Integrating STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard Analysis

A Consistent and Coordinated Process Approach to MIL-STD-882E Functional Hazard Analysis

Nicolas Malloy Systems Engineer

Outline

- Purpose
- Problem
- Problem Approach
- Brief High-Level Example
- Conclusion
- Recommendations
- Benefits
- References

Purpose

- Promote the integration of STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard Analysis
 - Document a process which organizations can follow to conduct well-crafted safety hazard analysis
 - Improve the safety process through the use of a continuous process improvement plan
 - Break through "business as usual" paradigms
 - System safety must be an organic component of the system design process (hardware, software, etc.)

Problem

- MIL-STD-882E provides high-level descriptions of tasks required to achieve standard compliance
 - Very helpful for some tasks
 - Others leave the practitioner needing more instruction
- Example: Functional Hazard Analysis
 - List of eight tasking elements
 - There are high-level descriptions but little instructions or references provided
 - Some tasking elements are straight forward while others are not
 - Can lead to analysis approach based on assumption
 - Tasking elements build upon each other Effectiveness and quality of hazard identification and mitigation controls become susceptible to serious degradation if initial tasks are flawed
 - A consistent and coordinated process is needed

Problem Approach

- Integrate STAMP-Based Hazard Analysis with MIL-STD-882E Functional Hazard Analysis
 - Map STAMP and STPA → MIL-STD-882E Functional Hazard Analysis Tasking Elements
 - Document rationale

- Develop a Safety Process and Plan to be shared with the safety community
 - Whitepapers can be written as necessary to support the process

System Decomposition

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
a.	Decomposition of the system and	STAMP	Decomposing the system and its related subsystems
	its related subsystems to the major		to the major component level feeds directly into
	component level.3		STAMP with the construction of the Control Structure.
			Also includes early safety Requirements and
			Constraints development and preliminary identification
			Hazards and Mishaps.

Functional Descriptions of Subsystem and Components

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
	A functional description of each subsystem and component identified. ³	STAMP	Documenting the behavioral characteristics of the system using functional descriptions contributes to STAMP with the continued construction of the Control Structure. Also includes early safety Requirements and Constraints development and preliminary identification of Hazards and Mishaps continues to occur.

Control Structure for a Generic Man/Machine System

Functional Descriptions of Interfaces

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
C.	A functional description of	STAMP	Documenting the behavioral characteristics of system
	interfaces between subsystems		interfaces contributes to STAMP and the continued
	and components. Interfaces should		construction of the Control Structure. Also includes
	be assessed in terms of		early safety Requirements and Constraints
	connectivity and functional inputs		development and preliminary identification of Hazards
	and outputs.3		and Mishaps continues to occur.

Control Structure for a Generic Man/Machine System

Identifying Unsafe Functional Behavior

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
d.	Hazards associated with loss of	STPA	STPA step 1 identifies the potential for inadequate
	function, degraded function, or		control of the system leading to a hazardous
	malfunction, or functioning out of		state. STPA step 2 considers multiple controllers
	time or out of sequence for the		of the same components and seeks to identify
	subsystems, components, and		conflicts and potential coordination problems. This
	interfaces. The list of hazards		aids in identifying next effects and top level
	should consider the next effect in a		events.
	possible mishap sequence and the		
	final mishap outcome.3		

STPA step 2 supports the identification of <u>HOW</u> unsafe control actions can occur

- Example: Security
 - Integrated approach to Safety and Security with STPA-Sec⁴
 - Physical, Cyber, Parts Tampering, etc.

Identifying Unsafe Control Actions²

Risk Assessment

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
e.	An assessment of the risk	STAMP	STAMP together with STPA identifies the system-
	associated with each identified	STPA	level Hazards associated with each function (and
	failure of a function, subsystem, or		unsafe control action) so the classification as to
	component. Estimate severity,		severity comes from the classification of the
	probability, and Risk Assessment		system level hazards and their associated
	Code (RAC) using the process		mishaps.1 STPA can be used to make risk
	described in Section 4 of 882E.3		acceptance decisions and to plan mitigations for
			open safety risks that need to be changed before
			a system is deployed and field tested. 2

Probability x Severity = RAC

Subsystem/ Component	Function	Command	Unsafe Control	Hazard	Severity	Probability	RAC
Electromechanical, Digital, Human, or Social ²	A well order set of unique commands	A specific order issued by a Subsystem/ Component	A specific order issued by a Subsystem/Compo nent that contributes/leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	A quantitative or qualitative assessment used to express the likelihood of an events occurrence	An assessment comprised of mishap probability and severity

Risk Assessment (cont.)

Key

Command_m Hazard, Requirement,

Functional Allocations

Tasking	MIL-STD-882E FHA Tasking Element	Allocation	Rationale
Element	Description		
f.	An assessment of whether the functions	STAMP	Determining how system functionality and
	identified are to be implemented in the	STPA	components are to be implemented is
	design hardware, software, or human		based on the safety Requirements and
	control interfaces. This assessment		Constraints that are developed while the
	should map the functions to their		safety practitioner works through STAMP
	implementing hardware or software		and STPA steps 1 and 2 iteratively. "Like"
	components. Functions allocated to		Commands can also be Functionally
	software should be mapped to the lowest		Grouped. This can be used to establish
	level of technical design or configuration		traceability between the Functions,
	item prior to coding (e.g., implementing		Commands, Hazards, Safety Requirements,
	modules or use cases).3		and Constraints. Example: RTM

Functional Allocations (cont.)

