Nouvelle Calédonie. Novembre 2017. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

- 1) La probabilité demandée est $\frac{14-12}{15-12} = \frac{2}{3}$.
- 2) La durée moyenne du trajet, exprimée en minutes, est $\frac{12+15}{2}=13,5.$

Partie B

- 1) La probabilité demandée est $P(T_V \le 14)$ ou encore $P(T_V \le \mu)$. On sait que cette probabilité est égale à 0,5.
- 2) La probabilité demandée est $P(12 \leqslant T_V \leqslant 14)$. La calculatrice fournit $P(12 \leqslant T_V \leqslant 14) = 0,409$ arrondi à 10^{-3} .

Partie C

1) Sonia prend le bus si et seulement si elle obtient 1 ou 2 en lançant le dé. Donc, $P(B) = \frac{2}{6} = \frac{1}{3}$ puis $P(V) = 1 - P(B) = \frac{2}{3}$. Représentons alors la situation par un arbre de probabilités. D'après les question A.1) et B.2),

La probabilité demandée est P(C). D'après la formule des probabilités totales,

$$P(C) = P(B) \times P_B(C) + P(V) \times P_V(C) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times 0,409 = 0,49 \; \mathrm{arrondi} \; \mathrm{\grave{a}} \; 10^{-2}.$$

2) La probabilité demandée est $P_C(B)$.

$$P_C(B) = \frac{P(B \cap C)}{P(C)} = \frac{P(B) \times P_B(C)}{P(C)} = \frac{\frac{1}{3} \times \frac{2}{3}}{0.49} = 0,11 \text{ arrondi à } 10^{-2}.$$

EXERCICE 2

- 1) Pour tout réel x > 0, $f(x) = \frac{1}{x} \times (\ln x)^2$. $\lim_{x \to 0} \ln x = -\infty$ et donc $\lim_{x \to 0} (\ln x)^2 = +\infty$. D'autre part, $\lim_{x \to 0} \frac{1}{x} = +\infty$. En multipliant, on obtient $\lim_{x \to 0} f(x) = +\infty$. On en déduit que l'axe des ordonnées est asymptote à la courbe représentative de f.
- 2) a) Soit x un réel strictement positif. $\ln \left(\sqrt{x} \right) = \frac{1}{2} \ln x$ et donc $\ln x = 2 \ln \left(\sqrt{x} \right)$ puis

$$f(x) = \frac{(\ln x)^2}{x} = \frac{(\ln x)^2}{\left(\sqrt{x}\right)^2} = \left(\frac{\ln x}{\sqrt{x}}\right)^2 = \left(\frac{2\ln\left(\sqrt{x}\right)}{\sqrt{x}}\right)^2 = 4\left(\frac{\ln\left(\sqrt{x}\right)}{\sqrt{x}}\right)^2.$$

- b) D'après un théorème de croissances comparées, $\lim_{x\to +\infty}\frac{\ln\left(\sqrt{x}\right)}{\sqrt{x}}=\lim_{X\to +\infty}\frac{\ln\left(X\right)}{X}=0$ et donc $\lim_{x\to +\infty}f(x)=4\times 0^2=0$. On en déduit que l'axe des abscisses est asymptote à la courbe représentative de f en $+\infty$.
- 3) a) Pour tout réel x > 0,

$$f'(x) = \frac{2 \times \frac{1}{x} \times \ln x \times x - (\ln x)^2 \times 1}{x^2} = \frac{2 \ln x - (\ln x)^2}{x^2} = \frac{\ln x (2 - \ln x)}{x^2}.$$

- b) Pour tout réel x > 0, $x^2 > 0$ et donc, pour tout réel x > 0, f'(x) est du signe de $\ln x(2 \ln x)$. Puisque la fonction In est strictement croissante sur $]0, +\infty[$,

 - $\begin{array}{l} \bullet \, \ln x > 0 \Leftrightarrow x > 1 \,\, (\mathrm{et \,\, aussi \,\, ln \,} \, x = 0 \Leftrightarrow x = 0 \,\, \mathrm{et \,\, ln \,} \, x < 0 \Leftrightarrow x < 1), \\ \bullet \,\, 2 \ln x > 0 \Leftrightarrow \ln x < 2 \Leftrightarrow x < e^2 \,\, (\mathrm{et \,\, aussi \,\,} \, 2 \ln x = 0 \Leftrightarrow x = e^2 \,\, \mathrm{et \,\, ln \,} \, x < 0 \Leftrightarrow x > e^2). \end{array}$

On peut alors représenter le signe de la fonction f' dans un tableau de signes :

χ	C)	1		e^2		$+\infty$
$\ln x$		_	ф	+		+	
$2 - \ln x$		+		+	φ	_	
f'(x)		_	φ	+	ф	_	

c)
$$f(1) = \frac{(\ln 1)^2}{1} = 0$$
 et $f(e^2) = \frac{(\ln (e^2))^2}{e^2} = \frac{2^2}{e^2} = \frac{4}{e^2}$.

