第1章 数制和码制

东南大学电气工程学院

第1章 数制和码制

▶1.1 计算机中的数制

▶1.2 计算机中数的表示方法

▶1.3 非数值数据在计算机中的表示方法

Ŋ¢.

1.1 计算机中的数制

在模拟电子电路中,要处理的是连续的<mark>模拟信号</mark>,采用如微分方程、拉氏变换这类表达连续量及其关系的数学工具。

在数字电子电路中,要处理的是离散的二值逻辑量, 采用的数学工具是逻辑代数(布尔代数)

如何用逻辑量来表示数字??

——数制与码制

数制与码制分别是计数制与编码制的简称。

1.1 计算机中的数制

R进制的幂级数展开式

$$\begin{split} \left(N\right)_{\!R} &= a_{n-1} a_{n-2} \cdots a_2 a_1 a_0 \\ &= a_{n-1} \times R^{n-1} + a_{n-2} \times R^{n-2} + \cdots + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0 \\ &= \sum_{i=1}^{n-1} a_i R^i \end{split}$$

1.1 计算机中的数制

2. 不同数制之间的相互转换

(1)二、八、十六进制转换成十进制

例1 将(11010),转换为十进制。

$$(11010)_{2} = 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{1} = (26)_{10}$$

例2 将(274)₈转换为十进制。

$$(274)_{8} = 2 \times 8^{2} + 7 \times 8^{1} + 4 \times 8^{0} = (188)_{10}$$

1.1 计算机中的数制

(2)十进制数转换成二、八、十六进制数

纯整数:除基取余法

余数

2 25 2 12	1 0	1
2 6	0	
21	1	

$$(25)_{10} = (11001)_2$$

纯小数:乘基取整法

整数

$$\begin{array}{c|cccc}
0.125 \\
\times & 2 \\
\hline
0.250 & 0 \\
\times & 2 \\
\hline
0.500 & 0 \\
\times & 2 \\
\hline
1.000 & 1
\end{array}$$

$$(0.125)_{10} = (0.001)_2$$

1.1 计算机中的数制

(3)二进制数与八、十六进制数的互换

二-八互换: 三位二进制数对应一位八进制数

例: $(367.505)_8 = (011110111.101000101)_2$ $(11101.01011)_2 = (35.26)_8$

二-十六互换: 四位二进制数对应一位十六进制数

Ŋ.

1.2 计算机中数的表示方法

在计算机中对数据进行运算操作时,将符号位和数值位在一起编码来表示相应的数----机器码.而一般书写表示的数-----真值.

Ŋė.

实数在计算机中的表示

(1) 原码

$$\mathbf{x} = +\mathbf{x}_1\mathbf{x}_2\cdots\mathbf{x}_{n-1}$$

$$\mathbf{x} = -\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_{n-1}$$

原码

$$[x]_{\mathbb{R}} = 0x_1x_2\cdots x_{n-1}$$

$$[x]_{\mathbb{R}} = 1x_1x_2\cdots x_{n-1}$$

实数在计算机中的表示

$$[x]_{\text{pa}} = \begin{cases} x & 0 \le x \le 2^{n-1} - 1 \\ 2^{n-1} + |x| = 2^{n-1} - x & -2^{n-1} + 1 \le x \le 0 \end{cases}$$

例,对于8位二进制原码,其有效位数为7位表示范围:

$$-127 \sim +127$$

М-

实数在计算机中的表示

(2) 反码

反码定义如下:

- *对于正数,它的反码与原码相同。
- *对于负数,除符号位仍为"1",其余各位取反。

实数在计算机中的表示

(3) 补码

补码技术实际上是用机器来处理负数的技术。

*式中B>0.对于代数式A+B, M+B还是B,不影响A+B的运算.所以正数的补数仍是它本身.

解决求补困难的问题。比较原码与补码的尾数部分可以发现,原码每一位数码取反后再加1即为它的补码。

实数在计算机中的表示

设
$$x = -x_1 x_2 \cdots x_{n-1}$$

*在机器中,n位二进制补码的符号位S的规定与原码相同.

负数的补码, 尾数m'=2n-1- | x |

*n位补码可表示的真值范围是[-2ⁿ⁻¹, 2ⁿ⁻¹-1]

ŊΑ

实数在计算机中的表示

设
$$\mathbf{x} = -\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_{n-1}$$
 则 $[\mathbf{x}]_{\mathbb{K}} = 1\overline{\mathbf{x}_1}\overline{\mathbf{x}_2} \cdots \overline{\mathbf{x}_{n-1}}$ $|\mathbf{x}| + [\mathbf{x}]_{\mathbb{K}} = \underbrace{111 \cdots 1}_{n \oplus} = 2^n - 1$ 则 $[\mathbf{x}]_{\mathbb{K}} = (2^n - 1) - |\mathbf{x}|$ (1's补码) 显然: $[\mathbf{x}]_{\mathbb{A}} = [\mathbf{x}]_{\mathbb{K}} + 1$

be.

定点数在计算机中的表示

定点数: 小数点位置固定

s	X ₁ X ₂ X ₃ ······ X _{n-1}
---	--

对于纯小数,默认小数点位于s与x₁之间。

可表示的范围为 -($1-2^{-(n-1)}$) \sim +($1-2^{-(n-1)}$)

对于纯整数,默认小数点位于 \mathbf{x}_{n-1} 的右边。

可表示的范围为 -(2^{n-1} -1) \sim +(2^{n-1} -1)

浮点数在计算机中的表示

浮点数: 小数点位置不定

浮点数在计算机中的表示

阶码的符号 阶码 实数的符号 尾数(小数)

表示的数为

$$V = (-1)^s \times 0.F \times 2^{(-1)^{s c} \times c}$$

表示的范围为

$$-(1-2^{-m})\times 2^{2^{k}-1} \sim +(1-2^{-m})\times 2^{2^{k}-1}$$

1.3 非数值型数据在计算机的表示

1. 编码制

编码制是数字电路中用符号**0**、**1**的组合来表示数字、字符等不同的对象。不同的组合就形成不同的的编码。如二进制码、循环码。

注意:码制没有数量大小的含义。

常见的编码方式

十进制符号	二进制码	四位循环码	十进制符号	二进制码	四位循环码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

常用的四位二-十进制码(BCD码)

十进制符号	8421BCD码	余3BCD码	格雷BCD码
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0011
3	0011	0110	0010
4	0100	0111	0110
5	0101	1000	0111
6	0110	1001	0101
7	0111	1010	0100
8	1000	1011	1100
9	1001	1100	1101

关于码制

- *一个码字是由若干信息位(bit)组成,每位使用0和1两种代码(又叫码元),n位代码可表示2n种不同信息或数据。
 - *一个代码的字长可以是8位、16位、32位、64位...,也可以以字节(byte)为单位,每8位为一个字节。
- *一个代码有时有数的概念,有时则完全没有数的概念,在数字设备中,用它可以表示任何信息。

þΑ

作业:

- **1.4** (3)
- **1.5** (4)
- **1.9** (2)
- **1.10** (2) (4)
- **1.12** (3)
- **■** 1.15 (1) (6) (8)