9831 Probability and Stochastic Processes for Finance, Fall 2016

Lecture 6

Anja Richter

Department of Mathematics

Outline

- · More on SDEs
- · Derivation of BS PDE
- · Multivariate stochastic calculus
- Applications: Levy characterization of Brownian motion, Covariance of stock prices driven by correlated Brownian motions

1 Stochastic differential equations (continued)

1.1 Ornstein-Uhlenbeck process / Vasicek model

The Ornstein-Uhlenbeck (OU) process / Vasicek model is defined by the following SDE

$$dX_t = \lambda (m-X_t) dt + \sigma dB_t, \quad X_0 = x,$$

where $\lambda, m, \sigma > 0$.

We solve the SDE by applying Ito's formula to $e^{\lambda t}X_t$ (see Homework 05) and obtain

$$X_T = e^{-\lambda T} x + \left(1 - e^{-\lambda T}
ight) m + \sigma \int_0^T e^{-\lambda (T-t)} dB_t.$$

Properties

- ullet X_t is normally distributed: $X_t \sim N\left(e^{-\lambda t}X_0 + \left(1-e^{-\lambda t}
 ight)m,rac{\sigma^2}{2\lambda}\left(1-e^{-2\lambda t}
 ight)
 ight).$
- X_t is a Gaussian process with mean function $\mathbb{E}\left[X_t\right]=e^{-\lambda t}X_0+\left(1-e^{-\lambda t}\right)m$ and covariance function $\gamma(t,s)=rac{\sigma^2}{2\lambda}e^{-\lambda(s+t)}(e^{2\lambda(s\wedge t)}-1)$ (see homework 06).
- The parameters have the following meaning:
 - λ is usually referred to as the *mean reverting rate*
 - ullet m stands for the long term mean, as for $t o\infty$, $\mathbb{E}\left[X_t
 ight] o m$ exponentially with rate λ
 - σ stands for the "instantaneous" volatility.
- As $t o\infty$, the distribution of X_t converges to the stationary distribution $N\left(m,rac{\sigma^2}{2\lambda}
 ight)$.
- As $\lambda \to \infty$, the distribution of X_t approaches N(m,0), i.e., a point mass or Dirac delta at m, for t>0.

Simulation

```
In [36]: # The code simulates the OU process dX = lambda (m - X) dt + sigma dB
         # by Euler-Maruyama scheme
          # Parameters of the OU process
         lambda <- 2
         m <- 0
          sigma <- .2
         x0 <- 1
          Tfin <- 1
          # number of paths and number of time steps
          NSim <- 1e3
         NSteps <- 1000
          # initialize X
          X <- matrix(0,NSim,NSteps+1)</pre>
         X[,1] < - x0
          # Euler-Maruyama scheme
          dt <- Tfin/NSteps
          for (i in 1:NSteps){
           dB <- sqrt(dt)*rnorm(NSim)</pre>
           X[,i+1] \leftarrow X[,i] + lambda*(m - X[,i])*dt + sigma*dB
          }
          par(mfrow=c(2,2))
          #OU paths
          t <- (0:NSteps)/NSteps*Tfin
          plot(t,X[2,],type='1',col='blue')
          # histograms at different times
          hist(X[,2],prob=T,col='blue',breaks=20,xlim=c(-.5,1.2))
          hist(X[,NSteps+1],prob=T,col='red',breaks=20,add=T)
          # time evolution of mean
          plot(t,colMeans(X),type='1',col='blue',ylab='mean')
          #plot(t,exp(-lambda*t),type='l')
          # time evolution of variance
          plot(t,apply(X,2,FUN=var),type='1',col='blue',ylab='var')
          abline(h=sigma^2/2/lambda,col='green')
```

Histogram of X[, 2] 9 8.0 20 Density 9.0 X[2,] 30 4.0 20 0.2 9 0 0.5 0.0 0.2 0.8 1.0 -0.5 0.0 1.0 0.4 0.6 X[, 2] t 0.008 8.0 mean 9.0 var 0.004 4.0 0.2 0.000 0.0 0.2 0.8 0.0 0.6 0.4 0.6 1.0 0.2 0.4 0.8 1.0 t t

1.2 Cox-Ingersoll-Ross process

Consider the Cox-Ingersoll-Ross (CIR) process

$$dX_t = \lambda (m-X_t) dt + \sigma \sqrt{X_t} dB_t, \quad X_0 = x,$$

where $\lambda, m, \sigma > 0$.

