Série d'exercices 4

First order methods

Exercice 1 Subgradients

Compute the subgradients of the following functions.

$$f(x) = ||x||; \quad g(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C \end{cases}$$

where C is a nonempty convex subset of \mathbb{R}^n .

Exercice 2

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that a vector $d \in \mathbb{R}^n$ is a subgradient of f at x if and only if the function d'y - f(y) attains its maximum at y = x.

Exercice 3

Let $C \subset \mathbb{R}^n$ be nonempty closed and convex set. Consider the function $\varphi_C : \mathbb{R}^n \to \mathbb{R}$ given by $\varphi_C(x) = \frac{1}{2} d_C^2(x) = \frac{1}{2} \|x - P_C(x)\|_2$, where P_C is the orthogonal projection mapping.

- Show that: $\nabla \varphi_C(x) = x P_C(x)$.
- Compute $\partial d_C(x)$

Exercice 4 Proximal operators

Compute the prox of the following functions.

• Negative sum of Logs:

$$f(\boldsymbol{x}) = \begin{cases} -\lambda \sum_{j=1}^{n} \log x_j, \, \boldsymbol{x} > 0 \\ \infty & \text{else,} \end{cases}$$

where $\lambda > 0$.

- ℓ_0 -norm: $g(x) = \lambda \|\boldsymbol{x}\|_0$ where $\lambda > 0$.
- Norms: $h_1(\mathbf{x}) = \frac{\tau}{2} \|\mathbf{x}\|^2$, $h_2(\mathbf{x}) = \tau \|\mathbf{x}\|_1$.
- Loss function: $h_4(\boldsymbol{x}) = \frac{\tau}{2} ||A \cdot -y||^2$, for $A \in \mathbb{R}^{p \times n}$.