

ICON Database Reference Manual

D. Reinert, F. Prill, H. Frank and G. Zängl

Deutscher Wetterdienst Research and development (FE13)

Version: 1.0.1

Last changes: February 24, 2015

Offenbach am Main, Germany

ii Revision History

This document is based on Revision 21026 of the ICON code, Last changed on 2015-02-23.

Revision History

Revision	Date	Author(s)	Description
0.1.0	10.01.13	DR, FP	Generated preliminary list of available GRIB2 output fields
0.2.0	12.07.13	DR, FP	Added a short section describing the horizontal ICON grid. AUMFL_S, AVMFL_S added to the list of available output fields
0.2.1	15.07.13	DR	Provide newly available output fields in tabulated form. Change levelType of 3D atmospheric fields from 105 (Hybrid) to 150 (Generalized vertical height coordinate)
0.2.2	16.07.13	FP	Short description of ICON's vertical grid.
0.2.3	25.09.13	DR	Added description of available First Guess and analysis fields
0.2.4	17.12.13	DR	Added description of external paramater fields
0.3.0	24.01.14	DR	Added information about horizontal output grids
0.3.1	24.01.14	DR	Added information about newly available output field ${\tt OMEGA}$
0.4.0	22.05.14	HF	Added SKY-database documentation
0.4.1	15.07.14	DR	Some documentation on statistical processing and minor updates. New output fields ASWDIR_S, ASWDIFD_S, ASWDIFU_S, DTKE_CON
0.4.2	10.09.14	DR	New output fields CLCT_MOD, CLDEPTH
0.5.0	01.10.14	DR	Description of IAU initialization method
0.5.1	15.10.14	DR	Updated description of necessary input fields
0.5.2	31.10.14	DR	Add full table with model half level heights
0.6.0	05.12.14	DR	Add short introduction and fix some minor bugs
0.6.1	10.12.14	DR	New output field APAB_S
0.7.0	16.12.14	DR	Revised documentation of time invariant fields and a couple of bug fixes
0.7.2	09.01.15	DR	General GRIB2 description
0.8.0	15.01.15	FP, DR	Couple of bug fixes regarding the available fields on triangular and regular grids

iv Revision History

0.8.1	16.01.15	FP, DR	List of pressure-level variables available on triangular grids
0.8.2	16.01.15	FP	List of height-level variables available on regular grids
0.8.3	16.01.15	DR	List of variables exclusively available for $VV=0$
0.8.4	06.02.15	FP, DR	Details of internal interpolation onto lon-lat grids. Details regarding output frequency.
0.8.5	18.02.15	FP	Additional pressure levels for regular grid output.
0.8.6	23.02.15	FP	Formula for computing non-zero topography level height.
1.0.0	23.02.15	FP	Additional table of model full levels.
1.0.1	24.02.15	DR	Update on available forecast runs and time span.

Contents

1	Intr	troduction		
2	Gri	d geon	netry	3
	2.1	Horizo	ontal grid	3
	2.2	Vertic	al grid	5
3	Ma	ndator	y input fields	7
	3.1	Grid I	Files	7
	3.2	Exter	nal parameter	8
4	Ana	alysis f	ìelds	11
	4.1	Incren	nental analysis update	13
5	Ava	ailable	output fields: Forecast runs	15
	5.1	Depre	cated output fields	15
	5.2	New o	output fields	16
	5.3	Availa	able output fields	17
		5.3.1	Time-constant (external parameter) fields	18
		5.3.2	Multi-level fields on native hybrid vertical levels	21
		5.3.3	Multi-level fields interpolated to pressure levels	22
		5.3.4	Multi-level fields interpolated to height levels	23
		5.3.5	Single-level fields	23
		5.3.6	Surface fields interpolated to msl	27
		5.3.7	Soil-specific multi-level fields	27
		5.3.8	Lake-specific single-level fields	28
	5.4	Exten	ded description of available output fields	29
		5.4.1	Cloud products	29
		5.4.2	Near surface products	29
			General comment on statistically processed fields	30
		5.4.3	Surface products	30
		5.4.4	Soil products	30
		5.4.5	Vertical Integrals	31
		5.4.6	Technical Details of the Horizontal Interpolation	31

•	
V1	CONTENTS

6	ICC	ON data in the SKY data bases of DWD	33
	6.1	SKY categories for ICON	33
	6.2	Retrieving ICON data from SKY	34
$\mathbf{A}_{ extsf{J}}$	ppen	dix A ICON standard level heights	37
	A.1	Level heights for zero topography height	37
	A.2	Non-zero topography heights	37
Bi	bliog	graphy	41

Chapter 1

Introduction

The **ICO**sahedral **N**onhydrostatic model ICON is the new global numerical weather prediction model at DWD. It became operational at 2015-01-20, replacing the former operational global model GME. The ICON modelling system as a whole is developed jointly by DWD and the Max-Planck Institute for Meteorology in Hamburg (MPI-M). While ICON is the new working horse for short and medium range global weather forecast at DWD, it will serve as the core of a new climate modelling system at MPI-M.

Since 2015-01-20, ICON analysis and forecast fields serve as initial and boundary data for

- the regional model COSMO-EU
- RLMs (Relocatable Local Model) of the German armed forces
- DWD's wave models

This document provides some basic information about ICON's horizontal and vertical grid structure, numerical algorithms and physical parameterizations (the latter two are planned but not yet available). Furthermore, it provides an overview about the available ICON analysis and forecast fields stored in the data base SKY at DWD. Some examples on how to read these data from the data base are given as well.

If you encounter bugs or inconsistencies, or if you have suggestions for improving this document, please contact one of the following colleagues:

Daniel Reinert, FE13 Tel: +49 (69) 8062-2060 Mail: daniel.reinert@dwd.de Helmut Frank, FE13 Tel: +49 (69) 8062-2742 Mail: helmut.frank@dwd.de Florian Prill, FE13 Tel: +49 (69) 8062-2727 Mail: florian.prill@dwd.de

Chapter 2

Grid geometry

2.1 Horizontal grid

The horizontal ICON grid consists of a set of spherical triangles that seamlessly span the entire sphere. The grid is constructed from an icosahedron (see Figure 2.1a) which is projected onto a sphere. The spherical icosahedron (Figure 2.1b) consists of 20 equilateral spherical triangles. The edges of each triangle are bisected into equal halves or more generally into n equal sections. Connecting the new edge points by great circle arcs yields 4 or more generally n^2 spherical triangles within the original triangle (Figure 2.2a, 2.2b).

Figure 2.1: Icosahedron before (a) and after (b) projection onto a sphere

Figure 2.2: (a) Bisection of the original triangle edges (b) More general division into n equal sections

ICON grids are constructed by an initial root division into n sections ($\mathbf{R}n$) followed by k bisection steps ($\mathbf{B}k$), resulting in a $\mathbf{R}n\mathbf{B}k$ grid. Figures 2.3a and 2.3b show $\mathbf{R}2\mathbf{B}00$ and $\mathbf{R}2\mathbf{B}02$ ICON grids. Such grids avoid polar singularities of latitude-longitude grids (Figure 2.3c) and allow a high uniformity in resolution over the whole sphere.

Figure 2.3: (a) R2B00 grid. (b) R2B02 grid. (c) traditional regular latitude-longitude grid with polar singularities

Throughout this document, the grid is referred to as the "RnBk grid" or "RnBk resolution". For a given resolution RnBk, the total number of cells, edges, and vertices can be computed from

$$n_c = 20 n^2 4^k$$

 $n_e = 30 n^2 4^k$
 $n_v = 10 n^2 4^k + 2$

The average cell area $\overline{\Delta A}$ can be computed from

$$\overline{\Delta A} = \frac{4\pi \, r_e^2}{n_c} \, ,$$

with the earth radius r_e , and n_c the total number of cells. Based on $\overline{\Delta A}$ one can derive an estimate of the average grid resolution $\overline{\Delta x}$:

$$\overline{\Delta x} = \sqrt{\overline{\Delta A}} = \sqrt{\frac{\pi}{5}} \frac{r_e}{n \, 2^k}$$

Visually speaking, $\overline{\Delta x}$ is the edge length of a square which has the same area as our triangular cell.

In Table 2.1, some characteristics of frequently used ICON grids are given. The table contains information about the total number of triangles (n_c) , the average resolution $\overline{\Delta x}$, and the maximum/minimum cell area. The latter may be interpreted as the area for which the prognosed meteorological quantities (like temperature, pressure, ...) are representative. Some additional information about ICON's horizontal grid can be found in Wan et al. (2013).

2.2. Vertical grid 5

Table 2.1: Characteristics of frequently used ICON grids. Δ	ΔA_{max} and ΔA_{min} refer to the maximum
and minimum area of the grid cells, respectively.	