- There is no simple expression, as the ones for geometric Brownian motion and the OU process, for the solution of the CIR process.
- Nevertheless, we can still calculate the mean and variance of X_t by applying the Ito-Doeblin formula. The calculation of the mean is the same as in the derivation for the Ornstein-Uhlenbeck process. The variance is obtained by applying Ito's formula to X_t^2 (see Homework 05). We have

$$egin{align} E(X_t) &= xe^{-\lambda t} + m(1-e^{-\lambda t}) \ \mathrm{Var}(X_t) &= xrac{\sigma^2}{\lambda}(e^{-\lambda t} - e^{-2\lambda t}) + rac{m\sigma^2}{2\lambda}(1-e^{-\lambda t}). \end{gathered}$$

- The parameters the same meaning as for OU processes:
 - λ is usually referred to as the *mean reverting rate*
 - *m* stands for the long term mean
 - σ stands for the "instantaneous" volatility.

2 Another application of the Ito-Doeblin formula: Derivation of the Black Scholes PDE

2.1 A portfolio of stock and riskless asset

We start with 2 ingredients, i.e. the market consists of:

- one risky asset, a stock, whose price S_t at time $t \geq 0$ satisfies

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

• a riskless asset, money market account (MMA), M_t , which has a constant interest rate r (continuous compounding), i.e.

$$dM_t = rM_t dt.$$

We set up a portfolio with time-t value V_t .

At any time t, the investor holds

- ullet shares of the stock (random but adapted to the filtration of the Brownian motion), and
- the remainder $V_t \Delta_t S_t$ is invested in the money account.

That means, we have

$$V_t = \underbrace{\Delta_t S_t}_{ ext{risky asset}} + \underbrace{V_t - \Delta_t S_t}_{ ext{money account}}$$

Self-financing strategy: At time t, the agent reallocates his portolio as holding $\Delta_{t+\Delta t}$ shares in the risky asset without adding to or withdrawing from his portfolio at the beginning of time t and holds the allocation till the end of time $t + \Delta t$. Thus, at the beginning of $t + \Delta t$, his portfolio reads

$$V_t = \underbrace{\Delta_{t+\Delta t} S_t}_{ ext{risky asset}} + \underbrace{V_t - \Delta_{t+\Delta t} S_t}_{ ext{money account}}$$

Note that at this point the value of his portfolio is still V_t because he simply moves shares/money from/to risy asset/money account.

At the end of time $t+\Delta t$, since the price of risk asset has moved to $S_{t+\Delta t}$ and the money account accrued according to interest rate r, the value of his portfolio becomes

$$V_{t+\Delta t} = \underbrace{\Delta_{t+\Delta t} S_{t+\Delta t}}_{ ext{risky asset}} + \underbrace{(V_t - \Delta_{t+\Delta t} S_t)(1 + r\Delta t)}_{ ext{money account}}$$

Hence, the change of the value of the agent's portfolio from t to $t+\Delta t$ is given by

ce, the change of the value of the agent's portfolio from
$$t$$
 to $t+\Delta t$ is given by
$$V_{t+\Delta t} - V_t = \overbrace{\Delta_{t+\Delta t} S_{t+\Delta t}}^{\text{risky asset}} + \overbrace{(V_t - \Delta_{t+\Delta t} S_t)(1 + r\Delta t)}^{\text{money account}} - \left[\overbrace{\Delta_{t+\Delta t} S_t}^{\text{risky asset}} + \overbrace{V_t - \Delta_{t+\Delta t} S_t}^{\text{money account}}\right] \\ = \Delta_{t+\Delta t} \left(S_{t+\Delta t} - S_t\right) + \left(V_t - \Delta_{t+\Delta t} S_t\right) r\Delta t \\ = \Delta_{t+\Delta t} \Delta S_{t+\Delta t} + \left(V_t - \Delta_{t+\Delta t} S_t\right) r\Delta t.$$

In the limit, as $\Delta t \to 0$, we have that the evolution of the portfolio value is given by

$$dV_t = \Delta_t dS_t + r(V_t - \Delta_t S_t) dt.$$

Hence, a self-financing trading strategy is determined by the holdings in the risky asset. It's value is governed by the last equation.

