Задача 1-1 (25 баллов). Пусть задана бинарная куча (min-heap) из n элементов. Придумайте алгоритм, находящий k минимальных элементов в ней за время $O(k \log k)$. Исходная куча при этом должна остаться без изменений, однако разрешается в процессе работы использовать дополнительную память. Совет: удаление элемента из бинарной кучи состоит в отделении корня и пары поддеревьев.

Решение. Будет использоваться дополнительная мин-куча (приоритетную очередь) H' для хранения потенциальных кандидатов на следующие минимальные элементы. Изначально в H' помещается корень исходной кучи. На каждом шаге извлекается минимальный элемент из H', и его потомки добавляются в H' как новые кандидаты.

Описание алгоритма:

- 1. Инициализировать пустую мин-кучу H'.
- 2. Вставить в H' корень исходной кучи вместе с его индексом или указателем (для доступа к потомкам).
- 3. Повторить k раз:
 - (a) Извлечь минимальный элемент (v,p) из H', где v значение узла, p позиция узла в исходной куче.
 - (b) Добавить v в результирующий список минимальных элементов.
 - (c) Если у узла p есть левый потомок, вставить его в H':
 - Вычислить позицию левого потомка l=2p+1 (при нумерации с нуля).
 - ullet Если l < n, вставить (v_l, l) в H', где v_l значение в позиции l.
 - (d) Если у узла p есть правый потомок, вставить его в H':
 - Вычислить позицию правого потомка r = 2p + 2.
 - Если r < n, вставить (v_r, r) в H', где v_r значение в позиции r.

Корректность алгоритма:

- Свойство мин-кучи: В любой момент значение родительского узла не превосходит значений его потомков.
- Выбор минимальных элементов: Поскольку мы начинаем с корня (наименьшего элемента) и последовательно рассматриваем потомков извлеченных узлов, мы всегда имеем доступ к следующим по величине элементам.

Анализ временной сложности:

• *Количество операций*: За k итераций мы выполняем k операций извлечения и не более 2k операций вставки (каждый узел имеет не более двух потомков).

- Стоимость операций: Каждая операция вставки и извлечения в мин-куче H' занимает $O(\log s)$, где s текущий размер H'.
- Оценка размера H': В любой момент времени размер H' не превышает k, так как изначально |H'|=1, и на каждой итерации мы добавляем не более двух элементов и извлекаем один.
- Общая временная сложность:

$$O(k \log k) + O(2k \log k) = O(k \log k).$$

Сохранение исходной кучи:

Алгоритм не модифицирует исходную кучу, так как все операции чтения выполняются без изменения структуры данных. Мы используем дополнительную кучу H' для хранения ссылок на узлы исходной кучи.