ITERACIONES REALIZADAS MANUALMENTE

DATOS

#	X 1	X2	Υ
1	2.0	0.0	1.0
2	0.0	0.0	-1.0
3	2.0	2.0	1.0
4	0.0	1.0	-1.0
5	1.0	1.0	1.0
6	1.0	2.0	-1.0

Entradas: 2

Salidas: 1

Patrones: 6

Convención

Entradas (M= 2) subindi j=1 hasta M

Salidas (N= 1) subíndi i=1 hasta N

Patrones (P= 6)

CONFIGURACIÓN DE LA RED

-Valores iniciales de pesos

W1	W2
0	0

-Valor inicial de umbral

U	
0.1	

W[M * N] tamaño de la matriz de pesos

U[N] tamaño del vector de umbrales

CONFIGURAR LA FUNCIÓN DE ACTIVACIÓN

Escalón bipolar:

Si
$$X >= 0$$
 entonces $Yr = 1$

Si
$$X < 0$$
 entonces $Yr = -1$

CONFIGURAR EL ALGORITMO DE ENTRENAMIENTO: REGLA DELTA

$$W(nuevo)ji = W(actual)ji + \alpha * Eli * Xj$$

$$U(nuevo)i = U(actual)i + \alpha * Eli * Xo(1) Xo = 1$$

PARAMETROS DE ENTRENAMINETO

-No de iteraciones: 100

-Rata de aprendizaje: 0.1

-Error máximo permitido: 0.1 (Condición de parada principal para determinar que la red aprendió)

ENTRENAR

Iteración numero 1

patrón # 1

X1	X2	Υ
2.0	0.0	1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$

$$i = 1.2$$
 $i = 1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0 \quad W21 = 0$$

$$U1 = 0.1$$

$$s1 = (((2*0) + (0*0)) - 0, 1)$$

$$s1 = -0, 1$$

$$YR1 = £S1$$
 $yr1 = £(-0.1)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (-1)$$

$$EL1 = 2$$

Calcular el error del patrón

$$EP = \sum |Eli| / Numero de salidas (N)$$

$$EP1 = |EL1|/1$$

$$EP1 = \frac{|2|}{1}$$
 $EP1 = 2$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0 + (0, 1 * 2 * 2)$$

$$W11 = 0.4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * 2 * 0)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 2 * 1$$

$$U1 = 0.3$$

W1	W2
0.4	0

U	
0.3	

X1	X2	Υ
0.0	0.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$
 $S1 = [(X1 * W11 + X2 * W21) - U1]$
 $W11 = 0.4 W21 = 0$

$$U1 = 0.3$$

$$s1 = (((0*0.4) + (0*0)) - 0,3)$$

$$s1 = -0, 3$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.3)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

 $EP2 = |EL1|/1$

$$EP2 = \frac{|0|}{1} \qquad \qquad EP2 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$
 $W11 = 0.4 + (0, 1 * 0 * 0)$
 $W11 = 0, 4$
 $W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$

$$W21 = 0 + (0, 1 * 0 * 0)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
0.4	0

U	
0.3	

X1	X2	Υ
2.0	2.0	1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
 , 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((2*0.4) + (2*0)) - 0.3)$$

$$s1 = 0.5$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.5)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP3 = |EL1|/1$$

$$EP3 = \frac{|0|}{1}$$
 $EP3 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.4 + (0, 1 * 0 * 2)$$

$$W11 = 0.4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * 0 * 2)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0,3$$

W1	W2
0.4	0

U	
0.3	•

patrón # 4

X1	X2	Υ
0.0	1.0	-1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((0*0.4) + (1*0)) - 0.3)$$

$$s1 = -0, 3$$

$$YR1 = £S1$$
 $yr1 = £(-0.3)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

 $EP = \sum |Eli|/Numero\ de\ salidas\ (N)$

$$EP4 = |EL1|/1$$

$$EP4 = \frac{|0|}{1} \qquad \qquad EP4 = 0$$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.4 + (0, 1 * 0 * 0)$$

$$W11 = 0,4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
0.4	0

U 0.3

patrón #5

X1	X2	Υ
1.0	1.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 \quad W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((1*0.4) + (1*0)) - 0.3)$$

$$s1 = 0.1$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$

$$yr1 = £(0.1)$$

$$YR1 = 1$$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli| / Numero de salidas (N)$$

$$EP5 = |EL1|/1$$

$$EP5 = \frac{|0|}{1} \qquad \qquad EP5 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.4 + (0, 1 * 0 * 1)$$

$$W11 = 0,4$$

$$W(nuevo)21 = W(actual)21 + (\alpha*El1*X2)$$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0,3$$

