

CLAIMS LISTING

3	1. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic	
4	communications network, comprising:	
5	organizing a wireless electromagnetic communications network, comprising	
6	a set of nodes, said set of nodes further comprising,	
7	at least a first subset wherein each node is MIMO-capable,	
8	comprising:	
9	an a spatially diverse antennae array of M antennae, where	
10	$M \ge$ one,	
11	a transceiver for each antenna in said spatially diverse	
12	antennae array,	
13	means for digital signal processing to convert analog radio	
14	signals into digital signals and digital signals into analog	
15	radio signals,	
16	means for coding and decoding data, symbols, and control	
17	information into and from digital signals,	
18	diversity capability means for transmission and reception of	
19	said analog radio signals,	
20	and,	
21	means for input and output from and to a non-radio	
22	interface for digital signals;	
23	linking said set of nodes according to design rules that create and support a	
24	condition of network reciprocity by meeting at least three out of six of the the first	
25	of the following criteria, and at least two out of five of the remaining following	
26	criteria:	
27	subdividing said set of nodes into two or more proper subsets of	
28	nodes, with a first proper subset being a transmit uplink / receive	
29	downlink subset, and a second proper subset being a transmit	
30	downlink / receive uplink subset:	

31 allowing each node in said set of nodes to simultaneously belong 32 to up to as many transmitting uplink or receiving uplink subsets as 33 it has diversity capability means; 34 allowing each node in the transmit uplink / receive downlink 35 subset to simultaneously link to up to as many nodes with which it 36 will hold time and frequency coincident communications in its 37 field of view, as it has diversity capability means; 38 allowing each node in the transmit downlink / receive uplink 39 subset to simultaneously link to up to as many nodes with which it 40 will hold time and frequency coincident communications in its 41 field of view, as it has diversity capability means; 42 allowing each member of the transmit uplink / receive downlink 43 subset to engage in simultaneous, time and frequency coincident 44 communications with any other member of that transmit uplink / 45 receive downlink subset only f if both that other member also 46 belongs to a different proper subset and the communication is 47 between different proper subsets; 48 and. 49 allowing each member of the transmit downlink / receive uplink 50 subset to engage in simultaneous, time and frequency coincident 51 communications with any other member of that transmit downlink 52 / receive uplink subset if both that other member also belongs to a 53 different proper subset and the communication is between different 54 proper subsets; 55 in said wireless electromagnetic communications network, transmitting. 56 independent information from each node belonging to a first proper subset, to one 57 or more receiving nodes belonging to a second proper subset that are viewable 58 from the transmitting node; 59 processing independently, in said wireless electromagnetic communications

60

network, at each receiving node belonging to said second proper subset,

61	information transmitted from one or more nodes belonging to said first prope		
62	subset;		
63	and,		
64	dynamically adapting the diversity capability means and said proper subsets to		
65	optimize said network.		
66			
67			
68	2. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic		
69	communications network, comprising:		
70	organizing a wireless electromagnetic communications network, comprising		
71	a set of nodes, said set of nodes further comprising,		
72	at least a first subset wherein each node is MIMO-capable,		
73	comprising:		
74	a spatially diverse antennae array of M antennae, where M		
75	\geq two,		
76	a transceiver for each antenna in said spatially diverse		
77	antennae array,		
78	means for digital signal processing to convert analog radio		
79	signals into digital signals and digital signals into analog		
80	radio signals,		
81	means for coding and decoding data, symbols, and control		
82	information into and from digital signals,		
83	diversity capability means for transmission and reception of		
84	said analog radio signals,		
85	and,		
86	means for input and output from and to a non-radio		
87	interface for digital signals;		
88	linking said set of nodes according to design rules that create and support a		
89	condition of network reciprocity by meeting at least three out of six of the the first		
90	of the following criteria, and at least two out of five of the remaining following		
91	criteria:		

92 subdividing said set of nodes into two or more proper subsets of 93 nodes, with a first proper subset being a transmit uplink / receive 94 downlink subset, and a second proper subset being a transmit 95 downlink / receive uplink subset; 96 allowing each node in said set of nodes to simultaneously belong 97 to up to as many transmitting uplink or receiving uplink subsets as 98 it has diversity capability means; 99 allowing each node in a the transmit uplink / receive downlink 100 subset to simultaneously link to up to as many nodes with which it 101 will hold time and frequency coincident communications in its 102 field of view, as it has diversity capability means; 103 allowing each node in a the transmit downlink / receive uplink 104 subset to simultaneously link to up to as many nodes with which it 105 will hold time and frequency coincident communications in its 106 field of view, as it has diversity capability means; 107 allowing each member of a the transmit uplink / receive downlink 108 subset to engage in simultaneous time and frequency coincident 109 communications with any other member of that transmit uplink / 110 receive downlink subset only if both that other member also 111 belongs to a different proper subset and the communication is 112 between different proper subsets; 113 and, 114 allowing each member of a the transmit downlink / receive uplink 115 subset to engage in simultaneous time and frequency coincident 116 communications with any other member of that transmit downlink 117 / receive uplink subset only if both that other member also belongs 118 to a different proper subset and the communication is between 119 different proper subsets; 120 transmitting, in said wireless electromagnetic communications network, 121 independent information from each node belonging to a first proper subset, to one

122	or more receiving nodes belonging to a second proper subset that are viewable		
123	from the transmitting node;		
124	processing independently, in said wireless electromagnetic communications		
125	network, at each receiving node belonging to said second proper subset,		
126	information transmitted from one or more nodes belonging to said first proper		
127	subset;		
128	and,		
129	dynamically adapting the diversity capability means and said proper subsets to		
130	optimize said network.		
131			
132			
133	3. (CURRENTLY AMENDED) A method as in claim 1, wherein dynamically		
134	adapting the diversity capability means and said proper subsets to optimize said network		
135	further comprises:		
136	using substantive null steering to minimize SINR Signal-to-Interference-and-		
137	Noise-Ratio (SINR) between nodes transmitting and receiving information.		
138			
139			
140	4. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically		
141	adapting the diversity capability means and said proper subsets to optimize said network		
142	further comprises:		
143	using max-SINR null- and beam-steering to minimize intra-network interference.		
144			
145			
146	5. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically		
147	adapting the diversity capability means and said proper subsets to optimize said network		
148	further comprises:		
149	using MMSE null- and beam-steering to minimize intra-network interference.		
150			
151			

152	6. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically		
153	adapting the diversity capability means and said proper subsets to optimize said network		
154	further comprises:		
155	designing the network such that reciprocal symmetry exists for each pairing of		
156	uplink receive and downlink receive proper subsets.		
157			
158			
159	7. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically		
160			
161	further comprises:		
162			
163	designing the network such that substantial reciprocal symmetry exists for each		
164			
165			
166			
167	8. (original) A method as in claim 1, wherein the network uses TDD communication		
168	protocols.		
169			
170			
171	9. (original) A method as in claim 1, wherein the network uses FDD communication		
172	protocols.		
173			
174			
175	10. (original) A method as in claim 3, wherein the network uses simplex communication		
176	protocols.		
177			
178			
179	11. (original) A method as in claim 1, wherein the network uses random access packets,		
180	and receive and transmit operations are all carried out on the same frequency channels for		
181	each link.		
182			

183 12. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically

adapting the diversity capability means and said proper subsets to optimize said network

185 further comprises

186

184

if the received interference is spatially white in both link directions, setting

188
$$\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$$
 and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link,

where

190 $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights used in the

downlink;

192

but if the received interference is not spatially white in both link directions,

constraining $\{\mathbf{g}_1(q)\}$ and $[\{\mathbf{g}_2(q)\}]$ to preferentially satisfy:

195

196
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$$

197

198
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2}$$

199 200

201 13. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein:

a proper subset may incorporate one or more nodes that are in a receive-only mode for every diversity capability means.

204

205

206 14. (original) A method as in claim 1, wherein:

the network may dynamically reassign a node from one proper subset to another.

208 15. (original) A method as in claim 1, wherein:

the network may dynamically reassign a proper subset of nodes from one proper subset to another.

211

212

213 16. (PREVIOUSLY PRESENTED) A method as in claim 7, wherein the step of

214 designing the network such that substantial reciprocal symmetry exists for the uplink and

215 downlink channels further comprises:

216

217 if the received interference is spatially white in both link directions, setting

218
$$\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$$
 and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link, where

 $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}\$ are the linear transmit and receive weights used in the

downlink;

221

but if the received interference is not spatially white in both link directions,

constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to preferentially satisfy:

224
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$$

225
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n) \} = M_{2}R_{2}.$$

226

227

228 17. (CANCELLED)

229

230

232 18. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 233 adapting the diversity capability means and said proper subsets to optimize said network 234 further comprises 235 using at each node the receive combiner weights as transmit distribution weights 236 during subsequent transmission operations, so that the network is preferentially 237 designed and constrained such that each link is substantially reciprocal, such that 238 the ad hoc network capacity measure can be made equal in both link directions by 239 setting at both ends of the link: 240

 $\mathbf{g}_2(k,q) \propto \mathbf{w}_2^*(k,q) \text{ and } \mathbf{g}_1(k,q) \propto \mathbf{w}_1^*(k,q)$

where $\{\mathbf{g}_2(k,q), \mathbf{w}_1(k,q)\}$ are the linear transmit and receive weights to transmit data $d_2(k,q)$ from node $n_2(q)$ to node $n_1(q)$ over channel k in the downlink, and where $\{\mathbf{g}_1(k,q),\mathbf{w}_2(k,q)\}$ are the linear transmit and receive weights used to transmit data $d_1(k,q)$ from node $n_1(q)$ back to node $n_2(q)$ over equivalent channel k in the uplink.

247

241

242

243

244

245

246

248 249

250

251

252

19. (CURRENTLY AMENDED) A method as in claim 1, wherein the step of linking said set of nodes according to design rules further comprises:

designing the topological, physical layout of nodes to support the favored-criteria within the node's diversity capability means' limitations.

