

A. Course Handout

Institute/School Name	Chitkara University Institute of Engineering and Technology			
Department Name	Department of Computer Science & E	ngineering		
Programme Name	Bachelor of Engineering (B.E.), Computer Science & Engineering			
Course Name	Artificial Intelligence and Machine	Session	2022-2023	
Course Name	Learning			
Course Code	22CS015	Semester/Batch	4 th /2022	
L-T-P (Per Week)	3-0-2 Course Credits 04			
Course Coordinator	Dr. Kiran Deep Singh			

CLO01	Explain the basic concept and evolution of artificial intelligence and machine learning.				
CLO02	Study Python programming and utilize essential libraries such as NumPy for numerical computing and Pandas for data manipulation and pre-processing.				
CLO03	Explore the concepts and theories of descriptive statistics and exploratory data analysis (EDA) for machine learning.				
CLO04	Examine the algorithms behind the supervised and unsupervised learning.				
CLO05	Apply knowledge and skills to real-world problems via group projects, analysing case studies, and presenting practical AI and ML applications.				

1. Objectives of the Course

The scope of the course is to provide a foundational understanding of the key aspects of machine learning, encompassing principles and practical implementation. Students will gain a theoretical understanding of data statistics; exploring the intricate details of machine learning algorithms and methodologies. The course aims to introduce students to the intricacies of machine learning algorithms, methodologies, and practical implementation, ensuring their readiness for Industry Certifications.

- To cultivate a comprehensive understanding of the basic concepts and evolution of Artificial Intelligence and Machine Learning
- To equip students with proficient Python programming skills and the ability to use essential libraries like NumPy and Pandas for numerical computing, data manipulation, and pre-processing.
- To encourage exploration of concepts and theories related to descriptive statistics and exploratory data analysis (EDA) for effective application in machine learning.
- To facilitate an examination of the algorithms underlying both supervised and unsupervised learning, enhancing students' ability to implement and evaluate machine learning models.
- To enable the practical application of acquired knowledge and skills by actively engaging in group projects, analysing case studies, and presenting real-world applications.

2. Course Learning Outcomes

After completion of the course, student should be able to:

	Course Learning Outcome	*POs	**CL	***KC	Sessio ns
CLO01	Explain the basic concept and evolution of Artificial Intelligence and Machine Learning	PO1, PO2, PO3, PO5, PO12	K2	Factual Conceptual	12
CLO02	Study Python programming and utilize essential libraries such as NumPy for numerical computing and	PO1, PO3, PO4, PO5	К3	Conceptual Procedural	15

	Pandas for data manipulation and pre-processing.				
CLO03	Explore the concepts and theories of descriptive statistics and exploratory data analysis (EDA) for machine learning.	PO1, PO2, PO3, PO4, PO5, PO7, PO11	K3	Conceptual Procedural	15
CLO04	Examine the algorithms behind the supervised and unsupervised learning.	PO3,PO4,PO5	K4	Procedural	15
CLO05	Apply knowledge and skills to real- world problems via group projects, analysing case studies, and presenting practical AI and ML applications	PO4, PO5	K3	Conceptual Procedural	15
Total Cor	ntact Hours				72

Revised Bloom's Taxonomy Terminology

- * PO's available at (shorturl.at/cryzF)
- **Cognitive Level =CL

^{***}Knowledge Categories = KC

Course	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Learning	1											
Outcomes												
CLO01	Н	Н		Н								
CLO02	Н	Н										
CLO03	Н		М									H
CLO04	Н	Н										М
CLO05	Н	Н	Н		М	М	М				М	Н

H=High, M=Medium, L=Low

3. ERISE Grid Mapping

Feature Enablement	Level(1-5, 5 being highest)
Entrepreneurship	1
Research	3
Innovation	2
Skills	5
Employability	4

4. Recommended Books:

Text Books:

B01: "Introduction to Machine Learning with Python", Published by O'Reilly Media.

B02: "Machine Learning", Published by Oxford University Press.

B03: "Al and Machine Learning for Coders: A Programmer's Guide to Artificial Intelligence", Published by O'Reilly Media.