W1	W2
0.4	0

U	
0.3	

X1	X2	Υ
1.0	2.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$

$$i=1.2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 \quad W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((1*0.4) + (2*0)) - 0.3)$$

$$s1 = 0.1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.1)$ $YR1 = 1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (1)$$

$$EL1 = -2$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP6 = |EL1|/1$$

$$EP6 = \frac{|-2|}{1}$$
 $EP6 = 2$

> Ajustar matriz de pesos y vector de umbrales

 $W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$

$$W11 = 0.4 + (0, 1*-2*1)$$

W11 = 0, 2

 $W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$

$$W21 = 0 + (0, 1 * -2 * 2)$$

$$W21 = -0.4$$

 $U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$

$$U1 = 0, 3 + 0, 1 * -2 * 1$$

$$U1 = 0, 1$$

W1	W2
0.2	-0.4

CALCULAR EL ERROR RMS O ERROR DE LA ITERACIÓN

 $Error\ RMS = \sum Ep/P$

$$\textit{ERMS} = (2+0+0+0+0+2)/6$$

ERMS=0.666667 iteración No 1

ERMS<=Error máximo permitido

0.666667>0.1

Debe iniciarse la siguiente iteración

Iteración numero 2

patrón #1

X1	X2	Υ
2.0	0.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$

$$i=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.2 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2*0.2) + (0*-0.4)) - 0,1)$$

$$s1 = 0, 3$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.3)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

> Calcular el error del patrón

 $EP = \sum |Eli| / Numero de salidas (N)$

$$EP1 = |EL1|/1$$

$$EP1 = \frac{|0|}{1} \qquad \qquad EP1 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.2 + (0, 1 * 0 * 2)$$

$$W11 = 0, 2$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

U	
0.1	

W1	W2
0.2	-0.4

X1	X2	Υ
0.0	0.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.2 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((0*0.2) + (0*-0.4)) - 0,1)$$

$$s1 = -0, 1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.1)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli| / Numero de salidas (N)$$

$$EP2 = |EL1|/1$$

$$EP2 = \frac{|0|}{1}$$
 $EP2 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.2 + (0, 1 * 0 * 0)$$

$$W11 = 0, 2$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.2	-0.4

U	
0.1	

patrón #3

X1	X2	Υ
2.0	2.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.2 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2*0.2) + (2*-0.4)) - 0,1)$$

$$s1 = -0.5$$

$$YR1 = £S1$$
 $yr1 = £(-0.5)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (-1)$$

$$EL1 = 2$$

> Calcular el error del patrón

 $EP = \sum |Eli|/Numero\ de\ salidas\ (N)$

$$EP3 = |EL1|/1$$

$$EP3 = \frac{|2|}{1}$$
 $EP3 = 2$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.2 + (0, 1 * 2 * 2)$$

$$W11 = 0,6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 2 * 2)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 2 * 1$$

$$U1 = 0,3$$

W1	W2
0.6	0

U	
0.3	

X1	X2	Υ
0.0	1.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$
 $S1 = [(X1 * W11 + X2 * W21) - U1]$
 $W11 = 0.6 \ W21 = 0$
 $U1 = 0.3$

$$s1 = (((0*0.6) + (1*0)) - 0.3)$$

$$s1 = -0, 3$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.3)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

 $EP4 = |EL1|/1$

$$EP4 = \frac{|0|}{1} \qquad \qquad EP4 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$
 $W11 = 0.6 + (0, 1 * 0 * 0)$
 $W11 = 0, 6$
 $W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
0.6	0

U	
0.3	•

X1	X2	Υ
1.0	1.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((1*0.6) + (1*0)) - 0.3)$$

$$s1 = 0.3$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.3)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP5 = |EL1|/1$$

$$EP5 = \frac{|0|}{1}$$
 $EP5 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0, 1 * 0 * 1)$$

$$W11 = 0,6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
0.6	0

U	
0.3	<u> </u>

patrón # 6

X1	X2	Υ
1.0	2.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((1*0.6) + (2*0)) - 0.3)$$

$$s1 = 0.3$$

$$YR1 = £S1$$
 $yr1 = £(0.3)$ $YR1 = 1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (1)$$

$$EL1 = -2$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP6 = |EL1|/1$$

$$EP6 = \frac{|-2|}{1}$$
 $EP6 = 2$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0, 1*-2*1)$$

$$W11 = 0.4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * -2 * 2)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + (0,1*-2*1)$$

