ST122: Probability and Statistics II

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab.,
Computer Science Department,
Faculty of Computers and Information,
Helwan University,
Egypt.

June 16, 2012

Lectures follow Rice, "Mathematical Statistics and Data Analysis", 3rd edition, Duxbury:

ISBN 0-534-39942-8

Course Objectives

- Developing rigorous treatment.
- Building intuition and insight.
- Linking to real life problems.
- Coding and scientific computing.

Contents

Contents

Inti	roductio	on: Statistica	al Inference in a Nutshell	v	
6	Distributions Derived from the Normal Distribution			1	
	6.1	Introduc	tion	2	
	6.2	χ^2 , t, and	d F Distributions	3	
	6.3	Sample N	Mean, Sample Variance, and Sampling from Normal Dis-		
		tribution		9	
		6.3.1	Basic Concepts of Random Samples	9	
		6.3.2	Sampling from the Normal Distribution	15	
8	Estimation of Parameters and Fitting of Probability Distributions 8.1 Introduction: Estimation in a Nutshell		22 23		
	8.2			26	
	8.3	The Method of Maximum Likelihood			
		8.3.1	Large Sample Theory for MLE	49	
	8.4	The Bayesian Approach to Parameter Estimation 60			
		8.4.1	Large Sample Theory of Bayesian Inference	68	
	8.5	Assessing	ng Estimators, Efficiency, and the Cramér-Rao Lower Bound 69		
		8.5.1	Mean Squared Error (MSE) Criterion	69	
		8.5.2	Best Unbiased Estimator	74	
		8.5.3	Asymptotic Relative Efficiency (ARE)	94	

iii

Introduction: Statistical Inference in a Nutshell

Point estimate - different estimators - assessing estimators - large sample theory

Hypothesis testing.

Interval estimation.

Bayesian approach vs. Frequentist approach

Chapter 6

Distributions Derived from the Normal Distribution

6.1 Introduction

This Chapter discusses 3 probability distributions that frequently occur in Statistics: χ^2 , t, and FDistributions.

Remember that if $V \sim Gamma(\alpha, \lambda)$, then

$$f(v) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} v^{\alpha - 1} e^{-\lambda v}, \ v \ge 0,$$

$$f(v) = \frac{\lambda}{\Gamma(\alpha)} v^{\alpha - 1} e^{-\lambda v}, \ v \ge 0,$$

$$M(t) = (1 - t/\lambda)^{-\alpha},$$

$$E[V] = \alpha/\lambda,$$

$$Var[V] = \alpha/\lambda^2.$$

And if
$$V_1, ..., V_n$$
 are i.i.d $Gamma(\alpha, \lambda)$, then

And if
$$V_1, \ldots, V_n$$
 are i.i.d $Gamma(\alpha, \lambda)$, then

$$M_{\Sigma_i V_i}(t) = (1 - t/\lambda)^{-n\alpha},$$

$$\Sigma_i V_i \sim Gamma(n\alpha, \lambda).$$

6.2 χ^2 , t, and F Distributions

Definition 1 If $Z \sim N(0,1)$, then $U = Z^2$ is called chi-square distribution with 1 degree of freedom;

i.e., $U \sim \chi_1^2$. It is easy to show that (see Lec. notes Ch. 2):

Ch. 2):
$$f_U(u) = \frac{1}{\sqrt{2\pi}} u^{-1/2} e^{-u^2/2}.$$

Notice that:

Notice that:
$$\chi_1^2 \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right),$$

Also:
$$X \sim N(\mu, \sigma^2),$$

$$\frac{X - \mu}{\sigma} \sim N(0, 1),$$

$$\left(\frac{X - \mu}{\sigma}\right)^2 \sim \chi_1^2.$$

 $\chi_1^2 \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right),$

$\sum_{i} U_{i}$ is called chi-squre distribution with n degrees of freedom; i.e., $V \sim \chi_{n}^{2}$.

Notice that $U_i \sim Gamma(\frac{1}{2}, \frac{1}{2})$, then $V \sim Gamma(n/2, 1/2)$,

$$f_{V}(v) = \frac{1}{2^{n/2}\Gamma(n/2)} v^{n/2-1} e^{-v/2},$$

$$E[V] = n, \text{ Var}[V] = 2n.$$

Definition 2 If $U_1, ..., U_n$ are i.i.d χ_1^2 r.v. then V =

solid: n = 1, dashed: n = 3, dotted: n = 6

Suppose that *U* and *V* are indep, and

$$W = U + V.$$

If $U \sim \chi_m^2$, $V \sim \chi_n^2$ then (obviously)

$$W = \chi_m^2 + \chi_n^2 = \chi_{m+n}^2,$$

Also, if $W \sim \chi_k^2$ and $V \sim \chi_n^2$ then

$$\chi_k^2 = U + \chi_n^2$$

$$=U+\chi_n^2$$

$$M_{\chi_k^2} = M_U M_{\chi_n^2},$$

$$M_{\chi^2_k}$$
 $M_{\chi^2_k}$

$$M_J = \frac{M_{\chi_k^2}}{M_{c2}}$$

$$M_U = rac{M_{\chi_k^2}}{M_{\chi_v^2}}$$

$$J = \frac{M\chi_k^2}{M_{\chi_n^2}}$$

$$_{J}=rac{\chi_{k}}{M_{\chi_{n}^{2}}}$$

$$T_J = \frac{M_{\chi_k^2}}{M_{r,2}}$$

 $U \sim \chi^2_{(k-n)}$.

$$= \frac{(1-2t)^{-k/2}}{(1-2t)^{-n/2}} = (1-2t)^{-(k-n)/2}$$

$$M_{\chi_n^2}$$

$$-k/2$$

If $Z \sim N(0,1)$, $U \sim \chi_n^2$, and Z, U are indep. then $T = Z/\sqrt{U/n}$ is called t distribution with n de-

Definition 3 (Student's *t* **Distribution)** :

grees of freedom; i.e.,
$$T \sim t_n$$
. (prove that:)
$$f_T(t) = \frac{\Gamma\left((n+1)/2\right)}{\sqrt{n\pi}\Gamma\left(n/2\right)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2},$$

$$\operatorname{Var}\left[T\right] = \frac{n}{n-2}, \ n \ge 3.$$

 $E[T] = 0, n \ge 2,$

- The smaller n the thicker tail.
- The figure shows t_5 , t_{10} , t_{30} ($\approx N(0,1)$)
- $t_1 \equiv Cauchy(0,1)$.

that:)

m, n degrees of freedom; i.e., $W \sim F_{m,n}$. (prove

 $f_W(w) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{(m+n)}{2}},$ $E[W] = n/(n-2), n \ge 3.$

Definition 4 (Snedecor's *F* **Distribution)** :

Let $U \sim \chi_m^2$ and $V \sim \chi_n^2$, and U, V are indep. Then,

W = (U/m)/(V/n) is called F distribution with

 $Var[W] = 2\left(\frac{n}{n-2}\right)^2 \frac{(m+n-2)}{m(n-2)}, n \ge 5.$

It is obvious that if $U \sim t_n$, then $U^2 \sim F_{1,n}$. Also, if $U \sim F_{n,m}$ then $U^{-1} \sim F_{m,n}$.

Summary (with terse notation): $N(0,1)^2 \sim \chi_1^2,$

$$\sum_{i=1}^{n} N(0,1)^{2} \sim \chi_{n}^{2},$$

$$\chi_{m}^{2} + \chi_{n}^{2} \sim \chi_{m+n}^{2},$$

$$N(0,1) / \sqrt{\chi_{n}^{2} / n} \sim t_{n},$$

$$(\chi_{m}^{2} / m) / (\chi_{n}^{2} / n) \sim F_{m,n},$$

$$t_{n}^{2} \sim F_{1,n}.$$

Example 5 If X_1, X_2, X_3 are iid N(0, 1), what is the dist. of $\frac{X_1}{\sqrt{\left(X_1^2 + X_2^2 + X_3^2\right)/3}}$

6.3 Sample Mean, Sample Variance, and Sampling from Normal Distribution

6.3.1 Basic Concepts of Random Samples

Definition 6 The r.v. $X_1, ..., X_n$ are called a random sample of size n from the population F if $X_1, ..., X_n$ are i.i.d from F; and hence: $f_{X_1,...,X_n}(x_1,...,x_n) = \prod_i f(x_i)$.

$$F \xrightarrow{Sample_1} x_1, x_2, \dots x_n$$

$$F \xrightarrow{Sample_2} x_1, x_2, \dots x_n$$

$$\vdots$$

We focus in our study on infinite populations; Ch. 7 is about finite populations.

of size n, and $T(x_1,...,x_n)$ be a real- (or vector-) valued function whose domain includes the sam-

Definition 7 Let $X_1, ..., X_n$ be a random sample

ple space of $(X_1, ..., X_n)$. Then the r.v. $Y = T(X_1, ..., X_n)$ is called a statistic.

Definition 8 *The sample mean, sample variance,* and sample standard deviations are statistics defined as:

 $\overline{X} = \frac{1}{n} \sum_{i} X_{i}$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2,$

 $S = \sqrt{S^2}$ Observed values will be denoted by \overline{x} , s^2 , and s.

$$X_1 \quad X_2 \quad \dots \quad X_n \quad \overline{X} = \frac{1}{n} \sum_i X_i$$

$$F \quad \overrightarrow{Sample_1} \quad x_1, \quad x_2, \quad \dots \quad x_n \quad \overline{x} = \frac{1}{n} \sum_i x_i$$

$$F \quad \overrightarrow{Sample_2} \quad x_1, \quad x_2, \quad \dots \quad x_n \quad \overline{x} = \frac{1}{n} \sum_i x_i$$

10

$\min_{a} \sum_{i} (x_i - a)^2 = \sum_{i} (x_i - \overline{x})^2,$ $\sum_{i} (x_i - \overline{x})^2 = \sum_{i} x_i^2 - n\overline{x}^2.$

Lemma 9 For any numbers $x_1, ..., x_n$:

Proof.: is identical to argmin
$$E(Y-c)^2 = E[Y]$$
.

$$\sum_{i} (x_i - a)^2 = \sum_{i} ((x_i - \overline{x}) + (\overline{x} - a))^2$$

$$= \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} (\overline{x} - a)^{2}$$
$$+ 2 \sum_{i} (x_{i} - \overline{x}) (\overline{x} - a) \quad (\sum_{i} x_{i} = n\overline{x})$$

$$= \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} (\overline{x} - a)^{2},$$

$$= \sum_{i} (x_{i} - x)^{2} + \sum_{i} (x - a)^{2},$$
which is minimized by choosing $a = \overline{x}$.

which is minimized by choosing
$$a = x$$
.
$$\sum_{i} (x_i - a)^2 = \sum_{i} (x_i - \overline{x})^2 + \sum_{i} (\overline{x} - a)^2$$

$$\sum_{i} (x_i - \overline{x})^2 = \sum_{i} x_i^2 - n\overline{x}^2. \qquad (a \stackrel{set}{=} 0)$$
Notice that: both forms are $\mathcal{O}(n)$; however this

form requires only one for loop for execution!

HW: Write a computer program, and find its complexity (where a step is a multiplication), for calculating $\sum_{n=1}^{n} \sum_{n=1}^{n}$

$$S_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j,$$
 $S_2 = \sum_{i=1}^{n} \sum_{j \neq i} x_i x_j.$

Can you do a mathematical trick to reduce their complexities to O(n). !!!

1. $E\left|\overline{X}\right| = \mu$,

3. $E[S^2] = \sigma^2$.

2. Var $\left[\overline{X}\right] = \sigma^2/n$,

Proof. 1 and 2 are proven before. For 3,

Theorem 10 (Distribution-Free Properties) :

$$F[S^2] = F\left[\frac{1}{1-1}\sum_{i}\left(X_i - \overline{X}\right)^2\right]$$

$$E[S^{2}] = E\left[\frac{1}{n-1}\sum_{i}\left(X_{i} - \overline{X}\right)^{2}\right]$$

$$E\left[\frac{1}{n-1}\sum_{i}\left(X_{i}-X\right)\right]$$

$$\begin{bmatrix} n & 1 & i & \ddots & \ddots & \vdots \\ 1 & \begin{bmatrix} \nabla & \mathbf{v}^2 & -\mathbf{v}^2 \end{bmatrix} \end{bmatrix}$$

$$= \frac{1}{n-1} E\left[\sum_{i} X_{i}^{2} - n\overline{X}^{2}\right]$$

$$= \frac{1}{n-1} \left(\sum_{i}^{1} E\left[X_{i}^{2}\right] - nE\left[\overline{X}^{2}\right] \right)$$

$$\frac{1}{-1} \left(\sum_{i} E\left[X_{i}^{2}\right] - nE\left[X^{2}\right] \right)$$

$$1 \left(\left(\left(-\frac{2}{2} + \frac{2}{2}\right) - nE\left[X^{2}\right] \right) \right)$$

$$= \frac{1}{n-1} \left(n \left(\sigma^2 + \mu^2 \right) - n \left(\frac{\sigma^2}{n} + \mu^2 \right) \right) = \sigma^2,$$

which is **unbiased estimator** for σ^2 .

