范畴论简介

范畴简介

Definition 1.1.1 范畴 $\mathcal C$ 包含三要素

- \mathcal{C} 中对象所成的类, 记作 $\mathsf{Ob}(\mathcal{C})$;
- $\forall A, B \in \mathsf{Ob}(\mathcal{C})$, 记 $\mathsf{Hom}_{\mathcal{C}}(A, B)$ 为 $A \cong B$ 的态射;
- 对任意 $A, B, C \in \mathsf{Ob}(\mathcal{C})$, 总存在态射的复合

$$\operatorname{Hom}_{\mathcal{C}}(A,B) imes \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{C}}(A,C) \ (f,g) \mapsto gf.$$

Definition 1.1.2 以上定义出的范畴 $\mathcal C$ 满足如下公理

- A1. 在有意义时总有复合 (fg)h = f(gh);
- A2. 对任意 $A \in \mathsf{Ob}(\mathcal{C})$, 存在 $1_A \in \mathsf{Hom}_{\mathcal{C}}(A,A)$ 使得

$$egin{aligned} orall f \in \operatorname{Hom}_{\mathcal{C}}(\cdot,A), & 1_A f = f. \ orall g \in \operatorname{Hom}_{\mathcal{C}}(A,\cdot), & g1_A = g; \end{aligned}$$

• A3. $\operatorname{Hom}_{\mathcal{C}}(A,B) \cap \operatorname{Hom}_{\mathcal{C}}(C,D) \neq \emptyset$ 若且仅若 $(A=C) \wedge (B=D)$. Definition 1.1.3 取 $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, 称

- f 为单的若且仅若对任意 $g,h\in \mathrm{Hom}_{\mathcal{C}}(C,A), fg=fh\Leftrightarrow g=h;$
- f 为满的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(A,C), gf = hf \Leftrightarrow g = h.$

Notation 1.1.4 记 $f:A\rightarrowtail B$ 为单的 f. 记 $f:A\twoheadrightarrow B$ 为满的 f.

Definition 1.1.5 取 $f\in {
m Hom}_{\mathcal C}(A,B)$, 称 f 为同构 (可逆) 若且仅若存在 $g\in {
m Hom}_{\mathcal C}(B,A)$ 使得

$$gf=1_A,\quad fg=1_B.$$

此时称 A 与 B 为同构的.

Example 1.1.6 常见范畴如下

范畴	对象 (Obj)	态射 (Mor)
$\mathbb{S}ets$	set	map
$_F\mathbb{L} S$	linear space over ${\cal F}$	linear map
$\mathbb{A}G$	Abelian group	group homomorphism
G	group	group homomorphism
$_R\mathcal{M}$	left R-module	module homomorphism
$\mathbb{T}op$	topological space	continuous map
$\mathbb{R}ing$	ring	ring homomorphism

Example 1.1.7 $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 为单且满的 $\longleftarrow f$ 为同构. 反之未必.

▼ Proof of the theorem

一方面, f 为同构时一定存在 f' 使得 $ff' = 1_B$, 从而

$$gf = hf \Leftrightarrow gff' = hff' \Leftrightarrow g = h.$$

得 f 为满的. 同理 f 为单的.

另一方面, 考虑*对象为 Hausdorff 空间, 态射为连续映射*之范畴, 则嵌入 $\mathbb{Q} \to \mathbb{R}$ 为单且满的 (满足左右消去律, 但并非同构).

Example 1.1.8 对 $\mathcal{C} = \mathbb{S}ets$, 证明单态射即单射 (满射 \Leftrightarrow 满态射之证明同理).

▼ Proof of the theorem

 $orall f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, f为单的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(C,A)$ 总有

$$g = h \Leftrightarrow fg = fh$$
.

f 为单时, 下证明 f 为单设. 若存在不同的 $x_1,x_2\in A$ 使得 $f(x_1)=f(x_2)$, 考虑 g 与 h 分别为将一切 C 中元素映至 x_1 与 x_2 的态射即得 f 非单, 矛盾.

f 为单射时, 下证明 f 为单的, 只需证 $fg=fh \implies g=h$. 若存在 $x_0 \in C$ 使得 $fg(x_0)=fh(x_0)$ 而 $g(x_0)
eq f(x_0)$,则 $g(x_0)$ 与 $h(x_0)$ 在 f 下的像相同, 矛盾!

