Løsningsforslag til utvalgte oppgaver i kapittel 11

I kapittel 11 var det bare seksjonene 11.1 og 11.2 som var pensum høsten 2000. I disse seksjonene er det Taylor-polynomer og Taylors formel med restledd som står i fokus. Siden dette er nytt stoff for de fleste, har jeg laget løsningsforslag til alle oppgavene som ble gitt fra dette kapittelet.

Oppgave 11.1.1

Vi skal finne Taylorpolynomet av grad 4 til $f(x) = e^{x^2}$ i punktet 0, og bestemmer først de deriverte:

$$f(x) = e^{x^{2}} f(0) = 1$$

$$f'(x) = 2xe^{x^{2}} f'(0) = 0$$

$$f''(x) = (2 + 4x^{2})e^{x^{2}} f''(0) = 2$$

$$f'''(x) = (12x + 8x^{3})e^{x^{2}} f'''(0) = 0$$

$$f''''(x) = (12 + 48x^{2} + 16x^{4})e^{x^{2}} f''''(0) = 12$$

Taylorpolynomet av grad 4 blir da:

$$T_4 f(x) = \sum_{k=0}^4 \frac{f^k(0)}{k!} (x - 0)^k = \frac{1}{0!} + \frac{0}{1!} x + \frac{2}{2!} x^2 + \frac{0}{3!} x^3 + \frac{12}{4!} x^4$$
$$= \underbrace{1 + x^2 + \frac{1}{2} x^4}_{}$$

Kommentar: Legg merke til at vi kunne ha funnet dette lettere ved først å bestemme Taylorpolynomet $T_2g(y)$ til $g(y) = e^y$ av grad 2 (se oppgave 11.2.1) og deretter anvende dette på $y = x^2$. Det gir umiddelbart

$$T_4 f(x) = T_2 g(y) = 1 + y + \frac{1}{2}y^2 = 1 + x^2 + \frac{1}{2}x^4$$

Oppgave 11.1.3

Vi skal finne Taylorpolynomet av grad 4 til $f(x) = \sin x$ i punktet $\frac{\pi}{4}$, og bestemmer først de deriverte:

$$f(x) = \sin x \qquad \qquad f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$f'(x) = \cos x \qquad \qquad f'\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$f''(x) = -\sin x \qquad \qquad f''\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$f'''(x) = -\cos x \qquad \qquad f'''\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$f''''(x) = \sin x \qquad \qquad f''''\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Taylorpolynomet blir da:

$$T_4 f(x) = \sum_{k=0}^{4} \frac{f^k(\pi/4)}{k!} \left(x - \frac{\pi}{4} \right)^k = \frac{\sqrt{2}}{0! \, 2} + \frac{\sqrt{2}}{1! \, 2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2! \, 2} \left(x - \frac{\pi}{4} \right)^2 - \frac{\sqrt{2}}{3! \, 2} \left(x - \frac{\pi}{4} \right)^3 + \frac{\sqrt{2}}{4! \, 2} \left(x - \frac{\pi}{4} \right)^4$$

$$= \frac{\sqrt{2}}{2} \left(1 + \left(x - \frac{\pi}{4} \right) - \frac{1}{2} \left(x - \frac{\pi}{4} \right)^2 - \frac{1}{6} \left(x - \frac{\pi}{4} \right)^3 + \frac{1}{24} \left(x - \frac{\pi}{4} \right)^4 \right)$$

Oppgave 11.1.7

Vi skal finne Taylorpolynomet av grad 3 til $f(x) = \arctan x$ i punktet 0, og bestemmer først de deriverte:

$$f(x) = \arctan x \qquad f(0) = 0$$

$$f'(x) = \frac{1}{1+x^2} \qquad f'(0) = 1$$

$$f''(x) = -\frac{2x}{(1+x^2)^2} \qquad f''(0) = 0$$

$$f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3} \qquad f'''(0) = -2$$

Taylorpolynomet blir da:

$$T_4 f(x) = \sum_{k=0}^{4} \frac{f^k(0)}{k!} (x - 0)^k = \frac{0}{0!} + \frac{1}{1!} x + \frac{0}{2!} x^2 - \frac{2}{3!} x^3 = \underline{x - \frac{1}{3} x^3}$$

