Biofuel Feedstocks and Production

Topic Seven

Cellulosic Ethanol Production

Biofuel Feedstocks and Production

Lecture Fourteen

Cellulosic Ethanol Production: Pretreatment

Generic Cellulosic Ethanol Process

Generic Cellulosic Ethanol Process

Pretreatment

Primary goal of any pretreatment process is to facilitate enzyme action by making the substrate available. Pretreatment processes are critically dependent on type of feedstock

Ref: Sanchez and Cardona (2008) Mosier et. al (2005). POSTED ON COURSE WEBSITE REQUIRED READING!

Effect of Pretreatments on Biomass: Bent Grass

Hydrolysis yield with time for bentgrass (HW = hot water, DA = dilute acid, and D.Alk = dilute alkali).

Pretreatment

Characteristics of an ideal pretreatment process are

- Removes the barriers to effective hydrolysis of cellulose
- Preserves sugars
- Does not result in degradation of sugars or formation of inhibitors.
- Does not depend on particle size
- Minimizes energy and resource consumption
- Does not produce any waste streams
- Cheap
- Safe

Ref: Mosier et. al (2005). POSTED ON COURSE WEBSITE REQUIRED READING!

Physio-Chemical Methods

- Steam Explosion
- Liquid Hot Water
- CO₂ Explosion
- Ammonia Fiber Expansion (AFEX)
- Wet Oxidation
- Ionic Liquids

Pretreatment Model

Ref: Sun and Cheng (2002)

Chemical Methods

- Acid Hydrolysis
- Alkali Hydrolysis
- Ozonolysis
- Organosolv Process

Effect of Pretreatments on Biomass: Bent Grass

SEM images of bentgrass at 1000× magnification: (a) untreated, (b) hot water pretreated, (c) dilute acid pretreated, and (d) dilute alkali pretreated.

Effect of Composition on Processing of Biomass

Properties	Effect on Digestibility
Surface area	Positive
Crystallinity	Negative /no correlation
Pore Volume	Positive
Particle size	No correlation?
Degree of polymerization	Negative /no correlation
Lignin	Negative
Hemicellulose	Negative
Acetyl groups	Negative

Ref: Zhu et al. (2008)

Effect of Biomass Properties on Enzymatic Digestibility

Pretreatment processes are critically dependent on type of feedstock. Pretreatment processes change some of these properties of the feedstock.

Ref: Zhu et al. (2008)

Lignin Migration During Pretreatment

SEM Micrographs of corn stover A) before B) after C) after (higher magnification) pretreatment using 0.8% H₂SO₄.

Ref: Donohoe et al. (2008)

A Model of Lignin Migration During Pretreatment

A recent paper (Brunecky et al. 2008) also postulates that the xylans rapidly hydrolyze and migrate towards the cell surfaces where they react with lignin and coalesce.

Ref: Donohoe et al. (2008)

Steam explosion: Saturated steam at 160-290°C up to 1 min followed by decompression.

80-100% hemicellulose hydrolysis; destruction of a portion of xylans, 45-65% xylose recovery, formation of inhibitors

Mode of action: Removal of hemicellulose from the lignocellulose matrix.

Efficiency of the subsequent hydrolysis process improves upon addition of sulfuric acid, sulfur dioxide or carbon dioxide. Energy efficient size reduction compared to grinding or comminuation

Feedstocks: Poplar, aspen, eucalyptus, Douglas fir (softwood)

Bagasse, corn Stover, wheat, rice and barley straw, timothy
grass, alfa alfa, reed canary grass

Ref: Mosier et al. (2005) Sanchez and Cardona (2008)

Liquid Hot water:

Pressurized hot water and temperature (170-230°C) for up to 46 min; Solids content <20%

Mode of action: water acts as an acid at high temperatures, hemiacetyl linkages, acids released (acetic, glucuranic acids) help in breakdown of ether linkages, dissolves lignin,

Lignin is not solubilized; 80-100% hemicellulose hydrolysis; 88-98% xylose recovery, low or no formation of inhibitors. Further cellulose conversion >90%

Feedstocks pretreated: Bagasse, corn stover, olive pulp, alfaalfa fiber

Ref: Sanchez and Cardona (2008)

Configurations of liquid hot water preprocessing

Ref: Mosier et al. (2005)

Dilute acid hydrolysis: 0.75-5% mineral acids, temperature (160-200°C), variable solids loading

80-100% hemicellulose hydrolysis; 75-90% xylose recovery, Lignin not solubilized but redistributed

Feedstocks: Bagasse, corn stover, wheat, barley and rye straw, switch grass, bermuda grass

Ref: Sanchez and Cardona (2008)

Wheat straw: After pretreatment with 1% H₂SO₄

Ref: Gonzalez et al (1985)

Dilute alkali hydrolysis: Dilute NaOH at 60°C for 2 hr; Ca(OH)₂, 4 hr at 120°C

>50% hemicellulose hydrolysis; 60-75% xylose recovery, Lignin removal (up to 55%), low inhibitor formation; cellulose swelling

Mode of action: Dissolve lignin, cleave acetyl linkages in hemicellulose, cellulose swells increasing surface area and pore volume.

