Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 4.3 (Convex Optimization)

automne 2020

Convex Optimization Problem

$$\min_{\mathbf{x}} \{ f(\mathbf{x}) \}$$

with f convex, and differentiable.

Algorithm 1: Gradient Descent

- 1 initialization : $\mathbf{x}^{(0)}$;
- 2 for t=1,2,... do
- $\mathbf{3} \quad | \quad \mathbf{x}^{(t)} \leftarrow \mathbf{x}(t-1) h_t \, \nabla f(\mathbf{x}^{(t-1)})$

Heuristics: Taylor expansion

$$f(\mathbf{y}) \sim f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2h} ||\mathbf{y} - \mathbf{x}||^2$$

Convergence

If f is convex, differentiable and such that ∇f is Lipschitz continuous with some constant $\gamma > 0$, i.e.

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le \gamma \|\mathbf{x} - \mathbf{y}\|$$

then if $h < 1/\gamma$,

$$f(\mathbf{x}^t) - f^* \leq \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2}{2ht}$$

i.e. gradient descent converges at rate 1/t, or we can find some ϵ -suboptimal point in $1/\epsilon$ iterations.

If f is non-convex, differentiable and such that ∇f is Lipschitz continuous with some constant $\gamma > 0$, gradient descent converges at rate $1/\sqrt{t}$

Non Differentiable Case

If f is convex and differentiable

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

for all $x, y \in dom(f)$.

If f is convex and non-differentiable, for all x, there is g such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla \mathbf{g}^{\top} (\mathbf{y} - \mathbf{x})$$

for all $\mathbf{y} \in \text{dom}(f)$.

g is called subgradient at point x.

If f differentiable at $m{x}$, $m{g}$ is unique and $m{g} =
abla f(m{x})$

Non Differentiable Case

The set of subgradients of a convex function f is the subdifferential,

$$\partial f(\mathbf{x}) = \{ \mathbf{g} \in \mathbb{R}^n : g \text{ is a subgradient at } \mathbf{x} \}$$

Note that $\partial f(x)$ is a convex set, and if f is differentiable at point $\mathbf{x}, \, \partial f(\mathbf{x}) = \{\nabla \partial f(\mathbf{x})\}\$

Proposition: for any f, $f(\mathbf{x}^*) = f^*$ if and only if $\mathbf{0} \in \partial f(\mathbf{x})$.

Convex Optimization Problem

$$\min_{\mathbf{x}}\{f(\mathbf{x})\}$$

with f convex, but nondifferentiable.

Algorithm 2: Subgradient 'Descent'

1 initialization : $x^{(0)}$; 2 for t=1.2.... do 3 | $\mathbf{g}^{(t-1)} \in \partial f(\mathbf{x}^{(t-1)});$ 4 | $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} - h_t \mathbf{g}^{(t-1)})$

Note that it is not necessarily a descent, so pick

$$\mathbf{x}^{\star} = \operatorname{argmin}\{f(\mathbf{x}^{(0)}), f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}), \cdots\}$$

From Gradient Descent to Newton's Method

Algorithm 3: Newton's Method

- 1 initialization : $x^{(0)}$;
- 2 for t=1,2,... do

$$\mathbf{H}_t \leftarrow \nabla^2 f(\mathbf{x}^{(t-1)});$$

3
$$\mathbf{H}_t \leftarrow \nabla^2 f(\mathbf{x}^{(t-1)});$$

4 $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} - \mathbf{H}_t^{-1} \nabla f(\mathbf{x}^{(t-1)})$

Instead of

$$f(\mathbf{y}) \sim f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2h} ||\mathbf{y} - \mathbf{x}||^2$$

use a better quadratic approximation $-\frac{1}{L}\mathbb{I} \rightarrow H$,

$$f(\mathbf{y}) \sim f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} H(\mathbf{y} - \mathbf{x})$$

Newton (1685) - Raphson (1690)

Let
$$g(\mathbf{x}) = \nabla f(\mathbf{x})$$
. Assume that $g(\mathbf{x} + \vec{\mathbf{u}}) = 0$, then
$$0 = g(\mathbf{x} + \vec{\mathbf{u}}) \sim g(\mathbf{x}) + \nabla g(\mathbf{x})\vec{\mathbf{u}}$$

i.e. $\vec{\boldsymbol{u}} \sim -\nabla g(\boldsymbol{x})^{-1}g(\boldsymbol{x})$, which yields

