Course Introduction Data Science

Sabine De Vreese Lieven Smits Pieter Van Der Helst Bert Van Vreckem 2024–2025

GEN1

Contents

Course guide

Introduction

Course guide

Learning goals

- Descriptive Statistics
 - Knows some descriptive measures for data (central tendency, dispersion).
 - o Can calculate some descriptive measures for data using statistical software (Python).
- Data visualisation
 - o Knows different types of plots to represent data visually.
 - o Can visualize data using appropriate plots
- Probability
 - o Knows the basic rules with regard to calculating with probabilities.
 - o Knows the properties of some important probability distribution

Learning goals

- Bivariate analysis
 - Can quantify and appropriately test the relationship between two variables.
 - o Can construct a simple linear model to show the relationship between two or more variables.
- Time series analysis
 - Can discuss some common models to predict time series and/or detect anomalies.
 - o Can indicate the importance of testing the accuracy of a model in a methodologically correct manner.

Course contents

- Introduction, sampling
- Univariate analysis
- Probability, central limit theorem, statistical testing
- Bivariate analysis: qualitative variables
- Bivariate analysis: qualitative vs. quantitative variables
- Bivariate analysis: quantitative variables
- Time series analysis

Learning materials

Published on Chamilo!

- Course material: Jupyter Notebooks with example code and lab assignments: https://github.com/HoGentTIN/dsai-labs
- Lecture slides

Software: choose one of the options below:

- Online: Google Colab (https://colab.research.google.com)
- Local:
 - o Python (+libraries)
 - o Visual Studio Code + Python/Jupyter extensions
 - o Github account, Git client

Teaching methods

- 3 hours per week
- classroom instruction (lecture, demo)
- exercises & lab assignments

Recommendations for learning

- Attend classes!
- Take notes
- Use effective learning strategies
- Make an effort

Planning

Wk	Subject
1	Course intro, sampling
2	
3	Univariate analysis
4	
5	Probability, central limit theorem
6	Statistical testing: z-test
7	Statistical testing: Student <i>t</i> -test

Planning

Wk	Subject
8	Bivariate analysis:
	χ^2 test, Cramér's V
_	Easter holiday
9	Bivariate analysis: qual. vs. quant. variable
	two-sample t-test, effect size
10	Bivariate analysis: quantitative variables
	Linear regression
11	Time series analysis
12	Catch-up session (if needed)

Assessment

- Written open book exam
- On your computer
- Assignment = Jupyter Notebook
- Fill out responses in the notebook & hand it in

Assessment

Open book: what is allowed?

- Course material and slides, learning path on Chamilo
- Textbook (PDF, printed)
- Your personal notes, solutions to exercises
- Software for statistical analysis (Google Colab, Python, VS Code)
- Internet search

Assessment

Open book: what is not allowed?

- Communication with others (Discord, Messenger, ...)
- Forums, Q&A sites, social media, ...
- Use of LLMs: ChatGPT, Github Copilot, Bing Chat, Gemini, ...
- Earplugs with electronics (e.g. Bluetooth)

Introduction

- Data visualisation mistakes and gaffes are common
- Media outlets, politicians, special interest groups, shady people on Facebook, ...misrepresent or misinterpret objective data to "prove" their point.

On average, US presidents have been charged with ≈ 1.978 felony charges.

On average, US presidents have been charged with \approx 1.978 felony charges.

Why learn data science?

- The amount of data is exploding
- Data drives business decisions
- It's important to analyse and visualise data correctly!
- Tools and data are more accessible than ever

