

Announcements

1. Please return the radiant thermometers to me now

Reminders:

- 1. HW#1 was due today via eCampus
- 2. HW#2 is due in one week (Feb. 14, 2019)

Penalties for Late Work

0-1 days late	Score * 90%
1-2 days late	Score * 70%
2-3 days late	Score * 50%
≥ 3 days late	No credit

Descriptive Spatial Statistics

 Spatial statistics (or spatial analysis) includes any of the formal techniques which study entities using their topological, geometric, or geographic properties.

John Snow's Map

Mean Center

 Mean center (X_{bar}, Y_{bar}) is calculated as the arithmetic average of x and the average of y (mean center is not the same as the geometric center or centroid)

$$\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\overline{Y} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

Weighted Mean Center

Value dependent center

- Weighted mean center is weighted based on the sample values
- Previous method is "equalweighted"

$$\overline{X} = \frac{v_1 x_1 + v_2 x_2 + \dots + v_3 x_n}{v_1 + v_2 + \dots + v_3}$$

$$\overline{Y} = \frac{v_1 y_1 + v_2 y_2 + \dots + v_3 y_n}{v_1 + v_2 + \dots + v_3}$$

Figure 4.3 Graph of Point Locations, Frequencies (in Parentheses) and Weighted Mean Center

Table 4.3 Work Table for Calculating Weighted Mean Center

		tional linates*	Weight	Weighted Coordinates		
Point	X_{i}	Y_{i}	f_{i}	f_iX_i	$f_i Y_i$	
Α	2.8	1.5	5	14.0	7.5	
В	1.6	3.8	20	32.0	76.0	
C	3.5	3.3	8	28.0	26.4	
D	4.4	2.0	4	17.6	8.0	
E	4.3	1.1	6	25.8	6.6	
F	5.2	2.4	5	26.0	12.0	
G	4.9	3.5	3	14.7	10.5	
n = 7	Σf_i	= 51	$\Sigma f_i X_i = 15$	$\mathbf{\Sigma} \mathbf{f}_i$	$Y_i = 147.0$	

$$\overline{X}_{wc} = \frac{\sum f_i X_i}{\sum f_i} = \frac{158.1}{51} = 3.10$$

$$\overline{Y}_{wc} = \frac{\sum f_i Y_i}{\sum f_i} = \frac{147.0}{51} = 2.8$$

Weighted mean center coordinates: (3.10, 2.88)*

*See figure 4.3 for graph of point locations, frequencies, and weighted mean center.

Figure 4.3 Graph of Point Locations, Frequencies (in Parentheses) and Weighted Mean Center

Point B makes up nearly 40% of total weight

Table 4.3 Work Table for Calculating Weighted Mean Center

		tional linates*	Weight	Weighted Coordinates		
Point	X_{i}	Y_{i}	f_{i}	f_iX_i	$f_i Y_i$	
Α	2.8	1.5	5	14.0	7.5	
В	1.6	3.8	20	32.0	76.0	
C	3.5	3.3	8	28.0	26.4	
D	4.4	2.0	4	17.6	8.0	
E	4.3	1.1	6	25.8	6.6	
F	5.2	2.4	5	26.0	12.0	
G	4.9	3.5	3	14.7	10.5	
n = 7	Σf_i	= 51	$\Sigma f_i X_i = 15$	$\mathbf{\Sigma} \mathbf{f}_i$	$Y_i = 147.0$	

$$\overline{X}_{wc} = \frac{\Sigma f_i X_i}{\Sigma f_i} = \frac{158.1}{51} = 3.10$$

$$\overline{Y}_{wc} = \frac{\Sigma f_i Y_i}{\Sigma f_i} = \frac{147.0}{51} = 2.88$$

Weighted mean center coordinates: (3.10, 2.88)*

*See figure 4.3 for graph of point locations, frequencies, and weighted mean center.

