

第2章 电路的分析方法

中国矿业大学信电学院

第2章 电路的分析方法

- 2.1 电阻串并联联接的等效变换
- 2.2* 电阻 Y-Δ 联接的等效变换
- 2.3 电压源与电流源及其等效变换
- 2.4 支路电流法
- 2.5 结点电压法
- 2.6 叠加原理
- 2.7 戴维宁定理与诺顿定理
- 2.8* 受控源电路的分析
- 2.9 非线性电阻电路的分析

第2章 电路的分析方法

要求:

- 1、掌握支路电流法、节点电压法、叠加原理和戴维宁定理等电路的基本分析方法。
- 2、了解实际电源的两种模型及其等效变换。
- 3、了解受控源的概念。

2.1 电阻串联与并联

2.1.1 电阻的串联

特点:

- 1)各电阻一个接一个地顺序相联;
- 2)各电阻中通过同一电流;
 - 3)等效电阻等于各电阻之和。

$$R = R_1 + R_2$$

4)串联电阻上电压的分配与电阻成正比。两电阻串联时的分压公式:

$$U_1 = \frac{R_1}{R_1 + R_2} U$$
 $U_2 = \frac{R_2}{R_1 + R_2} U$

应用:降压、限流、调节电压等。

2.1.2 电阻的并联

特点:

- 1)各电阻联接在两个公共的结点之间;
- 2)各电阻两端的电压相同;
- R₂ 3)等效电阻的倒数等于各电阻倒数之和;

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ 4)并联电阻上电流的分配与电阻成反比。

两电阻并联时的分流公式:

$$I_1 = \frac{R_2}{R_1 + R_2} I$$
 $I_2 = \frac{R_1}{R_1 + R_2} I$

应用:分流、调节电流等。

例1.图 (a) 是一复联(串联和并联)电路,其中 R_1 =10 Ω , R_2 =5 Ω , R_3 =2 Ω , R_4 =3 Ω ,电源电压 U=125V,试求电流 I_1 。

$$(1)R_{34}=R_3+R_4=5\Omega$$

$$(2)R_{ab} = \frac{R_2 R_{34}}{R_2 + R_{34}} = 2.5\Omega$$

$$(3)R = R_1 + R_{ab} = 12.5\Omega$$

$$(4)I_1 = \frac{U}{R} = 10A$$

例2.计算图中所示电阻电路的等效电阻R。

例3. 求R_{ab}

例4. 计算图中所示电阻并联电路的等效电阻R。

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = 1.35$$

$$R = \frac{1}{1.35} = 0.74 k\Omega \approx 0.8 k\Omega$$

有时不需要精确计算,只要求估算。阻值相差很大的两个电阻串联,小电阻的分压作用常可忽略不级;如果是并联,则大电阻的分流作用常可忽略不分。在本例中,因 $R_1 >> R_3$, $R_2 >> R_3$,所以 R_1 和 R_2 的分流作用可忽略不计。可将等效电阻估算为0.8k Ω 。

2.2 电阻的星形联结与三角形联结的等效变换

用 R_a 、 R_c 、 R_d 构成的Y连接替代 R_1 、 R_3 、 R_5 也路,即可求得 R_{ab}

或者也可用△替代Y

2.2 电阻的星形连接与三角形连接的等效变换

电阻的星形连接:将三个电阻的一端连在一起,另一端分别与外电路的三个结点相连,就构成星形连接,又称为Y形连接,如图 (a)所示。

电阻的三角形连接:将三个电阻首尾相连,形成一个三角形,三角形的三个顶点分别与外电路的三个结点相连,就构成三角形连接,又称为Δ形连接,如图(b)所示。

电阻的星形连接和电阻的三角形连接是一种电阻 三端网络,电阻三端网络的特性是由端口电压电流关 系来表征的,当两个电阻三端网络的电压电流关系完 全相同时,称它们为等效的电阻三端网络。将电路中 某个电阻三端网络用它的等效电阻三端网络代替时, 不会影响端口和电路其余部分的电压和电流。

