Método dos Elementos Finitos

Problema de Difusão-Convecção, Convecção Dominante, Instabilidades, Métodos Estáveis e Estabilizações

lury Igreja

Programa de Pós-Graduação em Modelagem Computacional Departamento de Ciência da Computação Universidade Federal de Juiz de Fora iuryigreja@ice.ufjf.br

Conteúdo

- ► Problema Modelo Difusão-Convecção
- ► Formulação Fraca
- Problema Modelo Unidimensional
- Solução com Camada Limite Instabilidades
- ► Estabilização por Difusão Artificial
 - Estudo do Parâmetro de Estabilização
- Estabilização Upwind
- Métodos de Elemento Finitos Estáveis e Estabilizados
- Métodos Estáveis
 - ► Método Streamline Upwind SU
 - Funções bolha (bubble functions)
 - Caso Particular Ponto de quadratura único
- Métodos Estabilizados
 - Método SUPG
 - ▶ Método GLS
 - ► Parâmetro de Estabilização
 - Outros Métodos Estabilizados GLS

Problema Modelo - Difusão-Convecção

Seja o domínio espacial $\Omega \subset \mathbb{R}^d$ com contorno $\partial \Omega$, dada a função $f:\Omega \to \mathbb{R}$, o vetor $\kappa \geq 0$ e o coeficiente $\varepsilon>0$, encontrar $u:\Omega \to \mathbb{R}$, tal que:

$$-\nabla \cdot (\varepsilon \nabla u) + \kappa \cdot \nabla u = f \quad \text{em} \quad \Omega$$

suplementado por condições de contorno do tipo Dirichlet

$$u=\overline{u}$$
 sobre $\partial\Omega_D$

ou Neumann

$$\varepsilon \nabla u \cdot \mathbf{n} = g$$
 sobre $\partial \Omega_N$

onde \mathbf{n} é o vetor unitário normal com orientação exterior a $\partial\Omega_N$. Este problema é derivado a partir da hipótese (incompressibilidade)

$$\nabla \cdot \boldsymbol{\kappa} = 0.$$

Formulação Fraca

Integrando no domínio Ω e multiplicando o problema modelo por uma função peso $v \in \mathcal{V}$, obtemos:

$$\int_{\Omega} (-\nabla \cdot (\varepsilon \nabla u) + \kappa \cdot \nabla u + f) v \, dx = 0. \tag{1}$$

Como $\partial\Omega = \partial\Omega_D \cup \partial\Omega_N$ e $\partial\Omega_D \cap \partial\Omega_N = \emptyset$, integrando por partes a equação (1) podemos escrever o seguinte problema:

$$\begin{split} \int_{\Omega} \varepsilon \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega_D} \varepsilon \nabla u \cdot \mathbf{n} \, v ds - \int_{\partial \Omega_N} \varepsilon \nabla u \cdot \mathbf{n} \, v ds \\ + \int_{\Omega} (\boldsymbol{\kappa} \cdot \nabla u) v \, dx = \int_{\Omega} f \, v \, dx, \quad \forall v \in \mathcal{V}, \end{split}$$

com $u \in \mathcal{U}$, onde os espaços \mathcal{U} e \mathcal{V} podem ser definidos como:

$$\mathcal{U} = \{ u \in L^2(\Omega), \nabla u \in L^2(\Omega); u|_{\partial \Omega_D} = \overline{u} \}$$

$$\mathcal{V} = \{ v \in L^2(\Omega), \nabla v \in L^2(\Omega); v|_{\partial \Omega_D} = 0 \}$$

Formulação Fraca - Imposição das Condições de Contorno

Por definição:

- $\forall v \in \mathcal{V}$ se anula no contorno de Dirichlet $\partial \Omega_D$; e
- $ightharpoonup \varepsilon \nabla u \cdot \mathbf{n} = g$ sobre $\partial \Omega_N$,

então:

$$\int_{\Omega} \varepsilon \nabla u \cdot \nabla v \, dx - \underbrace{\int_{\partial \Omega_D} \varepsilon \nabla u \cdot \mathbf{n} \, v \, ds}_{0} - \int_{\partial \Omega_N} \underbrace{\varepsilon \nabla u \cdot \mathbf{n}}_{g} \, v \, ds + \underbrace{\int_{\Omega} (\boldsymbol{\kappa} \cdot \nabla u) v \, dx}_{0} = \int_{\Omega} f \, v \, dx, \quad \forall v \in \mathcal{V}$$

ou ainda

$$\int_{\Omega} \varepsilon \nabla u \cdot \nabla v \, dx + \int_{\Omega} (\boldsymbol{\kappa} \cdot \nabla u) v \, dx = \int_{\Omega} f \, v \, dx + \int_{\partial \Omega_{\mathcal{X}}} g \, v \, ds, \quad \forall v \in \mathcal{V}.$$

Problema Variacional

Dessa forma, o problema variacional pode ser apresentado como Achar $u \in \mathcal{U}$, satisfazendo

$$a(u, v) + c(\kappa; u, v) = f(v), \quad \forall v \in \mathcal{V},$$

onde

$$a(u,v) = \int_{\Omega} \varepsilon \nabla u \cdot \nabla v \, dx, \qquad c(\kappa; u, v) = \int_{\Omega} (\kappa \cdot \nabla u) v \, dx,$$

е

$$f(v) = \int_{\Omega} f v \, dx + \int_{\partial \Omega v} g v \, ds$$

- Problema não simétrico devido a forma $c(\kappa; u, v)$;
- ▶ Instabilidades numéricas podem surgir quando $\|\kappa\|_{\infty} > \varepsilon$.
- $lackbox{O}$ número de Péclet $P_e=\dfrac{\|oldsymbol{\kappa}\|_{\infty}L}{arepsilon}$ é um adimensional que define uma relação entre os efeitos convectivos e difusivos.

