

N 69 18951

**NASA TECHNICAL
MEMORANDUM**

NASA TM X-53804

December 3, 1968

NASA TM X-53804

**CASE FILE
COPY**

**THE TEMS APOLLO-SATURN V RESULTS
THROUGH THE AS-502 FLIGHT TEST**

By Bobby Junkin
Computation Laboratory

NASA

*George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama*

TECHNICAL MEMORANDUM X-53804

THE TEMS APOLLO-SATURN V RESULTS THROUGH THE AS-502 FLIGHT TEST

By

Bobby Junkin

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

ABSTRACT

Truncated tracker error models for representing the systematic errors on the Apollo-Saturn AS-501 and AS-502 flight tests are presented. The TEMS method for determining the models involves establishing the tracker errors and then determining, in the least squares sense, functional expressions to describe the established errors. Guidelines used in obtaining the truncated error models have resulted in generally acceptable models for the AS-501 and AS-502 data. Although C-band radar error models are used in the TEMS development, the method can be adapted to other types of tracking systems.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53804

THE TEMS APOLLO-SATURN V RESULTS
THROUGH THE AS-502 FLIGHT TEST

By

Bobby Junkin

COMPUTATION LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
SUMMARY OF APOLLO-SATURN V RESULTS THROUGH AS-502 LAUNCH	4
CONCLUSIONS	6
APPENDIX A. THE C-BAND RADAR TRACKING SYSTEM ERROR MODELS	11
APPENDIX B. RESULTS FROM THE APOLLO-SATURN 501 VEHICLE FLIGHT TEST.	12
APPENDIX C. RESULTS FROM THE APOLLO-SATURN 502 VEHICLE FLIGHT TEST	39
REFERENCES.	60

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Utilization of the TEMS and STEPRG Computer Programs	3
2.	AS-502 Launch Phase Ground Track	5
3.	AS-502 Orbital Phase Ground Track	5
4.	TEMS AS-502 Tracking Data Utilization	7
B-1.	Radar 0. 18 Residuals on AS-501 First Burn Data	17
B-2.	Radar 0. 18 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	18
B-3.	Radar 19. 18 Residuals on AS-501 First Burn Data	19
B-4.	Radar 19. 18 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	20
B-5.	Radar 3. 18 Residuals on AS-501 First Burn Data	21
B-6.	Radar 3. 18 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	22
B-7.	Radar 7. 18 Residuals on AS-501 First Burn Data	23
B-8.	Radar 7. 18 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	24
B-9.	Radar 67. 16 Residuals on AS-501 First Burn Data	25
B-10.	Radar 67. 16 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	26
B-11.	Radar 67. 18 Residuals on AS-501 First Burn Data	27
B-12.	Radar 67. 18 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	28

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
B-13.	Radar 1. 16 Residuals on AS-501 First Burn Data	29
B-14.	Radar 1. 16 Range, Azimuth, and Elevation Errors on AS-501 First Burn Data	30
B-15.	Radar 19. 18 Residuals on AS-501 Second Burn Data	31
B-16.	Radar 19. 18 Range, Azimuth, and Elevation Errors on AS-501 Second Burn Data	32
B-17.	Radar 3. 18 Residuals on AS-501 Second Burn Data	33
B-18.	Radar 3. 18 Range, Azimuth, and Elevation Errors on AS-501 Second Burn Data	34
B-19.	Radar 91. 18 Residuals on AS-501 Second Burn Data	35
B-20.	Radar 91. 18 Range, Azimuth, and Elevation Errors on AS-501 Second Burn Data	36
B-21.	Radar 67. 18 Residuals on AS-501 Second Burn Data	37
B-22.	Radar 67. 18 Range, Azimuth, and Elevation Errors on AS-501 Second Burn Data	38
C-1.	Radar 19. 18 Residuals on AS-502 Launch Phase Data	44
C-2.	Radar 19. 18 Range, Azimuth, and Elevation Errors on AS-502 Launch Phase Data	45
C-3.	Radar 0. 18 Residuals on AS-502 Launch Phase Data	46
C-4.	Radar 0. 18 Range, Azimuth, and Elevation Errors on AS-502 Launch Phase Data	47
C-5.	Radar 1. 16 Residuals on AS-502 Launch Phase Data	48
C-6.	Radar 1. 16 Range, Azimuth, and Elevation Errors on AS-502 Launch Phase Data	49

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Page
C-7.	Radar 67.18 Residuals on AS-502 Launch Phase Data	50
C-8.	Radar 67.18 Range, Azimuth, and Elevation Errors on AS-502 Launch Phase Data	51
C-9.	Radar 3.18 Residuals on AS-502 Launch Phase Data	52
C-10.	Radar 3.18 Range, Azimuth, and Elevation Errors on AS-502 Launch Phase Data	53
C-11.	Radar 0.18 Residuals on AS-502 Orbital Phase (Rev. 1) Data	54
C-12.	Radar 0.18 Range, Azimuth, and Elevation Errors on AS-502 Orbital Phase (Rev. 1) Data	55
C-13.	Radar 3.18 Residuals on AS-502 Orbital Phase (Rev. 1) Data	56
C-14.	Radar 3.18 Range, Azimuth, and Elevation Errors on AS-502 Orbital Phase (Rev. 1) Data	57
C-15.	Radar 19.18 Residuals on AS-502 Orbital Phase (Rev. 1) Data	58
C-16.	Radar 19.18 Range Azimuth, and Elevation Errors on AS-502 Orbital Phase (Rev. 1) Data	59

LIST OF TABLES

Table	Title	Page
I.	Location of Launch Site and C-Band Tracking Radars Used in TEMS AS-502 Reduction	4
II.	Truncated Radar Error Model Multiple Regression Results For First Burn Data on AS-501 and AS-502 Vehicle Flight Tests	9
III.	Coefficient Standard Deviations For Truncated Radar Error Models For First Burn Data on AS-501 and AS-502 Vehicle Flight Tests	9
IV.	Truncated Radar Error Model Multiple Regression Results for Second Burn Data on AS-501 and Orbital Data on AS-502 Vehicle Flight Tests	10
V.	Coefficient Standard Deviations For Truncated Radar Error Models For Second Burn Data on AS-501 and Orbital Data on AS-502 Vehicle Flight Tests	10
B-I.	Stepwise Regression Analysis Results For AS-501 First Burn Data	13
B-II.	Stepwise Regression Analysis Results For AS-501 Second Burn Data	14
B-III.	Coefficient Correlations For The Truncated AS-501 First Burn Radar Error Models	15
B-IV.	Coefficient Correlations For The Truncated AS-501 Second Burn Radar Error Models	16
C-I.	Stepwise Regression Analysis Results For AS-502 Launch Phase Data	40
C-II.	Stepwise Regression Analysis Results For AS-502 Orbital (Rev. 1) Data	41

LIST OF TABLES (Concluded)

Table	Title	Page
C-III.	Coefficient Correlations For The Truncated AS-502 Launch Phase Error Models	42
C-IV.	Coefficient Correlations For The Truncated AS-502 Orbital Phase (Rev. 1) Error Models	43

DEFINITION OF SYMBOLS

Symbol	Definition
TEMS	Acronym for <u>T</u> racking <u>S</u> ystem <u>E</u> rror <u>M</u> odel <u>S</u> tudies
ΔR , ΔA , ΔE	Functional expressions for the systematic errors in range, azimuth, and elevation, respectively
ΔR^0 , ΔA^0 , ΔE^0	Observed tracking errors in range, azimuth, and elevation, respectively
V_R , V_A , V_E	Residuals in range, azimuth, and elevation, respectively
V_{C_0} , V_{C_1} , ..., $V_{F_{12}}$	Coefficient observational residuals
C_0 , C_1 , ...	Coefficients in range error model
D_0 , D_1 , ...	Coefficients in azimuth error model
F_0 , F_1 , ...	Coefficients in elevation error model
R , A , E	First derivatives of range, azimuth, and elevation, respectively, with respect to time
\ddots A , E	Second derivatives of azimuth and elevation, respectively, with respect to time
X , Y , Z	Reference position of vehicle in an earth-fixed ephemeris coordinate system with origin at the tracking site
σ_{VR}^2 , σ_{VA}^2 , σ_{VE}^2	Least square residual variances in range, azimuth, and elevation, respectively
\tilde{C}_0 , \tilde{C}_1 , ...	Parameter approximation values
δC_0 , δC_1 , ...	Parameter corrections
C_0^∞ , C_1^∞ , ...	Parameter a priori values
r , a , e	Range, azimuth, and elevation error model factors, respectively

