» Polyak Momentum/Heavy Ball

$$egin{aligned} \mathbf{x}_0 &= \mathbf{x}0; \mathbf{z}_0 &= 0; \mathbf{t} &= 0 \ & ext{for } \mathbf{k} ext{ in range(num_iters):} \ & \mathbf{z}_{t+1} &= eta \mathbf{z}_t + lpha
abla f(\mathbf{x}_t) \ & \mathbf{x}_{t+1} &= \mathbf{x}_t - \mathbf{z}_{t+1} \ & \mathbf{t} &= \mathbf{t} + 1 \end{aligned}$$

* Step z_t at iteration t is weighted sum of past gradients $\alpha \nabla f$:

$$\mathbf{z}_{t+1} = \beta^{t-1} \alpha \nabla f(\mathbf{x}_0) + \beta^{t-2} \alpha \nabla f(\mathbf{x}_1) + \dots + \alpha \nabla f(\mathbf{x}_t)$$

- * Need to manually select β and α . A typical choice for β seems to be 0.9, but there is not a universal value and a poor choice can make performance worse than using constant step size
- * When $\beta = 0$ recover constant step size strategy
- * Since $1+\beta+\beta^2+\cdots=1/(1-\beta)$, we're effectively using scaling baseline step size $\alpha/(1-\beta)$ i.e. for $\beta=0.9$ using 10α

» Nesterov Momentum/Acceleration

* Nesterov Accelerated Gradient (NAG) Method, Nesterov Fast Gradient Method, Nesterov Momentum:

$$\mathbf{z}_{t+1} = \beta \mathbf{z}_t - \alpha \nabla f(\mathbf{x}_t + \beta \mathbf{z}_t), \ \mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{z}_{t+1}$$

- * For comparison, heavy-ball momentum uses:
 - $z_{t+1} = \beta z_t + \alpha \nabla f(x_t)$, $x_{t+1} = x_t z_{t+1}$ \rightarrow substantive difference is that Nesterov changes $\nabla f(x_t)$ to $\nabla f(x_t + \beta z_t)$.
- * If $\alpha \approx 0$ then $z_{t+1} \approx \beta z_t$ and $x_{t+1} = x_t + z_{t+1} \approx x_t + \beta z_t$, so $\nabla f(x_t + \beta z_t)$ is "looking ahead" or predicting where x_t is roughly expected to be at next step.
- * Need to manually select β and α . A typical choice for β is (t-1)/(t+2) i.e. β changes at each time step with $\beta \to 1$ as $t \to \infty$. Sometimes cap β at e.g. 0.9 or 0.95
- * Nesterov acceleration comes with some theoretical guarantees on convergence rate \to will come back to how useful such guarantees are in practice later

- * Example: $f = x^2$, starting point x = 1
- $\overline{*}$ Nesterov $\beta=(t-1)/(t+2)$, $\alpha=0.1$, constant $\alpha=0.1$

* Again, "bumpy" behaviour of function value vs time when using momentum. Nesterov convergence rate about the same as for constant step size, but can increase step size. Nesterov $\alpha=0.6$, constant $\alpha=0.95$:

* Quadratic: Nesterov $\beta=(t-1)/(t+2),\,\alpha=0.1$, constant $\alpha=0.1$

* Quadratic Loss: Nesterov $\beta=(t-1)/(t+2),\,\alpha=0.5$, constant $\alpha=0.5$

Nesterov convergence rate similar to Polyak

* Rosenbrock function: Nesterov $\beta=(t-1)/(t+2),$ $\alpha=0.001$, constant $\alpha=0.002$

* Toy neural net loss: Nesterov $\beta=(t-1)/(t+2)$, $\alpha=0.5$, constant $\alpha=0.75$

For Rosenbrock function Nesterov convergence rate similar to Polyak, initially slower for toy neural net then faster

- * Non-smooth function $f(x) = |x_1| + x_2^2$
- * Nesterov $\beta = (t-1)/(t+2)$, $\alpha = 0.005$, constant $\alpha = 0.005$

* Nesterov $\beta = (t-1)/(t+2)$, $\alpha = 0.001$, constant $\alpha = 0.005$

st Can tweak lpha to improve Nesterov, but shows oscillations/chattering after initial fast convergence

* Two differences:

*
$$\nabla f(x_t)$$
 vs $\nabla f(x_t + \beta z_t)$
* $\beta = 0.9$ vs $\beta = (t-1)/(t+2)$

- * Which matters (or do both matter)?
- * Using $\beta=(t-1)/(t+2)$ in both Heavy Ball and Nesterov approaches it turns out that the performance of the two approaches is v similar, let's look at some examples ...

* Quadratic: Nesterov/HB $\beta=(t-1)/(t+2)$, $\alpha=0.1$

st Quadratic Loss: Nesterov/HB $eta=(extbf{\emph{t}}-1)/(extbf{\emph{t}}+2)$, lpha=0.5

st Rosenbrock function: Nesterov/HB eta=(t-1)/(t+2), lpha=0.001

st Toy neural net loss: Nesterov/HB eta=(t-1)/(t+2), lpha=0.75

- * Non-smooth function $f(x) = |x_1| + x_2^2$
- * Nesterov/HB eta=(t-1)/(t+2), lpha=0.005

» What is $\beta = (t-1)/(t+2)$ schedule doing?

