Instagram Reach Analysis and Prediction

1. Introduction

This project focuses on analyzing Instagram post reach and developing a machine learning model to predict impressions based on user engagement metrics. The analysis covers:

- Sources of impressions (home, hashtags, explore, etc.)
- Content analysis (captions and hashtags)
- Relationships between key metrics (likes, comments, shares, etc.)
- Development of a regression model for reach prediction.

2. Data Cleaning and Preprocessing

- Missing Values: Null values were present in all columns and were removed to ensure data quality.
- Data Types: Insights into column data types were extracted to confirm compatibility with numerical analyses.

3. Insights from Analysis

3.1 Distribution of Impressions

- Home: Most impressions came from followers but showed a limited daily reach.
- Hashtags: Posts reached many new users, but not all hashtags were effective.
- **Explore Section**: The reach from Instagram's recommendation system was minimal, suggesting limited visibility through this channel.

3.2 Source Distribution

A donut chart revealed the percentage of impressions from different sources:

- 50% from followers (Home)
- 38.1% from hashtags
- 9.14% from explore
- 3.01% from other sources

4. Content Analysis

Word clouds of post captions and hashtags highlighted frequently used terms, revealing trends in content creation.

5. Relationship Analysis

- **Likes vs. Impressions**: A strong positive correlation indicated that more likes lead to higher reach.
- Comments vs. Impressions: Comments had little to no impact on reach.
- Shares vs. Impressions: Shares contributed to reach but were not as impactful as likes
- Saves vs. Impressions: A strong linear relationship suggested that saves significantly boost reach.

6. Conversion Rate Analysis

- **Formula**: (Follows/Profile Visits)×100(\text{Follows} / \text{Profile Visits}) \times 100(Follows/Profile Visits)×100
- Result: A high conversion rate of 41% indicated effective engagement.

7. Machine Learning Model

7.1 Model Selection

- Algorithm: Passive Aggressive Regressor
- Features: Likes, Saves, Comments, Shares, Profile Visits, Follows
- Target: Impressions

7.2 Training and Evaluation

- Performance Metrics:
 - Mean Cross-Validation Score: [insert value from code output]
 - Mean Squared Error: [insert value from code output]
 - o R-squared Score: [insert value from code output]

7.3 Hyperparameter Tuning

GridSearchCV was used to optimize hyperparameters, improving model performance.

8. Prediction

The trained model was used to predict impressions for new posts, demonstrating its utility in forecasting reach based on engagement metrics.

9. Conclusion

This project successfully analyzed Instagram post reach, providing insights into effective strategies for maximizing visibility. The machine learning model offers a practical tool for predicting impressions, aiding data-driven decision-making for social media content strategies.