Exercice 1

Soit f la fonction définie par la courbe ci-dessous.

- 1. Expliquer pourquoi l'ensemble de définition de la fonction f est l'intervalle [-2;3].
- **2.** Par lecture graphique, quel est l'image de 1 par f?
- 3. Par lecture graphique, que vaut f(3)?
- 4. Déterminer les éventuels antécédents de 2 par f?
- 5. Citer un nombre qui n'admet pas d'antécédent par f.

Exercice 2 _

Les fonctions h et j sont définies ci-contre par leurs représentations graphiques.

- 1. Déterminer l'image de −1 et de 2 par la fonction j
- 2. Déterminer h(-1) et h(4).
- 3. Résoudre graphiquement l'équation j(x) = 4.
- **4.** Résoudre graphiquement l'équation h(x) = j(x).

Exercice 3 _

On donne ci-dessous les courbes représentatives de deux fonctions f et g définies sur [-3;3].

- 1. Résoudre graphiquement :
 - **a.** f(x) = 0

- **b.** f(x) = g(x)
- **c.** g(x) = -3

- 2. Résoudre graphiquement :
 - **a.** $f(x) \ge -1$

- **b.** f(x) < g(x)
- **c.** g(x) < 1

Exercice 4

Soit f la fonction définie par la courbe suivante.

- 1. Déterminer l'ensemble de définition de la fonction f.
- **2.** Lire graphiquement f(2) puis l'image de -4 par f.
- 3. Déterminer les éventuels antécédents de 1,5 par f.
- 4. Résoudre graphiquement :

a. f(x) = 0;

b. f(x) > 1.5;

c. f(x) ≤ -1.

- 5. a. Décrire par des phrases les variations de f.
 - **b.** Dresser le tableau de variations de f.

Exercice 5 _

On considère une fonction dont le tableau de variations est le suivant :

- 1. Déterminer :
 - l'ensemble de définition de f;
 - **b.** le maximum de f sur son ensemble de définition;
 - \mathbf{c} . le minimum de f sur son ensemble de définition;
 - **d.** le nombre de solution(s) de l'équation f(x) = 0;
 - e. le tableau de signes de f sur son ensemble de définition.
- 2. Comparer, si possible:

a. f(3) et f(4)

c. f(2) et f(7)

b. f(5,5) et f(5,7)

d. f(-4) et f(0)

Exercice 6_

Pendant une expérience, l'altitude (en mètres) d'un projectile lancé à partir du sol est donnée par la formule

 $h(t) = -5t^2 + 100t$ avec $t \ge 0$.

La représentation graphique de la fonction h est donnée ci-dessous.

- a. Quelle est l'altitude du projectile au temps t = 2 s?
 - **b.** Quelle est l'altitude du projectile au temps t = 10 s?
- a. Déterminer les variations de f sur [0 : 20].
 - b. Déterminer la période pendant laquelle l'altitude du projectile est supérieure ou égale à 320 m.