Bài tập môn : Toán học tính toán, Toán kinh tế

Đối tượng : Lớp TH, IT, LGT

Công cụ tính : MATLAB, Mathematica, Python, Máy tính bổ túi

Thời gian : 30 giờ

(1) Giải các phương trình sau bằng **phương pháp Newton**: tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp:

1.
$$x^3 + 2x = 4, x \in [1, 3]$$

3. $xe^x = 5, x \in [1, 3]$

4.
$$x(e^x + x) = 6, x \in [1, 2]$$

6. $x^2 = e^x + 2$, $x \in [-5, 0]$

4.
$$x(e^x + x) = 6, x \in [1, 2]$$
 7. $x \ln x + 2^x = 5, x \in [1, 4]$

2.
$$x^3 + \sin x = 2, x \in [0, 2]$$

2.
$$x^3 + \sin x = 2, x \in [0, 2]$$
 5. $2^x + \sqrt[3]{x^2 + 1} = 5, x \in [1, 5]$

8.
$$x^3 + \ln x = 3$$
, $x \in [1, 4]$

(2) Giải các phương trình sau bằng **phương pháp điểm bất động (lặp đơn)** với xấp xỉ ban đầu cho trước: tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp:

9.
$$x = \sqrt[5]{32 - x}, x \in [0, 10]$$

9.
$$x = \sqrt[5]{32 - x}, x \in [0, 10]$$
 12. $x = \frac{x^4 + \sin x - 1}{10}, x \in \frac{15.}{[2, 5]}$ **15.** $x^2 - 10 \lg x - 3 = 0, x \in \frac{15.}{[2, 5]}$

10.
$$x = \sqrt{2 - \sin x}, \ x \in [0, 2]$$

$$[-1, 1]$$

11.
$$x = \frac{x \sin x + \cos x}{2}, x \in \begin{bmatrix} 13. & x + \lg x = 2, & x \in [1, 4] \\ 14. & x^5 - x - 1 = 0, & x \in [1, 3] \end{bmatrix}$$
 16. $2x = e^{\sin x}, & x \in [0, 3]$

13.
$$x + \lg x = 2, x \in [1, 4]$$

16
$$2y - e^{\sin x}$$
 $y \in [0, 3]$

(3) Trình bày các phương pháp tìm đa thức nội suy của hàm số có giá trị cho trong bảng:

17.
$$\begin{array}{c|cccc} x & -2 & 1 \\ \hline y & 8 & -1 \\ \end{array}$$

(4) Trình bày các phương pháp tìm đa thức nội suy của hàm số tại các mốc nội suy cho trước:

21.
$$y = 2^x \text{ tại } -1, 1, 3$$

23.
$$y = \ln(x^2 + 1) \tan 0, 0.5, 1, 2$$

22.
$$y = \sin x \, \text{tai } 0, \frac{\pi}{2}, \pi$$

24.
$$y = \arctan x \, \text{tai} \, -1, 0, 1, 2, 3$$

(5) Cho hàm số f(x) dưới dạng bảng. Bằng công thức sai phân tiến, tính gần đúng f'(x) tại các giá trị xtrong bảng:

25.
$$\begin{array}{c|cccc} x & 0.5 & 0.6 & 0.7 \\ \hline f(x) & 0.479 & 0.565 & 0.644 \end{array}$$

25.
$$x$$
0.50.60.7 $f(x)$ 0.4790.5650.644

26. x 1.11.21.31.4 $f(x)$ 9.0311.0213.4616.44

(6) Cho hàm số f(x) dưới dạng bảng. Bằng công thức ba điểm, tính gần đúng f'(x) tại các giá trị x trong bảng:

28.
$$\begin{array}{c|cccc} x & 0.0 & 0.2 & 0.4 \\ \hline f(x) & 0.00 & 0.74 & 1.37 \end{array}$$

(7) Cho hàm số f(x) dưới dạng bảng. Bằng công thức ba điểm, tính gần đúng f''(x) tại các giá trị x trong bảng.

31.
$$\begin{array}{c|cccc} x & -0.3 & -0.1 & 0.1 \\ \hline f(x) & 1.95 & 2.04 & 2.06 \end{array}$$

33.
$$x$$
 1.05 1.10 1.15 1.20 1.25 1.30 $f(x)$ -1.71 -1.37 -1.12 -0.92 -0.75 -0.60

(8) Cho hàm số f (x) dưới dạng bảng. Dùng công thức hình thang và công thức Simpson, tính gần đúng $\int^{D} f(x) dx$:

36.
$$x = -0.5 = -0.3 = -0.1 = 0.1 = 0.3 = 0.5 = 0.7 = 0.9 = 1.1 = 1.3 = 1.5 = 1.7 = 1.9 = b$$
 $f(x) = 0.56 = 0.23 = 0.03 = 0.03 = 0.28 = 0.78 = 1.45 = 2.24 = 3.09 = 3.92 = 4.71 = 5.42 = 6.03$