Example 1.1.9 称 (X, \leq) 为半序集若且仅若 X 满足自反性 $(x \leq x)$ 与传递性 $((x \leq y) \land (y \leq z) \implies x \leq z)$. 例如整数集关于整除偏序形成半序集, 至少 $-1 \leq 1$ 且

 $1 \leq -1$.

记范畴 \mathcal{C} 为半序集 X 与偏序关系 \leq 所成的范畴. 取

• $\mathsf{Ob}(\mathcal{C}) = X$;

•

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise}; \end{cases}$$

• 态射满足复合关系 $i_z^y i_y^x = i_z^x$.

Example 1.1.10 称 \mathcal{C} 为小范畴若且仅若 $\mathsf{Ob}(\mathcal{C})$ 为集合 (并非真类).

Remark 例如所有集合之集合<u>为类而非集合</u>. 实际上, 若 S 为一切集合之集, 则与 $(S\sqcup\{S\})\notin S$ 矛盾. 称**类**中并非集合者为**真类**.

Definition 1.1.11 称 $\mathcal{C}^{\mathrm{op}}$ 为 \mathcal{C} 的反变范畴, 若且仅若

- $\mathsf{Ob}(\mathcal{C}^{\mathrm{op}}) = \mathsf{Ob}(\mathcal{C})$.
- $\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,B) = \operatorname{Hom}_{\mathcal{C}}(B,A)$. 特别地,

$$f \in \operatorname{Hom}_{\mathcal{C}}(B,A) \Leftrightarrow f^{\operatorname{op}} \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,B).$$

• $g^{\mathrm{op}}f^{\mathrm{op}}=(fg)^{\mathrm{op}}$.

Proposition 1.1.12 $(\mathcal{C}^{\mathrm{op}})^{\mathrm{op}} = \mathcal{C}$.

▼ Proof of the proposition

显然 $\mathsf{Ob}(\mathcal{C}) = \mathsf{Ob}((C^{\mathrm{op}})^{\mathrm{op}})$. 注意到 $f \mathrel{\vdash} (f^{\mathrm{op}})^{\mathrm{op}}$ 间存在自然对应, 故 $(\mathcal{C}^{\mathrm{op}})^{\mathrm{op}} = \mathcal{C}$.

Proposition 1.1.13 $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 为单 (满), 若且仅若 f^{op} 为满 (单).

▼ Proof of the proposition

注意到

$$(f^{\mathrm{op}}g^{\mathrm{op}}=f^{\mathrm{op}}h^{\mathrm{op}})\Leftrightarrow (gf)^{\mathrm{op}}=(hf)^{\mathrm{op}}\Leftrightarrow gf=hf.$$

反之亦然即可.

Example 1.1.14 记 \mathbb{G} 为群范畴, 即 $\mathsf{Ob}(\mathbb{G})$ 为一切群, 态射为群同态. 则**满(单)态射等价于满(单)同态**.

▼ Proof of the theorem

单(满)同态视作集合运算时为单射与满射, 自然满足右(左)消去律, 从而时单(满)态射.

兹有断言: 群单态射为单同态. 反之, 若 $f\in \mathrm{Hom}_{\mathbb{G}}(G,H)$ 非单同态, 取

$$g_1: \ker(f) o \ker(f), \quad x \mapsto x, \ g_2: \ker(f) o \{e\}, \qquad x \mapsto e.$$

易知 $f\circ g_1=f\circ g_2:\ker(f) o\{e\}$, 但 $g_1
eq g_2$.

兹有断言: 群满态射为满同态. 取 $f\in \mathrm{Hom}_{\mathbb{G}}(G,H)$ 为满态射, R:=H/f(G) 为右陪集分解, 记 S 为 $R\dot{\cup}\{\emptyset\}$ 的置换群. 显然 H 在 S 上的右作用给出浸入

$$g_1: H \hookrightarrow S, h \mapsto egin{pmatrix} f(G)h' \mapsto f(G)h'h, \ \{\infty\} \mapsto \{\infty\}. \end{pmatrix}$$

取对换 $\sigma \in S$, 其中 $f(G) \leftrightarrow \{\infty\}$. 定义 $g_2(x) := \sigma \circ g_1(x) \circ \sigma$. 显然 $g_1 \neq g_2$. 根据满态射定义, $g_1 \circ f = g_2 \circ f$.

