Linear Space

(1) Manh - Banneh 7hm:

(Analytic Form:

. It claims the extension of linear functional defined on a subspace.

Thm. P: E - IR satisfies ii) pextys pex) tpeqs. & x.y. (Minkorsky)

G \subseteq E overtor space) is subspace. g is a linear functional : $G \rightarrow iR$. St. g(x) = p(x). $\forall x \in G$.

Then exists $f: E \rightarrow iR$. St. f(x) = g. $\forall x \in E$. i.e. f extend g to whole space.

Pf: The ideal is collect able the functionals extending gex). By Zorn's Lemma, find the most thorough extension. prove it's fus.

1') $P = Ih: P(h) \le E \rightarrow IR \mid is linear. G \in D(M), D(M)$ With order "\(\times \) hi \(\times \) D(hi) \(\times \) Uhuk \(\times \) \(\times \) A \(\times \) D(hi) \(\times \) D(

2°) Denote f is the maximal element in P.

Prove: Defs = E.

By contradiction: $\exists X \in E/Dcf$.

Extend $f: heXttXo) = f(x) + tq. X \in Dcf$, $t \in A$ And $f(x) = f(x) + tq \in p(x) + tx$.

Which is a contradiction, since $h \ge f$.

Cor. G

E. lipear subspace. 9: 6

linear functional. Then there exists f

Et.

5t. fla = 7. Il flight = Il glight

Pf. Dominate. 9 by pox) = Il glight Il x II.

Check pur satisfies is. ii).

Gr. $\forall x_0 \in E$, exists $f \in E^*$. $5 + . \| f \| = \| x_0 \|$. $< f, x_0 > = \| x_0 \|^2$.

1f: Def gex) on 1/2xo: getxo) = +11x-11.

If. Ilf||E* = ||g||yx. = ||xo||. f|yx = 7.

Since g is bout!. linear.

female: f isn't unique.

Gr. XXEE. ||X|| = Sup || f(x)|| = prox ||for||

11 | feet | feet

10 | feet

11 | feet

11 | feet

12 | feet

13 | feet

14 | feet

15 | feet

16 | feet

16 | feet

17 | feet

18 | feet

Pf: || f(x) || = || f|| || || || .

The converse is from above!

For E is reflective Banach space

(i) 11f11=" Can be attained.

O Geometric Form:

It claims convex sets can be separated by linear functional.

Def: i) $M \in E$ is an affine hyperplane if Mis form: f = 4. for some $LE f \neq 0$

ii) M is a fulf space if M= Ef<13 or Ef>1).

for some LF f \$0.

prop. M= [f=1] is about () f is conti. (f is BLF).

If: (=) M° is open. $\forall x_0 \in M^{\circ}$. $\exists B_1 x_0, r) \leq M^{\circ}$. $prove : f < q \text{ when } x \in B_1 x_0, r)$ $0 \notin \text{funding } \exists x_0 \in B_2 x_0, r) . \exists t_0 \in f(x_0) > r$ $1 \iff \exists x_1 \in \overline{x_0 x_0} . \exists t_0 \in f(x_0) = q . \text{ fortradict!}$ $f(x_0 + f(z)) < r . \exists \in B_{00,1} . \therefore \|f\| \leq \frac{1}{r} (r - f(x_0))$

RMK: For a LO: $A: X \longrightarrow Y$, between n.v.s. Then: N(A) closed \Rightarrow A is both. $e\cdot \gamma$. X = span E con Suez = Y. $Aen = nen \cdot ||e_n|| = 1 \cdot \forall n \cdot ||N(A)| = E13$. Bnt if $lim Y = \infty$. It holds. $(\widehat{A}: X/N(A) \longrightarrow Y \cdot lineti)$

Def: i) $Ef=\alpha$] separates A.B. if $f(A) \leq \alpha \leq f(B)$. ii) separate strictly. if $\exists \ E>0$. $f(A)+E \leq \alpha \leq f(B)-C$ 1) 7hm. Cfirst geometric Form)

A.B = E.n.v.s. porempty. convex. Lisjoint

If A is open. Then exists a closed

affine hyperplane [f=q] separate A.B

Lemma. $0 \in C \subseteq E$. open. Lonvex. $\forall x \notin E$. Set

grange of C is proj = infly[qxec]

Then p(x) is Minkovsky. $\exists M>0$.

