데이터분석 프로그래밍 수치 데이터 처리

임현기

리스트와 넘파이

- 리스트는 여러 개의 값들을 저장할 수 있는 자료 구조로 강력하고 활용도가 높음
 - 다양한 자료형의 데이터 저장
 - 변경, 추가, 제거 가능
- 리스트의 한계
 - 리스트와 리스트 간의 연산 한계(기능 부족)
 - 연산 속도가 느림

• 데이터 분석할 때 리스트의 한계점들을 개선하고자 넘파이(Numpy)를 사용

리스트와 넘파이

- 넘파이
 - 파이썬 라이브러리
 - 대용량의 배열, 행렬 연산을 빠르게 수행
 - 고차원적인 수학 연산자와 함수를 포함

- 넘파이의 다차원 배열
 - 2차원 이상의 배열을 생성
 - 배열의 각 요소는 인덱스로 참조 가능
 - 차원을 축(axis)라고 함

- ndarray 객체
 - C언어 기반 배열 구조
 - 메모리를 적게 차지하고 속도가 빠름
 - 배열과 배열 간의 수학적인 연산 적용
 - 고급 연산자와 풍부한 함수들 제공

• 중간고사 성적과 기말고사 성적의 합계

```
mid_scores = [10, 20, 30] # 파이썬 리스트 mid_scores
final_scores = [70, 80, 90] # 파이썬 리스트 final_scores
```

	중간고사 성적	기말고사 성적	총점
학생 #1	10	70	80
학생 #2	20	80	100
학생 #3	30	90	120

• 리스트의 + 연산

```
>>> total = mid_scores + final_scores # 원소간의 합이 아닌 리스트를 연결함
>>> total
[10, 20, 30, 70, 80, 90]
```

• 넘파이 배열들의 + 연산은 대응되는 값끼리 + 연산이 수행됨

import numpy as np

- import ~ as ~
- numpy의 별칭으로 np를 주로 사용함
- 넘파이 배열을 만들려면 array() 함수를 이용

म्पार्थ विम्प अपूर्व क्षेत्र क्षेत्र कार्य क्षेत्र कार्य का

```
mid_scores = np.array([10, 20, 30])
final_scores = np.array([60, 70, 80])
```



```
total = mid_scores + final_scores
print('시험성적의 합계 :', total) # 각 요소별 합계가 나타난다
print('시험성적의 평균 :', total/2) # 모든 요소를 2로 나눈다
시험성적의 합계 : [ 70 90 110]
시험성적의 평균 : [35. 45. 55.]
```

```
도전문제 10.1
```

```
다음과 같은 연산의 결과를 출력해 보자.
>>> a = np.array(range(1, 11))
>>> b = np.array(range(10, 101, 10))
>>> a + b, a - b, a * b, a / b
```

다차원 배열

• 넘파이의 다차원 배열 ndarray는 몇가지 속성을 가짐

```
>>> a = np.array([1, 2, 3]) # 넘파이 ndarray 객체의 생성
>>> a.shape # a 객체의 형태(shape)
(3,)
>>> a.ndim # a 객체의 차원
1
>>> a.dtype # a 객체 내부 자료형
dtype('int32')
>>> a.itemsize # a 객체 내부 자료형이 차지하는 메모리 크기(byte)
4
>>> a.size # a 객체의 전체 크기(항목의 수)
3
```

속성	설명
ndim	배열 축 혹은 차원의 개수
shape	배열의 차원으로 (m, n) 형식의 튜플 형이다. 이때, m 과 n 은 각 차원의 원소의 크기를 알려주는 정수
size	배열 원소의 개수이다. 이 개수는 shape내의 원소의 크기의 곱과 같다. 즉 (m, n) 형태 배열의 size는 $m \cdot n$ 이다.
dtype	배열내의 원소의 형을 기술하는 객체이다. 넘파이는 파이썬 표준 자료형을 사용할 수 있으나 넘파이 자체의 자료형인 bool, character, int, int8, int16, int32, int64, float, float8, float16, float32, float64, complex, complex64, object 형을 사용할 수 있다.
itemsize	배열내의 원소의 크기를 바이트 단위로 기술한다. 예를 들어 int32 자료형의 크기는 32/8 = 4 바이트가 된다.
data	배열의 실제 원소를 포함하고 있는 버퍼
stride	배열 각 차원별로 다음 요소로 점프하는 데에 필요한 거리를 바이트로 표시한 값을 모은 튜플

다차원 배열

배열의 연산

• 전직원 월급 100만원씩 인상

```
import numpy as np
salary = np.array([220, 250, 230])
```

```
salary = salary + 100
print(salary)

[320, 350, 330]
```

배열의 연산

• 전직원 월급 2배 인상

```
salary = np.array([220, 250, 230])
salary = salary * 2
print(salary)

[440, 500, 460]
```

```
salary = np.array([220, 250, 230])
salary = salary * 2.1
print(salary)

[462. 525. 483.]
```

넘파이를 이용하여 다수의 인원에 대해 BMI 계산을 효율적으로 적용해 보자.

