

$$\int_{t_{0}}^{t_{0}} \frac{ds}{ds} \left(\frac{209}{2} (y(s)) \right) ds = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(y(t) \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{1}{1 - 16} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{y(t)}{y(t)} \right)$$

$$\frac{\log \left(\frac{y(t)}{y(t)} \right)}{\log \left(\frac{y(t)}{y(t)} \right)} = -\lambda \left(\frac{y(t)}{y(t)}$$

$$e^{At} = \left(\frac{\sum_{k=0}^{\infty} (-6)^k \cdot (-1)^k \cdot (-$$

$$|V| = \cos(\theta) |U| = -\sin(\theta) |V| = \frac{1}{2}$$

$$|V| = \sin(\theta) |V| + \cos(\theta) |U| = -\frac{1}{2}$$

$$|V| = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

CONSISTENCY COURCERROR Ennor y (+1) = y + st y (+1) + 012 y ((() + O () + y (+*)=y (++00+)= y2+00+y1(+2)+010+11 Y*= Y + 8 St F (y) = Y (t*) + 3 (M²) Yn+1 = Y + AT 20 -1 F (Y) + F (Y) 7 = Y^+ Ot [20-1 F(y) +] (F(y) +] (y) OSTF() = y^+ 17 (ym) + 20 At 2 T(y(t)) = P(y1) + St2 d y1(p) y (t) + st2, 1 (t) = y (t) + 0 (st3) D GLOBAL ERROR O(DE2) RUNGE-KUTTA S STACES A EN SXS $A = (\alpha_{KJ})_{KJ=1}$ c, ben y(K) = yn + Dt = a, F(t + stcs, y(3)) K= 1, S 5 by F(t) + otc, y (7) ynt = y + st

Stages Experient RZ

$$S^{2}+3S-2$$
 $S^{2}+3S-2$
 $S^{2}+3$

$$y^{(1)} \{ \{ y(t^{(1)}) \} = y'' + \int_{0}^{t^{(1)}} F(s, y^{(1)}) ds$$

$$\Rightarrow y'' + \int_{0}^{t^{(1)}} \sum_{j=1}^{t^{(1)}} g_{j}(s) .F(t^{(1)}, y^{(1)}) ds$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(1)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(1)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$y^{(1)} = y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$y^{(1)} = y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(1)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(1)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{t^{(2)}} \int_{0}^{t^{(2)}} g_{j}(s) ds F(t^{$$

$$\frac{4-24}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}$$

ACCURACY CONSISTENCY EXPLOR Y ({ n) } + \(\frac{1}{2} \) \(\frac{1}{2} \ TAYON EXP 14 (2) $= y(t^{n+1}) + \sum_{j=1}^{k} a_j \sum_{\ell=0}^{p} (-j \Delta t)^{\ell} y(\ell)(t^{n+1})$ - At \(\begin{align*} & \begin{align*} y (+ n+1) [1 + 2 2] + 1 = 0 | 1 = 0 FOR ORDERP 12 Z = 0 $\forall \ell = 1, p$ $\sum_{j=1}^{k} \alpha_j \frac{(-j)^{\ell}}{\ell!} \frac{1}{j=0} \frac{1}{j} \frac{(-j)^{\ell-1}}{(\ell-1)!}$ ADANS- BASHFEKTH VALUES THE THE YA-KHI) y((~1)) = y(+) + Str = y (+) + (+) + (+) 1+ P(t)-J+1) = F(f)-J+1 + F(f)-J+1 + J=1, K

$$\frac{d}{dt} k(t) = \frac{1}{3} \frac{1}{2} \langle y, y \rangle = \langle y, y \rangle$$

$$\frac{d}{dt} k(t) = \frac{1}{3} \frac{1}{2} \langle y, y \rangle = \langle y, y \rangle$$

$$\frac{d}{dt} k(t) = \frac{1}{3} \frac{1}{2} \langle y, y \rangle = \frac{1}{3} \frac{1}{$$

$$\frac{1}{10} = -0 + \frac{7}{5} : \int_{0}^{\infty} \frac{y(y^{2} + y) + \frac{7}{5}} \frac{z}{z} \frac{z}{z} \frac{y}{z} \frac{y}{$$

O(E) =
$$\times$$
 (q)

 C_{i} = \times (

