Course: Statistics and Inferencing
Due Date: Oct. —, 2024

Points: -

Problem 1: Suppose that X is a discrete random variable with

$$P(X = 0) = \frac{2}{3}\theta$$
 $P(X = 1) = \frac{1}{3}\theta$ $P(X = 2) = \frac{2}{3}(1 - \theta)$ $P(X = 3) = \frac{1}{3}(1 - \theta)$

where $0 \le \theta \le 1$ is a parameter.

The following 10 independent observations were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1).

- **a.** Find the method of moments estimate of θ .
- **b.** Find the mean and variance of MoM estimator.
- c. Find an approximate standard error for your estimate.
- **d.** What is the maximum likelihood estimate of θ ?
- e. What is an approximate standard error of the maximum likelihood estimate?
- **f.** If the prior distribution of Θ is uniform on [0,1], what is the posterior density? Plot it. What is the mode of the posterior?

Problem 2: Suppose that X is a discrete random variable with

$$P(X = 1) = \theta \text{ and } P(X = 2) = 1 - \theta.$$

Three independent observations of X are made: $x_1 = 1, x_2 = 2, x_3 = 2$.

- a. Find the method of moments estimate of θ .
- b. What is the likelihood function?
- c. What is the maximum likelihood estimate of θ ?
- d. If Θ has a prior distribution that is uniform on [0,1], what is its posterior density?

Problem 3: Suppose that $X \sim \text{Bin}(n, p)$.

- a. Show that the MLE of p is $\hat{p} = X/n$.
- b. Show that MLE of part (a) attains the Cramér-Rao lower bound.
- c. If n = 10 and X = 5, plot the log likelihood function.

Problem 4: Suppose that X follows a geometric distribution,

$$P(X = k) = p(1 - p)^{k-1}$$

and assume an i.i.d. sample of size n.

- a. Find the method of moments estimate of p.
- b. Find the MLE of p.
- c. Find the asymptotic variance of the MLE.
- d. Let p have a uniform prior distribution on [0,1]. What is the posterior distribution of p? What is the posterior mean?

Problem 5: Consider an i.i.d. sample of random variables with density function

$$f(x \mid \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right)$$

- a. Find the method of moments estimate of σ .
- b. Find the maximum likelihood estimate of σ .
- c. Find the asymptotic variance of the MLE.
- d. Find a sufficient statistic for σ .