Toward Efficient Inference for High-dimensional Latent Variable Models

Murali Haran

Department of Statistics, Pennsylvania State University

Joint Statistical Meetings Seattle, Washington. August 2015

Collaborators:
John Hughes (University of Minnesota Biostatistics)
Saksham Chandra and Yawen Guan (Penn State Statistics)

Talk Summary

- Latent variable models are very widely used
 - Physical sciences (physically meaningful)
 - Social sciences (of theoretical interest)
 - As a convenient device to provide a flexible model with desirable properties.
- Markov chain Monte Carlo (MCMC) is a convenient approach for fitting such models. In principle.
- ► In practice: MCMC is often impractical when the latent variables become high-dimensional
- I will discuss potential approaches for addressing these computational challenges for some classes of models

Much of this is work in progress

Why are Latent Variable Models Useful?

- Latent=hidden, unobservable
- In scientific problems, often of interest to learn about unobservable processes. Infer these processes (latent variables) via a model connecting them to the observables.
- In social science/other disciplines, specify hidden latent structures, subpopulations in the model
 - ► E.g. disease dynamics involve people movement (unobservable); only have data on numbers of infected at each location (observable)
- Can add flexibility, help a model fit data better.
 - E.g. random intercepts or random slopes model in regression. Capture heterogeneity.
 - E.g. model dependence in non-Gaussian data via a generalized linear mixed model with dependent random effects

Spatial Count Data

Figure: U.S. infant mortality data by county. n = 3071 Ratio of deaths to births, each averaged over 2002-2004. Darker indicates higher rate.

Greenland Ice Sheet Thickness

(Bamber et al., 2001). Over 60,000 locations

Inference for a Latent Variable Model

- Generic model:
 - ▶ Data given latent variables: $f(Y_1, ..., Y_n | u_1, ..., u_k)$
 - ▶ Latent variable model $f(u_1, ..., u_k | \theta)$
 - ▶ Prior (if Bayesian approach), $p(\theta)$
- ML: maximize likelihood w.r.t. θ,

$$\mathcal{L}(\theta) = \int f(\mathbf{Y} \mid u_1, \dots, u_k) f(u_1, \dots, u_k \mid ; \theta) du_1 \dots du_k$$

Bayesian approach: inference based on joint posterior

$$\pi(\theta, u_1, \ldots, u_k \mid \mathbf{Y}) \propto f(\mathbf{Y} \mid u_1, \ldots, u_k) f(u_1, \ldots, u_k \mid \theta) \rho(\theta)$$

- ▶ Want: marginal posterior, $\pi(\theta \mid \mathbf{Y})$
- In both cases: computation may be challenging if u₁,..., uk is large in number and it is not easy to integrate them out analytically.
- Computing is getting faster but not fast enough to keep up with the increasing complexity/size of our models/data. (Few exceptions: some parallel methods.)

Spatial Generalized Linear Mixed Models

Model for Z at location \mathbf{s}_i

- 1. $Z(\mathbf{s}_i)|\beta,\Theta,W(\mathbf{s}_i),i=1,\ldots,n$, conditionally independent E.g. $Z(\mathbf{s}_i)|\beta,W(\mathbf{s}_i)\sim \text{Poisson}(\mu(\mathbf{s}_i))$
- 2. Link function $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$ E.g. $\log(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$
- 3. Impose dependence: $\mathbf{W} = (W(\mathbf{s}_1), \dots, W(\mathbf{s}_n))^T$

$$p(\mathbf{W}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2}\mathbf{W}'Q\mathbf{W}\right), \tau > 0.$$

Gaussian Markov random field model on a lattice. Q is completely specified by the $n \times n$ adjacency matrix \mathbf{A} for the lattice where \mathbf{A}_{ij} is 1 if i,j are neighbors, 0 else

4. Priors for Θ , β

Inference based on posterior, $\pi(\Theta, \beta, \mathbf{W} \mid \mathbf{Z})$ (Besag et al. (1991), Diggle et al. (1998))

Computational Challenges with SGLMM inference

- ▶ High-dimensional latent variables. If there are p covariates, k covariance parameters, and n data points, the posterior is p + k + n dimensional.
- Hard to design efficient updating schemes: Too many low-dimensional updates may be slow, and result in poor mixing. High-dimensional updates may be computationally inefficient.
- Result (often): slow mixing Markov chains with computationally expensive updates

Computational Strategies

- 1. Reduced-dimensional approximations/reparameterizations
- 2. Composite likelihood-based approaches
- 3. Approximate integration approaches
- 4. Simulation-based approaches: study how the forward (probability) model generates data for different parameter settings. Then compare the simulations to the real observations.
 - Approximate Bayesian Computing (ABC)
 - Gaussian process approximations ("emulation-calibration").
 (Jandarov, Haran, Bjornstad, Grenfell, 2014)
- Some combination of the above

Focus here: (1)

Reducing Dimensions/Reparameterization

- Basic idea: reparameterize the model and reduce the dimension of the random effects (W), while preserving the desirable properties of the original model.
- Particularly worth considering when random effects are not intrinsically important, i.e., they are "nuisance parameters".
- Typical in spatial generalized linear mixed models: random effects are used to pick up residual spatial dependence, adjust for unmeasured spatially-varying covariates.