Grid	number of cells (n_c)	avg. resolution [km]	$\Delta A_{max} [km^2]$	$\Delta A_{min} [km^2]$
R2B04	20480	157.8	25974.2	18777.3
R2B05	81920	78.9	6480.8	4507.5
R2B06	327680	39.5	1618.4	1089.6
R2B07	1310720	19.7	404.4	265.1
R3B07	2949120	13.2	179.7	116.3

The first operational version of ICON is based on the R3B07 grid, thus, having a horizontal resolution of about 13 km!

2.2 Vertical grid

The vertical grid consists of a set of vertical layers with height-based vertical coordinates. Each of these layers carries the horizontal 2D grid structure, thus forming the 3D structure of the grid. The ICON grid employs a Lorenz-type staggering with the vertical velocity defined at the boundaries of layers (half levels) and the other prognostic variables in the center of the layer (full levels).

To improve simulations of flow past complex topography, the ICON model employs a smooth level vertical (SLEVE) coordinate (Leuenberger et al., 2010). It allows for a faster transition to smooth levels in the upper troposphere and lower stratosphere, as compared to the classical height-based Gal-Chen coordinate. In the operational setup, the transition from terrain following levels in the lower atmosphere to constant height levels is completed at $z = 16 \,\mathrm{km}$. Model levels above are flat. The required smooth large-scale contribution of the model topography is generated by digital filtering with a ∇^2 -diffusion operator. Figure 2.4 shows the (half) levels of the planned operational ICON setup with 90 vertical levels. The table to the right shows the height above ground of selected half levels (for zero height topography) and the corresponding pressure, assuming the US standard atmosphere. Standard heights for all 91 half levels are given in Table A.1.

Please note that for grid cells with non-zero topography these values only represent rough estimates of the true level height. Actual heights may vary considerably from location to location, due to grid level stretching/compression over non-zero topography.

level	[m]	[Pa]
1	75000	2.1
5	64946	10.0
10	53878	46.3
15	44198	158.8
20	35958	487.2
25	29039	1355.0
30	23409	3211.8
35	19202	6209.4
40	16108	10113.6
45	13822	14504.3
50	11822	19882.1
55	9822	27166.6
60	7822	36528.6
65	5822	48347.1
70	3954	62009.2
75	2432	75325.6
80	1255	87126.2
85	436	96190.0
90	20	101085.0

 $\textbf{Figure 2.4:} \ \ \textit{Vertical half levels (blue) and layer thickness (red) of the ICON operational setup. \ \ \textit{The table of selected pressure values (for zero height) is based on the 1976 US standard atmosphere. }$

Chapter 3

Mandatory input fields

Several input files are needed to perform runs of the ICON Model. These can be divided into three classes: Grid files, external parameters, and initialization (analysis). The latter will be described in Chapter 4.

3.1 Grid Files

In order to run ICON, it is necessary to load the horizontal grid information as an input parameter. This information is stored within so-called grid files. For an ICON run, at least one global grid file is required. For model runs with nested grids, additional files of the nested domains are necessary. Optionally, a reduced radiation grid for the global domain may be used.

The unstructured triangular ICON grid resulting from the grid generation process is represented in NetCDF format. The most important data entries are

- cell (INTEGER dimension) number of (triangular) cells
- vertex (INTEGER dimension) number of triangle vertices
- edge (INTEGER dimension) number of triangle edges
- clon, clat (double array, dimension: #triangles, given in radians) longitude/latitude of the triangle circumcenters
- vlon, vlat (double array, dimension: #triangle vertices, given in radians) longitude/latitude of the triangle vertices
- elon, elat (double array, dimension: #triangle edges, given in radians) longitude/latitude of the edge midpoints
- cell_area (double array, dimension: #triangles) triangle areas
- vertex_of_cell (INTEGER array, dimensions: [3, #triangles])
 The indices vertex_of_cell(:,i) denote the triangle vertices that belong to the triangle i.
- edge_of_cell (INTEGER array, dimensions: [2, #triangles])
 The indices edge_of_cell(:,i) denote the triangle edges that belong to the triangle i.

MODIS albedo

3.2 External parameter

External parameters are used to describe the properties of the earth's surface. These data include the orography and the land-sea-mask. Also, several parameters are needed to specify the dominant land use of a grid box like the soiltype or the plant cover fraction.

The ExtPar software (ExtPar – External parameter for Numerical Weather Prediction and Climate Application) is able to generate external parameters for the ICON model. The generation is based on a set of raw-datafields which are listed in Table 3.1. For a more detailed overview of ExtPar, the reader is referred to the *User and Implementation Guide* of Extpar.

Dataset	Source	Resolution
GLOBE orography	NOAA/NGDC	30"
GlobCover 2009	ESA	10"
GLCC land use	USGS	30"
HWSD Harmonized World Soil Database	${\rm FAO/IIASA/ISRIC/ISSCAS/JRC}$	30"
NDVI Climatotology, SeaWiFS	NASA/GSFC	2.5'
CRU near surface climatology	CRU University of East Anglia	0.5°
GACP Aerosol Optical thickness	NASA/GISS (Global Aerosol Climatology Project)	$4x5^{\circ}$
GLDB Global lake database	${\rm DWD/RSHU/MeteoFrance}$	30"

Table 3.1: Raw datasets from which the ICON external parameter fields are derived.

GlobCover 2009 is a land cover database covering the whole globe, except for Antarctica. Therefore, we make use of GlobCover 2009 for $90^{\circ} > \phi > -56^{\circ}$ (with ϕ denoting latitude) and switch to the coarser, however globally available dataset GLCC for $-56^{\circ} > \psi > -90^{\circ}$.

NASA

The products generated by the ExtPar software package are listed in Table 3.2 together with the underlying raw dataset. Note that these are mandatory input fields for assimilation- and forecast runs.

Table 3.2: External parameter fields for ICON, produced by the ExtPar software package (in alphabetical order)

ShortName	Description	Raw dataset
AER_SS12	Sea salt aerosol climatology (monthly fields)	GACP
AER_DUST12	Total soil dust aerosol climatology (monthly fields)	GACP
AER_ORG12	Organic aerosol climatology (monthly fields)	GACP
AER_SO412	Total sulfate aerosol climatology (monthly fields)	GACP
AER_BC12	Black carbon aerosol climatology (monthly fields)	GACP
ALB_DIF12	Shortwave $(0.3-5.0\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)	MODIS

Continued on next page

5

Table 3.2: continued

$ALB_{-}UV12$	UV-visible (0.3 $-$ 0.7 $\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)	MODIS
ALB_NI12	Near infrared $(0.7-5.0\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)	MODIS
DEPTH_LK	Lake depth	GLDB
$\mathrm{EMIS}_{-}\mathrm{RAD}$	Surface longwave (thermal) emissivity	GlobCover 2009
FOR_D	Fraction of deciduous forest	GlobCover 2009
$FOR_{-}E$	Fraction of evergreen forest	GlobCover 2009
FR_LAKE	Lake fraction (fresh water)	GLDB
FR_LAND	Land fraction (excluding lake fraction but including glacier fraction)	GlobCover2009
FR_LUC	Landuse class fraction	
HSURF	Orography height at cell centres	GLOBE
LAI_MX	Leaf area index in the vegetation phase	GlobCover 2009
$NDVI_MAX$	Normalized differential vegetation index	SeaWiFS
NDVI_MRAT	proportion of monthly mean NDVI to yearly maximum (monthly fields)	SeaWiFS
$\operatorname{PLCOV_MX}$	Plant covering degree in the vegetation phase	GlobCover 2009
ROOTDP	Root depth	GlobCover 2009
RSMIN	Minimum stomatal resistance	GlobCover 2009
SOILTYP	Soil type	HWSD
${\rm SSO_STDH}$	Standard deviation of sub-grid scale orographic height	GLOBE
SSO_THETA	Principal axis-angle of sub-grid scale orography	GLOBE
SSO_GAMMA	Horizontal anisotropy of sub-grid scale orography	GLOBE
${\rm SSO_SIGMA}$	Average slope of sub-grid scale orography	GLOBE
T_2M_CL	Climatological 2m temperature (serves as lower boundary condition for soil model)	CRU
Z0 (*)	Surface roughness length (over land), containing a contribution from subgrid-scale orography	GlobCover 2009

Note that fields marked with (*) are not required in operational model runs. I.e. the surface roughness ZO is only needed, if the additional contribution from sub-grid scale orography is taken into account (i.e. for itype_zO=1). In operational runs, land-use specific roughness lengths are taken from a GlobCoverbased lookup table. FOR_D and FOR_E will become obsolete, as soon as the surface tile approach (which is currently under development) is activated. However, due to technical reasons, all the above fields must be provided as input, irrespective of the options chosen.

Remarks on post-processing

Some of the external parameter fields produced by ExtPar are modified by ICON. The following fields are affected: HSURF, FR_LAND, FR_LAKE, Z0. Thus, for consistency reasons, the modified fields should be used for post-processing tasks rather than the original external parameter fields.

