

Forward and Futures Contracts

Outline

Forward contracts

- No-arbitrage argument for the fair forward price
- Assets producing an income
- Assets with storage costs

Futures contracts

- Stock indices and index futures
- Commodity futures
- Interest rates futures: T-bill futures, Eurodollar futures, SOFR futures

Forward contract

- Long forward contract: obligation to pay \$F in cash for an asset at time T in the future
- Short forward contract: obligation to deliver an asset at some time in the future in return for \$F.
- Asset:
 - Physical: e.g. commodity (oil, gold, etc.)
 - Financial: Bonds, currency, stock or stock index

Forward – spot relationship

- What is the relation between spot price of the asset S and the forward price F(T)?
- F(T) is not the asset price at time T! But can be locked in by a risk-free arbitrage strategy.

An Arbitrage Opportunity?

- Suppose that:
 - The spot price of a non-dividend-paying stock is \$40
 - The 3-month forward price is \$43
 - The 3-month US\$ interest rate is 5% per annum
- Is there an arbitrage opportunity?

Another Arbitrage Opportunity?

- Suppose that:
 - The spot price of nondividend-paying stock is \$40
 - The 3-month forward price is US\$39
 - The 1-year US\$ interest rate is 5% per annum (continuously compounded)
- Is there an arbitrage opportunity?

Notation for Valuing Futures and Forward Contracts

 S_0 : Spot price today

 F_0 : Futures or forward price today

T: Time until delivery date

r: Risk-free interest rate for maturity T

The Forward Price

If the spot price of an investment asset is S_0 and the futures price for a contract deliverable in T years is F_0 , then

$$F_0 = S_0 e^{rT}$$

where r is the T-year risk-free rate of interest. In our examples, S_0 =40, T=0.25, and r=0.05 so that

$$F_0 = 40e^{0.05 \times 0.25} = 40.50$$

When an Investment Asset Provides a Known Income (page 113, equation 5.2)

$$F_0 = (S_0 - I)e^{rT}$$

where *I* is the present value of the income during life of forward contract

When an Investment Asset Provides a Known Yield (Page 115, equation 5.3)

$$F_0 = S_0 e^{(r-q)T}$$

where *q* is the average yield during the life of the contract

(expressed with continuous compounding)

Valuing a Forward Contract

- The forward price of an asset is different from the value of a forward contract
- A forward contract is worth zero when it is first negotiated
- Later it may have a positive or negative value
- This is the "value of the forward contract"

Valuing a Forward Contract

(pages 115-117)

- Denote K the delivery price and F₀ the forward price for a contract that would be negotiated today
- \bullet By considering the difference between a contract with delivery price K and a contract with delivery price F_0 we can deduce that:
 - the value of a long forward contract is $(F_0 K)e^{-rT}$
 - the value of a short forward contract is

$$(K-F_0)e^{-rT}$$

Futures Contracts

- Futures contracts are similar to forward contracts.
- Both are obligations by the long/short side to purchase/delivery an asset at delivery date
- The asset is standardized (quantity and quality) and the contract can be sold to another market participant
- The mechanics of the futures contract involves also a margin and daily mark-to-market process.
- Futures contracts are traded on exchanges.

Forwards vs futures contracts

Mechanics of a futures contract

The asset buyer enters into a corn futures contract for delivery at T for \$100/bushel. Both sides are required to post \$20 margin (which will be returned at the end)

Asset buyer (long side)

Time	Margin	Settlement price	Margin
0	\$20	\$100	\$20
1	\$30	\$90	\$10
2	\$25	\$95	\$15

Delivers corn. Receives \$95 (+ \$5 margin profit) = \$100

Pays \$95 (+ \$5 margin loss) = \$100. Receive corn.

Futures contracts traded

- Equity index futures: SP500, Nasdaq-100, ...
- Interest rates futures: T-notes, Eurodollar futures, 30day Fed Funds futures, SOFR futures
- FX futures
- Commodity futures:
 - Energy (crude oil, power, natural gas)
 - Agricultural (corn, wheat, ...)
 - Metals

https://www.cmegroup.com

CRUDE OIL FUTURES - QUOTES

AUTO-REFRESH IS OFF

Last Updated 25 Sep 2024 12:46:27 PM CT. Market data is delayed by at least 10 minutes.

MONTH	OPTIONS	CHART	LAST	CHANGE	PRIOR SETTLE
NOV 2024 CLX4	ОРТ	al	69.50	-2.06 (-2.88%)	71.56
DEC 2024 CLZ4	ОРТ	all	68.92	-1.92 (-2.71%)	70.84
JAN 2025 CLF5	ОРТ	all	68.56	-1.77 (-2.52%)	70.33
FEB 2025 CLG5	ОРТ	all	68.30	-1.66 (-2.37%)	69.96
MAR 2025 CLH5	ОРТ	all	68.09	-1.59 (-2.28%)	69.68

The futures curve

- What determines the shape of the futures curve?
- Two types of curves:
 - Backwardation (down-sloping). Observed in commodities when there is a shortage.
 - Contango (up-sloping).
- Another factor is whether the asset is meant for consumption or is an investment asset

Futures curve (WTI – Feb.23)

Futures curve (WTI – Sep.24)

Relation of futures and spot price

- One can show that the futures prices are equal to the forward prices, provided that interest rates are deterministic (do not have any randomness)
- Thus we can use the no-arbitrage arguments for forward contracts to price also futures contracts.
- The exception are futures on interest rates. When interest rates are uncertain, they are slightly different:
 - A strong positive correlation between interest rates and the asset price implies the futures price is slightly higher than the forward price
 - A strong negative correlation implies the reverse

Consumption vs Investment Assets

- Investment assets are assets held by significant numbers of people purely for investment purposes
 - E.g. stocks, bonds, gold
- Consumption assets are assets held primarily for consumption
 - E.g. copper, oil, corn

Stock Indices

- Stock index: tracks changes in the value of a basket of stocks.
- Examples:
 - Dow Jones Industrial Average (DJI). 30 blue-chip US stocks
 - Standard and Poor's 500. Portfolio of 500 stocks: 400 industrials, 40 utilities, 20 transportation and 40 financials
 - Nasdaq-100. 100 stocks on Nasdaq.