$M_{\overline{X}}(t) = [M(t/n)]^n.$

tion with mgf M(t), then

Example 12 Let $X_1, ..., X_n$ be a r.s. from $N(\mu, \sigma^2)$, then

Lemma 11 Let X_1, \ldots, X_n be a r.s. from a popula-

$$M(t) = \exp\left(\mu t + \sigma^2 t^2 / 2\right),$$

$$M(t) = \left[\exp\left(\mu t + \sigma^2 t^2 / 2\right)\right]^n$$

$$M_{\overline{X}}(t) = \left[\exp\left(\mu \frac{t}{n} + \sigma^2 \left(\frac{t}{n}\right)^2 / 2\right) \right]^n,$$

$$= \exp\left(\mu t + \frac{\sigma^2}{n}t^2/2\right),$$

$$= -\left(\sigma^2\right)$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

We know that $E\left[\overline{X}\right] = \mu$ and $\operatorname{Var}\left[\overline{X}\right] = \sigma^2/n$. But what is new is that \overline{X} is itself Normal. We could have found it by transformation: $Z = X_1 + X_2$. If $X_i \sim \operatorname{Cauchy}(0,1)$, prove that $\overline{X} \sim \operatorname{Cauchy}(0,1)$ as well!!

6.3.2 Sampling from the Normal Distribution

Theorem 13 Let $X_1, ..., X_n$ be r.s. form $N(\mu, \sigma^2)$

Theorem 13 Let
$$X_1, ..., X_n$$
 be r.s. form $N(\mu, \overline{X}) \sim N(\mu, \sigma^2/n)$

1. $\overline{X} \sim N(\mu, \sigma^2/n)$,

1.
$$\overline{X} \sim N(\mu, \sigma^2/n)$$
,

2. \overline{X} and $(X_2 - \overline{X}, ..., X_n - \overline{X})$ are indep,

3.
$$\overline{X}$$
 and S^2 are indep,
4. $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$.

Intuition before proof:
Meaning of
$$\overline{X}$$
 and $(X_0 - X_0)$

Meaning of \overline{X} and $(X_2 - \overline{X}, ..., X_n - \overline{X})$ are indep?

Suppose
$$X_i \sim Bernouli$$
 (1/2), and we get a sample where $\overline{Y}_i = 1$. Obviously, $Y_i = 1$

ple where $X_{10} = 1$. Obviously, $X_i = 1$.

Aside from normality, observe that

$$\sum_{i} \left(X_i - \overline{X} \right) = 0,$$

which means we have only (n-1) differences:

$$(X_1 - \overline{X}) = -\sum_{i=1}^{n} (X_i - \overline{X}),$$

 $S^{2} = \frac{1}{(n-1)} \sum_{i} \left(X_{i} - \overline{X} \right)^{2}$

$$(X_1 - \overline{X}) = -\sum_{i=2}^n (X_i - \overline{X}),$$

 $= \frac{1}{(n-1)} \left| \left(X_1 - \overline{X} \right)^2 + \sum_{i=2}^n \left(X_i - \overline{X} \right)^2 \right|$

$$= \frac{1}{(n-1)} \left[\left(\sum_{i=2}^{n} \left(X_i - \overline{X} \right) \right)^2 + \sum_{i=2}^{n} \left(X_i - \overline{X} \right)^2 \right]$$

Matlab Code 6.1:

figure; hold on;

% Change 'Normal' to 'Exp'

x=random('Normal', 0, 1, 1000, 10);
xbar=mean(x, 2);
s=std(x, 0, 2);
plot(xbar, s, '.r')

x=random('Normal', 0, 1, 1000, 100);
xbar=mean(x, 2);
s=std(x, 0, 2);

plot(xbar, s, '.b')

Proof. the mgf is given by $=M(s,t_2,\ldots,t_n)$

$$-E \left[\exp \left(s \right) \right]$$

$$= E \left[\exp \left(\sum_{n=1}^{n} \frac{1}{n} \right) \right]$$

$$= E \left[\exp \left(s\overline{X} + t_2 \left(X_2 - \overline{X} \right) + \dots + t_n \left(X_n - \overline{x} \right) \right) \right]$$

$$= E \left[\exp \left(\sum_{n=1}^{n} \frac{s}{n} X_i + \sum_{n=1}^{n} t_i \left(X_i - \overline{X} \right) \right) \right]$$

$$= E \left[\exp \left(\sum_{i=1}^{n} \frac{s}{n} X_i + \sum_{i=2}^{n} t_i \left(X_i - \overline{X} \right) \right) \right]$$

$$= E \left[\exp \left(\sum_{i=1}^{n} \frac{1}{i} \right) \right]$$
$$= E \left[\exp \left(\sum_{i=1}^{n} \frac{1}{i} \right) \right]$$

$$= E \left[\exp \left(\sum_{i=1}^{n} I \right) \right]$$

$$= E \left[\exp \left(\sum_{i=1}^{n} \left(\frac{s}{n} + \left(t_i - \overline{t} \right) \right) X_i \right) \right]$$

 $= E \left[\exp \left(\sum_{i=1}^{n} a_i X_i \right) \right]$ $=\prod M_{X_i}(a_i)$

 $(t_1 = 0)$

 $(a_i = \frac{s}{n} + (t_i - \overline{t}))$

- $= \prod_{i} \exp\left(\mu a_i + \frac{\sigma^2}{2} a_i^2\right)$
- $= \exp \left[\mu \sum_{i} a_{i} + \frac{\sigma^{2}}{2} \sum_{i} a_{i}^{2} \right]$

- $= \exp \left[\mu s + \frac{\sigma^2}{2} \left(\frac{s^2}{n} + \sum_i (t_i \overline{t})^2 \right) \right]$
- - $= \exp\left(\mu s + \frac{\sigma^2}{2n}s^2\right) \exp\left(\frac{\sigma^2}{2}\sum_{i}\left(t_i \overline{t}\right)^2\right),\,$

 $(X_2 - \overline{X}, \dots, X_n - \overline{X})$. Hence they are independent and since $S = S(X_2 - \overline{X}, ..., X_n - \overline{X}) : \overline{X}$ and S are independent.

the two factors are the mgf of X and

W = II + V

 $\chi_n^2 = U + \chi_1^2$

 $U \sim \chi_{n-1}^2$.

Now

 $\sum_{i} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i} \left[\left(X_i - \overline{X} \right) + \left(\overline{X} - \mu \right) \right]^2$

 $= \frac{1}{\sigma^2} \sum_{i} \left(X_i - \overline{X} \right)^2 + \left(\frac{\overline{X} - \mu}{\sigma / \sqrt{\mu}} \right)^2$

 $= \frac{1}{\sigma^2} \sum_{i} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{i} \left(\overline{X} - \mu \right)^2$

(U, V indep.)

(n-1 df)

19

Lemma 14

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Proof.

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\left(\overline{X} - \mu\right)/\left(\sigma/\sqrt{n}\right)}{\left(S/\sqrt{n}\right)/\left(\sigma/\sqrt{n}\right)}$$

$$= \frac{\left(\overline{X} - \mu\right)/\left(\sigma/\sqrt{n}\right)}{S/\sigma}$$

$$=\frac{\left(\overline{X}-\mu\right)/\left(\sigma/\sqrt{n}\right)}{\sqrt{\left((n-1)S^2/\sigma^2\right)/\left(n-1\right)}}$$

$$(-\mu)$$

$$\frac{\sqrt{n}}{2}$$

$$\frac{n}{n}$$

$$=\frac{N(0,1)}{\sqrt{\chi_{n-1}^2/(n-1)}}=t_{n-1},$$

used for inference about
$$\mu$$
 when σ is unknwn.

$$\frac{\overline{X} - \mu}{\sim} N(0, 1)$$

used for inference about
$$\mu$$
 when σ is known.

$\frac{S_X^2/\sigma_X^2}{S_V^2/\sigma_V^2} \sim F_{m-1,n-1}.$

 $\frac{S_X^2/\sigma_X^2}{S_V^2/\sigma_V^2} = \frac{\left((m-1)S_X^2/\sigma_X^2\right)/(m-1)}{\left((n-1)S_V^2/\sigma_V^2\right)/(n-1)}$

(Indep.)

we have two samples $X_1, ..., X_m$ and $Y_1, ..., Y_n$

Lemma 15 If $X \sim N(\mu_X, \sigma_X)$, $Y \sim N(\mu_Y, \sigma_Y)$, and

$$= \frac{\chi_{m-1}^2/(m-1)}{\chi_{n-1}^2/(n-1)}$$

$$= F_{m-1,n-1},$$
used for inference about σ_X^2/σ_Y^2 .

Proof.

Chapter 8

Estimation of Parameters and Fitting of Probability Distributions

Introduction: Estimation in a Nutshell

• Distributions depend on some population parameters; e.g., $N(\mu, \sigma^2)$, $Exp(\lambda)$, etc. Gen

erally, we should write (e.g.,):
$$f_X(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-1}{2}(x-\mu)^2/\sigma^2\right]$$

 Obtaining data (values of a random sample) allows "estimating" these parameters.

Definition 16 A point estimator is any function
$$W(X_1,...,X_n)$$
 of a sample; i.e., any statistic is a

point estimator.

- We can choose, e.g., $\widehat{\sigma}^2 = \frac{1}{n} \sum_i \left(X_i \overline{X} \right)^2$ to be an estimator for σ^2 .
 - $\frac{1}{n}\sum_{i}(x_{i}-\overline{x}_{i})^{2}$ is an estimate (realization).

- How to estimate θ "well" $(\widehat{\theta})$?
- What is $f_{\widehat{\theta}}$ (sampling distribution)?
- What is $E[\widehat{\theta}]$, $SD[\widehat{\theta}]$ (standard error),...?
- How to estimate $\tau(\theta)$, e.g.:
 - σ^2 , the variance, for $N(\mu, \sigma^2)$.
 - $\alpha\lambda$, the mean, for $Gamma(\alpha, \lambda)$.

• From the physics of the problem. E.g., given number of calls in time units, the distribu-

How to decide F_X before estimation?

- tion is known to be $Poisson(\lambda)$.

 Assumption; you need to validate it latter.
- 7133diliption, you need to validate it latter

Why do we estimate parameters?

- Understanding (interpretation).
- Prediction.
- Simulation and data generation.

How do we choose estimators?

8.2 The Method of Moments

We estimate k^{th} moment by **sample moment**

$$\mu_k = \operatorname{E}\left[X^k\right]$$

$$\widehat{\mu}_k = \frac{1}{n} \sum_i X_i^k.$$

Then for population parameters θ_i , we have

$$\mu_1 = \mu_1 \left(\theta_1, \dots, \theta_r \right),$$

$$\mu_1 = \mu_1 \left(\theta_1, \dots, \theta_r \right),$$

$$\mu_r = \mu_r \left(\theta_1, \dots, \theta_r \right).$$

 $\mu_r = \mu_r \left(\theta_1, \ldots, \theta_r\right).$

$$\theta_1 = \theta_1(\mu_1, \dots, \mu_r),$$

$$\theta_r = \theta_r (\mu_1, \dots, \mu_r).$$

And
$$\widehat{Q} = \widehat{Q} (\widehat{Q} = \widehat{Q})$$

$$\widehat{\theta}_1 = \widehat{\theta}_1 \left(\widehat{\mu}_1, \dots, \widehat{\mu}_r \right),$$
 \vdots

$$\widehat{\theta}_r = \widehat{\theta}_r (\widehat{\mu}_1, \dots, \widehat{\mu}_r).$$

Motivation behind method of moments

$$\widehat{\mu}_k \stackrel{p}{\to} \mu_k.$$

Definition 17 An estimator $\hat{\theta} = \hat{\theta}(n)$, which estimates θ , from a sample of size n is said to be consistent in probability if

$$\widehat{\theta} \stackrel{p}{\to} \theta$$
.

