# Chapter 4

# **Electrophilic Addition Reactions**

# 亲电加成反应

addition reaction
$$CH_{3}-CH=CH_{2} \xrightarrow{HBr} CH_{3}-CH-CH_{2}$$

$$NaOH/C_{2}H_{5}OH Br H$$
elimination reaction
$$Qiong Li$$

$$May 6, 2024$$

# Reactions of carbonyl group

### Wolff-Kishner-Huang Reduction

### Synthesis of a Hydrazone

### **Beckmann Rearmament**

$$\frac{\text{NH}_2\text{OH}}{\text{NH}_2\text{OH}} \qquad \frac{\text{NOH}}{\text{H}^2} \qquad \frac{\text{H}_2\text{SO}_4}{\text{H}_2\text{SO}_4} \qquad \frac{\text{NH}(\text{CH}_2)_6 \ddot{\text{C}}_{\text{In}}^{\text{OH}}}{\text{Qiong Li}}$$

### **Addition Reaction**

### **Electrophilic Addition**

$$C = C \left( \begin{array}{ccc} E^{+} & E \rightarrow C - C \oplus & \begin{array}{ccc} N^{-} & E \rightarrow C - C - N \end{array} \right)$$

### **Nucleophilic Addition**

$$c=0$$
  $Nu^{-}$   $Nu-c-0$   $Nu-c-0$ 

### **Free Radical Addition**

$$c = c \xrightarrow{X_{\bullet}} x - c - c \xrightarrow{H-X} x - c - c - H$$
Qiong Li

### The $\pi$ electron cloud of alkene





# The $\pi$ electron cloud of alkyne $E^+$ (electrophile) $\pi$ electron cloud H C $\pi$ bond $\sigma$ bond Qiong Li

# 4.1 General Equation









- **Electron-rich**
- 1. Electron-deficient or positively charged
- 2. Lewis base
- 2. Lewis acid
- 3. To be oxidized 3. To be reduced
- Nucleophile
- electrophile

### E<sup>+</sup> (electrophile)

Electrophiles: Electron-deficient species. Bronsted acid(H<sup>+</sup>) or Lewis acid

# 4.2 Reactivity

Effect of substrates on reaction activity

Electro-donating groups increase the reactivity of a C=C toward electrophilic addition, and electro-withdrawing groups decrease it.

$$(CH_3)_2C=CH_2 > CH_3CH=CHCH_3 > CH_3CH=CH_2 > CH_2=CH_2$$

Methyl is inductively donating, and hyper conjugative donating

What is the Electro-donating group?

**Inductive donating and conjugative donating** 

# **Electrophilic Addition Exercise**

Which one is faster towards electrophilic addition reaction?



Rank the following compounds in order of decreasing reactivity toward electrophilic addition reaction.

# **Electrophilic Addition Exercise**

Rank the following compounds in order of decreasing reactivity toward electrophilic addition reaction.

Compare the relative rates of hydration reactions of the following compounds at 25 °C in a solution of 3.5 mol/L HClO<sub>4</sub>.

$$O_2N$$
 $H_3CO$ 
Qiong Li

**Electron-rich** 

# 4.3 Mechanism-1 (BrØnsted acid as E<sup>+</sup>)

 $4.3.1 A_E + A_N (A_H + A_N)$  mechanism

**Carbocation Intermediate** 



 $\pi$ -bond of the substrate: BrØnsted base, Nucleophile, To be oxidized

E<sup>+</sup>: BrØnsted acid(H<sup>+</sup>), Electrophile, To be reduced

Rate-determining step (RDS): Step 1 the formation of carbocation intermediate

**Intermediate: carbocation** Qiong Li



### A. Reactions that undergo $A_H+A_N$ mechanism.(Carbocation Intermediate)

H OSO<sub>3</sub>H 
$$H_2$$
SO<sub>4</sub>  $H^+$  TOSO<sub>3</sub>H  $H^+$   $H^+$ 



### B. Regioselectivity: Markovnikov's Rule (1865)



Vladimir Vasilevich Markovnikov

$$CH_3$$
  $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_4$   $CH_5$   $CH_5$ 

