2,4,6-三氯酚的 UV/H₂O₂ 光化学降解

高乃云¹,祝淑敏¹,马艳¹,戎文磊²,周圣东²,陆纳新²

(1. 同济大学 污染控制与资源化研究国家重点实验室,上海,200092; 2. 无锡自来水公司,江苏 无锡,214031)

摘要:采用 UV/ H_2O_2 工艺降解水中 2,4,6-三氯酚(2,4,6-TCP),研究 H_2O_2 投加量、pH、阴离子、阳离子、叔丁醇和腐殖酸对降解效果的影响,并利用 LC-HESI-MS-MS 探讨 UV/ H_2O_2 降解 2,4,6-TCP 的降解机理。研究结果表明:UV/ H_2O_2 降解 2,4,6-TCP 的过程符合拟一级反应动力学。随着 H_2O_2 投加量的增加,2,4,6-TCP 的去除率和反应速率增加,当 H_2O_2 投加量为 10 mmol/L 时,反应速率常数 K 达到 0.109 4 min⁻¹。酸性条件更利于 UV/ H_2O_2 降解 2,4,6-TCP。水中各种离子的存在对 2,4,6-TCP 的光解速率有较大的影响,其中阴离子 CO_3 -对反应均存在明显的抑制作用,阳离子 Fe^{3+} 促进效果显著。2,4,6-TCP 的 UV/H_2O_2 反应速率随叔丁醇浓度的增加而下降,腐殖酸在低浓度时促进反应进行,在高浓度时,2,4,6-TCP 的降解受到抑制。水中 2,4,6-三氯酚在 UV/H_2O_2 作用下主要发生脱氯反应,生成二氯邻二苯酚或二氯对二苯酚,未得到彻底矿化。

关键词: 2,4,6-三氯酚; UV/H_2O_2 ;降解;反应动力学

中图分类号:TU 991.2 文献标志码:A 文章编号:1672-7207(2013)03-1262-07

UV/H₂O₂ photochemical degradation of 2,4,6-trichlorophenol

GAO Naiyun¹, ZHU Shumin¹, MA Yan¹, RONG Wenlei², ZHOU Shengdong², LU Naxin²

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China;
 Wuxi Water Supply General Company, Wuxi 214031, China)

Abstract: The degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by UV/ H_2O_2 in aqueous solutions was investigated. The effects of H_2O_2 dosage, pH, cations, anions, tert-butanol and humic acid on the removal of 2,4,6-TCP were evaluated and the mechanism for oxidation of 2,4,6-TCP by UV/ H_2O_2 was analyzed by using LC-HESI-MS-MS. The results indicate that the UV- H_2O_2 degradation of 2,4,6-TCP well follows pseudo first order kinetics. The removal of 2,4,6-TCP and reaction rate can be enhanced by increasing H_2O_2 dosage. When the dosage of H_2O_2 is 10 mmol/L, the reaction rate constant K reaches 0.109 4 min⁻¹. The pH value of the solution greatly influences the 2,4,6-TCP degradation and the degradation performs well in acid condition. Irons in water have a significant influence on the 2,4,6-TCP degradation by UV/H_2O_2 . CO_3^{2-} inhibits the 2,4,6-TCP degradation significantly, however, Fe^{3+} exhibits an obvious promoting effects on 2,4,6-TCP degradation. A majority of 2,4,6-TCP transforms into dichlorocatechol or dichlorohydroquinone without complete mineralization.

Key words: 2,4,6- trichlorophenol; UV/H₂O₂; degradation; reaction kinetics

收稿日期:2012-03-21;修回日期:2012-05-28

基金项目:国家科技重大专项(2008ZX07421-002);住房和城乡建设部研究开发项目(2009-K7-4)

通信作者:马艳(1986-),女,江苏宜兴人,博士研究生,从事水处理理论与技术研究;电话:021-65988099; E-mail: my041203@126.com

