Operations on Language: Kleene Closure

We define
$$L^0=\{\epsilon\}$$

$$L^i=LL^{i-1} \text{ for } i>0 \qquad \text{ (that is } L^i=\underbrace{L\cdots L}_{i \text{ times}})$$

$$L^*=\bigcup_{i\geq 0}L^i$$

Note : For
$$z \neq \epsilon$$
 , $z \in L^*$ if and only if there exists i such that $z = x_1 \cdots x_i$ where for all $j \in \{1, \dots, i\}, \ x_j \in L$

 L^st is called the Kleene's closure of L

Also we define
$$L^+ = \bigcup_{i \geq 1} L^i$$

Note : If we choose $L=\Sigma$ then L^* is same as Σ^* which we defined earlier.

Operations on Language: Kleene Closure

We define
$$L^0=\{\epsilon\}$$

$$L^i=LL^{i-1} \text{ for } i>0 \qquad \text{ (that is } L^i=\underbrace{L\cdots L}_{i \text{ times}})$$

$$L^*=\bigcup_{i\geq 0}L^i$$

Note : For $z \neq \epsilon$, $z \in L^*$ if and only if there exists i such that $z = x_1 \cdots x_i$ where for all $j \in \{1, \dots, i\}, \ x_j \in L$

 L^st is called the Kleene's closure of L

Also we define
$$L^+ = \bigcup_{i \geq 1} L^i$$

Note : If we choose $L=\Sigma$ then L^* is same as Σ^* which we defined earlier.

Operations on Language: Concatenation

Note: This is different from (but related to) string concatenation, which we defined earlier.

For languages $L_1, L_2 \subset \Sigma^*$ their concatenation $L_1 L_2$ is defined as,

$$L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$$

Example 1: $L_1 = \{a, b\}, \ L_2 = \{c, d\} \Rightarrow L_1L_2 = \{ac, ad, bc, bd\}$

Example 2: $L_1 = \{a\}^*, \ L_2 = \{b\}^* \Rightarrow L_1L_2 = \{a^ib^j \mid i,j \geq 0\}$

Operations on Language : Complement

For a language L over alphabet Σ , complement of L is defined as,

$$\overline{L} = \Sigma^* \setminus L$$

(which is also a language over the same alphabet)

Example: Let
$$\Sigma=\{a,b\}$$
 and $L=\{ax\mid x\in\Sigma^*\}$ then $\overline{L}=\{bx\mid x\in\Sigma^*\}\cup\{\epsilon\}$

Operations on Language: Union and Intersection

Languages are sets. All the set operations are defined on them.

If L_1 and L_2 are languages over \sum then, $L_1 \cup L_2$ and $L_1 \cap L_2$ are also languages over Σ

$$L_1, L_2 \subset \Sigma^* \Rightarrow L_1 \cup L_2, L_1 \cap L_2 \subset \Sigma^*$$

Example: Let $\Sigma = \{a, b\}$

$$L_1 = \left\{ a^i b^j \mid i \ge j \right\}, \qquad L_2 = \left\{ a^i b^j \mid i \le j \right\}$$
 then $L_1 \cap L_2 = \left\{ a^i b^j \mid i = j \right\}, \qquad L_1 \cup L_2 = \left\{ a^i b^j \mid i, j \in \mathbb{N} \right\}$

 $L_1, L_2, L_1 \cap L_2, L_1 \cup L_2$ all are languages over Σ

(Formal) Language

A **language** over alphabet \sum is a set of strings over \sum .

Equivalently, a language over alphabet Σ is a subset of Σ^* .

Always read the expression $L\subset \Sigma^*$ as L is a language over alphabet Σ

It is sometimes called a **formal language** to distinguish it from **natural language**s like english, bengali etc. We shall always use the term language in the sense formal language.

Example : Consider the alphabet $\Sigma = \{a,b\}$ Here are some examples of languages over Σ

$$\phi = \{\}$$
 is the empty language

$$\{x\in \Sigma^* \quad | \quad |x|<5\} \ \ \text{is a finite language}$$

$$\{x\in\Sigma^* \mid \ |x|>5\}$$
 is an infinite language

 Σ^* is also a language

(Formal) Language

A **language** over alphabet \sum is a set of strings over \sum .

Equivalently, a language over alphabet Σ is a subset of Σ^* .

Always read the expression $\ L \subset \Sigma^*$ as $\ L$ is a language over alphabet $\ \Sigma$

It is sometimes called a **formal language** to distinguish it from **natural language**s like english, bengali etc. We shall always use the term language in the sense formal language.

Example : Consider the alphabet $\Sigma = \{a,b\}$ Here are some examples of languages over Σ

$$\phi=\{\} \ \ \text{is the empty language}$$

$$\{x\in \Sigma^* \quad | \quad |x|<5\} \ \ \text{is a finite language}$$

$$\{x\in \Sigma^* \quad | \quad |x|>5\} \ \ \text{is an infinite language}$$

$$\Sigma^* \ \ \text{is also a language}$$

Prefix, Suffix and Substring

```
If z=xy where x,y,z\in \Sigma^* then, x is a prefix of z and y is a suffix of z
```

Note : For all $x\in \Sigma^*$, $x=x\epsilon=\epsilon x$ (ϵ is the empty string) . So, x is a prefix of x and x is a suffix of x and ϵ is a suffix of ϵ

Example : Prefixes of aab are ϵ, a, aa, aab Suffixes of aab are aab, ab, b, ϵ

If z=xwy where $w,x,y,z\in \Sigma^*$ then, w is a substring of z

Example: aab is a substring of $bb\underline{aab}b$

(Notice that all the prefixes and suffixes are also substrings.)

