

Article

Responsible Machine Learning

with Interpretable Models, Post-hoc Explanation, and Disparate Impact Testing

Navdeep Gill 1,‡, Patrick Hall 1,‡,*, Kim Montgomery 1,‡, and Nicholas Schmidt 2,‡

- ¹ H2O.ai
- ² BLDS, LLC
- * Correspondence: phall@h2o.ai; nschmidt@bldsllc.com
- † These authors contributed equally to this work.

Version November 4, 2019 submitted to Information

- Abstract: This text outlines a viable approach for training and evaluating complex machine
- learning systems for high-stakes, human-centered, or regulated applications using common Python
- 3 programming tools. The accuracy and intrinsic interpretability of two types of constrained models,
- 4 monotonic gradient boosting machines (M-GBM) and explainable neural networks (XNN), a deep
- bearning architecture well-suited for structured data, are assessed on simulated datasets with known
- 6 feature importance and sociological bias characteristics and on realistic, publicly available example
- datasets. For maximum transparency and the potential generation of personalized adverse action
- notices, the constrained models are analyzed using post-hoc explanation techniques including plots
- of individual conditional expectation (ICE) and global and local gradient-based or Shapley feature
- importance. The constrained model predictions are also tested for disparate impact and other types
- of sociological bias using straightforward group fairness measures. By combining innovations in
- interpretable models, post-hoc explanation, and bias testing with accessible software tools, this text
- aims to provide a template workflow for important machine learning applications that require high
- accuracy and interpretability and low disparate impact.
- 15 Keywords: Machine Learning; Neural Network; Gradient Boosting Machine; Interpretable;
- Explanation; Fairness; Disparate Impact; Python

17 0. Introduction

18 1. Materials and Methods

- 1.1. Notation
- To facilitate descriptions of data, modeling, explanatory, and social bias techniques, notation for input and output spaces, datasets, and models is defined.
- 22 1.1.1. Spaces
- Input features come from the set \mathcal{X} contained in a P-dimensional input space, $\mathcal{X} \subset \mathbb{R}^P$. An arbitrary, potentially unobserved, or future instance of \mathcal{X} is denoted \mathbf{x} , $\mathbf{x} \in \mathcal{X}$.
- Labels corresponding to instances of \mathcal{X} come from the set \mathcal{Y} .
 - Learned output responses come from the set $\hat{\mathcal{Y}}$.
- 27 1.1.2. Datasets
- The input dataset X is composed of observed instances of the set \mathcal{X} with a corresponding dataset of labels Y, observed instances of the set \mathcal{Y} .

- Each *i*-th observation of **X** is denoted as $\mathbf{x}^{(i)} = [x_0^{(i)}, x_1^{(i)}, \dots, x_{p-1}^{(i)}]$, with corresponding *i*-th labels in \mathbf{Y} , $\mathbf{y}^{(i)}$, and corresponding predictions in $\mathbf{\hat{Y}}$, $\mathbf{\hat{y}}^{(i)}$.
- **X** and **Y** consist of *N* tuples of observations: $[(\mathbf{x}^{(0)}, \mathbf{y}^{(0)}), (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(N-1)}, \mathbf{y}^{(N-1)})]$. Each *j*-th input column vector of **X** is denoted as $X_j = [x_j^{(0)}, x_j^{(1)}, \dots, x_j^{(N-1)}]^T$. 32

1.1.3. Models

33

36

38

60

- A type of machine learning model g, selected from a hypothesis set \mathcal{H} , is trained to represent an unknown signal-generating function f observed as X with labels Y using a training algorithm A: $\mathbf{X}, \mathbf{Y} \xrightarrow{\mathcal{A}} g$, such that $g \approx f$.
 - g generates learned output responses on the input dataset $g(\mathbf{X}) = \hat{\mathbf{Y}}$, and on the general input space $g(\mathcal{X}) = \hat{\mathcal{Y}}$.
 - The model to be explained is denoted as *g*.
- 1.2. Data Description
- 1.3. Model Description
- 1.3.1. Explainable Neural Network
- 1.3.2. Monotonically Constrained Gradient Boosting Machine
 - Monotonic gradient boosting machines (M-GBMs) constrain typical GBM training to consider only tree splits that obey user-defined positive and negative monotonicity constraints. The M-GBM remains an additive combination of many trees, T_b , but with a set of splitting rules that respect the monotonicity constraints, Θ_h^{mono} .

