

01

Team Introduction 02

Introduction

03

Data & Methodology

04

05

Results

Conclusion

TEAM INTRODUCTION

David Kurniawan

Maranatha Christian University Majoring in Information System

Sherly Santiadi

Maranatha Christian University
Majoring in Informatics Engineering

Marselius Agus Dhion

Maranatha Christian University Majoring in Information Systems

INTRODUCTION

The proposal is presented topics delves into the critical matter of predicting customer churn, a challenge with profound implications for business sustainability. In navigating this concern, our focus is on comprehending the distinct characteristics exhibited by each customer, thereby facilitating the development of a targeted strategy for those identified as potential churners within the company's service model.

DATA AND METHODOLOGY

Random Forest

Using random forest approach with raw data as an input without any feature engineering

Feature Engineering

Using random forest approach with categorize data as an input

K-Means Clustering

Using k-means
clustering to identify
incorrect predictions in
customer segmentation
to enhance the random
forest model

Conditional

Using conditional statement based on k-means clustering to enhance the random forest model

RESULT

https://github.com/sntdshrly/dsw2023/

https://bit.ly/telkomsel-dashboard

Categorize **Regression Features**

- Tenure months
 - New customer: 0 -12
 - Existing customer: 13 48
 - Loyal customer: > 48
- Monthly purchase
 - Low: < 50
 - Medium: 50 -100
 - o High: > 100
- CLTV
 - Low: < 4000
 - o Medium: 4000 6000
 - High: > 6000

Pearson Correlation

- 3 Top Features that Correlate Strongly with Churn Label
- Tenure months
- Payment months
- Device class

K-Means Clustering

After performing the k-means clustering approach, we found that the top 2 prediction errors involve

• Existing or loyal customers who use pulsa as their payment method and have high-end device classes. In these cases, the model tends to predict non-churn, whereas the actual prediction is churn.

K-Means Clustering

• New customers who use pulsa as their payment method and have high-end device classes. In these cases, the model tends to predict churn, whereas the actual prediction is non-churn.

RANDOM FOREST

RANDOM FOREST WITH FEATURE ENGINEERING

ENHANCED RANDOM FOREST

CONCLUSION

The issue addressed in this proposal is how to predict customer churn. By understanding the characteristics of each customer, we aim to develop a tailored approach for those predicted to churn from the company's service model. One noteworthy observation is the tendency of customers who make pulsa payments and use high-end devices to churn over time. Consequently, a specialized approach is required for this customer segment—such as offering points that can be exchanged for vouchers.