Supplementary Materials

Supplementary Figures

Supplementary Fig. 1. Experimental design. Three experiments were carried out. Experiment 1: Behavioral study (n=30) with GNG task. Experiment 2: fMRI session with MSIT task (n=26). Experiment 3: Two randomized EEG-TMS sessions, one in the SFG and other in the IFJ with GNG task (n=24). In experiments 1 (n=57) and 2 (n=56), a replication of the analyses was done with other data from the laboratory, obtaining the same reported results. GNG: Go Nogo; fMRI: Functional Magnetic Resonance Imaging; SFG: Superior Frontal Gyrus; IFJ: Inferior Frontal Junction; EEG: Electroencephalography, TMS: Transcranial Magnetic Stimulation.

Supplementary Fig. 2. Predicted expectation of a conflicting stimulus (Nogo) for a sequence of go stimuli. Each expectation is scaled with the respective adjusted beta value. Model M3(q) was further scaled to make its variability more visible. Source data are provided as a SourceData file.

Supplementary Fig. 3. A. Histogram of the observed reaction time in the Go/No-Go (GNG) behavioral experiment and the predicted reaction time derived from the M3(seq) model. **B.**

Quantile plot comparing the mean reaction time per decile from observed and predicted reaction times. **A-B**. Red represents observed data, and blue represents predicted data. (n = 23 Participants). Source data are provided as a SourceData file.

Supplementary Fig. 4. Comparison of the fit for all models using either the Drift Diffusion Model (affecting the boundary or threshold of the Wiener process) or the Lognormal distribution as the link function. Source data are provided as a SourceData file.

Supplementary Fig. 5. GNG replication sample. Behavioral analysis of GNG Task replication sample. A. Reaction time comparison between the first Go trials (early) and the last Go trial (late) of a sequence (n=57 participants, Wilcoxon test, two-sided, p = 7e-11). B. Models comparison. C. Posterior distribution of model parameters (Bayesian hypothesis test using p_{MCMC} , two-sided, p<0.001). Black dots represent the mean of the distribution, and black lines represent the 95% high-density intervals. The colored areas represent the complete posterior distribution. * indicates p<0.05, ** p<0.01,***p<0.01.CE: Commission Error. DIC: Deviance. Information Criteria. Ex: Conflict Expectation. OE: Omission Error. pCE: Previous Commission Error. pOE: Previous Omission Error. RT: Reaction Time. Source data are provided as a SourceData file.

Supplementary Fig.6. MSIT replication sample. A. Comparison of reaction times between trials with predicted lower and higher conflict expectations per sequence. Each point represents the mean of a subject (n=56 participants, Wilcoxon test, two-sided, 1e-10). **B.** Posterior distribution of model parameters (n=56 participants, Bayesian hypothesis test using p_{MCMC} , two-sided, p<0.001). Black dots represent the mean of the distribution, and black lines represent the 95% high-density intervals. The colored areas represent the complete posterior distribution. * indicates p<0.05, ** p<0.01,***p<0.001.CNF: Conflict trial. Ex: Conflict Expectation. MSIT: Multiple Source Interference Task. pEr: Error in the prior trial. p(cnf): Predicted probability of conflict. RT: Reaction Time. Source data are provided as a SourceData file.

Supplementary Table 1: Comparison of Models for Go-Nogo Task

Model	Linking function	Free parameters	DIC	LOOIC
M0	lognormal	4 (3 betas [mean], sigma)	427.1	480.1
null	Wiener	5 (3 betas [boundary], drift, tau)	233	257.5
M1	lognormal	5 (4 betas [mean], sigma)	286.7	326.4
linear	Wiener	6 (4 betas[boundary], drift, tau)	102.1	109.6
M2	lognormal	5 (4 betas [mean], sigma)	243.6	279.5
Exp	Wiener	6 (4 betas [boundary], drift, tau)	71.7	71.3
M3(seq)	lognormal	6 (4 betas [mean], alpha, sigma)	161.5	24.1
Exp+LR	Wiener	7 (4 betas [boundary], alpha, drift, tau)	0 (reference)	0 (reference)
M4	lognormal	6 (4 betas [mean], alpha, sigma)	198.5	240.1
Exp=Q LR	Wiener	7 (4 betas [boundary], alpha, drift, tau)	63.3	61.6

