

椭球法

Ellipsoid Method

傅奕诚

fuycc@zju.edu.cn

浙江大学计算机科学与技术学院

2025年10月22日

目录

背景

椭球

基础椭球法

问题背景: 从 LP 到凸可行性

典型目标:求解线性规划(LP)

$$\min_{x \in \mathbb{R}^n} \{ c^\top x \mid Ax \le b \}$$
 (1)

或更一般的**凸可行性问题**: 在已知包含球 $B_2(0,R)$ 和未知的凸集 合 $K \subset \mathbb{R}^n$ 中,判定 K 非空并找到 $x \in K$,或在精度 ε 下逼近.

- 分离预言机 (Separation Oracle): 给定 x, 判断 $x \in K$; 若不在, 返回一个分离超平面(或半空间)将 x 与 K 分开.
- 椭球法思想:用逐步缩小的椭球逼近未知凸集 K,每次利用分离信息更新椭球中心与形状。
- 历史意义: Khachiyan (1979) 首次证明 LP 的多项式时间可解性。

LP 问题的规模-1

- 将整数 $z \in \mathbb{Z}$ 编码为其绝对值的二进制串,则 $size(z) = \lceil log(|z| + 1) \rceil$
- 有理数 p/q $(p, q \in \mathbb{Z}, q \ge 1, \gcd(p, q) = 1)$: $\operatorname{size}(p/q) = \operatorname{size}(p) + \operatorname{size}(q)$
- 长度 n 的有理向量 v: $\operatorname{size}(v) = \sum_{j=1}^{n} \operatorname{size}(v_j)$
- $m \times n$ 有理矩阵 A, $\operatorname{size}(A) = \sum_{i=1}^{n} \sum_{i=1}^{m} \operatorname{size}(a_{i,j})$
- 线性规划问题 $\min\{c^{\top}x|Ax \leqslant b, x \geqslant 0\}$: $\operatorname{size}(A, b, c) = \operatorname{size}(A) + \operatorname{size}(b) + \operatorname{size}(c)$

引理

- 对任意有理数 r, 有 $|r| \leq 2^{size(r)} 1$
- 对任意有理向量 $x \in \mathbb{Q}^n$,有 $||x||_2 \leqslant ||x||_1 \leqslant 2^{size(x)} 1$
- 对任意有理向量 $A \in \mathbb{Q}^{n \times n}$,有 $|det(A)| \leq 2^{size(A)} 1$

LP 问题的规模-2

引理

设多面体 $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ 非空,且 A, b 均为整数矩阵/向量. P 的规模定义为 $L = \mathit{size}(A) + \mathit{size}(b)$,则 P 的任一顶点 x 都满足 $\|x\|_2 \leqslant \sqrt{n}2^L$.

证明.

由多面体理论可知,对每个顶点 v,存在 $Ax\leqslant b$ 的一个非奇异子系统 $\bar{A}x=\bar{b}$. 根据 Cramer 法则, $x_i=\frac{\det \bar{A}_i}{\det \bar{A}}$,其中 \bar{A}_i 是将 \bar{A} 的第 i 列替换为向量 \bar{b} 所得的矩阵.

由于 \bar{A} 是非奇异整数矩阵,于是 $\det \bar{A} \geqslant 1$,则

$$|x_i| \leqslant |\det \bar{A}_i| \leqslant 2^{\operatorname{size}(\bar{A}_i)} - 1 \leqslant 2^L - 1$$

即 $||x||_{\infty} \leq 2^{L}$,于是 $||x||_{2} \leq \sqrt{n} ||x||_{\infty} \leq \sqrt{n} 2^{L}$

LP 问题的规模-3

引理

设多面体 $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ 非空,且 A, b 均为整数,则 $vol(P) \ge 2^{-(n+1)size(A)-n^2}$.

