Projeto Overview

O projeto final da disciplina deve ser um tutorial com alguma relação aos objetivos de aprendizagem da matéria:

- Formular soluções que satisfazem requisitos de hardware e software de projetos com FPGA-SoC (System-on-a-chip)
- Integrar em um protótipo solução para um sistema embarcado com requisitos de processamento e/ou tempo real via FPGA-SoC
- Interfacear diferentes módulos em um sistema embarcado (processadores, firmware e sistema operacional)

Alguns exemplos de áreas que podem ser atacadas:

- 1. Aceleração/ implementação de algum algorítimo em hardware
 - processamento de dados, FFT, compressão, criptografia, ...
 - HLD/ HLS/ OpenCL/ FPGA Amazon
- 2. Comparação de performance entre diferentes tecnologias
 - · SoC vs GPU vs FPGA vs uC
- 3. Sistema operacional
 - Escalonador real time kernel linux, Android, RTOS embarcado

Tecnologias/ Ferramentas

A seguir uma lista de tecnologias que podem ser estudadas no tutorial:

- HDL (VHDL/Verilog)
- Adicionar uma instrução customizada ao NIOS
- Platform designer
 - · Criar um sistema para controlar um dos robôs de robótica
- Criar um periférico para interfacear com o mundo externo (ler teclado/ motor/ fita de Led/ ...)

- High Level Synthesis (HLS)
- Criar um periférico que acelera uma função (example)
- 👍 OpenCL
- Criar um hardware que acelera uma função Terasic Manual (example)
- Linux
- real time / otimização energética / boot time / aplicações / Android / openCL

Hardwares

Temos os seguintes kits de desenvolvimento disponível:

A seguir, eu tentei resumir os hardwares disponíveis no Insper e as respectivas tecnologias que podem ser utilizados com ele

Kit	Empresa	Tecnologia	vhdl	HLS	OpenCL	Linux	OpenC
Arria 10 SoC	Intel	FPGA + ARM	X	Х	х	Х	Х
DE10- Standard	Intel	FPGA + ARM	X	Х	x	Х	Х
DE10- nano-soc	Intel	FPGA + ARM	X	Х	x	Х	Х
Terasic SoC SoM	Intel	FPGA + ARM	X	Х	х	Х	х
DE5a- NET- DDR4	Intel	FPGA	х	Х	х		х
ZedBoard	Xilinx	FPGA + ARM	Х	Х	х	Х	х
instância F1	AWS	FPGA			х		
Jetson TK2	NVIDIa	ARM + GPU				х	х

Exemplos de temas/ coisas legais

- 🔢 : demanda uma dedicação maior
 - Criando um SoftProcessor e API para controlar um Drone
 - OpenCV acelerado com OpenCL ZedBoard
 - 🎚 Criar uma aplicação com HLS/OpenCL que acelera uma função na FPGA
 - Processamento de imagem/ compressão de dados/ criptografia/ fft/ ...
 - II Criar uma aplicação com OpenCL na AWS

- Embarcando ROS no SoC-FPGA (primeiro passo para controlarmos os robôs de robótica com a FPGA)
- II Usar o LCD LT24 com o Linux (Comunicação ARM-FPGA)
- Real Time kernel é realmente tempo real? Estudo de latência...
- Otimizando o boot time do linux
- Executando Android na DE10-Standard
- Interface gráficas em sistemas embarcados (exe: criar um totem de pagamento)
- Device driver: Criar um driver no linux para algum sensor de distância
- II Criar um periférico para controlar a fita de LED RGB e criar um driver para o Linux controlar
- BanchMark entre os diferentes kits de desenvolvimento.
- Usando o yocto como alternativa ao buildroot para gerar o Linux

Rubrica

O tutorial deve ser de autoria do aluno e auto contido, publicado na wiki da disciplina. A rubrica é incremental, para tirar A precisa ter alcançado o B antes... Tutoriais em inglês são acrescidos de ½ conceito.

- A
- É um tutorial de um tema novo
- · Possui um guia ao final do tutorial em como se aprofundar no tema
- Possui claro quais são os pontos críticos, e o que fazer em caso de erro
- B
- O tutorial é uma junção de outros tutoriais porém avança a onde os outros não foram
- O tutorial mescla teoria e prática de maneira aprofundada, mas sem travar o fluxo do mesmo
- C

- O tutorial é uma junção de outros tutoriais ou derivação de um exemplo já existente
- Tutorial é reproduzível (outra pessoa consegue seguir e chegar nos mesmos resultados)
- Possui um pouco de teoria, sem aprofundamento
- Possui referências externas