

# FCC PART 15.247 TEST REPORT

For

## Hangzhou Ezviz Network Co., Ltd

Floor 7, Building 1, No. 700, Dongliu Road, Binjiang District, Hangzhou, China

FCC ID: 2ALZF-X3C-8E

Report Type: Product Type:

Original Report Wi-Fi Video Recorder

Test Engineer: Chris Wang

**Report Number:** RKS170417001-00B

**Report Date:** 2017-05-11

Oscar Ye

Reviewed By: RF Leader

**Prepared By:** Bay Area Compliance Laboratories Corp. (Kunshan)

No.248 Chenghu Road, Kunshan, Jiangsu province, China

Oscar. Ye

Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

### TABLE OF CONTENTS

| GENERAL INFORMATION                                    | 4  |
|--------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)     |    |
| OBJECTIVE                                              | 4  |
| RELATED SUBMITTAL(S)/GRANT(S)                          |    |
| TEST METHODOLOGY                                       | 4  |
| TEST FACILITY                                          |    |
| SYSTEM TEST CONFIGURATION                              |    |
| DESCRIPTION OF TEST CONFIGURATION                      |    |
| EQUIPMENT MODIFICATIONS                                |    |
| EUT Exercise Software                                  |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                     |    |
| External I/O Cable                                     |    |
| BLOCK DIAGRAM OF TEST SETUP                            | 9  |
| SUMMARY OF TEST RESULTS                                | 11 |
| TEST EQUIPMENT LIST                                    | 12 |
| FCC§15.247 (i), §1.1310& §2.1091 –RF Exposure          | 13 |
| APPLICABLE STANDARD                                    |    |
| CALCULATED FORMULARY:                                  |    |
| CALCULATED DATA:                                       | 14 |
| FCC §15.203 - ANTENNA REQUIREMENT                      | 15 |
| APPLICABLE STANDARD                                    | 15 |
| ANTENNA CONNECTOR CONSTRUCTION                         | 15 |
| FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS          | 16 |
| APPLICABLE STANDARD                                    | 16 |
| EUT SETUP                                              |    |
| EMI TEST RECEIVER SETUP                                |    |
| TEST PROCEDURE                                         |    |
| TEST RESULTS SUMMARY                                   |    |
| Test Data                                              |    |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS | 20 |
| APPLICABLE STANDARD                                    | 20 |
| EUT Setup                                              |    |
| EMI Test Receiver & Spectrum Analyzer Setup            |    |
| TEST PROCEDURE                                         |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION               |    |
| TEST DATA                                              |    |
| FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH           |    |
| APPLICABLE STANDARD                                    |    |
| TEST PROCEDURE                                         |    |
| Test Data                                              | 41 |

| Bay Area | Compliance | Laboratories | Corp. ( | (Kunshan) |
|----------|------------|--------------|---------|-----------|
|----------|------------|--------------|---------|-----------|

| FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER       | 55 |
|-----------------------------------------------------------|----|
| APPLICABLE STANDARD                                       | 55 |
| TEST PROCEDURE                                            | 55 |
| TEST DATA                                                 | 55 |
| FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE | 57 |
| APPLICABLE STANDARD                                       | 57 |
| TEST PROCEDURE                                            |    |
| Test Data                                                 | 57 |
| FCC §15.247(e) - POWER SPECTRAL DENSITY                   | 66 |
| APPLICABLE STANDARD                                       | 66 |
| TEST PROCEDURE                                            | 66 |
| TEST DATA                                                 | 66 |

### **GENERAL INFORMATION**

### **Product Description for Equipment under Test (EUT)**

| Applicant    | Hangzhou Ezviz Network Co., Ltd  |
|--------------|----------------------------------|
| Tested Model | CS-X3C-8E                        |
| Series Model | CS-X3C-8E/1T,CS-X3C-8E/2T        |
| Product Type | Wi-Fi Video Recorder             |
| Dimension    | 64 mm(L) × 256 mm(W) × 241 mm(H) |
| Power Supply | DC 12.0V from adapter            |

Report No.: RKS170417001-00B

Adapter Information:

Model: MSA-C2000IC12.0-24P-US Input: AC 100-240V, 50/60 Hz, 0.7A MAX

Output: DC 12.0V, 2A

Note: The difference between tested model and series model was explained in the declaration letter.

### **Objective**

This report is prepared on behalf of Hangzhou Ezviz Network Co., Ltd in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

### Related Submittal(s)/Grant(s)

FCC Part15.407 NII and Part15B JBP submissions with FCC ID: 2ALZF-X3C-8E.

### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB558074 D01 DTS Meas Guidance v04.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 79

<sup>\*</sup>All measurement and test data in this report was gathered from production sample serial number: 20170424003. (Assigned by BACL, Kunshan). The EUT was received on 2017-04-24.

### **Measurement Uncertainty**

| Item              |                        | Uncertainty |
|-------------------|------------------------|-------------|
| AC Power Lin      | es Conducted Emissions | 3.19 dB     |
| RF conduc         | ted test with spectrum | 0.9dB       |
| RF Output P       | ower with Power meter  | 0.5dB       |
|                   | 30MHz~1GHz             | 6.11dB      |
| Radiated emission | 1GHz~6GHz              | 4.45dB      |
|                   | 6GHz~18GHz             | 5.23dB      |
| Occu              | pied Bandwidth         | 0.5kHz      |
| Т                 | emperature             | 1.0         |
|                   | Humidity               | 6%          |

Report No.: RKS170417001-00B

### **Test Facility**

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 79

### **SYSTEM TEST CONFIGURATION**

### **Description of Test Configuration**

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 1       | 2412               | 8       | 2447               |
| 2       | 2417               | 9       | 2452               |
| 3       | 2422               | 10      | 2457               |
| 4       | 2427               | 11      | 2462               |
| 5       | 2432               | /       | /                  |
| 6       | 2437               | /       | /                  |
| 7       | 2442               | /       | /                  |

Report No.: RKS170417001-00B

For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11.

For 802.11n-HT40 mode, 7 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 3       | 2422               | 8       | 2447               |
| 4       | 2427               | 9       | 2452               |
| 5       | 2432               | /       | /                  |
| 6       | 2437               | /       | /                  |
| 7       | 2442               | /       | /                  |

EUT was tested with Channel 3, 6 and 9.

### **Equipment Modifications**

No modification was made to the EUT tested.

#### **EUT Exercise Software**

RF test tool: Telnet.

The device was tested with 99.12% duty cycle and the worst case was performed as below:

| Mode         | Data rate | Power level |
|--------------|-----------|-------------|
| 802.11b      | 1 Mbps    | 21          |
| 802.11g      | 6 Mbps    | 18          |
| 802.11n-HT20 | MCS0      | 18          |
| 802.11n-HT40 | MCS0      | 18          |

FCC Part 15.247 Page 6 of 79

### **Duty Cycle:**

802.11b Mode Middle Channel Duty Cycle

Report No.: RKS170417001-00B



802.11g Mode Middle Channel Duty Cycle



Date: 16 M AY 2017 13:41:57

FCC Part 15.247 Page 7 of 79

### 802.11n-HT20 Mode Middle Channel Duty Cycle

Report No.: RKS170417001-00B



Date: 16 M AY .2017 13:44:32

### 802.11n-HT40 Mode Middle Channel Duty Cycle



Date: 16 M AY 2017 13:48:09

FCC Part 15.247 Page 8 of 79

| Duty Cycle (%) | T(us) | 1/T(kHz) | VBW Setting | 10log(1/x) |
|----------------|-------|----------|-------------|------------|
| 99.12          | /     | /        | 10Hz        | 0.04       |
| 90.53          | 2150  | 0.47     | 1kHz        | 0.43       |
| 88.29          | 1960  | 0.51     | 1kHz        | 0.54       |
| 78.79          | 975   | 1.03     | 3kHz        | 1.04       |

### **Support Equipment List and Details**

| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| DELL         | Notebook    | GX620 | D65874152     |

### **External I/O Cable**

Mode 802.11b 802.11g 802.11n-HT20 802.11n-HT40

| Cable Description | Shielding<br>Type | Length<br>(m) | From Port | То  |
|-------------------|-------------------|---------------|-----------|-----|
| RJ45 Cable        | Un-shielding      | 1.0           | Notebook  | EUT |

### **Block Diagram of Test Setup**

For Conducted Emissions:



FCC Part 15.247 Page 9 of 79

For Radiated Emissions (Below 1GHz):



For Radiated Emissions (Above 1GHz):



FCC Part 15.247 Page 10 of 79

### **SUMMARY OF TEST RESULTS**

| FCC Rules                                | Description of Test                      | Result     |
|------------------------------------------|------------------------------------------|------------|
| §15.247 (i), §1.1307 (b) (1)&<br>§2.1091 | RF Exposure                              | Compliance |
| §15.203                                  | Antenna Requirement                      | Compliance |
| §15.207 (a)                              | AC Line Conducted Emissions              | Compliance |
| §15.247(d)                               | Spurious Emissions at Antenna Port       | Compliance |
| §15.205, §15.209,<br>§15.247(d)          | Spurious Emissions                       | Compliance |
| §15.247 (a)(2)                           | 6 dB Emission Bandwidth                  | Compliance |
| §15.247(b)(3)                            | Maximum Conducted Output Power           | Compliance |
| §15.247(d)                               | 100 kHz Bandwidth of Frequency Band Edge | Compliance |
| §15.247(e)                               | Power Spectral Density                   | Compliance |