253 254

255 20. (CURRENTLY AMENDED) A method as in claim 1, wherein the step of linking said set of nodes according to design rules further comprises: 256

> designing the topological, physical layout of nodes to support the favored criteria within the node's diversity capability means' limitations.

259

257

260 21. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 261 dynamically adapting the diversity capability means and said proper subsets to optimize 262 said network further comprises: 263 allowing a proper subset to send redundant data transmissions over multiple 264 frequency channels to another proper subset. 265 266 267 22. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 268 dynamically adapting the diversity capability means and said proper subsets to optimize 269 said network further comprises: 270 allowing a proper subset to send redundant data transmissions over multiple 271 simultaneous or differential time slots to another proper subset. 272 273 23. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of linking 274 275 and substep of subdividing said set of nodes into two or more proper subsets of nodes, 276 does so using as the diversity capability means for transmission and reception of said 277 analog radio signals spatial diversity of antennae. 278 279 24. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of linking 280 and substep of subdividing said set of nodes into two or more proper subsets of nodes, 281 282 does so using as the diversity capability means for transmission and reception of said 283 analog radio signals polarization diversity of antennae. 284 285 25. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of linking 286 287 and substep of subdividing said set of nodes into two or more proper subsets of nodes, 288 does so using as the diversity capability means for transmission and reception of said 289 analog radio signals any combination of temporal, spatial, and polarization diversity of 290 antennae.

291 292 26. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 293 dynamically adapting the diversity capability means and said proper subsets to optimize 294 said network further comprises: 295 incorporating network control and feedback aspects as part of the signal encoding 296 process. 297 298 27. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 299 300 dynamically adapting the diversity capability means and said proper subsets to optimize 301 said network further comprises: 302 incorporating network control and feedback aspects as part of the signal encoding 303 process and including said as network information in one direction of the 304 signalling and optimization process, using the perceived environmental 305 condition's effect upon the signals in the other direction of the signalling and 306 optimization process. 307 308 309 28. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 310 dynamically adapting the diversity capability means and said proper subsets to optimize 311 said network further comprises: 312 adjusting the diversity capability means use between any proper sets of nodes by 313 rerouting any active link based on perceived unacceptable SINR experienced on 314 that active link and the existence of an alternative available link using said 315 adjusted diversity capability means. 316 317 318 29. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 319 dynamically adapting the diversity capability means and said proper subsets to optimize 320 said network further comprises:

321	switching a particular node from one proper subset to another due to changes in
322	the external environment affecting links between that node and other nodes in the
323	network.
324	
325	
326	30. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
327	dynamically adapting the diversity capability means and said proper subsets to optimize
328	said network further comprises:
329	dynamically reshuffling proper subsets to more closely attain network objectives
330	by taking advantage of diversity capability means availability.
331	
332	
333	31. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
334	dynamically adapting the diversity capability means and said proper subsets to optimize
335	said network further comprises:
336	dynamically reshuffling proper subsets to more closely attain network objectives
337	by accounting for node changes.
338	
339	
340	32. (CURRENTLY AMENDED) A method as in claim 31, wherein said node
341	changes include any of:
342	adding diversity capability means to a node, adding a new node within the field of
343	view of another node, removing a node from the network (temporarily or
344	permanently), or losing diversity capability at a node.
345	
346	
347	33. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
348	dynamically adapting the diversity capability means and said proper subsets to optimize
349	said network further comprises:
350	suppressing unintended recipients or transmitters by the imposition of signal
351	masking.

34. (original) A method as in claim 33, wherein the step of suppressing unintended recipients or transmitters by the imposition of signal masking further comprises: imposition of an origination mask. 34. (CANCELLED) 35. (original) A method as in claim 33, wherein the step of suppressing unintended recipients or transmitters by the imposition of signal masking further comprises: imposition of any combination of origination and recipient masks. 36. (PREVIOUSLY PRESENTED) A method as in claim 33, wherein the step of dynamically adapting the diversity capability means and said proper subsets to optimize said network further comprises: using signal masking to secure transmissions against unintentional, interim interception and decryption by the imposition of a signal mask at origination, the transmission through any number of intermediate nodes lacking said signal mask, and the reception at the desired recipient which possesses the correct means for removal of the signal mask. 37. (original) A method as in claim 36, wherein the signal masking is shared by a proper subset.

301	38. (CURRENILY AMENDED) A method as in claim 1, wherein the step of
382	dynamically adapting the diversity capability means and said proper subsets to optimize
383	said network further comprises:
384	heterogenous heterogeneous combination of a hierarchy of proper subsets, one
385	within the other, each paired with a separable subset wherein the first is a transmit
386	uplink and the second is a transmit downlink subset, such that the first subset of
387	each pair of subsets is capable of communication with the members of the second
388	subset of each pair, yet neither subset may communicate between its own
389	members.
390	
391	·
392	39. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
393	dynamically adapting the diversity capability means and said proper subsets to optimize
394	said network further comprises:
395	using as many of the available diversity capability means as are needed for traffic
396	between any two nodes from 1 to NumChannels, where NumChannels equals the
397	maximal diversity capability means between said two nodes.
398	
399	
400	40. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
401	dynamically adapting the diversity capability means and said proper subsets to optimize
402	said network further comprises:
403	using a water-filling algorithm to route traffic between an origination and
404	destination node through any intermediate subset of nodes that has available
405	diversity capability means capacity.
406	•
407	
408	41. (CURRENTLY AMENDED) A method for optimizing a wireless
409	electromagnetic communications network, comprising:
410	organizing a wireless electromagnetic communications network, comprising
411	a set of nodes, said set further comprising,

412	at least a first subset of MIMO-capable nodes, each MIMO-
413	capable node comprising:
414	a spatially diverse antennae array of M antennae, where M
415	≥ two, said antennae array being polarization diverse, and
416	circularly symmetric, and providing 1-to-M RF feeds;
417	a transceiver for each antenna in said array, said transceiver
418	further comprising
419	a Butler Mode Forming element, providing spatial
420	signature separation with a FFT-LS algorithm,
421	reciprocally forming a transmission with shared
422	receiver feeds, such that the number of modes out
423	equals the numbers of antennae, establishing such
424	as an ordered set with decreasing energy, further
425	comprising:
426	a dual-polarization element for splitting the
427	modes into positive and negative polarities
428	with opposite and orthogonal polarizations,
429	that can work with circular polarizations,
430	and
431	a dual-polarized link CODEC;
432	a transmission/reception switch comprising,
433	a vector OFDM receiver element;
434	a vector OFDM transmitter element;
435	a LNA bank for a receive signal, said LNA
436	Bank also instantiating low noise
437	characteristics for a transmit signal;
438	a PA bank for the transmit signal that
439	receives the low noise characteristics for
440	said transmit signal from said LNA bank;
441	an AGC for said LNA bank and PA bank;

442	a controller element for said
443	transmission/reception switch enabling
444	baseband link distribution of the energy over
445	the multiple RF feeds on each channel to
446	steer up to K_{feed} beams and nulls
447	independently on each FDMA channel;
448	a Frequency Translator;
449	a timing synchronization element controlling
450	said controller element;
451	further comprising a system clock,
452	a universal Time signal element;
453	GPS;
454	a multimode power management element
455	and algorithm;
456	and,
457	a LOs element;
458	said vector OFDMreceiver element comprising
459	an ADC bank for downconversion of
460	received RF signals into digital signals;
461	a MT DEMOD element for multitone
462	demodulation, separating the received signal
463	into distinct tones and splitting them into 1
464	through K_{feed} FDMA channels, said
465	separated tones in aggregate forming the
466	entire baseband for the transmission, said
467	MT DEMOD element further comprising
468	a Comb element with a multiple of 2
469	filter capable of operating on a 128-
470	bit sample; and,
471	an FFT element with a 1,024 real-IF
472	function;

473	a Mapping element for mapping the
474	demodulated multitone signals into a 426
475	active receive bins, wherein
476	each bin covers a bandwidth of 5.75
477	MHz;
478	each bin has an inner passband of
479	4.26 MHz for a content envelope;
480	each bin has an external buffer, up
481	and down, of 745 kHz;
482	each bin has 13 channels, CH0
483	through CH12, each channel having
484	320 kHz and 32 tones, T0 through
485	T31, each tone being 10 kHz, with
486	the inner 30 tones being used
487	information bearing and T0 and T31
488	being reserved;
489	each signal being 100 μs, with 12.5
490	μs at each end thereof at the front
491	and rear end thereof forming
492	respectively a cyclic prefix and
493	cyclic suffix buffer to punctuate
494	successive signals;
495	a MUX element for timing modification
496	capable of element-wise multiplication
497	across the signal, which halves the number
498	of bins and tones but repeats the signal for
499	high-quality needs;
500	a link CODEC, which separates each FDMA
501	channel into 1 through M links, further
502	comprising
503	a SOVA bit recovery element;

504	an error coding element;
505	an error detection element;
506	an ITI remove element;
507	a tone equalization element;
508	and,
509	a package fragment retransmission
510	element;
511	a multilink diversity combining element,
512	using a multilink Rx weight adaptation
513	algorithm for Rx signal weights $\mathbf{W}(k)$
514	to adapt transmission gains $\mathbf{G}(k)$ for each
515	channel k ;
516	an equalization algorithm, taking the signal
517	from said multilink diversity combining
518	element and controlling a delay removal
519	element;
520	said delay removal element separating signal
521	content from imposed pseudodelay and
522	experienced environmental signal delay, and
523	passing the content-bearing signal to a
524	symbol-decoding element;
525	said symbol-decoding element for
526	interpretation of the symbols embedded in
527	the signal, further comprising:
528	an element for delay gating;
529	a QAM element; and
530	a PSK element;
531	said vector OFDM transmitter element comprising:
532	a DAC bank for conversion of digital signals
533	into RF signals for transmission;
	-

