University of Asia Pacific (UAP) Department of CSE

CSE 403 Course Outline

Program: Bachelor of Science in CSE

Course Title: Artificial Intelligence and Expert Systems

Course Code: CSE 403

Semester: Spring 21

Level: 4th year, 1st Semester (4-1)

Credit Hour: 3.0

Name & Designation of Teacher: Dr. Nasima Begum (DNB), Assistant Professor

Molla Rasheid Hossain (MRH), Assistant Professor

Office/Room:

Class Hours: Monday: 11:00AM – 12:20 PM (Section A) (MRH)

Tuesday: 2:00 PM – 3:20 PM (Section A) (MRH) Wednesday: 3:30PM – 4:50 PM (Section B) (DNB) Thursday: 3:30 PM – 4:50 PM (Section B) (DNB)

Consultation Hours: Thursday: 2:00 PM – 3:20PM (Section B)

E-mail: nasima.cse@uap-bd.edu, mrh.cse@uap-bd.edu

Mobile: +8801816203075, +8801777401970

Rationale: Required course to Pattern Recognition in the CSE program. This knowledge is very

important for the field of Pattern Recognition and Machine Learning professional.

Pre-requisite (if any): CSE 205, CSE 207

Course Synopsis: Introduction, Definition, Foundation, Agent: Characteristics, Environments, Agent Types, First Order

Logic: Basic Elements, Quantifiers, Proof Tree, Forward Chaining, Backward Chaining, Resolution, Searching: Uninformed Search: Breadth-First Search (BFS), Depth-First Search (DFS), Uniform-Cost Search (UCS), Depth-Limited Search (DLS), Iterative Deepening Search (IDS), Bi-Directional Search (BDS), Informed Search: Greedy Best-First Search, A* Search, Memory Bounded Heuristic Search, Local Search: Hill-Climbing Search, Simulated Annealing, Local Beam Search, Genetic

Algorithm, Game Playing: Game Definition, Game Theory, Zero Sum Game, Minimax Algorithm, AlphaBeta Pruning, Planning and Acting: Action Schema, Preconditions and Effects, PDDL Description, Uncertainty and Reasoning: Rational Decision, Probability Theory, Utility Theory, Decision Theory, Bayes' Rule, Decision Making: Axioms of Utility Theory, Allais Paradox, Ellsberg Paradox, Learning: Factors, Components, Types, Unsupervised Learning, Supervised Learning, Semi-supervised Learning, Deductive Learning, Inductive Learning, Reinforcement Learning.

Course Objectives:

The objectives of this course are to:

- 1. Provide the fundamental knowledge of AI, history, success, achievement, inferencing, introduction to intelligent agent, different types of agent, expert system, and knowledge representation technique and analyze them in various practical scenarios.
- 2. Explain various AI search techniques (uninformed, informed, Genetic algorithm) and game theory for different real life problems.
- 3. Demonstrate different probabilistic reasoning technique (Markov Model, Bayesian Rule, Fuzzy system) for various cases.
- 4. Explain different advanced AI topics (Artificial Neural Network (ANN), Natural Language Processing (NLP) and different learning technique (supervised, unsupervised, reinforcement) to build AI agents.

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

CO	CO Statements:	Corresponding	Bloom's	Delivery	Assessment
No.	Upon successful	POs	taxonomy	methods	Tools
	completion of the	(Appendix-1)	domain/level	and	
	course, students should		(Appendix-2)	activities	
	be able to:				
CO1	Understand the	2	1/Understand	Lecture,	Quiz, Problem
	fundamental concepts of			Multimedia,	solving, Written
	AI and Intelligent Agent			Problem	exam, Mid Exam
	in various practical			solving	
	scenarios.				
CO2	Analyze various AI	4	1/Analyze	Lecture,	Quiz,
	search techniques and			Multimedia,	Presentation
	Game Theory for			Problem	Mid Exam
	different real life			Solving,	
	problems.				
CO3	Apply different	1	1/Apply	Lecture,	Assignment,
	knowledge			Multimedia,	Problem solving,
	representation &			Group	Final Exam
	reasoning (KRR)			Discussion,	
	techniques and Fuzzy			Problem	
	Logic in different			solving	
	scenarios.				

CO4	Interpret Markov	3	1/Analyze	Lecture,	Assignment,
	Model, Bayesian Rule			Problem	Problem solving,
	in uncertainty and			Solving,	Final Exam
	probabilistic reasoning.			Group	
				discussion	
CO5	Design and implement	3	1/Evaluate	Lecture,	Case study,
	AI agents based on			Multimedia,	assignment,
	ANN and different			Problem	project
	types of Learning			solving	
	techniques.				

