Accepted —. Received —; in original form —

ABSTRACT

Key words:

1 INTRODUCTION

2 THE MAIN SYSTEM OF EQUATIONS

The crucial part of all the dynamic equations is the non-linear term $(\mathbf{v}\nabla)\mathbf{v}$, containing all the inertial terms. In spherical coordinates:

$$(\mathbf{v}\nabla)\mathbf{v} = \left(v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial v_r}{\partial \varphi} - \frac{v_\theta^2 + v_\varphi^2}{r}\right) \mathbf{e}^r + \left(v_r \frac{\partial v_\theta}{\partial r} + \frac{\theta}{v_\theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial v_\theta}{\partial \varphi} + \frac{v_\theta v_r}{r} - \frac{v_\varphi^2}{r} \cot^2 \theta\right) \mathbf{e}^\theta + \left(v_r \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial \varphi}{\partial v_\varphi} + \frac{v_\varphi v_r}{r}\right) \mathbf{e}^\varphi,$$

$$(1)$$

where e are unit vectors along different coordinate directions, r is radius, θ is polar angle, φ is azimuthal angle. Directly, this expression will be used for the vertical structure equations. On the sphere, the velocities may be converted to vorticity and divergence:

$$\omega = \left[\nabla \times \mathbf{v}\right],\tag{2}$$

$$\delta = (\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta v_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial v_\varphi}{\partial \varphi}. \tag{3}$$

Taking curl of Euler equation allows to directly derive the equation for vorticity

$$\frac{\partial \left[\nabla \mathbf{v}\right]}{\partial t} + (\mathbf{v}\nabla) \left[\nabla \mathbf{v}\right] = (\omega \cdot \nabla)\mathbf{v} - \omega(\nabla \cdot \mathbf{v}) + \frac{1}{\rho^2} \left[\nabla p \times \nabla \rho\right]. \tag{4}$$

The right-hand-side term is important if motion is baroclinic. Baroclinic term allows to generate vorticity from non-axisymmetric perturbations of density and temperature, hence it is important for any realistic calculations. We will neglect the radial velocities and consider only the radial component of ω that means all the motions are restricted to the surface of the sphere and the vertical relaxation timescale is much smaller than the global dynamical scales. Setting $\omega = \mathbf{e}_{\tau}\omega$ and substituting it to equation (4) gives

$$\frac{\partial \omega}{\partial t} + \nabla \cdot (\omega \mathbf{v}) = \frac{1}{c^2} \left[\nabla p \times \nabla \rho \right]. \tag{5}$$

Additional kinetic terms disappear because of the two-dimensional nature of the flow, not due to incompressibility assumption that also zeros these terms. Current version of the code adopts a fixed equation of state hence $\nabla p \propto \nabla \rho$, and the right-hand side is zero. Note that integration in vertical coordinate is not required in this case.

Another equation comes from taking divergence of Euler equation. It is rather non-trivial to expand the advection term, $(\nabla \cdot ((\mathbf{v}\nabla)\mathbf{v}))$, therefore first let us show that

$$(\nabla \cdot [\mathbf{v}\omega]) = \nabla^2 \frac{v^2}{2} - \nabla \cdot ((\mathbf{v}\nabla)\mathbf{v}). \tag{6}$$

The last term here is identical to the advective left-hand-side term in Euler equation derivative, hence

$$\frac{\partial \delta}{\partial t} = (\nabla \cdot [\mathbf{v}\omega]) - \nabla^2 B,\tag{7}$$

or, as there is only one non-zero vorticity component, and it is orthogonal to velocity,

$$\frac{\partial \delta}{\partial t} = (\nabla \cdot (\omega \mathbf{v})) - \nabla^2 B,\tag{8}$$

where

$$B = \frac{v^2}{2} + \Phi + h \tag{9}$$

is Bernoulli integral, and $h=\int \frac{1}{\rho} dp$ is enthalpy. For the isothermal case we start with, $p=\rho c_{\rm s}^2$, where the speed of sound $c_{\rm s}^2$ is constant, and $h=c_{\rm s}^2 \ln \rho$. Integration with height does not change the overall structure of the equation, as the vertical scalehight is always identical for density and pressure.

3 VERTICAL BALANCE