

Federated Online Adaptation for Deep Stereo

Matteo Poggi

Fabio Tosi

University of Bologna

Introduction

Problem: Stereo networks struggle at generalizing to challenging domains. Online adaptation can soften the problem, yet is unfeasible on embedded hardware.

Our Proposal: A distributed adaptation framework, where resource-constrained nodes can benefit from the adaptation carried out by other clients.

Federated Adaptation Framework

Server executes:

14: end while

1: set t=0, load pre-trained $w_t=w_0$ 2: register adapting clients A, listening clients C3: initialize buffers $W=[\][\],\ H=[\][\]$ 4: **while** True **do** 5: **for** each client $k\in A$ **in parallel do** 6: $W[k]\leftarrow \text{ClientUpdate}(k,w_t^k,T)$ 7: **end for** 8: **for** each block i in w_t **do** 9: $w_{t+1}[i]\leftarrow\frac{1}{||A||}\sum_{k\in A}W[k][i]$ 10: send w_{t+1} to C11: **end for** 12: flush buffer $W=[\]$ 13: $t\leftarrow t+1$

ClientUpdateFULL(k, w^k, T): 1: for each step τ from 0 to T do 2: sample batch b_{τ} 3: update $w^k \leftarrow w - \eta \nabla \sum_i \ell_i(w^k, b_{\tau})$ 4: end for 5: return w^k to server

Online Adaptation for Stereo: at time t, the network processes a stereo pair b_t and updates its weights w_t (FULL) or a subset (MAD)

$$w_{t+1} \leftarrow w_t - \eta \nabla \sum_i \ell_i(w_t, b_t)$$
 $i = \text{sample}(\text{softmax}(H))$ $w_{t+1}[i] \leftarrow w_t[i] - \eta \nabla \ell_i(w_t, b_t)[i]$

Federated Adaptation for Stereo: a central server receives updates by active clients — those performing adaptation — aggregates the weights, and sends them to *listening* clients.

Active clients submit updated weights to the server every T steps, either sending all weights (FedFULL) or a subset (FedMAD).

ClientUpdateMAD(k, w^k, T, H):
1: for each step $ au$ from 0 to T do
2: sample batch $b_{ au}$
3: update $w^k \leftarrow w - \eta \nabla \sum_i \ell_i(w^k, b_\tau)$
4: for each block i in H do 5: $H[k][i] += 1$ if i was updated
5: $H[k][i] += 1$ if i was updated
6: end for
7: end for
8: $j \leftarrow \text{sample}(\text{softmax}(H[k]))$
9: $H[k][j] = 0.9 \cdot H[k][j]$
10: return $j, w^k[j]$ to server

Experimental Results

Ablation Study – Update Frequency and Number of Adapting Clients

Experiments on DrivingStereo and DSEC

		Rainy		Dus	Dusky		udy	Data ⁻	Traffic	Runtime		
Model	Adapt. mode	D1-all	EPE	D1-all	EPE	D1-all	EPE	To Server	To Client	3090	AGX	
		(%)	(px)	(%)	(px)	(%)	(px)	(MB/s)	(MB/s)	(ms)	(ms)	
RAFT-Stereo		11.52	1.59	3.08	0.88	4.18	1.02	-	1	264		
CREStereo	No Adapt.	17.43	3.61	7.08	1.23	4.08	1.07	-	-	415	> 1000	
IGEV-Stereo	No Adapt.	11.70	1.85	3.57	0.95	5.27	1.26	-	-	389	> 1000	
UniMatch		14.84	2.69	7.51	1.27	5.78	1.25	-	-	85		
CoEX		13.48	2.53	11.00	1.58	4.46	1.16	-	-	16	130	
HITNet	No Adapt.	14.08	2.74	8.88	1.37	4.17	1.14	-	-	29	311	
TemporalStereo		18.53	3.94	13.61	1.80	6.02	1.31	-	-	33	X	
MADNet	No Adapt.	27.14	3.90	24.73	2.45	11.00	1.77	-	-	6	64	
MADNet 2 (ours)	No Adapt.	16.47	3.03	13.16	1.66	6.72	1.35	-	-	4	43	
	(a)) No Ada	ptation	– pre-tr	ained (n Scen	eFlow					
MADNet 2	FULL	10.19	1.70	11.36	1.54	5.76	1.27	-	-	30	492	
	MAD	11.12	1.78	13.36	1.61	5.93	1.26	-	-	12	65	
MADNet 2	FedFULL	11.57	2.00	10.65	1.44	5.45	1.20	20.6	6.8	4	43	
	FedMAD	11.71	2.10	10.12	1.41	5.60	1.21	4.6	3.6	4	43	
(b) Single-agent vs Federated Adaptation – photometric loss												
MADNet 2	FULL++	10.34	2.27	4.41	1.04	5.20	1.63	-	-	20	470	
	MAD++	10.06	2.01	5.25	1.09	4.34	1.09	-	-	8	48	
MADNet 2	FedFULL++	8.33	1.73	4.13	1.00	4.55	1.13	28.8	9.6	4	43	
	FedMAD++	8.58	1.74	4.40	1.01	4.65	1.16	6.5	4.5	4	43	
	(c) Sind	gle-agen	t vs Fe	derated	Adapta	tion – pi	roxy lab					

		9		9		9		9					
Model	Adapt. mode	D1-all (%)	EPE (px)	D1-all (%)	EPE (px)	D1-all (%)	EPE (px)	D1-all (%)	EPE (px)	To Server (MB/s)	To Client (MB/s)	3090 (ms)	AGX (ms)
RAFT-Stereo		13.04	3.41	21.64	4.26	10.91	1.91	10.07	1.68	(1412/0)	- (1012/0)	1030	(1110)
CREStereo		11.34	2.38	23.48	3.19	15.37	2.39	12.42	1.75	_	_	1242	
IGEV-Stereo	No adapt.	9.14	1.85	11.97	1.96	12.65	2.01	10.01	1.66	_	_	1250	> 8000
UniMatch		34.29	5.43	39.80	5.32	26.75	3.29	26.29	3.28	-	-	480	
CoEX		6.26	1.72	10.81	1.87	8.60	1.64	8.31	1.53	_	-	53	539
HITNet	No adapt.	6.49	1.54	9.57	1.71	8.28	1.62	7.88	1.47	-	-	112	1400
TemporalStereo		7.17	1.68	10.22	1.92	8.66	1.62	8.40	1.49	-	-	118	X
MADNet 2 (ours)	No Adapt.	8.94	1.97	13.86	2.32	10.63	1.83	10.55	1.69	-	-	12	111
(a) No adaptation – pre-trained on SceneFlow													
MADNet 2	FULL	5.65	1.41	9.16	1.60	8.12	1.50	8.97	1.46	-	-	102	1238
MADNEL 2	MAD	5.79	1.52	8.87	1.60	7.89	1.49	8.50	1.46	-	-	30	253
MADNet 2	FedFULL	5.50	1.43	8.36	1.52	7.63	1.48	7.57	1.37	13.8	4.6	12	111
WADNET Z	FedMAD	5.52	1.43	8.39	1.53	7.91	1.50	7.79	1.39	2.9	2.0	12	111
(b) Single-agent vs Federated Adaptation – photometric loss													
MADNet 2	FULL++	4.69	1.28	7.13	1.43	6.20	1.35	6.06	1.27	-	-	45	808
	MAD++	5.66	1.43	7.76	1.49	6.57	1.39	6.47	1.30	-	-	16	172
MADNet 2	FedFULL++	4.99	1.33	7.03	1.41	6.43	1.37	6.18	1.28	21.7	7.1	12	111
IVIADINGLE	FedMAD++	4.99	1.34	7.13	1.42	6.48	1.38	6.23	1.28	7.3	5.8	12	111
(c) Single-agent vs Federated Adaptation – proxy labels													

Qualitative Results

