

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

AD A 1 25 U 43

ANALYSIS OF WAKE SURVEY DATA FOR A SALVAGE SHIP (ARS-50) DESIGN REPRESENTED BY MODEL 5391 WITH KORT NOZZLE

Ву

David M. Rawson

and

E. E. West

Approved For Public Release: Distribution Unlimited

SHIP PERFORMANCE DEPARTMENT

February 1983

DTNSRDC/SPD-0957-03

004

83 03 02

TIE FILE CO

NV-DTNSRDC 9802/30 (2-80) (supersedes 3880/46)

ANALYSIS OF WAKE SURVEY DATA FOR A SALVAGE SHIP (ARS-50) DESIGN REPRESENTED BY MODEL 5391 WITH KORT NOZZLE

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM	
	RECIPIENT'S CATALOG NUMBER	
DTNSRDC/SPD-0957-03 #125 04	<i>'3</i>	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED	
ANALYSIS OF WAKE SURVEY DATA FOR A SALVAGE SHIP (ARS-50) DESIGN REPRESENTED BY MODEL 5391 WITH	FINAL	
KORT NOZZLE	5. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(s)	
David M. Rawson	[
E. E. West		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
David W. Taylor Naval Ship R&D Center	1	
Ship Performance Department	NAVSEA Work Request NO0024-82 DTNSRDC Work Unit 1521-730	
Bethesda, Maryland 20084	DANORDO WOLK UNITE 1321~/30	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Naval Sea Systems Command	February 1983	
Washington, D.C. 20362	13. NUMBER OF PAGES	
	47	
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)	
	Unclassified	
	154 DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	un Report)	
19. KEY WORDS (Centinus on reverse side if necessary and identity by block number)		
Salvage Ship Kort Nozzle	1	
Wake Survey Pitot Tube Rake	j	
Model Experiments	1	
20. ABETRACT (Continue on reverse olds if necessary and identity by block number)		
A wake survey was conducted to aid in the design of a kort nozzle propeller for a salvage ship (ARS-50) represented by DTNSRDC Model 5391-1 (Hydronautics Model 7925-4). Pressure measurements were made with a rake of five-hole pitot tubes in order to obtain the flow velocity in the plane of the propeller. Several model configurations were tested in order to identify the effect of the nozzle on the flow and also the effect of a propeller in-		
stalled just aft of the rake for the purpose of significant		

DD 1 JAN 79 1473 EDITION OF 1 NOV 65 IS OBSOLETE 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Men Date Entered)

20. Abstract (continued)

through the nozzle. Harmonic analyses of the circumferential distribution of the velocity component ratios were performed on the model experimental data and the results are reported herein.

TABLE OF CONTENTS

P	age
LIST OF FIGURES	iv
LIST OF TABLES	v
NOTATION	ii
AMERICAN STANDARD AND METRIC EQUIVALENTS	хi
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DESCRIPTION OF MODEL	2
PRESENTATION AND DISCUSSION OF RESULTS	3
WITH PROPELLER	3
WITHOUT PROPELLER	3
WITHOUT NOZZLE	4
CONCLUSIONS	6
REFERENCES	7

iii

LIST OF FIGURES

			Page
1	-	Photographs showing the ARS-50 Nozzle with Propeller and Wake Survey Pitot Tube Rake	9
2	-	Photographs showing the ARS-50 Nozzle with Wake Survey Pitot Rake but without Propeller	10
3	-	Wake Survey Pitot Tube Rake Arrangement	11
4	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.451$ for the ARS-50 with Propeller and Nozzle	12
5	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.591$ for the ARS-50 with Propeller and Nozzle	13
6	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.735$ for the ARS-50 with Propeller and Nozzle	14
7	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.868$ for the ARS-50 with Propeller and Nozzle	15
8	-	Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 with Propeller and Nozzle	16
9	_	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 with Propeller and Nozzle	17
10	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.451$ for the ARS-50 without Propeller, with Nozzle	18
11	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.591$ for the ARS-50 without Propeller, with Nozzle	19
12	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.735$ for the ARS-50 without Propeller, with Nozzle	20
13	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.868$ for the ARS-50 without Propeller, with Nozzle	21
14	-	Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 without Propeller, with Nozzle	22
15	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 without Propeller, with Nozzle	23

			Page
16		Circumferential Distribution of Velocity Component Ratios at r/R = 0.451 for the ARS-50 without Nozzle or Propeller	24
17 -	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.591$ for the ARS-50 without Nozzle or Propeller	25
18 -	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.735$ for the ARS-50 without Nozzle or Propeller	26
19 -	-	Circumferential Distribution of Velocity Component Ratios at $r/R = 0.868$ for the ARS-50 without Nozzle or Propeller	27
20 -	-	Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 without Nozzle or Propeller	28
21 -	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 without Nozzle or Propeller	29
22 -	-	•	30
		LIST OF TABLES	30
		IIISI OF TABLES	
1 -	-	Experimental Wake Survey Data for the ARS-50 with Propeller and Nozzle	31
2 -	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for the ARS-50 with Propeller and Nozzle	34
3 -	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios at the Experimental and Inter- polated Radii for the ARS-50 with Propeller and Nozzle	35
4 -	-		36

		•	Page
5	-	Experimental Wake Survey Data for the ARS-50 without Propeller, with Nozzle	37
6	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for the ARS-50 without Propeller, with Nozzle	40
7	-	Harmonic Analysis of the Longitudinal Velocity Com- ponent Ratios at the Experimental and Interpolated Radii for the ARS-50 without Propeller, with Nozzle	41
8	-	Harmonic Analysis of the Tangential Velocity Component Ratios at the Experimental and Interpolated Radii for the ARS-50 without Propeller, with Nozzle	42
9	-	Experimental Wake Survey Data for the ARS-50 without Nozzle or Propeller	. 43
LO	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and Interpolated Radii for the ARS-50 without Nozzle or Propeller	45
11	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios at the Experimental and Interpolated Radii for the ARS-50 without Nozzle or Propeller	46
12	-	Harmonic Analysis of the Tangential Velocity Component Ratios at the Experimental and Interpolated Radii for the ARS-50 without Nozzle or Propeller	47

NOTATION

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
A _N	COS COEF	The cosine coefficient of the Nth harmonic*
B _N	SIN COEF	The sine coefficient of the Nth harmonic*
D	•-•	Propeller diameter
J _V		Apparent advance coefficient $J_{V} = \frac{V}{nD}$ (dimensionless)
L		Length of ship (LBP)
ĸ	N	Harmonic number
n ·		Propeller revolutions
r/R or x	Radius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
, v -	v	Actual model or ship velocity
V _b (x,θ)		Resultant inflow velocity to blade for a given point
v̄ _b (x)	•	Mean resultant inflow velocity to blade for a given radius
V _r (x, 0)	VR	Radial component of the fluid velocity for a given point (positive toward the shaft centerline)
$\overline{V}_{r}(x)$		Mean radial velocity component for a given radius
v _{r} (x ,θ)/ν	VR/V	Radial velocity component ratio for a given point
<u>v</u> (x)/v	VRBAR	Mean radial velocity component ratio for a given radius
ν _c (x ,θ)	VT	Tangential component of the fluid velocity for a given point (positive in a counterclockwise
*See footnote	on the following page	direction looking forward)

NOTATION (Continued)

	•	
$\overline{V}_{t}(x)$		Mean tangential velocity component for a given radius
ν _t (x ,θ)/ν	VT/V	Tangential velocity component ratio for a given point
v̄ _t (x) /v	VTBAR	Mean tangential velocity component ratio for a given radius
$(\widetilde{V}_{t}(x)/V)_{N}$	AMPLITUDE	Amplitude (B for single screw symmetric; C_N^N otherwise) of Nth
		harmonic of the tangential velocity component ratio for a given radius*
ν _{x} (x , θ)	vx	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
$\overline{V}_{\mathbf{x}}(\mathbf{x})$	•••	Mean longitudinal velocity com- ponent for a given radius
v _{x} (x ,θ)/v	vx/v	Longitudinal velocity component ratio for a given point
⊽ _{x} (x)/v	VXBAR	Mean longitudinal velocity component ratio for a given radius
$(\widetilde{\mathbf{v}}_{\mathbf{x}}(\mathbf{x})/\mathbf{v})_{\mathbf{N}}$	AMPLITUDE	Amplitude (A _N for single screw
		symmetric; $C_{f N}$ otherwise) of Nth
		harmonic of the longitudinal velocity component ratio for a given radius*
¢ _N	PHASE ANGLE	Phase Angle of Nth harmonic*

*The harmonic amplitudes of any circumferential velocity distribution $f(\theta)$ are the coefficients of the Fourier Series:

$$f(\theta) = A_o + \sum_{N=1}^{M} A_N \cos (N\theta) + \sum_{N=1}^{M} B_N \sin(N\theta)$$
$$= A_o + \sum_{N=1}^{M} C_N \sin(N\theta + \phi_N)$$

NOTATION (Continued)

1-w(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int_{-\infty}^{\infty} (\overline{v}_{x_c}(x)/v) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{x_c}(x)/V = \int_0^{2\pi} \left[\frac{V_{x_c}(x,\theta)}{2^{\pi} V} \right] d\theta$$

and $V_{x_c}(x,\theta)/V = (V_{x_c}(x,\theta)/V) - (V_{t_c}(x,\theta)/V) \tan (\beta(x,\theta))$

1-wv(x)

1-WVX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{cases} r/R \\ 2 \cdot \int_{R}^{r/R} (\overline{v}_{x}(x)/v) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^{2} - (r_{hub}/R)^{2}} \end{cases}$$

x/L

Distance from forward perpendicular expressed as a ratio of the overall length (L)

3(x,9)

Advance angle in degrees for a given point

万(x)

