# **CCNA** notes

# Innholdsfortegnelse

#### Småting cheat sheet

#### IPv6

- <u>IPv6 multicast ranges</u>
- IPv6 link-local multicast addr

#### Routing

- AD
- ospf

#### **Switching**

- DTP
- VLAN
- Port-Sec

#### Wifi

- Wireless security
- Cisco wireless infrastructure

**Dynamic ARP Inspection** 

**Spanning-Tree** 

syslog

SDN og API

# Cheat sheet småting

# **Password recovery**

```
Må ha console access
-Rett etter POST under bootstrap load, send ein BREAK cmd.
-Blir verande i ROMMON mode. Gir tilgang til configuration register.
- Configuration register = Ein bunch med on/off switches, med values oppgitt i hex.
- Default value = 0x2102.
- 3 quintet styrer lasting av NVRAM content. Endre frå 0000 -> 0100 for å ikkje laste NVRAM (startup-config).
- HEX: 2102 -> 2142 (0010 0001 0000 0010 -> 0010 0001 0100 0010)
- Reboot router. Laster factory default.
```

```
1 | program load complete, entry point: 0x8000f000, size: 0x3ed1338
   Self decompressing the image :
   #######################
   monitor: command "boot" aborted due to user interrupt
 4
 5
   rommon 1 >
   rommon 1 > confreg 0x2142
7
   rommon 2 > reset
   .... boots to factory default
9
   show startup-config #Viser gammal startup-config.
10 enable
11 copy startup-config running-config
12 conf t
13 config-register 0x2102
```

# **Subnet hauderekning**

Number of networks = 2<sup>bits-available</sup>

- Auker med power of 2 for kvar bit. 1,2,4,8,16,32,64,128,256 etc
  - Starter med 1 for 0 bit og 2 for 1 bit. Deretter 2,4,8,16,32,64,128 etc.

```
o /32 = 0 bit = 1 network
```

- o /31 = 1 bit = 2 networks
- $\circ$  /30 = 2 bit = 2\*\*2 = 4 networks.

Number of hosts per network = 2<sup>bits-available -2</sup>

• Kan ta available networks number og minus 2.

# **Multicast MAC-range**

- 01-00-5E-xx-xx-xx = IPv4 Multicast mac
- 33-33-yy-xx-xx-xx = IPv6 multicast mac

# router software

EEPROM = Bootstrap location (Electronic Erasable Programable ROM)
Flash for IOS
startup-config in NVRAM
running-config in ram

# **Switch software**

EEPROM = Bootstrap location Flash = los location startup-config in Virtual NVRAM

- Er eigentlig fil kalla config.text, stored in Flash.
- ios lager ein symlink/alias for config.text called startup-config.

- rommon for å editere config.text (til config.bak for restore, eksempel) running-config in RAM

# **IOS** versions

filename build:

Platform(sw/ro) model number - feature set (ip base, advanced ip service etc) - Train(12.4)-throttle(24).rebuild (T5)

Trains = Major release

Throttles = Minor releases (Number in parantes)

rebuilds = ID bak nummer i parantes

# **Emner**

- Ethernet
- routing
- dynamic routing
- Vlan
- Switch security
- Application layer protocols
- ACL
- NAT
- WAN / VPN
- Security
- Wireless
- Mgmt protocols (snmp,hsrp,qos)
- Topologies
- automation and SDN

# CSMA/CD

Carrier Sense Multiple Access / Collison Detection

- Listen for signals
  - Sending = 5V.
  - Multiple senders = 10V
  - Wait random time
  - Listen on carrier again.
     Collision domain Group of devices that samtidig detect a voltage spike.

### **Ethernet**

Felter:

- -dmac 48bit
- -smac 48bit
- -Type 16bit
- -Data 1500 bytes
- -FCS (Frame Check) 32 bit Er ein CRC
  - Broadcast domain; Group of devices who receive L2 broadcasts.

# IPv6

# **SLAAC** (stateless address auto confi)

Windows = Random address unix/linux/mac = EUI, FFFE i midten av mac-addres + flip bit 7.

#### **EUI64**

- Mac-address OUI + FF FE + int ID.
- Eksempel:

```
1 Global IPv6 = 2012::99:/64
2 Mac: 3C-58-C2-7A-A2-2E
3 OUI = 3C-58-C2
4 ID = 7A-A2-2E
5
6 3C-58-C2 + FFFE + 7A-A2-2E
7 Flip 7th bit:
8 3C = 0011 1100 = 12 -> Flip 0011 1110 = 14 = 3E
9 EUI64 = 2012::99:3E:58:C2:FF:FE:7A:A2:2E
```

# **Subnet standards**

/32 på ISP level /48 på Customers /56 på sites. (Internal subnets)

# **Address ranges**

- FC00::/7 Unique Local (same as private ipv4)
- FF00::/8 = Multicast range.
- FE80::/10 Link-local.
- 2000::/3 Global Aggregatable unicast
- 2001:db8::/32 Documentation
- xx FFFE xx EUI64

# **IPv6 Multicast ranges**

- FF00 -> FFFF
  - Multicast er delt opp for følgande ranges:
- FF01::/16 Node-local
- FF02::/16 Link-local
- FF05::/16 site-local
- FF08::/16 organization-local
- FF0E::/16 global

### **Link-local multicast addresses**

| Address          | IPv4       | IPv6    |
|------------------|------------|---------|
| All hosts        | 224.0.0.1  | FF02::1 |
| All routers      | 224.0.0.2  | FF02::2 |
| All OSPF Routers | 224.0.0.5  | FF02::5 |
| All OSPF DRs     | 224.0.0.6  | FF02::6 |
| All RIPv2 router | 224.0.0.9  | FF02::9 |
| All EIGRP        | 224.0.0.10 | FF02::A |

# **ND Neighbour discovery**

- 1 Router sender ut RA (Router advertisement).
- 2 RA inneheld router mac, network prefix, ipv6 options (dhcp etc).
- 3 PC sender Neighboru adv (NA).
- Inneheld Client MAC, client IPv6, +options
- 5 Neighbor solicitacion messages = ARP
- 6 Blir sendt til multicast group istadenfor broadcast.

