MA553 Past Qualifying Examinations

Carlos Salinas

December 31, 2015

1 Heinzer MA 553 Problems

Past Heinzer and Włodarczyk problems with proofs to the theorems, corrolaries, and lemmas where I believe they would benefit me.

1.1 Groups

Problem 1.1. Does the symmetric group S_5 have a subgroup of order 10? Justify your answer.

Proof. Yes. In fact, the following more general result holds.

Lemma 1. The group D_{2n} acts transitively on the set A consisting of the vertices of a regular n-gon.

Proof of lemma. Labeling these vertices 0, ..., n-1 in a clockwise fashion, let r be the rotation of the n-polygon clockwise by $2\pi/n$ radians and let s be the reflection of the regular n-gon by any line which passes through the center of the n-gon. This defines an action on A since for any vertex $a \in A$ and we have $r \cdot a \in A$ (that is, $r \cdot a \mapsto a+1 \mod n$) and $s \cdot a \in A$ (that is, $s \cdot a \mapsto n-1 \mod n$ or something like that) and r, s are generators for D_{2n} .

Next, it is easy to see that the action is transitive for $r^k \cdot a \mapsto a + k \mod n$ traverses (goes through every element of) the set A.

Lastly, we claim that this action is faithful. That is, we claim that the stabilizer of A consists of the identity subgroup. First $\langle e \rangle \subset \operatorname{Stab}_{D_{2n}}(A)$ (this is always true). Let $g \in \operatorname{Stab}_{D_{2n}}(A)$. Then, $g \cdot a = a \mod n$ for all $a \in A$. This cannot be an element of the form sr^k or r^k since r^k does not fix any vertices. Thus, it can only be an element of the form s or e. But likewise s only fixes at most two vertices (vertices which intersect the line we are reflecting about). Thus, g = e and we see that the action is indeed faithful.

Thus, there is an induced homomorphism $\varphi \colon D_{2n} \hookrightarrow S_n$ with kernel $\langle e \rangle$ the identity element, i.e., φ is a monomorphism so $D_{2n} \cong \varphi(D_{2n}) < S_n$. This shows that S_n always contains a subgroup of order 2n, namely, a subgroup isomorphic to the dihedral group D_{2n} .

From the lemma above, we see that $D_{10} \hookrightarrow S_5$ so that S_5 has a subgroup of order 10.

Problem 1.2. Let G be a subgroup generated by the 5-cycles in S_5 . Find the order of $N_{S_5}(G)$.

Proof. This is a thinly disguised Sylow's theorem problem. The 5-cycles of S_5 are order the order 5 premutations of S_5 hence, are contained in some Sylow 5-subgroup P. Since G is the larges subgroup containing these 5-cycles and P is a maximal subgroup of S_5 then G = P. First, let us factor the order of S_5 into primes, $|S_5| = 5! = 2^3 \cdot 3 \cdot 5$. By Sylow's theorem, we have that the index of the normalizer of G in S_5 is $n_5 = [S_5 : N_{S_5}(G)]$ and $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 2^3 \cdot 3$. Running through all of the possibilities, we see that $n_5 = 1$ or $n_5 = 6$.

If $n_5 = 1$ then G is the unique Sylow 5-subgroup of G and hence, a normal subgroup of S_5 . Moreover, since all of the 5-cycles are even permutations $G < A_5$. Since G is a characteristic subgroup of S_5 this would imply that $G \triangleleft A_5$, but A_5 is simple. Thus, $n_5 = 6$.

Hence, $n_5 = 6$ and we have that

$$|N_{S_5}(G)| = \frac{5!}{6} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{6} = 4 \cdot 5 = 20.$$

Problem 1.3. Show that for any element σ of order 2 in the alternating group A_n , there exists $\tau \in S_n$ such that $\tau^2 = \sigma$.

Proof. Consider the unique representation of σ as a product of disjoint cycles

$$\sigma = (a_1^1 \cdots a_{k_1}^1) \cdots (a_1^\ell \cdots a_{k_\ell}^\ell).$$

since disjoint cycles commute, $|\sigma|$ is the least common multiple of the order of each of the cycles in the representation above. Since every *n*-cycle has order *n* and $|\sigma| = 2$, it follows that σ must be a product of disjoint transposition, i.e., disjoint 2-cycles.

Now, since $\sigma \in A_n$, σ is an even permutation so consists of an even number of disjoint transpositions, say

$$\sigma = (a_1 b_1) \cdots (a_{2k} b_{2k})$$

for some positive integer k. Now, note that the product of transpositions

$$(ab)(cd) = (acbd)^2$$

so that

$$\sigma = (a_1 \, a_2 \, b_1 \, b_2)^2 \cdots (a_{2k-1} \, a_{2k} \, b_{2k-1} \, b_{2k})^2.$$

Since each of these cycles are disjoint from one another, they commute so that

$$\sigma = [(a_1 \, a_2 \, b_1 \, b_2) \cdots (a_{2k-1} \, a_{2k} \, b_{2k-1} \, b_{2k})]^2.$$

Define

$$\tau := (a_1 \, a_2 \, b_1 \, b_2) \cdots (a_{2k-1} \, a_{2k} \, b_{2k-1} \, b_{2k}).$$

Then $\tau^2 = \sigma$ as desired.

Problem 1.4. Let G be a finite group, p > 0 a prime number. Show that a subgroup H < G contains a Sylow p-subgroup of G if and only if p does not divide [G: H].

Proof. \Longrightarrow Put $|G| = p^{\alpha}m$ for positive integer m and α , where m is not divisible by p. Suppose that $P \in \operatorname{Syl}_p(G)$ is contained in H. Then, by Lagrange's theorem, we have $p^{\alpha} \mid H$ and $|H| \mid p^{\alpha}m|G|$. Thus, $|H| = p^{\alpha}n$ for some $n \mid m$ not divisible by p. Hence,

$$[G:H] = \frac{p^{\alpha}m}{p^{\alpha}n} = \frac{m}{n}$$

which is not divisible by p since m and n are not divisible by p.

 \Leftarrow Conversely, suppose that $p \nmid [G:H]$. Then $|H| = p^{\alpha}m/[G:H]$. Since $p \nmid [G:H]$, $[G:H] \mid m$. Put $|H| = p^{\alpha}n$. Let $P \in \operatorname{Syl}_p(H)$. Then P is a p-subgroup of G hence, must be contained in a Sylow p-subgroup Q of G. Thus, P < Q, but $|P| = p^{\alpha} = |Q|$. Hence, P = Q, i.e., H contains a Sylow p-subgroup of G.

Problem 1.5. Let G be a finite group, p > 0 a prime number, and H a normal subgroup of G. Prove the following assertions.

- (a) Any Sylow p-subgroup of H is the intersection $P \cap H$ of a Sylow p-subgroup of G and H.
- (b) Any Sylow p-subgroup of G/H is the quotient PH/H, where P is a Sylow p-subgroup of G.

Proof. (a) Let $Q \in \operatorname{Syl}_p(H)$. Then Q is a p-subgroup of G hence, it is contained in a Sylow p-subgroup P of G. Hence, $Q < P \cap H$. Conversely, since $P \cap H < P$, $P \cap H$ is a p-subgroup of H hence, it is contained in a Sylow p-subgroup R of H. Thus, $Q < P \cap H < R$. But since |Q| = |R| and $|Q| \mid |P \cap H|$ and $|P \cap H| \mid |R|$, we must have that $Q = P \cap H$.

