Лабораторная работа №1

Численное решение задачи Коши для ОДУ

Постановка тестовой и основной задачи. Целью данной лабораторной работы является освоение одношаговых методов численного интегрирования задачи Коши для ОДУ с элементами оценки погрешности на шаге и управления шагом. Тестовая задача имеет вид:

$$\frac{d u}{d x} = (-1)^{\frac{N_{\Theta}apuahma}{2}} \frac{(N_{\Theta}apuahma)}{2} u$$

$$u(0) = u_{0}.$$
(1)

Основная задача №1 имеет вид:

$$\frac{du}{dx} = f(x)u^{2} + u - u^{3} \sin 10x$$

$$u(0) = u_{0}.$$
(2)

Основная задача №2 имеет вид:

$$\frac{d^{2}u}{dx^{2}} + g(x, u, u') = 0$$

$$u(0) = u_{0}, u'(0) = u_{0}.$$
(3)

Функции f(x), g(x,u,u') определяются вариантом задания, см. табл. 3.

Решите тестовую и основные задачи, используя метод Рунге-Кутта 4-го порядка

- а. без контроля локальной погрешности (с постоянным шагом)
- b. с контролем локальной погрешности (параметр ε должен задаваться с клавиатуры).

Используйте счетчик итераций с контролем максимально допустимого числа итераций $N_{max..}$, а также контроль выхода на правую границу b.

Для тестовой задачи постройте графики точного и приближенного решений. Для основной задачи №1 — график приближенного решения, для основной задачи №2 — графики приближенного решения (в различных осях координат), а также фазовый портрет.

Результаты расчетов одношаговым методом нужно вывести в следующие таблицы:

Таблица 1 Расчет тестовой задачи методом Рунге-Кутта

									,	
i	x_i	v_i	$v2_i$	$v_i - v2_i$	ОЛП	h_i	<i>C1</i>	<i>C</i> 2	u_i	$ u_i-v_i $
1										
n										

Таблица 2

Расчет основной задачи методом Рунге-Кутта

$\mathcal{N}\!$	x_i	v_i	$v2_i$	$v_i - v2_i$	ОЛП	h_i	<i>C1</i>	<i>C</i> 2
1								
n								

Здесь i — номер шага, (x_i, v_i) — точка приближенной траектории, вычисленная методом Рунге-Кутта с «текущим» шагом, $(x_i, v2_i)$ — точка приближенной траектории, вычисленная методом Рунге-Кутта с половинным шагом, $OЛ\Pi$ — оценка локальной погрешности на шаге, $h_i = x_i - x_{i-1}$ — текущий шаг, C1 — счетчик деления шага, C2 — счетчик удвоений шага, (x_i, u_i) — точка точной траектории.

В выходных данных программы должны быть указаны:

$$n = \underbrace{\langle \underline{\hspace{1cm}} \rangle}_{n}, b - x_{n} = \underbrace{\langle \underline{\hspace{1cm}} \rangle}_{n},$$
 $max \mid O\Pi\Pi \mid$

общее число удвоений шага, общее число деления шага,

$$max \ h_i = «___» при \ x = «___»;$$
 $min \ h_i = «___» при \ x = «___».$

Для тестовой задачи: $max |u_i - v_i| = «_____» при <math>x = «_{____}»$.

В от нужно включить поставки задач, описание метода, сведения о погрешности метода, результаты численных экспериментов: таблицы, графики и комментарии к ним.

Варианты заданий

$N_{\!$	f(x)	g(x, u, u')
1	1	$a \sin(u)$
	$1+x^4$	
2	$\frac{x}{1+x^2}$	$au'+b\sin(u)$
3	$\frac{1}{\sqrt[3]{1+x^2}}$	$a(u')^2 + bu$
4	$\frac{x^3+1}{x^5+1}$	au' u' + bu' + cu
5	$\frac{\ln(x+1)}{x^2+1}$	$a(u')^2 + b\sin(u)$
6	$\frac{1}{2x+x^2}$	$a\sqrt{\left(u'\right)^2+1}$
7	$\frac{1}{1+3x+x^2}$	$a\sqrt{\left(u'\right)^2+1}+b$