(9) Bằng phương pháp hình thang, với số khoảng chia đều n, tính gần đúng các tích phân và đánh giá sai số:

37.
$$\int_{-\infty}^{\infty} x \ln x \, dx$$
, $n = 4$

38.
$$\int_0^2 \frac{2}{x^2 + 4} dx, \quad n = 6$$

37.
$$\int_{1}^{2} x \ln x \, dx$$
, $n = 4$ **38.** $\int_{0}^{2} \frac{2}{x^{2} + 4} dx$, $n = 6$ **39.** $\int_{0}^{2} e^{2x} \sin 3x \, dx$, $n = 8$

(10) Bằng phương pháp Simpson, với số khoảng chia đều 2n, tính gần đúng các tích phân và đánh giá sai số:

40.
$$\int_{-0.5}^{0.5} \cos^2 x \, dx, \quad 2n = 4$$

41.
$$\int_{-0.5}^{0.5} x \ln(x+1) dx, \quad 2n = 6$$

42.
$$\int_{0.75}^{1.75} \left(\sin^2 x - 2x \sin x + 1 \right) dx, \quad 2n = 8$$

ig(11ig) Giải gần đúng bài toán giá trị ban đầu của phương trình vi phân bằng phương pháp Euler hiện:

43.
$$y' = xe^{3x} - 2y$$
, $0 \le x \le 1$, $y(0) = 0$, $h = 0.5$

44.
$$y' = 1 + (x - y)^2$$
, $2 < x < 3$, $y(2) = 1$, $h = 0.25$

45.
$$y' = 1 + \frac{y}{t}$$
, $1 \le t \le 2$, $y(1) = 2$, $h = 0.2$

ig(12ig) Giải gần đúng bài toán giá trị ban đầu của hệ phương trình vi phân cấp một bằng phương pháp Euler

46.
$$\begin{cases} y' = 3y + 2z - (2x^2 + 1) e^{2x} \\ z' = 4y + z + (x^2 + 2x - 4) e^{2x} \end{cases}, \quad \begin{cases} y(0) = 1 \\ z(0) = 1 \end{cases}, \quad 0 \le x \le 1, \quad h = 0.2 \end{cases}$$

47.
$$\begin{cases} y_1' = -4y_1 - 2y_2 + \cos x + 4\sin x \\ y_2' = 3y_1 + y_2 - 3\sin x \end{cases}, \quad \begin{cases} y_1(0) = 0 \\ y_2(0) = -1 \end{cases}, \quad 0 \le x \le 2, \quad h = 0.5 \end{cases}$$

48.
$$\begin{cases} y' = z \\ z' = -y - 2e^{t} + 1 \\ u' = -y - e^{t} + 1 \end{cases}, \begin{cases} y(0) = 1 \\ z(0) = 0 \\ u(0) = 1 \end{cases}, 0 \le t \le 2, h = 0.4$$

(13) Giải gần đúng bài toán giá trị ban đầu của phương trình vi phân cấp cao bằng phương pháp Euler hiện:

49.
$$y'' - 2y' + y = xe^x - x$$
, $0 \le x \le 1$, $y(0) = y'(0) = 0$, $h = 0.5$

50.
$$x^2y'' - 2xy' + 2y = x^3 \ln x$$
, $1 \le x \le 2$, $y(1) = 1$, $y'(1) = 0$, $h = 0.2$

51.
$$y''' + 2y'' - y' - 2y = 2^t$$
, $0 \le t \le 3$, $y(0) = 1$, $y'(0) = 2$, $y''(0) = 0$, $h = 0.3$

(14) Giải gần đúng bài toán giá trị ban đầu của phương trình vi phân bằng phương pháp Runge – Kutta bậc bốn:

52.
$$y' = e^{x-y}$$
, $0 \le x \le 1$, $y(0) = 1$, $h = 0.5$

53.
$$y' = \frac{1+x}{1+y}$$
, $1 \le x \le 2$, $y(1) = 2$, $h = 0.25$

54.
$$y' = -y + t\sqrt{y}$$
, $2 \le t \le 3$, $y(2) = 2$, $h = 0.2$

(15) Giải gần đúng bài toán giá trị ban đầu của hệ phương trình vi phân cấp một bằng phương pháp Runge – Kutta bâc bốn:

55.
$$\begin{cases} y' = y - z + 2 \\ z' = -y + z + 4x \end{cases}, \begin{cases} y(0) = -1 \\ z(0) = 0 \end{cases}, 0 \le x \le 1, h = 0.2$$

