C.1

(a) Deux conditions sont nécessaires à vérifier pour que la fonction f soit définie:

Pour que la racine carrée soit définie, il faut que l'expression se trouvant sous le radical soit positif ou nul; on a la factorisation suivante:

$$x^2 - 1 = (x+1) \cdot (x-1)$$

Le coefficient du terme du second degré étant positif, on en déduit le tableau de signes suivant :

x	$-\infty$	-1		1	$+\infty$
$x^2 - 1$	+	0	_	0	+

On en déduit que l'expression $\sqrt{x^2-1}$ est définie sur : $\mathcal{D} =]-\infty; -1[\cup]1; +\infty[$

Le dénominateur de l'expression de f ne s'annulant pas sur \mathcal{D} , on en déduit que la fonction f admet l'ensemble \mathcal{D} comme ensemble de définition.

• De plus, pour qu'un quotient soit défini, il est nécessaire que son quotient soit non nul; ainsi, la fonction f n'est pas définie en -1.

L'ensemble de définition de la fonction f est: $\mathcal{D}_f =]-\infty; -1[\cup[1;+\infty[$

b • La fonction
$$f$$
 est continue en 1, on a:
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1} - 1}{x + 1} = \frac{\sqrt{1^2 - 1} - 1}{1 + 1} = -\frac{1}{2}$$

• On a <u>les</u> deux limites suivantes:

$$\lim_{x \to -1^{-}} \sqrt{x^2 - 1} - 1 = 0 - 1 = -1 \quad ; \quad \lim_{x \to -1^{-}} x + 1 = 0^{-}$$

On en déduit la valeur limite du quotient :

n en déduit la valeur limite du quotient :
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{\sqrt{x^2 - 1} - 1}{x + 1} = +\infty$$
 utilisera dans les deux limites suivantes, la t

On utilisera dans les deux limites suivantes, la transformation algébrique suivante pour tout $x \in \mathcal{D}_f$ $(0 \notin \mathcal{D}_f)$:

$$f(x) = \frac{\sqrt{x^2 - 1} - 1}{x + 1} = \frac{\sqrt{x^2 \cdot \left(1 - \frac{1}{x^2}\right) - 1}}{x \cdot \left(1 + \frac{1}{x}\right)}$$
$$= \frac{|x| \cdot \sqrt{1 - \frac{1}{x^2}} - 1}{x \cdot \left(1 + \frac{1}{x}\right)} = \frac{|x| \cdot \left(\sqrt{1 - \frac{1}{x^2}} - \frac{1}{|x|}\right)}{x \cdot \left(1 + \frac{1}{x}\right)}$$

• Sur l'intervalle $[1; +\infty[$, on a

$$f(x) = \frac{|x| \cdot \left[\sqrt{1 - \frac{1}{x^2}} - \frac{1}{|x|}\right]}{x \cdot \left(1 + \frac{1}{x}\right)} = \frac{x \cdot \left(\sqrt{1 - \frac{1}{x^2}} - \frac{1}{x}\right)}{x \cdot \left(1 + \frac{1}{x}\right)}$$
$$= \frac{\sqrt{1 - \frac{1}{x^2}} - \frac{1}{x}}{1 + \frac{1}{x}}$$

On a les deux limites suivantes :
$$\lim_{x \mapsto +\infty} \sqrt{1 - \frac{1}{x^2}} - \frac{1}{x} = 1 \quad ; \quad \lim_{x \mapsto +\infty} 1 + \frac{1}{x} = 1$$
 Ainsi, on a la limite suivante du quotient :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{1 - \frac{1}{x^2}} - \frac{1}{x}}{1 + \frac{1}{x}} = \frac{1}{1} = 1$$

• Sur l'intervalle $]-\infty;-1[$, on a:

$$f(x) = \frac{|x| \cdot \left(\sqrt{1 - \frac{1}{x^2}} - \frac{1}{|x|}\right)}{x \cdot \left(1 + \frac{1}{x}\right)} = \frac{-x \cdot \left(\sqrt{1 - \frac{1}{x^2}} - \frac{1}{-x}\right)}{x \cdot \left(1 + \frac{1}{x}\right)}$$
$$= -\frac{\sqrt{1 - \frac{1}{x^2}} + \frac{1}{x}}{1 + \frac{1}{x}}$$

