Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais

Wooldridge, Cap. 12

CORRELAÇÃO SERIAL

- Ocorrência
- Consequência
- Análise gráfica
- Autocorrelação
- Exemplo
- Testes
- Correlação serial devido a dinâmicas mal especificadas

Ocorrência

Ocorre principalmente quando os dados são observados ao longo do tempo. No caso de uma *cross-section*, pode ocorrer, por exemplo, no caso de omissão de variável relevante.

Exemplo:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{1t}^2 + u_t$$
(Modelo verdadeiro)

$$y_t = \beta_0^* + \beta_1^* x_{1t} + u_t^*$$

(Modelo especificado)

Conseqüências

 Os estimadores de MQO continuam lineares, não viesados, consistentes e assintoticamente normais, mas não são mais eficientes (BLUE).

 As variâncias estimadas serão viesadas (em geral, subestimadas).

Conseqüências

$$y_i = \beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki} + e_i$$

Suposições:

- $Var(e_i) = \sigma_e^2$: constante, não varia com i (homocedasticidade).
- $e_i \sim N(0; \sigma_e^2)$
- · Os erros são independentes, ou seja,

$$Corr(e_i, e_j) = 0$$
 para $i \neq j$.

Conseqüências

$$y_i = \beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki} + e_i$$

No caso da presença de correlação serial teremos que,

$$Cov(e_i, e_j) = E[e_i e_j] = \sigma_{ij} \neq 0$$

Análise Gráfica

- Gráfico de e_i vs ordem que as observações foram coletadas: verifica a presença de dependência;
- Para que não haja dependência entre os resíduos, o gráfico obtido não deve conter seqüências muito longas de resíduos de mesmo sinal.

Contexto

- · Dados extraídos numa ordem conhecida.
- Objetivo: identificar se o erro relativo à observação i sofre a influência dos erros relativos às observações anteriores.

Série de erros: $e_1, e_2, \dots, e_i, \dots$

Autocorrelação

Autocorrelação (correlação serial) **de primeira ordem**: correlação existente entre uma observação i qualquer e a observação imediatamente anterior (i-1).

Autocorrelação (correlação serial) **de ordem q**: correlação existente entre uma observação i qualquer e a observação anterior (i-q).

Modelagem da autocorrelação

$$e_i = \rho e_{i-1} + u_i$$

Suposições:

- $u_i \sim N(0; \sigma_u^2)$
- u_i independentes entre si
- u_i independente de e_{i-1}
- ρ: número entre -1 e 1.
- $\rho = 0 \Rightarrow e_i$ independentes e com variância σ_e^2

Exemplos

Simulações de séries de erros com autocorrelação de 1ª ordem

Diagramas de dispersão

$$e_i$$
 vs e_{i-1}

Estrutura AR(1) para a Matriz de Variâncias e Covariâncias

$$Var(e) = \sigma_e^2 \Omega = \sigma_e^2 \begin{cases} 1 & \rho & \rho^2 & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \dots & \rho^{n-2} \\ \rho^2 & \rho & 1 & \dots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \dots & 1 \end{cases}$$

A variância do erro é constante.

Teste para Verificação de Ausência de Correlação Serial (Teste de Durbin-Watson)

$$H_0: \rho = 0$$

$$d = \frac{\sum_{i=2}^{n} (\hat{e}_{i} - \hat{e}_{i-1})^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}}$$

$$0 \le d \le 4$$

Estatística d

Note que

$$d = \frac{\sum \hat{e}_i^2 + \sum \hat{e}_{i-1}^2 - 2\sum \hat{e}_i \hat{e}_{i-1}}{\sum \hat{e}_i^2}$$

Como

$$\sum \hat{e}_i^2 \approx \sum \hat{e}_{i-1}^2$$

E, ainda, a correlação entre \hat{e}_i e \hat{e}_{i-1} é

$$\hat{\rho} = \frac{\sum \hat{e}_i \hat{e}_{i-1}}{\sum \hat{e}_i^2}$$

Estatística d

Então,

$$d \approx 2 \left(1 - \frac{\sum_{i} \hat{e}_{i} \hat{e}_{i-1}}{\sum_{i} \hat{e}_{i}^{2}} \right) = 2 \left(1 - \hat{\rho} \right)$$

$$-1 \le \hat{\rho} \le 1 \Longrightarrow 0 < d < 4$$

Estatística de Durbin-Watson

- Se a autocorrelação for positiva, o valor de d será baixo.
- Se a autocorrelação for negativa, o valor de d será alto.
- Valores próximos a 2 indicam autocorrelação próxima de zero.

