83

SUBJECT PROGRAM

YO. SUBJECT IDENTIFICATION

Subject: Artificial Intelligence		Acronym: INF-295	Approval date 08/11/2015 (Agreement 13/2015)		
UTFSM Credits: 3	Prerequisites: INF-134 + INF-292	Exam: Does not	Faculty.		
SCT Credits: 5	or ILI-134 + ILI-292	have	Computer Science Department		
Lecture Hours	Weekly Assistantship	Weekly Laboratory	Semester in which it is taught		
Weekly: 3	Hours: 0.7	Hours: 0	Odd	Pair X	Both
Formative axis: Fund	amentals: Engineering S	ciences and Models a	and Metho	ods	
Total time dedicated to	the subject: 144 chronol	ogical hours			

Subject Description

Students develop artificial intelligence techniques that allow them to solve highly complex problems that cannot be solved by traditional mathematical models; using programming to design efficient algorithms. Additionally, students develop systems thinking and modeling skills for professional problem-solving.

Entry requirements

- Design algorithms of medium computational complexity.
- Use data structures.

Contribution to the graduation profile

- Conceive, model, design, evaluate and implement alternative computer technology solutions, based on the analysis of specific problems in any business area.
- Generate entrepreneurship and innovations, identifying opportunities to improve processes with computer technologies and products.
- Act with autonomy, flexibility and initiative in their work.
- Incorporate a dynamic of permanent updating of their skills, typical of a rigorous, effective, and efficient task, based on their determination and tenacity.

Specific Competition.

 Make decisions under certainty, risk and uncertainty, basing them with the application of quantitative techniques.

Elements of Competition.

- Select and apply Operations Research techniques to solve a problem by evaluating the results obtained.
- Learn to face and propose solutions using algorithmic strategies in complex problems.

Transversal Competencies.

- Communicate oral and written information effectively both within the organizations in which one works and with entities in the environment.
- Interact, in the middle, establishing communication networks in Spanish and English.
- Integrate, coordinate and direct work teams, applying knowledge of resource management: human, technical, economic and time.
- · Act with autonomy, flexibility, initiative, and critical thinking when facing professional problems.
- Develop their work with solid criteria that allow you to ensure quality from a systemic perspective

Learning outcomes expected to be achieved in this subject

- Solve complex real-world problems, using fundamental concepts of artificial intelligence.
- Identifies classic combinatorial problems with satisfaction of constraints (CSOP and CSP), analyzing specific
 case studies.
- Identify real-world problems, formulating combinatorial models.
- It integrates algorithmic tools from artificial intelligence, using them to solve problems.
- Use algorithmic tools, evaluating their performance.

Thematic contents

- Concepts related to intelligent agents.
- Combinatorial models: history, and their relationship with real-world problems.
- Algorithms for solving constraint satisfaction problems (CSP). Filter techniques: consistency arc, consistency trajectory, multiple consistency arc (MAC).
- Resolution: backtracking.
- Hybrid techniques: with memorization, with learning, using constraint decomposition. Incomplete algorithms. Local search: hill climbing, greedy search. Metaheuristic techniques:
 - tabu search, simulated annealing, genetic algorithms, social intelligence.
- Trends in current research.

Teaching and learning methodology

- Expository classes supported by visual media.
- Learning based on problem solving.
- Project-oriented learning with defense.
- Study of cases.

Evaluation and grading of the subject. (Adjusted to Institutional Regulations-Regulation No. 1)

	Evaluation and qualification process:
Approval and qualification	
requirements.	It is evaluated through 2 exams and 1 project (Part I: 20%, Part II and Defense: 80%).
	If the average number of exams => 50 then:
	Final grade = Average exams*0.6+ project*0.4
	Otherwise:
	Final grade = competition average
	In case of justifiably missing a competition, a global exam must be taken, which will correspond to the grade of the missing competition.

Resources for learning.

Bibliography:

Guide Text		Russel, S., Norvig, P. (2013). Artificial Intelligence: A Modern Approach,
		Pearson Publishing.
Complementary or Optional		Michalewicz, Z. Fogel, D. (2004). How to solve it: Modern Heuristics,
		Springer Publishing.
		Rossi, F., van Beek, P. (2006). Walsh Handbook of Constraint
		Programming (Foundations of Artificial Intelligence). Elsevier Publishing.
	•	Xin-She Yang. (2014). Artificial Intelligence, Evolutionary Computing and Metaheuristics: In the Footsteps of Alan Turing. Springer Publishing.
	•	Virtual platform.

II. CALCULATION OF NUMBER OF HOURS OF DEDICATION - (SCT-Chile) - SUBJECT SUMMARY TABLE

	Number of hours of dedication				
ACTIVITY	Number of hours per week	Number of weeks	Total number of hours		
	PRESENC	CE			
Lecture or theoretical classes	3	14	42		
Assistantship/Exercises	3	4	12		
Industrial visits (from Field)					
Laboratories / Workshop					
Evaluations (exams, others)	3	3	9		
Others (specify)					
	NO PRESE	NCE			
Online assistantship	2	5	10		
Mandatory tasks					
Personal Study (Individual or group)	3	17	51		
Others (Project)	2	10	twenty		
TOTAL (HOURS)			144		
	Total number of TRANSF	FRABLE CREDITS	5		