

MOS INTEGRATED CIRCUIT μ PD42S4800, 424800

4 M-BIT DYNAMIC RAM 512 K-WORD BY 8-BIT, FAST PAGE MODE

Description

The µPD42S4800, 424800 are 524,288 words by 8 bits CMOS dynamic RAMs. The fast page mode capability realize high speed access and low power consumption.

Besides, the µPD42S4800 can execute CAS before RAS self refresh.

These are packaged in 28-pin plastic TSOP(II) and 28-pin plastic SOJ.

Features

- 524,288 words by 8 bits organization

Fast access and cycle time

Fast page mode

Single +5.0 V ± 10 % power supply

Part number	Power consumption Active (MAX.)	Access time (MAX.)	R/W cycle time (MIN.)	Fast page mode cycle time (MIN.)
µPD42S4800-60, 424800-60	577.5 mW	60 ns	110 ns	40 ns
μPD42S4800-70, 424800-70	550.0 mW	70 ns	130 ns	45 ns
μPD42S4800-80, 424800-80	522.5 mW	80 ns	150 ns	50 ns
μPD42S4800-10, 424800-10	440.0 mW	100 ns	180 ns	60 ns

The μPD42S4800 can execute CAS before RAS self refresh

Part number	Refresh cycle	Refresh	Power consumption at standby (MAX.)
μPD42S4800	1,024 cycles/128 ms	CAS before RAS self refresh, CAS before RAS refresh, RAS only refresh, Hidden refresh	0.825 mW (CMOS level input)
μPD424800	1,024 cycles/16 ms	CAS before RAS refresh, RAS only refresh, Hidden refresh	5.5 mW (CMOS level input)

Multiplexed address inputs ----- Row address: A0-A9, Column address: A0-A8

Not all devices/types available in U.S.

The information in this document is subject to change without notice.

Ordering Information

Part number	Access time (MAX.)	Package	Refresh
μPD42S4800G5-60-7JD	60 ns	28-pin plastic TSOP (II)	CAS before RAS self refresh
μPD42S4800G5-70-7JD	70 ns	(400 mil)	CAS before RAS refresh
μPD42S4800G5-80-7JD	80 ns		RAS only refresh
μPD42S4800G5-10-7JD	100 ns		Hidden refresh
μPD42S4800LE-60	60 ns	28-pin plastic SOJ	
μPD42S4800LE-70	70 ns	(400 mil)	
μPD42S4800LE-80	80 ns		
μPD42S4800LE-10	100 ns		
μPD424800G5-60-7JD	60 ns	28-pin plastic TSOP (II)	CAS before RAS refresh
μPD424800G5-70-7JD	70 ns	(400 mil)	RAS only refresh
μPD424800G5-80-7JD	80 ns		Hidden refresh
μPD424800G5-10-7JD	100 ns		
μPD424800LE-60	60 ns	28-pin plastic SOJ	
μPD424800LE-70	70 ns	(400 mil)	
μPD424800LE-80	80 ns		
µPD424800LE-10	100 ns		

Not all devices/types available in U.S.

Pin Configurations (Marking Side)

28-pin Plastic TSOP (II) (400 mil)

Voc 🐎 --- GND 1/01 0----27 -- 0 1/08 I/O2 ---26 -- 1/07 25 --- 1/06 1/03 ---1/04 0---- 5 24 --- 1/05 NC O-- CAS WE ○------ OE RAS - - 8 21 20 - A8 A9 0 --- 9 A0 0-10 19 -- A7 18 --- A6 A1 ---- 11 A2 ---- 12 17 → --- A5 A3 O---13 16 Vcc ⊙--15 - GND

28-pin Plastic SOJ (400 mil)

A0 to A9 : Address Inputs

I/O1 to I/O8 : Data Inputs/Outputs

RAS : Row Address Strobe

CAS : Column Address Strobe

WE : Write Enable

OE : Output Enable

Vcc : Power Supply

GND : Ground

NC : No Connection

Block Diagram

Input/Output Pin Functions

The μ PD42S4800, 424800 have input pins RAS, CAS, WE, \overline{OE} , A0 to A9 and input/output pins I/O1 to I/O8.

