GP Code

3332E 40522

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are		
(20 Marks)	is the class of decision problems that can be solved by non-		
1. is the class of decision problems that can be solved			
	deterministic polynomial algorithms.		
Option A:	NP		
Option B:	P		
Option C:	Hard		
Option D:	Complete		
2.	Following data structure is used to implement LIFO Branch and Bound Strategy		
Option A:	Priority Queue		
Option B:	агтау		
Option C:	stack		
Option D:	Linked list		
3.	For the given elements 6 4 11 17 2 24 14 using quick sort, what is the sequence after first phase, assuming the pivot as the first element?		
Option A:	2 4 6 17 11 24 14		
Option B:	2 4 6 11 17 14 24		
Option C:	4 2 6 17 11 24 14		
Option D:	2 4 6 11 17 24 14		
4.	Which of the following is correct for branch and bound technique? i. It is BFS generation of problem states ii. It is DFS generation of problem states iii. It is D-search.		
Option A:	Only i		
Option B:	Only ii		
Option C:	Only ii and iii		
Option D:	Only i, and iii		
5.	Consider the given graph.		

t is the weight of the minimum spanning tree using the Kruskal's algorithm? man Ford algorithm is used to find out single source shortest path for
nan Ford algorithm is used to find out single source shortest path for
nan Ford algorithm is used to find out single source shortest path for
man Ford algorithm is used to find out single source shortest path for
man Ford algorithm is used to find out single source shortest path for
utall Ford algorithm is used to find out single source shortest path for l
tive -1
uive eage weights. Bellman Ford algorithm uses which of the following
egy?
edy method
amic Programming
ktracking
de and Conquer
optimal solution for 4-queen problem is
,1,4)
,2,4)
,2,4)
,1,3)
sider the following code snippet:
anding function(k,i) {
(j=1 to k-1)
{: if $((x[j]==i) \text{ or } (Abs(x[j]-i) ==abs(j-k)))$ return false;
return true }
above code represents the bounding function for which of the following
orithm?
set sum problem using backtracking
ueens using backtracking
ph coloring using backtracking
set sum using branch and bound
at do you mean by chromatic number?
minimum number of colors needed to color all the vertices optimally in a Grap

apcode: 93328.

	Coloring problem	
Option B:	The maximum number of colors needed to color all the vertices optimally in a Graph Coloring problem	
Option C:	The number of colors using which the edges of graph have been colored in a Graph Coloring Problem	
Option D:	The individual colors with which we color the vertices of a Graph in a Graph Coloring Problem	
10.	Which string matching algorithm uses a Prefix Table?	
Option A:	Naïve String Matching Algorithm	
Option B:	Boyer Moore String Matching Algorithm	
Option C:	Knuth Morris Pratt Algorithm	
Option D:	Rabin Karp Algorithm	

Q2.	Solve any Four out of Six 05 marks each
(20 Marks)	
A	Write and Explain binary search algorithm.
В	Write a short note on job sequencing with deadline
С	Determine the LCS of the following sequences: X: {A, B, C, B, D, A, B} Y: {B, D, C, A, B, A}
D	Solve the sum of subsets problem for the following: n=4, m=15, w={3,5,6,7}
E	Give the algorithm for the N-Queen's problem and give any two solutions to the 8-Queen's problem
F	Explain and apply Naïve string matching on following strings String1: COMPANION String2: PANI
20 7 2 1 7 B	

Q3. Solve any Two Questions out of Three 10 marks	each		
(20 Marks)			
Write algorithm for greedy knapsack and Obtain the solution to fo	llowing		
$k_{\text{napsack problem where } n=7, m=15}$ (p1,p2p7) = (10,5,15,7,	6,18,3),		
(w1, w2,, w7) = (2,3, 5,7,1,4,1).			
Explain Dijkstra's Single source shortest path algorithm. Expla	in how		
it is different from Bellman Ford algorithm. Explain 15-puzzle p	roblem		
using LC search technique.			
Rewrite and Compare Rabin Karp and Knuth Morris Pratt Alge	Rewrite and Compare Rabin Karp and Knuth Morris Pratt Algorithms		
Give the pseudo code for the KMP String Matching Algorithm.			

15 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Solve any Two Questions out of Three	10 marks each		
(20 Marks)	Write algorithm for quick sort and sort the	following elements		
	[40,11,4,72,17,2,49]			
STATE BISS	Write multistage graph algorithm and solve following example.			

