Классификация квазилинейных уравнений в частных производных второго порядка. Приведение к каноническому виду при n=2

1. Определение и классификация УЧП 2 порядка Уравнение

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_1, \dots, x_n) u_{x_i x_j} + \sum_{k=1}^{n} a_k(x_1, \dots, x_n) u_{x_k} + a(x_1, \dots, x_n) u = f(x),$$
(1)

 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_1, \dots, x_n) u_{x_i x_j} + \sum_{k=1}^{n} a_k(x_1, \dots, x_n) u_{x_k} + a(x_1, \dots, x_n) u = f(x),$ (1) где $a_{ij}(x)$, $a_k(x)$, a(x), f(x) — вещественнозначные функции, $\sum_{i,j=1}^{n} |a_{ij}(x)| \neq 0, \ u(x) \in C^2(G), \ G \subset \mathbb{R}^n, \ \text{называется} \ \kappa \text{вазилинейным}$ вторые производные, называется старшей частью.

Пусть $A(x) = (a_{ij}(x))$ — симметрическая матрица размера $(n \times n)$. Зафиксируем точку $x_0 \in G$, в этой точке матрица $A(x_0)$ становится постоянной. Пусть

 n_{+} — количество положительных собственных значений матрицы $A(x_{0})$; n_{-} — количество отрицательных собственных значений матрицы $A(x_{0})$; n_0 — количество нулевых собственных значений матрицы $A(x_0)$.

Определение 1. Уравнение (1) называется
$$\begin{cases} \text{гиперболическим} \\ \text{эллиптическим} \end{cases}$$
 в точ-
параболическим
$$\begin{cases} \text{все } c. \text{ зн., кроме одного, имеют один и тот же знак;} \\ \text{все } c. \text{ зн. одного знака;} \end{cases}$$
 т.е.
$$\begin{cases} ecmb \text{ хотя бы одно нулевое } c. \text{ зн.,} \\ n_- = 1, n_+ = n - 1 \text{ или } n_+ = 1, n_- = n - 1; \\ n_+ = n \text{ или } n_- = n; \\ n_0 > 0. \end{cases}$$

$$\left\{ egin{aligned} n_- &= 1, \ n_+ &= n-1 \ \emph{или} \ n_+ &= 1, \ n_- &= n-1; \ n_+ &= n \ \emph{или} \ n_- &= n; \ n_0 &> 0. \end{aligned}
ight.$$

Определение 2. Уравнение (1) называется параболическим в области параболическим

G, если оно { эллиптическое в каждой точке этой области.

В общем случае привести уравнение (1) к каноническому виду — значит с помощью невырожденной замены $y=\varphi(x)$ перейти к уравнению

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}_{ij}(y_1, \dots, y_n) u_{y_i y_j} + \tilde{F}(y, u, \nabla u) = 0,$$
 (2)

в котором матрица старшей части имеет вид

$$\tilde{A}(x_0) = \begin{pmatrix} B & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & D \end{pmatrix},$$

где $B,\ C$ и D — диагональные матрицы размера $(n_+ \times n_+),\ (n_- \times n_-)$ и $(n_0 \times n_0)$ соответственно

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & \dots & & \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

2. Приведение к каноническому виду УЧП 2 порядка с переменными коэффициентами при n=2

Запишем уравнение (1) в случае двух независимых переменных

$$a(x_1, x_2)u_{x_1x_1} + 2b(x_1, x_2)u_{x_1x_2} + c(x_1, x_2)u_{x_2x_2} + F(x_1, x_2, u, u_{x_1}, u_{x_2}) = 0.$$
 (3)

Далее будем работать с переменной матрицей $A(x) = \begin{pmatrix} a(x) & b(x) \\ b(x) & c(x) \end{pmatrix}$ во всей области $G \subset \mathbb{R}^2$, где тип уравнения сохраняется.

