Basic Arduino Training

Internal research group training

Dr. Vinay Chamola, Assistant Professor, EEE Department, BITS-Pilani

Module 1: Introduction to Arduino

- What is Arduino
- History of Arduino
- Arduino Boards
- Arduino Uno
- Setting Up Arduino IDE
- Your First Arduino Project

Module 2: Basic C Programming

- Conditional
- Loop
- Operators
- Function
- Comment
- Preprocessor

Module 3: Arduino Programming

- -Components & Ohm's Law
- -pinMode
- -digitalWrite
- -analogWrite
- -Serial Communication
- -digitalRead
- -analogRead & Map
- -Challenge 1: Digital Read/Write
- -Challenge 2: Analog Read/Write
- -tone

Module 4: Arduino Shields

- Motor Shield
- Ethernet Shield
- WiFi Shield

Module 5: Arduino Standard Libraries

- EEPROM
- Ethernet
- Firmata
- Liquid Crystal Display
- Servo
- SPI
- SoftwareSerial
- Stepper
- WIFI
- Wire
- Install Additional Libraries

Module 6: Introduction to Processing

- Install Processing
- Basics of Processing
- Interface Processing with Arduino

Module 7: Arduino Sonar Project

- Ultrasonic Ranging Sensor
- Servo Motor
- Building a Sonar System

Module 8: Arduino IoT

Module 1 Introduction to Arduino

What is Arduino?

www.arduino.cc

- Arduino is an open-source electronics platform
- The hardware and software are open source.
- Software code, based on C is transferable.
- Large community for Arduino, Large community for Arduino, International Large community for Arduino, Large community for Arduino,

History of Arduino

Arduino was started in 2005 by Massimo Banzi and other co-founders from Interaction Design Institute Ivrea (IDII) in Ivrea, Italy. It was named after the bar where the co-founders visited often. The name of the bar is named after King Arduin.

Arduino Products

Arduino Boards

Arduino Uno

Microcontroller: ATmega328

Digital I/O Pins: 14 (6 PWM output) **Analog Input Pins**

Flash Memory: 32 KB (ATmega328) Clock Speed: 16 MHz

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function. LED: 13. There is a built-in LED connected to digital pin 13.

Download Arduino IDE

http://www.arduino.cc/download

Download the Arduino Software

Installing Driver on Window

Goto Device Manager

Locate Driver Location

Setup Arduino IDE

Select the Board : Tools->Board->Arduino Uno Select the Port: Tools->Port -> COM3 (Window)

Arduino Communication Ports

Platform	Port
Windows	Available in Device Manager
Мас	/dev/tty.usbmodem621 (or similar)
Linux	/dev/ttyACM0 (or similar)

Navigate Arduino IDE

```
## Arduino File Edit Sketch Tools Help

BareMinimum | Arduino 1.6.5

BareMinimum | Arduino 1.6.5

| Arduino File Edit Sketch Tools Help

| BareMinimum | Arduino 1.6.5

| Arduino File Edit Sketch Tools Help
| BareMinimum | Arduino 1.6.5

| Arduino File Edit Sketch Tools Help
| BareMinimum | Arduino 1.6.5
```

Blink Project

- Open File->Example-> 0.1Basic->Blink
- Click the upload button
- Observe the LED blink
- Change the delay value to 100
- Click the upload button
- Observe the LED blink
- Change the delay value to 2000
- Click the upload button
- Observe the LED blink

Module 2 Basic C Programming

Conditional

if Statement

Figure: Flowchart of if Statement

if Syntax

```
if (condition)
{
  // do something here
}
```

if Statement Example

```
if (x > 120) {
  digitalWrite(LEDpin1, HIGH);
  digitalWrite(LEDpin2, HIGH);
}
```

if-else Statement

Figure: Flowchart of if...else Statement

if-else Syntax

```
if (condition)
{
   // action A
}
else
{
   // action B
}
```

