Question A. Let

$$E = \left\{ \frac{5n+8}{11n} : n \in \mathbb{N} \right\}.$$

Compute $\sup E$ and $\inf E$. Justify your answer.

Solution. We will show that $\sup E = \frac{13}{11}$ and $\inf E = \frac{5}{11}$. Since $n \in \mathbb{N}$,

$$n \ge 1$$

$$1 \ge \frac{1}{n} \ge 0$$

$$\frac{8}{11} \ge \frac{8}{11n} \ge 0$$

$$\frac{13}{11} \ge \frac{5n+8}{11n} \ge \frac{5}{11},$$

and thus $\frac{13}{11}$ and $\frac{5}{11}$ are a upper bound and a lower bound of E respectively. Let $s < \frac{13}{11}$. Since $\frac{13}{11} \in E$, s is not a upper bound of E. Therefore, $\sup E = \frac{13}{11}$.

We will now show inf $E = \frac{5}{11}$ by contradiction. Suppose for the sake of contradiction that there exists a lower bound l of E such that $l > \frac{5}{11}$. Then, for any $n \in \mathbb{N}$,

$$\frac{5n+8}{11n} \ge l$$

$$\frac{8}{11l-5} \ge n,$$

contradiction as \mathbb{N} is unbounded above. Therefore, inf $E = \frac{5}{11}$.

Question B. Let S and T be two bounded subsets of the real numbers. Prove that

 $\sup(T \cup S) = \max\{\sup T, \sup S\}.$

Proof. Assume without loss of generality that $\max\{\sup T, \sup S\} = \sup T$. For all $s \in S$ and $t \in T$, since $\sup T \geq t$ and $\sup T \geq \sup S \geq s$, we know $\sup T \geq x$, for all $x \in T \cup S$, which shows that $\sup T$ is an upper bound of $T \cup S$. Let $k < \sup T$. Then there exists some $p \in T \subseteq T \cup S$ such that p > k, and thus k is not an upper bound of $T \cup S$. Therefore, the statement of the question holds.

Question C. Let S and T be two bounded, nonempty, subsets of the set of positive real numbers. Define $ST := \{st : s \in S, t \in T\}$ and $S + T := \{s + t : s \in S, t \in T\}$. Prove that

$$\sup(ST) = (\sup S)\dot(\sup T)$$
 and $\sup(S+T) = \sup S + \sup T$.

Proof. We first show that $\sup(ST) = (\sup S)\dot(\sup T)$. Let $t \in T$, $s \in S$. Since $s < \sup S$ and $t < \sup T$, we have $st < (\sup S)t < (\sup S)(\sup T)$, and thus $(\sup S)(\sup T)$ is an upper bound of ST. Let $k \in \mathbb{R}^+$, such that $k < (\sup S)(\sup T)$. Since $\frac{k}{\sup S} < \sup T$, there exists $t \in T$ such that $\frac{k}{\sup S} < t < \sup T$. Then, we also know that since $\frac{k}{t} < \sup S$, there exists $s \in S$, such that $\frac{k}{t} < s < \sup S$. Rearranged, we get $k < st \in ST$, which shows that k is not an upper bound of ST, and thus $\sup(ST) = (\sup S)(\sup T)$.

We now show that $\sup(S+T)=\sup S+\sup T$. Let $t\in T, s\in S$. Since $s<\sup S$ and $t<\sup T$, we have $s+t<\sup S+\sup T$, and thus $\sup S+\sup T$ is an upper bound of S+T. Let $k\in \mathbb{R}^+$, such that $k<\sup S+\sup T$. Since $k-\sup T<\sup S$, there exists $s\in S$ such that $k-\sup T< s$. Since $k-s<\sup T$, there exists $t\in T$ such that k-s< t, and thus we know there exist $s+t\in S+T$ such that $k< s+t<\sup S+\sup T$. Therefore, $\sup(S+T)=\sup S+\sup T$.

Question D. Let F be the set of all rational functions

$$\frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$
 (1)

where the coefficients are real numbers and $b_m \neq 0$.

(i) Define addition and multiplication of two elements in F to be the usual addition and multiplication of functions. Show that with this addition and multiplication, F is a field.

