Esercitazione N.8: Oscillatore sinusoidale a ponte di Wien con OpAmp.

Gruppo AC Federico Belliardo, Giulia Franchi, Francesco Mazzoncini

26 novembre 2016

1 Scopo dell'esperienza

Lo scopo dell'esperienza è realizzare un oscillatore ad onda sinusoidale a ponte di Wien utilizzando un OpAmp.

2 Montaggio del circuito e misura del loop gain

Abbiamo montato il circuito in fig. 1 utilizzando $R_1 = R_2 = R_3 = R_4 = R_5 = R_5$ un potenziometro con $P_{MAX} = R_5$ due condensatori $C_1 = C_2 = R_3$ un potenziometro con $R_1 = R_2 = R_3$ un potenziometro con $R_1 = R_3 = R_3$ un potenzionetro con $R_1 = R_3 = R_3$ un potenzionetr

Figura 1: Circuito oscillatore a ponte di Wien.

le frequenze di taglio $f_1 = \frac{1}{2\pi R_1 C_1}$ e $f_2 = \frac{1}{2\pi R_2 C_2}$ Abbiamo scollegato il punto A dall'ingresso non invertente dell'OpAmp, inviando al suo posto attraverso il generatore di funzioni un segnale sinusoidale di ampiezza pari a circa $250\,mV$ con frequenza tra $500\,Hz$ e $3\,kHz$ ¹ In tab.?? abbiamo riportato i valori di V_+ , V_A , del loro sfasamento ϕ e del loro rapporto $A_v = .$ [INSERIRE TABELLA] In seguito abbiamo riportato il diagramma di Bode dell'attenuazione e dello sfasamento in fig.?? e fig.?? rispettivamente. [eseguire fit dello sfasamento e verificare che si ϕ si annulla per la frequenza di taglio dal fit, verificare in oltre che si ha il massimo del guadagno per la freq di taglio, ruotare infine il potenziometro per osservare la variazione di V_{OUT} e verificare la formula $A_v = \frac{R_3 \|R_{diodo} + P_{MAX} + R_5}{\alpha P_{MAX} + R_5}$]

3 Comportamento del circuito al variare del potenziometro

Abbiamo sconnesso il generatore di funzioni e riconnesso il punto A all'ingresso non-invertente dell'OpAmp e abbiamo osservato il segnale in uscita al variare della resistenza del potenziometro, notando che: [Vedere cosa notiamo, fare attenzione alle piccole ampiezze (possibile rumore),notare quando otteniamo clipping]

 $^{^{1}}$ Da notare il fatto che l'intervallo considerato comprende anche la frequenza di taglio $f_{1}\sim f_{2}$

4 Misura della frequenza di oscillazione

[verificare che la frequenza di oscillazione sia proprio quella di taglio e vedere ampiezze di alimentazioni basse per osservare cambiamenti della frequenza dovuti al clipping]

- 5 Misura del guadagno A_v open loop
- 6 Scopo dell'esperienza