$$U1 = 0, 1$$

W1	W2
0.4	-0.4

CALCULAR EL ERROR RMS O ERROR DE LA ITERACIÓN

$$Error\ RMS = \sum Ep/P$$

$$ERMS = (0+0+2+0+0+2)/6$$

ERMS=0.666667 iteración No 2

ERMS<=Error máximo permitido

0.6666667 > 0.1

Debe iniciarse la siguiente iteración

Iteración numero 3

patrón #1

X1	X2	Υ
2.0	0.0	1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$

$$i=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2 * 0.4) + (0 * -0.4)) - 0.1)$$

$$s1 = 0.7$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.7)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli| / Numero de salidas (N)$$

$$EP1 = |EL1|/1$$

$$EP1 = \frac{|0|}{1}$$
 $EP1 = 0$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.4 + (0,1*0*2)$$

$$W11 = 0, 4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

U
0.1

W1	W2
0.4	-0.4

X1	X2	Υ
0.0	0.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((0*0.4) + (0*-0.4)) - 0,1)$$

$$s1 = -0, 1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.1)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

 $EP = \sum |Eli|/Numero\ de\ salidas\ (N)$

$$EP2 = |EL1|/1$$

$$EP2 = \frac{|0|}{1}$$
 $EP2 = 0$

> Ajustar matriz de pesos y vector de umbrales

 $W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$

$$W11 = 0.4 + (0, 1 * 0 * 0)$$

$$W11 = 0.4$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

 $U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.4	-0.4

U	
0.1	

patrón #3

X1	X2	Υ
2.0	2.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.4 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2*0.4) + (2*-0.4)) - 0,1)$$

$$s1 = -0.1$$

$$YR1 = £S1$$
 $yr1 = £(-0.1)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (-1)$$

$$EL1 = 2$$

Calcular el error del patrón

 $EP = \sum |Eli|/Numero\ de\ salidas\ (N)$

$$EP3 = |EL1|/1$$

$$EP3 = \frac{|2|}{1}$$
 $EP3 = 2$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.4 + (0,1*2*2)$$

$$W11 = 0.8$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 2 * 2)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 2 * 1$$

$$U1 = 0,3$$

W1	W2
0.8	0

U	
0.3	

X1	X2	Υ
0.0	1.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$
 $S1 = [(X1 * W11 + X2 * W21) - U1]$
 $W11 = 0.8 W21 = 0$
 $U1 = 0.3$

$$s1 = (((0*0.8) + (1*0)) - 0.3)$$

$$s1 = -0, 3$$

> Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.3)$ $YR1 = -1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

 $EP4 = |EL1|/1$

$$EP4 = \frac{|0|}{1} \qquad \qquad EP4 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$
 $W11 = 0.8 + (0, 1 * 0 * 0)$
 $W11 = 0.8$
 $W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
0.8	0

U	
0.3	•

X1	X2	Υ
1.0	1.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.8 W21 = 0$$

$$U1 = 0.3$$

$$s1 = (((1*0.8) + (1*0)) - 0.3)$$

$$s1 = 0.5$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.5)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli| / Numero de salidas (N)$$

$$EP5 = |EL1|/1$$

$$EP5 = \frac{|0|}{1}$$
 $EP5 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.8 + (0, 1 * 0 * 1)$$

$$W11 = 0.8$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * 0 * 1)$$

$$W21 = 0$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + 0,1 * 0 * 1$$

$$U1 = 0.3$$

W1	W2
8.0	0

U	
0.3	<u> </u>

patrón #6

X1	X2	Υ
1.0	2.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.8 W21 = 0$$

$$U1 = 0.3$$

$$s1 \, = (((1*0.8) \, + \, (2*0)) - 0,3)$$

$$s1 = 0.5$$

$$YR1 = £S1$$
 $yr1 = £(0.5)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (1)$$

$$EL1 = -2$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP6 = |EL1|/1$$

$$EP6 = \frac{|-2|}{1}$$
 $EP6 = 2$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.8 + (0, 1*-2*1)$$

$$W11 = 0.6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = 0 + (0, 1 * -2 * 2)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0,3 + (0,1*-2*1)$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

CALCULAR EL ERROR RMS O ERROR DE LA ITERACIÓN

$$Error\ RMS = \sum Ep/P$$

$$\textit{ERMS} = (0+0+2+0+0+2)/6$$

ERMS=0.66666667 iteración No 3

ERMS<=Error máximo permitido

0.6666667 > 0.1

Debe iniciarse la siguiente iteración

Iteración numero 4

patrón #1

X1	X2	Υ
2.0	0.0	1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$

$$i=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2*0.6) + (0*-0.4)) - 0,1)$$

$$s1 = 1.1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(1.1)$ $YR1 = 1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP1 = |EL1|/1$$

$$EP1 = \frac{|0|}{1} \qquad \qquad EP1 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0, 1 * 0 * 2)$$

$$W11 = 0, 6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

U
0.1

W1	W2
0.6	-0.4

X1	X2	Υ
0.0	0.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1$$
, 2 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((0*0.6) + (0*-0.4)) - 0,1)$$

$$s1 = -0, 1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.1)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP2 = |EL1|/1$$

$$EP2 = \frac{|0|}{1}$$
 $EP2 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0, 1 * 0 * 0)$$

$$W11 = 0,6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 0)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

