NATURAL COHEN-MACAULAYFICATION OF SIMPLICIAL AFFINE SEMIGROUP RINGS

MAX JOACHIM NITSCHE

ABSTRACT. Let K be a field, B a simplicial affine semigroup, and C(B) the corresponding cone. We will present a decomposition of K[B] into a direct sum of certain monomial ideals, which generalizes a construction by Hoa and Stückrad. We will use this decomposition to construct a semigroup \tilde{B} with $B \subseteq \tilde{B} \subseteq C(B)$ such that $K[\tilde{B}]$ is Cohen-Macaulay with the property: $\tilde{B} \subseteq \hat{B}$ for every affine semigroup \hat{B} with $B \subseteq \hat{B} \subseteq C(B)$ such that $K[\hat{B}]$ is Cohen-Macaulay.

1. Introduction

By an affine semigroup we mean a finitely generated submonoid of $(\mathbb{Z}^n,+)$ for some $n\in\mathbb{N}^+$. Let K be an arbitrary field and B an affine semigroup; as usual K[B] denotes the affine semigroup ring associated to B, that is, the K-vector space with basis $\{t^b\mid b\in B\}$ and multiplication given by the K-bilinear extension of $t^a\cdot t^b=t^{a+b}$. Let X be a subset of \mathbb{Q}^n ; we define $C(X):=\{\sum \lambda_i x_i\mid \lambda_i\in \mathbb{Q}_{\geq 0}, x_i\in X\}$ to be the cone spanned by X. In the following we will assume that B is a simplicial affine semigroup, that means, by definition, we assume that there are linearly independent elements $e_1,\ldots,e_d\in B$ with $C(\{e_1,\ldots,e_d\})=C(B)$. By $A:=\langle e_1,\ldots,e_d\rangle$ we denote the submonoid of B generated by e_1,\ldots,e_d , thus, T:=K[A] is a polynomial ring in d variables. Note that $\dim T=\dim K[B]=d$. In [HS03, Proposition 2.2], Hoa and Stückrad introduced in the homogeneous case a decomposition of K[B] into a direct sum of monomial ideals. Generalizing this result, we will construct certain monomial ideals I_j in T and certain elements $h_j\in C(B)\cap \mathbb{Z}^n$ such that

(1)
$$K[B] \cong \bigoplus_{j=1}^{f} I_j(-h_j)$$

as \mathbb{Z}^n -graded T-modules (see Proposition 2.1). Note that the grading on T and on K[B] is always given by $\deg t^a = a$. Some properties of the ring K[B] can be characterized in terms of the semigroup B, for example, the Cohen-Macaulay or the Buchsbaum property; for more information we refer to [Hoc72, GSW76, Sta78, Tru83, HT86, GR02, Sch04, Mor07]. In view of [Sta78, Theorem 6.4] our decomposition (1) can be used to describe the Cohen-Macaulay property, namely, the ring K[B] is Cohen-Macaulay if and only if every ideal I_j is equal to T. In Section 3 we will consider the affine semigroup $\tilde{B} = \langle e_1, \ldots, e_d, h_1, \ldots, h_f \rangle$ generated

Date: 9th August 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 13H10.

Key words and phrases. Simplicial affine semigroup rings, Cohen-Macaulay property, monomial ideals.

by the shifts which occur in the decomposition. We will show in Proposition 3.4

$$K[\tilde{B}] \cong \bigoplus_{j=1}^{f} T(-h_j)$$

as \mathbb{Z}^n -graded T-modules; meaning $K[\tilde{B}]$ can be deduced from our decomposition of K[B] replacing I_j by T for all $j=1,\ldots,f$. This shows that the ring $K[\tilde{B}]$ is always Cohen-Macaulay. Let B_{sat} denote the saturation of B (see Section 3); by a result of Hochster [Hoc72] the ring $K[B_{sat}]$ is Cohen-Macaulay, since the semigroup B_{sat} is normal, see also [BG09, Theorem 6.4]. By construction \tilde{B} and B_{sat} are affine semigroups in C(B) containing B (see Lemma 3.2), thus, it is natural to ask:

Question 1.1. Is there a uniquely determined affine semigroup \hat{B} with $B \subseteq \hat{B} \subseteq C(B)$ such that $K[\hat{B}]$ is Cohen-Macaulay, which is minimal among all affine semigroups with these properties?

