Olimpiada Naţională de Matematică Etapa Naţională, 4 aprilie 2018 Clasa a X-a

Soluții și bareme orientative

Problema 1. Fie $n \in \mathbb{N}$, $n \geq 2$ şi numerele $a_1, a_2, ..., a_n \in (1, \infty)$. Demonstrați că funcția $f : [0, \infty) \to \mathbb{R}$, definită prin relația

$$f(x) = (a_1 a_2 ... a_n)^x - a_1^x - a_2^x - ... - a_n^x$$

pentru orice $x \in [0, \infty)$, este strict crescătoare.

Soluție și barem: Vom realiza demonstrația prin inducție matematică.

Pentru n=2, fie $a_1,a_2\in(1,\infty)$. Avem

$$f(x) = (a_1 a_2)^x - a_1^x - a_2^x = (a_1^x - 1)(a_2^x - 1) - 1.$$

Presupunem proprietatea este adevărată pentru oricare n numere din $(1, \infty)$ şi o demonstrăm pentru n+1 numere $a_1, a_2, ..., a_n, a_{n+1} \in (1, \infty)$. Avem

$$f(x) = (a_1 a_2 ... a_n a_{n+1})^x - a_1^x - a_2^x - ... - a_n^x - a_{n+1}^x$$

= $((a_1 a_2 ... a_n a_{n+1})^x - (a_1 a_2 ... a_n)^x - a_{n+1}^x) + ((a_1 a_2 ... a_n)^x - a_1^x - a_2^x - ... - a_n^x).$

Funcția $g:[0,\infty)\to\mathbb{R}, g(x)=(a_1a_2...a_na_{n+1})^x-(a_1a_2...a_n)^x-a_{n+1}^x$ este strict crescătoare deoarece $a_1a_2...a_n>1$ și $a_{n+1}>1$ (cazul n=2).

Funcția $h:[0,\infty)\to\mathbb{R},\ h(x)=(a_1a_2...a_n)^x-a_1^x-a_2^x-...-a_n^x$ este strict crescătoare conform ipotezei de inducție. Atunci f=g+h este strict crescătoare.

Problema 2. Triunghiul ABC este înscris în cercul C(O,1). Fie G_1, G_2, G_3 centrele de greutate ale triunghiurilor OBC, OAC și respectiv OAB. Demonstrați că triunghiul ABC este echilateral dacă și numai dacă $AG_1 + BG_2 + CG_3 = 4$.

Atunci

$$144 = \left(\sum |4a - h|\right)^{2} \le 3\sum |4a - h|^{2} = 3\sum \left(16|a|^{2} - 4a\overline{h} - 4\overline{a}h + |h|^{2}\right)$$
$$= 144 - 12\overline{h}\sum a - 12h\sum \overline{a} + 3|h|^{2} = 144 - 21|h|^{2}.$$

Obţinem $|h|^2 \le 0$, deci |h| = 0. Rezultă O = H, deci triunghiul ABC este echilateral. 3p

Problema 3. Fie $n \in \mathbb{N}^*$, $n \geq 2$. Demonstrați că, pentru orice numere complexe $a_1, a_2, ..., a_n$ și $b_1, b_2, ..., b_n$, următoarele afirmații sunt echivalente:

a)
$$\sum_{k=1}^{n} |z - a_k|^2 \le \sum_{k=1}^{n} |z - b_k|^2$$
, pentru orice $z \in \mathbb{C}$;

b)
$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} b_k \text{ și } \sum_{k=1}^{n} |a_k|^2 \le \sum_{k=1}^{n} |b_k|^2$$
.