Substituting dS_t into this equation, we get

$$egin{aligned} dV_t &= \Delta_t (\mu S_t \ dt + \sigma S_t \ dB_t) + r(V_t - \Delta_t S_t) dt \ &= \sigma \Delta_t S_t dB_t + rV_t \ dt + (\mu - r) \Delta_t S_t \ dt \ &=: (I) + (II) + (III). \end{aligned}$$

The three terms above are:

- (I) the volatility term proportional to the size of the stock investment;
- (II) an average underlying rate of return r of the portfolio;
- (III) a risk premium $(\mu-r)$ for investing in stock.

Now consider a European call option with payoff $(S_T - K)_+$ at time T.

Black, Scholes, and Merton argued that the value of this call at time t should depend only on T-t and the price of the stock at time t (other parameters r, σ, K being fixed).

If we let c(t,x) denote the price of the option at time t when $S_t=x$ then c(t,x) is a non-random function.

The stochastic process $c(t, S_t)$ is the price of the option at time t.

Assuming that c(t,x) is smooth enough to apply the Ito-Doeblin formula, we get

$$egin{aligned} dc(t,S_t) &= c_t(t,S_t) \, dt + c_x(t,S_t) \, dS_t + rac{1}{2} \, c_{xx}(t,S_t) \, d[S]_t \ &= \left(c_t(t,S_t) + \mu S_t c_x(t,S_t) + rac{1}{2} \, \sigma^2 rac{S_t}{S_t} c_{xx}(t,S_t)
ight) dt + \sigma c_x(t,S_t) S_t \, dB_t. \end{aligned}$$

This equation represents the evolution of the option value.

2.2 Hedging portfolio and BS PDE

A hedging portfolio for a short position on the option has to satisfy

$$V_t = c(t, S_t) \quad ext{ for all } t \in [0, T].$$

Instead of equating the above equations for dV_t and $dc(t, S_t)$, it is more convenient to equate the present values:

$$e^{-rt}V_t=e^{-rt}c(t,S_t),\quad t\in [0,T].$$

The corresponding evolutions are given by

$$egin{aligned} d(e^{-rt}V_t) &= -re^{-rt}V_t\,dt + e^{-rt}dV_t \ &= e^{-rt}\Delta_t(\mu-r)S_t\,dt + \sigma e^{-rt}\Delta_tS_t\,dB_t, \end{aligned}$$

and

$$egin{aligned} d(e^{-rt}c(t,S_t)) &= -re^{-rt}c(t,S_t)\,dt + e^{-rt}dc(t,S_t) \ &= e^{-rt}\left(-rc(t,S_t) + c_t(t,S_t) + \mu S_t c_x(t,S_t) + rac{1}{2}\,\sigma^2 S_t^2 c_{xx}(t,S_t)
ight)dt \ &+ e^{-rt}\sigma c_x(t,S_t)S_t\,dB_t. \end{aligned}$$

Equating the stochastic integral parts and finite variation parts in the last two equations, we obtain

· from the stochastic integral parts:

$$\Delta_t = c_x(t,S_t), \quad t \in [0,T), \ a.\, s.\, ,$$

from the finite variation parts and the previous line:

$$c_x(t,S_t)(\mu-r)S_t = -rc(t,S_t) + c_t(t,S_t) + \mu S_t c_x(t,S_t) + rac{1}{2}\sigma^2 S_t^2 c_{xx}(t,S_t), \quad t \in [0,T), a.\, s.$$

and, after cancellations,

$$rc(t,S_t) = c_t(t,S_t) + rS_t c_x(t,S_t) + rac{1}{2}\sigma^2 S_t^2 c_{xx}(t,S_t), \quad t \in [0,T), \; ext{ a.s.}.$$

The last equation tells us that we need to find a deterministic function c(t,x) which satisfies the **Black-Scholes-Merton partial differential equation (BSM PDE)**

$$rc(t,x) = c_t(t,x) + \mu x c_x(t,x) + rac{1}{2} \sigma^2 x^2 c_{xx}(t,x), \quad x \geq 0, \ t \in [0,T),$$

with the terminal condition $c(T, x) = (x - K)^+$.

For the solution to be unique we need additional boundary conditions at x=0 and as $x\to\infty$.

