

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA. VICERRECTORADO ACADEMICO. DECANATO DE DOCENCIA

DEPARTAMENTO DE MATEMATICA Y FISICA - NUCLEO DE FISICA.

CORRIENTE Y RESISTENCIA

CAPITULOS ANTERIORES: CARGAS EN REPOSO (ELECTROSTÁTICA)

CONSIDERAMOS AHORA: CARGAS EN MOVIMIENTO A) CARGAS EN EL VACÍO **B) CARGAS LIBRES EN** CONDUCTORES, **SEMICONDUCTORES, ALEACIONES** METALICAS.

CORRIENTE ELÉCTRICA PROMEDIO

$$I = \frac{\Delta Q}{\Delta T}$$

CANTIDAD DE CARGA ΔQ **QUE PASA A TRAVES DE LA** SUPERFICIE TRANSVERSAL EN UN INTERVALO DE TIEMPO ΔT

PORTADORES DE CARGA:

✓ ELECTRONES

✓ OTROS CASOS(IONES) **POSITIVOS Y NEGATIVOS)** TRANSPORTAN LA **CARGA**

SI LA PROPORCION A LA CUAL CIRCULA LA CARGA VARIA CON **EL TIEMPO, LA CORRIENTE TAMBIEN VARIA CON EL TIEMPO Y SE DEFINE COMO CORRIENTE INSTANTANEA**

CORRIENTE ELÉCTRICA INSTANTANEA

$$I = \frac{dq}{dt}$$

CORRIENTE Y RESISTENCIA

Aislante

POSEEN MOVIMIENTO CON RESPECTO A UN OBSERVADOR, GENERÁNDOSE CORRIENTE ELÉCTRICA.

CORRIENTE ELÉCTRICA.

$$I = \frac{dq}{dt}$$

Es el flujo o movimiento de cargas eléctricas que atraviesan la sección transversal del conductor por unidad de tiempo.

 $\checkmark q = q(t)$ carga neta transportada por unidad de tiempo t.

Plano Normal

✓ Unidad de medida de la corriente eléctrica es el Amperio $\left[\frac{C}{s}\right] = [A]$

 $\checkmark[C]$ unidad de carga eléctrica en coulomb, y [s] unidad de tiempo en segundos.

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA. VICERRECTORADO ACADEMICO. **DECANATO DE DOCEI** DEPARTAMENTO DE MATEMATICA Y FISICA - NUCLEO DE FISICA

CORRIENTE ELÉCTRICA.

$$I = \frac{dq}{dt}$$

- **MOVIMIENTO AGITACION TÉRMICA**
- **MOVIMIENTO EN CONTRA DEL CAMPO ELECTRICO (ARRASTRE O DRIFT MOTION)**

MOVIMIENTO AGITACION TÉRMICA

No produce un movimiento neto de cargas en ninguna dirección específica del espacio

- ✓ Aparece como consecuencia de la aplicación de un campo eléctrico E sobre los portadores de carga (electrones).
- ✓ Los electrones con carga negativa, se mueven en sentido contrario a la dirección del campo eléctrico.

Cuando aplicamos un campo eléctrico: Aceleración inicial en sentido opuesto al campo, choques con los iones fijos de la red metálica

Movimiento de arrastre

Responsable de la corriente eléctrica como consecuencia del campo eléctrico E, produciéndose la velocidad de arrastre Vd.

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA. VICERRECTORADO ACADEMICO. DECANATO DE DOCENCIA. DEPARTAMENTO DE MATEMATICA Y FISICA – NUCLEO DE FISICA

Movimiento de arrastre Responsable de la corriente eléctrica.

MICRÓSCOPICAMENTE:

RELACIONA LA CORRIENTE ELÉCTRICA I CON LA CARGA DE LOS PORTADORES DE CARGA ΔQ

A TRAVÉS DE: Velocidad de arrastre

RELACIONADA CON LA DENSIDAD DE CORRIENTE

$$J = \frac{I}{A} = n. q. V_d$$

$$n. q = \frac{\Delta Q}{V} \quad \Delta Q = n. q. V$$

VOLUMEN V = A. l

$$\Delta Q = n. q. A. l$$

$$I = \frac{\Delta Q}{\Delta t} = \frac{n. q. A. l}{\Delta t} = n. q. A. V_d$$

RELACIONADA A SU VEZ CON LA CONDUCTIVIDADEL **MATERIAL DEL CONDUCTOR** $I = \sigma E$

$$n. q. V_d = \sigma E$$

n: Concentración.

q: Valor de la carga elemental.

A: Área sección transversal del conductor.

 V_d : Velocidad de arrastre portadores.

