第三讲 风险与收益

学习目标

- ✓ 掌握: 收益率的多种计量和定义; 夏普比率, 风险
- ✓ 熟悉: 名义利率与实际利率
- ✓ 了解:正态分布
- ✓ 重点难点: 收益率的多种计量

关于风险的概念

- 风险:未来不确定性的度量
- 投资的风险,经济活动的风险有多大,并无理论可以预言;
- 未来仍然可能出现黑天鹅事件(从未出现过的负面结果);
- 投资的风险和预期收益是无法直接观察的变量。

1 名义利率和实际利率

区分名义利率(R)和实际利率(r): 名义利率是以货币单位度量的收益率。实际利率是以购买力度量的收益率。

$$1+r=\frac{1+R}{1+i}$$

- 在期初未来的通货膨胀率未知,所以,即使投资的名义收益率是固定的,实际回报率也是有风险的。
- 现实中,市场上有各种各样的利率,如果它们近似同步变动,那么在讨论问题时,可以简化假设只有一个利率。

利率水平的决定

- 利率的决定不是一个简单的问题,初级的利率模型可由三个因素构成:
- 1. 储蓄者(以家庭为主)对资金的供给
- 2. 企业投资形成的对资金的需求
- 3. 政府(中央银行)对资金市场的调控

利率水平的决定

- 实际利率的均衡分析:
 - · 家庭(储蓄者)对资金的供给;
 - · 企业投资对资金的需求;
 - · 政府行为;
 - 通货膨胀。

Figure 5.1 Determination of the equilibrium real rate of interest

- > 去年的货币名义增长率是10%, 同期的通货膨胀率是5%, 你实际的购买力 增长率是(D)。
- A. 15. 5% B. 10. 0%
- C. 5. 0%

- D. 4. 8%
- ▶ 如果实际年利率是5%,预期通货膨胀率是4%,名义年利率大约是(B)

- A. 1% B. 9% C. 20% D. 15%

- ▶ 下列哪种说法是正确的? (D)
- A. 通货膨胀率对名义利率没有影响
- B. 已实现的名义利率通常高于实际利率
- C. 定期存单可以保证实际利率
- D. 定期存单可以保证名义利率

- > 如果政府实施扩张性的货币政策有可能引起(BC)。
- A. 利率上升

B. 利率下降

C. 物价上升

D. 物价下降

税收与实际利率

- 税赋是基于名义收入的支出
 - · 假设税率为t,名义利率为R,则税后实际利率是:

$$R(1-t)-i = (r+i)(1-t)-i = r(1-t)-it$$

■ 税后实际利率随着通货膨胀率的上升而下降。

サ 举例:

假定王某的税负是30%,投资收益为12%,通货膨胀率为8%,请计算税后实际利率。

比较不同持有期的收益率

零息债券,面值 = \$100,T=持有期,P=价格, $r_f(T)$ =无风险收益率。

$$r_f(T) = \frac{100}{P(T)} - 1$$

Example 5.2 Annualized Rates of Return

Suppose prices of zero-coupon Treasuries with \$100 face value and various maturities are as follows. We find the total return of each security by using Equation 5.6:

Horizon, T	Price, P(T)	[100/ P(T)] — 1	Risk-Free Return for Given Horizon
Half-year	\$97.36	100/97.36 - 10271	r _f (.5) = 2.71%
1 year	\$95.52	100/95.52 - 10469	$r_f(1) = 4.69\%$
25 years	\$23.30	100/23.30 - 1 = 3.2918	r _f (25) = 329.18%

