Election Peterson Dolov Rodeh Klawe

On suppose que tous les sites sont initiateurs.

Pour dérouler cet algorithme il suffit d'utiliser le tableau suivant :

	С	acn	win	state	q
1	1	5	1	APE	4
7	71	14	1	APB	5 2
3	3	7	1	APB	1
6	63 1	31 2	1	APB	741
2	2	6	1	APB	3
8	8 2	2 3	1	APB	6 1
4	4	8	1	APB	2
5	5 4 2	42 1	1	АВ	83 2

Voici la représentation graphique :

Tous les sites passent en actif car ils sont tous initiateurs :

Chaque site envoi (un, c) et donc reçoit également un message (un, q). La variable acn de chaque site prend pour valeur la valeur q contenu dans le message qu'il vient de recevoir :

acn != c chez tous les sites. On envoie donc le message (deux, acn) et chaque site reçoit donc un message.

On vérifie la condition « (acn > c) et (acn < q) » sur chacun des sites :

Les sites passifs vont faire circuler les messages tant qu'ils ne reçoivent pas un message étiqueté small.

On renvoie les messages de la même manières que précédemment, ce qui donne :

Le message (un, 1) parcourt tous les sites. On arrive dans le cas acn = c.Par la suite le site 5 envoie un message (small, acn) pour changer la valeur de win, win=1.

L'algorithme se termine.