534	a MT MOD element for multitone
535	modulation, combining and joining the
536	signal to be transmitted from 1 through K_{feed}
537	FDMA channels, said separated tones in
538	aggregate forming the entire baseband for
539	the transmission, said MT MOD element
540	further comprising
541	a Comb element with a multiple of 2
542	filter capable of operating on a 128-
543	bit sample; and,
544	an IFFT element with a 1,024 real-IF
545	function;
546	a Mapping element for mapping the
547	modulated multitone signals from 426
548	active transmit bins, wherein
549	each bin covers a bandwidth of 5.75
550	MHz;
551	each bin has an inner passband of
552	4.26 MHz for a content envelope;
553	each bin has an external buffer, up
554	and down, of 745 kHz;
555	each bin has 13 channels, CH0
556	through CH12, each channel having
557	320 kHz and 32 tones, T0 through
558	T31, each tone being 10 kHz, with
559	the inner 30 tones being used
560	information bearing and T0 and T31
561	being reserved;
562	each signal being-100 µs, with 12.5
563	μs at each end thereof at the front
564	and rear end thereof forming

565	respectively a cyclic prefix and
566	cyclic suffix buffer to punctuate
567	successive signals;
568	a MUX element for timing modification
569	capable of element-wise multiplication
570	across the signal, which halves the number
571	of bins and tones but repeats the signal for
572	high-quality needs;
573	a symbol-coding element for embedding the
574	symbols to be interpreted by the receiver in
575	the signal, further comprising:
576	an element for delay gating;
577	a QAM element; and
578	a PSK element;
579	a link CODEC, which aggregates each
580	FDMA channel from 1 through M links,
581	further comprising
582	a SOVA bit recovery element;
583	an error coding element;
584	an error detection element;
585	an ITI remove element;
586	a tone equalization element;
587	and,
588	a package fragment retransmission
589	element;
590	a multilink diversity distribution element,
591	using a multilink Tx weight adaptation
592	algorithm for Tx signal weights to adapt
593	transmission gains $\mathbf{G}(k)$ for each channel
594	k , such that $\mathbf{g}(q;k) \propto \mathbf{w}^*(q;k)$;

595	a TCM codec;
596	a pilot symbol CODEC element that integrates with said
597	FFT-LS algorithm a link separation, a pilot and data signal
598	elements sorting, a link detection, multilink combination,
599	and equalizer weight calculation operations;
600	means for diversity transmission and reception,
601	and,
602	means for input and output from and to a non-radio
603	interface;
604	
605	linking said set of nodes according to design rules that create and support a
606	condition of network reciprocity by meeting at least three out of six of the the first
607	of the following criteria, and at least two out of five of the remaining following
608	criteria:
609	subdividing said set of nodes into two or more proper subsets of
610	nodes, with a first proper subset being a transmit uplink / receive
611	downlink subset, and a second proper subset being a transmit
612	downlink / receive uplink subset;
613	
614	allowing each node in said set of nodes to simultaneously belong
615	to only as many transmitting uplink or receiving uplink subsets as
616	it has diversity capability means;
617	
618	allowing each node in a the transmit uplink / receive downlink
619	subset to simultaneously link to only as many nodes with which it
620	will hold time and frequency coincident communications in its
621	field of view, as it has diversity capability means;
622	
623	allowing each node in a the transmit downlink / receive uplink
624	subset to simultaneously link to only as many nodes with which it

625 will hold time and frequency coincident communications in its 626 field of view, as it has diversity capability means; 627 628 allowing each member of a the transmit uplink / receive downlink 629 subset to engage in simultaneous, time and frequency coincident 630 communications with any other member of that transmit uplink / 631 receive downlink subset only if both that other member also 632 belongs to a different proper subset and the communication is 633 between different proper subsets; 634 and, 635 allowing each member of a the transmit downlink / receive uplink 636 subset to engage in simultaneous, time and frequency coincident 637 communications with any other member of that transmit downlink 638 / receive uplink subset only if both that other member also belongs 639 to a different proper subset and the communication is between 640 different proper subsets; 641 642 transmitting, in said wireless electromagnetic communications network, independent information from each node belonging to a first proper subset, to one 643 644 or more receiving nodes belonging to a second proper subset that are viewable 645 from the transmitting node; 646 647 processing independently, in said wireless electromagnetic communications 648 network, at each receiving node belonging to said second proper subset, 649 information transmitted from one or more nodes belonging to said first proper 650 subset; 651 652 and, 653 designing the network such that substantially reciprocal symmetry exists for the 654 655 uplink and downlink channels by,

if the received interference is spatially white in both link directions, setting

657
$$\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$$
 and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link,

where $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights

used in the downlink;

660

but if the received interference is not spatially white in both link

directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy:

663
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$$

664

665
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$$

666

using any standard communications protocol, including TDD, FDD, simplex,

668

669 and,

670

optimizing the network by dynamically adapting the diversity diversity
capability means between nodes of said transmitting and receiving subsets.

673

674

675 42. (CANCELLED)

676 677

678 43. (CANCELLED)

679

681	44. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
682	dynamically adapting the diversity capability means and said proper subsets to optimize
683	said network further comprises:
684	optimizing at each node acting as a receiver the receive weights using a MMSE
685	technique to adjust the multitone transmissions between it and other nodes.
686	
687	
688	45. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
689	dynamically adapting the diversity capability means and said proper subsets to optimize
690	said network further comprises:
691	optimizing at each node acting as a receiver the receive weights using the MAX
692	maximum SINR to adjust the multitone transmissions between it and other nodes.
693	
694	
695	46. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
696	dynamically adapting the diversity capability means and said proper subsets to optimize
697	said network further comprises:
698	optimizing at each node acting as a receiver the receive weights, then optimizing
699	the transmit weights at that node by making them proportional to the receive
700	weights, and then optimizing the transmit gains for that node by a max-min
701	criterion for the link capacities for that node at that particular time.
702	
703	
704	47. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
705	dynamically adapting the diversity capability means and said proper subsets to optimize
706	said network further comprises:
707	including, as part of said network, one or more network controller elements that
708	assist in tuning local node's maximum capacity criteria and link channel diversity
709	usage to network constraints.
710	
711	

712 48. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 713 dynamically adapting the diversity capability means and said proper subsets to optimize 714 said network further comprises: 715 characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ by the observed (possibly time-varying) azimuth and elevation $\{\theta_1(t;n_2,n_1),$ 716 $\varphi_1(f,t;n_2,n_1)$ of node n_2 observed at n_1 . 717 718 719 720 49. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of dynamically adapting the diversity capability means and said proper subsets to optimize 721 722 said network further comprises: characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ as a superposition of 723 direct-path and near-field reflection path channel responses, e.g., due to scatterers 724 in the vicinity of n_1 , such that each element of $a_1(f,t;n_2,n_1)$ can be modeled 725 as a random process, possibly varying over time and frequency. 726 727 728 729 50. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of dynamically adapting the diversity capability means and said proper subsets to optimize 730 731 said network further comprises: presuming that $\mathbf{a}_1(f,t;n_2,n_1)$ and $\mathbf{a}_1(f,t;n_1,n_2)$ can be substantively 732 time invariant over significant time durations, e.g., large numbers of OFDM 733 734 symbols or TDMA time frames, and inducing the most significant frequency and 735 time variation by the observed timing and carrier offset on each link. 736

51. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
 dynamically adapting the diversity capability means and said proper subsets to optimize
 said network further comprises:

in such networks, e.g., TDD networks, wherein the transmit and receive frequencies are identical $(f_{21}(k) = f_{12}(k) = f(k))$ and the transmit and receive time slots are separated by short time intervals $(t_{21}(l) = t_{12}(l) + \Delta_{21}(l))$

744 $\approx t(l)$), and $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{12}(k,l)$ become substantively reciprocal,

such that the subarrays comprising $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{12}(k,l)$ satisfy

746 $\mathbf{H}_{21}(k,l;n_2,n_1) \approx \delta_{21}(k,l;n_1,n_2) \ \mathbf{H}_{12}^T(k,l;n_1,n_2)$, where

 $\delta_{21}(k\;,\;l\;;n_1,n_2)$ is a unit-magnitude, generally nonreciprocal scalar,

equalizing the observed timing offsets, carrier offsets, and phase offsets, such that

 $\lambda_{21}(n_2, n_1) \approx \lambda_{12}(n_1, n_2), \quad \tau_{21}(n_2, n_1) \approx \tau_{12}(n_1, n_2), \quad \text{and}$

750 $v_{21}(n_1, n_2) \approx v_{12}(n_1, n_2)$, by synchronizing each node to an external,

universal time and frequency standard, obtaining $\delta_{21}(k\,,\,l\,\,;\,\,n_2\,,n_1)pprox 1$,

and establishing network channel response as truly reciprocal $\mathbf{H}_{21}(k,l)pprox$

753 $\mathbf{H}_{12}^{T}(k,l)$.

754 755

748

749

751

752

756 52.(original) A method as in claim 51, wherein the synchronization of each node is to

757 Global Position System Universal Time Coordinates (GPS UTC).

758759

53. (original) A method as in claim 51, wherein the synchronization of each node is to a
 network timing signal.

54. (original) A method as in claim 51, wherein the synchronization of each node is to a combination of Global Position System Universal Time Coordinates (GPS UTC) and a network timing signal.

