

X-Ray for IP-Blocks

Ahmed Reda Mohamed

📆 efabless:

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- ☐ Beyond Scene
- ☐ Case Study
- □ Conclusion

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- ☐ Beyond Scene
- ☐ Case Study
- □ Conclusion

Motivation and Problem Statement (1/2)

Source Available Open **Analog & Mixed Signal IP**

Phase	Locked	Loon	(PLI)
riiase	LUCKEU	Loop	(FLL)

Digital to Analog Converter (DAC)

Rail-to-Rail Comparators

Filters

Voltage Controlled Oscillator (VCO)

Trans-Impedance Amplifier (TIA)

Analog/Mixed Accelerator

Analog to Digital Converter (ADC)

Bandgap Voltage Reference

Amplifiers

Low Dropout Voltage Regulator (LDO)

Analog Neuron

Audio Amplifier

DC to DC converter

Electrical ch/cs,...etc

	CP,CPK	
	Layo	ut
)	Item	Checke
,	DRC	

Analysis's types DC DC sweep AC Trans FOM MC PVT CP,CPK	Pre-layout Simulation					
DC sweep AC Trans FOM MC PVT	· · · · · · · · · · · · · · · · · · ·	Param.				
AC Trans FOM MC PVT	DC					
Trans FOM MC PVT	DC sweep					
FOM MC PVT	AC					
MC PVT	Trans					
MC PVT						
PVT	FOM					
	MC					
CP,CPK	PVT					
	CP,CPK					

Layout				
Item	Checked			
DRC				
Silicon Area				

DC

CP,CPK

efabless

LVS
Lack info. of the correct schematic/layout

Lack info.	of the co	rrect
schematic	:/layout	

DC sweep AC Trans **FOM** MC **PVT**

Within this process, many IP blocks are not working well Or useless economically. There is no official doc.

Waste silicon area, time, effort,...money

Motivation and Problem Statement (2/2)

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- □ Beyond Scene
- ☐ Case Study
- □ Conclusion

X-ray Tool for Analog/Mixed Circuit

- **□**Features
 - Open Source Tool
 - **☐** Deep Automated Analysis
 - ☐ Fully Characterization of Analog IP Blocks
 - ☐ Guaranteed Maturity Design
 - ☐ Troubleshooting for Sign-off
 - **☐** Improve Productivity Time
 - **□** Quasi-independent
- Need Resources
 - ☐ XSCHEM
 - **□** NGSPICE
 - **□** PYTHON
 - ☐ SKYWATER130nm
- **☐** User Submission
 - □ *.spice Netlist
 - □ *.cfg Configuration
 - □ *.txt Design Spec.

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- Beyond Scene
- ☐ Case Study
- □ Conclusion

Beyond Scene

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- □ Beyond Scene
- ☐ Case Study
- □ Conclusion

Case Study (1/8)

- ☐ An automated analysis of the trans-conductance amplifier (OTA)
- □OTA is an universal analog building block Circuit Under Test (CUT).
- ☐ Herein, trans, dc, ac simulations are considered.MC for ac parameters such as AV and GBW considered as well.

Case Study (2/8)

- 1- Draw the OTA circuit (Folded Cascode, Miller..etc) using XSCHEM
- 2- Set all dimensions as design parameters
 - Select a device and press "q"
 - Replace L, W, nf, and mult as listed

	L	W	nf	mult
M1	\$L1@	\$W1@	\$NF1@	\$MULT1@
M2	\$L2@	\$W2@	\$NF2@	\$MULT2@
М3	\$L3@	\$W3@	\$NF3@	\$MULT3@
:				
Mi	\$Li@	\$Wi@	\$NFi@	\$MULTi@
C1	\$LC1@	\$WC1@		
C2	\$LC2@	\$WC2@		
Ci	\$LCi@	\$WCi@		

Case Study (3/8)

3- Make sure the ports' name as listed.

	Name
+Ve Power Supply	vdd
-Ve Power Supply	vss
Inverting Terminal	vin
Non-Inverting Terminal	vip
Output Terminal	vout
Input Bias Terminal	ibiasn

Case Study (4/8)

4- From XSCHEM, mark "LVS netlist:Top level is a .subckt", then press "Netlist"

5- Save the netlist as "ndiff-ota-circuit.spice" (**)

- 6-Open a file and save at as a "ota.cfg" to present a configuration file of the design.
- "ota.cfg" and edit the following 7-Open configure the previous design parameters.

