「ベイズ統計の理論と方法」 1. はじめに

@tmiya

June 21, 2017

定義 1

定義 1

- \bullet $W \subset \mathbb{R}^d$: パラメータ全体の集合
- あるパラメータ $w \in W$ が存在して q(x) = p(x|w) と出来る \Leftrightarrow q(x) は p(x|w) で実現可能
- 真のパラメータの集合 $W_{00}=\{w\in W\mid \forall x,\ q(x)=p(x|w)\}$

補題 1

補題 1

- ① 真の分布 q(x) が確率モデル p(x|w) で実現可能 $\Leftrightarrow W_{00} \neq \emptyset$
- ② $W_{00} \neq \emptyset$ とする。任意の $w \in W_{00}$ に対して p(x|w) は同じ確率分布を表す。

証明

- ① \Rightarrow)真の分布を実現可能な $w \in W$ が存在するから、 $w \in W_{00}$ \Leftrightarrow) $W_{00} \neq \emptyset$ ゆえ $\exists w \in W_{00}$ であり、 $\forall x, \ q(x) = p(x|w)$
- ② $w, w' \in W_{00}$ とすると p(x|w) = q(x) = p(x|w') である。

例 6、注意 11

例 $6:(x,y)\in\mathbb{R}^2,\ w=(a,b)\in\mathbb{R}^2$ とする。

$$p(y|x,a,b) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y-a\sin(bx))^2\right).$$

$$q(y|x)=p(y|x,1,1)$$
 のとき、 $W_{00}=\{(-1,-1),\ (1,1)\}$ $q(y|x)=p(y|x,0,0)$ のとき、 $W_{00}=\{(a,b)\mid ab=0\}$ $q(y|x)=rac{1}{\sqrt{2\pi}}\exp\left(-rac{1}{2}(y-x)^2
ight)$. のとき、 $W_{00}=\emptyset$

注意 $11:W_{00}$ の元が複数個あるとき、p(x|w) は w に依存しないが、微分 $\left(\frac{\partial}{\partial w_s}\right)^k\log p(x|w)$ は w に依存して異なりうる。