Median Center

- Median center minimizes sum of distances from points to the location
- Iterative approach that guesses a location, i, and then minimizes distance from all points

$$x' = \frac{\sum_{i=1}^{n} \frac{v_{i} x_{i}}{d_{i}}}{\sum_{i=1}^{n} \frac{v_{i}}{d_{i}}} \quad y' = \frac{\sum_{i=1}^{n} \frac{v_{i} y_{i}}{d_{i}}}{\sum_{i=1}^{n} \frac{v_{i}}{d_{i}}}$$

Median Center of Population for the United States: 1880 to 2010

Standard Distance

 Average distance of each sample point to either the geometric or arithmetic center

$$S_D = \sqrt{\frac{\sum (X_i - \overline{X}_c)^2 + \sum (Y_i - \overline{Y}_c)^2}{n}}$$

Weighted Standard Distance

 Same as standard distance except the weights (or values) of the sampling points are considered:

$$SD_{w} = \sqrt{\frac{\sum_{i=1}^{n} w_{i}(x_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} w_{i}} + \frac{\sum_{i=1}^{n} w_{i}(y_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} w_{i}}}$$

 w_i - weight of sample i

Relative Distance

- Relative distance is the standard distance divided by the radius of a circle, r, with area equal to the size of the study area
- Makes the measure of dispersion unitless and standardizes for the size of the study area
- Enables comparison of dispersion in study areas of different sizes

$$S_{D, rel} = S_D / r$$

Spatial Arrangement

- What spatial arrangement of a variable or your sampling in the study area?
- Nearest Neighbor Distance

$$NND = \frac{\sum ND}{n}$$

$$NND_R = \frac{1}{2\sqrt{density}}$$

$$R = \frac{NND}{NND_R}$$

 The larger the R the more dispersed the samples, while a smaller R reflects clustering

Figure 11.3 Continuum of *R* Values in Nearest Neighbor Analysis

(Perfectly dispersed)
$$R = 2.149$$
(More dispersed than random)
$$R = 1.5$$
(Random)
$$R = 1.0$$
(More clustered than random)
$$R = 0.5$$
(Perfectly clustered)
$$R = 0.0$$

$$0 = 5 \text{ points at same location}$$

Source: Modified from Taylor, P. J. 1977. Quantitative Methods in Geography. Boston: Houghton Mifflin

Data Analysis in Geography

Normal Distribution

- The shape of the normal curve is often illustrated as a bell-shaped
- The highest point is the mean of the distribution
- The normal curve is symmetric
- Standard deviation determines the width of the curve

Normal Distribution

- The total area under the probability curve is one
- Probabilities for a random variable are given by areas under the curve, i.e., intervals

Normal Distribution

- Most common statistical tests are based on the assumption that the data you collect is normally distributed
- Allows for a simple description of how the data is distributed around the mean and between the maximum and minimum values
- stdev: Standard deviation

- 68% in -1 to +1 stdev from mean
- 95% in -2 to +2 stdev from mean
- 99.8% in -3 to +3 stdev from mean

- Natural systems exhibit variability
- Sampling introduces uncertainty

- We cannot account for everything in an experiment
- Sources of uncertainty:
 - 1. Equipment
 - Object Measured
 - 3. Person
 - 4. Method
 - 5. Calibration
 - 6. Environment

- We cannot account for everything in an experiment
- Will these two hit it off?

- We cannot account for everything in an experiment
 - Can't eliminate uncertainty
 - describe probability and confidence of our sample

Probability

Probability of a given data value is based on the Z score:

$$Z = \frac{X - \overline{X}}{s}$$

- Estimates how many standard deviations (s) a data value is away from the mean
- Probability of each Z score is listed in a Z table

Probability

Probability

- Average = 39.9 inches of annual rainfall in Washington DC
- Standard Deviation = 7.5 inches
- What is the probability of an annual rainfall > 48 inches?

$$Z = \frac{X - \overline{X}}{s} = \frac{48 - 40}{7.5} = 1.07$$

48 inches is 1.07 stdevs away from the mean (the Z score)

