Exploring SCFTs with Magnetic Quivers

Albert Einstein Institute, Potsdam

Antoine Bourget

IPhT, CEA, Saclay Ecole Normale Supérieure, Paris

May 10, 2022

Based on long time collaboration with G. Arias-Tamargo, M. van Beest, S. Cabrera, S. Giacomelli, J. Grimminger, A. Hanany, R. Kalveks, M. Martone, A. Pini, S. Schäfer-Nameki, M. Sperling, G. Zafrir, Z. Zhong...

Today: mostly [2006.16994],[2110.11365]

Introduction

CFTs: Central role among QFTs:

- They are seeds to explore the landscape of QFTs via RG flow
- They encode aspects of quantum gravity via holography.

Supersymmetry: gives exact analytic control over sectors of a QFT.

In this talk, focus on 8 supercharges (+8 superconformal).

 \rightarrow What is the landscape of SCFTs?

Two approaches:

- "Top-down" explicit construction (Lagrangian, geometric engineering, brane systems, compactifications, ...)
- "Bottom-up" constraints (moduli space geometry, bootstrap, ...)

Superconformal Algebras

Dimension	Susy	Bosonic subalgebra		SCA
d = 6	$\mathcal{N}=(1,0)$	$\mathfrak{so}(6,2)\oplus\mathfrak{su}(2)_H$	\subset	$\mathfrak{osp}(6,2 1)$
d = 5	$\mathcal{N}=1$	$\mathfrak{so}(5,2)\oplus\mathfrak{su}(2)_H$	\subset	f(4)
d = 4	$\mathcal{N}=2$	$\mathfrak{so}(4,2) \oplus \mathfrak{su}(2)_H \oplus \mathfrak{u}(1)_C$	\subset	$\mathfrak{su}(2,2 2)$
d = 3	$\mathcal{N}=4$	$\mathfrak{so}(3,2) \oplus \mathfrak{su}(2)_H \oplus \mathfrak{su}(2)_C$	\subset	$\mathfrak{osp}(4 4)$

SCFTs are

- "Rare" in 6d / 5d isolated, rely on exceptional isomorphisms, non Lagrangian.
- More common in 4d (some Lagrangian; existence of conformal manifolds).
 Classification?
- Very large number in 3d.

Existence of Moduli space of vacua, always contains Higgs branch.

Top-down construction (example: 5d)

- Geometric engineering : M-theory on canonical threefold singularity.
- Brane systems : example of type IIB brane web

Mixture of both: IIA with D6 on fibered ALE space.

[Intriligator, Morrison, Seiberg, Aharony, Hanany, Kol, Bergman, Rodrígez-Gómez, Zafrir, Del Zotto, Heckman, Jefferson, Katz, Kim, Vafa, Xie, Yau, Closset, Schäfer-Nameki, Wang, Hayashi, Yagi, ...]

Bottom-up constraints

One can use the moduli space of vacua to attempt a bottom-up classification. Coulomb branch classification:

- Space of theories graded by the rank: $r = \dim_{\mathbb{C}} \mathcal{C}$.
- Low-energy physics governed by the *singularity structure*. For r = 1:

• Distinct theories can share the same Coulomb branch geometry: the geometry has to be supplemented with the possible *mass deformations*.

Bottom-up constraints

Classification of 4d rank 1 $\mathcal{N}=2$ SCFT Coulomb branch geometries:

Flavor	CB geometry and deformation	$\Delta(u)$
E ₈	$II^* ightarrow \{I_1^{10}\}$	6
E_7	$III^* ightarrow \{\hat{m{I}}_1^9\}$	4
E_6	$IV^* o \{I_1^8\}$	3
D_4	$I_0^* \rightarrow \{I_1^6\}$	2
A_2	$IV \rightarrow \{I_1^4\}$	3/2
A_1	$III \rightarrow \{I_3^{\clip{3}}\}$	4/3
Ø	$H o \{I_1^{\frac{1}{3}}\}$	6/5
C ₅	$II^* \to \{I_1^6, I_4\}$	6
C_3A_1	$III^* \to \{I_1^5, I_4\}$	4
C_2U_1	$IV^* ightarrow \{I_1^4, I_4\}$	3
C_1	$I_0^* \to \{I_1^2, I_4\}$	2
$A_3 \rtimes \mathbb{Z}_2$	$II^* \to \{I_1^3, I_1^*\}$	6
$A_1U_1 \rtimes \mathbb{Z}_2$	$III^* o \{ \vec{I_1^2}, \vec{I_1^*} \}$	4
U_1	$IV^* o \{\hat{I_1^1}, \hat{I_1^*}\}$	3
$A_2 \rtimes \mathbb{Z}_2$	$II^* \to \{I_1^2, IV_{Q=1}^*\}$	6
$U_1 \rtimes \mathbb{Z}_2$	$III^* \rightarrow \{I_1, IV_{Q=1}^*\}$	4
Ø	$IV_{Q=1}^*$	3
C_1	$I_0^* o \overline{\{I_2^3\}}$	2

