MATLAB: Hookian Springs

For a *Hookian spring*, an applied force F (N) results in a displacement x (m) according to the equation:

$$F = kx$$

where k is the spring constant (N/m). The spring's potential energy U (J) is given by:

$$U = \frac{1}{2}kx^2$$

A load was applied to six different springs and the resulting displacements were measured:

Spring	1	2	3	4	5	6
<i>F</i> (N)	15	17	19	13	20	18
x (m)	0.34	0.45	0.35	0.28	0.26	0.31

- a) Store the tabulated data in two vectors: F and x
- b) Compute each spring's k and U.
- c) Use the <u>min()</u> and <u>max()</u> functions to compute and determine the springs with the minimum and maximum U.
- d) Use the <u>fprintf()</u> function to print statements to the Command Window *similar* to the following:

"Spring W has the minimum potential energy: U = X.X J''

"Spring Y has the maximum potential energy: U = Z.Z J''