# PyMuPDF Documentation

# version 1.8

Ruikai Liu Jorj McKie

November 04, 2015

# Contents

| The PyMuPDF Documentation                              | 1  |
|--------------------------------------------------------|----|
| Introduction                                           | 1  |
| Note on the Name fitz                                  | 1  |
| Installation                                           | 2  |
| Step 1: Download PyMuPDF                               | 2  |
| Step 2: Download MuPDF 1.8                             | 2  |
| Step 3: Build / Setup PyMuPDF                          | 2  |
| Note on using UPX                                      | 2  |
| Tutorial                                               | 3  |
| Import the Bindings                                    | 3  |
| Open a Document                                        | 3  |
| Some Document methods and attributes                   | 3  |
| Access Meta Data                                       | 3  |
| Work with Outlines                                     | 4  |
| Some Outline methods and attributes                    | 4  |
| Some Outline.dest attributes                           | 4  |
| Work with Pages                                        | 4  |
| Inspect the links on a Page                            | 4  |
| Render a Page                                          | 5  |
| Save the page image in a file                          | 5  |
| Display the image in dialog managers                   | 5  |
| Text extraction                                        | 6  |
| Text Searching                                         | 6  |
| Output                                                 | 6  |
| Close                                                  | 7  |
| Example: Dynamically cleaning up corrupt PDF documents | 7  |
| Classes                                                | 9  |
| Colorspace                                             | 10 |
| Device                                                 | 11 |
| DisplayList                                            | 12 |
| Document                                               | 13 |
| Identity                                               | 16 |
| IRect                                                  | 17 |
| Link                                                   | 18 |
| linkDest                                               | 19 |
| Matrix                                                 | 21 |
| Shifting                                               | 23 |
| Flipping                                               | 23 |
| Shearing                                               | 24 |
| Rotating                                               | 25 |

| Outline                                                  | 26 |
|----------------------------------------------------------|----|
| Page                                                     | 27 |
| Pixmap                                                   | 28 |
| Point                                                    | 30 |
| Rect                                                     | 31 |
| TextPage                                                 | 33 |
| TextSheet                                                | 34 |
| Constants and Enumerations                               | 35 |
| Constants                                                | 35 |
| Enumerations                                             | 35 |
| Appendix                                                 | 37 |
| Example Outputs of Text Extraction Methods               | 37 |
| TextPage.extractText()                                   | 37 |
| TextPage.extractHTML()                                   | 37 |
| TextPage.extractJSON()                                   | 37 |
| TextPage.extractXML()                                    | 38 |
| Resource Requirements of Text Extraction Methods         | 38 |
| Performance                                              | 39 |
| Data Sizes                                               | 39 |
| Examples "PyMuPDF.pdf" and "Adobe PDF Reference 1-7.pdf" | 39 |
| Index                                                    | 41 |

# The PyMuPDF Documentation

# Introduction

PyMuPDF (formerly known as python-fitz) is a Python binding for MuPDF - "a lightweight PDF and XPS viewer".

MuPDF can access files in PDF, XPS, OpenXPS, CBZ (comic book) and EPUB (e-book) formats.

These are files with extensions \*.pdf, \*.xps, \*.oxps, \*.cbz or \*.epub (so in essence, with this binding you can develop e-book viewers in Python ...)

PyMuPDF provides access to all important functions of MuPDF from within a Python environment. Nevertheless, we are continuously expanding this function set.

MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed.

You can check this out yourself: Compare the various free PDF-viewers. In terms of speed and rendering quality SumatraPDF ranges at the top (apart from MuPDF's own standalone viewer) - and it is based on MuPDF!

While PyMuPDF has been available since several years for an earlier version of MuPDF (1.2), it was until only mid May 2015, that its creator and a few co-workers decided to elevate it to support the current release of MuPDF (1.8).

And we are determined to keep PyMuPDF current with future MuPDF changes!

This work is now completed.

PyMuPDF has been tested on Linux, Windows 7, Windows 10, Python 2 and Python 3 (x86 versions). Other platforms should work too as long as MuPDF supports them.

The main differences compared to version 1.2 are

- A greatly simplified installation procedure: For Windows and Linux platforms it should come down to running the python setup.py install command.
- The API has changed: it is now simpler and a lot less cryptic.
- The supported function set has been significantly increased: apart from rendering, MuPDF's traditional strength, we now also offer a wide range of text extraction options.
- Demo code has been extended, and an additional examples directory is there to contain working programs. Among them are an editor for a document's table of contents, a full featured document joiner and a document-to-text conversion utility.

We invite you to join our efforts by contributing to the the wiki pages, by using what is there - and, of course, by submitting issues and bugs to the site!

## Note on the Name fitz

The Python import statement for this library is import fitz. Here is the reason why:

The original rendering library for MuPDF was called Libart. "After Artifex Software acquired the MuPDF project, the development focus shifted on writing a new modern graphics library called Fitz. Fitz was originally intended as an R&D project to replace the aging Ghostscript graphics library, but has instead become the rendering engine powering MuPDF." (Quoted from Wikipedia).

# Installation

This describes how to install PyMuPDF.

# Step 1: Download PyMuPDF

Download this repository and unzip it. This will give you a folder, let us call it PyFitz.

# Step 2: Download MuPDF 1.8

Download MuPDF version 1.8 source, and unzip it. Let us call the resulting folder mupdf18.

Put it inside PyFitz as a subdirectory, if you want to keep everything in one place.

If your platform is **not Linux and not Windows**, you must **generate MuPDF now**. The MuPDF download includes generation procedures / makefiles for numerous platforms.

On Linux and on Windows, this is not necessary: MuPDF object code is pregenerated and put in special directories:

- LibLinux for the Linux-generated MuPDF libraries
- LibWin32 for the Windows-generated MuPDF libraries

# Step 3: Build / Setup PyMuPDF

If necessary, adjust the setup.py script now. E.g. make sure that

- the include directory is correctly set in sync with your directory structure
- the object code libraries are correctly defined

Now perform a python setup.py install

# Note on using UPX

In Windows systems, your PyMuPDF installation will end up with three files: \_\_init\_\_.py, fitz.py and \_fitz.pyd in the site-packages directory. The PYD file is Python's DLL version on Windows systems. \_fitz.pyd has a size of 9.5 to 10 MB.

You can reduce this by applying the compression utility UPX to it: upx -9 \_fitz.pyd. This will reduce the file to about 4.5 MB. This should reduce load times (import fitz statement) while keeping it fully functional.

# **Tutorial**

This tutorial will show you the use of MuPDF in Python step by step.

Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF. Nevertheless we will only talk about PDF files for the sake of brevity.

As for string handling, MuPDF will pass back any string as UTF-8 encoded - no exceptions. Where this binding has added functionality, we usually decode string to unicode. An example is the **Document.ToC()** method.

# Import the Bindings

The Python bindings to MuPDF are made available by this import statement:

import fitz

# Open a Document

In order to access a supported document, it must be opened with the following statement:

doc = fitz.Document(filename)

This will create doc as a Document object. filename must be a Python string or unicode object that specifies the name of an existing file (with or without a fully or partially qualified path).

It is also possible to construct a document from memory data, i.e. without using a file. See Document for details.

A Document contains several attributes and functions. Among them are meta information (like "author" or "subject"), number of total pages, outline and encryption information.

