4.20.26 - 288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/ PC4-2666/PC4-3200 DDR4 SDRAM Unbuffered DIMM Design Specification

DDR4 SDRAM UDIMM Design Specification

Revision 1.22

February 2018

Table of Contents

1	Proc	luct Description	5
2	Envi	ronmental Requirements	6
3	Con	nector Pinout and Signal Description	7
4	Pow	er Details	12
	4.1	DIMM Voltage Requirements	
	4.2	Rules for Power-Up Sequence	
	4.3	Feed Through Voltage (VFT)	.13
	4.4	12 V Power	.13
5	Com	ponent Details	14
	5.1	Component Types and Placement	
	5.2	Decoupling Guidelines	.17
6	DIMI	M Design Details	. 18
	6.1	Signal Groups	.18
	6.2	Explanation of Net Structure Diagrams	
	6.3	General Net Structure Routing Rules	
		6.3.1 Clock, Control, and Address/Command Groups	.19
		6.3.2 Lead-in vs. Loaded Sections	. 20
		6.3.3 Length/Delay Matching to SDRAM Devices	20
		6.3.4 Velocity Compensation	21
		6.3.5 Load/Delay Compensation	21
		6.3.6 Data and Strobe Group	21
		6.3.7 ALERT_n Wiring	21
		6.3.8 Via Compensation	.22
		6.3.9 Plane Referencing	23
	6.4	Rules for Higher Speeds (2666 Mb/s or Higher	
	6.5	Address Mirroring	
	6.6	DIMM Routing Space Constraints	
	6.7	6.7.1 Via Size	
		6.7.2 Component Pad Sizes and Geometry	
		6.7.4 Clock Termination	
		6.7.5 DQ Stub Resistor	
		6.7.6 ZQ Calibration Wiring	
	6.8	6.7.7 TEN Wiring	
	6.9	Impedance Targets	
		SPD-TSE Wiring and Placement	
		DQ Mapping to Support CRC	
7		al Presence Detect	
•	7.1	Serial Presence Detect Definition	
_			
8		luct Label	
	8.1	DDR4 DIMM Label Format for DRAM-only module types DDR4 DIMM Label Format for Hybrid module types	
•	8.2	• • • • • • • • • • • • • • • • • • • •	
9	JED	EC Process	45

List of Tables

Table 1 — Product Family Attributes	5
Table 2 — Environmental Parameters	6
Table 3 — Pin Definition	7
Table 4 — Input/Output Functional Description	8
Table 5 — DDR4 288 Pin UDIMM Pin Wiring Assignments	10
Table 6 — DDR4 UDIMM DC Operating Voltage - 1.2 V operation	12
Table 7 — DDR4 x8 SDRAM DIMM Pad Array	15
Table 8 — DDR4 x16 SDRAM DIMM Pad Array	16
Table 9 — UDIMM Decoupling Capacitor Guidelines	17
Table 10 — CK, CTRL, and ADD/CMD Group Length Matching Rules	19
Table 11 — Data and Strobe Group Length Matching Rules	21
Table 12 — Plane Referencing	23
Table 13 — DIMM Wiring Definition for Address Mirroring	24
Table 14 — Routing Space Constraints	26
Table 15 — Preferred 10 Layer Stackup for UDIMMs	28
Table 16 — Preferred 8 Layer Stackup for UDIMMs	29
Table 17 — Preferred 6 Layer Stackup for UDIMMs	29
Table 18 — Impedance Assignments by Signal Type	30
Table 19 — SPD DQ Nibble Map for CRC	32
Table 20 — Nibble/Byte DQ Map Patterns for CRC	33
Table 21 — Example of DQ Mapping for CRC	34
Table 22 — SPD Address Map	35
Table 23 — SPD Block 0: Base Configuration and DRAM Parameters	35
Table 24 — Preproduction Registration Table for DRAM-Only Module Types	
Table 25 — Preproduction Registration Table for Hybrid Module Types	43

List of Figures

Figure 1 — Graphical View of Recommended Power Sequence	13
Figure 2 — Graphical View of Recommended Power Down Sequence	13
Figure 3 — DIMM Ball Patterns for DDR4 SDRAM Components	14
Figure 4 — Fly-By Topology	18
Figure 5 — Net Structure Example	19
Figure 6 — Example Address Routing Topology	20
Figure 7 — ALERT_n Wiring	22
Figure 8 — Via Compensation Diagram	22
Figure 9 — Block Diagram: SPD-TSE / SPD	31
Figure 10 — Example of DQ Wiring with Mapping for CRC	34

1 Product Description

This specification defines the electrical and mechanical requirements for 288-pin, 1.2 V (VDD), Unbuffered, Double Data Rate, Synchronous DRAM Dual In-Line Memory Modules (DDR4 SDRAM UDIMMs). These DDR4 Unbuffered DIMMs (UDIMMs) are intended for use as main memory when installed in PCs.

Reference design examples are included which provide an initial basis for DDR4 UDIMM designs. Modifications to these reference designs may be required to meet all system timing, signal integrity and thermal requirements for PC4-1600, PC4-1866, PC4-2133, PC4-2400, PC4-2666 and PC4-3200 support. All DDR4 UDIMM implementations must use simulations and lab verification to ensure proper timing requirements and signal integrity in the design.

This specification follows the JEDEC standard DDR4 component specification (refer to JEDEC standard JESD79-4, at www.jedec.org).

Table 1 — Product Family Attributes

DIMM Organization	x64, x72 ECC	Notes
DIMM Dimensions (nominal)	133.35 mm x 31.25 mm	Refer to MO-309
Pin Count	288	
DDR4 SDRAMs Sup- ported	4 Gb, 8 Gb, 12 Gb, 16 Gb, 32 Gb	78/106-ball FBGA package for x8 and 96/112-ball FBGA for x16 devices. Refer to MO-207: x8 variations DT-z, DW-z x16 variations DU-z, DY-z
Capacity	2 GB - 64 GB	
DDR4 SDRAM width	x8, x16	
Serial Presence Detect, Thermal Sensor (SPD- TSE/SPD)	512 byte	TSE2004av and EE1004-v specifications
	PC4 - 1.2 V VDD	
Valtaga Options	VDDSPD: 2.5 V or 3.3 V ± 10%	The VDDSPD supply has VSS as its return path. VDDSPD is separate from the VPP power supply.
Voltage Options	2.5 V VPP	This supply has VSS as its return path. It is a separate supply from VDDSPD.
	12 V	May be available on the connector but not used by UDIMMs
Interface	1.2 V signaling	

2 Environmental Requirements

288-pin Unbuffered DDR4 SDRAM DIMMs are intended for use in standard office environments that have limited capacity for heating and air conditioning.

Table 2 — Environmental Parameters

Symbol	Parameter	Rating	Units	Notes
Topr	Operating Temperature (ambient)	0 to +55	°C	3
Hopr	Operating Humidity (relative)	10 to 90	%	
Тѕтс	Storage Temperature	-50 to +100	°C	1
Нѕтс	Storage Humidity (without condensation)	5 to 95	%	1
PBAR	Barometric Pressure (operating & storage)	105 to 69	kPa	1, 2

Note 1 Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Note 2 Up to 9850 ft.

Note 3 The component maximum case temperature (TCASE) shall not exceed the value specified in the DDR4 DRAM component specification.

3 **Connector Pinout and Signal Description**

Table 3 — Pin Definition

Pin Name	Description	Pin Name	Description
A0-A17 ¹	SDRAM address bus	SCL	I ² C serial bus clock for SPD-TSE
BA0, BA1	SDRAM bank select	SDA	I ² C serial bus data line for SPD-TSE
BG0, BG1	SDRAM bank group select	SA0-SA2	I ² C slave address select for SPD-TSE
RAS_n ²	SDRAM row address strobe	PARITY	SDRAM parity input
CAS_n ³	SDRAM column address strobe	VDD	SDRAM I/O and core power supply
WE_n ⁴	SDRAM write enable	C0, C1, C2	Chip ID lines
CS0_n, CS1_n	DIMM Rank Select Lines	12 V	Optional power Supply on socket but not used on UDIMM
CKE0, CKE1	SDRAM clock enable lines	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	SDRAM on-die termination control lines	VSS	Power supply return (ground)
ACT_n	SDRAM activate	VDDSPD	Serial SPD-TSE positive power supply
DQ0-DQ63	DIMM memory data bus	ALERT_n	SDRAM ALERT_n
CB0-CB7	DIMM ECC check bits	VPP	SDRAM Supply
TDQS0_t-TDQS8_t TDQS0_c-TDQS8_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs. Not used on UDIMMs.		
DQS0_t-DQS8_t	SDRAM data strobes (positive line of differential pair)		
DQS0_c-DQS8_c	SDRAM data strobes (negative line of differential pair)	RESET_n	Set DRAMs to a Known State
DM0_n-DM8_n, DBI0_n-DBI8_n	SDRAM data masks/data bus inversion (x8-based x72 DIMMs)	EVENT_n	SPD signals a thermal event has occurred.
CK0_t, CK1_t	SDRAM clocks (positive line of differential pair)	VTT	SDRAM I/O termination supply
CK0_c, CK1_c	SDRAM clocks (negative line of differential pair)	RFU	Reserved for future use

Note 1 Address A17 is not valid for x8 and x16 based SDRAMs. For UDIMMs this connection pin is NC. Note 2 RAS_n is a multiplexed function with A16.

Note 3 CAS_n is a multiplexed function with A15. Note 4 WE_n is a multiplexed function with A14.

Table 4 — Input/Output Functional Description

Symbol	Туре	I/O Level	Function
CK0_t, CK0_c, CK1_t, CK1_c	Input	VDD	Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
CKE0, CKE1	Input	VDD	Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS0_n, CS1_n, CS2_n, CS3_n	Input	VDD	Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. CS2_n and CS3_n are not used on UDIMMs.
C0, C1, C2	Input	VDD	Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code. Not used on UDIMMs.
ODT0, ODT1	Input	VDD	On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
ACT_n	Input	VDD	Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14.
RAS_n/A16, CAS_n/A15, WE_n/A14	Input	VDD	Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. For example, for activation with ACT_n Low, these are Addresses like A16, A15 and A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command defined in command truth table.
DM_n/DBI_n/ TDQS_t, (DMU_n/ DBIU_n), (DML_n/ DBIL_n)	Input/ Output	VDD	Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DBI_n is an input/output identifying whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations. TDQS is not valid for UDIMMs.
BG0, BG1	Input	VDD	Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4/x8 SDRAM configurations have BG0 and BG1. x16 based SDRAMs only have BG0.
BA0, BA1	Input	VDD	Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
A0 - A17	Input	VDD	Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 SDRAM configuration.
A10 / AP	Input	VDD	Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.