DEFINITION OF SYMBOLS (Concluded)

Symbol	Definition
F Level	Ratio for determining the statistical significance of a regression equation
σ_Y	Standard deviation of the response variable
X	

TECHNICAL MEMORANDUM X-53804

THE TEMS APOLLO-SATURN V RESULTS
THROUGH THE AS-502 FLIGHT TEST

SUMMARY

Truncated tracker error models for representing the systematic errors on the Apollo-Saturn AS-501 and AS-502 flight tests are presented. Guidelines used in obtaining the truncated error models have resulted in generally acceptable models for the AS-501 and AS-502 data. The TEMS method for determining the models involves establishing the tracker errors and then determining, in the least squares sense, functional expressions to describe the established errors. Although C-band radar error models are used in the TEMS development, the method can be adapted to other types of tracking systems.

INTRODUCTION

This report is one in a continuing series summarizing results from the evaluation of tracking system measurement errors on the Apollo-Saturn V flight tests. The basic concept in the evaluation process is given in the TEMS Multiple Regression Analysis Method [1]. The method involves establishing the tracker errors and then determining, in the least squares sense, error model expressions to describe the established errors. The fundamental observational residual equations in the method are given by:

$$\left. \begin{array}{l} V_R = \Delta R^0 - \Delta R \\ V_A = \Delta A^0 - \Delta A \\ V_E = \Delta E^0 - \Delta E \end{array} \right\} \quad (1)$$

~~~~~      ~~~~~      ~~~~~

Observational      Observed      Functional  
Residuals           Deltas          Deltas

where:

$$\left. \begin{aligned} \Delta R &= \tilde{C}_0 + \delta C_0 + (\tilde{C}_1 + \delta C_1) r_1 + (\tilde{C}_2 + \delta C_2) r_2 + \dots + (\tilde{C}_k + \delta C_k) r_k \\ \Delta A &= \tilde{D}_0 + \delta D_0 + (\tilde{D}_1 + \delta D_1) a_1 + (\tilde{D}_2 + \delta D_2) a_2 + \dots + (\tilde{D}_\ell + \delta D_\ell) a_\ell \\ \Delta E &= \tilde{F}_0 + \delta F_0 + (\tilde{F}_1 + \delta F_1) e_1 + (\tilde{F}_2 + \delta F_2) e_2 + \dots + (\tilde{F}_m + \delta F_m) e_m \end{aligned} \right\} \quad (2)$$

and  $r_k$ ,  $a_\ell$ , and  $e_m$  are functions of the basic range, azimuth, and elevation measurements. The parameter (or coefficient) residual equations are given by:

$$\left. \begin{aligned} V_{C_0} &= \delta C_0 + \tilde{C}_0 - C_0^\infty \\ V_{C_1} &= \delta C_1 + \tilde{C}_1 - C_1^\infty \\ \vdots & \\ V_{F_m} &= \delta F_m + \tilde{F}_m - F_m^\infty \end{aligned} \right\} \quad (3)$$

|                     |             |                            |                             |
|---------------------|-------------|----------------------------|-----------------------------|
| Parameter Residuals | Corrections | Coefficient Approximations | A priori Coefficient Values |
|---------------------|-------------|----------------------------|-----------------------------|

We then determine the corrections  $\delta C_0, \delta C_1, \dots, \delta F_m$ , in the least squares sense, and adjust our initial approximations  $\tilde{C}_0, \tilde{C}_1, \dots, \tilde{F}_m$  by these amounts.

The above TEMS method is used in conjunction with a stepwise regression procedure to obtain truncated tracker error models for representing the systematic errors. The stepwise regression procedure involves examining at every step the variables incorporated into the error model in previous steps. The final regression model results in only the most significant variables being retained in the model. Detailed development information can be found in Reference 1.

The IBM 7094 and Univac 1108 computer programs for application of the TEMS method and the stepwise regression procedure are discussed in detail in Reference 1. The utilization of these two programs to obtain the final TEMS error models is summarized in Figure 1.



FIGURE 1. UTILIZATION OF THE TEMS AND STEPREG COMPUTER PROGRAMS

## SUMMARY OF APOLLO-SATURN V RESULTS THROUGH THE AS-502 LAUNCH

The Apollo-Saturn AS-502 vehicle was launched at 07:00:01 (AM) Eastern Standard Time on April 4, 1968 from Kennedy Space Center, Launch Complex 39, Pad A. Tracking data from five C-band radars providing coverage on the launch to orbital insertion phase and three providing coverage on the orbital phase (revolution 1) were used in the reduction.

The post flight reference trajectory used as the standard in the reduction is presented in Reference 2. The relation between the vehicle trajectory for the first phase of the launch and the various C-band radar tracking sites is shown in Figure 2. A similar summary for the orbital phase is given in Figure 3. Table I contains location data for the launch site and the various tracking stations.

TABLE I. LOCATION OF LAUNCH SITE AND C-BAND TRACKING RADARS USED IN TEMS AS-502 REDUCTION

| Site                             | Latitude,<br>deg | Longitude,<br>deg | Height, <sup>a</sup><br>m |
|----------------------------------|------------------|-------------------|---------------------------|
| Launch Complex 39,<br>Pad A      | 28. 608422       | 80. 604133        | 116. 04 <sup>b</sup>      |
| Patrick Radar (0. 18)            | 28. 226553       | 80. 599293        | 19. 92                    |
| Merritt Island<br>Radar (19. 18) | 28. 424862       | 80. 664404        | 16. 39                    |
| Grand Bahama<br>Radar (3. 18)    | 26. 636350       | 78. 267708        | 16. 29                    |
| 67. 18 (FPQ-6)                   | 32. 347964       | 64. 653742        | 19. 03                    |
| Cape Kennedy (1. 16)             | 28. 481766       | 80. 576515        | 18. 78                    |

a. Elevation above the Fischer Ellipsoid

b. Elevation of the C-band radar antenna above the Fischer Ellipsoid



FIGURE 2. AS-502 LAUNCH PHASE GROUND TRACK

- ① FIRST REVOLUTION
- ② SECOND REVOLUTION



FIGURE 3. AS-502 ORBITAL PHASE GROUND TRACK

The specific tracking data utilization for the launch and orbital phases is shown in Figure 4. These data were determined from an edit pass through the TEMS program. The preliminary edited data for all the radars were processed with the parameter weight matrix ( $\bar{W}$ ) and approximation matrix ( $\bar{C}$ ) equal to zero. A priori estimates of zero for the error model coefficients were also entered into the final TEMS computer runs.

The general approach for obtaining truncated error models to describe the AS-501 and AS-502 range, azimuth, and elevation response variables is summarized in the following guidelines:

- (1) It was assumed that the survey terms, rate bias term, and the azimuth and elevation velocity lag terms were not essential in obtaining truncated error models to describe the response variables.
- (2) The first two variables entered in the stepwise regression (excluding those left out under the assumption in guideline 1) were selected for consideration in the final TEMS error model.
- (3) A third variable was considered if an adequate description of the response variable was not obtained with the first two, or if a constraining condition required an additional variable in the model.

This approach actually results in entering the most significant variables into the error model. It should be pointed out that the third variable selected in guideline (3) often involved selecting one of two variables that represented borderline cases so far as the order of entry in the stepwise regression was concerned; i. e., the two variables had partial correlation coefficient values nearly equal.

The AS-501 and AS-502 truncated error model results obtained using guidelines (1) through (3) are presented in Tables II through V. Plots of the observed and computed response variables and the least squares residuals for the truncated models are given in Appendixes B and C. Coefficient correlations are also presented.

## CONCLUSIONS

The TEMS Multiple Regression Analysis Method is used in conjunction with a stepwise regression procedure to obtain truncated tracker error models



