```
In [1]: import matplotlib as mp1
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
from _future_ import print_function
print(plt.style.available)
mpl.style.use(['ggplot'])

['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-gallery-nogrid', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-v0_8', 'seaborn-v0_8-bright', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-mut
ed', 'seaborn-v0_8-notebook', 'seaborn-v0_8-paper', 'seaborn-v0_8-paser', 'seaborn-v0_8-ticks', 'seaborn-v0_8-ticks', 'seaborn-v0_8-white', 'seaborn-v0_8-whi
```

ed', 'seaborn-v0_8-notebook', 'seaborn-v0_8-paper', 'seaborn-v0_8-pastel', 'seaborn-v0_8-talk', 'seaborn-v0_8-ticks', 'seaborn-v0_8-white', 'seaborn-v0_8-white', 'seaborn-v0_8-ticks', 'seaborn-v0_8-

)

In [5]: rc.describe(include = 'all')

Out[5]:

:		id	satisfaction_v2	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	 Seat comfort	Inflight entertainment	On-board service	Leg roo servic
	count	129880.000000	129880	129880	129880	129880.000000	129880	129880	129880.000000	129880.000000	129880.000000	 129880.000000	129880.000000	129880.000000	129880.00000
u	ınique	NaN	2	2	2	NaN	2	3	NaN	NaN	NaN	 NaN	NaN	NaN	Na
	top	NaN	neutral or dissatisfied	Female	Loyal Customer	NaN	Business travel	Business	NaN	NaN	NaN	 NaN	NaN	NaN	Na
	freq	NaN	73452	65899	106100	NaN	89693	62160	NaN	NaN	NaN	 NaN	NaN	NaN	Na
	mean	64940.500000	NaN	NaN	NaN	39.427957	NaN	NaN	1190.316392	2.728696	3.057599	 3.441361	3.358077	3.383023	3.35087
	std	37493.270818	NaN	NaN	NaN	15.119360	NaN	NaN	997.452477	1.329340	1.526741	 1.319289	1.334049	1.287099	1.31625
	min	1.000000	NaN	NaN	NaN	7.000000	NaN	NaN	31.000000	0.000000	0.000000	 0.000000	0.000000	0.000000	0.00000
	25%	32470.750000	NaN	NaN	NaN	27.000000	NaN	NaN	414.000000	2.000000	2.000000	 2.000000	2.000000	2.000000	2.00000
	50%	64940.500000	NaN	NaN	NaN	40.000000	NaN	NaN	844.000000	3.000000	3.000000	 4.000000	4.000000	4.000000	4.00000
	75%	97410.250000	NaN	NaN	NaN	51.000000	NaN	NaN	1744.000000	4.000000	4.000000	 5.000000	4.000000	4.000000	4.00000
	max	129880.000000	NaN	NaN	NaN	85.000000	NaN	NaN	4983.000000	5.000000	5.000000	 5.000000	5.000000	5.000000	5.00000

11 rows × 24 columns

```
In [17]: sns.set(font_scale=1)
    sns.countplot(data=rc,x="satisfaction_v2")
```

Out[17]: <Axes: xlabel='satisfaction_v2', ylabel='count'>


```
In [6]: features = list(np.delete(rc.columns, [0,1,2,3,4,5,6,7,22,23]))
In [7]: features
Out[7]: ['Inflight wifi service',
    'Departure/Arrival time convenient',
    'Ease of Online booking',
    'Gate location',
    'Food and drink',
```

'Gate location',
'Food and drink',
'Online boarding',
'Seat comfort',
'Inflight entertainment',
'On-board service',
'Leg room service',
'Baggage handling',
'Checkin service',
'Inflight service',
'Inflight service',
'Cleanliness'

