

MuonHIP Alignment Results

Jim Pivarski, Alexei Safonov

Texas A&M University

28 May, 2008

- ▶ Goal for S156: "few hundred microns" in first muon stations (ultimate goal is 200 μ m with 100 pb⁻¹)
- ► First time we saw low-p muon samples (MuonPT5, MuonPT11)
- ▶ Learned that alignment quality optimized by low p_T cut (10 GeV)
- ▶ Achieved: 500–800 μ m in first muon stations in S156 (10 pb^{-1}) , scale by $\sqrt{10} \to 250 \ \mu\text{m}$ at 100 pb^{-1}
- Strong dependence on tracker alignment
- ▶ Pointing resolution depends on $L_{\text{muon}}/L_{\text{tracker}}$ (negligible), curvature resolution depends on $(L_{\text{muon}}/L_{\text{tracker}})^2$ (important)
- Tracker momentum resolution should scale with statistics. since it is optimized by alignments to $Z \rightarrow \mu\mu$ mass constraints

Barrel aligned positions $(r\phi)$

Jim Pivarski 3/5

Grey: misaligned (1.5 mm), yellow: aligned (680 μ m),

Endcap aligned positions $(r\phi)$

Jim Pivarski

Best results in inner ring (bottom row), where $L_{\rm muon} \sim L_{\rm tracker}$

- Successful exercise from several points of view
 - Resolution equal to or better than initial misalignment in all stations and all parameters
 - ▶ Would scale appropriately to 100 pb⁻¹ goals
 - Clarified exactly how muon alignment depends on tracker
 - Learned how to use low-p muons (previously, an open question)
 - Alignment machinery has matured quite a bit, added cuts against rare bad tracks discovered in the exercise
 - Included studies of how to use data to assess alignment quality (not shown here)
- ▶ Aligned constants used in S156 re-reconstruction
- Working on twiki page!