# Some Document methods and attributes

| Method / Attribute  | Description                            |
|---------------------|----------------------------------------|
| Document.pageCount  | Number of pages of filename (integer). |
| Document.metadata   | Metadata of the Document (dictionary). |
| Document.outline    | First outline entry of Document        |
| Document.ToC()      | Table of contents of Document (list).  |
| Document.loadPage() | Create a Page object.                  |

## Access Meta Data

**Document.metadata** is a Python dictionary with the following keys. For details of their meanings and formats consult the PDF manuals, e.g. Adobe PDF Reference sixth edition 1.7 November 2006. Further information can also be found in chapter Document. The meta data fields are of type string if not otherwise indicated and may be missing, in which case they contain None.

| Key        | Value                         |
|------------|-------------------------------|
|            | Producer (producing software) |
| producer   |                               |
|            | PDF format, e.g. 'PDF-1.4'    |
| format     |                               |
|            | Encryption method used        |
| encryption |                               |
|            | Author                        |
| author     |                               |
|            | Date of last modification     |
| modDate    |                               |

|              | Keywords             |
|--------------|----------------------|
| keywords     |                      |
|              | Title                |
| title        |                      |
|              | Date of creation     |
| creationDate |                      |
|              | Creating application |
| creator      |                      |
|              | Subject              |
| subject      |                      |

# Work with Outlines

Entering the documents outline tree works like this:

```
olItem = doc.outline  # the document's first outline item
```

This creates olltem as an Outline object.

# Some Outline methods and attributes

| Method / Attribute | Description                                     |
|--------------------|-------------------------------------------------|
| Outline.saveText() | Save table of contents as a text file           |
| Outline.saveXML()  | Save table of contents as a quasi-XML file      |
| Outline.next       | Next item of the same level                     |
| Outline.down       | Next item one level down                        |
| Outline.title      | Title of this item                              |
| Outline.dest       | Destination ('where does this entry point to?') |

# Some Outline.dest attributes

| Attribute         | Description                             |
|-------------------|-----------------------------------------|
| Outline.dest.page | Target page number                      |
| Outline.dest.lt   | Top-left corner of target rectangle     |
| Outline.dest.rb   | Bottem-right corner of target rectangle |

MuPDF also supports outline destinations to other files and to URIs. See Outline.

In order to get a document's table of contents as a Python list, use the following function:

# Work with Pages

Tasks that can be performed with a Page are at the core of MuPDF's functionality. Among other things, you can render a Page, optionally zooming, rotating or shearing it. You can write it's image to files (in PNG format), extract text from it or perform searches for text elements. At first, a page object must be created:

```
page = doc.loadPage(n) # represents page n of the document
```

Here are some typical uses of Page objects:

# Inspect the links on a Page

Here is an example that displays all links and their types:

# Render a Page

This example creates an image out of a page's content:

# Save the page image in a file

We can simply store the image in a PNG file:

```
pix.writePNG("test.png")
```

## Display the image in dialog managers

Or we convert the image into a bitmap usable by dialog managers. Pixmap.samples represents the area of bytes of all the pixels as a Python bytearray. This area (or its str()-version), is directly usable by presumably most dialog managers. Here are two examples.

## wxPython:

## Tkinter:

```
data = pix.samples
img = Image.frombytes("RGBA", [irect.width, irect.height], str(data))
photo = ImageTk.PhotoImage(img)
```

## Text extraction

We can also extract all text of a page in a big chunk of string:

```
dl = fitz.DisplayList()
                                          # create a DisplayList
ts = fitz.TextSheet()
                                          # create a TextSheet
                                         # create a TextPage
tp = fitz.TextPage()
                                         # create a text Device
dev = fitz.Device(ts, tp)
irect = page.bound()
                                         # the page's visible rectangle
page.run(dev, fitz.Identity)
                                          # run the page on the device
# now run the display list with the page's data
dl.run(dev, fitz.Identity, irect)
# 4 methods exist to extract the text now contained in the TextPage:
# (1) plain text: with line breaks, no formatting, no position info
text = tp.extractText()
# (2) html: line breaks, alignment, grouping, no formatting, no positioning
html = tp.extractHTML()
# (3) json: full formatting info (except colors and fonts) down to spans
xml = tp.extractJSON()
# (4) xml: full formatting info (except colors) down to individual characters
xml = tp.extractXML()
```

To give you an idea about the output of these alternatives, we did extracts from this document's PDF version and several other examples. See the appendix for details about implications on processing times and space requirements.

# **Text Searching**

If you are interested in the occurrence of parts of text, you can determine, exactly where on a page a certain string appears:

```
# search for at most 4 page locations with specific contents
res = tp.search('MuPDF', hit_max = 4)
```

The result res will now be [] or a list of no more than 4 Rect rectangles that contain the string 'MuPDF'. The hit\_max parameter (in our case set to 4) is optional (default is 16).

# **Output**

Output capabilities of MuPDF (such as PDF generation) are currently very limited. However, a copy of the currently opened document can be created.

We support this with the method **Document.save()**. If the document had been successfully decrypted before, save() will create a decrypted copy.

In addition, this method will also perform some clean-up:

If the document containes invalid or broken xrefs, the saved version will have them corrected, which makes it readable by other Python PDF software, like pdfrw or PyPDF2. In many cases, the saved version will also be smaller than the original.

Document.save() now supports all options of MuPDF's standalone utility mutool clean.

| Option | Effect |
|--------|--------|
|--------|--------|

| garbage = 1     | garbage collect unused objects                |
|-----------------|-----------------------------------------------|
| garbage = 2     | in addition to 1, compact xref tables         |
| garbage = 3     | in addition to 2, merge duplicate objects     |
| clean = 1       | clean content streams (avoid / use with care) |
| deflate = 1     | deflate uncompressed streams                  |
| ascii = 1       | convert data to ASCII format                  |
| linear = 1      | create a linearized document version          |
| expand = 1      | create a decompressed version                 |
| incremental = 1 | only save data that have changed              |

Please note, that **Document.save()**, according to MuPDF's documentation, is still being further developed, so expect changes in the future here.

Like with mutool clean, not all combinations of the above options may work for all documents - so be ready to experiment a little.

We have found, that the fastest and very stable combination is mutool clean -ggg -z, giving good compression results. In PyMuPDF this corresponds to doc.save(filename, garbage=3, deflate=1).

In some cases, best compression factors result, if expand and deflate are used together, though they seem to be contradictory. This works, because MuPDF is forced to expand and then re-compress all objects, which will correct poor compressions during document creation.

## Close

In some situations it is desirable to "close" a Document such that it becomes fully available again to the OS while your program is still running.

This can be achieved by the **Document.close()** method. Apart from closing the file, all buffer areas associated with the document will be freed. If the document has been created from memory data, no underlying file is opened by MuPDF, so only the buffer release will take place.

## Caution:

As with normal file objects, after close, the document and all objects referencing it will be invalid and **must no longer be used**. This binding protects against most such invalid uses by disabling properties and methods of the Document and any associated **Document.loadPage()** objects.

However, re-opening a previously closed file by a new Document is no problem. Please also do have a look at the following valid example:

```
doc = fitz.Document(f_old)  # open a document
<... some statements ...>  # e.g. decryption
doc.save(fnew, garbage=3, deflate=1) # save a decrypted / compressed version
doc.close()  # close input file
os.remove(f_old)  # remove it
os.rename(f_new, f_old)  # rename the decrypted / cleaned version
doc = fitz.Document(f_old)  # use it as input for MuPDF
```

# Example: Dynamically cleaning up corrupt PDF documents

This shows a potential use of PyMuPDF with another Python PDF library (pdfrw).

If a PDF is broken or needs to be decrypted, one could dynamically invoke PyMuPDF to recover from problems like so:

```
import sys
from pdfrw import PdfReader
import fitz
from cStringIO import StringIO
```

```
# 'tolerant' PDF reader
def reader(fname):
    ifile = open(fname, "rb")
    idata = ifile.read()
                                     # put in memory
    ifile.close()
    ibuffer = StringIO(idata) # convert to stream
        return PdfReader(ibuffer)
                                        # let us try
                                         # problem! see if PyMuPDF can heal it
    except:
        doc = fitz.Document("application/pdf",
                             idata,
                             len(idata)) # scan pdf data in memory
        doc.save("test.pdf",
                                        # may want to use a temp file
                 garbage=3,
                 deflate=1)
                                        # save a cleaned version
        ifile = open("test.pdf", "rb") # open it
        idata = ifile.read()
                                         # put in memory
        ifile.close()
       ibuffer = StringIO(idata)  # convert to stream
return PdfReader(ibuffer)  # now let pdfrw retry
pdf = reader(sys.argv[1])
print pdf.Info
# do further processing
```

With the command line utility pdftk a similar result can be achieved, see here. It even supports buffers for input and output. However you must invoke it as a separate process via subprocess. Popen, using stdin and stdout as communication vehicles.

# **Classes**

The list of PyMuPDF classes, accessible via the prefix  $\mathtt{fitz}$ . if your import statement was  $\mathtt{import}$   $\mathtt{fitz}$ 

| Class       | Short Description                               |
|-------------|-------------------------------------------------|
| Colorspace  | Define the color space of a Pixmap.             |
| Device      | Target object for rendering or text extraction. |
| DisplayList | A list containing drawing commands.             |
| Document    | Basic class for dealing with files.             |
| Identity    | The do-nothing Matrix                           |
| IRect       | A rectangle (pixel coordinates).                |
| Link        | A destination                                   |
| linkDest    | The destination of an outline entry             |
| Matrix      | A 3x3 matrix used for transformations.          |
| Outline     | Outline element (a.k.a. bookmark).              |
| Page        | A document page.                                |
| Pixmap      | A pixel map (for rendering).                    |
| Point       | Represents a point in the plane.                |
| Rect        | A rectangle (float coordinates).                |
| TextPage    | Text content of a page.                         |
| TextSheet   | A list of text styles used in a page.           |

# Colorspace

Represents the color space of a Pixmap.

## **Class API**

class Colorspace

```
__init__ (self, colorspace, irect)
Constructor
```

# colorspace

A number identifying the colorspace. Supported colorspaces are CS\_RGB, CS\_GRAY and CS\_CMYK.

Type: int

#### irect

A IRect object representing the area of the image.

Type: instance

# **Device**

The different format handlers (pdf, xps, etc.) interpret pages to a "device". These devices are the basis for everything that can be done with a page: rendering, text extraction and searching. The device type is determined by the selected construction method.

## **Class API**

instance

Type:

# **DisplayList**

## DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:

- 1. as a caching-mechanism to reduce parsing of a page
- 2. as a data structure in multi-threading setups, where one thread parses the page and another one renders pages.

A DisplayList is populated with objects from a page by running Page.run() on a Device. Replay the list (once or many times) by invoking the display list's run() function.

| Method | Short Description                         |
|--------|-------------------------------------------|
| run()  | (Re)-run a display list through a device. |

## **Class API**

## class DisplayList

#### fitz.DisplayList (self)

Create a rendering device for a display list.

When the device is rendering a page it will populate the display list with drawing commands (text, images, etc.). The display list can later be reused to render a page many times without having to re-interpret the page from the document file.

## Return type: Device

run (self, dev, ctm, area)

#### Parameters:

- dev (Device) -- Device obtained from Device
- ctm (Matrix) -- Transform matrix to apply to display list contents.
- area (IRect) -- Only the part of the contents of the display list visible within this area will be considered when the list is run through the device. This does not imply for tile objects contained in the display list.

# **Document**

This class represents a document. It can be constructed from a file or from memory. See below for details.

| Method / Attribute      | Short Description              |
|-------------------------|--------------------------------|
| Document.authenticate() | Decrypts the document          |
| Document.loadPage()     | Reads a page                   |
| Document.save()         | Saves a copy of the document   |
| Document.ToC()          | Creates a table of contents    |
| Document.close()        | Closes the document            |
| Document.isClosed       | Has document been closed?      |
| Document.outline        | First Outline item             |
| Document.name           | filename of document           |
| Document.needsPass      | Is document is encrypted?      |
| Document.pageCount      | The document's number of pages |
| Document.metadata       | The document's meta data       |

#### Class API

### class Document

\_\_init\_\_ (self,filename)

Constructs a Document object from a file.

Parameters: filename (string) -- A string (UTF-8 or unicode) containing the path / name of the

document file to be used. The file will be opened and remain open until either explicitely

closed (see below) or until end of program.

Return type: Document

Returns: A Document object.

\_\_init\_\_ (self, filetype, stream=data, streamlen=len(data))

Constructs a Document object from memory data.

#### Parameters:

- filetype (string) -- A string specifying the type of document contained in stream. This may be either something that looks like a filename (e.g. x.pdf), in which case MuPDF uses the extension to determine the type, or a mime type like application/pdf. Recommended is using the filename scheme, or even the name of the original file for documentation purposes.
- **stream** (*string*) -- A string of data representing the content of a supported document type.
- **streamlen** (*int*) -- An integer specifying the length of the stream.

Return type: Document

Returns: A Document object.

#### authenticate (password)

Decrypts the document with the string password. If successfull, the document's data can be accessed (e.g. for rendering).

**Parameters:** password (*string*) -- The password to be used.

Return type: int

Returns: True (1) if decryption with password was successfull, False (0) otherwise.

## loadPage (number)

Loads a Page for further processing like rendering, text searching, etc. See the Page object.

Parameters: number (int) -- page number, zero-based (0 is the first page of the document).

Return type: Page

save (outfile, garbage=0, clean=0, deflate=0, incremental=0, ascii=0, expand=0, linear=0)
Saves a copy of the document under outfile (include path specifications as necessary). Internally the document may have changed. E.g. after a successfull authenticate, a decrypted copy will be saved, and, in addition (even without any of the optional parameters), some basic cleaning of the document data will also have occurred, e.g. broken xref tables will have been corrected as far as possible.

#### Parameters:

- **outfile** (*string*) -- The file name to save to. Must be different from the original filename / filetype value or else a ValueError will be raised.
- **garbage** (*int*) -- Do garbage collection: 0 = none, 1 = remove unused objects, 2 = in addition compact xref tables, 3 = in addition merge duplicate objects.
- **clean** (*int*) -- Clean content streams: 0 = False, 1 = True.
- deflate (int) -- Deflate uncompressed streams: 0 = False, 1 = True.
- incremental (int) -- Only save changed objects: 0 = False, 1 = True.
- ascii (int) -- Where possible make the output ASCII: 0 = False, 1 = True.
- **expand** (*int*) -- One byte bitfield to decompress contents: 0 = none, 1 = images, 2 = fonts, 255 = all. This convenience option generates a decompressed file version that can be better read by some other programs.
- **linear** (*int*) -- Save a linearised version of the document: 0 = False, 1 = True. This option creates a file format for improved performance when read via internet connections.

Return type: int

Returns: Count of errors that occurred during save. Note: PyMuPDF will recover from many errors

encountered in a PDF and continue processing.

## ToC ()

A convenience function that creates a table of contents from the outline entries. If none exist [] will be returned, otherwise a Python list [[level, title, page], [...], ...]. Note that the title entries have already been decoded to unicode here. Page numbers are 1-based, but zero if and only if the entry points to a place outside this document.

