$10_{142} \ (K10n_{30})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^5 + u^4 + 4u^3 - 5u^2 + 2b - u, \ a - 1, \ u^6 - u^5 - 5u^4 + 4u^3 + 5u^2 + u - 1 \rangle \\ I_2^u &= \langle -u^3 + b + u + 2, \ -u^3 - 2u^2 + 3a + 2u + 6, \ u^4 - u^3 - 2u^2 + 3 \rangle \\ I_3^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle b^2 + 2, \ a + 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 13 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^5 + u^4 + 4u^3 - 5u^2 + 2b - u, \ a - 1, \ u^6 - u^5 - 5u^4 + 4u^3 + 5u^2 + u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{5} - \frac{1}{2}u^{4} - 2u^{3} + \frac{5}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{4} + \frac{1}{2}u^{3} - 2u^{2} + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{5} + \frac{5}{2}u^{3} + \dots - 2u + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ \frac{1}{2}u^{4} - \frac{1}{2}u^{3} - 2u^{2} + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{1}{2}u^{3} - 2u^{2} + \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{4} - \frac{1}{2}u^{3} - 2u^{2} + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^4 + 3u^3 + 4u^2 11u 13$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$u^6 + u^5 - 5u^4 - 4u^3 + 5u^2 - u - 1$
c_3, c_4, c_8	$u^6 + 3u^5 + 7u^4 + 10u^3 + 10u^2 + 8u + 2$
c_9	$u^6 - 3u^5 - 11u^4 + 32u^3 - 2u^2 + 16u + 10$
c_{10}	$u^6 + 11u^5 + 43u^4 + 66u^3 + 27u^2 + 11u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$y^6 - 11y^5 + 43y^4 - 66y^3 + 27y^2 - 11y + 1$
c_3, c_4, c_8	$y^6 + 5y^5 + 9y^4 - 4y^3 - 32y^2 - 24y + 4$
c_9	$y^6 - 31y^5 + 309y^4 - 864y^3 - 1240y^2 - 296y + 100$
c_{10}	$y^6 - 35y^5 + 451y^4 - 2274y^3 - 637y^2 - 67y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.526900 + 0.379519I		
a = 1.00000	3.26038 + 1.42716I	-6.28345 - 4.88332I
b = 0.036498 - 1.278320I		
u = -0.526900 - 0.379519I		
a = 1.00000	3.26038 - 1.42716I	-6.28345 + 4.88332I
b = 0.036498 + 1.278320I		
u = 0.338910		
a = 1.00000	-0.610583	-16.1650
b = 0.374390		
u = 1.85126 + 0.30576I		
a = 1.00000	-13.0621 - 6.7708I	-12.38492 + 2.96218I
b = 0.63990 + 1.46861I		
u = 1.85126 - 0.30576I		
a = 1.00000	-13.0621 + 6.7708I	-12.38492 - 2.96218I
b = 0.63990 - 1.46861I		
u = -1.98762		
a = 1.00000	-17.6195	-14.4980
b = 1.27282		

II. $I_2^u = \langle -u^3 + b + u + 2, -u^3 - 2u^2 + 3a + 2u + 6, u^4 - u^3 - 2u^2 + 3 \rangle$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{3}u^{3} + \frac{2}{3}u^{2} - \frac{2}{3}u - 2 \\ u^{3} - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{4}{3}u^{3} + \frac{1}{3}u^{2} + \frac{5}{3}u + 1 \\ -u^{3} - u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{2}{3}u^{3} + \frac{1}{3}u^{2} - \frac{1}{3}u - 1 \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{3} + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{4}{3}u^{3} + \frac{1}{3}u^{2} + \frac{5}{3}u + 1 \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{3}u^{3} + \frac{1}{3}u^{2} + \frac{2}{3}u \\ u^{3} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u 6$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$u^4 + u^3 - 2u^2 + 3$
c_3, c_4, c_8	$(u^2 - u + 1)^2$
c_9	$(u^2+u+1)^2$
c_{10}	$u^4 + 5u^3 + 10u^2 + 12u + 9$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$y^4 - 5y^3 + 10y^2 - 12y + 9$
c_3, c_4, c_8 c_9	$(y^2 + y + 1)^2$
c_{10}	$y^4 - 5y^3 - 2y^2 + 36y + 81$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.953264 + 0.702911I		
a = -0.905826 - 0.839043I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -0.500000 + 0.866025I		
u = -0.953264 - 0.702911I		
a = -0.905826 + 0.839043I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -0.500000 - 0.866025I		
u = 1.45326 + 0.16311I		
a = -0.594174 + 0.550367I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -0.500000 + 0.866025I		
u = 1.45326 - 0.16311I		
a = -0.594174 - 0.550367I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -0.500000 - 0.866025I		

III.
$$I_3^u=\langle b,\; a+1,\; u+1\rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_5, c_6	u+1		
c_2, c_7, c_{10}	u-1		
c_3, c_4, c_8 c_9	u		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_5 \\ c_6, c_7, c_{10}$	y-1		
c_3, c_4, c_8 c_9	y		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

IV.
$$I_4^u = \langle b^2 + 2, \ a + 1, \ u - 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -b+1 \end{pmatrix}$$

$$a_4 = \binom{b+1}{2}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b+1 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_5, c_6 c_{10}	$(u-1)^2$		
c_2, c_7	$(u+1)^2$		
c_3, c_4, c_8 c_9	$u^2 + 2$		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_5 \\ c_6, c_7, c_{10}$	$(y-1)^2$		
c_3, c_4, c_8 c_9	$(y+2)^2$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	1.64493	-12.0000
b = 1.414210I		
u = 1.00000		
a = -1.00000	1.64493	-12.0000
b = -1.414210I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$((u-1)^2)(u+1)(u^4+u^3-2u^2+3)(u^6+u^5+\cdots-u-1)$
c_2, c_7	$(u-1)(u+1)^2(u^4+u^3-2u^2+3)(u^6+u^5+\cdots-u-1)$
c_3, c_4, c_8	$u(u^{2}+2)(u^{2}-u+1)^{2}(u^{6}+3u^{5}+7u^{4}+10u^{3}+10u^{2}+8u+2)$
<i>c</i> ₉	$u(u^{2}+2)(u^{2}+u+1)^{2}(u^{6}-3u^{5}-11u^{4}+32u^{3}-2u^{2}+16u+10)$
c_{10}	$(u-1)^{3}(u^{4} + 5u^{3} + 10u^{2} + 12u + 9)$ $\cdot (u^{6} + 11u^{5} + 43u^{4} + 66u^{3} + 27u^{2} + 11u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$(y-1)^3(y^4 - 5y^3 + 10y^2 - 12y + 9)$ $\cdot (y^6 - 11y^5 + 43y^4 - 66y^3 + 27y^2 - 11y + 1)$
c_3, c_4, c_8	$y(y+2)^{2}(y^{2}+y+1)^{2}(y^{6}+5y^{5}+9y^{4}-4y^{3}-32y^{2}-24y+4)$
c_9	$y(y+2)^{2}(y^{2}+y+1)^{2} \cdot (y^{6}-31y^{5}+309y^{4}-864y^{3}-1240y^{2}-296y+100)$
c_{10}	$(y-1)^3(y^4 - 5y^3 - 2y^2 + 36y + 81)$ $\cdot (y^6 - 35y^5 + 451y^4 - 2274y^3 - 637y^2 - 67y + 1)$