Chapter 6 Computer Arithmetic

Contents

- Introduction
- Binary, Octal, Decimal, Hexadecimal representation
- Integer Numbers: Sign-Magnitude
- 1's complement
- 2's complement
- Addition and Subtraction
- Multiplication Algorithm

Data Types:

- Binary information is stored in *memory* or *processor registers*
- Registers contain either data or control information
 - Data are numbers and other binary-coded information
 - Control information is a bit or a group of bits used to specify the sequence of command signals
- Data types found in the registers of digital computers
 - Numbers used in arithmetic computations
 - Letters of the alphabet used in data processing
 - Other discrete symbols used for specific purpose
- The binary number system is the most natural system to use in a digital computer
- Number Systems
 - Base or Radix r system: uses distinct symbols for r digits
 - Most common number system :Decimal, Binary, Octal, Hexadecimal
 - Positional-value(weight) System : r² r ¹r⁰.r⁻¹ r⁻² r⁻³
 - Multiply each digit by an integer power of r and then form the sum of all weighted digits

- Decimal System/Base-10 System
 - Composed of 10 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- ➤ Binary System/Base-2 System
 - Composed of 2 symbols or numerals(0, 1)
 - Bit = Binary digit
- Octal System/Base-8 System
 - Composed of 8 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7)
 - Bit = Binary digit
- Hexadecimal System/Base-16 System :
 - Composed of 16 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
- ➤ Binary-to-Decimal Conversions

$$1011.101_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

$$= 8_{10} + 0 + 2_{10} + 1_{10} + 0.5_{10} + 0 + 0.125_{10}$$

$$= 11.625_{10}$$

Octal-to-Decimal Conversions

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

= $7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$

> Hexadecimal-to-Decimal Conversions

$$(F3)_{16} = F \times 16 + 3 = 15 \times 16 + 3 = (243)_{10}$$

Conversion of decimal 41.6875 into binary

Repeated division

```
Integer = 41
41/2 = 20
            remainder 1
                               (binary number will end with 1): LSB
20/2 = 10
            remainder 0
10 / 2 =
         5
            remainder 0
5/2 = 2
            remainder 1
2/2=
               remainder 0
1/2=
               remainder 1
                               (binary number will start with 1): MSB
```

Read the result upward to give an answer of $(41)_{10} = (101001)_2$

```
Fraction = 0.6875

0.6875 \times 2 = 1.3750 integer 1

1.3750 \times 2 = 0.7500 integer 0

0.7500 \times 2 = 1.5000 integer 1

1.5000 \times 2 = 1.0000 integer 1

Read the result downward (0.6875)_{10} = (0.1011)_2 (ignore the integral part and multiply only the fractional part until you get 0's in fractional par
```

 $(41.6875)_{10} = (101001.1011)_{2}$

➢ Hex-to-Decimal Conversion

$$2AF_{16} = (2 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})$$
$$= 512_{10} + 160_{10} + 15_{10}$$
$$= 687_{10}$$

➢ Decimal-to-Hex Conversion

```
423_{10} / 16 = 26 remainder 7 (Hex number will end with 7) : LSB
 26_{10} / 16 = 1 remainder 10
  1_{10} / 16 = 0 remainder 1 (Hex number will start with 1) : MSB
 Read the result upward to give an answer of 423_{10} = 1A7_{16}
```

Hex Doc	<u>imal</u>	<u>Binary</u>	
0	<u>IIIIai</u>	0000	0
-			
1		0001	1
2		0010	2
3		0011	3
4		0100	4
5		0101	5
6		0110	6
7		0111	7
8		1000	8
9		1001	9
Α		1010	10
В		1011	11
С		1100	12
D		1101	13
Е		1110	14
F		1111	15
14	0001	0100	20
F8	1111	1000	248

► Hex-to-Binary Conversion

$$9F2_{16} = 9$$

$$= 1001 1111 0010$$

$$= 100111110010_{2}$$

► Binary, octal, and hexadecimal Conversion

Binary-to-Hex Conversion

$$1110100110_{2} = 0011110100110$$

$$3 A 6$$

$$= 3A6_{16}$$

Octal

Binary

Hexadecimal

- Binary-Coded-Decimal Code
 - Each digit of a decimal number is represented by its binary equivalent

```
8 7 4 (Decimal)

↓ ↓ ↓

000 0111 0100 (BCD)
```

- Only the four bit binary numbers from 0000 through 1001 are used
- Comparison of BCD and Binary

```
137_{10} = 10001001_2 (Binary) - require 8 bits 137_{10} = 0001 \ 0011 \ 0111_{BCD} (BCD) - require 12 bits
```

- Alphanumeric Representation
 - Alphanumeric character set
 - 10 decimal digits, 26 letters, special character(\$, +, =,....)
 - ASCII(American Standard Code for Information Interchange)
 - Standard alphanumeric binary code uses seven bits to code 128 characters

