AutoHFormer: Efficient Hierarchical Autoregressive Transformer for Time Series Prediction

https://arxiv.org/html/2506.16001v1

O. Introduction

- 시계열 예측은 금융, 교통, 에너지 등 다양한 분야에서 중요한 문제임.
- 기존 Transformer 계열 모델들은 자기회귀 기반으로 강력한 성능 보였지만, 긴 시계열 다룰 때 연산 복잡도가 커짐.
- 또한 다중 스케일 패턴을 동시에 포착하기 어려워 성능 제한 있음.
- AutoHFormer는 이러한 한계를 극복하기 위해 제안됨.
- 핵심은 효율적이고 계층적인 autoregressive 구조로 coarse-to-fine 방식으로 시계 열을 점진적으로 예측하는 아이디어.
- 이를 통해 더 긴 시계열도 효율적으로 처리하면서도 일반화 성능 확보 가능.

1. Overview

- AutoHFormer는 시계열 예측을 위한 계층적 autoregressive Transformer
- 기존 Transformer는 모든 시점 간의 의존성을 직접 계산해야 해서 긴 시계열에서는 비효율적
- AutoHFormer는 이를 개선하기 위해 coarse-to-fine 구조 도입.
- 먼저 큰 시간 구간의 거친 패턴(coarse pattern)을 예측하고, 이후 점점 작은 구간으로 내려가며 세밀한 fine-grained 패턴을 보완함.
- 이렇게 계층적으로 예측하기 때문에 연산량이 크게 줄어들고, 장기 의존성도 안정적으로 포착 가능.
- 추가로, 병렬적인 autoregressive 예측을 지원해 학습·추론 모두에서 효율적임.

• AutoHFormer는 긴 시계열 처리 시 효율성 + 정확성 두 가지를 동시에 잡는 모델임.

2. Challenges

- 긴 시계열 예측에서는 여러 가지 문제가 있음.
- Transformer 구조는 시퀀스 길이가 길어질수록 연산량이 크게 증가해 비효율적임.
- 시계열에는 단기 패턴과 장기 패턴이 동시에 존재하지만 기존 모델은 두 패턴을 균형 있게 학습하기 어려움.
- 또한 큰 주기의 흐름과 작은 변동 같은 다중 스케일 패턴을 함께 고려해야 하는데, 기존 방식은 이를 한 번에 처리하려다 보니 정보 손실이 발생함.
- 더불어 autoregressive 방식 특성상 순차적으로 예측을 진행해야 해서 긴 구간을 예측 할 때 속도가 느려지는 문제가 있음.
- AutoHFormer는 이런 한계를 해결하기 위해 계층적 구조와 병렬 예측 전략을 도입함.

3. Method

- AutoHFormer는 시계열을 coarse-to-fine 방식으로 단계적으로 예측하는 구조임.
- 먼저 긴 시계열을 큰 단위의 coarse 패턴으로 압축해 거친 예측을 수행함.
- 그 후 세밀한 fine 단위로 점차 분해해 추가적인 예측을 이어감.
- 이 계층적 autoregressive 구조 덕분에 큰 흐름과 세부 변동을 동시에 포착 가능함.
- 또한 각 단계의 예측은 병렬적으로 계산할 수 있어 기존 autoregressive 모델보다 훨씬 효율적임.

• 최종적으로 AutoHFormer는 연산량을 줄이면서도 장기 의존성과 다중 스케일 패턴을 잘 학습할 수 있는 구조를 제공함.

4. Experiments

- 실험에는 다양한 시계열 데이터셋 사용함.
- 금융, 에너지, 기상 등 실제 환경에서 수집된 장기 시계열 데이터 포함.
- 데이터는 훈련·검증·테스트로 분리해 모델 성능 평가함.
- 비교 대상은 기존 Transformer 기반 시계열 모델과 autoregressive 모델들임.
- 실험에서는 AutoHFormer가 긴 시계열 처리 시 연산 효율과 예측 정확성을 동시에 확보하는지 검증함.
- 데이터 전처리와 스케일링, 패치 분할 등 계층적 학습에 필요한 세부 설정도 적용함.

