地理建模实验1 实验报告

42109232 吕文博 地信2101班

2024-05-13

未分组数据常见统计指标计算

地块编号	1	2	3	4	5	6	7	8	9	10	11	12
面积	12	83	50	35	55	50	72	40	85	29	65	75
统计指标	平均值	众数	中位数	极差	离差	离差平方和	方差	标准差	无偏估计, 样本方	变异系数		
数值												
离差												

定义计算函数

```
names(dt1) = c("平均值","众数","中位数","极差","离差平方和",
              "方差","标准差","标准差的无偏估计","变异系数")
 return(list(dt1,"离差" = deviationx))
}
ug = c(12,83,50,35,55,50,72,40,85,29,65,75)
comstatindic(ug)
## [[1]]
           平均值
                           众数
                                         中位数
                                                         极差
##
                      50.0000000
       54.2500000
                                                    73.0000000
##
                                     52.5000000
       离差平方和
                                        标准差 标准差的无偏估计
                           方差
##
      5666.2500000
                     472.1875000
                                     21.7298757
                                                    22.6961150
##
         变异系数
##
        0.4183616
##
##
## $离差
## [1] -42.25 28.75 -4.25 -19.25 0.75 -4.25 17.75 -14.25 30.75 -25.25
## [11] 10.75 20.75
```

分组数据平均值,中位数,众数的计算

向下累计频率 = c(2130,1830,530,330,180,80,30), 组中值 = c(2500,3500,4500,5500,6500,7500,8500)

首先构造输入数据

家庭收入分组/元	2000-3000	3000-4000	4000-5000	5000-6000	6000-7000	7000-8000	8000-9000
户数	300	1300	200	150	100	50	30
向上累计频率	300	1600	1800	1950	2050	2100	2130
向下累计频率	2130	1830	530	330	180	80	30
组中值	2500	3500	4500	5500	6500	7500	8500
	平均值	众数	中位数				
	平均值	众数	中位数				

```
g = tibble::tibble(
家庭收入分组 = paste(seq(2000,8000,by = 1000),
seq(3000,9000,by = 1000),
sep = "-"),
户数 = c(300,1300,200,150,100,50,30),
向上累计频率 = c(300,1600,1800,1950,2050,2100,2130),
```

) g

A tibble: 7 x 5

家庭收入分组 户数 向上累计频率 向下累计频率 组中值

##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	2000-3000	300	300	2130	2500
##	2	3000-4000	1300	1600	1830	3500
##	3	4000-5000	200	1800	530	4500
##	4	5000-6000	150	1950	330	5500
##	5	6000-7000	100	2050	180	6500
##	6	7000-8000	50	2100	80	7500
##	7	8000-9000	30	2130	30	8500

平均值计算

$$\overline{x} = \frac{\sum_{i=1}^{m} f_i x_i}{\sum_{i=1}^{m} f_i}$$

 $x_i(i=1,2,\ldots,m)$ 代表第i组的组中值,如果第i组的下限值为 a_i , 上限值为 b_i ,则 $x_i=a_i+\frac{(b_i-a_i)}{2}$; f_i 代表第i组的频数,m为分组个数。

计算分组数据的平均值

meang = sum(g\$`组中值` * g\$`户数`) / sum(g\$`户数`) cat("分组数据平均值为",meang)

分组数据平均值为 3899.061

众数计算 :

法1

$$M_o = L + d \times \frac{\Delta_1}{\Delta_1 + \Delta_2}$$

法2

$$M_o = U - d \times \frac{\Delta_2}{\Delta_1 + \Delta_2}$$

 M_o 为代求的分组数据的众数,L为众数所在组的下限值,U为众数所在组的上限值, Δ_1 为众数组频数与上一组频数之差, Δ_2 为众数组频数与下一组频数之差, Δ_2 为众数组频数与下一组频数之差, Δ_2 为众数所在组的组距

```
calcul_mode = \((popn,floorn,ceiln){
  i = match(max(popn),popn)
 L = floorn[i];U = ceiln[i]
 delta1 = popn[i] - popn[i-1]
 delta2 = popn[i] - popn[i+1]
 d = U - L
 m1 = L + d * delta1 / (delta1 + delta2)
 m2 = U - d * delta2 / (delta1 + delta2)
 m = c(m1, m2)
 setNames(m,c('法1计算的众数','法2计算的众数'))
}
xfloor = seq(2000, 8000, by = 1000)
xceil = seq(3000,9000,by = 1000)
xpop = g$`户数`
modeg = calcul_mode(xpop,xfloor,xceil)
modeg
```

法1计算的众数 法2计算的众数

3476.19 3476.19

中位数计算 :

法1

$$M_e = L + d \times \frac{\frac{1}{2} \sum_{i=1}^{n} f_i - S_{m-1}}{f_m}$$

法2

$$M_e = U - d \times \frac{\frac{1}{2} \sum_{i=1}^{n} f_i - S_{m+1}}{f_m}$$

 M_e 为代求的分组数据的中位数,L为中位数所在组的下限值,U为中位数所在组的上限值,n为分组个数, f_i 为第i组对应的频数, f_m 为中位数所在组的频数, S_{m-1} 为中位数所在组以下的累积频数, S_{m+1} 为中位数所在组以上的累积频数,d为中位数所在组的组距

```
calcul_median = \((popn,floorn,ceiln)){
  halfpop = sum(popn) * 0.5
  i = which(cumsum(popn) - halfpop > 0)[1]
```

```
L = floorn[i];U = ceiln[i]
d = U - L
fm = popn[i]
sms1 = sum(popn[1:(i-1)])
sma1 = sum(popn[(i+1):length(popn)])
m1 = L + d * (halfpop - sms1) / fm
m2 = U - d * (halfpop - sma1) / fm
m = c(m1,m2)
setNames(m,c('法1计算的中位数','法2计算的中位数'))
}

xfloor = seq(2000,8000,by = 1000)
xceil = seq(3000,9000,by = 1000)
xpop = g$ 户数
mediang = calcul_median(xpop,xfloor,xceil)
mediang
```

法1计算的中位数 法2计算的中位数 ## 3588.462 3588.462

所以分组数据的平均值为3899.0610329,众数为3476.1904762,中位数为3588.4615385.