

Desarrollo de un teclado virtual sin contacto utilizando técnicas de IA y visión por computadora.

Velazquez Rodriguez Carlos Aldair

Desarrollo de interfaces virtuales accesibles y seguras para todos los usuarios involucrados.

Innovación en Teclados Virtuales para Usuarios

Implementación de un teclado virtual que no requiere contacto físico, ideal para entornos donde la higiene es crucial.

Accesibilidad Mejorada a Tecnologías

Desarrollo de soluciones ergonómicas que permiten el uso del teclado a personas con movilidad reducida.

Interacción Natural en Entornos Digitales

Promoción de interfaces que utilizan gestos para mejorar la experiencia del usuario en sistemas informáticos.

Integración de Tecnologías de Código Abierto

Uso de bibliotecas como OpenCV y MediaPipe, facilitando el acceso y la personalización del software.

Uso de técnicas de visión artificial para mejorar la experiencia del usuario en entornos clínicos.

Detección Precisa de Gestos para Interacción

Aplicación de algoritmos avanzados para la identificación de movimientos que optimizan la interacción usuario-máquina.

Optimización de Procesos en Clínicas

Facilitación de la escritura médica y administrativa mediante el uso de teclados virtuales sin contacto.

Reducción de Riesgos Higiénicos

Eliminación de superficies compartidas al implementar tecnologías de entrada sin contacto en clínicas.

Mejora en la Eficiencia de Personal Médico

Aumento de la productividad del personal clínico al permitir el registro de información de manera más limpia y rápida.

Innovación tecnológica en el diseño de dispositivos de entrada sin contacto para accesibilidad.

1 Desarrollo de Dispositivos de Entrada Avanzados

Creación de tecnologías que permiten la escritura sin necesidad de contacto, asegurando higiene y accesibilidad.

Adaptabilidad de Software en Diversos Entornos

Integración de soluciones de software en plataformas variadas, desde aplicaciones de escritorio hasta entornos virtuales. Interacción por Medio de Gestos y Parpadeos

> Uso de detección de gestos y parpadeos como método de validación de entradas, garantizando una experiencia fluida.

Fomento de la Inclusión Digital

> Empoderamiento de usuarios con necesidades especiales a través de tecnologías de entrada accesibles y fáciles de usar.

Interacción sin contacto en entornos clínicos

Importancia de tecnologías de entrada sin contacto(Porcentaje)

Implementación modular de un teclado virtual que elimina la necesidad de contacto físico.

Innovación en Interacción Hombre-Máquina

Este proyecto transforma la interacción tradicional al permitir escritura sin contacto físico, mejorando la ergonomía y la experiencia del usuario.

Tecnologías Utilizadas en el Desarrollo

Se implementan bibliotecas como OpenCV y MediaPipe, que son fundamentales para la detección de gestos y el procesamiento de imágenes.

Sistema basado en Python que combina biblioteca de visión por computadora para una fácil integración.

1 Estructura Modular del Sistema

Diseñado en Python, permite la integración sencilla con aplicaciones existentes, facilitando su adopción en diferentes plataformas.

2 Captura y Procesamiento de Imágenes

Utiliza cámaras web para la captura de video en tiempo real, optimizando el análisis de gestos y parpadeos.

3 Interfaz Intuitiva para el Usuario

El sistema proporciona retroalimentación visual inmediata, haciendo que la interacción sea fluida y natural.

La creación de un teclado virtual utilizando reconocimiento de gestos y parpadeos como control.

Revolución en Métodos de Escritura

Introduce métodos innovadores que eliminan el contacto físico, especialmente en escenarios donde este es problemático.

Detección de Gestos y Parpadeos

Mediante el uso de técnicas avanzadas, se logra una confirmación de selección intuitiva que mejora la experiencia de usuario.

Desarrollo Basado en Código Abierto

Fomenta la colaboración y el intercambio de ideas, potenciando la creación de soluciones efectivas y accesibles.

Pruebas de Usabilidad y Precisión

Resultados positivos en pruebas demuestran la efectividad del teclado, asegurando su viabilidad en entornos reales.

Eficiencia del Teclado Virtual sin Contacto