5. Results

Model	Time Complexity	Space Complexity
Full Attention	$\mathcal{O}(L^2d)$	$\mathcal{O}(L^2d)$
AutoHFormer ($W \ll L$)	$\mathcal{O}(LWd)$	$\mathcal{O}(LWd)$
RNN-based	$\mathcal{O}(Ld^2)$	$\mathcal{O}(d)$

Datasets	Variates	Time steps	Granularity	Datasets	Variates	Time steps	Granularity
ETTh1	7	69,680	1 hour	ETTh2	7	69,680	1 hour
ETTm1	7	17,420	15 minutes	ETTm2	7	17,420	15 minutes
PEMS04	307	16,992	5 minutes	PEMS08	170	17,856	5 minutes
Weather	21	52,696	10 minutes	Electricity	321	26,304	1 hour

Models		AutoHFormer(Ours)		PatchTST [4]		TimeMixer [19]		iTransformer [18]		Autoformer [17]		Informer [12]		Linear [16]		DLinear [16]		NLinear [16]	
		MSE ↓	MAE ↓	MSE J	MAE J	MSE 1	MAE ↓	MSE ↓	MAE ↓	MSE ↓	MAE ↓	MSE ↓	MAE ↓	MSE ↓	MAE ↓	MSE J	MAE ↓	MSE ↓	MAE ↓
_	96	0.287	0.344	0.298	0.346	0.302	0.351	0.309	0.361	0.723	0.569	1.293	0.862	0.311	0.354	0.301	0.345	0.308	0.350
ETTm1	192	0.329	0.371	0.339	0.374	0.347	0.377	0.347	0.385	0.692	0.549	1.328	0.919	0.345	0.374	0.336	0.376	0.345	0.372
	336	0.363	0.392	0.369	0.395	0.401	0.414	0.386	0.407	0.727	0.523	1.483	0.963	0.377	0.394	0.371	0.397	0.380	0.393
	720	0.422	0.426	0.427	0.430	0.459	0.445	0.448	0.444	0.773	0.579	1.667	1.014	0.432	0.427	0.426	0.429	0.434	0.428
	Avg	0.350	0.383	0.358	0.386	0.377	0.396	0.372	0.399	0.728	0.555	1.442	0.939	0.366	0.387	0.360	0.386	0.366	0.385
_	Improved		-	2.28%	0.78%	7.71%	3.39%	6.26%	4.17%	108%	44.90%	226.28%	145.16%	4.57%	1.04%	2.85%	0.78%	4.57%	0.52%
ETTm2	96 192	0.172 0.236	0.259 0.308	0.170	0.260 0.305	0.172	0.262	0.182	0.276 0.315	0.277	0.349	0.726	0.648	0.190	0.278	0.171	0.267	0.173	0.261
	336	0.289	0.342	0.294	0.343	0.360	0.365	0.290	0.344	0.343	0.385	0.683	0.680	0.323	0.329	0.239	0.372	0.291	0.344
E	720	0.379	0.398	0.380	0.399	0.437	0.413	0.384	0.399	0.433	0.437	0.645	0.589	0.450	0.458	0.445	0.455	0.383	0.417
	Avg	0.269	0.326	0.270	0.327	0.304	0.336	0.274	0.333	0.339	0.384	0.671	0.645	0.303	0.361	0.291	0.354	0.271	0.336
	Improved	-	-	0.37%	0.30%	13.01%	3.06%	1.85%	2.14%	26.02%	17.79%	149.44%	97.85%	12.63%	10.74%	8.17%	8.59%	0.74%	3.07%
	96	0.382	0.407	0.374	0.400	0.384	0.410	0.398	0.418	0.608	0.529	1.178	0.826	0.431	0.441	0.389	0.412	0.426	0.438
E	192 336	0.427 0.431	0.436 0.442	0.417	0.420	0.432	0.441	0.448	0.453	0.519	0.492	1.163	0.830	0.462	0.459	0.428	0.434	0.458	0.454
TTh	720	0.451	0.442	0.457	0.529	0.608	0.455	0.547	0.533	1.044	0.710	1.428	0.928	0.472	0.516	0.447	0.499	0.470	0.484
M	Avg	0.426	0.441	0.458	0.450	0.468	0.462	0.464	0.468	0.703	0.568	1.232	0.850	0.467	0.471	0.436	0.449	0.459	0.459
	Improved		-	7.51%	2.04%	9.85%	4.76%	8.92%	6.12%	65.02%	28.79%	189.20%	92.74%	9.62%	6.80%	2.34%	5.39%	7.74%	4.08%
_	96	0.287	0.350	0.294	0.353	0.297	0.358	0.309	0.363	0.371	0.417	0.901	0.759	0.344	0.397	0.324	0.381	0.294	0.354
64	192	0.353	0.390	0.374	0.404	0.354	0.394	0.389	0.412	0.426	0.453	0.631	0.629	0.435	0.454	0.416	0.440	0.357	0.395
ETTh2	336	0.347	0.396	0.357	0.399	0.348	0.404	0.372	0.410	0.363	0.465	0.579	0.608	0.491	0.492	0.471	0.480	0.349	0.401
