MIDTERM ASSESSMENT

CM120

BSc EXAMINATION

COMPUTER SCIENCE

Discrete Mathemaitcs

INSTRUCTIONS TO CANDIDATES:

This assignments consists of five questions. You should answer all five questions.

Full marks will be awarded for complete answers to a total of Five questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

© University of London 2020

UL21/120

Question 1 Set Theory

(a) i. Describe the following set using the listing method:

$$A = \{x : x \in \mathbb{Z} \text{ and } 0 \le x^3 < 100\}$$

[2]

ii. Rewrite the following set using the set builder method:

$$B = \{-1, 1/2, -1/3, 1/4, -1/5, 1/6, \cdots\}$$

[2]

- (b) In a survey of 200 student, it was found that: 150 students took programming (P), 80 students took mathematics (M), 55 students took art (A), 60 students took mathematics and programming (M & P), 25 students took took art and mathematics (A & M), 40 students took art and programming (A & P), and 15 students took art, mathematics and programming (A & M & P).
 - i. Draw a Venn diagram to display this information.
 - ii. Use Venn diagram to the find the number of students that took
 - 1. programming only
 - 2. two modules only
 - 3. mathematics and programming but not art

[6]

(c) Let A and B be two subsets of the universal set U. Prove or disprove that

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B).$$

[4]

(d) Let A and B be two subset of a universal set U. Show that:

$$A \subseteq B \Leftrightarrow \overline{A} \cup B = U$$

[6]

Question 2 Functions

(a) Let $f: \mathbb{R} \to \mathbb{Z}$. where $f(x) = \lfloor \frac{x}{2} \rfloor$.

i. Find
$$f(1)$$

- ii. What is the set of pre-images of 10 [1]
- iii. Say whether or not f(x) is injective (one-to-one), justifying your answer. [2]
- iv. Say whether or not f(x) is surjective(onto), justifying your answer. [2]
- (b) Given a function $g: \mathbb{R} \to \mathbb{R}$ is defined by g(x) = 3x + 5.
 - i. Show that the function g is a bijection. [2]
 - ii. Find g^{-1}
- (c) Let $f: D_f \to [0, =\infty)$ be a bijective function with $f(x) = \ln(x+1)$.
 - i. Find domain, D_f of this function. [1]
 - ii. Find the inverse function f^{-1} . [2]
 - iii. Plot the curves of both function, f and f^{-1} in the same graph. [2]
 - iv. What can you say about these two curves? [1]
- (d) Determine whether each of the following functions, defined from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} , is one-to-one, onto, or both. Explain your answers.
 - i. $f(x,y) = x^2 + 1$
 - ii. g(x,y) = x + y + 2

[4]

Question 3 Propositional Logic

(a) Let p, q, r and s four propositions. Assuming that p and r are false and that q and s are true, find the truth value of each of the following propositions:

i.
$$((p \land \neg q) \to (q \land r)) \to (s \lor \neg q)$$

ii.
$$((p \lor q) \land (q \lor s)) \rightarrow ((\neg r \lor p) \land (q \lor s))$$

[2]

(b) Let p and q be two propositions defined as follows: p means 'A student can take the algorithm module 'whereas q means 'Student passes discrete mathematics'

Express each of the three following compound propositions symbolically by using p, q and appropriate logical symbols.

- i. 'A sufficient condition for a student to take the algorithm module is that they pass discrete mathematics'.
- ii. 'A student can take the algorithm module only if they pass discrete mathematics'.
- iii. 'A student can takes the algorithm module if they pass discrete mathematics'.
- iv. 'A student either passes discrete mathematics or can take the algorithm module'

[4]

(c) Write in words and express symbolically in terms p and q, defined in (a), the contrapositive, the converse and the inverse of the implication:

'A student can take the algorithm module if they pass discrete mathematics

[6]

(d) Consider the following three propositions:

s means "Samir goes to the party"

c means "Callum goes to the party"

j means "Jay goes to the party".

Express each of the three following compound propositions symbolically by using c, j, s and appropriate logical symbols.

UL21/120

- i. "Samir goes to the party only if both Callum and 'Jay aren't going to the party.
- ii. "Either both Samir and Jay go to the party or Callum goes to the party, but not both ".

[4]

(e) A tautology is a proposition that is always true. Let p and q be two propositions, show that $(p \to q) \Leftrightarrow (\neg q \to \neg p)$ is a tautology.

[4]

Question 4 Predicate logic

- (a) Let P(x,y) be a boolean function. Assume that $\forall x \exists y P(x,y)$ is True and that the domain of discourse is nonempty. Which of the following must also be true? If the statement is true, explain; otherwise, give a counter-example.
 - i. $\forall x \forall y P(x,y)$
 - ii. $\exists x \forall y P(x,y)$
 - iii. $\exists x \exists y P(x,y)$

[6]

(b) Given the following argument:

"If it rains then the concert will be cancelled"

"The concert was cancelled, therefore it rained"

Assume p means "it rains" whereas q means "concert cancelled"

- i. Translate this argument to a symbolic form.
- ii. Construct the truth table.
- iii. Determine if this argument is a valid argument or not.

[8]

- (c) Let p,q,r,s and t be statements variables. Use the valid argument forms to deduce the conclusion, $\neg q$, from the premises, giving a reason for each step.
 - (a) $\neg p \lor q \to r$
 - (b) $s \vee \neg q$
 - (c) ¬t
 - (d) $p \rightarrow t$
 - (e) $\neg p \land r \rightarrow \neg s$

(f) $\therefore \neg q$

UL21/120

Question 5 Boolean Algebra

- (a) What is the value of the boolean expression $(x+y)(\overline{x}.\overline{y})$? [3]
- (b) Consider the following combinatorial circuit with three inputs x,y and z, and one output f(x,y,z):

- i. Write the output f(x, y, z) in its disjunctive normal form. [2]
- ii. Fill in the missing output value in the following table:

Х	у	у	f(x,y,z)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[4]

[2]

- iii. Show that f(x,y,z) can be simplified to $f(x,y,z)=x(y+\overline{z})$ [2]
- iv. Draw the simplified circuit equivalent to f(x, y, z). [2]
- (c) i. What is the advantage of using Karnaugh map (K-map)?

ii. Fill in the following K-map for the Boolean function

$$F(x, y, z) = \overline{x}.\overline{y}.z + \overline{x}.y.\overline{z} + x.y.\overline{z} + x.\overline{y}.\overline{z}$$

UL21/120

Page 7 of 8

z	00	01	11	10
0				
1				

[2]

iii. Use the previous K-map and find a minimisation, as the sum of three terms, of the expression

$$F(x, y, z) = \overline{x}.\overline{y}.z + \overline{x}.y.\overline{z} + x.y.\overline{z} + x.\overline{y}.\overline{z}$$

[3]

END OF PAPER

.