# routing

# **BGP**

- 1 | Path Vector
- 2 EGP

# IGP's

- 1 Distance Vector protocols
  - Periodic routing table exchange

```
- announce distance and path(vector) for routes to take.
 4
        - Algorthms used:
 5
            - Bellman-Ford (RIP) or Diffusion-update algorithm (EIGRP)
 6
    Link State
 7
        - Exchange link information with entire network.
 8
        - Link = Any network connection. (Route or interface)
        - Use SPF algorithm.
 9
10
11
   Div protocols:
12
        - RIP - clasfull (ignores mask)
13
        - RIPv2 Classless (support mask)
14
        - IGRP (classfull, cisco proprietær. DEAD)
15
        - EIGRP
16
17
   Link state protocols:
18
        - OSPF
19
        - IS-IS
```

# **Administrative Distance**

### **MEMORIZE THIS!!**

| Protocol           | AD  |
|--------------------|-----|
| Directly connected | 0   |
| Static route       | 1   |
| EIGRP              | 90  |
| OSPF               | 110 |
| IS-IS              | 115 |
| RIP                | 120 |

### **Metric**

Metric = Path selection in protocol. Kun brukt inni kvar enkelt protokoll.

| Protocol           | Metric                                          |
|--------------------|-------------------------------------------------|
| Directly Connected |                                                 |
| Static             |                                                 |
| EIGRP              | Bandwidth + delay (Delay of line, configurable) |
| OSPF               | Bandwidth                                       |
| IS-IS              | Varies. (Custom metric set by admin)            |

| Protocol | Metric    |
|----------|-----------|
| RIP      | Hop count |

### **RIP**

RIP = Suppetreg convergence.

Sender full routing table every 30 sec.

If one link is down, sends triggered updated.

```
1 # enable rip og enter config
   router rip
 3 #enable v2 to enable classess & CIDR
   ver 2
 5 | #turn off summering av unclassfull boundaries. By default summerer på class-
    boundary
 6 no auto-summarry
 7 # which networks to advertise. Must be connected and UP-state.
   # RIP use class-rules for network-statement. 10.10.0.0 = 10.0.0.0
 9 network 10.10.0.0
10 network 192.168.0.0
11
12
       config t
13
      router rip
14
       version 2
15
      no auto-summary
       network 10.0.0.0
16
        network 192.168.20.0
17
```

### **OSPF**

# **OSPF** network types

- Broadcast
  - o FDDI, Ethernet.
  - o DR/BDR
- nonbroadcast / NBMA Non-Broadcast Multi Access
  - o DR/BDR
  - o 30/120 timers
  - Manual neighbor setup
  - o X.25, Frame Relay.
- Point-to-point
  - o INGEN dr/bdr election
  - o HDLC, PPP seriel interface
- Point-to-multipoint broadcast

- o INGEN dr/bdr election
- o 30/120 timers
- Point-to-multipoint non-broadcast
  - o INGEN br/bdr
  - o Manual neighbor.

| network            | Mcast | DR | Timer  |
|--------------------|-------|----|--------|
| Broadcast          | Mcast | DR | 10/40  |
| nonBroadcast       |       | DR | 30/120 |
| PTP                | mcast |    | 10/40  |
| PTMpoint brcast    | mcast |    | 30/120 |
| PTMpoint nonBrcast |       |    | 30/120 |

# **Discover ospf neighbors**

• sender ikkje periodiske routing updates.

### **Hello protocol**

- Sender periodisk hello message. Inneheld:
  - Subnet / Mask
  - Hello interval (default 10 sec, 30 sec on NBMA network. NBMA for old stuff som framerelay)
  - Dead interval (4x Hello)
  - o Area ID
  - Authentication (når brukt)
  - o sturb area flag
  - MTU size
- Alle felt må matche for å bygge neighbor relationship.

#### **Router ID**

32-bit value, skreve i IP-addr format. Selection frå topp til bunn:

- Configured value
- highest IP on loopback interface
- Highest IP on ANY active int.

### **Neighbor table**

Router ID blir brukt for å bygge Neighbor Table.

| Field            | Value       |
|------------------|-------------|
| Neighbor ID      | 10.0.0.1    |
| State            | Init        |
| Dead Time        | 40 sec      |
| Next hop Address | 192.168.1.2 |
| Exit interface   | Ge0/1       |

# **Exchange link information**

- LSA (Link State advertisement) blir generert per advertised connected network.
- LSA blir bundled og sendt til neighbor som LSU (Link State Update)
- Neighbor extract LSA from LSU. LSA blir lagt til Link State Database. (LSdb)
- LSdb inneheld:

| Field     | Value        |
|-----------|--------------|
| Router ID | 10.0.0.1     |
| Link ID   | 192.168.1.0  |
| Link Mask | /24          |
| LSA Type  | 1            |
| Router ID | 10.0.0.2     |
| Link ID   | 192.168.20.0 |
| Link Mask | /24          |
| LSA Type  | 1            |

# **Calculate routing table**

- All routers participating in OSPF collect info about all neighbor links on all neighbor routers in LSDB.
- SPF run on LSDB. Happen on all routers.
- Dijkstra's algorithm.
- cost = reference bw/interface bandwidth

### **Summary**

- Hello protocol establish neighbors.
- LSU are sent between neighbors to exchange LSA's.
- LSdb is populated by LSA-data.
- spf algorithm is run on lsdb to find shortest path.

### Message types

- Hello
- Database Descriptor LSA info about LSdb on router.
- Link State Request (LSR) Request for LSA from other routers if we are missing Link-state information.
- Link State Update (LSU) Contains LSA.
- Link State Acknowledgement (LSAck) Ack OSPF Messages.

# **LSA Types**

### **Databases**

```
1 * Neighbor table
2 * Link State database (LSdb)
3 * routing table
```

### **Passive interfaces**

Int not talking ospf.

# **OSPF Config**

```
conf t
router ospf 1
network 192.168.10.0 0.0.0.255 area 0
network 10.0.0.0 0.0.0.3 area 0
passive-interface gi0/1
```

# **OSPF** in broadcast network

Environment with multiple OSPF routers on the same Broadcast domain.

- OSPF neighbor relationship
- OSPF neighbors on broadcast network
- Undesireable design.

