Boundary Supersymmetry of (1+1)D SPT Phase

Lu Wei

School of Gifted Young, University of Science and Technology of China

May 11, 2021

Outline

- Topologically ordered phase
 - Big picture
 - Topological quantum field theory
 - 2d topological order
- SPT phase
- 3 Boundary supersymmetry of SPT phase
 - Supersymmetric quantum mechanics
 - Boundary SUSY of (1+1)D SPT phase

Big picture for topological order

 $\mathsf{TQFT} \Leftrightarrow \mathsf{Topological}$ order $\Leftrightarrow \mathsf{Topological}$ quantum computation

- TQFT is low energy effective theory of topological order
- Topological order can be used for quantum computation

Topological quantum field theory

 Topological quantum field theory Witten, Edward, "Topological quantum field theory", Commun. Math. Phys. 117, 353-386 (1988)

Chern-Simons:
$$CS[A] = \frac{\kappa}{2} \int_{M} dx^{3} \varepsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}.$$
 (1)

Wilson loop:
$$W(L) = \prod_{i=1}^{r} \exp\left(iQ_i \oint_{C_i} A\right)$$
 (2)

Consider the three-dimensional space M being made up of a spatial disk Σ defined though the infinite time line. A disk Σ defined though the infinite time line. A disk Σ at t = 0 introduces a set of points P_1, P_2, P_3 and P_4 where the link made out of the loops C_1 and C_2 intersects the disk.

Topological quantum field theory

 Atiyah's axiomatic approch M. Atiyah, "Topological quantum field theories", Publications Mathématiques de l'IHÉS 68 (68): 175–186 (1988)

Principle	Feynman diagram	2D cobordism	Algebraic operation	(in a k-algebra A)
merging	\rightarrow	5	multiplication	$A \otimes A \to A$
creation	→	0	unit	$\mathbb{k} \to A$
splitting	$ $ \prec	S	comultiplication	$A \to A \otimes A$
annihilation	-	D	counit	$A ightarrow \Bbbk$
		= 5	=	

There is an associated Hilbert space A to each circle, 2D codordism is morphisms between these circles.

Topological quantum field theory

 Modern point of view: a TQFT is a modular functor B. Bakalov, A. Kirillov, "Lectures on Tensor Categories and Modular Functors", American Mathematical Society (November 20, 2000)

Topological object and gluing operation form a modular category \mathbf{Cob}_2 ; all vector spaces form a modular category \mathbf{Vect} . A TQFT is a modular functor between them

$$F: Cob_2 \rightarrow Vect.$$
 (3)

Principle	Feynman diagram	2D cobordism	Algebraic operation	(in a k-algebra A)
merging	\rightarrow	2	multiplication	$A \otimes A \rightarrow A$
creation	-	0	unit	$\mathbb{k} \to A$
splitting	\prec	S	comultiplication	$A \rightarrow A \otimes A$
annihilation	-	D	counit	$A \rightarrow k$

2d topological order

Topologically ordered phase

Topologically ordered phase is an equivalence class $\{\mathcal{H}, H\}$ which is a microscopic realization of TQFT.

- Topologically protected ground state space
- Topological entanglement entropy
- Boundary state and bulk-boundary correspondence
- Anyonic mutual statistics

2d topological order: anyon model

Anyon model \Leftrightarrow Modular tensor category \mathcal{C} .

- Topological charge $\{1, a, b, \cdots\}$
- Fusion and splitting of charges $a \times b = \sum_{c} N_{ab}^{c} c$
- Braidings $R_{a,b}^c$
- Topological spin $\theta_a, \theta_b, \cdots$

Kitaev quantum double model; String-net model Trivial phase is characterized by $Hilb = \{1\}$, the category of all finite dimensional Hilbert spaces, which only has one topological trivial charge 1.

Topological order with symmetry

Symmetry enriched topological phase (SET) = anyon model C + symmetry G.

- Excitations: anyons+symmetric charge
- Mathematical structure: G-crossed braided fusion category C_G^{\times} .
- Symmetry protected topological/trivial (SPT) phase is a special case of SET phase with only trivial anyon 1. Thus, it's characterized by Hilb_G[×].

SPT phase

SPT phases are gapped short-range entangled phase with symmetry G.

