第三章行列式

- 3.2 使用基本運算求行列式
- 3.3 行列式的性質
- 3.4 特徵值介紹
- 3.5 行列式的應用

3.1 矩陣的行列式

■ 2×2 矩陣的行列式 (determinant)

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\Rightarrow \det(A) = |A| = a_{11}a_{22} - a_{21}a_{12}$$

■注意:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

• 範例 1: 二階矩陣的行列式

$$\begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix} = 2(2) - 1(-3) = 4 + 3 = 7$$

$$\begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 2(2) - 4(1) = 4 - 4 = 0$$

$$\begin{vmatrix} 0 & 3 \\ 2 & 4 \end{vmatrix} = 0(4) - 2(3) = 0 - 6 = -6$$

■注意: 矩陣的行列式可以為正、零或負值。

- *a_{ii}* 的子行列式 (minor)
- 由A消去第i列和第j行所形成矩陣的行列式

$$M_{ij} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1(j-1)} & a_{1(j+1)} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{(i-1)1} & \cdots & a_{(i-1)(j-1)} & a_{(i-1)(j+1)} & \cdots & a_{(i-1)n} \\ a_{(i+1)1} & \cdots & a_{(i+1)(j-1)} & a_{(i+1)(j+1)} & \cdots & a_{(i+1)n} \\ \vdots & & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n(j-1)} & a_{n(j+1)} & \cdots & a_{nn} \end{vmatrix}$$

■ a_{ij} 餘因子 (cofactor)

$$C_{ij} = (-1)^{i+j} M_{ij}$$

- 範例 2:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\Rightarrow M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow C_{21} = (-1)^{2+1} M_{21} = -M_{21}$$

$$M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$$

$$C_{22} = (-1)^{2+2} M_{22} = M_{22}$$

■ 注意:餘因子的符號型式

3×3矩陣 4×4矩陣

n×n矩陣

■ 注意:

奇數位置(i+j是奇數)為負號,並且 偶數位置(i+j為偶數)為正號。 ■範例 2: 求A所有的子行列式和餘因子

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$$

解:(1)所有A的子行列式

$$\Rightarrow M_{11} = \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -1, \ M_{12} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = -5, \ M_{13} = \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = 4$$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2, \quad M_{22} = \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} = -4, \quad M_{23} = \begin{vmatrix} 0 & 2 \\ 4 & 1 \end{vmatrix} = -8$$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 5, \quad M_{32} = \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = -3, \quad M_{33} = \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} = -6$$

解:(2)所有A的餘因子.

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$\Rightarrow C_{11} = + \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -1, C_{12} = - \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = 5, C_{13} = + \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = 4$$

$$C_{21} = -\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = -2, \quad C_{22} = +\begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} = -4, \quad C_{23} = -\begin{vmatrix} 0 & 2 \\ 4 & 1 \end{vmatrix} = 8$$

$$C_{31} = + \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 5, \quad C_{32} = - \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = 3, \quad C_{33} = + \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} = -6$$

■ 定理 3.1: 餘因子展開 (expansion by cofactors)

令A是n階方陣,則A的行列式為

(a)
$$\det(A) = |A| = \sum_{j=1}^{n} a_{ij} C_{ij} = a_{i1} C_{i1} + a_{i2} C_{i2} + \dots + a_{in} C_{in}$$

(第i列展開) $i=1, 2, \dots, n$

或

(b)
$$\det(A) = |A| = \sum_{i=1}^{n} a_{ij} C_{ij} = a_{1j} C_{1j} + a_{2j} C_{2j} + \dots + a_{nj} C_{nj}$$

(第 j行展開) $j=1, 2, \dots, n$

• 範例: 3階矩陣的行列式

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\Rightarrow \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

$$= a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33}$$

$$= a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

$$= a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

$$= a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33}$$

■ 範例3:3階矩陣的行列式

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$$

$$\overset{\text{Ex 2}}{\Rightarrow} C_{11} = -1, C_{12} = 5, \quad C_{13} = 4$$

$$C_{21} = -2, C_{22} = -4, C_{23} = 8$$

$$C_{31} = 5, \quad C_{32} = 3, \quad C_{33} = -6$$

解:

$$\Rightarrow \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = (0)(-1) + (2)(5) + (1)(4) = 14$$

$$= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} = (3)(-2) + (-1)(-4) + (2)(8) = 14$$

$$= a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33} = (4)(5) + (0)(3) + (1)(-6) = 14$$

$$= a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31} = (0)(-1) + (3)(-2) + (4)(5) = 14$$

$$= a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32} = (2)(5) + (-1)(-4) + (0)(3) = 14$$

$$= a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33} = (1)(4) + (2)(8) + (1)(-6) = 14$$