Typical/Common Setting

```
dim("${TOPCELLNAME}",["tb"])
dim("${CORNERS}",
dim("${TEMP VAL}",
dim("${TNOM VAL}",
```

AC Analysis Setting

```
dim("${ND}",
dim("${FSTART}",["1"])
dim("${FSTOP}", ["50MEG"])
```

ICMR Analysis Setting

```
dim("${ICMRVSTART}",
dim("${ICMRVSTOP}",
dim("${ICMRVSTEP}", ["1m"])
```

Noise Analysis Setting

```
dim("${NND}",
dim("${NFSTART}",["1"])
dim("${NFSTOP}", ["1MEG"
```

THD Analysis Setting

```
dim("${VPEAKTHD}",["0.65"])
dim("${FTHD}",
                    ["1k"])
dim("${TSTEP}",
                    ["1u"])
dim("${TSTOP}",
                    ["2m"])
dim("${TSAVE}",
                    ["10u"])
dim("${FUNDFRE0}",["1k"])
```

Offset Analysis Setting

```
dim("${DCSWEEPSTART}",["0.8"])
dim("${DCSWEEPSTOP}", ["1"])
dim("${DCSWEEPSTEP}", ["100u"]
```

Slew rate Analysis Setting

efabless

```
dim("${VPULSHIGH}",
                       ["1.5"])
                       ["0.6"])
dim("${VPULSLOW}",
dim("${VPULSDELAY}",
                       ["0"])
dim("${VPULSDTR}",
                        ["10ns"]
                       ["10ns"]
dim("${VPULSTF}",
dim("${VPULSTH}",
                       ["1u"])
dim("${VPULSTPERIOD}",["2u"])
dim("${SRTSTEP}",
                        ["0.1n"]
                       ["2.5u"]
dim("${SRTSTOP}",
dim("${SRTSAVE}",
                       ["0.5u"]
dim("${vout20}",
                       ["0.6"]
dim("${vout80}",
```

Monte-Carlo Setting

```
dim("${DEV}",
dim("${LOT}",
                   ["0"])
dim("${CORNERMM}}",["tt mm"]
dim("${MC.COUNT}",["1000"]
dim("${SEED}",
```

Circuit Parameters

```
dim("${VDD}",
                  ["1.8"]
dim("${CL}",
                  ["2p"])
dim("${IBIASN}",["20u"])
dim("${VCOM}",
                 ["0.9"]
dim("${W1}",
                  ["5"])
dim("${L1}",
                  ["1"])
dim("${NF1}",
                  ["1"])
dim("${MULT1}",
                 ["11"])
dim("${W2}",
dim("${L2}",
                  ["1"])
dim("${NF2}",
                 ["1"])
dim("${MULT2}",
```

Case Study (5/8)

- 8- Open a file and save at as a "specifications.txt" to present design specs.
- 9-Open "specifications.txt" and edit the following upper/lower specification limits.

```
# NAME OF OTA:
folded_cascode
# MAX. VOLTAGE GAIN (dB):
100
# MIN. VOLAGE GAIN (dB) :
0
# MAX. GAIN BANDWIDTH PRODUCT (Hz):
50e6
# MIN. GAIN BANDWIDTH PRODUCT (Hz):
1e6
# MAX. PHASE MARGIN (Deg.):
90
# MIN. PHASE MARGIN (Deg.):
45
# LOAD CAPACITANCE:
1e-12
```

Noted:

- ☐ The designer/user should submit 3X files:
- 1. ndiff-ota-circuit.spice
- 2. ota.cfg
- 3. specifications.txt

10- Copy those files to the folder named "cut", as shown.

efabless

readraw

template tb

spice

11- Using the following command, XRAY4OTA script can be executed. Several folders and files are generated as shown.

