

Apprentissage actif en classification évidentielle sous contraintes

V. Antoine¹ B. Quost² M.-H. Masson² T. Denœux²

¹Limos, UMR CNRS 6158, Clermont-Ferrand, France ²Heudiasyc, UMR CNRS 6599, Compiègne, France

Séminaire LIP6, février 2014

Plan

- Introduction
 - O Classification non supervisée
 - Classification sous contraintes
 - O Apprentissage actif
- Contributions
 - O Classification évidentiel sous contraintes
 - O Apprentissage actif évidentiel
- Expérimentations
 - O Comportement des algorithmes
 - O Apprentissage actif
- Conclusion

Plan

- Introduction
 - O Classification non supervisée
 - O Classification sous contraintes
 - O Apprentissage actif
- Contributions
 - O Classification évidentiel sous contraintes
 - O Apprentissage actif évidentiel
- Expérimentations
 - O Comportement des algorithmes
 - O Apprentissage actif
- Conclusion

Objectif

Grouper N individus en classes selon une notion de similarité

Partitions

Types de partitions

- Partition dure
 - O chaque objet x_i appartient à une classe de manière exclusive
 - O exemple d'algorithme : c-moyennes
- Partition floue
 - O définition d'un degré d'appartenance de chaque objet x_i à chaque classe ω_k : u_{ik}
 - O exemple d'algorithme : FCM
- Partition crédale
 - O définition d'un degré de croyance de chaque objet x_i à chaque sous-ensemble A_i de $\Omega = \{\omega_1, \dots, \omega_c\}$: m_{ij}
 - O exemples d'algorithmes : ECM, EVCLUS

Théorie des fonctions de croyance

Représentation de l'information

Soit Y une variable prenant des valeurs dans un ensemble fini Ω .

Fonction de masse m

$$\sum_{A\subset\Omega}m(A)=1$$

Fonction de plausibilité

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Prise de décision

Transformation pignistique

$$\textit{BetP}(\omega) = \frac{1}{1 - \textit{m}(\emptyset)} \sum_{A \subset \Omega \mid \omega \in A\}} \frac{\textit{m}(A)}{|A|}$$

Non-spécificité

$$N(m) = \sum_{A \subseteq \Omega \setminus \emptyset} m(A) \log_2 |A| + m(\emptyset) \log_2 |\Omega|$$

Partition crédale

Problème de classification

 $\Rightarrow \Omega$: ensemble des classes $\{\omega_1, \ldots, \omega_c\}$

 $\Rightarrow Y$: la classe réelle de l'objet o_i

 \Rightarrow **m**_i: connaissance partielle sur la classe de l'objet i

 \Rightarrow **M** = (**m**_i) : partition crédale

Exemple

Α	m_1	m_2	m_3	m_4
Ø	0	0	0	1
$\{\omega_{1}\}$	1	0.3	0	0
$\{\omega_2\}$	0	0.7	0	0
$\{\omega_1,\omega_2\}$	0	0	1	0

Algorithmes évidentiels

- modèle vectoriel : ECM
- modèle relationnel : RECM, EVCLUS

Définition

Grouper N individus en classes selon une notion de similarité

Problématiques sous-jacentes

- Comment définir la notion de similarité ?
- Quelle partition finale choisir?
- Les classes sont-elles équilibrées?

Définition

Grouper N individus en classes selon une notion de similarité

Problématiques sous-jacentes

- Comment définir la notion de similarité ?
- Quelle partition finale choisir?
- Les classes sont-elles équilibrées?

Définition

Grouper N individus en classes selon une notion de similarité

Problématiques sous-jacentes

- Comment définir la notion de similarité ?
- Quelle partition finale choisir?
- Les classes sont-elles équilibrées ?

Type de contraintes

Intégrer des contraintes dans la classification automatique :

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Type de contraintes

Intégrer des contraintes dans la classification automatique :

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Type de contraintes

Intégrer des contraintes dans la classification automatique :

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Must-Link

Cannot-Link

- M ensemble de contraintes Must-Link
- C ensemble de contraintes Cannot-Link

Contraintes Must-Link / Cannot-Link

Types d'algorithmes

- Respect total des contraintes [1]
 - ⇒ Limite l'exploration des solutions MAIS problème de faisabilité
- Respect partiel des contraintes [2, 3]

Méthodes d'intégration de contraintes

Ajout de contraintes dans des algorithmes de base (FCM, CL)

- Ajout d'une pénalité dans la fonction objectif [3]
- Modification des distances [2]
 - ⇒ Performant pour des classes de formes particulières
 - ⇒ Sensible aux contraintes choisies

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge, KDID, 2001

[2] D. Klein & al, From Instance-level Constraints to Space-level Constraints: Making the Most of Prior Knowledge in Data Clustering, ICML, 2002

