Examen d'Analyse Numérique

1ère année ISIMA

V. Barra, J. Koko et Ph. Mahey

22 novembre 2005

Durée : 2heures

Documents autorisés : cours, TD et TP de l'année.

Exercice 1 Calcul de l'inverse d'une matrice et conditionnement

Soit $\|.\|$ une norme matricielle, A une matrice carrée inversible de rang n. On cherche à évaluer la précision de calcul de A^{-1} .

On suppose que l'on a calculé B, approximation (pour cause de troncature numérique par exemple) de A^{-1} . On pose:

$$e_1 = \frac{\|B - A^{-1}\|}{\|A^{-1}\|} \quad e_2 = \frac{\|B^{-1} - A\|}{\|A\|} \quad e_3 = \|AB - I\| \quad e_4 = \|BA - I\|$$

1. Expliquer en quoi les e_i , $1 \le i \le 4$ mesurent la qualité de B.

On suppose $B = A^{-1} + E$, avec $||E|| \le \epsilon ||A^{-1}||$ et $\epsilon \sigma_A < 1$

- 2. Montrer que $e_1 \leq \epsilon$
- 3. Montrer que $(A^{-1} + E)^{-1} A = -(I + AE)^{-1}AEA$.

En déduire $e_2 \leq \frac{\epsilon \sigma_A}{1 - \epsilon \sigma_A}$ Indication : on admettra le résultat suivant : $Si \parallel . \parallel$ est une norme matricielle subordonnée, E une matrice telle que ||E|| < 1 alors :

- -I+E est inversible (déjà connu, théorème du cours)
- $-\|(I+E)^{-1}\| \le \frac{1}{1-\|E\|}$
- 4. Montrer que $e_3 \leq \epsilon \sigma_A$ et que $e_4 \leq \epsilon \sigma_A$
- 5. On suppose maintenant que A n'est connue qu'à une certaine matrice d'erreur près, notée δA .
 - a- Montrer que $A + \delta A$ est inversible si $\|\delta A\| < \frac{1}{\|A^{-1}\|}$
 - b- montrer que si $A + \delta A$ est inversible alors

$$\frac{\|(A+\delta A)^{-1} - A^{-1}\|}{\|(A+\delta A)^{-1}\|} \le \sigma_A \frac{\|\delta A\|}{\|A\|}$$

Exercice 2 En théorie des graphes, la matrice d'incidence est la matrice dont les lignes sont les sommets et les colonnes, les arcs du graphes. Plus précisément, soit un graphe $\mathcal{G}=(X,U)$ orienté, où X (avec |X|=n) est l'ensemble des sommets et U (avec |U|=m) l'ensemble des arcs; alors la matrice d'incidence est la matrice A $(n \times m)$ dont la colonne u (u=(i,j), $u \in U$; $i,j \in X$) satisfait

$$a_{su} = \begin{cases} +1 & \text{si } s = i, \\ -1 & \text{si } s = j, \\ 0 & \text{sinon} \end{cases}$$

a) Construire la matrice d'incidence A du graphe suivant

Former la matrice (3×3) A^TA et déterminer la factorisation $A^TA = LDL^T$ où L est une matrice triangulaire inférieure avec des 1 sur la diagonale et D une matrice diagonale.

- b) Orthonormaliser les colonnes de A par la méthode de Gram-Schmidt (soit Q la matrice des colonnes orthonormées obtenue). Montrer que les pivots obtenus dans la factorisation de A^TA s'expriment en fonction des vecteurs colonnes de A et de Q. Exprimer la matrice triangulaire R issue de l'orthonormalisation de Gram-Schmidt en fonction de D et L.
- c) On rajoute l'arc (4,1) au graphe précédent. Compléter la factorisation QR de la nouvelle matrice A' obtenue. Qu'observez-vous?

Exercice 3 On se donne

$$A_1 = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{et } b = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

- a) Mettre A_1 sous la forme Q_1R_1 où Q_1 est une matrice 4×2 de colonnes orthonormées et R_1 une matrice 2×2 rectangulaire supérieure.
 - b) Calculer la solution aux moindres carrés du système

$$A_1x_1 = b$$

et l'erreur e_1 correspondante.

c) On rajoute la colonne $a_3 = [1 \ 0 \ 1 \ 4]^T$ à la matrice A_1 pour avoir $A_2 = [A_1 \ a_3]$. Mettre A_2 sous la forme Q_2R_2 et calculer la solution aux moindres carrés du système

$$A_2x_2 = b$$

Calculer l'erreur e_2 correspondante et vérifier que $e_2 \leq e_1$.