St. $0 \leq p(x) \leq M(|x|)$. and $C \leq p(x)$.

 $\frac{pf: 1')}{\frac{x+\eta}{p(x)+p(\eta)}} = \frac{p(x)+p(\eta)}{\frac{x+\eta}{p(x)}} + \frac{\frac{x}{p(x)}}{\frac{p(x)}{p(x)+p(\eta)}} + \frac{\frac{p(\eta)}{p(x)+p(\eta)}}{\frac{p(x)+p(\eta)}{p(x)+p(\eta)}} \in C.$

2') $\exists \beta(x,r) \in C \Rightarrow ||p|| \in \uparrow$ 3') $\forall x \in C$. $\exists \beta(x,t) \in C$. $\vdots p(x) < \frac{1}{1+c/||x||} < 1$

Lemma: Ufrom one points C = E. Convex. Open. If $3 \times 6 E/c$. Then Tf = f(x, y) separates T(x, y) and Cwhere $C \neq \emptyset$. $f \in E^*$.

Pf: By translation suppose OEC.

pox) is gauge of C.

Begain from G=1kxo: gitxi)=t.

: gctxo) = pitxo). Extend y to f.

 \Rightarrow Pf: For general case. Consider A-B and $\{0\}$.

A-B = UA-x is open. whenk A-B is convex.

Apply the Lemma. on $\{0\}$. A-B

RMK: $\{C\}$ = Y = $\{C\}$ can be relieved. $\{C\}$ is interval.

ii) 7hm. (Second geometric Form)

A.B = E. nonempty. convex. disjoint. If A is closed

B is upt. Then exists Ef=1) separates A.B. strictly. feE*.

Pf: A-B is Garden. And closed Cooper is trivial)

If I SZBJex net $\rightarrow Z$, prove = $Z \in A - B$.

Since $Z_1 = \chi_A - \gamma_A$, $\chi_A \in A$, $\gamma_A \in B$.

If. $Y = \chi_A - \gamma_A$, $\chi_A \in A$, $\gamma_A \in B$.

If. $Y = \chi_A - \gamma_A$, $\chi_A \in A$, $\gamma_A \in B$. $X_{Y(A)} = Z_{Y(A)} + \gamma_{Y(A)} \rightarrow Z + \gamma_A \in A$. Since A is close

 $Z_{(ar)} = Z_{(ar)} + \gamma_{(ar)} \longrightarrow Z + \gamma \in A. \text{ Since } A$

Permant: If A.B are only closed. A-B may not be closed.

Then the vonclusion may not hold!

Wr. $F \subseteq E$. linear subspace. $F \neq E$. Then $\exists f \in E^*$. $f \not\equiv 0$. St. f(x) = 0. $\forall x \in F$. i.e. $F \subseteq \ker f$.

Pf: $\exists IX63 \subseteq E/F$. Superate IX.63 and F. $\exists f \in E^*, q : \langle f, x \rangle \leq q \leq \langle f, X_0 \rangle.$ Note that F is linear subspace $\exists \forall \lambda \in R$. $\langle f, \lambda x \rangle = \lambda \langle f, x \rangle \leq q$. $\therefore \langle f, x \rangle \geq 0$.

Car. BLF & vanishes on F = Vanishes on E. Then F & E

1) Linear Span: S=1xi3". LScs) is the Smallest
linear space Containing S. i.e. the
intersection of L.S. Contains S.

Prop. Ls(s) = {-1 += = = = x, x; , x; t = x}.

Pf: 1') RMS is a linear space containing S.

