

Piston for an internal combustion engine

Patent number:

EP1101923

Publication date:

2001-05-23

Inventor:

1

HOPPE-BOEKEN PETER-CLEMENS (DE)

Applicant:

FEDERAL MOGUL WIESBADEN GMBH (DE)

Classification:

- international:

F02F3/00

- european:

F02F3/00; F16J1/18

Application number:

EP20000123900 20001103

Priority number(s):

DE19991055197 19991116

Also published as:

EP1101923 (A3) DE19955197 (A1)

Cited documents:

GB356612 US3494262

DE8815283U GB757226

GB757226 US4785720

more >>

Report a data error here

Abstract of EP1101923

The piston (1) has a gudgeon pin boring (5) which is set back on both sides to form an increased-diameter recess (13) relative to the external surface (17) of the piston. The grooves for the gudgeon pin securing rings are in these recesses. The gudgeon pin (8) projects on either side from the boring proper. There may be oil supply channels (14a) in the piston coming out in the boring.

Data supplied from the esp@cenet database - Worldwide

This page Stank (uspto)

(11) EP 1 101 923 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 23.05.2001 Patentblatt 2001/21

(51) Int Cl.7: F02F 3/00

(21) Anmeldenummer: 00123900.3

(22) Anmeldetag: 03.11.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder: Federal-Mogul Wiesbaden GmbH & Co.KG 65201 Wiesbaden (DE)

(30) Priorität: 16.11.1999 DE 19955197

(72) Erfinder: Hoppe-Boeken, Peter-Clemens 74906 Bad Rappenau (DE)

(54) Kolben für Brennkraftmaschinen

(57) Es wird ein Kolben (1) beschrieben, der eine bezüglich Verschleiß und Ölschmierung verbesserte Bolzenlagerung aufweist. Die Bolzenbohrung (5) ist beidseitig jeweils unter Ausbildung eines durchmessergrößeren Einstichs (13) gegenüber der Kolbenaußenfläche (17) zurückversetzt. Die Rillen für den Bolzensi-

cherungsring sind in den Einstichen (13) angeordnet. Der Kolbenbolzen (8) steht beidseitig gegenüber den Bolzenbohrungen vor. Jedes Kolbenauge (16) kann mindestens einen Ölzuführkanal (14a) aufweisen, der einerseits in die Kolbenbohrung (5) mündet und andererseits mit der Nut (4) für den Ölabstreifring in Verbindung steht.

Hig: 1

Beschreibung

[0001] Die Erfindung betrifft einen Kolben für Brenkraftmaschinen mit zwei Bolzenbohrungen für die Lagerung eines Kolbenbolzens, mit zwei Rillen für jeweils einen Bolzensicherungsring sowie mit Ringnuten in der Kolbenringzone für Kolbenringe und Ölabstreifring.

[0002] Ein derartiger Kolben ist beispielsweise aus der DE 44 38 703 A1 bekannt, wobei die Rille für den Sicherungsring in der Bolzenbohrung angeordnet ist. Die Enden des Kolbenbolzens befinden sich vollständig in der Bolzenbohrung, wodurch Lagerprobleme im Betrieb auftreten können.

[0003] Dieser Stand der Technik ist in der Fig. 3 beispielhaft dargestellt, die einen vertikalen Schnitt durch einen Kolben 1' zeigt

Der Kolben 1' besitzt eine Brennraummulde 2, zwei Nuten 3a,b für die Kolbenringe und eine Nut 4 für den Ölabstreifring im Bereich der Kolbenringzone. Im Kolbenauge 16 ist eine Bolzenbohrung 5' angeordnet, in der der Kolbenbolzen 8 gelagert ist. Gegebenenfalls kann in der Bolzenbohrung 5' auch eine Lagerbuchse (nicht dargestellt) angeordnet sein.