Feedstocks: Hardwood, bagasse, corn stover, cane leaves

Ref: Sun and Cheng (2002)

Ref: Eggeling (1983)

Ammonia Fiber Expansion (AFEX): 1-2 kg ammonia/kg dry biomass temperature 90°C, up to 30 min

0-60% hemicellulose hydrolysis depending on moisture; no formation of inhibitors; cellulose depolymerization to some degree. Subsequent cellulose hydrolysis >90%; ~10-20% lignin solubilization for high lignin biomass

Mode of action: reduces lignin, hemicellulose is solubilized, decrystallizes cellulose, Cellulose I \rightarrow Cellulose III.

Feedstocks: Aspen wood chips, bagasse, wheat, barley and rice straw, corn stover, switch grass, bermuda grass, alfaalfa, newsprint

Ref: Sun and Cheng (2002)

Ammonia Recycle Percolation (ARP): 10-15% aqueous ammonia/kg dry biomass temperature 150-170°C, 10-20 min.

0-60% hemicellulose hydrolysis depending on moisture; no formation of inhibitors; cellulose depolymerization to some degree. Subsequent cellulose hydrolysis >90%; significant lignin solubilization for high lignin biomass

Mode of action: reduces lignin, hemicellulose is solubilized, decrystallizes cellulose, Cellulose I \rightarrow Cellulose III.

Feedstocks: Aspen wood chips, bagasse, wheat, barley and rice straw, corn stover, switch grass, bermuda grass, alfaalfa, newsprint

Ref: Kim and Lee (2005)

Pretreatment of BiomassAmmonia recycling

Fig. 1. ARP (Ammonia Recycle Percolation) process diagram.

Ref: Kim and Lee (2005)

Effect of Pretreatment Conditions on Cellulose

Ref: O'Sullivan (1997)

Organosolv process: Organic solvents (methanol, ethanol, acetone, ethylene glycol, triethylene glycol) or their mixture with 1% H₂SO₄ or HCl; 185-198°C, 30-60 min, pH 2.0-3.4

Almost total hemicellulose hydrolysis; high xylose recovery, almost total lignin solubilization, solvent recovery required

Feedstocks: Poplar and mixed soft wood

Ref: Sun and Cheng (2002)

Example of Different Pretreatment Process Conditions

Pretreatment	Chemicals	Temperature (C)	Pressure (bar)	Time (min)
Dil. Acid	0.5-3.0 % H ₂ SO ₄	130-200	3-15	2-30
Flowthrough	0.0-0.1 % H ₂ SO ₄	190-200	20-24	12-24
Controlled pH	Water or stillage	160-190	6-14	10-30
AFEX	100% Anhydrous Ammonia	70-90	15-20	<5
ARP	10-15% Ammonia	150-170	9-17	10-20
Lime	5-15% (w/w) Ca(OH) ₂	70-130	1-6	1-6h
Lime+Air	5-15% (w/w) Ca(OH) ₂	25-60	1	2 weeks- 2 months

Ref: Wyman et al (2005)

Example of Different Pretreatment Process Conditions

Pretreatment	Xylose Yield (%)	Glucose Yield (%)	Total Sugars (%)
Dil. Acid	34.5	57.2	91.7
Flowthrough	2.4	61.4	63.8
Partial Flow	-	-	-
Controlled pH	30.7	58.2	88.9
AFEX	30.2	61.8	92
ARP	17.0	59.4	76.4
Lime	20.5	59.8	80.3

Ref: Wyman et al (2005)

Optimum Pretreatment Conditions for Corn Stover

Pretreatment	Chemicals	Temperature (C)	Time (min)
Dil. Acid	0.49 % H ₂ SO ₄	160	20
Flowthrough	0.0	200	24
Controlled pH	0.0	200	24
AFEX	100% Anhydrous Ammonia	90	5
ARP	15% Ammonia	170	10
Lime+air	8% (w/w) Ca(OH) ₂	55	4 weeks

Ref: Wyman et al. (2005b)

Effect of Pretreatments on Biomass

Effect of various pretreatment methods on the chemical composition and chemical/physical structure of lignocellulosic biomass

	Increases accessible surface area	Decrystalizes cellulose	Removes hemicellulose	Removes lignin	Alters lignin structure
Uncatalyzed steam explosion					
Liquid hot water	•	ND			
pH controlled hot water	•	ND			ND
Flow-through liquid hot water	•	ND			
Dilute acid	•				
Flow-through acid	•				
AFEX	•				
ARP					
Lime		ND			

■: Major effect.

Minor effect.

ND: Not determined.

