

FCC PART 90

TEST REPORT

For

Baicells Technologies Co., Ltd.

3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

FCC ID: 2AG32CN6671

Report Type: Product Type: LTE Indoor CPE Original Report Test Engineer: Rocky Kang Report Number: RSZ160525009-00C **Report Date:** 2016-06-16 BeilHu Bell Hu RF Engineer **Reviewed By:** Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

Report No.: RSZ160525009-00C

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	4
DESCRIPTION OF TEST CONFIGURATION	4
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	4
BLOCK DIAGRAM OF TEST SETUP	4
SUMMARY OF TEST RESULTS	5
FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	6
APPLICABLE STANDARD	
FCC §2.1046, §90.1321(a) - RF OUTPUT POWER	8
APPLICABLE STANDARD	8
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	8
FCC §90.1321 (a) - PEAK POWER SPECTRAL DENSITY	10
APPLICABLE STANDARD	10
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	11
FCC §2.1053 - RADIATED SPURIOUS EMISSIONS	12
APPLICABLE STANDARD	
TEST PROCEDURE	12
TEST EQUIPMENT LIST AND DETAILS	12
T D	10

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Baicells Technologies Co., Ltd.*'s product, model number: *CN6671(FCC ID: 2AG32CN6671)* or the "EUT" in this report was a *LTE Indoor CPE*, which was measured approximately: 188 mm (L) x 168 mm (W) x 75 mm (H), rated with input voltage: DC 12 V from adapter.

Report No.: RSZ160525009-00C

Adapter Information:

Model: RD1201000-C55-HMG Input: 100-240V, 50/60Hz, 0.6A Max

Output: 12V-1A

* All measurement and test data in this report was gathered from production sample serial number: 1203000001156TP0069 (Assigned by Applicant). The EUT supplied by the applicant was received on 2016-05-25.

Objective

This test report is prepared on behalf of *Baicells Technologies Co., Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP and FCC Part 15.247 DTS submissions with FCC ID: 2AG32CN6671.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part Z as well as the following individual parts:

Part 90 – Wireless Broadband Services in the 3650-3700 MHz Band

Applicable Standards: TIA 603-D and ANSI 63.4-2014.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 90 Page 3 of 13

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772

Report No.: RSZ160525009-00C

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC cable	1.5	EUT	Adapter

Block Diagram of Test Setup

FCC Part 90 Page 4 of 13

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§2.1046; §90.1321(c)	RF Output Power	Compliance*
§90.1321(c);	Peak Power Spectral Density	Compliance*
§2.1049; §90.209	Occupied Bandwidth	Compliance*
§2.1051; §90.1323(a)	Spurious Emission at Antenna Terminal	Compliance*
§2.1053	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance*

Report No.: RSZ160525009-00C

Compliance*: CN6671 and EG7035 have the same LTE module. This module has the same operating frequency, single power supply and control software. In other words, their LTE launch parameters are the same. So all the conducted emission data was referred to EG7035.

The EG7035 has been certified on 2016-06-28 and the related information about EG7035 is listed below:

Product Model: EG7035 FCC ID: 2AG32EG7035

Frequency: 3650 MHz - 3700 MHz

FCC Part 90 Page 5 of 13

FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSZ160525009-00C

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range Electric Field Magnetic Field Power Density Averaging (MHz) Strength (V/m) Strength (A/m) (mW/cm²) (minuton)						
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30–300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Calculated:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comly with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

FCC Part 90 Page 6 of 13

MPE Results

Tune-Up Power Including Tolerance:

Frequency	Antenna Gain		Max Tun	e-up Power Evaluation		Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
3650-3700	5	3.16	17.5	56.23	20	0.035	1.0
2412-2462	2	1.58	16.0	39.81	20	0.008	1.0

Report No.: RSZ160525009-00C

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.035 + 0.008 = 0.043 < 1.0$$

Radiation Exposure Statement:

To comply with FCC RF exposure requirements, a minimum separation distance of $20 \mathrm{cm}$ is required between the antenna and all public persons.

