DIFFERENTIAL PRIVACY FOR MACHINE LEARNING:

Accuracy, Interpretability, and Privacy in Explainable Boosting

Efstathios Chatziloizos, Xichen Zhang, Aymeric Behaegel

March 12, 2025

Table of Contents

Introduction and motivation

Foundations of Differential Privacy

Explainable Boosting Machines

DP-EBM

Experiments

Custom DP-EBM Implementation

Our contribution

Introduction

- ▶ Model interpretability is a handy feature to have on a model, it allows for human correction and thus better results.
- ▶ But sometimes, those models deal with sensitive data, like in medicine or finance. In that case, we would also like to have privacy guarantees on the data.
- ► This paper introduces a new type of model for differential privacy on explainable models based on boosting trees.

Definition of Differential Privacy

(ϵ, δ) -Differential Privacy (DP) Dwork, Roth, et al. (2014)

A mechanism ${\mathcal M}$ satisfies (ϵ,δ) -DP if for any neighboring databases d,d',

$$\Pr[\mathcal{M}(d) \in S] \le e^{\epsilon} \Pr[\mathcal{M}(d') \in S] + \delta.$$

Drawbacks:

- \bullet (ϵ, δ) -DP lacks clear interpretability, making privacy guarantees hard for users and regulators to understand.
- ▶ It also has weak composition properties, causing overly loose bounds when combining multiple DP algorithms.

Composition Theorem

Composition of Differential Privacy

If $\mathcal{M}_1,\ldots,\mathcal{M}_n$ are (ϵ_i,δ_i) -DP mechanisms, their composition satisfies:

$$(\sum_i \epsilon_i, \sum_i \delta_i)\text{-DP}.$$

Implications:

- Privacy degrades when applying multiple DP mechanisms
- ightharpoonup Tight bounds on ϵ are necessary for practical applications.

Gaussian Differential Privacy (GDP)

Gaussian Differential Privacy (GDP) Dong, Roth, and Su (2022)

Define the Gaussian mechanism ${\cal M}$ as

$$M(D) = \theta(D) + \xi, \quad ext{where } \xi \sim \mathcal{N}\Big(0, \frac{\Delta^2}{\mu^2}\Big).$$

Then, M is μ -GDP.

Ensures μ -GDP, where single parameter μ controls the privacy level.

k-fold Composition of GDP Mechanisms

Given M_1, M_2, \dots, M_k with μ_i -GDP, their composition satisfies:

$$\sqrt{\sum_{i=1}^k \mu_i^2}\text{-}\mathsf{GDP}.$$

Provides a tighter bound than standard composition.

Conversion from GDP to (ϵ, δ) -DP

GDP to **DP** Conversion

A mechanism is μ -GDP if and only if it satisfies (ϵ, δ) -DP, where:

$$\delta = \Phi\left(-\frac{\epsilon}{\mu} + \frac{\mu}{2}\right) - e^{\epsilon} \Phi\left(-\frac{\epsilon}{\mu} - \frac{\mu}{2}\right).$$

Key Takeaways:

- Provides a direct link between Gaussian DP and traditional DP.
- Enables more refined privacy analysis in practical settings.

Explainable Boosting Machines (EBM): Overview

- ► Glass-box models (linear regression, decision trees) offer interpretability but typically sacrifice accuracy.
- ► Explainable Boosting Machines (EBMs) Nori et al. 2019 address this trade-off by integrating:
 - ► Generalized Additive Models (GAM)
 - Gradient Boosting Decision Trees (GBDT)
- EBMs represent predictions as additive combinations of shape functions:

$$g(\mathbb{E}[Y]) = \beta + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_k(x_{ik}),$$

where:

- ightharpoonup Y is the response, β an intercept.
- $ightharpoonup f_k$ are feature-specific shape functions.
- g is a link function (e.g., identity for regression, logit for classification).

EBM Training: Gradient Boosting and Splits

Iteration	$feat_1$		feat ₂		feat ₃			$feat_n$	
1	太	res		res		res	res	$\stackrel{\wedge}{\sim}$	res
2	人	res	人	res		res	res	\wedge	res
3	1	res	人	res	人	res	res	人	res
4	$\stackrel{\wedge}{\searrow}$	res	人	res		res	res	人	res
5		res	人	res	人	res	res		res
6		res		res		res	res	\	res
7	人	res	人	res		res	res	\	res
8	\wedge	res		res		res	res		res
 10,000	人	res	人	res	\checkmark	res	res	^	res
		+		+	hun	+	 +	1	

- ▶ EBMs use gradient boosting to iteratively refine shape
- Key idea: Each feature is updated sequentially using shallow decision trees restricted to individual features (cyclic boosting).

