Analisi Funzionale

Aggiunto e spettro in spazi di Hilbert

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Aggiunto di un operatore limitato

Prop. Siano H_1, H_2 spazi di Hilbert su \mathbb{F} . Per ogni $A \in \mathcal{B}(H_1, H_2)$ esiste un unico $B \in \mathcal{B}(H_2, H_1)$ tale che

$$\langle Ax,y\rangle_{H_2}=\langle x,By\rangle_{H_1} \qquad \forall x\in H_1,\ y\in H_2,$$
e si ha $\|A\|_{op}=\|B\|_{op}.$ (†)

Def. Siano H_1, H_2 spazi di Hilbert su \mathbb{F} . Per ogni $A \in \mathcal{B}(H_1, H_2)$, l'unico operatore $B \in \mathcal{B}(H_2, H_1)$ che soddisfa (†) è detto *aggiunto* dell'operatore A e si denota con A^* .

Oss. Se $H_1 = \mathbb{F}^n$ e $H_2 = \mathbb{F}^m$ con il prodotto scalare euclideo, possiamo identificare $\mathcal{B}(H_1,H_2)$ e $\mathcal{B}(H_2,H_1)$ con gli spazi di matrici $\mathbb{F}^{m\times n}$ e $\mathbb{F}^{n\times m}$. Allora la matrice associata all'operatore aggiunto A^* è la trasposta coniugata della matrice associata all'operatore A. Questo è vero più in generale per spazi di Hilbert H_1 e H_2 di dimensione finita, ove le matrici siano relative a basi ortonormali.

Esempi di aggiunti di operatori limitati

- 1. Se H è uno spazio di Hilbert, si ha $id_H^* = id_H$.
- 2. Sia $H = \ell^2$. Sia $S : \ell^2 \to \ell^2$ l'operatore di *shift verso sinistra*:

$$S(x_0, x_1, x_2, x_3, \dots) = (x_1, x_2, x_3, \dots) \quad \forall \underline{x} = (x_k)_{k \in \mathbb{N}} \in \ell^2;$$

Allora

$$S^*(x_0,x_1,x_2,\dots)=(0,x_0,x_1,x_2,\dots) \qquad \forall \underline{x}=(x_k)_{k\in\mathbb{N}}\in\ell^2,$$

cioè S^* è l'operatore di *shift verso destra con aggiunta di zero*.

- 3. Sia $D_{\underline{w}}\in \mathcal{B}(\ell^2)$ l'operatore di moltiplicazione per $\underline{w}\in \ell^\infty$. Allora $D_w^*=D_{\overline{w}},$
 - ove $\overline{\underline{w}} = (\overline{w_k})_{k \in \mathbb{N}}$ è il coniugato componente per componente di \underline{w} .
- 4. Siano $[a,b],[c,d]\subseteq\mathbb{R}$. Sia $T_K\in\mathcal{B}(L^2(c,d),L^2(a,b))$ l'operatore integrale con nucleo integrale $K\in L^2((a,b)\times(c,d))$. Allora

$$T_K^* = T_{K^*},$$

ove

$$K^*(y,x) = \overline{K(x,y)}$$
 $\forall x \in [a,b], y \in [c,d].$

Proprietà dell'aggiunto

Prop. Siano H_1, H_2, H_3 spazi di Hilbert.

- (i) Se $A \in \mathcal{B}(H_1, H_2)$, allora $A^{**} = A$ $(A \mapsto A^* \text{ è involutiva}).$ (ii) Se $A, B \in \mathcal{B}(H_1, H_2)$ e $\alpha, \beta \in \mathbb{F}$, allora $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$
- $(A \mapsto A^* \ \text{è antilineare}).$
- (iii) Se $A \in \mathcal{B}(H_1, H_2)$ e $B \in \mathcal{B}(H_2, H_3)$, allora $(BA)^* = A^*B^*$ $(A \mapsto A^* \ e \ antimoltiplicativa).$ (iv) Se $A \in \mathcal{B}(H_1, H_2)$, allora $||A^*A||_{op} = ||A||_{op}^2$ (condizione C*).
- (v) Se $A \in \mathcal{B}(H_1, H_2)$ è un isomorfismo, allora anche $A^* \in \mathcal{B}(H_2, H_1)$ lo è, e inoltre $(A^*)^{-1} = (A^{-1})^*$. (vi) Se $A \in \mathcal{B}(H_1, H_2)$, allora $\operatorname{Ker}(A^*) = (\operatorname{Im} A)^{\perp} \operatorname{e} \operatorname{\overline{Im}} \overline{A} = \operatorname{Ker}(A^*)^{\perp}$. Di
- conseguenza, si ha la decomposizione ortogonale $H_2 = \operatorname{Ker}(A^*) \oplus \operatorname{Im} A$.
- (vii) Sia $A \in \mathcal{B}(H_1)$ e sia $V \subseteq H_1$ un sottospazio vettoriale chiuso invariante per A e A*, cioè $A(V) \subseteq V$ e $A^*(V) \subseteq V$. Allora $(A|_{V})^{*} = A^{*}|_{V}$