目录

背景

椭球

基础椭球法

椭球的定义与几何性质

定义(椭球)

对称正定矩阵 $A \in \mathbb{R}^{n \times n}$ 与中心 $a \in \mathbb{R}^n$ 定义:

$$\mathcal{E}(A, a) := \{ x \in \mathbb{R}^n : (x - a)^\top A^{-1} (x - a) \leqslant 1 \}.$$

- 主轴方向: A 的特征向量; 半轴长度: $\sqrt{\lambda_i(A)}$.
- ullet 由于 A 是正定矩阵,存在正定矩阵 Q 使得 A=QQ,那么

$$\mathcal{E}(A, a) = Q\mathcal{E}(I, 0) + a$$

这里, $B(0,1) = \mathcal{E}(I,0)$ 表示圆心为原点的单位球.

• 体积: $vol(\mathcal{E}(A, a)) = \sqrt{\det A} V_n (V_n)$ 为单位球的体积).

8 / 25

椭球的定义与几何性质

目标:在椭球上求解线性函数 $c^{T}x$ 的最大值/最小值.

在单位球 B(a,1) 上, $\max c^{\top}x$ 在 $x=a+\frac{c}{\|c\|}$ 处取得.

在椭球 $\mathcal{E}(A,a)$ 上,有:

$$Q^{-1}\mathcal{E}(A,a) = B(0,1) + Q^{-1}a = B(Q^{-1}a,1).$$

因为 (今 $y = Q^{-1}x$):

$$1 \geqslant (x-a)^{\top} A^{-1}(x-a)$$

$$= (Qy-a)^{\top} Q^{-1} Q^{-1} (Qy-a)$$

$$= (Q(y-Q^{-1}a))^{\top} Q^{-1} Q^{-1} (Q(y-Q^{-1}a))$$

$$= (y-Q^{-1}a)^{\top} Q^{\top} Q^{-1} Q^{-1} Q(y-Q^{-1}a)$$

$$= (y-Q^{-1}a)^{\top} I(y-Q^{-1}a)$$

目标: 在椭球上求解线性函数 $c^{T}x$ 的最大值/最小值.

在椭球 $\mathcal{E}(A,a)$ 上,有:

$$Q^{-1}\mathcal{E}(A,a) = B(0,1) + Q^{-1}a = B(Q^{-1}a,1).$$

于是有:

$$\max_{x \in \mathcal{E}(A, a)} c^{\top} x = \max_{Q^{-1}x \in Q^{-1}\mathcal{E}(A, a)} c^{\top} Q Q^{-1} x$$

$$= \max_{y \in S(Q^{-1}a, 1)} c^{\top} Q y$$

$$= c^{\top} Q \frac{1}{\|Qc\|} Qc + c^{\top} Q Q^{-1} a$$

$$= c^{\top} a + \sqrt{c^{\top} A c}$$

同理,最小值为

$$\min_{x \in \mathcal{E}(A,a)} c^\top x = c^\top a - \sqrt{c^\top A c}$$

椭球的定义与几何性质

令
$$b = \frac{Ac}{\sqrt{c^{\top}Ac}}$$
, $z_{max} = a + b$, $z_{min} = a - b$, 那么

$$c^{\top} z_{max} = c^{\top} a + \sqrt{c^{\top} A c}, \quad c^{\top} z_{min} = c^{\top} a - \sqrt{c^{\top} A c}$$

图: 二维椭球示例

Löwner-John 椭球

定理 (Löwner-John 椭球)

对于任意凸体 $K\subset\mathbb{R}^n$,存在唯一的包含 K 最小体积椭球 \mathcal{E} . 此外,若 $\mathcal{E}(A,a)$ 为此椭球,则将 \mathcal{E} 从中心收缩 n 倍后得到的椭球包含于 K,即 $\mathcal{E}(n^{-2}A,a)\subseteq K$.

