ELEN30012 SIGNALS AND SYSTEMS

Semester 2 Exam 2017

Numerical Answers

Question 1

$$x[-1] = 1$$

(a) (i) $x[0] = 1$
 $x[1] = 0$
 $x[2] = 0$
(ii) $M = -1, n_0 = 0$

- (b) $x(t) = t^2 + 4t + 5$ is one possible answer.
- (c) $x[n] = \cos\left(\frac{2\pi n}{3}\right)$ is one possible answer.

(d)
$$y[n] = \begin{cases} \frac{1}{3} & n = 0\\ \frac{2}{3} & n = 1\\ 1, & \geq 2 \end{cases}$$

Question 2 (a)
$$H(z) = \frac{2z+1}{z^2-3z-4}$$

(b) Unstable system because the system poles are at z = -1, 4, and the pole at z = 4 is outside of the unit circle in the complex plane.

(c)
$$A = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \end{bmatrix}$

Question 3

(a) Causal, as h(t) < 0 for t < 0. (b) $\int_{-\infty}^{\infty} |h(t)| dt =$

(c)
$$y(t) = x(t-2) + x(t-1)$$
 (d) $y(t) = \begin{cases} 2t-1, & t \ge 2 \\ t, & 1 \le t < 2 \\ 0, & t < 1 \end{cases}$ (e) $H(\omega) = e^{-j2\omega} + e^{-j\omega}, \qquad y(t) = \sqrt{2}\cos(\frac{\pi t}{2} - \frac{3\pi}{4})$

(e)
$$H(\omega) = e^{-j2\omega} + e^{-j\omega}$$
, $y(t) = \sqrt{2}\cos(\frac{\pi t}{2} - \frac{3\pi}{4})$

Question 5

(a) Neither even nor odd function. (b) $T_0 = 2\pi$, $\omega_0 = 1$

(c)
$$c_0^{\nu} = 2$$
, $c_2^{\nu} = 3/2$, $c_{-2}^{\nu} = 3/2$, $c_3^{\nu} = -j2$, $c_{-3}^{\nu} = 2j$, $c_k = 0$ for all other $k \in \mathbf{Z}$

(d)
$$c_0^y = 0$$
, $c_2^y = 15e^{-j10}$, $c_{-2}^y = 15e^{j10}$, $c_3^y = 20e^{-j(15+\frac{\pi}{2})}$, $c_{-3}^y = 20e^{j(15+\frac{\pi}{2})}$, $c_k = 0$ for all other $k \in \mathbf{Z}$

Ouestion 6

See Workshop 6.

Ouestion 7

(a)
$$|X(\Omega)| = \sqrt{2 - 2\cos(\Omega)}$$
 (b) $X_k = 1 - e^{-j2\pi k/N}$ for $k = 0, 1, ..., N - 1$.

(c)
$$|X_0| = 0$$
, $|X_1| = \sqrt{2}$, $|X_2| = 2$, $|X_3| = \sqrt{2}$