Interpretable Machine Learning

Extensions of Linear Regression Models

Learning goals

- Inclusion of high-order and interaction effects
- Regularization via LASSO

Interpretable Machine Learning Extensions of Linear Regression Models

Learning goals

- Inclusion of high-order and interaction effects
- Regularization via LASSO

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_\rho x_\rho + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights \rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$
- interaction effects as the product of multiple feat. \rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

,	,	
Bil	ke Data	
Method	R^2	adj. R ²
Simple LM	0.85	0.84
High-order	0.87	0.87
Interaction	0.06	U 03

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

• high-order effects which have their own weights \rightarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$

 \rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

 high-order effects which have their own weights 	Bik	e Data	
9	Method	R^2	adj. R ²
\rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$	Simple LM	0.85	0.84
	High-order	0.87	0.87
• interaction effects as the product of multiple feat.	Interaction	0.96	0.93
a control of the cont			

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights \rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$
- interaction effects as the product of multiple feat. \sim e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

Bike Data		
Method	R^2	adj. <i>R</i> ²
Simple LM	0.85	0.84
High-order	0.87	0.87
Interaction	0.96	0.93

Implications of including high-order and interaction effects:

- Both make the model more flexible but also less interpretable → More weights to interpret
- Both need to be specified manually (inconvenient and sometimes infeasible) Other ML models often learn them automatically
- Marginal effect of a feature cannot be interpreted by single weights anymore \rightarrow Feature x_i occurs multiple times (with different weights) in equation

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

high-order effects which have their own weights

s .	Bik	e Data		
	Method	R^2	adj. R ²	
	Simple LM	0.85	0.84	
	High-order	0.87	0.87	
at.	Interaction	0.96	0.93	

	Method	11	auj. 11
\rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$	Simple LM	0.85	0.84
	High-order	0.87	0.87
 interaction effects as the product of multiple feat. 	Interaction	0.96	0.93
\rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$			

Implications of including high-order and interaction effects:

- Both make the model more flexible but also less interpretable → More weights to interpret
- Both need to be specified manually (inconvenient, sometimes infeasible) Other ML models often learn them automatically
- Marginal effect of a feat. cannot be interpreted by single weights anymore \rightarrow Feature x_i occurs multiple times (with different weights) in equation

Example: Interaction between temp and season will affect marginal effect of temp

		Weights
	(Intercept)	3453.9
	seasonSPRING	1317.0
R	seasonSUMMER	4894.1
3 ER	seasonFALL	-114.2
-11	temp	160.5
	hum	-37.6
	windspeed	-61.9
	days_since_2011	4.9
	seasonSPRING:temp	-50.7
	seasonSUMMER:temp	-222.0
	seasonFALL:temp	27.2

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

• increase by 160.5 in WINTER (reference)

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept) 3453.9
seasonSPRING	1317.0
seasonSUMMEF	R 4894.1
seasonFALI	-114.2
temp	160.5
hun	n -37.6
windspeed	d -61.9
days_since_2011	1 4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}$ C, bike rentals

• increase by 160.5 in WINTER (reference)

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}$ C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}\text{C},$ bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

Interpretable Machine Learning - 2/5

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	_
	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}\text{C},$ bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp

temp depends on two weights:

	Weights
(Intercept)	3094.1
seasonSPRING	619.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

EXAMPLE: QUADRATIC EFFECT

Ex.: Adding quadratic effect for temp

Interpretation: Not linear anymore!

• temp depends on two weights:

 $280.2 \cdot x_{temp} - 5.6 \cdot x_{temp}^2$

Seasonarning	019.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

Interpretation: Not linear anymore!

•	remb gebengs	on two weigh
	$280.2 \cdot x_{temp}$ —	$5.6 \cdot x_{temp}^2$

Interpretable Machine Learning - 3/5

- 3/5

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp (left) and interaction with season (right)

seasonFALL:temp2

Interpretation: Not linear anymore!

• temp depends on multiple weights due to season:

$$\rightarrow$$
 WINTER: 39.1 · x_{temp} + 8.6 · x_{temp}^2

$$\sim$$
 SPRING: (39.1+407.4) $\cdot x_{temp} + (8.6-18.7) \cdot x_{temp}^2$

$$\rightarrow$$
 SUMMER: (39.1+801.1) · x_{temp} + (8.6−27.2) · x_{temp}^2

$$\sim$$
 SUMPLER. (39.1+001.1) · X_{temp} + (6.6-27.2) · X_{tem}
 \sim FALL: (39.1+217.4) · X_{temp} + (8.6-11.3) · X_{temp}^2

EXAMPLE: QUADRATIC EFFECT

Ex.: Adding quadratic effect for temp (left) and interaction with season (right)

		weignis
	(Intercept)	3802.1
	seasonSPRING	-1345.1
Season	seasonSUMMER	-6006.3
- WINTER	seasonFALL	-681.4
SPRINGSUMMER	hum	-38.9
- FALL	windspeed	-64.1
	days_since_2011	4.8
	temp	39.1
	temp ²	8.6
	seasonSPRING:temp	407.4
	seasonSPRING:temp ²	-18.7
_	seasonSUMMER:temp	801.1
son:	OLDANGED 1 2	07.0

seasonFALL:temp

seasonFALL:temp2

217.4

Interpretation: Not linear anymore!

• temp depends on multiple weights due to season:

 $(39.1+217.4) \cdot x_{temp} + (8.6-11.3) \cdot x_{temp}^2$

Interpretable Machine Learning - 3/5

REGULARIZATION VIA LASSO Tibshirani (1996)

- LASSO adds an L_1 -norm penalization term $(\lambda ||\theta||_1)$ to least squares optimization problem
- Shrinks some feature weights to zero (feature selection)
- Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mathbf{x}^{(i)^{\top}} \theta)^{2}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1}\right)$$

REGULARIZATION VIA LASSO TIBSHIRANI

- LASSO adds an L_1 -norm penalization term $(\lambda ||\theta||_1)$ to least squares optimization problem
- → Shrinks some feature weights to zero (feature selection)
- → Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \xi^{\top} \theta)^{2}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1} \right)$$

Interpretable Machine Learning - 4/5

REGULARIZATION VIA LASSO > Tibshirani (1996)

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season
- λ is chosen \rightsquigarrow 6 selected features (\neq 0)
- LASSO shrinks weights of single categories separately (due to dummy encoding) → No feature selection of whole categorical
 - features (only w.r.t. category levels)
- → Solution: group LASSO → Yuan and Lin (2006)

	Weights
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

REGULARIZATION VIA LASSO TIBSHIRANI

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season
- λ is chosen \rightsquigarrow 6 selected features (\neq 0)
- LASSO shrinks weights of single categories separately (due to dummy encoding)
- → No feature selection of whole categorical features (only w.r.t. category levels)
- → Solution: group LASSO → Yuan and Lin 2006

	Weights
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

