Assignment 9 - Hybrid evolutionary algorithm

Authors

- Michał Kamiński 151969
- Jan Indrzejczak 152059

Description of the problem

The travelling salesman problem (TSP) is a classic optimization problem. Given a list of cities and the distances between them, the task is to find the shortest possible route that visits each city exactly once and returns to the origin city. In this version of the problem, each city also has a cost of being visited, and we only need to select half of the cities.

As an input we received a list of coordinates of cities, along with the cost. To calculate the distance between cities we used Euclidean distance, and each city is represented as a number from 0 to n-1 (n-number of cities). The objective function is to find the route that minimizes the sum of distances between cities and the cost of visiting them.

Pseudocode of all implemented algorithms

Hybrid evolutionary algorithm

```
Function RunHybridEvolutionary
Initialize the starting population of 20 individuals (Random starting solution with SteepestDeltasLocalSearch run on each)
Evaluate each individual in the population
Sort the population by the fitness

Until the running time is exceeded:
Choose parent1 and parent2 from the population at random
Perform crossover on parent1 and parent2 to create a child
Perform mutation on the child
Either run SteepestDeltasLocalSearch on the child or proceed without LS
If the child already exists in the population go back to the beginning of the loop
Add the child to the population, sort it and truncate to keep the best 20 individuals

Return the best individual from the population
```

Mutation operator

Function Mutate

Choose a random node from the individual to be replaced

Choose a random node from the remaining nodes to replace it with

Replace the nodes

Return the mutated individual

Crossover operator

Function Crossover

Input: parent1, parent2

Create a set of all edges and their counterparts from parent1

Create an empty set nodes_to_keep Iterate through edges of parent2

If the edge is in the set of edges from parent1 add the nodes forming this edge to nodes_to_keep

Create a child with the nodes from nodes_to_keep and fill the remaining nodes with the GreedyWeighted2Regret heuristic

Return the child

Table of the results

Algorithm	TSPA	ТЅРВ
Random Start Two Edges Intra Steepest Deltas	74207 (71342- 78723)	49160 (46761- 52674)
Random Start Two Edges Intra Steepest Multiple Start Local	71299 (70817-	45970 (45235-
Search	71812)	46595)
Random Start Two Edges Intra Steepest Deltas Multiple Start	71700 (70758-	46101 (45578-
Local Search	72325)	46676)
Random Start Two Edges Intra Steepest Deltas Iterated Local	69340 (69122-	43647 (43507-
Search	69531)	43877)
Greedy Regret Heuristic with weighted 2-Regret Random	70987 (70024-	46034 (44398-
Destroy LNS	72625)	48968)
Greedy Regret Heuristic with weighted 2-Regret Random	69720 (69378-	44095 (43509-
Destroy LNSw	70168)	44602)
Hybrid Evolutionary Algorithm with LS after recombination	69831 (69293- 70248)	45231 (44659- 45867)
Hybrid Evolutionary Algorithm with without LS after recombination	70094 (69369- 70618)	45185 (44236- 46196)

1/13/2025 assignment9.md

Minimal scores for TSPB

1/13/2025 assignment9.md

Table of average number of main loop iterations

Algorithm	Iterations
Greedy Regret Heuristic with weighted 2-Regret Random Destroy LNS	1183
Greedy Regret Heuristic with weighted 2-Regret Random Destroy LNSw	846
Random Start Two Edges Intra Steepest Multiple Start Local Search	200
Random Start Two Edges Intra Steepest Deltas Multiple Start Local Search	200
Random Start Two Edges Intra Steepest Deltas Iterated Local Search	382
Hybrid Evolutionary Algorithm with LS after recombination	509
Hybrid Evolutionary Algorithm with without LS after recombination	3130

Results of previous algorithms

Algorithm	TSPA	ТЅРВ
Random Algorithm	225467	193417
Nearest Neighbor (Add at End)	83182	52319
Nearest Neighbor (Insert Anywhere)	71179	44417
Greedy Cycle	72636 (71488-74410)	51401 (49001-57324)
Greedy Regret Heuristic with 2-Regret	116681 (108804-123447)	70265 (65043-76325)
Greedy Regret Heuristic with Weighted 2-Regret	72148 (71108-73718)	50997 (47144-56747)
Random Start Two Edges Intra Steepest Candidate	79763 (74876-84144)	51500 (47433-58226)
Random Start Two Edges Intra Steepest	75172 (72784-80372)	49635 (47325-52654)
Random Start Two Nodes Intra Greedy	86727 (82039-95867)	61477 (53396-67230)
Random Start Two Edges Intra Greedy	74035 (77907-82039)	48390 (45665-51760)
Greedy Start Two Nodes Intra Greedy	71599 (70602-72778)	45331 (43826-51911)
Greedy Start Two Edges Intra Greedy	71335 (70004-72452)	44898 (43790-50892)
Random Start Two Nodes Intra Steepest	88618 (81178-98102)	63387 (56112-73195)
Greedy Start Two Nodes Intra Steepest	71936 (71041-73353)	45355 (43862-51147)
Greedy Start Two Edges Intra Steepest	71677 (70397-72984)	45008 (43958-50901)
Random Start Two Edges Intra Steepest Candidate	79763 (74876-84144)	51500 (47433-58226)
Random Start Two Edges Intra Steepest	75326 (72938-80126)	49725 (46957-52832)

