CS 131 Compilers: Discussion 14: Static Analysis

杨易为 季杨彪 尤存翰

{yangyw, jiyb, youch}@shanghaitech.edu.cn

2021年6月4日

1 What's Data Flow Analysis

Data-flow analysis is a technique for gathering information about the possible set of values calculated at various points in a computer program. A program's control-flow graph (CFG) is used to determine those parts of a program to which a particular value assigned to a variable might propagate. The information gathered is often used by compilers when optimizing a program. A canonical example of a data-flow analysis is reaching definitions.

1.1 Iterative Algorithm

- 1. 对于一个含 k 个节点的 CFG, 每个迭代算法对于每个 node n 更新 OUT [n]
- 2. 假设迭代算法的研究对象 (domain) 是 V, 定义一个 k 元组 $V^k = (OUT [n_1], OUT [n_2], \ldots, OUT [n_k]) \$, \$V^k \in (V_1 \times V_2 \times \cdots \times V_k) V^k$ 即一次迭代产生的输出,每次迭代会更新 V^k , 可以将每次迭代经过 transfer functions 和 control-flow handing 的过程抽象为 $F: V^k \to V^{k'}$
- 3. 当 $V^k \to V^{k'}$ 时, 即 X = F(X), 称 F(x) 在 X 处到达了不动点, X 为 F(x) 的不动点,

1.2 Poset & partial order(偏序集和偏序)

We define poset as a pair (P,5) where \subseteq is a binary relation that defines a partial ordering over P, and \sqsubseteq has the following properties:

- 1. $\forall x \in P, x \sqsubseteq x$ (Reflexivity, 自反性)
- 2. $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$ (Antisymmetry, 反对称性)
- 3. $\forall x, y, z \in P, x \subseteq y \land y \subseteq z \Rightarrow x \subseteq z$ (Transitivity, 传递性) 偏序集为一个二元组 $(P, \subseteq), P$ 为一集合, 三为在集合上的一种比较关系,这个二元组为偏序集当且仅当集合元素在关系上满足自反性、反对称性和传递性。

偏序的含义:一个集合中的任意两个元素不一定存在顺序关系 (任意两元素不一定能比较大小)

1.3 Uppper and Lower Bounds(上界和下界)

Given a poset (P, \sqsubseteq) and its subset S that $S \subseteq P$, we say that $u \in P$ is an upper bound of S, if $\forall x \in P, x \sqsubseteq u$. Similarly, $l \in P$ is an lower bound of S, if $\forall x \in P, l \sqsubseteq u$.

如图, $\{a,b,c\}$ 是S 的上界 (灰色), $\{\}$ 是S 的下界:

1.4 最小上界、最大下界

We define the least upper bound (lub or join) of S, written $\sqcup S$, if for every upper bound of S_1 say $u, \sqcup S \sqsubseteq u$. Similarly, We define the greatest lower bound (glb or meet) of S, written $\sqcap S$, if for every lower bound of S, say $l, l \sqsubseteq \sqcap S$.

特别的, 对于仅有两个元素的集合 $S = \{a, b\}, \sqcup S$ 可以写为 $a \sqcup b$, 同理 $\sqcap S$ 可以写为 $a \sqcap b$ 。

注意: (最小) 上界和 (最大) 下界是针对集合中的特定子集的, 而上下界本身不一定在子集中, 并且:

- 1. 不是所有偏序集均存在 lub 或者 glb (如先前灰色的集合就不含 lub)
- 2. 如果一个偏序集存在 lub 和 glb,那么它是唯一的证明: 设 g1 和 g2 同为 P 的 glb,那么根据定义 $g_1 \sqsubseteq (g_2 = \sqcap P)$ 并且 $g_2 \sqsubseteq (g_1 = \sqcap P)$,又因为反对称性,所以 $g_1 = g_2$

