Introduction

A typical dataset used in computer vision and deep learning is the MNIST handwritten digit classification issue.

Despite the fact that the dataset is effectively solved, In this example we will create a test harness for estimating the model's performance, investigate model enhancements, and save and load the model to make predictions on new data.

Loading dataset

```
In [ ]:
        from tensorflow.keras.datasets import mnist
In [1]:
        from matplotlib import pyplot as plt
        # Load dataset
         (trainX, trainy), (testX, testy) = mnist.load_data()
        print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
        print('Test: X=%s, y=%s' % (testX.shape, testy.shape))
        # Visualise Dataset
        for i in range(9):
            plt.subplot(330 + 1 + i)
             plt.imshow(trainX[i], cmap=plt.get_cmap('gray'))
        plt.show()
        Train: X=(60000, 28, 28), y=(60000,)
        Test: X=(10000, 28, 28), y=(10000,)
                          10
         10
                                          10
                          20
                                          20
          0
                           0
                                           0
                          10
                          20
          20
          0
                           0
                                           0
                                          20
```

Making base model

Creating a baseline model is important as it will give us a point of compariosn for the improvements we make further down the line

```
In [2]: def load_dataset():
    # load dataset
    (trainX, trainY), (testX, testY) = mnist.load_data()
# reshape dataset to have a single channel
    trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
    testX = testX.reshape((testX.shape[0], 28, 28, 1))
# one hot encode target values
    trainY = to_categorical(trainY)
    testY = to_categorical(testY)
    return trainX, trainY, testX, testY
```

```
In [3]: def prep_pixels(train, test):
    train_norm = train.astype('float32')
    test_norm = test.astype('float32')
    # normalize to range 0-1
    train_norm = train_norm / 255.0
    test_norm = test_norm / 255.0
    # return normalized images
    return train_norm, test_norm
```

```
In [4]: def define_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_unifor
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(100, activation='relu', kernel_initializer='he_uniform'))
    model.add(Dense(10, activation='softmax'))
    opt = SGD(learning_rate=0.01, momentum=0.9)
    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accurreturn model
```

We must evaluate the model after it has been defined.

Five-fold cross-validation will be used to assess the model. The value of k=5 was chosen to serve as a baseline for both repeated evaluation and to avoid requiring a long run time. Each test set will be 20% of the training dataset, or approximately 12,000 samples, which is similar to the size of the real test set for this problem.

The training dataset is shuffled before being split, and the sample shuffling is done each time, ensuring that each model we evaluate has the same train and test datasets in each fold, allowing us to compare models apples to apples.

With a default batch size of 32 examples, we'll train the baseline model for a modest 10 training epochs. The test set for each fold will be used to evaluate the model throughout each epoch of the training run so that learning curves can be created afterwards, as well as at the end of the run to estimate the model's performance. As a result, we'll maintain track of the history generated by each run, as well as the fold's categorization accuracy.

These behaviours are implemented in the evaluate model() function, which takes the training dataset as an argument and returns a collection of accuracy scores and training histories that may be summarised afterwards.

Model architecture


```
In [5]: # evaluate a model using k-fold cross-validation
        def evaluate_model(dataX, dataY, n_folds=5):
            scores, histories = list(), list()
            # prepare cross validation
            kfold = KFold(n_folds, shuffle=True, random_state=1)
            # enumerate splits
            for train_ix, test_ix in kfold.split(dataX):
                # define model
                model = define_model()
                # select rows for train and test
                trainX, trainY, testX, testY = dataX[train ix], dataY[train ix], dataX[te
                # fit model
                history = model.fit(trainX, trainY, epochs=10, batch_size=32, validation]
                # evaluate model
                _, acc = model.evaluate(testX, testY, verbose=0)
                print('> %.3f' % (acc * 100.0))
                # stores scores
                scores.append(acc)
                histories.append(history)
            return scores, histories
```

```
In [6]: |# plot diagnostic learning curves
        def summarize diagnostics(histories):
            for i in range(len(histories)):
                # plot loss
                plt.subplot(2, 1, 1)
                plt.title('Cross Entropy Loss')
                plt.plot(histories[i].history['loss'], color='blue', label='train')
                plt.plot(histories[i].history['val_loss'], color='orange', label='test')
                # plot accuracy
                plt.subplot(2, 1, 2)
                plt.title('Classification Accuracy')
                plt.plot(histories[i].history['accuracy'], color='blue', label='train')
                plt.plot(histories[i].history['val_accuracy'], color='orange', label='tes
            plt.show()
        # summarize model performance
        def summarize performance(scores):
            # print summary
            print('Accuracy: mean=%.3f std=%.3f, n=%d' % (mean(scores)*100, std(scores)*1
            # box and whisker plots of results
            plt.boxplot(scores)
            plt.show()
```

