南京大学大学数学试券

考试时间 2019.6.17 任课教师 考试成绩

一、 简答题(每小题7分,共4题,计28分)

1. 设
$$A = \begin{pmatrix} -4 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & -7 & 3 \\ 0 & 0 & 5 & -1 \end{pmatrix}$$
, 且 $BA = A + B$,求矩阵 B .

解:
$$B(A-E) = A \Rightarrow B = A(A-E)^{-1}$$
, $A = \begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix}$, $A-E = \begin{pmatrix} -5 & 2 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -8 & 3 \\ 0 & 0 & 5 & -2 \end{pmatrix} = \begin{pmatrix} A_3 & O \\ O & A_4 \end{pmatrix}$, $B = A(A-E)^{-1} = \begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix} \begin{pmatrix} A_3^{-1} & O \\ O & A_4^{-1} \end{pmatrix} = \begin{pmatrix} A_1A_3^{-1} & O \\ O & A_2A_4^{-1} \end{pmatrix} = \begin{pmatrix} 0 & -2 & 0 & 0 \\ -2 & -4 & 0 & 0 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -5 & -7 \end{pmatrix}$.

- 2. 已知二次型 $f(x) = x_1^2 + 2tx_1x_2 + x_2^2 + tx_3^2$ 为正定二次型, 求 t 的取值范围.
- 解: 二次型对应的矩阵为 $A = \begin{pmatrix} 1 & t & 0 \\ t & 1 & 0 \\ 0 & 0 & t \end{pmatrix}$, 因为 f 为正定二次型, 故有: $\begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} > 0, |A| > 0$,解得: 0 < t < 1.
- 3. 设 $A \stackrel{\cdot}{=} m \times n$ 矩阵, $B \stackrel{\cdot}{=} n \times m$ 矩阵,且 m > n,求 |AB|. 解: 因为 AB 是 m 阶方阵, 且 $r(AB) \le r(A) \le n < m$, 故 |AB| = 0.
- 4. 判断 $R^{2\times 2}$ 的下列子集是否构成子空间?问什么?

$$(1) W_1 = \{ A \mid |A| = 0, A \in \mathbb{R}^{2 \times 2} \}; \qquad (2) W_2 = \{ A \mid A^2 = A, A \in \mathbb{R}^{2 \times 2} \}.$$

解: (1) 不构成. 取
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $|A| = |B| = 0$, 即 $A, B \in W_1$, 但 $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $|A| + B| = 1$, 可见 $A + B \notin W_1$, 故 W_1 不构成子空间.

- (2) 不构成. 取 A = E,则 $A^2 = E^2 = E = A$,即 $A \in W_2$, 但 $(2A)^2 = (2E)^2 = 4E \neq 2A$,可见 $2A \notin W_2$,故 W_2 不构成子空间.
- 二、(本题12分) 设3阶非零矩阵 B 的每一个列向量都是方程组 $\begin{cases} x_1 + 2x_2 2x_3 &= 0\\ 2x_1 x_2 + \lambda x_3 &= 0\\ 3x_1 + x_2 x_3 &= 0 \end{cases}$ 的解, (2) 求证 |B| = 0. (1) 求 λ 的值;
- 解: (1) 因为 $B \neq O$ 的每一个列向量都是方程 Ax = 0 的解,其中 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{pmatrix}$,于是此方程组有非零解,从而 $|A| = \begin{vmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{vmatrix} = 5(\lambda 1) = 0$,即 $\lambda = 1$.

- (2) 设 $B = (\beta_1, \beta_2, \beta_3)$, 由于 $A\beta_1 = A\beta_2 = A\beta_3 = 0$, 所以 AB = O, 方法1. 从而 $r(A) + r(B) \le 3$,但 $r(A) \ge 1$,于是 $r(B) \le 2$,故 |B| = 0. 方法2. 反证. 若 $|B| \neq 0$,则 $A = ABB^{-1} = O$,这与 $A \neq O$ 矛盾,故 |B| = 0.
- 三. (本题12分) 设 A 为 n 阶正定矩阵,B 为 n 阶反对称矩阵,证明: $A-B^2$ 为正定矩阵.