수정 병원에서는 연구를 위하여 모집한 다수의 실험 대상자들의 키와 몸무게를 측정하였다. 하나의 리스트는 실험 대상자들의 키를 저장한 리스트로서 heights라고 하자. 또 하나의 리스트는 몸무게를 저장한 리스트로서 weights라고 하자.

수정 병원의 실험 대상자들의 BMI를 한 번에 계산할 수 있는 방법은 무엇일까?

원하는 결과

대상자들의 키: [1.83 1.76 1.69 1.86 1.77 1.73]

대상자들의 몸무게: [86 74 59 95 80 68]

대상자들의 BMI

[25.68007405 23.88946281 20.65754 27.45982194 25.53544639 22.72043837]

```
import numpy as np

heights = [ 1.83, 1.76, 1.69, 1.86, 1.77, 1.73 ]

weights = [ 86, 74, 59, 95, 80, 68 ]

np_heights = np.array(heights)

np_weights = np.array(weights)

bmi = np_weights/(np_heights**2)

print('대상자들의 키:', np_heights)

print('대상자들의 몸무게:', np_weights)

print('대상자들의 BMI')

print(bmi)
```

넘파이 인덱싱/슬라이싱

```
>>> scores = np.array([88, 72, 93, 94, 89, 78, 99])
```

```
>>> scores[2]
93
```

```
>>> scores[-1]
99
```

넘파이 인덱싱/슬라이싱

>>> scores[1:4] # 첫 번째, 두 번째, 세 번째, 네 번째 항목을 슬라이싱 함 array([72, 93, 94])

인덱싱은 특정힌	요소를 얻	!는 방	법
----------	-------	------	---

0	1	2	3	4	5	6
88	72	93	94	89	78	99
-7	-6	-5	-4	-3	-2	-1

>>> scores[2]

-슬라이싱은 요소 집합을 얻는 방법

scores

0	1	2	3	4	5	6
88	72	02	94	90	70	00
00	12	93	94	89	78	99

>>> scores[1:4]
[72, 93, 94]

>>> scores[3:] # 마지막 인덱스를 생략하면 디폴트 값은 -1임 array([94, 89, 78, 99]) >>> scores[4:-1] # 마지막 인덱스로 -1을 사용할 경우 -1의 앞에 있는 78까지 슬라이싱함 array([89, 78])

논리 인덱싱

• 20살 이상인 조건식

```
>>> ages = np.array([18, 19, 25, 30, 28])
>>> y = ages > 20
>>> y
array([False, False, True, True])
```

• 20살 이상인 사람들을 뽑아내는 연산

```
>>> ages[ ages > 20 ]
array([25, 30, 28])
```


잠깐 - BMI가 25가 넘는 사람만 추출해 보자

앞서 실습을 통해 여러 사람의 BMI를 출력해 보았다. 이제 BMI가 25가 넘는 사람의 BMI만 출력하도록 해보자. 키와 몸무게 값을 담은 넘파이 배열 np_heights와 np_weights가 이미 만들어져 있다면 다음과 같이 구할 수 있다.

bmi = np_weights/(np_heights**2)
print(bmi[bmi > 25]) # BMI가 25 넘는 사람의 BMI만을 출력

- 파이썬의 2차원 리스트는 '리스트의 리스트'
 - 행렬로 처리되지 못함 (행렬 연산 불가)
- 넘파이의 2차원 배열은 행렬 연산 가능
 - 역행렬, 행렬식 등

```
>>> np_array = np.array(y) # 2차원 배열(넘파이 다차원 배열)
>>> np_array
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
```

```
>>> np_array = np.array(y) # 2차원 배열(넘파이 다차원 배열)
>>> np_array
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
```

- np_array[0][2]는 3
- np_array[0, 1]로도 사용 가능

```
>>> np_array[0, 0]
1
>>> np_array[2, -1]
9
```

• 배열의 요소 변경

```
>>> np_array[0, 0] = 12 # ndarray의 첫 요소를 변경함
>>> np_array
array([[12, 2, 3],
        [ 4, 5, 6],
        [ 7, 8, 9]])
```