Ref: Mosier et al (2005)

Effect of Temperature and pH on Pretreatments on Biomass

Ref: Pendersen Meyer (2010)

Severity Index of Pretreatment Process

Severity factor is an indicator of the combined effect of temperature (T, °C), reaction time (t, min). This is specific for a particular feedstock and specific pretreatment method.

$$R_o = \int_a^b \exp\left(\frac{T(t) - 100}{14.75}\right) dt = t \cdot \exp\left(\frac{T(t) - 100}{14.75}\right)$$

$$M_o = t \cdot C^n \cdot \exp\left(\frac{T(t) - 100}{14.75}\right)$$

C is the concentration of the chemical catalyst n=0.849 for H_2SO_4 and 3.90 for NaOH

$$R'_o = R_o \cdot [H^+]$$

$$\log(R'_o) = \log(R_o \cdot [H^+]) = \log(R_o) - pH$$

$$\log(R''_o) = \log(R_o) + |pH - 7|$$

Ref: Palmqvist et al. (2000)

Severity Index of Pretreatment Process

Combined severity factor is an indicator of the combined effect of temperature (T, °C), reaction time (t, min) and pH. This is specific for a particular feedstock and specific pretreatment method.

$$CS = log (t e^{((T-100)/14.75)}) - |pH-7|$$

Increasing CS beyond the value for maximum sugar release results in formation of inhibitors.

Ref: Palmqvist et al. (2000); Pendesen Meyer (2010)

Effect of Pretreatments on Biomass: Wheat straw

Effect of Pretreatments on Biomass: Hydrothermal pretreatment

Effect of Pretreatments on Biomass: Hydrothermal, delignification

Effect of Pretreatments on Biomass: Steam explosion

Ref: Kristensen et al (2008)

Biofuel Feedstocks and Production

Thank you

Biofuel Feedstocks and Production

Lecture Fifteen

Cellulosic Ethanol Production: Conditioning

Summary of Lecture Fourteen

Effect of Temperature and pH on Pretreatments on Biomass

Ref: Pendersen Meyer (2010)

Severity Index of Pretreatment Process

Combined severity factor is an indicator of the combined effect of temperature (T, °C), reaction time (t, min) and pH. This is specific for a particular feedstock and specific pretreatment method.

$$CS = log (t e^{((T-100)/14.75)}) - |pH-7|$$

Increasing CS beyond the value for maximum sugar release results in formation of inhibitors.

$$CS = log (t C^n e^{((T-100)/14.75)}) - |pH-7|$$

Ref: Palmqvist et al. (2000); Pendesen Meyer (2010)

Inhibitors Formation During Pretreatment

Inhibitors produced during pretreatment:

- Sugars: Hydroxy Methyl Furfural (HMF), Furfural
- Lignin: Cinnamaldehyde, p-hydroxybenzaldehyde and syringaldehyde
- Hemicellulose degradation products: acetate, formic, glucuronic and galacturonic acids)

Ref: Sanchez and Cardona (2008) Almeida et al. (2009)

Inhibitors Formation During Pretreatment

Mechanism of furfural formation by pentose dehydration and elimination of 3 water molecules.

Types of Inhibitors

More than 70 different inhibitors have been identified in lignocellulose hydrolyzate.

Inhibitors belong to three principal classes

- Aliphatic acids
- Furan compounds
- Aromatic aldehydes

Degree of toxicity of aromatic compounds can be determined by the functional groups attached to the benzene ring. (Ando's toxicity rule)

- CH=CH: +3.0 COOH: +0.5
- CHO: +1.5 m-OH: 0.0
- p-OH: +1.0 OCH₃:-1.0

Types of Inhibitors: Analysis

Types of Inhibitors: Analysis

Dilute acid hydrolyzate of hybrid poplar (partial list).

Compounds in Hydrolyzate : Aliphatic acids

Compounds
- ciripo direc

Acetic acid

4-oxo-pentanoic acid

Levulinic acid

2-methyl-2-hydroxybutanoic acid

3-hydroxy-propanoic acid

Methyl propanedioic acid

Methyl butanedioic acid

2-butanedioic acid

Hydroxybutanedioic acid

Hexanedioic acid

2-hydroxypentanedioic acid

2-hydroxy-2-pentenedioic acid

Hexadecanoic acid (palmitic acid)

Ethanedioic acid

9,12-octadecadienoic acid

9-octadecenoic acid (oleic acid)

Octadecanoic acid (stearic acid)