Example 18 $N(\mu, \sigma^2)$, and the mean and variance of any other distribution:

$$\widehat{\mu}_1 = \frac{1}{n} \sum X_i = \overline{X},$$

$$\widehat{\mu}_1 = \frac{1}{n} \sum_i X_i = \overline{X},$$

$$\widehat{\mu}_2 = \frac{1}{n} \sum_i X_i^2,$$

$$\mu_2 = \frac{1}{n} \sum_i X_i,$$

$$\mu_1 = E[X] = \mu,$$

$$\mu_1 = \mathrm{E}[X]$$
$$\mu_2 = \mathrm{E}[X^2]$$

$$\mu_2 = \mathbf{E} \left[X^2 \right]$$

$$\mu = \mu_1,$$

$$\mu = \mu_1,$$

$$\sigma^2 = \mu_2 - \mu_2$$

$$\sigma^2 = \mu_2 - \mu_1^2,$$

$$\widehat{\sigma} = \widehat{\sigma} = \overline{V}$$

$$\widehat{\mu} = \widehat{\mu}_2 - \widehat{\mu}_1$$

$$\widehat{\mu} = \widehat{\mu}_1 = \widehat{\mu}_1$$

$$\widehat{\mu} = \widehat{\mu}_1 = \widehat{\lambda}$$

$$\widehat{\pi}^2 = \widehat{\mu}_1 = \widehat{\lambda}$$

$$\mu = \mu_1 = 1$$

$$\widehat{\sigma}^2 = \widehat{\mu}_2 - \widehat{\mu}$$

 $\frac{n\widehat{\sigma}^2}{2} \sim \chi_{n-1}^2.$

$$\widehat{\sigma}^2 = \widehat{\mu}_2 - \widehat{\mu}_1^2 = \frac{1}{2}$$

$$\widehat{\mu} = \widehat{\mu}_1 = \overline{X},$$

$$\widehat{\sigma}^2 = \widehat{\mu}_2 - \widehat{\mu}_1^2 = \frac{1}{n} \sum_i X_i^2 - \overline{X}^2$$

 $=\frac{n-1}{n}S^2,$

 $\widehat{\mu} \sim N(\mu, \sigma^2/n)$,

$$\mu_2 = E[X^2] = \mu^2 + \sigma^2,$$
 $\mu = \mu_1,$

$$= \overline{X},$$

$$-\widehat{u}^2 = \frac{1}{2} \sum_{i} X^{i}$$

$$\hat{X} = \frac{1}{n} \sum_{i} X_i^2$$

$$\frac{1}{n}\sum_{i}X_{i}^{2}$$

$$X_i^2 - \overline{X}^2$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} = \frac{1}{2} \nabla$$

$$= \frac{1}{n} \left(\sum_{i} X_{i}^{2} - n \overline{X}^{2} \right) = \frac{1}{n} \sum_{i} \left(X_{i} - \overline{X} \right)^{2}$$

Example 19 : Analyzing real dataset for average amount of storms rainfall in Illinois.

Let's draw data points and normalized histogram (divide by its area):

$$Area = \sum_{i} \Delta N_{i}$$

$$= \Delta \sum_{i} N_{i} = \Delta n.$$

From the mgf of Gamma we obtained

$$E[X] = \mu_1 = \frac{\alpha}{\lambda},$$

$$\alpha(\alpha + 1)$$

$$E[X^2] = \mu_2 = \frac{\alpha (\alpha + 1)}{\lambda^2},$$

$$\lambda^2$$
 equations for α and λ .

Solve both equations for
$$\alpha$$
 and λ ,

$$\alpha = \lambda \mu_1$$

$$\mu_2 = \frac{\lambda^2 \mu_1^2 + \lambda \mu_1}{\lambda^2},$$

$$=\frac{\lambda^2}{\mu_1^2 + \mu_1/\lambda},$$

$$= \mu_1^2 + \mu_1 / \lambda,
\lambda = \frac{\mu_1}{\mu_2 - \mu_1^2},$$

$$\frac{\mu_1}{-\mu_1^2}$$
, μ_1^2

$$\mu_1^2 - \mu_1^2$$

$$\frac{\mu_1^2}{2-\mu_2}$$

$$\alpha = \frac{\mu_1^2}{\mu_2 - \mu_2}$$

$$\alpha = \frac{\mu_1}{\mu_2 - \mu_2}$$

 $\widehat{\lambda} = 1.6842$

 $\widehat{\alpha} = 0.3779$

$$\alpha = \frac{\mu_1}{\mu_2 - \mu_2}$$

$$\alpha = \frac{\mu_1}{\mu_2 - \mu}$$

$$\alpha = \frac{\mu_1^2}{\mu_2 - \mu_1^2},$$

$$\sum x_i$$

$$\widehat{\mu}_1 = \frac{1}{n} \sum x_i = 0.2244,$$

$$\widehat{\mu}_2 = \frac{1}{n} \sum x_i^2 = 0.1836,$$

$$\widehat{\mu}_1 = \frac{1}{n} \sum x_i = 0.2244,$$

); % normalize **hold** on;

n=length(x) % will be 227

[N, xout] = hist(x);

 $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$

x = [];

31

plot(x, zeros(length(x)), '.r')**bar**(xout, N/(n*(xout(2)-xout(1))), 'w'

 $=0.5178x^{-0.6221}e^{-1.6842x}, x \ge 0$

What would happen have if we fit $N(\mu, \sigma^2)$?

Matlab Code 8.1:

x=[x; csvread('illinois62.txt')];x=[x; csvread('illinois63.txt')];x=[x; csvread('illinois64.txt')];

x=[x; csvread('illinois61.txt')];

x=[x; csvread('illinois60.txt')];

```
lmda = mu1/(mu2-mu1^2)
                          %1.6842
z = 0.05:.01:2;
v1 = (lmda \land alpha) / gamma(alpha) * z. \land (
  alpha-1) .* exp(-lmda*z);
plot(z, y1, 'b', 'LineWidth', 2);
z = -2:.01:2;
v2=1/(sqrt(2*pi*(mu2-mu1^2))) *exp(-(z)
  -mu1).^2 / (2*(mu2-mu1^2)));
plot(z, y2, 'r', 'LineWidth', 2);
```

% . 2 2 4 4

% . 1836

mul = sum(x)/n

 $mu2 = sum(x.^2)/n$

 $alpha = mu1^2/(mu2-mu1^2)$ % . 3 7 7 9

$\mu_1 = np,$ $\mu_2 = np(1-p) + (np)^2,$ $p = \frac{\mu_1}{n},$

 $\mu_2 = \mu_1 \left(1 - \frac{\mu_1}{n} \right) + \mu_1^2$

 $n = \frac{\mu_1^2}{\mu_1 - (\mu_2 - \mu_1^2)}$

Example 20 (Binomial(n, p))

$$p = \frac{\mu_1 - (\mu_2 - \mu_1^2)}{\mu_1},$$

$$\widehat{n} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_i (X_i - \overline{X})^2},$$

$$\widehat{p} = \frac{\overline{X} - \frac{1}{n} \sum_i (X_i - \overline{X})^2}{\overline{X}^2}.$$

Sometimes the estimate will be negative!!

 In general, method of moments is a good start.

Example 21 (Cov(X, Y)) :

$$\sigma_X^2 = E(X - \mu_X)^2$$

$$= E(X^2) - \mu_X^2$$

$$= \mu_{2X} - \mu_{1X}^2.$$

$$V(X, Y) = E(X - \mu_X)(Y - \mu_Y)$$

$$= E[XY] - \mu_X \mu_Y$$

$$= \mu_{11} - \mu_{12} \mu_{13}$$

$$Cov(X, Y) = E(X - \mu_X)(Y - \mu_Y)$$

$$= E[XY] - \mu_X \mu_Y$$

$$= \mu_{11} - \mu_{1X} \mu_{1Y}$$

$$\widehat{\sigma}_X^2 = \frac{1}{n} \sum_i X_i^2 - \overline{X}^2$$

$$= \frac{1}{n} \sum_i (X_i - \overline{X})^2.$$

$$\widehat{\sigma}_{XY} = \frac{1}{n} \sum_{i} X_{i} Y_{i} - \overline{XY}.$$

$$= \frac{1}{n} \sum_{i} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right).$$
Given x_{1}, \dots, x_{n} and y_{1}, \dots, y_{m} , what is $\widehat{\sigma}_{XY}$?
What is right (x_{i}, y_{i}) .

 $E[X_i Y_i] = Cov(X, Y) + \mu_X \mu_Y$

 $= E \left| \sum_{i} X_{i} Y_{i} - n \overline{X} \overline{Y} \right|$

 $= n \operatorname{E}[XY] - n \operatorname{E}\left|\overline{XY}\right|.$

 $= (n-1)\sigma_{XY}$.

 $= \operatorname{Cov}\left(\frac{1}{n}\sum_{i}X_{i}, \frac{1}{n}\sum_{i}Y_{i}\right) + \mu_{X}\mu_{Y}$

 $= \frac{1}{n^2} \sum_{i} \sum_{j} \operatorname{Cov}(X_i, Y_j) + \mu_X \mu_Y$

 $= \frac{1}{n} \operatorname{Cov}(X, Y) + \mu_X \mu_Y$

 $= n\sigma_{XY} + n\mu_X\mu_Y - \sigma_{XY} - n\mu_X\mu_Y$

Therefore, $\frac{1}{n}\sum_{i} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)$ is biased for σ_{XY} .

35

$$E\left[\overline{XY}\right] = \operatorname{Cov}\left(\overline{X}, \overline{Y}\right) + E\left[\overline{X}\right] E\left[\overline{Y}\right]$$

$$= \operatorname{Cov}\left(\frac{1}{n}\sum_{i} X_{i}, \frac{1}{n}\sum_{i} Y_{i}\right) + C\operatorname{Cov}\left(\overline{X}, \overline{Y}\right) + C\operatorname{Cov}\left(\overline{X}\right) + C\operatorname{Cov}\left(\overline{X}$$

 $\mathrm{E}\sum_{i}\left(X_{i}-\overline{X}\right)\left(Y_{i}-\overline{Y}\right)=$

 $= \frac{1}{n} \left(\mathbb{E}[XY] + (n-1)\mathbb{E}[X_i Y_j] \right)$ $= \frac{1}{n} \left(\operatorname{Cov}(X, Y) + \mu_X \mu_Y + (n-1) \mu_X \mu_Y \right)$

Another proof for $E\left|\overline{XY}\right|$:

 $E\left[\overline{XY}\right] = E\left|\left(\frac{1}{n}\sum_{i}X_{i}\right)\left(\frac{1}{n}\sum_{i}Y_{i}\right)\right|$

 $= E \left[\frac{1}{n^2} \sum_{i} \sum_{i} X_i Y_i \right]$

 $= \frac{1}{n^2} E \left[\sum_{i} X_i Y_i + \sum_{i \neq i} X_i Y_j \right]$

 $= \frac{1}{n} \operatorname{Cov}(X, Y) + \mu_X \mu_Y.$

 $= \frac{1}{n^2} \left(n \operatorname{E} [XY] + n (n-1) \operatorname{E} [X_i Y_j] \right)$

8.3 The Method of Maximum Likelihood

Likelihood is a function of parameters:

Likelihood is a function of parameters.
$$lik(\theta) = f_{X_1...X_n}(x_1,...,x_n|\theta)$$

$$= \prod_{i=1}^n f(x_i|\theta). \qquad (i.i.d.)$$

- For given data x_1, \ldots, x_n , what is the value of θ that maximizes $lik(\theta)$.
- Remember Example 15, Page 19 in Lecture Notes.
- Much easier, in many cases, to deal with the log likelihood:

$$l(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta).$$

$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \ 0 \le x.$

Example 22 ($Poisson(\lambda)$)

$$lik(\lambda) = p(x_1,...,x_x) = \prod_{i=1}^n \left(\frac{\lambda^{x_i}e^{-\lambda}}{x_i!}\right),$$

$$I(\lambda) = \sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda}}{1 + \lambda^{x_i}} \right)$$

$$l(\lambda) = \sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \right)$$

$$l(\lambda) = \sum_{i=1}^{N} \log \left(\frac{\lambda^{N_i} e^{-\lambda}}{x_i!} \right)$$
$$= \sum_{i} \left[x_i \log \lambda - \lambda - \log (x_i!) \right]$$

$$l(\lambda) = \sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda t}}{x_i!} \right)$$

$$l(\lambda) = \sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \right)$$

- $= \log(\lambda) \sum_{i} x_i n\lambda \sum_{i} \log(x_i!)$ (8.1)
- $l'(\lambda) = \frac{\sum_{i} x_i}{\lambda} n,$
- $(l'(\lambda) \stackrel{\text{set}}{=} 0)$
- $\widehat{\lambda} = \frac{1}{2} \sum x_i = \overline{X},$
- (MoM)
- $l''(\lambda) = \frac{-\sum_{i} x_i}{12} \le 0.$ $(x_i \geq 0)$

Therefore,
$$\widehat{\lambda} = \overline{X}$$
 is a point of local maxima; and
$$\lim_{X \to \infty} I(\lambda) = -\infty$$

 $\lim l(\lambda) = -\infty.$ then, $\widehat{\lambda} = \overline{X}$ is a global maximum as well.

What does (8.1) mean for asbestos dataset?

