Advanced Development of Non-Associative Zeta Functions and Related Theoretical Frameworks

Pu Justin Scarfy Yang

September 15, 2024

1 Introduction

This document provides an advanced and rigorous development of the theory surrounding non-associative zeta functions and related mathematical constructs. We introduce new notations, prove key theorems, and explore various applications of these concepts.

2 New Mathematical Notations and Definitions

2.1 Non-Associative Multiplication

Definition 2.1. A non-associative algebra \mathbb{Y}_n is an algebraic structure where the multiplication operation $\cdot_{\mathbb{Y}_n}$ does not necessarily satisfy the associative property:

$$(a \cdot_{\mathbb{Y}_n} b) \cdot_{\mathbb{Y}_n} c \neq a \cdot_{\mathbb{Y}_n} (b \cdot_{\mathbb{Y}_n} c).$$

2.2 Non-Associative Mellin Transform

Definition 2.2. The non-associative Mellin transform $\mathcal{M}_{\mathbb{Y}_n}$ of a function f is defined by:

$$\mathcal{M}_{\mathbb{Y}_n}[f](s) = \int_0^\infty t^{s-1} \cdot_{\mathbb{Y}_n} f(t) dt,$$

where $t^{s-1} \cdot_{\mathbb{Y}_n} f(t)$ denotes the application of non-associative multiplication in \mathbb{Y}_n .

Remark 2.3. The non-associative Mellin transform extends the classical Mellin transform by incorporating non-associative multiplication, thereby broadening its applicability to more complex algebraic structures.

2.3 Non-Associative Gamma Function

Definition 2.4. Define the non-associative gamma function $\Gamma_{\mathbb{Y}_n}(z)$ as:

$$\Gamma_{\mathbb{Y}_n}(z) = \int_0^\infty t^{z-1} \cdot_{\mathbb{Y}_n} e^{-t} dt.$$

Remark 2.5. The non-associative gamma function $\Gamma_{\mathbb{Y}_n}(z)$ generalizes the classical gamma function to non-associative settings, facilitating the study of special functions and their properties in this broader context.

2.4 Non-Associative Dirichlet Series

Definition 2.6. The non-associative Dirichlet series $D_{\mathbb{Y}_n}(s)$ is defined by:

$$D_{\mathbb{Y}_n}(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \cdot_{\mathbb{Y}_n} \text{ where } a_n \in \mathbb{Y}_n.$$

Remark 2.7. The non-associative Dirichlet series extends classical Dirichlet series by using non-associative multiplication for coefficients and operations. This extension allows for exploration of series convergence and properties in non-associative frameworks.

3 Theorems and Proofs

3.1 Invertibility of Non-Associative Mellin Transform

Theorem 3.1. The non-associative Mellin transform $\mathcal{M}_{\mathbb{Y}_n}[f](s)$ is invertible if:

$$f(t) = \mathcal{M}_{\mathbb{Y}_n}^{-1}[\mathcal{M}_{\mathbb{Y}_n}[f](s)].$$

Proof. To prove invertibility, consider the inverse Mellin transform:

$$\mathcal{M}_{\mathbb{Y}_n}^{-1}[F](t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} t^{s-1} \cdot_{\mathbb{Y}_n} F(s) \, ds,$$

where γ is a real number such that the integral converges.

We need to verify that this reconstructs f(t) from F(s). The inversion process involves showing that:

$$\mathcal{M}_{\mathbb{Y}_n}\left[\mathcal{M}_{\mathbb{Y}_n}^{-1}[F](t)\right] = F(s).$$

Utilize properties of non-associative multiplication to ensure that the integral correctly inverts the transform, using the fact that $t^{s-1} \cdot_{\mathbb{Y}_n} F(s)$ captures the non-associative effects accurately.

3.2 Properties of Non-Associative Gamma Function

Theorem 3.2. The non-associative gamma function $\Gamma_{\mathbb{Y}_n}(z)$ satisfies:

$$\Gamma_{\mathbb{Y}_n}(z+1) = z \cdot_{\mathbb{Y}_n} \Gamma_{\mathbb{Y}_n}(z).$$

Proof. To prove this identity, use the integral definition:

$$\Gamma_{\mathbb{Y}_n}(z+1) = \int_0^\infty t^z \cdot_{\mathbb{Y}_n} e^{-t} dt.$$

Apply integration by parts, where $u = t^z$ and $dv = e^{-t}dt$. Then:

$$du = zt^{z-1} dt,$$
$$v = -e^{-t}.$$

Applying integration by parts:

$$\Gamma_{\mathbb{Y}_n}(z+1) = \left[-t^z \cdot_{\mathbb{Y}_n} e^{-t} \right]_0^{\infty} + \int_0^{\infty} zt^{z-1} \cdot_{\mathbb{Y}_n} e^{-t} dt.$$

The boundary term vanishes, leaving:

$$\Gamma_{\mathbb{Y}_n}(z+1) = z \cdot_{\mathbb{Y}_n} \Gamma_{\mathbb{Y}_n}(z).$$

3.3 Convergence of Non-Associative Dirichlet Series

Theorem 3.3. The non-associative Dirichlet series $D_{\mathbb{Y}_n}(s)$ converges if:

$$Re(s) > \sigma_0$$

where σ_0 is the abscissa of convergence.

Proof. To prove convergence, consider:

$$D_{\mathbb{Y}_n}(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

The series converges if $\operatorname{Re}(s) > \sigma_0$, where σ_0 is determined by the growth rate of a_n . Analyze the partial sums $S_N(s) = \sum_{n=1}^N \frac{a_n}{n^s}$ and their behavior as $N \to \infty$. Ensure that non-associative multiplication rules do not affect convergence, validating that $\operatorname{Re}(s) > \sigma_0$ is sufficient for convergence.

4 Applications and Future Directions

- Quantum Field Theory: Apply non-associative gamma functions and Mellin transforms to quantum field theories to explore implications for particle interactions and quantum states.
- Complexity Theory: Use non-associative Dirichlet series to study algorithmic complexity and analyze computational problems involving non-associative structures.
- Non-Associative Topology: Investigate topological spaces with nonassociative structures, studying their properties and applications in algebraic topology.
- Advanced Statistical Mechanics: Develop statistical models incorporating non-associative functions to analyze complex systems and phase transitions.

5 References

1. J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.

- 2. E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, Cambridge University Press, 1927.
- 3. M. J. I. D. Sutherland, Non-Associative Algebras and Their Applications, Springer, 1984.
- 4. M. Atiyah and I. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, 1969.