Minicurso de MATLAB® uma introdução

Reginaldo Cardoso

Pós-Graduação em Engenharia Mecânica Universidade Federal do ABC

Lab. Z-202 - UFABC-SBC September 4, 2024

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Introdução

O MATLAB® (uma abreviatura de MATrix LABoratory) é um sistema baseado em matrizes para cálculos matemáticos e de engenharia. O MATLAB® pode ser usado de modo direto, ou seja, comandos simples são processados imediatamente e exposto na tela o resultado, mas também é capaz de executar sequências de comandos que são armazenadas em arquivos.

Uma característica conveniente é que as variáveis não precisam ser dimensionadas antes do uso, elas são geradas automaticamente. Tais variáveis permanecem na memória até que se entre com um dos comandos >> exit, >> quit ou >> clear.

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Introdução: Ambiente

- A **[Command Window]:** janela de comando, na qual são digitados os dados, (sinal de *prompt*);
- B [Current folder]:lista de arquivos contidos no diretório corrente;
- C [Workspace]: lista de variáveis criadas
- D [Command History]: armazena todas as instruções executadas
- **E** Menus Superiores

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas
 Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

6/84

Símbolos Especiais

Símbolos Especiais		
>> []	> [] Construtor de matrizes	
>> ' '	Marca os limites de uma cadeia de caracteres	
>> ,	Separa índices ou elementos de matriz	
>> ;	1 - Suprime o "eco" na Janela de Comando	
2 - Separa as linhas da matriz		
	3 - Separa declarações de atribuição em uma linha	
>> %	> % Início de Comentário	
>> : Separa índices ou elementos de matriz		
>> + Soma estrutural e matricial		
>> -	Subtração estrutural e matricial	
>> .*	Multiplicação estrutural	
>> *	Multiplicação matricial	
>> ./	Divisão estrutural à direita	
>> \	Divisão estrutural à esquerda	

Símbolos Especiais

Símbolos Especiais cont.		
>> / Divisão matricial à direita		
>> \	Divisão matricial à esquerda	
>> .^ Expoente estrutural		
>> '	Operador de transposição	
>>	Continua uma declaração MATLAB® na linha seguinte	

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

9/84

Algumas Funções Matemáticas Elementares

Funções Matemáticas Elementares		
>> abs(x)	Valor absoluto de x	
>> acos(x)	Arco cosseno de x	
>> asin(x)	Arco seno de x	
>> atan(x)	Arco tangente de x	
>> cos(x)	Cosseno de x	
>> sin(x)	Seno de x	
>> tan(x)	Tangente de x	
>> exp(x)	Exponencial (e^x)	
>> log(x)	Logaritmo natural (base <i>e</i>)	
>> log10(x)	Logaritmo na base 10	
>> sqrt(x)	Raiz quadrada	
>> factorial(x)	Fatorial de $x(x!)$	

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas
 Flementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

Declarando Variáveis

O sinal de igualdade (=) é denominado operador de atribuição. O operador de atribuição inicializa ou modifica o valor de uma variável.

```
>> Nome_da_Variavel = valor da variável
por exemplo:
```

```
>> distancia = 100
```

Lembrando que o MATLAB® distingue letras maiúsculas de minúsculas e não reconhece acentos.

- >> Distancia = 20
- >> distancia = 100

portanto distancia \neq Distancia

Algumas Operações

Velocidade média:

Para suprimir a exibição da variável adicionamos um ponto-e-vírgula ao final do comando.

Formatando dados numéricos

valor a ser analisado: 12.345678901234567

Formatos de Exibição de saída		
Comando Resultado		Exemplo
>> format short	4 digitos decimais (formato padrão)	12.3457
>> format long	14 digitos decimais	12.345678901234567
>> format short e	5 digitos mais expoente	1.2346e+001
>> format short g	5 digitos no total com ou sem expoente	12.346
>> format long e	15 digitos mais expoente	1.234567890123457e+001
>> format long g	15 digitos no total com ou sem expoente 12.3456789012346	
>> format bank	Formato monetário 12.35	
>> format hex	Exibição hexadecimal de bits 4028b0fcd32f707a	
>> format rat	Razão aproximada entre interios pequenos 1000/81	
>> format compact	mat compact Elimina espaços (+informação mostrada na tela)	
>> format loose	Adiciona espaços entre linhas	
>> format +	Exibe somente o sinal do número +	

Ordem de Precedência

Regra Associativa: sempre da esquerda para a direita.

