Théorie des langages rationnels : THLR CM 2

Uli Fahrenberg

EPITA Rennes

S3 2024

Aperçu ●0000

Aperçu

Programme du cours

Aperçu

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Dernièrement : L'algèbre de mots

Soit Σ un ensemble fini.

• on appelle les éléments $a, b, \ldots \in \Sigma$ des symboles

On dénote Σ^* l'ensemble de tous les suites finies d'éléments de Σ .

- donc $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots = \bigcup_{n > 0} \Sigma^n$
- on appelle les éléments $u, v, w, \ldots \in \Sigma^*$ des mots

La concaténation de deux mots $a_1 \dots a_n$ et $b_1 \dots b_m$ est le mot

$$a_1 \ldots a_n b_1 \ldots b_m$$
.

- E : le mot vide
- l'opération « . » sur mots est associative et a ε comme élément neutre de deux côtés

La longueur |u| d'un mot $u \in \Sigma^*$: le nombre de symboles de u.

- \bullet $|\varepsilon| = 0$ et |uv| = |u| + |v|
- uⁿ : la concaténation de n copies de u
- $\bullet |u^n| = n|u|$

Bonus bonus

Dernièrement : L'algèbre de langages

Un langage est un sous-ensemble $L \subseteq \Sigma^*$.

- opérations ensemblistes : $L_1 \cup L_2$, $L_1 \cap L_2$, \overline{L}
- concaténation : $L_1 L_2 = \{u_1 u_2 \mid u_1 \in L_1, u_2 \in L_2\}$
- $L^n = L \cdots L$ (*n* copies de *L*)
- étoile de Kleene : $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots = \bigcup_{n \geq 0} L^n$

L'opération « . » sur langages est associative et a $\{\varepsilon\}$ comme élément neutre de deux côtés.

• $L.\emptyset = \emptyset.L = \emptyset$

Apercu

5 minutes de réflexion

Vrai ou faux?

Apercu

- $\{a\}^n = \{a^n\}$
- $\{a,b\}^n = \{a^n,b^n\}$
- **③** L^* est un ensemble infini pour tout $L \subset \Sigma^*$
- **o** pour tout $L \subseteq \Sigma^*$ et $n \in \mathbb{N}$, l'ensemble $\{u \in L \mid |u| \leq n\}$ est un ensemble fini

- $(L_1 \cup L_2)^* = (L_1^* L_2)^* L_1^*$

Bonus bonus

5 minutes de réflexion

Vrai ou faux?

Apercu

$$\{a\}^n = \{a^n\}$$

$$\{a,b\}^n = \{a^n,b^n\}$$

$$ullet$$
 est un ensemble infini pour tout $L\subset \Sigma^*$

$$lacktriangle$$
 pour tout $L\subseteq \Sigma^*$ et $n\in \mathbb{N}$, l'ensemble $\{u\in L\mid |u|\leq n\}$ est un

ensemble fini

$$(L_1 \cup L_2)^* = (L_1^*L_2)^*L_1^*$$

Langages rationnels

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

donc union, concaténation et étoile de Kleene

Théorème (pour plus tard): Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) =
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} =$

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

donc union, concaténation et étoile de Kleene

Théorème (pour plus tard): Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) = $\{b\}^* \cup \{a\}\{b\}^*$
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} =$

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

donc union, concaténation et étoile de Kleene

Théorème (pour plus tard): Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) = $\{b\}^* \cup \{a\}\{b\}^*$
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} = \{a\}\{b\}$

Langages rationnels

Définition (3.1)

Les langages rationnels sur Σ sont définis inductivement comme suite :

- \bigcirc \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- 2 pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- \odot si L_1 et L_2 sont des langages rationnels, alors $L_1 \cup L_2$, $L_1 \cdot L_2$ et L_1^* le sont également
 - $\{\varepsilon\} = \emptyset^* \Rightarrow$ on peut enlever $\{\varepsilon\}$ de la définition

Lemme

L est rationnel si et seulement si

- $L = \emptyset$ ou $L = \{a\}$ pour un $a \in \Sigma$ ou
- $L = L_1 \cup L_2$, $L = L_1 L_2$ ou $L = L_1^*$ pour L_1 et L_2 rationnels.

(En quoi ce lemme est-il différent de la définition?)

