GEANT-4 GPU Port:

Design Document: Detailed Design

Team 8

Stuart Douglas – dougls2 Matthew Pagnan – pagnanmm Rob Gorrie – gorrierw Victor Reginato – reginavp

Detailed Design: Version 0 April 23, 2016

Table of Contents

1	Intr	roduction	1
	1.1	Revision History	1
	1.2	Document Structure & Template	1
	1.3	List of Tables	1
	1.4	Technologies and Languages	2
	1.5	Notes	2
2	G4I	NeutronHPDataPoint	2
	2.1	Description	2
	2.2	MIS (Module Interface Specification)	3
		2.2.1 Access Program Syntax	3
		2.2.2 Access Program Semantics	3
		2.2.3 State Variables	4
		2.2.4 Environment Variables	4
		2.2.5 Assumptions	4
	2.3	Error Handling	4
	2.4	Key Algorithms	4
3	G41	ParticleVector – Implementation 1	4
•	3.1	Description	4
	3.2	MIS (Module Interface Specification)	4
	0.2	3.2.1 Access Program Syntax	4
		3.2.2 Access Program Semantics	6
		3.2.3 State Variables	8
			10
			10
	3.3		10
	3.4		10
	C 41		
4		1	10
	4.1	1	10
	4.2	(10
		0 2	11
		0	11
			11
			12
		1	12
	4.3	9	12
	4.4	v o	12
		4.4.1 GetXsecList	12

5 CMake Files			12	
	5.1	Descri	ption	12
	5.2	MIS (Module Interface Specification)	13
		5.2.1	Access Program Syntax	13
		5.2.2	Access Program Semantics	13
		5.2.3	State Variables	13
		5.2.4	Environment Variables	13
		5.2.5	Assumptions	13
	5.3	Error	Handling	13
	5.4	Key A	lgorithms	14

1 Introduction

1.1 Revision History

All major edits to this document will be recorded in the table below.

Table 1: Revision History

Description of Changes	Author	Date
Set up sections and filled out Introduction section	Matt	2015-12-15
Added sections for Errors and Key Algorithms	Stuart	2016-01-08
Created implementation 2 Section	Matt	2016-04-21

1.2 Document Structure & Template

The design documentation for the project is broken into two main documents.

The system architecture document details the system architecture, including an overview of the modules that make up the system, analysis of aspects that are likely and unlikely to change, reasoning behind the high-level decisions, and a table showing how each requirement is addressed in the proposed design.

This detailed design document covers the specifics of several key modules in the project. For each module, an MIS is given fully detailing the interface of the module. Then, the methods for handling errors within the module are discussed, and finally the main algorithms and data structures used by the module are presented.

1.3 List of Tables

Table #	Title
1	Revision History
2	G4NeutronHPDataPoint – access program syntax
3	G4NeutronHPDataPoint – access program semantics
10	G4NeutronHPDataPoint – state variables
8	G4ParticleVector – access program syntax
9	G4ParticleVector – access program semantics
10	G4ParticleVector – state variables
11	CMake Files – state variables

1.4 Technologies and Languages

Geant4 is developed entirely in C++. The project will use C++ as the interface between the GPU code and the existing Geant4 codebase. All GPU code will use CUDA, as discussed in the system architecture document. Other technologies used are CMake for the build system (see section 5.1).

1.5 Notes

Geant4 uses its own basic types for standard C++ types (G4int, G4bool, G4double, etc). These types are currently just typedefs to the respective type as defined in the system libraries.

The modules G4NeutronHPDataPoint and G4ParticleVector described below are existing modules of Geant4. All methods and state variables are pre-existing, and will be replicated on the GPU. The interface of the modules will not change.

This document contains two different implementations for G4ParticleVector. Both implementations use the same implementation for G4NeutronHPDataPoint.

2 G4NeutronHPDataPoint

2.1 Description

This class encapsulates all of the data as well as the setter and getter methods that each data point in G4ParticleVector's list of data requires. Two private variables are used to store the xSection and the energy of the data point.