Table 4 — Input/Output Functional Description (Cont'd)

Symbol	Туре	I/O Level	Function
A12 / BC_n	Input	VDD	Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n	CMOS Input	VDD	Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
DQ	Input/ Output	VDD	Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor specific data sheets to determine which DQ is used.
DQS_t, DQS_c, DQSU_t, DQSU_c, DQSL_t, DQSL_c	Input/ Output	VDD	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
TDQS_t, TDQS_c	Output	VDD	Termination Data Strobe: TDQS_t/TDQS_c are not valid for UDIMMs.
PARITY	Input	VDD	Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A16-A0. Input parity should be maintained at the rising edge of the clock and at the same time with command & address with CS_n LOW
ALERT_n	Output	VDD	Alert: It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal recovery transaction is complete. During Using this signal or not is dependent on the system. This is an open drain signal. It requires a pullup resistor on the system.
RFU			Reserved for Future Use. No on DIMM electrical connection is present.
EVENT_n	Output	VDDSPD	I2C thermal event indicator. Open drain, requires a pullup resistor on the system.
SAVE_n	Input/ Output	-	Not used on UDIMMs. UDIMMs will have no connection to this pin. See specifications of NVDIMMs for signal description.
SCL	Input	VDDSPD	Bus clock used to strobe data into and out of I2C devices. Open drain and requires a pullup resistor on the system.
SDA	Input/ Output	VDDSPD	I2C data. Open drain and requires a pullup resistor on the system.
SA0-SA2	Input	VDDSPD	Device address for the SPD.
NC			No Connect: No on DIMM electrical connection is present.
VDD	Supply		Power Supply: 1.2 V +/- 0.06 V
VSS	Supply		Ground
VPP	Supply		DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
VTT	Supply		Power Supply for termination of Address, Command and Control, VDD/2.
12 V	Supply		12 V supply not used on UDIMMs.
VDDSPD	Supply		Power supply used to power the I2C bus on the SPD-TSE.
VREFCA	Supply		Reference voltage for CA

Table 5 — DDR4 288 Pin UDIMM Pin Wiring Assignments

Front Side			Back side	Front Side			Back side
Pin Label	Pin	Pin	Pin Label	Pin Label	Pin	Pin	Pin Label
<i>12 V,</i> NC	1	145	12 V, NC	CKO_t	74	218	CK1_t
VSS	2	146	VREFCA	 СКО_с	75		CK1_c
DQ4	3	147	vss	VDD	76	220	VDD
vss	4	148	DQ5	VTT	77	221	VTT
DQ0	5	149	vss				
VSS	6	150	DQ1		KI	EΥ	
TDQS9_t, DQS9_t, DM0_n, DBI0_n, NC	7	151	vss	EVENT_n	78	222	PARITY
TDQS9_c, DQS9_c, NC	8	152	DQS0_c	A0	79	223	VDD
VSS	9	153	DQS0_t	VDD	80	224	BA1
DQ6	10	154	VSS	BA0	81	225	A10/AP
VSS	11	155	DQ7	RAS_n/A16	82	226	VDD
DQ2	12	156		VDD	83	227	RFU
VSS	13		DQ3	CS0_n	84	228	WE_n/A14
DQ12	14	158		VDD	85		VDD
VSS	15		DQ13	CAS_n/A15	86		NC, SAVE_n
DQ8	16	160		ODT0	87	231	
VSS	17		DQ9	VDD	88	232	
TDQS10_t, DQS10_t, DM1_n, DBI1_n, NC	18	162		CS1_n	89		VDD
TDQS10_c, DQS10_c, NC	19		DQS1_c	VDD	90		NC, <i>A17</i>
VSS	20		DQS1_t	ODT1	91		NC, <i>C</i> 2
DQ14	21	165		VDD	92		VDD
VSS	22		DQ15	<i>C0, CS2_n,</i> NC	93		NC, CS3_n, C1
DQ10	23	167		VSS	94	238	
VSS	24		DQ11	DQ36	95	239	
DQ20	25	169		VSS	96		DQ37
VSS	26		DQ21	DQ32	97	241	
DQ16	27	171		VSS	98		DQ33
VSS	28		DQ17	TDQS13_t, DQS13_t, DM4_n, DBI4_n, NC		243	
TDQS11_t, DQS11_t, DM2_n, DBI2_n, NC	29		VSS	TDQS13_c, DQS13_c, NC			DQS4_c
TDQS11_c, DQS11_c, NC	30		DQS2_c		101		DQS4_t
VSS	31		DQS2_t	DQ38		246	
DQ22	32	176			103		DQ39
VSS	33		DQ23	DQ34		248	
DQ18	34 35	178	DQ19	DQ44	105		DQ35
VSS							
DQ28 VSS	36 37	180	DQ29	DQ40			DQ45
DQ24 VSS	38 39	182	DQ25	vss TDQS14_t, DQS14_t, DM5_n, DBI5_n, NC	109	254	DQ41 vss
		184					
TDQS12_t, DQS12_t, DM3_n, DBI3_n, NC TDQS12_c, DQS12_c, NC	40 41		DQS3_c	TDQS14_c, DQS14_c, NC			DQS5_c DQS5_t
<i>10</i> Q312_ <i>t, 0</i> Q312_ <i>t,</i> NC VSS	41		DQS3_t DQS3_t	DQ46			_
DQ30	42	187					DQ47
VSS	43		DQ31	DQ42			
DQ26	45	189					DQ43
VSS	46		DQ27	DQ52		261	
CB4, NC		191			118		DQ53
CD4, NC	٦,	171	-33	V33	110	202	-433

Table 5 — DDR4 288 Pin UDIMM Pin Wiring Assignments (Cont'd)

Front Side	Pin	Pin	Back side	Front Side	Pin	Pin	Back side
Pin Label			Pin Label	Pin Label			Pin Label
VSS	48	192	CB5, NC	DQ48	119	263	VSS
CB0, NC	49	193	vss	VSS	120	264	DQ49
VSS	50	194	CB1, NC	TDQS15_t, DQS15_t, DM6_n, DBI6_n, NC	121	265	VSS
<i>TDQS17_t, DQS17_t,</i> DM8_n, DBI8_n, NC	51	195	vss	<i>TDQS15_c,</i> DQS15_c <i>,</i> NC	122	266	DQS6_c
<i>TDQS17_c, DQS17_c,</i> NC	52	196	DQS8_c	VSS	123	267	DQS6_t
VSS	53	197	DQS8_t	DQ54	124	268	VSS
CB6, NC	54	198	vss	VSS	125	269	DQ55
VSS	55	199	CB7, NC	DQ50	126	270	VSS
CB2, NC	56	200	vss	VSS	127	271	DQ51
VSS	57	201	CB3, NC	DQ60	128	272	VSS
RESET_n	58	202	VSS	VSS	129	273	DQ61
VDD	59	203	CKE1	DQ56	130	274	VSS
CKE0	60	204	VDD	VSS	131	275	DQ57
VDD	61	205	RFU	TDQS16_t, DQS16_t, DM7_n, DBI7_n, NC	132	276	VSS
ACT_n	62	206	VDD	TDQS16_c, DQS16_c, NC	133	277	DQS7_c
BG0	63	207	BG1	VSS	134	278	DQS7_t
VDD	64	208	ALERT_n	DQ62	135	279	VSS
A12/BC_n	65	209	VDD	VSS	136	280	DQ63
А9	66	210	A11	DQ58	137	281	VSS
VDD	67	211	A7	VSS	138	282	DQ59
A8	68	212	VDD	SAO	139	283	VSS
A6	69	213	A5	SA1	140	284	VDDSPD
VDD	70	214	A4	SCL	141	285	SDA
A3	71	215	VDD	VPP	142	286	VPP
A1	72	216	A2	VPP	143	287	VPP
VDD	73	217	VDD	RFU	144	288	VPP

Note 1 Light colored text indicates functions that are not applicable for UDIMM wiring. An example is the A17 for pin 234 because UDIMMs defined by this specification will never have DIMM wiring for this pin.

4 Power Details

4.1 DIMM Voltage Requirements

The DIMM voltage requirements and the SDRAM voltage requirements are not identical. There must be some allowance for a small voltage drop across the DIMM. Table 6 defines the requirements for the Host at the DIMM socket.

Some modules have lower current requirements. Any specific module must meet the SDRAM voltage requirements for its worst case supply currents.

Table 6 — DDR4 UDIMM DC Operating Voltage 1,2,3 - 1.2 V operation

Cumbal	Parameter	,	Voltage Rating (V)	Maximum Expected	Power State
Symbol VDD VPP VTT ⁵	Parameter	Minimum Typical ⁴		Maximum	Current (AMPs)	Power State
VDD	Supply Voltage	1.16	1.21	1.26	11.7	Operational
VPP	Activation Supply Voltage	2.41	2.50	2.75	3.75	Operational
VTT ⁵	Termination Voltage	0.565	0.605	0.64	0.75	Operational
VTT at termination	Termination Voltage	0.95 x VDDmin ⁷ /2 (0.542)	-	1.05 x VDDmax ⁷ /2 (0.662)	0.75	Operational
VDDSPD	SPD Supply Voltage	2.41	2.5	2.75	0.75	Operational
		10.2	12.0	13.8	1.17	Operational
termination VDDSPD	Additional Power for non-volatile technologies	5.8	12.0	13.8	0.7	Backup power off
		5.8	12.0	13.8	500 u	Idle power off

Note 1 20 MHz bandwidth limited measurement for all voltages in the table.

Note 2 Voltages are measured at the DIMM gold fingers.

Note 3 The SDRAM specification must be met and take precedence over this document.

Note 4 Typical voltage is platform dependent, suggested value only.

Note 5 At the DIMM interface VTT is the only voltage during normal operating conditions that can both source and sink current.

Note 6 If 12 V is supplied it must meet these requirements.