• 範例5:(3階矩陣的行列式)

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix} \implies \det(A) = ?$$

解:

$$C_{11} = (-1)^{1+1} \begin{vmatrix} -1 & 2 \\ 4 & 1 \end{vmatrix} = -9 \quad C_{12} = (-1)^{1+2} \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = (-1)(-5) = 5$$

$$C_{13} = (-1)^{1+3} \begin{vmatrix} 3 & -1 \\ 4 & -4 \end{vmatrix} = -8$$

$$\Rightarrow \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= (0)(-9) + (2)(5) + (1)(-8)$$

= 2

■注意:

包含較多0的列(或行)通常是餘因子展開的最佳選擇。

• 例題4:(4階矩陣的行列式)

$$A = \begin{bmatrix} 1 & -2 & 3 & 0 \\ -1 & 1 & 0 & 2 \\ 0 & 2 & 0 & 3 \\ 3 & 4 & 0 & -2 \end{bmatrix} \Rightarrow \det(A) = ?$$

解:

$$\det(A) = (3)(C_{13}) + (0)(C_{23}) + (0)(C_{33}) + (0)(C_{43})$$

$$= 3C_{13}$$

$$= 3(-1)^{1+3} \begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 4 & -2 \end{vmatrix}$$

$$= 3 \left[(0)(-1)^{2+1} \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} + (2)(-1)^{2+2} \begin{vmatrix} -1 & 2 \\ 3 & -2 \end{vmatrix} + (3)(-1)^{2+3} \begin{vmatrix} -1 & 1 \\ 3 & 4 \end{vmatrix} \right]$$

$$= 3 \left[0 + (2)(1)(-4) + (3)(-1)(-7) \right]$$

$$= (3)(13)$$

$$= 39$$

■ 3×3矩陣的行列式

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

減這三個乘積
$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12} a_{21} a_{22} a_{23} a_{21} a_{22} a_{31} a_{32} a_{31} a_{32} 加這三個乘積

$$\Rightarrow \det(A) = |A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

• 範例 5:

$$\Rightarrow \det(A) = |A| = 0 + 16 - 12 - (-4) - 0 - 6 = 2$$

- ■上三角矩陣 (upper triangular matrix)
 矩陣之主對角線下方的元素都為零
- ■下三角矩陣 (lower triangular matrix) 矩陣之主對角線上方的元素都為零
- 對角矩陣 (diagonal matrix)

矩陣之主對角線上方和下方的元素皆為零

- ■注意:
 - 一個矩陣同時為上三角與下三角被稱為對角(diagonal)

■ 範例:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

對角矩陣

■ 定理 3.2: 三角矩陣的行列式

若 A 是 n 階三角矩陣,則它的行列式為主對角線上元素的乘積。即

$$\det(A) = |A| = a_{11}a_{22}a_{33}\cdots a_{nn}$$

■範例 6: 求下列矩陣的行列式

(a)
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ -5 & 6 & 1 & 0 \\ 1 & 5 & 3 & 3 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ -5 & 6 & 1 & 0 \\ 1 & 5 & 3 & 3 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$

解:

(a)
$$|A|=(2)(-2)(1)(3)=-12$$

(b)
$$|B|=(-1)(3)(2)(4)(-2)=48$$

摘要與複習(3.1節之關鍵詞)

■ determinant: 行列式

■ minor: 子行列式

■ cofactor: 餘因子

■ expansion by cofactors: 餘因子展開

■ upper triangular matrix: 上三角矩陣

■ lower triangular matrix: 下三角矩陣

■ diagonal matrix: 對角矩陣

3.2 使用基本運算求行列式

■ 定理 3.3: 基本列運算和行列式

令A和B是方形矩陣

(a)
$$B = r_{ij}(A)$$
 \Rightarrow $\det(B) = -\det(A)$ (i.e. $|r_{ij}(A)| = -|A|$)