Case Study (6/8)

################################### Cost Evaluation (FOM)

FOM1=Cl*SR/Pd (f.v/s.w) : 1.62e-02

DM2=Cl*GBW/Pd (f.Hz/w)

Case Study (7/8)

Analysis's Type	Item		Miller	Folded-Cascode	
	Total Current (A)		0.000176436	7.10188E-05	
DO/DO 0000000	Total Power (W)		0.000317585	0.000127834	
DC/DC Sweep	Offset (V)		0.0005257	0.0024598	
	Vin_min (V)		0.54157	0.547968	
	Dc-Gain (dB)		53.6652	43.0194	
	Gain Bandwidth	Product (Hz)	1.68395E+07	1.58434E+07	
	Phase Margin (D	eg)	69.1777	76.8771	
AC Ameliosia	Bandwidth (Hz)		34962.6	112787	
AC Analysis	CMRR (dB)		65.1424	78.7436	
	PSRR+ (dB)		56.21563	73.814	
	PSRR- (dB)		53.665	43.019	
	Total Input Referred Noise (V) @ 1MEG		2.29288E-05	2.28478E-05	
	Slew Rate		908993	2.07351E+06	
Transient Analysis	Total Harmonic Distortion (%)@ Vpeak of 0.65 V and operating Frequency of 1kHz		0.943859	4.85748	
		Mean	27.2	41.2	
	DC-Gain	Standard Deviation	15.9	5.37	
		СР	1.05	3.1	
Monte Carlo Analysis		СРК	0.57	2.56	
(1000 run)		Mean	7.74e+06	1.57e+07	
	GBW	Standard Deviation	5.65e+06	8.39e+05	
		СР	1.45	9.73	
	СРК		0.4	5.84	
FOM1=CI*SR/Pd (f.v/s.w)		2.86e-03	1.62e-02		
FOM	FOM2=CI*GBW/Pd (f.Hz/w)		5.30e-02	1.24e-01	

Case Study (8/8)

I have used my developed Xray tool to automate the simulation result, evaluate process/corner-voltage-temperature (PVT) of IP block, and report the results.

Process: tt, ff, ss,sf,fs

VDD: 3.3V,3.63V,2.97V

DVDD: 1.8V, 1.98V, 1.62V

Temp: 0°C, **25°C**, 85°C

XRAY EF AMP3V3.py

efabless:

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
VDD	Analog Power Supply		2.97	3.3	3.63	V
IDL	Consumed Current	EN=0 V, VCM=1.65V	4.97	10.9	740	nA
IQ	Quiescent Current	EN=1.8 V, VCM=1.65V	3.81	107	370	μΑ
Vos	Input Offset Voltage	ENI=1 9 V Unity foodback	0.73	1.12	2.26	mV
VO	Voltage Range	EN=1.8 V, Unity feedback	0.052	1.65	1.89	V
Av	Open Loop Gain		28.5	47.1	49.8	dB
Асм	Common Mode Gain		-28.6	-8.9	-5.04	ub ub
GBW	Gain Bandwidth Product		0.147	10.9	29.5	MHz
BW	Bandwidth –3dB		3.46	35.3	84.5	KHz
PM	Phase Margin		60.9	65	89.7	۰
CMRR	Common mode rejection ratio		44.4	56	57.1	
PSRR	Power Supply Rejection Ratio		51.7	61.8	66.2	dB
SR	Slew Rate	Step VIP from 0.9V to 2.4V, time rising/falling=100ns	2.5	10.1	33.3	V/µs
		V _{I_PEAK} =0.5V, Freq.=1KHz	0.0021	0.0027	0.89	
TUD	Total Harmonic Distortion	V _{I_PEAK} =1V, Freq =1KHz	0.0080	0.28	10.7	%
THD		V _{I_PEAK} =0.5V, Freq =1000KHz	0.12	0.38	19	
		V _{I_PEAK} =1V, Freq =1000KHz	0.28	2.9	24.7	
Cin	Input capacitance		2.6	3.1	15	fF
	Innut naise anastral density	Freq.=1Hz: Freq.=10KHz	96.7	115.3	163	μV/√Hz
	Input noise spectral density	Freq.=10Hz: Freq.=10MHz	0.497	0.937	10.5	mV/√Hz
Temp	Temperature Range		0	25	85	0
	Core Silicon area	SKYWATER 130nm		37x53		μm ²

EF AMP3V3

📆 efabless:

- Motivation and Problem Statement
- ☐ X-ray Tool for Analog/Mixed Circuit
- ☐ Beyond Scene
- ☐ Case Study
- Conclusion

Conclusion

- ☐ An open-source script for trans., MC, and PVT analysis with process capability has been proposed.
- ☐ The script
 - □ relies open resources such as Xschem, Ngspice, SKYWATER PDK, and python.
 - □ acts as an Xray device to analysis and manage your circuits' test bench.
 - □ assists the designer to check of the results within process capability indices.
 - ☐ Save designer's time and increase productivity time.

Thanks!