- *d*-dimensional bosonic SPT phases are characterized by group cohomology theory $H^{1+d}(G, U_T(1))$.
- Breaking symmetry G, the resulting phase is a trivial topological phase **Hilb**.
- Well-known examples: Haldane spin-1 chain; topological insulator; topological superconductor.

Phys. Rev. B 87, 155114 (2013); Rev. Mod. Phys. 82, 3045 (2010); Rev. Mod. Phys. 83, 1057 (2011).

SPT phase: examples

SPT order	Symmetry	Classification	Chain end/SPT probe
1B spin-1 Haldane phase	SO(3)	$\mathcal{H}^2(SO(3), \mathbb{R}/\mathbb{Z}) = \mathbb{Z}_2$	Spin 1/2
1B spin-1 Haldane phase	Z_2^T G	$\mathcal{H}^2(Z_2^T,\mathbb{R}/\mathbb{Z})=\mathbb{Z}_2$	Kramer doublet
1B symmetry gapped phases	$ ilde{G}$	$\mathcal{H}^{2}(G,\mathbb{R}/\mathbb{Z})$	Projective representation of G
1F insulator w/ coplanar spin order	$U^f(1) \rtimes Z_2^T$	\mathbb{Z}_2	Kramers doublet
1F topological superconductor	Z_4^T G^f	\mathbb{Z}_2	Charge-0 Kramers doublet
1F Gf-SPT phases	$G^{\widetilde{f}}$	$\mathcal{H}^2(G^f, \mathbb{R}/\mathbb{Z})$	Projective representation of G^f
2B Z_n -SPT states	Z_n	$\mathcal{H}^3(Z_n,\mathbb{R}/\mathbb{Z})=\mathbb{Z}_n$	Z_n dislocation has fractional statistics/ Z_n charge
2B SPT insulator	U(1)	$\mathcal{H}^{3}(U(1), \mathbb{R}/\mathbb{Z}) = \mathbb{Z}$	Even-integer Hall conductance
2B T-symmetric SPT insulator	$U(1)\rtimes Z_2^T$	$\mathcal{H}^3(U(1)\rtimes Z_2^T,\mathbb{R}/\mathbb{Z})=\mathbb{Z}_2$	π flux has Kramers doublet
2B spin quantum Hall states	SO(3)	$\mathcal{H}^3(SO(3), \mathbb{R}/\mathbb{Z}) = \mathbb{Z}$	Quantized spin Hall conductance
2B T-symmetric SPT spin liquid	$Z_2^T \times SO(3)$	$\mathcal{H}^3(\mathbb{Z}_2^T \times SO(3), \mathbb{R}/\mathbb{Z}) = \mathbb{Z}_2$	
2B G-SPT states	G	$\mathcal{H}^3(G,\mathbb{R}/\mathbb{Z})$	
2F quantum spin Hall states	$U^f(1) \times U^f(1)$	\mathbb{Z}	Spin-charge Hall conductance
2F topological insulator	$[U^f(1)\rtimes Z_4^T]/Z_2$	\mathbb{Z}_2	π flux carries charge-0 Kramers doublet
2F topological superconductor	Z_4^T	\mathbb{Z}_2	π flux carries charge-even Kramers doubles
2F Gf-SPT states	G^f without T	Chiral central charge $c = 0$	
		modular extensions of $sRep(G^f)$	
3B T-symmetric SPT states	Z_2^T	$\mathcal{H}^4(\mathbb{Z}_2^T, \mathbb{R}/\mathbb{Z}) \oplus \mathbb{Z}_2 = \mathbb{Z}_2^2$	
3B T-symmetric SPT insulator	$U(1)\rtimes Z_2^T$	$\mathcal{H}^4(U(1)\rtimes Z_2^T, \mathbb{R}/\mathbb{Z}) \oplus \mathbb{Z}_2 = \mathbb{Z}_2^3$	A monople is a fermion
3B T-symmetric SPT spin liquid	$Z_2^T \times SO(3)$	$\mathcal{H}^4(\mathbb{Z}_2^T \times SO(3), \mathbb{R}/\mathbb{Z}) \oplus \mathbb{Z}_2 = \mathbb{Z}_2^4$	
3B G-SPT states	G without T	$\mathcal{H}^4(G,\mathbb{R}/\mathbb{Z})$	
3B G-SPT states	G with T	$\mathcal{H}^4(G,\mathbb{R}/\mathbb{Z})\oplus\mathbb{Z}_2$	
3F topological insulator	$[U^f(1)\rtimes Z_4^T]/Z_2$	\mathbb{Z}_2	A monople carries half-integer charge
3F topological superconductor	Z_4^T	\mathbb{Z}_{16}	