2,3-dihydroxypropandioic acid

Compounds in Hydrolyzate : Aromatic compounds

```
Compounds
                3-methoxy-4-hydroxy-benzaldehyde (vanillin)
                4-hydroxybenzoic acid ← Indicates cleavage of ester and ether bonds
               3,5-dimethoxy-4-hydroxy-benzaldehyde acid (syringaldehyde)
               2,5-dihydroxy-benzoic acid
                3-methoxy-4-hydroxy-benzoic acid (vanillic acid)
               3,4-dihydroxy-benzoic acid
               3,5-dimethoxy-4-hydroxy-benzoic acid (syringic acid)
               4-methoxy-3-hydroxy-cinnamic acid (isoferulic acid)
                G-CO-CH(OH)-CH3ª
                G-CH2-COOHa
               3-methoxy-4-hydroxy-cinnamic acid (ferulic acid)
                4-methoxy-α-hydroxy-benzenacetic acid
                G-CH(OH)-CO-CH3ª
                5-methoxy-2-hydroxy-benzoic acid
                2-methoxy-α-hydroxy-benzenacetic acid
Ref: Luo et al. (2002)
```


Types of Inhibitors

More than 70 different inhibitors have been identified in lignocellulose hydrolyzate.

Inhibitors belong to three principal classes

- Aliphatic acids
- Furan compounds
- Aromatic aldehydes

Degree of toxicity of aromatic compounds can be determined by the functional groups attached to the benzene ring. (Ando's toxicity rule)

- CH=CH: +3.0 COOH: +0.5
- CHO: +1.5 m-OH: 0.0
- p-OH: +1.0 OCH₃:-1.0

Inhibitors action can be classified into three broad categories:

- Chemical interference with cell maintenance functions
- Inhibition on ethanol production pathways.
- Osmotic effect on cells.

- Weak acids
 - Concentration of undissociated acid is a function of pH and pKa. Weak acids have high pKa values (acetic acid: 4.75; formic acid: 3.75; levulinic acid: 4.66).
 - Dilute acid hydrolyzates of spruce has buffering capacity up to pH 5.5
 - Undissociated weak acids are liposoluble. But anionic forms are lipophobic.
 - Two theories: Uncoupling and intracellular anion accumulation.

Ref: Palmqvist et al. (2000) Pienkos and Zhang(2009)

- Furfural and HMF:
 - Furfural and HMF (with a lower efficiency due to lower membrane permeability) is metabolized by *S. cerevisiae* in aerobic, oxygen limited and anaerobic conditions to corresponding alcohols.
 - Pejo et al (2008) observed reduction in xylitol and glycerol production in steam exploded wheat straw hydrolyzate.

Ref: Palmqvist et al. (2000) Almeida et al. (2009) Pejo et al (2008)

- Phenolic compounds
 - Low molecular weight phenolic compounds are most inhibitory.
 - 4-hydroxybenzoic acid is the most inhibitory compounds.
 - Water solubility of the phenolic compounds is low.
 - Effect membrane integrity

- Furfural and HMF: Glycolysis especially dehydrogenases.
- Phenolics: loss of membrane integrity, interfere with sugar transport and cell growth.
- Weak acids: Proton gradients and increased cell maintenance.
- Aldehydes: Hydrophobicity, NADH and NADPH requirement and other unknown effects. Do not disrupt membrane integrity or effect proton gradients.
- •Alcohols: membrane structure. Less toxic than weak acids and aldehydes.

Ref: Pienkos and Zhang (2009)

Inhibitor Effect Suppression Strategies

Strategies for removing the inhibitory effect

Ref: Almeida et al. (2009)

Removal of inhibitors and toxic compounds is an important downstream step in cellulosic biomass processing. Some of the methods are:

- Evaporation:
 - Acetic acid, furfural and vanillin are the more volatile compounds that are removed.
 - HMF has lower volatility and therefore is not removed to the same extent as furfural.
- Extraction with organic solvents:
 - Diethyl ether at pH 2.0 extracts acetic, formic and levulinic acid, furfural, HMF and phenolic compounds.
 - Extracted inhibitory compounds were not alkali stable.

Ref: Sanchez and Cardona (2008), Palmqvist et al. (2000)

- Ionic exchange resins
 - Weak base anion exchange resins remove almost all of HMF, furfural, acetic acid and color.
 - Strong anion exchangers remove HMF, furfural and color significantly, Acetic acid and xylose are not removed to a significant extent.
 - More expensive treatment. Resins must be regenerated for economic performance.
 - Fouling, deposit formation are other potential issues in the use of ion exchange resins.

Ref: Sanchez and Cardona (2008), Palmqvist et al. (2000)

- Adsorption on activated charcoal, molecular sieves: Reduced furfurals, acetic acid and phenolics.
 - Low pH is favorable for adsorption of weak acids and phenols.
 - Higher pH is favorable for adsorption of weak basic compounds.
 - Organic acids are best adsorbed from acidic solutions and organic bases are adsorbed from basic solutions.
 - Increasing the charcoal: sugar ratios beyond a certain ratio results in loss of sugars.
 - Higher temperatures favors higher adsorption rates.

