Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

18ECE243J – DIGITAL IMAGE AND VIDEO PROCESSING

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

(i) (ii)		Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer booklet.	should	1 be 1	hanc	led
Time	: 3	hours	Iax. N	1ark	s: 1	00
		PART – A $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions	Marks	BL	со	РО
	1.	What are discretizing pixel intensities of an image? (A) Sampling (B) Quantization (C) Framing (D) Segmentation	1	1	1	1
	2.	The transform which posses the multi-resolution, property is (A) Fourier transform (B) Short Time Fourier Transform (C) Cosine transform (D) Wavelet transform	1	1	1	1
	3.	number of bits are required to store a 256×256 image with 32 gray levels. (A) 81920 (B) 327680 (C) 12340 (D) 44000	1	3	1	1
	4.	In standard 2D DFT, high frequency grouped at of matrix. (A) Edge (B) Centre (C) Upper left corner (D) Bottom right corner	1	1	1	1
	5.	. Histogram of a dark image will be clustered towards the (A) Higher gray level (B) Lower gray level (C) Restoration (D) Segmentation	1	2	2	1
	6.	The best approach for image restoration is	1	1	2	1
	7.	. The pixel values in a 5×5 gray level image is $\begin{bmatrix}12312; 45233; 33 & \boxed{5} & 44; 13235; 21313\end{bmatrix}$ what is the value of the	1	3	2	1
		marked pixel after applying a 3×3 median filter? (A) 4 (B) 3 (C) 2 (D) 1				

Note:

8.	lev	fr' be the gray level of image before which expression defines the sel in the range $[0-L-1]$? $S = Cr^{y}$	neg	processing and 'S' after processing ative transformation for the gray	1	1	2	
		S = L - 1 - r		$S = C\log(1+r)$ $S = L - 1 + r$				
•	, ,							
9	-	Huffman	(B)	quence of the same symbol occur. Arithmetic Run length	1	2	3	
10	(A)	e operator which can be used to do Logarithm Gradient	(B)	edges in an image is Exponential Average	1	2		:
11.	(A)	iciency of Huffman code is H(s)/L H(s).L		H(s) L	1	1	3	:
12.	(A)	rectangle approach	(B)	Region based segmentation and edge segmentation	1	1	3	2
	(C)	Adaboost approach and edge segmentation	(D)	Haar like feature and region based segmentation				
13.		ital video is sequence of			1.	1	4	3
	• /	Pixels Coordinate	1 1	Matrix Frames				
1.4	PAI	:_	(~)					
14.		Digital video standard	(B)	Analog video standard	1	1	4	3
		Audio file standard		Image file standard				
15.	3D-1	non rigid motion is defined as			1	1	4	3
	(A)	X' = (D+R)X-T	(B)	X' = (D+R)X/T	•	•	7	ر
	(C)	X' = (D+R)X+T		X' = (D+R)X*T				
16.	WOII	ch of the following deals with d coordinate to two dimensional in Rotation	image		1	1	4	1
	1	Non linear mapping		Linear transformation Perspective transformation				
17.	The	of each block is estimat			1	1	5	1
	(A)	Motion		Intensity	1	1 2-	3	1
	(C)	Distance	(D)	Chromiance				
18.		mization method			1	1	5	1
	(A) (C)			Peak signal to noise ratio				
	(-)	STATE CISTOTHON INCHOO	(D)	Steepest descent method				

19.		ge ¹	1	5	1
	plane coordinates at a-particular pattern. (A) Electrical flow (B) Magnetic flow				
	(C) Linear flow (D) Optical flow				
20.	is based on eliminating the interpixel redundancies of close spaced pixels by extracting and coding only the new information in eapixel.	-	1	5	1
	 (A) Lossy predictive coding (B) Lossless predictive coding (C) Lossless run length coding (D) Lossless Huffman coding 				
	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO	PO
21.	Differentiate photopic and scotopic vision.	4	4	1	1
22.i.	The height of the object is 15 m and the distance between the object a the lend is 100 m. The focal length is 17 mm. What is the size of the reti image?	nd 2	3	I	1
ii.	What is the DC component of the following image? $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ 6 & 3 & 1 \end{bmatrix}$	(2)	3	1	1
23.	Write short notes on image negatives.	4	1	2	1
24.	Find the singular values of matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.	= 4	3	2	1
25.	What is region growing technique for image segmentation?	4	1	3	2
26.	With neat block diagram explain time varying image formation models.	4	1	4	3
27.	Differentiate local and global minima.	4	4	5	1
	PART - C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	BL	со	РО
28. a.	What are the fundamental steps in digital image processing? Explain the in detail with the neat diagram.	em ¹²	3	1	1

(OR)

b.	Calculate the forward and inverse 2D-DFT for the 4×4 gray scale image by	12	3	1	3
	computing the DFT matrix for N=4.				
	[1 1 1 1]				

b. The following image has a size of 5×5 pixels and its gray levels vary from 12 3 2 3 0 to 7. Perform histogram equalization of the image and display it graphically.

$$f(m,n) = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 4 & 4 & 3 & 7 & 7 \\ 3 & 5 & 7 & 5 & 3 \\ 3 & 7 & 7 & 7 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$$

- 30. a. For the image f(m,n) compute the degree of compression that can be 12 3 3 2 achieved using
 - (i) Huffman coding of pixel values
 - (ii) Run length coding, assuming 2 bits to represent the pixel value and 2 bits to represent the run length

$$f(m,n) = \begin{bmatrix} 3 & 3 & 3 & 2 \\ 2 & 3 & 3 & 3 \\ 3 & 2 & 2 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

(OR)

- b. Explain the operators used for point, line and edge detection in an image.
- 31. a. Write short notes on

 (i) NTSC

 4
 - (ii) PAL (iii) SECAM video standards

(OR)

- b. Explain the sampling structure used in the representation of analog and 12 2 4 3 digital video.
- 32. a. Explain the following with an example.
 - (i) Correspondence and optical flow
 (ii) Occlusion problem

 4

 (iii) Occlusion problem
 - (iii) Aperture problem

(OR)

b. In detail, discuss the block motion model with overlapping and non 12 2 5 1 overlapping blocks. Also illustrate few spatial transformation models.