試験名:編入	学試験 【情報学群 情報科学類・情報メディア創成学類】
区 分	標準的な解答例又は出題意図
問題1	出題意図
(数学1)	2 重積分、陰関数の導関数の求め方、2 変数関数のテイラー展開に関する知識
	を問う
7.0	解答例
	y ↓
	(1) 領域 D は図のようになる. 2 重積分を累次積分の形で書くと 1
	$\iint_{D} \sqrt{y^{2} - x^{2}} dx dy = \int_{0}^{1} \left(\int_{0}^{y} \sqrt{y^{2} - x^{2}} dx \right) dy \dots (1)$
	x の積分(括弧の中)は、 $x = y \sin \theta$ ($dx = y \cos \theta d\theta$)とおき
	$\int_0^y \sqrt{y^2 - x^2} dx = \int_0^{\pi/2} (y \cos \theta) (y \cos \theta) d\theta = y^2 \int_0^{\pi/2} \frac{1 + \cos 2\theta}{2} d\theta = \frac{1}{2} y^2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2} = \frac{\pi}{4} y^2$
	(2)
	式(2)を式(1)に代入して
	$\sigma = (\sigma v)^{-1}$
	$\int_0^1 \left(\int_0^y \sqrt{y^2 - x^2} \ dx \right) dy = \frac{\pi}{4} \int_0^1 y^2 \ dy = \frac{\pi}{4} \left[\frac{y^3}{3} \right]_0^1 = \frac{\pi}{12}$
	(2) 簡単のため、 $\frac{\partial z}{\partial x} = z_x$, $\frac{\partial z}{\partial y} = z_y$, $\frac{\partial^2 z}{\partial x^2} = z_{xx}$, $\frac{\partial^2 z}{\partial y \partial x} = z_{xy}$, $\frac{\partial^2 z}{\partial y^2} = z_{yy}$ とおく.
	(2-1) $x+2y+z+e^{2z}-1=0$ を x,y について偏微分すると
	$1 + (1 + 2e^{2z})z_x = 0$ (3) $2 + (1 + 2e^{2z})z_y = 0$ (4)
	$z_x = -\frac{1}{1 + 2e^{2z}}, z_y = -\frac{2}{1 + 2e^{2z}}$
	式(3)を更にx,yについて偏微分、式(4)をyについて偏微分すると
	$4e^{2z}\sigma^2 + (1+2e^{2z})\sigma = 0$ $4e^{2z}\sigma = +(1+2e^{2z})\sigma = 0$ $4e^{2z}\sigma^2 + (1+2e^{2z})\sigma = 0$
	$4e^{2z}z_x^2 + (1+2e^{2z})z_{xx} = 0, 4e^{2z}z_yz_x + (1+2e^{2z})z_{yy} = 0, 4e^{2z}z_y^2 + (1+2e^{2z})z_{yy} = 0$ $2z = 0, 4e^{2z}z_y^2 + (1+2e^{2z})z_{yy} = 0$
	$z_{xx} = -\frac{4e^{2z}}{1 + 2e^{2z}}z_x^2 = (-\frac{4e^{2z}}{1 + 2e^{2z}})(-\frac{1}{1 + 2e^{2z}})^2 = -\frac{4e^{2z}}{(1 + 2e^{2z})^3}$
	$z_{xy} = -\frac{4e^{2z}}{1 + 2e^{2z}}z_{y}z_{x} = (-\frac{4e^{2z}}{1 + 2e^{2z}})(-\frac{2}{1 + 2e^{2z}})(-\frac{1}{1 + 2e^{2z}}) = -\frac{8e^{2z}}{(1 + 2e^{2z})^{3}}$
	$z_{yy} = -\frac{4e^{2z}}{1 + 2e^{2z}}z_y^2 = \left(-\frac{4e^{2z}}{1 + 2e^{2z}}\right)\left(-\frac{2}{1 + 2e^{2z}}\right)^2 = -\frac{16e^{2z}}{\left(1 + 2e^{2z}\right)^3}$
	$\frac{2yy}{1+2e^{2z}} \frac{2y}{1+2e^{2z}} \frac{-(1+2e^{2z})^{2}}{1+2e^{2z}} \frac{-(1+2e^{2z})^{3}}{(1+2e^{2z})^{3}}$

