Introduction to Word Embeddings

Wei Zhao

School of Natural and Computing Sciences University of Aberdeen, UK

wei.zhao@abdn.ac.uk

May 14, 2025

Acknowledgement

- Many of the slides are adapted from the following lectures:
 - Katja Markert, Heidelberg University, CL students
 - https://www.cl.uni-heidelberg.de/courses/ss19/emb/
 - Richard Socher, Stanford University, CS students
 - https://cs224d.stanford.edu/lectures/
 - Yannick Couzinié, LMU Munich, MATH students
 - https://www.mathematik.unimuenchen.de/ deckert/teaching/SS17/ATML/media/Word2Vec_slides.pdf

What is word embedding

- Representing a word as a vector of real numbers.
- Embedding is a function from a Vocabulary V to \mathbb{R}^n .
 - Corpus: Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna, ...
 - Vocabulary *V*: [Lorem, ipsum, dolor, . . .]
 - Embedding $f: V \to \mathbb{R}^n$
 - f(lorem) = (0.1, 0.4, ..., 0.3)

Why we study word embeddings

- Computer understands human vocabulary as vectors
 - All vector and matrix operations from linear algebra at our disposal
 - word similarity:

```
word_vectors.similarity("love", "adore") = 0.681
```

- text classification $f : \mathbb{R}^n \to \{1, 2, ..., K\}$
- Building block of ChatGPT

Learning objectives

- how to construct word embeddings
- how to evaluate word embeddings

Outline

Count-based construction

2 Prediction-based construction

3 Evaluation of word embeddings

4 Conclusion Remarks

Some concepts about counting

- Word co-occurrence: the occurrence of two or more words in a text
- Collocation (statistical association): two words that often occur together in a corpus
 - How often do two words co-occur?
 - Do they co-occur more often than chance (significance test: t-test):
 - Null hypothesis (H0): co-occurrance of w_1 and w_2 is due to chance (no collocation): $P(w_1, w_2) = P(w_1) \cdot P(w_2)$
 - In case we reject H0, w1 and w2 are a collocation.
 - How much mutual information do two words contribute (information theory): $PMI(w_1, w_2) = log_2\left(\frac{P(w_1, w_2)}{P(w_1) \cdot P(w_2)}\right)$

Bigram	freq(w1)	freq(w2)	freq(w1, w2)	t-test	PMI
unsalted butter	24	320	20	4.47	15.19
over many	13484	10570	20	2.24	1.01

Count-based embeddings

Co-occurrence matrix: entry = freq(w1, w2)

	astronaut	cosmonaut	tomato	
NASA	4	0	1	
Roscosmos	0	4	0	

- f(NASA) = (4,0,1,...)
- f(Roscosmos) = (0,4,0,...)
- Problems:
 - Long vectors. Length = |V|.
 - very high dimensional: require a lot of storage
 - Sparse matrix due to Zipfs law.
 - (near)-synonyms are in different dimensions: astronaut/cosmonaut

word_vectors.similarity("NASA", "Roscosmos") = 0

Singular value decomposition (SVD)

Properties:

- Low-dimensional approximation. $r \ll n$
- Most important hidden dimensions captured
- Computationally expensive; for $n \times m$ matrix: $O(mn^2)$
- Difficult to update when we want to assign vectors to new words.

Outline

- Count-based construction
- 2 Prediction-based construction
- 3 Evaluation of word embeddings
- 4 Conclusion Remarks

Next word prediction

```
Leipzig is a nice city.
=> (Leipzig, is), (is, a), (a, nice), (nice, city)
for word in sentence:
    take the current word vector
    predict the next word
    if prediction vector not next word vector:
         (i.e. if the prediction wrong)
         do gradient descent
repeat epoch times
```

A simple NN method for next word prediction

- input: Leipzig
- next word: is

- $\mathbf{v}_I(\text{Leipzig})^\top \cdot \mathbf{v}_O(w) = \text{score for word } w \in V$
- If $\arg \max_{w \in V} (\mathbf{v}_I(w_t)^\top \cdot \mathbf{v}_O(w)) \neq w_{t+1}$, then do gradient descent.

Gradient descent

- $p(is|Leipzig) = \frac{\exp(\mathbf{v}(Leipzig)^{\top}\mathbf{v}(is))}{\sum_{w \in V} \exp(\mathbf{v}(Leipzig)^{\top}\mathbf{v}(w))}$
- v_{is} starting with a random vector
- Take the derivative with respect to **v**_{is}

$$abla_{ heta} J_t(heta) = egin{bmatrix} 0 \ dots \
abla_{ extbf{v}_{ ext{is}}} \ dots \
abla_{ ext{is}} \ dots \
abla
onumber \end{bmatrix} \in \mathbb{R}^{dV}$$

lacksquare $\nabla_{\theta} J_t(\theta)$ is very sparse

Two popular methods: CBOW and Skip-gram

- Previous idea: predict next word based on last word (Leipzig, is)
- Predict center word from context (CBOW)
- Predict context from center word (Skip-gram)

Continuous Bag-of-words (CBOW)

- Predict center word from context words as input.
- Leipzig is a nice
- Change in pipeline: method input from last word into context words
- $\mathbf{v}_I = \frac{1}{C} \sum_{c \in C} \mathbf{v}_c$, where $C = \{\text{Leipzig, is, nice}\}$.

Skip-gram

Predict context words from center word as input

Comparison of CBOW and Skip-gram

- Computational costs:
 - CBOW: $O \propto (|C| \times d + d \times V)$
 - Skip-gram: $O \propto |C| \times (d + d \times V)$
 - CBOW is faster
 - Skip-gram good with smaller corpus and rarer words
 - Why? Rare words as center words are less often, so their vectors receive fewer updates.
 - Example: relics from the latterday pioneers
 - Skip-gram: (latterday, from), (latterday, the), (latterday, pioneers)
 - CBOW: (the, latterday)

Outline

- 1 Count-based construction
- 2 Prediction-based construction
- 3 Evaluation of word embeddings
- 4 Conclusion Remarks

Evaluation of word embeddings

Intrinsic evaluation:

- evaluation on word similarity and analogy tasks
- not clear how meaningful for real-world tasks

Extrinsic evaluation:

plug-in pretrained embeddings as features for different NLP tasks

Intrinsic evaluation

Word vector analogies:

- A is to B as what C is to?
- e.g., man is to women as what king is to?
- Task: v(woman) v(man) + v(king) = X
- Look for a word whose vector is closest to the resulting vector X
- $w = \arg\max_{w \in V} \frac{\left(v(man) v(woman) + v(king)\right)^T v(w)}{\|v(man) v(woman) + v(king)\| \cdot \|v(w)\|}$
- Correct if w = 'queen', otherwise wrong.

Conclusion Remarks

- Open-source LLMs
- Embeddings are numbers in a blackbox, how can we interpret them?
- Biases in embeddings: low-resource languages, gender stereotypes

Conclusion Remarks Wei Zhao

References I

Conclusion Remarks Wei Zhao 22