

BS

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
24 January 2002 (24.01.2002)

PCT

(10) International Publication Number  
**WO 02/06459 A1**(51) International Patent Classification<sup>7</sup>: C12N 9/02,  
C12P 13/08, C12N 15/53MOLENAAR, Douwe; Hofstrasse 12, Baesweiler 52499  
(DE).

(21) International Application Number: PCT/EP01/05548

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 16 May 2001 (16.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

100 34 833.5 18 July 2000 (18.07.2000) DE  
101 03 874.7 30 January 2001 (30.01.2001) DE(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).(71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1,  
40474 Düsseldorf (DE).

## Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE FERMENTATIVE PREPARATION OF L-THREONINE

**WO 02/06459 A1**

(57) Abstract: The invention provides a process for the fermentative preparation of L-threonine using Enterobacteriaceae which in particular already produce L-threonine and in which the nucleotide sequence(s) which code(s) for the mqo gene are enhanced, in particular over-expressed.

**Process for the fermentative preparation of L-threonine**

This invention relates to the new amino acid sequence of the malate:quinone oxidoreductase enzyme protein (Mqo) of Enterobacteriaceae and to a process for the fermentative preparation of L-threonine using Enterobacteriaceae in which the mqo gene is enhanced.

**Prior Art**

L-Threonine is used in animal nutrition, in human medicine and in the pharmaceuticals industry. It is known that L-threonine can be prepared by fermentation of strains of Enterobacteriaceae, in particular Escherichia coli and Serratia marcescens. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can relate to fermentation measures, such as e.g. stirring and supply of oxygen, or the composition of the nutrient media, such as e.g. the sugar concentration during the fermentation, or the working up to the product form by e.g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e.g. the threonine analogue  $\alpha$ -amino- $\beta$ -hydroxyvaleric acid (AHV), or are auxotrophic for metabolites of regulatory importance and produce L-threonine are obtained in this manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of Enterobacteriaceae strains which produce L-threonine, by amplifying individual threonine biosynthesis genes and investigating the effect on the L-threonine production.

### Object of the Invention

The inventors had the object of providing new measures for improved fermentative preparation of L-threonine.

### Description of the Invention

- 5 The invention provides a polypeptide from Enterobacteriaceae with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16) chosen from the group consisting of
  - a) polypeptide with the amino acid sequence shown in SEQ ID NO. 2, or
  - b) polypeptide which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to the amino acid sequence shown in SEQ ID NO. 2, or
  - c) polypeptide according to SEQ ID NO. 2, including deletion, insertion or exchange of one or more amino acids, or
  - d) polypeptide according to SEQ ID NO. 2, including N- or C-terminal lengthening by one or more amino acids,
- 10 the total length of the polypeptide according to b), c) or d) being at least 514 and at most 544, preferably at least 519 and at most 539, in a preferred form at least 524 and at most 534, particularly preferably at least 527 and at most 531 amino acid radicals.
- 15 20 25 The invention furthermore provides a polynucleotide from Enterobacteriaceae which codes for a polypeptide with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16), chosen from the group consisting of

- a) DNA which contains the nucleotide sequence corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, or
- b) DNA according to a) corresponding to the degeneration 5 of the genetic code, or
- c) DNA according to a) containing sense mutations of neutral function, or
- d) DNA which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to 10 that mentioned in a) or b), or
- e) polynucleotide which hybridizes with the DNA according to a), b), c) or d).

The invention also provides

- a DNA which is capable of replication and codes for the 15 polypeptide shown in SEQ ID NO. 2,
- a vector containing the mqo gene corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, in particular plasmid pMW218mqo shown in figure 1.

"Polynucleotide" in general relates to polyribonucleotides 20 and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.

"Polypeptides" is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds.

- 25 The polypeptides according to the invention include the polypeptides according to SEQ ID NO. 2, which have malate:quinone oxidoreductase activity, and also those which are at least 70%, preferably at least 80% and in particular at least 90% to 95% identical to the polypeptide 30 according to SEQ ID NO. 2 and have the activity mentioned.

Finally, the invention provides a process for the fermentative preparation of L-threonine using Enterobacteriaceae which in particular already produce L-threonine and in which the nucleotide sequence(s) which 5 code(s) for the mqo gene are enhanced, in particular over-expressed.

In particular, the process is a process for the preparation of L-threonine, which comprises carrying out the following steps:

- 10      a) fermentation of microorganisms of the family Enterobacteriaceae in which at least the mqo gene is enhanced (over-expressed), optionally in combination with further genes,
- 15      b) concentration of the L-threonine in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
- 16      c) isolation of the L-threonine.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more 20 enzymes or proteins in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or a gene which codes for a corresponding enzyme or protein with a high activity, and optionally combining these 25 measures.

The microorganisms which the present invention provides can prepare L-threonine from glucose, sucrose, lactose, fructose, maltose, molasses, starch, or from glycerol and ethanol. They are representatives of Enterobacteriaceae, 30 in particular of the genera Escherichia and Serratia. Of the genus Escherichia the species E. coli and of the genus Serratia the species Serratia marcescens are to be mentioned in particular.

Suitable L-threonine-producing strains of the genus Escherichia, in particular of the species E. coli, are, for example

- 5           Escherichia coli TF427
- Escherichia coli H4578
- Escherichia coli KY10935
  
- Escherichia coli EL1003
  
- 10          Escherichia coli VNIIgenetika MG-442
- Escherichia coli VNIIgenetika VL334/pYN7
- Escherichia coli VNIIgenetika M1
- Escherichia coli VNIIgenetika 472T23
- Escherichia coli VNIIgenetika TDH-6
- Escherichia coli BKIIM B-3996
- Escherichia coli BKIIM B-5318
- 15          Escherichia coli B-3996-C43
- Escherichia coli B-3996-C80
- Escherichia coli B-3996/pTWV-pps
- Escherichia coli B-3996(pMW::THY)
- Escherichia coli B-3996/pBP5
  
- 20          Escherichia coli kat 13
  
- Escherichia coli KCCM-10132

Suitable L-threonine-producing strains of the genus Serratia, in particular of the species Serratia marcescens, are, for example

- 25          Serratia marcescens HNr21
- Serratia marcescens TLr156
- Serratia marcescens T2000.

The nucleotide sequence of the chromosome of E. coli is known and is available in databanks accessible to the public, such as, for example, the databank of the European Molecular Biology Laboratories (EMBL, Heidelberg, Germany).

Examples of such sequences deposited are the entries accessible under number AE000310 or D90850.

In the work on the present invention it was possible to identify the *mgo* gene, which codes for malate:quinone oxidoreductase, of *E. coli* (SEQ ID NO. 1) and the amino acid sequence of the *Mgo* enzyme protein formed (SEQ ID NO. 2).

It has furthermore been possible to isolate two further new malate:quinone oxidoreductase proteins, designated protein B 10 and C, which have the N-terminal amino acid sequence shown in SEQ ID No. 11 and 12. These are also provided by the invention.

It has been found that Enterobacteriaceae produce L-threonine in an improved manner after over-expression of 15 the *mgo* gene, which codes for malate:quinone oxidoreductase (E.C. 1.1.99.16).

According to the invention, it is also possible to use a DNA section which contains the DNA sequence of the gene of the malate:quinone oxidoreductase given in the databank of 20 the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) with accession number P33940.

Alleles of the *mgo* gene which result from the degeneracy of the genetic code or due to "sense mutations" of neutral function can furthermore be used. It is also known that 25 the amino acid methionine or formylmethionine coded by the start codon ATG can be removed in various proteins by enzymes of the host.

