

ЗАНЯТИЕ 1.2
ЛИНЕЙНЫЙ
КЛАССИФИКАТОР И
ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Денис Кирьянов

ЦЕЛИЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ:

- будете знать преимущества и недостатки линейных моделей, а также требования к данным;
- научитесь реализовывать алгоритм градиентного спуска и логистическую регрессию;
- повторите понятие условной вероятности.

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Линейные модели: требования к данным и практика;
- 2. Логистическая регрессия: практическое задание;
- 3. Градиентный спуск: теория и практическое задание;
- 4. Немного про условную вероятность.

ПРИЧИНЫ ПОПУЛЯРНОСТИ

- Линейные модели подходят для описания многих процессов
- Относительная простота вычислений и интерпретации результатов
- Вклад нескольких факторов часто можно разбить на сумму влияния каждого фактора в отдельности

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ

- Прогноз продаж по объему инвентаря, загрузке, площади и другим «линейным» характеристикам
- Построение вероятностных моделей в страховании, кредитном скоринге, инвестиционных проектах
- Предсказание цены товара на основании его характеристик
- Построение трендов

ОПРЕДЕЛЕНИЕ И КОД

ОПРЕДЕЛЕНИЕ

$$y_i = \sum_{j=1}^m w_j X_{ij} + e_i$$

Y – целевая переменнаяW – вектор весов моделиX – матрица наблюденийе – ошибка модели

ПРИМЕР ИЗ КОДА LINEAR REGRESSION.IPYNB

ПОСТРОЕНИЕ ЛИНЕЙНОЙ МОДЕЛИ

КАК СТРОИМ ЛИНЕЙНУЮ МОДЕЛЬ

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Как можно получить эту прямую?

р(y | x, α) – вероятность получить у при входных данных х. α – параметр модели

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Как можно получить эту прямую?

р(у | х, α) – вероятность получить у при входных данных х. α – параметр модели

Введем

введем
$$W(\alpha) = \prod_i p(x_i, \alpha)$$

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Функция максимального правдоподобия:

$$L(\alpha) = \sum_{i} \log p(x_i, \alpha)$$

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Функция максимального правдоподобия:

$$L(\alpha) = \sum_{i} \log p(x_i, \alpha)$$

Как подобрать значение α, чтобы максимизировать L(α)?

Необходимо минимизировать среднеквадратичную ошибку между прогнозными и фактическими значениями

ДОКАЗАТЕЛЬСТВО

https://habrahabr.ru/company/ods/blog/323890/#metod-maksimalnogo-pravdopodobiya

ВРЕМЯ КОДА

REGRESSION_CARS.IPYNB

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 1

ВРЕМЯ ПРАКТИКИ

SAT_MODEL.IPYNB

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ПРОГНОЗ ВЕРОЯТНОСТИ

Прогнозирует вероятность отнесения наблюдения к определенному классу

Модель: $L = a_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$

ПРОГНОЗ ВЕРОЯТНОСТИ

Вероятность:

$$p = \frac{1}{1 + e^{-L}}$$

СНОВА ПРАКТИКА

LOGISTIC_REGRESSION_ATHLETES_CLASSIFIER.IPYNB

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 2

УЛУЧШАЕМ ТОЧНОСТЬ МОДЕЛИ

С НОВЫМИ ПРИЗНАКАМИ

ГРАДИЕНТНЫЙ СПУСК

ПРОИЗВОДНАЯ И МИНИМУМ

Производная определяет скорость изменения функции в точке

ПРОИЗВОДНАЯ И МИНИМУМ

Производная определяет скорость изменения функции в точке

$$\Delta Y$$
 ΔX

$$F'(X_0) = \lim_{\Delta X \to 0} \frac{\Delta Y}{\Delta X}$$

ищем минимум

Допустим, необходимо найти минимум суммы среднеквадратичной ошибки для параметров модели

