Security - Networking 2/24/2011 Announcements - Extension for Lab 2 - due Friday - Office hours homorrow a Manday: 1:30-3:30 - Review sheet for midders posted tonight

Coals for today

Networking Concepts:

- retwork topologies
- hubs & switches
- ARP
- Network sniffing: topdump I rest
- Basic Attack: SKN floods

The SYN

Recall: Internet Protocol Suite (TCP/IP)

Application		
Presentation		
Session		
Transport		
Network		
Data Link		
Physical		

Application

Transport

Internet

Link

OSI Model

TCP/IP

Recall: Packets

Determines how an application **Application** should use the network. Handles details of data transmission at the end-points of communication. **Transport** Expresses how packets should be Internet forwarded and how packets should be addressed (also called **Network** Link Layer) TCP/IP

Lowest Level:

Application

Transport

Internet

Physical Physical

TCP/IP

Sometimes divided into Link Layer and Physical Layer.

Link Layer: Provides for synchronization and transfer of information. Defines how physical machines address each other.

Physical Layer: Defines electrical aspects of sending signals along a wire or wirelessly. Also addresses switch and router hardware.

Let's focus our affection: Application · Expresses how packets should be forwarded and how packets should Transport be addressed (also called **Network** Internet Layer) Link TCP/IP

TPV4 Packet

-Divided into 32-bit pieces -Headers (usually) are 5.32 bits long, with data at the end

bit offset	0-3 4-7		8–13	14-15	16-18	19–31
0	Version	Header Length	Differentiated Services Code Point	Explicit Congestion Notification Total Length		Total Length
32		dentification			Flags	Fragment Offset
64	Time to Live Prolocol					Header Checksum
96	Source IP Address					
128	Destination IP Address					
160	Options (if Header Length > 5)					
160						
or	Data					
192+						

Network Layer in IPv4 (cont.)

TP advesses are subdivided, since things must stay unambiguous	Class A	0 net id (7 bit)	host id (24 bit)	
since things must stay	Class B	10 net id (14 bit)	host id	(16 bit)
unambagnolis	Class C	110 net id (21	bit)	host id (8 bit)
	Class D	1110	multicast (28 bit)	
	Class E	11110	future use (27 bit)	

Example:

Consider this address:

10001000 11100101 11001001 0001000

Class? B

What IP address?

136. 229. 205. 8

Total Counts

Class A	0 net id (7 bit)	host id (24 bit)	126 networks, 16 million hosts
Class B	10 net id (14 bit)	host id (16 bit)	16382 networks, 65,534 hosts
Class C	110 net id (21 bit)	host id (8 bit)	2 million networks, 254 hosts
Class D	1110	multicast (28 bit)	designed for multicasting
Class E	11110	future use (27 bit)	reserved for experiments

Conclusion: Out of IP addresses.

TPv4 issnes: Out of Space

- Designed in 1981 (out of date - before PCs)

- Solutions:

• IPv6

• NAT

• Subnetting

MAT: Network Address Translation Protocol

A router Stands between a private network and the outside world.

Maps internal IP addresses to a Single IP address and port which is visible to the outside world.

Pros: Lets you by I IP address.

Cons: Traffic load.

DIPV 6

- Invented in 1998
- Allows 128-bit addresses
- Deployment is very slow

(3) Subnetting There is quite a jump between class B Size and class C size:
	There is quite a jumo between class. P
	Size and class (size:
	Class B 10 net id (14 bit) host id (16 bit) 16382 networks, 65,534 hosts
	Class C 110 net id (21 bit) host id (8 bit) 2 million networks, 254 hosts
	People arab class B. even whom it
	People grab class B, even when it

Every computer will get a subnet mask, eg 255. 255. U255. 0

As well as an IP address:

IP address: 128.96.34.15 10000000.011000000.00100010.00001111 lake the betwise AND of these: 255.255, 255.0 1111111 - [1111111] . 111111/1. 0000000 128.96.34.15 10000000.01100000.000010,00001111 24 25 15 16 Net ID Subnet ID Host ID

These are useful when a large company or institution needs I to subdivide into Smaller networks.

Most will only own I class B address and will divide it up internally.

Note: Subnets need to be nearby for efficient routing!

LAN: Local Area Network

A LAN is a "small interconnection infrastructure that typically uses a shared transmission medium".

From Computer and Communication Networks by N. Mir

Note: A single LAN may contain thousands of machines each separately managed by Switches and routers.

LAN Topologies

Bus Configuration

Star Configuration

Ring Configuration

Bus Configuration

Bus Configuration:

Transmission from user is propagated on the bus in both directions; all users receive the frame.

Ring Configurations

Ring Configuration:

Uses repeaters, depicted as small circles.

Sender forwards frame to repeater. Frame is forwarded by repeaters until it is repeated to destination. Frame is repeated until sender sees it again.

Star Configuration

Star Configuration

Star Configuration:

Center of star is a multi-port hub.

When a frame is received, it is sent to all users in the LAN.

single hus

Note:

None of these have any security built in,

Any (a every) computer may see every packet.

How can we prevent ? network eaves dropping? **Application** Solution lies in link layer Transport Internet Link TCP/IP

Duiding H	e link	layer.
	Application Transport Internet Link	Sometimes the Link Layer is divided further into: Logical Link Layer: Defines how physical machines address each other. Determines the mechanism needed to transmit the frame. Medium Access Control Layer: Provides the mechanism specific to the medium of transmission for synchronization and transfer of information.
	TCP/IP	Physical Layer: Defines electrical aspects of sending signals along a wire or wirelessly. Also addresses switch and router hardware.

The MAC header contains the MAC address of the source & deshnation.

(MAC address & ethernet addresses are interchangable)

Ex: 00-40-33-25-85-BB or 00:40:33:25:85:BB

Application Transport Payload Internet Payload Link Any IP must be translated to MAC address.

Address Resolution Protocol node in the network stores an IP Address Ethernet Address Ixampl 223.1.2.1 08-00-39-00-25-C3 223.1.2.3 08-00-5A-21-A7-22 223.1.2.4 08-00-10-99-AC-54 Example taken from RFC1180 "A TCP/IP Tutorial" by T. Socolofsky and C. Kale. January 1991. On a Linux machine, type:

to view.

(Go through network into in other systems) Output example:

? (10.16.0.1) at 0:0:c:7:ac:0 on en2 [ethernet]

