SEGUIMIENTO Y FLUJO ÓPTICO

PROCESAMIENTO DE IMÁGENES, AUDIO Y VIDEO

ALEJANDRO BOLAÑOS GARCÍA Y DAVID GARCÍA DÍAZ

TAREAS REALIZADAS

- 1. Seguimiento de mano derecha en video con diferentes algoritmos.
- 2. Comparación de resultados de velocidad y posición mediante gráficos.
- 3. Aplicación de algortimos a dos frames de la base de datos de Flying Chairs.

RESULTADOS DEL SEGUIMIENTO DE LA MANO

CONCLUSIÓN

- YOLO: Estima posiciones de manera estable, pero con velocidades más altas y dinámicas.
- RAFT, Farneback y Lucas-Kanade OpenCV: Presentan posiciones consistentes, aunque con fluctuaciones moderadas en las velocidades.
- Lucas-Kanade Manual: Muestra desviaciones notables, indicando menor precisión.

METODOLOGÍAS UTILIZADAS

- Método para calcular la velocidad:
 - def calculate_velocity(prev_position, curr_position, fps):
- Método para detectar el keypoint de la persona a seguir: def detectar_persona(frame, model, keypoint_idx=10, conf_threshold=0.5):
- Método Lukas-Kanade implementado manualmente: def manual_lucas_kanade(prev_frame, curr_frame, prev_point, window_size=31):
- Método de Farneback: cv.calcOpticalFlowFarneback()
- Método de Lucas-Kanade: cv.calcOpticalFlowPyrLK()
- Método de RAFT: raft large(pretrained=True, progress=False)

Detección de la persona con el keypoint 10 con más confianza en el primer frame. Posteriormente, calculamos el flujo óptico a partir de este keypoint inicial y vamos guardando el desplazamiento.

RESULTADOS BASE DE DATOS FLYING CHAIRS

Frame 1

RAFT

Frame 2

Farneback

Ground Truth

