

IN THE CLAIMS:

Please amend the claims 1, 4, 25-28, and 32, and 36 and add new claims 59-63 as follows, and please cancel claims 3, 5-9, 18-23, and 56-58 as follows.

1. (Currently Amended) A process for the manufacturing of a decorative laminate, which laminate comprises an uppermost decorative and abrasion resistant thermosetting laminate layer and a carrying core, wherein the upper side of the core is provided with the abrasion resistant thermosetting laminate and that the lower side of the core consists of a balance layer, said balance layer having the purpose of preventing warping of said decorative laminate and at the same time having the purpose of acoustic dampening, said balance layer comprising a layer of a polymer, said polymer consisting of a thermoplastic polymer whereby said balance layer and said thermosetting laminate are joined with said core by means of pressing, ~~that said carrying core further is provided with a dampening foil of an elastomer arranged between the upper side of the core and the abrasion resistant thermosetting laminate which elastomer and thermosetting laminate are joined with each other and with the core by means of pressing,~~ whereupon the achieved laminate is cut into panels and provided with edges intended for joining and, wherein the balance layer is constituted of a thermoplastic elastomer.
2. (Previously Presented) A process according to claim 1, wherein the thermosetting laminate is constituted by one or more decor papers impregnated with melamine-formaldehyde resin and one or more overlay sheets impregnated with melamine formaldehyde resin arranged on top of the decor papers and possibly one or more resin impregnated underlay papers, arranged under the decor paper or decor papers, which papers are laminated together under increased pressure and increased temperature.
3. (Cancelled).

4. (Original) A process according to claim 1, wherein the carrying core is constituted by a fibre board.

5-9. (Cancelled).

10. (Previously Presented) A process according to claim 2, wherein at least one of the sheets impregnated with thermosetting resin is provided with hard particles with an average size of 1 - 100 µm.

11. (Previously Presented) A process according to claim 2, wherein the thermosetting laminate has a thickness in the range 0.3 mm - 1.2 mm

12. (Previously Presented) A process according to claim 2, wherein the thermosetting laminate has a density in the range 1250 - 1500 kg/m³.

13. (Cancelled).

14. (Previously Presented) A process according to claim 1, wherein the balance layer has an elasticity compression coefficient in the range 0.5 - 2.7 MPa.

15. (Previously Presented) A process according to claim 1, wherein the balance layer has a thickness in the range 0.1 - 5 mm.

16. (Previously Presented) A process according to claim 1, wherein the balance layer has a density in the range 50 - 400 kg/m³.

17. (Previously Presented) A process according to claim 1, wherein the balance layer is joined with the carrying core by means of glue and pressure.

18--23. (Cancelled).

24. (Previously Presented) A process according to claim 1, wherein the balance layer further comprises a conductive material.

25. (Currently Amended) A process according to claim 24, wherein the conductive material comprises ~~is constituted of~~ carbon black.

26. (Currently Amended) A process according to claim 24, wherein the conductive material comprises ~~is constituted of~~ carbon fibre.

27. (Currently Amended) A process according to claim 24, wherein the conductive material comprises ~~is constituted of~~ a vacuum metallized layer.

28. (Currently Amended) A process according to claim 24, wherein the conductive material comprises ~~is constituted of~~ aluminium aluminum.

29. (Previously Presented) A process according to claim 24, wherein a conductivity is better than 500k Ω cm.

30. (Previously Presented) A process according to claim 1, wherein the thermosetting laminate is joined with the carrying core by means of glue and pressure.

31. (Previously Presented) A process according to claim 1, wherein at least one of the balance layer and the thermosetting laminate is joined with the carrying core by at least one of melt-glue, heat and pressure.

32. (Currently Amended) A process according to claim [[1]] 63, wherein at least one of the balance layer and the thermosetting laminate is joined with the carrying core by at least one of glue, heat and pressure.

33. (Previously Presented) A process according to claim 32, wherein the glue comprises a conductive material.

34. (Original) A process according to claim 33, wherein the conductive material is constituted of carbon black.

35. (Original) A process according to claim 33, wherein the conductive material is constituted of carbon fibre.

36. (Currently Amended) A process according to claim 33, wherein a conductivity is better than 500k Ω cm 500 k Ω cm.

37. (Previously Presented) A process according to claim 1, wherein the thermosetting laminate has a thickness in the range 0.3 mm - 1.2 mm.

38. (Previously Presented) A process according to claim 37, wherein the thermosetting laminate has a density in the range 1250 - 1500 kg/m³.

39. (Previously Presented) A process according to claim [[1]] 63, wherein the dampening foil is constituted of a thermoplastic elastomer.

40. (Previously Presented) A process according to claim 39, wherein the dampening foil has an elasticity compression coefficient in the range 0.5 - 2.7 MPa.

41. (Previously Presented) A process according to claim 39, wherein the dampening foil has a thickness in the range 0.1 - 0.7 mm.

42. (Previously Presented) A process according to claim 39, wherein the dampening foil has a density in the range 150 - 400 kg/m³;

43. (Previously Presented) A process according to claim 39, wherein the dampening foil and the thermosetting laminate are joined with the carrying core by means of glue and pressure.

44. (Previously Presented) A process according to claim 41, wherein the dampening foil and the thermosetting laminate are joined with the carrying core by means of at least one selected from the group consisting of melt-glue, heat and pressure.

45. (Previously Presented) A process according to claim 41, wherein the dampening foil and the thermosetting laminate are joined with the carrying core by each of melt-glue, heat and pressure.

46. (Previously Presented) A process according to claim 10, wherein the hard particles have an average size of 5 - 60 µm.

47. (Previously Presented) A process according to claim 2, wherein the thermosetting laminate has a thickness in the range 0.3 mm - 0.9 mm.

48. (Previously Presented) A process according to claim 1, wherein the balance layer has a thickness in the range 0.2 - 1 mm.

49. (Previously Presented) A process according to claim 1, wherein the balance layer has a density in the range 80 - 330 kg/m³.

50. (Previously Presented) A process according to claim 1, wherein the thermosetting laminate has a thickness in the range 0.3 mm - 0.9 mm.

51. (Previously Presented) A process according to claim 39, wherein the dampening foil has an elasticity compression coefficient in the range 0.8 - 2.0 MPa.

52. (Previously Presented) A process according to claim 39, wherein the dampening foil has a thickness in the range 0.1 - 0.5 mm.

53. (Previously Presented) A process according to claim 39, wherein the dampening foil has a density in the range 180 - 330 kg/m³.

54. (Previously Presented) A process according to claim 10, wherein the hard particles are at least one selected from the group consisting of silicon oxide, aluminum oxide and silicon carbide.

55. (Previously Presented) A process according to claim 2, wherein the laminate comprises underlay papers and said underlay papers contain phenol-formaldehyde resin.

56-58. (Cancelled).

59. (New) The process according to claim 1, wherein the thermoplastic polymer is a thermoplastic elastomer.

60. (New) The process according to claim 1, wherein the thermoplastic polymer is a polyolefin.

61. (New) The process according to claim 1, wherein the balance layer also comprises a non-woven fiber layer.

62. (New) The process according to claim 61, wherein the non-woven fiber layer comprises cellulose.

63. (New) The process of claim 1, wherein the carrying core is further provided with a dampening foil of an elastomer arranged between the upper side of the core and the abrasion resistant thermosetting laminate, which elastomer and thermosetting laminate are joined with each other and with the core by pressing.