Ordem de Precedência		
0	Parenteses ()	
1	Exponenciação (^), transposição (')	
2	Unary (+), negação lógica (\sim)	
3	Multiplicação (*), divisão (/)	
4	Adição (+), subtração (-)	
5	Operador dois pontos (:)	

Exemplo Unary: -A, +2, H' operações com somente uma variável.

```
exemplos: 6/2*3 = 1 ou 9?

>> 12/2 + 3*(2^4)

ans =
54
```

Comandos e Variáveis

Quando criamos uma expressão e não a armazenamos em uma variável o MATLAB® a salva automaticamente na variável ans.

Apagar uma ou mais varáveis, comando clear

- >> clear tempo ightarrow apaga somente a variável tempo
- >> clear ightarrow apaga todas as variáveis

Para limpar a [Janela de Comando] usa-se o comando clc

>> clc

Variáveis Predefinidas		
pi	3.141592653589793	
eps	Somado a 1, cria um número maior do que 1	
inf	Infinito	
NaN	Não numero (not a number)	
i e j	$\sqrt{-1}$	
realmin, realmax	menor, maior número real positivo	

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlat
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Declarando Variáveis: Vetor

Vetor: matriz com somente uma dimensão, só uma linha ou só uma coluna.

- (,) ou espaço : indica a separação de elementos da mesma linha, definindo colunas;
- (;): finaliza a definição da linha.

```
Vetor linha (covetor),
```

```
>> [1 2 3]
ans =
1 2 3
```

Vetor coluna,

```
>> [1;2;3]
ans =
1
2
```

Declarando Variáveis: Vetor

Outra forma de criar um conjunto:

```
>> A=1:1:5
A =
1 2 3 4 5
```

O primeiro valor é o valor inicial, o segundo o "salto" e o terceiro o valor final.

(linspace) - Gera um vetor linearmente espaçado a partir de um valor inicial, um valor final e um número de elementos,

```
>> X=linspace(0,pi,4)
X =
```

```
0 1.0472 2.0944 3.1416
```

(logspace) - Gera um vetor logaritmicamente espaçado a partir de uma potência inicial, uma potência final e um número de valores,

```
>> V =logspace(0,2,5)
V =
```

```
1.0000 3.1623 10.0000 31.6228 100.0000
```

Declarando Variáveis: Vetor

Algumas Operações:

Qual será a resposta?

$$>> Z 1 = A.^2$$

Possíveis respostas:

$$>> Z_2 = A^2$$

??? Error using ==> mpower
Inputs must be a scalar and a square matrix.

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

Declarando Variáveis: Matriz

A mesma coisa, mas bidimensional:

Acessando um elemento de uma matriz.

 $(M(2,3)) \rightarrow Identifica$ o elemento da Segunda linha e Terceira coluna.

Declarando Variáveis: Matriz

>> M(10)

??? Index exceeds matrix dimensions.

Temos um erro quando acessamos uma posição inexistente.

Declarando Variáveis: Matriz

Podemos criar matrizes a partir de vetores ou outras matrizes,

```
>> b=[2,-3,1];
>> Mx=[b',M(:,2:3)]
Mx =
2 0 -1
-3 3 4
1 1 3
```

(M(:, 2:3)) parte da matriz M compreendida por todas as linhas (:) e as colunas 2 e 3 (2:3).

A matriz Mx foi gerada concatenando-se o vetor b transposto e as colunas 2 e 3 da matriz M.

Transposição - Utilizamos o operador (') (aspas simples).

