HW-2: Question-2 R Notebook

Rachel M. Smith

14 November 2016

Question-2 [In Progress]

2.a. Three-Way Loglinear Model¹

$$\log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

THREE-WAY LOGLINEAR ANALYSIS SUMMARY. [ToDo]

Call:

loglm(formula = ~Abuse:Boyfriend + Abuse:Program + Boyfriend:Program,

data = tbl, digits = 4)

Statistics:

	X^2	df	P(> X^2)
Likelihood Ratio	3.318	1	0.06853
Pearson	3.245	1	0.07163

Q-2 Data: 'child.sav' & 'child2.sav' ¹ [In Progress]

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X$$

$$\pi = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$$

lgm <- $glm(abuse \sim boyfriend + program + boyfriend * program, <math>\underline{data = } dat, \underline{family = } "binomial")$

LOGISTIC REGRESSION WITH INTERACTION SUMMARY. [ToDo]

Table 2: Fitting generalized (binomial/logit) linear model: abuse ~ boyfriend + program + boyfriend * program

	Estimate	Std. Error	z value	Pr(> z)
h ovefui ou d				
boyfriend	-1.586	0.7306	-2.171	0.02997
program boyfriend:program	-0.3418 1.461	0.2352 0.8615	-1.453 1.696	0.1461 0.08997
(Intercept)	-2.326	0.0015	-15.06	3.016e-
•	J	3 13	3	51

[2.c]³ [ToDo]

Look back at your findings from the analysis of the contingency table in HW 1 Problem 4. Briefly compare your results from HW 1 to the results from the loglinear analysis and the logistic regression model (no more than 2-3 sentences is needed). Refer to specific values when making your comparisons.

2.d% Multiple Logistic Regression⁴

Data Summary

	abuse	boyfriend	program	white
no	1129	1010	599	667
yes	84	203	614	546

Multiple logistic regression model summary statistics AND FIT INDICES

CONFIDENCE INTERVALS (CI) & ODDS RATIOS (OR)

Table 4: Logistic Regression Coefficients (β) & Coresponding Confidence Intervals (CI)

		CI_{eta}	
	β	2.5 %	97.5 %
(Intercept)	-2.983	-3.4407	-2.5676
program	-0.2454	-0.7143	0.2177
boyfriend	-0.8127	-1.6664	-0.0977
white	0.8045	0.3347	1.2902
welfare	0.8665	0.5839	1.1638

Table 5: Logistic Regression Odds Ratios (Φ) & Coresponding Confidence Intervals (CI) ¹

		CI_{Φ}	
	Φ	2.5 %	97.5 %
(Intercept)	0.0506	0.032	0.0767
program	0.7824	0.4895	1.2432
boyfriend	0.4437	0.1889	0.9069
white	2.2356	1.3975	3.6335
welfare	2.3786	1.7931	3.2019

Note:

⁴ [In Progress]

¹ Confidence intervals are based on the logistic regression model's profiled log-likelihood function, rather than the standard errors

Table 6: Logistic Regression Model Fit Statistics

	Estimate	Degrees of Freedom
Null Deviance	610.61	1212
Residual Deviance	555.77	1208
AIC	565.77	

2.e. Moderation Analysis⁵

⁵ [In Progress]

Table 7: Fitting generalized (binomial/probit) linear model: f2

	Estimate	Std. Error	z value	Pr(> z)
welfare	0.5103	0.08834	5.777	0.000000007623
program	-0.164	0.117	-1.402	0.1609
white	0.371	0.1165	3.185	0.001448
welfare:program	0.3526	0.1761	2.002	0.0453
(Intercept)	-1.565	0.06014	-26.03	2.225e-149

Table 8: Fitting generalized (gaussian/identity) linear model: f1

	Estimate	Std. Error	t value	Pr(> t)
welfare	-	0.02783	-0.1835	0.8544
white	0.005106	0.02893	-0.1485	0.882
(Intercept)	0.004296 3.098e-	0.01437	2.155e-	1
	17		15	

 \mathbb{R}

```
## 'interaction.plot()' from the {stats} package ##
with(dat2, {
    interaction.plot(abuse, program, welfare, col = c("darkgray", "#cd0000"),
        lwd = 2, main = "Interaction Effects", ylab = expression(mu[welfare]),
        xlab = "Abuse", trace.label = "Program")
})
```