Oppgave 11.2.1

Vi skal først finne Taylorpolynomet av grad 4 til $f(x) = e^x$ i punktet 0. Her er alle de deriverte lik funksjonen selv, så vi har $f^{(n)}(x) = f(x) = e^x$

og $f^{(n)}(0) = f(0) = 1$. Taylorpolynomet av grad 4 er da:

$$T_4 f(x) = \sum_{k=0}^4 \frac{f^k(0)}{k!} (x - 0)^k = \frac{1}{0!} + \frac{1}{1!} x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4$$
$$= \underbrace{1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4}$$

Vi skal vise at $|R_4f(b)| < \frac{e^b}{120}b^5$ på intervallet [0,b]. Ifølge korollar 11.2.2 er en øvre skranke for restleddet gitt ved at

$$|R_4f(b)| \le \frac{M}{(4+1)!}|b-0|^{(4+1)}$$

hvor M er en øvre skranke for $|f^{(4+1)}(x)| = e^x$ på intervallet. Men e^x er en voksende funksjon og antar sin største verdi i høyre endepunkt, så vi kan bruke $M = e^b$ i korollaret. Da følger det umiddelbart at

$$|R_4f(b)| \le \frac{M}{(4+1)!}|b-0|^{(4+1)} = \frac{e^b}{\underline{120}}b^5$$

Oppgave 11.2.3

Vi skal først finne Taylorpolynomet av grad 3 til $f(x) = \ln x$ i punktet 1, og bestemmer først de deriverte:

$$f(x) = \ln x$$
 $f(1) = 0$
 $f'(x) = \frac{1}{x}$ $f'(1) = 1$
 $f''(x) = -\frac{1}{x^2}$ $f''(1) = -1$
 $f'''(x) = \frac{2}{x^3}$ $f'''(1) = 2$

Taylorpolynomet av grad 3 er da:

$$T_3 f(x) = \sum_{k=0}^{3} \frac{f^k(0)}{k!} (x-1)^k = \frac{0}{0!} + \frac{1}{1!} (x-1) - \frac{1}{2!} (x-1)^2 + \frac{2}{3!} (x-1)^3$$
$$= (x-1) - \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3$$

Vi skal vise at $|R_3f(b)| < \frac{|b-1|^4}{4}$ på intervallet [1,b]. Siden $|f^4(x)| = |-\frac{6}{x^4}| = \frac{6}{x^4}$ er en avtagende funksjon som oppnår sin største verdi i venstre endepunkt, blir $|f^4(x)| \le 6$ på intervallet [1,b]. Ifølge korollar 11.2.2 har vi da

$$|R_3f(b)| \le \frac{6}{(3+1)!}|b-1|^{(3+1)} = \frac{|b-1|^4}{4}$$

Oppgave 11.2.5

Vi skal finne en tilnærmet verdi for $\sqrt{101}$ og vil bruke Taylorpolynomet av grad 2 til funksjonen $f(x) = \sqrt{x}$ i punktet 100. Først bestemmer vi de deriverte:

$$f(x) = x^{1/2} f(100) = 10$$

$$f'(x) = \frac{1}{2}x^{-1/2} f'(100) = \frac{1}{20}$$

$$f''(x) = -\frac{1}{4}x^{-3/2} f''(100) = -\frac{1}{4000}$$

Taylorpolynomet av grad 2 er da:

$$T_2 f(x) = \sum_{k=0}^{2} \frac{f^k(0)}{k!} (x - 100)^k = \frac{10}{0!} + \frac{1}{1! \cdot 20} (x - 100) - \frac{1}{2! \cdot 4000} (x - 100)^2$$
$$= 10 + \frac{1}{20} (x - 100) - \frac{1}{8000} (x - 100)^2$$

Vårt estimat for $\sqrt{101}$ blir da:

$$\sqrt{101} \approx T_2 f(101) = 10 + \frac{1}{20} - \frac{1}{8000} = \underline{10.049875}$$

Til slutt skal vi gi et overslag over nøyaktigheten til estimatet. Vi ser at $|f^3(x)|=|\frac{3}{8}x^{-5/2}|$ avtar når x vokser. Derfor er

$$|f^3(x)| \le \frac{3}{8}100^{-5/2} = \frac{3}{8}10^{-5}$$

når x > 100. Ved korollar 11.2.2 er derfor feilen til estimatet begrenset oppad ved

$$|R_2f(101)| \le \frac{\frac{3}{8}10^{-5}}{(2+1)!}|101 - 100|^{(2+1)} = \frac{1}{16}10^{-5} = \underline{6.25 \cdot 10^{-7}}$$

