Forces breakdown

- hydrodynamucs solving for five variables over computational grid
- By setting grid points to 1, 1 dimensional thing to x
 - Finding value of five variables (but really three b/c velocity in y and z set to 0) at each grid point
- 3d moving in any direction
 - Theta = colatitude 0 to pi
 - Phi = longitude 0 to pi/2
- Five variables
 - Mass density (ex: g/cm³)
 - Some things incompressible
 - Air is different
 - Air goes down as you go up
 - Density of air different where it's hot vs where it's cold
 - Very large changes in densities associated with shocks
 - Hydrodynamic shock = sudden discontinuous change in fluid variables
 - Density
 - Velocity
 - Pressure
 - Vx, vy, vz
 - Energy density
 - Both kinetic and thermal dynamic energy of random motion
 - Enthalpy = specific thermodynamic energy that appears
 - Energy/volume
- Five equations
 - Three equations = conservation of momentum
 - Either momentum equation and Euler equations
 - In three dimensions
 - Two other
 - Conservation of mass
 - Conservation of energy
- Conservation of mass, momentum, and energy
- Momentum conservation
 - F = ma for a fluid
 - Ma part = multiple particles —> mass per volume of a fluid*acceleration
 - F = all the forces
 - $d^2y/dt^2 = a$
 - Have to know forces in system

- Pressure forces
- High pressure on one side, low pressure on other side, flow from high to low
- Gradient of scalar quantity
 - Gradient of pressure(*-1)
 - DP/dz = vertical component
 - ALWAYS SAY PRESSURE GRADIENT FORCE
- Winds don't point towards high to low because influence of Coriolis force
 - Balance of horizontal pressure forces against Coriolis
 - Geostrophic balance

- Forces:

- Pressure forces
 - Weather driven by horizontal
 - Vertical pressure gradient pushing out
 - Stable equilibrium on earth
 - If gravity went away, then the atmosphere would explode
 - Shocktube = sudden change in pressure/imbalance —> moves to right/moving away from discontinuity
 - Higher density on left, lower on right
 - When everything same = no more forces
 - Force per volume
- Gravity forces per volume
 - Mass density G*newtons constant/rad^2
- Conservation laws for mass and energy
 - Mass conservation
 - Mass doesn't appear or disappear
 - box: how to change total mass in the box?
 - Moving things in and out of a boundary
 - Energy conservation
 - Internal energy
 - Transformed into different forms but total is conserved
 - Three different type
 - Grav potential
 - Bulk motion of entire fluid
 - Internal fluid
 - Ind. move faster when hot and vice versa
 - Adiabatic motion
 - As fluid moving around
 - No heating and cooling = non adiabatic
 - Entropy is constant
 - Fluid with volume change and expand —> cools

- Impose heating and cooling by prescription of heating on day, cooling at night
 - Newtonian cooling = prescribe temperature that fluid should have (equilibrium temp)
 - Write func = less than eq, heating and vice versa
- Having simulations in three dimensions with spherical
 - Lower boundary with not much happening
 - Region of strong day nigh heating
 - Upper layer
 - Vertical gravity
 - Horizontal pressure gradients driving winds
 - Understand when you have winds, do they cause density variations that star can hold on to
- Switch from cartesian to spherical coordinates
 - Blast wave example?
 - 3d version of shock tube
 - Small r = huge overpressure in comparison to larger r
 - Cause shock —> fluid move outward
 - Try running case in spherical coordinates
 - See if you can get plots to work
 - Density, radial velocity, internal energy in r
- coordinates:
 - X1 = r
 - X2 = theta
 - -X3 = phi
 - X2 and x3 = 1 for this blast wave
- Run blast wave and read one of the time slots
 - Then plot density vs radius