BBAR

Mean advance angle in degrees for a given radius

+**A B**

BPOS

Variation of the maximum advance angle from the mean for a given radius

NOTATION (Continued)

-Δβ BNEG Variation of the minimum advance angle from the mean for a given

radius

Angle in Degrees Position angle (angular coordinate) in degrees

VELOCITY DIAGRAM OF BETA ANGLES

AMERICAN STANDARD AND METRIC EQUIVALENTS (U)

AMERICAN STANDARD	METRIC
1 inch	25.400 millimeter [0.0254 m (meter)]
1 foot	0.3048 m (meter)
1 foot per second	0.3048 m/s (meter per second)
1 knot	0.5144 m/s (meter per second)
l pound (force)	4.4480 N (newtons)
l degree (angle)	0.01745 rad (radians)
1 horsepower	0.7457 kW (kilowatts)
1 long ton	1.016 tonnes, 1.016 metric tons, or 1016.0 kilograms
1 inch water (60 deg F)	248.8 pa (pascals)

The notations used in this document are consistent with the International Towing Tank Conference (ITTC) Standard Symbols.*

^{*}International Towing Tank Conference Standard Symbols 1976, The British Ship Research Association, BSRA Technical Memorandum No. 500 (May 1976)

ABSTRACT

A wake survey was conducted to aid in the design of a kort nozzle propeller for a salvage ship (ARS-50) represented by DINSRDC Model 5391-1 (Hydronautics Model 7925-4). Pressure measurements were made with a rake of five-hole pitot tubes in order to obtain the flow velocity in the plane of the propeller. Several model configurations were tested in order to identify the effect of the nozzle on the flow and also the effect of a propeller installed just aft of the rake for the purpose of simulating a realistic flow through the nozzle. Harmonic analyses of the circumferential distribution of the velocity component ratios were performed on the model experimental data and the results are reported herein.

ADMINISTRATIVE INFORMATION

The work was authorized by the Naval Sea Systems Command (NAVSEA) in accordance with Work Request Number NO0024-82. The DINSRDC Work Unit Number was 1521-730.

INTRODUCTION

The Naval Sea Systems Command (NAVSEA) initiated a model experimental program at the David W. Taylor Naval Ship R&D Center (DTNSRDC) to aid in the calculation of alternating forces and moments of the ARS-50 salvage ship propeller. In this program, the Center was requested to perform wake surveys in the propeller plane of the ARS-50 Model with the kort nozzles. One survey was to be conducted while a propeller was operating to induce flow through the nozzle. A second survey was to be performed with the propeller removed. An additional wake survey was performed without the nozzle or propeller.

A powering investigation as well as a wake survey had been carried out by Anderson and Day¹ with the model of the ARS 50 fitted with an unshrouded propeller instead of the present kort nozzle propulsion system. The results of

¹ References are listed on page 7.

the wake survey with and without the kort nozzle and the harmonic analyses of the velocity components of the survey are presented herein.

DESCRIPTION OF MODEL

Model 5391, representing the 240 ft (73.1 m) ARS-50 salvage ship, was constructed of fiberglass by Hydronautics Inc. for experiments requested of them by NAVSEA. The linear ratio used was 15.357.

The appendages installed for the wake survey in addition to the kort nozzles included the shafts, struts, and bilge keels. A right angle drive was also installed to power the propeller (Hydronautics propeller 7925-2CD set at pitch-diameter ratio of 1.21) behind the kort nozzle. Photographs of the arrangement are shown in Figure 1. The appendage arrangement with the propeller removed for the wake survey without the induced flow through the kort nozzle is shown in Figure 2.

The wake surveys were conducted with the model ballasted to a draft representing 15.5 ft (4.7 m) even keel in the static condition. The model was then towed at a velocity representing a ship speed of 14.5 knots (7.5 m/s). Propeller revolutions representing 150 revolutions per minute (rpm) full-scale were set when the propeller was used.

A special wake survey rake was built with short pitot tubes so that the rake would be suitable for operation within the nozzle and have as small a clearance as possible from the operating propeller mounted just behind the rake. A drawing of the pitot tube rake arrangement is presented in Figure 3. The tubes were positioned radially at fractions of the propeller radius equalling 0.451, 0.591, 0.735, and 0.868, based on a 5.25 ft (1.6 m) propeller radius.

PRESENTATION AND DISCUSSION OF RESULTS

This presentation is divided into three sections, the wake survey in the nozzle with the propeller induced flow, the survey in the nozzle without the propeller, and the survey without the nozzle or propeller. The advance angles were calculated using an advance coefficient, $J_{\rm V}$, of 0.910.

WITH PROPELLER

The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios of the propeller induced flow are presented in graphical form in Figures 4 through 7. Tabulated values of the experimental velocity component ratios at the experimental radii are presented in Table 1. The radial distributions of the circumferential mean velocities and advance angles are plotted in Figures 8 and 9, respectively.

Harmonic analyses have been performed on the longitudinal and tangential velocity component ratios. The mean longitudinal (VXBAR), tangential (VTBAR), and radial (VRBAR) component ratios of the velocity vectors, and the volumetric mean wake velocity ratio (1-WX) are presented in Table 2 along with the calculated mean values of the advance angle (BBAR), and the maximum variations thereof, (BPOS) and (BNEG). The amplitudes and phase angles for the four experimental and nine interpolated radii are tabulated for eight harmonics in Tables 3 and 4 for the longitudinal and tangential velocity components, respectively.

WITHOUT PROPELLER

The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios for the survey without the propeller are presented in graphical form in Figures 10 and 13. Tabulated values of the

experimental velocity component ratios at the experimental radii are presented in Table 5. The radial distributions of the circumferential mean velocities and advance angles are plotted in Figures 14 and 15, respectively and tabulated in Table 6. The amplitudes and phase angles from the harmonic analysis of the wake survey without the propeller are presented in Tables 7 and 8.

WITHOUT NOZZLE

The circumferential distributions of velocity component ratios for the survey without the nozzle or propeller are presented in graphical form in Figures 16 through 19. Tabulated values of the experimental velocity component ratios at the experimental radii are presented in Table 9. The radial distribution of the mean velocity component ratios and advance angles are plotted in Figures 20 and 21 respectively and tabulated in Table 10. This data was collected for comparison with reference 1. The amplitudes and phase angles from the harmonic analysis of the wake survey without the nozzle are presented in Tables 11 and 12.

In Figures 8, 9, 13, 14, 20, and 21, points marked by geometric symbols (triangle, square, etc.) represent actual measured data. The points marked by an "x" represent interpolations calculated by the computer.

The measurement system used in this velocity survey has been described by Grant and $\mathrm{Lin^2}$. The accuracy of the pressure transducer system is approximately plus or minus three hundredths of an inch of water pressure (7.5 pascal). The accuracy of the entire velocity survey apparatus is estimated to be \pm one percentage point on the longitudinal velocity component ratio, except in areas where steep velocity gradients occur. In these areas, such as behind a strut, the accuracy is significantly less.

Figure 22 presents a composite plot of the radial distribution of the mean longitudinal velocity component to illustrate the increase in flow velocity caused by the nozzle and propeller. The nozzle caused an increase in the axial flow through the propeller plane of approximately 6.5 percent while the propeller increased the flow through the nozzle by approximately 18.8 percent.

The tangential velocity component ratios were not affected appreciably by the flow velocity increase due to the nozzle or propeller.

The tangential velocity component ratios measured with the second and fourth pitot tubes (r/R values of 0.591 and 0.868) were considered to be too high and inaccurate. The observed inaccuracy was consistently present in all the experiments and was considered to be due to complications in the pitot tubes. This inaccuracy could best be seen in the angular location of the "cross-over" points. The cross-over point is the angular position at which the tangential velocity components are zero. The cross-over points are generally the same at all radii and they occurred at approximately 150° for the first and third pitot tubes (r/R = 0.451 and 0.735) in these experiments and for all the experimental radii in reference 1. However, the cross-over points for $V_{\rm T}/V$ from the second and fourth tubes of the present experiments were at approximately 120°. To correct the tangential velocity values measured with tubes two and four, the data for each tube were reduced by a constant amount necessary to bring the value of $V_{\rm T}/V$ at 150° to zero.

A second harmonic analysis was performed with the adjusted tangential velocity component values. The adjustment had no effect on the longitudinal velocity components and the harmonic content of the wake was unchanged.

Presented herein are the wake survey data as measured and the results of the

harmonic analyses of the measured data. The circumferential mean of the tangential velocity components are presented in Figures 8, 14, and 20 for both adjusted and unadjusted data.

CONCLUSIONS

A new pitot tube rake was constructed to allow measurements to be taken at the propeller plane inside the kort nozzle. The rake performed well, but there were inaccuracies in the tangential velocity component measurements from the second and fourth tubes. The inaccuracies did not effect the determination of the longitudinal velocities or the harmonic analysis of the wake.

The data for the ARS-50 wake survey appears reasonable. The results of the wake survey of the ARS-50 hull without a nozzle or propeller compare well, within acceptable limits, to the results obtained in a previous wake survey performed on the ARS-46. The installation of a kort nozzle in the propeller plane increases the axial flow through the propeller plane by 6.5 percent. The presence of a propeller rotating at 150 rpm, ship scale, will increase the flow through the nozzle by an additional 18.8 percent. The presence of the nozzle and rotating propeller did not appreciably change the tangential component of the wake.

REFERENCES

- 1. Anderson, K.J. and W.G. Day, "Predictions of Powering Performance Including Tow Rope Pull and the Results of Propeller Disk Wake Survey for the ARS-46 Salvage Ship Represented by Model 5391," DTNSRDC Report SPD-0957-01, (September 1980).
- 2. Grant, J.W. and A.C.M. Lin, "The Effects of Variations of Several Parameters on the Wake of the Propeller Plane for Series $60-0.60\ C_{\rm B}$ Models," Appendices A and D, DINSRDC Report 3024, pp. 105, (June 1969).