Report No.: RKS170417001-00B

FCC Part 15.247 Page 11 of 79

### TEST EQUIPMENT LIST

| Manufacturer      | Description               | Model               | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-------------------|---------------------------|---------------------|------------------|---------------------|-------------------------|
|                   | Radi                      | iated Emission Tes  | t                |                     |                         |
| Rohde & Schwarz   | EMI Test Receiver         | ESCI                | 100195           | 2016-11-25          | 2017-11-24              |
| Rohde & Schwarz   | Signal Analyzer           | FSIQ26              | 100048           | 2016-11-25          | 2017-11-24              |
| Sunol Sciences    | Broadband Antenna         | JB3                 | A090314-2        | 2016-01-09          | 2019-01-08              |
| ETS-LINDGREN      | Horn Antenna              | 3115                | 6229             | 2016-01-11          | 2019-01-10              |
| Sonoma Instrunent | Amplifier                 | 330                 | 171377           | 2016-12-12          | 2017-12-11              |
| Narda             | Pre-amplifier             | AFS42-<br>00101800  | 2001270          | 2016-12-12          | 2017-12-11              |
| Rohde & Schwarz   | Auto test Software        | EMC32               | 100361           | /                   | /                       |
| Haojintech        | Coaxial Cable             | Cable-1             | 001              | 2016-12-12          | 2017-12-11              |
| Haojintech        | Coaxial Cable             | Cable-2             | 002              | 2016-12-12          | 2017-12-11              |
| Haojintech        | Coaxial Cable             | Cable-3             | 003              | 2016-12-12          | 2017-12-11              |
| MICRO-COAX        | Coaxial Cable             | Cable-4             | 004              | 2016-12-12          | 2017-12-11              |
| MICRO-COAX        | Coaxial Cable             | Cable-5             | 005              | 2016-12-12          | 2017-12-11              |
|                   | RI                        | F Conducted Test    |                  |                     |                         |
| Rohde & Schwarz   | FSV40 Signal Analyzer     | FSV40               | 101116           | 2016-07-04          | 2017-07-03              |
| EAST              | Regulated DC Power Supply | MCH-303D-II         | 14070562         | /                   | /                       |
| Agilent           | Power Meter               | N1912A              | MY5000492        | 2016-11-18          | 2017-11-17              |
| Agilent           | Power Sensor              | N1921A              | MY54210024       | 2016-11-18          | 2017-11-17              |
| Hangzhou Ezviz    | RF Cable                  | N/A                 | N/A              | 2017-03-09          | 2018-03-08              |
|                   | Cond                      | ucted Emission Te   | st               |                     |                         |
| Rohde & Schwarz   | EMI Test Receiver         | ESCS30              | 834115/007       | 2016-11-25          | 2017-11-24              |
| Rohde & Schwarz   | LISN                      | ESH3-Z5             | 862770/011       | 2016-10-10          | 2017-10-09              |
| Rohde & Schwarz   | LISN                      | ENV216              | 3560655016       | 2016-11-25          | 2017-11-24              |
| Rohde & Schwarz   | CE Test software          | EMC 32              | 100357           | /                   | /                       |
| MICRO-COAX        | Coaxial Cable             | Cable-6             | 006              | 2016-09-08          | 2017-09-07              |
| HP                | Current probe             | 11967A              | 636              | 2016-07-04          | 2017-07-03              |
| FCC ISN           |                           | FCC-TLISN-<br>T8-02 | 20376            | 2016-07-04          | 2017-07-03              |

Report No.: RKS170417001-00B

FCC Part 15.247 Page 12 of 79

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### FCC§15.247 (i), §1.1310& §2.1091 –RF Exposure

### **Applicable Standard**

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RKS170417001-00B

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

|                                                                                                                      | (B) Limits for General Population/Uncontrolled Exposure |        |           |    |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|-----------|----|--|--|--|--|--|--|--|
| Frequency Range Electric Field Magnetic Field Power Density Average (MHz) Strength (V/m) Strength (A/m) (mW/cm²) (mi |                                                         |        |           |    |  |  |  |  |  |  |  |
| 0.3-1.34                                                                                                             | 614                                                     | 1.63   | *(100)    | 30 |  |  |  |  |  |  |  |
| 1.34-30                                                                                                              | 824/f                                                   | 2.19/f | *(180/f²) | 30 |  |  |  |  |  |  |  |
| 30-300                                                                                                               | 27.5                                                    | 0.073  | 0.2       | 30 |  |  |  |  |  |  |  |
| 300-1500                                                                                                             | /                                                       |        | f/1500    | 30 |  |  |  |  |  |  |  |
| 1500-100,000                                                                                                         | /                                                       |        | 1.0       | 30 |  |  |  |  |  |  |  |

f = frequency in MHz; \* = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

### **Calculated Formulary**:

Predication of MPE limit at a given distance

S = PG/4  $R^2 = power density (in appropriate units, e.g. <math>mW/cm^2$ );

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

FCC Part 15.247 Page 13 of 79

### **Calculated Data:**

| Mode             | Frequency<br>Range | Ante  | enna Gain | Target<br>Output<br>Power | Output | Power | Evaluation<br>Distance | Power<br>Density      | MPE<br>Limit          |
|------------------|--------------------|-------|-----------|---------------------------|--------|-------|------------------------|-----------------------|-----------------------|
|                  | (MHz)              | (dBi) | (numeric) | (dBm)                     | (dBm)  | (mW)  | (cm)                   | (mW/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| 802.11b          |                    | 3.00  | 2.00      | 13±1                      | 14.00  | 25.12 | 20                     | 0.0100                | 1.0                   |
| 802.11g          | 2412~2462          | 3.00  | 2.00      | 11.5±1                    | 12.50  | 17.78 | 20                     | 0.0071                | 1.0                   |
| 802.11n-<br>HT20 |                    | 3.00  | 2.00      | 14.5±1                    | 15.50  | 35.48 | 20                     | 0.0141                | 1.0                   |
| 802.11n-<br>HT40 | 2422~2452          | 3.00  | 2.00      | 13±1                      | 14.00  | 25.12 | 20                     | 0.0100                | 1.0                   |
| 802.11a          |                    | 3.00  | 2.00      | 14±1                      | 15.00  | 31.62 | 20                     | 0.0126                | 1.0                   |
| 802.11n-<br>HT20 |                    | 3.00  | 2.00      | 17.5±0.5                  | 18.00  | 63.10 | 20                     | 0.0250                | 1.0                   |
| 802.11n-<br>HT40 | 5150~5250          | 3.00  | 2.00      | 15.5±0.5                  | 16.00  | 39.81 | 20                     | 0.0158                | 1.0                   |
| 802.11ac20       | 3130~3230          | 3.00  | 2.00      | 18±0.5                    | 18.50  | 70.79 | 20                     | 0.0281                | 1.0                   |
| 802.11ac40       |                    | 3.00  | 2.00      | 16±1                      | 17.00  | 50.12 | 20                     | 0.0199                | 1.0                   |
| 802.11ac80       |                    | 3.00  | 2.00      | 14.5±0.5                  | 15.00  | 31.62 | 20                     | 0.0126                | 1.0                   |
| 802.11a          |                    | 3.00  | 2.00      | 14±0.5                    | 14.50  | 28.18 | 20                     | 0.0112                | 1.0                   |
| 802.11n-<br>HT20 |                    | 3.00  | 2.00      | 17.5±0.5                  | 18.00  | 63.10 | 20                     | 0.0250                | 1.0                   |
| 802.11n-<br>HT40 | 5725 5050          | 3.00  | 2.00      | 15.5±1                    | 16.50  | 44.67 | 20                     | 0.0177                | 1.0                   |
| 802.11ac20       | 5725~5850          | 3.00  | 2.00      | 17±1.5                    | 18.50  | 70.79 | 20                     | 0.0281                | 1.0                   |
| 802.11ac40       |                    | 3.00  | 2.00      | 15.5±0.5                  | 16.00  | 39.81 | 20                     | 0.0158                | 1.0                   |
| 802.11ac80       |                    | 3.00  | 2.00      | 14.5±0.5                  | 15.00  | 31.62 | 20                     | 0.0126                | 1.0                   |

Report No.: RKS170417001-00B

#### Note:

- 1. For the above target output power are all declared by the manufacturer.
- 2. The EUT has the 2.4GHz Wi-Fi, 5GHz Wi-Fi functions, they can transmitting simultaneously. According to KDB 447498 D01 General RF Exposure Guidance v06 and test data, 802.11n-HT20 mode for 2.4G Wi-Fi, 802.11ac20 mode 5150-5250 band for 5GHz Wi-Fi is the worst case, their sum of MPE ratio is 0.0422, which is less than 1.0,so the collocation exposure exclusion applies.