Problema Modelo Unidimensional

Seja o domínio $\Omega = [a,b]$, dados u_a , u_b , $\varepsilon > 0$, $\kappa > 0$ e f(x), encontrar u(x), com $x \in [a,b]$, tal que:

$$-\varepsilon \frac{d^2 u}{dx^2} + \kappa \frac{du}{dx} = f(x)$$

$$u(a) = u_a \qquad u(b) = u_b$$
(2)

Número de Peclet:

$$Pe = \frac{|\kappa|}{\varepsilon}(b-a),$$

relaciona os efeitos convectivos com os efeitos difusivos. Regime predominantimente difusivo ($Pe < 1 \Rightarrow \varepsilon > \kappa$)

- Regime predominantimente difusivo ($Pe < 1 \Rightarrow \varepsilon$) soluções numéricas regulares (problema elíptico)
- Regime predominantimente convectivo ($Pe > 1 \Rightarrow \kappa > \varepsilon$)
 - soluções numéricas oscilatórias (problema hiperbólico)
- Peclet de malha:

$$Pe_h = \frac{|\kappa|}{2\varepsilon}h,$$

usado para determinar regimes de escoamento no caso discreto.

Formulação Variacional

A formulação variacional associada ao problema unidimensional de difusão-convecção pode ser apresentada como:

Achar $u \in \mathcal{U}$, satisfazendo

$$a(u, v) + c(\kappa; u, v) = f(v), \quad \forall v \in \mathcal{V},$$

onde

$$a(u,v) = \int_{\Omega} \varepsilon \frac{du}{dx} \frac{dv}{dx} dx, \qquad c(\kappa; u, v) = \int_{\Omega} \kappa \frac{du}{dx} v dx,$$

е

$$f(v) = \int_{\Omega} f v \, dx,$$

com

$$\mathcal{U} = \{ u \in H^1(\Omega); u(a) = u_a \text{ e } u(b) = u_b \}$$

е

$$\mathcal{V} = \{ v \in H^1(\Omega); v(a) = v(b) = 0 \}$$

Problema Aproximado

Aplicando uma aproximação conforme para o problema, reescrevemos o problema variacional como segue: Encontrar $u_h \in \mathcal{U}_h$, tal que

$$a(u_h, v_h) + c(\kappa; u_h, v_h) = f(v_h), \quad \forall v_h \in \mathcal{V}_h$$

com

$$\begin{split} a(u_h,v_h) &= \int_{\Omega} \varepsilon \frac{du_h}{dx} \, \frac{dv_h}{dx} \, dx, \quad c(\kappa;u_h,v_h) = \int_{\Omega} \kappa \frac{du_h}{dx} v_h \, dx \\ & \quad \text{e} \quad f(v_h) = \int_{\Omega} f \, v_h \, dx \end{split}$$

onde

$$\mathcal{U}_h = \mathcal{S}_h^k \cap \mathcal{U}, \quad \mathcal{V}_h = \mathcal{S}_h^k \cap \mathcal{V} \quad \text{e} \quad \mathcal{S}_h^k = \{v_h \in C^0(\Omega); v_h \in \mathbb{P}_k\}$$

e \mathbb{P}_k denota o polinômio de interpolação e k a ordem do polinômio.

Matrizes Elementares

Após aproximar o problema de difusão-convecção pelo método de Galerkin utilizando elementos de primeira ordem (k=1), derivamos a seguinte matriz associada a forma bilinear $a(u_h,v_h)$ em cada elemento e:

$$K^e = \frac{\varepsilon}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

e seguinte matriz pode ser gerada para a forma $c(\kappa;u_h,v_h)$

$$C^e = \frac{\kappa}{2} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{matriz n\~ao sim\'etrica}$$

e o vetor de carga (para f = 1)

$$F^e = \frac{h}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Problema global $(\mathbf{K} + \mathbf{C})\mathbf{u} = \mathbf{F}$

$$\mathbf{K} = \frac{\varepsilon}{h} \begin{bmatrix} 1 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix} \mathbf{C} = \frac{\kappa}{2} \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ -1 & 0 & 1 & \dots & 0 & 0 \\ 0 & -1 & 0 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix} \quad \mathbf{F} = \frac{h}{2} \begin{bmatrix} 1 \\ 2 \\ \vdots \\ 2 \\ 1 \end{bmatrix}$$

Dividindo por h, o problema Global pode ser reescrito através do seguinte stencil

seguinte stencil
$$-\frac{\varepsilon}{h^2}(u_{i-1}-2u_i+u_{i+1})+\frac{\kappa}{2h}(u_{i+1}-u_{i-1})=1$$

Solução com Camada Limite - Instabilidades

Em um domínio $\Omega=[0,1]$, tomando f=0, $u_a=0$ e $u_b=1$, é possível derivar a seguinte solução exata para o problema:

$$u(x) = \frac{1.0 - e^{x\kappa/\varepsilon}}{1.0 - e^{\kappa/\varepsilon}}.$$

Fixando $\kappa=1$ e 10 elementos, são apresentados os seguintes resultados para diferentes valores de $\varepsilon.$

Estudo do Stencil Gerado pelo MEF

Para a solução com camada limite proposta anteriormente, o stencil obtido pela aproximação pelo método de Galerkin é:

▶ achar u_j , com j = 1, 2, ..., J - 1, tal que:

$$-\frac{\varepsilon}{h^2}(u_{i-1} - 2u_i + u_{i+1}) + \frac{\kappa}{2h}(u_{i+1} - u_{i-1}) = 0$$

com condições de contorno $u_0 = 0.0$ e $u_J = 1.0$.

