Laurea Triennale in Informatica

Introduzione alla Statistica

Scritto 3

Si svolgano 3 esercizi a scelta sui 4 proposti. In nessun caso verranno assegnati punti per più di 3 esercizi.

Problema 3.1 (11 punti). Il test di ingresso per medicina è costituito da 60 domande a risposta multipla. Le scelte possibili sono sempre 5. Una risposta corretta vale 1.5 punti, una risposta non data vale 0 punti, una risposta errata vale -0.4 punti.

(7 punti) Se su una singola domanda si sceglie la risposta a caso dando probabilità $\frac{1}{5}$ a ciascuna delle 5, quanto valgono media e deviazione standard del punteggio che si ottiene?

Se si risponde in questo modo a tutte le domande, qual è la probabilità che il punteggio totale sia di almeno 10 punti?

- (2 punti) Se si conosce la risposta corretta a 30 domande e si risponde a caso a tutte le altre, qual è il più grande punteggio che si raggiunge con una probabilità di almeno il 10%?
- (2 punti) Supponiamo di conoscere la risposta corretta di m domande e di poter escludere 3 risposte sbagliate per ciascuna di altre n domande, con $m+n \leq 60$ e di rispondere a tutte e 60 le domande. Che relazione deve valere tra m e n affinché vi sia almeno il 50% di probabilità di superare i 60 punti? (Semplificare il più possibile la risposta.)

Problema 3.2 (13 punti). Sia X una variabile aleatoria continua con densità

$$f_X(t) = \begin{cases} c & 0 \le t < 1\\ 2c & 1 \le t < 2\\ 0 & \text{altrove} \end{cases}$$

- (7 punti) Si determinino c, la media, la varianza e la mediana di X. Si determini la funzione di ripartizione di X. Si tracci un grafico approssimativo sia della densità sia della funzione di ripartizione.
- (3 punti) Si determinino la media e la densità di $W := \frac{1}{4}X^2$. Si dica se W appartiene ad una classe standard di distribuzioni.

(3 punti) Sia Y una variabile aleatoria con la stessa distribuzione della X del primo punto e da essa indipendente. Si determini la probabilità che

$$0 < X + Y < 2$$

Problema 3.3 (11 punti). Gli ultimi 12 interventi di un tecnico che revisiona caldaie sono durati in minuti:

60 60 50 40 40 35 50 35 45 25 60 45

- (6 punti) Stimare al 95% di confidenza la media e la deviazione standard della durata degli interventi di questo tecnico.
- (2 punti) Testare tramite il calcolo del *p*-dei-dati se è plausibile che la durata media sia di un'ora.
- (3 punti) Un secondo tecnico, negli ultimi 20 interventi, ha riportato tempi con media campionaria 52.5 e deviazione standard campionaria 17.2. Vi è evidenza al 5% di significatività che la media dei tempi dei due tecnici sia diversa?

Problema 3.4 (12 punti). In un casinò, alla roulette, un giocatore scommette sempre su una terzina. La probabilità di vittoria è di $\frac{3}{37}$, ma su su 40 giocate consecutive, ha già vinto 7 volte.

- (7 punti) Si verifichi al 5% di significatività se questa sequenza di vittorie è compatibile con l'ipotesi che la probabilità di vittoria per giocata sia effettivamente di $\frac{3}{37}$.
- (2 punti) Su 80 giocate, quante vittorie dimostrerebbero al 1% di significatività che la probabilità di vittoria non è $\frac{3}{37}$ ma maggiore?
- (3 punti) Supponendo che in un anno siano 10 mila i giocatori che giocano 40 volte di seguito alla roulette, e supponendo per semplicità che tutti scommettano sempre su una terzina, qual è il massimo numero di vincite (su 40) che ci dobbiamo aspettare più o meno da parte del giocatore più fortunato?