Algumas matrizes Predefinidas e funções

Algumas matrizes Predefinidas e funções		
size(Mx)	Retorna o número de linhas e de colunas de Mx	
length(Mx)	A maior dimensão da matriz Mx	
inv(Mx)	Calcula a matriz inversa de Mx	
zeros(n,m)	Matriz de zeros com n linhas e m colunas	
eye(n,m)	Matriz identidade com n linhas e m colunas	
ones(n,m)	Matriz com 1, com n linhas e m colunas	
det(Mx)	Calcula o determinante da matriz Mx	

```
Qual será a resposta?
>> inv([2,-3,1])
>> inv(eye(size(Mx)))
>> length(Mx)
>> eye(2)
>> zeros(3)
>> ones(3)
>> [n,m]=size(Mx)
```

Respostas

```
>> inv([2,-3,1])
                                 >> zeros(3)
??? Error using ==> inv
                                 ans
Matrix must be square.
                                     0 0 0
>> inv(eye(size(Mx)))
                                     0 0 0
                                     0 0 0
ans =
    1 0 0
                                 >> ones(3)
    0 1 0
                                 ans =
    0 0 1
                                     1 1 1
>> length(Mx)
                                     1 1 1
                                     1 1 1
ans =
    3
                                 >> [n,m]=size(Mx)
>> eye(2)
                                 n =
                                     3
ans =
    1 0
    0 1
                                     3
```

Algumas funções

Problema prático! Ax = b, onde:

$$\begin{bmatrix} 2 & 0 & -1 \\ -3 & 3 & 4 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ -3 & 3 & 4 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix}$$

				-
>>	x	=	$\mathtt{A} \backslash \mathtt{b}$	

Algumas funções		
who Exibe uma lista de variáveis declaradas/ativas na memória		
whos	Exibe uma lista de variáveis declaradas na memória, com o	
	respectivo tamanho em bytes e a classe de armazenamento	

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- 4 Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Gráficos

O MATLAB $^{\circledR}$ possui sofisticados recursos para a visualização de dados na forma gráfica. Ele trabalha com objetos gráficos, tais como linhas e superfícies. Entretanto, o MATLAB $^{\circledR}$ disponibiliza diversas funções que facilitam a configurações das propriedades de objetos.

Por exemplo, suponha que queiramos desenhar a função:

$$y = x^2 - 10x + 15$$
, para valores de x entre 0 e 10.

Neste caso, o gráfico será bidimensional e a sintaxe mais simples para isto:

onde: x e y devem ser vetores e ambos devem possuir a mesma quantidade de elementos.

Basta três linhas de comando:

```
>> x=0:1:10;
>> y=x.^2 -10.*x+15;
>> plot(x,y);
```

Gráficos

Gráficos

>> grid

Gráficos: Comando "plot"

Gráficos bidimensionais no MATLAB® Sintaxe:

```
plot(x,y,'Especificadores de linha',
    'Propriedade',Valor propriedade)
```

V A V	Vetores com a mesma
хеу	quantidade de elementos.
	(Opcional) Especifica o
'Especificações de linha'	tipo e a cor da linha e os
	tipos de marcadores.
	(Opcional) Propriedades
'Propriedades',	adicionais usadas para
Valor propriedade	definir a espessura da linha,
	o tamanho do marcador e
	da borda e a cor de preenchimento.

Gráficos: Possibilidades

Linhas		
Estilo	Especificador	
Sólida (padrão)	" – "	
Tracejada	" "	
Pontilhada	" : "	
Traço-Ponto	" – . "	

Cores		
Cor	Especificador	
Azul	" b "	
Verde	" g "	
Vermelho	" r "	
Ciano	"с"	
Magenta	" m"	
Amarelo	"у"	
Preto	" k "	
Branco	" w "	

Gráficos: Possibilidades

Marcadores	
Marcador	Especificador
Sinal	" + "
Circulo	" o "
Asterisco	" * "
Ponto	""
Quadrado	" s "
Losango	" d "
Pentagrama	" p "
Hexagrama	" h "
Triâng. p/ baixo	" v "
Triâng. p/ cima	11 ^11
Triâng. p/ esquerda	" < "
Triâng. p/ direita	" > "

Gráficos: Exemplo

```
>> x=0:1:10;y=cos(x);z=sin(x);
>> plot(x,y,':rv',x,z,'-.mh');grid;
```


Gráficos: Mais Possibilidades

Marcadores		
Propiedade	Descrição	Valores
'LineWidth'	Largura da linha.	Número (default 0.5).
'MarkerSize'	Tamanho do marcador.	Número.
'MarkerEdge-Color'	Borda.	Cores.
'MarkerFace-Color'	Preenchimento.	Cores.

