Principles of Abstract Interpretation MIT press

Ch. 10, Posets, lattices, and complete lattices

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides/slides-10--posets-lattices-complete-lattices-PrAbsInt.pdf

Chapter 10

Ch. **10**, Posets, lattices, and complete lattices

Order theory

- Order theory emerged from the work of George Boole, Ernst Schröder, Charles Peirce, and was mainly developed by Garrett Birkhoff [Birkhoff, 1940, 1995].
- Order theory is an abstraction of set theory where \in is expressed in terms of \subseteq $(x \in S \Leftrightarrow \{x\} \subseteq S)$ and \subseteq is abstracted as a partial order \sqsubseteq
- The abstract partial order
 retains the essential properties of inclusion (reflexive, antisymmetric, and transitive).
- Many theorems of set theory remain valid, but not all, and this widely broaden the scope of applicability of order theory (see introductions in [Birkhoff, 1940, 1995; Davey and Priestley, 1990, 2002; Grätzer, 2011]).

```
en.wikipedia.org/wiki/Order_theory
en.wikipedia.org/wiki/Glossary_of_order_theory
```


Partially ordered set (Poset)

■ A *poset* $\langle \mathbb{P}, \sqsubseteq \rangle$ is a set \mathbb{P} equipped with a *partial order* \sqsubseteq which is

```
Reflexive: \forall x \in \mathbb{P} . x \sqsubseteq x;
Antisymmetric: \forall x, y \in \mathbb{P} . ((x \sqsubseteq y) \land (y \sqsubseteq x)) \Rightarrow (x = y);
Transitive: \forall x, y, z \in \mathbb{P} . ((x \sqsubseteq y) \land (y \sqsubseteq z)) \Rightarrow (x \sqsubseteq z).
```

en.wikipedia.org/wiki/Partially ordered set

Total order

- Two elements x and y are *comparable* when either $x \sqsubseteq y$ or $y \sqsubseteq x$ and *incomparable* when neither $x \sqsubseteq y$ nor $y \sqsubseteq x$.
- A partial order

 is total whenever any two elements are comparable.

Total:
$$\forall x, y \in \mathbb{P}$$
 . $(x \sqsubseteq y) \lor (y \sqsubseteq x)$.

en.wikipedia.org/wiki/Total_order

Strict partial order

- A strict partial order \sqsubset is irreflexive $(\forall x \in \mathbb{P} : x \neq x)$ and transitive.
- If \sqsubseteq is a partial order then $x \sqsubseteq y \triangleq x \sqsubseteq y \land x \neq y$ is strict.
- If \Box is a strict partial order then $x \sqsubseteq y \triangleq x \sqsubset y \lor x = y$ is a partial order.

en.wikipedia.org/?title=Strict_partial_order&redirect=no

Preorder

- A preorder ≤ is reflexive and transitive.
- Then $x \equiv y \triangleq x \le y \land y \le x$ is an *equivalence relation* (reflexive, symmetric $(\forall x, y \in \mathbb{P} : x \equiv y \Rightarrow y \equiv x)$, and transitive).
- The equivalence class of $x \in \mathbb{P}$ for the equivalence relation \equiv is $[x]_{\equiv} \triangleq \{y \in \mathbb{P} \mid x \equiv y\}.$
- The *quotient* of \mathbb{P} by \equiv is $\mathbb{P}|_{\equiv} \triangleq \{[x]_{\equiv} \mid x \in \mathbb{P}\}.$
- The extension of the preorder \leq to the quotient $\mathbb{P}|_{\equiv}$ is

$$[x]_{\scriptscriptstyle \equiv} \leq_{\scriptscriptstyle \equiv} [y]_{\scriptscriptstyle \equiv} \Leftrightarrow \exists x' \in [x]_{\scriptscriptstyle \equiv}, y' \in [y]_{\scriptscriptstyle \equiv} . \ x' \leq y'$$

• If \leq is a preorder on \mathbb{P} then $\leq_{\underline{\ }}$ is a partial order on $\mathbb{P}|_{\underline{\ }}$.

```
en.wikipedia.org/wiki/Preorder
en.wikipedia.org/wiki/Equivalence_relation
en.wikipedia.org/wiki/Equivalence class
```

Equality

 Equality = is the only relation which is both a partial order and an equivalence relation.

en.wikipedia.org/wiki/Equality_(mathematics)