# **OSPF Neighbors general.**

Router A - RouterB - RouterC Neighbor <-> Neighbor <-> Neighbor

### **OSPF** Neighbors on same segment.

- Each router added to segment adds one neighbor to all other routers.
  - Link down event vil generere LSA -> All neighbors.
  - All routers vil recalculate og sende LSA to all neighbors.
  - LSA can flood network.
- How OSPF deal with this scenarion.
  - Find RouterID on all routers.
  - Chooses Designated router and backup designated router (DR / BDR).
    - Router with highest OSPF Priority = DR
    - Highest / 2nd highest RouterID as tie-breaker.
  - DR / BDR form neigbor with eachother + all other routers.
  - All other routers form neighbors with DR / BDR (Adjacancy)
  - Link down event: LSU til DR/BDR som so sender LSU til resten.
- DR down event:
  - Reelects DR/BDR. BDR vil no bli DR.
  - Ny router blir BDR. (Ny 2nd high router-id)
  - Når original DR er oppe igjen går den inn som DR-other, likt dei andre.

# **Troubleshooting OSPF**

### **EIGRP**

- Distance vector
  - Deler routing table information
  - Syncer via "Topology table".
    - Differ frå ospf som bruker link-state. EIGRP deler ruting-tabell.
- fast convergence
  - o Består av 3 tabeller:

- Neighbor table som i ospf
- Topology table likner på LSdb
- routing table Køyrer algorithm mot table for å bestemme best path.
- Diffusion update algorithm (DUAL) algo brukt for path.
  - Kalkulerer "Successor route".
    - Successor route = Rute med best cost.
    - Successor rute blir added to routing table.
  - Kalkulerer "Feasable successor" backup route.
    - Second best cost rute.
    - Øybelikkelig lagt til i ruting table dersom "successor route" forsvinner.
- Metrics Uses composite metrics. Can choose which metrics to use.
   Video recomendation er unngå Calculated values. Default configured er mest used.
  - Bandwidth Configurable (bw setting)
  - Delay Configurable (ms)
  - Load Calculated (amount of data activity over link)
  - Reliability Calculated (Bit-error rate)

### **EIGRP operations**

- Topology table
  - Stable rutes has status: "Passive" i topology table.
  - Downed rutes has status: "Active" i topology table.
- Hello messages
  - Sent every 5 sec
  - Builds neighbor table.
  - o Bruker "Unreliable RTP"
    - RTP = EIGRP sin "tcp".
    - Unreliable betyr vi dropper å sende ACK's for Hello messages.
- Update messages
  - Sent mellom neighbors.
  - Inneheld ruting table information.
  - o Bruker RTP
    - Sender ACK for update messages.
- Network down event
  - Rute får status "Active" i EIGRP topology table.
  - If has feasable successor, gets inserted to ruting table.
  - Ruter send query message to neighbors. Asks for path to missing route.

- Neighbors svarer
  - Offer path if missing route is available.
  - If hasn't alternative path, drops the missing too.
  - If no reply message is received, route gets status "Stuck in active" (SIA).
- Networ up event
  - o Update message Partial update
  - Neighbor use RTP to ack.

# config & cmd

Veldig likt ospf.

Router ID er likt som OSPF. (conf ID, loopback IP, highes int IP)

```
1 conf t
   router eigrp 1  # 1=AS-number, må vere likt på alle devices, blir sendt i
   hello messages
 3 network 10.0.0.8 0.0.0.3
 classfull boundaries.
 5
 6 show ip eigrp topology
 7
   # Viser topology table, med passive / active routes.
 8 # Viser ruterID.
   show ip eigrp neighbors
9
   # Viser neighbors - DUH
10
11
12 #IPv6
13 conf t
14 | ipv6 router eigrp 10
15 router-id 1.1.1.1
16 # no network statements like ipv4.
17 \mid \text{int ge0/1}
18
   ipv6 eigrp 10 #Replaces network statement
19
20 # Router process kan vere i shutdown, som eit interface.
21 conf t
22 ipv6 router eigrp 10
23 no shutdown
```

# **Switching**

# Vlan

- normal range 1-1005
  - Stored in flash:/vlan.dat
- extended range 1006-4096

- Stored in running-config.
- 1002-1005 reserved for legacy protocols.

### cmd

```
default interface gi0/1 #factory reset int-config default interface range gi0/1 -3 #same for range.
```

#### **Native vlan definition**

# **PUGG NØYAKTIG DENNE DEFINISJONEN!**

The VLAN where traffic is sent over an 802.1q trunk link without a VLAN tag. On Cisco default is VLAN1

### **DTP**

Port config modes

- dynamic auto (default på alt moderne) Passive, access port unless sees trunk negotiation på link.
- dynamic desirable (Kan være default på gammalt utstyr) Active trunk negotiation.

DTP dynamic auto <-> dynammic auto = Access port

DTP Dynamic desireable <-> dynamic auto = Trunk port, all vlan allowed

DTP dynamic auto <-> Static Trunk = Trunk port

DTP dynamic auto <-> Static access = Access port

DTP Dynamic desireable <-> dynamic desireable = Trunk port.

### **Port security**

```
Learn

* Static

* Dynamic Secure

* Sticky secure

Actions

* Protect - Drop non-secure mac.

* Restrict - Protect + log + increase violation counter

* Shutdown - err-disable port + log + increase violation counter.
```

- Port sec adresser dukker opp som Static i mac-table.
  - show port-security
  - show port-security interface gi0/1
  - show port-security address

# **Base port-sec**

- Disable DTP
- Force all ports as access in default
- Set all ports to unused vlan. Don't use vlan1.
  - prod vlan = not native vlan, not vlan1, not vlan for unused ports.
- Port-sec.
  - o 3-5 mac's
  - violation mode = Restrict
- Trunks
  - Change native vlan to unused vlan.

Switch default conf template:

```
hostname switch1
 2
    enable secret
 3
   username avo secret passord
 4
   ip domain-name
 5
   crypto rsa key??
 6
   ip ssh version 2
 7
    line con 0
 8
        password passord
 9
        logging synchronous
10
    line vty 0 4
11
        login local
12
        transport input ssh
13
        logging synchronous
14
    vlan 999
15
16
        name unused-ports
    vlan 1000
17
        name custom-native-vlan
18
19
    vlan 10
20
        name prod
    vlan 20
21
22
        name prod2
23
    interface range gi0/1-23
24
        switchport mode access
25
        switchport access vlan 999
26
        switchport nonegotiate
        switchport port-security maximum 3
27
        switchport port-security violation restrict
28
29
        switchport port-security
30
    interface gi0/24
        switchport mode trunk
31
32
        switchport nonegotiate
33
        switchport trunk encapsulation dot1q
```

# **TCP & UDP**

# Windows netstat

```
netstat -naop TCP
naop, reverse dns off, all, o=pid, protokoll.
naobp, b=display exec
```

# Seq & Ack numbers

- seq = 1st byte number beeing sent.
- ack = received bytes + 1
- sack Selective ACK, ACK received bytes + request missing bytes.

