11.1 Martensitic transformation involves the Bain transformation, shown schematically in Figure Ex11.1. The FCC structure is transformed into the BCC structure. Assuming that there is a 5% expansion in volume during the FCC to BCC transformation, (a) calculate the lattice parameter of the BCC structure in terms of a_0 , and (b) determine the strains in the three orthogonal directions.

a) FCC volume =
$$a_0^3$$

BCC volume =
$$a^3$$

$$(1.05)a_0^3 = a^3$$

$$1.01a_0 = a$$

b)

$$E = \frac{a - a_0}{a_0}$$

$$E_{11} = \frac{a - a_0}{a} = \frac{1.01a_0 - a_0}{a_0} = .01$$

$$E_{22} = \frac{a - \frac{a_0}{\sqrt{2}}}{\frac{a_0}{\sqrt{2}}} = \frac{\left(1.01 - \frac{1}{\sqrt{2}}\right)a_0}{\frac{1}{\sqrt{2}} - a_0} = .42$$

E₃₃ =
$$\frac{a - \frac{a_0}{\sqrt{2}}}{\frac{a_0}{\sqrt{2}}} = \frac{\left(1.01 - \frac{1}{\sqrt{2}}\right)a_0}{\frac{1}{\sqrt{2}} - a_0} = .42$$

11.2 Plot hydrostatic strain versus carbon content for the martensitic transformation in steel from the plot shown in Ex11.2.

$$V_{0F} = a_0 \frac{a_0}{\sqrt{2}} \frac{a_0}{\sqrt{2}}$$

$$V_{0B} = a^2 c$$

$$E_{H} = \frac{V_{0B} - V_{0F}}{V_{0F}}$$

From Fig. Ex 11.2

	.4%	.8%	1.2%	1.6%
~ a	.286	.286	.285	.285
~ c	.290	.294	.300	.304
~ a ₀	.356	.358	.360	.362

$$V_F = \frac{a_0^3}{2} \qquad V_B = a^2 c$$

% carbon	V_F	$V_{\scriptscriptstyle B}$	E_H
.4%	.0225	.0237	.053
.8%	.0229	.0240	.048
.12%	.0233	.0243	.045
1.6%	.0237	.0248	.041

$$E_H = \frac{V_B - V_F}{V_F}$$

Plot of hydrostatic strain versus carbon content

11.3 From the data of Figure 11.12, estimate the M_s temperature of the alloy at zero stress

Temperature in K	Load in N
233K	~ 1090N
243K	~ 1420N
253K	~ 1730N

$$243 \text{ K} - 233 \text{ K} = \Delta T = 10$$
 $1420\text{N} - 1090 \text{ N} = \Delta N = 330 \text{ N}$

$$253 \text{ K} - 243 \text{ K} = \Delta T = 10$$
 $1730\text{N} - 1420 \text{ N} = \Delta N = 310 \text{ N}$

$$\Delta \overline{N} = 320 \text{ N}$$

$$\Delta \overline{T} = 10$$

Slope =
$$\frac{\Delta \overline{N}}{\Delta \overline{T}} = \frac{320}{10} = 32$$

Change in load per kelvin: $\frac{32N}{1K}$

$$\frac{1090N}{32\frac{N}{K}} \approx 34.06$$
 K change to drop the load to zero stress.

Initial minus the calculated change is needed

$$233 - 34.06 \approx 198.93$$
K is estimated Ms for zero stress.

11.4 The steel shown in Figure 11.15(b) has a plane strain fracture toughness of 110 MPa m^{1/2} and a yield stress of 320 MPa. Will the cracks shown in the figure have a catastrophic effect if a specimen is stressed to 180 MPa?

$$K_{ic} = 110MPa \cdot m^{\frac{1}{2}}$$

$$K_{ic} = Y\sigma\sqrt{\pi a}$$

Assume: Y = 1.12 (single edge notch)

Crack Length $\approx 2a = 10 \mu m$ from figure 11.15 b

$$\sigma = \frac{K_{ic}}{Y\sqrt{\pi a}} = \frac{110 \times 10^6}{1.12\sqrt{\pi (5 \times 10^{-6})}}$$

$$\sigma = 2.5 \times 10^{10} > \sigma_{v}$$

Therefore the cracks will have catastrophic effects.