Hasse diagrams

Hasse diagrams

■ Finite posets $\langle \mathbb{P}, \sqsubseteq \rangle$ can be represented by a Hasse diagram

- This is a set of points $\{p_x \mid x \in \mathbb{P}\}\$ in the plane, different two by two, and such that
 - if $x \sqsubset y$ then p_x is strictly below p_y ;
 - p_x and p_y are linked by a segment when $x \lessdot y$ (y covers x) where $x \lessdot y \triangleq x \sqsubset y \land \nexists z \in \mathbb{P}$. $x \sqsubset z \land z \sqsubset y$.
- is derived from < by reflexivity and transitivity.
 Two unlinked elements are incomparable.

en.wikipedia.org/wiki/Hasse_diagram

Least upper bound (lub), greatest lower bound (glb), minimum, maximum, infimum, supremum (Section **10.3**)

Bounds and extrema

- Let $\langle \mathbb{P}, \sqsubseteq \rangle$ be a poset and $S \in \wp(\mathbb{P})$ be a subset.
- This subset S has

An upper bound u: if and only if $u \in \mathbb{P}$ and $\forall x \in S . x \sqsubseteq u$;

A least upper bound (lub/join) $\sqcup S$: if and only if

- $\sqcup S \in \mathbb{P}$
- $\sqcup S$ is an upper bound of S (i.e. $\forall x \in S$. $x \sqsubseteq \sqcup S$)
- $\sqcup S$ is smaller that other upper bound of S (i.e. $\forall u \in \mathbb{P}$. $(\forall x \in S : x \sqsubseteq u) \Rightarrow (\sqcup S \sqsubseteq u)$.

 $\sqcup \{x, y\}$ is denoted with the infix notation $x \sqcup y$;

A maximum M: if and only if $M = \sqcup S \in S$;

A supremum T: if and only if $T = \sqcup \mathbb{P} \in \mathbb{P}$.

en.wikipedia.org/wiki/Upper_and_lower_bounds en.wikipedia.org/wiki/Least-upper-bound_property en.wikipedia.org/wiki/Maxima_and_minima en.wikipedia.org/wiki/Infimum and supremum

Duality principle (Section 10.4)

Order dual

- The order dual of an order-theoretic definition or statement is obtained by replacing
 - by its inverse ⊒,
 - upper by lower,
 - least by greatest,
 - U by □,
 - □ by □,
 - join by meet,
 - meet by join,
 - maximum by minimum,
 - etc.

en.wikipedia.org/wiki/Duality_(order_theory)

Duality principle

 If a definition or statement is valid for all partially ordered sets then the dual definition or dual statement is also valid for all partially ordered sets [Birkhoff, 1940, 1995].

Example 10.1 Let
$$f \in \langle A, \leqslant \rangle \xrightarrow{\sim} \langle B, \sqsubseteq \rangle$$
 be increasing ie *i.e.* $\forall x, y \in A : (x \leqslant y) \Rightarrow (f(x) \sqsubseteq f(y))$

- The dual of "f is increasing" is "f is increasing".
- Note that if duality is applied to $\langle A, \leqslant \rangle$ or $\langle B, \sqsubseteq \rangle$ only, then the semi-dual of "f is increasing" would be "f is decreasing" i.e. $\forall x, y \in A . (x \leqslant y) \Rightarrow (f(x) \supseteq f(y)).$

en.wikipedia.org/wiki/Duality_principle

Lattices

Lattices

Lattices are posets with the following properties.

- Join semilattice: $\forall x, y \in \mathbb{P}$. $x \sqcup y$ exists in \mathbb{P} (hence any non-empty finite subset of \mathbb{P} has a lub);
- Meet semilattice: $\forall x, y \in \mathbb{P}$. $x \sqcap y$ exists in \mathbb{P} (hence any non-empty finite subset of \mathbb{P} has a glb);
- Lattice: $\forall x, y \in \mathbb{P}$. $x \sqcup y$ and $x \sqcap y$ exist in \mathbb{P} (hence any non-empty finite subset of \mathbb{P} has a lub/join and a glb/meet).

```
en.wikipedia.org/wiki/Semilattice
en.wikipedia.org/wiki/Lattice (order)
```

Examples of lattices

Joins and meets of lattices

- Lattices have unique joins/meets of two-elements hence, by associativity of finite subsets.
- For example $\langle \mathbb{N}, \leq \rangle$ is a lattice where
 - the glb/meet is min
 - the lub/join is max

taken on non-empty finite subsets of N.

