

An NMOS transistor with $k_n = 4$ mA/V² and $V_t = 0.5$ V is operated with $V_{GS} = 1.0$ V. At what value of V_{DS} does the transistor enter the saturation region? What value of I_D is obtained in saturation?

The NMOS FET enters saturation when $V_{DS} = V_{OV}$

$$V_{DSSat} = V_{OV} = V_{GS} - V_t = 1.0 - 0.5 = 0.5 \text{V}$$

In saturation when $V_{DS} \ge V_{OV}$

$$i_D = \frac{1}{2}k_n v_{OV}^2 = \frac{1}{2} \left(\frac{4\text{mA}}{\text{V}^2}\right) (0.5\text{V})^2$$

= 0.5mA

Consider a CMOS process for which $L_{\min} = 0.25 \, \mu \text{m}$, $t_{ox} = 6 \, \text{nm}$, $\mu_n = 460 \, \text{cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \, \text{V}$.

- (a) Find C_{ox} , and k'_n .
- (b) For an NMOS transistor with $W/L = 20 \,\mu\text{m}/0.25 \,\mu\text{m}$, calculate the values of V_{OV} , V_{GS} , and $V_{DS\min}$ needed to operate the transistor in the saturation region with a dc current $I_D = 0.5 \,\text{mA}$.
- (c) For the device in (b). find the value of V_{OV} and V_{GS} required to cause the device to operate as a 100- Ω resistor for very small v_{DS} .
- (a) Find C_{ox} , and k'_n

$$c_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$\varepsilon_{ox} = 3.9\varepsilon_0 = 3.45 \times 10^{-11} \text{ F/m}$$

$$C_{OX} := \frac{3.9 \epsilon_0}{t_{OX}} = 5.755 \times 10^{-3} \frac{pF}{\mu m^2}$$

$$k_n' = \mu_n c_{ox} \left[A/V^2 \right]$$

$$k_{nprime} := C_{ox} \cdot 460 \frac{cm^2}{V \cdot s} = 0.265 \frac{mA}{V^2}$$

Problem 5.10 cont...

Consider a CMOS process for which $L_{\min} = 0.25 \, \mu \text{m}$, $t_{ox} = 6 \, \text{nm}$, $\mu_n = 460 \, \text{cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \, \text{V}$.

(b) For an NMOS transistor with $W/L = 20 \mu m/0.25 \mu m$, calculate the values of V_{OV} , V_{GS} , and V_{DSmin} needed to operate the transistor in the saturation region with a dc current $I_D = 0.5 \text{ mA}$.

$$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) V_{OV}^{2} \qquad V_{OV} = \sqrt{\frac{I_{D}}{\frac{1}{2} k'_{n} \left(\frac{W}{L}\right)}} \qquad V_{OV} := \sqrt{\frac{0.5 \text{mA}}{\frac{1}{2} \left(.265 \frac{\text{mA}}{\text{V}^{2}}\right) \left(\frac{20 \mu \text{m}}{0.25 \mu \text{m}}\right)}} = 0.217 \text{V}$$

$$V_{GS} = V_t + V_{OV} = 0.5 + 0.217 = 0.717V$$

$$V_{DSsatmin} = V_{OV} = 0.217V$$

Problem 5.10 cont...

Consider a CMOS process for which $L_{\min}=0.25$ mm, $t_{ox}=6$ nm , $\mu_n=460$ cm²/V·s, and $V_t=0.5$ V.

(c) For the device in (b), find the value of V_{OV} and V_{GS} required to cause the device to operate as a 100- Ω resistor for very small v_{DS} .

The NMOS FET would be operating in the triode region to act as a resistor so $V_{DS} < V_{OV}$

$$r_{DS} = 100\Omega = \frac{1}{g_{DS}} = \frac{1}{(\mu_n c_{ox})(W/L)V_{OV}}$$

$$V_{OV} := \frac{1}{\left[\left(.265 \frac{\text{mA}}{\text{V}^2}\right) \left(\frac{20 \mu \text{m}}{0.25 \mu \text{m}}\right) \cdot 100\Omega\right]} = 0.472 \text{V}$$

$$V_{GS} = V_t + V_{OV} = 0.5 + 0.472 = 0.972V$$

Problem 5.11a

A p-channel MOSFET with a threshold voltage $V_{tp} = -0.7$ V has its source connected to ground.

- (a) What should the gate voltage be for the device to operate with an overdrive voltage of $|V_{OV}| = 0.4 \text{ V}$?
- (b) With the gate voltage as in (a), what is the highest voltage allowed at the drain while the device operates in the saturation region?
- (c) If the drain current obtained in (b) is 0.5 mA, what would the current be for $V_D = -20$ mV and for $V_D = -2$ V?

