

Полупроводници

Fig. 1 Typical range of conductivities for insulators, semiconductors, and conductors.

Структура на атома

Причина за специфичните свойства на полупроводниците е уникалната структура на атома им. Атомът на всеки материал се състои от ядро и електрони, които обикалят в орбити около него. Ядрото е съставено от положително заредени частици (протони) и неутрални частици (неутрони).

Електроните имат отрицателен заряд. Техният брой е равен на броя на протоните в ядрото, така че атомът като цяло е **електронеутрален**.

Структура на Si атом

Fig. 14 Schematic representation of an isolated silicon atom.

Електроните от най-външната орбита са относително слабо свързани с атома. Те се наричат валентни електрони и определят химическите и електрическите свойства на елементите.

Атомите на силиция (Si) имат по четири валентни електрона.

Eg = Ec-Ev Bandgap energy

Ширина на забранената зона

Fig. 15 Formation of energy bands as a diamond lattice crystal is formed by bringing isolated silicon atoms together.

Eg е енергията необходима за да се разкъса връзка в полупроводника. При това освободеният електрон преминава в зоната на проводимост (conduction band), а във валентната зона остава дупка.

Ширина на забранената зона (Eg) е определяща за електрическите свойства на елементите и съединенията.

Fig. 19 Schematic energy band representations of (a) a conductor with two possibilities (either the partially filled conduction band shown at the upper portion or the overlapping bands shown at the lower portion), (b) a semiconductor, and (c) an insulator.

Properties	Si	4H-SiC	GaAs	GaN
Crystal Structure	Diamond	Hexagonal	Zincblende	Hexagonal
Energy Gap (eV)	1.12	3.26	1.43	3.5

Видове полупроводници

Съществуват два вида на полупроводници:

Собствен полупроводник (intrinsic semiconductor) – в кристалната решетка няма примесни атоми. **Примесен** полупроводник (extrinsic semiconductor) – в кристала са въведени примесни атоми.

Концентрацията на въведените примесни атоми влияе значително върху електрическото поведение на полупроводниците.

Собствен полупроводник - Si

Чист полупроводник без внесени примеси се нарича собствен полупроводник.

Всеки един от четирите валентни електрона на Si атом формира **ковалентна връзка** с валентен електрон от съседни Si атоми. Така валентният електрон става общ за два съседни атома. Ковалентните връзки задържат атомите заедно в кристала.

Собствен полупроводник - Si

При T=0K (абсолютна нула) в собствен полупроводник всички ковалентни връзки са запълнени и няма свободни носители за заряд. Това съответства на напълно запълнена валентна зона и празна зона на проводимост. При тези условия няма подвижни носители на заряд и полупроводникът е **изолатор**.

Собствен полупроводник - токоносители

За да се формират свободни носители на заряд е необходима енергия, която се набавя от околната температура. При достатъчна енергия се разкъсват ковалентни връзки. Електронът се откъсва от атома и става свободен, оставяйки празно място – дупка с еквивалентен положителен заряд.

Процесът е еквивалентен на междузонни преходи на валентни електрони. Когато електрон премине от валентната зона в зоната на проводимост (също така се нарича "свободна зона"), във валентната зона остава празно място – дупка.

Собствен полупроводник – генерация и рекомбинация

Процесът на формиране на **двойка** свободни носители на заряд – електрон и дупка, под действие на допълнителна енергия, се нарича **генерация**.

Концентрациите на генерираните двойки токоносители са равни.

$$n = p$$

n – концентрация на електроните

р – концентрация на дупките

Процесът, при който електрон от свободната зона губи енергия и се връща обратно във валентната зона, се нарича **рекомбинация.** При това "изчезват" свободните носители електрон и дупка и се отделя енергия.

Собствен полупроводник – термодинамично равновесие

При T=const, настъпва **термодинамично равновесие** между процесите на генерация и рекомбинация.

$$n.p=n_i^2$$

n – концентрация на електроните

р – концентрация на дупките

В чистия полупроводник, за дадена температура, се установява постоянна концентрация, наречена собствена концентрация n_i .

