Recurrent Neural Networks

Quiz, 10 questions

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

$$x^{(i) < j >}$$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\bigcirc x^{< i > (j)}$
- $igcap x^{(j) < i >}$
- $\bigcirc \quad x^{< j > (i)}$

2. Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x=T_y$$

Correct

It is appropriate when every input should be matched to an output.

- $\bigcap T_x < T_y$
- $igcup T_x > T_y$
- $T_x = 1$
- 3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

$$a^{<0>} \longrightarrow \begin{bmatrix} & & & & \\ \uparrow & & & \\ \uparrow & & \uparrow & \\ & & \chi^{<1>} & \chi^{<2>} & \chi^{} \end{bmatrix}$$

Speech recognition (input an audio clip and output a transcript)				
Un-selected is correct				
Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)				
Correct!				
Image classification (input an image and output a label)				
Un-selected is correct				
Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)				
Correct				

4. You are training this RNN language model.

Correct!

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\qquad \text{Estimating } P(y^{<1>},y^{<2>},\dots,y^{< t-1>}) \\$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

6.	You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?			
		Vanishing gradient problem.		
		Exploding gradient problem.		
	Corre	ect		
	0	ReLU activation function $g(.)$ used to compute $g(z)$, where z is too large. Sigmoid activation function $g(.)$ used to compute $g(z)$, where z is too large.		
7.		se you are training a LSTM. You have a 10000 word vocabulary, and are using an with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time		
		1		
		100		
	Corr Corr LSTN	ect, Γ_u is a vector of dimension equal to the number of hidden units in the		
		300		
		10000		

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Here are the equations for the GRU and the LSTM:

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

LSTM

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 $igcap \Gamma_u$ and $1-\Gamma_u$

Correct

Yes, correct!

- Γ_u and Γ_r
- $1-\Gamma_u$ and Γ_u
- Γ_r and Γ_u

10.	You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?		
		Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.	
		Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.	
		Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$	
	Corre Yes!	ect	

Unidirectional RNN, because the value of $\boldsymbol{y}^{< t>}$ depends only on $\boldsymbol{x}^{< t>}$, and not

other days' weather.