15.094J: Robust Modeling, Optimization, Computation

Lecture 22: Robust Statistics

Outline

- Robust Regression
- 2 Support Vector Machines
- 3 The impact of Robustness
- Conclusions

Robust Regression

- Given data (y_i, x_i) , $y_i \in \mathbb{R}$, $x_i \in \mathbb{R}^m$, i = 1, 2, ..., n.
- Robust L_p Regression optimization problem:

$$\min_{\boldsymbol{\beta}, \beta_0} \max_{\boldsymbol{\Delta} X \in \mathcal{N}} \| y - (X + \boldsymbol{\Delta} X) \boldsymbol{\beta} - \beta_0 \mathbf{1} \|_{\boldsymbol{\rho}}. \tag{1}$$

- $y = (y_1, \ldots, y_n)'$, $X = (x_1, \ldots, x_n)'$, and $\mathbf{1} = (1, \ldots, 1)'$
- \mathcal{N} is the uncertainty set for ΔX .

Matrix Norms and Uncertainty Sets

• Norm $\| \bullet \|_{q,p}$ for an $n \times m$ matrix A:

$$||A||_{q,p} \equiv \sup_{x \in \mathbb{R}^m, x \neq \mathbf{0}} \frac{||Ax||_p}{||x||_q}, \ q, p \ge 1.$$

- Note that for any $x \in \mathbb{R}^m$ with $||x||_q = 1$, we have that $||A||_{q,p} = ||Ax||_p$.
- $\bullet \ \mathcal{N}_1 = \{ \Delta X \in \mathbb{R}^{n \times m} \mid \|\Delta X\|_{q,p} \le \rho \}.$

Matrix Norms and Uncertainty Sets

• The *p*-Frobenius norm $\| \bullet \|_{p-F}$ of an $n \times m$ matrix A:

$$||A||_{p-F} \equiv \left(\sum_{i=1}^n \sum_{j=1}^m |A_{i,j}|^p\right)^{1/p}.$$

- For p = 2, we obtain the usual Frobenius norm.
- The dual norm of $\| \bullet \|_p$ is $\| \bullet \|_q : \frac{1}{p} + \frac{1}{q} = 1$.
- Thus, dual norm of $\| \bullet \|_p$ is $\| \bullet \|_{d(p)}$ with

$$d(p) = \frac{p}{p-1}, p \ge 1.$$

Note $d(1) = \infty$ and $d(\infty) = 1$.

• $\mathcal{N}_2 = \{ \Delta X \in \mathbb{R}^{n \times m} \mid \|\Delta X\|_{p-F} \le \rho \}.$

Equivalence of Robustification and Reguralization

• Under uncertainty set \mathcal{N}_1 , Problem (1) is equivalent to problem

$$\min_{\boldsymbol{\beta},\beta_0} \parallel \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \beta_0 \boldsymbol{1} \parallel_{\boldsymbol{\rho}} + \rho \parallel \boldsymbol{\beta} \parallel_{\boldsymbol{q}}.$$

• Under uncertainty set \mathcal{N}_2 , Problem (1) is equivalent to problem

$$\min_{\boldsymbol{\beta},\beta_0} \| y - X\boldsymbol{\beta} - \beta_0 \mathbf{1} \|_{\boldsymbol{\rho}} + \rho \| \boldsymbol{\beta} \|_{d(\boldsymbol{\rho})},$$

Properties on matrix norms

Definition:

$$[f(x,p)]_j = \begin{cases} sign(x_j) \left(\frac{|x_j|}{\|x\|_p}\right)^{p-1}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 $j = 1, 2, ..., m,$

where
$$sign(x) = \begin{cases} 1, & x \ge 0, \\ -1, & x < 0. \end{cases}$$

- Proposition 1: (a) $[f(x,p)]'x = ||x||_p$, (b) $||f(x,p)||_{d(p)} = 1$.
- Proposition 2: $||A||_{d(p),p} \le ||A||_{p-F}$.
- Proposition 3: For $u_1 \in \mathbb{R}^n$, $u_2 \in \mathbb{R}^m$, $p, q \ge 1$, $\|u_1u_2'\|_{q,p} = \|u_1\|_p \|u_2\|_{d(q)}$.
- Proposition 4: For $u_1 \in \mathbb{R}^n$, $u_2 \in \mathbb{R}^m$, $p \ge 1$, $\|u_1u_2'\|_{p-F} = \|u_1\|_p\|u_2\|_p$.

