목차 - 기획 배경

부산광역시 화재 사고(2012~2021)

출처: 소방 빅데이터 플랫폼

뉴스1 · 2023.06.29. · 네이버뉴스

부산 해운대구 다세대 주택서 화재...11명 대피

부산소방재난본부에 따르면 이날 부산 해운대구 반송동 다세대주택 4층 에서 원인을 알 수 없는 화재가 발생해 주민 11명이 대피했다. 단독경보형 감지기 소리를 들은 4층 거주자의 신고로 출동한 소방은 30여분 만인.

SBS - 2023.05.13. - 네이버뉴스

부산 대연동 빌라 화재...30대 남성 사망

오늘(13일) 오후 1시쯤 부산 남구 대연동의 5층짜리 빌라에서 불이 났습 니다. 이 불로 해당 빌라에 거주하던 30대 남성이 숨졌고, 주민 5명이 대 피했습니다. 불은 20여 분 만에 꺼졌지만 소방서 추산 1천여만 원의 재.

수 뉴스핌 · 2023.10.01.

부산 사하구 아파트 화재...주민 156명 긴급 대피 소동

1일 오전 3시44분께 부산 사하구 다대동 22층짜리 아파트 17층에서 불이 나 소방대원들이 진화작업을 벌이고 있다.[사진=**부산**소방재난본부] 2023 10.01 이웃 주민이 화재를 목격하고 119에 신고했다. 신고를 받은 소방.

화재사고로 인한 지속적인 피해 발생 → 신속한 대응과 효과적인 피해 감소 방안의 필요성 증대

목차 - 기획 배경

상관분석(Correlation Analysis) 수행

- → 두 변수가 서로 어떤 선형적 관계를 갖고 있는지 분석
- → 사고 처리 및 대응과 밀접한 관련이 있는 변수만을 선발하여 활용

→ 상관계수가 0.4 이상일때부터 변수간 밀접한 관계가 존재한다고 판단

Element1	Element2	Corr
소방 인력	화재진압시간	0.55
소방 인력	재산피해금액	0.4
소방 인력	건물구조조_철골조	0.53
재산피해금액	화재진압시간	0.55
재산피해금액	건물구조조_샌드위치	0.73
재산피해금액	건물구조조_합성수지	0.69
재산피해금액	건물구조조_슬라브가	0.63
출동소요시간	안전센터거리	0.81

출처: 부산광역시 화재 사고 출동 데이터[소방 빅데이터 플랫폼]

수행과정 - 시스템 요약

수행과정 - 활용 데이터

- 1. 부산광역시 화재 사고 출동 데이터 [소방 빅데이터 플랫폼]
- → 기간: 2021년
- → 변수 정보 (1140row x 60col)
- ▶ 시간(발생, 신고, 출동, 진압) & 장소(건물 특성 대분류, 좌표) & 피해(부상, 사망, 재산) & 환경(기온, 습도, 강수량) 등

- 2. 부산광역시 소방인력 배치 데이터 [부산시 소방 재난 본부]
- → 기간: 2021년
- → 변수 정보
- ▶ 119 안전센터별 소방 공무원 수

수행과정 - 활용 데이터

수행과정 - 사용기술

유전 알고리즘(Genetic Algorithm)

- → 생물의 진화와 유전자의 적자생존 원리에 기반한 휴리스틱 기법
- → 랜덤 해를 생성하고, 최적해를 찾을 때까지 교차와 변이를 반복 수행

 8
 5
 13
 7
 29

 21
 3
 36
 11
 16

2 9 24 17 38

4 31 19 6 12

랜덤한 값의 유전자들이 모인 세대 생성

적합도 평가

 $\text{Max z} = 10 - \frac{\sum x_i}{\text{안전센터 수}}$

초기 해의 적합도 점수 계산 (센터별 담당사고수의 표준편차)

선택

Function(node 1) = 2.64Function(node 2) = 1.37

Function(node 3) = 0.14

Function(node 4) = 3.38

점수가 높은 상위 20개 유전자만 선택

교차 연산

부모 8 5 13 7 29 4 31 19 6 12 자손 4 31 13 7 29

2개의 랜덤한 부모 유전자 지정 후, 교차 연산으로 자손 생성

변이 연산

8 5 19 6 12 ▼

8 5 19 39 12

랜덤하게 하나의 유전자 선택, 정보를 변경하여 돌연변이 생성(0.001)

수행과정 - 사용기술

센터명	센터별 사고수	재배치 전 근무인원	재배치 후 근무인원
부전	62	51	62
양정	49	31	62
광안	48	64	56
범일	45	42	56
연산	43	55	56
부곡	39	59	47
사직	33	28	45
온천	33	28	45
신평	33	63	45
수안 	32	49	45

센터명	센터별 사고수	재배치 전 근무인원	재배치 후 근무인원
대연	31	42	45
가야	27	30	40
반여	23	34	40
- 좌동 -	23	31	40
- 서동 -	23	42	40
부민	22	39	36
신호	22	30	36
충무	22	30	36
삼락	21	64	34
_	_	_	_

수행과정 - 사용기술

Dence Layer

Dense_Input	Input:	[(None, 116)]
Input_Layer	Output:	[(None, 116)]
	∇	
Dense_0	Input:	(None, 116)
Dense_0	Output:	(None, 64)
	∇	
Dense_1	Input:	(None, 64)
Dense_1	Output:	(None, 32)
	∇	
Dense_2	Input:	(None, 32)
Dense_2	Output:	(None, 16)
	▽	
Dense_3	Input:	(None, 16)
Dense_3	Output:	(None, 1)

Dense_Input	Input:	[(None, 116)]
Input_Layer	Output:	[(None, 116)]
	∇	
Dense_0	Input:	(None, 116)
Dense_0	Output:	(None, 64)
	∇	
Dropout_1	Input:	(None, 64)
Dropout_1	Output:	(None, 64)
	∇	
Dense_0	input:	(None, 64)
Dense_0	output:	(None, 32)
	▽	
Dense_2	Input:	(None, 32)
Dense_2	Output:	(None, 1)

Dense_Input	Input:	[(None, 116)]
Input_Layer	Output:	[(None, 116)]
	∇	
Dense_0	Input:	(None, 116)
Dense_0	Output:	(None, 256)
	▽	
Dense_1	Input:	(None, 256)
Dense_1	Output:	(None, 128)
	∇	
Dense_2	Input:	(None, 128)
Dense_2	Output:	(None, 64)
	∇	
Dense_3	Input:	(None, 64)
Dense_3	Output:	(None, 1)

Epochs: 1750, Loss(Mse): 0.08, R2: 0.93

수행과정 - 결과

실제 재산피해	재배치 전 재산피해 예측값	재배치 후 재산피해 예측값
0.27347	0.26721	0.21436
0.23824	0.23019	0.17528
0.21932	0.20973	0.16219
0.18649	0.17821	0.14012
0.12184	0.11427	0.06894
0.10337	0.09772	0.09744

^{*}종속변수=재산피해, 독립변수=사고 특성 변수

인력 재배치에 따라 사고 피해값이 **감소함**을 확인

마무리 - 기대효과

- 1. 소방관들의 육체적, 정신적 스트레스 감소
- 2. 노동 환경 개선
- 3. 효율적인 출동 & 골든 타임 확보 가능성 증가
- 4. 예산 분배 효율화