

Large language Models (ADIA94)

Département : Big Data & Machine Learning

Disciplines : Sciences des données et intelligence artificielle

Enseignant: Stefani EL KALAMOUNI - stefani.el-kalamouni@efrei.fr

TP4 - Exercice 1 : Implémentation du mécanisme de self-attention

Objectif

Comprendre et implémenter le mécanisme de self-attention utilisé dans les Transformeurs. À partir d'une phrase donnée, vous devrez créer des vecteurs pour chaque mot, calculer les scores d'attention, et produire les vecteurs finaux pondérés.

Astuces

- Utilisez la bibliothèque numpy pour les calculs matriciels.
- Utilisez la fonction np.exp pour exponentier les scores et np.sum pour calculer la somme dans la softmax.
- Vérifiez les dimensions de vos matrices à chaque étape pour éviter les erreurs

1. Créez des embeddings pour chaque mot

- Représentez chaque mot d'une phrase donnée par un vecteur d'embedding.
- Par simplicité, créez des embeddings aléatoires de petite dimension (dembedding=4).
- Exemple de phrase : "Le chat noir dort."

2. Calculez les vecteurs Query, Key, et Value

- Les vecteurs Query $_{\mathbb{Q}}$ Key $_{\mathbb{K}}$, et Value $_{\mathbb{V}}$ sont obtenus en multipliant les embeddings des mots par des matrices de poids ($W_{\mathbb{Q}}$ $W_{\mathbb{K}}$, $W_{\mathbb{V}}$).
- Les dimensions des matrices de poids doivent être compatibles :
 - Si les embeddings ont une dimension d_{embedding}, les matrices de poids doivent avoir une dimension d_{embedding}×d_{head} où d_{head} est la dimension des vecteurs Q.K et V

3. Calculez les scores d'attention

• Les scores d'attention sont calculés en effectuant un produit scalaire entre les vecteurs Query et Key pour chaque paire de mots.

Formule mathématique :

$$\mathrm{Score}_{ij} = Q_i \cdot K_i^T$$

où Q_i est le Query du mot i et K_j est le Key du mot j.

4. Appliquez la softmax

- Les scores d'attention sont transformés en probabilités à l'aide de la softmax
- Cela garantit que les pondérations sont comprises entre 0 et 1, et que leur somme pour chaque mot est égale à 1.

5. Obtenez la sortie pondérée

- Multipliez les pondérations (issues de la softmax) par les vecteurs Value (VVV) pour obtenir la sortie pondérée pour chaque mot.
- Formule mathématique :

$$\mathrm{Output}_i = \sum_j \mathrm{AttentionWeight}_{ij} \cdot V_j$$

6. Affichez les résultats

- Affichez :
 - o Les pondérations (matrice n_{words}×n_{words})
 - o Les vecteurs finaux pour chaque mot.

Consignes

- 1. Phrase à traiter : "Le chat noir dort."
- 2. Dimension des embeddings : dembedding=4
- 3. Dimension des vecteurs Q,K,V: dhead=2

Exercice 2 : Mise en œuvre complète d'une attention multi-têtes avec encodage de position

Objectif

- 1. Implémenter un mécanisme de self-attention multi-têtes.
- 2. Ajouter un **encodage de position** aux embeddings des mots.
- 3. Visualiser les **pondérations d'attention** pour mieux comprendre les relations entre les mots dans une phrase.

Consignes

- 1. Phrase d'exemple : Travaillez sur la phrase : "Le soleil brille doucement sur la rivière."
- 2. Caractéristiques des embeddings :
 - o Chaque mot sera représenté par un embedding de dimension d_{embedding}=6.
 - o Implémentez **2 têtes d'attention**, avec dhead=3 pour chaque tête.
- 3. Étapes à réaliser :

a. Encodage de position :

- o Calculez et ajoutez des vecteurs d'encodage de position à chaque embedding.
- Utilisez des fonctions sinus et cosinus pour l'encodage (comme expliqué en cours).

b. Mécanisme de self-attention multi-têtes :

- o Implémentez la self-attention pour chaque tête.
- o Combinez les résultats des têtes en concaténant leurs sorties.

c. Pondération et sortie finale :

 Ajoutez une couche linéaire finale pour obtenir un vecteur de dimension d_{model}=6.

4. Visualisation:

- Affichez les **scores d'attention** pour chaque mot (matrice n_{words}× n_{words}).
- o Interprétez les relations entre les mots basées sur les scores.

5. Bonus (facultatif):

 Essayez de modifier la phrase (par exemple, en remplaçant "soleil" par "lune") et observez comment les pondérations changent.