Linear Separators

 Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

• Which of the linear separators is optimal?

Examples of Bad Decision Boundaries

What is a good Decision Boundary?

- Many decision boundaries!
 - The Perceptron algorithm can be used to find such a boundary
- Are all decision boundaries equally good?

Finding the Decision Boundary

• Let $\{x_1, ..., x_n\}$ be our data set and let y_i \hat{I} $\{1,-1\}$ be the class label of x_i

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
 - We should maximize the margin, m

Finding the Decision Boundary

The decision boundary should classify all points correctly >

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1, \quad \forall i$$

 The decision boundary can be found by solving the following constrained optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1$ $\forall i$

 This is a constrained optimization problem. Solving it requires to use Lagrange multipliers

What is a Support Vector Machine?

- It is a supervised machine learning problem where we try to find a hyperplane that best separates the two classes.
- SVM and logistic regression both the algorithms try to find the best hyperplane (decision boundary), but the main difference is logistic regression is a probabilistic approach whereas support vector machine is based on statistical approaches.
- SVM finds maximum margin between the hyperplanes that means maximum distances between the two classes.

Types of Support Vector Machine

Linear SVM

 When the data is perfectly linearly separable only then we can use Linear SVM. Perfectly linearly separable means that the data points can be classified into 2 classes by using a single straight line(if 2D).

Non-Linear SVM

 When the data is not linearly separable then we can use Non-Linear SVM, which means when the data points cannot be separated into 2 classes by using a straight line (if 2D) then we use some advanced techniques like kernel tricks to classify them. In most real-world applications we do not find linearly separable datapoints hence we use kernel trick to solve them.

Few mostly used terms

- **Support Vectors:** These are the points that are closest to the hyperplane. A separating line will be defined with the help of these data points.
- Margin: it is the distance between the hyperplane and the observations closest to the hyperplane (support vectors). In SVM large margin is considered a good margin. There are two types of margins hard margin and soft margin.

SVM in figure

• Find a linear hyperplane (decision boundary) that will separate the data

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

• Another possible solution

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{||\vec{w}||^2}{2}$
 - But subjected to the following constraints:

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \ge 1 \text{ if } y_i = 1$$

 $\overrightarrow{w} \cdot \overrightarrow{x_i} + b \le -1 \text{ if } y_i = -1$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

• What if the problem is not linearly separable?

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

• Subject to:

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \ge 1 - \xi_i \text{ if } y_i = 1$$

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \le 1 + \xi_i \text{ if } y_i = -1$$

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

XOR

X	Y	XY	
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Nonlinear Support Vector Machines

• Transform data into h'

Use the Kernel Trick

Transforming the Data

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

Kernel trick

• **Kernel:** A kernel is a method of placing a two dimensional plane into a higher dimensional space, so that it is curved in the higher dimensional space. (In simple terms, a kernel is a function from the low dimensional space into a higher dimensional space.)

The Kernel Trick

• Recall the SVM optimization problem $\max_{i=1}^n W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1, j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Strengths and Weaknesses of SVM

• Strengths

- Training is relatively easy
 - No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors

Weaknesses

• Need to choose a "good" kernel function.