2') \forall L.S containing S will contain RMS. $\therefore LS(S) = [4]\alpha = \frac{\pi}{L}\lambda(X', \lambda(6'k)).$

=> let for governe core on

ii) Given set: $S = \{x_i\}_i^n$. Denote Cinv(s) is the Convex set generated by S. i.e. $x_i, y_i \in Conv(s_i) \Rightarrow ax + (i+a)y_i \in Conv(s_i)$.

Prop. ConvCIXII,) = IX | X = $\overline{\Sigma}_{qiXi}^{r}$, $\overline{\Sigma}_{qi}^{r}$ = 1).

Pf: By induction, for $\overline{\Sigma}_{qi}^{r}$ = 1. $\sum_{i=1}^{kn} \overline{\Sigma}_{qiXi}^{r} = q_{kn} \overline{\Sigma}_{kn}^{r} + (1-q_{kn}) \sum_{i=1}^{k} \overline{\alpha}_{i}^{r} \overline{\Sigma}_{i}^{r}$ Since $\overline{\Sigma}_{kn}^{r}$, $\overline{\Sigma}_{qiXi}^{r}$ = ConvCIXII.) $\sum_{i=1}^{kn} \overline{\Sigma}_{qiXi}^{r}$ = ConvCS.

1 Banach Space:

e.g. & X. n.v.s. X* 15 Banach. C 1t'is complete)

Next, we will complete a. n.v.s X with initial norm 11-11.

i) Step one:

Denote: $Z = I(X_i) | X_i^n \in X$. $IX_i^n |_{\partial E_x^{\perp}} is Canchy Seq 3$. $Y = I(X_i) | X_i^n \to 0 \ (n \to \infty)$, $X_i^n \in X_i^3$. $X_0 = I(X_k) | X_k^n = X$. $\forall n$. for some $X \in X_i^3$.

Then: Z. Y. Xo are linear space.

We claim: Z/4 = Xo

ii) Step two:

· Define: F(Xi)] E =/4 with norm || E(Xi)] || = |im ||Xi||.

Check it's well-defined.

iii) Stop three:

prove: (Z/4, 11.11) is a Banach Space

For Convoly seq $L C(X_i) T_i^2 = in \frac{Z}{Y}$.

Check $C(X_i) T_i - C(X_i) T_i = C(X_i - X_i) T_i$ holds.

Since $H I = \frac{1}{2H^2}$, $\exists N_P \cdot St_i \cdot I_i > N_P > N_{P1}$ If $C(X_i) T_i - C(X_i) T_i = || C(X_i - X_i) T_i|| < \frac{1}{2H^2}$ i.e. $|| Im || X_i^2 - X_i^2 || = \frac{1}{2H^2}$, $\therefore \exists N_P \cdot St_i \cdot || X_i^{N_P} - X_i^{N_P'} || < \frac{1}{2H^2}$ Denote: $C(X_i) = C(X_i)^{N_i} \cdot X_{N_i}^{N_i} \cdot \dots \cdot X_{N_P}^{N_P} \cdot \dots \cdot)$ i.e. $X_i^2 = X_i^{N_R}$.

Busines, lim 11 Ecxis] - [(x)] 11 = 0

Since 11 Xi - X 11 = 11 Xi - Xi 11 + 11 Xi - X 11

:. [(xi)] -> [(xi)] in (Z/Y. 11.11)

iv) Step Four:

Prove: Z/4 = Xo Since we have proved Z/4 is closed.