Model 0

 $CC = \beta 2 pCE + \beta 3 pOE$

 $mu = \beta 0 + CCt$ RT~ logNorm(mu, sigma)

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	5.7487	5.7907	5.8369	5.791	0.022717	5.7884	0.00041476	1.8	3000	0.017153	1.0018
β2	-0.012284	0.064664	0.13348	0.065169	0.037191	0.058885	0.0029138	7.8	163	0.29481	1.0172
β3	-0.076289	-0.01059	0.059446	-0.0095915	0.035482	-0.014664	0.0027381	7.7	168	0.31975	1.0239
deviance	79627	79648	79671	79649	11.296	79647	0.21972	1.9	2643	0.015313	1.0004

Model 1

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

 $mu = \beta 0 + CCt$ RT~ logNorm(mu, sigma) Exp = nSeq

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	5.7119	5.7568	5.8037	5.7564	0.023201	5.7589	0.00042359	1.8	3000	0.010382	1.0007
β1	0.0065017	0.010902	0.015719	0.010901	0.0023537	0.010906	0.000053031	2.3	1970	-0.018757	1.0006
β2	0.021893	0.090543	0.15962	0.090438	0.03556	0.092098	0.0030207	8.5	139	0.42594	1.0026
β3	-0.078877	-0.011565	0.058933	-0.011276	0.035513	-0.013352	0.0027599	7.8	166	0.35676	1.0026
deviance	79665	79690	79721	79691	14.235	79688	0.33827	2.4	1771	-0.015021	1.0001

Model 2

$$CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$$

 $mu = \beta 0 + CCt$ RT~ logNorm(mu, sigma) Exp = 1-(1-Q)(nSeq-1)

Q = 0.25

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	5.7104	5.7579	5.8026	5.7583	0.02344	5.7572	0.00041643	1.8	3169	0.025818	1.0007
β1	0.047908	0.08184	0.11536	0.081954	0.016741	0.081223	0.00033525	2	2494	-0.017657	1.0041
β2	0.016394	0.097085	0.16254	0.09622	0.037069	0.094963	0.0027907	7.5	176	0.38122	1.0328
β3	-0.081288	-0.0096138	0.059571	-0.0081926	0.036143	-0.011248	0.0027902	7.7	168	0.33559	1.0428
deviance	79632	79657	79687	79658	14.089	79656	0.31443	2.2	2008	0.0027658	1

Model 3 (seq)

$$CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$$

 $mu = \beta 0 + CCt$ RT~ logNorm(mu, sigma)

Exp = 1-(1-Q)(nSeq-1)

 $Q(t) = Q(t-1) + \alpha(C(t-1) - Q(t-1))$

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.100	psrf
β0	5.6865	5.7342	5.7778	5.7344	0.023353		0.00042803	1.8	2977	0.006777	1.0013
β1	0.23348	0.31979	0.39791	0.31967	0.04161		0.0010493	2.5	1573	-0.0055577	1.0005
β2	0.068537	0.14894	0.22105	0.14805	0.039332		0.0024182	6.1	265	0.20859	1.0069
β3	-0.11267	-0.035924	0.034941	-0.035031	0.037187		0.0022325	6	277	0.18473	1.0038
deviance	79281	79311	79347	79312	17.072		0.41488	2.4	1693	-0.00065032	1.0016

Model 0 DDM

 $CC = \beta 2 pCE + \beta 3 pOE$

bounder = β0 + CCt RT ~ wiener(tau, bounder, bias,driff) bias=0.5

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
beta0	110.88	115.19	119.06	115.14	2.0892	115.38	0.053402	2.6	1530 (0.000070746	1.0036
beta2	-0.78077	8.637	17.872	8.7319	4.8335	9.8363	0.42595	8.8	129	0.43611	1.0375
beta3	-10.213	-1.2318	7.919	-1.1513	4.6577	-1.0043	0.41664	8.9	125	0.4485	1.0382
drift	0.24004	0.24467	0.24894	0.24464	0.0022639	0.24475	0.000093646	4.1	584	0.049931	1.0039
tau	98.957	99.751	100	99.644	0.34041	99.888	0.0073897	2.2	2122	-0.0039295	1.0087
deviance	79420	79442	79468	79443	12.298	79440	0.30588	2.5	1616	0.020625	0.9999

