

An Introduction to Cyber Security – CS 573

Instructor: Dr. Edward G. Amoroso

eamoroso@tag-cyber.com

Week 12: Modern Enterprise Security (Part 1)

Final Examination

Time travel to January 2036 (15 years from now) and explain in a 1500-word essay the following:

- 1. What are the major cyber security threats that are facing the world.
- 2. What are the major cyber security protections being used to address cyber risk.
- 3. What are your recommendations to global leaders to reduce cyber risk.

Final Examination – Typical Outline

Title: State of Global Cyber Security – 2036

your name

Introduction (150 words)

During the last fifteen years, since 2021, the globe has seen . . .

Major Cyber Security Threats (450 words)

The major cyber security threats facing our globe can be grouped into the following X categories . . .

Major Cyber Security Protections (450 words)

The major cyber security protections protecting our globe today can be grouped into . . .

Recommendations (450 words)

My recommendations for world leaders today in 2036 include . . .

What is Virtualization in Computing and Why is it Relevant to Security?

Making One Thing into Multiple Virtual Copies

Early Operating System (OS) Model in Computing

Multi-Boot Operating System Model in the 1990's

Five Types of Modern Computing Virtualization

• Desktop Virtualization

• Desktop OS runs as a VM on a physical server with other virtual desktops (e.g., VDI services)

Five Types of Modern Computing Virtualization

Desktop Virtualization

• Desktop OS runs as a VM on a physical server with other virtual desktops (e.g., VDI services)

Application Virtualization

- Application packages in single executable to run in sandbox environment
- One copy of application on server with many client desktops (e.g., streaming)

Five Types of Modern Computing Virtualization

Desktop Virtualization

Desktop OS runs as a VM on a physical server with other virtual desktops (e.g., VDI services)

Application Virtualization

- Application packages in single executable to run in sandbox environment
- One copy of application on server with many client desktops (e.g., streaming)

Server Virtualization

• Many VMs run on a single physical server to optimize resources through hypervisor software

Five Types of Modern Computing Virtualization

Desktop Virtualization

• Desktop OS runs as a VM on a physical server with other virtual desktops (e.g., VDI services)

Application Virtualization

- Application packages in single executable to run in sandbox environment
- One copy of application on server with many client desktops (e.g., streaming)

Server Virtualization

• Many VMs run on a single physical server to optimize resources through hypervisor software

Storage Virtualization

Grouping of physical storage into multiple virtual storage devices

Five Types of Modern Computing Virtualization

Desktop Virtualization

• Desktop OS runs as a VM on a physical server with other virtual desktops (e.g., VDI services)

Application Virtualization

- Application packages in single executable to run in sandbox environment
- One copy of application on server with many client desktops (e.g., streaming)

Server Virtualization

• Many VMs run on a single physical server to optimize resources through hypervisor software

Storage Virtualization

Grouping of physical storage into multiple virtual storage devices

Network Virtualization

- Decouples virtual networks from underlying hardware
- Management and control through software-defined switches

Popular Server Virtualization Models

OS 1 OS 2

Hypervisor Software

Host OS

Hardware

Hosted Hypervisor

Popular Server Virtualization Models

Popular Server Virtualization Models

Docker Containers

Docker Container Deployment

Platform-as-a-Service (PaaS)
Delivers Software in Containers

Containers Share Single Host OS
Use Fewer Resources than VMs

Originated in 2010 as Y-Combinator Project Released as Open Source in 2013

Docker and Kubernetes

Docker Container Deployment

Docker Runs as a "Single Node"

Docker Container and Kubernetes Deployment

Kubernetes Coordinates Clusters of Nodes

Main Topics Tags News Alerts About

NATIONAL SECURITY

Three U.S. Senators Call For Penalties Against Chinese "Internet of Things" Company

By Simon Lester - September 12, 2021

On September 9, U.S. Senators Marco Rubio (R-FL), Rick Scott (R-FL), and Tom Cotton (R-AR) sent a letter to Treasury Secretary Janet Yellen expressing concern about Chinese "Internet of Things" (IoT) company Tuya, and asking the Treasury Department to add Tuya to a "Chinese Military-Industrial Complex Companies List," which would restrict U.S. persons from purchasing and

Decoupling Hardware and Software

Decouple Underlying Hardware from Software

Physical Compute and Memory

Server Virtualization

Decoupling Physical Infrastructure from Virtual Networks

App 1 Workload Workload App 2 Virtual Virtual VM 1 VM 2 Network Network **Hypervisor Software Network Virtualization Platform** Decouple Underlying Hardware from Software Physical Compute and Memory **Physical Network**

Network Virtualization

Server Virtualization

Key Concept: Virtual Systems Can Dynamically Reconfigure During an Attack

What is Cloud Computing and Why is it Relevant to Security?