2.2 MIS (Module Interface Specification)

2.2.1 Access Program Syntax

Table 2: G4NeutronHPDataPoint – access program syntax

Routine Name	Input	Output	Exceptions
G4NeutronHPDataPoint			
G4NeutronHPDataPoint	G4double, G4double		
operator = [=? [added operator —MP] —DS]	G4NeutronHPDataPoint		
$\operatorname{Get} X$		G4double	
$\operatorname{Get} Y$		G4double	
SetX	G4double		
SetY	G4double		
SetData	G4double, G4double		

[commented out energy and Xsec functions since X and Y do the exact same thing. Our code no longer has those functions —MP]

2.2.2 Access Program Semantics

Note that hyphens in routine names and inputs are just for line breaks due to the table size. The actual routine names and inputs do not have hyphens.

Table 3: NeutronHPDataPoint – access program semantics

Routine Name	Input	Semantics
G4NeutronHPDataPoint		instantiates the class, setting energy and
		xSec to 0
G4NeutronHPDataPoint	G4double,	instantiates the class with the inputted
	G4double	energy and xSec
operator =	G4NeutronHP-	sets the energy and xSec of the instance to
	DataPoint	those of the input
GetX		returns the energy of the instance
GetY		returns the xSec of the instance
$\operatorname{Set}X$	G4double	sets energy of instance to the argument
SetY	G4double	sets xSec of instance to the argument
SetData	G4double,	sets instance's energy and xSec to the
	G4double	passed arguments

[commented out energy and Xsec functions since X and Y do the exact same thing. Our code no longer has those functions —MP]

2.2.3 State Variables

The following variables maintain state for the class, and are all private to the module.

Table 4: G4NeutronHPDataPoint – state variables

Variable	Type	Description
energy	G4double	the energy of the particle
xSec	G4double	the cross-section of the particle

2.2.4 Environment Variables

There are no environment variables for this module.

2.2.5 Assumptions

It can be assumed that the class will be initialized. As such, all getter methods will return a non-null value.

2.3 Error Handling

This module does not handle errors explicitly.

2.4 Key Algorithms

This module represents data, and as such does not contain any algorithms.

3 G4ParticleVector – Implementation 1

3.1 Description

This module stores a large vector of data points (G4NeutronHPDataPoint). It includes functions for setting the data points, retrieving them, and calculating information over them (such as the integral).

3.2 MIS (Module Interface Specification)

Note that hyphens in routine names, inputs, outputs, and exceptions are just for line-breaks due to the table size. The actual routine names, inputs, outputs, and exceptions do not have hyphens.

3.2.1 Access Program Syntax

Table 5: G4ParticleVector – access program syntax

Routine Name	Input	Output	Exceptions
G4ParticleVector			
G4ParticleVector	G4int		
=	G4ParticleVector&	G4ParticleVector&	
+	G4ParticleVector&,	G4ParticleVector&	
	G4ParticleVector&		
SetVerbose	G4int		
Times	G4double		
SetPoint	G4int,		
	G4NeutronHPDataPoint		
SetData	G4int,		
	G4double,G4double		
SetX	G4int, G4double		
SetY	G4int, G4double		
GetXsec	G4int	G4double	
GetXsec	G4double	G4double	
GetXsec	G4double,G4int	G4double	
GetX	G4int	G4double	
GetVectorLength		G4int	
GetPoint	G4int	const	
		G4NeutronHPDataPoint&	z
InitInterpolation	istream		
Init	istream,G4int,		
	G4double, G4double		
Init	istream,		
	G4double,G4double		
ThinOut	G4double		
SetLabel	G4double		
GetLabel		G4double	
CleanUp			
Sample		G4double	
Debug		G4double *	
Merge	G4ParticleVector *,		
	G4ParticleVector *		
Merge	G4InterpolationScheme,		
-	G4double,		
	G4ParticleVector *,		
	G4ParticleVector *		
SampleLin		G4double	
IntegrateAndNormalise			