Teste de Durbin-Watson

$$H_0: \rho = 0 \qquad d = \frac{\sum_{i=2}^{n} (\hat{e}_i - \hat{e}_{i-1})^2}{\sum_{i=1}^{n} \hat{e}_i^2} \cong 2(1 - \hat{\rho})$$

H₀ deve ser rejeitada para valores distantes de 2.

A distribuição de *d* depende do tamanho amostral (n) e do número de variáveis independentes (k).

Teste de Durbin-Watson

$$H_{0}: \rho = 0$$

$$H_{A}: \rho > 0$$

$$d = \frac{\sum_{i=2}^{n} (\hat{e}_{i} - \hat{e}_{i-1})^{2}}{\sum_{i=1}^{n} \hat{e}_{i}^{2}} \approx 2(1 - \hat{\rho})$$

n = 20, k = 3 e nível de significância de 5%:

Tabela (Gujarati): $d_1 = 0.998 \text{ e } d_{11} = 1.676$ se $d < d_1$ então rejeita-se H_0 (correlação positiva) se $d > d_{\square}$ então não há evidências para rejeitar H_{\square} e se $d_1 < d < d_{11}$ então teste inconclusivo.

19

Teste de Durbin-Watson

$$H_0: \rho = 0 H_A: \rho < 0$$

$$d = \frac{\sum_{i=2}^{n} (\hat{e}_i - \hat{e}_{i-1})^2}{\sum_{i=1}^{n} \hat{e}_i^2} \cong 2(1 - \hat{\rho})$$

n = 20, k = 3 e nível de significância de 5%:

Tabela (Gujarati): d_L = 0,998 e d_U = 1,676

se $d > 4 - d_L$ então rejeita-se H_0

se $d < 4 - d_U$ então não há evidências para rejeitar H_0

se 4 - $d_U < d < 4$ - d_L então teste inconclusivo.

Exemplo

Base de dados de Wooldridge (2006) com preços de imóveis americanos (*hprice1*) para estimar o modelo a seguir:

$$preco = \beta_0 + \beta_1 terreno + \beta_2 area + \beta_3 quartos + e$$

preco: preço da casa (em milhares de dólares)

terreno: tamanho do terreno

area: tamanho da casa

quartos: número de quartos

Supondo que os dados estejam ordenados de acordo com a seqüência em que foram coletados. Verificar a existência de correlação serial entre os erros do modelo.

Exemplo

Dependent Variable: PRECO

Method: Least Squares

Date: 07/30/10 Time: 13:55

Sample: 188

Included observations: 88

	Coefficient	Std. Error	t-Statistic	Prob.
C TERRENO AREA QUARTOS	-21.77031 0.002068 0.122778 13.85252	29.47504 0.000642 0.013237 9.010145	-0.738601 3.220096 9.275093 1.537436	0.4622 0.0018 0.0000 0.1279
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.672362 0.660661 59.83348 300723.8 -482.8775 57.46023 0.000000	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	293.5460 102.7134 11.06540 11.17800 11.11076 2.109796

$$n = 88, k = 3, \alpha = 5\%, d = 2,1098$$

Exemplo

$$H_0: \rho = 0$$
 $H_A: \rho \neq 0$
 $n = 88, k = 3, \alpha = 5\%, d = 2,1098$
 $d_L = 1,589 e d_U = 1,726$
 $4 - d_L = 2,41$ $4 - d_U = 2,27$

Observações

Se H₀ for rejeitada, então:

- · Os estimadores de MQO são ineficientes;
- A correção depende do conhecimento que temos sobre a natureza da interdependência dos termos de erro, isto é, do conhecimento da estrutura de correlação.

Observações

Se H₀ for rejeitada, então:

 Se, por exemplo, houver uma estrutura AR(1) com ρ conhecido, pode-se estimar os parâmetros do modelo original, de maneira eficiente, a partir de uma transformação neste modelo (conhecida como quase-diferença), que é equivalente a empregar o método dos mínimos quadrados generalizados (GLS).

