

FUNDAMENTOS DA DISPERSÃO ATMOSFÉRICA Prof. Bruno Furieri – 2024/1

EXERCÍCIO 2

CONCEITOS FUNDAMENTAIS EM DISPERSAO

1^a. questão: Camada Limite Planetária

- 1.1 Em quais regiões ou situações na atmosfera pode ser aplicada a teoria do escoamento não viscoso? Por quê?
- 1.2 Quais são as dificuldades básicas na solução das equações de Navier-Stokes para o movimento de fluidos viscosos?
- 1.3 Esclareça a distinção entre os seguintes tipos de escoamentos atmosféricos, dando exemplos para cada um: (a) escoamentos viscosos e não viscosos; (b) escoamentos laminar e turbulento; (c) convecção livre e forçada.
- 1.4 Derive a equação 7.33 do livro Introduction to Micrometeorology a partir da equação de Navier Stokes.

Material referencial:

Título do livro: Introdução à Mecânica dos Fluidos

Capítulo 2: Conceitos fundamentais

Capítulo 5: Introdução à análise diferencial dos movimentos dos fluidos Autor: Robert Fox, Alan MacDonald, Phillip Pritchard & John Mitchel

Ano: 2018 Editora: LTC

Título do livro: Introduction to Micrometeorology

Capítulo 7: An Introduction to Viscous Flows (exceto 7.4 e 7.5)

Autor: S Pal Arya

Ano: 2001

Editora: Academic Press

2ª. questão: Perfil de Temperatura e Estabilidade Atmosférica

Deduza o perfil adiabático de temperaturas.

Material referencial:

Título do livro: Atmosphere Chemistry and Physics: From Air Pollution to Climate Change

Capítulo 16: Meteorology of Air Pollution

Autores: J H Seinfeld & S N Pandis

Ano: 1998

Editora: John Wiley & sons, Inc.

3ª. questão: Perfil de Temperatura e Estabilidade Atmosférica

A partir das informações dos itens 2.3 e 2.4 do livro de referência, responda: A Tabela abaixo apresenta dados de radiosondagem de temperatura e umidade específica do ar durante um experimento particular, (a) calcule e apresente um gráfico da temperatura virtual em função da altura; (b) assumindo a pressão na superfície como 1000 mb, calcule e apresente um gráfico da

FUNDAMENTOS DA DISPERSÃO ATMOSFÉRICA Prof. Bruno Furieri – 2024/1

temperatura potencial virtual como função da altura; (c) caracterize as várias camadas com base na estabilidade local e (d) Qual seria a classificação da estabilidade de forma geral (não local)?

Altura (m)	Temperatura (°C)	Umidade específica (g kg ⁻¹)
10	14,4	3,3
50	13,5	3,1
100	12,9	3,1
200	11,8	3,3
300	10,5	3,2
400	9,4	3,2
500	8,5	3,1
600	7,5	3,1
800	5,4	3,0
1000	3,4	2,9
1200	1,4	2,3
1400	2,2	1,0
1600	1,4	0.7
1800	0,8	0,7
2000	0,1	0,7

Material referencial:

Título do livro: Air Pollution Meteorology and Dispersion

Capítulo 2: Atmospheric Structure and Dynamics (exceto 2.7.2 e 2.8)

Autor: S Pal Arya

Ano: 1999

Editora: Oxford University Press, Inc.