Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision Assigned: Monday, May 6, 2019 Due: Thursday, May 16, 2019

Problem Set 4 Stereo Vision

In this problem set you will implement and test some simple stereo algorithms discussed in class. In each case you will take two images I_l and I_r (a left and a right image) and compute the horizontal disparity (ie., shift) of pixels along each scanline. This is the so-called baseline stereo case, where the images are taken with a forward-facing camera, and the translation between cameras is along the horizontal axis.

1 Block Matching

To get the disparity value at each point in the left image, you will search over a range disparities, and compare the windows using two different metrics mentioned in class: Sum of Absolute Differences (SAD) and Sum of Squared Differences. Do this for windows of size $w \times w$ where w = 1, 5 and 9. The disparity, d, is restricted to be in range DdD. For this assignment we will use D = 8. You should try at least 2 pairs of images and for each show for each window size and each metric disparity image.

2 Dynamic programming

Consider two scanlines $I_l(i)$ and $I_r(j)$. Pixels in each scanline may be matched, or skipped (considered to be occluded in either the left or right image). Let d_{ij} be the cost associated with matching pixel $I_l(i)$ with pixel $I_r(j)$. Here we consider a squared error measure between pixels given by:

$$d_{ij} = \frac{(I_l(i) - I_r(j))^2}{\sigma^2}$$
 (1)

where σ is some measure of pixel noise. The cost of skipping a pixel (in either scanline) is given by a constant c_0 . For the experiments here we will use $\sigma = 2$ and $c_0 = 1$. Given these costs, we can compute the optimal (minimal cost) alignment of two scanlines recursively as follows:

1.
$$D(1,1) = d_{11}$$

2.
$$D(i,j) = min(D(i-1,j-1) + d_{ij}, D(i-1,j) + c_0, D(i,j-1) + c_0)$$

The intermediate values are stored in an N-by-N matrix, D. The total cost of matching two scanlines is D(N, N). Note that this assumes the lines are matched at both ends (and hence have zero disparity there). This is a reasonable approximation provided the images are large relative to the disparity shift. Given D we find the optimal alignment by backtracking. In particular, starting at (i, j) = (N, N), we choose the minimum value of D from (i-1, j-1), (i-1, j), (i, j-1). Selecting (i-1, j) corresponds to skipping a pixel in II (a unit increase in disparity),

Good Luck! Dr. Marwan Torki

Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision Assigned: Monday, May 6, 2019 Due: Thursday, May 16, 2019

while selecting (i, j - 1) corresponds to skipping a pixel in Ir (a unit decrease in disparity). Selecting (i - 1, j - 1) matches pixels (i, j), and therefore leaves disparity unchanged. Beginning with zero disparity, we can work backwards from (N, N), tallying the disparity until we reach (1, 1).

A good way to interpret your solution is to plot the alignment found for single scan line. To display the alignment plot a graph of I_l (horizontal) vs I_r (vertical). Begin at D(N, N) and work backwards to find the best path. If a pixel in I_l is skipped, draw a horizontal line. If a pixel in Ir is skipped, draw a vertical line. Otherwise, the pixels are matched, and you draw a diagonal line. The plot should end at (1, 1).

2.1 Disparity computation

Repeat the process explained above fore each row of the image and compute the disparity maps for image pairs.

3 Deliverables

You are required to deliver the following:

- Your code.
- Report including explanation of your code and the results of a number of test images.

Good Luck! Dr. Marwan Torki