

Reto I, Analisis Numérico.

Gabriel de Souza

Nicolas Barragan

Pablo Santander

Introducción y contextualización

El objetivo propuesto es conseguir la reconstrucción que se muestra en la Figura 7 un jarrón y sus curvas de nivel, que se pueden utilizar para reconstruir del jarrón, usando superficies de Bézier y/o otro método (B-Splines).

Métodos Numéricos

BSpline/Superficies de Bezier

- El método B-Spline genera curvas a partir de un set de puntos dados.
- Para este caso utilzamos BSplineSurface de Mathematica que utiliza B-Spline. Esta recibe como parametro una matriz de puntos (Dada por un código de acuerdo al archivo que da Blender).
- Dentro de Mathematica podemos utilizar Graphics 3D para visualizar el jarrón.
- Adicional a esto como punto de comparación utilizamos la función
 BezierFunction para realizar el mismo procedimiento pero analizando los puntos de la figura.

- 1. Los B-Splines de superficies se componen de un conjunto de m+1 filas y n+1 puntos de control pi, j, donde 0 <= i <= m y 0 <= j <= n;
- 2. Se tiene un vector de nudos de h+1 nudos en la dirección u, U = u0, u1, ..., uh;
- 3. Se tiene un vector de nudos de k+1 nudos en la dirección v, V = v0, v1, ..., vk;
- 4. Se conoce el grado p en la dirección u;
- 5. Se conoce el grado q en la dirección v;

Entonces los B-Splines de superficies son definidos por la siguiente sumatoria doble:

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} N_{i,p}(u) N_{j,q}(v) P_{i,j}$$

Procedimiento e Implementacion

- Para la solución del problema utilizamos Blender como herramienta base para reconstruir el jarrón. Esto con el fin de obtener los puntos y diferentes medidas como alto, ancho, volumen.
- Posterior a esto exportamos el archivo con los puntos que componen al jarrón a través de Blender para llevarlos a Mathematica y utilizar la función BSplineSurface.
- En Mathemática pudimos realizar pruebas y probar qué pasaba al eliminar puntos de la figura.

Prototipo inicial en Blender

Obtencion de puntos

Jarra final solidificada

Obtencion de Grafica interpolada mediante BSplineSurface

```
F = Graphics3D[BSplineSurface[Puntos]];
F = Show[Graphics3D[{PointSize[Medium], Red, Map[Point, Puntos]}], F]
```


Modificacion de anchura

Pruebas

Eliminacion de 64 puntos (825 en total)

Mediciones

Altura = 2.70912m Ancho base = 2.0022m Ancho = 2.61977m Result

Volume: 3846242.5148 cm3

Result

Area: 167568.2638 cm2

Result

Volume: 3829512.5118 cm³

Result

Area: 158923.8632 cm²

Error

Medidas 🔻	Jarrón Original 🔻	Jarrón Interpolado 🔻	Error Absoluto	Error relativo 🔻
Alto (m)	2.7091	2.6743	0.0348	1.29%
Ancho(m)	2.6198	2.4685	0.1513	5.77%
Area (m²)	16.7568	15.8923	0.8645	5.16%
Volumen (m³)	3.8462	3.8295	0.0167	0.44%

Validación de resultados

```
f = BezierFunction[Puntos]
       Show[Graphics3D[{PointSize[Medium], Red, Map[Point, Puntos]}],
        Graphics3D[{Gray, Line[Puntos], Line[Transpose[Puntos]]}],
        ParametricPlot3D[f[u, v], {u, 0, 1}, {v, 0, 1}, Mesh \rightarrow None]]
Out[29]= BezierFunction
                                    \{\{0.369, 2.04, -0.34\}, \{0.293, 2.04, -0.408\}, \{-0.281, 2.04, -0.408\}, \{-0.357, 2.04, -0.34\}, \ldots\}
```

BezierFunction nos muestra más puntos que BSplineSurface, con una diferencia de 3 puntos más.

Referencias

- SplineSurface—Wolfram Language Documentation. (2020). Retrieved 13 November 2020, from https://reference.wolfram.com/language/ref/BSplineSurface.html
- B-spline Surfaces: Construction. (2020). Retrieved 13 November
 2020, From https://pages.mtu.edu/shene/COURSES/cs3621/NOTES/surface/bspline-construct.html
- Mathematica. (2020). Retrieved 13 November 2020, From https://es.wikipedia.org/wiki/Mathematica