

Střední průmyslová škola a Vyšší odborná škola, Písek, Karla Čapka 402, Písek $18\text{-}20\text{-}\mathrm{M}/01 \; \mathrm{Informační} \; \mathrm{technologie}$

Maturitní práce

Dálkové ovládání zásuvek NETIO

Téma číslo 12

autor:

Milan Jiříček, B4.I

vedoucí maturitní práce:

Ing. Břetislav Bakala

Písek 2020/2021

Anotace

Maturitní práce se zaměřuje na porovnání platforem ESP8266 a ESP32. Cílem je vytvořit ovladač pro ovládání zásuvek značky NETIO s webovou aplikací pro konfiguraci a zjistit, která platforma je vhodna pro realizaci funkčního vzorku z hlediska spotřeby energie a reakční doby.

Annotation

The graduation thesis focuses on the comparison of the ESP8266 and ESP32 platforms. The goal is to create a driver for controlling NETIO sockets with a web application for configuration and to find out which platform is suitable for the implementation of a functional sample in terms of energy consumption and response time.

Poděkování Chtěl bych poděkovat panu učiteli Ing. Břetislavovi Bakalovi za odborné vedení práce a cenné rady, které mi pomohly tuto práci zkompletovat. Rád bych také poděkoval Ing. Břetislavovi Bakalovi za cenné rady, věcné připomínky a vstřícnost při konzultacích a vypracování bakalářské práce. V neposlední řadě chci poděkovat Mgr. Haně Maříkové a Mgr. Vladimíře Špirhanzlové za pomoc při gramatické a stylistické kontrole.

Obsah

1	Teo	rie		4
	1.1	Aplika	ace pro WiFi Managment	. 4
	1.2	Netio	zásuvka Cobra	. 4
	1.3	a tak	dale	. 4
2	Měi	ření sp	ootřeby a času	5
	2.1	ESP82	266	. 5
		2.1.1	Klidové stavy	. 5
		2.1.2	WiFi připojení	. 7
		2.1.3	Odeslání HTTP requestu s připojenou WiFi	. 10
3	Záv	ěr		12
Ρì	ʻíloh	y		14
A	Příl	loha		15

Kapitola 1

Teorie

- 1.1 Aplikace pro WiFi Managment
- 1.2 Netio zásuvka Cobra
- 1.3 a tak dale

Kapitola 2

Měření spotřeby a času

2.1 ESP8266

2.1.1 Klidové stavy

ESP běží kontinuálně

Klidový stav byl měřen za podmínek:

- ESP8266 čeká na zmáčknutí tlačítka na pinu GPIO5
- ESP je neustále zapnuté, probíhá loop funkce pro kontrolu zmáčknutí
- Je připojeno k WiFi, je zaplý soft AP, běží webserver

Při klidovém stavu byl naměřen eletrický proud průměrně 96.81 mA viz. obr. 2.1. Měření probíhalo 50 s. Vypočítame příkon:

$$P = 0.09681 \,\mathrm{A} \times 3.3 \,\mathrm{V}$$

Dle rovnice se příkon rovná 0.3195 W

ESP8266 vykoná 160 miliónů cyklů za sekundu. Pro výpočet energie:

$$E = 0.3195 \,\mathrm{W} \times 1.7361 \times 10^{-12} \mathrm{h}$$

Spotřeba energie 1 řídícího cyklu je $54.4864\times 10^{-12} \mathrm{Wh}.$

ESP vypnuté přes ENABLE pin

Měření proběhlo za podmínek:

• Napájeno z USB

Obrázek 2.1: ESP8266 měření klidového stavu kontinualního režimu

Obrázek 2.2: Měření klidového režimu enable případu

- Měřeno pomocí úbytku napětí na rezistoru o velikosti $10\,\Omega$
- pin enable byl připojen manuálně
- Napětí bylo měřeno Analog Discovery 2

