I have read and agree to the collaboration policy. Lynne Diep.

Lynne Diep Homework Heavy Grading Collaborators: Sabrina

> Homework 3-4 Due: May 22, 2017

a. Algorithm -

Initialize s = 0, all other vertices are set to ∞ start with smallest weight edge from source

Update vertex distances along this path until relaxing doesn't return a smaller weight

main a queue of all unrelaxed vertices \rightarrow dequeue when relaxed when finished, go to lowest weight unrelaxed vertex in queue

Update vertex distances along this path until relaxing doesn't return a smaller weight

continue until unrelaxed queue is empty (no more unrelaxed vertices)

Runtime: The time to sort |E| edges by weight is $O(E \log E)$, and the algorithm is based off of dijkstra which has a run time of O(v). Each of the passes take O(E) time. Thus the total runtime is $O(E \log E + V + E) = O(V + E \log E)$.

Proof of Correctness:

Invariant: for each node in graph, d(u) is the length of shortest path Base Case: S is set of nodes in which shortest path has already been found S = 1 d(S) = 0

Induction Hypothesis: assume invariant is true for $|s| = k \ge 1$

- Let V be next node added to S and let (u,v) be the chosen edge
- The shortest s-u path plus (u,v) is a s-v path of length $\pi(v)$
- Consider any s-v path p. We'll see that its no shorter than π(v) ← original inequality for ours include property for y-v because the path always has increasing edges weights, y-v will be longer
- Let x-y be the first edge in p that leaves S, and let p' be the subpath to x

$$p' + (x,y) length \ge d(x) + l(x,y) \ge \pi(y) \ge \pi(y)$$

(IH) (def.) (our algorithm chose v instead of y)

Thus finding the shortest path.

b. There are many cases, and each has their own algorithm CASES:

- 1. all increasing sequences same algorithm for part a
- 2. all decreasing sequences same algorithm for part a but in decreasing order of weights

- 3. increase then decrease sequences run part a algorithm, then run part a algorithm in decreasing order of weights
- 4. decrease then increase sequences run part a algorithm in decreasing order of weights then run part a algorithm normally

Correctness:

We ensure the correctness by the path-relaxation property with the unique edge weights. The path-relaxation property states -

Path-Relaxation Property (Lemma 24.15)

If $p = (v_0, v_1, \dots, v_k)$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = v_k.\delta$ (regardless of the order of other relaxation steps).

Proof:

By induction on i, $0 \le i \le k$

After the ith edge of p is relaxed, $v_i d = v_i . \delta$

For i = 0, we have s.d = s. $\delta = 0$ by initialization

The value of s.d never changes after that

Inductive step: $i - 1 \rightarrow i$

Assume $v_{i-1}.d = v_{i-1}. \delta$ and relax (v_{i-1}, v_{i})

Thus the correctness of the algorithm.

Runtime: $O(V + E \log E)$

The time to sort |E| edges by weight is $O(E \log E)$, and the algorithm is based off of dijkstra which has a run time of O(v). Each of the passes take O(E) time. Thus the total runtime is $O(E \log E + V + E) = O(V + E \log E)$.