- 1) X, = Z/Y =) X, = Z/Y.
- 2') $\forall \Gamma(X) \exists f \exists / Y. \exists \int \Gamma(\eta_n) \exists \int_{A \in \mathbb{Z}^+} f \cdot f \cdot f$ $\eta_n^k = \chi_i^* \cdot \forall k. : \Gamma(\eta_n) \exists \rightarrow \Gamma(X) \exists$ $\vdots \quad X_i \supseteq Z/Y.$

@ Finite Rimensional n.v.s:

Suppose X is a linear space. Lim X = N. $LZ_{k}S_{k}^{*}$ is the Basis of X. For $X = \sum_{i=1}^{k} \chi_{i}(x) Z_{i} \in X$, we can Lefine a para $||X|| = \sum_{i=1}^{k} |q_{i}(x)||$

i) Lemma. Boo.17 = IX | 11×11 = 13 is oft in X

Pf: Y (Xn) & B(nn). ∑|xi(Xn)| = 1. ∴ JIrk} ⊆Z. It. 91 (Xnk) converges YISISY.

: (Xox) Gaverges in Bloss)

Lemma. All norms in X are equivalent with 11.11.

Where $1|x|1 = \sum_{i=1}^{n} |q_i(x)|$.

but. I (1nk) = (12). Li(1nk) Converges. VI = i = N. = ITHOMANI=1 +0 Contradiction! C.r. Y norm 11.11 in X. Aim X = - . Bx = [11x11=1] is ept. Thr. & norm. 11.11. CX. 11.11) is Banneh. Pf: 11 xp- X2 11 = 5 = I | x: (xp) - 9: (X2) | = CI. Si caicxpi) p converger. A Isish. -> cai). : Xp -> I KiZi = X E X. prop. E is n.v.s. X = E. Lin X = a . Inbspace = X = X. Pf. Y (Xn) EX -> X in E. = (Xn) is Camply. So Lticxolla nec landy. X = I ticxolzi. = = I (Xnx) - X = I dizi & X. RMK: Remove "finite". it may not hold. i) F n.v.s. Limf = S => F is not Bannoh. Pf: (fn) nez is basis of F. Fn: span (fi). F = UFn. union of CLS. Apply Baire 7hm. if F is Banach. Which runs into automatict! => F = E. Barmah. lim F = 5. There F ish'+ CLS.

ii) Convergent Net = Cauchy Jenerally (*).

Prop. lim X < ... F is Barach Space. T = X -> F. linear.

=> T is \$10.

since Pegis Tilpage : 3 3,700

Prop. c About Dual Space)

X is Bannoh Space St. X* is finite Limensional.
Then X is also finite Limensional. Lim X = Lim X*.

Pf: lemmn. lim X < 00 => lim X x 00

Pf. $X = Spantei3i^n$. then $X^{\#} = Spantfis^n$ where ficx) = Xi. $X = \tilde{I}Xiei$ $\therefore Aim X = Aim X^{\#}$.

Aim X* = Rim X** and X = Jox) = X**.

Lim X = Lim X*. Jis cononical injection.

RMK: lim X = 00 = lim X* > lim X. mag happen.

1 Infinite dimensional p.v.s:

i) prop. X is, n.v.s. LimX = 00. Then Blo.1) isn't ups in X.

Gr. Blo.1) is upt in X (Lim X < 00.

Piesz's Lemma: X is at M.V.s. Y = X closed linear subspace.

Y = X . Than Y = >0 . In. It. IIII = 1. and

Pist cu. Y) > 1-1.

If: $\exists V \in X/Y$. Nemotic, $\lambda = \lambda i s \epsilon_i v. Y$). $\exists m \in Y. \quad f \circ \circ \cdot \cdot \lambda \leq \lambda i s \epsilon_i v. m$) $\leq \frac{\lambda}{1-s}$ Then $n = \frac{V-m}{||V-m||}$ is what we mid.

Return to the Pf:

Since exist (En) set of subspaces of X.

St. En & Enti. I (un) set of elements.

St. Un & En. Humil=1. Aist (un, Ent) > \frac{1}{2}

: || Un - un || > \frac{1}{2}. for n > m. Which is divergent!

ii) Closed linear Span:

Deg: A = [Xo] oet. CLS of A is the Smallest linear cloud.

Let containing A. i.e. A Fp.

ASFP

prop. CLSCA) = I Titixei | No. 1. wiea. 8:013

7hm. ZEA. iff & LEX*, st. Lexo)=0. Voez.