[0004] Benachbart zum außenliegenden Ende der Bolzenbohrung 5' ist eine Rille 6 zur Aufnahme eines Bolzensicherungsringes 7 angeordnet, der den Bolzen 8 in der Bolzenbohrung 5' sichert. Im allgemeinen werden hierfür runde Seeger-Ringe oder Drahtsprengringe eingesetzt. Im unbelasteten Zustand ist die Bolzenachse mit der Augenachse 9 identisch. Unter Belastung während des Betriebs des Kolbens 1' biegt sich allerdings der Bolzen 8 durch, wodurch die Bolzenachse 10 den - in der Fig. 3 übertrieben dargestellten - Verlauf zeigt.

[0005] Die Durchbiegung des Bolzens 8 bewirkt, daß sich die äußere Bolzenkante 11 in die Bohrung 5' eingräbt und den Ölfluß zwischen der Bolzenbohrung und dem Bolzen beeinträchtigt. Gleichzeitig gräbt sich auch die Kolbenkante 12 von der Oberseite in den Bolzen 8 ein, was ebenfalls den Ölaustausch und damit die Schmierung des Bolzens nachteilig beeinflußt.

[0006] Um hier Abhilfe zu schaffen, wurde in der DE 42 10 056 A1 vorgeschlagen, in den Nabenbohrungen parallel zur Augenachse verlaufende Schmiernuten anzuordnen, die in dem zwischen engerem oberen und weiterem unteren Abstand der Naben liegenden Stufenbereich zum Kurbelraum hin offen sind. Da auch bei diesem Kolben die Bolzenenden innerhalb der Bolzenbohrung angeordnet sind. werden die Verschleißprobleme noch nicht zufriedenstellend gelöst.

[0007] Es ist daher Aufgabe der Erfindung, einen Kolben zu schaffen, der eine bezüglich Verschleiß und Ölschmierung verbesserte Bolzenlagerung aufweist.

[0008] Diese Aufgabe wird mit einem Kolben gelöst, bei dem die Bolzenbohrung beidseitig jeweils unter Ausbildung eines durchmessergrößeren-Einstichs gegenüber der Kolbenaußenfläche zurückversetzt ist und die Rillen für den Bolzensicherungsring in den Einstichen

angeordnet sind.

[0009] Dieser Kolben hat den Vorteil, daß die Bolzenenden gegenüber der Bolzenbohrung nach außen vorstehen und somit die äußere Bolzenkante freiliegt. Ein unweigerlich durch den Herstellungsprozeß bedingter Grad an der Bolzenaußenkante kann somit die Bolzenlagerung nicht beeinträchtigen. Ein weiterer Vorteil dieser Anordnung besteht darin, daß sich der durchbiegende Bolzen nicht mehr innerhalb der Lagerstelle abstützt und die Nabenbruchgefahr dadurch verringert wird. Dadurch, daß die Rille für den Bolzensicherungsring nicht in der Bolzenbohrung sondern in einem vorzugsweise ringförmigen Einstich angeordnet ist, wird zwischen dem eingesetzten Sicherungsring und der Bolzenbohrung ein Zwischenraum gebildet.

[0010] Vorzugsweise ist die Rille in Richtung der Augenachse beabstandet zur Bolzenbohrung angeordnet, so daß der Zwischenraum als Ölreservoir dienen kann und somit die Ölschmierung im Bereich der Bohrung zusätzlich verbessert.

[0011] Vorteilhafterweise ist die Länge der Bolzenbohrung kleiner gleich ihrem Durchmesser. Dadurch wird die Belastung im Endbereich der Bolzenbohrung gegenüber den herkömmlichen Bolzenbohrungen erheblich vermindert.

[0012] Die Schmierung im Bereich der Bolzenbohrung kann weiterhin dadurch verbessert werden, daß jedes Kolbenauge mindestens einen vorzugsweise vertikalen Ölzuführkanal aufweist, der einerseits in die Bolzenbohrung mündet und andererseits mit der Nut für den Ölabstreifring in Verbindung steht. Das vom Ölabstreifring abgestreifte Öl gelangt somit unmittelbar in die Bolzenbohrung, wodurch eine gezielte Verbesserung der Ölschmierung erzielt wird.