Théorème

Si L_1 et L_2 sont des langages rationnels, alors $L_1 \cap L_2$, \overline{L}_1 , $Pref(L_1)$, $Suff(L_1)$ et $Fact(L_1)$ le sont aussi.

• pour la démonstration faut attendre quelques jours

5 minutes de réflexion

Rationnel ou pas rationnel, sur alphabet $\Sigma = \{a, b, c\}$?

- { a, b, abcba}
- **2** $\{a^n \mid n \ge 0\}$
- { $w ∈ Σ^* | w$ contient au moins trois a}
- **③** {*w* ∈ Σ * | |*w*| ≥ 5}
- $\{a^{2n} \mid n \geq 0\}$
- $\{a^{n^2} \mid n \geq 0\}$
- $\{a^m b^n \mid m, n \geq 0\}$

Bonus bonus

5 minutes de réflexion

Rationnel ou pas rationnel, sur alphabet $\Sigma = \{a, b, c\}$?

2
$$\{a^n \mid n \ge 0\}$$

○
$$\{w \in \Sigma^* \mid |w| \ge 5\}$$

$$\{a^{2n} \mid n \geq 0\}$$

$$\{a^{n^2} \mid n \ge 0\}$$

$$\{a^m b^n \mid m, n \ge 0\}$$

$$\{a^nb^n \mid n > 0\}$$

Expressions rationnelles

Bonus bonus

Expressions rationnelles

Une notation pratique pour des langages rationnels :

Définition (3.2)

Les expressions rationnelles sur Σ sont définis inductivement comme suite:

- Ø et ε sont des expressions rationnelles.
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- \odot si e_1 et e_2 sont des expressions rationnelles, alors $e_1 + e_2$, $e_1.e_2$ et e^{*} le sont également

Bonus bonus

Expressions rationnelles

Une notation pratique pour des langages rationnels :

Définition (3.1, recall)

Les $\mbox{langages rationnels}\ \mbox{sur }\Sigma\ \mbox{sont définis inductivement comme}\ \mbox{suite}$:

- **1** \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- ullet sont des langages rationnels , alors $L_1 \cup L_2$, $L_1.L_2$ et L_1^* le sont également
 - presque la même chose! mais
- 3.1 introduit une classe de sous-ensembles de Σ^* ,
- 3.2 définit des expressions syntaxiques

Expressions rationnelles

Une notation pratique pour des langages rationnels :

Définition (3.2)

Les expressions rationnelles sur Σ sont définis inductivement comme suite :

- **1** \varnothing et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- ② si e_1 et e_2 sont des expressions rationnelles, alors $e_1 + e_2$, $e_1.e_2$ et e_1^* le sont également
- presque la même chose! mais
- 3.1 introduit une classe de sous-ensembles de Σ^* ,
- 3.2 définit des expressions syntaxiques

On va relier les deux en donnant une sémantique aux expressions rationnelles.

Sémantique

Définition

Le langage dénoté par une expression rationnelle e sur Σ est $L(e) \subseteq \Sigma^*$ définit inductivement comme suite :

- ② $L(a) = \{a\}$ pour tout $a \in \Sigma$
- $L(e_1 + e_2) = L(e_1) \cup L(e_2), \ L(e_1.e_2) = L(e_1).L(e_2), \ L(e^*) = (L(e))^*$

Théorème

 $L \subseteq \Sigma^*$ est rationnel ssi il existe une expression rationnelle e telle que L = L(e).

Démonstration.

Par induction structurelle ...

Pour en finir, une autre démonstration

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

Pour en finir, une autre démonstration

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

Démonstration.

① Soit e une expression rationnelle telle que L = L(e).

Pour en finir, une autre démonstration

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :

Pour en finir, une autre démonstration

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- Opening the structure of the structur
- \bigcirc pref(\varnothing) = , pref(ε) = , pref(a) =

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- Opening in the structure of the struc
- $\operatorname{pref}(\varnothing) = \varnothing$, $\operatorname{pref}(\varepsilon) = \varepsilon$, $\operatorname{pref}(a) = a + \varepsilon$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- ① Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- $\operatorname{pref}(\varnothing) = \varnothing$, $\operatorname{pref}(\varepsilon) = \varepsilon$, $\operatorname{pref}(a) = a + \varepsilon$
- o $pref(e_1 + e_2) = pref(e_1e_2) = pref(e^*) =$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- O ... par induction structurelle :
- $\operatorname{pref}(\varnothing) = \varnothing$, $\operatorname{pref}(\varepsilon) = \varepsilon$, $\operatorname{pref}(a) = a + \varepsilon$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- Opening in the structure of the struc
- $\operatorname{pref}(\varnothing) = \varnothing$, $\operatorname{pref}(\varepsilon) = \varepsilon$, $\operatorname{pref}(a) = a + \varepsilon$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).