PSD 7449-6-82

PSD 7447-6-82

PSD 7445-6-82

PSD 7444-6-82

Figure 1 - Photographs showing the ARS-50 Nozzle with Propeller and Wake Survey Pitot Tube Rake

PSD 7480-7-82

PSD 7479-7-82

PSD 7482-7-82

Figure 2 - Photographs showing the ARS-50 Nozzle with Wake Survey Pitot Rake but without Propeller

Figure 3 - Wake Survey Pitot Tube Rake Arrangement

Figure 4 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.451 for the ARS-50 with Propeller and Nozzle

0.531 RAD.

Figure 5 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.591 for the ARS-50 with Propeller and Nozzle

Figure 6 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.735 for the ARS-50 with Propeller and Nozzle

ARS WAKE SURVEY WITH PROPELLER AND NOZZIE 0.358 RAD

Figure 7 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.868 for the ARS-50 with Propeller and Nozzle

Figure 8 - Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 with Propeller and Nozzle

Figure 9 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 with Propeller and Nozzle

SRS WAKE SURVEY WITH NOZZILE, WITHOUT PROPELLER 0.451 RSD.

Figure 10 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.451 for the ARS-50 without Propeller, with Nozzle

Figure 11 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.591 for the ARS-50 without Propeller, with Nozzle

Figure 12 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.735 for the ARS-50 without Propeller, with Nozzle

GRS WAKE SURVEY WITH NOZZLE, WITHOUT PROPELLER $0.859\,\mathrm{RSD}_{\odot}$

Figure 13 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.868 for the ARS-50 without Propeller, with Nozzle

Figure 14 - Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 without Propeller, with Nozzle

Figure 15 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 without Propeller, with Nozzle

988 MAKE SURVEY MITHOUT PROPELLER OR NOZZLE $0.451\ \text{RSD}_{\odot}$

Figure 16 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.451 for the ARS-50 without Nozzle or Propeller

ARS WAKE SURVEY WITHOUT PROPELLER OR NOZZILE 0.591 RAD.

Figure 17 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.591 for the ARS-50 without Nozzle or Propeller

0.735 RAD.

Figure 18 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.735 for the ARS-50 without Nozzle or Propeller

SRS WAKE SURVEY WITHOUT PROPELLER OR NOZZIE

0.058 RAD

Figure 19 - Circumferential Distribution of Velocity Component Ratios at r/R = 0.868 for the ARS-50 without Nozzle or Propeller

Figure 20 - Radial Distribution of the Mean Velocity Component Ratios for the ARS-50 without Nozzle or Propeller

Figure 21 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for the ARS-50 without Nozzle or Propeller

ARS-58 HEAN LONGITUDINAL VELOCITY COMPONENT RATIOS

- O WITH PROPELLER AND NOZZLE
- □ WITHOUT PROPELLER, WITH NOZZLE
- △ WITHOUT PROPELLER OR NOZZLE

Figure 22 - Comparison Plot of the Radial Distribution of the Mean Longitudinal Valocity Component Ratio vs. Fraction of Propeller Radius for the ARS-50 in the Three Experimental Conditions

TABLE 1 - EXPERIMENTAL WAKE SURVEY DATA FOR THE ARS-50 WITH PROPELLER AND NOZZLE

	0401115	454			RADIUS .	. 451	
ANGLE	RADIUS =	.451 VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
.1	1.063	-,145	. 140	312.0	1.050	.064	. 126
.5	1.003	141	.149	321.1	1.016	.013	. 136
1.1	1.086	144	. 149	328.4	.985	036	. 135
7.1	1.092	184	. 133	333.9	1.071	084	.120
7.9	1.126	200	. 140	345.0	1.084	115	. 126
14.3	1.187	232	. 127	347.0	1.115	122	.128
16.1	1.213	237	. 129	352.5	1.120	129	.135
21.3	1.261	244	. 120	353.6	1.123	134	. 143
21.5	1.241	244	.115	356.0	1.109	137	.142
22.4	1.250	241	. 121	359.8	1.037	141	.140
28.5	1.265	245	, 124				
28.7	1.251	245	. 122		RADIUS =	. 591	
36.0	1.256	253	.137	ANGLE	V X 'V	VT/V	VR V
36.9	1.260	253	.146	. 2	1.046	038	.039
43.4	1.268	260	. 158	1.9	1.050	037	. 043
46.7	1.268	261	, 167	3.7	1.056	041	.034
48.6	1.268	260	.171	5.5	1.058	043	.031
50.4	1.270	261	. 175	7.3	1.053	053	.027
52.3	1.270	259	. 181	10.9	1.075	079	. 009
54.0	1.267	259	. 184	14.5	1.111	104	осн
55.8	1.271	260	. 190	15.9	1.175	106	013
61.2	1.274	256	. 203	18.2	1.175	117	017
65. 6	1.275	244	.217	21.8	1.191	129	007
66.8	1.278	248	.217	25.4	1.203	137	.002
72.1	1,283	237	.228	30. 7	1.215	151	.023
77.4	1.287	222	. 239	33.8	1.227	156	.031
80.1	1.286	211	. 245	37.8	1.227	162	. 047
94.5	1.293	170	. 260	39.6	1.231	165	.054
108.8	1.299	123	.270	43.3	1.234	166	. 069
123.1	1.299	082	. 271	51.9	1.246	167	. 100
137.5	1.296	044	. 266	61.2	1.243	156	. 129
151.9	1.301	009	. 257	69.8	1.250	142	. 15ช
161.0	1.267	.007	. 247	79. 3	1.259	117	. 174
166.3	1.267	.023	. 246	£7.9	1.275	084	. 18୪
166.3	1,310	.030	. 267	97.4	1.274	057	. 192
169. 9	1.252	.040	. 239	106.0	1.291	030	.200
173.6	1.219	.043	. 234	117.3	1.290	.001	. 201
177.3	1.221	.033	. 238	124.0	1.301	.024	.202
180.7	1.258	.036	. 278	136.0	1.297	. 040	. 196
181.0	1.250	. 026	. 268	142.1	1.297	.061	. 194
188.4	1.282	.043	. 300	145.3	1.295	.062	. 189
193.8	1.279	.060	. 293	146.1 153.3	1.293 1.300	.069	, 186
195.2	1.325	.080	. 293	167.5	1.300	.071	.173
198.6	1.313	.089	.204	168.0	1.309	.089 .087	. 157 . 150
199. 4 209. 5	1.281 1.316	.073	. 285 . 279	171.5	1.309	.087	. 124
211.2	1.313	.123 .126	.279	175.4	1.278	.023	.116
224.0	1.313	.153	. 254	179.1	1.323	.023	. 174
224.1	1.311	. 151	. 251	179.8	1.324	.029	.207
236.7	1.301	. 166	. 228	181.5	1.321	.040	.219
238.3	1.293	.168	.228	182.9	1.332	.043	.218
249.9	1.290	.168	. 205	182.9	1.324	.069	.237
252.7	1.290	.170	.201	183.3	1.320	.054	.2.
262.8	1.278	.162	.180	183.4	1.321	.057	.231
267.2	1.279	.159	.174	187.1	1.318	.083	.242
275.9	1.260	. 148	.157	189.6	1.291	. 105	. 238
281.5	1.267	.138	. 145	190.3	1.319	.092	.241
295.8	1.158	. 102	.117	190.6	1.313	. 103	. 245
295.9	1.212	.112	. 1 16	194.2	1.315	. 124	. 235
308.5	1.102	. 087	.112	206.8	1.304	. 174	.202

TABLE 1 - CONTINUED

	RADIUS .	504			BARTHE -	. 735	
ANGLE	AX\A	.591 VT/V	VR/V	ANGLE	RADIUS =	./35 VT/V	VR/V
206.8	1,310	. 176	.203	65.6	1.188	196	. 160
215.8	1.304	. 195	. 179	66.8	1.186	196 197	. 162
224.9	1.301	. 207	. 157	72.1	1.209	190	. 182
233.8	1.300	.216	.135	77.4	1.239	182	.200
233.8	1.299	.217	. 136	80.1	1.251	170	. 204
242.8	1.293	. 220	.116	94.5	1.285	139	.218
251.8	1.282	.223	.091	108.8	1.302	101	.230
260.9	1.275	.221	.076	123.1	1.307	064	. 232
270.1	1.248	.213	. 051	137.5	1.305	024	. 228
279.0	1.242	. 205	.031	151.9	1.308	.022	.212
286.0	1.198	. 194	.013	161. 0	1.293	. 050	. 196
289.2	1.181	. 189	.009	166.3	1,266	.073	. 171
297.1	1.169	. 174	009	166.3	1.314	. 087	. 145
300.7	1.151	. 170	011	169.9	1.297	. 100	. 138
304.0	1.114	. 160	018	173.6	1.268	. 146	.089
308.0	1.084	.139	018	177.3	1.228	. 147	.087
311.6	1.039	. 126	016	180.7	1.243	.094	. 185
315.1	1.009	.083	013	181.0	1.234	. 069	. 205
318.6	.983	.044	012	188.4	1.306	.059	.320 .278
321.9 322.1	.983 .979	.018	014	193.8	1.304 1.319	.086 .097	.284
324.0	.989	006	012 013	195 .2 198.6	1.312	.097	. 248
327.6	.993	016	004	199.4	1.301	.099	.249
331.2	. 982	035	.006	209.5	1.314	. 122	.212
334.9	.980	047	.011	211.2	1.313	. 122	.201
338.5	.985	045	.034	224.0	1.304	. 137	.170
340.2	.994	045	.031	224.1	1.307	.136	.168
343.9	. 999	038	.046	236.7	1.292	. 146	. 138
347.6	1.005	038	.049	238.3	1.286	. 146	. 13ઇ
349.2	1.008	037	.047	249. 9	1.272	. 149	. 114
351.1	1,0;2	037	.051	252.7	1.268	. 148	.111
354.8	1.018	032	.048	262.8	1.235	. 150	.085
356.5	1.034	034	.043	267.2	1.239	. 147	.079
357.9	1.054	036	.042	281.5	1.186	. 140	.049
358.3	1.044	036	.045	295.8	1.112	.128	.026
				29 5.9	1.101	. 128	.011
	RADIUS =			308.5	1.012	. 107	026
ANGLE	V X / V	VT/V	VR/V	312.0	1.018	.089	017
. 1	.874	033	.068	321.1	.924	.005	026
. 5	.867	032	.070	328.4	.962	009	.039
1.1	.890	033	.060	333.9	.896	031	.050
7.1	.925	066	.021	345.0	.869	036	.085
7.9	.950	074	.004	347.0	.866	046	.097
14.3	1.015	153	039	352.5 353.6	.858 .871	045 035	.097 .095
16.1	1.068	168	043	356.0	.878	035	.084
21.3 21.5	1.161 1.128	204 202	035 039	359.8	.889	035	.066
22.4	1.162	202	027	339.0	. 665	035	.000
28.5	1.195	222	.007		RADIUS =	.868	
28.7	1.172	217	. 008	ANGLE	VX/V	VT/V	VR/V
36.0	1.193	226	. 041	.2	.737		011
36.9	1,195	229	.049	1.9	. 755	090	036
43.1	1.190	223	.072	3.7	. 783	128	055
46.7	1.183	225	.085	5.5	.830	170	079
48.6	1.179	222	.095	7.3	.889	201	094
50.4	1.169	218	.101	10.9	. 981	219	108
52.3	1.169	214	.111	14.5	1.010	210	091
54.0	1.161	210	.116	15.9	1.053	203	089
55.8	1.164	208	.124	18.2	1.046	197	078
61.2	1.168	201	.140	21.8	1.076	187	053

