Факультет безопасности информационных технологий Университет ИТМО

Группа	ФИЗ-2 Э БИТ 1.1.1	К работе допущены						
Студенты	Бардышев Артём	_						
	Машин Егор	Работа выполнена						
	Суханкулиев Мухаммет		<u> </u>					
	Шегай Станислав	_						
Преподава	тель	 Отчет принят						
Рабочий протокол и отчет по лабораторной работе №3.08								
	Эффект Холла в пр	имесных полупроводн	иках					

1. Цель работы.

1. Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

2. Задачи, решаемые при выполнении работы.

- 1. Измерить продольное напряжение U_{12} при различных температурах.
- 2. Вычислить электропроводность σ и логарифм электропроводности $\ln \sigma$.
- 3. Построить график зависимости $\ln \sigma$ от $\frac{1}{T}$ и определить рабочий диапазон температур.
- 4. Измерить ЭДС Холла U_{x} при варьировании магнитного поля B.
- 5. Измерить зависимость U_{x} от силы тока I.
- 6. Изучить зависимость U_x от температуры.
- 7. Расчёт постоянной Холла R_x для разных температур.
- 8. Вычислить концентрацию носителей тока n и их подвижность μ для различных температур.
- 9. Определить тип проводимости полупроводника (*n* или *p*-тип) по знаку ЭДС Холла.

3. Объект исследования.

Примесный полупроводник в форме прямоугольного параллелепипеда.

4. Метод экспериментального исследования.

Многократные измерения.

5. Рабочие формулы и исходные данные.

1. Напряжение Холла:

$$U_x = R_x \frac{IB}{b}, \qquad R_x = \frac{U_x b}{IB}$$

где I — сила тока, протекающего через образец;

B — индукция магнитного поля;

b — толщина образца (размер по магнитному полю $b = 2 \cdot 10^{-3}$ м);

 R_x — постоянная Холла, зависящая от рода вещества.

2. Электропроводность датчика изготовленного из донорного полупроводника:

$$\sigma = q_e n \mu, \qquad \mu = \frac{\sigma}{q_e n}$$

где n — концетрация свободных электронов (для n-типа это электроны, для p-типа — «дыры»), μ — подвижность носителей тока, которая равна:

$$\mu = \frac{v_{\rm дp}}{E}$$

3. Постоянная Холла:

$$R_x = a \frac{1}{q_e n}, \qquad n = \frac{a}{q_e R_x}$$

где a — поправочный множитель учитывает механизм рассеяния носителей тока в полупроводнике. Для низки температур, когда основным является рассеяние на ионах примеси, $a=1.93,\ v_{\rm дp}$ — дрейфовая скорость носителей тока при напряженности электрического поля E.

4. Рабочая формула для экспериментального определения электропроводности:

$$\sigma = \frac{IL_{12}}{U_{12}bd}$$

где L_{12} — расстояние между точками 1 и 2 образца (10 мкм);

bd — площадь поперечного сечения образца (2 на 2 мм).

5. Напряжение Холла с учётом устранения погрешностей из-за продольной разности потенциалов:

$$U_{x} = \frac{U_{34}^{\prime} - Y_{34}^{\prime\prime}}{2}$$

где U_{34}' и U_{34}'' — измеренные напряжения между точками 3 и 4 при противоположных направлениях магнитного поля.

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон
1	AB1	Амперметр-вольтметр	0–1 мА, 0–3 В
2	ГН3	Генератор	0–1 мА, 0–3 В
3	С3-ЭХ01	Стенд	-

7. Схема установки.

Рисунок 1 – Рабочая схема для исследования электропроводности образца

Рисунок 2 – Рабочая схема для измерения ЭДС Холла

8. Результаты прямых измерений и их обработки.

Вычислим электропроводность σ (4):

$$\sigma = \frac{1010 \cdot 10^{-6} \text{A} \cdot 10 \cdot 10^{-6} \text{M}}{1.912 \text{ B} \cdot 4 \cdot 10^{-6} \text{M}^2} \approx 1.321 \cdot 10^{-3} \text{сименс}$$

Таблица 1 - I = 1010 мкА.