Example 23 ($N(\mu, \sigma^2)$, both are unkown)

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-1}{2} \left(\frac{x_i - \mu}{\sigma}\right)^2\right]$$

$$l(\mu, \sigma) = \sum_{i=1}^{n} \log f(x_i | \mu, \sigma)$$
$$= \sum_{i=1}^{n} \log \sigma \log \sqrt{2\sigma}$$

$$= \sum_{i=1}^{\infty} \left[-\log \sigma - \log \sqrt{2\pi} - \frac{1}{2} \left(\frac{x_i - \mu}{\sigma} \right)^2 \right]$$

$$= \sum_{i} \left[-\log \epsilon \right]$$

$$= -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$
$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) \qquad (\frac{\partial l}{\partial \mu} \stackrel{\text{set}}{=} 0)$$

$$\frac{\partial \mu}{\partial \mu} - \frac{\partial \mu}{\partial \sigma^2} \sum_{i} (x_i - \mu)$$

$$0 = \sum_{i} x_i - n\widehat{\mu},$$

$$\hat{\mu} = \sum_{i} x_{i} - n\hat{\mu},$$
 $\hat{\mu} = \frac{1}{2} \sum_{i} x_{i} = \overline{X}.$

$$\widehat{\mu} = \frac{1}{n} \sum_{i} x_{i} = \overline{X}. \tag{MoM}$$

$$\frac{\partial l}{\partial \sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^3} \sum_{i} (x_i - \mu)^2 \qquad (\frac{\partial l}{\partial \sigma} \stackrel{\text{set}}{=} 0)$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_i \left(x_i - \overline{X} \right)^2. \tag{MoM}$$
 To verify that $(\widehat{\mu}, \widehat{\sigma})$ is a point of global maxima through calculus we have to satisfy:

First: it is a point of local maxima

•
$$\frac{\partial l}{\partial \mu}|_{\widehat{\mu}} = \frac{\partial l}{\partial \sigma}|_{\widehat{\sigma}} = 0$$
 (satisfied)

•
$$\frac{\partial^2 l}{\partial \mu^2}|_{\widehat{\mu}} = 0$$
 or $\frac{\partial^2 l}{\partial \sigma^2}|_{\widehat{\sigma}} = 0$ (satisfied)

$$\bullet \left| \begin{array}{cc} \frac{\partial^{2}l}{\partial\mu^{2}} & \frac{\partial^{2}l}{\partial\mu\partial\sigma} \\ \frac{\partial^{2}l}{\partial\mu\partial\sigma} & \frac{\partial^{2}l}{\partial\sigma^{2}} \end{array} \right|_{\widehat{\mu},\widehat{\sigma}} > 0 \ (needs \ work).$$
 Second: there is no maximum at infinity (messy).

Secona: tnere is no maximum at infinity (messy)

Instead, we can use a trick:

$$l(\mu, \sigma) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i}(x_i - \mu)^2$$

 $\sum_{i} (x_i - \mu)^2 = \sum_{i} (x_i - \overline{X})^2.$

is maximized for

Then $l\left(\overline{X},\sigma\right)$ is a function in single variable σ , $\frac{\partial l}{\partial z} = \frac{-n}{z} + \frac{1}{z^2} \sum_{i} \left(x_i - \overline{X}\right)^2, \qquad \left(\frac{\partial l}{\partial z} \stackrel{set}{=} 0\right)$

$$\frac{\partial l}{\partial \sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^3} \sum_{i} \left(x_i - \overline{X} \right)^2, \qquad \left(\frac{\partial l}{\partial \sigma} \stackrel{set}{=} \right)^2$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i} \left(x_i - \overline{X} \right)^2$$

$$\frac{\partial^2 l}{\partial \sigma^2} = \frac{n}{\sigma^2} - \frac{3}{\sigma^4} \sum_{i} \left(x_i - \overline{X} \right)^2$$

$$n \left(1 - \frac{3}{\sigma^2} \sum_{i} \left(x_i - \overline{X} \right)^2 \right)$$

$$= \frac{n}{\sigma^2} \left(1 - \frac{3}{n\sigma^2} \sum_{i} \left(x_i - \overline{X} \right)^2 \right),$$

$$\frac{\partial^2 l}{\partial \sigma^2} \bigg|_{l} = \frac{n}{\widehat{\sigma}^2} (1 - 3) < 0,$$

$$\left. \frac{\partial}{\partial \sigma^2} \right|_{\widehat{\sigma}} = \frac{\partial}{\partial \sigma^2} (1 - 3) < 0,$$
which gives a local maximum for $l(\sigma)$. And

 $\lim_{\sigma \to \infty} l(\sigma) = -\infty.$ Hence, $\widehat{\sigma}$ attains a global maxima.

Example 24 ($Gamma(\alpha, \lambda)$) :

$$\dot{z} = -$$

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}, \ 0 \le x < \infty$$

$$I(\alpha, \lambda) = \sum_{i=1}^{n} (\alpha \log \lambda + (\alpha - 1) \log x_i - \lambda x_i - \log \Gamma(\alpha))$$
$$= n\alpha \log \lambda + (\alpha - 1) \sum_{i=1}^{n} \log x_i - \lambda \sum_{i=1}^{n} x_i$$

 $0 = n \log \left(\frac{\widehat{\alpha}}{\overline{Y}}\right) + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})}$

 $0 = n \log \widehat{\alpha} - n \log \overline{X} + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})},$

43

 $(\frac{\partial l}{\partial \lambda} \stackrel{set}{=} 0)$

 $(\frac{\partial l}{\partial \alpha} \stackrel{set}{=} 0)$

$$\frac{\partial l}{\partial \lambda}$$

$$\frac{i}{\lambda}$$

$$\widehat{\lambda}$$

$$\widehat{\lambda}$$

$$\widehat{\lambda} = \frac{\widehat{\alpha}}{\overline{X}}.$$

$$\widehat{\lambda} = \frac{\alpha}{\overline{X}}.$$

$$\frac{\partial l}{\partial \alpha} = n \log \lambda + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$$

$$-n\log\Gamma(\alpha)$$

$$\frac{\partial l}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} x_i$$

$$(\alpha)^{n}$$

$$\frac{\overline{\alpha}}{\alpha}$$
 α

- no closed-form solution.
- solution has to be found either by numerical methods or bootstrap (later)
- more complications for checking the second derivatives.

Example 25

$$f(x) = \frac{1}{\theta}, \ 0 \le x \le \theta$$
$$= \frac{1}{\theta} I_{(0 \le x \le \theta)}$$
$$l(\theta) = \sum_{i=1}^{n} -\log \theta, \ x_i \le \theta$$
$$= -n\log \theta, \ x^{(n)} \le \theta$$
$$\widehat{\theta} = x^{(n)}.$$

- We know $f_{X^{(n)}}(x)$ for $X \sim Uniform(0,\theta)$.
- Compare to MoM:

$$\mu_1 = \frac{\theta}{2}$$
 $\widehat{\theta} = 2\overline{X}$.

• Intuitively, this is clear.

$\sum_{i=1}^{m} p_i = 1, \sum_{i=1}^{m} x_i = n$

Example 26 ($Multinomial(p_1,...,p_m)$) :

$$f(x_1,...,x_m) = \frac{n!}{x_1!...x_m!} p_1^{x_1}...p_m^{x_m}$$

$$x_1,\ldots,x_m$$
 = $x_1!\ldots$

$$(p_1,\ldots,p_m)=\log n!$$

$$l(p_1,...,p_m) = \log n! - \sum_{i=1}^m \log x_i! + \sum_{i=1}^m x_i \log p_i$$

$$(p_1, \dots, p_m, \lambda) = \log n! - 1$$

$$,\ldots,p_m,\lambda)=\log n!-$$

$$L(p_1,...,p_m,\lambda) = \log n! - \sum_{i=1}^m \log x_i! + \sum_{i=1}^m x_i \log p_i$$

$$(1, p_m, n) = \log n$$

$$i = 1$$

$$\int_{-\infty}^{\infty} m$$

$$+\lambda\left(\sum_{i=1}^{m}p_{i}-1\right)$$

$$+\lambda \left(\sum_{i=1}^{n} p_i - \frac{1}{2}\right)$$

$$\partial L = x_i$$

$$+ \lambda \left(\sum_{i=1}^{n} p_i - \frac{\partial L}{\partial x_i} \right) = \frac{x_i}{1 + \lambda}$$

$$\frac{\partial L}{\partial p_i} = \frac{x_i}{p_i} + \lambda$$

$$\frac{\partial L}{\partial p_i} = \frac{x_i}{p_i} + \lambda$$

 $\lambda = -n$.

 $\widehat{p}_i = \frac{x_i}{x_i}$

$$\frac{\partial p_i}{\partial p_i} = \frac{1}{p_i}$$

$$\hat{p}_i = \frac{1}{2}$$

$$\partial p_i = \frac{p_i}{\lambda}$$

$$\frac{\overline{\partial p_i}}{\partial p_i} = \frac{-}{p_i} + \frac{}{p_i}$$

$$\widehat{p}_i = \frac{-x_i}{}$$

$$\widehat{p}_i = \frac{-x_i}{\lambda},$$

$$1 = \sum_i \widehat{p}_i = \sum_{i=1}^m \frac{-x_i}{\lambda} = \frac{-n}{\lambda},$$

$$\widehat{p}_i = \frac{p_i}{\lambda}$$

$$\widehat{p}_i = \frac{-x_i}{\lambda},$$

$$\widehat{p}_i = \frac{p_i}{\lambda},$$

$$(\frac{\partial L}{\partial n_i} \stackrel{set}{=} 0)$$

$$\int_{1}^{\infty} x_i \log p$$

(intuitive)

$$p_{g}p_{i}$$

• A special case is Binomial (n, p), where m = 2, $p_1 = p$, $x_1 = x$, n is known

$$\widehat{p} = \frac{x}{n},$$

• *n above is a parameter; the number of observations is* 1, *which is the vector* $(x_1,...,x_m)$. For K observations: $(x_{11}, \ldots x_{1m}), \ldots, (x_{K1}, \ldots x_{Km})$. $f(x_1,...,x_K) = \prod_{k=1}^{K} \frac{n!}{x_{k1}!...x_{km}!} p_1^{x_{k1}}...p_m^{x_{km}}$

$$f(x_1,...,x_K) = \prod_{k=1}^{m} \frac{1}{x_{k1}!...x_{km}!} p_1^{x_{k1}}...p_m^{x_{km}}$$

$$L(p_1,...,p_m,\lambda) = \log(n!)^K - \sum_{k=1}^{m} \sum_{l=1}^{K} \log x_{ki}!$$

$$L(p_1, ..., p_m, \lambda) = \log(n!)^K - \sum_{i=1}^m \sum_{k=1}^K \log x_{ki}! + \sum_{i=1}^m \sum_{k=1}^K x_{ki} \log p_i + \lambda \left(\sum_{i=1}^m p_i - 1\right)$$

$$+\sum_{i=1}^{m}\sum_{k=1}^{K}x_{ki}\log p_i + \lambda \left(\sum_{i=1}^{m}p_i - 1\right)$$

$$\frac{\partial L}{\partial x} = \sum_{k=1}^{K}x_{ki} + \lambda,$$

$$+\sum_{i=1}^{K}\sum_{k=1}^{K}x_{ki}\log p_i + \lambda \left(\sum_{i=1}^{K}p_i - 1\right)$$

$$\frac{\partial L}{\partial p_i} = \frac{\sum_{k=1}^{K}x_{ki}}{p_i} + \lambda,$$

$$-\sum_{k=1}^{K}x_{ki}$$

$$egin{aligned} rac{\partial L}{\partial p_i} &= rac{\sum_{k=1}^K x_{ki}}{p_i} + \lambda, \ \widehat{p}_i &= rac{-\sum_{k=1}^K x_{ki}}{\lambda} \end{aligned}$$

$$\frac{\partial p_i}{\partial p_i} = \frac{1}{p_i} + \lambda,$$

$$\hat{p}_i = \frac{-\sum_{k=1}^K x_{ki}}{\lambda}$$

$$-\sum_{k=1}^M \sum_{k=1}^K x_{ki} - nK$$

$$\widehat{p}_{i} = \frac{-\sum_{k=1}^{K} x_{ki}}{\lambda} \\ -\sum_{i=1}^{m} \sum_{k=1}^{K} x_{ki} - nK$$

$$egin{aligned} \partial p_i & p_i \ \widehat{p}_i &= rac{-\sum_{k=1}^K x_{ki}}{\lambda} \ 1 &= rac{-\sum_{i=1}^m \sum_{k=1}^K x_{ki}}{\lambda} &= rac{-nK}{\lambda} \end{aligned}$$

$$\begin{aligned}
\hat{p}_i &= \frac{\lambda}{\lambda} \\
1 &= \frac{-\sum_{i=1}^m \sum_{k=1}^K x_{ki}}{\lambda} = \frac{-nK}{\lambda} \\
\hat{p}_i &= \frac{\sum_{k=1}^K x_{ki}}{nK} = \frac{\overline{X_i}}{n},
\end{aligned}$$

which for Binomial(n, p) will be

which is very intuitive.

