

500mA, Ultra Low Dropout, Low Power, RF Linear Regulators

GENERAL DESCRIPTION

The SGM2028 is a low-power, low-noise, low-dropout, CMOS linear voltage regulator that operates from a 2.5V to 5.5V input voltage. It is the perfect choice for low voltage, low power applications. A low ground current makes this part attractive for battery operated power systems. The SGM2028 also offers ultra low dropout voltage to prolong battery life in portable electronics. Systems requiring a quiet voltage source, such as RF applications, will benefit from the SGM2028's ultra low output noise ($30\mu V_{RMS}$) and high PSRR. An external noise bypass capacitor connected to the device's BP pin can further reduce the noise level.

Other features include output current limit and thermal shutdown protection.

The SGM2028 is available in a Green SOT-23-5 package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- 500mA Guaranteed Output Current
- Ultra Low Dropout Voltage
- Low Output Noise
- Thermal-Overload Protection
- Output Current Limit
- High PSRR (73dB at 1kHz)
- SGM2028-2.8, SGM2028-3.0 and SGM2028-ADJ:
 110kΩ Pull Down Resistor at EN Pin
- SGM2028-3.3: No Pull Down Resistor at EN Pin
- Available Fixed Output Voltages: 2.8V, 3.0V and 3.3V
- Adjustable Output from 1.2V to 5.0V
- -40°C to +85°C Operating Temperature Range
- Available in a Green SOT-23-5 Package

APPLICATIONS

Cellular Telephones

Cordless Telephones

PCMCIA Cards

Modems

MP3 Player

Hand-Held Instruments

Palmtop Computers

Electronic Planners

Portable/Battery-Powered Equipment

PACKAGE/ORDERING INFORMATION

MODEL	V _{OUT} (V)	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2028-2.8	2.8	SOT-23-5	-40°C to +85°C	SGM2028-2.8YN5G/TR	S58XX	Tape and Reel, 3000
SGM2028-3.0	3.0	SOT-23-5	-40°C to +85°C	SGM2028-3.0YN5G/TR	G68XX	Tape and Reel, 3000
SGM2028-3.3	3.3	SOT-23-5	-40°C to +85°C	SGM2028-3.3YN5G/TR	S55XX	Tape and Reel, 3000
SGM2028-ADJ	ADJ	SOT-23-5	-40°C to +85°C	SGM2028-ADJYN5G/TR	S4BXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

IN to GND	0.3V to 6V
Output Short-Circuit Duration	Infinite
EN to GND	0.3V to (V _{IN} +0.3V)
OUT, BP/FB to GND	$0.3V \text{ to } (V_{IN} + 0.3V)$
Power Dissipation, P _D @ T _A = +25°C	
SOT-23-5	0.34W
Package Thermal Resistance	
SOT-23-5, θ _{JA}	367°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.5V to 5.5V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN	Regulator Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a $1\mu F$ capacitor to GND.
2	GND	Ground.
3	EN	Shutdown Input. A logic low reduces the supply current to 10nA. Connect to IN for normal operation.
4	BP	Reference-Noise Bypass (fixed voltage version only). Bypass with a low-leakage 0.01µF ceramic capacitor for reduced noise at the output.
4	FB	Feedback Pin (adjustable voltage version only). This is used to set the output voltage of the device.
5	OUT	Regulator Output.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT \, (NOMINAL)} + 0.5V \, \text{or} \, 2.5V$, whichever is greater, Full = -40°C to +85°C. For SGM2028-ADJ, $V_{OUT} = 3.3V$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Input Voltage	V _{IN}		+25°C	2.5		5.5	V	
Output Voltage Accuracy		$I_{OUT} = 0.1 \text{mA}$		+25°C	-3		+3	%
Maximum Output Current (1)				+25°C	500			mA
Current Limit	I _{LIM}			+25°C	510			mA
Ground Pin Current	ΙQ	No Load, V _{EN} = 2V		+25°C		115	220	μA
		I _{OUT} = 100mA				54	90	mV
Dropout Voltage (2)		I _{OUT} = 300mA		+25°C		162	270	
		I _{OUT} = 500mA				270	420	
Line Regulation	ΔV_{LNR}	$V_{IN} = V_{OUT} + 0.5V$ to 5.5V, $I_{OUT} = 1$ mA		+25°C		0.02	0.095	%/V
Load Regulation	ΔV_{LDR}	$I_{OUT} = 0.1 \text{mA} \text{ to } 500 \text{mA}, C_{OUT} = 1 \mu \text{F}$		+25°C		0.0025	0.0075	%/mA
Output Voltage Noise	e _n	$f = 10Hz$ to $100kHz$, $C_{BP} = 0.01\mu F$, $C_{OUT} = 10\mu F$		+25°C		30		μV_{RMS}
Power Supply Rejection Ratio	PSRR	$C_{BP} = 0.1 \mu F$, $I_{OUT} = 50 mA$,	f = 217Hz	+25°C		77		dB
Fower Supply Rejection Ratio	FORK	$C_{OUT} = 1\mu F$, $V_{IN} = V_{OUT} + 1V$	f = 1kHz	+25°C		73		dB
Shutdown								
EN Input Threshold	V _{IH}	V _{IN} = 2.5V to 5.5V		Full	1.5			V
EN Input Threshold	V _{IL}			Full			0.3	
Shutdown Supply Current	I _{Q(SHDN)}	V _{EN} = 0.3V		+25°C		0.01		μA
Shutdown Exit Delay (3)		$C_{BP} = 0.01 \mu F$, $C_{OUT} = 1 \mu F$, No Load		+25°C		30		μs
Thermal Protection								
Thermal Shutdown Temperature	T _{SHDN}					150		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}					15		°C