 Uma estatística DW significante não necessariamente implica que tenhamos um problema de correlação serial. Este ponto foi argumentado por Sargan (1964) e também por Hendry e Mizon (1978). Consideramos que,

$$y_t = \beta x_t + u_t \quad \text{com} \quad u_t = \rho u_t + e_t \tag{1}$$

- E e_t são independentes com uma variância comum σ^2 .
- Podemos escrever esse modelo como

$$y_{t} = \rho y_{t-1} + \beta x_{t} - \beta \rho x_{t-1} + e_{t}$$
 (2)

E considerando um modelo dinâmico estável alternativo,

$$y_t = \beta_1 y_{t-1} + \beta_2 x_t - \beta_3 x_{t-1} + e_t \quad \text{com} \quad |\beta_1| < 1$$
 (3)

 A primeira equação (2) é a mesma que a segunda (3) com a restrição:

$$\beta_1 \beta_2 + \beta_3 = 0 \tag{4}$$

Um teste para $\rho=0$ é um teste para $\beta_1=0$ (e $\beta_3=0$). Mas antes de testarmos isso, deveríamos primeiramente testar a restrição (4) e testar para $\rho=0$ apenas se a hipótese nula β_1 β_2 + β_3 = 0 não for rejeitada.

Se esta hipótese for rejeitada, não teremos um modelo de correlação serial e a correlação serial nos erros em (1) devese a um problema de especificação dinâmica, ou seja, neste caso, à omissão das variáveis y_{t-1} e x_{t-1} da equação.

Alternativamente, Hendry & Mizon desenvolvem o argumento da seguinte maneira: a partir de uma equação na forma de (3), aplicando o operador de diferenças $L^n y_t = y_{t-n}$ encontramos a equação

$$y_t = \beta_1 L y_t + \beta_2 x_t - \beta_3 L x_t + e_t$$
$$(1 - \beta_1 L) y_t = (\beta_2 - \beta_3 L) x_t + e_t$$

E, se a restrição (4) vale, então,

$$(1 - \beta_1 L)y_t = \beta_2 (1 - \beta_1 L)x_t + e_t \tag{5}$$

Que é a equação (1), ao dividirmos ambos os lados pelo fator comum, tornando o termo de erro, $~u_t~=e_t~/(1-\beta_1 L)$

- Logo, se o modelo da forma em (3) com variáveis defasadas em um período satisfazem a restrição acima, então, os polinômios no operador de diferença têm uma raiz comum e, esta raiz é o coeficiente de correlação serial de primeira ordem do termo de erro quando o modelo é definido na sua forma estática, como em (1).
- Neste caso haverá uma correspondência um para um entre o fator dinâmico comum e os erros auto regressivos.
- Contudo, nem sempre é possível proceder desta forma, uma vez que existe uma infinidade de situações nas quais o aspecto dinâmico não pode ser adequadamente captado pelo erro auto regressivo, ou seja, o fator comum não necessariamente será encontrado.

- A restrição (4) é não linear nos parâmetros e, portanto, é necessário utilizar os testes Wald ou ML. Se o teste DW for significante, uma abordagem apropriada é testar a restrição (4) para estarmos seguros de que possuímos um modelo de correlação serial antes de aplicar qualquer transformação autoregressiva nas variáveis.
- A sugestão de Sargan é iniciar com o modelo geral (3) e testar a restrição (4) antes de se aplicar qualquer teste de correlação serial.
- No caso explicitado, não haverá um teste t exato como no caso das restrições lineares. Um procedimento seria linearizar a restrição por meio de uma série de expansão de Taylor e utilizar o teste Wald, que é assintótico, ou mesmo o ML.

HETEROCEDASTICIDADE

- Definição
- Consequências para os estimadores de Mínimos Quadrados (OLS)
- Testes
- Exemplo
- Estimação via Mínimos Quadrados Generalizados
- Inferência

HETEROCEDASTICIDADE

"A variância do termo erro, dadas as variáveis explicativas, não é constante"

Suposições do modelo de Mínimos Quadrados Ordinários (OLS)

- Regressores fixos e matriz X de posto completo;
- Erro aleatório (de média zero);
- Homocedasticidade;
- Ausência de correlação;
- Parâmetros constantes;
- Modelo Linear;
- Normalidade.

Homocedasticidade

- A hipótese de homocedasticidade para a regressão múltipla significa que a variância do erro não observável u, condicional nas variáveis explicativas, é constante, ou seja, não se mantém quando a variância dos fatores não observáveis muda ao longo de diferentes segmentos da população.
- Por exemplo, a heterocedasticidade está presente se a variância de u que afeta y aumenta com x.