Voltage
$$S$$
 V_{tp} V_{tp}

a)
$$V_{SG} = |V_{tp}| + |V_{OV}| = |-0.7| + 0.4 = 1.1V$$

$$\Rightarrow V_G = V_S - V_{SG} = -1.1V$$

b)
$$V_{GD} = V_{tp} = -0.7 \text{V}$$

$$\Rightarrow V_D = V_{SG} - V_{GD} = -1.1 \text{V} - -0.7 \text{V} = -0.4 \text{V}$$

Problem 5.11b

A p-channel MOSFET with a threshold voltage $V_{tp} = -0.7$ V has its source connected to ground.

(c) If the drain current obtained in (b) is 0.5 mA, what would the current be for V_D = -20 mV and for V_D = -2 V?

$$i_D = \frac{1}{2} k_p V_{OV}^2$$
 $\Rightarrow k_p = \frac{2i_D}{V_{OV}^2} = \frac{2 \times 0.5 \text{mA}}{(0.4 \text{V})^2} = 6.25 \frac{\text{mA}}{\text{V}^2}$

c) $V_D = -20 \text{ mV} - \text{ohmic region}$

$$i_{D} = k_{p} \left(\left(V_{SG} - \left| V_{tp} \right| \right) v_{SD} - \frac{1}{2} v_{SD}^{2} \right) = \frac{6.25 \text{mA}}{\text{V}^{2}} \left(\left(-1.1 \text{V} - 0.7 \text{V} \right) \times 0.02 \text{V} - 0.5 \times \left(0.02 \text{V} \right)^{2} \right)$$

$$= 48.75 \mu \text{A}$$

c) $V_D = -2 \text{ V} - \text{saturation region}$

$$\Rightarrow i_D = 0.5 \text{mA}$$

A particular MOSFET for which $V_{tn} = 0.5 \text{ V}$ and $k_n'(W/L) = 1.6 \text{ mA/V}^2$ is to be operated in the saturation region. If i_D is to be 50 μ A, find the required v_{GS} and the minimum required v_{DS} . Repeat for $i_D = 200 \,\mu\text{A}$.

$$i_D = 50 \text{ } \mu\text{A}$$

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) v_{OV}^2$$

$$v_{OV} = \sqrt{\frac{i_D}{\frac{1}{2}k_n'\left(\frac{W}{L}\right)}}$$

$$i_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) v_{OV}^{2} \qquad v_{OV} = \sqrt{\frac{i_{D}}{\frac{1}{2} k'_{n} \left(\frac{W}{L}\right)}} \qquad v_{OV} = \sqrt{\frac{50 \mu A}{\frac{1}{2} \left(1.6 \frac{mA}{V^{2}}\right)}} = 0.25 V$$

$$v_{GS} = V_t + v_{OV} = 0.5 + 0.25 = 0.75V$$

$$v_{DS} \ge V_{OV} = 0.25 \text{V}$$

$$i_D = 200 \,\mu\text{A}$$

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) v_{OV}^2$$

$$v_{OV} = \sqrt{\frac{i_D}{\frac{1}{2}k_n'\left(\frac{W}{L}\right)}}$$

$$i_{D} = \frac{200 \,\mu\text{A}}{i_{D}} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) v_{OV}^{2} \qquad v_{OV} = \sqrt{\frac{\frac{i_{D}}{1}}{\frac{1}{2} k'_{n} \left(\frac{W}{L}\right)}} \qquad v_{OV} = \sqrt{\frac{\frac{200 \mu\text{A}}{1}}{\frac{1}{2} \left(1.6 \frac{\text{mA}}{\text{V}^{2}}\right)}} = 0.5 \text{V}$$

$$v_{GS} = V_t + v_{OV} = 0.5 + 0.5 = 1.0V$$

$$v_{DS} \ge V_{OV} = 0.5 \text{V}$$

A particular *n*-channel MOSFET is measured to have a drain current of 0.4 mA at $V_{GS} = V_{DS} = 1$ V and of 0.1 mA at $V_{GS} = V_{DS} = 0.8$ V. What are the values of k_n and V_t for this device?

$$i_{D} = \frac{1}{2} k_{n} V_{OV}^{2} = \frac{1}{2} k_{n} (V_{GS} - V_{t})^{2}$$

$$\Rightarrow i_{D1} = \frac{1}{2} k_{n} (1 - V_{t})^{2} = 0.4 \text{mA}, i_{D2} = \frac{1}{2} k_{n} (0.8 - V_{t})^{2} = 0.1 \text{mA}$$

$$\frac{i_{D1}}{i_{D2}} = \frac{0.4 \text{mA}}{0.1 \text{mA}} = 4 = \frac{\frac{1}{2} k_{n} (1 - V_{t})^{2}}{\frac{1}{2} k_{n} (0.8 - V_{t})^{2}} = \frac{(1 - V_{t})^{2}}{(0.8 - V_{t})^{2}} \qquad \text{roots} = 0.6 \text{V}, 0.867 \text{V}$$

$$\Rightarrow V_{t} = 0.6 \text{V}$$