二部图中的匹配

内容提要

- 完备匹配
 - 充要条件: Hall-条件 (相异性条件)
 - 充分条件: t-条件
- k正则二部图
- 无孤立点二部图

完备匹配

二部图G=<V₁,V₂,E>, |V₁|≤|V₂|,
M是匹配 ∧ |M|=|V₁|

霍尔条件

• 又称"相异性条件":

$$\forall S \subseteq V_1, |S| \leq |N(S)|$$

• $N(S) = \{ u \mid \exists v \in S, (v,u) \in E \} = \bigcup_{v \in S} \Gamma(v)$

题北京大学

霍尔定理(婚姻定理)

• 定理13.11(Hall,1935):

二部图G有完备匹配 \Leftrightarrow G满足霍尔条件 ($\forall S$, $|S| \le |N(S)|$)

霍尔定理证明

- 证:(⇒) 显然
- (\leftarrow) 反证法。设M为最大匹配,假设M不是完备匹配。必存在 $v_x \in V_1$ 为非饱和点,且必存在边e \in E-M与 v_x 关联(否则与hall条件矛盾),且 $v_y \in N(v_x)$ 为饱和点(否则不是最大匹配)。

考虑v、出发的所有交错路径,都不是可增广的。

 $S = \{v | v \in V_1, 且v 在交错路径上\},$

T = { $v | v \in V_2$, 且 v在交错路径上}.

由于各路径起点和终点都在S中; |S|=|T|+1, T=|N(S)|<|S| 与Hall条件矛盾!

t-条件

二部图G=<V₁,V₂,E>, t≥1
V₁中每个顶点至少关联t条边 ∧
V₂中每个顶点至多关联t条边

t=3

定理13.12

• 设G=<V₁,V₂,E>是二部图,则

G满足t-条件 → G中存在完备匹配

定理13.12证明

证:

 V_1 中任意 k 个顶点至少关联 kt 条边, 这 kt 条边至少关联 V_2 中 k 个顶点, 即相异性条件成立. #

例

- (1) 满足t-条件(t=3) (也满足Hall-条件)
- (2) 满足Hall-条件 (但不满足t-条件)
- (3) 不满足Hall-条件 (无完备匹配)

定理13.13 (k-正则二部图)

• k-正则二部图 $G=\langle V_1,V_2,E\rangle$ 中, 存在k个边不重的完美匹配

定理13.13证明

• 证: G满足t=k的t条件, 所以有完备匹配M₁,又 |V₁|=|V₂|, 所以完备匹配就是完美匹配. G- M_1 是(k-1)-正则二部图,又有完美匹配 M_2 ,

G-M₁-M₂是(k-2)-正则二部图,.....,

一共可得k个完美匹配.

显然这些匹配是边不重的.

定理13.14(无孤立点二部图)

• 无孤立点二部图G=<V₁,V₂,E>中,

$$\alpha_0 = \beta_1$$

定理13.14证明

小结

- 完备匹配
 - 充要条件: Hall-条件 (相异性条件)
 - 充分条件: t-条件
- k正则二部图
 - 有k个边不重完美匹配
- 无孤立点二部图
 - $-\alpha_0=\beta_1$