[0013] Der Ölzuführungskanal steht vorzugsweise über einen horizontalen Verbindungskanal mit dieser Nut in Verbindung. Vorzugsweise fluchtet der Verbindungskanal mit der unteren Nutfläche der Nut für den Ölabstreifring. Durch diese Maßnahme wird der Ölfluß in die Bolzenbohrung erleichtert.

[0014] Vorteilhafterweise liegt dem Ölzuführungskanal ein vorzugsweise vertikaler Ölauslaßkanal gegenüber. Während der Ölzuführkanal vorzugsweise von oben in die Bolzenbohrung mündet, führt der Ölauslaßkanal an der Unterseite des Bolzens das von oben zugeführte Öl nach unten in den Innenraum des Kolbens ab. Das bei jeder Hubbewegung vom Ölabstreifring in den Ölzuführkanal, eingeleitete Öl wird somit auf einfache Weise abgeführt.

[0015] Vorzugsweise ist der Kolbenbolzen mit einem ovalen Bolzensicherungsring gesichert.

[0016] Beispielhafte Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen erläutert.

55 **[0017]** Es zeigen:

Fig. 1 einen Vertikalschnitt durch einen erfindungsgemäßen Kolben.

- Fig. 2 die Seitenansicht des in Fig. 1 gezeigten Kolbens,
- Fig. 3 einen Vertikalschnitt durch einen Kolben gemäß des Standes der Technik.

[0018] In der Fig. list ein Kolben 1 mit einer Brennraummulde 2. Kolbenringnuten 3a.b sowie einer Nut 4 für den Ölabstreifring dargestellt. Das Kolbenauge 16. weist eine Bolzenbohrung 5 auf, die gegenüber der Au-Benfläche 17 des Kolbens 1 zurückversetzt angeordnet ist. Zwischen der Außenfläche 17 und der Bolzenbohrung 5 ist ein durchmessergrößerer ringförmiger Einstich 13 angeordnet, so daß der Bolzen 8 mit seiner Au-Benkante 11 in diesen durch den Einstich gebildeten Freiraum vorsteht. Der Abstand der äußeren Enden der beiden Bolzenbohrungen 5 des Kolbens 1 ist kürzer als die Länge des eingesetzten Bolzens. Die Außenkante 11 des Bolzens 8 liegt somit frei und kann sich unter Belastung nicht in die Bolzenbohrung 5 eingraben, wie dies beim Stand der Technik der Fall ist. Die Länge L der Bolzenbohrung wird dadurch verringert werden und ist in der hier gezeigten Darstellung kleiner als der Durchmesser D der Bolzenbohrung 5.

[0019] Die Rille 6 für den Sicherungsring 7 ist in dem ringförmigen Einstich 13, angeordnet, so daß zwischen dem Sicherungsring 7 und der Bolzenbohrung 5 ein ringförmiger Freiraum 20 gebildet wird, in dem sich ein Ölreservoir für die Schmierung der Bolzenbohrung 5 bilden kann.

[0020] Als Bolzensicherungsring 7 kann ein ovaler Sprengring vorgesehen sein, der aufgrund der Tatsache, daß er nicht in die gesamte Rille 6 eingreift (s. Fig. 2), den Ölfluß von außen in Richtung Bolzenbohrung 5 begünstigt.

[0021] Zusätzlich ist ein vertikaler Ölzuführungskanal 14a vorgesehen, der vertikal von oben in die Bolzenbohrung 5 mündet und über einen horizontalen Verbindungskanal 15 mit der Nut 4 für den Ölabstreifring (nicht dargestellt) in Verbindung steht. Das vom Ölabstreifring in die Nut 4 beförderte Öl wird somit über den Verbindungskanal 15 und den vertikalen Ölzuführungskanal 14a unmittelbar der Bolzenbohrung 5 bzw. dem Bolzen 8 zugeführt, wodurch die Ölschmierung in diesem Bereich erheblich verbessert wird.

