

OPTIMASI GEOMETRI ROTATING DISK GUNA MINIMASI TEGANGAN GESER MAKSIMUM DAN TEGANGAN VON-MISSES

Toni Prahasto*, Dema Wikatama

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro *Email: toni_prahasto@yahoo.com

ABSTRAK

Rotating Disk mempunyai beberapa parameter di dalam pembuatannya, salah satunya adalah radius, berat dan ketebalan. Analisa distribusi tegangan pada rotating disk telah lama menjadi masalah dalam teori elastisitas. Untuk menghasilkan efisiensi kerja yang baik pada rotating disk, diperlukan ketepatan dalam perhitungan dan pembuatan desain bentuk. Pada tugas akhir ini profil rotating disk dengan ketebalan bervariasi akan dioptimasi dengan objective function meminimalkan tegangan geser maksimum dan tegangan von-misses. Optimasi adalah suatu metode yang digunakan untuk mencari nilai optimum yang terbaik dari desain yang sudah ada dengan kondisi batas tertentu. Proses optimasi dilakukan secara numerik, yang ditampilkan dalam bentuk kurva isomerit dengan berbagai variasi variabel desain. Dengan kondisi batas $L_{min} = 0.6$ inch, $L_{max} = 3$ inch dan R2 > R3 > R4 > R5 > R6. Hasil optimasi berupa tegangan geser maksimum optimal sebesar 1445 psi dan tegangan von-misses optimal sebesar 2548 psi.

Kata kunci: Rotating Disk, Tegangan Geser Maksimum, Von-misses

PENDAHULUAN

Di berbagai macam jenis peralatan mesin terdapat sebuah elemen yang berupa piringan berputar atau biasanya dikenal dengan nama *rotating disk*, yang dimana penggunaanya sangatlah luas. Beberapa contoh aplikasinya adalah seperti pada generator, *flywheel*, turbin, kompresor, roda gigi, sampai *hard disk* pada komputer yang bekerja sebagai media penyimpanan data

Rotating Disk mempunyai beberapa parameter di dalam pembuatannya, salah satunya adalah radius, berat dan ketebalan. Selain itu rotating disk ada juga yang bertingkat disesuaikan dengan kebutuhan pemakaian dalam peralatan mesin tersebut.

Untuk menghasilkan efisiensi kerja yang baik pada *rotating disk*, di perlukan ketepatan perhitungan dan desain bentuk. Optimasi adalah suatu metode yang digunakan untuk mencari nilai optimum yang terbaik dari kondisi yang ada. Pembahasan lebih lanjut adalah mengoptimalkan suatu bentuk rotating disk bertingkat sesuai dengan tingkat yang diinginkan.

Dalam kasus tugas akhir ini akan mempelajari karaterisktik metode optimasi cakram bertingkat dengan fungsi tujuan berupa meminimalkan tegangan geser maksimum dan tegangan *von misses*, dengan kondisi batas (constrain) berupa geometri tegangan itu sendiri.

TINJAUAN PUSTAKA

Rotating disk adalah istilah lain dari piringan bertingkat yang mempunyai kemampuan untuk berputar. Namun dalam aplikasinya, penggunaan elemen ini dapat dipakai dengan menggunakan poros (dalam hal ini rotating disk mempunyai kecepatan putar) ataupun tanpa menggunakan poros.

Persamaan distribusi tegangan untuk *rotating* disk dapat diselesaikan dengan pemecahan persoalan

umum pada silinder dinding tebal. Sebuah silinder dengan tebal seragam mengalami aksi tekanan dalam (Pi) dan tekanan luar (Po) yang seragam, maka deformasi yang dihasilkan adalah simetris terhadap sumbu dan tidak berubah sepanjang ketebalannya. Demikian pula dengan besar tegangan tangensial dan radial yang terjadi merupakan fungsi dari radiusnya (r) dan tidak berubah terhadap sudut (\emptyset) yang dibentuk dari sumbunya.

