Apuntes Cálculo Dif. e Int. II

Héctor G. T. Torres

Contents

Recordar	1
Def de Función acotada	1
Notación de Sumas (Notación Sigma)	1
Def Notación Sigma	1
Teo Propiedades de la suma	1
Teo Fórmulas importantes	1
Integrales	1
Def de Partición	1
	2
Def Suma por arriba y abajo	$\frac{2}{2}$
Teo	
Def Función integrable	2
Teo Continuidad	2
Teo Discontinuidades finitas	2
Sumas de Riemann	3
Def Partición regular	3
Def Sumas de Riemann	3
Teo Sumas de Riemann e Integrales	3
Área bajo la curva	3
Def Área bajo la curva	3
Corolario	3
Teo Igualdad de funciones integrables	4
Propiedades de la Integral	4
Teorema Fundamental del Cálculo	4
Teo T. F. C. Parte 1	4
Teo T. F. C. Parte 2	4
1eo 1. r. O. raite 2	4
Def Integral Indefinida (antiderivada)	5
Teo Igualdad de antiderivadas	5
Lista de antiderivadas	5
Cotas	5
Teo	5
Corolario	5 5
Corolario	5
Teo Teorema del Valor Medio para Integrales	5
Composición de Funciones en Integrales	6
Teo Regla de Leibinz	6

Diferenciales	6
Def	6
Reglas para diferenciales	6

Recordar

Def de Función acotada

Una función $f:A\to\mathbb{R}$ es una función acotada si

$$\exists M \in \mathbb{R}^+ \land N < 0 \in \mathbb{R}$$
$$\land N < f(x) < M \forall x \in A$$

Notación de Sumas (Notación Sigma)

Def Notación Sigma

La suma de n términos $a_1, a_2, ..., a_n$ se escribe

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

donde i es el índice de la suma, a_i es el i-ésimo término, el límite inferior de la suma es 1 y el límite superior es n.

Teo Propiedades de la suma

- 1. $\sum_{i=1}^{n} c = nc$ 2. $\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$ 3. $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$

Teo Fórmulas importantes

- 1. $\sum_{i=1}^{n} c = nc$ 2. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ 3. $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$ 4. $\sum_{i=1}^{n} i^{3} = \frac{n\check{s}(n+1)^{2}}{4}$

Integrales

Def de Partición

Sea [a,b] un intervalo. Una **partición** de [a,b] es un conjunto de puntos P= $t_0 = a, t_1, t_2, ..., t_n = b$ donde $t_0 = a < t_1 < t_2 < t_3 < ... < t_n = b$

Def Suma por arriba y abajo

Sea f una función acotada sobre [a,b]. Definimos la **Suma por arriba** de f con respecto a P como

$$\overline{S}(f,P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$$

y la Suma por debajo como

$$\underline{S}(f, P) = \sum_{i=1}^{n} = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

donde

$$M_i = \sup\{f(x)|x \in [t_{i-1}, t_i]\}\$$

$$m_i = \inf\{f(x)|x \in [t_{i-1}, t_i]\}\$$

Teo

Sea P una partición de [a,b] y Q una partición de [a,b] con más puntos que P.

$$\implies \underline{S}(f,P) \leq \underline{S}(f,Q) \leq \overline{S}(f,Q) \leq \overline{S}(f,P)$$

Def Función integrable

Se dice que una función f es **integrable** sobre [a,b] si

$$\inf{\overline{S}(f,P)} = \sup{S(f,P)}$$

donde P es una partición de [a, b].

En este caso, a dicho número en común se le denota como

$$\int_{a}^{b} f(x)dx$$

Teo Continuidad

Si f es contínua en $[a,b] \implies f$ es integrable en [a,b].

Teo Discontinuidades finitas

Si f es contínua en [a.b] excepto en una cantidad finita de puntos (discontinuidades finitas) entonces f es integrable en [a,b].

Sumas de Riemann

Def Partición regular

Una partición de [a,b] es **regular** si todos los subintervalos generados por la partición miden lo mismo. En ese caso, lo que mide cada intervalo es $\Delta x = \frac{b-a}{n}$

Def Sumas de Riemann

Sea f acotada en [a, b]. Una **Suma de Riemann** de f en [a, b] es

$$SR = \sum_{i=1}^{n} f(c_i) \Delta x$$

donde c_i es cualquier número en $[t_{i-1}, t_i]$.