Return type: list

#### close (

Releases space allocations associated with the document, and, if created from a file, closes filename thus releasing control of it to the OS.

## outline

Contains either None or the first Outline entry of the document. Can be used as a starting point to walk through all outline items.

Return type: Outline

#### isClosed

False (0) if document is still open, True (1) otherwise. If closed, most other attributes and all methods will have been deleted / disabled. In addition, Page objects referring to this document (i.e. created with <code>Document.loadPage()</code>) will no longer be usable. For reference purposes, <code>Document.name</code> still exists and will contain the filename of the original document.

Return type: int

### needsPass

Contains an indicator showing whether the document is encrypted (True = 1) or not (False = 0).

Return type: bool

#### metadata

Contains the document's meta data as a Python dictionary. Its keys are format, encryption, title, author, subject, keywords, creator, producer, creationDate, modDate. All item values are strings or None.

Except format and encryption, the key names correspond in an obvious way to a PDF's "official" meta data fields /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, /Keywords respectively.

The value of format contains the version of the PDF format (e.g. 'PDF-1.6').

The value of encryption either contains None (not encrypted), or a string naming the used encryption method (e.g. 'Standard V4 R4 128-bit RC4'). Note that if the document is encrypted, the other meta data values may be encrypted, too.

If the date fields contain meaningfull data (which need not be the case), they are strings in the PDF-internal timestamp format "D:<TS><TZ>", where

<TS> is the 12 character ISO timestamp YYYMMDDhhmmss (YYYY - year, MM - month, DD - day, hh - hour, mm - minute, ss - second), and

<TZ> is a time zone value (time intervall relative to GMT) containing a sign ('+' or '-'), the hour (hh), and the minute ('mm', attention: enclose in apostrophies!).

For example, a Venezuelan value might look like D:20150415131602-04'30', which corresponds to the timestamp April 15, 2015, at 1:16:02 pm local time Venezuela.

Return type: dict

#### name

Contains the filename or filetype value with which Document was created.

Return type: string

#### pageCount

Contains the number of pages of the document. May return 0 for documents with no pages.

Return type: int

# **Identity**

Identity is just a Matrix that performs no action, to be used whenever the syntax requires a Matrix, but no actual transformation should take place.

Caution: Identity is a constant in the C code and therefore readonly, do not try to modify its properties in any way, i.e. you must not manipulate its [a,b,c,d,e,f], neither apply any method.

Matrix(1, 1) creates a matrix that acts like Identity, but it may be changed. Use this when you need a starting point for further modification, e.g. by one of the Matrix methods.

#### In other words:

```
# the following will not work - the interpreter will crash!
m = fitz.Identity.preRotate(90)

# do this instead:
m = fitz.Matrix(1, 1).preRotate(90)
```

# **IRect**

IRect is a rectangular bounding box similar to Rect, except that all corner coordinates are integers. IRect is used to specify an area of pixels, e.g. to receive image data during rendering.

| Attribute    | Short Description                       |
|--------------|-----------------------------------------|
| IRect.width  | Width of the bounding box               |
| IRect.height | Height of the bounding box              |
| IRect.x0     | X-coordinate of the top left corner     |
| IRect.y0     | Y-coordinate of the top left corner     |
| IRect.x1     | X-coordinate of the bottom right corner |
| IRect.y1     | Y-coordinate of the bottom right corner |

#### Class API

## class IRect

\_\_init\_\_\_ (self, x0=0, y0=0, x1=0, y1=0)

Constructor. The default values will create an empty rectangle. Function Rect.round() creates the smallest IRect containing Rect.

#### width

Contains the width of the bounding box. Equals x1 - x0.

Type: int

## height

Contains the height of the bounding box. Equals y1 - y0.

Type: int

x0

X-coordinate of the top left corner.

Type: int

**y**0

Y-coordinate of the top left corner.

Type: int

x1

X-coordinate of the bottom right corner.

Type: int

у1

Y-coordinate of the bottom right corner.

Type: int

# Link

Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page, and they are forward-chained to each other, starting from an initial link which is accessible by the <code>Page.loadLinks()</code> method.

| Attribute | Short Description                            |
|-----------|----------------------------------------------|
| Link.rect | Clickable area in untransformed coordinates. |
| Link.dest | Kind of link destination.                    |
| Link.next | Link to next link                            |

## Class API

class Link

#### rect

The area that can be clicked in untransformed coordinates.

Return type: Rect

#### dest

The link destination kind. An integer to be interpreted as one of the FZ\_LINK\_\* values.

Return type: int

#### next

The next Link or None

Return type: Link

# **linkDest**

Class representing the dest property of an outline entry.

| Attribute          | Short Description                   |
|--------------------|-------------------------------------|
| linkDest.dest      | Destination                         |
| linkDest.fileSpec  | File specification (path, filename) |
| linkDest.flags     | Descriptive flags                   |
| linkDest.isMap     | Is this a MAP?                      |
| linkDest.isUri     | Is this an URI?                     |
| linkDest.kind      | Kind of destination                 |
| linkDest.lt        | Top left coordinates                |
| linkDest.named     | Name if named destination           |
| linkDest.newWindow | Name of new window                  |
| linkDest.page      | Page number                         |
| linkDest.rb        | Bottom right coordinates            |
| linkDest.uri       | URI                                 |

#### Class API

class linkDest

#### dest

Destination of linkDest.

Return type: Link

## fileSpec

Contains the filename (including any path specifications) this link points to, if applicable.

Return type: string

## flags

A one-byte bitfield consisting of indicators describing the validity and meaning of the different aspects of the destination. As far as possible, link destinations are constructed such that e.g. LinkDest.rb can be treated as defining a bounding box, though the validity flags (see LINK\_FLAG\_\* values) indicate which of the values were actually specified. Note that the numerical values for each of the LINK\_FLAGs are powers of 2 and thus indicate the position of the bit to be tested. More than one bit can be True, so do not test for the value of the integer.

Return type: int

#### isMap

This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.

Return type: bool

#### isUri

Specifies whether this destination is an internet resource.

Return type: bool

#### kind

Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a place in another file. Look at index entries FZ\_LINK\_\* to see the names and numerical values.

Return type: int

lt

The top left Point of the destination.

Return type: Point

named

This destination refers to some named resource of the document (see Adobe PDF documentation).

Return type: int

newWindow

This destination refers to an action that will open a new window.

Return type: bool

page

The page number (in this document) this destination points to.

Return type: int

rb

The bottom right Point of this destination.

Return type: Point

uri

The name of the URI this destination points to.

Return type: string

# Matrix

Matrix is a row-major 3x3 matrix used by image transformations in MuPDF. With matrices you can manipulate the rendered image of a page in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and shifted by setting some or all of just six numerical values.

Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector, and only the remaining six elements are used for manipulations. These six elements are usually represented by [a,b,c,d,e,f]. Here is how they are positioned in the matrix:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

It should be noted, that

- the below methods are just convenience functions everything they do, can also be achieved by directly manipulating [a,b,c,d,e,f]
- all manipulations can be combined you can construct a matrix that does a rotate **and** a shear **and** a scale **and** a shift etc. in one go

| Method / Attribute            | Description                 |
|-------------------------------|-----------------------------|
| Matrixinit()                  | Constructor.                |
| <pre>Matrix.preRotate()</pre> | Perform a rotation          |
| Matrix.preScale()             | Perform a scaling           |
| Matrix.preShear()             | Perform a shearing          |
| Matrix.a                      | Zoom factor X direction     |
| Matrix.b                      | Shearing effect Y direction |
| Matrix.c                      | Shearing effect X direction |
| Matrix.d                      | Zoom factor Y direction     |
| Matrix.e                      | Horizontal shift            |
| Matrix.f                      | Vertical shift              |

#### **Class API**

## class Matrix

```
__init__ (self, a=1, b=0, c=0, d=1, e=0, f=0)
```

Constructor.  $\mathtt{Matrix}(1,\ 1)$  will construct a modifyable version of the Identity matrix.

#### preRotate (deg)

Performs a clockwise rotation for positive  $\deg$  degrees, else counterclockwise. This will change the matrix elements in the following way:  $a = \cos(\deg)$ ,  $b = \sin(\deg)$ ,  $c = -\sin(\deg)$ ,  $d = \cos(\deg)$ . e and f will remain unchanged.

Parameters: deg (float) -- The rotation angle in degrees (use conventional notation based on Pi = 180

degrees).

Return type: Matrix

## preScale (sx, sy)

Scales by the zoom factors sx and sy. Has effects on attributes a and d only.

Parameters:

• sx (float) -- Zoom factor in X direction. For the effect see description of attribute a.

• sy (float) -- Zoom factor in Y direction. For the effect see description of attribute d.

Return type: Matrix

preShear (sx, sy)

Performs shearing, i.e. transformation of rectangles into parallelograms (rhomboids). Has effects on attributes b and c only.

Parameters:

• sx (float) -- Shearing effect in X direction. See attribute c.

• sy (float) -- Shearing effect in Y direction. See attribute b.

Return type: Matrix

a

Scaling in X-direction **(width)**. For example, a value of 0.5 performs a shrink of the **width** by a factor of 2. If a < 0, a (additional) vertical flip will occur, i.e. the rectangle's picture will be mirrored along the Y axis.

Type: float

b

Causes a shearing effect: each Point(x, y) will become Point(x, y - b\*x). Therefore, looking from left to right, e.g. horizontal lines will be "tilt" - downwards if b > 0, upwards otherwise (b is the tangens of the tilting angle).

Type: float

C

Causes a shearing effect: each Point(x, y) will become Point(x - c\*y, y). Therefore, looking upwards, vertical lines will be "tilt" - to the left if c > 0, to the right otherwise (c ist the tangens of the tilting angle).

Type: float

d

Scaling in Y-direction **(height)**. For example, a value of 1.5 performs a stretch of the **height** by 50%. If d < 0, a (additional) horizontal flip will occur, i.e. the rectangle's picture will be mirrored along the X axis.

Type: float

е

Causes a horizontal shift effect: Each Point(x, y) will be shifted right to become Point(x + e, y). Note that negative values of e will shift left.

Type: float

£

Causes a vertical shift effect: Each Point(x, y) will be shifted down to become Point(x, y - f). Note that negative values of f will shift up.

Type: float

## **Examples**

Here are examples to illustrate some of the effects achievable with matrices. The following pictures start with a page of the PDF version of this help file. We show what will happen when a matrix is being applied (though always full pages are created, only parts are displayed here to save space).

This is the original page image

Classes

### Matrix

Matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPDF.

Since all points or pixels reside in a two-dimensional space, one column vector of the matrix is the constant unit vector, and only the remaining six elements may vary. These six elements are usually represented by [a,b,c,d,e,f]. Here is how they are positioned in the matrix:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

It should be noted, that the below methods are just convenience functions. Each of them manipulates some of the six matrix elements in a specific way. By directly changing [a,b,c,d,e,f], any of these functions can be replaced.

# Shifting

We transform it with a matrix where e = 100 (right shift by 100 pixels)

#### Classes

Matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPD

Since all points or pixels reside in a two-dimensional space, one column vector of the matrix is the vector, and only the remaining six elements may vary. These six elements are usually reg [a,b,c,d,e,f]. Here is how they are positioned in the matrix:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

Next we do a down shift by 100 pixels: f = 100

Classes

#### Matrix

Matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPDF.

Since all points or pixels reside in a two-dimensional space, one column vector of the matrix is the constant unit vector, and only the remaining six elements may vary. These six elements are usually represented by [a,b,c,d,e,f]. Here is how they are positioned in the matrix:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

# **Flipping**

Flip the page vertically (a = -1)

Classes

#### Matrix

Matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPDF.

Since all points or pixels reside in a two-dimensional space, one column vector of the matrix is the constant unit vector, and only the remaining six elements may vary. These six elements are usually represented by [a, b, c, d, e, f]. Here is how they are positioned in the matrix:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

Flip horizontally (d = -1)

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 1 \end{bmatrix}$$

Since all points or pixels reside in a two-dimensional space, one column vector of the matrix is the constant unit vector, and only the remaining six elements may vary. These six elements are usually represented by {a,b,c,d,e,f}. Here is how they are positioned in the matrix:

Matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPDF.

## Matrix

Classes

# Shearing

First a shear in Y direction (b = 0.5)



Second a shear in X direction (c = 0.5)

Classes

## Matrix

Matrix is a row-major 3x3 matrix used image transformations in MuPDF. With matrices you can manipulate the rendered image of a page in a variety of ways: (parts of) pages can be rotated, zoomed, flipped, sheared and shifted by setting some or all of just six numerical values.

Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector, and only the remaining six elements are used for manipulations. These six elements are usually represented by \( \lambda \, b \, c \, d \, e \, \in \). Here is how they are positioned in the matrix:



It should be noted, that

# Rotating

Finally a rotation by 60 degrees



## **Outline**

outline is a property of <code>Document</code>. If not <code>None</code>, it stands for the first outline item of the document. Its properties in turn define the characteristics of this item and also point to other outline items in "horizontal" direction by property <code>Outline.next</code> to the next item of same level, and "downwards" by property <code>Outline.down</code> to the next item one level lower. The full tree of all outline items for e.g. a conventional table of contents can be recovered by following these "pointers".

| Method / Attribute | Short Description                                 |
|--------------------|---------------------------------------------------|
| Outline.down       | Next item downwards                               |
| Outline.next       | Next item same level                              |
| Outline.dest       | Link destination                                  |
| Outline.title      | Title                                             |
| Outline.saveText() | Prints a conventional table of contents to a file |
| Outline.saveXML()  | Prints an XML-like table of contents to a file    |

#### Class API

class Outline

#### down

The next outline item on the next level down. Is None if the item has no children.

Return type: Outline

#### next

The next outline item at the same level as this item. Is None if the item is the last one in its level.

Return type: Outline

## dest

The destination this entry points to. Can be a place in this or another document, or an internet resource. It can include actions to perform like opening a new window, invoking a javascript or opening another document.

Return type: linkDest

#### title

The item's title as a string or None.

Return type: string

#### saveText ()

The chain of outline items is being processed and printed to the file filename as a conventional table of contents. Each line of this file has the format <tab>...<tab><title><tab><page#>, where the number of leading tabs is (n-1), with n equal to the outline level of the entry. Page numbers are 1-based in this case, while page# = 0 if and only if the outline entry points to a place outside this document. If no title was specified for this outline entry, it appears as a tab character in this file.

**Parameters: filename** (*string*) -- Name of the file to write to.

## saveXML ()

The chain of outline items is being processed and printed to a file filename as an XML-like table of contents. Each line of this file has the format <outline title="..." page="n"/>, if the entry has no children. Otherwise the format is <outline title="..." page="n">, and child entries will follow. The parent entry will be finished by a line containing </outline>.

**Parameters:** filename (string) -- Name of the file to write to.

# **Page**

Page interface, created by Document.loadPage().

| Method / Attribute | Short Description           |
|--------------------|-----------------------------|
| Page.bound()       | The Page's rectangle        |
| Page.loadLinks()   | Get all the links in a page |
| Page.run()         | Run a page through a device |
| Page.number        | Page number                 |

## Class API

class Page

## bound ()

Determine the a page's rectangle (before transformation).

Return type: Rect

# loadLinks ()

Get all the links in a page.

Return type: list

**Returns:** A python list of Link. An empty list is returned if there's no link in the page.

run (dev, transform)

Run a page through a device.

#### Parameters:

- dev (Device) -- Device, obtained from one of the Device constructors.
- transform (Matrix) -- Transformation to apply to the page. May include for example scaling and rotation, see <a href="Matrix.prescale()">Matrix.prescale()</a> and <a href="Matrix.preRotate()">Matrix.preRotate()</a>. Set it to Identity if no transformation is desired.

#### number

The page number

Return type: int

# **Pixmap**

Pixmaps represent a set of pixels for a 2 dimensional region. Each pixel consists of n bytes ("components"), plus always an alpha. The data is in premultiplied alpha when rendering, but non-premultiplied for colorspace conversions and rescaling.

| Method / Attribute   | Short Description                         |
|----------------------|-------------------------------------------|
| Pixmap.clearWith()   | Clears a pixmap (with given value)        |
| Pixmap.writePNG()    | Saves a pixmap as a png file              |
| Pixmap.invertIRect() | Invert the pixels of a given bounding box |
| Pixmap.samples       | The components data for all pixels        |
| Pixmap.h             | Height of the region in pixels            |
| Pixmap.w             | Width of the region in pixels             |
| Pixmap.x             | X-coordinate of top-left corner of pixmap |
| Pixmap.y             | Y-coordinate of top-left corner of pixmap |
| Pixmap.n             | Number of components per pixel            |
| Pixmap.xres          | Resolution in X-direction                 |
| Pixmap.yres          | Resolution in Y-direction                 |
| Pixmap.interpolate   | Interpolation method indicator            |

#### Class API

class Pixmap

clearWith (self, value=0)
Clears a pixmap.

\_

Parameters: value (int) -- Values in the range 0 to 255 are valid. Each color byte of each pixel will be

set to this value, while alpha will always be set to 255 (non-transparent). Default is 0.

## samples

The color and transparency values for all pixels. Samples is a memory area of size width \* height \* n bytes. The first n bytes are components 0 to n-1 for the pixel at point (x,y). Each successive n bytes gives another pixel in scanline order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA colorspace this means, samples is a bytearray like . . . , R, G, B, A, . . . , and the four byte values R, G, B, A describe one pixel.

Return type: bytearray

W

The width of the region in pixels.

Return type: int

h

The height of the region in pixels.

Return type: int

x

X-coordinate of top-left corner

Return type: int

v

Y-coordinate of top-left corner

## Return type: int

n

Number of components per pixel. This number depends on the chosen colorspace: **CS\_GRAY** = 2, **CS\_RGB** = 4, **CS\_CMYK** = 5.

Return type: int

#### xres

Horizontal resolution in pixels per inch.

Return type: int

#### yres

Vertical resolution in pixels per inch

Return type: int

#### invertIRect (self, irect)

Invert all pixels in IRect. All components except alpha are inverted.

Parameters: irect -- Invert all the pixels in the irect. If omitted, the whole pixmap will be inverted.

writePNG (self, filename, savealpha=False)

Save a pixmap as a png file.

Parameters:

- filename (string) -- The filename to save as (including extension).
- savealpha (bool) -- Save alpha or not.

#### interpolate

A boolean flag set to True if the image will be drawn using linear interpolation, or set to False if image is created using nearest neighbour sampling.

Return type: bool

# **Point**

 ${\tt Point} \ \ \text{represents a point in the plane, defined by its } x \ \text{and } y \ \text{coordinates}.$ 

| Attribute | Short Description |
|-----------|-------------------|
| Point.x   | The X-coordinate  |
| Point.y   | The Y-coordinate  |

# **Class API**

class Point

\_\_init\_\_ (self, x=0, y=0)
Constructor, defaulting to "top left".

x

Type: float

У

Type: float

# Rect

Rect represents a rectangle defined by its top left and its bottom right Point objects, in coordinates: ((x0, y0), (x1, y1)).

Rectangle borders are always in parallel with the respective X- and Y-axes. A rectangle is called "finite" if  $x0 \le x1$  and  $y0 \le y1$  is true, else "infinite".

| Methods / Attributes | Short Description                          |
|----------------------|--------------------------------------------|
| Rect.round()         | creates the smallest IRect containing Rect |
| Rect.transform()     | transform Rect with a Matrix               |
| Rect.height          | Rect height                                |
| Rect.width           | Rect width                                 |
| Rect.x0              | Top left corner's X-coordinate             |
| Rect.y0              | Top left corner's Y-coordinate             |
| Rect.x1              | Bottom right corner's X-coordinate         |
| Rect.y1              | Bottom right corner's Y-coordinate         |

#### Class API

#### class Rect

```
\_init\_ (self, x0=0, y0=0, x1=0, y1=0)
```

Constructor. The default values will create an empty rectangle.

#### round ()

Creates the smallest IRect that contains Rect.

Return type: IRect

#### transform (m)

Transforms Rect with a Matrix.

**Parameters:** m -- A Matrix to be used for the transformation.

Return type: Rect

#### width

Contains the width of the rectangle. Equals x1 - x0.

Return type: float

#### height

Contains the height of the rectangle. Equals y1 - y0.

Return type: float

x0

X-coordinate of the top left corner.

Type: float

у0

Y-coordinate of the top left corner.

Type: float

x1

X-coordinate of the bottom right corner.

Type: float

v1

Y-coordinate of the bottom right corner.

Type: float

# **TextPage**

TextPage represents the text of a page.

| Method                            | Short Description                      |
|-----------------------------------|----------------------------------------|
| <pre>TextPage.extractText()</pre> | Extract the page's plain text          |
| <pre>TextPage.extractHTML()</pre> | Extract the page's text in HTML format |
| TextPage.extractJSON()            | Extract the page's text in JSON format |
| <pre>TextPage.extractXML()</pre>  | Extract the page's text in XML format  |
| <pre>TextPage.search()</pre>      | Search for a string in the page        |

## Class API

#### class TextPage

## extractText (basic=0)

Extract the text from a TextPage object. Returns a string of the page's complete text. If the default value 0 for basic is used, the text is returned as close as possible to its natural reading order (top-left to bottom-right), and unicode encoded. This is based on the output of extractXML, see below. Usage of basic=1 is provided primarily for debugging purposes. In this case no attempt is being made to adhere to a natutal reading sequence, instead the text is returned in the same sequence as the PDF creator specified it. In addition, in this case, the text string is UTF-8 encoded (as it is an original MuPDF value).

param basic: An integer specifying whether basic (1 (True)) or advanced text output (the default)

should be provided.

type basic: int

Return type: string

## extractHTML ()

Extract the text from a TextPage object in HTML format. This version contains some more formatting information about how the text is being dislayed on the page. See the tutorial chapter for an example.

Return type: string

### extractJSON ()

Extract the text from a TextPage object in JSON format. This version contains significantly more formatting information about how the text is being dislayed on the page. It is almost as complete as the extractXML version, except that positioning information is detailed down to the span level, not a single character. See the tutorial chapter for an example.

Return type: string

#### extractXML ()

Extract the text from a TextPage object in XML format. This contains complete formatting information about every single text character on the page: font, size, line, paragraph, location, etc. This may easily reach several hundred kilobytes of uncompressed data for a text oriented page. See the tutorial chapter for an example.

Return type: string

search (string, hit\_max = 16)

Search for the string string.

Parameters:

• string (string) -- The string to search for.

• hit\_max (int) -- Maximum number of expected hits (default 16).

Return type: list

Returns: A python list. If not empty, each element of the list is a Rect (without transformation)

surrounding a found string occurrence.

# **TextSheet**

TextSheet contains a list of distinct text styles used on a page (or a series of pages).

# **Constants and Enumerations**

Constants and enumerations of MuPDF as implemented by PyMuPDF. If your import statement was import fitz then each of the following variables var is accessible as fitz.var.

# **Constants**

| Constant    | Description                                 |
|-------------|---------------------------------------------|
|             | 1 - Type of Colorspace is RGBA              |
| CS_RGB      |                                             |
|             | 2 - Type of Colorspace is GRAY              |
| CS_GRAY     |                                             |
|             | 3 - Type of Colorspace is CMYK              |
| CS_CMYK     |                                             |
|             | '1.8.0' - Version of PyMuPDF (this binding) |
| VersionBind |                                             |
|             | '1.8' - Version of MuPDF                    |
| VersionFitz |                                             |

# **Enumerations**

Possible values of <a href="linkDest.kind">linkDest.kind</a> (link destination type). For details consult Adobe PDF Reference sixth edition 1.7 November 2006, chapter 8.2 on page 581 ff.

| Value       | Description                            |  |
|-------------|----------------------------------------|--|
|             | 0 - No destination                     |  |
| LINK_NONE   |                                        |  |
|             | 1 - Points to a place in this document |  |
| LINK_GOTO   |                                        |  |
|             | 2 - Points to an URI                   |  |
| LINK_URI    |                                        |  |
|             | 3 - Launch (open) another document     |  |
| LINK_LAUNCH |                                        |  |
|             | 4 - Perform some action                |  |
| LINK_NAMED  |                                        |  |
|             | 5 - Points to another document         |  |
| LINK_GOTOR  |                                        |  |

Possible values of linkDest.flags (link destination flags). Attention: The rightmost byte of this integer is a bit field. The values represent boolean indicators showing whether the associated statement is True.

| Value             | Description                             |
|-------------------|-----------------------------------------|
|                   | 1 (bit 0) Top left x value is valid     |
| LINK_FLAG_L_VALID |                                         |
|                   | 2 (bit 1) Top left y value is valid     |
| LINK_FLAG_T_VALID |                                         |
|                   | 4 (bit 2) Bottom right x value is valid |
| LINK_FLAG_R_VALID |                                         |
|                   | 8 (bit 3) Bottom right y value is valid |
| LINK_FLAG_B_VALID |                                         |
|                   | 16 (bit 4) Horizontal fit               |
| LINK_FLAG_FIT_H   |                                         |

# Constants and Enumerations

|                     | 32 (bit 5) Vertical fit                    |
|---------------------|--------------------------------------------|
| LINK_FLAG_FIT_V     |                                            |
|                     | 64 (bit 6) Bottom right x is a zoom figure |
| LINK_FLAG_R_IS_ZOOM |                                            |

# **Appendix**

This chapter contains additional comments and examples.

# **Example Outputs of Text Extraction Methods**

Text information contained in a TextPage adheres to the following hierarchy:

A text page consists of blocks (= roughly paragraphs). A block consists of lines. A line consists of spans. A span consists of characters with the same properties. E.g. a different font will cause a new span.

# TextPage.extractText()

This is the output of a page of this tutorial's PDF version:

```
Tutorial

This tutorial will show you the use of MuPDF in Python step by step.

Because MuPDF supports not only PDF, but also XPS, OpenXPS and EPUB formats, so does PyMuPDF Nevertheless we will only talk about PDF files for the sake of brevity.
...
```

# TextPage.extractHTML()

The HTML version looks like this:

# TextPage.extractJSON()

JSON output looks like so:

## TextPage.extractXML()

Now the XML version:

```
<page width="595.2756" height="841.8898">
<br/>
<block bbox="40.01575 53.730354 98.68775 76.08236">
line bbox="40.01575 53.730354 98.68775 76.08236">
<span bbox="40.01575 53.730354 98.68775 76.08236" font="Helvetica-Bold" size="16">
<char bbox="40.01575 53.730354 49.79175 76.08236" x="40.01575" y="70.85036" c="T"/>
<char bbox="49.79175 53.730354 59.56775 76.08236" x="49.79175" y="70.85036" c="u"/>
<char bbox="59.56775 53.730354 64.89575 76.08236" x="59.56775" y="70.85036" c="t"/>
<char bbox="64.89575 53.730354 74.67175 76.08236" x="64.89575" y="70.85036" c="0"/>
<char bbox="74.67175 53.730354 80.89575 76.08236" x="74.67175" y="70.85036" c="r"/>
<char bbox="80.89575 53.730354 85.34375 76.08236" x="80.89575" y="70.85036" c="i"/>
<char bbox="85.34375 53.730354 94.23975 76.08236" x="85.34375" y="70.85036" c="a"/>
<char bbox="94.23975 53.730354 98.68775 76.08236" x="94.23975" y="70.85036" c="1"/>
</span>
</line>
</block>
<block bbox="40.01575 79.300354 340.6957 93.04035">
line bbox="40.01575 79.300354 340.6957 93.04035">
<span bbox="40.01575 79.300354 340.6957 93.04035" font="Helvetica" size="10">
<char bbox="40.01575 79.300354 46.12575 93.04035" x="40.01575" y="90.050354" c="T"/>
<char bbox="46.12575 79.300354 51.685753 93.04035" x="46.12575" y="90.050354" c="h"/>
<char bbox="51.685753 79.300354 53.90575 93.04035" x="51.685753" y="90.050354" c="i"/>
<char bbox="53.90575 79.300354 58.90575 93.04035" x="53.90575" y="90.050354" c="s"/>
<char bbox="58.90575 79.300354 61.685753 93.04035" x="58.90575" y="90.050354" c=" "/>
<char bbox="61.685753 79.300354 64.46575 93.04035" x="61.685753" y="90.050354" c="t"/>
<char bbox="64.46575 79.300354 70.02576 93.04035" x="64.46575" y="90.050354" c="u"/>
<char bbox="70.02576 79.300354 72.805756 93.04035" x="70.02576" y="90.050354" c="t"/>
<char bbox="72.805756 79.300354 78.36575 93.04035" x="72.805756" y="90.050354" c="0"/>
<char bbox="78.36575 79.300354 81.695755 93.04035" x="78.36575" y="90.050354" c="r"/>
<char bbox="81.695755 79.300354 83.91576 93.04035" x="81.695755" y="90.050354" c="i"/>
```

# Resource Requirements of Text Extraction Methods

The four text extraction methods of a TextPage differ significantly, not only in terms of information they supply (see above). More information of course means that more processing is required and a higher data volume is generated.

For testing performance, we have run 10 examples PDFs through these methods and found the following information. The following data is of course not statistically secured in any way - just take it as an idea for what you should expect to see.

As a low end example we took this manual's PDF version (45+ pages, text oriented, 500 KB). The high end case was Adobe's PDF manual (1310 pages, completely text based, 32 MB). The other eight test cases were Spektrum

magazines January to August 2015 (the German version of Scientific American, 100+ pages, text with lots of interspersed images, 10 to 25 MB each).

## **Performance**

Processing times of the extract methods roughly seem to follow this pattern, extractText(basic=True) being set to 1:

```
(Text : HTML : JSON : XML) \sim (1 : 2 : 145 : 4120)
```

On a higher level Win7 machine (8 processors at 4 GHz, 8 GB RAM), the figure 4120 for <code>extractXML()</code> corresponds to anything between 0.2 and 0.5 seconds per page. This still means that you can extract XML text information of a complex 100-page magazine in less than a minute. This is about 3 times faster than text extraction with other free PDF utilities, e.g. Nitro 3.

