2.6.4 Zerlegungssatz

Wir betrachten den folgenden Satz.

Satz 2.23 Zerlegungssatz für Vektorfelder in 3D

Jedes differentierbare Vektorfeld $\mathbf{v}:\mathbb{R}^3\to\mathbb{R}^3$ lässt sich zerlegen in eine Summe aus einem wirbelfreien Vektorfeld $\mathbf{q}:\mathbb{R}^3\to\mathbb{R}^3$, einem quellenfreien Vektorfeld $\mathbf{w}:\mathbb{R}^3\to\mathbb{R}^3$ und einem homogenen Vektorfeld $\mathbf{h}:\mathbb{R}^3\to\mathbb{R}^3$ gemäß

$$\mathbf{v} = \mathbf{w} + \mathbf{q} + \mathbf{h}.\tag{2.186}$$

Bemerkungen:

- i) Bei einer solchen Zerlegung ist \mathbf{w} ein reines Wirbelfeld und \mathbf{q} ein reines Quellenfeld.
- ii) Für jedes differentierbare Vektorfeld gibt es unendlich viele Möglichkeiten, eine Zerlegung der Form (2.186) zu wählen.
- iii) Gemäß den Potential-Sätzen hat ${\bf q}$ ein Skalarpotential ϕ und ${\bf w}$ ein Vektorpotential ${\bf A}$, so dass gilt

$$\mathbf{q} = \mathbf{\nabla}\phi \quad \text{und} \quad \mathbf{w} = \text{rot}(\mathbf{A}).$$
 (2.187)

Mit Hilfe dieser Potentiale lässt sich die Zerlegung (2.186) schreiben gemäß

$$\underline{\mathbf{v}} = \mathbf{w} + \mathbf{q} + \mathbf{h} = \text{rot}(\mathbf{A}) + \nabla \phi + \mathbf{h}. \tag{2.188}$$