Desafío STEM: Medición de Anchos Micrométricos Usando Difracción Láser

Objetivos

- Observar patrones de difracción de Fraunhofer producidos por objetos delgados y aberturas circulares.
- Estimar experimentalmente el diámetro de un cabello humano y de un orificio circular mediante técnicas òpticas.
- Aplicar principios de la teoría ondulatoria de la luz para interpretar resultados experimentales.
- Desarrollar habilidades experimentales en la caracterización de objetos microscópicos con herramientas simples.

Organización de la actividad

La actividad se desarrolla en dos sesiones:

- Sesión 1 (1.5 horas): Realización de ambos experimentos en el laboratorio. Cada grupo debe tomar datos, fotografías, y avanzar en los cálculos preliminares.
- Sesión 2 (1.5 horas): Entrega del informe escrito y exposición oral de máximo 10 minutos por grupo. El profesor podrá asignar a cada grupo uno de los dos experimentos para su presentación.

Cada grupo debe realizar ambos experimentos y estar preparado para exponer cualquiera de ellos, según asignación del profesor. Además, deben responder en el informe y en la exposición oral por la validez, uso y deducción de los modelos teóricos empleados, así como las posibles aplicaciones de estos métodos en contextos reales.

Preparación previa del estudiante

Antes de la sesión experimental, cada grupo debe entregar una síntesis escrita (1 página) que aborde:

- Difracción de la luz y condiciones de difracción de Fraunhofer.
- Difracción por objetos delgados (cabello, alambre) y aberturas circulares (orificios).
- Uso del láser y medidas de seguridad.
- Orden de magnitud de los objetos estudiados.
- Deducción y justificación de las expresiones matemáticas utilizadas en ambos experimentos.

Materiales comunes para ambos experimentos

- Láser (por ejemplo, puntero rojo de 650 nm)
- Pantalla blanca o pared
- Regla o cinta métrica (al menos de 1 metro)
- Papel milimetrado (opcional)
- Cinta adhesiva transparente
- Portaobjetos, cartón o soporte rígido

Experimento 1: Medición del diámetro de un cabello humano

Procedimiento

- 1. Pegue el cabello en un portaobjetos utilizando cinta adhesiva, procurando que quede tenso.
- 2. Sitúe el láser de modo que ilumine el cabello perpendicularmente.
- 3. Coloque la pantalla a una distancia conocida L (ej. 1 metro).
- 4. Observe el patrón de difracción (franjas oscuras y brillantes).
- 5. Marque varios máximos y mida la distancia total entre ellos.
- 6. Calcule la separación media Δx entre máximos consecutivos.
- 7. Use la fórmula:

$$d = \frac{\lambda L}{\Delta x}$$

Experimento 2: Medición del diámetro de un orificio circular

Materiales adicionales

- Lámina opaca delgada con orificio circular (por ejemplo, papel aluminio perforado)
- Soporte para fijar el orificio

Procedimiento

- 1. Fije el orificio perpendicular al haz del láser.
- 2. Coloque la pantalla a una distancia conocida L (ej. 1 metro).
- 3. Observe el patrón de difracción circular (anillos concéntricos).
- 4. Mida el radio r_1 del primer anillo oscuro.
- 5. Calcule el ángulo aproximado: $\theta \approx \frac{r_1}{L}$.
- 6. Use la expresión:

$$d = 1,22 \, \frac{\lambda L}{r_1}$$

Preguntas orientadoras

- Común: ¿Por qué aparecen los patrones de difracción al pasar el láser?
- ¿De dónde provienen las expresiones usadas en cada experimento? ¿Cuál es su deducción teórica y cuándo son válidas? ¿Puedes explicarlas paso a paso?
- ¿Cómo afecta la longitud de onda o la distancia a la pantalla los resultados?
- ¿Cuál método tiene mayor precisión y por qué?
- ¿Qué errores pueden afectar cada medición?
- ¿Qué aplicaciones industriales tienen estos métodos de medición por difracción? ¿En qué contextos se usan?
- Importante: el profesor puede asignar a cada grupo el enfoque de uno de los experimentos (1 o 2) para su exposición, por lo cual deben estar preparados para ambos.

Conexiones STEM

- Ciencia: Aplicación de la teoría ondulatoria de la luz.
- Tecnología: Uso de herramientas ópticas simples para caracterización precisa.
- Ingeniería: Medición indirecta de parámetros microscópicos y control de calidad.
- Matemáticas: Cálculos experimentales y propagación de errores.

Evaluación

Informe escrito (5.0 puntos)

Criterio	Puntaje Máximo
Objetivo claramente formulado y contextualizado	0.5
Descripción clara del procedimiento experimental y materiales	1.0
usados	
Presentación ordenada de datos y cálculos (unidades y errores)	1.0
Deducción correcta de las expresiones utilizadas y su justificación	1.0
teórica	
Discusión de resultados, aplicaciones y comparación con valores	1.0
esperados	
Conclusiones argumentadas y redacción adecuada	0.5
Total	5.0

Mini-exposición oral (5.0 puntos)

Criterio	Puntaje Máximo
Presentación clara del objetivo y teoría utilizada	1.0
Explicación y deducción correcta de las expresiones utilizadas	1.25
Interpretación de los resultados experimentales y aplicaciones	1.0
Uso adecuado de recursos visuales (gráficas, fotos, esquemas)	0.5
Participación equilibrada y manejo del tiempo	1.25
Total	5.0

Nota final

Nota final = promedio entre la nota del informe escrito y la de la mini-exposición.