4) Sur $[1,+\infty[$, f admet un maximum égal à $\frac{4}{e^2}$. Mais e>2 et donc $\frac{4}{e^2}<1$. Ainsi, pour tout réel x de $[1,+\infty[$, $f(x) \leqslant \frac{4}{e^2} < 1$. En particulier, l'équation f(x) = 1 n'admet pas de solution dans $[1, +\infty[$.

La fonction f est continue et strictement décroissante sur]0, 1]. On sait alors que pour tout réel k de $\left| f(1), \lim_{x \to 0} f(x) \right| =$ $[0, +\infty[$ (d'après la question 1), l'équation f(x) = k admet une solution et une seule dans [0, 1]. En particulier, puisque le réel 1 appartient à $[0,+\infty[$, l'équation f(x)=1 admet une solution et une seule, notée α , dans]0,1].

Finalement, l'équation f(x) = 1 admet une solution et une seule, notée α , dans $]0, +\infty[$.

EXERCICE 3

Partie A

Puisque la fonction f est positive sur [0, ln 2], l'aire demandée est $\int_0^{\ln 2} f(x) \ dx$.

$$\int_{0}^{\ln 2} f(x) dx = \int_{0}^{\ln 2} (2e^{x} - e^{2x}) dx$$

$$= \left[2e^{x} - \frac{1}{2}e^{2x} \right]_{0}^{\ln 2} = \left(2e^{\ln 2} - \frac{1}{2}e^{2\ln 2} \right) - \left(2e^{0} - \frac{1}{2}e^{0} \right) = \left(2e^{\ln 2} - \frac{1}{2}\left(e^{\ln 2} \right)^{2} \right) - \left(2 - \frac{1}{2} \right)$$

$$= \left(2 \times 2 - \frac{1}{2} \times 2^{2} \right) - \frac{3}{2} = 2 - \frac{3}{2}$$

$$= \frac{1}{2}.$$

La proposition A est donc fausse.

Partie B

Soit $\mathfrak n$ un entier naturel non nul. L'abscisse du point $S_{\mathfrak n}$ est solution de l'équation $f_{\mathfrak n}'(x)=0$. Soit x un réel.

$$f'_{n}(x) = 0 \Leftrightarrow 2ne^{x} - 2e^{2x} = 0 \Leftrightarrow 2e^{x} (n - e^{x}) = 0$$
$$\Leftrightarrow n - e^{x} = 0 (\operatorname{car} 2e^{x} \neq 0)$$
$$\Leftrightarrow e^{x} = n \Leftrightarrow x = \ln n.$$

L'ordonnée y_n du point S_n est alors

$$y_n = f(\ln n) = 2ne^{\ln n} - e^{2\ln n} = 2 \times n - \left(e^{\ln n}\right)^2 = 2n^2 - n^2 = n^2.$$

La proposition B est donc vraie.

EXERCICE 4.

1) a) Soit n un entier naturel. $z_n \neq 0$ puis

$$\begin{split} \frac{z_{n+4}}{z_n} &= \frac{(1+i)/(1-i)^{n+4}}{(1+i)/(1-i)^n} = \frac{1+i}{(1+i)^{n+4}} \times \frac{(1+i)^n}{1-i} = \frac{1}{(1+i)^4} \\ &= \frac{1}{((1+i)^2)} = \frac{1}{(1+2i-1)^2} = \frac{1}{(2i)^2} \\ &= -\frac{1}{4}. \end{split}$$

Ainsi, pour tout entier naturel n, $\frac{z_{n+4}}{z_n} = -\frac{1}{4}$ et en particulier $\frac{z_{n+4}}{z_n}$ est un réel.

- b) Soit n un entier naturel. D'après la question précédente, $z_{n+4} = -\frac{1}{4}z_n$. Cette dernière égalité fournit l'égalité $\overrightarrow{OA_{n+4}} = -\frac{1}{4}\overrightarrow{OA_n}$. Ainsi, les vecteurs $\overrightarrow{OA_n}$ et $\overrightarrow{OA_{n+4}}$ sont colinéaires ou encore les points O, A_n et A_{n+4} sont alignés.
- 2) (On rappelle que pour tout entier naturel $n, z_n \neq 0$). Un argument de 1+i est $\frac{\pi}{4}$ et un argument de 1-i est $-\frac{\pi}{4}$.