To achieve an over-expression, the number of copies of the corresponding genes can be increased, or the promoter and 30 regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is

additionally possible to increase the expression in the course of fermentative L-threonine production. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is 5 also increased by preventing the degradation of the enzyme protein. The genes or gene constructions can either be present in plasmids with a varying number of copies, or can be integrated and amplified in the chromosome. Alternatively, an over-expression of the genes in question 10 can furthermore be achieved by changing the composition of the media and the culture procedure.

Instructions in this context can be found by the expert, inter alia, in Chang and Cohen (Journal of Bacteriology 134:1141-1156 (1978)), in Hartley and Gregori (Gene 13:347-15 353 (1981)), in Amann and Brosius (Gene 40:183-190 (1985)), in de Broer et al. (Proceedings of the National (sic) of Sciences of the United States of America 80:21-25 (1983)), in LaVallie et al. (BIO/TECHNOLOGY 11, 187-193 (1993)), in WO 98/04715, in Llosa et al. (Plasmid 26:222-224 (1991)), 20 in Quandt and Klipp (Gene 80:161-169 (1989)), in Hamilton (Journal of Bacteriology 171:4617-4622 (1989)), in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998) and in known textbooks of genetics and molecular biology.

25 Plasmid vectors which are capable of replication in Enterobacteriaceae, such as e.g. cloning vectors derived from pACYC184 (Bartolomé et al.; Gene 102, 75-78 (1991)), pTrc99A, which is described by Amann et al. (Gene 69:301-315 (1988)), or pSC101 derivatives (Vocke and Bastia, 30 Proceedings of the National Academy of Science, USA 80 (21):6557-6561 (1983)) can be used. A strain transformed with a plasmid vector where the plasmid vector carries the nucleotide sequence which codes for the mqo gene can be employed in a process according to the invention.

In addition, it may be advantageous for the production of L-threonine with strains of the family Enterobacteriaceae to enhance, in particular to over-express, one or more enzymes of the known threonine biosynthesis pathway or 5 enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide adenine dinucleotide phosphate, in addition to the *mgo* gene.

Thus, for example, one or more genes chosen from the group consisting of

- 10 • the *thrABC* operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
- the *pyc* gene which codes for pyruvate carboxylase (DE-A-19 831 609),
- 15 • the *pps* gene which codes for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 (1992)),
- the *ppc* gene which codes for phosphoenol pyruvate carboxylase (Gene 31:279-283 (1984)),
- 20 • the genes *pntA* and *pntB* which code for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
- the *rhtB* gene which imparts homoserine resistance (EP-A-0994190)
- the *rhtC* gene which imparts threonine resistance 25 (EP-A-1013765), and
- the *gdhA* gene which codes for glutamate dehydrogenase (Gene 27:193-199 (1984))

can be enhanced, in particular over-expressed, at the same time.

It may furthermore be advantageous for the production of L-threonine, in addition to the enhancement of the mqo gene, for one or more of the genes chosen from the group consisting of:

- 5 • the tdh gene which codes for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),
- the mdh gene which codes for malate dehydrogenase (E.C. 1.1.1.37)
- 10 to be attenuated, in particular to be eliminated or for the expression thereof to be reduced at the same time.

Finally, in addition to enhancement of the mqo gene it may be advantageous for the production of L-threonine to eliminate undesirable side reactions, (Nakayama: "Breeding 15 of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982). Bacteria in which the metabolic pathways which reduce the formation of L-threonine are at least partly eliminated can be employed in 20 a process according to the invention.

The microorganisms produced according to the invention can be cultured in the batch process (batch culture) or in the fed batch process (feed process). A summary of known culture methods is described in the textbook by Chmiel 25 (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral 30 Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained

in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose,  
5 lactose, fructose, maltose, molasses, starch and optionally cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic  
10 acids, such as e.g. acetic acid, can be used as the source of carbon. These substances can be used individually or as a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep  
15 liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulphate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

20 Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate,  
25 which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the abovementioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to  
30 the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed

in a suitable manner to control the pH. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can be added 5 to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 25°C to 45°C, and preferably 30°C to 40°C. Culturing is continued 10 until a maximum of L-threonine has formed. This target is usually reached within 10 hours to 160 hours.

The analysis of L-threonine can be carried out by anion exchange chromatography with subsequent ninhydrin derivatization, as described by Spackman et al. (Analytical 15 Chemistry, 30, (1958), 1190), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).

A pure culture of the L-threonine-producing strain B-3996kurΔtdh/pVIC40, pMW218mqo was deposited on 24th 20 January 2001 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) as DSM 14004.

The process according to the invention is used for the 25 fermentative preparation of amino acids, in particular L-threonine and L-isoleucine.

The present invention is explained in more detail in the following with the aid of embodiment examples.

The isolation of plasmid DNA from E. coli and all 30 techniques of restriction, Klenow and alkaline phosphatase treatment are carried out by the method of Sambrook et al. (Molecular cloning - A laboratory manual (1989) Cold Spring Harbour Laboratory Press). Unless described otherwise, the

transformation of *E. coli* is carried out by the method of Chung et al. (Proceedings of the National Academy of Sciences of the United States of America USA (1989) 86:2172-2175).

- 5 The incubation temperature during preparation of strains and transformants is 37°C. Temperatures of 30°C and 44°C are used in the gene replacement process according to Hamilton et.al.

Example 1

10 Construction of the expression plasmid pMW218mqo

The mqo gene from *E. coli* K12 is amplified using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence of the yojH gene in *E. coli* K12 MG1655 (EMBL AE000310), PCR primers (see SEQ ID No. 3 and 4) are synthesized (MWG Biotech, Ebersberg, Germany):

YojH1: 5' - GCGGAATTCGATGGCGGCAAAAGCG - 3'

YojH2: 5' - GTTACGCCGCATCCAACATC - 3'

The chromosomal *E. coli* K12 MG1655 DNA employed for the PCR is isolated according to the manufacturers instructions with "QIAGEN Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 1700 base pairs (bp) in size can be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR protocols. A guide to methods and applications, Academic Press) with Pfu-DNA polymerase (Promega Corporation, Madison, USA). The PCR product is cleaved with the enzyme EcoRI and ligated with the plasmid pMW218 (Nippon Gene, Toyama, Japan), which is cleaved with the enzymes EcoRI and SmaI. The *E. coli* strain DH5 $\alpha$  is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar (Lennox, Virology 1:190 (1955)), to which 20  $\mu$ g/ml kanamycin is

added. Successful cloning of the mqo gene can be demonstrated after plasmid DNA isolation and control cleavage with EcoRI, AccI and ClaI. The plasmid is designated pMW218mqo (figure 1).

5 Example 2

Preparation of L-threonine with the strain MG442/pMW218mqo

2.1 Preparation of the strain MG442/pMW218mqo

The L-threonine-producing *E. coli* strain MG442 is described in US-A- 4,278,765 and deposited as CMIM.B-1628 at the  
10 Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

The strain MG442 is transformed with the plasmid pMW218mqo and plasmid-carrying cells are selected on LB agar supplemented with 20 µg/ml kanamycin. The strain is  
15 designated MG442/pMW218mqo.

