Implementación de un sistema de antena para autoseguimiento basado en técnicas de monopulso

Gluzman, Brian Maximiliano Mele Nociforo, Christian Iván

Director: Ing. Jorge Márquez

Co-Director: Ing. Juan Carlos Bonadero

Laboratorio de Comunicaciones

Centro de Experimentación y Lanzamiento de Proyectiles Autopropulsados II

Introducción

- Prototipo funcional de un sistema pasivo de seguimiento de un objetivo móvil del cual se recibe un señal RF.
- Se lo utilizará montado en un sistema de antena de satélites de órbita baja y vehículos no tripulados.
- Señal de trabajo en RF: 1.8 GHz.
- Técnica utilizada: Monopulso

Monopulso

- Radar de rastreo.
- Señales en este tipo de radar: Azimut y Elevación.
- Aplicaciones:
 - Control táctico de misiles
 - Rastreo de objetivos conocidos o desconocidos
 - Análisis de trayectorias y variaciones de eco
 - Aplicaciones de soporte
 - Seguimiento de satélites, UAV, cargas de globos.

Funcionamiento de Monopulso

- Para una señal de error:
 - 2 lóbulos
 - Plano de perspectiva
 - Error es la diferencia entre perspectiva y posición real
- Para dos señales de error:
 - 4 lóbulos/2 planos perpendiculares
- Ventajas del monopulso:
 - Cuatro lóbulos simultáneos
 - Un único pulso de medición
 - Libre de vibraciones mecánicas
 - Eficiente
 - Puede ser pasivo

Tipos de Monopulso

- Por medición:
 - Amplitud
 - Fase

- Por cantidad de canales:
 - Un canal
 - Dos canales
 - Tres canales

- Sistema Propuesto:
 - Sistema de medición de amplitud
 - Canal único

Pseudomonopulso

- Sistemas de canal único
 - TDM
 - FDM
 - SCAMP
 - Pseudomonopulso

- Pseudomonopulso:
 - Multiplexa las señales de diferencia, en una sola
 - Sistema de conmutadores (Conversor de Monoscan) y Sumador (Acoplador)
 - Controlado por Electrónica de Monopulso (microcontrolador)
 - Utiliza más de un pulso

Ventajas:

- Complejidad menor
- Baja degradación de la señal
- Bajo costo
- Buen rango dinámico
- Confiable
- Buena sincronización con antena
- Error de rastreo aceptable y corregible

Señal esperada a la salida

Etapas

- Antena
- Comparador
- Sistema de conmutadores

(o convertidor Monoscan)

- Electrónica de Monopulso
- Acoplador direccional
- Receptor
 - Amplificador de bajo ruido (LNA)
 - Mezclador
 - Oscilador Local
 - Demodulador

- Sistema de Control
- Sistema de servos y motores

Comparador

- Objetivo: generar señales las señales de diferencia y de suma.
- Configuración específica, basada en las ecuaciones generadoras:
 - $(A+B+C+D)/2 \rightarrow Suma$
 - [(A+C)-(B+D)]/2 → Elevación
 - [(C+D)-(A+B)]/2 → Azimut
- Se utilizan dispositivos especiales, que generan suma y resta de señales electromagnéticas.

Acoplador Híbrido

- Tipo de línea de transmisión pasiva de cuatro puertos.
- Poseen dos entradas y dos salidas.
- Se construye con tramos con longitudes especificas, de manera que:
 - Una salida sume a las señales.
 - Y otra reste a las señales.
- Uso de tecnología Microstrip/Stripline en RF.
- Parámetros:
 - Impedancia ($Z_0 = 50 \Omega$)
 - Frecuencia (1.8 GHz)
 - Dieléctrico (FR4)

Diseño, modelado y simulación

- Se calculó las medidas de las líneas mediante software dedicado (Ansoft Designer)
- Se modeló mediante otro software específico (HFSS), y se realizó con el mismo una simulación del comportamiento a la frecuencia de interés.

Principales resultados de simulación

Caso	Ideal	Microstrip	Stripline
1- 2	-3dB	-3.46 dB	-3.4dB
1- 4	-3dB	-3.67 dB	-4.18dB
2– 3	-3dB	-3.5 dB	-4.02dB
3 - 4	-3dB	-3.46 dB	-3.41dB
1-1 (2-2, 3-3, 4-4)	Inf	-39.9 dB	-22.9 dB
1-3 (2-4)	Inf	-35 dB	-25.8 dB
fase (2,3) – fase (3,4)	0°	-0.4°	-3.8°
fase (1,4) – fase (1,2)	180°	180.4°	175.6°

Implementación

• Se procedió a armar mediante una insoladora que dispuso el laboratorio, las placas.

Resultados de la Placa Microstrip

Caso	Ideal	Simulación	Implementación
1- 2	-3dB	-3.46dB	-3.54dB
1- 4	-3dB	-3.67dB	-3.67dB
2– 3	-3dB	-3.5dB	-3.59dB
3 - 4	-3dB	-3.46dB	-3.59dB
1-1 (2-2, 3-3, 4-4)	Inf	-39.9 dB	-22.35 dB
1-3 (2-4)	Inf	-35 dB	-37.4 dB
fase (2,3) – fase (3,4)	0°	-0.4°	O°
fase (1,4) — fase (1,2)	180°	180.4°	174.19°

Sistema de conmutadores

- Multiplexa a las señales diferencia, en una señal única, que contiene a ambos datos.
- Consiste en tres conmutadores, controlados por la Electrónica de Monopulso.
- Se coloca un desfasaje de 180°, de manera de poder distinguir el signo.