Chapter 4

Analysis fields

The 3-hourly first guess output of ICON contains the following fields:

Table 4.1: Available 3h first guess output fields

Туре	GRIB shortName
Atmosphere	VN, U, V, W, DEN, THETA-V, T, QV, QC, QI, QR, QS, TKE, P
Surface (general)	T_G, T_SO(0), QV_S, T_2M, TD_2M, U_10M, V_10M, PS, Z0
Land specific	W_SNOW, T_SNOW, RHO_SNOW, H_SNOW, FRESHSNW, W_I, T_SO(1:nlev_soil), W_SO, W_SO_ICE
Lake/sea ice specific	T_MNW_LK, T_WML_LK, H_ML_LK, T_BOT_LK, C_T_LK, T_B1_LK, H_B1_LK, T_ICE, H_ICE, FR_ICE
Time invariant	FR_LAND, HHL, CLON, CLAT, ELON, ELAT, VLON, VLAT

Atmospheric analysis fields are computed every 3 hours (00, 03, 06,... 21 UTC) by the 3DVar data assimilation system. Sea surface temperature T_SO(0) and sea ice cover FR_ICE are provided once per day (00 UTC) by the SST-Analysis. A snow analysis is conducted every 3 hours. It povides updated information on the snow height H_SNOW and snow age FRESHSNW. In addition a soil moisture analysis (SMA) is conducted once per day (00 UTC). It basically modifies the soil moisture content W_SO, in order to improve the 2 m temperature forecast.

For the 3-hourly assimilation cycle and forecast runs, ICON must be provided with 2 input files: One containing the First Guess (FG) and the other containing analysis (AN) fields, only. Variables for which no analysis is available are always read from the first guess file (e.g. TKE). Other variables may be read either from the first guess or the analysis file, depending on the starting time. E.g. for T_SO(0) the first guess is read at 03, 06, 09, 12, 15, 18, 21 UTC, however, the analysis is read at 00 UTC. In Table 4.2 the available and employed first guess and analysis fields are listed as a function of starting time.

Table 4.2: The leftmost column shows variables that are mandatory for the assimilation cycle and forecast runs. Column 2 indicates, whether or not an analysis is performed for these variables. Columns 3 to 10 show the origin of these variables (analysis or first guess), depending on the starting time.

ShortName	Analysis	00	03	06	09	12	15	18	21
Atmosphere									
VN	_	FG							
$\mathrm{THETA}_{-}\mathrm{V}$	_	FG							
DEN	_	FG							
W	_	FG							
TKE	_	FG							
$\mathrm{QC},\mathrm{QI},\mathrm{QR},\mathrm{QS}$	_	FG							
QV	3 DVar	AN							
T	3 DVar	AN							
P	3DVar	AN							
U, V	3 DVar	AN							
Surface									
Z0	_	FG							
$T_{-}G$	_	FG							
$\mathrm{QV}_{-}\!\mathrm{S}$	_	FG							
$T_SO(0)$ (SST only)	Ana_SST	AN	FG						
$T_SO(0:nlevsoil)$	_	FG							
W_SO_ICE	_	FG							
$W_{-}SO$	SMA	AN	FG						
W_I	_	FG							
W_SNOW^1	Ana_SNOW	AN							
T_SNOW	_	FG							
$\mathrm{RHO_SNOW^1}$	Ana_SNOW	AN							
$H_{-}SNOW$	Ana_SNOW	AN							
FRESHSNW	Ana_SNOW	AN							
Sea ice/Lake									
T_ICE	_	FG							
H_ICE	_	FG							
FR_ICE	Ana_SST	AN	FG						
T_MNW_LK	_	FG							
T_WML_LK	_	FG							

Table 4.2: The leftmost column shows variables that are mandatory for the assimilation cycle and forecast runs. Column 2 indicates, whether or not an analysis is performed for these variables. Columns 3 to 10 show the origin of these variables (analysis or first guess), depending on the starting time.

ShortName	Analysis	00	03	06	09	12	15	18	21
H_ML_LK	_	FG							
T_BOT_LK	_	FG							
$C_{-}T_{-}LK$	_	FG							
T_B1_LK	_	FG							
H_B1_LK	_	FG							

4.1 Incremental analysis update

Analysis fields provided by the data assimilation system are usually not perfectly balanced, leading to e.g. the generation of spurious gravity waves. Thus, atmospheric models generally require some initialization procedure in order to minimize spin-up effects and to prevent the accumulation of noise. In ICON, a method known as Incremental Analysis Update (IAU) (Bloom et al., 1996, Polavarapu et al., 2004) is applied. The basic idea is quite simple: Rather than adding the analysis increments $\Delta \mathbf{x}^A = \mathbf{x}^A - \mathbf{x}^{FG}$ (i.e. the difference between the analysis \mathbf{x}^A and the model first guess \mathbf{x}^{FG}) in one go, they are incorporated into the model in small drips over many timesteps (see Figure 4.1).

Figure 4.1: Incremental Analysis Update. Analysis increments are added to the background state (FG) in small drips over some time interval rather than in one go. Currently, increments for U, V, P, T, QV are treated in this way.

¹Note that ρ_snow is read from the analysis, however it does not contain any new/independent information compared to the model first guess, except for an initialization of newly generated snow points and a limitation over glacier points. w_snow is read from the analysis, too, however it is re-diagnosed within the ICON-code based on the analyzed snow height h_snow and the former mentioned snow density ρ_snow .

Mathematically speaking, during forward integration the model is forced with appropriately weighted analysis increments:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} + g(t)\Delta\mathbf{x}^A$$
, with $\int g(t)\,\mathrm{d}t = 1$ (4.1)

x is the discrete model state, A is a matrix representing the (non)-linear dynamics of the system and g(t) is a weighting function, which is non-zero over some time-interval Δt .

This drip by drip incorporation acts as a low pass filter in frequency domain on the analysis increments such that small scale unbalanced modes are effectively filtered (see Bloom et al. (1996)). The filter characteristic depends on the weighting function g(t). It should be noted that IAU only filters the increments and not the backgound state, such that regions where analysis increments are zero remain unaffected. This method is currently applied to the prognostic atmospheric fields π , ρ , v_n , q_v , based on analysis increments provided for u, v, p, t and q_v . π denotes the Exner pressure.

The method sounds incredibly simple, however there are a few technical aspects to be taken care of when implementing this into an operational system: Figure 4.2 shows how the IAU-method is implemented in ICON for a 3h assimilation run starting at midnight. Analysis increments are applied over a 3h hour time window, centered at the actual model start time. As indicated by the blue line, constant weights are used:

$$g(t) = \frac{\Delta t}{T}$$
 , for $-T/2 < t < T/2$ (4.2)

T is the window width and Δt is the fast physics time step. The key point in terms of technical implementation is that the model must be started 90 minutes prior to the actual starting time of the assimilation run. The model is started from the 22:30 UTC first guess. The analysis increments for U, V, P, T, QV, whose validity time is 00:00 UTC are added over 3 hours until at 1:30 the free forecast starts. Then, two first guess data sets are written into the database. One at 1:30 UTC, which will be used for starting the next 3h assimilation run, and a second one at 3:00 UTC, which is required as input for the assimilation system itself. Thus in general, using the IAU method requires some care in terms of reading and writing the right fields at the right times.

Figure 4.2: Time line for an ICON assimilation run starting at 00:00 UTC.

Chapter 5

Available output fields: Forecast runs

ICON output fields are exclusively available in GRIB2 format (**GRI**dded **B**inary Edition **2**), with the exception of meteogram data (NetCDF). GRIB is a bit-oriented data storage format which was developed by WMO to facilitate the exchange of large volumes of gridded data between weather prediction centres. For decoding and encoding GRIB2 messages, the DWD in general and ICON in particular makes use of the ECMWF GRIB API. The current operational version at DWD is 1.12.3.

In GRIB2, a product (i.e. a variable/field) is identified by a set of three parameters

- Discipline (see GRIB2 code table 0.0)
- \bullet ParameterCategory (see GRIB2 code table 4.1)
- ParameterNumber (see GRIB2 code table 4.2),

augmented by a large number of additional metadata in order to uniquely describe the nature of the data. Noteworthy examples of additional metadata are

- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- typeOfStatisticalProcessing, former known as stepType (instant, accum, avg, max, min, diff, rms, sd, cov, ...): describes the statistical process used to calculate the field

just to name a few.

A documentation of the official WMO GRIB2 code tables can be found here: http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/LatestVERSION/WMO306_vI2_GRIB2_CodeFlag_en.pdf In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2.

5.1 Deprecated output fields

With the launch of ICON, the following former GME output fields will no longer be available:

- BAS_CON [-]: Level index of convective cloud base. Instead, HBAS_CON [m] should be used.
- TOP_CON [-]: Level index of convective cloud top. Instead, HTOP_CON [m] should be used.