	720	0.399	0.436	0.384	0.425	0.411	0.441	0.446	0.462	0.491	0.506	0.734	0.662	0.781	0.629	0.747	0.614	0.403	0.441
	Avg	0.346	0.393	0.353	0.395	0.352	0.399	0.379	0.411	0.412	0.460	0.711	0.664	0.512	0.493	0.489	0.478	0.350	0.397
_	Improved		-	2.02%	0.50%	1.73%	1.52%	9.53%	4.58%	19.07%	17.04%	105.49%	68.95%	47.97%	25.44%	41.32%	21.62%	1.15%	1.02%
>.	96 192	0.127	0.222	0.132	0.226	0.161	0.272	0.151	0.253	0.251	0.364	1.652	0.975	0.165	0.271	0.159	0.264	0.175	0.280
复	336	0.158	0.253	0.148	0.261	0.183	0.293	0.168	0.267	1.054	0.373	1.518	0.975	0.174	0.281	0.168	0.219	0.185	0.305
Electricity	720	0.200	0.287	0.202	0.290	0.226	0.330	0.232	0.326	1.737	1.068	0.986	0.818	0.225	0.327	0.220	0.322	0.242	0.334
卤	Avg	0.156	0.252	0.161	0.258	0.192	0.301	0.185	0.284	0.827	0.647	1.292	0.910	0.188	0.294	0.183	0.269	0.201	0.302
	Improved	-	-	3.21%	2.38%	23.07%	19.44%	18.58%	12.69%	430.12%	156.74%	728.20%	261.11%	20.51%	16.67%	17.30%	6.74%	28.84%	19.84%
	96	0.153	0.201	0.150	0.198	0.181	0.230	0.159	0.210	0.261	0.325	0.830	0.665	0.177	0.237	0.175	0.234	0.182	0.233
b	192	0.199	0.246	0.194	0.241	0.217	0.264	0.204	0.250	0.289	0.340	0.687	0.612	0.218	0.275	0.216	0.273	0.225	0.268
Weather	336 720	0.247	0.282 0.332	0.248	0.282	0.272	0.302	0.255	0.288	0.340	0.391	0.843	0.677	0.263	0.312	0.261	0.310	0.272	0.302
×	Avg	0.229	0.265	0.227	0.263	0.257	0.289	0.234	0.270	0.316	0.339	0.825	0.711	0.245	0.296	0.243	0.296	0.254	0.288
	Improved	-	0.203	-0.87%	-0.75%	12.22%	9.05%	2.18%	1.88%	37.99%	27.92%	260.26%	168.30%	6.99%	11.70%	6.11%	0.699%	10.92%	8.68%
_	12	0.072	0.173	0.080	0.185	0.073	0.178	0.081	0.186	0.594	0.613	0.252	0.376	0.125	0.244	0.096	0.204	0.104	0.209
PEMS04	24	0.083	0.187	0.103	0.204	0.086	0.197	0.098	0.207	0.527	0.580	0.670	0.591	0.152	0.268	0.126	0.236	0.136	0.250
	48	0.101	0.205	0.131	0.229	0.125	0.239	0.126	0.234	0.845	0.763	1.353	0.871	0.191	0.299	0.169	0.273	0.184	0.287
	96	0.124	0.225	0.150	0.262	0.196	0.302	0.154	0.263	1.149	0.875	0.949	0.738	0.224	0.322	0.204	0.300	0.227	0.316
	Avg	0.095	0.198	0.116	0.220	0.120	0.229	0.114	0.222	0.778	0.707	0.806	0.644	0.173	0.283	0.148	0.253	0.171	0.265
_	Improved	-	-	22.11%		26.31%	15.65%	20.00%	12.12%	718.95%	257.07%	748.42%	225.25%	82.11%	42.93%	55.79%	27.78%	80.00%	33.84%
PEMS08	12	0.066	0.161	0.074	0.177	0.080	0.175	0.081	0.178	0.769	0.686	0.405	0.426	0.139	0.246	0.103	0.207	0.105	0.213
	24 48	0.082	0.175 0.192	0.097	0.199	0.104	0.193 0.212	0.108	0.197 0.225	0.885	0.751	0.786 1.293	0.629	0.183	0.275	0.151	0.243	0.154	0.250
	96	0.157	0.211	0.201	0.254	0.229	0.246	0.209	0.253	1.226	0.910	1.023	0.750	0.352	0.353	0.328	0.333	0.367	0.341
	Avg	0.104	0.185	0.128	0.214	0.120	0.206	0.136	0.213	0.959	0.776	0.646	0.661	0.223	0.298	0.206	0.269	0.220	0.276
	Improved	-	-	23.08%	15.68%	15.38%	11.35%	30.77%	15.14%	822.12%	319.46%	521.15%	257.30%	114.42%	61.08%	98.08%	45.41%	111.54%	49.19%
	$1^{st}/2^{nd}$	34/5	34/5	6/22	6/19	0/4	0/8	0/2	0/0	0/0	0/0	0/0	0/0	0/0	0/1	0/5	0/2	0/2	0/5