Supondo uma malha com 3 nós igualmente espaçados, temos:

$$-\frac{\varepsilon}{h^2}(u_0 - 2u_1 + u_2) + \frac{\kappa}{2h}(u_2 - u_0) = 0,$$

aplicando as condições de contorno e multiplicando por $h^2/arepsilon$

$$-(1-2u_1+0) + Pe_h(1-0) = 0,$$

logo

$$u_1 = \frac{1 - Pe_h}{2}$$

Estudo do Stencil Gerado pelo MEF

Como a solução do problema proposto é sempre maior ou igual a zero, temos que:

$$u_1 \geq 0$$
,

ou ainda

$$\frac{1 - Pe_h}{2} \ge 0,$$

logo

$$Pe_h \leq 1$$
.

Dessa forma, para assegurar estabilidade do método, a escolha de h está condicionada a seguinte relação:

$$h \leq 2\frac{\varepsilon}{\kappa}$$
.

 $ightharpoonup \varepsilon = 0.1 \text{ e } \kappa = 1.0 \Rightarrow h \leq 0.2$

 $\epsilon = 0.01 \text{ e } \kappa = 1.0 \Rightarrow h \leq 0.02$

Resultados com refinamentos de malha que asseguram a condição mínima para estabilidade do método ($Pe_h=1$).

$$\varepsilon = 10^{-2}, h = 0.02$$

$$\varepsilon = 10^{-3}$$
, $h = 0.002$

Metodologias de Estabilização para Problemas Convectivos

Esquema de difusão artificial:

Como o causa das oscilações espúrias é a predominância dos efeitos convectivos, neste esquema busca-se adicionar artificialmente efeitos difusivos com o intuito de "suavizar" a solução.

Esquema upwind:

A ideia-chave em praticamente todas as formulações de elementos finitos do tipo upwind tem sido substituir a formulação de Galerkin clássica pelo método de Petrov-Galerkin em que a função de ponderação pode ser selecionada a partir de uma classe de funções diferente da solução aproximada.

Observação: ambas as metodologias são equivalentes. Ou seja, uma aproximação upwind induz difusão numérica e vice-versa.

Estabilização por Difusão Artificial

Este esquema tem por objetivo estabilizar a solução aproximada através da adição de uma difusão numérica ou artificial ao problema. Nesta direção, definimos o problema aproximado como:

$$\int_{\Omega} (\varepsilon + \gamma) \frac{du_h}{dx} \, \frac{dv_h}{dx} \, dx + \int_{\Omega} \kappa \frac{du_h}{dx} v_h \, dx = \int_{\Omega} f \, v_h \, dx$$

Esta é uma abordagem **não consistente**, que para f=0 dá origem ao seguinte stencil

$$-(\varepsilon + \gamma)\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0$$

suplementado por condições de contorno $u_0=0.0$ e $u_J=1.0$ (de acordo com o último exemplo estudado).

O parâmetro γ é usualmente definido como:

$$\gamma = \beta \frac{\kappa h}{2} = \beta \varepsilon P e_h$$

onde $\beta \geq 0$ define a intensidade da difusão artificial.

Estudo do Parâmetro de Estabilização

Partindo do stencil

$$-(\varepsilon + \gamma)\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0$$

com $u_0=0.0$ e $u_J=1.0$, é possível realizar a mesma análise feita anteriormente para determinar o intervalo de estabilidade desta discretização

$$-(\varepsilon + \gamma)\frac{u_2 - 2u_1 + u_0}{h^2} + \kappa \frac{u_2 - u_0}{2h} = 0,$$

aplicando as condições de contorno e multiplicando por $h^2/arepsilon$

$$-(1+\frac{\gamma}{\varepsilon})(1-2u_1+0)+Pe_h(1-0)=0,$$

usando a definição $\gamma = \beta \varepsilon P e_h$

$$-(1 + \beta P e_h)(1 - 2u_1) + P e_h = 0,$$

Estudo do Parâmetro de Estabilização

assim

$$u_1 = \frac{1 + \beta P e_h - P e_h}{2 + 2\gamma P e_h}.$$

Como a solução do problema proposto é sempre maior ou igual a zero, temos que:

$$u_1 = \frac{1 + \beta P e_h - P e_h}{2 + 2\beta P e_h} \ge 0,$$

como $(2+2\beta Pe_h)>0$, então

$$\beta \ge \frac{Pe_h - 1}{Pe_h},$$

ou ainda (como usualmente apresentado na literatura)

$$\beta \geq 1 - \frac{1}{Pe_h},$$

Estabilização por Difusão Artificial

Incluindo a difusão artificial, com h = 0.1, $\beta = (Pe_h - 1)/Pe_h$, obtemos os seguintes resultados.

com difusão artificial

Efeito da Difusão Artificial

Resultados para diferentes valores de β , com $\varepsilon=10^{-2}$ e h=0.1.

