Counting review

(4-1)! * * * * 5,2, aob $\sum_{k=1}^{n} \frac{1}{2} \left(-1 \right)^{k+1} \left(\sum_{k=1}^{n} \frac{1}{2} \left(-1 \right)^{$ (a+b) = = (1) xbh-k (asb)(a+b)...(a+b)

Countability

To infinity and beyond

Michael Psenka

Intro question

• As many even integers as odd integers?

$$N \rightarrow n+1$$

$$4 + 1 = 5$$
 $7 + 6$

$$n \rightarrow \frac{n}{2}$$

Countably infinite sets

Definition. The set S is said to be countable (countably infinite) if there exists a bijective map $f: S \leftrightarrow \mathcal{F}$. \mathbb{Z}^+

• In this sense, we can say that S and $\mathbb N$ have the same cardinality.

What sets are countable?

$$Z^{*}$$
 is $N = 8030 Z^{*}$ $f: 1N = Z^{*}$ $f(n) = n+1$ $f(n) = 1$ $f(n) = 1$

The smallest infinity

Theorem. Every infinite subset of a countable set is countable.

$$S \subset A \stackrel{f}{=} Z^{+} \qquad f: Z^{+} \rightarrow S$$
 $S \subset Z^{+} \qquad \{S'-\alpha_{3}^{2}\} \qquad f(1) = \alpha_{1} \qquad \text{loase case}$
 $S'=f(S), A'=f(A)=Z^{+} \qquad \{S'-\alpha_{3}^{2}\} \qquad f(n+1)=\alpha_{n+1}$
 $\alpha_{1}=2 \qquad \text{(nd. hyp. } n+1 \qquad \text{(nd. sep}$
 $\alpha_{1}=2 \qquad \text{(nd. hyp. } n+1 \qquad \text{(nd. sep}$
 $\alpha_{1}=2 \qquad \text{(nd. hyp. } n+1 \qquad \text{(nd. sep}$

Building upwards

Building upwards • $\mathbb{Z} \times \mathbb{Z}$ is countable.

$$(1,1)$$
 $(2,1)$
 $(1,2)$
 $(3,1)$
 $(3,2)$
 $(1,3)$
 $(3,1)$
 $(2,2)$
 $(1,3)$

Building upwards

- Corollary. The following sets are countable:
- 1. The rational numbers \mathbb{Q} .

$$\frac{f}{f} \Leftrightarrow S \subsetneq (p,q) \iff Q \iff Z^{\dagger}$$

2. The sets $\mathbb{Z}^{\times k} := \mathbb{Z} \times \cdots \times \mathbb{Z}$ (k copies).

Building upwards

Theorem. Any countable union of countable sets is countable.

Another question

• Denote $\mathbb{Z}^{\mathbb{N}}$ as the set of (countably) infinite sequences of integers. Does there exist a bijection between the following:

The ceiling of countability

• The set $\{0,1\}^N$ is not countable (uncountable).

$$(0,1,0,0,...)$$
 $\{0,1\}^{N} \iff \mathbb{Z}^{+}$

$$\begin{cases} a_{1} & (0100100)W_{1} \\ a_{2} & (0010)W_{2} \\ 0010000 \end{cases} \leq \epsilon \begin{cases} 0,13 \\ 0$$

Uncountable sets

• Corollary. The following sets are uncountable:

1. The real numbers \mathbb{R} .

2. The set of subsets of \mathbb{N} (denoted $\mathcal{P}(\mathbb{N})$).

Uncountable(?) sets

The set of finite subsets of \mathbb{N}

Uncountable sets

Any nonempty closed interval $[a,b] \subset \mathbb{R}$ is uncountable.

Question: "how to measure size of uncountable sets"?

Measure zero and countability

Measure theory: measuring the size of (almost) arbitrary sets.

The Cantor set

The Cantor set $\bigcap_{k=1}^{\infty} C_k$ is both measure zero and uncountable.

R(0,1) uncountable R(0,1) uncountable

= - /all 50 psds

A C Z⁺ $A \leq Z, Z, D, 11, 13$ $f: Z^{+} \Rightarrow A = A_{2} + A_{3} + A_{3} + A_{4} + A_{4}$