UPPSALA UNIVERSITET

Matematiska institutionen

Seidon Alsaody 018–471 32 81 073–990 96 58 Prov i matematik

Algebra I 2013-01-14

Skrivtid 5 timmar. Hjälpmedel: skrivdon. Provet består av 8 uppgifter, om vardera 5 poäng, totalt 40 poäng. För betyg 3, 4 och 5 krävs minst 18, 25 resp. 32 poäng. **Inga bonuspoäng räknas.** Skriv tydligt och **motivera vä**l. Lycka till!

- 1. (a) Visa, med sanningsvärdestabell, att $(p \land q) \to r$ är ekvivalent med $p \to (q \to r)$ för allmänna utsagor p, q och r.
 - (b) Formulera $(p \land q) \rightarrow r$ och $p \rightarrow (q \rightarrow r)$ i ord, i fall p är utsagan "jag är trött", q är utsagan "jag lägger mig" och r är utsagan "jag somnar".
 - (c) Formulera algebrans fundamentalsats, utan bevis.
 - (d) Polynomet $x^2 + 1$ saknar reella nollställen. Motsäger detta algebrans fundamentalsats? Varför/varför inte?
- 2. I basen m gäller att $(25)_m \cdot (34)_m = (795)_m$. Bestäm m, och uttryck $(795)_m$ i basen 10.
- **3.** Funktionen $f: \mathbb{N} \to \mathbb{Q}$ ges av f(n) = n/(n+1).
 - (a) Visa att f är injektiv men inte surjektiv.
 - (b) Kan man ur detta direkt dra slutsatsen att Q är uppräknelig? Varför/varför inte?
- 4. Definiera talföljden (a_n) rekursivt, genom att sätta

$$a_0 = 1$$
 och $a_{n+1} = 1 + \sum_{i=0}^{n} a_i$ för $n \ge 1$.

Visa med induktion att $a_n = 2^n$ för varje $n \ge 0$.

- 5. Definiera relationen R på mängden av alla nollskilda komplexa tal enligt $xRy \iff x/y \in \mathbb{R}$. Visa att R är en ekvivalensrelation, och bestäm två ekvivalensklasser.
- 6. Alice tänker på ett tvåsiffrigt negativt tal. Detta tal är kongruent med 5 (mod 18). Det är även kongruent med 9 (mod 22). Vilket tal tänker hon på?
- 7. Polynomen $f(x) = x^4 + 6x^3 x^2 12x 2$ och $g(x) = x^4 4x^3 x^2 + 8x 2$ har ett gemensamt nollställe. Finn samtliga nollställen till båda polynomen.
- 8. Ekvationen $3x^4 + x^3 + 25x^2 + 8x = -8$ har en rent imaginär rot. Lös ekvationen fullständigt.