This question has a positive answer, more explicitly, \tilde{B} has exactly this property, see Theorem 3.5. This implies that \tilde{B} is always contained in B_{sat} , in fact, the semigroup \tilde{B} could be smaller than B_{sat} , see Example 3.3.

In Section 2 we will introduce the decomposition of K[B], after this we we will study the Cohen-Macaulay property in Section 3. Finally, we compare our results to the results of Goto, Suzuki, and Watanabe, see Remark 3.7. For unspecified notation we refer to [BG09, Eis95].

2. Decomposition of simplicial affine semigroup rings

We define the set

$$B_A := \{ x \in B \mid x - a \notin B \ \forall a \in A \setminus \{0\} \}.$$

By construction we have if $x \notin B_A$ then $x + y \notin B_A$ for all $x, y \in B$. Moreover, for all $x \in B$ there is an $m \in \mathbb{N}^+$ such that $mx \in A$, since $C(B) = C(\{e_1, \ldots, e_d\}) = C(A)$ by assumption. This shows that B_A is finite. By G(X) we denote the group generated by X, for $X \subseteq \mathbb{Z}^n$. For an element $x \in G(B)$ denote by $\lambda_1^x, \ldots, \lambda_d^x$ the uniquely determined elements of \mathbb{Q} such that $x = \sum_{i=1}^d \lambda_i^x e_i$. It follows that $x \notin B$ in case that $\lambda_i^x < 0$ for some i. Hence for every $x \in B$ we can consider the element $y = x - \sum_{j=1}^d n_j e_j \in B$ with $n_j \in \mathbb{N}$ such that $\sum_{j=1}^d n_j e_j$ for some $n_j \in \mathbb{N}$. We define $x \sim y$ if $x - y \in G(A)$, hence \sim is an equivalence relation on G(B). Clearly, every element in G(B) is equivalent to an element in $G(B) \cap D$, where

$$D := \{ x \in \mathbb{Q}^n \mid x = \sum_{i=1}^d \lambda_i e_i, \lambda_i \in \mathbb{Q} \text{ and } 0 \le \lambda_i < 1 \text{ for all } i = 1, \dots, d \}$$

and for all $x, y \in G(B) \cap D$ with $x \neq y$ we have $x \not\sim y$, since e_1, \ldots, e_d are linearly independent. Hence the number of equivalence classes $f := \#(G(B) \cap D)$ in G(B) is finite. Every element in B is by construction equivalent to an element in B_A . On the other hand for $x \in G(B)$ we have x = y - z with $y, z \in B$ and again $mz \in A$ for some $m \in \mathbb{N}^+$. By this we get

$$x = y + (m-1)z - mz \sim y + (m-1)z \in B$$
.

hence there are exactly f equivalence classes in B, G(B), $G(B) \cap D$, and in B_A . By $\Gamma_1, \ldots, \Gamma_f$ we will denote the equivalence classes on B_A . We define

$$h_j := \sum_{i=1}^d \min \left\{ \lambda_i^x \mid x \in \Gamma_j \right\} e_i,$$

for j = 1, ..., f, hence $h_j \in C(B)$ by construction. Let $i \in \{1, ..., d\}$; since $\lambda_i^x - \lambda_i^y \in \mathbb{Z}$ for all $x, y \in \Gamma_i$, we get for all $x \in \Gamma_i$ that

$$x - h_j = \sum_{i=1}^{d} \lambda_i^x e_i - \sum_{i=1}^{d} \min \{\lambda_i^y \mid y \in \Gamma_j\} e_i = \sum_{i=1}^{d} n_i e_i$$