**Result:** The device meet FCC MPE at 20 cm distance.

FCC Part 15.247 Page 14 of 79

### FCC §15.203 - ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RKS170417001-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Antenna Connector Construction**

This product used two monopole antennas arrangement for 2.4G Wi-Fi which were connected to the main board with I-PEX socket, each antenna maximum gain is 3.0dBi, which fulfill the requirement of this section, please refer to the EUT photos.

**Result:** Compliance.

FCC Part 15.247 Page 15 of 79

### FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

### **Applicable Standard**

FCC§15.207

### **EUT Setup**



Report No.: RKS170417001-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

#### **Test Procedure**

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 16 of 79

### **Corrected Factor & Margin Calculation**

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RKS170417001-00B

Correction Factor = LISN VDF + Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 24.5      |
|--------------------|-----------|
| Relative Humidity: | 51 %      |
| ATM Pressure:      | 101.2 kPa |

The testing was performed by Chris Wang on 2017-03-09.

EUT operation mode: Transmitting in 802.11b mode high channel of chain 0.(worst case)

FCC Part 15.247 Page 17 of 79

### AC 120V/60 Hz, Line

Report No.: RKS170417001-00B

### Full Spectrum



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dB \mu V) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|--------------------|---------------------|-----------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.150000           |                     | 27.76                 | 9.000              | L1   | 10.1       | 28.24       | 56.00           | Compliance |
| 0.150000           | 52.66               |                       | 9.000              | L1   | 10.1       | 13.34       | 66.00           | Compliance |
| 0.190000           |                     | 19.70                 | 9.000              | L1   | 10.0       | 34.34       | 54.04           | Compliance |
| 0.190000           | 44.69               |                       | 9.000              | L1   | 10.0       | 19.35       | 64.04           | Compliance |
| 0.230000           |                     | 21.14                 | 9.000              | L1   | 10.0       | 31.31       | 52.45           | Compliance |
| 0.230000           | 40.85               |                       | 9.000              | L1   | 10.0       | 21.60       | 62.45           | Compliance |
| 0.300000           |                     | 22.60                 | 9.000              | L1   | 10.0       | 27.64       | 50.24           | Compliance |
| 0.300000           | 37.16               |                       | 9.000              | L1   | 10.0       | 23.08       | 60.24           | Compliance |
| 0.340000           |                     | 17.69                 | 9.000              | L1   | 10.0       | 31.51       | 49.20           | Compliance |
| 0.340000           | 35.78               |                       | 9.000              | L1   | 10.0       | 23.42       | 59.20           | Compliance |
| 0.380000           |                     | 32.42                 | 9.000              | L1   | 10.0       | 15.86       | 48.28           | Compliance |
| 0.380000           | 36.27               |                       | 9.000              | L1   | 10.0       | 22.01       | 58.28           | Compliance |

FCC Part 15.247 Page 18 of 79

### AC 120V/60 Hz, Neutral

Report No.: RKS170417001-00B

### Full Spectrum



| Frequency<br>(MHz) | QuasiPeak<br>(dBμV) | Average<br>(dB µ V) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|--------------------|---------------------|---------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.170000           |                     | 18.98               | 9.000              | N    | 10.1       | 35.98       | 54.96           | Compliance |
| 0.170000           | 45.66               |                     | 9.000              | N    | 10.1       | 19.30       | 64.96           | Compliance |
| 0.200000           |                     | 24.69               | 9.000              | N    | 10.1       | 28.92       | 53.61           | Compliance |
| 0.200000           | 41.69               |                     | 9.000              | N    | 10.1       | 21.92       | 63.61           | Compliance |
| 0.220000           |                     | 21.69               | 9.000              | N    | 10.1       | 31.13       | 52.82           | Compliance |
| 0.220000           | 46.07               |                     | 9.000              | N    | 10.1       | 16.75       | 62.82           | Compliance |
| 0.320000           |                     | 17.21               | 9.000              | N    | 10.1       | 32.50       | 49.71           | Compliance |
| 0.320000           | 36.06               |                     | 9.000              | N    | 10.1       | 23.65       | 59.71           | Compliance |
| 0.360000           |                     | 28.77               | 9.000              | N    | 10.1       | 19.96       | 48.73           | Compliance |
| 0.360000           | 38.48               |                     | 9.000              | N    | 10.1       | 20.25       | 58.73           | Compliance |
| 0.510000           |                     | 14.59               | 9.000              | N    | 10.1       | 31.41       | 46.00           | Compliance |
| 0.510000           | 25.64               |                     | 9.000              | N    | 10.1       | 30.36       | 56.00           | Compliance |

- Corr.=LISN VDF (Voltage Division Factor) + Cable Loss
   Corrected Amplitude = Reading + Corr.
- 3) Margin = Limit –Corrected Amplitude

FCC Part 15.247 Page 19 of 79

### FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

### **Applicable Standard**

FCC §15.247 (d); §15.209; §15.205;

### **EUT Setup**

#### **Below 1 GHz:**



Report No.: RKS170417001-00B

### **Above 1GHz:**



The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 20 of 79

### **EMI Test Receiver & Spectrum Analyzer Setup**

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W | IF B/W  | Detector |
|-------------------|---------|-----------|---------|----------|
| 30 MHz – 1000 MHz | 120 kHz | 300 kHz   | 120 kHz | QP       |

Report No.: RKS170417001-00B

| Frequency Range | RBW  | Video B/W | Duty cycle | Detector |
|-----------------|------|-----------|------------|----------|
|                 | 1MHz | 3 MHz     | Any        | PK       |
| 1GHz – 25GHz    | 1MHz | 10 Hz     | >98%       |          |
|                 | 1MHz | 1/T       | <98%       | Ave.     |

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 21 of 79

### **Test Data**

### **Environmental Conditions**

| Temperature:       | 24.8      |
|--------------------|-----------|
| Relative Humidity: | 51 %      |
| ATM Pressure:      | 101.0 kPa |

The testing was performed by Chris Wang on 2017-05-09.

EUT operation mode: Transmitting(Scan with X-Axis, Y-Axis and Z-Axis position, the worst case was recorded)

Report No.: RKS170417001-00B

### 30MHz-25GHz

802.11b Mode(worst case ):

|                    | Receiver       |                          |                     | Rx An       | tenna          | C                           | Corrected          | FCC 1<br>15.247/2 |                |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|--------------------|-------------------|----------------|
| Frequency<br>(MHz) | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Amplitude (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|                    |                |                          | Low C               | Channel (2  | 412 MH:        | z)                          |                    |                   |                |
| 99.98              | 37.74          | QP                       | 26                  | 221         | Н              | -11.18                      | 26.56              | 43.50             | 16.94          |
| 2412.00            | 112.97         | PK                       | 324                 | 141         | V              | -6.17                       | 106.80             | /                 | /              |
| 2412.00            | 107.15         | Ave                      | 324                 | 141         | V              | -6.17                       | 100.98             | /                 | /              |
| 2412.00            | 107.06         | PK                       | 198                 | 112         | Н              | -6.17                       | 100.89             | /                 | /              |
| 2412.00            | 102.55         | Ave                      | 198                 | 112         | Н              | -6.17                       | 96.38              | /                 | /              |
| 2390.00            | 44.52          | PK                       | 158                 | 162         | Н              | -6.22                       | 38.30              | 74.00             | 35.70          |
| 2390.00            | 31.20          | Ave                      | 158                 | 162         | Н              | -6.22                       | 24.98              | 54.00             | 29.02          |
| 2400.00            | 65.11          | PK                       | 330                 | 142         | V              | -6.19                       | 58.92              | 74.00             | 15.08          |
| 2400.00            | 48.75          | Ave                      | 330                 | 142         | V              | -6.19                       | 42.56              | 54.00             | 11.44          |
| 1535.32            | 45.31          | PK                       | 38                  | 156         | V              | -9.29                       | 36.02              | 74.00             | 37.98          |
| 1535.32            | 31.68          | Ave                      | 38                  | 156         | V              | -9.29                       | 22.39              | 54.00             | 31.61          |
| 4824.00            | 55.36          | PK                       | 335                 | 177         | Н              | 1.66                        | 57.02              | 74.00             | 16.98          |
| 4824.00            | 39.95          | Ave                      | 335                 | 177         | Н              | 1.66                        | 41.61              | 54.00             | 12.39          |
| 7236.00            | 39.06          | PK                       | 28                  | 236         | Н              | 7.58                        | 46.64              | 74.00             | 27.36          |
| 7236.00            | 25.89          | Ave                      | 28                  | 236         | Н              | 7.58                        | 33.47              | 54.00             | 20.53          |