What is Cloud Computing?

- Delivery of on-demand computing services over the Internet
 - Servers, storage, databases, networks, software, analytics
 - Pay for what you use (lowers operating costs)

What is Cloud Computing?

- Delivery of on-demand computing services over the Internet
 - Servers, storage, databases, networks, software, analytics
 - Pay for what you use (lowers operating costs)
- Supports flexibility, ubiquity, scale, and rapid innovation
 - Shared model runs infrastructure efficiently and at lower cost
 - Eliminate expense of buying hardware

Week 22

What is Cloud Computing?

- Delivery of on-demand computing services over the Internet
 - Servers, storage, databases, networks, software, analytics
 - Pay for what you use (lowers operating costs)
- Supports flexibility, ubiquity, scale, and rapid innovation
 - Shared model runs infrastructure efficiently and at lower cost
 - Eliminate expense of buying hardware
- Cloud computing approaches
 - Public Cloud third-party delivery by cloud provider
 - Private Cloud operated by sponsoring organization
 - Hybrid Cloud combination of public and private

Common Cloud Service Types

- Infrastructure as a Services (laaS)
 - Pay for IT infrastructure on pay-as-you-go basis
 - Servers, virtual machines, storage, networks, operating systems

Common Cloud Service Types

- Infrastructure as a Services (laaS)
 - Pay for IT infrastructure on pay-as-you-go basis
 - Servers, virtual machines, storage, networks, operating systems
- Platform as a Service (PaaS)
 - Provides on-demand support for software apps
 - Allows development, test, and management of apps

Common Cloud Service Types

- Infrastructure as a Services (laaS)
 - Pay for IT infrastructure on pay-as-you-go basis
 - Servers, virtual machines, storage, networks, operating systems
- Platform as a Service (PaaS)
 - Provides on-demand support for software apps
 - Allows development, test, and management of apps
- Software as a Service (SaaS)
 - Delivers software apps on-demand, over the Internet
 - Users typically access SaaS apps via subscription

Cloud Computing Growth

Source: 451 Research's Market Monitor: Cloud Computing, November 2017

meek 12

Comparing Public Cloud Services

	aws	Azure	6 Google Cloud
Compute	Elastic Cloud	Virtual	Compute
	Compute (EC2)	Machines	Engine
App Hosting	Elastic	Cloud	App
	Beanstalk	Services	Engine
Serverless	AWS	Azure	Cloud
	Lambda	Functions	Functions
Container	ECS/EKS	AKS	Kubernetes
	Containers	Container	Engine
Storage (File)	S3	Azure	Cloud
	Storage	Storage	Storage
Storage (Block)	Elastic Block	Azure	Persistent
	Storage	Blob	Disc
Backup	AWS	Azure	Cloud
	Glacier	Backup	Storage
Orchestration	Data	Data	Cloud
	Pipeline	Factory	DataFlow
Management	AWS	SQL Data	Google
	Redshift	Warehouse	BigQuery
NoSQL DB	AWS	Cosmos	Cloud
	DynamoDB	DB	DataStore

Can This Baseball Team Beat the New York Yankees?

Can This IT Security Group Beat the Russian Military?

Microsoft Invests \$1B/Year in Cyber Security

What is Software Defined Networking and How is it Used for Security?

What is Software Defined Networking (SDN)?

- Software Defined Networking (SDN) is a network architectural model
 - Popular to virtualize data centers
 - Important aspect of Tier One carrier network infrastructure including 5G

What is Software Defined Networking (SDN)?

- Software Defined Networking (SDN) is a network architectural model
 - Popular to virtualize data centers
 - Important aspect of Tier One carrier network infrastructure including 5G
- Improves control, orchestration, management, and securing of network resources
 - Support programmable features versus manual configuration
 - Security comes from improved visibility and ease of control

Week 12

What is Software Defined Networking (SDN)?