$Y-\Delta$ 变换的等效条件

等效的条件:

$$i_{1\Delta} = i_{1Y}$$

$$u_{12\Delta} = u_{12Y}$$

$$i_{2\Delta} = i_{2Y}$$

$$u_{23\Delta} = u_{23Y}$$

$$i_{3\Delta} = i_{3Y}$$

$$u_{31\Delta} = u_{31Y}$$

$$R_{1} = \frac{R_{31}R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$(2-1)$$

电阻三角形连接等效变换为电阻星形连接的公式为

$$R_i = \frac{接于i$$
端两电阻之乘积 Δ 形三电阻之和

当
$$R_{12}=R_{23}=R_{31}=R_{\Delta}$$
时,有

$$R_1 = R_2 = R_3 = R_Y = \frac{1}{3}R_\Delta$$

$$R_{12} = rac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$
 $R_{23} = rac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$
 $R_{31} = rac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$
 $R_{22} = rac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$

电阻星形联结等效变换为电阻三角形联结的公式为

当
$$R_1 = R_2 = R_3 = R_Y$$
时,有

$$R_{12} = R_{23} = R_{31} = R_{\Delta} = 3R_{Y}$$

例.桥T电路

2.3 电源的两种模型及其等效变换

2.3.1 电压源

电压源是由电动势E和内阻 R_0 串联的电源的电路模型。

由上图电路可得:

$$U = E - IR_0$$

若
$$R_0 = 0$$

理想电压源: $U \equiv E$

若 $R_0 << R_L$, $U \approx E$, 可 近似认为是理想电压源。

理想电压源(恒压源)

- (2) 输出电压是一定值,恒等于电动势。 对直流电压,有U = E。
- (3) 恒压源中的电流由外电路决定。

例1:设E=10 V,接上 R_L 后,恒压源对外输出电流。

当 R_L =1 Ω 时,U=10V,I=10A 电压恒定,电当 R_L =10 Ω 时,U=10V,I=1A 流随负载变化

2.3.2 电流源

电流源是由电流 I_s 和内阻 R_0 并联的电源的电路模型。

电流源的外特性

电流源模型

由上图电路可得:

$$I = I_S - \frac{U}{R_0}$$

若
$$R_0 = \infty$$

理想电流源: $I \equiv I_S$

若 $R_0 >> R_L$, $I \approx I_S$, 可近似认为是理想电流源。

理想电流源(恒流源)

特点: (1) 内阻 $R_0 = \infty$;

- (2) 输出电流是一定值,恒等于电流 I_S ;
- (3) 恒流源两端的电压 U 由外电路决定。

设 $I_S = 10 \text{ A}$,接上 R_L 后,恒流源对外输出电流。 当 $R_L = 1 \Omega$ 时,I = 10 A,U = 10 V当 $R_L = 10 \Omega$ 时,I = 10 A,U = 100 V电流恒定,电压随负载变化。

原则: I_s 不能变,E 不能变。

电压源中的电流 $I=I_S$

恒流源两端的电压?

2.3.3 电压源与电流源的等效变换

由图a:

$$U = E - IR_0$$

等效变换条件:

$$I_{S} = \frac{E}{R_{0}}$$

由图b:

$$U = I_{S}R_{0} - IR_{0}$$

注意事项:

1)等效变换是对外电路等效对内不等效。

例: 当 $R_L = \infty$ 时,电压源的内阻 R_0 中不损耗功率,而电流源的内阻 R_0 中则损耗功率。

2) 等效变换时,两电源的参考方向要一一对应。

3) 理想电压源与理想电流源之间不能等效。

例1: 有一直流发电机,E=230V, $R_0=1\Omega$,当负载电阻 $R_L=22\Omega$ 时,用电源的两种电路模型分别求电压 U和电流I,并计算电源内部的损耗功率和内阻压降,看是否也相等?