注意到 $g_1 \circ f(x)$ 与 $g_2 \circ f(x)$ 为相同的置换若且仅若 $g_1 \circ f(x)$ 与 σ 可交换, 若且 仅若 f(x) 固定 f(G). 从而 G 只能为交换群, 即 f(G) = H.

Example 1.1.15 记 $_R\mathcal{M}$ 为左 R-模范畴, 即 $\mathsf{Ob}(_R\mathcal{M})$ 为一切左 R-模, 态射为左 R-模同态. 则满(单)态射等价于满(单)同态.

▼ Proof of the theorem

同上, 单(满)同态视作集合运算时为单射与满射, 自然满足右(左)消去律, 从而时单(满) 态射.

反之, 若 $f \in \operatorname{Hom}_R(M,N)$ 非左 R-模的单同态, 取

$$egin{aligned} g_1: & \ker(f)
ightarrow \ker(f), \quad x \mapsto x, \ g_2: & \ker(f)
ightarrow \{e\}, \qquad x \mapsto e. \end{aligned}$$

则 $f \circ g_1 = f \circ g_2 : \ker(f) \mapsto \{e\}$, 而 $g_1 \neq g_2$.

反之, 若 $f \in \operatorname{Hom}_R(M,N)$ 非左 R-模的满同态, 取

$$egin{aligned} g_1: & N o N, & x \mapsto x, \ g_2: & N o N/\mathrm{im}(f), & x \mapsto x + \mathrm{im}(f). \end{aligned}$$

从而 $g_1\circ f=g_2\circ f:M\mapsto \{e\}$,而 $g_1
eq g_2$.

Example 1.1.16 记 $\mathbb{R}ing$ 为环范畴, 即 $\mathsf{Ob}(\mathbb{R}ing)$ 为一切环, 态射为环同态. 则单态射等价于单同态; 但是, 满同态推出满态射, 而反之未然.

▼ Proof of the theorem

下仅例证**对环范畴而言, 满态射一般不蕴含满同态**.

环 R 到分式域的嵌入为满态射. 例如 $f:R \to \operatorname{frac}(R), x \mapsto x$ 为满态射, $g_1,g_2:$ $\operatorname{frac}(R) \to S$ 满足 $g_1 \circ f = g_2 \circ f$. 显然 $g_i \circ f$ 对应唯一的 g_i (这也是分式域的泛性质), 从而 $g_1 = g_2$.

Definition 1.1.17 称 $I \in \mathsf{Ob}(\mathcal{C})$ 为起始元, 若 $\mathsf{Hom}_{\mathcal{C}}(I,X)$ 有且仅有一个元素, $\forall X \in \mathsf{Ob}(\mathcal{C})$.

Definition 1.1.18 称 $T \in \mathsf{Ob}(\mathcal{C})$ 为终末元, 若 $\mathsf{Hom}_{\mathcal{C}}(X,T)$ 有且仅有一个元素, $\forall X \in \mathsf{Ob}(\mathcal{C})$.

Definition 1.1.19 称 $Z \in \mathsf{Ob}(\mathcal{C})$ 为零元当且仅当其同为初始元与终末元.

Example 1.1.20 单元集合为 $\mathbb{S}ets$ 中的终末元. $\mathbb{S}ets$ 中无初始元.

Example 1.1.21 0 为 $\mathbb{A}G$ 中的零元; (\mathbb{R}, \leq) 中不含初始元与终末元.

Theorem 1.1.22 \mathcal{C} 为含 0 元的范畴. 则

- 1. 对任意给定的零元 x, y 与 x 同构当且仅当 y 为零元.
- 2. 取 Z 为零元, 记 $\{0_{AZ}\}=\operatorname{Hom}_{\mathcal{C}}(A,Z),\{0_{ZB}\}=\operatorname{Hom}_{\mathcal{C}}(Z,B)$, 复合态射

$$A\stackrel{0_{AZ}}{\longrightarrow} Z\stackrel{0_{ZB}}{\longrightarrow} B.$$

与零元之选取无关.

▼ Proof of the theorem

对 **1.**, 取任意零元 Z 与 Z', (唯一地) 取 $f:Z\to Z'$, $g:Z'\to Z$. 由于 $fg=1_{Z'}$, 从而 $Z\cong Z'$. 相反地, 若 A 与零元 Z 同构, 则存在唯一的 f:Z

A o Z, g: Z o A. 因此

$$\operatorname{Hom}_{\mathcal{C}}(C,A)=:\{gh\mid h:C o Z\}.$$

为一元集, 即 A 为终末元. 同理, A 为起始元.