• The first one is obtained by plugging x=0 in the BSM PDE to get

$$c_t(t,0) = rc(t,0).$$

Solving this ODE with c(0,0)=0 we get the condition at x=0:

$$c(t,0)=0, \qquad ext{ for all } t\in [0,T].$$

• The condition at infinity can be stated in the following form:

$$\lim_{x o\infty}(c(t,x)-(x-e^{-(T-t)}K))=0,\quad t\in[0,T].$$

As x grows large, the call option will be deep in the money, and it will very likely finish in the money. In this case, the price of the call at time t is almost as much as the time t price of the forward contract with delivery price K and expiration T, i.e. $S_t - e^{-(T-t)}K$.

Suppose that we have found such a function c(t, x).

Then at each time t we have both the option price $c(t, S_t)$ (S_t is known at time t) and the replicating portfolio $c_x(t, S_t)$.

Indeed, if the investor starts with initial capital $V_0=c(0,S_0)$ and at time t has $\Delta_t=c_x(t,S_t)$ shares of the underlying asset in his portfolio, then the dB_t terms in the equations for $d(e^{-rt}V_t)$ and $d(e^{-rt}c(t,S_t))$ agree.

The dt terms then also agree as c(t,x) satisfies the BS PDE.

This and the equality of the initial values imply that the equation

$$e^{-rt}V_t = e^{-rt}c(t, S_t),$$

holds for all $t \in [0,T)$.

As $t\uparrow T$ we get by continuity of V_t and $c(t,S_t)$ that

$$V_T=c(T,S_T)=(S_T-K)_+,$$

i.e. the short position is successfully hedged.

3 Multivariate Stochastic Calculus

3.1 Multidimensional Brownian motion

Definition

An n dimensional Brownian motion B_t is a process

$$B_t = (B_1(t), \cdots, B_n(t))$$

with the properties

- each $B_i(t)$ is a one-dimensional Brownian motion.
- $B_i(t)$ and $B_j(t)$ are independent if i
 eq j.

Hence an n dimensional Brownian motion

- has continuous sample paths because all the B_i 's are continuous
- has mean vector ${f 0}$ and covariance matrix $t{f I_n}$ at time t, where ${f I_n}$ denotes the identity matrix
- is an n dimensional Gaussian process with covariance function $(t \wedge s)\mathbf{I_n}$
- · has transition density

$$p(s,y|t,x) = (2\pi(s-t))^{-n/2}e^{-rac{|y-x|^2}{2(s-t)}}, \qquad s>t,$$

i.e.

$$\mathbb{P}\left[B_s \in A | B_t = x
ight] = \int_A p(s,y|t,x) dy$$

• has infinitesimal generator $\frac{1}{2}\Delta$, where $\Delta=\sum_{i=1}^n\frac{\partial^2}{\partial x_i^2}$ is the **Laplace operator** or **Laplacian**.

A sample path of two dimensional Brownian motion

```
In [1]: # The code simulate a sample path of two dimensional Browian motion

NSteps <- 5e3
    Tfin <- 1
    dt <- Tfin/NSteps
    t <- (0:NSteps)/NSteps*Tfin
    dB1 <- sqrt(dt)*rnorm(NSteps)
    dB2 <- sqrt(dt)*rnorm(NSteps)
    B1 <- c(0,cumsum(dB1))
    B2 <- c(0,cumsum(dB2))

par(mfrow=c(2,2))
    plot(B1,t,type='1',col='blue')
    plot(t,B2,type='1',col='blue')
    plot(B1,B2,type='1',col='blue')</pre>
```


Ito-Doeblin formula for multidimensional Brownian motion

Let $B_t=(B_1(t),\cdots,B_n(t))'$ be an n dimensional Brownian motion and $f=f(t,x_1,\cdots,x_n)$ be a function of n+1 variables which is continuously differentiable in t and twice continuously differentiable in $t=(x_1,\cdots,x_n)$.

Then

$$f(T,B_T) - f(t,B_t) = \int_t^T \left[f_t(s,B_s) + rac{1}{2} \Delta f(s,B_s)
ight] ds + \int_t^T
abla f(s,B_s) \cdot dB_s,$$

where abla f is the gradient of f and $\Delta f = \sum_{i=1}^n rac{\partial^2 f}{\partial x_i^2}$ is the Laplacian of f.