Note 7 SDRAM VDD specification range.

4.2 Rules for Power-Up Sequence

The timing characteristics are illustrated in Figure 1.

VPP is the point of reference for power on sequence. There are several points of interest:

- 1. VDDSPD is an independent power source which has no specific relationship to the other power sources.
- 2. VTT has a specific relationship to VDD. That is VTT=VDD/2

The CK_t/CK_c input signals must be driven LOW throughout the VDD power ramp at least until the VDD supply voltage has settled to its final value.

Figure 1 — Graphical View of Recommended Power Sequence

Figure 2 — Graphical View of Recommended Power Down Sequence

4.3 Feed Through Voltage (VFT)

The normal power down sequence requires the voltage relationships established during power on be maintained. VFT is defined as the voltage delta between VSS and the associated power plane with no power applied to that plane. The absolute value of this voltage must remain less than 200 mV ($|VFT| \le 0.20 \text{ V}$), which is less than the 300 mV DRAM ramp reference level for start or end of voltage ramp.

4.4 12 V Power

The 12 V power source is optionally available for modules which support technologies other than homogeneously populated DRAM modules (e.g. not for UDIMMs, RDIMMs, and LRDIMMs). UDIMMs may be inserted into sockets that provide 12 V support. If support for 12 V is provided it must meet the requirements of Section 4.1 and 4.2. Any module which uses 12 V must not interfere with the power sequence(s) of modules that do not support 12 V. 12 V is expected to be remain valid during reduced power modes. The specific load requirements during these modes is product specific.

5 Component Details

MO-207 allows a maximum DRAM package height of 21.0 mm. The maximum package size is not required for DDR4 UDIMMs. The larger the DRAM package the farther it must be placed from the edge connector and the longer the DQ bus must be. Minimizing the DRAM package size to what is actually required improves signal integrity. Decoupling is improved if the capacitors are placed closer to the DRAM balls. Power delivery is improved with a reduction in width of the DRAMs to what is actually required.

See section 6.7.3 for target DRAM package size.

Figure 3 shows the mechanical information for the DDR4 SDRAM components. To use a smaller SDRAM component some or all of the mechanical support balls may be omitted.

Figure 3 — DIMM Ball Patterns for DDR4 SDRAM Components

Table 7 — DDR4 x8 SDRAM DIMM Pad Array

Top view

/IO-2	07 variation [
	1	2	3	4	8	9	10	11	
Α	NC ⁸	NC ⁸		NC ⁸	NC ⁸		NC ⁸	NC ⁸	
В									Ξ
С	NC ⁸	NC ⁸		NC ⁸	NC ⁸		NC ⁸	NC ⁸	
D									_
E									
F	NC ⁸	VDD	VSSQ	NC ¹	DM_n, DBI_n, NC ²	VSSQ	VSS	NC ⁸	
G		VPP	VDDQ	DQS_c	DQ1	VDDQ	ZQ		_
Н		VDDQ	DQ0	DQS_t	VDD	VSS	VDDQ		
J		VSSQ	DQ4	DQ2	DQ3	DQ5	VSSQ		
K		VSS	VDDQ	DQ6	DQ7	VDDQ	VSS		
L		VDD	NC ³	ODT	CK_t	CK_c	VDD		
М		VSS	NC ⁴	CKE	CS_n	NC ⁵	TEN ⁹		
N		VDD	A14/WE_n	ACT_n	A15/CAS_n	A16/RAS_n	VSS		
Р		VREFCA	BG0	A10/AP	A12/BC_n	BG1	VDD		
R		VSS	BA0	A4	A3	BA1	VSS		
Т		RESET_n	A6	A0	A1	A5	ALERT_n		
U		VDD	A8	A2	A9	A7	VPP		
٧	NC ⁸	VSS	A11	PAR ⁶	A17 ⁷	A13	VDD	NC ⁸	
W									_
Υ									
AA	NC ⁸	NC ⁸		NC ⁸	NC ⁸		NC ⁸	NC ⁸	
AB			- -			,			_
AC	NC ⁸	NC ⁸] [NC ⁸	NC ⁸		NC ⁸	NC ⁸	
		1	2	3	7	8	9		_

Note 1 TDQS_c is not wired on UDIMMs.

Note 2 TDQS_t is not a valid function for UDIMMs.

Note 3 C2 and ODT1 are not valid functions for UDIMMs.

Note 4 C0 and CKE1 are not valid functions for UDIMMs. Note 5 C1 and CS1_n are not valid functions for UDIMMs.

Note 6 Parity input for address parity.

Note 7 A17 is not valid for x8 and x16 DRAMs of 16G bits or less.

Note 8 These ball are mechanical support balls for large DRAM packages. A pad array to support MO-207 variation DT-z will not include these balls.

Note 9 TEN, Test Enable pin is not intended for use on UDIMMs. It must be tied low.

Table 8 — DDR4 x16 SDRAM DIMM Pad Array

Top view

	1	2	3	4		8	9	10	11	
١.	NC ⁴	NC ⁴] [NC ⁴	1	NC ⁴		NC ⁴	NC ⁴	٦
В			J		J		J I			_
С										
D	NC ⁴	VDDQ	VSSQ	DQ8]	UDQS_c	VSSQ	VDDQ	NC ⁴	٦
E		VPP	VSS	VDD		UDQS_t	DQ9	VDD		_
F		VDDQ	DQ12	DQ10		DQ11	DQ13	VSSQ		
G		VDD	VSSQ	DQ14		DQ15	VSSQ	VDDQ		
Н		VSS	UDM_n, UDBI_n ¹	VSSQ		LDM_n, LDBI_n ¹	VSSQ	VSS		
J		VSSQ	VDDQ	LDQS_c		DQ1	VDDQ	ZQ		
K		VDDQ	DQ0	LDQS_t		VDD	VSS	VDDQ		
L		VSSQ	DQ4	DQ2		DQ3	DQ5	VSSQ		
М		VDD	VDDQ	DQ6		DQ7	VDDQ	VDD		
N		VSS	CKE	ODT		CK_t	CK_c	VSS		
Р		VDD	A14/WE_n	ACT_n		CS_n	A16/RAS_n	VDD		
R		VREFCA	BG0	A10/AP		A12/BC_n	A15/CAS_n	VSS		
Т		VSS	BA0	A4		A3	BA1	TEN ⁵		
U		RESET_n	A6	A0		A1	A5	ALERT_n		
V		VDD	A8	A2		A9	A7	VPP		
W	NC ⁴	VSS	A11	PAR ²		NC ³	A13	VDD	NC ⁴	
Y			1		J					_
AΑ										
ΑВ	NC ⁴	NC ⁴] [NC ⁴		NC ⁴		NC ⁴	NC ⁴	
		1	2	3	•	7	8	9		7

Note 1 TDQS_t and TDQS_c are not valid functions for UDIMMs.

Note 5 TEN, Test Enable pin is not intended for use on UDIMMs. It must be tied low.

Note 2 Parity input for address parity.

Note 3 A17 is not valid for x8 and x16 DRAMs of 16G bits or less.

Note 4 These ball are mechanical support balls for large DRAM packages. A pad array to support MO-207 variation DU-z will not include these balls.

5.1 Component Types and Placement

Components shall be positioned on the PCB to meet the minimum and maximum trace lengths required for DDR4 SDRAM signals.

Bypass capacitors for DDR4 SDRAM devices must be located near the device power pins.

5.2 Decoupling Guidelines

Table 9 — UDIMM Decoupling Capacitor Guidelines

	Guideline	Notes
\ (D.D.	Minimum of two decoupling capacitors to VSS per SDRAM	Should be placed as close as possible to the DRAM VDD ball
VDD	Minimum of four bulk decoupling capacitors to VSS per module	
VTT	Minimum of one decoupling capacitor to VDD per every two termination resistors or a decoupling capacitor at both ends of each resistor network	Should be placed as close as possible to the termination resistors
VTT	Minimum of one decoupling capacitor to VDD (located near the card edge VTT pin) or a decoupling capacitor at both ends of each resistor network	
	Minimum of one decoupling capacitor to VSS per DRAM ball	Should be placed as close as possible to the DRAM VPP ball
VPP	Minimum of one decoupling capacitor to VSS (located near the card edge VPP pin)	
VDEECA	Minimum of one decoupling capacitor to VDD per DRAM	Should be placed as close as possible to the DRAM VREFCA ball
VREFCA	Minimum of one decoupling capacitor to VDD (located near the card edge VREFCA pin)	

Note 1 Decoupling capacitor values vary by module and may be staggered to achieve best overall impedance vs. frequency response.

Note 2 Recommended values for decoupling are 0.01 μ F, 0.1 μ F, and 1.0 μ F. Note 3 Recommended value for bulk decoupling is 4.7 μ F.

Note 4 Depending on the DRAM package size, all placements may not be possible.

6 DIMM Design Details

6.1 Signal Groups

This specification categorizes DDR4 SDRAM timing-critical signals into four groups. The following table summarizes the signals contained in each group. All signal groups, except Data, implement a fly-by topology. They sweep from the left side of the module to the right.

Signal Groups:

- 1. Clock (CK)
- 2. Address, Bank Address, Bank Group and Command (ADD/CMD)
- 3. Control (CTRL)
- 4. Data Bus (including ECC byte) (DQ)

Figure 4 — Fly-By Topology

6.2 Explanation of Net Structure Diagrams

The net structure routing diagrams provide a reference design example for each raw card version. These designs provide an initial basis for unbuffered DIMM designs. The diagrams should be used to determine individual signal wiring on a DIMM for any supported configuration. Only transmission lines (represented as cylinders and labeled with trace length designators "TL") represent physical trace segments. All other lines are zero in length. To verify DIMM functionality, a full simulation of all signal integrity and timing is required. The given net structures and trace lengths are not inclusive for all solutions.

Once the net structure has been determined, the permitted trace lengths for the net structure can be read from the table below each net structure routing diagram. Some configurations require the use of multiple net structure routing diagrams to account for varying load quantities on the same signal. All diagrams define one load as one SDRAM input. A typical data net structure is shown in the Figure 5

Figure 5 — Net Structure Example

6.3 General Net Structure Routing Rules

Net structure diagrams for each signal group are shown in the following sections. Each diagram is accompanied by a trace segment length table that summarizes the minimum and maximum length for each trace segment in each signal group. The remainder of this section provides a general overview of DDR4 net structure concepts and documents the routing rules to be followed in the design of the DDR4 modules.