对 **2.**, 任取 Z 与 Z', 构造如下交换图. 易见

$$0_{Z'B}0_{AZ'}=(0_{ZB}g)(f0_{AZ})=0_{ZB}(gf)0_{AZ}=0_{ZB}0_{AZ}.$$

Definition 1.1.23 对含有零元 Z 的范畴 \mathcal{C} , 记 $0_{AB}=0_{ZB}0_{AZ}$ 为 $\mathrm{Hom}_{\mathcal{C}}(A,B)$ 中的零态射.

Proposition 1.1.24 ${\cal C}$ 为有零元的范畴, 取 f:A o B,g:B o C. 若 f=0 或 g=0 , 则 gf=0.

▼ Proof of the proposition

不妨设 Z 为零元, 则 f=0 时

$$gf = g0_{AB} = (g0_{ZB})0_{AZ} = 0_{ZC}0_{AZ} = 0_{AC}.$$

g=0 时

$$gf = 0_{BC}f = 0_{ZC}(0_{BZ}f) = 0_{ZC}0_{AZ} = 0_{AC}.$$

Definition 1.1.25 记 $\{X_i\}_{i\in I}$ 为一族 \mathcal{C} 中以 I 为指标的对象, 称 X 为 $\{X_i\}_{i\in I}$ 的直积 若且仅若存在一族投影态射 $p_i:X\to X_i$ 使得满足泛性质:

对任意 $Y\in \mathsf{Ob}(\mathcal{C})$,与态射 $f_i:Y\to X_i$,存在唯一的 $f:Y\to X$ 使得 $p_if=f_i$. 常记作 $(X,p_i)=:\prod_{i\in I}X_i$.

Proposition 1.1.26 (X,p_i) 与 (X',p_i') 均为 $\{X_i\}_{i\in I}$ 之直积, 则 $X\cong X'$.

▼ Proof of the proposition

考虑态射 $f: X \to X'$, $g: X' \to X$. 根据直积

性质得交换图.

态射 p_i 与 p_i' 满足 $p_i=p_i(gf)$, $p_i'=p_i'(fg)$. 由 唯一性知 $gf=1_X$, $fg=1_{X'}$. 从而 X 与 X' 之间存在同构.

Defini. 记 $\{X_i\}_{i\in I}$ 为一族 $\mathcal C$ 中以 I 为指标的对象, 称 X 为 $\{X_i\}_{i\in I}$ 的余直积若且仅若存在一族嵌入态射 $q_i:X_i\to X$ 使得满足泛性质:

对任意 $Y\in \mathsf{Ob}(\mathcal{C})$,与态射 $g_i:X_i\to Y$,存在唯一的 $g:X\to Y$ 使得 $gq_i=g_i$. 常记作 $(X,q_i)=:\coprod_{i\in I}X_i$.

Proposition 1.1.28 (X,q_i) 与 (X',q_i') 均为 $\{X_i\}_{i\in I}$ 之余直积, 则 $X\cong X'$.

▼ Proof of the proposition

同"直积在同构意义下唯一"之证明过程.

Proposition 1.1.29 \mathcal{C} 中直积 (X, p_i) 等同于 \mathcal{C}^{op} 中余直积 (X, q_i) .

Theorem 1.1.30. 记 \mathcal{C} 为含零元的范畴,则

• 取 $\prod_{i\in I}X_i$,则对任意 $j\in I$,存在唯一的 $f_j:X_j o X$ 使得

$$p_if_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

此时 p_i 为满的.

• 取 $\prod_{i\in I}X_i$,则对任意 $j\in I$,存在唯一的 $g_i:X\to X_i$ 使得

$$g_j q_i = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

此时 p_i 为单的.

▼ Proof of the theorem

定义

$$f^i_j: X_i
ightarrow X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

端详下交换图,不难看出唯一的 f_j 与 g_j 即为所得.

❷链接

Example 1.1.31 记半序关系所称的范畴 $\mathcal{C}=(\mathbb{R},\leq)$, 其中

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise.} \end{cases}$$

则
$$\prod_{i\in I} r_i = \inf\{r_i\}_{i\in I}$$
, $\coprod_{i\in I} r_i = \sup\{r_i\}_{i\in I}$.