(b) We will begin by showing that if $P \in \operatorname{Syl}_p(G)$ then $PH/H \in \operatorname{Syl}_p(G/H)$. Put $|G| = p^{\alpha}m$ and $|H| = p^{\beta}n$ where $p \nmid m$ and $p \nmid n$ and $n \mid m$ (where the last necessarily true by Lagrange's theorem, since H is a subgroup of G). By the 2nd isomorphism theorem, since $H \triangleleft G$, we have $PH/H \cong P/P \cap H$ so that

$$|PH/H| = |P/P \cap H| = |P|/|P \cap H| = p^{\alpha - \beta};$$

this is by part (a) since $P \cap H$ is a Sylow p-subgroup of H hence, $|P \cap H| = p^{\beta}$. Since $|G/H| = p^{\alpha-\beta}n/m$, it follows that if $Q \in \operatorname{Syl}_p(G/H)$, then $|Q| = p^{\alpha-\beta}$. Thus, by a simple order argument, it must be that $PH/H \in \operatorname{Syl}_p(G/H)$ (PH/H is a p-group hence, it is contained in a Sylow p-subgroup Q of G/H, but $|PH/H| = |Q| = p^{\alpha-\beta}$ thus, PH/H = Q).

Now, suppose that $Q \in \operatorname{Syl}_p(G/H)$. By Sylow's theorem, Q is conjugate to a subgroup of the form RH/H where $R \in \operatorname{Syl}_p(G)$. By the 4th isomorphism theorem, there exists a subgroup K > H such that K/H = Q. Moreover, since Q is conjugate to RH/H, K is conjugate to RH. Thus, $K = gRHg^{-1}$ for some $g \in G$. But since $H \triangleleft G$ for any $h \in H$, $r \in R$, we have $grhg^{-1} = grg^{-1}(ghg^{-1}) = grg^{-1}h'$ for some $h' \in H$. Hence, $K = gRg^{-1}H$. But $R \in \operatorname{Syl}_p(G)$ thus, $gRg^{-1} = P$ for some Sylow p-subgroup P of G. Thus, K/H = PH/H = Q.

Problem 1.6. Let H be a normal subgroup of a finite group G, and let N < H be a normal Sylow subgroup of H. Prove that N is a normal subgroup of G.

Proof. This is an important result, what is says is that normal Sylow *p*-subgroups are *characteristic* subgroups, i.e., if K is characteristic in H and $K \triangleleft G$ then $K \triangleleft H$ and $K \triangleleft G$.

Suppose N is a normal Sylow p-subgroup of H. Then N is the unique Sylow p-subgroup of H. Since $H \triangleleft G$, for every $g \in G$, $gHg^{-1} = H$. In particular, $gNg^{-1} < H$. Since conjugation preserves order, $|qNq^{-1}| = |N|$ hence, $qNq^{-1} = N$. Thus, $N \triangleleft G$.

Problem 1.7. Let G be a finite group, p > 0 a prime number, and H a normal p-subgroup of G. Prove the following assertions.

- (a) H is contained in each Sylow p-subgroup of G.
- (b) If K is any normal p-subgroup of G, then HK is a normal p-subgroup of G.
- *Proof.* (a) Suppose that H is a normal p-subgroup of G. Then H is contained in some Sylow p-subgroup P of H. Moreover, since $gHg^{-1} = H < gPg^{-1}$ for all $g \in G$, and since every Sylow p-subgroup of G is conjugate, H < Q for every $Q \in \operatorname{Syl}_p(G)$.
- (b) First, note that since H and K are normal subgroups of G, HK < G. Moreover, $|HK| = |H||K|/|H \cap K|$. If $|H \cap K| \neq 1$ then $H \cap K$ is not the identity subgroup hence, must contain at least one element of order p^{α} for $\alpha \geq 1$. By Lagrange's theorem, $p \mid |H \cap K|$ and $|H \cap K| \mid |H|, |K|$ so $|H \cap K| = p^{\beta}$ for some $\beta \geq 1$. It follows that $|HK| = p^{\gamma}$ for some $\gamma \geq 1$, i.e., HK is a p-subgroup of G.

Lastly, we need to show that $HK \triangleleft G$. Let $g \in G$. Then for any $h \in H$, $k \in K$ we have $ghkg^{-1} = (ghg^{-1})(gkg^{-1}) = h'k'$ where $h' \in H$ and $k' \in K$ since $H \triangleleft G$ and $K \triangleleft G$. Thus, $HK \triangleleft G$. Note that the latter is true regardless of whether H and K are p-subgroups of G.

Problem 1.8. Prove that the order of the automorphism group $(\mathbb{Z}/3\mathbb{Z})^4$ is $80 \times 78 \times 72 \times 54$.

Proof. This is from an early section of Dummit and Foote. The idea is that $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})^4) \cong \operatorname{GL}_4(\mathbb{Z}/3\mathbb{Z})$ which has $(3^4-1)(3^4-3)(3^4-9)(3^4-27)=80\cdot 78\cdot 72\cdot 54$ elements.

Problem 1.9. Prove, for fixed n, that the following conditions are equivalent:

- (a) Every abelian group of order n is cyclic.
- (b) n is square free (i.e., not divisible by any square integer > 1).

Proof. (a) \Longrightarrow (b) Suppose that every Abelian group of order n is cyclic. Let G be an Abelian group of order n. Then $G = \langle x \rangle \cong Z_n$ for some element $x \in G$ of order n. By the fundamental theorem of finitely generated Abelian groups, we have

$$G \cong Z_{n_1} \times \cdots \times Z_{n_r} \cong Z_n$$

where n_i are elementary divisors. Seeking a contradiction, suppose that n is not square free, i.e., $n = k^2 m$. Then, we have

$$Z_n \cong Z_k \times Z_{km},$$

but the group on the left is cyclic, whereas the group on the right is not (suppose $(z_1, z_2) \in Z_k \times Z_{km}$ is a generator for $Z_k \times Z_{km}$; then $|(z_1, z_2)| = k^2 m$, but $z_1^k = 1$ and $z_2^{km} = 1$ hence $(z_1, z_2)^{km} = (z_1^{km}, z_2^{km}) = (1, 1)$; i.e., the order of every element (z_1, z_2) is at most lcm(k, km) = km). This contradicts the assumption that G is cyclic. Thus, n must be square free.

(b) \implies (a) Conversely, suppose that n is square free. Then, by the fundamental theorem of finitely generated abelian groups, we have

$$G \cong Z_{n_1} \times \cdots \times Z_{n_r}$$

where $n = n_1 \cdots n_r$ and each n_i is an elementary divisor of n, i.e., $n_{i+1} \mid n_i$ which implies that $n_1 = n_2 k$ for some positive integer $k \mid n$. Thus, $n = n_1^2 k n_3 \cdots n_s$. But n is square free thus, $n_1 = 1$. Proceeding in this manner, we see than $n_i = 1$ for all $i \neq s$ and $n_s = n$. Thus,

$$G \cong 1 \times \cdots 1 \times Z_n \cong Z_n$$

is cyclic.

Problem 1.10. Prove that there is no simple group of order 4125.

Proof. Suppose G is a group of order $4125 = 3 \cdot 5^3 \cdot 11$. We need to show that G contains at least one nontrivial normal subgroup. We shall proceed by Sylow's theorem. By Sylow's theorem, $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 5^3 \cdot 11$ thus, $n_3 = 1$, 25, and 55. Similarly $n_5 = 1$ and 11 and $n_{11} = 1$ and 375.