- $\begin{aligned} \textbf{ o} & \operatorname{pref}(e_1 + e_2) = \operatorname{pref}(e_1) + \operatorname{pref}(e_2) \\ & \operatorname{pref}(e_1 e_2) = \operatorname{pref}(e_1) + e_1 \operatorname{pref}(e_2) \\ & \operatorname{pref}(e^*) = e^* \operatorname{pref}(e) \end{aligned} \end{aligned}$

Pour en finir, une autre démonstration

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) = \text{pref}(e_1) + \text{pref}(e_2)$ $\operatorname{pref}(e_1 e_2) = \operatorname{pref}(e_1) + e_1 \operatorname{pref}(e_2)$ $pref(e^*) = e^*pref(e)$ (voir tableau)
- **1** Maintenant il faut démontrer que, en fait, L(pref(e)) = Pref(L).
- ... par induction structurelle, encore ...

Bonus bonus

5 minutes de réflexion

Vrai ou faux?

- **①** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Ohaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante sur alphabet $\Sigma = \{a, b\}$, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$
- (a*b)*(b*a)*

5 minutes de réflexion

Vrai ou faux?

- **1** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Chaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante sur alphabet $\Sigma = \{a, b\}$, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$
- (a*b)*(b*a)*

Bonus : monoïdes et demi-anneaux

La structure $(\Sigma^*, .., \varepsilon)$ des mots sur Σ forme un monoïde.

- comme un groupe, mais sans inverses
- (et pas commutative)

En fait, le monoïde libre sur Σ .

ullet donc tout monoïde est un quotient d'un monoïde Σ^* pour quelque Σ

La structure $(\mathcal{P}(\Sigma^*), \cup, ., \emptyset, \{\varepsilon\})$ des langages sur Σ forme un demi-anneau.

- comme un anneau, mais sans inverses additifs
- langages finis sur Σ : le demi-anneau idempotent libre sur Σ

Avec l'étoile de Kleene, $(\mathcal{P}(\Sigma^*), \cup, .., *, \emptyset, \{\varepsilon\})$ forme un algèbre de Kleene.

- structure algébrique fondamentale pour l'informatique
- mais c'est quoi les algèbres de Kleene libres?

Bonus : algèbres de Kleene

Un demi-anneau est une structure algébrique $(S, \oplus, \otimes, 0, 1)$ telle que

- ullet (S, \oplus, \mathbb{O}) forme un monoïde commutatif,
- $(S, \otimes, 1)$ forme un monoïde,
- $x(y \oplus z) = xy \oplus xz$, $(x \oplus y)z = xz \oplus yz$ et $x \mathbb{0} = \mathbb{0}x = \mathbb{0}$

S est idempotent si $x \oplus x = x$.

Théorème

L'ensemble de langages finis forme le demi-anneau idempotent libre.

Une algèbre de Kleene est un demi-anneau idempotent S équipé avec toutes les sommes géométriques $\bigoplus_{n\geq 0} x^n$, pour tout $x\in S$, et telle que $x\otimes (\bigoplus_{n\geq 0} y^n)\otimes z=\bigoplus_{n\geq 0} (xy^nz)$ pour tout $x,y,z\in S$.

Théorème

L'ensemble de langages rationnels forme l'algèbre de Kleene libre.