- **W_G1**, **W_G2** [mm H2O]: Soil water content in upper layer (0 to 10 cm) and middle layer (10 to 100 cm), respectively. If needed, these fields can be derived from **W_SO**.
- FIS [m² s⁻¹]: Surface Geopotential. Instead, HSURF [m] should be used (see Section 5.2).
- \bullet O3 [kg/kg], TO3 [Dobson]: Ozone mixing ratio and corresponding total ozone concentration. No longer available; no substitution

5.2 New output fields

Table 5.1 contains a list of new output fields that became available with the launch of ICON (compared to GME). A more thorough description of these fields is provided in Section 5.3.

Table 5.1: Newly available output fields

ShortName	Unit	Description					
	Atmosphere						
DEN	${\rm kgm^{-3}}$	density of moist air (3D field)					
TKE	$\rm m^2s^{-2}$	Turbulent kinetic energy (3D field)					
DTKE_CON	$\mathrm{m}^2\mathrm{s}^{-3}$	Buoyancy-production of TKE due to sub grid scale convection (3D field) $$					
\mathbf{W}	$\rm ms^{-1}$	vertical velocity in height coordinates $w = \frac{\mathrm{d}z}{\mathrm{d}t}$ (3D field)					
P	Pa	pressure (3D field)					
Surface							
CAPE_CON	$\rm Jkg^{-1}$	Convective available potential energy (2D field)					
${f QV}_{-}{f 2M}$	$\rm kgkg^{-1}$	Specific humidity at 2m above ground (2D field)					
$\mathbf{RELHUM_2M}$	%	Relative humidity at 2m above ground (2D field)					
$SOBS_RAD$	${ m Wm^{-2}}$	Net short-wave radiation flux at surface (instantaneous)					
$\mathbf{THBS_RAD}$	${ m Wm^{-2}}$	Net long-wave radiation flux at surface (instantaneous)					
		Lake					
C_T_LK	1	Shape factor with respect to the temperature profile in the thermocline (2D field)					
$\mathbf{H}_{-}\mathbf{M}\mathbf{L}_{-}\mathbf{L}\mathbf{K}$	m	Mixed-layer depth (2D field)					
T_BOT_LK	K	Temperature at the water-bottom sediment interface (2D field)					
$\mathbf{T}_{-}\mathbf{M}\mathbf{N}\mathbf{W}_{-}\mathbf{L}\mathbf{K}$	K	Mean temperature of the water column (2D field)					
$\mathbf{T}_{-}\mathbf{WML}_{-}\mathbf{LK}$	K	Mixed-layer temperature (2D field)					
		Geometry					
HSURF	m	Geometric Height of the earths surface above sea level (2D field)					

OD 1 1		_	-1	
Tabl	Δ	h	١.	continued

HHL	m	Geometric Height of model half levels above sea level (3D field)
CLON,CLAT	\deg	Geographical longitude/latitude of native grid triangle cell center
ELON,ELAT	deg	Geographical longitude/latitude of native grid triangle edge midpoint
VLON,VLAT	\deg	Geographical longitude/latitude of native grid triangle vertex

5.3 Available output fields

ICON forecasts are performed multiple times a day with varying forecast times. An overview of the various forecasts, including its forecast time and output intervals is provided in Figure 5.1.

Figure 5.1: Time span covered by the various ICON forecasts. An ICON forecast run is launched every three hours.

Main forecasts are performed 4 times a day at 0, 6, 12, 18 UTC, covering a forecast time span of 180 h for the 0 und 12 UTC runs and 120 h for the 6 und 18 UTC runs. Prior to 2015-02-25 the 6 and 18 UTC runs were restricted to 78 h. Additional short forecasts are performed at 3, 9, 15 and 21 UTC, in order to provide boundary data for the high resolution COSMO-DE runs. The forecast time covered by these runs is limited to 30 h.

All time-dependent output fields are available hourly up to $VV = 78\,\mathrm{h}$ and 3-hourly for larger forecast times².

Output is available on two distinct horizontal grids: The native triangular grid with an average resolution of 13 km, and a regular latitude-longitude grid with a resolution of $\Delta\lambda = \Delta\Phi = 0.25^{\circ}$. On the native grid most output fields are defined on triangle cell centers, except for VN, which is defined on cell edges. On the lat-lon grid, all fields are defined on cell centers. A single 2D GRIB2 field on the native and regular lat-lon grid contains 2949120 and 1036800 grid points, respectively.

Please note that for ICON fields the time unit is minutes rather than hours, and thus differs from GME (hours).

For details regarding the available fields, please see the tables below. Note that the vertical rules in the leftmost column indicate whether the field is available on the native grid (\blacksquare), on the lat-lon grid(\blacksquare), or on both grids(\blacksquare).

For details regarding the algorithm for interpolation onto the lat-lon grid, see Secion 5.4.6

5.3.1 Time-constant (external parameter) fields

Table 5.2 provides an overview of the available time invariant fields. They are available from the database category CAT_NAME= $model_const_an_suite$. As mentioned in Section 3.2, HSURF, FR_LAND, FR_LAKE and ZO are modified by ICON. Thus, the latter should not be taken from the $const_an$ database categorie, unless you definitely know what you are doing. For convenience, the modified invariant fields (and some more) are stored in the forecast database categories for step s[h] = 0 (CAT_NAME= $model_suite$). Table 5.3 provides a list of all fields which are exclusively written for s[h] = 0.

See Section 6.1 for more details on the database categories and Section 6.2 for sample retrievals.

ShortName Discipline $\operatorname{\mathtt{Category}}$ NumberDescription Unit Date/Time (YYYY-MM-DDThh) **D=0001-01-01T00 HSURF** Geometric height of the earths 3 6 1/101 inst m surface above msl CLAT 1/-Geographical latitude of native 0 191 Deg. N 1 instgrid triangle cell center CLON Geographical longitude of native 0 191 2 1/-Deg. E inst grid triangle cell center FOR_E Fraction of evergreen forest (pos-2 0 29 1 inst sible range [0,1]) FOR_D Fraction of deciduous 2 0 30 1 forest inst(possible range [0,1]) FR_LAND 0 1/-Land fraction (possible range 0 inst 1 [0,1]

Table 5.2: Time-constant fields (CAT_NAME=\$model_const_an_\$suite)

 $^{^2}$ An exception here are the lat-lon output fields U_10M and V_10M, which are available hourly throughout the forecast. This is because U_10M and V_10M are needed as input by the wave models.

Table 5.2: continued

FR_LAKE	Fresh water lake fraction (possible range $[0,1]$)	1	2	2	1/-	inst	1
FR_LUC	Land use class fraction (possible range $[0,1]$)	2	0	36	1/-	inst	1
■ DEPTH_LK	Lake depth	1	2	0	1/162	inst	m
ROOTDP	Root depth of vegetation	2	0	32	1/-	inst	m
RSMIN	Minimum stomatal resistance	2	0	16	1/-	inst	$\rm sm^{-1}$
■ EMIS_RAD	Longwave surface emissivity	2	3	199	1/-	inst	1
SOILTYP	Soil type of land fraction (9 types $[1, \ldots, 9]$)	2	3	196	1/-	inst	1
SSO_STDH	Standard deviation of sub-grid scale orography	0	3	20	1/-	inst	m
SSO_GAMMA	Anisotropy of sub-gridscale orography	0	3	24	1/-	inst	1
SSO_THETA	Angle of sub-gridscale orography	0	3	21	1/-	inst	rad
■ SSO_SIGMA	Slope of sub-gridscale orography	0	3	22	1/-	inst	1
LAI_MX	Leaf area index in the vegetation phase	2	0	28	1/-	max	1
NDVI_MAX	Normalized differential vegetation index	2	0	31	1/-	max	1
PLCOV_MX	Plant covering degree in the vegetation phase	2	0	4	1/-	max	1
T_2M_CL	Climatological 2 m temperature (used as lower bc. for soil model)	0	0	0	103/-	inst	K
Z 0	Surface roughness length (over land)	2	0	1	1/-	inst	m
	Date/Time (YYYY-MM-DDTh	nh) D :	=1111-	01-11T	11		
AER_SS12	Sea salt aerosol climatology (monthly fields)	0	20	102	1/-	avg	1
AER_DUST12	Total soil dust aerosol climatology (monthly fields)	0	20	102	1/-	avg	1
AER_ORG12	Organic aerosol climatology (monthly fields)	0	20	102	1/-	avg	1
AER_SO412	Total sulfate aerosol climatology (monthly fields)	0	20	102	1/-	avg	1
AER_BC12	Black carbon aerosol climatology (monthly fields)	0	20	102	1/-	avg	1

Table 5.2: continued

ALB_DIF12	Shortwave $(0.3 - 5.0 \mu\text{m})$ albedo for diffuse radiation (monthly fields)	0	19	18	1/-	avg	1
ALB_UV12	UV-visible $(0.3-0.7\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)	0	19	222	1/-	avg	1
ALB_NI12	Near infrared $(0.7-5.0\mu\mathrm{m})$ albedo for diffuse radiation (monthly fields)	0	19	223	1/-	avg	1
NDVI_MRAT	ratio of monthly mean NDVI (normalized differential vegetation index) to annual max	0	0	192	1/-	avg	1