Т,К	300	325	330	335	340	345	350	355	360	365	370
U_{12} , B	1,912	2,18	2,22	2,24	2,28	2,48	2,54	2,62	2,7	2,78	2,82
1/T, 1/K	0,0033	0,0031	0,0030	0,0030	0,0029	0,0029	0,0029	0,0028	0,0028	0,0027	0,0027
<i>σ</i> , сименс	0,0013	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010	0,0010	0,0009	0,0009	0,0009
$\ln \sigma$	-6,630	-6,761	-6,779	-6,788	-6,806	-6,890	-6,914	-6,945	-6,975	-7,004	-7,018

По данным значениям построим график зависимости $ln\sigma$ от величины $\frac{1}{T}$ (Рисунок 3 -9).

Исследуем зависимость ЭДС Холла U_x от величины магнитного поля B при постоянной силе тока и постоянной температуре (5):

$$U_x = \frac{-0.003 \text{ B} - 0.036 \text{ B}}{2} = -0.0195 \text{ B}$$

Таблица 2 - T = 300 K, I = 1010 мкА.

В, мТл	2	4	6	8	10
U_{34}^{\prime} , B	-0,003	-0,023	-0,044	-0,064	-0,084
$U_{34}^{\prime\prime}$, B	0,036	0,055	0,074	0,094	0,113
U_{x} , B	-0,0195	-0,039	-0,059	-0,079	-0,0985

Исследуем зависимость ЭДС Холла U_x от величины тока I при постоянной величине магнитного поля B и постоянной температуре T (5).

Таблица 3 - T = 300 K, B = 10 мТл.

<i>I</i> , мкА	414	625	803	1024
U_{34}^{\prime} , B	-0,34	-0,052	-0,67	-0,087
$U_{34}^{\prime\prime}$, B	0,46	0,065	0,088	0,113
U_{x} , B	-0,4	-0,0585	-0,379	-0,1

Исследуем зависимость ЭДС Холла U_x от температуры при постоянной величине магнитного поля B и постоянном токе I (5).

Так же оценим по формулам (1), (3) и (2) значения R_x , n и μ для различных температур:

$$R_{\chi} = \frac{-0.1 \text{ B} \cdot 2 \cdot 10^{-3} \text{ M}}{1024 \cdot 10^{-6} \text{ A} \cdot 10 \cdot 10^{-3} \text{Tл}} \approx -19.531 \frac{\text{M}^3}{\text{Кл}}$$

$$n = \frac{1.93}{-1.602 \cdot 10^{-19} \text{Кл} \cdot \left(-19.531 \frac{\text{M}^3}{\text{Кл}}\right)} \approx 6.168 \cdot 10^{17} \text{ M}^{-3}$$

$$\mu = \frac{1.339 \cdot 10^{-3} \text{ сименс}}{-1.602 \cdot 10^{-19} \text{ Кл} \cdot 6.168 \cdot 10^{17} \text{ M}^{-3}} \approx -0.0135 \frac{\text{M}^2}{\text{B} \cdot \text{C}}$$

Таблица 4 - I = 1024 мкА, B = 10 мТл.

Т, К	300	310	320	330	340	350	360
U_{34}^{\prime} , B	-0,087	-0,093	-0,094	-0,094	-0,097	-0,104	-0,112
$U_{34}^{\prime\prime}$, B	0,113	0,106	0,105	0,102	0,097	0,088	0,08
U_{x} , B	-0,1	-0,0995	-0,0995	-0,098	-0,097	-0,096	-0,096
R_{χ} , $\frac{\text{м}^3}{\text{Кл}}$	-19,5313	-19,4336	-19,4336	-19,1406	-18,9453	-18,7500	-18,7500
<i>n</i> , м ^{−3}	6,168 ^{E+17}	6,199 ^{E+17}	6,199 ^{E+17}	6,293 ^{E+17}	6,358 ^{E+17}	6,425 ^{E+17}	6,425 ^{E+17}
$\mu, \frac{M^2}{B \cdot c}$	-0,0135	-0,0135	-0,0116	-0,0114	-0,0110	-0,0098	-0,0092

 U_x отрицательный => примесный полупроводник n-типа, то есть основными носителями заряда являются электроны и под действием силы Лоренца они смещаются к одной грани образца, вызывая соответствующее распределение заряда и отрицательное U_x .