Proof of Equivalence of Reguralization and Robustification

$$\|y - (X + \Delta X)\beta - \beta_0 \mathbf{1}\|_p = \|y - X\beta - \beta_0 \mathbf{1} - \Delta X\beta\|_p$$

 $< \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \beta_0 \mathbf{1}\|_{p} + \|\mathbf{\Delta}\mathbf{X}\boldsymbol{\beta}\|_{p}$

We obtain the bound

$$\|\Delta X\beta\|_p \leq \|\Delta X\|_{q,p} \|\beta\|_q$$

Thus, for $\|\Delta X\|_{q,p} \le \rho$, $\|\Delta X\beta\|_p \le \rho \|\beta\|_q$, and for any $\Delta X \in \mathcal{N}_1$,

$$||y - (X + \Delta X)\beta - \beta_0 \mathbf{1}||_p \le ||y - X\beta - \beta_0 \mathbf{1}||_p + \rho ||\beta||_q.$$

Proof Continued

Define

$$\Delta X^{o} = \begin{cases} -\rho \frac{y - X\beta - \beta_{0} \mathbf{1}}{\|y - X\beta - \beta_{0} \mathbf{1}\|_{\rho}} [f(\beta, q)]', & y - X\beta - \beta_{0} \mathbf{1} \neq \mathbf{0}, \\ -\rho u [f(\beta, q)]', & y - X\beta - \beta_{0} \mathbf{1} = \mathbf{0}, \end{cases}$$

- where $f(x,p) \in \mathbb{R}^m$, $x \in \mathbb{R}^m$, $p \ge 1$, $u \in \mathbb{R}^n$, with $||u||_p = 1$.
- For $y X\beta \beta_0 \mathbf{1} \neq \mathbf{0}$:

$$\|y - (X + \Delta X^{\circ})\beta - \beta_0 \mathbf{1}\|_{p} = \|y - X\beta - \beta_0 \mathbf{1} - \Delta X^{\circ}\beta\|_{p}$$

$$= \left\| y - X\beta - \beta_0 \mathbf{1} + \rho \frac{y - X\beta - \beta_0 \mathbf{1}}{\|y - X\beta - \beta_0 \mathbf{1}\|_{\rho}} [f(\beta, q)]'\beta \right\|_{\rho}$$

Proof Continued

$$= \left\| \left(y - X\beta - \beta_0 \mathbf{1} \right) \left(1 + \frac{\rho \|\beta\|_q}{\|y - X\beta - \beta_0 \mathbf{1}\|_p} \right) \right\|_p \quad \left([f(\beta, q)]'\beta = \|\beta\|_q \right)$$

$$= \|y - X\beta - \beta_0 \mathbf{1}\|_p + \rho \|\beta\|_q.$$

Note that when $y - X\beta - \beta_0 \mathbf{1} = \mathbf{0}$, $||y - (X + \Delta X^o)\beta - \beta_0 \mathbf{1}||_p = ||y - X\beta - \beta_0 \mathbf{1}||_p + \rho ||\beta||_q$ as well.

Proof Continued

• From Propositions 1, 3, we have that if $y - X\beta - \beta_0 \mathbf{1} \neq \mathbf{0}$,

$$\|\Delta X^o\|_{q,p} = \rho \left\| \frac{y - X\beta - \beta_0 \mathbf{1}}{\|y - X\beta - \beta_0 \mathbf{1}\|_p} \right\|_p \|f(\beta, q)\|_{d(q)} = \rho,$$

• and if $y - X\beta - \beta_0 \mathbf{1} = \mathbf{0}$,

$$\|\Delta X^{o}\|_{q,p} = \rho \|u\|_{p} \|f(\beta,q)\|_{d(q)} = \rho,$$

and thus, $\Delta X^o \in \mathcal{N}_1$.