Собствената концентрация на токоносителите зависи само от температурата и от широчината на забранената зона.

ток в собствен полупроводник

Дрейфово движение

$$V_E = \mu E$$

$$\mu_{n} > \mu_{p}$$

Електроните и дупките са **подвижни частици**. Те могат да се преместват между възлите на кристалната решетка под въздействие на електрическо поле, т.е. да участват в протичането на ток. Затова се наричат **токоносители**.

Движението на токоносителите под действие на електрическо поле се нарича **дрейфово**, а средната скорост, с която се преместват – дрейфова скорост V_E . Параметърът μ , свързващ дрейфовата скорост с интензитета на електрическото поле, се нарича **подвижността на токоносителите**.

собствен полупроводник – компоненти на тока

Насоченото движение на електроните под действие на електрическото поле създава **електронната съставка на тока** J_n в полупроводника.

Електроните от валентната зона са свързани с ядрото на атома и не могат да се движат свободно в кристала. Обаче, те могат да заемат мястото на съседна дупка, оставяйки дупка там, откъдето са тръгнали. По този начин дупките се придвижват в кристала, създавайки дупчестата компонента на тока J_{ρ} .

собствен полупроводник – посока на тока

$$J = J_n + J_p$$

Техническата посока на тока е приета да съвпада с посоката на движение на положителните заряди. Посоката на дупчестия ток J_{ρ} съвпада с движението на положителните токоносители и с приетата техническа посока на тока.

Посоката на електронният ток е противоположна на физическото движение на електроните в кристала.

собствен полупроводник – температурна зависимост

В собствен полупроводник при стайна температура има незначителен брой свободни токоносители. Техният брой, и респективно големината на тока, силно зависят от температурата. Поради тези причини чистите полупроводници не се използват за направа на полупроводникови елементи.

примесни полупроводници

Полупроводник, електрическите характеристики на който се определят от наличието на примеси, се нарича примесен.

Примеси от **5-та валентност** - арсен (As), фосфор (P), антимон (Sb) се наричат **донори**, защото отдават един от валентните си електрони си към полупроводниковия кристал.

Примеси от **трета валентност** - бор (В), алуминий (АІ), галий (Ga) се наричат **акцептори**, защото приемат един електрон от съседен атом и така оставят дупка (празно място) в полупроводниковия кристал.

n-тип полупроводник — формиране на токоносители

Четири от валентните електрони на донорния атом (*P*) образуват ковалентни връзки със съседни силициеви атоми.

Петият електрон остава слабо свързан с ядрото и при незначително количество енергия може лесно се отдели от атома и става **свободен електрон**.

Електроните са доминиращ тип токоносители и се наричат **основни токоносители**, а полупровоникът – **N** тип полупроводник.

Ковалентна връзка

Донорни атоми – V валентност Неутрален фосфорен атом

n-тип полупроводник — формиране на токоносители

Когато неутрален фосфорен атом отдаде електрон, той става положително зареден йон. Той е свързани в кристалната решетка и не участва при формиране на тока.

Йонизацията на донорите довежда до образуване само на **един тип подвижни токоносители** – **свободни електрони**.

n - концентрация на електроните

р - концентрация на дупките

n-тип полупроводник Електрони - основни носители (majority carriers) Дупки – неосновни носители (minority carriers)

n-тип полупроводник — основни и неосновни токоносители

Основни токоносители се формират при йонизация на примесите. Тяхната концентрация е строго определена, защото количеството на въведените в кристала примеси може точно да се контролира при производството.

$$n = N_D$$
 $N_D -$ концентрация на донорните йони

Неосновни токоносители се формират при разкъсване на ковалентни връзки.

n-тип полупроводник — концентрация на токоносители

T = const Термодинамично равновесие

$$n.p = n_i^2$$

Закон за действие на масите

Собствена концентрация

$$n = N_D$$
 $n = const(T)$

Концентрацията на **основните токоносители не зависи от температурата** в нормалния температурен диапазон на експлоатация на ПП елементи.

$$p = \frac{n_i^2}{N_D} \qquad p = f(T)$$

Концентрацията на **неосновните токоносители много силно зависи от температурата.**

р-тип полупроводник — основни и неосновни токоносители

Акцепторен атом — 3 валентни електрона

р-тип полупроводник — основни и неосновни токоносители

Основните токоносители се формират при **йонизация на акцепторните** атоми. При това се създава **дупка**, без да се образува електрон.