11.5 Write down all the possible martensite variants for the Kurdjumov—Sachs orientation.

The 12 variants are:

$$\begin{array}{cccc} (2\ 2\ 5) & (\overline{2}\ 2\ 5) \\ (2\ 5\ 2) & (\overline{2}\ 5\ 2) \\ (5\ 2\ 2) & (\overline{5}\ 2\ 2) \\ (2\ \overline{2}\ 5) & (2\ 2\ 5) \\ (2\ \overline{5}\ 2) & (2\ 5\ \overline{2}) \end{array}$$

 $(5\ \overline{2}\ 2)$ $(5\ 2\ \overline{2})$

11.8 Calculate the total strain energy associated with a martensite lens having a volume of $10~\mu m^3$, assuming that all the energy is elastically stored. Specify the assumptions made; include both shear and longitudinal strain components from Equation 11.2.

$$V = 10 \times 10^{-6} m^3$$

We assume a linearly elastic solid under uniaxial stress

$$U = \frac{1}{2} E \varepsilon_{ij}^{2}$$

$$= \frac{1}{2} E \left(\varepsilon_{23}^{2} + \varepsilon_{23}^{2} + \varepsilon_{32}^{2}\right)$$

$$= \frac{1}{2} \left(210 \times 10^{9}\right) \left(.10^{2} + .10^{2} + .05^{2}\right)$$

$$U \, = \, 10.52 \times 10^6$$

U = energy per unit volume

Total energy =
$$U \cdot V$$

Total energy =
$$(10.52 \times 10^6)(10 \times 10^{-6})$$

= 10.52 J

11.9 Plot the stress required to form martensite as a function of temperature in Figure 11.16b.

Temperature in °C	Martensite formation σ MPa
-50.5°	~ 310
-98°	~ 200
-113°	~ 150
-141°	~ 100

- Stress at which martensite forms increases when temperature increases

11.10 (a) To what radius can a wire with diameter of 1 mm be curved using the superelastic effect if the maximum strain is approximately 0.05? (b) If the wire were made of a high-strength piano wire steel ($\sigma y \sim 2$ GPa), what would be the minimum radius to which it could be curved? Take E = 210 GPa. (c) Discuss the differences obtained in (a) and (b).

$$\sigma = \frac{Mc}{I} \qquad \frac{\sigma}{\varepsilon} = E$$

$$\varepsilon = \frac{\Delta L}{L}$$

$$\varepsilon = \frac{(R+L)d\theta - Rd\theta}{Rd\theta}$$

$$\varepsilon = \frac{L}{R} \Rightarrow R = \frac{L}{\varepsilon}$$

a)
$$R = \frac{L}{\varepsilon} = \frac{\frac{1}{2} (1 \times 10^{-3})}{.05}$$

R = .01m or 10mm

b)
$$R = \frac{L}{\varepsilon}$$
 $\varepsilon = \frac{\sigma}{E}$

$$R = \frac{EL}{\sigma} = \frac{(210 \times 10^{9})(1 \times 10^{-3}) \cdot \frac{1}{2}}{2 \times 10^{9}}$$

R = .0525 m or 52.5 mm

11.11 What is the volume change associated with the tetragonal-to-monoclinic transformation in zirconia?

Given:

Monoclinic zirconia

Tetragonal zirconia

$$a = 0.5156 \text{ nm}$$

 $b = 0.5191 \text{ nm}$
 $c = 0.5304 \text{ nm}$
 $\beta = 98.9^{\circ}$

a = 0.5094 nmb = 0.5304 nm

Volume for Monoclinic

Volume for Tetragonal

$$V_m = abc \sin \beta$$
 $V_T = a^2b$ $V_m = (.5156)(.5191)(.5304)Sin98.9$ $V_T = (.5094)^2(.5304)$ $V_T = (.13763nm^3)$

$$\frac{V_m \times V_T}{V_m} \times 100 = \frac{.14025 - .13763}{.14025} \times 100 = 1.86\%$$

1.86% decrease in volume can be expected in transformation from monoclinic to tetragonal zirconia.