2,4,6-三氯酚(2,4,6-TCP)是一种氯酚类化合物,广 泛应用于油漆、医药、农药、木材、纸浆等制造业, 该物质易溶于水, 25 溶解度为 $0.434 \text{ g/L}^{[1]}$, 能广泛 存在于各类水体中,并通过食物链富集。有研究发现: 三氯酚具有三致效应和遗传毒性[2],对人类健康造成 巨大威胁,因此,近年来,水中2,4,6-TCP的去除已 成为环境领域的热点之一。2,4,6-TCP 具有稳定的 C-CI键 CI原子和羟基之间的独特位置关系使2,4,6-TCP 结构稳定,不易被生物降解[3],传统工艺和生物作用 不能对其达到较好的去除效果。去除三氯酚的方法主 要分为物理和化学 2 类 ,物理方法包括活性炭吸附[4]、 膜分离技术[5]等,该方法只是将水中的三氯酚从水相 转移至另一相,并没有彻底降解污染物,容易造成二 次污染;化学方法,尤其是各种高级氧化(AOP)技术, 如超声辐照[6]、臭氧氧化[7]、紫外光解等,能有效去除 水中三氯酚,此外,多种 AOP 技术的联用可大大提高 氯酚类物质的去除效果 $^{[8]}$ 。本文作者分析了 UV/H_2O_2 工艺对 2,4,6-TCP 的去除效果和降解机理,以期为实 际应对水源水 2,4,6-TCP 污染提供有效的理论依据和 技术指导。

1 材料与方法

1.1 试验材料

2,4,6-TCP(纯度 > 98%) 购自美国 Sigma-Aldrich 公司,用去离子水配制成质量浓度为 100 mg/L 的储备液,使用时根据需要进行稀释。双氧水(分析纯,质量分数为 30%)购自阿拉丁(Aladdin)试剂集团有限公司。调节反应液 pH 所用溶液采用浓盐酸和 NaOH 固体(分析纯)配制。流动相甲醇、乙腈为 HPLC 级(Sigma-Aldrich),冰醋酸为优级纯。试验所用其他药剂均为分析纯,购于国药集团化学试剂有限公司(SCRC)。

1.2 试验方法与装置

采用 UV/H₂O₂ 工艺去除水中 2,4,6-TCP , 分别进行不同 H₂O₂ 投加量、不同反应 pH、不同阴离子(Cl⁻ , SO₄²⁻ , NO₃⁻ , HCO₃⁻ , CO₃²⁻)、不同阳离子(Mg²⁺ , Ca²⁺ , Mn²⁺ , Fe³⁺)以及投加叔丁醇、腐植酸的对照试验,在不同时刻取样,并在水样中加入适量 $0.1 \ mol/L$ 的 Na₂S₂O₃ 溶液终止反应。利用高效液相色谱仪对水样中 2,4,6-TCP 浓度进行测定。自制反应装置见图 1 , 所用紫外灯管为 Philips 公司生产,功率为 75 W,额定工作电压为 220 V,紫外灯主波长为 254 nm,光强为 142 μ W/cm²。

1—紫外灯管;2—灯筒;3—培养皿;4—磁力搅拌器转子; 5—磁力搅拌器;6—支墩

图 1 反应装置示意图

Fig.1 Schematic description of reactor

1.3 2,4,6-TCP 分析方法

2,4,6-TCP 浓度采用高效液相色谱仪(岛津LC-2010AHT)测定,色谱柱采用 shim-pack VP-ODS 色谱柱(长度×直径为 $250~\text{mm} \times 4.6~\text{mm}$),流动相中甲醇与水(水中含 1%乙酸)的体积比为 V(甲醇):V(水)=80:20,流动相流速为 1.0~mL/min,色谱柱柱温 40~,检测波长 289~nm。

利用高效液相色谱(Waters e2695 Separation Module)/质谱(Thermo Finnigan TSQ Quantum 型)对 UV/H₂O₂ 工艺降解 2,4,6-TCP 的生成产物进行分析。 色谱柱为 C18 柱(Thermo Scientific Hypersil GOLD, 长度×直径为 $100 \text{ mm} \times 2.1 \text{ mm}$),流动相为乙腈 (CH₃CN)(A 相)与 0.1%(质量分数)的甲酸(HCOOH)溶 液(B相),采用梯度洗脱模式,0~5 min,流动相体积 比维持在 V(A): V(B)=5:95, 之后 10 min A 相不断增加 直至 V(A):V(B)=90:10, 并维持 3 min, 最后 5 min,流 动相体积比返回至 V(A):V(B)=5:95, 检测时间共 23 min。流动相流速 300 μL/min, 柱温 40 , 进样量为 10 μL。质谱电离源为加热型电喷雾电离负源(H-ESI), 电喷雾电压为 3.5 kV, 鞘气(N₂)压力为 0.28 MPa, 辅 助气(N₂) 压力为 0.07 MPa, 离子传输毛细管温度为 300 .