[Argyres, Lotito, Lü, Martone 18]

イロト (個) (注) (注) (注)

Bottom-up constraints

Goal of this talk: provide tools to deal in the same way with the Higgs branch.

Difficulties...

- Higher dimensional moduli space.
- Special Kähler geometry replaced by hyperKähler geometry.
- No analog of the Kodaira classification.
- The metric is often inaccessible.

...But

- The Higgs branch is (relatively) stable upon compactification from one dimension to the next
- ullet The Coulomb branch of 3d $\mathcal{N}=4$ theories is hyperKähler.

Landscape of SCFTs

The ID card of a 4d $\mathcal{N}=2$ SCFT

These data can be **derived** from realizations of the theory, or can be **constrained** from bottom-up.

- Flavor symmetry
- Central charges
- Coulomb branch geometry
- Higgs branch geometry
- Seiberg-Witten curve / Integrable system
- Spectrum of BPS states
- Superconformal index [Kinney, Maldacena, Minwalla, Raju 05]
- VOA [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees 13]

The ID card of a 4d $\mathcal{N}=2$ SCFT : Example

- Flavor symmetry : $\mathfrak{sp}(5)$, level k = 7.
- Central charges : $a=\frac{41}{12}$, $c=\frac{49}{12}$. Effective number of vectors $n_v=11$, hypers $n_h=27$.
- Coulomb branch geometry:
 - Complex Dimension = rank r = 1.
 - Scaling dimension $\Delta = 6$. Characteristic dimension $\kappa = 6$.
 - Singularity and deformation $II^* \to \{I_1^6, I_4\}$.
- Spectrum of BPS states [Cecotti, Del Zotto 14], [Del Zotto, García Etxebarria 22]

- Superconformal index : deduced from class S construction [Chacaltana, Distler
 11]
- Higgs branch geometry:
 - Quaternionic dimension $d_{HB} = n_h n_v = 24(c a) = 16$
 - Magnetic Quiver (see below)

Magnetic Quivers

The Higgs branch of an $SCFT_{8 \text{ susy}}$ is a hyperKähler singular cone due to $\mathfrak{su}(2)_H$. The Coulomb branch of a 3d $\mathcal{N}=4$ SCFT is also a hyperKähler singular cone due to $\mathfrak{su}(2)_C$.

[Cremonesi, Hanany, Zaffaroni 14]

[Bullimore, Dimofte, Gaiotto 15]

[Braverman, Finkelberg, Nakajima 15]

A magnetic quiver is a combinatorial way to encode a hyperKähler singular cone.

Quiver ----- Generalized Quiver

Magnetic Quivers

Let X be a hyperKähler singular cone (technically a *symplectic singularity* [Beauville 00]). We say that the (generalized) quiver Q is a **magnetic quiver** for X if

$$\mathcal{C}^{\mathrm{3d} \mathcal{N}=4}(Q)=X.$$

[Cremonesi, Hanany, Zaffaroni 14]

[AB, Cabrera, Grimminger, Hanany, Sperling, Zajac, Zhong 20]

Rank-1 4d $\mathcal{N}=2$ magnetic quivers

Flavor	$dim_{\mathbb{H}}(\mathit{HB})$	Magnetic Quive
E ₈	29	
E_7	17	Affine
E_6	11	
D_4	5	Dynkin
A_2	2	
A_1	1	Diagrams
Ø	0	

[AB, Grimminger, Hanany, Sperling, Zafrir, Zhong 20]

Flavor	$dim_{\mathbb{H}}(\mathit{HB})$	Magnetic Quiver
C ₅	16	\circ
C_3A_1	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C_2U_1	4	
C_1	1	
$A_3 \rtimes \mathbb{Z}_2$	9	0-0-0 -0 1 2 3 4
$A_1U_1 \rtimes \mathbb{Z}_2$	3	
U_1	1	
$A_2 \rtimes \mathbb{Z}_2$	5	
$U_1 \rtimes \mathbb{Z}_2$	1	
Ø	0	
<i>C</i> ₁	1	

Quiver Subtraction Algorithm

INPUT:

- A (generalized) quiver
- A list of elementary symplectic singularities with a corresponding magnetic quiver.

