M07 Homework

Michael Vaden, mtv2eva

```
In []: import pandas as pd
          import numpy as np
          from glob import glob
          import re
          import nltk
          import plotly_express as px
          from lib.textparser import TextParser
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer
          from numpy.linalg import norm
          from scipy.spatial.distance import pdist
          import scipy.cluster.hierarchy as sch
import matplotlib.pyplot as plt
          from scipy.linalg import eigh
          from sklearn.decomposition import PCA
          import seaborn as sns
In [ ]: import configurer
          config = configparser.ConfigParser()
         config.read("../env.ini")
data_home = config['DEFAULT']['data_home']
output_dir = config['DEFAULT']['output_dir']
data_prefix = 'novels'
         Import the LIB and CORPUS tables from the provided CSV files. The index OHCO for CORPUS is ['book_id','chapter_id','para_num','sent_num','token_num'] The index for
         LIB is 'book_id'.
In []: OHCO = ['book_id','chap_id','para_num','sent_num','token_num']
In []: LIB = pd.read_csv(f"{data_home}/{data_prefix}-LIB.csv").set_index('book_id')
          CORPUS = pd.read_csv(f"{data_home}/{data_prefix}-CORPUS.csv").set_index(OHCO)
In [ ]: LIB
                           genre_id author_id
Out[]:
                  book_id
                                   d
                                        christie
           secretadversary
                    styles
                                        christie
                moonstone
                                   Н
                                         collins
               adventures
                                  d
                                         doyle
               baskervilles
                                   d
                                          doyle
                   scarlet
                                   d
                                          doyle
                signoffour
                                          doyle
                                   d
                marieroget
                                           poe
                                   d
                ruemorgue
                                           poe
          northangerabbey
                                        austen
                                   g
           christmascarole
                                   q
                                        dickens
                    monk
                                   g
                                          lewis
           pitandpendulum
                                   g
                                           poe
                 reddeath
                                   g
                                           poe
                    usher
                                       radcliffe
                  udolpho
                                   g
           oldenglishbaron
                                   g
              frankenstein
                                        shelley
                   dracula
                                         stoker
                                   g
           castleofotranto
                                        walpole
In []: CORPUS
```

Out[]: term_str pos book_id chap_id para_num sent_num token_num secretadversary 0 0 DT the 1 NNP young 2 NNP adventurers 3 NNP ltd 1 0 0 JJ baskervilles 11 114 7 RBR 8 JJ comfortable 9 IN outside 10 IN than 11 NN in 1500417 rows x 2 columns

Extract a VOCAB table and add max_pos as a feature.

```
In [ ]: CORPUS = CORPUS[CORPUS.term_str != '']
CORPUS['pos_group'] = CORPUS.pos.str[:2]
               VOCAB = CORPUS.term_str.value_counts().to_frame('n').sort_index()
VOCAB.index.name = 'term_str'
VOCAB['n_chars'] = VOCAB.index.str.len()
VOCAB['p'] = VOCAB.n / VOCAB.n.sum()
VOCAB['i'] = -np.log2(VOCAB.p)
               VOCAB['max_pos'] = CORPUS[['term_str','pos']].value_counts().unstack(fill_value=0).idxmax(1)
In []: VOCAB
```

```
Out[]:
```

	n	n_chars	р	i	max_pos	
term_str						
а	28533	1	1.901674e-02	5.716586	DT	
aback	9	5	5.998340e-06	17.347005	NN	
abaft	2	5	1.332965e-06	19.516930	IN	
abandon	44	7	2.932522e-05	15.057499	VB	
abandoned	68	9	4.532079e-05	14.429467	VBN	
à	3	1	1.999447e-06	18.931968	NNP	
æt	1	2	6.664823e-07	20.516930	NN	
ætat	1	4	6.664823e-07	20.516930	VBD	
ça	2	2	1.332965e-06	19.516930	JJ	
émeutes	1	7	6.664823e-07	20.516930	PDT	
	a aback abaft abandon abandoned à æt ætat ça	term_str 28533 28533 28	term_str a 28533 1 aback 9 5 abaft 2 5 abandon 44 7 abandoned 68 9 à 3 1 æet 1 2 æetat 1 4 ça 2 2	term_str 1.901674e-02 aback 9 5.998340e-06 abaft 2 5.1332965e-06 abandone 44 7.2932522e-05 abandoned 68 9.4532079e-05 à 3 1.999447e-06 æt 1 2.664823e-07 ætat 1 4.6664823e-07 1 2 1.332965e-06	term_str a 28533 1 1.901674e-02 5.716586 aback 9 5 5.998340e-06 17.347005 abaft 2 5 1.332965e-06 19.516930 abandone 44 7 2.932522e-05 15.057499 abandoned 68 9 4.532079e-05 14.429467 abandoned 3 1 1.999447e-06 18.931968 abandoned 1 2 6.664823e-07 20.516930 abandoned 1 4 6.664823e-07 20.516930 abandoned 1 2 1.332965e-06 19.516930	

