Respuestas del Examen

Universidad de Buenos Aires

19 de octubre de 2022

1. SQL

a)

Dadas las tablas de equipos y de partidos, escribir una consulta SQL que devuelva los equipos que aún no se enfrentaron en un partido.

```
SELECT el.cod_eq AS cod_eq1, el.cod_eq AS cod_eq2
FROM equipos e1
JOIN equipos e2 ON e1.cod_eq <> e2.cod_eq
LEFT JOIN partidos p ON (e1.cod_eq = p.cod_eq1 AND e2.cod_eq = p.cod_eq2)
                          \mathbf{OR} \ (e1.\operatorname{cod_eq} = \operatorname{p.cod_eq} 2 \ \mathbf{AND} \ e2.\operatorname{cod_eq} = \operatorname{p.cod_eq} 1)
WHERE p.id_partido IS NULL;
```

b)

Escribir una consulta SQL que devuelva todos los equipos que hayan ganado más de 5 partidos.

```
SELECT
    eq.cod_eq,
    eq.nombre
FROM
    equipos eq
JOIN
    (SELECT
         cod_eq1 AS cod_eq,
         COUNT(*) AS partidos_ganados
          partidos
     WHERE
          goles_eq1 > goles_eq2
     GROUP BY
         cod_eq1
     UNION
     SELECT
         cod_eq2 AS cod_eq,
         COUNT(*) AS partidos_ganados
     FROM
          partidos
     WHERE
         goles_eq2 > goles_eq1
     GROUP BY
         cod_eq2) AS ganados
ON
    eq.cod_eq = ganados.cod_eq
WHERE
    ganados.partidos_ganados > 5;
```

2. Álgebra Relacional

a)

Obtener el nombre del jugador que tiene el número más alto de camiseta.

$$\pi_{\text{nombre}} \left(\sigma_{\text{nro_camiseta} = \text{max}(\text{nro_camiseta})} (\text{jugadores}) \right)$$

b)

Obtener las fechas en las que hubo más de un partido cuyo resultado final fue empate.

$$\pi_{\text{fecha}} \left(\sigma_{\text{count}(*)>1} \left(\gamma_{\text{fecha}} \left(\sigma_{\text{goles_eq1}=\text{goles_eq2}}(\text{partidos}) \right) \right) \right)$$

3. Modelado

Para el siguiente diagrama Entidad-Interrelación, el modelo relacional resultante es el siguiente:

- A (PK: A1, A2, atributo1, atributo2)
- B (PK: B1, B2, atributo3, atributo4, FK: A1, A2)
- C (PK: C1, atributo5, FK: B1, B2)
- **D** (PK: D1, D2, atributo6, FK: A1, A2)
- E (PK: E1, atributo7, FK: C1)
- F (PK: F1, F2, atributo8, FK: E1)
- G (PK: G1, atributo9, FK: E1)
- **H** (PK: H1, H2, atributo10, FK: G1)
- J (PK: J1, atributo11, FK: H1, H2)

4. Diseño Relacional

a)

1) Determinar claves candidatas de la relación R(A,B,C,D,E) con las dependencias funcionales $F = \{A \to BC; CD \to E; BE \to D\}$.

Aplicando el algoritmo de búsqueda de claves candidatas:

- Empezamos con $\{A\}^+ = \{A, B, C\}$
- Como no contiene todos los atributos, seguimos con $\{A,C\}^+ = \{A,B,C,E\}$
- Tampoco contiene todos los atributos, seguimos con $\{A, C, D\}^+ = \{A, B, C, D, E\}$

Por lo tanto, $\{A, C, D\}$ es una clave candidata.

- 2) Descomposición de la relación R(A,B,C,D,E) con las dependencias funcionales $F=\{AD\to B;C\to E;E\to CD\}$ hasta 3FN.
 - $R1(AD, B) \operatorname{con} AD \to B$
 - R2(C, E) con $C \to E$
 - R3(E,C,D) con $E \to CD$

Verificación:

- R1 está en 3FN.
- R2 está en 3FN.
- R3 está en 3FN.

- b)
- 1) Descomposición de la relación R(A,B,C,D,E,P,G) con $F=\{AB\to C,D;DE\to P;C\to E;P\to C;B\to G\}$ en FNBC.

Eligiendo la dependencia $P \to C$:

- R1(P,C) con $P \to C$
- R2(A, B, D, E, P, G) con $\{AB \rightarrow D; DE \rightarrow P; C \rightarrow E; B \rightarrow G\}$

Después de este paso, el algoritmo no está finalizado porque la segunda relación debe ser descompuesta nuevamente.

Descomponiendo R2:

- $R2_1(A, B, D)$ con $AB \to D$
- $R2_2(D, E, P)$ con $DE \to P$
- $R2_3(B,G)$ con $B \to G$
- $R2_4(C, E)$ con $C \to E$

Verificación:

- $\bullet~R1$ está en FNBC.
- $R2_1$ está en FNBC.
- $R2_2$ está en FNBC.
- $R2_3$ está en FNBC.
- $R2_4$ está en FNBC.
- 2) Especificar las dependencias funcionales del esquema visitas (codigo_visita, fecha_visita, cod_paciente, edad_paciente, ciudad_paciente, profesional_nro, especialidad_profesional, diagnostico) sin redundancias:
 - $codigo_visita \rightarrow$ fecha_visita, cod_paciente, edad_paciente, ciudad_paciente, profesional_nro, especialidad_profesional, diagnostico
 - $cod_paciente \rightarrow edad_paciente$, ciudad_paciente
 - $profesional_nro \rightarrow especialidad_profesional$