Pin name	Input/Output	Function
RAS (Row address strobe)	Input	RAS activates the sense amplifier by latching a row address and selecting a corresponding word line. It refreshes memory cell array of one line selected by the row address. It also selects the following function CAS before RAS refresh
CAS (Column address strobe)	Input	CAS activates data input/output circuit by latching column address and selecting a digit line connected with the sense amplifier.
A0 to A9 (Address inputs)	Input	Address bus. Input total 19-bit of address signal, upper 10-bit and lower 9-bit in sequence (address multiplex method). Therefore, one word is selected from 524,288-word by 8-bit memory cell array. In actual operation, latch row address by specifying row address and activating RAS. Then, switch the address bus to column address and activate CAS. Each address is taken into the device when RAS and CAS are activated. Therefore, the address input setup time (tabe, tase) and hold time (tabe, total) are specified for the activation of RAS and CAS.
WE (Write enable)	Input	Write control signal. Write operation is executed by activating RAS. CAS and WE.
OE (Output enable)	Input	Read control signal. Read operation can be executed by activating RAS, CAS and OE. If WE is activated during read operation, OE is to be ineffective in the device. Therefore, read operation cannot be executed.
I/O1 to I/O8 (Data inputs/outputs)	Input/Output	8-bit data bus. I/O1 to I/O8 are used to input/output data.

Electrical Specifications

- · All voltages are referenced to GND.
- After power up (Vcc ≥ Vcc(MN-)), wait more than 100 µs (RAS, CAS inactive) and then, execute eight CAS before RAS or RAS only refresh cycles as dummy cycles to initialize internal circuit.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	Vτ	2	-1.0 to +7.0	٧
Supply voltage	Vcc		-1.0 to +7.0	٧
Output current	lo	an in the control of the second of the control of the second of the seco	50	mA
Power dissipation	Po	or year and the second of the	1	· W
Operating ambient temperature	TA		0 to +70	C
Storage temperature	T _{slg}	ndaya iya an shikata ka jabayiya an Maraka da ka qarayaya yara da da ka baba bariya iya sanada shika an a	-55 to +125	C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Voc		4.5	5.0	5.5	٧
High level input voltage	Vis	And a service of the Control of the	2.4		Vcc + 1.0	٧
Low level input voltage	Va.	gary (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	-1.0		+0.8	V
Operating ambient temperature	TA		0		70	C

Capacitance (TA = 25 °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cit	Address			5	pF
	Cte	RAS, CAS, WE, OE			7	
Data input/output capacitance	C/0	1/0			7	ρF

DC Characteristics (Recommended operating conditions unless otherwise noted)

