Homework 2

Name: Dejun Qian PSUID: 917233450

Question 1:

Exercise 16.2.2: *Give examples to show that:*

- a) Projection cannot be pushed below set union.
- b) Projection cannot be pushed below set or bag difference.

Answer:

a) The following example shows that projection cannot be pushed below set union.

Suppose relation A is,

a1	a2
1	2

Suppose relation B is,

a1	a2
1	3

Then, $\pi_{a1}(A \cup B)$ is,

,		
	a1	
	1	
	1	

And
$$\pi_{a1}(A)$$
 U $\pi_{a1}(B)$ is,

-) 10,	
a1	
1	

The example shows that $\pi_{a1}(A \ U \ B) \neq \pi_{a1}(A) \ U \ \pi_{a1}(B)$, which means projection cannot be pushed below set union.

b) The following example shows that projection cannot be pushed below set difference.

Suppose relation A is,

a1	a2
1	2
3	4

Suppose relation B is,

٠.	D 10,	
	a1	a2
	1	3

Then, $\pi_{a1}(A - B)$ is

13		
	a1	
	1	
	3	

And $\pi_{a1}(A)$ - $\pi_{a1}(B)$ is

_	7) 13
	a1
	3

The example shows that $\pi_{a1}(A - B) \neq \pi_{a1}(A) - \pi_{a1}(B)$, which means projection cannot be pushed below set difference. Because a set is also a bag, then we proved that project cannot be pushed below bag difference either.

Question 2:

Exercise 16.2.4: Some laws that hold for sets hold for bags; others do not. For each of the laws below that true for sets, indicate whether or not it is true for bags by giving a proof that the law for bags is true, or by giving a counterexample.

- a) RUR = R (the idempotent law for union).
- *b*) $R \cap R = R$ (the idempotent law for intersection).

Answer:

a) The following example shows that $R \cup R = R$ does not hold for bags.

Suppose relation R is,

-)	
a1	
1	

Then, R U R is,

a1	
1	
1	

The example shows that R U R \neq R, which means R U R = R does not hold for bags.

b) To prove $R \cap R = R$ holds for bags, we suppose R have m (m>=0) different tuples, denoted by t_1 , t_2 , ..., t_m , the number of these tuples are n_1 , n_2 , ..., n_m . Based on the definition of intersection for bags (see page 207 in the textbook), $R \cap R$ will also have tuples t_1 , t_2 , ..., t_m , and the number of these tuples will be $min\{n_1, n_1\}$, $min\{n_2, n_2\}$, ..., $min\{t_m, t_m\}$, which equals to n_1 , n_2 , ..., n_m . So $R \cap R$ is identical to R, $R \cap R = R$ does hold for bags.

Question 3:

Write the following queries in both SQL and extended relational algebra (for bags), based on the Spy database schema

- *a)* Find the average salary of an agent.
- b) Find the average salary of agents in the USA.
- c) Find the average salary of agents on team # 12
- *d)* Find the number of agents who either speak German or are demolition experts.
- *e)* Find the average salary of an agent for each country.
- f) Find the average salary of an agent for each skill_id.
- *g)* Find the agent id for agents who speak at least three languages.
- h) Find the maximum salary of agents who speak French.
- i) For each agent with clearance ID above 2, find the average salary
- *j)* Find the average salary of agents from the USA for each mission, where the mission has a clearance_id = 5.

Answer:

a) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL	SELECT AVG(salary)
	FROM agent
extended relational algebra	V _{AVG(salary)} (agent)

b) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL		SELECT AVG(salary)
		FROM agent
		WHERE country='USA'
extended	relational algebra	$\gamma_{\text{AVG(salary)}}(\sigma_{\text{country="USA'}}(\text{agent}))$

c) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL		SELECT AVG(salary)
		FROM agent,teamrel
		WHERE team_id=12
		AND agent.agent_id=teamrel.agent_id
extended	d relational algebra	VAVG(salary)($\sigma_{\text{team id}=12 \text{ AND agent.agent id}=\text{teamrel.agent id}}$ (agent x teamrel))

d) The gueries in both SOL and extended relational algebra (for bags) are listed bellow.

	and extended relational argeona (for bags) are noted believe,
SQL	SELECT COUNT(agent_id)
	FROM ((SELECT agent_id
	FROM languagerel,language
	WHERE languagerel.lang_id=language.lang_id
	AND language.language='German')
	UNION
	(SELECT agent_id
	FROM skillrel,skill
	WHERE skillrel.skill_id=skill.skill_id
	AND skill.skill='Demolition Expert')) res
extended relational algebra	$\gamma_{\text{COUNT(agent_id)}}(\pi_{\text{agent_id}}(\sigma_{\text{languagerel.lang_id=language.lang_id}} \text{AND language-language='German'}(languagerel.languagerel))))}$
	$x language))) U (\pi_{agent_id}(\sigma_{skillrel.skill_id=skill.skill_id} AND skill.skill='Demolition Expert'}(skillrel x)$
	skill)))

e) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

COI	CTT TOT
I SOL	SELECT country.AVG(salary)
JQL	SELECT COUNTRY, AVG(Salary)