On a les deux limites suivantes :
$$\lim_{x \mapsto -\infty} \sqrt{1 - \frac{1}{x^2}} + \frac{1}{x} = 1 \quad ; \quad \lim_{x \mapsto -\infty} 1 + \frac{1}{x} = 1$$
 Ainsi, on a la limite suivante du quotient :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -\frac{\sqrt{1 - \frac{1}{x^2} + \frac{1}{x}}}{1 + \frac{1}{x}} = -\frac{1}{1} = -1$$

(c) La courbe \mathscr{C}_f admet trois asymptôtes:

 \bullet En $+\infty$, elle admet une asymptôte horizontale d'équation: y=1

• En $-\infty$, elle admet une asymptôte horizontale d'équation: y = -1

 ● En −1 à gauche, elle admet une asymptôte verticale d'équation: x = -1

(2) (a) L'expression de la fonction f est donnée sous la forme $f(x) = \frac{u(x)-1}{v(x)}$ où:

$$u(x) = \sqrt{x^2 - 1}$$
 ; $v(x) = x + 1$

Déterminons les expressions des dérivées de ces deux fonctions:

ullet La fonction u est définie par la composée de la fonction w par la fonction racine carrée où:

$$w(x) = x^2 - 1$$
 ; $w'(x) = 2x$

La formule de dérivation de la composée d'une fonction par la fonction racine carrée permet d'écrire:

$$u'(x) = \frac{w'(x)}{2\sqrt{w(x)}} = \frac{2x}{2\sqrt{x^2 - 1}} = \frac{x}{\sqrt{x^2 - 1}}$$

• v'(x) = 1

La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction f':

$$f'(x) = \frac{u'(x) \cdot v(x) - [u(x) - 1] \cdot v'(x)}{[v(x)]^2}$$

$$= \frac{\frac{x}{\sqrt{x^2 - 1}} \cdot (x + 1) - (\sqrt{x^2 - 1} - 1) \cdot 1}{(x + 1)^2}$$

$$= \frac{\frac{x^2 + x}{\sqrt{x^2 - 1}} - \sqrt{x^2 - 1} + 1}{(x + 1)^2} = \frac{\frac{x^2 + x - (\sqrt{x^2 - 1})^2 + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}}{(x + 1)^2}$$

$$= \frac{\frac{x^2 + x - x^2 + 1 + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}}{(x + 1)^2}$$

$$= \frac{\frac{x + 1 + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}}{(x + 1)^2} = \frac{x + 1 + \sqrt{x^2 - 1}}{(x + 1)^2 \cdot \sqrt{x^2 - 1}}$$

(b) On remarque facilement que sur l'intervalle $[1; +\infty[$, le numérateur et le dénominateur sont strictement positifs: f' est strictement positive sur cet intervalle. La fonction f est strictement croissante sur $[1; +\infty]$.

(3) (a) On a les limites aux bornes de $[1; +\infty[$:

$$f(1) = -\frac{1}{2}$$
; $\lim_{x \to +\infty} f(x) = 1$

De plus, on sait que:

- la fonction f est continue sur $[1; +\infty[$
- la fonction f est strictement croissante sur $[1; +\infty[$
- e nombre 0 est compris entre les limites aux bornes de l'intervalle $[1; +\infty[$.

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in [1; +\infty]$ telle que: $f(\alpha) = 0$

(b) La courbe représentative de cette fonction a pour allure:

A l'aide de la calculatrice, on obtient une valeur approchée de cette racine:

$$\alpha \approx 1,4142$$

ullet La fonction f peut être écrite sous la forme :

$$f(x) = x - 1 + 2 \times \frac{1}{u(x)}$$

où la fonction u est définie par:

$$u(x) = x^2 + 1$$
 ; $u'(x) = 2x$

La formule de dérivation de la composée d'une fonction par la fonction inverse donne l'expression de la function f':

$$f'(x) = 1 + 2 \times \left[-\frac{u'(x)}{[u(x)]^2} \right]$$
$$= 1 + 2 \times \left[-\frac{2x}{(x^2 + 1)^2} \right] = 1 - \frac{4x}{(x^2 + 1)^2}$$

