Computer Networks

CMP2205

Lecture 3

The Physical (PHY) Layer

- Transmitting information on wires.
- How is information represented?
 - Digital systems.
 - Analog systems.

Analog Technology

- Analog devices maintain exact physical analog of information.
 - E.g., microphone: the voltage v(t) at the output of the mic is proportional to the sound pressure

Digital Technology

- It uses **numbers** to record and process information
 - Inside a computer, all information is represented by numbers.
 - Analog-to-digital conversion: ADC
 - Digital-to-analog conversion: DAC

Digital Technology

- All signals (including multimedia) can be encoded in digital form.
- Digital information does not get distorted while being stored, copied or communicated.

Digital Communication Technology

- Early example: the telegraph (Morse code).
 - Uses dots and dashes to transmit letters.
 - It is digital even though uses electrical signals.
- The telephone has become digital.
- CDs and DVDs.
- Digital communication networks form the Internet.
- The user is unaware that the signal is encoded in digital form.

Two Levels are Sufficient

- Computers encode information using only two levels: 0 and 1.
- A bit is a digit that can only assume the values 0 and 1 (it is a binary digit).
- A word is a set of bits
 - Example: ASCII standard for encoding text
 - A = 1000001; B = 1000010; ...
- A byte is a word with 8 bits.

Definitions

- 1 KB = 1 kilobyte = 1,000 bytes = 8,000 bits
- 1 MB = 1 megabyte = 1,000 KB
- 1 GB = 1 gigabyte = 1,000 MB
- 1 *TB* = 1 terabyte = 1,000 *GB*
- 1 Kb = 1 kilobit = 1,000 bits
- 1 Mb = 1 megabit = 1,000 Kb
- 1 Gb = 1 gigabit = 1,000 Mb
- 1 Tb = 1 terabit = 1,000 Gb

Digitization

- Digitization is the process that allows us to convert analog to digital (implemented by ADC).
- Analog signals: x(t)
 - Defined on continuum (e.g. time).
 - Can take on any real value.
- Digital signals: q(n)
 - Sequence of numbers (samples) defined by a discrete set (e.g., integers).

Digitization - Example

Analog signal x(t)

Digitized signal q(n)

Some Definitions

- Interval of time between two samples:
 - Sampling Interval (T).
- Sampling frequency F=1/T.
- E.g.: if the sampling interval is 0.1 seconds, then the sampling frequency is 1/0.1=10.
 - Measured in samples/second or Hertz.
- Each sample is defined using a word of B bits.
 - E.g.: we may use 8 bits (1 byte) per sample.

Bit-rate

- Bit-rate = numbers of bits per second we need to transmit
 - For each second we transmit F=1/T samples.
 - Each sample is defined with a word of B bits.
 - Bit-rate = F*B.

• Example: if F is 10 samples/s and B=8, then the bit rate is 80 bits/s.

Example of Digitization

Bit-rate - Example 1

- What is the bit-rate of digitized audio?
 - Sampling rate: F= 44.1 KHz
 - Quantization with B=16 bits
 - Bit-rate = BF= 705.6 Kb/s
 - Example: 1 minute of uncompressed stereo music takes more than 10 MB!

Bit-rate - Example 2

- What is the bit-rate of digitized speech?
 - Sampling rate: F = 8 KHz
 - Quantization with B = 16 bits
 - **Bit-rate** = BF = 128 Kb/s

Data Transmission

- Analog and digital transmission.
 - Example of analog data: voice and video.
 - Example of digital data: character strings
 - Use of codes to represent characters as sequence of bits (e.g., ASCII).
- Historically, communication infrastructure for analog transmission.
 - Digital data needed to be converted: modems (modulator-demodulator).

Digital Transmission

- Current trend: digital transmission.
 - Cost efficient: advances in digital circuitry.
 (VLSI).
- Advantages:
 - Data integrity: better noise immunity.
 - Security: easier to integrate encryption algorithms.
 - Channel utilization: higher degree of multiplexing (time-division mux'ing).

Signals and Systems

What is a <u>signal?</u>
What is a <u>system?</u>

Signals and Systems (cont'd)

- Signal: electro-magnetic wave carrying information.
 - Time varying function produced by physical device (voltage, current, etc.).
- System: device (or collection thereof) or process (algorithm) having signals as input and output.

Signals and Systems (cont'd)

Signals and Systems (cont'd)

Periodic signals:

$$- f(t+T) = f(t)$$
 Period = T (seconds)

- Frequency = 1/ Period
 - "cycles" / sec. = Hertz (Hz)

Fourier Analysis

- Math tool for studying/designing communication systems.
- In the early 19th. Century, Fourier proved that periodic functions can be expressed as sum of sines and cosines.

Fourier Series

$$g(t) = c/2 + sum [a_n sin (2 \pi n f t)] + sum [b_n cos (2 \pi f t)],$$

Where:

- . f = 1/T is the fundamental frequency.
- . a_n and b_n are the sine and cosine amplitudes of the n^{th} harmonics.

Fourier Analysis

- From the Fourier series, function can be reconstructed.
- I.e., if period T and amplitudes are known, original signal can be reconstructed using the corresponding Fourier series.

Theoretical Basis for Data Communication

- Fourier Analysis
- Bandwidth-Limited Signals
- Maximum Data Rate of a Channel

Bandwidth-Limited Signals

Example

- Transmissionn of ASCII "b": 01100010.
- Root-mean-square amplitudes:

$$-(a_n^2+b_n^2)^{1/2}$$

Proportional to energy transmitted at corresponding frequency.

Bandwidth-Limited Signals

- (a) Binary signal and its root-mean-square Fourier amplitudes.
- (b) (c) Successive approximations to the original signal.