27396 rows × 5 columns

Compute TFIDF and VOCAB['dfidf'] for the CORPUS using the following parameters:

```
bag = ['book_id', 'chap_id']
```

 $tf_method = 'max'$

idf_method = 'standard'

```
In []: def create_bag_of_words(CORPUS, bag):
    BOW = CORPUS.groupby(bag+['term_str']).term_str.count().to_frame('n')
                return BOW
           idf_method = 'standard'
           def get_TFIDF(BOW, tf_method):
    DTCM = BOW.n.unstack(fill_value=0)
                DF = DTCM.astype('bool').sum()
                N = len(DTCM)
                if tf_method == 'sum':
                      TF = DTCM.T / DTCM.T.sum()
                elif tf_method == 'max':
    TF = DTCM.T / DTCM.T.max()
                elif tf_method == 'log':
    TF = np.log2(1 + DTCM.T)
                elif tf_method == 'raw':
                      TF = DTCM.T
```

```
elif tf_method == 'double_norm':
    TF = DTCM.T / DTCM.T.max()

elif tf_method == 'binary':
    TF = DTCM.T.astype('bool').astype('int')

TF = TF.T

if idf_method == 'standard':
    IDF = np.log2(N / DF)

elif idf_method == 'max':
    IDF = np.log2(DF.max() / DF)

elif idf_method == 'smooth':
    IDF = np.log2((1 + N) / (1 + DF)) + 1

return TF * IDF, DF * IDF

[]: TFIDF, DFIDF = get_TFIDF(create_bag_of_words(CORPUS, ['book_id', 'chap_id']), 'max')
```

In []: TFIDF, DFIDF = get_TFIDF(create_bag_of_words(CORPUS, ['book_id', 'chap_id']), 'max')
TFIDF

Out[]: term_str a aback abaft abandon abandoned abandoning abandons abasement abashed abate ... zoöphagy zufalle zum zuniga zusammen book_id chap_id adventures 1 0.0 0.0 0.00000 0.0 0.0 0. 2 0.0 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 3 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 5 0.0 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0. ... 0.0 ... odalobu 54 0.0 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 0 **55** 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.00000 0.009341 0.0 0.0 0.0 0.0 0.0 **56** 0.0 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0. **57** 0.0 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0. 1 0.0 0.0 0.01253 0.000000 0.0 0.0

320 rows × 27396 columns

Create a DOC table from the TFIDF index in which each row represents a bag, i.e. a chapter. In other words, it should have ['book_id', 'chap_id'] as its index. This table should have information from the LIB table added to it, so that each chapter is identified with an author, title, and genre. These data will appear in your visualizations. For example, in a scatter plot of documents in the first two principle components, you will want to know the book and chapter of each data point.

```
In []: DOC = TFIDF.reset_index()[['book_id','chap_id']]
DOC = DOC.merge(LIB, on='book_id', how='left')
DOC.set_index(['book_id','chap_id'],inplace=True)
DOC
```

Out[]: genre_id author_id

book_id	chap_id		
adventures	1	d	doyle
	2	d	doyle
	3	d	doyle
	4	d	doyle
	5	d	doyle
udolpho	54	g	radcliffe
	55	g	radcliffe
	56	g	radcliffe
	57	g	radcliffe
usher	1	g	poe

320 rows × 2 columns

Create a reduced version of the TFIDF table with only the top 1000 nouns (i.e. NN and NNS) in descending order of DFIDF.

