Chapter4. 확률과 통계

01 확률과 의사결정

- 통계의 목적 "표본으로부터 모수(parameter) 추정" but, 표본으로부터 모수 추정 시, 오차 발생
 - => 통계량이 모수와 일치할 확률 나타냄으로 해결

확률론

수학적 확률

- 통계 자료의 결과를 확률(probability)와 함께 표현
 - o 전혀 맞지 않을 확률: 0%, 모두 맞을 확률: 100%
 - 일정한 조건 아래, 동일한 실험 지속적으로 N회 반복 시, 사건 A가 n번 발생할 확률
 - P(A) = n(A)/N
 - ㅇ 확률은 아래 조건 만족
 - 1. 확률은 0~1의 값을 가진다.
 - 2. 모든 사건에 대한 확률의 합은 1이다.

$$\sum_{i=1}^n P(E_i) = 1$$

(E:사건(Event), i: 시행 횟수, P: 확률)

통계적 확률

- 사건 실행 횟수:n, 사건 A가 일어난 횟수: r
 - o n을 충분히 크게 한다면, 상대도수로 나타나는 r/n은 일정한 확률값 p로 근사함. (이때, p = 사건 A가 발생할 통계적 확률 or 경험적 확률)
 - n을 무한대로 수렴 시,

$$r \div n = P(A)$$

확률의 덧셈법칙

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ㅇ 확률사건

학사건 $(A \cup B)$ 곱사건 $(A \cap B)$ 배반사건 $(A \cap B
eq \varnothing)$ 여사건 (A^C)

조건부 확률과 확률의 곱셈법칙

- 조건부 확률
 - o 사건 A가 먼저 발생하고 이어서 B가 발생하는 확률
 - P(B|A)
- 확률의 곱셈법칙

0

$$P(B \mid A) = P(A \cap B) \div P(A)$$

0

$$P(A \cap B) = P(A) \times P(B \mid A)$$

확률변수와 확률함수

- 확률변수(random variable)
 - : 실험결과(사건)에 실수값을 대응시키고 그 값에 확률을 부여한 것
 - : 결과의 수에 확률이 부여된 것
 - : 확률변수 X로 표현
 - o 이산 확률변수(discrete random variable)
 - : 셀 수 있는 특정한 값들로 구성, 일정한 범위로 나타냄
 - o 연속 확률변수(continuous random variable)
 - : 연속형, 무한한 경우와 같이 셀 수 없는 경우
- 확률함수
 - : 확률 P를 가진 어떤 사건이 n회 시행 중에서 x회 나타날 때, 확률변수 x와 이에 대응되는 P(x)의 관계를 나타낸 함수
 - : 확률함수를 논하려면, 표본의 개수가 많아야 함. (최소 30개 표본 필요)

02 확률변수의 평균과 분산

표본의 특성 파악 시, 표본으로부터 얻은 자료에서 평균과 분산 구하여 표본분포의 특성 확인 확률변수를 통해 확률을 확인하고 확률분포를 구성하면 그 자료에 대한 판단, 예측 내리기 수월해짐

확률변수의 평균

통계학에서 확률변수의 평균 = 기대값

기대값(expected value): 어떤 사건에 대해 그 사건이 벌어질 확률을 곱해서 전체 사건에 대해 합한 값

$$E(X) = \sum_{i=1}^n x_i P(x_i) = x_1 P(x_1) + x_2 P(x_2) + \ldots + x_n P(x_n)$$

확률변수의 분산과 표준편차

- 확률변수의 분산
 - : 기대값의 특성 나타내는 값
 - : 기대값과 어느 정도 차이가 있는지
 - o 평균(m)과 분산(var^2)
 - 평균(m)

$$m=1\div n\sum_{i=1}^n x_i=\sum_{i=1}^n x_i P(x_i)$$

o 분산(var^2)

$$\sigma^2=1\div n\sum_{i=1}^n(x_i-m)^2 imes(x_i$$
의 상 대 도수 $)=\sum_{i=1}^n(x_i-m)^2 imes(x_i$ 의 상 대 도수 $)\div n=\sum_{i=1}^n(x_i-m)^2P(x_i)$