[3] N. Grira & al, Active semi-supervised fuzzy clustering, Pattern Recognition, (41)-5 p1834-1844, 2008

Exemple 1 : Données avec des centres de gravité confondus http://nlp.stanford.edu/ danklein/demos/constrained-clustering-demo.shtml

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge, KDID, 2001

Exemple 1 : Données avec des centres de gravité confondus http://nlp.stanford.edu/ danklein/demos/constrained-clustering-demo.shtml

[1] K. Wagstaff & al. Constrained k-means clustering with background knowledge. KDID. 2001

Exemple 2 : Données avec des centres de gravité distincts http://nlp.stanford.edu/ danklein/demos/constrained-clustering-demo.shtml

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge, KDID, 2001

Exemple 2 : Données avec des centres de gravité distincts http://nlp.stanford.edu/ danklein/demos/constrained-clustering-demo.shtml

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge, KDID, 2001

Problématique

Certaines contraintes dégradent la solution [1]

⇒ sélection intelligente des contraintes

Constraintes non informative

Redondance

[1] K. Wagstaff & al, Value, cost, and sharing: Open issues in constrained clustering, KDID, 2007

Apprentissage actif

Motivations

- Obtenir des contraintes intéressantes à bas coût
- Améliorer des résultats de classification

Plan

- Introduction
 - O Classification non supervisée
 - O Classification sous contraintes
 - Apprentissage actif
- Contributions
 - O Classification évidentiel sous contraintes
 - O Apprentissage actif évidentiel
- Expérimentations
 - Comportement des algorithmes
 - O Apprentissage actif
- Conclusion

Formalisation

- Degré d'appartenance conjointe de \mathbf{x}_i , \mathbf{x}_j $m_{i\times i}(A\times B) = m_i(A)m_i(B) \quad \forall A, B\subseteq \Omega, A\neq \emptyset, B\neq \emptyset$
- Dans Ω², les événements
 - O $\theta \Rightarrow$ " \mathbf{x}_i et \mathbf{x}_i appartiennent à la même classe"
 - $\bigcirc \overline{\theta} \Rightarrow$ "**x**_i et **x**_i sont dans deux classes différentes"
- ⇒ Plausibilité d'appartenance à la même classe

$$pl_{i\times j}(\theta) = \sum_{A\cap B\neq\emptyset} m_i(A) \ m_j(B)$$

⇒ Plausibilité d'appartenance à une classe différente

$$pl_{i\times j}(\overline{\theta}) = 1 - m_{i\times j}(\emptyset) - \sum_{k=1...c} m_i(\{\omega_k\}) m_j(\{\omega_k\})$$

Exemple

Α	m_1	m_2	m_3	m_4	m_5			$pl_{1\times 2}$	$pl_{1\times3}$	$pl_{1\times4}$	<i>pl</i> _{1×5}
Ø	0	0	0	0	1	\Rightarrow	θ	1	0	1	0
ω_{1}	1	1	0	0	0		$\overline{ heta}$	0	1	1	0
ω_2	0	0	1	0	0			•'			•
Ω	0	0	0	1	0						

Exemple

Α	m_1	m_2	m_3	m_4	m_5
Ø	0	0	0	0	1
ω_1	1	1	0	0	0
ω_2	0	0	1	0	0
Ω	0	0	0	1	0

	$pl_{1\times 2}$	$pl_{1\times3}$	$pl_{1\times4}$	$pl_{1\times5}$
θ	1	0	1	0
$\overline{ heta}$	0	1	1	0 0
	Į.	\$		
(o_1, o_2	$\in \mathcal{M}$	(o_1, o_3)	$)\in\mathcal{C}$

Exemple

Α	m_1	m_0	m_3	m_4	m_5
()	0	0	0	0	1
ω1	1	1	0	0	0
ω_1 ω_2	0	Û	1	0	0
Ω2	0	0	0	1	0

	$pl_{1\times 2}$	$pl_{1\times3}$	$pl_{1\times4}$	0
θ	1	0	1	X
$\overline{ heta}$	0	1	1	0
	1	1		• • • • • • • • • • • • • • • • • • • •
	(o_1, o_2)	$\in \mathcal{M}$	(o_1, o_3)	$)\in\mathcal{C}$

Ajout de contraintes : CECM

Principe de base

Si $(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{M} \Rightarrow pl_{i \times i}(\overline{\theta})$ faible et si $(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{C} \Rightarrow pl_{i \times i}(\theta)$ faible