String Concatenation

The concatenation of two strings $a_1\cdots a_{n_i}$ and $b_1\cdots b_m$ is $a_1\dots a_nb_1\dots b_m$ (a_i s and b_j s are symbols)

Example: Fix alphabet {a,b,c,...,r,s,t}

dog and house are strings over our chosen alphabet concatenation of dog and house is doghouse

Notation : Concatenation of strings $\,x\,$ and $\,y\,$ is simply written as $\,xy\,$

Notice : For all string x , $\epsilon x = x\epsilon = x$ where ϵ is the empty string

Notation : For a string $x \in \Sigma^*$, $x^n \text{ denotes } \underbrace{x \dots x}_{n \text{ times}}$ is defined as the empty string ϵ

Example : If x = ab then $x^3 = ababab$

Example 1: Let
$$\Sigma = \{a,b\}$$

Then,
$$\Sigma^2=\{aa,ab,ba,bb\}$$

$$\Sigma^3=\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$$
 etc.

Example 2 : If
$$\Sigma=\{0,1\}$$
 then $\Sigma^*=\{\epsilon,0,1,00,01,10,11,000,\ldots\}$

Example 3 : If
$$\Sigma = \{a\}$$
 then $\Sigma^* = \{\epsilon, a, aa, aaa, \ldots\}$

Note : Σ^* is an infinite set but, each string in it is of finite length. An infinite sequence like $aaa\ldots$ is NOT a string.

Formal Definitions (Length of String)

- Length of a string is the number of symbols in it. Length of a string $\,x\,$ is denoted by $|x|\,$.

Example: If
$$x = ccabba$$
 then $|x| = 6$

Note: Length of Empty string is zero i.e. $|\epsilon|=0$

- A symbol is identified with the string of length 1 , consisting of that symbol. Thus the alphabet Σ is also the set all strings of length 1.
- For integer n>1, the n-tuple $(a_1,\ldots,a_n)\in \Sigma^n$ is identified with the string $a_1\cdots a_n$ Σ^0 is defined as $\{\epsilon\}$

Thus for **all non-negative integer n**, Σ^n is the set of all strings of length n over Σ

$$\Sigma^*$$
 is the **set of all strings over** Σ i.e. , $\Sigma^* = \bigcup_{i \geq 0} \Sigma^i$

$$\Sigma^+$$
 is the set of all non-empty strings over Σ^- i.e. , $\Sigma^+ = \bigcup_{i \geq 1} \Sigma^i$

`Symbol' is primitive notion

Symbols are not described in terms of anything else.

Consider the strings over the alphabet $\Sigma=\{0,1\}$ of 0,1,00,11 are **NOT NUMBERS**, they are just symbols / strings $00 \neq 0$ They are **DIFFERENT STRINGS** 1+1 is **UNDEFINED**. + is not defined on Σ^*

If we want to interpret the strings as numbers we must define functions to map the strings to numbers.

For example, Let $f: \Sigma^* \to \mathbb{N}$ such that, for all $x \in \Sigma^*$, x is a binary representation of the integer f(x)

Thus $\,00\,$ is a string but, $\,f(00)\,$ is the integer 'zero'

Formal Definitions (Symbol, Alphabet and String)

`symbol' is a <u>primitive notion</u>. In cannot be explained in terms of anything else.
 (like `point' is a primitive notion in geometry)

٠

An alphabet is a nonempty finite set of symbols.

Example : We may choose an alphabet $\Sigma = \{a,b,c\}$

• A string or word , over an alphabet Σ , is a

sequence of finitely many (zero of more) symbols in Σ .

Example: a, bc, cba, caa, abbcbaca etc. are strings over alphabet Σ

• Empty string is the string of zero symbols. It is denoted as ϵ .

Notational Conventions

∑ almost always denotes an alphabet

 Σ^* set of all strings over alphabet Σ

a,b,c,0,1,2 etc. usually denote symbols

u, v, w, x, y, z etc. usually denote strings

Until mentioned otherwise, the expressions

$$a\in \Sigma$$
 means a is a **symbol** in alphabet Σ $x\in \Sigma^*$ means x is a **string** over alphabet Σ

Encoding the Information

Information is encoded as patterns or strings constructed out of a **fixed FINITE set of symbols**.

This finite set of symbols is called alphabet.

Example 2: Texts / programs / codes are usually written as strings over the alphabet consisting of ASCII symbols.

What is Theory of Computation?

A theory to mathematically formalize the intuitive notion of `computation'.

- 1. Formalize how to encode the Input / Output / Intermediate information
- Mathematically describe a model of computation that is, `some kind of machine' or `some sort of rules' to capture the processing.
- The ultimate goal is to classify computational problems according to their hardness.
 (A problem is harder if it requires a machine with more power/resources.)