Tolerancia a Fallos

En presencia de fallos, el sistema distribuido continúa operando en forma aceptable.

- Dependable Systems.
- Garantizar comportamiento en distintas condiciones.
- Prevenir de cara al usuario.
- Nivel de tolerancia.
- Fallo (parcial) -> Error (en el estado del sistema) -> Falla/Avería (comportamiento incorrecto).

Clasificación de fallos

Según frecuencia:

- Transientes. Una vez y desaparecen. Repetir lo arregla.
- Intermitentes.
- Permanentes. H/ reemplazar componente defectuoso.

Según tipo:

- Crash.
- Timing.
- · Omisión.
- Respuesta. Valor incorrecto.
- Arbitraria o Bizantina.
 - En tiempos y respuesta.
 - Distinta info para distintos consumidores.

Condiciones

- Del entorno.
 - Entorno físico del hardware.
 - Interferencia y ruido.
 - Drifts de relojes.
- · Operacionales.
 - Especificaciones
 - Networking.
 - Protocolos.

Detección de errores

- Fault Removal. Removerlos antes de que pasen.
- Fault Forecasting. Probabilidad de que un componente falle.
- Fault Prevention/Avoidance. Evitar condiciones que llevan a generarlos.
- Fault Tolerance. Aceptar los errores y tratarlos en el sistema.

Frente a errores

- Resiliencia: mantener nivel aceptable en presencia de fallos y desafíos.
- Degradación suave: difiere del comportamiento normal pero sigue siendo aceptable.
- Enmascarado de errores.
 - Tolerar mediante **redundancia**.
 - * Física = replicación.
 - * De información = valor.
 - * De tiempo = $\mathbf{retries}$.
- Replicación. Evitar SPOF.
- Recuperación de un error y llevarlo a estado correcto.

- Almacenamiento estable.
- Checkpointing (periódico).
- Message logging (repetir desde checkpoint).
- Consenso.

Tipos de Replicación

- Pasiva. Una primaria y varias secundarias/backup.
- Activa. Múltiples máquinas hacen lo mismo. Orden total.
- Semi-activa (Leader-Follower). Un lider toma decisiones no determinísticas.

Confiabilidad

Dependability. Medida de confianza en el sistema.

- · Availability.
- · Reliability.
- Maintainability. Ciclo de despliegue, provee:
 - Inmutabilidad.
 - Resiliencia.
 - Desacoplamiento.
- Safety. El sistema debe poder ser recuperado automática o manualmente ante cualquier falla.

Coordinación y Acuerdo

Exclusión mutua distribuida

- Obtener acceso exclusivo a un recurso disponible p/ la red.
- Pasaje de mensajes.
- Requerido:
 - Safety: solo un proceso a la vez.
 - **Liveness:** evitar starvation, espera eterna de mensajes.
 - **Fairness:** c/ proceso misma prioridad. In-order processing.

Algoritmos

- Servidor central. Un coordinador de la sección crítica.
 - Se sabe identificar el recurso.
 - Requests encolados (FIFOs).
 - Acceso time-bounded.
- · Token Ring.
 - El token circula por el anillo.
 - Acceso "por turnos".
- Ricart & Agrawala.
 - Cuando querés acceder:
 - 1. Request con timestamp del proceso, ID y nombre del recurso.
 - 2. Enviar a todos.
 - 3. Esperar OK de todos.
 - 4. Entrar.
 - Cuando recibis Request:
 - 1. Envía OK si no está interesado.
 - 2. Si tiene la seccion, no responde y lo encola.
 - 3. Si está esperando, se comparan timestamps. El del timestamp menor gana.
 - * El perdedor envía OK.

- * El ganador encola request.
 Cuando terminas de usar la sección, mandás OK a todos los encolados.