Autonomous and Mobile Robotics Final Project Academic Year 2021/2022

Comparing classic and primitive-based versions of kinodynamic RRT*

Professor: Giuseppe Oriolo

Supervisor: Paolo Ferrari

Students: Lorenzo Mattia

Michela Proietti

Sofia Santilli 1813509

1793272

1739446

Additional requirements

Differentially constrained systems

Optimal KyMotigna Hanning Problem

Guaranteed optimality of resulting trajectories

Guaranteed feasibility of resulting trajectories

ision-free path veen an initial and a final onfiguration

Problem statement

Configuration:

Kinematic model:

Unicycle

$$\boldsymbol{q} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \\ \theta \end{bmatrix} \mathbf{v} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{w}$$

Dubins' vehicle

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = u, |u| = \frac{v}{\rho}$$

Motion planning problem: find the optimal path, feasible for the system dynamics, connecting two configurations q_{ini} and q_{goal}

Randomly exploring Random Trees

Comparison between two implementations

- Continuous configuration space
- Multiple invocations of the steering function

- Discretized configuration space
- Precomputed catalogue of primitives

Classic RRT*

Basic iteration to build the tree T_s rooted at q_s

Primitive-based RRT*

Basic iteration to build the tree T_s rooted at q_s

Implementation: working environment

Ubuntu 18.04

Implementation: basic functions

- > **Distance function**: $d(\mathbf{q_1}, \mathbf{q_2}) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2} + w|\theta_1 \theta_2|$
- > Cost function :

- $ightharpoonup \mathbf{Q}_{near}$ computation: k nearest nodes to \mathbf{q}_{rand}
- > **Exploration-exploitation strategy**: goal configuration sampled with 0.2 of probability
- > Goal updates
- > Termination condition: maximum number of iterations is reached

Implementation: catalogue of primitives

> Precomputation of the catalogue of primitives:

saved in a text file, with rows in the format (final node, cost, path)

Implementation: primitive's selection

Planning experiments: scenarios

- > Four simulation environments of increasing complexity
- > Three different combinations of grid resolutions and possible orientations, for the primitive based version

Scene 1
Dimension: 5x5 [m]

Difficusion. 3x3 [m]								
Grid res. #orientations								
1	4							
1	8							
0.5	8							

Scene 2
Dimension: 10x10 [m]

2 milension, romre [m								
Grid res. #orientations								
4	4							
1	8							
0.5	8							

Scene 3
Dimension: 10x10 [m]

Grid res.	#orientations						
4	4						
1	8						
0.5	8						

Dimension: 10x10 [m]

Grid res.	#orientations
4	4
1	8
0.5	8

SCENE 1	n.primitives	n.iters	tot.time(s)	steering time(s)	tree size	sol.cost	success rate(%)
Classic		100	8.5	7.5	53	11.1	100
RRT*	_	1.000	102.3	82.7	465.3	8.49	100
		10.000	860	587.9	5562.6	8.43	100
		100	3.9	< 1	22.5	8.61	80
	63 (64)	1.000	40.6	< 1	44.4	8.35	100
		10.000	179.4	< 1	46	8.16	100
Primitive		100	1.9	< 1	21.6	14.83	20
-based	-based RRT* 126 (128)	1.000	24.5	< 1	73.1	12.59	80
RRT*		10.000	245.4	113.7	81.4	12.01	100
		100	3.1	< 1	31.1	11.37	80
	370 (384)	1.000	41.9	< 1	198.2	11.21	100
		10.000	472.2	238.2	301.9	11.12	100

Primitive -based RRT*

SCENE 2	n.primitives	n.iters	tot.time(s)	steering time(s)	tree size	sol.cost	success rate(%)
Classic		100	31.9	25.9	60.2	14.31	90
RRT*	_	1.000	253.5	211.8	655.7	14.43	100
		10.000	2998.2	2187.6	5727.9	14.18	100
		100	< 1	< 1	1.5	//	0
	14 (24)	1.000	3.7	< 1	8.9	19.52	50
		10.000	172.8	< 1	42	16.56	100
Primitive	325 (560)	100	4.3	< 1	34	18.27	70
-based RRT*		1.000	48.4	35.5	275.7	18.25	100
		10.000	518.1	270.5	495.2	17.79	100
	1220 (1920)	100	8.9	7	40.1	21.72	80
		1.000	104.7	70	429.8	20.06	100
		10.000	1045.5	620	1703.1	18.11	100