2 Lattice, Semilattice, Complete and Product Lattice

2.1 Lattice (格)

Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if $a \sqcup b$ and $a \sqcap b$ exist, then (P, \sqsubseteq) is called a lattice. $u \not\in P$, $u \in P$

2.2 Semilattice

最小上界和最大下界只存在一个的偏序集称**半格**,只存在最小上界称为"join semilattice",只存在最大下界称为"meet semilattice"。

2.3 Complete Lattice, top & bottom (全格, ⊤和 ⊥) *

Given a lattice (P, \sqsubseteq) , for arbitrary subset S of P, if $\sqcup S$ and $\sqcap S$ exist, then (P, \sqsubseteq) is called a complete lattice.

一个偏序集的任意子集均存在最小上界和最大下界,那么这个偏序集成为全格。每个全格都存在一个最大元素 top $(T = \sqcup P)$ 和最小元素 bottom $(\bot = \sqcap P)$ 所有元素有限的格 (finite lattice) 均是全格。(反之不成立)

2.4 Product Lattice

Given lattices $L_1 = (P_1, \sqsubseteq_1)$, $L_2 = (P_2, \sqsubseteq_2)$, ..., $L_n = (P_n, \sqsubseteq) n$), if for all $i, (P_i, \sqsubseteq_i)$ has $\sqcup i$ (least upper bound) and Π_i (greatest lower bound), then we can have a product lattice $L^n = (P, \sqsubseteq)$ that is defined by:

- 1. $P = P_1 \times \ldots \times P_n$
- 2. $(x_1, \ldots, x_n) \sqsubseteq (y_1, \ldots, y_n) \Leftrightarrow (x_1 \sqsubseteq y_1) \wedge \ldots \wedge (x_n \sqsubseteq y_n)$
- 3. $(x_1, \ldots, x_n) \sqcup (y_1, \ldots, y_n) = (x_1 \sqcup_1 y_1, \ldots, x_n \cup_n y_n)$
- 4. $(x_1, \ldots, x_n) \sqcap (y_1, \ldots, y_n) = (x_1 \sqcap_1 y_1, \ldots, x_n \sqcap_n y_n)$

Product Lattice 仍是 Lattice, 若每个子格为全格,那么乘积也是全格。

2.5 Data Flow Analysis Framework via Lattice

- 一个数据流分析框架可以表示为一个三元组 (D, L, F), 其中:
- 1. D: 指数据流分析的方向, i.e., forward or backward;
- 2. L:指 lattice, 该格表示所有 domain 值域, 以及 meet () 或 join (□) 操作;
- 3. F: 一组 transfer function.

3 Monotonicity and Fixed Point Theorem

Monotonicity (单调性) A function $f: L \to L(L \text{ is a lattice})$ is monotonic if $\forall x, y \in L, x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$ 普通函数的单调性的推广

3.1 Fixed-Point Theorem

Given a complete lattice (L, \sqsubseteq) , if (1) $f: L \to L$ is monotonic and (2) L is finite, then the least fixed point of f can be found by iterating $f(\bot), f(f(\bot)), \ldots, f^k(\bot)$ until a fixed point is reached the greatest fixed point of f can be found by iterating $f(\top), f(f(\top)), \ldots, f^k(T)$ until a fixed point is reached. 如果番调且 L 有界, 那么荐在不动点,从上开始迭代执行 f 可得最小不动点,从丁开始迭代可得最大不动点。证明:

(1) Existence 由上定义以及 $f: L \to L$ 可楊

$$\bot \sqsubseteq f(\bot)$$

又因 f 是单调的,因此

$$f(\bot) \sqsubseteq f(f(\bot)) = f^2(\bot)$$

由于 L 是有限 (finite) 的, 因此总会存在一个 k, 有

$$f^{Fix} = f^k(\bot) = f^{k+1}(\bot)$$

(2) Least Fixed Point (数归法, 证明最小) 假设我们有另一个不动点 x, i.e., x = f(x) 由上的定义, 我们有 $\bot \sqsubseteq x_i$ 下面用数归法证明:

由于 f 是单调的, 因此

$$f(\perp) \sqsubseteq f(x)$$

对于 $f^i(\bot) \subseteq f^i(x)$, 由于 f 是单调的, 因此有

$$f^{i+1}(\perp) \sqsubseteq f^{i+1}(x)$$

因此对于任意 i, 有

$$f^i(\perp) \sqsubseteq f^i(x)$$

又因为 x = f(x), 所以存在一个 i, 有 $f^i(\bot) \subseteq f^i(x) = x$, 因此有

$$f^{Fix} = f^k(\bot) \sqsubseteq x$$

因此 $f^i(\perp)$ 是最小不动点。

4 Relate Iterative Algorithm to Fixed Point Theorem

如何将迭代算法和不动点定理联系起来?

- 1. 程序中每一个状态为一个 product lattice
- 2. Transfer function 和 join/meet fucntion 可以视为 F

If a product lattice L^k is a product of complete (and finite) lattices, i.e., (L, L, ..., L), then L^k is also complete (and finite)

In each iteration, it is equivalent to think that we apply function F which consists of

- transfer function f_i: L → L for every node
- (2) join/meet function ⊔/Π: L×L → L for control-flow confluence

下面只需要证明 Transfer function 和 join/meet function 均为单调的即可

- 1. Transfer function 是单调的, 因为通过之前分析, 所有 Gen/Kill 的函数都是单调的;
- 2. Join/meet function 是单调的, 证明如下

要证 Join/meet function,就是要证 $\forall x,y,z \in L, x \sqsubseteq y \Rightarrow x \sqcup zy \sqcup z$ 由 \sqcup 定义可得, $y \sqsubseteq y \sqcup z$, 由于巨传递性, $x \sqsubseteq y$, 因此 $x \sqsubseteq y \sqcup z$, 因此 $y \sqcup z$ 是 x 的上界, 注意到 $y \sqcup z$ 也是 z 的上界, 而 $x \sqcup z$ 是 x 和 z 的最小上界, 因此 $x \sqsubseteq y \Rightarrow x \sqcup z \sqsubseteq y \sqcup z$

4.1 讨论算法复杂度

定义格的高度即从 top 至 bottom 的最长路径长, The height of a lattice h is the length of the longest path from Top to Bottom in the lattice. 最坏情况即一次迭代,只变化一个单位高度,因此复杂度为 $O(h \times k)$.

5 May/Must Analysis, A Lattice View*

任何分析初始状态都从 unsafe 至 safe。针对于分析结果而言,处理所有分析结果后,程序行为正常为 safe, 反之为 unsafe, 极端的 safe 是无用的(如安全扫描中的模式匹配)

Must 和 May 分析的示意图如下图所示,对于 Must 分析,每个代码块都是从 T 开始的,因为在程序一开始,算法认为所有的待分析对象都是"合格"的(例如存活表达式分析中,算法认为每个表达式都是成活的)——这是一个不安全的状态,经过不断迭代,算法逐渐下降到最大不动点,虽然已经过了 truth 点(漏报),但是这已经是最好情况了(越往下走越 safe 但是结果也没意义了),对这些结果做优化能确保程序不出错(safe)。

对于 May 分析,每个代码块从 山 开始,即在一开始,算法认为所有分析对象都是不合格的(例如定义可达性分析中,算法认为每一条定义都没有新的定义)——这是 May 类型的不安全状态,经过不断迭代,算法逐渐上升到最小不动点,同样也过了 truth(误报),这也是分析的最好情况,算法依旧停留在 safe 区域。

6 Distributivity (分配性) and MOP

6.1 MOP (Meet-Over-All-Paths Solution)

设 s_x 为矢设 F_p 是一个路径 P 上的 transfer function, 那么 $MOP[S_i] = \sqcup / \sqcap_{A \text{ path } P \text{ from Entry to } S_i}$ $F_p(OUT[Entry])$