Homocedasticidade: Suposição de que

$$Var(\mathbf{e}) = E(\mathbf{e}\mathbf{e}') = \sigma^2 I_n = \begin{pmatrix} \sigma^2 \\ \sigma^2 \\ \sigma^2 \\ \sigma^2 \\ \sigma^2 \\ \sigma^2 \\ \sigma^2 \end{pmatrix}$$

(matriz de covariância)

implica em:

$$Var(e_i) = E(e_i^2) = \sigma^2, \forall i$$

Esta hipótese não é correta quando *Var(e)*varia de um grupo para outro da população,
ou seja, varia com os valores das variáveis
explicativas

Heterocedasticidade

Aqui, consideraremos mantidas todas as outras suposições de OLS, exceto a de homocedasticidade. Assim, teremos algo como, por exemplo

$$Var(\mathbf{e}) = E(\mathbf{e} \mathbf{e}') = \Omega = \begin{bmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \\ \vdots \\ \sigma_n^2 \end{bmatrix}$$

Propriedades dos estimadores

$$\hat{\beta}^{(OLS)} = \left(X'X\right)^{-1} X'y = \left(X'X\right)^{-1} X'\left(X\beta + e\right) = \beta + \left(X'X\right)^{-1} X'e$$

$$E\left(\hat{\beta}^{(OLS)}\right) = E\left[\beta + \left(X'X\right)^{-1}X'e\right] = \beta + \left(X'X\right)^{-1}X'E\left[e\right] = \beta$$

$$p\lim_{\stackrel{\sim}{e}} \left(\hat{\beta}^{(OLS)} \right) = p\lim_{\stackrel{\sim}{e}} \left(\beta + \left(X'X \right)^{-1} X'e \right) = \beta$$

Note que a suposição de homocedasticidade não desempenha papel algum na demonstração de que os estimadores de mínimos quadrados dos parâmetros do modelo de regressão são não viesados e consistentes;

Propriedades

$$\hat{\beta}^{(OLS)} = \left(X'X\right)^{-1} X'y = \left(X'X\right)^{-1} X'\left(X\beta + e\right) = \beta + \left(X'X\right)^{-1} X'e$$

$$Var\left(\hat{\beta}^{(OLS)}\right) = E\left[\left(\hat{\beta}^{(OLS)} - \beta\right)\left(\hat{\beta}^{(OLS)} - \beta\right)^{-1}\right] =$$

$$= E\left\{\left[\left(X'X\right)^{-1}X'e\right]\left[\left(X'X\right)^{-1}X'e\right]^{-1}\right\} =$$

$$= E\left\{\left(X'X\right)^{-1}X'ee'X\left(X'X\right)^{-1}\right\} =$$

$$= \left(X'X\right)^{-1}X'E\left\{ee'X\left(X'X\right)^{-1}\right\} =$$

$$= \left(X'X \right)^{-1} X'\Omega X \left(X'X \right)^{-1}$$

Aqui, verifica-se que a expressão usual de cálculo da variância dos estimadores, quando a suposição de homocedasticidade é válida,

$$Var\left(\hat{\beta}^{(OLS)}\right) = E\left[\left(\hat{\beta}^{(OLS)} - \beta\right)\left(\hat{\beta}^{(OLS)} - \beta\right) \left(\hat{\beta}^{(OLS)} - \beta\right)\right] = \sigma^{2}\left(X'X\right)^{-1}$$

não se aplica mais.

- A partir das expressões anteriores, pode-se demonstrar que os estimadores das variâncias dos estimadores dos parâmetros do modelo de regressão são viesados, se não for válida a suposição de homocedasticidade, o que afeta o erro-padrão dos estimadores de mínimos quadrados;
- Isso significa que os intervalos de confiança e os testes t
 Esão prejudicados;
- Além disso, os estimadores de mínimos quadrados não são mais BLUE e nem assintoticamente eficientes.

Quando existe heterocedasticidade, os estimadores usuais por mínimos quadrados dão mais peso para os resíduos com maior variância, já que a soma de quadrados dos resíduos (SSR) associados com os termos de maior variância tende a ser maior que aquela associada aos termos de menor variância.

A suposição de homocedasticidade é necessária para a determinação das distribuições das somas de quadrados e testes de hipóteses.

