Skewness A

$$\frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \frac{(x_i - \bar{x})^3}{s^3},$$

where n is the sample size, \bar{x} is the sample mean and s is the sample standard deviation.

Skewness B

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(x_i-\bar{x})^3}{\sigma^3},$$

where n is the sample size, \bar{x} is the sample mean and σ is the population standard deviation.

Kurtosis A

$$\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)},$$

where n is the sample size, \bar{x} is the sample mean and s is the sample standard deviation.

Kurtosis B

$$\frac{\mu_4}{\mu_2^2}$$

where μ_4 and μ_2 are the central moments of the 4th and 2nd order.