Imperial College

M4/5P19

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May-June 2018

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science

Measure and Integration

Date: Tuesday, 08 May 2018

Time: 2:00 PM - 4:30 PM

Time Allowed: 2.5 hours

This paper has 5 questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

All required additional material will be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- · Each question carries equal weight.
- · Calculators may not be used.

1. (a) Let X be a nonempty set. Suppose a measure m is initially given on a semiring of sets from X. Give the definition of the outer measure of a subset of X, a measurable set and its measure μ .

Consider a measure space (X, \mathcal{M}, μ) .

- (b) Give the definition of a measurable function $f: X \to \mathbb{R}$.
- (c) Let $\mu(X) < \infty$. Show that convergence in $L^2(X,\mu)$ implies convergence in $L^1(X,\mu)$.
- 2. (a) For any $\epsilon \in (0,1)$ construct an open set $A \subset [0,1]$ such that it is dense in [0,1] (i.e. its closure contains [0,1]) and the Lebesgue measure $\mu(A) \leq \epsilon$.
 - (b) Construct a set satisfying the same conditions as in Part a of this question, but with $\mu(A) = \epsilon$ instead of $\mu(A) \le \epsilon$. Hint: Assume that the set in Part a is already constructed and consider its union with the interval (1/2 x, 1/2 + x).

- 3. (a) State without proof the Levi (monotone convergence) theorem.
 - (b) Show for a integrable function $f: X \to \mathbb{R}$ on a measure space (X, \mathcal{M}, μ) that if $\int_A |f| d\mu = 0$ then f(x) = 0 a.e. on the set A.
- 4. (a) Describe without proof the type of discontinuity a nondecreasing function $f:[a,b]\to\mathbb{R}$ can have at a point $x\in(a,b)$.
 - (b) Let $f:[a,b]\to\mathbb{R}$ be a nondecreasing absolutely continuous function. State what it means for f to be absolutely continuous. Show that for a measurable $A\subset (a,b)$, if $\mu(A)=0$ then $\mu(f(A))=0$, where μ is the Lebesgue measure on \mathbb{R} .

5. Consider the representation of a number $x \in (0,1)$ by its continued fraction

$$x = [0; a_1, a_2, \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \dots}},$$

(which is finite if x is rational), where all a_j 's are positive integers.

Let the transformation T:(0,1) o (0,1) be given by

$$Tx = \frac{1}{x} - \left[\frac{1}{x}\right],$$

where $[\cdot]$ stands for the integer part, i.e., $T[0;a_1,a_2,a_3,...]=[0;a_2,a_3,...]$.

(a) Show that T preserves the following measure

$$\mu(A) = \frac{1}{\log 2} \int_A \frac{dx}{1+x},$$

where A is a measurable set with respect to the Lebesgue measure. Hint: For any 0 < a < 1, compute first $T((\frac{1}{n+a},\frac{1}{n}))$ and show that $\mu(T^{-1}(0,a)) = \mu((0,a))$.

(b) The transformation T is ergodic. Define what this statement means.

	EXAMINATION SOLUTIONS 201‡-18	Course P19
Question		Marks & seen/unseen
Parts	The outer measure of a set $A \in X$ is $M^*(A) = \inf_{A \subset VP_K} \sum_{K} m(P_K)$ over all coverings of A by finite or countable number of element P_K of the semiring X , where $m(P_K)$ is the measure of P_K . Let $R(X)$ be the minimal ring generated by X . A set $A \in X$ is called measurable if $Y \in X \cap X$	seen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-18	Course P13
Question		Marks & seen/unseen
Parts	A function $f: X \to IR$ is called measurable if $f'(B)$ is a measurable set for any Borel $B \subset IR$.	Seen
C	Let fn > f in L ² (X, µ), ix Slfn-fl ² dµ > 0 as n > ∞. By Cauchy-Schwarz inequality Slfn-fl ² dµ = Slfn-fl-1 dµ × (Slfn-fl ² dµ) ^{1/2} . M(X) ^{1/2} Short of in L'(X, p) Therefore fn > f in L'(X, p)	seen
	Setter's initials Checker's initials	Page number 2

