Complexidade e convergência de algoritmos de descida coordenadas de alta ordem para minimização com restrições de caixa.

Vitaliano S. Amaral - UFPI

V Congresso Brasileiro de Jovens Pesquisadores em Matemática - V CBJME

UFMG

11 de Setembro de 2024

Sumário

- 1. Breve introdução aos métodos de descida coordenada CD
- 2. Um método CD para problema restrito a uma caixa
- 3. Convergência
- 4. A complexidade do método
- 5. Comentários

Inicialmente consideramos o seguinte problema:

Minimizar
$$f(x)$$
 sujeito a $x \in \Omega \subset \mathbb{R}^n$.

Basicamente um método CD para resolver o problema acima consiste no seguinte:

Algoritmo 1.

Dados $k \leftarrow 0$, $x^0 \in \Omega$.

Repetir os seguintes passos:

Passo 1. Dado x^k escolher $I_k \subset \{1, 2, \dots, n\}$;

Passo 2. Determinar $x^{k+1} \in \Omega$, com $x_i^{k+1} = x_i^k$ para $i \notin I_k$ de modo que satisfaça alguma condição (pode ser decréscimo em f). Após isso voltar ao Passo 1.

Por um bom tempo, esses métodos receberam pouca atenção por parte dos pesquisadores.

Dois dos motivos foram:

- 1. Baixo desempenho em muitos problemas da época.
- 2. Falta de desafios em termos de teoria de convergência.

A situação mudou drasticamente nas últimas décadas. Dentre vários motivos, destacamos:

- 1. O surgimento de problemas de grande porte em que os métodos CD se mostraram úteis para resolvê-los.
- 2. A necessidade de teorias esclarecedoras sobre os métodos CD.

Alguns dos trabalhos que contribuíram com essa retomada:

A. Beck e L. Tetruashvili (2013). - On the convergence of block coordinate descent type methods. SIAM Journal on Optimization, 23(4):2037-2060.

Foi estudado problema irrestrito onde a função objetivo possui gradiente Lipschitz. Considerando f convexa obtiveram bons resultados de convergência.

S. J. Wright. - Coordinate descent algorithms. Mathematical Programming, 151(1):3-34, 2015

Foi analisado abordagens tradicionais e avanços modernos na introdução e análise dos métodos CD. Wright deu uma atenção especial a problemas que surgem com frequência em aplicações de aprendizado de máquina.

Recentemente surgiram vários trabalhos sobre os métodos CD. Por exemplo, os trabalhos:

E. G. Birgin, and J. M. Martínez. - *Block coordinate descent for smooth nonconvex constrained minimization*. Computational Optimization and Applications 83.1 (2022): 1-27.

minimization. Journal of Global Optimization (2022): 1-35

I. Necoara and F. Chorobura. - Random Coordinate Descent Methods for Nonseparable Composite Optimization. SIAM Journal on Optimization. 33, 2160-2190 (2023) O restante desta apresentação é dedicado ao trabalho¹, onde foi considerado o seguinte problema:

Comentários

Minimize
$$f(x)$$
 subject to $x \in \Omega$, (1)

onde $\Omega\subset\mathbb{R}^n$ é dado por $\Omega=\{x\in\mathbb{R}^n\,|\, \mathbf{l}\leqslant x\leqslant \mathbf{u}\}$, e $\mathbf{l},\mathbf{u}\in\mathbb{R}^n$ são tais que $\mathbf{l}<\mathbf{u}$.

¹V. S. Amaral; R. Andreani; E. J. G. Birgin; D. S. Marcondes and J. M. Martínez.

⁻ On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization (2022): 1-35

Consideramos:

ightharpoonup f com derivadas primeiras contínuas em Ω .

Comentários

- ▶ $g_P(x) = P_{\Omega}(x \nabla f(x)) x$ para todo $x \in \Omega$, onde P_{Ω} é a projeção euclidiana em Ω .
- $ightharpoonup g_{P,I}(x) \in \mathbb{R}^n$ definida por

$$[g_{P,I}(x)]_{\mathfrak{i}} = \begin{cases} [g_{P}(x)]_{\mathfrak{i}}, & \text{se } \mathfrak{i} \in I, \\ 0, & \text{se } \mathfrak{i} \notin I. \end{cases}$$

 $ightharpoonup M_{\bar{x}}(\cdot)$ uma aproximação de f em torno de \bar{x} .

Introduzimos o seguinte método para resolver o Problema (1):

Algoritmo 2.