Gambar 1. Rotating Disk

jika dalam kondisi $P_o = 0$ dan hanya terdapat tekanan *internal* (P_i) persamaan untuk σ_t dan σ_r adalah:

$$\sigma_r = \frac{a^2 P_i}{b^2 - a^2} \quad 1 - \frac{b^2}{r^2}$$

$$\sigma_t = \frac{a^2 P_i}{b^2 - a^2} \quad 1 + \frac{b^2}{r^2}$$

Melihat persamaan diatas bahwa nilai σ_r selalu kondisi tekan dan σ_t tarik dan jika sebaliknya $P_i = 0$ dan hanya terdapat tekanan *eksternal* (P_o) maka persamaan untuk σ_t dan σ_r adalah:

$$\sigma_r = -\frac{b^2 P_o}{b^2 - a^2} \quad 1 - \frac{b^2}{r^2}$$

$$\sigma_t = -\frac{b^2 P_o}{b^2 - a^2} \cdot 1 + \frac{b^2}{r^2}$$

Untuk *rotating disk* yang bertingkat, tentu saja terdapat perbedaan ketebalan masing-masing tingkatan diukur dari titik pusatnya. Oleh karena itu, dalam desain *rotating disk* harus diperhatikan beberapa variabel desainnya. Antara lain: bentuk, diameter, banyaknya segmen atau tingkatan.

Gambar 2. Distribusi tegangan pada *Rotating Disk* bertingkat

Perhitungan distribusi tegangan tiap tingkat dihitung dengan menggunakan teknik numerik. Pada gambar 2 diatas, tegangan akan dipengaruhi oleh:

- a. Tekanan pada sisi luar dan dalam disk.
- b. Perputaran dari disk itu sendiri.

Gambar 3. Distribusi tegangan pada *interface rotating*

Sehingga untuk mencari nilai tegangan pada setiap tingkat dapat dirumuskan sebagai berikut:

Tegangan tangensial disisi luar akibat adanya tekanan:

$$(\sigma_t)_{(n+1)_0} = \frac{1 + \frac{R_n}{R_{n+1}}^2 P_{n+1} - 2 \frac{R_n}{R_{n+1}}^2 P_n \frac{L_{n-1}}{L_n}}{\frac{R_n}{R_{n+1}}^2 - 1}$$

Tegangan tangensial disisi dalam akibat adanya tekanan:

$$(\sigma_t)_{(n+1)_{\hat{t}}} = \frac{2P_{n+2} - 1 + \frac{R_n}{R_{n+2}}^2 P_n + \frac{L_n}{L_{n+1}}}{\frac{R_n}{R_{n+2}}^2 - 1}$$

Tegangan tangensial disisi dalam akibat adanya putaran:

$$(\sigma_v)_{(n+1)_i} = \frac{\gamma 10^4}{4g}$$

$$3 + v = \frac{R_{n+2}}{R_2}^2 + 1 - v = \frac{R_{n+1}}{R_2}^2 V^2$$

4. Tegangan tangensial disisi luar akibat adanya putaran:

$$(\sigma_v)_{(n+1)_o}$$

$$= \frac{\gamma_{10^4}}{4g} \quad 3 + v \quad \frac{R_n}{R_{n+1}}^2 + 1 - v \quad \omega^2 R_{n+1}^2$$

$$= \frac{\gamma_{10^4}}{4g} \quad 3 + v \quad \frac{R_n}{R_2}^2 + 1 - v$$

$$v \quad \frac{R_{n+1}}{R_2}^2 \quad V^2$$

Hubungan kesinambungan di perbatasan antara kedua cincin dipenuhi oleh persamaan regangan dikedua sisi antar segmen. Kondisi ini dapat dinyatakan sebagai berikut:

$$(\sigma_t)_{(n+1)_o} + (\sigma_v)_{(n+1)_o} + vP_{n+1}$$

$$= (\sigma_t)_{(n+1)_i} + (\sigma_v)_{(n+1)_i} + vP_{n+1} \frac{L_n}{L_{n+1}}$$

Subtitusi persamaan 1 sampai 4 dan menyusun kembali berdasarkan persamaan diatas untuk mencari nilai tekanan yang terdapat pada setiap segmen pada piringan. Diperoleh rumus:

$$P_{n+2} = K_n V^2 - Q_n P_n + U_n P_{n+1}$$

dimana nilai K_n , Q_n , dan U_n didapat berikut ini:

$$A_{n} = \frac{3 + v \gamma 10^{4}}{4g} \frac{R_{n}}{R_{2}}^{2} - \frac{R_{n+2}}{R_{2}}^{2}$$

$$B_{n} = \frac{2 \frac{R_{n}}{R_{n+1}}^{2}}{\frac{R_{n}}{R_{n+1}}^{2} - 1}$$

$$C_n = \frac{2}{\frac{R_{n+1}}{R_{n+2}}^2 - 1}$$

$$D_{n} = \frac{1 - \nu + 1 + \nu \frac{R_{n-1}}{R_{n+1}}^{2}}{\frac{R_{n}}{R_{n+1}}^{2} - 1} + \frac{L_{n}}{L_{n+1}} \frac{1 + \nu + 1 - \nu \frac{R_{n+1}}{R_{n+2}}^{2}}{\frac{R_{n+1}}{R_{n+1}}^{2} - 1}$$

$$Kn = \frac{A_n}{B_n}$$

$$Q_n = \frac{B_n}{C_n} \frac{L_{n-1}}{L_n}$$

$$U_n = \frac{D_n}{C_n}$$

Dengan subtitusi n=2 sampai n=m-2 (atau n=X= jumlah total segmen). Persamaan 2.10 memberikan persamaan simultan dimana solusi tekanan yang diketahui P_2 , P_m memberikan distribusi tekanan radial pada disk. Solusi persamaan ini didapatkan dengan mengamsusikan nilai P_3 dan kemudian menghitung nilai P_m yang sesuai sebanyak dua kali.

Tegangan radial σ_{r} n+1 pada radius R_{n+1} Pada permukaan antara 2 segmen diambil nilai rata-rata dari tekanan pada kedua sisi pada tiap batas segmen.

$$\sigma_{r \text{ n+1}} = -\frac{1}{2} \ 1 + \frac{L_n}{L_{n+1}} \ P_{n+1}$$

Sama halnya dengan mencari Tegangan Tangensial σ_{t} n+1 pada radius R_{n+1} juga diambil sebagai rata-rata dari tegangan tangensial pada kedua sisi batas segmen. Dengan subtitusi dan menyusun kembali dengan persamaan tegangan tangensial maka didapat:

$$\sigma_{t \text{ n+1}} = -B_n \frac{L_{n+1}}{L_n} P_n + E_n + \frac{B_n}{2} - \frac{v}{2} \frac{L_n}{L_{n+1}} P_{n+1} + F_n V^2 \qquad \text{dimana}:$$

$$E_n = \frac{1}{\frac{R_n}{R_{n+1}}^2 - 1}$$

$$F_{n-} \frac{3 + v \cdot \gamma 10^4}{4g} \frac{R_n}{R_2}^2 + \frac{1 - v \cdot \gamma 10^4}{4g} \frac{R_{n+1}}{R_2}^2$$

METODE OPTIMASI

Optimasi merupakan suatu usaha untuk mendapatkan hasil yang terbaik pada kondisi batasan tertentu. Dengan tujuan memilih hasil yang terbaik dari desain yang sudah ada.

Langkah yang dilakukan pra proses optimalisasi adalah:

- 1. Menentukan objek yang akan dioptimalkan.
- 2. Menentukan *objective function* yang akan digunakan untuk proses optimalisasi.
- 3. Memasukkan constrainst yang diinginkan.
- 4. Menentukan persamaan objective function.
- Mengambil nilai parameter dan variabel yang diperlukan untuk proses optimalisasi.
- Memasukkan dan mengolah data ke dalam MATLAB dari persamaan objective function dan variable yang diperlukan untuk menghasilkan suatu nilai optimal dari suatu titik.