Boundary supersymmetry of SPT phase

Boundary supersymmetry of SPT phase

The boundaries of all non-trivial 1+1 dimensional intrinsically fermionic SPT phases, protected by finite group on-site symmetries (unitary or anti-unitary), are supersymmetric quantum mechanical systems.

- signatures of space-time SUSY in particle interactions has not yet been detected in particle colliders.
- proposals exist for their emergence and detection in condensed matter and cold-atomic systems, all these proposals require some kind of fine tuning of parameters.
- a new setting for emergence and detection of the simplest version of SUSY quantum mechanics without any fine-tuning.

SUSY quantum mechanics

SUSY quantum mechanics

For $\mathcal{N}=N$ SUSY quantum mechanics, we have N anticommuting Hermitian generators $Q_i, i=1,\cdots,N$,

$$\{Q_i, Q_j\} = H\delta_{ij}; Q_i = Q_i^{\dagger}; \quad [H, Q_i] = 0; \quad H = \frac{2}{N} \sum_{i=1}^{N} Q_i^2.$$

Witten, E. (1982). "Constraints on supersymmetry breaking". Nuclear Physics B, 202(2), 253–316; Witten, E. (1981). Dynamical breaking of supersymmetry. Nuclear Physics B, 188(3), 513–554.

SUSY quantum mechanics: example

Example: SUSY quantum harmonic oscillator

Consider Hamonic oscillator $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2q^2$, with a, a^{\dagger} creating and annihilation operators, by introducing fermonic operators

$$\psi = \sigma_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\psi^{\dagger} = \sigma_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
(4)

we see that $\left\{\psi^\dagger,\psi\right\}=1,\quad \left\{\psi^\dagger,\psi^\dagger\right\}=\left\{\psi,\psi\right\}=0.$ Then we definie $Q=a\psi^\dagger$ and $Q^\dagger=a^\dagger\psi$, the final SUSY Hamiltonian is

$$H = QQ^{\dagger} + Q^{\dagger}Q = \left(-\frac{d^2}{dx^2} + \frac{x^2}{4}\right)I - \frac{1}{2}\left[\psi, \psi^{\dagger}\right]. \tag{5}$$

Witten, E. (1982). "Constraints on supersymmetry breaking". Nuclear Physics B, 202(2), 253–316; Witten, E. (1981). Dynamical breaking of supersymmetry. Nuclear Physics B, 188(3), 513–554.

(1+1)D superconductor

(1+1)D interaction topological superconductor with time-reversal symmetry \mathcal{T} satisfying $\mathcal{T}^2=+\mathbb{1}$ form a group \mathbb{Z}_8 . Different SPTs are classified by $\nu=0,\cdots,7\in\mathbb{Z}_8$.

L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011); L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).

The $\nu=2$ case

This case can be realized by two copies of Kiteav chain:

The $\nu = 2$ case: bulk

$$H = -i \sum_{j=1}^{L} (\gamma_{\uparrow,j} \gamma_{\downarrow,j+1} - \bar{\gamma}_{\uparrow,j} \bar{\gamma}_{\downarrow,j+1})$$

$$T = \mathcal{K} \prod_{j=1}^{L} (\gamma_{\downarrow,j} \bar{\gamma}_{\uparrow,j}), P_f = \prod_{j=1}^{L} (i \bar{\gamma}_{\downarrow,j} \gamma_{\downarrow,j}) (i \bar{\gamma}_{\uparrow,j} \gamma_{\uparrow,j})$$
(6)

time-reversal:
$$\mathcal{T}: \gamma_{\sigma} \mapsto \tau_{\sigma\sigma'}^{\mathbf{z}} \gamma_{\sigma'}, \bar{\gamma}_{\sigma} \mapsto \tau_{\sigma\sigma'}^{\mathbf{z}} \bar{\gamma}_{\sigma'}, \quad \mathbf{i} \mapsto -\mathbf{i}$$

fermion parity: $P_f: \gamma_{\sigma} \mapsto -\gamma_{\sigma}, \quad \bar{\gamma}_{\sigma} \mapsto -\bar{\gamma}_{\sigma}, \quad \mathbf{i} \mapsto \mathbf{i}$ (7)