FCC Part 90 Page 7 of 13

FCC §2.1046, §90.1321(a) - RF OUTP<u>UT POWER</u>

Applicable Standard

FCC §2.1046 and §90.1321

Limit

According to FCC §90.1321:

(c) Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.

Report No.: RSZ160525009-00C

Test Procedure

The EUT was connected to a CMW500 through a attenuator, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	10dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 8 of 13

LTE Band: 3650-3700MHz-full RB

Modulation	Frequency (MHz)	(See Note 2) Output Power (dBm)	Antenna gain (dBi)	EIRP (dBm)	Limit (dBm)
	3652.5	16.88	5.0	21.88	
QPSK(5MHz)	3675	16.78	5.0	21.78	
	3697.5	16.50	5.0	21.50	23.01
	3652.5	17.02	5.0	22.02	23.01
16QAM(5MHz)	3675	16.92	5.0	21.92	
	3697.5	16.54	5.0	21.54	
	3655	16.85	5.0	21.85	
QPSK(10MHz)	3675	16.79	5.0	21.79	
	3695	16.52	5.0	21.52	26.02
	3655	16.92	5.0	21.92	
16QAM(10MHz)	3675	16.82	5.0	21.82	
	3695	16.61	5.0	21.61	
	3657.5	16.67	5.0	21.67	
QPSK(15MHz)	3675	16.53	5.0	21.53	
	3692.5	16.35	5.0	21.35	27.70
	3657.5	16.73	5.0	21.73	27.78
16QAM(15MHz)	3675	16.56	5.0	21.56	1
	3692.5	16.36	5.0	21.36	1
	3660	16.19	5.0	21.19	
QPSK(20MHz)	3675	16.09	5.0	21.09]
	3690	15.95	5.0	20.95	20.02
	3660	16.21	5.0	21.21	29.03
16QAM(20MHz)	3675	16.11	5.0	21.11	1
	3690	15.93	5.0	20.93	

Report No.: RSZ160525009-00C

Note:

FCC Part 90 Page 9 of 13

^{1.} limit = 30dBm + 10Log (Bandwidth/25)
Eg: For 10 MHz Bandwidth, the limit =30dBm + 10Log (10/25) = 26.02 dBm
2. all the output power was derived from EG7035(FCC ID:2AG32EG7035)

FCC §90.1321 (a) - PEAK POWER SPECTRAL DENSITY

Applicable Standard

FCC §90.1321 (a);

Limit

According to FCC §90.1321:

(c) Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.

Report No.: RSZ160525009-00C

Test Procedure

The EUT was connected to a CMW500 & signal analyzer through a splitterr, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.

The resolution bandwidth of the spectrum analyzer was set at 1MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 10 of 13

Test Data

Environmental Conditions

Temperature:	27℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

Test Mode: Transmitting

Result: Compliance.

LTE Band: 3650-3700MHz

Modulation	Frequency (MHz)	(See Note 2) Power Density (dBm/MHz)	Antenna Gain (dBi)	EIRP Power Density (dBm/MHz))	Limit (dBm/MHz)
	3652.5	7.98	5.0	12.98	
QPSK(5MHz)	3675	9.36	5.0	14.36	
	3697.5	7.78	5.0	12.78	
	3652.5	8.08	5.0	13.08	
16QAM(5MHz)	3675	9.58	5.0	14.58	
	3697.5	8.53	5.0	13.53	
	3655	5.80	5.0	10.80	
QPSK(10MHz)	3675	6.54	5.0	11.54	
	3695	5.56	5.0	10.56	
	3655	5.81	5.0	10.81	
16QAM(10MHz)	3675	6.29	5.0	11.29	
	3695	5.87	5.0	10.87	16.00
	3657.5	3.64	5.0	8.64	16.00
QPSK(15MHz)	3675	2.88	5.0	7.88	l
	3692.5	3.75	5.0	8.75	
	3657.5	3.81	5.0	8.81	
16QAM(15MHz)	3675	2.79	5.0	7.79	
	3692.5	3.73	5.0	8.73	
	3660	2.06	5.0	7.06	
QPSK(20MHz)	3675	2.72	5.0	7.72	
	3690	1.94	5.0	6.94	
	3660	2.26	5.0	7.26	
16QAM(20MHz)	3675	2.85	5.0	7.85	
	3690	1.76	5.0	6.76	