B04: "Machine Learning, 1e", Published by Pearson.

Reference Books:

B05: "Data Science and Machine Learning using Python", Published by McGraw Hill; Standard Edition.

E-Resources:

https://library.chitkara.edu.in/subscribed-books.php

5. Other readings and relevant websites:

Serial No	Link of Journals, Magazines, websites and Research Papers
1.	Journal of Artificial Intelligence Research (JAIR): [JAIR Website](https://www.jair.org/)
2.	AI Magazine by AAAI: [AI Magazine](https://www.aaai.org/Magazine/magazine.php)
3.	MIT Technology Review (https://www.technologyreview.com/topic/artificial-intelligence/)
4.	The AI Report by VentureBeat: [VentureBeat AI](https://venturebeat.com/category/ai/)
5.	OpenAl Blog: [OpenAl Blog](https://www.openai.com/blog/)
6.	Towards Data Science on Medium: [Towards Data Science](https://towardsdatascience.com/)
7.	KDnuggets: [KDnuggets](https://www.kdnuggets.com/)

6. Recommended Tools and Platforms

https://www.coursera.org/learn/machine-learning-capstone

7. Course Plan:

Lecture	Topics	Text Book
Number		
1	Detail Discussion of Course Handout (CHO)	B01-Chpater-1
2-3	Introduction to AI and ML	B01-Chapter-1
	Understanding the basics of Artificial Intelligence and Machine Learning	
4-8	Overview of popular ML applications	B01-Chapter-1
	Python recap and essential libraries (NumPy, basic data structures)	
9-11	Data Manipulation with Pandas	B01-Chapter-1
	Introduction to Pandas and its data structures (Series, DataFrame)	B01-Chapter-2
12-15	Reading and writing data in different formats (CSV, Excel, SQL)	B01-Chapter-1
16-19	Data cleaning and preprocessing with Pandas	
19-22	Descriptive Statistics with Python	B01-Chapter-1
	Introduction to basic statistical concepts	B01-Chapter-2
	Descriptive statistics using Python (mean, median, mode, variance, standard	
	deviation)	
23-26	Exploratory Data Analysis (EDA) techniques	
27-30	Visualization Libraries in Python	B01-Chapter-1
	Introduction to Matplotlib, Seaborn & plotly	
31-34	Creating various types of plots (line plots, bar plots, scatter plots, histograms,	
	box plot)	
	Data visualization best practices	
35-37	Introduction to Machine Learning	B01-Chapter-2
	Overview of supervised and unsupervised learning	B01-Chapter-8
38-40	Basic concepts: features, labels, training, testing	B01-Chapter-8
	Introduction to scikit-learn library	
	ST-1 (Syllabus = (Lecture number 1-40)	
41-44	Supervised Learning Algorithms	B01-Chapter-5
	Linear Regression	
	Understanding the basics	
	Implementation of Linear and Multi Linear Regression using scikit-learn	

45-48	Regression Evaluation metrics (R-squared, Mean Squared Error)	B01-Chapter-5
49-52	Logistic Regression	B01-Chapter-5
	Basics and applications	
	Implementation for Binary and Multiclass Classification using scikit-learn	
53-56	Classification Evaluation metrics (Confusion Matrix, Precision, recall and	B01-Chapter-5
	Accuracy)	
57-60	Support Vector Machines	B01-Chapter-2
	Basics and applications	
	Implementation for Classification and Regression using scikit-learn	
61-64	Classification and Regression Evaluation metrics.	B01-Chapter-2
65-68	Decision Tree Classification and Regression	B01-Chapter-2
	Basics and applications	
	Implementation for Classification and Regression using scikit-learn	
69-72	Classification and Regression Evaluation metrics.	B01-Chapter-2
	ST-2 (Syllabus = (Lecture number 41-72)	
73-76	Artificial Neural Networks	B01-Chapter-2
	Basics and applications	B01-Chapter-8
	Implementation Neural Network Architecture and Multi Layered Perceptron	
	using scikit-learn	
77-80	Classification and Regression Evaluation metrics.	
81-84	Unsupervised Learning Algorithms	B01-Chapter-3
	K-Means Clustering	
	Introduction to clustering	
	Implementing K-Means in scikit-learn	
85-88	Evaluation of clustering results.	B01-Chapter-3
89-92	Principal Component Analysis (PCA)	B01-Chapter-3
	Dimensionality reduction	
	Implementing PCA in scikit-learn	
93-96	Visualization of reduced dimensions	B01-Chapter-3
	ST-3 (Syllabus = (Lecture number 73-96)	
	Project (Real-world Applications and Use Cases)	
	Case studies and practical applications of AI and ML in various industries	
	Group projects: Students work on a small project applying learned concepts	
	ETE (Syllabus = (Lecture number 1-96)	