解:下图所示的是电压源电路和电流源电路。

(1) 计算电压U和电流I

在图 (a) 中
$$I = \frac{E}{R_L + R_0} = \frac{230}{22 + 1} = 10A$$
$$U = R_L I = 22 \times 10 = 220V$$

在图 (b) 中
$$I = \frac{R_0}{R_L + R_0} I_S = \frac{1}{22 + 1} \times \frac{230}{1} = 10A$$

$$U = R_L I = 22 \times 10 = 220V$$

(2) 计算内阻压降和电源内部的损耗功率。

在图 (a) 中
$$R_0I = 1 \times 10 = 10V$$

$$\Delta P_0 = R_0 I^2 = 1 \times 10^2 = 100W$$

在图 (b) 中
$$\frac{U}{R_0}R_0 = 220V$$

$$\Delta P_0 = \left(\frac{U}{R_0}\right)^2 R_0 = \frac{U^2}{R_0} = \frac{220^2}{1} = 48400W$$

因此, 电压源和电流源对外电路讲, 相互间是等效的; 但对电源内部讲, 是不等效的。

计算图示电路中的U和I。

例2: 求下列各电路的等效电源

例3: 试用电压源与电流源等效变换的方法计算2Ω电阻中的电流。

支路电流法:以支路电流为未知量、应用基尔霍夫 定律(KCL、KVL)列方程组求解。

对上图电路

支路数: b=3 结点数: n=2

回路数=3 单孔回路(网孔)=2

若用支路电流法求各支路电流应列出三个方程

电工技术 diangong

支路电流法的解题步骤:

- 1. 在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向。
- 2. 应用 KCL 对结点列出 (n-1)个独立的结点电流方程。
- 3. 应用 KVL 对回路列出 b-(n-1) 个独立的回路 电压方程(通常可取网孔列出)。
- 4. 联立求解 b 个方程, 求出各支路电流。

1. 应用KCL列(n-1)个结点电流方程

对结点 a: $I_1 - I_2 - I_G = 0$

对结点 b: $I_3 - I_4 + I_G = 0$

对结点 c: $I_2 + I_4 - I = 0$

2. 应用KVL选网孔列回路电压方程

对网孔abda: $I_G R_G - I_3 R_3 + I_1 R_1 = 0$

对网孔acba: $I_2R_2-I_4R_4-I_GR_G=0$

对网孔bcdb: $I_4R_4+I_3R_3=E$

3. 联立解出 IG

支路电流法是电路分析中最基本 的方法之一,但当支路数较多时, 所需方程的个数较多求解不方便。

试求检流计 中的电流I_G。

因支路数 b=6, 所以要列6个方程。

例3: 试求各支路电流。

支路中含有恒流源。

支路数b=4,但恒流 源支路的电流已知, 则未知电流只有3个, 能否只列3个方程?可以。

- 1. 当支路中含有恒流源,若在列KVL方程时,所选回路中不包含恒流源支路,这时,电路中有几条支路含有恒流源,则可少列几个KVL方程。
- 2. 若所选回路中包含恒流源支路,则因恒流源两端的电压未知,所以,有一个恒流源就出现一个未知电压,因此,在此种情况下不可少列KVL方程。