for some $n_i \in \mathbb{N}$, hence $x - h_j \in A$, in particular $x \sim h_j$, and therefore $h_j \in C(B) \cap G(B)$. By construction $\tilde{\Gamma}_j := \{t^{x-h_j} \mid x \in \Gamma_j\}$ is a subset of the polynomial ring T = K[A], thus, $I_j := \tilde{\Gamma}_j T$ are monomial ideals in T for $j = 1, \ldots, f$. In case that $d \geq 2$ we always have ht $I_j \geq 2$ (height) since $\gcd \tilde{\Gamma}_j = 1$ for all $j = 1, \ldots, f$. By this we obtain that all ideals I_j are equal to T in case that d = 1. In the following we are interested in the canonical \mathbb{Z}^n -grading on T and on K[B], which is given by $\deg t^a = a$. Note that our construction is a generalization of that of [HS03, Section 2] for the homogeneous case; moreover, the next proof is similar as the proof of [HS03, Proposition 2.2]. However, to keep things self-contained we will prove it.

Proposition 2.1. There is an isomorphism of \mathbb{Z}^n -graded T-modules:

$$K[B] \cong \bigoplus_{j=1}^{f} I_j(-h_j).$$

Proof. Define

$$\psi: \bigoplus_{j=1}^f I_j(-h_j) \to K[B],$$

by

$$\psi(x_1,\ldots,x_f) = \sum_{j=1}^f x_j t^{h_j}.$$

By construction ψ is well defined and preserves the canonical grading. Let $t^x \in K[B]$, that is, $x \in B$. By construction, there is an $y \in B_A$ such that $x = y + \sum_{i=1}^d n_i e_i$ for some $n_i \in \mathbb{N}$. We have $y \in \Gamma_j$ for some j, hence $t^{y-h_j} \in I_j$ and therefore

$$\psi(0,\ldots,0,t^{\sum_{i=1}^{d}n_{i}e_{i}+y-h_{j}},0,\ldots,0)=t^{\sum_{i=1}^{d}n_{i}e_{i}+y-h_{j}}t^{h_{j}}=t^{x},$$

since $t^{\sum_{i=1}^{d} n_i e_i} \in T$. This shows that ψ is surjective. Let $x \in \ker \psi$; since ψ is homogeneous we may assume that x is also homogeneous; meaning $x = (\alpha_1 t^{c_1}, \dots, \alpha_f t^{c_f})$ for some $\alpha_j \in K$ and some $c_j \in A$, $j = 1, \dots, f$. We get

$$\psi(x) = \sum_{j=1}^{f} \alpha_j t^{c_j + h_j} = 0.$$

By construction $c_i + h_i \not\sim c_j + h_j$ for all $i \neq j$, hence $c_i + h_i \neq c_j + h_j$ for all $i \neq j$. This shows that $\alpha_j = 0$ for all $j = 1, \ldots, f$ and therefore ψ is injective.

Example 2.2 ([GR02, Example 10]). The following example was given in [GR02] to study the relation between the Cohen-Macaulay and the Buchsbaum property. Consider the simplicial affine semigroup $B = \langle (2,0), (0,1), (3,1), (1,2) \rangle$, say $A = \langle (2,0), (0,1) \rangle$. We have

$$B_A = \{(0,0), (3,1), (1,2)\}.$$

By this we get $\Gamma_1 = \{(0,0)\}$ and $\Gamma_2 = \{(3,1),(1,2)\}$, thus, $h_1 = (0,0)$, $h_2 = (1,1)$ and therefore $\tilde{\Gamma}_1 = \{1\}$ and $\tilde{\Gamma}_2 = \{t^{(2,0)}, t^{(0,1)}\}$. By Proposition 2.1 it follows that

$$K[B] \cong T(-(0,0)) \oplus (t^{(2,0)}, t^{(0,1)})T(-(1,1))$$

as \mathbb{Z}^2 -graded T-modules.