$$g^{\text{mono}}(\mathbf{x}) = \sum_{b=1}^{B} T_b(\mathbf{x}; \Theta_b^{\text{mono}})$$
 (1)

As in unconstrained GBM, Θ_b is selected in a greedy, additive fashion by minimizing a regularized loss function that considers known target labels, y, the predictions of all subsequently trained trees in the M-GBM, $g_{b-1}^{\text{mono}}(\mathbf{X})$, and a regularization term that penalizes complexity in the current tree, $\Omega(T_b)$. For each *i*-th observation and the *b*-th iteration the loss function, $\mathcal{L}_{i,b}$, can be defined as:

$$\mathcal{L}_{i,b} = \sum_{i=0}^{N-1} l(y^{(i)}, g_{b-1}^{\text{mono}}(\mathbf{x}^{(i)}), T_b(\mathbf{x}^{(i)}; \Theta_b^{\text{mono}})) + \Omega(T_b)$$
 (2)

In addition to $\mathcal{L}_{i,b}$, Θ_b^{mono} is constrained by applying additional splitting rules for each binary split rule, $\theta_{b,j,k} \in \Theta_b$. Each $\theta_{b,j,k}$ is associated with a feature, X_j , and can be the k-th such split associated with X_i in T_b . Each $\theta_{b,j,k}$ also results in left and right child nodes with a numeric weight, $\{w_{b,j,k,L}, w_{b,j,k,R}\}$. For terminal nodes, each $w_{b,j,k}$ is essentially the model prediction. For two values of some feature X_j , $x_i^{\alpha} \leq x_i^{\beta}$, where the prediction for each value results in $T_b(x_i^{\alpha}; \Theta_b) = w_{\alpha}$ and $T_b(x_i^{\beta}; \Theta_b) = w_{\beta}$, Θ_b is said to be positive monotonic if:

- 1. For the first and highest split in T_b involving X_j , any $\theta_{b,j,0}$ causing the left child weight to be greater than the right child weight, $T(x_j; \theta_{b,j,0}) = \{w_{b,j,0,L}, w_{j,0,R}\}$ where $w_{b,j,0,L} > w_{b,j,0,R}$ is not
- 2. For any subsequent left child node involving X_j , any $\theta_{b,j,1+}$ causing $T(x_j;\theta_{b,j,1+}) =$ $\{w_{b,j,1+,L}, w_{b,j,1+R}\}$ where $w_{b,j,1+,L} > w_{b,j,1+,R}$ is not considered.
- 3. Moreover, for any subsequent left child node involving X_j , $T(x_j; \theta_{b,j,k+}) = \{w_{b,j,k,L}, w_{b,j,k,R}\}$ for k > 0, $\{w_{b,j,k,L}, w_{b,j,k,R}\}$ are bound by the preceding set of $\{w_{b,j,k-1,L}, w_{b,j,k-1,R}\}$ such that $\{w_{b,j,k,L}, w_{b,j,k,R}\} \le \frac{w_{b,j,k-1,L} + w_{b,j,k-1,R}}{2}$.

4. (1) and (2) are also applied to all right child nodes, except that for right child nodes $\{w_{b,j,k,L}, w_{b,j,k,R}\} \ge \frac{w_{b,j,k-1,L} + w_{b,j,k-1,R}}{2}$.

Note that for any X_j in any g_{mono} T_b left subtrees will alway produce lower predictions than right subtrees, and that any $g_{mono}(\mathbf{x})$ is a sequential addition of each T_b output, with the application of a monotonic logit or softmax link function for classifications. Also note that each tree's root node will always obey monotonicity constraints, as $T(x_j^{\alpha};\theta_{b,0}) = T(x_j^{\beta};\theta_{b,0})$, ensuring $T(x_j^{\alpha};\theta_{b,j,0}) = w_{b,j,0,L} \le T(x_j^{\beta};\theta_{b,j,0}) = w_{b,j,0,R}$. For negative monotonic constraints left and right splitting rules are switched, and tree pruning strategies can be applied.

