Quality and Fairness of Online Matching Algorithms for Kidney Exchange

Kelsey Lieberman & William Macke with Li, Das and Ho

August 2, 2018

Background

• About 100, 000 people waiting for kidney transplants in the US (2016)

Background

- About 100, 000 people waiting for kidney transplants in the US (2016)
- In 2014, 17,107 kidney transplants took place, about 1/3 from living donors

Background

- About 100, 000 people waiting for kidney transplants in the US (2016)
- In 2014, 17,107 kidney transplants took place, about 1/3 from living donors
- Unfortunately, willing living donors are often not medically compatible.
- One option for them is to enter a kidney exchange program

Incompatible Pairs

Compatibility

What makes a pair incompatible?
Blood type
Tissue type (measured by PRA)

Quality of Match

LKDPI:

- Blood type of donor
- Blood type of recipient
- Age of donor
- Sex of both
- Weight/BMI of both
- Cigarette use of donor
- If donor is African American
- PRA of recipient

Quality of Match

LKDPI:

- Blood type of donor
- Blood type of recipient
- Age of donor
- Sex of both
- Weight/BMI of both
- Cigarette use of donor
- If donor is African American
- PRA of recipient

LKDPI → **EGS** (Expected Graft Survival)

• Start with K incompatible pairs

- Start with K incompatible pairs
- 1 compatible pair arrives at each of T time steps

- Start with K incompatible pairs
- 1 compatible pair arrives at each of T time steps
- Compatible pairs only participate if they are matched immediately and the recipient receives a higher quality match

- Start with K incompatible pairs
- 1 compatible pair arrives at each of T time steps
- Compatible pairs only participate if they are matched immediately and the recipient receives a higher quality match
- Cycles can include up to 3 pairs

Problem Statement

• How can we optimize matches within a dynamic population without knowing the future of pair arrivals?

Problem Statement

- How can we optimize matches within a dynamic population without knowing the future of pair arrivals?
- Is this method fair?

• Start by assuming we know the future

- Start by assuming we know the future
- Use a Linear Program to optimize

- Start by assuming we know the future
- Use a Linear Program to optimize
 - o $0 \leq x_{t,i} \leq 1$ Match between pairs t and i

- Start by assuming we know the future
- Use a Linear Program to optimize o $0 \le x_{t,i} \le 1$ - Match between pairs t and i
- Use an Integer Program to optimize

- Start by assuming we know the future
- Use a Linear Program to optimize
 - o $0 \le x_{t,i} \le 1$ Match between pairs t and i
- Use an Integer Program to optimize

o
$$x_{t,i} = 0$$
 or 1

- Start by assuming we know the future
- Use a Linear Program to optimize
 - o $0 \le x_{t,i} \le 1$ Match between pairs t and i
- Use an Integer Program to optimize
 - o $x_{t,i} = 0$ or 1
 - o Can perform optimization using IP solvers(Gurobi, CBC)

- T Number of Compatible Pairs
- K Number of Incompatible Pairs

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- \bullet $x_{t,i}$ Match between pairs t and i

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T\}$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T\}$
- $i \in I = \{1, 2, 3...K\}$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{1, 2, 3...K\}$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- \bullet $x_{t,0}$ Compatible Pair matching with self

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $x_{t,0}$ Compatible Pair matching with self
- ullet $w_{t,i}$ Weight of match between pairs t and i

Optimizing for Oracle: Primal IP

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- ullet $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $x_{t,0}$ Compatible Pair matching with self
- ullet $w_{t,i}$ Weight of match between pairs t and i

$$\begin{aligned} & \text{maximize} \sum_{t,i} w_{t,i} x_{t,i} \\ & \text{subject to} \end{aligned}$$

Optimizing for Oracle: Primal IP

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- \bullet $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- x_{t,0} Compatible Pair matching with self
- $w_{t,i}$ Weight of match between pairs t and i

$$\begin{aligned} & \text{maximize} \sum_{t,i} w_{t,i} x_{t,i} \\ & \text{subject to} \\ & \sum_{i} x_{t,i} \leq 1, \end{aligned} \qquad \forall t \leq T$$

Optimizing for Oracle: Primal IP

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $x_{t,i}$ Match between pairs t and i
- $t \in C = \{1, 2, 3...T, T + 1...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $x_{t,0}$ Compatible Pair matching with self
- ullet $w_{t,i}$ Weight of match between pairs t and i

$$\begin{split} & \text{maximize} \sum_{t,i} w_{t,i} x_{t,i} \\ & \text{subject to} \\ & \sum_{t} x_{t,i} \leq 1, & \forall t \leq T \\ & \sum_{t} x_{t,i} + \sum_{j \in I} x_{(i+T),j} \leq 1, & \forall i \geq 1 \end{split}$$

• By relaxing IP above to LP, we can solve for dual problem.

- By relaxing IP above to LP, we can solve for dual problem.
- Each Constraint becomes a variable and each variable becomes a constraint.

- By relaxing IP above to LP, we can solve for dual problem.
- Each Constraint becomes a variable and each variable becomes a constraint.