2.2 Preparation of L-threonine

Selected individual colonies of MG442/pMW218mqo are multiplied further on minimal medium with the following composition: 3.5 g/l Na<sub>2</sub>HPO<sub>4</sub>\*2H<sub>2</sub>O, 1.5 g/l KH<sub>2</sub>PO<sub>4</sub>, 1 g/l  
20 NH<sub>4</sub>Cl, 0.1 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 25 mg/l isoleucine, 2 g/l glucose, 20 g/l agar, 20 mg/l kanamycin. The formation of L-threonine is checked in batch cultures of 10 ml contained in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract,  
25 10 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 1 g/l KH<sub>2</sub>PO<sub>4</sub>, 0.5 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 15 g/l CaCO<sub>3</sub>, 20 g/l glucose, 20 mg/l kanamycin are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm on an ESR incubator from Kühner AG (Birsfelden, Switzerland). In each case 250 µl of this preculture are transinoculated  
30 into 10 ml of production medium (25 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2 g/l KH<sub>2</sub>PO<sub>4</sub>, 1 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 0.03 g/l FeSO<sub>4</sub>\*7H<sub>2</sub>O, 0.018 g/l MnSO<sub>4</sub>\*1H<sub>2</sub>O, 25 mg/l isoleucine, 30 g/l CaCO<sub>3</sub>, 20 g/l

glucose) and the batch is incubated for 48 hours at 37°C. After the incubation the optical density (OD) of the culture suspension is determined with an LP2W photometer from the company Dr. Lange (Berlin, Germany) at a measurement wavelength of .660 nm.

The concentration of L-threonine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the experiment is shown in Table 1.

Table 1

| Strain          | OD<br>(660 nm) | L-Threonine<br>g/l |
|-----------------|----------------|--------------------|
| MG442           | 4.7            | 0.46               |
| MG442/pMW218mqo | 4.5            | 0.89               |

Example 3

15 Preparation of L-threonine with the strain  
B-3996kurΔtdh/pVIC40, pMW218mqo

The L-threonine-producing *E. coli* strain B-3996 is described in US-A- 5,175,107 and deposited at the Russian National Collection for Industrial Microorganisms (VKPM, 20 Moscow, Russia).

3.1 Preparation of the strain B-3996kurΔtdh/pVIC40,  
pMW218mqo

After culture in antibiotic-free complete medium for approximately ten generations, a derivative of strain B-25 3996 which no longer contains the plasmid pVIC40 is

isolated. The strain formed is streptomycin-sensitive and is designated B-3996kur.

The method described by Hamilton et al. (Journal of Bacteriology (1989) 171: 4617-4622), which is based on the 5 use of the plasmid pMAK705 with a temperature-sensitive replicon, is used for incorporation of a deletion into the tdh gene. The plasmid pDR121 (Ravnikar and Somerville, Journal of Bacteriology (1987) 169:4716-4721) contains a DNA fragment from E. coli 3.7 kilo-base pairs (kbp) in 10 size, on which the tdh gene is coded. To generate a deletion of the tdh gene region, pDR121 is cleaved with the restriction enzymes C<sub>la</sub>I and EcoRV and the DNA fragment 5 kbp in size isolated is ligated, after treatment with Klenow enzyme. The ligation batch is transformed in the E. 15 coli strain DH5 $\alpha$  and plasmid-carrying cells are selected on LB agar, to which 50  $\mu$ g/ml ampicillin are added.

Successful deletion of the tdh gene can be demonstrated after plasmid DNA isolation and control cleavage with EcoRI. The EcoRI fragment 1.7 kbp in size is isolated, and 20 ligated with the plasmid pMAK705, which is partly digested with EcoRI. The ligation batch is transformed in DH5 $\alpha$  and plasmid-carrying cells are selected on LB agar, to which 20  $\mu$ g/ml chloramphenicol are added. Successful cloning is demonstrated after isolation of the plasmid DNA and 25 cleavage with EcoRI. The pMAK705 derivative formed is designated pDM32.

For the gene replacement, B-3996kur is transformed with the plasmid pDM32. The replacement of the chromosomal tdh gene with the plasmid-coded deletion construct is carried out by 30 the selection process described by Hamilton et al. and is verified by standard PCR methods (Innis et al. (1990), PCR Protocols. A Guide to Methods and Applications, Academic Press) with the following oligonucleotide primers (see SEQ ID No. 5 and 6).

Tdh1: 5'-TCGCGACCTATAAGTTGGG-3'

Tdh2: 5'-AATACCAGCCCTTGTTCGTG-3'.

The strain formed is tested for kanamycin sensitivity and is designated B-3996kurΔtdh.

- 5 B-3996kurΔtdh is transformed with the plasmid pVIC40 isolated from B-3996 and plasmid-carrying cells are selected on LB agar with 20 µg/ml streptomycin. A selected individual colony is designated B-3996kurΔtdh/pVIC40 and transformed with the plasmid pMW218mqa. Selection is
- 10 carried out on LB-agar to which 20 µg/ml streptomycin and 50 µg/ml kanamycin are added. The strain formed in this way is designated B-3996kurΔtdh/pVIC40, pMW218mqa.

### 3.2 Preparation of L-threonine

The preparation of L-threonine by the strains

- 15 B-3996kurΔtdh/pVIC40 and B-3996kurΔtdh/pVIC40, pMW218mqa is tested as described in example 2, the minimal medium and the production medium not being supplemented with L-isoleucine. The minimal medium, the preculture medium and the production medium are supplemented with 20 µg/ml
- 20 streptomycin for B-3996kurΔtdh/pVIC40 and with 20 µg/ml streptomycin and 50 µg/ml kanamycin for B-3996kurΔtdh/pVIC40, pMW218mqa.

The result of the experiment is summarized in Table 2.

Table 2

| Strain                             | OD<br>(660 nm) | L-<br>Threonine |
|------------------------------------|----------------|-----------------|
| B-3996kurΔtdh/pVIC40               | 4.7            | 6.26            |
| B-3996kurΔtdh/pVIC40,<br>pMW218mqa | 3.7            | 7.72            |

Example 4

Preparation of a vector containing a histidine-tagged malate:quinone oxidoreductase gene of *E. coli*

A 1744 bp DNA fragment, which codes for the malate:quinone oxidoreductase protein extended by a six-fold histidine radical on the C-terminal end, was prepared by means of the polymerase chain reaction (PCR) and then cloned.

The primer YOJH1a (SEQ ID No 7) was drafted with the aid of the known nucleotide sequence with Accession Number 10 AE000310 (EMBL, European Molecular Biology Laboratories, Heidelberg, Germany). This primer has the sequence:

5`-GGA TCC GTT GAT GCC GCG CAA ATC-3`.

The primer YCHIS (SEQ ID No 8), which has the following sequence, was employed as the second primer:

15 5`-CGC GAA TTC TTA GTG GTG GTG GTG GTG GTG CAA CGC AAT ATC CGC CAC-3`.

The primers shown were synthesized by MWG Biotech (Ebersberg, Germany). The PCR reaction was carried out by the standard PCR method of Innis et al., (PCR Protocols. A 20 Guide to Methods and Applications, 1990, Academic Press, New York, USA).

Whole DNA isolated from a colony of the *E. coli* strain MC4100 (Casadaban et al. Journal of Molecular Biology 104, 541-555, 1976) served as the template.

