$$y(0) = 0, y'(0) = 0 \qquad y(L)$$

$$w_0$$

$$L$$

 $V(0) = \frac{w_0 L}{2}$

$$y(L) = 0, y'(L) = 0$$

$$EIy^{(iv)} = -w_0$$

$$EIy''' = -w_0x + C_1$$

$$C_1 = \frac{w_0 L}{2}$$

$$EIy'' = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} + C_2,$$

$$EIy' = -\frac{w_0 x^3}{6} + \frac{w_0 L x^2}{4} + C_2 x + C_3 \qquad y'(0) = 0 \to C_3 = 0$$

$$-\frac{w_0L^3}{6} + \frac{w_0L^3}{4} + C_2L = 0 \rightarrow C_3 = -\frac{w_0L^2}{12}$$

$$EIy(x) = -\frac{w_0 x^4}{24} + \frac{w_0 L x^3}{12} - \frac{w_0 L^2 x}{12} + C_4 \qquad y(0) = 0 \to C_4 = 0$$

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} - \frac{w_0 L^2}{12}$$

$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left(4x^3 - 6Lx^2 + 2L^2x \right)$$

$$y(x) = -\frac{w_0}{24EI} \left(x^4 - 2Lx^3 + L^2x^2 \right)$$

$$y_{max} = -\frac{w_0 l^4}{384EI}$$

Compare

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} \qquad \boxed{ \begin{matrix} \uparrow \\ M_{\text{max}} \end{matrix}}$$

$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left(4x^3 - 6Lx^2 + L^3 \right) + \frac{l^3 w_0}{24EI}$$

$$y(x) = -\frac{w_0}{24EI} \left[x^4 - 2Lx^3 + L^3x \right]$$

$$x=0, y(0) = 0;$$

 $x=0, M(0) = 0$

$$M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 L x}{2}$$

$$M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} - \frac{w_0 L^2}{12}$$

For the same external load, the statistically indeterminant system has lower value of the maximum internal force. However,

Lecture 32 Beam Deflection (III)

- 1. Superposition method;
- 2. Statically indeterminant problem;

Superposition of living and dead cats

598	Appendix D. Beam Deflections and Slopes			
Beam and Loading	Elastic Curve	Maximum Deflection	Slope at End	Equation of Elastic Curve
1 P	O L x	$-rac{PL^3}{3EI}$	$-rac{PL^2}{2EI}$	$y = \frac{P}{6EI}(x^3 - 3Lx^2)$
2 L	y C y x y	$-\frac{wL^4}{8EI}$	$-\frac{wL^3}{6EI}$	$y = -\frac{w}{24EI}(x^4 - 4Lx^3 + 6L^2x^2)$
3 		$-\frac{ML^2}{2EI}$	$-\frac{ML}{EI}$	$y = -\frac{M}{2EI}x^2$
$ \begin{array}{c c} 4 \\ & \downarrow^{-\frac{1}{2}L} \downarrow^{P} \\ & \downarrow^{-\frac{1}{2}L} \end{array} $	y L y x y	$-\frac{PL^3}{48EI}$	$\pm \frac{PL^2}{16EI}$	For $x \le \frac{1}{2}L$: $y = \frac{P}{48EI} (4x^3 - 3L^2x)$
5 P B A B C A B C C C C C C C C C C C C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	For $a > b$: $-\frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}EIL}$ at $x_m = \sqrt{\frac{L^2 - b^2}{3}}$	$\theta_A = -\frac{Pb(L^2 - b^2)}{6EIL}$ $\theta_B = +\frac{Pa(L^2 - a^2)}{6EIL}$	For $x < a$: $y = \frac{Pb}{6EIL} [x^3 - (L^2 - b^2)x]$ For $x = a$: $y = -\frac{Pa^2b^2}{3EIL}$
6	y L x $\frac{1}{2}L+y_{\text{max}}$	$-\frac{5wL^4}{384EI}$	$\pm \frac{wL^3}{24EI}$	$y = -\frac{w}{24EI}(x^4 - 2Lx^3 + L^3x)$
7 A B M L L	y L $B x$ y M	$\frac{ML^2}{9\sqrt{3}EI}$	$\theta_A = + \frac{ML}{6EI}$ $\theta_B = - \frac{ML}{3EI}$	$y = -\frac{M}{6EIL}(x^3 - L^2x)$

PROBLEM 15.43

For the beam shown, determine the reaction at B.

This problem is rated R!

	y_B	$ heta_B$
B	$-\frac{PL^3}{3EI}$	$-\frac{PL^2}{2EI}$
2 	- wL4 8EI	$-\frac{wL^3}{6EI}$
3 	- ML ² 2EI	- ML EI

Today's Lecture Attendance Password is: Superposition

Problem 1.

This is a MATLAB homework problem. Consider an elastic beam with Young's modulus, $E = 30 \times 10^6 Psi$, the cross section moment inertia $I_z = 256in^4$, and the length of the beam L = 120in. The beam has a built-in boundary conditions at x = 0, i.e. y0) = 0 and $\theta(0) = 0$; and at x = L, y(L) = 0 and $\theta(L) = 0$ as shown in Fig. 1.

The differential equation that governs the equilibrium of the bar has been derived as follows,

$$\frac{d^2}{dx^2} \left(EI \frac{d^2y}{dx^2} \right) + w(x) = 0, \quad 0 < x < L ,$$

where y(x) is the deflection field.

The beam is subjected a concentrated load at x = L/2, i.e.

$$w(x) = P\delta(x - L/2)$$

where P = 100lb.