ASCII Table

Character	Binary code	Character	Binary code	Character	Binary code	Characte	r Binary code
A	100 0001	U	101 0101	0	011 0000	/	010 1111
В	100 0010	V	101 0110	1	011 0001	,	010 1100
C	100 0011	W	101 0111	2	011 0010	=	011 1101
D	100 0100	X	101 1000	3	011 0011		
E	100 0101	Z	101 1010	4	011 0100		
F	100 0110			5	011 0101		
G	100 0111			6	011 0110		
Н	100 1000			7	011 0111		
I	100 1001			8	011 1000		
J	100 1010			9	011 1001		
K	100 1011						
L	100 1100						
M	100 1101			space	010 0000		
N	100 1110				010 1110		
O	100 1111			(010 1000		
P	101 0000			+	010 1011		
Q	101 0001			\$	010 0100		
R	101 0010			*	010 1010		
S	101 0011)	010 1001		
T	101 0100			-	010 1101		

Complements

- Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation
- There are two types of complements for base r system

```
• 1) r's complement
                                    2) (r-1)'s complement
               Binary number: 2's or 1's complement
              Decimal number: 10's or 9's complement
                                                           N: given number
                                                           r: base

    (r-1)'s Complement

                                                           n: no of digits in the
        (r-1)'s Complement of N = (r^n-1)-N
                                                           given number
            • 9's complement of N=546700
              (10^{6}-1)-546700 = (1000000-1)-546700 = 999999-546700
                                                                     546700(N) + 453299(9's com)
                = 453299
                                                                     =999999
            • 1's complement of N=101101
            (2^{6}-1)-101101=(1000000-1)-101101=111111-101101
                = 010010
                                                            101101(N) + 010010(1's com)
                                                            =1111111
                                                                             * r's Complement

    r's Complement

                                                                             (r-1)'s Complement +1 = (r^n-1)-N+1 = r^n-N

    r's Complement of N = r<sup>n</sup>-N for N != 0 and 0 for N=0

              10's complement of 2389 = (10^4 - 2389) = (10000 - 2389) = 7611
              2's complement of 1101100= 0010011+1= 0010100
```

Subtraction of Unsigned Numbers

- Subtraction of Unsigned Numbers
 - 1) $M + (r^n N)$
 - 2) M ≥ N : Discard end carry, Result = M-N
 - 3) M < N : No end carry, Result = r's complement of (N-M)

```
Decimal Example
          72532(M) - 13250(N) = 59282
            72532
Discard
         6750 (10's complement of 13250)
End Carry
          1 59282
          Result = 59282
    X \ge Y
            Binary Example
          1010100(X) - 1000011(Y) = 0010001
            1010100
Discard
          +0111101 (2's complement of 1000011)
          1 0010001
          Result = 0010001
```

```
13250(M) - 72532(N) = -59282
                   13250
                 + 27468 (10's complement of 72532)
                (0) 40718
No End Carry
                 Result = -(10's complement of 40718)
                        = -(59281+1) = -59282
            1000011(X) - 1010100(Y) = -0010001
    X < Y
              1000011
            + 0101100 (2's complement of 1010100)
 No End
           70 1101111
 Carry
            Result = -(2's complement of 1101111)
                   = -(0010000+1) = -0010001
```

Practice Examples

- 1. Convert the following binary numbers to decimal:
 - a. 101110 b. 1110101 c. 110110100
- 2. Convert the following numbers with the indicated bases to decimal:
 - b. $(12121)_3$ b. $(4310)_5$ c $(50)_7$
- 3. Obtain 9's & 10's complement of the following eight-digit decimal numbers:
 - c. 12349876 b. 00980100 c. 90009951
- 4. Perform the subtraction with the following unsigned decimal numbers by taking the 10's complement of the subtrahend
 - d. 5250-1321
 - e. 1753-8640
 - f. 20-100
 - g. 1200-250
- 5. Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend
 - h. 11010-10000
 - i. 11010-1101
 - j. 100-110000
 - k. 1010100-1010100

Thank You.

Addition ad Subtraction

- All the arithmetic operations can be performed by addition, subtraction, multiplication and division
- Addition and Subtraction operations are performed on
 - Signed magnitude data: 1 bit is used to represent the sign and other bits represent the magnitude.
 - 2'complement data

Magnitude Data

• Addition Algorithm:

When the signs of A and B are identical, add the 2 magnitudes and attach the sign of A to the result When the signs of A and B are different, compare the magnitudes and subtract the smaller number from larger.

Subtraction Algorithm:

When the signs of A and B are different ,add the 2 magnitudes and attach the sign of A to the result When the signs of A and B are identical, compare the magnitudes and subtract the smaller number from larger.