3. NATURAL COHEN-MACAULAYFICATION

Since B is a simplicial affine semigroup we get that the cone C(B) is pointed, that is, if $x, -x \in C(B)$ it follows that x = 0. Hence B is a positive affine semigroup, meaning, 0 is the only unit in B, thus, we can fix a positive grading on K[B]; see [BG09, Page 58,59]. Denote by $T_+ := (t^{e_1}, \dots, t^{e_d})T$ the homogeneous maximal ideal of T and by $H^i_{T_+}(M)$ the i-th local cohomology module of a T-module M with respect to T_{+} . For a general treatment of the Cohen-Macaulay property and of local cohomology we refer to [BH98] and to [BS98]. The following Theorem is due to Stanley and shows that our canonical decomposition can be used to characterize the Cohen-Macaulay property of K[B]:

Theorem 3.1 ([Sta78, Theorem 6.4]). The following assertions are equivalent:

- (1) The ring K[B] is Cohen-Macaulay.
- (2) There exists $\gamma_1, \ldots, \gamma_f \in B$ such that every element $x \in B$ has a representation of the form $x = \gamma_j + \sum_{i=1}^d n_i e_i$ for some γ_j and some $n_i \in \mathbb{N}$. (3) We have $\#\Gamma_j = 1$ for all $j = 1, \dots, f$. (4) We have $I_j = T$ for all $j = 1, \dots, f$.

Proof. The equivalence between (1) and (2) was proven in [Sta78, Theorem 6.4], provided that $B \subseteq \mathbb{N}^n$. Since C(A) = C(B) it follows that t^{e_1}, \ldots, t^{e_d} is a homogeneous system of parameters of K[B]. Thus, K[B] is a Cohen-Macaulay ring if and only if K[B] is a free T-module by [BG09, Proposition 6.3]. So, $(4) \Rightarrow (1)$ by Proposition 2.1. In case that I_i is a proper ideal for some j we get that dim $T/I_j \leq d-2$, since ht $I_j \geq 2$ in this case. We have $H_{T_+}^i(T/I_j) \neq 0$ for some i with $0 \leq i \leq d-2$, and $H_{T_+}^i(T) = 0$ for every $i \neq d$, for example, by [Eis05, Proposition A1.16]. From the long exact sequence

$$\cdots \longrightarrow H^{i}_{T_{+}}(T) \longrightarrow H^{i}_{T_{+}}(T/I_{j}) \longrightarrow H^{i+1}_{T_{+}}(I_{j}) \longrightarrow H^{i+1}_{T_{+}}(T) \longrightarrow \cdots$$

we obtain $H^i_{T_+}(T/I_j) \cong H^{i+1}_{T_+}(I_j)$ for all i with $0 \le i \le d-2$. Hence $H^i_{T_+}(I_j) \ne 0$ for some iwith $1 \leq i \leq d-1$, and therefore $H^i_{T_+}(K[B]) \neq 0$ for some i with $1 \leq i \leq d-1$ as well by Proposition 2.1 and the fact that local cohomology commutes with direct sums. Thus, K[B]is not a free T-module by a similar argument, and therefore (1) and (4) are equivalent. The assertions (2) and (3) are equivalent as well. Moreover, by construction (3) \Rightarrow (4). In case that $\#\Gamma_j \geq 2$ for some j we get for all $x \in \Gamma_j$ an $i \in \{1, \ldots, d\}$ such that $\lambda_i^{h_j} < \lambda_i^x$ and hence $t^{x-h_j} \neq 1$. This shows that I_j is a proper monomial ideal in T and we are done.

Let us consider an affine semigroup \hat{B} with $B \subseteq \hat{B} \subseteq C(B)$. The semigroup \hat{B} is again simplicial, since $C(\hat{B}) = C(B) = C(\{e_1, \dots, e_d\})$. In the following we are interested in the semigroup generated by the shifts which occur in the decomposition. We set

$$\tilde{B} := \langle e_1, \dots, e_d, h_1, \dots, h_f \rangle,$$

and we define the saturation B_{sat} of B by $B_{sat} := C(B) \cap G(B)$. Note that $K[B_{sat}]$ is always Cohen-Macaulay by [Hoc72, Theorem 1], since B_{sat} is normal; see also [BG09, Theorem 6.4].

Lemma 3.2. We have $B \subseteq \tilde{B} \subseteq B_{sat}$.

Proof. We get $h_1, \ldots, h_f \in C(B) \cap G(B)$ and therefore $\tilde{B} \subseteq C(B) \cap G(B) = B_{sat}$. Let $x \in B$; by construction there is an $y \in B_A$ such that $x = y + \sum_{i=1}^d n_i e_i$ for some $n_i \in \mathbb{N}$. We have $y \in \Gamma_j$ for some $j \in \{1, \ldots, f\}$. Moreover, $y - h_j \in A$ this implies $x = h_j + \sum_{i=1}^d n_i' e_i$ for some $n_i' \in \mathbb{N}$ and therefore $x \in \tilde{B}$, since $e_i \in \tilde{B}$.