(b)
$$B = r_i^{(k)}(A) \implies \det(B) = k \det(A)$$
 (i.e. $\left| r_i^{(k)}(A) \right| = k |A|$)

(c)
$$B = r_{ij}^{(k)}(A) \implies \det(B) = \det(A)$$
 (i.e. $\left| r_{ij}^{(k)}(A) \right| = \left| A \right|$)

■ 範例:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{bmatrix} \qquad \det(A) = -2$$

$$A_{1} = \begin{bmatrix} 4 & 8 & 12 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -3 & -2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$A_1 = r_1^{(4)}(A) \implies \det(A_1) = \det(r_1^{(4)}(A)) = 4\det(A) = (4)(-2) = -8$$

$$A_2 = r_{12}(A)$$
 $\Rightarrow \det(A_2) = \det(r_{12}(A)) = -\det(A) = -(-2) = 2$

$$A_3 = r_{12}^{(-2)}(A) \implies \det(A_3) = \det(r_{12}^{(-2)}(A)) = \det(A) = -2$$

■注意:

$$\det(r_{ij}(A)) = -\det(A) \implies \det(A) = -\det(r_{ij}(A))$$

$$\det(r_i^{(k)}(A)) = k \det(A) \implies \det(A) = \frac{1}{k} \det(r_i^{(k)}(A))$$

$$\det(r_{ij}^{(k)}(A)) = \det(A) \implies \det(A) = \det(r_{ij}^{(k)}(A))$$

注意:

方陣的列梯形形式為上三角矩陣

範例 2: 使用基本列運算求行列式值

$$A = \begin{bmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{bmatrix} \implies \det(A) = ?$$

解:

$$\det(A) = \begin{vmatrix} 2 & -3 & 10 \\ 1 & 2 & -2 \\ 0 & 1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -2 \\ 2 & -3 & 10 \\ 0 & 1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} r_{12} \\ = - \begin{vmatrix} 1 & 2 & -2 \\ 0 & -7 & 14 \end{vmatrix} = (-1)(\frac{1}{\frac{-1}{7}}) \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \end{vmatrix}$$

$$= 7 \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \end{vmatrix} = (7)(1)(1)(-1) = -7$$

$$\begin{vmatrix} 0 & 0 & -1 \end{vmatrix}$$

■注意:

$$|EA| = |E||A|$$

(1)
$$E = R_{ij}$$
 $\Rightarrow |E| = |R_{ij}| = -1$
 $\Rightarrow |EA| = |r_{ij}(A)| = -|A| = |R_{ij}||A| = |E||A|$

(2)
$$E = R_i^{(k)} \implies |E| = |R_i^{(k)}| = k$$

$$\implies |EA| = |r_i^{(k)}(A)| = k|A| = |R_i^{(k)}||A| = |E||A|$$

(3)
$$E = R_{ij}^{(k)} \implies \left| E \right| = \left| R_{ij}^{(k)} \right| = 1$$
$$\implies \left| EA \right| = \left| r_{ij}^{(k)} \left(A \right) \right| = 1 |A| = \left| R_{ij}^{(k)} \left\| A \right| = \left| E \right\| A \right|$$

• 行列式與基本列運算

■ 定理: (基本列運算與行列式)

令A和B是方形矩陣

(a)
$$B = c_{ij}(A)$$
 \Rightarrow $\det(B) = -\det(A)$ (i.e. $|c_{ij}(A)| = -|A|$)

(b)
$$B = c_i^{(k)}(A) \implies \det(B) = k \det(A)$$
 (i.e. $|c_i^{(k)}(A)| = k|A|$)

(c)
$$B = c_{ii}^{(k)}(A) \implies \det(B) = \det(A)$$
 (i.e. $|c_{ii}^{(k)}(A)| = |A|$)

• 範例:
$$A = \begin{bmatrix} 2 & 1 & -3 \\ 4 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad \det(A) = -8$$

$$\begin{bmatrix} 1 & 1 & -3 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 1 & 1 & -3 \\ 2 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A_1 = c_1^{(\frac{1}{2})}(A) \implies \det(A_1) = \det(c_1^{(4)}(A)) = \frac{1}{2}\det(A) = (\frac{1}{2})(-8) = -4$$

$$A_2 = c_{12}(A)$$
 $\Rightarrow \det(A_2) = \det(c_{12}(A)) = -\det(A) = -(-8) = 8$

$$A_3 = c_{23}^{(3)}(A) \implies \det(A_3) = \det(c_{23}^{(3)}(A)) = \det(A) = -8$$