O parâmetro ótimo da difusão artificial β pode ser obtido a partir da discretização

$$-(\varepsilon + \beta \varepsilon P e_h) \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0$$

multiplicando por h^2/ε e isolando β , obtemos

$$\beta = \frac{Pe_h(u_{j+1} - u_{j-1}) - (u_{j+1} - 2u_j + u_{j-1})}{Pe_h(u_{j+1} - 2u_j + u_{j-1})}$$

ou ainda

$$\beta = \frac{u_{j+1} - u_{j-1}}{u_{j+1} - 2u_j + u_{j-1}} - \frac{1}{Pe_h}$$

A partir da solução exata

$$u(x) = \frac{1 - e^{x\kappa/\varepsilon}}{1 - e^{\kappa/\varepsilon}},$$

avaliada em cada nó da discretização, como

$$\begin{split} u_{j-1} &= \frac{1 - e^{(x_j - h)\kappa/\varepsilon}}{1 - e^{\kappa/\varepsilon}} = \frac{1 - e^{x_j \kappa/\varepsilon} e^{-2Pe_h}}{1 - e^{\kappa/\varepsilon}}, \\ u_j &= \frac{1 - e^{x_j \kappa/\varepsilon}}{1 - e^{\kappa/\varepsilon}}, \\ u_{j+1} &= \frac{1 - e^{(x_j + h)\kappa/\varepsilon}}{1 - e^{\kappa/\varepsilon}} = \frac{1 - e^{x_j \kappa/\varepsilon} e^{2Pe_h}}{1 - e^{\kappa/\varepsilon}}. \end{split}$$

Assim,

$$\beta = \frac{\frac{1 - e^{x_j \kappa/\varepsilon} e^{2Pe_h}}{1 - e^{\kappa/\varepsilon}} - \frac{1 - e^{x_j \kappa/\varepsilon} e^{-2Pe_h}}{1 - e^{\kappa/\varepsilon}}}{\frac{1 - e^{x_j \kappa/\varepsilon} e^{2Pe_h}}{1 - e^{\kappa/\varepsilon}} - 2\frac{1 - e^{x_j \kappa/\varepsilon}}{1 - e^{\kappa/\varepsilon}} + \frac{1 - e^{x_j \kappa/\varepsilon} e^{-2Pe_h}}{1 - e^{\kappa/\varepsilon}}} - \frac{1}{Pe_h}$$

Simplificando a expressão

$$\beta = \frac{1 - e^{x_j\kappa/\varepsilon}e^{2Pe_h} - (1 - e^{x_j\kappa/\varepsilon}e^{-2Pe_h})}{1 - e^{x_j\kappa/\varepsilon}e^{2Pe_h} - 2(1 - e^{x_j\kappa/\varepsilon}) + 1 - e^{x_j\kappa/\varepsilon}e^{-2Pe_h}} - \frac{1}{Pe_h},$$

eliminando o valores possíveis e evidenciando o termo $e^{x_j\kappa/\varepsilon}$ m obtemos

$$\beta = \frac{e^{x_j \kappa/\varepsilon} (e^{-2Pe_h} - e^{2Pe_h})}{e^{x_j \kappa/\varepsilon} (2 - e^{2Pe_h} - e^{-2Pe_h})} - \frac{1}{Pe_h},$$

ou ainda

$$\beta = \frac{\frac{1 - e^{4Pe_h}}{e^{2Pe_h}}}{\frac{2e^{2Pe_h} - e^{4Pe_h} - 1}{e^{2Pe_h}}} - \frac{1}{Pe_h},$$

que pode ser reescrito como

$$\beta = \frac{(1 - e^{2Pe_h})(1 + e^{2Pe_h})}{-(1 - e^{2Pe_h})^2} - \frac{1}{Pe_h},$$

Logo, β pode ser escrito como

$$\beta = \frac{e^{2Pe_h} + 1}{e^{2Pe_h} - 1} - \frac{1}{Pe_h}$$

ou alternativamente

$$\beta = \coth(Pe_h) - \frac{1}{Pe_h}.$$

- A expressão acima para o parâmetro β retorna valores exatos nos nós de aproximação para a formulação incluindo a difusão artificial.
- Esta expressão depende exclusivamente do número de Péclet, que está associada aos parâmetros h, ε e κ .
- Esta relação para β é válida para todos os valores de Péclet quando é adotado coeficientes e termo fonte constantes.

Estudo do Parâmetro de Estabilização

Além disso, a formulação

$$-\left(\varepsilon + \beta \frac{\kappa h}{2}\right) \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0$$

pode ser reescrita como

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} - \beta \kappa \frac{u_{j+1} - 2u_j + u_{j-1}}{2h} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0,$$

ou ainda

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \frac{1 - \beta}{2h} \kappa u_{j+1} + \frac{\beta}{h} \kappa u_j - \frac{1 + \beta}{2h} \kappa u_{j-1} = 0$$

somando e subtraindo $\kappa u_j/2h$

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \frac{1 - \beta}{2h} \kappa u_{j+1} - \frac{1 - \beta}{2h} \kappa u_j + \frac{1 + \beta}{2h} \kappa u_j - \frac{1 + \beta}{2h} \kappa u_{j-1} = 0$$

