A NOVEL METHOD FOR HANDWRITTEN DIGITAL RECOGNITION SYSTEM

A PROJECT REPORT

Submitted by

TEAM ID: PNT2022TMID49347

UMESH S	923119106010
KIRUTHIKA T	923119106002
KOWSALYA M	923119106004
MARUTHUPANDIYAN V	923119106006
SNEKA S	923119106007
SUVIN KUMAR R	923119106008

in partial fulfilment for the award of the degree

of

BATCHLOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

ARULMURUGAN COLLEGE OF ENGINEERING THENNILAI, KARUR-639206

ANNAUNIVERSITY :: CHENNAI 600 025
NOVEMBER 2022

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO
1.	INTRODUCTION	3
	1.1 Project Overview	3
	1.2 Purpose	3
2.	LITERATURE SURVEY	4
	2.1 Existing problem	4
	2.2 References	4
	2.3 Problem Statement Definition	8
3.	IDEATION & PROPOSED SOLUTION	9
	3.1 Empathy Map Canvas	9
	3.2 Ideation & Brainstorming	10
	3.3 Proposed Solution	15
	3.4 Problem Solution fit	18
4.	REQUIREMENT ANALYSIS	19
	4.1 Functional requirement	19
	4.2 Non-Functional requirements	20
5.	PROJECT DESIGN	21
	5.1 Data Flow Diagrams	21
	5.2 Solution & Technical Architecture	21
	5.3 User Stories	22
6.	PROJECT PLANNING & SCHEDULING	25
	6.1 Sprint Planning & Estimation	25
	6.2 Sprint Delivery Schedule	26
	6.3 Reports from JIRA	27
7.	CODING & SOLUTIONING	28
	7.1 Feature 1	28

	7.2 Feature 2	29
8.	TESTING	30
	8.1 Test Cases	30
	8.2 User Acceptance Testing	31
	8.2.1 Test Case Analysis	32
9.	RESULTS	33
	9.1 Performance Metrics	33
10.	ADVANTAGES & DISADVANTAGES	34
	10.1 Advantages	34
	10.2 Disadvantages	34
11.	CONCLUSION	35
12.	FUTURE SCOPE	36
13.	APPENDIX	37
	13.1Source Code	37
	13 2GitHuh & Demo Link	47

INTRODUCTION

1.1 PROJECT OVERVIEW

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit, this image is analysed by the model and the detected result is returned on to UI

1.2 PURPOSE

The most common use case in today's mobile world is handwriting recognition as a direct input to a touchscreen through a stylus or finger. This is useful as it allows the user to quickly jot down numbers and names for contacts as compared to inputting the same information via the onscreen keyboard.

Handwritten digit recognition is the process to provide the ability to machines to recognize human handwritten digits. It is not an easy task for the machine because handwritten digits are not perfect, vary from person-to-person, and can be made with many different flavours. Digit recognition systems are capable of recognizing the digits from different sources like emails, bank cheque, papers, images, etc.

LITERATURE SURVEY

2.1 Existing problem

In this paper Handwritten digit recognition has recently been of very interest among the

researchers because of the evolution of various Machine Learning, Deep Learning and Computer

Vision algorithms. In this report, We compare the results of some of the most widely used

Machine Learning Algorithms like CNN- convolutional neural networks and with Deep Learning

algorithms like multilayer CNN using Keras with Theano and Tensorflow. MNIST is a dataset

which is widely used for handwritten digit recognition. The dataset consist of 60,000 training

images and 10,000 test images. The artificial neural networks can all most mimic the human brain

and are a key ingredient in image processing field. For example Convolution Neural networks

with back propagation for image processing. The applications where these handwritten digit

recognition can be used are Banking sector where it can be used to maintain the security pin

numbers, it can be also used for blind peoples by using sound output.