Model 1 DDM

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

bounder = $\beta 0$ + CCt RT ~ wiener(tau, bounder, bias,driff) bias=0.5 Exp = nSeq

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	107.49	111.59	115.64	111.61	2.1223		0.05393	2.5	1549	0.032355	1.0002
β1	1.1036	1.8412	2.5735	1.8399	0.38119		0.0077948	2	2391	0.037559	1.0005
β2	0.80773	11.371	20.521	11.327	5.1341		0.47333	9.2	118	0.43799	1.0314
β3	-9.202	-0.10349	10.115	0.034197	5.0107		0.40397	8.1	154	0.39991	1.0265
tau	98.922	99.729	100	99.628	0.35346		0.0076481	2.2	2136	-0.010491	1.0002
drift	0.24557	0.24958	0.25412	0.24961	0.0021966	(0.000082889	3.8	702	0.027769	1.0009
deviance	79464	79491	79522	79491	14.814		0.37326	2.5	1575	0.012128	1.0006

Model 2 DDM

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

bounder = β 0 + CCt RT ~ wiener(tau, bounder, bias,driff) bias=0.5 Exp = 1-(1-Q)(nSeq-1)

Q = 0.25

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	108.49	112.3	116.51	112.36	2.0449	112.5	0.057695	2.8	1256	0.029216	1.001
β1	8.8483	13.002	16.819	13.009	2.058	13.026	0.060367	2.9	1162	0.0068498	1.0019
β2	1.9206	12.676	23.113	12.235	5.1688	13.129	0.77837	15.1	44	0.72708	1.0682
β3	-8.9767	0.01759	10.628	0.28555	4.8776	-0.0058811	0.65503	13.4	55	0.67546	1.0564
driff	0.24558	0.24984	0.25424	0.24982	0.0022198	0.24973	0.000091275	4.1	591	0.033752	1.0045
tau	98.849	99.741	100	99.622	0.3795	99.885	0.0085855	2.3	1954	0.044638	1.0012
deviance	79434	79463	79494	79463	15.108	79461	0.49904	3.3	917	0.028125	1.0115

Model 3 (seq) DDM

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

bounder = β 0 + CCt RT ~ wiener(tau, bounder, bias,driff) bias=0.5

Exp = 1-(1-Q)(nSeq-1)

 $Q(t) = Q(t-1) + \alpha(C(t-1) - Q(t-1))$

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.100	psrf
β0	105.07	109.12	113.44	109.18	2.1212	108.79	0.045557	2.1	2168	-0.017036	1.0001
β1	35.373	44.712	54.816	44.943	4.9862	44.702	0.21527	4.3	537	0.023479	1.0024
β2	8.383	19.33	29.317	19.33	5.3567	19.649	0.34063	6.4	247	0.23457	1.023
β3	-13.439	-3.5667	6.1289	-3.6201	5.0743	-3.2295	0.33143	6.5	234	0.21069	1.0162
drift	0.24558	0.24964	0.2544	0.24967	0.0022518	0.24969	0.00006426	2.9	1228	-0.020859	1.0008
tau	98.932	99.763	100	99.653	0.34021	99.894	0.0065344	1.9	2711	0.013149	0.99968
α	0.22097	0.29383	0.37773	0.29664	0.040599	0.28388	0.0011995	3	1146	0.0023465	1.0004
deviance	79129	79160	79192	79160	15.829	79158	0.36334	2.3	1898	0.020377	1.0008

Model 3 (Q) DDM

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

bounder = β0 + CCt RT ~ wiener(tau, bounder, bias, driff)

