Kontrollfrågor och Bra att veta

Meris Bahti & Felix Mul $10~{\rm mars}~2013$

Q: Vad menas med en **odämpad harmonisk svängning**? Hur beräknas dess komplexa amplitud?

A: $Asin(\omega t + \phi)$ är en **odämpad harmonisk svängning**. Man räknar ut den komplexa amplituden genom: $A(i\omega) = |H(i\omega)|$

Fråga 2

Q: Hur kan man definiera deltafunktionen?

A:
$$\delta(t) = \lim_{\Delta \to 0} p_{\Delta}(t)$$

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$$

Fråga 3

Q: Vilket samband finns mellan stegfunktionen och deltafunktionen?

A:
$$\theta(t)' = \delta(t)$$

Fråga 4

Q: Definiera Laplacetransform av en funktion. Har alla funktioner en Laplacetransform? Om inte så förklara varför.

A:
$$\mathcal{L}f(t) = \int_{-\infty}^{\infty} e^{-st} f(t) dt = F(s), \ s = \sigma + i\omega$$

Alla funktioner har inte en laplacetransform. Integralen måste konvergera för att det ska finnas en sådan. T.ex:

$$f(t)=1, \mathcal{L}f(t)=\int_{-\infty}^{\infty}e^{-st}dt=[\frac{1}{s}e^{-st}]_{-\infty}^{+\infty}$$

Fråga 5

Q: Härled derivationsregeln för den ensidiga Laplacetransformationen.

A: Använd regel (19):

$$\mathcal{L}_{I}(f(t)) = F(s)$$
 så $\mathcal{L}_{I}(f'(t)) = \mathcal{L}_{I}(f'(t)\theta(t)) = sF(s) - f(0)$
Använd regel (16):
 $\mathcal{L}(f(t)) = s\mathcal{L}(f(t)) = (f(t)\theta(t))' = f'(t)\theta(t) + f(t)\delta(t) = f'(t)\theta(t) + f(0)\delta(t)$
 \mathbf{VL} : $\mathcal{L}((f(t)\theta(t))') = s\mathcal{L}(f(t)\theta(t)) = s\mathcal{L}(f(t))$

HL:
$$\mathcal{L}(f'(t)\theta(t)) + \mathcal{L}(f(0)\delta(0)) = \mathcal{L}(f'(t)\theta(t)) + f(0)1 = \mathcal{L}_I(f'(\theta(t))) + f(0) = \mathcal{L}_I(f(t)) = s\mathcal{L}_I(f(t)) - f(0)$$

Q: Vad blir faltningarna $\delta * f$ och $\delta^{(n)} * f$?

A: $\delta^{(n)} * f = f^{(n)}$ t.ex. $\delta' * f = f'$ eftersom $\mathcal{L}^{-1}(sF(s)) = f'(t)$ och $\mathcal{L}(\delta'(t)) = s$

Fråga 7 - viktig

Q: Vad menas med att ett system i insignal- utsignalform är:

- a) Linjärt
- b) Tidsinvariant
- c) Stabilt
- d) Kausalt

A:

- a) Linjärt: $S(aw_1 + bw_2) = aSw_1 + bSw_2$
- b) Tidsinvariant: Ifall Sf(t) = y(t) så $Sf(t-\tau) = y(t-\tau)$
- c) Stabilt: Ifall insignalen är begränsad så är även utsignalen begränsad.
- d) Kausalt: Orsak föregår verkan. Insignalen f(t) = 0 för $t < t_0$ så är utsignalen y(t) = 0 för $t < t_0$

Fråga 8 - viktig

Q: Under vilka villkor på impulssvaret är ett linjärt system i insignal-utsignalform:

- a) Tidsinvariant kommer ej
- b) Stabilt
- c) Kausalt

A:

- b) Tidsinvariant: kommer ej
- b) Stabilt: Om gränsvärdet $\int_{-\infty}^{\infty}|h(t)|dt$ är konvergent så är systemet stabilt.
- b) Kausalt: Ifall h(t) är en kausal funktion. T.ex. ifall h(t) innehåller $\theta(t)$ så är h(t)=0 för t<0

Q: System i insignal-utsignalform kan ibland beskrivas som faltningar med en fix funktion. Under vilka villkor på systemet gäller detta och vad kallas den fixa funktionen?

A: Detta gäller för LTI-system (Linjärt tidsinvarianta) där h(t) är impulssvaret och utsignalen y(t) = f(t) * h(t)

Fråga 10

Q: Vilka samband finns mellan stegsvar och impulssvar för ett linjärt tidsinvariant system?