8. <u>Delivery/Instructional Resources</u>

Lecture No.	Topics	Web References	Audio-Video
	Detail Discussion of Course Handout (CHO)		
2-3	Introduction to AI and ML Understanding the basics of Artificial Intelligence and Machine Learning	https://developer.ibm.com/ articles/cc-beginner-guide- machine-learning-ai- cognitive/	https://www.youtube.com/w atch?v=ukzFI9rgwfU
4-8	Overview of popular ML applications Python recap and essential libraries (NumPy, basic data structures)	https://faculty.washington.e du/otoomet/machinelearni ng-py/numpy-and- pandas.html	https://www.youtube.com/w atch?v=ukzFl9rgwfU

9-11	Data Manipulation with Pandas Introduction to Pandas and its data structures (Series, DataFrame)	https://faculty.washington.e du/otoomet/machinelearni ng-py/numpy-and- pandas.html	https://www.youtube.com/w atch?v=CmorAWRsCAw&list= PLeo1K3hjS3uuASpe- 1LjfG5f14Bnozjwy
12-15	Reading and writing data in different formats (CSV, Excel, SQL)	https://faculty.washington.e du/otoomet/machinelearni ng-py/numpy-and- pandas.html	https://www.youtube.com/w atch?v=CmorAWRsCAw&list= PLeo1K3hjS3uuASpe- 1LjfG5f14Bnozjwy
16-19	Data cleaning and preprocessing with Pandas	https://faculty.washington. edu/otoomet/machinelear ning-py/cleaning-data.html	https://www.youtube.com/w atch?v=CmorAWRsCAw&list= PLeo1K3hjS3uuASpe- 1LjfG5f14Bnozjwy
19-22	Descriptive Statistics with Python Introduction to basic statistical concepts Descriptive statistics using Python (mean, median, mode, variance, standard deviation)	https://realpython.com/pyt hon-statistics/	https://www.youtube.com/w atch?v=h8EYEJ32oQ8&list=PL U5aQXLWR3_yYS0ZYRA- 5g5YSSYLNZ6Mc
23-26	Exploratory Data Analysis (EDA) techniques	https://www.analyticsvidhy a.com/blog/2021/08/explor atory-data-analysis-and- visualization-techniques-in- data-science/	https://www.youtube.com/w atch?v=h8EYEJ32oQ8&list=PL U5aQXLWR3_yYS0ZYRA- 5g5YSSYLNZ6Mc
27-30	Visualization Libraries in Python Introduction to Matplotlib, Seaborn & plotly	https://www.geeksforgeeks. org/data-visualisation-in- python-using-matplotlib- and-seaborn/	https://www.youtube.com/w atch?v=9GvnrQv138s&list=PL jVLYmrlmjGcC0B_FP3bkJ- JIPkV5GuZR
31-34	Creating various types of plots (line plots, bar plots, scatter plots, histograms, box plot) Data visualization best practices	https://www.geeksforgeeks. org/data-visualisation-in- python-using-matplotlib- and-seaborn/	https://www.youtube.com/w atch?v=9GvnrQv138s&list=PL jVLYmrlmjGcC0B_FP3bkJ- JIPkV5GuZR
35-37	Introduction to Machine Learning Overview of supervised and unsupervised learning	https://www.analyticssteps. com/blogs/introduction- machine-learning- supervised-and- unsupervised-learning	https://www.youtube.com/w atch?v=4dwsSz_fNSQ
38-40	Basic concepts: features, labels, training, testing Introduction to scikit-learn library	https://scikit- learn.org/stable/tutorial/ba sic/tutorial.html	https://www.youtube.com/w atch?v=4dwsSz_fNSQ
41-44	Supervised Learning Algorithms Linear Regression Understanding the basics Implementation of Linear and Multi Linear Regression using scikit-learn	https://www.simplilearn.co m/tutorials/scikit-learn- tutorial/sklearn-linear- regression-with-examples	https://www.youtube.com/w atch?v=4dwsSz_fNSQ
45-48	Regression Evaluation metrics (R-squared, Mean Squared Error)	https://www.simplilearn.co m/tutorials/scikit-learn- tutorial/sklearn-linear- regression-with-examples	https://www.youtube.com/w atch?v=4dwsSz_fNSQ
49-52	Logistic Regression Basics and applications Implementation for Binary and Multiclass Classification using scikit- learn	https://www.datacamp.com /tutorial/understanding- logistic-regression-python	https://www.youtube.com/w atch?v=J5bXOOmkopc

