

D1 移动平台调试开发指南

目录

一、D1 其	力能介绍	. 4
1.1	D1 系统框架介绍	. 4
1.2	D1 导航软件功能介绍	. 4
二、D1 ^長	寻航系统主要参数详解	. 5
2.1 D1	底盘基础参数介绍及调试方法	. 5
测证	式一: 前进1米	. 5
测证	式二: 原地转动 360 度	. 6
底盘	程参数调试方法	. 6
底盘	a 关键数据观察	. 7
2.2 D1	底盘上下两雷达安装及参数调试	. 8
D1 .	上下两雷达安装情况	. 8
雷之	大具体参数介绍	. 8
雷之	长参数调试的方法	. 9
雷之	大关键数据观察	11
2.3 D1	超声波的安装及参数介绍	12
超声	与波的位置安装(目前默认位置)	12
超声	与波参数介绍	12
超声	声波参数调试方法	13
超声	· 波关键数据观察	14
2.4 建	图与导航参数介绍及调试	14
建图	图与导航使用	17

修订历史	20
2.5 建图与导航主要数据观察	19
2.5. 净图上已於之無數根加亞	40
建图与导航参数调节的情况	18

一、D1 功能介绍

1.1 D1 系统框架介绍

1.2 D1 导航软件功能介绍

功能	支持功能	功能说明
	Gmapping 算法建图	适合一般室内环境建图
建图功能		(150*150 平方米以内)
	双雷达导航	增加安全性,有效避开
		矮的障碍物, 防止压脚
	超声波导航避障	增加安全性,有效避开
		玻璃等透明障碍物
	深度摄像头导航避障	增加安全性,达到3维
导航功能		避障效果
	融合陀螺仪	提高导航精度,减小累
		计误差
	单点导航,多点巡逻导	多种导航方式,提高场
	航	景适应性
	通过(网络)wifi 启动底	直接在 APP 上完成建
	盘建图,并显示地图,保存	图,导航使用,提高适用性,
客户端 APP	地图, 然后导航	降低使用门槛
	通过 APP 查看底盘各种	

传感器状态和日志信息	
自动回充功能	增加智能性,有效续航,
	方便长时间使用

二、D1 导航系统主要参数详解

2.1 D1 底盘基础参数介绍及调试方法

底盘基础参数主要是底盘的轮子直径,两轮子的间距,编码器值以及底盘移动速度控制,具体如下:

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/config/my_dashgo_params_imu.yaml				
参数名	目前值	说明		
wheel_diameter	0.1280	轮子直径,固定		
wheel_track	0.3559	两个轮子的间距,直接测量得到大概值,然		
		后再通过转 360 度试验进行细微调整,出厂时会		
		把参数调好,直接使用即可。		
encoder_resolution	1200	轮子转动一圈编码器输出的脉冲数,固定		
gear_reduction	1.0	校准系数,主要用于校准走 1m 直线		

通过测试底盘走 1m 直线, 360 度转。

测试一: 前进1米

远程进入导航模块,启动底盘驱动(带陀螺仪),

\$ ssh eaibot@192.168.31.200

\$ roslaunch dashgo_driver driver_imu.launch

然后远程进入导航模块另一个终端, 启动移动脚本,

\$ ssh eaibot@192.168.31.200

\$ rosrun dashgo_tools check_linear_imu.py

测试完后,ctl+c结束两个终端的程序。

测试二: 原地转动 360 度

远程进入导航模块,启动底盘驱动(带陀螺仪),

- \$ ssh eaibot@192.168.31.200
- \$ roslaunch dashgo_driver driver_imu.launch

然后远程进入导航模块另一个终端,启动转动脚本。

- \$ ssh eaibot@192.168.31.200
- \$ rosrun dashgo_tools check_angular_imu.py

底盘参数调试方法

情况一:走 1m 直线和 360 度旋转参数调试情况

优先校准走 1m 直线, 仅需修改 my_dashgo_params.yaml 文件中的 gear_reduction 参数, 其他参数基本给定,超过 1m 时,就改小,否则就改大,误差控制在 1%左右。