9. График

Рисунок 3 — График зависимости $ln\sigma$ от $\frac{1}{T}$ (Таблица 1 -8)

10. Окончательные результаты и анализ работы.

В ходе эксперимента был изучен эффект Холла в примесных полупроводниках. По данным измерений ЭДС Холла U_x был определен тип полупроводника (n-тип). Анализировав построенный график зависимости $ln\sigma$ от $\frac{1}{T}$, можно сделать следующие выводы:

- Поскольку график является прямой линией, это подтверждает модель термической активации проводимости в полупроводниках. Это свидетельствует о том, что носители заряда (электроны или дырки) перемещаются из валентной зоны в зону проводимости с увеличением температуры и подтверждает экспоненциальную зависимость проводимости от температуры.
- Линейная зависимость $ln\sigma$ от $\frac{1}{T}$ сохраняется (в теории) в диапазоне температур 300—370К, что указывает на стабильность (в нашем случае почти стабильность) проводимости.

Работа выполнена успешно, результаты подтверждают теоретические ожидания о поведении примесных полупроводников.

11. Дополнительные задания.

- 1. Что такое эффект Холла?
- 2. Опишите особенности строения полупроводников, примесных полупроводников. Какие типы существуют, где применяются?
- 3. Что такое р и п типы проводимости? Какая химическая связь в примесных полупроводниках?

- 4. Как по значению константы Холла определить концентрацию носителей в полупроводнике?
 - 5. Объяснить принципиальную схему установки.
- 6. Объяснить проводимость примесного полупроводника в зависимости от разных температур. Построить график.
 - 7. Каковы практические применения эффекта Холла?
 - 8. Чем эффект Холла в полупроводниках отличается от эффекта в металлах?
- 9. Получите выражение константы Холла R для образцов с двумя типами носителей. При расчете используйте условие, что поперечный ток должен быть равен нулю.

12. Выполнение дополнительных заданий.

- **1.** Эффект Холла это явление, при котором в проводнике или полупроводнике, находящемся в поперечном магнитном поле, возникает электрическое напряжение (ЭДС Холла), перпендикулярное как току, так и магнитному полю. Это напряжение обусловлено действием силы Лоренца на движущиеся заряженные частицы, что вызывает их отклонение к краям проводника.
 - **2. Чистые полупроводники** состоят из атомов одного химического элемента. Их проводимость зависит от термического возбуждения электронов, то есть электроны в полупроводниках могут переходить в проводящее состояние при внешнем воздействии, например, при нагреве или освещении. В общем это материалы, чья проводимость лежит между проводниками и изоляторами. В чистом виде полупроводники, такие как кремний или германий, обладают запрещённой зоной, ширина которой невелика.

Примесные полупроводники получаются добавлением небольшого количества примесей к чистому полупроводниковому материалу. Примеси могут быть донорными (поставляющими электроны) или акцепторными (принимающими электроны)..

Донорные примеси создают n-тип проводимости, добавляя свободные электроны.

Акцепторные примеси создают р-тип проводимости, формируя "дырки".

Применение: Чистые полупроводники, такие как кремний и германий, широко применяются в технике и компьютерной электронике из-за своей способности проводить электрический ток при определенных условиях. Примеры: транзисторы, солнечные батареи, диоды, светодиоды, фотодиоды.

Примеси позволяют точно контролировать проводимость полупроводников, что дает возможность создать устройства с заданными электрическими свойствами. Примеры: оптоэлектрика: интерметаллические соединения (лазеры, фото и светодиоды), датчики Холла; солнечные батареи (примеси добавляются для улучшения характеристик работы в определенном диапазоне волн света); резисторы, транзисторы и диоды с управляющими свойствами.

3. *п*-тип проводимости: Основными носителями заряда являются электроны, возникающие за счет донорных примесей.

р-тип проводимости: Основными носителями заряда являются дырки, возникающие из-за акцепторных примесей.

Химическая связь: В основе структуры полупроводников лежит ковалентная связь. В примесных полупроводниках примеси создают либо избыток, либо дефицит электронов.