例3: 试求各支路电流。

1. 应用KCL列结点电流方程

对结点 a: $I_1 + I_2 - I_3 = -7$

2. 应用KVL列回路电压方程

对回路1: $12I_1 - 6I_2 = 42$

对回路2: $6I_2 + 3I_3 = 0$

支路数b=4,但恒流 源支路的电流已知, 则未知电流只有3个, 所以可只列3个方程。

当不需求a、c和b、d 间的电流时,(a、c)(b、 d)可分别看成一个结点。

因所选回路不包含恒流源支路,所以, 3个网孔列2个KVL方程即可。

3. 联立解得: $I_1 = 2A$, $I_2 = -3A$, $I_3 = 6A$

例3: 试求各支路电流。

支路数b=4,且恒流源支路的电流已知。

1. 应用KCL列结点电流方程

对结点 a: $I_1 + I_2 - I_3 = -7$

2. 应用KVL列回路电压方程

对回路1: $12I_1 - 6I_2 = 42$

对回路2: $6I_2 + U_X = 0$

对回路3: $-U_X + 3I_3 = 0$

因所选回路中包含恒流源支路,而恒流源支路,而恒流源两端的电压未知,所以有3个网孔则要列3个KVL方程。

3. 联立解得: $I_1 = 2A$, $I_2 = -3A$, $I_3 = 6A$

支路电流法小结 解题步骤 结论与引申		
1	对每一支路假设 一未知电流	1. 假设未知数时,正方向可任意选择。 2. 原则上,有B个支路就设B个未知数。 (恒流源支路除外) 例外?
2	列电流方程: 对每个结点有 $\Sigma I = 0$	若电路有N个结点, $I_1 I_2 \uparrow I_3 \uparrow$ 则可以列出 $(N-1)$ 个独立方程。
3	列电压方程: 对每个回路有 $\Sigma E = \Sigma U$	 未知数=B,已有(N-1)个结点方程,需补足B-(N-1)个方程。 独立回路的选择: #1 #2 #3 一般按网孔选择
4	解联立方程组	根据未知数的正负决定电流的实际方向。

支路电流法的优缺点

优点: 支路电流法是电路分析中最基本的 方法之一。只要根据基尔霍夫定律、 欧姆定律列方程,就能得出结果。

缺点: 电路中支路数多时,所需方程的个数较多,求解不方便。

支路数 B=4 需列4个方程式

2.5 结点电压法

结点电压的概念:

任选电路中某一结点为零电位参考点(用上标记),其它各结点对参考点的电压,称为结点电压。

解题思路:

假设一个参考点,令其电位为零,

以其它结点电压为未知数列方程,

解方程求各结点电压,

水各支路的电流或电压。

结点电压法适用于支路数多,结点少的电路

结点电压方程的推导过程(2个结点) a

设:

$$V_b = 0 V$$

对a 结点列电流方程:

$$I_1 + I_2 + I_S = I_3$$

各支路电流分别为:

$$I_{1} = \frac{E_{1} - U}{R_{1}}$$
 $I_{2} = \frac{E_{2} - U}{R_{2}}$
 $I_{3} = \frac{U}{R_{3}}$

$$U = E_1 - I_1 R_1$$

$$E_1 \rightarrow U$$

$$I_1 = \frac{E_1 - U}{R_1}$$

$$R_1 \rightarrow R_1$$

结点电压方程的推导过程(2个结点)

则有:
$$\frac{E_1 - U}{R_1} + \frac{E_2 - U}{R_2} + I_S = \frac{U}{R_3}$$

整理:
$$\frac{E_1}{R_1} + \frac{E_2}{R_2} + I_S - (\frac{U}{R_1} + \frac{U}{R_2} + \frac{U}{R_3}) = 0$$

$$\therefore U = \frac{\frac{R_1}{R_1} + \frac{R_2}{R_2} + I_S}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

一般表达式:
$$U = \frac{\sum_{R}^{E} / \sum_{I_{S}} I_{S}}{\sum_{R}^{1} / \sum_{R}}$$
 (弥尔曼定理)

- 1. 弥尔曼定理仅适用于两个结点的电路.
- 2. 实际使用中最好记住方法,而不是公式。

结点电压法 应用举例

支路中含恒流源

设:
$$V_b = 0$$

$$\frac{\frac{1}{R_{1}} + I_{S}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{S}}}$$

$$U_{ab} = \frac{\frac{E_1}{R_1} + I_S}{\frac{1}{R_1} + \frac{1}{R_2}}$$

分母中不应出现恒流源支路的电导

例2: 电路如图:

已知:
$$E_1=50$$
 V、 $E_2=30$ V

$$I_{S1} = 7 A$$
, $I_{S2} = 2 A$

$$R_1=2 \Omega$$
, $R_2=3 \Omega$, $R_3=5 \Omega$

试求:结点电压 U_{ab} 和各元件的功率。

解: 1. 应用弥尔曼定理求结点电压 U_{ab}

$$U_{ab} = \frac{\frac{E_1}{R_1} - \frac{E_2}{R_2} + I_{S1} - I_{S2}}{\frac{1}{R_1} + \frac{1}{R_2}} = 24 \text{ V}$$

2. 求各元件功率

$$I_1 = \frac{E_1 - U_{ab}}{R_1} = 13A$$

$$I_2 = \frac{-E_2 - U_{ab}}{R_2} = -18A$$

或

$$I_2 = I_{S2} - I_{S1} - I_1 = -18A$$
 $U_{S2} = U_{ab} - I_{S2}R_3 = 14V$

$$P_{E_1} = -E_1 I_1 = -650W$$

$$P_{E2} = E_2 I_2 = -540W$$

$$P_{I_{S1}} = -U_{ab}I_{S1} = -168W$$

$$U_{S2} = U_{ab} - I_{S2}R_3 = 14V$$

$$P_{R1} = I_1^2 R_1 = 338W$$

$$P_{R2} = I_2^2 R_2 = 972W$$

$$P_{R3} = I_{S2}^2 R_3 = 20W$$

$$P_{I_{S2}} = U_{S2}I_{S2} = 28W$$

2.6 叠加原理

例:图示电路,求 u_{ab} , i_2 。

解:

$$u_{ab} = E \frac{R_2}{R_1 + R_2} + i_S \frac{R_1 R_2}{R_1 + R_2}$$

求解
$$i_2$$
: $i_2 = \frac{u_{ab}}{R_2} = \left(\frac{E}{R_1 + R_2}\right) + \left(\frac{R_1}{R_1 + R_2}i_s\right)$ i_2 i_2

$$i_2 = i_2' + i_2''$$

一. 叠加定理内容

在线性电路中,任一支路电流(或支路电压)是电路中各个独立电源单独作用时,在该支路产生的电流(或电压)的叠加。

- 二. 叠加定理使用注意事项
 - 1. 叠加定理只适用于线性电路;
 - 2. 各个独立电源单独作用(其余独立电源置零); 电压源置零——用短路替代 电流源置零——用开路替代

3. 电压、电流可以叠加,功率能不能叠加?

$$P_{R_2} = i_2^2 R_2 = (i_2' + i_2'')^2 R_2 \neq i_2'^2 R_2 + i_2''^2 R_2$$
功率不能叠加

- 4. 叠加时要注意各分量的方向(代数和)。 若分电流、分电压与原电路中电流、电压的参考方向相反时,叠加时相应项前要带负号。
- 5. 应用叠加原理时可把独立源分组求解,但每个独立源只能在分电路图中出现一次。

例1: 电路如图,已知 E = 10V、 $I_S = 1A$, $R_1 = 10\Omega$ $R_2 = R_3 = 5\Omega$,试用叠加原理求流过 R_2 的电流 I_2 和理想电流源 I_S 两端的电压 U_S 。

解: 由图(b)
$$I'_2 = \frac{E}{R_2 + R_3} = \frac{10}{5+5} = 1A$$

$$U'_S = I'_2 R_2 = 1 \times 5 = 5V$$

例1: 电路如图,已知 E = 10V、 $I_S = 1A$, $R_1 = 10\Omega$ $R_2 = R_3 = 5\Omega$, 试用叠加原理求流过 R_2 的电流 I_2 和理想电流源 I_S 两端的电压 U_S 。