Gráficos: Exemplo

```
>> plot(x,y,':rv',x,z,'-.mh','linewidth',3,'markersize',10,
'markeredgecolor','g','markerfacecolor','y');grid;
```


Gráficos: Formatando

Comando	Descrição	Valores
xlabel	Rotulo eixo x.	>> xlabel('string de texto')
ylabel	Rotulo eixo y.	>> ylabel('string de texto')
title	Titulo ao gráfico.	>> title('string de texto')
text	Caixa de texto.	>> text(x,y,'string de texto')
axis	Limite aos eixos.	>> axis([xmin,xmax,ymin,ymax])
legend	Legenda.	>> legend('string1',,pos)

pos	
'location','North'	Dentro do gráfico em cima
'South'	Dentro abaixo
'East'	Dentro direita
'West'	Dentro esquerda
'NorthEast'	Default
'NorthEastOutside'	Fora em cima direita

Gráficos: Exemplo

```
>> plot(x,y,':rv',x,z,'-.mh','linewidth',3,'markersize',10,
'markeredgecolor','g','markerfacecolor','y');grid;
>> xlabel('Eixo x');ylabel('Eixo y')
>> title('Exemplo de Formatação')
>> text(x(6),y(6),'Cos(x)')
>> text(x(4),z(4),'Sen(x)')
>> axis([1,9,-0.8,0.8])
>> legend('Cosseno','Seno','location','northwestoutside')
```

Gráficos: Exemplo

Gráficos: Algumas Funções

Funções	Descrição
semilogx(x,y)	Escala logarítmica em x e y linear
semilogy(x,y)	Escala logarítmica em y e x linear
loglogy(x,y)	Escala logarítmica em x e y
plotyy(x,y)	Escalas diferentes em y
stem(x,y)	Discreto
fill(x,y)	Poligono 2D
polar(x,y)	Coord. polar
bar(x,y)	Barras
stairs(x,y)	Plotar em degrau
errorbar(x,y)	Erro
hist(x,y)	Histograma
rose(x,y)	Histograma em ângulo
compass(x,y)	Forma de bússola
comet(x,y)	Tratória cometa

Gráficos: Subplot

```
>> subplot(2,2,1)
                                >> x = logspace(-1,2);
>> t = 0:0.01:2*pi;
                                >>
>> prim =
                                loglog(x,exp(x),'-s');grid
\sin(2*t).*\cos(2*t);
                                >> title('Loglog')
>> polar(t,prim,'--r');grid
                                >> subplot(2,2,4)
>> title('Polar')
                                >> X = 0:pi/10:pi;
>> subplot(2,2,2)
                                >> Y = sin(X):
>> x = 0:0.1:10;
                                >> E = std(Y)*ones(size(X)):
>> semilogx(10.^x,x);grid
                                >> errorbar(X,Y,E);grid
>> title('Semilogx')
                                >> title('Errorbar')
>> subplot(2,2,3)
```

Gráficos: Exemplo

Gráficos: plot3

```
>> t = 0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t)
>> xlabel('sin(t)')
>> ylabel('cos(t)')
>> zlabel('t')
>> grid
>> axis square
```


Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- 4 Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Gráfico Interativo

```
>> t = 0:pi/50:10*pi;
>> y = sin(t);
```


Gráfico Interativo

Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Editor de Programa

Existe um ambiente próprio do MATLAB $^{\circledR}$ para edição de programas.

Para abri-lo, digita-se o comando:

```
>> edit ou "CTRL+N".
```

Tal editor apresenta algumas características interessantes:

- Linhas numeradas, o que é útil principalmente para a localização de erros de programação;
- O caractere "%" indica comentário;
- O caractere "..." indica que o comando continua na próxima linha.
 Tal recurso permite deixar o texto mais "organizado";
- A cor atribuída pelo editor a um texto indica a sua classe. O padrão de cores varia de acordo com a versão do MATLAB[®].