OUTPUT: Structure of nested singularities of the Higgs branch (\leftrightarrow all possible Higgsings).

[Cabrera, Hanany 18]
[AB, Grimminger, Hanany, Sperling, Zhong 21]

Example:

Quiver Subtraction Algorithm

Example: SU(3) + 6F.

Quiver Subtraction Algorithm

Reductionist approach to Higgs branch geometries :

- What is the list of atoms (elementary symplectic singularities)?
- What are the rules to combine them?

Slice	Framed quiver	Unframed quiver
a_n		1 1 1 1
b_n		
c_n	1 0-0	
d_n		
e_6		
e_7	2 1 0 0 1 2 3 4 3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e_8	1 3 5 6 4 2	1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Slice	Framed quiver	Unframed quiver
f_4		
g_2		1 0 0 0 1 2
ac_n		
ag_2		1 1
cg_2		1 0 0 1 1
$h_{n,k}$		
$\overline{h}_{n,k}$		k k k k k k k k k k k k k k k k k k k
A_n	n+1	n + 1 1 1

Higgs Chiral ring (\hat{B} operators)

Simply laced quiver Q with

- Set of vertices V
- Set of (unoriented) edges $E \subset S^2(V)$
- Gauge group $U(n_v)$ for $v \in V$, total gauge group $G = \prod_{v \in V} U(n_v)$ of rank $r = \sum_{v \in V} n_v$ with Weyl group $W = \prod_{v \in V} S_{n_v}$.
- Flavor vertices $F \neq \emptyset$ with global symmetries $SU(n_f)$ for $f \in F$ and set of edges $E' \subset V \times F$

Example

Higgs Chiral ring (\hat{B} operators)

A magnetic charge is an element $m \in \mathbb{Z}^r$. For H a subgroup of S_r and m a magnetic charge, we define the stabiliser

$$H(m) = \{g \in H | g \cdot m = m\}.$$

The conformal dimension $\Delta(m)$ is defined by

$$2\Delta(m) = \sum_{(v,v')\in E} \sum_{i=1}^{n_{v}} \sum_{i'=1}^{n_{v'}} |m_{v,i} - m_{v',i'}| + \sum_{(v,f)\in E'} \sum_{i=1}^{n_{v}} n_{f} |m_{v,i}|$$
$$- \sum_{v\in V} \sum_{i=1}^{n_{v}} \sum_{j=1}^{n_{v}} |m_{v,i} - m_{v,j}|.$$

Monopole Formula:

$$| HS(t) = \frac{1}{|W|} \sum_{m \in \mathbb{Z}^r} \sum_{\gamma \in W(m)} \frac{t^{2\Delta(m)}}{\det(1 - t^2 \gamma)}$$

Higgs Chiral ring (\hat{B} operators)

Hilbert series for the Higgs branch of the $\mathfrak{sp}(5)_7$ theory:

```
 \left( \begin{array}{c} 1 + 2t + 40t^2 + 194t^3 + 1007t^4 + 4704t^5 + 18683t^6 + 67030t^7 + 220700t^8 + 657352t^9 + 1796735t^{10} \\ + 4540442t^{11} + 10610604t^{12} + 23011366t^{13} + 46535540t^{14} + 87887734t^{15} + 155277056t^{16} \\ + 257288236t^{17} + 400453203t^{18} + 585971786t^{19} + 807195575t^{20} + 1047954388t^{21} \\ + 1282842123t^{22} + 1481462886t^{23} + 161500295t^{24} + 1662191888t^{25} + \cdots \\ - palindrome \cdot \cdot \cdot + t^{50} \\ \hline \\ (-1+t)^{32}(1+t)^{18}(1+t+t^2)^{16} \end{array} \right)
```

Refined plethystic logarithm:

$$\begin{array}{l} t^2: [20000] \\ t^3: [00001] \\ t^4: -[01000] \\ t^5: -[10010] \\ t^6: -[00200] - [20000] + [01000] \\ \text{etc} \end{array}$$

Highest weight generating function [Hanany, Kalveks 16]

$$PE\left[\sum_{i=1}^{4} \mu_i^2 t^{2i} + t^4 + \mu_5(t^3 + t^5)\right] \longrightarrow \text{Global form Sp}(5)$$

How to derive magnetic quivers?

