Digital IC Design

Final Team Project:
32-Row x 1-Column Digital
Computation-in-Memory Macro
for Matrix-Vector Multiplications

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Specification of Digital CIM Macro

Spec:

- Inputs $(I_1, I_2, ..., I_{32})$:
 - $> I_1 I_{32}$ are 4bits
 - You can add any extra control signals for your design
- lacktriangle Weights(W_1, W_2, \dots, W_{32}):
 - $\gg W_1$ W_{32} are 4bits
 - Weights are pre-stored in latches or Flip-flops
- ◆ Output (*O*):
 - > 13 bits
 - $\triangleright O = (I_1 \times W_1) + (I_2 \times W_2) + \cdots (I_{32} \times W_{32})$

Function of this Digital CIM Macro

- The specification can be modified by yourself,
 - ◆ Input format

Output = $(I_1 \times W_1) + (I_2 \times W_2) + \cdots (I_{32} \times W_{32})$

Example of Serial Input or Parallel Input

- Example
 - ◆ Serial input

◆ Parallel input

Goal: Achieve better PPA of digital CIM

- Measure the PPA of Digital CIM macro
 - ◆ Throughputs (GOPS)
 - ◆ Energy efficiency (TOPS/W)
 - ◆ Area efficiency (TOPS/mm²)
 - ➤ Based on number of transistor counts or equivalent NAND2 gates as the area