FCC Part 15.247 Page 22 of 79

|                    | R              | leceiver                 |                     | Rx An       | tenna          |                             |                                    | FCC I<br>15.247/2 |                |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|-------------------|----------------|
| Frequency<br>(MHz) | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit (dBµV/m)    | Margin<br>(dB) |
|                    |                |                          | Middle              | Channel (   | 2437 MI        | Hz)                         |                                    |                   |                |
| 99.98              | 37.68          | QP                       | 120                 | 154         | Н              | -11.18                      | 26.50                              | 43.50             | 17.00          |
| 2437.00            | 113.13         | PK                       | 53                  | 220         | V              | -6.11                       | 107.02                             | /                 | /              |
| 2437.00            | 108.00         | Ave                      | 53                  | 220         | V              | -6.11                       | 101.89                             | /                 | /              |
| 2437.00            | 107.79         | PK                       | 350                 | 126         | Н              | -6.11                       | 101.68                             | /                 | /              |
| 2437.00            | 102.48         | Ave                      | 350                 | 126         | Н              | -6.11                       | 96.37                              | /                 | /              |
| 1535.32            | 45.85          | PK                       | 27                  | 141         | V              | -9.29                       | 36.56                              | 74.00             | 37.44          |
| 1535.32            | 32.53          | Ave                      | 27                  | 141         | V              | -9.29                       | 23.24                              | 54.00             | 30.76          |
| 3330.91            | 44.59          | PK                       | 187                 | 236         | Н              | -2.38                       | 42.21                              | 74.00             | 31.79          |
| 3330.91            | 31.55          | Ave                      | 187                 | 236         | Н              | -2.38                       | 29.17                              | 54.00             | 24.83          |
| 4874.00            | 54.92          | PK                       | 217                 | 171         | Н              | 1.77                        | 56.69                              | 74.00             | 17.31          |
| 4874.00            | 39.87          | Ave                      | 217                 | 171         | Н              | 1.77                        | 41.64                              | 54.00             | 12.36          |
| 6679.74            | 43.52          | PK                       | 154                 | 209         | Н              | 6.42                        | 49.94                              | 74.00             | 24.06          |
| 6679.74            | 29.97          | Ave                      | 154                 | 209         | Н              | 6.42                        | 36.39                              | 54.00             | 17.61          |
| 7311.00            | 39.25          | PK                       | 73                  | 164         | Н              | 7.66                        | 46.91                              | 74.00             | 27.09          |
| 7311.00            | 25.56          | Ave                      | 73                  | 164         | Н              | 7.66                        | 33.22                              | 54.00             | 20.78          |
|                    |                |                          | High C              | Channel (2  | 462 MH         | z)                          |                                    |                   |                |
| 99.98              | 37.62          | QP                       | 144                 | 109         | Н              | -11.18                      | 26.44                              | 43.50             | 17.06          |
| 2462.00            | 112.86         | PK                       | 268                 | 227         | V              | -6.06                       | 106.80                             | /                 | /              |
| 2462.00            | 107.95         | Ave                      | 268                 | 227         | V              | -6.06                       | 101.89                             | /                 | /              |
| 2462.00            | 107.81         | PK                       | 25                  | 156         | Н              | -6.06                       | 101.75                             | /                 | /              |
| 2462.00            | 102.59         | Ave                      | 25                  | 156         | Н              | -6.06                       | 96.53                              | /                 | /              |
| 2483.50            | 54.26          | PK                       | 110                 | 229         | V              | -6.01                       | 48.25                              | 74.00             | 25.75          |
| 2483.50            | 45.34          | Ave                      | 110                 | 229         | V              | -6.01                       | 39.33                              | 54.00             | 14.67          |
| 1535.32            | 44.50          | PK                       | 32                  | 249         | V              | -9.29                       | 35.21                              | 74.00             | 38.79          |
| 1535.32            | 32.09          | Ave                      | 32                  | 249         | V              | -9.29                       | 22.80                              | 54.00             | 31.20          |
| 4924.00            | 50.54          | PK                       | 224                 | 101         | V              | 1.89                        | 52.43                              | 74.00             | 21.57          |
| 4924.00            | 35.72          | Ave                      | 224                 | 101         | V              | 1.89                        | 37.61                              | 54.00             | 16.39          |
| 6679.74            | 42.87          | PK                       | 310                 | 103         | V              | 6.42                        | 49.29                              | 74.00             | 24.71          |
| 6679.74            | 29.57          | Ave                      | 310                 | 103         | V              | 6.42                        | 35.99                              | 54.00             | 18.01          |
| 7386.00            | 43.94          | PK                       | 122                 | 232         | Н              | 7.73                        | 51.67                              | 74.00             | 22.33          |
| 7386.00            | 29.76          | Ave                      | 122                 | 232         | Н              | 7.73                        | 37.49                              | 54.00             | 16.51          |

FCC Part 15.247 Page 23 of 79

802.11g Mode(worst case):

| Frequency<br>(MHz) | Receiver       |                          |                     | Rx Antenna  |                |                             |                                    | FCC Part<br>15.247/205/209 |             |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|-------------|
|                    | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit (dBµV/m)             | Margin (dB) |
|                    |                | <u>I</u>                 | Low C               | hannel (2   |                |                             |                                    |                            |             |
| 99.98              | 37.78          | QP                       | 350                 | 173         | Н              | -11.18                      | 26.60                              | 43.50                      | 16.90       |
| 2412.00            | 108.95         | PK                       | 301                 | 105         | V              | -6.17                       | 102.78                             | /                          | /           |
| 2412.00            | 100.46         | Ave                      | 301                 | 105         | V              | -6.17                       | 94.29                              | /                          | /           |
| 2412.00            | 102.40         | PK                       | 333                 | 244         | Н              | -6.17                       | 96.23                              | /                          | /           |
| 2412.00            | 93.57          | Ave                      | 333                 | 244         | Н              | -6.17                       | 87.40                              | /                          | /           |
| 2390.00            | 60.85          | PK                       | 7                   | 145         | V              | -6.22                       | 54.63                              | 74.00                      | 19.37       |
| 2390.00            | 51.83          | Ave                      | 7                   | 145         | V              | -6.22                       | 45.61                              | 54.00                      | 8.39        |
| 2400.00            | 66.39          | PK                       | 354                 | 190         | V              | -6.19                       | 60.20                              | 74.00                      | 13.80       |
| 2400.00            | 53.64          | Ave                      | 354                 | 190         | V              | -6.19                       | 47.45                              | 54.00                      | 6.55        |
| 1476.95            | 44.43          | PK                       | 224                 | 211         | V              | -9.60                       | 34.83                              | 74.00                      | 39.17       |
| 1476.95            | 31.60          | Ave                      | 224                 | 211         | V              | -9.60                       | 22.00                              | 54.00                      | 32.00       |
| 4824.00            | 44.04          | PK                       | 227                 | 169         | V              | 1.66                        | 45.70                              | 74.00                      | 28.30       |
| 4824.00            | 31.08          | Ave                      | 227                 | 169         | V              | 1.66                        | 32.74                              | 54.00                      | 21.26       |
| 7236.00            | 39.32          | PK                       | 190                 | 169         | V              | 7.58                        | 46.90                              | 74.00                      | 27.10       |
| 7236.00            | 25.92          | Ave                      | 190                 | 169         | V              | 7.58                        | 33.50                              | 54.00                      | 20.50       |
|                    |                |                          | Middle              | Channel (   | 2437 MI        | Hz)                         |                                    |                            | <u> </u>    |
| 99.98              | 37.69          | QP                       | 203                 | 155         | Н              | -11.18                      | 26.51                              | 43.50                      | 16.99       |
| 2437.00            | 109.26         | PK                       | 224                 | 166         | V              | -6.11                       | 103.15                             | /                          | /           |
| 2437.00            | 101.14         | Ave                      | 224                 | 166         | V              | -6.11                       | 95.03                              | /                          | /           |
| 2437.00            | 102.58         | PK                       | 251                 | 230         | Н              | -6.11                       | 96.47                              | /                          | /           |
| 2437.00            | 94.15          | Ave                      | 251                 | 230         | Н              | -6.11                       | 88.04                              | /                          | /           |
| 1476.95            | 44.25          | PK                       | 115                 | 112         | V              | -9.60                       | 34.65                              | 74.00                      | 39.35       |
| 1476.95            | 31.74          | Ave                      | 115                 | 112         | V              | -9.60                       | 22.14                              | 54.00                      | 31.86       |
| 3327.03            | 43.40          | PK                       | 342                 | 152         | Н              | -2.39                       | 41.01                              | 74.00                      | 32.99       |
| 3327.03            | 30.21          | Ave                      | 342                 | 152         | Н              | -2.39                       | 27.82                              | 54.00                      | 26.18       |
| 4874.00            | 44.45          | PK                       | 266                 | 175         | Н              | 1.77                        | 46.22                              | 74.00                      | 27.78       |
| 4874.00            | 32.37          | Ave                      | 266                 | 175         | Н              | 1.77                        | 34.14                              | 54.00                      | 19.86       |
| 6300.98            | 42.31          | PK                       | 290                 | 122         | V              | 5.18                        | 47.49                              | 74.00                      | 26.51       |
| 6300.98            | 29.26          | Ave                      | 290                 | 122         | V              | 5.18                        | 34.44                              | 54.00                      | 19.56       |
| 7311.00            | 39.15          | PK                       | 250                 | 175         | Н              | 7.66                        | 46.81                              | 74.00                      | 27.19       |
| 7311.00            | 25.40          | Ave                      | 250                 | 175         | Н              | 7.66                        | 33.06                              | 54.00                      | 20.94       |

