

VILA NOVA DE PAIVA | 28 E 29 DE ABRIL 2012 |

Enquadramento do Estudo

Âmbito das Ciências do Desporto, recorrendo à **análise qualitativa** através da Metodologia Observacional, inserindo-se no contexto da modalidade de Natação.

Em natação, a metodologia observacional tem vindo a assumir um papel determinante pela objetividade que introduz à otimização do desempenho desportivo, bem como instrumento utilizado para maximizar os processos de aprendizagem.

Introdução

"Olhar e examinar com atenção, perceber, avaliar, isto é, implica que se veja num sentido específico, que se efetue um juízo de valor sobre o que se observa". serval

Sarmento (1987)

"O objetivo da sua utilização (observação) não é só o diagnóstico das condutas motoras, mas também a identificação e avaliação da técnica e respetivos parâmetros de controlo, tendo em vista a compreensão e a modificação do comportamento alvo em situação, ou no processo de ação e desenvolvimento".

Almeida (1993)

Introdução

A técnica de bruços é...

...caracterizada como ventral, simultânea, descontínua e "simétrica". (Vilas-Boas, 1993).

...considerada uma das mais lentas e mais rigorosas. (Maglischo, 2003)

...diferente das técnicas alternadas devido à sua simultaneidade e descontinuidade. (Soares et al., 2003)

Problemas do Estudo

Análise e definição dos padrões motores dos diversos nadadores, aquando da realização de um percurso de 200m na técnica de bruços;

Estudo da estabilidade comportamental da técnica ao longo da prova efetuada.

Objetivo do Estudo

Elaborar um Sistema de Observação do Comportamento Técnico de Bruços (SOCTB);

Caraterizar a estabilidade comportamental por intermédio de sequências gestuais registadas (traduzidos em códigos alfanuméricos) ao longo das observações de cada nadador em estudo;

Analisar as características dos padrões motores de cada nadador na execução da técnica de bruços.

Desenho do Estudo

Tipo Nomotético

• 5 atletas

(ciclo de bruços).

Pontual

 Única sessão (seguimentos ao longo da sessão).

Multidimensional

 Condutas em várias dimensões em simultâneo.

Amostra

5 atletas de nível internacional

	Média	DP
Pontuação FINA	696.18	81.13
Idade (anos)	23.8	2.6
Altura (cm)	178.6	0.6
Peso (kg)	73.04	3.32

Amostra Observacional

Protocolo do Teste

1ª Fase - 800m aquecimento a velocidade moderada

2ª Fase - 200m bruços à máxima velocidade

Instrumentos

- 1 Câmara SONY Mini-DV (50 Hz);
- 1 Câmara SONY D8 (50 Hz);

Protegidas por uma caixa estanque Ikelite;

- Um computador portátil;
- Piscina de 50 metros;
- Software MovieMaker;
- Software Dartfish;
- Software SDIS-GSEG (Bakeman & Quera, 1996);
- Software Théme (Magnusson, 2000; Magnusson et al., 2004; Anguera et al., 2007)

Construção do Instrumentos de Observação

```
1ª Fase - Revisão da literatura (2 meses);
```

- 2ª Fase Ajuste do Instrumento (1º, 2º e 3º versão) e construção do manual (4 meses);
- 3ª Fase Validação do Instrumento (1 mês);
- 4ª Fase Tratamento de dados (3 meses).

