

Intro

- Goal: Convert FP32 CNNs into INT8 without significant accuracy loss.
- Why: INT8 math has higher throughput, and lower memory requirements.
- Challenge: INT8 has significantly lower precision and dynamic range than FP32.
- Solution: Minimize loss of information when quantizing trained model weights to INT8 and during INT8 computation of activations.
- Result: Method was implemented in TensorRT. It does not require any additional fine tuning or retraining.

Outline

- INT8 compute
- Quantization
- Calibration
- Workflow in TensorRT
- Results

INT8 Inference

Challenge

• INT8 has significantly lower precision and dynamic range compared to FP32.

	Dynamic Range	Min Positive Value
FP32	$-3.4 \times 10^{38} \sim +3.4 \times 10^{38}$	1.4 x 10 ⁻⁴⁵
FP16	-65504 ~ +65504	5.96 x 10 ⁻⁸
INT8	-128 ~ +127	1

Requires more than a simple type conversion from FP32 to INT8.

High-throughput INT8 math

DP4A - INT8 dot product

- Requires sm_61+ (Pascal TitanX, GTX 1080, Tesla P4, P40 and others).
- Four-way byte dot product accumulated in 32-bit result.

```
Result += A[0] * B[0] +
A[1] * B[1] +
A[2] * B[2] +
A[3] * B[3]
```


Context

- Performance.
- No accuracy loss.
- Hence solution has to be "simple" and compute efficient.

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB +
scale_A * QA * bias_B +
scale_B * QB * bias_A +
bias_A * bias_B
```

Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB +

scale_A * QA * bias_B +

scale_B * QB * bias_A +

bias_A * bias_B
```

Do we really need bias? No!

Two matrices:

```
A = scale_A * QA
B = scale_B * QB
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB
```

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

• No saturation: map |max| to 127

• No saturation: map |max| to 127

• Significant accuracy loss, in general

• No saturation: map |max| to 127

• Saturate above |threshold| to 127

• Significant accuracy loss, in general

• No saturation: map |max| to 127

Significant accuracy loss, in general

• Saturate above | threshold | to 127

- Weights: no accuracy improvement
- Activations: improved accuracy
- Which | threshold | is optimal?

Q: How to optimize threshold selection?

• It's always a tradeoff between range and precision of the INT8 representation.

A: Minimize information loss, since FP32 → INT8 is just re-encoding information.

"Relative Entropy" of two encodings

- INT8 model encodes the same information as the original FP32 model.
- We want to minimize loss of information.
- Loss of information is measured by Kullback-Leibler divergence (AKA relative entropy or information divergence).
 - P, Q two discrete probability distributions.
 - O KL divergence(P,Q):= SUM(P[i] * log(P[i] / Q[i]), i)
- Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Solution: Calibration

- Run FP32 inference on Calibration Dataset.
- For each Layer:
 - collect histograms of activations.
 - generate many quantized distributions
 with different saturation thresholds.
 - pick threshold which minimizes
 KL divergence(ref distr, quant distr).
- Entire process takes a few minutes on a typical desktop workstation.

Calibration Dataset

- Representative.
- Diverse.
- Ideally a subset of validation dataset.
- 1000s of samples

Before saturation

After saturation

Workflow in TensorRT

Typical workflow in TensorRT

You will need:

- Model trained in FP32.
- Calibration dataset.

TensorRT will:

- Run inference in FP32 on calibration dataset.
- Collect required statistics.
- \circ Run calibration algorithm \rightarrow optimal scaling factors.
- \circ Quantize FP32 weights \rightarrow INT8.
- Generate "CalibrationTable" and INT8 execution engine.