Primitive -based RRT*

SCENE 3	n.primitives	n.iters	tot.time(s)	steering time(s)	tree size	sol.cost	success rate(%)
Classic		100	14.6	8.4	51.8	24.26	100
RRT*	_	1.000	90.4	48.6	611.4	22.74	100
IXIX I		10.000	874.2	419.4	6180.8	22.66	100
		100	< 1	< 1	1	//	0
	14 (24)	1.000	1	< 1	6.1	32.46	10
		10.000	99	< 1	43.1	30.3	100
Primitive		100	2.5	<= 1	21.1	26.78	50
-based	325 (560)	1.000	22.7	5.7	246.4	26.35	100
RRT*		10.000	162	50.5	433.1	25.28	100
		100	3.4	1.4	24.3	25.08	60
	1220 (1920)	1.000	37.8	18	383.5	24.67	100
		10.000	287.3	91.7	1485.9	23.95	100

Primitive
-based
RRT*

SCENE 4	n.primitives	n.iters	tot.time(s)	steering time(s)	tree size	sol.cost	success rate(%)
Classic		100	38.4	29.9	18.6	//	0
RRT*	_	1.000	274.7	218.8	293.1	39.32	70
		10.000	3031.1	2232.2	3712.2	39.35	100
		100	< 1	< 1	1.4	//	0
	14 (24)	1.000	2.2	0.8	6.7	46.62	10
		10.000	151	7.1	49.5	39.66	100
Primitive	325 (560)	100	1	< 1	3.2	//	0
-based		1.000	44.3	13.25	164.7	48.7	90
RRT*		10.000	393.2	131.7	368.5	46.12	100
	1220 (1920)	100	2.7	1.15	7.2	//	0
		1.000	60.4	31.2	211.4	46.8	80
		10.000	978.8	485.1	1233.6	45.86	100

Primitive -based RRT*

Comparison varying the catalogue

Grid resolution: 4 4 orientations

clideo.com

Grid resolution: 1 8 orientations

Grid resolution: 0.5 8 orientations

Extension to generic unicycle

The steering function requires to solve TPBVP: compute the best path between two nodes that satisfies a constrained optimality

$$\min_{X,Y.\Theta,V,\Delta,\Omega} 1 + 0.5 V + 0.5 \Omega + 0.5 \Delta$$

$$x_{k+1} = x_k + \delta_k v_k \cos(\theta_k)$$

$$y_{k+1} = y_k + \delta_k v_k \sin(\theta_k)$$

$$\theta_{k+1} = \theta_k + \delta_k w_k$$

$$x_0 = \overline{x_i}, y_0 = \overline{y_i}, \theta_0 = \overline{\theta_i}$$

$$x_N = \overline{x_f}, y_N = \overline{y_f}, \theta_N = \overline{\theta_f}$$

$$v_{min} \le v_k \le v_{max}$$

$$w_{min} \le w_k \le w_{max}$$

Executed in the steering function of the algorithm and solved through *Ifopt*, a light-weight, Eigen-based C++ interface to Nonlinear Programming solvers

TPBVP: trajectory reconstruction

Exact integration

$$x_{k+1} = x_k + \frac{v_k}{w_k} (\sin \theta_{k+1} - \sin \theta_k)$$

$$y_{k+1} = y_k + \frac{v_k}{w_k} (\cos \theta_{k+1} - \cos \theta_k)$$

$$\theta_{k+1} = \theta_k + w_k T_s$$

Final maneuver

Planning experiments

SCENE 3	n.primitives	n.iters	tot.time(s)	steering time(s)	tree size	sol.cost	success rate(%)
Classic		100	79	36	37	34.2	50
RRT*	_	1.000	767	389	493	28	100
KKI		10.000	8705	4238	6043	26.6	100
Primitive		100	36	< 1	41	34.5	60
-based	325 (560)	1.000	221	52.7	255	29.1	100
RRT*		10.000	1709	423.3	430	27.3	100

Primitive -based RRT*

Conclusions

Standard RRT*

- Continuous state space
- Slightly lower cost solutions
- Higher computational time
- Higher success rate

Primitive-based RRT*

- Discretized state space
- Slightly higher cost solutions
- Lower computational time
- Lower success rate
- Highly dependent on the number of primitives
- Might have problems with narrow passages

Choice depends on user's needs and computational resources

Thanks for your attention

