Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА №31 ПРИКЛАДНАЯ МАТЕМАТИКА

Отчет

по проектной практике на тему:

СОЗДАНИЕ CNC СТАНКА

Работу выполнили:

Романов Сергей, Есис Александр, Никитин Кирилл

Руководитель проекта: Морозов Андрей Андреевич

Содержание

1	Введение	4
2	Цель и задачи	5
3	Разработка модели	6
4	Электронная схема компонентов	9
5	Программная часть	11
6	Список литературы	13

Аннотация

Данный этап работы по представленной теме является продолжением работы предыдущего семестра. Все исходные коды и подпрограммы находятся на github.

1 Введение

Современное состояние техники и производства характеризуется высоким уровнем автоматизации, применением сложнейших электронных устройств на основе компьютерных систем и комплексов. Станки с ЧПУ - это компьютеризированные станки с числовым программным управлением, которые могут выполнять определенный набор операций в соответствии с заложенной в них программой. Подобные станки могут управляться с помощью компьютеров (наиболее сложные станки) или микроконтроллеров [1]. Первым очевидным плюсом от использования станков с ЧПУ является более высокий уровень автоматизации производства. Случаи вмешательства оператора станка в процесс изготовления детали сведены к минимуму. Станки с ЧПУ могут работать практически автономно, день за днем, неделю за неделей, выпуская продукцию с неизменно высоким качеством. При этом главной заботой оператора являются в основном подготовительно-заключительные операции: установка и снятие детали, наладка инструмента и т.д. Вторым преимуществом является производственная гибкость. Это значит, что для разных деталей нужно всего лишь заменить программу. А уже проверенная и отработанная программа может быть использована в любой момент и любое число раз. Третьим плюсом является высокая точность. По одной и той же программе вы сможете изготовить с требуемым качеством тысячи практически идентичных деталей. Таким образом, ЧПУ станок позволяет быстро получить спроектированное на компьютере изделие, причем ЧПУ станок производит изделия гораздо быстрее и качественнее чем вручную. Точный и легко приспосабливаемый ЧПУ станок позволяет осуществить проекты, которые, используя ручные технологии, оказались бы невыполнимыми или невыгодными [2]. К станкам ЧПУ относятся и плоттеры, которые могут рисовать какие-либо объекты по заданной программе. Они представляет собой 2D-чертежные машины с 3D-управлением, которые используют перо для написания текста или рисования изображения на любом заданном твердом теле. ЧПУ плоттер можно использовать для таких целей, как проектирование печатных плат, разработка логотипа, пирографии и др [3].

2 Цель и задачи

Цель проекта: получить рабочий прототип портального ЧПУ станка. Для достижения данной цели были поставлены следующие задачи:

- 1. Изучение литературы и существующих моделей ЧПУ станков.
- 2. Выбор наиболее подходящей модели.
- 3. Создание 3D модели станка.
- 4. Разработка и сборка электронной составляющей ЧПУ станка.
- 5. Сборка и наладка первой простой рабочей модели.
- 6. Усовершенствование полученной модели.

3 Разработка модели

При создании конструкции прорабатывались различные варианты, для этого использовалась матрица выбора.

Таблица 1: Матрица выбора характеристик модели

Группы	Характеристика	Простота	Удобство	Удобная	Итог
		в изготов-	в эксплуа-	модерни-	
		лении	тации	зация	
Стол	Подвижный стол	2	4	2	8
	Без стола	4	2	4	10
	Закрепленный стол	3	5	3	11
Передача	Передача винт-гайка	5	3	2	10
	Ременная передача	3	4	2	9
	Зубчатая рейка	2	4	2	8
Управляющий	Arduino	5	5	3	13
контроллер					
	Raspberry	2	5	4	11
Размер рабоче-	A4-A5	5	3	2	10
го поля					
	A4-A3	4	5	2	11

После анализа вариантов с помощью матрицы выбора было принято решение по созданию портального ЧПУ станка со следующими характеристиками:

- 1. Закрепленным столом, с передачей типа винт-гайка.
- 2. Управляющий контроллер Arduino Mega.
- 3. Питание установки 220В / 50 Гц. Питание прибора 12 VDC, 5 А.
- 4. Размеры поля: 500×500 мм.