Algebraic definition of lattices

The lub □ and glb □ of a lattice (P, □) have the following properties.

$$x\sqcap x=x$$
 $x\sqcup x=x$ idempotency $x\sqcap y=y\sqcap x$ $x\sqcup y=y\sqcup x$ commutativity $x\sqcap (y\sqcap z)=(x\sqcap y)\sqcap z$ $x\sqcup (y\sqcup z)=(x\sqcup y)\sqcup z$ associativity $(x\sqcap y)\sqcup x=x$ $(x\sqcup y)\sqcap x=x$ distributivity

Conversely, a set equipped with binary operations
 □ an
 □ satisfying the above properties is a lattice by defining

$$x \sqsubseteq y \triangleq x \sqcap y = x$$
 (or equivalently $x \sqcup y = y$).

en.wikipedia.org/wiki/Algebraic_structure

Complete lattices (Section **10.6**)

Complete lattice

- A complete lattice is a poset $\langle \mathbb{P}, \sqsubseteq \rangle$ in which any subset $S \in \wp(\mathbb{P})$ has a lub/join $\sqcup S$ (not only the finite ones).
- Therefore a complete lattice has a supremum $\top = \sqcup \mathbb{P}$ and an infinum $\bot = \sqcup \emptyset$.
- Any element x of \mathbb{P} is an upper bound of \emptyset since $\forall y \in \emptyset$. $y \sqsubseteq x$. So the lub of \emptyset is the least element of \mathbb{P} .

en.wikipedia.org/wiki/Complete_lattice

Examples of complete lattice

- $\langle \mathbb{N}, \leq \rangle$ is not a complete lattice since \mathbb{N} has no lub.
- $(\mathbb{N} \cup {\infty})$, \leq where $\forall n \in \mathbb{N}$. $n < \infty \leq \infty$ is a complete lattice with supremum ∞ and infimum 0.

■ The powerset of a set S is a complete lattice $\langle \wp(S), \subseteq, \emptyset, S, \cup, \cap \rangle$.

Properties of complete lattices (Exercise 10.4)

- A complete lattice $\langle \mathbb{P}, \sqsubseteq, \bot, \top, \sqcup \rangle$ has a glb \sqcap for arbitrary subsets.
- $\blacksquare \quad \sqcap S = \sqcup \{\ell \mid \forall x \in S : \ell \sqsubseteq x\}$

Properties of complete lattices (Exercise 10.5)

■ In a complete lattice $\langle \mathbb{P}, \sqsubseteq, \bot, \top, \sqcup \rangle$, if $X, Y \in \wp(\mathbb{P})$ and $X \subseteq Y$ then $\sqcup X \sqsubseteq \sqcup Y$.

Pointwise extension

Pointwise extension

- Let $\langle \mathbb{P}, \sqsubseteq \rangle$ be a poset and S be a set.
- The pointwise extension \sqsubseteq of \sqsubseteq to S is $\langle S \to \mathbb{P}, \, \sqsubseteq \rangle$ where $f \sqsubseteq g$ if and only if $\forall x \in S . f(x) \sqsubseteq g(x)$.
- The pointwise join is $f \dot{\sqcup} g \triangleq x \in S \mapsto f(x) \sqcup g(x)$
- The pointwise meet is $f \cap g \triangleq x \in S \mapsto f(x) \cap g(x)$, etc.

■ The pointwise extension of <u>i</u> is denoted <u>i</u>, that of <u>i</u> is <u>i</u>, *etc*.

en.wikipedia.org/wiki/Pointwise

Properties of the pointwise extension

- The pointwise extension of a poset (respectively semi-lattice, lattice, complete lattice, etc.) is a poset (respectively semi-lattice, lattice, complete lattice, etc.).
- Let $\langle \mathbb{P}, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ be a complete lattice.
 - The increasing functions $\mathbb{P} \stackrel{\checkmark}{\longrightarrow} \mathbb{P} \triangleq \{ f \in \mathbb{P} \rightarrow \mathbb{P} \mid \forall x, y \in \mathbb{P} : (x \sqsubseteq y) \Rightarrow f(x) \sqsubseteq f(y) \} \},$
 - The arbitrary join preserving functions $\mathbb{P} \stackrel{\sqcup}{\longrightarrow} \mathbb{P} \triangleq \{ f \in \mathbb{P} \to \mathbb{P} \mid \forall S \in \wp(\mathbb{P}) : (\sqcup S \in \mathbb{P}) \Rightarrow (\sqcup f(S) \in \mathbb{P} \land f(\sqcup S) = \sqcup f(S)) \}$ where $f(S) \triangleq \{ f(x) \mid x \in S \}$
 - Dually, the arbitrary meet preserving functions $\mathbb{P} \stackrel{\sqcap}{\longrightarrow} \mathbb{P}$ are a complete lattice for the pointwise ordering

$$f \stackrel{.}{\sqsubseteq} g \Leftrightarrow \forall x \in \mathbb{P} \ . \ f(x) \stackrel{.}{\sqsubseteq} g(x)$$