Instrumentos de Observação

- Instrumento Ad-hoc (Anguera et al., 2000);
- Sistema de Categorias e Formatos de Campo (Oliveira et al., 2001).
- Adaptado de Oliveira et al. (2006);
- Modelos biomecânicos da técnica de Bruços (Colman & Persyn, 1993; Silva & Alves, 2000; Louro et al., 2009);

SOCTB assenta em 5 critérios nucleares:PAPB, SAPB, PAPP, SAPP e R

Instantes de Digitalização

Estabilidade do Comportamento Motor em 200M Bruços

Manual de Observação

Conduta Critério	Caracteristicas de Realização	Critérios de codificação	Graus de abertura	Imagem Lateral
P1 Posição das pernas	As pernas posicionam-se em torno da linha de água, mas ligeiramente abaixo.	Extensão Flexão	Amplitude da flexão até á extensão máxima.	
P2 Relação: tornozelos - anca	As pernas podem encontrar-se em extensão ou flexão.	Acima da anca Abaixo da anca/ no prolongamento	O tornozelo posiciona-se acima da anca ou abaixo da mesma/no prolongamento.	

Qualidade dos Dados

- Índice de Kappa (Anguera, 1993; Blanco ,1993, 1997) e Software SDIS-GSEQ
- 1 perito (treinador de natação com formação académica superior e com experiência no treino da natação.)
 Teste / re-teste
- 5 Observadores (todos com formação académica 2 expraticantes da modalidade e 3 sem experiência como praticantes)

Qualidade dos Dados

Análise Interobservadores = 96.9% **Análise Intraobservador** = 97.8%

Concordância elevada

Resultados de encontro com a literatura que indicam que valores de Kappa superiores a 75% são de excelência (Fleiss et al., 1969)

Deteção dos Padrões Comportamentais

- Ocorrer no mínimo duas vezes.

- Software Théme 5.0 a partir do algoritmo T-Patterns

Baseia-se numa teoria binomial de probabilida permite le Campaniço et al., (2006) e Louro et al., sistemas brais dos dados - Vários níveis (2010) Objetivo de determinarem os imples, padrões padrões comportamentais dos de de forma a complexos, fre revelar o conteú - Resultados refe nadadores. periodo amostral;

Nadador 1

Configurações (moles)			IE
PAPB	1P1,1P3,1P6,1P7,1T1,1T5,1T6,1C2,1C4,1B1	20	1
SAPB	2P1 ,2P4, 2P5 ,2P8,2T3,2T4,2T7,2C2,2C3,2B2,2B3	11	0.55
	2P2 ,2P4, 2P6 ,2P8,2T3,2T4,2T7,2C2,2C3,2B2,2B3	9	0.45
PAPP	3P1,3P3,3P6,3T3,3T4,3C1,3B2,3B4,3B6	20	1
SAPP	4P1, 4P3 ,4P6,4T2,4T5,4T6,4C1,4B2,4B4	16	0.80
	4P1, 4P4 ,4P6,4T2,4T5,4T6,4C1,4B2,4B4	4	0.20
R	5P2,5P3,5P5,5P8,5T2,5T4,5T6,5C2,5B2	20	1

Nadador 1

PAPB - 1p1,1p3,1p6,1p7,1t1,1t5,1t6,1c2,1c4,1b1. Descrição: pernas em extensão, tornozelo acima da anca, pés em extensão em relação às pernas e pernas inclinadas para cima (relação com a linha de água) - 1p1,1p3,1p6,1p7. Cabeça acima/alinhada em função do tronco, estando este em dorsi-flexão e inclinado para cima / paralelo á linha de água - 1t1,1t5,1t6. Orientação da visão para a diagonal/baixo, cabeça abaixo da linha de água/intermédia - 1c2,1c4 - e por fim mãos acima dos ombros (relação na horizontal) – 1b1.

Nadador 1

SAPB - 2p1,2p4,2p5,2p8,2t3,2t4,2t7,2c2,2c3,2b2,2b3. Descrição: pernas em extensão e inclinadas para baixo / paralelas à linha de água, pés paralelos e tornozelos abaixo da anca/no prolongamento - 2p1,2p4,2p5,2p8. Tronco em dorsi-flexão e inclinado para cima/paralelo á linha de água e glúteos abaixo da linha de água - 2t3,2t4,2t7. Visão orientada na diagonal/baixo e cabeça acima da linha de água/intermédia - 2c2,2c3. Por fim, dedos da mão apontados para o fundo e frente e mãos á frente dos ombros/no prolongamento (relação na vertical) - 2b2,2b3.

