Proof of Product of Even and Odd Numbers

Dillon Roller

April 2023

1 Proof that the product of two even numbers are even

Definition: An even number is any number that is divisible by 2. This means that any even number can be written in the form x = 2n where $n \in \mathbb{Z}$ (The set of integers is denoted by $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Let $a, b \in \mathbb{Z}$, where a and b are even numbers. This means they can be written as follows:

$$a = 2m$$
$$b = 2n$$

where $m, n \in \mathbb{Z}$. Then:

$$ab = (2m)(2n)$$
$$= 4mn$$
$$= 2(2mn)$$

Let l=2mn. Since \mathbb{Z} is closed under multiplication, then $2mn \in \mathbb{Z}$, and therefore, $l \in \mathbb{Z}$. Then ab is, by definition, an even number, since ab=2l, where $l \in \mathbb{Z}$. Therefore, any even number times an even number is even itself.

2 Proof that the product of two odd numbers are odd

Definition: An odd number is any number that is not divisible by 2. This means that any odd number can be written in the form x = 2n + 1 where $n \in \mathbb{Z}$ (The set of integers is denoted by $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Let $a, b \in \mathbb{Z}$, where a and b are odd numbers. This means they can be written as follows:

$$a = 2m + 1$$
$$b = 2n + 1$$

where $m, n \in \mathbb{Z}$. Then:

$$ab = (2m+1)(2n+1)$$

$$= 4mn + 2m + 2n + 1$$

$$= 2(2mn + m + n) + 1$$

Let l=2mn+m+n. Since \mathbb{Z} is closed under addition and multiplication, then $2mn+m+n\in\mathbb{Z}$, and therefore, $l\in\mathbb{Z}$. Then ab is, by definition, an odd number, since ab=2l+1, where $l\in\mathbb{Z}$. Therefore, any odd number times an odd number is odd itself. \blacksquare

3 Proof that the product of an even number and an odd number is even

Let $a, b \in \mathbb{Z}$, where a is even and b is odd. This means they can be written as follows:

$$a = 2m$$
$$b = 2n + 1$$

where $m, n \in \mathbb{Z}$. Then:

$$ab = (2m)(2n+1)$$
$$= 4mn + 2m$$
$$= 2(2mn + m)$$

Let l=2mn+m. Since $\mathbb Z$ is closed under addition and multiplication, then $2mn+m\in\mathbb Z$, and therefore, $l\in\mathbb Z$. Then ab is, by definition, an even number, since ab=2l, where $l\in\mathbb Z$. Therefore, any odd number times an odd number is odd itself. \blacksquare