AMENDMENTS TO THE CLAIMS

1 to 41. (Canceled).

42. (New) A method for inhibiting polymerization of an amyloid β peptide in a patient in need thereof, comprising administering to said patient a therapeutic effective amount of a compound defined by the Formula:

R_1 -AA- R_2

wherein AA in said Formula corresponds to an amino acid sequence selected from the group consisting of:

His-Gln-Lys-Leu-Val-Phe;

His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu;

His-His-Gln-Lys-Leu-Val-Phe;

Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala;

Val-His-His-Gln-Lys-Leu-Val-Phe;

Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe; and

Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val;

and wherein

 R_1 is H or -CO- R_3 bonded at the α -amino group of the N-terminal of AA;

R₂ is H or –OR₄ or NR₅R₆ all bound to the α-carboxyl group of the α-carboxyterminal of AA;

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH₂)_n-, where n is 4-5;

R₁ and R₂ together can form a hydrocarbon ring or heterocyclic ring; and said amino acids can be either D- or L-isomers.

43. (New) A method for inhibiting polymerization of an amyloid β peptide, comprising contacting an amyloid β peptide-containing environment with a polymerization inhibiting effective amount of a compound defined by the Formula:

R_1 -AA- R_2

wherein AA in said Formula corresponds to an amino acid sequence selected from the group consisting of:

His-Gln-Lys-Leu-Val-Phe;

His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu;

His-His-Gln-Lys-Leu-Val-Phe;

Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala;

Val-His-His-Gln-Lys-Leu-Val-Phe;

Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe; and

Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val;

and wherein

 R_1 is H or -CO- R_3 bonded at the α -amino group of the N-terminal of AA;

R₂ is H or -OR₄ or NR₅R₆ all bound to the α-carboxyl group of the α-carboxyterminal

of AA;

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH₂)_n-, where n is 4-5;

R₁ and R₂ together can form a hydrocarbon ring or heterocyclic ring; and said amino acids can be either D- or L-isomers.

- 44. (New) The method of claim 42, wherein all the amino acids of the compound are D-isomers.
- 45. (New) The method of claim 43, wherein all the amino acids of the compound are D-isomers.
- 46. (New) The method of claim 42, wherein R_1 is acetyl.
- 47. (New) The method of claim 43, wherein R_1 is acetyl.
- 48. (New) The method of claim 42, wherein R_1 is H or R_2 is H.
- 49. (New) The method of claim 43, wherein R_1 is H or R_2 is H.

50.	(New) The method of claim 42, wherein the patient has Alzheimer's disease or another
disease characterized by amyloidosis.	
	·