25 The PCR was carried out in a Thermocycler from Techne (Cambridge, UK). The samples were first denatured for 5 minutes at 94°C and the Taq polymerase from Promega (Madison, WI, USA) was then added to the sample batch. A cycle comprising denaturing (60 seconds, 94°C), annealing 30 (60 seconds, 60°C) and synthesis (120 seconds, 72°C) was then passed through 10 times, the annealing temperature

being increased by 0.4°C in each cycle. The subsequent 25 cycles comprised denaturing (60 seconds, 94°C), annealing (60 seconds, 64°C) and synthesis (120 seconds, 72°C). Finally, a concluding synthesis of 10 minutes at 72°C was carried out.

The DNA fragment 1744 bp in length containing the mqo gene amplified in this manner was purified with the aid of the QIAQuick PCR Purification Kit from Qiagen (Hilden, Germany) and then digested with the restriction enzymes BamHI and 10 EcoRI. These restriction cleavage sites were generated during the PCR with the aid of the primers YOJHI and YCHIS. After gel electrophoresis, the digested DNA fragment was cut out of the agarose gel and purified with QIAEX II Gel Extraction Kit (155) (Hilden, Germany), mixed into the 15 vector pUC19 treated with the restriction enzymes BamHI and EcoRI (Yanisch-Perron et al., Gene 33, 103-119, 1985) and then treated with T4 DNA ligase.

An E. coli strain designated MC4100Δmqo, which contains a deletion in the mqo gene and was prepared according to the prior art, was used as the cloning host for the transformation. For this, the mqo gene was first amplified with the aid of the primers Y\_01 (SEQ ID No 9) and Y\_04 (SEQ ID No 10) using whole DNA isolated from strain MC4100, with the aid of the PCR method. The PCR conditions comprised 30 cycles of denaturing (30 seconds, 94°C), annealing (30 seconds, 60°C) and synthesis (2 minutes, 72°C).

The primer Y 01 has the following sequence:

5' -GCTGGATGAATGGGCGGCGG-3'

30 The primer Y 04 has the following sequence:

5'-CGCGGATCCCCGGTTCAACGATGATG-3'

The amplified DNA fragment contains a cleavage site for the restriction enzyme BamHI directly after the primer Y 01.

The BamHI restriction cleavage site contained in the oligonucleotide primer Y\_04 is identified by underlining. The amplified DNA fragment was digested with BamHI and then incorporated into the BamHI cleavage site of the plasmid 5 pKO3 described by Link et al. (Journal of Bacteriology 179, 6228-6237 (1997)). The resulting plasmid was designated pKO3mqo and treated with the restriction enzyme MluI in order to remove an internal DNA segment of the mqo gene 416 bp long (deletion). The plasmid pKO3Δmqo obtained in this 10 manner was used for incorporation of the deletion Δmqo in the strain MC4100. The method described by Link et al (Journal of Bacteriology 179, 6228-6237 (1997)) was employed for this.

The strain MC4100Δmqo was transformed with the ligation 15 mixture described above. Transformants were selected on LB medium, which had been supplemented with 100 $\mu$ g/ml carbenicillin. A plasmid was isolated from a transformant and designated pUCH2. Plasmid pUCH2 contains a DNA fragment 1744 bp long, which codes for the malate:quinone 20 oxidoreductase protein extended by a six-fold histidine radical on the C-terminal end.

#### Example 5

##### Isolation and purification of the over-expressed histidine-tagged malate:quinone oxidoreductase

25 Five times, 200 ml LB medium were treated with 100  $\mu$ g/ml carbenicillin and 100  $\mu$ M isopropyl  $\beta$ -D-thiogalactoside (IPTG), inoculated with in each case a colony of the strain MC4100Δmqo/pUCH2 and in each case cultured in 1 l conical flasks for 16 hours at 37°C and 200 revolutions per minute. 30 The cells were washed twice in buffer A (50 mM hepes, 10 mM potassium acetate, 10 mM CaCl<sub>2</sub>, 5 mM MgCl<sub>2</sub>, adjusted to pH 7.5 with NaOH) at 4°C and resuspended in 40 ml of the same buffer. The cells were then broken down twice in a precooled French Pressure Cell from Spectronic Unicam

(Rochester, NY, USA) under 69 MPa (mega-Pascal). The cell debris was then sedimented twice in a centrifuge at 4°C for 10 minutes at 10000 x g. The supernatant was then centrifuged for 30 minutes at 75000 x g and 4°C. The membrane pellet was resuspended with the same volume of buffer B (50 mM Na phosphate, 200 mM NaCl, pH 7.5) and centrifuged again for 30 minutes at 75000 x g and 4°C. The pellet was then resuspended with 1 ml buffer B. The histidine-tagged malate:quinone oxidoreductase protein was purified in two steps.

Step 1: Solubilization:

2 % Triton X-100 and 10 % glycerol were added to the resuspended membranes and the batch was incubated for 10 minutes on ice. The batch was then centrifuged for 30 minutes at 200000 x g at 4°C.

Step 2: Affinity chromatography:

The equilibration of the "Talon-Metal-Affinity Resin" column material ( 500 µl column volume, CLONTECH Laboratories, Palo Alto, USA) was carried out twice with 1 ml buffer B and once with 1 ml buffer C (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 µM flavin adenine dinucleotide (FAD), 0.2 mg/ml phospholipid, pH 7.0). The phospholipid used was L- $\alpha$  phosphatidylethanolamine, type IX from *E. coli* (Sigma-Aldrich, Deisenhofen, Germany), which was mixed as a 30 mg/ml stock solution in deionized water and treated briefly with an ultrasound apparatus (BRANSON Sonifier Cell Disrupter B15) for a few seconds until the suspension was transparent. The supernatant (1 ml) from step 1 was applied to the equilibrated column and incubated for 20 minutes at room temperature. Thereafter, the column was flushed five times with buffer D (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 % glycerol, 10 µM FAD, 0.2 mg/ml phospholipid, 10 mM imidazole, pH 7.0) and then

eluted twice with 500 µl buffer E (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 % glycerol, 10 µM FAD, 0.2 mg/ml phospholipid, 100 mM imidazole, pH 7.0). The two fractions were combined and a buffer exchange was carried  
5 out by means of an ULTRAFREE-0.5 Centrifugal Filter Device (Millipore Corporation, Bedford, MA, USA), in order to remove the imidazole and to reduce the volume to 500 µl. A second affinity chromatography was then carried out with the "Talon-Metal-Affinity Resin" column material (250 µl  
10 column volume), as described above. The purified protein was stored at -20°C.

The purified malate:quinone oxidoreductase protein was investigated by means of SDS polyacrylamide gel electrophoresis and subsequent staining with Coomassie  
15 blue. In this analysis, two protein bands (protein B and protein C) with the mobility corresponding to a molecular weight of about 60 ± 2 KD (kilo-Dalton) were detected. The two proteins were blotted on to a polyvinylidene difluoride (PVDF) membrane (Boehringer Mannheim, Mannheim, Germany)  
20 and stained with Coomassie blue. The two protein bands were then cut out of the blot membrane.

#### Example 6

##### Determination of the N-position amino acid sequence

The N-position amino acid sequences of the malate:quinone  
25 oxidoreductase protein B and protein C were determined by Edman degradation (Edman, Molecular Biology Biochemistry Biophysics 8:211-55(1970)) by means of the automatic sequencer Procise Sequencer from PE Biosystems (Foster City, CA, USA). For protein B the amino acid sequence L N  
30 A V S M (see also SEQ ID No. 11) and for protein C the amino acid sequence A V S M A A K (see also SEQ ID No. 12) was determined.

Brief Description of the Figures:

Figure 1: Map of the plasmid pMW218mqo containing the mqo gene.