Differentially Private EBM (DP-EBM): Overview

- DP-EBM integrates differential privacy into Explainable Boosting Machines.
- Privacy budget (ϵ, δ) is split into:
 - ► Histogram:
 - $((1-\tau)\epsilon, \delta/2)$ Tree: $(\tau\epsilon, \delta/2)$
- Converted to GDP
- ► Two key steps:
 - DP Binning
 - ► Noisy residual updates

```
Algorithm 2 Differentially Private Explainable Boosting
```

```
Input: X, y, E, \eta, m, R, \epsilon, \delta
Output: \{f_k : H_k \to \mathbb{R}\}_{k=1}^K
```

Initialization:

- For $i=1,\ldots,n$: $r_i^0 \leftarrow y_i$.
- For each feature $k = 1, \dots, K$:
 - Compute $a_k = \min_i X_{i,k}$ and $b_k = \max_i X_{i,k}$.
 - Privately bin data: $\hat{H}_k = DPBin(X[:,k], \epsilon_{bin})$
- Set $f_k^0(b) \leftarrow 0$ for every $b \in \hat{H}_k$.

Main Loop:

12:

13:

14: 15:

16:

```
1: for e = 1, ..., E do
            for k = 1, \ldots, K do
 3.
                   Select Random splits S_0, S_1, \ldots, S_m \subseteq H_k
 4:
                  for \ell = 0, \ldots, m do
 5:
                         T \leftarrow \eta \cdot \sum_{b \in S_t} \sum_{i \in \mathcal{I}_{b}(b)} r_i^t
                         \hat{T} \leftarrow T + \sigma \cdot \eta R \cdot \mathcal{N}(0,1)
 6:
                         \mu \leftarrow \frac{\hat{T}}{\sum_{b \in S_*} \hat{H}_k(b)}
 7:
                         for each b \in S_{\ell} do
 8:
                               f_h^t(b) \leftarrow f_h^t(b) + \mu
 9:
                         end for
10:
                  end for
11:
```

 $r_i^{t+1} \leftarrow y_i - \sum_{k=1}^{K} f_k^t(\rho(H_k, X_{i,k}))$

for $i = 1, \ldots, n$ do

end for

DP-EBM: Noise Injection and Advantages

Noise Injection Strategy:

- **DP Binning:** Gaussian noise added to histograms based on privacy budget $\epsilon_{\rm bin}$.
- ▶ Tree Construction: Aggregated residual sums perturbed with Gaussian noise:

$$\hat{T} = T + \sigma \cdot \eta R \cdot \mathcal{N}(0, 1)$$

Shape Function and Tree Splitting:

- Splits randomly selected within histogram bins.
- Leaf nodes updated iteratively with noisy aggregates, preserving privacy.

Advantages of GDP Analysis:

- ► Tighter privacy composition.
- easy to track our budget

Comparison of Non-DP Models (Test AUC)

Dataset	Model	Test AUC	Std
Breast-cancer	LR	0.994	0.006
	RF-100	0.992	0.009
	XGB	0.992	0.010
	APLR	0.993	0.006
	EBM	0.994	0.009
Telco-churn	LR	0.808	0.014
	RF-100	0.824	0.002
	XGB	0.822	0.004
	APLR	0.849	0.003
	EBM	0.853	0.004
Adult	LR	0.907	0.003
	RF-100	0.903	0.002
	XGB	0.928	0.001
	APLR	0.927	0.002
	EBM	0.929	0.002
Credit-fraud	LR	0.980	0.003
	RF-100	0.950	0.007
	XGB	0.983	0.002
	APLR	0.979	0.007
	EBM	0.982	0.005

Table: Test AUC (mean \pm std) for Standard (non-DP) models.

DP-EBM on Adult Dataset: Claimed vs. Recreated

ϵ	Claimed	DP-EBM	Recreated DP-EBM		
	Classic	GDP	Classic	GDP	
0.5	0.875 ± 0.005	0.875 ± 0.005	0.826 ± 0.003	0.871 ± 0.003	
1.0	0.880 ± 0.006	0.883 ± 0.005	0.859 ± 0.005	0.878 ± 0.003	
2.0	0.886 ± 0.005	0.887 ± 0.004	0.877 ± 0.005	0.883 ± 0.004	
4.0	0.889 ± 0.004	0.889 ± 0.004	0.875 ± 0.004	0.888 ± 0.004	
8.0	0.890 ± 0.004	0.890 ± 0.004	0.887 ± 0.004	0.893 ± 0.005	

Table: DP-EBM test AUC on the Adult dataset for various ϵ values. (Claimed values are from the paper and recreated results are our implementation.)