Fonction objectif

$$J_{CECM} = J_{ECM} + \xi (\sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}} pl_{i \times j}(\overline{\theta}) + \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}} pl_{i \times j}(\theta))$$
sous contraintes $\sum_{i} m_i(A_i) + m_i(\emptyset) = 1$ et $m_i(A_i) \ge 0$

 $\Rightarrow J_{CFCM}$ quadratique quand $\beta = 2$, contraintes linéaires

Ajout de contraintes : CECM

Ajout de contraintes : CEVCLUS

Formulation mathématique

Cas d'un Must-Link :
$$J_{ML} = \sum pl_{i \times j}(\overline{\theta}) + 1 - pl_{i \times j}(\theta)$$

Cas d'un Cannot-Link :
$$J_{CL} = \sum_{(o_i,o_j) \in \mathcal{C}}^{(o_i,o_j) \in \mathcal{M}} pl_{i \times j}(\theta) + 1 - pl_{i \times j}(\overline{\theta})$$

Fonction objectif

$$J_{CEVCLUS} = J_{EVCLUS} + \xi \frac{1}{2(|\mathcal{M}| + |\mathcal{C}|)} (J_{ML} + J_{CL})$$

sous contraintes $\sum m_i(A_i) + m_i(\emptyset) = 1$ et $m_i(A_i) \ge 0 \quad \forall i, j$

⇒ Minimisation par une méthode de descente de gradient

Jeu de données Banana

Principe

- Sélection automatique de paires d'objets
 - O Point dont la classe est incertaine
 - O Point dont la classe est certaine
 - ⇒ mesure de non spécificité

Principe

- Sélection automatique de paires d'objets
 - O Point dont la classe est incertaine
 - O Point dont la classe est certaine
 - ⇒ mesure de non spécificité

Principe

- Sélection automatique de paires d'objets
 - O Point dont la classe est incertaine
 - O Point dont la classe est certaine
 - ⇒ mesure de non spécificité

Principe

- Sélection automatique de paires d'objets
 - O Point dont la classe est incertaine
 - O Point dont la classe est certaine
 - ⇒ mesure de non spécificité

Schéma global

Plan

- Introduction
 - O Classification non supervisée
 - Classification sous contraintes
 - Apprentissage actif
- Contributions
 - O Classification évidentiel sous contraintes
 - O Apprentissage actif évidentiel
- Expérimentations
 - O Comportement des algorithmes
 - O Apprentissage actif
- Conclusion

Protocole expérimental

Jeux de données

	# attributs	# objets	# classes
iris	4	150	3
Wine	13	178	3

Méthode d'évaluation

- Contraintes
 - ⇒ Sélection aléatoire
- Décision
 - ⇒ Maximum de probabilité pignistique
- Critère : Indice de Rand
 - ⇒ mesure de la concordance globale entre 2 partitions

Comportement des algorithmes

-X RI total

RI sur les objets non contraints

Apprentissage actif

X RI, sélection aléatoire de contraintes

RI, apprentissage actif

Données ChickenPieces

446 objets répartis dans 5 classes

Données images

. . .

Matrice de dissimilarité

lté	#cont.	RI
0	0	0.76

Ité	#cont.	RI
0	0	0.76
1	5	0.80

Ité	#cont.	RI
0	0	0.76
1	5	0.80
2	12	0.82

lté	#cont.	RI
0	0	0.76
1	5	0.80
2	12	0.82
3	19	0.83

Plan

- Introduction
 - O Classification non supervisée
 - Classification sous contraintes
 - Apprentissage actif
- Contributions
 - O Classification évidentiel sous contraintes
 - O Apprentissage actif évidentiel
- Expérimentations
 - Comportement des algorithmes
 - O Apprentissage actif
- Conclusion

Algorithmes de classification sous contraintes

- Les contraintes mènent vers une solution désirée
- Amélioration des performances
- Sensibilité à certains jeux de contraintes

Utilisation d'une partition crédale

Avantage

- Bon résultats
- Partition riche en information
- Apprentissage actif facilité

Inconvénient

 Complexité calculatoire

Pespectives

Apprentissage actif

- Chute des performances
 - ⇒ Phase d'exploration
 - ⇒ Phase d'exploitation?
- Blocage sur un minimum local
 - ⇒ gestion particulière de ∅?
 - \Rightarrow autres mesures que *N*?

Pespectives

Pistes de recherche

- Étude de l'influence des contraintes
 - O Selon les jeux de données
 - O Selon les algorithmes de classification sous contraintes
 - ⇒ Mesures d'utilité
 - ⇒ Apprentissage actif plus robuste
 - ⇒ Suppression de contraintes redondantes ou incohérentes
- Utilisation des contraintes en prétraitement
 - O Choix d'une métrique adaptée pour CEVCLUS
 - O Initialisation des centres de gravité pour CECM

Merci pour votre attention