2.2 References

PAPER 1

TITLE: A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION WITH

NEURAL NETWORKS

AUTHOR: Malothu Nagu

YEAR: 2011

This paper Character recognition plays an important role in the modern world. It can

solve more complex problems and makes humans' jobs easier. An example is handwritten

character recognition. This is a system widely used in the world to recognize zip code or postal

code for mail sorting. There are different techniques that can be used to recognize handwritten

characters. Two techniques researched in this paper are Pattern Recognition and Artificial Neural

Network (ANN). Both techniques are defined and different methods for each technique are also

discussed. Bayesian Decision theory, Nearest Neighbour rule, and Linear Classification or

Discrimination is types of methods for Pattern Recognition. Shape recognition, Chinese

Character and Handwritten Digit recognition using Neural Network to recognize them. Neural

Network is used to train and identify written digits. After training and testing, the accuracy rate

reached 99%. This accuracy rate is very high

PAPER 2

TITLE: A NOVEL HANDWRITTEN CHARACTER RECOGNITION SYSTEM USING

GRADIENT BASED FEATURES AND RUN LENGTH COUNT

AUTHOR: G.Raju, Bindu S Moni

YEAR: 2014

In this paper, we propose a novel handwritten character recognition system using a

combination of gradient-based features and run length count (GBF-RLC). The performance of

the proposed method has been tested on Malayalam script, a South Indian language. The gradient

of the image is the intensity at each point, giving the direction of the largest possible increase

from light to dark and the rate of change in that direction. RLC is the count of a contiguous

group of 1's encountered in a left to right/top to bottom scan of a character image or block of an

image. Classification was carried out with a Simplified Quadratic Classifier (SQDF) and Multi

Layer Perception (MLP). A database containing 19,800 isolated handwritten characters

pertaining to 44 classes was used for the study. The feature vector is augmented by including

aspect ratio, position of centroid and ratio of pixels on the vertical halves of a character image.

The recognition accuracy of 99.78% was achieved with minimum computational and storage

requirements

PAPER 3

TITLE: A MULTI-LANGUAGE HANDWRITTEN DIGITS RECOGNITION DATASET

AUTHOR: Weiwei Jiang

YEAR: 2015

In this paper, we contribute a multi-language handwritten digit recognition dataset named MNIST-MIX, which is the largest dataset of the same type in terms of both languages and data samples. With the same data format as MNIST, MNIST-MIX can be seamlessly applied in existing studies for handwritten digit recognition. By introducing digits from 10 different languages. MNIST-MIX becomes a more challenging dataset and its imbalanced classification requires a better design of models. We also present the results of applying a LeNet model which

is pre-trained on MNIST as the baseline.

PAPER 4

TITLE: AUTOMATIC HANDWRITTEN DIGIT RECOGNITION ON DOCUMENT

IMAGES USING MACHINE LEARNING METHODS

AUTHOR: Akkireddy Challa

YEAR: 2019

The main purpose of this thesis is to build an automatic handwritten digit recognition method for the recognition of connected handwritten digit strings. To accomplish the recognition task, first, the digits were segmented into individual digits. Then, a digit recognition module is employed to classify each segmented digit completing the handwritten digit string recognition task. In this study, different machine learning methods, which are SVM, ANN and CNN architectures are used to achieve high performance on the digit string recognition problem. In these methods, images of digit strings are trained with the SVM, ANN and CNN model with HOG feature vectors and Deep learning methods structure by sliding a fixed size window through the images labelling each sub-image as a part of a digit or not. After the completion of the segmentation, to achieve the complete recognition of handwritten digits.

PAPER 5

TITLE: A NOVEL METHOD FOR HAND WRITTEN DIGITAL RECOGNITION

USING DEEP LEARNING

AUTHOR: Rohini.M, D.Surendran

YEAR: 2019

In this paper Handwritten digit recognition has recently been of very interest among the

researchers because of the evolution of various Machine Learning, Deep Learning and Computer

Vision algorithms. In this report, We compare the results of some of the most widely used

Machine Learning Algorithms like CNN- convolutional neural networks and with Deep Learning

algorithms like multilayer CNN using Keras with Theano and Tensorflow. MNIST is a dataset

which is widely used for handwritten digit recognition. The dataset consist of 60,000 training

images and 10,000 test images. The artificial neural networks can all most mimic the human brain

and are a key ingredient in image processing field. For example Convolution Neural networks

with back propagation for image processing. The applications where these handwritten digit

recognition can be used are Banking sector where it can be used to maintain the security pin