Table 5.3: Variables exclusively available for VV=0 from the forecast databases (CAT_NAME=\$model_\$run_fc_\$suite, s[h]=0)

${\bf ShortName}$	${f Description}$	Discipline	Category	Number	$\mathrm{Lev\text{-}Typ}\ 1/2$	$\operatorname{stepType}$	Unit
CLAT	Geographical latitude of native grid triangle cell center	0	191	1	1/-	inst	Deg. N
CLON	Geographical longitude of native grid triangle cell center	0	191	2	1/-	inst	Deg. E
ELAT	Geographical latitude of native grid triangle edge midpoint	0	191	1	1/-	inst	Deg. N
ELON	Geographical longitude of native grid triangle edge midpoint	0	191	2	1/-	inst	Deg. E
VLAT	Geographical latitude of native grid triangle vertex	0	191	1	1/-	inst	Deg. N
VLON	Geographical longitude of native grid triangle vertex	0	191	2	1/-	inst	Deg. E
■ DEPTH_LK	Lake depth	1	2	0	1/162	inst	m
■ FR_LAND	Land fraction (possible range $[0,1]$)	2	0	0	1/-	inst	1
■ FR_LAKE	Fresh water lake fraction (possible range $[0,1]$)	1	2	2	1/-	inst	1
■ HHL	Geometric height of model half levels above msl	0	3	6	150/101	inst	m

Table 5.3: continued

■ HSURF	Geometric height of the earths surface above msl	0	3	6	1/101	inst	m
■ LAI	Leaf area index	2	0	28	1/-	inst	1
I NDVIRATIO	ratio of current NDVI (normalized differential vegetation index) to annual max	2	0	192	1/-	inst	1
■ PLCOV	Plant cover	2	0	4	1/-	inst	%
ROOTDP	Root depth of vegetation	2	0	32	1/-	inst	m
SOILTYP	Soil type of land fraction (9 types $[1, \ldots, 9]$)	2	3	196	1/-	inst	1

5.3.2 Multi-level fields on native hybrid vertical levels

Table 5.4: Hybrid multi-level forecast (VV > 0) and initialised analysis (VV = 0) products

${\bf ShortName}$	Description	Discipline	Category	Number	m Lev-Typ~1/2	${\rm stepType}$	Unit
U	Zonal wind	0	2	2	150/150	inst	${ m ms^{-1}}$
V	Meridional wind	0	2	3	150/150	inst	$\rm ms^{-1}$
■ W	Vertical wind	0	2	9	150/-	inst	$\rm ms^{-1}$
T	Temperature	0	0	0	150/150	inst	K
■ P	Pressure	0	3	0	150/150	inst	Pa
DEN	Density of moist air	0	3	10	150/150	inst	${\rm kg}{\rm m}^{-3}$
■ QV	Specific humidity	0	1	0	150/150	inst	$\rm kgkg^{-1}$
■ QC	Cloud mixing ratio ²	0	1	22	150/150	inst	$\rm kgkg^{-1}$
■ QI	Cloud ice mixing ratio^2	0	1	82	150/150	inst	$\rm kgkg^{-1}$
I QR	Rain mixing ratio ²	0	1	24	150/150	inst	$\rm kgkg^{-1}$
l QS	Snow mixing ratio ²	0	1	25	150/150	inst	$\rm kgkg^{-1}$
■ CLC	Cloud cover	0	6	22	150/150	inst	%
■ TKE	Turbulent kinetic energy	0	19	11	150/-	inst	$\mathrm{m}^2\mathrm{s}^{-2}$
DTKE_CON	Buoyancy-production of TKE due to sub grid scale convection	0	19	219	150/-	inst	$\mathrm{m}^2\mathrm{s}^{-3}$

Table 5.5: Regular grid output: Multi-level forecast $(VV > 0)$ and initialised analysis $(VV = 0)$
products interpolated to pressure levels 1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 725, 700,
600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1, 0.3, 0.1 hPa.

	${\bf ShortName}$	Description	Discipline	Category	Number	m Lev-Typ~1/2	${\rm stepType}$	Unit
	FI	Geopotential	0	3	4	100/-	inst	$\rm m^2s^{-2}$
I	OMEGA	Vertical velocity in pressure coordinates ($\omega = \mathrm{d}p/\mathrm{d}t$)	0	2	8	100/-	inst	$\mathrm{Pa}\mathrm{s}^{-1}$
	RELHUM	Relative humidity (with respect to water)	0	1	1	100/-	inst	%
	T	Temperature	0	0	0	100/-	inst	K
	U	Zonal wind	0	2	2	100 / -	inst	$\rm ms^{-1}$
	V	Meridional wind	0	2	3	100/-	inst	$\rm ms^{-1}$

5.3.3 Multi-level fields interpolated to pressure levels

For regular grid output the following pressure levels are available:

```
1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 725, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1, 0.3, 0.1 hPa.
```

Newly available pressure levels (as compared to GME) are highlighted in red. The output fields are listed in Table 5.5. I.e. note that all 17 WMO standard pressure levels are included.

On the native (triangular) grid, output is generated for levels

1000, 950, 850, 700, 500, 300 hPa.

The output fields are listed in Table 5.6.

 $^{^{2}}$ for the time being, erroneously encoded as mixing ratios instead of specific quantities

Table 5.6: Native (triangular) grid output: Multi-level forecast (VV > 0) and initialised analysis (VV = 0) products interpolated to pressure levels 1000, 950, 850, 700, 500, 300 hPa.

	${\bf ShortName}$	${\bf Description}$	Discipline	Category	Number	Lev-Typ 1/2	${\rm stepType}$	Unit
Ī	FI	Geopotential	0	3	4	100/-	inst	$\mathrm{m}^2\mathrm{s}^{-2}$
I	RELHUM	Relative humidity (with respect to water)	0	1	1	100/-	inst	%
I	T	Temperature	0	0	0	100/-	inst	K
I	U	Zonal wind	0	2	2	100/-	inst	$\rm ms^{-1}$
I	V	Meridional wind	0	2	3	100/-	inst	$\rm ms^{-1}$

5.3.4 Multi-level fields interpolated to height levels

Table 5.7: Regular grid output: Multi-level forecast (VV > 0) and initialised analysis (VV > 0) products interpolated to height levels 10000, 5000, 3000, 2000, 1500, 1000, 500, 100 m (above mean sea level).

${\bf ShortName}$	${\bf Description}$	Discipline	Category	Number	m Lev-Typ~1/2	$\operatorname{stepType}$	Unit
U	Zonal wind	0	2	2	100/-	inst	${ m ms^{-1}}$
V	Meridional wind	0	2	3	100/-	inst	$\rm ms^{-1}$
W	Vertical wind	0	2	9	150/-	inst	$\rm ms^{-1}$
T	Temperature	0	0	0	100/-	inst	K
P	Pressure	0	3	0	150/150	inst	Pa

5.3.5 Single-level fields

Table 5.8: Single-level forecast (VV>0) and initialised analysis (VV=0) products

ShortName	Description	Discipline	Category	Number	Lev-Typ $1/2$	${\rm stepType}$	Unit
■ PS	Surface pressure (not reduced)	0	3	0	1/-	inst	Pa
I T_SNOW	Temperature of the snow surface	0	0	18	1/-	inst	K
■ T_G Ground temperature (temperature at sfc-atm interface)		0	0	0	1/-	inst	K
T_S Temperature of the soil surface 2 (equivalent to T_SO(0))		2	3	18	1/-	inst	K
$ ule{f QV_S}$	Surface specific humidity	0	1	0	1/-	inst	$\rm kgkg^{-1}$
■ W_SNOW	Snow depth water equivalent	0	1	60	1/-	inst	${\rm kgm^{-2}}$
■ W⊥	Plant canopy surface water	2	0	13	1/-	inst	${\rm kgm^{-2}}$
TCM Turbulent transfer coeffici momentum (surface)		0	2	29	1/-	inst	1
■ TCH	Turbulent transfer coefficient for heat and moisture (surface)	0	0	19	1/-	inst	1
SOBS_RAD	Net short-wave radiation flux at surface (instantaneous)	0	4	9	1/-	inst	$ m Wm^{-2}$
THBS_RAD	Net long-wave radiation flux at surface (instantaneous)	0	5	5	1/-	inst	${ m Wm^{-2}}$
■ ASOB_S	Net short-wave radiation flux at surface (average since model start)	0	4	9	1/-	avg	${ m Wm^{-2}}$
■ ATHB_S	Net long-wave radiation flux at surface (average since model start)	0	5	5	1/-	avg	${ m Wm^{-2}}$
APAB_S	Photosynthetically active radiation flux at surface (average since model start)	0	4	10	1/-	avg	${ m Wm^{-2}}$
■ ASOB_T	Net short-wave radiation flux at TOA (average since model start)	0	4	9	8/-	avg	${ m Wm^{-2}}$
■ ATHB_T	Net long-wave radiation flux at TOA (average since model start)	0	5	5	8/-	avg	${ m Wm^{-2}}$
■ ASWDIR_S	Surface down solar direct radiation (average since model start)	0	4	198	1/-	avg	$ m Wm^{-2}$
■ ASWDIFD_S	Surface down solar diffuse radiation (average since model start)	0	4	199	1/-	avg	${ m Wm^{-2}}$