If-else Statements

```
if (x > 120) {
  digitalWrite(LEDpin1, HIGH);
  digitalWrite(LEDpin2, HIGH);
} else {
  digitalWrite(LEDpin1, LOW);
  digitalWrite(LEDpin2, LOW);
}
```

if-else-if Syntax

```
if (condition) {
    do Something;}
else if (condition2) {
    do Something Else;}
else {
    do Another Thing;}
```

if-else-if Example

```
if (x > 120) {
 digitalWrite(LEDpin1, HIGH);
 digitalWrite(LEDpin2, HIGH);
else if (x > 200) {
 digitalWrite(LEDpin1, LOW);
 digitalWrite(LEDpin2, HIGH);
} else {
  digitalWrite(LEDpin1, LOW);
 digitalWrite(LEDpin2, LOW);
```

Switch Syntax

```
switch (var) {
 case label:
  // statements
  break;
 case label:
  // statements
  break;
 default:
  // statements
 break;
```

Switch Example

```
char grade = 'B';
 switch(grade)
 case 'A':
   printf("Excellent!\n" );
   break;
 case 'B':
 case 'C':
   printf("Well done\n" );
   break;
```

Goto Syntax

label:

goto label;

Goto Example

```
for(byte r = 0; r < 255; r++) {
  if (analogRead(0) > 250) { goto bailout;}
}
```

bailout:

Loop

While Loop Statement

While Loop Syntax

```
while(expression) {
  // statement(s)
}
```

While Loops Examples

```
int i = 10;
while ( i > 0 ) {
    printf("Hello %d\n", i );
    i = i - 1;
}
```

Do While Loop Statement

Figure: Flowchart of do...while loop

Do While Loops Syntax

```
do
{
    // statement block
} while (test condition);
```

Do While Loops Examples

```
do{
    delay(50);
    x = readSensors();
} while (x < 100);</pre>
```

For Loop Statement

For Loops Syntax

```
for (initialization; condition; increment) {
//statement(s);
}
```

For Loops Example

```
for (int i=0; i <= 255; i++){
    analogWrite(PWMpin, i);
    delay(10);
}</pre>
```

Break

```
for (x = 0; x < 255; x ++) {
  analogWrite(PWMpin, x);
  sens = analogRead(sensorPin);
  if (sens > threshold) {
    x = 0;
    break;
  delay(50);
```

42

Continue

```
for (x = 0; x < 255; x ++) {
    if (x > 40 && x < 120){
        continue;
    }

    analogWrite(PWMpin, x);
    delay(50);
}</pre>
```

Operators

Arithmetic Operators

```
(assignment operator)
(addition)
(subtraction)
(multiplication)
(division)
(modulo)
```

Comparison Operators

```
== (equal to)
!= (not equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
```

Boolean Operators

```
&& (and)
|| (or)
! (not)
```

Compound Operators

```
++ (increment)
        (decrement)
+= (compound addition)
        (compound subtraction)
*= (compound multiplication)
       (compound division)
%= (compound modulo)
&= (compound bitwise and)
       (compound bitwise or)
```

Function

Function Example

int checkSensor()

```
{
    if (analogRead(0) > 400) {
        return 1;
    else{
        return 0;
    }
}
```

Comment

Comment

```
Single line comment
// ....
Multiple lines comment
/*
....
*/
```

Preprocessor

#define

#define Name value #define ledPin 3

#include

#include <Wire.h>

Module 3 Arduino Programming

Electrical Components

Solderless Breadboard

Solderless Breadboard

Prototyping without soldering

LED

- Light-emitting Diode
- Pasess current one way
- Emits Lights
- spec of current threshold : 20mA

Resistor

Color code represent the resistance value

Resistor Color Code

 $2, 2, \times 10 = 220\Omega$

Push Button

Press to Turn On Release to Turn Off

Generate Digital Input

Potentiometer

Variable Resistor

Ohm's Law

Basic Concept: Ohm's Law

Applying Ohm's Law to LED

Arduino Program Structure

Pin Setup

PinMode Syntax

pinMode(pin, INPUT/OUTPUT)

Digital Output

digitalWrite

Syntax: digitalWrite(pin, HIGH/LOW)

Eg digitalWrite(9,HIGH)

delay

Pauses the program for the amount of time (in miliseconds) specified as parameter

Syntax delay(ms)