

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20-23.

XI. osztály – I. forduló

- 1. feladat. Legyen $A, B \in \mathcal{M}_n(\mathbb{R})$ úgy, hogy $A^3B = I_n B$.
 - a) Igazold, hogy B invertálható!
 - b) Igazold, hogy AB = BA.
- **2. feladat.** Adottak az $(a_n)_{n\geq 1}, (b_n)_{n\geq 1}$ különböző sorozatok, amelyekre $a_1, b_1 > 0, \ a_{n+1} = a_n^2 + b_n^2$ és $b_{n+1} = 2a_nb_n$, minden $n\geq 1$ esetén. Igazold, hogy az $\left(\frac{a_n}{b_n}\right)_{n\geq 1}$ sorozat konvergens!
- **3. feladat.** Jelölje [x] az x valós szám egész részét. Tekintsük az $(a_n)_{n\geq 1}$ valós számsorozatot, amelyre $a_1=\frac{3}{2}$ és $a_{n+1}-a_n=2[a_n]$, minden $n\geq 1$ esetén.
 - a) Határozd meg az $(a_n)_{n\geq 1}$ sorozat általános tagját!
 - b) Igazold, hogy

$$\sum_{k=1}^{n} a_k \cdot a_{k+1} = \frac{2a_{2n+2} + 16a_{n+1} + 4n - 31}{16}.$$

- c) Számítsd ki a $\lim_{n\to\infty}\left(\frac{1}{2023+a_n}+\frac{1}{2023^2+a_n}+\cdots+\frac{1}{2023^n+a_n}\right)$ határértéket!
- **4. feladat.** Adottak az $A, B \in \mathcal{M}_2(\mathbb{C})$ mátrixok úgy, hogy $(A B)^2 = O_2$.
 - a) Igazold, hogy Tr(A) = Tr(B).
 - b) Ha AB = BA, akkor bizonyítsd be, hogy det(A) = det(B).