• L'expression de la fonction f' est donnée sous la forme :

$$f'(x) = 1 - \frac{u(x)}{v(x)}$$

où les fonctions u et v sont définies par:

$$u(x) = 4x$$
 ; $v(x) = (x^2 + 1)^2$ qui admettent pour dérivées :

$$\Rightarrow u'(x) = 4$$

 \Rightarrow L'expression de la fonction v est définie par le carré de la fonction w où:

$$w(x) = x^2 + 1$$
 ; $w'(x) = 2x$

La formule de dérivation de la puissance n-ième d'une fonction donne:

$$v'(x) = 2 \times w'(x) \cdot w(x) = 2 \times (2x) (x^2 + 1)$$
$$= 4x \cdot (x^2 + 1)$$

La formule de dérivation du quotient permet d'obtenir

l'expression de la fonction
$$f$$
:
$$f''(x) = 0 - \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2}$$

$$= 0 - \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot \left[4x \cdot (x^2 + 1)\right]}{\left[(x^2 + 1)^2\right]^2}$$

$$= 0 - \frac{4 \cdot (x^2 + 1)^2 - 16x^2 \cdot (x^2 + 1)}{(x^2 + 1)^4}$$

$$= -\frac{(x^2 + 1)\left[4 \cdot (x^2 + 1) - 16x^2\right]}{(x^2 + 1)^4}$$

$$= -\frac{4 \cdot (x^2 + 1) - 16x^2}{(x^2 + 1)^3} = -\frac{4x^2 + 4 - 16x^2}{(x^2 + 1)^3}$$

$$= -\frac{4 - 12x^2}{(x^2 + 1)^3} = \frac{12x^2 - 4}{(x^2 + 1)^3}$$

2 a Le polynôme $12x^2-4$ admet la factorisation: $12x^2-4=4\cdot (3x^2-1)=4\cdot (\sqrt{3}\cdot x+1)\left(\sqrt{3}\cdot x-1\right)$

$$12x^{2} - 4 = 4 \cdot (3x^{2} - 1) = 4 \cdot (\sqrt{3} \cdot x + 1)(\sqrt{3} \cdot x - 1)$$

Ce polynôme admet les deux racines $-\frac{\sqrt{3}}{3}$ et $\frac{\sqrt{3}}{3}$

Le numérateur du quotient définissant la fonction f''est un polynôme du second degré dont le coefficient du terme du second degré est positif.

On a le tableau de signes de la fonction f'':

		O				
x	$-\infty$	$-\frac{\sqrt{3}}{3}$		$\frac{\sqrt{3}}{3}$	+	-∞
$12x^2 - 4$	+	ø	_	0	+	
f''(x)	+	0	_	0	+	

b On a les deux valeurs approchées des deux images suiv-

$$f'\left(-\frac{\sqrt{3}}{3}\right) \approx 2.3 \quad ; \quad f'\left(\frac{\sqrt{3}}{3}\right) \approx -0.3$$

On a la transformation algébrique suivante:
$$f'(x) = 1 - \frac{4 \cdot x}{\left(x^2 + 1\right)^2} = 1 - \frac{4 \cdot x}{\left[x^2 \cdot \left(1 + \frac{1}{x^2}\right)\right]^2}$$
$$= 1 - \frac{4 \cdot x}{x^4 \cdot \left(1 + \frac{1}{x^2}\right)^2} = 1 - \frac{4}{x^3 \cdot \left(1 + \frac{1}{x^2}\right)^2}$$

qui permet d'obtenir les deux limites suivantes:

- $\lim_{x \to -\infty} f'(x) = \lim_{x \to -\infty} 1 \frac{4}{x^3 \cdot \left(1 + \frac{1}{x^2}\right)^2} = 1$
- $\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} 1 \frac{4}{x^3 \cdot \left(1 + \frac{1}{x^2}\right)^2} = 1$

On obtient le tableau de valeur suivant:

- (a) Etudions l'équation f'(x)=0 sur les trois intervalles
 - Sur l'intervalle $\left]-\infty; -\frac{\sqrt{3}}{3}\right[$: La fonction f' admet un minimum valant 1: la fonction f' ne s'annule pas sur ce minimum.
 - Sur l'intervalle $\left[-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3}\right]$: On a les deux images aux born ornes de cet intervalle: $f'\left(-\frac{\sqrt{3}}{3}\right) \approx 2.3 \quad ; \quad f'\left(\frac{\sqrt{3}}{3}\right) \approx -0.3$
 - \Rightarrow la fonction f' est continue sur $\left[-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3}\right]$
 - \Rightarrow la fonction f' est strictement décroissante sur
 - ⇒ le nombre 0 est compris entre les images des bornes de cet intervalle.