	Parameter	Symbol	Test condition		MIN.	MAX.	Unit	Notes
Operating	current	lcc1	RAS, CAS cycling	trac = 60 ns		105	mĄ	1, 2, 3
			tec = tec (Men)	trac = 70 ns		100		
			lo = 0 mA	taac = 80 ns		95		
				tsac = 100 ns		80		
Standby	μPD42S4800	loca	HAS, CAS ≥ VIH (MIN.), Io = 0 m.	Α		2	mA	
current			RAS, CAS ≥ Vcc - 0.2 V, lo =	0 mA		0.15		
	μPD424800		RAS, CAS ≥ VIH (MIN), Io = 0 m	A		2		
			RAS, CAS ≥ Vcc - 0.2 V, lo =	0 mA		1		
RAS only	refresh current	lecs	RAS cycling, CAS ≥ V:H (MIN.)	tac = 60 ns		105	mA	1, 2, 3 ,4
			tec = tec (MIN), to = 0 mA	teac = 70 ns	-	100		1100
				teac = 80 ns	<u> </u>	95)	
		-		teac = 100 ns		80		
Operating	current	lgr:4	RAS S VILIMAX.), CAS cycling	trac = 60 ns		80	mA	1, 2, 5
(Fast pag	e mode)	Service Co.	tec = tec (MiN), to = 0 mA	teac = 70 ns		80		
		4. 4. 4. 4. 4. 4.		teac = 80 ns	İ	70		
				teac = 100 ns		60		
CAS befo	ore RAS	locs	RAS cycling	trac = 60 ns		105	mA	1, 2
refresh c	urrent		tec = tec (MIN.)	teac = 70 ns		100		
		No. of Control of Cont	ia = 0 mA	teac = 80 ns		95		
				trac = 100 ns		80	1	
CAS befo	ore RAS	loos	CAS before RAS refresh	tras ≤ 200 ns		200	μА	1, 2
	esh current		tec = 125.0 μs	en y de				1
	rcles / 128 ms, he µPD42S4800)		RAS, CAS : Vcc + 0.2 V ≤ ViH ≤ ViH e					
Office to	ne μευ4234600)		0 V ≤ Vil ≤ 0.2 V					
			Standby :	tras ≤ 1 µs	<u> </u>	300	μА	1, 2
			RAS, CAS ≥ Vcc - 0.2 V					1
			Address: ViH or Vii WE, OE: ViH	and a second				
			to = 0 mA					
CAS befo	ore RAS	Icc7	RAS, CAS:			150	μA	2
self refre	sh current		triass = 5 ms					
(only for	the µPD42S4800)		Vcc - 0.2 V ≤ Vih ≤ Vih(MAX	}				
			$0~V \le V_{\rm K} \le 0.2~V$ $I_0 = 0~mA$					
Inout lea	kage current	The second	V ₁ = 0 to 5.5 V		~10	+10	μА	-
	and a second		All other pins not under test =	= 0 V			<u> </u>	
Output le	akage current	lo (u)	Vo = 0 to 5.5 V		-10	+10	μA	
			Output is disabled (Hi-Z)				ļ	ļ
High leve	el output voltage	Vон	lc = −5.0 mA		2.4	<u> </u>	V	
Low leve	l output voltage	Vol	lo = +4.2 mA			0.4	٧	

Notes 1. Icc1, Icc3, Icc4, Icc5 and Icc6 depend on cycle rates (tRc and tPc).

2. Specified values are obtained with outputs unloaded.

- 3. Icc1 and Icc3 are measured assuming that address can be changed once or less during $\overline{RAS} \le V_{IL (MAX.)}$ and $\overline{CAS} \ge V_{IH (MIN.)}$.
- 4. locs is measured assuming that all column address inputs are held at either high or low.
- loc4 is measured assuming that all column address inputs are switched only once during each fast page cycle.

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

AC Characteristics Test Conditions

(1) Input timing specification

(2) Output timing specification

(3) Output load condition

Common to Read, Write, Read Modify Write Cycle

	-4	Complete	trac =	60 ns	trac =	70 ns	trac =	80 ns	teac =	= 100 ns		Ī.,
Param	eter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Read / Write cycle	time	tec	110		130	-	150		180	-	ทธ	
RAS precharge tim	e	tee	40	_	50	-	60		70		กร	
CAS precharge tim	e	tons	10	_	10	-	10	-	10	-	ns	
RAS pulse width	annestell menne (et film egnesse er som en	1RAS	60	10,000	70	10,000	80	10,000	100	10,000	ns	1
CAS pulse width		toas	15	10,000	20	10,000	20	10,000	25	10,000	ns	
RAS hold time		tese	15		20		20		25	-	ns	
CAS hold time		tesi	60		70	-	80	-	100		ns	
RAS to CAS delay	time	t aco	20	45	20	50	25	60	25	75	ns	2
RAS to column add	ress delay time	T RAD	15	30	15	35	17	40	17	50	ns	2
CAS to RAS precha	arge time	tca>	5	-	5	-	5	-	5	_	ns	3
Row address setup	time	tasa	0		0	-	0	-	0	-	ns	
Row address hold to	time	tran	10	-	10	-	12	-	12	-	ns	
Column address se	etup time	tasc	0		0		0	_	0	-	ns	
Column address ho	old time	t CAH	15	-	15	-	15		20 .	-	ns	
OE lead time refere	enced to RAS	toes	0	_	0	-	0		0		กร	
CAS to data setup	time	touz	0	-	0	-	0	_	0	-	ns	
OE to data setup ti	me	touz	0	-	0	-	0	_	0	-	ns	
OE to data delay ti	me	toed	15	-	15		15	100	20	-	ns	
Transition time (rise	e and fall)	tτ	3	50	3	50	3	50	3	50	ns	
Refresh time	μPD42S4800	teer	_	128		128	-	128		128	ms	4
	μPD424800	1	-	16	_	16		16		16	ms	

