Package 'doct'

July 6, 2020

Type Package

Title Decisions Optimized in Continuous Time
Version 1.0
Date 2020-07-05
Author William Hua <whua4@jhu.edu>, Yanxun Xu <yanxun.xu@jhu.edu></yanxun.xu@jhu.edu></whua4@jhu.edu>
Maintainer William Hua <whua4@jhu.edu></whua4@jhu.edu>
Description Our package implements methods from Personalized Dynamic Treatment Regimes in Continuous Time: A Bayesian Joint Model for Optimizing Clinical Decisions with Timing. This paper builds a generative model for sequence of medical interventions—which are discrete events in continuous time—with a marked temporal point process (MTPP) where the mark is the assigned treatment or dosage. This clinical action model is then embedded into a Bayesian joint framework where the other components model clinical observations including medical longitudinal measurements and patient survival. Moreover, we propose a policy gradient method to learn the personalized optimal clinical decision that maximizes patient survival by interacting the MTPP with the model on clinical observations while accounting for uncertainties in clinical observations.
License CC0
Imports Rcpp (>= 1.0.4.6), MASS, pracma, mvtnorm, LaplacesDemon, RcppEigen, RcppNumerical, RcppArmadillo, stats, GoFKernel, survival
LinkingTo Rcpp, RcppArmadillo, RcppEigen, RcppNumerical
RoxygenNote 7.1.0
Encoding UTF-8
Depends R (>= 2.10)
Archs x64
R topics documented:
doct-package 2 Generate_Simulated_Data 3 mcmc_joint 4 mcmc_separate 5 SGD_run 6 simulated_data 7
Index 9
1

2 doct-package

doct-package

Decisions Optimized in Continuous Time

Description

Our package implements methods from Personalized Dynamic Treatment Regimes in Continuous Time: A Bayesian Joint Model for Optimizing Clinical Decisions with Timing. This paper builds a generative model for sequence of medical interventions—which are discrete events in continuous time—with a marked temporal point process (MTPP) where the mark is the assigned treatment or dosage. This clinical action model is then embedded into a Bayesian joint framework where the other components model clinical observations including medical longitudinal measurements and patient survival. Moreover, we propose a policy gradient method to learn the personalized optimal clinical decision that maximizes patient survival by interacting the MTPP with the model on clinical observations while accounting for uncertainties in clinical observations.

Details

The main functions in the package are mcmc_joint and SGD_run. mcmc_joint runs the Bayesian parameter estimation and collects the MCMC samples to be used SGD_run, which optimizes the dosage and visitation scheduling policy. The other functions in this package are for analyzing the results of these two main functions. For example, DIC_calculation outputs the DIC for simulated data analysis. This package accompanies our statistical methodology paper.

Our joint model has three submodels. For patient i, the visitation intensity function and dosing submodel is expressed below for $t \in (t_{i,j}, t_{i,j+1}]$:

$$\lambda_{i}(t) = \exp(\mu) + \alpha_{i,j}(t - t_{i,j})^{\kappa - 1}e^{-\gamma(t - t_{i,j})} \frac{\gamma^{\kappa}}{\Gamma(\kappa)}$$

$$\alpha_{i,j} = \frac{\xi}{1 + \exp((1, y_{i,j})\boldsymbol{\beta_{\alpha}})} \frac{\kappa - 1}{\gamma} = \exp(\nu_{1}), \quad \kappa = \exp(\nu_{2}) + 1$$

$$d_{i,j} = (1, y_{i,j}, \boldsymbol{x}_{i})\boldsymbol{\beta_{d}} + \epsilon_{d}, \quad \epsilon_{d} \sim \text{Normal}(0, \sigma_{d}^{2})$$

The longitudinal submodel for the log creatinine levels is represented below, with the following likelihood function:

$$y_i(t) = y_i^*(t) + \epsilon_l = \boldsymbol{z}_i(t)\boldsymbol{\beta}_l + \boldsymbol{r}_i(t)\boldsymbol{b}_i + \epsilon_l, \ \epsilon_l \sim \text{Normal}(0, \sigma_l^2), \ \boldsymbol{b}_i \sim \text{Normal}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\mathbf{b}})$$

 $\boldsymbol{z}_i(t) = (1, d_i(t), \boldsymbol{x}_i, t, t^2), \ \boldsymbol{r}_i(t) = (1, d_i(t), t),$

The survival submodel is represented using the hazard function:

$$h_i(t) = \exp\left(-(\beta_{s1}y_i^*(t) + \beta_{s2}d_i(t) + \beta_{s3}\text{Tox}_i(t) + \beta_{s4}\alpha_i(t) + h_0)\right)st^{s-1}$$