Вычислим характеристический полином матрицы A(x):

$$P(\lambda) = \lambda^{2} - (a(x) + c(x))\lambda + (a(x)c(x) - b^{2}(x)) = 0.$$

Свободный член $a(x)c(x)-b^2(x)$ равен произведению двух корней $\lambda_1\lambda_2.$

если $\begin{cases} \lambda_1 \lambda_2 = a(x) c(x) - b^2(x) < 0; \\ \lambda_1 \lambda_2 = a(x) c(x) - b^2(x) > 0; \\ \lambda_1 \lambda_2 = a(x) c(x) - b^2(x) = 0. \end{cases}$

Теорема 1. Пусть a(x), b(x), $c(x) \in C^2(G)$, а уравнение (3) является гиперболическим/эллиптическим/параболическим в области G. Тогда для любой точки $x_0 \in G$ существует такая окрестность W, что в W существует невырожденная замена $y_1=\varphi_1(x)$, $y_2=\varphi_2(x)$, приводящая уравнение (3) к виду

$$\Gamma: \quad u_{y_1y_1} - u_{y_2y_2} + \tilde{F}(y, u, u_{y_1}, u_{y_2}) = 0,$$
 (4)

или
$$u_{y_1y_2} + \tilde{F}(y, u, u_{y_1}, u_{y_2}) = 0;$$
 (5)

$$\ni: \quad u_{y_1y_1} + u_{y_2y_2} + \tilde{F}(y, u, u_{y_1}, u_{y_2}) = 0; \tag{6}$$

$$\Pi: \quad u_{y_1y_1} + \tilde{F}(y, u, u_{y_1}, u_{y_2}) = 0.$$
 (7)

Определение 3. Кривая γ , заданная уравнением $\gamma: \varphi(x) = const$, называется характеристикой уравнения (3), если вектор нормали $\nabla \varphi = (\varphi_{x_1}, \varphi_{x_2})$ удовлетворяет характеристическому уравнению

$$a(x)(\varphi_{x_1})^2 + 2b(x)\varphi_{x_1}\varphi_{x_2} + c(x)(\varphi_{x_2})^2 = 0.$$
 (8)

Замену $y = \varphi(x)$ можно получить, найдя характеристики уравнения (3). Обозначим $k = \frac{\varphi_{x_1}}{\varphi_{x_2}}$ и поделим уравнение (8) на $(\varphi_{x_2})^2$:

$$a(x)(\frac{\varphi_{x_1}}{\varphi_{x_2}})^2 + 2b(x)\frac{\varphi_{x_1}}{\varphi_{x_2}} + c(x) = a(x)k^2 + 2b(x)k + c(x) = 0.$$

Дискриминант равен $d(x) = 4(b^2(x) - a(x)c(x))$ Это выражение для определения типа уравнения, взятое со знаком минус.

Случай 1. Гиперболический тип. Если d(x) > 0, то квадратное уравнение имеет два различных вещественных корня

$$k_{1,2} = \frac{-b(x) \pm \sqrt{b^2(x) - a(x)c(x)}}{a(x)}.$$

Вспомним, что $k=\frac{\varphi_{x_1}}{\varphi_{x_2}}$, отсюда получим два УЧП первого порядка для определения характеристик:

$$\varphi_{x_1} - k_1 \varphi_{x_2} = 0$$
 и $\varphi_{x_1} - k_2 \varphi_{x_2} = 0$.

Первые интегралы (см. Семинар 1) нам дадут два семейства характеристик $\varphi_1(x_1,x_2)=C_1,\, \varphi_2(x_1,x_2)=C_2.$

Взяв в качестве замены $y_1=\varphi_1(x_1,x_2), y_2=\varphi_2(x_1,x_2),$ приведем уравнение (3) к виду (5), из которого можно получить вид (4) заменой $y_1=\xi+\eta,$ $y_2=\xi-\eta.$

Случай 2. Эллиптический тип. Если d(x) < 0, то квадратное уравнение имеет пару комплексно сопряженных корней $k_{1,2} = \alpha \pm \beta i$. Найдем комплексные "характеристики" из уравнений

$$\varphi_{x_1} - k_1 \varphi_{x_2} = 0$$
 и $\varphi_{x_1} - k_2 \varphi_{x_2} = 0$.

На самом деле, достаточно даже решить одно из этих уравнений. Тогда $\varphi_{1,2}(x)=\xi(x)\pm\eta(x)i=C_{1,2}$. В качестве замены, приводящей к каноническому виду, можно взять вещественную и мнимую часть, т.е. $y_1=\xi,\,y_2=\eta$. В итоге из уравнения (3) получим уравнение (6).

Замечание. У эллиптического уравнения вещественных характеристик нет! Случай 3. Параболический тип. Если d(x)=0, то квадратное уравнение имеет один корень кратности два $k_1=k_2=k$. Решив уравнение $\varphi_{x_1}-k\varphi_{x_2}=0$, мы получим только одно семейство характеристик $\varphi(x)=C$. Тогда в качестве замены можно взять $y_1=\psi(x_1,x_2),\ y_2=\varphi(x_1,x_2)$, где $\psi(x_1,x_2)$ — любая функция, независимая с $\varphi(x_1,x_2)$. Такая замена приведет

исходное уравнение (3) к виду (7). Обратите внимание на то, что в старшей части остается только производная $u_{y_1y_1}$, где $y_1=\psi(x)$.

