two targets T, Tz want to max. Flow to T, Tz combined (T, + 72 have max capacities - can Network Flows

Network Flows

You are given a network with capacities on the

edges

 Goal is to decide how much flow to send along each edge, to maximize total amount from s to t

Useful Strategy: Modifying the Input Graph

- Many problems with network flow require you to modify the input graph
- Example: Suppose you are given a graph with positive integer capacities. You are given a source node S, and two target nodes T₁, T₂. You want to maximize the total amount of flow sent to T₁ and T₂ combined.
- How can you use the existing flow algorithm on a modified graph to answer this question?

Bipartite Graphs

 A bipartite graph is a graph in which the nodes can be divided into two sets V₁, V₂, and all edges connect a node from V₁ to a node from V₂

Bipartite Matching

- A bipartite graph is a graph in which the nodes can be divided into two sets V₁, V₂, and all edges connect a node from V₁ to a node from V₂
 A matching on a bipartite graph is a set of edges
- A matching on a bipartite graph is a set of edges such that every node is adjacent to exactly one edge
- · Examples? people vaccine graph

Bipartite Matching

Does a Bipartite Matching Exist?

 How can we use the flow algorithm to determine whether a bipartite matching exists?

Does a Bipartite Matching Exist?

Is integral, and F.F. Finds such a Construction of Useful property: If all edges have integer I edge capacities, then the optimal flow is (integral!) The teger found by F-F algorithm Beatrice Chet' Carol

In-Class Exercise

 Come up with a simple algorithm to determine whether a graph is bipartite

In-Class Exercise: Supplying Goods

- There are k factories that produce up to g_1 , ..., g_k quantity of goods (assume they are integers)
- There are n warehouses that can store up to w_1 , ..., w_n quantity of goods (assume integers)
- A factory can supply a warehouse if they are within 100 miles of each other (given locations)
- What is the maximum number of goods that can be stored? and how much should each factory produce?

In-Class Exercise: Supplying Goods

factory i can produce £g; units

In-Class Exercise: Nodes with Demands

• Suppose that in addition to a maximum capacity on edges, each node has a demand: a certain amount of flow that it will use up

• How do we find if there is a feasible flow? so his field

In-Class Exercise: Nodes with Demands

In-Class Exercise: Powering Cities

- There are several power stations P_1 , ..., P_n , each generating E_1 , ..., E_n units of electricity every day
- There are cities C_1 , ..., C_m , which need D_1 , ..., D_m units of electricity every day
- Each city is linked to every other city and power station within 100 miles
- Electricity can flow from the power station to a city,
 and the city can send excess electricity to other cities
- Is it possible to satisfy the demand from every city?

In-Class Exercise: Powering Cities

In-Class Exercise: Dinner Party

- A group of students is having a dinner party
- You have to decide where people sit
- To help people meet new friends, you decide that no table should include two people from the same major
- There are p majors, with s₁, ..., s_p students from each major
 There are q tables, with sizes t₁, ..., t_q

In-Class Exercise: Dinner Party