Po připojení ESP8266 proud nevzrostl a drží se stále na 240 μ A, což neodpovídá teoretickým hodnotám, které by se měly pohybovat okolo 3 μ A viz. obr. 2.2. Pro výpočet bude jako průměrný odebraný proud použita hodnota uvedena v datasheetu což je 3 μ A. Víme, že napětí je 3.3 V takže jsme schopni spočítat eletrický příkon:

$$P = 3 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

což je $9.9\times 10^{-6} \mathrm{W}$ Dále zjistíme energii za 1 řídící cyklus:

$$E = 9.9 \times 10^{-6} \text{W} \times 1.7361 \times 10^{-12} \text{h}$$

Spotřeba 1 řídícího cyklu je 17.1874 × 10^{-18} Wh.

	Kontinuální	Enable	Deep Sleep
Reakční doba	$196\mathrm{ms}$	$3100\mathrm{ms}$	$967\mathrm{ms}$
Spotřeba cyklu	$54.4864 \times 10^{-12} \text{Wh}$	$17.1874 \times 10^{-18} \text{Wh}$	$114.59 \times 10^{-18} \text{Wh}$

Tabulka 2.1: Porovnání klidových stavů ESP8266

Deep sleep režim

Kvůli citlivosti Analog Discovery 2 nejsme schopni změřit spotřebu deep sleep režimu, je nutné změřit microampérmetrem. Pro výpočet spotřebované energie dosadíme za průměrný elektrický proud hodnotu z datasheetu, která odpovídá 20 μA. Spočítáme elektrický příkon:

$$P = 20 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

Ten v této situaci odpovídá hodnotě $66 \times 10^{-6} \mathrm{W}$ a dále vypočítáme spotřebovanou energii za 1 řídící cyklus:

$$E = 66 \times 10^{-6} \text{W} \times 1.7361 \times 10^{-12} \text{h}$$

Spotřeba 1 řídícího cyklu je 114.59×10^{-18} Wh.

Shrnutí výsledků

Reakční doba byla změřena pomocí kamery. K tlačítku jsem připojil LED, místnost jsem izoloval od světla a zmáčknutí tlačítka a reakci zásuvky jsem natočil ve zpomaleném režimu s 240 snímky za sekundu. Dále jsem zjistil rozdíl mezi rozsvícení LED u tlačítka a LED zabudované v zásuvce, signalizující sepnutí.

2.1.2 WiFi připojení

Cílem měření je zjistění rychlostí připojení různými způsoby k přístupovému body, spotřeby a následné porovnání případů.

Dynamické přidělení IP adresy

Měření proběhlo za použití DHCP protokolu, kde by přístupový pod měl zvolit IP adresu pro zařízení. Bylo provedeno za podmínek:

Obrázek 2.3: Měření dynamického připojení k AP

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření bylo provedeno 5x. Průměrný čas se pohybuje okolo 4.7 s. Jak je možno vidět na grafu, tak dvě WiFi připojení trvaly o 2 sekundy kratší dobu. Toto chování přisuzuji rozmanitému provozu na Přístupovém bodu, který zárověň probíhá s měřením. viz. obr. 2.3

Statické přidělení IP adresy

Použita byla statická adresa, která byla přidělena ESP8266 před připojením na AP. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření proběhlo 5x. Průměrný čas byl 3.7 s. viz. obr. 2.4

Obrázek 2.4: Měření statického připojení k AP

Obrázek 2.5: Měření zabezpečeného připojení k AP

Zabezpečený AP

Připojení na access point je šifrované. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- IP adresa je nastavena staticky
- Přístupový bod se nachází 3.5 m od zařízení
- Bylo použito zabezpečení WPA2-PSK

Průměrný čas byl 4.7 s.

viz. obr. 2.5

Závěr

Z výsledků měření je nejrychlejší připojení pomocí statické IP adresy, nicméně je velice náročné nastavit IP adresu, masku a bránu pro běžného uživatele. Připojení s DHCP je