- 一般而言、K的 Löwner-John 椭球计算困难.
- 但在某些条件下,可以在多项式时间内得到良好的近似.
- 椭球法及其变体常用到某些"椭球截面"的 Löwner-John 椭球; 对这些特殊情形,存在显式公式。

中心切割与半椭球的 Löwner-John 椭球

设 $\mathcal{E}(A,a)$ 为椭球, $c \in \mathbb{R}^n \setminus \{0\}$, 定义:

$$\mathcal{E}'(A, a, c) := \mathcal{E}(A, a) \cap \{x \in \mathbb{R}^n \mid c^\top x \le c^\top a\}.$$

即通过超平面 $c^{\top}x=c^{\top}a$ 将椭球沿中心切为两半, $\mathcal{E}'(A,a,c)$ 是其一半. $\mathcal{E}'(A,a,c)$ 的 Löwner-John 椭球 $\mathcal{E}(A',a')$ 可由下式给出:

$$a' = a - \frac{1}{n+1}b,$$

 $A' = \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1}bb^{\top} \right),$

其中
$$b = \frac{Ac}{\sqrt{c^{\top}Ac}}$$
.

中心切割与半椭球的 Löwner-John 椭球

中心切割: $\mathcal{E}'(A, a, c) := \mathcal{E}(A, a) \cap \{x \in \mathbb{R}^n \mid c^\top x \leq c^\top a\}$

图: 中心切割

目录

背景

椭球

基础椭球法

基础椭球法

目标: 判定 $P = \{x \mid Cx \leq d\}$ 是否为空, 或找到 $x \in P$.

算法 基础椭球法

- 1: Input: 多面体 $P = \{x \in \mathbb{R} | Cx \leq d\}$, 初始化椭球 $\mathcal{E}_0 \supseteq P$.
- 2: **Output:** $x \in P$ 或 $P = \emptyset$.
- 3: **for** k = 0, 1, ..., N **do**
- 4: if $a_k \in P$ then
- 5: return a_k
- 6: **else**
- 7: 存在 j 使得 $C_j x > C_j a_k$, $\mathcal{E}_{k+1} \leftarrow$ 包含 $\mathcal{E}_k \cap \{x | C_j x \leqslant C_j a_k\}$ 的最小椭球
- 8: end if
- 9: end for
- 10: return $P = \emptyset$

基础椭球法

目标: 判定 $P = \{x \mid Cx \leq d\}$ 是否为空, 或找到 $x \in P$.

① 如何初始化椭球 $\mathcal{E}_0 = \mathcal{E}(R^2\mathbf{I}, 0)$, 使 $P \subseteq \mathcal{E}_0$?

$$R = \sqrt{n}2^L$$

❷ 如何计算 *E_{k+1}*?

$$a_{k+1} = a_k - \frac{1}{n+1}b_k, \quad A_{k+1} = \frac{n^2}{n^2 - 1}\left(A_k - \frac{2}{n+1}b_kb_k^{\top}\right)$$

其中
$$b_k = \frac{A_k c}{\sqrt{c^{\top} A_k c}}$$
.

⑤ 如何确定 N?

停止条件 N-椭球体积收缩率

引理(椭球体积收缩率)

椭球 \mathcal{E}_{k+1} 与 \mathcal{E}_k 的体积满足 $\operatorname{vol}(\mathcal{E}_{k+1})/\operatorname{vol}(\mathcal{E}_k) < e^{-1/(2n)}$

证明.

为估计体积比, 先考虑特殊情况:

$$F := \mathcal{E}(I,0) = S(0,1), \quad c = (-1,0,\ldots,0)^{\top}.$$

由更新公式可得:

$$b = (-1, 0, \dots, 0)^{\mathsf{T}}, \quad a' = a - \frac{1}{n+1}b = (\frac{1}{n+1}, 0, \dots, 0)^{\mathsf{T}},$$

$$A' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} b b^{\mathsf{T}} \right) = \operatorname{diag}\left(\frac{n^2}{(n+1)^2}, \frac{n^2}{n^2 - 1}, \dots, \frac{n^2}{n^2 - 1}\right).$$

傅奕诚

停止条件 N-椭球体积收缩率

证明.