D'après le corollaire des valeurs intermédiaire, il existe, une unique valeur $\alpha \in \left[-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3} \right]$ vérifiant :

De plus, des valeurs approchées des images suiv-

 $f'(0,2) \approx 0.26 > 0$; f'(0,3) = -0.01 < 0la fonction f' étant continue et changeant de signe sur [0,2;0,3], on en déduit: $\alpha \in [0,2;0,3]$

• Sur l'intervalle
$$\left[\frac{\sqrt{3}}{3}; +\infty\right]$$
:
On a les limites aux bornes de l'intervalle:
$$f'\left(\frac{\sqrt{3}}{3}\right) \approx -0.3 \quad ; \quad \lim_{x \mapsto +\infty} f'(x) = +\infty.$$

- \Rightarrow la fonction f' est continue sur $\left[\frac{\sqrt{3}}{3}; +\infty\right]$
- \Rightarrow la fonction f' est strictement croissante sur $\left[\frac{\sqrt{3}}{3};+\infty\right]$
- le nombre 0 est compris entre les limites aux bornes de cet intervalle.

D'après le théorème des valeurs intermédiaires, il existe, une unique valeur $\beta \in \left[\frac{\sqrt{3}}{3}; +\infty\right[$.

En observant que f'(1)=0, on en déduit : $\beta=1$

(b) Ainsi, la fonction f' admet le tableau de signes suiv-

d	III :					
	x	$-\infty$	α		1	$+\infty$
	f'(x)	+	0	_	0	+

•
$$\lim_{x \to +\infty} x - 1 + \frac{2}{x^2 + 1} = +\infty$$

Ainsi, on obtient le tableau de variations suivant:

x	$-\infty$	α	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$-\infty$	$f(\alpha) \simeq 1,13$		+∞

(a) Le polynôme P admet pour dérivée le polynôme P'défini par:

$$P'(x) = 6 \cdot x^2 - 6x = 6x \cdot (x - 1)$$

Le coefficient du second degré du polynôme P' est positif; ainsi, le polynôme P' a pour tableau de signes :

x	$-\infty$	0		1	$+\infty$
P'(x)	+	0	_	0	+

Pour $x \neq 0$, on a la transformation algébrique suivante :

$$P(x) = x^3 \cdot \left(2 - \frac{3}{x} - \frac{1}{x^3}\right)$$
 Ainsi, on a les deux limites suivantes:

- $\bullet \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} x^3 \cdot \left(2 \frac{3}{x} \frac{1}{x^3}\right) = -\infty$

La fonction P admet les deux valeurs suivantes :

- $P(0) = 2 \times^3 3 \times 0^2 1 = -1$
- $P(1) = 2 \times 1^3 3 \times 1^2 1 = 2 3 1 = -2$

Ainsi, on a le tableau de vaiation suivant:

- (b) Pour montrer que la fonction f ne s'annule qu'une seule fois sur \mathbb{R} , décomposons notre raisonnement sur les deux intervalles:
 - Sur l'intervalle $]-\infty;1]:$ D'après le tableau de variation, sur l'intervalle]- ∞ ; 1], la fonction f est majorée par -1: la fonction f n'admet aucune racine sur l'intervalle $]-\infty;1]$.
 - Sur l'intervalle $[1; +\infty[: On a: P(1) = -2 : \lim_{x \to +\infty} P(x) = +\infty]$

- \Rightarrow la fonction f est continue sur $[1; +\infty[$
- \Rightarrow la fonction f est strictement croissante sur $|1;+\infty|$
- ≥ Le nombre 0 ést entre les limites aux bornes de l'intervalle $[1; +\infty[$