在已校准 1m 直线的前提下,校准 360 度旋转,仅需细微修改两个轮子间距wheel_track,转超 360 度就改小,否则就改大,误差控制在 1%左右。

如果底盘走成了斜直线,一般都是底盘摆放时,两轮子不在同一水平线引起的。Eai 底盘在出厂时,都会测试确认底盘能正常走直线。

如果底盘走 S 型 (无法走直线), 先确认底盘是否电量充足, 若电量不足, 无法拉动电机 正常转动, 就会行走异常, 若充足但行走异常请找 eai 售后

情况二: 提高/限制底盘移动速度

启动 driver.launch 或 driver_imu.launch 来驱动底盘行走时,默认都是有平缓控制速度的功能,所以主要是修改 yocs_velocity_smoother.yaml 配置文件中的最大线速度 speed_lim_v 和最大角速度 speed_lim_w 来控制底盘行走的。

如果是在启动导航 navigation 时,此时底盘行走速度不单受平缓速度 yocs_velocity_smoother.yaml 的限制,还会受到局部路径规划 teb_local_planner_params.yaml 中的最大线速度限制,最终会取两者中最小的线速度。这点会在导航章节中详述。

COPYRIGHT 2015-2017 EAI TEAM

如果是只用手机蓝牙来控制底盘时,速度是不受平缓控制的,所以会有急停(点头)和急速前冲(抬头)的现象。

底盘关键数据观察

以使用三一键盘控制底盘行走为例,主要观察底盘的里程计信息,线速度,角速度信息。具体如下:

odom—不带陀螺仪的里程计信息

.在启动 driver.launch 的情况下,在导航模块的另一个终端中输入指令,

rostopic echo /odom

odom_combined, imu, imu_angle—陀螺仪和带陀螺仪的里程 计信息

在启动 driver_imu.launch 的情况下,会把/odom 的信息与陀螺仪/imu 的信息融合后得到新的里程计信息,并发出来给建图导航使用,在导航模块的另一个终端中分别输入指令。

```
rostopic echo /robot_pose_ekf/odom_combined #查看带陀螺仪里程计信息
rostopic echo /imu
rostopic echo /imu_angle #查看陀螺仪角度变化信息
```

/smoother_cmd_vel一经过平缓处理的底盘速度

在启动 driver.launch 或 driver_imu.launch 驱动底盘的情况下,底盘的最原始的速度信息 是在/cmd_vel 中,经过平缓处理后,发布到新的主题/smoother_cmd_vel,建图导航等默认 都使用经过平缓处理后的速度,在导航模块的另一个终端中分别输入指令。

rostopic echo /cmd_vel #底盘原始的速度信息 rostopic echo /smoother_cmd_vel #经过平缓处理后的速度,默认底盘驱动,建图,导航等都是用这里的线速度和角速度,然后在 dashgo_driver.py 中把线速度和角速度转换成点击的 pwd 值发给底盘从而控制底盘行走

2.2 D1 底盘上下两雷达安装及参数调试

D1 上下两雷达安装情况

D1 的 G4 雷达要正面安装,如下图所示雷达倒放,雷达的数据线口为正后方实际 0 度位置,正前方为实际 180 度位置,最大扫描角度为 360 度,经过雷达驱动 ydlidar_v1.3.1 运行调试正前方变为 0 度的,数据线口变为正后方 180 度的,雷达的具体参数,性能及单独使用请参照《雷达使用手册》。

雷达具体参数介绍

参数文件路径: dashgo_ws/src/dashgo/ydlidar-1.3.1/launch/ydlidar1_up.launch 1.3.1 为雷达驱动版本号,有可能变化, ydlidar1_up.launch 为上雷达启动文件, ydlidar2_down.launch 为下雷达启动文件。

<node name="ydlidar_node" pkg="ydlidar" type="ydlidar_node" output="screen">

雷达启动的节点名为 ydlidar_node。

<param name="port" type="string" value="/dev/port2"/>

雷达与导航模块连接的串口,为 port2。


```
<param name="baudrate" type="int" value="230400"/>
 G4 雷达串口波特率,如果是F4 雷达则为115200, X4 雷达为128000。
<param name="angle_min"</pre>
                     type="double" value="-180" />
                     type="double" value="180" />
<param name="angle_max"</pre>
 雷达扫描角度范围为-180~180度,雷达角度范围设置具体参照下面说明。
                     type="double" value="0.08" />
<param name="range min"</pre>
<param name="range max"</pre>
                     type="double" value="16.0" />
 雷达扫描距离范围为 0.08~16 m。
<param name="ignore array" type="string" value="-90,90" />
 雷达剔除的扫描范围,即不取该范围的数据,它与上面扫描角度参数结合,得到最终
 雷达有效的扫描角度范围。
<node pkg="tf" type="static_transform_publisher" name="base_link_to_laser4"</pre>
  args="0.0 0.0 0.2 0.0 0.0 0.0 /base_footprint /laser_frame 40" />
 这是雷达与 D1 底盘的 tf 转换参数
```

