1 ДЗ-02

1.1 Задача 1.

1.1.1 Logit-модель.

Создадим бинарную переменную crime86: 0 - если не был арестован, 1 - если был арестован хоть раз.

generate crime86: crime86 = narr86>0

Построим логит для стіте86:

logit crime86 pcnv avgsen tottime ptime86 qemp86 inc86 durat black hispan born60

Logistic regression Log likelihood = -1481.4576					(10) chi2	= 2,725 = 253.45 = 0.0000 = 0.0788
crime86	Coef.	Std. Err.	z	P> z	[95% Con	f. Interval]
pcnv avgsen tottime ptime86 qemp86 inc86 durat black hispan born60 _cons	9241749 .0185028 01081 1230478 .0664828 0090569 .0196168 .7763932 .4981595 .0183557 6554766	.1244522 .0352982 .0281724 .0316273 .0451872 .0012899 .0102139 .1184542 .1099489 .0944615 .1192052	-7.43 0.52 -0.38 -3.89 1.47 -7.02 1.92 6.55 4.53 0.19 -5.50	0.000 0.600 0.701 0.000 0.141 0.000 0.055 0.000 0.846 0.000	-1.16809705068040660269185036102208260115850004022 .5442273 .282663716678548891146	.087686 .0444068 0610595 .1550481 0065287 .0396357 1.008559 .7136553 .2034967

Получим оценку nocrime для каждого наблюдения того, что индивидуум не будет ни разу арестован:

predict prediction

generate nocrime: nocrime = 1-prediction

1.1.2 График долей ошибок І-ІІ рода.

Посчитаем доли ошибок I рода (fpr) и II рода (fnr) и построим график

rocreg crime86 prediction, noboot

generate fpr: fpr = _fpr_prediction

generate fnr: fnr = 1-_roc_prediction

twoway (scatter fpr fnr), xsize(5) ysize(5)

1.1.3 Poisson count model.

Построим модель Пуассона для narr86:

poisson narr86 pcnv avgsen tottime ptime86 qemp86 inc86 durat black hispan born60

Посчитаем, сколько раз эта модель верно определяет, был ли арестован человек:

predict prediction_pois, n

Poisson regress	Number of obs LR chi2(10) Prob > chi2 Pseudo R2			2,725 387.81 0.0000 0.0794			
narr86	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
pcnv avgsen tottime ptime86 qemp86 inc86 durat black hispan	4031153 0235483 .0243816 1014503 050965 0080571 0080887 .6629044 .4990338 0527468	.0849123 .0199487 .0147567 .0207899 .0309067 .0010412 .0067295 .0738437 .0739357	-4.75 -1.18 1.65 -4.88 -1.65 -7.74 -1.20 8.98 6.75 -0.82	0.000 0.238 0.098 0.000 0.099 0.000 0.229 0.000 0.000 0.410	5695 062 0045 1421 111 0100 0212 .5181 .3541 1783	647 411 977 541 978 782 734 225 316	2366902 .0155504 .0533042 060703 .0096109 0060164 .0051009 .8076354 .6439451
_cons	5512982	.0777788	-7.09	0.000	7037	418 	3988546

count if prediction_pois>0.6 & narr86>=1
244

count if prediction_pois<= 0.6 & narr86==0
1,723</pre>

Сравним с логит-моделью:

count if prediction>0.4 & crime86==1
226

count if prediction<=0.4 & crime86==0
1,711</pre>

Модель Пуассона позволяет получить более точные прогнозы, как для арестованных, так и нет.

В обеих моделях значимые (на 1% уровне значимости) переменные влияют на вероятность ареста с одинаковым знаком.

Зачастую модель регрессии Пуассона плохо соответствует счетным данным, поскольку распределение Пуассона задается единственным параметром (μ) . Другим недостатком является то, что модель Пуассона подразумевает равенство дисперсии и математического ожидания, в то время как в счетных данных дисперсия обычно превышает среднее.

Одно из последствий такого однопараметрического моделирования заключается в том, что вероятность нулевых значений, предсказанная по модели Пуассона, значительно ниже, чем их доля в выборке, что называется проблемой избыточных нулевых значений.

Во избежание проблем избыточных нулевых значений и завышенной дисперсии лучше использовать модель бинарного выбора.

1.2 Задача 2.

1.2.1

$$\begin{split} x'\hat{\beta_2} &= -0.35474*90 - 0.1655*9 + 0.2655*15.52 + 0 - 0.46766*2.9957 + 1.5136 = \\ -0.44697 \\ P(at16 = 2) \frac{\exp{-0.44697}}{1 + 0.639564 + 0.33202} = 0.324391 \\ x'\hat{\beta_3} &= -0.0451 - 0.29184*9 + 0.2189*15.52 - 0.78503*2.9435 = -1.10256 \\ P(at16 = 3) \frac{\exp{-1.10256}}{1 + 0.639564 + 0.33202} = 0.168403 \\ P(at16 = 1) &= 1 - P(at16 = 2) - P(at16 = 3) = 0.5072064 \end{split}$$

1.2.2

$$\begin{split} P(at16|girl) &= \frac{0.653572}{1 + 0.653572 + 0.396036} = 0.318877 \\ x'\hat{\beta}_3 &= -0.4253 \\ \exp\left(x'\hat{\beta}_3\right) &= 0.653572 \\ x'\hat{\beta}_3 &= -0.92625 \\ \exp\left(x'\hat{\beta}_3\right) &= 0.396036 \\ diff &= 0.318877 - 0.168403 = 0.150474 \\ \ln\frac{P(at16 = 3|girl)}{P(at16 = 3|boy)} &= 0.638447 \end{split}$$

1.2.3

$$\begin{split} &\frac{\partial P(at16=1)}{\partial loginc} = \left[\frac{1}{1+\exp{(x'\beta_2)}+\exp{(x'\beta_3)}}\right]' = \\ &= \frac{-1*(-0.639551*0.4676+0.33202*0.78503)}{(1+0.639551+0.33202)^2} = 0.144001 \end{split}$$

1.2.4

Независимость от несущественных альтернатив (Independence of irrelevant alternatives) – одна из предпосылок мультиномиальной логистической модели, утверждающая, относительная вероятность выбора между одним из двух вариантов не зависит ни от каких дополнительных альтернатив в наборе, другими словами добавление еще одного элемента к набору вариантов выбора, уменьшит вероятность всех элементов на равную долю.