⇒ 1(E)=0

Pf: (=) Z=lim Zn = lim I qn; Xon;

Then by 1 is worth : 1(2)=0

(E) Suppose Z&A. Then haf fon A+1/k2

f(A)=(0). f(k2)=k Aiso(Z,A) #0.

By Mahn-Banach Then extend to f on X.

If EX*. which is a contradiction.

(4) Dual of n.v.s:

O Linear Function:

Def: l is LF. in X metrizable space. l is watir \Leftrightarrow $\forall (X_h) \subseteq X \rightarrow \chi$. $l(X_h) \rightarrow l(X_h)$ l is bound \Leftrightarrow $||4|| = Sup ||l(X_h)|| < \infty$ $||X_h|| \le 1$

prop. 1 is a LF, then 1 is conti of t is bound.

Pf: (=) | $\ell(x_n) - \ell(x_n)$ | $\ell(x_n) + \ell(x_n)$ | $\ell(x_n) \rightarrow \ell(x_n) \rightarrow \ell(x_n)$.

(⇒) If $\exists (X_n), \exists t. ||X_n||^2|. \forall n \in \mathbb{Z}^+.$ $|\forall (X_n)| \Rightarrow n. \exists ||X_n||^2|. \forall n \in \mathbb{Z}^+.$ $|\forall (X_n)| \Rightarrow n. \exists ||X_n||^2|. \forall n \in \mathbb{Z}^+.$ $\frac{X_n}{J_n} \rightarrow 0. \quad B_{nt} \quad ||\forall (\frac{X_n}{J_n})| \rightarrow \infty.$

O Dual of X:

i) Def: $X^* = \{f \mid f: X \rightarrow iR \text{. anti.LF}\}.$ $N_4 = \{Z \notin X \mid L(Z) = 0\} \text{. kernel of } 1.$

Thm. For $l \in X^*$. No is closed linear space

If $l \neq 0$. Then $\exists X \in X$. for may $\eta \in X$. $\exists q \in k$. $m \in Na$. $\eta = q \times + m$. $Pf: \exists X. St. l(x) \neq 0$. $\therefore \exists q. St. l(y) = q \cdot l(x)$.

Lut m= 7- 4x. ENI.

Gr. X = ZE Na. 1 is LF. Z = EAX | acik }. 11x) +0.

So colim Na = 1. Moreover. if Ne = Ng. Then 1 = Cg.

ii) Dunt of Craibs:

· Suppose X is upt. Separable measure space

For (CCX), $||\cdot||_{CUX}$). $||f||_{CUX} = \sup_{X \in X} |f(X)|$ and $\sup_{X \in X} ||f(X)||_{CX}$ measure space $CMX \cdot ||\cdot||_{MX}$. $||M||_{MX} = |M^{+}(X) + |M^{-}(X)|$.

Thm. Chiesz Representation) $C^*(x) = Mx$. i.e. $\forall l \in C^*(x)$. $l: (lx) \rightarrow R$. $\exists v \in Mx$. $\exists t$. $\prec l$. $q = \int_X q \lambda v$. $\forall q \in C(x)$ Besides. ||v|| = ||q||.

Pf: Only consider the case X = LaibJ.

1°) Mx = BVx $\forall v \in Mx$, $Pef: \{ct\} = V(ln)\} + V(n,+)$.

Since $v = V^+ - V^-$. Lifterence of increasing

Let $v \in BVx$. $v \in BVx$. $v \in BVx$.

V [a. 17 = (ch) - (ca)

By Carathéology, extend V to 8-algebra M.
Where M is generated by [cc,k] U[Ea,d].

Def: 11.11 in BVx is 11e11=Teca,b]. ::11e11=11011.

29) Extend 1 on CIA, b] to BIA, b].

Since CIA, b] = BIA, b]. 1 is BLF

By Mahn-Bannet Thm. FL. Lleiner = 1.