Weighting COs with Assessment methods:

Assessment Type	% Weight	CO1	CO2	CO3	CO4	CO5
Final Exam	Written (40%)		20		10	10
	Viva (10%)			10		
Mid Term	20%	8.33	11.67			
Quizzes, Assignment, Class Performance	30%		10		10	10
Total	100%	8.33	41.67	10	20	20

Grading Policy: As per the approved grading policy of UAP (Appendix-3)

Course Content Outline and mapping with COs

AIMA = Artificial Intelligence: A Modern Approach

Weeks	Topics / Content	Course	Delivery methods	Reading Materials
		Outcome	and activities	
1	Introduction to AI	CO1	Lecture, multimedia	Relevant chapter of both Book, Lecture Slide, Handout
2	Intelligent Agent	CO1	Lecture, multimedia	Relevant chapter of Book-AIMA, Lecture Slide, Handout

2	Intelligent Agent	CO1	Lecture, multimedia	Relevant chapter of Book-AIMA, Lecture Slide, Handout
3	Uninformed Search (BFS, DFS, UCS)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
4	Uninformed Search (BFS, DFS, UCS)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
4	Uninformed Search (BFS, DFS, UCS)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
5	Uninformed Search (BFS, DFS, UCS)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
5	Informed Search (Best-First, Greedy Best- First)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
6	Informed Search (A*, Heuristics)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
7	Informed Search (A*, Heuristics)	CO2	Lecture, multimedia, Case study	Relevant chapter of Book-AIMA, Lecture Slide
8	Local Search, Genetic Algorithm	CO2	Lecture, multimedia,, problem solving	Relevant chapter of Book-AIMA, Lecture Slide
9	Adversarial Search, Game Theory	CO2	Lecture, multimedia,, problem solving	Relevant chapter of Book-AIMA, Lecture Slide
10	Adversarial Search, Game Theory	CO2	Lecture, multimedia,, problem solving	Relevant chapter of Book-AIMA, Lecture Slide
10	Adversarial Search, Game Theory	CO2	Lecture, multimedia,, problem solving	Relevant chapter of Book-AIMA, Lecture Slide
11	Propositional Logic, Prolog	CO3	Lecture, multimedia	Relevant chapter of both Book, Lecture Slide, Handout
11	Predicate Logic, Semantic Net	CO3	Lecture, multimedia	Relevant chapter of both Book, Slide, Handout
12	Understand probabilistic reasoning, Interpret Bayesian Rule	CO4	Lecture, multimedia, problem solving	Book-AIMA, Lecture Slide

12	Explain the basics of Markov Model	CO4	Lecture, multimedia, problem solving	Book-AIMA, Lecture Slide
13	Explain the basics of Fuzzy System	CO4	Lecture, multimedia, problem solving	Handout, Relevant chapter of both Book, Lecture Slide,
13	Introduction to Artificial Neural Networks and different Learning techniques	CO5	Lecture, multimedia, problem solving	Handout, Relevant chapter of both Book, Lecture Slide,
14	Introduction multilayer Neural Networks and different problems	CO5	Lecture, multimedia, problem solving	Handout, Relevant chapter of both Book, Lecture Slide,
15	Review	CO1- CO5	All Lectures	Book-AIMA, All Lecture Slides

TextBook: AIMA = Artificial Intelligence: A Modern Approach-by Stuart Russell and Peter Norving (3rd / 4th Edition)

Recommended Reference(s): Artificial Intelligence-by Patrick Henry Winston (3rd Edition)

Other References: http://ai.berkeley.edu/lecture_slides.html

Special Instructions:

- Minimum Required Attendance: 60% class attendance is mandatory for a student in order to appear at the final examination.
- Absent in the class: If a lecture is missed by a student, consultancy hours and office hours can be used to understand those topics.
- Late presence: Punctuality is essential, DON'T be late.
- Assignment submission rules: Students must submit their assignments on time. No late or partial assignments will be acceptable.
- There will be no make-up quizzes.
- Manners and etiquettes!
- Plagiarism policy: Copied assignments will be negative marking.

Online Etiquette for Students

Prepare yourself for the class. Remember that it is a classroom setting, consisting of all learners'
classmates and teachers. Students need to follow all the etiquettes they would in a regular
classroom.

- Make sure your device is ready at least 10 minutes before the class starts.
- Make sure all required study materials such as pen, paper, books, etc. are in your reach during the class
- Try to be alone and pay full attention to your teachers. Nobody should be around you while the class is in progress (if not possible, take extra care to keep your microphone in mute state to avoid extra noise during the class).
- Follow the timetable of the class very strictly
- Keep your microphone in mute state and video in on state. If you need to communicate with your teacher raise your hands and seek permission.
- Do not do anything which may disturb the class (such as passing irrelevant and negative comments etc.); you will be monitored and **disciplinary actions will be taken.**

Prepared by	Checked by	Approved by
Dr. Nasima Begum Molla Rasheid Hossain	Chairman, PSAC committee	Head of the Department

<u>Appendix-1:</u> Washington Accord Program Outcomes (PO) for engineering programs:

No.	PO	Differentiating Characteristic
1	Engineering Knowledge	Breadth and depth of education and type of knowledge, both theoretical and practical
2	Problem Analysis	Complexity of analysis
3	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified or codified
4	Investigation	Breadth and depth of investigation and experimentation
5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
6	The Engineer and Society	Level of knowledge and responsibility
7	Environment and Sustainability	Type of solutions.
8	Ethics	Understanding and level of practice
9	Individual and Team work	Role in and diversity of team
10	Communication	Level of communication according to type of activities performed
11	Project Management and Finance	Level of management required for differing types of activity
12	Lifelong learning	Preparation for and depth of Continuing learning.

Appendix-2

Appendix-3

UAP Grading Policy:

Numeric Grade	Letter Grade	Grade Point
80% and above	\mathbf{A} +	4.00
75% to less than 80%	A	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	B-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00