What Is Claimed Is:

1	1. A method for aligning a micro-gyroscope having closed							
2	loop control of drive, output and sense axes, said method comprising the steps							
3	of:							
4	detecting misalignment of said micro-gyroscope; and							
5	correcting misalignment to zero by an electrostatic bias							
6	adjustment.							
1	2. The method as claimed in claim 1 wherein said step of							
2	detecting misalignment further comprises detecting misalignment by way of							
3	quadrature signal amplitude obtained by demodulation of a signal of said output							
4	axis using a signal in quadrature to rate signal for said drive axis.							
1	3. The method as claimed in claim 1 further comprising the							
2	step of nulling an in-phase bias.							
1	4. The method as claimed in claim 3 wherein said step of							
2	nulling an in-phase bias further comprises nulling by electronically coupling a							
3	torque component of said drive axis with said output axis.							
1	5. A method for tuning a cloverleaf micro-gyroscope having							
2	closed loop control of drive, output and sense axes, said method comprising the							
3	steps of:							
4	detecting residual mistuning by way of a signal; and							
5	correcting said residual mistuning to zero by way of electrostatic							
6	bias adjustment.							

1	6. The method as claimed in claim 5 wherein said step of						
2	detecting residual mistuning further comprises detecting by way of a quadrature						
3	signal noise level.						
1	7. The method as claimed in claim 5 wherein said step of						
2	detecting residual mistuning further comprises detecting by way of a transfer						
3	function test signal.						
1	8. A method for independently aligning and tuning a						
2	cloverleaf micro-gyroscope having closed loop control of drive, output and						
3	sense axes, said method comprising the steps of:						
4	detecting misalignment of said micro-gyroscope by way of a						
5	quadrature signal amplitude;						
6	correcting said misalignment to zero by way of an electrostatic						
7	bias adjustment;						
8	detecting residual mistuning by way of a signal; and						
9	correcting said residual mistuning by way of an electrostatic bias						
10	adjustment.						
1	9. The method as claimed in claim 8 wherein said step of						
2	detecting a residual mistuning further comprises detecting a residual mistuning						
3	by way of a quadrature signal noise level.						
1	10. The method as claimed in claim 8 wherein said step of						
2	detecting a residual mistuning further comprises detecting a residual mistuning						
3	by way of a transfer function test signal.						
1	11. The method as claimed in claim 8 further comprising the						
2	step of nulling in-phase bias.						

1		12.	The method as cl	aimed in clai	m 11 wherein sai	d step of	
2	nulling furthe	er comp	orises electronically	y coupling a	torque componer	t of said	
3	drive	axis	with	said	output	axis.	
1		13.	The method as c	laimed in cla	im 8 wherein sai	id micro-	
2	gyroscope closed loop control further comprises:						
3		_	separate sensors a				
4	said misalign	nment	and said step of	f correcting	said residual n	nistuning.	
1		14.	The method as c	laimed in cla	im 8 wherein sai	d step of	
2	correcting sa	id mis	alignment further	comprises th	e step of introd	ucing an	
3	electrostatic	cross-c	oupling spring, K	ce for cano	celing said misa	lignment.	
1		15.	The method as o	laimed in cla	aim 14 further co	mprising	
2	the step of applying a bias voltage to a drive electrode on said drive axis that is						
3	different from a bias voltage to another drive electrode on said drive axis.						
1		16.	The method as cl	aimed in clai	m 8 further comp	rising the	
2	step of introd	ucing a	a relative gain miss	match, $\delta_T \neq 0$,	to each drive ele	ctrode on	
3	said drive axis	s.					
1		17.	The method as cl	aimed in clai	m 8 further comp	rising the	
2	step of maximizing a stiffness matrix K.						
1		18.			im 8 wherein sa	_	
2	correcting said residual mistuning to zero further comprises adjusting a total						

stiffness of said micro-gyroscope.

3