Bandwidth-Limited Signals (2)

(d) – (e) Successive approximations to original signal.

Transmission Distortion

- No transmission medium can transmit all Fourier components.
- Range of frequency transmitted without severe attenuation is called bandwidth,
 - Frequently, bandwidth is from 0 to frequency transmitted at half the power.
- Bandwidth is physical property of medium.
 - Depends on material, length, thickness.

Data rates and Bandwidth

- Example: bit rate of b bits/sec.
- Time to send 8 bits is 8/b sec.
- First harmonic frequency is b/8 Hz.
- If information transmitted over regular phone line, cutoff frequency or bandwidth is 3KHz.
- I.e., highest harmonic transmitted is 3000/(b/8) or 24,000/b.

Bandwidth-Limited Signals (3)

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Relation between data rate and harmonics.

Noiseless Channel Capacity

- Transmission channels have finite capacity.
- In perfect (i.e., noiseless) channels, Nyquist (Nyquist, 1924) proved that:
 - Capacity (bps) = 2 H V (bps),
 - where H is channel bandwdith (Hz) and V is number of discrete levels.

Noise-Prone Channels

- Random (thermal) noise is due to molecule motion.
- Amount of thermal noise measured by signato-noise ratio (SNR).
 - SNR = S/N, where S is signal power and N is noise power.
 - SNR usually given in decibels (dB).
 - SNR in dB is 10 \log_{10} S/N.
 - If S/N is 10, SNR is 10dB; S/N is 100, SNR is 20dB.

Shannon's Theorem

- C(bps) = H log 2 (1 + S/N).
- Example: If channel's bandwidth is 3KHz and SNR is 30 dB (analog telephone system), cannot transmit over 30,000 bps.

Guided Transmission Data

- Magnetic Media
- Twisted Pair
- Coaxial Cable
- Fiber Optics

Magnetic Media

- Examples?
- Advantages?
- Disadvantages?

Twisted Pair

- Oldest but still very common.
- Telephone system.
- Cheap and effective for long ranges.
- Bundles of twisted pairs.
- Can transmit both analog and digital signals.
- Bandwidth depends on thickness of wire and distance traveled.
 - Mb/s for few kilometers.

Twisted Pair

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Twisted Pair

Category	Maximum data rate	Usual application
CAT 1	Up to 1 <u>Mbps</u> (1 MHz)	analog voice (POTS) Integrated Services Digital Network Basic Rate Interface in ISDN Doorbell wiring
CAT 2	4 Mbps	Mainly used in the IBM Cabling System for <u>Token Ring</u> networks
CAT 3	16 Mbps	Voice and data on <u>10BASE-T</u> <u>Ethernet</u>
CAT 4	20 Mbps	Used in 16 Mbps Token Ring Otherwise not used much
CAT 5	100 Mbps 1000 Mbps (4 pair)	100 Mbps TPDDI 155 Mbps <u>ATM</u> No longer supported; replaced by 5E
CAT 5E	1000 Mbps (10000 Mbps prototype)	100 Mbps TPDDI 155 Mbps <u>ATM</u> <u>Gigabit Ethernet</u> Offers better <u>near-end crosstalk</u> than CAT 5
CAT 6	Up to 400 MHz	Super-fast broadband applications Most popular cabling for new installs
CAT 6E	Up to 625 MHz (field-tested to 500 MHz)	Support for 10 Gigabit Ethernet (10GBASE-T)
CAT 7 (ISO Class F)	600-700 MHz 1.2 <u>GHz</u> in pairs with Siemon connector	Full-motion video Teleradiology Government and manufacturing environments Shielded system

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211752,00.html 40

Coaxial Cable

- Better performance than twisted pair, i.e., higher bandwidth and longer distances.
 - Good noise immunity.
- But...
- Bandwidths close to 1GHz.
- Used widely in telephone networks for longer distances; but gradually being replaced by fiber.
- Used for CATV!

Coaxial Cable

Fiber Optics

- Optical transmission.
- Optical transmission system: light source, medium, and detector.
- Pulse of light = "1".
- No light = "0".
- Transmission medium: ultra thin fiber of glass.
- Detector: generates electrical pulse when perceives light.

Transmitting Light

- (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles.
- (b) Light trapped by total internal reflection.

Fiber Cables

- (a) Side view of a single fiber.
- (b) End view of a sheath with three fibers.

Fiber Optic Networks

A fiber optic ring.

Fiber Optic Networks (2)

A passive star connection in a fiber optics network.

Fiber versus Copper Wire

- Fiber can handle much higher bandwidths.
- Low attenuation: 50km without repeater.
- Unaffected by power surges/outages, and interference.
- Fiber is thin and lightweight: easy to deploy and add new capacity.
- Difficult to tap.
- But...

Fiber versus Copper (cont'd)

- Fiber can be damaged easily.
- Optical transmission is unidirectional, so need 2 fibers or 2 frequencies for 2-way communication.
- Fiber and fiber interfaces is more expensive.

Public Switched Telephone System

- Structure of the Telephone System
- The Politics of Telephones
- The Local Loop: Modems, ADSL and Wireless
- Trunks and Multiplexing
- Switching

Structure of the Telephone System

- (a) Fully-interconnected network.
- (b) Centralized switch.
- (c) Two-level hierarchy.

Structure of the Telephone System (2)

• A typical circuit route for a medium-distance call.

Major Components of the Telephone System

- Local loops:
 - Connection from subscriber to end office.
- Trunks
 - Outgoing lines connecting offices.
- Toll office:
 - Connects end offices.
- Switching offices
 - Where calls are moved from one trunk to another.