- AutoHFormer는 대부분 데이터셋에서 기존 Transformer 기반 모델 대비 예측 정확도 향상함.
- 특히 긴 시계열에서는 RMSE와 MAE 지표에서 유의미한 성능 개선 확인됨.
- 연산 효율도 높아져, 기존 모델 대비 추론 속도가 빠름.
- coarse-to-fine 계층 구조 덕분에 장기 패턴과 단기 변동을 동시에 잘 포착함.
- 다중 스케일 패턴 학습 능력 덕분에 금융, 에너지, 기상 데이터 등 다양한 도메인에서 안 정적인 성능 보여줌.

6. Insight

- AutoHFormer는 긴 시계열 예측에서 효율성과 정확성을 동시에 달성할 수 있음을 보여 줌.
- coarse-to-fine 구조는 장기 패턴을 먼저 잡고 세밀한 변동을 보완한다는 점에서 직관적이고 확장성 있는 접근임.
- 병렬적인 autoregressive 예측은 기존 모델이 가진 속도 문제를 완화시킨 점에서 의미가 큼.
- 다만 구조가 계층적으로 복잡해 실사용 환경에서 튜닝과 최적화가 쉽지 않을 수 있음.
- coarse-to-fine 방식이 데이터 특성에 따라 성능 편차를 보일 가능성 있음.
- 효율적인 구조적 아이디어는 인상적이지만 실제 응용에서는 데이터 도메인별 일반화 성능을 더 면밀히 검증할 필요 있음.