NOTE:

THE DOTTED LINES INDICATE WHERE ONLY 1-3 DATA POINTS ARE LEFT OUT.



FIGURE 4. TEMS AS-502 TRACKING DATA UTILIZATION

for representing the systematic errors on the Apollo-Saturn AS-501 and AS-502 flight tests. Guidelines used in obtaining the truncated error models have resulted in generally acceptable models for the AS-501 and AS-502 data. Although C-band radar error models are used in the TEMS development, the method can be adapted to other types of tracking systems.

TABLE II. TRUNCATED RADAR ERROR MODEL MULTIPLE REGRESSION RESULTS FOR FIRST BURN DATA ON AS-501 AND AS-502 VEHICLE FLIGHT TESTS

| Flight Test      | Radar       | Coefficient |          |         |         |         |         |         |         |          |         | $\sigma_{VR}$<br>Met. | $\sigma_{VA}$<br>Deg. | $\sigma_{VE}$<br>Deg. | No. of Data Points |     |
|------------------|-------------|-------------|----------|---------|---------|---------|---------|---------|---------|----------|---------|-----------------------|-----------------------|-----------------------|--------------------|-----|
|                  |             | $C_0$       | $C_1$    | $C_2$   | $C_4$   | $D_0$   | $D_3$   | $D_5$   | $D_7$   | $D_8$    | $F_0$   |                       |                       |                       |                    |     |
| 501              | -19.92      | —           | 0.0091   | 23.71   | 0.0087  | 0.6915  | —       | —       | -0.0202 | —        | 0.0194  | 0.1794                | 3.96                  | 0.0082                | 0.0072             | 336 |
| 502              | 0.18 - 4.76 | -0.52E-4    | 0.0037   | —       | 0.0044  | 0.0341  | —       | —       | —       | 0.0170   | -0.4858 | 4.64                  | 0.0044                | 0.0055                | 311                |     |
| 501              | -18.11      | —           | 0.0055   | -36.03  | 0.72E-3 | —       | 0.0637  | -0.0761 | —       | 0.0330   | -0.4390 | 5.23                  | 0.0046                | 0.0062                | 219                |     |
| 502              | 19.18       | -13.94      | -0.25E-4 | —       | -37.69  | -0.0093 | -0.1839 | 0.0530  | -0.0492 | —        | 0.0233  | —                     | 3.54                  | 0.0036                | 0.0050             | 247 |
| 501              | 5.21        | —           | 0.0066   | 93.25   | 0.0054  | 0.5317  | —       | —       | —       | -0.84E-3 | 2.10    | 4.02                  | 0.0027                | 0.0055                | 395                |     |
| 502              | 3.18        | 5.43        | —        | -0.0102 | 258.24  | 0.0032  | 1.0550  | —       | —       | 0.0010   | —       | 5.39                  | 0.0064                | 0.0058                | 354                |     |
| 501              | -12.28      | —           | 0.0024   | 36.20   | -0.0176 | -2.84   | —       | —       | —       | -0.0085  | —       | 6.09                  | 0.0038                | 0.0165                | 297                |     |
| 502-NA           | 7.18        | —           | —        | —       | —       | —       | —       | —       | —       | —        | —       | —                     | —                     | —                     | —                  | —   |
| 501              | 58.47       | -1.14E-4    | -0.0032  | —       | 0.34E-3 | 0.4632  | —       | —       | 0.0083  | 0.0073   | 0.2380  | 9.75                  | 0.0097                | 0.0051                | 289                |     |
| 502-NA           | 67.16       | —           | —        | —       | —       | —       | —       | —       | —       | —        | —       | —                     | —                     | —                     | —                  | —   |
| 501              | 84.34       | -0.97E-4    | -0.0049  | —       | 0.0056  | 0.0192  | —       | —       | 0.0067  | 0.0021   | -0.0027 | 9.16                  | 0.0045                | 0.0057                | 297                |     |
| 502              | 67.18       | 216.63      | -0.26E-3 | -0.0272 | —       | -0.0081 | —       | —       | 0.0046  | 0.0046   | 0.0228  | —                     | 29.21                 | 0.0063                | 0.0110             | 431 |
| 501              | -36.91      | -0.59E-4    | 0.0174   | —       | 0.0174  | 0.3386  | —       | -0.0177 | —       | 0.0042   | —       | 4.31                  | 0.0124                | 0.0106                | 225                |     |
| 502              | 1.16        | -23.65      | -0.24E-4 | —       | 177.78  | 0.0024  | 0.1526  | —       | —       | 0.0218   | -0.5808 | 4.70                  | 0.0100                | 0.0105                | 209                |     |
| Average $\sigma$ |             |             |          |         |         |         |         |         |         |          |         | 7.50                  | 0.0063                | 0.0079                |                    |     |

NA: Not Available

TABLE III. COEFFICIENT STANDARD DEVIATIONS FOR TRUNCATED RADAR ERROR MODELS FOR FIRST BURN DATA ON AS-501 AND AS-502 VEHICLE FLIGHT TESTS

| Flight Test | Radar | $\sigma_K$ For Indicated Coefficient |         |         |         |         |        |        |        |       |         | $F_0$   | $F_3$ |
|-------------|-------|--------------------------------------|---------|---------|---------|---------|--------|--------|--------|-------|---------|---------|-------|
|             |       | $C_0$                                | $C_1$   | $C_2$   | $C_4$   | $D_0$   | $D_3$  | $D_5$  | $D_7$  | $D_8$ | $F_0$   |         |       |
| 501         | 0.84  | —                                    | 0.25E-3 | 5.21    | 0.54E-3 | 0.074   | —      | —      | 0.0015 | —     | —       | 0.93E-3 | 0.100 |
| 502         | 0.57  | 0.23E-5                              | 0.44E-3 | —       | 0.30E-3 | 0.048   | —      | —      | —      | —     | —       | 0.30E-3 | 0.071 |
| 501         | 0.72  | —                                    | 0.33E-3 | 3.75    | 0.0010  | —       | —      | 0.0024 | 0.0016 | —     | —       | 0.0010  | 0.050 |
| 502         | 0.76  | 0.17E-5                              | —       | 13.97   | 0.0111  | 0.0580  | 0.0023 | 0.0013 | —      | —     | —       | 0.0010  | —     |
| 501         | 0.36  | —                                    | 0.11E-3 | 2.27    | 0.23E-3 | 0.036   | —      | —      | —      | —     | —       | 0.24E-3 | —     |
| 502         | 0.63  | —                                    | 0.17E-3 | 4.72    | 0.34E-3 | 0.124   | —      | —      | —      | —     | —       | 0.33E-3 | —     |
| 501         | 0.95  | —                                    | 0.30E-3 | 1.97    | 0.64E-3 | 0.971   | —      | —      | —      | —     | —       | 0.61E-3 | —     |
| 502-NA      | 7.18  | —                                    | —       | —       | —       | —       | —      | —      | —      | —     | —       | —       | —     |
| 501         | 1.15  | 0.24E-5                              | 0.09E-3 | —       | 0.56E-3 | 0.006   | —      | —      | —      | —     | —       | 0.54E-3 | 0.014 |
| 502-NA      | 67.16 | —                                    | —       | —       | —       | —       | —      | —      | —      | —     | —       | —       | —     |
| 501         | 0.84  | 0.16E-5                              | 0.10E-3 | —       | 0.46E-3 | 0.004   | —      | —      | —      | —     | 0.43E-3 | 0.45E-3 | 0.012 |
| 502         | 1.18  | 1.99                                 | 0.27E-5 | 0.18E-3 | —       | 0.0114  | —      | —      | —      | —     | 0.93E-3 | 0.0010  | —     |
| 501         | 1.03  | 0.67E-5                              | 0.89E-3 | —       | 1.14E-3 | 0.073   | —      | 0.025  | —      | —     | 1.57E-3 | —       | —     |
| 502         | 1.16  | 1.54                                 | 0.37E-5 | —       | 27.80   | 0.62E-3 | 0.055  | —      | —      | —     | 0.62E-3 | 0.074   | —     |

NA: Not Available

