

A卷

2021-2022 学年第 1 学期

(2021 秋季)

《编译原理与技术》期末考试卷

班级	学号	
姓名	成绩	

2022年1月12日

《编译原理与技术》 期末考试卷

注意事项: 1. 所有答案请直接写在题目中, 另附纸无效。

2. 交卷时请以班为单位交卷。

题号 一		_	→	四							总分
		11]	1	2	3	4	5	6	7	总分	
成绩											
阅卷人 签字											
任课教师签字											

一、填空题(每空1分,共11分)

1	如果一个文法所定义的句子中有某个句子,它存在两棵不同的语法树,则该文法
	是二义性文法
	3型文法又被称为 <u>正别</u> 文法,可被 <u>有穷有烈力机</u> 接受。 由翻译文法确定的语言中的符号串称为活动序列。活动序列由
3.	
	和
4.	分析工作要部分地或全部地退回去重做,这种情况被称为。
5.	<u>有好展子</u> 是一种将循环体内代码依序拓展成顺序执行指令的优化方法。
6	有文法 G[S]:

 $L \rightarrow L, S \mid S$

句型 (S,(a)) 的简单短语是 $\underline{\qquad}$,句柄是 $\underline{\qquad}$

7. (A+B)*(C+D)-E 的后缀表示是<u>AB+CD+*</u>E-

8. 观察以下函数:

int get(int a[][5][10], int i, int j, int k){
 return a[i][j][k];
}

则每次调用时,访问到的 a 中的元素的首地址与 a[0][0][0]的首地址相差 50i+10j+k 个 int 类型的距离 (用含 i, j, k 的表达式表示)。

二、判断题(每题1分,共7分)

- 1. 语言和文法的关系是多对一。
- 2. 文法 G 所描述的语言是文法 G 的终结符号集中的所有符号组成的符号串集合。 X
- 3. 词法分析程序可以编成一个子程序,由语法分析程序调用。 🗸
- 4. 递归下降分析法中,不允许任意一个非终结符的规则是直接左递归的。
- 5. 任一句型的最左素短语称为该句型的句柄。 🗙
- 6. 属性翻译文法是上下文无关的文法。
- 7. 根据程序在运行时发现的错误,就能够找出错误在源程序中的确切位置。

三、单选题(每题1分,共8分)

1. 下面哪个过程不属于编译过程的五个基本阶段?

- (A) 词法分析(B) 语法分析
- (C) 代码优化
- 出错处理
- 2. 文法规则 E ::= E + T | T 的 EBNF 表示为:

- $A = \{ +T | T \} *$
- B = T + T

- \bigcirc E ::= {T+T}
- $\bigcirc E ::= \{+T\}T$
- 3. 正则文法 G(S)如下。

 $S \rightarrow A$

 $A \rightarrow Ba \mid Bb$

$$B \rightarrow Ca$$

$$C \rightarrow a \mid b \mid Ca \mid Cb$$

$$C \rightarrow (alb) | C (alb) (alb) (alb)^*$$

 $\beta \rightarrow (\alpha lb) (\alpha lb)^{*} \alpha$ 则对应的正则表达式可能是:

- (a|b)*a(a|b)
- $A \rightarrow B(\alpha lb)$
- \mathbb{B} (a|b)*a(a|b)(a|b)
- \mathbb{C} (a|b)(a|b)a(a|b)*
- \bigcirc (a|b)*(a|b)a(a|b)
- 4. 下列属于自顶向下分析法的是:

- A 递归子程序法
- (B) 算符优先分析法
- © LR(0)分析法
- D LALR(1)分析法
- 5. 下面关于基本块的描述,不正确的是:

- A 控制流只能从一个基本块的开始进入
- (B) 控制流只能从一个基本块的末尾离开
- ② 控制流从一个基本块末尾离开后,只能进入固定的下一个块
- 基本块是一个连续的语句序列

6. 下面的代码片段有几个基本块?

$$1 \quad a = 123$$

$$a = 56$$

$$3 c = 0$$

4 if
$$(a < 100)$$
 goto 9

$$5 c = 4$$

6 if
$$(c == 2 * 2)$$
 goto 9

$$7 \quad c = a + b$$

- 8 goto 6
- 9 return c
- \bigcirc 2
- (B) 3
- © 4
- ① 5
- 7. 若一个优化将 x = x * 32; 优化成 x = x << 5; 则该优化是:

- A 强度削弱
- B 常数合并
- C 常数传播
- ① 代码外提

- 8. 下面关于优化的说法,错误的是:
 - A 局部优化指在基本块内进行的优化
 - 图 数据流分析属于局部优化
 - ◎ 消除公共子表达式属于基本块内的优化 ✓
 - ◎ 循环展开和代码外提都可用于循环优化 ✓

四、综合题(共74分)

- 1. (15分)已知正则表达式(01)*1*0(0|1)
 - (1) 表达式中括号(), 星号*, 分隔符 | 三个符号各有什么作用?
 - (2) 构造与之等价的右线性文法。
 - (3)构造与之等价的NFA。
 - (4) 将构造出的 NFA 转化为 DFA 并将其最小化。

