CS421-Lecture 11 31 January 2005

Texture Scanning Process

- Recall from last time
 - 1. Generate the texture pattern
 - 2. Choose how it will be "mixed"
 - Position relative to the object face/image fragment
 - 4. Apply to the fragment

.

"Storing" a Texture for OpenGL

- Need an array of texels
 - Size of the texture map
 - Color information specified
 - RGB, RGBA, Red only, Luminance, etc.
 - See Table 8-1 GL pp. 309-10
 - Packing
 - How many bits per component?
 - See Table 8-2 GL pp. 310-11

2

Giving the Texture to OpenGL

- glTexImage2D(GL_TEXTURE_2D, level, components, width, height, border, format, packing, texel array)
 - level Levels of resolution (0 for simple)
 - components Internal format (not guaranteed)
 - width, height texture size
 - border extra dummy pixels for anti-aliasing
 - format Table 8-1
 - packing Table 8-2
 - texel array 2D array matching packing

3

© Eric A. Durant, PhD

CS421-Lecture 11 31 January 2005

Optimizing the Texture

- Placing it in hardware or optimized memory
 - Similar to display lists
 - Allocate the texture object
 glGenTextures(1, id_array);
 - Receive an array of object ids
 - Select the one to use
 - glBindTexture(GL_TEXTURE_2D, id);
 - Make the glTexImage2D Call

Texture Options (1)

- USing gltexParameteri(GL_TEXTURE_2D,...)
 - Before specifying the texture
- Enabling wrapping/tiling
 - GL_TEXTURE_WRAP_S, GL_REPEAT
 - GL_TEXTURE_WRAP_T, GL_REPEAT
- Using clipping
 - Substitute gl_clamp

5

Texture Options (2)

- Texel-Pixel size mismatch types...
 - Magnification
 - GL_TEXTURE_MAG_FILTER
 - Minification
 - GL_TEXTURE_MIN_FILTER
- Handling...
 - GL_NEAREST Closest texel
 - GL_LINEAR Average of 2x2 nearest

6

© Eric A. Durant, PhD

CS421-Lecture 11 31 January 2005

Using the Texture for a **Surface**

- Activate the texture
 - glEnable(GL_TEXTURE_2D);
 - glBindTexture(GL_TEXTURE_2D, id);
- Specify the mixing
 - USe gltexenv*(GL_TEXTURE_ENV,...)
 - Arg. 2 GL_TEXTURE_ENV_MODE to choose mode
 - Arg. 3 is then one of

 - g. 3 is then one of G and G and G and G are G and G and G and G are G and G and G are G and G are

 - GL_DECAL A_t determines fragment vs. texture contribution
 - Tables 9-4 and 9-5 GL pp. 411-12

Positioning the Texture (1)

- Identify position in the texture map
 - glTexCoord2*(s,t);
 - This is a state variable
 - Normal range is [0..1]
 - Values outside this range
 - Refer to points on adjacent tiles

Positioning the Texture (2)

- Map the (s,t) point to a 3-D coordinate
 - Specify a vertex
- Observations
 - Need not use all of (s,t) range
 - Surface shape doesn't have to match texture patch
 - Linear interpolated distortions occur

© Eric A. Durant, PhD

CS421-Lecture 11 31 January 2005

Miscellaneous Texture Options

- Automated texture positioning (Ex. 9-8)
 - glTexGen*(coord, pname, value)
 - As if projected on the surface
 - Texture locked to object e.g., relief map
 - From a fixed or observer position
 - Texture locked in space emphasize object motion?
- Correcting for perspective projections
 - glHint(GL_PERSPECTIVE_CORRECTION, GL_NICEST); // or GL_NICEST or GL_DONT_CARE

10

Mipmapping

- Used when pixel size is large vs. texel
 - i.e., Extensive minification
 - Often as a result of zooming out
- Specify a set of texture maps
 - glBuild2DMipmaps
- Specify mipmap parameters
 - glTexParameteri

11

1-D and 3-D Textures

- 1-D
 - Similar to a line pattern
 - Often tiled to fill a 2-D region
- 3-D
 - Specify a solid model of color
 - Texture is not applied to the surface

12

© Eric A. Durant, PhD