Table 5.8: continued

■ ASWDIFU_S	Surface up solar diffuse radiation (average since model start)	0	4	8	1/-	avg	${ m Wm^{-2}}$
■ ALB_RAD	Surface albedo for visible range, diffuse	0	19	1	1/-	inst	%
■ RAIN_GSP ⁴	Large scale rain (accumulated since model start)	0	1	77	1/-	accu	${\rm kg}{\rm m}^{-2}$
■ SNOW_GSP ⁴	Large snowfall water equivalent (accumulated since model start)	0	1	56	1/-	accu	${\rm kg}{\rm m}^{-2}$
■ RAIN_CON ⁴	Convective rain (accumulated since model start)	0	1	76	1/-	accu	${\rm kg}{\rm m}^{-2}$
SNOW_CON ⁴	Convective snowfall water equivalent (accumulated since model start)	0	1	55	1/-	accu	${\rm kgm^{-2}}$
■ TOT_PREC ⁴	Total precipitation (accumulated since model start)	0	1	52	1/-	accu	${\rm kg}{\rm m}^{-2}$
RUNOFF_S	Surface water runoff (accumulated since model start)	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
■ RUNOFF_G	Soil water runoff (accumulated since model start)	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
RSTOM	Stomatal resistance	2	0	195	1/-	inst	${ m sm^{-1}}$
■ U_10M	Zonal wind at 10m above ground	0	2	2	103/-	inst	${ m ms^{-1}}$
■ V_10M	Meridional wind at 10m above ground	0	2	3	103/-	inst	${ m ms^{-1}}$
■ VMAX_10M	Maximum wind at $10\mathrm{m}$ above ground	0	2	22	103/-	max	${ m ms^{-1}}$
$\mathrm{QV}_{-2}\mathrm{M}$	Specific humidity at 2m above ground	0	1	0	103/-	inst	$\mathrm{kg}\mathrm{kg}^{-1}$
RELHUM_2M	Relative humidity at 2m above ground	0	1	1	103/-	inst	%
I T_2M	Temperature at 2m above ground	0	0	0	103/-	inst	K
■ TD_2M	Dew point temperature at 2m above ground	0	0	6	103/-	inst	K
■ TMAX_2M	Maximum temperature at 2m above ground	0	0	0	103/-	max	K
■ TMIN_2M	Minimum temperature at 2m above ground	0	0	0	103/-	min	K
■ Z0	Surface roughness (above land and water)	2	0	1	1/-	inst	m

Table 5.8: continued

-							
CAPE_CON	Convective available potential energy	0	7	6	1/-	inst	$\rm Jkg^{-1}$
■ CLCT	Total cloud cover	0	6	1	1/-	inst	%
CLCT_MOD	Modified total cloud cover for media	0	6	199	1/-	inst	1
CLDEPTH	Modified cloud depth for media	0	6	198	1/-	inst	1
■ CLCH	High level clouds	0	6	22	100/100	inst	%
■ CLCM	Mid level clouds		6	22	100/100	inst	%
■ CLCL	Low level clouds		6	22	100/1	inst	%
■ TQV	Column integrated water vapour (grid scale)		1	64	1/-	inst	${\rm kgm^{-2}}$
■ TQC	Column integrated cloud water (grid scale)	0	1	69	1/-	inst	${\rm kgm^{-2}}$
■ TQI	Column integrated cloud ice (grid scale)	0	1	70	1/-	inst	${\rm kgm^{-2}}$
■ TQR	Column integrated rain (grid scale)	0	1	45	1/-	inst	${\rm kgm^{-2}}$
■ TQS	Column integrated snow (grid scale)	0	1	46	1/-	inst	${\rm kgm^{-2}}$
■ TQC_DIA	Total column integrated cloud water (including sub-grid-scale contribution)	0	1	215	1/-	inst	${\rm kgm^{-2}}$
■ TQLDIA	Total column integrated cloud ice (including sub-grid-scale contribution)	0	1	216	1/-	inst	${\rm kgm^{-2}}$
■ HBAS_CON	Height of convective cloud base above msl	0	6	26	2/101	inst	m
■ HTOP_CON	Height of convective cloud top above msl	0	6	27	3/101	inst	m
■ HTOP_DC	Height of top of dry convection above msl	0	6	196	3/101	inst	m
■ HZEROCL	Height of 0 degree Celsius isotherm above msl	0	3	6	4/101	inst	m
AUMFL_S	U-momentum flux at surface $\overline{u'w'}^{1/2}$ (average since model start)	0	2	17	1/-	avg	m
AVMFL_S	$\frac{\text{V-momentum flux at surface}}{v'w'}^{1/2} \text{(average since model start)}$	0	2	18	1/-	avg	m

Table 5.8: continued

■ ASHFL_S	Sensible heat net flux at surface (average since model start)	0	0	11	1/-	avg	${ m Wm^{-2}}$
■ ALHFL_S	Latent heat net flux at surface (average since model start)	0	0	10	1/-	avg	${ m Wm^{-2}}$
■ FR_ICE	Sea/lake ice cover (possible range: $[0,1]$)	10	2	0	1/-	inst	1
TICE	Sea ice temperature (at ice-atm interface)	10	2	8	1/-	inst	K
■ H_ICE	Sea ice thickness (Max: 3 m)	10	2	1	$1/\!-$	inst	m
FRESHSNW	Fresh snow factor (weighting function for albedo indicating freshness of snow)	0	1	203	1/-	inst	1
■ RHO_SNOW	Snow density	0	1	61	1/-	inst	${\rm kgm^{-3}}$
■ H_SNOW	Snow depth	0	1	11	1/-	inst	m
■ WW	Weather interpretation (WMO)	0	19	25	1/-	inst	1

5.3.6 Surface fields interpolated to msl

Table 5.9: Forecast (VV > 0) and initialised analysis (VV = 0) products interpolated to msl

ShortName	${f Description}$	Discipline	Category	Number	m Lev-Typ~1/2	${ m stepType}$	Unit	_
PMSL	Surface pressure reduced to msl	0	3	1	101/-	inst	Pa	

5.3.7 Soil-specific multi-level fields

⁴Note that the unit which is displayed, when inspecting the GRIB2 message with $grib_dump$ is $kg m^{-2} s^{-1}$ rather than $kg m^{-2}$. Mathematically this is wrong, however, it is in accordance with the GRIB2 standard. To get the mathematically correct unit for accumulated fields (typeOfStatisticalProcessing=1), the unit displayed by $grib_dump$ must be multiplied by s.

ShortName	Description	Discipline	Category	Number	Lev-Typ 1/2	$\operatorname{stepType}$	Unit
I T₋SO	Soil temperature	2	3	18	106/-	inst	K
■ W_SO	Soil moisture integrated over individual soil layers (ice + liquid)	2	3	20	106/106	inst	${\rm kgm^{-2}}$
■ W_SO_ICE	Soil ice content integrated over individual soil layers	2	3	22	106/106	inst	${\rm kgm^{-2}}$

Table 5.10: Multi-level forecast (VV > 0) and initialised analysis (VV = 0) products of the soil model

Soil temperature is defined at the soil depths given in Table 5.11 (column 2). Levels 1 to 8 define the full levels of the soil model. A zero gradient condition is assumed between levels 0 and 1, meaning that temperatures at the surface-atmosphere interface are set equal to the temperature at the first full level depth. (0.5 cm). Temperatures are prognosed for layers 1 to 7. At the lowermost layer (mid-level height 1458 cm) the temperature is fixed to the climatological average 2 m-temperature.

Soil moisture W_SO is prognosed for layers 1 to 6. In the two lowermost layers W_SO is filled with W_SO(6) (zero gradient condition).