Chain (Section 10.8)

Chains I

■ A chain C of a poset $\langle \mathbb{P}, \sqsubseteq \rangle$ is a subset of the poset \mathbb{P} such that any two elements of the chain are comparable i.e. $C \subseteq \mathbb{P} \land \forall x, y \in C$. $x \sqsubseteq y \lor y \sqsubseteq x$.

Chains II

- A denumerable increasing/ascending chain is a sequence $\langle x_i, i \in \mathbb{N} \rangle$ such that $x_0 \sqsubseteq x_1 \sqsubseteq \dots x_n \sqsubseteq x_{n+1} \dots i.e. \ \forall i < j \in \mathbb{N} \ . \ x_i \sqsubseteq x_j \ (\text{so } x \in \mathbb{N} \xrightarrow{\sim} \mathbb{P})$
- An increasing chain $\langle x_i, i \in \mathbb{N} \rangle$ is *ultimately stationary* if and only if $\exists \ell \in \mathbb{N} : \forall i \geq \ell : x_i = x_\ell$.
- A poset $\langle \mathbb{P}, \sqsubseteq \rangle$ is *noetherian* (or satisfies the *increasing chain condition* (also called ascending chain condition (ACC)¹) if and only if any increasing chain is ultimately stationary (so that any strictly ascending chain is finite).
- The *descending chain condition* (*DCC*) is dual.

en.wikipedia.org/wiki/Ascending_chain_condition
en.wikipedia.org/wiki/Noetherian

¹(Voraussetzung des Teilerkettensatz) [Noether, 1921, Satz I], [Noether, 1927, Satz II]

CPO (Section **10.9**)

Chain complete partial order (CPO)

- A complete partial order (CPO) or (countably chain-complete poset) is a poset $\langle \mathbb{P}, \sqsubseteq, \bot, \sqcup \rangle$ with infimum \bot such that any denumerable ascending chain $\langle x_i, i \in \mathbb{N} \rangle$ has a least upper bound $\bigsqcup_{i \in \mathbb{N}} x_i \in \mathbb{P}$.
- A dual-cpo is defined dually.

```
en.wikipedia.org/wiki/Complete_partial_order
en.wikipedia.org/wiki/Chain-complete_partial_order
```

This concludes our presentation of

- Pointwise extension
- Chains and CPOs

from Chapter 10 (Posets, lattices, and complete lattices)

Conclusion

- The poset representation ⟨P, ⊆⟩ of program properties P with an abstract implication ⊆ provides a unified theory of program properties and their abstraction
- Much more freedom and diversity is allowed in the choice of the possible encodings of abstract properties than with logic.
- [Aït-Kaci, Boyer, Lincoln, and Nasr, 1989] is an example of efficient implementation of finite lattices.
- In program verification and analysis, lattices need not be computer-representable, only their elements must be implemented.
- Posets, lattices, and complete lattices are used everywhere in abstract interpretation. It is essential to master these concepts!

Bibliography I

- Aït-Kaci, Hassan, Robert S. Boyer, Patrick Lincoln, and Roger Nasr (1989). "Efficient Implementation of Lattice Operations". ACM Trans. Program. Lang. Syst. 11.1, pp. 115–146.
- Birkhoff, Garrett (1940, 1995). *Lattice Theory*. 3rd ed. American Mathematical Society (Colloquium Publications).
- Davey, Brian A. and Hilary A. Priestley (1990, 2002). *Introduction to Lattices and Order.* 2nd ed. Cambridge University Press.
- Grätzer, George (2011). Lattice Theory: Foundation. Birkhäuser.
- Noether, Emmy (1921). "Idealtheorie in Ringbereichen". German. *Mathematische Annalen* 83 (1-2), pp. 24–66.
- (1927). "Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern". German. *Mathematische Annalen* 96 (1-2), pp. 26–61.

Home work

The End, Thank you