### **NTP**

- stratum 0 = closest to actual time (lært frå atomklokke)
- Stratum auker med 1 for kvart layer.

### NTP conf

```
clock timezone CET +1
clock summer-time CEST recurring

ntp server 1.1.1.1
show ntp status
```

# **Syslog**

# **Syslog conf**

```
1 logging 1.1.1.1
2 logging source-interface loopback 0
```

# **Syslog levels:**

- 0 Emergencies
- 1 Alerts
- 2 Critical
- 3 Error

- 4 Warning
- 5 Notification
- 6 Informational
- 7 Debug

DINWECA + Emergencies 7 til 0.

### **DHCP**

Description: Automatically provide IP-information / config.

- dhcp-discover broadcast
- dhcp-offer (ip,gw,dns)
- dhcp-request (unicast)
- dhcp-ack
- DHCP Binding. MAC <-> IP (cisco speak for lease?)
- Windows renews after half lease-time.

```
1 show ip dhcp binding
```

# dhcp-conf

```
ip dhcp pool pool_192.168.0.0_24
network 192.168.0.0 /24
dns-server 1.1.1.1 2.2.2.2
default-router 192.168.0.1
lease 2 #days
ip dhcp excluded-address 192.168.0.10
jp dhcp excluded-address 192.168.0.20 192.168.0.30
```

# IP-Helper / dhcp-relay

```
    Bytter ut dhcp-discover med dhcp-server IP.
    Indikerer src-net til dhcp-server.
```

# dhcp snopping

```
    1 - Trusted ports - allowed to pass dhcp-traffic
    2 - untrusted ports - can't pass dhcp-traffic.
```

### **DNS**

#### **DNS-conf**

dns-relay

```
ip dns server #enable dns-server
ip name-server 1.1.1.1 8.8.8.8 #enable dns-forwarding
ip domain lookup #enable domain lookup
```

# **ACL**

# **ACL** types

- Standard ACL
  - Selects packets via Source IP only.
  - Cisco rule Applied to the interface closest to the destination device.

# **Viktig rule - Cisco thingy**

- acl-number 1-99, 1300-1999 = reserved for std acl.
- Extended ACL
  - o Cisco rule Applied to the interface closest to the source device

# Same greia, må hugse rule fordi cisco.

- Selects based on:
  - Protocol
    - ICMP type & code
  - src / dst IP
  - src / dst port
  - state etc.
- o acl-number 100-199, 2000-2699
- Max 4 ACL per interface. IPv4 in + out, IPv6 in + out.
- Definition: 1 in and 1 out acl per L3-protocol per interface.

#### **Standard ACL**

```
ip access-list standard test
    permit host 10.0.0.16
    permit 10.0.0.16 0.0.0.1

ip access-list 50
    permit host 10.0.0.16
```

#### **Extended ACL**

```
ip access-list extended test2
permit tcp 10.0.0.16 0.0.0.1 host 192.168.10.10 eq 80
permit icmp 10.0.0.16 0.0.0.1 host 192.168.10.10
permit tcp 10.0.0.128 0.0.0.0 host 192.168.10.10 eq 22
deny ip any any
```

• Traffic sourced from router are not filtered.

#### **TODO** excersice

• ACL Scenarion - multiple permit and deny in a statement.

# **NAT**

# NAT I sjuke sjuke cisco verden

- Source NAT
  - o dst-ip in inside->outside
  - Replace src-ip in outside->inside
  - inside keyword = src nat.

Protocol to modify the source and/or destination IP address and/or prot number as a message traverse a router.

- Inside Local IP IP
- Outside Global IP Internet-destination
- Inside global IP My src-nat
- Outside Local IP -
- Static nat = 1:1
- Dynamic nat = many:1 as needed. (Std nat men med mange publics)
- Dynamic nat overload = std nat. Many:1 + pat.

```
ip nat inside source static 10.0.0.10 201.20.20.10
ip nat inside source list 1 interface gi0/1

# dnat (port-forward)
ip nat inside source static tcp 10.0.0.10 80 int gi0/1
ip nat inside source static tcp 10.0.0.10 8080 201.20.20.10 80
```

# **WAN og VPN**

# **VPN**

- Phase 1 IKE (Internet key exchange)
  - Auth (PSK, cert)
  - Key exchange parameter (DH gruppe)
  - o Create SA
- Phase 2 tunnel parameters
  - Type of tunnel (AH, ESP) Authentication header, Encapsulating security paylod
  - o sourc, dst net
  - Authentication of data (sha)
  - encryption protocol (AES)
  - Key Expiration information.

### phase 1 setup

```
crypto isakmp policy 10
encryption aes 256
authentication pre-share
group 5
crypto isakmp key MITT-PASSORD adddress 1.1.1.1
```

### Phase 2 setup

```
1 # ACL describing tunnel traffic
   ip access-list extended VPN-ACL
 3
        permit 10.0.0.0 0.0.0.255 192.168.10.0 0.0.0.255
 4 crypto ipsec transform-set MY-TRANSFORM esp-aes 256 esp-sha-hmac
 5
   crypto map VPN-MAP 10 ipsec-isakmp
 6
        set peer 1.1.1.1
 7
        set pfs group5
 8
        set transform-set MY-TRANSFORM
 9
        match address VPN-ACL
10
11 | # Deny nat av ipsec-trafikk
12 | ip access-list extended NAT
   5 deny ip 10.0.0.0 0.0.0.255 192.168.10.0 0.0.0.255
13
14
15 | # Config ipsec-interface
16 interface gi0/0
17
        crypto map VPN-MAP
```

# **CLI vpn inspect**

```
show crypto ipsec sa
show crypto ipsec sa
```

# STP, Etherchannel and VTP (vlan trunking protocol)

- 802.1d Spanning-tree
- 802.1W Rapid spanning-tree
- 802.1s MST
- Select root bridge
- select best path to root bridge
- select port to block on "non-root" bridge.
- Multiple connections between switches:
  - Select root-path (lowest ID/MAC)
  - DP/NDP = Lowest port on receiving bridge = DP
- root bridge selection.
  - Bridge ID = Priority + Switch mac-address
    - Priority = 4-bit Priority + 12bit VLAN-ID.
    - Default priority 32,769 on vlan1.
  - Root bridge = lowest bridge ID
  - lowest mac ends up as root by default. Due to default prirority + mac.
- root port
  - Port with best cost to root bridge.
  - STP port cost

| port speed | port cost |
|------------|-----------|
| 10 mbps    | 100       |
| 100 mbps   | 19        |
| 1 gbps     | 4         |
| 10 gbps    | 2         |

- Designated port
  - Received and forwards frames
- non-designated port
  - Drops infoming frames, does not send frames.
  - Receive and proscess BPDU's.
- Root bridge all ports are DS
- Root ports = Designated ports.
- Non-root switches
  - Non-root ports.
  - DS on one switch, non-DS on the other.
    - Lowest bridge-ID (mac) is DS.

