Assignment 4

September 29, 2022

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume that $\lim_{x\to 0} f(x) = L$ exists. Prove that L = 0, and then prove that f has a limit at every point $c \in \mathbb{R}$.
- 2. Consider two functions f, g.
 - (a) Show that if both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} (f(x)+g(x))$ exist, then $\lim_{x\to c} g(x)$ exists.
 - (b) If both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} f(x)g(x)$ exist,, does it follow that $\lim_{x\to c} g(x)$ exists?
- 3. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f+g and fg have limits at c.
- 4. Show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.
- 5. Show that if $f:(a,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x)=L$ where $L\in\mathbb{R}$, then $\lim_{x\to\infty}f(x)=0$.
- 6. Let $f(x) = \frac{\sqrt{1+3x^2}-1}{x^2}$ for $x \neq 0$. Find the limit of $\lim_{x\to 0} f(x)$.