In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

dataset=pd.read_csv(r'FuelConsumption.csv')
dataset

Out[2]:

	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSIC
0	2014	ACURA	ILX	COMPACT	2.0	4	A:
1	2014	ACURA	ILX	COMPACT	2.4	4	1
2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	A'
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	A:
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5	6	A:
1062	2014	VOLVO	XC60 AWD	SUV - SMALL	3.0	6	A:
1063	2014	VOLVO	XC60 AWD	SUV - SMALL	3.2	6	A:
1064	2014	VOLVO	XC70 AWD	SUV - SMALL	3.0	6	A:
1065	2014	VOLVO	XC70 AWD	SUV - SMALL	3.2	6	A:
1066	2014	VOLVO	XC90 AWD	SUV - STANDARD	3.2	6	A!
1067 rows × 13 columns							
4							>

In [3]:

type(dataset)

Out[3]:

pandas.core.frame.DataFrame

In [4]:

dataset.drop(['MODELYEAR','MAKE','MODEL','VEHICLECLASS','TRANSMISSION','FUELCONSUMPTION_COM
dataset

Out[4]:

	ENGINESIZE	CYLINDERS	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HW
0	2.0	4	Z	9.9	€
1	2.4	4	Z	11.2	7
2	1.5	4	Z	6.0	5
3	3.5	6	Z	12.7	Ę
4	3.5	6	Z	12.1	8
1062	3.0	6	X	13.4	Ę
1063	3.2	6	X	13.2	Ę
1064	3.0	6	X	13.4	Ę
1065	3.2	6	X	12.9	Ę
1066	3.2	6	X	14.9	10
1067	rows × 7 colur	nns			
4					>

In [5]:

dataset.isnull().any()

Out[5]:

ENGINESIZE	False
CYLINDERS	False
FUELTYPE	False
FUELCONSUMPTION_CITY	False
FUELCONSUMPTION_HWY	False
FUELCONSUMPTION_COMB	False
CO2EMISSIONS	False
dtype: bool	

localhost:8888/notebooks/rsip/Team-05 Emission of CO2 from cars.ipynb

In [6]:

dataset.isnull().sum()

Out[6]:

ENGINESIZE 0
CYLINDERS 0
FUELTYPE 0
FUELCONSUMPTION_CITY 0
FUELCONSUMPTION_HWY 0
FUELCONSUMPTION_COMB 0
CO2EMISSIONS 0
dtype: int64

In [7]:

dataset.corr()

Out[7]:

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	FUELCONSUN
ENGINESIZE	1.000000	0.934011	0.832225	
CYLINDERS	0.934011	1.000000	0.796473	
FUELCONSUMPTION_CITY	0.832225	0.796473	1.000000	
FUELCONSUMPTION_HWY	0.778746	0.724594	0.965718	
FUELCONSUMPTION_COMB	0.819482	0.776788	0.995542	
CO2EMISSIONS	0.874154	0.849685	0.898039	
4				>

In [8]:

import seaborn as sns
sns.boxplot(dataset['ENGINESIZE'])

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x28c8af2c548>

In [9]:

sns.boxplot(dataset['CYLINDERS'])

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x28c8c663188>

In [10]:

sns.boxplot(dataset['CO2EMISSIONS'])

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x28c8c6d7908>

In [11]:

```
sns.boxplot(dataset['FUELCONSUMPTION_COMB'])
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x28c8c73d888>

In [12]:

```
x=dataset.iloc[:,0:6].values
x
```

Out[12]:

In [13]:

```
y = dataset.iloc[:,-1].values
y
```

Out[13]:

```
array([196, 221, 136, ..., 271, 260, 294], dtype=int64)
```

```
In [14]:
```

```
dataset['FUELTYPE'].value_counts()
Out[14]:
     514
Χ
Z
     434
Ε
      92
D
      27
Name: FUELTYPE, dtype: int64
In [15]:
import sklearn
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
In [16]:
ct=ColumnTransformer([("on",OneHotEncoder(),[2])],remainder='passthrough')
x=ct.fit_transform(x)
Х
Out[16]:
array([[0.0, 0.0, 0.0, ..., 9.9, 6.7, 8.5],
       [0.0, 0.0, 0.0, \ldots, 11.2, 7.7, 9.6],
       [0.0, 0.0, 0.0, \ldots, 6.0, 5.8, 5.9],
       [0.0, 0.0, 1.0, \ldots, 13.4, 9.8, 11.8],
       [0.0, 0.0, 1.0, \ldots, 12.9, 9.3, 11.3],
       [0.0, 0.0, 1.0, ..., 14.9, 10.2, 12.8]], dtype=object)
In [17]:
x=x[:,1:]
Х
Out[17]:
array([[0.0, 0.0, 1.0, ..., 9.9, 6.7, 8.5],
       [0.0, 0.0, 1.0, \ldots, 11.2, 7.7, 9.6],
       [0.0, 0.0, 1.0, \ldots, 6.0, 5.8, 5.9],
        . . . ,
       [0.0, 1.0, 0.0, \ldots, 13.4, 9.8, 11.8],
       [0.0, 1.0, 0.0, \ldots, 12.9, 9.3, 11.3],
       [0.0, 1.0, 0.0, ..., 14.9, 10.2, 12.8]], dtype=object)
In [18]:
x.shape
Out[18]:
(1067, 8)
```

In [19]:

plt.scatter(x[:,4],y)

Out[19]:

<matplotlib.collections.PathCollection at 0x28c8c960d48>

In [20]:

plt.scatter(x[:,5],y)

Out[20]:

<matplotlib.collections.PathCollection at 0x28c8c9dc048>

In [21]:

plt.scatter(x[:,6],y)

Out[21]:

<matplotlib.collections.PathCollection at 0x28c8ca44d48>

In [22]:

plt.scatter(x[:,7],y)

Out[22]:

<matplotlib.collections.PathCollection at 0x28c8caba848>

In [23]:

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

In [24]:

```
x_train
```

Out[24]:

In [25]:

y_train

Out[25]:

```
array([290, 347, 244, 218, 170, 267, 389, 138, 218, 198, 280, 196, 237
       255, 242, 168, 218, 246, 250, 186, 172, 315, 239, 413, 214, 260
       246, 246, 264, 264, 163, 317, 254, 292, 380, 299, 230, 186, 216
       232, 244, 202, 271, 170, 225, 162, 301, 225, 264, 214, 346, 212,
      191, 244, 242, 196, 207, 212, 288, 382, 294, 267, 235, 235, 322,
      196, 230, 259, 159, 224, 216, 235, 297, 181, 382, 239, 377, 294
       223, 212, 435, 228, 230, 209, 294, 232, 294, 253, 239, 216, 168
       222, 193, 283, 186, 340, 207, 193, 251, 209, 327, 271, 354, 258,
       267, 297, 271, 230, 251, 366, 200, 262, 168, 315, 212, 294, 207,
      207, 258, 196, 209, 221, 362, 389, 347, 308, 191, 198, 363, 260
      235, 255, 294, 225, 232, 297, 232, 290, 251, 304, 182, 175, 277,
      294, 274, 260, 225, 163, 290, 230, 145, 205, 297, 196, 308,
       380, 407, 338, 191, 264, 292, 225, 193, 336, 244, 317, 248, 359,
      196, 380, 179, 209, 237, 306, 235, 223, 338, 163, 317, 297, 237
      184, 258, 338, 359, 235, 182, 260, 354, 244, 281, 324, 264, 165,
      419, 235, 382, 393, 216, 250, 258, 198, 421, 209, 354, 200, 271
      209, 156, 259, 308, 258, 396, 317, 290, 276, 260, 290, 191, 274
      317, 184, 363, 195, 202, 246, 315, 360, 184, 179, 340, 308, 196
       221, 322, 354, 283, 221, 191, 214, 159, 254, 301, 182, 285, 276,
      361, 193, 251, 308, 179, 324, 352, 242, 246, 209, 336, 225, 216,
      200, 244, 317, 306, 184, 318, 209, 320, 246, 366, 255, 248, 269
       258, 264, 346, 271, 350, 255, 189, 230, 161, 292, 218, 184, 253
      288, 317, 347, 270, 237, 253, 228, 432, 294, 260, 244, 212, 228
      170, 340, 225, 126, 213, 250, 294, 182, 278, 344, 414, 258, 315
      297, 248, 189, 277, 232, 221, 207, 292, 294, 409, 264, 299, 230
      402, 294, 362, 189, 216, 239, 276, 352, 177, 145, 283, 262, 165,
      175, 177, 209, 271, 380, 370, 382, 218, 267, 192, 198, 281, 228,
      285, 265, 380, 237, 186, 214, 196, 285, 175, 354, 320, 230, 281,
       281, 207, 414, 264, 246, 278, 377, 380, 209, 329, 278, 269, 269,
       320, 274, 274, 251, 290, 244, 200, 196, 255, 324, 281, 267, 262,
      354, 216, 398, 411, 251, 292, 228, 179, 292, 193, 264, 317, 269
      292, 138, 230, 271, 356, 205, 283, 225, 209, 159, 212, 304, 278,
      235, 255, 177, 262, 198, 260, 393, 166, 310, 248, 228, 310, 253,
       373, 189, 198, 145, 239, 285, 205, 248, 338, 272, 198, 147, 198,
       207, 161, 331, 200, 320, 304, 216, 242, 262, 274, 179, 267, 235,
       216, 175, 198, 411, 179, 380, 297, 301, 179, 138, 380, 264, 278
       230, 368, 235, 244, 246, 209, 297, 175, 269, 214, 347, 232, 338,
      177, 248, 267, 108, 246, 251, 294, 258, 242, 338, 235, 264, 359
       223, 292, 340, 264, 232, 281, 380, 225, 207, 276, 294, 202, 283,
       301, 232, 292, 338, 251, 196, 327, 271, 285, 294, 244, 196, 184,
       184, 209, 297, 209, 260, 200, 177, 221, 216, 223, 223, 191, 179,
       301, 191, 168, 306, 221, 356, 196, 267, 200, 380, 216, 264, 222,
       310, 224, 214, 258, 283, 267, 340, 294, 386, 264, 225, 288, 193
       253, 269, 200, 362, 290, 182, 196, 317, 285, 276, 368, 278, 200,
       278, 258, 228, 336, 193, 281, 207, 202, 228, 184, 152, 184, 253,
       347, 258, 380, 175, 237, 225, 244, 228, 384, 285, 239, 380, 175
      228, 260, 253, 290, 225, 244, 189, 253, 334, 177, 258, 286, 221
       239, 166, 177, 242, 329, 186, 184, 292, 237, 214, 336, 344, 207,
       212, 253, 488, 292, 248, 306, 230, 344, 306, 237, 393, 225,
       248, 283, 196, 237, 317, 271, 317, 264, 255, 413, 380, 255, 380
       292, 276, 235, 292, 228, 189, 172, 198, 301, 237, 277, 308, 278
       262, 159, 315, 393, 200, 331, 297, 173, 419, 186, 260, 193, 202,
       255, 230, 251, 283, 232, 419, 221, 143, 275, 334, 230, 251, 225
       221, 344, 294, 366, 179, 281, 232, 191, 197, 354, 227, 181, 251
       269, 239, 253, 294, 221, 361, 230, 232, 285, 246, 179, 207, 306,
```