o 표준편차(var)

$$\sigma = \sqrt{V(X)} = \sqrt{\sum (x_i - m)^2 P(x_i)}$$

확률변수에서 평균과 분산(표준편차)의 성질

확률변수 평균의 성질

a가 상수, X와 Y가 확률변수일 때 다음이 성립

$$(1)E(a) = a$$
 $(2)E(aX) = aE(X)$ $(3)E(aX + -b) = aE(X) + -b$ $(4)E(aX + -bY) = aE(X) + -bE(Y)$ $(5)E(XY) = E(X)E(Y), X$ 와 Y는 확률 적으로 독립

확률변수 분산(표준편차)의 성질

a가 상수, X와 Y가 확률변수일 때 다음이 성립

$$(1)V(a) = 0$$
$$(2)V(aX) = a^2 var(X)$$

$$(3)V(X+Y)=V(X)+V(Y)+2COV(X,Y)V(X+Y)=V(X)+V(Y), X$$
와 Y 는 확 률 적 으로 독 립

$$(4)V(X+Y)=V(X)+X(Y)+2COV(X,Y)V(X+Y)=V(X)+X(Y),X$$
와 Y 는 확 률 적 으로 독립

$$(5)sigma(aX + b) = barabarsigma(X)$$

$$(6)V(X) = E(x^2) - [E(X)]^2$$

연습문제

#1

확률분포: 미래 발생할 사건에 대해 확률 나열한 것

ex) 12월에 눈이 온 날 수

#2

평균 = (0.04+0.18+0.19+0.21+0.18+0.13+0.07)/7 = 0.174

분산 =

$$(1//7 - 0.147)^2 * (0.04 + 0.18 + 0.19 + 0.24 + 0.18 + 0.13 + 0.07) = 1.768$$

#3

평균 = (0.89+0.68+0.59+0.42+0.31)/5 = 0.578

분산

$$= 1/5 * sum(x_i - x)^2$$

= 0.040936

: 약 57.8%의 생존율이 평균, 예외 확률이 0.040936%

#4

평균 =

$$0.11*1 + 0.32*2 + 0.21*3 + 0.15*4 + 0.11*5 + 0.09*6 + 0.01*7 = 3.14$$

분산

$$(1-3.14)^2 * 0.11 + (2-3.14)^2 * 0.32 + \ldots + (7-3.14)^2 * 0.01$$

= 2.3004

표준편차 = 1.516707

#5

(a)

$$1*0.02 + 2*0.05 + 3*0.07 + 4*0.15 + 5*0.22 + 6*0.20 + 7*0.14 + 8*0.08 + 9*0.02 = 5.03$$

(b)

$$(1-5.03)^2*0.02+(2-5.03)^2*0.05+(3-5.03)^2*0.07+\ldots+(9-5.03)^2*0.02=2.984$$

(c)

$$1 - (0.02 + 0.05 + 0.07 + 0.15 + 0.22 + 0.20 + 0.14 + 0.08 + 0.02) = 0.05$$

#6

국내 투자 기대값

$$400(0.7*0.5) + 200(0.5*0.4) + 100(0.2*0.3) = 186$$

해외 투자 기대값

$$800(0.7*0.6) + 400(0.5*0.4) + 200(0.2*0.2) = 424$$

국내 투자 분산

$$(100 - 186)^2 * 0.2 * 0.3 + (200 - 186)^2 * 0.5 * 0.4 + (400 - 186)^2 * 0.7 * 0.5 = 16,511.56$$

해외 투자 분산

$$(200 - 186)^2 * 0.2 * 0.2 * (400 - 186)^2 * 0.5 * 0.4 + (800 - 186)^2 * 0.7 * 0.6 = 61,500.16$$

: 기대값은 해외 투자가 더 높지만, 해외투자는 동시에 분산도 높다. 그러나 표준편차로 환산해보면, 국내 투자는 약 128, 해외투자는 약 248이므로 해외 투자가 국내 투자의 편차를 감안하더라도 높다. 따라서 해외 투자 선택.