are different. In software, we often phrase both as minimizing a cost function. Maximum likelihood thus becomes minimization of the negative log-likelihood (NLL), or equivalently, minimization of the cross entropy. The perspective of maximum likelihood as minimum KL divergence becomes helpful in this case because the KL divergence has a known minimum value of zero. The negative log-likelihood can actually become negative when \boldsymbol{x} is real-valued.

5.5.1 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can readily be generalized to the case where our goal is to estimate a conditional probability $P(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta})$ in order to predict \mathbf{y} given \mathbf{x} . This is actually the most common situation because it forms the basis for most supervised learning. If X represents all our inputs and Y all our observed targets, then the conditional maximum likelihood estimator is

$$\boldsymbol{\theta}_{\mathrm{ML}} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} P(\boldsymbol{Y} \mid \boldsymbol{X}; \boldsymbol{\theta}). \tag{5.62}$$

If the examples are assumed to be i.i.d., then this can be decomposed into

$$\boldsymbol{\theta}_{\mathrm{ML}} = \underset{\boldsymbol{\theta}}{\mathrm{arg}} \max \sum_{i=1}^{m} \log P(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}). \tag{5.63}$$

Example: Linear Regression as Maximum Likelihood Linear regression, introduced earlier in section 5.1.4, may be justified as a maximum likelihood procedure. Previously, we motivated linear regression as an algorithm that learns to take an input x and produce an output value \hat{y} . The mapping from x to \hat{y} is chosen to minimize mean squared error, a criterion that we introduced more or less arbitrarily. We now revisit linear regression from the point of view of maximum likelihood estimation. Instead of producing a single prediction \hat{y} , we now think of the model as producing a conditional distribution $p(y \mid x)$. We can imagine that with an infinitely large training set, we might see several training examples with the same input value x but different values of y. The goal of the learning algorithm is now to fit the distribution $p(y \mid x)$ to all of those different y values that are all compatible with x. To derive the same linear regression algorithm we obtained before, we define $p(y \mid \boldsymbol{x}) = \mathcal{N}(y; \hat{y}(\boldsymbol{x}; \boldsymbol{w}), \sigma^2)$. The function $\hat{y}(\boldsymbol{x}; \boldsymbol{w})$ gives the prediction of the mean of the Gaussian. In this example, we assume that the variance is fixed to some constant σ^2 chosen by the user. We will see that this choice of the functional form of $p(y \mid x)$ causes the maximum likelihood estimation procedure to yield the same learning algorithm as we developed before. Since the