24/11/21 Given two cluster, Privide there Ports into 2 cluster using k-means algo? Sol step 13- select randomly two Privils. $M_2 = 12$ M1= 4 3 Kg= {10,11,12,20,25,30} $K_1 = \{2, 3, 4, \dots \}$ $X = \{ 2,3,4,10,11,12,20,25,30 \}$ Step 23- We calculate controld for each cluster $C_1 = 2+3+4 = 3, C_2 = |0+1|+|1+20+25+30$ $C_2 = \frac{108}{6} = 18$

Step?:- afain from the clush using control (3, 19) k, k_2 K_{12} $\{2, 3, 4, 10\}$ K_{2} : $\{11,12,20,25,30\}$ $\times = \{2, 3, 4, 10, 11, 12, 20, 21, 30\}$ Step4: - again me calante controid $C_1 = 2 + 3 + 4 + 10 = 4.75 \% 5$ C_{2} 11+12+20+25+30 = 19.6 \(\frac{1}{2} \) 20 new centrial (5,20) $K_{12} = \{2, 3, 4, 10, 11, 12\}$ K2 2 {20, 25, 30 }

agrin Certiód $C_1 = 2+3+4+10+11+12 = 7$ C_{2}^{2} $\frac{20+25+30}{7} = 25$ nev centroid 2 (7, 25) $K_1 = \{2,3,4,10,11,12\}$ K2, \\ 20,25,30 X = {2,3,4,10,11,12,20,26,75} agein calculate centred C122+3+4+10+11+1227 C22 20+25+30 2 25

Now new combide is (7,25) which is
some of Berions combooid

The final cluster data prints and K1 (25,20,30) (23,3,4,10, 11,12)

epr	Heigh (H)	Weight (V)	
	185	72	
	170	56	
<u>E2</u>	168	60	
0 4	179	(f	
	[92	72	
T.	188	77	
V7	180	71	
12 B	180	70	
15	187	8 4	
10	187	88	
711	180	67	
R12	170	76	

Minds the given sample date into two cluster using K-means algo and Euclidean destance?

Soll Euclidean = (x+ c1)2+(xw-c2)2 distance My, Mw. Observed value (Dataset) C1, C2: Centroid value Select two random points Stp L3-(centroid 72 (165, 72) R₁° 185 56 (170, 56) R2° 170 $K_1 = \begin{cases} k_1 \end{cases}$ < = { </p> W 60 R₃ -> 168 $= \sqrt{(168-185)^2+(60-72)^2}$ $= \sqrt{289 + 144}$ - 20.80

$$|S| = \sqrt{(168-170)^2 + (60-56)^2}$$

$$= \sqrt{4+16}$$

$$= 4.48$$

$$|S| = \sqrt{185,72}$$
Again calcular controld
$$|S| = \sqrt{170+168}, 60+50$$

$$|S| = \sqrt{170+168}, 60+50$$

$$|S| = \sqrt{179}, 60$$

$$|S| = \sqrt{179-185} + (68-72)^2$$

$$|S| = \sqrt{179-169}, 169-58$$

$$K_{1}^{2} \ge R_{1}, R_{4} \ge C_{1}^{2} = \frac{(182+175)}{2}, \frac{72+14}{2}$$
 $K_{2}^{2} \ge R_{2}, R_{3} \ge C_{1}^{2} = (182+70)$
 $C_{2}^{2} = (169, 58)$
 $R_{3}^{2} \ge R_{1}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}, R_{9}, R_{1}^{2}$
 $R_{3}^{2} \ge R_{2}, R_{3}$
 $R_{4}^{2} \ge R_{1}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}, R_{9}, R_{1}^{2}$
 $R_{5}^{2} \ge R_{2}, R_{3}^{2}$
 $R_{7}^{2} \ge R_{1}, R_{4}, R_{5}^{2}, R_{6}, R_{7}, R_{8}, R_{9}, R_{1}^{2}$
 $R_{7}^{2} \ge R_{2}, R_{3}^{2}$
 $R_{7}^{2} \ge R_{2}^{2}$
 R_{7}^{2}

The final cluster data Points on
K ₁₂ S R ₁ , R ₄ , R ₅ , R ₆ , R ₇ , R ₈ , R ₉ , R ₁₀ , R ₁₁ , R ₁₂ ?
1692 { R2, R3}
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
two cluster ung k-mean and Suddidean distance?

Regularization Pice ** ** Pice ** Pice ** Arca Arca $0_0 + 0_1 + 0_2 = 0_0 + 0_1 + 0_2 = 0_0$ h= 00+0,2 (underfithy) (Best fit) (overfitted) 4) Ad 76 overcome overfilled model (1) Reduce the no. of feating manually. (2) use Repulari zation. i) keep ail feature by reduce tee magnitude of Paranet $\theta_0, \theta_1, \theta_2,$

(ii) if feature on very hish. We consider all Equificant feature.