FCC Part 15.247 Page 24 of 79

| Frequency<br>(MHz) | Receiver       |                          |                     | Rx Antenna  |                |                             |                                    | FCC Part<br>15.247/205/209 |                |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|----------------|
|                    | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m)          | Margin<br>(dB) |
|                    | 1              | I.                       | High C              | Channel (2  | 462 MH         | z)                          |                                    | II.                        |                |
| 99.98              | 37.65          | QP                       | 301                 | 117         | Н              | -11.18                      | 26.47                              | 43.50                      | 17.03          |
| 2462.00            | 108.79         | PK                       | 313                 | 200         | V              | -6.06                       | 102.73                             | /                          | /              |
| 2462.00            | 100.96         | Ave                      | 313                 | 200         | V              | -6.06                       | 94.90                              | /                          | /              |
| 2462.00            | 102.46         | PK                       | 278                 | 117         | Н              | -6.06                       | 96.40                              | /                          | /              |
| 2462.00            | 95.17          | Ave                      | 278                 | 117         | Н              | -6.06                       | 89.11                              | /                          | /              |
| 2483.50            | 64.91          | PK                       | 217                 | 143         | V              | -6.01                       | 58.90                              | 74.00                      | 15.10          |
| 2483.50            | 50.10          | Ave                      | 217                 | 143         | V              | -6.01                       | 44.09                              | 54.00                      | 9.91           |
| 1476.95            | 44.67          | PK                       | 351                 | 107         | V              | -9.60                       | 35.07                              | 74.00                      | 38.93          |
| 1476.95            | 31.88          | Ave                      | 351                 | 107         | V              | -9.60                       | 22.28                              | 54.00                      | 31.72          |
| 4924.00            | 45.22          | PK                       | 224                 | 243         | V              | 1.89                        | 47.11                              | 74.00                      | 26.89          |
| 4924.00            | 31.48          | Ave                      | 224                 | 243         | V              | 1.89                        | 33.37                              | 54.00                      | 20.63          |
| 6300.98            | 42.34          | PK                       | 345                 | 187         | V              | 5.18                        | 47.52                              | 74.00                      | 26.48          |
| 6300.98            | 29.26          | Ave                      | 345                 | 187         | V              | 5.18                        | 34.44                              | 54.00                      | 19.56          |
| 7386.00            | 38.73          | PK                       | 124                 | 146         | Н              | 7.73                        | 46.46                              | 74.00                      | 27.54          |
| 7386.00            | 25.26          | Ave                      | 124                 | 146         | Н              | 7.73                        | 32.99                              | 54.00                      | 21.01          |

 $802.11n ext{-}HT20\ Mode(Chain0+Chain1):$ 

| Frequency<br>(MHz) | Receiver       |                          |                     | Rx Antenna  |                |                             |                                    | FCC Part<br>15.247/205/209 |             |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|-------------|
|                    | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit (dBµV/m)             | Margin (dB) |
|                    |                |                          | Low C               | Channel (2  | 412 MH         | z)                          |                                    |                            |             |
| 99.98              | 37.82          | QP                       | 240                 | 111         | Н              | -11.18                      | 26.64                              | 43.50                      | 16.86       |
| 2412.00            | 107.18         | PK                       | 146                 | 169         | V              | -6.17                       | 101.01                             | /                          | /           |
| 2412.00            | 99.84          | Ave                      | 146                 | 169         | V              | -6.17                       | 93.67                              | /                          | /           |
| 2412.00            | 101.56         | PK                       | 186                 | 201         | Н              | -6.17                       | 95.39                              | /                          | /           |
| 2412.00            | 93.18          | Ave                      | 186                 | 201         | Н              | -6.17                       | 87.01                              | /                          | /           |
| 2390.00            | 65.51          | PK                       | 251                 | 141         | Н              | -6.22                       | 59.29                              | 74.00                      | 14.71       |
| 2390.00            | 51.44          | Ave                      | 251                 | 141         | Н              | -6.22                       | 45.22                              | 54.00                      | 8.78        |
| 2400.00            | 67.05          | PK                       | 191                 | 210         | V              | -6.19                       | 60.86                              | 74.00                      | 13.14       |
| 2400.00            | 53.46          | Ave                      | 191                 | 210         | V              | -6.19                       | 47.27                              | 54.00                      | 6.73        |
| 1120.59            | 44.43          | PK                       | 128                 | 136         | Н              | -11.73                      | 32.70                              | 74.00                      | 41.30       |
| 1120.59            | 31.11          | Ave                      | 128                 | 136         | Н              | -11.73                      | 19.38                              | 54.00                      | 34.62       |
| 4824.00            | 44.47          | PK                       | 68                  | 210         | V              | 1.66                        | 46.13                              | 74.00                      | 27.87       |
| 4824.00            | 31.12          | Ave                      | 68                  | 210         | V              | 1.66                        | 32.78                              | 54.00                      | 21.22       |
| 7236.00            | 38.97          | PK                       | 61                  | 161         | Н              | 7.58                        | 46.55                              | 74.00                      | 27.45       |
| 7236.00            | 25.58          | Ave                      | 61                  | 161         | Н              | 7.58                        | 33.16                              | 54.00                      | 20.84       |

FCC Part 15.247 Page 25 of 79

|                           | Receiver       |                          |                     | Rx An       | tenna          |                             |                                    | FCC Part<br>15.247/205/209 |             |
|---------------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|-------------|
| Frequency<br>(MHz)        | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit (dBµV/m)             | Margin (dB) |
| Middle Channel (2437 MHz) |                |                          |                     |             |                |                             |                                    |                            |             |
| 99.98                     | 37.79          | QP                       | 98                  | 108         | Н              | -11.18                      | 26.61                              | 43.50                      | 16.89       |
| 2437.00                   | 107.14         | PK                       | 61                  | 212         | V              | -6.11                       | 101.03                             | /                          | /           |
| 2437.00                   | 99.88          | Ave                      | 61                  | 212         | V              | -6.11                       | 93.77                              | /                          | /           |
| 2437.00                   | 101.49         | PK                       | 9                   | 193         | Н              | -6.11                       | 95.38                              | /                          | /           |
| 2437.00                   | 93.27          | Ave                      | 9                   | 193         | Н              | -6.11                       | 87.16                              | /                          | /           |
| 1120.59                   | 44.48          | PK                       | 289                 | 246         | Н              | -11.73                      | 32.75                              | 74.00                      | 41.25       |
| 1120.59                   | 31.79          | Ave                      | 289                 | 246         | Н              | -11.73                      | 20.06                              | 54.00                      | 33.94       |
| 3327.03                   | 43.47          | PK                       | 137                 | 113         | V              | -2.39                       | 41.08                              | 74.00                      | 32.92       |
| 3327.03                   | 31.08          | Ave                      | 137                 | 113         | V              | -2.39                       | 28.69                              | 54.00                      | 25.31       |
| 4874.00                   | 44.30          | PK                       | 85                  | 154         | V              | 1.77                        | 46.07                              | 74.00                      | 27.93       |
| 4874.00                   | 32.14          | Ave                      | 85                  | 154         | V              | 1.77                        | 33.91                              | 54.00                      | 20.09       |
| 6300.98                   | 42.26          | PK                       | 316                 | 218         | V              | 5.18                        | 47.44                              | 74.00                      | 26.56       |
| 6300.98                   | 28.94          | Ave                      | 316                 | 218         | V              | 5.18                        | 34.12                              | 54.00                      | 19.88       |
| 7311.00                   | 38.87          | PK                       | 49                  | 226         | Н              | 7.66                        | 46.53                              | 74.00                      | 27.47       |
| 7311.00                   | 25.58          | Ave                      | 49                  | 226         | Н              | 7.66                        | 33.24                              | 54.00                      | 20.76       |
|                           |                |                          | High C              | Channel (2  | 462 MH         | z)                          |                                    |                            |             |
| 99.98                     | 37.64          | QP                       | 89                  | 163         | Н              | -11.18                      | 26.46                              | 43.50                      | 17.04       |
| 2462.00                   | 107.44         | PK                       | 110                 | 194         | V              | -6.06                       | 101.38                             | /                          | /           |
| 2462.00                   | 98.63          | Ave                      | 110                 | 194         | V              | -6.06                       | 92.57                              | /                          | /           |
| 2462.00                   | 102.24         | PK                       | 159                 | 109         | Н              | -6.06                       | 96.18                              | /                          | /           |
| 2462.00                   | 93.17          | Ave                      | 159                 | 109         | Н              | -6.06                       | 87.11                              | /                          | /           |
| 2483.50                   | 67.09          | PK                       | 164                 | 101         | V              | -6.01                       | 61.08                              | 74.00                      | 12.92       |
| 2483.50                   | 50.25          | Ave                      | 164                 | 101         | V              | -6.01                       | 44.24                              | 54.00                      | 9.76        |
| 1120.59                   | 44.15          | PK                       | 238                 | 210         | Н              | -11.73                      | 32.42                              | 74.00                      | 41.58       |
| 1120.59                   | 31.91          | Ave                      | 238                 | 210         | Н              | -11.73                      | 20.18                              | 54.00                      | 33.82       |
| 4924.00                   | 45.42          | PK                       | 109                 | 231         | V              | 1.89                        | 47.31                              | 74.00                      | 26.69       |
| 4924.00                   | 31.26          | Ave                      | 109                 | 231         | V              | 1.89                        | 33.15                              | 54.00                      | 20.85       |
| 6300.98                   | 43.64          | PK                       | 346                 | 140         | V              | 5.18                        | 48.82                              | 74.00                      | 25.18       |
| 6300.98                   | 28.79          | Ave                      | 346                 | 140         | V              | 5.18                        | 33.97                              | 54.00                      | 20.03       |
| 7386.00                   | 38.38          | PK                       | 244                 | 237         | Н              | 7.73                        | 46.11                              | 74.00                      | 27.89       |
| 7386.00                   | 25.35          | Ave                      | 244                 | 237         | Н              | 7.73                        | 33.08                              | 54.00                      | 20.92       |