Observação:

A suposição de homocedasticidade entra fundamentalmente na derivação das distribuições das variáveis presentes nos testes, toda a análise neles baseada não é válida (a falha na suposição de homocedasticidade é mais grave que a falha na suposição de normalidade).

A primeira forma de detectar a existência de heterocedasticidade é através da análise de resíduos (construir gráficos dos resíduos ao quadrado *versus* cada uma das variáveis explicativas e *versus* os valores ajustados da variável resposta).

Base de dados de Wooldridge (2006) com preços de imóveis americanos (*hprice1*) para estimar o modelo a seguir:

$$preco = \beta_0 + \beta_1 terreno + \beta_2 area + \beta_3 quartos + e$$

preco: preço da casa (em milhares de dólares)

terreno: tamanho do terreno

area: tamanho da casa

quartos: número de quartos

Estimativas de mínimos quadrados:

Dependent Variable: PRECO

Method: Least Squares

Date: 07/30/10 Time: 13:55

Sample: 188

Included observations: 88

	Coefficient	Std. Error	t-Statistic	Prob.
C TERRENO AREA QUARTOS	-21.77031 0.002068 0.122778 13.85252	29.47504 0.000642 0.013237 9.010145	-0.738601 3.220096 9.275093 1.537436	0.4622 0.0018 0.0000 0.1279
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.672362 0.660661 59.83348 300723.8 -482.8775 57.46023 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		293.5460 102.7134 11.06540 11.17800 11.11076 2.109796

Análise de resíduos:

H₀: as observações são provenientes de uma população normalmente distribuída

Series: Residuals	;
Sample 188	
Observations 88	
Mean	8.07E -14
Median	-6.554850
Maximum	209.3758
Minimum	-120.0264
Std. Dev.	58.79282
Skewness	0.960683
Kurtosis	5.260844
Jarque-Bera	32.27791
P robability	0.000000

$$JB = \frac{n}{6}A\hat{s}s^2 + \frac{n}{24}(C\hat{u}rt - 3)^2 \sim \chi_2^2$$
 49

BDRMS

51

PRICEAJUST

BDRMS

Considerando
$$H_0$$
: $Var(e \mid x_1, x_2, \dots, x_k) = \sigma^2$

Homocedasticidade
$$\to H_0: Var(e \mid x_1, x_2, ..., x_k) =$$

$$= E(e^2 \mid x_1, x_2, ..., x_k) - [E(e \mid x_1, x_2, ..., x_k)]^2 =$$

$$= E(e^2 \mid x_1, x_2, ..., x_k) = \sigma^2$$

Para H_0 ser rejeitada, precisamos encontrar relação entre o e^2 e variáveis explicativas; por exemplo:

 $e^2 = \delta_0 + \delta_1 x_1 + ... + \delta_k x_k + v$, onde v é variável erro.

Neste caso,

 H_0 (hipótese de homocedasticidade): $\delta_1 = ... = \delta_k = 0$, a qual pode ser testada com uma estatística F ou LM.

Como não se conhece os erros no modelo populacional, deve estima-los, e, $\hat{\mathbf{e}}_i$ é uma estimativa do erro \mathbf{e}_i . Então, pode-se estimar a equação

$$\hat{\mathbf{e}}^2 = \delta_0 + \delta_1 \mathbf{x}_1 + \dots + \delta_k \mathbf{x}_k + \mathbf{v},$$

e calcular a estatística F ou LM para verificar a significância conjunta de de $x_1, ..., x_k$, como segue:

$$F_{obs} = \frac{R_{\hat{e}^2}^2}{(1 - R_{\hat{e}^2}^2)} \sim F_{[k; n-k-1]}$$

$$/(n-k-1)$$

ou

$$LM = n \cdot R_{\hat{e}^2}^2 \sim \chi_k^2$$

- Rejeitamos H₀ quando o valor observado for superior ao crítico;
- A versão LM deste teste é conhecida como TESTE DE BREUSCH-PAGAN (Teste BP).

Observações:

- Podemos considerar apenas um sub-conjunto das variáveis explicativas;
- Se H₀ for rejeitada, então, precisaremos recorrer a algum método de estimação que leve em conta a violação da suposição de homocedasticiadade.