TABLE 1 - CONTINUED

ANGLE 342.1 343.9 345.7 347.6 349.2 351.1 354.8 356.5

357.9

358.3

RADIUS = VX/V .756 .778 .755 .739 .725 .712 .703 .701

.760

.716

.868 VT/V .044 .036 .038

.038 .030 .035 .056 .040 .024 -.004

VR/V .062 .073 .095 .107 .121 .122 .069 .039

		_	
ANCLE	RADIUS	868	
ANGLE	VX/V	VT/V	VR/V
25.4	1.110	186	035
30.7	1.149	-,177	010
33.8	1.159	171	, 602
37.8	1.162	160	,025
39.6	1.159	159	,037
43.3	1.148	-,151	,062
51.9	1.151	134	
61.2	1.179	122	, 091
69.8	1.229	-,118	.114
79.3	1.278		, 137
87.9	1.302	106	, 158
97.4		090	, 168
106.0	1.315	064	, 175
117.3	1.326	045	, 184
-	1.339	011	, 189
124.0	1.338	.005	, 193
136.0	1.348	.023	. 190
142.1	1.327	.041	,199
145.3	1.345	.047	.186
146.1	1.333	.054	, 184
153.3	1.328	.073	
167.5	1.308		.178
168.0	1.327	. 155	. 159
171.5	1.329	. 154	. 173
175.4		. 198	. 172
179.1	1.331	.278	. 152
	1.227	. 286	.045
179.8	1.209	. 225	.060
181.5	1.266	.216	. 124
182.9	1.267	.214	. 146
183.4	1.318	.237	. 235
187.1	1.349	. 231	.254
189.6	1.326	.213	.234
190.3	1.328	.218	.250
190.6	1.348	.198	. 231
194.2	1.351	. 181	
197.8	1.349	-	. 209
206.8	1.339	. 175	. 195
206.8	1.334	. 167	. 157
215.8	1.332	- 169	. 171
224.9		. 169	. 138
233.8	1.322	. 172	. 121
	1.314	- 177	. 105
233.8	1.314	-178	.104
242.8	1.299	.181	.087
251.8	1.277	.187	.069
260.9	1.266	. 186	.056
279.0	1.194	. 183	.025
297.1	1.059	.174	012
300.7	1.044	.172	
308.0	.998		023
311.6	.936	. 182	050
315.1	.932	. 167	057
318.6		. 175	081
321.9	.884	-160	065
	.815	.120	061
322.1	.843	.126	082
324.0	.828	-108	074
327.6	.eos	.060	043
331.2	.785	.037	011
334.9	.794	.035	.022
338.5	.788	.031	.050
339.9	.774	.037	.044
340.2	.796		
	1150	.038	.057

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITH PROPELLER AND NOZZLE TABLE 2

. 932 ARS WAKE SURVEY WITH PRGFELLER AND MOZZLE PROPELLER DIAMETER = 10.50 FEET

000.1 006.	1.177 1.177	.050 .050	680. 680.	1.205 1.199	1.229 1.214	20.89 18.98	3.04 2.77	-8.05 -7.37 352.50 352.50
.800	1.179	.010	.114	1.213			3.21	-7.21 352.50 3
.700	1.192	005	.127	1.224	1.271	26.85		
. 600	1.217	.033	.111	1.234	1.306	30.63	3.20	-5.11
. 500	1.234	. 005	.157	1.239	1.370	36.13	4.55	-5.89
. 400		060	.264	1.241	1.490	44.60	6.92	-8.53 325.00
	1.240	245	.426	1.240	1.798	58.27	14.10	177.50
. 299	1.240	247	.428	0.000	0.000	58.44	14.18	-19.99
.868		.050	.089	1.208	1.239	21.58	3.14	-8.29
.735	1.186	006	.126	1.221	1.269	25.63	3.17	-6.21
.591	1.220	.039	.109	1.235	1.326	30.99	3.32	317 50
451	XXBAB = 1.238	*035	203	* 1.239	* 1.488	39.80	* 5.47 * 57.50	= -6.61
PADTUS .	2 8 X	V TBAR					_	

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-2VX

BBBR BBBR BBDGS BNCC TASTA

TABLE 3 - HARMONIC ANALYSIS OF THE LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITH PROPELLER AND NOZZLE

	PF			JRVEY WITI R = 10.50		ER AND N	JV ·	. 932
HARMONIC	ANALYSES	OF LONG!	TUDINAL	VELOCITY	COMPONEN	T RATIOS	(VX/V))
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .451								
AMPLITUDE = PHASE ANGLE =	.0913 293.6	.0680 320.3	.0318	.0188 5.3	.0142 107.8	.0099 215.4	.0119 196.4	.0122 250.5
RADIUS = .591								
AMPLITUDE = PHASE ANGLE =	.1271 287.4	.0678 319.9	.0347 346.6	.0183 3.7	.0008 37.1	.0023 190.6	.0078 212.9	.0052 237.6
RADIUS = .735								
AMPLITUDE = PHASE ANGLE =	.1737 285.6	.0837 307.5	.0345 349.1	.0311 331.5	.0150 311.3	.0232 271.2	.0099 249.6	.0079 260.7
RADIUS = .868								
AMPLITUDE = PHASE ANGLE =	.2356 285.7	.1134 304.1	.0456 337.6	.0387 340.4	.0182 328.2	.0222 303.1	.0112 265.2	.0112 261.6
RADIUS = .299								
AMPLITUDE = PHASE ANGLE =	.0667 310.3	.0856 307.8	.0454 55.3	.0328 334.0	.0301 99.9	.0459 247. 0	.0201 200.3	.0312 260.4
RADIUS = .300								
AMPLITUDE = PHASE ANGLE =	.0668 310.1	.0854 307.9	.0452 55.1	.0326 334. 2	99.9 .0300	.645 5 246. 9	.0200 200.2	.0310 260.4
RADIUS = .400								
AMPLITUDE = PHASE ANGLE =	.0811 297.8	.0716 317.1	.0330 25.7	.0212 355.3	.0194 105.4	.0181 232.7	.0143 196.5	.0172 254.9
RADIUS = .500								
AMPLITUDE = PHASE ANGLE =	.1027 290.7	.0604 321.8	.0324 358.5	.0173 10.4	.0093 109.3	.0058 188.1	.0100 198.7	.0087 245.1
RADIUS = .600								2 13 1 1
AMPLITUDE = PHASE ANGLE =	.1294 287.2	.0682 318.9	.0344 347.3	.0188 358.9	.0015	.0036	.0078	.0053
RADIUS = .700	207.12	310.5	547.5	356.9	331.8	228.5	216.2	240.2
AMPLITUDE =	.1604	.0781	.0335	.0281	.0125	.0203	.0093	.0071
PHASE ANGLE =	285.8	309.6	350.3	333.2	309.3	267.1	243.5	258.1
RADIUS = .800 AMPLITUDE =	.2017	.0966	.0384	. 0355	.0177	0042	0.00	
PHASE ANGLE =	285.5	305.1	344.3	333.4	317.4	.0247 231.0	.0108 256.3	.0094 262.5
RADIUS = .900 AMPLITUDE =	. 2356	.1134	.0456	0000	0.00		.	
PHASE ANGLE =	285.7	304.1	337.6	.0387 340.4	.0182 328.2	.0222 300.1	.0112 265.2	.0112 261.6
RADIUS = 1.000 AMPLITUDE =	2256	4424	0450					
PHASE ANGLE =	.2356 285.7	.1134 304.1	.0456 337.6	.0387 340.4	.0182 328.2	.0222 300.1	.0112 265.2	.0112 261.6

