Problem F Mountainous Palindromic Subarray

Time Limit: 2 second(s)
Memory Limit: 2G

An array is *Mountainous* if it is strictly increasing, then strictly decreasing. Note that *Mountainous* arrays must therefore be of length three or greater.

A *Subarray* is defined as an array that can be attained by deleting some prefix and suffix (possibly empty) from the original array.

An array or subarray is a *Palindrome* if it is the same sequence forwards and backwards.

Given an array of integers, compute the length of the longest *Subarray* that is both *Mountainous* and a *Palindrome*.

Input

The first line of input contains an integer n ($1 \le n \le 10^6$), which is the number of integers in the array.

Each of the next n lines contains a single integer x ($1 \le x \le 10^9$). These values form the array. They are given in order.

Output

Sample Input 1

Output a single integer, which is the length of the longest *Mountainous Palindromic Subarray*, or -1 of no such array exists.

Sample Output 1

• • • • • • • • • • • • • • • • • • •	
8	5
2	
1	
2	
3	
2	
1	
7	

Sam	ple	Inp	ut	2
-----	-----	-----	----	---

Sample Output 2

[-1
2		
[
8	3	
-	7	
2	2	