And ILII = 11411.

Next. we will consider L rather than 1.

3°) By Approximation. For XIA. 27 & BIA. 67.

Def: Li XIA. 27 = VIA. + 3 = lit.

Prove: Litt & BVIA. 67.

Since Kext = I Si X crientis 51. : 26 BVx = V EMX.

: 11 = 1111

Conversely. Since $L(\chi_{Em+1}) = lot)$. $||l| = Sup \Sigma | l(ti) - l(ti)| = Sup|l(R)| = ||l||$.

: 11211 = 11111 = 11211.

3) Extension of BLF's:

Prop. For IXi)," =X. n.v.s. IXIS," = R. ∃ L: X → R.

L is BLF. St. L(Xi) = Xi. YISISN.

Pf: Consider the subspace Y = Spane Xi3, Let dexi) = xi

1: Y -> 1R. |1c = pixi>| = maximil (IIpil) = clixil.

1: 1 is BLF. By Maha-Banach Thm. V.

Cor. Y = X. Nim Y = 00. Then exists about linear space M.

St. X = Y + m. (Finite Limension relaits complement)

Pf: SXi3," is Basis of Y. Let Licx;) = Sij.

: M = MMi is Closed. Check X = Y + M.

4 Norm in subspan:

 $Y \leq X$. linear subspace, $d \in X^{*}$. Then $||d||_{Y^{*}} = \sup_{y \in Y^{*}} |Q_{y}||_{Y^{*}}$ = $\inf_{m \in Y^{*}} ||d-m||_{X^{*}} = \text{Rist}(1, Y^{*})$

(5) Biland and Orthogonality:

O E is n.v.s. Bilman E** is how of E*. With morm:

11511 = ** = sup 1 < 4. f>1.

foto
after

Def: Canonical injection: $J: E \to E^{**}$. Satisfies $\chi \mapsto J\chi$. $\langle J\chi, f \rangle = \langle f, \chi \rangle$. $\forall f \in E^{*}$. $\Rightarrow J$ is linear. isometry. $||J\chi||_{E^{**}} = ||\chi||_{E}$.

O Det: For MSE. linear subspace.

female. Note that N'EE rather than Ett.
We may have following proposition.

ii) (N') = M

Pf: $(M^{+})^{+} \geq M \quad (N^{+})^{+} \geq N$ $(M^{+})^{+} \geq \overline{M} \quad (N^{+})^{+} \geq \overline{N}$ If $\exists X_{0} \in (M^{+})^{+} \quad X_{0} \notin \overline{M} \quad B_{1} \quad M_{n} + n - B_{n} = n + 1$ $\therefore = f_{1} \times x_{2} < q_{1} < f_{2} \times x_{3} \cdot V \times E_{1} \cdot \overline{M} \cdot (f_{1} \times x_{2} = n + 1)$ $\therefore = f_{1} \times x_{3} < q_{1} < f_{2} \times x_{3} \cdot V \times E_{1} \cdot \overline{M} \cdot (f_{1} \times x_{2} = n + 1)$ $\therefore = f_{1} \times x_{3} < q_{1} < f_{2} \times x_{3} \cdot V \times E_{1} \cdot \overline{M} \cdot (f_{1} \times x_{2} = n + 1)$ $\therefore = f_{1} \times x_{3} > n \cdot W_{1} \cdot (h + 1) \cdot$

If E is reflective. Then (N) = N

(6) Enjugate Convex Functions:

· Denote: 1) 9: E -> 1-00, tal. DUY) = 1x+E/ Y(x) = +03.

ii) Epigraph of & is: epice = [(x.) = ExiR, Yunsk].

i.e. epice = U sy=x3xsx3.

Next. we suppose E is topo space.