CONDUCTIVIDAD Y RESISTIVIDAD

CONSIDERAMOS AHORA:

UN TROZO DE MATERIAL CONDUCTOR, SUMINISTRANDO UNA DIFERENCIA DE POTENCIAL, PRODUCIENDO EL MOVIMIENTO DE CARGAS

SE PRODUCE LA DENSIDAD DE CORRIENTE J EN UN CONDUCTOR (MATERIAL OHMICO) ES PROPORCIONAL AL CAMPO ELECTRICO $E \to J \propto E$ ENTONCES:

EL INVERSO DE σ ES LA RESISTIVIDAD ho DEL MATERIAL (CONSTANTE DE PROPORCIONALIDAD

$$\rho = \frac{1}{\sigma} \quad \Box \qquad \sigma = \frac{1}{\rho}$$

TAMBIÉN LA DENSIDAD DE CORRIENTE J SE DEFINE COMO LA CORRIENTE POR UNIDAD DE ÁREA Y SE PUEDE EXPRESAR EN TÉRMINOS DE LA VELOCIDAD DE ARRASTRE V_d ENTONCES:

$$I = n. q. A. V_d$$

$$V_d = \frac{I}{n. q. A} = \frac{J}{n. q} \rightarrow J = V_d. n. q$$

UNIDAD DE MEDIDA DE LA CONDUCTIVIDAD

LA UNIDAD DE MEDIDA DE LA CONDUCTIVIDAD ES EL SIEMENS

 $1SIEMENS = (1 OHM - METRO)^{-1}$

LEY O REGLA DE OHM - MATERIALES CONDUCTORES

- Es la conexión o relación lineal que existe entre la diferencia de potencial V y la corriente I
- Los materiales que obedecen la ley de ohm y que, en consecuencia, presentan este comportamiento lineal entre V e I se dice que son óhmicos.
- La constante de proporcionalidad *R* es la resistencia del material, representa la pendiente m en la gráfica tension v vs corriente i
- A mayor pendiente m en un grafico diferencia de potencial v vs corriente i mayor es la resistencia del material

 $V \propto I$

V = R.I

Ley de Ohm (macroscópica)

UNIDAD DE MEDIDA DE LA RESISTENCIA ELECTRICA

LA UNIDAD DE MEDIDA DE LA RESISTENCIA ES EL OHMIO Ω

10HMIO
$$\Omega = \frac{VOLTIO \ V}{AMPERIO \ A}$$

- (a) Conductores lineales o Materiales óhmicos.
- (b) Materiales no óhmicos: R depende de la corriente I.

PROCEDIMIENTO EXPERIMENTAL Y MONTAJE (RELACIÓN DE OHM)

Miliamperímetro

RESISTENCIA ELECTRICA R

CONSIDERAMOS AHORA:

OPOSICIÓN QUE OFRECE UN MATERIAL CONDUCTOR A LA CIRCULACIÓN DE UNA CORRIENTE ELÉCTRICA A TRAVÉS DE ÉL. SE DENOTA CON LA LETRA R Y SE SIMBOLIZA CON LÍNEAS EN SIG SAG.

UN TROZO DE MATERIAL CONDUCTOR, SUMINISTRANDO UNA DIFERENCIA DE POTENCIAL

$$\Delta V = V_b - V_a$$

$$\Delta V = E \cdot l$$

LA DENSIDAD DE CORRIENTE EN UN CONDUCTOR (MATERIAL OHMICO) ES PROPORCIONAL AL CAMPO ELECTRICO

$$J = \sigma E$$

EL INVERSO DE σ ES LA RESISTIVIDAD ho DEL MATERIAL (CONSTANTE DE PROPORCIONALIDAD

$$\sigma = \frac{1}{\rho}$$

SE LLAMA RESISTENCIA ELÉCTRICA DE UN CONDUCTOR A LA

RESISTENCIA

CONSIDERAMOS AHORA:

CONDUCTOR, UN **TROZO** DE **MATERIAL** SUMINISTRANDO UNA DIFERENCIA DE POTENCIAL

$$\Delta V = V_b - V_a$$

$$\Delta V = E. l$$
 $E = \frac{\Delta V}{l}$

LA DENSIDAD DE CORRIENTE EN UN CONDUCTOR (MATERIAL OHMICO) ES PROPORCIONAL AL CAMPO **ELECTRICO**

$$J = \sigma E$$

 σ es la conductividad del material (constante de **PROPORCIONALIDAD**

> EL INVERSO DE σ ES LA RESISTIVIDAD ho DEL MATERIAL (CONSTANTE DE PROPORCIONALIDAD

SUSTITUYENDO LA CONDUCTIVIDAD σ Y EL CAMPO ELECTRICO E**SE OBTIENE:**

$$J = \frac{1}{\rho} \cdot \frac{\Delta V}{l}$$

REEMPLAZANDO LA DENSIDAD DE CORRIENTE / Y DESPEJANDO LA DIFERENCIA DE POTENCIAL ΔV

$$J=\frac{I}{A}$$

$$\frac{I}{A} = \frac{1}{\rho} \cdot \frac{\Delta V}{l}$$

$$\frac{l.\,l.\,\rho}{A} = \Delta V$$

RESISTENCIA

LA RESISTENCIA DEPENDE DE PARAMETROS **GEOMETRICOS:**

R = es la resistencia del conductor.

 ρ = es la resistividad o resistencia especifica.