### Why Markovnikov's Rule?



Reaction coordinate --->

### 1. From the stability of the carbocation intermediate



### 2. From the structure of the substrate



### Determine the regioselectivity of the following reactions

$$\left[\begin{array}{c} \downarrow \\ \downarrow \\ H \end{array}\right]$$

2. 
$$H_2SO_4$$
 OSO<sub>3</sub>H OSO<sub>3</sub>H R

Qiong Li

### Markovnikov's Rule

the halogen is inductively electron withdrawing(-I), resonance with the lone electron pairs allows the charge to be delocalized

### Alkenes containing strong electron-withdrawing groups may violate Markovnikov's Rule

F<sub>3</sub>C-CH=CH<sub>2</sub> 
$$\xrightarrow{H^+}$$
 F<sub>3</sub>C-CH-CH<sub>2</sub> or F<sub>3</sub>C-CH-CH<sub>2</sub> Qiong Li

### Why Markovnikov's Rule?



1. From the stability of the carbocation intermediate



2. From the structure of the substrate



碳正离子命运-1 The carbocation and the nucleophile combine to form a new σ-bond

### 碳正离子命运-2 Carbocation undergo rearrangement

Driving Force 1 Converts the initial carbocation into a more stable carbocation

Qiong Li

# Driving Force 2 Reduce ring strain

### 碳正离子命运-3 The protons leave to form a double bond

$$H^{+}$$
 $H^{+}$ 
 $H^{+}$ 
 $H^{+}$ 

### Orbital directionality of carbocation rearrangement



### Orbital directionality of carbocation rearrangement





$$R^3$$
 旋转120°  $R^1$  旋转120°  $R^3$   $R^3$ 



orbital forbidden



### **Electrophilic Attack on Conjugated Dienes: Kinetic and Thermodynamic Control**





角鲨烯在H+条件下发生亲电环化反应,生成甾体化合物。(碳正离子本身也是亲电试剂)

### **Exercise 1**

### Draw the complete mechanism for the reactions below

1) 
$$H_3C$$
 $C=CH_2$ 
 $H^+/H_2O$ 
 $CH_2$ 
 $H^+/H_2O$ 

non-classical carbocation

HO 
$$-H^+$$
  $H_2O$   $H_2O$   $H_2O$   $H_2O$   $H_3O$   $H_2O$   $H_3O$   $H_3O$ 

# 4.3.1' Electrophilic Addition of alkynes (了解)





$$\begin{bmatrix} X \\ R \\ H \\ X \\ R \end{bmatrix} \longrightarrow X \\ X \\ R \\ R$$



### 协同的三分子亲电加成机理(了解)

$$R-C\equiv C-H$$
  $\xrightarrow{HX}$   $\xrightarrow{H}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{H}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{H}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{H}$   $\xrightarrow{X^{\circ}}$   $\xrightarrow{X^{$ 



环状镒离子的电子六隅体 和八隅体











 $\pi$ -bond of the substrate: Lewis base, Nucleophile, To be oxidized

 $E^{\delta+}$ : Lewis acid, Electrophile, To be reduced

**Topologies of Addition: anti-addition** 

**Stereospecific and Regiospecific** 

Qiong Li



Qiong Li

环溴鎓离子最初作为立体化学的一种合理解释而提出;但随后就发现了确切的证据。

### Exercise 2

Give mechanisms to account for the stereochemistry of the products observed from the addition of bromine to *cis*- and *trans*-but-2-ene. Why are two products formed from *cis* isomer but only one from the *trans*?



Qiong Li

### ▶Cis -或trans-but-2-ene 加Br<sub>2</sub>的立体化学



$$H_3C$$
 $H_3C$ 
 $H_3C$ 



### A. The Generality of Electrophilic Addition

The bromonium ion can be trapped by other nucleophiles



### Other bromo-containing electrophiles

https://www.bilibili.com/video/BV1iv411P7Ms/?spm\_id\_from=333.337.search-card.all.click&vd\_source=a1de320a334illad841e2e169885958e16

#### B. Regioselectivity when the substrate alkene is unsymmetric



the nucleophile attacks the more highly substituted carbon of the ring, because this carbon is more positively polarized than the other.