Forget that. Let us do something tricky. Suppose G is simple. Then G has no nontrivial normal subgroup. By Sylow's theorem, $n_5 = 1$ or 11 so $n_5 = 11$ for otherwise G has a unique hence, normal Sylow 5-subgroup. Also by Sylow's theorem, recall that $[G: N_G(P)] = 11$ for any $P \in \text{Syl}_5(G)$. Let A denote the collection of left cosets of N_G . By Lagrange's theorem, $|A| = [G: N_G(P)] = 11$. Let

G act on A by left multiplication. This action is transitive and hence, induces a homomorphism $\varphi \colon G \to S_{11}$. Moreover, since $\ker \varphi \lhd G$ and G is simple, $\ker \varphi$ is the identity subgroup. Thus, by the 1st isomorphism theorem, $G \cong \varphi(G)$ so, by Lagrange's theorem, $3 \cdot 5^3 \cdot 11 \mid 11!$. However, the highest power of 5 to divide 11! is 5^2 . This leads to a contradiction. Thus, G is not simple.

Problem 1.11. Show that P is abelian whenever Aut(P) is cyclic.

Proof. The problem follows quickly from the following results

Lemma 2. Any subgroup of a cyclic group is cyclic.

Proof. Suppose that G is cyclic, i.e., $G = \langle x \rangle$ for some element $x \in G$. Let H < G. If H is the identity subgroup then $H = \langle e_G \rangle$. Suppose H is nontrivial. Since every element of G is some power of x, every element of H is of the form x^k for some positive integer k. Put $y := x^k$ where k is the smallest power of x such that $x^k \in H$. We show that $\langle y \rangle = H$.

First, it is immediate that $\langle x \rangle < H$. To see the reverse, let $z \in H$. Then $z = x^{\ell}$ for some positive integer ℓ . By our previous assumption, we have $k < \ell$ so by the Euclidean algorithm, there exists positive integers q and r such that $\ell = qk + r$ where r < k so

$$z = x^{\ell} = x^{qk}x^r = (x^k)^q x^r = y^q x^r.$$

But since H is a group, we have $y^{-q}z=x^r\in H$. But we made the assumption that k is the smallest integer such that $x^k\in H$. Thus, r=0 and we have $z=y^q$. It follows that $H=\langle y\rangle$, i.e., H is cyclic.

Lemma 3. If G/Z(G) is cyclic, then G is Abelian.

Proof. Suppose G/Z(G) is cyclic. Then $G/Z(G) = \langle \bar{x} \rangle$ for some $x \in G$. Thus, for every element $g \in G$, $g = x^k z$ for some $z \in Z(G)$ for some positive integer k. Let $x^{k_1} z_1, x^{k_2} z_2 \in G$. Then

$$(x^{k_1}z_1)(x^{k_2}z_2) = x^{k_1}x^{k_2}z_1z_2 = x^{k_1+k_2}z_2z_1 = x^{k_2+k_1}z_2z_1 = (x^{k_2}z_2)(x^{k_1}z_1).$$

Thus, G is Abelian.

Suppose $\operatorname{Aut}(P)$ is cyclic. Then $\operatorname{Inn}(P) < \operatorname{Aut}(P)$ is cyclic. But since, $G/Z(G) \cong \operatorname{Inn}(P)$, we have that G is Abelian.

Problem 1.12. Let G be a finite group of order pqr, where p > q > r are prime.

- (a) If G fails to have a normal subgroup of order p, determine the number of elements in G of order p.
- (b) If G fails to have a normal subgroup of order q, prove that G has at least q^2 elements of order q.
- (c) Prove that G has a nontrivial normal subgroup.

Proof. (a) By Sylow's theorem, $n_p \equiv 1 \pmod{p}$ and $n_p \mid qr$ so either $n_p = 1$ or $n_p = qr$. Since we are assuming that G does not have a normal subgroup of order p, $n_p = qr$. Since every subgroup of order p is cyclic, for every pair $P, Q \in \text{Syl}_p(G), P \cap Q = \{e_G\}$. Thus, the number of elements of order p must be qr(p-1).

- (b) Again, by Sylow's theorem, $n_q \equiv 1 \pmod{q}$ and $n_q \mid pr$ so either $n_q = 1$, p, or pr. Since we are assuming that G does not have a normal subgroup of order p, $n_q = p$ or $n_q = pr$. Thus, we may assume that $n_q = p$. Now since every subgroup of order q is cyclic, the the Sylow q-subgroups of G intersect pairwise at the identity subgroup. Thus, there are at most p(q-1) elements of order q. Now, since p > r > q, p > q + 2 so $(q+2)(q-1) = q^2 + q 1 > q^2$ since q > 1. Thus, G has at least q^2 elements of order q.
- (c) Lastly we will show that G has at least one nontrivial normal subgroup. Seeking a contradiction, suppose that G does not have a normal Sylow r-subgroup or a Sylow q-subgroup. By Sylow's theorem, $n_r \equiv 1$ and $n_r \mid pq$ thus, $n_r = 1$, q, p or pq. Since we are assuming that G does not have a normal Sylow r-subgroup, then n_r is at least q. Thus, there are q(r-1) elements of order r. By parts (a) and (b) we have a total of

$$qr(p-1) + q^2 + q(r-1) + 1 = pqr - qr + q^2 + qr - q + 1 = pqr + q(q-1) + 1$$

elements of order p, q, and r together with the identity element e. But q(q-1)+1>0 so we have pqr+q(q-1)+1>pqr=|G|. This is a contradiction. Thus, at least one of n_p , n_q or n_r must equal 1 and hence, at least one of the p, q, or r Sylow subgroups is normal in G.

Problem 1.13. Find all abelian groups of order 60. Find the number of elements of order 6 in each group.

Proof. Suppose G is an Abelian group of order $|G| = 2^2 \cdot 3 \cdot 5$. By the fundamental theorem of finitely generated abelian groups, we have that G is isomorphic to one of

$$Z_{2\cdot 3\cdot 5} \times Z_2 = Z_{30} \times Z_2$$
 or $Z_{2^2\cdot 3\cdot 5} = Z_{60}$.

For $G \cong Z_{60}$, recall that since G is Abelian, G has a subgroup of order m for every positive integer n dividing m. Thus, G has a subgroup of order 6. Moreover, since Z_{60} is cyclic, this subgroup too is cyclic. Therefore, by Euler's totient theorem, this subgroup contains a total of $\varphi(6) = \varphi(3)\varphi(2) = (3-1)(2-1) = 2$ elements of order 6.

For $G \cong Z_{30} \times Z_2$, if $(z_1, z_2) \in G$ is an element of order 6 then z_1 must be an element of order 3 or order 6 and z_2 must be an (the only) element of order 2 (since $|(z_1, z_2)| = \text{lcm}(|z_1|, |z_2|)$). Therefore, it suffices to count the elements of order 3 and 6 in Z_{30} and pair them up with an element of order 2 and an element of order 1 or 2, respectively. For the same reasons as above, G must contain a subgroup of order 3 and a subgroup of order 6. By Euler's totient theorem, $\varphi(3) = 2$ and $\varphi(6) = 2$. Thus, there are $2 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 = 6$ elements of order 6 in $G \cong Z_{30} \times Z_2$.

Problem 1.14. Show that any group G of order 80 is solvable.

Proof. Suppose G is a group of order $80 = 2^4 \cdot 5$. By Sylow's theorem, $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 2^4$. Thus, $n_5 = 1$, 16. Similarly, $n_2 = 1$ or $n_2 = 5$.

If $n_5 = 1$ we are done since $P_5 \in \operatorname{Syl}_5(G)$ is the unique Sylow 5-subgroup of G hence, $P_5 \triangleleft G$ and G/P_5 is a group of order 2^4 , i.e., a p-group hence, P_5 and G/P_5 are solvable. Thus, G is solvable.

Suppose $n_5 \neq 1$, then we must show that $n_2 = 1$. Since $n_5 \neq 1$, we have $n_5 = 16$ and we have $16(5-1) = 16 \cdot 4 = 64$ elements of order 5 which leaves 80-64-1=15 elements unaccounted for. Thus, $n_2 = 1$ so $P_2 \in \operatorname{Syl}_2(G)$ is a normal subgroup of G. Thus, $P_2 \lhd G$ and $|P_2| = 2^4$ is a p-group hence, solvable. Moreover, $|G/P_2| = 5$ hence, is Abelian thus, solvable. Therefore, G is solvable.

Problem 1.15. Let G be a finite group and suppose that Aut(G) is solvable. Show that G is solvable.

Proof. Suppose that $\operatorname{Aut}(G)$ is solvable. Then $\operatorname{Inn}(G) < \operatorname{Aut}(G)$ is solvable. But $\operatorname{Inn}(G) \cong G/Z(G)$. Thus, G/Z(G) is solvable. Since $Z(G) \triangleleft G$ is Abelian, Z(G) is solvable. Thus, G is solvable.

1.2 Rings

Problem 1.16. Let R be a commutative ring with $1 \neq 0$ and let \mathfrak{p} be a prime ideal of R. Let I and J be ideals of R such that $I \cap J \subset \mathfrak{p}$, prove that either $I \subset P$ or $J \subset P$.

Proof. Without loss of generality, suppose that $I \not\subset J$. We show that $J \subset \mathfrak{p}$. Let $x \in I$. Then $x \notin \mathfrak{p}$. But for any $y \in J$, $xy \in I \cap J$. Thus, $xy \in \mathfrak{p}$. Since \mathfrak{p} is prime, $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. But $x \notin \mathfrak{p}$ hence, $y \in \mathfrak{p}$. This is true for any $y \in J$. Thus, $J \subset \mathfrak{p}$.

Problem 1.17. Prove that a finite integral domain is a field.

Proof. Let $a \in R$ be a nonzero element. Define the map $\varphi_a \colon R \to R$ by $\varphi_a(x) := ax$. Then φ_a defines a group homomorphism on R viewed as an additive Abelian group: Let $x, y \in R$ then

$$\varphi_a(x+y) = a(x+y)$$

$$= ax + ay$$

$$= \varphi_a(x) + \varphi_a(y).$$

Now, let $x \in \ker \varphi$. Then $\varphi_a(x) = ax = 0$. Since R is a domain and $a \neq 0$, x = 0. Thus, φ is injective. Since R is finite and $\varphi_a \colon R \to R$ is injective, φ_a is surjective (by the pigeonhole principle). Thus, there exists an element $b \in R$ such that $\varphi_a(b) = ab = 1$. Thus, a is a unit. Since φ_a chosen arbitrarily, it follows that every nonzero element $a \in R$ is a unit. Thus, R is a field.

Problem 1.18. An element x of a ring R is called nilpotent if some power of x is zero. Prove that if x is nilpotent, then 1 + x is a unit in R.

Proof. First we will prove the following:

Lemma 4. If x is nilpotent, then -x is nilpotent.

Proof. Suppose that x is nilpotent. Then $x^n = 0$ for some positive integer n. Then

$$(-x)^n = (-1)^n \cdot x^n = (-1)^n \cdot 0 = 0.$$

Thus, -x is nilpotent.

Now, since x is nilpotent, by the preceding lemma, -x is nilpotent. Thus

$$(-x)^n - 1 = (-x - 1)((-x)^{n-1} + \dots + 1).$$

Since $x^n = 0$, we have

$$-1 = ((-x) - 1)((-x)^{n-1} + \dots + 1)$$

or

$$1 = (1+x)((-x)^{n-1} + \dots + 1).$$

Thus, 1 + x is a unit.

Problem 1.19. Let R be a nonzero commutative ring with 1. Show that if I is an ideal of R such that 1 + a is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.

Proof. Seeking a contradiction, assume otherwise. Then there exists a maximal ideal \mathfrak{m} such that $\mathfrak{m} \not\supset I$, i.e., for some $a \in I$, $a \notin \mathfrak{m}$. Consider the ideal generated by (a). Since $a \in I$, $(a) \not= R$ since I is a proper ideal of R, in particular, since a is a nonunit. Consider the ideal $\mathfrak{m} + (a)$. Since $a \notin \mathfrak{m}$, $\mathfrak{m} \subset \mathfrak{m} + (a)$. But since \mathfrak{m} is maximal, it follows that $\mathfrak{m} + (a) = R$. Hence, there exists an element $m \in \mathfrak{m}$ such that m + ra = 1 for some $r \in r$. Then we have m = 1 - ra. Since $-r \in R$ and $a \in I$, we have $-ra \in I$ so m = 1 + (-ra) is a unit thus, $\mathfrak{m} = R$. This contradicts that \mathfrak{m} is a maximal ideals. Thus, I is contained in every maximal ideal of R.

Problem 1.20. Let R be an integral domain and F be its field of fractions. Let \mathfrak{p} be a prime ideal in R and

$$R_{\mathfrak{p}} := \left\{ \left. \frac{a}{b} \mid a, b \in R, \, b \notin \mathfrak{p} \right. \right\} \subset F.$$

Show that $R_{\mathfrak{p}}$ has a unique maximal ideal.

Proof. We will show that

$$\mathfrak{p}R_{\mathfrak{p}} \coloneqq \left\{ \left. \frac{a}{b} \mid a \in \mathfrak{p}, \, b \notin \mathfrak{p} \right. \right\}$$

is the unique maximal ideal of R. We will show that $a/b \in R_{\mathfrak{p}}$ is a unit if and only if $a/b \notin \mathfrak{p}R_{\mathfrak{p}}$. \Longrightarrow Suppose that a/b is a unit. Then there exists an element a'/b' such that

$$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd} = \frac{1}{1}.$$

That is, there exists an element $s \in R \setminus \mathfrak{p}$ such that s(ac - bd) = 0. Since R is an integral domain, $s \neq 0$ so ac - bd = 0 implies ac = bd. Since $b, d \notin \mathfrak{p}$ (since \mathfrak{p} is prime) and, in particular, $ac \notin \mathfrak{p}$ so $a/b \notin \mathfrak{p}R_{\mathfrak{p}}$.

 \Leftarrow Conversely, suppose that $a/b \notin \mathfrak{p}R_{\mathfrak{p}}$. Then $a \notin \mathfrak{p}$. Thus, $b/a \in R_{\mathfrak{p}}$ and

$$\left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = \frac{ab}{ba} = \frac{1}{1}.$$

Thus, a/b is a unit in $R_{\mathfrak{p}}$.

Now, since $\mathfrak{p}R_{\mathfrak{p}}$ does not contain any units, it is a proper ideal of $R_{\mathfrak{p}}$. Morevore, for every $a/b \notin \mathfrak{p}R_{\mathfrak{p}}$, $\mathfrak{p}R_{\mathfrak{p}} + (a/b) = R_{\mathfrak{p}}$ so $\mathfrak{R}_{\mathfrak{p}}$ is a maximal ideal, i.e., is not contained in any proper ideal of $R_{\mathfrak{p}}$. Any other ideal must contain a unit or is strictly contained in $\mathfrak{p}R_{\mathfrak{p}}$. Thus, $\mathfrak{p}R_{\mathfrak{p}}$ is the unique maximal ideal of $R_{\mathfrak{p}}$.

Problem 1.21. Let m and n be relatively prime integers. Show that there is an isomorphism $Z_{mn}^{\times} \cong Z_m^{\times} \times Z_n^{\times}$.