Nadador 1

PAPP - 3p1,3p3,3p6,3t3,3t4,3c1,3b2,3b4,3b6. Descrição: pés e joelhos afastados e pé reto para fora (relação: pé – perna) - 3p1,3p3,3p6. Tronco em dorsi-flexão e inclinado para cima/paralelo á linha de água - 3t3,3t4. Cabeça acima da linha de água/intermédia – 3c1, antebraços inclinados para baixo, mão abaixo da linha de água/no prolongamento e abaixo dos ombros/no prolongamento (relação na horizontal: mãos-ombro) - 3b2,3b4,3b6.

Nadador 1

SAPP - 4p1,4p3,4p6,4t2,4t5,4t6,4c1,4b2,4b4. Descrição: joelhos afastados, tornozelos acima da anca (relação:tornozelos – anca) e ângulo reto entre o pé e a perna - 4p1,4p3,4p6. Glúteos abaixo da linha de água/intermédio, tronco em dorsi-flexão e inclinado para cima/paralelo á linha de água - 4t2,4t5,4t6. Cabeça acima da linha de água/intermédia - 4c1, antebraços inclinados para baixo e cotovelo abaixo dos ombros/no prolongamento (relação: cotovelo – ombros) - 4b2,4b4.

Nadador 1

R - 5p2,5p3,5p5,5p8,5t2,5t4,5t6,5c2,5b2. **Descrição:** tornozelos abaixo da anca/no prolongamento, dedos dos pés orientados para baixo e para trás, ponto intermédio do tronco-anca-joelho em ângulo obtuso e pernas inclinadas para baixo - 5p2,5p3,5p5,5p8. Ombros abaixo da linha de água, assim como glúteos (abaixo da linha de água/intermédio) e tronco inclinado para baixo - 5t2,5t4,5t6. Por fim, cabeça abaixo da linha de água/intermédia e antebraços inclinados para baixo/paralelos á linha de água - 5c2,5b2.

Nadador 1

Restantes nadadores

Nadador 2

As pernas encontram-se inclinadas para cima (2P3)

As pernas encontram-se inclinadas para baixo/paralelos á linha de água (2P4)

Nadador 3

Nadador 5

Nadador 4

Estabilidade do Comportamento Motor em 200M Bruços

Após análise dos padrões motores dos nadadores, verificou-se que estes **adotaram um modelo técnico** de nado que se encontra próximo das variantes referidas por Silva et al. (2002).

Verificou-se que uma maior estabilidade gestual levou a uma melhor performance desportiva, à semelhança do estudo de Louro et al. (2010).

A existência de **padrões completos** em todos os nadadores leva a uma **razoável estabilidade gestual**, contrariamente ao encontrado por Louro *et al.* (2010).

Conclusões

O instrumento de observação para a análise da técnica de bruços utilizado em condições similares ao estudo torna-se válido e fiável.

Uma maior estabilidade gestual caracteriza-se pelo maior número de ocorrências do mesmo ciclo (5 eventos - 5 momentos de observação: PAPB, SAPB, PAPP, SAPP e R) durante a execução da prova de 200m bruços.

Todos os nadadores, possuem pelo menos 1 padrão de nado completo (5 momentos de observação).

Conclusões

A **estabilidade comportamental** altera-se consoante o nadador e momentos observados.

Quanto maior for a **estabilidade do padrão de nado** melhor será o resultado desportivo (melhoria do tempo de prova).

Existindo diversas referências de modelos padrões, os nadadores colocam no seu padrão de nado as características únicas e distintas dos mesmos.

I CONGRESSO DE ATIVIDADES SUBAQUÁTICAS

VILA NOVA DE PAIVA | 28 E 29 DE ABRIL 2012 |