5 1.4. Explanatory Method Description

67

77

78

81

82

84

91

92

100

101

1.4.1. Partial Dependence and Individual Conditional Expectation

Partial dependence (PD) plots are a widely-used method for describing the average predictions of a complex model g across some partition of data \mathbf{X} for some interesting input feature X_j [1]. Individual conditional expectation (ICE) plots are a newer method that describes the local behavior of g for a single instance $\mathbf{x} \in \mathcal{X}$. Partial dependence and ICE can be combined in the same plot to compensate for known weaknesses of partial dependence, to identify interactions modeled by g, and to create a holistic portrait of the predictions of a complex model for some X_i [2].

Following Friedman *et al.* [1] a single feature $X_j \in \mathbf{X}$ and its complement set $\mathbf{X}_{(-j)} \in \mathbf{X}$ (where $X_j \cup \mathbf{X}_{(-j)} = \mathbf{X}$) is considered. PD(X_j, g) for a given feature X_j is estimated as the average output of the learned function $g(\mathbf{X})$ when all the observations of X_j are set to a constant $x \in \mathcal{X}$ and $\mathbf{X}_{(-j)}$ is left unchanged. ICE(x_j, \mathbf{x}, g) for a given instance \mathbf{x} and feature x_j is estimated as the output of $g(\mathbf{x})$ when x_j is set to a constant $x \in \mathcal{X}$ and all other features $\mathbf{x} \in \mathbf{X}_{(-j)}$ are left untouched. Partial dependence and ICE curves are usually plotted over some set of constants $x \in \mathcal{X}$.

1.4.2. Shapley Values

Shapley explanations, including Tree SHAP (SHapley Additive exPlanations), are a class of additive, locally accurate feature contribution measures with long-standing theoretical support [3]. Shapley explanations are the only possible locally accurate and globally consistent feature contribution values, meaning that Shapley explanation values for input features always sum to $g(\mathbf{x})$ and that Shapley explanation values can never decrease for some x_j when g is changed such that x_j truly makes a stronger contribution to $g(\mathbf{x})$ [3].

For some observation $x \in \mathcal{X}$, Shapley explanations take the form:

$$g(\mathbf{x}) = \phi_0 + \sum_{j=0}^{j=\mathcal{P}-1} \phi_j \mathbf{z}_j$$
 (3)

In Equation 3, $\mathbf{z} \in \{0,1\}^{\mathcal{P}}$ is a binary representation of \mathbf{x} where 0 indicates missingness. Each ϕ_j is the local feature contribution value associated with x_j and ϕ_0 is the average of $g(\mathbf{X})$.

Shapley values can be estimated in different ways. Tree SHAP is a specific implementation of Shapley explanations that relies on traversing internal tree structures to estimate the impact of each x_j for some $g(\mathbf{x})$ of interest [4].

$$\phi_j = \sum_{S \subset \mathcal{P}\setminus\{j\}} \frac{|S|!(\mathcal{P}-|S|-1)!}{\mathcal{P}!} [g_x(S \cup \{j\}) - g_x(S)]$$

$$\tag{4}$$

- 1.5. Social Bias Test Description
- 1.6. Software Resources

2. Results

- 105 2.1. Simulated Data Results
- 106 2.2. Loan Data Results
- 107 3. Discussion

108 4. Conclusions

- Author Contributions: , N.G.; , P.H.; , K.M.; , N.S.
- Funding: This research received no external funding.
- 111 Acknowledgments: Wen Phan for work in formalizing our notation.
- 112 Conflicts of Interest:

113 Abbreviations

114 The following abbreviations are used in this manuscript:

116 References

115

- 1. Friedman, J.; Hastie, T.; Tibshirani, R. *The Elements of Statistical Learning*; Springer: New York, 2001. URL: https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf.
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical
 Learning with Plots of Individual Conditional Expectation. *Journal of Computational and Graphical Statistics* 2015, 24. URL: https://arxiv.org/pdf/1309.6392.pdf.
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In *Advances in Neural Information Processing Systems 30*; Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds.; Curran Associates, Inc., 2017; pp. 4765–4774. URL: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent Individualized Feature Attribution for Tree Ensembles. In *Proceedings of the 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017)*; Kim, B.; Malioutov, D.M.; Varshney, K.R.; Weller, A., Eds.; ICML WHI 2017, 2017; pp. 15–21. URL: https://openreview.net/pdf?id=ByTKSo-m-.
- © 2019 by the authors. Submitted to *Information* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).