FCC Part 15.247 Page 26 of 79

 $802.11 n\hbox{-}HT40\ Mode (Chain 0+Chain 1):$ 

|                        | Receiver       |                          |                     | Rx An       | tenna          |                             |                                    | FCC Part<br>15.247/205/209 |             |
|------------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|-------------|
| Frequency<br>(MHz)     | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit (dBµV/m)             | Margin (dB) |
| Low Channel (2422 MHz) |                |                          |                     |             |                |                             |                                    |                            |             |
| 99.98                  | 37.80          | QP                       | 115                 | 132         | Н              | -11.18                      | 26.62                              | 43.50                      | 16.88       |
| 2422.00                | 106.75         | PK                       | 323                 | 208         | V              | -6.14                       | 100.61                             | /                          | /           |
| 2422.00                | 95.57          | Ave                      | 323                 | 208         | V              | -6.14                       | 89.43                              | /                          | /           |
| 2422.00                | 98.76          | PK                       | 61                  | 243         | Н              | -6.14                       | 92.62                              | /                          | /           |
| 2422.00                | 86.25          | Ave                      | 61                  | 243         | Н              | -6.14                       | 80.11                              | /                          | /           |
| 2390.00                | 58.05          | PK                       | 221                 | 120         | Н              | -6.22                       | 51.83                              | 74.00                      | 22.17       |
| 2390.00                | 40.24          | Ave                      | 221                 | 120         | Н              | -6.22                       | 34.02                              | 54.00                      | 19.98       |
| 2400.00                | 59.99          | PK                       | 272                 | 108         | V              | -6.19                       | 53.80                              | 74.00                      | 20.20       |
| 2400.00                | 44.64          | Ave                      | 272                 | 108         | V              | -6.19                       | 38.45                              | 54.00                      | 15.55       |
| 1142.54                | 44.30          | PK                       | 37                  | 183         | Н              | -11.60                      | 32.70                              | 74.00                      | 41.30       |
| 1142.54                | 31.02          | Ave                      | 37                  | 183         | Н              | -11.60                      | 19.42                              | 54.00                      | 34.58       |
| 4844.00                | 44.16          | PK                       | 220                 | 161         | Н              | 1.70                        | 45.86                              | 74.00                      | 28.14       |
| 4844.00                | 30.54          | Ave                      | 220                 | 161         | Н              | 1.70                        | 32.24                              | 54.00                      | 21.76       |
| 7266.00                | 38.37          | PK                       | 30                  | 228         | Н              | 7.61                        | 45.98                              | 74.00                      | 28.02       |
| 7266.00                | 25.40          | Ave                      | 30                  | 228         | Н              | 7.61                        | 33.01                              | 54.00                      | 20.99       |
|                        |                |                          | Middle              | Channel (   | 2437 MI        | Hz)                         | -                                  |                            |             |
| 99.98                  | 37.75          | QP                       | 188                 | 104         | Н              | -11.18                      | 26.57                              | 43.50                      | 16.93       |
| 2437.00                | 106.19         | PK                       | 347                 | 154         | V              | -6.11                       | 100.08                             | /                          | /           |
| 2437.00                | 95.59          | Ave                      | 347                 | 154         | V              | -6.11                       | 89.48                              | /                          | /           |
| 2437.00                | 98.48          | PK                       | 263                 | 107         | Н              | -6.11                       | 92.37                              | /                          | /           |
| 2437.00                | 86.02          | Ave                      | 263                 | 107         | Н              | -6.11                       | 79.91                              | /                          | /           |
| 1142.54                | 44.46          | PK                       | 290                 | 213         | V              | -11.60                      | 32.86                              | 74.00                      | 41.14       |
| 1142.54                | 32.05          | Ave                      | 290                 | 213         | V              | -11.60                      | 20.45                              | 54.00                      | 33.55       |
| 3341.06                | 44.80          | PK                       | 203                 | 211         | Н              | -2.35                       | 42.45                              | 74.00                      | 31.55       |
| 3341.06                | 30.94          | Ave                      | 203                 | 211         | Н              | -2.35                       | 28.59                              | 54.00                      | 25.41       |
| 4874.00                | 43.10          | PK                       | 330                 | 111         | Н              | 1.77                        | 44.87                              | 74.00                      | 29.13       |
| 4874.00                | 31.15          | Ave                      | 330                 | 111         | Н              | 1.77                        | 32.92                              | 54.00                      | 21.08       |
| 6679.74                | 42.76          | PK                       | 348                 | 104         | V              | 6.42                        | 49.18                              | 74.00                      | 24.82       |
| 6679.74                | 29.58          | Ave                      | 348                 | 104         | V              | 6.42                        | 36.00                              | 54.00                      | 18.00       |
| 7311.00                | 38.15          | PK                       | 271                 | 111         | Н              | 7.66                        | 45.81                              | 74.00                      | 28.19       |
| 7311.00                | 25.24          | Ave                      | 271                 | 111         | Н              | 7.66                        | 32.90                              | 54.00                      | 21.10       |

FCC Part 15.247 Page 27 of 79

| Frequency<br>(MHz) | Receiver       |                          |                     | Rx Antenna  |                |                             |                                    | FCC Part<br>15.247/205/209 |             |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|-----------------------------|------------------------------------|----------------------------|-------------|
|                    | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Corrected<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m)          | Margin (dB) |
|                    |                |                          | High C              | Channel (2  | 452 MH         | z)                          |                                    |                            |             |
| 99.98              | 37.66          | QP                       | 113                 | 164         | Н              | -11.18                      | 26.48                              | 43.50                      | 17.02       |
| 2452.00            | 106.53         | PK                       | 225                 | 149         | V              | -6.08                       | 100.45                             | /                          | /           |
| 2452.00            | 95.51          | Ave                      | 225                 | 149         | V              | -6.08                       | 89.43                              | /                          | /           |
| 2452.00            | 97.81          | PK                       | 6                   | 187         | Н              | -6.08                       | 91.73                              | /                          | /           |
| 2452.00            | 85.91          | Ave                      | 6                   | 187         | Н              | -6.08                       | 79.83                              | /                          | /           |
| 2483.50            | 59.04          | PK                       | 39                  | 189         | V              | -6.01                       | 53.03                              | 74.00                      | 20.97       |
| 2483.50            | 45.28          | Ave                      | 39                  | 189         | V              | -6.01                       | 39.27                              | 54.00                      | 14.73       |
| 1294.59            | 45.18          | PK                       | 186                 | 179         | V              | -10.69                      | 34.49                              | 74.00                      | 39.51       |
| 1294.59            | 31.96          | Ave                      | 186                 | 179         | V              | -10.69                      | 21.27                              | 54.00                      | 32.73       |
| 4904.00            | 42.49          | PK                       | 248                 | 175         | V              | 1.84                        | 44.33                              | 74.00                      | 29.67       |
| 4904.00            | 29.86          | Ave                      | 248                 | 175         | V              | 1.84                        | 31.70                              | 54.00                      | 22.30       |
| 6679.74            | 42.67          | PK                       | 121                 | 195         | Н              | 6.42                        | 49.09                              | 74.00                      | 24.91       |
| 6679.74            | 29.79          | Ave                      | 121                 | 195         | Н              | 6.42                        | 36.21                              | 54.00                      | 17.79       |
| 7356.00            | 38.37          | PK                       | 61                  | 140         | Н              | 7.70                        | 46.07                              | 74.00                      | 27.93       |
| 7356.00            | 25.32          | Ave                      | 61                  | 140         | Н              | 7.70                        | 33.02                              | 54.00                      | 20.98       |