- 넘파이 배열은 모든 항목이 동일한 자료형
 - 정수 배열에 부동 소수점 값을 삽입하려고 하면

```
>>> np_array[2, 2] = 1.234 # 마지막 요소의 값을 실수로 변경하려고 하면 실패
>>> np_array
array([[12, 2, 3],
        [ 4, 5, 6],
        [ 7, 8, 1]])
```

• 부분 행렬 인덱싱

• 하나의 행을 지정

```
>>> np_array[0]
array([1, 2, 3, 4])
```

• 행렬에 넘파이 표기법 사용

```
>>> np_array[1, 1:3]
array([6, 7])
```

	np_a	rray		n	p_ar	ray[0]	np_	arra	y[1,	:]	np_	arra	y[:,	2]
(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 0)	(8, 1)	(0, 2)	(0, 3)	(0, 0)	(0, 1)	(0, 2)	(0, 3)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 0)	(1, 1)	(1, 2)	(1, 3
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 8)	(2, 1)	(2, 2)	(2, 3)	(2, 0)	(2, 1)	(2, 2)	(2, 3
(3 0)	(3, 1)	(3, 2)	(3, 3)	(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 0)	(3, 1)	(3, 2)	(3, 3
		· 0 · 2	0.21	nn ai	cravi	0.2	2:41	nn 21	raul		21	nn ar	-aν[1		1
		0:2,	0:2]	np_ar	rray[0:2,	2:4]	np_ar	ray[::2,	::2]	np_arr	ray[1	::2,	1::
p_ar	rray		0:2]				2:4]			(0, 2)				(0, 2)	
p_ar	(0, 1)	(0, 2)		(0, 0)		(0, 2)	(0, 3)	(0, 0)	(0, 1)		(0, 3)	(0, 0)	(0, 1)		(0, 3
p_ar (e, e)	(8, 1)	(0, 2)	(0, 3)	(0, 0) (1, 0)	(8, 1)	(0, 2)	(0, 3)	(0, 0)	(8, 1)	(0, 2)	(0, 3)	(0, 0)	(0, 1)	(0, 2)	(0, 3

잠깐 - 파이썬 리스트 슬라이싱과 넘파이 스타일 슬라이싱의 차이

다음과 같이 파이썬 리스트 슬라이싱과 넘파이 스타일의 슬라이싱을 적용했을 때, 슬라이싱에 사용된 범위와 간격은 동일하지만 전혀 다른 결과가 나온다. 이 이유를 잘 이해하는 것이 중요하다.

2차원 배열 논리 인덱싱

• 특정한 값들을 뽑는다면

```
>>> np_array[ np_array > 5 ]
array([6, 7, 8, 9])
```

2차원 배열 논리 인덱싱

• 세번재 열의 값

```
>>> np_array[:, 2]
array([3, 6, 9])
```

- 이 중에 5를 넘는 값

```
>>> np_array[:, 2] > 5
array([False, True, True])
```

2차원 배열 논리 인덱싱

• 짝수 찾기

```
>>> np_array[ np_array % 2 == 0 ]
array([2, 4, 6, 8])
```

문자 데이터를 저장하고 있는 어떤 2차원 넘파이 배열 x 에서 'c' 문자가 몇 개 있는지 알고 싶다. 'c'만을 추출하여 배열을 만들어 보라.

그리고 다음과 같은 두 개의 2차원 배열에 정수를 담아 두 배열을 더해서 결과를 확인해 보라.

```
mat_a = np.array( [[10, 20, 30], [10, 20, 30]])
mat_b = np.array( [[2, 2, 2], [1, 2, 3]])
```

원하는 결과

```
['c' 'c' 'c']
[[ 8 18 28]
[ 9 18 27]]
```

```
print(x [ x == 'c' ])
print(mat_a - mat_b)
```

검사 대상자들의 키와 몸무게가 다음과 같이 2차원 넘파이 배열에 저장되었다고 하자.

x와 y, 그리고 z의 형태가 어떠한지 확인해 보라. 그리고 이 정보를 바탕으로 각 대상자들의 BMI 값을 저장한 배열을 생성해 보라.

