

Figure 1: Future Work - Real-Time Forecasting System

Figure 2: Actual and Projected Installed Electricity Generation Capacity Distribution

Figure 3: Block Diagram Ensemble Solar/Wind Power Forecasting

Figure 4: Organization of Application

Figure 5: Polycrystalline Solar PV module I-V and P-V Curves at different Irradiances

Figure 6: Polycrystalline Solar PV module I-V and P-V Curves at different Temperatures

Figure 7: Monocrystalline Solar PV module I-V and P-V Curves at different Irradiances

Figure 8: Monocrystalline Solar PV module I-V and P-V Curves at different Temperatures

Figure 9: A-Si Thin Film Solar PV module I-V and P-V Curves at different Irradiances

Figure 10: A-Si Thin Film Solar PV module I-V and P-V Curves at different Temperatures

Figure 11: CDTE Thin Film Solar PV module I-V and P-V Curves at different Irradiances $\,$

Figure 12: CDTE Thin Film Solar PV module I-V and P-V Curves at different Temperatures

Figure 13: Polycrystalline Solar PV moduleP-V and I-V curves for Shading without Bypass Diode and at different number of shaded cells

Figure 14: Polycrystalline Solar PV moduleP-V and I-V curves for Shading with Bypass Diode and at different number of shaded cells

Figure 15: Effect of Parallel Resistance on I-V Curve

Figure 16: Effect of Series Resistance on I-V Curve

Figure 17: CompleteModel of PV Cell

Figure 18: PV - Cell, Module and Array

Figure 19: Effect of Series connected modules on I-V Curve

Figure 20: Effect of Parallel connected modules on I-V Curve

Figure 21: PV module - Open Circuit, Short Circuit and Load Connected

Figure 22: PV module with n Cells - top cell in sun, or in shade

Figure 23: Effect of shading one cell in n cell module

Figure 24: Mitigation of shading problem with Bypass Diode - In sunny cell bypass diode is cut-off, in shaded cell it conducts

Figure 25: Effect of Bypass Diode on I-V Curve

Figure 26: Blocking Diode prevents reverse flow of current through PV modules $\,$

Figure 27: Charanka Solar Park PV Technology-Wise CUF Comparison

Figure 28: Charanka Solar Park PV Technology-Wise CUF Comparison

Figure 29: Starting Screen of Solar Application

Figure 30: PV I-V and P-V Curve Generator Module

Figure 31: String and Inverter Sizing Module

Figure 32: Solar and Regional Clock Module

Figure 33: Grid Connected PV Energy Evaluation Module

Figure 34: Sun Path Diagram Module

Figure 35: Grid Connected PV Energy Result Screen

Figure 36: Time Horizons for Solar Forecasting

Figure 37: Time Horizons for Solar Forecasting

Figure 38: Time Horizons for Solar Forecasting

Figure 39: Feed-Forward Neural Network Schematic

Figure 40: Artificial Neuron Model

Figure 41: WRF Software Schematic

Figure 42: Raspberry-Pi Cluster Schematic

Figure 43: Wind Turbine

Figure 44: Effect of Altitude on Pressure

Figure 45: Effect of Hub-Height and Terrain on Wind Velocity

Figure 46: Wind Turbine Energy Estimation Schematic