numbers, it can be also used for blind peoples by using sound output

PAPER 6

TITLE: A NOVEL HANDWRITTEN DIGIT CLASSIFICATION SYSTEM BASED ON

CONVOLUTIONAL NEURAL NETWORK APPROACH

AUTHOR: Ali Abdullah Yahya, Jieqing Tan

YEAR: 2021

This paper contains an enormous number of CNN classification algorithms that have

been proposed in the literature. Nevertheless, in these algorithms, appropriate filter size

selection, data preparation, limitations in datasets, and noise have not been taken into

consideration. As a consequence, most of the algorithms have failed to make a noticeable

improvement in classification accuracy. To address the shortcomings of these algorithms, our paper presents the following contributions: Firstly, after taking the domain knowledge into consideration, the size of the effective receptive field (ERF) is calculated. Calculating the size of the ERF helps us to select a typical filter size which leads to enhancing the classification accuracy of our CNN. Secondly, unnecessary data leads to misleading results and this, in turn, negatively affects classification accuracy. To guarantee the dataset is free from any redundant or irrelevant variables to the target variable, data preparation is applied before implementing the data classification mission. Thirdly, to decrease the errors of training and validation, and avoid the limitation of datasets, data augmentation has been proposed. Fourthly, to simulate the real-world natural influences that can affect image quality, we propose to add an additive white Gaussian noise with $\sigma = 0.5$ to the MNIST dataset. As a result, our CNN algorithm achieves state-of-the-art results in handwritten digit recognition, with a recognition accuracy of 99.98%, and 99.40% with 50% noise

2.3 Problem Statement Definition

Problem	I am	I'm trying to	But	Because	Which
Statement	(Customer)				makes me
(PS)					feel
PS-1	A bank	Recognize the	I can't	The digits are	Confused
	employee	digit written on	recognize it	not written	
		cheque		properly	
PS-2	A student	recognize the last	I can't find	The shapes of	Sad that I
		date for paying the	the correct	the digits are	can't
		exam fees which	date	a little bit	recognize the
		is written on the		different.	date
		board			
PS-3	A placement	recognize students	I can't able	Some digits	Tensed that I
	officer	DOB details and	to	are scribbled	can't able to
		update to database	understand		recognize the
			some digits		digits

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

Template

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

- (L) 10 minutes to prepare
- I hour to collaborate
- 2-8 people recommended

Before you collaborate

A little bit of preparation goes a long way with this session. Here's what you need to do to get going.

10 minutes

Team gathering

Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

Set the goa

Think about the problem you'll be focusing on solving in the brainstorming session.

C Learn how to use the facilitation tools

Use the Facilitation Superpowers to run a happy and productive session.

Open article

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

5 minutes

PROBLEM

A Novel Method for Handwritten Digit Recognition

Handwriting recognition is one of the compelling research works goin g on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit, this image is analyzed by the model and the detected result is returned on to UI

Brainstorm

Write down any ideas that come to mind that address your problem statement.

0 10 minutes

Umesh		Sneka	Maruthupa	ndiyan	
The hand writing must be legible	Only the numeric character should be darken in the image	Enhanced dataset shoud be used	Convert the text digits into electrical form	DNN algorithm can be used	Variation in character style
Feedback should be enabled	High accuracy	DBN algorithm can be used	Digit as output	Mainly used in number plate detection	Concern about data
Kowsalya		Suvinkun	nar	Kiruthika	
Low time consumption	Image as output	CNN algorithm can be used	Accuracy should be displayed	Online and offline detection is available	Keras library
Digits of different style	User interface of	Display accuracy of	Analysing the article of	The number must be dark	Reduce human

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

0 20 minutes

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement	The handwritten digit recognition is the capability of
	(Problem to be solved)	 The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes. The handwritten digit recognition system is a way to tackle. It is easy for the human to perform task accurately by practicing it repeatedly and memorizing it for the next time. Human brain can process and analyse images easily. Also, recognize the different element present in the image It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes This problem which uses the image of a digit and recognizes the digit present in the image In this competition, the goal is to correctly identify digits from a dataset of tens of thousands of handwritten images and experiment with different algorithms to learn what works well and how
		techniques compare
2.	Idea / Solution description	 The algorithm used is Convolution Neural Network(CNN). This will prepare the trained model which will be used to classify the digits present in the test data. Thus, we can classify the digits present in the images as: Class 0,1,2,3,4,5,6,7,8,9. MNIST is a dataset which is widely used for handwritten digit recognition. The dataset consist of 60,000 training images and 10,000 test images The artificial neural networks can all most mimic the human brain and are a key ingredient in image