Proof. Let
$$A = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \mid a_n, \dots, a_0 \in \mathbb{R}\}, B = \{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0 \mid b_m, \dots, b_0 \in \mathbb{R} - \{0\}\}.$$
 Let $a = \frac{f_1}{g_1}, b = \frac{f_2}{g_2}, c = \frac{f_3}{g_3} \in F.$

Associativity: Since

$$(a+b) + c = \frac{f_1 g_2 g_3 + f_2 g_1 g_3 + f_3 g_1 g_2}{g_1 g_2 g_3} = a + (b+c)$$

and

$$(ab)c = \frac{f_1 f_2 f_3}{g_1 g_2 g_3} = a(bc),$$

F is associative under + and \times .

Commutativity: Since

$$a+b = \frac{f_1g_2 + f_2g_1}{g_1g_2} = b+a$$

and

$$ab = \frac{f_1 f_2}{g_1 g_2} = ba,$$

F is commutative under + and \times .

Additive and multiplicative identity: Since

$$a + 0 = 0 + a = a$$

and

$$a \cdot 1 = 1 \cdot a = a$$

F has additive and multiplicative identity.

Additive inverses: For every a, we have $a^{-1} = -a \in F$, so that a + (-a) = 0.

Multiplicative inverses: For every $a \neq 0$, we have $a^{-1} = \frac{g_1}{f_1} \in F$. Note that $f_1 \in B$. Then, we have $aa^{-1} = \frac{f_1}{g_1} \cdot \frac{g_1}{f_1} = 1$.

Distributivity: Since

$$a(b+c) = \frac{f_1}{q_1} \cdot \frac{f_2 g_3 + f_3 g_2}{q_2 q_3} = \left(\frac{f_1}{q_1} \cdot \frac{f_2}{q_2}\right) + \left(\frac{f_1}{q_1} \cdot \frac{f_3}{q_3}\right) = (ab) + (ac),$$

F is distributive.

The above qualities show that F is a field under addition and multiplication.

(ii) We can define an order on F as follows. A rational function like (1) is positive if and only if a_n and b_m have the same sign, i.e. $a_n b_m > 0$. Now given two rational functions $\frac{p}{q}$ and $\frac{f}{g}$ we define:

$$\frac{p}{q} > \frac{f}{g}$$
 if and only if $\frac{p}{q} - \frac{f}{g} > 0$.

Show with this ordering and the operations in part (i), F is an ordered field.

Proof. We continue using the defined sets A, B and elements $a, b, c \in F$ from part (i).

We first show that F is an ordered set. Let $n_1, m_1 \in \mathbb{R}$, $m_1 \neq 0$, each be the leading coefficient of f_1, g_1 . Since \mathbb{R} is an ordered set, we know $n_1 m_1$ must be either positive, negative, or equal to 0. This indicates that for all $f \in F$, f must be either positive, negative, or equal to 0. Since $a - b \in F$, it must be either positive, negative, or equal to 0. Therefore, since $a, b \in F$, one and only one of the following statements

$$a > b$$
, $b > a$, $a = b$

is true.

Suppose a > b and b > c, then $\frac{f_1g_2 - f_2g_1}{g_1g_2} > 0$ and $\frac{f_2g_3 - f_3g_2}{g_2g_3} > 0$. Combining two equations, we get $\frac{f_1g_2g_3 - f_2g_1g_3 + f_2g_1g_3 - f_3g_1g_2}{g_1g_2g_3} > 0$. It follows that

$$\frac{f_1g_3 - f_3g_1}{g_1g_3} = a - c > 0.$$

Thus, F is an ordered set since it meets the two required conditions.

