Lecture 9 - 07-04-2020

 \hat{h} is ERM predictor

$$\ell_D\left(\hat{h}\right) \leq \min \, \ell_D\left(h\right) + \sqrt{\frac{2}{m} \ln \frac{2H}{\delta}} \qquad \text{with prob. at least } 1 - \delta$$

Now we do it with tree predictors

1.1 Tree predictors

$$X = \{0,1\}^d \longrightarrow {\bf Binary\ classification}$$

 $h: \{0,1\}^d \longrightarrow {\bf Binary\ classification\ H1}$

How big is this class?

Take the size of codomain power the domain $\longrightarrow |H| = 2^{2^d}$ Can we have a tree predictor that predict every H in this class? For every $h: \{0,1\}^d \longleftrightarrow \{-1,1\}$ $\exists T$

We can **build a tree** such that $h_T = h$

Figure 1.1: Tree building

$$X = (0, 0, 1, ..., 1)$$
 $h(x) = -1$

 $x_1, x_2, x_3, ..., x_d$

I can apply my analisys to this predictors If I run ERM on H

$$\ell_D\left(\hat{h}\right) \leq \min \ell_D\left(\hat{h}\right) + \sqrt{\frac{2}{m}} 2^d \ln 2 + \ln \frac{2}{\delta} \longrightarrow \ln |H| + \ln \frac{2}{\delta}$$

No sense! What we find about training set that we need? Worst case of overfitting $m >> 2^D = |X| \Rightarrow$ training sample larger

PROBLEM: cannot learn from a class to big (H is too big) I can control H just limiting the number of nodes.

 $H_N \longrightarrow \text{tree T with at most } N \text{ node, } N << 2^D$ $|H_N| = ?$

 $|H_N| = (\# of trees with \leq N nodes) \times (\# of test on interval nodes) \times (\# labels on leaves)$ $|H_N| = \bigotimes \times d^M \times 2^{N-M}$

N of which N-M are leaves

Figure 1.2: Tree with at most N node

 \nearrow # of binary trees with N nodes, called Catalan Number

1.1.1 Catalan Number

*We are using a binomial *

$$\frac{1}{N} \binom{2N-2}{N-1} \leq \frac{1}{N} \left(e^{\frac{(2N-2)}{N-1}} \right)^{N-1} = \frac{1}{N} (2e)^{N-1}$$

$$\binom{N}{K} \leq \left(\frac{e^{n}}{k} \right)^{k} \qquad from Stirling approximation$$

Counting the number of tree structure: a binary tree with exactly N nodes. Catalan counts this number. \longrightarrow but we need a quantity to interpret easily. So we compute it in another way.

Now we can rearrange everything.

$$|H_N| \le \frac{1}{N} (2e)^{N-1} H^M 2^{N-M} \le (2ed)^N$$
 $d > 2 \le d^{N-M}$

where we ignore $\frac{1}{N}$ since we are going to use the log

ERM on H_N \hat{h}

$$\ell_D\left(\hat{h}\right) \leq \min_{\mathbf{h} \in \mathbf{H_N}} \ell_D\left(h\right) + \sqrt{\frac{2}{m} \left(N \cdot (1 + \ln\left(2 \cdot d\right)\right) + \ln\frac{2}{\delta}\right)}$$

were
$$N \cdot (1 + \ln(2 \cdot d)) = \ln(H_N)$$

In order to not overfit $m >> N \cdot \ln d$ $N \cdot \ln d << 2^d$ for reasonable value of NWe grow the tree and a some point we stop.

$$\ell_{D}(h) \leq \hat{\ell}_{S}(h) + \varepsilon \quad \forall h \in H_{N} \quad with probability at least 1 - \delta$$

remove N in H_N and include h on ε

we remove the N index in H_N adding h on ε

$$\ell_D(h) \leq \hat{\ell}_S(h) + \varepsilon_h \quad \forall h \in H_{\mathcal{N}}$$

$$W: H \longrightarrow [0,1] \quad \sum_{h \in H} w(h) \leq 1$$

How to use this to control over risk?

