TESSA

Text Emotion System Sentiment Analysis

CSC 44800: Artificial Intelligence

Professor: Yunhua Zhao

FALL 2023

Georgios Ioannou Meng Wai Chan Farhanul Thouship

Introduction

Georgios Ioannou

Computer Science

CUNY City College of New York

Meng Wai Chan

Computer Science

CUNY City College of New York

Farhanul Thouship

Computer Science

CUNY City College of New York

Goal

Interpreting human emotions is hard, even for us humans!

So, can we interpret human emotions on machines with reasonable accuracy?

Action

Interpret a user's human emotion from text using Machine Learning!

Interpret the six universal expressions!

02

Goal

1. IDENTIFY USE CASES:

- Acting
- Social Media Postings
- Text Messages
- Customer Service
- Product Feedback
- Market Research
- Interview Essay Questions
- Human-Robot Interaction

02

Goal

2. EXPLORE AND IMPLEMENT SOLUTIONS

Particularly, we chose to solve the sub-problem

• Actors practicing: Emotion detection can be used to provide real-time feedback on an actor's performance.

03

USER SCENARIO 1

Prompts user with:

A text input field

Classify Button:

- Take user input text
- Send input text to the model
- Return the emotion from the user input text

USER SCENARIOS

USER SCENARIO 2

Prompts user with:

 Emotion/Expression to convey

Record Button:

- Taking actor's voice
- Send it to a pre trained speech to text model

Classify Button:

- Take text from pretrained model
- Send that text to the model
- Return the emotion from the actor's text

- Classification Problem
- 6 emotion values (classes)
 - Anger, Fear, Joy, Love, Sadness, Surprise
- **Training data** = 16,000 unique text documents (rows)
- **Validation data** = 2,000 unique text documents (rows)
- **Testing data** = 2,000 unique text documents (rows)
- Sourced posts from Twitter API
- Main dataset: https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp
- Supplementary datasets to preserve class balances:
 - https://www.kaggle.com/datasets/shivamb/go-emotions-google-emotions-dataset
 - https://huggingface.co/datasets/dair-ai/emotion

Solution

Solution

Models to try:

- I. LSTM
- 2. CNN
- 3. MultinomialNB
- 4. SVM
- 5. Logistic Regression
- 6. Decision Tree
- 7. Random Forest
- 8. XGBoost

<u>Training/Testing/Validation Technique:</u>

- 1. k-fold Cross-Validation
 - k = 10

Technologies That May Be Utilized

- 1. Tensorflow
- 2. Pytorch
- 3. Keras
- . NLTK
- SciKit-Learn
- S. Numpy
- . Pandas
- 8. Imbalanced-Learn
- 9. Plotly
- 10. Matplotlib
- Seaborn
- 12. Jupyter Notebook
- 13. Python
- 14. Flask
- 15. Streamlit
- 16. Hugging Face
- 17. HTML
- 18. CSS
- 19. JavaScript
- 20. Git
- 21. GitHub

Questions & Answers

Connect with us on LinkedIn!