2 结果与讨论

2.1 H₂O₂ 投加量的影响

2,4,6-TCP 初始质量浓度为 5.0 mg/L ,通过投加浓度分别为 0 , 0.5 , 1.0 , 2.0 , 5.0 , 10.0 mmol/L 的 H_2O_2 , 研究 H_2O_2 投加量对 UV/H_2O_2 降解 2,4,6-TCP 的影响。图 2 所示为不同 H_2O_2 投加量条件下 2,4,6-TCP 的光降解拟一级动力学曲线,图中 ρ_0 和 ρ 分别代表水中

2,4,6-TCP 的初始和不同时刻的质量浓度。由图 2 可知:UV/ H_2O_2 对 2,4,6-TCP 的降解过程符合拟一级反应动力学模型。不同 H_2O_2 投加量条件下 2,4,6-TCP 的光降解拟一级动力学参数见表 1。结果表明 随着 H_2O_2 投加量增大 ,2,4,6-TCP 的降解速率迅速升高 ,3 H_2O_2 投加量为 10 mmol/L 时 , 反应速率常数 ,4 达到 0.109 4 min $^{-1}$, 反应 ,45 min 后 ,2,4,6-TCP 基本降解完全。这是由于 ,45 min 后 ,2,4,6-TCP 基本降解完全。这是由于 ,45 min 后 ,2,4,6-TCP 基本降解完全。这是由于 ,45 min 后 ,25 ,45 min ,4

$$H_2O_2 + \cdot OH \longrightarrow HO_2 \cdot + H_2O$$
 (1)

图 2 H₂O₂ 投加量对 UV/H₂O₂ 降解 2,4,6-TCP 的影响 **Fig.2** Effect of dosage of H₂O₂ on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 1 不同 H_2O_2 投加量下 2,4,6-TCP 降解的拟一级动力学模型拟合参数

Table 1 Degradation parameters of kinetics models (pseudo first order) under different dosages of H₂O₂

H ₂ O ₂ 投加量/(mmol·L ⁻¹)	K/min ⁻¹	R^2
0.0	0.010 2	0.994 6
0.5	0.018 6	0.985 1
1.0	0.040 3	0.9898
2.0	0.066 3	0.978 6
5.0	0.093 7	0.991 4
10.0	0.109 4	0.996 2

注: R² 为线性相关系数。

2.2 pH 的影响

配制相同浓度的 2,4,6-TCP 反应液,初始质量浓度为 5.0 mg/L, H_2O_2 投加量为 1 mmol/L,研究反应液不同 pH(3.36,5.56,6.86,8.92,10.64)对 UV/ H_2O_2 降解 2,4,6-TCP 的影响。试验结果如图 3 和表 2 所示。结果表明,随着反应液 pH 增加,反应速率降低。这是由于 H_2O_2 在碱性条件下易电离,不稳定,主要以 HO_2 形式存在,可以大量消耗·OH,有研究表明^[9], HO_2 消耗·OH 的速度比 H_2O_2 要高 2 个数量级,具体过程见式(2)和(3),·OH 的减少使得 2,4,6-TCP 降解速率降低。而酸性条件下 H^+ 的存在能阻止 H_2O_2 分解,氧化效率较高。

$$H_2O_2 +OH^- \longrightarrow HO_2^- + H_2O$$
 (2)

$$HO_2^- + \cdot OH \longrightarrow H_2O + O_2^-$$
 (3)

图 3 pH 对 UV/H₂O₂降解 2,4,6-TCP 的影响

Fig.3 Effect of pH on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 2 不同 pH 条件下 2,4,6-TCP 降解的拟一级动力学模型 拟合参数

Table 2 Degradation parameters of kinetics models (pseudo first order) under different pH