56.
$$\begin{cases} y_1' = \frac{1}{9}y_1 - \frac{2}{3}y_2 - \frac{1}{9}x^2 + \frac{2}{3} \\ y_2' = y_2 + 3x - 4 \end{cases}, \quad \begin{cases} y_1(0) = -3 \\ y_2(0) = 5 \end{cases}, \quad 0 \le t \le 2, \quad h = 0.5 \end{cases}$$

57.
$$\begin{cases} y' = y + 2z - 2u + e^{-t} \\ z' = z + u - 2e^{-t} \\ u' = y + 2z + e^{-t} \end{cases}$$
,
$$\begin{cases} y(0) = 3 \\ z(0) = -1 \\ u(0) = 1 \end{cases}$$
, $0 \le t \le 1$, $h = 0.1$

(16) Giải gần đúng bài toán giá trị ban đầu của phương trình vi phân cấp cao bằng phương pháp Runge – Kutta bậc bốn:

58.
$$y'' - 3y' + 2y = 6e^{-x}$$
, $0 < x < 1$, $y(0) = y'(0) = 2$, $h = 0.25$

59.
$$x^2y'' + xy' - 4y = -3x$$
, $1 < x < 3$, $y(1) = 4$, $y'(1) = 3$, $h = 0.4$

60.
$$v''' + v'' - 4v' - 4v = 0$$
, $0 < t < 2$, $v(0) = 3$, $v'(0) = -1$, $v''(0) = 9$, $h = 0.3$

(17) Giải gần đúng hệ phương trình bằng phương pháp lặp điểm bất động (lặp đơn): tìm nghiệm gần đúng và sai số tương ứng sau k bước:

61.
$$\begin{cases} x_1 = -0.04x_1 + 0.05x_2 + 3.17 \\ x_2 = -0.19x_1 + 0.14x_2 - 0.41 \end{cases}, \quad x^{(0)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad k = 5$$

62.
$$\begin{cases} x_1 = 0.15x_1 - 0.11x_2 - 0.01x_3 + 3.54 \\ x_2 = -0.265x_1 + 0.1x_2 + 0.215x_3 - 1.16, & x^{(0)} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, & k = 4 \end{cases}$$

63.
$$\begin{cases} x = 0.15x - 0.205y - 0.155z + 0.155t - 0.63 \\ y = -0.01x + 0.08y + 0.18t + 0.68 \\ z = 0.055x + 0.05z - 0.115t - 2.27 \\ t = -0.045x - 0.21y - 0.01z - 0.08t - 2.11 \end{cases} \begin{cases} x_0 = -4 \\ y_0 = 0 \\ z_0 = -3 \\ t_0 = -1 \end{cases}, \quad k = 3$$

(18) Giải gần đúng hệ phương trình theo công thức lặp Gauss – Seidel: tìm nghiệm gần đúng và đánh giá khoảng cách giữa hai nghiệm gần đúng liên tiếp sau k bước:

64.
$$\begin{cases} x_1 = 0.28x_1 - 0.05x_2 - 1.7 \\ x_2 = 0.36x_1 - 0.26x_2 + 3.9 \end{cases}, \quad x^{(0)} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \quad k = 4$$

65.
$$\begin{cases} x = -0.295x - 0.215y + 0.21z + 4.76 \\ y = 0.255x + 0.13y - 0.01z + 3.16 \\ z = 0.055x + 0.1y - 0.095z + 3.52 \end{cases} \begin{cases} x_0 = 2 \\ y_0 = 4 \\ z_0 = 1 \end{cases}$$

(19) Giải gần đúng hệ chéo trội bằng phương pháp lặp điểm bất động (lặp đơn): tìm nghiệm gần đúng sau 3 bước:

66.
$$\begin{cases} 2x + 0.7y = -1.2 \\ 1.9x - 3.1y = 2.5 \end{cases}, \begin{cases} x_0 = -2 \\ y_0 = 0 \end{cases}, k = 5$$

67.
$$\begin{cases} 6x_1 + x_2 - x_3 = 1 \\ 2x_1 - 7x_2 + x_3 = -2 \\ x_1 + x_2 + 5x_3 = 3 \end{cases}$$
, $k = 4$

68.
$$\begin{cases} 7.2x_1 - x_2 + 1.2x_3 & = 2 \\ x_1 + 12x_2 - x_3 + 3.2x_4 = -1 \\ -1.4x_1 - 2x_2 + 14x_3 + 2.1x_4 = 0 \\ 2x_1 - x_2 + 3x_3 - 17x_4 = 3 \end{cases}, \quad x^{(0)} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \quad k = 2$$

(20) Giải gần đúng hệ chéo trội theo công thức lặp Gauss – Seidel: tìm nghiệm gần đúng sau 3 bước:

69.
$$\begin{cases} 2.5x_1 + 0.9x_2 = 3.4 \\ x_1 + 2.8x_2 = -0.6 \end{cases}, \quad x^{(0)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad k = 5$$

70.
$$\begin{cases} 4.1x + y - z = 0 \\ 2x - 10y + 3z = -2 \\ 1.3x - 3y + 7z = 1.5 \end{cases} \begin{cases} x_0 = -1 \\ y_0 = 1 \\ z_0 = 0 \end{cases}$$

(21) Tìm xấp xỉ của hàm số y = f(x) có giá trị cho trong bảng bởi không gian hàm có cơ sở cho trước và đánh giá sai số:

(22) Tìm xấp xỉ của hàm số y = f(x) bởi không gian hàm có cơ sở cho trước và đánh giá sai số:

Nguyễn Đức Thịnh 4 thinhnd@huce.edu.vn

75. $y = e^{\sin x}$, $x \in [-1, 1]$, bởi đa thức bậc nhất **77.** $y = \sin x$, $x \in [0, 1]$, $\{1, x, e^x\}$

76. $y = e^x$, $x \in [0, 2]$, bởi đa thức bậc 2 **78.** y = |1 - x|, $x \in [0, 2]$, $\{1, \cos x, \sin x\}$

②3) Giải gần đúng hệ phương trình bằng phương pháp Newton–Raphson: tìm nghiệm gần đúng đánh giá $\| {m x}^{(k)} - {m x}^{(k-1)} \|_{\infty}$ sau 5 bước

79.
$$\begin{cases} 4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 + 8 & = 0 \\ \frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 + 8 = 0 \end{cases}, \quad \boldsymbol{x}^{(0)} = \boldsymbol{0}.$$

80.
$$\begin{cases} 5x_1^2 - x_2^2 & = & 0 \\ x_2 - 0.25 (\sin x_1 + \cos x_2) & = & 0 \end{cases} \quad \boldsymbol{x}^{(0)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

81.
$$\begin{cases} x_1^3 + x_1^2 x_2 - x_1 x_3 + 6 &= 0 \\ e^{x_1} + e^{x_2} - x_3 &= 0 \\ x_2^2 - 2x_1 x_3 &= 4 \end{cases}$$
 x⁽⁰⁾ =
$$\begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$$

Q4) Giải gần đúng hệ phương trình bằng phương pháp lặp điểm bất động: tìm nghiệm gần đúng đánh giá $\| \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)} \|_{\infty}$ sau 5 bước.

82.
$$\begin{cases} x_1 = \frac{x_2}{2} \\ x_2 = \frac{\sin x_1 + \cos x_2}{4} \end{cases}, \quad \mathbf{x}^{(0)} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$
83.
$$\begin{cases} x_1 = \frac{13 - x_2^2 + 4x^3}{15} \\ x_2 = \frac{11 + x_3 - x_1^2}{10} \\ x_3 = \frac{22 + x_2^3}{25} \end{cases}, \quad \mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 1.5 \end{bmatrix}$$

84.
$$\begin{cases} x_1 = 1 - \cos(x_1 x_2 x_3) \\ x_2 = 1 - \sqrt[4]{1 - x_1} - 0.05 x_3^2 + 0.15 x_3 \\ x_3 = x_1^2 + 0.1 x_2^2 - 0.01 x_2 + 1 \end{cases} \quad \boldsymbol{x}^{(0)} = \begin{bmatrix} -0.1 \\ 0.3 \\ 0.5 \end{bmatrix}$$

25) Giải bài toán tối ưu một biến bằng phương pháp Newton: tìm nghiệm tối ưu và giá trị tối ưu sau 5 bước lăp.

85.
$$\min_{x \in [0,3]} \left(1.6x^6 + 3x^4 - 10x \right), \quad x_0 = 2$$
 86. $\min_{x \in [-1,3]} \left(\frac{\left(x^2 + 5\right)^2}{15} + e^x - 5 \right), \quad x_0 = 2$

87.
$$\min_{x \in [-1, -0.1]} \left(0.65 - \frac{0.75}{1 + x^2} - 0.5 \arctan \frac{1}{x} \right), \quad x_0 = -0.1$$

26 Giải bài toán tối ưu nhiều biến bằng phương pháp Newton: tìm nghiệm tối ưu và giá trị tối ưu sau 5 bước lặp.

88.

89.

90.

(27) Giải gần đúng phương trình đạo hàm riêng trên miền G với điều kiện biên $u(x,y)|_{\partial G}$ và lưới (x_i,y_j) cho trước:

91.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, $G = [0, 0.4] \times [0, 0.6]$, $u(x, y)|_{\partial G} = x^2 y^2$, $x_i = 0.1i$, $y_j = 0.2j$