765 766

772

773

774

767 55. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of

dynamically adapting the diversity capability means and said proper subsets to optimize

said network further comprises:

for such parts of the network where the internode channel responses possess substantive multipath, such that $\mathbf{H}_{21}(k,l;n_2,n_1)$ and $\mathbf{H}_{12}(k,l;n_1,n_2)$

have rank greater than unity, making the channel response substantively reciprocal by:

(1) forming uplink and downlink transmit signals using the matrix formula

$$\mathbf{s}_{1}(k,l;n_{1}) = \mathbf{G}_{1}(k,l;n_{1}) \, \mathbf{d}_{1}(k,l;n_{1})$$

$$\mathbf{s}_{2}(k,l;n_{1}) = \mathbf{G}_{2}(k,l;n_{2}) \mathbf{d}_{2}(k,l;n_{2});$$

777 (2) reconstructing the data intended for each receive node using the matrix formula

$$\mathbf{y}_{1}(k,l;n_{1}) = \mathbf{W}^{H}_{1}(k,l;n_{1}) \mathbf{x}_{1}(k,l;n_{1})$$

780
$$\mathbf{y}_{2}(k,l;n_{2}) = \mathbf{W}^{H}_{2}(k,l;n_{2}) \mathbf{x}_{2}(k,l;n_{2});$$

781 (3) developing combiner weights that $\{\mathbf{W}_1(k,l;n_2,n_1)\}$ and

 $\{\mathbf{w}_2(k,l;n_1,n_2)\}$ that substantively null data intended for

recipients during the symbol recovery operation, such that for $n_1 \neq n_2$:

784 (4) developing distribution weights $\{\mathbf{g}_1(k,l;n_2,n_1)\}$ and

 $\{\mathbf{g}_{2}(k,l;n_{1},n_{2})\}$ that perform equivalent substantive nulling

operations during transmit signal formation operations;

(5) scaling distribution weights to optimize network capacity and/or power 788 criteria, as appropriate for the specific node topology and application 789 addressed by the network; 790 (6) removing residual timing and carrier offset remaining after recovery of 791 the intended network data symbols; 792 and 793 (7) encoding data onto symbol vectors based on the end-to-end SINR 794 obtainable between each transmit and intended recipient node, and 795 decoding that data after symbol recovery operations, using channel coding 796 and decoding methods develop in prior art. 797 798 799 56. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 800 adapting the diversity capability means and said proper subsets to optimize said network 801 further comprises: 802 forming substantively nulling combiner weights using an FFT-based least-squares algorithms that adapt $\{\mathbf w_1(k,l;n_2,n_1)\}$ and $\{\mathbf w_2(k,l;n_1,n_2)\}$ to 803 804 values that minimize the mean-square error (MSE) between the combiner output 805 data and a known segment of transmitted pilot data; 806 applying the pilot data to an entire OFDM symbol at the start of an adaptation frame comprising a single OFDM symbol containing pilot data followed by a 807 808 stream of OFDM symbols containing information data; 809 wherein the pilot data transmitted over the pilot symbol is preferably given by $p_1(k; n_2, n_1) = d_1(k, 1; n_2, n_1)$ 810 $= p_{01}(k) p_{21}(k; n_2) p_{11}(k; n_1)$ 811 $p_2(k; n_1, n_2) = d_2(k, 1; n_1, n_2)$ 812 $= p_{02}(k) p_{12}(k; n_1) p_{22}(k; n_2)$ 813

such that the "pseudodelays" $\delta_1(n_1)$ and $\delta_2(n_2)$ are unique to each transmit node (in small networks), or provisioned at the beginning of communication with any given recipient node (in which case each will be a function of n_1 and n_2), giving each pilot symbol a pseudorandum component;

maintaining minimum spacing between any pseudodelays used to communicate with a given recipient node that is larger than the maximum expected timing offset observed at that recipient node, said spacing should also being an integer multiple of 1/K, where K is the number of tones used in a single FFT-based LS algorithm;

and if K is not large enough to provide a sufficiency of pseudodelays, using additional OFDM symbols for transmission of pilot symbols, either lengthening the effective value of K, or reducing the maximum number of originating nodes transmitting pilot symbols over the same OFDM symbol;

also providing K large enough to allow effective combiner weights to be constructed from the pilot symbols alone;

then obtaining the remaining information-bearing symbols, which are the uplink and downlink data symbols provided by prior encoding, encryption, symbol randomization, and channel preemphasis stages, in the adaptation frame, by using

$$d_1(k, l; n_2, n_1) = p_1(k; n_2, n_1) d_{01}(k, l; n_2, n_1)$$

$$d_2(k, l; n_1, n_2) = p_2(k; n_1, n_2) d_{02}(k, l; n_1, n_2),$$

removing at the recipient node, first the pseudorandom pilot components from the received data by multiplying each tone and symbol by the pseudorandom components of the pilot signals, using

$$d_2(k, l; n_1, n_2) = p_2(k; n_1, n_2) d_{02}(k, l; n_1, n_2)$$

 $\mathbf{x}_{02}(k, l; n_2) = c_{01}(k; n_2) \mathbf{x}_2(k, l; n_2);$ 838 839 thereby transforming each authorized and intended pilot symbol for the recipient 840 node into a complex sinusoid with a slope proportional to the sum of the 841 pseudodelay used during the pilot generation procedure, and the actual observed 842 timing offset for that link, and leaving other, unauthorized pilot symbols, and 843 symbols intended for other nodes in the network, untransformed and so appearing 844 as random noise at the recipient node. 845 846 57. (PREVIOUSLY PRESENTED) A method as in claim 55, wherein the FFT-Least 847 848 Squares algorithm further comprises: 849 using a pilot symbol, which is multiplied by a unit-norm FFT window function; 850 passing that result to a QR decomposition algorithm and computing orthogonalized data $\{\mathbf{q}(k)\}$ and an upper-triangular Cholesky statistics matrix \mathbf{R} ; 851 then multiplying each vector element of $\{\mathbf{q}(k)\}$ by the same unit-norm FFT 852 853 window function and passing it through a zero-padded inverse Fast Fourier Transform (IFFT) with output length PK, with padding factor P to form 854 uninterpolated, spatially whitened processor weights $\{u(m)\}$, where lag index 855 m is proportional to target pseudodelay $\delta(m) = m/PK$; 856 857 then using the spatially whitened processor weights to estimate the mean-square-858 error (MSE) obtaining for a signal received at each target pseudodelay, $\varepsilon(m) = 1 - ||\mathbf{u}(m)||^2$, yielding a detection statistic (pseudodelay indicator 859 860 function), with an extreme at IFFT lags commensurate with the observed 861 pseudodelay and designed to minimize interlag interference between pilot signal 862 features in the pseudodelay indicator function; 863 using an extremes-finding algorithm to detect each extreme; 864 estimating the location of the observed pseudodelays to sub-lag accuracy; 865 determining additional ancillary statistics;

866 selecting the extremes beyond a designated MSE threshold: 867 interpolating spatially whitened weights U from weights near the extremes; 868 using the whitened combiner weights U to calculate both unwhitened combiner weights $\mathbf{W} = \mathbf{R}^{-1}\mathbf{U}$ to be used in subsequent data recovery operations, and to 869 estimate the received channel aperture matrix $\mathbf{A} = \mathbf{R}^H \mathbf{U}$, to facilitate ancillary 870 signal quality measurements and fast network entry in future adaptation frames; 871 872 and, lastly, using an estimated and optimized pseudodelay vector δ_* to generate $\mathbf{c}_1(k)$ = 873 $\exp\{-j2\pi\boldsymbol{\delta}_{*}k\}$ (conjugate of $\{p_{11}(k;n_{1})\}$ during uplink receive 874 operations, and $\{p_{22}(k;n_2)\}$ during downlink receive operations), which is then 875 876 used to remove the residual observed pseudodelay from the information bearing 877 symbols.

878879

880

881

58. (original) A method as in claim 55, wherein the pseudodelay estimation is refined using a Gauss-Newton recursion using the approximation:

$$\exp\{-j2\pi\Delta(k-k_0)/PK\} \approx 1 -j2\pi\Delta(k-k_0)/PK.$$

883 884

888

889

890

891

59. (CURRENTLY AMENDED) A method as in claim 1, wherein wherein dynamically adapting the diversity [capability means and said proper subsets to optimize said network further comprises:

using the linear combiner weights provided during receive operations are construct linear distribution weights during subsequent transmit operations, by setting distribution weight $\mathbf{g}_1(k,l;n_2,n_1)$ proportional to $\mathbf{W}^*_1(k,l;n_2,n_1)$ during uplink transmit operations, and

 $\mathbf{g}_2(k, l; n_1, n_2)$ proportional to $\mathbf{w}^*_2(k, l; n_1, n_2)$ during downlink transmit operations; thereby making the transmit weights substantively nulling and thereby allowing each node to form frequency and time coincident two-way links to every node in its field of view, with which it is authorized (through establishment of link set and transfer of network/recipient node information) to communicate.

60. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the substep of dynamically adapting the diversity capability means and said proper subsets to optimize said network at each node in the first subset of nodes further comprises:

using a LEGO implementation element and algorithm.

61. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically adapting the diversity capability means and said proper subsets to optimize said network further comprises:

balancing the power use against capacity for each channel, link, and node, and hence for the network as a whole by:

911 establishing a capacity objective $\{\beta(m)\}$ for a user 2 node receiving 912 from a user 1 node as the target to be achieved by the user 2 node; 913 solving, at the user 2 nod the local optimization problem:

$$\min \Sigma_{\mathbf{q}} \pi_{\mathbf{l}}(q) = \mathbf{1}^{\mathsf{T}} \pi_{\mathbf{l}}$$
 such that

915
$$\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m),$$

where $\pi_{\mathfrak{l}}(q)$ is the transmit power for link number q for the user 1 node,

