Para los números 12, 17, 15, 10, 10, 10, 8, 10. Marque en caso de que la afirmación sea verdadera

- a) La media es 4.5
- b) La mediana es 10
- c) La media es 11.5
- d) La desviación estándar es 0.2629318
- e) La desviación estándar es 3.0237158

Respuesta:

La media \overline{x} es la suma de todos los números x_i dividida entre la cantidad de números n.

$$\overline{x} = \frac{\sum x_i}{n} = \frac{92}{8} = 11.5$$

La mediana \tilde{x} es el valor central cuando los números están ordenados.

8, 10, 10, 10, 10, 12, 15, 17, valor central:
$$\tilde{x} = 10$$

La desviación estándar de una muestra s se calcula:

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}} = \sqrt{\frac{64}{7}} \approx 3.0237158$$

Marcar: b), c) y e)

Se tienen los salarios de un grupo de 20 trabajadores para el tiempo t, distribuidos como:

Grupo 1: n= 10

1501	1642	2502
1896	1927	2768
2320	1609	2427
2837		

Grupo 2: n = 6

5329	5233	5135
4432	4561	3310

Grupo 3: n= 4

8093	8019	7636	8731
------	------	------	------

Si se decide hacer un incremento para el t+1 de 400Bs a todos y además incrementar al salario t en 22.39 %. ¿Cuál es el promedio esperado para t+1 de estos 20 trabajadores?

- a) 4495.4
- b) 5012.36006
- c) 4095.4
- d) 5412.36006
- e) 20

Respuesta:

Se saca la media \overline{x} de todos los salarios.

$$\overline{x} = \frac{\sum x_i}{n} = 4095.4$$

Se incrementa la media en 22.39%.

$$\overline{x} \cdot 1.2239 = 4095.4 \cdot 1.2239 = 5012.36006$$

Se incrementan los 400 Bs.

$$5012.36006 + 400 = 5412.36006$$

Marcar d)

Una urna A contiene 4 bolas rojas y 3 negras, mientras que en la urna B contiene 4 bolas rojas y 6 negras. Si una bola es extraida aleatoriamente de cada urna, ¿cuál es la probabilidad de que las bolas sean del mismo color?

- a) 12/70
- b) 28/70
- c) 4/10
- d) 1/2
- e) 1/5

Respuesta:

Calcular total de bolas en la urna A: 4 + 3 = 7.

Calcular total de bolas en la urna B: 4 + 6 = 10.

Calcular la probabilidad de que ambas sean rojas:

$$\frac{4}{7} \times \frac{4}{10} = \frac{16}{70}$$

Calcular la probabilidad de que ambas sean negras:

$$\frac{3}{7} \times \frac{6}{10} = \frac{18}{70}$$

Sumas las probabilidades: $\frac{16}{70}+\frac{18}{70}=\frac{34}{70}=\frac{17}{35}$ El inciso que más se acerca a la respuesta es b) $\frac{28}{70}\approx\frac{34}{70}$

Marcar b)

Un número es seleccionado al azar entre los numeros 2 al 20. Sean los eventos:

- A: El número es par
- B: El número es primo
- C: El número elegido es múltiplo de 5

Marque en caso de que sean verdaderas las siguientes afirmaciones:

- a. $A \cup B = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20$
- b. $(A \cup B) \cap C^c = 5,10$
- c. $A \cap B = 2$
- d. $A^c \cap B^c = \emptyset$
- e. $A^c \cap B = 3, 5, 7, 11, 13, 17, 19$

Respuesta:

Anotar explícitamente los conjuntos:

• Números del 2 al 20:

Verificar acada afirmación:

• *A* ∪ *B*:

Así que a. está mal, le falta el 9, el 15 y le sobra el 1.