Suponha $p \in \{1,2,3,\ldots\}$, $\alpha > 0$, $\sigma_{min} > 0$, $\tau_2 \geqslant \tau_1 > 1$, $\theta > 0$ e $x_0 \in \Omega$ sejam fornecidos. Inicialize $k \leftarrow 0$ e $\sigma_0 \leftarrow 0$.

Passo 1. Escolha um conjunto não vazio $I_k \subseteq \{1, ..., n\}$.

Passo 2. Calcule $x^{trial} \in \Omega$, $x_i^{trial} = x_i^k$ para todos $i \notin I_k$ tal que

$$M_{x^k}(x^{\textit{trial}}) + \sigma_k \|x^{\textit{trial}} - x^k\|^{p+1} \leqslant M_{x^k}(x^k)$$

е

$$\|P_{\Omega}\left[x^{\textit{trial}} - \nabla\left(M_{x^k}(x) + \sigma_k\|x - x^k\|^{p+1}\right)\big|_{x = x^{\textit{trial}}}\right] - x^{\textit{trial}}\| \leqslant \theta \|x^{\textit{trial}} - x^k\|^{p}.$$

Passo 3. Se

$$f(x^{\textit{trial}}) \leqslant f(x^k) - \alpha \|x^{\textit{trial}} - x^k\|^{p+1},$$

definir $x^{k+1} = x^{trial}$, $\sigma_{k+1} = \sigma_k$ e voltar ao Passo 1. Caso contrário, atualize $\sigma_k \leftarrow \max\{\sigma_{min}, \tau\sigma_k\}$ com $\tau \in [\tau_1, \tau_2]$ e voltar ao Passo 2.

Assumimos a seguinte Suposição:

Suposição 1.

Para todo $x \in \mathbb{R}^n$ existe L > 0 tal que

$$\|\nabla f(x) - \nabla M_{\bar{x}}(x)\| \leqslant L\|x - \bar{x}\|^p$$
,

Comentários

$$M_{\bar{x}}(\bar{x}) = f(\bar{x}) \quad e \quad f(x) \leqslant M_{\bar{x}}(x) + L\|x - \bar{x}\|^{p+1}.$$

Observação 1.

Para satisfazer a Suposição 1, $M_{\bar{x}}(\cdot)$ pode ser:

- ightharpoonup o polinômio de Taylor de ordem ho de f ao redor de \bar{x} se as derivadas de ordem ho de f satisfazem condições de Lipschitz.
- ▶ a própria f. Neste caso, p pode ser arbitrariamente grande, mas apenas as primeiras derivadas de f precisam existir.

Teorema 1.

Suponha que a Suposição 1 seja válida. Se $\sigma_k \geqslant L + \alpha$, então o ponto x^{k+1} calculado pelo Algoritmo 2 está bem definido e satisfaz

Comentários

$$f(x^{k+1}) \leqslant f(x^k) - \alpha ||x^{k+1} - x^k||^{p+1}$$
 (2)

е

$$\|\nabla g_{P,I_k}(x^{k+1})\| \leqslant \big(L + \tau_2(L + \alpha)(p+1) + \theta\big)\|x^{k+1} - x^k\|^p. \tag{3}$$

As provas de (2) e (3) segue quase que direto das condições do Passo 2 e da Suposição 1.

Teorema 2.

Suponha que a Suposição 1 seja válida. Seja $\{x^k\}$ a sequência gerada pelo Algoritmo 2. Então,

$$\lim_{k\to\infty}\|x^{k+1}-x^k\|=0, \tag{4}$$

$$\lim_{k \to \infty} \|\nabla g_{P, I_k}(x^{k+1})\| = 0, \tag{5}$$

е

$$\lim_{k \to \infty} \|\nabla g_{P, I_k}(x^k)\| = 0.$$
 (6)

Resumo da prova:

- Prova de (4): Ω é compacto \Longrightarrow f é limitada em Ω $\Longrightarrow \lim_{k \to \infty} (f(x^k) f(x^{k+1})) = 0 \stackrel{(2)}{\Longrightarrow} \lim_{k \to \infty} \|x^{k+1} x^k\| = 0.$
- Prova de (5): Segue direto de (3) e (4).
- Prova de (6): De Ω compacto e continuidade do gradiente, temos que $\|\nabla g_{P,I}(x)\|$ é uniformemente contínua. Daí, passando limite em

$$\|\nabla g_{P,I}(x^k)\| \leqslant \|\nabla g_{P,I}(x^k) - \nabla g_{P,I}(x^{k+1})\| + \|\nabla g_{P,I}(x^{k+1})\|,$$

usando (4) e (5) obtemos (6).

Observação 2.