Pořadí	Dynamické	Statické	Zabezpečení
1.	$5.3385\mathrm{s}$	$3.589\mathrm{s}$	$4.733\mathrm{s}$
2.	$5.3445\mathrm{s}$	$3.583\mathrm{s}$	$4.733\mathrm{s}$
3.	$3.619\mathrm{s}$	$3.631\mathrm{s}$	$4.733\mathrm{s}$
4.	$5.333\mathrm{s}$	$3.481\mathrm{s}$	$4.733\mathrm{s}$
5.	$3.627\mathrm{s}$	$3.613\mathrm{s}$	$4.733\mathrm{s}$
Průměr	$4.6524\mathrm{s}$	$3.5794\mathrm{s}$	$4.709\mathrm{s}$

Tabulka 2.2: Porovnání reakční doby naměřené připojením k WiFi

pomalejší průměrně o 1 s než případ se statickou IP adresou. DHCP vyniká jednoduchostí použití pro běžného uživatele. K zabezpečené WiFI trvá stejně dlouho jako s DHCP. viz tabulka 2.2

2.1.3 Odeslání HTTP requestu s připojenou WiFi

Cílem měření je zjistit čas odesílání HTTP requestu a následné odpovězení zásuvky NETIO. Pokus byl proveden za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velitosti $0.7\,\Omega$
- ESP8266 zkontroluje připojení k WiFi a pokud není navázáno, pokusí se ho navázat
- Načtení uložené konfigurace WiFi trvá 300 ms
- ESP ukončí reakci, pokud dostane zpětnou vazbu od zásuvky

Jelikož ESP přestane reagovat až po odpovězení zásuvky, dokážeme zjistit celkový čas včetně zapnutí, zkontrolování WiFi připojení, sestavení a odeslání HTTP requestu, reakce zásuvky a zpracování HTTP zprávy.

viz tabulka 2.3

Spotřeba jednotlivých operací ESP8266 byla spočítána: $E = U \times I \times t$

Pořadí	připojené k WiFi
1.	$778.9\mathrm{ms}$
2.	$743\mathrm{ms}$
3.	$772.9\mathrm{ms}$
4.	$744.5\mathrm{ms}$
5.	$623.1\mathrm{ms}$
Průměr	$732.48\mathrm{ms}$

Tabulka 2.3: Čas odeslání HTTP requestu a reakce zásuvky

Operace	reakční doba	spotřeba
Dynamické připojení	$4.6524\mathrm{s}$	$385.19\mu\mathrm{Wh}$
Statické připojení	$3.5794\mathrm{s}$	$295.59\mu\mathrm{Wh}$
Zabezpečené připojení	$4.709\mathrm{s}$	$393.15\mu\mathrm{Wh}$
HTTP komunikace	$0.73248\mathrm{s}$	$67.75\mu\mathrm{Wh}$

Tabulka 2.4: Spotřeba jednotlivých akcí

Kapitola 3

Závěr

Seznam tabulek

2.1	Porovnání klidových stavů ESP8266	7
2.2	Porovnání reakční doby naměřené připojením k WiFi	10
2.3	Čas odeslání HTTP requestu a reakce zásuvky	11
2.4	Spotřeba jednotlivých akcí	11

Seznam obrázků

2.1	ESP8266 měření klidového stavu kontinualního režimu	6
2.2	Měření klidového režimu enable případu	6
2.3	Měření dynamického připojení k AP	8
2.4	Měření statického připojení k AP	9
2.5	Měření zabezpečeného připojení k AP	9

Příloha A

Příloha

Literatura

- [1] PříJMENÍ AUTORA, Jméno autora. *Název knihy*. Místo vydání: Nakladatelství, Rok. ISBN ISBN.
- [2] PříJMENÍ AUTORA, Jméno autora. *Název práce*. Místo, Rok. Druh práce. Univerzita, Fakulta, Katedra. Vedoucí diplomové práce jméno.