Iai	ne 3.11. 5011 11100	er. verticar distribi	ution of levels and layers
level no.	${f depth} \ [{f cm}]$	layer no.	upper/lower bounds [cm]
0	0.0		
1	0.5	1	0.0 - 1.0
2	2.0	2	1.0 - 3.0
3	6.0	3	3.0 - 9.0
4	18.0	4	9.0 - 27.0
5	54.0	5	27.0 - 81.0
6	162.0	6	81.0 - 243.0
7	486.0	7	243.0 - 729.0
8	1458.0	8	729.0 - 2187.0

Table 5.11: Soil model: vertical distribution of levels and layers

5.3.8 Lake-specific single-level fields

Table 5.12: Single-level forecast (VV > 0) and initialised analysis (VV = 0) products of the lake model model

ne		a)			1/2		
${\bf ShortName}$	Description	Discipline	Category	Number	Lev-Typ	$\operatorname{stepType}$	Unit
■ C_T_LK	Shape factor with respect to the temperature profile in the thermocline	1	2	10	162/166	inst	1
■ H_ML_LK	Mixed-layer depth	1	2	0	1/166	inst	m
■ T_BOT_LK	Temperature at the water-bottom sediment interface	1	2	1	162/-	inst	K
■ T_MNW_LK	Mean temperature of the water column	1	2	1	1/162	inst	K
T_WML_LK	Mixed-layer temperature	1	2	1	1/166	inst	K

5.4 Extended description of available output fields

In order to facilitate the selection and interpretation of fields and to guard against possible misinterpretation or mis-usage, the following section provides a more thorough description of the available output fields.

5.4.1 Cloud products

CLCT_MOD Modified total cloud cover $(0 \le \texttt{CLCT_MOD} \le 1)$. Used for visualization purpose (i.e. gray-scale figures) in the media. It is derived from CLC, neglecting cirrus clouds if there are only high clouds present at a given grid point. The reason for this treatment is that the general public does not regard transparent cirrus clouds as 'real' clouds.

CLDEPTH Modified cloud depth $(0 \le \texttt{CLDEPTH} \le 1)$. Used for visualization purpose (i.e. gray-scale figures) in the media. A cloud reaching a vertical extent of 700 hPa or more, has CLDEPTH= 1.

HBAS_CON Height of the convective cloud base in m above msl. HBAS_CON is initialized with $-500\,\mathrm{m}$ at points where no convection is diagnosed.

HTOP_CON Same, but for cloud top.

5.4.2 Near surface products

TMIN_2M Minimum temperature at 2 m above ground, computed over 3-hourly intervals.

TMAX_2M Same, but for maximum 2 m temperature.

VMAX_10M

Maximum wind gust at 10 m above ground, computed over 3-hourly intervals. It is diagnosed from the turbulence state in the atmospheric boundary layer, including a potential enhancement by the SSO parameterization over mountainous terrain. In the presence of deep convection, it contains an additional contribution due to convective gusts.

General comment on statistically processed fields

In GRIB2, the overall time interval over which a statistical process (like averaging, computation of maximum/minimum) has taken place is encoded as follows:

The beginning of the overall time interval is defined by referenceTime + forecastTime, whereas the end of the overall time interval is given by referenceTime + forecastTime + lengthOfTimeRange.

5.4.3 Surface products

FR_ICE Sea and lake ice cover. Currently, the only possible values are 0 (no ice cover) and 1

(ice covered grid point). For lake points, FR_ICE is synchronized with H_ICE meaning that FR_ICE is set to 1 (0), where the lake model indicates H_ICE > 0 (H_ICE = 0).

H_ICE Ice thickness over sea and frozen fresh water lakes. The maximum allowable ice

thickness is limited to $3\,\mathrm{m}$. New sea-ice points generated by the analysis are initial-

ized with $H_{-}ICE = 0.5 \,\mathrm{m}$.

T_ICE Ice temperature over sea-ice and frozen lake points. Melting ice has a temperature

of 273.15 K. Ice-free points over land, sea, and lakes are set to T_SO(0).

 T_G Temperature at the atmosphere-surface interface. It is the temperature that is crucial for the computation of surface fluxes. T_G is equal to $T_SO(0)$ over open water

and snow-free land. At other grid points one has

• $T_G = T_SNOW + (1 - f_snow) * (T_SO(0) - T_SNOW)$ over (partially) snow covered grid points. f_snow is the grid point fraction that is snow covered.

 \bullet T_G = T_ICE over frozen sea and fresh water lakes

TOT_PREC Total precipitation accumulated since model start.

TOT_PREC = RAIN_GSP + SNOW_GSP + RAIN_CON + SNOW_CON

W_I Water content of interception layer, i.e. the amount of precipitation intercepted by vegetation canopies. The maximum capacity of the interception reservoir is currently

vegetation can opies. The maximum capacity of the interception reservoir is currently limited to $6.0E-3\,{\rm kg\,m^{-2}}$ due to numerical reasons and thus almost negligible. Over

water points, W_I is set to 0.

Z0 Surface roughness length. Constant over land, where it depends only on the type of land cover. I.e. it does not contain any contribution from subgrid-scale orography.

Over water, the roughness length usually varies with time. It is computed by the so called Charnock-formula, which parameterizes the impact of waves on the roughness length. Note that this field differs significantly from the external parameter field Z0

(see Table 3.2 or 5.2).

5.4.4 Soil products

RUNOFF_G Water runoff from soil layers. Sum over forecast.

RUNOFF_S Surface water runoff from interception and snow reservoir and from limited infiltra-

tion rate. Sum over forecast.

 T_SO

Temperature of the soil and earth surface (uppermost level). The soil full level depths at which the the soil temperature is defined are given in Table 5.11. The temperature at the uppermost level T_SO(0) is not prognostic. It is rather set equal to the temperature at the first prognostic level T_SO(1). The temperature at the lowermost level T_SO(8) is set to the climatological 2 m temperature T_2M_CL. At sea-points, T_SO(0:7) is filled with the sea-surface temperature. Note that T_SO(0) does not necessarily represent the temperature at the interface soil-atmosphere. I.e. over snow/ice covered surfaces, T_SO(0) represents the temperature below snow/ice.

5.4.5 Vertical Integrals

TQX

Column integrated water species X, derived from the 3D grid-scale prognostic quantities QX, with $X \in \{V,C,I,R,S\}$. TQX is based on the assumption that there would be no sub-grid-scale variability. That assumption is particularly problematic for precipitation generation, moist turbulence and radiation.

 $\mathbf{TQX_DIA}$

Total column integrated water species X, with $X \in \{C, I\}$. Takes into account the sub-grid-scale variability that includes simple treatments of turbulent motion and convective detrainment. These cloud variables attempt to represent all model included physical processes. They are also consistent with the cloud cover variables CLC, CLCT, CLCH, CLCM and CLCL.

5.4.6 Technical Details of the Horizontal Interpolation

Most of the output data on regular grids is processed using an RBF-based interpolation method. The algorithm approximates the input field with a linear combination of radial basis functions (RBF) located at the data sites, see, for example, Ruppert (2007). RBF interpolation typically produces over- and undershoots at position where the input field exhibits steep gradients. Therefore, the internal interpolation algorithm performs a cut-off by default. Note that RBF-based interpolation is not conservative.

A small number of output fields is treated differently, with a nearest-neighbor interpolation:

RAIN_CON	$RAIN_GSP$	$SNOW_CON$
$SNOW_GSP$	SOILTYP	TOT_PREC
W_SO_ICE	WW	

The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant.

Chapter 6

ICON data in the SKY data bases of DWD

GRIB data of the numerical weather prediction models are stored in the data base SKY at DWD. Documentation on the SKY system is available in the intranet of DWD at IT/Messnetz/Technik \rightarrow Datenmanagement (technisch) \rightarrow Management der DWD Fachdaten -Dokumentation \rightarrow SKY. Here, some remarks are given on the SKY categories for ICON data, and some examples are given how to retrieve data from the data base.

6.1 SKY categories for ICON

In SKY the data is stored in different categories and data base subsystems. These are identified by the cat=CAT_NAME parameter. The name of a category is made up of 4 parts:

\$model_\$run_\$type_\$suite

run, type, and suite are general for all forecast models of DWD. They can have the following values:

- run: main for main forecast runs, ass for assimilation runs, pre for pre-assimilation runs, const for invariant data.
- type: an for analysis data, fc for forecast data.
- **suite**: **rout** for operational data in db=roma, **para** for pre-operational data in db=parma, **exp** or **exp1** for data from experiments in db=numex. The category extension exp1 is used for experiments of the NUMEX wizard, a special NUMEX user.

Data from experiments is additionally identified by the parameter exp=NUM where NUM is the experiment number.

The categories for ICON start with the string **ico** for ICON data on the native ICON grid, or with **icr** for data on a regular lat-lon grid. Next follows a two-letter string to identify the domain of ICON; **gl** for the global domain, **eu** for the nest over Europe. After the domain follows the mesh width of the model in units of 100 m, and then the number of levels after the letter l. As an example icogl130l90 is on the native grid from a global model with a mesh width 13 km (grid R3B07) and 90 levels. icrgl400l90 is data on a regular grid from a global model with mesh width 40 km (R2B06) and 90 levels. icreu065l50 is an ICON nest over Europe with a mesh width of 6.5 km and 50 levels and interpolated to a regular lat-lon grid.