Results

Results - Accuracy

	FP	32	INT8										
			Calibration us	ing 5 batches	Calibration us	ing 10 batches	Calibration using 50 batches						
NETWORK	Top1	Top5	Top1	Top1 Tops		Top5	Top1	Top5					
Resnet-50	73.23%	91.18%	73.03%	91.15%	73.02%	91.06%	73.10%	91.06%					
Resnet-101	74.39%	91.78%	74.52%	91.64%	74.38%	91.70%	74.40%	91.73%					
Resnet-152	74.78%	91.82%	74.62%	91.82%	74.66%	91.82%	74.70%	91.78%					
VGG-19	68.41%	88.78%	68.42%	88.69%	68.42%	88.67%	68.38%	88.70%					
Googlenet	68.57%	88.83%	68.21%	88.67%	68.10%	88.58%	68.12%	88.64%					
Alexnet	57.08%	80.06%	57.00%	79.98%	57.00%	79.98%	57.05%	80.06%					
NETWORK	Top1	Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5					
Resnet-50	73.23%	91.18%	0.20%	0.03%	0.22%	0.13%	0.13%	0.12%					
Resnet-101	74.39%	91.78%	-0.13%	0.14%	0.01%	0.09%	-0.01%	0.06%					
Resnet-152	74.78%	91.82%	0.15%	0.01%	0.11%	0.01%	0.08%	0.05%					
VGG-19	68.41%	88.78%	-0.02%	0.09%	-0.01%	0.10%	0.03%	0.07%					
Googlenet	68.57%	88.83%	0.36%	0.16%	0.46%	0.25%	0.45%	0.19%					
Alexnet	57.08%	80.06%	0.08%	0.08%	0.08%	0.07%	0.03%	-0.01%					

TensorRT 2.1, all optimizations enabled. ILSVRC2012 validation dataset, batch = 25 images. Accuracy was measured on 500 batches which were not used for the calibration.

Results - Performance

TensorRT 2.1, all optimizations enabled.

Open challenges / improvements

- Unsigned int8 for activations after ReLU.
- RNNs \rightarrow open research problem.
- Fine tuning of saturation thresholds.
- Expose API for accepting custom, user provided scale factors.

Conclusion

- We introduced an automated, parameterless method for converting FP32
 CNN models into INT8.
- Symmetric, linear quantization for weights and activations.
- Quantize original FP32 data such that the information loss is minimized.
- Popular, publicly available CNN models trained in FP32 can be converted to INT8, accuracy of INT8 models is comparable with the FP32 baseline.

Additional Resources

- We are going to publish whitepaper with description of the method.
- TensorRT 2.1 is going to be released soon.
- TensorRT 2.1 → sampleINT8.
- S7458 DEPLOYING UNIQUE DL NETWORKS AS MICRO-SERVICES WITH TENSORRT, USER EXTENSIBLE LAYERS, AND GPU REST ENGINE.
 - Tuesday, May 9, 4:30 PM 4:55 PM.
- Connect With The Experts:
 - Monday, May 8, 2:00 PM 3:00 PM, Pod B.
 - Tuesday, May 9, 2:00 PM 3:00 PM, Pod C.
 - Wednesday, May 10, 3:00 PM 4:00 PM, Pod B.

Backup slides

Entropy Calibration - pseudocode

Input: FP32 histogram H with 2048 bins: bin[0], ..., bin[2047]

threshold = (m + 0.5)* (width of a bin)

```
For i in range( 128, 2048):
      reference distribution P = [bin[0], ..., bin[i-1]]
                                                                                   // take first ' i ' bins from H
      outliers count = sum( bin[ i ] , bin[ i+1 ] , ... , bin[ 2047 ] )
      reference distribution P[i-1] += outliers count
      P = sum(P)
                                                                                   // normalize distribution P
      candidate distribution Q = quantize [bin[0], ..., bin[i-1]] into 128 levels // explained later
      expand candidate distribution Q to 'i' bins
                                                                                   // explained later
                                                                                   // normalize distribution Q
      Q = sum(Q)
      divergence[i] = KL divergence(reference distribution P, candidate distribution Q)
End For
Find index 'm' for which divergence[ m ] is minimal
```

