CONTENTS

Preface		v
СНАРТ	ER 1: Semiconductor Diodes	1
1.1	Introduction	1
1.2	Semiconductor Materials: Ge, Si, and GaAs	2
1.3	Covalent Bonding and Intrinsic Materials	3
1.4	Energy Levels	5
1.5	<i>n</i> -Type and <i>p</i> -Type Materials	7
1.6	Semiconductor Diode	10
1.7	Ideal Versus Practical	20
1.8	Resistance Levels	21
1.9	Diode Equivalent Circuits	27
1.10	Transition and Diffusion Capacitance	30
1.11	Reverse Recovery Time	31
1.12	Diode Specification Sheets	32
1.13	Semiconductor Diode Notation	35
1.14	Diode Testing	36
1.15	Zener Diodes	38
1.16	Light-Emitting Diodes	41
1.17	Summary	48
1.18	Computer Analysis	49
СНАРТ	ER 2: Diode Applications	55
2.1	Introduction	55
2.2	Load-Line Analysis	56
2.3	Series Diode Configurations	61
2.4	Parallel and Series–Parallel Configurations	67
2.5	AND/OR Gates	70
2.6	Sinusoidal Inputs; Half-Wave Rectification	72
2.7	Full-Wave Rectification	75
2.8	Clippers	78
2.9	Clampers	85
2.10	Networks with a dc and ac Source	88

xii CONTENTS

2.11	Zener Diodes	91
2.12	Voltage-Multiplier Circuits	98
2.13	Practical Applications	101
2.14	Summary	111
2.15	Computer Analysis	112
CHAP1	TER 3: Bipolar Junction Transistors	129
3.1	Introduction	129
3.2	Transistor Construction	130
3.3	Transistor Operation	130
3.4	Common-Base Configuration	131
3.5	Common-Emitter Configuration	136
3.6	Common-Collector Configuration	143
3.7	Limits of Operation	144
3.8	Transistor Specification Sheet	145
3.9	Transistor Testing	149
3.10	Transistor Casing and Terminal Identification	151
3.11	Transistor Development	152
3.12	Summary	154
3.13	Computer Analysis	155
CHAP1	TER 4: DC Biasing-BJTs	160
4.1	Introduction	160
4.2	Operating Point	161
4.3	Fixed-Bias Configuration	163
4.4	Emitter-Bias Configuration	169
4.5	Voltage-Divider Bias Configuration	175
4.6	Collector Feedback Configuration	181
4.7	Emitter-Follower Configuration	186
4.8	Common-Base Configuration	187
4.9	Miscellaneous Bias Configurations	189
4.10	Summary Table	192
4.11	Design Operations	194
4.12	Multiple BJT Networks	199
4.13	Current Mirrors	205
4.14	Current Source Circuits	208
4.15	pnp Transistors	210
4.16	Transistor Switching Networks	211
4.17	Troubleshooting Techniques	215
4.18	Bias Stabilization	217
4.19	Practical Applications	226
4.20	Summary	233
4.21	Computer Analysis	235

СНАРТ	ER 5: BJT AC Analysis	253	CONTENTS
5.1	Introduction	253	
5.2	Amplification in the AC Domain	253	
5.3	BJT Transistor Modeling	254	
5.4	The $r_{\rm e}$ Transistor Model	257	
5.5	Common-Emitter Fixed-Bias Configuration	262	
5.6	Voltage-Divider Bias	265	
5.7	CE Emitter-Bias Configuration	267	
5.8	Emitter-Follower Configuration	273	
5.9	Common-Base Configuration	277	
5.10	Collector Feedback Configuration	279	
5.11	Collector DC Feedback Configuration	284	
5.12	Effect of R_L and R_s	286	
5.13	Determining the Current Gain	291	
5.14	Summary Tables	292	
5.15	Two-Port Systems Approach	292	
5.16	Cascaded Systems	300	
5.17	Darlington Connection	305	
5.18	Feedback Pair	314	
5.19	The Hybrid Equivalent Model	319	
5.20	Approximate Hybrid Equivalent Circuit	324	
5.21	Complete Hybrid Equivalent Model	330	
5.22	Hybrid π Model	337	
5.23	Variations of Transistor Parameters	338	
5.24	Troubleshooting	340	
5.25	Practical Applications	342	
5.26	Summary	349	
5.27	Computer Analysis	352	
CHAPT	ER 6: Field-Effect Transistors	378	
6.1	Introduction	378	
6.2	Construction and Characteristics of JFETs	379	
6.3	Transfer Characteristics	386	
6.4	Specification Sheets (JFETs)	390	
6.5	Instrumentation	394	
6.6	Important Relationships	395	
6.7	Depletion-Type MOSFET	396	
6.8	Enhancement-Type MOSFET	402	
6.9	MOSFET Handling	409	
6.10	VMOS and UMOS Power and MOSFETs	410	
6.11	CMOS	411	
6.12	MESFETs	412	
6.13	Summary Table	414	