Diseño e implementación

- Conmutador elegido: MASWSS0136
- Se utilizaron dos placas, interconectadas entre si con dos líneas desfasadas 180°.
- Diseño de las mismas en Altium, basados en criterios de diseño para RF.

Electrónica de Monopulso

- Funciones:
 - Generar señales de control de conmutadores
 - Demultiplexar las señales provenientes del receptor.
 - Proporcionar las señales de control, que a su vez, son las señales de salida del sistema
- Utilización de microprocesadores:
 - Arduino UNO
- Ondas cuadradas como señales de control (668 y 1336 Hz, respectivamente).
- A partir de la demultiplexación, se envían las señales de error como salidas PWM.

Acoplador

- Se combina a la señal diferencia multiplexada con la señal suma proveniente del comparador.
- Modulación en AM.
- Se diseñó un acoplador con los siguientes parámetros:
 - Acople: 12 dB
 - Frecuencia: 1.8 GHz
 - Stripline
 - Impedancia: 50 Ω

Diseño, modelado y simulación

- Al igual que con los acopladores híbridos, se calculó las medidas mediante Ansoft Designer
- Se modeló y simuló con HFSS en la frecuencia de interés.

Implementación y resultados

• Se procedió a armar mediante la misma insoladora a la placa.

Parámetro	Simulación (en dBm)	Implementación (en dBm)
in1-in1	-19.1	-21.27
in1-in2	-26.4	-19.78
in 1-out	-0.997	-2.27
in2-in2	-19.9	-25.82
in2-out	-12.4	-8.97
out-out	-19.9	-18.97

Receptor

- Basado en receptor
 Superheterodino.
- Etapas:
 - Amplificador de entrada de bajo nivel de ruido
 - Mezclador
 - Oscilador Local
 - Demodulador
 - SDR
 - Analógico

Amplificador de bajo nivel de ruido (LNA)

- Señal de entrada de bajo nivel.
- Se desea una ganancia de 20 dB total, en la frecuencia de trabajo.
- Se utilizó a dos amplificadores MAX2640, conectados en cascada.
- Criterios de diseño de placa en RF.
- Resultados:
 - Ganancia real: 19.23 dB

Mezclador

- Se debe trasladar en frecuencia a la señal de trabajo (1.8 GHz) a una frecuencia en que el demodulador pueda operar.
- Se usó al integrado MAX2680.
- Criterios de diseño de placa en RF.
- Se usó como oscilador local al integrado ADF 4351(sintetizador de señales), manejado por un PIC 4550.
- Resultados:
 - Frecuencia IF SDR: 50.4 MHz
 - Frecuencia IF Analógico: 417 KHz

Demodulador

• Demodulación en AM de señal proveniente del acoplador

SDR Pruebas Demodulador Analógico Sistema definitivo

Radio Definida por Software (SDR)

- Digitalización de una o varias etapas del dispositivo receptor
- Procesamiento digital:
 - DSP
 - FPGA
- Ventajas:
 - Versatilidad
 - Diversidad de software dedicado
 - Soporte amplio

RTL-SDR

- Características:
 - Amplio ancho de banda
 - 25 MHz a 1,7 GHz
 - USB
 - DSP→PC
 - Software dedicado
 - Matlab
 - HDSDR
- Objetivos:
 - Verificación de funcionamiento de receptor y equipo
 - Definir diseño del demodulador analógico

Resultados Con SDR

Receptor Analógico

- Detector de envolvente con diodo
- Características de señal de entrada:
 - Frecuencia modulada: 668 Hz
 - Frecuencia portadora: 417 KHz
- Componentes utilizados:
 - Amplificador de audio: AO LM318
 - Diodo: 1N5819

Resultados de prueba individual

- Resultados:
 - Amplificación: 32 dB
 - Frecuencia demodulada 668 KHz
 - Entrada

• Salida amplificador

Salida Demodulador

Equipo final

Banco de pruebas propuesto

Resultados

Error de Elevación \rightarrow [(C+D)-(A+B)]

Positivo (C+D)

Negativo (A+B)

Resultados

Error de Azimut \rightarrow [(A+C)-(B+D)]

Positivo (A+C)

Negativo (B+D)

Conclusión

- Se armó un prototipo que cumple las especificaciones y parámetros establecidos inicialmente.
- Detección de señales de error de azimuth y elevación, con sus correspondientes señales PWM de salida.
- Las mediciones de las implementaciones de cada etapa, se encontraron dentro de los límites tolerables establecidos.
- Aprendizaje y utilización de software específico.
 - Microstrip, Stripline: Ansoft Designer, HFSS
 - Diseño de placas: Altium
 - Diseño y simulación de circuitos: LTSpice
 - SDR: Matlab, HDSDR
- Puesta en practica de conocimientos de áreas diversas dentro de la especialidad.
- Utilización de tecnología SDR

Mejoras y desarrollos futuros

- Generar placa única:
 - RF: Demoras, longitudes y anchos de líneas
 - Fase
 - Transferencia
- Armar un arreglo de antenas:
 - Sistema de cuatro lóbulos
 - Robusto, para evitar interferencia
- SDR aplicado en SO de tiempo real
- Sistema de control
 - Sistema a controlar: Señal entrante, servos y antena

¡Muchas Gracias!

Responderemos sus preguntas e inquietudes

Agradecimientos