Section 11.1. The expected return of a portfolio

i... i=1..n; indices of the investment components of a portfolio

Ri... the realized return of the ith component over our period (say, a year)

Let Rp. the realized return of the entire portfolio.

Pp... price of the portfolio

Pp = ZPi i=1 2 the values of the component i in the

Zi... portfolio weight of investment i

xi = Value of investment i Total value of the portfolio

$$= > R_p = x_1 \cdot R_1 + \dots + x_n \cdot R_n = \sum_{i=1}^n x_i \cdot R_i$$

=> The expected return of the portfolio:
$$\mathbb{E}[R_P] = \sum_{i=1}^{\infty} x_i \cdot \mathbb{E}[R_i]$$

4) You are given the following information about a portfolio consisting of stocks X, Y, and Z:

Stock	Investment	Expected Return
X	10,000	8%
Y	15,000	12%
Z	25,000	16%

Calculate the expected return of the portfolio.

(A)
$$10.8\%$$
 $2\chi = \frac{10,000}{50,000} = 0.2$

(B)
$$11.4\%$$
 $2\zeta = \frac{45,000}{50,000} = 0.3$

11.2. The volatility of a Two. Stock Brifolio Covariance i # j Look @ Ri and Rj - returns of components i & j. Then, Cov[Rig] = E[(Ri-E[Ri])(Rj-E[Ri])] = F[Ri.Ri] - E[Ri] · E[Ri] Usually, we do not have theoretical values of our parameters; including the availance. So, we create estimators: 0 1 ···· t-1 t · · · · · · T Set for every t: Return over (t-1,t) is Ri,t for i and Rit forj. The estimator we use: $S_{i,j}^{2} = \frac{1}{T-1} \sum_{t=1}^{T} (R_{i,t} - R_{i}) (R_{j,t} - R_{j})$ $S_{i,j}^{2} = \frac{1}{T-1} \sum_{t=1}^{T-1} (R_{i,t} - R_{i}) (R_{j,t} - R_{j})$ Correlation:

Scalar product: $||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos(\varphi) = \langle \vec{a}, \vec{b} \rangle$ Volatility of a Two Stock Bortfolio $R_{p} = x_{1} \cdot R_{1} + x_{2} \cdot R_{2}$ $= > Var[R_{p}] = Var[x_{1} \cdot R_{1} + x_{2} \cdot R_{2}]$ $= x_{1}^{2} \cdot Var[R_{1}] + 2x_{1} \cdot x_{2} \cdot Cov[R_{1}, R_{2}] + x_{2}^{2} \cdot War[R_{2}]$ = > The volatility of the portfolio:

=> The volatility of the portfolio:

SD[Rp] = Var [Rp]

- You are given the following information about the annual returns of two stocks, X 3) and Y:
 - The expected returns of X and Y are $R_{\rm w} = 10\%$ and $R_{\rm w} = 15\%$. i)
 - The volatilities of the returns are = 18% and = 20%. ii)
 - The correlation coefficient of the returns for these two stocks is 0.25. \Rightarrow iii)
 - The expected return for a certain portfolio, consisting only of stocks X and iv) Y, is 12%.

Wx... weight of stock X investment
Wr... weight of stock Y investment
Calculate the volatility of the portfolio return.

(B)
$$12.56\%$$
 = $w_{x} \cdot 0.40 + (4-w_{x}) \cdot 0.45 = 0.42$

$$w_{x}(0.40-0.45) = 0.12-0.45)$$

(E)
$$16.91\%$$
 $w_{\chi} = \frac{0.03}{0.05} = 0.6$

$$w_{x} = \frac{0.03}{0.05} = 0.6$$
 => $w_{x} = 0.4$

Var [Rp] =
$$(0.6)^2$$
: $(0.18)^2 + 2 \cdot 0.6 \cdot 0.4 \cdot 0.25 \cdot 0.18 \cdot 0.2$
+ $(0.4)^2$. $(0.2)^2$

11.3. The Volatility of a large Partfolio

 $R_{p} = x_{1} \cdot R_{1} + \dots + x_{n} \cdot R_{n} = \sum_{i=1}^{n} x_{i} \cdot R_{i}$ Then, $Var[R_{p}] = Cov[R_{p}] R_{p}]$ $= Cov[x_{1} \cdot R_{1} + \dots + x_{n} \cdot R_{n}, R_{p}]$ $= \sum_{i=1}^{n} x_{i} \cdot Cov[R_{i}, R_{p}]$ $= \sum_{i=1}^{n} x_{i} \cdot Cov[R_{i}, R_{p}]$

=> We can interpret the variance of the portfolio's return as a weighted average of all the covariances of individual returns w/ the whole portfolio.

2) You are given the following information about a portfolio with four assets.

Asset	Market Value of Asset	Covariance of asset's return with the portfolio return
I	40,000	0.15
II	20,000	-0.10
III	10,000	0.20
IV	30,000	-0.05

Z 100,000

Calculate the standard deviation of the portfolio return.

(A)
$$4.50\%$$
 => $\chi_{I} = 0.4$; $\chi_{II} = 0.2$; $\chi_{III} = 0.1$; $\chi_{III} = 0.3$.

(B) 13.2% Vor [Rp] = $\sum_{i=1}^{n} \chi_{i} \cdot \text{Cov}[R_{i}, R_{p}]$

= 0.045

(E)
$$44.7\%$$
 = 0.4 · 0.15 + 0.2 · (-0.10) + 0.1(0.2) + 0.3(-0.05)

We can expand our variance formula as: $\begin{aligned}
&\text{Var}\left[R_{P}\right] = \text{Var}\left[x_{1} \cdot R_{1} + \cdots + x_{n} \cdot R_{n}\right] \\
&= \sum_{i,j} x_{i} \cdot x_{j} \cdot \text{Gv}\left[R_{i}, R_{j}\right] \\
&= \sum_{i=1}^{m} x_{i}^{2} \cdot \text{Var}\left[R_{i}\right] + \sum_{i \neq j} x_{i} \cdot x_{j} \cdot \text{Gv}\left[R_{i}, R_{j}\right] \\
&= \sum_{i=1}^{m} x_{i}^{2} \cdot \text{Var}\left[R_{i}\right] + 2 \sum_{i \neq j} x_{i} \cdot x_{j} \cdot \text{Gv}\left[R_{i}, R_{j}\right].
\end{aligned}$