Reparameterization for Lattice-domain Data

Recall model:

- ▶ $p(\mathbf{W}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2}\mathbf{W}'Q\mathbf{W}\right)$

Let:

- ▶ $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, orthogonal projection onto $C(\mathbf{X})$
- $P^{\perp} = I P$
- ▶ Let $\mathbf{M} = \mathbf{P}^{\perp} \mathbf{A} \mathbf{P}^{\perp}$, where **A** is the adjacency matrix

Reparameterize as follows:

- ▶ $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + \mathbf{M}_i\delta$, where \mathbf{M}_i is the *i*th row of \mathbf{M}
- $p(\delta \mid \tau) \propto \tau^{q/2} \exp\left(-\frac{\tau}{2} \delta' \mathbf{Q}^{**} \delta\right)$, where $\mathbf{Q}^{**} = \mathbf{M}' \mathbf{Q} \mathbf{M}$.
- ▶ If we only keep the first q columns of the matrix \mathbf{M} , that is, reduce dimensions of \mathbf{M}_i to q for each i, the # random effects is reduced from n to q ($q \ll n$)

Comments

- ▶ Intuition: projected spatial random effects orthogonal to the predictors and in the direction specified by the graph.
- ▶ Inference is now based on $\pi(\Theta, \beta, \delta \mid \mathbf{Z})$ q + p + 1-dimensional
- Dimension reduction works because of an ordering: highest to lowest (including negative) spatial dependence (Boots and Tiefelsdorf, 2000)

Interpreting the Resulting Reparameterization

► "Tailored" to **X** and **G**: eigenvectors comprise all possible patterns of clustering residual to **X** and accounting for **G**

Some selected basis vectors for the 30 \times 30 lattice.

Reducing Dimensions for Continuous-Domain Processes

- Unlike in the lattice case, there is no graph/adjacency matrix to work with.
- Alternative: use an idea from Banerjee, Dunson and Tokdar (2012): "random projections" of data into a lower-dimensional subspace
- Apply a fast algorithm to obtain reduced-dimensional random effects, replacing **W** (*n*-dimensional) with *V* (*m*-dimensional) with *m* ≪ *n*.
- Same idea: we project latent variables to obtain a reduced-dimensional posterior distribution. Easier to construct efficient MCMC algorithms.

Preliminary Results

- Prediction: reduced-dimensional approach gives similar results as regular methods
- ▶ Inference: better or worse, depending on the assumed true model. If interpreting parameters is not important, this is a non-issue. But if it is, need to think harder about spatial confounding-related issues. (Hanks et al., 2015)

(JSM 2015 poster by Yawen Guan)

Pros

- Random effects are much smaller in number.
- They are approximately "de-correlated". That is (by construction) they no longer exhibit as much dependence. Easy to construct fast mixing MCMC

Cons

- Highly specialized approach
- There may be scaling issues: as dimensions and complexity of the model increases, may still need a significant fraction of the latent variables.

Can improve inference while in other cases can induce problems

Composite Likelihood

Has potential to address inferential and scaling issues

Inference with latent variables u_1, \ldots, u_k , joint posterior distribution, $\pi(\theta, u_1, \ldots, u_k \mid \mathbf{Y})$

$$\propto f(\mathbf{Y} \mid u_1, \ldots, u_k) f(u_1, \ldots, u_k \mid \theta) p(\theta).$$

- ▶ Basic idea: replace above with $\prod_{b=1}^{B} f(\mathbf{Y}_{b}^{C} \mid u_{b}^{C}) f(u_{b}^{C} \mid \theta) p(\theta), \text{ where } \mathbf{Y}_{b}^{C} \text{ and } u_{b}^{C}, \text{ for } b=1,\ldots,B, \text{ are each subsets (blocks) of the vectors } \mathbf{Y} \text{ and } u_{1},\ldots,u_{k} \text{ respectively}$
- Evaluating this approximation can be much more computationally efficient than evaluating the joint distribution
- Separating the latent variables into blocks suggest convenient block-MCMC schemes. Many choices for composite likelihood (e.g. Caragea and Smith, 2003)

(JSM 2015 poster by Saksham Chandra)

Summary

- Constructing efficient MCMC algorithms for high-dimensional latent variable models is challenging
- In special cases, dimension-reduction techniques and likelihood approximations may be efficient
- Finding general methods for a large class of models is non-trivial
- Other methods are worth considering: approximate integration, simulation-based. Ideally: combine multiple methods

Acknowledgments

- ▶ NSF GEO-1240507 The Network for Sustainable Climate Risk Management (SCRiM)
- ► NSF-CDSE/DMS-1418090 Statistical Methods for Ice Sheet Projections

Interpreting the Resulting Reparameterization

 Positive (negative) eigenvalues correspond to varying degrees of positive (negative) spatial dependence (Boots and Tiefelsdorf, 2000)

The standardized eigenvalues for the 30 \times 30 lattice.

