

Why

We want to combine two groups.¹

Defining result

Proposition 1. For each natural number m, there exists a function s_m : $\omega \to \omega$ which satisfies

$$s_m(0) = m$$
 and $s_m(n^+) = (s_m(n))^+$

for every natural number n.

 ${\it Proof.}$ The proof uses the recursion theorem (see Recursion Theorem).

Let m and n be natural numbers. The value $s_m(n)$ is the sum of m with n.

Notation

We denote the sum $s_m(n)$ by m+n.

Properties

The properties of sums are direct applications of the principle of mathematical induction (see Natural Induction). 3

Proposition 2 (Associative). Let k, m, and n be natural numbers. Then

$$(k+m) + n = k + (m+n).$$

Proposition 3 (Commutative). Let m and n be natural numbers. Then

$$m+n=n+m$$
.

¹Future editions will change this section.

²Future editions will give the entire account.

³Future editions will include the accounts.

Relation to addition

 $\textbf{Proposition 4} \ (\textbf{Distributive}). \ \textit{Let} \ \textit{k, m, and n be natural numbers. Then}$

$$k \cdot (m+n) = (k \cdot m) + (k \cdot n).$$

