Présentation 3

- Analyse des corrélations
- Mise en place d'une grille pour l'optimisation des paramètre du Random Forest
 - Comparaison selon différents critères
 - Problèmes et à venir

Rappels:

Travail sur PPMI_Gait_ArmSwing:

- The gait system used includes three lightweight wireless wearable sensors containing three axial accelerometers, gyroscopes and magnetometers

- 6 tests made: SWAY eyes open/closed + TUG 1 + TUG 2 + Usual walk + Dual task walk (voir pdf)
- Motor features extracted from the raw accelerometer and gyroscope signals
- Data processing with 54 measures calculated

Analyse des corrélations:

Analyse des corrélations:

COHORT	0.000000
LA_AMP_DT	0.003117
RA_STD_U	0.004624
SW_PATH_CL	0.005537
SW_VEL_CL	0.006062
TUG2_TURNS_DU	R 0.007607
TUG1_STEP_REG	0.007658
T_AMP_DT	0.007744
T_AMP_U	0.008264
ASYM_IND_DT	0.008392
SW_FREQ_OP	0.009716
TUG1_STEP_NUM	0.012540
ASA_DT	0.012829
ASA_U	0.013405
TUG2_STEP_REG	0.014878
RA_AMP_DT	0.015573
SW_VEL_OP	0.017218
ASYM_IND_U	0.019233
TRA_U	0.019277
TUG2_STEP_NUM	0.023242
TUG1_TURNS_DUI	R 0.023980
LA_AMP_U	0.025256
TUG1_DUR	0.027759
SPDT	0.028463
SW_FREQ_CL	0.028761
STR_CV_DT	0.029723
SP_U	0.030346
LA_STD_U	0.036818

```
LA_STD_DT
                0.036945
   TRA_DT
                0.038399
                0.039837
  STEP_REG_U
                0.040540
   JERK_T_U
   TUG2_DUR
                0.041184
  SW_JERK_OP
                 0.041485
                0.043953
   R_JERK_U
                0.046495
   R_JERK_DT
   CAD DT
                0.053854
                0.054126
   RA_AMP_U
   STR_T_U
                0.055612
   SYM_U
               0.062045
               0.063704
   CAD_U
  SW_PATH_OP
                 0.066371
                 0.066993
  SW_JERK_CL
                 0.070070
  STEP_SYM_U
 TUG2_STEP_SYM 0.071288
                0.079294
   STR_T_DT
                0.090994
  L JERK DT
   JERK T DT
                0.095951
   PATNO
               0.097929
 TUG1_STEP_SYM 0.099733
                 0.112899
  STEP_SYM_DT
   STR_CV_U
                 0.117811
                 0.118126
  STEP_REG_DT
   SYM_DT
                0.132666
   L_JERK_U
                0.140969
TUG1_STRAIGHT_DUR 0.154564
  RA_STD_DT
                 0.162406
TUG2_STRAIGHT_DUR 0.175274
```

Correlations max: +0.5 pour TUG1_TURNS_DUR (Average step duration during turns (sec))

et -0.53 pour JERK_T_DT (Jerk de l'accélération mouvement des jambes pendant la double tâche marche (m/sec^3) => fluidité de la marche)

Les valeurs de coefficient de corrélation inférieures à +0,8 ou supérieures à -0,8 ne sont pas considérées comme significatives.

Procédure pour le meilleur set d'hyperparamètre mais sans faire d'overfitting :

- CrossValidation

Demande en calcul enorme car pour chaque set d'hyperparamètre il faut tester K-Fold CV => Nombre d'execution de l'algo = (nbre_set*K) :

- Faire un premier balayage Random généralisé sur les set d'hyperparamètre les plus performant + comparer avec set de base
- Puis effectuer un recherche plus précise avec une grille sur le set random le plus précis précédent + comparer avec set de base
- Enfin, tableau récapitulatif des performances

classif = RandomForestClassifier(n_estimators = 10)

Parameters	Base Model	Random Search Model
n_estimators	10	160
min_samples_split	2	10
min_samples_leaf	1	2
max_features	auto	sqrt
max_depth	None	50.0
bootstrap	True	True

Etablissement d'une grille de set à tester puis test avec k-fold(k=5)

```
# 1er balayage sur large éventail de sets d'hyperparamètres avec RandomizedSearchCV
from sklearn.model selection import RandomizedSearchCV
# Combinaison des classifications d'ensembles d'entraînement générés aléatoirement
bootstrap = [True, False]
# Profondeur max de l'arbre
max depth = np.linspace(10, 100, num = 10).tolist()
# Number of features to consider when looking for the best split, sqrt=auto, essayer None
max features = ['auto', 'sqrt', 'log2']
#the minimum number of samples required to split an internal node,
min samples split = [2, 5, 10, 20]
# min samples leaf specifies the minimum number of samples required to be at a leaf node
min samples leaf = [1, 2, 4]
# Nombre d'arbres dans forêt aléatoire
n estimators = np.linspace(10, 200, num = 20, dtype = "int64").tolist()
grille = {'bootstrap':bootstrap,
          'max depth':max depth,
          'max features':max features,
          'min samples leaf':min samples leaf,
          'min samples split':min samples split,
          'n estimators':n estimators}
# Choix aléatoire parmi 2*10*3*4*3*20=14400 combinaisons de paramètres possibles
```

Test sur 100 set choisis random et sors meilleur set sur les 100 testés

Etablissement d'une grille de set à tester puis test avec k-fold(k=5)

```
{'bootstrap': True,
 'max_depth': 60,
 'max_features': 'sqrt',
 'min_samples_leaf': 2,
 'min_samples_split': 10,
 'n_estimators': 160}
```

```
# Plus précis autour des meilleurs paramètres random -> 576 sets

best_grille = {
    'bootstrap' : [True],
    'max_depth' : [40, 50, 60, 70, 80, 90],
    'max_features': ['sqrt', 'log2'],
    'min_samples_leaf': [1, 2],
    'min_samples_split': [1, 5, 10, 20],
    'n_estimators' : [150, 160, 170, 180, 190, 200]
}
```

Test 576 set avec Cross Validation 5-folds

Base rf :

Accuracy : 0.6666666666666666

Rapport :				
	precision	recall	f1-score	support
1.0	0.59	0.76	0.67	17
3.0	0.76	0.59	0.67	22
accuracy			0.67	39
macro avg	0.68	0.68	0.67	39
weighted avg	0.69	0.67	0.67	39

Meilleur random rf : Accuracy : 0.7948717948717948

Rapport :		precision	recall	f1-score	support
	1.0 3.0	0.76 0.82	0.76 0.82	0.76 0.82	17 22
accur macro weighted	avg	0.79 0.79	0.79 0.79	0.79 0.79 0.79	39 39 39

Best rf :								
Accuracy : 0.8461538461538461								
Matrice de confusion :								
[[15 2]								
[4 18]]	[4 18]]							
Rapport :								
	precision		recall	f1-score	support			
1	1.0	0.79	0.88	0.83	17			
3	3.0	0.90	0.82	0.86	22			
accura	асу			0.85	39			
macro a	avg	0.84	0.85	0.85	39			
weighted a	avg	0.85	0.85	0.85	39			

A venir:

- Tester XGBoost sur l'ensemble des données avec paramètres opti
- Comparer avec Random Forest