Задача А. Мутация (2 балла)

Имя входного файла: mutation.in Имя выходного файла: mutation.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим следующий оператор мутации. Пусть $s \in \{0,1\}^n$ — битовая строка. В результате мутации каждый бит строки s инвертируется с вероятностью 1/n. Для заданных пар строк s_i и t_i , i=1..m найдите вероятность получения t_i при применении рассмотренного оператора мутации к s_i .

Формат входного файла

В первой строке входного файла содержатся числа n и m ($1 \le n \le 10, 1 \le m \le 100000$) — размер битовых строк и число пар строк, для которых нужно ответить на вопрос задачи. В каждых последующих двух строках входного файла записаны битовые строки s_i и t_i , i=1..m в виде последовательностей чисел 0 и 1 длины n.

Формат выходного файла

Для каждой пары строк s_i и t_i выведите в выходной файл строку, состоящую из одного вещественного числа — вероятности получения строки t_i из строки s_i в результате мутации. Ответ будет засчитан, если он отличается от правильного не более, чем на 10^{-9} .

Пример

mutation.in	mutation.out
5 2	0.00032
11111	0.00128
00000	
11110	
00000	

Задача В. Кроссовер (3 балла)

Имя входного файла: crossover.in Имя выходного файла: crossover.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Пусть A — множество, состоящее из m битовых строк длины n, представляющих собой поколение генетического алгоритма. Необходимо для заданной битовой строки s (также размера n) выяснить, может ли она получиться из каких-либо двух строк из множества A в результате применения операторов одноточечного, двухточечного и однородного кроссовера.

Отметим, что при выполнении одноточечного и двухточечного кроссоверов точки скрещивания могут находиться как до первого символа строки, так и после последнего символа, а в случае двухточечного кроссовера точки могут совпадать.

Формат входного файла

В первой строке входного файла содержатся два числа m и n ($1 \le m \le 300, 1 \le n \le 50$) — число битовых строк в множестве A и их длина. В последующих m строках входного файла записаны последовательности длины n из нулей и единиц, задающие множество A. В последней строке входного файла записана битовая строка s в том же формате, что и строки из множества A.

Формат выходного файла

В первой строке выходного файла должно содержаться слово «YES», если строка s может получиться в результате применения одноточечного кроссовера к каким-либо двум (возможно, одинаковым) строкам из множества A, и слово «NO» в противном случае. Аналогично во второй и третьей строках выходного файла должны содержаться слова «YES» или «NO» в зависимости от того, может ли получиться строка s в результате двухточечного и однородного кроссовера соответственно.

Пример

crossover.in	crossover.out
2 4	NO
0000	NO
1111	YES
0101	

Задача С. Деревья решений (4 балла)

Имя входного файла: trees.in
Имя выходного файла: trees.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Деревья решений — один из способов задания функции нескольких аргументов, каждый из которых пробегает конечное множество значений. В частности, деревья решений могут использоваться для представления функции переходов автомата. Рассмотрим дерево решений, соответствующее функции переходов некоторого состояния автомата. Будем считать, что переходы из состояния в состояние осуществляются на основе значений m предикатов. В этом случае каждый лист дерева решений помечен значением функции переходов, а каждая вершина ветвления — номером предиката, в зависимости от значения которого при вычислении функции переходов будет выбрана одна из дочерних вершин.

В случае, если построение деревьев решений осуществляется на основе эволюционных вычислений, возникает задача удаления недостижимых ветвей дерева. Вам предстоит решить эту задачу. Более формально, если вершина ветвления v помечена предикатом с номером p и если среди ее предков есть другая вершина u, помеченная предикатом с тем же номером p, то вершина v должна быть удалена вместе с ее недостижимым поддеревом. Оставшееся поддерево вершины v должно быть присоединено к бывшему родителю v. Пример указанного преобразования приведен на рисунке.

Формат входного файла

В первой строке входного файла содержится число k ($1 \le k \le 2 \cdot 10^5$) — число вершин дерева решений. В последующих k строках входного файла последовательно с первой по k-ю описаны вершины дерева. Формат задания листа: leaf a_i , где a_i ($1 \le a_i \le 10^9$) — значение

функции переходов для i-й вершины. Формат задания вершины ветвления: choice p_i f_i t_i , где p_i $(1 \le p_i \le 10^9)$ — номер предиката для i-й вершины, f_i и t_i — номера дочерних вершин, соответствующих переходам по 0 и 1. Корень дерева является вершиной с номером 1.

Формат выходного файла

Запишите в выходной файл дерево решений, получившееся из исходного в результате удаления всех недостижимых ветвей. Используйте тот же формат, что и во входном файле.

Пример

trees.in	trees.out
7	5
choice 1 2 3	choice 1 2 3
leaf 2	leaf 2
choice 2 4 5	choice 2 4 5
choice 1 6 7	leaf 3
leaf 4	leaf 4
leaf 1	
leaf 3	

Приведенный пример соответствует рисунку.

Задача D. Стартовое состояние (3 балла)

Имя входного файла: start.in
Имя выходного файла: start.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Задан управляющий автомат Мура. Пусть множество входных событий для него равно $\{0,1\}$, а множество выходных воздействий — $\{a,b,...,z\}$. При выполнении перехода автомат вырабатывает выходное воздействие, которым помечено состояние, куда был совершен переход.

Задана также последовательность выходных воздействий $z=a_1...a_m$ длины m. Известно, что последовательность z была получена в результате работы автомата на некоторых входных данных. Требуется найти номера состояний, из которых существует последовательность переходов, результатом выполнения которой будет выработка последовательности z.

Формат входного файла

В первой строке входного файла содержатся два числа m и n ($1 \le m \le 5 \cdot 10^5$, $1 \le n \le 500$) — длина последовательности z и число состояний автомата. В следующих n строках последовательно от первого до n-го описаны состояния автомата Мура. Каждая строка имеет формат $t_{i,0}$ $t_{i,1}$ b_i , где $t_{i,0}$ и $t_{i,1}$ — номера состояний, куда ведут переходы из состояния i по событиям 0 и 1 соответственно, b_i — выходное воздействие, которым помечено состояние i. В последней строке входного файла записана последовательность выходных воздействий z.

Формат выходного файла

В единственной строке выходного файла выведите число состояний, являющихся решением задачи, а затем через пробел перечислите в порядке возрастания номера этих состояний.

Пример

start.in	start.out
2 2	1 2
2 2 a	
2 1 b	
ab	