## WHAT IS CLAIMED IS:

## 1. A compound of formula I having the structure

wherein

5

15

20

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO<sub>3</sub>H;

10 R<sup>9</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R<sup>10</sup> is hydrogen, -NO<sub>2</sub>, -NHR<sup>11</sup>, -NHR<sup>13</sup>, -N(R<sup>13</sup>)<sub>2</sub>, -NCH<sub>3</sub>R<sup>13</sup>, -NHCO<sub>2</sub>alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms.

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

$$-\frac{1}{2}-NH$$

Z is O or S;

 $R^{11}$  is an  $\alpha$ -amino acid in which the  $\alpha$  carboxyl group forms an amide with the nitrogen of  $R^{10}$ , wherein if said amino acid is glutamic acid or aspartic acid, the non- $\alpha$  carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R<sup>12</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

R<sup>13</sup> is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

5

2. The compound according to claim 1, wherein

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms or -SO<sub>3</sub>H;

Z is O;

- or a pharmaceutically acceptable salt thereof.
  - 3. The compound according to claim 2, wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^7$ , and  $R^8$  are each, independently, acetyl or -SO<sub>3</sub>H;  $R^{10}$  is hydrogen, -NO<sub>2</sub>, -NHR<sup>13</sup>, -N( $R^{13}$ )<sub>2</sub>.
- 15 R<sup>13</sup> is hydrogen, or acyl of 2-7 carbon atoms; or a pharmaceutically acceptable salt thereof.
  - 4. The compound of claim 1 which is:
- a) N-Benzyl-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
  - b) N-Benzyl-octa-O-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
- 25 c) N-(4-Nitro-benzyl)-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
  - d) N-(4-Amino-benzyl)-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

- e) N-(3-Amino-benzyl)-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- f) N-[3-(Acetylamino)-benzyl]-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
  - g) N-[3-(Acetylamino)-benzyl]-octa-O-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.
- A method of treating or inhibiting hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

15

20

25

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO<sub>3</sub>H;

R<sup>9</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R<sup>10</sup> is hydrogen, -NO<sub>2</sub>, -NHR<sup>11</sup>, -NHR<sup>13</sup>, -N(R<sup>13</sup>)<sub>2</sub>, -NCH<sub>3</sub>R<sup>13</sup>, -NHCO<sub>2</sub>alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

$$-\begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$$

Z is O or S;

5

10

- $R^{11}$  is an  $\alpha$ -amino acid in which the  $\alpha$  carboxyl group forms an amide with the nitrogen of  $R^{10}$ , wherein if said amino acid is glutamic acid or aspartic acid, the non- $\alpha$  carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;
- R<sup>12</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;
- R<sup>13</sup> is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

6. A method of treating or inhibiting restenosis in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

20 wherein

- R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO<sub>3</sub>H;
- R<sup>9</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R<sup>10</sup> is hydrogen, -NO<sub>2</sub>, -NHR<sup>11</sup>, -NHR<sup>13</sup>, -N(R<sup>13</sup>)<sub>2</sub>, -NCH<sub>3</sub>R<sup>13</sup>, -NHCO<sub>2</sub>alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

$$- \left\{ -NH \right\} - \left\{$$

Z is O or S;

5

10

15

20

 $R^{11}$  is an  $\alpha$ -amino acid in which the  $\alpha$  carboxyl group forms an amide with the nitrogen of  $R^{10}$ , wherein if said amino acid is glutamic acid or aspartic acid, the non- $\alpha$  carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R<sup>12</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

R<sup>13</sup> is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

- 7. The method according to claim 6, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation.
- 8. A method of inhibiting angiogenesis in a malignant tumor, sarcoma, or neoplastic tissue in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

25

$$R^{10} \xrightarrow{OR^{6}} OR^{7} OR^{7} OR^{8} OR^{3} R^{40} OR^{50} OR^{8} OR^{10}$$

wherein

5

10

15

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO<sub>3</sub>H;

R<sup>9</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R<sup>10</sup> is hydrogen, -NO<sub>2</sub>, -NHR<sup>11</sup>, -NHR<sup>13</sup>, -N(R<sup>13</sup>)<sub>2</sub>, -NCH<sub>3</sub>R<sup>13</sup>, -NHCO<sub>2</sub>alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

 $R^{11}$  is an  $\alpha$ -amino acid in which the  $\alpha$  carboxyl group forms an amide with the nitrogen of  $R^{10}$ , wherein if said amino acid is glutamic acid or aspartic acid, the non- $\alpha$  carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R<sup>12</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

20 R<sup>13</sup> is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof.

9. A pharmaceutical composition which comprises a compound of formula I having the structure

wherein

5

15

20

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, and R<sup>8</sup> are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO<sub>3</sub>H;

10 R<sup>9</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

 $R^{10}$  is hydrogen, -NO<sub>2</sub>, -NHR<sup>11</sup>, -NHR<sup>13</sup>, -N( $R^{13}$ )<sub>2</sub>, -NCH<sub>3</sub>R<sup>13</sup>, -NHCO<sub>2</sub>alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

$$- \frac{1}{2} - NH$$

Z is O or S;

 $R^{11}$  is an  $\alpha$ -amino acid in which the  $\alpha$  carboxyl group forms an amide with the nitrogen of  $R^{10}$ , wherein if said amino acid is glutamic acid or aspartic acid, the non- $\alpha$  carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R<sup>12</sup> is hydrogen, CN, NO<sub>2</sub>, halo, CF<sub>3</sub>, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, acyl of 2-7 carbon atoms, or benzoyl;

R<sup>13</sup> is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl;

or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.