Soluție și barem: $b \Rightarrow a$ Avem

$$\sum_{k=1}^{n} |z - a_k|^2 = n |z|^2 - z \sum_{k=1}^{n} \overline{a}_k - \overline{z} \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} |a_k|^2$$

$$\leq n |z|^2 - z \sum_{k=1}^{n} \overline{b}_k - \overline{z} \sum_{k=1}^{n} b_k + \sum_{k=1}^{n} |b_k|^2$$

$$= \sum_{k=1}^{n} |z - b_k|^2,$$

Notăm $a = \sum_{k=1}^{n} a_k$ şi $b = \sum_{k=1}^{n} b_k$. Presupunem, prin reducere la absurd, că $a \neq b$. Fie z = (1-t) a + tb, unde $t \in \mathbb{R}$. Atunci

$$\sum_{k=1}^{n} |z - a_k|^2 = n |z|^2 - z \sum_{k=1}^{n} \overline{a}_k - \overline{z} \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} |a_k|^2$$

$$= (n-1) |z|^2 + |z|^2 - z \overline{a} - \overline{z} a + |a|^2 + \left(\sum_{k=1}^{n} |a_k|^2 - |a|^2\right)$$

$$= (n-1) |z|^2 + |z - a|^2 + \left(\sum_{k=1}^{n} |a_k|^2 - |a|^2\right)$$

$$= (n-1) |z|^2 + t^2 |b - a|^2 + \left(\sum_{k=1}^{n} |a_k|^2 - |a|^2\right).$$

Analog avem $\sum_{k=1}^{n} |z - b_k|^2 = (n-1)|z|^2 + (1-t)^2|b-a|^2 + \left(\sum_{k=1}^{n} |b_k|^2 - |b|^2\right)$**2p** Atunci

$$\sum_{k=1}^{n} |z - a_k|^2 - \sum_{k=1}^{n} |z - b_k|^2$$

$$= 2t |b - a|^2 + \left(\sum_{k=1}^{n} |a_k|^2 - |a|^2\right) - \left(\sum_{k=1}^{n} |b_k|^2 - |b|^2\right) - |b - a|^2.$$

Pentru

$$t > \frac{|b-a|^2 + \left(\sum_{k=1}^n |b_k|^2 - |b|^2\right) - \left(\sum_{k=1}^n |a_k|^2 - |a|^2\right)}{2|b-a|^2},$$

Problema 4. Fie $n \in \mathbb{N}^*$, $n \geq 2$. Pentru numerele reale $a_1, a_2, ..., a_n$, notăm $S_0 = 1$ și

$$S_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} a_{i_1} a_{i_2} \dots a_{i_k},$$

suma tuturor produselor de câte k numere alese dintre $a_1, a_2, ..., a_n, k \in \{1, 2, ..., n\}$.

Determinați numărul n-uplurilorr $(a_1, a_2, ..., a_n)$ pentru care are loc relația:

$$(S_n - S_{n-2} + S_{n-4} - \dots)^2 + (S_{n-1} - S_{n-3} + S_{n-5} - \dots)^2 = 2^n S_n.$$

Soluție și barem: Are loc identitatea

$$\prod_{k=1}^{n} (a_k + i) = (S_n - S_{n-2} + S_{n-4} - \dots) + i(S_{n-1} - S_{n-3} + S_{n-4} - \dots).$$

......1p

Rezultă

$$(S_n - S_{n-2} + S_{n-4} - \cdots)^2 + (S_{n-1} - S_{n-3} + S_{n-4} - \cdots)^2$$

$$= \left| \prod_{k=1}^n (a_k + i) \right|^2 = \prod_{k=1}^n |a_k + i|^2 = \prod_{k=1}^n (a_k^2 + 1).$$

Relația din enunț este echivalentă cu

$$\prod_{k=1}^{n} (a_k^2 + 1) = 2^n a_1 a_2 \cdots a_n.$$

......2p

Prin urmare, numărul n-uplelor $(a_1, a_2, ..., a_n)$ pentru care are loc relația din enunț este

$$C_n^0 + C_n^2 + C_n^4 + \dots = 2^{n-1}$$
.

 $2_{
m I}$