6.3.1 Clock, Control, and Address/Command Groups

The DDR4 modules implement a fly-by topology for routing CK, CTRL, and ADD/CMD signal groups. The CTRL and ADD/CMD groups on DDR4 modules are length/delay matched to CK, between the connector and each SDRAM. Table provides a summary of the length/delay matching rules associated the CK, ADD/CMD and CTRL groups.

For the length tables in the Annexes where there is not a specified tolerance and the tolerance is not covered by Table 10 a value of \pm 1.0 mm shall be used.

Table 10 — Ch	, CIKL,	and ADD/	CIVID Gro	up Length N	natching Rui	es

Signal Group	Matching Rules
CK_t-to-CK_c Matching	Match TLx segment by TLx segment to within 0.1 mm. See Figure 6 for naming.
CK Pair-to-CK Pair Matching (Pair-to-Pair: Average Length)	Match total compensated length from connector to each SDRAM to within 0.25 mm
CTRL Group Matching	Match total compensated length from connector to each SDRAM to within 1.0 mm
CTRL-to-CK Matching	Match total compensated length of all CTRL signals from connector to each SDRAM to within CK \pm 0.5 mm
ADR/CMD Group Matching	Match total compensated length from connector to each SDRAM to within 1.0 mm
ADD/CMD-to-CK Matching	For one rank modules the ADD/CMD group must be matched to the CK to within ±0.5 mm. For two rank modules, simulations (or calculations) are required to establish what lengths are required to match timing between CK and ADD/CMD.
TL2 Stub Length Matching	Match TL2 stub length at each SDRAM, on a given signal, to within ± 1.5 mm. Where there is a difference in TL2 segments between a TOP and BOTTOM SDRAM, the length for the TOP SDRAM will be used. See Figure 6 for naming.
TL2 MAX Stub Length Limits	TL2 ≤ 3.0 mm. See Figure 6 for naming.

Table 10 — CK, CTRL, and ADD/CMD Group Length Matching Rules (Cont'd)

Signal Group	Matching Rules			
CK First-to-Last Length	laximum length from first SDRAM and last SDRAM is 153 mm.			
Neckdown Length	5.0 mm ≤ length ≤10.0 mm; match to within ± 2.0 mm.			
Note 1 All length matching is done using velocity compensated stripline equivalent lengths. Note 2 A velocity compensation ratio of 1.1 will be used (MS length/1.1 = SL equivalent length). Note 3 Neckdown length is the trailing portion of the TL1 segment, which is routed at the standard 0.1 mm width. Note 4 Maximum first-to-last length can be calculated by subtracting length to first SDRAM from length to last SDRAM.				

6.3.2 Lead-in vs. Loaded Sections

See Figure 6 for transmission line name designations. The CK, CTRL, and ADD/CMD topologies are conceptually divided into two topology sections. The segments between the connector and the first SDRAM node via (TL0 + TL1) are collectively termed the lead-in section, while the segments that run between SDRAM node vias (TL3, TL4, TL5...), as well as the SDRAM load stubs (TL2), are collectively termed the loaded section. The loaded section also contains the segments between the last SDRAM and the termination.

In order to reduce the impedance discontinuity seen at the first load, the lead-in section is routed at a lower nominal impedance than the loaded section, typically with the lead-in section routed at lower nominal, and the loaded section routed at higher nominal, although some modules may vary. The transition from the wider lead-in trace width to the standard width of the loaded section must occur within a length window preceding the first SDRAM node via, which is termed the neck down length.

6.3.3 Length/Delay Matching to SDRAM Devices

Figure 6 — Example Address Routing Topology

As mentioned previously, length/delay matching is required between the connector and each SDRAM individually. The length/delay matching process is iterative in nature, and there is no single-best method defined. It is generally recommended that the path from the connector to the first SDRAM (TL0 + TL1 + TL2) be matched across the CK group, and then across the CTRL and ADD/CMD groups, as per the length matching guidelines, adjusting the CK length as needed to reach the length window of the CTRL and ADD/CMD groups. It is important to note that matching is done from connector to the SDRAM ball, and includes the TL2 segment. It is during this process that the breakout pattern dependent length variance in the TL2 stub on each signal will be tuned out.

Once length/delay matching to the first device is complete, the length matching to the remaining devices is straightforward and can be accomplished by simply length-matching the intra-node segments (TL3, TL4, TL5...), assuming the TL2 stub length for a given signal does not vary from SDRAM to SDRAM.

The total compensated length from the connector to the first and last SDRAM is documented in the segment length tables of each annex, in the net structure definitions sections; however, it is assumed that the length matching rules are met at all SDRAM devices.

6.3.4 Velocity Compensation

Since the lead-in section can have a wide variation in the proportion of its length routed as microstrip (MS) and stripline (SL), the length/delay matching process includes a mechanism for compensating for the velocity delta between these two types of PCB interconnects. A compensation factor of 1.1 has been specified for this purpose. All microstrip segment lengths are to be divided by 1.1 before summation into the length matching equation. The resulting compensated length is termed the stripline equivalent length. While some amount of residual velocity mismatch skew remains in the design, the process is a substantial improvement over simple length matching.

6.3.5 Load/Delay Compensation

The concept of load/delay compensation refers to the technique whereby the segment lengths between SDRAMS, on the CLK and CTRL signal groups, are purposely lengthened in order to add additional flight time delay, as required to compensate for the fact that the CMD/ADR topology for 2 rank modules has 2 loads (1 top + 1 bottom) for each fly-by node, whereas the CLK and CTRL topologies have only one load per node. Where implemented, the CLK and CTRL segments between SDRAMs shall be routed approximately 4.5mm longer than the corresponding segment on CMD/ADR group. A specific number can be identified using simulation or calculation. The net result of this compensation is less overall CMD/ADR to CLK skew across the module, thereby improving the ability of the controller to correctly center the CLK within the CMD/ADR valid window.

6.3.6 Data and Strobe Group

The DDR4 modules treat each byte lane as a separate signal sub-group, with each byte lane group length/delay matched with velocity compensation as previously described. The length of the individual byte lanes may vary substantially across the module, with the controller providing timing realignment circuitry. A summary table of the length/delay matching rules associated with the data signal group is provided below.

Table 11 — Data and Strobe Group Length Matching Rules

Signal Group	Matching Rules
DQS_t-to-DQS_c Matching	Match TLx segment by TLx segment to within 0.1 mm
DQ/DM to DQS within Byte Lane	Match total compensated length from the connector to each SDRAM of all DQ and DM signals within a byte lane to within DQS \pm 1.0 mm.
Minimum Byte Lane Length	Minimum compensated length from the connector to the SDRAM shall not be less than 12.0 mm. A minimum compensated length of 15.0 mm is recommended for future designs to support motherboard topologies using a TEE configuration.
Maximum Byte Lane Length	Maximum compensated length from the connector to the SDRAM shall not be greater than 32.0 mm

Note 1 All length matching is done using velocity compensated stripline equivalent lengths.

Note 2 A velocity compensation ratio of 1.1 will be used (MS length/1.1 = SL equivalent length).

Note 3 Via compensation is required if the via count varies within a byte lane. For via equivalent length see the section on Via compensation.

6.3.7 ALERT_n Wiring

See Figure 7 for wiring for the ALERT_n signal. ALERT_n wiring shall be from the first DRAM that the clock connects with to the last DRAM the clock connects with. ALERT_n wiring will continue from this last DRAM to the edge connector. There will be a pullup resistor to VDD located at the first DRAM. Any controller termination is not shown.

Figure 7 — ALERT n Wiring

6.3.8 Via Compensation

Figure 8 — Via Compensation Diagram

Refer to Figure 8. Via compensation on the CK, CTRL, and ADD/CMD signal groups is recommended but not required. There are several cases to consider.

- 1. If any of the segments TL0, TL1, TL3A, TL3B and TL3C are on different layers the via transitions should be included for any calculations for DRAMs farther down the daisy chain.
- 2. For the calculation to a specific DRAM the via at the SDRAM location being calculated should also be included in the calculation (layer to surface). This can be thought of as additional TL2 length.
- 3. Where Control and CK nets for a single rank are routed on different layers DRAM to DRAM via compensation should be applied to account for the difference in the layer to surface. The TL3 length traces may be increased for the traces routed closer to the DRAM surface as 1.4 x difference in the via traveled length. For single rank designs this compensation may also be applied to the Address nets. This may be documented by adding additional rows in the length table to record the lengths per layer. The compensated values for the first and last DRAM would only include the nets routed on the layer that is farthest from the surface with the DRAM. This compensation is optional for the Raw Card Sponsor. The

compensation may be applied by individual manufacturers whether employed by the sponsor or not. If Via compensation is applied by the manufacturer and not by the sponsor a tolerance of \pm 2.0 mm may be added to the values in the length tables of the Annex. In this case the values for the compensated length to the first and last DRAMs do not need to be met and do not have a tolerance.

Via compensation is required on the DQ/DQS byte lanes, where the via count varies within a byte lane.

Only the difference in vias needs to be considered. If all signals in a group make exactly the same transition then the vias are not adding additional skew and can be ignored. There are several methods that may be used for via compensation.

Consider the additional length compensated length.

Method 1:

Z axis. This method just adds the vertical length that the signal travels along the via barrel. This is the simplest approach and is available as a feature in the Cadence layout tool.

Method 2:

Z axis scaling. This method uses the travel distance in the via barrel with a multiplier of 2. This is based on the use of a 2.5 mm via compensation value for board thickness of 1.27 mm from DDR3. For DDR4, a value of 2.6 mm ((1.40-0.09 [outer layer copper]) * 2 = 2.620 mm) will be used for signals transition between outer layers. Another example, if a signal transitions from an outer layer to the closest internal layer and the dielectric thickness is 0.100 mm then the value for the via compensation is 0.20 mm.

Method 3:

Fixed constant. This simplifies as 2 choices for vias. 2.6 mm for those that travel all the way through the board and 1.3 mm for any vias where the signal does not travel the full length of the via barrel.

Any method may be used for defining the reference designs.

The method used must be identified in the respective annex. If more than one method is used each case must be identified in the respective annex.