- st Initially eta is 0, then increases over time towards 1.
- * When $\beta=0$ the update reverts to constant step size strategy, as β increases we start to use more "momentum" when choosing the change to x.
- * Can choose to cap maximum value of β e.g. $\beta = min((t-1)/(t+2), 0.95)$

» Adam¹

∗ Adam ≈ RMSprop + heavy ball

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla f(x_t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \left[\frac{\partial f}{\partial x_1} (x_t)^2, \frac{\partial f}{\partial x_2} (x_t)^2, \dots, \frac{\partial f}{\partial x_n} (x_t)^2 \right]$$

$$\hat{m} = \frac{m_{t+1}}{(1 - \beta_1^t)}, \ \hat{v} = \frac{v_{t+1}}{(1 - \beta_2^t)}$$

$$x_{t+1} = x_t - \alpha \left[\frac{\hat{m}_1}{\sqrt{\hat{v}_1} + \epsilon}, \frac{\hat{m}_2}{\sqrt{\hat{v}_2} + \epsilon}, \dots, \frac{\hat{m}_n}{\sqrt{\hat{v}_n} + \epsilon} \right]$$

with
$$\nabla f(x_t) = \left[\frac{\partial f}{\partial x_1}(x_t), \frac{\partial f}{\partial x_2}(x_t), \dots, \frac{\partial f}{\partial x_n}(x_t)\right]$$

- * m is running average of gradient $\nabla f(x_t)$, ν is running average of square gradients
- * Use different step size for each element of vector *x* (similarly to Adagrad and RMSprop)
- * Step for *i*'th element of x is $\frac{\hat{m}}{\sqrt{\hat{\nu}_i + \epsilon}} \to \hat{m}$ is as in heavy-ball approach, $\frac{\sqrt{\hat{\nu}_i}}{\sqrt{\hat{\nu}_i}}$ as in RMSprop, ϵ is to avoid division by zero.
- * Need to manually select β_1 , β_2 , α . Common choices $\beta_1 = 0.9$, $\beta_2 = 0.999$ (suggested by https://arxiv.org/abs/1412.6980).

¹https://arxiv.org/abs/1412.6980

- * Example: $f = x^2$, starting point x = 1
- * Adam $\beta_1=0.9, \beta_2=0.999, \alpha=0.1$, constant step $\alpha=0.1$

st Adam $eta_1=0.25, eta_2=0.999$, lpha=0.1, constant step lpha=0.1

- Observe the "bumpy" behaviour of function value vs time when using momentum.
- * Choice of β_1 matters, default choice $\beta_1=0.9$ is poor in this example

- * Example: $f = x^2$, starting point x = 1
- * Adam $\beta_1 = 0.25, \beta_2 = 0.999, \alpha = 0.1$, constant step $\alpha = 0.1$

* Can increase lpha: Adam lpha=0.5, constant step lpha=0.95

- * For constant step size, $\alpha_0 > 1$ gives divergent solution, and very oscillatory solutions for $\alpha_0 > 0.9$.
- * With Adam can use larger step size without destabilising solution

* Quadratic: Adam $\beta_1=0.9, \beta_2=0.999, \, \alpha=0.1$, constant step $\alpha=0.1$

* Decrease β_1 , increase α : Adam $\beta_1=0.25, \beta_2=0.999, \,\alpha=0.5$ (increasing α causes solution to diverge),, constant step $\alpha=0.1$

* Quadratic Loss: Adam $eta_1=0.9, eta_2=0.999$, lpha=0.5, constant step lpha=0.5

* Decrease β_1 , increase α : Adam $\beta_1=0.25, \beta_2=0.999, \,\alpha=2$ (increasing α causes solution to diverge),, constant step $\alpha=0.5$

Rosenbrock function: Adam $eta_1=0.9, eta_2=0.999, \, lpha=0.25$ (increasing lpha causes solution to diverge), constant step lpha=0.002

* Toy neural net loss: Adam $\beta_1=0.9, \beta_2=0.999, \, \alpha=0.5,$ constant step $\alpha=0.5$

 Adam convergence rate similar to Polyak for Rosenbrock function, faster for toy neural net.

- * Non-smooth function $f(x) = |x_1| + x_2^2$
- * Adam $\beta_1 = 0.9, \beta_2 = 0.999, \, \alpha = 0.001, \, \text{constant step } \alpha = 0.005$

- * Adam oscillations/chattering after initial fast convergence
- * Note: Adam α here is smaller than for constant step size (increasing Adam α increase oscillations and slows convergence)

» Summary

- * When use $\beta=(t-1)/(t+2)$ schedule, Heavy Ball and Nesterov momentum approaches are pretty similar in our examples
- * Nesterov/Heavy Ball can accelerate convergence, but still need to tune lpha.
- * Adam \approx RMSpop + Heavy Ball. Can accelerate convergence but need to tune β_1 and α (suggest default values are *not* universal).