参数文件路径: dashgo_ws/src/dashgo/dashgo_tools/conf/box_filter.yaml 其中 box_filter.yaml 表示上雷达安全范围,box_filter_2.yaml 为下雷达安全范围。

```
max_x: 0.36 安全范围在 x 轴上离底盘重心最大距离max_y: 0.20 安全范围在 y 轴左边离底盘重心距离max_z: 0.5 暂时无用min_x: 0.17 安全范围在 x 轴上离底盘重心最小距离min_y: -0.20 安全范围在 y 轴右边离底盘重心距离min_z: 0.05 暂时无用
```

参数具体意义见下面情况三详解

雷达参数调试的方法

情况一:设置雷达的扫描角度

设置雷达的扫描角度并剔除在扫描范围特定角度的数据(如只取雷达前方 270 度数据或者剔除扫描范围内的柱子等物体),雷达的数据获取符合右手定则(与雷达的转动方向没直接关系),具体如下图所示:

如果雷达只想扫描正前方 270 度,则需要把 ydlidar1_up.launch 的参数设置如下(以上雷达为例):

注意: 雷达的扫描角度不能小于 180 度, 否则会影响建图, 导航避障等功能。

情况二: 雷达坐标系与底盘坐标系的 tf 转换关系设置

该参数主要是在整套移动系统在建图导航前,进行雷达校准用到,单独雷达不需要用到此 参数。

以上雷达为例,雷达正装,则 ydlidar1_up.launch 参数设置如下: (一般出厂时雷达参数都会设置好,可直接使用,但若移动,拆装后需要自己细微调整)

- args 第一个参数 0.0 表示雷达中心距离底盘重心的 x 轴距离;
- args 第二个参数 0.0 表示雷达中心距离底盘重心的 y 轴距离;

- args 第二个参数 0.2 表示雷达中心距离底盘重心的 z 轴距离, 该参数为虚拟的, 不能改, 因为会影响到导航的 costmap, (因为 G4 雷达为 2 维雷达, z 轴参数对雷达数据没影响, 所以可以使用虚拟);
- args 第四个参数表示将雷达绕 z 轴左右偏转程度, 为 yaw 偏航角;
- args 第五个参数表示将雷达绕 y 轴前后翻滚程度, 为 pitch 俯仰角;
- args 第六个参数表示将雷达绕 x 轴左右侧滚,为 roll 侧滚角,该参数一般为 0.0,目前只能设为 0.0,-3.14 和 3.14。

情况三: 雷达滤波安全范围设置(仅在导航时使用)

如下图所示,雷达滤波安全范围是指,在雷达前方,画一个安全区域,一旦雷达突然 发现前方有障碍物出现在安全区域内(例如底盘导航时,突然伸脚到底盘前面很近的地方), 此时底盘优先停下然后再重新规划路径绕开,它认为离突然出现的障碍物太近,再往前就 会撞到障碍物,这样可以有效防止底盘减速刹车不及时撞到障碍物的问题。

如图所示,红色部分为安全范围,它为矩形,根据 box_filter.yaml 参数,以底盘重心为原点,正常安全范围(红色部分) x 轴长度在 15cm 左右,y 轴宽度比底盘宽 2cm (左右两侧各宽 1cm),注意:该安全范围不能过大,否则会影响导航效果(例如通过狭窄的地方)。

雷达关键数据观察

主要是观察/scan 雷达节点是否有数据。

rostopic echo /scan

2.3 D1 超声波的安装及参数介绍

目前 D1 系统最多只支持 6 个超声波,现在 D1 安装了 4 个超声波的,安装在 stm32 控制板上(电机控制板),stm32 会实时把超声波数据传给导航模块,然后和导航避障算法进行融合避障。

超声波的位置安装(目前默认位置)

D1 超声波默认的安装情况如下:

- 0号在前方左侧, 离中心坐标和偏角为(0.18,0.10), 偏角为 0.524 弧度
- 1号在正前方,离中心坐标和偏角为(0.20,0.0),偏角为0弧度
- 2号在前方右侧, 离中心坐标和偏角为(0.18,-0.10), 偏角为-0.524 弧度
- 3号在正后方,离中心坐标和偏角为(-0.20,0.0),偏角为3.14 弧度

