Praštevila in njihove lastnosti

Sara Bizjak

Fakulteta za matematiko in fiziko Oddelek za matematiko

April 2018

- Odprta vprašanja
- Velika praštevila
- Eratostenovo rešeto

Definicija

Praštevilo je naravno število n > 1, če število n delita le števili 1 in n.

Izrek (Osnovni izrek aritmetike)

Vsako naravno število lahko na natanko en način zapišemo kot produkt samih praštevil. Takemu zapisu pravimo tudi razcep števila na prafaktorje.

Definicija

Naj bo gcd(a,b) največji skupni delitelj števil a in b, torej

$$gcd(a,b) = max\{d \in \mathbb{N} : d|a \text{ in } d|b\},\$$

razen če sta a in b oba 0-tedaj velja gcd(0,0) = 0.

Zgled

- -gcd(1,2) = 1
- -gcd(5,15) = 5
- -gcd(6,27) = 3

Zgled

S pomočjo faktorizacije izračunajmo gcd(2261,1275).

Motivacija: Naj bosta $a, b \in \mathbb{Z}$, tako da $0 \le r < |b|$ in a = bq + r. To nas pripelje do Evklidovega algoritma.

Zgled

Izračunajmo gcd(2261,1275) še s pomočjo Evklidovega algoritma.

Lema

 $Za\ a,b,n\in\mathbb{Z}\ velja:$

$$gcd(an, bn) = gcd(a, b) \cdot |n|$$

Lema

Naj bodo $a, b, n \in \mathbb{Z}$ in naj n|a in n|b. Tedaj n|gcd(a,b).

Izrek

Naj bo $p \in \mathbb{P}$ in $a, b \in \mathbb{N}$. Če p|ab, potem p|a ali p|b.

- Ključ pri dokazu osnovnega izreka aritmetike.

DOKAZ OSNOVNEGA IZREKA ARITMETIKE

Motivacija:

$$3 = 2 + 1$$

$$7 = 2 \cdot 3 + 1$$

$$31 = 2 \cdot 3 \cdot 5 + 1$$

$$211 = 2 \cdot 3 \cdot 5 \cdot 7 + 1$$

$$2311 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 + 1$$

Trditev

Obstaja neskončno mnogo praštevil.

Dokazi: Evklidov, Euler, Polyajev, Kummer,...

- Smiselno vprašanje o največjih praštevilih.
- Največje poznano praštevilo je $2^{74207281}-1$ in ima več kot 22 milijonov mest.

Praštevila oblike ax + b

- Zapišimo prvih nekaj števil oblike 4x - 1.

Izrek

Obstaja neskončno praštevil oblike 4x - 1.

Izrek

Naj bosta a in b taki celi števili, da gcd(a,b) = 1. Tedaj obstaja neskončno mnogo praštevil oblike ax + b.

- Gostota praštevil v naravnih številih
- $-\pi(x) = \#\{p \in \mathbb{N} : p \le x, \text{ kjer } p \in \mathbb{P}\}\$

Izrek

Funkcija $\pi(x)$ je asimptotična funkciji $\frac{x}{\log(x)}$, tako da

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log(x)}} = 1.$$

X	$\pi(x)$	$\frac{x}{\log(x)-1}$ (aproksimacija)
1000	168	169,2690290604408165786256278
2000	303	302,9888734545463878029800994
3000	430	428,1819317975237043747385740
4000	550	548,3922097278253264133400985
5000	669	665,1418784486502172369455815
6000	783	779,2698885854778626863677374
7000	900	891,3035657223339974352567759
8000	1007	1001,602962794770080754784281
9000	1117	1110,428422963188172310675011
10000	1229	1217,976301461550279200775705

Tabela: Primerjava $\pi(x)$ in $\frac{x}{\log(x)-1}$

- Največja znana praštevila nekoč in danes
- Praštevilski dvojčki
- Kriptografija