★ Notes 1. In CAS before RAS refresh cycles, tras(MAX.) is 100 µs.

If 10 μ s < tras < 100 μ s, RAS precharge time for CAS before RAS self refresh (tres) is applied.

2. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trac ≤ trac (Max.) and trace ≤ trace (Max.)	trac (MAX.)	THAC (MAX.)
tead > tean (MAX) and tech ≤ tech (MAX)	(KAM; AAT	TRAD + TAA (MAX.)
teco > tacu (MAX.)	toac (MAX.)	trod + toad (MAX.)

trad (MAX.) and trad (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (trac, tax or toxc) is to be used for finding out when data will be available. Therefore, the input conditions $trad \ge trad (MAX.)$ and $trad \ge trad (MAX.)$ will not cause any operation problems.

- 3. torp (MIN.) requirement is applied to RAS, CAS cycles.
- 4. This specification is applied only to the μPD42S4800.

Read Cycle

Parameter	Symbol	trac =	60 ns	trac =	70 ns	trac =	80 ns	trac =	100 ns		
Farameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Access time from RAS	teac		60		70		80		100	ns	1
Access time from CAS	toac		15	-	20		20	-	25	ns	1
Access time from column address	tan		30	-	35	-	40		50	ns	1
Access time from OE	TOEA		15	-	20		20	-	25	ns	
Column address lead time referenced to RAS	trai.	30		35	700'	40		50	-	ns	
Read command setup time	tecs	0	-	0	-	0	-	0		ns	
Read command hold time referenced to RAS	taex	0	-10	0		0		0	-	ns	2
Read command hold time referenced to CAS	tясн	0		0	posit	0		0		ns	2
Output buffer turn-off delay time from OE	torz	0	15	0	15	0	15	0	20	ns	3
Output buffer turn-off delay time from CAS	torr	0	15	0	15	0	15	0	20	ns	3

Notes 1. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trad ≤ trad (max.) and trod ≤ trod (max.)	trac (Max.)	frac (MAX.)
tead > tead (Max.) and tecd ≤ tecd (Max.)	taa (max.)	thad + taa(max)
teco > teco (MAX)	tgac (Max.)	teod + toag (MAX.)

trad (MAX.) and trad (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (trad, that or tead) is to be used for finding out when output data will be available. Therefore, the input conditions trad ≥ trad (MAX.) and trad ≥ trad (MAX.) will not cause any operation problems.

- 2. Either than (MINI) of their (MINI) should be met in read cycles.
- 3. topp (MAX.) and toez(MAX.) define the time when the output achieves the condition of Hi-Z and is not referenced to VoH or VoL.

Write Cycle

Parameter	Combal	teac =	60 ns	trac =	70 ns	trac =	80 ns	teac = 100 ns		11-:4	
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
WE hold time referenced to CAS	twon	10		10	-	15	-	20	-	ns	1
WE pulse width	twe	10	-	10	-	15	-	20	-	ns	1
WE lead time referenced to RAS	tawi	15		20		20	-	25	-	ns	
WE lead time referenced to CAS	tows	15	_	15	-	15	_	20		ns	
WE setup time	twes	0	_	0		0	-	0	-	ns	2
OE hold time	toen	0	-	0	-	0		0	-	ns	
Data-in setup time	tos	0	-	0		0	-	0	-	ns	3
Data-in hold time	tон	15		15	-	15	_	20	-	ns	3

- Notes 1. two (MIN.) is applied to late write cycles or read modify write cycles. In early write cycles, two H (MIN.) should be met.
 - 2. If twos > twos (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.
 - 3. tos(MIN.) and toH(MIN.) are referenced to the CAS falling edge in early write cycles. In late write cycles and read modify write cycles, they are referenced to the WE falling edge.