Integrate			
GetIntegral		G4double	
SetInterpolationManager	const		
	G4InterpolationManager		
	&		
SetInterpolationManager	G4InterpolationManager		
	&		
SetScheme	G4int,const		
	G4InterpolationScheme		
	&		
GetScheme	G4int	G4InterpolationScheme	
$\operatorname{GetMeanX}$		G4double	
GetBlocked		vector <g4double></g4double>	
GetBuffered		vector <g4double></g4double>	
Get15percentBorder		G4double	
Get50percentBorder		G4double	
Check	G4int		G4Hadronic-
			Exception

[commented out energy and Xsec functions since X and Y do the exact same thing. Our code no longer has those functions —MP] [We do not need the hash function since it was used to make cpu execution faster, which we are porting to the gpu —MP]

3.2.2 Access Program Semantics

Note that hyphens in routine names and inputs are just for linebreaks due to the table size. The actual routine names and inputs do not have hyphens.

Table 6: G4ParticleVector – access program semantics

Routine Name	Input	Description
G4ParticleVector		Instantiates the class with no parameters
G4ParticleVector	G4int	Instantiates the class with the number of points to consider as the parameter
=	G4ParticleVector&	Sets the current instance to the passed in-
		stance
+	G4ParticleVector&,	Returns the vector addition of the two
SetVerbose	G4ParticleVector&	passed vectors sets the verbosity to the input
	<u> </u>	v 1
Times	G4double	Multiplies all points y-values and integrals from theData by the input

SetPoint	G4int, G4NeutronHP- DataPoint	sets point at passed index to the passed point
SetData	G4int, G4double, G4double	sets point at passed index with given values
SetX	G4int, G4double	sets x value of point at passed index to passed value
SetY	G4int, G4double	sets y value of point at passed index to passed value
GetXsec	G4int	returns y value of point at passed index
GetXsec	G4double	returns y value of point with lowest xSection above passed double
GetX	G4int	returns x value of point at passed index
GetVectorLength		returns number of points
GetPoint	G4int	returns point at passed index
InitInterpolation	istream	sends the passed data file to the interpolation manager
Init	istream, G4int, G4double	initializes class and the Hash
Init	istream, G4double,G4double	initializes class and the Hash
ThinOut	G4double	removes unnecessary points and rehashes
SetLabel	G4double	sets the label value to passed number
GetLabel		returns the label of the current instance
CleanUp		clears all data
Sample		performs samples of X according to interpolation scheme
Debug		returns theIntegral
Merge	G4ParticleVector*, G4ParticleVector*	interpolate between labels, continue in un- known areas by subtraction of the last dif- ference
Merge	G4Interpolation- Scheme, G4double,	interpolate between labels according to passed G4InterpolationScheme, cut at passed G4double, continue in unknown ar-
	G4ParticleVector*, G4ParticleVector*	eas by subtraction of the last difference.
SampleLin	•	eas by subtraction of the last difference.
SampleLin IntegrateAndNormalis	G4ParticleVector*	eas by subtraction of the last difference. samples X according to distribution Y, linear
	G4ParticleVector*	eas by subtraction of the last difference. samples X according to distribution Y, linear calculates the integral for every data point

SetInterpolation-	G4Interpolation-	sets the Manager to the input	
Manager	Manager&		
SetScheme	G4int,	appends the passed G4Interpolation-	
	G4Interpolation-	Scheme to the Manager	
	Scheme&		
GetScheme	G4int	returns the current G4Interpolation-	
		Scheme associated with the Manager	
GetMeanX		returns the average x value of all data	
		points	
GetBlocked		returns the current value of theBlocked	
GetBuffered		returns the current value of theBuffered	
Get15percentBorder		gets the integral from each data point to	
		the last data point and returns the first one	
		within 15% of the last data point	
Get50percentBorder		gets the integral from each data point to	
		the last data point and returns the first one	
		within 50% of the last data point	
Check	G4int	checks that passed index is greater than the	
		number of points, throwing an exception if	
		not	

[commented out energy and Xsec functions since X and Y do the exact same thing. Our code no longer has those functions —MP] [We do not need the hash function since it was used to make cpu execution faster, which we are porting to the gpu —MP]

3.2.3 State Variables

The following variables maintain state for the class, and are all private to the class. Note that hyphens in variable names and types are just for line breaks due to the table size. The actual variable names and types do not have hyphens.