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique nombre α antécédent du nombre 0 sur cet intervalle:

$$f(\alpha) = 0$$

Pour montrer que le nombre α appartient à l'intervalle [1,6;1,7], on remarque que:

 $P(1,6) \approx -0.49 < 0$; $P(1,7) \approx 0.16 > 0$

De plus, on a:

- la fonction f est continue sur [1,6;1,7]
- la fonction f est strictement croissante sur [1,6;1,7]
- le nombre 0 est compris entre les limites aux bornes de l'intervalle [1,6;1,7]

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique α appartenant à l'intervalle |1,6;1,7| vérifiant:

 $f(\alpha) = 0.$

(2) (a) L'expression de la fonction f est donnée sous la forme du quotient $\frac{u}{v}$ où: u(x) = 1 - x ; $v(x) = 1 + x^3$

$$u(x) = 1 - x$$
 ; $v(x) = 1 + x^3$

qui admettent pour dérivée:

$$u'(x) = -x \quad ; \quad v'(x) = 3 \cdot x^2$$

La formule de dérivation d'un quotient permet d'obtenir l'expression de la fonction f' dérivée de la function f:

$$f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2} = \frac{-1 \cdot (1+x^3) - (1-x) \cdot 3 \cdot x^2}{(1+x^3)^2}$$

$$=\frac{-1-x^3-3\cdot x^2+3\cdot x^3}{\left(1+x^3\right)^2}=\frac{2\cdot x^3-3\cdot x^2-1}{\left(1+x^3\right)^2}=\frac{P(x)}{\left(1+x^3\right)^2}$$

Le dénominateur de ce quotient est positif sur \mathbb{R} : le signe de la fonction f' ne dépend que du signe de P.

x	$-\infty$	α		$+\infty$
P(x)	_	0	+	

La fonction f, définie sur $\mathcal{D} =]-1; +\infty[$, admet le tableau de signes suivant:

x	-1		α		$+\infty$
f'(x)		_	•	+	

On a les limites suivantes:

• Déterminons la limite en -1:

On a les deux limites suivantes:

$$\lim_{x \to -1^+} 1 - x = 2 \quad ; \quad \lim_{x \to -1^+} 1 + x^3 = 0^+$$
 Ainsi, par quotient, on a:

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{1-x}{1+x^3} = +\infty$$

Déterminons la limite en $+\infty$:

Pour $x \neq 0$, on a la transformation algébrique suiv-

$$f(x) = \frac{1-x}{1+x^3} = \frac{x \cdot \left(-1 + \frac{1}{x}\right)}{x \cdot \left(x^2 + \frac{1}{x}\right)} = \frac{-1 + \frac{1}{x}}{x^2 + \frac{1}{x}}$$

On a les deux limites suivantes :
$$\lim_{x \mapsto +\infty} -1 + \frac{1}{x} = -1 \quad ; \quad \lim_{x \mapsto +\infty} x^2 + \frac{1}{x} = +\infty$$
 On en déduit la limite suivante :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-1 + \frac{1}{x}}{x^2 + \frac{1}{x}} = 0$$

Une valeur approchée du minimum de la fonction fobtenue à l'aide de la calculatrice permet d'affirmer:

$$f(\alpha) \approx -0.12$$

On a le tableau de variations suivant:

b On a les deux valeurs suivantes:
$$f(0) = \frac{1-0}{1+0^3} = \frac{1}{1} = 1$$

•
$$f'(0) = \frac{2 \times 0^3 - 3 \times 0^2 - 1}{\left(1 + 0^3\right)^2} = -1$$

Ainsi, la droite (Δ) , tangente à la courbe (\mathscr{C}) au point d'abscisse 0 a pour équation:

$$y = f'(0) \cdot (x - 0) + f(0)$$

$$y = -1 \cdot (x - 0) + 1$$

$$y = -x + 1$$

Pour étudier la position relative de la courbe (\mathscr{C}) et de la droite (Δ) , on étudie le signe de la différence suiv-

$$f(x) - (-x+1) = \frac{1-x}{1+x^3} - (-x+1)$$

$$= \frac{1-x}{1+x^3} + x - 1 = \frac{1-x + (x-1) \cdot (1+x^3)}{1+x^3}$$

$$= \frac{1-x + x + x^4 - 1 - x^3}{1+x^3} = \frac{x^4 - x^3}{1+x^3}$$

$$= \frac{x^3 \cdot (x-1)}{1+x^3}$$

On a le tableau de signes suivant:

x	-1		0		1
x^3		_	0	+	
x-1		_		_	0
$1+x^3$		+		+	
f(x)-(-x+1)		+	0	_	0

On en déduit:

- La courbe (\mathscr{C}) est au dessus de la droite (Δ) sur l'intervalle]-1;0].
- La courbe (\mathscr{C}) est en dessous de la droite (Δ) sur l'intervalle [0;1].

