REPORT

Alignment-free tools for metagenomics-data analysis

Robert Deibel

Abstract

TODO

Keywords: alignment-free; report; metagenome

Introduction

The Metagenome

A puddle of mud The metagenome is a set of genes, of a population, of microorganisms as found in a sample (e.g. from the gut of organisms, soil, water). As such metagenomics is the study and analysis of such metagenomes.[1] Typically the microorganisms found in these samples are uncultured; researchers are interested in cooperation of microorganisms, and microorganisms and microbiome.

NGS - Next Generation Sequencing

Goals

The "classical" approach $Alignment-based\ method$

The good

The bad – Too much data, too little time The analysis of such metagenomes is heavy on computation and time resources, due to the amount of data collected; this results in the pursuit of

The alternative approach Alignment-free method

The ugly

Methods

Statistics

The power of statistics

Correspondence: robert.deibel@student.uni-tuebingen.de Eberhard-Karls Universität, Tübingen, DE Full list of author information is available at the end of the article k-tupel approach — Song et al $What \ is \ a \ k-tupel$

 D_2

Nucleotide bias

Visualization approach The idea behind

non-linear dimension reduction – Laczny et al Weiss noch nicht hier

Results

Application of tools on data set title

Content

Text and results for this section, as per the individual journal's instructions for authors.

Section title

Text for this section ...

Sub-heading for section Text for this sub-heading ...

Sub-sub heading for section

Text for this sub-sub-heading ...

Sub-sub-heading for section Text for this subsub-sub-heading ...In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will Deibel Page 2 of 2

first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = E\left[\mu T_x \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1 T_x(v-u)) du\right].$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$\begin{split} E\left[Z_1(vT_x)\right] &= \frac{\mu}{r}\log x \int_0^{v\wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du \\ &= \frac{\mu}{r} x^{1-\lambda_1/\lambda_0 v} \log x \int_0^{v\wedge 1} x^{-u(1+\lambda_1/r)} du \\ &= \frac{\mu}{\lambda_1 - \lambda_0} x^{1+\lambda_1/r v} \left(1 - \exp\left[-(v\wedge 1)\left(1 + \frac{\lambda_1}{r}\right)\log x\right]\right) \end{split}$$

Thus we observe that this expected value is finite for all v > 0 (also see).

Competing interests

The authors declare that they have no competing interests.

Author's contributions

Text for this section . . .

Acknowledgements

Text for this section . . .

References

 Handelsman, J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews 68(4), 669–685 (2004)

Figures

Figure 1 Sample figure title. A short description of the figure content should go here.

Figure 2 Sample figure title. Figure legend text.

Tables

 $\mbox{\bf Table 1}$ Sample table title. This is where the description of the table should go.

	B1	B2	B3
A1	0.1	0.2	0.3
A2			
A3			

Additional Files

Additional file 1 — Sample additional file title Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file extension). This might refer to a multi-page table or a figure.

Additional file 2 — Sample additional file title Additional file descriptions text.