Creazione di una Rete Neurale

Modules

math os

matplotlib.pyplot tensorflow

time

Classes

builtins.object

NNcreators

class NNcreators(builtins.object)

NNcreators (numeroLayer, numeroNodi, percentualeTs, funzione, ModelName, datasetPath)

Classe di operazioni di Rete Neurale

Attributi

reteNeurale: NeuralNetwork Oggetto Rete Neurale column_names: string[]

Nomi di tutte le colonne del dataset

feature_names: string[]

Nomi delle colonne riferite alla caratteristiche

label_name: string

Nome della colonna riferito alla tipologia

class_names: string[] Tipologie di errori

Methods defined here:

_(self, numeroLayer, numeroNodi, percentualeTs, funzione, ModelName, datasetPath)

Inizializzazione degli attributi della reteNeurrale

Parametri

numeroLayer: int

Numero di hidden-layer della Rete Neurale

numeroNodi: int

Numero di nodi per layer

percentualeTs: int

Percentuale del dataset dedicata al training

funzione: string Funzione di decisione ModelName: string Nome della rete

datasetPath: string Percorso del dataset

generazioneDatasets(self)

Generazione dei dataset che vengono utilizzati per training e testing della rete

generazioneFileDatasets(self)

Genera i due file di dataset:

- uno dedicato per il training della rete
- l' altro dedicato al testing della rete

generazioneModello(self)

Generazione della Rete Neurale con le caratteristiche scelte

previsione(self, predictionPath)

Effettua la prediction sul file scelto

Parametri

predictionPath: string

Percorso del file contenente il dataset su cui si deve

effettuare la 'prediction'

Ritorna

```
Risultati della 'prediction' nella forma:
          "Riga: " + i +
          "Previsione: " + nome
Fiore
Predetto + percentualedi
Accuratezza
 risultati(self)
        Salvataggio della Rete Neurale generata
        Ritorna
        testAccuracyResult: string[]
          Percentuale di 'Accuracy' del test effettuato
        trainAccuracyResult: strign[]
          Percentuale di 'Accuracy del training effettuato
 salvataggioRisultati(self)
        Salva l' andamento della Loss e della Accuracy in una immagine (.png)
 setModello(self, percorso)
        Caricamento di una Rete Neurale già configurata
        Parametri
        percorso: string
          Percorso in cui si trova la Rete Neurale scelta
 switch_fun(self, argument)
        Funzione di switch per le varie funzioni possibili
        Parametri
        argument: string
          Stringa contenente il nome della funzione di decisione scelta
        Ritorna
        switcher.get(argument): tf.nn.*
          Funzione di decisione che viene utilizzata nella Rete Neurale
 testing(self)
        Effettua il testing della Rete Neurale
 trainingModello(self)
        Training della Rete Neurale
_email___ = 'ste.lavaggi@gmail.com matteo.cardano@gmail.com'
```

Data

__email__ = ste.lavaggi@gmail.com matteo.cardano@gmail.com __maintainer__ = 'Matteo Cardano, Stefano Lavaggi' __warningregistry__ = {'version': 12}

Author

Matteo Cardano, Stefano Lavaggi

ris: string[]