Report No.: RSZ160525009-00C

Note:
1. Please refer to EG7035 (FCC ID: 2AG32EG7035) for the plots.
2. all the Power Density was derived from EG7035(FCC ID:2AG32EG7035)

FCC Part 90 Page 11 of 13

FCC §2.1053 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RSZ160525009-00C

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date	
Sunol Sciences	Horn Antenna	DRH-118	A052304	2015-12-01	2016-11-30	
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2014-11-28	2017-11-27	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12	
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2015-09-25	2016-09-25	
HP	Amplifier	8447E	1937A01046	2015-09-30	9-30 2016-09-30	
Mini	Amplifier	ZVA-183-S+	5969001149	2016-04-03	2017-04-03	
HP	Signal Generator	8657A	3217A04699	2015-12-19	2016-12-18	
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17	
HP	Synthesized Sweeper	8341B	2624A00116	2016-05-09	2017-05-09	
R & S	Wideband Radio Communication Tester	CMW500 114772		2015-11-15	2016-11-14	
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR	
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 12 of 13

Test Data

Environmental Conditions

Temperature:	25 ℃			
Relative Humidity:	53 %			
ATM Pressure:	101.0 kPa			

The testing was performed by Rocky Kang on 2016-06-03

Test Mode: Transmitting

30MHz - 40GHz (The worst case is QPSK):

Frequency (MHz)	Receiver Reading (dBµV)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute	FCC Part 90	
			Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
QPSK(5MHz), Middle channel (3675MHz)										
159.5	39.29	345	1.8	Н	-57.7	0.27	0	-57.97	-13	44.97
159.5	38.58	235	2.0	V	-58.4	0.27	0	-58.67	-13	45.67
7350.00	44.28	229	1.3	Н	-47.0	2.70	10.70	-39.00	-13	26.00
7350.00	42.26	94	1.9	V	-49.5	2.70	10.70	-41.50	-13	28.50
QPSK(10MHz), Middle channel (3675MHz)										
159.5	38.65	187	2.0	Н	-58.3	0.27	0	-58.57	-13	45.57
159.5	37.89	347	1.5	V	-59.1	0.27	0	-59.37	-13	46.37
7350.00	40.33	36	1.1	Н	-51.0	2.70	10.70	-43.00	-13	30.00
7350.00	41.64	206	2.0	V	-50.2	2.70	10.70	-42.20	-13	29.20
QPSK(15MHz), Middle channel (3675MHz)										
159.5	39.46	134	1.6	Н	-57.5	0.27	0	-57.77	-13	44.77
159.5	38.77	205	2.2	V	-58.2	0.27	0	-58.47	-13	45.47
7350.00	41.17	336	1.6	Н	-50.1	2.70	10.70	-42.10	-13	29.10
7350.00	42.26	253	2.0	V	-49.5	2.70	10.70	-41.50	-13	28.50
QPSK(20MHz), Middle channel (3675MHz)										
159.5	41.13	271	1.9	Н	-55.9	0.27	0	-56.17	-13	43.17
159.5	40.64	317	1.5	V	-56.4	0.27	0	-56.67	-13	43.67
7350.00	41.13	95	1.2	Н	-50.2	2.70	10.70	-42.20	-13	29.20
7350.00	42.58	98	1.1	V	-49.2	2.70	10.70	-41.20	-13	28.20

Report No.: RSZ160525009-00C

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

***** END OF REPORT *****

FCC Part 90 Page 13 of 13