- Higher ID becomes non-DS and blocks frames.
- BPDU containing:
  - Root bridge ID
  - Cost to Root bridge
  - o Senders bridge ID
  - o Port ID
  - o STP Timers

#### **STP Process**

- Switchport begin BLOCKING
- Transition all ports to LISTENING, send BPDU for 15 sec
  - Determine root-bridge
  - o Transiton non-DS to BLOCKING
  - Not forwarding frames during LISTENING
- Transition all DS ports to LEARNING 15 sec
  - Not forwarding frames.
- Transition all DS-ports to FORWARDING

### **Process during failure event**

- Switch stops receiving BPDU
- Transition all ports to BLOCKING 20 sec.
- Transition all ports to LISTENING 15 sec
  - Transition non-DS ports to blocking
- All DS ports to LEARNING 15 sec.
  - Learn MAC-address, populated mac-table.
- All DS ports to FORWARDING.

# **CISCO PUGG!**

- BLOCKING 20 sec
- LISTENING 15 sec
- LEARNING 15 sec
- FORWARDING

#### CLI cmd

```
show spanning tree
show spanning-tree bridge detail (bridge-id for device)
debug spanning-tree events
spanning-tree mode rapid-pvst
```

### **PVST+**

- STP per VLAN
- Egen root bridge for kvart vlan
- Separate BPDU for each VLAN

### RSTP+

- Port states
  - DISCARDING
    - Drop all frames
  - LEARNING
    - Accept all frames.
    - Populate mac-table
    - does not forward frames
  - FORWARDING
    - Accept and forward frames

# **ETherchannel**

- Building etherchannel
  - Static / unconditional
    - No protocol used
  - Port aggregation protocol (PAgP)
    - Cisco proprietry
      - Two modes:
        - Desirable actively seeks to build link
        - Auto waits for PAgP negotiation packet.
    - LACP
      - Active actively seeks to build link
      - Passve waits for lacp negotiation packet.
  - Speed / Duplex MUST match. On all 4 ports

- Access/trunk VLAN config MUST match.
  - Must match on interfaces in same switch.
- Up to 8 links per channel.

### **Etherchannel protocols and modes**

- LACP
  - o Modes: Active / Passive
- PAgP
  - o Auto / Desireable
- Manual
  - o ON/Off

# Modes compatability table

|           | Off | on | auto | desirable | passive | active |
|-----------|-----|----|------|-----------|---------|--------|
| Off       | No  | No | No   | No        | No      | No     |
| On        | No  | On | No   | No        | No      | No     |
| auto      | No  | No | No   | PAgP      | No      | No     |
| Desirable | No  | No | PAgP | PAgP      | No      | No     |
| Passive   | No  | No | No   | No        | No      | LACP   |
| Active    | No  | No | No   | No        | LACP    | LACP   |

### CLI cmd

```
interface range gi0/0 - 1
channel-group 10 mode active
interface port-channel 10
switchport trunk allowed vlan 10,20,30

show etherchannel summary

# Add extra link to po
new interface: Copy config from a channel-member.
```

# **VTP (Vlan Trunking Protocol)**

- VTP VLAN database communication
  - VTP domain name (case sensitive) must be likt all switches
  - VTP password (case sensitive, optional)

- Connected via trunk port.
- VTP Switch roles
  - One switch = VTP Server
  - The rest = VTP Client
    - The rest CAN be VTP Server.
    - MUST have minumum 1 server.
    - VTP SERVER can update VLAN.
    - VTP CLIENT can only accept vlan from server.
  - VTP Transparent
    - Doesn not add vlan to database. Must be manually configured
    - forwards VTP to ther switchs.
    - Like "turning vtp off" on that switch.
- VTP Revision numbers
  - Revision number increased every time we make a update (add a vlan)
  - Server with highest revision number decides.
- VTP Pruning
  - Keeps vlan database the same over all devices
  - Only needed vlans are added to trunk-links.
- VTP Limits
  - only vlan 1-1005
    - 1002-1005 legacy reserved
  - Only exchanged on trunk links.
  - VTP config stored in vlan.dat
    - Does not see vlan in running-config.

### **VTP Modes and actions**

| Server                     | Client      | Transparent            |
|----------------------------|-------------|------------------------|
| Originate                  | originate   |                        |
| forward                    | forward     |                        |
| synchronize                | synchronize |                        |
| Vlan in nvram              |             | vlan in nvram          |
| create/modifye/delete Vlan |             | Create/mod/delete vlan |

### CLI cmd

```
show vtp status

# IF VTP Domain Name = NULL

# VTP = OFF. Blir auto-configed if connected to configured VTP switch.

conf t

vtp domain test-domian
```

# **Basic security concepts**

- Define threats
  - Circumstande or event with potential to do harm to our assets (data, pc, router)
    - Hacker
    - virus / Malware
    - Natural disaster
    - A exploit
    - Users
- Define voulnrability
  - A weaknes where threats can come in.
- Define Exploit
  - Mechanism to compromise voulnrability
- Compare and contrast above
- Discuss mitigation techniques
  - Software updates
  - Antivirus
  - o Firewalls
  - Device security features
  - o IPS / IDS
  - Encryption
  - Physical security
  - o Password policies
  - User training

### **Key security concepts**

### **Security program elements**

#### **AAA**

- Auth methods:
  - Password auth
    - eksempel: line con 0 password cisco
  - Local username / password
    - Eksempel: line con 0 local, username avo secret 123
  - o Remote database
    - eksempel: Tacacs
- AAA
  - Authentication username/pw to give access
  - Authorization Priviliges user have access to (user-mode, enable, command-specific)
  - Accounting Log. Who did what when.
  - o Options:
    - TACACS+ Cisco proprietery
      - Auth / authorization is seperate processes.
      - All traffic is encrypted
      - tcp 49
    - Radius IETF rfc, open.
      - Auth / authorization in the same process
      - Only encrypt password
      - UDP
      - Support 802.1x and SIP

