MADS-MMS – Mathematics and Multivariate Statistics

Clustering - Overview

Prof. Dr. Stephan Doerfel

Moodle (SoSe 2025)

Agenda

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

Outline

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

Chapter Goals

overview on the topic of clustering

Motivation 1 / 10

Chapter Goals

- overview on the topic of clustering
- categorization of methodology

Motivation 1 / 10

Chapter Goals

- overview on the topic of clustering
- categorization of methodology
- understand motivation and application of clustering

Motivation 1 / 10

Outline

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

Goals:

Goals:

▶ identify clusters (categories / subsets / groups) in datasets

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

detect sets of "comparable/similar/close elements"

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

- detect sets of "comparable/similar/close elements"
- explore and analyze unknown data

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

- detect sets of "comparable/similar/close elements"
- explore and analyze unknown data
- engineer classes / features

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

- detect sets of "comparable/similar/close elements"
- explore and analyze unknown data
- engineer classes / features
- semi-automatic often data scientist has to "judge" and interprete clusterings

Goals:

- ▶ identify clusters (categories / subsets / groups) in datasets
- ▶ instances in the same cluster should be as similar as possible
- ▶ instances in different clusters should have low similarity
- ▶ (identify instances that belong to no group: outliers, noise)
- ► NOT: assign instances to known classes

Context:

- detect sets of "comparable/similar/close elements"
- explore and analyze unknown data
- engineer classes / features
- semi-automatic often data scientist has to "judge" and interprete clusterings
- requires a useful and meaningful distance/similarity function (often individually chosen or designed)

Applications:

► Market segmentation / customer base segmentation

- ► Market segmentation / customer base segmentation
- ► Pattern recognition

Applications:

- ► Market segmentation / customer base segmentation
- ► Pattern recognition
- Community discovery in social networks

Applications:

- ► Market segmentation / customer base segmentation
- ► Pattern recognition
- Community discovery in social networks
- ► Topic detection in text corpora

Applications:

- ► Market segmentation / customer base segmentation
- ► Pattern recognition
- Community discovery in social networks
- ► Topic detection in text corpora
- ► Tracking of evolutional steps

Applications:

- ► Market segmentation / customer base segmentation
- ▶ Pattern recognition
- Community discovery in social networks
- ► Topic detection in text corpora
- ► Tracking of evolutional steps
- Identifying common behavior or common interests (e.g. for pdf recommender systems)

Applications:

- ► Market segmentation / customer base segmentation
- ▶ Pattern recognition
- ► Community discovery in social networks
- ► Topic detection in text corpora
- ► Tracking of evolutional steps
- ► Identifying common behavior or common interests (e.g. for pdf recommender systems)
- ▶ Identifying common physical properties in sensor data

Applications:

- ► Market segmentation / customer base segmentation
- ▶ Pattern recognition
- Community discovery in social networks
- ► Topic detection in text corpora
- ► Tracking of evolutional steps
- ▶ Identifying common behavior or common interests (e.g. for pdf recommender systems)
- ▶ Identifying common physical properties in sensor data

...

Outline

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

Examples

Clusters of different size, form, density, and hierarchical structure

What is Clustering? 4 / 10

¹Source: [1], Abb. 3-1

Clustering Formally

There is no hard mathematical definition of clustering in general.

What is Clustering? 5 / 10

Clustering Formally

There is no hard mathematical definition of clustering in general.

Definition 1 (Clustering)

Clustering comprises (machine learning) methods of unsupervised learning to collect data instances into groups, categories, or classes, called clusters. The set of all clusters is called a clustering.

What is Clustering? 5 / 10

Clustering Formally

There is no hard mathematical definition of clustering in general.

Definition 1 (Clustering)

Clustering comprises (machine learning) methods of unsupervised learning to collect data instances into groups, categories, or classes, called clusters. The set of all clusters is called a clustering.