A. Prakash, and J. Wang, arXiv:2011.12320; Z.-C. Gu Phys. Rev. Research 2, 033290 (2020)

The $\nu = 2$ case: boundary

Relabeling $\gamma_{\downarrow,1} \equiv \gamma, \bar{\gamma}_{\downarrow,1} \equiv \bar{\gamma}$, we see

$$\hat{\mathcal{T}} = \mathcal{K}\gamma, \quad \hat{P}_f = i\bar{\gamma}\gamma$$
 (8)

$$\hat{\mathcal{T}}^2 = \hat{P}_f^2 = 1, \quad \hat{\mathcal{T}}\hat{P}_f = -\hat{P}_f\hat{\mathcal{T}} \tag{9}$$

$$\hat{\mathcal{T}}: \gamma \mapsto +\gamma, \bar{\gamma} \mapsto +\bar{\gamma}, \quad i \mapsto -i
\hat{P}_f: \gamma \mapsto -\gamma, \bar{\gamma} \mapsto -\bar{\gamma}, \quad i \mapsto i$$
(10)

The only Hamiltonian which consistent with symmeties is H=c1. A. Prakash, and J. Wang, arXiv:2011.12320; Z.-C. Gu Phys. Rev. Research 2, 033290 (2020) $\frac{1}{2}$

The $\nu=2$ case: boundary SUSY

Define two Hermitian super-charges $\hat{Q}_+ \equiv \sqrt{c} \gamma$ and $\hat{Q}_- \equiv \sqrt{c} \bar{\gamma}$ which satisfy the $\mathcal{N}=2$ SUSY QM algebra,

$$\left\{\hat{Q}_{\alpha},\hat{Q}_{\beta}\right\}=2\hat{H}\delta_{\alpha\beta},\left[\hat{H},\hat{Q}_{\alpha}\right]=\left\{\hat{P}_{f},\hat{Q}_{\alpha}\right\}=0$$

The complex super-charge can be defined as $Q=\hat{Q}_++i\hat{Q}_-$ and $ar{Q}=\hat{Q}_+-i\hat{Q}_-$

$$\hat{\mathcal{T}}: \left(\begin{array}{c} Q\\ \bar{Q} \end{array}\right) \mapsto \left(\begin{array}{c} \bar{Q}\\ Q \end{array}\right) \tag{11}$$

A. Prakash, and J. Wang, arXiv:2011.12320; Z.-C. Gu Phys. Rev. Research 2, 033290, (2020) 3290, 3290

The $\nu=2$ case: boundary SUSY

Since $\nu=2\in\mathbb{Z}_8$, it's invaraint modulo 8, stacking 4N copies to original one does not change the SPT phase. In this case, SUSY become a little bit complicated, but the boundary is still $\mathcal{N}=2$ SUSY quantum mechanics.

Boundary SUSY of (1+1)D SPT phase: general result

Boundary SUSY of (1+1)D SPT phase

Any boundary Hamiltonian of a system belonging to a non-trivial (1+1) D SPT phase protected by finite on-site unitary or anti-unitary symmetries can be expressed as a supersymmetric quantum mechanical system if and only if the SPT phase is intrinsically fermionic.

Proof outline:

- (I) Prove that an SPT phase is not intrinsically fermionic if and only if \hat{P}_f commutes with all elements of symmetry group \hat{G}_f
- (II) Prove that if \hat{P}_f does not commute with all elements of symmetry group \hat{G}_f , then boundary Hamiltonian \hat{H} is supersymmetric.

A. Prakash, and J. Wang, arXiv:2011.12320; Z.-C. Gu Phys. Rev. Research 2, 033290 (2020)

THANK YOU FOR YOUR ATTENTIONS