xiii

xiv CONTENTS

6.14	Summary	414
6.15	Computer Analysis	410
СНАРТ	ER 7: FET Biasing	422
7.1	Introduction	422
7.2	Fixed-Bias Configuration	423
7.3	Self-Bias Configuration	427
7.4	Voltage-Divider Biasing	43
7.5	Common-Gate Configuration	430
7.6	Special Case $V_{GS_Q} = 0 \text{ V}$	439
7.7	Depletion-Type MOSFETs	439
7.8	Enhancement-Type MOSFETs	443
7.9	Summary Table	449
7.10	Combination Networks	449
7.11	Design	452
7.12	Troubleshooting	45
7.13	p-Channel FETs	45
7.14	Universal JFET Bias Curve	458
7.15	Practical Applications	46
7.16	Summary	470
7.17	Computer Analysis	47
СНАРТ	ER 8: FET Amplifiers	481
8.1		48
8.2	JFET Small-Signal Model	482
8.3	Fixed-Bias Configuration	489
8.4	Self-Bias Configuration	492
8.5	Voltage-Divider Configuration	497
8.6	Common-Gate Configuration	498
8.7	Source-Follower (Common-Drain) Configuration	50
8.8	Depletion-Type MOSFETs	50
8.9	Enhancement-Type MOSFETs	500
8.10	E-MOSFET Drain-Feedback Configuration	507
8.11	E-MOSFET Voltage-Divider Configuration	510
8.12	Designing FET Amplifier Networks	51
8.13	Summary Table	513
8.14	Effect of R_L and R_{sig}	510
8.15	Cascade Configuration	518
8.16	Troubleshooting	52
8.17	Practical Applications	522
8.18	Summary	530
8.19	Computer Analysis	53

СНАРТ	ER 9: BJT and JFET Frequency Response	545	CONTENTS	X
9.1	Introduction	545		
9.2	Logarithms	545		
9.3	Decibels	550		
9.4	General Frequency Considerations	554		
9.5	Normalization Process	557		
9.6	Low-Frequency Analysis—Bode Plot	559		
9.7	Low-Frequency Response—BJT Amplifier with R_L	564		
9.8	Impact of R_s on the BJT Low-Frequency Response	568		
9.9	Low-Frequency Response—FET Amplifier	571		
9.10	Miller Effect Capacitance	574		
9.11	High-Frequency Response—BJT Amplifier	576		
9.12	High-Frequency Response—FET Amplifier	584		
9.13	Multistage Frequency Effects	586		
9.14	Square-Wave Testing	588		
9.15	Summary	591		
9.16	Computer Analysis	592		
СНАРТ	ER 10: Operational Amplifiers	607		
10.1	Introduction	607		
10.2	Differential Amplifier Circuit	610		
10.3	BiFET, BiMOS, and CMOS Differential Amplifier Circuits	617		
10.4	Op-Amp Basics	620		
10.5	Practical Op-Amp Circuits	623		
10.6	Op-Amp Specifications—DC Offset Parameters	628		
10.7	Op-Amp Specifications—Frequency Parameters	631		
10.8	Op-Amp Unit Specifications	634		
10.9	Differential and Common-Mode Operation	639		
10.10	Summary	643		
10.11	Computer Analysis	644		
СНАРТ	ER 11: Op-Amp Applications	653		
11.1	Constant-Gain Multiplier	653		
11.2	Voltage Summing	657		
11.3	Voltage Buffer	660		
11.4	Controlled Sources	661		
11.5	Instrumentation Circuits	663		
11.6	Active Filters	667		
11.7	Summary	670		
11.8	Computer Analysis	671		
СНАРТ	ER 12: Power Amplifiers	683		
12.1	Introduction—Definitions and Amplifier Types	683		
12.2	Series-Fed Class A Amplifier	685		

