Data Wrangling Report

This report is on the data wrangling process carried out on @dog_rates (WeRateDogs) twitter account. WeRateDogs rates people's dogs with a humorous comment about the dog.

Data Wrangling Process

- Data Gathering
- Data Assessing
- Data Cleaning

1. Data Gathering

Dataset was gathered from three different data sources:

- The WeRateDogs Twitter archive (a CSV file that was provided by WeRateDogs via udacity). The
 archive contained basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets
 as they stood on August 1, 2017.
- The tweet Image prediction file (tsv file). This file contained the confident levels predictions of the dogs using a neural network.
- The additional data gotten from Twitter API (containing retweet count and favorite count of each tweet ID). Unfortunately, my request for twitter API was rejected, but Udacity provided a tweet_json.txt file which contained the retweet count and favorite count for each tweet ID.

The gathered data was loaded into three different DataFrame:

- archive data: Loaded data from twitter archive enhanced.csv
- prediction: Loaded data from image-predictions.tsv
- tweet: Loaded data from tweet-json.txt

2. Data Assessing

The gathered dataset was assessed using two methods namely,

- Visual Assessment: Each piece of gathered data was displayed in the jupyter Notebook. Once displayed, data was additionally assessed using an external application (Ms.Excel).
- Programmatic Assessment: Pandas' functions were used to assess the data.

Legend:

- Methods: Visual (V) / Programmatic (P)
- Issues: Quality (Q) / Tidiness (T)

Table 1: Issues Identified

DataFrame	Methods	Issues	Column/Features	Description
archive_data	Р	Q	timestamp, retweet, tweet_id	Erroneous
				datatype
	V	Q	In_reply_to_status_id,	original tweets
			in_reply_to_user_id,	(no
			retweeted_status_timestamp,	retweets/reply)
			retweeted_status_id,	must be
			retweeted_status_user_id	considered as
				per project
				requirement
	V	Q	rating_denominator,	Extremely large
			rating_numerator	values
	Р	Т	source	Contains HTML
				tags, URL and
				content in a
				single column
	V	Q	name	Invalid names
	Р	Q	In_reply_to_status_id,	Uninterested
			in_reply_to_user_id,	columns
			retweeted_status_timestamp,	
			retweeted_status_id,	
			retweeted_status_user_id	
	V	Q	rating_numerator,	Inconsistent
			rating_denominator	rating
	Р	Т	doggo, floofer, pupper and	Categorical
			puppo	variables
				represented in
				a seperate
				column
prediction	Р	Q	p1, p2 and p3	Same
				observation in
				multiple
				columns
	Р	Q	p1, p2 and p3	Dog breed has
				no standard
				(upper and
				lower case
				names)
prediction,	Р	Q	all	Missing records
tweet				of observation
				i.e prediction
				(2074 values),
				tweet (2354)

3. Data Cleaning

After the data gathered was assessed, it was further cleaned to solve the previously identified issues. The three DataFrames were copied to protect the original data

- archieve_data_clean = archive_data.copy()
- prediction_clean = prediction.copy()
- tweet_clean = tweet.copy()

cleaning process:

- Merged all four columns (doggo, pupper, puppo, and floffer) into one column named stage. Also
 merged the favorite_count, retweet_count and the prediction table to the archive_data table using
 tweet id.
- Dropped the uninterested observations for reply (78 values) and retweet (181 values) by rows. Also the features were dropped.
- Erroneous datatype were converted i.e to string using .astype() for tweet_id and pd.to_datatime() for timestamp.
- Source name in the source column was extracted using regex.
- The inconsistency in the rating was solved by performing feature engineering (where: rating = rating_numerator/rating_denominator).
- The invalid names starting with lower case were replaced with 'None'.
- Finally, the cleaned dataset was stored in the master DataFrame.

4. Conclusion

In the first iteration, eleven issues have been documented about the dataset. However, the master dataset is not free of issues, as Data Wrangling is an iterative process.

The wrangled data was stored in the twitter_archive_master.csv file with minor issues, and ready for Data Analysis. The file has 1971 observations and 15 features.