TABLE IV. TRUNCATED RADAR ERROR MODEL MULTIPLE REGRESSION RESULTS FOR SECOND BURN DATA ON AS-501 AND ORBITAL DATA ON AS-502 VEHICLE FLIGHT TESTS

| Flight Test      | Radar  | Coefficient |         |          |         |         |       |        |         |         |                              | $\sigma_{\text{VE}}$<br>Deg. | No. of Data Points |        |
|------------------|--------|-------------|---------|----------|---------|---------|-------|--------|---------|---------|------------------------------|------------------------------|--------------------|--------|
|                  |        | $C_0$       | $C_1$   | $C_2$    | $D_0$   | $D_3$   | $D_7$ | $D_8$  | $F_0$   | $F_3$   | $\sigma_{\text{VA}}$<br>Deg. |                              |                    |        |
| 501              | -25.89 | -0.73E-5    | -0.0059 | -0.86E-3 | -0.0117 | -0.0223 | —     | —      | 0.0018  | 0.4277  | 7.30                         | 0.0050                       | 492                |        |
| 502              | 19.18  | 380.17      | 0.0617  | -0.0120  | -4.94   | —       | —     | —      | 0.0101  | —       | 8.94                         | 0.0031                       | 94                 |        |
| 501              | 8.46   | —           | -0.0061 | 0.0091   | 0.2989  | —       | —     | —      | -0.0182 | 2.5233  | 7.16                         | 0.0038                       | 322                |        |
| 502              | 3.18   | 701.95      | —       | 0.1171   | -0.0027 | -13.14  | —     | —      | -0.0098 | —       | 8.57                         | 0.0059                       | 73                 |        |
| 501              | 34.84  | -2.43E-5    | -0.0043 | 0.0032   | 0.4009  | —       | —     | —      | -0.7E-4 | -4.1971 | 2.22                         | 0.0038                       | 684                |        |
| 502-NA           | 91.18  | —           | —       | —        | —       | —       | —     | —      | —       | —       | —                            | —                            | —                  |        |
| 501              | 8.83   | -2.87E-5    | -0.0011 | 0.0055   | —       | —       | —     | 0.0012 | -0.0116 | —       | 7.28                         | 0.0053                       | 864                |        |
| 502-NA           | 67.18  | —           | —       | —        | —       | —       | —     | —      | —       | —       | —                            | —                            | —                  |        |
| 501-NA           | —      | —           | —       | —        | —       | —       | —     | —      | —       | —       | —                            | —                            | —                  |        |
| 502              | 0.18   | 275.61      | —       | —        | 0.0482  | -0.0067 | -3.61 | —      | 0.0001  | —       | 9.24                         | 0.0042                       | 113                |        |
| Average $\sigma$ |        |             |         |          |         |         |       |        |         |         |                              | 7.23                         | 0.0044             | 0.0081 |

NA: Not Available

TABLE V. COEFFICIENT STANDARD DEVIATIONS FOR TRUNCATED RADAR ERROR MODELS FOR SECOND BURN DATA ON AS-501 AND ORBITAL DATA ON AS-502 VEHICLE FLIGHT TESTS

| Flight Test | Radar | $\sigma_K$ For Indicated Coefficients |         |         |        |        |       |         |         |          |          | $F_0$   | $F_3$ |
|-------------|-------|---------------------------------------|---------|---------|--------|--------|-------|---------|---------|----------|----------|---------|-------|
|             |       | $C_0$                                 | $C_1$   | $C_2$   | $D_0$  | $D_3$  | $D_7$ | $D_8$   | $D_9$   | $D_{10}$ | $D_{11}$ |         |       |
| 501         | 0.60  | 0.05E-5                               | 0.52E-4 | 0.33E-3 | 0.057  | 0.0012 | —     | —       | —       | —        | —        | 0.58E-3 | 0.157 |
| 502         | 13.60 | —                                     | 0.0021  | 0.0017  | 0.4755 | —      | —     | —       | —       | —        | —        | 0.86E-3 | —     |
| 501         | 0.29  | —                                     | 0.55E-4 | 0.35E-3 | 0.075  | —      | —     | —       | —       | —        | —        | 0.36E-3 | 0.256 |
| 502         | 27.91 | —                                     | 0.0044  | 0.0035  | 1.78   | —      | —     | —       | —       | —        | —        | 0.0012  | —     |
| 501         | 0.35  | 0.02E-5                               | 0.61E-4 | 0.18E-3 | 0.201  | —      | —     | —       | —       | —        | —        | 0.18E-3 | 0.434 |
| 502-NA      | —     | —                                     | —       | —       | —      | —      | —     | —       | —       | —        | —        | —       | —     |
| 501         | 0.36  | 0.01E-5                               | 0.43E-4 | 0.24E-3 | —      | —      | —     | 0.29E-3 | 0.27E-3 | —        | —        | —       | —     |
| 502-NA      | 67.18 | —                                     | —       | —       | —      | —      | —     | —       | —       | —        | —        | —       | —     |
| 501-NA      | —     | —                                     | —       | —       | —      | —      | —     | —       | —       | —        | —        | —       | —     |
| 502         | 0.18  | 14.21                                 | —       | 0.0022  | 0.0017 | 0.5440 | —     | —       | —       | —        | —        | 0.95E-3 | —     |

NA: Not Available

## APPENDIX A

### THE C-BAND RADAR TRACKING SYSTEM ERROR MODELS

The basic radar error models for describing the systematic errors in the range, azimuth, and elevation measurements are given by the following equations:

#### Range

$$\begin{aligned}\Delta R = & C_0 + C_1 R + C_2 \dot{R} + C_3 t + C_4 (-0.022 \operatorname{cosec} E) \\ & + C_5 \left( \frac{X}{R} \right) + C_6 \left( \frac{Y}{R} \right) + C_7 \left( \frac{Z}{R} \right)\end{aligned}\quad (\text{A-1})$$

#### Azimuth

$$\begin{aligned}\Delta A = & D_0 + D_1 \dot{A} + D_3 \ddot{A} + D_5 \tan E + D_6 \sec E + D_7 \tan E \sin A \\ & + D_8 \tan E \cos A + D_9 \left( \frac{\sin A \cos A}{X} \right) + D_{10} \left( -\frac{\sin A \cos A}{Y} \right) \\ & + D_{11} \dot{A} \sec E\end{aligned}\quad (\text{A-2})$$

#### Elevation

$$\begin{aligned}\Delta E = & F_0 + F_1 \dot{E} + F_3 \ddot{E} + F_5 (-\sin A) + F_6 \cos A \\ & + F_7 \left[ \left( \frac{0.022}{R \sin E} - 10^{-6} \right) \cotan E \right] + F_9 \left( \frac{-X \tan E}{R^2} \right) \\ & + F_{10} \left( \frac{-Y \tan E}{R^2} \right) + F_{11} \left( \frac{\cos E}{R} \right) + F_{12} \dot{E} \cos E\end{aligned}\quad (\text{A-3})$$

The specific physical interpretation of the terms appearing in equations (A-1), (A-2), and (A-3) are given in Reference 1. These equations require modifications, depending on the particular tracking system being considered and on the flight trajectory geometry. The IBM 7094 computer program was thus developed such that any combination of terms appearing in the error models can be retained in a given adjustment through the use of appropriate program control matrices.

## APPENDIX B

### RESULTS FROM THE APOLLO-SATURN 501 VEHICLE FLIGHT TEST

This appendix presents a summary of the results from the Apollo-Saturn 501 Vehicle Flight Test launched on November 9, 1967. The Stepwise Regression Analysis results for the first and second burn data are presented in Tables B-I and B-II, respectively. Coefficient correlations for the truncated error models for the first and second burn data are given in Tables B-III and B-IV, respectively.

In the figures (B-1 through B-22), the tracking errors for the various radars are represented by dots. The description of these errors as obtained from the TEMS least squares adjustment program is represented by the solid computed curves.