Z Table

of standard deviations

Probability of getting that value

				Sec	ond decin	nal place	of z			
\wedge	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	,4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	2743	-2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	2420	.2389	.2358	.2327	.2297	.2266	.2236	.2206	.2177	.2148
0.8	2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	1611
1.0	.1587	.1562	.1539	1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	-1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
U	.0968	.0951	.0934	.0918	.0901	.0885	.0869	-0853	.0838	.0823
1.4	.0808	.0793	.0116	0764	.0749	.0735	.0721	.0708	.0694	-0681
1.5	.0668	.0885	.0643	.0630	0618	.0606	.0594	.0582	.0571	.0559
1.0	0548	.0537	.0526	.0516	0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	9418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	-0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0065	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010

Annual Precipitation in Washington, DC

- What probability does a
 Z score of 1.07
 correspond to?
- Depends!

Annual Precipitation in Washington, DC

- What probability does a Z score of 1.07 correspond to?
- Upper tail assessment:
 Only 14.23% chance of
 greater than or equal to
 48" of precipitation

	Second decimal place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	,4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	-2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	-2297	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	1611
1.0	.1587	.1562	.1539	1515	.1492	.1409	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	-0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	-0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0682	.0571	.0559
1.6	0548	.0537	.0626	.0516	-0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0376	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0208	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	-0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.00			
2.5	.0062	.0060	.0059	.0057	.0065	.0054	.00			
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.00	/		
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.00	/	1	
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.00	/	1	
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.00	/	1	
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.00	/	Jan Jan	
Adapt	ed with ro	unding fr	own Taible	8 of Fishe			7-		0 Z	

Example: Annual Precipitation in Washington, DC over 40 years

	0 1		
	Ordered	l Sample	
26"	35"	39"	45"
26"	35"	40"	46"
28"	35"	40"	47"
29"	36"	41"	47"
32"	36"	41"	48"
32"	36"	41"	50"
33"	36"	41"	51"
33"	38"	41"	51"
34"	39"	43"	54"
35"	39"	43"	57"

- 6/40 = 15.0%
- 14.23% is good estimate

Annual Precipitation in Washington, DC

- What probability does a Z score of 1.07 correspond to?
- Lower tail assessment: 85.77% chance of less than or equal to 48" of precipitation

	Second decimal place of z									
2	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	,4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2961	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	-2709	.2676	.2643	.2611	2578	.2546	.2514	.2483	.2451
0.7	.2420	.2369	.2358	.2327	.2297	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	1611
1.0	.1587	.1562	.1539	1515	.1492	.1409	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	1292	.1271	.1251	1230	1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	-0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	-0681
1.5	.0068	.0655	.0643	.0630	.0618	.0606	.0594	.0682	.0571	.0559
1.6	0548	.0537	.0626	.0516	-0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0376	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	-0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0126	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.00			
2.5	.0062	.0060	.0059	.0057	.0065	.0054	.00		_	
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.00	/	1	
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.00	/	1	
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.00	/	1	
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.00	/	1	
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.00	/	B.	
Adapt	ed with ro	runding fro	own Taible	R of Fishe					0 Z	

Example: Annual Precipitation in Washington, DC over 40 years

	Ordered	l Sample	
26"	35"	39"	45"
26"	35"	40"	46"
28"	35"	40"	47"
29"	36"	41"	47"
32"	36"	41"	48"
32"	36"	41"	507
33"	36"	41"	1 /2,
33"	38"	41"	<i>*</i> ***********************************
34"	39"	43"	54³°
35"	39"	43"	57"

- 34/40 = 85.0%
- 85.76% is good estimate

Annual Precipitation in Washington, DC

- What probability does a Z score of 1.07 correspond to?
- Two-tail assessment: A difference of more than 8" from the mean will occur 28.46% of the time.