TABLE 4 - HARMONIC ANALYSIS OF THE TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITH PROPELLER AND NOZZLE

ARS WAKE SURVEY WITH PROPELLER AND NOZZLE PROPELLER DIAMETER = 10.50 FEET UV932										
	HARMONIC	ANALYSES	OF TANG	ENTIAL V	ELOCITY	COMPOSENT	RATIO5	(VT/V)		
HARMON	IC =	1	2	3	4	5	6	7	ક	
RADIUS		2052	0000	0000	2256	0000	.0028	.0061	.0063	
PHASE		.2058 212.4	.0366 225.3	.003 8 91. 2	.0056 294.8	.0069 25.1	110.8	81.8	136.0	
RADIUS	-		****				***			
AMPLIT PHASE		.1756 213.6	.0369 238.0	.0201 63.8	.0124 351.4	.0204 64.6	.0036 ცვ.7	.0140 94.8	.0047 189.5	
RADIUS										
AMPLIT PHASE		.1781 210.8	.0319 180.5	.0011 119.9	.0136 101.4	.0132 55.7	.0155 107.8	.0088 69.3	.0091 131.5	
		-, - +								
RADIUS AMPLIT		. 1825	.0423	.0358	.0144	.0155	.0204	.0076	.0183	
PHASE	ANGLE =	216.1	181.3	236.3	146.5	230.3	118.3	178.0	131.8	
RADIUS			A F.C.4	25.10	2250	0000	0.55	0001	.0247	
AMPLIT PHASE		.2754 208.9	.05G1 160.1	.0548 236.9	.0359 173.1	.0344 269.2	.0157 127.5	.0201 299.9	103.8	
RADIUS								0		
AMPLIT PHASE		.2748 208.9	.0558 160.5	.0543 236.9	.0356 173.2		.0156 127.5	.0199 300.0	.0245 103.8	
RADIUS	= .400									
AMPLIT	UDE =	.2248	.0360	.0118	.0080	.0094	.0055	.0031	.0105	
PHASE	ANGLE =	211.4	205.5	228.9	205.3	298.2	123.3	358.0	117.3	
RADIUS		.1916	.0384	.0133	.0100	.0133	.0018	.0103	.0046	
PHASE		213.2	235.9	67.5	328.5	55.3	83.3	93.0	165.2	
RADIUS	± .600									
AMPLIT	UDE =	.1757	.0349		.0112		.0045	.0136	.0046	
PHASE	ANGLE =	213.2	234.3	63.7	358.7	6 3.6	89.0	91.8	183.6	
RADIUS		.1773	.0294	.0072	.0116	.0172	.0132	.0105	.0072	
PHASE		210.7	189.4	66.8	87.6		105.2	70.1	136.1	
RADIUS										
AMPLIT PHASE		.1798 212.5	.0372 175.5	.0151 234.7	.0152 120.9		.0186 112.6	.0047 94.4	.0133	
_		•								
RADIUS AMPLIT		. 1825	.0423	.0358	.0144		.0204	.0076	.0183	
PHASE	ANGLE =	216.1	181.3	236.3	146.5	230.3	118.3	178.0	131.8	
	= 1.000			***		0455	0004	0076	0402	
AMPLIT PHASE		. 1825 216. 1	.0423 181.3	.0358 236.3	.0144 146.5		.0204 118.3	.0076 178.0	.0183 131.8	

TABLE 5 - EXPERIMENTAL WAKE SURVEY DATA FOR THE ARS-50 WITHOUT PROPELLER, WITH NOZZLE

					545146		
	RADIUS =	. 451		44101.5	RADIUS =	_	45.44
ANGLE	VX/V	V1/V	VR/V	ANGLE	VX/V	VT/V	VR/V
.3 .3	. 923 . 948	084	. 122	277.9 281.4	1.098 1.090	.128	.119
2.6	.946	084 083	.123 .122	286.7	1.079	.129 .121	.109
4.5	.910	089	.119	297.6	1.042	.097	.103
6.3	.915	097	.118	304.7	.995	.086	. 089
8.1	.918	110	.109	313.9	.896	.058	.093 .094
9.9	.930	124	.111	322.7	.869	011	.110
11.5	1.019	147	.126	328.5	.888	049	.107
11.7	.957	139	.108	330.2	.883	044	.105
13.2	.981	153	.108	340.9	.918	079	.103
13.6	.984	151	.112	345.3	.943	076	.106
15.4	1.022	158	.114	347.3	.952	083	.107
17.1	1.048	168	.114	349.2	.949	083	.109
19.0	1.079	177	.112	350.6	.950	084	.110
22.5	1.082	~.181	.106	353.1	.968	084	.113
26.1	1.088	190	.102	356.9	. 950	082	.119
29.7	1.091	193	.105	357.1	.932	087	.119
3G.8	1.090	198	.118	360.3	. 923	084	.122
44.1	1.091	197	. 134				
54.7	1.090	206	.156		RADIUS =		
62.0	1.099	192	.171	ANGLE	VX/V	VT/V	- VR/V
72.7	1.100	~.187	. 192	1.2	.822	011	.024
80.0	1.100	166	.201	3.1	.842	013	.029
90.8	1.098	150	.2!3	4.8	.843	013	.021
99.5	1.097	124	.221	6.8	.855	015	.023
108.8	1.096	105	.223	8.5	. 853	022	.018
116.0	1.089	075	.227	10.5	.865	023	.016
126.6	1.086	056	.224	12.2 14.1	.874	035	.013
133. 9 144.7	1.072	035	.224	16.2	.895 .954	047	.006
152.0	1.077	.004	.220 .228	19.4	.944	068 081	009
164.6	1.066 1.085	.028 .063	.227	27.3	1.031	109	025 006
166.5	1.092	.077	.227	28.5	1.044	105	006
168.2	1.098	.088	.224	34.1	1.051	120	.019
170.0	1.111	. 100	.220	46.4	1.074	128	. 049
173.7	1.126	. 120	. 205	52.1	1.076	127	.069
175.4	1.125	.131	.200	64.5	1.085	120	.097
177.3	1.072	.050	. 230	70.1	1.085	112	.116
179.1	1.041	.029	.223	82.6	1.091	090	. 132
180.3	1.063	.013	. 241	68.1	1.088	073	. 145
183.0	1.039	.028	. 232	100.5	1.090	053	. 149
184.2	1.069	.050	. 238	105.1	1.087	034	.155
184.5	1.052	.031	.237	118.7	1.091	012	.153
186.5	1.078	.031	. 248	124.1	1.092	.006	. 158
187.9	1.064	. 151	. 145	136.7	1.091	.025	. 152
190.1	1.053	. 146	. 15H	142.2	1.090	.041	. 149
192.0	1.066	.133	. 178	147.6	1.094	.068	. 159
193.9	1.073	. 121	. 197	151.3	1.096	.078	. 157
196.0	1.088	.113	. 223	154.7	1.094	.060	.137
196.7	1.115	.084	. 293	154.8 156. 5	1.098 1.097	.090 .063	. 158
198.0	1.112	.076	. 245	158.2	1.095	.065	.135 .132
199.9 201.3	1.103	.068 .068	.244 .242	158.4	1.098	.095	.156
201.3	1.124	.102	.257	160.2	1.098	.070	. 128
214.8	1.103	.124	.245	163.8	1.107	.076	.122
225.6	1.109	. 127	207	165.7	1.117	.078	. 126
232.7	1.107	. 139	. 201	167.6	1.131	.088	.114
241.9	1.111	. 145	. 183	169.2	1.136	.090	.105
250.7	1.100	. 145	. 168	169.2	1.135	. 084	. 108
259.9	1.111	. 143	. 153	171.0	1.126	.089	.093
268.7	1.098	. 140	. 136	172.8	1.106	. 073	. 064

TABLE 5 - CONTINUED

	RADIUS .	.591			RADIUS	735	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
174.7	1.101	.037	.083	26.1	1.004	173	014
175.4	1.124	.011	.106	29.7	1.022	182	.001
178.1	1.141	~.016	.158	36.8	1.037	186	.025
178.2	1.136	.002	. 142	44.1	1.042	184	. 054
180.0	1.150	.006	. 185	54.7	1.016	181	.079
182.0	1.162	.017	. 209	62.0	1.035	171	.110
183.7	1.156	. 030	.214	72. 7	1.050	163	.136
185.6	1,140	.042	.212	80.0	1.069	146	. 158
187.4	1.139	.060	.214	90.8	1.087	125	. 163
189.0	1.136	. 069	.211	99.5	1.099	101	. 177
192.5	1,117	. 093	. 209	103.8	1.096	085	.174
196. 2 196. 2	1.110 1.112	.111	.200 .200	116.0 126.6	1.098	065	. 185
190.2	1.112	.110 .125	. 191	133.9	1.094 1.088	044	. 177
203.4	1.108	. 136	.179	144.7	1.087	029 004	.181 .185
214.2	1.097	. 162	.146	152.0	1.078	.003	.186
221.4	1.099	. 174	. 128	164.6	1.091	.018	.171
232.2	1.093	. 185	.100	166.5	1.100	.015	.166
239.4	1.093	. 189	.091	168.2	1.105	.013	.157
250.1	1.088	. 193	.070	170.0	1,106	.005	.139
257.4	1.083	. 193	. 055	173.7	1.097	060	.115 .
268.2	1.064	. 191	. 030	175.4	1.094	099	.128
275.5	1.061	. 187	.017	177.3	1.048	. 191	. 049
286.2	1.015	. 173	006	179.1	1.002	. 182	. 091
293.4	. 985	. 159	016	180.3	1.014	. 182	.025
304.2	. 905	. 132	022	183.0	1.005	.115	.212
311.4	. 834	. 085	023	184.2	1.089	.067	. 262
315.1	.797	.052	023	184.5	1.056	.068	. 274
318.7 322.3	. 789 . 788	.034	019	186.5	1.105	. 060	. 298
322.3	. 788	.006 .009	~.017 ~.019	187.9 190.1	1.135	.017	. 185
326.0	. 792	009 007	019	192.0	1.135 1.131	. 036 . 049	.179 .175
329.7	.792	011	006	193.9	1.128	.049	.172
333.5	.792	019	006	196.0	1,132	.065	.172
340.9	.806	023	.018	196.7	1.120	.096	.174
342.8	. 805	021	. 022	198.0	1.115	.076	. 186
344.7	. 788	~.027	.022	199. 9	1.114	.082	.200
346.6	.791	022	. 024	201.3	1.113	.084	. 195
348.7	.803	~.022	.027	205.9	1.126	.089	.162
350.5	.809	018	.030	214.8	1.108	.117	. 141
352.4	.806	021	. 037	225.6	1.110	.112	. 128
356.4	.824	018	.031	232.7	1.104	. 121	.111
359.7	.831	012	.033	241.9 250.7	1.102 1.086	. 124	.099
	RADIUS =	.735		259.9	1.092	.127 .130	.080 .066
ANGLE	VX/V	VT/V	VR/V	268.7	1.056	.134	.042
.3	.681	013	.042	277.9	1.041	.128	.031
2.6	.691	020	.029	281.4	1.014	. 127	. 020
4.3	.736	031	.030	286.7	.988	. 123	.011
4.5	.707	029	.023	297.6	.933	. 106	010
6.3	.724	032	.007	304.7	.871	.091	025
8.1	.734	046	002	313.9	.790	.054	046
9.9	. 765	~.066	012	322.7	. 741	006	035
11.5	.874	085	008	330.2	. 733	018	000
11.7	. 795	081	023	340.9	.703	036	.052
13.2	.819	097	036	345.3	.697	038	.055
13.6 15.4	.825 .878	108 124	028 033	347.1 347.3	.685 .696	033 032	.058 .068
17.1	.915	136	040	349.2	.683	032	.068
18.8	.971	149	041	349.9	.673	026	. 966
22.5	.982	161	034	350.6	.689	028	.063
						_	