dove $A|_{V}$, $A^{*}|_{V} \in \mathcal{B}(V)$ sono le restrizioni di A e A^{*} a V, pensato come spazio di Hilbert con il prodotto scalare indotto da H_1 .

Proprietà dell'aggiunto - 2

Coroll. Siano H_1, H_2 spazi di Hilbert. La mappa $A \mapsto A^*$ è un anti-isomorfismo isometrico da $\mathcal{B}(H_1, H_2)$ a $\mathcal{B}(H_2, H_1)$.

Coroll. (criterio di invertibilità in spazi di Hilbert)

Siano H_1, H_2 spazi di Hilbert. Sia $T \in \mathcal{B}(H_1, H_2)$. Allora T è un isomorfismo se e solo se valgono entrambe le seguenti proprietà:

- (a) $Ker(T^*) = \{0\}$ (l'aggiunto T^* è iniettivo);
- (b) esiste $C \in (0, \infty)$ tale che

$$||x||_{H_1} \le C||Tx||_{H_2} \qquad \forall x \in H_1$$

(T è coercivo in norma).

Operatori autoaggiunti, unitari e normali

Utilizzando la nozione di aggiunto possiamo descrivere alcune classi di operatori su spazi di Hilbert.

Def. Sia H uno spazio di Hilbert. Un operatore $T \in \mathcal{B}(H)$ si dice:

- (a) autoaggiunto, se $T^* = T$ (T è uguale al suo aggiunto);
- (b) normale, se $T^*T = TT^*$ (T commuta con il suo aggiunto);
- (c) unitario, se $T^*T = TT^* = id_H$ (l'aggiunto è l'inverso di T).

Def. Siano H_1, H_2 spazi di Hilbert. Un operatore $T \in \mathcal{B}(H_1, H_2)$ si dice *unitario* se $T^*T = \mathrm{id}_{H_1}$ e $TT^* = \mathrm{id}_{H_2}$.

Oss. Per un operatore $T \in \mathcal{B}(H)$ su uno spazio di Hilbert H, valgono le implicazioni

T autoaggiunto \implies T normale \iff T unitario.

Le implicazioni opposte in generale non valgono.

Esempi di operatori autoaggiunti, unitari e normali

- 1. Sia $S \in \mathcal{B}(\ell^2)$ l'operatore di shift verso sinistra. Allora $SS^* = \mathrm{id}_{\ell^2} \neq S^*S,$ dunque S non è un operatore normale (quindi nemmeno autoaggiunto o unitario).
- 2. Se $\underline{w} = (w_k)_{k \in \mathbb{N}} \in \ell^{\infty}$, l'operatore di moltiplicazione D_w è:
 - sempre un operatore normale;
 - ▶ autoaggiunto se e solo se <u>w</u> è a valori reali;
 - unitario se e solo se $|w_k| = 1$ per ogni $k \in \mathbb{N}$.
- 3. Se H_1, H_2 sono spazi di Hilbert e $T \in \mathcal{B}(H_1, H_2)$, allora $(T^*T)^* = T^*T^{**} = T^*T$, dunque $T^*T \in \mathcal{B}(H_1)$ è autoaggiunto (e a maggior ragione T^*T è normale).

Proprietà degli operatori autoaggiunti, unitari e normali

Prop. Siano H_1 e H_2 spazi di Hilbert. Un operatore $T \in \mathcal{B}(H_1, H_2)$ è unitario se e solo se $T: H_1 \to H_2$ è un isomorfismo isometrico.

