A Lower bound on Comparisonbased Sorting

Algorithms & Data Structures ITCS 6114/8114

Dr. Dewan Tanvir Ahmed
Department of Computer Science
University of North Carolina at Charlotte

Comparison-Based Sorting (§ 4.4)

- Many sorting algorithms are comparison based.
 - They sort by making comparisons between pairs of objects
 - Examples: bubble-sort, selection-sort, insertion-sort, heapsort, merge-sort, quick-sort, ...
 - Derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x_1, x_2, \dots, x_n .

Counting Comparisons

- Let us just count comparisons then.
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- Every possible input permutation must lead to a separate leaf output.
- □ Since there are $n! = 1 * 2 * \cdots * n$ leaves, the height is at least $\log(n!)$

The Lower Bound

- oxdots Any comparison-based sorting algorithms takes at least log (n!) time
- $\, \equiv\,$ Since a binary tree of height h has at most 2^h leaves,

$$n! \le 2^h$$

so $h \ge \log(n!)$

 \square Stirling's approximation tells us: $n! \sim \sqrt{2\pi n} (rac{n}{e})^n$

Thus:
$$h \ge \log\left(\frac{n}{e}\right)^n$$

That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.

Lower Bound For Comparison Sorts

So,
$$h \ge \log\left(\frac{n}{e}\right)^n$$

$$= n \log n - n \log e$$

$$= \Omega(n \log n)$$

- \square Thus the time to comparison sort n elements is $\Omega(n \log n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts

How can we do better than $\Omega(n \log n)$?

Alternative proof

Theorem: Any decision tree sorting n elements has height $\Omega(n \log n)$

- There must be n! leaves
 - \supset one for each of the n! permutations of n elements
- Tree of height h has at most 2^h leaves

$$2^{h} \ge n! \Rightarrow h \ge \log n!$$

$$\ge \log(n \times (n-1) \times (n-2) \dots \times 2)$$

$$\ge \log n + \log(n-1) + \log(n-2) + \dots + \log 2$$

$$\ge \sum_{i=2}^{n} \log i$$

Alternative proof (continue)

$$2^{h} \ge n! \Rightarrow h \ge \log n!$$

$$= \log(n \times (n-1) \times (n-2) \dots \times 2)$$

$$= \log n + \log(n-1) + \log(n-2) + \dots + \log 2$$

$$= \sum_{i=2}^{n} \log i$$

$$= \sum_{i=2}^{\frac{n}{2}-1} \log i + \sum_{i=n/2}^{n} \log i$$

$$\ge \sum_{i=n/2}^{n} \log i$$

$$\ge \sum_{i=n/2}^{n} \log i$$

$$\ge \sum_{i=n/2}^{n} \log i$$

$$= \frac{n}{2} \log \frac{n}{2}$$

$$= \Omega(n \log n)$$

Reference

- Algorithm Design: Foundations, Analysis, and Internet Examples.
 Michael T. Goodrich and Roberto Tamassia. John Wiley & Sons.
- Introduction to Algorithms. Thomas H. Cormen, Charles E.
 Leiserson, Ronald L. Rivest, Clifford Stein.

Thank you!