Работу следует представить в виде отчёта в pdf формате. В начале работы должен идти текст с графиками, в конце работы в качестве приложения должен идти код. За графики без подписанных осей и заголовков оценка будет снижена. Общий объем текста (без приложений) должен составлять не более 10 страниц.

- 1. (10 баллов) Рассмотрим MA(2) процесс $y_t = 10 + u_t + 3u_{t-1}$, где величины u_t независимы и нормально распределены $\mathcal{N}(0;4)$.
 - (a) Рассчитайте теоретическую автокорреляционную функцию процесса ACF, ρ_k .
 - (b) Рассчитайте первые два значения частной автокорреляционной функции $PACF, \phi_{11}, \phi_{22}$.
 - (c) Сгенерируйте траекторию данного процесса длиной 30 наблюдений. Постройте график ряда, график первых десяти значений выборочной ACF и PACF.
 - (d) Повторите предыдущий пункт для 300 наблюдений. Верно ли, что с ростом числа наблюдений выборочная ACF сходится к истинной ACF, а выборочная PACF к истинной PACF?
- 2. (10 баллов) Рассмотрим случайное блуждание $y_t = 1 + y_{t-1} + u_t$, где величины u_t независимы и нормально распределены $\mathcal{N}(0;4)$, а $y_0 = 10$.
 - (a) Рассчитайте $\mathbb{E}(y_t)$, \mathbb{V} ar (y_t) , Cov (y_{10}, y_{20}) .
 - (b) Сравните Corr (y_{10}, y_{20}) и Corr (y_{110}, y_{120}) .
 - (c) Сгенерируйте траекторию данного процесса длиной 30 наблюдений. Постройте график ряда, график первых десяти значений выборочной ACF и PACF.
 - (d) Повторите предыдущий пункт для 300 наблюдений. Верно ли, что с ростом числа наблюдений выборочная ACF сходится к истинной ACF, а выборочная PACF к истинной PACF?
- 3. (20 баллов) Возьмите любой несезонный ряд годовой периодичности. Можно взять ряд с https://fedstat.ru/, http://sophist.hse.ru/ или других источников.
 - (a) Постройте график ряда, графики выборочных ACF и PACF.
 - (b) Визуально оцените, есть ли тренд? Похож ли процесс на стационарный?
 - (c) Оцените для ряда ETS(AAN) модель.
 - (d) Выпишите полученные уравнение, использовав оценённые значения параметров вместо параметров.
 - (e) Получите 80%-й доверительный интервал на один и два шага вперёд «руками», исходя из выписанных уравнений.
 - (f) Получите 80%-й доверительный интервал на один и два шага вперёд встроенными функциями.
 - (g) Постройте график прогноза и сам ряд.

- 4. (30 баллов) Возьмите любой сезонный ряд квартальной или месячной периодичности.
 - (a) Постройте разложение ряда на составляющие, используя STL алгоритм. Визуализируйте результат для трех разных значений силы сглаживания сезонности. Кратко прокомментируйте.
 - (b) Постройте разложение ряда на составляющие, используя ${\rm ETS}(AAA)$ модель.
 - (с) Разделите данные на обучающую и тестовую выборку, выделив на тестовую выборку два года наблюдений.
 - (d) Оцените ETS(AAA), ETS(MAM), сезонную наивную модель и примените тетаметод с STL разложением по умолчанию и ETSS(AAA) для логарифма ряда.
 - (e) Для каждого подхода найдите MASE на тестовой выборке.
 - (f) Постройте прогноз, усредняющий прогнозы двух лидирующих по MASE подхода. Удалось ли обыграть два усредняемых подхода?