- Software Defined Networking (SDN) is a network architectural model
 - Popular to virtualize data centers
 - Important aspect of Tier One carrier network infrastructure including 5G
- Improves control, orchestration, management, and securing of network resources
 - Support programmable features versus manual configuration
 - Security comes from improved visibility and ease of control
- Separates and decouples data and control plane using a centralized SDN control function
 - SDN involves centralized control versus distributed router configuration
 - Network resources can be configured and secured at scale

week 12

SDN Controller Configuration

SDN Controller Configuration

SDN-Based Network Visualization and Situational Awareness

SDN-Based Network Visualization and Situational Awareness

SDN Detection and Response (SDN-DR)

meek 12

SDN Detection and Response (SDN-DR)

SDN-Based Detection and Response (SDN-DR)

week 12

SDN-Based Detection and Response (SDN-DR)

Delivery of Forensic Artifacts via SDN

Delivery of Forensic Artifacts via SDN

Potential DDOS Delivery via SDN

Potential DDOS Delivery via SDN

Potential DDOS Delivery via SDN

Meek 12 **Potential DDOS Delivery via SDN DDOS Attacks** from Internet Step 1: DDOS Volume Step 2: DDOS Monitoring, Increases to Target Analysis, and Simulation SDN Traffic Monitoring App SDN Traffic Analysis App **SDN Controller SDN Traffic Simulation App** Step 3: Rules Provided to Route to Expanded VM Step 4: DDOS Volume Scrubbing Infrastructure Absorbed by VMs **SDN Data** Dynamic VM Plane Scrubbing

SDN Enables Dynamic, Expandable DDOS Attack Absorption

Charlie Ciso

Charlie Ciso

Week 12

Charlie Ciso

- Conceptual cyber security model for protection of apps and data
 - Introduced by Forrester in 2010 (possibly earlier by Jericho Forum)

- Conceptual cyber security model for protection of apps and data
 - Introduced by Forrester in 2010 (possibly earlier by Jericho Forum)
- Identity verification versus perimeter protection
 - Endpoint workloads are authenticated and authorized based on identity

- Conceptual cyber security model for protection of apps and data
 - Introduced by Forrester in 2010 (possibly earlier by Jericho Forum)
- Identity verification versus perimeter protection
 - Endpoint workloads are authenticated and authorized based on identity
- Trust no longer established by enterprise perimeter
 - Firewall perimeters no longer a primary control in Zero Trust

Perimeter Vulnerability: Target's 2014 Incident

40 Million Credit Cards Stolen from Target

- Hacked third-party vendor access unnoticed from 12/2/13 to 1/16/14
- CEO and CIO of Target apologized and resigned
- Remediation/legal costs: \$162M (Target) and \$200M (Banks)

Perimeter Vulnerability: Home Depot's 2014 Incident

Five Month Undetected Attack at Home Depot

- Compromised 56 million customer payment cards
- CEO apologized publicly after the cyber attack
- Famous security budget retort from ex-employee: "We sell hammers."

meek 12

North-South Versus East-West Access

week 12

North-South Versus East-West Access

Week 12

North-South Versus East-West Access

Zero Trust Use Case – Endpoint Device to Cloud-Hosted App

Firewall Perimeter Protection (Opposite of Zero Trust)

- 1. Entity 1 and 2 can share freely (bidirectional)
- 2. No mutual authentication (no 1FA, 2FA, etc.)
- 3. Shared boundary protection (perimeter)
- 4. Malware can traverse laterally from 1 to 2

Comparison to Zero Trust with No Perimeter

- 1. Entity 1 and 2 can share freely (bidirectional)
- 2. No mutual authentication (no 1FA, 2FA, etc.)
- 3. Shared boundary protection (perimeter)
- 4. Malware can traverse from 1 to 2 freely

- 1. Entity 1 and 2 will only share if necessary
- 2. Mutual authentication (1FA, 2FA, etc.)
- 3. Local boundary protections (no perimeter)
- 4. Malware cannot traverse from 1 to 2 freely

Components of Zero Trust Network Access (ZTNA)

What are the Dimensions of Modern Data Protection?

Dimensions of Modern Enterprise Data Protection

• Data Discovery – "Where is my data located (including cloud and SaaS)?"

Dimensions of Modern Enterprise Data Protection

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"
- Data Access Control "Who should be allowed to access what data under which conditions?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"
- Data Access Control "Who should be allowed to access what data under which conditions?"
- Data Encryption "What encryption lifecycle processes should be in place to protect my data?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"
- Data Access Control "Who should be allowed to access what data under which conditions?"
- Data Encryption "What encryption lifecycle processes should be in place to protect my data?"
- Data Governance "How should the overall data management lifecycle process be governed?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"
- Data Access Control "Who should be allowed to access what data under which conditions?"
- Data Encryption "What encryption lifecycle processes should be in place to protect my data?"
- Data Governance "How should the overall data management lifecycle process be governed?"
- Data Privacy "What privacy rights to data owners have and how are they enforced?"

