Міністерство освіти і науки України Національний центр «Мала академія наук України» LIX Всеукраїнська учнівська олімпіада з фізики, м. Львів, 2025 Теоретичний тур, 11-й клас

1. «Електромагнітна стереометрія»

Правильний тетраедр ABCD з довжиною ребра l виготовлено з однорідного дроту так, що опір кожного ребра тетраедра R. Між точками A і B приєднують ідеальне джерело з напругою U, між точками B і C ще одне джерело з напругою 2U, а між точками A і D третє джерело з напругою 3U. Тетраедр розташований у однорідному магнітному полі, вектор індукції якого B направлений вздовж ребра AB.

- А. Знайдіть електричний опір тетраедра між двома його вершинами.
- Б. Знайдіть силу струму у кожному ребрі тетраедра.
- **В.** Доведіть, що сила Ампера, яка діє на тетраедр, дорівнює силі Ампера, що діє на прямий провідник, що з'єднує точки підключення напруги.

Г. Знайдіть силу, яка діє на тетраедр з боку зовнішнього однорідного магнітного поля. Можете використати твердження з п.**В,** навіть якщо ви не змогли його довести.

2. «Схематозне безумство»

А. Коливний контур, зображений на рисунку, складається з двох конденсаторів C=1000 мк Φ , котушки індуктивності L=0.1 Гн та ключа. Спочатку ключ був розімкнутий, а заряд на кожному конденсаторі дорівнював q=1 мкКл. Знайти **максимальний струм** через котушку I_{max} після замикання ключа.

- **Б.** Змінимо контур. Приєднаємо до кожного елемента коливного контуру резистор опором $\mathbf{R}=10$ Ом (дивись рисунок). У певний момент часу виконуються умови: $\frac{d\mathbf{I}_L}{dt}=\mathbf{0},\ \mathbf{I}_1=10\ \mathrm{A}$ та $\mathbf{I}_2=12\ \mathrm{A}$. Обчислити яка максимальна **кількість теплоти** \mathbf{Q} може виділитися в системі починаючи з цього моменту часу.
- **В.** Додатково модифікуємо контур. Замінимо резистори опором $R=10~\rm Om$ на резистори різного опору та під'єднаємо контур до джерела змінної напруги з відомим амплітудним значенням U_0 та циклічною частотою ω (дивись третій рисунок). Відомо, що параметри системи зв'язані між собою співвідношенням $\frac{1}{C_1 \omega R_1} = \frac{\omega L}{R_3} = \sqrt{3}$. Виразити **амплітудні значення** U_{CA} та U_{BA} через U_0 після встановлення коливань.

3. «Інопланетний диск»

Космічна станція інопланетян, що має форму тонкого плаского диску, готується до подорожі деякою галактикою.

- **А. Штучна гравітація.** Маючи великі запаси енергії, інопланетяни вирішили проблему відсутності гравітації, розганяючи свою станцію так, щоб на ній відчувалось прискорення $a=15 \text{ м/c}^2$. Вважаючи, що станція стартує біля центру галактики, знайти **яку швидкість** вона набере відносно цього центру галактики, коли за галактичним годинником пройде $t=2\times 10^7 c$? Швидкість світла у вакуумі $c=3\times 10^8 \text{ м/c}$.
- **Б.** Зіткнення. Безпосередньо перед стартом, коли станція ще не оберталась, інопланетяни помічають поблизу астероїд маси m, що летить в їхній бік. Уважаючи, що удар астероїда був абсолютно непружним, а безпосередньо перед зіткненням астероїд знаходився на відстані b від центру станції і мав невелику швидкість v, спрямовану перпендикулярно площині її диску, знайдіть, **в яких місцях** на станції не відчувалось прискорення від удару. Маса станції m. Момент інерції однорідного диску відносно осі, що проходить крізь центр мас і лежить в площині диску, дорівнює $MR^2/4$.

<u>Примітка</u>. Вам може знадобитись інтеграл $\int (1-x^2)^{-3/2} dx = \frac{x}{\sqrt{1-x^2}} + C$.

4. «Від гвинта!»

На рисунку зображений жорсткий дріт у вигляді фрагменту гвинтової лінії з розпрямленими вертикальними кінцями. На дріт надіті дві кульки, шарнірно з'єднані легким стержнем максимально можливої довжини, що дозволяє цій «гантелі» рухатись вздовж гвинтової лінії. У початковому положенні нижня кулька (більша на рис.) утримувалась на рівні верхніх частин витків дроту. Кульки відпускають. Силами тертя, опору повітря, розміром кульок знехтувати. Прискорення вільного падіння $g = 9,8 \text{ м/c}^2$, радіус гвинтової лінії R = 20 см. Наведений рисунок є схематичним, але кількість витків на ньому вказана точно.

А. Знайдіть час руху цієї «гантелі» вздовж дуг гвинтової лінії, тобто від одного крайнього горизонтального положення стержня до іншого (див. рис.). Уважайте, що маси кульок однакові, а відстань між витками гвинтової лінії набагато менша за її радіус.

Далі розглядаємо випадки, коли більша за розміром кулька має втричі більшу масу, а відстань між витками $h=18~\mathrm{cm}$. Не забудьте врахувати відповідну зміну довжини «гантелі».

Зазначимо, що відстань між витками h = 18 см вимірюється вздовж осі симетрії гвинтової лінії, а радіус R - y перпендикулярному напрямку.

5. «День/ніч»

Космічна експедиція дісталася зоряної системи, що складається з центральної масивної зорі (3), однієї планети (Π) та її супутника (C). Радіус планети дорівнює 6000 км, радіус супутника – 1000 км. Супутник рухається по коловій орбіті радіусом 400000 км. Середня густина планети та супутника однакова: $\rho = 5000$ кг/м³. Відстань від планети до зорі становить кілька сотень мільйонів кілометрів. Доба на планеті триває 12 земних годин, вісь добового обертання утворює прямий кут з площиною A орбіти планети навколо зорі.

Гравітаційна стала дорівнює 6,67 · $10^{-11} \frac{\text{H} \cdot \text{м}^2}{\text{кг}^2}$.

Експедиція вимірює прискорення вільного падіння на планеті.

- **А. На скільки відсотків** відрізняються прискорення вільного падіння на полюсі та на екваторі внаслідок добового обертання планети?
- **Б. Оцініть, на скільки відсотків** *можуть* відрізнятися прискорення вільного падіння в різних точках екватора внаслідок гравітаційного впливу супутника планети.
- **В.** Супутник є кулею без атмосфери, кожна маленька ділянка поверхні якої поглинає 40 % енергії падаючого світла в будь-якому діапазоні довжин хвиль, а решту відбиває в усіх напрямах таким чином, що всі освітлені частини «диску» супутника здалеку виглядають однаково яскравими. Нехай кут α це кут між напрямами «супутник—зоря» (С—3) і «супутник-планета» (С—П). Площина орбіти руху супутника навколо планети збігається з площиною A, можливість затемнень не враховуйте.

Експедиція також спостерігає за змінами освітленості E точки екватора планети протягом тривалого часу. Визначте залежність відношення $\frac{E_{\rm hiq}}{E_{\rm день}}$ від α ($E_{\rm hiq}$, $E_{\rm день}$ — освітленості відповідно опівночі та опівдні за однакового значення кута α), накресліть схематичний графік цієї залежності.

Задачі запропонували:

1. Майзеліс З.О., 2. Абдулханов А.М., Пашко М.І., 3. Прасолов О.К., Пашко М.І., 4. Орлянський О.Ю., 5. Гельфгат І.М.