Observe que os resultados anteriores não garantem

$$\lim_{k\to\infty}\|g_P(x^k)\|=0. \tag{7}$$

Para provar (7) foi necessário a seguinte suposição.

Suposição 2.

Existe $\bar{\mathfrak{m}}<+\infty$ tal que, para todo $\mathfrak{i}\in\{1,\ldots,\mathfrak{n}\}$:

- 1. Existe $k \leq \bar{m}$ tal que $i \in I_k$;
- 2. Para qualquer $k \in \mathbb{N}$, se $i \in I_k$, então existe $\mathfrak{m} \leqslant \bar{\mathfrak{m}}$ tal que $i \in I_{k+\mathfrak{m}}$.

Note que a Suposição 2 nos permite escolher o bloco de coordenadas em cada iteração de diversas formas, basta que, a cada \bar{m} iterações, todos os blocos sejam escolhidos pelo menos uma vez.

Teorema 3.

Suponha que as Suposições 1 e 2 sejam válidas. Seja $\{x^k\}$ a sequência gerada pelo Algoritmo 2. Então,

$$\lim_{k \to \infty} \|\nabla g_{P}(x^{k})\| = 0. \tag{8}$$

Além disso, se $x^* \in \Omega$ for um ponto de acumulação de $\{x^k\}$, então temos que $\|\nabla g_P(x^*)\| = 0$.

Resumo da prova: Seja $i \in \{1,\ldots,n\}$. Pela Suposição 2, existe um conjunto $K = \{k_1,k_2,k_3,\ldots\}$ tal que $i \in I_{k_\ell}$ para todo $\ell = 1,2,3,\ldots$ Dado $I \subseteq \{1,\ldots,n\}$, de (6) temos,

$$\lim_{k \in K} [\nabla g_P(x^k)]_{\mathfrak{i}} = \lim_{k \in K} \nabla g_{P,I}(x^k)]_{\mathfrak{i}} = 0 \text{ para todo } \mathfrak{i} \in I. \tag{9}$$

Seja $j \in \{1,2,\dots\}$ arbitrário. De (9) e da continuidade uniforme de ∇g_P , temos

$$\begin{split} \lim_{k \in K} |[\nabla g_P(x^{k+j})]_i|| & \leqslant & \lim_{k \in K} \left| [\nabla g_P(x^{k+j})]_i - [\nabla g_P(x^k)]_i \right| \\ & + & \lim_{k \in K} |[\nabla g_P(x^k)]_i| = 0. \end{split}$$

Em particular, isto é válida para todo $j=1,\ldots,\bar{m}.$ Isso implica que

$$\underset{k\to\infty}{\text{lim}} [\nabla g_P(x^k)]_{\mathfrak{i}} = 0.$$

Portanto

$$\lim_{k\to\infty} \|\nabla g_P(x^k)\| = 0.$$

Assim, temos que todo ponto de acumulação é ponto estacionário.

Dado uma tolerância $\epsilon>0$, desejamos saber o esforço computacional máximo necessário para obter um iterado x^k na qual a função objetivo seja menor que um dado alvo ou $\|g_P(x^k)\|$ seja menor que ϵ .

Teorema 4.

Suponha que a Suoisção 1 seja válida. Seja $f_{target} < f(x^0)$ e $\varepsilon > 0$ dados. Então, a quantidade máxima de iterações k para obter

- (i) $f(x^{k+1}) \leqslant f_{\textit{target}}$ ou
- (ii) $|[g_P(x^{k+1})]_i| \leqslant \varepsilon$ para todo $i \in I_k$ é

$$\frac{f(x^0) - f_{target}}{c} e^{-\frac{p+1}{p}}, \tag{10}$$

onde c depende apenas de α , τ_2 , L, p, e θ .

Resumo da prova: Substituindo $|[g_P(x^{k+1})]_i| > \epsilon$ em (2) obtemos

$$f(x^{k+1}) \leqslant f(x^k) - c\varepsilon^{\frac{p+1}{p}}.$$

Daí e de $f(x^{k+1}) > f_{target}$ obtemos que

$$k \leqslant \frac{f(x^0) - f_{\text{target}}}{c} e^{-\frac{p+1}{p}}.$$

Observação 3.

O resultado anterior se refere a obter $|[g_P(x^{k+1})]_i| \leqslant \varepsilon$ para todos $i \in I_k$. Para obter $|[g_P(x^{k+1})]_i| \leqslant \varepsilon$ para todos $i \notin I_k$ precisamos que as iterações consecutivas estejam suficientemente próximas.

Teorema 5.