比较不同持有期的收益率

- ✓有效年收益率
- ✓年化百分比利率

有效年利率

- **有效年利率(Effective Annual Rate, EAR**)是指一年期投资价值增长的百分比,按照**复利**方式将不同持有期的收益率折算为年收益率。
- •记时间段T内的总收益(total return)为 $r_f(T)$,定义EAR为满足下式的年度收益率:

$$(1 + EAR)^T = 1 + r_f(T)$$

$$1 + EAR = \left[\left(1 + r_f \left(T \right) \right) \right]^{1/T}$$

年化百分比利率

- 年化百分比利率(Effective Annual Rate, EAR)是按照单利的方式将短期投资 (通常情况下, T<1) 中不同持有期的收益率转化为每年收益率。
- •如果把一年分成 \mathbf{n} 个相等的期间,每一期间的利率是f(T),则

$$APR = n \times r_f(T)$$

$$r_f(T) = T \times APR$$

$$1 + EAR = \left[\left(1 + r_f(T) \right) \right]^{1/T} \qquad 1 + EAR = \left(1 + T \times APR \right)^{1/T}$$

不同持有期的收益率

■ 定义连续复利的年利率(continuously compounded rate, r_{cc}):

$$1 + EAR = e^{r_{cc}}$$

- 》假设今天你公司投资了2500000美元于一张期限为270天的商业票据。在投资期末(第270天),公司将收到2585000美元。
- (1) 该投资的持有期收益率是多少?
- (2)一年中有多少个270天的投资期(一年按365天计算)?
- (3) 该投资的年化百分比利率是多少?
- (4) 该投资的有效年利率是多少?
- (5) 为什么有效年利率高于年化百分比利率?

风险与风险溢价

收益率: 单周期

$$HPR = \frac{P_1 - P_0 + D_1}{P_0}$$

HPR = 持有期收益率

 P_0 = 期初价格

 P_1 = 期末价格

 D_1 = 现金股利

$$HPR = (110 - 100 + 4)/(100) = 14\%$$

- 对股票而言,持有期收益率取决于未来的红利率和股价变化的百分比。
 既然在事前股价变化和红利率是不确定的,那么投资于股票在未来的收益率是一个随机变量。
- 以离散变量为例:

$$E(r) = \sum_{s} p(s) \times r(s)$$

$$\sigma^2 = \sum_{s} p(s) \times (r(s) - E(r))^2$$

如果你对股价的预期如下表所示,请计算持有期收益率的均值和标准差。

经济状况	概率	期末价格 (元)	持有期收益率(%)
繁荣	0.35	140	44.5
正常增长	0.30	110	14.0
衰退	0.35	80	-16.5

风险和风险溢价

- 投资中的"风险"一般是指负面的结果。如果收益率的分布近似对称,那么收益率的方差大小是日常语义中的风险的一个度量指标。
- 风险溢价(risk premium)定义为:风险资产超额回报的期望值。
 其中,超额回报(excess return)是的风险资产收益率和无风险收益率之间的差额。

风险和风险溢价

- 一般认为投资人是风险厌恶的(risk aversion),如果没有风险溢价, 投资人是不愿意投资于风险资产的。
- 我们想知道风险资产的预期收益率和其风险大小的关系,需要从历 史数据中找到线索。

- 如果已知风险资产未来收益率的概率分布,那么可以计算它的预期收益率和风险(方差)。
- 但是现实中,我们只能看到过去一系列实现的收益率。它们只是随机变量的一个个样本点。所以,我们的目标是从观察到的样本中,推断总体的性质。

• 观测值的算术平均值是预期收益率的估计值:

$$E(r) = \sum_{s=1}^{n} p(s) \times r(s)$$

$$\hat{\mu} = \frac{1}{n} \sum_{s=1}^{n} r(s)$$

假设一元的期初投资经过 n 年,在期末增长为终值 T 元。问:怎样的(固定的)年增长率 g 能够达到同样的终值? 1+g 是年收益率的几何平均值。g 称为时间加权的平均收益率:

$$(1+g)^n = (1+r_1)(1+r_2)\cdots\cdots(1+r_n)$$

• 年收益率的方差越大,几何平均与算术平均的差距越大。

方差度量了随机变量分布发散的程度,资产收益率的发散程度是一种风险的度量指标:

$$Var(r) = \sum_{s=1}^{n} p(s) \times (r(s) - E(r))^{2}$$

• 用观测值估计收益率的方差: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{s=1}^n (r(s) - \bar{r})^2$