				Sec	ond decin	nal place	of z			
2	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2961	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	-2709	.2676	.2643	.2611	2578	.2546	.2514	.2483	.2451
0.7	.2420	.2369	.2358	.2327	.2297	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	1611
1.0	.1587	.1562	.1539	1515	.1492	.1409	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	-0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	-0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0682	.0571	.0559
1.6	0548	.0537	.0626	.0516	-0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0376	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0282	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	-0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.00			
2.5	.0062	.0060	.0059	.0057	.0065	.0054	.00		_	
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.00	/	1	
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.00	/	1	
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.00	/	1	
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.00	/	1	
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.00	/	B.	
Adapt	ed with ro	ounding fro	own Taible	R of Fishe			7		0 Z	

Example: Annual Precipitation in Washington, DC over 40 years

		1 1 1 1 1 1 1 1 1 1 1	
	Ordered	l Sample	
26"	35"	39"	45"
26"	35"	40"	46"
28"	35"	40"	47"
29"	36"	41"	47"
32"	36"	41"	48"
32"	36"	41"	50"
33"	36"	41"	51"
33"	38"	41"	51"
34"	39"	43"	54"
35"	39"	43"	57"

- 12/40 = 30.0%
- 28.46% is good estimate

Annual Precipitation in Washington, DC

- Other questions:
 - 1. What is the probability of drought conditions below 27 inches?
 - 2. What is the amount that has a probability of 1 in 100 years?
 - Lower and Upper
 - 3. What extreme events have a probability of only 5%?

	Second decimal place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2961	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	-2709	.2676	.2643	.2611	2578	.2546	.2514	.2483	2451
0.7	.2420	.2389	.2358	.2327	.2297	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	1611
1.0	.1587	.1562	.1539	1515	.1492	.1409	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	1292	.1271	.1251	1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	-0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	-0681
1.5	.0068	.0665	.0643	.0630	.0618	.0606	.0594	.0682	.0571	.0559
1.6	0548	.0537	.0626	.0516	-0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0376	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0282	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	-0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.00			
2.5	.0062	.0060	.0059	.0057	.0065	.0054	.00			
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.00	/	\sim	
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.00	/	1	
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.00	/	1	
2.9	.0019	.0018	.0018	.0017	.0016	.0016	.00	/	1	
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.00	/	D.	* "
Adapti	ed with ro				r and Ybti		-		0 Z	

 Express our confidence that the average of a sample is within a certain range of the population mean

$$\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$$

- To be 90% confident Z=1.65
- To be 95% confident Z=1.96
- You must know the standard deviation of the population (σ)

- Average = 39.9 inches
- Standard Deviation of population = 7.5 inches

$$|\bar{X} \pm Z \frac{\sigma}{\sqrt{n}}|$$

$$39.9 \pm 1.65 \frac{7.5}{\sqrt{40}}$$

 39.9 ± 1.96 inches

What about 95% confidence interval?

 $39.9 \pm 2.32 inches$

Interpretation:

- Probability that the sample mean sample falls within a range of the population mean
- 90% chance that the mean of a sample will fall in interval within 1.65 standard deviations of population mean
- 95% chance that the mean of a sample will falls in interval within 1.96 standard deviations of population mean

• If you only have a standard deviation of your sample then:

$$\overline{X} \pm Z \sqrt{\frac{s^2}{n} \frac{(N-n)}{N}}$$

- Requires you to know the size of the population from which you are sampling
- Different equation if you use a stratified (non-random) sample

- Average = 39.9 inches
- Standard Deviation = 7.5 inches
- Only 60 of 100 samples

$$39 \pm 1.65 \sqrt{\frac{7.5^2}{60} \frac{(100 - 60)}{100}}$$

 39 ± 1.01 inches

What about 95% confidence interval?

 39 ± 1.20 inches

 If you don't know the size of the population then you can simply use the standard equation:

$$\overline{X} \pm Z \frac{s}{\sqrt{n}}$$

 Creates wider confidence interval under the assumption that the population is really large

Data Analysis in Geography