(1) (1) 代表的经验的时出现 (1) 人类 人类 人类 人工现了一个次 (几为社会正整数 日间 代表 人类 医格里利亚一次

2. (共10分)对于文法 G[A]:

$$A \rightarrow i B * e$$

$$B \rightarrow SB | \epsilon$$

$$S \rightarrow [eC]|.i$$

$$C \rightarrow e C \mid \epsilon$$

- (1) 计算每个产生式右端字符串的 First 和每个非终结符的 Follow 集。 (用#代表输入结束)。
- (2) 画出该 LL(1)文法的分析表。

罗1234567891	#A #e*B; #e*B #e*B; #e*Bi #e*Bi #e*B #e*B #e*B #e*B	統 第 第 第 第 1 1 1 1 1 1 1 1 1 1 1 1 1	P\$ \$\\ A→; B*€. B→SB S→. i B→E
10	# = # = # = # = # = # = # = # = # = # =	#	acc

3. (共10分)已知文法 G[T]:

$$T \rightarrow T - F \mid F$$

$$F \rightarrow F * P \mid P$$

$$P \rightarrow (T) | i$$

(1) 求各非终结符的 FIRSTVT 和 LASTVT 集合。

LASTVT	[; -]	*	ſ)
ヹ		\checkmark		
F	\checkmark	\checkmark		
P	\checkmark			/

(2) 构造文法 G 的优先关系矩阵,并判断该文法是否是算符优先文法。

右终结符 (栈外) 左终结符 (栈内)	-	*	()	i	#
_	>	\ <u>'</u>	V	>	<	>
*	×	Ÿ	\wedge	\checkmark	٧	\vee
(A	A	A]-[Ÿ	
)		Ÿ		>		*
i	✓.	>		>		҂
#	4	∀	4		<	

- 4. (共14分)已知文法 G[S]对应的项目集如下图所示。

- 4 A \rightarrow i A
- \bigcirc A \rightarrow T R a
- \bigcirc R \rightarrow 1 R
- \bigcirc R $\rightarrow \epsilon$

(1) 试补全上图中项目集 I₀、I₂、I₅, 并填写以下的 SLR(1) 分析表。

状态		GOTO							
八心	l	a	i	e	#	S	T	A	R
Ιο	52			53			1		
I_1					acc				
I 2	SL		55	Sz			6	4	
I 3	r_{i}	73	3		۲				
I 4	T2	r			r ₂				
I 5	52		55	53			6	7	
I 6	Sq	75						,	8
I 7	ry	74			r4				
I 8	·	Sip			,				
I 9	۶۹	ケフ							11
I 10	25	15			rs				
I 11	r ₆	Y6			76				

(2) 判断这个文法是否为 SLR(1)文法,说明理由。

是无冲突

(3) 如果是,利用 SLR(1)分析表,分析输入串 liella。

步骤	状态栈(栈底在左)	己识别符号	待输入串	动作
1	# 0	#	liella#	S
2				
	#012	#1	iella#	5
3	#012i5	#[[ella#	5
4	#01215e3	#lie	lla#	r
5	#012i5T6	#liT	11a#	5
6	#01215T619	#1; T1	laĦ	S
7	#012;5T61919	#/ITII	αĦ	77
8	#01215761919R11	HITTLR	a#	16
9	#012i5T619R11	#liTIR	a Ħ	η6
10	#01215T6R8	#11TR	a#	510
11	#01215T6R8a10	#liTRa	#	55
12	#012i5A7	#/i/	#	<i>7</i> 4
13	#012A4	#14	#	1/2
14	#071	#丁	#	acc
15				
16				
17				
18				
19				
20				
21				
22				
23				

5. (共10分)有如下 C语言程序段:

```
void foo(int val) {
     int a=1;
2
     int b=2;
3
4
5
   void bar() {
6
     int c,d;
7
     int e[10];
8
         int f;
10
11
         int g;
         int h[10];
12
13
        foo(g);
14
15
    }
16 }
```

(1) 按照下面的表头格式, 画出编译到第 13 行结尾时栈式符号表的内容。

(表格顶端为栈底。不需要写出全局符号)

层次	名字	种类	类型
0	bar	func	void
	C	VOL	int
ĺ	d	VOL	int
	e	var	arr
2	f	VOM	int
3	q	Var	int
3	Á	VOY	urr
			·

(2) 在右表中画出当**运行时**程序控制流从函数 bar 进入,通过调用 foo 第一次运行到第3行结尾时,程序运行栈上各活动记录的状态和内容。(表格顶端为栈底)

6. (共 5 分)给定如下四元式代码,构建 DAG 图,消除局部公共子表达式,并使用课本中的启发式算法从 DAG 图中重新导出中间代码。

7. (共10分)数据流分析。

- (1) 对图中变量,求出每个基本块的 def 和 use 集合;
- (2) 做活跃变量分析, 计算每个基本块最终的 in 集合。

(中间各列可用于写明中间过程,最后一行已给出)

	use	def	in	out	in	out	in	out
B1	(p,q,z)	(1x,47	{k,p,q.2}	1k,x1p	{ \$k,p.g;	2) [P, Ki)	P\$	
B2	ik s	\m,y\	Sk, x,p?	120,4.6	(k, 20)	R, Trys		
В3	(4)	(X)	ly,pl	(p)	4k,y,p}	1 ko xip		
B4	(x)	16	Squel	103	fx, p?	Spl		
В5	593	{2}	Spi	Ţ	\p\	<u> </u>		
Bexit			{}	{}	{}	{}	{}	{}

(3) 假设只有跨越基本块仍活跃的变量才能分配到全局寄存器,且活跃范围重合的变量之间无法共享全局寄存器,根据活跃变量分析结果给出变量之间的冲突图。

