

數位系統實驗

陳培殷老師 國立成功大學 資訊工程系

Cheng Kung Univer sity

LAB - 03

陳培殷老師 git 國立成功大學 資訊工程系 In te gr at

Lab I -- Constant Multiplier (1/3) 最高有效位元 MSB

There is a 2-bit input X (represented as X1 and X0). A constant multiplier is designed to multiply the input by 3. Finally, show the result with decimal format (0, 1, 2,, 9) on Digital Display in the breadboard.

Hint-1:

The output digital number is 0, 3, 6 or 9, respectively, for four

different inputs
$$(0, 1, 2, 3)$$
.

Input
$$\begin{cases}
0, 1, 2, 3 \\
0, 1, 2, 3
\end{cases}$$

Lab I -- Constant Multiplier (2/3)

Hint-2: Function of the Digital Display in the breadboard is as follows.

	D	C	В	A	DIGITAL DISPLAY
(0	0	0	0	
	0	0	0	1	1
	0	0	1	0	~
	0	0	1	1	3
	0	1	0	0	4
	0	1	0	1	\circ
	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	<u> </u>
	1	0	0	1	9

Lab I -- Constant Multiplier (3/3)

Please

- (a) draw the truth table of the constant multiplier where two input bits are X1 and X0, and four output bits are A, B, C and D, respectively.
- (b) simplify the circuit with K-map (SOP format) and draw the simplified circuit diagram of the constant multiplier.
- (c) implement the circuit on the breadboard

(a)	` /	χъ	1	1	b				D= X1X0	1	1
Cory		0	0	3	0	0	ى ا	0	C = XIXO	B (18 (
			2	b	0	1	1	0	B = X1X0+ X1X0	0	0
	1	ı	3	9	ı	0	J	1	B = X.	(

Components needed for LAB I

Names	Amount
Solerless Breadboard	×1
74LS04 NOT	×1
74LS08 AND	×1
74LS32 DR	×1

Lab II – Comparator(1/2)

- There are a 3-bit input X (represented as X^2 , X1 and X^0) and two 1-bit outputs A and B. The comparator is designed to let output A be 1 if X>3 and output B be 1 if X>4.
- The function of the comparator is described as follows.

$$A = \begin{cases} 1, & \text{if } X \text{ is } > 3 \\ 0, & \text{else} \end{cases}$$

$$B = \begin{cases} 1, & \text{if } X \text{ is } > 4 \\ 0, & \text{else} \end{cases}$$

Lab II – Comparator(2/2)

Please

- (a) draw the truth table of the comparator where three input bits are X2, X1 and X0, and two output bits are A and B, respectively.
- (b) simplify the circuit with K-map and draw the simplified SOP-format circuit diagram of the constant multiplier. Finally, implement the circuit on the breadboard.
- (c) repeat (b) by using the POS format.

AND

Components needed for LAB II

Names	Amount
Solerless Breadboard	×1
74LS08 AND	×1
74LS32 DR	×1

74LS04

Connection Diagram

Function Table

Input	Output
A	Y
100 X . Y	A H
H O	L L

H = HIGH Logic Level L = LOW Logic Level

74LS08

Connection Diagram

Function Table

Y = AB

In	Output	
JOOA	В	Y
1067.	TW	LW
L	Н	L
H	L	L
Hank	H	Н

H = HIGH Logic Level

74LS32

Connection Diagram

Function Table

Y = A + B

Inp	Output	
A	В	Y
00 JF	T	L
L C	Н	н
100H	L	н
HV.	H	Н

H = HIGH Logic Level L = LOW Logic Level