Gambar 4. Penampang Rotating Disk 4 segmen

Parameter:

R2 : 6 inch R6 : 1 inch P2 : 0.0 psi P6 : 1001 psi v : 0.3 N : 10000 rpm V : 100 lb/inch³

V : 100 lb/inch*
Sy : 50.6 kpsi
Su : 90 kpsi
Lmin : 0.6 inch
Lmax : 3 inch

Variabel yang dicari:

L2L3L4L5 R3R4R5

Nilai Constrains:

 $\begin{aligned} Lmin &\leq Ln \leq Lmax \\ R2 &> R3 > R4 > R5 > R6 \end{aligned}$

Fungsi yang digunakan:

Fminimax:

 $c x \leq 0$ ceq x = 0 $min \max_{x} f_i x \text{ such that } A.x \leq b$ Aeq. x = beq $lb \leq x \leq ub,$

dimana x, b, beq, lb, dan ub adalah vektor, A dan Aeq adalah matriks, dan c (x), ceq (x), dan f (x) adalah fungsi yang mengembalikan vektor. F (x), c (x), dan ceq (x) adalah constrains.

Dengan objective contrains meminimalkan:

1. Tegangan Geser Maksimum

$$\tau_{\text{max}=\frac{\sigma_t^-\sigma_r}{2}}$$

2. Tegangan Von-misses

$$\sigma_e = \sqrt{\sigma_t^2 + \sigma_r^2} - \sigma_t \sigma_r$$

HASIL DAN PEMBAHASAN

Hasil dari optimasi yang dilakukan akan menghasilkan nilai optimal dari variasi R/L dan juga nilai *objective function* dalam bentuk grafik berikut :

Optimasi variable R dan L Tegangan Geser Maksimum

Gambar 5. Grafik isomerit \mathcal{T}_4 L3L4

Dalam gambar 5 grafik isomerit diatas, optimasi dilakukan dengan memasukan 3x nilai tebakan awal untuk L3 dan L4. Yang diberi Tebakan batas constrains berupa $L_{bound}=0.6$ inch dan $U_{bound}=0.6$ inch. Optimasi berhenti, karena nilai L4 mencapai batas nilai atas yaitu 3 inch dan nilai $\tau_4=\tau_3$.

Gambar 6. Penampang awal dan optimal L3L4 Tegangan Geser Maksimum

Pada gambar 6 diatas, terjadi perubahan ketebalan antara penampang awal dengan penampang optimal pada variabel L3 dan L4. Iterasi berhenti pada nilai L3 = 1.02 inch dan L4 = 3 inch, yang menghasilkan nilai tegangan geser maksimum optimal sebesar 1951 psi.

Gambar 7. Grafik isomerit au_4 R3R4

Pada gambar 7 diatas, optimasi variabel R3 dan R4, dibatasi oleh *constrains* R2-0.1 > R3 > R4 > R5+0.1. Iterasi berhenti pada nilai R3 = 4.78 inch dan R4 = 2.86 inch, yang menghasilkan nilai tegangan geser maksimum sebesar 1500 psi. Iterasi berhenti karena nilai $\tau_4 = \tau_2$.

Gambar 8. Penampang awal dan optimal R3R4 Tegangan Geser Maksimum

Optimasi variable R dan L Tegangan Von-misses

Gambar 9. Grafik isomerit σ_{e4} L2L3

Dalam gambar 9 diatas, Iterasi berhenti pada nilai L2 = 0.6 inch dan L3 = 1.48 inch, yang menghasilkan nilai tegangan *von-misses* sebesar 3048 psi. Optimasi diatas berhenti karena L2 mencapai batas nilai bawah 0.6 inch dan nilai tegangan *von misses* $\sigma_{e4} = \sigma_{e2}$.

Gambar 10. Penampang awal dan optimal L2L3 Tegangan *Von-misses*

Gambar 11. Grafik isomerit σ_{e4} R3R5

Pada gambar 11, optimasi variabel R3 dan R5, dibatasi oleh *constrains* R2-0.1 > R3 > R4 > R5 > Rm+0.1 dan iterasi berhenti pada nilai R3 = 5.03 inch dan R5 = 2.30 inch, yang menghasilkan nilai tegangan *von-misses* sebesar 2658 psi. Iterasi berhenti karena nilai $\sigma_{e4} = \sigma_{e2}$.