就是说,之前数据流分析的结果是流敏感的,而 MOP 的结果是路径敏感的,例如下图所示的数据流,,数据流分析的结果是 IN $[s_4] = f_{s_3}$ (f_{s_1} (OUT[entry]) $\sqcup f_{S_2}$ (OUT [Entry])),而 MOP 是 MOP $[s_4] = f_{S_3}$ (f_{s_1} (OUT[entry])) $\sqcup f_{S_3}$ (f_{S_2} (OUT[Entry])) (注意 f_{S_3} 的位置)

6.2 Iterative Algorithm v.s. MOP

MOP 比 Iterative 分析更精确,也就是说路径敏感比敏感更精确,下面为证明(这里只需证明两条路径的情况,其它数归即可):

然而,当 F 是 distributive (F 满足分配率)时, Interative 和 MOP 一样准确。 BitVector 或是 Gen/Kill 问题 (set union/intersection for join/meet)都是满足分配率的

6.3 Constant Propagation

Given a variable x at program point p, determine whether x is guaranteed to hold a constant value at p 对于在程序点 p 的一个变量 x, 判断 x 是否为在 p 点为一个常量

分析结果: 对于每一个 CFG 节点,对应一个 (x,v) 集合, x 是变量, v 是 x 的值

6.4 Lattice

Domain: UNDEF $\rightarrow \{..., -2, -1, 0, 1, 2, ...\} \rightarrow NAC, \rightarrow$ 表示 \sqsubseteq 关系 Meet Operator \sqcup :

- 1. NAC $\sqcap v = NAC$
- 2. $UNDEF \sqcap v = v$
- 3. $c \sqcap v = \text{NAC}$ (c 为一常量)
- $4. \ c \sqcap c = c$
- 5. $c_1 \sqcap c_2 = NAC$

6.5 Transfer Function

讨论 transfer function, 对于一个赋值语句 s: x = ... 来说, 定义其 F 为

$$F: OUT[s] = gen \cup (IN[s] - \{(x,)\})$$

- s : x = c; gen = $\{(x,c)\}$ -s: x = y; gen = $\{(x, \text{val}(y))\}$ - s: x = y op z; gen = $\{(x, f(x, z))\}$ 而 f(x, z) 有三种情况:

$$f(y,z) = \begin{cases} \text{val}(y) \text{ op val}(z) & // \text{ if val}(y) \text{ and val}(z) \text{ are constants} \\ \text{NAC} & // \text{ if val}(y) \text{ or val}(z) \text{ is NAC} \\ \text{UNDEF} & // \text{ otherwise} \end{cases}$$

6.6 function 不满足分配性

如下图所示, $F(X \sqcap Y)$ 中 C 的值为 NAC, 而 $F(X) \sqcap F(Y)$ 中 C 的值为 10, 因此 F 不满足分配性。

7 Worklist Algorithm

Iterative Algorithm 的优化,Iterative 存在冗余的计算,而 Worklist 只计算有变化的 node:

```
OUT[entry] =;
for(each basic block B\entry)
OUT[B] =;
Worklist+all basic blocks
while (Worklist is notempty)
Pick a basic block B from Worklist
old_OUT=OUT[B]
IN[B] = OUT[P]; # join/meet P 为B 的前置代码块
OUT[B] = genB U (IN[B] - killB); # transfer function
if(old_OUT OUT[B])
Add all successors of B to Worklis
```

7.1 分析特性

- 1. 流敏感:程序语句随意调换位置,分析结果不变为流非敏感,否则为流敏感;
- 2. 路径敏感: 考虑程序中路径的可行性;

8 总结

本节来自南京大学 Bilibili 程序分析课程,主要介绍格,接着用格抽象描述数据流分析,解释为什么迭代算法能够到达最大/最小不动点,接着比较了流敏感和路径敏感的准确性,最后介绍 worklist 算法,以提升迭代算法的效率。