Candidate distribution Q

- KL_divergence(P, Q) requires that len(P) == len(Q)
- Candidate distribution Q is generated after merging 'i' bins from bin[0] to bin[i-1] into 128 bins
- Afterwards Q has to be 'expanded' again into 'i' bins

```
Here is a simple example: reference distribution P consisting of 8 bins, we want to quantize into 2 bins: P = [1, 0, 2, 3, 5, 3, 1, 7] we merge into 2 bins (8 / 2 = 4 \text{ consecutive bins are merged into one bin}) [1 + 0 + 2 + 3, 5 + 3 + 1 + 7] = [6, 16] then proportionally expand back to 8 bins, we preserve empty bins from the original distribution P: Q = [6/3, 0, 6/3, 6/3, 16/4, 16/4, 16/4, 16/4] = [2, 0, 2, 2, 4, 4, 4, 4] now we should normalize both distributions, after that we can compute KL_divergence P = sum(P) Q = sum(Q) result = KL_divergence(P, Q)
```

Pseudocode for the INT8 conv kernel

```
// I8 input tensors: I8 input, I8 weights,
                                                  18 output tensors: 18 output
// F32 bias (original bias from the F32 model)
// F32 scaling factors: input scale, output scale, weights scale[K]
I32 gemm out = I8 input * I8 weights
                                                  // Compute INT8 GEMM (DP4A)
F32 gemm out = (float)132 gemm out
                                                  // Cast I32 GEMM output to F32 float
// At this point we have F32 gemm out which is scaled by (input scale * weights scale[K]),
// but to store the final result in int8 we need to have scale equal to "output scale", so we have to rescale:
// (this multiplication is done in F32, * gemm out arrays are in NCHW format)
For i in 0, ... K-1:
       rescaled F32 gemm out[:,i,:,:] = F32 gemm out[:,i,:,:] * [output scale / (input scale * weights scale[i])]
// Add bias, to perform addition we have to rescale original F32 bias so that it's scaled with "output scale"
rescaled F32 gemm out with bias = rescaled F32 gemm out + output scale * bias
// Perform ReLU (in F32)
F32 result = ReLU(rescaled F32 gemm out with bias)
// Convert to INT8 and save to global
18 output = Saturate(Round to nearest integer(F32 result))
```

Results - Performance - Pascal Titan X

	batchsize = 1			batchsize = 2			batchsize = 8			batchsize = 32			batchsize = 128		
Network	INT8 [img/s]	FP32 [img/s]	Ratio												
Resnet-50	562	415	1.354	1045	572	1.825	2572	938	2.741	3567	1126	3.166	3787	1156	3.276
Resnet-152	195	157	1.242	371	205	1.807	1017	357	2.850	1335	415	3.220	1437	436	3.299
VGG-16	393	261	1.508	606	257	2.361	984	382	2.577	1131	416	2.722	1178	426	2.764
VGG-19	345	221	1.559	523	222	2.358	812	311	2.608	916	336	2.729	946	339	2.789
Googlenet	945	913	1.035	1756	1163	1.510	4356	1737	2.508	6545	2300	2.846	7282	2499	2.914
Alexnet	972	823	1.181	1913	1534	1.247	6434	3638	1.768	13899	4758	2.921	18714	5882	3.181

TensorRT FP32 vs TensorRT INT8 Pascal TitanX

Results - Performance - DRIVE PX 2, dGPU

	batchsize = 1			batchsize = 2			batchsize = 4			batchsize = 16			batchsize = 128		
Network	INT8 [img/s]	FP32 [img/s]	Ratio												
Resnet-50	295	148	1.996	462	181	2.552	627	204	3.075	811	233	3.477	902	249	3.621
Resnet-152	110	59	1.871	179	68	2.617	239	79	3.039	318	91	3.496	356	97	3.674
VGG-16	130	47	2.757	189	62	3.029	229	71	3.220	286	84	3.411	DNR	DNR	
VGG-19	114	41	2.797	162	52	3.117	191	58	3.296	233	67	3.464	DNR	DNR	
Googlenet	497	306	1.622	777	364	2.131	1131	408	2.769	1576	497	3.170	1784	529	3.375
Alexnet	436	202	2.164	828	348	2.381	1458	570	2.561	3106	844	3.682	4853	1382	3.510

TensorRT FP32 vs TensorRT INT8 DRIVE PX 2, dGPU