Equivalently, in differential form, we have

$$df(t,B_t) = \left[f_t(t,B_t) + rac{1}{2} \Delta f(t,B_t)
ight] dt +
abla f(t,B_t) \cdot dB_t.$$

3.2 Multivariate Ito-Doeblin formula for Ito processes

Reminder: Multivariate calculus

Let $f:U\subset\mathbb{R}^n o\mathbb{R}$ be a function of n variables. Then

- the **gradient of** f, denoted by ∇f , is defined by the vector $\nabla f = \left[rac{\partial f}{\partial x_1} \cdots rac{\partial f}{\partial x_n}
 ight]'$
- the **Hessian matrix of** f, denoted by $\operatorname{Hess} f$, is defined as the $n \times n$ symmetric matrix

$$ext{Hess } f = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_1 \partial x_2} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_1 \partial x_n} & rac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{pmatrix}$$

• the Laplacian of f, denoted by Δf , is defined as $\Delta f=\operatorname{trace}(\operatorname{Hess} f)=\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}.$

Definition (Multidimensional Ito process)

Let $B_t = (B_1(t), \dots, B_m(t))'$ be an m dimensional Brownian motion and μ_t and σ_t be vector-valued and matrix-valued adapted processes respectively as

$$\mu_t = egin{bmatrix} \mu_1(t) \ dots \ \mu_n(t) \end{bmatrix}, \qquad \sigma_t = egin{bmatrix} \sigma_{11}(t) & \cdots & \sigma_{1m}(t) \ dots & \ddots & dots \ \sigma_{n1}(t) & \cdots & \sigma_{nm}(t) \end{bmatrix}.$$

An n dimensional Ito process $X_t = (X_1(t), \cdots, X_n(t))'$ is a process defined by the stochastic integrals with respect to the m dimensional Brownian motion B_t , for $i=1,\cdots,n$,

$$X_i(t) = X_i(0) + \int_0^t \mu_i(s)ds + \sum_{k=1}^m \int_0^t \sigma_{ik}(s)dB_k(s) \quad ext{ } \Longleftrightarrow \quad dX_i(t) = \mu_i(t)dt + \sum_{k=1}^m \sigma_{ik}(t)dB_k(t).$$

Or more concisely in matrix form

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s \quad ext{ } \Longleftrightarrow \quad dX_t = \mu_t dt + \sigma_t dB_t.$$

 μ_t is termed as the **drift vector** and σ_t the **diffusion matrix**.

Ito's formula for multidimensional Ito processes

Let $X_t=(X_1(t),\cdots,X_n(t))'$ be an n dimensional Ito process defined above. Let $f=f(t,x_1,\cdots,x_n)$ be a function of n+1 variables which is continuously differentiable in t and twice continuously differentiable in t and t are t and t and t and t and t are t and t and t and t are t and t are t and t and t are t and t and t are t are t and t are t and t are t and t are t are t and t are t and t are t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t are t are t and t are t are t and t are t are t are t are t and t are t

$$egin{aligned} f(T,X_T) - f(t,X_t) \ &= \int_t^T rac{\partial f}{\partial t}(s,X_s) ds + \int_t^T
abla f(s,X_s) \cdot dX_s + rac{1}{2} \sum_{i,j=1}^n \int_t^T rac{\partial^2 f}{\partial x_i \partial x_j}(s,X_s) d[X_i,X_j]_s \ &= \int_t^T \left[rac{\partial f}{\partial t} + \mu_t \cdot
abla f + rac{1}{2} \sum_{i,j=1}^n a_{ij}(t) rac{\partial^2 f}{\partial x_i \partial x_j}
ight] ds + \int_t^T
abla f \cdot \sigma_t dB_s, \end{aligned}$$

where $a_{ij}(t) = \sum_{k=1}^m \sigma_{ik}(t) \sigma_{jk}(t)$. Equivalently, in differential form

$$df =
abla f \cdot \sigma_t dB_t + \left[rac{\partial f}{\partial t} + \mu_t \cdot
abla f + rac{1}{2} \mathrm{trace}(A_t \mathrm{Hess}\, f)
ight] dt,$$

where

$$A_t = [a_{ij}(t)] = \sigma_t \sigma'_t$$
.

Corollary: Ito's product rule

Let X_t and Y_t , be Ito processes. Then

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + [X,Y]_t.$$

Or, in differential form

$$d(X_tY_t) = X_tdY_t + Y_tdX_t + d[X,Y]_t.$$

Proof: Apply Ito's formula for multidimensional Ito processes to f(t,x,y)=xy.