Exp = Q

 $Q(t) = Q(t-1) + \alpha(C(t-1) - Q(t-1))$

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.100	psrf
β0	122.35	127.23	132.58	127.31	2.66	126.94	0.15	5.60	318.00	0.21	1.13
β1	-99.19	-78.96	-61.85	-79.60	9.18	-78.41	1.15	12.50	64.00	0.59	1.04
β2	2.23	13.63	24.28	13.86	5.62	12.68	0.37	6.50	233.00	0.28	1.05
β3	-11.30	-0.80	9.48	-0.86	5.41	-0.65	0.35	6.50	239.00	0.28	1.04
drift	0.24	0.25	0.25	0.25	0.00	0.25	0.00	3.30	893.00	0.06	1.00
tau	98.91	99.77	100.00	99.65	0.37	99.90	0.01	2.10	2325.00	-0.02	1.00
α	0.001	0.244	0.489	0.25	0.14	0.25	0.01	7.10	200.00	0.28	1.15
deviance	79192.50	79221.50	79254.40	79222.20	16.03	79222.24	0.85	5.30	356.00	0.14	1.06

Moldel 4 DDM

 $CC = \beta 1 Exp + \beta 2 pCE + \beta 3 pOE$

bounder = β0 + CCt RT ~ wiener(tau, bounder, bias,driff) bias=0.5

Exp = 1-(1-Q)(nSeq-1); if A=1

Exp = Q; if A=0

 $Q(t) = Q(t-1) + \alpha(C(t-1) - Q(t-1))$

A ~ Bernulli(θ)

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.100	psrf
β0	104.79	108.84	113.25	108.84	2.1324	109.03	0.045934	2.2	2155	-0.02079	1.0004
β1	21.638	26.99	32.803	27.063	2.9008	27.073	0.076933	2.7	1422	-0.018101	1.0013
β2	9.3619	18.902	29.034	18.986	5.1416	18.524	0.32407	6.3	252	0.22966	1.0041
β3	-12.931	-3.2582	6.177	-3.1488	4.8471	-3.1391	0.29997	6.2	261	0.23383	1.0063
drift	0.24529	0.24999	0.2544	0.24997	0.00231	0.24981	0.000061993	2.7	1389	-0.051199	1.004
tau	98.947	99.759	100	99.648	0.35101	99.894	0.0064086	1.8	3000	-0.030778	1.0016
α	0.14246	0.2331	0.331	0.23514	0.049122	0.22856	0.0014615	3	1130	-0.044625	1.0021
θ	0.52597	0.78022	0.99975	0.76724	0.13688	0.80394	0.0046743	3.4	857	0.019356	1.0049
deviance	79115	79147	79178	79147	16.383	79145	0.33939	2.1	2330	-0.0058932	1.0006

Supplementary Table 2: Posterior distribution and convergence statistics for parameters of all models tested in the Go-Nogo behavioral experiments. The table includes the following statistics: Lower95 and Upper95 indicate the bounds of the 95% credible interval, while Median, Mean, and Mode represent the central tendency of the posterior distribution. SD reflects the uncertainty in the estimate, and MCerr indicates the Monte Carlo error. MC%ofSD shows the Monte Carlo error as a percentage of the standard deviation. SSeff represents the effective sample size, accounting for autocorrelation, AC.50 provides the autocorrelation at lag 50 to assess sample independence. AC.100 provides the autocorrelation at lag 100 to assess sample independence. The psrf (Potential Scale Reduction Factor) indicates convergence, with values close to 1 signifying good convergence.

