RJEŠENJA:

1. Stupanj liste je 4

$$h \le 1 + \log_2 8 = 1 + 3 = 4$$

Očekivani brojevi elemenata po stupnjevima su:

$$E(n_1) = 8 \cdot (1/2)^0 \cdot 1/2 = 4$$

$$E(n_2) = 8 \cdot (1/2)^1 \cdot 1/2 = 2$$

$$E(n_3) = 8 \cdot (1/2)^2 \cdot 1/2 = 1$$

$$E(n_4) = 8 \cdot (1/2)^3 \cdot 1/2 = \frac{1}{2} ->1$$

Najpraktičnije je odmah skalirati zadane brojeve na interval širine 8 (npr. U[0,8]). Zatim možemo provesti pretvorbu u cijele brojeve ili jednostavno odrediti intervale pretinaca unutar naše razdiobe pritom poštujući širine pretinaca.

- a) Pretinci bi u ovom slučaju bili: [0,4);[4,6);[6,7);[7,8] (granični elementi proizvoljno raspoređeni)
- b) U slučaju pretvorbe u ciljani interval cijelih brojeva [1,8] treba paziti da je svaki broj jednako vjerojatan (tj. da dobijemo diskretnu uniformnu razdiobu U[1,8]). Ako su brojevi izvorno iz kontinuiranog intervala X~U[0,8], pretvorba u diskretne se može obaviti po formuli

$$Y = \begin{cases} 8, & za X = 8 \\ [X + 1], & inače \end{cases}$$

Pretinci su: [1,4]; [5,6]; [7,7]; [8,8]

c) Naravno, možemo i interval [0,1] podijeliti odmah na pretince u omjerima koje nalažu brojevi elemenata po stupnjevima.

U svakom slučaju, slučajni brojevi određuju sljedeće pretince:

X	0.81	0.99	0.69	0.91	0.68	0.42	0.09	0.18	0.13	
brojevi	16	8	3	13	1	15	2	4		
pretinac	3.	4.	2.	4.	2.	1.	1.	1.	1.	

5.

Jedinka	10110	01111	10101	10111	00001
dobrota	66	39	27	15	3

 $p_k=0.8$ $p_m=0.1$.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ω	0.2	0.84	0.05	0.41	0.22	0.62	0.21	0.19	0.44	0.06	0.54	0.76	0.48	0.01

Slučajni brojevi se koriste redom:

 $\omega(1)$, $\omega(2)$ za odabir jedinki

 $\omega(3)$ za odluku o križanju: 0.05<0.8 -> križanja će biti

 $\omega(4)$ odabir točke prekida

 $\omega(5)$ - $\omega(14)$: odluka o mutaciji na obje dobivene jedinke, ispitivanje na svakom bitu.

razmjerni odabir:

vjerojatnosti odabira pojedinih jedinki:

p₁=66/150=0.44

 $p_2 = 39/150 = 0.26$

 $p_3 = 27/150 = 0.18$

p₄=15/150=0.1

 $p_5=3/150=0.02$

Odabrane su 1. i 3. jedinka.

Točka prekida: $\lfloor 4*0.41+1 \rfloor = 2$ (4 su moguće točke prekida, tj. sve moguće pozicije između gena). Određivanje točke prekida se može obaviti i pretincima.

Dobivene jedinke:

10101

10110

Mutacija:

Za izvođenje mutacije na prvoj jedinci se koriste $\omega(5)$ - $\omega(9)$ te ne dolazi ni do jedne mutacije Za izvođenje mutacije na drugoj jedinci se koriste $\omega(10)$ - $\omega(14)$ te dolazi do mutacije na prvom i zadnjem genu.

Rezultat:

10101

00111

6. a)
$$f(z) = z$$

b)
$$p = n = 4$$
 \Rightarrow ako postoji, rješenje je jedinstveno

c)

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} \qquad \mathbf{x}_d = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{y}_d = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad ; \qquad \mathbf{A} = \mathbf{x}_d^T, \, \mathbf{b} = \mathbf{y}, \, \text{sustav } \mathbf{A} \mathbf{w} = \mathbf{b}$$

$$\mathbf{X}_{d}^{T} = \mathbf{X}_{d}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \Leftrightarrow \mathbf{I}_4 \cdot \mathbf{w} = \mathbf{b}$$

$$\Rightarrow \quad \mathbf{w} = \mathbf{b} \Rightarrow \quad \mathbf{w} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}$$

k=0:
$$\mathbf{w}^{(0)} = [0\ 0\ 0\ 0]^{\mathrm{T}}, \ \alpha = 1$$

k=1: $e_1^{(0)} = \mathbf{x}^{\mathrm{T}}_{\mathrm{d},1}\mathbf{w}^{(0)} - y_{\mathrm{d},1} = [1\ 0\ 0\ 0] \cdot [0\ 0\ 0\ 0]^{\mathrm{T}} - 1 = -1$
 $\mathbf{w}^{(1)} = \mathbf{w}^{(0)} - \alpha \cdot \mathbf{x}_{\mathrm{d},1} \cdot e_1^{(0)} = [0\ 0\ 0\ 0]^{\mathrm{T}} - 1 \cdot [1\ 0\ 0\ 0]^{\mathrm{T}} \cdot (-1) = [1\ 0\ 0\ 0]^{\mathrm{T}}$
k=2: $e_2^{(1)} = \mathbf{x}^{\mathrm{T}}_{\mathrm{d},2}\mathbf{w}^{(1)} - y_{\mathrm{d},2} = [0\ 0\ 0\ 1] \cdot [1\ 0\ 0\ 0]^{\mathrm{T}} - 1 = -1$
 $\mathbf{w}^{(2)} = \mathbf{w}^{(1)} - \alpha \cdot \mathbf{x}_{\mathrm{d},2} \cdot e_2^{(1)} = [1\ 0\ 0\ 0]^{\mathrm{T}} - 1 \cdot [0\ 0\ 0\ 1]^{\mathrm{T}} \cdot (-1) = [1\ 0\ 0\ 1]^{\mathrm{T}}$
k=3: $e_3^{(2)} = \mathbf{x}^{\mathrm{T}}_{\mathrm{d},3}\mathbf{w}^{(2)} - y_{\mathrm{d},3} = [0\ 0\ 1\ 0] \cdot [1\ 0\ 0\ 1]^{\mathrm{T}} - 0 = 0$

U ovom slučaju, LMS algoritam pronalazi rješenje već nakon prva dva koraka prve iteracije (epohe).