In [9]: mdf

```
satisfaction_v2
                                                        feature value
                      0
                                  satisfied Inflight wifi service
                                                                       0
                     1
                                 satisfied Inflight wifi service
                                                                       0
                      2
                                  satisfied Inflight wifi service
                                  satisfied Inflight wifi service
                      4
                                  satisfied Inflight wifi service
              1818315
                                  satisfied
                                                     Cleanliness
                                                                       4
                                               Cleanliness
              1818316
                                 satisfied
              1818317
                                  satisfied
                                                     Cleanliness
              1818318
                                  satisfied
                                                    Cleanliness
              1818319
                                  satisfied
                                                     Cleanliness
              1818320 rows × 3 columns
 In [36]: plt.figure(figsize=(12,3))
              satisfaction_v2",
sas.set[cont_scale=.6]
ax = sns.boxplot(x="feature", y="value", hue="satisfaction_v2", data=mdf)
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, horizontalalignment='right')
Text(12, 0, 'Inflight service'),
Text(13, 0, 'Cleanliness')]
               value
 In [21]: variables = ['Age','Flight Distance','Departure Delay in Minutes','Arrival Delay in Minutes']
 In [38]: sns.set(font_scale=.6)
              fig, axs = plt.subplots(nrows=2, ncols=2)
i = j = 0
for variable in variables:
    g = sns.histplot(data = rc
                               ,x = variable
,alpha = .7
,bins = 20
,hue = 'satisfaction_v2'
                               ,ax=axs[i][j])
                   j += 1
if i>0:
                    g.set(yscale="log")
if j>1:
    i += 1; j = 0
                  7000
                                                                   14000
                 6000
                  5000
                                                                   10000
               # 4000
                                                                   8000
                  3000
                                                                   6000
                 2000
                  1000
                                                                   2000
                                                  60
                                                            80
                                                                                                3000
                                                                                                       4000
                                                                                                               5000
                  10<sup>5</sup>
                                                                    10<sup>5</sup>
                  10<sup>4</sup>
                                                                    10<sup>4</sup>
               Count
                   10<sup>2</sup>
                   10<sup>1</sup>
                                 500 750 1000 1250 1500
Departure Delay in Minutes
                                                                               250
                                                                                    500 750 1000 1250 1500
 In [13]: features_cat = ['Gender','Customer Type','Type of Travel','Class']
 In [37]: sns.set(font_scale=.6)
              fig, axs = plt.subplots(nrows=2, ncols=2)
i = j = 0
for feature in features_cat:
                    \label{eq:gamma} $g = sns.countplot(data=rc, x=feature, hue="satisfaction_v2", ax=axs[i][j]) $j += 1$
```

```
30000
                                                                   40000
                 20000
                                                     Female
                                                                                                   Loyal Customer
                                                                                                  neutral or dissatisfied
                 40000
                 30000
                 10000
In [112... from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
              from sklearn import tree
              {\bf from} \ {\tt sklearn.metrics} \ {\bf import} \ {\tt confusion\_matrix}, \ {\tt ConfusionMatrixDisplay}
In [58]: features_dummy = pd.get_dummies(rc[features_cat])
features_dummy = features_dummy.drop(features_dummy.columns[[0,3,5,6]],axis = 1)
In [90]: #all features for model
              model_features = pd.concat(
   [rc[features],rc[variables],features_dummy],
   axis=1
In [88]: model_features.isna().sum(axis = 0)
Out[88]: Inflight wifi service
              Departure/Arrival time convenient
Ease of Online booking
              Gate location
              Food and drink
Online boarding
              Seat comfort
              Inflight entertainment On-board service
              Leg room service
              Baggage handling
Checkin service
Inflight service
              Cleanliness
              Age
Flight Distance
              Departure Delay in Minutes
              Arrival Delay in Minutes
Gender_Male
                                                                   393
              Customer Type Loval Customer
              Type of Travel_Business travel
Class_Eco
Class_Eco Plus
              dtype: int64
In [93]: X = model_features[model_features["Arrival Delay in Minutes"].notnull()]
             y = rc.satisfaction_v2[model_features["Arrival Delay in Minutes"].notnull()]
In [94]: # Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
In [95]: # Create Decision Tree classifer object
    clf = DecisionTreeClassifier()
              # Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)
              #Predict the response for test dataset
              y_pred = clf.predict(X_test)
In [119... clf.classes
Out[119]: array(['neutral or dissatisfied', 'satisfied'], dtype=object)
In [96]: # Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
In [122... y_test
Out[122]: 9718
85580
                             neutral or dissatisfied
                             neutral or dissatisfied
               108838
                                              satisfied
               89646
                                                 satisfied
               27209
                             neutral or dissatisfied
                                satisfied
               94510
                                                 satisfied
satisfied
               91587
               115428
                                                 satisfied
               14489 neutral or dissatisfied
Name: satisfaction_v2, Length: 38847, dtype: object
In [132... sns.reset orig()
              sns.reset_orig()
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(cm,display_labels=clf.classes_)
disp = disp.plot(include_values=True, cmap='Blues', ax=None, xticks_rotation='horizontal')
```

if j>1:
 i += 1; j = 0


```
In [134... #Feature Importance
    importances=olf.feature_importances_
    features = X.columns.values.tolist()
    importances = clf.feature_importances_
    indices = np.argsort(importances)

plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```

