matrizes e sistemas de equações lineares

página 1/5

Universidade de Aveiro Departamento de Matemática

Matrizes

1. Considere as matrizes

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Calcule

- (a) A + B; (b) $D^{\top} 2A$; (c) AD; (d) DA; (e) ACD; (f) $\frac{1}{5} (I_2 (DA)^2)$.
- 2. Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Calcule o produto das matrizes $A, B, C \in D$, considerando estas matrizes ordenadas de forma adequada.

- 3. Indique, justificando, se as afirmações seguintes são verdadeiras ou falsas.
 - (a) Se A e B são matrizes de ordem n, então $(A+B)^2 = A^2 + 2AB + B^2$.
 - (b) Se A e B são matrizes de ordem n, então $(AB)^2 = A^2B^2$.
 - (c) Se A, B, C são matrizes tais que A + C = B + C, então A = B.
 - (d) Se A, B, C são matrizes tais que AB = AC, então A = O (matriz nula) ou B = C.
 - (e) Se A é uma matriz de ordem n tal que $AA^T = O$, então A = O (sendo O a matriz nula de ordem
 - (f) Para $k \in \mathbb{N}_0$,

$$\begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n \end{bmatrix}^k = \begin{bmatrix} \mu_1^k & 0 & \cdots & 0 \\ 0 & \mu_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n^k \end{bmatrix}.$$

- 4. Seja A uma matriz quadrada. Mostre que $A + A^T$ é uma matriz simétrica. O que pode afirmar sobre a matriz $A - A^T$?
- 5. Indique quais das seguintes matrizes são matrizes na forma escalonada:

Determine matrizes equivalentes às matrizes dadas que estejam:

- (a) na forma escalonada;
- (b) na forma escalonada reduzida.

página 2/5

Sistemas de Equações Lineares

6. Resolva, quando possível, os seguintes sistemas usando o método de eliminação de Gauss (ou Gauss-Jordan).

(a)
$$\begin{cases} 3x_1 - x_2 = 4 \\ 2x_1 - \frac{1}{2}x_2 = 1 \end{cases}$$
 (b)
$$\begin{cases} 2x_1 - 3x_2 = 4 \\ x_1 - 3x_2 = 1 \\ x_1 + 3x_2 = 2 \end{cases}$$
 (c)
$$\begin{cases} x_1 + 2x_3 = 0 \\ -x_1 + x_2 + 3x_3 = 2 \\ 2x_1 - x_2 + x_3 = 2 \end{cases}$$
 (d)
$$\begin{cases} x_1 - 2x_2 + 2x_3 = 4 \\ -2x_1 + x_2 + x_3 = 1 \\ x_1 - 5x_2 + 7x_3 = -1 \end{cases}$$
 (e)
$$\begin{cases} 4x_1 + 3x_2 + 2x_3 = 1 \\ x_1 + 3x_2 + 5x_3 = 1 \\ 3x_1 + 6x_2 + 9x_3 = 2 \end{cases}$$
 (f)
$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

7. Para cada sistema, determine os valores de α para os quais o sistema

(a)
$$\begin{cases} \alpha x + y = 1 \\ x + \alpha y = 1 \end{cases}$$
; (b)
$$\begin{cases} x + (\alpha - 1)y + \alpha z = \alpha - 2 \\ (\alpha - 1)y = 1 \\ \alpha z = \alpha - 3 \end{cases}$$
; (c)
$$\begin{cases} x + \alpha y + \alpha z = 0 \\ \alpha x + y + z = 0 \\ x + y + \alpha z = \alpha^2 \end{cases}$$

i. não tem solução; ii. tem exatamente uma solução; iii. tem uma infinidade de soluções

8. Considere o sistema de equações lineares

$$\begin{cases} x - y - z = a \\ x + y + z = a \\ x - by + z = -b \end{cases}$$

onde a e b são parâmetros reais.