Our Custom DP-EBM Implementation

▶ Data Loading: Uses standard data loaders for Adult, Telco Churn, and Credit Card Fraud.

Binning Strategy:

- Numeric features: Quantile-based binning.
- Categorical features: Direct mapping of unique values.

Cyclic Boosting:

- Iterates over features for a fixed number of epochs.
- Updates each feature's shape function by computing the mean residual over each bin.
- Injects Gaussian noise into the residual average update.

Privacy Parameters:

- Noise scale is computed as $\sigma = \sqrt{2 \ln(1.25/\delta)}/\epsilon$.
- A single global noise scale is used (without explicit per-round budget partitioning).
- Prediction: The additive predictions (across features) are passed through a sigmoid to obtain probabilities.

Differences from Algorithm 2 of the Paper

DP Binning:

- Paper: DPBin adds noise to bin counts/boundaries.
- Ours: Standard quantile binning, no DP noise.

Split Selection:

- Paper: Randomized splits to save privacy budget.
- Ours: Fixed bin edges, no randomness.

Noise Injection:

- Paper: Noise in aggregate residuals, budget split.
- Ours: Gaussian noise to mean residual update.

Ensembling:

- Paper: Outer/inner bagging for variance reduction.
- Ours: Single-model boosting, no bagging.

Complexity:

- Paper: Monotonicity, strict privacy accounting.
- Ours: A simplified toy model (cyclic boosting + noise injection).

Custom DP-EBM vs Official DP-EBM ($\epsilon = 4.0$)

- Adult Dataset:
 - Custom DP-EBM Test AUC: 0.8435
 - ▶ Official DP-EBM (GDP) Test AUC: 0.889 ± 0.004
- ► Telco Churn Dataset:
 - Custom DP-EBM Test AUC: 0.8225
 - ▶ Official DP-EBM (GDP) Test AUC: 0.839 ± 0.011
- Credit Card Fraud Dataset:
 - Custom DP-EBM Test AUC: 0.8754
 - ▶ Official DP-EBM (GDP) Test AUC: 0.969 ± 0.011

Our contribution

We tested the algorithm on two new datasets :

- ► Parkinson for regression
- ▶ Phishing for classification

Dataset	Domain	N	K	Task
Parkinson	Medicine	5,875	19	Reg.
Phishing	Security	11.055	30	Class.

Table: Statistics of datasets

Our contribution

Dataset	ϵ	custom	classic	gdb
	0.1	29.71	30.4 ± 1.673	17.2 ± 0.749
	0.5	29.74	12.6 ± 0.168	11.4 ± 0.017
Parkinson	2	29.71	10.6 ± 0.045	9.6 ± 0.044
	4	29.71	9.7 ± 0.119	9.4 ± 0.071
	8	29.71	9.4 ± 0.033	9.1 ± 0.044

Table: RMSE algorithm comparison on new dataset

Our contribution

Dataset	ϵ	custom	classic	gdb	logistic	rdm forest
	0.1	0.765	0.673 ± 0.005	0.914 ± 0.009	0.873 ± 0.008	0.757 ± 0.003
	0.5	0.540	0.948 ± 0.004	0.968 ± 0.003	0.888 ± 0.002	0.757 ± 0.003
Phishing	2	0.784	0.972 ± 0.003	0.977 ± 0.003	0.896 ± 0.005	0.757 ± 0.003
	4	0.943	0.975 ± 0.003	0.978 ± 0.002	0.897 ± 0.005	0.758 ± 0.003
	8	0.950	0.977 ± 0.003	0.979 ± 0.002	0.897 ± 0.005	0.758 ± 0.003

Table: AUROC algorithm comparison on new dataset

Critical analysis of results

Even though the paper shows very promising results, some critics can be made :

- limited to tabular data
- ▶ no comparison to deep DP models
- regularization through noise adding not always good

References I

- Dong, Jinshuo, Aaron Roth, and Weijie J Su (2022). "Gaussian differential privacy". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 84.1, pp. 3–37.
- Dwork, Cynthia, Aaron Roth, et al. (2014). "The algorithmic foundations of differential privacy". In: Foundations and Trends® in Theoretical Computer Science 9.3–4, pp. 211–407.
- Nori, Harsha, Samuel Jenkins, Paul Koch, and Rich Caruana (2019). "Interpretml: A unified framework for machine learning interpretability". In: arXiv preprint arXiv:1909.09223.