- 证: 因为 A 是正定矩阵,B 为反对称矩阵,所以 $A^T=A, B^T=-B$,从而 $(A-B^2)^T=A^T-(BB)^T=A^T-(B^TB^T)=A^T-(B^T)^2=A-(-B)^2=A-B^2$,即 $A-B^2$ 为对称矩阵。 对任意 $x\neq 0$,有 $x^T(A-B^2)x=x^T[A+(-B)B]x=x^T(A+B^TB)x=x^TAx+(Bx)^T(Bx)>0$,故 $A-B^2$ 为正定矩阵.
- 四. (本题12分) 设 $A \in n$ 阶实对称矩阵,且满足 $A^2 + 2A = O, r(A) = k$,试求 |A + 3E|.
- 解: 设 $Ax = \lambda x, x \neq 0$,则由 $(A^2 + 2A)x = (\lambda^2 + 2\lambda)x = 0$ 得 $\lambda(\lambda + 2) = 0$,即 A 的特征值可能是0或-2. 由于 A 是实对称矩阵,所以 A 可相似于对角矩阵 Λ ,且由 $r(\Lambda) = r(A) = k$ 知,-2 是 A 的 k 重特征值,即: $P^{-1}AP = \Lambda = \begin{pmatrix} -2E_k & O \\ O & O \end{pmatrix}$,故

$$|A + 3E| = |P\Lambda P^{-1} + 3E| = |P(\Lambda + 3E)P^{-1}| = |\Lambda + 3E| = \begin{vmatrix} E_k & O \\ O & 3E_{n-k} \end{vmatrix} = 3^{n-k}.$$

解法二: 由 $A^2 + 2A = O$ 有 (-2E - A)A = O,再由 r(A) = k 可知 Ax = 0 有 n - k 个无关解, (-2E - A)x = 0 有至少 k 个无关解. 故 A 有 k 重特征值 -2,n - k 重特征值 0. 易知,A + 3E 的特征值为 A 的特征值+3,即 A + 3E 有 k 重特征值 1 和 n - k 重特征值 3,故 $|A + 3E| = 1^k \times 3^{n-k} = 3^{n-k}$.

- 五. (本题12分) 设 3 阶实对称矩阵 A 的特征值为 -1,1,1, 对应于特征值 -1 的向量为 $\alpha_1=(0,1,1)^T$, 求 A.
- 解: 设属于特征值 1 的特征向量为 $(a,b,c)^T$,则它与 α_1 正交,即 $0 \cdot a + 1 \cdot b + 1 \cdot c = 0$,也就是 b + c = 0,可得基础解系 $\alpha_2 = (1,0,0)^T$, $\alpha_3 = (0,1,-1)^T$.

$$\Leftrightarrow P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}, \quad \text{M} \ P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{diff} \ P^{-1} = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 0 & 1/2 & -1/2 \end{pmatrix},$$

$$\text{diff} \ A = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

- 六. (本题12分) 设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是 R^n 的一个基,
 - (1) 证明: $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \dots, \alpha_1 + \alpha_2 + \dots + \alpha_n$ 也是 R^n 的一个基;
 - (2) 求从旧基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到新基 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 的过渡矩阵;
 - (3) 求向量 α 的旧坐标 $(x_1, x_2, \dots, x_n)^T$ 和新坐标 $(y_1, y_2, \dots, y_n)^T$ 间的变换公式.
- 解: (1) 要证明 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 也是 R^n 的基,只需证明 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 线性无关,不难知道

$$(\alpha_{1}, \alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2} + \alpha_{3}, \dots, \alpha_{1} + \alpha_{2} + \dots + \alpha_{n}) = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) P$$

因为 $|P| = 1 \neq 0$, 故 P 可逆.

从而向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 等价,而由题设条件 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是 R^n 的一个基底,从而线性无关,所以向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 线性无关,故也是 R^n 的一组基.

- (2) 从上问解答过程可知,从旧基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到新基 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 的过渡矩阵为P.
- (3) 坐标变换公式为:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} .$$

- 七. (本题12分) 设矩阵 $A=\begin{pmatrix}1&1&a\\1&a&1\\a&1&1\end{pmatrix}$, $\beta=\begin{pmatrix}1\\1\\-2\end{pmatrix}$,已知线性方程组 $Ax=\beta$ 有解但不唯一,试求 (2) 正交矩阵 Q,使得 Q^TAQ 为对角矩阵. (1) a 的值;
- 解: (1) 对线性方程组 $Ax = \beta$ 的增广矩阵作行初等变换有 $(A,\beta) \rightarrow \begin{pmatrix} 1 & 1 & a & 1 \\ 0 & a-1 & 1-a & 0 \\ 0 & 0 & (a-1)(a+2) & a+2 \end{pmatrix}$ 由方程组 $Ax = \beta$ 有解但不唯一知 $r(A \beta) = r(A) < 3$,故 a = -2.

 (2) 由 (1) 有 $A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$, A 的特征多项式: $|\lambda E A| = \lambda(\lambda 3)(\lambda + 3)$,