Model MSIT

M0		DIC =3436.14	1 1		LOOIC = 340							
		Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD SSeff		AC.50	psrf
	β0	1.4873	1.5878	1.7018	1.5889	0.055402		0.0028172	5.1	387	0.13566	1.0071
	β2	0.12379	0.17876	0.23379	0.17954	0.029958		0.002278	7.6	173	0.33312	1.0212
	β3	-0.019659	0.073637	0.169	0.0733	0.047628		0.0024521	5.1	377	0.13778	1.0064
	β4	0.11636	0.20961	0.31525	0.21098	0.05042		0.0014515	2.9	1207	0.022959	1.0013
	tau	0.14502	0.14571	0.14637	0.14569	0.00034905		6.51E-06	1.9	2872	-0.012405	1.0008
	driff	1.5373	1.58	1.619	1.5801	0.021075		0.00040096	1.9	2763	-0.032298	0.99955
	deviance	3344.1	3366	3390.2	3366.6	11.792		0.26432	2.2	1990	0.018775	1.0017
M1		DIC = 3431.9										
		Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD SSeff		AC.50	psrf
	β0	1.5203	1.6373	1.7433	1.6371	0.056396	1.6339	0.002573	4.6	480	0.080336	1.0019
	β1	-0.026182		-0.0052058	-0.015365	0.005239	-0.014774	0.00027586		361	0.12959	
	β2	0.1209	0.18504	0.23869	0.18432	0.030273	0.18779	0.0020944		209	0.28079	1.0026
	β3	-0.0051313	0.079797	0.17658	0.079755	0.046381	0.082908	0.001843	4	633	0.051871	1.0031
	β4	0.11345	0.20529	0.29892	0.2055	0.048349	0.20453	0.0013404	2.8	1301	-0.019471	1.0024
	tau	0.14505	0.14573	0.14639	0.14572	0.00034774	0.14579	6.49E-06	1.9	2869	0.021617	1.0017
	driff	1.5373	1.5793	1.6177	1.5793	0.020839	1.5772	0.00040745	2	2616	-0.0039639	0.99984
	deviance	3336.1	3359.3	3382.2	3359.7	11.801	3358.5	0.24858	2.1	2254	0.044652	1.0009
M2		DIC = 3506.5	18		LOOIC = 349	0.0						
		Lower95	Median	Upper95			Mode	MCerr	MC%ofSD SSeff		AC.50	psrf
	β0	1.5818	1.6935	1.8056	1.6935	0.058514	1.694	0.0025218	4.3	538	0.076274	1.0012
	β1	-0.19092	-0.13287	-0.069877	-0.13395	0.030548	-0.13059	0.0017429	5.7	307	0.17911	1.0055
	β2	0.24792	0.31448	0.38429	0.31505	0.034459	0.31468	0.00087443	2.5	1553	0.0078788	1.0004
	β3	-0.0059881	0.08914	0.18319	0.089763	0.048413	0.089811	0.0020046	4.1	583	0.078679	1.001
	β4	0.0034368	0.49122	0.94642	0.49294	0.29086	0.2456	0.0052908	1.8	3022	0.0076436	1.0018
	tau	0.14493	0.14568	0.14636	0.14566	0.00036606	0.1457	6.93E-06	1.9	2794	0.0082595	1.001
	driff	1.5436	1.5822	1.6231	1.5819	0.020475	1.5812	0.00037814	1.8	2932	-0.026121	0.99992
	deviance	3419.8	3441.4	3464.8	3442	11.325	3441.8	0.2401	2.1	2225	0.0057917	0.9997

0.14492

1.5427

3337.4

0.14566

1.5821

3360.9

0.14631

1.6233

3383.8

0.14564

1.5815

3361.6

Cuppicii	iciitaly it	OO_{i}	,,,,,,,,	,,,,							
M3(q)	DIC = 3430.3	13	LOOIC = 3407	7							
	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	1.4532	1.5582	1.6771	1.5597	0.058051	1.5549	0.002803	4.8	429	0.096832	1.0034
β1	0.13926	0.22568	0.31861	0.22622	0.048695	0.22828	0.0040402	8.3	145	0.42086	1.0123
β2	0.14841	0.24628	0.34559	0.24568	0.050328	0.24349	0.0013485	2.7	1393	0.037257	1.0019
β3	-0.025857	0.063328	0.15641	0.062271	0.046485	0.063847	0.0018147	3.9	656	0.027202	1.0046
β4	0.25554	0.53268	0.89124	0.54654	0.16583	0.53144	0.011336	6.8	214	0.29242	1.0089
tau	0.14491	0.14566	0.14629	0.14564	0.00035552	0.14568	5.47E-06	1.5	4229	-0.0090938	1.0013
driff	1.5372	1.5814	1.6213	1.5811	0.021121	1.5846	0.00039215	1.9	2901	-0.0078448	1.0031
deviance	3340.8	3361.5	3385.1	3362.3	11.662	3360.3	0.23571	2	2448	0.029415	1.0002
M3(seq)											
	DIC = 3438.60	06	LOOIC = 3398	5							
	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	1.4442	1.5606	1.6704	1.5601	0.057638	1.5588	0.0025979	4.5	492	0.083716	1.0101
β1	0.13746	0.222	0.31166	0.2263	0.046356	0.21557	0.0037602	8.1	152	0.3015	1.0252
β2	0.14178	0.24393	0.33863	0.24418	0.049562	0.23981	0.0012836	2.6	1491	-0.01123	1.0006
β3	-0.031112	0.062576	0.15301	0.062954	0.046988	0.061079	0.0018897	4	618	0.047258	1.0051
β4	0.25833	0.53928	0.8859	0.5493	0.15935	0.51723	0.011008	6.9	210	0.24249	1.0181