- Data Discovery "Where is my data located (including cloud and SaaS)?"
- Data Inventory "Do I have an accurate catalog of my data including relevant metadata?"
- Data Lakes "Have I created large data lakes (likely in cloud) and how are they protected?"
- Data Classification "What is the sensitivity of my data and how should it be marked?"
- Data Access Control "Who should be allowed to access what data under which conditions?"
- Data Encryption "What encryption lifecycle processes should be in place to protect my data?"
- Data Governance "How should the overall data management lifecycle process be governed?"
- Data Privacy "What privacy rights to data owners have and how are they enforced?"
- Data Leakage Prevention "How do I make sure my data doesn't leak to unauthorized users?"

- DLP is an enterprise cyber security control designed to prevent sensitive data from leaking out to unauthorized individuals or groups
 - Often referenced as data leakage prevention, data leakage protection, and data loss prevention (all roughly synonymous)

- DLP is an enterprise cyber security control designed to prevent sensitive data from leaking out to unauthorized individuals or groups
 - Often referenced as data leakage prevention, data leakage protection, and data loss prevention (all roughly synonymous)
- DLP controls address two primary enterprise use-cases
 - Deliberate and malicious actions by an adversary to intentionally leak data outside a protected enclave
 - Accidental and non-malicious mistaken action where data is inadvertently shared with unauthorized entities

- DLP is an enterprise cyber security control designed to prevent sensitive data from leaking out to unauthorized individuals or groups
 - Often referenced as data leakage prevention, data leakage protection, and data loss prevention (all roughly synonymous)
- DLP controls address two primary enterprise use-cases
 - Deliberate and malicious actions by an adversary to intentionally leak data outside a protected enclave
 - Accidental and non-malicious mistaken action where data is inadvertently shared with unauthorized entities
- DLP tools and platforms typically include many types of functional methods
 - Data classification, content inspection, contextual analysis, incident response, and real-time mitigation

Step 1: Internal actor classifies and explicitly marks internal data

Original DLP Methodology

Step 1: Internal actor classifies and explicitly marks internal data

Process is prone to error and poor judgment

Step 1': Internal actor might not classify and explicitly mark some internal data

Step 1: Internal actor classifies and explicitly marks internal data

Step 1': Internal actor might not classify and explicitly mark some internal data

Traditional DLP Control Points – First Generation

Endpoint DLP Control Point

- USB Control
- Print Control
- Cut-and-Paste

Corporate LAN

Perimeter DLP Control Point

- Traffic Scan
- Policy Rules
- Enforce/Log

Enhanced DLP Control Points – Second Generation

- A Secure Web Gateway (SWG) is a deployed network security system that prevents inbound threats to internal trusted users.
 - Excellent option for perimeter-based networks with gateway chokepoints to and from data centers.

- A Secure Web Gateway (SWG) is a deployed network security system that prevents inbound threats to internal trusted users.
 - Excellent option for perimeter-based networks with gateway chokepoints to and from data centers.
- Typical SWG functions include URL filtering, malicious code protection, and application-level controls for major web applications.
 - Increasingly seeing extension to include DLP and other functions as adversary threats have intensified.

- A Secure Web Gateway (SWG) is a deployed network security system that prevents inbound threats to internal trusted users.
 - Excellent option for perimeter-based networks with gateway chokepoints to and from data centers.
- Typical SWG functions include URL filtering, malicious code protection, and application-level controls for major web applications.
 - Increasingly seeing extension to include DLP and other functions as adversary threats have intensified.
- SWGs include many modes of deployed operation such as advisory, discretionary, and mandatory control implementation.
 - SWG control of access to inappropriate content and improper sites complicates the security mission.

Understanding Proxy Operations

Protects Users from Malicious Content Access (Inbound to Users)

week 12

Understanding Proxy Operations

Protects Users from Malicious Content Access (Inbound to Users)

Protects Servers from Malicious Content Access (Inbound to Servers)

meek 22

Preventing Data Exfiltration with Reverse Proxy

Week 12

Preventing Data Exfiltration with Reverse Proxy

Preventing Data Exfiltration with Reverse Proxy

Enterprise Traffic Inspection – First Generation

- Traffic is mostly non-encrypted
- Traffic is mostly web-based
- Proxy inspection is straightforward

Requirements for First-Generation SWG in context of Perimeter Architecture

Enterprise Traffic Inspection – Next Generation

- Traffic is mostly encrypted
- Traffic is >70% cloud-based
- Proxy inspection is more complex

Requirements for Next-Generation SWG in context of SASE Architecture

What is a Secure Email Gateway (SEG)?

MeekJ

Understanding Secure Email Gateway (SEG)

- Email remains important in business
- SEGs filter attachments for malware
- Reduces SPAM, phishing, and viruses

Requirements for Next-Generation SEG in context of SASE Architecture

Fact: Too Many Malicious Emails Make it Through Commercial SEGs