Part A: Introduction
Atom
Tiny piece of matter, made of protons, neutrons, and electrons.
Element
A substance made of atoms that are all the same type.
Period Table of Elements
A systematic table listing all discovered elements.
A.1 Gold, silver, and carbon are all examples of They are listed on
the If you had a golden ring and an
amazing machine, you could break it down into tiny pieces called
Atomic Number
The number of protons in a nucleus of an atom. All nuclei of a particular atom have <i>the same</i> number of protons.
Mass number
The number of protons + the number of neutrons All nuclei DO NOT have the same number of neutrons and DO NOT have the same mass number.
Isotope
All atoms of one element have the <i>same number</i> of protons, but they do not have the same mass. Different <i>isotopes</i> of one element are the different atoms of one element.
While in chemical reactions, different isotopes don't really matter, in nuclear reactions, different isotopes are the most important thing.
When you add the number of protons and the number of neutrons, you get the of an atom.

The number of protons in an atom is called the ______.

Name		

When we write down a particular isotope, we write the NAME OF THE ELEMENT followed by the MASS number. Note that the mass number of the isotope in question may not be the atomic mass of that element.

Isotope	Atomic Symbol	Number of Protons	Number of Neutrons
Uranium-238			
Radium-226			
Lead-206			
Hydrogen-3			
Sodium-22			
Argon-39			
Radon-222			
Carbon-12			
Carbon-13			
Carbon-14			

Carbon-12, Carbon-13, and Carbon-14 are all different	t	of
carbon		

Part B: Representing a Nucleus

This is how we represent the nucleus of Carbon-14. When we draw it this way, we call it a **nuclide**.

 $^{14}_{6}C$

Atomic Symbol

Tells which element the nucleus is.

In the above example, it is C, representing the element carbon

Atomic Number (Charge)

The number of protons in a nucleus, also tells which element the nucleus is. In the above example, it is 6, representing 6 protons.

Mass Number

Number of protons + number of neutrons.

In the above example, it is 14, representing a mass of 14 atomic mass units.

Isotope

One *version* of the nucleus of a particular element.

All nuclei of one element have the same number of protons, but different isotopes have different mass numbers.

For example, ${}^{12}_{6}$ C, ${}^{13}_{6}$ C, ${}^{14}_{6}$ C

Are three isotopes of carbon.

Nuclide Notation:

Start by drawing the atomic symbol

On the lower left put the atomic number.

On the upper left put the mass number.

For each nuclide, use the periodic table of elements to fill in the missing information:

B.1. ²³₇₇Na

B.2. ¹⁶_{??}O

B.3. ¹₁??

B.4. ¹²⁴₅₂??

B.5. ⁴⁰_{??}Ar

How many neutrons and protons does each nucleus have?

Nucleus	Element	Number of Protons	Number of Neutrons
¹⁴ ₇ N			
¹ ₁ H			
²²² ₈₆ Rn			
²³⁸ ₉₂ U			
¹⁴ ₆ C			

For each isotope, draw the *nuclide notation*.

Isotope	Nuclide Notation
Lithium-7	
Iron-56	
Magnesium-24	
Gold-197	
Gold-197	
Antimony-123	

Part C: Radioactive Decay

When a nucleus decays, we draw the arrow with an arrow, like this:

$${}^{14}_{6}\text{C} \rightarrow {}^{10}_{4}\text{Be} + {}^{4}_{2}\text{He}$$

Conservation of Mass:

The mass numbers of the reactants and products must add up.

In the example above: 14 = 10 + 4

Conservation of Charge:

The atomic numbers (which represent charge) of the reactants and products must add up.

In the example above: 6 = 4 + 2

Using the conservation of mass and conservation of charge, find the missing nuclide:

C.1
$$^{238}_{92}U \rightarrow ^{??}_{??}?? + ^{4}_{2}He$$

C.2
$$^{222}_{88}$$
Ra $\rightarrow ^{??}_{??}$?? $+ ^{4}_{2}$ He

C.3
$$^{208}_{84}$$
Po $\rightarrow ^{??}_{??}$?? $+ ^{4}_{2}$ He

Part D: Radioactive Decay

Alpha Particle (α)

A Helium-4 Nucleus

Represented by ⁴₂He

Beta Particle (β)

An electron

Represented by $_{-1}^{0}e$

Gamma Ray (γ)

A very high energy photon, or electromagnetic wave Represented by γ , the Greek letter gamma.

For $\mathbf{D.1} - \mathbf{D.7}$ write whether this describes an alpha particle, a beta particle, or a gamma ray.

D.1 γ

D.2 α

D.3 β

 $D.4_{-1}^{0}e$

D.5 ⁴₂He

D.6 Helium-4

D.7 Electron

Alpha Decay

In alpha decay, a nucleus gives off an alpha particle (Helium-4).