Various methods can be used (in cooperation):

- Derivation from intersection numbers in brane systems [Cabrera, Hanany, Yagi 18], [AB, Cabrera, Grimminger, Hanany, Zhong 19], [Akhond, Carta, Dwivedi, Hayashi, Kim 20], [van Beest, AB, Eckhard, Schäfer-Nameki 20], [Akhond, Carta 21], [Sperling, Zhong 21] ...
- Deduction from known magnetic quivers (e.g. compactifications / twisted compactifications from higher dimension [Zafrir 16], [Martone, Zafrir 21])
- Computation of 3d mirror symmetry (e.g. for Argyres-Douglas theories [Giacomelli, Mekareeya, Sacchi 21], [Carta, Giacomelli, Mekareeya, Mininno 21], [Xie 21], [Dey 21], ...
- Derivation from geometry of string backgrounds [Collinucci, Valandro 20],
 [Closset, Schäfer-Nameki, Wang 21], ...
- Guess based on knowledge of the chiral ring [Cabrera, Hanany, Zajac 18], [Arias-Tamargo, AB, Pini 21]
- etc...

4d $\mathcal{N} = 2$ SCFTs at rank 2

[AB, Grimminger, Martone, Zafrir 21]

φ	d_{RR}	f	Quiver
11	12	$\mathfrak{so}(8)_a \times \mathfrak{sta}(2)_5$	2002
12	10	$u(6)_6$	1. V.
13	6	$\operatorname{SR}(2)^{\circ}_4$	1010 01
14	6	$\mathfrak{gu}(3)_6\times\mathfrak{gu}(2)_4$	2 A
15	6	\$4(5)5	- A
16	4	$\mathfrak{su}(2)_{15/3} \times \mathfrak{su}(2)_{11/3}$	0 0 0 1 2 2
17	2	$\mathfrak{su}(2)_{13/2}\times\mathfrak{u}(1)$	A
18	2	\$10(2)1035	0-0
19	1	$\mathfrak{su}(2)_{16/5}$	0==0
20	1	u(1)	1 1
21	0		Ŷ

ŕ	d_{MN}	j	Quiver
22	22	op(12)s	1 2 3 4 5 6
23	20	$\mathfrak{sp}(4)_7 \times \mathfrak{sp}(8)_8$	D_1 C_1 D_2 C_2 D_3 C_4 D_5
24	24	$\mathfrak{su}(2)_{\mathbb{F}}^2\times [\mathfrak{f}_4]_{12}$	0 0 0 0 0 0 0 1 2 4 6 8 4
25	12	$\mathfrak{su}(2)_8 \times \mathfrak{sp}(8)_6$	0 0 000
26	11	$\mathfrak{su}(2)_5 \times \mathfrak{sp}(6)_6 \times \mathfrak{u}(1)$	D_1 D_1 D_2 D_3 D_4 D_5
27	12	$\mathfrak{su}(2)_\S^2 \times \mathfrak{so}(7)_8$	0 000 000 1 2 4 4 2
28	16	$[f_4]_{10}\times \mathbf{u}(1)$	1 4 6 4 2
29	7	$\mathfrak{sp}(6)_5 \times \mathfrak{u}(1)$	0-0-0-
30	6	$\mathfrak{su}(3)_4 \times \mathfrak{su}(2)_4^2$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
31	3	$\mathfrak{sp}(4)_4$	0=0=== 1 2 1
32	2	$\mathfrak{su}(2)_3\times\mathfrak{su}(2)_3$	01000 1 2

ş.	d_{MB}	1	Quiver
33	23	$\mathfrak{su}(6)_{10}\times\mathfrak{su}(2)_9$	0-0-0-0-0-0 1 2 3 4 5 6 3
34	13	$\mathfrak{su}(4)_{13}\times\mathfrak{su}(2)_7\times\mathfrak{u}(1)$	0-0-0x 0-0x0- 1 2 3 4 3 1
35	11	$\mathfrak{su}(3)_{10}\times\mathfrak{su}(3)_{10}\times\mathfrak{u}(1)$	0-000 +300-0 1 2 3 3 2 1
36	8	$\mathfrak{su}(3)_{10}\times\mathfrak{su}(2)_0\times\mathfrak{u}(1)$	200
37	6	$\mathfrak{su}(2)_8 \times \mathfrak{su}(2)_8 \times \mathfrak{u}(1)^2$	9 -4 1-9 9
38	2	$u(1)^2$	'
39	29	sp(14) ₉	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40	17	$\mathfrak{su}(2)_8 \times \mathfrak{op}(10)_7$	0 0 0 000 •000 1 2 3 4 5 2 1 B ₁ ϕ
41	15	$\mathfrak{su}(2)_5 \times \mathfrak{sp}(8)_7$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
42	11	$\mathfrak{sp}(8)_0\times\mathfrak{u}(1)$	