Donc, pour tout entier naturel n, un argument de z_n est $\frac{\pi}{4} - n\left(-\frac{\pi}{4}\right) = (n+1)\frac{\pi}{4}$. Soit alors n un entier naturel.

$$\begin{split} z_n \text{ r\'eel} &\Leftrightarrow \text{il existe } k \in \mathbb{Z}/\arg{(z_n)} = k\pi \Leftrightarrow \text{il existe } k \in \mathbb{Z}/\left(n+1\right)\frac{\pi}{4} = k\pi \\ &\Leftrightarrow \text{il existe } k \in \mathbb{Z}/\left(n+1\right) = 4k \\ &\Leftrightarrow \text{il existe } k \in \mathbb{Z}/\left(n+1\right) = 4k - 1 \\ &\Leftrightarrow \text{il existe } k \in \mathbb{N}^*/\left(n+1\right) = 4k - 1 \text{ (car } n \text{ est un entier naturel)}. \end{split}$$

Finalement, z_n est réel si et seulement si n est un entier naturel de la forme 4k-1 où k est un entier naturel non nul.

EXERCICE 5.

Partie A:

- 1) Dans la case B4, il faut copier la formule $=\frac{5}{4}*B3-\frac{1}{4}*B2$ puis recopier cette formule vers le bas.
- 2) Tableau complété. (Les valeurs sont arrondies à 10^{-4}).

	A	В
1	n	$\mathfrak{u}_{\mathfrak{n}}$
2	0	3
3	1	6
4	2	6,75
5	3	6,9375
6	4	6,9844
7	5	6,9961

3) Il semble que la suite $\left(\mathfrak{u}_{\mathfrak{n}}\right)_{\mathfrak{n}\in\mathbb{N}}$ soit convergente, de limite 7.

Partie B: étude de la suite

1) a) Soit n un entier naturel.

$$\nu_{n+1} = u_{n+2} - \frac{1}{4}u_{n+1} = \frac{5}{4}u_{n+1} - \frac{1}{4}u_n - \frac{1}{4}u_{n+1} = u_{n+1} - \frac{1}{4}u_n = \nu_n.$$

Donc, la suite $(\nu_n)_{n\in\mathbb{N}}$ est contante.

- $\mathbf{b)} \text{ On en d\'eduit que pour tout entier naturel } \mathbf{n}, \ \mathbf{v_n} = \mathbf{v_0} = \mathbf{u_1} \frac{1}{4}\mathbf{u_0} = 6 \frac{3}{4} = \frac{21}{4} \text{ et donc que } \mathbf{u_{n+1}} \frac{1}{4}\mathbf{u_n} = \frac{21}{4} \text{ ou enfin que } \mathbf{u_{n+1}} = \frac{1}{4}\mathbf{u_n} + \frac{21}{4}.$
- 2) a) Montrons par récurrence que pour tout entier naturel n $u_n < u_{n+1} < 7$.
 - $\bullet \ \mathrm{Puisque} \ u_0 = 3 \ \mathrm{et} \ u_1 = 6, \ \mathrm{on} \ \mathrm{a} \ u_0 < u_1 < 7.$
 - Soit $n \geqslant 0$. Supposons que $u_n < u_{n+1} < 7$. Alors $\frac{1}{4}u_n + \frac{21}{4} < \frac{1}{4}u_{n+1} + \frac{21}{4} < \frac{1}{4} \times 7 + \frac{21}{4}$ ou encore, $u_{n+1} < u_{n+2} < 7$.

On a montré par récurrence que pour tout entier naturel n $u_n < u_{n+1} < 7$.

- b) Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée (par 7). La suite $(u_n)_{n\in\mathbb{N}}$ est donc convergente.
- 3) a) Soit n un entier naturel.

$$w_{n+1} = u_{n+1} - 7 = \frac{1}{4}u_n + \frac{21}{4} - 7 = \frac{1}{4}u_n - \frac{7}{4} = \frac{1}{4}(u_n - 7) = \frac{1}{4}w_n.$$

La suite $(w_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $w_0=u_0-7=-4$ et de raion $q=\frac{1}{4}$.

b) On sait alors que pour tout entier naturel n,

$$w_n = w_0 \times q^n = -4\left(\frac{1}{4}\right)^n = -\frac{1}{4^{n-1}}$$

puis

$$u_n = w_n + 7 = 7 - \frac{1}{4^{n-1}}.$$

c) Puisque 4 > 1, $\lim_{n \to +\infty} 4^{n-1} = +\infty$ puis $\lim_{n \to +\infty} u_n = 7 - 0 = 7$.