▼ Proof

首先应保证 $\prod_{i\in I} r_i$ 与一切 r_i 可建立态射,从而 $\prod_{i\in I} r_i \leq \inf\{r_i\}_{i\in I}$. 若 $\prod_{i\in I} r_i < \inf\{r_i\}_{i\in I}$,则任取 $r_- \in (\prod_{i\in I} r_i,\inf\{r_i\}_{i\in I})$,总有 $\operatorname{Hom}_{\mathcal{C}}(r_-,\prod_{i\in I} r_i)$ 为空. 因此 r_- 到任意 r_i 的态射为空,矛盾. 余直积同理.

Example 1.1.32 正整数整除关系所称的范畴 $\mathcal{C} = (\mathbb{Z}_{\geq 1}, |)$ 中, 直积为数组的最大公因数, 余直积为数组的最小公倍数.

加性范畴

Definition 1.2.1 称 \mathcal{C} 为预加性范畴若且仅若其包含以下性质:

- 1. 包含零元.
- 2. 一切 $\operatorname{Hom}_{\mathcal{C}}(A,B)$ 均为加法 Abel 群.

3. 在定义完备时, 分配律成立.

Definition 1.2.2 称预加性范畴为加性范畴若且仅若其余直积均有限.

Example 1.2.3 $\mathbb{S}ets$ 不是加性范畴. $\mathbb{A}G$ 为加性范畴.

Theorem 1.2.4 记 $\{X_i\}_{i=0}^n\subset \mathsf{Ob}(\mathcal{C})$, $q_i\in \mathrm{Hom}_{\mathcal{C}}(X_i,X_0)$. 则

1. $(X,q_i)=\coprod_{i=1}^n X_i$ 当且仅当对任意 $j\in\{1,2,\ldots,n\}$ 总有唯一的 $p_j:X\to X_i$ 使得

$$p_j q_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

2. 上述 p_i 使得 $(X, p_i) = \prod_{i=1}^n X_i$.

▼ Proof of the theorem

定义

$$f^i_j: X_i
ightarrow X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

 \Rightarrow :根据余直和之定义,存在唯一的 $p_j:X o X_j$ 使得 $p_jq_i=f_j^i$. 注意到

$$\left(\sum_{j=1}^n q_j p_j
ight)q_i = \sum_{j=1}^n (q_j)(p_j q_i) = q_i, \quad orall i \in I.$$

 \Leftarrow : $orall Y\in \mathsf{Ob}(\mathcal{C})$,取态射 $f_i:X_i o Y$,定义 f:X o Y 为 $f:=\sum_{j=1}^n f_j p_j$.注意到

$$fq_i = \sum_{j=1}^n f_j(p_jq_i) = f_i, \quad orall i = 1, 2, \cdots, n.$$

兹有断言: 存在唯一的 $f:X \to Y$ 使得 $fq_i = f_i$. 今取 $g:X \to Y$ 使得 $gq_i = f_i$,则

$$g=1_X=g\sum_{j=1}^n q_j p_j = \sum_{j=1}^n (gq_j)p_j = \sum_{j=1}^n f_j p_j = f.$$

继而证明上述 p_i 使得 $(X,p_i)=\prod_{i=1}^n X_i$. 对任意态射 $h_i:Y o X_i$, 记 $h=\sum_{j=1}^n q_j\,h_j$, 则

$$p_i h = \sum_{j=1}^n (p_i q_j) h_j = h_i.$$

从而存在 h 使得 $p_i h = h_i$. 今证明 h_i 之唯一性, 若 $h': Y \to X$ 同样满足 $p_i h' = h_i$, 则

$$h' = 1_X h' = \left(\sum_{j=1}^n q_j p_j
ight) h' = \sum_{j=1}^n q_j (p_j h') = \sum_{j=1}^n q_j h'_j = h.$$

是以上述 p_i 使得 $(X, p_i) = \prod_{i=1}^n X_i$.

Proposition 1.2.5 若 \mathcal{C} 为加性范畴, 则 \mathcal{C}^{op} 亦然.

▼ Proof of the proposition

取
$$\{X_i\}_{i=1}^n \subset \mathsf{Ob}(\mathcal{C})$$
,考虑 $(X, p_i^{op}) = \prod_{i=1}^n X_i$ 即可.

