CS61B 课程笔记

黄毅男

目录

1	Java	a 编程基础	1
	1.1	Class in Java	1
	1.2	Private ≒ public/Static ≒ non-static	1
	1.3	JUnit Testing	2
	1.4	接口继承和 Override、实现继承	2
	1.5	函数作为输入参数	3
	1.6	Casting	3

1 Java 编程基础

1.1 Class in Java

Java 的所有 code 都必须定义在类中。类中定义的变量和函数分 static 和 non-static。static 变量/函数是抽象的,可以由类本身直接引用。non-static 变量/函数是具体的,必须先定义一个对象,然后对象才能调用 non-static 变量/函数。简单来说,当想要用类来调用某个成员时,请用 static 定义该成员;当想用具体的对象来调用某个成员时,用 non-static 定义该成员。

特别的, java 中的 main 函数也必须以 static 的方式定义在类中。

1.2 Private 与 public/Static 与 non-static

Private 的变量只能在 class 内部调用,而 public 的变量可以在 class 外部调用。

static 指的是类本身的变量,通过类来调用; non-static 必须通过对象调用。当定义类中的内部类时,若内部类为 static,则这个内部类只能通过

大类来声明、调用,故没办法访问大类中的 non-static 变量; 当内部类是 non-static 时,需要通过大类的对象声明、调用。内部的 non-static 类不能 有 static 变量。举个例子:

- (1)Outerclass 里的 Innerclass 为 static 的。这时用 Outerclass.Innerclass 表示这个类,Innerclass 的对象声明为 new Outerclass.Innerclass(); Innerclass 内的 static 变量 x 可以用 Outerclass.Innerclass.x 表示; non-static 变量 y 用 in=new Outerclass.Innerclass(), in.y 表示。
- (2)Outerclass 里的 Innerclass 为 non-static 的。这时还是用 Outerclass.Interclass 表示这个类,Innerclass 的实例声明为 out.new Innerclass, out 为 Outerclass 的实例。Innerclass 内不能有 static 变量 x; Innerclass 内的 non-static 变量 y 用 out.in.y 表示。

简单来说, static 变量的前一级是类; non-static 变量的前一级是对象。

1.3 JUnit Testing

对于类中的每个方法,都可以单独写一个 test 函数。这个 test 函数用 non-static 定义,然后在函数前加上 @org.junit.Test,可以直接运行 test 函数。同时不同的 test 的独立进行。

1.4 接口继承和 Override、实现继承

接口是一个抽象的东西,它约定了类的方法有哪些。若某个类继承了这个接口,这个类必须包含接口中声明的所有方法 (并且必须是 public 的),这些方法的声明称为对接口中方法的重写 (Override)。在接口中这些方法没有被实现,接口继承后的类可以用任意实现这些方法。继承了接口的类还可以有自己的属性和其他方法。实例化时,可以用接口类型来指向一个继承了接口的子类的对象,但是这个对象只能调用接口中的方法 (即 override 的方法),不能调用子类中的属性和其他没有被重写的方法。

在接口方法前加上 default 关键词,可以给方法一个实现。这样类在继承这个接口时会"实现继承",即把这个方法的实现也继承过去。实现继承的方法不需要声明就可以直接调用。当然在类中也可以重写这个 default 的方法 (Override)。

实例化时,可以用接口类型来指向一个继承了接口的子类的对象,但是这个对象只能调用接口中的方法 (即 override 的方法和 default 的方法),但不能调用子类中的属性和其他接口中没有的方法。虽然是以接口类型声明,

但实例的方法实现均以类中 override 后的实现为准。这是因为声明接口类型是一个静态类型,而创建一个类的对象时,这个类是动态类型。编译时系统以静态类型为准,比如输入参数是否与静态类型中方法的参数匹配等。运行时,一个引用类型只能调用静态类型的方法,除非动态类型将这个方法重写了。如果静态类型中没有这个方法,即使动态类型里有,也不能调用。如果有多个 overload 的方法可以处理一个输入,系统会选择最 specific 的那个。

一个 override 和 overload 的例子。假设接口中有函数 default func。如果类继承了接口,并且这个方法的格式与 func 一样 (输入返回参数格式也必须一样),这时候类就可以重写 (override) 这个方法的实现;但是如果类中的方法格式与 func 同名但是输入返回参数格式不同,这时候类其实是实现继承了一个 default func(尽管在类中没有声明),同时重载了这个方法 (overload)。简单来说,override 是修改方法的实现,但是 overload 是修改整个方法 (但是方法的名字相同)。

1.5 函数作为输入参数

java 不能直接把函数作为输入参数,因为函数不是一个数据类型。一般的方法是,首先定义一个接口(比如叫做 func),所有的函数都继承这个接口中 apply 方法(即调用这个函数本身)。这样在调用函数时,我们可以先实例化这个函数,得到一个 func 对象,然后定义一个以 func 对象为输入参数的函数,这样就可以达到"构造一个以函数为输入参数的函数"的目的了。

1.6 Casting

Casting 是 java 中变换静态类型的一种方法。我们知道,一个赋值操作 a=b 是否能编译,取决于 a 的类型 A 是否是 b 的类型 B 的上义词。若 B 是 A 的下义词,编译会失败。这时我们可以用 a=(A) b 的 casting 方法来临时 将后边的表达式的静态类型变为 A ",骗过"编译器从而编译成功。不过需 要注意的是,即使通过了编译器,运行也可能报错。cast 赋值后,对象的静态类型比动态类型小,这时候 run-time 会报错。比如 (Small) new Big(...),本来表达式 new Big(...) 的静态类型和动态类型都是上义词 Big,但是其静态类型被 Casting 为 Small,这时候静态类型是动态类型的下义词,那么这个表达式虽然可以通过编译,但是在运行时会报错。总而言之,Casting 可

以任意提高静态类型,但是在降低静态类型时,务必不能低于动态类型的大小,否则会运行报错。

总结:

- 编译时: 检查赋值语句,被赋值方的静态类型必须是赋值方静态类型 的上义词;检查方法调用语句,静态类型中必须有这个方法。
- 运行时:运行赋值语句时,每个对象的静态类型必须是其动态类型的上义词;运行方法调用语句时,从静态类型中选取最合适的方法调用,但如果这个方法被其动态类型 override(只有下义词才能 override,这就是为什么动态类型必须是静态类型的下义词),那么调用动态类型中的方法。