3.3 Recognizing a Brownian motion (dimension 1)

Somewhat surprising result:

Theorem (Levy's characterization of Brownian motion)

A continuous martingale M with $M_0=0$ and quadratic variation $[M]_t=t$ is a Brownian motion.

Sketch of proof:

• We have defined the stochastic integral wrt. Brownian motion. Exactly the same approach can be used to define the stochastic integral with respect to any martingale with continuous paths, $\int_0^t H_s \ dM_s$.

Moreover, the following analog of the Ito-Doeblin formula holds for functions f with continuous partial derivatives f_t , f_x and f_{xx} :

$$f(t,M_t) - f(0,M_0) = \int_0^t f_t(s,M_s) \, ds + \int_0^t f_x(s,M_s) \, dM_s + rac{1}{2} \int_0^t f_{xx}(s,M_s) \, d[M]_s.$$

In our case $[M]_t = t$, so the last integral is just a regular integral.

Taking expectations and using the fact that because M_t is a martingale, the stochastic integral $\int_0^t f_x(s,M_s) \, dM_s$ is a martingale as well, we get

$$E[f(t,M_t)] = f(0,M_0) + E\left[\int_0^t f_t(s,M_s)\,ds + rac{1}{2}\int_0^t f_{xx}(s,M_s)\,ds
ight]. \hspace{1cm} (1)$$

• We are given that $M_0=0$ and that M has continuous paths. All we need to check is that the increments are independent and normally distributed with the correct variance.

- We first show that $M_t \sim N(0,t).$ Fix a $u \in \mathbb{R}$ and define

$$f(t,x)=e^{ux-u^2t/2}.$$

Then we have

$$f_t(t,x) = -rac{1}{2}u^2f(t,x), \quad f_x(t,x) = uf(t,x), \quad f_{xx}(t,x) = u^2f(t,x),$$

and in particular

$$f_t(t,x)+rac{1}{2}f_{xx}(t,x)=0.$$

For this function f(t,x), the RHS of (1) is zero and (1) becomes

$$E[e^{uM_t-u^2t/2}]=f(0,0)=1.$$

Rewriting this formula, we get

$$E[e^{uM_t}]=e^{u^2t/2},$$

which is the MGF for an N(0,t) distributed r.v. Similarly, we can show that $M_t-M_s\sim N(0,t-s)$, $0\leq s\leq t$.

ullet We first show that $M_t \sim N(0,t).$ Fix a $u \in \mathbb{R}$ and define

$$f(t,x)=e^{ux-u^2t/2}.$$

Then we have

$$f_t(t,x) = -rac{1}{2}u^2f(t,x), \quad f_x(t,x) = uf(t,x), \quad f_{xx}(t,x) = u^2f(t,x),$$

and in particular

$$f_t(t,x)+rac{1}{2}f_{xx}(t,x)=0.$$

For this function f(t,x), the RHS of (1) is zero and (1) becomes

$$E[e^{uM_t-u^2t/2}]=f(0,0)=1.$$

Rewriting this formula, we get

$$E[e^{uM_t}] = e^{u^2t/2},$$

which is the MGF for an N(0,t) distributed r.v. Similarly, we can show that $M_t-M_s\sim N(0,t-s),\,0\leq s\leq t.$

• Finally we show the independence of increments. Assume that m=2 (number of points in the partition) and consider $M_{t_2}-M_{t_1}$ and $M_{t_1}-M_{t_0}$, $t_0=0$. The case of general m can be treated in exactly the same way. By repeated conditioning we get

$$egin{aligned} E\left(e^{u_2(M_{t_2}-M_{t_1})+u_1(M_{t_1}-M_{t_0})}
ight) &= E\left(E\left(e^{u_2(M_{t_2}-M_{t_1})+u_1(M_{t_1}-M_{t_0})}\mid\mathcal{F}_{t_1}
ight)
ight) \ &= E\left(e^{u_1(M_{t_1}-M_{t_0})}E\left(e^{u_2(M_{t_2}-M_{t_1})}\mid\mathcal{F}_{t_1}
ight)
ight) \ &= E\left(e^{u_1(M_{t_1}-M_{t_0})}e^{u_2^2(t_2-t_1)/2}
ight) \ &= e^{u_2^2(t_2-t_1)/2}e^{u_1^2(t_1-t_0)/2}. \end{aligned}$$

This implies that $M_{t_2}-M_{t_1}$ and $M_{t_1}-M_{t_0}$ are independent.