Beta Decay

In beta decay, a nucleus gives off a beta particle (electron).

Draw an alpha decay for each nuclide.

For full credit, you must write the entire reaction in the box. The entire reaction includes the initial nuclide, the products, and an arrow between them.

Do not write only the products.

Do not draw an arrow through the shaded space. Write the entire

reaction in the proper box.

Teacti	reaction in the proper box.					
	Nuclide		Decay Reaction			
D.8	²⁵⁶ Lr					
D.9	²³¹ ₉₁ Pa					
D.10	²²⁵ ₈₉ Ac					
D.11	²¹¹ ₈₇ Fr					
D.12	¹⁸⁵ Au					

Draw a beta decay of each nuclide

	Nuclide	Decay Reaction
D.13	⁶ 2He	
D.14	²⁴ ₁₁ Na	
D.15	²⁰¹ Au	
D.16	⁵² Fe	
D.17	⁴² ₁₉ K	

Nuclear	Physics

Name		

Answers

A.1

Gold, silver, and carbon are all examples of <u>elements</u>. They are listed on the <u>periodic table of elements</u>. If you had a golden ring and an amazing machine, you could break it down into tiny pieces called <u>atoms</u>.

Isotope	Atomic Symbol	Number of Protons	Number of Neutrons
Uranium-238	U	92	146
Radium-226	Ra	88	138
Lead-206	Pb	82	124
Hydrogen-3	Н	1	2
Sodium-22	Na	11	11
Argon-39	Ar	18	21
Radon-222	Rn	86	136
Carbon-12	С	6	6
Carbon-13	С	6	7
Carbon-14	С	6	8

Carbon-12, Carbon-13, and Carbon-14 are all different isotopes of carbon.

B.1. ²³₁₁Na

B.2. ¹⁶₈O

B.3. ¹₁H

B.4. ¹²⁴₅₂Te

B.5. ⁴⁰₁₈Ar

Nucleus	Element	Number of Protons	Number of Neutrons

¹⁴ ₇ N	Nitrogen	7	7
1 ₁ H	Hydrogen	1	0
²²² ₈₆ Rn	Radon	86	136
²³⁸ U	Uranium	92	146
¹⁴ ₆ C	Carbon	6	8

C.1
$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

C.2
$$^{222}_{88}$$
Ra $\rightarrow ^{218}_{86}$ Rn $+ ^{4}_{2}$ He

C.3
$$^{208}_{84}$$
Po $\rightarrow ^{204}_{82}$ Pb $+ ^{4}_{2}$ He

- **D.1** gamma ray
- D.2 alpha particle
- **D.3** beta particle
- **D.4** beta particle
- **D.5** alpha particle
- **D.6** alpha particle
- **D.7** beta particle

Draw an alpha decay for each nuclide.

Draw an alpha decay for each flucture.				
	Nuclide		Decay Reaction	
			•	
D.8	²⁵⁶ Lr		$^{256}_{103}\text{Lr} \rightarrow ^{252}_{101}\text{Md} + ^{4}_{2}\text{He}$	
D.9	²³¹ ₉₁ Pa		$^{231}_{91}Pa \rightarrow ^{227}_{89}Ac + ^{4}_{2}He$	
D.10	²²⁵ ₈₉ Ac		$^{225}_{89}\text{Ac} \rightarrow ^{221}_{87}\text{Fr} + ^{4}_{2}\text{He}$	

D.11	²¹¹ Fr	$^{211}_{87}$ Fr $\rightarrow ^{207}_{85}$ At $+ {}^{4}_{2}$ He
D.12	¹⁸⁵ Au	$^{185}_{79}$ Au $\rightarrow ^{181}_{77}$ Ir $+ ^{4}_{2}$ He

Draw a beta decay of each nuclide

	Nuclide	Decay Reaction	
D.13	⁶ He	$^{6}_{2}\text{He} \rightarrow ^{6}_{3}\text{Li} + ^{0}_{-1}\text{e}$	
D.14	²⁴ ₁₁ Na	$^{24}_{11}$ Na $\rightarrow ^{24}_{12}$ Mg + $^{0}_{-1}$ e	
D.15	²⁰¹ ₇₉ Au	$^{201}_{79}$ Au $\rightarrow ^{201}_{80}$ Hg + $^{0}_{-1}$ e	
D.16	⁵² Fe	$^{52}_{26}$ Fe $\rightarrow ^{52}_{27}$ Co $+ ^{0}_{-1}$ e	
D.17	⁴² ₁₉ K	$^{42}_{19}\text{K} \rightarrow ^{42}_{20}\text{Ca} + ^{0}_{-1}\text{e}$	