

Evaluation of sample processing protocols for the analysis of pumpkin leaf metabolites

Goals: Compare different extraction and drying protocols to identify the "optimal" sample processing

approach

Topics:

- 1. Data quality overview
- 2. Statistical comparisons
- 3. Power analysis

Data Quality Overview

```
Extraction Treatment

100% MeOH : 6 fresh frozen:18

ACN:IPA:H20 (3:3:2) : 6 lyophilized : 6

MeOH:CHCl3:H20 (5:2:2) :12

Extraction_Treatment

100% MeOH _ fresh frozen : 6

ACN:IPA:H20 (3:3:2) _ fresh frozen : 6

MeOH:CHCl3:H20 (5:2:2) _ fresh frozen:6

MeOH:CHCl3:H20 (5:2:2) _ lyophilized : 6
```

Goal: Calculate and visualize the summary statistics for each metabolite/treatment (Use DATA: Pumpkin data 1.csv)

Calculate:

- 1. Mean and standard deviation (sd)
- 2. The percent relative standard deviation, %RSD, (sd/mean)*100

Visualize:

- 1. The relationship between mean vs. sd, mean and %RSD
- 2. Compare mean metabolite values for all treatments

Exercises:

- 1. Describe the relationship between analyte mean and sd, mean and %RSD?
- 2. Describe what constitutes an "optimal" method?
- 3. Which extraction/treatment should be chosen to process further samples?

Question:

Which metabolite has the largest mean, sd and RSD for the 100% MeOH_fresh frozen extraction method?

	100% MeOH _ fresh frozen mean +/- std dev
zymosterol	78.7 +/- 19
xylose	4280 +/- 340
xylonic.acid	937 +/- 250
valine	16400 +/- 1400
urea	1390 +/- 460
tyrosine	3760 +/- 450
tyramine	7290 +/- 910

Answer:

Which metabolite has the largest mean, sd and RSD for the 100% MeOH_fresh frozen extraction method?

Question:

Is there a relationship between mean and sd, mean and RSD?

	100% MeOH _ fresh frozen mean +/- std dev
zymosterol	78.7 +/- 19
xylose	4280 +/- 340
xylonic.acid	937 +/- 250
valine	16400 +/- 1400
urea	1390 +/- 460
tyrosine	3760 +/- 450
tyramine	7290 +/- 910

Statistics

Answer:

200000

Is there a relationship between mean and sd?

Analytical variance can be used to select optimal workup methods and flag problem analytes.

	100% MeOH _ fresh frozen mean +/- std dev
zymosterol	78.7 +/- 19
xylose	4280 +/- 340
xylonic.acid	937 +/- 250
valine	16400 +/- 1400
urea	1390 +/- 460
tyrosine	3760 +/- 450
tyramine	7290 +/- 910

Question:

Calculate the mean RSD across all analytes for each workup method

- %RSD (also called the coefficient of variation or CV) is the sd (variation) scaled by the mean (magnitude).
- Removes the relationship between variation and magnitude
- Provides a single value which can be used to compare the variation of a measurement among different treatments/samples

Statistics

Biology

Informatics

Chemistry

Answer:

Calculate the mean RSD across all analytes for each workup method

RSD mean +/- sd and median (min, max)

	id mean +/- std dev
RSD.100MeOHfresh.frozen	29.5 +/- 22
RSD. ACN. IPA. H2O3.3.2fresh.frozen	31.1 +/- 33
RSD.MeOH.CHC13.H205.2.2fresh.frozen	29.6 +/- 19
RSD.MeOH.CHCl3.H2O5.2.2lyophilized	35.3 +/- 28
	id-median (min, max)
RSD.100MeOHfresh.frozen	24 (6.9, 120)
RSD. ACN. IPA. H203.3.2fresh.frozen	20 (5.6, 200)
RSD.MeOH.CHCl3.H205.2.2fresh.frozen	24 (5.5, 120)
RSD.MeOH.CHCl3.H2O5.2.2lyophilized	28.5 (9.8, 180)

Selecting the "optimal" method

Optimal can be:

- 1. Lowest average %RSD for all measurements
- 2. Lowest %RSD for measurements of interest
- 3. Largest number of metabolites passing %RSD cutoff
- 4. Lowest average %RSD for all measurements passing %RSD cutoff

Using strategy #4 for metabolites %RSD 40

	Count	%RSD (mean ± sd)
RSD.100MeOHfresh.frozen	113	18.8 +/- 8.4
RSD.ACN.IPA.H203.3.2fresh.frozen	120	17.2 +/- 6.8
RSD.MeOH.CHC13.H205.2.2fresh.frozen	116	19.9 +/- 8.6
RSD.MeOH.CHC13.H205.2.2lyophilized	114	23 +/- 7.6

Method #2 (ACN/IPA/water 3:3:2) looks optimal...

12

Log Mean old log.mean.ACN.IPA.H2O..3.3.2.__fresh.frozen