- 1. 関数 $f: \mathbb{R} \to \mathbb{R}, x \mapsto 3x$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 3$ に対して

$$|x-1| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(1)| < \varepsilon$$

を満たす $\delta_{\varepsilon} > 0$ の条件を答えよ.

(解答例)

 $|x-1|<\delta_{\varepsilon}$ のとき

$$|f(x) - f(1)| = |3x - 3| = 3|x - 1| < 3\delta_{\varepsilon}$$

である. したがって $3\delta_{\varepsilon} < 3$, すなわち $0 < \delta_{\varepsilon} < 1$ が求める条件である.

(b) 実数 ε (> 0) に対して

$$|x-1| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(1)| < \varepsilon$$

を満たす $\delta_{\varepsilon} > 0$ の条件を答えよ.

(解答例)

 $|x-1|<\delta_{\varepsilon}$ のとき

$$|f(x) - f(1)| = |3x - 3| = 3|x - 1| < 3\delta$$

である. したがって $3\delta_{\varepsilon} < \varepsilon$, すなわち $0 < \delta_{\varepsilon} < \varepsilon/3$ が求める条件である.

(c) 関数 f は x=1 で連続であることを ε - δ 論法に基づき示せ.

(解答例)

任意の $\varepsilon > 0$ に対して, $\delta_{\varepsilon} > 0$ を $0 < \delta_{\varepsilon} < \varepsilon/3$ を満たすように取れば

$$|x-1| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(1)| < \varepsilon$$

が成り立つ. 実際, そのような δ_{ε} に対して $|x-1| < \delta_{\varepsilon}$ ならば

$$|f(x) - f(1)| = |3x - 3| = 3|x - 1| < 3\delta_{\varepsilon} < \varepsilon$$

である. よって示された.

(d) 関数 f は連続 (すなわち全ての点 $x_0 \in \mathbb{R}$ で連続) であることを ε - δ 論法に基づき示せ.

(解答例)

全ての点 $x_0 \in \mathbb{R}$ で f が連続であることを示す.

任意の $\varepsilon>0$ に対して, $\delta_{\varepsilon}>0$ を $0<\delta_{\varepsilon}<\varepsilon/3$ を満たすように取れば

$$|x-x_0| < \delta_{\varepsilon} \Longrightarrow |f(x)-f(x_0)| < \varepsilon$$

が成り立つ. 実際, そのような δ_{ε} に対して $|x-x_0| < \delta_{\varepsilon}$ ならば

$$|f(x) - f(x_0)| = |3x - 3x_0| = 3|x - x_0| < 3\delta_{\varepsilon} < \varepsilon$$

である. よって示された.

2. 関数 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ は連続であることを ε - δ 論法に基づき示せ.

(解答例)

全ての点 $x_0 \in \mathbb{R}$ で f が連続であることを示す.

任意の $\varepsilon>0$ に対して, $\delta_{\varepsilon}>0$ を $0<\delta_{\varepsilon}<\sqrt{\varepsilon+|x_0|^2-|x_0|}$ を満たすように取れば

$$|x - x_0| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

が成り立つ. 実際, そのような δ_{ε} に対して $|x-x_0|<\delta_{\varepsilon}$ ならば

である. よって示された.