Un peu de maths

Nombres

- des entiers naturels : $\mathbb{N} = \{0, 1, 2, \dots\}$
- des entiers relatifs : $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- des nombres rationnels : $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \}$
- des nombres réels : $\mathbb{R} = ?$
- (des nombres complexes : on s'en fout ici)

Construction

Die natürlichen Zahlen hat Gott gemacht, alles andere ist Menschenwerk — L. Kronecker 1886

 \bullet de $\mathbb N$ à $\mathbb Z:\mathbb N\times\mathbb N$ modulo la relation d'équivalence

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1 + y_2 = x_2 + y_1$$

• de $\mathbb Z$ à $\mathbb Q: \mathbb Z \times (\mathbb Z \setminus \{0\})$ modulo la relation d'équivalence

$$(x_1,y_1)\sim(x_2,y_2)\Longleftrightarrow x_1y_2=x_2y_1$$

ullet de $\mathbb Q$ à $\mathbb R$: via des suites convergentes / suites de Cauchy :

• soit
$$S = \{(x_0, x_1, \dots) \in \mathbb{Q}^{\infty} \mid \lim_{m,n \to \infty} (x_m - x_n) = 0\}$$

ullet soit \sim la relation d'équivalence sur S défini par

$$(x_0, x_1, \dots) \sim (y_0, y_1, \dots) \Longleftrightarrow \lim_{m,n \to \infty} (x_m - y_n) = 0$$

• alors $\mathbb{R} = S_{/\sim}$

Dénombrabilité

Définition

Un ensemble S est dénombrable s'il existe une bijection $f: \mathbb{N} \to S$.

- N est triviellement dénombrable.
- \mathbb{Z} est dénombrable via la bijection $f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ est pair,} \\ \frac{n+1}{2} & \text{si } n \text{ est impair :} \end{cases}$

$$\mathbb{Z} = \{0,1,-1,2,-2,\dots\}$$

Q⁺ est dénombrable comme suite :

Argument de la diagonale de Cantor

Théorème (G. Cantor 1891)

 \mathbb{R} n'est pas dénombrable.

Démonstration.

- Supposons que $\mathbb R$ soit dénombrable, alors l'intervalle ouvert $S = \{x \mid 0 < x < 1\}$ l'est aussi.
- ② Soit $E = \{x_0, x_1, ...\}$ une énumération de S. Notons alors

$$x_0 = 0, c_{00} c_{01} c_{02} \dots$$

 $x_1 = 0, c_{10} c_{11} c_{12} \dots$
 $x_2 = 0, c_{20} c_{21} c_{22} \dots$
 \vdots

- Soit $d_n = 9 c_{nn}$ pour tout $n \ge 0$ et $y = 0, d_0 d_1 d_2 \dots$
- Alors $y \in S$, mais $y \neq x_n$ pour tout $n \ge 0$, donc $y \notin E$.

4

Nombres réels

Bonus bonus

Définition

Un langage L est récursivement énumerable s'il existe un algorithme qui énumère tout les mots de L.

Théorème

Il existe un langage qui n'est pas récursivement énumerable.

- L'ensemble de tous algorithmes est dénombrable. (Pourquoi ? Qu'est-ce que ?)
- Chaque algorithme n'énumère guère qu'un langage.
- ① L'ensemble de langages n'est pas dénombrable. (Pourquoi ?)

L'ensemble de langages n'est pas dénombrable

- Soit Σ un alphabet (un ensemble fini non-vide)
- Un langage est un sous-ensemble $L \subseteq \Sigma^*$
- \Rightarrow L'ensemble de langages : $\mathcal{P}(\Sigma^*)$

Théorème

 $\mathcal{P}(\Sigma^*)$ n'est pas dénombrable.

L'ensemble de langages n'est pas dénombrable

- Soit Σ un alphabet (un ensemble fini non-vide)
- Un langage est un sous-ensemble $L \subseteq \Sigma^*$
- \Rightarrow L'ensemble de langages : $\mathcal{P}(\Sigma^*)$

Théorème

 $\mathcal{P}(\Sigma^*)$ n'est pas dénombrable.

- Supposons que $\mathcal{P}(\Sigma^*)$ soit dénombrable, alors le sous-sensemble $\mathcal{J} = \{L \subseteq \Sigma^* \mid L \text{ infini }\}$ l'est aussi.
- ② Soit $E = \{L_0, L_1, ...\}$ une énumération de \mathcal{J} . Chaque L_i est dénombrable, alors notons $L_i = \{w_{i,0}, w_{i,1}, ...\}$.
- $\bullet \quad \text{Soit } L = \bigcup_{i=0}^{\infty} (L_i \setminus \{w_{i,i}\}).$
- Alors $L \in \mathcal{J}$, mais $L \neq L_i$ pour chaque i: il n'est pas dans notre énumération E.

