Valuation fields

1 absolute values and completion

Definition 1. Let **k** be a field. An *absolute value* on **k** is a function $\|\cdot\|$: $\mathbf{k} \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $x, y \in \mathbf{k}$:

- (a) ||x|| = 0 if and only if x = 0;
- (b) $||xy|| = ||x|| \cdot ||y||$;
- (c) $||x + y|| \le ||x|| + ||y||$.

A field **k** equipped with an absolute value $\|\cdot\|$ is called a *valuation field*.

Remark 2. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y)$;
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}.$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0,1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Definition 3. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is *complete* if the metric $d(x, y) := \|x - y\|$ makes \mathbf{k} a complete metric space.

Lemma 4. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. Let $(\hat{\mathbf{k}}, \|\cdot\|)$ be its completion as a metric space. Then the operations of addition and multiplication on \mathbf{k} can be extended to $\hat{\mathbf{k}}$ uniquely, making $(\hat{\mathbf{k}}, \|\cdot\|)$ a complete valuation field containing \mathbf{k} as a dense subfield.

Definition 5. A valuation field $(\mathbf{k}, \| \cdot \|)$ is called *spherically complete* if every decreasing sequence of closed balls in \mathbf{k} has a non-empty intersection.

2 Non-archimedean fields and ultra-metric spaces

Definition 6. Let $(\mathbf{k}, \| \cdot \|)$ be a valuation field. We say that \mathbf{k} is non-archimedean if its absolute value $\| \cdot \|$ satisfies the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}, \quad \forall x, y \in \mathbf{k}.$$

Otherwise, we say that \mathbf{k} is archimedean.

Date: October 26, 2025, Author: Tianle Yang, My Homepage

Let **k** be a non-archimedean field. Then easily see that $\{x \in \mathbf{k} : ||x|| \le 1\}$ is a subring of **k**. Moreover,

Definition 7. Let \mathbf{k} be a non-archimedean field. The ring of integers of \mathbf{k} is defined as

$$\mathbf{k}^{\circ} := \{ x \in \mathbf{k} : ||x|| \le 1 \}.$$

Its maximal ideal is

$$\mathbf{k}^{\circ \circ} := \{ x \in \mathbf{k} : ||x|| < 1 \}.$$

The residue field of **k** is defined as

$$\mathcal{R}_{\mathbf{k}} := \widetilde{\mathbf{k}} := \mathbf{k}^{\circ}/\mathbf{k}^{\circ \circ}.$$

Yang: Is the valuation on residue field trivial?

it is a local ring whose maximal ideal is $\{x \in \mathbf{k} : ||x|| < 1\}$.

Theorem 8 (Hessel's lemma). Let \mathbf{k} be a non-archimedean field and $\mathcal{k}_{\mathbf{k}}$ be its residue field. For any polynomial $\widetilde{f}(X) \in \mathcal{k}_{\mathbf{k}}[X]$ and any simple root $\widetilde{a} \in \mathcal{k}_{\mathbf{k}}$ of $\widetilde{f}(X)$, there exists a root $a \in \mathbf{k}^{\circ}$ of $f(X) \in \mathbf{k}^{\circ}[X]$ such that the image of a in $\mathcal{k}_{\mathbf{k}}$ is \widetilde{a} . Yang: To be checked.

Definition 9. A metric space (X, d) is called an *ultra-metric space* if its metric d satisfies the *strong triangle inequality*:

$$d(x, z) \le \max\{d(x, y), d(y, z)\}, \quad \forall x, y, z \in X.$$

Proposition 10. Let (X, d) be an ultra-metric space. Then for any $x \in X$ and r > 0, the closed ball $B(x, r) := \{y \in X : d(x, y) \le r\}$ satisfies the following properties:

- (a) For any $y \in B(x,r)$, we have B(x,r) = B(y,r).
- (b) Any two closed balls in X are either disjoint or one is contained in the other.

Yang: To be revised.

We will use B(x,r) to denote the open ball with center x and radius r. We will use E(x,r) to denote the closed ball with center x and radius r.

Proposition 11. Let (X, d) be an ultra-metric space. Then X is totally disconnected, i.e., the only connected subsets of X are the singletons. Yang: To be revised.

3 p-adic fields

Construction 12. Let K be a number field and \mathfrak{p} be a prime ideal of the ring of integers \mathcal{O}_K of K. Considering the localization $(\mathcal{O}_K)_{\mathfrak{p}}$ of \mathcal{O}_K at \mathfrak{p} , which is a discrete valuation ring, denote by $v_{\mathfrak{p}}: K^{\times} \to \mathbb{Z}$ the corresponding discrete valuation. The p-adic absolute value on K associated to \mathfrak{p} is defined as

$$|x|_{\mathfrak{p}} := N(\mathfrak{p})^{-v_{\mathfrak{p}}(x)}, \quad \forall x \in K,$$

where $N(\mathfrak{p}) := \#(\mathcal{O}_K/\mathfrak{p})$ is the norm of \mathfrak{p} .

The completion of K with respect to the p-adic absolute value $|\cdot|_{\mathfrak{p}}$ is denoted by $K_{\mathfrak{p}}$, called the \mathfrak{p} -adic field.

One can just focus on the case $K = \mathbb{Q}$ and $\mathfrak{p} = (p)$ for a prime number p.

Example 13. Let p be a prime number. For every $r \in \mathbb{Q}$, we can write r as $r = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$ are integers not divisible by p. The p-adic absolute value on \mathbb{Q} is defined as

$$|r|_p := p^{-n}.$$

The p-adic field \mathbb{Q}_p can be described concretely as follows:

$$\mathbb{Q}_p = \left\{ \sum_{i=n}^{+\infty} a_i p^i \middle| n \in \mathbb{Z}, a_i \in \{0, 1, \dots, p-1\} \right\}.$$

For $x = \sum_{i=n}^{+\infty} a_i p^i \in \mathbb{Q}_p$ with $a_n \neq 0$, its *p*-adic absolute value is given by $|x|_p = p^{-n}$. The operations of addition and multiplication on \mathbb{Q}_p are defined similarly as those on decimal expansions.

Construction 14. Let p be a prime number. The field \mathbb{C}_p of p-adic complex numbers is defined as the completion of the algebraic closure of \mathbb{Q}_p with respect to the unique extension of the p-adic absolute value $|\cdot|_p$ on \mathbb{Q}_p . The field \mathbb{C}_p is algebraically closed and complete with respect to $|\cdot|_p$. Yang: To be completed.

Proposition 15. The field \mathbb{C}_p of p-adic complex numbers is not spherically complete.

Construction 16. Let p be a prime number. Yang: We construct the spherically complete p-adic field Ω_p . Yang: To be completed.

Yang: What is the relation between the finite extension of \mathbb{Q}_p and K_p ?

Appendix