(2-2) 公式より、点(-2,1,0)における接平面の方程式は

$$z - 0 = z_x(-2,1,0)(x - (-2)) + z_y(-2,1,0)(y - 1)$$

 $z_x(-2,1,0) = -1/3$, $z_y(-2,1,0) = -2/3$ を代入して整理すると

$$x + 2y + 3z = 0$$

(2-3) (x,y)=(0,0) のとき、 $x+2y+z+e^{2z}-1=0$ から z=f(0,0)=0 である。よって、原点における 2 次の項までの 2 変数のテイラー展開の式は

$$f(x,y) \approx f(0,0) + \frac{1}{1!} z_x(0,0,0) x + \frac{1}{1!} z_y(0,0,0) y + \frac{1}{2!} z_{xx}(0,0,0) x^2 + 2 \times \frac{1}{2!} z_{xy}(0,0,0) xy + \frac{1}{2!} z_{yy}(0,0,0) y^2 + \cdots$$
(5)

式(5)に

 $f(0,0) = 0, z_x(0,0,0) = -1/3, z_y(0,0,0) = -2/3, z_{xx}(0,0,0) = -4/27, z_{xy}(0,0,0) = -8/27, z_{yy}(0,0,0) = -16/27$

$$f(x,y) \approx -\frac{1}{3}x - \frac{2}{3}y - \frac{2}{27}x^2 - \frac{8}{27}xy - \frac{8}{27}y^2$$

試験名	:編入勻	学試験 【情報学群 情報科学類・情報メディア創成学類】
区	分	標準的な解答例又は出題意図
問題2 (数学2)		出題意図 行列における一次変換及び固有値,固有ベクトルに関する知識を問う.
		解答例
		(1) $2x + 3y = 1$ 上の 2 点 $(-1,1)$. $(2,-1)$ を考え、この 2 点を行列 A で一次変
		換したとすると、 $ \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1-a \\ b-1 \end{pmatrix} $
		$\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2a - 1 \\ 2 - b \end{pmatrix}$
		一次変換で $x + 4y = 3$ に写るので、それぞれ代入して整理すると、
2.5		$-a + 4b = 6 \qquad \cdots \textcircled{1} \qquad 2a - 4b = -4 \qquad \cdots \textcircled{2}$
		式①+式②より $a=2$, 式①に代入して $b=2$. よって解は $\underline{a=2.b=2}$.
2	i es a	(2) 固有方程式 $ A - \lambda E = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0$ より、Aの固有値
		は $\underline{\lambda = 1.3}$. 各固有値に対応する固有ベクトルは,
* * *		• $\lambda = 1$ \mathcal{E} \mathcal{O} \mathcal{V} : $(A - \lambda E)v = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ \mathfrak{L} \mathfrak{D} ,
		長さが 1 の固有ベクトル $v = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$.
		• $\lambda = 3$ COVT: $(A - \lambda E)v = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1 a a		長さが 1 の固有ベクトル $v = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
* * * * * * * * * * * * * * * * * * *		$ (3) A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} $
		$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2X - Y \\ -X + 2Y \end{pmatrix}$
		$x^2 + y^2 = 1 に代入すると,$
		$(2X - Y)^{2} + (-X + 2Y)^{2} = 9$ $5X^{2} - 8XY + 5Y^{2} = 9$
-		よって求めるべき図形の方程式は $5x^2 - 8xy + 5y^2 = 9$

式験名:編人	字試験 【情報字群 情報科字類・情報メティア創成字類】					
区 分	標準的な解答例又は出題意図					
問題3 情報基礎1)	出題意図 グラフにおける最短経路を探索する問題. 配列やキューなどの基本的なデータ構造を 用い、それらに対する理解やプログラムの読解力・作成力も確認している.					
	解答例					
	(1)					
	4					
	3					
a a	(2) ※ Qf と Qr は逆でもよい.					
	(ア) Qr == Q_SIZE (イ) Qr++					
	(ウ) Qf == Qr					
	(工) Qf++					
	(3) 戻り値 3, [2, 3, 1, 2, 0]					
	(4)					
	(オ) enqueue(v) (カ) v = visited[v]					
	(5) [2, 3, 4, -2, 3], 出力: Path: 3 4 2 0					