由 $\operatorname{vol}(\mathcal{E}(A, a)) = V_n \sqrt{\det A}$ 得:

$$\frac{\operatorname{vol}(F')}{\operatorname{vol}(F)} = \sqrt{\det A'} = \left(\frac{n}{n+1}\right)^{\frac{n+1}{2}} \left(\frac{n}{n-1}\right)^{\frac{n-1}{2}}.$$

取自然对数得:

$$\ln \frac{\text{vol}(F')}{\text{vol}(F)} = \frac{1}{2} \left[(n+1) \ln \frac{n}{n+1} + (n-1) \ln \frac{n}{n-1} \right].$$

利用幂级数展开 $\ln(1\pm\frac{1}{n}) = \pm\frac{1}{n} - \frac{1}{2n^2} \pm \frac{1}{3n^3} - \cdots$ 得到

$$(n+1)\ln(1+\frac{1}{n})+(n-1)\ln(1-\frac{1}{n})>-\frac{1}{n},$$

从而 $vol(F')/vol(F) < e^{-1/(2n)}$.

停止条件 N-椭球体积收缩率

证明.

对一般椭球 $\mathcal{E} = \mathcal{E}(A, a)$, 有

$$\mathcal{E} = Q\mathcal{E}(I,0) + a = QF + a.$$

存在正交矩阵 M 将 Qc 旋转为 $(-1,0,\ldots,0)^{\top}$ 的倍数. 定义仿射变换

$$T(x) := QM^{\top}x + a, \quad T^{-1}(x) = MQ^{-1}(x - a).$$

则 T(F) = E, T(F') = E', 且仿射变换保持体积比:

$$\frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} = \frac{\operatorname{vol}(F')}{\operatorname{vol}(F)} = \left(\frac{n}{n+1}\right)^{\frac{n+1}{2}} \left(\frac{n}{n-1}\right)^{\frac{n-1}{2}} < e^{-1/(2n)}.$$

停止条件 N

引理

设 $P=\{x\in\mathbb{R}^n\mid Cx\leq d\}$ 为满维整数多面体,且初始椭球 $\mathcal{E}_0=\mathcal{E}(A_0,a_0)$ 取 $a_0=0$ 、 $A_0=R^2I$,其中 $R=\sqrt{n}\,2^L$.若取

$$N = 2n\big((2n+1)\operatorname{size}(\mathit{C}) + n\operatorname{size}(\mathit{d}) + 2n^2\big)$$

步迭代,则 $\operatorname{vol}(\mathcal{E}_N) \leqslant 2^{-(n+1)\operatorname{size}(C)-n^2} \leqslant \operatorname{vol}(P)$

证明.

初始时 $\mathcal{E}_0 \subseteq \{x \mid ||x||_\infty \le R\}$,因此 $\operatorname{vol}(\mathcal{E}_0) \leqslant (2R)^n \leqslant 2^{n(L+n)}$. 根据体积收缩引理,每一步体积至少缩小因子 $e^{-1/(2n)}$,故

$$\operatorname{vol}(\mathcal{E}_N) < e^{-N/(2n)} \operatorname{vol}(\mathcal{E}_0) \leqslant e^{-N/(2n)} (2R)^n.$$

结合 P 的体积下界 $\operatorname{vol}(P) \geqslant 2^{-(n+1)\operatorname{size}(C)-n^2}$,得 $\operatorname{vol}(E_N) < \operatorname{vol}(P)$.

椭球法示例

(b) 第七次迭代

图: Löwner-John 椭球与其切割后的半椭球对比

分离 Oracle

分离 Oracle: 给定点 x, Oracle 要么告知 $x \in P$, 要么给出一个超平面 分离 p 与 K.

- 对于当前的椭球 $\mathcal{E}_k = \mathcal{E}_k(A_k, a_k)$,若 $a_k \notin \{x | Ax \leqslant b, x \geqslant 0\}$,则找 出 $A_j a_k \leqslant b_j$,并用 $\{x | A_j x \leqslant A_j a_k\}$ 来切椭球.
- 若 a_k 满足约束,说明我们找到了一个可行解,为了找到最小化目标的解,可以用 $\{x|c^\top x\leqslant c^\top a_k\}$ 来切椭球.

实践

- 在大多数线性规划上速度不如单纯形或内点法.
- 主要理论价值:用于证明可多项式求解或构建分离-优化等价。
- 数值稳定性: 重复切割同方向会导致"针状"椭球,需注意精度控制.

参考文献