Oppgave 11.2.6

Ved å bruke Taylorpolynomet av grad 2 til funksjonen $f(x) = e^x$ i punktet 0 har vi

$$f(x) = T_2 f(x) + R_2 f(x) = 1 + x + \frac{1}{2}x^2 + R_2 f(x)$$

der restleddet ifølge korollar 11.2.2 er begrenset ved

$$|R_2 f(x)| \le \frac{e^1}{3!} |x|^3 \le \frac{1}{2} |x|^3$$

for alle x < 1, siden $f'''(x) = e^x$ er voksende. Det følger at

$$\frac{f(x) - 1 - x}{x^2} = \frac{\frac{1}{2}x^2 + R_2f(x)}{x^2} = \frac{1}{2} + \frac{R_2f(x)}{x^2}$$

der

$$\left| \frac{R_2 f(x)}{x^2} \right| \le \frac{1}{2} |x|$$

for x < 1. Den siste ulikheten viser at $\lim_{x\to 0} \frac{R_2 f(x)}{x^2} = 0$, og dermed at

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2} + \lim_{x \to 0} \frac{R_2 f(x)}{x^2} = \frac{1}{2}$$

Oppgave 11.2.11

a) Vi skal finne Taylorpolynomet av grad 2 til $f(x) = \frac{1}{1+x}$ om punktet 0, og bestemmer først de deriverte.

$$f(x) = \frac{1}{1+x} \qquad f(0) = 1$$

$$f'(x) = -\frac{1}{(1+x)^2} \qquad f'(0) = -1$$

$$f''(x) = \frac{2}{(1+x)^3} \qquad f''(0) = 2$$

$$f'''(x) = -\frac{6}{(1+x)^4} \qquad f'''(0) = -6$$

Taylorpolynomet av grad 2 er da:

$$T_2 f(x) = \sum_{k=0}^{2} \frac{f^k(0)}{k!} (x-0)^k = \underline{1-x+x^2}$$

b) Vi skal nå finne en tilnærmet verdi for integralet

$$\int_0^{1/2} \frac{dx}{1 + x^4}$$

ved å bruke Taylorpolynomet til f. La $g(x) = f(x^4) = \frac{1}{1+x^4}$. Siden vi har

$$f(x) = T_2 f(x) + R_2 f(x)$$

der korollar 11.2.2 sikrer at

$$|R_2 f(x)| \le \left| \frac{f'''(0)}{3!} x^3 \right| = \frac{6}{3!} x^3 = x^3$$

for alle x > 0, følger det at

$$g(x) = T_2 g(x) + R_2 g(x)$$

der

$$T_2g(x) = T_2f(x^4) = 1 - x^4 + x^8$$

og

$$|R_2g(x)| = |R_2f(x^4)| \le x^{12}$$

Dette gir umiddelbart at

$$\int_0^{1/2} g(x) \, dx = \int_0^{1/2} T_2 g(x) \, dx + \int_0^{1/2} R_2 g(x) \, dx$$

der

$$\int_0^{1/2} T_2 g(x) dx = \int_0^{1/2} (1 - x^4 + x^8) dx$$
$$= \left[x - \frac{1}{5} x^5 + \frac{1}{9} x^9 \right]_0^{1/2} = \frac{11381}{23040} \approx 0.493967$$

og

$$\left| \int_0^{1/2} R_2 g(x) \, dx \right| \le \int_0^{1/2} x^{12} \, dx = \left[\frac{1}{13} x^{13} \right]_0^{1/2} = \frac{1}{106496} < 10^{-5}$$

Men det betyr at

$$0.493957 < \int_0^{1/2} g(x) \, dx < 0.493977$$

Merknad: Dersom vi hadde benyttet Lagranges restleddformel (gitt i oppgave 11.2.16), som viser at restleddet $R_2g(x)$ faktisk er negativt, kunne vi redusert intervallengden til det halve og konstatert at integralet ligger mellom 0.493957 og 0.493967. (Den riktige verdien er 0.493958 med seks korrekte desimaler.)

