

Lab session day 2

Learning outcomes

- understand the constituents of a bioinformatics pipeline for processing Illumina sequencing data and to run such a pipeline.
- understand the file formats used in high throughput sequencing.
- use the command line and running bioinformatic tools.
- perform quality control on DNA- and RNA sequencing data for cancer sequencing purposes.

Inherent challenges with DNA- and RNA-seq

1.5% coding genes

~2% mRNA

Figures: from googling ...

Inherent challenges with DNA- and RNA-seq

1.5% coding genes

Apply enrichment or WGS

PCR or hybridisation

Interrogate protein coding genes

Identify mutations Structural rearrangements Microsattelite instability

~2% mRNA

Apply enrichment polyA-tail Or rRNA depletion

Interrogate protein coding genes

Expressed mutations -> neoantigen -> Immunotherapy Kinase outlier expression Gene fusions

Tissue/phenotype specific expression profile

Figures: from googling ...

Clinical Cancer Genomics – vt 2022

Inherent challenges with DNA- and RNA-seq

Figures: from googling ...

Today's labwork

- Investigate files needed for processing DNA and RNA data e.g. the human genome reference
- 2. Run various bioinformatic tools
 - 1. Processing data
 - 2. Quality control
- 3. Investigate processed data in the Integrative Genomics Viewer (IGV).
- 4. Potential extra task: How to define, order and quality check a targeted sequencing assay.

- Reference genome: an assembly: an attempt to produce as comptele version of the human genome as possible
- Difficulties due to repetitive DNA/non identical DNA stretches etc.
- Pay attention to the version!

Name (link)	Description
1000 Genomes reference	Used in this course. The 1000g reference names chromosomes as follows (chr1, chr2,, chr22, chrX, chrY, chrM). This reference includes "decoy" sequences (mostly low complexity sequences) that have been added to the standard genome build sequence. This reduces misalignment of reads that would otherwise get placed somewhere they don't belong. The developer of the BWA aligner documents use of this version of the reference genome. This reference includes the alternative contigs.
Ensembl reference	Ensembl names the chromosomes as follows (1, 2,, 22, X, Y, MT). The names of some unplaced contigs also differ. This reference does NOT have the decoy sequences. This reference includes the alternative contigs.
UCSC reference	The UCSC reference names chromosomes as follows (chr1, chr2,, chr22, chrX, chrY, chrM). This reference does NOT have the decoy sequences. This reference includes the alternative contigs.
NCBI reference	NCBI names the chromosomes as follows (chr1, chr2,, chr22, chrX, chrY, chrMT). This reference does NOT include the decoy sequences. This reference includes the alternative contigs. The major annotation centers such as UCSC and Ensembl start with raw files from NCBI (Various Human Assemblies). Most other people do not use these NCBI files directly but rather get a version of the files from UCSC, Ensembl, etc.
Genomic Data Commons (GDC) reference	The GDC reference names chromosomes as follows (chr1, chr2,, chr2, chrX, chrY, chrM). The GDC created their own version of the reference for harmonized analysis of the TCGA and other large cancer sequencing projects. This reference includes "decoy" sequences. This reference does NOT include the alternative contigs. Unique to this reference is the inclusion of several virus sequences for viruses with known or suspected roles in cancer (e.g. HPV, EBV, etc.).

Clinical Cancer Genomics – vt 2022

Table from pmbio.org

Indexing files

- 1. Many bioinformatic tools are dependent on that the file has been indexed
- 2. Allows bioinformatic tools to efficiently access only the required information
 - 1. E.g. a tool wants to look at a specific position on chr 20, not efficient to start from chr 1 and read the file to chr 20.
- 3. Done for reference genome, annotation files for the human genome etc.
- 4. Both for DNA- and RNA-seq tools

Course data

- Breast cancer cell line (HCC1395) and its matched lymphoblastoid cell line (HCC1395BL).
 - 1. Cell line is available at the American Type Culture Collection (ATCC) store.
 - 2. DNA exome-seq, wgs-seq and RNA-seq data.
- 2. Commercial cfDNA from mCRPC patients (generated at Scilifelab).

Illumina sequencing

https://www.youtube.com/watch?v=fCd6B5HRaZ8

NovaSeq 6000

~2000 M read-pairs per lane 2 x 150 bp

iPCM:

tumor DNA, 40M read-pairs germline DNA, 15M read-pairs

2000/55 = 36 Tumor/Normal pairs/lane 3 T/N wgs pairs (90x tumor and 30x gDNA)/lane 166M read pairs/30x genome

Illumina sequencing

https://en.wikipedia.org/wiki/Phred quality score https://en.wikipedia.org/wiki/FASTQ_format

5: Data interpretation for research project

5: Data interpretation for clinical use
Inspect variants manually according to SOP

BAM files (Binary Alignment Map). Compressed version of SAM files, Sequence Alignment/Map format. https://samtools.github.io/hts-specs/

Alignment is like solving a pussle

- Use of fast algorithms, mistakes will happen .. (check mapping quality BAM files)
- Different genome builds exist out there be careful!

SPECIES	UCSC VERSION	RELEASE DATE	RELEASE NAME	STATUS		
MAMMALS						
Human	hg38	Dec. 2013	Genome Reference Consortium GRCh38	Available		
	hg19	Feb. 2009	Genome Reference Consortium GRCh37	Available		
	hg18	Mar. 2006	NCBI Build 36.1	Available		
	hg17	May 2004	NCBI Build 35	Available		
	hg16	Jul. 2003	NCBI Build 34	Available		
	hg15	Apr. 2003	NCBI Build 33	Archived		
	hg13	Nov. 2002	NCBI Build 31	Archived		
	hg12	Jun. 2002	NCBI Build 30	Archived		

5: Data interpretation for clinical use
Inspect variants manually according to SOP

5: Data interpretation for clinical use
——— Inspect variants manually according to SOP

5: Data interpretation for clinical use ------- Inspect variants manually according to SOP

Watch out for booby traps!

Genomic coordinate systems

• 1-based vs. 0-based

chr1								G						Α	
1-based		1		2		3		4		5		6		7	
0-based	0		1		2		3		4		5		6		7

Genome builds

- And annotation builds
- "Liftover" tools

Left-shifted vs rightshifted

Figs from pmbio.org

Lets get started!