#### **CLI CMD**

```
1 aaa new-model
2 aaa authentication login RADIUS-DEMO group radius local
   ip radius source-interface loopback0
3
   radius-server host 1.1.1.1 auth-port 1812 acct-port 1813
5 radius-server key MY-SECRET
   line vty 0 4
6
7
       login authentication RADIUS-DEMO
8
       transport input ssh
9
   line con 0
10
        login authentication RADIUS-DEMO
```

## **Password policies and features**

### **DHCP Snooping and Dynamic ARP Inspection**

- Describer rougue dhcp server
- Describe dhcp snooping
  - o Trusted / Untrusted ports. Untrust all access ports, only trust uplink.
- implemetn dhcp snooping

```
ip dhcp snooping # Enable global snopping
ip dhcp snopping vlan 10 # enable for vlan10. All ports = Untrusted
int gi0/24
   ip dhcp snooping trust #set port as trusted
no ip dhcp snooping option # Turn off option82, dhcp-servers can be a bit fucked.

show ip dhcp snooping
show ip dhcp snooping binding #Tabell blir brukt av dynamic ARP.
```

- Describe dynamic arp inspection
  - Uses DHCP snooping information to protect against spoofed ARP
  - Looks at table to see where IPs are, and drops forged ARP.
- Implementing dynamic ARP inspection
  - Have to trust port of gateway. Not learned from DHCP so will drop ARP's.

```
conf t
ip arp inspection vlan 10
int gi0/24
ip arp inspection trust
show ip arp inspection vlan 10
```

# WiFi

#### 5ghz

• channel 52 -> 140 er DFS

### 802.11

- Bruker CSMA/CA Carrier Sense Multiple Access / Collision Avoidane (detection på ethernet)
- 802.11 frame, består for det meste av 9 felt.

| C DUR ADD1 ADD | 2 ADD3 SEQ | ADD4 DATA | FCS |
|----------------|------------|-----------|-----|
|----------------|------------|-----------|-----|

| FC               | DUR      | ADD1  | ADD2  | ADD3  | SEQ      | ADD4  | DATA | FCS                        |
|------------------|----------|-------|-------|-------|----------|-------|------|----------------------------|
| Frame<br>Control | Duration | Addr1 | addr2 | addr3 | Sequence | Addr4 | Data | Frame<br>Check<br>Sequence |

Frame control - ID type of .11 frame

Dur - Control frame, indicates transmission time

ADD1 - ADDR3 - src/dst mac + BSSID

ADD4 - Only if frame passes within DS (distribution system) - AP <-> AP

SEQ - fragment and sequense number of frame

DATA - Payload

FCS - Frame Check Sequence (CRC)

# Wifi Encryption principles

- Wifi enc is Layer2
- Authentication
  - o username / pass
  - o psk
- Encrypt
  - o TKIP
  - AES
- Validate Integrity
  - o CBC-MAC
  - o GMAC

# wifi encryptio protocols

- wep
- WPA (Wifi protected access)
  - o WPA
    - stopp gap against wep
    - TKIP for encryption/integrity
    - avoid
  - o WPA2
    - Released 2004
    - CCMP for encyption / Integrity
      - AES encryption
      - CBC-MAC integrity
      - Option for TKIP not recomended

- o WPA3
  - Release 2018
  - GCMP for encryption / integrity
    - AES encryption
    - GMAC integrity (Galvie Message Authentication Code)
  - More secure PSK
    - Looks more like DH key exchange.
- Deployment option
  - Personal
    - PSK
  - Enterprise
    - 802.1x (username/pass eller Certs)
    - EAP Extensible Authentication Protocol
      - LEAP OLD, not use
      - EAP-FAST OLD, not use.
      - PEAP Still used
        - username / pass
      - EAP-TLS Use this if possible.
        - Need certificate
    - Connect to RADIUS / TACACS+

# **Cisco Wireless Infrastructure**

#### **Basic wireless infrastructure**

- BSS = Group of wifi-clients going via central AP (istadenfor ad-hoc nett)
- BSSID = AP Mac-addr
- SSID (Service Set Identifier)
  - Layer 2 broadcast domain
  - o Basically eit vlan
- AP can broadcast multiple SSID

# **Enterprise wireless infrastructure**

- Access ports to AP's
  - Trunk to Controller
  - o CAPWAP (Controll and Provisiong of Wirelesss Access Protocol)
    - Two tunnells, one for mgmt-traffic one for Data.

- GRE or VPN tunell
- Mobility Services Engine
  - Physically locate a device in the wifi.
- DNA Center
  - Monitor all devices in the network (Switches, wifi, routers).
- Heatmaps
- dhcp
- Radius
- WiSM WLC module, can be installed on Cat6500 / 7600 series.

### **Autonomous AP**

- Configure individually
- Would need a trunk link to AAP to support multiple SSID
- WLSE CiscoWorks Wireless LAN Solution Engine.
  - Simplify mgmt and deloyment of Autonomous AP. Den tilgjengeliggjer:
    - Dynamic RF mgmt
    - network security
    - IDS
    - self-healing
    - Monitor and reporting.
- WDS Wireless Domain services.
  - IOS feature som kan bli installert på AP.
  - Interacts with WLSE
  - o Collects and aggregate radio info from AP and forwards data to CiscoWorks WLSE.

### **Controller based wireless**

- Thin / Lightweight AP
- Creates a BSS
- Up to 6K AP. Largest cisco model
- Up to 64K clients. Largest cisco model
- On-prem controller
- Cloud based meraki

#### Local AP

- Creates a BSS
- CAPWAP til WLC
- Virker ikkje uten wlc.

#### Flex mode AP

- Lager ikkje BSS ifølge Cisco, sjølv om den eigentlig gjer det..
- Kan gjere lokal switching mellom ein SSID og eit VLAN.

### Wifi Controller features

- Distribution System Port = Vanlige fysiske dataporter på WLC. Oftast kobla til trunk.
  - LAG by default bundler alle distribution ports. At least all 8 in 8-port scenario.
- Service port = Fysisk port reservert for mgmt.
- WLC QoS
  - o Platinum VOIP
  - o Gold Video
  - o Silver Default level. Best effort.
  - Bronze Guest access, lowest bw.