FCC Part 15.247 Page 28 of 79

### **Conducted Spurious Emissions at Antenna Port**

Chain0: 802.11b Low Channel

Report No.: RKS170417001-00B



Chain0: 802.11b Middle Channel



FCC Part 15.247 Page 29 of 79

Chain0: 802.11b High Channel



Date: 9 M AY .2017 13:05:39

Chain0: 802.11g Low Channel



Date: 9 M AY .2017 13:10:37

FCC Part 15.247 Page 30 of 79

Chain0: 802.11g Middle Channel



Date: 9 M AY .2017 13:14:56

Chain0: 802.11g High Channel



Date: 9 M AY .2017 13:18:07

FCC Part 15.247 Page 31 of 79

Chain0: 802.11n-HT20 Low Channel



Date: 9 M AY .2017 13:20:13

Chain0: 802.11n-HT20 Middle Channel



Date: 9 M AY .2017 13:21:41

FCC Part 15.247 Page 32 of 79

Chain0: 802.11n-HT20 High Channel



Date: 9 M AY .2017 13:23:40

Chain0: 802.11n-HT40 Low Channel



Date: 9 M AY 2017 13:26:45

FCC Part 15.247 Page 33 of 79

Chain0: 802.11n-HT40 Middle Channel



Date: 9 M AY 2017 13:28:48

Chain0: 802.11n-HT40 High Channel



Date: 9 M AY .2017 13:31:32

FCC Part 15.247 Page 34 of 79

Chain1: 802.11b Low Channel



Chain1: 802.11b Middle Channel



Date: 9 M AY .2017 13:00:26

FCC Part 15.247 Page 35 of 79

Chain1: 802.11b High Channel



Chain1: 802.11g Low Channel



Date: 9 M AY .2017 13:12:05

FCC Part 15.247 Page 36 of 79

Chain1: 802.11g Middle Channel



Date: 9 M AY 2017 13:15:21

Chain1: 802.11g High Channel



Date: 9 M AY .2017 13:18:39

FCC Part 15.247 Page 37 of 79

Chain1: 802.11n-HT20 Low Channel



Date: 9 M AY .2017 13:20:39

Chain1: 802.11n-HT20 Middle Channel



Date: 9 M AY .2017 13:22:00

FCC Part 15.247 Page 38 of 79

Chain1: 802.11n-HT20 High Channel



Date: 9 M AY .2017 13:24:14

Chain1: 802.11n-HT40 Low Channel



Date: 9 M AY .2017 13:27:33

FCC Part 15.247 Page 39 of 79

Chain1: 802.11n-HT40 Middle Channel



Date: 9 M AY .2017 13:30:39

Chain1: 802.11n-HT40 High Channel



Date: 9 M AY .2017 13:32:43

FCC Part 15.247 Page 40 of 79

# FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

### **Applicable Standard**

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RKS170417001-00B

### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.



### **Test Data**

### **Environmental Conditions**

| Temperature:       | 24.8      |
|--------------------|-----------|
| Relative Humidity: | 51 %      |
| ATM Pressure:      | 101.1 kPa |

The testing was performed by Chris Wang on 2017-04-29.

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.247 Page 41 of 79

EUT operation mode: Transmitting

| Channel           | Frequency         | 6 dB Emissio | Limit  |       |  |  |
|-------------------|-------------------|--------------|--------|-------|--|--|
|                   | (MHz)             | Chain0       | Chain1 | (kHz) |  |  |
|                   |                   | 802.11b mode |        |       |  |  |
| Low               | 2412              | 8.68         | 8.55   | ≥500  |  |  |
| Middle            | 2437              | 8.64         | 8.38   | ≥500  |  |  |
| High              | 2462              | 8.38         | 8.38   | ≥500  |  |  |
|                   |                   | 802.11g mode |        |       |  |  |
| Low               | 2412              | 16.54        | 16.54  | ≥500  |  |  |
| Middle            | 2437              | 16.54        | 16.54  | ≥500  |  |  |
| High              | 2462              | 16.54        | 16.54  | ≥500  |  |  |
|                   | 802.11n-HT20 mode |              |        |       |  |  |
| Low               | 2412              | 17.76        | 17.76  | ≥500  |  |  |
| Middle            | 2437              | 17.76        | 17.76  | ≥500  |  |  |
| High              | 2462              | 17.76        | 17.76  | ≥500  |  |  |
| 802.11n-HT40 mode |                   |              |        |       |  |  |
| Low               | 2422              | 36.38        | 36.38  | ≥500  |  |  |
| Middle            | 2437              | 36.40        | 36.40  | ≥500  |  |  |
| High              | 2452              | 36.47        | 36.47  | ≥500  |  |  |

FCC Part 15.247 Page 42 of 79

Chain0: 802.11b Low Channel



Date: 29 APR 2017 15:31:33

Chain0: 802.11b Middle Channel



Date: 29 APR 2017 15:36:55

FCC Part 15.247 Page 43 of 79

Chain0: 802.11b High Channel



Date: 29 APR 2017 15:40:30

Chain0: 802.11g Low Channel



Date: 29 APR 2017 15:43:43

FCC Part 15.247 Page 44 of 79

Chain0: 802.11g Middle Channel



Date: 29 APR .2017 15:46:16

Chain0: 802.11g High Channel



Date: 29 APR 2017 15:48:41

FCC Part 15.247 Page 45 of 79

Chain0: 802.11n-HT20 Low Channel



Jale: 29 APR 2017 15:50:32

Chain0: 802.11n-HT20 Middle Channel



Date: 29 APR .2017 15:52:57

FCC Part 15.247 Page 46 of 79

Chain0: 802.11n-HT20 High Channel



Date: 29 APR 2017 15:55:32

Chain0: 802.11n-HT40 Low Channel



Date: 29 APR 2017 15:58:25

FCC Part 15.247 Page 47 of 79

Chain0: 802.11n-HT40 Middle Channel



Date: 29 APR 2017 16:00:21

Chain0: 802.11n-HT40 High Channel



Date: 29 APR 2017 16:02:35

FCC Part 15.247 Page 48 of 79

Chain1: 802.11b Low Channel



Date: 29 APR 2017 15:33:29

Chain1: 802.11b Middle Channel



Date: 29 APR 2017 15:38:11

FCC Part 15.247 Page 49 of 79

Chain1: 802.11b High Channel



Date: 29 APR 2017 15:40:57

Chain1: 802.11g Low Channel



Date: 29 APR 2017 15:44:51

FCC Part 15.247 Page 50 of 79

Chain1: 802.11g Middle Channel



Date: 29 APR .2017 15:47:10

Chain1: 802.11g High Channel



Date: 29 APR 2017 15:49:25

FCC Part 15.247 Page 51 of 79

Chain1: 802.11n-HT20 Low Channel



Date: 29 APR 2017 15:51:41

Chain1: 802.11n-HT20 Middle Channel



Date: 29 APR .2017 15:54:32

FCC Part 15.247 Page 52 of 79

Chain1: 802.11n-HT20 High Channel



Date: 29 APR 2017 15:56:17

Chain1: 802.11n-HT40 Low Channel



Date: 29 APR 2017 15:59:10

FCC Part 15.247 Page 53 of 79

Chain1: 802.11n-HT40 Middle Channel



Date: 29 APR 2017 16:00:55

Chain1: 802.11n-HT40 High Channel



Date: 29 APR 2017 16:03:26

FCC Part 15.247 Page 54 of 79

# FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

### **Applicable Standard**

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RKS170417001-00B

### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



#### **Test Data**

### **Environmental Conditions**

| Temperature:       | 24.5      |  |
|--------------------|-----------|--|
| Relative Humidity: | 51 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Chris Wang on 2017-03-15&2017-03-16.

EUT operation mode: Transmitting

FCC Part 15.247 Page 55 of 79

| Test mode        | Channel | Frequency (MHz) | Max Conducted Peak Output Power (dBm) |        |       | Limit (dBm) | Result |
|------------------|---------|-----------------|---------------------------------------|--------|-------|-------------|--------|
|                  |         |                 | Chain0                                | Chain1 | Total | (4211)      |        |
|                  | Low     | 2412            | 17.07                                 | 17.19  | /     | 30          | Pass   |
| 802.11b          | Middle  | 2437            | 16.17                                 | 16.20  | /     | 30          | Pass   |
|                  | High    | 2462            | 17.35                                 | 17.27  | /     | 30          | Pass   |
|                  | Low     | 2412            | 17.23                                 | 17.37  | /     | 30          | Pass   |
| 802.11g          | Middle  | 2437            | 16.32                                 | 16.22  | /     | 30          | Pass   |
|                  | High    | 2462            | 16.19                                 | 16.10  | /     | 30          | Pass   |
| 002.11           | Low     | 2412            | 17.28                                 | 17.29  | 20.30 | 30          | Pass   |
| 802.11n-<br>HT20 | Middle  | 2437            | 16.13                                 | 16.10  | 19.13 | 30          | Pass   |
|                  | High    | 2462            | 16.11                                 | 16.11  | 19.12 | 30          | Pass   |
| 802.11n-<br>HT40 | Low     | 2422            | 16.81                                 | 16.76  | 19.80 | 30          | Pass   |
|                  | Middle  | 2437            | 16.15                                 | 16.24  | 19.21 | 30          | Pass   |
|                  | High    | 2452            | 15.79                                 | 15.81  | 18.81 | 30          | Pass   |

| Test mode        | Channel | Frequency (MHz) | Conducted Average Output Power Reading (dBm) |        |       | Limit<br>(dBm) | Result |
|------------------|---------|-----------------|----------------------------------------------|--------|-------|----------------|--------|
|                  |         |                 | Chain0                                       | Chain1 | Total | (4211)         |        |
|                  | Low     | 2412            | 13.52                                        | 13.66  | /     | 30             | Pass   |
| 802.11b          | Middle  | 2437            | 12.65                                        | 12.70  | /     | 30             | Pass   |
|                  | High    | 2462            | 13.86                                        | 13.76  | /     | 30             | Pass   |
|                  | Low     | 2412            | 12.24                                        | 12.36  | /     | 30             | Pass   |
| 802.11g          | Middle  | 2437            | 11.31                                        | 11.21  | /     | 30             | Pass   |
|                  | High    | 2462            | 11.20                                        | 11.11  | /     | 30             | Pass   |
| 002.11           | Low     | 2412            | 12.29                                        | 12.30  | 15.31 | 30             | Pass   |
| 802.11n-<br>HT20 | Middle  | 2437            | 11.14                                        | 11.10  | 14.13 | 30             | Pass   |
| 11120            | High    | 2462            | 11.10                                        | 11.12  | 14.12 | 30             | Pass   |
| 802.11n-<br>HT40 | Low     | 2422            | 10.82                                        | 10.76  | 13.80 | 30             | Pass   |
|                  | Middle  | 2437            | 10.16                                        | 10.25  | 13.22 | 30             | Pass   |
| 11140            | High    | 2452            | 9.80                                         | 9.81   | 12.82 | 30             | Pass   |

