Durée: 2h

N.B: Le barême est approximatif.

Il sera tenu compte de la présentation de la copie. L'usage de la calculatrice et du mobile est interdit. Les réposes doivent être justifiées.

Exercice 1: (5pts)

Dans le \mathbb{R} -e.v. \mathbb{R}^3 , on considère le système (S_α) suivant :

$$\begin{cases} x + 2 \ y - z = 0 \\ 2x + 7 \ y - 2 \ z = 0 \\ -x + 3 \ y + \alpha \ z = 0 \end{cases}, \quad \alpha \in \mathbb{R}.$$

1- Ecrire (S) sous forme matricielle puis déterminer, suivant le paramètre α , le rang de $(S_{\alpha}).$

2- Etudier suivant le paramètre réel α la compatibilité de (S_{α}) puis l'unicité de la solution $de(S_{\alpha}).$

3- Pour $\alpha = 1$, déterminer une base du s.e.v. de \mathbb{R}^3 défini par le système (S_1) .

Exercice 2: (7pts) Les parties I et II sont indépendantes

Partie I : Dans le \mathbb{R} -e.v. $\mathbb{R}[X]$, on considère le polynôme $P(X) = 2X^8 - 3X^5 + X^4 + X^2$. En utilisant le théorème de Cayley-Hamilton, Calculer P(A) pour : $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

Partie II:

On considère la matrice $A = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \in M_3(\mathbb{R})$ et I_3 la matrice unité d'ordre

3. **1-** Calculer $P_A(X)$ le polynôme caractéristique de A.

2- En déduire :

a/ Que la martice A est inversible (sans calculer le déterminant).

b/ L'expression de A^{-1} en fonction de A^2 , A, I, puis calculer A^{-1} .

Exercice 3: (8pts)

Soient \mathbb{K} un corps commutatif ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), E un \mathbb{K} -e.v. de dimension n où $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{K})$.

On dit qu'un polynôme $P \in \mathbb{K}[X]$ est un polynôme annulateur de A s'il vérifie P(A) = 0.

- **1-** Montrer que si $P \in \mathbb{K}[X]$ est un polynôme annulateur de A, alors toute valeur propre de A est un zéro de P.
- **2-** On note par $P_{\min,A}$ le polynôme de $\mathbb{K}[X]$ de plus petit degré strictement positif, unitaire, annulateur de A.

Montrer que $P_{\min,A}$ divise tout polynôme annulateur de A.

3- On considère le \mathbb{C} -e.v. \mathbb{C}^4 , et soit a, b, c, a', b', c' des élements de \mathbb{C} liés par la relation:

$$1 + bcb'c' + cac'a' + aba'b' = 0.$$

et soit la matrice $B \in M_4(\mathbb{C})$ définie par :

$$B = \begin{pmatrix} 0 & ba' & -ca' & bc \\ -ab' & 0 & cb' & ca \\ ac' & -c'b & 0 & ab \\ -b'c' & -c'a' & -a'b' & 0 \end{pmatrix}.$$

- ${\bf a}/$ Montrer que $B^2=I_4$ où I_4 est la matrice unité d'ordre 4.
- **b**/ En déduire que le polynôme $L = X^2 1$ est un polynôme annulateur de B.
- \mathbf{c} / En déduire $P_{\min,B}$ puis les valeurs propres de B.
- \mathbf{d} / En déduire le polynôme caractéristique $P_{B}(X)$ de la matrice B.
- e/ La matrice B est-elle diagonalisable? (Indication : utiliser le résultat suivant : Si $P_{\min,A}$ est scindé (*) à zéros simples dans \mathbb{K} , alors A est diagonalisable).
- **N.B.**: (*) Un polynôme est dit scindé dans \mathbb{K} s'il se factorise en un produit de polynômes unitaires de degrés1 à coefficients dans \mathbb{K} .

Bon Courage