Estudo do Parâmetro de Estabilização

Assim,

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \frac{1 - \beta}{2} \left(\kappa \frac{u_{j+1} - u_j}{h} \right) + \frac{1 + \beta}{2} \left(\kappa \frac{u_j - u_{j-1}}{h} \right) = 0$$

- ho $\beta=0$, recupera a aproximação central para a convecção, obtida pelo método de Galerkin;
- ho $\beta=1$ e $\kappa>0$, corresponde ao método totalmente upwind semelhante ao método de diferenças finitas (o mesmo ocorre para $\beta=-1$ e $\kappa<0$);
- $\beta = 1 1/Pe_h$, valor crítico de β , ou seja, menor valor que evita oscilações espúrias;
- $\beta = \coth(Pe_h) 1/Pe_h$, valor ótimo que gera aproximações nodalmente exatas para problemas com termo fonte constante.

Estabilização Upwind

Na estrutura do método das diferenças finitas, a difusão numérica pode ser introduzida substituindo a aproximação central

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0$$

por uma aproximação upwind de primeira ordem definida, para $\kappa>0$,por

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_j - u_{j-1}}{h} = 0$$

A derivada upwind do termo convectivo introduz uma dissipação/difusão numérica, como pode ser visto no desenvolvimento da série de Taylor do termo convectivo em torno de x_j

$$u(x_j - h) = u(x_j) - hu'(x_j) + \frac{h^2}{2}u''(x_j) - \dots$$

Estabilização Upwind

rearranjando os termos e multiplicando por κ , obtemos

$$\kappa \frac{u(x_j) - u(x_j - h)}{h} = \kappa u'(x_j) - \frac{\kappa h}{2} u''(x_j) + \mathcal{O}(h^2)$$

Uma difusão adicional de magnitude $\kappa h/2$ é introduzida pela aproximação upwind do termo convectivo. Dessa forma, resolver este problema com o termo upwind usando o método de elementos finitos é similar a resolver o seguinte problema:

$$-\left(\varepsilon + \frac{\kappa h}{2}\right) \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0,$$

que introduz uma difusão numérica de magnitude $\kappa h/2$ e torna a formulação não consistente se comparada ao problema modelo

$$-\varepsilon \frac{d^2u}{dx^2} + \kappa \frac{du}{dx} = 0.$$

Métodos de Elemento Finitos Estáveis e Estabilizados

- Métodos Estáveis:
 - Métodos de Petrov-Galerkin.
 - Modificação da função peso para incluir características upwind à formulação;
 - Pode ser consistente ou inconsistente a formulação gerada;
 - Para escolhas particulares dos parâmetros em determinados problemas é possível obter soluções nodalmente exatas;
 - A aproximação pode apresentar efeitos de difusão numérica.
- Métodos Estabilizados:
 - Métodos de Galerkin de Mínimos Quadrados.
 - as aproximações por Galerkin são mantidas, ou seja, são usadas as mesmas funções de base para a função peso e a aproximação.
 - Termos de mínimos quadrados associados ao problema modelo são adicionados à formulação;
 - A formulação mantém a consistência.

Métodos Estáveis

- As primeiras formulações de elementos finitos upwind foram apresentadas na década de 1970;
- As formulações são baseadas em escolhas de funções peso modificadas em relação as funções de base utilizadas para a aproximação (formulação de Petrov-Galerkin).
- As funções de ponderação são modificadas de forma que o elemento a montante (relativo à direção da velocidade) de um nó tenha mais "peso" do que o elemento a jusante de um nó.
- Destacam-se as referências: Hughes (1978)¹; Hughes e Brooks (1979)². Brooks e Hughes (1982)³;
- ¹Hughes, T. J. R. (1978), A simple scheme for developing upwind finite elements, Int. J. Numer. Methods Eng. 12(9), pp. 1359-1365.
- ²Hughes, T. J. R. and Brooks, A. (1979), A multidimensional upwind scheme with no crosswind diffusion, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 19-35.

³Brooks, A. N. and Hughes, T. J. R. (1982), Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. 32(1-3), pp. 199-259.

Método Streamline Upwind - SU

Método proposto por Hughes e Brooks (1979), onde à formulação aproximada clássica

$$\int_{\Omega} \left[\varepsilon \frac{du_h}{dx} \, \frac{dv_h}{dx} + \kappa \frac{du_h}{dx} v_h \, \right] dx = \int_{\Omega} f \, v_h \, dx,$$

é incluído um termo de difusão artificial $\gamma=\beta\kappa h/2$, gerando

$$\int_{\Omega} \left[\left(\varepsilon + \frac{\beta \kappa h}{2} \right) \frac{du_h}{dx} \, \frac{dv_h}{dx} + \kappa \frac{du_h}{dx} v_h \right] dx = \int_{\Omega} f \, v_h \, dx.$$

Evidenciando o termo $\kappa \frac{du_h}{dx}$, obtemos

$$\int_{\Omega} \left[\varepsilon \frac{du_h}{dx} \, \frac{dv_h}{dx} + \kappa \frac{du_h}{dx} \left(v_h + \frac{\beta h}{2} \frac{dv_h}{dx} \right) \right] dx = \int_{\Omega} f \, v_h \, dx.$$

Método Streamline Upwind - SU

Definindo a função peso

$$w_h = v_h + \frac{\beta h}{2} \frac{dv_h}{dx},$$

derivamos o seguinte problema:

Dados f, ε e κ , encontrar $u_h \in \mathcal{U}_h$, tal que

$$\int_{\Omega} \left[\varepsilon \frac{du_h}{dx} \, \frac{dv_h}{dx} + \kappa \frac{du_h}{dx} w_h \right] dx = \int_{\Omega} f \, v_h \, dx.$$

- Formulação de Petrov-Galerkin **não consistente**, pois apresenta diferentes funções peso v_h e w_h em sua construção;
- A função peso modificada é aplicada apenas ao termo convectivo e é equivalente ao uso de um coeficiente de difusão artificial atuando apenas ao longo da direção do fluxo;
- Para coeficientes e fontes constantes a escolha ótima para β retorna aproximações nodalmente exatas.