 $\widehat{p} = \frac{X}{n}$,

8.3.1 Large Sample Theory for MLE

Reminder:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad (\overline{X})$$

$$\widehat{\mu} \xrightarrow{p} \operatorname{E}[X] \qquad (WLLN)$$

$$\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \xrightarrow{d} N(0, 1) \qquad (CLT)$$

(X)

$$\lim_{n \to \infty} \Pr\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \le x\right) = \Pr\left(N(0, 1) \le x\right)$$

$$\lim_{n \to \infty} \Pr\left(\sqrt{n} \left(\widehat{\mu} - \mu\right) \le \sigma x\right) = \Pr\left(\sigma N(0, 1) \le \sigma x\right)$$

$$= \Pr\left(N\left(0, \sigma^{2}\right) \le \sigma x\right)$$

$$\sqrt{n}\left(\widehat{\mu} - \mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right) \quad \text{(CLT')}$$

Definition 27 (Asymptotic Mean and Variance)

: For any statistic (or estimator)
$$T_n$$
, if $k_n \frac{T_n - \mu}{\sigma} \xrightarrow{d} N(0,1)$, $(k_n \text{ can be } \sqrt{n})$

we call μ and σ^2 the asymptotic mean and variance (even if $E[T_n] \neq \mu$ and $Var[T_n] \neq \sigma^2$).

Notice that:

MoM:

$$\sqrt{n} \frac{\widehat{\mu}_r - \mathbb{E}[X^r]}{\sqrt{\operatorname{Var}[X^r]}} \xrightarrow{d} N(0, 1)$$

• $E[\widehat{\mu}_r] = E[X^r]$ (always unbiased $\forall n$)

• the estimated parameters, e.g., $\hat{\sigma}^2$, may be

 $\widehat{\mu}_r \stackrel{p}{\to} E[X^r]$ (E[$\widehat{\mu}_r$] $\stackrel{always}{=} E[X^r]$)

 $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\widehat{\mu} \stackrel{p}{\to} \mathrm{E}[X]$

 $\widehat{\mu}_r = \frac{1}{n} \sum_{i=1}^n X_i^r,$

 $\sqrt{n} \frac{\widehat{\mu} - \mathbb{E}[X]}{\sqrt{\text{Var}[X]}} \stackrel{d}{\to} N(0,1)$

biased for finite *n*.

(X)

(WLLN)

(CLT)

(MoM)

50

Some Intuition First:

We simulated 1000 curves, why few are there

51

• **Take care:** E[X] above is $E_{X|\theta_0}[X]$.

Why curves are less than zero?

 $l(\theta|X) = X\log\theta - \theta - \log(X!)$

 $l(\theta|X_1,...,X_n) = \sum_{i} X_i \log \theta - n\theta - \sum_{i} \log(X_i!)$

 $\frac{1}{-}l(\theta) \xrightarrow{p} E\left[\log f(X|\theta)\right]$

 $E[l(\theta|X)] = E[X] \log \theta - \theta - E[\log(X!)]$

fs): ', 'FontSize', fs, 'Units', ' normalized'); latex','FontSize',fs, 'Units', ' normalized'); hold all;

Matlab Code 8.2:

theta0=10; theta = (0:.01:50)';

ltheta = zeros(length(theta), C);

C = 1000;

```
x=random('Poisson', theta0, [n, 1]);
    ltheta(:, c)=mean(x)*log(theta)-
       theta-sum(log(factorial(x)))/n;
    plot(theta, ltheta(:, c), 'b');
end;
n=1;
for c=1:C
    x=random('Poisson', theta0, [n, 1]);
    ltheta(:, c)=x*log(theta)-theta-
      sum(log(factorial(x)));
    plot(theta, ltheta(:, c), 'r');
end;
plot(theta, mean(ltheta, 2), 'r--', '
  LineWidth', 4);
Theorem 28 Under regularity conditions on f, the
MLE estimator is consistent
                    53
```

n=10;

for c=1:C

 $l(\theta) = \sum_{i=1}^{n} \log f(X_i|\theta),$

Semi-Proof. :Under regularity conditions

$$\frac{1}{p}l(\theta) \xrightarrow{p} E\left[\log f(X|\theta)\right], \qquad ($$

 $\operatorname{arg\,max} l(\theta) = \operatorname{arg\,max} \frac{1}{n} l(\theta)$ (of course)

$$\frac{I \text{ hope}}{e} \operatorname{argmax} E \left[\log f(X|\theta) \right]$$

$$\frac{\partial}{\partial x} f(X|\theta) = \frac{\partial}{\partial x} \int_{-\infty}^{\infty} dx dx = \frac{\partial}$$

$$\frac{\partial}{\partial \theta} E \left[\log f(X|\theta) \right] = \frac{\partial}{\partial \theta} \int_{C} \log f(x|\theta) f(x|\theta_0) dx$$

$$= \int \frac{\partial}{\partial \theta} \log f(x|\theta) \ f(x|\theta_0) \ dx$$

$$\int \frac{\partial}{\partial \theta} f(x|\theta) \ dx = 0$$

$$= \int \frac{\frac{\partial}{\partial \theta} f(x|\theta)}{f(x|\theta)} f(x|\theta_0) dx$$

$$= \int \frac{1}{f(x|\theta)} f(x|\theta_0) dx$$

$$\frac{\partial}{\partial \theta} E[\log f(X|\theta)] \Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) dx \Big|_{\theta_0}$$

$$\log f(X|\theta) \Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx \Big|_{\theta_0}$$
$$= \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx \Big|_{\theta_0}$$

$$\begin{aligned} & \int f(x|\theta) \int dx \\ & \left[f(X|\theta) \right] \Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx \Big|_{\theta_0} \\ & = \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx \Big|_{\theta_0} \end{aligned}$$

$$gf(X|\theta)\Big]\Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx\Big|_{\theta_0}$$
$$= \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx\Big|$$

$$= \frac{\partial}{\partial \theta} \int \left(x | \theta \right) dx \Big|_{\theta_0}$$

$$= \frac{\partial}{\partial \theta} \int f(x | \theta) dx \Big|_{\theta_0}$$

$$= \frac{\partial}{\partial \theta} \int f(x|\theta) dx \bigg|_{\theta_0}$$

$$\frac{\partial \theta}{\partial \theta} \int_{\theta_0}^{\theta} d\theta = 0$$

$$= \frac{\partial}{\partial \theta} 1 \Big|_{\theta_0} = 0$$

Lemma 29 *Under regularity conditions:*

$$E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right] = 0$$

$$E\left[\left(\frac{\partial}{\partial \theta} \log f\left(X|\theta\right)\right)^{2}\right] = -E\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X|\theta\right)\right],$$
which is called $I(\theta)$, the Fisher information (information number) of one observation.

 $(E_{X|\theta})$

- What is the meaning of "Information" here? Let's see on the figure.
- Meaning of both equations.

$$f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) = f(x|\theta) \frac{\frac{\partial}{\partial \theta} f(x|\theta)}{f(x|\theta)} = \frac{\partial}{\partial \theta} f(x|\theta)$$

 $0 = \frac{\partial}{\partial \theta}(1) = \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx$

$$= \int f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) dx$$
$$= \frac{\partial}{\partial \theta} \int f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) dx$$

$$= \int \frac{\partial}{\partial \theta} f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) dx + \int f(x|\theta) \frac{\partial^2}{\partial \theta^2} \log f(x|\theta) dx$$

$$\int f(x|\theta) \frac{\partial^2}{\partial \theta^2} \log f(x|\theta) dx$$

$$= \int f(x|\theta) \int_{-\infty}^{\infty} \log f(x|\theta) dx$$

$$\int f(x|\theta) \left(\frac{\partial}{\partial \theta}\right) d\theta$$

$$= \int f(x|\theta) \left(\frac{\partial}{\partial \theta} \log f(x|\theta) \right) dx$$
$$\int f(x|\theta) \left(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right) dx$$

$$= \int f(x|\theta) \left(\frac{\partial}{\partial \theta} \log f(x|\theta)\right)^2 dx +$$

$$(\mathrm{E}_{X| heta_0})$$

$$dx$$
 $dx+$

 $= E \left| \left(\frac{\partial}{\partial \theta} \log f(x|\theta) \right)^{2} \right| + E \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(x|\theta) \right]$

56

of θ . Then, under regularity conditions $\sqrt{n} \frac{\widehat{\theta} - \theta}{1/\sqrt{I(\theta)}} \xrightarrow{d} N(0,1),$

Theorem 30 Let $X_1, ..., X_n \stackrel{iid}{\sim} f(X|\theta)$, $\widehat{\theta}$ is the MLE

$$\sqrt{n} \frac{\tau(\widehat{\theta}) - \tau(\theta)}{1/\sqrt{I(\theta)}} \xrightarrow{d} N(0,1).$$
That is, any estimator $\tau(\widehat{\theta})$ (or $\widehat{\theta}$) is asymptoti-

cally unbiased for $\tau(\theta)$ (or θ) with asymptotic variance of $1/I(\theta)$. So, we have $\stackrel{d}{\rightarrow} N(0,1)$ in addition $to \stackrel{p}{\rightarrow} \theta$.

Proof. Suppose that the true value of θ is θ_0

Proof. Suppose that the true value of
$$\theta$$
 is θ_0

$$l(\theta) = \sum_{i=1}^{n} \log f(X_i|\theta)$$

 $l'(\theta) = l'(\theta_0) + (\theta - \theta_0) l''(\theta_0) + \cdots$ $l'(\widehat{\theta}) = l'(\theta_0) + (\widehat{\theta} - \theta_0) l''(\theta_0) + \cdots$

$$l'(\theta) = l'(\theta_0) + (\theta - \theta_0) l''(\theta_0) + \cdots$$

$$(\widehat{\theta} - \theta_0) \approx -l'(\theta_0) / l''(\theta_0) \quad \text{(MLE def.)}$$

$$\frac{(\widehat{\theta} - \theta_0)}{n} \approx \frac{\sqrt{n} \frac{1}{n} l'(\theta_0) / \sqrt{I(\theta_0)}}{n}$$

 $\sqrt{n} \frac{\left(\widehat{\theta} - \theta_0\right)}{\sqrt{1/I(\theta_0)}} \approx \frac{\sqrt{n} \frac{1}{n} l'(\theta_0) / \sqrt{I(\theta_0)}}{\frac{-1}{n} l''(\theta_0) / I(\theta_0)}.$

$$\frac{-1}{n}l''(\theta_0) \xrightarrow{p} I(\theta_0)$$

$$\frac{-1}{n}l''(\theta_0)/I(\theta_0) \xrightarrow{p} 1$$

$$\sqrt{n}\frac{(\widehat{\theta} - \theta_0)}{\sqrt{1/I(\theta_0)}} \xrightarrow{d} N(0, 1).$$

 $\frac{-1}{n}l''(\theta_0) = \frac{-1}{n}\sum_{i}\frac{\partial^2}{\partial\theta^2}\log f(X_i|\theta)$ $E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right|_{\theta} = -I(\theta_0)$

 $\sqrt{n} \frac{\dot{\bar{n}} l'(\theta_0) - 0}{\sqrt{I(\theta_0)}} \stackrel{d}{\to} N(0, 1)$

 $\operatorname{Var}\left[\left.\frac{\partial}{\partial \theta} \log f\left(X_{i} | \theta\right)\right|_{\theta_{0}}\right] = \operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \log f\left(X | \theta\right)\right)^{2}\right]_{0}$

 $=I(\theta_0)$

 $\frac{1}{n}l'(\theta_0) = \frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}\log f(X_i|\theta)\Big|_{\alpha}$

 $E\left|\frac{\partial}{\partial \theta}\log f\left(X_{i}|\theta\right)\right|_{\Omega}=0$

 $(\mathbf{E}_{X|\theta_0})$

 $\sqrt{n} \left(\widehat{\theta} - \theta_0 \right) \stackrel{d}{\to} N(0, 1/I(\theta_0)),$ which means that the MLE $\widehat{\theta}$ • Asymptotically unbiased

 $\sqrt{n} \frac{\theta - \theta_0}{\sqrt{1/I(\theta_0)}} \stackrel{d}{\to} N(0,1),$

• Asymptotic variance =
$$1/I(\theta_0)$$

Said differently

Asymptotically normally distributed.

Why variance decreases with
$$I(\theta_0)$$
?
$$I(\theta_0) = -E\left[\left.\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right|_{\theta_0}\right]$$

High $I(\theta_0)$ means very sharp curve at θ_0 , which means very probable θ_0 , which means less likely that the next dataset will not support that inference; and hence less variable the next estimator is.

