

P3T: A Transformer Model for Enhancing Character Recognition Rates in P300 Speller Systems

Jiazhen Hong and Laleh Najafizadeh

Integrated Systems and Neurolmaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University

Introduction

□ Background and Motivation

- ➤ Brain-computer interface (BCI) spellers offer a promising way to assist individuals who are unable to communicate through conventional means
- ➤ A type of BCI speller utilizes P300 event-related potential (ERP) in EEG signals, which occurs approximately 300 ms after the presentation of a target stimulus
- An ideal P300 BCI speller should detect the target character from a single repetition
- ➤ In current P300 BCI spellers, due to the small signal-to-noise ratio (SNR) of EEG, detecting a character requires multiple repetitions of the stimuli
- ➤ **Goal:** Enhance the character recognition rate with fewer number of repetitions

Fig. 1: Sample EEG in response to target (red) and non-target (black) stimuli. P300 is seen in response to target stimuli.

Fig. 2: BCI speller keyboard. The character "Q" will be selected as the the fifth column (k = 5) and the third row (k = 9) are the target stimuli (red).

Data & Processing

Table 1: Wadsworth BCI Dataset

Subject	Training (85	characters)	Testing (100 characters)			
Subject	Target	Non-Target	Target	Non-Target		
Α	2550	12750	3000	15000		
В	2550	12750	3000	15000		

□ Preprocessing

- ▶ 64-channel cap @240Hz
- ➤ Bandpass filter (0.1-60 Hz)
- > [0-650]ms post stimulus
- \succ 156 time steps (vectors) \times 64 channels (features)

☐ Flashing Pattern:

- Each trial contains 12 flashes
- Each row/column lasts 175 ms (100 + 75)ms
- Each character repeats 15 times, pause 2.5 seconds
- $T_i = 2.5 + (0.175 \times 12) \times i$ (seconds)

□ Character Recognition

 $\triangleright S_k = \sum_{i=1}^n S_k^{(i)}$

 \triangleright c = arg max S_k

 $r = \underset{k \in \{7,12\}}{\text{arg max } S_k}$

☐ Character Recognition Rate (CRR)

 $> CRR = \frac{Correct number of characters}{Total number of characters} \times 100\%$

☐ Information Transfer Rate (ITR)

 $> ITR_i = \frac{60(1-CRR_i) + \log_2 \frac{1-CRR_i}{N-1} + CRR_i \log_2 CRR_i + \log_2 N}{T_i}$

Proposed Model

Fig. 3: Proposed P300-Transformer (P3T) for P300 ERP detection.

Results

Table 2: Character recognition rate (CRR) (%) by P3T and other state-of-the-art models averaged across subjects, for repetitions 1 to 15.

Repetitions Model	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CNN-1 [1]	25.5	42.5	53	60	70	73	79.5	83.5	88.5	88.5	90.5	90.5	91	92.5	94.5
MCNN-1 [1]	28.5	43	56	59	69	73.5	81	84	85	87	92	93.5	93	93.5	95.5
ERP-CapsNet [2]	30.5	48	59	65	74.5	80	81.5	86.5	86	90.5	93	94	94	95	97
ST-CapsNet [3]	29.5	46	59.5	67	76.5	82.5	87	87.5	87.5	91.5	92.5	94	93.5	96	97
MsCNN-TL-ESVM [4]	32	48.5	56.5	62	69.5	77	81	85.5	89	91.5	92.5	93.5	94.5	95.5	96
SWFP ^[3, 5]	28	44	58.5	64.5	73.5	76.5	82	85	86.5	89.5	90.5	92.5	91.5	94.5	95.5
Shrinkage LDA ^[2, 6]	26.5	39	55	61	66.5	72	81	81.5	83	88.5	89	92.5	91.5	92.5	95.5
P3T	33	47.5	60	65	75	80.5	84.5	85.5	88.5	91.5	92	95	96	96	97.5

Table 3: Comparison of character recognition rates (CRRs) (%) for different numbers of encoder layers.

Subject	# Encoder	Accuracy	CRR (%) in # Repetitions				
Subject	Layer	Accuracy	5	10	15		
	3	74.73	69	91	99		
A	2	73.56	67	89	99		
	1	73.15	68	87	98		
	0	72.95	21	42	46		
	3	77.64	81	92	96		
В	2	77.65	81	92	94		
	1	78.26	80	93	95		
	0	76.61	4	3	3		

Fig. 4: Information Transfer Rate (ITR) across 15 repetitions for various models: (Left) Subject A, and (Right) Subject B.

- > P3T achieved a CRR of 95% after 12 repetitions, achieving the highest CRR compared to other models
- > P3T achieved ITR of 20.52 bits/min in 3rd repetition, the highest reported ITR for this dataset

Reference

- [1] H. Cecotti and A. Graser, "Convolutional neural networks for P300 detection with application to brain-computer interfaces," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 433-445, 2010.
- [4] S. Kundu and S. Ari, "MsCNN: A deep learning framework for P300- based brain—computer interface speller," IEEE Trans. on Medical Robotics and Bionics, vol. 2, no. 1, pp. 86–93, 2019.
- [2] R. Ma, T. Yu, X. Zhong, Z. L. Yu, Y. Li, and Z. Gu, "Capsule network for ERP detection in brain-computer interface," IEEE Trans. on Neural Systems and Rehab. Eng., vol. 29, pp. 718-730, 2021.
- [3] Z. Wang, C. Chen, J. Li, F. Wan, Y. Sun, and H. Wang, "ST-CapsNet: Linking spatial and temporal attention with capsule network for P300 detection improvement," IEEE Trans. on Neural Systems and Rehab. Eng., vol. 31, pp. 991–1000, 2023. [5] A. D. Gerson, L. C. Parra, and P. Sajda, "Cortically coupled computer vision for rapid image search," IEEE Trans. on Neural Systems and Rehab. Eng., vol. 14, no. 2, pp. 174–179, 2006.
- [6] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Muller, ""Single-trial analysis and classification of ERP components—a tutorial," Neurolmage, vol. 56, no. 2, pp. 814–825, 2011.