Método Streamline Upwind - SU

Usando base de Lagrange linear definida no elemento de referência, temos as funções

$$v_h = \phi_j = \begin{cases} \phi_1 = \frac{1}{2}(1-t) \\ \phi_2 = \frac{1}{2}(1+t) \end{cases}$$

e a função modificada w_h , definida como

$$w_h = v_h + \frac{\beta h}{2} \frac{dv_h}{dx} = \phi_j + \frac{\beta 2}{2} \frac{d\phi_j}{dt} = \begin{cases} \phi_1^{PG} = \frac{1}{2} (1 - t) - \frac{\beta}{2} \\ \phi_2^{PG} = \frac{1}{2} (1 + t) + \frac{\beta}{2} \end{cases}$$

uma vez que h=2 no elemento de referência [-1,1].

Método Streamline Upwind - SU

funções de base lineares

funções de base lineares modificadas (descontínua)

Funções de base modificada para o termo convectivo (método PG)

$$\begin{split} \phi_1^{PG} &= \frac{1}{2}(1-t) - \frac{\beta}{2} \\ \phi_2^{PG} &= \frac{1}{2}(1+t) + \frac{\beta}{2} \end{split}$$

Ponderação das funções de base com adição de funções bolha.

Funções de base modificada pela adição de funções "bolha" (método PG)

$$\begin{split} \phi_1^{PG} &= \frac{1}{2}(1-t) - \frac{3}{4}\beta(1-t^2) \\ \phi_2^{PG} &= \frac{1}{2}(1+t) + \frac{3}{4}\beta(1-t^2) \end{split}$$

A partir do problema aproximado

$$\int_{\Omega} \varepsilon \frac{du_h}{dx} \, \frac{dw_h}{dx} \, dx + \int_{\Omega} \kappa \frac{du_h}{dx} w_h \, dx = \int_{\Omega} f \, w_h \, dx,$$

escolhendo as funções de base modificadas por "bolhas" para a função peso w_h , temos

$$\sum_{i=0}^{N} u_i \left[\int_{\Omega} \varepsilon \frac{d\phi_i}{dx} \, \frac{d\phi_j^{PG}}{dx} \, dx + \int_{\Omega} \kappa \frac{d\phi_i}{dx} \phi_j^{PG} \, dx \right] = \int_{\Omega} f \, \phi_j^{PG} \, dx,$$

com j = 0, 1, 2, ..., N.

Tomando f=0 (para facilitar a apresentação), apresentamos as matrizes geradas em cada elemento.

Para o termo difusivo, temos

$$K^e = \frac{\varepsilon}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

e a seguinte matriz é gerada pelo termo convectivo

$$C^e = \frac{\kappa}{2} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} + \frac{\beta \kappa}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

assim,

$$K^e + C^e = \frac{\varepsilon + \beta \kappa h/2}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\kappa}{2} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$\mathbf{K} = \frac{\varepsilon + \beta \kappa h/2}{h} \begin{bmatrix} 1 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix};$$

$$\mathbf{C} = \frac{\kappa}{2} \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ -1 & 0 & 1 & \dots & 0 & 0 \\ 0 & -1 & 0 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}; \quad \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix}; \quad \mathbf{F} = \mathbf{0}.$$

Dividindo por h, o problema global $((\mathbf{K}+\mathbf{C})\mathbf{u}=\mathbf{F})$ pode ser reescrito através do seguinte stencil

$$-\left(\varepsilon + \frac{\beta \kappa h}{2}\right) \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = 0,$$

- ► A escolha das funções de base preservam a consistência dessa formulação de Petrov-Galerkin;
- A função peso modificada w_h é aplicada em toda a formulação;
- Assim como nos casos anteriores, para coeficientes e fontes constantes a escolha ótima para β gera aproximações nodalmente exatas.
- A modificação realizada na função de base, pela função bolha, acrescenta à aproximação uma difusão artificial de magnitude $\frac{\beta \kappa h}{2} \mbox{ (assim como nos casos anteriores)}.$

Caso Particular - Ponto de quadratura único

Conforme proposto por Hughes (1978), o efeito upwind também pode ser obtido por meio de uma modificação da regra da quadratura numérica, empregando um único ponto de quadratura, posicionado em

$$t_0 = \coth(Pe_h) - \frac{1}{Pe_h},$$

cujo peso é $w_0 = 1$.

- Válido para elementos lineares em 1D;
- ► Em Hughes (1978) é apresentado uma extensão para o caso 2D em elementos quadriláteros bilineares.