Итак, чтобы привести уравнение к каноническому виду, нужно:

- 1) записать характеристическое уравение, вычислить d(x), определить тип уравнения,
- 2) решить квадратное уравнение для $k = \frac{\varphi_{x_1}}{\varphi_{x_2}}$,
- 3) найти семейства характеристик (вещественные различные, комплексные или вещественные совпадающие),
- 4) ввести замену переменных исходя из типа уравнения,
- 5) пересчитать производные, подставить их в уравнение.

Переобозначим переменные для краткости: $x_1 = x, x_2 = y, y_1 = \xi, y_2 = \eta$. Чтобы записать уравнение в новых переменных, необходимо вычислить производные сложной функции, т.к. $u(x,y) = \tilde{u}(\xi(x,y),\eta(x,y))$. Далее для удобства волну будем опускать, поскольку функция одна и та же.

Формулы для производных

$$u_{x} = u_{\xi} \cdot \xi_{x} + u_{\eta} \cdot \eta_{x};$$

$$u_{y} = u_{\xi} \cdot \xi_{y} + u_{\eta} \cdot \eta_{y};$$

$$u_{xx} = u_{\xi\xi} \cdot (\xi_{x})^{2} + 2u_{\xi\eta} \cdot \xi_{x}\eta_{x} + u_{\eta\eta} \cdot (\eta_{x})^{2} + u_{\xi} \cdot \xi_{xx} + u_{\eta} \cdot \eta_{xx};$$

$$u_{yy} = u_{\xi\xi} \cdot (\xi_{y})^{2} + 2u_{\xi\eta} \cdot \xi_{y}\eta_{y} + u_{\eta\eta} \cdot (\eta_{y})^{2} + u_{\xi} \cdot \xi_{yy} + u_{\eta} \cdot \eta_{yy};$$

$$u_{xy} = u_{\xi\xi} \cdot \xi_{x}\xi_{y} + u_{\xi\eta} \cdot (\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + u_{\eta\eta} \cdot \eta_{x}\eta_{y} + u_{\xi} \cdot \xi_{xy} + u_{\eta} \cdot \eta_{xy}.$$

3. Разбор некоторых задач из задачника В. С. Владимирова

№2.11 (3) Определить тип и привести к каноническому виду уравнение

$$x^2 u_{xx} + 2xy u_{xy} - 3y^2 u_{yy} - 2x u_x = 0.$$

Решение. В данном случае $a(x,y)=x^2,\, b(x,y)=xy,\, c(x,y)=-3y^2.$ Запишем характеристическое уравнение:

$$a(x,y)(\varphi_x)^2+2b(x,y)\varphi_x\varphi_y+c(x,y)(\varphi_y)^2=x^2(\varphi_x)^2+2xy\varphi_x\varphi_y-3y^2(\varphi_y)^2=0,$$
 при $k=\frac{\varphi_x}{\varphi_y}$
$$x^2k^2+2xyk-3y^2=0.$$

Вычислим дискриминант и определим тип уравнения:

$$d(x,y)/4 = x^2y^2 + 3x^2y^2 = 4x^2y^2 > 0 \Rightarrow$$
 гиперболический тип.

Решим квадратное уравнение

$$k_{1,2} = \frac{-xy \pm 2xy}{x^2} \Rightarrow k_1 = \frac{y}{x}, \quad k_2 = -\frac{3y}{x}.$$

По определению k

$$k = \frac{\varphi_x}{\varphi_y} \Leftrightarrow \varphi_x - k\varphi_y = 0.$$

Найдем семейства характеристик:

$$\varphi_x - k_1 \varphi_y = \varphi_x - \frac{y}{x} \varphi_y = 0.$$

Первый интеграл получим из уравнения $\frac{dx}{1} = \frac{xdy}{-y}$, он равен $xy = C_1$.