Suponha que a Suposição 1 seja válida. Seja $f_{target} < f(x^0)$, $\varepsilon > 0$, e $\delta > 0$ dados. Então, a quantidade de iterações para obter

Comentários

(i)
$$f(x^{k+1}) \leqslant f_{target}$$
 ou

(ii)
$$\|x^{k+1}-x^k\|\leqslant \delta \ e \ |[g_P(x^{k+1})]_{\mathfrak{i}}|\leqslant \varepsilon \ \textit{para todo} \ \mathfrak{i}\in I_k$$

é no máximo

$$\frac{f(x^0) - f_{target}}{c e^{\frac{p+1}{p}}} + \frac{f(x^0) - f_{target}}{\alpha \delta^{p+1}},$$

onde c depende apenas de α , τ_2 , L, p, e θ .

Resumo de prova: A prova segue direto de (ii), de $f(x^{k+1}) \leq f(x^k) - \alpha \|x^{k+1} - x^k\|^{p+1}$ e do Teorema 4.

Agora dividimos as iterações ciclos, onde cada ciclo possui $\overline{\mathfrak{m}}$ iterações.

- As iterações $k = \overline{lm}, \dots, \overline{lm} + \overline{m} 1$ são internas ao ciclo l.

Com a noção de ciclo em mãos, reformulamos os Teoremas 4 e 5 da seguinte forma.

Teorema 6.

Suponha que as Suposições 1 e 2 sejam válidas. Seja $f_{target} < f(x^0)$ e $\varepsilon > 0$ dados. Então, o número de ciclos l para obter uma iteração interna k tal que

- (i) $f(x^{k+1}) \leqslant f_{target}$ ou
- (ii) $|[g_P(x^{k+1})]_i| \leqslant \varepsilon$ para algum $i \in I_k$ é no máximo

$$\frac{f(x^0) - f_{target}}{c} e^{-\frac{p+1}{p}}, \tag{11}$$

onde c depende apenas de α , τ_2 , L, p, e θ .

Resumo da prova: A prova segue direto do Teorema 4.

Teorema 7.

Suponha que as Suposições 1 e 2 sejam válidas. Seja $f_{target} < f(x^0)$, $\varepsilon > 0$, e $\delta > 0$ dados. Então, o número de ciclos l para obter uma iteração k tal que

- (i) $f(x^{k+1}) \leqslant f_{\textit{target}}$ ou
- (ii) $\|x^{k+1}-x^k\|\leqslant \delta \ e \ |[g_P(x^{k+1})]_{\mathfrak{i}}|\leqslant \varepsilon$ para algum $\mathfrak{i}\in I_k$

é no máximo

$$\frac{f(x^0) - f_{target}}{c \, \epsilon^{\frac{p+1}{p}}} + \frac{f(x^0) - f_{target}}{\alpha \, \delta^{p+1}}, \tag{12}$$

onde c depende apenas de α , τ_2 , L, \mathfrak{p} , e θ .

Resumo da prova: A prova segue diretamente dos Teoremas 4-6.

A suposição a seguir garante que pequenos incrementos causam pequenas diferenças nos gradientes projetados.

Suposição 3.

Existe $L_g > 0$ tal que para todo i = 1, ..., n e $x, z \in \Omega$,

$$|[g_{P}(x)]_{i} - [g_{P}(z)]_{i}| \leq L_{g}||x - z||.$$

A Suposição 3 é satisfeita se o gradiente de f satisfaz a condição de Lipschitz com constante $L_{\rm q}$.

Agora somos capazes de estabelecer um limite para o número de ciclos em que todo o gradiente projetado é maior que uma tolerância dada.

Teorema 8.

Suponha que as Suposições 1-3 sejam válidas. Seja $f_{target} < f(x^0)$, $\varepsilon > 0$, e $\delta > 0$ dados. Então, existe um ciclo l com

$$l \leqslant \frac{f(x^0) - f_{target}}{c \, \epsilon^{\frac{p+1}{p}}} + \frac{f(x^0) - f_{target}}{\alpha \, \delta^{p+1}} + 1 \tag{13}$$

tal que:

- (i) para alguma iteração k interna ao ciclo l, temos $f(x^k) \leqslant f_{\text{target}},$ ou
- (ii) para todas as iterações k internas ao ciclo l, temos que

$$|[g_P(x^{k+1})]_i|\leqslant \varepsilon+\overline{m}L_g\delta\quad \textit{para todo } i=1,\dots,n.$$

Resumo da prova: Pelo Teorema 7, existe um ciclo l satisfazendo (13), tal que, para cada iteração k interna ao ciclo l,

$$f(x^{k+1})\leqslant f_{\text{target}} \text{ ou}$$

$$\|x^{k+1}-x^k\|\leqslant \delta \quad \text{e}\quad |[q_P(x^{k+1})]_i|\leqslant \varepsilon \quad \text{para todo } i\in I_k. \tag{14}$$

Se existir uma iteração k interna a l tal que $f(x^{k+1}) \leqslant f_{\mathsf{target}},$ ok.