The Bayesian Approach to Parameter Estimation

- We treat θ as r.v. with **subjective** prior knowledge f_{Θ} ; as opposed to "Frequentist (or Classical) Approach"
 - Data $\mathbf{x} = x_1, ..., x_n$ for $\mathbf{X} = X_1, ..., X_n$ modifies our belief and produces the posterior $f_{\Theta|\mathbf{X}}$?
 - We estimate θ by many criteria; e.g.,:

 $\widehat{\theta} = \operatorname{argmax} f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})$

1. Posterior Mode/Max. A Posteriori (MAP):

2. Posterior Mean:
$$\widehat{Q} = \mathbb{E}[Q] = \int Q f \cdot (Q|\mathbf{x}) dQ$$

$$\widehat{\theta} = \mathop{\mathbf{E}}_{\Theta}[\theta] = \int \theta f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \, d\theta$$

3. Posterior loss function optimization:
$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \operatorname{E}_{\Theta} \big[L \big(\eta, \theta \big) \big]$$

$$= \underset{\eta}{\operatorname{arg\,min}} \int L(\eta, \theta) f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

General Framework:

$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = \frac{f_{\mathbf{X},\Theta}(\mathbf{x},\theta)}{f_{\mathbf{X}}(\mathbf{x})}$$

$$= \frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)}{\int f_{\mathbf{X},\Theta}(\mathbf{x},\theta) d\theta}$$

$$= \frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)}{\int f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta) d\theta}$$

$$= Const(\mathbf{x}) f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)$$

 $Posterior \propto Likelihood \times Prior.$

$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = Const(\mathbf{x}) f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)$

Connection to MLE:

if we choose an uninformative prior $\Theta \sim U$ to let data speak for themselves:

(MLE)

$$f_{\Theta|X}(\theta|x) = Const(x) f_{X|\Theta}(x|\theta)$$

 $\propto Likelihood$

Then, if we choose MAP criterion

$$\widehat{\theta} = \operatorname{arg\,max} l\left(\theta\right)$$

$f_{\mathbf{X}|\Lambda} = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}, \ 0 \le x_i,$

Example 31 (Poisson) X denotes $X_1, ..., X_n$:

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda}}{\prod_{i} x_{i}!} f_{\mathbf{X}|\Lambda}(\mathbf{x}|\lambda) f_{\Lambda}(\lambda)$$

$$f_{\Lambda|\mathbf{X}} = \frac{f_{\mathbf{X}|\Lambda} (\mathbf{x}|\lambda) f_{\Lambda} (\lambda)}{\int f_{\mathbf{X}|\Lambda} (\mathbf{x}|\lambda) f_{\Lambda} (\lambda) d\lambda}$$
$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda} (\lambda) / \prod_{i} x_{i}!}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda} (\lambda) / \prod_{i} x_{i}! d\lambda}$$

$$\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) / \prod_{i} x_{i}! d\lambda$$

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{1}{100}}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{1}{100} d\lambda} \qquad (\Lambda \sim U(0, 100))$$

$$= \frac{1}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{1}{100} d\lambda} \qquad (A \sim 0)(0, 100)$$

$$= \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda} \qquad (Gamma(\alpha, v))$$

$$= \frac{v}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-v\lambda} \qquad (Gamma(\alpha, v))$$

$$\sim Gamma(S_n + 1, n)$$

$$\sim Gamma(S_n + 1, n)$$

$$\widehat{\lambda} = \mathbb{E}[\Lambda] = \frac{S_n + 1}{X} = \overline{X} + \frac{1}{X}$$
 (Post. Mean

$$\sim Gamma(S_n + 1, n)$$

$$\widehat{\lambda} = E[\Lambda] = \frac{S_n + 1}{n} = \overline{X} + \frac{1}{n} \quad \text{(Post. Mean)}$$

$$\widehat{\lambda} = \operatorname{E}[\Lambda] = \frac{S_n + 1}{n} = \overline{X} + \frac{1}{n} \quad \text{(Post. Mean)}$$

$$\frac{\partial f_{\Lambda | \mathbf{X}}}{\partial f_{\Lambda | \mathbf{X}}} = \frac{v^{\alpha}}{n} \left((\alpha - 1) \lambda^{\alpha - 2} e^{-v\lambda} - v\lambda^{\alpha - 1} e^{-v\lambda} \right)$$

$$\frac{\partial f_{\Lambda|\mathbf{X}}}{\partial \lambda} = \frac{v^{\alpha}}{\Gamma(\alpha)} \left((\alpha - 1) \lambda^{\alpha - 2} e^{-v\lambda} - v\lambda^{\alpha - 1} e^{-v\lambda} \right)$$

$$\frac{\partial f_{\Lambda | \mathbf{X}}}{\partial \lambda} = \frac{v^{\alpha}}{\Gamma(\alpha)} \left((\alpha - 1) \lambda^{\alpha - 2} e^{-v\lambda} - v \lambda^{\alpha - 1} e^{-v\lambda} \right)$$

$$\widehat{\alpha} = \frac{\alpha - 1}{\alpha} S_n = \overline{S}_n$$

$$\frac{\partial \lambda}{\partial \lambda} = \frac{1}{\Gamma(\alpha)} ((\alpha - 1)\lambda \quad e \quad -v\lambda \quad e)$$

$$\hat{\lambda} = \frac{\alpha - 1}{\lambda} = \frac{S_n}{N} = \overline{X} \quad (MAP \equiv MLE)$$

$$\widehat{\lambda} = \frac{\alpha - 1}{v} = \frac{S_n}{n} = \overline{X}$$

$$\frac{S_n}{n} = \frac{573}{23} = 24.9, \quad \frac{S_n + 1}{n} = 25$$

that Λ has $\mu = 15$ and $\sigma = 5$ then, we can assume that $\Lambda \sim Gamma(\alpha, \nu)$ with $\mu = \alpha/\nu$.

On the other hand, if we have the prior knowledge

$$\sigma^2 = \alpha/v^2,$$

$$v = \frac{\mu}{\sigma^2} = 0.6 << n \qquad (n = 23)$$

 $(S_n = 573)$

(Post. Mean)

(MAP)

$$\alpha = \nu \mu = 9 << S_n,$$

$$A_{\Lambda | \mathbf{X}} = \frac{\lambda^{\sum_i x_i} e^{-n\lambda} f_{\Lambda}(\lambda)}{f_{\Lambda}(\lambda) + f_{\Lambda}(\lambda)}$$

$$f_{\Lambda|\mathbf{X}} = \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda)}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) d\lambda}$$
$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda}}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda}}$$

 $\widehat{\lambda} = \frac{S_n + \alpha}{n + \nu} = \frac{573 + 9}{23 + 6} = 24.7$

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{\nabla^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\nu\lambda} d\lambda}{\int \lambda^{(S_{n}+\alpha-1)} e^{-(n+\nu)\lambda}}$$

$$= \frac{\lambda^{(S_n + \alpha - 1)} e^{-(n + \nu)\lambda}}{\int \lambda^{(S_n + \alpha - 1)} e^{-(n + \nu)\lambda} d\lambda}$$

$$= \frac{\lambda^{(S_n + \alpha - 1)} e^{-(n+\nu)\lambda}}{\int \lambda^{(S_n + \alpha - 1)} e^{-(n+\nu)\lambda} d\lambda}$$
$$\sim Gamma(S_n + \alpha, n + \nu)$$

$$= \frac{\Gamma(\alpha)^{N}}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{\nu^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha}} \lambda^{\alpha}$$

$$\lambda^{(S_{n}+\alpha-1)} e^{-(n+\nu)^{N}}$$

 $\widehat{\lambda} = \frac{S_n + \alpha - 1}{n + \nu} = \frac{573 + 9 - 1}{23 + 6} = 24.6$

 $\mu_1 = p$,

Example 32 (Ber(p)) : n obs., then

$$\mu_1 = p,$$

$$\widehat{p} = \overline{X} = \frac{\sum_i x_i}{n} = \frac{\# Heads}{n},$$

$$p_X(x) = p^x (1-p)^{1-x}, x = 0, 1$$

(MoM)

 $l(p) = \sum_{i} x_i \log p + \sum_{i} (1 - x_i) \log (1 - p)$

 $l'(p) = \frac{\sum_{i} x_i}{p} - \frac{\sum_{i} (1 - x_i)}{1 - p}$ $(l'(p) \stackrel{set}{=} 0)$

 $\widehat{p} = \overline{X} = \frac{\sum_{i} x_{i}}{\sum_{i} x_{i}} = \frac{\# Heads}{n}.$

(MLE)

Let's see the Bayesian approach.

Now, if we get 5 heads in 5 trials \hat{p} will be 1!!!!

65

 $\widehat{p} = \frac{A-1}{A+B-2} = \frac{a+S-1}{a+b+n-2}$ (MAP) $=\frac{a+S-1}{2a+n}$

 $f_{\mathbf{X}|P} = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i} x_i} (1-p)^{\sum_{i} (1-x_i)}$

 $f_{P}(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1} (\sim Beta(a,b))$

 $f_{P|\mathbf{X}} = \frac{f_{\mathbf{X}|P}(\mathbf{x}|p) f_{P}(p)}{\int f_{\mathbf{X}|P}(\mathbf{x}|p) f_{P}(p) dp}$

 $\propto p^{a-1+S} (1-p)^{b-1+(n-S)}$

 $\sim Beta(a+S,b+n-S)$.

$$= \frac{a+3-1}{2a+n-2}$$
 (Symmetric Prior)

$$= \frac{1}{2a+n-2}$$
 (Symmetric Prior)

$$a = 1 \cdot II \cdot (0, 1), \quad \widehat{n} = S = MIF$$

$$2a + n - 2$$

$$a = 1: U(0, 1), \widehat{p} = \frac{S}{n} \equiv MLE.$$

= 1. O (0, 1),
$$p - \frac{1}{n} = NILL$$
.
= 2: not uniform but spread. $\hat{p} = (S+1)/(n+2)$

a = 2: not uniform but spread. $\hat{p} = (S+1)/(n+2)$.

•
$$S = n$$
: $\hat{p} = (n+1)/(n+2) \to 1$.

•
$$S = n/2$$
: $\hat{p} = 1/2$ (of course).

a >>: insisting on fair coin, $\hat{p} \approx a/(2a) = \frac{1}{2}$

$$f_{P|X} \sim Beta(a+S, b+n-S)$$

$$\widehat{p} = \frac{A}{A+B}$$

$$= \frac{a+S}{a+b+a}$$
 (Posterior Mean)

8.4.1 Large Sample Theory of **Bayesian Inference**

X and **x** denote $X_1, ..., X_n$ and $x_1, ..., x_n$, respectively, to simplify notation.

tively, to simplify notation.
$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \propto f_{\Theta}(\theta) \, f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) \,,$$
 which is dominated by $f_{\mathbf{X}|\Theta}$ as $n \to \infty$.
$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \propto f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) \qquad (\text{as } n \to \infty)$$

$$= \exp\left[\log f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)\right]$$

$$= \exp[l(\theta)]$$

$$= \exp[l(\widehat{\theta}) + (\theta - \widehat{\theta})l'(\widehat{\theta})$$

$$+ \frac{1}{2}(\theta - \widehat{\theta})^2 l''(\widehat{\theta}) + \dots]$$

$$= \exp[i(\theta) + (\theta - \theta)i(\theta - \theta)] + \frac{1}{2}(\theta - \widehat{\theta})^{2}l''(\widehat{\theta}) + \cdots]$$

$$= \left[1 (\theta - \widehat{\theta})^{2} \right]$$

$$\propto \exp\left[-\frac{1}{2}\frac{\left(\theta-\widehat{\theta}\right)^{2}}{-1/l''\left(\widehat{\theta}\right)}\right] \qquad (l'\left(\widehat{\theta}\right)=0)$$

$$\sim N\left(\widehat{\theta},-1/l''\left(\widehat{\theta}\right)\right).$$
Do not confuse it with the MLE asymptotic normality.

mality.

68

Assessing Estimators, Efficiency, and the Cramér-Rao Lower Bound

8.5

Mean Squared Error (MSE) 8.5.1 Criterion

$$MSE(\widehat{\theta}) = \underset{\mathbf{X}}{\mathbb{E}} \left[(\widehat{\theta} - \theta)^{2} \right]$$

$$= \underset{\mathbf{X}}{\text{Var}} \left[\widehat{\theta} \right] + \left(\underset{\mathbf{X}}{\mathbb{E}} \widehat{\theta} - \theta \right)^{2}$$

$$= Variance (\widehat{\theta}) + \left(Bias(\widehat{\theta}) \right)^{2}.$$

ble otherwise. • If $Bias(\widehat{\theta}) = 0$, $\widehat{\theta}$ is unbiased for θ .

• Since $MSE = MSE(\theta)$ no best estimator; e.g.

 $\widehat{\theta}$ = 12.3 is the best when θ = 12.3 but terri-

- Tradeoff exists between Bias and Variance.

A biased estimator may has lower MSE.