超声波参数介绍

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/config/my_dashgo_params_imu.yaml 主要是超声波功能开关,坐标位置及偏移角初始化。

useSonar: True

超声波功能开关,True 表示打开,False 表示关闭。

```
sonar0_offset_yaw:0.524 4个超声波的位置和偏移角初始化
sonar0_offset_x: 0.18
sonar0_offset_y: 0.10

sonar1_offset_yaw: 0.0
sonar1_offset_x: 0.20
sonar1_offset_y: 0.0

sonar2_offset_yaw: -0.524
sonar2_offset_x: 0.18
sonar2_offset_y: -0.10

sonar3_offset_yaw: 3.14
sonar3_offset_x: -0.20
sonar3_offset_y: 0.0
```

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/launch/driver_imu.launch

```
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar0"
    args="0.180.10 0.115 0.524 0.0 0.0 /base_footprint /sonar0 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar1"
    args="0.20 0.0 0.115 0.0 0.0 0.0 /base_footprint /sonar1 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar2"
    args="0.18-0.10 0.115 -0.524 0.0 0.0 /base_footprint /sonar2 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar3"
    args="-0.20 0.0 0.115 3.14 0.0 0.0 /base_footprint /sonar3 40" />
```

这分别是超声波与底盘的坐标 tf 转换关系,同时会把相应位置显示到 rviz 上,如果 rviz 上看到超声波位置不对,请查看此参数是否正确。

超声波参数调试方法

步骤一:要使用超声波避障功能,必须先打开超声波功能开关。

```
useSonar: True
```

超声波功能开关,True 表示打开,False 表示关闭。

步骤 2:运行导航 launch,观察超声波数据变化,验证每一个超声波工作正常具体如下:

在导航模块中运行导航 launch (以不带陀螺仪单点导航为例):

```
roslaunch dashgo_nav navigation_imu.launch
```

在导航模块另一个终端中,分别监听每一个超声波主题,如下与0号超声波为例;

```
rostopic echo /sonar0
```

然后再0号超声波前面放一个障碍物并来回移动,观察0号超声波数据变化是否正常,

以此验证其他四个超声波是否都正常。

步骤 3: 在 rviz 中添加超声波的显示,并观察超声波看到障碍物时,是否会停止。

保持运行导航 navigation.launch 程序,在电脑终端中运行 rviz 显示地图, add->by Topic 然后选择 sonar0 的 Range,点击 ok 就会把超声波的锥形范围显示在 rviz 中,最后 ctrl+s 保存 rviz 配置,类似地把其他超声波加入到 rviz 中,然后再把障碍物放到超声波前面(障碍物最好是玻璃等透明物体,只有雷达才可以看到),观察导航时是否避开它。

超声波关键数据观察

主要是观察/sonar0~3 超声波节点是否有数据。

```
rostopic echo /sonar0 观察 0 号超声波数据, 默认情况只取 0.8m 以内的有效数据
rostopic echo /sonar1
rostopic echo /sonar2
rostopic echo /sonar3
```

2.4 建图与导航参数介绍及调试

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/launch/include/imu/gmapping_base.launch Gmapping 扫图算法参数。

<param name="maxUrange" value="8.0"/>

<param name="maxRange" value="10.0"/>

雷达最远扫描距离设置,正常 G4 能扫到 16m,由于越远激光数据点越少且不稳定, 因此只取 10m 内的数据。

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/teb_local_planner_params.yaml

Teb 局部路径规划配置:

max_vel_x: 0.20

#机器人导航时最大线速度,与 1.2.4 章节中情况三控制底盘平缓行走的参数一起控制 底盘导航,最终取两者最小的线速度。

max_vel_x_backwards: 0.15 #机器人后退速度,不能改小

max_vel_theta: 0.40 #最大角速度 acc_lim_x: 0.20 #线加速度

acc_lim_theta: 0.2 #角加速度,不能过大,否则行走可能左右摆动

min_turning_radius: 0.0

footprint_model: # types: "point", "circular", "two_circles", "line", "polygon"

GoalTolerance

```
xy_goal_tolerance: 0.15 #导航里目标点最大距离误差为 15cm
yaw_goal_tolerance: 0.2 #最大角度误差为 0.2 *6=12 度
```

free_goal_vel: False

Obstacles

```
min_obstacle_dist: 0.3 #距离障碍物的最小距离
```

weight_kinematics_forward_drive: 40 #机器人前进的权重,增大时,机器人后退几率,后退距离都会减小,但不能过大,具体要根据实际情况调试。

