CS 224N: Assignment 1

RYAN MCMAHON SATURDAY 28TH JANUARY, 2017

Contents

1	Problem 1: Softmax (10 pts)	2
	1.1 (a) Softmax Invariance to Constant (5 pts)	. 2
	1.2 (b) Softmax Coding (5 pts)	. 2
2	Problem 2: Neural Network Basics (30 pts)	2
		3
	2.1 (a) Sigmoid Gradient (3 pts)	. 3
	2.2 (b) Softmax Gradient with Cross Entropy Loss(3 pts)	4

Problem 1: Softmax (10 pts)

1.1 (a) Softmax Invariance to Constant (5 pts)

Prove that softmax is invariant to constant offsets in the input, that is, for any input vector x and any constant c, softmax(x) = softmax(x + c), where x + c means adding the constant c to every dimension of x. Remember that

$$softmax(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1.1}$$

Answer:

We can show that softmax(x) = softmax(x + c) by factoring out c and canceling:

$$softmax(x+c)_{i} = \frac{e^{x_{i}+c}}{\sum_{j} e^{x_{j}+c}} = \frac{e^{x_{i}} \times e^{c}}{e^{c} \times \sum_{j} e^{x_{j}}}$$
$$= \frac{e^{x_{i}} \times \cancel{e^{e}}}{\cancel{e^{e}} \times \sum_{j} e^{x_{j}}} = softmax(x)_{i}$$

1.2 (b) Softmax Coding (5 pts)

Given an input matrix of N rows and D columns, compute the softmax prediction for each row using the optimization in part (a). Write your implementation in $q1_softmax.py$. You may test by executing python $q1_softmax.py$.

Note: The provided tests are not exhaustive. Later parts of the assignment will reference this code so it is important to have a correct implementation. Your implementation should also be efficient and vectorized whenever possible (i.e., use numpy matrix operations rather than for loops). A non-vectorized implementation will not receive full credit!

Answer:

See code: \sim /code/q1_softmax.py.

Problem 2: Neural Network Basics (30 pts)

2.1 (a) Sigmoid Gradient (3 pts)

Derive the gradients of the sigmoid function and show that it can be rewritten as a function of the function value (i.e., in some expression where only (x), but not x, is present). Assume that the input x is a scalar for this question. Recall, the sigmoid function is

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2.1}$$

Answer:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$= \frac{e^x}{1 + e^x}$$

$$\frac{\partial}{\partial x}\sigma(x) = \frac{e^x \times (1 + e^x) - (e^x \times e^x)}{(1 + e^x)^2}$$

$$= \frac{e^x + (e^x \times e^x) - (e^x \times e^x)}{(1 + e^x)^2}$$

$$= \frac{e^x}{(1 + e^x)^2} = \sigma(x) \times (1 - \sigma(x))$$

Because $1 - \sigma(x) = \sigma(-x)$ we can show that:

$$\frac{\partial}{\partial x}\sigma(x) = \frac{e^x}{(1+e^x)^2}$$

$$= \sigma(x) \times \sigma(-x)$$

$$= \frac{e^x}{1+e^x} \times \frac{1}{1+e^{+x}}$$

$$= \frac{e^x}{(1+e^x)^2}$$

2.2 (b) Softmax Gradient w/ Cross Entropy Loss (3 pts)

Derive the gradient with regard to the inputs of a softmax function when cross entropy loss is used for evaluation, i.e., find the gradients with respect to the softmax input vector $\boldsymbol{\theta}$, when the prediction is made by $\hat{\mathbf{y}} = softmax(\boldsymbol{\theta})$. Remember the cross entropy function is

$$CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \times log(\hat{y}_i)$$
 (2.2)

where y is the one-hot label vector, and \hat{y} is the predicted probability vector for all classes. (Hint: you might want to consider the fact many elements of y are zeros, and assume that only the k-th dimension of y is one.)