Université Chouaib Doukali: EST de Sidi Bennour Génie Informatique 2020-2021

T.D.2. Analyse1

Exercise 1 Montrer que $\sqrt{2}$ n' est pas un nombre rationnel.

Exercise 2 Soit $f: \mathbb{Q} \longrightarrow \mathbb{Q}$ telle que

$$\forall x, y \in \mathbb{Q}, f(x+y) = f(x) + f(y).$$

1- On suppose que f est constante égale a C. determiner C.

2-Calculer f(0).

3-Montrer que $\forall x \in \mathbb{Q}, f(-x) = f(x)$.

4-Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}, f(nx) = nf(x)$. Généraliser cette propriété a $n \in \mathbb{Z}$.

5- On pose a = f(1). Montrer que $\forall x \in \mathbb{Q}, f(x) = ax$.

Exercise 3

1-Montrer que $\forall a, b \in \mathbb{R}, ab \leq \frac{1}{2}(a^2 + b^2)$.

2- Montrer que $\forall a, betc \in \mathbb{R}, ab+bc+ca \leq a^2+b^2+c^2$.

3-Montrer que $\forall a, b \geq 0, 1 + \sqrt{ab} \leq \sqrt{1+a}\sqrt{1+b}$.

4- Soient $n \in \mathbb{N}^*, a_1 \leq \ldots \leq a_n$ et $b_1 \leq \ldots \leq b_n$ des réels. Montrer

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right)\left(\frac{1}{n}\sum_{k=1}^{n}b_{k}\right) \leq \frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}.$$

Exercise 4

1- Montrer $\forall x,y \in \mathbb{R}, [x]+[y] \leq [x+y] \leq [x]+[y]+1$

2- Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Montrer que $\left[\frac{[nx]}{n}\right] = [x]$.

Exercise 5

Soit $f: \mathbb{Q} \longrightarrow \mathbb{R}$ telle que

1- $\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y).$

 $2- \forall x, y \in \mathbb{R}, f(xy) = f(x)f(y).$

 $\exists x \in \mathbb{R}, f(x) \neq 0.$

1- Calculer f(0), f(1), f(-1).

2- Determiner f(x) pour $x \in \mathbb{Z}$, puis pour \mathbb{Q} .

3- Montrer que $\forall x \geq 0, f(x) \geq 0$. En deduire f est croissante.

4- En deduire que $f = ID_{\mathbb{R}}$.

Exercise 6 Soient A et B deux parties non vides de \mathbb{R} telles que $\forall (a,b) \in A \times B, a \leq b$. Montrer que sup A et inf B existent tel que sup $A \leq B$.

Exercise 7 Soient A et B deux parties non vides bornée de \mathbb{R} telles que $A \leq B$. Comparer inf A, sup A, inf B et sup B. Montrer que sup A et inf B existent tel que sup $A \leq B$.

Exercise 8 Soit A une partie non vide et minorée de $\mathbb R$. On pose

$$m = \inf A$$
 et $B = A \cap]-\infty, m+1].$

Déterminer la borne inferieure de B.

Exercise 9 Soit

$$A = \{(-1)^n + \frac{1}{n+1}; n \in \mathbb{N}\}\$$

Monter que A est borné. deéterminer inf A et sup A.

Exercise 9 Soit $n \in \mathbb{N}^*$.

Montrer par récurrence qu'il existe $a_n, b_n \in \mathbb{N}^*$ tel que

$$(2+\sqrt{3})^n = a_n + b_n\sqrt{3}$$
 et $3b_n^2 = a_n^2 - 1$.

2- Montrer que la partie entiere de $(2+\sqrt{3})^n$ est un entier impair.