) \oplus \mathsf{m}) = 1] - \mathsf{Pr}[\mathsf{A}(U_{p(n)}) = 1]| > 1/poly(\mathsf{n})$$
 $\mathsf{Enc}_{U_n}()$ is not pseudorandom

Define $D: \{0,1\}^{p(n)} \to \{0,1\}$ as: $D(y) = A(y \oplus m)$, which means

$$A(z) = D(z \oplus m)$$
. Note that D is also efficient. But we have

$$|\mathsf{Pr}[D(G(U_n)) = 1] - \mathsf{Pr}[D(U_{p(n)} \oplus m) = 1]| \geq 1/\mathsf{poly}(n)$$

Since $U_{p(n)} \oplus m \equiv U_{p(n)}$, this contradicts that G is a PRG.

Proof by reduction (alternatively)

- 1. Assume that G is a PRG
 - 2. Fix some arbitrary, efficient A attacking the pseudo-OTP scheme
 - 3. Use A as a subroutine to build an efficient D attacking G
 - Relate the distinguishing probability of ${\cal D}$ to the success probability of ${\cal A}$
 - 4. By assumption, the distinguishing probability of *D* must be negligible

Proof by reduction (alternatively)

- 1. Assume that G is a PRG
 - 2. Fix some arbitrary, efficient A attacking the pseudo-OTP scheme
 - 3. Use A as a subroutine to build an efficient D attacking G
 - Relate the distinguishing probability of ${\cal D}$ to the success probability of ${\cal A}$
 - 4. By assumption, the distinguishing probability of *D* must be negligible
 - \Rightarrow Bound the success probability of A

Let $\mu(n) = \Pr[PrivK_{A,\Pi}(n) = 1]$

Let $\mu(n) = \Pr[PrivK_{A,\Pi}(n) = 1]$ If distribution of y is pseudorandom, then the view of A is exactly the same as in $PrivK_{A,\Pi}(n)$ $\Rightarrow \Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \mu(n)$

Let $\mu(n) = \Pr[PrivK_{A,\Pi}(n) = 1]$

If distribution of y is pseudorandom, then the view of A is exactly the same as in $PrivK_{A,\Pi}(n)$

$$\Rightarrow \Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \mu(n)$$

If distribution of y is uniform, then A succeeds with probability exactly 1/2

$$\Rightarrow \Pr_{y \leftarrow U_{p(n)}}[D(y) = 1] = 1/2$$

Let $\mu(n) = \Pr[PrivK_{A,\Pi}(n) = 1]$

If distribution of y is pseudorandom, then the view of A is exactly the same as in $PrivK_{A,\Pi}(n)$

$$\Rightarrow \Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \mu(n)$$

If distribution of y is uniform, then A succeeds with probability exactly 1/2

$$\Rightarrow \Pr_{y \leftarrow U_{p(n)}}[D(y) = 1] = 1/2$$

Since *G* is pseudorandom,

$$|\mu(n)-1/2| \leq negl(n)$$

Let $\mu(n) = \Pr[PrivK_{A,\Pi}(n) = 1]$

If distribution of y is pseudorandom, then the view of A is exactly the same as in $PrivK_{A,\Pi}(n)$

$$\Rightarrow \Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \mu(n)$$

If distribution of y is uniform, then A succeeds with probability exactly 1/2

$$\Rightarrow \Pr_{y \leftarrow U_{p(n)}}[D(y) = 1] = 1/2$$

Since G is pseudorandom,

$$|\mu(n)-1/2| \leq negl(n)$$

$$\Rightarrow \Pr[PrivK_{A,\Pi}(n) = 1] \le 1/2 + negl(n)$$

YES: the pseudo-OTP has a key shorter than the message

-n bits vs. p(n) bits

- YES: the pseudo-OTP has a key shorter than the message
 - -n bits vs. p(n) bits

Recall: Perfect security has two limitations

- Key as long as the message
- Key can only be used once

- YES: the pseudo-OTP has a key shorter than the message
 - -n bits vs. p(n) bits

Recall: Perfect security has two limitations

- Key as long as the message
- Key can only be used once

The pseudo OTP still has the second limitation (for the same reason as the OTP)

- YES: the pseudo-OTP has a key shorter than the message
 - -n bits vs. p(n) bits

Recall: Perfect security has two limitations

- Key as long as the message
- Key can only be used once

The pseudo OTP still has the second limitation (for the same reason as the OTP)

How can we circumvent the second limitation?