Ref: Mussatto et al. (2004), Palmqvist et al. (2000)

- Alkaline Detoxification (Over liming):
 - Adjustment solution pH to 10-12.0.
 - $Ca(OH)_2$ is more effective than NaOH. Although treatment with NaOH and $Ca(OH)_2$ resulted in similar removal rates for furfurals and HMF, $Ca(OH)_2$ treated samples had much higher ethanol productivities. \rightarrow unknown inhibitors in hydrolyzate.
 - NH₄OH and Ca(OH)₂ treatments to pH 10 reduce HMF, furfural, phenols compounds, vanillin, coniferyl alcohol and cinnamic acid.
 - Neutralization to 5.5 pH with any base has little effect on inhibitor concentration.
 - Higher pH and temperature result in conversion of inhibitory compounds to formic, acetic and levulinic acids.

Ref: Pienkos and Zhang (2009), Palmqvist et al. (2000)

- Combined alkaline and sulfite detoxification
 - Although Ca(OH)₂ is sufficient to detoxify hydrolyzate, sulfite treatment increases the fermentation rates.

• Hibbert ketones and volatile compounds were removed at higher

temperatures.

Hibbert Ketones G*-COCOCH₃
G*, guaiacyl = 4-hydroxy-3-methoxyphenyl G*-CH₂COCH₂OH

G*-CHOHCOCH₃
G*-COCOCH₂
G*-CH₂COCH₂OH
G*-COCHOHCH₃
G*-CH₂COCH₃

Ref: Sanchez and Cardona (2008), Palmqvist et al. (2000)

- Enzymatic detoxification
 - Laccase, lignin peroxidases, Mn peroxidase (white rot fungi): Heme peroxidase: blue copper oxidases result in oxidation of phenolics, non phenolic lignin units, Mn³⁺ (oxidizer) acts on phenolic and non-phenolic lignin units.
- Microbial detoxification
 - Lignolytic fungus *Trametes versicolor (laccase)*
 - Oxidative polymerization of low molecular weight phenolic compounds and phenolic acids.
 - White rot fungus
 - Remove a wide variety of chemicals including chlorinated aromatic compounds, heterocyclic aromatic hydrocarbons, dyes, and synthetic polymers.
 - Strong oxidative activity and low substrate specificity of the lignolytic enzymes. Oxidative process (Phenol oxidases)

Ref: Sanchez and Cardona (2008)

- Brown rot fungus
- Soft-rot fungus *Trichoderma reesei*
 - Mostly act by removing acetic acid, furfural and benzoic acid derivatives.
 - Can degrade secondary cell wall of plants. Active on higher moisture, lower lignin biomass.

Fungi with high specific lignase activities.

Organism	Enzyme	Substrates	Specific activity (µmol min ⁻¹ mg ⁻¹)	Opt. T (°C)	Opt. pH
Phanerochaete chrysosporium	Diarylpropane peroxidase (ligninase)	1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol+H ₂ O ₂ /1-(3,4-diethoxyphenyl)-1,3-dihydroxy- 2-(4-methoxy-phenyl)propane+O ₂ +H ₂ O ₂ /1-(4-ethoxy-3-methoxyphenyl)-1,2-propane+O ₂ + H ₂ O ₂ /1-(4-ethoxy-3-methoxyphenyl)-1,2-propene+O ₂ +H ₂ O ₂ /2-Keto-4-thiomethylbutyric acid+H ₂ O ₂ /3,4-dimethoxybenzyl alcohol+H ₂ O ₂	28	23/37	3/4.5
Botrytis cinerea	Laccase	1,2,4-benzenetriol+O ₂ /1-naphthol+O ₂ /2-naphthol+O ₂ /3,5-dimethoxy-hydroxy-benzaldazine+ O ₂ /4,5-dimethyl-o-phenylenediamine O ₂ /4-amino-N,N'-dimethylaniline+O ₂ /4-methylcatechol+ O ₂ /ascorbate+O ₂ /caffeic acid+O ₂ /catechol+O ₂ /ferrocyanide+O ₂ /gallic acid+O ₂ /guaiacol+O ₂	5778	55	4
Stropharia coronilla	manganese peroxidase	Mn ²⁺ +H ⁺ +H ₂ O ₂	692	25	NA

Ref: Sanchez (2009)

Lignin biodegradation by white rot fungi

Ref: Sanchez (2009)

Dilute acid pretreated spruce

Group of compounds	Compounds ^b	Concentration (g/L)
Sugars	Glucose	25.7
3	Mannose	6.5
	Galactose	3.7
	Xylose	3.5
	Cellobiose	0.7
	Arabinose	0.6
Furan derivatives	5-hydroxy-methyl-furfural	5.9
	Furfural	1.0
Aliphatic acids	Levulinic acid	2.6
•	Acetic acid	2.4
	Formic acid	1.6
Phenolic compounds	Vanillin	0.12
-	Dihydroconiferylalcohol	0.098
	Coniferyl aldehyde	0.035
	Vanillic acid	0.034
	Hydroquinone	0.017
	Catechol	0.009
	Acetoguaiacone	0.007
	Homovanillic acid	0.005
1	4-Hydroxy-benzoic acid	0.005