0.00035792

0.020392

11.963

6.85E-06

0.25356

0.00039323

0.14568

1.5844

3359.5

1.9

1.9

2.1

2729

2689

2226

0.0030336

0.0091465

-0.0077456

1.0002

1.002

0.99961

Control model

tau

driff

deviance

M4

141 1											
	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
ſ	30 0.7768	1.0651	1.3293	1.0677	0.1347	1.0575	0.015269	11.3	78	0.58734	1.1173
ſ	31 0.46769	0.80263	1.1715	0.79964	0.17169	0.81004	0.018122	10.6	90	0.5605	1.1142
ſ	32 0.22844	0.31594	0.41114	0.31637	0.047372	0.31586	0.00085215	1.8	3090	0.0046944	0.99995
ſ	-0.080609	0.0098223	0.094342	0.0098692	0.045486	0.0053255	0.0013376	2.9	1156	0.027894	1.0027
ſ	34 0.267	0.519	0.8974	0.545	0.1638	0.5375	0.012098	5.5	220	0.2257	1.045
ta	au 0.14492	0.14564	0.14633	0.14563	0.00036285	0.14565	6.62E-06	1.8	3000	-0.02359	1.0003
dr	iff 1.536	1.5763	1.6188	1.5763	0.021291	1.578	0.00037906	1.8	3155	0.00082978	0.99964
devian	ce 3362.3	3385.3	3409.8	3385.9	12.084	3383.7	0.26493	2.2	2080	0.0032008	1.0002
theta	0.00023029	0.075957	0.31883	0.10923	0.10529	0.033844	0.0043408	4.1	588	0.074819	1.0088

Supplementary Table 3: Posterior distribution and convergence statistics for parameters of all models tested in the Multi-Source Interference Task (MSIT) behavioral experiments. The table includes the following statistics: Lower95 and Upper95 indicate the bounds of the 95% credible interval, while Median, Mean, and Mode represent the central tendency of the posterior distribution. SD reflects the uncertainty in the estimate, and MCerr indicates the Monte Carlo error. MC%ofSD shows the Monte Carlo error as a percentage of the standard deviation. SSeff represents the effective sample size, accounting for autocorrelation, AC.50 provides the autocorrelation at lag 50 to assess sample independence. AC.100 provides the autocorrelation at lag 100 to assess sample independence. The psrf (Potential Scale Reduction Factor) indicates convergence, with values close to 1 signifying good convergence.

fMRI MSIT Model

Regressor: I>C

Cluster					Z-MAX X	Z-MAX Y	Z-MAX Z	Z-COG X	Z-COG Y	Z-COG Z		COPE-MAX	COPE-MAX	COPE-MAX C	OPE-MEA
Index	Voxels	Р	-log10(P)	Z-MAX	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	COPE-MAX	X (mm)	Y (mm)	Z (mm)	N
8	4058	2.28e-21	20.6	4.77	-46	2	30	-26.6	6.07	38	35.1	-32	-2	70	12.9
7	2186	4.92e-14	13.3	4.92	-26	-54	42	-34.6	-45.7	41.2	31.6	-24	-70	46	13.6
6	997	5.96e-08	7.22	4.64	36	-52	42	34.1	-49.8	42.4	24.3	28	-66	52	12.7
5	882	1.79e-07	6.75	4.22	42	0	58	31	-0.361	59.8	34.6	36	0	68	15.9
4	708	1.91e-06	5.72	4.66	44	18	2	39.3	20	1.68	21.5	50	18	-4	9.74
3	661	3.87e-06	5.41	4.35	10	-54	-12	15.6	-51.7	-19.8	9.68	26	-58	-20	6.03
2	430	0.000158	3.8	4.23	42	10	30	46	14.9	29.7	22.5	56	12	36	11.2
1	289	0.00214	2.67	4.22	-20	-54	-20	-27.1	-50.8	-24.7	12.7	-34	-60	-22	6.67