6.3.9 Plane Referencing

Table 12 — Plane Referencing

Signals	Reference	Notes
DQ, DQS	Ground	
Address, Command, Control and VREFCA	VDD	
Clock	VDD	

6.4 Rules for Higher Speed (2666 Mb/s or higher)

With higher speeds DIMM designs are more sensitive to component variations. To allow manufactured designs to remain compliant to a JEDEC reference design Annex but still operate at the intended speed some additional variation in the rules is allowed. The following list summarizes the rules.

Rules for Higher Speeds:

- 1. Placement configuration must match the reference design (Vertical and Horizontal DRAM orientation).
- 2. Physical placement may be changed. There is no specific limit.
- 3. All routing topologies must be maintained. The lengths may be adjusted as defined below.
- 4. Clock routing lengths may be adjusted as needed to maintain timing to the address.
- 5. Control routing lengths may be adjusted as needed to maintain timing to the clock.
- 6. The address routing lengths between the DRAMs may be adjusted by ± 5 mm relative to the reference design. The segment between the via and the DRAM ball may also be changed as needed.
- 7. The address routing lengths between the first and the second DRAMs may be adjusted by ± 10 mm.
- 8. The address routing lengths between the byte 3 and byte 4 for non-ECC DIMMs and the ECC byte and byte 4 for ECC DIMMs may be adjusted by ± 20 mm.
- 9. DQ routing lengths may bae adjusted by ± 0.80 mm.
- 10. Termination (Rtt) values may be changed if supported by testing or simulation.

6.5 Address Mirroring

DDR4 two rank UDIMMs will use address mirroring. DRAMs for even ranks will be placed on the front side of the module. DRAMs for odd ranks will be placed on the back side of the module. Wiring of the address bus will be as defined in Table 13.

Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR4 SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the odd ranks.

Table 13 — DIMM Wiring Definition for Address Mirroring

Signal Name	DRAM B	Ball Label	Comment
Connector	Even Rank	Odd Rank	Comment
A0	A0	A0	
A1	A1	A1	
A2	A2	A2	
A3	A3	A4	
A4	A4	А3	
A5	A5	A6	
A6	A6	A5	
A7	A7	A8	
A8	A8	A7	
A9	A9	A9	
A10/AP	A10/AP	A10/AP	
A11	A11	A13	
A12/BC_n	A12/BC_n	A12/BC_n	
A13	A13	A11	
A14/WE_n	A14/WE_n	A14/WE_n	
A15/CAS_n	A15/CAS_n	A15/CAS_n	
A16/RAS_n	A16/RAS_n	A16/RAS_n	

Table 13 — DIMM Wiring Definition for Address Mirroring (Cont'd)

Signal Name	DRAM B	all Label	Comment
Connector	Even Rank	Odd Rank	Comment
A17	A17	A17	Only valid for x4 based DIMMs with SDRAM components greater than 8 Gb.
BA0	BA0	BA1	
BA1	BA1	BA0	
BG0	BG0	BG1	BG1 is not valid for x16 DRAM components. For x16 DRAM components signal BG0 will be wired to DRAM ball BG0 for both ranks.
BG1	BG1	BG0	BG1 is not valid for x16 DRAM components. For x16 DRAM components signal BG0 will be wired to DRAM ball BG0 for both ranks.

6.6 DIMM Routing Space Constraints

These are the physical rules for traces and space including keepout requirements.

Preferred rules are to be used whenever possible. Exceptional rules are only to be used when necessary. Exceptional rules when applied are to only be used in the area of the board where they are required and preferred rules used in all other areas. Where preferred rules cannot be used it is encouraged that the most conservative rules be used up to the exceptional rules. Rules falling between preferred and exceptional are considered exceptional.

When exceptional rules are used it must be noted in the annex for each specific raw card. It is preferred that additional details be included to identify the areas of the card that use exceptional rules.

These rules are for design of the reference card only. It is not required that these rules be met by individual manufacturers building from the reference designs.

Table 14 — Routing Space Constraints

Feature	Preferred (mm)	Exceptional (mm)	Comment	
Via Size Large - Drill	0.250	0.250		
Via Size Large - Pad	0.450	0.450	To be used where possible	
Via Size Large - Anti-pad	0.700	0.700		
Via Size Large - Soldermask	Designer preference	Designer preference	Soldermask opening are easy to change.	
Via Size Small - Drill	0.200	0.200		
Via Size Small - Pad	0.400	0.400	To be used if larger via cannot be used.	
Via Size Small - Anti-pad	0.600	0.600		
Via Size Small - Soldermask	Designer preference	Designer preference	Soldermask opening are easy to change.	
Soldermask opening (for pad)	Designer preference	Designer preference	Soldermask opening are easy to change.	
Soldermask opening (cover adjacent trace)	Designer preference	Designer preference	Soldermask opening are easy to change.	
Pad to pad spacing for pads of different components that are soldered down	0.250	0.200	Concern is solder bridging	
Line to pad spacing	0.125	0.100		
Line to line spacing (single ended)	0.100	0.100		
Line to line spacing (differential)	0.100	0.090		
Line to shape spacing	0.200	0.125		
Shape to shape spacing	0.200	0.100		
Via to BGA pad	0.175	0.150	Copper to copper	
Via to non-BGA pad	0.150	0.125	Copper to copper	
Via to Via	0.200	0.150	Copper to copper	
Drill wall to drill wall (nominal)	0.400			
Drill wall (nominal) to board edge (nominal)	0.500			
DRAM (nominal) to DRAM (nominal)	0.350	0.300		
DRAM (nominal) to board edge (nominal)	0.400	0.300		
Copper to board edge (nominal)	0.300	0.250		
Component pad to board edge (nominal)	0.400	0.400		

Feature	Preferred (mm)	Exceptional (mm)	Comment	
Lower board edge to passive pad or component of less than 0.80 mm height	4.150	4.000		
Lower board edge to component body (nominal) of greater than 0.80 mm height	4.200	4.000	For UDIMMs this is not likely required.	
Minimum trace width on outer layers	0.090	0.075	Related to cross section shape	
Minimum trace width on inner layers	0.075	0.075	Related to cross section shape	

6.7 DIMM Physical Requirements

6.7.1 Via Size

Use larger via (0.250 drill) where possible.

6.7.2 Component Pad Sizes and Geometry

0201 passive components are not allowed on UDIMM reference designs.

If 0201 size passive components are required the pads size will be 0.4 mm square with a 0.2 mm space between the pads for each component.

Pads for all other components are left to the reference card designer to define.

Manufacturers of these UDIMM reference designs may adjust pad sizes and geometry.

6.7.3 DRAM Package Size

Maximum DRAM package size affects the DQ trace length and placement of decoupling capacitors.

For DDR4 UDIMMs using x8 based components the reference designs will use a maximum package size of 11.0 mm nominal width and 13.0 mm nominal height.

For UDIMMs using x16 based components a 11.0 mm nominal width and 14.0 mm nominal height will be used.

6.7.4 Clock Termination

Termination for differential clocks will use two resistors, one connected to each side, the true signal (_t) and the complementary signal (_c), of the differential pair. The other side of each resistor will be connected together and to a capacitor. The other side of the capacitor will be connected to the reference plane for the differential pair. This will be VDD. The capacitor value will be 0.01 uF.

6.7.5 DQ Stub Resistor

DQ stub resistor, R1 to be 15 Ω for all UDIMMs.

6.7.6 ZQ Calibration Wiring

The DDR4 SDRAMs have a ZQ pin. This is intended to calibrate the on die resistors for the drivers and the terminations. All UDIMMs must connect a 240 Ω ± 1% resistor from this pin of the SDRAM to ground (VSS). Every SDRAM package must have its own ZQ resistor. Sharing is not allowed.

6.7.7 TEN Wiring

TEN is a test enable pin on the SDRAMs. It is not intended to be used on UDIMM modules. It must be tied low at each SDRAM.

6.8 Reference Stackups

The section defines the preferred stackup for 6, 8 and 10 layer UDIMMs. Stackup for specific cards may be different from the preferred stackups in the tables below.

Table 15 — Preferred 10 Layer Stackup for UDIMMs

Layers				
	Solder Mask	15 μm		
1	Cu	45 μm	Signal	3/8 oz + Plating
	Prepreg	70 μm		
2	Cu	15 μm	VDD/VSS	1/2 oz
	Core	100 μm	_	
3	Cu	15 µm	Signal	1/2 oz
	Prepreg	150µm		
4	Cu	15 μm	VDD/VSS	1/2 oz
	Core	80 μm	_	
5	Cu	15 µm	Signal	1/2 oz
	Prepreg	390μm		
6	Cu	15 μm	Signal	1/2 oz
	Core	80 μm		
7	Cu	15 μm	VDD/VSS	1/2 oz
	Prepreg	150µm	_	
8	Cu	15 µm	Signal	1/2 oz
	Core	100µm		
9	Cu	15 μm	VDD/VSS	1/2 oz
	Prepreg	70 μm		
10	Cu	45 μm	Signal	3/8 oz + Plating
	Solder Mask	15 μm		

Total Thickness: $1400 \pm 100 \mu m$ as measured across connector contact fingers (without soldermask)

Table 16 — Preferred 8 Layer Stackup for UDIMMs

Layers				
	Solder Mask	15 μm		
1	Cu	45 μm	Signal	3/8 oz + Plating
	Prepreg	70 μm		
2	Cu	15 μm	VDD/VSS	1/2 oz
	Core	80 µm	-	
3	Cu	15 μm	Signal	1/2 oz
	Prepreg	420 μm		
			_	
4	Cu	15 μm	VDD/VSS	1/2 oz
	Core	80 μm		
5	Cu	15 μm	Signal	1/2 oz
	Prepreg	420 μm		
6	Cu	15 μm	Signal	1/2 oz
	Core	80 μm	_	
7	Cu	15 μm	VDD/VSS	1/2 oz
	Prepreg	70 μm		
8	Cu	45 μm	Signal	3/8 oz + Plating
	Solder Mask	15 μm		

Total Thickness: $1400 \pm 100 \ \mu m$ as measured across connector contact fingers (without soldermask)

Table 17 — Preferred 6 Layer Stackup for UDIMMs

Layers					
	Solder Mask	15 µm			
1	Cu	45 μm		Signal	3/8 oz + Plating
	Prepreg	70 µm			
2	Cu	30 μm		VDD/VSS	1 oz
	Core	80 µm			
3	Cu	30µm		Signal	1 oz
	Prepreg	890 µm			
4	Cu	30 μm		Signal	1 oz
	Core	80 µm			
5	Cu	30 μm		VDD/VSS	1 oz
	Prepreg	70 µm			
6	Cu	45 μm		Signal	3/8 oz + Plating
	Solder Mask	15 µm	_		

Total Thickness: $1400 \pm 100 \mu m$ as measured across connector contact fingers (without soldermask)

6.9 Impedance Targets

Three impedances are defined for DDR4 UDIMMs.