The least squares residuals for the truncated error models presented in this appendix and in Appendix C can be thought of as being composed of random errors and unmodeled systematic errors. A high random error content in the data may prevent a systematic error of comparable magnitude from being determined. The latter errors are those that can be attributed to uncertainties in the standard used in establishing the tracking errors, unknown systematic errors not absorbed by those that are modeled, or to geometry limitations. The presence of a significant unmodeled systematic error may prevent an adequate description of the data from being obtained.

TABLE B-I. STEPWISE REGRESSION ANALYSIS RESULTS  
FOR AS-501 FIRST BURN DATA

| Equation   | Variables in Regression             | $\sigma_Y$ | F Level |
|------------|-------------------------------------|------------|---------|
| 0.18       |                                     |            |         |
| $\Delta R$ | $C_0, C_5, C_8, C_4, C_6$           | 1.71       | -0.10   |
| $\Delta A$ | $D_0, C_2, D_7, D_8, C_6$           | 0.0058     | 6.6     |
| $\Delta E$ | $F_0, C_6, C_2, D_7, D_8$           | 0.0060     | -1.0    |
| 19.18      |                                     |            |         |
| $\Delta R$ | $C_0, C_1, C_6, C_5, C_7$           | 2.39       | 76.9    |
| $\Delta A$ | $D_0, C_2, D_7$                     | 0.0042     | 234.9   |
| $\Delta E$ | $F_0, C_7, C_2, F_3$                | 0.0048     | 9.5     |
| 7.18       |                                     |            |         |
| $\Delta R$ | $C_0, C_7, C_6, C_1, C_8, C_2$      | 1.13       | 15.0    |
| $\Delta A$ | $D_0, D_7$                          | 0.0037     | 76.6    |
| $\Delta E$ | $F_0, D_7$                          | 0.0158     | 22.9    |
| 3.18       |                                     |            |         |
| $\Delta R$ | $C_0, C_5, C_1, C_7, C_8, C_2, C_6$ | 1.82       | 22.8    |
| $\Delta A$ | $D_0, C_2, D_3, D_6, D_7$           | 0.0024     | 35.0    |
| $\Delta E$ | $F_0, C_6, C_5, D_7, C_4, F_3$      | 0.0043     | 16.8    |
| 67.16      |                                     |            |         |
| $\Delta R$ | $C_0, C_6, C_7, C_8, C_1$           | 2.73       | 7.5     |
| $\Delta A$ | $D_0, D_3, D_7, D_5, C_6$           | 0.0072     | 3.8     |
| $\Delta E$ | $F_0, F_3, D_8, C_7, D_7$           | 0.0044     | 10.1    |
| 67.18      |                                     |            |         |
| $\Delta R$ | $C_0, C_1, C_7, C_4, C_2$           | 1.95       | -0.80   |
| $\Delta A$ | $D_0, D_3, D_5, D_7$                | 0.0042     | 5.6     |
| $\Delta E$ | $F_0, C_2, D_7, F_3, C_5, C_7, C_4$ | 0.0034     | 7.9     |
| 1.16       |                                     |            |         |
| $\Delta R$ | $C_0, C_5, C_8, C_2$                | 4.05       | -0.06   |
| $\Delta A$ | $D_0, C_2, D_7, D_8, C_6$           | 0.0102     | 5.9     |
| $\Delta E$ | $F_0$                               | 0.0101     | <3.5    |

TABLE B-II. STEPWISE REGRESSION ANALYSIS RESULTS  
FOR AS-501 SECOND BURN DATA

| Equation   | Variables in Regression                  | $\sigma_Y$ | F Level |
|------------|------------------------------------------|------------|---------|
| 91.18      |                                          |            |         |
| $\Delta R$ | $C_0, C_8, C_7, C_2, C_4, C_1$           | 1.77       | 105.8   |
| $\Delta A$ | $D_0, C_2, D_6, D_7, D_3$                | 0.0035     | 36.7    |
| $\Delta E$ | $F_0, C_2, F_3$                          | 0.0054     | 11.8    |
| 3.18       |                                          |            |         |
| $\Delta R$ | $C_0, C_2, C_6, C_5, C_1, C_7$           | 3.37       | 22.3    |
| $\Delta A$ | $D_0, D_3, D_5, D_6$                     | 0.0035     | -0.90   |
| $\Delta E$ | $F_0, C_7$                               | 0.0048     | 267.6   |
| 19.18      |                                          |            |         |
| $\Delta R$ | $C_0, C_2, C_8, C_7$                     | 4.12       | 153.8   |
| $\Delta A$ | $D_0, D_3, D_7, D_8, D_6$                | 0.0039     | -1.5    |
| $\Delta E$ | $F_0, C_4, F_3, D_8$                     | 0.0062     | -0.20   |
| 67.18      |                                          |            |         |
| $\Delta R$ | $C_0, C_6, C_4, C_2, C_5, C_8, C_7, C_1$ | 3.85       | 28.4    |
| $\Delta A$ | $D_0, C_2, D_8, D_7, D_5, D_6, D_3$      | 0.0040     | 26.9    |
| $\Delta E$ | $F_0, D_8, C_2, C_4$                     | 0.0053     | 43.0    |

TABLE B-III. COEFFICIENT CORRELATIONS FOR THE TRUNCATED AS-501 FIRST BURN RADAR ERROR MODELS

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | D <sub>0</sub> | D <sub>3</sub> | D <sub>8</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.92          | 0.12           | 0.01           | 0.0            | -0.02          | 0.0            | 0.0            |
| C <sub>1</sub> | 1.00           | -0.16          | -0.01          | 0.0            | 0.03           | 0.0            | 0.0            |                |
| C <sub>2</sub> | 1.00           | 0.05           | 0.01           | -0.18          | 0.01           | 0.0            |                |                |
| D <sub>0</sub> | 1.00           | -0.03          | 0.25           | -0.01          | -0.01          |                |                |                |
| D <sub>3</sub> | 1.00           | -0.12          | 0.01           | 0.01           |                |                |                |                |
| D <sub>8</sub> | 1.00           | -0.04          | -0.05          |                |                |                |                |                |
| F <sub>0</sub> | 1.00           | 0.03           |                |                |                |                |                |                |
| F <sub>3</sub> |                | 1.00           |                |                |                |                |                |                |

Radar 67.16

|                | C <sub>0</sub> | C <sub>2</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.37          | 0.56           | 0.04           | 0.0            | 0.02           | 0.0            |
| C <sub>2</sub> | 1.00           | 0.41           | -0.12          | 0.01           | 0.02           | 0.01           |                |
| C <sub>4</sub> | 1.00           | -0.05          | 0.0            | 0.04           | 0.01           |                |                |
| D <sub>0</sub> | 1.00           | 0.04           | 0.0            | 0.0            |                |                |                |
| D <sub>3</sub> | 1.00           | 0.0            | 0.0            |                |                |                |                |
| F <sub>0</sub> | 1.00           | 0.30           |                |                |                |                |                |
| F <sub>3</sub> | 1.00           |                |                |                |                |                |                |

Radar 3.18

|                | C <sub>0</sub> | C <sub>2</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | F <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.15          | 0.77           | 0.01           | 0.0            | 0.02           |
| C <sub>2</sub> | 1.00           | 0.25           | -0.10          | 0.01           | 0.01           |                |
| C <sub>4</sub> | 1.00           | -0.03          | 0.0            | 0.03           |                |                |
| D <sub>0</sub> | 1.00           | -0.24          | 0.0            |                |                |                |
| D <sub>3</sub> | 1.00           | 0.0            |                |                |                |                |
| F <sub>0</sub> | 1.00           |                |                |                |                |                |

Radar 7.18

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | D <sub>0</sub> | D <sub>3</sub> | D <sub>7</sub> | F <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | 0.19           | -0.61          | -0.11          | 0.21           | 0.27           | -0.23          |