Несновни токоносители се формират при разкъсване на ковалентни връзки.

токове в примесни полупроводници

В полупроводника има два типа токоносители – електрони и дупки. Затова общият ток в полупроводника има електронна и дупчеста съставки.

В *п*-тип полупроводници, електроните са основни токоносители и електронната съставка на тока значително превишава дупчестата.

В *р*-тип полупроводници, дупките са основни токоносители и дупчестата съставка на тока значително превишава електронната.

токове в примесни полупроводници – дрейфов ток

Електропроводимостта се обуславя от движението на свободни токоносители под действие на електрическо поле. Плътността на тока J се определя от заряда, пренесен от токоносителите за единица време през единица сечение.

$$J_{nE} = -\operatorname{qn} v_{En} = \operatorname{qn} \mu_n E \qquad \xrightarrow{\stackrel{\mathsf{E}}{\longrightarrow}} \qquad \xrightarrow{\stackrel{\mathsf{Vp}}{\longrightarrow}} \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{\stackrel{\mathsf{Jn}}{\longrightarrow}} \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{\stackrel{\mathsf{Jn}}{\longrightarrow}} \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

$$J_{pE} = \operatorname{qp} v_{Ep} = \operatorname{qn} \mu_p E \qquad \xrightarrow{}$$

Специфична електропроводимост

 J_{nE} Дрейфов ток в n-полупроводник

 J_{pE} Дрейфов ток в р-полупроводник

токове в примесни полупроводници – дифузен ток

Токоносителите се придвижват в кристала под действие на възникнал в обема градиент (dn/dx) на концентрацията. Потокът на токоносителите *F* при дифузионното им движение се определя от броя на токоносителите, които преминават за единица време през единица сечение [cm⁻².s⁻¹].

 $D_{\it n}$, $D_{\it p}$ – коефициенти на дифузия

 J_{nD} Дифузен ток в n-полупроводник

 J_{pD} Дифузен ток в р-полупроводник

Уравнение на Айнщайн

Връзката между коефициент на дифузия и подвижност е изразена чрез уравнението на Айнщайн.

$$D=arphi_T\mu$$
 D коефициент на дифузия μ подвижност

$$\varphi_T = \frac{kT}{q} \approx \frac{T}{11600}$$
 Температурен потенциал

k – константа на Болцман, T – темпетатура (K), q- заряд на електрона

За "стайна температура" (300 K) $\,\phi_T^{}=~0.0258~\mathrm{V}\approx25~\mathrm{mV}$

Общ ток в полупроводника

Токоносителите могат да се движат чрез дрейф и дифузия и да формират съответно дрейфова и дифузионни съставки на тока.

$$J_n = J_{nE} + J_{nD} = q\mu_n nE + qD_n \frac{dn}{dx}$$

$$J_{p} = J_{pE} + J_{pD} = q\mu_{p} pE - qD_{p} \frac{dp}{dx}$$

Общият ток е сума от тези съставки

$$J = J_n + J_p = J_{nE} + J_{nD} + J_{pE} + J_{pD}$$

 J_{nD} Дифузен ток в n-полупроводник

 J_{pD} Дифузен ток в р-полупроводник

 J_{nE} Дрейфов ток в n-полупроводник

 J_{pE} Дрейфов ток в р-полупроводник

Неравновесни концентрации

При локално действие на друг вид енергия – облъчване, рентгенови и гама-лъчи, силно електрическо поле и др. поради генерацията на нови **добавъчни** токоносители, се създават **неравновесни** концентрации на електрони n_n и на дупки p_n , които превишават равновесните за дадена температура.