$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \vec{\mathbf{u}}, \text{ with } \vec{\mathbf{u}} - \mathbf{H}_t^{-1} \nabla f(\mathbf{x}^{(t-1)})$$

If computing the Hessian matrix \boldsymbol{H}_t is complicated, one can approximate \boldsymbol{H}_t by some (positive definite) matrix: quasi-Newton. Heuristially, use \boldsymbol{H}' close to \boldsymbol{H}_t , symmetric, e.g. $\boldsymbol{H}' = \boldsymbol{H}_t + a\boldsymbol{u}\boldsymbol{u}^{\top}$ (symmetric rank one update) or $\boldsymbol{H}' = \boldsymbol{H}_t + a\boldsymbol{u}\boldsymbol{u}^{\top} + b\boldsymbol{v}\boldsymbol{v}^{\top}$ (symmetric rank two update), called Broyden Fletcher Goldfarb Shanno (BFGS) method

Let $\{\vec{e}_1, \dots, \vec{e}_n\}$ denote the standard basis in \mathbb{R}^n ,

$$\vec{\boldsymbol{e}}_i = (0, \cdots, 0, 1, 0, \cdots, 0) \in \mathbb{R}^n$$

Proposition If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, differentiable.

$$f(\mathbf{x}) \le f(\mathbf{x} + \delta \vec{e}_i), \ \forall i \Longrightarrow f(\mathbf{x}) = \min\{f\}$$

i.e. if we are at a point x such that f(x) is minimized along each coordinate axis, then we have found a global minimizer.

Proposition If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, but not differentiable,

$$f(\mathbf{x}) \le f(\mathbf{x} + \delta \vec{\mathbf{e}}_i), \ \forall i \not\Longrightarrow f(\mathbf{x}) = \min\{f\}$$

i.e. if we are at a point x such that f(x) is minimized along each coordinate axis, then we have not found a global minimizer.

Proposition If $f: \mathbb{R}^n \to \mathbb{R}$ can be written

$$f(\mathbf{x}) = g(\mathbf{x}) + \sum_{i=1}^{n} h_i(\mathbf{x}_i)$$
, where $\begin{cases} g \text{ convex and differentiable} \\ h_i \text{ convex and non-differentiable} \end{cases}$

$$f(\mathbf{x}) \le f(\mathbf{x} + \delta \vec{\mathbf{e}}_i), \ \forall i \Longrightarrow f(\mathbf{x}) = \min\{f\}$$

i.e. if we are at a point x such that f(x) is minimized along each coordinate axis, then we have found a global minimizer.

If we want to solve $\min\{f(x)\}\$ for some $f:\mathbb{R}^n\to\mathbb{R}$ such that

$$f(\mathbf{x}) = g(\mathbf{x}) + \sum_{i=1}^{n} h_i(\mathbf{x}_i)$$
, where $\begin{cases} g \text{ convex and differentiable} \\ h_i \text{ convex and non-differentiable} \end{cases}$

we can use a coordinate descent algorithm

Algorithm 4: Coordinate Dscent

- 1 initialization : $\mathbf{x}^{(0)}$:
- 2 for t=1,2,... do
- 3 | for j=1,2,...,n do 4 | $x_j^{(t)} \leftarrow \operatorname{argmin}\{f(x_1^{(t)},\cdots,x_{j-1}^{(t)},x_j,x_{j+1}^{(t-1)},\cdots,x_n^{(t-1)})\}$

Gradient vs. Coordinate Descent

Consider the problem $\min\{f(\boldsymbol{\beta})\}$ where $f(\boldsymbol{\beta}) = \frac{1}{2}\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$

- ▶ Gradient descent, $\beta \leftarrow \beta + h \mathbf{X}^{\top} (\mathbf{y} \mathbf{X}\beta)$
- ► Gradient descent, $\beta_j \leftarrow \beta_j + \frac{1}{\boldsymbol{X}_i^{\top} \boldsymbol{X}_i} \boldsymbol{X}_j^{\top} (\boldsymbol{y} \boldsymbol{X}\boldsymbol{\beta})$