69

$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i} \left(X_i - \overline{X} \right)^2,$ $S^2 = \frac{1}{n-1} \sum_{i} \left(X_i - \overline{X} \right)^2$

Example 33 ($\widehat{\sigma}^2$ vs. S^2 for $N(\mu, \sigma^2)$) :

$$n-1 = 0$$

$$E[S^2] = \sigma^2 \qquad \text{(unbiased)}$$

$$Var[S^{2}] = \frac{2\sigma^{4}}{n-1}$$
 (see Extra Materials)

$$MSE(S^{2}) = \frac{2\sigma^{4}}{n-1} + (\sigma^{2} - \sigma^{2})^{2} = \frac{2\sigma^{4}}{n-1}$$

$$E[\widehat{\sigma}^2] = \frac{n-1}{n} \sigma^2$$
 (biased)

$$\operatorname{Var}\left[\widehat{\sigma}^{2}\right] = \operatorname{Var}\left[\frac{n-1}{n}S^{2}\right] = \left(\frac{n-1}{n}\right)^{2} \operatorname{Var}\left[S^{2}\right]$$

$$\left(n-1\right)^{2} \left(2\sigma^{4}\right) \quad 2\left(n-1\right)\sigma^{4}$$

$$\operatorname{Var}\left[\widehat{\sigma}^{2}\right] = \operatorname{Var}\left[\frac{n-1}{n}S^{2}\right] = \left(\frac{n-1}{n}\right) \operatorname{Var}\left[S^{2}\right]$$
$$= \left(\frac{n-1}{n}\right)^{2} \left(\frac{2\sigma^{4}}{n-1}\right) = \frac{2(n-1)\sigma^{4}}{n^{2}}$$
$$2(n-1)\sigma^{4} + (n-1)\sigma^{2}$$

$$= \left(\frac{n-1}{n}\right)^2 \left(\frac{2\sigma^4}{n-1}\right) = \frac{2(n-1)\sigma^4}{n^2}$$

$$MSE\left(\widehat{\sigma}^2\right) = \frac{2(n-1)\sigma^4}{n^2} + \left(\frac{n-1}{n}\sigma^2 - \sigma^2\right)^2$$

$$E(\sigma^{2}) = \frac{1}{n^{2}} + \left(\frac{1}{n}\sigma^{2} - \sigma^{2}\right)$$
$$= \frac{2n-1}{n^{2}}\sigma^{4} < \frac{2\sigma^{4}}{n-1} \,\forall \sigma, n.$$

Remarks:

- Although S^2 is unbiased, $\hat{\sigma}^2$ has less MSE.
- MSE, for scale parameter, may not be reasonable since $\sigma^2 > 0$.
- $\widehat{\theta}_1$ may be better than $\widehat{\theta}_2$ under some criterion and the other way around and another criterion.

$\operatorname{Var}\left[\widehat{p}_{M}\right] = \frac{1}{n}p\left(1-p\right)$

 $E[\widehat{p}_M] = p$

Example 34 (\widehat{p} of Ber(p)) :

 $\widehat{p}_M = \overline{X}$

$$MSE(\widehat{p}_M) = \frac{1}{n}p(1-p)$$

$$MSE(\widehat{p}_M) = \frac{1}{n}p(1-p)$$

(MLE)

(Posterior Mean)

$$\widehat{p}_{B} = \frac{S+a}{a+b+n}$$

$$E[\widehat{p}_B] = \frac{a+b+n}{a+b+n}$$

$$nn(1-n)$$

$$\operatorname{Var}\left[\widehat{p}_{B}\right] = \frac{a+b+n}{a+b+n}$$
$$\operatorname{Var}\left[\widehat{p}_{B}\right] = \frac{np(1-p)}{(a+b+n)^{2}}$$

$$\operatorname{Var}\left[\widehat{p}_{B}\right] = \frac{np\left(1 - \frac{1}{a + b}\right)}{np\left(1 - \frac{1}{a + b}\right)}$$

$$\operatorname{Var}[p_B] = \frac{1}{(a+b-1)}$$

$$\operatorname{SF}(\widehat{p}_B) = \frac{np(1-1)}{np(1-1)}$$

$$SE(\widehat{p}_B) = \frac{np(1-p)}{(a+b+p)^2} + \left(\frac{np}{a+p}\right)^2$$

$$MSE(\widehat{p}_B) = \frac{np(1-p)}{(a+b+n)^2} + \left(\frac{np+a}{a+b+n} - p\right)^2$$

$$(\hat{p}_B) = \frac{1}{(a+b+n)^2} + \left(\frac{1}{a+b+n} - \frac{1}{a+b+n}\right)$$

$$(a+b+n)^2 + \left(\frac{1}{a+b+n} - \frac{1}{a+b+n}\right)$$

$$a = b = \sqrt{n}/2$$
 relaxes dependen

Choosing
$$a = b = \sqrt{n}/2$$
 relaxes dependence on p :
$$\widehat{p}_n = \frac{S + \sqrt{n}/2}{n}$$

osing
$$a = b = \sqrt{n/2}$$
 relaxes dependence on
$$\widehat{p}_B = \frac{S + \sqrt{n/2}}{n + \sqrt{n}},$$

$$\widehat{p}_{B}=rac{S+\sqrt{n}/2}{n+\sqrt{n}},
onumber \ MSE\left(\widehat{p}_{B}
ight)=rac{n}{4\left(n+\sqrt{n}
ight)^{2}}.
onumber$$

$$MSE(\widehat{p}_{M}) = \frac{1}{n}p(1-p)$$

$$MSE(\widehat{p}_{B}) = \frac{n}{4(n+\sqrt{n})^{2}}$$

- For small n, \hat{p}_B is better unless p is on the boundary.
- For large n, \hat{p}_M is better unless p is in the middle.
- Having knowledge about the problem allows choosing the right estimator.

8.5.2 Best Unbiased Estimator **Definition 35 (UMVUE)** : An estimator $\hat{\theta}^*$, for θ ,

is a best unbiased estimator or uniform minimum variance unbiased estimator (UMVUE) if it satis*fies* $E[\widehat{\theta}^*] = \theta \ \forall \theta \ and \ for \ any \ other \ estimator \ \widehat{\theta} \ we$ have $\operatorname{Var}\left[\widehat{\theta}^*\right] \leq \operatorname{Var}\left[\widehat{\theta}\right]$.

Theorem 36 (Cramér-Rao Inequality) : Let

 $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} f(x|\theta)$ with regularity condition. The for any estimator $T = T(X_1, ..., X_n) = T(\mathbf{X})$

$$Var(T) \ge \frac{\left(\frac{d}{d\theta} E[T]\right)^2}{nI(\theta)},$$

$$Var(T) \ge \frac{1}{nI(\theta)}.$$
 (if T is unbiased)

- (if *T* is unbiased)
- For all estimators with particular bias: the higher the information number the lower the *lower bound*.
 - An estimator *attains* (*attainment*) the lower bound is called *efficient*.

Proof. :Since $1 \le \rho = \text{Cov}(T, Z) / \sqrt{\text{Var}(T) \text{Var}(Z)}$ $Var[T] \ge (Cov(T, Z))^2 / Var(Z)$

$$Z = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i | \theta)$$

$$\text{Var}[Z] = n \text{Var} \left[\frac{\partial}{\partial \theta} \log f(X_i | \theta) \right]$$

$$= nI(\theta)$$
 (Proof of Th. 30)

$$\sigma_{TZ} = F(Z - F(Z)) (T - F(T)) - F(T(Z - F(Z))$$

$$\sigma_{TZ} = E(Z - E[Z]) (T - E[T]) = E[T(Z - E[Z])]$$

= $E[ZT]$ (E[Z] = 0)

$$= E[ZT] \qquad (E[Z] = E[T\frac{\partial}{\partial \theta} \log \prod f(X_i|\theta)]$$

$$= \mathbf{E} \left[T \frac{\partial}{\partial \theta} \log \prod_{i} f(X_{i} | \theta) \right]$$

$$= E \left[T \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right] \qquad (\mathbf{X} = X_1, \dots, X_n)$$

$$= E \left[T \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right] \qquad (\mathbf{X} = X_1, \dots, X_n)$$

$$= \mathbb{E}\left[\frac{1}{\partial \theta} \log f(\mathbf{X}|\theta) \right] \qquad (\mathbf{X} = X_1, \dots, X_n)$$

$$\int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} f(\mathbf{X}|\theta) \int_{\mathbb{R}^n} f(\mathbf{X}|\theta) d\mathbf{x}$$

$$= \int T(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int T(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int T(\mathbf{x}) \frac{\partial}{\partial f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$\int f(\mathbf{x}|\theta)^{-1} d\mathbf{x} = \frac{\partial}{\partial x} \int T(\mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{\partial}{\partial \theta} \int T(\mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \frac{\partial}{\partial \theta} \mathbf{E}[T(\mathbf{X})]$$

 $I(\lambda) = E \left[\left(\frac{\partial}{\partial \lambda} \log \frac{\lambda^X e^{-\lambda}}{X!} \right)^2 \right]$

Example 37 (Poisson) :

$$= E\left[\left(\frac{\partial}{\partial \lambda} \left(X \log \lambda - \lambda - \log X!\right)\right)^{2}\right]$$

$$= E\left[\left(\frac{\lambda}{\lambda} - 1\right)^{2}\right]$$

$$= E\left[\left(\frac{X}{\lambda} - 1 \right)^2 \right]$$

$$\left[\partial^2 + \lambda^X \right]$$

$$= E\left[\left(\frac{\lambda}{\lambda} - 1\right)\right]$$
$$= -E\left[\frac{\partial^2}{\partial x^2} \log \frac{\lambda^X}{\lambda^X}\right]$$

$$= E\left[\left(\frac{\lambda}{\lambda} - 1\right)\right]$$

$$= -E\left[\frac{\partial^{2}}{\partial \lambda^{2}}\log \frac{\lambda^{X}e^{-\lambda}}{X!}\right]$$

 $\operatorname{Var}[T] \ge \frac{\left(\frac{\partial}{\partial \lambda} \operatorname{E}[T]\right)^{2}}{nI(\lambda)}$

$$= E\left[\left(\frac{\lambda}{\lambda} - 1\right)\right]$$
$$= -E\left[\frac{\partial^{2}}{\partial \lambda^{2}}\log \frac{\lambda^{X}}{\lambda^{X}}\right]$$

- - - (easier)
- $=-\mathrm{E}\left[\frac{-X}{\lambda^2}\right]=\frac{\lambda}{\lambda^2}=\frac{1}{\lambda},$

 - (for unbiased estimators)

- $=\frac{\lambda}{n}$ $\widehat{\lambda} = \overline{X}$ (MLE) $E[\widehat{\lambda}] = \lambda$ (unbiased)
- $\operatorname{Var}\left[\widehat{\lambda}\right] = \operatorname{Var}\left[\overline{X}\right] = \frac{1}{n}\operatorname{Var}\left[X\right] = \frac{\lambda}{n}$, (attainment)

76

Example 38 (*U* (0, θ)) : $f(x|\theta) = 1/\theta$, then

$$I(\theta) = E\left[\left(\frac{\partial}{\partial \theta}\log(1/\theta)\right)^{2}\right]$$
$$= E\left[\left(-\frac{\partial}{\partial \theta}\log\theta\right)^{2}\right] = 1/\theta^{2},$$

$$\operatorname{Var}\left[\widehat{\theta}\right] \ge \frac{\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[T\right]\right)^{2}}{nI(\theta)}$$

$$= \frac{\theta^2}{n},$$
 (for unbiased estimators)
$$\widehat{\theta} = 2\overline{X}.$$
 (MoM)

$$\widehat{\theta} = 2\overline{X}, \tag{MoM}$$

$$\mathbf{F}[\widehat{\theta}] = \theta \tag{unbiased}$$

$$\theta = 2\Lambda$$
, (Moly $E[\widehat{\theta}] = \theta$ (unbiased

$$E[\widehat{\theta}] = \theta \qquad \text{(unbiased)}$$

$$Var[\widehat{\theta}] = \frac{4}{n} Var[X] = \frac{4}{n} \frac{\theta^2}{12}$$

Var
$$[\hat{\theta}] = \theta$$
 (unbrased)
$$Var [\hat{\theta}] = \frac{4}{n} Var [X] = \frac{4}{n} \frac{\theta^2}{12}$$

$$= \frac{\theta^2}{3n} < \frac{\theta^2}{n}.$$
 (!!!where is the problem?)

 $\frac{\partial}{\partial \theta} \mathbf{E}[T] = \frac{\partial}{\partial \theta} \int T f(x|\theta) \, dx$ $(\mathbf{x} = x)$

The regularity condition assumes (n = 1):

$$= \int T \frac{\partial}{\partial \theta} f(x|\theta) dx$$
Let's see

$$\frac{\partial}{\partial \theta} \mathbf{E}[T] = \frac{\partial}{\partial \theta} \int_0^{\theta} T \frac{1}{\theta} dx$$
$$= \frac{\partial}{\partial \theta} \left(\frac{1}{\theta} \int_0^{\theta} T dx \right)$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{1}{\theta} \frac{\partial}{\partial \theta} \int_{0}^{\theta} T dx$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{\partial}{\partial \theta} \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta} dx$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta} dx$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta}$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta}$$

$$\int_{0}^{\theta} T \frac{\partial}{\partial \theta} f(x|\theta) dx = \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx,$$

$$T \frac{\partial}{\partial \theta} f(x|\theta) dx = \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\pi} T dx,$$

$$\neq \frac{\partial}{\partial \theta} E[T],$$

unless
$$T(\theta) = 0 \ \forall \theta$$
.
Homework: repeat with the MLE estimator, scale

it to be unbiased, then find its variance.