TABLE 5 - CONTINUED

	RADIUS =	. 735			BARTUS -	000	
ANGLE	VX/V	VT/V	VR/V	ANGLE	RADIUS = VX/V	.868	V D (V
353.1	.671	026	.068	199.8	1.155	VT/V . 140	VR/V .141
356.9	.674	~.015	.064	203.4	1.155	.139	.141
357.1	.688	016	.053	214.2	1.140	.145	. 104
360.3	. 68 1	013	.042	221.4	1.142	. 149	.090
				232.2	1.126	. 155	.074
	RADIUS =	. 868		239.4	1.124	. 157	.064
ANGLE	VX/V	VT/V	VR/V	250.1	1.107	.163	. 051
2	. 525	.018	.006	257.4	1.099	. 165	. 037
1.2 3.1	.535	012	007	268.2	1.056	. 173	.016
4.8	.556 .566	039	017	275.5	1.037	.170	.011
6.8	.586	066 091	033 048	286.2 293.4	.945	.162	012
8.5	.626	137	062	304.2	.906 .832	.157 .151	024
10.5	.686	157	074	311.4	.791	.146	041 069
12.2	.745	168	087	315.1	.748	.146	080
14.1	.801	176	097	318.7	.695	.115	087
16.2	.869	159	091	322.3	.666	.096	078
19.4	.854	167	091	322.3	.662	.087	075
27.3	. 944	153	027	326.0	.645	. 064	057
28.5	.959	151	040	329.7	.631	.047	042
34.1	1.003	144	002	333.5	.633	.036	019
46.4 52.1	1.022	122	. 030	337.2	.612	.045	.009
64.5	.994 1.035	103	.057	340.9	.620	.037	.021
70.1	1.054	102 091	.077 .101	341.0 342.8	.622 .612	.041	. 026
82.6	1.098	090	.119	344.7	.596	.033 .047	.027
88.1	1.127	072	.136	346.6	.588	.047	.044 .060
100.5	1.136	055	. 135	348.7	.573	.038	.081
106.1	1.137	037	.146	350.5	.560	.038	.083
118.7	1.148	021	. 141	352.4	.544	.040	.080
124.1	1.150	006	. 144	356.4	.534	.055	.054
136.7	1.152	.012	.146	358.1	.523	.032	.018
142.2	1.150	.028	. 139	359.7	.532	.024	.010
147.6	1.158	.038	.147	359.8	.525	.018	.006
151.3 154.7	1.159 1.158	.045	.150				
154.8	1.160	.050 .054	.145				
156.5	1.160	.056	. 152 . 142				
158.2	1.158	.062	.140				
158.4	1.157	.059	.152				
162.0	1.149	.068	.151				
163.8	1.147	.095	.147				
165.7	1.145	.104	.152				
167.6	1.147	.119	.157				
169.2	1.144	.130	.163				
169.2 171.0	1.142	. 129	.166				
172.8	1.147 1.148	.149	.162				
174.7	1.134	. 175 . 195	.157 .130				
176.4	1.066	.172	.057				
178.1	1.027	.114	.028				
178.2	1.023	. 109	.024				
180.0	1.082	.085	.102				
182.0	1.139	. 123	.155				
183.7	1.168	. 155	. 174				
185.6	1.169	. 166	.178				
187.4	1.168	. 168	.186				
189.0	1.177	. 157	. 174				
192.5 196.2	1.160 1.153	. 148	.160				
196.2	1.153	.143 .143	.150 .150				
	50		. 130				

INTERPOLATED RADII FOR THE ARS-50 WITHOUT PROPELLER, WITH NOZZLE - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERLYED QUANTITIES AT THE EXPERIMENTAL AND 9 TABLE

. 932 ARS WAKE SURVEY WITH NOZZLE, WITHOUT PROPELLER PROPELLER DIAMETER = 10.50 FEET

1.000	966	.042	. 061	1.016	1.022	16.26	2.70 95.00	0.00
006.	966.	.042	. 061	1.022	1.033	17.94	3.00	-8.24 357.50
. 800	966.	900.	.082	1.030	1.047	20.23	2.93	-7.57 355.00
.700	1.005	005	.094	1.041	1.063	23.12	2.87	-6.21 355.00
.600	1.024	.031	.083	1.054	17 1.090	26.51	3.18	-5.54
. 500	1.046	.015	. 127	1.068	1.137	31.5	4.05	-5.61 317.50
.400	1.069	054	.225	1.081	1.219	39.55	7.32	-5.71 196.00
.300	1.095	169	.373	1.095	1.392	52.45	16.41	-23.68 180.00
. 299	1.095	171	.374	0.000	0.000			180.00
.868	966.	.042			1.038	18.54	3.11	-8.50 357.50
.735	1.001	007	.092	1.037	1.059	22.05	2.78 97.50	-6.72 355.00
.591	1.027	.037	.081	1.055	1.099	26.83	3.26	-5.61
RADIUS * .451	VXBAR = 1.057	×013	• 169	1-WX = 1.072	1.201	* 35.03	# 4.63 # 55.00	= -5.56
RADIUS	VXBAR	VTEAR	VRBAR	X AM-I	1-WX	BBAR	BPOS THETA	BNEG

CIRCUMFERENTIAL MEAN LONGITUDIALL VELOCITY.
CIRCUMFERENTIAL MEAN TANSENTIAL VELOCITY.
CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
MEAN ANGLE OF ADVANCE.
VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).
ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR SNEG OCCURS. VXBBAR VRBBAR 1-WVX 1-WXX BBBAR BBBAR CMEG

TABLE 7 - HARMONIC ANALYSIS OF THE LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITHOUT PROPELLER, WITH NOZZLE

	PI	ARS WA	KE SURVE Diameter	EY WITH NO.50	OZZLE. FEET	WITHOUT	PROPELLER JV =	. 932
HARMONIC	ANALYSES	OF LONG!	TUDINAL	VELOCITY	COMPON	ENT RATI	OS (VX/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .451								
AMPLITUDE = PHASE ANGLE =	.0647	.0633	.0287	.0158	.0049	.0118	.0089	.0158
PHASE ANGLE =	290.0	318.7	346.1	16.3	92.8	195.6	221.3	222.5
RADIUS = .591								
AMPLITUDE =	.1289	.0760	.0413	.0129	.0063	.0074	.0121	.0050
PHASE ANGLE =	290.3	320.2	327.7	17.3	232.4	189.9	231.7	228.9
RADIUS = .735								
AMPLITUDE =	. 1576	.0998	.0425	.0301	.0137	.0187	.0112	.0133
PHASE ANGLE =	286.0	311.5	334.6	335.1	289.1	266.9	239.2	249.7
RADIUS = .868								
AMPLITUDE =	. 2355	.1166	.0504	.0330	. 0220	.0245	.0129	.0117
PHASE ANGLE =	286.3	304.5	326.5	319.1	290.8	274.3	228.0	242.8
RADIUS = .299								
AMPLITUDE =	.0480	. 06 36	.0348	.0398	.0246	.0296	.0036	.0476
PHASE ANGLE =	127.4	300.2	62.1	342.2	47.2	242.7	147.7	228.2
RADIUS = .300								
AMPLITUDE =	.0471	.0635	.0346	. 0395	.0244	.0294	.0036	.0473
PHASE ANGLE =	127.5	300.3	61.8	342.4	47.3	242.5	148.8	228.2
RADIUS = .400								
AMPLITUDE =	.0325	.0612	.0247	. 0205	.0099	.0150	.0063	(12.11
PHASE ANGLE =	284.4	314.3	7.7	2.4	66.5	214.5	212.7	.0241
RADIUS = .500								
AMPLITUDE =	.0913	.0657	.0339	.0136	.0031	.0102	0100	
PHASE ANGLE =	291.0	320.8	335 C	26.0	156.7	182.2	.0105 226.1	220.5
RADIUS = .600								220.0
RADIUS = .600 AMPLITUDE =	. 1289	.0777	.0411	.0140	.0063	0073	0.00	
PHASE ANGLE =	289.9	319.6	328.6	10.7	239.9	.0073 201.7	.0120 2 32.7	.0057 234.0
RADIUS700							20,	254.0
RADIUS700 AMPLITUDE =	. 1452	. 0946	.0415	.0270	0114	045.		
PHASE ANGLE =	286.5	313.4	334.6	339.9	.0114 284.8	.0157 2 61.9	.0112 239.3	.0122
DADING - DE-			_				200.3	3.2
RADIUS = .800 AMPLITUDE =	1895	. 1096	0.157	4555	4.70			
PHASE ANGLE :	285.8	308.0	.0454 33 2.0	.0333 327.7	.0179	.0228 271.8	.0117 235.5	.0136
						4 1 1 1 0	233.3	246.4
RADIUS = .900 AMPLITUDE =	. 2355	1166	054.5					
PHASE ANGLE =	286.3	.1166 304 .5	.0504 326. 5	.0330 319.1	.0220 290.8	.0245 274.3	.0129 228.0	.0117 242.8
DARTIE . 4 AAC							120,0	.74.0
RADIUS = 1.000 AMPLITUDE =	. 2355	. 1166	.0504	.0330	0000	0015		
PHASE ANGLE =	286.3	304.5	326.5	319.1	.0220 296.8	.0245 274.3	.0129 228.0	.0117 242.8
								=