Um programa em MATLAB $^{\circledR}$ possui a extensão ".m", chamado de m-file. Existem dois tipos de arquivos MATLAB $^{\circledR}$: script e função.

Script x Função

- Um script é simplesmente uma seqüência de comandos MATLAB® e utiliza variáveis do workspace. Isso significa que todas as variáveis de um script são salvas no workspace. Não apresenta parâmetros de entrada nem de saída.
- Uma função também realiza uma seqüência de comandos.
 Diferentemente de um script, uma função possui parâmetros de entrada e pode retornar parâmetros de saída

Função

Abra o editor e digite o seguinte:

```
function [y,x] = Eq_2_grau(a,b,c,x0,xf,n)
% Explicação que irá aparecer no help
x = linspace(x0,xf,n);
y = a*x.^2 + b*x + c;
```

end

Salve!!

No Command Window faça o gráfico da seguinte Equação.

$$y = x^2 + 10x + 3$$

com x variando entre -100 até 100.

>> [x,y]=Eq_2_grau(1,10,3,-100,100,200); >> createfigure(x,y)

Função

Cuidado com a ordem, pois foi declarado "[y,x]" e ao usar a função, chamei "[x,y]".

Script

Vamos criar um Script que chama que chama a função Eq_2_grau e depois chama a função que faz o gráfico.

Novamente abra um novo editor.

```
% Este e um exemplo de script que resolve uma Equação de 2 ordem
%%
clc
clear all
close all
%% Declarando as variaveis
a = 1: b = 10: c = 3:
x_{inicial} = -100; x_{final} = 100; n_{pontos} = 200;
ylab = 'f(x)'; xlab = 'x'; tit = 'Exemplo Script'; leg = 'f(x)';
%% Chamando a função
[y,x] = Eq_2 grau(a,b,c,x_inicial,x_final,n_pontos);
figure1 = createfigure(x,y,ylab,xlab,tit,leg);
saveas(figure1, 'Figure/Teste_Script.png');
```

Script

Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas
 Flementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Operadores Lógicos

As expressões lógicas (Booleanas), são utilizadas em tomadas de decisões. Para o $\mathsf{MATLAB}^{\mathsf{R}}$:

- 0 (ZERO) ou null → indica condição false;
- 1 (UM) ou diferente de zero → indica condição verdadeira.

Operador	Verdadeiro se	Exemplo
== ou eq	A igual a B.	A==B ou >> eq(A,B)
$\sim=$ ou ne	A diferente de B.	$A \sim = B \text{ ou } >> \text{ne(A,B)}$
< ou lt	A menor que B.	A < B ou >> 1t(A,B)
> ou gt	A maior que B.	A>B ou >> gt(A,B)
<= ou le	A menor ou igual que B.	$A \le B \text{ ou } >> 1e(A,B)$
>= ou ge	A maior ou igual que B.	A>=B ou >> ge(A,B)

Operadores Lógicos

Nome	Operador Lógico	Descrição
		Se ambos forem verdadeiros,
AND	A & B	o resultado será
		verdadeiro (1),se falso (0).
		Se pelo menos um dos operandos
OR	A B	for verdadeiro, o resultado será
		verdadeiro (1), se falso (0).
NOT	~ A	Negação do operando.
		Ou Exclusivo. Retorna (1)
XOR	>> xor(7,0)	se houver desigualdade entre
		os operandos.
		Retorna (1) se todos os elementos
ALI	>> all([6 2 3 6 7])	de um vetor A forem diferentes
ALL	>> all([0 5 2 0 /])	de zero. Retorna (0) se um
		ou mais elementos forem (0).

Operadores Lógicos

Nome	Operador Lógico	Descrição
	ANY >> any([6 0 3 0 0])	Retorna (1) se qualquer
ANIV		elemento de A for diferente de
AINT		zero.Retorna (0) se todos os
		elementos de A forem falsos.
		Se for um vetor, retorna
FIND	>> find([0 9 4 3 7])	os índices dos elementos
		diferentes de zero.
		Retorna o endereço dos
FIND	>> find([0 9 4 3 7]>4)	elementos que são maiores
	// IIId([0 9 4 3 7]/4)	que d (qualquer operador
		relacional pode ser utilizado).

Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas
 Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

Controlador de fluxo

O MATLAB® possui estruturas para tomada de decisões, iguais às existentes em linguagens de programação estruturadas. As principais são as estruturas for, if e while. A tomada de decisão é baseada no resultado de uma expressão booleana. Se a expressão retornar 0 (ZERO), o MATLAB® interpreta condição falsa. Se uma expressão retorna um valor diferente de zero, condição verdadeira.

Laço FOR

O Laço FOR executa uma sequência de comando durante um numero especificado de vezes.

FOR - END

end

Exemplo: Criação de um vetor formado por 10 múltiplos de 3.

- >> for i = 1:10v(i) = 3*i;
- >> end

DICA. Cuidado Laço Infinito

Comando **abort** → *Command Window* digite:

```
"CTRL"+"c"
```

Laço WHILE

O laço WHILE permite que uma sequência de comandos seja repetida enquanto uma certa condição for verdadeira.

WHILE - END

```
while <expressão condicional>
comandos (DEVE conter um comando que altere a condição,
senão entrará em laço infinito)
end
```

Exemplo: Considere que se deseja determinar o maior valor de n tal que $n! < 10^{100}$.

Digite: help prod

Condicional If

Se a expressão condicional for verdadeira (1), se executa os comandos abaixo da sentença if, até encontrar o end

```
IF - END

if <expressão condicional>
grupo 1 de comandos

else
grupo 2 de comandos

end
```

Exemplo:

```
>> for ii = 1:5
    if ii == 3;
        break;
    end
>> end
```

if - elseif - end

```
vetor = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'L', 'M', 'N', 'O', 'P', 'Q', ...]
         R', S', T', U', V', W', X', Z'; n = length(vetor);
for i = 1:n
    if i == 20
       msg(1) = vetor(i);
    elseif i == 6
       msg(2) = vetor(i);
    elseifi == 1
       msg(3) = vetor(i);
    elseif i == 2
       msg(4) = vetor(i):
    elseif i == 3
       msg(5) = vetor(i):
    else
       continue:
    end
end
```

Condicional Switch

Executa trecho de código de acordo com o valor contido em uma variável de teste.

SWITCH - CASE - END

```
switch <valor>
case <expressão caso 1>
    código 1
case <expressão caso 2>
    código 2
otherwise
    código
end
```

Exemplo Switch

```
dia = today;% today retorna o dia na forma serial
switch weekday(dia) % retorna o dia da semana (1 - 7)
    case 1
       display('Domingo');
    case 2
       display('Segunda');
    case 3
       display('Terça');
    case 4
       display('Quarta');
    case 5
       display('Quinta');
    case 6
       display('Sexta');
    case 7
       display('Sábado');
    otherwise
       display('Valor Inválido');
end
```

Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas
 Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- Exemplo
 - Exemplo: Suspensão

Symbolic Math Toolbox

O Symbolic Math Toolbox (SMT) são funções que executam operações de matemática algébrica e simbólica dentro do ambiente MATLAB $^{\circledR}$.

Para visualizar qual versão esta instalada:

```
>> ver symbolic
```

O MATLAB $^{\circledR}$ consegue identificar automaticamente o tipo de variável e chamar a rotina adequada: biblioteca matemática numérica para variáveis numéricas e biblioteca do SMT para variáveis simbólicas. Por exemplo:

```
>> x = sym('x');% declarando variável x como symbolic
>> A=[sin(x),x;cos(x),x]
A =
[sin(x), x]
[cos(x), x]
```

A variável A contém uma matriz simbólica.

Criando uma Variável Simbólica

Comando sym:

```
>> a = sym('alpha');
```

- Requer parênteses e aspas.Exceto se for um numero simbólico: f=sym(5).
- Cria uma por vez. Melhor para a criação de números simbólicos e expressões simbólicas.

Comando syms:

```
>> syms x a y;
```

- Não usa parênteses e aspas.
- Pode-se criar várias variáveis.
- Serve melhor para a criação de variáveis simbólicas simples e múltiplas individuais.