L=es la longitud del conductor.

A= es el área de la sección transversal del conductor.

DE LA LEY O REGLA DE OHM: $I.R = \Delta V$

Comparando la ecuacion anterior $\frac{I.l.
ho}{\Delta}=\Delta V$ con la regla de OHM SE OBTIENE EL VALOR DE LA RESISTENCIA R:

$$\frac{I.\,l.\,\rho}{A} = \Delta V$$

 $I.R = \Delta V$

ENTONCES:

$$R = \frac{\rho . l}{A}$$

RESISTENCIA - FACTORES DE LOS CUALES DEPENDE LA RESISTENCIA DE UN CONDUCTOR.

LA RESISTENCIA DEPENDE DE PARAMETROS GEOMETRICOS:

R = es la resistencia del conductor.

L=es la longitud del conductor.

A= es el área de la sección transversal del conductor.

$$R = \frac{\rho \cdot l}{A} = \frac{l}{\sigma A} \ (ohmios)$$

De la ecuación anterior, podemos escribir que:

- La resistencia R del conductor es directamente proporcional a la longitud L.
- La resistencia R es inversamente proporcional al área A de la sección transversal del conductor.
- La resistencia R del conductor depende del material del cual está constituido dicho conductor al cual llamaremos resistividad ρ del material o resistencia especifica.

La conclusión anterior obtenida de la ecuación de resistencia es conocida con el nombre de **ecuación de poulliet.**

La resistencia también tiene dependencia con la temperatura:

$$R_f = R_i(1 + \alpha.\Delta T)$$
 $R_f = R_i(1 + \alpha.(T_f - T_i))$

 R_f : Resistencia final

 R_i : Resistencia inicial

 α : coeficiente térmico o de temperatura $({}^{\circ}C^{-1})$

 T_i : Temperatura inicial T_f : Temperatura final.

POTENCIA ELECTRICA

LA POTENCIA ELECTRICA ES LA RAPIDEZ DE TRANSFORMACION DE LA ENERGIA (DE UN TIPO A OTRO)

LA ENERGIA SE TRANSFIERE DE UNA FUENTE COMO UNA BATERIA A ALGUN DISPOSITIVO

$$P = \frac{dW}{dt} \qquad V = \frac{W}{q} \qquad W = V. q = V.I. t$$

$$P = \frac{dW}{dt} = \frac{d(V.I.t)}{dt} = V.I. \frac{d(t)}{dt} = V.I$$

$$P = V.I \qquad V = I.R$$

$$P = V.I = I^2. R = \frac{V^2}{R}$$

En los circuitos, un agente externo es el que lleva la carga desde la fuente FEM hasta los diferentes dispositivos del circuito Al energizar un circuito eléctrico compuesto por una batería o fuente FEM, resistencia R sucede que:

- La batería o fuente FEM produce un campo eléctrico E en el conductor.
- Los portadores de carga Q aumentan su energía cinética K y debido a los choques con los iones del conductor estos disminuyen su energía cinética, produciéndose un aumento de la temperatura en el conductor.
- Transforma la energía potencial química de la batería en energía térmica disipada por el conductor.

En la Resistencia: se transforma la energía eléctrica en energía calórica

En el acumulador: energía química transformada en energía eléctrica.

ASOCIACIÓN DE RESISTENCIAS EN SERIE

Por PRINCIPIO DE CONSERVACION DE LA ENERGIA:

$$\Delta V = V_1 + V_2 + V_3$$

La corriente en un circuito en serie es:

$$I_T = I_1 = I_2 = I_3$$

Como

$$R = \frac{V}{I} \rightarrow V = R.I$$

Por lo tanto:

$$\Delta V = V_1 + V_2 + V_3 \rightarrow R_T I_T = R_1 I_1 + R_2 I_2 + R_3 I_3$$

- La Resistencia total (o equivalente) de resistencias en serie se calcula sumando los valores directos de cada una de las resistencias.
- $R_T = R_1 + R_2 + R_3 + \cdots + R_i$ $R_T = \sum_{i=1}^n R_i$
- La resistencia equivalente R_T es mayor que las resistencias individuales R_i

ASOCIACIÓN DE RESISTENCIAS EN PARALELO

Por PRINCIPIO DE CONTINUIDAD DE LA CORRIENTE:

$$I_T = I_1 + I_2 + I_3$$

La diferencia de potencial en un circuito en paralelo es:

$$\Delta V_T = V_1 = V_2 = V_3$$

Como

$$R = \frac{V}{I} \rightarrow I = \frac{V}{R}$$

Por lo tanto:

$$I_T = I_1 + I_2 + I_3$$

$$\frac{V_T}{R_T} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}$$

La resistencia total (o equivalente) de resistencias en paralelo se calcula sumando el inverso de la suma de los valores inversos de cada una de las resistencias individuales.

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \qquad R_T = \sum_{i=1}^n \frac{1}{R_i}$$

• La resistencia equivalente R_T es menor que en cualquiera de las resistencias individuales R_i

