COMP207 Exercises

Tutorial 10 (Week 12)

Frequent-Itemset Mining

This exercise is a minor variation of Exercise 22.1.1 in [2] and Exercise 28.14 in [1]. Consider the following table of transactions (purchases) by customers in a supermarket:

transaction_id	customer_id	items_bought
1	F	c, d
2	В	b, e
3	G	b, e
4	Н	e, f, g
5	D	a, f
6	В	e, f
7	G	a, e, f
8	Е	a, d
9	С	b, c, e, f
10	Е	b, c, f
11	Н	a, c
12	D	a, b, c, e
13	A	a, c, d
14	В	g

- (a) What are the baskets with respect to the transactions (transaction_ids) and what are the baskets with respect to the customers (customer_ids)?
- **(b)** What is the support with respect to the transactions and the support with respect to the customers of the following itemsets?
 - (i) {a}
 - (ii) {b}
 - (iii) $\{e\}$
 - (**iv**) {f}
 - (v) $\{a, f\}$
 - (vi) $\{b,e\}$
 - (vii) $\{b,f\}$
 - (viii) $\{e,f\}$
 - (ix) $\{b,e,f\}$

- (c) Let the support threshold be s = 0.6. Which of the itemsets in (b) are frequent with respect to the transactions, which are frequent with respect to the customers?
- (d) What is the confidence of the following association rules with respect to the transactions and with respect to the customers?
 - (i) $\{e\} \Rightarrow f$
 - (ii) $\{f\} \Rightarrow a$
 - (iii) $\{f\} \Rightarrow b$
 - (iv) $\{b,e\} \Rightarrow f$
- (e) The *lift* of an association rule is a measure of interestingness of that rule. The *lift* of an association rule $\{i_1, \dots, i_n\} \Rightarrow j$ with respect to the customers is defined as

$$lift(\{i_1,\ldots,i_n\}\Rightarrow j) = \frac{conf(\{i_1,\ldots,i_n\}\Rightarrow j)}{supp(\{j\})}$$

where $conf(\{i_1, \ldots, i_n\} \Rightarrow j)$ is the confidence of $\{i_1, \ldots, i_n\} \Rightarrow j$ with respect to the customers, and $supp(\{j\})$ is the support of $\{j\}$ with respect to the customers. If we use the association rule for recommending items, then we want the lift of the rule to be as large as possible. A lift of 1 would mean that there is no difference between suggesting j to users who also bought i_1, \ldots, i_n and suggesting a random item to those users. A lift larger than 1 indicates that the rule can suggest more useful items than choosing a random item. The larger the lift the better the recommendation.

Determine the lift of the association rules from (d).

(f) Use the A-Priori Algorithm to find all sets J of items such that the support of J with respect to the customers is at least s = 0.5.

References

- [1] Ramez Elmasri and Shamkant B. Navathe. *Fundamentals of Database Systems*. Pearson Education, 7th edition, 2016.
- [2] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. *Database Systems The Complete Book*. Pearson Education, 2nd edition, 2009.