632	1. A flexible, hollow waveguide for transmitting radiation
633	in visible and IR regions, comprising:
634	
635	(a) a hollow, flexible tube having a transparent annular
636	body defining a bore with a smooth inner bore surface,
637	
638	(b) a metal layer disposed upon the smooth inner bore
639	surface; and
640	
641	(c) a composite of dielectric, sulfide-containing
642	materials having a high refractive index ratio, said
643	sulfide-containing materials disposed upon said
644	reflective layer and forming a photonic, bandgap tube
645	transmitting in the visible and IR regions.
646	
647	2. The waveguide in accordance with claim 1, wherein said
648	hollow, flexible tube is composed of glass.
649	
650	3. The waveguide in accordance with claim 1, wherein said
651	hollow, flexible glass tube is composed of silica-glass.
652	

654	4. The waveguide in accordance with claim 1, wherein said
655	composite of dielectric, sulfide-containing materials comprise
656	disparate refractive indices of approximately 2 : 1.
657	
658	5. The waveguide in accordance with claim 4, wherein said
659	metallic layer is selected from a group of metals consisting
660	of: Ag, Au, Cu, Pt, Ni, Mb, Al, and combinations thereof.
661	
662	6. The waveguide in accordance with claim 1, further
663	comprising:
664	
665	(d) an outer layer surrounding the hollow, flexible tube.
666	
667	7. The waveguide in accordance with claim 4, wherein the
668	composite of sulfide-containing materials respectively
669	comprise paired composite layers of cadmium and lead sulfide.
670	
671	8. The waveguide of claim 8, wherein said outer layer is
672	composed of a material selected from a group of materials
673	consisting of plastic, silicone.
674	

677	9. A flexible, hollow waveguide, comprising:
678	
679	(a) a flexible, hollow tube having a transparent
680	annular body defining a bore with a smooth inner
681	bore surface;
682	
683	(b) a metallic layer disposed upon the smooth inner
684	bore surface; and
685	
686	(c) a composite of dielectric materials disposed upon
687	the metallic layer featuring disparate refractive
688	indices with a ratio of approximately 2 : 1.
689	
690	10. The waveguide in accordance with claim 9, wherein
691	said composite of dielectric materials respectively comprise
692	two sulfide layers.
693	
694	11. The waveguide in accordance with claim 9, wherein
695	said metallic layer is selected from a group of metals
696	consisting of: Ag, Au, Cu, Pt, Ni, Mb, Al, and combinations
697	thereof.

699	10. The waveguide in accordance with claim 9, further
700	comprising:
701	•
702	(d) an outer layer surrounding the hollow flexible tube.
703	
704	12. The waveguide in accordance with claim 9, wherein
705	the composite of dielectric materials form sulfide-containing
706	layers.
707	
708	13. The waveguide in accordance with claim 9, wherein
709	the composite of dielectric materials respectively comprise
710	cadmium and lead sulfide.
711	
712	14. The waveguide in accordance with claim 11, wherein
713	said outer layer is selected from a group of materials

714 consisting of plastic, silicone.

715	15. A	fle	exible,	hollow	waveguide	for	transmitting
716	radiation	in	visible	and I	R regions,	comp	orising:

718 (a) a hollow, flexible tube having a transparent annular
719 body defining a bore with a smooth inner bore surface;
720 and

721

722

723

724

725

726

(b) a composite of dielectric, paired sulfide-containing materials having a high refractive index ratio, said sulfide-containing materials disposed upon said hollow tube, and forming a photonic, bandgap tube transmitting in the visible and IR regions.

727

728 16. The waveguide in accordance with claim 15, wherein said hollow, flexible tube is composed of glass.

730

731 17. The waveguide in accordance with claim 15, wherein
732 said hollow, flexible glass tube is composed of silica-glass.

733

18. The waveguide in accordance with claim 15, wherein
said composite of dielectric, sulfide-containing materials
comprise disparate refractive indices of approximately 2 : 1.

737 "	19. The waveguide in accordance with claim 18, further
738	comprising:
739	
740	(d) an outer layer surrounding the hollow, flexible tube.
741	
742	20. The waveguide in accordance with claim 15, wherein the
743	composite of sulfide-containing materials respectively
744	comprise paired composite layers of cadmium and lead sulfide.
745	
746	21. The waveguide of claim 19, wherein said outer layer is
747	composed of a material selected from a group of materials
748	consisting of plastic, silicone.
749	
750	22. A flexible, hollow waveguide, comprising:
751	
752	(a) a flexible, hollow tube having a transparent
753	annular body defining a bore with a smooth inner
754	bore surface;
755	
756	(b) a composite of dielectric materials disposed upon
757	the smooth inner bore surface of said transparent

with a ratio of approximately 2:1.

annular body, featuring disparate refractive indices

758

760	23. The waveguide in accordance with claim 22, wherein
761	said composite of dielectric materials respectively
762	comprise two sulfide layers.
763	
764	
765	24. The waveguide in accordance with claim 22, further
766	comprising:
767	
768	(d) an outer layer surrounding the hollow flexible tube.
769	
770	25. The waveguide in accordance with claim 22, wherein the
771	composite of dielectric materials respectively comprise
772	cadmium and lead sulfide.
773	
774	26. The waveguide in accordance with claim 24, wherein said
775	outer layer is selected from a group of materials consisting
776	of plastic, silicone.
777	
778	
779	
780	
7.2.1	

783	27.	A method of fabricating a flexible, hollow waveguide
784		using liquid phase deposition, comprising the steps of:
785		
786		(a) Depositing a metallic layer on a smooth, inner bore
787		surface of a hollow, flexible, silica-glass tube;
788		and
789		
790		(b) depositing at least one layer containing a sulfide
791		upon said metallic layer of step (a).
792		
793	28.	The method in accordance with claim 27, wherein two
794		sulfide-containing layers, cadmium sulfide and lead
795		sulfide, respectively, are deposited upon said metallic
796		layer.
797		
798	29.	The method in accordance with claim 27, wherein a
799		cadmium sulfide layer is deposited upon said metallic
800		layer in accordance with step (b).
801		
802		
803		
804		

806	30.	A method of fabricating a flexible, notion waveguide
807		using liquid phase deposition, comprising the steps of:
808		
809		(a) depositing at first layer of cadmium sulfide upon
810		an inner, smooth bore surface of a hollow silica-
811		glass tube; and
812		
813		(b) depositing at least a second layer of lead sulfide
814		over said first layer of cadmium sulfide.
815		
816	31.	The method in accordance with claim 30, wherein multiple
817		sulfide-containing layers of cadmium sulfide and lead
818		sulfide, respectively, are stack deposited upon said
819		inner, smooth bore of said hollow tube.
820		