$\begin{array}{c} \textbf{Tabelle 1} - \text{Wichtige Range Adapters des C++20-Standards} \\ R, V \text{ sollen für Eingangs-Range und Ausgang-View stehen} \end{array}$

10, 7 bonon far Ellingango familia familia vicina succion		
Adapter	Argument	Beschreibung
all		Erzeugt View V aus allen Elementen der Range R
counted*	$(begin, n \in \mathbb{N})$	V := R[begin, begin+n)
filter	$P: T \to \{0,1\}$	$V := (r_0, \dots, r_{n-1} \mid 0 \le i < n = R : r_i = R[i] \land P(r_i) = 1)$
transform	$\pi:T\to T'$	$V := (r'_0, \dots, r'_{n-1} \mid 0 \le i < n = R : r_i = R[i] \land \pi(r_i) = r'_i)$
take	$i \in \mathbb{N}$	$V := (r_0, \dots, r_{i-1} \mid 0 \leqslant j \leqslant i < R : r_j = R[j])$
take_while	$P:T\to\{0,1\}$	Wie take mit $i := \min(\{j \mid P(R[j]) = 0\})$
drop	$i \in \mathbb{N}$	$V := (r_i, \dots, r_{n-1} \mid i \leqslant j \leqslant n = R : r_j = R[j])$
drop_while	$P:T\to\{0,1\}$	Wie drop mit $i := \min(\{j \mid P(R[j]) = 0\})$
reverse		$V := (r_0, \dots, r_{n-1} \mid 0 \le i < n = R : r_i = R[R - i - 1])$
elements	$T_1 \times \cdots \times T_n \to T_i$	Erstellt View durch Abbildung der Eingangstupel auf das i . Element
	$R \longrightarrow V$	
keys	$\underbrace{T_1 \times T_2}_R \to \underbrace{T_1}_V$	Erstellt View aus dem ersten Elementen der Eingangsdupel
	R V	
values	$\underbrace{T_1 \times T_2}_R \to \underbrace{T_2}_V$	Erstellt View aus dem zweiten Elementen der Eingangsdupel
	R V	
join		Erstellt eine "glatte" View aus einer Range, die aus Ranges besteht
split		Erstellt eine View aus einer an einem Trennzeichen gestückelten Range
common		Erstellt Views mit gleich-typisierten begin und Sentinel aus Ranges,
		für welche das nicht zutrifft

[|] für welche das nicht zutrifft *: ist nicht unter ranges::counted_view verfügbar

Tabelle 2 – Wichtige Range Adapters des C++23-Standards - Abkürzungen wie $1\,$

Adapter	Beschreibung
$ exttt{zip}\langle exttt{_transform} angle$	$\underbrace{\overbrace{T_1}^{R_1} \times \cdots \times \overbrace{T_n}^{R_n}}_{R} \to \underbrace{T_1 \times \cdots \times T_n}_{V}$
$\verb"adjacent' (_\texttt{transform})"$	Erstellt V aus Ranges von Teilsequenzen der Länge n von R
join_with	Wie join 1 mit Einfügen von Trennzeichen zwischen die geglätteten Strukturen
$\mathtt{chunk} \langle \mathtt{_by} \rangle$	Erstellt V aus Subranges der Länge n von R
slide	Wie adjacent, nur dass Tupel anstatt von Ranges gebildet werden
stride	Erstellt V aus jedem i . Element von R
enumerate	$T \to \mathbb{N}_{\!ee} imes T: t_i \mapsto (i, t_i)$
cartesian_product	

 $[\]ast:n$ muss zur Übersetzungszeit bestimmt sein