•
$$f'(1) = \frac{2 \times 1^3 - 3 \times 1^2 - 1}{(1+1^3)^2} = \frac{2-3-1}{(1+1)^2}$$

= $\frac{-2}{2^2} = -\frac{1}{2}$

Ainsi, la tangente au point d'abscisse 1 a pour équation réduite:

$$y = f'(1) \cdot (x - 1) + f(1)$$

$$y = -\frac{1}{2} \cdot (x - 1) + 0$$

$$y = -\frac{1}{2} \cdot x + \frac{1}{2}$$

Etudions la différence suivante:

$$\begin{split} f(x) &- \left(-\frac{1}{2} \cdot x + \frac{1}{2} \right) = \frac{1-x}{1+x^3} + \frac{x-1}{2} \\ &= \frac{2-2x}{2 \cdot \left(1+x^3 \right)} + \frac{(x-1)(1+x^3)}{2(1+x^3)} \\ &= \frac{-2(x-1) + (x-1)(1+x^3)}{2(1+x^3)} \\ &= \frac{(x-1)\left(-2+1+x^3 \right)}{2(1+x^3)} = \frac{(x-1)(x^3-1)}{2(1+x^3)} \end{split}$$

On a le tableau de signes suivant:

x	-1		1	$+\infty$
$x^3 - 1$		_	0	+
x-1		_	0	+
$1+x^3$		+		+
$f(x) - \left(-\frac{1}{2} \cdot x + \frac{1}{2}\right)$		+	0	+

Ainsi, la courbe (\mathscr{C}) est située au-dessus de sa tangente au point d'abscisse 1.

Voici la représentation demandée:

C.4

1 a La fonction f admet pour dérivée:

$$f'(x) = 3x^2 + 3$$

La fonction f' est strictement positive sur \mathbb{R} ; on en déduit que la fonction f est strictement croissante sur \mathbb{R} .

De plus, la factorisation suivante:

$$f(x) = x \cdot (x^2 + 3)$$

permet d'obtenir les limites suivantes :

$$\lim_{x \to -\infty} f(x) = -\infty \quad ; \quad \lim_{x \to +\infty} f(x) = +\infty$$

Ainsi, on obtient le tableau de variations suivant:

x	$-\infty$ +	-∞
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$-\infty$	+∞

(b) Sur \mathbb{R} , on a les limites aux bornes:

$$\lim_{x \to -\infty} f(x) = -\infty \quad ; \quad \lim_{x \to +\infty} f(x) = +\infty$$

De plus:

• la fonction f est continue sur \mathbb{R}

- la fonction f strictement croissante sur \mathbb{R}
- le nombre 5 est compris entre les limites de f aux bornes de \mathbb{R}

D'après le corollaire des valeurs intermédiaires, il existe une unique valeur α vérifiant :

$$f(\alpha) = 5.$$

(2) (a) On a le tableau:

	a_n	c_n	b_n	$f(a_n)$	$f(c_n)$	$f(b_n)$
n=0	0	1	2	-5	-1,5	5
n=1	1	1,5	2	-1,5	1,188	5
n=2	1	1,25	1,5	-1,5	-0,273	1,188
n=3	1,25	1,375	1,5	-0,273	0,425	1,188
n=4	1,25	1,313	1,375	-0,273	0,068	0,425
n=5	1,25	1,281	1,313	-0,105	-0,019	0,068
n=6	1,281	1,297	1,313	-0,105	-0,019	0,068

b Ainsi, la valeur α appartient à l'intervalle : [1,281;1,313]

Cet intervalle a une amplitude de:

1,313 - 1,281 = 0,032

C'est la précision qu'on a sur α au rang 6.