- Develop an appropriate security definition
 - Security goal
 - Threat model

- Develop an appropriate security definition
 - Security goal
 - Threat model

We will keep the security goal the same, but strengthen the threat model

- Develop an appropriate security definition
 - Security goal
 - Threat model

We will keep the security goal the same, but strengthen the threat model

- Develop an appropriate security definition
 - Security goal
 - Threat model

We will keep the security goal the same, but strengthen the threat model

A formal definition

Fix Π, A

Define a randomized experiment $PrivK_{A,\Pi}^{mult}(n)$:

- 1. $A(1^n)$ outputs two vectors $(m_{0,1},\ldots,m_{0,t})$ and $(m_{1,1},\ldots,m_{1,t})$ Required that $|m_{0,i}|=|m_{1,i}|$ for all i
- 2. $k \leftarrow Gen(1^n)$, $b \leftarrow \{0,1\}$, for all $i, c_i \leftarrow Enc_k(m_{b,i})$
- 3. $b' \leftarrow A(c_1, \ldots, c_t)$

Adversary A succeeds if b = b', and the experiment evaluates to 1 in this case.

A formal definition

Fix Π, A

Define a randomized experiment $PrivK_{A,\Pi}^{mult}(n)$:

- 1. $A(1^n)$ outputs two vectors $(m_{0,1},\ldots,m_{0,t})$ and $(m_{1,1},\ldots,m_{1,t})$ Required that $|m_{0,i}|=|m_{1,i}|$ for all i
- 2. $k \leftarrow Gen(1^n)$, $b \leftarrow \{0,1\}$, for all $i, c_i \leftarrow Enc_k(m_{b,i})$
- 3. $b' \leftarrow A(c_1, \ldots, c_t)$

Adversary A succeeds if b = b', and the experiment evaluates to 1 in this case.

Definition 3.4 Π is *multiple-message indistinguishable* if for all PPT attackers A, there is a *negligible* function ϵ such that

$$\Pr[PrivK_{A,\Pi}^{mult}(n) = 1] \le 1/2 + \epsilon(n)$$

A formal definition

Fix Π, A

Define a randomized experiment $PrivK_{A,\Pi}^{mult}(n)$:

- 1. $A(1^n)$ outputs two vectors $(m_{0,1},\ldots,m_{0,t})$ and $(m_{1,1},\ldots,m_{1,t})$ Required that $|m_{0,i}|=|m_{1,i}|$ for all i
- 2. $k \leftarrow Gen(1^n)$, $b \leftarrow \{0,1\}$, for all $i, c_i \leftarrow Enc_k(m_{b,i})$
- 3. $b' \leftarrow A(c_1, \ldots, c_t)$

Adversary A succeeds if b = b', and the experiment evaluates to 1 in this case.

Definition 3.4 Π is multiple-message indistinguishable if for all PPT attackers A, there is a negligible function ϵ such that $\Pr[PrivK_{A\ \Pi}^{mult}(n)=1] \leq 1/2 + \epsilon(n)$

Q: Show that the pseudo OTP is **not** multiple-message indistinguishable

■ We are not going to work with *multiple-message secrecy*

We are not going to work with multiple-message secrecy

Instead, define someting *stronger*: security against chosen-plaintext attacks (*CPA-security*)

Nowadays, this is the minimal notion of security an encryption scheme should satisfy

We are not going to work with multiple-message secrecy

Instead, define someting *stronger*: security against chosen-plaintext attacks (*CPA-security*)

Nowadays, this is the minimal notion of security an encryption scheme should satisfy

In practice, there are many ways an attacker can *influence* what gets encrypted

- Not clear how best to model
- Chosen-plaintext attacks encompasses any such influence

Will attack AF ...

Will attack AF ..

Help! Fresh water needed

AF is short of water

Help! Fresh water needed

Fix Π, A

Define a randomized experiment $PrivKCPA_{A,\Pi}(n)$:

- 1. $k \leftarrow Gen(1^n)$
- 2. $A(1^n)$ interacts with an encryption oracle $Enc_k(\cdot)$, and then outputs m_0, m_1 of the same length
- 3. $b \leftarrow \{0,1\}$, $c \leftarrow Enc_k(m_b)$, give c to A
- 4. A can continue to interact with $Enc_k(\cdot)$
- 5. A outputs b'; A succeeds if b = b', and experiment evaluates to 1 in this case

Fix Π, A

Define a randomized experiment $PrivKCPA_{A,\Pi}(n)$:

- 1. $k \leftarrow Gen(1^n)$
- 2. $A(1^n)$ interacts with an encryption oracle $Enc_k(\cdot)$, and then outputs m_0, m_1 of the same length
- 3. $b \leftarrow \{0,1\}$, $c \leftarrow Enc_k(m_b)$, give c to A
- 4. A can continue to interact with $Enc_k(\cdot)$
- 5. A outputs b'; A succeeds if b = b', and experiment evaluates to 1 in this case

Definition 4.1 Π is secure against chosen-plaintext attacks (CPA-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[PrivKCPA_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

Impossible?