O LSC and USC Furtions:

E.J. The won't change eruptly over lower with the semi-part.

for y is less.

permate: f is l. s. c and u. s. c \Leftrightarrow f is forti Pf: (\Rightarrow) . $\Gamma f = nJ$. $\Gamma f \geqslant bJ$. are closed So $\Gamma b \neq f \neq aJ = \Gamma f \neq aJ \cap \Gamma f \geqslant bJ$ flow. Since $\Gamma (-m, nJ) \cup \Gamma (b, +m) \cup \Gamma (a, bJ)$ generate closed set in R'.

properties: i) lisic /nisic Function forms a linear space.

ii) y is lisic \implies epicy) is closed in Exil

Pf: $\forall (x,\lambda) \in epi(e)^c$. Then $\forall (x) > \lambda$. $\exists z > 0$. $j \neq .$ $(ex) > \lambda + z$. Busines, $\exists Ux \circ f x . S \neq .$ $\forall q \in nx$. $\forall (eq) > \lambda$. Tince $\forall i \in l.s.c$.

Then $(x,\lambda) \in U_{x} \times (\lambda + z, \lambda + z) \subseteq epi(e)^c$. Consume is Similar.

iii) Y is lise & AXEE. AESO. 3Mx 20.

thenx. Pin) = Yex)-z.

Pf: (=) XE { Y > Y(X)- { } } Optor.

(E) For XE EY> AJ. 3200. St. Yex) > A+21.

Then Mx = EY> AJ. Since Jenx = Yeg>> A+2.

Cor. YEXAS SE. Xn → X. Then lim YCXn) > YCXs.

for Y is 1.s.c.

If: IMn. St. Xtun. 49tun. Ycy)>Ycx)-to

Then For Xn -> X. Ink. Yc Xnk)>Ycx)-to

Remark: Goversoly, if E is meetizable

under the no Mition. Then Y:1.1.c.

Pf: $\forall IXnJ \subseteq IY=\lambda J. ft. \ Y(Xn) = \lambda.$ $\chi_n \to \chi$. Then $Y(x) \leq \lim_{n \to \infty} Y(xn) = \lambda.$

iv) If E is upt. & is l.s.c. Then inty can be achieved.

Pt: Lemma inf & >-00.

Elepany enefor Custs com of

Pf: supper infle=-a. By untradiction:

(+), By iii). Yx + Yn. 3Ux. neighbour

5+. 49 e Ne. Yly> = Ylx>-1 > n.

Let $\Sigma = \frac{y(x)-n}{2}$: $Y_n = U_{x}$

Let Yo = E & Y < PO] . Yn = [-n < Y < - NT] open.

: E = UYn . By upt E = UYnk

(A) T = N (A) T CONT CONTICON (CT)

: Yex> > - N. Watradiet!

⇒ Analoguely. Suppose & can't attain info = c

Then $E = E C < \psi J = (\tilde{V} E C + \frac{1}{n} < \psi < C + \frac{1}{n} J) U E | < \psi < \omega J$. By upt. $E = (\tilde{V} E C + \frac{1}{nE} < \psi < C + \frac{1}{n+1} J) U Y_0 \cdot U$ which is same contradiction!

Permark: For u.s.c Function it also has the Muniproporties. Note that u.s.c Func can attain
suprum on cyt set. That's why Conti Func
can attain extremum on cyt set!

@ Gonvex Functions:

Def: $y: E \rightarrow (-\sigma, too)$ is convex if y(t) + (-t)y(t) + (-t)y(t). $\forall x, y \in E. \ \forall t \in (0,1)$

properties: i) γ is convex \Leftrightarrow equeval is convex.

Pf: \Leftrightarrow Chuk (\Leftarrow) (x_1, y_1x_2) . (x_2, y_2x_3) \in epicy,

- ii) y is GAVEX => YXEIR. EYEXI is GAVEX.
- iii) Convex Functions form a linear space.
- iv) (Yi)ies family of GANUEX Func's. Then

 sup y: is convex. (By sup f+g = supf+ supg)
 ios

3) Conjugate Functions:

Suppose E is an n.v.s.