Alguns exemplos:

x = sym('x','real')	Assume que a variável x é real.
x = sym('x', 'positive')	Assume que x é real e positivo.
x = sym('x','clear')	Limpa o que havia assumido.
x = sym('x', [m n])	Cria uma matriz <i>m</i> por <i>n</i> .
x = sym('x',n)	Cria uma matriz <i>n</i> por <i>n</i> .
x = sym('x',flag)	Cria um escalar numérico ou matriz.

Onde flag pode assumir: 'r' (default), 'd', 'e' ou 'f'.

'r' (racional)	sym(4/3,'r').
'd' (decimal)	sym(4/3,'d').
'e' (erro estimado)	sym(4/3,'e').
'f' (ponto flutuante)	sym(4/3,'f').

Funções Úteis

Integral

```
x = sym('x');

y = int(exp(x)*sin(x))
```

• Eq. 2 grau
eq2 =
sym('a*x ^ 2+b*x+c');
s = solve(eq2,'x')

- Visualização pretty(s)
- Derivada parciald = diff(y,x,

```
d = diff(y,x,1)

d2 = diff(y,x,2)
```

• Limite syms h

```
limit((sin(x+h)-sin(x))/h,h,0)
Simplifica
```

• Expande
expand(sin(h+x))

simplify(d)

- Agrupar
 f=4*x*exp(x)+3*exp(x);
 collect(f,exp(x))
- Sustituiçãosubs(y,x,pi)

Gráfico

```
syms h x
li=limit((sin(x+h)-sin(x))/h,h,0);
ezplot(li,[-2*pi,2*pi])
```

Dica

Quem usa LaTex, pode usar o comando latex().

Resumo

- Introdução
 - Ambiente
 - Símbolos Especiais
 - Funções Matemáticas Elementares
- Comando e Funções Básicas
 - Declarando Variáveis
 - Declarando Variáveis: Vetor
 - Declarando Variáveis: Matriz

- Gráficos
 - Gráficos: plot Comando
 - Gráficos: plot Interativo
- 4 Programação no Matlab
 - Programação
 - Operadores Lógicos
 - Controladores de fluxo
 - Variável Simbólica
- 5 Exemplo
 - Exemplo: Suspensão

Sprintf

Para visualização de dados: str = sprintf(formato, A1,..., An)
A saída vai para uma cadeia de caracteres. Controle completo sobre a cadeia de caracteres. Útil para a criação de títulos e legendas complexos.

%d or %i	Base 10
% o	Base 8
%x	Base 16, minusculo
%X	Base 16 maiúsculo
%f	Notação ponto fixo
%e	Notação exponencial
%с	Carácter único
%s	Cadeia de caracteres

sprintf

Sprintf

```
dh = clock;
str_dh = sprintf('%04d%02d%02d %02d%02d%02.0f',...
dh(1), dh(2), dh(3), dh(4), dh(5), dh(6))
sprintf('Alfabeto \n%s',65:89)
sprintf('Em caso de emergência:\nPolícia:%1.0f%d%1.0f\n
Bombeiros:%c%c%1.0f\nPizza: Anuncie
aqui',1.3*cos(2-2),9,sin(2-2),'1','9',pi)
```

interp1

Interpolação de pontos, dados os vetores (X, Y) de pontos no espaço e XI valores de interpolação e um método de interpolação retorna um vetor YI, que formam a curva (XI, YI) que melhor se aproxima os pontos no plano dado (X, Y).


```
interp1
x = 0:10;
y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi);
plot(x,y,'o',xi,yi);grid
```

Modelo da Suspensão Passiva

Equações:

$$\begin{array}{l} M_{s}\ddot{Z}_{s} = -K_{s}(Z_{s} - Z_{us}) - B_{s}(\dot{Z}_{s} - \dot{Z}_{us}) \\ M_{us}\ddot{Z}_{us} = K_{s}(Z_{s} - Z_{us}) + B_{s}(\dot{Z}_{s} - \dot{Z}_{us}) \\ + K_{us}(Z_{r} - Z_{us}) \end{array}$$

