Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 12

Exercise 1: Deep SVDD (20 P)

Consider a dataset $x_1, \ldots, x_N \in \mathbb{R}^d$, and a simple linear feature map $\phi(x) = \mathbf{w}^\top x + b$ with trainable parameters \mathbf{w} and b. For this simple scenario, we can formulate the deep SVDD problem as:

$$\min_{oldsymbol{w},b} \ \ rac{1}{N} \sum_{i=1}^N \|oldsymbol{w}^ op oldsymbol{x}_i + b - 1\|^2$$

where we have hardcoded the center parameter of deep SVDD to 1. We then classify new points \boldsymbol{x} to be anomalous if $\|\boldsymbol{w}^{\top}\boldsymbol{x} + b - 1\|^2 > \tau$.

- (a) Give a choice of parameters (\boldsymbol{w}, b) that minimizes the objective above for any dataset $(\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)$.
- (b) We now consider a regularizer for our feature map ϕ which simply consists of forcing the bias term to b = 0. Show that under this regularizer, the solution of deep SVDD is given by:

$$\boldsymbol{w} = \Sigma^{-1} \bar{\boldsymbol{x}}$$

where \bar{x} and Σ are the empirical mean and uncentered covariance.

Exercise 2: Restricted Boltzmann Machine (30 P)

The restricted Boltzmann machine is a system of binary variables comprising inputs $\mathbf{x} \in \{0,1\}^d$ and hidden units $\mathbf{h} \in \{0,1\}^K$. It associates to each configuration of these binary variables the energy:

$$E(\boldsymbol{x}, \boldsymbol{h}) = -\boldsymbol{x}^{\top} W \boldsymbol{h} - \boldsymbol{b}^{\top} \boldsymbol{h}$$

and the probability associated to each configuration is then given as:

$$p(\boldsymbol{x}, \boldsymbol{h}) = \frac{1}{Z} \exp(-E(\boldsymbol{x}, \boldsymbol{h}))$$

where Z is a normalization constant that makes probabilities sum to one. Let $\operatorname{sigm}(t) = \exp(t)/(1 + \exp(t))$ be the sigmoid function.

- (a) Show that $p(h_k = 1 \mid \boldsymbol{x}) = \text{sigm}(\boldsymbol{x}^\top W_{::k} + b_k)$.
- (b) Show that $p(x_j = 1 | \boldsymbol{h}) = \operatorname{sigm}(W_{i,:}^{\top} \boldsymbol{h}).$
- (c) Show that

$$p(\boldsymbol{x}) = \frac{1}{Z} \exp(-F(\boldsymbol{x}))$$

where

$$F(\boldsymbol{x}) = -\sum_{k=1}^{K} \log \left(1 + \exp\left(\boldsymbol{x}^{\top} W_{:,k} + b_{k}\right)\right)$$

is the free energy and where Z is again a normalization constant.

Exercise 3: Programming (50 P)

Download the programming files on ISIS and follow the instructions.

KDE and RBM for Anomaly Detection

In this programming exercise, we compare in the context of anomaly detection two energy-based models: kernel density estimation (KDE) and the restricted Boltzmann machine (RBM).

```
In [1]: import utils
   import numpy
   import scipy.special,scipy.spatial
   import sklearn,sklearn.metrics
   %matplotlib inline
   import matplotlib
   from matplotlib import pyplot as plt
```

We consider the MNIST dataset and define the class "0" to be normal (inlier) and the remain classes (1-9) to be anomalous (outlier). We consider that we have a training set Xr composed of 100 normal data points. The variables Xi and Xo denote normal and anomalous test data.

```
In [2]: Xr,Xi,Xo = utils.getdata()
```

The 100 training points are visualized below:

```
In [3]: plt.figure(figsize=(16,4))
   plt.imshow(Xr.reshape(5,20,28,28).transpose(0,2,1,3).reshape(140,560))
   plt.show()
```


Kernel Density Estimation (15 P)

We first consider kernel density estimation which is a shallow model for anomaly detection. The code below implement kernel density estimation.