Proof. Suppose m and n are relatively prime. Then $(m) + (n) = \mathbb{Z}$, i.e., (m) and (n) are comaximal. By the Chinese remainder theorem there is a ring isomorphism

$$Z_{mn} \cong Z_m \times Z_n$$
.

which gives an isomorphism of the group of units

$$Z_{mn}^{\times} \cong (Z_m \times Z_n)^{\times}.$$

Thus, it suffices to show that $(Z_m \times Z_n)^{\times} = Z_m^{\times} \times Z_m^{\times}$.

Suppose $(a,b) \in (Z_m \times Z_n)^{\times}$. Then (a,b) is a unit in $Z_m \times Z_n$, i.e., there exists (c,d) such that (a,b)(c,d)=(1,1). But (a,b)(c,d)=(1,1) if and only if ac=1 and bd=1. Thus, $a\in Z_m^{\times}$ and $b\in Z_n^{\times}$ so $(a,b)\in Z_m^{\times}\times Z_n^{\times}$. Conversely, if $(a,b)\in Z_m^{\times}\times Z_n^{\times}$ then a is a unit in Z_m and b is a unit in Z_n . Thus, there exists elements $c\in Z_m$ and $c\in Z_n$ such that c=1 so $c\in Z_n$ and $c\in Z_n$ such that c=1 and c=1 so $c\in Z_n$ and $c\in Z_n$ such that c=1 and c=1 so $c\in Z_n$ and c=1 so c=1 such that c=1 and c=1 so c=1 so c=1 so c=1 such that c=1 so c=1 and c=1 so c=1 such that c=1 so c=1 such that c=1 so c=1 such that c=1 and c=1 so c=1 such that c=1 such that c=1 such that c=1 so c=1 such that c=1 such

Problem 1.22. Show that if x is non-nilpotent in R then a maximal ideal \mathfrak{p} of R, which does not contain x^n for n = 1, 2, ..., is prime.

Proof. I think what the professor had in mind was to prove this: "Show that if x is non-nilpotent in R then the ideal \mathfrak{p} , which is maximal with respect to not containing x^n for any $n \in \mathbb{Z}$, is prime."

This looks like a standard commutative algebra problem. Let $S \coloneqq \{x^k \mid k \ge 1\}$, i.e., the multiplicative set generated by x and suppose that $\mathfrak p$ is an ideal maximal with respect to $\mathfrak p \cap S = \emptyset$. Seeking a contradiction suppose $a,b \in R$ with $ab \in \mathfrak p$ but $a,b \notin \mathfrak p$. Then, the ideals $\mathfrak p + (a)$ and $\mathfrak p + (b)$ contain $\mathfrak p$ and therefore must contain a power of x, say x^m and x^n , respectively. Thus, we have

$$x^m x^n = x^{m+n} \in (\mathfrak{p} + (a))(\mathfrak{p} + (b)) \subset \mathfrak{p} + (ab) \subset \mathfrak{p}.$$

But \mathfrak{p} is maximal with respect to not containing any power of x. This is a contradiction. Thus, we must have $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$ which implies \mathfrak{p} is prime.

Problem 1.23. Let \mathbb{Q} be the field of rational numbers and $D = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$.

- (a) Show that D is a principal ideal domain.
- (b) Show that $\sqrt{3}$ is not an element of D.

Proof. (a) We prove the following stronger result (which is, incidentally, easier to prove than what we are asked to prove): D is a field (in fact, it is the extension $\mathbb{Q}(\sqrt{2})$). Let $a + b\sqrt{2} \in D$ be a nonzero element. To show that $a + b\sqrt{2}$ is a unit, it suffices to find an inverse for it. Hence, we have

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2}.$$

Note that $a^2 - 2b^2 \neq 0$ if and only if $a^2 = 2b^2$, but this implies that $a = \sqrt{2}b$ which is impossible since $\sqrt{2} \notin \mathbb{Q}$ so that the above is indeed in D. Now, we have

$$(a+b\sqrt{2})\left(\frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2}\right) = \frac{1}{a^2-2b^2}\left(a^2+ab\sqrt{2}-2b^2+-ba\sqrt{2}\right)$$
$$= \frac{a^2-2b^2}{a^2-2b^2}$$

Thus, D is a field.

(b) We shall proceed by contradiction. Suppose that $\sqrt{3} \in D$. Then

$$\sqrt{3} = a + b\sqrt{2}$$

for some $a, b \in \mathbb{Q}$. Squaring both sides, we have

$$3 = a^{2} + 2b^{2} + 2ab\sqrt{2}$$
$$3 - a^{2} - 2b^{2} = 2ab\sqrt{2}$$
$$\sqrt{2} = \frac{3 - a^{2} - 2b^{2}}{2ab}.$$

This implies that $\sqrt{2} \in \mathbb{Q}$, which is a contradiction.

Problem 1.24. Show that if p is a prime such that $p \equiv 1 \pmod{4}$, then $x^2 + 1$ is not irreducible in $\mathbb{Z}_p[x]$.

Proof. This is very useful theorem in number theory.

Assuming the conditions above, if $x^2 + 1$ is reducible, then it is the product of linear polynomials

$$x^2 + 1 = (x+a)(x+b)$$

for $a, b \in \mathbb{Z}_p$. But then, we have

$$x^2 + 1 = x^2 + 2(a+b)x + ab.$$

Thus, $ab \equiv 1 \pmod{p}$ and $2(a+b) \equiv 0 \pmod{p}$. This means than

$$ab = kp + 1$$
 and $2(a+b) = \ell p$

for some integers k and ℓ . Thus,

$$2(a+b) + ab = (k+\ell)p + 1$$

so $p \mid 2(a+b) + ab - 1$. But since $p \equiv 1 \pmod{4}, \ p = 2^2 \cdot m + 1$ for some integer m. Thus, $2^2 \cdot m + 1 \mid 2(a+b) + ab - 1$ so $2^2 \cdot m \mid 2(a+b-1) + ab$.

Problem 1.25. Show that if p is a prime such that $p \equiv 3 \pmod{4}$, then $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.

Problem 1.26. Find a simpler description for each of the following rings:

- 0. $\mathbb{Z}[x]/(x^2-3,2x+4);$
- 0. $\mathbb{Z}[i]/(2+i)$ $(i^2=-1)$.

Proof.

Problem 1.27. Show that $\mathbb{Z}[\sqrt{-13}]$ is not a principal ideal domain.

Problem 1.28. Let D be a principal ideal domain. Prove that every nonzero prime ideal of D is a maximal ideal.

Problem 1.29. Prove or disprove that a nonzero prime ideal P of a principal ideal domain R is a maximal ideal.

Proof.

Problem 1.30. Consider the polynomial $f(x) = x^4 + 1$.

(a) Use the Eisenstein Criterion to show that f(x) is irreducible in $\mathbb{Z}[x]$.

(b) Prove that f(x) is reducible in $\mathbb{F}_p[x]$ for every prime p.

Proof.

Problem 1.31. Assume that f(x) and g(x) are polynomials in $\mathbb{Q}[x]$ and that $f(x)g(x) \in \mathbb{Z}[x]$. Prove that the product of any coefficient of f(x) with any coefficient of g(x) is an integer.

Proof.

Problem 1.32. Let k be a field, k, k, indeterminates. Let k be relatively prime polynomials in k in the polynomial ring k in k is irreducible.

1.3 Fields

Problem 1.33. Let F be a field with prime characteristic ch(F) = p. Let L/F be a finite extension such that p does not divide [L:F]. Show that L/F is a separable extension.

Proof.

Problem 1.34. Let ζ_5 be a primitive 5-th root of unity, and denote $\theta = \zeta_5 + \zeta_5^{-1}$ as an element of the cyclotomic field $\mathbb{Q}(\zeta_5)$. Show that the minimal polynomial of θ over \mathbb{Q} is $m_{\theta,\mathbb{Q}}(x) = x^2 + x - 1$.