• $(A \cup B) \cap C^c$

2	3	4	5	6	7	8		10	11	12	13	14		16	17	18	19	20
									\cap									
2	3	4		6	7	8	9		11	12	13	14		16	17	18	19	
	=																	
2	3	4		6	7	8			11	12	13	14		16	17	18	19	
Así	que	b. e	stá	mal														
	$\cap B$																	
2		4		6		8		10		12		14		16		18		20
2	3		5		7				11		13				17		19	
									=									
2																		
Así	Así que c. está bien																	
• $A^c \cap B^c$																		
			sta	bien	1													
			sta 5	bien	7		9		11		13		15		17		19	
	$^{c} \cap l$.	bien	Τ		9		11		13		15		17		19	
	$^{c} \cap l$.	6	Τ	8	9	10		12	13	14	15	16	17	18	19	20
	$^{c} \cap l$	B ^c	.		Τ	8		10		12	13	14		16	17	18	19	20
	$^{c} \cap l$	B ^c	.		Τ	8		10	Λ	12	13	14		16	17	18	19	20
	^c ∩ ¹	4	5	6	7	8	9	10	Λ	12	13	14	15	16	17	18	19	20
• A	^c ∩ ¹	4 d. e	5	6	7	8	9	10	Λ	12	13	14	15	16	17	18	19	20
• A	c ∩ 1	4 d. e	5	6	7	8	9	10	Λ	12	13	14	15	16	17	18	19	20
• A	$c \cap l$ 3 que $c \cap l$	4 d. e	5 está	6	7	8	9	10	=	12		14	15	16		18		20
• A	$c \cap l$ 3 que $c \cap l$	4 d. e	5 está	6	7	8	9	10	∩ =	12		14	15	16		18		20
• A	c ∩ 1 3 que c ∩ 1 3	4 d. e	5 está	6	7	8	9	10	∩ = 11	12	13	14	15	16	17	18	19	20

Así que e. está bien.

Marcar c. y e.

Sea X una v.a. con función de distribución acumulada:

$$F(x) = \frac{x}{x+1}; x \ge 0$$

La función de densidad es:

- a. $\frac{1}{(x+1)^2}$
- b. $\frac{x}{(x+1)^2}$
- c. $\frac{1}{x+1} + \frac{1}{(x+1)^2}$
- d. $\frac{x}{(x-1)^2}$
- e. $\frac{1}{(x-1)^2}$

Respuesta:

Derivar F(x) con la regla del cociente:

 $f(x) = \frac{\text{derivada del numerador} \times \text{denominador} - \text{numerador} \times \text{derivada del denominador}}{(\text{denominador})^2}$

Numerador: $x o \frac{d}{dx}x = 1$

Denominador: $x + 1 \rightarrow \frac{d}{dx}x + 1 = 1$

$$f(x) = \frac{(x+1) - x}{(x+1)^2} = \frac{1}{(x+1)^2}$$

Marcar a.

Sea X una v.a. con función generatriz de momentos:

$$M_x(t) = \frac{1}{4} \big(3e^t + e^{-t}\big)$$

La varianza de X esta definida como:

- a. 1/4
- b. 1/2
- c. 2/4
- d. 3/4
- e. 6/7

Respuesta:

Calcular la esperanza E[X] sacando la primera derivada y evaluando en t=0:

$$\begin{split} E[X] &= \frac{d}{dt} \left[\frac{1}{4} \left(3e^t + e^{-t} \right) \right] = \frac{1}{4} \left(3e^t - e^{-t} \right) \\ &\to \frac{1}{4} \left(3e^0 - e^{-0} \right) = \frac{1}{4} (3 - 1) = \frac{2}{4} = \frac{1}{2} \end{split}$$

Calcular la esperanza del cuadrado de X $E[X^2]$ sacando la segunda derivada y evaluando en t=0:

$$\begin{split} E\left[X^{2}\right] &= \frac{d}{dt} \left[\frac{1}{4} \left(3e^{t} - e^{-t}\right)\right] = \frac{1}{4} \left(3e^{t} + e^{-t}\right) \\ &\to \frac{1}{4} \left(3e^{0} + e^{0}\right) = \frac{1}{4} (3+1) = \frac{4}{4} = 1 \end{split}$$

Calcular la varianza restando el segundo resultado (1) por el primer resultado $\left(\frac{1}{2}\right)$ al cuadrado:

$$Var(x) = E[X^2] - (E[X])^2 = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{4}{4} - \frac{1}{4} = \frac{3}{4}$$

Marcar d.

