Reinforcement Learning

Introduction and Model-Free Learning

Davide Abati

December 10, 2017

University of Modena and Reggio Emilia

Disclaimer

All this material is a free re-arrangement of David Silver's UCL Course on RL. You are also encouraged to take a look to his Youtube lectures.

What is reinforcement learning?

Branches of Machine Learning

RL Characteristics

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a *reward* signal.
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d. data)
- Agent is *active*: its actions affect the environment he lives in.

Rewards

- A reward R_t is a scalar feedback signal
- ullet Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward over an episode

Rewards: examples

- Fly stunt manoeuvres in a helicopter
 - +ve reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Go
 - +ve/-ve reward for winning/losing a game
- Make a humanoid robot walk
 - +ve reward for forward motion
 - -ve reward for falling over
- Play Atari games better than humans
 - +ve reward for increasing/decreasing score

Inside a RL agent

Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward.
 - A financial investment may take months to mature
 - Refuelling a helicopter now might prevent a crash in several hours
 - Blocking opponent moves might help winning chances many moves from now

Agent and environment

- At each step *t* the agent:
 - ullet Receives observation O_t
 - Receives scalar reward R_t
 - Executes action A_t
- The environment:
 - Receives action At
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

• The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- The state is the information used to determine what happens next.
 - It is a function of the history:

$$S_t = f(H_t)$$

Agent and environment states

Agent state S_t^a

whatever information the agent uses to pick the next action

it is the information used by RL algorithms

Environment state S_t^e

whatever data the environment uses to pick the next observation/reward

usually not visible by the agent

- Full observability: agent directly observes environment state
- Partial observability: agent indirectly observes environment state

Inside a reinforcement learning agent

- An agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = s | S_t = s]$

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- ullet The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
- γ close to 0 leads to *myopic* evaluation
- ullet γ close to 1 leads to $\emph{far-sighted}$ evaluation

Value function

- Value function is a prediction of future reward
- Used to evaluate goodness/badness of states
- And therefore to select between actions

Definition

The state-value function $v_{\pi}(s)$ is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Definition

The action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

Bellman expectation equation

The value function can be decomposed into two parts:

- immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s]$$

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

- A model predicts what the environment will do next
- ullet ${\cal P}$ predicts the next state
- ullet ${\cal R}$ predicts the next (immediate) reward

$$\mathcal{P}^{a}ss' = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

 $\mathcal{R}^{a}_{s} = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$

Maze example

- Rewards: -1 per time-step
- Actions: N, S, W, E
- States: Agent's location

Maze example: policy

ullet Arrows represent policy $\pi(s)$ for each state s

Maze example: value function

• Numbers represent policy $v_{\pi}(s)$ for each state s

Maze example: model

- ullet Grid layout represent transition model $\mathcal{P}^a_{ss'}$
- Numbers represent immediate reward R_s^a from each state s (same for all a)

RL taxonomy

Model-free prediction

Model-Free prediction

- Model-free prediction
 - estimate the value function given a policy in a non-observable environment
 - Monte-Carlo Learning
 - Temporal-Difference Learning

Monte-Carlo reinforcement learning

- MC methods learn directly from episodes of experience
- MC is model-free: no explicit knowledge of environment mechanisms
- MC learns from complete episodes
 - Caveat: can only apply to *episodic* environments (all episodes must terminate).
- MC uses the simpliest possible idea: value = mean return

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, \ldots, S_k \sim \pi$$

• Recall that the *return* is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- ullet Every time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + Gt$
- Value is estimated by mean return V(s) = S(s)/N(s)
- ullet By law of large numbers, $V(s)
 ightarrow v_\pi(s)$ as $N(s)
 ightarrow \infty$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- Compute return G_t
- For each state S_t with return G_t

$$egin{aligned} \mathcal{N}(S_t) \leftarrow \mathcal{N}(S_t) + 1 \ V(S_t) \leftarrow V(S_t) + rac{1}{\mathcal{N}(S_t)} (G_t - V(S_t)) \end{aligned}$$

• Usually a running mean is employed, i.e. forget old episodes

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Blackjack Example

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a useable ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - ullet -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards ≤20, otherwise twist