- Sharpe Ratio:资产收益率的风险溢价除以超额收益率的标准差。
- Sharpe Ratio 度量了投资组合的吸引力,也是评价基金经理绩效的一个指标。

$$S = \frac{E(r_P) - r_f}{\sigma_p}$$

- •夏普比率是有时间维度的,一个投资组合的夏普比率随着持有期的变化而变化。
- 当持有期增加时,平均连续复利收益将等比例上升,标准差却随着时间的平方根等比例增长。
 - 》假设一个长期的风险投资组合,月期望收益率为1%,标准差为5%,无风险收益为0.5%,则其月度夏普比例为(),年度夏普比率为()。

■ 例:假设有两个基金A和B,基金A的年平均净值增长率为20%,标准差为10%;B基金的年平均净值增长率为15%,标准差为5%。

若年平均无风险利率为5%,请分别计算基金A和基金B的夏普指数,并解释其投资意义。

- 如果一个变量的取值是很多个随机因素共同作用的结果,并且不存在 单个因素处于主导地位,那么这个变量的分布可以用正态分布来近似 刻画。这一思想用严格的数学语言表述,就是中心极限定理。
- 股票的收益率,在较短的时期内,可以近似看成是正态分布的。
- 如果用二叉树模型来刻画股票价格的走势,那么极限分布是正态分布。

正态分布

Figure 5.4 The normal distribution with mean 10% and standard deviation 20%.

正态分布

- 用正态分布为股价建模,投资管理中的很多问题都比较容易处理:
- 是对称分布(Symmetric)
- 是稳定分布(Stable):两个独立正态分布变量的线性组合也是正 态分布。
- 正态分布只有两个参数: 期望值和方差。
- 尽管正态分布在用于股票收益率时有明显的缺陷,(比如收益率不 可能小于-100%,但是正态分布的随机变量可以取任意负值),但 是在特定条件下,正态分布是很好的近似。

偏离正态分布和风险度量

- 如果超额收益偏离了正态分布怎么办?
 - ▶ 标准差不再是一个衡量风险的完美度量工具
 - > 夏普比率不再是证券表现的完美度量工具
 - > 需要考虑偏度和峰度

Figure 5.5A Normal and skewed distributions (mean = 6%, SD = 17%)

Figure 5.5B Normal and fat-tailed distributions (mean = .1, SD = .2)

收益率偏离正态分布的表现

• 样本 k 阶中心矩:

$$M_{(k)} = Average[(R - \bar{R})^k]$$

• 偏度(skew)的定义:

$$Skew = Average \left[\frac{(R - \bar{R})^3}{\hat{\sigma}^3} \right]$$

收益率偏离正态分布的表现

- 对称分布(包括正态分布)的偏度等于零。
- 如果一个分布的偏度大于零,称为右偏(skewed to the right),偏度小于零称为左偏。如果资产收益率是右偏的,则分布的标准差会高估风险;反之,如果是左偏的,则标准差会低估风险。

收益率偏离正态分布的表现

■峰度(Kurtosis)的定义: 峰度=
$$\left[\frac{\left(R-\bar{R}\right)^4}{\hat{\sigma}^4}\right]$$
的平均值-3

- •收益率分布的厚尾(fat tails)特征:尾部的概率比相应的正态分布的尾部概率更大。
- •收益率出现非常大的负值,说明其分布具有负偏或者厚尾的特征。

- 在险价值(Value at Risk, VaR)
- 预期损失(Expected Shortfall, ES)
- Lower Partial Standard Deviation (LPSD, 下偏标准差)

- 在险价值(Value at Risk, VaR): q% VaR值,定义为收益率分布的 q% 分位点。这意味着有 q% 的可能性收益率低于这个临界值。
- · 对标准正态分布(均值为0,标准差为1)而言, 5% VaR值=均值-1.65个标准差。
- · 一种估计方法是,在资产收益率的历史数据中,找出最差 5% 观测值的分界点。
- · VaR 值在银行业资本充足性管理中,有广泛的应用。
- · 举例: 假设样本由80个年收益率组成,最低的五个收益率为:
 - -25.03%, -25.69%, -33.49%, -41.03%, -45.64%, 则5%的在险价值是多少?