Do not "collapse" table -- keep the index as (book_id, chap_id).

```
In []: nouns = ['NN', 'NNS']
    top1000 = VOCAB.merge(DFIDF.to_frame('DFIDF'), on='term_str').query("max_pos in @nouns").sort_values('DFIDF', ascending=False).head(1000).inde
    TFIDF = TFIDF[[col for col in top1000]]
    TFIDF
```

Out[]: term_str reply order curiosity memory company feelings opportunity spirit ... humanity rank contempt appreh book_id chap_id adventures 1 0.006454 0.000000 0.003227 0.003227 0.006400 0.006400 0.000000 0.000000 0.003282 0.003282 ... 0.000000 0.000000 0.000000 0 **2** 0.009346 0.000000 0.009346 0.000000 0.006178 0.000000 0.000000 $0.000000 \quad 0.000000 \quad 0.000000 \quad \dots \quad 0.000000 \quad 0.000000$ 0 0.000000 3 0.004089 0.008178 0.000000 0.000000 0.004054 0.008109 0.000000 0.000000 0.004159 0.000000 ... 0.000000 0.000000 0.000000 0 $0.002767 \quad 0.000000 \quad 0.000000 \quad \dots \quad 0.000000 \quad 0.000000$ 0.000000 0 **5** 0.003043 0.000000 0.003043 0.003043 0.003017 0.000000 0.000000 0.000000 0.006190 0.000000 ... 0.000000 0.000000 0.000000 0 udolpho **54** 0.007676 0.003838 0.003838 0.003838 0.003806 0.003806 $0.007808 \quad 0.000000 \quad 0.000000 \quad \dots \quad 0.017027 \quad 0.000000$ 0.007611 0.000000 0 **55** 0.000000 0.000000 0.000000 0.004643 0.000000 0.004604 0.000000 $0.000000 \quad 0.000000 \quad 0.004722 \quad \dots \quad 0.000000 \quad 0.000000$ 0.010299 **56** 0.000000 0.007822 0.000000 0.000000 0.000000 0.015512 0.000000 0.000000 0.000000 0.015912 ... 0.000000 0.000000 0.017351 0 **57** 0.000000 0.000000 0.000000 0.0033189 0.000000 0.000000 $0.000000 \quad 0.000000 \quad 0.000000 \quad \dots \quad 0.000000 \quad 0.000000$ 0.000000 0 1 0.000000 0.002566 0.002566 0.000000 0.002544 0.000000 0.005088 0.002610 0.005219 0.015657 ... 0.005691 0.011382 0.000000 0 usher

320 rows × 1000 columns

Write a function that computes PCA from a given document-term count matrix (this included weighted counts, such a tfidf). It should return three dataframes: LOADINGS (the term-component matrix), DCM (the document-component matrix), COMPINF (the component information table). Give it the following parameters:

X # The input matrix

k # The number of components to generate

norm_docs # True or False

center_by_mean # True of False

center_by_variance # True or False

Compute PCA from the feature-reduced TFIDF table using your function. Use the following parameter values: X = TFIDF_REDUCED Or whatever you called your reduced TFIDF table k=10 norm_docs = True center_by_mean = False center_by_variance = False Visualize your results using scatter plots and box plots.

```
In []: def get_PCA(X, k, norm_docs = True, center_by_mean = True, center_by_variance = True):
                 X = (X.T / np.linalq.norm(X, 2, axis=1)).T
             if center_by_mean:
                  X = X - X.mean(axis=0)
             if center_by_variance:
    X = X / X.std(axis=0)
              pca = PCA(n_components=k)
             pca.fit(X)
              loadings = pd.DataFrame(pca.components_.T, index=X.columns)
              loadings.columns = [f'PC{i+1}' for i in range(k)]
             dcm = pd.DataFrame(pca.transform(X), index=X.index)
             dcm.columns = [f'PC{i+1}' for i in range(k)]
              comp = pd.DataFrame({
                  'EVR': pca.explained_variance_ratio_,
'CEVR': np.cumsum(pca.explained_variance_ratio_)
             }, index=[f'PC{i+1}' for i in range(k)])
              return loadings, dcm, comp
         LOADINGS, DCM, COMPINF = get_PCA(X=TFIDF, k=10, norm_docs=True, center_by_mean=False, center_by_variance=False)
         DCM = DOC.join(DCM)
```