```
272, 189, 194, 216, 317, 179, 143, 253, 202, 283, 255, 283, 230, 179, 285, 294, 260, 255, 308, 192, 274, 267, 306, 221, 343, 152, 189, 218, 269, 347, 322, 182, 225, 179, 230, 223, 218, 253, 235, 251, 280, 202, 308, 340, 221, 179, 288, 435, 175, 212, 198, 322, 246, 177, 320, 216, 409, 177, 207, 278, 163, 209, 147, 421, 297, 315, 193, 278, 315, 193, 200, 232, 361, 317, 253, 276, 262, 182, 274, 168, 191, 225, 189, 362, 304, 175, 320, 166, 207, 324, 161, 242, 251, 308, 207, 197, 230, 191, 258, 274, 237, 255, 246, 299, 225, 196, 294, 225, 196, 271, 313, 253, 196, 225, 209, 214, 432, 407, 156, 212, 380, 322, 186, 267, 271, 340, 230, 281, 170, 186, 251, 308, 242, 186, 256, 269, 306, 262], dtype=int64)
```

In [26]:

```
x_test
```

Out[26]:

In [27]:

```
y_test
```

Out[27]:

```
array([356, 209, 230, 212, 168, 292, 212, 276, 202, 334, 313, 437, 224,
       281, 177, 260, 414, 223, 251, 359, 191, 189, 244, 242, 131, 283,
       274, 294, 246, 110, 359, 239, 229, 237, 191, 196, 294, 221, 237,
       237, 184, 184, 202, 194, 297, 198, 260, 179, 344, 359, 338, 288,
       290, 129, 230, 179, 283, 159, 258, 209, 207, 205, 225, 294, 262,
       299, 354, 230, 207, 124, 304, 189, 354, 270, 338, 216, 283, 179,
       235, 166, 186, 253, 161, 334, 407, 246, 191, 172, 290, 258, 262,
       209, 283, 342, 356, 368, 168, 221, 368, 262, 182, 320, 126, 166,
       202, 196, 200, 288, 191, 259, 214, 228, 269, 317, 327, 294, 292,
       244, 361, 200, 258, 191, 382, 147, 179, 310, 229, 237, 292, 264,
       230, 294, 184, 136, 344, 373, 283, 110, 198, 232, 262, 191, 342,
       368, 189, 175, 285, 345, 301, 138, 179, 251, 161, 235, 310, 242,
       292, 221, 324, 235, 177, 209, 177, 202, 242, 205, 264, 184, 400,
       334, 260, 285, 235, 301, 281, 276, 265, 242, 184, 345, 292, 184,
       317, 200, 347, 290, 205, 350, 184, 290, 267, 271, 239, 232, 218,
       269, 228, 216, 255, 317, 260, 225, 223, 329, 290, 288, 294, 258,
       380, 198, 221, 191, 184, 184], dtype=int64)
```

In [28]:

```
from sklearn.preprocessing import StandardScaler
sc1=StandardScaler()
x_train=sc1.fit_transform(x_train)
x_test=sc1.transform(x_test)
```

In [29]:

```
from sklearn.ensemble import RandomForestRegressor
```

In [30]:

rf=RandomForestRegressor(n_estimators=10,criterion="mse",random_state=0,max_depth=5)

In [31]:

```
rf.fit(x_train,y_train)
```

Out[31]:

In [32]:

```
from joblib import dump
dump(rf,'RFR.save')
```

Out[32]:

['RFR.save']

In [33]:

```
y_pred=rf.predict(x_test)
y_pred
```

Out[33]:

```
array([354.41811702, 211.96427987, 234.63331749, 216.10662307,
       172.98801208, 292.94190629, 213.45233014, 281.39590092,
       199.02261235, 351.74868073, 312.94747388, 405.38876607,
       209.23012886, 279.37005348, 178.19672371, 260.15349384,
       399.76558633, 219.52565365, 264.95613472, 354.41811702,
       194.36111718, 193.76274356, 246.05032187, 245.7455449 ,
       128.31666667, 284.31421324, 271.51436073, 296.45119406,
                                 , 354.41811702, 242.40393986,
       246.05032187, 123.14
       231.7239881 , 235.54893173, 194.36111718, 198.15792232,
       294.33919184, 219.52565365, 236.66498524, 238.17367488,
       187.01783499, 182.3309241 , 199.02261235, 175.72804979,
       294.33919184, 199.02261235, 260.64901853, 180.06698583,
       348.85689988, 354.41811702, 351.74868073, 280.59223893,
       288.70266239, 128.31666667, 234.63331749, 180.06698583,
       282.79280745, 170.43183976, 258.87180669, 211.96427987,
       206.2959088 , 206.2959088 , 222.36729626, 296.45119406,
       260.64901853, 295.45808073, 356.83376845, 232.4239881 ,
       206.2959088 , 128.31666667 , 306.22323319 , 192.6823514 ,
       356.83376845, 292.77257564, 345.97938563, 216.63662121,
       284.31421324, 178.19672371, 235.54893173, 172.98801208,
       187.01783499, 255.54094284, 170.43183976, 344.08563563,
       378.51376652, 246.05032187, 194.36111718, 177.32694812,
       296.45119406, 263.5890871 , 260.64901853, 211.96427987,
       284.31421324, 348.85689988, 354.41811702, 354.41811702,
       172.98801208, 220.38858294, 354.41811702, 260.64901853,
       181.58991027, 318.09577257, 123.14
                                               , 172.98801208,
       199.02261235, 198.15792232, 199.02261235, 286.00307542,
       194.36111718, 260.95075127, 215.4083345 , 233.09639441,
       271.12024308, 312.94747388, 321.86836661, 291.79263087,
       294.33919184, 246.40935564, 356.83376845, 198.15792232,
       258.31004198, 194.36111718, 388.84823259, 145.4781746
       180.06698583, 306.78551777, 231.75732143, 236.25580628,
       290.29790048, 262.98762016, 234.63331749, 294.33919184,
       187.01783499, 141.13103175, 348.85689988, 371.43680167,
                                 , 198.15792232, 234.63331749,
       284.31421324, 123.14
       252.26395267, 194.36111718, 348.85689988, 354.41811702,
       192.08655618, 178.19672371, 284.31421324, 352.65934509,
       300.86578267, 141.13103175, 180.06698583, 252.72128747,
       171.84612547, 236.66498524, 308.01145434, 247.32779711,
       290.29790048, 219.52565365, 321.86836661, 238.17367488,
       177.32694812, 211.96427987, 178.19672371, 205.67033437,
       244.83222232, 206.2959088 , 263.71082792, 183.65632977,
       395.7198874 , 348.85689988, 260.64901853, 284.31421324,
       235.54893173, 300.86578267, 280.47204905, 281.39590092,
       262.98762016, 244.83222232, 183.65632977, 355.07499652,
       294.33919184, 182.3309241 , 318.09577257, 198.15792232,
       324.31743697, 288.70266239, 206.2959088, 356.83376845,
       182.3309241 , 294.33919184, 267.93528233, 271.51436073,
       241.28788635, 234.63331749, 218.62430998, 274.9402315
       233.09639441, 216.63662121, 250.01908349, 318.09577257,
       260.64901853, 222.36729626, 220.38858294, 326.92621749,
       293.35476343, 290.65517647, 291.79263087, 258.31004198,
       383.22505285, 198.15792232, 219.52565365, 194.36111718,
       183.65632977, 182.3309241 ])
```

In [34]:
<pre>from sklearn.metrics import r2_score r2_score(y_test,y_pred)</pre>
Out[34]:
0.9913047727968988
In []:
In []: