I DBC TUC

Context-Free Path Querying: Obstacles on the Way to Adoption

Semyon Grigorev

JetBrains Research, Programming Languages and Tools Lab St. Petersburg State University

16.07.2021

Who we are?

• !!!

• !!!

Formal language constarined path querying

Navigational queries in edge-labelled graph

- $w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{k-1}} v_k) = l_0 l_1 \dots l_{k-1}$
- $Q = \{(v_i, v_j) \mid \exists \pi = v_i \to \ldots \to v_j; w(\pi) \in \mathcal{L}\},$ where \mathcal{L} formal language

!!!

Applications of Context-Free Path Querying

Static code analysis

Static code analysis

Problems

- There is no unified infrastructure for solutions comparison
 - Data is spread over articles in different communities
 - ▶ There is a huge number of different subclasses of the problem
 - * all-pairs, single source, multiple source, ...
 - ★ reachability, single path, all path, . . .
 - ► The first and only attempt to compare different algorithms: "An Experimental Study of Context-Free Path Query Evaluation Methods"

¹Jochem Kuijpers, George Fletcher, Nikolay Yakovets, and Tobias Lindaaker. 2019

²H. Miao and A. Deshpande, "Understanding Data Science Lifecycle Provenance via Graph Segmentation and Summarization", 2019

Problems

- There is no unified infrastructure for solutions comparison
 - Data is spread over articles in different communities
 - ▶ There is a huge number of different subclasses of the problem
 - * all-pairs, single source, multiple source, ...
 - ★ reachability, single path, all path, . . .
 - The first and only attempt to compare different algorithms: "An Experimental Study of Context-Free Path Query Evaluation Methods"
 - Conclusion: "We conclude that state of the art solutions are not able to cope with large graphs as found in practice."

¹Jochem Kuijpers, George Fletcher, Nikolay Yakovets, and Tobias Lindaaker. 2019

²H. Miao and A. Deshpande, "Understanding Data Science Lifecycle Provenance via Graph Segmentation and Summarization", 2019

Problems

- There is no unified infrastructure for solutions comparison
 - ▶ Data is spread over articles in different communities
 - ▶ There is a huge number of different subclasses of the problem
 - * all-pairs, single source, multiple source, ...
 - ★ reachability, single path, all path, . . .
 - ► The first and only attempt to compare different algorithms: "An Experimental Study of Context-Free Path Query Evaluation Methods"
 - Conclusion: "We conclude that state of the art solutions are not able to cope with large graphs as found in practice."
- There is no support in real-world graph database
 - ► H. Miao and A. Deshpande: "Though the problem has been first studied in our community [40], there is little follow up and support in the context of modern graph databases ..."²

¹Jochem Kuijpers, George Fletcher, Nikolay Yakovets, and Tobias Lindaaker. 2019

²H. Miao and A. Deshpande, "Understanding Data Science Lifecycle Provenance via Graph Segmentation and Summarization", 2019

Our Results

- Collection of linear algebra based algorithms for CFPQ
 - SuiteSparse is utilized for sparse linear algebra subroutines
 - ► Published: https://github.com/JetBrains-Research/CFPQ_PyAlgo

³"Multiple-Source Context-Free Path Querying in Terms of Linear Algebra", Arseniy Terekhov et al, 2019

Our Results

- Collection of linear algebra based algorithms for CFPQ
 - SuiteSparse is utilized for sparse linear algebra subroutines
 - ► Published: https://github.com/JetBrains-Research/CFPQ_PyAlgo
- ✓ Full-stack support of CFPQ³
 - On the top of RedisGraph
 - openCypher extended to support CFPQ

Our Results

- Collection of linear algebra based algorithms for CFPQ
 - SuiteSparse is utilized for sparse linear algebra subroutines
 - ▶ Published: https://github.com/JetBrains-Research/CFPQ_PyAlgo
- ✓ Full-stack support of CFPQ³
 - ► On the top of RedisGraph
 - openCypher extended to support CFPQ
- Collecting of the dataset for CFPQ benchmarking is started
 - Synthetic graphs
 - Real-world graphs
 - * Static code analysis
 - ★ Biological data analysis
 - ▶ Published: https://github.com/JetBrains-Research/CFPQ_Data

³"Multiple-Source Context-Free Path Querying in Terms of Linear Algebra", Arseniy Terekhov et al, 2019

Our Results Evaluation

- Reachability queries
 - geospecies biological data, folklore
 - ▶ mem Andersen points-to analysis
- Time in seconds

- GPGPU: Geforce GTX 1070, 1.5GHz, 8Gb RAM, 1920 CUDA cores
- CPU: Intel core i7-6700 CPU, 3.4GHz, DDR4 64Gb RAM

Graph	#V	#E	Neo4j ⁴	RedisGraph ⁵	Lin.al. CPU ⁶	Lin.al. GPGPU ⁷
geospecies	450 609	2 311 461	6000.0	80.1	7.1	0.8
Mem 1			n.a.	O ₀		
mem 2			n.a.	O ₀		
mem 3			n.a.	O.		

⁵|||

e i i i

7|||

^{4 | | |}

Ongoing research

- Benchmarking of linear algebra based algorithms
 - ► Comparison of different algorithms for different query semantics
 - Investigation of scalability on multicore machines
 - Estimation of performance on GPGPU
- GLL-based CFPQ algorithm for Neo4j

Ongoing research

- Benchmarking of linear algebra based algorithms
 - Comparison of different algorithms for different query semantics
 - Investigation of scalability on multicore machines
 - Estimation of performance on GPGPU
- GLL-based CFPQ algorithm for Neo4j
- Semantics of openCypher in terms of linear algebra (in Coq)

Topics to dicuss

- Benchmarks.
 - Algorithms
 - Query language. Semantics
 - Local and Global queries. Can start from RPQ.
 - Queries: templates and real-world queries.
- Competition on language constrained path querying.
 - Part of existing competition for graph processing systems.
 - Involve static analysis community.
- Graph database support
 - Algorithms
 - Query language. Semantics