[0022] Gegenüberliegend ist im Kolbenauge16 ein Ölablaßkanal 14b angeordnet, durch den überschüssiges Öl im Bereich der Bolzenbohrung 5 in den Innenraum 19 des Kolbens 1 abfließen kann. Das Vorsehen eines Ölablaßkanals 14b bietet auch den Vorteil, daß das Einbringen des Ölzuführungskanals 14a herstellungstechnisch vereinfacht wird.

[0023] In der Fig. 2 ist eine Seitenansicht des in Fig. 1 gezeigten Kolbens 1 dargestellt. Es ist deutlich zu sehen, daß der Bolzensicherungsring 7 eine ovale Form aufweist und somit zusätzliche Freiräume 21 zwischen dem Bolzensicherungsring 7 und dem ringförmigen Einstich 13 zum Durchtritt von Öl vorhanden sind. Der Ver-

bindungskanal 15 ist derart angeordnet, daß er mit der unteren Nutfläche 18 der Nut 4 fluchtet, wodurch die Ölzuführung verbessert wird.

Bezugszeichen

[0024]

	1	Kolben '
10	1'	Kolben .
	2 .	Brennraummulde
•	3a,b	Ringnut
	4	Ringnut für Ölabstreifring
	5	Bolzenbohrung
15	5'	Bolzenbohrung
	6	Rille für Sicherungsring
	7	Bolzensicherungsring
	7'	Bolzensicherungsring
	Я	Kolhenholzen

8 Kolbenbolzen 9 Augenachse

10 Kolbenachse unter Belastung

11 Bolzenkante12 Kolbenkante

13 ringförmiger Einstich

5 14a vertikaler Zuführkanal

14b Ölablaßkanal

15 horizontaler Verbindungskanal

16 Kolbenauge

17 Kolbenaußenfläche

30 18 untere Nutfläche

19 Innenraum

20 ringförmiger Freiraum

21 Freiraum

35

Patentansprüche •

 Kolben für Brennkraftmaschinen mit zwei Bolzenbohrungen für die Lagerung eines Kolbenbolzens, mit zwei Rillen für jeweils einen Bolzensicherungsring sowie mit Ringnuten in der Kolbenringzone für Kolbenringe und Ölabstreifring, dadurch gekennzeichnet.

> daß die Bolzenbohrung (5) beidseitig jeweils unter Ausbildung eines durchmessergrößeren Einstichs (13) gegenüber der Kolbenaußenfläche (17) zurückversetzt ist, und

> daß die Rillen (6) für den Bolzensicherungsring (7) in den Einstichen (13) angeordnet sind.

- 2. Kolbennach Anspruch 1, dadurch gekennzeichnet, daß der Einstich (13) ringförmig ist.
- Kolben nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Rille (6) in Richtung der Augenachse (9) beabstandet zur Bolzenbohrung (5) an-

50

55

20

35

40

 Kolben nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Länge L der Bolzenbohrung (5) kleiner gleich ihres Durchmessers D ist.

5. Kolben nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß jedes Kolbenauge (16) mindestens einen Ölzuführkanal (14a) aufweist, der einerseits in die Kolbenbohrung (5) mündet und andererseits mit der Nut (4) für den Ölabstreifring in Verbindung steht.

- Kolben nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Ölzuführkanal (14a) über einen horizontalen Verbindungskanal (15) mit der Nut (4) in Verbindung steht.
- Kolben nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Verbindungskanal (15) mit der unteren Nutfläche (18) der Nut (4) fluchtet.
- 8. Kolben nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß dem vertikalen Ölzuführungskanal (14a) ein vertikaler Ölauslaßkanal (14b) gegenüberliegt.
- Kolben nach einem der Ansprüche 1 bis 8 mit einem Kolbenbolzen, dadurch gekennzeichnet, daß der Kolbenbolzen (8) beidseitig gegenüber den Bolzenbohrungen (5) vorsteht.
- Kolben nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Kolbenbolzen (8) mit ovalen Bolzensicherungsringen (7) gesichert ist.

55

50

Hig. 1

Hig: 2

Hig. 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

T2

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Karangan Sangan

This Pc _ * * * spto)

This Page Blank (uspto)