			processing field.
3.	Novelty / Uniqueness	•	This project introduces an operative strategy for
	, I		dealing with novelty in the handwritten visual
			recognition domain. A perfect transcription agent
			would be able to distinguish known and unknown
			characters in a picture, as well as determine any
			aesthetic variations that may occur inside or between
			texts. The existence of novelty has shown to be a
			major stumbling block for even the most robust
			machine learning-based algorithms for these
			activities.
		•	Novelty in handwritten papers might include, among
			other things, a change in the writer, character
			properties, writing attributes, or overall document
			appearance. Instead of examining each element
			separately, we believe that an integrated agent
			capable of processing known characters and novelties
			concurrently is a superior technique. The handwritten
			digit recognition problem can be seen as a subtask of
			the optical character recognition (OCR) problem.
4.	Social Impact /	•	There are many benefits associated with the
	Customer Satisfaction		handwriting recognition system. In addition to
			reading postal addresses and bank check amounts, it
			is also useful for reading forms. Furthermore, it's
			used in fraud detection because it makes it easy to
			compare two texts and determine which one is a
			copy. As a result, this system fulfils customers'
			expectations, as it is a novel method for recognizing
			handwritten digits, ensuring high accuracy for the
			model and meeting all customer expectations. Users
			will save a lot of time and effort if the system
			provides various synonyms for the words recognized.
			Due to the fact that the users in rural areas will be
			using their own regional language, this proposed
			system should be able to detect those digits as well.
			As the system is being used in socially crowded
			places such as banks to check amounts, it should be

5.	Business Model	fast and reliable. As it is designed to solve real-world problems, it should be highly reliable and trustworthy in every way, and users throughout the world should be able to use it effectively. • The applications where these handwritten digit
	(Revenue Model)	recognition can be used are Banking sector where it can be used to maintain the security pin numbers, it can be also used for blind peoples by using sound output. • Some of the research areas include signature verification, bank check processing, postal address interpretation from envelopes etc
6.	Scalability of the Solution	• One of the approaches to make the handwritten digit recognition system scalable is to make use of cloud-native methods. For example, one of the cloud solutions for making AI scalable is IBM Cloud. IBM Cloud Build helps run and manage AI models, optimize decisions at scale across any cloud. The advantage of using cloud to make solutions scalable is that we can deploy our AI application on the specific cloud environment that best supports our business needs. We can take advantage of built-in security capabilities and AI model monitoring. We can Automate AI lifecycles with ModelOps pipelines, deploy and run models through one click integration and also prepare and build models visually and programmatically. Looking at these advantages, we can drive better business outcomes by optimizing our decisions and also make our solution scalable using cloud

3.4 PROBLEM SOLUTION FIT\

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	The product essentially converts	The user is first asked to draw a number on the canvas and the model that is built is then utilized to
	handwritten digits to digital form.	compare the data to provide an output in digitized
		form.
FR-2	Recognizing the handwritten	Recognizing the handwritten digit and displaying
	digit and displaying	
FR-3	Import the dataset file directly to	Installing packages and applications.
	the program from a command	
	that will download the dataset	
	from its website.save the dataset	
	file in the same the directory as	
	the program	
FR-4	Build a neural network with a	Nil.
	number of nodes in the input	
	layer equal to the number of	
	pixels in the arrays	
FR-5	Activating the neural network.	Packages -tensorflow.

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	System design should be easily understood and
		user friendly to users. Furthermore, users of all
		skill levels should be able to navigate it without
		problems.
NFR-2	Security	The system should automatically be able to
		authenticate all users with their unique username
		and password.
NFR-3	Reliability	It should be user-friendly.
NFR-4	Performance	Should reduce the delay in information when
		hundreds of requests are given.
NFR-5	Availability	Information is restricted to each user's limited
		access.
NFR-6	Scalability	The system should be able to handle 5000 users
		accessing the site at the same time.