| C <sub>1</sub> | 1.00           | 0.84           | -0.15          | 0.29           | 0.37           | -0.31          |                |
| C <sub>2</sub> | 1.00           | 0.18           | -0.35          | -0.44          | 0.37           |                |                |
| D <sub>0</sub> | 1.00           | -0.56          | -0.80          | 0.73           |                |                |                |
| D <sub>3</sub> | 1.00           | 0.68           | -0.62          |                |                |                |                |
| D <sub>7</sub> | 1.00           | -0.91          |                |                |                |                |                |
| F <sub>0</sub> | 1.00           |                |                |                |                |                |                |

Radar 1.16

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | D <sub>0</sub> | D <sub>3</sub> | D <sub>8</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.88          | -0.18          | -0.01          | 0.0            | 0.05           | -0.02          | 0.0            |
| C <sub>1</sub> | 1.00           | 0.41           | 0.02           | 0.01           | -0.10          | 0.04           | 0.01           |                |
| C <sub>2</sub> | 1.00           | 0.05           | 0.02           | -0.25          | 0.09           | 0.01           |                |                |
| D <sub>0</sub> | 1.00           | -0.03          | 0.26           | -0.10          | -0.02          |                |                |                |
| D <sub>3</sub> | 1.00           | -0.13          | 0.05           | 0.01           |                |                |                |                |
| D <sub>8</sub> | 1.00           | -0.39          | -0.07          |                |                |                |                |                |
| F <sub>0</sub> | 1.00           | 0.06           |                |                |                |                |                |                |
| F <sub>3</sub> | 1.00           |                |                |                |                |                |                |                |

Radar 67.18

|                | C <sub>0</sub> | C <sub>2</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>5</sub> | D <sub>7</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.82          | 0.63           | -0.03          | 0.09           | -0.02          | -0.01          | -0.17          |
| C <sub>2</sub> | 1.00           | -0.37          | 0.03           | -0.05          | -0.07          | 0.07           | 0.10           |                |
| C <sub>4</sub> | 1.00           | -0.02          | 0.13           | -0.18          | 0.10           | -0.26          |                |                |
| D <sub>0</sub> | 1.00           | -0.80          | 0.06           | -0.06          | 0.0            |                |                |                |
| D <sub>5</sub> | 1.00           | -0.56          | 0.52           | -0.01          |                |                |                |                |
| D <sub>7</sub> | 1.00           | -0.92          | 0.0            |                |                |                |                |                |
| F <sub>0</sub> | 1.00           | 0.07           |                |                |                |                |                |                |
| F <sub>3</sub> | 1.00           |                |                |                |                |                |                |                |

Radar 19.18

|                | C <sub>0</sub> | C <sub>2</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | D <sub>7</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.00           | -0.75          | 0.58           | 0.06           | 0.0            | 0.0            | -0.01          | -0.06          |
| C <sub>2</sub> | 1.00           | -0.05          | -0.01          | -0.04          | -0.10          | 0.09           | 0.0            |                |
| C <sub>4</sub> | 1.00           | 0.10           | -0.06          | -0.13          | 0.10           | -0.12          |                |                |
| D <sub>0</sub> | 1.00           | -0.27          | -0.72          | 0.66           | -0.06          |                |                |                |
| D <sub>3</sub> | 1.00           | 0.43           | -0.39          | 0.03           |                |                |                |                |
| D <sub>7</sub> | 1.00           | -0.91          | 0.08           |                |                |                |                |                |
| F <sub>0</sub> | 1.00           | -0.03          |                |                |                |                |                |                |
| F <sub>3</sub> | 1.00           |                |                |                |                |                |                |                |

Radar 0.18

TABLE B-IV. COEFFICIENT CORRELATIONS FOR THE TRUNCATED  
AS-501 SECOND BURN RADAR ERROR MODELS

|       | $C_0$ | $C_1$ | $C_2$ | $D_0$ | $D_3$ | $D_7$ | $F_0$ | $F_3$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $C_0$ | 1.00  | -0.87 | 0.33  | -0.01 | 0.0   | 0.0   | 0.0   | 0.0   |
| $C_1$ | 1.00  | -0.56 | 0.03  | 0.0   | 0.01  | 0.0   | 0.0   | 0.0   |
| $C_2$ | 1.00  | -0.05 | -0.01 | -0.01 | 0.01  | 0.0   | 0.0   | 0.0   |
| $D_0$ | 1.00  | -0.07 | -0.20 | 0.17  | -0.10 |       |       |       |
| $D_3$ | 1.00  | 0.45  | -0.37 | 0.21  |       |       |       |       |
| $D_7$ | 1.00  | -0.83 | 0.48  |       |       |       |       |       |
| $F_0$ |       | 1.00  | -0.38 |       |       |       |       |       |
| $F_3$ |       |       | 1.00  |       |       |       |       |       |

Radar 19.18

|       | $C_0$ | $C_1$ | $C_2$ | $D_0$ | $D_3$ | $F_0$ | $F_3$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $C_0$ | 1.00  | -0.67 | 0.01  | 0.0   | 0.0   | 0.0   | 0.0   |
| $C_1$ | -1.00 | -0.69 | 0.04  | 0.0   | 0.0   | 0.0   | 0.0   |
| $C_2$ | 1.00  | -0.05 | 0.0   | 0.0   | 0.01  |       |       |
| $D_0$ | 1.00  | 0.35  | 0.0   | 0.0   |       |       |       |
| $D_3$ | 1.00  | 0.0   | 0.0   |       |       |       |       |
| $F_0$ |       | 1.00  | 0.44  |       |       |       |       |
| $F_3$ |       |       | 1.00  |       |       |       |       |

Radar 67.18

|       | $C_0$ | $C_1$ | $C_2$ | $D_0$ | $D_3$ | $F_0$ | $F_3$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $C_0$ | 1.00  | 0.01  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| $C_1$ | 1.00  | -0.06 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| $C_2$ | 1.00  | -0.06 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| $D_0$ | 1.00  | 0.0   | 0.0   |       |       |       |       |
| $D_3$ | 1.00  | 0.0   | 0.0   |       |       |       |       |
| $F_0$ |       | 1.00  | 0.25  |       |       |       |       |
| $F_3$ |       |       | 1.00  |       |       |       |       |

Radar 3.18

Radar 91.18



FIGURE B-1. RADAR 0.18 RESIDUALS ON AS-501  
FIRST BURN DATA



**FIGURE B-2. RADAR 0.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA**



FIGURE B-3. RADAR 19.18 RESIDUALS ON AS-501  
FIRST BURN DATA



FIGURE B-4. RADAR 19.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



FIGURE B-5. RADAR 3.18 RESIDUALS ON AS-501 FIRST BURN DATA



FIGURE B-6. RADAR 3.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



FIGURE B-7. RADAR 7.18 RESIDUALS ON AS-501  
FIRST BURN DATA



FIGURE B-8. RADAR 7.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



FIGURE B-9. RADAR 67.16 RESIDUALS ON AS-501  
FIRST BURN DATA



FIGURE B-10. RADAR 67.16 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



FIGURE B-11. RADAR 67.18 RESIDUALS ON AS-501  
FIRST BURN DATA



FIGURE B-12. RADAR 67.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



FIGURE B-13. RADAR 1.16 RESIDUALS ON AS-501 FIRST BURN DATA



