For research use only. Not for use in diagnostic procedures

Combining Rapid Isomer Separations and Physicochemical Property Predictions for Drug Molecules with Differential Mobility Spectrometry

<u>Chang Liu,</u>¹ J. C. Yves Le Blanc,¹ Jefry Shields,² Hui Zhang,² John S. Janiszewski,² Christian Ieritano,³ Luke Melo,³ Evan Shepherson,³ Mitch Verbuyst,³ Moaraj Hasan,³ Dalia Naser,³ W. Scott Hopkins,³ J. Larry Campbell,¹Tim L. Hoffman¹

¹SCIEX, Concord, ON; ²Pfizer, Groton, CT; ³University of Waterloo, Waterloo, ON

ASMS 2016, San Antonio, June 6th, 2016

Drug designers are keen to speed up drug development

Good cell permeability

Good drug transport

Good drug candidate

Blausen.com staff. "Blausen gallery 2014". Wikiversity Journal of Medicine.

Differential mobility spectrometry (DMS)

SCIEX SelexION® Differential Mobility Spectrometer with QTRAP® 5500 Mass Spectrometer System

Differential mobility spectrometry (DMS)

The magnitude of the compensation voltage is a measure of the ion-solvent interaction.

Three types of DMS behaviors

Isomer separation with DMS

Steric effects can be a dominating factor in isomer separation

Liu et al., Analyst, 2015, 140, 6897-6903.

Isomer separation with DMS

Steric effects can be a dominating factor in isomer separation in the presence of solvent (e.g., water, methanol)

Liu et al., *Analyst*, **2015**, *140*, 6897-6903.

Isomer separation with DMS: Next level drug molecules – Quinolin-8-ols

5-substituted
2-methyl-quinolin-8-ol

6-substituted 2-methyl-quinolin-8-ol

7-substituted 2-methyl-quinolin-8-ol

$$X = -OCH_3$$
, $-CH_3$, $-H$, $-Br$, $-CI$, $-F$, $-NO_2$, or $-CN$

DMS ionograms reveal ion/solvent interaction strength: 5-, 6-, and 7-substituted 2-methyl-8-hydroxyquinolines and MeOH

DMS correlation with calculated binding energy

5-substituted 2-methyl-quinolin-8-ol

6-substituted 2-methyl-quinolin-8-ol

Wales and Doye, J. Phys. Chem. A 1997, 101, 5111; Hopkins et al., J. Phys. Chem. A 2013, 117, 10714

Cell permeability (RRCK) data among isomeric drug molecules also agrees with DMS

Li, D. et. al, J. Pharm. Sci. 2011, 100, 4974

Conclusions

- DMS is a powerful platform for isomer separations, for studying the ion-solvent interaction strength, and ...
- DMS shows promise as a fast approach to predict the cell permeability (RRCK) of drug candidates.
- Data strongly correlates to
 - calculated binding energies with solvent molecules
 - physical organic constants from the 1950s
 - RRCK data among isomeric drug molecules
 - pKa
- Both steric effect and electronic effect influence the ion-solvent interaction.
 - Steric effect: weak ion-solvent interaction when a bulk substituent is close to the charge site
 - Electronic effect: resonance structures disperse charge density and reduce ion-solvent interactions

Acknowledgements

- Drs. Bradley Schneider and Thomas Covey (SCIEX)
- High performance computing support from the SHARCNET consortium of Compute Canada
- Prof. Terry McMahon (University of Waterloo)
- NSERC (ENGAGE & ENGAGE Plus grants)
- RSC for the permission to reuse published figures.

Trademarks/Licensing

AB Sciex is doing business as SCIEX.

For Research Use Only. Not for use in diagnostic procedures.

© 2016 AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

Document number: RUO-MKT11-4152.