• Choose the sign of the result to be same as A if A>B or complement of A if A<B

Operation	Add Magnitudes	Subtract Magnitudes			
		When A>B	When A <b< th=""><th>When A=B</th></b<>	When A=B	
(+A) + (+B)	+(A+B)				
(+A) + (-B)		+(A-B)	-(B-A)	+(A-B)	
(-A) + (+B)		-(A-B)	+(B-A)	+(A-B)	
(-A) + (-B)	-(A+B)				
(+A) - (+B)		+(A-B)	-(B-A)	+(A-B)	
(+A) - (-B)	+(A+B)				
(-A) - (+B)	-(A+B)				
(-A) - (-B)		-(A-B)	+(B-A)	+(A-B)	

Hardware implementation

- A and B be two registers that hold the magnitudes of No
- As and Bs be two flip-flops that hold the corresponding signs
- The Result is transferred into A and As.
- ➤ Parallel adder is needed to perform the micro operation A + B.
- ➤ Output carry are transferred to E flip-flop
 - Where it can be checked to determine the relative magnitude of the Nos.
- Add overflow flip-flop (AVF) holds the overflow bit when A and B are added.

M=0,Input Carry=0 A+B
M=1,Input Carry=1 A+B'+1

Hardware Algorithm

Addition:

Signs are same ->add Signs are different->subtract

Subtraction:

Signs are same ->subtract Signs are different->add

Addition and Subtraction

- 2's Complement data
- Left most bit of a binary number represents sign-bit. (0 for =ve and 1 for –ve)
- If sign bit=1, then the entire number is represented in 2'complement form.
- Example +33 00100001 -33 11011111
- Addition:
 - Add the numbers and treat the sign bits same as other bits
 - Carry out of the sign bit position is discarded
- Subtraction:
 - Take the 2'complement of the subtrahend and add it to minuend

Addition and Subtraction

 Overflow: When two n-bit numbers are added and the sum occupies n+1 bits

 The overflow can be detected by applying the last two carries out of the addition to an XOR gate. A '1' at the output indicates an overflow.

Hardware and Algorithm for Signed 2's complement Data

Figure: Hardware for signed-2's complement addition and subtraction.

Figure: Algorithm for adding and subtracting numbers in signed-2's complement representation.

Multiplication Algorithm

```
23 10111 Multiplicand

19 × 10011 Multiplier

10111

10111

00000 +

00000

10111

437 110110101 Product
```

Hardware for Multiply operation

Flow Chart for Multiply operation

Multiplicand B = 10111	E	Α	Q	SC
Multiplier in Q	0	00000	10011	101
$Q_n = 1$; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
$Q_n = 1$; add B		10111		
Second partial product	1	00010		
Shift right EAQ	0	10001	01100	011
$Q_n = 0$; shift right EAQ	0	01000	10110	010
$Q_n = 0$; shift right EAQ	0	00100	01011	001
$Q_n = 1$; add B		10111		•
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	000
Final product in $AQ = 0110110101$				

Booth Multiplication Algorithm

- Booth algorithm gives a procedure for multiplying binary integers in signed 2's complement representation in efficient way, i.e., less number of additions/subtractions required.
- It operates on the fact that strings of 0's in the multiplier require no addition but just shifting and a string of 1's in the multiplier from bit weight 2^k to weight 2^m can be treated as 2^(k+1) to 2^m.
- Example: (+14) is represented as 001110 has string of 1's from 2³ to 2¹.

```
Here K=3,m=1 (+14) can be represented as 2^{k+1}-2^{m}=2^{4}-2^{1}=16-2=14. MX14 = MX2<sup>4</sup>-MX2<sup>1</sup>
```

Booth Multiplication Algorithm

- As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and shifting of the partial product.
- Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial product, or left unchanged according to following rules:
 - The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1's in the multiplier
 - The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous '1') in a string of 0's in the multiplier.
 - The partial product does not change when the multiplier bit is identical to the previous multiplier bit.

Algorithm

We name the register as A, B and Q, AC, BR and QR respectively.

On designates the least significant bit of multiplier in the register QR.

An extra flip-flop Qn+1is appended to QR to facilitate a double inspection of the multiplier.

Flowchart

$Q_n Q_{n+1}$	$\frac{BR}{\overline{BR}} = 10111$ $\overline{BR} + 1 = 01001$	AC	QR	Q_{n+1}	SC
	Initial	00000	10011	0	101
1 0	Subtract BR	01001			
		01001			
	ashr	00100	11001	1	100
1 1	ashr	00010	01100	1	011
0 1	Add BR	10111			
_		11001			
	ashr	11100	10110	0	010
0 0	ashr	11110	01011	0	001
1 0	Subtract BR	01001			
		00111			
	ashr	00011	10101	1	000
	43111	00011	10101	1	000

Practice Examples

- Show the contents of E,A,Q and SC during the process of multiplication of two binary numbers, 11111 (multiplicand) and 10101(multiplier). The signs are not included.
- Show the step-by-step multiplication process using Booth algorithm when the following binary numbers are multiplied. Assume 5-bit registers that hold signed numbers.
 - a. (+15) X (+13)
 - b. (+15) X (-13)