This shows that \tilde{B} is simplicial, since $B \subseteq \tilde{B} \subseteq C(B)$.

Example 3.3. Let us again consider the affine semigroup $B = \langle (2,0), (0,1), (3,1), (1,2) \rangle$ with $A = \langle (2,0), (0,1) \rangle$. We have $\tilde{B} = \langle (2,0), (0,1), (1,1) \rangle$ and $B_{sat} = \mathbb{N}^2$. Hence $B \subsetneq \tilde{B} \subsetneq B_{sat}$. Moreover, K[B] is not Cohen-Macaulay by Theorem 3.1, but Buchsbaum by [GR02]. One can show that $\tilde{B}_A = \{(0,0), (1,1)\}$ and therefore

$$K[\tilde{B}] \cong T(-(0,0)) \oplus T(-(1,1))$$

as \mathbb{Z}^2 -graded T-modules. It follows that the ring $K[\tilde{B}]$ is Cohen-Macaulay by Theorem 3.1.

In view of the above Example and Proposition 2.1 it is natural to ask the following:

Question. Is K[B] always isomorphic to the direct sum of T shifted by h_j ?

This would imply that $K[\tilde{B}]$ is always Cohen-Macaulay. The next Proposition will give a positive answer to this question:

Proposition 3.4. We have

$$K[\tilde{B}] \cong \bigoplus_{j=1}^{f} T(-h_j)$$

as \mathbb{Z}^n -graded T-modules.

Proof. By the comments in the beginning of Section 2 we get that the number of equivalence classes on \tilde{B}_A is equal to that on B_A , since $G(B) = G(\tilde{B})$. By construction we have $h_k \not\sim h_l$ for all $k, l \in \{1, \ldots, f\}$ with $k \neq l$, hence for all $x' \in \tilde{B}$ there is a $j \in \{1, \ldots, f\}$ such that $x' \sim h_j$. We will show that if $x' \sim h_j$ for some $j \in \{1, \ldots, f\}$, then $x' - h_j \in A$, that is, $x' = h_j + \sum_{i=1}^d n_i e_i$ for some $n_i \in \mathbb{N}$ and therefore $\Gamma'_1 = \{h_1\}, \ldots, \Gamma'_f = \{h_f\}$ are the equivalence classes on \tilde{B}_A and we are done by Proposition 2.1 and construction. Let $x' \in \tilde{B}$, that is,

$$x' = \sum_{t=1}^{d} n'_{t}e_{t} + \underbrace{\sum_{t=1}^{f} n_{t}h_{t}}_{=x} = \sum_{t=1}^{d} n'_{t}e_{t} + x,$$

for some $n'_t, n_t \in \mathbb{N}$. We show by induction over $n := \sum_{t=1}^f n_t$ that for h_j with $h_j \sim x$ for some $j \in \{1, \ldots, f\}$ we have $x - h_j \in A$ and therefore $h_j \sim x'$ and $x' - h_j \in A$ as well. n = 0: This is clear, since $h_j = 0$ for some $j \in \{1, \ldots, f\}$.

 $\underline{n>0}$: We have $x=\sum_{t=1}^f n_t h_t=x''+h_i$ for some $i\in\{1,\ldots,f\}$, by induction there is a h_j for some $j\in\{1,\ldots,f\}$ such that $h_j\sim x''$ and $x''-h_j\in A$. We have $x\sim h_l$ for some $l\in\{1,\ldots,f\}$. It is now sufficient to show that $h_j+h_i-h_l\in A$; this implies $x-h_l\in A$, since $x''-h_j\in A$. Note that $h_l\sim x''+h_i\sim h_j+h_i$. We show that for $k=1,\ldots,d$ we have $\lambda_k^{h_l}\leq \lambda_k^{h_j}+\lambda_k^{h_i}$. This implies