53-56	Classification Evaluation metrics (Confusion Matrix, Precision, recall and Accuracy)	https://www.datacamp.com /tutorial/understanding- logistic-regression-python	https://www.youtube.com/w atch?v=J5bXOOmkopc
57-60	Support Vector Machines Basics and applications Implementation for Classification and Regression using scikit-learn	https://www.datacamp.com /tutorial/svm-classification- scikit-learn-python	https://www.youtube.com/w atch?v=xLkk6MUrvrw
61-64	Classification and Regression Evaluation metrics	https://www.datacamp.com/tutorial/svm-classification-scikit-learn-python	https://www.youtube.com/w atch?v=xLkk6MUrvrw
65-68	Decision Tree Classification and Regression Basics and applications Implementation for Classification and Regression using scikit-learn	https://scikit- learn.org/stable/modules/tr ee.html	https://www.youtube.com/w atch?v=ZVR2Way4nwQ
69-72	Classification and Regression Evaluation metrics	https://scikit- learn.org/stable/modules/tr ee.html	https://www.youtube.com/w atch?v=ZVR2Way4nwQ
73-76	Artificial Neural Networks Basics and applications Implementation Neural Network Architecture and Multi Layered Perceptron using scikit-learn	https://stackabuse.com/intr oduction-to-neural- networks-with-scikit-learn/	https://www.youtube.com/w atch?v=EYeF2e2IKEo
77-80	Classification and Regression Evaluation metrics	https://stackabuse.com/intr oduction-to-neural- networks-with-scikit-learn/	https://www.youtube.com/w atch?v=EYeF2e2IKEo
81-84	Unsupervised Learning Algorithms K-Means Clustering Introduction to clustering Implementing K-Means in scikit-learn	https://www.datacamp.com /tutorial/k-means- clustering-python	https://www.youtube.co m/watch?v=EItIUEPCIzM
85-88	Evaluation of clustering results	https://www.datacamp.com /tutorial/k-means- clustering-python	https://www.youtube.co m/watch?v=EltIUEPCIzM
89-92	Principal Component Analysis (PCA) Dimensionality reduction Implementing PCA in scikit-learn	https://www.kdnuggets.co m/2023/05/principal- component-analysis-pca- scikitlearn.html	https://www.youtube.co m/watch?v=8klqIM9UvA c
93-96	Visualization of reduced dimensions	https://www.kdnuggets.co m/2023/05/principal- component-analysis-pca- scikitlearn.html	https://www.youtube.co m/watch?v=8klqIM9UvA c

9. <u>Lab Component:</u>

S. No.	Experiments	Learning Resource
1	Capstone Project Evaluation	https://www.coursera.org/learn/machine-learning-capstone

10. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
Siow Learners	Average Learners	rast Learners