■ 定理 3.4: 產生零行列式的條件

若A是方陣並且下列任何的條件是成立的,則det(A)=0

- (a) 一整列(或一整行)全為零
- (b) 兩列(或行)是相等的
- (c) 某一列(或行)是另一列(或行)的倍數

- 範例:

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{vmatrix} = 0$$

$$\begin{array}{c|cccc}
1 & 1 & 1 \\
2 & 2 & 2 & = 0 \\
4 & 5 & 6 & & & \\
\end{array}$$

$$\begin{vmatrix} 1 & 4 & 2 \\ 1 & 5 & 2 \\ 1 & 6 & 2 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -2 & -4 & -6 \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 & 8 & 4 \\ 2 & 10 & 5 \\ 3 & 12 & 6 \end{vmatrix} = 0$$

•注意:

	餘因子展開		列簡化	
n階	加法	乘法	加法	乘法
3	5	9	5	10
5	119	205	30	45
10	3628799	6235300	285	339

• 範例 5: 求行列式

$$A = \begin{bmatrix} -3 & 5 & 2 \\ 2 & -4 & -1 \\ -3 & 0 & 6 \end{bmatrix}$$

解:

$$\det(A) = \begin{vmatrix} -3 & 5 & 2 \\ 2 & -4 & -1 \\ -3 & 0 & 6 \end{vmatrix} = \begin{vmatrix} -3 & 5 & -4 \\ 2 & -4 & 3 \end{vmatrix} = (-3)(-1)^{3+1} \begin{vmatrix} 5 & -4 \\ -4 & 3 \end{vmatrix} = (-3)(-1) = 3$$

$$\det(A) = \begin{vmatrix} -3 & 5 & 2 \\ 2 & -4 & -1 \\ -3 & 0 & 6 \end{vmatrix} \begin{vmatrix} -\frac{2}{5} \\ -3 & 0 \end{vmatrix} = \begin{vmatrix} 5 \\ 2 \\ -3 & 0 \end{vmatrix} = (5)(-1)^{1+2} \begin{vmatrix} -\frac{2}{5} & \frac{3}{5} \\ -3 & 6 \end{vmatrix} = (-5)(-\frac{3}{5}) = 3$$

■範例 6: 求行列式

$$A = \begin{bmatrix} 2 & 0 & 1 & 3 & -2 \\ -2 & 1 & 3 & 2 & -1 \\ 1 & 0 & -1 & 2 & 3 \\ 3 & -1 & 2 & 4 & -3 \\ 1 & 1 & 3 & 2 & 0 \end{bmatrix}$$

解:

$$\det(A) = \begin{vmatrix} 2 & 0 & 1 & 3 & -2 \\ -2 & 1 & 3 & 2 & -1 \\ 1 & 0 & -1 & 2 & 3 \\ 3 & -1 & 2 & 4 & -3 \\ 1 & 1 & 3 & 2 & 0 \end{vmatrix} \begin{vmatrix} 2 & 0 \\ -2 & 1 \\ 1 & 0 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 1 & 3 & 2 \\ -2 & 1 \\ 1 & 0 & -1 & 2 \\ 3 & 2 & -1 \\ 1 & 0 & 5 & 6 & -4 \\ 1 & 0 & 0 & 0 & 1 \end{vmatrix} = (1)(-1)^{2+2} \begin{vmatrix} 2 & 1 & 3 & -2 \\ 1 & -1 & 2 & 3 \\ 1 & 5 & 6 & -4 \\ 3 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix}
8 & 1 & 3 & -2 \\
-8 & -1 & 2 & 3 \\
13 & 5 & 6 & -4
\end{vmatrix} = (1)(-1)^{4+4} \begin{vmatrix}
8 & 1 & 3 \\
-8 & -1 & 2 \\
13 & 5 & 6
\end{vmatrix} = \begin{vmatrix}
0 & 0 & 5 \\
-8 & -1 & 2 \\
13 & 5 & 6
\end{vmatrix}$$

$$= 5(-1)^{1+3} \begin{vmatrix}
-8 & -1 \\
13 & 5
\end{vmatrix}$$

$$= (5)(-27)$$

$$= -135$$

3.3 行列式的性質

■定理3.5:矩陣相乘的行列式

$$det(AB) = det(A) det(B)$$

- ■注意:
 - (1) det(EA) = det(E) det(A)
 - (2) $\det(A+B) \neq \det(A) + \det(B)$
 - (3)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