Sea (X,Y) va continuas definidas ambas para los reales positivos, con función de densidad:

$$f(x,y) = \frac{1}{4}(x+y)xye^{-x-y}$$

La marginal f(x) es:

- · a. Ninguna.
- b. $f_X(x) = \frac{x^2 + 2x}{4}e^x$
- c. $f_X(x) = \frac{x^2 + 2x}{4}e^{-x}$
- d. Falta información.
- e. $f_X(x) = \frac{x^2 + x}{4}e^{-x}$

Respuesta:

Integrar desde 0 hasta ∞ con dy:

$$f_X(x) = \int_0^\infty \frac{1}{4} (x+y) x y e^{-x-y} dy = \frac{1}{4} x e^{-x} \int_0^\infty (x+y) y e^{-y} dy$$

Dividir la integral en dos partes:

$$\int_0^\infty (x+y) y e^{-y} dy = \int_0^\infty \left(x y e^{-y} + y^2 e^{-y} \right) dy = x \int_0^\infty (y e^{-y}) dy + \int_0^\infty \left(y^2 e^{-y} \right) dy$$

Según las integrales gamma:

$$\int_0^\infty y^k e^{-y} dy = k!$$

Entonces:

$$\int_0^\infty (x+y)ye^{-y}dy = x(1!) + (2!) = x+2$$

Multiplicando por el factor externo:

$$f_X(x) = \frac{1}{4}xe^{-x}(x+2) = \frac{x(x+2)}{4}e^{-x} = \frac{x^2 + 2x}{4}e^{-x}$$

Marcar b.

Para la siguiente tabla de probabilidad conjunta, calcule la esperanza de X

Х	у	Probabilidad
1	1	0.19
2	1	0.23
3	1	0.24
1	2	0.05
2	2	0.06
3	2	0.04
1	3	0.03
2	3	0.02
3	3	0.02
1	4	0.03
2	4	0.05
3	4	0.04

- a. 1.65
- b. 1
- c. 2.04
- d. Falta información
- e. Ninguna o la información dada es incorrecta

Respuesta:

Sumar las probabilidades para cada valor de x:

- Para x = 1:0.19 + 0.05 + 0.03 + 0.03 = 0.30
- Para x = 2:0.23 + 0.06 + 0.02 + 0.05 = 0.36
- Para x = 3:0.24 + 0.04 + 0.02 + 0.04 = 0.34

Multiplicar cada suma con el valor de x correspondiente y hacer la suma de productos:

$$E[X] = (1 \times 0.30) + (2 \times 0.36) + (3 \times 0.34) = 0.30 + 0.72 + 1.02 = 2.04$$

Marcar c.

Sean dos variables aleatorias X,Y, con E[X]=7, E[Y]=6, E[X,Y]=45, la covarianza es:

- a. 87
- b. Falta información
- c. Ninguna o la información dada es incorrecta
- d 42
- e. 3

Respuesta:

La fórmula de la covarianza es:

$$Cov(X, Y) = E[XY] - E[X] \cdot E[Y] = 45 - 7 \cdot 6 = 45 - 42 = 3$$

Si:

$$f(x, y) = \frac{1}{8}(6 - x - y)$$
 $0 \le x \le 2$ $2 \le y \le 6$

Encuentre la densidad f(x).

- a. Falta información
- b. f(x) = 6
- c. Ninguna o la información dada es incorrecta
- d. $f(x) = \frac{x^2}{3}$
- e. $f(x) = \frac{x}{4} + 5$

Respuesta:

Para que la función conjunta sea una densidad de probabilidad válida, no debe tomar valores negativos, sin embargo:

Si
$$(x, y) = (2, 6)$$
:

$$f(x,y) = \frac{1}{8}(6-x-y) \to f(2,6) = \frac{1}{8}(6-2-6) = \frac{1}{8}(-2) = -\frac{2}{8} = -\frac{1}{4}$$

Como la función toma valores negativos, entonces no es una densidad de probabilidad.

Marcar c.