Métodos Estabilizados

- Essa técnica foi popularizada por Hughes e colaboradores na década de 1980;
- As formulações são baseadas na inclusão de resíduos de mínimos quadrados associados ao problema modelo;
- Os termos de estabilização são adicionados de forma natural na formulação sem a necessidade de modificar as funções de base (como no caso anterior).
- O método pode ser usado com elementos finitos de ordem arbitrária empregando as funções de base usuais.
- A técnica busca manter a consistência do problema e muitas vezes também a simetria da formulação;
- ► Esta abordagem ganhou o nome de método GLS (Galerkin/Least-Squares) e a metodologia de maior evidência em problemas convectivos se chama SUPG (Streamline Upwind/Petrov-Galerkin).

Métodos Estabilizados - Algumas Referências

- ► Brooks e Hughes (1982)⁴;
- ► Loula e Toledo (1988) ⁵.
- ► Hughes, Franca e Hulbert (1989)⁶.
- Franca e Valentin (2000) ⁷

⁴Brooks, A. N. and Hughes, T. J. R. (1982), Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. 32(1-3), pp. 199-259.

⁵Loula, A. F. D., Toleo, E. M., Dual and primal mixed Petrov-Galerkin finite element methods in heat transfer problems. LNCC - Relatório técnico 048/88

⁶T.J.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations, Comput. Methods Appl. Mech. Engrg. 73 (1989) pp. 173–189.

⁷L.P. Franca, F. Valentin, On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation, Comput. Methods Appl. Mech. Engrg. 190 (2000) pp. 1785–1800.

Métodos Estabilizados - Formulação Geral

Dado o problema forte difusivo-convectivo-reativo⁸

$$-\nabla \cdot (\varepsilon \nabla u) + \kappa \cdot \nabla u + \sigma u = f, \tag{3}$$

denota-se por $\mathcal{R}(u)$ o resíduo da equação diferencial

$$\mathcal{R}(u) = -\nabla \cdot (\varepsilon \nabla u) + \kappa \cdot \nabla u + \sigma u - f = \mathcal{L}(u) - f,$$

 $\mathcal{L}(u)$ é o operador diferencial associado ao problema modelo.

Assim, uma formulação para (3) é dada por Encontrar $u \in \mathcal{U}$, tal que

$$a(u,v) + c(\boldsymbol{\kappa}; u,v) = f(v_h), \quad \forall v \in \mathcal{V},$$

onde

$$a(u,v) = \int_{\Omega} (\varepsilon \nabla u \cdot \nabla v + \sigma u \, v) dx, \quad c(\kappa; u,v) = \int_{\Omega} (\kappa \cdot \nabla u) v \, dx,$$

e

$$f(v) = \int_{\Omega} f v \, dx$$

⁸o termo reativo foi adicionado pois as técnicas de estabilização geralmente são semelhantes para os casos com e sem reação.

Métodos Estabilizados - Formulação Geral

Introduzindo o resíduo $\mathcal{R}(u)$ à formulação, obtemos

$$a(u,v) + c(\kappa; u,v) + \int_{\Omega} \tau \mathcal{R}(u) \mathcal{P}(v) dx = f(v).$$

- o termo de estabilização adicionado à formulação é consistente, pois por construção $\mathcal{R}(u)=0$;
- ightharpoonup au é um coeficiente de estabilização que tem relação com o coeficiente γ da difusão artificial visto anteriormente;
- $ightharpoonup \mathcal{P}(v)$ denota a função peso que caracteriza o tipo de abordagem de estabilização adotada (como veremos).

Esta técnica de estabilização é derivada tomando (Brooks e Hughes, 1982)

$$\mathcal{P}(v) = \kappa \cdot \nabla v \quad \text{ou em 1D} \quad \mathcal{P}(v) = \kappa \frac{dv}{dx},$$

- $\mathcal{P}(v)$ corresponde à perturbação da função peso introduzida no método *Streamline Upwind* (SU);
- ▶ Diferentemente do método SU, esta inclusão é feita de forma consistente multiplicado por todos os termos da equação.
- Esta escolha para $\mathcal{P}(v)$ torna o termo de estabilização não simétrico.
- Como o espaço das funções peso não coincide com o espaço das funções de interpolação, esta é na verdade uma formulação de Petrov-Galerkin (PG).

A partir da função peso definida para o o termo de estabilização, o método SUPG pode escrito como:

$$a(u,v) + c(\kappa; u, v) + \int_{\Omega} \tau \mathcal{R}(u)(\kappa \cdot \nabla v) dx = f(v),$$

ou ainda

$$a(u,v) + c(\kappa; u,v) + \int_{\Omega} \tau(\mathcal{L}(u) - f)(\kappa \cdot \nabla v) dx = f(v),$$

originando

$$a(u,v)+c(\kappa;u,v)+\int_{\Omega}\tau\mathcal{L}(u)(\kappa\cdot\nabla v)dx=f(v)+\int_{\Omega}\tau f(\kappa\cdot\nabla v)dx,$$

em 1D

$$a(u,v) + c(\kappa; u,v) + \int_{\Omega} \tau \mathcal{L}(u) \kappa \frac{dv}{dx} dx = f(v) + \int_{\Omega} \tau f \kappa \frac{dv}{dx} dx.$$

O método SUPG pode ser obtido multiplicando o problema modelo pela função peso w, definida como

$$w = v + \tau \kappa \cdot \nabla v \quad \text{ou em 1D} \quad w = v + \tau \kappa \frac{dv}{dx}.$$