Prop. Supponiamo che $\mathbb{F}=\mathbb{C}$. Siano H uno spazio di Hilbert e $T\in\mathcal{B}(H)$. Allora T è autoaggiunto se e solo se

$$\langle Tx, x \rangle \in \mathbb{R} \quad \forall x \in H.$$

Prop. Sia H uno spazio di Hilbert. Sia $T \in \mathcal{B}(H)$ un operatore normale. Allora:

- (i) $||Tx||_H = ||T^*x||_H$ per ogni $x \in H$;
- (ii) $\operatorname{Ker} T = \operatorname{Ker}(T^*);$
- (iii) $T \lambda \operatorname{id}_H$ è normale per ogni $\lambda \in \mathbb{F}$.

In particolare

(iv) $\operatorname{Ker}(T - \lambda \operatorname{id}_H) = \operatorname{Ker}(T^* - \overline{\lambda} \operatorname{id}_H)$ per ogni $\lambda \in \mathbb{F}$.

Proiezioni ortogonali

Prop. Siano H uno spazio di Hilbert e $P \in \mathcal{B}(H)$. Sono fatti equivalenti:

- (i) P è la mappa di proiezione ortogonale P_Y su un qualche sottospazio vettoriale chiuso Y di H.
- (ii) $P^2 = P = P^*$.

Inoltre, in tal caso, $Y = \operatorname{Im} P = \{x \in H : Px = x\}$ e $Y^{\perp} = \operatorname{Ker} P$.

Prop. Sia H uno spazio di Hilbert. I seguenti sottoinsiemi di $\mathcal{B}(H)$ sono chiusi (topologicamente):

- (i) l'insieme degli operatori normali;
- (ii) l'insieme degli operatori autoaggiunti;
- (iii) l'insieme degli operatori unitari;
- (iv) l'insieme delle proiezioni ortogonali.

Spettro di un operatore limitato

Nel seguito $H \neq \{0\}$ è uno spazio di Hilbert su \mathbb{F} e $I = \mathrm{id}_H$.

Def. Sia $T \in \mathcal{B}(H)$. Lo spettro di T è l'insieme

$$\sigma(\mathcal{T}) = \{\lambda \in \mathbb{F}: \mathcal{T} - \lambda I \text{ non è invertibile in } \mathcal{B}(H)\}.$$

L'insieme risolvente $\rho(T)$ di T è il complementare $\mathbb{F} \setminus \sigma(T)$ dello spettro.

Oss. Se dim
$$H < \infty$$
, allora $T - \lambda I$ non è invertibile $\stackrel{(\dagger)}{\Longleftrightarrow} T - \lambda I$ non è iniettivo

 \iff Ker $(T - \lambda I) \neq \{0\} \iff \lambda$ è autovalore di TSe dim $H = \infty$, tuttavia, in (†) si ha solo l'implicazione \Leftarrow .

Prop. Sia
$$T \in \mathcal{B}(H)$$
. Allora si ha la decomposizione $\sigma(T) = \sigma_p(T) \cup \sigma_r(T) \cup \sigma_c(T)$

dello spettro di T in tre sottoinsiemi a due a due disgiunti:

we no spectro di
$$T$$
 in the socionisieni a due a due disgiunti.

$$\sigma_{\sigma}(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) \neq \{0\}\}$$
(spettro puntuale

$$\sigma_p(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) \neq \{0\}\}$$
 (spettro puntuale)
$$\sigma_p(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) = \{0\} \mid \overline{\text{Im}(T - \lambda I)} \neq H\}$$
 (spettro residuo)

$$\sigma_{p}(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) \neq \{0\}\}$$
 (spettro puntuale)

$$\sigma_{r}(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) = \{0\}, \overline{\text{Im}(T - \lambda I)} \neq H\}$$
 (spettro residuo)

$$\sigma_{c}(T) = \{\lambda \in \mathbb{F} : \text{Ker}(T - \lambda I) = \{0\}, \overline{\text{Im}(T - \lambda I)} = H, \overline{\text{Im}(T - \lambda I)} \neq H\}$$
 (spettro continuo)

Proprietà dello spettro

Prop. Sia $T \in \mathcal{B}(H)$.

- (i) Lo spettro $\sigma(T)$ è un sottoinsieme chiuso della palla $\overline{B}(0, ||T||_{op})$ in \mathbb{F} .
- (ii) Se $\mathbb{F} = \mathbb{C}$, lo spettro $\sigma(T)$ è non vuoto.

Prop. Sia
$$T \in \mathcal{B}(H)$$
.
(i) $\sigma(T^*) = {\overline{\lambda} : \lambda \in \sigma(T)}$.