TABLE 8 - HARMONIC ANALYSIS OF THE TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITHOUT PROPELLER, WITH NOZZLE

ARS WAKE SURVEY WITH NOZZLE. WITHOUT PROPELLER PROPELLER DIAMETER = 10.50 FEET .932 JV = HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) HARMONIC 2 3 4 5 6 7 8 AMPLITUDE -.1709 .0220 .0075 .0051 .0087 .0075 .0066 .0044 PHASE ANGLE 197.1 346.8 36.4 98.8 127.6 214.3 79.4 78.1 RADIUS = .591 AMPLITUDE . 1455 .0246 .0211 .0074 .0211 .0022 .0116 .0039 PHASE ANGLE 210.4 243.3 50.0 10.4 66.0 152.1 85.3 243.5 AMPLITUDE -.0225 .0128 .0083 .1473 .0090 .0121 .0116 .0065 PHASE ANGLE = 207.7 193.9 94.0 62.7 87.0 86.2 100.6 83.2 RADIUS = AMPLITUDE . 1507 .0322 .0220 .0092 .0163 .0083 .0131 .0127 PHASE ANGLE = 190.0 224.1 142.3 122.2 128.4 210.6 176.3 126.4 RADIUS = .299 AMPLITUDE . 2295 .0713 .0534 .0276 0335 .0335 0104 .0317 PHASE ANGLE = 217.8 140.1 245.8 84.2 122.6 261.0 269.6 93.3 RADIUS = .300 AMPLITUDE = . 2290 .0707 .0529 .0273 .0302 .0333 .0102 .0315 PHASE ANGLE 245.9 140.2 217.8 122.5 261.1 84.3 269.7 93.4 RADIUS = .400 AMPLITUDE . 1870 .0305 .0143 .0100 .0065 .0140 .0024 .0109 166.9 PHASE ANGLE 215.6 270.3 109.4 309.0 90.3 104.0 62.6 .500 RADIUS = AMPLITUDE . 1589 .0217 .0138 .0046 .0151 .0038 0095 .0028 PHASE ANGLE 212.9 225.4 32.0 29.2 55.3 118.2 81.5 201.7 AMPLITUDE -. 1455 .0236 .0207 .0208 .00B0 .0023 .0111 .0028 PHASE ANGLE 210.1 240.1 52.0 16.9 66.8 125.1 85.5 244.3 RADIUS = .700 .0153 AMPLITUDE . 1467 .0207 .0129 .0122 .0099 .0072 .0065 PHASE ANGLE 207.8 202.1 76.4 52.5 79.3 82.1 94.0 76.4 .800 RADIUS = AMPLITUDE .1488 .0269 .0078 .0107 .0085 .0138 .0066 .0105 187.7 PHASE ANGLE 208.5 185.5 116.9 92.0 100.1 115.4 101.5 RADIUS - .900 AMPLITUDE . 1507 .0322 .0220 .0127 0092 .0163 .0083 .0131 PHASE ANGLE 210.6 190.0 224.1 122.2 142.3 176.3 146.4 128.4 **RADIUS = 1.000** . 1507 .0322 .0220 .0092 AMPLITUDE. .0127 .0163 .0093 .0:31 PHASE ANGLE = 190.0 224.1 176.3

142.3

122.2

126.4

128.4

210.6

TABLE 9 - EXPERIMENTAL WAKE SURVEY DATA FOR THE ARS-50 WITHOUT NOZZLE OR PROPELLER

	RADIUS :	. 451			RADIUS =	. 591	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	V1/V	VR/V
8	.887	091	.090	-1.6	.837	016	004
7.4	.909	130	.099	5.7	.852	022	008
16.4	1.018	187	.097	16.4	.933	089	049
25.4	1.059	209	.084	23.7	1.019	112	044
34.4	1.051	219	.094	34.4	1.021	137	017
43.4	1.055	229	,114	41.5	1.030	150	.004
52.4	1.054	236	.136	52.4	1.027	159	.042
51.3	1.055	233	. 158	59.5	1.041	155	.068
70.4	1.051	222	.177	70.4	1.031	142	.105
		205	.194	77.6	1.023	127	
79.5	1.648	205	. 208	88.3	1.029	097	.121
88.4	1.047	183 160	.218	95.7	1.029	097 079	
98.1	1.047	180 130	.275	106.3	1.020	045	.150
106.4	1.031			113.7	1.012	026	. 163
115.5	1.035	093	. 229	124.4	1.002		. 165
133.5	1.031	030	. 229	131.9	1.005	.009	.169
151.5	1.039	.025	.227	142.5	1.005	.028	.169
160.5	1.021	.063	. 220	149.9	1.013	.060	. 169
169.5	1.042	. 101	.215	150.6	1.013	.085	. 166
178.4	1.013	. 156	. 172	155.3	1.012	.080	. 167
187.5	.979	. 171	.133	160.7	1.005	. 101	. 164
196.5	1.004	.139	. 216	_		. 120	. 161
205.6	1.055	.148	. 274	168.0	1.002	. 157	. 155
214.5	1.058	. 165	. 255	169.5	1.007	. 169	. 156
223.5	1.053	. 177	.218	178.7	.960	. 195	.110
232.6	1.058	. 188	. 196	179.7	. 983	. 204	.116
241.4	1.051	. 190	. 173	185.8	.938	. 151	.116
251.0	1.057	. 191	.155	196.7	1.020	. 192	.154
259.5	1.059	.183	. 135	203.8	1.025	.221	. 15.
270.2	1.057	.180	. 118	214.6	1.024	.231	. 142
277.5	1.061	. 163	.098	221.7	1.027	. 235	.124
286.6	1.053	. 147	. 084	232.6	1.028	. 243	.040
295.6	1.041	.125	.072	233.7	1.024	. 247	. 071
304.6	.986	. 105	.071	250.5	1.020	. 247	. 043
313.7	.844	.078	.073	257. ย	1.023	.243	.023
322. a	.782	.011	.076	268.5	1.004	. 236	007
331.8	.845	045	.074	275.8	1.006	. 226	024
340.9	. 269	073	.076	293.7	.942	. 191	063
359.1	. 894	- .035	. 042	304.5	. 870	. 157	063
356.0	.883	089	.067	311.7	. 8 66	. 114	058
359.2	.887	091	. 090	322.5	. 766	. 024	040
				329.6	. 785	001	037
				340.5	. 799	016	026
				347.6	. 609	015	007
				356.0	. A31	016	005
				358.4	. 237	016	004

TABLE 9 - CONTINUED

	RADIUS =	. 735			RADIUS =	.868	
****	VX/4	VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
ANGLE	.710	036	.019	-1.6	.588	.033	004
-1.6 7.4	.730	038	-,023	0.0	.582	.026	~.016
	. 855	109	-,086	5.7	. 562	.003	058
16.4 25.4	.959	173	079	16.4	.821	125	161
	. 982	206	034	23.7	.904	146	~.139
34.4 43.4	.980	220	.001	34.4	.946	165	085
52.4	.956	222	.042	41.5	.932	167	047
61.3	.960	219	.081	52.4	.894	157	.008
70.4	, 968	205	.116	59.5	.912	146	.054
70.4 79.5	.981	185	.142	70.4	. 943	141	.095
88.4	,989	- 159	.162	77.6	. 969	128	.120
98.1	.997	133	.171	88.3	.988	097	. 142
106.4	.995	-,108	.179	95.7	.987	078	. 143
115.5	.996	076	. 185	106.3	. 988	049	.151
133.5	. 998	030	.190	113.7	.989	032	. 153
151.5	.997	.016	.189	124.4	.988	006	. 154
160.5	. 967	.050	.184	131.9	. 991	.010	. 157
169.5	.999	.079	.172	142.5	.985	. 035	. 162
178.4	.865	.087	.097	149.9	.993	.059	.160
187.5	1.003	.059	,190	155.3	.993	.071	.162
196.5	1.000	.107	.16B	161.2	.994	.087	. 162
205.6	1.009	.123	. 160	169.5	.960	.146	. 163
214.5	1.004	.140	. 140	178.7	.684	.026	.008
223.5	1.015	.152	.123	179.7	.629	.058	001
232.6	1.009	.160	.100	185. 8	. 999	.112	. 168
241.4	1.006	.166	.083	190.0	. 996	. 124	.160
251.0	1.011	.166	. 057	196.7	. 992	. 143	.146
259.5	1,003	. 165	.037	203.8	. 991	. 166	. 134
270.2	1.006	.160	.010	214.6	. 996	. 184	. 107
277.5	. 98 1	. 154	009	221.7	1.005	. 195	.090
285.6	. 946	. 139	~.027	232.6	1.001	.205	.069
295.6	.902	.122	052	239.7	1.005	.212	.048
304.6	843	.097	~.065	250.5	.998	.216	.022
313.7	.734	.053	075	257.8	.996	.215	.003
322.8	.719	002	060	268.5	.969	.214	026
331.8	.712	012	032	275.8	. 952	.200	042
340.9	.632	019	001	293.7	.858	. 173	081
350.1	.649	035	.014	304.5	.783	. 154	104
356.0	.692	036	.018	311.7	.712	. 135	115
358.4	.710	036	.019	322.5	.639	.054	096
330. 1	• • • •			329.6	. ი∠6	.054	057
				340.5	. 627	.068	032
				347.6	.589	.046	019
				355.0	.588	.034	005 004
				358.4	.588	.033	004
				360.0	. 582	.026	016