Author(s)

William Hua <whua4@jhu.edu>, Yanxun Xu <yanxun.xu@jhu.edu>

Maintainer: William Hua <whua4@jhu.edu>

Generate_Simulated_Data

Generate Simulated Data

Description

Generate Simulated Data

Usage

```
Generate_Simulated_Data(
  Npat,
  beta_1 = c(5.3, 0.1, 0.3, 0.4, 0.25, -1 * 10^(-4), 3 * 10^(-8)),
  sigma2_1 = 0.1^2,
  beta_d = c(1, 0.2, 0.15, 0.2, 0.15),
  sigma2_d = 0.3^2,
  nu_1 = 2.5,
  nu_2 = 1.5,
  mu = -4.8,
  beta_s1 = 1,
  beta_s2 = 0.9,
  beta_s3 = -0.75,
  beta_s4 = -5,
  h0 = 5,
  s = 1.05
)
```

Arguments

Npat	Number of patients to simulate.
beta_l	Linear coefficient parameter in longitudinal submodel
sigma2_l	Error parameter in longitudinal submodel
beta_d	Linear coefficient parameter in dosing submodel
sigma2_d	Error parameter in dosing submodel
nu_1	Visitation intensity peak parameter in vistation submodel
nu_2	Visitation intensity shape parameter in vistation submodel
mu	Baseline visitation intensity parameter in vistation submodel
beta_s1	Creatinine-associated parameter in survival submodel
beta_s2	Dosage-associated parameter in survival submodel
beta_s3	Toxicity-associated parameter in survival submodel
beta_s4	Visitation-associated parameter in survival submodel
h0	Baseline hazard parameter in survival submodel
S	Shape parameter in survival submodel

4 mcmc_joint

Value

List of data. X0_inds is the baseline data for each patient, D is the dosage, Y is the longitudinal process, and Ts are the visit times, id are the patient id's (ranging from 1 to the total number of patients), censor and surv_time are the censoring and survival times, and Npat is the total number of patients.

Examples

```
## Not run:
#Simulate Data
seed=203
set.seed(seed)
data_all<-Generate_Simulated_Data(10)
## End(Not run)</pre>
```

mcmc_joint

MCMC function for joint longitudinal, survival, and dosage and visitation model

Description

MCMC function for joint longitudinal, survival, and dosage and visitation model

Usage

```
mcmc_joint(data_all, mcmc_settings, seed)
```

Arguments

data_all A list of complete data. X0_inds is the baseline data for each patient, D is the

dosage, Y is the longitudinal process, and Ts are the visit times, id are the patient id's (ranging from 1 to the total number of patients), censor and surv_time are

the censoring and survival times, and Npat is the total number of patients.

mcmc_settings A list for MCMC setup. burn.in is the number of total iterations to burn, ndisplay

is number of iterations per which the display message will appear, and Niter is

the total number of iterations (including burn-in iterations).

seed Seed for running MCMC

Value

beta_l	Linear coefficient parameter in longitudinal submodel
sigma2_l	Error parameter in longitudinal submodel
beta_d	Linear coefficient parameter in dosing submodel
sigma2_d	Error parameter in dosing submodel
nu_1	Visitation intensity peak parameter in vistation submodel
nu_2	Visitation intensity shape parameter in vistation submodel
mu	Baseline visitation intensity parameter in vistation submodel
heta s1	Creatinine-associated parameter in survival submodel

mcmc_separate 5

beta_s2	Dosage-associated parameter in survival submodel
beta_s3	Toxicity-associated parameter in survival submodel
beta_s4	Visitation-associated parameter in survival submodel
h0	Baseline hazard parameter in survival submodel
shape	Shape parameter in survival submodel

Examples

```
## Not run:
data("simulated_data")
###########
#Run MCMC
mcmc_settings$Niter=100
mcmc_settings$burn.in=10
mcmc_settings$hdisplay=10
mcmc_settings$peak_dist='gamma'
thin=10
post_thin_iters<-seq(mcmc_settings$burn.in+thin,mcmc_settings$Niter,thin)
seed=203
set.seed(seed)
mcmc_out_joint<-mcmc_joint(simulated_data,mcmc_settings,seed)
## End(Not run)</pre>
```

mcmc_separate

MCMC function for model with separate longitudinal and survival processes (SLS model)

Description

MCMC function for model with separate longitudinal and survival processes (SLS model)