Voltando ao modelo,

$$preco = \beta_0 + \beta_1 terreno + \beta_2 area + \beta_3 quartos + e$$

a fim de se fazer um teste BP para verificar se os erros são homocedásticos. Após a estimação do modelo, o quadrado dos resíduos são salvos e regredidos em função das variáves explicativas:

Modelo estimado para os resíduos ao quadrado:

Dependent Variable: RESIDSQ

Method: Least Squares

Date: 07/30/10 Time: 14:43

Sample: 188

Included observations: 88

	Coefficient	Std. Error	t-Statistic	Prob.
C TERRENO AREA QUARTOS	-5522.795 0.201521 1.691037 1041.760	3259.478 0.071009 1.463850 996.3810	-1.694380 2.837961 1.155198 1.045544	0.0939 0.0057 0.2513 0.2988
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.160141 0.130146 6616.646 3.68E+09 -896.9860 5.338919 0.002048	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3417.316 7094.384 20.47695 20.58956 20.52232 2.351111

Exemplo Solução:

$$\chi^2_{\text{obs}} = 88 * 0.16 = 14.08$$

 $\chi^2(0.05; 3) = 7.81$
p-valor = 0.0028

$$F_{obs} = 5.34$$

$$F(0.05; 3; 84) = 2.71$$

$$p-valor = 0.002048$$

TESTE DE WHITE

Este teste consiste em recorrer a uma suposição menos rigorosa do que a de homocedasticidade:

 H_0 : e^2 não é correlacionado com as variáveis explicativas, seus quadrados e seus produtos cruzados (interações).

TESTE DE WHITE

Por exemplo, quando o modelo contém k = 3 variáveis independentes, o teste de White fica baseado na estimação do modelo

$$\hat{e}^{2} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \delta_{3}x_{3} +$$

$$+ \delta_{4}x_{1}^{2} + \delta_{5}x_{2}^{2} + \delta_{6}x_{3}^{2} +$$

$$+ \delta_{7}x_{1}x_{2} + \delta_{8}x_{1}x_{3} + \delta_{9}x_{2}x_{3} + erro$$

TESTE DE WHITE

- A utilidade deste teste consiste em identificar a forma de heterocedasticidade, ou de erro de especificação, ou de ambos.
- Comparado ao teste BP, este modelo tem 6 parâmetros a mais para ser estimado, logo, há uma perda no número de graus de liberdade.
- Para minimizar a perda de graus de liberdade, este teste pode ser feito com a regressão:

$$\hat{e}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + erro$$

Voltando ao modelo para realizar o Teste de White a fim de verificar se os erros são homocedásticos:

$$preco = \beta_0 + \beta_1 terreno + \beta_2 area + \beta_3 quartos + e$$

Heteroskedasticity Test: White

•	b. F(9,78) 0.0000 b. Chi-Square(9) 0.0001 b. Chi-Square(9) 0.0000
---	---

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 07/30/10 Time: 15:01

Sample: 188

Included observations: 88

	Coefficient	Std. Error	t-Statistic	Prob.
С	15626.24	11369.41	1.374411	0.1733
TERRENO	-1.859507	0.637097	-2.918719	0.0046
TERRENO^2	-4.98E-07	4.63E-06	-0.107498	0.9147
TERRENO*AREA	0.000457	0.000277	1.649673	0.1030
TERRENO*QUARTOS	0.314647	0.252094	1.248135	0.2157
AREA	-2.673918	8.662183	-0.308689	0.7584
AREA^2	0.000352	0.001840	0.191484	0.8486
AREA*QUARTOS	-1.020860	1.667154	-0.612337	0.5421
QUARTOS	-1982.841	5438.483	-0.364595	0.7164
QUARTOS^2	289.7541	758.8303	0.381843	0.7036
R-squared	0.383314	Mean dependent var		3417.316
Adjusted R-squared	0.312158	S.D. dependent var		7094.384
S.E. of regression	5883.814	Akaike info criterion		20.30444
Sum squared resid	2.70E+09	Schwarz criterion		20.58596
Log likelihood	-883.3955	Hannan-Quinn criter.		20.41786
F-statistic	5.386953	Durbin-Watson stat		2.052712
Prob(F-statistic)	0.000010			

Para minimizar a perda de graus de liberdade, será refeito o exemplo anterior utilizando o modelo

$$\hat{e}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + erro$$

para testar H_0 : o erro é homocedástico ($\delta_1 = \delta_2 = 0$).

