4.1. Feature Detection, Description, and Matching

Image generated by 2_1_4.m with FAST detector in concert with the BRIEF descriptor:

'MatchThreshold' : 10.0,

'MaxRatio' : 0.7

4.2. BRIEF and Rotations

BRIEF Rotate 30 degrees

BRIEF Rotate 90 degrees

BRIEF Rotate 180 degrees

Brief convert image patches into a binary feature vector so that together they can represent an object. Binary feature vector is created from binary test(τ) responses. When we use 'detectFASTFeatures', keypoints found by FAST gives us information of the location of determining edges in an image.FAST features do not have an orientation component and multiscale features. SO FAST - BRIEF isn't invariant to rotation.

SURF rely on determinant of the Hessian matrix for both scale and location. These features can be scale invariant, so even we rotate the image, we can still get many features.

4.3 ~ 4.5 Homography Computation

I write a script to test the performance of H, H_norm, and H_ransac (compute_H_test.m)

H:

H_norm:

H_ransac:

It randomly select 10 points, and try different transform matrix, H_ransac did perform better when it comes to the details. It does not take the average of error, but use the idea of support vector machine, so it can pick the best set of features.

4.5. RANSAC

Visualization of 4 optimal features selected by RANSAC algorithm:

4.6. HarryPotterizing a Book

Visualization of textbook and HarryPotterized textbook:

5. Cre	ating vour	Augmented	Reality	application
--------	------------	-----------	---------	-------------

Video is in attachment.