Abel 范畴

Definition 1.3.1 称 $f:A\to B$ 为加性范畴 $\mathcal A$ 中的态射, 定义

- $\ker(f)$ 为态射 $i:K\to A$, 满足 fi=0. 同时对于 $\forall g:X\to A$ 使得 fg=0, 存在唯一的 $\theta:X\to K$ 使得 $g=i\theta$.
- $\operatorname{coker}(f)$ 为态射 $\pi:B\to C$ 使得 $\pi f=0$. 同时对于 $\forall g:B\to X$ 使得 gf=0, 存在唯一的 $\theta:C\to X$ 使得 $g=\theta\pi$.

换言之, 使得如下图交换

❷链接

Proposition 1.3.2. $i^{\mathrm{op}}=\operatorname{coker}(f^{\mathrm{op}})$, $\pi^{\mathrm{op}}=\ker(f^{\mathrm{op}})$. Proposition 1.3.3 $\ker(f)$ 与 $\operatorname{coker}(f)$ 唯一.

▼ Proof of the proposition

记 $i:K \to A$ 与 $i':K' \to A$ 均为 $\ker(f)$, 则有交换图

从而 $\theta\theta'=1_K$, $\theta'\theta=1_{K'}$, 故 $K\cong K'$.

Proposition 1.3.4 $\ker(0)$ 与 $\operatorname{coker}(0)$ 为同构映射.

▼ Proof of the proposition

注意到存在右侧交换图. 其中存在单态射 $A \rightarrowtail K$ 与 $K \to A$ 且其复合为 1_A ,故

- $i:A \to K$
- $\pi:B o C$,

均为同构.

Theorem 1.3.5 $f:A \to B$ 为加性范畴 ${\mathcal A}$ 中的态射.

1. 若 $\ker(f)$ 存在,则 f 为单的若且仅若 $\ker(f)=0$.

2. 若 $\operatorname{coker}(f)$ 存在, 则 f 为满的若且仅若 $\operatorname{coker}(f) = 0$.

▼ Proof of the theorem

若 $\ker(f)=0$,取 $g,h:X\to A$ 使得 fg=fh,则 f(g-h)=0. 从而存在唯一的 $\theta:X\to K$ 使得 g-h=0, $\theta=0$. 因此 g=h,从而 f 为单的.

反之, f 为单的, 则 fi = 0 表明 f = 0.

Definition 1.3.6 任取 $B \in \mathsf{Ob}(\mathcal{A})$, 考虑态射 $\{(A,f) \mid f: A \to B\}$. 称 (A,f) 与 (A',f') 等价, 若且仅若存在同构 $\theta: A \to A'$ 使得 $f'\theta = f$.

Definition 1.3.7 等价类 [(A, f)] 为 B 的子对象.

Example 1.3.8 B 的子对象可能仅有 $[(B,1_B)]$.

Definition 1.3.9 任取 $B \in \mathsf{Ob}(\mathcal{A})$, 考虑态射 $\{(f,C) \mid f:B \to C\}$. 称 (f,C) 与 (f',c') 等价, 若且仅若存在同构 $\theta:C \to C'$ 使得 $\theta f = f'$.

Definition 1.3.10 等价类 [(f, C)] 为 B 的商对象.

Definition 1.3.11 称加性范畴为 Abel 范畴, 若且仅若以下一者成立:

- 1. 一切态射存在 ker 与 coker.
- 2. 一切单态射为其 coker 的 ker, 一切满态射为其 ker 之 coker.
- 3. 任意态射 α 可被分解为 $\lambda \sigma$, 其中 σ 为满的且 λ 为单的.

Example 1.3.12 $\mathbb{A}G$ 为 Abel 范畴.

Definition 1.3.13 称 $\mathbb{F}AG$ 为自由 Abel 群范畴, 当且仅当其态射为群同态, 对象为自由 Abel 群 (即有基底, 亦即对 $g \neq e$ 总有 $o(g) = \infty$).

Example 1.3.14 $\mathbb{F}AG$ 并非 Abel 范畴, 至少商群并非都是自由 Abel 群.

▼ Proof of the theorem

记 $A=\langle a\rangle$, $B=\langle b\rangle$ 为自由 Abel 群, 定义 $f:A\to B$, f(na)=2nb, $\forall n\in\mathbb{Z}$. 显然 f 为单态射但非同构. 若 $\mathbb{F}AG$ 为 Abel 范畴, 今取 $\pi:B\to C$ 为 f 之 coker, 其中 C 为自由 Abel 群, 则 $0=\pi f(a)=\pi(2b)=2\pi(b)\in C$. 由于 C 自由, 从而 $\pi(b)=0$. 是故 $\pi\equiv 0$, f 为同构, 导出矛盾.