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/variance trade-off

- Return $G_t = R_{t+1} + R_{t+2} + \ldots + \gamma^{T-1}R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- ullet True TD target $R_{t+1} + v_\pi(S_{t+1})$ is unbiased estimate of $v_\pi(S_t)$
- TD target $R_{t+1} + v(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Model-free control

Model-Free control

- Model-free prediction
 - estimate the value function given a policy in a non-observable environment
 - Monte-Carlo Learning
 - Temporal-Difference Learning
- Model-free control
 - find a good policy in a non-observable environment
 - On-Policy Monte-Carlo Control
 - On-Policy Temporal-Difference Learning
 - Off-Policy Learning

How to improve a policy

- Given a policy π
- Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

 $q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s, A_t = a]$

ullet Improve the policy by acting greedily with respect to v_π

$$\pi' = \mathsf{greedy}(v_\pi) \ \pi' = \mathsf{greedy}(q_\pi)$$

- In general, need more iterations of improvement / evaluation
- In model-free contexts, action-value function Q(s, a) is our only option

Example of greedy action selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Copyright © 2003 David Farley, d-farley@ibiblio.org

- There are two doors in front of you.
- You open the left door and get reward 0 V(left) = 0
- You open the right door and get reward +1V(right) = +1
- You open the right door and get reward +3V(right) = +2
- You open the right door and get reward +2
 V(right) = +2

Are you sure you've chosen the best door?

ϵ -greedy exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- \bullet With probability $1-\epsilon$ choose the greedy action
- ullet With probability ϵ choose an action at random

$$\pi(a|s) = egin{cases} \epsilon/m + 1 - \epsilon, & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s,a) \ \epsilon/m, & ext{otherwise} \end{cases}$$

On and off policy learning

- On-policy learning
 - "Learn on the job"
 - \bullet Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - \bullet Learn about policy π from experience sampled from μ

Monte-Carlo policy iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement ϵ -greedy policy improvement

Monte-Carlo control

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement ϵ -greedy policy improvement

Back to the blackjack example

Monte-Carlo control in blackjack

MC vs TD control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S, A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

Updating action-value functions with SARSA

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma(Q(S',A') - Q(S,A)))$$

On-policy control with SARSA

Every time-step:

Policy evaluation with Sarsa, $Q pprox q_{\pi}$

Policy improvement with ϵ -greedy policy improvement.

SARSA algorithm for on-policy control


```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal - state, ) = 0
for each episode do
  Intialise S
  Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
  for each step of episode do
     Take action A. observe R. S'
     Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)
     Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma(Q(S',A') - Q(S,A))
     S \leftarrow S' \cdot A \leftarrow A'
  end for
end for
```

Windy gridworld example

- Reward = -1 per time step until reaching goal
- Undiscounted

SARSA on the Windy Gridworld

Off-policy learning

- Evaluate target policy $\pi(a,s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1,A_1,R_2,\ldots,S_T\}\sim \mu$$

- Why is this important?
- Learn from observing humans or other agents
- Re-use experience generated from old policies $\pi_1, \pi_2, \dots, \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Q-learning

- We now consider off-policy learning of action-values Q(s,a)
- Next action is chosen using behaviour policy $A_{t+1} \sim \mu(\cdot|S_t)$
- ullet But we consider alternative successor action $A' \sim \pi(\cdot|S_t)$
- And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + Q(S_{t+1}, A') - Q(S_t, A_t))$$

Off-policy control with Q-learning

- We now allow both behaviour and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \argmax_{a'} Q(S_{t+1}, a')$$

- The behaviour policy μ is ϵ -greedy w.r.t. Q(s,a)
- The Q-learning target then simplifies:

$$egin{aligned} R_{t+1} + \gamma Q(S_{t+1}, A') \ = & R_{t+1} + Q(S_{t+1}, rg \max_{a'} Q(S_{t+1}, a')) \ = & R_{t+1} + \max_{a'} Q(S_{t+1}, a') \end{aligned}$$

Q-learning algorithm for off-policy control


```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal - state, \dot{j} = 0)
for each episode do
  Intialise S
  for each step of episode do
     Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
     Take action A. observe R. S'
     Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma \max_{a} Q(S',a) - Q(S,A))
     S \leftarrow S'
  end for
end for
```