$$\varphi_x - k_2 \varphi_y = \varphi_x + \frac{3y}{x} \varphi_y = 0.$$

Первый интеграл получим из уравнения $\frac{dx}{1} = \frac{xdy}{3y}$, он равен $\frac{x^3}{y} = C_2$. Итак, имеем два различных семейства характеристик $\varphi_1(x,y) = xy = C_1$, $\varphi_2(x,y) = \frac{x^3}{y} = C_2$. Отсюда замена, приводящая уравнение к каноническому виду $u_{\xi\eta} + F(\xi,\eta,u,u_{\xi},u_{\eta}) = 0$, имеет вид

$$\xi = xy, \quad \eta = \frac{x^3}{y}.$$

Вычислив первые и вторые производные по формулам, придем к уравнению

$$4\xi u_{\xi\eta} - 3u_{\eta} = 0.$$

№2.2 (15) Определить тип и привести к каноническому виду уравнение

$$x^2 u_{xx} - 2x u_{xy} + u_{yy} = 0$$

Решение. В данном случае $a(x,y) = x^2$, b(x,y) = -x, c(x,y) = 1. Запишем характеристическое уравнение:

$$a(x,y)(\varphi_x)^2 + 2b(x,y)\varphi_x\varphi_y + c(x,y)(\varphi_y)^2 = x^2(\varphi_x)^2 - 2x\varphi_x\varphi_y + (\varphi_y)^2 = 0,$$

при
$$k=rac{arphi_x}{arphi_y}$$

$$x^2k^2 - 2xk + 1 = 0.$$

Заметим, что $x^2k^2-2xk+1=(xk-1)^2=0$. Отсюда получим один корень кратности два $k_1=k_2=\frac{1}{x}$, тогда тип уравнения — параболический. По определению k

$$k = \frac{\varphi_x}{\varphi_y} \Leftrightarrow \varphi_x - k\varphi_y = 0.$$

Найдем семейство характеристик:

$$\varphi_x - k\varphi_y = \varphi_x - \frac{1}{x}\varphi_y = 0.$$

Первый интеграл получим из уравнения $\frac{dx}{1}=\frac{dy}{-\frac{1}{x}}\Leftrightarrow \frac{dx}{x}=-dy$, он равен $xe^y=C_1$.

Поскольку семейство характеристик только одно, в качестве второй функции для замены можем взять произвольную функцию, независимую с $\xi(x,y)=xe^y$. Например, положим $\eta(x,y)=y$. Отсюда замена, приводящая уравнение к каноническому виду $u_{\eta\eta}+F(\xi,\eta,u,u_\xi,u_\eta)=0$, имеет вид

$$\xi = xe^y, \quad \eta = y.$$

Вычислив первые и вторые производные по формулам, придем к уравнению

$$u_{\eta\eta} - \xi u_{\xi} = 0.$$

№2.2 (8) Определить тип и привести к каноническому виду уравнение

$$x^2 u_{xx} + y^2 u_{yy} = 0$$

Решение. В данном случае $a(x,y)=x^2,\, b(x,y)=0,\, c(x,y)=y^2.$ Запишем характеристическое уравнение:

$$a(x,y)(\varphi_x)^2 + 2b(x,y)\varphi_x\varphi_y + c(x,y)(\varphi_y)^2 = x^2(\varphi_x)^2 + y^2(\varphi_y)^2 = 0,$$

при
$$k=rac{arphi_x}{arphi_y}$$

$$x^2k^2 + y^2 = 0.$$

Решая данное уравнение, получим пару комплексно сопряженных корней $k_{1,2}=\pm i\frac{y}{x}$. Тогда тип уравнения — эллиптический. Для этого типа уравнений вещественных характеристик нет. По определению k

$$k = \frac{\varphi_x}{\varphi_y} \Leftrightarrow \varphi_x - k\varphi_y = 0.$$

Найдем комплексную функцию $\varphi(x,y)$. Для этого достаточно решить только одно уравнение, например, для k_1 (Если будем решать оба уравнения для k_1 и k_2 , получим комплексно сопряженные функции) Итак,

$$\varphi_x - k_1 \varphi_y = \varphi_x - i \frac{y}{x} \varphi_y = 0.$$

Первый интеграл получим из уравнения $\frac{dx}{1} = \frac{xdy}{-iy}$, он равен $\varphi(x,y) = \ln|x| - i\ln|y| = C_1$.

Отсюда замена, приводящая уравнение к каноническому виду $u_{\xi\xi} + u_{\eta\eta} + F(\xi, \eta, u, u_{\xi}, u_{\eta}) = 0$, имеет вид

$$\xi = \operatorname{Re} \varphi(x, y) = \ln x, \quad \eta = \operatorname{Im} \varphi(x, y) = \ln y.$$

Вычислив первые и вторые производные по формулам, придем к уравнению

$$u_{\xi\xi} + u_{\eta\eta} - u_{\xi} - u_{\eta} = 0.$$