The length data are to be understood as approx. data. The  
5 abbreviations and designations used have the following  
meaning:

- Plac: Promoter sequence of the lactose operon
- Kan: Kanamycin resistance gene

The abbreviations for the restriction enzymes have the  
10 following meaning

- AccI: Restriction endonuclease from *Acinetobacter calcoaceticus*
- ClaI: Restriction endonuclease from *Caryphanon latum*
- EcoRI: Restriction endonuclease from *E. coli*
- 15 • KpnI: Restriction endonuclease from *Klebsiella pneumoniae*
- SalI: Restriction endonuclease from *Streptomyces albus*

**What is claimed is:**

1. A polypeptide from Enterobacteriaceae with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16) chosen from the group consisting of

5 a) polypeptide with the amino acid sequence shown in SEQ ID NO. 2, or

b) polypeptide which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to the amino acid sequence shown in

10 SEQ ID NO. 2, or

c) polypeptide according to SEQ ID NO. 2, including deletion, insertion or exchange of one or more amino acids, or

15 d) polypeptide according to SEQ ID NO. 2, including N- or C-terminal lengthening by one or more amino acids,

the total length of the polypeptide according to b), c) or d) being at least 514 and at most 544, preferably at least 519 and at most 539, in a preferred form at least 20 524 and at most 534, particularly preferably at least 527 and at most 531 amino acid radicals.

2. A polynucleotide from Enterobacteriaceae which codes for a polypeptide with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16), chosen from the group 25 consisting of

a) DNA which contains the nucleotide sequence corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, or

30 b) DNA according to a) corresponding to the degeneration of the genetic code, or

- c) DNA according to a) containing sense mutations of neutral function, or
  - d) DNA which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to that mentioned in a) or b), or
- 5 e) polynucleotide which hybridizes with the DNA according to a), b), c) or d).
3. A polynucleotide as claimed in claim 2, which is DNA which is capable of replication and codes for the 10 polypeptide shown in SEQ ID NO. 2.
4. The plasmid pMW218mqo which contains the mqo gene of Escherichia coli.
5. A process for the fermentative preparation of L-threonine, which comprises employing Enterobacteriaceae 15 bacteria, in particular those which already produce L-threonine and in which the nucleotide sequence(s) which code(s) for the mqo gene are enhanced, in particular over-expressed.
6. A process as claimed in claim 5, wherein further genes 20 are enhanced in addition to the mqo gene.
7. A process as claimed in claim 5 or 6, wherein the microorganisms of the family Enterobacteriaceae are from the genus Escherichia and Serratia.
8. A process as claimed in claim 7, wherein the 25 microorganisms are from the genus Escherichia, in particular of the species Escherichia coli.
9. A process as claimed in claim 5, wherein the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase 30 is enhanced at the same time.

10. A process as claimed in claim 5, wherein the pyc gene which codes for pyruvate carboxylase is enhanced at the same time.
11. A process as claimed in claim 5, wherein the pps gene  
5 which codes for phosphoenol pyruvate synthase is enhanced at the same time.
12. A process as claimed in claim 5, wherein the ppc gene which codes for phosphoenol pyruvate carboxylase is enhanced at the same time.
- 10 13. A process as claimed in claim 5, wherein the genes pntA and pntB which code for transhydrogenase are enhanced at the same time.
14. A process as claimed in claim 5, wherein the gene rhtB which imparts homoserine resistance is enhanced at the  
15 same time.
15. A process as claimed in claim 5, wherein bacteria in which the metabolic pathways which reduce the formation of L-threonine are at least partly eliminated are employed.
- 20 16. A process as claimed in claim 5, wherein a strain transformed with a plasmid vector is employed and the plasmid vector carries the nucleotide sequence which codes for the mqo gene can be employed.
17. A process as claimed in claim 5, wherein bacteria  
25 transformed with the plasmid pMW218mqo are employed.
18. A process as claimed in claim 5, wherein the expression of the mqo gene is optionally induced with isopropyl  $\beta$ -D-thiogalactoside.
19. A process as claimed in claim 5, wherein at the same  
30 time the gdhA gene which codes for glutamate dehydrogenase is enhanced.

20. A process as claimed in claim 5, wherein at the same time the rhtC gene which imparts threonine resistance is enhanced.
21. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase protein with the N-terminal amino acid sequence Met Ala Ala Lys Ala Lys corresponding to SEQ ID No. 2.  
5
22. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase protein with the N-terminal amino acid sequence Leu Asn Ala Val Ser Met according to SEQ ID no. 11.  
10
23. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase protein with the N-terminal amino acid sequence Ala Val Ala Val Ser Met Ala Ala Lys according to SEQ ID No. 12.  
15
24. A process for the preparation of L-threonine, which comprises carrying out the following steps:
  - a) fermentation of microorganisms of the family Enterobacteriaceae in which at least the mqo gene is enhanced (over-expressed), optionally in combination with further genes,  
20
  - b) concentration of the L-threonine in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
- 25 d[sic]) isolation of the L-threonine.  
25
26. A malate-quinone oxidoreductase protein from Enterobacteriaceae with the N-terminal amino acid sequence according to SEQ ID No. 11.  
30
27. A malate:quinone oxidoreductase protein from Enterobacteriaceae with the N-terminal amino acid sequence according to SEQ ID No. 12.

27. An L-threonine-producing strain of the genus Escherichia with the genetic and phenotypic features of the strain B-3996kur $\Delta$ tdh/pVIC40, pMW218mqo.
28. The L-threonine-producing Escherichia coli strain B-3996kur $\Delta$ tdh/pVIC40, pMW218mqo deposited as. (sic) DSM 14004.  
5

Figure 1:



## SEQUENCE PROTOCOL

|    |                                                                                                                                                       |      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | caa agc tcg ctg ttt cgc ggt atg cgt tac tct gaa gat cac gac gcg cag<br>Gln Ser Ser Leu Phe Arg Gly Met Arg Tyr Ser Glu Asp His Ala Gln<br>145 150 155 | 480  |
| 5  | atc aaa gag tgg gca ccg tta gtg atg gaa ggg cgc gat ccg caa cag<br>Ile Lys Glu Trp Ala Pro Leu Val Met Glu Gly Arg Asp Pro Gln Gln<br>160 165 170     | 528  |
| 10 | aaa gtg gca gcc acg cgt acg gaa att ggt acc gat gtg aac tac ggc<br>Lys Val Ala Ala Thr Arg Thr Glu Ile Gly Thr Asp Val Asn Tyr Gly<br>175 180 185 190 | 576  |
| 15 | gag atc acc cgc cag tta att gct tcc ttg cag aag aaa tct aac ttc<br>Glu Ile Thr Arg Gln Leu Ile Ala Ser Leu Gln Lys Lys Ser Asn Phe<br>195 200 205     | 624  |
| 20 | tcg ctg caa ctc agc agc gaa gtc cgc gcc cta aag cgt aat gac gat<br>Ser Leu Gln Leu Ser Ser Glu Val Arg Ala Leu Lys Arg Asn Asp Asp<br>210 215 220     | 672  |
| 25 | aac acc tgg acc gtt acc gtt gcc gat ctg aaa aat ggc act gca cag<br>Asn Thr Trp Thr Val Thr Val Ala Asp Leu Lys Asn Gly Thr Ala Gln<br>225 230 235     | 720  |
| 30 | aac att cgt gcc aaa ttt gtc ttt atc ggc gcg ggc ggt gcg gcg ctg<br>Asn Ile Arg Ala Lys Phe Val Phe Ile Gly Ala Gly Gly Ala Ala Leu<br>240 245 250     | 768  |
| 35 | aag ctg tta cag gaa tcg ggg att ccg gaa gcg aaa gac tac gcc ggt<br>Lys Leu Leu Gln Glu Ser Gly Ile Pro Glu Ala Lys Asp Tyr Ala Gly<br>255 260 265 270 | 816  |
| 40 | tcc ccg gtg ggc gga cag ttc ctt gtt tcg gaa aac ccg gac gtg gtt<br>Phe Pro Val Gly Gly Gln Phe Leu Val Ser Glu Asn Pro Asp Val Val<br>275 280 285     | 864  |
| 45 | aat cac cat ctg gcg aag gtt tac ggt aaa gca tcc gtt ggc gca cca<br>Asn His His Leu Ala Lys Val Tyr Gly Lys Ala Ser Val Gly Ala Pro<br>290 295 300     | 912  |
| 50 | ccg atg tcg gtt ccg cat atc gat acc ccg gtt ctg gac ggt aaa ccg<br>Pro Met Ser Val Pro His Ile Asp Thr Arg Val Leu Asp Gly Lys Arg<br>305 310 315     | 960  |
| 55 | gtt gtg ctg ttt ggg cca ttt gcc acc ttc tca acc aaa ttc ctc aaa<br>Val Val Leu Phe Gly Pro Phe Ala Thr Phe Ser Thr Lys Phe Leu Lys<br>320 325 330     | 1008 |
| 60 | aac ggt tca ttg tgg gat cta atg agt tcc acc acc acc tct aac gtg<br>Asn Gly Ser Leu Trp Asp Leu Met Ser Ser Thr Thr Ser Asn Val<br>335 340 345 350     | 1056 |
|    | atg ccg atg atg cac gtc ggg ctg gat aat ttc gat ctg gtg aaa tat<br>Met Pro Met Met His Val Gly Leu Asp Asn Phe Asp Leu Val Lys Tyr<br>355 360 365     | 1104 |
|    | ctg gtg agt cag gtg atg ttg agt gaa gag gat cgt ttt gaa gcg ttg<br>Leu Val Ser Gln Val Met Leu Ser Glu Glu Asp Arg Phe Glu Ala Leu<br>370 375 380     | 1152 |

3.

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | aaa gag tac tat ccg cag gcg aaa aaa gag gac tgg cgt ttg tgg caa    | 1200 |
|    | Lys Glu Tyr Tyr Pro Gln Ala Lys Lys Glu Asp Trp Arg Leu Trp Gln    |      |
|    | 385 390 395                                                        |      |
| 5  | gcg ggg cag cgc gtg cag att atc aag cgt gat gcc gag aaa ggt ggc    | 1248 |
|    | Ala Gly Gln Arg Val Gln Ile Ile Lys Arg Asp Ala Glu Lys Gly Gly    |      |
|    | 400 405 410                                                        |      |
| 10 | gta ctg cgt ctg ggt act gaa gtc gtc agt gac cag caa gga acc att    | 1296 |
|    | Val Leu Arg Leu Gly Thr Glu Val Val Ser Asp Gln Gln Gly Thr Ile    |      |
|    | 415 420 425 430                                                    |      |
| 15 | gcc gcg ctc ctg ggg gca tcg cca ggg gcg tca acc gcc gcg ccg att    | 1344 |
|    | Ala Ala Leu Leu Gly Ala Ser Pro Gly Ala Ser Thr Ala Ala Pro Ile    |      |
|    | 435 440 445                                                        |      |
|    | atg ttg aat ctg ctg gaa aaa gta ttt ggc gat cgt gtt tcc agc ccg    | 1392 |
|    | Met Leu Asn Leu Leu Glu Lys Val Phe Gly Asp Arg Val Ser Ser Pro    |      |
|    | 450 455 460                                                        |      |
| 20 | caa tgg cag gct acg ttg aaa gcg atc gtt ccg tct tat gga cgc aag    | 1440 |
|    | Gln Trp Gln Ala Thr Leu Lys Ala Ile Val Pro Ser Tyr Gly Arg Lys    |      |
|    | 465 470 475                                                        |      |
| 25 | ctg aac ggt gat gta gcg gca aca gaa cgc gag ttg cag tac acc agc    | 1488 |
|    | Leu Asn Gly Asp Val Ala Ala Thr Glu Arg Glu Leu Gln Tyr Thr Ser    |      |
|    | 480 485 490                                                        |      |
| 30 | gaa gtg ctg ggg ttg aac tac gac aag ccg cag gca gca gat agt acg    | 1536 |
|    | Glu Val Leu Gly Leu Asn Tyr Asp Lys Pro Gln Ala Ala Asp Ser Thr    |      |
|    | 495 500 505 510                                                    |      |
| 35 | ccg aaa ccg cag ttg aaa ccg caa ccc gtt caa aaa gaa gtg gcg gat    | 1584 |
|    | Pro Lys Pro Gln Leu Lys Pro Gln Pro Val Gln Lys Glu Val Ala Asp    |      |
|    | 515 520 525                                                        |      |
|    | att gcg ttg taatgatacg ccacatccgg catggtatgc cgatgtggc             | 1633 |
|    | Ile Ala Leu                                                        |      |
| 40 | gtatgctgat aagacgcgcc agcgctcgcat caggcaaccg gctcgggcgt tagatgttgg | 1693 |
|    | atgcggcgta tcgggatcc tctagag                                       | 1720 |
| 45 | <210> 2                                                            |      |
|    | <211> 529                                                          |      |
|    | <212> PRT                                                          |      |
|    | <213> Escherichia coli                                             |      |
| 50 | <400> 2                                                            |      |
|    | Met Ala Ala Lys Ala Lys Ala Ser Glu Glu Gln Glu Thr Asp Val Leu    |      |
|    | 1 5 10 15                                                          |      |
| 55 | Leu Ile Gly Gly Gly Ile Met Ser Ala Thr Leu Gly Thr Tyr Leu Arg    |      |
|    | 20 25 30                                                           |      |
|    | Glu Leu Glu Pro Glu Trp Ser Met Thr Met Val Glu Arg Leu Glu Gly    |      |
|    | 35 40 45                                                           |      |
| 60 | Val Ala Gln Glu Ser Ser Asn Gly Trp Asn Asn Ala Gly Thr Gly His    |      |
|    | 50 55 60                                                           |      |
|    | Ser Ala Leu Met Glu Leu Asn Tyr Thr Pro Gln Asn Ala Asp Gly Ser    |      |