- Consider the following attacker A;
 - Using a chosen-plaintext attack, get $c_0 = Enc_k(m_0)$ and $c_1 = Enc_k(m_1)$
 - Output m_0, m_1 ; get challenge ciphertext c
 - If $c=c_0$ output '0'; if $c=c_1$ output '1'
 - A succeeds with probability 1 (?)

Impossible?

- Consider the following attacker A;
 - Using a chosen-plaintext attack, get $c_0 = Enc_k(m_0)$ and $c_1 = Enc_k(m_1)$
 - Output m_0, m_1 ; get challenge ciphertext c
 - If $c=c_0$ output '0'; if $c=c_1$ output '1'
 - A succeeds with probability 1 (?)
- This attack only works if encryption is deterministic!
 - randomized encryption must be used!
 - It really is a problem if an attacker can tell when the same message is encrypted twice

Informally, a pseudorandom function "looks like" a random (i.e., uniform) function

Informally, a pseudorandom function "looks like" a random (i.e., uniform) function

Func_n = all functions mapping $\{0,1\}^n$ to $\{0,1\}^n$ How big is Func_n?

Informally, a pseudorandom function "looks like" a random (i.e., uniform) function

 $Func_n = \text{all functions mapping } \{0,1\}^n \text{ to } \{0,1\}^n$

How big is *Func*_n?

- Can represent a function in $Func_n$ using $n \cdot 2^n$ bits

Informally, a pseudorandom function "looks like" a random (i.e., uniform) function

 $Func_n = \text{all functions mapping } \{0,1\}^n \text{ to } \{0,1\}^n$

How big is $Func_n$?

- Can represent a function in $Func_n$ using $n \cdot 2^n$ bits

$$\Rightarrow |Func_n| = 2^{n \cdot 2^n}$$

Informally, a pseudorandom function "looks like" a random (i.e., uniform) function

 $Func_n = \text{all functions mapping } \{0,1\}^n \text{ to } \{0,1\}^n$

How big is $Func_n$?

- Can represent a function in $Func_n$ using $n \cdot 2^n$ bits

$$\Rightarrow |Func_n| = 2^{n \cdot 2^n}$$

 \mathcal{Q} : how many functions are there mapping from $\{0,1\}^n$ to $\{0,1\}^m$?

Random functions vs. pseudorandom functions

• Choose unifrom $f \in Func_n$

Random functions vs. pseudorandom functions

- Choose unifrom $f \in Func_n$
- **Equivalent**: for each $x \in \{0,1\}^n$, choose f(x) uniformly in $\{0,1\}^n$
 - I.e., fill up the function table with uniform values

Random functions vs. pseudorandom functions

- Choose unifrom $f \in Func_n$
- **Equivalent**: for each $x \in \{0,1\}^n$, choose f(x) uniformly in $\{0,1\}^n$
 - I.e., fill up the function table with uniform values
- Informally, a pseudorandom function "looks like" a random function
 - It does not make sense to talk about any fixed function being pseudorandom. We look instead at keyed functions

- Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, deterministic algorithm
 - Define $F_k(x) = F(k, x)$
 - The first input is called the key

- Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, deterministic algorithm
 - Define $F_k(x) = F(k, x)$
 - The first input is called the key
 - Assume that F is *length preserving*: F(k,x) only defined if |k| = |x|, in which case, |F(k,x)| = |k| = |x|

- Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, deterministic algorithm
 - Define $F_k(x) = F(k, x)$
 - The first input is called the key
 - Assume that F is *length preserving*: F(k,x) only defined if |k| = |x|, in which case, |F(k,x)| = |k| = |x|
 - Choosing a uniform $k \in \{0,1\}^n$ is equivalent to choosing the function $F_k: \{0,1\}^n \to \{0,1\}^n$
 - I.e., for fixed key length n, the algorithm F defines a distribution over functions in Func_n!

- Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, deterministic algorithm
 - Define $F_k(x) = F(k, x)$
 - The first input is called the key
 - Assume that F is *length preserving*: F(k,x) only defined if |k| = |x|, in which case, |F(k,x)| = |k| = |x|
 - Choosing a uniform $k \in \{0,1\}^n$ is equivalent to choosing the function $F_k: \{0,1\}^n \to \{0,1\}^n$
 - I.e., for fixed key length n, the algorithm F defines a distribution over functions in Func_n!
 - E.g., F(k,x) = k, $F(k,x) = k \oplus x$

The number of functions in $Func_n$ is $2^{n \cdot 2^n}$

- The number of functions in $Func_n$ is $2^{n \cdot 2^n}$
- $\{F_k\}_{k\in\{0,1\}^n}$ is a subset of $Func_n$
 - The number of functions in $\{F_k\}_{k\in\{0,1\}^n}$ is at most 2^n

- The number of functions in $Func_n$ is $2^{n \cdot 2^n}$
- lacksquare $\{F_k\}_{k\in\{0,1\}^n}$ is a subset of $Func_n$
 - The number of functions in $\{F_k\}_{k\in\{0,1\}^n}$ is at most 2^n

Definition 4.2 F is a *pseudorandom function* if F_k , for uniform $k \in \{0,1\}^n$ is indistinguishable from a uniform function $f \in Func_n$ Formally, for all poly-time distinguishers D:

$$\left| \mathsf{Pr}_{k \leftarrow \{0,1\}^n} [D^{F_k(\cdot)}(1^n) = 1] - \mathsf{Pr}_{f \leftarrow Func_n} [D^{f(\cdot)}(1^n) = 1] \right| \leq \epsilon(n)$$

 $f \in Func_n$ chosen uniformly at random

World 0

?'?

World 1

 $k \in \{0,1\}^n$ chosen uniformly at random

(poly-time)

Pseudorandom permutations (PRPs)

• Let $f \in Func_n$

Pseudorandom permutations (PRPs)

- Let $f \in Func_n$ f is a permutation if it is a bijection
 - This means that the inverse f^{-1} exists

Pseudorandom permutations (PRPs)

- Let $f \in Func_n$ f is a permutation if it is a bijection
 - This means that the inverse f^{-1} exists
- Let $Perm_n \subset Func_n$ be the set of permutations
 - What is $|Perm_n|$?

Let *F* be a length-preserving, keyed function

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is *efficiently computable* (where $F_k^{-1}(F_k(x)) = x$)

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is *efficiently computable* (where $F_k^{-1}(F_k(x)) = x$)
- **Definition 4.3** F is a *pseudorandom permutation* if F_k , for uniform key $k \in \{0,1\}^n$, is indistinguishable from a uniform permutation $f \in Perm_n$

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is *efficiently computable* (where $F_k^{-1}(F_k(x)) = x$)
- **Definition 4.3** F is a *pseudorandom permutation* if F_k , for uniform key $k \in \{0,1\}^n$, is indistinguishable from a uniform permutation $f \in Perm_n$
- For large enough n, a random permutation is indistinguishable from a random function.
 - In practice, PRPs are also good PRFs

PRFs vs. PRGs

- PRF F immediately implies a PRG G:
 - Define $G(k) = F_k(0...0)|F_k(0...1)$
 - I.e., $G(k) = F_k(\langle 0 \rangle) |F_k(\langle 1 \rangle)| F_k(\langle 2 \rangle)| \dots$, where $\langle i \rangle$ denotes the *n*-bit encoding of *i*

PRFs vs. PRGs

- PRF F immediately implies a PRG G:
 - Define $G(k) = F_k(0...0)|F_k(0...1)$
 - I.e., $G(k) = F_k(\langle 0 \rangle) |F_k(\langle 1 \rangle)| F_k(\langle 2 \rangle)| \dots$, where $\langle i \rangle$ denotes the *n*-bit encoding of *i*
- PRF can be viewed as a PRG with random access to exponentially long output
 - The function F_k can be viewed as the $n2^n$ -bit string $F_k(0...0)|...|F_k(1...1)$

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

Theorem (Goldreich, Goldwasser, Micali 1984)
If the PRG Axiom is true, then there exist PRFs.

How to Construct Random Functions

ODED GOLDREICH, SHAFI GOLDWASSER, AND SILVIO MICALI

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (g, r), where g is any one-way function and r is a random k-bit string, to polynomial-time computable functions f_r : $\{1, \ldots, 2^k\} \rightarrow \{1, \ldots, 2^k\}$. These f_r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; F.1.1 [Computation by Abstract Devices]: Models of Computation—computability theory; G.0 [Mathematics of Computing]: General; G.3 [Mathematics of Computing]: Probability and Statistics—probabilistic algorithms; random number generation

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Cryptography, one-way functions, prediction problems, randomness

I have set up on a Manchester computer a small programme using only 1000 units of storage, whereby the machine supplied with one sixteen figure number replies with another within two seconds. I would defy anyone to learn from these replies sufficient about the programme to be able to predict any replies to untried values.

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

In practice, block ciphers are used

Next Lecture

block cipher ...

