

VEHICLE INSURANCE POLICY DATA MANAGEMENT SYSTEM

GROUP –14:

Presented by Yashasvi Sharma Vikas Sunkari

INTRODUCTION

A car insurance claim is a request for financial compensation that a driver files with an insurance company after their vehicle is damaged or they are injured in a car accident.

More than \$170 billion in auto insurance claims payments are made by U.S. insurance companies each year.

With over 284 million vehicles operating on roads in 2022 throughout the United States, there is a need for a robust vehicle's insurance database management system to be developed to retrieve information regarding the accident, vehicles involved and help customers with their policy and claim their deserved compensation from their opted insurance companies.

BUSINESS PROBLEM DEFINITION

We plan to develop a vehicle insurance policy management system. The platform will connect the Owner details, vehicle's details, Driver attributes, damage, Policy details, claim amount and settlement.

The platform will be a one-stop solution for customers making the insurance claiming and tracking process a hassle-free one.

We can keep track of accident history, claim amount awarded, number of claims honored helping in creating a reputation for the company and attracting prospective customers

EER DIAGRAM:

SQL Implementation

View for claim and settlements with the amount of time taken for settlement and the difference in settlement amount.

select c.claim_ID, c.date as Claim_Date, s.date as Settlement_Date, DATEDIFF(s.date, c.date) as Time_taken_for_Settlement, c.total_amount as Claim_Amt, s.final_amount as Settlement_Amt, c.total_amount-s.final_amount as Difference from claim c, settlement s where c.settlement_id = s.settlement_id and c.claim_ID = 40;

	daim_ID	Claim_Date	Settlement_Date	Time_taken_for_Settlement	Claim_Amt	Settlement_Amt	Difference
•	40	2022-03-01	2022-03-10	9	2100	1751	349

View for Popular Insurance companies state wise with maximum number of registered insurance vehicles.

SELECT V.STATE, IC.NAME, COUNT(I.INSURANCE_ID) AS NO_OF_INSURANCES

FROM INSURANCE I, INSURANCE_COMPANY IC, VEHICLE V

WHERE I.VEHICLE_REG_NO = V.REGISTRATION_NO

AND I.INSURANCE_COMP_ID = IC.COMPANY_ID

GROUP BY V.STATE

ORDER BY COUNT(I.INSURANCE_ID) DESC

LIMIT 10;

	STATE	NAME	NO_OF_INSURANCES
١	Florida	Harris, West and Hand	6
	Illinois	Wilderman-Anderson	4
	New York	Mertz, Berge and Kassulke	4
	California	West, Sawayn and Volkman	3
	Ohio	Smitham-Rippin	3
	Michigan	Mertz, Berge and Kassulke	3
	Colorado	West, Sawayn and Volkman	3
	North Carolina	Wilderman-Anderson	3
	Alabama	Lesch LLC	2
	Massachusetts	Lesch LLC	2

View of details of people and vehicle which do not have a settlement yet

SELECT C.CLAIM_ID, C.INSURANCE_ID, I.VEHICLE_REG_NO, P.FIRST_NAME, P.LAST_NAME, P.GENDER, P.PHONE

FROM CLAIM C, INSURANCE I, PERSON P, VEHICLE V

WHERE C.INSURANCE_ID = I.INSURANCE_ID

AND I.VEHICLE_REG_NO = V.REGISTRATION_NO

AND V.PERSON_ID = P.PERSON_ID

AND C.CLAIM_ID IN (

SELECT CLAIM_ID

FROM CLAIM

WHERE CLAIM_ID NOT IN(

SELECT CLAIM_ID

FROM CLAIM C, SETTLEMENT S

WHERE C.SETTLEMENT_ID = S.SETTLEMENT_ID

));