Calling all fuunctions

```
In [7]: def run_test_harness():
    # Load dataset
    trainX, trainY, testX, testY = load_dataset()
    # prepare pixel data
    trainX, testX = prep_pixels(trainX, testX)
    # evaluate model
    scores, histories = evaluate_model(trainX, trainY)
    # Learning curves
    summarize_diagnostics(histories)
    # summarize estimated performance
    summarize_performance(scores)
```

```
In [8]: from numpy import mean
    from numpy import std
    from matplotlib import pyplot as plt
    from sklearn.model_selection import KFold
    from tensorflow.keras.datasets import mnist
    from tensorflow.keras.utils import to_categorical
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Conv2D
    from tensorflow.keras.layers import MaxPooling2D
    from tensorflow.keras.layers import Dense
    from tensorflow.keras.layers import Flatten
    from tensorflow.keras.layers import SGD
    from tensorflow.keras.layers import BatchNormalization
    run_test_harness()
```

- > 98.758
- > 98.517
- > 98.608
- > 98.900
- > 98.717

Accuracy: mean=98.700 std=0.131, n=5

As we can see this model is very consistent with it results in all of the 5 fold of kfor validation.

We can see that the model generally achieves a good fit, with train and test learning curves converging. There is no obvious sign of over- or underfitting.

Improved model

To develop improved model we increase the depth of the feature extraction part of the model we even increased the epochs in training for better rresults

```
In [9]: def define_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_unifor
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_unifor
    model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_unifor
    model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_unifor
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(100, activation='relu', kernel_initializer='he_uniform'))
    model.add(Dense(10, activation='softmax'))
# compile model
    opt = SGD(learning_rate=0.01, momentum=0.9)
    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accur
    return model
```

Updated Model Architecture


```
In [10]: | def evaluate model(dataX, dataY, n folds=5):
             scores, histories = list(), list()
             # prepare cross validation
             kfold = KFold(n folds, shuffle=True, random state=1)
             # enumerate splits
             for train_ix, test_ix in kfold.split(dataX):
                 # define model
                 model = define model()
                 # select rows for train and test
                 trainX, trainY, testX, testY = dataX[train_ix], dataY[train_ix], dataX[te
                 # fit model
                 history = model.fit(trainX, trainY, epochs=12, batch_size=32, validation)
                 # evaluate model
                 _, acc = model.evaluate(testX, testY, verbose=0)
                 print('> %.3f' % (acc * 100.0))
                 # stores scores
                 scores.append(acc)
                 histories.append(history)
             return scores, histories
```

```
In [11]: def run_test_harness():
    # load dataset
    trainX, trainY, testX, testY = load_dataset()
    # prepare pixel data
    trainX, testX = prep_pixels(trainX, testX)
    # evaluate model
    scores, histories = evaluate_model(trainX, trainY)
    # learning curves
    summarize_diagnostics(histories)
    # summarize estimated performance
    summarize_performance(scores)
```

Running and evaluating Improved model

In [12]: run_test_harness()

- > 98.883
- > 99.008
- > 98.817
- > 99.158
- > 99.075

Accuracy: mean=98.988 std=0.124, n=5

The plot of the learning curves is showing that the models still have a good fit on the problem, with no clear signs of overfitting. The plots may even suggest that further training epochs could be helpful.

We can wee that the avg model accuracy has shot up to 99 % and without much standard deviation between the 5 fold runs , which shows the model performance is stable we can see that our model performance has improved and now we can save the new upldated model

Saving final model

loading saved model and making prediction

running the model in completely new images out of dataset

7


```
In [14]:
         from numpy import argmax
         from keras.preprocessing.image import load_img
         from keras.preprocessing.image import img to array
         from keras.models import load model
         def load_image(filename):
             # Load the image
             img = load_img(filename, grayscale=True, target_size=(28, 28))
             # convert to array
             img = img_to_array(img)
             # reshape into a single sample with 1 channel
             img = img.reshape(1, 28, 28, 1)
             # prepare pixel data
             img = img.astype('float32')
             img = img / 255.0
             return img
         # Load the image
         img = load_image('1.png')
         # Load model
         model = load_model('final_model.h5')
         # predict the class
         predict_value = model.predict(img)
         digit = argmax(predict value)
         print(digit)
```

7

C:\Users\shikh\anaconda3\lib\site-packages\keras_preprocessing\image\utils.py:1
07: UserWarning: grayscale is deprecated. Please use color_mode = "grayscale"
 warnings.warn('grayscale is deprecated. Please use '

6


```
In [15]:
    # Load the image
    img = load_image('6.png')
    # Load model
    model = load_model('final_model.h5')
# predict the class
    predict_value = model.predict(img)
    digit = argmax(predict_value)
    print(digit)
```

8

We can see that the model performs well even on images outside the dataset hence we can say that our final model is working well

Github link to the Repositry :- https://github.com/Shikhar10000/MNIST-Handwritten-Digit-Classification)

```
In [ ]:
```