NOTES:

- 1. Maximum output current is affected by PCB layout, size of metal trace, the thermal conduction path between metal layers and the environment of the system.
- 2. The dropout voltage is defined as V_{IN} V_{OUT} , when V_{OUT} is 100mV below the value of V_{OUT} for V_{IN} = V_{OUT} + 0.5V. (Only applicable for V_{OUT} = +2.5V to +5.0V.)
- 3. Time needed for V_{OUT} to reach 90% of final value.

TYPICAL APPLICATION CIRCUITS

NOTE: Choose R_2 = 47k Ω to maintain a 26 μ A minimum load. Calculate the value for R_1 using the following equation:

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{1.206V} - 1 \right)$$

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} = $V_{OUT\,(NOMINAL)}$ + 0.5V or 2.5V, whichever is greater, C_{IN} = 1 μ F, C_{OUT} = 1 μ F, C_{BP} = 0.01 μ F, T_A = +25°C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} = $V_{OUT\,(NOMINAL)}$ + 0.5V or 2.5V, whichever is greater, C_{IN} = 1 μ F, C_{OUT} = 1 μ F, C_{BP} = 0.01 μ F, T_A = +25°C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} = $V_{OUT\,(NOMINAL)}$ + 0.5V or 2.5V, whichever is greater, C_{IN} = 1 μ F, C_{OUT} = 1 μ F, C_{BP} = 0.01 μ F, T_A = +25°C, unless otherwise noted.

APPLICATION NOTE

When LDO is used in handheld products, attention must be paid to voltage spikes which could damage SGM2028. In such applications, voltage spikes will be generated at charger interface and V_{BUS} pin of USB interface when charger adapters and USB equipments are hot-plugged. Besides this, handheld products will be tested on the production line without battery. Test engineer will apply power from the connector pin which connects with positive pole of the battery. When external power supply is turned on suddenly, the voltage spikes will be generated at the battery connector. The voltage spikes will be very high, and it always exceeds the absolute maximum input voltage (6.0V) of LDO. In order to get robust design, design engineer needs to clear up this voltage spike. Zener diode is a cheap and effective solution to eliminate such voltage spike. For example, BZM55B5V6 is a 5.6V small package Zener diode which can be used to remove voltage spikes in cell phone designs. The schematic is shown below.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DCTOBER 2016 – REV.B.2 to REV.B.3
Added SGM2028-3.0 version (110kΩ Pull Down Resistor at EN Pin)
MAY 2016 – REV.B.1 to REV.B.2
Fage
Changed Normalized Output Voltage vs. Temperature
DECEMBER 2013 – REV.B to REV.B.1Page
Added 2.8V Output Voltage and ADJ
Changed Electrical Characteristics section4
Changed Typical Application Circuits section
Changed Typical Performance Characteristics section
JUNE 2013 – REV.A.4 to REV.B
Deleted 2.8V Output Voltage

PACKAGE OUTLINE DIMENSIONS SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	1.050 1.250		0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
Е	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950 BSC		0.037 BSC			
e1	1.900 BSC		0.075	BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	9
7" (Option)	368	227	224	8	
7"	442	410	224	18	200000

SG Micro Corp SGMICRO www.sg-micro.com