Project: Concrete Compressive Strength Prediction

1: Data Cleansing Function

I created a function called cleanse_data that takes a Pandas DataFrame as input and returns another DataFrame that is identical to the input except any invalid rows have been removed. For this dataset, an invalid row is any row with:

- A NaN appearing in any column
- A blank entry for any column
- A negative entry** for any column

2: Model Evaluation Function

I also created a function called eval_model that evaluates a fitted regression model. The function takes a trained Pipeline object as input along with training and test set data. It evaluates training and test statistics as follows:

- RMSE for the training set
- RMSE for the test set
- r² for the test set

Inputs	pipe	A fitted Pipeline object	Required
	X_train	Pandas DataFrame object containing training set feature data	Required
	y_train	Pandas DataFrame or Series object of response values corresponding to examples in X_train	Required
	X_test	Pandas DataFrame object containing test set feature data	Required
	y_test	Pandas DataFrame or Series object of response values corresponding to examples in X_test	Required
	name	String with descriptive name of analysis	Optional. Default set to empty string.

		Python dictionary with the following entries in this order:	
Output	results	 'name' - the name passed as input to this function 'rmse train' - the RMSE error on the training set 'rmse test' - the RMSE error on the test set 'r2 score' - the r2 score on test set data 	

Results from these evaluations are stored in a python dictionary and returned to the caller.

3: Model Comparison

I created a script called mp@task3.py. It places my cleanse_data and eval_model functions in
it. In the remainder of the script, it trains and compares the following regression
techniques generates a comparison table and saves the results as indicated below.

For each technique:

- If needed, it creates a scaler using StandardScaler
- Creates a pipeline (even if a scaler or other preprocessing is not required)
- Trains the model
- Determines the training RMSE, test RMSE and r². Uses the 20% holdout testing set
- Uses pickle to save a single tuple with the following items (in the following order):
 - the trained pipeline
 - results dictionary returned by your eval model function

Technique	Hyperparameters	Pickle File Name
Linear Regression	Generate 3rd degree polynomial features. Set fit_intercept=False .	poly3.dat
IANINI	One hidden layer of 100 nodes, relu activation function and sequential gradient descent solver, 2500 max iterations	ann1.dat
I A KIKI	One hidden layer of 100 nodes, tanh activation function and sequential gradient descent solver, 2500 max iterations	ann2.dat
SVR	Radial basis function kernel, epsilon of 5, C=10, gamma = 0.1	svr.dat
Random Forest	100 trees	rfr.dat

4: Hyperparameter Tuning

I created a script called mp@task4.py in which you use GridSearchCV to perform hyperparameter tuning on the support vector regressor. My script operates as follows:

- Uses 80% of the cleansed dataset for GridSearchCV, reserving 20% for a final test
- Creates a Pipeline object with a StandardScaler and SVR.
- Defines the grid search parameters according to the table given below.
- Constructs a GridSearchCV with cv=8.
- Conducts the grid search
- Reports results by printing to the screen:
 - o Root mean squared error for the best combination of parameters
 - Best combination of hyperparameter values (C, gamma and epsilon, each clearly labeled on its own line and all limited to four decimal places)

Hyperparameter	Search Range
С	Powers of 10 from 10 ⁻² through 10 ²
gamma	Five samples along a log scale from 10 ⁻³ to 10
epsilon	Five samples along a log scale from 10 ⁻¹ to 10