解: 由图(c)
$$I_2'' = \frac{R_3}{R_2 + R_3} I_S = \frac{5}{5+5} \times 1 = 0.5$$
A
$$U_S' = I_2' R_2 = 0.5 \times 5 = 2.5$$
V
$$\therefore I_2 = I_2' - I_2'' = 1 - 0.5 = 0.5$$
A
$$U_S = U_S' + U_S'' = 5 + 2.5 = 7.5$$
V

已知各 U_S 和R; 求: I_6 。 解题若法看支路的电流

支路法: 6个方程

叠加原理: 能用但很繁

若只需计算复杂 电路中某一条支路的 电流时,可采用戴维 宁定理。

二端网络的概念:

二端网络:具有两个出线端的部分电路。

无源二端网络: 二端网络中没有电源。

有源二端网络: 二端网络中含有电源。

任何一个有源二端线性网络都可以用一个电动势为E的理想电压源和内阻 R_0 串联的电源来等效代替。

等效电源的电动势E就是有源二端网络的开路电压 U_0 ,即将负载断开后 a、b两端之间的电压。

等效电源的内阻R₀等于有源二端网络中所有电源均除去(理想电压源短路,理想电流源开路)后所得到的无源二端网络 a、b两端之间的等效电阻。

图对其大學

例1: 电路如图,已知 E_1 =40V, E_2 =20V, R_1 = R_2 =4 Ω ,

 R_3 =13 Ω ,试用戴维宁定理求电流 I_3 。

注意: "等效"是指对端口外等效

即用等效电源替代原来的二端网络后,待求支路的电压、电流不变。

例1: 电路如图,已知 E_1 =40V, E_2 =20V, R_1 = R_2 =4 Ω , R_3 =13 Ω ,试用戴维宁定理求电流 I_3 。

解: 1. 断开待求支路求等效电源的电动势 E

$$I = \frac{E_1 - E_2}{R_1 + R_2} = \frac{40 - 20}{4 + 4} = 2.5 \text{ A}$$

$$E = U_0 = E_2 + IR_2 = 20 + 2.5 \times 4 = 30 \text{V}$$
或: $E = U_0 = E_1 - IR_1 = 40 - 2.5 \times 4 = 30 \text{V}$

E也可用叠加原理等其它方法求。

例1: 电路如图,已知 E_1 =40V, E_2 =20V, R_1 = R_2 =4 Ω , R_3 =13 Ω ,试用戴维宁定理求电流 I_3 。

解: 2. 求等效电源的内阻 R_0

除去所有电源(理想电压源短路,理想电流源开路)

从a、b两端看进去, R_1 和 R_2 并联

 $R_0 = R_1 / R_2 = 4 / 4 = 2\Omega$

求内阻R₀时,关键要弄清从a、b两端看进去时各电阻之间的串并联关系。

例1: 电路如图,已知 E_1 =40V, E_2 =20V, R_1 = R_2 =4 Ω , R_3 =13 Ω ,试用戴维宁定理求电流 I_3 。

解: 3. 画出等效电路求电流I3

$$I_3 = \frac{E}{R_0 + R_3} = \frac{30}{2 + 13} = 2 \text{ A}$$

实验法求等效电阻:

$$R_0 = U_0 / I_{SC}$$

已知: R_1 =5 Ω 、 R_2 =5 Ω R_3 =10 Ω 、 R_4 =5 Ω E=12V、 R_G =10 Ω

试用戴维宁定理求检流计中的电流I_G。

解: 1. 求开路电压 U_0

2. 求等效电源的内阻 R_0

$$I_1 = \frac{E}{R_1 + R_2} = \frac{12}{5+5} = 1.2A$$

$$I_2 = \frac{E}{R_3 + R_4} = \frac{12}{10 + 5} = 0.8A$$

$$E' = U_0 = I_1 R_2 - I_2 R_4$$

= 1.2 × 5-0.8 × 5 = 2V

或:
$$E' = U_0 = I_2 R_3 - I_1 R_1$$

= $0.8 \times 10 - 1.2 \times 5 = 2 \text{V}$

Ma、b看进去, R_1 和 R_2 并联, R_3 和 R_4 并联,然后再串联。

$$R_0 = (R_1//R_2) + (R_3//R_4)$$

$$= (5 // 5) + (10 // 5)$$

$$= 5.8\Omega$$

解:3. 画出等效电路求检流计中的电流 I_G

$$I_G = \frac{E'}{R_0 + R_G} = \frac{2}{5.8 + 10} = 0.126 \,\mathrm{A}$$

例3 (练习)

电路如图,求: U=?

第一步:求开端电压 U_0 。

此值是所求 结果U吗?

$$|U_{0} = U_{AC} + U_{CD} + U_{DE} + U_{EB}|$$

$$= 10 + 0 + 4 - 5$$

$$= 9 \text{ V}$$

第二步:

求等效电源的内阻 R_0

$$R_0 = 50 + 4 // 4 + 5$$
$$= 57 \Omega$$

$$U = \frac{9}{57 + 33} \times 33 = 3.3 \text{ V}$$

2.7.2 诺顿定理

任何一个有源二端线性网络都可以用一个电流为 I_s 的理想电流源和内阻为 R_0 并联的电源来代替。理想电流源的电流就是有源二端网络的短路电流,即将a、b 两端短接后其中的电流。等效电源的内阻 R_0 等于有源二端网络中所有电源均除去后所得无源网络a、b之间的等效电阻。

诺顿定理的证明

$$U = E - IR_0$$

a、b两端短接后, U=0

$$0 = E - I_S R_0$$

$$I_S = \frac{E}{R_0}$$

$$U = 0$$

U

上式称为计算电阻 R₀方法中的开、短路法此外还有外加激励法

例.用诺顿定理计算下图中电阻 R_3 上的电流 I_3 。

由(a)图计算得到短路电流

$$I_S' = I_S + \frac{E_S}{R_2} = 10 + \frac{6}{2} = 13A$$

由(b)图得到

$$R_0 = R_2 = 2\Omega$$

$$I_3 = \frac{R_0}{R_0 + R_3} I_S = 5.2 \,\mathrm{A}$$

*2.8 受控电源电路的分析

如果电压源的电压或电流源的电流不受外电路的控制而独立存在,这样的电源称为 独立电源。

如果电压源的电压和电流源的电流受其他部分的电流或电压控制,这种电源称为受控电源。

分类及符号

比例系数: $\mu = U_2/U_1$ 电压放大倍数

比例系数: $g = I_2/U_1$ 转移电导

注:受控源可象独立源一样进行等效变换

应用:可用于晶体管电路的分析

下面我们种方法的 人名 化 不 的 不 的 的 有 的 有 的 有 的 有 的 的 的 的 的 的

求图示电路中的电压U

受控电压源

控制量

1 支路电流法

按基尔霍夫定律列出方程

$$\begin{cases} I_1 + 10 = I_2 \\ 6I_1 + 4I_2 = 20 \end{cases}$$

解得
$$I_1 = -2$$
 $I_2 = 8$

$$U = -10I_1 + 4I_2 = 52V$$

求图示电路中的电压 U_2

2 结点电压法

选O点为零参考电位,列出a点的电压方程

求所示电路中的电压U。

3 叠加原理(简述方法)

用戴维宁定理解例2.8.3

I=4mA

$$U_O = 4I - 3I + 10 = 14V$$

$$U_S = 4I - 3I = -I'$$

$$R_0 = \frac{U_O}{I'} = -1k\Omega$$

$$U = \frac{U_O}{R + R_0} R = 14 \times 2 = 28V$$

dlangone