14 Formulaire de mécanique

14.1 Statique

■ Force et moment d'une force

Ce sont des grandeurs vectorielles qui sont caractérisées par les éléments:

- point d'application, - sens, direction. - intensité. L'unité de force est le Newton N L'unité de moment est le mètre Newton m.N

- Expression analytique du moment :

$\overrightarrow{M_{F/O}} = \overrightarrow{OM} \wedge \overrightarrow{F}$	OM	x F	1 3
x, y, z : coordonnées de l M : point du support		y z	2
X, Y, Z : composantes de	200	7	R

Composantes du moment en O de F. (dans le repère R)

■ Eléments de réduction en un point d'un système de forces extérieures s'appliquant sur un solide isolé

Le solide Σ est sollicité par: \vec{F}_1 , \vec{F}_2 , \vec{F}_3 ... \vec{F}_i . En A on considère : $\vec{S} = \vec{F_1} + \vec{F_2} + \vec{F_3} + \dots \vec{F_n}$

 $\overrightarrow{M}_A = \overrightarrow{AM}_{1A} \overrightarrow{F}_1 + \overrightarrow{AM}_{2A} \overrightarrow{F}_2 + \overrightarrow{AM}_{3A} \overrightarrow{F}_3 + \dots + \overrightarrow{AM}_{1A} \overrightarrow{F}_1$ Les vecteurs \vec{S} et \vec{M}_A s'appellent les éléments de réduction au point A du système de forces \vec{F}_i Au point B par exemple, ces éléments deviennent : $\vec{S} = \vec{F_1} + \vec{F_2} + \vec{F_3} + ... \vec{F_1}$

$$\vec{M}_B = \vec{BM}_{1 \text{ A}} \vec{F}_1 + \vec{BM}_{2 \text{ A}} \vec{F}_2 + \vec{BM}_{3 \text{ A}} \vec{F}_3 + \dots + \vec{BM}_{i \text{ A}} \vec{F}_i$$
Remarque:

 \vec{S} (au point B) = \vec{S} (au point A)

 \vec{M}_B (au point B) $\neq \vec{M}_A$ (au point A)

$$\overrightarrow{M}_B = \overrightarrow{M}_A + \overrightarrow{BA}_A \overrightarrow{S}$$

Equilibre du solide

Condition d'équilibre du solide :

 $\vec{S} = \vec{0}$ En n'importe quel point A $\vec{M}_A = \vec{O}$

Conséquences de l'équilibre du solide Solide sollicité par :

Deux forces	Trois forces
Elles sont directement opposées	Elles sont coplanaires et concourantes ou parallèles
Leur somr	ne est nulle

Adhérence et frottement

Adhérence	Frottement	
Solide isolé	Solide isole	
Le solide est sur le point de glisser $tg\varphi = f$ f : coef. d'adhérence	Le solide glisse $\varphi' < \varphi$ $tg\varphi' = f'$ f' : coef. de frottement	

Valeur de f et f'

Matériaux	Adhérence f		Frottement f	
Materiaux	sec	graissé	sec	graissé
Bronze sur bronze	I -	0,11	0,2	0,06
Bronze sur fonte	l –	_	0,21	0,08
Fonte sur fonte	-	0,16	0,44	0,1
Acier doux sur acier doux	0,13	0,11	0,44	0,08
Acier doux sur fonte	0,19	-	0,18	0,08
Acier trempé sur acier tr.	0,15	0,12	_	0,09
Fonte sur bois de chêne	0,6	0,11	0,49	0,1
Acier sur bois de chêne	-	0,11	0,4	0,08
Courroie en cuir sur fonte	0,56	_	0,28	0,12
Courroie en coton sur fonte	0,34	_	_	
Câble acier sur fonte	0,13	_	_	_
Acier sur glace Amiante sur métaux	0,027	-	0,014	_
Revêtement de frein	-	_	0,45	-
Pneux sur chaussée	roue re	oulante	roue b	loquée
Béton sec	0,	75	150	
Asphalte sec		67	0	,6

14.2 Cinématique du solide

Le solide Σ est en mouvement par rapport au repère fixe R. On définit trois vecteurs en $M \in \Sigma$:

$\vec{\Omega}_{\Sigma / R}$: vitesse de rotationrad/s : vitesse du point Mm/s
$\vec{V}_{M \in \Sigma / R}$; vitesse du point M m/s
$\Gamma_{M \in \Sigma/R}$: accélération du point M m/s²

- Champ des vitesses du solide :

En
$$M \in \Sigma$$
 $\overrightarrow{Q}_{\Sigma/R}$ en $P \in \Sigma$ $\overrightarrow{Q}_{\Sigma/R}$ $\overrightarrow{V}_{P \in \Sigma/R}$ $\overrightarrow{V}_{P \in \Sigma/R} = \overrightarrow{V}_{M \in \Sigma/R} + \overrightarrow{PM} \wedge \overrightarrow{\Omega}_{\Sigma/R}$

- Conséquence: le champ des vitesses du solide est équiprojectif.

■ Solide animé d'un mouvement de translation

$$\vec{\Omega}_{\Sigma /\!R} = \vec{O}$$

- Conséquence : tous les points du solide ont : - la même vitesse.
 - la même accélération.

■ Solide animé d'un mouvement de rotation autour d'un axe fixe

Pour tous les points A du solide coıncidant avec un point A de l'axe.

Vitesse angulaire: ω ... rad/s:

 $\vec{\Omega}_{\Sigma/R} = \omega . \vec{z}.$ Vitesse du point M: v, ... m/s: $\mathbf{v}_{\mathsf{M}} = |\overrightarrow{\mathbf{V}}_{\mathsf{M} \in \Sigma/R}| = \mathbf{r} \cdot \omega.$

Accélération linéaire Accélération normale

Accélération tangentielle : $\overrightarrow{v_t} = \frac{dv_M}{dt} \overrightarrow{v} \dots \text{ m/s}^2$

14.3 Dynamique du solide

- Théorème de la résultante dynamique :

G: centre de gravité de (Σ) .

 $\Sigma \overrightarrow{F}_{\mathrm{ext}}$: résultante des forces extérieures N m : masse du solide Σ kg Γ_{G/R}: accélération du centre de gravité m/s² Remarque: ce théorème est appliquable pour tous les mouvements du solide (Σ) .

- Théorème du moment dynamique :

Cas particulier: (S) en rotation autour d'un axe fixe (l'axe z'de R par exemple).

s'appliquant sur Σ en projection sur **z** m.N :accélération angulaire de ∑ rad/s² :moment d'inertie de Σ/axe z'..... kg.m²

Valeurs de J,: masse m kg dimensions m

Cylindre plein Disque épaisseur négligeable	Sphère pleine	Tige épaisseur négligeable
R G	R. G.	Z G
$J_{\rm Gz} = m \frac{R^2}{2} \qquad .$	$J_{\rm Gz} = \frac{2 \ m \ R^2}{5}$	$J_{\rm Gz} = \frac{mI^2}{12}$

— Théorème de Huyghens :

J'₄: moment d'inertie de ∑ par rapport à ∆' unité kg.m²

 J_{AG} : moment d'inertie de Σ par rapport à Δ_{G} (passant par son centre de gravité et parallèle à Δ)......kg.m² m: masse du solide Σkg d : distance séparant les deux exes parallèles

 Δ' et Δ_G m