WHAT IS CLAIMED IS:

Ţ	1. A process of imparting corrosion resistance to a substrate for		
2	use in a marine environment by coating said substrate with a polyurethaneurea, said		
3	process comprising:		
4	mixing		
5	a) an A-side of a polyurethaneurea coating comprising an		
6	isocyanate-terminated prepolymer prepared by reacting an excess of a diisocyanate		
7	with at least one hydrophobic polyoxyalkylene diol having a molecular weight of		
8	from 400 Da to 4000 Da;		
9	with		
0	b) a B-side containing a diamine and a hydrophobic		
1	polyoxyalkylene diol having a molecular weight determined by its hydroxyl number		
2	of from 200 Da to 4000 Da, in a weight ratio of diamine to hydrophobic		
3	polyoxyalkylene diol of from 1:10 to 10:1;		
4	to form a curable polyurethaneurea mixture having an NCO/OH ratio		
5	of from 0.85 to 1.15;		
6	c) spraying said curable mixture onto said substrate, and curing		
7	said mixture to form a polyurethaneurea coating on said substrate.		
1	2. The process of claim 1, wherein at least one hydrophobic		
2	polyoxyalkylene diol is selected from the group consisting of polytetramethylene		
3	ether glycols and low unsaturation polyoxypropylene diols.		
1	3. The process of claim 1, wherein the ratio of diamine to		
2	hydrophobic polyoxyalkylene diol in said B-side is from 3:1 to 1:3.		
1	4. The process of claim 1, wherein said A-side polyoxyalkylene		
2	diol comprises at least one polytetramethylene ether glycol having a molecular		
3	weight between 500 Da and 1000 Da and a further polyoxyalkylene diol such that		
4	a diol component having a bimodal molecular weight distribution is reacted with		
5	said diisocyanate.		

I	5.	The process of claim 1, wherein said dissocyanate is toluene
2	diisocyanate.	
1	6.	The process of claim 1, wherein said diamine comprises
2	diethyltoluene di	•
1	7.	, , , , , , , , , , , , , , , , , , , ,
2	have viscosities	of 500 cp or less at 160° F.
1	8.	The process of claim 1, wherein said substrate comprises
2	brass, bronze, b	right metal, zinc, magnesium, aluminum, non-stainless steel, or
3	stainless steel.	
1	9.	The process of claim 1, wherein said substrate comprises non-
2		agnesium, or aluminum.
	stanness steer, in	agnesium, or arummum.
1	10	The process of claim 1, wherein said substrate comprises a
2	fiber-reinforced	polymer.
1	11	The process of claim 1, wherein said substrate comprises both
2	•	er-reinforced polymer.
-		or romiorous porymen.
1	12	2. The process of claim 1, wherein said substrate is first coated
2	with a primer co	ating prior to coating with said polyurethaneurea.
1	13	3. A marine component for mounting on a water vessel,
2		ostrate coated by the process of claim 1.
-	tomprising a sec	country and process or comment
1	14	4. The component of claim 13, wherein said component
2	comprises alumin	num, non-stainless steel, or a mixture thereof.
1	15	5. A marine component for mounting on a water vessel,
2		ostrate coated by the process of claim 2.
		* =

1	16. A marine component for mounting on a water vessel,
2	comprising a substrate coated by the process of claim 3.
1	17. A marine component for mounting on a water vessel,
2	comprising a substrate coated by the process of claim 4.
1	18. The component of claim 13 which is a radar arch, fishing
2	platform, bow rail, or rub rail.
1	19. The component of claim 13 comprising a substrate comprising
2	a metal frame and a thin plastic or fiber-reinforced polymer sheet overlying said
3	frame, and a coating of form 100 to 500 mil of polyurethaneurea applied over said
4	substrate.
1	20. The component of claim 19, wherein said polyurethaneures
2	coating is effective to increase the rigidity of the substrate.