Proof.

Problem 1.35. Prove or disprove the following: If $f(x), g(x) \in \mathbb{Q}[x]$ are irreducible polynomials that have the same splitting field, then $\deg f = \deg g$.

Proof.

Problem 1.36. Prove or disprove that every finite algebraic extension field of \mathbb{F}_{p^n} is Galois.

Proof.

Problem 1.37. If $[K : \mathbb{F}_p]$ divides $[L : \mathbb{F}_p]$, does it follow that K is isomorphic to a subfield of L.

Proof.

Problem 1.38. Let \mathbb{F}_p be a finite field whose cardinality p is prime. Fix a positive integer n which is not divisible by p, and let ζ_n be a primitive n-th root of unity. Show that $[\mathbb{F}_p(\zeta_n) : \mathbb{F}_p] = a$ is the least positive integer such that $p^a \equiv 1 \mod n$. [Hint: the Galois group of the extension of \mathbb{F}_p is generated by the Frobenius automorphism.]

Proof.

Problem 1.39. Fix a prime p, and consider the polynomial $f(x) = x^p - x - 1$. Let $\mathbb{F}_p(f)$ be the splitting field of f(x) over \mathbb{F}_p . Let $a \in \mathbb{F}_p(f)$ be a root of f.

(a) Show that $a \mapsto a+1$ defines an automorphism of $\mathbb{F}_p(f)$.

Proof. Let

(b) Show that $Gal(\mathbb{F}_p(f)/\mathbb{F}_p) \cong \mathbb{Z}_p$.

Proof.

(c) Prove that f(x) is irreducible in $\mathbb{Z}[x]$.

Proof.

 $\mathbb{F}_p(f)/\mathbb{F}_p$ is called an Artin–Schreier Extension.

Problem 1.40. Let x and y be indeterminates over the field \mathbb{F}_2 . Prove that there exists infinitely many subfields of $L = \mathbb{F}_2(x, y)$ that contain the field $K = \mathbb{F}_2(x^2, y^2)$.

Proof.

Problem 1.41. Let K/F be an algebraic field extension. If K = F(a) for some $a \in K$, prove that there are only finitely many subfields of K that contain F.

Proof.

Problem 1.42. Let p be a prime integer. Recall that a field extension K/F is called a p-extension if K/F is Galois and [K:F] is a power of p. If K/F and L/K are p-extensions, prove that the Galois closure of L/F is a p-extension.

Proof.

Problem 1.43. Give an example where K/F and L/K are p-extensions, but L/F is not Galois.

Proof.

Problem 1.44. Let L/\mathbb{Q} be the splitting field of the polynomial $x^6 - 2 \in \mathbb{Q}[x]$.

- (a) If a is one root of $x^6 2$, draw the subfield lattice of the extension $\mathbb{Q}(a)$ over \mathbb{Q} .
- (b) Give generators for each subfield K of L for which $[K:\mathbb{Q}]=2$. How many are there?
- (c) Give generators for each subfield K of L for which $[K:\mathbb{Q}]=3$. How many are there?
- (d) Give generators for each subfield K of L for which $[K:\mathbb{Q}]=4$. How many are there?
- (e) How many subfields K of L have index [L:K]=2?

Problem 1.45. Give an example of a field F having characteristic p > 0 and irreducible monic polynomial $f(x) \in F[x]$ that has a multiple root.

Proof.

Problem 1.46. Let f be an irreducible polynomial of degree k over \mathbb{F}_p . Find the splitting field of f and its Galois group.

Proof.

Problem 1.47. Let n be a positive integer and d a positive integer that divides n. Suppose $a \in \mathbb{R}$ is a root of the polynomial $x^n - 2 \in \mathbb{Q}[x]$. Prove that there is precisely one subfield F of $\mathbb{Q}(a)$ with $[F : \mathbb{Q}] = d$.

Proof.

Problem 1.48. Let $a = \sqrt[3]{5 - \sqrt{7}}$.

- (a) Find the minimal polynomial of a, and the conjugates of a.
- (b) Determine the Galois closure of F of $\mathbb{Q}(a)$.

- (c) Show that F/\mathbb{Q} is an extension by radicals.
- (d) Conclude that $Gal(F/\mathbb{Q})$ is solvable.

Proof.

Problem 1.49. Let F be a field of characteristic p > 0. Fix an element c in F. Prove that $f(x) = x^p - c$ is irreducible in F[x] if and only if f(x) has no roots in F.

Proof.

Problem 1.50. Determine the Galois group of the splitting field over \mathbb{Q} and all its subfields for

- (a) $f(x) = x^3 2$
- (b) $f(x) = x^4 + 2$
- (c) $f(x) = x^4 + 4$
- (d) $f(x) = x^4 + 4x + 2$

Proof.

Problem 1.51. Show that $\sqrt{2} \notin \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$, where $\zeta_3^2 + \zeta_3 + 1 = 0$.

Proof.

Problem 1.52. Let L/F be a Galois extension of degree [L:F]=2p, where p is an odd prime.

- (a) Show that hhere exits a unique queadratic subfield E, i.e., $F \subseteq E \subseteq L$ and [E:F]=2.
- (b) Does there exist a unique subfield K of index 2, i.e., $F \subseteq E \subseteq L$ and [E:F]=2.

Proof.

Problem 1.53. Let L/F be a Galois extension of degree $[L:F]=p^2$ for some prime p. Let K be a subfield satisfying $F \subset K \subset L$. Must K/F be a normal extension?

Proof.

Problem 1.54. Let L/F be the Galois closure of he separable algebraic field extension $F(\theta)/F$. Let p be a prime that divides [L:F]. Prove that there exists a subfield K of L such that [L:K]=p and $L=K(\theta)$.

Proof. Since p divides [L:K], [L:K] = pn for some positive integer n.

Problem 1.55. Suppose L/\mathbb{Q} is a finite field extension with $[L:\mathbb{Q}]=4$. Is it possible that there exist precisely two subfields K_1 and K_2 of L for which $[L:K_i]=2$? Justify your answer.

2 January 2007

Problem 2.1. Let (G, \cdot) be a group. Show that G is Abelian whenever Aut(G) is a cyclic group under composition.

Proof. Suppose that $\operatorname{Aut}(G)$ is cyclic. Then $\operatorname{Inn}(G) < \operatorname{Aut}(G)$ is cyclic. But $\operatorname{Inn}(G) \cong G/Z(G)$. Thus, G is Abelian by the following lemma.

Lemma 5. Let (G,\cdot) be a group. If G/Z(G) is cyclic, then G is Abelian.

Proof of lemma. Suppose that G/Z(G) is cyclic. Then $G/Z(G) = \langle \overline{x} \rangle$ for some representative $x \in G$. This means that for any $g \in G$, we can write $g = x^k z$ for some positive integer k, for some $z \in Z(G)$. Let $g_1, g_2 \in G$. Then, by the following obvious algebraic manipulations

$$g_1g_2 = x^{k_1}z_1x^{k_2}z_2 = z_1x^{k_1+k_2}z_2 = z_2x^{k_2+k_1}z_1 = z_2x^{k_2}x^{k_1}z_1 = (x^{k_2}z_2)(x^{k_1}z_1) = g_2g_1,$$

we see that G is Abelian.

Problem 2.2. Let (G, \cdot) be an Abelian group. The torsion subgroup of G is defined as the collection of elements of finite order:

$$\operatorname{Tor}(G) := \{ g \in G \mid g^m = e \text{ for some integer } m > 0 \}.$$

- (a) Show that the quotient group G/Tor(G) is torsion free, i.e., it contains no nontrivial elements of finite order.
- (b) Show that Tor(G) is finite whenever G is finitely generated. (Do not assume that G is finite.)