Neste caso o Teorema é válido.

Suponha (14) válido e seja $i \in \{1, ..., n\}$ arbitrário. Da Suposição 2 existe uma iteração k em l tal que $i \in I_k$, daí e de (14), temos $|[g_P(x^{k+1})]_i| \le \varepsilon$. Para qualquer iterado z em l, temos

$$\begin{split} |[g_{\mathsf{P}}(z)]_{\mathfrak{i}}| & \leqslant & |[g_{\mathsf{P}}(x^{k+1})]_{\mathfrak{i}}| + |[g_{\mathsf{P}}(z)]_{\mathfrak{i}} - [g_{\mathsf{P}}(x^{k+1})]_{\mathfrak{i}}| \\ & \leqslant & \varepsilon + \mathsf{L}_g \|z - x^{k+1}\| \\ & \leqslant & \varepsilon + \mathsf{L}_g \sum_{j=0}^{\overline{m}-1} \|x^{l\overline{m}+j} - x^{l\overline{m}+j+1}\| \\ & \leqslant & \varepsilon + \overline{m} \mathsf{L}_g \delta. \end{split}$$

Finalizando a prova.

Substituindo ϵ por $\epsilon/2$ e definindo $\delta = \epsilon/(2\overline{m}L_g)$, o Teorema 8 pode ser reescrito da seguinte forma.

Comentários

Teorema 9.

Suponha que as suposições 1, 2 e 3 sejam válidas. Seja $f_{target} < f(x_0)$, $\varepsilon > 0$, e $\delta > 0$ dados. Então, existe um ciclo l não maior que

$$\frac{f(x_0) - f_{target}}{2^{-\frac{p+1}{p}}c} e^{-\frac{p+1}{p}} + \frac{[f(x_0) - f_{target}]\overline{\mathfrak{m}}^{p+1}}{\alpha(2\overline{L})^{-(p+1)}} e^{-(p+1)} + 1, \tag{15}$$

onde c depende apenas de α , τ_2 , L, p e θ , tal que, na sua primeira iteração interna k,

$$f(x^k) \leqslant f_{\text{target}} \text{ ou } |[g_P(x^{k+1})]_i| \leqslant \varepsilon \quad \text{para todo } i = 1, \dots, n.$$

No resultado anterior, não levamos em consideração o número de vezes em que o parâmetro de regularização é atualizado.

Comentários

Observe que:

- Por definição, a sequência de σ_k é limitada inferiormente pela sequência $0, \tau_1^0 \sigma_{\min}, \tau_1^1 \sigma_{\min}, \tau_1^2 \sigma_{\min}, \tau_1^3 \sigma_{\min}, \dots$
- Sendo r o número máximo de vezes em que o parâmetro de regularização é atualizado, logo

$$\tau_1^{r-2}\sigma_{\text{min}}\leqslant L+\alpha\text{, pois na pior das hipóteses }\tau_1^{r-1}\sigma_{\text{min}}\geqslant L+\alpha.$$

De onde segue que

$$r\leqslant \mathsf{log}_{\tau_1}\left(\frac{L+\alpha}{\sigma_{\mathsf{min}}}\right) + 2.$$

O número de ciclos para obter $f(x^k) \leqslant f_{\text{target}}$ ou $|[g_P(x^{k+1})]_i| \leqslant \varepsilon$ para todo $i=1,\ldots,n$ é no máximo

$$\frac{f(x_0) - f_{\text{target}}}{2^{-\frac{p+1}{p}}c} e^{-\frac{p+1}{p}} + \frac{[f(x_0) - f_{\text{target}}]\overline{m}^{p+1}}{\alpha(2\overline{L})^{-(p+1)}} e^{-(p+1)} + 1. \tag{16}$$

Alguns pontos sobre (16):

- 2. \overline{m} cresce \Longrightarrow o segundo termo de (15) cresce.
- m̄ crescer junto com n se o tamanho dos subproblemas permanecer limitado.
- 4. O tipo de escolha do bloco pode influenciar na complexidade.

Com, isso, os resultado de complexidade obtido é um argumento para descartar algoritmos CD de alta ordem?

Breve introdução aos métodos de descida coordenada - CD
Um método CD para problema restrito a uma caixa
Convergência
A complexidade do método
Comentários

OBRIGADO A TODOS PELA PACIÊNCIA!!