反应液初始 pH	K/min ⁻¹	R^2
3.36	0.054 2	0.982 2
5.56	0.040 3	0.9898
6.86	0.035 9	0.990 6
8.92	0.033 1	0.995 3
10.64	0.028 3	0.985 7

2.3 阴离子的影响

2,4,6-TCP 初始质量浓度为 5.0 mg/L , H₂O₂ 投加

量为 1 mmol/L,溶液中分别投加浓度均为 1 mmol/L 的 Cl⁻, NO₃⁻, SO₄²⁻, HCO₃⁻和 CO₃²⁻, 试验结果如图 4 和表 3 所示。结果表明, 5 种阴离子对 2,4,6-TCP 的 UV/H₂O₂ 降解均体现抑制作用,其中 CO₃²-的抑制作 用最为明显。CO32-和HCO3-都是·OH的清除剂,HCO3-与·OH 反应生成的 CO3-也会消耗 H2O2, 具体过程见 反应式(4)~(7),从而降低 UV/H₂O₂ 工艺的氧化效率。 有研究发现,CO32-与·OH 的反应速率远远高于比 HCO₃⁻,从而 CO₃²⁻对 UV/H₂O₂体系降解 2,4,6-TCP 的 抑制作用大于 HCO、「[11]。 NO、本身对不饱和键具有亲 电作用,紫外照射时可光解产生·OH,但同时因其在 紫外光区有较强的吸收作用(内在惰性滤层作用),妨 碍光线有效通过溶液,降低了H2O2光解产生·OH的效 率,通常 NO3-的惰性滤层作用比产生·OH 的作用 强[12]。另有研究表明, NO3-对 UV/H2O2工艺的影响与 其在溶液中的浓度有很大关系[13],本试验中 NO; 浓度 对 UV/H₂O₂ 降解整体表现为抑制作用。水中 Cl⁻和

Fig.4 Effect of anions on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 3 不同阴离子条件下 2,4,6-TCP 降解的拟一级动力学模型拟合参数

Table 3 Degradation parameters of kinetics models (pseudo first order) in presence of different anions

	, r	
阴离子	K/min ⁻¹	R^2
空白样	0.040 3	0.989 8
Cl ⁻	0.039 3	0.989 6
$\mathrm{SO_4}^{2^-}$	0.039 5	0.998 6
$\mathrm{NO_3}^-$	0.038 3	0.986 1
$\mathrm{HCO_3}^-$	0.035 7	0.992 7
CO ₃ ²⁻	0.030 9	0.992 3

 SO_4^2 对反应的影响较复杂,在 UV 照射下可能产生一定量的·OH,同时也会消耗一部分·OH,离子浓度在一定范围内可以提高反应速率,超过范围则对反应速率用抑制作用 $^{[11]}$,在本试验条件下,1~mmol/L 的 Cl^- 和 SO_4^2 对反应略用抑制作用。

$$CO_3^{2-} + \cdot OH \longrightarrow CO_3^{-} \cdot + OH^{-}$$
 (4)

$$HCO_3^- + OH \longrightarrow HCO_3 + OH^-$$
 (5)

$$HCO_3 \longrightarrow CO_3 \longrightarrow +H^+$$
 (6)

$$CO_3^- \cdot + H_2O_2 \longrightarrow HO_2 \cdot + HCO_3^-$$
 (7)

2.4 阳离子的影响

2,4,6-TCP 初始质量浓度为 5.0 mg/L , H_2O_2 投加量为 1 mmol/L , 向反应液中分别投加浓度均为 1 mmol/L 的 Mg^{2+} , Ca^{2+} , Mn^{2+} , Fe^{3+} , 研究不同阳离子对 UV/H_2O_2 降解 2,4,6-TCP 的影响 , 试验结果如图 5 和表 4 所示。由图 5 可知 : Mg^{2+} , Ca^{2+} 和 Mn^{2+} 对 UV/H_2O_2 降解 2,4,6-TCP 影响不明显 , Mg^{2+} 和 Ca^{2+} 对反应

图 5 水中阳离子对 UV/H₂O₂ 降解 2,4,6-TCP 的影响 Fig.5 Effect of cations on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 4 不同阳离子条件下 UV/H₂O₂ 降解 2,4,6-TCP 的拟一级动力学模型拟合参数