Raw results

TSPA

Results for Steepest Deltas Random Replace Mutation Keep Common Fill LS Crossover with Greedy Regret Heuristic with weighted 2-Regret Hybrid Evolutionary algorithm Min cost: 69293 Max cost: 70248 Average cost: 69831 Time took for 20 runs: 40.04714160s, time per run: 2002357μs Best solution: [118, 51, 151, 133, 162, 123, 127, 70, 135, 154, 180, 53, 121, 100, 26, 86, 75, 101, 1, 97, 152, 2, 129, 57, 92, 82, 120, 44, 25, 16, 171, 175, 113, 56, 31, 78, 145, 179, 196, 81, 90, 165, 40, 185, 55, 52, 106, 178, 49, 14, 144, 102, 62, 9, 148, 124, 94, 63, 79, 80, 176, 137, 23, 186, 89, 183, 143, 0, 117, 93, 140, 68, 46, 115, 139, 41, 193, 159, 69, 108, 18, 22, 146, 181, 34, 160, 48, 54, 177, 10, 190, 4, 112, 84, 184, 42, 43, 116, 65, 59] Results for Fake Local Search Random Replace Mutation Keep Common Fill LS Crossover with Greedy Regret Heuristic with weighted 2-Regret Hybrid Evolutionary algorithm Min cost: 69369 Max cost: 70618 Average cost: 70094 Time took for 20 runs: 40.03158410s, time per run: 2001579μs Best solution: [181, 34, 160, 48, 54, 177, 10, 190, 4, 112, 84, 35, 184, 42, 43, 116, 65, 59, 118, 51, 151, 133, 162, 123, 127, 70, 135, 154, 180, 53, 121, 100, 26, 86, 75, 101, 1, 97, 152, 2, 120, 44, 25, 16, 171, 175, 113, 56, 31, 78, 145, 179, 92, 129, 57, 55, 52, 185, 40, 196, 81, 90, 165, 106, 178, 49, 14, 144, 102, 62, 9, 148, 124, 94, 63, 79, 80, 176, 137, 23, 186, 89, 183, 143, 0, 117, 93, 140, 68, 46, 115, 139, 41, 193, 159, 69, 108, 18, 22, 146]

TSPB

Results for Steepest Deltas Random Replace Mutation Keep Common Fill LS Crossover with Greedy Regret Heuristic with weighted 2-Regret Hybrid Evolutionary algorithm

Min cost: 44659 Max cost: 45867 Average cost: 45231

Time took for 20 runs: 40.06822370s, time per run: 2003411µs

Best solution:

[38, 27, 16, 1, 24, 156, 198, 117, 193, 31, 54, 73, 136, 190, 80, 45, 175, 78, 5, 177, 25, 104, 8, 111, 82, 21, 61, 36, 91, 141, 77, 81, 153, 187, 163, 89, 127, 103, 113, 176, 194, 166, 86, 95, 130, 99, 185, 179, 172, 57, 66, 94, 47, 148, 60, 20, 59, 28, 149, 4, 140, 183, 152, 170, 34, 55, 18, 62, 124, 106, 143, 35, 109, 0, 29, 160, 33, 138, 11, 139, 43, 168, 195, 145, 15, 3, 70, 13, 132, 169, 188, 6, 147, 90, 51, 121, 131, 122, 135, 63]

Results for Fake Local Search Random Replace Mutation Keep Common Fill LS Crossover with Greedy Regret Heuristic with weighted 2-Regret Hybrid Evolutionary algorithm

Min cost: 44236 Max cost: 46196 Average cost: 45185

Time took for 20 runs: 40.02311780s, time per run: 2001155μs

Best solution:

[28, 149, 4, 140, 183, 152, 170, 34, 55, 18, 62, 128, 124, 106, 143, 35, 109, 0, 29, 160, 33, 138, 11, 139, 43, 168, 195, 145, 15, 3, 70, 13, 132, 169, 188, 6, 147, 71, 51, 121, 131, 90, 122, 133, 107, 40, 63, 135, 38, 27, 16, 1, 156, 198, 117, 193, 54, 31, 73, 136, 190, 80, 162, 175, 78, 5, 177, 104, 8, 82, 21, 36, 61, 91, 141, 77, 81, 153, 187, 163, 89, 127, 103, 113, 176, 194, 166, 86, 185, 95, 130, 99, 22, 179, 66, 94, 47, 148, 60, 20]

Plots of the results

TSPA

TSPB

Source code

• Github repository

Conclusions

The hybrid evolutionary algorithm performed better than Multiple Start Local Search and Large Neighborhood Search, but slightly worse than Iterated Local Search. The number of iterations of HEA without LS was significantly higher than HEA with LS, also HEA without LS had the highest number of iterations in general among all previous algorithms. The performance of HEA with and without LS varied across instances, sometimes one outperformed the other.