Stock Index Futures

- Futures are traded on exchanges which deliver an amount linked to the price of the index at maturity (Cash settled)
- SP500 Index Futures (\$250x, \$50 x index)
- Nasdaq-100 Futures (\$100x, \$20 x index)
- Russell 2000 Index Futures

https://www.cmegroup.com/trading/equity-index/

Stock Index (Page 118-120)

- Stocks pay dividends. The stock index can be viewed as an investment asset paying a dividend yield
- The futures price and spot price relationship is therefore

$$F_0 = S_0 e^{(r-q)T}$$

where *q* is the average dividend yield on the portfolio represented by the index during life of contract

Stock Index (continued)

- For the formula to be true it is important that the index represent an investment asset
- In other words, changes in the index must correspond to changes in the value of a tradable portfolio
- The Nikkei index viewed as a dollar number does not represent an investment asset (See Business Snapshot 5.3, page 119)

The futures curve for SPX futures

Futures and Forwards on Currencies (Page 120-123)

- A foreign currency is analogous to a security providing a yield
- The yield is the foreign risk-free interest rate

Forwards on foreign currencies

- \bullet Denote S_0 the price in USD of one unit of foreign currency, and F_0 the forward price of the same quantity for delivery at time T
- \bullet Note that S_0 is just the spot FX rate
- \bullet Denoting r_f the risk-free interest rate in the foreign currency we have

$$F_0 = S_0 e^{(r - r_f)T}$$

Consumption Assets: Storage is Negative Income

$$F_0 \le S_0 e^{(r+u)T}$$

where u is the storage cost per unit time as a percent of the asset value.

Alternatively,

$$F_0 \leq (S_0 + U)e^{rT}$$

where U is the present value of the storage costs.

Interest rates futures

In the US, the main interest rates futures are:

- Treasury bond futures
- Fed Fund Futures
- SOFR Futures

Treasury Bond Futures

Pages 138-143

A Treasury Bond futures contract delivers at maturity:

- Treasury Bond (physical settlement)
- The value of the bond (cash settlement)

GRADE AND QUALITY

U.S. Treasury bonds that have remaining term to maturity of at least 15 years and less than 25 years from the first day of the futures delivery month.* The delivery invoice amount equals the futures settlement price times a conversion factor, plus accrued interest. The conversion factor is the price of the delivered bond (\$1 par value) to yield 6 percent.

*For more information, please refer to T-Bond Basket Gap Decision.

Treasury Bond Futures - Quotes

U.S. TREASURY BOND FUTURES - QUOTES

AUTO-REFRESH IS OFF

Last Updated 08 Feb 2023 04:37:27 PM CT. Market data is delayed by at least 10 minutes.

монтн	OPTIONS	CHART	LAST	CHANGE	PRIOR SETTLE
MAR 2023 ZBH3	ОРТ	all	128'28	+0'15 (+0.37%)	128'13
JUN 2023 ZBM3	ОРТ	al	130'01	+0'05 (+0.12%)	129'28
SEP 2023 ZBU3	ОРТ	all	130'25	UNCH (UNCH)	130'25

Eurodollar Futures (Page 143-148)

- Eurodollar futures are (were) futures on 3-month LIBOR
- One contract is on the rate earned on \$1 million
- A change of one basis point or 0.01 in a Eurodollar futures quote corresponds to a contract price change of \$25

Fed Fund Futures

- The 30 Day Fed Fund Futures are cash settled and pay an amount proportional to 100 - (arithmetic average of the daily effective Fed Funds Rates during the contract month)
- Provide a gauge of market expectations about the Fed's action at future FOMC meetings

Fed Funds Futures

SOFR Futures

- The one-month SOFR futures is designed to be as similar as possible to the one-month Fed Fund futures contract and is based on an arithmetic average of overnight rates
- The three-month SOFR futures is designed to be as similar as possible to the three-month Eurodollar futures and is based on the result of compounding overnight rates

ONE-MONTH SOFR FUTURES - QUOTES

Last Updated 25 Sep 2024 12:53:29 PM CT. Market data is delayed by at least 10 minutes.

MONTH	OPTIONS	CHART	LAST	CHANGE	PRIOR SETTLE
SEP 2024 SR1U4	ОРТ	all	94.8575	-0.0025 (UNCH)	94.86
OCT 2024 SR1V4	ОРТ	all	95.165	+0.01 (+0.01%)	95.155
NOV 2024 SR1X4	ОРТ	all	95.455	+0.005 (+0.01%)	95.45
DEC 2024 SR1Z4	ОРТ	all	95.69	+0.005 (+0.01%)	95.685

Using SOFR for Hedging

- A company has agreed to pay three month SOFR plus 200 basis points on \$100 million for three months starting on December 16, 2021
- The December SOFR futures price is 99.990
- What rate can the company lock in?

Uses of Eurodollar/SOFR futures

- The Eurodollar futures are popular hedging instruments for interest rates risk
- Their quoted prices are also used to construct the Libor curve (the curve of forward Libor rates), along with:
 - Deposit rates (Libor rates) short maturities
 - Eurodollar futures middle maturities
 - Swap rates long maturities
- They will be replaced by SOFR futures for these purposes