In []: DCM

:			genre_id	author_id	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
	book_id	chap_id												
	adventures	1	d	doyle	-0.237319	0.038768	0.092062	0.029442	-0.191567	0.093441	-0.118399	0.011765	-0.021905	-0.028254
		2	d	doyle	-0.295389	0.074901	0.035613	0.001857	-0.204501	0.066934	-0.111104	-0.109326	-0.020459	0.026691
		3	d	doyle	-0.291923	-0.074162	0.035053	0.008414	-0.149578	0.112748	-0.103293	-0.041946	0.000359	0.040192
		4	d	doyle	-0.162984	-0.025831	0.026673	0.081026	-0.141952	0.057792	-0.204866	-0.071068	0.158094	0.085781
		5	d	doyle	-0.186560	0.049075	0.012450	0.066207	-0.145323	0.097464	-0.043226	-0.144036	0.006083	0.152767
		•••												
	udolpho	54	g	radcliffe	0.379714	-0.132359	-0.030655	-0.065428	0.040511	0.206042	-0.063613	-0.036247	0.028850	-0.000011
		55	g	radcliffe	0.303586	-0.185496	0.050914	0.036115	0.065106	0.181303	-0.023661	-0.113286	0.074211	-0.011379
		56	g	radcliffe	0.391705	0.145064	-0.276399	-0.235498	-0.109495	0.141362	0.046051	0.030292	-0.016949	0.121353
		57	g	radcliffe	0.286226	0.017426	-0.042757	-0.112652	0.019443	0.009336	-0.095355	-0.012079	-0.051540	0.123404
	usher	1	g	poe	0.132124	0.119597	0.032166	0.126673	-0.018076	0.044846	-0.036131	-0.058944	-0.032415	-0.193522

1. Looking at the documents plotted against the first principle component (PC), which genre has the more narrow range, i.e. distance between the minimum and maximum values? This can be seen using a box plot

```
In []: sns.boxplot(data=DCM, x = 'genre_id', y = 'PC1')
plt.title('PC1 Against Document Genre')
plt.show()
```


We can see from the boxplot above for the first principle component that the **d (detective)** genre has a more narrow range between the minimum and maximum values for the first principle component.

2. Looking at the documents plotted against the first PC, which author has the highest absolute value, in terms of both mean and range? In other words, which author is farthest from 0? Again, the box plots of each author are useful here.

```
In []: sns.boxplot(data=DCM, x = 'author_id', y = 'PC1')
plt.title('PC1 Against Document Author')
plt.xticks(rotation=45)
plt.show()
```


We can see from the boxplot above for the first principle component that the author Radcliffe has both the highest absolute mean value of mean and range.

3. In the third PC, which author has, by far, the maximum range?

```
In []: sns.boxplot(data=DCM, x = 'author_id', y = 'PC3')
plt.title('PC3 Against Document Author')
plt.xticks(rotation=45)
plt.show()
```


We can see from the boxplot above for the third principle component that the author Radcliffe has the highest maximum range by far

4. Looking at the loadings for the second PC, how would you characterize the opposition, based on the top three words at each pole?

For the loadings of the second principle component, we can see that there is a the strongest positive terms are related to nature. In contrast, we can see that the strongest negative terms are all related to family. We can see a potential contrast here for the opposition between nature and family

5. Recompute the principle components with center_by_variance set to True. This will change the words that appear at the extremes of the first PC. Does this change your interpretation in the previous question?

```
In []: LOADINGS5, DCM5, COMPINF5 = get_PCA(X=TFIDF, k=10, norm_docs=True, center_by_mean=False, center_by_variance=True)

DCM5 = DOC.join(DCM5)

In []: LOADINGS5['PC1'].sort_values(ascending=False).to_frame().head(3)

Out[]: PC1
term_str
countenance 0.095031
length 0.094551
melancholy 0.087428

In []: LOADINGS5['PC1'].sort_values(ascending=True).to_frame().head(3)

Out[]: PC1
term_str
matter -0.085165
anything -0.082012
course -0.075488
```

instructions unclear, recomputing PCA and examining extremes at first PC. Compared to the previous question, we do not see clear themes of family or nature. Rathe the extremes of the first PC do not have as much of an association with eachother that we can discern when we are centered by variance.