- (a) Determine os valores de a e b para os quais o sistema é: i. possível e determinado; ii. impossível.
- (b) Sabendo que (1, -1, 1) é uma solução do sistema, determine o conjunto de todas as soluções.
- 9. Considere o sistema de equações lineares

$$\begin{cases} 2x_1 + 4x_2 = 16 \\ 5x_1 - 2x_2 = 4 \\ 3x_1 + ax_2 = 9 \end{cases},$$
$$4x_1 + bx_2 = -7$$

onde a e b são parâmetros reais. Determine a e b de forma a que o sistema seja possível e determine o conjunto de soluções nesse caso.

10. Seja A uma matriz qualquer. Se B é uma coluna de A, mostre que o sistema AX = B é possível e indique uma solução.

Posição relativa de retas e planos

- 11. Considere os sistemas do exercício 6-(c,d,e). Suponha que cada sistema contém as equações cartesianas de uma reta r e a equação geral de um plano P. Em cada alínea, determine a posição relativa da reta r e do plano P. Descreva a interseção de r e P.
- 12. Considere os planos \mathcal{P} e $\mathcal{P}_{a,b}$ de equações x+y+2z=3 e ax+2y+4z=b, respectivamente, com $a,b\in\mathbb{R}$. Discuta a posição relativa dos planos \mathcal{P} e $\mathcal{P}_{a,b}$ em função dos parâmetros reais a e b.

13. Considere a reta r definida por x=2y+z=1 e a familia de retas $s_{a,b}$ de equação vetorial

$$(x, y, z) = (a, 0, 1) + \alpha(0, 2, b), \quad \alpha \in \mathbb{R},$$

 $com \ a, b \in \mathbb{R}.$

- (a) Determine as equações cartesianas de $s_{a,b}$.
- (b) Discuta a posição relativa das retas r e $s_{a,b}$, em função dos parâmetros a e b.

Matriz Inversa

14. Averigue se as seguintes matrizes são invertíveis (não singulares) e, em caso afirmativo, determine a respectiva inversa:

(a)
$$\begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix}$; (d) $\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 \end{bmatrix}$.

15. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, \qquad C = \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

- (a) Mostre que C = ADB.
- (b) Verifique se B é a matriz inversa de A.
- (c) Calcule C^5 , usando as alíneas anteriores.
- (d) Resolva a equação matricial AXD = B, relativamente à matriz X.
- 16. Considere a matriz $M = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & -4 & 2 \end{bmatrix}$.
 - (a) Verifique que M satisfaz a equação $M^3 4M^2 I_3 = 0$.
 - (b) Prove, sem calcular o seu valor, que $M^{-2} = M 4I_3$.
 - (c) Calcule M^{-1} pela equação da alínea anterior e verifique o resultado obtido.
- 17. (a) Seja A uma matriz arbitrária $n \times n$. Suponhamos que existe um número natural k tal que $A^k = O$ (matriz nula $n \times n$). Mostre que $I_n A$ é invertível e que

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{k-1}.$$

- (b) Usando o exercício anterior, calcule a inversa da matriz $M = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 18. Considerando as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 4 & 0 \\ -4 & 8 \end{bmatrix},$$

resolva as seguintes equações matriciais relativamente à matriz X:

- (a) $((B^{-1})^T X)^{-1} A^{-1} = I;$
- (b) $(C^T D^T X)^T = E$.

folha de exercícios 1

matrizes e sistemas de equações lineares

página 4/5

19. Sabendo que

$$A^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \mathbf{e} \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

determine a matriz M que satisfaz a equação matricial AMA = B.

20. Considere o sistema de equações lineares

$$\begin{cases} 4x + y + 3z = 1 \\ 3x + y + 3z = 0 \\ 5x + y + 4z = 1 \end{cases}$$

- (a) Mostre que a matriz dos coeficientes do sistema é invertível e calcule a sua inversa.
- (b) Justifique que o sistema é possível e determinado. Indique a sua solução.

Algumas aplicações

21. Considere o circuito eléctrico representado na figura seguinte:

constituído por dois geradores de tensão $V_A=7\,V$ e $V_B=5\,V$ e três resistências $R_1=10\,k\Omega,\,R_2=5\,k\Omega$ e $R_3=15\,k\Omega.$ Determine a intensidade das correntes que passam pelas três resistências.

Observação: Para resolver o exercício é preciso aplicar as Leis de Kirchhoff:

- (lei dos nós) a soma das correntes que entram num nó é igual à soma das correntes que dele saem (ou seja, um nó não acumula carga);
- (lei das malhas) a soma da diferença de potencial eléctrico ao longo de qualquer caminho fechado (malha) é nula.

A direção escolhida para percorrer a malha determina o cálculo das diferenças de potencial consoante as seguintes convenções:

- Num gerador de tensão, a diferença de potencial eléctrico medida do polo positivo para o polo negativo é positiva; caso contrário é negativa.
- Numa resistência R percorrida por uma corrente I, a diferença de potencial eléctrico, medida com o mesmo sentido que a corrente, é dada pela Lei de Ohm, isto é, V = RI; caso contrário, V = -RI.

matrizes e sistemas de equações lineares

página 5/5

22. Uma companhia aérea serve quatro cidades, C_1 , C_2 , C_3 e C_4 , cujas ligações podem ser representadas por um grafo orientado:

- existem voos de C_1 para C_2 e C_3 ;
- existem voos de C_2 para C_1 e C_3 ;
- existem voos de C_3 para C_1 e C_4 ;
- existem voos de C_4 para C_2 e C_3 .
- (a) Escreva a matriz $A = [a_{ij}]_{4\times 4}$, chamada a matriz de adjacência associada ao grafo, tal que

$$a_{ij} = \begin{cases} 1, & \text{se existe um voo de } C_i \text{ para } C_j, \\ 0, & \text{caso contrário.} \end{cases}$$

(b) A matriz $A^r = [a_{ij}^{(r)}]$ é tal que $a_{ij}^{(r)}$ representa o número de itinerários diferentes de ligação da cidade C_i à cidade C_j utilizando r voos. Determine quantos itinerários diferentes existem para irmos da cidade C_4 para a cidade C_1 utilizando:

i. apenas um voo;

ii. dois voos;

iii. três voos.

Para cada uma das alíneas anteriores, determine explicitamente todos os itinerários.

soluções 1

matrizes e sistemas de equações lineares

página 1/2

1. (a)
$$\begin{bmatrix} 2 & 0 \\ 4 & 4 \\ 7 & 9 \end{bmatrix}$$
; (b) $\begin{bmatrix} -2 & 5 \\ -3 & 0 \\ -4 & -4 \end{bmatrix}$; (c) $\begin{bmatrix} -2 & -1 & -4 \\ 0 & -1 & 0 \\ 3 & -2 & 6 \end{bmatrix}$; (d) $\begin{bmatrix} -1 & 0 \\ 5 & 4 \end{bmatrix}$; (e) $\begin{bmatrix} -3 & 1 & -6 \\ 1 & 1 & 2 \\ 8 & 2 & 16 \end{bmatrix}$; (f) $\begin{bmatrix} 0 & 0 \\ -3 & -3 \end{bmatrix}$.

- 2. $ADBC = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$ ou $BADC = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$.
- 3. (a) Falsa (b) Falsa (c) Verdadeira; (d) Falsa; (e) Verdadeira; (f) Verdadeira.
- 5. ii. e iv. (a) i. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$; iii. $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
 - (b) i. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \text{ ii. } \begin{bmatrix} 1 & \frac{4}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \text{ iii. } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \text{ iv. } \begin{bmatrix} 1 & 0 & \frac{11}{10} & \frac{3}{10} \\ 0 & 1 & 1 & \frac{1}{2} \end{bmatrix}.$
- 6. (a) $x_1=-2,\ x_2=-10;$ (b) impossível; (c) $x_1=-4,\ x_2=-8,\ x_3=2;$ (d) impossível; (e) $x_1=t,\ x_2=\frac{1}{3}-2t,\ x_3=t,\ t\in\mathbb{R};$ (f) $x_1=\frac{3}{17}t_1-\frac{13}{17}t_2,\ x_2=\frac{19}{17}t_1-\frac{20}{17}t_2,\ x_3=t_1,\ x_4=t_2,\ t_1,t_2\in\mathbb{R};$
- $7. \ (a) \quad \text{ i. } \alpha=-1, \ \text{ ii. } \alpha\in\mathbb{R}\setminus\{-1,1\}, \ \text{ iii. } \alpha=1; \ \ (b) \quad \text{ i. } \alpha\in\{0,1\}, \ \text{ ii. } \alpha\in\mathbb{R}\setminus\{0,1\}; \ \ (c) \quad \text{ i. } \alpha=1,$ ii. $\alpha \in \mathbb{R} \setminus \{-1, 1\}$, iii. $\alpha = -1$.
- 8. (a) i. $a \in \mathbb{R} \ e \ b \in \mathbb{R} \setminus \{-1\}$; ii. $a \in \mathbb{R} \setminus \{1\} \ e \ b = -1$. (b) $\{(1, -z, z) : z \in \mathbb{R}\}$.
- 9. $a = 1, b = -5, \{(2,3)\}.$
- 10. Se B é a coluna i de A, então $X = [0 \cdots 1 \cdots 0]^T$ com 1 na linha i e as restantes entradas nulas é uma solução.
- 11. (c) A reta r e o plano P são concorrentes. Intersetam-se no ponto (-4, -8, 2);
 - (d) A reta r e o plano P são paralelos. A interseção é o conjunto vazio.
 - (e) A reta r está contida no plano P. A interseção é $r = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = t, x_2 = \frac{1}{3} 2t, x_3 = t\}$ $t, t \in \mathbb{R}$, isto é, $r = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2, x_3) = (0, \frac{1}{3}, 0) + t(1, -2, 1), t \in \mathbb{R}\}.$
- 12. \mathcal{P} e $\mathcal{P}_{a,b}$ são coincidentes se a=2 e b=6; estritamente paralelos se a=2 e $b\neq 6$; concorrentes se $a\neq 2$ $b \in \mathbb{R}$.
- 13. (a) Equações cartesianas de $s_{a,b}$: x = a, by 2z = -2.
 - (b) As retas r e $s_{a,b}$ são coincidentes se a=1 e b=-4; estritamente paralelas se $a\neq 1$ e b=-4; concorrentes se a = 1 e $b \neq -4$; enviesadas se $a \neq 1$ e $b \neq -4$.
- 14. (a) Matriz singular; (b) $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$; (d) $\begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix}$.
- 15. (c) $C^5 = AD^5B = \begin{bmatrix} 3197 & -1266 \\ 7385 & -2922 \end{bmatrix}$
- 16. (c) $M^{-1} = M(M 4I) = \begin{bmatrix} 2 & 0 & 1 \\ -4 & 1 & -2 \\ -7 & 2 & -3 \end{bmatrix}$.
- 17. (a) $(I_n + A + A^2 + \dots + A^{k-1})(I_n A) = I_n A^k = I_n$. (b) $M = I A \operatorname{com} A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, sendo $A^3 = O$. Logo, $M^{-1} = (I A)^{-1} = I + A + A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

soluções 1

matrizes e sistemas de equações lineares

página 2/2

18. (a)
$$X = B^T A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
; (b) $X = (E(DC)^{-1})^T = \begin{bmatrix} -1 & 4 \\ 0 & 4 \end{bmatrix}$.

19.
$$M = \begin{bmatrix} 3 & 1 \\ -1 & -3 \end{bmatrix}$$
.

20. (a)
$$\begin{bmatrix} 1 & -1 & 0 \\ 3 & 1 & -3 \\ -2 & 1 & 1 \end{bmatrix}$$
. (b) $x = 1, y = 0, z = -1$.

- 21. $I_1=600\,\mu\mathrm{A}$ (esquerda–direita), $I_2=200\,\mu\mathrm{A}$ e $I_3=400\,\mu\mathrm{A}$ (cima–baixo).
- $22. \ \, (\mathrm{i}) \ \, 0 \, \, \mathrm{itiner\acute{a}rios}; \ \, (\mathrm{ii}) \ \, 2 \colon \, C_4 \to C_2 \to C_1, \quad C_4 \to C_3 \to C_1; \ \, (\mathrm{iii}) \ \, 1 \colon \, C_4 \to C_2 \to C_3 \to C_1.$