***********		Control Interface	Software Only				
Function	Function Command Implementation		CSCI	csc	CSU		
Func ₁	Command B ₁	Hardware, Software, or Human					
	Command B ₂						
	Command B ₃						
e a	Command B ₄						
Func ₂	Command B ₅						
	Command B ₆						
Func	Command B ₇	\ \frac{1}{2}					

Key	
Func _n	Function,
CSCI	Computer Software Configuration Item
CSC	Computer Software Component
CSU	Computer Software Unit

Functional Hazard Traceability Matrix

Software Criticality Index Assessments

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
g.	An assessment of Software Control	STAMP	SCC and SwCl are unique to MIL-STD-882E but
	Category (SCC) for each Safety-	STPA	the determination for how software functionality is
	significant Software Function		to be implemented is in part based upon the
	(SSSF). Assign a Software		technology needed to support the safety
	Criticality Index (SwCI) for each		Requirements and Constraints that are developed
	SSSF mapped to the software		while the safety practitioner works through
	design architecture.3		STAMP and STPA steps 1 and 2 iteratively.

SCC x Severity = SwCl → LoR

Subsystem/ Component	Function	Command	scc	Unsafe Control	Hazard	Severity	SwCl	LoR
Electromechanical, Digital, Human, or Social ²	A well order set of unique commands	A specific order issued by a Subsystem/ Component	The degree of software control (Autonomous, Semi- Autonomous, Redundant Fault Tolerant, Influential, or Not Involved)	A specific order issued by a Subsystem/ Component that contributes/ leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	An event or series of events that result in a loss	Depth and breadth of software analysis and verification activities necessary to provide a sufficient level of confidence ³

Software Criticality Index Assessments (cont.)

STAMP-Based Hazard Analysis SwCI Assessment (882E) System Subsystems/Components Functions Use MIL-STD-882E Mishap continuously demands Severity definition for ranking (What is the Unsafe Control severity of the Mishap associated with the Hazard?) H₂ ... H., н, SCC x Severity = SwCl → LoR Requirements Constraints Use MIL-STD-882E Software ... R. Control Category definition for ranking based on proposed/actual implementation (How do the characteristics of performance requirements map to the SCCs?)

Iterative approach

safer control of the

systems commands

Key

Command_m

Requirement,

Hazard,

Identifying Safety Requirements and Constraints

Tasking	MIL-STD-882E FHA Tasking	Allocation	Rationale
Element	Element Description		
h.	A list of requirements and	STAMP	STAMP begins with the preliminary identification
	constraints (to be included in the	STPA	of safety requirements and constraints. Analysis of
	specifications) that, when		the system and component hazards identified
	successfully implemented, will		during STPA steps 1 and 2 aids in the iterative
	eliminate the hazard, or reduce the		development of the safety Requirements and
	risk. These requirements could be		Constraints necessary to address the unsafe
	in the form of fault tolerance,		controls leading to hazards.
	detection, isolation, annunciation, or		
	recovery.3		

Subsystem/ Component	Function	Command	Unsafe Control	Hazard	Mishap	Safety Requirement	Constraint	Requirement Type
Electromechanical, Digital, Human, or Social ²	A well order set of unique commands	A specific order issued by a Subsystem/ Component	A specific order issued by a Subsystem/Compo nent that contributes/leads to a hazard	A real or potential condition that could lead to a mishap	An event or series of events that result in a loss	Derived from the mission or reason for the systems existence ²	Represents acceptable ways the system can achieve mission goals ²	Fault tolerance, Detection, Isolation, Annunciation, or recovery.3

Safety Requirements and Constraints Traceability Matrix

Identifying Inadequate Control – STAMP and STPA (Example)

Ballistic Missile Intercept System Control Structure [1]

STAMP – Modeling Process based on the premise that loss is caused by inadequate control [1]

- Requirements and Constraints
- Control Structure
- Process Model

STPA – How do we find inadequate control in a system? [1]

- Identify loss and causal scenarios
- Construct the control structure
- STPA Step 1: Identify inadequate control actions
- STPA Step 2: Identify causal factors and control flaws

Identifying Inadequate Control – STAMP and STPA (Example)

Loss – Inadvertent launch results in a lost asset and possible injury/death.

STPA Step 1 – Identify the potential for inadequate control of the system that could lead to a casual scenario. [1]

Inadequate Control Actions [1]							
Command	Not Providing Leads to Causal Scenario	Providing Incorrectly Leads to Causal Scenario	Wrong Timing or Order Leads to Causal Scenario	Stopped Too Soon or Applied Too Long Leads to Causal Scenario			
Fire Enable	Not Hazardous	Will accept interceptor tasking and can progress to a launch sequence	Early: Can inadvertently progress to an inadvertent launch Out of Sequence: Disable comes before the enable	Not Applicable			

Identifying Inadequate Control – STAMP and STPA (Example)

Ballistic Missile Intercept
System Control Structure [1]

STPA Step 2 – Determine how each potentially inadequate control action identified in step 1 could occur. [1]

Q: Why might Fire Control issue the *Fire Enable* command incorrectly?