4. Константа Холла позволяет определить концентрацию носителей заряда в полупроводнике. Она связана с концентрацией носителей n (для p-типа) или p (для p-типа) по следующей формуле:

 $R_H = \frac{1}{q_e n}$; $R_H = \frac{1}{q_e p}$. В лабораторной использовался дополнительный a — поправочный множитель учитывающий механизм рассеяния носителей тока в полупроводнике (формула (3)).

5. Схема состоит из:

Источника тока, который обеспечивает постоянный ток через образец.

Магнита, создающего поперечное магнитное поле.

Измерительных приборов, регистрирующих напряжение Холла и продольное напряжение.

Образец подключается таким образом, чтобы ток шел вдоль одной оси, а магнитное поле было направлено перпендикулярно к ней.

6. При нагреве увеличивается концентрация носителей тока (электронов или дырок), что ведет к росту проводимости. Однако подвижность носителей уменьшается с повышением температуры из-за увеличения числа столкновений с фононами, что снижает проводимость.

Для примесных полупроводников проводимость выражается как:

$$\sigma = q_e n \mu$$

Температурная зависимость проводимости обычно описывается экспоненциальной функцией:

$$\sigma(T) = \sigma_0 \exp\left(\frac{E_a}{k_B T}\right)$$

где E_a — активационная энергия, k_B — постоянная Больцмана.

График (Рисунок 3 –9) линейный, что подтверждает активационный характер зависимости проводимости от температуры.

7. Измерение магнитного поля (датчики Холла);

Определение типа проводимости и концентрации носителей заряда;

В автомобильной электронике (датчики положения, скорости);

В медицине (магнитно-резонансные томографы);

В устройствах для измерения тока.

8. В металлах: Эффект Холла вызван движением свободных электронов, концентрация которых практически постоянна. Зависимость ЭДС Холла от температуры слабая.

В полупроводниках: Эффект обусловлен как электронами, так и дырками, а концентрация носителей заряда сильно зависит от температуры.

9. Константа Холла R_H еще определяется:

$$R_H = \frac{E_H}{J_x B}$$

где J_{χ} — плотность тока, E_H — поперечное электрическое поле.

В полупроводнике с двумя типами носителей выражения для поперечного тока J_x будет суммировать вклад от электронов и дырок:

$$J_x = nq_e\mu_e E_x + pq_e\mu_h E_x$$

где n и p — концентрация электронов и дырок, μ_e и μ_h — их подвижности, E_x — электрическое поле вдоль оси x.

Поперечное электрическое поле E_H , которое создается в результате действия магнитного поля, зависит от того, как оба типа носителей реагируют на магнитное поле. Каждый из типов носителей (электроны и дырки) будет двигаться по-разному в ответ на магнитное поле, что создаст поперечное поле.

Для общего эффекта Холла можно записать:

$$E_H = \frac{J_x B}{n q_e \mu_e + p q_e \mu_h}$$

Напряжение Холла U_H пропорционально магнитному полю B и току I:

$$U_H = R_H I B$$
.

Для компенсации всех токов в поперечном направлении их вклад должен быть равен нулю:

$$\frac{1}{q_e(n\mu_e + p\mu_h)}$$

Тогда:

$$R_H = \frac{1}{q_e(n\mu_e + p\mu_h)}$$

Это выражение учитывает вклады обоих типов носителей в общий эффект Холла. Константа Холла зависит от концентрации и подвижности каждого типа носителей.

Список использованных источников

- 1. Методические указания по лабораторной работе 3.08
- 2. Иродов И.Е. Квантовая физика. Основные законы: Учеб. пособие для вузов. М.: Лаборатория Базовых Знаний, 2014.— 272с.
- 3. Савельев И. В. Курс общей физики. Учебное пособие. В 3-х томах.
- 4. Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. Учебное пособие. Гриф МОРФ. СПб.: Лань,2016.—.308с.
- 5. Детлаф А. А., Яворский Б. М. Курс физики: учебное пособие для вузов— 8-е изд., стер. М.: Издательский центр "Академия", 2009. —720с.
- 6. Физика. Обработка экспериментальных данных: Учебно-методическое пособие: Для студ. 1,2 и 3-го курсов всех спец. и направлений очной и заочной форм обучения/ В.В. Курепин, И. В. Баранов. СПб.: НИУ ИТМО; ИХиБТ, 2012.- 57 с.