|    | 65                                                              | 70  | 75  | 80  |
|----|-----------------------------------------------------------------|-----|-----|-----|
|    | Ile Ser Ile Glu Lys Ala Val Ala Ile Asn Glu Ala Phe Gln Ile Ser |     |     |     |
|    | 85                                                              |     | 90  | 95  |
| 5  | Arg Gln Phe Trp Ala His Gln Val Glu Arg Gly Val Leu Arg Thr Pro |     |     |     |
|    | 100                                                             | 105 |     | 110 |
| 10 | Arg Ser Phe Ile Asn Thr Val Pro His Met Ser Phe Val Trp Gly Glu |     |     |     |
|    | 115                                                             | 120 |     | 125 |
|    | Asp Asn Val Asn Phe Leu Arg Ala Arg Tyr Ala Ala Leu Gln Gln Ser |     |     |     |
|    | 130                                                             | 135 | 140 |     |
| 15 | Ser Leu Phe Arg Gly Met Arg Tyr Ser Glu Asp His Ala Gln Ile Lys |     |     |     |
|    | 145                                                             | 150 | 155 | 160 |
|    | Glu Trp Ala Pro Leu Val Met Glu Gly Arg Asp Pro Gln Gln Lys Val |     |     |     |
|    | 165                                                             | 170 |     | 175 |
| 20 | Ala Ala Thr Arg Thr Glu Ile Gly Thr Asp Val Asn Tyr Gly Glu Ile |     |     |     |
|    | 180                                                             | 185 |     | 190 |
| 25 | Thr Arg Gln Leu Ile Ala Ser Leu Gln Lys Lys Ser Asn Phe Ser Leu |     |     |     |
|    | 195                                                             | 200 | 205 |     |
|    | Gln Leu Ser Ser Glu Val Arg Ala Leu Lys Arg Asn Asp Asp Asn Thr |     |     |     |
|    | 210                                                             | 215 | 220 |     |
| 30 | Trp Thr Val Thr Val Ala Asp Leu Lys Asn Gly Thr Ala Gln Asn Ile |     |     |     |
|    | 225                                                             | 230 | 235 | 240 |
|    | Arg Ala Lys Phe Val Phe Ile Gly Ala Gly Gly Ala Ala Leu Lys Leu |     |     |     |
|    | 245                                                             | 250 |     | 255 |
| 35 | Leu Gln Glu Ser Gly Ile Pro Glu Ala Lys Asp Tyr Ala Gly Phe Pro |     |     |     |
|    | 260                                                             | 265 | 270 |     |
| 40 | Val Gly Gly Gln Phe Leu Val Ser Glu Asn Pro Asp Val Val Asn His |     |     |     |
|    | 275                                                             | 280 | 285 |     |
|    | His Leu Ala Lys Val Tyr Gly Lys Ala Ser Val Gly Ala Pro Pro Met |     |     |     |
|    | 290                                                             | 295 | 300 |     |
| 45 | Ser Val Pro His Ile Asp Thr Arg Val Leu Asp Gly Lys Arg Val Val |     |     |     |
|    | 305                                                             | 310 | 315 | 320 |
|    | Leu Phe Gly Pro Phe Ala Thr Phe Ser Thr Lys Phe Leu Lys Asn Gly |     |     |     |
|    | 325                                                             | 330 |     | 335 |
| 50 | Ser Leu Trp Asp Leu Met Ser Ser Thr Thr Thr Ser Asn Val Met Pro |     |     |     |
|    | 340                                                             | 345 | 350 |     |
| 55 | Met Met His Val Gly Leu Asp Asn Phe Asp Leu Val Lys Tyr Leu Val |     |     |     |
|    | 355                                                             | 360 | 365 |     |
|    | Ser Gln Val Met Leu Ser Glu Glu Asp Arg Phe Glu Ala Leu Lys Glu |     |     |     |
|    | 370                                                             | 375 | 380 |     |
| 60 | Tyr Tyr Pro Gln Ala Lys Lys Glu Asp Trp Arg Leu Trp Gln Ala Gly |     |     |     |
|    | 385                                                             | 390 | 395 | 400 |
|    | Gln Arg Val Gln Ile Ile Lys Arg Asp Ala Glu Lys Gly Gly Val Leu |     |     |     |

|    |                                                                 |     |     |
|----|-----------------------------------------------------------------|-----|-----|
|    | 405                                                             | 410 | 415 |
|    | Arg Leu Gly Thr Glu Val Val Ser Asp Gln Gln Gly Thr Ile Ala Ala |     |     |
|    | 420                                                             | 425 | 430 |
| 5  | Leu Leu Gly Ala Ser Pro Gly Ala Ser Thr Ala Ala Pro Ile Met Leu |     |     |
|    | 435                                                             | 440 | 445 |
| 10 | Asn Leu Leu Glu Lys Val Phe Gly Asp Arg Val Ser Ser Pro Gln Trp |     |     |
|    | 450                                                             | 455 | 460 |
|    | Gln Ala Thr Leu Lys Ala Ile Val Pro Ser Tyr Gly Arg Lys Leu Asn |     |     |
|    | 465                                                             | 470 | 475 |
|    | 480                                                             |     |     |
| 15 | Gly Asp Val Ala Ala Thr Glu Arg Glu Leu Gln Tyr Thr Ser Glu Val |     |     |
|    | 485                                                             | 490 | 495 |
|    | Leu Gly Leu Asn Tyr Asp Lys Pro Gln Ala Ala Asp Ser Thr Pro Lys |     |     |
|    | 500                                                             | 505 | 510 |
| 20 | Pro Gln Leu Lys Pro Gln Pro Val Gln Lys Glu Val Ala Asp Ile Ala |     |     |
|    | 515                                                             | 520 | 525 |
|    | Leu                                                             |     |     |
| 25 |                                                                 |     |     |

|    |                                                            |  |  |
|----|------------------------------------------------------------|--|--|
| 30 | <210> 3                                                    |  |  |
|    | <211> 25                                                   |  |  |
|    | <212> DNA                                                  |  |  |
|    | <213> Artificial sequence                                  |  |  |
|    | <220>                                                      |  |  |
| 35 | <223> Description of the artificial sequence: Primer YojH1 |  |  |
|    | <400> 3                                                    |  |  |
|    | gcggaaattcg atggcggcaa aagcg                               |  |  |
| 40 | 25                                                         |  |  |
|    | <210> 4                                                    |  |  |
|    | <211> 20                                                   |  |  |
|    | <212> DNA                                                  |  |  |
|    | <213> Artificial sequence                                  |  |  |
| 45 | <220>                                                      |  |  |
|    | <223> Description of the artificial sequence: Primer YojH2 |  |  |
|    | <400> 4                                                    |  |  |
| 50 | 20                                                         |  |  |
|    | gttacgccgc atccaacatc                                      |  |  |
|    | <210> 5                                                    |  |  |
|    | <211> 20                                                   |  |  |
| 55 | 55                                                         |  |  |
|    | <212> DNA                                                  |  |  |
|    | <213> Artificial sequence                                  |  |  |
|    | <220>                                                      |  |  |
|    | <223> Description of the artificial sequence: Primer Tdh1  |  |  |
| 60 | 20                                                         |  |  |
|    | <400> 5                                                    |  |  |
|    | tcgcgaccta taagtttggg                                      |  |  |

<210> 6  
<211> 20  
<212> DNA  
5 <213> Artificial sequence  
  
<220>  
<223> Description of the artificial sequence: Primer Tdh2  
  
10 <400> 6  
aataccagcc cttgttcgtg 20  
  
<210> 7  
15 <211> 24  
<212> DNA  
<213> Artificial sequence  
  
<220>  
20 <223> Description of the artificial sequence: Primer  
YOJH1a  
  
<400> 7  
ggatccgttg atgccgcga aatc 24  
25  
  
<210> 8  
<211> 48  
<212> DNA  
30 <213> Artificial sequence  
  
<220>  
<223> Description of the artificial sequence: Primer YCHIS  
  
35 <400> 8  
cgcgaaattct tagtggtggt ggtggtggtg caacgcaata tccgccac 48  
  
<210> 9  
40 <211> 20  
<212> DNA  
<213> Artificial sequence  
  
<220>  
45 <223> Description of the artificial sequence: Primer Y\_01  
  
<400> 9  
gctggatgaa tggcgccgg 20  
50  
  
<210> 10  
<211> 27  
<212> DNA  
55 <213> Artificial sequence  
  
<220>  
<223> Description of the artificial sequence: Primer Y\_04  
  
<400> 10  
60 cgcgatccc cggttcaac gatgatg 27  
  
<210> 11

7

<211> 6  
<212> PRT  
<213> Escherichia coli

5 <220>  
<223> N-Terminus of the malate:quinone oxidoreductase protein B.