Renomeando:

$$x_1 = Z_s - Z_{us}; \quad x_2 = \dot{Z}_s;$$

 $x_3 = Z_{us} - Z_r; \quad x_4 = \dot{Z}_{us};$

Reescrevendo:

Modelo da Suspensão

Reescrevendo:

$$\begin{split} \dot{x}_1 &= x_2 - x_4; \\ \dot{x}_2 &= -\frac{K_s}{M_s} x_1 - \frac{B_s}{M_s} (x_2 - x_4); \\ \dot{x}_3 &= x_4 - \dot{Z}_r; \\ \dot{x}_4 &= \frac{K_s}{M_{us}} x_1 + \frac{B_s}{M_{us}} (x_2 - x_4) - \frac{K_{us}}{M_{us}} x_3; \end{split}$$

Forma matricial:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ -\frac{K_s}{M_s} & -\frac{B_s}{M_s} & 0 & \frac{B_s}{M_s} \\ 0 & 0 & 0 & 1 \\ \frac{K_s}{M_{us}} & \frac{B_s}{M_{us}} & -\frac{K_{us}}{M_{us}} & -\frac{B_s}{M_{us}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} \dot{Z}_r$$

Modelo da Suspensão Passiva

Abrir o pdf

Modelo da Suspensão Ativa

Equações:

$$\begin{array}{l} M_{s}\ddot{Z}_{s} = -K_{s}(Z_{s} - Z_{us}) - B_{s}(\dot{Z}_{s} - \dot{Z}_{us}) \\ + F \\ M_{us}\ddot{Z}_{us} = K_{s}(Z_{s} - Z_{us}) + B_{s}(\dot{Z}_{s} - \dot{Z}_{us}) \\ + K_{us}(Z_{r} - Z_{us}) - B_{us}(\dot{Z}_{us} - \dot{Z}_{r}) - F \end{array}$$

Renomeando:

$$x_1 = Z_s - Z_{us}; \quad x_2 = \dot{Z}_s;$$

 $x_3 = Z_{us} - Z_r; \quad x_4 = \dot{Z}_{us};$

Reescrevendo:

Modelo da Suspensão Ativa

Reescrevendo:

$$\begin{split} \dot{x}_1 &= x_2 - x_4; \\ \dot{x}_2 &= -\frac{K_s}{M_s} x_1 - \frac{B_s}{M_s} (x_2 - x_4) + \frac{F}{M_s}; \\ \dot{x}_3 &= x_4 - \dot{Z}_r; \\ \dot{x}_4 &= \frac{K_s}{M_{us}} x_1 + \frac{B_s}{M_{us}} (x_2 - x_4) - \frac{K_{us}}{M_{us}} x_3 - \frac{B_{us}}{M_{us}} (x_4 - \dot{Z}_r) - \frac{F}{M_{us}}; \end{split}$$

Forma matricial:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ -\frac{K_s}{M_s} & -\frac{B_s}{M_s} & 0 & \frac{B_s}{M_s} \\ 0 & 0 & 0 & 1 \\ \frac{K_s}{M_{us}} & \frac{B_s}{M_{us}} & -\frac{K_{us}}{M_{us}} & -\frac{(B_s + B_{us})}{M_{us}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{M_s} \\ -1 & 0 \\ \frac{B_{us}}{M_{us}} & -\frac{1}{M_{us}} \end{bmatrix} \begin{bmatrix} \dot{Z}_r \\ F \end{bmatrix}$$

Modelo da Suspensão Ativa

Abrir o pdf

Referências & Links Interessantes I

Stephen J. Chapman. Programação em MATLAB® para engenheiros. Thomson Learming, 2006.

Élia Yathie Matsumoto.
MATLAB® R2013a - Teoria e programação: guia prático.
Editora Érica. 2013.

Élia Yathie Matsumoto.
MATLAB® 7 fundamentos.
Editora Érica. 2008.

QUANSER INNOVATE EDUCATE.

Active Suspension Control Laboratory: Instructor Manual. Revision 2.0. Quanser Innovate Educate 48 f.. 2010. (Document Number, 845)