Qiong Li

#### Regioselective Opening of the Bromonium Ion Formed from 2-Methylpropene



In general, alkenes can undergo stereo- and regiospecific addition reactions with reagents of the type A-B, in which the A-B bond is polarized such that A acts as the electrophile A+ and B as the nucleophile B-.

| Reagents A-B That Add to Alkenes by Electrophilic Attack |                                                                          |                                                                                             |
|----------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| H C=C CH <sub>3</sub> CH <sub>3</sub>                    | $+ \qquad \qquad ^{\delta^{+}}A - B^{\delta^{-}} \qquad \longrightarrow$ | H CH <sub>3</sub><br>                                                                       |
| Name                                                     | Structure                                                                | Addition product to<br>2-methylpropene                                                      |
| Bromine chloride                                         | :Ër—Ël:                                                                  | :BrCH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub><br>:Cl:                                 |
| Cyanogen bromide                                         | :Br—CN:                                                                  | $: \operatorname{BrCH}_{2}\operatorname{C}(\operatorname{CH}_{3})_{2}$ $\operatorname{CN}:$ |
| Iodine chloride                                          | : <u>ï</u> — <u>Ċ</u> i:                                                 | $: ICH_2C(CH_3)_2$ $: Cl:$                                                                  |
| Sulfenyl chlorides                                       | R <mark>S — Çl</mark> :                                                  | RSCH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub><br>: Cl:                                 |
| Mercuric salts                                           | $XHg$ — $X^a$ , $H\ddot{O}H$                                             | $ \begin{array}{c} \text{XHgCH}_2\text{C}(\text{CH}_3)_2 \\ \text{: OH} \end{array} $       |
| <sup>a</sup> X here denotes acetate.                     | Qiong Li                                                                 |                                                                                             |



Final product: a + c



#### Regiospecific

I, II 优于III, IV

#### **Stereospecific**

anti-addition



和原子半径有关;和电负性有关;

Qiong Li

#### **Exercise 3**

Draw the complete mechanism for the reactions below

$$= CI \xrightarrow{CF_3COOH} CI \xrightarrow{OCOCF_3}$$

$$= CI \xrightarrow{NGP} CI \xrightarrow{CI} OCOCF_3$$

$$CF_3COO$$

## 4.3.2' Ad<sub>E</sub>2 mechanism of alkynes (了解)

$$\frac{Br_2}{CH_2Cl_2}$$
  $\frac{Br}{Br}$   $\frac{Br}{CH_2Cl_2}$   $\frac{Br}{Br}$   $\frac{Br}{Br}$ 

In general, alkenes can undergo stereo- and regiospecific addition reactions with reagents of the type A-B, in which the A-B bond is polarized such that A acts as the electrophile A+ and B as the nucleophile B-.

Reagents A-B That Add to Alkenes by Electrophilic Attack

| H C=C CH <sub>3</sub> +              | $^{\delta^+}A$ — $\mathbf{B}^{\delta^-}$ — | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$     |
|--------------------------------------|--------------------------------------------|-----------------------------------------------------------|
| Name                                 | Structure                                  | Addition product to<br>2-methylpropene                    |
| Bromine chloride                     | :Br—Çl:                                    | $ \begin{array}{c}                                     $  |
| Cyanogen bromide                     | :Br—CN:                                    | BrCH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub><br>CN: |
| Iodine chloride                      | :Ï−Ël:                                     | :                                                         |
| Sulfenyl chlorides                   | RS — Çl:                                   | $ \begin{array}{c}                                     $  |
| Mercuric salts                       | $XHg$ — $X^a$ , $H\ddot{O}H$               | XHgCH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> :OH   |
| <sup>a</sup> X here denotes acetate. |                                            | Qiong Li                                                  |



Greater  $\delta^+$  here  $Br^+$   $(CH_3)_2C-CH_2 + H-OH$ 

Attack at more substituted carbon of bromonium ion

#### 4.3.3 Mechanism of Oxymercuration-Demercuration: A Special Electrophilic Addition

Oxymercuration is anti-stereospecific and regioselective.