试験名:編入	学試験 【情報学群 情報科学類・情報メディア創成学類】
区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題4	出題意図
情報基礎2)	コンピュータプログラムを理解し記述する能力, および, 動的計画法, 計算量, 配列処
	理、文字列処理を含む情報科学における重要かつ基本的な概念を理解する能力な
	あるかどうかを問う.
	解答例
	(1) ACDF ("A-CD-F"と"ACDF"が最長共通部分列)
	(2)
	$(\mathcal{T}) \max[i][0] = 0$
	$(A) \max[0][j] = 0$
	(3)
	(ウ) nextchar1 == nextchar2
	(strl[i - 1] == str2[j - 1] でもよい)
	$(x) \max[i-1][j-1]+1$
	(才) mat[i][j - 1]
	(力) mat[i - 1][j]
	(オとカは逆でもよい)
	(4)
	(+) mat[row - 1][col]
	(/) mat[row][col - 1]
	(ケ) mat[row - 1][col - 1] + 1
	(5) 計算量が O(Nr・Nc)である、すなわち、入力文字列の長さに対して線形で
	あることが説明されていれば正解
	e variable of the state of the

試験名:編入	学試験 【情報学群 情報科学類・情報メディア創成学類】
区 分	標準的な解答例又は出題意図
問題5 (物理学1)	出題意図 カ学についての基礎的な知識と論理的な解答力を評価する.
	解答例
	(1) 鉛直上向きに y 軸を設定し、地上を $y=0$ とする. 加速度の大きさは
	$\frac{d^2y}{dt^2} = -g + \frac{\mu\nu}{M+m-\mu t} \ .$
	(2) $t=0$ で $\frac{dy}{dt}=0$ より、速さは
	$\frac{dy}{dt} = -gt - v\log\left(\frac{M+m}{\mu} - t\right) + v\log\left(\frac{M+m}{\mu}\right).$
	(3) $t = 0$ で $y = 0$ より、高さは
	$y = -\frac{g}{2}t^2 + vt\left\{\log\left(\frac{M+m}{\mu}\right) + 1\right\} + v\left(\frac{M+m}{\mu} - t\right)\log\left(\frac{M+m}{\mu} - t\right) - v\left(\frac{M+m}{\mu}\right)\log\left(\frac{M+m}{\mu}\right).$
	(4) $t' = \frac{m}{\mu}$ で燃料を使い切る. その時の速さ v' と高さ y' はそれぞれ,
	$v' = -g\frac{m}{\mu} + v\log\frac{M+m}{M}$ と $y' = -\frac{g}{2}\left(\frac{m}{\mu}\right)^2 + v\frac{m}{\mu} - v\frac{M}{\mu}\log\frac{M+m}{M}$ となる. また、惰性で上昇
	する高さは $y'' = \frac{(v')^2}{2g} = \frac{g}{2} \left(\frac{m}{\mu}\right)^2 - \frac{m}{\mu} v \log \frac{M+m}{M} + \frac{v^2}{2g} \left(\log \frac{M+m}{M}\right)^2$. したがって、最高到達
	点の高さは
	$y_p = y' + y'' = \frac{vM}{\mu} \left\{ \frac{m}{M} - \left(1 + \frac{m}{M} \right) \log \left(1 + \frac{m}{M} \right) \right\} + \frac{v^2}{2g} \left\{ \log \left(1 + \frac{m}{M} \right) \right\}^2.$
	(5) 噴射質量は大きくした方がよい. y_p の $\left\{\frac{m}{M}-\left(1+\frac{m}{M}\right)\log\left(1+\frac{m}{M}\right)\right\}$ の項において, $m=$
	rM (ただし, $r>0$ とする)とし、この項を $f(r)$ と表すと、 $f(r)=r-(1+r)\log(1+r)$
	となる. $\frac{df}{dr} = -\log(1+r) < 0$ から, $f(r) < f(0) = 0$ となる. したがって, μ を大きくした
	方が y_p は大きくなる.
11	