ищем минимум

Возьмем произвольную точку на графике и будем пошагово «спускаться» к минимуму

$$x_{i+1} = x_i - \alpha \nabla F(x_i)$$

ВОЗМОЖНЫЕ ПРОБЛЕМЫ

Шаг слишком большой

ВОЗМОЖНЫЕ ПРОБЛЕМЫ

Шаг слишком большой

Остаемся в локальном минимуме

ВАРИАНТЫ ВЫБОРА Л

- Постоянной метод может расходиться
- С дробным шагом делим на число каждый шаг
- С наискорейшим спуском α выбирается так, чтобы следующая итерация была точкой минимума функции f на луче

ПРИМЕР В 3D

РЕАЛИЗУЕМ

GRADIENT_DESCENT.IPYNB

ЕСЛИ КЛАССОВ БОЛЬШЕ ДВУХ

ПРИМЕР

IRIS_DATASET.IPYNB

ДЛЯ КАКИХ ДАННЫХ ЭТО РАБОТАЕТ?

ТРЕБОВАНИЯ К ДАННЫМ

- Линейная зависимость целевой переменной
- Нормальное распределение остатков
- Постоянная изменчивость остатков

ТРЕБОВАНИЯ К ДАННЫМ

Линейная взаимосвязь X и Y

ТРЕБОВАНИЯ К ДАННЫМ

Линейная взаимосвязь X и Y

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ОСТАТКОВ

HTTPS://GALLERY.SHINYAPPS.IO/SLR_DIAG/

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ОСТАТКОВ

HTTPS://GALLERY.SHINYAPPS.IO/SLR_DIAG/

ГОМОСКЕДАСТИЧНОСТЬ

Постоянная изменчивость остатков

Пример гетероскедастичной последовательности

ГОМОСКЕДАСТИЧНОСТЬ

Постоянная изменчивость остатков

Пример гетероскедастичной последовательности

SVM

Множество гиперплоскостей

- · Множество решений для а, b, c.
- SVM находит оптимальную разделяющую поверхность
- · Максимизирует «зазор»

Максимальный зазор

- w нормаль к разделяющей плоскости
- x_i sample
- y_i : класс sample i (+1 or -1) (важно, не 1 и 0)
- Классификатор: $f(x_i) = sign(w^Tx_i + b)$
- Зазор для точки х $r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$

• Зазор всего датасета – минимум зазора для всех точек

Формула

· Итого получаем задачу оптимизации:

Найти **w** и *b* такие что

максимально; и для всех $\{(\mathbf{x}_i, y_i)\}$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge 1$$
 если $y_{i}=1$; $\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -1$ если $y_{i}=-1$

• Перепишем в более понятном виде

Найти **w** и *b* такие что

 $\Phi(\mathbf{w}) = \mathbf{0.5} \ \mathbf{w}^\mathsf{T} \mathbf{w}$ максимально

И для всех $\{(\mathbf{x}_{i}, y_{i})\}$: $y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge 1$

Non-linear SVMs

• Линейной разделимые датасеты хорошо классифицируются

Но что делать, если они не линейно разделимы?

Можно попробовать отобразить данные в пр-во более высокой размерности

The "Kernel Trick"

- SVM зависит от скалярного произведения K(xi,xj)=xiTxj
- Если каждая точка отображается в пр-во более высокой размерности при помощи Φ: x → φ(x), тогда скалярное произведение становится:
- $K(xi,xj) = \phi(xi) T\phi(xj)$
- Функция ядра это функция соотв. Скалярному произведению в пр-ве более высокой размерности

Kernels

- Примеры
- Линейное
- Полиномное K(x,z) = (1+xTz)d
- RBF

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma^2}$$

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Вспомнили основы теории вероятностей.
- 2. Изучили линейные модели и требования к ним на основе функции правдоподобия.
- 3. Реализовали логистическую регрессию.
- 4. Изучили алгоритм градиентного спуска и потренировались в его реализации.

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Статья о линейных моделях в ODS https://habrahabr.ru/company/ods/blog/323890/
- 2. Курс «Основы статистики» на Stepik.org https://stepik.org/course/Основы-статистики-76

Спасибо за внимание!

Алексей Кузьмин

aleksej.kyzmin@gmail.com