Dilute acid pretreated spruce

Group of compounds	$Compounds^b$	Concentration (g/L)
Hibbert's ketones	G*-CHOHCOCH ₂	0.048
	G*-COCOCH ₂	0.029
	G*-CH,COCH,OH	0.028
	G*-COCHOHCH₃	0.025
	G*-CH ₂ COCH ₃	0.016

Ref: Larsson et al. (1999)

Dilute acid pretreated spruce

Method	Fermentable sugars (glucose + mannose)	Levulinic acid	Acetic acid	Formic acid	Furfural	5-HMF	Total phenolic content (GC-MS)	Total phenolic content (Prussian blue)
None	97	100	100	100	100	100	100	100
pH 10 (NaOH)	96	100	100	100	81	84	82	96
pH 10 (Ca(OH),)	96	100	100	100	80	78	81	81
pH 5.5, 0.1% sulfite	96	100	100	100	100	100	92	ND
pH 10, 0.1% sulfite	95	100	100	100	88	89	96	ND
pH 5.5, 1% sulfite	96	100	100	100	61	63	92	ND
pH 10, 1% sulfite	96	100	100	100	47	48	81	ND
Evaporation of 10%	97	100	100	100	63	100	92	99
Evaporation of 90%	97	100	35	26	0	96	98	85
pH 5.5, anion exchange	92	14	11	8	69	74	31	29
pH 10, anion exchange	74	7	4	3	27	30	9	9
Laccase	96	100	100	100	100	100	20	7
Laccase control	96	100	100	100	100	100	100	100
T. reesei	65	100	100	100	15	75	94	95
T. reesei control	94	100	100	100	24	81	100	100

Ref: Larsson et al. (1999)

Dilute	acid	pretreated	spruce
the state of the s	11.64	1	

No	Detoxification method	Y EtOH (g/g)	Q6h(g/L/h)	Yx (g/g)
1	Reference fermentation	0.45 ± 0.004	1.46 ± 0.021	0.090 ± 0.001
2	None ^a	0.32 ± 0.004	0.04 ± 0.015	0.010 ± 0.001
3	pH 10 (sodium hydroxide)	0.42 ± 0.005	0.46 ± 0.019	0.015 ± 0.001
4	pH 10 (calcium hydroxide)	0.44 ± 0.007	1.21 ± 0.065	b
5	pH 5.5, 0.1% sulfite	0.34 ± 0.006	0.09 ± 0.035	0.020 ± 0.001
6	pH 10, 0.1% sulfite	0.42 ± 0.004	0.45 ± 0.015	0.030 ± 0.001
7	pH 5.5, 1% sulfite	0.42 ± 0.005	0.45 ± 0.017	0.020 ± 0.001
8	pH 10, 1% sulfite	0.43 ± 0.004	0.47 ± 0.016	0.040 ± 0.002
9	Evaporation of 10%	0.34 ± 0.006	0.06 ± 0.017	0.015 ± 0.001
10	Evaporation of 90%	0.42 ± 0.010	0.33 ± 0.026	0.030 ± 0.002
11	pH 5.5, anion exchange	0.45 ± 0.008	0.66 ± 0.052	0.060 ± 0.010
12	pH 10, anion exchange	0.49 ± 0.010	1.42 ± 0.040	0.080 ± 0.005
13	Laccase	0.47 ± 0.004	0.68 ± 0.007	0.055 ± 0.003
14	Laccase control	0.32 ± 0.006	0.05 ± 0.032	0.012 ± 0.001
15	T. reesei	0.43 ± 0.005	0.55 ± 0.070	0.055 ± 0.005
16	T. reesei control	0.42 ± 0.006	0.17 ± 0.035	0.030 ± 0.003

^apH was adjusted to 5.5 with NaOH prior to the fermentation.

Ref: Larsson et al. (1999)

^bNot determined owing to the precipitation.

Biofuel Feedstocks and Production

Thank you

Biofuel Feedstocks and Production

Lecture Sixteen

Cellulosic Ethanol Production: Cellulases and Product

Recovery

Summary of Lecture Fifteen

Pretreated Biomass Conditioning/Detoxification

Removal of inhibitors and toxic compounds is an important downstream step in cellulosic biomass processing. Some of the methods are:

- Evaporation:
- Extraction with organic solvents
- Ionic exchange resins
- Adsorption on activated charcoal, molecular sieves
- Alkaline Detoxification (Over liming)
- Combined alkaline and sulfite detoxification
- Enzymatic detoxification
- Microbial detoxification

Ref: Sanchez and Cardona (2008), Palmqvist et al. (2000)