Также предполагается разработка нескольких типов держателей для различных инструментов

Рис. 1: Первые чертежи

Рис. 2: Стартовая модель станка

Была составлена смета для определения недостающих деталей и их последующей закупки.

Таблица 2: Смета для модели ЧПУ

Требуемое	Стоимость,	Ссылка
кол-во, шт	руб/шт	
4	_	_
1	_	_
1	_	_
3	_	_
1	_	_
4×500	245 р/м	https://clck.ru/Pbg5v
4	44	https://clck.ru/Xhk9S
4	29	https://clck.ru/XhkXA
6*4+2*4	14	https://clck.ru/VbjBq
4	220	https://clck.ru/XhmU8
2	_	_
2	_	_
3×500	700 р/м	https://clck.ru/XhoTM
3	450	https://clck.ru/Xhomu
4	90	https://clck.ru/Xhoyw
4	_	_
30	_	_
00		
30	_	_
	кол-во, пит 4 1 1 3 1 4×500 4 4 4 2 2 2 3×500 3 4 4	кол-во, шт руб/шт 4 — — — — — — — — — — — — — — — — — —

4 Электронная схема компонентов

В проекте используется плата RAMPS (RepRap Arduino Mega Pololu Shield) 1.4. Она является надстройка для Arduino MEGA 2560. При прикреплении поверх, через нее осуществляются все подключения и питание.

Рис. 3: Плата RAMPS 1.4

В качестве шаговых двигателей используются двигатели 17HS4401S с драйверами Drv8825. Драйвер Данный драйвер поддерживает ток до $2.2~\mathrm{A}$ и $1/32~\mathrm{mara}$.

Рис. 4: Двигатель 17HS4401S

Рис. 5: Драйвер Drv8825

Для более удобной работы с ЧПУ станком используется простой 4х строчный LCD дисплей с SD card reader и с встроенным поворотным энкодером RepRapDiscount Smart Controller.

Рис. 6: RepRapDiscount Smart Controller

Рис. 7: Схема компонентов

5 Программная часть

Поскольку основой нашего станка является железо от 3d принтера, в качестве прошивки был выбран Marlin. Marlin - это прошивка с открытым исходным кодом, гибрид от Sprinter и GRBL со множеством оригинальных деталей и дополнений. Одним из ключей к популярности Marlin является то, что он работает на 8-битных микроконтроллерах Atmel AVR. Эти чипы лежат в основе популярной платформы Arduino с открытым исходным кодом. Управляющий язык для Marlin является производным от G-code. Поскольку прошивка специализируется для 3d принтеров требовалась настройки для работы в качестве ЧПУ станка.

Для получения G-code используется Fusion 360, однако для возможности работы с прошивкой Marlin требуется специальный постпроцессор [4]. Загрузить его можно на странице github автора и затем добавить в Fusion 360 в соответствии с официальной инструкцией. Важно при использовании данного программного инструмента с ЧПУ станком выставить правильные настройки для выхода оси z за пределы рабочей зоны.

Рис. 8: Настройки постпроцессора

6 Список литературы

- 1. Иванов Александр Викторович, Боренко Евгений Александрович. ЧПУ плоттер // Молодой ученый. 2020. № 317. С. Т.1. 14—15. URL: https://moluch.ru/archive/317/72425/ (дата обращения: 2022-04-02).
- Григорьев Сергей Николаевич, Мартинов Георгий Мартинович. Концепция Построения Базовой Системы Числового Программного Управления Мехатронными Объектами // Информационные Технологии В Проектировании И Производстве. 2011. № 2. URL: https://www.elibrary.ru/item.asp?id=16375157 (дата обращения: 2022-04-03).
- 3. Girhe Puja, Department EXTC, Chirde Arpita. Arduino Based Cost Effective CNC Plotter Machine. 2018. Vol. 6, no. 2. P. 4.
- 4. Mini CNC Milling Machine.— URL: https://www.instructables.com/Mini-CNC-Milling-Machine/ (online; accessed: 2022-03-27).