លំហាត់ QCM ត្រៅមប្រឡងចូរសាលាតិចណូ

រៀបរៀងដោយ៖ ស៊ុំ សំអុន

រៀនគណិតវិទ្យាទាំងអស់គ្នា

២៨ មិថុនា ២០១៩

សេចក្តីផ្តើម

សេចក្តីផ្តើម

សុមស្វាគមន៍!

លំហាត់ទី ១

គេឲ្យ ${
m E}$ ជាសំណុំប្លសទាំងអស់នៃសមីការ ${
m x}^2+5{
m x}+6=0$ ។

$$\hbar E = \{-2\}$$

គឺ
$$E = \{3, 2\}$$

$$arr E = \{-3, -2\}$$

$$E = \{-3\}$$

$$\mathbf{W} = \{3, -2\}$$

លំហាត់ទី ១

គេឲ្យ ${
m E}$ ជាសំណុំប្លសទាំងអស់នៃសមីការ ${
m x}^2+5{
m x}+6=0$ ។

$$\hbar E = \{-2\}$$

គ
$$E = \{3, 2\}$$

$$bar{1} E = \{-3, -2\}$$

$$E = \{-3\}$$

$$\mathbf{W} = \{3, -2\}$$

ಆಟ್ಟೆಟ

លំហាត់ទី ១

គេឲ្យ ${
m E}$ ជាសំណុំប្លសទាំងអស់នៃសមីការ ${
m x}^2+5{
m x}+6=0$ ។

$$\vec{n} \ E = \{-2\}$$
 $\vec{n} \ E = \{3, 2\}$ $\vec{v} \ E = \{3, -2\}$

ខម្លើយ

តាម Vieta's Theorem គេមាន $X^2-SX+P=0$ ដែល α និង β ជាប្ញសនៃ សមីការនេះ គេបាន $\alpha+\beta=S$ និង $\alpha\cdot\beta=P$ ដើម្បី ឲ្យបានសមីការមានទម្រង់ $x^2+5x+6=0$ លុះត្រាតែ ផលបុកប្ញស $\alpha+\beta=-5$ និង $\alpha\cdot\beta=6$ \therefore **១៤៤៤** ង

 $bar{1} E = \{-3, -2\}$

លំហាត់ទី ១

គេឲ្យ ${
m E}$ ជាសំណុំប្លសទាំងអស់នៃសមីការ ${
m x}^2+5{
m x}+6=0$ ។

೮ಽಕ್ಷೆಆ

តាម Vieta's Theorem គេមាន $X^2-SX+P=0$ ដែល α និង β ជាប្ញសនៃ សមីការនេះ គេបាន $\alpha+\beta=S$ និង $\alpha\cdot\beta=P$ ដើម្បី ឲ្យបានសមីការមានទម្រង់ $x^2+5x+6=0$ លុះត្រាតែ ផលបុកប្ញស $\alpha+\beta=-5$ និង $\alpha\cdot\beta=6$ \therefore **១៤៤៤** ង

សម្ភាល់ យើងអាចដោះស្រាយតាមវីធីផ្សេងទៀតក៏បាន តែខ្លះអាចនឹងចំណុយពេលច្រើន

 $bar{1} E = \{-3, -2\}$

លំហាតប្រឡងចូរអ្យងថ្នាក់វិស្វករ

លំហាត់ទី ២

សំណុំ I នៃប្ញសទាំងអស់របស់វិសមីការ $2^{2x}-4\geq 0$ គឺ

$$\begin{array}{ll} \mathbf{\tilde{h}} \ \ \mathrm{I} = (-\infty;1) & \qquad \mathbf{\tilde{h}} \ \ \mathrm{I} = (1;\infty) \\ \mathbf{\tilde{2}} \ \ \mathrm{I} = [1;+\infty) & \qquad \mathbf{\tilde{W}} \ \ \mathrm{I} = (-\infty;1) \end{array}$$

គ $I=(1,\infty)$ ង ចម្លើយផ្សេង ប $I=(-\infty;1]$

លំហាត់ប្រឡងចូរអ្យងថ្នាក់វិស្វករ

លំហាត់ទី ២

សំណុំ I នៃឬសទាំងអស់របស់វិសមីការ $2^{2x}-4\geq 0$ គឺ

$$\begin{array}{ll} \mathbf{\tilde{h}} \ \ \mathrm{I} = (-\infty;1) & \qquad \mathbf{\tilde{h}} \ \ \mathrm{I} = (1;\infty) \\ \mathbf{\tilde{2}} \ \ \mathrm{I} = [1;+\infty) & \qquad \mathbf{\tilde{w}} \ \ \mathrm{I} = (-\infty;1) \end{array}$$

 $W I = (-\infty; 1]$

ខម្លើយ

ង ចម្លើយផ្សេង

លំហាត់ទី ២

សំណុំ I នៃប្ញសទាំងអស់របស់វិសមីការ $2^{2x}-4\geq 0$ គឺ

គឺ
$$I = (1; \infty)$$

ង ចម្លើយផ្សេង

$$I = [1; +\infty)$$

$$\mathbf{W} I = (-\infty; 1]$$

ೞಣ್ಣಿಟ

គេមាន $2^{2x} - 4 \ge 0$ នោះ

$$2^{2x} \ge 2^2$$

$$\Leftrightarrow 2x \ge 2$$

$$\Rightarrow x \ge 1$$

∴ ಅಣ್ಣಿಆ ಬ

អាំងតេក្រាលកំណត់

លំហាត់ទី ៣

- ក ការសរសេរជាភាសាខ្មែរ
- **ខ** ការសរសេរជាភាសាខ្មែរ $\int_0^3 \frac{2x}{x^2 + 1} dx$

តន្តនិទ្ទេស