Cellulosic Ethanol Production

- Endo Cellulases: Facilitate hydrolysis by exposing cellulose chains and disrupting the crystalline structure
- Exo cellulases (Cellobiohydrolases or CBH I and II): They further hydrolyze cellulose and yield cellobiose (a disaccharide)
- Cellobiase: These enzymes hydrolyze cellobiose to glucose.
- Oxidative cellulases: "Depolymerize cellulose by radical reactions"
- Cellulose phosphorylases: "Depolymerize cellulose using phosphates instead of water"

• Processive and non-processive cellulases

Ref: Wilson, D.B. (2009, 2011); Gowen and Fong (2010)

- Endoglucanases (EG) act on internal chains to create additional chains.
- Exoglucanase: CBH I act from the reducing ends (R)
- Exoglucanase: CBH II act from the non-reducing ends (NR).
- Betaglucosidase (BG) acts of the cellobiose/cellodextrins to produce glucose.
- Accessory proteins (AP) facilitate the hydrolysis through a currently unknown mechanism.

Cellulase Enzymes Classification

- All cellulolytic enzymes have two enzyme nomenclatures : EC 3.2.1.4 and 3.2.1.9
- Cellulases are further classified based on their catalytic domain (CD) and carbohydrate binding module/domain(CBM/D).
- About 70 structural families of glycosyl hydrolases (EC 3.2.1)
- CD classification (represented using Arabic numerals).
 - Cellulases and hemicellulases are assigned to families: 5,6,7,8,9,10,11,12,26,44,45,48,51,60 and 61.
 - ex. Trichoderma reesei CBHI is T. reesei Cel7A

Ref: Rabinovich et al. (2002); Wilson (2008;2010)

Cellulase Enzymes Classification

- CBM classification (represented using Roman numerals).
 - There are as many as 45 structural families of CBM
- CBM I: about 30 amino acids. Found in fungal cellulases
- CBM II: about 120 amino acids. Found in aerobic bacteria cellulases
- CBM III: These are cellulosomal scaffoldins
- Many cellulases contain multiple CBMs.

Ref: Rabinovich et al. (2002); Wilson (2008;2010)

Enzymes

Cellulase producing fungi in nature

Fungi	Fungi
Acremonium cellulolyticus	Talaromyces emersonii
Aspergillus acculeatus	Thielavia terrestris
Penicillium funmiculosum	Trichoderma koningii
Phanerochaete	Trichoderma reesei
chrysosporium	Trichoderma viride
Schizophyllum commune	Aspergillus fumigatus
Sclerotium rolfsii	Aspergillus niger
Sporotrichum cellulophilum	Fusarium solani

Ref:http://www.fao.org/docrep/w7241e/w7241e08.htm

Cellulase Enzymes in Trichoderma reesei

- Highly glycosylated.
- Cel7A (CBH I): about 70% of the cellular protein secreted.
- Cel6A (CBH II): about 10% of the cellular protein secreted.
- Seven endoglucanases (Cel7B (EGL I), Cel5A (EGL II), Cel12A (EGL III), Cel61A (EGL IV), cel45A (EGLV), Cel5B and Cel61B
 - All except Cel12A, Cel5B and Cel61B have Family I CBM.
 - Cel12A has also shown expansin activity.
 - Swollenin is also secreted.

Ref: Wilson (2008;2010)

Cellulose Hydrolysis by Cellulase Enzymes

Reactions catalyzed by enzyme classes:

- 1. Processive EG: r₁
- 2. Non-processive EG: r₁
- 3. Processive CBH I : r_2 , r_3 , r_4 , r_6
- 4. Non-processive CBH I : r_2 , r_3 , r_4 , r_6
- 5. Processive CBH II: r_2 , r_3 , r_4 , r_6
- 6. Non-processive CBH II: r_2 , r_3 , r_4 , r_6
- 7. BG: r₅
- 8. Fermentation: r₇

Enzymatic hydrolysis mechanism hypothesis

Ref: Zhang and Lynd (2004)

Factors effecting cellulose hydrolysis:

- Crystallinity Index
- Degree of polymerization
- Accessibility
 - Internal and external surface area
- Cellulase adsorption

$$E_a = \frac{A_{\text{max}} S K_p E_f}{1 + K_p E_f}$$

 E_a = Adsorbed cellulose (mg cellulase/L)

 $A_{max} = M$ aximum cellulose adsorption (mg cellulase/g cellulose)

S =Cellulose concentration (g/L)

 E_f = Free cellulase (mg cellulase/L)

 K_p = Dissociation constant (L/g cellulose)

Ref: Zhang and Lynd (2004)

Factors effecting cellulose hydrolysis:

- Langmuir Adsorption model inconsistencies:
 - Partially reversible cellulase adsorption.
 - Interaction among adsorbing cellulase components.
 - Multiple adsorption sites.
 - Cellulase entrapment by pores in cellulose.
 - Multicomponent cellulase adsorptions.
 - Interference with lignin
 - Lignin adsorption is inversely proportional whereas cellulase adsorption is proportional to pretreatment temperature.
- Intensity of agitation has little effect on cellulose hydrolysis.
- Area occupied is by cellulase is larger than area of repeating cellobiose lattice.