If you use PDF2Text.py from the examples library (a utility which converts PDFs into text files), you will see a performance based on extractXML().

In the same directory you will also find a similar utility which is based on <code>extractJSON()</code>. This one is more than 20 times faster than <code>extractTest(basic=False)</code> (and thus 60+ times faster than Nitro)!

These are the details of our findings:

| Pro     | Processing Time Relationships |        |      |  |
|---------|-------------------------------|--------|------|--|
| Format: | vs. Text vs. HTML vs. JSON    |        |      |  |
| Text    | 1                             |        |      |  |
| HTML    | 2,1                           | 1      |      |  |
| JSON    | 145,3                         | 70,3   | 1    |  |
| XML     | 4121,0                        | 1998,3 | 28,6 |  |

## **Data Sizes**

The sizes of the returned text strings follow this pattern, again extractText(basic=True) is set to 1:

```
(Text : HTML : JSON : XML) ~ (1 : 4 : 6 : 87)
```

The number 87 for <code>extractXML()</code> corresponds to values between 200 and 400 KB per page. The details can be seen here:

| Data Size Relationships |                          |      |      |  |
|-------------------------|--------------------------|------|------|--|
| Format:                 | ormat: vs. Text vs. HTML |      |      |  |
| Text                    | 1                        |      |      |  |
| HTML                    | 4,2                      | 1    |      |  |
| JSON                    | 6,1                      | 1,4  | 1    |  |
| XML                     | 87,3                     | 20,8 | 14,4 |  |

# Examples "PyMuPDF.pdf" and "Adobe PDF Reference 1-7.pdf"

Our low and high end examples (contained in the numbers of the previous chapter) have the following detail data.

| Exa     | Example: PyMuPDF.pdf (45 p.)  |          |      |  |
|---------|-------------------------------|----------|------|--|
| Pro     | Processing Time Relationships |          |      |  |
| Format: | vs. Text                      | vs. JSON |      |  |
| Text    | 1                             |          |      |  |
| HTML    | 2,2                           | 1        |      |  |
| JSON    | 182,1                         | 83,4     | 1    |  |
| XML     | 4000,1                        | 1831,2   | 22,0 |  |
|         |                               |          |      |  |

| Data Size Relationships |                       |      |          |  |
|-------------------------|-----------------------|------|----------|--|
| Format:                 | at: vs. Text vs. HTML |      | vs. JSON |  |
| Text                    | 1                     |      |          |  |
| HTML                    | 4,8                   | 1    |          |  |
| JSON                    | 7,4                   | 1,5  | 1        |  |
| XML                     | 90,1                  | 18,6 | 12,1     |  |

# Example: Adobe PDF Manual (1310 p.)

| Processing Time Relationships |                            |        |      |  |
|-------------------------------|----------------------------|--------|------|--|
| Format:                       | vs. Text vs. HTML vs. JSON |        |      |  |
| Text                          | 1                          |        |      |  |
| HTML                          | 2,1                        | 1      |      |  |
| JSON                          | 154,0                      | 72,9   | 1    |  |
| XML                           | 4070,0                     | 1927,3 | 26,4 |  |
|                               |                            |        |      |  |

| Data Size Relationships |                                    |      |      |  |
|-------------------------|------------------------------------|------|------|--|
| Format:                 | Format: vs. Text vs. HTML vs. JSON |      |      |  |
| Text                    | 1                                  |      |      |  |
| HTML                    | 4,5                                | 1    |      |  |
| JSON                    | 6,7                                | 1,5  | 1    |  |
| XML                     | 89,0                               | 19,8 | 13,3 |  |

# Index

e (Matrix attribute) encryption (built-in variable) extractHTML() (TextPage method) \_init\_\_\_() (Colorspace method) extractJSON() (TextPage method) (Device method) [1] extractText() (TextPage method) (Document method) [1] extractXML() (TextPage method) (IRect method) (Matrix method) F (Point method) f (Matrix attribute) (Rect method) fileSpec (linkDest attribute) flags (linkDest attribute) A format (built-in variable) a (Matrix attribute) authenticate() (Document method) Н author (built-in variable) h (Pixmap attribute) height (IRect attribute) B (Rect attribute) b (Matrix attribute) bound() (Page method) interpolate (Pixmap attribute) C invertIRect() (Pixmap method) c (Matrix attribute) IRect (built-in class) clearWith() (Pixmap method) irect (Colorspace attribute) close() (Document method) isClosed (Document attribute) Colorspace (built-in class) isMap (linkDest attribute) colorspace (Colorspace attribute) isUri (linkDest attribute) creationDate (built-in variable) creator (built-in variable) K CS CMYK (built-in variable) keywords (built-in variable) CS\_GRAY (built-in variable) kind (linkDest attribute) CS\_RGB (built-in variable) D Link (built-in class) d (Matrix attribute) LINK\_FLAG\_B\_VALID (built-in variable) dest (Link attribute) LINK\_FLAG\_FIT\_H (built-in variable) (Outline attribute) LINK\_FLAG\_FIT\_V (built-in variable) (linkDest attribute) LINK\_FLAG\_L\_VALID (built-in variable) Device (built-in class) LINK\_FLAG\_R\_IS\_ZOOM (built-in variable) DisplayList (built-in class) LINK\_FLAG\_R\_VALID (built-in variable) DisplayList() (DisplayList.fitz method) LINK\_FLAG\_T\_VALID (built-in variable) Document (built-in class) LINK\_GOTO (built-in variable) down (Outline attribute) LINK\_GOTOR (built-in variable)

E

LINK\_LAUNCH (built-in variable) rect (Link attribute) LINK\_NAMED (built-in variable) round() (Rect method) LINK\_NONE (built-in variable) run() (DisplayList method) LINK\_URI (built-in variable) (Page method) linkDest (built-in class) loadLinks() (Page method) samples (Pixmap attribute) loadPage() (Document method) save() (Document method) It (linkDest attribute) saveText() (Outline method) M saveXML() (Outline method) Matrix (built-in class) search() (TextPage method) metadata (Document attribute) subject (built-in variable) modDate (built-in variable) T N TextPage (built-in class) n (Pixmap attribute) textpage (Device attribute) name (Document attribute) textsheet (Device attribute) named (linkDest attribute) title (built-in variable) needsPass (Document attribute) (Outline attribute) newWindow (linkDest attribute) ToC() (Document method) next (Link attribute) transform (Rect attribute) (Outline attribute) U number (Page attribute) uri (linkDest attribute) 0 object (Device attribute) VersionBind (built-in variable) Outline (built-in class) VersionFitz (built-in variable) outline (Document attribute) W P w (Pixmap attribute) Page (built-in class) width (IRect attribute) page (linkDest attribute) (Rect attribute) pageCount (Document attribute) writePNG() (Pixmap method) Pixmap (built-in class) Point (built-in class) X preRotate() (Matrix method) x (Pixmap attribute) preScale() (Matrix method) (Point attribute) preShear() (Matrix method) x0 (IRect attribute) producer (built-in variable) (Rect attribute) x1 (IRect attribute) R (Rect attribute) rb (linkDest attribute) xres (Pixmap attribute) Rect (built-in class)

# Y

y (Pixmap attribute)
(Point attribute)
y0 (IRect attribute)
(Rect attribute)
y1 (IRect attribute)
(Rect attribute)
yres (Pixmap attribute)