■ 範例 1: 矩陣相乘的行列式

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{vmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{vmatrix} \qquad B = \begin{vmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{vmatrix}$$

求 |A|、|B| 與 |AB|

解:

$$\begin{vmatrix} B & 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{vmatrix} = 11$$

$$AB = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{bmatrix}$$

$$\Rightarrow |AB| = \begin{vmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{vmatrix} = -77$$

$$|AB| = |A| |B|$$

■定理 3.6:矩陣純量積的行列式

■ 範例 2:

$$A = \begin{bmatrix} 10 & -20 & 40 \\ 30 & 0 & 50 \\ -20 & -30 & 10 \end{bmatrix}, \quad \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = 5$$

解:
$$A = 10 \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{bmatrix} \Rightarrow |A| = 10^{3} \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = (1000)(5) = 5000$$

線性代數: 3.3節 p.177

■定理 3.7:可逆矩陣的行列式

方陣A是可逆(非奇異)若且唯若 det (A)≠0

■範例3:下列兩個矩陣那一個是可逆?

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

$$|A|=0$$
 \Rightarrow A是不可逆(奇異)

$$|B| = -12 ≠ 0$$
 ⇒ B是可逆(非奇異)

■定理 3.8:反矩陣的行列式

若A是可逆,則
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

■定理 3.9:轉置的行列式

若
$$A$$
 是一方陣,則 $det(A^{T}) = det(A)$

• 範例 4:
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$
(a) $|A^{-1}| = ?$ (b) $|A^{T}| = ?$

(a)
$$\left|A^{-1}\right| = ?$$
 (b)

(b)
$$\left|A^{T}\right| = ?$$

解:

$$|A| = \begin{vmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{vmatrix} = 4$$

$$|A^{-1}| = \frac{1}{|A|} = \frac{1}{4}$$

$$|A^{T}| = |A| = 4$$

■ 非奇異矩陣的等價條件

若A是一個n×n矩陣,下列敘述是等價的

- (1) A是可逆
- (2) 對每一個 $n \times 1$ 矩陣 \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ 具有唯一解
- (3) $A\mathbf{x} = \mathbf{0}$ 只有顯然解
- (4) A列等價於 I_n
- (5) A可以寫為一些基本矩陣的相乘
- (6) $\det(A) \neq 0$

■ 範例 5:下列系統何者有唯一解?

(a)
$$2x_{2} - x_{3} = -1$$

$$3x_{1} - 2x_{2} + x_{3} = 4$$

$$3x_{1} + 2x_{2} - x_{3} = -4$$
(b)
$$2x_{2} - x_{3} = -1$$

$$3x_{1} - 2x_{2} + x_{3} = 4$$

$$3x_{1} + 2x_{2} + x_{3} = -4$$

解:

(a)
$$A\mathbf{x} = \mathbf{b}$$

$$|A| = 0$$

: 這個系統沒有唯一解

(b)
$$B\mathbf{x} = \mathbf{b}$$

$$\therefore |B| = -12 \neq 0$$

: 這個系統有唯一解

3.4 特徵值的介紹

■特徵值問題 (eigenvalue problem)

■特徵值(eigenvalue)與特徵向量(eigenvector)

A:n×n 矩陣

λ:純量

 $x: R^n$ 中的非零向量

線性代數: 3.4節 p.187

■ 範例1:證明特徵值與特徵向量

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \quad x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad x_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
特徵值
$$Ax_1 = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5x_1$$
特徵向量
$$Ax_2 = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = (-1)x_2$$

特徵向量

線性代數: 3.4節 p.188

- 問題:

給予一個 n×n 矩陣A, 如何求其特徵值與其對應之特徵向量?