$$h_j + h_i - h_l = \sum_{t=1}^d \underbrace{(\lambda_t^{h_j} + \lambda_t^{h_i} - \lambda_t^{h_l})}_{>0} e_t \in A,$$

since $\lambda_k^{h_j} + \lambda_k^{h_i} - \lambda_k^{h_l} \in \mathbb{Z}$ for all k = 1, ..., d. Let $\Gamma_1, ..., \Gamma_f$ be the equivalence classes on B_A . Fix one $k \in \{1, ..., d\}$. By construction there is an element $y_{jk} \in \Gamma_j$ with $\lambda_k^{y_{jk}} = \lambda_k^{h_j}$ and some $y_{ik} \in \Gamma_i$ with $\lambda_k^{y_{ik}} = \lambda_k^{h_i}$. Note that $y_{jk} \sim h_j$ and $y_{ik} \sim h_i$, hence

$$(2) y_{jk} + y_{ik} \sim h_j + h_i \sim h_l.$$

We have $y_{jk} + y_{ik} \in B$ and therefore there is an $s \in B_A$ such that:

$$y_{jk} + y_{ik} = s + \sum_{t=1}^{d} n_t e_t,$$

for some $n_t \in \mathbb{N}$. Clearly, $\lambda_k^s \leq \lambda_k^{y_{jk}} + \lambda_k^{y_{ik}} = \lambda_k^{h_j} + \lambda_k^{h_i}$. We have $h_l \stackrel{(2)}{\sim} y_{jk} + y_{ik} \sim s$ and therefore $\lambda_k^{h_l} \leq \lambda_k^s$, since $s \in \Gamma_l$. This implies $\lambda_k^{h_l} \leq \lambda_k^{h_j} + \lambda_k^{h_i}$ as required.

That means that $K[\tilde{B}]$ can be deduced from the decomposition of K[B] in Proposition 2.1 replacing I_j by T for all $j = 1, \ldots, f$. We will now give an answer to Question 1.1 raised in the introduction.

Theorem 3.5. Let B be a simplicial affine semigroup, and \tilde{B} be as above. The ring $K[\tilde{B}]$ is Cohen-Macaulay for the affine semigroup \tilde{B} with $B \subseteq \tilde{B} \subseteq C(B)$, moreover, if \hat{B} is an affine semigroup with $B \subseteq \hat{B} \subseteq C(B)$ such that the ring $K[\hat{B}]$ is Cohen-Macaulay, then $\tilde{B} \subseteq \hat{B}$.

Proof. By Proposition 3.4 and Theorem 3.1 we get that the ring $K[\tilde{B}]$ is Cohen-Macaulay, moreover, by Lemma 3.2 $B \subseteq \tilde{B} \subseteq C(B)$. Let \hat{B} be an affine semigroup with $B \subseteq \hat{B} \subseteq C(B)$ such that $K[\hat{B}]$ is Cohen-Macaulay; again \hat{B} is simplicial. We show that $h_j \in \hat{B}$ for all $j = 1, \ldots, f$ and therefore $\tilde{B} \subseteq \hat{B}$, since $e_1, \ldots, e_d \in \hat{B}$. By Theorem 3.1 we know that $\hat{\Gamma}_1 = \{\hat{h}_1\}, \ldots, \hat{\Gamma}_{\hat{f}} = \{\hat{h}_{\hat{f}}\}$ are the equivalence classes on \hat{B}_A . We have

