Unlucky inferences

The Unbearable Luck of Inference

Costantino Pacilio

Test GR with a control parameter

$$\mathcal{H}_0 = \{ ext{GR is correct} \} \equiv \{ x = 0 \}$$
 $\mathcal{H}_1 = \{ ext{GR is incorrect} \} \equiv \{ x
eq 0 \}$

$$\mathcal{H}_1 = \{ \mathsf{GR} \; \mathsf{is} \; \mathsf{incorrect} \, \} \equiv \{ x
eq 0 \}$$

Savage-Dickey Ratio

$$p(x|\mathcal{D}) = \mathcal{N}(0,\sigma_{ ext{obs}})$$

The noise of the instrument induces a spread in the measurement

$$\mathcal{B}_1^0=rac{p(x=0|\mathcal{D})}{\pi(x=0)}>0$$

$$p(x|\mathcal{D}) = \mathcal{N}(x_\star, \sigma_{
m obs})$$

The noise of the instrument induces a shift in the peak

$$\mathcal{B}_1^0=rac{p(x=0|\mathcal{D})}{\pi(x=0)}<0$$

0.200 prior posterior 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000 -5 10 -10 15 X

But you also reduce the spread by a corresponding amount!

Can I reduce the bias by reducing noise? Yes

PP plot

Meaning: the true value is at the p % contour level p % of the time

PP plot is a diagnostic that your sampler is working

From the BILBY validation paper https://arxiv.org/abs/2006.00714

Bias #1: shift in the peak of the posterior

Bias #2: wrong spread of the posterior

Stacking many events together

The real value is not known a priori

There can be "no" real value: it can be a distribution a.k.a. Population

This is addressed by hierarchical stacking techniques

Some useful references

Introduction to Bayesian inference: https://arxiv.org/pdf/1809.02293.pdf

Understanding pp plots:

https://greg-ashton.physics.monash.edu/understanding-pp-plots.html