Dependent Variable: RESIDSQ

Method: Least Squares

Date: 07/30/10 Time: 15:13

Sample: 188

Included observations: 88

	Coefficient	Std. Error	t-Statistic	Prob.
C PRECO_AJUST PRECO_AJUST^2	19071.59 -119.6554 0.208947	8876.227 53.31721 0.074596	2.148615 -2.244217 2.801037	0.0345 0.0274 0.0063
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.184868 0.165689 6480.055 3.57E+09 -895.6710 9.638819 0.000169	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3417.316 7094.384 20.42434 20.50880 20.45837 2.031774

ExemploSolução:

$$\chi^2_{\text{obs}} = 88 * 0,1848 = 16,26$$

 $\chi^2(0,05; 2) = 5,99$
p-valor = 0,000295

MÍNIMOS QUADRADOS GENERALIZADOS

As técnicas inferenciais são componentes importantes em muitas análises de dados. Na presença de heterocedasticidade, como foi verificado anteriormente, toda a análise baseada em testes de hipóteses se torna inválida.

Será apresentado o ajuste dos erros-padrão e as estatísticas t e F, obtidos por mínimos quadrados, na presença de heterocedasticidade cuja forma é conhecida.

$$\hat{Y}^* = X^* \hat{\beta} + \varepsilon^* \quad \text{onde} : Y^* = PY, \quad X^* = PX, \quad \varepsilon^* = P\varepsilon$$

$$E[\varepsilon^* \varepsilon^* \mid X] = \sigma^2 I$$

$$= PE[\varepsilon \varepsilon'] P' = \sigma^2 I$$

$$= E[P\varepsilon \varepsilon' P \mid X] = \sigma^2 I$$

$$= P\Omega P' = \sigma^2 I$$

$$= P\sigma^2 \Phi P' = \sigma^2 I$$

$$= \sigma^2 P\Phi P' = \sigma^2 I$$

$$\Rightarrow P\Phi P' = I \qquad \Phi^{-1} = P' P$$

Pode-se demonstrar que no caso em que a matriz (1) conhecida, os parâmetros do modelo de regressão podem ser estimados a partir de um método chamado de Mínimos Quadrados Generalizados (GLS).

Utilizando tal método obtemos:

$$\hat{\beta}^{(GLS)} = \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} y$$

$$Var\left(\hat{\beta}^{(GLS)}\right) = \left(X'\Omega^{-1}X\right)^{-1}$$

 Detectando-se heterocedasticidade, é possível estimar erros padrão robustos em relação à heterocedasticidade após a estimação MQO.

 Antes das estatísticas robustas é possível modelar e estimar a forma específica da heterocedasticidade, calculando um estimador mais eficiente que o MQO, além de estatísticas t e F não viesadas. Porem, isso requer mais trabalho pois é preciso ser específico sobre a natureza da heterocedasticidade.

• Para obter estimadores de β_j que tenham propriedades de eficiência melhores que MQO, estimamos a seguinte equação:

$$y_{i} / \sqrt{h_{i}} = \beta_{0} / \sqrt{h_{i}} + \beta_{1} \begin{pmatrix} x_{i1} / \sqrt{h_{i}} \end{pmatrix} + \dots + \beta_{k} \begin{pmatrix} x_{ik} / \sqrt{h_{i}} \end{pmatrix} + u_{i} / \sqrt{h_{i}}$$

 Esta equação transformada satisfará as hipóteses do modelo linear clássico, se o modelo original também o fizer, com exceção da hipótese de homoscedasticidade.

Considere a seguinte equação:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

 Assuma que h(x)é alguma função das variáveis explicativas que determina a heteroscedasticidade:

$$Var(u \mid x) = \sigma^2 h(x)$$

- $Com\ h(x)>0$ para todos valores possíveis das variáveis independentes.
- Supomos que a função h(x)é conhecida. Assim, mesmo que o parâmetro populacional σ^2 seja desconhecido, teremos condições de estimá-lo a partir de uma amostra de dados.

- É necessário estimar os parâmetros da nova equação por mínimos quadrados ordinários. Os novos betas serão os estimadores de mínimos quadrados generalizados (GLS).
- Os erros-padrão, estatísticas *t* e estatísticas *F* podem ser obtidas de regressões que usem as variáveis transformadas.
- Por serem BLUE, os estimadores GLS são preferíveis aos estimadores OLS.