#### Oxymercuration

Mercuric acetate

#### **Demercuration**

Alkylmercuric acetate

#### **Step 1. Dissociation**

#### **Step 2.** Electrophilic attack

$$C = C + \text{HgOCCH}_3 \longrightarrow \text{HgOCCH}_3$$

$$Mercurinium ion$$

anti-stereospecific and regioselective.

#### **Step 3.** Nucleophilic opening (Markovnikov regioselectivity)

#### **Step 4. Reduction**

$$\begin{array}{c} O \\ \parallel \\ CH_3COHg \\ -C - C - \\ \parallel \\ \vdots OH \end{array} \xrightarrow{NaBH_4, NaOH, H_2O} \begin{array}{c} H \\ \parallel \\ -C - C - \\ - \\ \vdots OH \end{array} + \begin{array}{c} H \\ + CH_3CO - \\ \parallel \\ O \end{array}$$

Oxymercuration – demercuration is a synthetically useful method for converting alkenes regioselectively (following the Markovnikov rule) into alcohols or ethers. Carbocations are not involved; therefore, rearrangements do not occur.

#### **Exercise 4**

What product will we get When the oxymercuration of an alkene is executed in an alcohol solvent and then demercuration with NaBH<sub>4</sub>/NaOH/H<sub>2</sub>O?



## **Stereospecific:** anti-addition

#### Regioselective

#### Exercise 5

#### Draw the complete mechanism for the reactions below







Qiong Li

#### Exercise 6

The reaction below proceeds to a cyclic product that is an isomer of the starting material. Suggest a structure for it.



#### 4.3.3' Oxymercuration reactions of alkynes

1. 只需要催化量的汞盐; 2. 不需要还原剂脱汞; 3. 具有区域选择性

$$AcO-Hg$$
 $Hg$ 
 $OAc$ 
 $OAc$ 

# 4.3.4 Mechanism of Hydroboration-Oxidation: A Stereospecific, Anti-Markovnikov Hydration





$$(CH_3)_2CHCH_2CH = CH_2 \xrightarrow{1. \text{ BH}_3, \text{ THF}} (CH_3)_2CHCH_2CH_2CH_2 \overset{1. \text{ BH}_3, \text{ THF}}{OH} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\$$



Steric factors primarily control the regioselectivity: The boron binds to the less hindered (less substituted) carbon.



#### The oxidation of alkylboranes gives alcohols

$$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

#### Mechanism of Alkylborane Oxidation

$$(RO)_3B + 3 NaOH \xrightarrow{H_2O} Na_3BO_3 + 3 ROH$$



Qiong Li



#### Exercise 7

#### Draw the complete mechanism for the reaction below

#### **Exercise 8**

#### Draw the complete mechanism for the reaction below

Qiong Li

7.3.5 Carbene:  $: CR_2$ 

碳周围只有6个电子的活性中间体

**Preparation:** 多卤代烷在碱的作用下,消除 $\alpha$ -氢,得到不稳定的多卤代烷负离子,再消除一个卤原子,得卡宾。



Singlet carbene 单线态



Triplet carbene 三线态

#### **Reactions:**

□ 插入C-H键

$$H_3C-CH_2-H \xrightarrow{: CCl_2} H_3C-CH_2-CCl_2-H$$

□ 与C=C双键反应

制备环丙烷衍生物

立体选择性?是否是立体专一性的?

#### **Stereochemistry**



Singlet carbene



**Triplet carbene** 

## 7.3.6氮烯(氮宾或乃春)(Nitrenes)缺电子的一价氮活性中间体

Preparation: 叠氮化合物的热或光分解、 $\alpha$ -消除和氧化还原反应产生。

EtO—C—N<sub>2</sub> 
$$\xrightarrow{254 \text{nm}}$$
 EtOC—N: + N<sub>2</sub>

R—N—OSO<sub>2</sub> Ar  $\xrightarrow{\text{B}^{1}}$  R—N: + BH + ArSO<sub>2</sub> O—
H

$$CH_{2}CH_{2}CH_{2}CH_{3}$$

$$2(\text{EtO})_{3}P$$

$$NO_{2}$$

$$CH_{2}CH_{2}CH_{2}$$

$$CH_{2}CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

#### Reaction and Stereochemistry 与碳烯相同

$$EtOC-N_3$$
 —  $EtOC-N$  —  $EtOC-N$