Série Nº5: Formes linéaires, Produit mixte et produit vectoriel

Exercice 1

- 1. Soient (e_1, e_2, e_3) une base d'un espace vectoriel réel E, (e_1^*, e_2^*, e_3^*) la base duale de E^* . Montrer que $(2e_1, 5e_2, -e_3)$ est une base de E, et que la base duale est $(\frac{1}{2}e_1^*, \frac{1}{5}e_2^*, -e_3^*)$.
- 2. Soiet E l'espace vectoriel des polynômes en x à coefficients réels. Pour tout polynôme P, soit f_P la fonction sur E qui associe, à tout polynôme Q, le nombre $\int_0^1 P(x)Q(x)dx$.
 - (a) Montrer que f_P est une forme linéaire sur E
 - (b) Trouver les polynômes P de degré 2 tels que f_P soit orthogonal aux polynômes 1 et x.
- 3. On munit \mathbb{R}^3 de la forme bilinéaire canonique, c'est-à-dire le produit scalaire. Trouver les éléments de \mathbb{R}^3 orthogonaux à u=(2,-1,-1) et à v=(1,3,-4).
- 4. Soit E un espace vectoriel, u un automorphisme de E. Montrer que, pour tout $n \in \mathbb{Z}$, on a ${}^t(u^n) = ({}^tu)^n$.

Exercice 2

On considère l'application $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, ((x,y),(x',y')) \mapsto 2xx' - 4xy' + 5x'y + byy'.$

- 1. Montrer que f est une forme bilinéaire.
- 2. Déterminer b pour que f soit dégénérée.
- 3. Trouver les noyaux des deux homomorphismes associés canoniquement à f.
- 4. Déterminer le rang de f selon les valeurs de b.

Exercice 3

Dans \mathbb{R}^3 , on considère les vecteurs $x=(1,1,1)^T, \quad y=(2,3,4)^T$ et $z=(4,9,16)^T$ relativement à la base canonique \mathcal{B} de \mathbb{R}^3 .

- 1. Calculer $\det_{\mathcal{B}}(x,y,z)$. En déduire que le système $\{x,y,z\}$ est une autre base de \mathbb{R}^3 .
- 2. Calculer les coordonnées des vecteurs $x \wedge y$, $y \wedge z$ et $z \wedge x$.
- 3. Calculer la norme de chacun des vecteurs $x, y, z, x \wedge y, y \wedge z$ et $z \wedge x$, puis en déduire les angles \widehat{xy} , \widehat{yz} et \widehat{zx} .

Exercice 4

Soit E un espace vectoriel ordinaire. On donne un repère orthonormé (\mathcal{O}, i, j, k) . Soient A et B deux points de E de coordonnées respectives (-2, 1, 0) et (2, -1, 1).

- 1. (a) Soit le point M de coordonnées (x, y, z). Déterminer les coordonnées du vecteur $(\overrightarrow{\mathcal{O}A} \land \overrightarrow{\mathcal{O}B}) \land \overrightarrow{\mathcal{O}M}$ en fonction de x, y et z.
 - (b) Déterminer less équations de l'ensemble des points M vérifiant $(\overrightarrow{OA} \wedge \overrightarrow{OB}) \wedge \overrightarrow{OM} = k$
- 2. Soit C et D deux points de E de coordonnées respectives (1,3,0) et (-1,-10,-1). On affecte le point A de coefficient 2, le point B du coefficients 1, le point C du coefficient 3 et le point D du coefficient 1.
 - (a) Déterminer le barycentre des quatre points $A,\,B,\,C$ et D affectés de leurs coefficients respectifs.
 - (b) Soit I le milieu du segment [BD] et J le point vérifiant $2\overrightarrow{JA} + 3\overrightarrow{JC} = 0_E$. Montrer que les points \mathcal{O} , I et J sont alignés.

3. Déterminer l'angle $(\overrightarrow{\mathcal{O}A}, \overrightarrow{\mathcal{O}B})$.

Exercice 5

Soient A et B deux vecteurs non nuls d'un espace vectoriel E.