<400> 11  
10 Leu Asn Ala Val Ser Met  
1 5

15 <210> 12  
<211> 7  
<212> PRT  
<213> Escherichia coli

20 <220>  
<223> N-Terminus of the malate:quinone oxidoreductase protein C.

<400> 12  
25 Ala Val Ser Met Ala Ala Lys  
1 5

30

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/05548

A. CLASSIFICATION OF SUBJECT MATTER  
 IPC 7 C12N9/02 C12P13/08 C12N15/53

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  
 IPC 7 C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, WPI Data, PAJ, EPO-Internal, EMBL, EMBASE

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                | Relevant to claim No. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | KATHER BIRGIT ET AL: "Another unusual type of citric acid cycle enzyme in <i>Helicobacter pylori</i> : The malate:quinone oxidoreductase."<br>JOURNAL OF BACTERIOLOGY,<br>vol. 182, no. 11, June 2000 (2000-06),<br>pages 3204-3209, XP002179952<br>ISSN: 0021-9193<br>tables 1,2 | 1-4, 25,<br>26        |
| Y          |                                                                                                                                                                                                                                                                                   | 5-24, 27,<br>28       |
| X          | DATABASE EMBL 'Online'<br>BLATTNER F.R. ET AL.: "The complete genome sequence of <i>Escherichia coli</i> K-12."<br>retrieved from EBI<br>Database accession no. P33940<br>XP002179954<br>the whole document                                                                       | 1-4, 25,<br>26        |
| -/-        |                                                                                                                                                                                                                                                                                   |                       |

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

## \* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

\*&\* document member of the same patent family

|                                                                                                                                                                                            |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search                                                                                                                                  | Date of mailing of the international search report |
| 19 October 2001                                                                                                                                                                            | 05/11/2001                                         |
| Name and mailing address of the ISA<br><br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016 | Authorized officer<br><br>Lanzmann, M              |

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/05548

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                        | Relevant to claim No. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y        | DE 198 31 609 A (KERNFORSCHUNGSSANLAGE JUELICH) 15 April 1999 (1999-04-15)<br>page 5, line 55 -page 6, line 10<br>—                                                                                                                                                                                       | 5-24                  |
| Y        | EP 0 436 886 A (KERNFORSCHUNGSSANLAGE JUELICH) 17 July 1991 (1991-07-17)<br>the whole document<br>—                                                                                                                                                                                                       | 6-14, 19,<br>20       |
| Y        | US 5 939 307 A (LIAW HUNMING JAMES ET AL) 17 August 1999 (1999-08-17)<br>column 7, line 42-57; claims 4,17-20<br>—                                                                                                                                                                                        | 27, 28                |
| A        | MOLENAAR D ET AL: "BIOCHEMICAL AND GENETIC CHARACTERIZATION OF THE MEMBRANE-ASSOCIATED MALATE DEHYDROGENASE (ACCEPTOR) FROM CORYNEBACTERIUM GLUTAMICUM"<br>EUROPEAN JOURNAL OF BIOCHEMISTRY, BERLIN, DE,<br>vol. 254, 1998, pages 395-403, XP000941422<br>ISSN: 0014-2956<br>the whole document<br>—      | 1-28                  |
| A        | VOGEL R F ET AL: "CLONING AND SEQUENCE OF THE MDH STRUCTURAL GENE OF ESCHERICHIA COLIC CODING FOR MALATE DEHYDROGENASE"<br>ARCHIVES OF MICROBIOLOGY, BERLIN, DE,<br>vol. 149, 1987, pages 36-42, XP002932511<br>ISSN: 0302-8933<br>the whole document<br>—                                                | 1-28                  |
| P,X      | VAN DER REST MICHEL E ET AL: "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli."<br>JOURNAL OF BACTERIOLOGY, vol. 182, no. 24, December 2000 (2000-12), pages 6892-6899, XP002179953<br>ISSN: 0021-9193<br>the whole document<br>— | 1-4,<br>25-28         |
| P,Y      | EP 1 038 969 A (DEGUSSA)<br>27 September 2000 (2000-09-27)<br>the whole document<br>—                                                                                                                                                                                                                     | 1-28                  |
| P,Y      | EP 1 085 091 A (DEGUSSA<br>;KERNFORSCHUNGSSANLAGE JUELICH (DE))<br>21 March 2001 (2001-03-21)<br>the whole document<br>—                                                                                                                                                                                  | 1-28                  |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP 01/05548

| Patent document cited in search report | Publication date |    | Patent family member(s) | Publication date |
|----------------------------------------|------------------|----|-------------------------|------------------|
| DE 19831609                            | A 15-04-1999     | DE | 19831609 A1             | 15-04-1999       |
|                                        |                  | AU | 1148299 A               | 27-04-1999       |
|                                        |                  | BR | 9813021 A               | 15-08-2000       |
|                                        |                  | CN | 1275167 T               | 29-11-2000       |
|                                        |                  | WO | 9918228 A2              | 15-04-1999       |
|                                        |                  | EP | 1015621 A2              | 05-07-2000       |
|                                        |                  | HU | 0004381 A2              | 28-03-2001       |
|                                        |                  | SK | 4812000 A3              | 12-09-2000       |
| EP 0436886                             | A 17-07-1991     | DE | 3942947 A1              | 27-06-1991       |
|                                        |                  | DE | 59005821 D1             | 30-06-1994       |
|                                        |                  | EP | 0436886 A1              | 17-07-1991       |
| US 5939307                             | A 17-08-1999     | AU | 730102 B2               | 22-02-2001       |
|                                        |                  | AU | 3899497 A               | 20-02-1998       |
|                                        |                  | BR | 9710503 A               | 11-01-2000       |
|                                        |                  | CN | 1226931 A               | 25-08-1999       |
|                                        |                  | EP | 0917578 A1              | 26-05-1999       |
|                                        |                  | HU | 9903856 A2              | 28-03-2000       |
|                                        |                  | JP | 2000515763 T            | 28-11-2000       |
|                                        |                  | NO | 990362 A                | 26-01-1999       |
|                                        |                  | PL | 331351 A1               | 05-07-1999       |
|                                        |                  | TR | 9900213 T2              | 21-04-1999       |
|                                        |                  | WO | 9804715 A1              | 05-02-1998       |
| EP 1038969                             | A 27-09-2000     | DE | 19912384 A1             | 21-09-2000       |
|                                        |                  | AU | 2236900 A               | 21-09-2000       |
|                                        |                  | BR | 0001342 A               | 02-05-2001       |
|                                        |                  | CN | 1267734 A               | 27-09-2000       |
|                                        |                  | EP | 1038969 A2              | 27-09-2000       |
|                                        |                  | JP | 2000270888 A            | 03-10-2000       |
|                                        |                  | SK | 3742000 A3              | 09-10-2000       |
| EP 1085091                             | A 21-03-2001     | DE | 19941478 A1             | 08-03-2001       |
|                                        |                  | CN | 1291651 A               | 18-04-2001       |
|                                        |                  | EP | 1085091 A1              | 21-03-2001       |
|                                        |                  | JP | 2001095592 A            | 10-04-2001       |