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Fig.5.1Data Flow Diagrams

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

Fig.5.2 Architecture of the Handwritten digit recognition system

Fig.5.3 A Novel Approach for Handwritten Digit Recognition Using Multilayer Perception Neural Network

Fig.5.4 Model Architecture of the Deep Learning model used for Handwritten digit recognition

5.3 USER STORIES

User	Functional	User	User Story /	Acceptance	Priority	Release
Type	Requirement	Story	Task	criteria		
	(Epic)	Number				
Customer	Registration	USN-1	As a user, I can	I can download	High	Sprint-1
(Mobile			register for a	the registration		
user)			unique email id			
			and password.			
		USN-2	As a user, I will	I can receive a		Sprint-2
			receive a	confirmation	Low	
			confirmation	email and click		
			email once I	confirm.		
			have registered			
			for the			
			application.			
		USN-3	As a user, I can	I can sign in to	Medium	Sprint-2
			sign in to an	the application		
			application.			
	Upload	USN-4	As a user I can	I can choose	High	Sprint-3
			upload my	any image from		
			handwritten	my device.		
			digits images			
			to be			
			recognised			
			from the device			
	Recognize	USN-5	As a user, I will	I am able to	High	Sprint-4
			train and test	train and test		
			the input to get	the application		
			the maximum	until it gets		
			accuracy of	maximum		
			output	accuracy of the		
				result		
Customer	Registration	USN-6	As a user, I can	I can download	High	Sprint-1
(Web			register for a	the registration		
user)			unique email id			
			and password.			

	USN-7	As a user, I will	I can receive a		Sprint-2
		receive a	confirmation	Low	_
		confirmation	email and click		
		email once I	confirm.		
		have registered			
		for the			
		application.			
	USN-8	As a user, I can	I can sign in to	Medium	Sprint-2
		sign in to an	the application		1
		application.			
Home	USN-9	As a user, I can	I can view the	Low	Sprint-2
		view the	instructions		
		instructions	and process of		
		and	the		
		process of the	application.		
		application.			
Upload	USN-10	As a user I can	I can choose	High	Sprint-3
		upload my	any image from		
		handwritten	my device.		
		digits images			
		to be			
		recognised			
		from the device			
Recognize	USN-11	As a user, I will	I am able to	High	Sprint-4
		train and test	train and test		
		the input to get	the application		
		the maximum	until it gets		
		accuracy of	maximum		
		output	accuracy of the		
			result		
Help	USN-9	As a user i can	I can access the	Low	Sprint-2
		contact to	ask help to		
		administration	administrator		

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story		Points		Members
	(Epic)	Number				
Sprint-1	Registration	USN-1	As a user, I can	2	High	R.Suvin
			register for the			Kumar
			application by			
			entering my email,			
			password, and			
			confirming my			
			password.			
Sprint-1		USN-2	As a user, I will	1	High	V.Maruthu
			receive confirmation			pandiyan
			email once I have			
			registered for the			
			application			
Sprint-2		USN-3	As a user, I can	2	Low	T.Kiruthika
			register for the			
			application through			
			Facebook			
Sprint-1		USN-4	As a user, I can	2	Medium	S.Umesh
			register for the			
			application through			
			Gmail			
Sprint-1	Login	USN-5	As a user, I can log	1	High	S.Sneka
			into the application			
			by entering email &			
			password			
Sprint-3	Dashboard	USN-6	As a user, I can	3	Medium	V.Maruthu
			upload image using			pandiyan
			camera			

Sprint-3		USN-7	As a user, I can	3	Medium	S.Sneka
			upload image from			
			gallery			
Sprint-4		USN-8	As a user, I can	5	High	S.Umesh
			download to the			
			recognized digit			
Sprint-2	Help	USN-9	As a user i can	1	Low	M.Kowsalya
			contact to			
			administration			

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total	Duration	Sprint Start	Sprint End	Story Points	Sprint
	Story		Date	Date	Completed	Release Date
	Points			(Planned)	(as on	(Actual)
					Planned	
					End Date)	
Sprint-1	6	6 Days	24 Oct 2022	29 Oct 2022	6	29 Oct 2022
Sprint-2	3	6 Days	31 Oct 2022	05 Nov 2022	3	05 Nov 2022
Sprint-3	6	6 Days	07 Nov 2022	12 Nov 2022	6	12 Nov 2022
Sprint-4	5	6 Days	14 Nov 2022	19 Nov 2022	5	19 Nov 2022

