第二节 肘序逻辑功能组件

- 一. 寄存器 (Register)
 - 1、数码(据)寄存器 ——静态寄存器

2.移位寄存器:左移位、右移位、双向移位

静态寄存器

- ☆ 在清0信号的作用下,触发器清0。
- ☆ 在CP↑作用下,寄存器接收输入代码,在CP 无效时输出保持不变。
- ☆ 在读出指令作用下,从寄存器读出代码。

二.移位寄存器

1、左移移位寄存器

- ☆ 由四级D触发器组成四位左移移位寄存器。
- ☆ 所有CP连在一起接输入移存脉冲,是同步工作方式。
- ☆ 第一级**D**触发器接输入信号 \mathbf{V}_I ,其余触发器输入**D**接后一级触发器的**Q**端。 $\mathbf{Q}_i^{n+1} = \mathbf{D}_i = \mathbf{Q}_{i+1}$

2、双向移位寄存器

CP:移存脉冲

A: 右移串入

B: 左移串入

M:左、右移控制

$$Q_0^{n+1} = \overline{MA + \overline{M} \, \overline{Q_1}}$$

$$Q_1^{n+1} = \overline{M\overline{Q}_0 + \overline{M}\overline{Q}_2}$$

$$Q_2^{n+1} = \overline{M\,\overline{Q}_1 + \overline{M}\,\overline{Q}_3}$$

$$Q_3^{n+1} = \overline{M}\overline{Q}_2 + \overline{M}B$$

★ 当M=1时: ★ 当M=0时:

$$Q_0^{n+1} = \overline{A}$$

$$Q_1^{n+1}=Q_0$$

$$Q_2^{n+1}=Q_1$$

$$Q_3^{n+1} = Q_2$$

$$A \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3$$

电路执行右移

$$Q_0^{n+1} = Q_1$$

$$Q_1^{n+1} = Q_2$$

$$Q_2^{n+1}=Q_3$$

$$Q_3^{n+1} = \overline{B}$$

电路执行左移

三、集成移位寄存器及其应用

74194四位双向移位寄存器

1、电路结构

$$m_0 \rightarrow \overline{S}_1 \overline{S}_0$$
 一状态保持

$$m_1 \rightarrow \overline{S}_1 S_0 - 68$$

$$m_2 \rightarrow S_1 \overline{S}_0 - \angle 8$$

$$m_3 \rightarrow S_1 S_0$$
 一并行输入

2、逻辑符号

3、功能表

\overline{R}_{D}	S_1	S_0	СР	D _{SL}	D_SR	D _o	D_1	D_2	D_3	Q_0	Q_1	Q_2	Q_3
0	X	X	X	X	X	X	X	X	X	0	0	0	0
1	0	0	X	X	Х	X	X	X	X	Q_0^n	Q ₁ ⁿ	Q_2^n	Q_3^n
1	0	1	↑	X	1	X	X	X	X	1	Q_0^n	Q_1^n	Q_2^n
1	0	1	↑	X	0	X	X	X	X	0	Q_0^n	Q_1^n	\mathbf{Q}_2^{n}
1	1	0	↑	1	X	X	X	X	X	Q_1^n	Q_2^n	Q_3^n	1
1	1	0	1	0	X	X	X	X	X	Q ₁ ⁿ	Q_2^n	Q_3^n	0
1	1	1	\uparrow	X	X	d_0	d_1	d_2	d_3	d_0	d_1	d_2	d_3

4、应用举例

1)实现数码串行↔并行变换

2)组成计数分频电路

➤ 利用74194实现任意模值M的计数器

(1) 环形计数器

$$S_1S_0=01$$
 右移工作方式

$$D_{SR} = \overline{Q_2 + Q_1 + Q_0}$$

计数顺序:

CP	D_{SR}	Q_0	Q_1	${f Q}_2$	Q_3	
0	1	0	0	0	0	
1	0	1	0	0	0	•
2	0	0	1	0	0	
3	0	0	0	1	0	
4	1	0	0	0	1	-

实现模4计数 计数特点: 每组输出只有一个1 电路功能:循环周期 为4的环形计数器,分 频系数为4.

(2) 扭环计数器

当启动正脉冲的到来时, S_1S_0 = 11,进行并行置数0000,所以电路的初态为0000。

循环周期为8的扭环计数器