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/ move_base_params.yaml Move_base 算法参数:

```
planner_frequency: 1.0 #路径规划频率
```

oscillation_timeout: 5.0 #超时时间为 5.0*2=10s

oscillation_distance: 0.2 #如果在 10s(超时时间)内,机器人没有行走超过 0.2m,则认为机器人在来回挪动(震荡),此时取消该次导航

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/ costmap_common_params.yaml 代价地图 costmap 基础参数:

```
obstacle_layer: # 动态层 costmap
enabled: true
max_obstacle_height: 0.6 #costmap 的最大高度
min_obstacle_height: 0.0
obstacle_range: 2.0 #2m 内有障碍物就加入 costmap 中
raytrace_range: 5.0
inflation_radius: 0.25 #障碍物膨胀系数
combination_method: 1
#非常重要, 这里表明 costmap 是由传感器雷达 laser_scan_sensor, 超声波
```



```
#sonar_scan_sensor 数据组成,数据来源具体下面会介绍
    observation sources: laser scan sensor sonar scan sensor
    track_unknown_space: true #是否往未知区域规划路径
   origin z: 0.0 #costmap 高度从 0m 开始
    z_resolution: 0.1 #costmap 立体分成, 每一层为 0.1m
    z voxels: 10 #costmap 立体一共分 10 层数据
    unknown_threshold: 15
   mark threshold: 0
   publish_voxel_map: true
    footprint clearing enabled: true #是否清楚底盘脚下的 costmap
   laser_scan_sensor: #表明是从/scan 主题中获取雷达数据构成 costmap
     data type: LaserScan #雷达数据类型
     topic: /scan #雷达数据主题
     marking: true
     clearing: true
     expected_update_rate: 0
     min_obstacle_height: 0.20 #雷达数据在 costmap 中的高度范围
     max_obstacle_height: 0.30
     sonar_scan_sensor: #超声波点云数据
     data type: PointCloud2
     topic: /sonar_cloudpoint
     marking: true
     clearing: true
     min_obstacle_height: 0.11 #超声波点云数据在 costmap 中高度范围
     max obstacle height: 0.2
     observation_persistence: 0.0
  inflation_layer: #静态层 costmap
    enabled:
                    true
   cost_scaling_factor: 10.0 # exponential rate at which the obstacle cost drops off (default:
10)
    inflation_radius: 0.25 # 障碍物膨胀系数
  static_layer:
   enabled:
                    true
   map topic:
                     "/map"
  sonar_layer: #超声波数据
   enabled:
   clear threshold: 0.6
    mark threshold:
    topics: ["/sonar0", "/sonar1", "/sonar2", "/sonar3"]
```


clear_on_max_reading: true

建图与导航使用

步骤 1: 在导航模块中,启动建图 launch

- \$ ssh eaibot@192.168.31.200 #远程进导航模块
- \$ roslaunch dashgo_nav gmapping_imu.launch

步骤 2: 在电脑 ubuntu 系统中,启动 rviz 工具(注意该命令是在电脑上运行,而不是导航模块中,之后启动 rviz 的操作都是在电脑上,导航模块中没有安装 rviz 工具)

- \$ export ROS MASTER URI=http://192.168.31.200:11311
- \$ roslaunch dashgo_rviz view_navigation.launch

步骤 3: 手机 app wifi 控制底盘行走(注意此时不能用蓝牙控制,会导致控制冲突)

步骤 4: 建完地图后,保持建图程序运行,进行如下操作保存好地图

- \$ ssh eaibot@192.168.31.200 #远程进入导航模块
- \$ roscd dashgo_nav/maps #进入地图目录
- \$ rosrun map_server map_saver -f eai_map_imu

#保存地图,名为 eai_map_imu,然后会在 maps 目录下生成 eai_map_imu.yaml 和 eai_map_imu.pgn 文件(即保存的地图为 pgn 格式),之后带陀螺仪导航时,默认会导入名为 eai_map_imu 的地图,