- (ii) $T \in \{A : A \in \mathcal{O}(T)\}$. (ii) $T \in A$ invertibile in $\mathcal{B}(H)$ se e solo se $0 \notin \sigma(T)$.
- Inoltre, in tal caso, $\sigma(T^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(T)\}.$ (iii) $\sigma(\alpha I) = \{\alpha\}$ per ogni $\alpha \in \mathbb{F}.$
- (iv) Supponiamo $\mathbb{F} = \mathbb{C}$ oppure $n \leq 1$. Se $p(z) = \sum_{j=0}^{n} a_j z^j \in \mathbb{F}[z]$ è un polinomio, posto $p(T) := \sum_{j=0}^{n} a_j T^j$, si ha $\sigma(p(T)) = p(\sigma(T))$. (teorema della mappa spettrale)
- **Prop.** Sia $T \in \mathcal{B}(H)$. (i) Se T è normale, allora $\sigma_r(T) = \emptyset$.
- (ii) Se T è autoaggiunto, allora $\sigma(T) \subseteq \mathbb{R}$.
- (iii) Se T è unitario, allora $\sigma(T) \subseteq \{\lambda \in \mathbb{F} : |\lambda| = 1\}.$

Esempi di calcolo dello spettro

1. Sia $\underline{w} = (w_k)_{k \in \mathbb{N}} \in \ell^{\infty}$. Allora

$$\sigma(D_w) = \overline{\{w_k : k \in \mathbb{N}\}}$$

e specificamente

$$\sigma_p(D_{\underline{w}}) = \{ w_k : k \in \mathbb{N} \}, \quad \sigma_r(D_{\underline{w}}) = \emptyset, \quad \sigma_c(D_{\underline{w}}) = \sigma(D_{\underline{w}}) \setminus \sigma_p(D_{\underline{w}}).$$

2. Sia $S \in \mathcal{B}(\ell^2)$ l'operatore di shift verso sinistra. Allora

$$\sigma(S) = \sigma(S^*) = \overline{B}(0,1)$$

e specificamente

$$\sigma_p(S) = B(0,1), \quad \sigma_r(S) = \emptyset, \quad \sigma_c(S) = \partial B(0,1),$$

$$\sigma_p(S^*) = \emptyset, \quad \sigma_r(S^*) = B(0,1), \quad \sigma_c(S^*) = \partial B(0,1).$$

Proprietà degli autospazi di un operatore lineare

Ricordiamo che, se $T \in \mathcal{B}(H)$,

- $ightharpoonup E_T(\lambda) := \operatorname{Ker}(T \lambda I)$ è l'autospazio di T relativo a $\lambda \in \mathbb{F}$;
- ▶ ogni $v \in E_T(\lambda) \setminus \{0\}$ si dice *autovettore* di T di autovalore λ ;
- ▶ $\lambda \in \mathbb{F}$ è un *autovalore* di T se e solo se $E_T(\lambda) \neq \{0\}$; ▶ un sottospazio vettoriale $V \subseteq H$ si dice *invariante* per T se $T(V) \subseteq V$.

Prop. Siano $T, S \in \mathcal{B}(H)$.

(i) Sia $n\in\mathbb{N}_+$. Se $\lambda_1,\ldots,\lambda_n\in\mathbb{F}$ sono distinti, allora

$$E_{\mathcal{T}}(\lambda_n) \cap (E_{\mathcal{T}}(\lambda_1) + \dots + E_{\mathcal{T}}(\lambda_{n-1})) = \{0\}.$$

In altre parole, gli autospazi dell'operatore T sono in somma diretta. (ii) Se TS = ST, allora l'immagine Im T e gli autospazi $E_T(\lambda)$ di T sono

- invarianti per S, per ogni $\lambda \in \mathbb{F}$. (iii) Se T è normale, $\lambda, \mu \in \mathbb{F}$ e $\lambda \neq \mu$, allora $E_T(\lambda) \perp E_T(\mu)$.
- (iii) Se V è un sottospazio vettoriale di H invariante per T, allora anche \overline{V}
- è invariante per T, mentre V^{\perp} è invariante per T^* . (v) Sia $n \in \mathbb{N}_+$. Se V_1, \ldots, V_n sono sottospazi invarianti per T, allora anche $V_1 + \cdots + V_n$ e $V_1 \cap \cdots \cap V_n$ sono invarianti per T.