

### MITx: 6.041x Introduction to Probability - The Science of Uncertainty

■ Bookmarks

- Unit 0: Overview
- ▶ Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- Exam 1
- Unit 5: Continuous random variables

Unit 6: Further topics on random variables > Problem Set 6 > Problem 3 Vertical: The PDF of the maximum

■ Bookmark

# Problem 3: The PDF of the maximum

(3/3 points)

Let X and Y be independent random variables, each uniformly distributed on the interval [0,1].

1. Let  $Z = \max\{X,Y\}$ . Find the PDF of Z. Express your answer in terms of z using standard notation .

For 
$$0 < z < 1$$
,  $f_Z(z) = 2*z$ 

2. Let  $Z = \max\{2X,Y\}$ . Find the PDF of Z. Express your answer in terms of z using standard notation .

For 
$$0 < z < 1$$
,  $f_Z(z) = \boxed{z}$  Answer: z

Answer:

Recall that for a random variable  $m{U}$  distributed uniformly on the interval [0,1], its CDF is given by

 Unit 6: Further topics on random variables

Unit overview

Lec. 11: Derived distributions

Exercises 11 due Mar 30, 2016 at 23:59 UTC

Lec. 12: Sums of independent r.v.'s; Covariance and correlation

Exercises 12 due Mar 30, 2016 at 23:59 UTC

Lec. 13: Conditional expectation and variance revisited; Sum of a random number of independent r.v.'s

Exercises 13 due Mar 30, 2016

Exercises 13 due Mar 30, 2016 at 23:59 UTC

Solved problems

Additional theoretical material

**Problem Set 6** 

Problem Set 6 due Mar 30, 2016 at 23:59 UTC

**Unit summary** 

$$F_U(u) = \left\{ egin{array}{ll} 0, & ext{if } u < 0, \ u, & ext{if } 0 \leq u \leq 1, \ 1, & ext{if } u > 1. \end{array} 
ight.$$

1. Let  $Z=\max\{X,Y\}$ . For  $z\in(0,1)$ ,

$$egin{aligned} F_Z(z) &= \mathbf{P}(Z \leq z) \ &= \mathbf{P}(X \leq z ext{ and } Y \leq z) \ &= F_X(z) F_Y(z) \ &= z^2 \end{aligned}$$

Hence,  $f_Z(z)=2z$  for  $z\in(0,1)$  .

2. Let  $Z = \max\{2X, Y\}$ .

$$F_Z(z)=\mathbf{P}(Z\leq z)=\mathbf{P}(2X\leq z ext{ and } Y\leq z)=F_X(z/2)F_Y(z).$$

Hence, for 0 < z < 1,  $F_Z(z) = (z/2) \cdot z = z^2/2$  and  $f_Z(z) = z$ . For 1 < z < 2,  $F_Z(z) = (z/2) \cdot 1 = z/2$ , and  $f_Z(z) = 1/2$ .

| • | Unit 7: Bayesian |
|---|------------------|
|   | inference        |
|   |                  |

#### ▶ Exam 2

- Unit 8: Limit theorems and classical statistics
- Unit 9: Bernoulli and Poisson processes
- Unit 10: Markov chains
- Exit Survey
- ▶ Final Exam

## You have used 2 of 2 submissions

### **DISCUSSION**

Click "Show Discussion" below to see discussions on this problem.

© All Rights Reserved



© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

