注意:

$$Ax = \lambda x \Rightarrow (\lambda I - A)x = 0$$
 (齊次系統)
當 $(\lambda I - A)x = 0$ 時有非零解,若且唯若 $\det(\lambda I - A) = 0$

■ A的特徵方程式 (characteristic equation) $A \in M_{n \times n}$:

$$\det(\lambda \mathbf{I} - A) = |(\lambda \mathbf{I} - A)| = \lambda^{n} + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0 = 0$$

■ 範例 2: 求特徵值與特徵向量

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

解:特徵方程式:

$$(\lambda \mathbf{I} - A) = \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$
$$= \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1) = 0$$
$$\Rightarrow \lambda = 5, -1$$

特徴值: $\lambda_1 = 5, \lambda_2 = -1$

$$(1)\lambda_{1} = 5 \qquad \Rightarrow (\lambda_{1}I - A)x = \begin{bmatrix} 4 & -4 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ t \neq 0$$

$$(2)\lambda_{2} = -1 \qquad \Rightarrow (\lambda_{2}I - A)x = \begin{bmatrix} -2 & -4 \\ -2 & -4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2t \\ -t \end{bmatrix} = t \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \ t \neq 0$$

■ 範例3: 求特徵值與特徵向量

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

解:特徵方程式:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & 2 \\ -1 & \lambda - 2 & -1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 3) = 0$$

特徵值: $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 3$

$$\lambda_{1} = 1 \Rightarrow \lambda_{1} \mathbf{I} - A = \begin{bmatrix} 0 & -2 & 2 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2t \\ t \\ t \end{bmatrix} \Rightarrow 特徴向量: t \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = -1 \Rightarrow \lambda_2 \mathbf{I} - A = \begin{bmatrix} -2 & -2 & 2 \\ -1 & -3 & -1 \\ 1 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2t \\ -t \\ t \end{bmatrix} \Rightarrow 特徴向量: t \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

$$\lambda_3 = 3 \Rightarrow \lambda_3 \mathbf{I} - A = \begin{vmatrix} 2 & -2 & 2 \\ -1 & 1 & -1 \\ 1 & 1 & 3 \end{vmatrix} \sim \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2t \\ -t \\ t \end{bmatrix} \Rightarrow 特徴向量: t \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

3.5 行列式的應用

■ A的餘因子矩陣 (matrix of cofactors of A)

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

$$C_{ij} = (-1)^{i+j} M_{ij}$$

■ A的伴隨矩陣 (adjoint matrix of A)

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

■ 定理 3.10: 矩陣之伴隨矩陣所表示的反矩陣

若A是一個n×n可逆矩陣,則

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

- 範例:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \det(A) = ad - bc$$

$$adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{\det(A)} adj(A)$$

$$= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

範例1及範例2:

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
 (a)求A的伴隨矩陣 (b)使用A的伴隨矩陣來求 A^{-1}

(a)求A的伴隨矩陣

解: $:: C_{ii} = (-1)^{i+j} M_{ii}$

$$\Rightarrow C_{11} = + \begin{vmatrix} -2 & 1 \\ 0 & -2 \end{vmatrix} = 4, \ C_{12} = - \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = 1, \ C_{13} = + \begin{vmatrix} 0 & -2 \\ 1 & 0 \end{vmatrix} = 2$$

$$C_{21} = -\begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} = 6,$$
 $C_{22} = +\begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} = 0,$ $C_{23} = -\begin{vmatrix} -1 & 3 \\ 1 & 0 \end{vmatrix} = 3$

$$C_{31} = + \begin{vmatrix} 3 & 2 \\ -2 & 1 \end{vmatrix} = 7, \quad C_{32} = - \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad C_{33} = + \begin{vmatrix} -1 & 3 \\ 0 & -2 \end{vmatrix} = 2$$

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{vmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{vmatrix} \qquad adj(A) = \begin{bmatrix} C_{ij} \end{bmatrix}^T = \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

⇒ A的反矩陣

$$A^{-1} = \frac{1}{\det(A)}adj(A)$$

$$\therefore \det(A) = 3$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} & 2 & \frac{7}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & 1 & \frac{2}{3} \end{bmatrix}$$