Teo Sumas de Riemann e Integrales

Si f es contínua en [a, b] entonces

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$$

Obs En una partición regular $\Delta x = \frac{b-a}{n}$ Extremo derecho de cada subintervalo: $c_i = a + i\Delta x$ Extremo izquierdo de cada subintervalo: $c_i = a + (i-1)\Delta x$

Área bajo la curva

Def Área bajo la curva

Sea $f:[a,b]\to\mathbb{R}$ integrable y $f(x)\geq 0 \implies$ que el área entre el eje x, la gráfica de f y las rectas x=a y x=b se define como

$$\operatorname{área}(\mathbb{R}) = \int_{a}^{b} f(x)dx$$

Corolario

Si $f(x) \leq 0$, definimos el área bajo el eje x, sobre la gráfica de f y entre las rectoas x=a y x=b como

$$\text{área} = -\int_{a}^{b} f(x)dx$$

Teo Igualdad de funciones integrables

Si f es contínua en [a, b] y es una función definida en [a, b]t.q.f(x) = g(x) excepto en un punto

$$\implies \int_a^b f(x)dx = \int_a^b g(x)dx$$

Propiedades de la Integral

- 1. $\int_a^a f(x)dx = 0$ 2. $\int_a^b f(x)dx = -\int_b^a f(x)dx$ 3. $\int_a^b kf(x)dx = k\int_a^b f(x)dx$ 4. $\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ 5. $\int_a^b (f(x) g(x))dx = \int_a^b f(x)dx \int_a^b g(x)dx$ 6. f es integrable en [a,b] y en $[b,c] \iff f$ es integrable en [a,c] y además

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Teorema Fundamental del Cálculo

Teo T. F. C. Parte 1

Sea f contínua en [a,b]. Entonces, $F(x) = \int_a^x f(t)dt$ es contínua en [a,b] y derivable en [a, b] y además

$$F'(x) = f(x)$$
$$\frac{d}{dx}(\int_{a}^{x} f(t)dt) = f(x)$$

Teo T. F. C. Parte 2

Si una función es contínua en [a, b], entonces

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

donde

$$F(x)' = f(x)$$
$$\forall x \in [a, b]$$

Def Integral Indefinida (antiderivada)

Una función F es una **antiderivada** de f en un intérvalo I si

$$F'(x) = f(x)$$
$$\forall x \in I$$

Teo Igualdad de antiderivadas

Si F es una antiderivada de f en un intervalo I, entonces G es otra antiderivada $\operatorname{de} f \iff G(x) = F(x) + c$

Lista de antiderivadas

- 1. $\int 0 dx = c$
- 2. $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ 3. $\int \cos(x) dx = \sin(x) + c$
- 4. $\int \sec^2(x)dx = \tan(x) + c$
- 5. $\int \csc^2(x)dx = -\cot(x) + c$
- 6. $\int \sec(x)\tan(x)dx = \sec(x) + c$
- 7. $\int \csc(x)\cot(x)dx = -\csc(x) + c$

Cotas

Teo

Sea f contínua en [a,b] t.q. $m \leq f(x) \leq M \forall x \in [a,b] \iff m(b-a) \leq$ $\int_{a}^{b} f(x)dx \le M(b-a)$

Corolario

Sea $f(x) \ge 0$ y contínua en [a, b]. Entonces, $\int_a^b f(x)dx \ge 0$

Corolario

Sean $f \ge g$ funciones contínuas t.q. $\forall x \in [a,b], f(x) \le g(x)$ entonces, $\int_a^b f(x) dx \le f(x) dx$ $\int_a^b g(x)dx$

Teo Teorema del Valor Medio para Integrales

Si f es contínua en el intervalo cerrado $[a,b] \implies$ existe un número $c \in [a,b]$ tal que

$$f(c)(b-a) = \int_{a}^{b} f(x)dx$$

Composición de Funciones en Integrales

En general,

$$F(g(x)) = \int_{a}^{g(x)} f(t)dt$$

Teo Regla de Leibinz

Sea f contínua en [a,b] y g(x),h(x) funciones derivables de $x\in [a,b]$. Entonces,

$$\frac{dx}{d} \int_{g(x)}^{h(x)} f(t)dt = f(h(x))h'(x) - f(g(x))g'(x)$$

Diferenciales

Def

Se denota al diferencial de x como $dx = \Delta x$ y al diferencial de y como dy = f'(x)dx.

Reglas para diferenciales

Sean u = f(x), v = g(x) funciones diferenciables de x(:du = f(x)dx, dv =g(x)dx).

Entonces,

- 1. d(u+v) = du + dv
- 2. d(uv) = du(v) + u(dv)3. $d(\frac{v}{u}) = \frac{du(v) u(dv)}{v^2}$