XI HAN

39 Montclair Dr, Selden, New York 11784, United States

(+1) 631-710-8313 | xihan1@cs.stonybrook.edu | https://axihixa.github.io/

EDUCATION

Department of Computer Science, Stony Brook University, New York, United States

Aug 2019 – Present

Ph.D. in Computer Science (In progress, expected by Spring 2026) | GPA: 3.9/4.0

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Aug 2015 – Jul 2019

B.E. in Computer Science and Technology | GPA: 3.25/4.0

PUBLICATIONS

- Xi Han, Fei Hou and Hong Qin, "UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs", In Proceedings of the 41st International Conference on Machine Learning, pp. 17354 – 17373, July 2024.
- Song-Hai Zhang, Ruilong Li, Xin Dong, Paul Rosin, Zixi Cai, Xi Han, Dingcheng Yang, Hao-Zhi Huang and Shi-Min Hu, "Pose2Seg: Detection Free Human Instance Segmentation", In 2019 IEEE/CVF Conference on Computer Vision and Pattern *Recognition (CVPR)*, pp. 889 – 898, June 2019.

WORK EXPERIENCE

Computer Graphics Lab

Stony Brook University, New York, United States | Research Assistant & Teaching Assistant Advisor: Hong Qin, Professor at Department of Computer Science, Stony Brook University

Aug 2019 – Present

- Conducted research in computer graphics (intelligent physics-based modeling). Involved concepts: Differentiable PDE-based vector graphics, data-driven neural PDE solvers, etc. Implemented multiple advanced research projects related to graphics and numerical analysis (Differentiable PDE solvers with customized CUDA operators).
- Cooperates with Computer Vision lab on training/inference efficiency optimization for AI models. Involved techniques: CUDA kernel fusing, performance profiling, and customized cache-friendly differentiable AI operators such as differentiable Monte-Carlo integrator, fused GEMM, 2D mamba scanner, etc.
- Hosted lectures on OpenGL programming with C++/Python, the implementation details of computer graphics applications and algorithms, and the state-of-the-art research topics on graphics and physics-based modeling.

Computer Graphics and Animation Lab

University of Texas at Dallas, Texas, United States | Research Assistant

Sep 2018 – Nov 2018

Advisor: Xiaohu Guo, Professor at Department of Computer Science, University of Texas at Dallas

- Worked on the 3D face reconstruction project with a local Samsung research lab. Also constructed a human face model dataset for further research purposes.
- Configured a Linux workstation for deep learning purposes from zero and deployed neural network models on it.

Graphics and Geometric Computing Group

Tsinghua University, Beijing, China | Research Assistant

Jan 2017 – Jul 2019

Advisor: Song-Hai Zhang, Professor at Department of Computer Science and Technology, Tsinghua University

- Deployed a MobileNet module on IOS platform with Apple's CoreML framework, and delivered an IOS app for a human segmentation (in Swift and Objective C++).
- Optimized the model used in the app (increased accuracy and added key point recognition) and achieved 10x speedup in FPS.

SKILLS

	Numer	Numerical analysis, high-performance computing, computer graphics, machine learning, and Linux system skills.		
		Expertise in computer graphics and numerical analysis: Neural PDE solvers, customized CUDA-level operators with back-propagation capability.		
		Expertise in AI/HPC: Customized AI operators, AI model training/inference efficiency optimization. Involved topics: PyTorch C++/CUDA extensions, kernel profiling, fine-tuning, operator fusing, cache optimization, etc.		
		Expertise in programming languages: C/C++ (OOP, STL, Metaprogramming and Concurrency), CUDA (including PTX) and Python.		
		Expertise in tools: PyTorch Profiler, CUDA-GDB, Nsight Compute and NVIDIA Compute Sanitizer.		
		Expertise in frameworks: PyTorch, OpenGL and Qt.		
		Other proficiencies: Bash, CMake, Assembly, MATLAB, Java, Objective C/C++ and Swift.		
Language Proficiencies:				

Chinese (Mandarin) (Native speaker);

	☐ English (Proficient for working scenarios. TOEFL: 106/120; GRE: 324/340 + Writing	3.5);
	☐ Japanese (Sufficient for basic working scenarios. JLPT: N1 173/180, N2 169/180).	,
SEL	SELECTED PROJECTS	
	UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs	
\triangleright	TL;DR: UGrid is a neural solver for Partial Differential Equations (PDEs) with convergence gu	arantee.
>	Built upon the combination of the U-Net architecture and the legacy MultiGrid PDE solver, provides users with high speed (up to 20x speedup against legacy solvers, high precision (relative residual as low as 1e-5), high robustness (against irregular and noisy input), high generalization power (to irregular boundary geometries and topology), and high scalability (without need for retraining).	
>	Involved techniques: Numerical analysis on convergence, customized AI operators (Python and customized CUDA convolution module to save computation for specific-shaped convolution ke	
\triangleright		
2D-	2D-Mamba: Hardware-aware 2D Parallel Mamba Scanner	
>	➤ <u>TL;DR</u> : 2D-Mamba scanner extends 1D Mamba into 2D while maintaining its modeling capabil memory access efficiency.	ilities, high parallelism, and
>	Implements a warp-scan based 2D parallel scan routine which supports scanning prefix callbacks for global tiling. Extends 1D Mamba scanning operation into 2D while maintaining its training/inference efficiency. Compared to a naïve implementation, achieves a throughput of 10x, while the GPU memory consumption is only 10%.	
>		nization, CUDA kernel and AI
\triangleright	Code available at https://github.com/AtlasAnalyticsLab/2DMamba (CUDA extension part).	
CU	CUDA Baseline Experiments	
\triangleright	TL;DR: Implements and fine-tunes multiple CUDA baseline algorithms.	
\triangleright	> Implemented baselines and their optimizations:	
	☐ Parallel reduction (with loop unrolling and warp shuffle primitives);	
	☐ Histogram and Copy-If (with atomic primitives);	

Parallel scan (WarpScan and Raking variants);

Fused Biased-Mask-Scale-Add (fp32 and fp16, for fp16, with half precision primitives like hadd2); SGEMM an GEMV (loop unrolling, SMEM padding, warp tiling and double buffer optimizations, reaching 90% throughput of cuBLAS);

Dropout (with cuRAND APIs); Fused SoftMax/LayerNorm/RMSNorm, Im2Col, Matrix transpose, etc.

Code available at https://github.com/AXIHIXA/CudaDemo.