Velocity:

Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Burn down Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.3 REPORT FROM JIRA

CODING & SOLUTIONING

7.1 FEATURE

7.2 FEATURE

Prediction

Other Predictions

TESTING

8.1 TEST CASES

TEST	FEATURE	COMPONENT	TEST	EXPECTED	ACTUAL	STATUS
CASE	TYPE		SCENARIO	RESULT	RESULT	
ID						
TC_001	UI	Home Page	Verify UI	The Home	Working as	PASS
			elements in the	Page must be	expected	
			Home Page	displayed		
				properly		
TC_002	UI	Home Page	Verify whether	The Home	The UI is	FAIL
			the page is	Page must	displayed	
			responsive	display in the	correctly	
				same way in	only on the	
				all devices	desktop	
					screens	
TC_003	Functional	Home Page	Check if user	The button in	Working as	PASS
			could navigate	the Home Page	expected	
			to the next page	is directing to		
				next page		
TC_004	Functional	Backend	Check if all the	All the routes	Working as	PASS
			routes are	should	expected	
			working	properly work		
			properly			
TC_005	Functional	Model	Check if the	The model	Working as	PASS
			model can	should rescale	expected	
			handle various	the image and		
			image sizes	predict the		
				results		
TC_006	Functional	Model	Check if the	The model	Working as	PASS
			model predicts	should predict	expected	
			the digit	the number		

TC_007	Functional	Model	Check if the	The model	The model	FAIL
			model can	should predict	fails to	
			handle complex	the number in	identify the	
			input image	the complex	digit since	
				image	the model is	
					not built to	
					handle such	
					data	
TC_008	Functional	Prediction Page	Reports error if	Prediction	Working as	PASS
			files are not	Page pops out	expected	
			uploaded	error page if		
				file is not		
				uploaded		
TC_009	UI	Prediction Page	Verify UI	The Prediction	Working as	PASS
			elements in the	page must be	expected	
			Prediction Page	displayed		
				properly		
TC 046	UI	Prediction Page	Check if the	The result	Working as	PASS
TC_010			result is	should be	expected	
			displayed	displayed		
			properly	properly		

8.2 USER ACCEPTANCE TESTING

Acceptance Testing is a level of the software testing where a system is tested for acceptability. The purpose of this test is to evaluate the system's compliance with the business requirements and assess whether it is acceptable for delivery. Formal testing with respect to user needs, requirements, and business processes conducted to determine whether or not a system satisfies the acceptance criteria and to enable the user, customers or other authorized entity to determine whether or not to accept the system. In this application, the customer's acceptance is been monitored and it is been put into usage.

8.2.1 TEST CASE ANALYSIS

SECTION	TOTAL CASES	NOT TESTED	FAIL	PASS
Client	5	0	1	4
Application				
Security	1	0	0	1
Performance	3	0	1	2
Exception	1	0	0	1
Reporting				

RESULTS

9.1 PERFORMANCE METRICS

Script: locust.py									
Request Statistics									
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RP	S Failures/s
GET		1043		13	4	290	1079	1.9	0.0
GET	//predict	1005		39648	385	59814	2670	1.8	0.0
	Aggregated	2048	0	19462	4	59814	1859	3.7	0.0
Respon	se Time St	atistics							
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms)	100%ile (ms)
GET		10		13		19	22	62	290
GET	//predict	44000	46000	47000	48000	50000	52000	55000	60000
	Aggregated	36	36000	43000	45000	48000	50000	54000	60000

ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES

- Reduces manual work
- Can recognize the digits more accurately than humans
- Application is capable of handling a lot of data
- Application can be used by bank officials, postal officers, traffic police, etc.

10.2 DISADVANTAGES

- All the data must be in digital format
- Requires a high-performance server for faster predictions
- Prone to occasional errors
- Cannot handle complex data

CONCLUSION

This project demonstrates a web application build using HTML, CSS, JS, Flask and few other technologies. Each time the user uploads an image for recognizing, the image is preprocessed before feeding it into the model. After pre-processing, the image is fed into the CNN model for recognizing. In the CNN model, the pre-processed image passes into various layers and finally the model recognizes the digit. The output is being rendered into the web application and shown to the user. This application can be used in various domains for recognizing the digits. For example, by the police to track the vehicle number, postal officer to identify the zip codes or bank officials to recognize the digits on bank leaf.