Table 7: G4ParticleVector – state variables

Variable	Type	Description
theLin	G4NeutronHP-	the linear interpolator for sampling data
	Interpolator	
totalIntegral	G4double	integral over all data points from theData
theData	G4NeutronHP-	array of G4NeutronHPDataPoint, stores all
	DataPoint*	data points in vector
theManager	G4Interpolation-	manages the interpolation schemes, knows
	Manager	how to interpolate data
theIntegral	G4double*	array of integrals where the Integral [i] is
		the integral of all data points from theData
		up until i
nEntries	G4int	the number of data points to consider when
		performing calculations over theData
nPoints	G4int	the number of data points in theData
label	G4double	number tagging class instance
theInt	G4Neutron-	the interpolator for sampling data (may not
	Interpolator	be linear)
Verbose	G4int	verbosity level, some statements will only
		print to console with higher values
isFreed	G4int	only used for debugging, 1 if class has been
		destructed 0 otherwise
maxValue	G4double	maximum value of Xsec or Y passed in Set-
		Data, SetY, or SetXSec so far. Initialized
		to -DBL_MAX (min representable double).
theBlocked	vector	deprecated: vector still exists in class but
	<g4double></g4double>	data never added to it
theBuffered	vector	stores buffer of samples to speed up sam-
.1.45	<g4double></g4double>	pling the vector
the15percent-	G4double	the X value of the first data point with an
BorderCash		integral no more than 15% smaller than the
	C(4.1. 1.1.	integral of the last data point
the50percent- BorderCash	G4double	the X value of the first data point with an integral no more than 50% smaller than the
DorderCash		integral no more than 50% smaller than the
		integral of the last data point

[no longer use the Hash since it was a object used to speed up cpu computions, which has been ported to GPU —MP]

3.2.4 Environment Variables

There are no environment variables for this module.

3.2.5 Assumptions

It can be assumed that the module will be initialized before other functions are called.

3.3 Error Handling

The Check method throws a G4HadronicException on error, however it is the only function to do so in the module. In the other functions, erroneous input is not handled explicitly beyond control statement checks that will assume default values for any invalid parameters.

3.4 Key Algorithms

There are a variety of algorithms used in the module. When porting to the GPU, the same algorithms will be modified to run in parallel. In general, this consists of taking array traversals and running the procedures executed sequentially at the same time on different cores of the GPU.

4 G4ParticleVector – Implementation 2

4.1 Description

Instead of storing and maintaining everything on the GPU, only functions which are well suited to run on the GPU are implemented. The data vector will be stored and maintained on the CPU in this implementation and will be sent to the GPU for processing results.

4.2 MIS (Module Interface Specification)

Note that hyphens in routine names, inputs, outputs, and exceptions are just for line-breaks due to the table size. The actual routine names, inputs, outputs, and exceptions do not have hyphens.

4.2.1 Access Program Syntax

Table 8: G4ParticleVector – access program syntax

Routine Name	Input	Output	Exceptions
SetInterpolationManager	const	None, Void function	
	G4 Interpolation Manager &		
SetInterpolationManager	G4 Interpolation Manager &	None, Void function	
GetXsecList	G4double, G4int,	None, Void function	
	G4ParticleHPDataPoint*,		
	G4int		
$GetMinIndices_CUDA$	G4ParticleHPDataPoint*,	None, Void function	
	int, double*, int, int*		

4.2.2 Access Program Semantics

Note that hyphens in routine names and inputs are just for linebreaks due to the table size. The actual routine names and inputs do not have hyphens.