Oppgave 11.2.14

a) Vi skal vise at det for hver $x \in (-1, \infty)$ finnes et tall z mellom 0 og x slik at

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16} \cdot \frac{1}{(1+z)^{\frac{5}{2}}}x^3$$

La $f(x) = \sqrt{x+1}$. Vi vil finne Taylorpolynomet av grad 2 til f(x) i punktet 0, og bestemmer først de deriverte.

$$f(x) = \sqrt{1+x} \qquad f(0) = 1$$

$$f'(x) = \frac{1}{2\sqrt{1+x}} \qquad f'(0) = \frac{1}{2}$$

$$f''(x) = \frac{1}{2} \left(-\frac{1}{2}\right) (1+x)^{-\frac{3}{2}} \qquad f''(0) = -\frac{1}{4}$$

$$f'''(x) = \frac{3}{8} (1+x)^{-\frac{5}{2}}$$

Taylorpolynomet av grad 2 i punktet 0 blir dermed

$$T_2 f(x) = \sum_{k=0}^{2} \frac{f^k(0)}{k!} (x - 0)^k = \frac{1}{0!} + \frac{\frac{1}{2}}{1!} x + \frac{-\frac{1}{4}}{2!} x^2 = 1 + \frac{1}{2} x - \frac{1}{8} x^2$$

Ved Lagranges restleddsformel (se oppgave 11.2.16) kan restleddet uttrykkes som

$$R_2 f(x) = \frac{f^{(3)}(z)}{3!} (x - 0)^3 = \frac{1}{16} \cdot \frac{1}{(1+z)^{\frac{5}{2}}} x^3$$

for en z mellom 0 og x. Ialt har vi da at

$$\sqrt{1+x} = T_2 f(x) + R_2 f(x)$$

$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16} \cdot \frac{1}{(1+z)^{\frac{5}{2}}}x^3$$

for en z mellom 0 og x.

b) La $g(x) = \frac{1}{3}x^3$. Da er $g'(x) = x^2$ og buelengden s av grafen til g(x) på intervallet [0,1] er gitt ved

$$s = \int_0^1 \sqrt{1 + g'(x)^2} \, dx = \int_0^1 \sqrt{1 + x^4} \, dx$$

Tilnærmer vi integranden med Taylorpolynomet av grad 2 til $f(x^4)$ i punktet 0, får vi følgende estimat for buelengden:

$$s \approx \int_0^1 \left(1 + \frac{1}{2}x^4 - \frac{1}{8}x^8 \right) dx$$
$$= \left[x + \frac{1}{2} \cdot \frac{1}{5}x^5 - \frac{1}{8} \cdot \frac{1}{9}x^9 \right]_0^1$$
$$= \left[x + \frac{1}{10}x^5 - \frac{1}{72}x^9 \right]_0^1$$

$$= 1 + \frac{1}{10} - \frac{1}{72}$$
$$= \frac{391}{360} \approx 1.086$$

Feilen vi da har gjort, er gitt ved integralet av restleddet:

$$\int_0^1 R_2 f(x^4) \, dx = \int_0^1 \frac{1}{16} \cdot \frac{1}{(1+z)^{\frac{5}{2}}} x^{12} \, dx$$

$$\leq \frac{1}{16} \int_0^1 x^{12} \, dx = \frac{1}{16} \left[\frac{1}{13} x^{13} \right]_0^1 = \frac{1}{\underline{208}}$$

Dette er mindre enn den tillatte feilmarginen på $\frac{1}{200}$. For å få frem ulikheten benyttet vi at z er positiv (siden z ligger mellom 0 og x^4), slik at $\frac{1}{(1+z)^{\frac{5}{2}}} \leq 1$.

Oppgave 11.2.17

Vi lar $T_n(x) = a_0 + a_1(x-a) + \cdots + a_n(x-a)^n$ være Taylorpolynomet av grad n til funksjonen f(x) om punktet x = a. Siden

$$f(x) = T_n f(x) + R_n f(x) = T_{n-1} f(x) + a_n (x - a)^n + R_n f(x)$$

har vi da

$$\lim_{x \to a} \frac{f(x) - T_{n-1}f(x)}{(x-a)^n} = \lim_{x \to a} \frac{a_n(x-a)^n + R_nf(x)}{(x-a)^n} = a_n + \lim_{x \to a} \frac{R_nf(x)}{(x-a)^n}$$

Og da $f^{(n+1)}(x)$ er kontinuerlig, og dermed begrenset, i en (lukket) omegn om a, finnes det en M slik at $|R_n f(x)| \leq \frac{M}{(n+1)!} |x-a|^{n+1}$ (korollar 11.2.2). Men da blir

$$\left| \frac{R_n f(x)}{(x-a)^n} \right| \le \frac{M}{(n+1)!} |x-a|$$

for alle x i en slik omegn. Dette viser at $\lim_{x\to a} \frac{R_n f(x)}{(x-a)^n} = 0$. Ialt har vidermed vist at

$$\lim_{x \to a} \frac{f(x) - T_{n-1}f(x)}{(x-a)^n} = a_n$$