Em 1 dimensão, temos

$$\int_{\Omega} \left(\underbrace{-\varepsilon \frac{d^2 u}{dx^2} + \kappa \frac{du}{dx} + \sigma u}_{\mathcal{L}(u)} - f \right) w \, dx = 0,$$

que pode ser reescrito como

$$\int_{\Omega} \left(-\varepsilon \frac{d^2 u}{dx^2} + \kappa \frac{du}{dx} + \sigma u \right) v \, dx + \int_{\Omega} \mathcal{L}(u) \tau \kappa \frac{dv}{dx} dx = \int_{\Omega} f \, w dx,$$

Integrando por partes o termo de segunda derivada multiplicado por v e impondo condições de contorno (por simplicidade, supomos Neumann homogêneo), obtemos

$$\int_{\Omega} \left(\underbrace{\varepsilon \frac{du}{dx} \frac{dv}{dx} + \sigma uv}_{a(u,v)} + \underbrace{\kappa \frac{du}{dx} v}_{c(\kappa;u,v)} \right) dx + \int_{\Omega} \mathcal{L}(u) \tau \kappa \frac{dv}{dx} dx = \int_{\Omega} f \, w dx,$$

derivando assim o seguinte problema Achar $u \in \mathcal{U}$ satisfazendo, para todo $v \in \mathcal{V}$

$$\int_{\Omega} \varepsilon \frac{du}{dx} \frac{dv}{dx} dx - \int_{\Omega} \varepsilon \frac{d^2u}{dx^2} \tau \kappa \frac{dv}{dx} dx + \int_{\Omega} \left(\kappa \frac{du}{dx} + \sigma u \right) w dx = \int_{\Omega} f \, w dx,$$

- ightharpoonup Utilizando aproximação linear k=1, o termo de segunda derivada é anulado e o método SU recuperado.
- ▶ O método SUPG introduz difusão artificial apenas na direção do fluxo $\kappa \cdot \nabla v$ ou $\kappa \frac{dv}{dx}$.

Método GLS

O método GLS (Galerkin/Least-Squares) é formulado a partir da seguinte escolha de $\mathcal{P}(v)$ (Hughes, Franca e Hulbert, 1989)

$$\mathcal{P}(v) = \mathcal{L}(v) = -\varepsilon \Delta v + \kappa \cdot \nabla v + \sigma v,$$

ou em 1D

$$\mathcal{P}(v) = \mathcal{L}(v) = -\varepsilon \frac{d^2v}{dx^2} + \kappa \frac{dv}{dx} + \sigma v.$$

Dessa forma, a formulação GLS é derivada multiplicando o problema modelo pela seguinte função peso

$$w = v + \tau \mathcal{P}(v) = v + \tau \mathcal{L}(v),$$

gerando

$$\int_{\Omega} \mathcal{R}(u)w \, dx = \int_{\Omega} \mathcal{R}(u)(v + \tau \mathcal{L}(v)) \, dx = 0$$

Método GLS

Para o caso unidimensional, supondo, por simplicidade, condição de contorno de Neumann homogêneo, a formulação GLS pode ser apresentada como:

Encontrar $u \in \mathcal{U}$ satisfazendo, para todo $v \in \mathcal{V}$

$$\int_{\Omega} \varepsilon \frac{du}{dx} \frac{dv}{dx} dx - \int_{\Omega} \varepsilon \frac{d^2u}{dx^2} \tau \mathcal{L}(v) dx + \int_{\Omega} \left(\kappa \frac{du}{dx} + \sigma u \right) w dx = \int_{\Omega} f \, w dx.$$

- Para k=1 (aproximação linear) e $\sigma=0$, recuperamos o método SUPG;
- ightharpoonup pela escolha de $\mathcal{P}(v)$, o termo de estabilização adicionado é simétrico;
- o termo σv presente em $\mathcal{P}(v)$ pode ser reconhecida como uma função peso de Galerkin, assim as instabilidades introduzidas por Galerkin podem ser um pouco mais pronunciadas em GLS em comparação com SUPG.

Parâmetro de Estabilização

Usualmente o parâmetro de estabilização para esses métodos estabilizados é definido como

$$\tau = \beta \frac{h}{2\|\boldsymbol{\kappa}\|_{\infty}}$$

onde β é definido por

$$\beta = \max\left\{0, 1 - \frac{1}{Pe_h}\right\}$$

ou seja, se $Pe_h \leq 1 \Rightarrow \tau = 0$, do contrário é usado o valor crítico para β (apresentado em slides anteriores).

Obs.: para problema de convecção-difusão, unidimensional, com f=cte, coeficientes constantes e usando interpolação linear é possível obter aproximações nodalmente exatas adotando

$$\beta = \coth Pe_h - \frac{1}{Pe_h}.$$

Outros Métodos Estabilizados GLS

► Hughes (1995)⁹ propôs o método SGS (*Sub-Grid Scale*), onde é empregando o seguinte operador

$$\mathcal{P}(v) = \varepsilon \Delta v + \kappa \cdot \nabla v - \sigma v$$

 Franca e Valentin (2000) propuseram o método USFEM (Unusual Finite Element Method), onde é empregando o seguinte operador

$$\mathcal{P}(v) = -\varepsilon \Delta v - \kappa \cdot \nabla v + \sigma v$$

⁹Hughes, T. J. R. (1995), 'Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods', Comput. Methods Appl. Mech. Eng. 127(1–4),387–401.

SUPG - 256 elementos