Hence, the full category name for data from an operational forecast run of ICON on a regular grid will be icrgl130l90_main_fc_rout. The initial analysis for this run is in category icogl130l90_main_an_rout.

Since 2014-08-12 12 UTC ICON is running pre-operationally at DWD. Hence, forecast data is available in the sky database **db=parma** in categories **icogl130l90_main_fc_para** and **icrgl130l90_main_fc_para**.

6.2 Retrieving ICON data from SKY

Here we shall give several examples how to retrieve ICON data from SKY. The parameter d specifies the reference or initial date, s is the forecast step, p the parameter, and f the name of the GRIB data file.

• Retrieve the 2m temperature and dew point temperature for forecast hours 3 to 78 every 3 hours of today's run at 00 UTC on the global domain from an ICON run on a R3B07 grid with 90 levels to file icon2mdat

```
read db=parma cat=icrgl130190_main_fc_para d=t00 s[h]=3/to/78/by/3 p=t_2m,td_2m bin f=icon2mdat
```

• Retrieve the analysis of T on the native grid from yesterday 18 UTC:

```
read db=parma cat=icogl130190_main_an_para d=t18-1d p=T gptype=0 bin f=t_icon_ana
```

• Retrieve the 6, 12, 18, and 24 hour forecast of the 2m temperature from a forecast run on 2012-06-28 at 00 UTC on the global domain from an ICON run on a R3B07 grid with 90 levels:

```
read db=numex cat=icrg1130190_main_fc_exp1 exp=901 d=2012062800 s[h]=6,12,18,24 p= t_2m bin f=t_2m_fc.grb
```

• Retrieve wind components U and V at 300 hPa on the regular grid from a 24 hour forecast on 2013-10-03 at 00 UTC. lv=P specifies the level type as pressure levels. lv1=30000 specifies the level in Pa.

```
read db=numex cat=icrg1130190_main_fc_exp1 exp=907 d=2013100300 s[h]=24 p=U,V lv=P lv1=30000 bin f=uvReg300hPa
```

• Retrieve the analysis of U on the native grid:

```
read db=numex cat=icogl130190_main_an_exp1 exp=907 d=2013100300 p=U bin f= u_icon_ana
```

• Retrieve temperature forecasts from 7 to 9 hours on the native grid:

```
read db=numex cat=icogl130190_main_fc_exp1 exp=907 d=2013100300 s[h]=7/to/9 p=T bin f=T_icon_07-09
```

• Retrieve a 6 hour forecast on a regular grid on pressure levels. ICON was run on a 40 km grid (R2B06). Write reference date (d), forecast step (s), level type (lv), value of first level (lv1), decoding date (dedat), and store date (stdat) in information file icr.info

```
read db=numex cat=icrg1400190_main_fc_exp exp=9323 d=2012010100 step[h]=6 lv=P f=
   icr06p bin info=metaData metaArray=d,s,p,lv,lv1,dedat,stdat sort=d,s,p,lv,lv1
   infof=icr.info
```

• Retrieve temperature in 850 hPa from a forecast on 2013-10-05 at 12 UTC:

• Retrieve all available time-invariant (constant) fields on the native grid and store them in the file const_icongl. Write reference date (d), forecast step (s), level type (lv), value of first level (lv1), decoding date (dedat), and store date (stdat) in information file icr.info. It is important to set invar=true.

read db=parma cat=icogl130190_const_an_para invar=true info=metaData metaArray=d,s, p,lv,lv1,dedat,stdat bin infof=icr.info f=const_icongl

Appendix A

ICON standard level heights

A.1 Level heights for zero topography height

ICON standard half level heights z^{h0} are listed in Table A.1. Please note that these values correspond to the actual level heights only at grid points with zero topography height, e.g. at ocean grid points.

If full level heights z^{f0} are required, these can be deduced as follows: Let i denote the full level index for which the height is wanted. Then the full level height z_i^{f0} is given by

$$z_i^{f0} = \frac{z_i^{h0} + z_{i+1}^{h0}}{2}.$$

See Table A.2 for a list of all full level heights of the operational setup.

A.2 Non-zero topography heights

The prerequisite "zero topography height" is seldom met in real applications. Instead the user has to compute the model level height for each grid point separately. To this end the invariant fields HSURF and HHL are provided where HHL is the geometric height of model half levels above sea level. The level height can therefore be computed on full levels by the following formula:

$$z_i^f(x) = \frac{\operatorname{HHL}_i^h(x) + \operatorname{HHL}_{i+1}^h(x)}{2} - \operatorname{HSURF}(x)$$

Table A.1: Standard heights (i.e. for zero topography height) for all 91 vertical half levels.

level index	height $[m]$	level index	height $[m]$	level index	height $[m]$
1	75 000.000	32	21 569.375	63	6 621.524
2	72 363.546	33	20 731.107	64	6221.524
3	69 842.381	34	19 942.837	65	5 821.524
4	67 357.797	35	19 201.585	66	5421.524
5	64 946.444	36	18 504.545	67	5 033.731
6	62 606.299	37	17 849.081	68	4659.952
7	60 335.466	38	17 232.713	69	4 300.121
8	58 132.167	39	16 653.108	70	3 954.183
9	55 976.216	40	16 108.074	71	3 622.092
10	53 877.930	41	15 595.549	72	3 303.815
11	51 824.685	42	15 113.594	73	2 999.329
12	49 826.951	43	14 660.386	74	2708.624
13	47 890.748	44	14 234.210	75	2431.707
14	46 014.776	45	13 821.524	76	2168.596
15	44 197.795	46	13 421.524	77	1919.330
16	42 438.627	47	13 021.524	78	1 683.966
17	40 736.151	48	12 621.524	79	1462.584
18	39 089.298	49	12 221.524	80	1 255.291
19	37 497.048	50	11 821.524	81	1 062.224
20	35 958.428	51	11 421.524	82	883.557
21	34 472.507	52	11 021.524	83	719.514
22	33 038.397	53	10 621.524	84	570.373
23	31 655.249	54	10 221.524	85	436.493
24	30 322.249	55	9 821.524	86	318.336
25	29 038.622	56	9 421.524	87	216.516
26	27 803.623	57	9 021.524	88	131.880
27	26 617.350	58	8 621.524	89	65.677
28	25 488.963	59	8 221.524	90	20.000
29	24 416.908	60	7821.524	91	0.000
30	23 408.796	61	7 421.524		
31	22 460.814	62	7 021.524		

Table A.2: Standard heights (i.e. for zero topography height) for all 90 vertical <u>full levels</u>.

level index	height $[m]$	level index	height $[m]$	level index	height $[m]$
1	73 596.316	31	28 492.942	61	7 344.045
2	71 007.030	32	27513.589	62	6892.121
3	68 721.627	33	26556.495	63	6454.619
4	66 581.646	34	25621.182	64	6031.432
5	64 548.442	35	24 707.196	65	5622.465
6	62 602.102	36	23 814.105	66	5227.628
7	60 730.168	37	22 941.499	67	4846.842
8	58 923.985	38	22 088.986	68	4480.037
9	57 177.126	39	21 256.192	69	4127.152
10	55 484.587	40	20 442.762	70	3 788.138
11	53 842.337	41	19648.355	71	3462.954
12	52 247.040	42	18872.647	72	3151.572
13	50 695.881	43	18 115.326	73	2853.976
14	49 186.437	44	17376.095	74	2570.165
15	47 716.601	45	16654.670	75	2300.151
16	46 284.512	46	15950.780	76	2043.963
17	44 888.516	47	15264.163	77	1801.648
18	43527.126	48	14594.572	78	1573.275
19	42 199.000	49	13 941.768	79	1358.938
20	40 902.913	50	13305.523	80	1158.757
21	39 637.747	51	12685.620	81	972.891
22	38 402.471	52	12081.850	82	801.536
23	37 196.137	53	11 494.014	83	644.943
24	36 017.862	54	10921.924	84	503.433
25	34 866.825	55	10365.398	85	377.415
26	33 742.263	56	9824.264	86	267.426
27	32643.457	57	9298.358	87	174.198
28	31 569.736	58	8 787.527	88	98.779
29	30 520.469	59	8 291.622	89	42.839
30	29 495.058	60	7810.504	90	10.000

Bibliography

- Bloom, S. C., L. L. Takacs, A. M. D. Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. *Mon. Wea. Rev.*, 124, 1256–1270.
- Leuenberger, D., M. Koller, and C. Schär, 2010: A generalization of the sleve vertical coordinate. *Mon. Wea. Rev.*, **138**, 3683–3689.
- Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. *Mon. Wea. Rev.*, **132**, 2495–2502.
- Ruppert, T., 2007: Diplomarbeit: Vector field reconstruction by radial basis functions. Master's thesis, Technical University Darmstadt, Department of Mathematics.
- Wan, H., M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Ripodas, L. Kornblueh, and J. Förstner, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids Part 1: Formulation and performance of the baseline version. Geosci. Model Dev., 6, 735–763.