S/N	Jargon	Remarks	Formula
1.	Bit Time	A bit time is the time taken to transmit one bit	N Bit Time = $\frac{N}{R}$
<u> </u>		R is the bandwidth of the link	R But I time $-\frac{R}{R}$
2.	Packet Transmission	Time needed to transmit L- bit packet into link	$D_{trans} = \frac{L(bits)}{R(bits/sec)}$
	Delay	Host sending function	`
3.	Propagation	Time taken for signal to travel from S to R (based on	$D_{prop} = \frac{d}{s}$
J.	Delay	distance & speed of signal)	Distance over speed of signal **RTT ~ 2 x D _{prop} (assume no other D)
4.	End-To-End	Store and Forward (entire packet must arrive at router)	$D_{end-to-end} = 2 \times \frac{L}{R}$
4.	Delay	before transmission)	*Assuming no other delays
5.	Processing Delay	Time taken for devices to proE.g check bits, determine out	
	-	Time waiting in the queue for	
6.	Queuing Delay	Depends on congestion level	
		The number of USEFUL bits that	$Throughput = \frac{total\ bits}{total\ time}$
7.	Throughput	can be transmitted per unit time	Throughput
		** Depends on QNS. ½ or 1 RTT	$= \frac{L}{RTT + D_{trans}} OR \frac{L}{RTT/2 + D_{trans}}$
		 Fraction of time sender is busy sending 	D
		Pipelining increases	$U_{sender_nopipe} = \frac{D_{trans}}{RTT + D_{trans}}$ $U_{sender_pipe} = \frac{N \times D_{trans}}{RTT + D_{trans}}$
		utilisation by window size N	$N \times D_{trans}$
8.	Utilization	times! (100% use = 1)	$O_{sender_pipe} = \frac{1}{RTT} + D_{trans}$
		This is the formula for pipelined rdt	But there might be questions where there will be no
		protocols (using sliding window) - The denominator is (RTT + L/R) because thats	mention of rdt protocols - so the denominator will not look like this - since there might not be any
		the amount of time it takes for the sender to receive the ACK for the first pkt sent and	waiting for ACK involved
	Bandwidth-	hence send the next pkt (the window slides)	
9.	Delay Product	Maximum amount of data that can be in transit in the network	$BDP = bandwidth \times RTT$
	(BDP)	Window size determines	
	TCP window	the amount of data that can	$Optimal\ Window\ Size = \frac{BDP}{MGG}$
10.	size	be sent before receiving an	$Optimal\ Window\ Size = {MSS}$ $MSS \rightarrow Max\ Segment\ Size$
		ACK.MSS is influenced by MTU	Wiss 7 Wax segment size
		Smallest amount of data that	can be transmitted in a frame on a
		particular network	at he detected by conding nodes. A No
		 Collision happens but may no retransmission! 	ot be detected by sending nodes. → No
11.	Minimum	For example, Ethernet require	es a minimum frame size of 64 bytes.
	Frame Size **		ce MAC Length/ Payload Frame fress Type Payload Check Sequence
		,	Bytes 2 Bytes 46 to 1500 Bytes 4 Bytes
		F - E	Rate (Ignore Collision) Rate (Detect all Collisions)
		$L \geq L \wedge \nu_{prop} \wedge LllR$	naic (Detect all Collisions)

12	Dallaran Faud	Circle Course Chartest Bath O(VE)	$d(\alpha) = \min_{\alpha} (a(\alpha, \alpha) + d(\alpha))$
12.	Bellman Ford	Single Source Shortest Path, O(VE)	$d_{x}(y) = \min_{v} \{c(x, v) + d_{v}(y)\}$
13.	Properties RSA	$m = K_B^-(K_B^+(m))$	$K_B^-(K_B^+(m)) = m = K_B^+(K_B^-(m))$
14.	Adaptively Estimate Packet Delay	i.e Exponentially Weighted Moving Average (EWMA) • $d_i \rightarrow$ delay est. after i th pkt • $v_i \rightarrow$ est. ave deriv after i th pkt • $r_i, t_i \rightarrow$ time Rvc, timestamp • $\alpha, \beta \rightarrow$ small constant	$d_{i} = (1 - \alpha)d_{i-1} + \alpha(r_{i} - t_{i})$ $v_{i} = (1 - \beta)v_{i-1} + \beta r_{i} - t_{i} - d_{i} $
15.	Playout-Time	It consists of 1) Time needed to collect an audio sample and to prepare it for transmission. 2) Network delay, 3) Buffering time	$Playout\ Time = t_i + d_i + 4v_i$
16.	Estimate Sample RTT	Timeout Interval → EstimatedRTT + "Safety Margin" • Large variation in EstimatedRTT → larger safety margin • Estimate SampleRTT deviation	$DevRTT \\ = (1 - \beta) \times DevRTT \\ + \beta \times SampleRTT \\ - EstimatedRTT \\ EstimatedRTT \\ = (1 - \alpha) \times EstimatedRTT \\ + \alpha \times SampleRTT$
17.	Timeout Interval	from EstimatedRTT • α = 0.125 (usually)	Timeout Interval = EstimatedRTT + 4 × SampleRTT
18.	Compression Ratio	Compression Ratio = Uncompressed	Bitrate / Compressed Bitrate
19.	Uncompressed Data Rate (bps)	Uncompressed Data Rate (bps) = Sa Bit Depth (bits per sample) x Numbe	mpling Rate (samples per second) x er of Channels
20.	Bit depth	 each pixel in a digital image or t audio. Given XXX levels, bit depth = lo Given YY-bit quantization, bit d 	lepth = YY refers to the number of bits used to

- RFC → Request for comments
- TCP segment can typically carry about 1460 bytes of app-data (MSS).