Def: $y: E \longrightarrow (-\infty, +\infty)$. $y \not\equiv +\infty$. Its conjugate Func. $y^{\sharp} = \sup_{x \in E} \{x : E \longrightarrow (-\infty, +\infty)\}$: $E^{\sharp} \longrightarrow (-\infty, +\infty)$.

Femole:) From: <f.x> = \(\psi(x) + \psi^*cf \). \(\text{X} \in \text{E} \). \(\frac{f \in \text{E}^*}{E^*}. \)

It's could Young's Inequility clot \(f = \frac{|\psi|/p}{p} \)

ii) \(\frac{f}{f} \) is convex and \(\lambda \si.6 \). \(\since \text{For } \text{fixed} \)

\(\text{X} \in \text{E} \). \(< f, \text{X} \rangle - \psi(\text{X}) \) is convex. \(\lambda \si.6 \). \(\text{On } \text{E}^*. \)

\(\text{Conti} \) \(\text{Actually} \). \(\text{Hen } \text{take } \sinp \text{envolope}. \)

prop. Y: E -> (-00. TOO). CONVEX. I.S.C. Then we have:

Y\$ +00 => Y* \$ +00.

Pf: Apply Mahn-Banach Thm on epicy)

not I(X., 1.1) where Xot Depi. Ah. ho < yexo)

Let fex) = P E X.+7. Note that Dey) x son 3 = epicy.

Ytef) = Sup I fex) - pox) I actually!

XEDIY)

Def: y^{**} : $E \rightarrow (-e,+e)$. $y^{**}(x) = Sip S < f.x > - y^{*}(f)$ $= Sup S < f.x > - y^{*}(f)$ $\forall x \in E$ $f \in D(y^{*})$

Thm. (Frenchol-Morean)

Y: E -> (-m. +p) Gavex. 1.s.c. Y\$+p.

Then Y**= Y.

Pf. 1°) Under 830:

Note that < f.x> = 4tf1+4.x).

: 4(x) > 4**(x)

For the converse, by controliction. let pexispexis.

Apply Manh - Banach on Epicy, and (Xo. YEX.) use the def of &* &** contradict with itself.

2°) General lan: Let $\overline{\psi}(x) = \psi(x) - \langle f, x \rangle + \psi^{\dagger}(f_0) \geqslant 0$. I.s. c. convex. Where $f_0 \in D(\psi^{\dagger})$. Since $\psi^{\dagger}(x) \Rightarrow \psi^{\dagger}(x) \Rightarrow \psi^{\dagger$

7hm. (Fenchel-Rockafeller)

 $\psi, \psi : E \longrightarrow (-\infty, +\infty). \quad \text{Convex. If } \exists X \in D(\psi) \cap D(\psi)$ Then, we obtain: $\inf_{x \in E} y \in \text{Continut} \quad \text{Sup}_{x \in E} \quad \text{Sup}_{x \in E} \quad \text{Sup}_{x \in E} \quad \text{Convex}_{x \in E} \quad \text{Convex}_{x \in E} \quad \text{Sup}_{x \in E} \quad \text{Convex}_{x \in E} \quad$

bemmn. If c is convex in E. n.v.s. Them I and int c are both convex.

2.7. Penne $J_k = \begin{cases} \infty, \times 6k^{\alpha} \\ 0, \times 6k \end{cases}$: $J_k^{\alpha} = J_{k+1}^{\alpha} \text{ if } k \text{ is a}$ linear subspace. We can obtain: for $k \neq X$, convex. $linear \text{ subspace.} \text{ We can obtain: } for k \neq X, \text{ convex.}$ $linear \text{ subspace.} \text{ inf } || X - X_0|| = \inf \{ || X - X_0|| + J_k \} = \max \{ (< f_1 \times 0) - J_k^{\alpha}(f_1) \}$ Xo E Yo E

If k is linear subspace Than pist (Xo. K) = mex < f. Xo >

fekt

ufile)

It's Anal with list (d. Y) = swp / logs 1. d & E*. Y & E*.