

Sistemas Operacionais

Introdução - Arquiteturas de SOs

Prof. Carlos Maziero

DInf UFPR, Curitiba PR

Fevereiro de 2019

Conteúdo

- 1 Sistemas monolíticos
- 2 Sistemas micronúcleo
- 3 Sistemas em camadas
- 4 Sistemas híbridos
- 5 Arquiteturas avançadas
 - Máquinas virtuais
 - Contêineres
 - Sistemas exonúcleo
 - Sistemas uninúcleo

Arquiteturas de SOs

Arquitetura

Forma organizar as várias partes do sistema operacional

Aspectos a considerar:

- Separação entre núcleo e userspace
- Modularização
- desempenho
- segurança

Sistemas monolíticos

Mónos (único) + Líthos (pedra) = um bloco único

Todos os componentes do núcleo em modo privilegiado

Não existem restrições de acesso entre componentes

Vantagens: desempenho, tamanho

Desvantagens: complexidade, fragilidade

Sistemas monolíticos

Exemplo: núcleo Linux

© 2007-2009 Constantine Shulyupin http://www.MakeLinux.net/kernel/diagram

Sistemas micro-núcleo

O núcleo implementa:

- espaços de memória protegidos
- atividade (thread, ...)
- comunicação entre atividades

Ficam fora do núcleo:

- políticas de escalonamento
- políticas de uso de memória
- sistemas de arquivos
- protocolos de rede

Vantagens: estabilidade, modularidade Desvantagens: baixo desempenho

8/18

Sistemas micro-núcleo - Minix 3

Sistemas em camadas

Características gerais:

- Camada inferior: interface com o hardware
- Camadas intermediárias: abstração e gerência
- Camada superior: define as chamadas de sistema

Parcialmente usado na prática:

- *HAL Hardware Abstraction Layer* do Windows
- Sub-sistemas de arquivos e de rede (modelo OSI)

Sistemas híbridos

Misturam características dos anteriores:

- Monolítico
- Micronúcleo
- em camadas

A majoria dos sistemas atuais é híbrida.

Sistemas híbridos - Windows 2000

Máquinas virtuais

Um ambiente de máquina virtual consiste de três partes:

Host: contém os recursos reais de hardware e software

Guest: que executa sobre o sistema virtualizado

Hypervisor: constrói a interface virtual a partir do sistema real

Máquinas virtuais

Famílias de hipervisores

Quanto ao ambiente provido:

HV de aplicação : suporta aplicação convidada (Java, C#)

HV de sistema : suporta SOs convidados (VMWare, VirtualBox)

Quanto ao suporte de execução:

HV nativo : executa diretamente sobre o hardware (Xen)

HV convidado : executa sobre um SO hospedeiro (*VirtualBox*)

Contêineres

Virtualização do espaço de usuário:

- Espaço de usuário dividido em domínios isolados
- Cada contêiner tem seus próprios recursos
 - usuários, processos, semáforos
 - árvores de diretórios e arquivos
 - interface de rede
- Cada contêiner tem seus próprios namespaces
 - UID, PID, IP, ports, ...
- Contêineres compartilham o mesmo núcleo

Exemplos: FreeBSD Jails, Linux Containers (LXC), Docker

Contêineres

Interações e migrações entre domínios são proibidas.

Sistemas exonúcleo

SO dividido em: Micronúcleo + Biblioteca de serviços

Sistemas uninúcleo

Núcleo, serviços e aplicação executam em modo privilegiado Usado em *appliances* para computação em nuvem (CloudOS)

