GRADIENTES DE IMAGEM

ES235 - Aula 06 João Marcelo Teixeira Willams Costa

FILTROS PASSA-ALTA

• Objetivo: realçar alta-frequência, ou seja, variações bruscas nos pixels da imagem (regiões de borda)

FILTROS PASSA-ALTA

- O OpenCV disponibiliza3 filtros passa-alta:
 - Sobel
 - Scharr
 - Laplaciano

SOBEL

Original Sobel em X Sobel em Y

SOBEL

SOBEL

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * I$$

$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} * I$$

$$G = \sqrt{G_x^2 + G_y^2}$$
 ou $G = |G_x| + |G_y|$

SCHARR

 Quando o tamanho do Kernel é 3x3 (ou pequeno), Scharr fornece uma melhor aproximação da derivada da imagem em comparação ao Sobel

$$G_{x} = \begin{bmatrix} -3 & 0 & +3 \\ -10 & 0 & +10 \\ -3 & 0 & +3 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ +3 & +10 & +3 \end{bmatrix}$$

Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

 ϵ

Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, borderType).

são equivalentes

LAPLACIANO

$$\Delta src = \frac{\partial^2 src}{\partial x^2} + \frac{\partial^2 src}{\partial y^2}$$

Exemplo de Laplaciano 3x3 (calculado a partir de filtros de Sobel):

$$kernel = egin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

LAPLACIANO

COMPARANDO DIFERENTES GRADIENTES

Grayscale test image of brick wall and bike rack

- Passo a passo do algoritmo:
 - a) Suaviza a imagem com um filtro Gaussiano 5x5 (reduz ruído)
 - b) Calcula os gradientes da imagem
 - c) Realiza a supressão de pontos de não-máximo
 - d) Aplica uma limiarização para eliminar pixels de borda falsos-positivos

- Passo a passo do algoritmo:
 - Suaviza a imagem com um filtro Gaussiano 5x5 (reduz ruído)

input

Gaussian filter

- Passo a passo do algoritmo:
 - o Calcula os gradientes da imagem

$$Edge_Gradient\;(G) = \sqrt{G_x^2 + G_y^2}$$
 $Angle\;(heta) = an^{-1}\left(rac{G_y}{G_x}
ight)$

- Passo a passo do algoritmo:
 - Realiza a supressão de pontos de não-máximo

- Passo a passo do algoritmo:
 - Aplica uma limiarização para eliminar pixels de borda falsos-positivos

- Passo a passo do algoritmo:
 - o Exemplo de resultado

EXEMPLO DE APLICAÇÃO

 Criação de "livros de colorir"

EXEMPLO DE APLICAÇÃO

 Criação de "livros de colorir"

EXEMPLO DE APLICAÇÃO

REFERÊNCIAS

Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

https://docs.opencv.org/3.2.0/d5/d0f/tutorial_py_gradients.html

https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html

https://docs.opencv.org/3.4.3/da/d85/tutorial_js_gradients.html