Theorem 1.3.15 若 Abel 范畴中态射同为单与满的,则为同构.

▼ Proof of the theorem

取 $\alpha \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 单且满, 今证明 α 为同构. 注意到

显然 $i=\ker(\alpha)$ 等价于 $i=\ker(\sigma)$, 即对任意 $g:X\to A$ 使得 $\alpha g=0$, 存在唯一的 $\theta:X\to K$ 使得 $i\theta=g$; 而 $\lambda\sigma g=0=\lambda 0$, 根据单态射性质知 $\sigma g=0$, 进而 $\ker(\alpha)$ 与 $\ker(\sigma)$ 等价.

同理, 由 $h\lambda\sigma = 0\sigma \Leftrightarrow h\lambda = 0$ 可知 $\operatorname{coker}(\alpha)$ 与 $\operatorname{coker}(\lambda)$ 等价. 由于 $\lambda = \ker(0)$, $\sigma = \operatorname{coker}(0)$ 均为同构, 则 $\alpha = \lambda\sigma$ 为同构.

Definition 1.3.16 记 $\alpha:A\to B$ 为 Abel 范畴中的态射, 记像 $\operatorname{im}(\alpha):=\ker(\operatorname{coker}(\alpha))$

Proposition 1.3.17 α 的像无非分解 $\alpha = \lambda \sigma$ 中的 λ .

▼ Proof of the proposition

注意到

$$\ker(\operatorname{coker}(\alpha)) = \ker(\operatorname{coker}(\lambda))$$

= $\ker(\pi)$
= λ .

Definition 1.3.18 称 $A\stackrel{\alpha}{\to} B\stackrel{\beta}{\to} C$ 为 Abel 范畴中在 B 处正合的列,若且仅若 $\operatorname{im}(\alpha)=\ker(\beta)$.

Definition 1.3.19 左正合列具有形式 $0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$.

Definition 1.3.20 右正合列具有形式 $A\stackrel{\alpha}{\to} B\stackrel{\beta}{\to} C\to 0$.

Definition 1.3.21. 正合列为左正合且右正合的列.

函子

Definition 1.4.1 称 $F:\mathcal{C}\to\mathcal{D}$ 为范畴间的共变函子, 若且仅若满足 F1. $\forall C\in\mathsf{Ob}(\mathcal{C}), FC\in\mathsf{Ob}(\mathcal{D}).$

范畴论简介

F2. $\forall C \in \mathsf{Ob}(\mathcal{C}), F(1_{\mathcal{C}}) = 1_{FC}.$

F3. 若 $f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, 则 $Ff \in \operatorname{Hom}_{\mathcal{D}}(FC_1, FC_2)$.

F4. $\forall f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2), \forall g \in \operatorname{Hom}_{\mathcal{C}}(C_2, C_3), \ F(gf) = FgFf.$

Definition 1.4.2 称 $F:\mathcal{C}\to\mathcal{D}$ 为范畴间的共变函子, 若且仅若满足 F1-2. 与

F3'. 若 $f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, 则 $Ff \in \operatorname{Hom}_{\mathcal{D}}(FC_2, FC_1)$.

F4'. $\forall f \in \operatorname{Hom}_{\mathcal{C}}(C_1,C_2), \forall g \in \operatorname{Hom}_{\mathcal{C}}(C_2,C_3), F(gf) = FfFg.$

Remark 通常定义函子为共变或反变的.

Example 1.4.3 $\forall A \in \mathsf{Ob}(\mathcal{C})$, 定义 $F: \mathcal{C} \to \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Ob}(\mathcal{C}), FB = \mathsf{Hom}_{\mathcal{C}}(A, B).$
- $\forall \tau: B \to B', F\tau: FB \to FB'$ 满足 $(F\tau)f = \tau f$ 对任意 $f \in FB$ 成立.

此处 F 为共变函子.

同理, $\forall A \in \mathsf{Ob}(\mathcal{C})$, 定义 $G: \mathcal{C} \to \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Ob}(\mathcal{C}), GB = \mathrm{Hom}_{\mathcal{C}}(B, A).$
- $\forall \tau: B \to B', G\tau: GB' \to GB$ 满足 $(G\tau)f = f\tau$ 对任意 $f \in GB'$ 成立.