# Infrastrucutre requirements for enterprise wifi

# **Config WLC**

- Create dynamic interface virker som vlif på sw
- Create WLAN and associate it with Dynamic interface

```
Controller tab -> interfaces -> New
 1
 2
        interface name = MY-NEW-WLAN
 3
        vlan ID = 20
 4
        Physical port number wlan skal vere knytt mot
        IP-address / mask / gw
 5
        dhcp-server
 7
        ...Repeat for each WLAN.
 8
    WLAN tab -> new
 9
        type - wlan
10
        profile name
11
        SSID
12
        ID
13
        apply
        Select interface
14
15
        Security tab ->
16
            WPA2
17
            AES
18
            PSK
```

### **Network services**

#### **HSRP**

- active/standby
- Høgste Priority is active.
- default priority = 100
- Virtual IP har virtual MAC
- Hello messages between peers
- Standby begynner å svare på virtuel mac når hello timers er død.
- No preempt by default.
- Kan sette preemt manually
- defaults
  - o Hello 3 sec
  - o hold time 10 sec
- HSRP MAC:
  - V1: 0000.0C07.ACxx (xx = Group number in hex)
  - V2: 0000.0C9F.Fxxx (xxx = Group number in hex)
- VRRP Mac:
  - 0000.5E00.01xx (xx=group number)
- GLBP (Gateway load balancing protocol)
  - 0007.B400.xxyy (xx=group number, yy=AFV)

### **HSRP** config

```
interface gi0/1
standby 10 ip 10.0.0.1 (10=group number)
standby 10 priority 110
standby 10 preempt
inteface gi0/1
standby 10 ip 10.0.0.1
standby 10 priority 90
```

## QoS

- Queues
  - o FIFO
    - Equal priority
    - different needs

- Weighted Fair Queue
  - Traffic queued in flows. (SRC<->DST based)
    - Each flow have equal priority.
- Barriers to voip
  - Congestion
    - Too much traffic
    - Dropped / Delayed packets
  - Delay
    - Code delay Fixed (time to format data)
    - Packetization Fixed Time it takes to create packet.
    - Queuing delay variable (Time a packet waits in a queue before being transmitted)
    - Serialization delay Fixed Time it takes to move from queue to wire.
    - Propogation delay variable (time to traverse wire)
    - De-jitter Fixed (Time to remove jitter)
  - Jitter = variable delays in message delivery.
  - o VOIP
    - max latency = <150ms
    - Jitter < 30ms
    - Loss < 1%
    - BW 30-128kbps
  - o Video
    - Latency < 200-400ms
    - litter < 30-50ms
    - loss < 0.1-1%
    - BW 384kbps 20mbps

### **QoS** operation

- Classify traffic (Voice, Data, Video)
- Mark traffic (@Layer2 or 3)
  - Field in header saying traffic-type. Detirmines what queue to put in
- QoS Policy queues
  - o FIFO
  - WFQ Wighted Fair Queue
    - Default on most devices.
    - Each flow gets one queue
    - Each queue/flow gets equal priority

- o CBWFQ Class Based Weighted Fair Queue
  - Uses header markers to put traffic in a seperatee queue
  - All priority traffic in one queue
- LLQ Low Latency Queuing
  - Higher priority on this queue
- Trust boundaries
  - Where we apply QoS marking.
  - Mark as close to the source as possible.
  - Usually marked at end divice in modern equipment.
- Integrated Services (IntServ)
  - End to End QoS priority
    - Devices in network are communicating to create a path for priority-traffic.
  - Not used often
- Differentiated Services (diffserv)
  - o Priority queueing only applied per device
  - o Common way.
  - Priority queuing applied per device.
    - Devices do not communicate, many islands.

#### **SNMP**

- SNMP Agents
- SNMP Manager

#### traps

• Device sends alert @event

#### Walks

- polling the agents.
- Walks the MIB tree.

#### **MIB**

- Management Information Base
- Database of device properties (alt eg kan polle)
- MIB numbers = Identifier of a property.
- Hierarchikal

#### **Versions**

- v2c similar to v1
  - Community string to authenticate
  - read-only or write access.
  - v2c added bulk data collection mechanism.
  - o Is clear text.
- v3
  - o SNMP view
    - Allow access to only certain MIB's
    - Encrypts communication
    - Authenticate devices
      - Provide different security levels
- Config beyond scope..

# Cisco Topologies and Troubleshooting (general + ciscoCCNA specific)

# **Virtualization principles**

meh

# Cisco network topologies

- SOHO
- Cisco Network Design Model 3-tier
  - Core / Dist / Access
  - Access
    - L2
  - Distribution
    - L3
    - Distribute network to access alyer
    - Filter traffic (ACL/firewalling)
    - Routing policies
  - o Core
    - Highspeed traffic between Distribution.
    - No filterering or policies.
    - Limit changes
  - Unrealistic.

- too expensive
- Unnesecary devices.
- Use 2-tier or 1-tier insted
- Collapsed core 2-tier
  - Core + Distribution on same devices.
- Cloud services
  - o Public cloud
  - o Private cloud
  - o Hybrid cloud
  - IAAS server/storage/memory etc.
  - PAAS HW + software (db for eksempel).
  - o SAAS gmail

### CDP / LLDP

- CDP pakker
  - o 60 sec default send timer
  - o 180 sec default holdtime
  - o Device ID
  - Software version
  - Platform (HW)
  - Address
  - o Port ID
  - Capabilities (switch / router/L3-sw)
  - VTP Mgmt domain
  - Native VLAN ID
  - Duplex (interface cdp is leaving)
  - QoS informatoin
  - o PoE info.
- LLDP
  - o 30 sec Default send timer
  - o 120 sec Default hold time
  - TLV Type Length Value
    - Can include whatever the implementer wans. Commonly:
    - Chassis subtype
    - Port
    - System name

- Port description
- Capabilities
- mgmt address
- Vlan trunk info
- Speed/duplex info
- Can include custom info if the option is supported by the vendor.