- 1. 55 Ω ± 10% (typically achieved with 0.075 mm trace widths)
- 2. 50 Ω ± 10% (typically achieved with 0.10 mm trace widths)
- 3. 40 Ω ± 10% (typically achieved with 0.15 mm trace widths)

These trace widths are valid for internal and external layers for the stackups given in section 6.8. Some variation in trace width may be required to reach the impedance targets if the stackup is modified from those in section 6.8.

One variation that may be considered is using 0.09 mm trace widths on the outer layers. It is suggested this be restricted to short traces only and the dielectric thickness not be modified but accept 52 Ω as the target impedance.

Three differential impedances are defined for DDR4 UDIMMs.

- 1. 93 Ω ± 15% (typically achieved with 0.075 mm trace widths with a 0.10 mm space)
- 2. 83 Ω ± 15% (typically achieved with 0.10 mm trace widths with a 0.10 mm space)
- 3. $70 \Omega \pm 15\%$ (typically achieved with 0.15 mm trace widths with a 0.10 mm space)

These trace widths are valid for internal and external traces for the stackups given in section 6.8. Some variation in trace width may be required to reach the impedance targets if the stackup is modified from those in section 6.8.

Table 18 — Impedance Assignments by Signal Type

Signal Type	Lead-in Section ¹	Loaded Section	
CLOCK	70 Ω differential	93 Ω differential	
ADD/CMD	40 Ω	55 Ω	
CTRL	40 Ω	55 Ω	
DQ	50 Ω		
DQS	83 Ω differential		

6.10 SPD-TSE Wiring and Placement

An optional on-DIMM thermal sensor may provide DIMM temperature readout through an integrated thermal sensor. See Figure 9.

Figure 9 — Block Diagram: SPD-TSE / SPD

On low-profile, 31.25 mm DIMMs, the thermal sensor and serial presence-detect footprint will be placed near the center of the DIMM.

TDFN packages are used for the thermal sensor and the serial presence-detect. MO-229C, variations W2030D-3, V2030D-3, and U2030D will be referenced for the thermal sensor and serial presence-detect part.

UDIMMs that do not support ECC (x64 only) will use the SPD with EVENT_n not wired.

UDIMMs that support ECC (x72) will use a combined SPD-TSE with EVENT n wired to the edge connector.

6.11 DQ Mapping to Support CRC

For DDR4 a CRC feature has been added to support higher speeds. Generally, when using CRC the bit order is 1:1 between the source and the destination. This is not true for DIMMs where the bit order is somewhat random based on minimizing routing to maximize signal integrity. The CRC computation is based on a byte. For x4 based SDRAMs the computation is truncated to 4 bits, a nibble. See a DDR4 SDRAM specification JESD79-4 for a more complete explanation of how CRC is implemented. To fix the mapping issue the host must understand the bit order at the SDRAM to map the DQ bits into the CRC generator for WRITE commands so that the SDRAM will decode the CRC correctly. The same is true for READs.

When there is more than one rank on a DIMM the even ranks are on the front and the odd ranks are on the back. When DRAMs are placed back to back and are of a different package rank the DQ relationship between the even ranks and the odd ranks are fixed. To reduce the number of variations in the DQ mapping a couple of rules are defined.

- Rule 1: Bits within a nibble must stay together.
- Rule 2: Nibbles may be swapped within a byte.

TBD

65

DQ[20-23]

Rule 3: Definition of mapping is for rank 0 only. All even ranks have the same DQ mapping. Even rank to odd rank mapping is to swap bit 0 with 1, swap bit 2 with 3, swap bit 4 with 5 and swap bit 6 with 7.

For DIMMs that use 3DS components, the rank definition applies to package ranks. The additional die within a 3DS component are logical ranks and are part of one package rank. Another way of looking at this is that each chip select (CSx_n) used is one package rank. Where there is only one package rank, that rank may be placed on the front or the back or split between the front or back. Table 19 defines rank 0 mapping and therefore fully defines all DIMMs with one package rank.

18 bytes of the SPD are allocated for holding the DQ mapping information, one byte for each nibble of the DIMM connector. See Table 19. The table exactly specifies which DQ bits are in each nibble. The DQ Map Index refers to the specific map that is defined in Table 20.

Use of CRC is an optional feature. If a DIMM does not support CRC, values of 0x00 must fill the table. It is required that all reference designs support CRC.

			SPD Co	ontent - 18	bytes alloca	ted (Example	e values)			
SPD Address	DQ Bits	DQ Map Index (Hex) ¹		SPD Address	DQ Bits	DQ Map Index (Hex)		SPD Address	DQ Bits	DQ Map Index (Hex)
60	DQ[0-3]	0x2B		66	DQ[24-27]	TBD		72	DQ[40-43]	TBD
61	DQ[4-7]	0x15		67	DQ[28-31]	TBD		73	DQ[44-47]	TBD
62	DQ[8-11]	0x0C		68	CB[0-3]	TBD		74	DQ[48-51]	TBD
63	DQ[12-15]	0x35		69	CB[4-7]	TBD		75	DQ[52-55]	TBD
64	DQ[16-19]	TBD		70	DQ[32-35]	TBD		76	DQ[56-59]	TBD

Table 19 — SPD DQ Nibble Map for CRC

Note 1 This column illustrates the values that the SPD might hold. These values are an example but do correlate with the values in the additional tables and figures.

DQ[36-39]

TBD

TBD

DQ[60-63]

The DQ Map table defines all possible mappings following Rule 1 and Rule 2. For x4 based DIMMs there are 24 mappings. These are represented by DQ Map Index values 0x01 through 0x18. Offsetting by 1 allows 0x00 to be used to indicate that mapping using the table is not supported. For x8 based DIMMs there are 48 mappings and the entire table is used. Note that the there is a gap between the left side of the table and the right side (0x19 to 0x20). These DQ Map Index values are invalid. All the values above 0x38 are invalid.

CRC is defined for x8 based components and x4 based components. For the purpose of CRC, x16

71

components are treated as 2 separate x8 components. Similarly a x32 component would be treated as 4 separate x8 based components. The definition for CRC can be found in the JESD79-4 specification for DDR4 SDRAMs.

Table 20 — Nibble/Byte DQ Map Patterns for CRC

DQ Map	Conne	ector - b	it within	nibble	DQ Map	Connector - bit within nibble			
Index	0	1	2	3	Index	0	1	2	3
(Hex)		SDRA	AM bit		(Hex)	(Hex) SDRAM bit			
0x01	0	1	2	3	0x21	4	5	6	7
0x02	0	1	3	2	0x22	4	5	7	6
0x03	0	2	1	3	0x23	4	6	5	7
0x04	0	2	3	1	0x24	4	6	7	5
0x05	0	3	1	2	0x25	4	7	5	6
0x06	0	3	2	1	0x26	4	7	6	5
0x07	1	0	2	3	0x27	5	4	6	7
0x08	1	0	3	2	0x28	5	4	7	6
0x09	1	2	0	3	0x29	5	6	4	7
0x0A	1	2	3	0	0x2A	5	6	7	4
0x0B	1	3	0	2	0x2B	5	7	4	6
0x0C	1	3	2	0	0x2C	5	7	6	4
0x0D	2	0	1	3	0x2D	6	4	5	7
0x0E	2	0	3	1	0x2E	6	4	7	5
0x0F	2	1	0	3	0x2F	6	5	4	7
0x10	2	1	3	0	0x30	6	5	7	4
0x11	2	3	0	1	0x31	6	7	4	5
0x12	2	3	1	0	0x32	6	7	5	4
0x13	3	0	1	2	0x33	7	4	5	6
0x14	3	0	2	1	0x34	7	4	6	5
0x15	3	1	0	2	0x35	7	5	4	6
0x16	3	1	2	0	0x36	7	5	6	4
0x17	3	2	0	1	0x37	7	6	4	5
0x18	3	2	1	0	0x38	7	6	5	4

Figure 10 — Example of DQ Wiring with Mapping for CRC

Table 21 — Example of DQ Mapping for CRC

DQ bit of DIMM Connector First x8 SDRAM Second x8 SDRAM DQ mapping for first nibble matches index 0x2B.

0x2B would be stored in the SPD table for the first nibble.

DQ mapping of second nibble matches index 0x15. 0x15 would be stored in the SPD table for the second nibble. 0x0C for the 3rd nibble.

0x35 for the fourth nibble.

7 Serial Presence Detect

This section is included for convenience. Please refer to the DDR4 SPD Contents Master Specification for the most up to date specification.

7.1 Serial Presence Detect Definition

The Serial Presence Detect function must be implemented on the DDR4 SDRAM UDIMM. The component used and the data contents must adhere to the most recent version of the JEDEC DDR4 Module Serial Presence Detect Specifications. Please refer to this document for all technical specifications and requirements of the Serial Presence Detect devices.

