TEMPLATE FOR STUDENT PROJECT FOR CS-E4740 FEDERATED LEARNING

N.N.

Aalto University, Espoo, Finland

ABSTRACT

This paper studies federated learning methods for highprecision weather forecasting.

Index Terms— Federated Learning, Networks, Personalized Machine Learning, Trustworthy AI

1. INTRODUCTION

- Explain the background (real-life scenario) of your ML application (see [1, Ch. 2]).
- Summarize the relevant literature (state-of-the art).
- Briefly outline the structure of this paper.

2. PROBLEM FORMULATION

- Discuss the source of the data used in your project.
- Formulate your application as an instance of GTV minimization (GTVMin) [2, Sec. 7]:
 - Discuss your choice/construction of the empirical graph whose nodes carry local datasets and local models.
 - Provide a precise definition of the local datasets, its data points and their features and labels.

3. METHODS

- Clearly state the number of data points in each local dataset.
- Explain your feature selection process, which might involve advanced ML methods ("representation learning").
- Describe your choice of local models and the measure for their variation across edges in the empirical graph.
- Describe the FL algorithms you have used to train the local models [2, Sec. 9]
- Describe and explain (why?) your choice of loss functions, e.g., logistic loss.

• Explain the process of model validation, e.e., how did you split the data into training set, validation set and test set.

4. RESULTS

- Compare and discuss the training error and validation error obtained for each node of the empirical graph
- What is the final chosen method? A federated learning (FL) method consists of a choice for the empirical graph, local models and measure for their variation as well as a FL (=distributed optimization) algorithm.
- What is the test set error (for each node in the empirical graph) of the final chosen method?

5. CONCLUSION

- Provide a succinct summary of your findings.
- Are the results suggesting that the problem is solved satisfactorily, or might there be room for improvement?
- Ponder about possible limitations of the considered methods and how they can be further improved (see [1, Sec. 6.6.]).

6. REFERENCES

- [1] A. Jung, *Machine Learning: The Basics*, Springer Singapore, 1 edition, Feb. 2022.
- [2] A. Jung, "Federated Learning," Lecture notes of the course CS-E4740, Aalto University, 2023.