ECE27000

PRACTICE 10 SOLUTIONS

1)

		S*, Z	
Meaning	S	X = 0	X=1
-	А	A, 0	В, О
Sequence detected: 1	В	A, 0	C, 0
Sequence detected: 11	С	A, 0	D, 0
Sequence detected: 111	D	A, 0	D, 1

2)

		S*, Z	
Meaning	S	X = 0	X=1
-	А	A, 0	В, О
Starts with 1	В	A, 0	C, 0
Starts with 11	С	D, 0	E, 0
Starts with 110	D	F, 0	G, 0
Starts with 111	E	G, 0	Н, 0
Starts with 1100	F	A, 0	I, 1
Starts with 1101 / 1110	G	l, 1	A, 0
Starts with 11, contains more than 3 ones	н	A, 0	A, 0
Starts with 11, contains exactly 3 ones	1	A, 0	В, О

3)
Sequence detector to detector - 0000, 0011, 0110, 1001, 1100, 1111 (overlapping)

Meaning	Present State	Next state, Output	
		X = 0	X = 1
Start	SO SO	\$10,0	S11,0
0	S10	S20,0	S21,0
1	S11	S22,0	S23,0
00	S20	\$30,0	\$31,0
01	S21	\$32,0	\$33,0
10	S22	\$34,0	\$35,0
11	S23	\$36,0	\$37,0
000	S30	S30,1	S31,0
001	S31	S32,0	\$33,1
010	S32	S34,0	\$35,0
011	S33	S36,1	\$37,0
100	S34	\$30,0	S31,1
101	S35	S32,0	\$33,0
110	S36	S34,1	\$35,0
111	S37	\$36,0	S37,1

Non-overlapping:

Meaning	Present State	Next state, Output		Weight
		X = 0	X = 1	
Start	А	В,0	D,0	8%3 = 2
n%3 = 0 X	В	E,0	F,0	4%3 = 1

n%3 = 1 X	С			
n%3 = 2 X	D	G,0	E,0	
n%3 = 0 XX	Е	Н,0	J,0	2%3 = 2
n%3 = 1 XX	F	1,0	Н,0	
n%3 = 2 XX	G	J,0	1,0	
n%3 = 0 XXX_	Н	A,1	A,0	1%3 = 1
n%3 = 1 XXX_	1	A,0	A,0	
n%3 = 2 XXX_	J	A,0	A,1	

4)

S	S*,Z	
	X=0	X=1
А	B,1	H,1
В	F,1	D,1
С	D,0	E,1
D	C,0	F,1
Е	D,1	C,1
F	C,1	C,1
G	C,1	D,1
н	C,0	A,1

P0 = (ABCDEFGH)

To perform state minimization, we first separate the states based on the outputs for a 1 bit input.

For X=1, all outputs are same.

For X=0, outputs are 1 for ABEFG and 0 for CDH.

Since AB and EF belong to separate set of states, we can separate A from B and H from CD.

Thus P3 = (A)(B)(EFG)(CD)(H)

 $CDH \Rightarrow DCC$

 $EFG \Rightarrow CCD$

 $CDH \Rightarrow EFA$

 $X=1: AB \Rightarrow HD$

P4:

 $B \Rightarrow D$

 $CD \Rightarrow EF$

 $H \Rightarrow A$

No further separation possible.

Hence,
$$P4 = P3 = (A)(B)(EFG)(CD)(H)$$

State table after minimization:

S	S*,Z	
	X=0	X=1
А	B,1	H,1
В	E,1	C,1
С	C,0	E,1
Е	C,1	C,1
н	C,0	A,1

5)
Combining the two state tables through direct sum:

S	S*,Z	
	X=0	X=1
А	A,0	B,1
В	A,0	C,0
С	C,0	A,1
а	a,0	c,1
b	b,0	a,1
С	a,0	b,0

Now performing state minimization:

$$P0 = (ABCabc)$$

For X=0, all outputs are same.

For X=1, outputs are 1 for ACab and 0 for Bc.

Hence, P1 = (ACab)(Bc)

P2:

X=0: $ACab \Rightarrow ACab$

 $Bc \Rightarrow Aa$

 $X=1: ACab \Rightarrow BAca$

Bc => Cb

Since Bc and Aa are in separate set of states, we can separate Aa from Cb

Thus P2 = (Aa)(Cb)(Bc)

P3:

 $X=0: Aa \Rightarrow Aa$

 $Cb \Rightarrow Cb$

 $Bc \Rightarrow Aa$

 $X=1: Aa \Rightarrow Bc$

Cb => Aa

Bc => Cb

No further minimization

Thus P3 = (Aa)(Cb)(Bc)

After state minimization, since A is equivalent to a, C is equivalent to b, and B is equivalent to c. The two state machines are equivalent

Characteristic table:

