Universidad de Costa Rica

Sede de Guanacaste CARRERA INFORMÁTICA EMPRESARIAL

IF-4100
Fundamentos de las Bases de Datos
Modelo Relacional

Prof.: MCI. Douglas Sánchez Artola

Modelo Relacional

Fue creado en 1970 por el científico Edgar Frank Codd. Además, definió las tres primeras formas normales que se aplican para la normalización de Base de Datos y la forma normal de Boyce-Codd en honor a su nombre.

Modelo de Bases de Datos

Determina la estructura lógica de una base de datos y de manera fundamental determina el modo de almacenar, organizar y manipular los datos.

Entre los modelos lógicos comunes para bases de datos se encuentran:

- → Modelo jerárquico
- →Modelo en red
- → Modelo relacional
- → Modelo entidad-relación

Modelo Relacional

Se trata de un modelo teórico matemático que, además de proporcionarnos los elementos básicos de modelado (las relaciones), incluye un conjunto de operadores para su manipulación, sin ambigüedad posible.

El principal objetivo del modelo de datos relacional

Es facilitar al usuario, que vea la base de datos como una estructura lógica que consiste en un conjunto de relaciones y no como una estructura física de implementación.

Relación

Se define como un conjunto de n-tuplas; donde una tupla es como un conjunto ordenado de valores atómicos.

Tupla

En una relación son un conjunto en el sentido matemático del término, es decir una colección no ordenada de elementos diferentes. Para distinguir una tupla de otra, se recurre al concepto de "llave primaria", o sea un atributo o conjunto de atributos que permiten identificar unívocamente una tupla en una relación.

Atributo

Cada relación, vista como una tabla, consta de un conjunto de columnas; cada una de esas columnas recibe el nombre de atributo.

Dominio

El conjunto de valores válidos para un atributo; o, dicho de otra manera, el conjunto de valores que cada tupla de la relación puede tomar para ese atributo. Pueden ser de dos tipos:

- Dominios predefinidos.
- Dominios definidos por el usuario.

La estructura fundamental del modelo relacional es la relación, es decir una tabla bidimensional constituida por filas (tuplas) y columnas (atributos).

Algunas Reglas de Formación

- Cada Tupla es única y se identifica con su clave Primaria.
- Un atributo o grupo de ellos que identifiquen univoca e inequívocamente una Tupla es clave Candidata.
- La clave primaria de una relación se selecciona entre las claves candidatas.
- Los atributos que formen parte de las claves primarias no pueden ser nulos.
- Ejemplo:

Código -	Títul -	Nombre +	Apellidos -	Dirección -	Código Pos -	Ciud
AIM001	Sr.	ESTEBAN	CERCAS	Calle de la Ruda, 98	33120	MADRID
AIM002	Sra.	ROSA	GONZÁLEZ	Calle Diputación, 64	33200	MADRID
AIM003	Sra.	ANA	PÉREZ	Plaza de los jardines, 56	33500	MADRID
ARO001	Sr.	DANIEL	DATO	Calle Tirso de Molina, 18	49000	SANTANDER
BON001	Sr.	RICARDO	DÁRSENA	Calle del Suspiro, 55	72000	BARCELONA
COG001	Sr.	BENITO	DEA	Calle del casino, 36	17300	LÉRIDA
COM001	Sra.	ODILIA	DEFENSA	Calle de los Enamorados, 7	79000	GRANADA
DAB001	Sra.	HELENA	DE LA TORRE	Calle Alfonso XII	44000	VITORIA
DASO01	Sr.	MANUEL	DEL POZO	Calle Cenizas, 10	33120	MADRID
DEC001	Sr.	ESTEBAN	DELGADO	Calle del Saludo, 90	66700	SEVILLA
DEJ001	Sra.	ELISA	DELOUPI	Avenida del Aeropuerto, 63	75015	MÁLAGA
DEM001	Sr.	JOSÉ	DENIA	Calle de la Amistad, 32	69003	ALICANTE
DEP001	Sr.	FERNANDO	DÍÑELA	Calle Golondrinas, 29	17000	VALLADOLID
DER001	Sra.	EUGENIA	ECHEVARRÍA	Avenida de las Facultades, 4	17000	VALLADOLID
DES001	Srta.	ESTELA	ENCARNADO	Calle Pulido, 81	17000	VALLADOLID
DEV001	Sra.	ELISABETH	ABETE	Plaza del Ayuntamiento, 5	17000	VALLADOLID
DIN001	Sra.	ANA	AIMERICH	Plaza de la República, 3	17000	VALLADOLID
ENE001	Sra.	OLIVEIRO	AROSA	Plaza de Queserías, 12	17000	VALLADOLID
EPR001	Sr.	FELIPE	BONETE	Calle de la Paloma, 24	35100	LOGROÑO
FON001	Sr.	EDMUNDO	BORNEO	Avenida de Cabestreros, 56	44000	VITORIA
FON002	Sra.	PATRICIA	CONDE	Plaza del Centro, 12	72000	BARCELONA

Esquema de la Relación

Es una descripción de su estructura interna(es decir, los atributos que la componen), en la forma siguiente:

R(A1,...,An)

El esquema de una relación constituye:

1. Su intención: es decir, la parte invariante de la relación.

Profesor(Cod.Prof, Nombre, Correo, Curso)
 Cursos(Sigla, Nombre, Creditos, Ciclo)

2. Su extensión: La parte variable de la relación.

<IF-2000, Programación 1, 4, 1-2017>

<IF-4100, Base de Datos, 4, 2-2016>

<MA-0321, Calculo, 4, 1-2017>

Grado de relación: el número de atributos que pertenecen a su esquema.

La cardinalidad de una relación: es el número de tuplas que pertenecen a su extensión.

Esquema de una BD relacional

El esquema lógico de una base de datos consiste, en la unión de los esquemas de todas las relaciones que componen la base de datos, conjuntamente con todas las restricciones de integridad que afectan a esas relaciones.

Restricciones de Integridad

Son reglas las cuales deben de ser cumplidas y son un elemento constituyente del modelo relacional. A esas reglas de consistencia se las conoce, en la terminología del modelo, como restricciones de integridad.

- Restricción de Dominio
- Restricción de Clave
- Restricciones de Integridad Referencial

Restricción de Dominio

Se establece 2 Condiciones:

La primera condición consiste en que un valor no nulo de un atributo debe pertenecer al dominio del atributo.

Ejemplo:

En la relación EMPLEADOS(DNI, nombre, apellido, edademp)

Dominio: DNI= números enteros

edademp= números enteros entre 18 y 60

La segunda condición: sirve para establecer que los operadores que pueden aplicarse sobre los valores dependen de los dominios de estos valores;

En la relación EMPLEADOS(DNI, nombre, apellido, edademp)

Dominio: DNI= números enteros

edademp= números enteros entre 18 y 60 Consultar (DNI='Elena')

Restricción de Clave

Regla de integridad de unicidad de la clave primaria:

La regla de integridad de unicidad está relacionada con la definición de clave primaria. Concretamente, establece que toda clave primaria que se elija para una relación no debe tener valores repetidos

Ejemplo: "Tabla Clientes"

<u>Cedula</u>	<u></u>
501280125	
501250658	
412502525	
752562536	

Regla de integridad de entidad de la clave primaria:

La regla de integridad de entidad de la clave primaria dispone que los atributos de la clave primaria de una relación no pueden tener valores nulos.

<u>Cedula</u>	<u></u>
501280125	
501250658	
412502525	
752562536	

Restricciones de Integridad Referencial

Las claves foráneas permiten establecer conexiones entre las tuplas de las relaciones. Para hacer la conexión, una clave foránea tiene el conjunto de atributos de una relación que referencian la clave primaria de otra relación (o incluso de a misma relación).

Ejemplo:

Lenguaje Algebraico

El álgebra relacional es un lenguaje de consulta procedimental. Consta de un conjunto de operaciones que toman como entrada una o dos relaciones y producen como resultado una nueva relación. Las operaciones fundamentales del álgebra relacional son selección, proyección, unión, inserción, diferencia de conjuntos, producto cartesiano y renombramiento.

Ejemplo de Intersección:

A 1	2 2
R	T
A	В
	5
2	

Ejemplo de selección:

 $\sigma_{NomSuc \, * \, << \, Estelis>}(Salarios)$

		Salarios		
CodSuc	NomSuc	CodEmpleado	Empleado	Salario
01-002	Casa Matriz	S002-0125	Juan Pérez	10,000
01-004	Esteli	S004-0113	Domingo Lanuza	8,500
01-004	Esteli	S004-0056	Laura Flores	7,000
01-009	Ocotal	S009-0001	Eliza Fuentes	8,500
01-010	Jinotega	S009-0125	Ana Figueroa	4,000
01-002	Casa Matriz	S002-0059	Lester Jirón	2,500

El resultado del primer ensayo de selección seria:

CodSuc	NomSuc	CodEmpleado	Empleado	Salario
01-004	Estelí	S004-0113	Domingo Lanuza	8,500
01-005	Estelí	S004-0056	Laura Flores	7,000

Ejemplo de proyección:

CEDULA	NOMBRE1	NOMBRE2	APE1

Tabla proyectada con el atributo "cedula":

CEDULA

Ejemplo de Unión:

R	
A	В
1	2
3	4

S		
A	В	
2	5	
4	7	
9	10	
1	2	

-		
v	1 1	1
I	\cup	U

A	В
1	2
3	4
2	5
4	7
9	10

Las Tuplas repetidas, se deben de Eliminar

Ejemplo de diferencia de conjuntos:

R			S
A	В	A	В
2	5	1	2
4	7	3	4
9	10		
1	2		

R - S	
A	В
2	5
4	7
9	10

S – R	
A	В
3	4

Ejemplo del Producto Cartesiano:

R	
A	В
1	2
3	4

	3	
В	С	D
2	5	6
4	7	8
9	10	11

RXS

R.A	R.B	S.B	s.c	S.D
1	2	2	5	6
3	4	2	5	6
1	2	4	7	8
3	4	4	7	8
1	2	9	10	11
3	4	9	10	11

Las operaciones del álgebra relacional han sido clasificadas según distintos criterios:

Según se pueden expresar o no en términos de otras operaciones:

- a) Operaciones primitivas: son aquellas operaciones a partir de las cuales podemos definir el resto.
- b) Operaciones no primitivas: el resto de las operaciones del álgebra relacional que no son estrictamente necesarias, porque se pueden expresar en términos de las primitivas.

Según el número de relaciones que tienen como operandos:

- a) Operaciones binarias: son las que tienen dos relaciones como operandos.
- **b)** Operaciones unarias: son las que tienen una sola relación como operando. La selección y la proyección son unarias.

Según se parecen o no a las operaciones de la teoría de conjuntos:

- a) Operaciones conjuntistas: se parecen a las de la teoría de conjuntos. Se trata de la unión, la intersección, la diferencia y el producto cartesiano.
- b) Operaciones específicamente relacionales: son el resto de las operaciones; es decir, la selección, la proyección y la combinación.

Selección:

- Extrae las tuplas especificadas de una relación dada, es decir restringe la relación solo a las tuplas que satisfagan una condición dada.
- La selección es unaria, es decir, se aplica a una sola relación.
- Además, esta operación se aplica a cada tupla individualmente; por consiguiente, las condiciones de selección no pueden implicar a más de una tupla.

Selección:

- Se permiten los operadores =, ≠, <, ≤, > o ≥ para definir la selección además se pueden realizar varios predicados con las conectivas AND y OR
- Se utiliza la letra griega sigma minúscula (σ) para denotar la selección.

Selección:

Relación Préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

Operación selección:

o nombre-sucursal = «Navacerrada» ∧ importe>1200 (préstamo)

número-préstamo	nombre-sucursal	importe
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300

Proyección:

- Extrae los atributos especificados de una relación dada.
- Es una operación unaria es decir, se aplica a una sola relación.
- Se denota por la letra griega mayúscula pi (Π).
- Se escribe una lista de los atributos que se desea que aparezcan en el resultado como subíndice de Π, seguido de un argumento entre paréntesis, este argumento seria el nombre de la relación.

Proyección:

Relación Préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

Operación proyección:

П número-préstamo, importe (préstamo)

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

Producto:

 A partir de dos relaciones especificadas, construye una relación que contiene todas las combinaciones posibles de tuplas, una de cada una de las dos relaciones.

 La operación producto cartesiano se denota por medio del símbolo (X).

Producto:

Relación Prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

Relación Préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

Operación Producto: prestatario X préstamo

Unión:

- Construye una relación formada por todas las tuplas que aparecen en cualquiera de las dos relaciones especificadas.
- Se eliminan los tuplas repetidas.
- La operación unión se denota con el símbolo U.
- Para que una operación unión (r U s) sea válida se deben cumplir dos condiciones:
 - Las relaciones r y s deben tener el mismo número de atributos.
 - Los dominios de los atributos i-ésimos de r y de s deben ser iguales para todo i.

Unión:

Relación Impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

Relación Prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

nombre-cliente

Abril
Fernández
Gómez
González
López
Pérez
Rupérez
Santos
Sotoca
Valdivieso

Operación Unión:

П nombre-cliente (prestatario) U П nombre-cliente (impositor)

Intersección:

 Construye una relación formada por todas las tuplas que aparezcan en las dos relaciones especificadas.

Se denota con el símbolo ∩.

Intersección:

Relación Prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

Relación Impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

Operación Intersección:

 Π nombre-cliente(prestatario) \cap Π nombre-cliente(impositor)

Diferencia:

•Construye una relación formada por todas las tuplas de la primera relación que no aparezcan en la segunda de las dos relaciones especificadas.

•Se denota con el símbolo –.

Diferencia:

Relación Impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

Relación Prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

Operación diferencia de conjuntos:

 Π nombre-cliente (impositor) – Π nombre-cliente (prestatario)

Unión Natural:

- Construye una relación que contiene todas las posibles combinaciones una de cada una de las dos relaciones, tales que las dos tuplas participantes en una combinación dada satisfagan alguna condición específica.
- Se denota por el símbolo 🔀 de la «reunión»

Unión Natural:

- •La operación reunión natural forma un producto cartesiano de sus dos argumentos.
- •Realiza una selección forzando la igualdad de los atributos que aparecen en ambos esquemas de relación.
- Finalmente, elimina los atributos duplicados.

Unión Natural:

Relación Prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

Relación Préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

Operación diferencia de conjuntos:

Π nombre-cliente, número-préstamo, importe (prestatario préstamo)

Numero-préstamo	Nombre - sucursal	Importe
Fernández	P-16	1300
Gómez	P-93	500
Gómez	P-15	1500
López	P-14	1500
Pérez	P-17	1000
Santos	P-11	900
Sotoca	P-23	2000
Valdivieso	P-17	1000