 $\gamma(q)$ is the signal to interference and noise ratio (SINR) seen at 918 919 the output of the beamformer, 920 1 is a vector of all 1s. 921 and, π_1 is a vector whose q^{th} element is $\pi_1(q)$, 922 the aggregate set Q(m) contains a set of links that are grouped 923 924 together for the purpose of measuring capacity flows through those 925 links; 926 using at the user 2 node the local optimization solution to moderate the 927 transmit and receive weights, and signal information, returned to [user 1 928 node; 929 and, using said feedback to compare against the capacity objective $\{\beta(m)\}$ 930 931 and incrementally adjust the transmit power at each of the user 1 node and 932 the user 2 node until no further improvement is perceptible. 933 934 62. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 935 adapting the diversity capability means and said proper subsets to optimize said network 936 937 further comprises: 938 using the downlink objective function $\min \Sigma_q \pi_2(q) = \mathbf{1}^T \mathbf{\pi}_2$ such that $\Sigma_{q \in O(m)} \log(1 + \gamma(q)) \ge$ 939 $\beta(m)$ 940 941 at each node to perform local optimization: 942 reporting the required feasibility condition, $\sum_{q \in \mathcal{O}(m)} \pi_1(q) \le R_1(m);$ 943

and, modifying $\beta(m)$ as necessary to stay within the constraint. 63. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein: the capacity constraints $\beta(m)$ are determined in advance for each proper subset of nodes, based on known QoS requirements for each said proper subset. 64. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network further seeks to minimize total power in the network as suggested by $\Sigma_{a \in \mathrm{O}(\mathsf{m})} \log(1 + \gamma(q)) \geq \beta(m).$ 65. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network sets as a target objective for the network $\{\beta(m)\}$ the QoS for the network. 66. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network sets as a target objective for the network $\{\beta(m)\}$ a vector of constraints. 67. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the local optimization problem is further defined such that: the receive and transmit weights are unit normalized with respect to the background interference autocorrelation matrix:

972 the local SINR is expressed as

$$\gamma(q) = \frac{P_{rt}(q,q)\pi_t(q)}{1 + \sum_{j \neq q} P_{rt}(q,j)\pi_t(j)}$$

974

975

978

979

980

981

973

and the weight normalization

977 is used to enable $D_{12}(\mathbf{W},\mathbf{G}) = D_{21}(\mathbf{G}^*,\mathbf{W}^*)$, where $(\mathbf{W}_2,\mathbf{G}_1)$

and (W_1, G_2) represent the receive and transmit weights employed by all nodes in the network during uplink and downlink operations, respectively, at that node, thereby allowing the uplink and downlink function to be presumed identical rather than separately computed.

982 983

984 68. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein:

very weak constraints to the transmit powers are approximated by using a very simple approximation for $\gamma(q)$.

987

988

990

989 69. (PREVIOUSLY PRESENTED) A method as in claim 61, for the cases wherein all

the aggregate sets contain a single link and non-negligible environmental noise is present,

991 wherein the transmit powers are computed as Perron vectors from

$$D_{21} = \log \left(1 + \frac{1}{\rho(\mathbf{P}_{21}) - 1} \right)$$

$$= \log \left(1 + \frac{1}{\rho(\mathbf{P}_{12}) - 1} \right);$$

$$= D_{12}$$

and a simple power constraint is imposed upon the transmit powers.

995

994

70. (PREVIOUSLY PRESENTED) A method as in claim 69, wherein the optimization is performed in alternating directions and repeated.

998 999

- 71. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node presumes the post-beamforming interference energy remains constant for the adjustment interval and so solves
- 1003 $\min_{\pi_1(q)} \sum_{q} \pi_1(q) = \mathbf{1}^T \ \mathbf{\pi}_1 \ , \text{ subject to the constraint of }$

$$\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

using classic water filling arguments based on Lagrange multipliers, and then uses a similar equation for the reciprocal element of the link.

1007 1008

72. (CURRENTLY AMENDED) Amethod A method as in claim 61, wherein at each node the constrained optimization problem stated in

$$\max_{m} \sum_{q \in Q(m)} \log(1 + \gamma(q)), \text{ such that}$$

1012
$$\sum_{q \in Q(m)} \pi_1(q) \le R_1(m), \ \gamma(q) \ge 0$$

is solved using the approximation

$$\gamma(q) = \frac{P_{21}(q,q)\pi_1(q)}{i_2(q)}$$

and the network further comprises at least one high-level network controller that controls

the power constraints $R_1(m)$, and drives the network towards a max-min solution.

1017

1018

1019 73. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node:

is given an initial γ_0 :

generates the model expressed in

1022
$$L(\gamma, \mathbf{g}, \beta) = \mathbf{g}^T \gamma, \Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

1023
$$\mathbf{g} = \nabla_{\mathbf{y}} f(\mathbf{y}_0)$$
;

1024 updates the new γ_{α} from

1025
$$\gamma_{\bullet} = \arg \min_{\gamma} L(\gamma, \mathbf{g}, \beta), \ \gamma_{\alpha} = \gamma_0 + \alpha(\gamma_* - \gamma_0);$$

determines a target SINR to adapt to; and,

updates the transmit power for each link q according to

1028
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1029
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2.$$

1030

1031

1032 74. (PREVIOUSLY PRESENTED) A method as in claim 61, for each node wherein the

1033 transmit power relationship of

1034
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1035
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2$$

is not known, that:

- uses a suitably long block of N samples is used to establish the relationship, where
- N is either 4 times the number of antennae or 128, whichever is larger;
- uses the result to update the receive weights at each end of the link;
- optimizes the local model as in

$$\gamma_{\bullet} = \arg\min_{\gamma} L(\gamma, \mathbf{g}, \beta)$$

1042
$$\mathbf{\gamma}_{\alpha} = \mathbf{\gamma}_0 + \alpha (\mathbf{\gamma}_* - \mathbf{\gamma}_0);$$

and then applies

1044
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1045
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2.$$

1047

1046

1048 75. (PREVIOUSLY PRESENTED) A method as in claim 61 that, for an aggregate

- proper subset m:
- for each node within the set m, inherits the network objective function model
- 1051 given in

1052
$$L_m(\mathbf{\gamma},\mathbf{g},\,\beta) = \sum_{q \in Q(m)} \mathbf{g}_q \, \mathbf{\gamma}(q)$$

$$\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

$$g(q) = i_1(q)i_2(q)/|h(q)|^2;$$

1055 eliminates a step of matrix channel estimation, transmitting instead from 1056 that node as a single real number for each link to the other end of said link 1057 an estimate of the post beamforming interference power; 1058 and, 1059 receives back for each link a single real number being the transmit power. 1060 1061 1062 76. (PREVIOUSLY PRESENTED) A method as in claim 74, that for each pair of 1063 nodes assigns to the one presently possessing the most processing capability the power 1064 management computations. 1065 1066 1067 77. (PREVIOUSLY PRESENTED) A method as in claim 75 that estimates the transfer 1068 gains and the post beamforming interference power using simple least squares estimation 1069 techniques. 1070 1071 78. (PREVIOUSLY PRESENTED) A method as in claim 75 that, for estimating the 1072 transfer gains and post beamforming interference power: 1073 1074 1075 instead solves for the transfer gain h using $y(n) = hgs(n) + \varepsilon(n);$ 1076 uses a block of N samples of data to estimate h using 1077

$$h = \frac{\sum_{n=1}^{N} s^*(n) y(n)}{\sum_{n=1}^{N} |s(n)|^2 g}$$

obtains an estimation of residual interference power [R_{ε}] using

 $R_{\varepsilon} = \left\langle \left| \varepsilon(n) \right|^2 \right\rangle$ 1080 $= \frac{1}{N} \sum_{n=1}^{N} \left(\left| y(n) \right|^2 - \left| ghs(n) \right|^2 \right)$ 1081 and, obtains knowledge of the transmitted data symbols S(n) from using 1082 1083 remodulated symbols at the output of the codec. 1084 79. (PREVIOUSLY PRESENTED) A method as in claim 78 wherein, instead of 1085 obtaining knowledge of the transmitted data symbols S(n) from using remodulated 1086 1087 symbols at the output of the codec, the node uses the output of a property restoral algorithm used in a blind beamforming algorithm. 1088 1089 1090 1091 80. (PREVIOUSLY PRESENTED) A method as in claim 78 wherein, instead of 1092 obtaining knowledge of the transmitted data symbols S(n) from using remodulated symbols at the output of the codec, the node uses a training sequence explicitly 1093 transmitted to train beamforming weights and asset the power management algorithms. 1094 1095 1096 81. (PREVIOUSLY PRESENTED) A method as in claim 78 wherein, instead of 1097 obtaining knowledge of the transmitted data symbols S(n) from using remodulated 1098 1099 symbols at the output of the codec, the node uses any combination of: 1100 the output of a property restoral algorithm used in a blind beamforming algorithm; 1101 a training sequence explicitly transmitted to train beamforming weights and asset 1102 the power management algorithms: 1103 and, 1104 other means known to the art.

- 1105 82. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node
- 1106 incorporates a link level optimizer and a decision algorithm.

1107

1108

- 1109 83. (PREVIOUSLY PRESENTED) A method as in claim 82, wherein the decision
- algorithm is a Lagrange multiplier technique.

1111

1112

- 1113 84. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the solution to
- 1114 $\min_{\pi_1(q)} \sum_{q} \pi_1(q) = \mathbf{1}^T \mathbf{\pi}_1$ is implemented by a penalty function technique.

1115

1116

- 1117 85. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty
- 1118 function technique:
- takes the derivative of $\gamma(q)$ with respect to π_1 ;
- 1120 and,
- uses the Kronecker-Delta function and the weighted background noise.

1122

1123

- 86. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty
- function technique neglects the noise term.

1126

1127

- 87. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty
- 1129 function technique normalizes the noise term to one.

1130

- 88. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the
- approximation uses the receive weights.

89. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein adaptation to the

target objective is performed in a series of measured and quantized descent and ascent

1136 steps.

1137

1135

1138

90. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the adaptation to

the target objective is performed in response to information stating the vector of change.

1141

1142

91. (PREVIOUSLY PRESENTED) A method as in claim 61, which uses the log linear

1144 mode

1145
$$\beta_q \approx \log \left(\frac{a \ \pi_1(q) + a_0}{b \ \pi_1(q) + b_0} \right) = \hat{\beta}_q(\pi_1(q))$$

1146 and the inequality characterization $\hat{\beta}_q(\pi_1(q)) \ge \beta$ to solve the approximation

problem with a simple low dimensional linear program.

1148

1149

1150 92. (PREVIOUSLY PRESENTED) A method as in claim 61, develops the local mode

by matching function values and gradients between the current model and the actual

1152 function.

1153

1154

1155 93. (PREVIOUSLY PRESENTED) A method as in claim 61, which develops the model

as a solution to the least squares fit, evaluated over several points.

