Solutions to the Math Exercises on pages 237/238 in your textbook

object

ground

in general, (average velocity=
$$\frac{16(t+h)^2-16t^2}{L}$$
 = $32t+16h$)

time	[5,5.5]	[5,5.4]	[5,5.3]	[5,5.2]	[5,5.1]
t	5	5	5	5	5
2	0.5	0.4	0.3	0.2	0.1
average velocity = = 32++16h	168	166.4	164.8	163.2	161.6

=> The value of the velocity at 5 seemeds is 160 fl/sec.

3 as in 10, we'll put the results in a table.

time	[9,9.1]	[9,9.01]	[9,9.001]	[9,9.000]	E9, 9. 00001]
t	9	9	9	9	9
h	0.1	0.01	0.00/	0.0001	0.0001
average velocity = 32t+16h	289.6	2 88.16	288.016	288.0016	288.00016

=> the value of the velocity at 9 seconds is 288 fflee.

=> the numbers of the form 7th approach 7 as h > 0.

$$(4) \frac{(4+h)^2-4^2}{h} = \frac{4^2+h^2+8h-4^2}{h} = h+8$$

(If you prefer, you can use the formula $a^2-b^2=(a-b)(a+b)$ to simplify $(4+h)^2-4^2$, namely $(4+h)^2-4^2=(4+h-4)(4+h+4)$ = h(h+8)

(5) [4,4+h] => t=4

average velocity =
$$\frac{16(4+h)^2-16\cdot 4^2}{h}$$
 = $16(\frac{(4+h)^2-4^2}{h})$

$$\frac{(4+h)^2-4^2}{h} = h+8 \xrightarrow{h\to 0} 8$$

$$\Rightarrow \lim_{h\to 0} \frac{(4+h)^2-4^2}{h} = 8$$

i.e.,
$$(4+h)^2-4^2$$
 approaches 8 as $h\to 0$.

when t=4 => average velocity = 32.4 + 16h = 16h + 128

instantaneous speed
$$\left| \frac{1}{t=4} \right| = \lim_{h \to 0} \left(\frac{16h + 128}{h \to 0} \right) = 128$$

i.ey the velocity at 4 seemes is 128 folsee.

8
$$S(t) = 4.9t^2$$
 (meters)
 $[t, t+h]$

=) average velocity =
$$\frac{4.9(t+h)^2-4.9t^2}{h}$$
 = $\frac{4.9((t+h)^2-4.9t^2)}{h}$ = $\frac{4.9((t+h)^2-t^2)}{h}$ = $\frac{4.9((t+h)^2-t^2)}{h}$

the above limit represents the instantaneous speed at t.

(10)
$$V(t) = 9.8t$$
 m/see
 $[t, t+h]$

=) average acceleration =
$$\frac{9.8(t+h)-9.8t}{h} = \frac{9.8t+9.8t-9.8t}{h}$$