判断点与三角形关系

在二维坐标系中,一个三角形可以由 3 个点来表示。给定 3 个点表示的三角形,再给定点 $(x_1, y_1), (x_2, x_2), \ldots, (x_n, y_n)$,这些点彼此不重复,请判断与这些点与三角形的关系。

输入描述

输入有若干行:第一行为三角形三个顶点,空格隔开,分别为第一个顶点的横纵坐标、第二个顶点的横纵坐标和第三个顶点的横纵坐标;第二行为整数 N,表示有多少个点需要判断,下面 N 行每行两个值,空格隔开,分别为所需判定点的横纵坐标,所有点(包括三角形的顶点和需要判定的点)的坐标均为 int 类型, $0 \le N \le 100$, $-3000 \le x_i, y_i \le 3000$

输出描述

- 如果第一行三个点不能构成三角形,输出-1
- 如果第一行三个点能够构成三角形,则输出三个数,空格隔开,分别表示在三角形内部的点的个数、在三角形 边上(包括顶点)的点的个数和在三角形外部的点的个数

示例1

```
1 输入: 0 0 3 0 5 0
2 2
3 1 2
4 3 4
5 输出: -1
6 解释: (0,0)、(3,0)、(5,0)这三个点不能构成三角形
```

示例2

示例3

```
1 输入: 0 0 3 0 3 3
2 3
3 0 0
4 -1 0
5 2 1
6 输出: 1 1 1
7 解释: 在三角形内部,边上(包括顶点),外部各有一个点
```

算法提示1-面积法

如图,设三角形三个顶点为A、B、C。可以通过三角形ABD、三角形BCD、三角形CAD的面积和与三角形ABC面积的大小关系来判断点 D 与三角形ABC的关系。如图 , $S\triangle ABD + S\triangle BCD + S\triangle CAD = S\triangle ABC$,由此可判断点 D 在三角形内部(或者边上),如果面积和大于三角形ABC的面积,则表示点 D 在三角形外部。

三角形面积公式: 设三角形三边长度为a、b、c,设p=(a+b+c)/2,则三角形面积可表示为 $\sqrt{p*(p-a)*(p-b)*(p-c)}$,也就是海伦公式。

注意:判断浮点数相等的时候是有误差的,允许的最大误差为 10^{-5} ,也就是说两个浮点数差的绝对值小于等于 10^{-5} ,则判断两个浮点数相等

算法提示2-向量叉乘

 $ec{a} imesec{b}$ 代表的就是向量叉乘,设向量 $ec{a}$ 为 (x_1,y_1) ,向量 $ec{b}$ 为 (x_2,y_2) ,则 $ec{a} imesec{b}$ = $x_1y_2-x_2y_1$ 。

向量叉乘结果可以用来判断点 C 在向量 $\stackrel{\longrightarrow}{AB}$ 的哪一侧: 结果为负表示点 C 在向量 $\stackrel{\longrightarrow}{AB}$ 右侧,结果为正表示点 C 在向量 $\stackrel{\longrightarrow}{AB}$ 右侧,结果为正表示点 C 在向量 $\stackrel{\longrightarrow}{AB}$ 左侧,结果为 0 表示三个坐标共线。从上图可知 $\stackrel{\longrightarrow}{AB}$ 为 (0,2), $\stackrel{\longrightarrow}{AC}$ 为 (2,2),那么 $\stackrel{\longrightarrow}{AB}$ × $\stackrel{\longrightarrow}{AC}$ = 0 * 2 - 2 * 2 < 0,由此可以判断点 C 在向量 $\stackrel{\longrightarrow}{AB}$ 右侧。

举个例子,如上图所示,点 D 在三角形 ABC 内部,那么如果从 A 出发顺时针或者逆时针方向沿着三角形的边走一圈,那么点 D 一定会出现在三个向量的同侧。