Fonctions logarithme népérien, exponentielle, puissances

Fonction logarithme népérien

• Définition. Courbe représentative

La fonction logarithme népérien, notée ln, est la primitive sur]0; $+\infty[$ de la fonction

$$x \mapsto \frac{1}{x}$$
 qui s'annule pour $x = 1$. Pour tout $x > 0$, si $f(x) = \ln x$ alors $f'(x) = \frac{1}{x}$.

Propriétés

Pour tout a > 0 et b > 0:

 $\ln a b = \ln a + \ln b$; $\ln a^n = n \ln a$ (*n* entier relatif)

$$\ln \frac{1}{b} = -\ln b \; ; \ln \frac{a}{b} = \ln a - \ln b.$$

2 Fonction exponentielle

Définition. Courbe représentative

La fonction exponentielle est définie et dérivable sur \mathbb{R} .

Pour tout x réel, si $f(x) = e^x$ alors $f'(x) = e^x$

Propriétés

Pour a et b réels quelconques : $e^{a+b} = e^a \times e^b$; $e^{a-b} = \frac{e^a}{2^b}$; $(e^a)^n = e^{na}$ (n entier relatif)

Pour b > 0: $e^a = b$ équivaut à $a = \ln b$.

3 Fonctions puissances

Pour α réel, la fonction puissance d'exposant α est la fonction définie sur]0; $+\infty[$ par : $f(x) = x^{\alpha} = e^{\alpha \ln x}$

Pour tout x > 0, si $f(x) = x^{\alpha}$ alors $f'(x) = \alpha x^{\alpha - 1}$.

Les résultats dits de « croissances comparées à l'infini des fonctions logarithme, exponentielle et puissance sont donnés dans **L'essentiel** du chapitre 1.