CHAPTER 12

FUTURE SCOPE

- Add support to detect multiple digits
- Add support to different languages to help users all over the world
- Add support to detect digits from multiple images
- Improve model to convert the textual output into audio format

CHAPTER 13

APPENDIX

13.1 SOURCE CODE

app.py

```
■ recognizer.cpython-310.pyc

               # predict.css
                               # main.css
app.py
app.py > ...
      from flask import Flask, render_template, request
      from recognizer import recognize
      app=Flask(__name__)
      @app.route('/')
      def main():
          return render_template("home.html")
      @app.route('/predict',methods=['POST'])
      def predict():
          if request.method=='POST':
            image = request.files.get('photo', '')
            best, others, img name = recognize(image)
            return render_template("predict.html", best=best, others=others, img_name=img_name)
      if __name _=="__main__":
          app.run()
 21
```

home.html

```
templates > ♥ home.html > ♦ html > ♦ head > ♦ meta
                                         <meta name="viewport" content="width=device-width, initial-scale=1.0" />
                                         <title>Handwritten Digit Recognition</title>
                                         <link rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}"</pre>
                                         <link rel="stylesheet" href="{{url_for('static',filename='css/main.css')}}" />
                                         <script src="https://unpkg.com/feather-icons"></script>
                                         <script defer src="{{url for('static',filename='js/script.js')}}"></script>
                  <h1 class="heading main">A NOVEL METHOD FOR HANDWRITTEN DIGITS RECOGNIZER</h1>
                                                                <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n
                                         <div class="container">
                                                    <div class="upload-container">
                                                                <div class="form-wrapper">
                                                                           <form class="upload" action="/predict" method="post" enctype="multipart/form-data">
                                                                                      <label id="label" for="upload-image"><i data-feather="file-plus"></i>Select File</label>
                                                                                      <input type="file" name="photo" id="upload-image" hidden />
                                                                                      <button type="submit" id="up btn"></button>
                                                                          <img id="loading" src="{{url_for('static',filename='images/loading.gif')}}">
```

predict.html

```
templates > Ø predict.html > Ø html
              <title>Prediction | Handwritten Digit Recognition</title>
              <link rel="stylesheet" href="{{url_for('static',filename='css/predict.css')}}" />
              k rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}"
              <meta name="viewport" content="width=device-width, initial-scale=1.0" />
              <div class="container">
                  <h1>Prediction</h1>
                  <div class="result-wrapper">
                      <div class="input-image-container">
                          <img src="{{url_for('static',filename='data/')}}{{img_name}}" />
                      <div class="result-container">
                          <div class="value">{{best.0}}</div>
                          <div class="accuracy">{{best.1}}%</div>
                  <h1>Other Predictions</h1>
                  <div class="other predictions">
                      {% for x in others %}
                      <div class="value">
                          <h2>{{x.0}}</h2>
                          <div class="accuracy">{{x.1}}%</div>
                      {% endfor %}
```

