Predictive Driver Model

Daniel Dauner, Marcel Hallgarten, Andreas Geiger, Kashyap Chitta

Motivation

Method	Туре	Open Loop Score↑	Closed Loop (non-reactive) Score↑	Closed Loop (reactive) Score↑
UrbanDriver	learned	76	45	44
GC-PGP	learned	82	57	54
IDM	rule-based	38	76	77
Log Replay	GT	100	94	80

^{*}trained and evaluated on the **Val14** Benchmark

- rule-based planners achieve strong closed-loop performance but are inaccurate in open-loop evaluation
- planner needs to compensate for controller drift in closed-loop

Predictive Driver Model (PDM)

Hybrid Planner:

- Short-trajectory with rule-based planning (PDM-Closed).
- Long-term correction with learned ego-forecasting model (PDM-Offset).
- Fusion either by adaptive interpolation or by predicting offsets with PDM-Open

Rule-based PDM-Closed

- Proposals: 5 longitudinal proposals × 3 offsets from centerline based on constant velocity agent-forecast
- Evaluation: scoring of simulation outcome with a cost-function similar to nuPlan metrics

Learned PDM-Open

- Ego-Forecasting (8s) based on **centerline** and ego **history states**
- Model: Simple MLP, with two 512-dimensional hidden layers

Results

Method	OLS↑	CLS-NR↑	CLS-R↑	Time [ms]↓
UrbanDriver	76	45	44	64
GC-PGP	82	57	54	100
IDM	38	76	77	27
PDM-Open	86	50	54	7
PDM-Closed	44	92	93	91
PDM-Hybrid	84	92	93	96

 PDM-Hybrid effectively combines the strong closed-loop capabilities with accurate open-loop forecasts

^{*}trained and evaluated on the Val14 Benchmark

Find thorough evaluations and detailed ablations

Code

https://github.com/autonomousvision/nuplan_garage

Paper

https://arxiv.org/abs/2306.07962

Parting with Misconceptions about Learning-based Vehicle Motion Planning