# Grafuri Hamiltoniene

### Definitii

Un graf este hamiltonian dacă admite un **ciclu hamiltonian** adică un ciclu care contine toate nodurile grafului.





### Definitii

Un graf este hamiltonian dacă admite un **ciclu hamiltonian** adică un ciclu care contine toate nodurile grafului.





Ciclu hamiltonian ACDBEA

Nu avem ciclu hamiltonian

### **Istorie**

Ciclu Hamiltonian a fost numit așa după Sir William Rowan Hamilton care în 1856-1857 a inventat un joc care cerea găsirea unui ciclu Hamiltonian. Jocul a fost numit jocul Icosian și cerea găsirea unui ciclu Hamiltonian într-un "dodecaedru".



1856 − Hamilton − "voiaj în jurul lumii":

Există un traseu închis pe muchiile dodecaedrului care să treacă

prin fiecare vârf o singură dată







 Ciclu hamiltonian - trece o singură dată prin toate vârfurile

Graf hamiltonian

Problema comis-voiajorului





Nici unul! De ce?





#### Proprietate (conditie necesara):

Grafurile hamiltoniene sunt biconexe(nu are noduri critice)!

#### Opusul nu este valabil:

• Nu toate grafurile biconexe sunt hamiltoniene:

#### Proprietate (conditie necesara):

Grafurile hamiltoniene sunt biconexe!

#### Opusul nu este valabil:

• Nu toate grafurile biconexe sunt hamiltoniene:



### Grafuri Euleriene

Conditie necesara și suficienta?

### Grafuri Euleriene

Conditie necesara și suficienta?

 DA, fiecare nod trebuie sa aiba grad par (şi graful sa fie conex exceptand nodurile izolate).

### Grafuri hamiltoniene

#### Conditii suficiente:

- Teorema lui Dirac
- Teorema lui Ore
- Teorema lui Chvatal si Erdos
- Teorema lui Goodman si Hedetniemi
- Teorema lui Duffus, Gould si Jacobson, 1981 (similara cu Goodman)

#### **Teorema lui Dirac**

Teorema: Fie G un graf cu ordinul  $n \ge 3$ . Dacă  $\delta(G) \ge n/2$  atunci G este hamiltonian.

#### Demonstrație:

 Alegem un nod v1 la intamplare. (nu conteaza care pentru că, dacă exista ciclul hamiltonian el poate începe în orice nod).

#### **Teorema lui Dirac**

Teorema: Fie G un graf cu ordinul  $n \ge 3$ . Dacă  $\delta(G) \ge n/2$  atunci G este hamiltonian.

#### Demonstrație:

- Alegem un nod x<sub>1</sub> la intamplare. (nu conteaza ce nod pentru că dacă exista un ciclu hamiltonian el poate începe din orice nod).
- Creem un lanţ cat mai lung plecand din x<sub>1</sub> şi obţinem x<sub>1</sub>....x<sub>k</sub>. Dacă k
  == n -> am obtinut lanţ Hamiltonian.
- Dacă avem x<sub>1</sub>...x<sub>k</sub> şi toţi vecinii lui xk au fost deja vizitati putem extinde astfel:

Teorema lui Dirac:Fie G un graf cu ordinul  $n \ge 3$ . Dac a  $\delta(G) \ge n/2$  atunci G este hamiltonian.

- Dacă avem x<sub>1</sub>...x<sub>k</sub> și toți vecinii lui x<sub>k</sub> au fost deja vizitati putem extinde astfel:
  - Observam ca k >= n/2, pentru ca fiecare nod are cel puţin n/2 vecini.
  - 2. Exista cel puţin n/2 noduri i astfel inca avem muchie x<sub>i</sub>x<sub>k</sub>.
  - 3. Exista cel puțin n/2 noduri i astfel inca avem muchie  $x_0x_1$ .
  - 4. Din principiul lui cutiilor lui Diriclet exista un i astfel inca avem muchie și  $x_0x_{i+1}$  și  $x_ix_k$  muchie.

Teorema lui Dirac:Fie G un graf cu ordinul  $n \ge 3$ . Dac a  $\delta(G) \ge n/2$  atunci G este hamiltonian.

- Dacă avem x<sub>1</sub>...x<sub>k</sub> şi toţi vecinii lui x<sub>k</sub> au fost deja vizitati putem extinde astfel:
  - Observam ca k >= n/2, pentru ca fiecare nod are cel puţin n/2 vecini.
  - 2. Exista cel puţin n/2 noduri i astfel inca avem muchie x<sub>i</sub>x<sub>k</sub>.
  - 3. Exista cel puțin n/2 noduri i astfel inca avem muchie  $x_{i+1}x_0$ .
  - 4. Din principiul lui cutiilor lui Diriclet exista un i astfel inca avem muchie și  $x_0x_{i+1}$  și  $x_ix_k$  muchie.
  - Prin urmare obtinem ciclul  $x_0...x_ix_kx_{k-1}...x_{i+1}x_0$ . De asemenea  $x_{k+1}$  va fi conectat cu unul din aceste noduri să zicem  $x_i$  prin urmare putem obține un nou lanț permutand ciclu astfel incat sa se termine în xl și adaugand pe  $x_{k+1}$  dupa.

x(i+1)

Teorema lui Dirac:Fie G un graf cu ordinul  $n \ge 3$ . Dac a  $\delta(G) \ge n/2$  atunci G este hamiltonian.