Table 9: G4ParticleVector – access program semantics

Routine Name	Input	Description
SetInterpolation- Manager	G4Interpolation- Manager&	sets the Manager to the input
GetXsecList	G4double, G4int, G4ParticleHPDataPoint*, G4int	Takes a list of energies and finds their corresponding xSecs
GetMinIndices_CUDA	G4ParticleHPDataPoint*, int, double*, int, int*	device function used to find the indexes for the query values given

4.2.3 State Variables

The following variables maintain state for the class, and are all private to the class. Note that hyphens in variable names and types are just for line breaks due to the table size. The actual variable names and types do not have hyphens.

Table 10: G4ParticleVector – state variables

Variable	Type	Description
theManager	G4Interpolation- Manager	manages the interpolation schemes, knows how to interpolate data
theInt	G4Neutron- Interpolator	the interpolator for sampling data (may not be linear)

4.2.4 Environment Variables

There are no environment variables for this module.

4.2.5 Assumptions

It can be assumed that the module will be initialized before other functions are called.

4.3 Error Handling

The Check method throws a G4HadronicException on error, however it is the only function to do so in the module. In the other functions, erroneous input is not handled explicitly beyond control statement checks that will assume default values for any invalid parameters.

4.4 Key Algorithms

There are a variety of algorithms used in the module. When porting to the GPU, the same algorithms will be modified to run in parallel. In general, this consists of taking array traversals and running the procedures executed sequentially at the same time on different cores of the GPU.

4.4.1 GetXsecList

GetXsecList takes in an array of energy queries, it then sends that array to the GPU to work on. The GPU divides up the work by having each individual thread on the GPU be responsible for a single energy query. Every thread will look through the data vector independently until it finds the xSec corresponding to its energy value. This will all be happening in parallel. The results found replace the corresponding query energies

5 CMake Files

5.1 Description

The current build system used by Geant4 is CMake, consisting of *CMakeLists* text files in each source code directory detailing the files to compile and link, and further compiler directives. The user calls the **cmake** program with arguments (such as *useCuda*) for the build to generate the necessary makefiles. Support for CUDA and the *nvcc* CUDA compiler are built in to CMake. Although not a module in the traditional sense, CMake will still be the basis for enabling and disabling GPU functionality, and was included for that reason.

5.2 MIS (Module Interface Specification)

5.2.1 Access Program Syntax

CUDA support is built in to CMake, as such no new access programs or public macros will be created.

5.2.2 Access Program Semantics

CUDA support is built in to CMake, as such no new access programs or public macros will be created.

5.2.3 State Variables

Table 11: CMake Files – state variables

Variable	Type	Description
GEANT4_Enable_CUDA	Boolean	if set to true, the makefiles generated by CMake will include directives to compile and link the CUDA code and will execute ported procedures on the GPU. Default is false.

5.2.4 Environment Variables

- CUDA source files (.cu) containing the GPU code. CMake files will contain directives to compile and link the CUDA files.
- Source code from Geant4 project, such as the G4ParticleVector.cpp file. The relevant source code files will be compiled and linked as per CMake directives to the CUDA files listed above.

5.2.5 Assumptions

It is assumed the user has CMake installed, as it is required for Geant4.

5.3 Error Handling

If user the tries to enable CUDA without compatible hardware, CMake will detect this and output a fatal error message. The user will not be able to enable CUDA unless they have compatible hardware. If the user is using an older version of CMake (before 2.8) that does not support CUDA compilation, a fatal error message will be outputted.

5.4 Key Algorithms

When GEANT4_Enable_CUDA is set to true CMake will configure a header file which will indicate if Geant4 needs to include the CUDA files or not. This file then gets moved to the include directory where G4ParticleHPVector.hh can see it and include it.