Loss Function

- Not only for assessment and comparison, but also for designing and optimization!
- The loss function:

$$L(\theta, T(\mathbf{X})) = |\theta - T(\mathbf{X})|$$
 (absolute error (AE))

$$L(\theta, T(\mathbf{X})) = (\theta - T(\mathbf{X}))^2$$
 (squared error (SE))

expresses how the estimate $T(\mathbf{X})$ deviates from θ .

The risk:
$$P(Q,T) = FI(Q,T(X))$$

The risk: $R(\theta, T) = \underset{\mathbf{x}}{\mathbf{E}} L(\theta, T(\mathbf{X}))$

is a function of θ . $R(\theta, T_1)$ may cross with $R(\theta, T_2)$.

MSE (special case):
$$MSE(\theta) = R(\theta, T)$$

wise (special case):
$$MSE(\theta) = R(\theta, T)$$
$$= E[L(\theta, T(\mathbf{X}))].$$

$$= \mathop{\mathbf{E}}_{\mathbf{X}} \left[L(\theta, T(\mathbf{X})) \right],$$

$$L(\theta, T(\mathbf{X})) = (\theta - T(\mathbf{X}))^{2}.$$

 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}, \quad (R(\sigma^{2}, S^{2})) = \frac{2\sigma^{4}}{n-1}$

Example 39 (Risk of σ^2 Est.) :

$$n-1 = 1$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2, \quad (R\left(\sigma^2, \widehat{\sigma}^2\right) = \frac{2n-1}{n^2} \sigma^4)$$

$$\widetilde{S}^2 = b \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \qquad (R\left(\sigma^2, \widetilde{S}^2\right)?)$$

 $\widetilde{S}^2 = b \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$ $R(\sigma^2, \widetilde{S}^2) = \text{Var}[b(n-1)S^2]$

$$\begin{aligned} F(\sigma^{2}, S^{2}) &= \text{Var} \left[b(n-1) S^{2} \right] \\ &+ \left(E \left[b(n-1) S^{2} \right] - \sigma^{2} \right)^{2} \\ &= b^{2} (n-1)^{2} \frac{2\sigma^{4}}{n-1} + (b(n-1)-1)^{2} \sigma^{4} \end{aligned}$$

 $= (2b^{2}(n-1) + (b(n-1)-1)^{2})\sigma^{4},$

 $= c\sigma^4$.

 $c_{\min} = \frac{2}{n+1}$ $\widetilde{S}^2 = \frac{1}{n+1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$

$$= c\sigma^4,$$

$$c_{\min} = \frac{2}{c_{\min}}$$

80

(at $b = \frac{1}{n+1}$)

 $(R(\sigma^2, \widetilde{S}^2) = \frac{2}{n+1}\sigma^4)$

Risk

$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$

Connection to Cramér-Rao Inequality

$$l(\theta) = -\log\sqrt{2\pi} - \frac{1}{2}\log\theta - \frac{1}{2\theta}(x - \mu)^{2}$$

$$l'(\theta) = \frac{-1}{2\theta} + \frac{\left(x - \mu\right)^2}{2\theta^2}$$

$$l''(\theta) = \frac{2\theta}{2\theta^2} - \frac{2\theta^2}{\theta^3}$$

$$l''(\theta) = \frac{1}{2\theta^2} - \frac{(x-\mu)^2}{\theta^3}$$

$$\mathrm{E}\left[l''(\theta)\right] = \frac{1}{2}$$

$$E[l''(\theta)] = \frac{1}{2\theta^2} - \frac{\theta}{\theta^3} = \frac{-1}{2\theta^2}$$
$$I(\theta) = -E\left[\frac{\partial^2 l(\theta)}{\partial \theta^2}\right] = \frac{1}{2\sigma^4}$$

$$I(\theta) = -E\left[\frac{\partial^2 l(\theta)}{\partial \theta^2}\right] = \frac{1}{2\sigma^4}$$
$$\operatorname{Var}[T] \ge \frac{1}{n L(\theta)} = \frac{2\sigma^4}{n},$$

- $\operatorname{Var}[T] \ge \frac{1}{nI(\theta)} = \frac{2\sigma^4}{n}$
 - lower bound of any unbiased estimator of σ^2 .

not attainable by the unbiased version above

Assessing with different Loss Function:

$$L(\theta, a) = (a - \theta)^{2} = \theta \left(\frac{a}{\theta} - 1\right)^{2}$$
 (SE loss)

$$L(\theta, a) = \frac{a}{\theta} - 1 - \log\left(\frac{a}{\theta}\right)$$
 (Stien's loss)
SE

$$L(\theta, a) = \frac{a}{\theta} - 1 - \log\left(\frac{a}{\theta}\right)$$

$$R\left(\sigma^2, \widetilde{S}^2\right) = E\left[b(n-1)\frac{S^2}{\sigma^2} - 1 - \log\frac{b(n-1)S^2}{\sigma^2}\right]$$

 $\frac{\partial R}{\partial h} = \mathbf{E} \left[\chi_{n-1}^2 \right] - \frac{1}{b}$

 $b = \frac{1}{E[v^2]} = \frac{1}{n-1}$

 $\widetilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 = S^2.$

 $\widetilde{S}^2 = b \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$

"Better" in which sense?

 $= b E \left[\chi_{n-1}^2 \right] - 1 - \log b - E \log \chi_{n-1}^2$

 $(\stackrel{set}{=} 0)$

Function Optimization!

$$R(\theta, T) = \underset{\mathbf{X}}{\mathbf{E}} L(\theta, T(\mathbf{X}))$$
$$= \int L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

no uniformly "best" estimator.

Obtaining Bayesian's Estimator by Loss

• $R(\theta, T_1)$ may cross with $R(\theta, T_2)$.

$$\begin{aligned} \mathbf{E}R\left(\theta,T\right) &= \int_{\theta} R\left(\theta,T\right) f_{\Theta}\left(\theta\right) d\theta \\ &= \int_{\theta} \left[\int_{\mathbf{x}} L\left(\theta,T\left(\mathbf{x}\right)\right) f_{\mathbf{X}}\left(\mathbf{x}|\theta\right) d\mathbf{x} \right] f_{\Theta}\left(\theta\right) d\theta \\ &= \int_{\mathbf{x}} \left[\int_{\theta} L\left(\theta,T\left(\mathbf{x}\right)\right) f_{\mathbf{X}}\left(\mathbf{x}|\theta\right) f_{\Theta}\left(\theta\right) d\theta \right] d\mathbf{x} \\ &= \int_{\mathbf{x}} \left[\int_{\theta} L\left(\theta,T\left(\mathbf{x}\right)\right) f_{\Theta|\mathbf{X}}\left(\theta|\mathbf{x}\right) d\theta \right] f_{\mathbf{X}}\left(\mathbf{x}\right) d\mathbf{x} \end{aligned}$$

 $T = \underset{\mathbf{x}}{\operatorname{arg\,min}} \int_{\Omega} L(\theta, T(\mathbf{x})) f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$

Solutions under different loss functions:

$$T_{1} = \underset{T}{\operatorname{arg min}} \int_{\theta} (T - \theta)^{2} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad \text{(SE loss)}$$

$$= \int_{\theta} \theta f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad \text{(Posterior mean)}$$

$$T_2 = \underset{T}{\operatorname{argmin}} \int_{\theta} |T - \theta| f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \qquad \text{(AE loss)}$$

$$R = \int_{\theta} |T - \theta| f_{\Theta|X}(\theta|\mathbf{x}) d\theta$$

$$= \int_{-\infty}^{T} (T - \theta) f(\theta) d\theta + \int_{T}^{\infty} - (T - \theta) f(\theta) d\theta$$

$$= T \int_{-\infty}^{T} f(\theta) d\theta - \int_{-\infty}^{T} \theta f(\theta) d\theta - d\theta$$

$$T\int_{T}^{\infty} f(\theta) d\theta + \int_{T}^{\infty} \theta f(\theta) d\theta$$

$$\frac{\partial R}{\partial T} = \left(\int_{-\infty}^{T} f(\theta) d\theta + Tf(T)\right) - Tf(T) - \left(\int_{T}^{\infty} f(\theta) d\theta - Tf(T)\right) - Tf(T)$$

$$= \int_{-\infty}^{T} f(\theta) d\theta - \int_{T}^{\infty} f(\theta) d\theta \qquad (\stackrel{set}{=} 0)$$

$$0 = F_{\Theta|\mathbf{X}}^{-1}(T) - \left(1 - F_{\Theta|\mathbf{X}}^{-1}(T)\right)$$

$$0.5 = F_{\Theta|\mathbf{X}}^{-1}(T)$$

$$T_2 = F_{\Theta|\mathbf{X}}^{-1}(0.5)$$
 (Posterior median)

7

$$R = \int_{\theta} I_{a \le |T - \theta|} f_{\Theta | \mathbf{X}}(\theta | \mathbf{x}) d\theta$$

$$= \int_{a \le |T - \theta|} f_{\Theta | \mathbf{X}}(\theta | \mathbf{x}) d\theta$$

$$= 1 - \int_{|T - \theta| < a} f_{\Theta | \mathbf{X}}(\theta | \mathbf{x}) d\theta$$

$$= 1 - \int_{T - a}^{T + a} f_{\Theta | \mathbf{X}}(\theta | \mathbf{x}) d\theta$$

$$= 1 - \Pr_{\Theta | \mathbf{X}} [|\theta - T| < a]$$

 $T_3 = \underset{x}{\operatorname{argmin}} \int_{\Omega} I_{0 \le |T - \theta|} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad (0 - 1 \text{ loss})$

Notice that: we have to maximize the probability $\int_{T-a}^{T+a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$. The period [T-a, T+a] has

• mid point of $\frac{1}{2}[(T+a)+(T-a)] = T$.

• a length of (T + a) - (T - a) = 2a

• *T* and mode do not necessarily coincide.,

which means that T_3 is mid-point of 2a modal interval.

$$\frac{\partial R}{\partial T} = f_{\Theta|\mathbf{X}}(T + a|\mathbf{x}) - f_{\Theta|\mathbf{X}}(T - a|\mathbf{x}), \qquad (\stackrel{set}{=} 0)$$
$$f_{\Theta|\mathbf{X}}(T + a|\mathbf{x}) = f_{\Theta|\mathbf{X}}(T - a|\mathbf{x}).$$

For unimodal symmetric $f_{\Theta|X}$: $f_{\Theta|X}(\theta - M) = f_{\Theta|X}(\theta + M)$. Therefore,

$$T_3 = Mode.$$
 (MAP)

Of course T_3 could have been any point if we starte

 $R \approx 1 - f_{\Theta|\mathbf{X}}(T|\mathbf{x}) \cdot 2a$

 $T_3 = \operatorname{arg\,max} f_{\Theta \mid \mathbf{X}}(T \mid \mathbf{x}) = Mode$

For $a \rightarrow 0$

(MAP)

minimizing the risk from begining not by obtaining the limit:

$$R = 1 - \int_{T-a}^{T+a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= 1 - \int_{T}^{T} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= 1,$$

unless Θ is discrete or categorical as in Pattern

Recognition.

MLE, Bayesian, Loss Functions have same treat-

Estimation for Discrete Θ

ment. However, maximization, expectation,..etc are taken over discrete space. Also, Cramér-Rao

Lower Bound is derived for continuous case!

Example 15, page 19, first course. x captured animal in a population of θ animals. x was found to be 4 (we renamed variables):

(Likelihood)

Example 40 (Capture Recapture Method) : as in

$$L(\theta) = P(x|\theta) = \frac{\binom{10}{4}\binom{\theta-10}{20-4}}{\binom{\theta}{20}}, \quad \text{(Likelihood)}$$

$$\widehat{\theta}_{MLE} = 50$$

 $\frac{\partial L}{\partial \theta}$.

• Bayesian estimation is exactly the same through

• maximization is obtained by $L_{\theta}/L_{\theta+1}$ not by

- defining $f_{\Theta}(\theta)$.
 - However, $f_{\Theta|\mathbf{X}}(\theta|\mathbf{x})$ will be discrete.

Estimation for Categorical Θ (basis for Pattern Recognition)

- $\Theta = \{\theta_1, \dots, \theta_K\}$, with *K* categories (classes).
- E.g., $\Theta = \{Male, Female\}$

$$X|\theta_1 \sim N(2,1),$$

 $X|\theta_2 \sim N(5,1).$

8.5.3 Asymptotic Relative Efficiency (ARE) Definition 41 The (sequence of) estimator T_n

Definition 41 The (sequence of) estimator T_n is said to be asymptotically efficient for θ if

$$\sqrt{n} (T_n - \theta) \xrightarrow{d} N(0, \sigma^2),$$

$$\sigma^2 = \frac{1}{I(\theta)},$$

$$\sigma^2 = \frac{1}{I(\theta)},$$
 which is Cramér-Rao Lower Bound.

It is clear that MLE is asymptotically efficient.

Bibliography