Cellulosic Ethanol Production

Ethanol Recovery Technologies

Ethanol Recovery Technologies

- Distillation
- Gas/steam stripping
- Liquid Liquid extraction
- Adsorption
- Pervaporation

Ethanol Recovery Technologies: Distillation

Ethanol Recovery Technologies: Gas stripping

Ethanol Recovery Technologies: Steam stripping

Ethanol Recovery Technologies: Liquid-Liquid extraction

Factors influencing the liquid-liquid separation

Selectivity

• Equilibrium distribution coefficient

- Mutual solubility of solvents
- Interfacial tension
- Extractant viscosity
- Toxicity and safety issues
- Reactivity
- Volatility
- Cost Ref: Vane (2008)

Ethanol Recovery Technologies: Liquid-Liquid extraction

Ethanol Recovery Technologies: Adsorption

Ethanol Recovery Technologies: Pervaporation

• Hydrophobic porous membranes are used.

Ethanol Recovery Technologies: MAVS Hybrid Process

Biofuel Feedstocks and Production

Thank you

Biofuel Feedstocks and Production

Lecture Seventeen Cellulosic Ethanol Yield Calculations and Ethanol Process Modeling

Summary of Lecture Sixteen

Generic Cellulosic Ethanol Process

Generic Cellulosic Ethanol Process

Hexose hydrolysis

$$[C_6H_{10}O_5]_n + (n-1)H_2O \rightarrow n [C_6H_{12}O_6]$$

(162 g) + (18 g) \rightarrow (180 g) Hydrolytic gain: 1.11

Pentose hydrolysis

$$[C_5H_8O_4]_n + (n-1)H_2O \rightarrow n [C_5H_{10}O_5]$$

(132 g) + (18 g) \rightarrow (150 g) Hydrolytic gain: 1.136

Hexose Fermentation

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + Heat$$

(180: 1 g) \rightarrow (2 x 46: 0.511 g) + (2 x 44: 0.489 g)

Pentose Fermentation

$$3C_5H_{10}O_5 \rightarrow 5 C_2H_5OH + 5CO_2 + \text{Heat}$$

(3 x 150: 1 g) \rightarrow (5 x 46: 0.511 g) + (5 x 44: 0.489 g)

Feedstock: Wheat straw

Composition:

Glucomannans: 33.7 Xylans: 21.57

Lignin: 16.85 Ash: 10.22 Extractives: 15.19

• Basis: 1 dry ton.

• Hydrolysis efficiency: 80

- Inhibitors generation: 1% from hexoses and 2% from pentoses
- Fermentation efficiency
 - Hexose fermentation: 98
 - Pentose fermentation: 60
- Distillation efficiency: 99

Hydrolysis

Hexoses = Biomass* Glucan* $\eta_{hydrolysis}$ *Hydrolytic gain*(1-inhibitor production)

Hexoses = 1000 * 0.337 * 0.8 * 1.11 * (1-0.01) = 296.26 kg

Inhibitors (HMF) = 1000 * 0.337 * 0.8 * 1.11 * (0.01) = 2.99 kg

Pentoses=Biomass* Xylans* $\eta_{hydrolysis}$ *Hydrolytic gain*(1-inhibitor production)

Pentoses = 1000* 0.2157*0.8*1.136*(1-0.02)=192.11kg

Inhibitors (F) = 1000 * 0.2157 * 0.8 * 1.136 * (0.02) = 3.92 kg

• Fermentation

Ethanol = Hexoses * ethanol yield * hexose fermentation efficiency + Pentoses * ethanol yield * pentose fermentation efficiency

Ethanol = 296.26*0.511*.98+192.11*0.511*0.6=207.26 Kg.

• Distillation

- Overall Ethanol yield= 260 L/1000 kg = 0.26 L/Kg = 68 gal/ton
- Total inhibitors= 2.99+3.92=6.91 kg
- Residual lignin coproduct: 1000*0.4226 =422.6 Kg

Ethanol Production: Process Calculations Using MS Excel

Ethanol Production: Process Calculations Using MS Excel

Feedstock: Wheat straw

Composition: Glucomannans: 33.7 Xylans: 21.57

Lignin: 16.85 Ash: 10.22 Extractives: 15.19

- Basis: 1 dry ton.
- Pretreatment efficiency: 80
- Hydrolysis efficiency: 80
- Inhibitors generation:
 - From hexoses: 1%
 - From pentoses: 2%
- Fermentation efficiency
 - Hexose fermentation: 98
 - Pentose fermentation: 60
- Distillation efficiency: 99

Biofuel Feedstocks and Production

Thank you