A: Derivatan av stegsvaret är impulssvaret. Detta ges som: $(S\theta(t))' = h(t)$

Fråga 11

Q: Ange impulssvaret för en derivation och en fördröjning.

A: Då impulssvaret är $\delta(t)$ så är dess derivata $\frac{d}{dt}\delta(t) = \delta'(t)$ och en fördröjning för $\delta(t)$ är $\delta(t-a)$.

Fråga 12

Q: Definiera överföringsfunktionen för ett LTI-system.

A: Överföringsfunktionen är laplacetransformen av impulssvaret $\mathcal{L}(h(t))=H(s)$ eller $\frac{Se^{st}}{e^{st}}$

Exempel: Utsignal kan beräknas med hjälp av frekvensfunktionen $F_n(\omega) = H(s)$, se fråga 14.

Fråga 13

Q: Vilka villkor måste man lägga på ett system för att det skall ha en frekvensfunktion? Ange sambandet mellan frekvens- och överföringsfunktionen.

A: För ett stabilt system så: $F_n(\omega) = H(i\omega)$

Q: Hur kan ett systems svar på en sinusfunktion bestämmas, då frekvensfunktionen för systemet är känd?

A: $A(\omega) = |F_n(\omega)|, \ \phi(\omega) = arg(F_n(\omega)) \text{ och } Ssin(\omega t) = A(\omega)sin(\omega t + \phi(\omega))$ Exempel: Vad är svaret på sin2t?

$$F_n(\omega) = \frac{1}{i\omega+1} \Leftrightarrow H(s) = \frac{1}{s+1}$$

Överför sinusfunktionen på exponentform: $sin(2t) = Im(e^{2it})$ detta ger att $Im(Se^{2it} = H(2i) = \frac{1}{2i+1}(cos(2t) + isin(2t))$

Fråga 15

 $\mathbf{Q}\text{:}\ \$ Ange sambandet mellan överföringsfunktionen och impulssvaret för ett LTI-system.

A:
$$\mathcal{L}(h(t)) = H(s)$$

Fråga 16

Q: Ge ett exempel på en kvadratisk matris som inte är diagonaliserbar (med bevis att den inte är det).

A: Exempel:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Bevis: $\lambda_1 = \lambda_2 = 0$ Om A är diagonaliserbar så är $\mathcal{S}^{-1}A\mathcal{S} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \Rightarrow A = \mathcal{S}0\mathcal{S}^{-1} = 0$ **motsägelse**: det sista stämmer ej.

Fråga 17

Q: Finns det en diagonaliserbar matris med multipla egenvärden? Ge i så fall ett exempel (med bevis).

A: Ja, till exempel $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ som redan är diagonal. $(\lambda_1 = \lambda_2 = 1)$

Fråga 18

Q: Ange sambanden mellan spår, determinant och egenvärden för en matris.

5

A:
$$tr(A) = \lambda_1 + \ldots + \lambda_n$$
 $det(A) = \lambda_1 \cdot \ldots \cdot \lambda_n$

Q: Kommer ej på tentamen, tack Victor.

Fråga 20

 $\mathbf{Q} \colon \:\:$ Definiera matrisexponentialfunktionen e^{At} för en godtycklig kvadratisk matris

A:
$$e^{At} = I + At + \frac{A^2t^2}{2} + \frac{A^3t^3}{3!} + \dots$$

Fråga 21

Q: Vilken typ av termer uppträder i exponentialmatrisen e^{tA} ? Hur kan man här se skillnad på diagonaliserbara och icke-diagonaliserbara matriser?

A: Exponentialmatrisen e^{At} innehåller $C_i e^{\lambda_i t}$ -termer i det fall att A är diagonaliserbar. Ifall matrisen är icke-diagonaliserbar så förekommer $C_i t^k e^{\lambda_i t}$ -termer.

Fråga 22

Q: Definiera begreppet ortogonal matris.

A:
$$A^T = A^{-1}$$

Fråga 23

Q: Formulera spektralsatsen för (reella) symmetriska matriser.

A: Om A är en reell symmetrisk matris så är A diagonaliserbar med hjälp av en ortogonal matris \mathcal{S} .

$$\mathcal{S}^{-1}A\mathcal{S} = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} = \mathcal{S}^TA\mathcal{S}$$

alla λ_i är reella.

Fråga 24

Q: Definiera begreppet kvadratisk form och ange hur en sådan brukar beskrivas i matrisform.