Suppose c > b. We know $a + c = \frac{f_1g_3 + f_3g_1}{g_1g_3}$ and $a + b = \frac{f_1g_2 + f_2g_1}{g_1g_2}$. Since c > b, we rearrange and get $f_3g_2 > f_2g_3$. Thus

$$f_{3}g_{2} > f_{2}g_{3}$$

$$f_{3}g_{2}g_{1} > f_{2}g_{3}g_{1}$$

$$f_{1}g_{2}g_{3} + f_{3}g_{2}g_{1} > f_{1}g_{2}g_{3} + f_{2}g_{3}g_{1}$$

$$\frac{f_{1}g_{3} + f_{3}g_{1}}{g_{1}g_{3}} > \frac{f_{1}g_{2} + f_{2}g_{1}}{g_{1}g_{2}}$$
dividing $g_{1}g_{2}g_{3}$ on both sides
$$a + c > a + b.$$

Suppose a, b are positive. Let $n_1, n_2, m_1, m_2 \in \mathbb{R} - \{0\}$ each be the leading coefficient of f_1, f_2, g_1, g_2 , we get $n_1 m_1, n_2 m_2 > 0$. Since the leading coefficient of the product of two polynomials is the product of the leading coefficients of the two polynomials, we know that the leading coefficient of $f_1 f_2$ and $g_1 g_2$ are $n_1 n_2$ and $m_1 m_2$, respectively. Since $n_1 m_1, n_2 m_2 > 0$, $n_1 n_2 m_1 m_2 > 0$, and thus $ab = \frac{f_1 f_2}{g_1 g_2}$ is also positive.

Since all the conditions are met, F is an ordered field.

(iii) Write the following polynomials in order of increasing size using the order defined in (ii): $x^2, -x^5, 2, x+6, 3-2x$.

Solution. Since

$$x^{2} - (x+6) = x^{2} - x - 6 > 0,$$

$$x + 6 - 2 = x + 4 > 0,$$

$$2 - (-2x + 3) = 2x - 1 > 0,$$

$$-2x + 3 - (-x^{5}) = x^{5} - 2x + 3 > 0,$$

we have

$$x^2 > x + 6 > 2 > -2x + 3 > -x^5$$

by the transitivity of ordered sets.

(iv) Show that x > a for all $a \in R$.

Proof. Let $a \in \mathbb{R}$. Since x - a has a leading coefficient of 1, the statement holds true. \square

Question E1. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

Proof. Let $r=\frac{m}{n}$, for $m,n\in\mathbb{Z}$, $\gcd(m,n)=1$. We first show r+x to be irrational. Suppose for the sake of contradiction that $r+x=\frac{p}{q}$, for $p,q\in\mathbb{Z}$, $\gcd(p,q)=1$. Then $x=\frac{p}{q}-\frac{m}{n}=\frac{mq+np}{nq}\in\mathbb{Q}$, contradiction.

We now show rx to be irrational. Suppose for the sake of contradiction that $rx=\frac{k}{l}$, for $k,l\in\mathbb{Z}$, $\gcd(k,l)=1$. Then $x=\frac{\frac{k}{l}}{\frac{m}{n}}=\frac{kn}{lm}\in\mathbb{Q}$, contradiction.

Therefore, both r + x and rx are irrational.

Question E2. Prove that there is no rational number whose square is 12.

Proof. Let $p=\frac{m}{n}$, for $m,n\in\mathbb{Z}$, $\gcd(m,n)=1$. Suppose for the sake of contradiction that $p^2=12$. We know $m^2=12n^2$, and so m=2k, for $k\in\mathbb{Z}$. We then have $k^2=3n^2$, which implies that 3|k. This shows that m=6l, for $6\in\mathbb{Z}$. Substituting it back into the equation, we get $3l^2=n^2$, which shows that 3|m,n, contradiction. Therefore, the statement of the question holds true.

Question E5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

Proof. Let $k = \inf A$, $b \in -A$. Since $-b \in A$, we know k < -b. Therefore, -k > b, and thus -k is an upper bound of -A. Let $m \in \mathbb{R}$, such that m < -k. Since -m > k, we know there exists $a \in A$, such that -m > a. Since $-a \in -A$ and -a > m, m is not an upper bound of -A. Therefore, $k = -\sup(-A)$.

Question E8. Prove that no order can be defined in the complex field that turns it into an ordered field.

Proof. Let $a, b \in \mathbb{C}$. Suppose for the sake of contradiction that there exists some ordering such that a > b. We then have

$$a > b$$

$$ia > ib$$

$$-a > -b$$

$$a < b,$$

contradiction. Thus, the statement holds true.