CMPSC464	Name:
Fall 2021	
Midterm Exam 1	
09/30/2021	
Time Limit: 75 Minutes	

This exam contains 9 pages (including this cover page, double-sided) and 6 questions. Total of points is 100.

This will contribute to 25 % of your total grade

Grade Table (for grader use only)

Question	Points	Score
1	10	
2	10	
3	20	

Assignment Project Exam Help

https://tutores.com

	points) True or False Questions (Leaving an empty box will result in 0 pt) (1 point) A regular language is accepted by some Turing Machine.
()	
(b)	(1 point) A decidable language is accepted by some NFA.
(c)	(1 point) If there exists a Nondeterministic Turing Machine (NTM) which accepts some language A , then there exists a Deterministic Turing Machine which accepts A .
(d)	(1 point) The set of even numbers (viewed as a binary string) is decidable.
	Assignment Project Exam Help
(e)	(1 point) If A is recognizable and \overline{A} is recognizable then A is decidable.
	https://tutorcs.com
(f)	(1 point) There exists some language A where A is decidable but \overline{A} is not decidable WeChat: CSTUTORCS
(g)	(1 point) If A is regular, then \overline{A} is regular.
(h)	(1 point) If A is decidable and B is decidable, then $A \circ B$ (concatenation) is decidable.
(i)	(1 point) If B is regular and $A \leq_m B$, then A is regular.
(j)	(1 point) If A is decidable by a Turing Machine, then it is decidable by a wordRAM

2. (10 points) Fill in the blank. For runtime questions, points will be only given to the simplest asymptotic form. (Leaving an empty box will result in 0 pt)

(a) (3 points) Suppose $F = \{s_1\}$. Give an example of string in $\{A, B\}^*$ that is accepted by this DFA.

Assignment Project Exam Help

(b) (3 points) Suppose $F = \{s_0, s_1, s_2\}$. Give an example of string in $\{A, B\}^*$ that is rejected by Ait PPS://tutorcs.com

WeChat: cstutorcs

(c) (4 points) Suppose $F = \{s_1, s_2\}$. Give a full description of strings in $\{A, B\}^*$ that is accepted by this DFA.

3.	(20 points) Consider $A = \{w \in \{0,1\}^* w \text{ has equal number of zeroes and ones}\}$.	Leav-
	ing Blank will result in 2 pts per part.	

(a) (10 points) Use the pumping lemma to show that A is not regular.

Assignment Project Exam Help

https://tutorcs.com

Ass	ignment Project Exam Help
	https://tutorcs.com
	WeChat: cstutorcs

4. (30 points) Let $a \in \{0,1\}^*$. Define binary(a) as

$$binary(a) = \sum_{i} \frac{a_i}{2^i}$$

Note that this is equivalent to having a as a binary representation of some real number between 0 and 1. Leaving Blank will result in 3 pts per part.

(a) (15 points) With some fixed a (thereby a having some finite length), consider

$$A_a := \{x \in \{0,1\}^* | binary(x) < a\}.$$

Show that A_a is regular.

Assignment Project Exam Help

https://tutorcs.com

(b) (15 points) Let A be defined as

$$A := \{x \# y | x, y \in \{0, 1\}^* \ binary(x) + binary(y) < 1\}$$

Is A regular? Why or why not?

Assignment Project Exam Help

https://tutorcs.com

5. (10 points) Let $x, y \in \{0, 1\}$. Design a Boolean circuit that computes

$$f(x,y) := \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}$$

using AND, NOT, OR gates of fan-in at most 2. Leaving Blank will result in 2 pts.

Assignment Project Exam Help

https://tutorcs.com

6. (20 points) Suppose we define EQ_{DFA} as the following.

$$EQ_{DFA} := \{(M_1, M_2) : M_1, M_2 \text{ are DFA }, L(M_1) = L(M_2)\}$$

Show that EQ_{DFA} is decidable. Leaving Blank will result in 4 pts.

Assignment Project Exam Help

https://tutorcs.com