#### CLI cmd

```
1
        no cdp run #turn off cdp.
2
        cdp run # enable cdp
3
4
        #LLDP
5
        show 11dp
6
        conf t
7
        lldp run #enable lldp
8
9
        show 11dp neighbours
        show 11dp
10
```

# Intro to Cisco Automaation and SDN

### **Controller based networks**

- Control plane
  - Creates forwarding logic
    - routing tables
    - STP port states
    - mac address tables
    - Redundancy protocols
    - tunneling protocols
- Data plane
  - Forwards frames/packet
  - Reads mac table
  - read ruting table
  - o read arp table
  - Read config
  - Forward frames
- Management plane
  - Used for configuration of device

- o snmp
- o ssh
- o telnet
- o http/s
- o netconf / api

#### API

- Definition Method of sending instruction / information in and out of a software system.
- Soutbound API
  - Defines the way the controller should interact with application plane.
  - Data from central controller to device.
  - Enable a controller to communicate with apps in the application pane.
    - NETCONF (use RPC & XML, SSH for transport)
    - Openflow
    - OnePK Cisco proprietær
    - OpenFlow Imperativ model. Detaljerte instruksjoner.
    - OpFlex Meir åpen enn openflow, tillater devices å styre meir korleis dei oppnår målet. Declarativ model.

#### Northbound API

- Define the way controller should interact with data plane.
- Send from device to Controller.
- Enable controller to communicate with devices on network data plane
  - OSGi (Java Open Services Gateway Initiative)
  - REST (http/s for transport. JSON/XML for data-formating)



- SDN Solutions
  - Open Daylight (opensource)
  - Cisco ACI (Uses APIC Application Policy Infrastructure Controller, is controller for aci)
  - Cisco DNA

### **Cisco SDN**

- Centralised control plane
- to-way communication. devices<->controller
- Underlay / overlay

- Controller
- Fabric

#### **VXLAN**

- Original ethernet frame encapsulated in vxlan.
  - VXLAN header
  - UDP Header
  - o src IP
  - o dst IP

#### **Cisco DNA Center**

- Need two cisco dna-center servers.
- Terms:
  - o Fabric Edge Node
    - Device connected directly to clients. L3-switch usually
  - o Fabric Border Node
    - Sits between a device supporting DNA and one that doesn't. WAN<->Fabric
    - DNA <-> ACI border er også border node. Basically edge of fabric.
  - Fabric Control Node
    - Any device that is able to support the function of LISP Map Server.
    - LISP used as Control Plane protocol in DNA
    - LISP Locator Identifier seperation Protocol
    - Special hw strong enough to hold the LISP map table and communicate it to other devices.
    - LISP MAP SERVER
      - Contains map table
        - EID endpoint ID. IP of endpoints, single/subnet.
        - MAC MAC addr of endpoint.
        - RLOC Ruter locater.
          - Identifier given to each device in fabric.
          - IDs device where endpoint is.
- Access Control Lists / Security policy
  - DNA use Sec policy instead of ACL.
  - o Sec Policy:
    - Apply policy to mac-addr / IP-addr.
    - Maintains same policy when device moves around the network.
- Features

- o Prime
  - Single config/monitor interface
  - Inventory / topology discovery
  - Day 0 config
  - Wireless/wired mgmt in same interface
  - SWIM (Software image managemet) upgrade sw, enforce sw-versions.
- o DNA
  - All the above, pluss:
  - Easy QoS deployement
  - Device 360 / client360 health status
  - Client network performance stats
  - Path trace
  - Encrypted traffic analysis
- Cisco ACI Application Centric Infrastructure
  - Nexus 9K hw
  - o DC use
  - Application policy infrastructure Controler (APIC)
    - Equivelant to DNA server.
    - Central controller for data plane
  - End Point groups (EPGs)
    - Hosts connected to the network.
    - Can apply sec policies to EPGs
  - Uses spine-leaf

### **Communicate with API**

- HTTP verbs
  - o GET
  - POST
  - o PUT update
  - DELETE
- REST Based API
  - Uses HTTP-like structure.
  - o Client/Server based
  - Stateless
    - Do not store information from requests to make decisions on future requests.

- Each requests is self-contained.
- o Cacheable
  - Be able to store information that haven't changed.
- Uniform interface out of ccna scope
  - Consistent way of interaction
- Layered system (CCNA out of scope)
- Formating is XML or JSON.
- REST Verbs
  - CRUD
    - Create
    - Read
    - Update
    - Delete
  - o URI
    - Universal Resource Identifier

```
https:///sandbox.cisco.com/dna/api/v1/device
```

```
------URI-----
```

- Variable types
  - integer 1,2,3
  - Signed integer -1, -2, -3
  - Floating point 1.23654
  - Text hallo
  - Date 01.06.2007
- Variable list / Array
  - list01 = ["Gi0/1", "gio/2]
- o Dict
  - Dict 01 = {"ip-address": "10.0.0.1", "ip-address": "10.0.0.2", }
- Encoding DATA for the API
  - HTML
  - o XML
  - o JSON
- JSON encoded data

```
1  {
2     "response" : {
3         "macAddress" : "f8:7b:etc",
4          "serialnumer" : "aytru3847",
5          "uptime" : "79 days"
```

```
7
            "version" : "1.0"
8
9
   * Key-Value pairs.
10
        * Key in quotes
       * : is sperator
11
        * "Value in quotes"
12
13
        * End in comma.
        * Ingen komma på siste før closing bracket
14
   * {} = Dict ??
15
   * [] = List ??
16
```

# Understand Network Configuration Automation Utilities Network configuration Automation

- Avoid config drift
- Avoid Stale configuration.
- Config mgmt tools
  - o Ansible
  - o Puppet
  - o Chef
- Components
  - Devices
  - Templates
  - Variables
  - Logic to implement solution.

# **Ansible terminology**

| Component | Ansible term | Languange |
|-----------|--------------|-----------|
| Logic     | Playbook     |           |
| Devices   | Inventory    |           |
| Templates | Templates    | Jinja2    |
| Variables | Variables    | YAML      |

- Ansible use PUSH to communicate with devices.
  - Ansible always initiate.
  - PUSH use SSH or NETCONF
    - NETCONF use XML formated file.

### **PUPPET**

- Uses agent on device
  - o TCP 8140
- Uses PULL
  - Device agent PULL from Puppet server.
  - Device initiates.
- If device does not support AGENT:
  - Set up a proxy agent.
  - A server act as AGENT, and SSH to network device.

| Component | Puppet term               | Languange |
|-----------|---------------------------|-----------|
| Logic     | Manifest                  |           |
| Devices   | Resource / Class / Module |           |
| Templates | Templates                 |           |
| Variables | Variables                 |           |

### **CHEF**

| Component | Puppet term      | Languange |
|-----------|------------------|-----------|
| Logic     | Recipe / Runlist |           |
| Devices   | Resources        |           |
| Templates | Cookbook         |           |
| Variables | Variables        |           |

- Uses agent and PULL like puppet.
- tcp 443
- Chef cookbook syntax ser ut som YAML.