$$f = \#(D \cap G(B)) \le \#(D \cap G(\hat{B})) = \hat{f},$$

since $G(B) \subseteq G(\hat{B})$. For all $j \in \{1, \dots, f\}$ there is an $x \in B$ and an $i \in \{1, \dots, \hat{f}\}$ such that $x \sim h_j$ and $x \sim \hat{h}_i$, that is, we may assume $h_j \sim \hat{h}_j$ for $j = 1, \dots, f$. Fix one $j \in \{1, \dots, f\}$, and let $k \in \{1, \dots, d\}$; we will show that $\lambda_k^{\hat{h}_j} \leq \lambda_k^{h_j}$. This implies $\lambda_k^{h_j} - \lambda_k^{\hat{h}_j} \in \mathbb{N}$, since $\lambda_k^{h_j} - \lambda_k^{\hat{h}_j} \in \mathbb{Z}$. Thus, $h_j - \hat{h}_j \in A$ and therefore $h_j \in \hat{B}$, since $\hat{h}_j \in \hat{B}$ and $A \subseteq \hat{B}$. There is an element $x \in B$ with $x \sim h_j$ and $\lambda_k^x = \lambda_k^{h_j}$. Since $x \in \hat{B}$, $x \sim \hat{h}_j$, and $\hat{\Gamma}_j = \{\hat{h}_j\}$ we get $x = \hat{h}_j + \sum_{i=1}^d n_i e_i$ for some $n_i \in \mathbb{N}$ and therefore $\lambda_k^{\hat{h}_j} \leq \lambda_k^x = \lambda_k^{h_j}$.

Remark 3.6. There is an exact sequence of \mathbb{Z}^n -graded T-modules:

$$0 \longrightarrow K[B] \longrightarrow K[\tilde{B}] \longrightarrow K[\tilde{B} \setminus B] \longrightarrow 0.$$

By Proposition 2.1 and Proposition 3.4 we have

$$K[\tilde{B} \setminus B] \cong \bigoplus_{j=1}^{f} T/I_j(-h_j)$$

as \mathbb{Z}^n -graded T-modules. Hence $\dim K[\tilde{B} \setminus B] \leq \dim K[B] - 2$, since $\operatorname{ht} I_j \geq 2$; provided that $d \geq 2$.

Remark 3.7. Assume that $B \subseteq \mathbb{N}^n$ for some $n \in \mathbb{N}^+$. Let B' be the extension of B in C(B) studied by Goto, Suzuki, and Watanabe in [GSW76], or by Hoa and Trung in [HT86] (see also [Mor07, Sch04]). They proved that B = B' if and only if K[B] is a Cohen-Macaulay ring. Since B' = (B')', we get that K[B'] is Cohen-Macaulay, hence $\tilde{B} \subseteq B'$ by Theorem 3.5. Conversely, $\tilde{B} = \tilde{B}'$, since $K[\tilde{B}]$ is Cohen-Macaulay. We have $B \subseteq \tilde{B}$, hence $B' \subseteq \tilde{B}' = \tilde{B}$ and therefore $\tilde{B} = B'$.

ACKNOWLEDGEMENT

The author would like to thank Jürgen Stückrad for many helpful discussions.

References

- [BG09] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, New York, 2009.
- [BH98] W. Bruns and J. Herzog, Cohen-Macaulay Rings, second edition ed., Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998.
- [BS98] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998.
- [Eis95] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer, New York, 1995.
- [Eis05] _____, The geometry of syzygies: a second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, vol. 229, Springer, New York, 2005.
- [GR02] P. A. García-Sánchez and J. C. Rosales, On Buchsbaum simplicial affine semigroups, Pacific J. Math. 202 (2002), no. 2, 329–339.
- [GSW76] S. Goto, N. Suzuki, and K. Watanabe, On affine semigroup rings, Jap. J. Math. 2 (1976), no. 1, 1–12.
- [Hoc72] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. Math. **96** (1972), no. 2, 318–337.
- [HS03] L. T. Hoa and J. Stückrad, Castelnuovo-Mumford regularity of simplicial toric rings, J. Algebra 259 (2003), no. 1, 127–146.
- [HT86] L. T. Hoa and N. V. Trung, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Amer. Math. Soc. 298 (1986), no. 1, 145–167.
- [Mor07] M. Morales, On the S₂-fication of some toric varieties, Commun. Algebra **35** (2007), no. 8, 2409–2430.
- [Sch04] P. Schenzel, On birational Macaulay fications and Cohen-Macaulay canonical modules, J. Algebra 275 (2004), no. 2, 751–770.
- [Sta78] R. P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), no. 1, 57–83.
- [Tru83] N. V. Trung, Classification of the double projections of Veronese varieties, J. Math. Kyoto Univ. 22 (1983), no. 4, 567–581.

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, INSELSTRASSE 22, 04103 LEIPZIG, GERMANY $E\text{-}mail\ address$: nitsche@mis.mpg.de