Urban Transit: Improving Commutes with Algorithms

Colby Carter and Nathaniel Schub W201 Summer 2017 August 14, 2017

Can Data Science Improve Our Commutes?

- 1. Mitigating traffic congestion and public transit failures
- 2. Can data and algorithms add efficiency?
- 3. Reactive vs. Predictive

Data Science in Transit Today

- 1. Bureaucratic sclerosis
- 2. Real-time transit apps

- 3. Limited examples of data science in public domain
- 4. Financial incentives for developing algorithms

Analytical Methods

1. Consolidation of data sources

2. "Traveling Salesman Problem"

- 3. Machine learning to continually improve predictions
 - a. Estimate probability of incidents by location
 - b. Sub-models conditional on incidents
 - c. Calculate new optimal routes in real- or ahead of time

Where to Look for Data

Source	Description	Benefits	
Transit Usage Data	-Breakdown of every trip on transit, including entry and exit points and total time	-High-level overview of commuting patterns -Easy for public agency to obtain -Time stamps can help identify inefficiencies	
Rideshare Data	-Data from each rideshare trip	-Highlights areas where public transit may be falling short -Gives door-to-door granularity	
Traffic Monitor Data	-Traffic volumes at each intersection as monitored by sensors and cameras	-Can identify traffic choke points -Real time	
Cell Phone Data	-Detailed information on every cell phone's movement	-Can be used to extract detailed movement and mobility and commuting patterns -No limitations	

Data Limitations and Ethical Concerns

Source	Data Limitations	Data Accessibility	Problems or Ethical Concerns
Transit Usage Data	-Only for transit users -Not very granular	-Easily accessible, assuming we are partnering with government agency	N/A
Rideshare Data	-Only a part of the puzzle, complements other data sources	-Rideshare companies may be unwilling to share	-People may worry about being tracked, although data will be anonymized
Traffic Monitor Data	-Expensive to deploy cameras and sensors	-Easily accessible, assuming we are partnering with government agency	-People may worry about being tracked, although data will be anonymized and is not intended for this
Cell Phone Data	-Few, but may be difficult to clean and parse	-May not be accessible	-May not be possible to obtain -Big brother

What is the Final Product?

- Route-by-route analysis of current mass transit routes, highlighting issues and recommending improvements
- Detailed analysis of each major street and highway, highlighting issues and recommending improvements
- Ability to predict and respond to abnormal conditions

Visual and Financial Persuasion

- 1. Data visualization via Google Maps
- 2. Appeals to emotion
- 3. Political persuasion

Future Research Questions

- 1. Planning and building new infrastructure is extremely costly and difficult. When is the right time?
- 2. It may be difficult to plan for induced demand (if you build it, they will come)
- 3. Applicability to other industries (airlines, long-distance rail, logistics, etc.)
- 4. City planning for special events (Olympics, conventions, presidential visits, etc.)

Works Cited

- 1. Barry, Mike and Card, Brian. "Visualizing MBTA Data" Website, June 10, 2014, http://mbtaviz.github.io/
- 2. Darrow, Barg, "Boston is using big data to solve traffic jams," *Fortune*, May 21, 2015, http://fortune.com/2015/05/21/boston-is-using-big-data-to-solve-traffic-jams/
- 3. Marr, Bernard. "How Big Data and the Internet of Things Improve Public Transport in London" Forbes, website, May 27, 2015, https://www.forbes.com/sites/bernardmarr/2015/05/27/how-big-data-and-the-internet-of-things-improve-public-t
 - https://www.forbes.com/sites/bernardmarr/2015/05/27/how-big-data-and-the-internet-of-things-improve-public-transport-in-london/#5dca91ae1be6
- 4. McGinty, Jo Craven, "How Do You Fix a School-Bus Problem? Call MIT," *WSJ*, August 11, 2017, https://www.wsj.com/articles/how-do-you-fix-a-school-bus-problem-call-mit-1502456400
- 5. Meisier, Dan. "U-M data science projects promise to transform transportation" University of Michigan News, website, June 21, 2016, http://ns.umich.edu/new/releases/23993-u-m-data-science-projects-promise-to-transform-transportation
- 6. "Ramp Meters," Minnesota Deptartment of Transportation, website, http://www.dot.state.mn.us/rampmeter/
- 7. Rosado, Wade, "Data Detour: Analytics Will Move Transportation Forward," Innovation Insights, website, July 10, 2014, http://insights.wired.com/profiles/blogs/data-detour-the-opportunity-for-using-analytics-in-transportation
- 8. "Simulating better bus service," Chicago Transit Authority, website, https://dssg.uchicago.edu/project/simulating-better-bus-service/
- 9. "Vision Zero Labs: Using Data Science to Improve Traffic Safety" Microsoft Blogs, June 29, 2017, https://blogs.microsoft.com/newyork/2017/06/29/vision-zero-labs-using-data-science-to-improve-traffic-safety/
- 10. "Who's up to swap transit data?" Medium.com, website, July 6, 2017, https://medium.com/towards-data-science/time-to-swap-our-transport-data-7f643a5ec1b8