Example

Let f_t be an arbitrary random or non-random integrand that only takes values 1 and -1.

Then $I_t := \int_0^t f_s \, dB_s$, $t \ge 0$, is a Brownian motion.

Indeed I_t , $t\geq 0$, is a continuous martingale (by the properties of stochastic integrals) and $[I]_t=\int_0^t f_s^2\ ds=t$ for all $t\geq 0$.

3.4 Application: Covariance of stock prices driven by correlated Brownian motions

Let B be a two-dimensional Brownian motion and S_1 and S_2 satisfy the following system of SDEs:

$$egin{aligned} dS_1(t) &= lpha_1 S_1(t) \, dt + \sigma_1 S_1(t) \, dB_1(t) \ dS_2(t) &= lpha_2 S_2(t) \, dt + \sigma_2
ho S_2(t) \, dB_1(t) + \sigma_2 \sqrt{1-
ho^2} S_2(t) \, dB_2(t), \end{aligned}$$

where $lpha_i \in \mathbb{R}$, $\sigma_i > 0$, i = 1, 2, and $ho \in [-1, 1]$.

Correlation between $S_1(t)$ and $S_2(t)$

- If ho
 eq 0 then S_1 and S_2 are correlated, since dB_1 appears in both equations.
- Since S_1 is a geometric Brownian motion (GBM) and $S_1(t)=S_1(0)e^{(lpha_1-\sigma_1^2/2)t+\sigma_1B_1(t)}$.
- What kind of process is S_2 ?

Rewrite the equation for S_2 as

$$rac{dS_2(t)}{S_2(t)} = lpha_2\,dt + \sigma_2igg(\underbrace{
ho\,dB_1(t) + \sqrt{1-
ho^2}\,dB_2(t)}_{=:dB_3(t)}igg)$$

If we show that B_3 is a Brownian motion then we know that S_2 is a GBM and

$$S_2(t) = S_2(0) e^{(lpha_2 - \sigma_2^2/2)t + \sigma_2 B_3(t)}.$$

We shall use Levy's characterization of Brownian motion. We have

 $B_3(0) = 0$

• B_3 has continuous paths

lacksquare B_3 is a martingale (as a linear combination of martingales)

$$\bullet \ \ d[B_3]_t = \rho^2 d[B^1]_t + (1-\rho^2) d[B_2]_t + 2\rho \sqrt{1-\rho^2} \underbrace{d[B_1,B_2]_t}_{=0} = \rho^2 \, dt + (1-\rho^2) \, dt = dt.$$

We conclude that B_3 is a Brownian motion.

• Correlation between B_1 and B_3 : Observe that

$$\operatorname{Corr}(B_1(t),B_3(t)) = \frac{\operatorname{Cov}(B_1(t),B_3(t))}{t} = \rho,$$

so we can say that stock prices S_1 and S_2 are driven by two correlated Brownian motions, B_1 and B_3

 Correlation between the stock prices: Note that the SDEs (alternatively, the explicit formulas) imply that

$$E(S_i(t))=S_i(0)e^{lpha_i t}, \quad i=1,2.$$

We only need to compute $E(S_i(t)S_j(t))$. We shall deal with the case $i=1,\ j=2$ (when i=j we just need to set $\rho=1$).

By the Ito-Doeblin product rule,

$$egin{aligned} d(S_1(t)S_2(t)) &= S_1(t)\,dS_2(t) + S_2(t)\,dS_1(t) + d[S^1,S^2]_t \ &= S_1(t)S_2(t)(lpha_2\,dt + \sigma_2\,dB_3(t)) + S_1(t)S_2(t)(lpha_1\,dt + \sigma_1\,dB_1(t)) \ &+
ho\sigma_1\sigma_2S_1(t)S_2(t)\,dt \ &= (lpha_1 + lpha_2 +
ho\sigma_1\sigma_2)S_1(t)S_2(t)\,dt + S_1(t)S_2(t)(\sigma_2\,dB_t^3 + \sigma_1\,dB_1(t)). \end{aligned}$$

Integrating from 0 to t and taking the expectation we find that

$$E[S_1(t)S_2(t)] - S_1(0)S_2(0) = (lpha_1 + lpha_2 +
ho\sigma_1\sigma_2) \int_0^t E[S_1(u)S_2(u)] \, du.$$