Proof. (a) (Presumably the torsion subgroup is a normal subgroup of G.) Define $T := \operatorname{Tor}(G/\operatorname{Tor}(G))$. We will show that $T = \bar{e}$. It is clear that $\langle \bar{e} \rangle \subset T$ thus, we need only show that $T \subset \langle \bar{e} \rangle$, i.e., if $t \in T$ then $g = \bar{e}$. Let $\bar{g} \in T$. Then $\bar{g} \in G/\operatorname{Tor}(G)$ and $\bar{g}^m = \bar{e}$ for some positive integer m. But $\bar{g}^m = \bar{e}$ implies that $g^m \operatorname{Tor}(G) = \operatorname{Tor}(G)$, i.e., $g^m \in \operatorname{Tor}(G)$. Thus, $(g^m)^n = g^{mn}e$ for some positive integer n. Thus, $g \in \operatorname{Tor}(G)$ so we must have $\bar{g} = \bar{e}$.

(b) Suppose that G is finitely generated. By the fundamental theorem of finitely generated Abelian groups, $G \cong \mathbb{Z}^r \times Z_{s_1} \times \cdots \times Z_{s_n}$ for positive integers $r, s_1, ..., s_n$. It suffices to show that $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n} = \mathrm{Tor}(G)$ (once we have demonstrated this, note that $|\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}| = s_1 \cdots s_n < \infty$). It is clear that $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n} \subset \mathrm{Tor}(G)$ since every element of $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}$ has finite order, i.e., for any $(\mathbf{1}, z_1, ..., z_n) \in \mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}$, we have $z = (\mathbf{1}, z_1, ..., z_n)^{s_1 \cdots s_n} = (\mathbf{1}, 1, ..., 1)$ (as a consequence of Lagrange's theorem). Now, suppose $z \coloneqq (\mathbf{z}, z_1, ..., z_n) \in \mathrm{Tor}(G)$. Then $z^m = (\mathbf{1}, 1, ..., 1)$ for some positive integer m. Since every non-identity element of \mathbb{Z}^r has infinite order, $\mathbf{z} = \mathbf{1}$ and $s_i \mid k$ for all i. Thus $z \in \mathbf{1} \times Z_{s_1} \times \cdots Z_{s_n}$. Thus, $|\mathrm{Tor}(G)| = s_1 \cdots s_n$ so $\mathrm{Tor}(G)$ is indeed finite.

Problem 2.3. Let (G, \cdot) be a group of order |G| = 351. Show that G is solvable.

Proof. The best plan of attack is to use Sylow's theorem. First, let us factor the order of G into powers of primes, $|G| = 351 = 3^3 \cdot 13$. In light of this factorization, it suffices to show that either $|\operatorname{Syl}_{13}(G)| = 1$ or $|\operatorname{Syl}_3(G)| = 1$ and hence, the unique Sylow-13 (or Sylow-3) subgroup will be a normal subgroup of G. By Sylow's theorem, $n_{13} \equiv 1 \pmod{13}$ and $n_{13} \mid 3^3$. Thus, $n_{13} = 1$ or 27. Suppose $n_{13} = 27$. Then G contains $12 \times 27 = 324$ elements of order 13 so there are 351 - 324 - 1 = 26 elements remaining. This implies that $n_3 = 1$. Thus, $P_3 \in \operatorname{Syl}_3(G)$ is the unique Sylow-3 subgroup of G hence, is normal. Thus, $G \triangleright P_3$ so G/P_3 is a group. Incidentally, $G/P_3 \cong Z_{13}$ hence, solvable and P_3 is a p-group, hence solvable. Thus, G is solvable.

On the other hand, if $n_{13} = 1$ then $P_{13} \in \text{Syl}_{13}(G)$ is the unique Sylow-13 subgroup of G hence, normal in G. Since P_{13} is a p-group, it is solvable. Moreover, G/P_{13} is a group of order 3^3 , i.e., a p-group, hence, solvable. Thus, G is solvable.

In either case, we have shown that G must be solvable.

Problem 2.4. Let (G, \cdot) be a group, and H < G a subgroup of finite index. Show that there exists a normal subgroup $N \lhd G$ contained in H which is also of finite index. (Do not assume that G is finite.)

Proof. Suppose H < G is a subgroup of finite index, i.e., H partitions G into a finite number of cosets, say $G/H := \{H, g_1H, ..., g_{k-1}H\}$. Define a homomorphism $\varphi \colon G \to S_{G/H}$ by $g \mapsto gH$ (this is clearly a homomorphism: take $g_1, g_2 \in G$ then $\varphi(g_1g_2) = g_1g_2H = (g_1H)(g_2H) = \varphi(g_1)\varphi(g_2)$). Thus, $\ker \varphi \lhd G$ of finite index (in particular, by the 1st isomorphism theorem and Lagrange's theorem $|G \colon \ker \varphi| \mid |S_{G/H}| = |S_k| = k!$). Thus, it suffices to show that $\ker \varphi \lhd H$. But this is clear since, if $g \in \ker \varphi$ then gH = H hence, $g \in H$.

Problem 2.5. Let (G, \cdot) be a finite group, and $\varphi \colon G \to G$ be a group homomorphism. Show that for all normal Sylow p-subgroups $P \lhd G$ we have $\varphi(P) < P$.

Proof. Suppose $|G| < \infty$ and let $P \in \operatorname{Syl}_p(G)$ be normal in G. Then P is unique of order p^{α} for some α . By the 1st isomorphism theorem, $\varphi(P) \mid p^{\alpha}$ so $\varphi(P)$ must be contained in a Sylow p-subgroup of G. Since P is the unique Sylow p-subgroup of G, $\varphi(P) < P$.

Problem 2.6. Let $(R, +, \cdot)$ be a commutative ring with $1 \neq 0$.

- (a) Show that R is an integral domain if and only if (0) is a prime ideal.
- (b) Show that R is a field if and only if (0) is a maximal ideal.

Proof. (a) \Leftarrow Suppose that (0) is a prime ideal. Then R/(0) is a domain. But $R/(0) \cong R$ (canonically i.e., the map $\bar{r} \mapsto r$ is a bijective homomorphism) hence, R is a domain.

 \leftarrow Conversely, suppose that R is a domain.

Problem 2.7. let $(R, +, \cdot)$ be a unique factorization domain. Choose an irreducible element $p \in R$, and define the *localization at* p as the ring of fractions $R_p = D^{-1}R$ with respect to the multiplicative set D = R - (p). Show that R_p is a principal ideal domain.

Problem 2.8. Let $(F,+,\cdot)$ be a field, and $F(\theta)/F$ be a finite, separable extension. Let L be the splitting field of the minimal polynomial $m_{\theta,F}(x) \in F[x]$. Prove that for every prime p dividing the degree [L:F], there exists a field K such that $F \subset K \subset L$, [L:K] = p, and $L = K(\theta)$.

Proof.

Problem 2.9. Let $(\mathbb{F}_p, +, \cdot)$ be a finite field whose Cardinality p is prime. Fix a positive integer n which is not divisible by p, and let ζ_n be a primitive nth root of unity. Show that $[\mathbb{F}_p(\zeta_n) : \mathbb{F}_p] = \alpha$ is the least positive integer such that $p^{\alpha} \equiv 1 \pmod{n}$.

Proof.

Problem 2.10. Prove that the Galois group of the splitting field over \mathbb{Q} of $f(x) = x^4 + 4x^2 + 2$ is a cyclic group.