Read Modify Write Cycle

		teac =	60 ns	trac =	70 ns	trac =	80 ns	trac ≈	100 ns	Unit	Note
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	INOIG
Read modify write cycle time	tawc	150		175		200		240		ns	
RAS to WE delay time	tewp	80	-	90		105	-	130		ns	1
CAS to WE delay time	towo	35	-	40	~	45	_	55	-	ns	1
Column address to WE delay time	tawo	50	-	55	<u>-</u>	65	~~	80		ns	1

Note 1. If twos ≥ twos (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.

If twob ≥ trwo (MIN.), tcwb ≥ tcwb (MIN.), tawb ≥ tAWD (MIN.) and tcpwb ≥ tcpwb (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Fast Page Mode

Parameter	Symbol	teac =	60 ns	trac =	70 ns	trac =	80 ns	trac =	100 ns	Unit	Note
raidiletei	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Onit	Note
Fast page mode cycle time	tec	40		45		50		60	-	ns	
Access time from CAS precharge	tace	-	35	-	40		45		55	ns	
RAS pulse width	trasp	60	125,000	70	125,000	80	125,000	100	125,000	ns	
CAS precharge time	top	10	-	10		10	-	10	-	ns	
RAS hold time from CAS precharge	tance	35	-	40	-	45	-	55	-	ns	
Read modify write cycle time	teawc	80		85	-	95	-	115	-	ns	
CAS precharge to WE delay time	topwo	55	-	60		70		85	-	ns	1

Note 1. If twos ≥ twos (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.

If twob ≥ trwo (MIN.), tcwb ≥ tcwb (MIN.), tawb ≥ tawb (MIN.) and tcpwb ≥ tcpwb (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Refresh Cycle

*	Cumbal	tnac =	60 ns	trac =	teac = 70 ns		80 ns	teac = 100 ns		Unit	Note
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	More
CAS setup time	tose	5	-	5	-	5		5	-	nş	
CAS hold time (CAS before RAS refresh)	tons	10	-	10	-	10	-	10	-	ns	
RAS precharge CAS hold time	terc	5		5	-	5	-	5	_	ns	
RAS pulse width (CAS before RAS self refresh)	trass	100	-	100	_	100	-	100	***	μs	1
RAS precharge time (CAS before RAS self refresh)	taes	110	-	130	-	150	_	180		ns	1
CAS hold time (CAS before RAS self refresh)	tces	50		-50	-	-50	-	-50	-	ns	1
WE hold time	twis	10	-	15		15	-	20		ns	

Note 1. This specification is applied only to the μ PD42S4800.

Read Cycle

Early Write Cycle

Remark OE: Don't care

Late Write Cycle

Read Modify Write Cycle

Fast Page Mode Read Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

Fast Page Mode Early Write Cycle

Remarks 1. OE: Don't care

In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

Fast Page Mode Late Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

Fast Page Mode Read Modify Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

CAS Before RAS Self Refresh Cycle (Only for the µPD42S4800)

Remark Address, WE, OE: Don't care 1/0: Hi-Z

Cautions on Use of CAS Before RAS Self Refresh

CAS before RAS self refresh can be used independently when used in combination with distributed CAS before RAS long refresh; However, when used in combination with burst CAS before RAS long refresh or with long RAS only refresh (both distributed and burst), the following cautions must be observed.