•
$$\sum_{i} x_{t,i} \leq 1 \quad \forall t \leq T$$
 - α_t

- By relaxing IP above to LP, we can solve for dual problem.
- Each Constraint becomes a variable and each variable becomes a constraint.

•
$$\sum_{i} x_{t,i} \leq 1 \quad \forall t \leq T$$
 - α_t

$$\bullet \quad \textstyle \sum\limits_t x_{t,i} + \sum\limits_{j \in I} x_{(i+T),j} \leq 1 \quad \forall i \geq 1 \quad _{-\beta_i}$$

Optimizing for Oracle: Finding the Dual

- By relaxing IP above to LP, we can solve for dual problem.
- Each Constraint becomes a variable and each variable becomes a constraint.
- $\sum_{i} x_{t,i} \leq 1 \quad \forall t \leq T$ α_t
- $\sum_{t} x_{t,i} + \sum_{j \in I} x_{(i+T),j} \le 1 \quad \forall i \ge 1 \beta_i$
- ullet α_t Rough measure of value of compatible pair

Optimizing for Oracle: Finding the Dual

- By relaxing IP above to LP, we can solve for dual problem.
- Each Constraint becomes a variable and each variable becomes a constraint.
- $\sum_{i} x_{t,i} \leq 1 \quad \forall t \leq T$ α_t
- $\sum_{t} x_{t,i} + \sum_{j \in I} x_{(i+T),j} \le 1 \quad \forall i \ge 1$ β_i
- α_t Rough measure of value of compatible pair
- ullet eta_i Rough measure of value of incompatible pair

7

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- ullet $w_{t,i}$ Weight of match between pairs t and i
- ullet α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- ullet $w_{t,i}$ Weight of match between pairs t and i
- α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{aligned} & \text{minimize} \sum_{t} \alpha_t + \sum_{i} \beta_i \\ & \text{subject to} \end{aligned}$$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $w_{t,i}$ Weight of match between pairs t and i
- α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_t \alpha_t + \sum_i \beta_i \\ & \text{subject to} \\ & w_{t,i} - \alpha_t - \beta_i \leq 0, \qquad \forall t \leq T, i \end{split}$$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $w_{t,i}$ Weight of match between pairs t and i
- α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_{t} \alpha_t + \sum_{i} \beta_i \\ & \text{subject to} \\ & w_{t,i} - \alpha_t - \beta_i \leq 0, \qquad \forall t \leq T, i \\ & w_{t,i} - \beta_{t-T} - \beta_i \leq 0, \qquad \forall t > T, i \end{split}$$

- T Number of Compatible Pairs
- K Number of Incompatible Pairs
- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $w_{t,i}$ Weight of match between pairs t and i
- α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_{t} \alpha_{t} + \sum_{i} \beta_{i} \\ & \text{subject to} \\ & w_{t,i} - \alpha_{t} - \beta_{i} \leq 0, \qquad \forall t \leq T, i \\ & w_{t,i} - \beta_{t-T} - \beta_{i} \leq 0, \qquad \forall t > T, i \end{split}$$

Choose
$$i = \underset{i'}{\operatorname{arg max}} w_{t,i'} - \beta_{i'}$$

I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.
 - o Predict β based on two sets of data.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.
 - o Predict β based on two sets of data.
 - 1 Demographics information of pairs.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.
 - o Predict β based on two sets of data.
 - 1 Demographics information of pairs.
 - 2 β predicted by LP on incompatible pool only.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.
 - o Predict β based on two sets of data.
 - 1 Demographics information of pairs.
 - 2 β predicted by LP on incompatible pool only.
 - o Performs assignment based on rule given by dual above.

- I Greedy: Attempts to match each arriving compatible pair to maximize that cycle weight.
- II Online Dual Assignment using Shadow Survival Estimates (ODASSE):
 - Attempts to predict future based on given information and past experiences.
 - o Predict β based on two sets of data.
 - 1 Demographics information of pairs.
 - 2 β predicted by LP on incompatible pool only.
 - o Performs assignment based on rule given by dual above.
- III Oracle: Upper bound, we assume we know the future and perform the optimal matching using an integer program.

Experimental Protocol

• Simulations based on demographics information of pairs generated by parameters from Barnes Jewish Hospital.

Experimental Protocol

- Simulations based on demographics information of pairs generated by parameters from Barnes Jewish Hospital.
- All experiments shown consisted of 500 simulations of 50 arriving compatible pairs with a pool size of 100 incompatible pairs.

Experimental Protocol

- Simulations based on demographics information of pairs generated by parameters from Barnes Jewish Hospital.
- All experiments shown consisted of 500 simulations of 50 arriving compatible pairs with a pool size of 100 incompatible pairs.
- Training data is drawn from past simulations.