1157 1158

94. (PREVIOUSLY PRESENTED) A method as in claim 61, which reduces the cross-

1160 coupling effect by allowing only a subset of links to update at any one particular time,

wherein the subset members are chosen as those which are more likely to be isolated from one another. 95. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein: the network further comprises a network controller element; said network controller element governs a subset of the network; said network controller element initiates, monitors, and changes the target objective for that subset; said network controller communicates the target objective to each node in that subset; and, receives information from each node concerning the adaptation necessary to meet said target objective. 96. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein said network further records the scalar and history of the increments and decrements ordered by the network controller. 97. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a target objective may be a power constraint. 98. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a target objective may be a capacity maximization subject to a power constraint.

1190	99. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a	
1191	target objective may be a power minimization subject to the capacity attainment to the	
1192	limit possible over the entire network.	
1193		
1194		
1195	100. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a	
1196	target objective may be a power minimization at each particular node in the network	
1197	subject to the capacity constraint at that particular node.	
1198		
1199		
1200	101. (CURRENTLY AMENDED) A wireless electromagnetic communications	
1201	network, comprising:	
1202	a wireless electromagnetic communications network, comprising-	
1203	a set of nodes, said set further comprising,	
1204	at least a first subset wherein each node is MIMO-capable,	
1205	comprising:	
1206	a spatially diverse antennae array of M antennae, where M	
1207	\geq one,	
1208	a transceiver for each antenna in said array,	
1209	means for digital signal processing,	
1210	means for coding and decoding data and symbols,	
1211	means for diversity transmission and reception,	
1212	and,	
1213	means for input and output from and to a non-radio	
1214	interface;	
1215	said set of nodes further comprising one or more proper subsets of nodes,	
1216	being at least one transmitting and at least one receiving subset, with said	
1217	transmitting and receiving subsets having a topological arrangement	
1218	whereby:	

1219	each node in a transmitting subset has no more nodes with which it		
1220	will simultaneously communicate in its field of view, than it has		
1221	number of antennae;		
1222	each node in a receiving subset has no more nodes with which it		
1223	will simultaneously communicate in its field of view, than it can		
1224	steer independent nulls to;		
1225	and,		
1226	each member of a non-proper subset cannot communicate with any		
1227	other member of its non-proper subset;		
1228	means for transmitting independent information from each node in a first non-		
1229	proper subset to one or more receiving nodes belonging to a second non-proper		
1230	subset that are viewable from the transmitting node;		
1231	means for processing independently information transmitted to a receiving node		
1232	in a second non-proper subset from one or more nodes in a first non-proper subset		
1233	is independently by the receiving node;		
1234	and,		
1235	means for optimizing the network by dynamically adapting the means for diversity		
1236	transmission and reception between nodes of said transmitting and receiving subsets.		
1237			
1238			
1239	102. (PREVIOUSLY PRESENTED) An apparatus as in claim 101, further		
1240	comprising means for scheduling according to a Demand-Assigned, Multiple-Access		
1241	algorithm.		
1242			
1243			
1244	103. (PREVIOUSLY PRESENTED) An apparatus as in claim 101, further		
1245	comprising a LEGO adaptation-element for each node in said first subset.		
1246			
1247			
1248	104. (PREVIOUSLY PRESENTED) An apparatus as in claim 101, further comprising:		
1249	a LEGO adaptation-element for each node in said first subset		

1250	and,
1251	one or more network controllers.
1252	
1253	
1254	105. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
1255	dynamically adapting the diversity capability means and said proper subsets to optimize
1256	said network further comprises:
1257	matching each transceiver's degrees of freedom (DOF) to the nodes in the
1258	possible link directions;
1259	equalizing those links to provide node-equivalent uplink and downlink capacity.
1260	
1261	
1262	106. (original) A method as in claim 105, further comprising, after the DOF matching:
1263	assigning asymmetric transceivers to reflect desired capacity weighting;
1264	adapting the receive weights to form a solution for multipath resolutions;
1265	employing data and interference whitening as appropriate to the local conditions;
1266	and,
1267	using retrodirective transmission gains during subsequent transmission operations.
1268	
1269	
1270	107. (original) A method as in claim 105, wherein the receive weights are matched to the
1271	nodes in the possible link directions.
1272	
1273	
1274	108. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic
1275	communications network, comprising:
1276	organizing a wireless electromagnetic communications network, comprising
1277	a set of nodes, said set of nodes further comprising,
1278	at least a first subset wherein each node is MIMO-capable,
1279	comprising:
280	an antennae array of M antennae, where $M \ge$ one.

1281	a transceiver for each antenna in said spatially diverse	
1282	antennae array,	
1283	means for digital signal processing to convert analog radio	
1284	signals into digital signals and digital signals into analog	
1285	radio signals,	
1286	means for coding and decoding data, symbols, and control	
1287	information into and from digital signals,	
1288	diversity capability means for transmission and reception of	
1289	said analog radio signals;	
1290	and,	
1291	means for input and output from and to a non-radio	
1292	interface for digital signals;	
1293	linking said set of nodes according to design rules that create and support a	
1294	condition of network reciprocity by meeting at least three out of six of the the first	
1295	of the following criteria, and at least two out of five of the remaining following	
1296	criteria:	
	Circiia.	
1297	Cittoria.	
	subdividing said set of nodes into two or more proper subsets of	
1297		
1297 1298	subdividing said set of nodes into two or more proper subsets of	
1297 1298 1299	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive	
1297 1298 1299 1300	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit	
1297 1298 1299 1300 1301	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit	
1297 1298 1299 1300 1301 1302	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset;	
1297 1298 1299 1300 1301 1302 1303	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong	
1297 1298 1299 1300 1301 1302 1303	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong to up to as many transmitting uplink or receiving uplink subsets as	
1297 1298 1299 1300 1301 1302 1303 1304 1305	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong to up to as many transmitting uplink or receiving uplink subsets as	
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong to up to as many transmitting uplink or receiving uplink subsets as it has diversity capability means;	
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong to up to as many transmitting uplink or receiving uplink subsets as it has diversity capability means; allowing each node in a the transmit uplink / receive downlink	
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307	subdividing said set of nodes into two or more proper subsets of nodes, with a first proper subset being a transmit uplink / receive downlink subset, and a second proper subset being a transmit downlink / receive uplink subset; allowing each node in said set of nodes to simultaneously belong to up to as many transmitting uplink or receiving uplink subsets as it has diversity capability means; allowing each node in a the transmit uplink / receive downlink subset to simultaneously link to up to as many nodes with which it	

allowing each node in a the transmit downlink / receive uplink 1313 subset to simultaneously link to up to as many nodes with which it 1314 will hold time and frequency coincident communications in its 1315 field of view, as it has diversity capability means; 1316 1317 allowing each member of a the transmit uplink / receive downlink 1318 subset to engage in simultaneous time and frequency coincident 1319 communications with any other member of that transmit uplink / 1320 receive downlink subset only if both that other member also 1321 belongs to a different proper subset and the communication is 1322 between different proper subsets; 1323 and, 1324 allowing each member of a transmit downlink / receive uplink 1325 subset to engage in simultaneous time and frequency coincident 1326 communications with any other member of that transmit downlink 1327 / receive uplink subset only if both that other member also belongs 1328 to a different proper subset and the communication is between 1329 different proper subsets; 1330 transmitting, in said wireless electromagnetic communications network, independent information from each node belonging to a first proper subset, to one 1331 1332 or more receiving nodes belonging to a second proper subset that are viewable 1333 from the transmitting node; 1334 processing independently, in said wireless electromagnetic communications 1335 1336 network, at each receiving node belonging to said second proper subset, 1337 information transmitted from one or more nodes belonging to said first proper 1338 subset; 1339 1340 optimizing at the local level for each node for the channel capacity D_{21} 1341 according to

$$D_{21} = \max \beta \text{ such that}$$

$$\beta \leq \sum_{q \in U(m)} \sum_{k} \log(1 + \gamma(k, q)),$$

$$\gamma(k, q) \geq 0,$$

$$\sum_{r} R_{1}(m) \leq R,$$

$$\pi_{1}(k, q) \geq 0,$$

$$\sum_{q \in U(m)} \sum_{k} \pi_{1}(k, q) \leq R_{1}(m)$$

$$q \in U(m) \text{ solving first the reverse link power control problem; then treating the forward link problem in an identical fashion, substituting the subscripts 2 for 1 in said equation;
and,
dynamically adapting the diversity capability means and said proper subsets to optimize said network.

1349
1350
1351
109. (CURRENTLY AMENDED) A method as in claim 108, futher further comprising:
1352
for each aggregate subset m , attempting to achieve the given capacity objective,
$$\beta_{r} = \sum_{q \in Q(m)} \pi_{r}(q), \quad \text{such that}$$

$$\beta = \sum_{q \in Q(m)} \log_{r}(1+\gamma(q))$$
1357
by:
1358
(1) optimizing the receive beamformers, using simple MMSE processing, to simultaneously optimize the SINR:$$

1360	(2) based on the individual measured SINR for each q index, attempt to
1361	incrementally increase or lower its capacity as needed to match the current target;
1362	and,
1363	(3) stepping the power by a quantized small step in the appropriate direction;
1364	then,
1365	when all aggregate sets have achieved the current target capacity, then the
1366	network can either increase the target capacity $oldsymbol{eta}$, or add additional users to
1367	exploit the now-known excess capacity.
1368	
1369	
1370	110. (PREVIOUSLY PRESENTED) A method as in claim 107, wherein the network
1371	optimizes for QoS and not diversity capability means capacity.
1372	
1373	
1374	111. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein:
1375	said network controller adds, drops, or changes the target capacity for any node in
1376	the set the network controller controls.
1377	
1378	
1379	112. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein:
1380	said network controller may, either in addition to or in replacement for altering eta ,
1381	add, drop, or change channels between nodes, frequencies, coding, security, or
1382	protocols, polarizations, or traffic density allocations usable by a particular node
1383	or channel.
1384	
1385	
1386	113. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications
1387	network, comprising:
1388	a set of nodes, said set further comprising,