원하는 결과

```
x shape : (2, 6)
y shape : (2, 2)
z shape : (1, 6)
z values = : [[86. 74. 59. 95. 80. 68.]]
BMI data
[0.00024743 0.0003214 0.00048549 0.00020609 0.00027656 0.00037413]
```

```
import numpy as np

x = np.array([[ 1.83, 1.76, 1.69, 1.86, 1.77, 1.73 ],
[ 86.0, 74.0, 59.0, 95.0, 80.0, 68.0 ]])

y = x[0:2, 1:3]

z = x[0:2][1:3]

print('x shape :', x.shape)
print('y shape :', y.shape)
print('z shape :', z.shape)
print('z values = :', z)

bmi = x[0] / x[1]**2
print('BMI data')
print(bmi)
```

선수들의 키와 몸무게가 하나의 리스트를 구성하고 있으며, 또 이들의 리스트로 이루어진 데이터 player가 있다.

이것을 바탕으로 넘파이 2차원 배열을 만들어 보고, 선수들 가운데 몸무게가 80을 넘는 선수들만 골라서 정보를 출력해 보자. 또 키가 180 이상인 선수들의 정보도 추출해 보자.

원하는 결과

```
몸무게가 80 이상인 선수 정보
[[183. 86.2]
[176. 80.1]]
키가 180 이상인 선수 정보
[[183. 86.2]
[181. 78.5]]
```

arange() 함수

arange()


```
>>> import numpy as np
>>> np.arange(5)
array([0, 1, 2, 3, 4])
```

arange() 함수

• 시작값 설정

```
>>> np.arange(1, 6)
array([1, 2, 3, 4, 5])
```

• 증가되는 값 설정

```
>>> np.arange(1, 10, 2)
array([1, 3, 5, 7, 9])
```

• range()를 써서 넘파이 배열로

```
>>> np.array(range(5))
array([0, 1, 2, 3, 4])
```

linspace(), logspace()

데이터 생성을 10^{start} 부터 시작한다. 데이터 생성 개수 - 기본값은 50개 numpy.logspace(start, stop, num=50) start stop 10 부터 10 까지의 실수를 데이터 생성을 **10^{stop}까지** 한다.

로그 스케일로 볼 때 균등한 간격으로 num 개수만큼 생성합니다.

여기서는 10을 베이스로 잡았지만, base 키워드 매개변수에 설정한 인자에 따라 바꿀수도 있다.

linspace(), logspace()

linspace(0, 10, 100)이라고 호출하면 0에서 10까지 총 100개의 수들이 생성

logspace(x, y, n) : 생성되는 수의 시작은 10× 부터 10^y 까지가 되며, n 개의 수가 생성

reshape(), flatten()

```
변경하여 얻고 싶은 형태를 넘겨 줌
1차원: (n, )
2차원: (n, m)
3차원: (n, m, l)

new_array = old_array.reshape( shape )

이전 배열 old_array의 형태가 (n,m)이고, 새롭게 얻고 싶은 형태 shape이 (l,k)라고 하면
n \times m = l \times k를 만족해야만 형태를 바꿀 수 있답니다.
```

```
>>> y = np.arange(12)
>>> y
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
```

reshape(), flatten()

```
인수로 -1을 전달하면
                         데이터의 개수에 맞춰서
>>> y.reshape(6, -1)
                         자동으로 배열의 형태가
array([[ 0, 1],
     [ 2, 3],
                                 결정
     [ 4, 5],
     [ 6, 7],
     [ 8, 9],
     [10, 11]])
                                                      reshape()에 의해 생성될
                                                      배열의 형태가 호환되지
>>> y.reshape(7, 2)
                                                      않을 경우 발생하는 오류
   y.reshape(7, 2)
ValueError: cannot reshape array of size 12 into shape (7,2)
                                                          flatten()은 평탄화
                                                         함수로 2차원 이상의
>>> y.flatten() # 2차원 배열을 1차원 배열로 만들어 준다
                                                         고차원 배열을 1차원
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
                                                          배열로 만들어 준다.
```

난수 생성

• seed 설정

```
>>> np.random.seed(100)
```

• 난수 생성

```
>>> np.random.rand(5)
array([0.54340494, 0.27836939, 0.42451759, 0.84477613, 0.00471886])
>>> np.random.rand(5, 3)
array([[0.12156912, 0.67074908, 0.82585276],
                                                   난수로 이루어진 2차원
      [0.13670659, 0.57509333, 0.89132195],
                                                           배열(5x3)
      [0.20920212, 0.18532822, 0.10837689],
      [0.21969749, 0.97862378, 0.81168315],
      [0.17194101, 0.81622475, 0.27407375]])
                                                     10에서 20사이에 있는 난수
>>> a = 10
                                                                5개 생성
>>> b = 20
>>> (b - a) * np.random.rand(5) + a
array([14.31704<mark>184</mark>, 19.4002982 , 18.17649379, 13.3611195 , 11.75410454])
>>> np.random.randint(1, 7, size=10)
array([4, 3, 4, 1, 1, 2, 6, 6, 2, 6])
>>> np.random.randint(1, 11, size=(4, 7))
array([[10, 2, 6, 9, 8, 5, 3],
      [ 7, 3, 2, 9, 5, 3, 2],
                                          1부터 (11-1)=10사이의
      [ 3, 1, 6, 2, 9, 8, 2],
                                             4행 7열 난수 생성
      [ 7, 5, 2, 8, 3, 3, 6]])
```