- Remedial Classes on Saturdays
- Encouragement for improvement using Peer Tutoring
- Use of Audio and Visual Materials
- Use of Real-Life Examples
- Workshops
- Formative Exercises used to highlight concepts and notions
- E-notes and E-exercises to read ahead of the pedagogic material.
- Engaging students to hold hands of slow learners by creating a Peer Tutoring Group
- Design solutions for complex problems
- Design solutions for complex problems
- Presentation on topics beyond those covered in CHO

11. Evaluation Scheme & Components:

Evaluation Component	Type of Component	No. of Assessments	Weightage of Component	Mode of Assessment
Component 1	Capstone Project Evaluation	01*	20%	Offline
Component 2	Sessional Tests (STs)	03**	40%	Online
Component 3	End Term Examinations	01	40%	Online
Total		10	00%	

^{*}Sample Capstone Project reference Link https://www.coursera.org/learn/machine-learning-capstone

Make up examinations will compensate for either ST1 or ST 2 (Only for genuine cases, based on Dean's approval).

12. Syllabus of the Course:

S.No.	Topic (s)	No. of Sessions	Weightage %
1	Introduction to AI and ML Understanding the basics of Artificial Intelligence and Machine Learning, Overview of popular ML applications, Python recap and essential libraries (NumPy, basic data structures), Data Manipulation with Pandas Introduction to Pandas and its data structures (Series, DataFrame), Reading and writing data in different formats (CSV, Excel, SQL), Data cleaning and preprocessing with Pandas. Descriptive Statistics with Python Introduction to basic statistical concepts, Descriptive statistics using Python (mean, median, mode, variance, standard deviation), Exploratory Data Analysis (EDA) techniques, Visualization Libraries in Python Introduction to Matplotlib, Seaborn & plotly, Creating various types of plots (line plots, bar plots, scatter plots, histograms, box plot), Data visualization best practices, Introduction to Machine Learning Overview of supervised and unsupervised learning Basic concepts: features, labels, training, testing, Introduction to scikit-learn library.	40	40%
	ST-1 (Covering 40% syllab	us)	
2	Supervised Learning Algorithms Linear Regression Understanding the basics, Implementation of Linear and Multi Linear Regression using scikit-learn, Regression Evaluation metrics (R-squared, Mean Squared Error). Logistic Regression Basics and applications, Implementation for Binary and Multiclass Classification using scikit-learn, Classification Evaluation metrics (Confusion Matrix, Precision, recall	32	35%

^{*}Student will have to appear in all sessional tests.

		I	
	and Accuracy). Support Vector Machines Basics and		
	applications, Implementation for Classification and		
	Regression using scikit-learn, Classification and		
	Regression Evaluation metrics, Decision Tree		
	Classification and Regression Basics and applications,		
	Implementation for Classification and Regression using		
	scikit-learn, Classification and Regression Evaluation		
	metrics		
	ST-2 (Covering 75% syllabus)		
3	Artificial Neural Networks Basics and applications,	24	25%
	Implementation Neural Network Architecture and		
	Multi Layered Perceptron using scikit-learn,		
	Classification and Regression Evaluation metrics.		
	Unsupervised Learning Algorithms K-Means		
	Clustering, Introduction to clustering, Implementing K-		
	Means in scikit-learn, Evaluation of clustering results		
	Principal Component Analysis (PCA) Dimensionality		
	reduction, Implementing PCA in scikit-learn,		
	Visualization of reduced dimensions.		
	Project (Real-world Applications and Use Cases)		
	Case studies and practical applications of AI and ML in		
	various industries. Group projects: Students work on a		
	small project applying learned concepts		
	End Term (Covering (40%+ 35%+ 25%=)100% syllabu	s)

^{*}As per Academic Guidelines minimum 85% attendance is required to become eligible for appearing in the End Semester Examination.

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Kiran Deep Singh	
Head-Academic Delivery	Dr. Vikas Khullar	
Dean	Dr. Rishu Chhabra	
Dean Academics	Dr. Monit Kapoor	
Date	03.01.2024	