# Aprendizagem em Sistemas Multiagentes (MAL)

Fundamentos e desafios

#### Motivação



#### Aviso

Aprendizagem por reforço (RL) não é a única abordagem para sistemas multiagentes.

Mas esta apresentação terá a "ótica" de RL.



#### Aviso

Esta apresentação tem como principal referência o livro "Multiagent Systems", de Gerhard Weiss.

As demais referências serão mencionadas.



# Introdução

# RL Tradicional ou MAL com 1 Agente



"The objective of a reinforcement learner is to discover a policy, i.e., **a mapping from states to actions**, so as to maximize the reinforcement signal it receives"

#### RL Tradicional ou MAL com 1 Agente



Formulação como um processo de decisão de Markov

(MDP): 
$$\langle S,A,T,R
angle, \ T:S imes A imes S o [0,1], \ \mathbb{P}[s_{t+1}\,|\,s_t,a_t]=T(s_t,a_t,s_{t+1}), \ r_t=R(s_{t+1})$$

Objetivo:

$$\pi:S o A$$

#### Aprendizagem Multiagente

"The subfield of multiagent learning studies agent definitions, algorithms, interactions, and reward structures to create **adaptive agents** that can function in environments where their **actions shape and are shaped by the actions of other agents**."

**adaptive agents** ⇒ agentes que aprendem a lidar com as mudanças no ambiente e nas estratégias do outros agentes

actions shape and are shaped by... ⇒ interação bi-direcional com os outros agentes

#### Exemplo: Multinight Bar Problem

Toda semana, o agente precisa escolher uma entre n noites para ir a um bar, que tem capacidade c.

Toda ocupação  $r_i$  do bar na noite i vem de uma distribuição fixa, mas desconhecida.

A recompensa é máxima quando o bar está com ocupação intermediária (metade da capacidade).

⇒ O agente consegue estimar a expectativa de ocupação do bar pela média das tentativas anteriores, convergindo para uma política ótima.



#### Exemplo: Multinight Bar Problem

Agora, **Múltiplos** agentes precisam escolher uma entre n noites para ir a um bar, que tem capacidade c.

Dessa forma,  $r_i$  depende também da quantidade de agentes que foram ao bar na noite i.

⇒ O processo é não-estacionário e não existe garantia teórica de convergência.



# Desafios

#### Desafios

A mudança de paradigma de MAL implica em 3 grandes desafios para algoritmos de aprendizagem:

Não-estacionariedade

Maldição da dimensionalidade

Creditação das ações

#### Não-Estacionariedade

RL geralmente implica em trabalhar com um ambiente (T) (quase-)estacionário.

Em um MAS, é impossível para um agente estimar o estado seguinte sem total conhecimento do processo de decisão dos demais agentes.



#### Maldição da dimensionalidade

Encontrar uma política  $\pi$  é um problema de busca no espaço definido por S, A e R.

- |S| aumenta com os estados dos agentes
- |A| aumenta exponencialmente uma vez que  $A = \Pi A^i$ , onde  $A^i$  são as ações do i-ésimo agente

Dessa forma, a dimensionalidade do problema aumenta drasticamente em MAL.



#### Creditação das Ações

Em RL, creditação das ações já é um problema clássico uma vez que recompensas em problemas reais decorrem de atrasos e de sequências de ações.

Para MAL, uma nova camada surge que é a multiplicidade de ações em um mesmo instante.



#### Creditação das Ações

#### **Projeto de Recompensas**

Recompensas afetam largamente as interações, os pontos de equilíbrio e a convergência das políticas.



# Estado-da-Arte

### Deep Reinforcement Learning, 2015

Até então, MAL+RL se limitavam a problemas simples, muitas vezes a jogos estáticos. [Tampuu et al., 2017]

Usando DNNs para resolver a maldição da dimensionalidade, esse trabalho "viabilizou" MAL+RL para problemas realistas.



#### Cooperação e Competição, 2017

Através da recompensa, foram estimulados comportamentos de cooperação e competição no jogo *Pong*.

Além disso, em comparação com o cenário *single-player*, obteve-se um erro de generalização muito menor.



#### Leniência, 2018

DRL utiliza as experiências passadas para tornar sua aprendizagem mais eficiente, mas a não-estacionariedade de MAL torna isso problemático.

Leniência é uma técnica para ignorar situações pouco frequentes que geraram recompensas pequenas.



Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. 2018. Lenient Multi-Agent Deep Reinforcement Learning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '18). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 443–451.

#### Leniência, 2018

DRL utiliza as experiências passadas para tornar sua aprendizagem mais eficiente, mas a não-estacionariedade de MAL torna isso problemático.

Leniência é uma técnica para ignorar situações pouco frequentes que geraram recompensas pequenas.

reward(i,j) -200 -400 -600 0.8 0.4 0.6 0.6

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. 2018. Lenient Multi-Agent Deep Reinforcement Learning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '18). International Foundation for Autonomous Agents and Multiacent Systems. Richland. SC. 443–451.

### Conclusão

#### Conclusão

 MAL+RL é uma área "recente" com resultados promissores

 O sucesso depende de um trabalho grande no ajuste das recompensas do sistema, sendo quase sob-medida para a aplicação

 MAL+DRL é bastante custoso computacionalmente para problemas reais

 A comunicação entre agentes não parece ser muito explorada

# Obrigado

Bruno M. Pacheco

mpacheco.bruno@gmail.com