FIGURE B-14. RADAR 1.16 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 FIRST BURN DATA



**FIGURE B-15. RADAR 19.18 RESIDUALS ON AS-501  
SECOND BURN DATA**



FIGURE B-16. RADAR 19.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 SECOND BURN DATA



FIGURE B-17. RADAR 3.18 RESIDUALS ON AS-501  
SECOND BURN DATA



FIGURE B-18. RADAR 3.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 SECOND BURN DATA



FIGURE B-19. RADAR 91.18 RESIDUALS ON AS-501  
SECOND BURN DATA



FIGURE B-20. RADAR 91.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 SECOND BURN DATA



FIGURE B-21. RADAR 67.18 RESIDUALS ON AS-501  
SECOND BURN DATA



FIGURE B-22. RADAR 67.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-501 SECOND BURN DATA

## APPENDIX C

### RESULTS FROM THE APOLLO-SATURN 502 VEHICLE FLIGHT TEST

This appendix presents a summary of the results from the Apollo-Saturn 502 Vehicle Flight Test launched on April 4, 1968. The Stepwise Regression Analysis results for the AS-502 data are given in Tables C-I and C-II. Coefficient correlations are given in Tables C-III and C-IV. Plots of the observed deltas, computed deltas, and the least squares residuals are presented in Figures C-1 through C-16. The tracking errors for the various radars are represented by dots in these figures. The description of these errors as obtained from the TEMS least squares adjustment program is represented by the solid computed curves.

TABLE C-I. STEPWISE REGRESSION ANALYSIS RESULTS  
FOR AS-502 LAUNCH PHASE DATA

| Equation   | Variables in Regression                       | $\sigma_Y$ | F Level |
|------------|-----------------------------------------------|------------|---------|
| 19.18      |                                               |            |         |
| $\Delta R$ | $C_0, C_1, C_7, C_4, C_8, C_5, C_6$           | 1.45       | 111.8   |
| $\Delta A$ | $D_0, D_8, D_3, D_5$                          | 0.0027     | -0.08   |
| $\Delta E$ | $F_0, C_7, F_3, D_8, D_7, C_5, C_4, C_2, C_6$ | 0.0022     | 14.0    |
| 3.18       |                                               |            |         |
| $\Delta R$ | $C_0, C_1, C_8, C_2, C_4, C_5$                | 1.19       | -0.03   |
| $\Delta A$ | $D_0, D_7, D_5, D_3$                          | 0.0053     | 13.6    |
| $\Delta E$ | $F_0, C_2, C_4$                               | 0.0053     | -1.8    |
| 67.18      |                                               |            |         |
| $\Delta R$ | $C_0, C_6, C_1, C_8, C_2, C_7, C_4$           | 2.48       | 9.1     |
| $\Delta A$ | $D_0, C_2, D_7, D_6$                          | 0.0035     | 5.5     |
| $\Delta E$ | $F_0, C_7, D_8, C_4, C_5, D_7$                | 0.0061     | -2.02   |
| 0.18       |                                               |            |         |
| $\Delta R$ | $C_0, C_1, C_7, C_8, C_4, C_5, C_6$           | 2.16       | 4.7     |
| $\Delta A$ | $D_0, D_8, D_7$                               | 0.0035     | 7.6     |
| $\Delta E$ | $F_0, C_4, C_5, C_7$                          | 0.0032     | -1.8    |
| 1.16       |                                               |            |         |
| $\Delta R$ | $C_0, C_1, C_8, C_2, C_4$                     | 4.20       | 3.7     |
| $\Delta A$ | $D_0, D_8$                                    | 0.0093     | 41.3    |
| $\Delta E$ | $F_0, F_3, D_7$                               | 0.0102     | 16.7    |

TABLE C-II. STEPWISE REGRESSION ANALYSIS RESULTS  
FOR AS-502 ORBITAL PHASE (REV. 1) DATA

| Equation   | Variables in Regression   | $\sigma_Y$ | F Level |
|------------|---------------------------|------------|---------|
| 19. 18     |                           |            |         |
| $\Delta R$ | $C_0, C_2, C_6, C_5$      | 4.21       | 21.58   |
| $\Delta A$ | $D_0, D_3, C_6, D_5$      | 0.0028     | 6.28    |
| $\Delta E$ | $F_0$                     | 0.0082     | 0.15    |
| 0. 18      |                           |            |         |
| $\Delta R$ | $C_0, C_2, C_5, C_4, C_8$ | 3.84       | 44.10   |
| $\Delta A$ | $D_0, D_6, C_2$           | 0.0039     | 26.0    |
| $\Delta E$ | $F_0, C_6$                | 0.0121     | 4.8     |
| 3. 18      |                           |            |         |
| $\Delta R$ | $C_0, C_6, C_7, C_8, C_4$ | 1.52       | 254.20  |
| $\Delta A$ | $D_0, D_7$                | 0.0058     | 31.1    |
| $\Delta E$ | $F_0, C_4$                | 0.0100     | 17.0    |

TABLE C-III. COEFFICIENT CORRELATIONS FOR THE TRUNCATED AS-502 LAUNCH PHASE ERROR MODELS

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | D <sub>5</sub> | D <sub>7</sub> | F <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.0            | 0.06           | 0.87           | 0.03           | -0.05          | 0.03           | -0.15          | 0.14           |
| C <sub>1</sub> | 1.0            | 0.46           | 0.02           | -0.03          | 0.02           | -0.08          | 0.07           |                |
| C <sub>4</sub> | 1.0            | 0.04           | -0.06          | 0.04           | -0.17          | 0.16           |                |                |
| D <sub>0</sub> | 1.0            | -0.54          | -0.87          | -0.21          | 0.20           |                |                |                |
| D <sub>3</sub> | 1.0            | 0.42           | 0.33           | -0.30          |                |                |                |                |
| D <sub>5</sub> | 1.0            | -0.23          | 0.22           |                |                |                |                |                |
| D <sub>7</sub> | 1.0            | -0.93          |                |                |                |                |                |                |
| F <sub>0</sub> |                | 1.0            |                |                |                |                |                |                |

19.18

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | D <sub>0</sub> | D <sub>3</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.0            | 0.34           | -0.69          | 0.22           | 0.01           | 0.0            | -0.03          |
| C <sub>1</sub> | 1.0            | -0.88          | 0.28           | 0.02           | 0.0            | -0.04          |                |
| C <sub>2</sub> | 1.0            | -0.31          | -0.02          | 0.0            | 0.0            | 0.04           |                |
| D <sub>0</sub> | 1.0            | 0.06           | 0.0            | -0.01          |                |                |                |
| D <sub>3</sub> | 1.0            | 0.0            | 0.0            |                |                |                |                |
| F <sub>0</sub> | 1.0            | 0.28           |                |                |                |                |                |
| F <sub>3</sub> | 1.0            |                |                |                |                |                |                |

0.18

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | F <sub>0</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.0            | -0.08          | 0.94           | 0.0            | 0.0            | -0.04          | -0.14          |
| C <sub>1</sub> | 1.0            | 0.38           | 0.10           | 0.0            | -0.02          | -0.06          |                |
| C <sub>4</sub> | 1.0            | 0.0            | 0.0            | -0.05          | -0.16          |                |                |
| D <sub>0</sub> | 1.0            | -0.13          | 0.0            | 0.0            |                |                |                |
| D <sub>3</sub> | 1.0            | 0.0            | 0.0            |                |                |                |                |
| F <sub>0</sub> | 1.0            | 0.03           |                |                |                |                |                |
