## 1

## Control Systems

## G V V Sharma\*

|   |                                  | CONTENTS                                                                                |             | 10 Oscillator 2                                                                                                                           |
|---|----------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <b>Signal</b> 1.1 1.2            | Flow Graph  Mason's Gain Formula  Matrix Formula                                        | 1<br>1<br>1 | Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text. |
|   | 1.2                              | Matrix Porniula                                                                         | 1           | Download python codes using                                                                                                               |
| 2 | Bode P<br>2.1<br>2.2             | Plot Introduction                                                                       | 1<br>1<br>1 | svn co https://github.com/gadepall/school/trunk/<br>control/codes                                                                         |
| 3 | Second order System              |                                                                                         | 1           | 1 Signal Flow Graph                                                                                                                       |
|   | 3.1<br>3.2                       | Damping                                                                                 | 1<br>1      | 1.1 Mason's Gain Formula                                                                                                                  |
| 4 | <b>Routh Hurwitz Criterion</b> 1 |                                                                                         | 1           | 1.2 Matrix Formula                                                                                                                        |
|   | 4.1                              | Routh Array                                                                             | 1           | 2 Bode Plot                                                                                                                               |
|   | 4.2                              | Marginal Stability                                                                      | 1           | 2.1 Introduction                                                                                                                          |
|   | 4.3                              | Stability                                                                               | 1           | 2.2 Example                                                                                                                               |
|   | 4.4                              | Example                                                                                 | 1           | 3 Second order System                                                                                                                     |
| 5 | State-Space Model                |                                                                                         | 1           | 3.1 Damping                                                                                                                               |
|   | 5.1                              | Controllability and Observ-                                                             |             | 3.2 Example                                                                                                                               |
|   |                                  | ability                                                                                 | 1           | 4 Routh Hurwitz Criterion                                                                                                                 |
|   | 5.2                              | Second Order System                                                                     | 1           | 4.1 Routh Array                                                                                                                           |
|   | 5.3<br>5.4                       | Example                                                                                 | 1           | 4.2 Marginal Stability                                                                                                                    |
|   | 3.4                              | Example                                                                                 | 1           | ,                                                                                                                                         |
| 6 | Nyquist Plot                     |                                                                                         | 1           | 4.3 Stability                                                                                                                             |
|   |                                  |                                                                                         |             | 4.4 Example                                                                                                                               |
| 7 | _                                | ensators                                                                                | 2           | 5 State-Space Model                                                                                                                       |
|   | 7.1<br>7.2                       | Phase Lead Example                                                                      | 2 2         | 5.1 Controllability and Observability                                                                                                     |
|   | 1.2                              | Example                                                                                 | 2           | 5.2 Second Order System                                                                                                                   |
| 8 | Gain Margin 2                    |                                                                                         | 2           | 5.3 Example                                                                                                                               |
|   | 8.1                              | Introduction                                                                            | 2           | 5.4 Example                                                                                                                               |
|   | 8.2                              | Example                                                                                 | 2           | 6 Nyquist Plot                                                                                                                            |
| 9 | Phase Margin 2                   |                                                                                         | 2           | 6.1. Find the range of k such that given characteristic equation                                                                          |
|   |                                  | with the Department of Electrical Engineers<br>f Technology, Hyderabad 502285 India e-m |             | $s(s^3 + 2s^2 + s + 1) + k(s^2 + s + 1) = 0$ (6.1.1)                                                                                      |

\*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

is stable.

**Solution:** The General form of characteristic equation :

$$1 + G(s)H(s) = 0 (6.1.2)$$

6.2. We draw nyquist plot for open loop transfer function, which is G(s)H(s). When system is marginally stable nyquist plot ((G(s)H(s))) passes through (-1,0),then 1+G(s)H(s) nyquist plot passes through (0,0). We will make real and imaginary part of characteristic equation to 0.So,that we get k for system to be marginally stable. For the system to be stable, the range of k becomes any value greater than k mimimum.

Realpart = 
$$\omega^4 - \omega^2(k+1) + k = 0$$
 (6.2.1)

$$Imaginary part = -\omega^3 + \omega(w+1) = 0 (6.2.2)$$

By equating real and imaginary to 0 .We get,

$$k = 0 \tag{6.2.3}$$

So,we got minimum value of k is 0 for system to be stable. Then the range of k is

$$0 < k < \infty \tag{6.2.4}$$

- 6.3. For a nyquist plot,no.of clock wise encirclement's around the point(-1,0) for a open loop transfer function gives the total no. right hand side zeros plus total no.of right hand side poles, which gives us a idea about stability of system.
- 6.4. Nyquist plot for different values of k.



through (-1,0) and at k = 1 no, of encirclements about (-1,0) is 0 which implies system is stable as no. of right hand side zeros(positive values) are 0 and also verifies our above result of k range.

Code for Nyquist plot

6.5. Verify using Routh hurwitz criterion

Solution: Routh -hurwitz criterion says system is marginally when no.of sign changes is 0 in matrix and any row of matrix is completely 0. From this, we get minimum value of k for system to be stable

$$s^4 + 2s^3 + s^2(k+1) + s(k+1) + k = 0$$
 (6.5.1)

$$\begin{vmatrix} s^4 \\ s^3 \\ s^2 \\ s^1 \\ s^0 \end{vmatrix} = \begin{pmatrix} 1 & k+1 & k \\ 2 & k+1 & 0 \\ \frac{k+1}{2} & k & 0 \\ \frac{(k-1)^2}{2} & 0 & 0 \\ k & 0 & 0 \end{pmatrix}$$

6.6. For the system to be stable, all values of that matrix should be greater than or equal to 0.So, minimum value of k is,

$$k = 0$$
 (6.6.1)

The range of k system to be stable

$$0 < k < \infty \tag{6.6.2}$$

6.7. Verify it using following routh -hurwitz code.

- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 GAIN MARGIN
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
  10 Oscillator