	FROM agent
	GROUP BY country
extended relational algebra	γ _{country,AVG(salary)} (agent)

f) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

1) The queries in both 5QL and extended relational discord (101 bass) are instead believe;	
SQL	SELECT skill_id,AVG(salary)
	FROM agent,skillrel
	WHERE agent.agent_id=skillrel.agent_id
	GROUP BY skill_id
extended relational algebra	γ _{skill_id,AVG(salary)} (σ _{agent.agent_id=skillrel.agent_id} (agent x skillrel))

g) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SQL	SELECT agent_id
	FROM languagerel
	GROUP BY agent_id
	HAVING COUNT(lang_id)>=3
extended relational algebra	$\sigma_{\text{COUNT(lang id)}} >= 3(\gamma_{\text{agent id,COUNT(lang id)}}(\text{languagerel}))$

h) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL		SELECT MAX(salary)
		FROM agent,languagerel,language
		WHERE agent.agent_id=languagerel.agent_id AND
		languagerel.lang_id=language.lang_id AND language.language='French'
extended	l relational algebra	VMAX(salary)(Gagent.agent_id=languagerel.agent_id AND languagerel.lang_id=language.lang_id AND
		language.language='French' (agent x languagerel x language))

i) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL	SELECT AVG(salary)
	FROM agent
	WHERE agent.clearance_id>2
extended relational algebra	$\gamma_{\text{AVG(salary)}}(\sigma_{\text{agent.clearance_id}>2}(\text{agent}))$

j) The queries in both SQL and extended relational algebra (for bags) are listed bellow,

SQL		SELECT mission_id,AVG(salary)
		FROM agent,teamrel,mission
		WHERE agent.country='USA' AND agent.agent_id=teamrel.agent_id AND
		teamrel.team_id=mission.team_id AND mission.access_id=5
		GROUP BY mission_id
extende	ed relational algebra	mission_tajiii o(sata) (agenteoana) osii iii agentagent_ta teamenagen_ta iii b teamenteam_ta missioniteam_ta
		AND mission.access_id=5(agent x teamrel x mission))

Ouestion 4:

```
Suppose relations R and S have tuples m and n tuples, respectively. Give the minimum and maximum numbers of tuples that the results of the following expressions can have.
```

```
a) R \cap S.
```

b) R Full Outer Join S.

Answer:

a) $R \cap S$.

min: 0

max: min{m,n}

b) R Full Outer Join S.

min: max{m,n}
max: m+n

Question 5:

The Circle and Sphere relations in a Geometry database give the center point of a circle or sphere of radius 5. Given the following data for these two tables:

Circle(X,Y): {(1,2), (3,4), (1,2), (3,5), (4,5)}

Sphere(X,Y,Z): {(1,2,3), (3,5,7), (3,6,2), (4,5,5), (1,3,5), (4,5,2)}

Compute the query answer for the following queries:

Note: these queries use the extended relational algebra operators that are defined for bags.

- a. $\pi_{X+Y,2*X,2*Y}$ (Circle)
- b. $\pi_{X+1,Y*2,Z-1}$ (Sphere)
- c. $\tau_{Y,X}(Circle)$
- d. $\tau_{Y,Z}(Sphere)$
- *e.* δ (Circle)
- $f. \delta$ (Sphere)
- $g. \gamma_{X, SUM(Y)}(Circle)$
- $h. v_{Y.AVG(Z).AVG(X)}$ (Sphere)
- i. $\gamma_X(Circle)$
- j. $\gamma_{X,Y,MAX(Z)}$ (Circle $C \bowtie_{C,X = S,X \text{ and } C,Y = S,Y}$ Sphere S)
- k. Circle Left Outer Join C.X = S.X and C.Y = S.Y Sphere
- *l.* Circle Right Outer Join C.X = S.X and C.Y = S.Y Sphere

Answer:

- a. $\pi_{X+Y,2*X,2*Y}$ (Circle) = {(3,2,4), (7,6,8), (3,2,4), (8,6,10), (9,8,10)}
- b. $\pi_{X+1,Y*2,Z-1}$ (Sphere) = {(2,4,2), (4,10,6), (4,12,1), (5,10,4), (2,6,4), (5,10,1)}
- c. $\tau_{Y,X}(Circle) = \{(1,2), (1,2), (3,4), (3,5), (4,5)\}$
- d. $\tau_{Y,Z}(Sphere) = \{(1,2,3), (1,3,5), (4,5,2), (4,5,5), (3,5,7), (3,6,2)\}$
- e. δ (Circle) = {(1,2), (3,4), (3,5), (4,5)}
- f. δ (Sphere) = {(1,2,3), (3,5,7), (3,6,2), (4,5,5), (1,3,5), (4,5,2)}
- g. $\gamma_{X, SUM(Y)}$ (Circle) = {(1,4), (3,9), (4,5)}
- h. $\gamma_{Y, AVG(Z), AVG(X)}$ (Sphere) = {(2,3,1), (3,5,1), (5,4.66667,3.66667), (6,2,3)}
- i. $\gamma_X(Circle) = \{(1),(3),(4)\}$
- j. $\gamma_{X,Y,MAX(Z)}$ (Circle C $\bowtie_{C.X = S.X \text{ and } C.Y = S.Y}$ Sphere S) = {(1,2,3), (3,5,7), (4,5,5)}
- k. Circle Left Outer Join $_{C.X = S.X \text{ and } C.Y = S.Y}$ Sphere = {(1,2,1,2,3), (3,4,NULL,NULL,NULL), (1,2,1,2,3), (3,5,3,5,7), (4,5,4,5,5), (4,5,4,5,2)}
- l. Circle Right Outer Join $_{C.X = S.X \text{ and } C.Y = S.Y}$ Sphere = {(1,2,1,2,3), (1,2,1,2,3), (3,5,3,5,7), (NULL,NULL,3,6,2), (4,5,4,5,5), (NULL,NULL,1,3,5), (4,5,4,5,2)}