Solving the above equation we get

$$egin{aligned} \operatorname{Cov}(S_1(t),S_2(t)) &= E[S_1(t)S_2(t)] - S_1(0)S_2(0)e^{(lpha_1+lpha_2)t} \ &= S_1(0)S_2(0)(e^{(lpha_1+lpha_2+
ho\sigma_1\sigma_2)t} - e^{(lpha_1+lpha_2)t}). \end{aligned}$$

From here we obtain

$$egin{split} ext{Corr}(S_1(t),S_2(t)) &= rac{S_1(0)S_2(0)e^{(lpha_1+lpha_2)t}(e^{
ho\sigma_1\sigma_2t}-1)}{S_1(0)e^{lpha_1t}\sqrt{e^{\sigma_1^2t}-1}S_2(0)\,e^{lpha_2t}\sqrt{e^{\sigma_2^2t}-1}} \ &= rac{e^{
ho\sigma_1\sigma_2t}-1}{\sqrt{e^{\sigma_1^2t}-1}\sqrt{e^{\sigma_2^2t}-1}}. \end{split}$$

3.5 Recognizing a Brownian motion (dimension 2)

Theorem (Levy's characterization of Brownian motion)

Let $M_i(t)$, $t\geq 0$, i=1,2, be continuous martingales. Assume that $M_0^i=0,\ [M_i]_t=t,\ t\geq 0$ (i=1,2), $[M_1,M_2]_t=0,\ t\geq 0$, a.s..

Then

$$M_t := \left[egin{array}{c} M_1(t) \ M_2(t) \end{array}
ight]$$

is a two-dimensional Brownian motion.

Sketch of proof:

- By the one dimensional theorem, each M_1 and M_2 are Brownian motions. We need to show that they are independent.
- Method: We shall show that for $0 \leq s \leq t$ the vector

$$\left(egin{array}{c} M_1(t)-M_1(s) \ M_2(t)-M_2(s) \end{array}
ight)$$

is independent of \mathcal{F}_s and is normally distributed with mean 0 and covariance matrix

$$\begin{pmatrix} t-s & 0 \\ 0 & t-s \end{pmatrix}.$$

This will imply that the joint distribution of increments of processes M_1 and M_2 is normal. Then the fact that the above covariance matrix is diagonal will imply the independence of the processes M_1 and M_2 .

• Since $M_i(t)$ is a Brownian motion,

$$E[e^{u_i(M_i(t)-M_i(s))}] = e^{u^2(t-s)/2}, \qquad i=1,2.$$

Therefore, it is sufficient to show that

$$E\left(e^{u_1(M_1(t)-M_1(s))+u_2(M_2(t)-M_2(s))}\,|\,\mathcal{F}_s
ight) = e^{u_1^2(t-s)/2+u_2^2(t-s)/2} \quad ext{for all } 0 \le s \le t.$$

This gives us an idea to try to show that the process

$$f(t,M_1(t),M_2(t))=e^{u_1M_1(t)+u_2M_2(t)-u_1^2t/2-u_2^2t/2},\quad t>0,$$

is a martingale. Then we would have $E(f(t,M_1(t),M_2(t))\,|\,\mathcal{F}_s)=Ef(s,M_1(s),M_2(s))$, and this would immediately imply (2).

- To compute $df(t,M_1(t),M_2(t))$ we calculate for $f(t,x,y)=e^{u_1x+u_2y-(u_1^2+u_2^2)t/2}$:

$$egin{aligned} f_t &= -rac{u_1^2 + u_2^2}{2} \, f & f_x &= u_1 f & f_y &= u_2 f \ f_{xy} &= u_1 u_2 f & f_{xx} &= u_1^2 f & f_{yy} &= u_2^2 f, \end{aligned}$$

and apply the Ito-Doeblin formula for martingales

$$egin{aligned} df(t,M_1(t),M_2(t)) &= -rac{u_1^2 + u_2^2}{2} \, f \, dt + u_1 f dM_1(t) + u_2 f \, dM_2(t) \ &+ rac{1}{2} \, u_1^2 f \underbrace{d[M_1]_t}_{=dt} + rac{1}{2} \, u_2^2 f \underbrace{d[M_2]_t}_{=dt} + u_1 u_2 f \underbrace{d[M_1,M_2]_t}_{=0}. \end{aligned}$$

All "dt" terms cancel out, and we are left only with stochastic integrals. Therefore $f(t,M^1(t),M^2(t))$ is a martingale.