css main

```
static > css > # main.css > ...
      @import url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");
          padding: 0;
          margin: 0;
      body {
          color: □black;
              font-family: "Overpass", sans-serif;
              background-color: ■#299180;
          width: 100%;
          height: 15%;
          display: flex;
          flex-direction: column;
          justify-content: center;
          align-items: center;
      .container {
          width: 100%;
          height: 100%;
          display: flex;
          flex-direction: column;
          justify-content: center;
          align-items: center;
      .heading {
```

```
static > css > # main.css > ...
      .heading {
          margin-top: -2rem;
           padding-bottom: 2rem;
          width: fit-content;
          text-align: center;
       .heading .heading main {
           font-size: 3rem;
           font-weight: 550;
           font-style: italic;
       .heading .heading sub {
           font-size: 1rem;
           color: inherit;
           font-style: unset;
       .upload-container {
           box-shadow: 0 0 30px □black;
          width: 40rem;
          height: 25rem;
          padding: 1.5rem;
       .form-wrapper {
          background-color: | white;
          width: 100%;
          height: 100%;
          display: flex;
          border: 1px □black;
```

```
static > css > # main.css > ...
          justify-content: center;
          align-items: center;
      .form-wrapper #loading {
          display:none;
          position: absolute;
       .form-wrapper .upload {
          display: flex;
           justify-content: center;
          align-items: center;
          width: 8rem;
          height: -webkit-fit-content;
          height: -moz-fit-content;
          height: fit-content;
          border-radius: 6px;
          color: White;
          background-color: ☐ rgb(11, 96, 182);
          box-shadow: 0 0 10px □black;
       .form-wrapper .upload #up_btn {
           display: none;
       .form-wrapper .upload label {
           font-size: 1rem;
           font-weight: 600;
          color: White;
```

```
static > css > # main.css > ...
           height: 100%;
          width: 100%;
           padding: 10px;
          display: block;
100
       .form-wrapper .upload svg {
           height: 15px;
104
          width: auto;
          padding-right: 8px;
          margin-bottom: -2px;
106
       @media screen and (max-width: 700px) {
110
           .upload-container {
               height: 20rem;
111
112
               width: 18rem;
113
               margin-top: 3.5rem;
               margin-bottom: -8rem;
114
115
116
           .heading .heading _main {
117
               margin-top: -6rem;
118
119
               font-size: 2rem;
120
               padding-bottom: 1rem;
121
122
```

css predict

```
static > css > # predict.css > ...
  1 @import url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");
      body {
          color: | black;
          font-family: "Overpass", sans-serif;
      h1 {
          padding-top: 2rem;
      .container {
          display: flex;
          justify-content: center;
          align-items: center;
          flex-direction: column;
      .result-wrapper {
          width: -webkit-fit-content;
          width: -moz-fit-content;
          width: fit-content;
          height: -webkit-fit-content;
          height: -moz-fit-content;
          height: fit-content;
          box-shadow: 0 0 10px ■rgb(126, 125, 125);
          padding: 1.5rem;
          display: flex;
          justify-content: center;
          align-items: center;
          -moz-column-gap: 1rem;
          column-gap: 1rem;
```

```
# predict.css X
app.py
               opredict.html
                                                 # main.css
static > css > # predict.css > ...
       .result-wrapper .input-image-container,
       .result-wrapper .result-container {
           width: 15rem;
           height: 15rem;
           border: 1px dashed | black;
           justify-content: center;
           display: flex;
 42
           align-items: center;
          flex-direction: column;
           background-color:  rgb(209, 206, 206);
       .result-wrapper .input-image-container img {
           width: 60%;
           height: 60%;
           background-color: aqua;
           background-size: contain;
       .result-wrapper .result-container .value {
           font-size: 6rem;
       .result-wrapper .result-container .accuracy {
           margin-top: -1rem;
       .other predictions {
           display: flex;
           justify-content: center:
```

```
🗣 арр.ру
                                 # predict.css X # main.css
static > css > # predict.css > ...
           align-items: center;
           flex-wrap: wrap;
           column-gap: 1rem;
           row-gap: 1rem;
           font-weight: 700;
      .other_predictions .value {
           display: flex;
           justify-content: center;
           align-items: center;
           flex-direction: column;
           width: 5rem;
           height: 5rem;
           box-shadow: 0 0 7px ■rgb(158, 157, 157);
      .other_predictions .value div {
          margin-top: -1.2rem;
      @media screen and (max-width: 700px) {
               font-size: 2.3rem;
           .result-wrapper .input-image-container,
           .result-wrapper .result-container {
               width: 7rem;
               height: 7rem;
```

css js

```
static > js > JS script.js
  1 feather.replace(); // Load feather icons
      form = document.querySelector('.upload')
      loading = document.querySelector("#loading")
      select = document.querySelector("#upload-image");
      select.addEventListener("change", (e) => {
          e.preventDefault();
        form.submit()
          form.style.visibility = "hidden";
          loading.style.display = 'flex';
```

13.2 GITHUB AND PROJECT DEMO LINK Github link

https://github.com/IBM-EPBL/IBM-Project-54910-1663054938

Project demo link

https://www.youtube.com/embed/fLOGhP6tRrA