TABLE 10 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE INTERPOLATED RADII FOR THE ARS-50 WITHOUT NOZZLE OR PROPELLER ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND

۳ ۲ ARS WAKE SURVEY WITHOUR PROPELLER OR NOZZLE PROPELLER DIAMETER = 10.50 FEET UV :

1.000	.891	.048	.037	940	. 946	14.61	2.18 87.50	5.00
006.	.891	.048	.037	. 954	. 964	16.13	2.47	-5.65
. 800	.910	.010	. 060	.970	986.	18.58	2.56	-5.85 350.00
.700	938	.003	.074	986.	1.008	21.65	3.21	-5.34 347.50
.600	996.	.054	.065	1.005	1.041	24.99	4.12	-4.63 317.50
. 500	966.		.112	1.021		30.09	5.18	-5.62
. 400	1.023			1.036	1.190	38.37	6.74	-8.34 320.00
.300	1.049	209	.367	1.049	1.393	52.58	10.7 5 32.50	-14.37 322.50
. 299	1.049	210	.369	0.00.0	0.000	52.76	10.82	-14.46 322.50
.868	168.	.048	.037	958	176.	16.68	2.57 87.50	-5.83 5.00
.735	.928	001	.071	.982	1.002	20.54	2.97	-5.67 350.00
.591	.970	.061	.063	1.006	1.051	25.29	4.24	-4.63 317.50
. 451	1.009	003	.156	= 1.025	1.171	33.63	* 5.76 * 55.00	6.67 =320.00
RADIUS = .451	VXBAR = 1.009	VTBAR =003	VRBAR .	1-WX	* XR-1	6BAR =	BPOS *	BNEG .

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS WOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ARGLE IN DEGREES AT WHICH CORPESPONDING BPOS OR GNEG OCCURS. VXBAR VTBAR VTBAR VTBAR VTBAR VBBAR VXX DBPCS THETA

TABLE 11 - HARMONIC ANALYSIS OF THE LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITHOUT NOZZLE OR PROPELLER

ARS WAKE SURVEY WITHOUT PROPELLER OR NOZZLE PROPELLER DIAMETER = 10.50 FEET .932 HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V) 8 7 HARMONIC 1 . 451 RADIUS = .0659 .0413 .0196 .0159 .0132 .0099 .0172 AMPLITUDE .0543 PHASE ANGLE 293.2 314.6 350.1 1.5 67.2 190.7 212.1 229.0 . 591 RADIUS = AMPLITUDE .0759 .0747 .0362 .0128 .0075 .0124 .0042 .0113 300.3 353.1 351.3 78.3 225.8 223.2 248.6 321.7 PHASE ANGLE = . 735 RADIUS = .0040 .0197 .0094 .0115 AMPLITUDE 1121 0905 .0442 .0290 PHASE ANGLE 286.5 309.1 344.9 330.0 308.0 266.7 219.9 263.9 . 868 RADIUS = AMPLITUDE . 1394 .0414 .0361 .0056 .0357 .0146 .0268 .1114 PHASE ANGLE 286.2 303.8 356.1 314.9 357.6 272.7 192.6 261.5 RADIUS = . 0259 .0308 AMPLITUDE .0651 . 9761 .0621 .0491 .0143 .0281 340.3 47.8 179.8 209.4 219.0 249.4 283.1 350.9 PHASE ANGLE RADIUS = .300 .0258 .0279 .0307 .0759 .0619 . 0488 .0143 AMPLITUDE .0648 179.8 209.4 219.0 340.3 47.9 PHASE ANGLE 249.7 283.3 351.0 RADIUS = .400 .0210 .0512 0654 .0464 .0268 .0189 .0139 .0146 AMPLITUDE PHASE ANGLE = 280.7 305.9 346.9 357.9 60.9 184.5 210.5 224.5 RADIUS = .500 .0150 .0067 .0144 0683 .0381 .0130 .0126 .0605 AMPLITUDE 199.9 214.9 234.8 72.5 PHASE ANGLE 299.6 319.8 352.4 2.9 . 600 RADIUS = .0065 0046 .0108 .0782 .0754 .0370 .0140 .0124 AMPLITUDE 76.5 229.3 225.4 249.6 PHASE ANGLE = 320.7 351.7 348.7 298.6 .700 RADIUS = .0858 .0434 .0259 .0028 .0166 .0063 0099 .1037 AMPLITUDE 224.9 262.0 261.2 316.3 PHASE ANGLE 288.0 311.4 344.8 333.6 .600 RADIUS = .0172 .0050 . 1264 . 1001 .0439 .0333 .0268 .0116 AMPLITUDE 348.0 319.0 271.6 207.4 263.6 285.5 305.9 323.1 PHASE ANGLE .900 - PUICAR .0056 .0146 . 0268 .0414 .0357 . 1394 1114 .0361 AMPLITUDE 357.6 272.7 192.6 261.5 PHASE ANGLE 296.2 303.B 356.1 314.9 **RADIUS = 1.000** .0056 .02€8 .0357 .0146 . 1394 .1114 .0414 .0361 AMPLITUDE PHASE ANGLE 286.2 303.B 356.1 314.9 357.6 272.7 192.6 261.5

TABLE 12 - HARMONIC ANALYSIS OF THE TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR THE ARS-50 WITHOUT NOZZLE OR PROPELLER

	PR		WAKE SUR		HOUT PROPE D FEET	LLER OR	NOZZLE JV =	. 932
HARMONIC	ANALYSES	OF TANK	GENTIAL V	ELOCITY	COMPONENT	RATIOS	(VT/V)	
+ARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .451					2400			2054
AMPLITUDE = PHASE ANGLE =	.2141 214.8	.0199 1 75 .9	.0059 313.6	.0082 65.5	.0036 3 3 3.6	.0117 80.4	.0007 87.6	.0091 100.6
RADIUS = .591								
AMPLITUDE = PHASE ANGLE =	.1965 215.5	.0107 200.4	.0117 24.7	.0143 52.3	.0118 46.5	.0098 108.0	.0051 70.8	.0072 151.5
RADIUS = .735								
AMPLITUDE =	.1787	.0233	_	.0140	.0133	.0083	.0065	.0024
PHASE ANGLE =	208.7	169.9	70.1	71.1	57.3	101.8	48.6	152.4
RADIUS = .868					4.05		0440	0050
AMPLITUDE = PHASE ANGLE =	.1750 206.8	.0281 190.6		.0110 123.3	.0135 94.5	.0098 137.3	.0113 92.4	.0050 179.6
RADIUS = .299								
AMPLITUDE =	. 2345	.0594	.0195	.0131	.0227	.0209	.0083	.0228
PHASE ANGLE =	207.6	158.9	226.6	176.0	248.0	46.3	264.6	54.6
RADIUS = .300	0040	0504	0404		2225			
AMPLITUDE = PHASE ANGLE =	.2343 207.7	.0501 159.0	.0194 226.9	.0129 175.7	.0225 248.1	.0208 46.5	.0082 2 64.6	.0226 54.8
RADIUS = .400								
AMPLITUDE =	. 2205	.0236	.0083	.0056	.0072	.0137	.0018	.0120
PHASE ANGLE =	213.0	167.4	270.1	9 9.2	270.6	67.1	258.6	79.5
RADIUS = .500								
AMPLITUDE = PHASE ANGLE =	.2080 215.7	.0141 187.4	.0062 348.2	.0110 55.0	.0063 26.3	.0107 92.6	.0027 79.0	.0079 122.8
	2.01.			33.0	20.0	32.0		
RADIUS = .600 AMPLITUDE =	. 1949	.0114	.0122	.0146	.0120	.0097	.0051	.0067
PHASE ANGLE =	215.0	193.7	29.6	53.2	46.5	106.4	65.7	150.9
RADIUS = .700								
AMPLITUDE =	.1816	.0209	.0168	.0147	.0133	.0085	.0061	.0029
PHASE ANGLE =	209.9	169.3	62.2	64.9	52.8	99.0	43.6	147.4
RADIUS = .800								
AMPLITUDE = PHASE ANGLE =	.1756 207.1	.0261 176.6	.0175 86.1	.0119 89.3	.0130 72.2	.0082 115.7	.007A 68.7	.0028 170.5
_	207.1	176.0	50.1	39.3	12.6	113.7	00.7	170.5
RADIUS = .900 AMPLITUDE =	. 1750	. 0281	.0165	.0110	.0135	8900.	.0113	. 6050
PHASE ANGLE +	20€.8	190.6	109.7	123.3	94.5	137.3	92.4	179.6
RADIUS = 1.000								
AMPLITUDE = PHASE ANGLE =	.1750 206.8	.0281 190.6	.0165 109.7	.0110 123.3	.0135 94.5	.0098 137.3	.01:3 92.4	.0050 179.6

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICAL CE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