地图保存好后,ctl+c 关闭建图程序

步骤 5: 在导航模块中, 启动单点导航的 launch

- \$ ssh eaibot@192.168.31.200
- \$ roslaunch dashgo_nav navigation_imu.launch

步骤 6: 在电脑 ubuntu 系统中,启动 rviz 工具

- \$ export ROS_MASTER_URI=http://192.168.31.200:11311
- \$ roslaunch dashgo_rviz view_navigation.launch

步骤 7: 设置机器人起点位置,然后设置单个目标位置,开始导航

建图与导航参数调节的情况

情况一:修改障碍物膨胀系数,防止规划的路径贴近障碍物(沿边规划)

主要修改 costmap_common_params.yaml 文件中的 inflation_radius 参数,该文件中有两个这样的参数,必须同时改

```
inflation_radius: 0.25 #障碍物膨胀系数
obstacle cost drops off (default: 10)
inflation_radius: 0.25 # 障碍物膨胀系数
```

情况二: 限制机器人导航行走的速度

主要修改局部路径规划 teb_local_planner_params.yaml 的参数,它与1.2.4章节情况三一平缓速度限制一起控制底盘,要想限制机器人行走速度,需要同时修改两个配置文件,最终会取两者中最小的线速度和角速度

```
# Robot
max_vel_x: 0.2 #机器人导航时最大线速度,与1.2.4 章节中情况三控制底盘平缓行走的参数一起控制底盘导航,最终取两者最小的线速度。
max_vel_x_backwards: 0.15 #机器人后退速度
max_vel_theta: 0.4 #最大角速度
acc_lim_x: 0.2 #线加速度
acc_lim_theta: 0.2 #角加速度,不能过大,否则行走可能左右摆动
min_turning_radius: 0.0
```

情况三: 限制机器人只能前进,不能后退

主要修改局部路径规划 teb_local_planner_params.yaml 中的机器人前进的权重参数,减小机器人后退几率和后退距离

```
weight_kinematics_forward_drive: 40
#机器人前进的权重,增大时,机器人后退几率,后退距离都会减小,但不能过大,否则导航起步时可能会停止不动,具体要根据实际情况调试。修改该参数还没能使底盘完全不会后退的情况(尤其是在转 180 度时有可能会稍微后退调整),后续会继续优化
```


2.5 建图与导航主要数据观察

在启动导航 launch 情况下(例如 roslaunch dashgo_nav navigation_imu.launch),然后 rostopic list 列出所有的主题,如下分析常用关键的主题信息作用:

```
eaibot@PathGoD1:~$ rostopic list
 /Lencoder #左轮编码器值变化
 /Lvel #左轮速度
 /Rencoder #右轮编码器值
 /Rvel #右轮速度
 /amcl_pose
            #amcl 算法定位得到底盘所处的地图位置
                  #下发给机器人的线速度和角速度
 /cmd vel
                  #急停开关状态主题,1---按下,0---未按下
 /emergencybt_status
              #陀螺仪信息
              #陀螺仪的角度变化
 /imu_angle
               #导航时, 默认的起点位置和方向
 /initialpose
               #显示在雷达滤波安全范围内是否有障碍物,>1 表示有障碍物,底盘线速度设为0,否则不影
 /is passed
响导航
               #显示在第二个(下雷达)滤波安全范围内是否有障碍物,只用在双雷达导航
 /is passed 2
 /joint states #导航时,添加目标点是否成功状态反馈
 #全局规划的路径, 需要在 rviz 上才能直观地看到
 /move_base/TebLocalPlannerROS/global_plan
 #局部规划的路径,需要在 rviz 上才能直观地看到
 /move_base/cancel
                      #取消当前导航
 /move_base/current_goal #当前导航要去的目标点坐标
 /move_base/goal #当前导航要去的目标点坐标
                      #导航结果反馈
 /move_base/result
                          #导航实时状态反馈
 /move base/status
 /move_base_simple/goal
                      #获取在 rviz 上点击设置的目标点坐标及方向
                          #里程计信息
 /robot_cmd_vel
                           #机器人导航过程中的实时坐标及位姿信息
 /robot_pose
 /robot_pose_ekf/odom_combined #融合陀螺仪后, 新的里程计信息
 /scan
 /smoother_cmd_vel
                         #经过平缓处理后,发给底盘的速度信息
                             #0~3 号超声波的数据
 /sonar0
 /sonar1
 /sonar2
                          #0~3 号超声波的点云数据
 /sonar cloudpoint
                           #电量显示主题
 /voltage_value
```


修订历史

日期	内容
2018-08-13	V1. 1
2018-09-19	V1. 2