UE Statistiques asymptotiques Examen Décembre 2018

Consignes

- Durée 3 heures
- Notes de cours et documents donnés par les enseignants autorisés
- Autres documents interdits
- Vous pouvez utiliser les résultats vus en cours sans les redémontrer
- Les réponses doivent être justifiées
- La notation prendra en compte la clarté de la copie

Exercice 1

Soient X_1, \ldots, X_n des variables i.i.d. de loi uniforme sur [-1, 1]. Montrer que $\prod_{i=1}^{n} (1 + X_i / \sqrt{n})$ converge en loi lorsque $n \to \infty$ et déterminer la loi limite.

Indice: on pourra utiliser $|\log(1 + X_i/\sqrt{n}) - X_i/\sqrt{n} + (1/2)X_i^2/n| \le a_i/n^{3/2}$ ou $a_i \ge 0$ pour tout i et ou $\max_{i=1,\dots,n} a_i = O(1)$. A démontrer si utilisé.

Exercice 2

Soient $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d., tels que X_1 suit une loi L sur \mathbb{R} , de densité f continue et strictement positive sur \mathbb{R} et tels que $Y_1 = X_1 + Z_1$ avec Z_1 indépendant de X_1 et suivant la loi $\mathcal{N}(0, 1)$. On suppose que $\int_{\mathbb{R}} |x| f(x) dx < +\infty$. On pose

$$\hat{\theta} \in \operatorname{argmin}_{\theta \in [1/2, 2]} \sum_{i=1}^{n} |Y_i - \theta X_i|.$$

1) Montrer que la fonction $\theta \to \mathbb{E}(|Y_1 - \theta X_1|)$ est continue sur [1/2, 2] et admet un unique minimum en $\theta_0 = 1$.

Indice: On pourra utiliser sans démonstration que $\mathbb{E}(|W+a|) > \mathbb{E}(|W|)$ pour tout $a \neq 0$ lorsque $W \sim \mathcal{N}(0,1)$.

2) Montrer que

$$\sup_{\theta \in [1/2,2]} \left| \left(\frac{1}{n} \sum_{i=1}^{n} |Y_i - \theta X_i| \right) - \mathbb{E}(|Y_1 - \theta X_1|) \right|$$

tend vers 0 en probabilité.

3) En déduire que $\hat{\theta}$ tend vers 1 en probabilité.

Exercice 3

Soit μ la mesure de Lebesgue sur \mathbb{R} . Pour $\theta > 0$, soit p_{θ} la densité de probability sur \mathbb{R} donnée par $p_{\theta}(t) = \mathbf{1}_{0 \le t \le \theta}/\theta$. Montrer que, pour tout $\theta_0 > 0$, le modèle $\{p_{\theta}\mu; \theta > 0\}$ n'est pas différentiable en moyenne quadratique en θ_0 .