

Instituto Politecnico Nacional Unidad Profesional Interdisciplinaria de Ingenieria Campus Zacatecas Ingenieria en Sistemas Computacionales

Sistema manipulador de un brazo robótico basado en redes neuronales artificiales

Línea de investigación: Inteligencia Artificial

Presentan:

Eliane Danae Trejo Aguiñaga Braulio Sebastián Vázquez Reyes

Directora: M.C.C.C Mayra Alejandra Torres Hernández

Asesores: Dr. Teodoro Ibarra Pérez Ing. Isaul Ibarra Belmonte

21 de diciembre 2023

Tabla de contenidos

01	Definición del problema	Marco teórico	06
02	Estado del arte	Marco metodológico	07
03	Descripción del proyecto	Análisis y discusión de resultados	08
04	Objetivos	Conclusiones	09
05	Justificación		

O1 Definición del problema

Contexto y antecedentes

Uso de las redes neuronales en la robótica Sistema de control de brazo robótico Evolución de redes neuronales Optimización de parámetros

Problema de investigación

Robótica

Redes neuronales artificiales

Nuevas herramientas

O2 Estado del arte

Comparativa de mercado

	Controlde	Control de	Control	Procesamiento
	trayectorias	optimización	movemaster	señal EMG
Captura de coordenadas			X	X
Modificación de parámetros				
Revisión de eficiencia				X
Movimiento de brazo robótico	X	X	X	X
Esquema cartesiano del robot	X			
Esquema de optimización de trayectorias		X		
Modificación de modelos de redes neuronales				X

O3 Descripción del proyecto

Diagrama de flujo

04

Objetivos

Objetivo general

Controlar y comparar el desempeño de un brazo robótico resolviendo la cinemática inversa usando dos modelos de redes neuronales

Objetivos particulares

- Implementación de modelos MLP y aprendizaje profundo en Python.
- Comparar los desempeños de las redes neuronales.
- Utilizar el método Taguchi para la optimización de parámetros de la red neuronal.
- Probar los resultados de los modelos en un kit de brazo robótico.

05 Justificación

Tabla comparativa sistema propuesto

	Sistema propuesto	Control de trayectorias	Control para optimización	Control robot movemaster	Procesamiento de señales EMG
Captura de coordenadas	X			X	X
Modificación de parámetros	Х				
Revisión de eficiencia	X				X
Movimiento de brazo robótico	Х	X	Χ	X	X
Esquema cartesiano del robot		Χ			
Esquema de optimización de trayectorias			Χ		
Modificación de modelos de redes neuronales	X				X

06 Marco teórico

Conceptos clave

Inteligencia Artificial

Redes Neuronales

Marco metodológico

Modelo V

Fuente: Adaptado de \?\`Qué es el modelo V en el desarrollo de software?», Aptiv. [En línea]. Disponible en: https://www.aptiv.com/es/tendencias/art%C3%ADculo/que-es-el-modelo-v-en-el-desarrollo-de-software

O8 Análisis y discusión de resultados

8.1

Gestion del proyecto

Análisis de lo planeado contra lo ejecutado

	Cronograma V1	Cronograma V2
Fecha de inicio	28 de agosto de 2023	28 de agosto de 2023
Fecha de termino	18 de diciembre del 2023	13 de diciembre del 2023
Cantidad de actividades	55 actividades	66 actividades
Tiempo total planeado	240horas	280horas
Horas semanales de	12horas	15horas
trabajo		

Desviaciones ejecutadas

ld riesgo	Descripción
R-001	Cambios en los requisitos del cliente durante el proyecto
R-003	Pérdida de datos críticos debido a fallos en el sistema de respaldo
R-005	Desmotivación o agotamiento del equipo debido a la carga de trabajo intensa o largas horas de trabajo
R-011	Problemas en la creación del documento de diseño.
R-012	Problemas con el entendimiento del proceso de desarrollo

Riesgos y mitigación

	Riesgo	Incidencias	Cómo se mitigó
R-001	Cambios en los	Durante la toma de	Revisión del documento de requerimientos
	requisitos	requerimientos, hasta	para dejar los acuerdos firmados.
		que se firmó el SRS	
R-003	Pérdida de	Reseteo del equipo de	Por el historial de versiones y el acceso
	datos críticos	uno de los integrantes	de los documentos en la nube fue posible
		del equipo	generar nuevamente las referencias que
			se perdieron.