1389	at least a first subset wherein each node is MIMO-capable,
1390	comprising:
1391	a spatially diverse antennae array of M antennae, where M
1392	\geq one,
1393	a transceiver for each antenna in said array,
1394	means for digital signal processing,
1395	means for coding and decoding data and symbols,
1396	means for diversity transmission and reception,
1397	pilot symbol coding & decoding element
1398	timing synchronization element
1399	and,
1400	means for input and output from and to a non-radio
1401	interface;
1402	said set of nodes further comprising two or more proper subsets of nodes,
1403	there being at least one transmitting and at least one receiving subset, with
1404	said transmitting and receiving subsets subset having a diversity
1405	arrangement whereby:
1406	each node in a transmitting subset has no more nodes with which it
1407	will simultaneously communicate in its field of view, than it has
1408	number of antennae;
1409	each node in a receiving subset has no more nodes with which it
1410	will simultaneously communicate in its field of view, than it can
1411	steer independent nulls to;
1412	and,
1413	each member of a non-proper subset cannot communicate with any
1414	other member of its non-proper subset over identical diversity
1415	channels;
1416	a LEGO adaptation element and algorithm;
1417	a network controller element and algorithm;

1418 whereby each node in a first non-proper subset transmits independent information 1419 to one or more receiving nodes belonging to a second non-proper subset that are 1420 viewable from the transmitting node; 1421 each receiving node in said second non-proper subset processes independently 1422 information transmitted to a from one or more nodes in a first non-proper subset is 1423 independently by the receiving node; 1424 each node uses means to minimize SINR between nodes transmitting and 1425 receiving information; the network is designed such that substantially reciprocal symmetry exists for the 1426 1427 uplink and downlink channels by, 1428 if the received interference is spatially white in both link directions, setting $\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$ and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link, 1429

where $\mathbf{g}_2(q)$, $\mathbf{W}_1(q)$ } are the linear transmit and receive weights used in the downlink:

1432

1430

1431

but if the received interference is not spatially white in both link directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy:

1435
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$$

1436
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$$

1437

1438

1440

1441

1442

the network uses any standard communications protocol;

1439 and,

the network is optimized by dynamically adapting the means for diversity transmission and reception between nodes of said transmitting and receiving subsets.

114. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications network as in claim 113: wherein each node may further comprise a Butler Mode Forming element, to enable said node to ratchet the number of active antennae for a particular uplink or downlink operation up or down. 115. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications network as in claim 101: incorporating a dynamics-resistant multitone element. 116. (original) The use of a method as described in claim 1 for fixed wireless electromagnetic communications. 117. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for fixed wireless electromagnetic communications. 118. (original) The use of a method as described in claim 1 for mobile wireless electromagnetic communications. 119. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for mobile wireless electromagnetic communications. 120. (original) The use of a method as described in claim 1 for mapping operations using wireless electromagnetic communications.

1474 121. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1475 for mapping operations using wireless electromagnetic communications. 1476 122. (original) The use of a method as described in claim 1 for a military wireless 1477 1478 electromagnetic communications network. 1479 1480 123. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1481 for a military wireless electromagnetic communications network. 1482 1483 124. (original) The use of a method as described in claim 1 for a military wireless 1484 electromagnetic communications network for battlefield operations. 1485 125. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1486 1487 for a military wireless electromagnetic communications network for battlefield 1488 operations. 1489 1490 126. (original) The use of a method as described in claim 1 for a military wireless 1491 electromagnetic communications network for Back Edge of Battle Area (BEBA) 1492 operations. 1493 127. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1494 for a military wireless electromagnetic communications network for Back Edge of Battle 1495 1496 Area (BEBA) operations. 1497 1498 128. (original) The use of a method as described in claim 1 for a wireless electromagnetic 1499 communications network for intruder detection operations. 1500 129. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1501 for a wireless electromagnetic communications network for intruder detection operations. 1502 1503

1504 130. (original) The use of a method as described in claim 1 for a wireless electromagnetic 1505 communications network for logistical intercommunications. 1506 1507 131. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1508 for a wireless electromagnetic communications network for logistical 1509 intercommunications. 1510 1511 132. (original) The use of a method as described in claim 1 in a wireless electromagnetic 1512 communications network for self-filtering spoofing signals. 1513 1514 133. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1515 for a wireless electromagnetic communications network for self-filtering spoofing 1516 signals. 1517 1518 134. (original) The use of a method as described in claim 1 in a wireless 1519 electromagnetic communications network for airborne relay over the horizon. 1520 135. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1521 for a wireless electromagnetic communications network for airborne relay over the 1522 1523 horizon. 1524 136. (original) The use of a method as described in claim 1 in a wireless electromagnetic 1525 1526 communications network for traffic control. 1527 137. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further 1528 1529 comprising the use thereof for air traffic control. 1530 1531 138. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further 1532 comprising the use thereof for ground traffic control. 1533

139. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further comprising the use thereof for a mixture of ground and air traffic control. 140. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for a wireless electromagnetic communications network for traffic control. 141. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for air traffic control 142. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for ground traffic control. 143. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for a mixture of ground and air traffic control. 144. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for emergency services. 145. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless electromagnetic communications network for emergency services. 146. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for shared emergency communications without interference. 147. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless electromagnetic communications network for shared emergency communications without interference. 148. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for positioning operations without interference.

1565 149. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1566 wireless electromagnetic communications network for positioning operations without 1567 interference. 1568 1569 150. (CURRENTLY AMENDED) The use of a method as in claim 1 in a wireless 1570 electromagnetic communications network for high reliability reliability networks 1571 requiring graceful degradation despite environmental conditions or ehanges.. changes. 1572 1573 151. (CURRENTLY AMENDED) The use of an apparatus as in claim 101 in a 1574 wireless electromagnetic communications network for high reliability reliability networks 1575 requiring graceful degradation despite environmental conditions or ehanges.. changes. 1576 1577 152. (original) The use of a method as in claim 1 in a wireless electromagnetic 1578 communications network for a secure network requiring assurance against unauthorized 1579 intrusion. 1580 1581 153. (original) The use of a method as in claim 1 in a wireless electromagnetic 1582 communications network for a secure network requiring message end-point assurance. 1583 1584 154. (original) The use of a method as in claim 1 in a wireless electromagnetic 1585 communications network for a secure network requiring assurance against unauthorized 1586 intrusion and message end-point assurance. 1587 1588 155. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1589 wireless electromagnetic communications network for a secure network requiring 1590 assurance against unauthorized intrusion. 1591 1592 156. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1593 wireless electromagnetic communications network for a secure network requiring 1594 message end-point assurance. 1595

- 157. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 In a wireless electromagnetic communications network for a secure network requiring assurance against unauthorized intrusion and message end-point assurance. 158. (original) The use of a method as in claim 1 in a cellular mobile radio service. 159. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a cellular mobile radio service. 160. (original) The use of a method as in claim 1 in a personal communication service. 161. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a personal communication service. 162. (original) The use of a method as in claim 1 in a private mobile radio service. 163. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a private mobile radio service. 164. (original) The use of a method as in claim 1 in a wireless LAN. 165. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless LAN. 166. (original) The use of a method as in claim 1 in a fixed wireless access service. 167. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a fixed
- 1625 168. (original) The use of a method as in claim 1 in a broadband wireless access service.

wireless access service.

- 169. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a broadband wireless access service. 170. (original) The use of a method as in claim 1 in a municipal area network. 171. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a municipal area network. 172. (original) The use of a method as in claim 1 in a wide area network. 173. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wide area network. 174. (original) The use of a method as in claim 1 in wireless backhaul. 175. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless backhaul. 176. (original) The use of a method as in claim 1 in wireless backhaul. 177. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless backhaul. 178. (original) The use of a method as in claim 1 in wireless SONET. 179. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless SONET.
- 1657 182. (original) The use of a method as in claim 1 in wireless Telematics.

180-181. (CANCELLED)

1658	183. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless
1659	Telematics.
1660	
1661	
1662	184. (PREVIOUSLY PRESENTED) An apparatus as in claim 101, wherein the means
1663	for digital signal processing in said first subset of MIMO-capable nodes further
1664	comprises:
1665	an ADC bank for downconversion of received RF signals into digital signals;
1666	
1667	a MT DEMOD element for multitone demodulation, separating the received
1668	signal into distinct tones and splitting them into 1 through $K_{ m feed}$ FDMA
1669	channels, said separated tones in aggregate forming the entire baseband for the
1670	transmission, said MT DEMOD element further comprising
1671	a Comb element with a multiple of 2 filter capable of operating on a 128-
1672	bit sample; and,
1673	an FFT element with a 1,024 real-IF function;
1674	
1675	a Mapping element for mapping the demodulated multitone signals into a 426
1676	active receive bins, wherein
1677	each bin covers a bandwidth of 5.75MHz;
1678	each bin has an inner passband of 4.26MHz for a content envelope;
1679	each bin has an external buffer, up and down, of 745kHz;
1680	each bin has 13 channels, CH0 through CH12, each channel having 320
1681	kHz and 32 tones, T0 through T31, each tone being 10kHz, with the inner
1682	30 tones being used information bearing and T0 and T31 being reserved;
1683	each signal being 100µs, with 12.5µs at each end thereof at the front and
1684	rear end thereof forming respectively a cyclic prefix and cyclic suffix
1685	buffer to punctuate successive signals;
1686	and,
1687	a symbol-decoding element for interpretation of the symbols embedded in the
1688	signal.