	CLAIM_ID	INSURANCE_ID	VEHICLE_REG_NO	FIRST_NAME	LAST_NAME	GENDER	PHONE
•	35	35	10034	Barb	Harker	Female	(942) 3542539
	37	38	10037	Carolyne	Ragge	Female	(158) 5726431
	39	39	10038	Schuyler	Bayles	Male	(670) 2094226
	44	44	10043	Larina	Larroway	Female	(851) 4546402
	48	48	10047	Ruthann	Hanvey	Female	(316) 2035705
	49	49	10048	Carolyne	Ragge	Female	(158) 5726431
	50	50	10049	NULL	Edelheid	Female	NULL

View for top 10 states with highest no. of registered car

SELECT STATE, COUNT(REGISTRATION_NO) AS NUMBER_OF_VEHICLES FROM VEHICLE GROUP BY STATE
ORDER BY COUNT(REGISTRATION_NO) DESC
LIMIT 10;

	STATE	NUMBER_OF_VEHICLES
•	Florida	6
	Illinois	4
	New York	4
	California	3
	Ohio	3
	Michigan	3
	Colorado	3
	North Carolina	3
	Alabama	2
	Massachusetts	2

NoSQL Implementation MongoDB Query using MongoDB Compass

Details of settlement greater than 5000 USD

```
db.settlement.aggregate(
    $match: {
      final amount: {
        $gte: 5000,
      },
    },
  },
    $project: {
      id: 0,
    },
    }, {$limit:5}
```

```
DATE: '2021-07-24',
final amount: 7266,
DATE: '2021-03-22',
account no: '9006394858' }
DATE: '2022-04-08',
account no: '9742519536' }
DATE: '2021-10-03',
final amount: 9639,
account_no: '1028165013' }
DATE: '2021-03-10',
final amount: 8127,
account no: '7893880414' }
```

Details of people from vehicle registration no 10036

```
db.vehicle.aggregate([{
         $match: {
             registration no: "10036",
         $lookup: {
             from: "person",
             localField: "person id",
             foreignField: "person ID",
             as: "Person_Name",
         $project: {
             id: 0,
             registration no: 1,
             Person_Name: 1,
             state: 1,
             brand: 1,
             model: 1,
```

Visualizations using Python-MySQL Connection

Code for connecting MySQL to Python

pip install mysql-connector-python import mysql.connector as connection import pandas as pd import mysql.connector import matplotlib.pyplot as plt

mydb = connection.connect(host="localhost", database = 'db_insurance',user="root", passwd="root",use_pure=True)

Code for creating bar plot

```
query = "select year(date),count(accident_id) from
accident group by year(date);"
result_df = pd.read_sql(query,mydb)
result_df.set_index("year(date)", inplace = True)
plt.figure(figsize=(8, 6))
result_df.plot(kind="bar")
plt.xlabel("Year")
plt.ylabel("No_Of_Accidents")
plt.title("Accidents Information")
plt.show()
```


Code for creating grouped bar plot

query = "select year(c.date) as Year, count(c.claim_id) as Claim, count(s.settlement_id) as Settlement from claim c left join settlement s on c.settlement_id = s.settlement_id group by year(c.date) order by year(c.date);"
result_df = pd.read_sql(query,mydb)
result_df.set_index("Year", inplace = True)
result_df.plot(kind="bar")
plt.xlabel("Year")
plt.ylabel("Total Numbers")
plt.title("Claims vs Settlement Information")
plt.show()

Code for creating pie-chart

```
query = "select p.gender, count(person_id) as count
from person p, driver d where p.person_id = d.driver_id
group by p.gender;"
result_df = pd.read_sql(query,mydb)
myexplode = (0, 0.1)
sizes = plt.pie(result_df['count'], labels =
result_df['gender'], startangle = 90, explode =
myexplode)
plt.title("Female vs Male Drivers")
plt.show()
```


FUTURE SCOPE

- Accident data can be used to implement safety alerting systems on roads and support the advancement in road transportation infrastructure.
- At high level this model can be improved to send alerts about when the Insurance policy is about to expire

Thank You!!