3 Spring 2008

Problem 3.1. Let (G, \cdot) be a group, (H, +) be an Abelian group, and $\varphi \colon G \to H$ be a group homomorphism. If N is a subgroup such that $\ker \varphi < N < G$, show that $N \lhd G$ is a normal subgroup.

Proof. Let N be a subgroup of G containing $\ker \varphi$. Then we must show that for any $g \in G$, $gNg^{-1} \subset N$. First we observe that, since $\ker \varphi \lhd G$, then $\ker \varphi \lhd N$ since for any $g \in N$, g is also in G so that $g(\ker \varphi)g^{-1} = \ker \varphi \subset N$. Thus, $\ker \varphi \lhd N$. By the first isomorphism theorem¹, $G/\ker \varphi \cong H$ hence, $G/\ker \varphi$ is Abelian. Moreover, $N/\ker \varphi \lhd G/\ker \varphi$ hence, $N/\ker \varphi \lhd G/\ker \varphi$. It follows immediately from the lattice isomorphism theorem² (this is essentially the UMP of the quotient by a group) that $N \lhd G$.

Problem 3.2. Let (G,\cdot) be a finite Abelian group of even order, i.e., |G|=2k for some $k\in\mathbb{N}$.

- (a) For k odd, show that G has exactly one element of order 2.
- (b) Does the same happen for k even? Prove or give a counterexample.

Proof. (a) This problem is most easily proven using Cauchy's theorem³. Suppose that k is odd. If $k=1,\ G\cong Z_2$ and we are done $(Z_2$ contains only one nontrivial element and its order is 2). Otherwise k>2. Then by Cauchy's theorem we are guaranteed that there exists an element $g\in G$ of order 2. Suppose h is another element (distinct from g) of order 2. Since 2 is the smallest prime number dividing the order of G, by a corollary to Cayley's theorem⁴, $\langle g \rangle$ is a normal subgroup of G so $G/\langle g \rangle$ is a group. Moreover, since $h \neq g$, then $\bar{h} \neq \bar{e}$ and $1 \geq |\bar{h}| > 1$ implies that $|\bar{h}| = 1$. But $1 \leq |\bar{h}| < 1$ contradicting Lagrange's theorem. It follows that $1 \leq 1 \leq 1$ must have exactly one element of order 2.

(b) No. Here is the simplest counterexample: Consider the direct product $Z_2 \times Z_2$. The elements (1,0) and (0,1) are elements of order 2, but are not equivalent.

Problem 3.3. Let (G, \cdot) be a finite group of odd order, and $H \triangleleft G$ be a normal subgroup of prime order |H| = 17. Show that H < Z(G).

Proof. Let G act on H by conjugation, i.e., the map $\varphi \colon G \times H \to H$ defined by the rule $\varphi(g,h) \coloneqq ghg^{-1}$ determines a group action on H. First, we verify that φ indeed defines a group action on H: First, observe that for $e_G \in G$ the identity element, $\varphi(e_G, h) = e_G h e_G^{-1} = h$; next, if $g_1, g_2 \in G$ then

$$\varphi(g_1, \varphi(g_2, h)) = \varphi(g_1, g_2 h g^{-1}) = g_1 g_2 h g_2^{-1} g_1 = g_1 g_2 h (g_1 g_2)^{-1} = \varphi(g_1 g_2, h).$$

Lastly, φ is clearly well-defined in the sense $\varphi(g,h) \in H$ for all $g \in G$, $h \in H$. Thus, φ is a group action. Now, let us ask what the kernel of this action is. Thus group action φ , induces a group homomorphism $\varphi' \colon G \to \operatorname{Aut}(H)$ given by $\varphi'(g) \coloneqq \operatorname{Eval}(\varphi,g)$. Now, since |H| = 17, $H \cong Z_{17}$, hence is cyclic. Thus, $\operatorname{Aut}(H) \cong (\mathbb{Z}/17\mathbb{Z})^{\times} \cong Z_{16}$. Now, since $|\varphi'(G)| \mid |G|, |\varphi'(G)|$ is odd. But $\varphi'(G) < \operatorname{Aut}(H)$ so, by Lagrange's theorem, $|\varphi'(G)| \mid 16$. Thus, $|\varphi'(G)| = 1$, i.e., φ' is the trivial homomorphism, i.e., $\varphi(g,h) = ghg^{-1} = h = \varphi(1,h)$. Thus, H < Z(G).

¹Theorem 16 of Dummit and Foote §3, p. 99.

²Theorem 20 of Dummit and Foote §3, p. 99.

³Theorem 11 of Dummit and Foote §3, p. 93

⁴Corollary 5 of Dummit and Foote §4, p. 121

Problem 3.4. Let (G, \cdot) be a finite group. Show that there exists a positive integer n such that G is isomorphic to a subgroup of A_n , the alternating group on n letters. [Hint: Show that A_n contains a copy of S_{n-1} when $n \geq 3$.]

Proof. Let n-2 := |G|. If n-2 = 1 or 2, $G \cong 0$ (the trivial group) or $G \cong \mathbb{Z}_2$, both of which are exactly A_1 and A_2 . Suppose $n-2 \geq 3$. By Cayley's theorem, G imbeds into S_{n-1} . Now, define a homomorphism

$$\varphi(\sigma) \coloneqq \begin{cases} \sigma & \text{if } \sigma \text{ is even} \\ \sigma(n+1 \ n+2) & \text{if } \sigma \text{ is odd} \end{cases}.$$

We check that this is in fact a homomorphism. Let $\sigma, \tau \in G$. Then

$$\varphi(\sigma\tau) = \begin{cases} \sigma\tau & \text{if } \sigma\tau \text{ is even} \\ \sigma\tau(n+1 \ n+2) & \text{if } \sigma\tau \text{ is odd} \end{cases}.$$

But $\sigma\tau$ is odd if and only if σ or τ is odd and $\sigma\tau$ is even if and only if τ is even.

Problem 3.5. Let (G, \cdot) be a group of order |G| = 200.

- (a) Show that G is solvable.
- (b) Show that G is the semidirect product of two p-subgroups.

Proof. (a) First we factor the order of the group G, $|G| = 200 = 2^3 \cdot 5^2$. Now we will make use of Sylow's theorem to show that G has at least one normal p-subgroup.

Problem 3.6. Let $(R, +, \cdot)$ and $(S, +, \cdot)$ be commutative rings with $1 \neq 0$, and let $\varphi \colon R \to S$ be a surjective ring homomorphism. Assuming that R is local, i.e., it has a unique maximal ideal, show that S is also local.

Problem 3.7. Let $(R, +, \cdot)$ be a principal ideal domain.

- (a) Show that every maximal ideal in R is a prime ideal.
- (b) Must every prime ideal in R be a maximal ideal? Prove or give a counterexample.

Problem 3.8. Let L/F be a Galois extension of degree [L:F]=2p where p is an odd prime.

- (a) Show that there exists a unique quadratic subfield E, i.e., $F \subset E \subset L$ and [E:F]=2.
- (b) Does there exist a unique subfield K of index 2, i.e., $F \subset K \subset L$ and [L:K] = 2? Prove or give a counterexample.

Problem 3.9. Fix a prime p, and consider the Artin–Schreier polynomial $f(x) = x^p - x - 1$.

(a) Let $\mathbb{F}_p(f)$ be the splitting field of f(x) over \mathbb{F}_p . Show that $\operatorname{Gal}(\mathbb{F}_p(f)/\mathbb{F}_p) \cong \mathbb{Z}_p$.

(b) Prove that f(x) is irreducible in $\mathbb{Z}[x]$.

Proof.

Problem 3.10. Determine the Galois group of the splitting field over \mathbb{Q} of $f(x) = x^4 + 4$.

4 August, 2015

Problem 4.1.

4.1 August 2010