Hence

$$\max_{\Delta X \in \mathcal{N}_1} \|y - (X + \Delta X)\beta - \beta_0 \mathbf{1}\|_{p} = \|y - X + \beta - \beta_0 \mathbf{1}\|_{p} + \rho \|\beta\|_{q}$$

Support Vector Machines

• Given categorical data (y_i, x_i) , $y_i \in \{1, -1\}$, $x_i \in \mathbb{R}^m$, $i \in \{1, 2, ..., n\}$, we define the separation error $S(\beta, \beta_0, y, X)$ of the hyperplane classifier $\beta' x + \beta_0 = 0$, $x \in \mathbb{R}^m$, in space \mathbb{R}^m by

$$S(\beta, \beta_0, y, X) = \sum_{i=1}^{n} \max(0, 1 - y_i(\beta' x_i + \beta_0)),$$
 (2)

 The hyperplane which minimizes the separation error is the solution of the optimization problem

$$\min_{\beta,\beta_0} S(\beta,\beta_0,y,X),\tag{3}$$

which can be expressed as the linear optimization problem

$$\begin{array}{ll} \min\limits_{\beta,\beta_0,\xi} & \sum\limits_{i=1}^{\xi_i} \xi_i \\ \text{s.t.} & y_i(\beta'x_i+\beta_0) \geq 1-\xi_i, i \in \{1,2,\ldots,n\} \\ & \xi_i \geq 0, i \in \{1,2,\ldots,n\}. \end{array}$$

Robustification

Consider uncertainty set

$$\mathcal{N}_3 = \left\{ \Delta X \in \mathbb{R}^{n \times m} \mid \sum_{i=1}^n \|\Delta x_i\|_{\rho} \le \rho \right\}. \tag{4}$$

• The robust version of Problem (3):

$$\min_{\boldsymbol{\beta},\beta_0} \max_{\boldsymbol{\Delta}X \in \mathcal{N}_3} S(\boldsymbol{\beta},\beta_0,y,X+\boldsymbol{\Delta}X). \tag{5}$$

Robustification leads to Support Vector Machines

- Definition: The set of data (y_i, x_i) , $i \in \{1, 2, ..., n\}$, is separable if there exists a hyperplane $\beta'x + \beta_0 = 0$ in \mathbb{R}^m , such that for any $i \in \{1, 2, ..., n\}$, $y_i(\beta'x_i + \beta_0) \geq 0$.
- Theorem: If the set of data (y_i, x_i) , $i \in \{1, 2, ..., n\}$ is not separable, Problem (5) is equivalent to problem

$$\begin{aligned} \min_{\beta,\beta_0,\xi} & & \sum_{i=1}^n \xi_i + \rho \parallel \beta \parallel_{d(p)} \\ \text{s.t.} & & \xi_i \geq 1 - y_i (\beta' x_i + \beta_0), i \in \{1,2,\ldots,n\} \\ & & \xi_i \geq 0, i \in \{1,2,\ldots,n\}, \end{aligned}$$

The impact of Robustness

- $x_i \sim N(1, 5I_3), i = 1, ..., 200.$
- $y_i = \beta' x_i + \beta_0 + r$, $\beta_0 = 1$, $\beta = (1, -3, 1)'$, $r \sim N(0, 1)$.
- Training set (50%), testing set (50%).
- $\Delta x_i \sim \rho N(0, \mathbf{1})$.
- The procedure was repeated 30 times and the average performance of each estimate was recorded.

The impact of Robustness

The impact of Robustness

- As ρ increases, the difference in the out-of-sample performance between the robust and the respective classical estimates increases, with the robust estimates always yielding better results.
- The robust regression estimate with p=2 and q=2 shows better performance than the robust regression estimate with p=2 and q=1.

Performance on Real Data

Data set	n	m
Abalone	4177	9
Auto MPG	392	8
Comp Hard	209	7
Concrete	1030	8
Housing	506	13
Space shuttle	23	4
WPBC	46	32

- Training (50%), validation (25%), and testing (25%).
- For each ρ , prediction error on validation set was measured, and ρ with highest performance on validation was used in testing.
- Prediction errors were averaged over the 30 partitions.

Mean square error

Data set	Regular	Rob 2-1	Rob 2-2	Supp vector
Abalone	5.7430	5.6345	5.5369	5.0483*
Auto MPG	18.7928	18.6981	18.5829	12.5251*
Comp Hard	2026.0024	1965.7531	1925.1250*	2348.2914
Concrete	132.4700	131.0820	129.3135	127.0923*
Forest Fires	5525.9994	4994.8077*	5266.3994	5229.5167
Housing	39.8084	39.4257	39.0716	24.6867*
Space shuttle	0.5323	0.5225*	0.5265	0.5501
WPBC	4723.0723	4630.1946	4489.2032	4410.4599*

Conclusions

- Reguralization and Robustfication are Equivalent!
- Insights on the norms to use in regurilization.
- Support vector, method developed 3 decades ago, is one of the strongest performing classification methods.
- Robustness provides insights on the reasons.