Sea X una variable aleatoria con varianza finita. Encuentre la correlación entre X y X

- a. $\rho = -1$
- b. $\rho = 0$
- c. Ninguna o la información dada es incorrecta
- d. Falta información
- e. $\rho = 1$

Respuesta:

La fórmula de la correlación es:

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Como la correlación es entre X y X:

$$\rho_{X,X} = \frac{\text{Cov}(X,X)}{\sigma_X \sigma_X} = \frac{\text{Var}(x)}{\left(\sigma_X\right)^2}$$

Se sabe que:

- Cov(X, X) = Var(X)
- $\sigma_X \cdot \sigma_X = Var(X)$

Entonces:

$$\rho_{X,X} = \frac{\operatorname{Cov}(X,X)}{\sigma_X \sigma_X} = \frac{\operatorname{Var}(x)}{\operatorname{Var}(x)} = 1$$

Sea X una va tal que $X \sim U(a,b)$, Se toma una muestra aleatoria de tamaño n, encontrar la función de densidad conjunta de la muestra.

• a.
$$f(x) = \frac{1}{b-a}$$

• b.
$$f(x_1, ..., x_n) = \frac{1}{b-a}$$

• c. Ninguna

• d.
$$f(x) = \frac{1}{a-b}$$

• e.
$$f(x_1, ..., x_n) = \frac{1}{(b-a)^n}$$

Respuesta:

La función de densidad conjunta es el producto de las densidades individuales, así que cada densidad se multiplicará n veces (el tamañi de la muestra aleatoria), por lo tanto la respuesta es la única que está elevada a la n

$$\frac{1}{(b-a)^n} = \left(\frac{1}{b-a}\right)^n$$

Se toma una muestra aleatoria de tamaño 7 de una población finita de tamaño 79, Calcular para el estimador de la media muestral, su varianza. Los datos son: 0, -6, 51, 46, -6, 14, 1

• a. Ninguna

b. 14.2857143

· c. Falta información

• d. 592.9047619

• e. 77.1955567

Respuesta:

Obtener la suma de los datos:

$$\sum x_i = 0 + (-6) + 51 + 46 + (-6) + 14 + 1 = 100$$

Obtener la suma de cuadrados:

$$\sum_{i} x_i^2 = 0^2 + (-6)^2 + 51^2 + 46^2 + (-6)^2 + 14^2 + 1^2$$
$$= 0 + 36 + 2601 + 2116 + 36 + 196 + 1 = 4986$$

Aplicar la formula de la varianza muestral corregida s^2 :

$$s^{2} = \frac{\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1} = \frac{100 - \frac{4986^{2}}{7}}{6} = 592.9047619$$

Obtener la varianza:

$$\left(\frac{s^2}{n}\right) \cdot \left(\frac{N-n}{N}\right) =$$

$$\frac{592.9}{7} \cdot \left(\frac{79-7}{79}\right) = 77.1949$$

La cantidad de tiempo que le toma al cajero de un banco con servicio en el automóvil atender a un cliente es una variable aleatoria con una media $\mu=5.28$ minutos y una desviación estándar $\sigma=5.38$ minutos. Si se observa una muestra aleatoria de 58 clientes, calcule la probabilidad de que el tiempo medio que el cliente pasa en la ventanilla del cajero sea más de 8.7 minutos;

- a. Información insuficiente
- b. 6.4511315×10^{-7}
- c. Ninguna
- d. 0
- e. 0.9999994

Una población de fuentes de energía para una computadora personal tiene un voltaje de salida que se distribuye normalmente con media 9 V y desviación estándar de 0.58. Se selecciona una muestra aleatoria de 57 fuentes de energía. ¿Cuál es la distribución de \overline{X} ?

- a. Ninguna
- b. Falta información
- c. $\overline{X} \sim N(9, \sigma_{\overline{X}} = 0.0101754)$
- d. $\overline{X} \sim N(9, \sigma_{\overline{X}} = 0.58)$
- e. $\overline{X} \sim N(9, \sigma_{\overline{X}} = 0.0768229)$

Sea \overline{X} una v.a. tal que $X\sim \chi^2(\nu=14)$. Calcular la probabilidad que X se encuentren entre 6 y 13 (puede usar la aproximación normal)

- a. Falta información
- b. 0.4734764
- c. 0.4899288
- d. Ninguna
- e. 0.0335085