Gambar 12. Penampang awal dan optimal L2L3 Tegangan *Von-misses*

Perbandingan Optimasi variable R dan L Tegangan Geser Maksimum

Tabel 1. Perbandingan Nilai Hasil Optimasi R3R4R5-L2L3L4L5 Tegangan Geser Maksimum

Variabel Desain	Tegangan Geser Maksimum (psi)				
	${\cal T}_1$	$ au_2$	$\tau_{\scriptscriptstyle 3}$	${\cal T}_4$	
L2-L3	177	1679	1008	1679	

L2-L4	226	846	537	1864
L2-L5	270	907	270	1563
L3-L4	223	193	1951	1951
L3-L5	245	212	726	1578
L4-L5	349	439	189	1653
L2-L3-L4- L5	216	1510	399	1510
R3-R4	217	1500	305	1500
R3-R5	244	1490	311	1490
R4-R5	246	1397	258	1487
L2,L3,L4,L 5,R3,R4,R 5	252	620	472	1445

Perbandingan Optimasi variable R dan L Tegangan Von-misses

Tabel 2. Perbandingan Nilai Hasil Optimasi R3R4R5-L2L3L4L5 Tegangan *Von-misses*

L2L3L4L5 Tegangan Von-misses						
Variabel	Tegangan Von-misses					
Desain	σ_{e1}	σ_{e2}	σ_{e3}	σ_{e4}		
L2-L3	552	3048	1924	3048		
L2-L4	593	1929	1286	3342		
L2-L5	670	2019	796	2766		
L3-L4	885	1157	3561	3561		
L3-L5	1171	1445	1693	2793		
L4-L5	895	1261	832	2936		
L2-L3-L4- L5	620	2694	897	2694		
R3-R4	648	2676	662	2676		
R3-R5	664	2658	809	2658		
R4-R5	671	2653	713	2653		
L2,L3,L4, L5,R3,R4, R5	543	1749	1097	2548		

KESIMPULAN

- 1. Pada setiap optimasi, baik variabel L maupun R terjadi perubahan geometri *rotating disk* sesuai dengan kondisi batas yang telah ditentukan.
- 2. Hasil optimasi dengan *objective function* tegangan geser maksimum *multivariabel* diperoleh nilai L2 = 0.6 inch, L3 = 0.6 inch, L4 = 3.0 inch, L5 = 0.6 inch, R3 = 5.84 inch, R4 = 3.03 inch, R5 = 2.29 inch dan τ_{Max} optimal sebesar 1445 psi.
- 3. Untuk optimasi dengan *objective function* tegangan *von-misses multivariabel* diperoleh nilai L2 = 0.6 inch, L3 = 0.6 inch, L4 = 3.0 inch, L5 = 0.6 inch, R3 = 5.79 inch, R4 = 3.03 inch, R5 = 2.29 inch dan σ_e optimal sebesar 2548 psi.

4. Optimasi akan berhenti saat nilai yang dicari sudah lebih kecil dari nilai toleransi *constrains* dan toleransi *function* yang telah ditentukan .

DAFTAR PUSTAKA

- 1. A.A. Seireg, Jorge Rodriguez, 1997, "Optimizing The Shape of Mechanical Elements and Structure", copyright by Marcel Dekker, inc, New York-Basel-Hongkong
- J.R. Barber, 2000," Intermediate Mechanical of Materials", Mc Graw-Hill.
- 3. Rao S.S, 2009,"Engineering Optimization", Theory and Application, Fourth Edition, copyright by John Wiley and Sons, Inc.
- 4. Hearn, E. J, 1997," *Mechanics of Materials 1*", Third Edition, England.
- 5. Popov, E.P, Zainal Astamar, 1996, "*Mekanika Teknik*", edisi kedua, Erlangga, Jakarta.
- 6. Kraige L.G, Meriam J.L, 1995, "*Mekanika Teknik Dinamika*", edisi kedua, Erlangga, Jakarta.
- 7. Hanselman D. Dan B. Littlefiled, 2000,"*MATLAB Bahasa Komputansi Teknis*, Penerbit ANDI, Yogyakarta.
- 8. S Timoshenko, Krieger," Strength of Materials Part II Third Edition".
- 9. Callister ,William D, Jr."*Materials Science and Engineering*", Seventh Edition, *copyright* by John Wiley and Sons, Inc.