Note: The total output power= $10Log10(10^{(Chain\ 0/10)}+10^{(Chain\ 1/10)})$ 

FCC Part 15.247 Page 56 of 79

# FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RKS170417001-00B

### **Applicable Standard**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

### **Test Data**

### **Environmental Conditions**

| Temperature:       | 24.5      |  |
|--------------------|-----------|--|
| Relative Humidity: | 51 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Chris Wang on 2017-04-29.

**Test Result:** Compliance

FCC Part 15.247 Page 57 of 79

Please refer to the following table and plots.

Chain0: 802.11b Mode Band Edge, Left Side

Report No.: RKS170417001-00B



Date: 29 APR 2017 16:06:40

Chain0: 802.11b Mode Band Edge, Right Side



Date: 29 APR 2017 16:09:33

FCC Part 15.247 Page 58 of 79

Chain0: 802.11g Mode Band Edge, Left Side



Date: 29 APR 2017 16:12:05

Chain0: 802.11g Mode Band Edge, Right Side



Date: 29 APR 2017 16:14:02

FCC Part 15.247 Page 59 of 79

Chain0: 802.11n-HT20 Mode Band Edge, Left Side



Date: 29 APR .2017 16:16:10

Chain0: 802.11n-HT20 Mode Band Edge, Right Side



Date: 29 APR 2017 16:19:01

FCC Part 15.247 Page 60 of 79

Chain0: 802.11n-HT40 Mode Band Edge, Left Side



Date: 29 APR 2017 16:21:12

Chain0: 802.11n-HT40 Mode Band Edge, Right Side



Date: 29 APR 2017 16:23:23

FCC Part 15.247 Page 61 of 79

Chain1: 802.11b Mode Band Edge, Left Side



Date: 29 APR 2017 16:07:57

Chain1: 802.11b Mode Band Edge, Right Side



Date: 29 APR 2017 16:10:44

FCC Part 15.247 Page 62 of 79

Chain1: 802.11g Mode Band Edge, Left Side



Date: 29 APR 2017 16:12:57

Chain1: 802.11g Mode Band Edge, Right Side



Date: 29 APR 2017 16:15:00

FCC Part 15.247 Page 63 of 79

Chain1: 802.11n-HT20 Mode Band Edge, Left Side



Date: 29 APR 2017 16:17:03

Chain1: 802.11n-HT20 Mode Band Edge, Right Side



Date: 29 APR 2017 16:19:40

FCC Part 15.247 Page 64 of 79

Chain1: 802.11n-HT40 Mode Band Edge, Left Side



Date: 29 APR 2017 16:22:01

Chain1: 802.11n-HT40 Mode Band Edge, Right Side



Date: 29 APR 2017 16:23:50

FCC Part 15.247 Page 65 of 79

# FCC §15.247(e) - POWER SPECTRAL DENSITY

### **Applicable Standard**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RKS170417001-00B

#### **Test Procedure**

According to KDB558074 D01 DTS Meas Guidance v04. sub-clause 10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz < RBW < 100 kHz.
- 3. Set the VBW  $\geq$  3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### **Test Data**

### **Environmental Conditions**

| Temperature:       | 24.6      |  |
|--------------------|-----------|--|
| Relative Humidity: | 51 %      |  |
| ATM Pressure:      | 101.1 kPa |  |

The testing was performed by Chris Wang on 2017-04-29.

EUT operation mode: Transmitting

FCC Part 15.247 Page 66 of 79

**Test Result:** Pass

| Channel           | Frequency    |                          | Limit    |        |            |  |  |  |
|-------------------|--------------|--------------------------|----------|--------|------------|--|--|--|
| 0.200             | (MHz)        | (dBm/3kHz) Chain0 Chain1 |          | Total  | (dBm/3kHz) |  |  |  |
|                   | 802.11b mode |                          |          |        |            |  |  |  |
| Low               | 2412         | -11.64                   | -11.51   | /      | 8          |  |  |  |
| Middle            | 2437         | -13.84                   | -13.79   | /      | 8          |  |  |  |
| High              | 2462         | -13.49                   | -13.04   | /      | 8          |  |  |  |
|                   |              | 802.11g                  | g mode   |        |            |  |  |  |
| Low               | 2412         | -17.85                   | -17.81   | /      | 8          |  |  |  |
| Middle            | 2437         | -19.08                   | -19.00   | /      | 8          |  |  |  |
| High              | 2462         | -19.14                   | -19.12   | /      | 8          |  |  |  |
|                   |              | 802.11n-H                | T20 mode |        |            |  |  |  |
| Low               | 2412         | -17.77                   | -17.43   | -14.59 | 8          |  |  |  |
| Middle            | 2437         | -18.83                   | -18.78   | -15.79 | 8          |  |  |  |
| High              | 2462         | -18.80                   | -18.90   | -15.84 | 8          |  |  |  |
| 802.11n-HT40 mode |              |                          |          |        |            |  |  |  |
| Low               | 2422         | -22.24                   | -22.24   | -19.23 | 8          |  |  |  |
| Middle            | 2437         | -22.72                   | -22.66   | -19.68 | 8          |  |  |  |
| High              | 2452         | -22.92                   | -22.87   | -19.88 | 8          |  |  |  |

FCC Part 15.247 Page 67 of 79

Chain0: Power Spectral Density, 802.11b Low Channel



Chain0: Power Spectral Density, 802.11b Middle Channel



Date: 29 APR 2017 16:59:34

FCC Part 15.247 Page 68 of 79

Chain0: Power Spectral Density, 802.11b High Channel



Date: 29 APR 2017 17:00:38

Chain0: Power Spectral Density, 802.11g Low Channel



Date: 29 APR 2017 17:02:02

FCC Part 15.247 Page 69 of 79

Chain0: Power Spectral Density, 802.11g Middle Channel



Date: 29 APR 2017 17:03:25

Chain0: Power Spectral Density, 802.11g High Channel



Date: 29 APR 2017 17:04:17

FCC Part 15.247 Page 70 of 79

Chain0: Power Spectral Density, 802.11n-HT20 Low Channel



Date: 29 APR 2017 17:05:08

Chain0: Power Spectral Density, 802.11n-HT20 Middle Channel



Date: 29 APR .2017 17:06:17

FCC Part 15.247 Page 71 of 79

Chain0: Power Spectral Density, 802.11n-HT20 High Channel



Chain0: Power Spectral Density, 802.11n-HT40 Low Channel



FCC Part 15.247 Page 72 of 79

Chain0: Power Spectral Density, 802.11n-HT40 Middle Channel



Chain0: Power Spectral Density, 802.11n-HT40 High Channel



FCC Part 15.247 Page 73 of 79

Chain1: Power Spectral Density, 802.11b Low Channel



Chain1: Power Spectral Density, 802.11b Middle Channel



Date: 29 APR 2017 17:00:01

FCC Part 15.247 Page 74 of 79

Chain1: Power Spectral Density, 802.11b High Channel



Date: 29 APR 2017 17:01:11

Chain1: Power Spectral Density, 802.11g Low Channel



Date: 29 APR 2017 17:02:47

FCC Part 15.247 Page 75 of 79

Chain1: Power Spectral Density, 802.11g Middle Channel



Date: 29 APR .2017 17:03:45

Chain1: Power Spectral Density, 802.11g High Channel



Date: 29 APR 2017 17:04:33

FCC Part 15.247 Page 76 of 79

Chain1: Power Spectral Density, 802.11n-HT20 Low Channel



Date: 29 APR 2017 17:05:33

Chain1: Power Spectral Density, 802.11n-HT20 Middle Channel



Date: 29 APR .2017 17:06:43

FCC Part 15.247 Page 77 of 79

Chain1: Power Spectral Density, 802.11n-HT20 High Channel





Page 78 of 79 FCC Part 15.247

Chain1: Power Spectral Density, 802.11n-HT40 Middle Channel



Chain1: Power Spectral Density, 802.11n-HT40 High Channel



\*\*\*\*\* END OF REPORT \*\*\*\*\*

FCC Part 15.247 Page 79 of 79