$$\mathbb{P}\left(\exists h \in H : |\hat{\ell}_{S}(h) - \ell_{D}(h)| > \varepsilon_{h}\right) \leq$$

where $\hat{\ell}_S$ is the prob my training set cases is true

$$\leq \sum_{h \in H} \mathbb{P}\left(\left|\hat{\ell}_{S}\left(h\right) - \ell_{D}\left(h\right)\right| > \varepsilon_{h}\right) \leq \sum_{h \in H} 2e^{-2m\varepsilon h^{2}} \leq$$

$$\leq \delta \longrightarrow since \ w(h) \ sum \ to \ 1 \left(\sum_{h \in H}\right)$$

I want to choose $2e^{-2m\varepsilon h^2} = \delta w(h)$

$$2 e^{-2 m \varepsilon h^2} = \delta w(h)$$
 \Leftrightarrow -MANCA PARTEEEE -

therefore:

$$\ell_D(h) \leq \hat{\ell}_S(h) + \sqrt{\frac{1}{2m} \cdot \left(\ln \frac{1}{w(h)} + \ln \frac{2}{\delta}\right)}$$
 w. p. at least $1 - \delta$ $\forall h \in H$

Now, instead of using ERM we use

$$\hat{h} = \arg\min_{h \in H} \left(\hat{\ell}_S(h) + \sqrt{\frac{1}{2m} \cdot \left(\ln \frac{1}{w(h)} + \ln \frac{2}{\delta} \right)} \right)$$

where $\sqrt{\dots}$ term is the penalisation term

Since our class is very large we add this part in order to avoid overfitting. Instead of minimising training error alone i minimise training error + penalisation error.

In order to pick w(h) we are going to use **coding theory**The idea is I have my trees and i want to encode all tree predictors in H using strings of bits.

$$\sigma: H \longrightarrow \{0,1\}^*$$
 coding function for trees $\forall h, h' \in H$ $\sigma(h)$ not a prefix of $\sigma(h')$ $h \neq h'$ where $\sigma(h)$ and $\sigma(h')$ are string of bits

 σ is called istantaneous coding function

Istantaneous coding function has a property called **kraft inequality**

$$\sum_{h \in H} 2^{-|\sigma(h)|} \le 1 \qquad w(h) = 2^{-|\sigma(h)|}$$

I can design $\sigma: H \longrightarrow \{0,1\}^*$ istantaneous $|\sigma(h)|$

$$\ln |H_N| = O(N \cdot \ln d)$$

number of bits i need = number of node in h

Even if i insist in istantaneous i do not lose ... - MANCA PARTE -

$$|\sigma(h)| = O(N \cdot \ln d)$$

Using this σ and $w(h) = 2^{-|\sigma(h)|}$

$$\ell_D(h) \leq \hat{\ell}_S(h) + \sqrt{\frac{1}{2m} \cdot \left(\frac{c}{c} \cdot N \cdot \ln d + \ln \frac{2}{\delta} \right)}$$
 w. p. at least $1 - \delta$

where c is a constant

$$\hat{h} = \arg\min_{h \in H} \left(\hat{\ell}_S(h) + \sqrt{\frac{1}{2m} \cdot \left(\frac{c}{c} \cdot N \cdot \ln d + \ln \frac{2}{\delta} \right)} \right)$$

where $m >> N \cdot h \cdot \ln d$

If training set size is very small then you should not run this algorithm.

Figure 1.3: Algorithm for tree predictors

This blue curve is an alternative example. We can use Information criterion.

As I increase the number of nodes, N_h decrease so fast. You should take a smaller tree because it gives you a better bound. It's a principle known as Occam Razor (if I have two tree with the same error, if one is smaller than the other than i should pick this one).

Having N^*