General information

Problems are graded with stars according to difficulty:

- ★ These problems just ask if you have understood a definition or concept. If yes, you should be able to give a short answer (often just one or two lines) without too much thought.
- ** Problems that require some more thought and/or a more detailed answer, for example a proof.
- $\star\star\star$ Challenging problems that require a solid understanding of the ideas involved, combination of concepts from different parts of the course and/or more involved proofs.

1 Set Theory refresher (*)

Let $A = \emptyset$, $B = \{a, b\}$ and $C = \{1, 2, 3\}$. What are:

- 1. $A \cup B$
- 2. $\mathcal{P}(A)$
- 3. $\mathcal{P}(C)$
- 4. $B \times C$
- 5. $A \times C$
- 6. $(\star\star)$ Is it true that for sets X,Y we have $\mathcal{P}(X\cup Y)=\mathcal{P}(X)\cup\mathcal{P}(Y)$ in general? Prove or disprove.

2 DFA state diagrams (*)

Answer the following questions for the state diagrams of DFAs M_1 and M_2 below.

- 1. What is the start state?
- 2. What is the set of accept states?
- 3. What sequence of states does the machine go through on input aabb?
- 4. Does the machine accept the string aabb?
- 5. Does the machine accept the string ε ?

3 Formal descriptions (*)

- 1. Give the formal descriptions of the machines in the problem above.
- 2. Machine M has the following formal description:

$$M = (\{q_1, q_2, q_3, q_4, q_5\}, \{\mathbf{u}, \mathbf{d}\}, \delta, q_3, \{q_3\})$$

where δ is given by the following table. Give the state diagram of M.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

3. Give examples of strings that are accepted by M. What is the shortest such string? What is the shortest string that is not accepted by M?

4 Diagrams for simple languages (*)

Give a DFA (state diagram) for each of the following languages over the alphabet $\Sigma = \{a, b\}$.

- 1. $\{w \mid w \text{ has an even length}\}$
- 2. $\{w \mid w \text{ has at exactly two 'a's}\}$
- 3. $\{w \mid w \text{ has at least three 'a's}\}$
- 4. $\{w \mid w \text{ has an even number of 'a's}\}$
- 5. $\{w \mid w \text{ has an odd number of 'b's}\}$