1689		
1690	185. (CURRENTLY AMENDED) A wireless electromagnetic communications	
1691	network, comprising, <u>comprising:</u>	
1692	a set of nodes, said set further comprising:	
1693	at least a first subset of MIMO-capable nodes, each MIMO-capable node	
1694	comprising:	
1695	a spatially diverse antennae array of M antennae, where $M \ge two$,	
1696	said antennae array being polarization diverse, and circularly	
1697	symmetric, and providing 1-to-M RF feeds;	
1698	a transceiver for each antenna in said array, said transceiver	
1699	further comprising:	
1700	a Butler Mode Forming element, providing spatial	
1701	signature separation with a FFT-LS algorithm,	
1702	reciprocally forming a transmission with shared receiver	
1703	feeds, such that the number of modes out equals the	
1704	numbers of antennae, establishing such as an ordered set	
1705	with decreasing energy, further comprising:	
1706	a dual-polarization element for splitting the	
1707	modes into positive and negative polarities with	
1708	opposite and orthogonal polarizations, that can	
1709	work with circular polarizations; and,	
1710	a dual-polarized link CODEC;	
1711	a transmission/reception switch comprising:	
1712	a vector OFDM receiver element;	
1713	a vector OFDM transmitter element;	
1714	a LNA bank for a receive signal, said LNA Bank	
1715	also instantiating low noise characteristics for a	
1716	transmit signal;	
1717	a PA bank for the transmit signal that receives	
1718	the low noise characteristics for said transmit	
1719	signal from said LNA bank;	

1720	an AGC for said LNA bank and PA bank;
1721	a controller element for said
1722	transmission/reception switch enabling baseband
1723	link distribution of the energy over the multiple
1724	RF feeds on each channel to steer up to K_{feed}
1725	beams and nulls independently on each FDMA
1726	channel;
1727	a Frequency Translator;
1728	a timing synchronization element controlling said
1729	controller element;
1730	further comprising a system clock,
1731	a universal Time signal element;
1732	GPS;
1733	a multimode power management element and
1734	algorithm;
1735	and,
1736	a LOs element;
1737	said vector OFDM receiver element comprising:
1738	an ADC bank for downconversion of received
1739	RF signals into digital signals;
1740	a MT DEMOD element for multitone
1741	demodulation, separating the received signal into
1742	distinct tones and splitting them into 1 through
1743	K_{feed} FDMA channels, said separated tones in
1744	aggregate forming the entire baseband for the
1745	transmission, said MT DEMOD element further
1746	comprising:
1747	a Comb element with a multiple of 2
1748	filter capable of operating on a 128-bit
1749	sample; and,

1750 1751	an FFT element with a 1,024 real-IF
1751	
	function;
1752	a Mapping element for mapping the demodulated
1753	multitone signals into a 426 active receive bins,
1754	wherein
1755	each bin covers a bandwidth of 5.75
1756	MHz;
1757	each bin has an inner passband of 4.26
1758	MHz for a content envelope;
1759	each bin has an external buffer, up and
1760	down, of 745 kHz;
1761	each bin has 13 channels, CH0 through
1762	CH12, each channel having 320 kHz and
1763	32 tones, T0 through T31, each tone
1764	being 10 kHz, with the inner 30 tones
1765	being used information bearing and T0
1766	and T31 being reserved;
1767	and,
1768	each signal being 100 μ s, with 12.5 μ s at
1769	each end thereof at the front and rear end
1770	thereof forming respectively a cyclic
1771	prefix and cyclic suffix buffer to
1772	punctuate successive signals;
1773	a MUX element for timing modification capable
1774	of element-wise multiplication across the signal,
1775	which halves the number of bins and tones but
1776	repeats the signal for high-quality needs;
1777	a link CODEC, which separates each FDMA
1778	channel into 1 through M links, further
1779	comprising:
1780	a SOVA bit recovery element;

1781	an error coding element;
1782	an error detection element;
1783	an ITI remove element;
1784	a tone equalization element;
1785	and,
1786	a package fragment retransmission
1787	element;
1788	a multilink diversity combining element, using a
1789	multilink Rx weight adaptation algorithm for Rx
1790	signal weights $\mathbf{W}(k)$ to adapt transmission
1791	gains $\mathbf{G}(k)$ for each channel k ;
1792	an equalization algorithm, taking the signal from
1793	said multilink diversity combining element and
1794	controlling a delay removal element;
1795	said delay removal element separating
1796	signal content from imposed pseudodelay
1797	and experienced environmental signal
1798	delay, and passing the content-bearing
1799	signal to a symbol-decoding element;
1800	said symbol-decoding element for
1801	interpretation of the symbols embedded
1802	in the signal, further comprising:
1803	an element for delay gating;
1804	a QAM element; and
1805	a PSK element;
1806	said vector OFDM transmitter element comprising:
1807	a DAC bank for conversion of digital signals into
1808	RF signals for transmission;
1809	a MT MOD element for multitone modulation,
1810	combining and joining the signal to be

1811	transmitted from 1 through K_{feed} FDMA
1812	channels, said separated tones in aggregate
1813	forming the entire baseband for the transmission;
1814	said MT MOD element further comprising
1815	a Comb element with a multiple of 2
1816	filter capable of operating on a 128-bit
1817	sample; and,
1818	an IFFT element with a 1,024 real-IF
1819	function;
1820	a Mapping element for mapping the modulated
1821	multitone signals from 426 active transmit bins,
1822	wherein
1823	each bin covers a bandwidth of 5.75
1824	MHz;
1825	each bin has an inner passband of 4.26
1826	MHz for a content envelope;
1827	each bin has an external buffer, up and
1828	down, of 745 kHz;
1829	each bin has 13 channels, CH0 through
1830	CH12, each channel having 320 kHz and
1831	32 tones, T0 through T31, each tone
1832	being 10 kHz, with the inner 30 tones
1833	being used information bearing and T0
1834	and T31 being reserved;
1835	each signal being-100 μ s, with 12.5 μ s at
1836	each end thereof at the front and rear end
1837	thereof forming respectively a cyclic
1838	prefix and cyclic suffix buffer to
1839	punctuate successive signals;
1840	a MUX element for timing modification capable
1841	of element-wise multiplication across the signal,

1842	which halves the number of bins and tones but
1843	repeats the signal for high-quality needs;
1844	a symbol-coding element for embedding the
1845	symbols to be interpreted by the receiver in the
1846	signal, further comprising:
1847	an element for delay gating;
1848	a QAM element; and
1849	a PSK element;
1850	a link CODEC, which aggregates each FDMA
1851	channel from 1 through M links, further
1852	comprising:
1853	a SOVA bit recovery element;
1854	an error coding element;
1855	an error detection element;
1856	an ITI remove element;
1857	a tone equalization element;
1858	and,
1859	a package fragment retransmission
1860	element;
1861	a multilink diversity distribution element, using a
1862	multilink Tx weight adaptation algorithm for Tx
1863	signal weights to adapt transmission gains
1864	$\mathbf{G}(k)$ for each channel k , such that $\mathbf{g}(q;k)$
1865	$\propto \mathbf{w}^*(q;k);$
1866	a TCM codec;
1867	a pilot symbol CODEC element that integrates with said FFT-LS
1868	algorithm a link separation, a pilot and data signal elements
1869	sorting, a link detection, multilink combination, and equalizer
1870	weight calculation operations;
1871	means for diversity transmission and reception,

1872 and, 1873 means for input and output from and to a non-radio interface; 1874 1875 said set of nodes being linked according to design rules that create and support a 1876 condition of network reciprocity by meeting the first of favor the following 1877 criteria, and at least two out of five of the remaining following criteria: 1878 subdividing said set of nodes into two or more proper subsets of nodes, 1879 with a first proper subset being a transmit uplink / receive downlink 1880 subset, and a second proper subset being a transmit downlink / receive 1881 uplink subset; 1882 1883 allowing each node in said set of nodes to simultaneously belong to only 1884 as many transmitting uplink or receiving uplink subsets as it has diversity 1885 capability means; 1886 1887 allowing each node in the transmit uplink / receive downlink subset to 1888 simultaneously link to only as many nodes with which it will hold time 1889 and frequency coincident communications in its field of view, as it has 1890 diversity capability means; 1891 1892 allowing each node in the transmit downlink / receive uplink subset to 1893 simultaneously link to only as many nodes with which it will hold time 1894 and frequency coincident communications in its field of view, as it has 1895 diversity capability means; 1896 1897 allowing each member of a the transmit uplink / receive downlink subset 1898 to engage in simultaneous, time and frequency coincident communications 1899 with any other member of that transmit uplink / receive downlink subset 1900 only if both that other member also belongs to a different proper subset 1901 and the communication is between different proper subsets; 1902 and.

1903 allowing each member of the transmit downlink / receive uplink subset to 1904 engage in simultaneous, time and frequency coincident communications 1905 with any other member of that transmit downlink / receive uplink subset 1906 only if both that other member also belongs to a different proper subset 1907 and the communication is between different proper subsets; 1908 1909 means for transmitting, in said wireless electromagnetic communications network, 1910 independent information from each node belonging to a first proper subset, to one 1911 or more receiving nodes belonging to a second proper subset that are viewable 1912 from the transmitting node; 1913 1914 for processing independently, in said wireless electromagnetic 1915 communications network, at each receiving node belonging to said second proper 1916 subset, information transmitted from one or more nodes belonging to said first 1917 proper subset; 1918 1919 and, 1920 1921 means for deploying said set of nodes such that substantially reciprocal symmetry 1922 exists for the uplink and downlink channels by, 1923 if the received interference is spatially white in both link directions, setting $\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$ and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link, 1924 where $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights 1925 1926 used in the downlink; 1927 1928 but if the received interference is not spatially white in both link directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy: 1929

 $\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$ $\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$ using any standard communications protocol, including TDD, FDD, simplex, and, means for optimizing the network by dynamically adapting the diversity capability means between nodes of said transmitting and receiving subsets. 186. (PREVIOUSLY PRESENTED) A network as in claim 185, wherein said a transmission/reception switch further comprises an element for tone and slot interleaving. 187. (PREVIOUSLY PRESENTED) A network as in claim 185, wherein said TMC codec and SOVA bit recovery element are replaced with a Turbo codec. 188. (NEW) A method as in claim 33, wherein the step of suppressing unintended recipients or transmitters by the imposition of signal masking further comprises:

imposition of a recipient mask.