Generating Preview Tables for Entity Graphs

*Ning Yan, *Sona Hasani, *Abolfazl Asudeh, *Chengkai Li

*Huawei U.S. R&D Center

*University of Texas at Arlington, Innovative Database and Information Systems Research (IDIR) Laboratory

SIGMOD 2016, June 30th, 2016

Ultra-heterogeneous Entity Graphs

Large and complex graphs capturing millions of entities and billions of relationships

between entities.

Applications:

search, recommendation systems, business intelligence, health informatics, fact checking

Freebase: 1.9 billion triples

DBpedia: 3 billion triples

YAGO: 120 million triples

Linked Open Data:

hundreds of datasets

52 billion RDF triples

Steep Flag-Down Cost

Need for a Quick Overview

Approach 1: Schema Graph

Schema graph itself can be too complex

Schema graph of "Film" domain in Freebase Entity graph: 2M entities, 18 M edges

Schema graph: 63 entity types, 136 edges

Need for Quick Overview

Approach 2: Schema Summary

Schema summarization in relational database [Yang PVLDB09, Yang PVLDB11]

- o Cluster tables in relational database by their semantic roles and similarities.
- o Clusters tables, not relationships
- Detailed

XML summarization [Yu VLDB06]

o Provide a succinct overview of the entire schema graph

Graph summarization [Tian SIGMOD08, Zhang ICDE10]

o Group graph nodes based on their attribute similarity and allow users browse the summary from different grouping granularities.

Preview Tables

Too Many Previews. Which one to Choose?

- o Many possible previews
- o Different choices

Scoring Measures

Score of the Preview

FILM	Actor	Genres		
4	6	5		

FILM ACTOR	Actor	Award Winners
2	6	2

$$4 \times (6+5) = 44$$

Non-key attribute scoring

Coverage-based method

Key attribute scoring

Random walk-based method

- Coverage-based method
- Entropy-based method

Optimal Preview Discovery

Find the preview with highest score that satisfies

- o Size constraint
 - \circ Number of key attributes K
 - Number of non-key attributes N
- o Distance between two preview tables d

Tight $dist(Ti, Tj) \le d$ tables dDiverse $dist(Ti, Tj) \ge d$

Preview Discovery Algorithms

Concise preview

o Dynamic programming algorithm

Tight/Diverse preview

- o NP-hard
- o Apriori-like algorithm

Experiments

Dataset: Freebase

Accuracy of scoring measures

- o Compared with Freebase ground truth:
 - Key attributes: Precision-at-k (p@k), Average Precision, Discounted Cumulative Gain (nDCG)
 - o Non-key attributes: Mean Reciprocal Rank (MRR)
- o Compared with crowd ranking:
 - o Pearson Correlation Coefficient (PCC)

Efficiency of algorithms

Execution time

User study

- o Existence test questions
- o User experience questions

Key Attribute Scoring (p@k)

→Optimal p@k

→ YPS09 [Yang PVLDB09]

—Coverage

-Random Walk

User Study, Approaches Compared

- Domains: film, books, music, TV, people
- o Approaches:
 - o Schema graph
 - o Concise preview
 - o Tight preview
 - Diverse preview
 - o Freebase ground truth
 - o YPS09
 - o Hand-crafted preview tables
- 4 existence questions
- 4 experience questions
- 84 Master's and PhD students in database area
- o \$15 gift card

User Study, Hand-crafted Preview Tables

o Domains:

film books music TV people

- o Hand-crafted preview tables
- 10 PhD students in Database research group
- o Individually and as a group
- o \$20 gift card

User Study: Existence Test Questions

	Tight	Diverse	Freebase	Experts	YPS09	Schema Graph	
Concise	z=1.59 p=0.0559	z=-2.28 p=0.0113	z=0.49 p=0.3121	z=-0.13 p=0.4483	z=0.36 p=0.3594	z=-0.43 p=0.3336	
Tight		z=-3.48 p=0.0003	z=-1.12 p=0.1314	z=-1.69 p=0.0455	z=-1.282 p=0.0999	z=-1.93 p=0.0268	
Diverse			z=2.57 p=0.0051	z=2.10 p=0.0179	z=2.60 p=0.0047	z=1.70 p=0.0446	
Freebase				z=-0.61 p=0.2709	z=-0.15 p=0.4404	z=-0.87 p=0.1922	
Experts					z=0.49 p=0.3121	z=-0.29 p=0.3859	
YPS09						z=-0.77 p=0.2206	

Pairwise comparisons of conversion rates, domain="music", α =0.1

User Study: Existence Test Questions

Time taken on existence tests, domain="music"

User Study: User Experience Questions

Questions	most favorable least favorable					orable	
How easy was it to read the schema summary?	Freebase	Diverse	Graph	Experts	YPS09	Concise	Tight
How much understanding of the data can you gain from it?	Graph	Freebase	YPS09	Diverse	Concise	Tight	Experts
How helpful was it in assisting you to understand the data?	Graph	Freebase	YPS09	Diverse	Experts	Concise	Tight
Is it missing important information?	YPS09	Concise	Experts	Graph	Tight	Freebase	Diverse

Systems sorted by average user experience scores across five domains

Acknowledgment

Disclaimer: This material is based upon work partially supported by the National Science Foundation Grants 1018865, 1408928 and the National Natural Science Foundation of China Grant 61370019. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Thank You! Questions?

Generating Preview Tables for Entity Graphs

Ning Yan, Sona Hasani, Abolfazl Asudeh, Chengkai Li

