Datathon Report – MC Datathon 2025

This document presents the detailed work and solutions proposed by Chicas de datoss members during the **MC-Datathon 2025**. It includes explanations, models used, evaluation strategies, and insights for each challenge.

Challenge 1: Churn Detection

Solution: churn-detection by Asma

Type: Binary Classification

Evaluation Metric: F1 Score

Problem Statement:

The goal was to predict whether a customer is likely to **churn or not**, based on various features provided in a tabular dataset.

Approach:

• Data Exploration:

- Handled missing values, categorical encoding, and distribution analysis.
- Visualized correlations between features and churn label.

• Preprocessing:

- o Normalization/standardization where needed.
- Split into training/validation/test sets.

• Modeling:

- o Tried multiple classification models: (e.g. Random Forest, XGBoost, Logistic Regression)
- Used GridSearchCV or cross-validation for hyperparameter tuning.

• Evaluation:

• Final model evaluated using F1 Score, to handle imbalanced classes.

• Results:

o Achieved a score of [insert score here] on the test set.

Notes:

_	Incort ovac	t madal	nama	and hact	hvperparan	notore
•	IIISEILEXAU	11111111111	Hallie	สมเน มธรม	HIVUELUALAH	ICICI S

•	Add i	nsights	about f	eatures	or feature	importance.
---	-------	---------	---------	---------	------------	-------------

Challenge 2: Football Players Detection

Solution: football-players-detection by Asma

Type: Object Detection

Evaluation Metric: mean Average Precision (mAP)

Problem Statement:

Develop an object detection model to identify and localize all players within a football field from static images.

Approach:

- Dataset Handling:
 - Used bounding box annotations provided.
 - Split dataset for training/validation.
- Modeling:
 - Used a YOLO-based or SSD-based deep learning model.
 - Trained the model with bounding boxes and image augmentation techniques.
- Submission Format:
 - o Predictions returned as: filename, xmin, ymin, xmax, ymax, confidence, label
- Evaluation:
 - Submissions scored using mean Average Precision (mAP) for object detection accuracy.

Notes:

•	Add mAP score you obtained.
•	Mention architecture (e.g. YOLOv8, Faster R-CNN).
	Challenges: Small objects? Occlusion? Background noise

Challenge 3: Arabic Manuscripts Digitization

Solution: chicas2 by Malak

Type: Handwriting Transcription (OCR)

Evaluation Metric: Character Error Rate (CER)

Problem Statement:

Automatically transcribe Arabic handwritten manuscripts, particularly in the Maghribi style, into machine-readable text.

pproach:

· Preprocessing:

- o Normalized image sizes, binarization, and noise removal.
- Cropped/padded inputs for consistency.

· Modeling:

- Built a CRNN (CNN + BiLSTM + CTC) architecture.
- Defined custom Arabic vocabulary to improve accuracy.

· Training:

• Trained on labeled dataset with image-text pairs.

• Evaluation:

- o Measured Character Error Rate (CER) on test set.
- Lower CER = better performance.

Notes:

- Insert architecture details (e.g., VGG + BiLSTM).
- Mention final CER score.
- Add samples of predicted vs ground truth text.

Challenge 4: Sentiment Anaylisys challenge

Solution: becca's solution

Final Remarks:

This report outlines the datathon journey from a hands-on, technical perspective. Each challenge provided a unique problem domain and evaluation metric:

- Churn Detection: Binary classification using tabular data
- Football Detection: Real-time object localization
- Arabic Manuscripts: Sequence recognition for OCR

Version Control:

All notebooks and code are versioned and available via the GitHub repository.