The following is the SPD address map for all DDR4 modules. It describes where the individual lookup table entries will be held in the serial EEPROM. Consistent with the definition of DDR4 generation SPD devices which have four individual write protection blocks of 128 bytes in length each, the SPD contents are aligned with these blocks as follows:

			•
Block	Range		Description
0	0-127	0x000-0x07F	Base Configuration and DRAM Parameters
1	128-255	0x080-0x0FF	Module Specific Parameters See annexes for details
2	256-319	0x100-0x13F	Reserved must be coded as 0x00
2	320-383	0x140-0x17F	Manufacturing Information
3	384-511	0x180-0x1FF	End User Programmable

Table 22 — SPD Address Map

Table 23 — SPD Block 0: Base Configuration and DRAM Parameters

Byt	e Number	Function Described
0	0x000	Number of Serial PD Bytes Written / SPD Device Size / CRC Coverage
1	0x001	SPD Revision
2	0x002	Key Byte / DRAM Device Type
3	0x003	Key Byte / Module Type
4	0x004	SDRAM Density and Banks
5	0x005	SDRAM Addressing
6	0x006	SDRAM Package Type
7	0x007	SDRAM Optional Features
8	0x008	SDRAM Thermal and Refresh Options
9	0x009	Other DRAM optional features
10	0x00A	Reserved must be coded as 0x00
11	0x00B	Module Nominal Voltage, VDD
12	0x00C	Module Organization
13	0x00D	Module Memory Bus Width
14	0x00E	Module Thermal Sensor

Table 23 — SPD Block 0: Base Configuration and DRAM Parameters (Cont'd)

Byte	e Number	Function Described
15-16	0x00F-0x010	Reserved must be coded as 0x00
17	0x011	Timebases
18	0x012	SDRAM Minimum Cycle Time (tCKAVGmin)
19	0x013	SDRAM Maximum Cycle Time (tCKAVGmax)
20	0x014	CAS Latencies Supported, First Byte
21	0x015	CAS Latencies Supported, Second Byte
22	0x016	CAS Latencies Supported, Third Byte
23	0x017	CAS Latencies Supported, Fourth Byte
24	0x018	Minimum CAS Latency Time (tAAmin)
25	0x019	Minimum RAS to CAS Delay Time (tRCDmin)
26	0x01A	Minimum Row Precharge Delay Time (tRPmin)
27	0x01B	Upper Nibbles for tRASmin and tRCmin
28	0x01C	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte
29	0x01D	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte
30	0x01E	Minimum Refresh Recovery Delay Time (tRFC1min), LSB
31	0x01F	Minimum Refresh Recovery Delay Time (tRFC1min), MSB
32	0x020	Minimum Refresh Recovery Delay Time (tRFC2min), LSB
33	0x021	Minimum Refresh Recovery Delay Time (tRFC2min), MSB
34	0x022	Minimum Refresh Recovery Delay Time (tRFC4min), LSB
35	0x023	Minimum Refresh Recovery Delay Time (tRFC4min), MSB
36	0x024	Minimum Four Activate Window Time (tFAWmin), Most Significant Nibble
37	0x025	Minimum Four Activate Window Time (tFAWmin), Least Significant Byte
38	0x026	Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group
39	0x027	Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group
40	0x028	Minimum CAS to CAS Delay Time (t _{CCD_L} min), same as bank group
41-59	0x029-0x03B	Reserved must be coded as 0x00
60-77	0x03C-0x04D	DQ Mapping for CRC
117	0x075	Fine Offset for Minimum CAS to CAS Delay Time (t _{CCD_L} min), same bank group
118	0x76	Fine Offset for Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group
118	0x76	Fine Offset for Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group
119	0x77	Fine Offset for Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group
120	0x078	Fine Offset for Minimum Activate to Activate/Refresh Delay Time (tRCmin)
121	0x079	Fine Offset for Minimum Row Precharge Delay Time (tRPmin)
122	0x07A	Fine Offset for Minimum RAS to CAS Delay Time (tRCDmin)
123	0x07B	Fine Offset for Minimum CAS Latency Time (tAAmin)
124	0x07C	Fine Offset for SDRAM Maximum Cycle Time (tCKAVGmax)

Table 23 — SPD Block 0: Base Configuration and DRAM Parameters (Cont'd)

Byte	e Number	Function Described
125	0x07D	Fine Offset for SDRAM Minimum Cycle Time (tCKAVGmin)
126	0x07E	CRC for Base Configuration Section, Least Significant Byte
127	0x07F	CRC for Base Configuration Section, Most Significant Byte

8 Product Label

This section is included for convenience. It covers DDR4 and DDR4E in both DRAM-only module types and Hybrid module types, as well as pre-production modules of both types. Please refer to the JEDEC Item #2224.07 for the most up to date specification.

The following labels shall be applied to all DDR4 memory modules to fully describe the key attributes of the module. The label can be in the form of a stick-on label, silk screened onto the assembly, or marked using an alternate customer-readable format. A readable point size should be used, and the number can be printed in one or more rows on the label. Hyphens may be dropped when lines are split, or when font changes sufficiently separate fields. Unused letters in each field, such as ggg, are to be omitted when not needed.

8.1 DDR4 DIMM Label Format for DRAM-only module types

gggGB pheRxff PC4s-wwwwaa-mccd-bb

Where:

```
gggGB = Module total capacity, in gigabytes, for primary bus (ECC not counted)
     1GB, 2GB, 4GB, etc. (no space between digits and units)
pheR = Number of package ranks of memory per DIMM and number of logical ranks per package rank.
    p =
            1 = 1 package rank of SDRAMs per DIMM
            2 = 2 package ranks of SDRAMs per DIMM
            3 = 3 package ranks of SDRAMs per DIMM
            4 = 4 package ranks of SDRAMs per DIMM
    h = blank for monolithic DRAMs (SDP), else for modules using stacked DRAM:
            h = DRAM package type
                     D = Dual die multi-load DRAM stack (DDP)
                     Q = Quad die multi-load DRAM stack (QDP)
                     S = Single load DRAM stacking (3DS)
    e = blank for SDP, DDP, or QDP, else for modules using 3DS stacks, logical ranks per package rank
            2 = 2 logical ranks in each package rank
            4 = 4 logical ranks in each package rank
            8 = 8 logical ranks in each package rank
xff = Device organization (data bit width) of SDRAMs used on this assembly
    x4 = x4 organization (4 DQ lines per SDRAM)
    x8 = x8 organization
    x16 = x16 organization
s = SDRAM operational scaling
    blank = DDR4
    E = DDR4E with operational scaling
wwww = Module speed in Mb/s/data pin
    1600
    1866
    2133
    2400
    2666
    2933
    3200
aa = SDRAM speed grade
    aa = Speed grade, i.e., J, K, L, etc.
m = Module Type
    A = Unbuffered 16-bit Small Outline DIMM ("16b-SO-DIMM"), x16 data bus (placeholder)
```

- B = Unbuffered 32-bit Small Outline DIMM ("32b-SO-DIMM"), x32 data bus (placeholder)
- C = Registered 72-bit Small Outline DIMM ("72b-SO-RDIMM"), x64 primary + 8 bit ECC module data bus (placeholder)
- E = Unbuffered DIMM ("UDIMM"), x64 primary + 8 bit ECC module data bus
- L = Load Reduced DIMM ("LRDIMM"), x64 primary + 8 bit ECC module data bus
- N = Mini registered DIMM ("Mini-RDIMM"), x64 primary + 8 bit ECC module data bus
- R = Registered DIMM ("RDIMM"), x64 primary + 8 bit ECC module data bus
- S = Small Outline DIMM ("SO-DIMM"), no ECC (x64 bit module data bus)
- T = Unbuffered 72-bit Small Outline DIMM ("72b-SO-DIMM"), x64 primary + 8 bit ECC module data bus
- U = Unbuffered DIMM ("UDIMM"), no ECC (x64 bit module data bus)
- W = Mini unbuffered DIMM ("Mini-UDIMM"), x64 primary + 8 bit ECC module data bus
- cc = Reference design file used for this design (if applicable)
 - A = Reference design for raw card 'A' is used for this assembly
 - B = Reference design for raw card 'B' is used for this assembly
 - AC = Reference design for raw card 'AC' is used for this assembly
 - ZZ = None of the JEDEC standard reference designs were used for this assembly
- d = Revision number of the reference design used (see table below)
 - 0~9 = Production release revisions
 - A~K = Pre-production releases (new method -- preferred)
 - P = Pre-release or Engineering sample (for legacy modules; new modules should use A~K)
 - Z = To be used when field cc = ZZ
- bb = JEDEC SPD Revision Encoding and Additions level used on this DIMM

As modules are developed in JEDEC, samples of pre-standard approval designs are often distributed for evaluation. Legacy DIMM labels allowed for a single pre-production indicator 'P' in the d field, and determining the specific board revision required reading the module SPD. This is replaced in newer modules with using the first letter in the cc field to indicate which raw card revision the pre-production module represents. For pre-production modules, a letter is used in the 'd' field in place of the target production level:

Table 24 — Preproduction Registration Table for DRAM-Only Module Types

DIMM Label	Field 'd'	
Pre-Production Revision	Production Revision	Resulting Production Revision
А	0	Raw card revision 0
В	1	Raw card revision 1
С	2	Raw card revision 2
D	3	Raw card revision 3
Е	4	Raw card revision 4
F	5	Raw card revision 5
G	6	Raw card revision 6
Н	7	Raw card revision 7
J	8	Raw card revision 8
K	9	Raw card revision 9
Р	-	Legacy pre-production indicator; production revision documented in module SPD
Z	Z	Non-standard design

Legacy DIMM labels allowed for a single pre-production indicator in the d field, and determining the specific board revision required reading the module SPD. This is replaced in newer modules with using the first character in the cc field to indicate which raw card revision the pre-production module represents.