Task:

• Implement the function energy that returns the energy of the points X given as input as computed by the KDE energy function (cf. slide Kernel Density Estimation as an EBM).

```
In [4]: class AnomalyModel:
          def auroc(self):
              Ei = self.energy(Xi)
             Eo = self.energy(Xo)
              return sklearn.metrics.roc_auc_score(
                 numpy.concatenate([Ei*0+0,Eo*0+1]),
                 numpy.concatenate([Ei,Eo])
              )
       class KDE(AnomalyModel):
          def init (self,gamma):
             self.gamma = gamma
          def fit(self,X):
             self.X = X
          def energy(self,X):
              # -----
             # TODO: Replace by your code
             # ------
             import solution
             E = solution.kde_energy(self,X)
              return E
```

The following code applies KDE with different scale parameters gamma and returns the performance of the resulting anomaly detection model measured in terms of area under the ROC.

```
In [5]: for gamma in numpy.logspace(-2,0,10):
    kde = KDE(gamma)
    kde.fit(Xr)
    print('gamma = %5.3f AUROC = %5.3f'%(gamma,kde.auroc()))

gamma = 0.010 AUROC = 0.957
gamma = 0.017 AUROC = 0.962
gamma = 0.028 AUROC = 0.969
gamma = 0.046 AUROC = 0.976
gamma = 0.077 AUROC = 0.981
gamma = 0.129 AUROC = 0.983
gamma = 0.215 AUROC = 0.983
gamma = 0.359 AUROC = 0.982
gamma = 0.599 AUROC = 0.982
gamma = 1.000 AUROC = 0.981
```

We observe that the best performance is obtained for some intermediate value of the parameter gamma .

Restricted Boltzmann Machine (35 P)

We now consider a restricted Boltzmann machine composed of 100 binary hidden units ($h \in \{0,1\}^{100}$). The joint energy function of our RBM is given by:

$$E(oldsymbol{x},oldsymbol{h}) = -oldsymbol{x}^ op oldsymbol{a} - oldsymbol{x}^ op oldsymbol{W}oldsymbol{h} - oldsymbol{h}^ op oldsymbol{b}$$

The model can be marginalized over its hidden units and the energy function that depends only on the input x is then given as:

$$E(oldsymbol{x}) = -oldsymbol{x}^ op oldsymbol{a} - \sum_{k=1}^{100} \log(1 + \exp(oldsymbol{x}^ op W_{:,k} + b_k))$$

The RBM training algorithm is already implemented for you.

Tasks:

- Implement the energy function $E({m x})$
- Augment the function fit with code that prints the AUROC every 100 iterations.

```
def sigm(t): return numpy.tanh(0.5*t)*0.5+0.5
def realize(t): return 1.0*(t>numpy.random.uniform(0,1,t.shape))
class RBM(AnomalyModel):
   def __init__(self,X,h):
       self.mb = X.shape[0]
       self.d = X.shape[1]
       self.h = h
       self.lr = 0.1
       # Model parameters
       self.A = numpy.zeros([self.d])
       self.W = numpy.random.normal(0,self.d**-.25 * self.h**-.25,[self.
d,self.h])
       self.B = numpy.zeros([self.h])
   def fit(self,X,verbose=False):
       Xm = numpy.zeros([self.mb,self.d])
       for i in numpy.arange(1001):
          # Gibbs sampling (PCD)
          Xd = X*1.0
          Zd = realize(sigm(Xd.dot(self.W)+self.B))
          Zm = realize(sigm(Xm.dot(self.W)+self.B))
          Xm = realize(sigm(Zm.dot(self.W.T)+self.A))
          # Update parameters
          self.W += self.lr*((Xd.T.dot(Zd) - Xm.T.dot(Zm)) / self.mb -
0.01*self.W)
          self.B += self.lr*(Zd.mean(axis=0)-Zm.mean(axis=0))
          self.A += self.lr*(Xd.mean(axis=0)-Xm.mean(axis=0))
          if verbose:
              # ------
              # TODO: Replace by your code
              import solution
              solution.track_auroc(self,i)
              # ------
   def energy(self,X):
       # ------
       # TODO: Replace by your code
       # ------
       import solution
       E = solution.rbm_energy(self,X)
       return E
```

We now train our RBM on the same data as the KDE model for approximately 1000 iterations.

```
In [7]:
        rbm = RBM(Xr, 100)
        rbm.fit(Xr,verbose=True)
                     AUROC = 0.962
                100
                     AUROC = 0.943
        it =
                     AUROC = 0.985
        it =
                200
                     AUROC = 0.987
        it =
                300
        it =
                400
                     AUROC = 0.988
        it =
                500
                     AUROC = 0.986
                     AUROC = 0.987
        it =
                600
                     AUROC = 0.987
        it =
                700
        it =
                     AUROC = 0.989
                800
                     AUROC = 0.986
        it =
                900
                     AUROC = 0.990
        it =
               1000
```

We observe that the RBM reaches superior levels of AUROC performance compared to the simple KDE model. An advantage of the RBM model is that it learns a set of parameters that represent variations at multiple scales and with specific orientations in input space. We would like to visualize these parameters:

Task:

• Render as a mosaic the weight parameters (W) of the model. Each tile of the mosaic should correspond to the receptive field connecting the input image to a particular hidden unit.