Criteria for the grouping can be

intra-class similarity: similarity within a cluster

inter-class dissimilarity: dissimilarity between different clusters

What is Clustering? 5 / 10

Machine Learning Disciplines

Supervised

- ► labelled data
- goal: class/prediction of unknown/future data
- idea: Learn by deriving a model from looking at examples
- correctness of the training can be assessed (supervised)
- examples: classification, regression

Unsupervised

- unlabelled data
- goal: Detect patterns (groups, structure) in the data
- learning is unsupervised, no "correct" result that we can compare to
- examples: clustering, dimensionality reduction

What is Clustering? 6 / 10

Clustering Process

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

What is Clustering? 7 / 10

Clustering Process

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

► representation of the data

What is Clustering? 7 / 10

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

- representation of the data
- ▶ definition of a similarity measure (domain-specific)

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

- ► representation of the data
- definition of a similarity measure (domain-specific)
- creating the clusters

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

- representation of the data
- definition of a similarity measure (domain-specific)
- creating the clusters
- optionally abstraction of knowledge

Definition 2 (Clustering Process)

A clustering process comprises the following steps:

- representation of the data
- definition of a similarity measure (domain-specific)
- creating the clusters
- ► optionally abstraction of knowledge
- ▶ optionally evaluation of the output

Outline

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

Partitioning Methods (Hard Clustering)

Partitioning Methods (Hard Clustering)

 determines a partition into disjoint subsets, minimizing a cost function

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \triangleright typical parameters: number of clusters k, distance function

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- ▶ typical parameters: number of clusters *k*, distance function Density-based Methods

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- ▶ typical parameters: number of clusters *k*, distance function Density-based Methods
 - ▶ adds neighbors to clusters, as long as density does not fall below threshold

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- typical parameters: number of clusters k, distance function

Density-based Methods

- ▶ adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise

8 / 10

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- typical parameters: number of clusters k, distance function

Density-based Methods

- ▶ adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

8 / 10

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

▶ determine a hierarchy of clusters, fuses most similar clusters

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

- ▶ determine a hierarchy of clusters, fuses most similar clusters
- parameters: distance function

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

- ▶ determine a hierarchy of clusters, fuses most similar clusters
- parameters: distance function

Other Methods (incomplete)

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

- ▶ determine a hierarchy of clusters, fuses most similar clusters
- parameters: distance function

Other Methods (incomplete)

► Soft Clustering (Fuzzy Clustering, Overlapping Clustering)

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

- ▶ determine a hierarchy of clusters, fuses most similar clusters
- parameters: distance function

Other Methods (incomplete)

- ► Soft Clustering (Fuzzy Clustering, Overlapping Clustering)
- ► Graph-based Methods

Partitioning Methods (Hard Clustering)

- determines a partition into disjoint subsets, minimizing a cost function
- \blacktriangleright typical parameters: number of clusters k, distance function

Density-based Methods

- adds neighbors to clusters, as long as density does not fall below threshold
- distinguishes between the cores of clusters, its borders, and noise
- parameters: minimal acceptable density in a cluster, distance function

Hierarchical Methods

- ▶ determine a hierarchy of clusters, fuses most similar clusters
- parameters: distance function

Other Methods (incomplete)

- ► Soft Clustering (Fuzzy Clustering, Overlapping Clustering)
- ► Graph-based Methods

Outline

Motivation

Goals of Clustering

What is Clustering?

Clustering Methods

Ingredients

We need:

▶ a way to express different kinds of data mathematically, and

We need:

- ▶ a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points

We need:

- ▶ a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points
- ▶ all that in many-dimensional realms

We need:

- a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points
- ▶ all that in many-dimensional realms
- ▶ 2D-visualizations despite multidimensional data

We need:

- a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points
- ▶ all that in many-dimensional realms
- ▶ 2D-visualizations despite multidimensional data
- algorithms that cluster

We need:

- a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points
- ▶ all that in many-dimensional realms
- ▶ 2D-visualizations despite multidimensional data
- algorithms that cluster
- basic mathematics like logarithms, vector geometry, matrices

We need:

- a way to express different kinds of data mathematically, and
- ▶ a way to measure distance/similarity between points
- ▶ all that in many-dimensional realms
- ▶ 2D-visualizations despite multidimensional data
- ► algorithms that cluster
- basic mathematics like logarithms, vector geometry, matrices

References

M. Ester and J. Sander.

Knowledge Discovery in Databases. Springer-Verlag, Berlin/Heidelberg, 2000.