Pre-Production Example: A hypothetical release cycle of a raw card F, for example, may proceed like this:

ccd = FA	Pre-production sample of raw card F0
ccd = F0	Production F0 module
ccd = FB	Pre-production sample of raw card F1
ccd = F1	Production F1 module

Examples:

16GB 2Rx4 PC4-2133N-RA2-11

16 GB DDR4 RDIMM (72 bit data bus) 2 package ranks per DIMM using SDP DDR4 SDRAMs x4 data organization per SDRAM DDR4-2133 performance

Speed grade N: CAS Latency = 14

Raw card reference design file A revision 2 used for the assembly

DDR4 SPD revision 1.1

16GB 2DRx4 PC4-2133N-RJ0-10

16 GB DDR4 RDIMM (72 bit data bus)

2 package ranks per DIMM

using DDP multi-load stacked DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade N: CAS Latency = 14

Raw card reference design file J revision 0 used for the assembly

DDR4 SPD revision 1.0

16GB 1S2Rx4 PC4-2133N-RF1-10

16 GB DDR4 VLP RDIMM (72 bit data bus)

1 package rank per DIMM

with 2 logical ranks per package rank

using 2H 3DS single-load stacked DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade N: CAS Latency = 14

Raw card reference design file F revision 1 used for the assembly

DDR4 SPD revision 1.0

32GB 2DRx8 PC4-2400U-UZZZ-11

32 GB DDR4 UDIMM (64 bit data bus)

2 package ranks per DIMM

using DDP multi-load stacked DDR4 SDRAMs

x8 data organization per SDRAM

DDR4-2400 performance

Speed grade U: CAS Latency = 18

Non-JEDEC standard design used for the assembly

DDR4 SPD revision 1.1

16GB 1S4Rx4 PC4-2133R-LZZZ-10

16 GB DDR4 LRDIMM

1 package rank per DIMM

with 4 logical ranks per package rank

using 4H 3DS single-load stacked DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade R: CAS Latency = 16 Non-JEDEC design used for the assembly DDR4 SPD revision 1.0

16GB 1S2Rx4 PC4-2133N-RFC-10

16 GB DDR4 VLP RDIMM (72 bit data bus)

1 package rank per DIMM

with 2 logical ranks per package rank

using 2H 3DS single-load stacked DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade N: CAS Latency = 14

Pre-production engineering sample of raw card reference design file F revision 2 used for the assembly

DDR4 SPD revision 1.0

32GB 2DRx8 PC4E-2400U-UZZZ-11

32 GB DDR4E UDIMM (64 bit data bus)

2 package ranks per DIMM

using DDP multi-load stacked DDR4 SDRAMs

x8 data organization per SDRAM

DDR4E-2400 performance with operational scaling

Speed grade U: CAS Latency = 18

Non-JEDEC standard design used for the assembly

DDR4 SPD revision 1.1

16GB 1S4Rx4 PC4E-2133R-LZZZ-10

16 GB DDR4E LRDIMM

1 package rank per DIMM

with 4 logical ranks per package rank

using 4H 3DS single-load stacked DDR4 SDRAMs

x4 data organization per SDRAM

DDR4E-2133 performance with operational scaling

Speed grade R: CAS Latency = 16

Non-JEDEC design used for the assembly

DDR4 SPD revision 1.0

8.2 DDR4 DIMM Label Format for Hybrid module types

Hybrid module types require additional information to document the combination of media types incorporated onto the module. "System accessible memory" refers to media that is available for use by the system beyond the Hybrid functions such as DRAM persistence; for example, an NVDIMM-P with 8GB of DRAM and 16GB of NAND Flash has 8GB of system accessible DRAM but also has 8GB of system accessible NAND Flash that is not reserved for the DRAM persistence function and is made available to the system. Similarly, a Flash-only Hybrid module NVDIMM-F may have no system accessible DRAM if its command buffer DRAM is not made available for general use by the system, however its interface to the system must emulate one of the standard DRAM module types.

Hybrid modules appear to the system with a "base module type" compatible interface. For example, an NVDIMM-N may be constructed with an RDIMM-style interface or an LRDIMM-style interface. What specific functions the module provides are described in an "Hybrid Media Type" field ('n'), essentially a functional overlay on the base module type.

gggGB+xxxGB pheRxff Nn4s-wwwwaa-mccd-bb

Where:

```
ggg = Module total capacity, in gigabytes, for system accessible DRAM on primary bus (ECC not counted)
xxx = Module total capacity, in gigabytes, for system accessible Flash on primary bus (ECC not counted)
    ggg, xxx both are numbers such as 1, 2, 3, ... 999.
GB = Gigabytes of module capacity; may be TB for terabytes
gggGB+ is blank for Hybrid modules with no system accessible DRAM
+xxxGB is blank for Hybrid modules with no system accessible non-volatile memory
pheR = Number of package ranks of memory per DIMM and number of logical ranks per package rank.
             1 = 1 package rank of SDRAMs per DIMM
             2 = 2 package ranks of SDRAMs per DIMM
             3 = 3 package ranks of SDRAMs per DIMM
             4 = 4 package ranks of SDRAMs per DIMM
    h = blank for monolithic DRAMs (SDP), else for modules using stacked DRAM:
             h = DRAM package type
                     D = Dual die multi-load DRAM stack (DDP)
                     Q = Quad die multi-load DRAM stack (QDP)
                     S = Single load DRAM stacking (3DS)
    e = blank for SDP, DDP, or QDP, else for modules using 3DS stacks, logical ranks per package rank
             2 = 2 logical ranks in each package rank
             4 = 4 logical ranks in each package rank
             8 = 8 logical ranks in each package rank
    R = rank(s)
xff = Device organization (data bit width) of SDRAMs used on this assembly
    x4 = x4 organization (4 DQ lines per SDRAM)
    x8 = x8 organization
    x16 = x16 organization
N = NVDIMM
n = NVDIMM type
    N = persistent DRAM using NAND flash
    F = NAND flash accessed as a block oriented device
    P = combined persistent DRAM and block accessed using NAND flash
s = SDRAM operational scaling
    blank = DDR4
    E = DDR4E with operational scaling
wwww = Module speed in Mb/s/data pin
    1600
    1866
    2133
    2400
    2666
    2933
    3200
aa = SDRAM speed grade
    aa = Speed grade, i.e., J, K, L, etc.
m = Base Module Type
    A = Unbuffered 16-bit Small Outline DIMM ("16b-SO-DIMM"), x16 data bus (placeholder)
    B = Unbuffered 32-bit Small Outline DIMM ("32b-SO-DIMM"), x32 data bus (placeholder)
    C = Registered 72-bit Small Outline DIMM ("72b-SO-RDIMM"), x64 primary + 8 bit ECC module data bus
    (placeholder)
    E = Unbuffered DIMM ("UDIMM"), x64 primary + 8 bit ECC module data bus
    L = Load Reduced DIMM ("LRDIMM"), x64 primary + 8 bit ECC module data bus
    N = Mini registered DIMM ("Mini-RDIMM"), x64 primary + 8 bit ECC module data bus
    R = Registered DIMM ("RDIMM"), x64 primary + 8 bit ECC module data bus
    S = Small Outline DIMM ("SO-DIMM"), no ECC (x64 bit module data bus)
    T = Unbuffered 72-bit Small Outline DIMM ("72b-SO-DIMM"), x64 primary + 8 bit ECC module data bus
```

U = Unbuffered DIMM ("UDIMM"), no ECC (x64 bit module data bus)

W = Mini unbuffered DIMM ("Mini-UDIMM"), x64 primary + 8 bit ECC module data bus

cc = Reference design file used for this design (if applicable)

A = Reference design for raw card 'A' is used for this assembly

B = Reference design for raw card 'B' is used for this assembly

AC = Reference design for raw card 'AC' is used for this assembly

ZZ = None of the JEDEC standard reference designs were used for this assembly

d = Revision number of the reference design used (see table below)

0~9 = Production release revisions

A~K = Pre-production releases (new method -- preferred)

P = Pre-release or Engineering sample (for legacy modules; new modules should use A~K)

Z = To be used when field cc = ZZ

bb = JEDEC SPD Revision Encoding and Additions level used on this DIMM

As modules are developed in JEDEC, samples of pre-standard approval designs are often distributed for evaluation. Legacy DIMM labels allowed for a single pre-production indicator 'P' in the d field, and determining the specific board revision required reading the module SPD. This is replaced in newer modules with using the first letter in the cc field to indicate which raw card revision the pre-production module represents. For pre-production modules, a letter is used in the 'd' field in place of the target production level:

Table 25 — Preproduction Registration Table for Hybrid Module Types

DIMM Label Field 'd'		
Pre-Production Revision	Production Revision	Resulting Production Revision
А	0	Raw card revision 0
В	1	Raw card revision 1
С	2	Raw card revision 2
D	3	Raw card revision 3
Е	4	Raw card revision 4
F	5	Raw card revision 5
G	6	Raw card revision 6
Н	7	Raw card revision 7
J	8	Raw card revision 8
K	9	Raw card revision 9
Р	-	Legacy pre-production indicator; production revision documented in module SPD
Z	Z	Non-standard design

Legacy DIMM labels allowed for a single pre-production indicator in the d field, and determining the specific board revision required reading the module SPD. This is replaced in newer modules with using the first character in the cc field to indicate which raw card revision the pre-production module represents.

Pre-Production Example: A hypothetical release cycle of a raw card F, for example, may proceed like this:

ccd = FA Pre-production sample of raw card F0

ccd = F0 Production F0 module

ccd = FB Pre-production sample of raw card F1

ccd = F1 Production F1 module

Examples:

16GB 2Rx4 NN4-2133N-RA2-12

16 GB DDR4 SDRAM with no system accessible Flash

DDR4 RDIMM-compatible interface NVDIMM-N

2 package ranks per DIMM

using SDP DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade N: CAS Latency = 14

Raw card reference design file A revision 2 used for the assembly

DDR4 SPD revision 1.2

16GB+32GB 2Rx4 NP4-2133N-RA2-12

16 GB DDR4 SDRAM with 32GB NAND Flash mounted as a block oriented device

DDR4 RDIMM-compatible interface NVDIMM-P

2 package ranks per DIMM

using SDP DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-2133 performance

Speed grade N: CAS Latency = 14

Raw card reference design file A revision 2 used for the assembly

DDR4 SPD revision 1.2

1TB 1Rx4 NF4-1866M-LB1-12

1 TB NAND Flash-only, no system accessible DRAM

DDR4 LRDIMM-compatible interface NVDIMM-F

Appears as 1 package rank per DIMM

of SDP DDR4 SDRAMs

x4 data organization per SDRAM

DDR4-1866 performance

Speed grade M: CAS Latency = 12

Raw card reference design file B revision 1 used for the assembly

DDR4 SPD revision 1.2

9 JEDEC Process

JEDEC provides PCB reference designs for DIMM modules. The designs are divided into families one of which is Unbuffered DIMMs (UDIMMs). Letters (A, B, C etc.) are used to define specific configurations (raw cards) of modules such as 2 rank with x8 based SDRAMs. Additional characteristics may further refine cards into specific raw card (R/C) letters. Letter assignments are arbitrary and usually chronological. There is no other association to the letter assignments.

R/Cs are reviewed and balloted by JEDEC members before being placed on the JEDEC website as reference designs. This is called registration. The initial registration is 0. A specific card may be the registration of R/C A0. Subsequent design updates to the reference design go through the same balloting process and increment the registration number from 0 to 1 or the next highest number.

