Find the local quadratic approximation of f at $x=x_0$, and use that approximation to find the local linear approximation of f at x_0 . Use a graphing utility to graph f and the two approximations on the same screen.

1. a.
$$f(x) = e^{-x}$$
; $x_0 = 0$

b.
$$f(x) = \cos x$$
; $x_0 = 0$

- 3. a. Find the local quadratic approximation of $f(x) = \sqrt{x}$ at $x_0 = 1$.
 - b. Use the result obtained in part (a) to approximate $\sqrt{1.1}$, and compare your approximation to that produced by your calculating utility. [Note: See Example 1 of section 3.5]
- 5. Use an appropriate local quadratic approximation to approximate $\tan 61^{\circ}$, and compare the approximation to that produced directly by your calculating utility.
- 7-16 Find the Maclaurin polynomials of orders n=0, 1, 2, 3, and 4, and then find the nth Maclaurin polynomials for the function in sigma notation.

7.
$$e^{-x}$$

11.
$$ln(1 + x)$$

15.
$$x \sin x$$

17-24 Find the Taylor polynomials of orders n=0, 1, 2, 3, and 4 about $x = x_0$, and then find the nth Taylor polynomial for the function in sigma notation.

17.
$$e^x$$
; $x_0 = 1$

19.
$$\frac{1}{x}$$
; $x_0 = -1$

21.
$$\sin \pi x$$
; $x_0 = \frac{1}{2}$

23.
$$\ln x$$
; $x_0 = 1$

- 25. a. Find the third Maclaurin polynomial for $f(x) = 1 + 2x x^2 + x^3$
 - b. Find the third Taylor polynomial about x=1 for $f(x)=1+2(x-1)-(x-1)^2+(x-1)^3$

Use the method of Example 7 to approximate the given expression to specified accuracy. Check your answer to that produced directly by your calculating utility.

- 35. \sqrt{e} ; four decimal-place accuracy
- 36. $\frac{1}{e}$; three decimal-place accuracy
- 37. Which of the functions graphed in the following figure is most likely to have $p(x) = 1 x + 2x^2$ as its second-order Maclaurin polynomial? Explain your reasoning.