Table 4 Degradation parameters of kinetics models (pseudo first order) in presence of different cations

阳离子	K/min ⁻¹	R^2
空白样	0.040 3	0.989 8
Mg^{2^+}	0.036 1	0.994 5
Ca^{2+}	0.027 9	0.995 7
Mn^{2^+}	0.042 5	0.997 2
Fe^{3+}	0.813 0	0.989 6

呈抑制作用, Mn^{2+} 对反应略有促进。 Fe^{3+} 的加入则明显促进了降解。这可能是因为 Fe^{3+} 在 H_2O_2 体系中产生类 Fenton 反应,同时 UV 辐照会提高类 Fenton 反应的氧化能力,促进·OH 的生成,具体过程见反应式(8)和(9),从而提高 2,4,6-TCP 的去除率。

$$Fe^{3+} + H_2O_2 \longrightarrow Fe^{2+} + HO_2 \cdot + H^+$$
 (8)

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + OH$$
 (9)

2.5 叔丁醇的影响

2,4,6-TCP 初始质量浓度为 5.0~mg/L , H_2O_2 投加量为 5~mmol/L , 叔丁醇投加量分别为 0 , 1 , 2 , 3~mmol/L ,研究投加不同浓度的叔丁醇对 UV/H_2O_2 降解 2,4,6-TCP 的影响 , 试验结果如图 6~n表 5~m示。结果表明 , 叔丁醇对 UV/H_2O_2 降解 2,4,6-TCP 有明显抑制作用 , 叔丁醇投加量越大 , 抑制效果越明显。这主要是由于叔丁醇作为一种有效的·OH 抑制剂 ,对·OH 有强烈的捕捉作用 , 高级氧化反应过程中 , 叔丁醇优先与·OH 发生反应 , 生成了具有高度选择性和惰性的中间产物 , 从而终止了自由基链反应 , 阻碍了·OH 与有

图 6 投加叔丁醇对 UV/ H₂O₂ 降解 2,4,6-TCP 的影响

Fig.6 Effect of concentration of tert-butanol on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 5 不同叔丁醇投加量条件下 UV/H_2O_2 降解 2,4,6-TCP 的 拟一级动力学模型拟合参数

Table 5 Degradation parameters of kinetics models (pseudo first order) under different concentrations of tert-butanol

叔丁醇投加量/(mmol·L ⁻¹)	K/min ⁻¹	R^2
0	0.093 7	0.991 4
1.0	0.047 1	0.994 6
2.0	0.034 5	0.993 9
3.0	0.027 8	0.986 7

机物的反应,导致 2,4,6-TCP 降解反应速率大幅度降低[14]。

2.6 腐殖酸的影响

腐殖酸是水体中有机物的主要组成部分,分子结 构复杂,会对有机物的氧化过程产生复杂的影响。试 验通过投加不同浓度的腐殖酸,研究腐殖酸对 UV/H₂O₂ 降解 2,4,6-TCP 的影响。试验中采用的 2,4,6-TCP 初始质量浓度为 5.0 mg/L ,H₂O₂ 投加量为 5 mmol/L,腐殖酸投加量分别为0,1.0,2.5,5.0 mg/L, 试验结果如图 7 和表 6 所示。结果表明,低质量浓度 的腐殖酸(1 mg/L)有利于 2,4,6-TCP 的降解 , 而随着腐 殖酸投加量的增加,2.4.6-TCP的降解速率降低。腐殖 酸在光化学作用下会生成水合电子,可与水中溶解氧 反应生成超氧负离子自由基 $(O_2\cdot)$,进而结合水体中的 氧离子生成 H_2O_2 , 促进光降解反应的进行[15]。当腐殖 酸投加量变大时,反应液的色度相应增加,影响光降 解效率,同时腐殖酸更易捕获水中·OH,与 2,4,6-TCP 产生竞争效应, 使 UV/H2O2 对 2,4,6-TCP 降解过程受 到抑制。

图 7 投加腐殖酸对 UV/H₂O₂ 降解 2,4,6-TCP 的影响

Fig.7 Effect of concentration of humic acid on degradation of 2,4,6-TCP by UV/H₂O₂ process

