Risk-taking or risk aversion? When and why?

Qi-Wen Ding

Research question

Personal belief

Value hedonism

Lottery task (Goh et al., 2016)

Q1: Does personal belief affect decision making?

Q2: When and how?

Variables

Lottery task (225 trials)

ID	Sex	Trial	Win%	Stake	Decision	Hedonism	Security
1	0 (♀)	1	89	55	1 (Accept)	-1.21	0.32
1	0 (♀)	2	54	3	0 (Reject)	-1.21	0.32
1	0 (♀)	3	11	56	1 (Accept)	-1.21	0.32
				:			
43	1(\$)	1	65	100	1 (Accept)	2.63	-0.64
43	1(3)	2	25	7	0 (Reject)	2.63	-0.64
				:			

享樂與安全的分數之計算方式為,將各類別內的題目取平均,再減去參與者在所有題目的平均得分後(以此排除個參與者的答題偏好(Schwartz, 2009),即得到該參與者在該信念類別的偏好程度。

Bayesian logistic regression

Model

$$\begin{cases} Y_{it} \sim Bern(p_{it}) \\ logit(p_{it}) = \beta_0 + \beta_1 X_i^{Security} + \beta_{2_i} X_t^{Prob} + \beta_{3_i} X_t^{Mag} + \\ \beta_{12} X_i^{Security} X_t^{Prob} + \beta_{13} X_i^{Security} X_t^{Mag} + \beta_{23_i} X_t^{Prob} X_t^{Mag} + \beta_{123} X_i^{Security} X_t^{Prob} X_t^{Mag} + \\ \beta_4 X_i^{Gender} + \gamma_i \end{cases}$$

Prior

$$\begin{array}{ll} \beta_{0} \sim N\left(0,10\right) & \beta_{13} \sim N\left(0,10\right) \\ \beta_{1} \sim N\left(-0.5,10\right) & \beta_{23i} \sim N\left(\mu_{23},\sigma_{23}^{2}\right) \\ \beta_{2i} \sim N\left(\mu_{2},\sigma_{2}^{2}\right) & \beta_{123} \sim N\left(0,10\right) \\ \beta_{3i} \sim N\left(\mu_{3},\sigma_{3}^{2}\right) & \beta_{4} \sim N\left(0.5,10\right) \\ \beta_{12} \sim N\left(0,10\right) & \gamma_{i} \sim N\left(0,\sigma_{\gamma}^{2}\right) \end{array}$$

Hyperprior

$$\mu_2 \sim N(0.5,10)$$
 $\mu_3 \sim N(0,10)$
 $\mu_{23} \sim N(0,10)$

$$\sigma_2^2 \sim Gamma(2,1)$$

$$\sigma_3^2 \sim Gamma(2,1)$$

$$\sigma_{23}^2 \sim Gamma(2,1)$$

$$\sigma_{\gamma}^2 \sim Gamma(2,1)$$

Coefficient estimates

Win% \uparrow , P(accept) \uparrow Effect of Hedonism on P(accept) depends on stake and Win% (p. 8) Regardless of stake and Win%, people who value security \uparrow have \downarrow P(accept) (p.9)

Bold line: 95% HPD; Regular line: 90% HPD

When stake (potential cost) \downarrow , personal belief has stronger effect on risk decision. When stake (potential cost) \uparrow , people tend to avoid risk.

Summary

- Personal beliefs are closely related to risk decision-making in Taiwanese university students.
- The more one values safety, the less likely they are to take risks. This effect is significant at different stakes or Win%.
- The effect of hedonism only appears at low stakes and mid-to-low Win%, and the magnitude is quite small.
- Once the potential cost is large, personal beliefs have little influence on risk decision-making. Most people will just avoid risk.