- Obtinem prin pasi repeteati un sir x₁...x<sub>n</sub>.
- Dacă avem muchie  $x_1x_n$  atunci avem ciclu hamiltonian și am terminat.
- Dacă nu avem muchie folosim același principiu de mai sus și formăm ciclul x<sub>1</sub>...x<sub>i</sub>x<sub>n</sub>x<sub>n-1</sub>...x<sub>i+1</sub>x<sub>1</sub>



### Conditii Suficiente

Teorema lui Ore: Fie G un graf cu ordinul n ≥ 3, dacă avem pentru oricare pereche de noduri neadiacente deg(x) + deg(y) >= n -> atunci graful este Hamiltonian.

https://www.infoarena.ro/ciclu-hamiltonian-in-graf-dens

### Conditii Suficiente

Teorema lui Ore: Fie G un graf cu ordinul n ≥ 3, dacă avem pentru oricare pereche de noduri neadiacente deg(x) + deg(y) >= n -> atunci graful este Hamiltonian.

Teorema lui Dirac:Fie G un graf cu ordinul  $n \ge 3$ . Dac a  $\delta(G) \ge n/2$  atunci G este hamiltonian.

Care teorema este mai puternica?

### Conditii Suficiente

Teorema lui Ore: Fie G un graf cu ordinul n ≥ 3, dacă avem pentru oricare pereche de noduri neadiacente deg(x) + deg(y) >= n -> atunci graful este Hamiltonian.

Teorema lui Dirac: Fie G un graf cu ordinul  $n \ge 3$ . Dac a  $\delta(G) \ge n/2$  atunci G este hamiltonian.

Care teorema este mai puternica?

Teorema lui Ore! Teorema lui Dirac este un caz particular al teoremei lui Ore, pentru că dacă orice nod are gradul >= n/2, orice pereche de noduri are suma gradelor >=n.

Conectivitatea  $\kappa(G)$  unui graf G este este marimea minima a unei mulțimi de tăiere a lui G.

Cum o calculăm?

Conectivitatea  $\kappa(G)$  unui graf G este este marimea minima a unei mulțimi de tăiere a lui G.

Cum o calculăm ? -> Flux maxim = taietura minima.

Conectivitatea κ(G) unui graf G este este marimea minima a unei mulțimi de tăiere a lui G.

O mulţime de noduri a unui graf G este independentă dacă nu contine noduri adiacente. Numărul de independenţă α(G) al unui graf G este marimea cea mai mare posibila a unei mulţimi independente a lui G.



Conectivitatea κ(G) unui graf G este este marimea minima a unei mulțimi de tăiere a lui G.

O mulțime de noduri a unui graf G este independentă dacă nu contine noduri adiacente. Numărul de independență  $\alpha(G)$  al unui graf G este marimea cea mai mare posibila a unei mulțimi independente a lui G.

3 (una din solutii este {0,3,8})



Teorema lui Chvatal si Erdos

Fie G un graf conectat cu ordinal  $n \ge 3$ , conectivitatea  $\kappa(G)$ , și numărul de independență  $\alpha(G)$ . Daca  $\kappa(G) \ge \alpha(G)$ , atunci G este hamiltonian

Teorema lui Goodman si Hedetniemi

Teorema lui Goodman si Hedetniemi

 Daca G este un graf 2-conectat si liber de {K1,3, Z1} atunci G este hamiltonian.





?

Nu este cunoscut un algoritm polinomial pentru a rezolva aceasta problema. Vom avea o discuție mai lungă pe aceasta tema saptamana viitoare.

Nu este cunoscut un algoritm polinomial pentru a rezolva aceasta problema. Vom avea o discuție mai lungă pe aceasta tema saptamana viitoare.

O prima solutie este sa incercam toate permutarile și sa verificam pentru fiecare în parte dacă este o soluție validă:

Nu este cunoscut un algoritm polinomial pentru a rezolva aceasta problema. Vom avea o discuție mai lungă pe aceasta tema saptamana viitoare.

O prima solutie este sa incercam toate permutarile și sa verificam pentru fiecare în parte dacă este o soluție validă:

Complexitate ?

Nu este cunoscut un algoritm polinomial pentru a rezolva aceasta problema. Vom avea o discuție mai lungă pe aceasta tema saptamana viitoare.

O prima solutie este sa incercam toate permutarile și sa verificam pentru fiecare în parte dacă este o soluție validă:

Complexitate O(n! \* n)



O a doua soluție este sa folosim un algoritm exponential mai eficient:

Vom considera matricea  $\mathbb C$  având următoarea semnificaţie:  $\mathbb C[j][k]$  este costul minim al unui lanţ ce începe în nodul 1, se termină în nodul k şi conţine toate nodurile identificate cu 1 în configuraţia binară a lui j exact o singură dată. De exemplu, pentru graful din enunţ, starea caracterizată de tripletul (4, 23, 0) va avea valoarea 7 şi va reprezenta costul minim al unui lanţ ce începe în nodul 4, se termină în nodul 0 şi conţine exact o singură dată nodurile  $\{0, 1, 2, 4\}$ , deoarece  $23 = (10111)_2$  (ordinea biţilor este considerată cea inversă scrierii în baza 2).

Solutia are complexitatea O(2<sup>n</sup> \*n)