表 6 不同腐殖酸投加量条件下 UV/H_2O_2 降解 2,4,6-TCP 的 拟一级动力学模型拟合参数

Table 6 Degradation parameters of kinetics models (pseudo first order) under different concentrations of humic acid

腐殖酸投加量/(mg·L ⁻¹)	K/min ⁻¹	R^2
0	0.093 7	0.991 4
1.0	0.100 9	0.996 3
2.5	0.084 2	0.992 8
5.0	0.062 7	0.991 9

2.7 UV/H₂O₂降解 2,4,6-TCP 的产物分析

利用 LC-HESI-MS-MS 对 UV/ H_2O_2 降解 2,4,6-TCP 的产物进行分析,并对反应氧化途径进行分析推测。表 7 所示为 UV/ H_2O_2 工艺降解 2,4,6-TCP 的主要产物。结果表明,UV/ H_2O_2 降解水中 2,4,6-TCP 生成的产物主要是质核比为 177,179,181 的物质。2,4,6-TCP 的质核比由于氯原子存在同位素而呈现为 195,197,199,主要产物的质荷比较 2,4,6-TCP 的少 18,由此推断:UV/ H_2O_2 降解 2,4,6-TCP 主要是通过氧化脱氯完

成。UV/ H_2O_2 体系中,生成的羟基自由基·OH 攻击 2,4,6-TCP 苯环上的一个 C—Cl,氯原子被氧化脱去生 成氯离子,而 2,4,6-TCP 则形成正电离子,可以和水中的氢氧根结合,生成二氯对苯二酚或二氯邻苯二酚,具体过程见图 8。相关研究也表明,光催化氧化 2,4,6-TCP 时,主要发生氧化脱氯过程^[16]。从 2,4,6-TCP 的产物分析可知:UV/ H_2O_2 工艺可以去除水中 2,4,6-TCP,但反应不彻底,无法对其完全降解,达到 彻底矿化。

表 7 LC-HESI-MS-MS 检测 UV/H₂O₂ 降解 2,4,6-TCP 主要中间产物(负离子模式)

Table 7 Main fragment ions of reaction intermediates of 2,4,6-TCP degraded by UV/H₂O₂ process identified by LC-HESI-MS-MS (negative ion detection mode)

(negative foil detection mode)				
物质	出峰时间/ min	主要碎片离子 质荷比	分子 质荷比	结构式
2,4,6-三氯苯酚 (2,4,6-TCP)	14.96	36 159 96	195 197 199	CI
二氯对苯二酚 或 二氯邻苯二酚	13.13	131 113 89	177 179 181	CI CI CI OH

图 8 UV/H₂O₂ 降解 2,4,6-TCP 的反应途径推断

Fig.8 Proposed 2,4,6-TCP degradation pathway by UV/H₂O₂ process

3 结论

- (1) UV/H_2O_2 工艺能有效地降解 2,4,6-TCP,降解效果受 H_2O_2 投加量、pH、不同阴离子、阳离子的影响。在相同条件下 随着 H_2O_2 投加量的增大 2,4,6-TCP 降解速率增大;反应液 pH 降低,2,4,6-TCP 降解效果提高; CI^- , NO_3^- , $SO_4^{2^-}$, HCO_3^- 和 $CO_3^{2^-}$ 对 2,4,6-TCP 的降解存在抑制作用,其中 $CO_3^{2^-}$ 影响最大。常见阳离子中, Mg^{2^+} 和 Ca^{2^+} 对 2,4,6-TCP 的 UV/H_2O_2 降解反应有证向促进作用,其中 Fe^{3^+} 的加入对降解反应有正向促进作用,其中 Fe^{3^+} 的促进效果显著。 叔丁醇对 2,4,6-TCP 的 UV/H_2O_2 降解有抑制作用,其浓度越大抑制效果越明显。腐殖酸对 2,4,6-TCP 降解的影响较复杂。腐殖酸在低浓度时,促进 2,4,6-TCP 降解反应的进行;高浓度时,2,4,6-TCP 的降解受到抑制。
- (2) UV/H_2O_2 降解 2,4,6-TCP 主要是通过氧化脱氯完成。在羟基自由基·OH 作用下,2,4,6-TCP 上的一个氯原子被氧化脱去并被羟基取代,生成二氯对苯二酚或二氯邻苯二酚,无法得到彻底矿化,需要在 UV/H_2O_2 工艺基础上进一步优化改善技术,使2,4,6-TCP 矿化完全。