- (1) Normal Combined Use of CAS Before RAS Self Refresh and Burst CAS Before RAS Long Refresh
 When CAS before RAS self refresh and burst CAS before RAS long refresh are used in combination, please
 perform CAS before RAS refresh 1,024 times within a 16 ms interval just before and after setting CAS before
 RAS self refresh.
- (2) Normal Combined Use of CAS Before RAS Self Refresh and Long RAS Only Refresh
 When CAS before RAS self refresh and RAS only refresh are used in combination, please perform RAS only refresh 1,024 times within a 16 ms interval just before and after setting CAS before RAS self refresh.
- (3) If trass (MIN.) is not satisfied at the beginning of CAS before RAS self refresh cycles (tras < 100 μs), CAS before RAS refresh cycles will be executed one time.</p>
 If 10 μs < tras < 100 μs, RAS precharge time for CAS before RAS self refresh (traps) is applied.</p>

If 10 μ s < tras < 100 μ s, RAS precharge time for CAS before RAS self refresh (taps) is applied And refresh cycles (1,024/128 ms) should be met.

For details, please refer to How to use DRAM User's Manual.

CAS Before RAS Refresh Cycle

Remark Address, WE, OE: Don't care I/O: Hi-Z

RAS Only Refresh Cycle

Remark WE, OE: Don't care I/O: Hi-Z

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Write)

Remark OE : Don't care

Package Drawings

28 PIN PLASTIC TSOP(II) (400 mil)

NOTE

Each lead centerline is located within 0.21 mm (0.009 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	18.63 MAX.	0.734 MAX.
В	1.075 MAX.	0.043 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.42+0.08	0.017±0.003
E	0.1±0.05	0.004±0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
Н	11.76±0.2	0.463±0.008
1	10.16±0.1	0.400±0.004
J	0.8±0.2	$0.031^{+0.009}_{-0.008}$
K	0.145+0.025	0.006±0.001
L.	0.5±0.1	$0.020^{+0.004}_{-0.005}$
M	0.21	0.009
N	0.10	0 004
Р	3°+7°	3°+7°

S28G5-50-7JD5

28 PIN PLASTIC SOJ (400 mil)

NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
В	18.67 ^{+0.2} -0.35	$0.735^{+0.008}_{-0.013}$
С	10.16	0.400
D	11.18±0.2	$0.440^{+0.008}_{-0.007}$
Ε	1.08±0.15	0.043+0.006
F	0.6	0.024
G	3.5±0.2	$0.138^{+0.008}_{-0.007}$
н	2.4±0.2	0.094+0.008
1	0.8 MIN.	0.031 MtN.
J	2.6	0.102
K	1.27(T.P.)	0.050(T.P.)
M	0.40±0.10	$0.016^{+0.004}_{-0.005}$
N	0.12	0.005
Р	9.40±0.20	$0.370^{+0.008}_{-0.007}$
Q	0.15	0.006
Т	R0.85	R0.033
U	0.20+0.10	0.008+0.004

Recommended Soldering Conditions

The following conditions (see tables below and next page) must be met for soldering conditions of the μ PD42S4800, 424800.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Types of Surface Mount Device

μ PD42\$4800G5-7JD, 424800G5-7JD: 28-pin plastic TSOP (II) (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher). Number of reflow processes: MAX. 2 Exposure limit: 7 daysNote	IR35-107-2
VPS	Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit: 7 daysNote	VP15-107-2
Partial heating method	Terminal temperature: 300 °C or lower, Time: 3 seconds or lower (Per side of the package).	And the second s

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

μPD42S4800LE, 424800LE: 28-pin plastic SOJ (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher). Number of reflow processes: MAX. 2 Exposure limit: 7 days ^{Note} (20 hours pre-baking is required at 125 °C afterwards) Cautions 1. After the first reflow process, cool the package down to room temperature, then start the second reflow process. 2. After the first reflow process, do not use water to remove residual flux (water can be used in the second process).	IR35-207-2
VPS	Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes. MAX. 2 Exposure limit: 7 daysNote (20 hours pre-baking is required at 125 °C afterwards) Cautions 1. After the first reflow process, cool the package down to room temperature, then start the second reflow process. 2. After the first reflow process, do not use water to remove residual flux (water can be used in the second process).	VP15-207-2
Partial heating method	Terminal temperature: 300 °C or lower. Time: 3 seconds or less (Per side of the package).	

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".