# anyoneAl

Team 01
Automatic Car Classification



Nahuel Garcia



Johee I Luna



Agustin Genou



Enzo Gianotti



Carlos Prado



Nicolas Passadore

#### **Structure**

- 1. Deliverables
- 2. Definition of the objective of this work
- 3. Literature Review for model Selection
- 4. Workplan
  - a. Designed Workflow
  - b. Deployment: Defined Architecture
  - c. Definition of profiles
- 5. Exploratory Data Analysis and Preprocessing
  - a. Analysis
  - b. Problems found
  - C. Use of classification models
    - Custom binary Classification Model
    - YoloV7
  - d. Remove Background
- 6. Main Model Selected
  - a. Metrics
- 7. Project DEMO
- 8. Conclusions
- 9. Next Steps
- 10. **Q&A**

#### **Deliverables**

- Vehicle classifier Convolutional Neural Network (CNN) for make and model for e-commerce
- Exploratory Data Analysis (EDA)
- Pre-processing, data preparation and training scripts
- Application Programming Interface (API) and basic User Interface (UI)
- Containerized with Docker and ready to be deployed
- Unit tests
- OCR

### 1. Objectives Definition

- Online car <u>marketplaces</u> need to process and organize large volumes of images in their websites.
- Users need to reduce the time they spend on their online bidding process.
- Cazoo is being forecast to record a compound annual growth rate of 209 percent between 2020 and 2022 (Statista).



### 1.a Analytic Approach

- The business problem can be solved by implementing an image classification Machine Learning system that predicts the make and model of an uploaded image.
- The system deployed has to filter out corrupted files and non-vehicle images.



# 1. "A Systematic Evaluation of Recent Deep Learning Architectures for Fine-Grained Vehicle Classification" by Valev, Sommer and Beyerer

- Objective: compare the <u>performance</u> of Convolutional Neural Network (CNN) architectures for classification tasks
- Dataset: Stanford Cars-196 dataset.
- Methodology: adapt existing CNN for fine-grained vehicle classification <u>transfer learning</u> and <u>data</u> augmentation
- Evaluation: compare architectures, approach (from scratch and fine-tuned) and accuracy
- Results: <u>DenseNet-161</u> had the highest accuracy
- **Conclusion:** it's better to use <u>fine-tuned architectures</u> trained on ImageNet with data augmentation



Figure 4: Example of several data augmentation strategies. Note that the blur and noise values have been exaggerated for visualization purposes.

# 2. "Data Augmentation and Clustering for Vehicle Make/Model Classification" by Nafzi, Brauckmann and Glasmachers

- Objective: improve the accuracy of a vehicle classification model by using clustering
- Dataset: Stanford data set and video data.
- Data Augmentation: web crawler to download data of older car models.
- Clustering: matching score of two feature vectors (client score or impostor score) to increase classes for each year
- CNN-Architecture: based on Res-Net
- **Conclusion:** clustering is useful for data augmentation with vehicles with different released years and/or different perspectives.



Fig. 1. Examples of the generated classes after data augmentation and clustering by Mercedes-Benz C.

# 3. WorkPlana. Designed WorkFlow



#### 3. WorkPlan

### **b** Designed Architecture



# 3. WorkPlan c Definition of profiles

- Definition:
  - Objectives
  - Tasks and order of their execution
  - Task compliance monitoring tools
  - Sprint times
  - Profiles and responsibilities
- Objective:
  - Manage knowledge efficiently
  - Optimize time



# Fundamental Data Science Methodology



The methodology consists of 10 steps that form an iterative process to discover insights.







# 4. Exploratory Data Analysis (EDA)



Models







### b). Problems Found



The result of the graphs shows us that there is a positive bias of models, so only 4% of the total images were taken for the final model, improving the final accuracy.



## c). Models

To create our classifier we had to investigate CNNs, which are networks useful for finding patterns in images, object, face and scene recognition



#### c. YOLOv7

Real-time object detection system



- Speed and accuracy
- Clean our dataset from non-vehicles

### d. Remove Background



- Improve data quality
- Better model
- Dataset reduced from 27 GB to 14 GB

#### 5. Main Model Selected: DenseNet

- A Densenet architecture is composed of Dense blocks.
- A Dense block is a group of layers densely connected together.
- A single layer has batch normalization, ReLu activation and a 3x3 convolution.
- The feature maps inside each block are the same size
- There is a transition layer between Dense blocks.

#### Main Model Selected: DenseNet



#### 5. Main Model Selected: Model details

- **Densenet201** ~ 14 million parameters, pretrained on imagenet.
- We included a dropout layer and use data augmentation.
- All layers were trained.
- 273 classes
- ~ 72 thousand images without background used for training.

# 5. Main Model Selected: a Metrics

• Test accuracy: 85%

• Validation accuracy: 86%

• Train accuracy: 94%

• Training time: ~10 hours



## **Project Demo**

anyoneai.com

#### Conclusions

- With a hardware Mac M1 16GB, the response time of the app was on average between 1 up to 5 seconds.
- The model manages to distinguish between different makes and models of cars.
- The combination of models allows to distinguish the images that are not cars.
- However, using multiple models results in increased response times.
- Despite the low quality of the data, the model predicts with an accuracy greater than 85%.

### **Next Steps**

- Increase the amount of data by adding images of vehicles.
- Expand the number of classes with vehicles with different released years and/or different perspectives.
- Improve the quality of images with sharpening filters.
- Reduce imbalanced classes in the dataset with more samples using web crawling.
- Experiment with different hyperparameters to improve the model's accuracy.
- Perform more data augmentation techniques.
- Try other models and architectures.
- Optimize source code to reduce response time.



anyoneai.com