■ 檢查:
$$AA^{-1} = I$$

■ 定理 3.11: Cramer 法則 (Cramer's Rule)

$$A_{j} = \begin{bmatrix} A^{(1)}, A^{(2)}, \cdots, A^{(j-1)}, b, A^{(j+1)}, \cdots, A^{(n)} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & \cdots & a_{1(j-1)} & b_{1} & a_{1(j+1)} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2(j-1)} & b_{2} & a_{2(j+1)} & \cdots & a_{2n} \\ \vdots & & \ddots & & \vdots \\ a_{n1} & \cdots & a_{n(j-1)} & b_{n} & a_{n(j+1)} & \cdots & a_{nn} \end{bmatrix}$$

$$\text{(i.e. } \det(A_{j}) = b_{1}C_{1j} + b_{2}C_{2j} + \cdots + b_{n}C_{nj})$$

 $\Rightarrow x_j = \frac{\det(A_j)}{\det(A)}, \qquad j = 1, 2, \dots, n$

■ 證明:

$$A \mathbf{x} = \mathbf{b}, \quad \det(A) \neq 0$$

$$\Rightarrow \mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{\det(A)} adj(A)\mathbf{b}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} b_1 C_{11} + b_2 C_{21} + \cdots + b_n C_{n1} \\ b_1 C_{12} + b_2 C_{22} + \cdots + b_n C_{n2} \\ \vdots & \vdots \\ b_1 C_{1n} + b_2 C_{2n} + \cdots + b_n C_{nn} \end{bmatrix}$$

$$\Rightarrow x_{j} = \frac{1}{\det(A)} (b_{1}C_{1j} + b_{2}C_{2j} + \dots + b_{n}C_{nj})$$

$$= \frac{\det(A_{j})}{\det(A)} \qquad j = 1, 2, \dots, n$$

■範例4:使用Cramer法則對下列線性方程式系統求解

M
 -1
 2
 -3

$$det(A) = \begin{vmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{vmatrix} = 10$$
 $det(A_1) = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{vmatrix} = 8$

$$\det(A_1) = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{vmatrix} = 8$$

$$\det(A_2) = \begin{vmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{vmatrix} = -15, \quad \det(A_3) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{vmatrix} = -16$$

$$x = \frac{\det(A_1)}{\det(A)} = \frac{4}{5}$$
 $y = \frac{\det(A_2)}{\det(A)} = \frac{-3}{2}$ $z = \frac{\det(A_3)}{\det(A)} = \frac{-8}{5}$

面積、體積和線與平面的方程式

行列式在解析幾何有很多的應用。這裡提出幾個應用。第一個應用為 在 xy-平面上求三角形的面積。

在 xy-平面上 三角形的面積

頂點為 (x_1, y_1) 、 (x_2, y_2) 和 (x_3, y_3) 所形成三角形的面積為

面積 =
$$\pm \frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

其中符號(土)被用來使得面積為正。

證明:證明 $y_i > 0$ 的情況,假設 $x_1 \le x_3 \le x_2$ 並且 (x_3, y_3) 在連接 (x_1, y_1) 和 (x_2, y_2) 線段的上方。如圖 3.1 所示。考慮三個不等邊四邊形它的頂點如下。

不等邊四邊形#1: $(x_1, 0), (x_1, y_1), (x_3, y_3), (x_3, 0)$

不等邊四邊形#2: $(x_3,0),(x_3,y_3),(x_2,y_2),(x_2,0)$

不等邊四邊形#3: $(x_1, 0), (x_1, y_1), (x_2, y_2), (x_2, 0)$

圖 3.1

所給三角形的面積相等於首兩個不等邊四邊形之面積和減掉第三個的面積。因此

面積 =
$$\frac{1}{2}(y_1 + y_3)(x_3 - x_1) + \frac{1}{2}(y_3 + y_2)(x_2 - x_3) - \frac{1}{2}(y_1 + y_2)(x_2 - x_1)$$

= $\frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1 - x_1y_3 - x_2y_1 - x_3y_2)$
= $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

若頂點發生的順序不是 $x_1 \le x_3 \le x_2$ 或者頂點 (x_3, y_3) 不在連接另二個 頂點線段的上方,則公式可能得到負的面積。

範例 5

求三角形的面積

求頂點為(1,0)、(2,2)和(4,3)所形成三角形的面積。

解:不需知道這三個頂點的相對位置。只需簡單地計算這個行列式

$$\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & 1 \\ 4 & 3 & 1 \end{vmatrix} = -\frac{3}{2}$$