QNS	** Suppose the propagation delay between furthest nodes is d and link rate is r. What is the
	minimal frame size L to ensure collision will ALWAYS be detected ion CSMA/CD protocol?
ANS	 Usually → L = rd is the minimal frame size.
	• However, since we want to ensure that the collision is always detected, L = 2rd. Why?
	 In the worst case scenario, the collision will occur at t = dprop (assuming
	transmission starts at $t = 0$), and the transmitter will detect it at $2*D_{prop}$, so the
	minimal frame size should be 2rd to allow for detection to happen in this case.

- IP address → 32 bit (2⁵) or 4 bytes
- Port Number \rightarrow 16 bit (2⁴) or 2 bytes
- Simple NAT table header → source IP #, source port #, dest IP #, dest port # → 12 bytes

TCP or UDP?

Protocol	Purposes		
	ТСР		
HTTP (Hypertext Transfer	Used for transferring hypertext documents on the web.		
Protocol)			
HTTPS (HTTP Secure)	Secure version of HTTP, often used for secure data transfer over the web.		
FTP (File Transfer Protocol)	Used for transferring files between hosts on a network.		
SMTP (Simple Mail Transfer Protocol)	Used for sending emails between email servers.		
POP3 (Post Office Protocol version 3)	Used for retrieving emails from a mail server.		
IMAP (Internet Message	Allows an email client to access emails on a mail server.		
Access Protocol)			
Telnet	Provides a command-line interface to communicate with remote		
	systems.		
	UDP		
DNS (Domain Name System)	Resolves domain names to IP addresses.		
DHCP (Dynamic Host	Used to dynamically assign IP addresses and network		
Configuration Protocol)	configuration to devices.		
	DHCP server port number: 67		
	DHCP client port number: 68		
SNMP (Simple Network	Used for network management and monitoring.		
Management Protocol)			
TFTP (Trivial File Transfer	Simple file transfer protocol often used for bootstrapping		
Protocol)	devices.		
NTP (Network Time Protocol)	Synchronizes the clocks of computers on a network.		

Commands and uses:

Commands	Purpose	Involved Protocol:
dig	Performs a DNS query	DNS
nslookup	Similar to `dig`, performs DNS query	DNS
telnet	Connects to a server on port	Telnet
ping	Uses ICMP to check reachability of host	ICMP
	** does NOT cause a DNS query to be issued	
traceroute (or	Traces the route of the packets take to reach	ICMP (for probes)
tractrt)	the host	
Ifconfig/	Check MAC	
dnscherker.org		

dig DNS:

Local DNS → Root DNS → TDL DNS → Authoritative DNS → IP Address

DNS	;; Received XXX bytes from XXX.XXX.XXX.XXX#YY() in ZZ ms		
IP	Example.sg NNNNNN IN A (IP Address XXX.XXX.XXX)		

- Routers by principle do not forward broadcast traffic
- ICMP is used by routers to send error messages.

Special Addresses	Present Use
0.0.0.0/8	Non-routable meta-address for special use
127.0.0.0/8	Loopback address. A datagram sent to an address within this block loops back inside the host. This is ordinarily implemented using only 127.0.0.1/32.
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16	Private addresses, can be used without any coordination with IANA or an Internet registry.
255.255.255.255/32	Broadcast address. All hosts on the same subnet receive a datagram with such a destination address.

Network Layers and Constituents:

Application Layer	HTTP	TLS	DNS	DHCP
Transport Layer	TCP	UDP		
Network Layer	IP (v4, v5)	ICMP		
Link Layer	Ethernet	Wireless LAN		

	inue	409	Conflict
1 Switch	ching Protocols	410	Gone
2 Proce	essing	411	Length Required
X Success		412	Precondition Failed
		413	Payload Too Large
		414	Request-URI Too Long
1 Creat		415	Unsupported Media Type
Acce Non-	authoritative Information	416	Requested Range Not Satisfiable
	ontent	417	Expectation Failed
	t Content	418	I'm a teapot
	al Content	421	Misdirected Request
	-Status	422	Unprocessable Entity
		423	Locked
6 IM U	dy Reported	424	Failed Dependency
b IM U	sea	426	Upgrade Required
X Redirect	ional	428	Precondition Required
• Multi	ple Choices	429	Too Many Requests
1 Move	d Permanently	431	Request Header Fields Too Large
2 Foun	d	444	Connection Closed Without Response
3 See 0	Other	451	Unavailable For Legal Reasons
4 Not N	Modified	499	Client Closed Request
5 Use F	Proxy	EVV C	erver Error
7 Temp	porary Redirect	500	Internal Server Error
8 Perm	anent Redirect		
X Client Er	ror	501 502	Not Implemented
		502	Bad Gateway
	Request	503	Service Unavailable
	thorized		Gateway Timeout
2 Paym3 Forbi	ent Required	505 506	HTTP Version Not Supported
4 Not F		507	Variant Also Negotiates Insufficient Storage
	od Not Allowed	507	Loop Detected
	acceptable	510	Not Extended
		510	
	Authentication Required	511	Network Authentication Required Network Connect Timeout Error
	est Timeout	วยย	Network Connect Timeout Error

- App layer: Client-Server/ P2P
- Transport Layer: Process to Process
- IP: Host to Host
- Link: Physical Node over link (send data between N nodes via cable) [For CS2105]