난수 생성

• 정규 분포 난수 생성

```
>>> np.random.randn(5)
array([ 0.78148842, -0.65438103, 0.04117247, -0.20191691, -0.87081315])
>>> np.random.randn(5, 4)
array([[ 0.22893207, -0.40803994, -0.10392514, 1.56717879],
                                                                    난수로 이루어진 2차원 배열
        0.49702472, 1.15587233, 1.83861168, 1.53572662],
                                                                          (5행 4열의 난수)
      [ 0.25499773, -0.84415725, -0.98294346, -0.30609783],
       [ 0.83850061, -1.69084816, 1.15117366, -1.02933685],
      [-0.51099219, -2.36027053, 0.10359513, 1.73881773]])
>>> mu = 10
>>> sigma = 2
>>> randoms = mu + sigma * np.random.randn( 5, 4 )
>>> randoms
array([[ 9.82507212, 7.12282389, 5.88878504, 7.5865665 ],
                                                                   평균이 10이고 표준편차 값이
       [ 6.05953536, 11.73521791, 10.90362868, 12.33878255],
                                                                    2인 정규분포를 가지는 난수
      [10.2980491 , 8.64563344, 9.09398278, 11.20863908],
      [ 9.30825873, 9.81230228, 9.71131179, 12.47776473],
      [10.00162592, 9.86745157, 8.51138086, 9.82922367]])
```

평균, 중앙값

- 10,000명의 키 난수 생성
 - 평균 175cm, 표준편차 10

평균, 중앙값

```
>>> np.mean(heights)
175.14185004766918

>>> np.median(heights)
175.0251183448534

>>> a = np.array([ 3, 7, 1, 2, 21]) # 21은 전체 데이터 중에서 비정상적으로 큰 값이다
>>> np.mean(a)
6.8

>>> np.median(a) # [3, 7, 1, 2, 21]들 중 가운데 항목을 구한다
3.0
```

축구 선수들 100명의 데이터가 2차원 넘파이 배열에 저장되어 있다. 각 선수당 (키, 몸무게, 나이)를 저장한다. 넘파이 배열의 이름은 players이다. 정규 분포를 이용하여 자동으로 데이터를 생성해 보자. 100명의 선수가 각각 키, 몸무게, 나이를 가지므로 배열의 형태는 (100,3)이 된다. 생성할 때 키는 175, 몸무게는 70, 나이는 22세를 평균으로 하고, 표준편차는 모두 10이 되도록 하여 생성해서 생성된 데이터의 실제 평균과 중앙값을 구해 보자.

원하는 결과

신장 평균값: 175.05662687914526 신장 중앙값: 174.19575035548786 체중 평균값: 68.27591327992555 체중 중앙값: 68.93281750317813

나이 평균값: 20.68 나이 중앙값: 21.0

```
import numpy as np

players = np.zeros( (100, 3) )
players[:, 0] = 10 * np.random.randn(100) + 175
players[:, 1] = 10 * np.random.randn(100) + 70
players[:, 2] = np.floor(10 * np.random.randn(100)) + 22

heights = players[:, 0]
print('신장 평균값', np.mean(heights))
print('신장 중앙값', np.median(heights))

weights = players[:, 1]
print('체중 평균값', np.mean(weights))
print('체중 중앙값', np.median(weights))

ages = players[:, 2]
print('나이 평균값', np.mean(ages))
print('나이 중앙값', np.median(ages))
```

상관관계 계산

corrcoef(x, y)

잠깐 - corrcoef() 함수가 계산하는 상관관계의 수학적 정의

념파이의 corrcoef() 함수는 수학적으로 **피어슨^{Pearson}** 상관 계수를 계산하는 함수이다. 피어슨 상관 계수는 통계학에서 사용하는 상관계수로 두 변량의 공분산을 각각의 표준편차를 서로 곱한 값으로 나눈 것이다. 상세한 것은 통계학 교과서를 참고하도록 하자.

상관관계 계산

```
x = [ i for i in range(100) ]
y = [ i ** 2 for i in range(100) ]
z = [ 100 * np.sin(3.14*i/100) for i in range(100) ]
```