APPENDING AND THE SECOND SECON	試験名:編	入学試験 【情	報学群	情報科学	類•情報>	ゲイア創	成学類】
電磁気学の基本法則の理解を確かめる. 解答例 (1) 力 [N] [N] = \frac{[kg][m]}{[s^2]} (2) エネルギー [J] [J] = \frac{[kg][m^2]}{[s^2]} (3) 電荷 [C] [C] = [A][s] (4) 電位 [V] [V] = \frac{[kg][m^2]}{[A][s^3]} (5) 静電容量 [F] [F] = \frac{[A^2][s^4]}{[kg][m^2]} (6) 磁束 [Wb] [Wb] = \frac{[kg][m^2]}{[s^2][A]} (7) 磁束密度 [T] [T] = \frac{[kg]}{[s^2][A]}	区 分		標準的な	解答例又	は出題	意 図	
(1) カ [N] = [kg][m] [s²] (2) エネルギー [J] [J] = [kg][m²] [s²] (3) 電荷 [C] [C] = [A][s] (4) 電位 [V] [V] = [kg][m²] [A][s³] (5) 静電容量 [F] [F] = [A²][s⁴] [kg][m²] [kg][m²] (6) 磁束 [Wb] [Wb] = [kg][m²] [s²][A] (7) 磁束密度 [T] [T] = [kg]	問題6 物理学2)		法則の理解を研	潅かめる .			
(1) カ [N] = [kg][m] [s²] (2) エネルギー [J] [J] = [kg][m²] [s²] (3) 電荷 [C] [C] = [A][s] (4) 電位 [V] [V] = [kg][m²] [A][s³] (5) 静電容量 [F] [F] = [A²][s⁴] [kg][m²] [kg][m²] (6) 磁束 [Wb] [Wb] = [kg][m²] [s²][A] (7) 磁束密度 [T] [T] = [kg]		解答例	(40)				
(3) 電荷 [C] [C] = [A][s] (4) 電位 [V] [V] = \frac{\left[\text{kg}\right]\right[\text{m}^2\right]}{\left[\text{Al}\right]\right]} (5) 静電容量 [F] [F] = \frac{\left[\text{A}\right]\right]\right[\text{kg}\right]\right[\text{m}^2\right]}{\left[\text{kg}\right]\right[\text{m}^2\right]} (6) 磁束 [Wb] [Wb] = \frac{\left[\text{kg}\right]\right[\text{m}^2\right]}{\left[\text{s}^2\right]\right]} (7) 磁束密度 [T] [T] = \frac{\left[\text{kg}\right]}{\left[\text{s}^2\right]\right]}				$[N] = \frac{[kg][m]}{[s^2]}$			
(4) 電位 [V] $ [V] = \frac{[kg][m^2]}{[A][s^3]} $ (5) 静電容量 [F] $ [F] = \frac{[A^2][s^4]}{[kg][m^2]} $ (6) 磁束 [Wb] $ [Wb] = \frac{[kg][m^2]}{[s^2][A]} $ (7) 磁束密度 [T] $ [T] = \frac{[kg]}{[s^2][A]} $		(2) エネルキ	:- [J]	$[J] = \frac{[kg][m^2]}{[s^2]}$			
(5) 静電容量 [F] $ [F] = \frac{[A^2][s^4]}{[kg][m^2]} $ (6) 磁束 [Wb] $ [Wb] = \frac{[kg][m^2]}{[s^2][A]} $ (7) 磁束密度 [T] $ [T] = \frac{[kg]}{[s^2][A]} $		(3) 電荷 [([C] = [A][s]		e 8	
(6) 磁束 [Wb] = \frac{[kg][m^2]}{[s^2][A]} (7) 磁束密度 [T] [T] = \frac{[kg]}{[s^2][A]}		(4) 電位 [V	7]	$[V] = \frac{[kg][m^2]}{[A][s^3]}$			
(7) 磁束密度 [T] $[T] = \frac{[kg]}{[s^2][A]}$		(5) 静電容量	(F)	$[F] = \frac{[A^2][s^4]}{[kg][m^2]}$			
		(6) 磁束 [V	Wb]	$[Wb] = \frac{[kg][m^2]}{[s^2][A]}$		x2	
(8) $A \supset \emptyset D \supset \emptyset \supset \mathbb{H}$ [H] $= \frac{[\lg \lg] [m^2]}{[s^2][A^2]}$		(7) 磁束密度	[T]	$[T] = \frac{[kg]}{[s^2][A]}$			
		(8) インダク	タンス [H]	$[H] = \frac{[kg][m^2]}{[s^2][A^2]}$			
				<i>t</i>		* ,	
		# F 6					
	*						
		25. H					
		2					
		,		, <u>.</u>	* z		