	EXAMINATION SOLUTIONS 201‡-18	Course P19
Question 2		Marks & seen/unseen
Parts	Let qn, n=1,2 be rational	10 unseen
	numbers in [0,1]. Consider	, , , , , , , , , , , , , , , , , , ,
	$A' = \bigcup_{n=1}^{\infty} \left(q_n - \frac{\varepsilon}{2^{n+1}}, q_n + \frac{\varepsilon}{2^{n+1}} \right).$	
	It is measurable and open as countable union of open	
	as countable union of open	
	intervals; quare dense in	
	[0,1], so A is dense in [0,1];	
	$\mu(A') \leqslant \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$	
	by subadditivity. Now A = A'n(0,1).	:
0	Take the set A constructed in	
િ	question 2a. We have	unscen
	$\varepsilon' = \mu(A) \leq \varepsilon < 1$	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course PI9
Question 2		Marks & seen/unseen
Parts	Consider now	
	$B_x = (\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) \cup A$, $x \in (0, \frac{1}{2})$. It is open and dense in $[0, 1]$	ن د د
	Its measure f(x) = M(Bx)	
	satisfies: $f(0) = E'$, $f(\frac{1}{2}) = 1$	
	and since Bx By for X < Y,	
	$f(y) - f(x) = M(B_y \setminus B_x) =$	
	M((1/2-y, 1/2-x) U[1/2+x, 1/2+y) UA)	
	< 2 (y-x). Thus f(x) is continuous and therefore takes	
	ony value between & and 7.	
	So ∃ x, ∈ (0, 1/2) s.t. {(x,)=E,	
	i.e. Bxo is the set	.e : ·
	with $\mu(B_{x_o}) = \varepsilon$	•
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course P19
Question 3		Marks & seen/unseen
Parts	Let $f_1(x) \leq f_2(x) \leq \cdots$ on A,	10 seen
	f _n (x), n=1,2 are integrable	
	and $\iint_{R} d\mu \leq K \forall n$, where $K > 0$ is a constant.	
	Then there exists a.e. a finite	
	limit f(x) = lim fn(x),	
	f(x) is integrable	
	and Sfrdn -> Sfdn.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201¥-18	Course P19
Question 3		Marks & seen/unseen
Parts	For E>O, let	seen unseen
	$A_{\varepsilon} = \{ x \in A : f \} \in \}$. By Chebyshev inequality, $M(A_{\varepsilon}) \leq \frac{1}{\varepsilon} \{ f d_{M} = 0 \}$, so $M(A_{\varepsilon}) = 0$. The set $B = \{ x \in A : f > 0 \} = 0$ $= 0 \text{ Ay:}$ $j=1$ But $A_{j} \subset A_{1/2} \subset A_{1/3} \subset \cdots$	5
	By continuity of measure, $M(B) = \lim_{n \to \infty} M(A_n) = 0$ So $ f = 0$ a.e. on A $= \int_{0}^{\infty} f = 0$ a.e. on A	5
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course
		P19
Question 4		Marks & seen/unseen
Parts	The only discontinuity a nondecreasing function $f: [a,b] \rightarrow \mathbb{R}$ can have at a point $x \in (a,b)$ is the one where both limits $f(x+o)$, $f(x-o)$ exist but are not equal.	5/seen
В	Let $f: [a,b] \rightarrow \mathbb{R}$ be non- decreasing and $a.c.$, $A \in [a,b]$, $M(A) = 0$. $Fix \in > 0$. As f is $a.c.$ f is $a.c.$ f s s.t. for any nonintersecting (a_j,b_j) , $j=1,,n$ with	5/suen
	$\frac{1}{2}(b_j - a_j) < S$ we have Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course
		P19
Question 4		Marks & seen/unseen
Parts	$\sum_{i=1}^{n} (f(b_i) - f(a_i)) < \varepsilon.$	
	Choose an open set U s.t.	unseen
	$A \subset U \subset (a, b)$ and $\mu(U \setminus A) < b$	
	Hence M(U)=M(A)+M(U)A) < 8	
	As an open serb in 12, U	
	has a representation	
	$U = U(a_j, b_j) - union of non-$	
	intersecting intervals. Since	
	∑(6;-Q;)< S =>	
	$\sum_{i}^{n}(f(b_{i})-f(a_{i}))<\varepsilon \ \forall n$	
	$\Rightarrow \tilde{\Sigma}(\{(b_i) - f(a_i)) \leq \varepsilon$	
	But $f(A) = \tilde{U}(f(a_i), f(b_i))$	
	as f is nondecreasing.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course P19
Question 4		Marks & seen/unseen
Parts	So $M^*(f(A)) \leq \sum_{i}^{\infty} (f(b_i) - f(a_i))$ $\leq \varepsilon$	
	Since E>0 is arbitrary,	
	$M^*(f(A)) = 0$	
	$\Rightarrow M(f(A)) = 0.$	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course P19
Question 5		Marks & seen/unseen
Parts	Let 0 <a<1. \frac{1}{n}\))="</td" note="" t((\(\frac{1}{n+a},="" that=""><td>10</td></a<1.>	10
	Note that T((n+a, n)) =	
	$= (0, 0) \forall n = 1, 2, \dots$	
	$T^{-1}((o,a)) = \bigcup_{n=1}^{\infty} \left(\frac{1}{n+a}, \frac{1}{n}\right);$	
	$M(T((0,a))) = \sum_{n=0}^{\infty} M((\frac{1}{n+a},\frac{1}{n})) =$	
	$= \sum_{n=1}^{\infty} \frac{1}{\log 2} \int_{n+a}^{1/n} \frac{dx}{1+x} =$	
	$= \sum_{n=1}^{\infty} \frac{1}{\log 2} \left(\log \frac{\frac{1}{n+1}}{\frac{1}{n+a+1}} \right) =$	
	$= \sum_{n=1}^{\infty} \frac{1}{\log 2} \left(\log \frac{n+1}{n+1+\alpha} - \log \frac{n}{n+\alpha} \right)$ $= \frac{1}{\log 2} \log \frac{1+\alpha}{1} = \frac{1}{\log 2} \int_{0}^{\infty} \frac{dx}{1+x} =$	
	$= \frac{1}{\log 2} \log \frac{1+\alpha}{1} = \frac{1}{\log 2} \int \frac{dx}{1+x} =$	
	= M ((0,a))	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course
	EVAMILIAM JOEO HÓMA SÓTÍ-TA	P19
Question		1 3 2
5		Marks & seen/unseen
Parts	Therefore, for $0 < a < b < 1$, $M((a,b)) = M((0,b)) - M((0,a))$ $= M(T'(0,b)) - M(T'(0,a)) =$ $= M(T'(a,b))$ since $= M(T'(a,b))$ since $= M(T'(a,b)) = T'(0,b)$. Hence, the measures $M(A)$, $P(A) = M(T'A)$ coincide on the ring. Since M , P are b -additive, they also coincide on any Lebesgue measurable set by uniqueness of the	seen/unseen
	6-additive extension.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 201‡-18	Course PI9
Question 5		Marks & seen/unseen
Parts	The measure-preserving transformation T is ergodic if for any measure-preserving ergodic if for any measure-	5
	Setter's initials Checker's initials	Page number