如此可得三角形面積為 3/2。

假設在範例 5 的三個點是在同一條線上。我們應用公式計算這三個點將會發生什麼事?答案是行列式將為零。例如,考慮在同一直線的點 (0, 1)、(2, 2) 和 (4, 3),如圖 3.2 所示。列式表示這三個點為頂點的 "三角形"面積為

$$\begin{vmatrix} 0 & 1 & 1 \\ 2 & 2 & 1 \\ 4 & 3 & 1 \end{vmatrix} = 0$$

圖 3.2

因此,假設在 xy-平面上的三個點在同一條直線上,則三角形的面積 公式的行列式為零。這個結果擴展為下列的測試。

在xy-平面上 共線點的測試

三點 (x_1, y_1) 、 (x_2, y_2) 和 (x_3, y_3) 是在同一條直線上若且唯若

$$\det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$$

由共線點測試法中可以推導下列行列式來表示在 *xy*-平面上通過兩點的直線方程式。

兩點形成一條直線的方程式

直線通過不同點 (x_1, y_1) 和 (x_2, y_2) 的方程式可表示為

$$\det \begin{bmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix} = 0$$

範例 6

求通過兩點的直線方程式

求通過點 (2,4) 和 (-1,3) 的直線方程式。

解:應用行列式公式對通過這兩點的直線方程式可得

$$\begin{vmatrix} x & y & 1 \\ 2 & 4 & 1 \\ -1 & 3 & 1 \end{vmatrix} = 0$$

沿最上列做餘因子展開來求得這個行列式為

$$x \begin{vmatrix} 4 & 1 \\ 3 & 1 \end{vmatrix} - y \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ -1 & 3 \end{vmatrix} = 0$$
$$x - 3y + 10 = 0$$

因此,這條直線的方程式為x-3y=-10。

四面體體積

頂點為 (x_1, y_1, z_1) 、 (x_2, y_2, z_2) 、 (x_3, y_3, z_3) 和 (x_4, y_4, z_4) 的四面體的體積為

體積 =
$$\pm \frac{1}{6} \det \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{bmatrix}$$

其中符號(土)被用來使得體積為正。

範例7

求四面體的體積

如圖 3.3 所示,求頂點為 (0, 4, 1)、(4, 0, 0)、(3, 5, 2) 和 (2, 2, 5) 之四 面體的體積。

圖 3.3

解:使用體積的行列式公式可得

$$\begin{vmatrix} 0 & 4 & 1 & 1 \\ 4 & 0 & 0 & 1 \\ 3 & 5 & 2 & 1 \\ 2 & 2 & 5 & 1 \end{vmatrix} = \frac{1}{6}(-72) = -12$$

因此四面體的體積為12。

若三維空間上的四點在同一個平面上,則體積的公式中的行列式為零。因此我們有下列的測試。

在空間中共平 面點的測試

四點 (x_1, y_1, z_1) 、 (x_2, y_2, z_2) 、 (x_3, y_3, z_3) 和 (x_4, y_4, z_4) 是共平面若且唯若

$$\det\begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{bmatrix} = 0$$

這個測試可以對在空間中通過三點的平面方程式提出下列行列式形式。

三點形成一個平面的方程式

平面通過不同點 (x_1, y_1, z_1) 、 (x_2, y_2, z_2) 和 (x_3, y_3, z_3) 的方程式可表示為

$$\det \begin{bmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{bmatrix} = 0$$

求平面通過三點的方程式

求平面通過點 (0, 1, 0), (-1, 3, 2) 和 (-2, 0, 1) 的方程式。

解:對在空間中平面通過三點的方程式使用行列式形式可得

$$\begin{vmatrix} x & y & z & 1 \\ 0 & 1 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ -2 & 0 & 1 & 1 \end{vmatrix} = 0$$

為了計算這個行列式,從第二行減第四行可得

$$\begin{vmatrix} x & y - 1 & z & 1 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & 2 & 1 \\ -2 & -1 & 1 & 1 \end{vmatrix} = 0$$

現在,沿第二列做餘因子展開可得

$$\begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} - (y-1) \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} + z \begin{vmatrix} -1 & 2 \\ -2 & -1 \end{vmatrix}$$

其產生方程式 4x-3y+5z=-3

Keywords in Section 3.5:

- matrix of cofactors: 餘因子矩陣
- adjoint matrix:伴隨矩陣
- Cramer's rule: Cramer 法則