ş	d_{BB}	j	Quiver
44	19	en(5) ₁₆	0-0-0-000 1 2 3 4 5
45	6	$\mathfrak{su}(3)_{12}\times\mathfrak{u}(1)$	0-0-0
46	3	$\mathfrak{gu}(2)_{10}\times\mathfrak{u}(1)$	1 2 1
47	32	op(12) ₁₁	See Table 7
18	8	$sp(4)_6 \times so(4)_6$	
t)	14	ap(8) ₇	See Table 7
30	4	sp(4) _{13/3}	7
51	28	$\mathfrak{sp}(8)_{13}\times\mathfrak{qu}(2)_{36}$	• 0 0 0 0 0 1 3 5 7 9
72	14	$\mathfrak{sp}(4)_0\times\mathfrak{sw}(2)_{16}\times\mathfrak{sw}(2)_{15}$	1 3 5 4 2
53	7	$\mathfrak{su}(2)_7 \times \mathfrak{su}(2)_{14} \times \mathfrak{u}(1)$	**************************************
54	6	$\mathfrak{su}(2)_{\alpha}\times\mathfrak{stu}(2)_{\alpha}$	0-0000 1 2 4
55	2	64(2);	000 ● 1 2
56	2	au(2) ₁₀	088 0 0 1 2

ĕ	$d_{\rm HD}$	F	Quiver
57	12	$[\mathfrak{g}_2]_5 \times \mathfrak{su}(2)_{14}$	0 0000 1 2 4 6
58	4	$\mathfrak{su}(2)_{18/3} \times \mathfrak{su}(2)_{18}$	1 2 2
50	6	[g ₀] _{30/3}	2 4 1
60	2	$\mathfrak{su}(2)_6$	0.00 .0 0 1 2
61	15	$\mathfrak{gu}(3)_{26}\times\mathfrak{u}(1)$	1 3 5 7
62	5	$\mathfrak{v}(1)\times\mathfrak{v}(1)$	1 3 2
63	2	u(1)	1 2
64	8	$\mathfrak{su}(2)_{16}\times\mathfrak{u}(1)$	1 3 5
65	2	u(1)	1 2
66	10	$\mathfrak{op}(4)_{14} \times \mathfrak{ora}(2)_{8}$	7
67	2	\$10(2) ₁₄	000 e 1 2

Higgsing diagrams

Examples of twisted compactifications:

5d 4d

$$\mathfrak{su}(2)_0 + 6F \rightarrow (\mathfrak{e}_6)_6$$

$$\mathfrak{su}(3)_0 + 8F \rightarrow \mathfrak{sp}(5)_7$$

$$\mathfrak{su}(4)_0 + 10F \rightarrow \mathfrak{sp}(6)_8$$

$$\mathfrak{su}(5)_0 + 12F \rightarrow \mathfrak{sp}(7)_9$$

Full Moduli space of Supersymmetric Vacua

For our $\mathfrak{sp}(5)_7$ theory,

[Argyres, AB, Martone 19], [Argyres, Martone 21]

RG flows

How is the RG flow read on magnetic quivers? [van Beest, Giacomelli 21]

General patterns have been identified but the detailed rules are under investigation.

Outlook

We have characterized the Higgs branches of some families of 4d $\mathcal{N}=2$ SCFTs, understood their **phase structure** and how theories are connected via **generalized Higgsing** and **RG flow**.

The same methods apply to other dimensions.

Future directions and open problems:

- What is the scope of magnetic quivers? Various extensions of the notions have already been proposed. What is the generic magnetic "object"?
- What other information can be extracted from magnetic quivers? E.g. HyperKähler metric? VOA?
- Is there a possible bottom-up approach?
 - Classification of possible elementary slices (see recent progress in [Bellamy, Bonnafé, Fu, Juteau, Levy, Sommers 22])
 - How these slices combine.

Thank you for your attention!