6

A:
$$f(\mathcal{X}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

Q: Hur transformeras matrisen för en kvadratisk form vid ett linjärt koordinatbyte? Vilken är skillnaden mellan denna transformationsformel och motsvarande vid linjära avbildningar?

A: Matrisen för linjärt koordinatbyte är en likformighetstransformation

$$\hat{A} = S^{-1}AS,$$

medan matrisen för en kvadratisk form transformeras genom en $\mathbf{kongruenstransformation}$

$$\hat{K} = K^{-1}AS.$$

Fråga 26

Q: Ett LTI system av ändlig ordning är kausalt. Hur kan man med hjälp av dess överföringsfunktion avgöra om det är stabilt?

A: Givet en godtycklig överföringsfunktion

$$H(s) = \frac{P(s)}{O(s)}$$
där P,Q är godtyckliga polynom.

Då är ssystemet S stabilt om överföringsfunktionen uppfyller följande krav:

- 1) $deg(P(s)) \le deg(Q(s))$
- 2) För alla lösningar, s_i , av Q(s) = 0 så är Re(s) < 0

Satser och tips och trix

- $\bullet \ D = S^{-1}AS \Leftrightarrow A = SDS^{-1}$
- $\bullet \ A^n = SD^nS^{-1}$
- $f(t)\delta(t-a) = f(a)\delta(t-a)$
- Frekvensfunktion: $H(i\omega)$
- Amplitudfunktion: $A(\omega) = |H(i\omega)|$
- Fasfunktion: $\phi(\omega) = arg(H(i\omega))$
- $H(i\omega) = A(\omega)e^{i\phi(\omega)}$
- Egenvärdena till en diagonalmatris är egenvärdena.
- $e^{At} = Se^{Dt}S^{-1}$, vilket betyder att ifall man diagonaliserar matrisen A och tar fram S så kan man få fram exponentialmatrisen enkelt genom denna sats
- $|t| = 2t\theta(t) t$

- $\int f(t)\theta(t-a)dt = [F(t) F(a)]\theta(t-a)$
- Om något $\lambda_i = 0$ för matrisen A så är $det(A) = 0 \Rightarrow$ ej inverterbar
- \bullet Om något $\lambda_i = 0$ för matrisen A så är matrisen ej ortogonal eftersom denna inte är inverterbar.
- När en matris determinant är positiv så är matrisen stabil.
- $B(t) = e^{At}$, $B(2)^2 = e^{2A2}$
- Istället för att kvadratkomplettera den kvadratiska formen kan man gaussa matrisen K så att denna har 1:or diagonalt. d_i blir då det man delar respektive rad med för att få en etta på diagonalen.
- Alla $d_i > 0$: positivt definit matris
- Alla $d_i < 0$: negativt definit matris
- Alla $d_i \geq 0$: positivt semidefinit matris
- Alla $d_i \leq 0$: negativt semidefinit matris
- Matrisen har både $d_i < 0$ och $d_i > 0$: indefinit matris
- $e^0 = I$
- För att lösa begynnelsevärdesproblemet: $X' = AX, X(0) = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ kan man använda $X(t) = e^{At}X(0)$ för att enkelt lösa problemet.
- En matris är diagonaliserbar ifall alla egenvärden är unika.
- En matris är inverterbar då $det(A) \neq 0$
- En matris är symmetrisk då den inte innehåller imaginära egenvärden.
- $\bullet\,$ Om tr(A)<0 så måste minst ett av egenvärdena vara mindre än noll.
- u = Sv, $\frac{du}{dt} = Au$
- $f(x_1, x_2) = x_1^2 + 2x_2^2$: positivt definit
- $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2$: positivt semidefinit

Exempeluppgifter

Hur många egenvärden < 2?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

För att lösa detta gör vi följande: (A-2I)=BOm $AX=\lambda B$ så $BX=(A-2I)X=\lambda X-2X=(\lambda-2)X$. Gaussning med

denna nya matris ger samma egenvektorer men
$$\lambda_i-2$$
 som egenvärde. Eftersom $\lambda_i-2<0 \Leftrightarrow \lambda_i<2$ så följer: $B=A-2I=\begin{bmatrix} -1 & 2 & 3\\ 2 & 1 & 4\\ 3 & 4 & 3 \end{bmatrix}$ gaussning av denna matris ger ut: $d_1=-1, d_2=5, d_3=-8$. De egenvärden som <0 är de vi söker. d_1 och d_3 uppfyller detta. Alltså har vi två egenvärden som är mindre än noll

noll.