Usage

```
mcmc_separate(data_all, mcmc_settings, seed)
```

Arguments

data_all	A list of complete data. X0_inds is the baseline data for each patient, D is the
	dosage, Y is the longitudinal process, and Ts are the visit times, id are the patient
	id's (ranging from 1 to the total number of patients), censor and surv_time are
	the censoring and survival times, and Npat is the total number of patients.
mcmc settings	A list for MCMC setup, burn in is the number of total iterations to burn, adisplay

mcmc_settings A list for MCMC setup. burn.in is the number of total iterations to burn, ndisplay

is number of iterations per which the display message will appear, and Niter is

the total number of iterations (including burn-in iterations).

seed Seed for running MCMC

SGD_run

Value

beta_l	Linear coefficient parameter in longitudinal submodel
sigma2_l	Error parameter in longitudinal submodel
beta_d	Linear coefficient parameter in dosing submodel
sigma2_d	Error parameter in dosing submodel
nu_1	Visitation intensity peak parameter in vistation submodel
nu_2	Visitation intensity shape parameter in vistation submodel
mu	Baseline visitation intensity parameter in vistation submodel
beta_s1	Creatinine-associated parameter in survival submodel
beta_s2	Dosage-associated parameter in survival submodel
beta_s3	Toxicity-associated parameter in survival submodel
beta_s4	Visitation-associated parameter in survival submodel
h0	Baseline hazard parameter in survival submodel
shape	Shape parameter in survival submodel

Examples

```
## Not run:
data("simulated_data")
###########
#Run MCMC
mcmc_settings$Niter=100
mcmc_settings$\shurn.in=10
mcmc_settings\shurn.in=10
mcmc_settings\shqisplay=10
mcmc_settings\speak_dist='gamma'
thin=10
post_thin_iters<-seq(mcmc_settings\shurn.in+thin,mcmc_settings\shiter,thin)
seed=203
set.seed(seed)
mcmc_out_separate<-mcmc_separate(simulated_data,mcmc_settings,seed)
## End(Not run)</pre>
```

SGD_run	Function for calculating optimal dosage and visit parameters for a
	specific patient using stochastic gradient descent (SGD)

Description

Function for calculating optimal dosage and visit parameters for a specific patient using stochastic gradient descent (SGD)

Usage

```
SGD_run(mcmc, data_all, id_i, mcmc_inds, seed, Niter_SGD = 1000)
```

simulated_data 7

Arguments

mcmc output from mcmc_joint or mcmc_separate

data_all A list of complete data. X0_inds is the baseline data for each patient, D is the

dosage, Y is the longitudinal process, and Ts are the visit times, id are the patient id's (ranging from 1 to the total number of patients). censor and death_time are

the censoring and survival times. Npat is the total number of patients.

id_i ID of the patient to optimize

mcmc_inds Vector of post-thinning MCMC iterations indices

seed Seed.

Niter_SGD Number of SGD iterations.

Value

A list containing the dosage and visit parameters across all SGD iterations. beta_d is the dosage linear coefficient parameter vector, sigma2_d is the dosage error parameter, mu is the baseline visitation intensity, nu_1 is the visitation intensity peak, and nu_2 is the visitation intensity shape. The optimal value for beta_d is opt_beta_d and similarly for the other four parameters.

Examples

```
## Not run:
data("simulated_data")
###########
#Run MCMC
mcmc_settings=NULL
mcmc_settings$Niter=100
mcmc_settings$burn.in=10
mcmc_settings$ndisplay=10
mcmc_settings$peak_dist='gamma'
post_thin_iters<-seq(mcmc_settings$burn.in+thin,mcmc_settings$Niter,thin)</pre>
set.seed(seed)
mcmc_out_joint<-mcmc_joint(simulated_data,mcmc_settings,seed)</pre>
###########
#Run SGD
id_i=5
SGD_out<-SGD_run(mcmc_out_joint,simulated_data,id_i,post_thin_iters,seed,Niter_SGD=10)
## End(Not run)
```

simulated_data

Simulated dataset for 500 patients.

Description

Simulated dataset for 500 patients.

Usage

```
simulated_data
```

8 simulated_data

Format

List of data. X0_inds is the baseline data for each patient, D is the dosage, Y is the longitudinal process, and Ts are the visit times, id are the patient id's (ranging from 1 to the total number of patients), censor and surv_time are the censoring and survival times, and Npat is the total number of patients.

Index

```
*Topic datasets

simulated_data, 7

doct (doct-package), 2

doct-package, 2

Generate_Simulated_Data, 3

mcmc_joint, 4

mcmc_separate, 5

SGD_run, 6
simulated_data, 7
```