Modify the template MATLAB code, beam_model.m, to find shear diagram, moment diagram, rotation diagram, and the deflection profile.

$$w(x) = 100.0\delta(x - L/2) \ lb/in$$

$$x = L/2$$

$$y(0) = 0$$

$$\theta(0) = 0$$

$$y(L) = 0$$

$$\theta(L) = 0$$

Problem 1.

where y(x) is the deflection field.

The beam is subjected a concentrated load at x = L/2, i.e.

$$w(x) = P\delta(x - L/2)$$

where P = 100lb.

Modify the template MATLAB code, beam_model.m, to find shear diagram, moment diagram, rotation diagram, and the deflection profile.

$$w(x) = 100.0\delta(x - L/2) \ lb/in$$

$$x = L/2$$

$$y(0) = 0$$

$$\theta(0) = 0$$

$$y(L) = 0$$

$$\theta(L) = 0$$

 $\frac{d^2}{dx^2} \left(EI \frac{d^2y}{dx^2} \right) = -w(x) \text{ can be decomposited into four first order ODE} :$

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(\mathbf{y}, x)$$

$$\kappa = \frac{d\theta}{dx} = y'' = \frac{M(x)}{EI} \quad (2)$$

$$\frac{dM}{dx} = V(x) \quad (3)$$

$$\frac{dV}{dx} = -w(x) \quad (4)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \longrightarrow \begin{bmatrix} y(x) \\ \theta = \frac{dy}{dx} \\ M(x) = EI_z \frac{d^2y}{dx^2} \\ V(x) = EI_z \frac{d^3y}{dx^3} \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{d}{dx} \\ \frac{d}{dx} \\ V \end{bmatrix} = \begin{bmatrix} \frac{\theta}{E(x)I_z(x)} \\ V \\ -w(x) \end{bmatrix}$$

one obtains the canonical form of the first-order vector ODE,

$$\frac{d}{dx}\mathbf{y} = \frac{d}{dx} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} y_2 \\ \frac{y_3}{E(x)I_z(x)} \\ y_4 \end{bmatrix} \rightarrow \mathbf{f} = \begin{bmatrix} y_2 \\ \frac{y_3}{E(x)I_z(x)} \\ y_4 \\ -w(x) \end{bmatrix}$$

Yesterday Yesterday SHAOF... 4 KB

$$\begin{bmatrix} v(0) - 0 \\ \theta(0) - 0 \\ M(L) - \bar{V}_L \end{bmatrix} \longrightarrow g(y(0), y(L)) := \begin{bmatrix} g_1(y(0), y(L)) \\ g_2(y(0), y(L)) \\ g_3(y(0), y(L)) \\ g_4(y(0), y(L)) \end{bmatrix} = \begin{bmatrix} y_1(0) - 0 \\ y_2(0) - 0 \\ y_3(L) - 0 \\ y_4(L) - \bar{V}_L \end{bmatrix}$$

How to represent the Dirac delta function?

The Dirac delta function can be defined as,

$$\delta(x-a) := \lim_{\epsilon \to 0} \begin{cases} \frac{1}{\epsilon}, & a - \epsilon/2 \le x \le a + \epsilon/2 \\ 0, & \text{otherwise} \end{cases}$$

```
66 🗔
       function [fxy] = beam1d ode(x,y)
67
       % % -- Define material property and geometry
68 -
       % w = 0; % load, in lb/in
69
70
       E = 30e6; % Young's Modulus, in psi
71
       I = 256;  % Second moment of inertia, in in^4
72
       a = 120/2; % Length of beam, in in
73
74
75
       % Define point moment
       epL = .1; %how small can epL be?
76
77
       if (x \le a + epL/2 \&\& x \ge a - epL/2)
78
           w = 1/epL;
79
       else
        W = 0;
80
81
       end
82
83
       % -- Define differential function here
84
       fxy = [y(2)]
85
               y(3)/(E*I)
86
              y(4)
87
               -w];
88
       end
```

```
응
% C30/ME85 Matlab Solver for Beam
90
 HW12 Problem Template
% -- Function to solve Beam problem
응
   using MATLAB ODE solver BVP4C
function [sol]=beam JP
% -- Define geometry
% L = 1000;
                        % Question 1 -- Length of the beam
% L = 36;
                         % Question 2 -- length of the beam, in in
L = 120; % Question 3 -- length in in.
% -- Set solver parameters
           % -- Number of variables
nvar = 4;
np = 1001; % -- Initial Number of points on [0,L]
xp = linspace(0,L,np);% -- Initial Points at which to satisfy ODE
% -- Set initial solution for the solver
solinit = bvpinit(xp,zeros(1,nvar));
```

```
function [res] = beam1d bc(ya,yb)
% -- Boundary Conditions (BC)
% u: displacement
% f: force
% ua = 0; % -- Fixed at x=a
% ma = 0; % -- Zero moment at x=a
% ub = 0; % -- Fixed at x=b
% mb = 0; % -- Zero moment at x=b
% res= [ya(1)-ua; ya(3)-ma;
% yb(1)-ub; yb(3)-mb];
% % -- Problem 2 cantilever beam
% ua = 0; % -- Fixed at x=a
% ta = 0; % -- No rotation at x=a
% mb = 0; % -- Zero moment at x=b
% Vb = -10e3; % -- -10 kip shear load at x=b
% res = [ya(1) - ua; ya(2) - ta;]
\% yb (3) -mb; yb (4) -Vb];
% -- Simply supported beam
ua = 0; % -- Fixed at x=a
ma = 0; % -- No rotation at x=a
ub = 0; % -- Fixed at x=b
mb = 0; % -- No rotation at x=b
res= [ya(1)-ua; ya(3)-ma;
     yb(1) - ub; yb(3) - mb];
```