fMRI MSIT Model Regressor: Q

Cluster					Z-MAX X	Z-MAX Y	Z-MAX Z	Z-COG X	Z-COG Y	Z-COG Z		COPE-MAX	COPE-MAX	COPE-MAX C	OPE-MEA
Index	Voxels	P	-log10(P)	Z-MAX	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	COPE-MAX	X (mm)	Y (mm)	Z (mm)	N
3	294	0.000819	3.09	3.62	6	-46	28	2.9	-51.1	30.2	2.59	4	-50	28	2.13
2	250	0.00221	2.65	3.85	-18	34	44	-17.2	37.8	45.1	4.38	-16	42	50	2.85
1	142	0.0337	1.47	3.73	16	46	42	19.1	41.1	43.8	3.68	28	36	50	2.67

Supplementary Table 4: fMRI results for each model regressor. This table presents the following parameters: Cluster Index indicates the identifier for each cluster detected. Voxels shows the number of voxels within each cluster. P represents the corrected p-value for the cluster, while -log10(P) is the negative logarithm of the p-value, facilitating easier interpretation of significance. Z-MAX is the maximum Z-score within the cluster, with Z-MAX X (mm), Z-MAX Y (mm), and Z-MAX Z (mm) indicating the coordinates of the maximum Z-score in millimeters. Z-COG X (mm), Z-COG Y (mm), and Z-COG Z (mm) represent the coordinates of the center of mass of the cluster. COPE-MAX is the maximum Contrast of Parameter Estimates (COPE) value within the cluster, while COPE-MAX X (mm), COPE-MAX Y (mm), and COPE-MAX Z (mm) provide the coordinates of the maximum COPE value in millimeters. Finally, COPE-MEAN indicates the mean COPE value across all voxels in the cluster.

fMRI MSIT Model

CC = β 1 Exp + β 2 pCE + β 3 pOE + β 4 Exp*TMS + β 5 Exp*TMStheta+ β 6Exp*TMSsfg + β 7Exp*TMSsfg*theta RT ~ β 0 + CCt + β 8 TMS + β 9 TMStheta + β 10 TMSsfg + β 11 TMStheta*sfg

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50 p	srf
βC) 121.1	125.	1 129.0	125.1	2.0	124.9	0.12	6.0	280.0	0.198	1.040
β1	11.1	15.0	18.7	15.1	1.9	15.2	0.07	3.7	747.0	0.049	1.002
β2	2 -2.1	1.8	6.1	1.8	2.1	1.9	0.09	4.2	565.0	0.077	1.001
β3	-10.2	-6.	5 -2.8	-6.5	1.9	-6.4	0.07	3.7	714.0	0.084	1.001
β4	-4.2	0.	1 5.2	0.2	2.4	-0.1	0.17	7.0	206.0	0.279	1.009
β5	-7.2	-2.7	7 1.8	-2.7	2.3	-2.6	0.13	5.6	324.0	0.203	1.006
β6	-6.8	-1.3	3 4.6	-1.3	2.9	-1.3	0.23	8.1	151.0	0.398	1.056
β7	7 1.9	7.9	9 13.8	8.0	3.0	7.6	0.24	8.1	154.0	0.374	1.009
β8	-1.9	-0.	1 1.6	-0.1	0.9	0.0	0.03	3.9	650.0	0.092	1.004
β9	-2.9	-0.8	3 1.3	-0.8	1.1	-0.9	0.04	3.3	893.0	0.016	1.001
β10	-5.8	-0.8	3 4.3	-0.8	2.6	-0.7	0.17	6.5	233.0	0.294	1.046
β11	-5.0	-0.9	3.0	-1.0	2.1	-0.7	0.08	3.9	644	0.082	1.005
tau	ı 1.000	1.01	1.044	1.015	0.015	1.005	0.000	1.9	2845.0	0.003	1.000
deviance	462009	46206	5 462114	462066	27	462067	0.89	3.3	945.0	0.046	1.003