A: Security Flaw

- Cyber Attack against the Radar Subsystem has injected erroneous Track Data that shows a hostile target
- Operator training says, Operator shall issue Engage Target if Track Data shows hostile target and Engagement Criteria provided by Command Authority complies
- Operator accepts hostile target and issues Engage Target which results in Fire Control generating the Fire Enable command
- 4. When the *Fire Enable* command is provided to the launch station incorrectly, the launch station will transition to a state where it accepts *interceptor tasking* and can progress through a launch sequence

What design changes (adaptations) could be applied to mitigate this inadequate control?

ontrol

Designing Adaptation – Resilience Engineering Design Principles

Design Principle	Heuristic: "rule of thumb" for systems engineering [4, 5, 6, 7]	
Functional Redundancy	Design alternative methods to perform particular functions that do not rely on the same physical components	
Physical Redundancy	Include redundant hardware	
Reorganization	Design an ability for the system to restructure itself in response to an external change	
Absorption	Include adequate margin to withstand threats	
Human-in-the-Loop	Include humans interaction where rapid cognition is needed	
Loose Coupling	Limit the ability of failures to propagate from one component to the next in a system of many components	
Complexity Avoidance	Avoid complexity added by poor human design practice	
Localized Capacity	Design functionality through various nodes of the system so that if a single node is damaged or destroyed, the	
	remaining nodes will continue to function	
Drift correction	Monitor and correct if the system is drifting towards boundaries of capability	
Neutral state	Prevent further damage from occurring when hit with an unknown perturbation until the problem can be	
	diagnosed	
Reparability	Design the ability to repair system elements	
Inter-node Interaction	Design communication, cooperating, and collaborating between system elements	
Reduce Hidden Interactions	ps Potentially harmful interactions between nodes of the system should be reduced	
Lavered Defense	Use two or more independent principles that address a single element of system vulnerability	

- Example heuristic considerations for Ballistic Missile Intercept System requirements and constraints
 - Absorption ensures protection against cyber threats by compartmentalizing sensitive parts
 of the system by allowing intrusion detection more time to neutralize the attack
 - Functional Redundancy provides data validity checking to ensure the correctness of mission critical functionality
 - Neutral State ensures that positive system control is maintained upon detection of cyber threats
 - Layer Defense = Absorption + Functional Redundancy + Neutral State

Conclusion

 STAMP-Based Hazard Analysis provides the needed conceptual rigidity and contextual flexibility to perform accurate and complete Functional Hazard Analysis consistently

- Certain tasking elements call out Probabilistic Risk Assessment (PRA) and various software (functional control) specific assessments that are based on software implementation and unique to MIL-STD-882E
 - These are not part of STAMP-Based Hazard Analysis process but can be used to influence design decisions

Recommendations

Use this mapping as the basis for generating a process document that serves to instantiate STAMP-Based Hazard Analysis as a means for performing MIL-STD-882E Functional Hazard Analysis

Other considerations:

- Generate tools to manage the analysis approach
- Use modeling tools to create and maintain the control structure(s)
- Investigate an integrated approach using modeling and analysis management tools in the same environment

Benefits

- STAMP and STPA embody Resilient Systems Engineering Processes
- Consistent approach that documents MIL-STD-882E has been met
- Safety is approached in a consistent and coordinated manner
- All personnel involved in the design of safety significant components (hardware, software, or human) must meet safety requirements
- Modeling approach allows for the design team to continually improve the safety of the system prior to pursuing implementation
- Iterative approach can drive down cost and schedule long term

References

- 1. Leveson, N. (2016). STPA Compliance with Army Safety Standards and Comparison with SAE ARP 4761. Cambridge, Massachusetts: The MIT Press.
- 2. Leveson, N. (2011). Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, Massachusetts: The MIT Press.
- 3. DoD. (2012). Department of Defense Standard Practice: System Safety. Washington DC.: Department of Defense (DoD).
- 4. Young, W., & Leveson, N. (2014). Inside Risks: An Integrated Approach to Safety and Security Based on Systems Theory. Communications of the ACM, 1-5.
- 5. Resilience Engineering. (2016, March 25)., Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.6, R.D. Adcock (EIC), Hoboken, NJ:
- 6. Jackson, S. & Ferris, T., (2013), Resilience principles for engineered systems, Systems Engineering, 2012, 15, 3, 333-346, Wiley Subscription Services, Inc., A Wiley Company.
- 7. International Council on Systems Engineering (INCOSE). A World in Motion Systems Engineering Vision 2025, June 2014

Thank you

Questions?

<u>nicolasmalloy@gmail.com</u> <u>https://www.linkedin.com/in/nicolasmalloy/</u>