- Os estimadores de mínimos quadrados generalizados (GLS) para correção da heteroscedasticidade são chamados de estimadores de mínimos quadrados ponderados (MQP) pois os novos betas minimizam a soma ponderada dos quadrados dos resíduos.
- A idéia é colocar menos peso nas observações com uma variância de erro mais alta enquanto o método OLS atribui pesos iguais a todas as observações, o que é melhor quando o erro é homocedastico.

Na prática é muito difícil conhecer a verdadeira forma como a heterocedasticidade se apresenta. Assim, precisamos buscar alguma metodologia que nos forneça resultados válidos na presença de heterocedasticidade cuja forma é desconhecida

Recentemente, muito se tem desenvolvido com relação ao ajuste de erros padrões, estatísticas t, F e LM para que os mesmos se tornem válidos na presença de heterocedasticidade.

Estes procedimentos são conhecidos como ROBUSTOS pois são válidos, pelo menos com amostras grandes, sendo ou não a variância do erro constante.

Considere que os erros são não correlacionados mas heterocedásticos, então a matriz Ω terá os elementos σ_1^2 , σ_2^2 , ..., σ_n^2 na diagonal principal. Assim, podemos escrever a expressão

$$Var\left(\hat{\beta}^{(OLS)}\right) = E\left[\left(\hat{\beta}^{(OLS)} - \beta\right)\left(\hat{\beta}^{(OLS)} - \beta\right)\right] = E\left[\left(X'X\right)^{-1}X'e\right]\left[\left(X'X\right)^{-1}X'e\right]$$

$$=E\left\{\left(X'X\right)^{-1}X'ee'X\left(X'X\right)^{-1}\right\}=\left(X'X\right)^{-1}X'E\left\{ee'X\right\}X\left(X'X\right)^{-1}=$$

$$= \left(X'X \right)^{-1} X'\Omega X \left(X'X \right)^{-1}$$

Como

$$Var\left(\hat{\beta}^{(OLS)}\right) = \left(X'X\right)^{-1} \left(\sum_{i=1}^{n} \sigma_{i}^{2} x_{i} x_{i}'\right) \left(X'X\right)^{-1}$$

Não se conhece σ_i^2 , i = 1, 2, ..., n. Porém, White (1980) demonstrou que uma estimativa bem simples dessas quantidades podem ser obtidas a partir do cálculo de \hat{e}_i^2 (quadrado do resíduo de OLS).

Assim,

$$Var\left(\hat{\beta}^{(OLS)}\right) = \left(X'X\right)^{-1} \left(\sum_{i=1}^{n} \hat{e}_{i}^{2} x_{i} x_{i}'\right) \left(X'X\right)^{-1}$$

Ao se tomar a raiz quadrada dos elementos da diagonal principal desta matriz teremos o que usualmente costuma se chamar de erro-padrão devido a White (ou erro padrão robusto).

Observações:

- O erro-padrão robusto pode ser maior ou menor do que o erro-padrão não robusto (não sabemos se o viés é para cima ou para baixo);
- Usando um método de estimação robusto, a estatística de teste t também será robusta.

Exemplo

$$preco = -21,77031 + 0,00207 \cdot terreno + 0,12277 \cdot area + 13,85252 \cdot quartos$$

$$(29,47504) (0,00064) \qquad (0,01324) \qquad (9,01014)$$

$$[37,13821] [0,00125] \qquad [0,01772] \qquad [8,47862]$$

$$n = 88 \qquad R^2 = 0,6724$$

Entre colchetes encontram-se os erros padrões robustos.

Usando um método de estimação robusto, as estatísticas de testes (t, F e LM) também serão robustas.

Exemplo

Estatísticas F e LM Robustas:

Ajustar o modelo usando algum procedimento robusto:

$$preco = \beta_0 + \beta_1 terreno + \beta_2 area + \beta_3 quartos + e$$

Testar a hipótese:

$$H_0: \beta_1 = \beta_3 = 0$$

$$H_0: \beta_1 \neq 0 \quad e / ou \quad \beta_3 \neq 0$$

Exemplo

Wald Test:

Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	2.364911	(2, 84)	0.1002
Chi-square	4.729822	2	0.0940

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(2)	0.002068	0.001251
C(4)	13.85252	8.478625

Restrictions are linear in coefficients.

$$F_{\text{crítico}} = F(0.05; 2; 84) = 3.11$$

$$\chi^2_{\text{crítico}} = \chi^2(0.05; 2) = 5.99$$

LM > χ_q^2 ou F_{obs} > $F_{[q; n-k-1]}$ rejeita a hipótese nula