xvi CONTENTS

12.3	Transformer-Coupled Class A Amplifier	688
12.4	Class B Amplifier Operation	695
12.5	Class B Amplifier Circuits	699
12.6	Amplifier Distortion	705
12.7	Power Transistor Heat Sinking	709
12.8	Class C and Class D Amplifiers	712
12.9	Summary	71 4
12.10	Computer Analysis	715
СНАРТ	ER 13: Linear-Digital ICs	722
13.1	Introduction	722
13.2	Comparator Unit Operation	722
13.3	Digital–Analog Converters	729
13.4	Timer IC Unit Operation	732
13.5	Voltage-Controlled Oscillator	736
13.6	Phase-Locked Loop	738
13.7	Interfacing Circuitry	742
13.8	Summary	745
13.9	Computer Analysis	745
СНАРТ	ER 14: Feedback and Oscillator Circuits	751
14.1	Feedback Concepts	751
14.2	Feedback Connection Types	752
	Practical Feedback Circuits	758
14.4	Feedback Amplifier—Phase and Frequency Considerations	763
	Oscillator Operation	766
14.6	Phase-Shift Oscillator	767
14.7	Wien Bridge Oscillator	770
14.8	Tuned Oscillator Circuit	771
14.9	Crystal Oscillator	774
14.10	Unijunction Oscillator	777
14.11	Summary	778
14.12	Computer Analysis	779
СНАРТ	ER 15: Power Supplies (Voltage Regulators)	783
15.1	Introduction	783
15.2	General Filter Considerations	78 4
15.3	Capacitor Filter	786
	RC Filter	789
15.5	Discrete Transistor Voltage Regulation	791
	IC Voltage Regulators	798
15.7		803
15.8	Summary	805
15.9	Computer Analysis	806

CHAPT	ER 16: Other Two-Terminal Devices	811	CONTENTS	xvii
16.1	Introduction	811		
16.2	Schottky Barrier (Hot-Carrier) Diodes	811		
16.3	Varactor (Varicap) Diodes	815		
16.4	Solar Cells	819		
16.5	Photodiodes	824		
16.6	Photoconductive Cells	826		
16.7	IR Emitters	828		
16.8	Liquid-Crystal Displays	829		
	Thermistors	831		
16.10	Tunnel Diodes	833		
16.11	Summary	837		
CHAPT	ER 17: <i>pnpn</i> and Other Devices	841		
17.1	Introduction	841		
17.2	Silicon-Controlled Rectifier	841		
17.3	Basic Silicon-Controlled Rectifier Operation	842		
17.4	SCR Characteristics and Ratings	843		
17.5	SCR Applications	845		
17.6	Silicon-Controlled Switch	849		
17.7	Gate Turn-Off Switch	851		
17.8	Light-Activated SCR	852		
17.9	Shockley Diode	854		
17.10	Diac	854		
17.11	Triac	856		
17.12	Unijunction Transistor	857		
17.13	Phototransistors	865		
17.14	Opto-Isolators	867		
17.15	Programmable Unijunction Transistor	869		
17.16	Summary	874		
Append	lix A: Hybrid Parameters—Graphical Determina	tions		
and Co	nversion Equations (Exact and Approximate)	879		
A.1	Graphical Determination of the h-Parameters	879		
A.2	Exact Conversion Equations	883		
A.3	Approximate Conversion Equations	883		
Append	lix B: Ripple Factor and Voltage Calculations	885		
B. 1	Ripple Factor of Rectifier	885		
B.2	Ripple Voltage of Capacitor Filter	886		
B.3	Relation of V_{dc} and V_m to Ripple r	887		

888

889

B.4

B.5

Relation of V_r (rms) and V_m to Ripple r

Relation Connecting Conduction Angle, Percentage

Ripple, and $I_{\text{peak}}/I_{\text{dc}}$ for Rectifier-Capacitor Filter Circuits

viii CONTENTS	Appendix C: Charts and Tables	891
	Appendix D: Solutions to Selected	
	Odd-Numbered Problems	893
	Index	901