此处 F 为反变函子.

Example 1.4.4 置 $\mathcal{C}=\mathbb{G}$, $\mathcal{D}=\mathbb{A}G$. 对任意群 G, 定义 $F:\mathcal{C}\to\mathcal{D}$ 满足 FG=G/G', 其中 G' 为换位子群. 则同态 $f:G\to H$ 诱导

此处 F 为共变函子.

Example 1.4.5 忘却函子 $F: \mathbb{R}ing o \mathbb{A}b$ 满足 $F(R,+,\cdot) o (R,+), Farphi = arphi.$

Definition 1.4.6 称范畴 \mathcal{C} 与 \mathcal{D} 间的共变函子 $F:\mathcal{C}\to\mathcal{D}$

• 为满的, 若且仅若 $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, 总有满射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实的, 若且仅若 $\forall A, B \in \mathsf{Obi}(\mathcal{C})$, 总有单射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实浸入, 若且仅若 F 为满的, 忠实的, 且作用在对象上为一一的.

Definition 1.4.7 称加性范畴 \mathcal{C} 与 \mathcal{D} 间的函子 $F:\mathcal{C}\to\mathcal{D}$ 为加性函子, 若且仅若

$$F(f+g)=Ff+Fg, \quad orall f,g\in \operatorname{Hom}_{\mathcal{C}}(A,B).$$

Definition 1.4.8 称 Abel 范畴 \mathcal{C} 与 \mathcal{D} 间的加性共变函子 $F:\mathcal{C}\to\mathcal{D}$ 为

- 半正合的, 若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C(\to 0)$ 推出正合列 $FA\to FB\to FC$.
- 左正合的, 若且仅若 $\mathcal C$ 中正合列 $0\to A\to B\to C(\to 0)$ 推出正合列 $0\to FA\to FB\to FC$.
- 右正合的, 若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C\to 0$ 推出正合列 $FA\to FB\to FC\to 0$.
- 正合的, 若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C \to 0$ 推出正合列 $0 \to FA \to FB \to FC \to 0$.

此处考虑或忽视括号中内容均可, 同为正合性之等价定义.

关于 Abel 范畴上加性反变函子的正合性之序数同理, 此处从略.

自然变换

Definition 1.5.1 取 $E, F: \mathcal{A} \to \mathcal{B}$ 间的共变函子, 自然变换 $\tau: E \to F$ 为一族映射满足 $\tau_A: EA \to FA, \forall A \in \mathsf{Ob}(\mathcal{A})$, 使得对任意 $f: A \to A'$ 总有交换图

Definition 1.5.2 若自然变换 τ_A 对 $\forall A \in \mathsf{Ob}(\mathcal{A})$ 均为同构, 则称 τ 为自然同构, 记作 $E \cong F$.

Example 1.5.3 记 $\mathcal V$ 为域 k 上线性空间所成之范畴, $orall V\in \mathsf{Ob}(\mathcal V)$, 记 $V^*:=\mathrm{Hom}_k(A,k)$ 为对偶, 同理有

 V^{**} . 定义共变函子 $F:\mathcal{V}\to\mathcal{V}$ 满足

- $FV = V^{**}$, $\forall V \in \mathsf{Ob}(\mathcal{V})$.
- $Ff=f^{**}:=(f^*)^*$, $orall f\in \operatorname{Hom}_k(V_1,V_2)$.

定义自然变换 $\tau_V:V\to V^{**}$ 为

$$au_V(x)(heta)=: heta(x), \quad orall x\in V, heta\in V^*.$$

容易验证右侧交换图. 从而 au 为 $1_{\mathcal{V}}$ 到 F 的自然变换.

▼ Proof of the theorem

实际上, 对任意 $x\in V_1$, $\theta\in V_2^*$, 总有 $au_{V_2}(1_{\mathcal{V}}f)(x)(\theta)=\theta f(x)$. 注意到 f^* 诱导映射

$$f^*:V_2^* o V_1^*, (heta:V_2 o k)\mapsto heta f.$$

从而
$$(f^*)^* au_{V_1}(x)(heta)= au_{V_1}(x)f^* heta=(f^* heta)x= heta f(x).$$

从而根据余直积之定义,存在唯一的 $h_i:X\to X$ 使得 $hq_i=q_i$,从而 $h_i=1_X=\sum_{j=1}^nq_jp_j$.