Fall 2019 Instructor: Daniele Micciancio November 12th, 2019

Problem Set 6

Due November 19th, 2019, 11:59pm

Problem 1 [50 points] Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. Let $D = \{ M \in \{0,1\}^* : 0 < |M| < n2^n \text{ and } |M| \text{ mod } n = 0 \}$.

Let $\mathcal{T}: \{0,1\}^k \times D \to \{0,1\}^n$ be defined as follows:

Alg $\mathcal{T}_K(M)$

$$M[1] \dots M[m] \leftarrow M \; ; \; M[m+1] \leftarrow \langle m \rangle \; ; \; C[0] \leftarrow 0^n$$

For $i=1,\dots,m+1$ do $C[i] \leftarrow E_K(C[i-1] \oplus M[i])$
 $T \leftarrow C[m+1] \; ; \; \text{Return } T$

Above, $M[1] \dots M[m] \leftarrow M$ means we break M into n-bit blocks, and $\langle m \rangle$ indicates the binary representation of m.

Show that \mathcal{T} is an insecure message-authentication code by presenting a $\mathcal{O}(n)$ -time adversary A making at most 2 queries to its **Tag** oracle and achieving $\mathbf{Adv}^{\mathrm{uf-cma}}_{\mathcal{T}}(A) = 1$.

Problem 2 [50 points] Let $\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$ be any symmetric encryption scheme for which \mathcal{E}' encrypts messages of length mn to ciphertexts of length (m+1)n, for any $1 \leq m < n$. Let \mathcal{T}' : $\{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$ be any MAC.

Then, let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme and \mathcal{T} : $\{0,1\}^{2k} \times \{0,1\}^* \to \{0,1\}^{n+k}$ a MAC, with algorithms described below.

The schemes \mathcal{SE} and \mathcal{T} . $\frac{\mathbf{Alg} \ \mathcal{K}}{K \overset{\$}{\leftarrow} \{0,1\}^{2k}}; \text{ Return } K$ $\frac{\mathbf{Alg} \ \mathcal{E}(K,M)}{K_1 \| K_2 \leftarrow K}$ $C' \overset{\$}{\leftarrow} \mathcal{E}'(K_1,M)$ $\text{Return } K_2 \| C'$ $\frac{\mathbf{Alg} \ \mathcal{D}(K,C)}{K_1 \| K_2 \leftarrow K; K' \| C' \leftarrow C$ $M \leftarrow \mathcal{D}'(K_1,C')$ Return M $\frac{\mathbf{Alg} \ \mathcal{T}(K,M)}{K_1 \| K_2 \leftarrow K; T \leftarrow \mathcal{T}'(K_2,M)}$ $\text{Return } K_1 \| T$

```
The scheme \mathcal{AE}.

\frac{\mathbf{Alg} \ \mathcal{K}_a}{K \overset{\$}{\leftarrow} \{0,1\}^{2k}}; \text{ Return } K \| K
\frac{\mathbf{Alg} \ \mathcal{E}_a(K,M)}{K_1 \| K_2 \leftarrow K}
C \overset{\$}{\leftarrow} \mathcal{E}(K_1,M)
T \leftarrow \mathcal{T}(K_2,C)
\text{Return } C \| T
\frac{\mathbf{Alg} \ \mathcal{D}_a(K,C \| T)}{K_1 \| K_2 \leftarrow K}
M \leftarrow \mathcal{D}(K_2,C)
T' \leftarrow \mathcal{T}(K_2,C)
If (T' \neq T) then return \bot else return M
```

Finally, let $\mathcal{AE} = (\mathcal{K}_a, \mathcal{E}_a, \mathcal{D}_a)$ be the AE scheme which combines \mathcal{SE} and \mathcal{T} in a Encrypt-then-MAC generic composition, but using the same key for both encryption and tag generation. These algorithms are described in full detail above. Note that \mathcal{E}_a and \mathcal{D}_a take a key of length 4k, \mathcal{E} and \mathcal{D} take a key of length 2k, and \mathcal{E}' and \mathcal{D}' take a key of length k. Here, k is the time taken to perform one \mathcal{AE} encryption.

- a. Show that \mathcal{AE} is not IND-CPA secure by presenting an $\mathcal{O}(t_E + \ell + k)$ time adversary A_1 making one query with $\mathbf{Adv}^{\text{ind-cpa}}_{\mathcal{AE}}(A_1) = 1$.
- b. Show that \mathcal{AE} is not INT-CTXT secure by presenting an $\mathcal{O}(t_E + \ell + k)$ time adversary A_2 making one query with $\mathbf{Adv}_{\mathcal{AE}}^{\text{int-ctxt}}(A_2) = 1$.

This problem shows that Encrypt-then-MAC is not secure if you use the same key for both primitives. Notice that this is true even if \mathcal{SE} and \mathcal{T} are secure. Think about how you would show that \mathcal{SE} is IND-CPA secure (assuming \mathcal{SE}' is IND-CPA secure) and how you would show that \mathcal{T} is UF-CMA secure (assuming \mathcal{T}' is UF-CMA secure). This will be the topic of an upcoming extra credit question.