

基礎電腦圖學

Ch03.基本數學相機與投影

Objective

- Vector & Matrix •
- \bullet Coordinate systems and Transformations \circ
- Camera system and projection •
- Coordinate system relevant To Rendering •

What You' II Learn in This Lecture

Vector & Matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + cz + d \\ ex + fy + gz + h \\ ix + jy + kz + l \\ 1 \end{bmatrix}$$

Vector

• A vector can be thought of a *point* in a space or a *direction* from the origin to the point

Vector Dot Product

$$\vec{A} \cdot \vec{B} = \sum_{i}^{n} \vec{A}_{i} \cdot \vec{B}_{i} = |\vec{A}| |\vec{B}| \cos \theta$$

Vector Cross Product

• Rule of right han $\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \cdot \sin \theta \, n$, where n =the length of unit vector

Matrix

• A Matrix is a rectangle array of number, symbols or expressions that arrange in rows and columns

Matrix Product

• *if* **A** is m \times n matrix & **B** is n \times p matrix \rightarrow **A** · **B** is m \times p matrix

Coordinate Systems and Transformations

Why Different Coordinate

- Different coordinate in space has it's own purpose and functionality.
 - The geometry date in object is more convenient to descried in object space.
 - The relation between objects is more convenient to descried in world space.
 - In Projection system sequence, object's data needs to transfer to each relevant coordinate space to correctly rendering on the screen.

Transformation matrix & coordinate

- To generalize transformation, the object's coordinate will be transfer to 3D homogeneous coordinate.
- The transformation(translation, rotation...) can be stored into 4×4 transformation matrix.

Translation Transformation

 $\overline{P}(x, y, z)$ translate (a, b, c)in space to $\overline{P'}$

Thought of Transformation in Spaces

"I understand how the engines work now. It came to me in a dream. The engines don't move the ship at all. The ship stays where it is and the engines move the universe around it."

— Futurama

Rotation Transformation

Rotation Transformation

 $\overline{P}(x,y,z)$ rotate around x_axis with θ degreed in space to $\overline{P'}$

$$\mathbf{M}_{\text{rotation}} \cdot \overline{\mathbf{P}} = \overline{\mathbf{P}'} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \cos\theta \cdot \mathbf{y} - \sin\theta \cdot \mathbf{z} \\ \sin\theta \cdot \mathbf{y} + \cos\theta \cdot \mathbf{z} \\ 1 \end{bmatrix}$$

 $\overline{P}(x, y, z)$ rotate around y_axis with θ degreed in space to $\overline{P'}$

$$\mathbf{M}_{rotation} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta \cdot x + \sin\theta \cdot z \\ y \\ -\sin\theta \cdot x + \cos\theta \cdot z \\ 1 \end{bmatrix}$$

Rotation Transformation(cont.)

 $\overline{P}(x, y, z)$ rotate around z_axis with θ degreed in space to $\overline{P'}$

$$\mathbf{M}_{rotation} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta \cdot x - \sin\theta \cdot y \\ \sin\theta \cdot x + \cos\theta \cdot y \\ z \\ 1 \end{bmatrix}$$

Different in Rotation Order

Scaling Transformation

 $\overline{P}(x, y, z)$ scaling with each axis by (a, b, c) in space to $\overline{P'}$

$$\mathbf{M}_{\text{scaling}} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} a \cdot x \\ b \cdot y \\ c \cdot z \\ 1 \end{bmatrix}$$

Reflection Transformation

 $\overline{P}(x, y, z)$ Reflection by x_axis in space to \overline{P}'

$$\mathbf{M}_{\text{reflection(x)}} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -x \\ y \\ z \\ 1 \end{bmatrix}$$

Shearing Transformation

Shearing (with horizontal direction)

Shearing in 2D/3D Dimension

2D: one plane shearing

3D: three plane shearing

Shearing with direction D

Shearing Transformation

 $\overline{P}(x,y,z)$ Shearing by each plane in space to $\overline{P'}$

$$\mathbf{M}_{shearing} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} 1 & sh_x^y & sh_x^z & 0 \\ sh_x^x & 1 & sh_y^z & 0 \\ sh_z^x & sh_z^y & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + sh_x^y \cdot y + sh_x^z \cdot z \\ sh_x^y \cdot x + y + sh_y^z \cdot z \\ sh_z^x \cdot x + sh_z^y \cdot y + z \\ 1 \end{bmatrix}$$

Perspective Transformation

 $\overline{P}(x,y,z)$ Perspective transform with each axis by (X,Y,Z) in space to $\overline{P^*}$

$$\mathbf{M}_{\text{persepective}} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ X & Y & Z & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ X \cdot x + Y \cdot y + Z \cdot z + 1 \end{bmatrix}$$