参考文献:

- [1] Czaplicka M. Sources and transformations of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322(1/2/3): 21–29.
- [2] Collins J J, Bodner K, Aylwad L L, et al. Mortality rates among trichlorophenol workers with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. American Journal of Epidemiology, 2009, 170(4): 501–506.
- [3] Wang J L, Qian Y. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels[J]. Chemosphere, 1999, 38(13): 3109–3117.
- [4] 詹健, 朱冬梅, 刘振中. 表面改性活性炭去除水中 2,4,6-三氯酚的实验[J]. 重庆大学学报, 2011, 34(7): 120-124.

 ZHAN Jian, ZHU Dongmei, LIU Zhenzhong. The experiment on surface modification activated carbon for the removal of 2,4,6-trichlorophenol from water[J]. Journal of Chongqing University, 2011, 34(7): 120-124.
- [5] 孙亚锡,沙布,王晓东,等. 膜生物反应器去除原水中微量 2,4,6-三氯酚的研究[J]. 水处理技术,2007,33(12):42-45.

- SUN Yaxi, Sagbo O, WANG Xiaodong, et al. Removal of trace from surface water by membrane bioreactor [J]. Technology of Water Treatment, 2011, 34(7): 120–124.
- [6] Pandit A B, Gogate P R, Mujumdar S. Ultrasonic degradation of 2:4:6 trichlorophenol in presence of TiO₂ catalyst[J]. Ultrasonics Sonochemistry, 2007, 33(12): 42–45.
- [7] Huang W J, Fang G C, Wang C C. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260(1/2/3): 45-51.
- [8] Trapido M, Hirvonen A, Veressinina Y, et al. Ozonation, ozone/UV and UV/H₂O₂ degradation of chlorophenols[J]. Ozone-Science & Engineering, 1997, 19(1): 75–96.
- [9] Crittenden J C, Hu S M, Hand D W, et al. A kinetic model for UV/H₂O₂ process in a completely mixed batch reactor[J]. Water Research, 1999, 33(10): 2315–2328.
- [10] Perez M, Torrades F, Garcia-Hortal J A, et al. Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions[J]. Applied Catalysis B-Environmental, 2002, 36(1): 63-74.
- [11] Liao C H, Gurol M D. Chemical oxidation by photolytic decomposition of hydrogen-peroxide[J]. Environmental Science and Technology, 1995, 29(12): 3007–3014.
- [12] Du Y X, Zhou M H, Lei L C. The role of oxygen in the degradation of p-chlorophenol by Fenton system[J]. Journal of Hazardous Materials, 2007, 139(1): 21–29.
- [13] 张文兵, 肖贤明, 傅家谟, 等. 溶液中阴离子对 UV/H₂O₂ 降解 4-硝基酚的影响[J]. 中国环境科学, 2002, 22(4): 108-115. ZHANG Wenbing, XIAO Xianming, FU Jiamo, et al. Effect of anions in aqueous solution on the degradation of 4-nitrophenol by UV/H₂O₂ process[J]. China Environmental Science, 2002, 22(4): 108-115.
- [14] Ma J, Graham N J D. Degradation of atrazine by manganesecatalysed ozonation: Influence of radical scavengers[J]. Water Research, 2000, 34(15): 3822–3828.
- [15] 潘晶, 郝林, 张阳, 等. 溶液中阴离子和腐殖酸对 UV/H₂O₂降解 2,4-二氯酚的影响[J]. 环境污染与防治, 2007, 29(7): 487-494.
 - Pan Jing, HAO Lin, ZHANG Yang, et al. Effects of anions and humic acid on UV/H₂O₂ oxidation of 2,4-DCP[J]. Environmental Pollution and Control, 2007, 29(7): 487–494.
- [16] Konstantinos C C, Eleni S, Maria L, et al. Mechanism of catalytic degradation of 2,4,6-trichlorophenol by a Fe-porphyrin catalyst[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 417–424.

(编辑 赵俊)