Matriz de trazabilidad

Objetivo	Requerimiento	Diagramas de	Componente	Casos de	Pruebas
		diseño		uso	
OB_01	RS_02, RS_03,	DCSG,	Interfaz de	CU_02,	PSU_02,
	RS_04	DCS_01,	investigador,	CU_03,	PSU_04,
		DCS_02, DCP,	núcleo de	CU_04	PSU_08,
OB_02		DCU, DCM,	aplicación,		PSI_02,
		GUI_02,	sistema de		PSI_04
		DA_02,	entrenamiento,		
		DA_03, DA_04	base de datos		

Control de versiones de documentos

Autor(es)	Fecha de modificación	Versión	Descripción del cambio	Revisó	Estado
EDTA	10/10/2023	1.1	Creación del Documento		
EDTA	30/10/2023	1.2	Revisión de casos de uso	MATH	Pendiente
	05/10/2023	1.3	Aceptación de Arquitectura	MATH	Pendiente
ETDA, BSVR	31/10/2023	1.4	Revisión de casos de uso	MATH	Pendiente
EDTA,BS VR	21/11/2023	2.0	Última revisión y aceptación	MATH	Aprobado

Estrategia de control de versiones

Resumen de minutas elaboradas, con cliente y con equipo de trabajo

Minutas con el cliente	Minutas con el equipo
7	11

8.2

Desarrollo del proyecto

Requerimientos

	Nombre
RS_01	Recopilación de coordenadas deseadas
RS_02	Captura de parámetros de las redes neuronales
RS_03	Cargar modelo
RS_04	Procesamiento de los modelos de redes neuronales
RS_05	Optimización de Parámetros
RH_01	Armado del brazo robótico
RH_02	Recepción de instrucciones de movimiento
RH_03	Interpretación de instrucciones
RNF_01	Interfaz intuitiva
RNF_02	Uso de Python y toolkits IA
RNF_03	Uso de archivos .csv

Arquitectura

 $Fuente: Adaptado \ de \ MVC - Glosario \ de \ MDN \ Web \ Docs: Definiciones \ de \ términos \ relacionados \ con \ la \ Web», \\ Mozilla.org. \ [En \ línea]. \ Disponible \ en: https://developer.mozilla.org/es/docs/Glossary/MVC$

Manejo de archivos

Diagrama UML

Sistema de robot 3 DOF

Diagrama de casos de uso

Prototipos

Resumen del plan de pruebas

Pruebas unitarias	Pruebas de integración
10	8

Análisis y diseño de hardware

Kit de brazo robótico SunFounder

Arduino UNO

Conclusiones

Problemas encontrados

Reuniones constantes

Etapas a realizar

Planeación TT2

Etapa a realizar	Fecha de inicio	Fecha de finalización	Tiempo en días
Actividades faltantes TT1	08/01/2024	19/01/2024	10 días
Capacitación	13/02/2024	26/02/2024	10 días
Especificación de componentes	27/02/2024	04/03/2024	5 días
Codificación	05/03/2024	25/04/2024	30 días
Pruebas unitarias	26/04/2024	13/05/2024	10 días
Pruebas de componentes	14/05/2024	28/05/2024	10 días
Pruebas de sistema	29/05/2024	11/06/2024	10 días
Pruebas de aceptación	12/06/2024	18/06/2024	5 días

iGracias!

¿Preguntas?