Analyse Fonctionnelle pour Physiciens

Baptiste Claudon September 19, 2020

ÉCOLE POLYTECHNIQUE	FÉDÉRALE	DE	LAUSANNE
3ème année de Physique			
Baptiste CLAUDON			

Contents

I	Espaces	Fonctionnel	\mathbf{s}
---	---------	-------------	--------------

I. Le théorème de Stone-Weierstrass

3

Part I

Espaces Fonctionnels

I. LE THÉORÈME DE STONE-WEIERSTRASS

Théorème 1. Théorème de Diniz Soit (f_n) une suite de fonctions réelles et continues définies sur un compact $K \subset \mathbb{R}^n$ et convergent simplement et de manière monotone vers $f \in C(K,\mathbb{R})$. Alors cette suite converge uniformément vers f.

Preuve. Choisir, sans perte de généralité que (f_n) est décroissante et converge simplement vers 0. Soit $\epsilon > 0$. Poser pour $n \in \mathbb{N}$:

$$V_n = \{ x \in K : f_n(x) \le \epsilon \} \tag{1}$$

Par continuité des fonctions de la suite, tous ces ensembles sont des ouverts. Puisque la suite tend vers 0, on a :

$$K = \bigcup_{n \in \mathbb{N}} V_n = K \tag{2}$$

K étant compact, il existe un nombre $F \in \mathbb{N}$ tel que

$$K = \bigcup_{n=0}^{F} V_n = K \tag{3}$$

Puisque la suite est monotone décroissante, on a que m < n implique $V_m \subseteq V_n$, donc $V_F = K$.

Définition 1. Soit F une famille de fonctions définies sur un ensemble $X \subset \mathbb{R}^n$. On dit que F sépare X si :

$$\forall x, y \in X, x \neq y, \exists f \in F : f(x) \neq f(y) \tag{4}$$

Définition 2. On dit que F ne s'annule pas sur X si :

$$\forall x \in X \exists f \in F : f(x) \neq 0 \tag{5}$$

Définition 3. Si B est un sous-ensemble d'une \mathbb{K} -algèbre A, alors la \mathbb{K} -algèbre engendrée par B, $\mathcal{A}_{\mathbb{K}}(B)$ est la plus petite \mathbb{K} -algèbre contenant B.

Théorème 2. Théorème de Stone-Weierstrass Soit $X \subset \mathbb{R}^n$ un ensemble compact et soit $F \subseteq C(X,\mathbb{R})$ une famille de fonctions qui sépare X et qui ne s'annule pas sur X. Alors l'algèbre réelle $\mathcal{A}_{\mathbb{K}}(F)$ engendrée par F est uniformément dense dans $C(X,\mathbb{R})$:

$$\overline{\mathcal{A}_{\mathbb{K}}(F)}^{||\cdot||_{\infty}} = C(X, \mathbb{R}) \tag{6}$$

La preuve est laissée en exercice.

Corrolaire 1. Soit $X \subset \mathbb{R}^n$ un ensemble compact et $F \subseteq C(X,\mathbb{C})$ une famille de fonction qui sépare X, invariante sous conjugaison complexe et qui ne s'annule pas sur X. Alors l'algèbre complexe $\mathcal{A}_{\mathbb{C}}(F)$ engendrée par F est uniformément dense dans $C(X,\mathbb{C})$.

Preuve. On a $F = F^*$ car :

$$F^* \subseteq F = (F^*)^* \subseteq F^* \tag{7}$$

Comme F sépare X et ne s'annule pas sur X, $G=(F+F^*)\cup i(F-F^*)$ ne s'annule pas sur X non plus et sépare aussi X. Or $F\subseteq C(X,\mathbb{R})$ et par le théorème de Stone-Weierstrass 2, $C(X,\mathbb{R})=\overline{\mathcal{A}_{\mathbb{R}}(G)}$. Comme $C(X,\mathbb{C})=C(X,\mathbb{R})+iC(X,\mathbb{R})$ et que $\overline{\mathcal{A}_{\mathbb{R}}(G)}$, $i\overline{\mathcal{A}_{\mathbb{R}}(G)}\subset \overline{\mathcal{A}_{\mathbb{C}}(G)}$, on a que $C(X,\mathbb{C})=\overline{\mathcal{A}_{\mathbb{C}}(G)}$. Or : $\mathcal{A}_{\mathbb{C}}(G)=\mathcal{A}_{\mathbb{C}}(F)$.

Corrolaire 2. Soit $X \subset \mathbb{R}$ un ensemble compact. L'ensemble $\mathbb{C}[X]$ est uniformément dense dans $C(X,\mathbb{C})$.

Proposition 1. $\mathbb{C}[X] = \mathcal{A}_{\mathbb{C}}(\{1, id_X\})$ vérifie les hypothèses du corollaire I.

Corrolaire 3. Soit I = [a, b] un intervalle fermé de \mathbb{R} . L'algèbre engendrée sur les complexes par F défini comme :

$$F = e^{2\pi n i \frac{x-a}{x-b}}, x \in I, n \in \mathbb{N}$$
(8)

est uniformément dense dans $V = \{f : f \in C([a, b], \mathbb{C}), f(a) = f(b)\}.$

Proposition 2. La fonction φ définie par :

$$\varphi: [a,b] \to \partial B_1 0, x \mapsto e^{2\pi n i \frac{x-a}{x-b}} \tag{9}$$

induit un homéomorphisme isométrique $\Phi: C(\partial B_1(0), \mathbb{C}) \to V, f \mapsto f \circ \varphi.$ Or, $C(\partial B_1(0), \mathbb{C}) = overline \mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})$ puisque $\{1, z \mapsto z, z \mapsto z^*\}$ satisfait les hypothèses du corollaire I et $F = \Phi|_{\mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})}.$