Preliminary Results

Preliminary Results

Total Expected Graft Survival by Algorithm

Three Cycles

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- \bullet $x_{t,0,0}$ Compatible Matching with self

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- $x_{t,0,0}$ Compatible Matching with self
- $x_{t,i,0}$ 2 Cycle Match

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- $x_{t,0,0}$ Compatible Matching with self
- $x_{t,i,0}$ 2 Cycle Match
- ullet $w_{t,i,j}$ Weight of cycle of pairs t,i and j

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- $x_{t,0,0}$ Compatible Matching with self
- $x_{t,i,0}$ 2 Cycle Match
- ullet $w_{t,i,j}$ Weight of cycle of pairs t,i and j

$$\mathsf{maximize} \sum_{t,i,j} w_{t,i,j} x_{t,i,j}$$

subject to

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- $x_{t,0,0}$ Compatible Matching with self
- $x_{t,i,0}$ 2 Cycle Match
- $w_{t,i,j}$ Weight of cycle of pairs t,i and j

$$\begin{aligned} & \text{maximize} \sum_{t,i,j} w_{t,i,j} x_{t,i,j} \\ & \text{subject to} \\ & \sum_{i,i} x_{t,i,j} \leq 1, \end{aligned}$$

 $\forall t \leq T$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $x_{t,i,j}$ Cycle of pairs t,i and j
- $x_{t,0,0}$ Compatible Matching with self
- $x_{t,i,0}$ 2 Cycle Match
- $w_{t,i,j}$ Weight of cycle of pairs t,i and j

$$\begin{aligned} & \text{maximize} \sum_{t,i,j} w_{t,i,j} x_{t,i,j} \\ & \text{subject to} \\ & \sum_{i,j} x_{t,i,j} \leq 1, & \forall t \leq T \\ & \sum_{t,i} x_{t,i,j} + \sum_{t,i} x_{t,j,i} + \sum_{i,i' \in I} x_{(i+T),j,j'} \leq 1, & \forall i \geq 1 \end{aligned}$$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- ullet $w_{t,i,j}$ Weight of match between pairs t and i
- ullet α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{aligned} & \text{minimize} \sum_t \alpha_t + \sum_i \beta_i \\ & \text{subject to} \end{aligned}$$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $w_{t,i,j}$ Weight of match between pairs t and i
- ullet α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_t \alpha_t + \sum_i \beta_i \\ & \text{subject to} \\ & w_{t,i,j} - \alpha_t - \beta_i - \beta_j \leq 0, \qquad \forall t \leq T, i, j \end{split}$$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $w_{t,i,j}$ Weight of match between pairs t and i
- ullet α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_{t} \alpha_t + \sum_{i} \beta_i \\ & \text{subject to} \\ & w_{t,i,j} - \alpha_t - \beta_i - \beta_j \leq 0, \quad \forall t \leq T, i, j \\ & w_{t,i,j} - \beta_{t-T} - \beta_i - \beta_j \leq 0, \quad \forall t > T, i, j \end{split}$$

- $t \in C = \{1, 2, 3...T, T + 1, ...T + K\}$
- $i \in I = \{0, 1, 2...K\}$
- $j \in I = \{0, 1, 2...K\}$
- $w_{t,i,j}$ Weight of match between pairs t and i
- ullet α_t Rough measure of value of compatible pair
- β_i Rough measure of value of incompatible pair

$$\begin{split} & \text{minimize} \sum_t \alpha_t + \sum_i \beta_i \\ & \text{subject to} \\ & w_{t,i,j} - \alpha_t - \beta_i - \beta_j \leq 0, \quad \forall t \leq T, i, j \\ & w_{t,i,j} - \beta_{t-T} - \beta_i - \beta_j \leq 0, \quad \forall t > T, i, j \\ & \text{Choose } i, j = \underset{i',j'}{\text{arg max}} \ w_{t,i',j'} - \beta_{i'} - \beta_{j'} \end{split}$$

Number of Matches

Number of Matches by Algorithm

Quality of Matches

Time of Matches

Interpreting Beta

Interpreting Beta

Analyzing Fairness

Do the algorithms result in differential impacts for specific groups? Groups to consider:

- Demographic groups
- Groups based on beta values

Analyzing Fairness

Do the algorithms result in differential impacts for specific groups?

Groups to consider:

- Demographic groups
- Groups based on beta values

Outcomes to consider:

- Proportion of pairs from that get matched
- · Quality a pair receives if matched
- Time a pair waits to receive a match

Fairness by β

Figure: Incompatible pairs with β < 5 receive 45.5% more matches with ODASSE algorithm than greedy

Fairness

Figure: Incompatible pairs with African American donors receive 44.3% more matches with ODASSE algorithm than greedy

Fairness in Blood Type and Tissue Type

Figure: Incompatible pairs with recipients with type O blood receive 30.6% more matches with ODASSE algorithm than greedy

Received Quality Over Time

Figure: Quality Recipient Receives by Time Matched

• ODASSE improves the social welfare

- ODASSE improves the social welfare
- ODASSE improves number of transplants performed

- ODASSE improves the social welfare
- ODASSE improves number of transplants performed
- ODASSE improves fairness among hard-to-match pairs

- ODASSE improves the social welfare
- ODASSE improves number of transplants performed
- ODASSE improves fairness among hard-to-match pairs
- Improved outcomes do not come at the cost of reduced fairness

Future work

- Expanding the formulation to include arrival and departure protocols for incompatible pairs
- Adding predictions of future compatible pairs to improve algorithm