Model TMS RT + Accuracy

 $CC = \beta 1 \ Exp + \beta 2 \ pCE + \beta 3 \ pOE + \beta 4 \ Exp*TMS + \beta 5 \ Exp*TMS theta + \beta 6 Exp*TMS sfg + \beta 7 Exp*TMS sfg*theta$

 $RT \sim \beta 0 + CCt + \beta 8 TMS + \beta 9 TMS theta + \beta 10 TMS sfg + \beta 11 TMS theta*sfg$

Acu ~ βa0 + βa1 CCt-1 + βa2 TMS + βa3 TMStheta + βa4 TMSsfg + βa5 TMStheta*sfg

	Lower95	Median	Upper95	Mean	SD	Mode	MCerr	MC%ofSD	SSeff	AC.50	psrf
β0	120.1	124.1	128.1	124.1	2.1	123.9	0.04	2.0	2404	-0.002	1.000
β1	10.6	14.8	18.8	14.8	2.1	14.7	0.06	2.8	1280	0.019	1.000
β2	-4.6	0.2	4.8	0.3	2.4	0.4	0.06	2.5	1625	0.016	1.002
β3	-9.5	-5.3	-0.9	-5.3	2.2	-5.2	0.06	2.5	1592	0.007	1.003
β4	-3.6	1.2	5.6	1.1	2.4	1.2	0.10	4.0	619	0.057	1.005
β5	-8.6	-3.9	0.7	-3.9	2.4	-4.2	0.10	4.2	568	0.077	1.003
β6	-9.1	-3.0	2.3	-3.0	2.9	-3.1	0.11	3.8	710	0.080	1.010
β7	1.2	7.6	13.6	7.5	3.2	7.6	0.18	5.6	320	0.132	1.002
β8	-2.1	0.4	3.3	0.4	1.4	0.3	0.04	3.2	955	0.046	1.001
β9	-2.6	0.3	3.2	0.3	1.5	0.4	0.05	3.2	966	0.055	1.001
β10	-5.5	-0.9	3.0	-0.9	2.2	-0.9	0.05	2.5	1586	0.034	1.001
β11	-4.5	-0.4	3.1	-0.4	1.9	-0.3	0.07	3.4	873	0.094	1.001
βа0	-1.6	-1.2	-0.8	-1.2	0.2	-1.2	0.00	1.9	2691	0.004	1.000
tau	1.000	1.011	1.047	1.015	0.015	1.005	0.000	2.1	2364	-0.004	1.000
βa1	-0.1	0.0	0.0	0.0	0.0	0.0	0.00	2.2	2135	-0.021	1.003
βa2	-0.3	-0.1	0.2	-0.1	0.1	-0.1	0.00	4.3	531	0.085	1.015
βа3	-0.2	0.0	0.2	0.0	0.1	0.0	0.01	6.2	257	0.222	1.025
βа4	-0.1	0.2	0.5	0.2	0.2	0.2	0.01	3.5	822	0.026	1.009
βа5	-0.4	-0.1	0.2	-0.1	0.2	-0.1	0.01	5.8	298	0.167	1.011
deviance	472044	472095	472157	472096	29	472094	0.81	2.8	1299	0.038	1.000

Supplementary Table 5: Posterior distribution and convergence statistics for parameters of all models tested in the Go-Nogo TMS experiments. The table includes the following statistics: Lower95 and Upper95 indicate the bounds of the 95% credible interval, while Median, Mean, and Mode represent the central tendency of the posterior distribution. SD reflects the uncertainty in the estimate, and MCerr indicates the Monte Carlo error. MC%ofSD shows the Monte Carlo error as a percentage of the standard deviation. SSeff represents the effective sample size, accounting for autocorrelation, AC.50 provides the autocorrelation at lag 50 to assess sample independence. AC.100 provides the autocorrelation at lag 100 to assess sample independence. The psrf (Potential Scale Reduction Factor) indicates convergence, with values close to 1 signifying good convergence.