

3. Supervised Learning: Multivariate Linear Regression

Multivariate Linear Regression

Training sample

 $(x_{i,1}, x_{i,2}, x_{i,3}, y_i)$

Example

- Prediction of second-hand car prices based on features such as mileage, # doors, # cylinders
- It is a supervised learning problem because one has access to inputoutput examples
- It is a regression problem because the output variable is continuousvalued
- Input variables also known as features or regressors
- Output variable also known as response or prediction

Training set

	Input Variables			Output Variable
	(Mileage, Km)	# doors	# cylinders	(Cost, £)
_	25,000	3	6	16,000
1	105,000	5	12	11,500
	120,000	5	8	6,000
	140,000	3	8	3,000
	45,000	3	12	13,500

Testing set

Input Variables			Output Variable
Input Variable (Mileage, Km)	# doors	# cylinders	(Cost, £)
50,000	50,000	50,000	?
90,000	90,000	90,000	?

Test sample

Multivariate Linear Regression

Example

- Prediction of second-hand car prices based on features such as mileage, # doors, # cylinders
- It is a supervised learning problem because one has access to inputoutput examples
- It is a regression problem because the output variable is continuousvalued
- Input variables also known as features or regressors
- Output variable also known as response or prediction

Training set

	Input Variables			Output Variable
	(Mileage, Km)	# doors	# cylinders	(Cost, £)
	25,000	3	6	16,000
1	105,000	5	12	11,500
	120,000	5	8	6,000
	140,000	3	8	3,000
	45,000	3	12	13,500

Training sample

 $(x_{i,1}, x_{i,2}, x_{i,3}, y_i)$

Testing set

Input Variables			Output Variable	
	Input Variable (Mileage, Km)	# doors	# cylinders	(Cost, £)
	50,000	50,000	50,000	?
	90,000	90,000	90,000	?

Test sample

Multivariate Linear Regression

Process

- One is given access to a training data –
 consisting of various feature-response pairs –
 and testing data consisting of features
 points with unknown response.
- One is also given a hypothesis (or model) class containing a series of hypotheses (or models) that potentially explain the relationship between the features and responses.
- The learning algorithm selects a hypothesis (or model) from the hypothesis (or model) class that fits the training data.
- Such selected hypothesis can then be used on the testing data to determine the response associated with the new features.

Multivariate Linear Regression: Model

Multivariate Linear Model

The relationship between the input and output variables can be expressed as follows:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_m x_{i,m} \quad (i = 1, \dots, n)$$

where β_j , j=0,...,m are the model parameters

Geometrical Interpretation

The relationship between the input and output variables can also be expressed as follows:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_m \end{bmatrix} = \mathbf{X}\boldsymbol{\beta}$$

Multivariate Linear Regression: Model

Multivariate Linear Model

The relationship between the input and output variables can be expressed as follows:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_m x_{i,m} \quad (i = 1, \dots, n)$$

where β_j , j=0,...,m are the model parameters

Geometrical Interpretation

The relationship between the input and output variables can also be expressed as follows:

$$\mathbf{y} = \begin{bmatrix} 16,000 \\ \vdots \\ 13,500 \end{bmatrix} = \begin{bmatrix} 1 & 25000 & 3 & 6 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 45,000 & 3 & 12 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_m \end{bmatrix} = \mathbf{X}\boldsymbol{\beta}$$

Input Variable (Mileage, Km)	# doors	# cylinders	Output Variable (Cost, £)
25,000	3	6	16,000
105,000	5	12	11,500
120,000	5	8	6,000
140,000	3	8	3,000
45,000	3	12	13,500

Multivariate Linear Regression: Model

Multivariate Linear Model

The relationship between the input and output variables can be expressed as follows:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_m x_{i,m} \quad (i = 1, \dots, n)$$

where β_i , j = 0, ..., m are the model parameters

Geometrical Interpretation

The relationship between the input and output variables can also be expressed as follows:

$$y = \begin{bmatrix} 16,000 \\ \vdots \\ 13,500 \end{bmatrix} = \begin{bmatrix} 1 & 25000 & 3 & 6 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 45,000 & 3 & 12 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_m \end{bmatrix} = X\beta$$

Input Variable (Mileage, Km)	# doors	# cylinders	Output Variable (Cost, £)
25,000 105,000 120,000 140,000 45,000	3 5 5 3	6 12 8 8 12	16,000 11,500 6,000 3,000 13,500

Multivariate Linear Regression: Cost Function

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

Cost Function – Sum-of-Squared Residuals

Note that true response values and the predicted response values are given by:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \text{ and } \widehat{\mathbf{y}} = \begin{bmatrix} \widehat{y}_1 \\ \vdots \\ \widehat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_m \end{bmatrix} = \mathbf{X}\boldsymbol{\beta}$$

Note also that the sum-of-square residuals is given by

$$SSR(\boldsymbol{\beta}) = tr((\boldsymbol{y} - \widehat{\boldsymbol{y}}) \cdot (\boldsymbol{y} - \widehat{\boldsymbol{y}})^t) = tr((\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \cdot (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^t)$$

Multiv. Linear Regression: Learning Algorithm

Learning Algorithm

We should select the linear regression model parameters that minimize the sum-of-squared residuals as follows:

$$\beta^* = \underset{\beta}{\operatorname{argmin}} SSR(\beta) = \underset{\beta}{\operatorname{argmin}} tr((y - X\beta) \cdot (y - X\beta)^t)$$

This leads to the optimal model parameters given by:

$$\boldsymbol{\beta}^* = (\boldsymbol{X}^t \boldsymbol{X})^{-1} \boldsymbol{X}^t \boldsymbol{y} = \boldsymbol{X}^\dagger \boldsymbol{y}$$

New Predictions

The new response \hat{y} associated with a new data point x is now given by:

$$\widehat{\mathbf{y}} = \mathbf{x} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$$