| F <sub>3</sub> | 1.0            |                |                |                |                |                |                |

1.16

|                | C <sub>0</sub> | C <sub>2</sub> | C <sub>4</sub> | D <sub>0</sub> | D <sub>3</sub> | F <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.0            | -0.31          | 0.66           | 0.04           | 0.0            | 0.04           |
| C <sub>2</sub> | 1.0            | 0.39           | -0.14          | 0.0            | 0.0            | 0.03           |
| C <sub>4</sub> | 1.0            | -0.05          | 0.0            | 0.06           |                |                |
| D <sub>0</sub> | 1.0            | 0.15           | 0.0            |                |                |                |
| D <sub>3</sub> | 1.0            | 0.0            |                |                |                |                |
| F <sub>0</sub> | 1.0            |                |                |                |                |                |

3.18

|                | C <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | D <sub>0</sub> | D <sub>8</sub> | F <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>0</sub> | 1.0            | -0.90          | 0.20           | 0.01           | -0.03          | 0.0            |
| C <sub>1</sub> | 1.0            | -0.31          | -0.01          | 0.04           | 0.0            |                |
| C <sub>2</sub> | 1.0            | 0.04           | -0.14          | 0.0            |                |                |
| D <sub>0</sub> | 1.0            | 0.18           | 0.0            |                |                |                |
| D <sub>8</sub> | 1.0            | 0.01           |                |                |                |                |
| F <sub>0</sub> | 1.0            |                |                |                |                |                |

67.18

TABLE C-IV. COEFFICIENT CORRELATIONS FOR THE TRUNCATED  
AS-502 ORBITAL PHASE (REV. 1) ERROR MODELS

|       | $C_0$ | $C_2$ | $D_0$  | $D_3$  | $F_0$  |
|-------|-------|-------|--------|--------|--------|
| $C_0$ | 1. 0  | 1. 0  | -0. 06 | -0. 16 | -0. 30 |
| $C_2$ |       | 1. 0  | -0. 06 | -0. 16 | -0. 30 |
| $D_0$ |       |       | 1. 0   | -0. 93 | 0. 02  |
| $D_3$ |       |       |        | 1. 0   | 0. 05  |
| $F_0$ |       |       |        |        | 1. 0   |

3. 18

|       | $C_0$ | $C_2$ | $D_0$  | $D_3$  | $F_0$  |
|-------|-------|-------|--------|--------|--------|
| $C_0$ | 1. 0  | 1. 0  | -0. 07 | -0. 20 | -0. 29 |
| $C_2$ |       | 1. 0  | -0. 07 | -0. 20 | -0. 29 |
| $D_0$ |       |       | 1. 0   | -0. 83 | 0. 02  |
| $D_3$ |       |       |        | 1. 0   | 0. 06  |
| $F_0$ |       |       |        |        | 1. 0   |

19. 18

|       | $C_0$ | $C_2$ | $D_0$  | $D_3$  | $F_0$  |
|-------|-------|-------|--------|--------|--------|
| $C_0$ | 1. 0  | 1. 0  | -0. 07 | -0. 20 | -0. 25 |
| $C_2$ |       | 1. 0  | -0. 07 | -0. 20 | -0. 25 |
| $D_0$ |       |       | 1. 0   | -0. 81 | 0. 02  |
| $D_3$ |       |       |        | 1. 0   | 0. 05  |
| $F_0$ |       |       |        |        | 1. 0   |

0. 18



FIGURE C-1. RADAR 19, 18 RESIDUALS ON AS-502  
LAUNCH PHASE DATA



FIGURE C-2. RADAR 19.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 LAUNCH PHASE DATA



FIGURE C-3. RADAR 0.18 RESIDUALS ON AS-502 LAUNCH PHASE DATA



FIGURE C-4. RADAR 0.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 LAUNCH PHASE DATA



FIGURE C-5. RADAR 1.16 RESIDUALS ON AS-502  
LAUNCH PHASE DATA



FIGURE C-6. RADAR 1.16 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 LAUNCH PHASE DATA



FIGURE C-7. RADAR 67.18 RESIDUALS ON AS-502 LAUNCH PHASE DATA



FIGURE C-8. RADAR 67.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 LAUNCH PHASE DATA



FIGURE C-9. RADAR 3.18 RESIDUALS ON AS-502  
LAUNCH PHASE DATA



FIGURE C-10. RADAR 3.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 LAUNCH PHASE DATA



FIGURE C-11. RADAR 0.18 RESIDUALS ON AS-502  
ORBITAL PHASE (REV. 1) DATA



FIGURE C-12. RADAR 0.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 ORBITAL PHASE (REV. 1) DATA



FIGURE C-13. RADAR 3.18 RESIDUALS ON AS-502  
ORBITAL PHASE (REV. 1) DATA



FIGURE C-14. RADAR 3.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 ORBITAL PHASE (REV. 1) DATA



FIGURE C-15. RADAR 19.18 RESIDUALS ON AS-502  
ORBITAL PHASE (REV. 1) DATA



FIGURE C-16. RADAR 19.18 RANGE, AZIMUTH, AND ELEVATION ERRORS ON AS-502 ORBITAL PHASE (REV. 1) DATA

## REFERENCES

1. Junkin, Bobby G.: Regression Analysis Procedures For The Evaluation of Tracking System Measurement Errors. NASA TN D-4826, December 1968.
2. Apollo/Saturn V Postflight Trajectory AS-502. The Boeing Company Space Division Document No. D5-15773, July 31, 1968.

APPROVAL

TM-X 53804

THE TEMS APOLLO-SATURN V RESULTS  
THROUGH THE AS-502 FLIGHT TEST

By Bobby G. Junkin

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

Roy J. Cochran

Roy J. Cochran  
Chief, Engineering Computation Division

H. Hoelzer

H. Hoelzer  
Director, Computation Laboratory

## DISTRIBUTION

NASA TM X-53804

### INTERNAL

#### DIR

Dr. von Braun

#### DEP-T

Dr. E. Rees

#### R-DIR

Mr. H. Weidner

#### R-COMP-DIR

Dr. H. Hoelzer  
Mr. Carl Prince

#### R-COMP-D

Mr. D. G. Aichele

#### R-COMP-RR

Mr. R. J. Cochran

#### R-COMP-RRT

Mr. R. H. Craft  
Mr. B. G. Junkin (15)

#### R-COMP-RRM

Mr. C. E. Houston

#### R-COMP-RRP

Mr. P. R. Harness

#### R-COMP-RRV

Mr. Jack A. Jones

#### R-COMP-RRF

Mr. R. L. Neece

#### R-COMP-RRG

Mr. Paul O. Hurst

#### R-COMP-S

Mr. J. C. Lynn

#### R-AERO-DIR

Dr. E. Geissler

#### R-AERO-F

Mr. J. P. Lindberg

#### R-AERO-FF

Mr. C. C. Hagood  
Mr. John P. Sheats

#### R-AERO-F

Mr. C. R. Fulmer

#### R-AERO-FT

Mr. R. H. Benson

#### R-AERO-FFT

Mr. J. B. Haussler

#### R-ASTR-DIR

Dr. W. Haeussermann

#### R-SSL-DIR

Dr. E. Stuhlinger

#### R-P&VE-DIR

Dr. W. R. Lucas

#### R-ME-DIR

Dr. Siebel

#### R-AS-DIR

Mr. F. Williams

#### R-QUAL-DIR

Mr. Grau

**DISTRIBUTION (Continued)**      NASA TM X-53804

R-EO-DIR  
Mr. W. G. Johnson

EXTERNAL

Chrysler Corporation Space Division  
Department 2783  
New Orleans, Louisiana 70129  
Attn: Mr. J. Nichols (2)

I-DIR  
Gen. E. O'Connor  
Dr. W. A. Mrazek

I-V-MGR  
Col. James

The Boeing Company  
Huntsville Industrial Center  
Huntsville, Alabama 35801  
Attn: Dr. J. Liu

I-MO-MGR  
Dr. F. A. Speer

Manned Spacecraft Center  
National Aeronautics and Space  
Administration  
Houston, Texas 77058  
Attn: Mr. J. Hanaway, ED  
Mr. B. F. McCreary, FM-12  
Mr. E. R. Schiesser, FM-4  
Mr. W. M. Boyce, FM-4

I-MO-O  
Mr. Fletcher Kurtz  
Mr. Max Horst

R-TEST-DIR  
Mr. K. L. Heimburg

John F. Kennedy Space Center  
National Aeronautics and Space  
Administration  
Kennedy Space Center, Florida 32899  
Attn: Dr. K. Debus, DIR  
Dr. R. H. Bruns, K-ED  
Mr. Karl Sendler, K-E

MS-IL (8)

MS-IP (2)

MS-H

I-RM-M

PAT  
Mr. L. D. Wofford, Jr.

Scientific and Technical Information  
Facility (25)  
P. O. Box 33  
College Park, Maryland 20740  
Attn: NASA Representative, S-AK/RKT

MS-T (6)

Computer Sciences Corporation  
Huntsville, Alabama 35802  
Attn: Mr. E. Clyde Anderson

DISTRIBUTION (Concluded)    NASA TM X-53804

Philco, WDL  
3875 Fabian Way  
Mail Stop 875  
Palo Alto, California 94303  
Attn: Mr. Jim Tyler

Lockheed Missiles and Space Company  
Huntsville Research and Engineering  
Center  
4800 Bradford Drive  
Huntsville, Alabama 35806  
Attn: Mr. Richard Hill, 54-30

Goddard Space Flight Center  
National Aeronautics and Space  
Administration  
Greenbelt, Maryland 20071  
Attn: Mr. W. D. Kahn, Code 507  
         Mr. P. G. Brumberg, Code 554  
         Mr. M. J. Keller, Code 554  
         Mr. P. E. Schmid, Code 551

TRW Systems  
Houston Operations  
Space Park Drive  
Houston, Texas 77058  
Attn: Mr. Gerald Riddle (2), H2-1080  
         Dr. D. D. Nadkarni, H2-1080d

RCA Performance Analysis  
Cocoa Beach Office  
Mail Unit 645  
P. O. Box 4036  
Patrick Air Force Base, Florida 32925  
Attn: Mr. E. A. Hoffman-Heyden