Let
$$(X \cdot x + Y \cdot y + Z \cdot z) = r$$
, $\overline{P'}$:
$$\begin{bmatrix} x \\ y \\ z \\ r+1 \end{bmatrix} = \overline{P^*}$$
:
$$\begin{bmatrix} \frac{x}{z} \\ \frac{y}{z} \\ 1 \\ r+1 \end{bmatrix}$$

Different order in Transformation

Camera System And Projection

Camera system

Perspective Projection

Perspective Projection

 $\overline{P}(x, y, z)$ Project to the plane(z = d) to $\overline{P'}$

$$\mathbf{M}_{\text{persepective}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

$$\mathbf{M}_{\text{persepective}} \cdot \overline{P} = \overline{P'} \to \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \cdot \begin{bmatrix} X \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ y \\ z \\ \frac{z}{d} \end{bmatrix} = \begin{bmatrix} \frac{x \cdot d}{z} \\ \frac{y \cdot d}{z} \\ \frac{d}{1} \end{bmatrix}$$

Orthographic Projection

Orthographic Projection

 $\overline{P}(x, y, z)$ Project to the plane(z = 0) to $\overline{P'}$

$$\mathbf{M}_{\text{orthographic}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{\text{orthographic}} \cdot \overline{P} = \overline{P'} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ 1 \end{bmatrix}$$

Coordinate System Relevant To Rendering

Standard sequence of transforms

Object Space Object space

Object space

 \overline{P} in object space = (x,y)

World space

 \overline{P} in world space = $(x,y) + \overline{M}$

World Space

Object space to World space

Modeling transform

Camera Space

World space to Camera space

Camera transformaion

Camera matrix setting

Canonical Space

Screen Space

Canonical coordinate space

Viewport transformation

Screen coordinate space

Sequence of Transforms

Standard sequence of transforms

Model view matrix & Projection matrix

 $\mathbf{M}_{\mathrm{GL}_{\mathrm{ModelVIEW}}} = \mathbf{M}_{\mathrm{modeling}} \cdot \mathbf{M}_{\mathrm{transformation}}$ $\mathbf{M}_{\mathrm{GL}_{\mathrm{PROJECTION}}} = \mathbf{M}_{\mathrm{projection}} \cdot \mathbf{M}_{\mathrm{viewport}}$

glMatrixMode

void glMatrixMode(GLenum mode);

- function: Specify which matrix is the current matrix.
- **mode**: Specifies which matrix stack is the target for subsequent matrix operations. There can accept three different values.
 - GL_MODELVIEW
 - GL_PROJECTION
 - GL_TEXTURE

glLoadIdentity

void glLoadIdentity(void);

• function: Replace the current matrix with the identity matrix.

glTranslatef

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

- function: Multiply the current matrix by a translation matrix.
- \mathbf{x} , \mathbf{y} , \mathbf{z} : Specify the x, y, and z coordinates of a translation vector.

glRotatef

void glRotatef(Glfloat angle, GLfloat x, GLfloat y, GLfloat z);

- function: Multiply the current matrix by a rotation matrix.
- angle: Specifies the angle of rotation, in degrees.
- \mathbf{x} , \mathbf{y} , \mathbf{z} : Specify the x, y, and z coordinates of a vector, respectively.

glViewport

void glViewport (GLint x, GLint y, GLsizei width, GLsizei height);

- function: Set the viewport.
- \mathbf{x} , \mathbf{y} : Specify the lower left corner of the viewport rectangle, in pixels. The initial value is (0,0).
- width, height: Specify the width and height of the viewport. When a GL context is first attached to a window, width and height are set to the dimensions of that window.

gluPerspective

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear,
GLdouble zFar);

- **function**: Set up a perspective projection matrix.
- **fovy**: Specifies the field of view angle, in degrees, in the *y* direction.
- **aspect**: Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
- **znear**: Specifies the distance from the viewer to the near clipping plane (always positive).
- **zfar**: Specifies the distance from the viewer to the far clipping plane (always positive).

glGetDoublev

void glGetDoublev(GLenum pname, GLfloat* params);

- function: return the value or values of a selected parameter.
- **pname**: Specifies the parameter value to be returned. The symbolic constants in the list below are accepted.
- params: Returns the value or values of the specified parameter.

Camera Example

```
GL_MODELVIEW Example
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -5.0);
glRotatef(-45.0, 0.0, 1.0, 0.0);
GL_PROJECTION Example
aspect = width * 1.0f / height;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glViewport(0, 0, width, height);
gluPerspective(60.0f, aspect, 0.1f, 10.0f);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
```


Program: Projection control