- 1. Donner une condition nécessaire sur A et B pour qu'il existe $X \in E$ tel que $X \wedge A = B$.
- 2. On suppose que $A \cdot B = 0$. Déterminer l'ensemble $\mathcal D$ des vecteurs $X \in E$ tels que $X \wedge A = B$.

Exercice 6

On désigne par E un espace vectoriel de dimeension n sur un corps commutatif \mathbb{K} et on rappelle que le produit extérieur $\varphi \wedge \psi$ de 2 formes linéaires sur E est la forme bilinéaire alternée définie par : $(\varphi \wedge \psi)(x,y) = \varphi(x)\psi(y) - \varphi(y)\psi(x)$.

- 1. Montrer que si $\varphi_1, \ldots, \varphi_n$ sont des formes linéaires indépendantes, les produits $\varphi_i \wedge \varphi_j$, où i < j sont des formes bilinéaires indépendantes (on pourra utiliser des bases duales de l'espace E et de son dual).
- 2. On considère p formes linéaires indépendantes $\varphi_1, \ldots, \varphi_p$ et p formes linéaires ψ_1, \ldots, ψ_p telles que : $\sum_{i=1}^p \varphi_i \wedge \psi_i = 0$.

Montrer que les formes ψ_i sont des combinaisons linéaires des formes φ_i et que la matrice des coefficients est symétrique.

Exercice 7

Soit E un \mathbb{R} -espace vectoriel muni d'une base $\mathcal{B} = \{e_1, e_2, e_3\}$. Pour tout $(X, X') = ((x, y, z)^T, (x', y', z')^T)$ dans $\mathbb{R}^3 \times \mathbb{R}^3$, on définit \mathcal{F} par

$$\mathcal{F}(X, X') = -2yx' + 2xy' - 2zy' + \beta yz' - 3xz' + 3zx'.$$

- 1. Déterminer la valeur de β pour que \mathcal{F} soit une application bilinéaire alternée.
- 2. Déterminer une matrice M telle que $\mathcal{F}(X, X') = (MX, X') = X'^T MX$.
- 3. Soit L un application sur E telle que L(x, y, z) = MX. Montrer que L est linéaire antisymétrique, puis déterminer un vecteur $\overrightarrow{\mathcal{R}}$ tel que $L(x, y, z) = \overrightarrow{\mathcal{R}} \wedge X$.

Exercice 8

Soit α et γ deux réels fixés, et E un \mathbb{R} -espace vectoriel muni d'une base $\beta = \{e_1, e_2, e_3\}$. Pour tout $(X, X') = ((x, y, z)^T, (x', y', z')^T)$ dans $\mathbb{R}^3 \times \mathbb{R}^3$, on définit \mathcal{F} par

$$\mathcal{F}(X, X') = -2yx' + \alpha xy' - 2zy' + \gamma yz' + 3xz' - 3zx'.$$

- 1. Déterminer les valeurs de α et γ pour que \mathcal{F} soit une application bilinéaire alternée.
- 2. Déterminer une matrice M telle que $\mathcal{F}(X, X') = (MX, X') = X'^T M X$.
- 3. Soit L un application sur E telle que L(x,y,z)=MX. Montrer que L est linéaire antisymétrique, puis déterminer un vecteur $\overrightarrow{\mathcal{R}}$ tel que $L(x,y,z)=\overrightarrow{\mathcal{R}}\wedge X$.

Exercice 9

Soient E un espace vectoriel euclidien de dimension finie n.

- 1. Soit H l'hyperplan orthogonal à un vecteur unitaire a de composantes $(a_i)_{1 \leq i \leq n}$. Déterminer la matrice P de la projection orthogonale p sur H.
- 2. Exprimer les coefficients p_{ij} de la matrice P.

3. Soit F un sous-espace vectoriel de E et $(u_i)_{1 \leq i \leq m}$ une base orthonormé de F. On désigne par U_i la matrice colonne des coordonnées du vecteurs u_i dans une base de E. Déterminer la matrice P de la projection orthogonale sur F.

Exercice 10

Soit E un espace euclidien de dimension finie n, f un opérateur orthogonal de E et F un sous-espace vectoriel de E invariant par f. Montrer que le sous-espace vectoriel G orthogonal à F est aussi invariant par f.