Eksamen i MAT1100, 8/12–03, Del 1

	KANDIDATNUMMER:
Dato: Tid: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på 2 sider.	Mandag 8/12, 2003. Kl. 9.00–12.00. Formelsamling. Godkjent kalkulator.
hver. Det er bare ett riktig alterna svare på et spørsmål, får du 0 poeng av oppgavesettet består av 7 delspø	en ene delen inneholder 10 flervalgsoppgaver som teller 3 poeng tiv på hvert spørsmål. Dersom du svarer feil eller lar være å g. Du blir altså ikke "straffet" for å svare feil. Den andre delen rsmål som teller 10 poeng hver. I denne delen må du grunngi å 0 poeng selv om de er riktige. Maksimalt oppnåelig poengsum
1) Integralet $\int x \cos(x^2) dx$ er lik:	
$\begin{array}{c c} & \frac{x^2}{2}\sin(x^2) + C \\ & \frac{1}{2}\sin(x^2) + C \\ & \cos(x^2) - 2x^2\sin(x^2) + C \\ & \arccos(x^2) + C \\ & \frac{1}{2}\cos(x^2) + C \end{array}$	
2) Integralet $\int \ln(x^2+1)dx$ er lik:	
	C
3) Når vi substituerer $u = \arcsin x$ i	i integralet $\int_0^{1/2} e^{\arcsin x} dx$, får vi:
$ \Box \int_0^{\pi/6} \cos u e^u du $ $ \Box \int_0^{\pi/6} e^u du $ $ \Box \int_0^{1/2} \cos u e^u du $ $ \Box \int_0^{1/2} \sin u e^u du $ $ \Box \int_0^{\pi/3} \cos u e^u du $ $ \Box \int_0^{\pi/3} \cos u e^u du $	
4) Når vi skal bruke delbrøkoppspal	ting på uttrykket $\frac{x^3+2x-4}{(x-1)^3(x^2+x+5)}$ bør vi sette det lik:

5)	Det uegentlige integralet $\int_1^\infty \frac{1}{x(1+\ln^2 x)} dx$:
	konvergerer og er lik $\frac{\sqrt{10}}{2}$ konvergerer og er lik $\frac{3}{2}$ divergerer konvergerer og er lik $\frac{\pi}{2}$ konvergerer og er lik $\frac{8}{5}$
6)	Hvis $F(x) = \int_1^{x^2} \frac{\sin t}{t} dt$, så er $F'(x)$ lik:
	$\frac{\sin x^2}{x^2}$ $\frac{\sin x}{\sin x}$
	$\frac{\sin x^2}{x^2}$ $\frac{\sin x}{x}$ $\int_1^{x^2} \frac{t \cos t - \sin t}{t^2} dt$ $2x \sin x^2$ $\frac{2 \sin x^2}{x}$
7)	Finn den partiellderiverte $\frac{\partial f}{\partial x}$ når $f(x,y) = \arctan(x^2y)$:
	$\frac{1}{1+x^4y^2}$ $\frac{2xy}{\cos(x^2y)}$ $\frac{2xy}{1+x^4y^2}$ $\frac{2xy}{\sqrt{1-x^4y^2}}$ $\arctan(x^2y) \cdot 2xy$
8)	Hvis $f(x,y)=3x^2y+6xy^3, \vec{a}=(2,1), \vec{r}=(3,-1),$ så er den retningsderiverte $f'(\vec{a},\vec{r})$ lik:
	3 102 6 -6 0
9)	I hvilken retning vokser $f(x,y) = 6xy + 7x^2y$ hurtigst når vi står i punktet $(-1,2)$:
	(-16,1) $(2,8)$ $(3,2)$ $(42,3)$ $(42,-3)$
10) $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$ er lik:
	0 -2 finnes ikke ∞ 1

UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT 1100 — Kalkulus.

Eksamensdag: Mandag, 8. desember 2003.

Tid for eksamen: 09.00 - 12.00.

Oppgavesettet er på 2 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av to deler. Den ene delen inneholder 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å svare feil. Den andre delen av oppgavesettet består av 7 delspørsmål som teller 10 poeng hver. I denne delen må du grunngi svarene dine; ubegrunnede svar vil få 0 poeng selv om de er riktige. Maksimalt oppnåelig poengsum på hele settet er 100 poeng.

Del 2

Oppgave 1.

Funksjonen f er gitt ved

$$f(x,y) = 3x^2 + 2xy + 2y^2 - 2x + 6y$$

- a) Finn det stasjonære punktet til f.
- b) Avgjør om det stasjonære punktet til f er et lokalt maksimum, et lokalt minimum eller et sadelpunkt.

Oppgave 2.

- a) Vis at z = 1 + i er en rot i polynomet $P(z) = z^3 z^2 + 2$. Finn den komplekse og reelle faktoriseringen til P(z).
- b) Finn tall A, B, C slik at

$$\frac{4x^2 - x + 5}{(x+1)(x^2 - 2x + 2)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 - 2x + 2}$$

c) Regn ut integralet $\int \frac{2x+1}{x^2-2x+2} dx$.

Oppgave 3.

Figuren viser et rektangel innskrevet i en rettvinklet trekant. Hva er det største arealet et slikt rektangel kan ha?

Oppgave 4.

Alt vi vet om funksjonen $f:(0,\infty)\to\mathbb{R}$ er

- (*) f(xy) = f(x) + f(y) for alle $x, y \in (0, \infty)$
- (**) f er deriverbar i x = 1 og f'(1) = k.

Vår oppgave er å finne ut mer om f.

Vis først at f(1) = 0. (Hint: Bruk (*) med y = 1). Vis deretter at $f(x+h) = f(x) + f(1+\frac{h}{x})$ og bruk dette til å vise at $f'(x) = \frac{k}{x}$. Forklar til slutt hvorfor f må være funksjonen $f(x) = k \ln x$.

SLUTT