

TD 1 - OSI-TCP/IP

Exercice 1) Questions modèle OSI - Modèle TCP/IP

- 1. Qu'est-ce que l'ISO?
- 2. Combien de couches comporte ce modèle. Donner le nom et la fonction de chacune des couches
- 3. Qu'est-ce que l'encapsulation?
- 4. Qu'est-ce qu'un "PDU" ?
- 5. Comment se nomme les PDU des couches 1, 2, 3, 4, 5, 6 et 7
- 6. Qu'est-ce qu'un protocole?
- 7. Comment se nomme le modèle utilisé par l'Internet ?
- 8. Décrire chacune des couches de ce modèle ?
- Combien de couche comporte le modèle TCP/IP ? Donner le nom et la fonction de chacune des couches
- 10. Expliquer la différence entre un protocole orienté connexion et un autre non orienté connexion ?
- 11. Quelles différences majeures distinguent TCP/IP du modèle OSI ?

Exercice 2) Modèle OSI

1- Définissez de manière succincte les termes suivants : Couche, Système, Entité, Protocole, Service.

Quelques indications:

Pour simplifier la description d'un système complexe, on introduit la notion de couche. Une couche peut être logicielle ou matérielle.

Exemple OSI:

La couche (N) offre des services à la couche (N+1)

La couche (N) utilise les services de la couche (N-1)

Un protocole de niveau N précise comment communiquent des entités de systèmes différents pour une même couche N.

Question 1: Donnez une description des différentes couches du modèle OSI.

Couches	Descriptions
Application	
Présentation	
Session	
Transport	
Dágagu	
Réseau	
Liaison	
Physique	
, , , , ,	

Question 2 : Dans quelles couches sont spécifiés les protocoles¹: CSMA/CD, DNS, ARP, ICMP, ASN1 ?

- Question 3 : Quels sont les rôles des protocoles cités ci-dessus ?

Couche	Protocole	Rôles
	DNS	
	ASN1	
	ICMP, ARP	
	CSMA/CD	

efre

Exercice 3) OSI – Routage

On considère qu'une application de la machine A dialogué avec son homologue de la machine C. Une machine B, un routeur, relie les réseaux respectifs des machines A et C. Dessiner et définir les piles de protocoles du modèle OSI mises en jeu sur A, B et C.

Exercice 4) Mode connecté et non connecté – exemples

Une relation à travers un réseau WAN se distingue par le type de relation mise en œuvre. Le tableau ci-dessous compare ces deux modes, veuillez le reproduire et le compléter.

	Mode non connecté mode datagramme	Mode orienté connexion mode connecté
Phase de mise en relation		
Garantie du séquencement		
Réservation de ressources		
Contrôle de flux		
Contrôle et reprise sur erreur		
Optimisation des ressources		
Complexité au niveau du réseau		
Complexité au niveau des systèmes d'extrémité		
Possibilité de redevance au volume		
Possibilité de redevance forfaitaire		
Exemples de protocole : Réponse attendues		

² Carrier Sense Multiple Access with Collision Detect

Exercice 5) Fragmentation IP

Question 1. Pourquoi un routeur IP fragmente-t-il un datagramme?

Question 2. À l'aide de l'exemple ci-dessous, expliquez le processus de fragmentation IP en citant les champs du datagramme nécessaires à cette fragmentation.

Question 3. Soit un hôte dont le logiciel IP doit envoyer un datagramme contenant 6 000octets de données à travers un réseau de MTU 1 800 : Fragmenter le datagramme et indiquer ces mêmes champs pour tous les fragments obtenus.

- Question 1. Sur un réseau IP de classe B, donnez la structure binaire précise,
- **Question 2.** Une station est configurée avec l'adresse IP privée 172.168.14.100 et le masque de réseau est 255.255.255.240. Donnez l'adresse du sous-réseau auquel appartiennent la station et l'adresse de diffusion de ce sous-réseau.
- **Question 3.** Une entreprise souhaite organiser son réseau en le découpant en 15 sousréseaux distincts, tous bâtis à partir de son réseau de classe B (172.16.0.0 /16). Comment doit-elle procéder au niveau de l'adressage IP ?

Exercice 7) Segmentation de réseau TCP/IP

L'un des établissements d'une entreprise utilise la plage d'adresse 10.0.0.0 de la classe A. Considérons quatre machines de cet établissement dont les noms et adresses sont donnés cidessous :

Nom	Adresse IP	Adresse MAC
User1.Entreprise.com	10.99.43.27	00-90-27-55-74-35
User2.Entreprise.com	10.163.12.254	00-90-27-55-74-36
User3.Entreprise.com	10.189.12.27	00-90-27-55-74-37
User4.Entreprise.com	10.126.43.254	00-90-27-55-74-38

- a) Quel est le NetID de ce plan d'adressage?
- b) Quel est le nombre de bit nécessaires pour réaliser deux sous-réseaux (SubNetID) tels que User1 et User4 appartiennent au même sous réseaux et que User2 et User3 appartiennent à un autre sous-réseau. On rappelle que les bits du NetID et du SubNetID doivent être contigus. Donnez le masque correspondant.
- c) Quel est le nombre de bits minimum et nécessaire pour qu'aucune des machines n'appartiennent au même sous réseau. Donnez le masque correspondant.
- d) Pour permettre la communication entre les deux sous-réseaux de la question b, on relie les brins Ethernet de ces deux sous-réseaux par un routeur. Si on affecte à chaque interface LAN de ce routeur la première adresse disponible (NetHost = 1), quelles sont les adresses affectées. Représentez l'ensemble par un schéma.
- e) L'établissement envisage de raccorder son réseau à Internet. Est-ce possible en l'état, quelle est la difficulté et quelle solution proposeriez-vous ?

Exercice 8) Masque de sous-réseau

Deux réseaux (A et B) utilisent le protocole TCP/IP, ils sont reliés via un routeur. L'entreprise a défini le masque de sous-réseau : 255.255.0.0. Un utilisateur du réseau A sur la machine 100.64.0.102 se plaint de ne pouvoir joindre un correspondant d'adresse 100.64.45.102 du réseau B. Expliquez pourquoi ?

ATTENTION : la notion de classe d'adressage apparaît pour certains comme un concept obsolète (CDIR), cependant la, plupart des systèmes de configuration reconnaissent encore les classes.

Compléments sur l'adressage :

Question 1. A quel usage l'adresse 127.x.x.x est réservée ?

Question 2. A quel usage l'adresse 0.0.0.0 est réservée ?

Exercice 9) Masque de sous-réseau

Une entreprise à succursale multiple utilise l'adresse IP 196.179.110.0. Pour une gestion plus fine de ses sous-réseaux, le responsable informatique désire pouvoir affecter une adresse IP propre à chaque sous-réseau des 10 succursales.

- 1) De quelle classe d'adressage s'agit-il?
- 2) Donner et expliquez la valeur du masque de sous-réseau correspondant à ce besoin.
- 3) Combien de machines chaque sous-réseau pourrait-il comporter et pourquoi?
- 4) Quelle est l'adresse de broadcast du sous-réseau 3 (expliquez) ?