U	
0.1	

patrón #3

X1	X2	Υ
2.0	2.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((2*0.6) + (2*-0.4)) - 0,1)$$

$$YR1 = £S1$$
 $yr1 = £(0.3)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

s1 = 0.3

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP3 = |EL1|/1$$

$$EP3 = \frac{|0|}{1}$$
 $EP3 = 0$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0.1 * 0 * 2)$$

$$W11 = 0,6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 2)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

U	
I N 1	
0.1	

X1	X2	Υ
0.0	1.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$
 $j = 1, 2$ $i = 1$
 $S1 = [(X1 * W11 + X2 * W21) - U1]$
 $W11 = 0.6$ $W21 = -0.4$

$$U1 = 0.1$$

$$s1 = (((0*0.6) + (1*-0.4)) - 0,1)$$

$$s1 = -0, 5$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(-0.5)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

 $EP4 = |EL1|/1$

$$EP4 = \frac{|0|}{1} \qquad \qquad EP4 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$
 $W11 = 0.6 + (0, 1 * 0 * 0)$
 $W11 = 0, 6$
 $W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$

$$W21 = -0.4 + (0, 1 * 0 * 1)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

U	
0.1	•

X1	X2	Υ
1.0	1.0	1.0

> Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((1*0.6) + (1*-0.4)) - 0.1)$$

$$s1 = 0.1$$

Calcular la salida de la red aplicando la función de activación

$$YR1 = £S1$$
 $yr1 = £(0.1)$ $YR1 = 1$

> Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = 1 - (1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP5 = |EL1|/1$$

$$EP5 = \frac{|0|}{1}$$
 $EP5 = 0$

> Ajustar matriz de pesos y vector de umbrales

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0.1 * 0 * 1)$$

$$W11 = 0,6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0, 1 * 0 * 1)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + 0, 1 * 0 * 1$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

patrón #6

X1	X2	Υ
1.0	2.0	-1.0

Calcular la salida de la función soma atenuada con el umbral

$$Si = \sum [(Xj * Wji) - Ui]$$

$$j=1,2$$
 $i=1$

$$S1 = [(X1 * W11 + X2 * W21) - U1]$$

$$W11 = 0.6 \quad W21 = -0.4$$

$$U1 = 0.1$$

$$s1 = (((1*0.6) + (2*-0.4)) - 0,1)$$

$$s1 = -0.3$$

$$YR1 = £S1$$
 $yr1 = £(-0.3)$ $YR1 = -1$

Calcular los errores lineales producidos a la salida

$$Eli = YDi - YRi$$

$$EL1 = -1 - (-1)$$

$$EL1 = 0$$

> Calcular el error del patrón

$$EP = \sum |Eli|/Numero\ de\ salidas\ (N)$$

$$EP6 = |EL1|/1$$

$$EP6 = \frac{|0|}{1} \qquad \qquad EP6 = 0$$

$$W(nuevo)11 = W(actual)11 + (\alpha * El1 * X1)$$

$$W11 = 0.6 + (0.1 * 0 * 1)$$

$$W11 = 0.6$$

$$W(nuevo)21 = W(actual)21 + (\alpha * El1 * X2)$$

$$W21 = -0.4 + (0,1*0*2)$$

$$W21 = -0.4$$

$$U(nuevo)i = U(actual)1 + \alpha * El1 * Xo(1)$$

$$U1 = 0, 1 + (0, 1 * 0 * 1)$$

$$U1 = 0, 1$$

W1	W2
0.6	-0.4

CALCULAR EL ERROR RMS O ERROR DE LA ITERACIÓN

$$Error\ RMS = \sum Ep/P$$

$$ERMS = (0+0+0+0+0+0)/6$$

ERMS=0 iteración No 4

ERMS<=Error máximo permitido

0 < 0.1

SE CUMPLE EN LA CUARTA ITERACION, PARAMOS EL ENTRENAMIENTO Y GUARDAMOS LOS PESOS FINALES COMO OPTIMOS DE FORMA PERMANENTE

W1	W2
0.6	-0.4

U	
0.1	