- **预期损失(Expected Shortfall,ES**): 给定收益率落入最差 **q%** 的范围,预期的损失是多少。
- · 比较 VaR 和 ES: 后者更全面地刻画了可能出现的最坏的结果。
- · 举例: 假设样本由80个年收益率组成,最低的五个收益率为:

-25.03%, -25.69%, -33.49%, -41.03%, -45.64%, 则5%的ES是多少?

■ Lower Partial Standard Deviation(LPSD,下偏标准差): 在给定 资产收益率低于无风险收益率的条件下,计算收益率对无风险收益率的偏 离值的平方的期望值,再取平方根。

$$LPSD = sqrt\left[\frac{1}{n-1}\sum_{i=1}^{n}(R_i - R_f)^2\right] where (R_i - R_f) < 0$$

- · 注意: LPSD与资产收益率低于无风险收益率的概率无关。
- Sortino ratio: 在 Sharpe ratio 的计算中,用LPSD替代标准差。

- Eugene Fama和 Kenneth French对股票交易的历史数据的分析,找出了影响股票组合收益率的两个变量: Market Capitalization,B/M Ratio。
- · 根据公司的**市值**,可以将所有上市公司分为**大公司**和**小公司**两类。
- · 根据公司的**面值/市值比**,可以将公司分为**高、中、低**三类。去掉面值/市值比落入中间一类的公司,比值高的一类称为Value型,比值低的一类称为Growth型。

- 由此构造4个投资组合: Big/Value; Big/Growth; Small/Value;
 Small/Growth。
- · 投资组合中每只股票占比相同(等权重的投资组合。相对于市值加权的投资组合,等权重组合中小公司的份额和影响更大)。
- · 作为参照,构造短期国债的投资组合,以及所有美国上市公司的市值加权的投资组合。

- 历史数据包括从1926年7月到2012年9月(86年)以上6个投资组合的月度超额收益率。分3个历史时期讨论:
- a) 1926年7月到1949年12月(282个月,含经济大萧条,二战)
- b) 1950年1月到1999年12月(600个月,经济平稳,含朝鲜战争,越南战争,第一次海湾战争)
- c) 2000年1月到2012年9月(153个月,经济动荡,含科技泡沫破灭,次贷危机,伊拉克和阿富汗战事)

Table 5.3

Number of firms, average capitalization, and average B/M ratios of portfolios

Notes: a Value weighted, hence dominated by big stocks

^b B/M ratio are sampled in midyears

Source: Professor Kenneth French's Web site, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Figure 5.6 Frequency distribution of annual rates of return, 1926–2012 Source: Prepared from data in Table 5.3.

Table 5.4

Annualized statistics from the history of monthly excess returns on common stocks, July 1926–September 2012

Table 5.4—concluded

Annualized statistics from the history of monthly excess returns on common stocks, July 1926–September 2012

Notes: a Stocks trading on NYSE, AMEX, and NASDAQ, value weighted

Source: Author's calculations, using data from Professor Kenneth French's Web site, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

^b Firms in the top 1/2 by market capitalization of equity and top 1/3 by ratio of book equity/market equity (B/M), equally weighted

^c Firms in the top 1/2 by capitalization and bottom 1/3 by B/M ratio, equally weighted

d Firms in the bottom 1/2 by capitalization and top 1/3 by B/M ratio, equally weighted

 $_{\cdot}^{\mathrm{e}}$ Firms in the bottom 1/2 by capitalization and bottom 1/3 by B/M ratio, equally weighted

f Calculated from monthly, continuously compounded rates

Table 5.4A

Average excess returns over time

	All U.S.	Big/ Value	Big/ Growth	Small/ Value	Small/ Growth	Average of Four Comparison Portfolios
All years	20.46	29.25	20.79	41.41	32.80	31.06
21st century	20.08	24.08	20.93	28.93	29.49	25.86
20th cent. 2 nd half	14.99	17.21	16.51	21.41	25.60	20.18
20th cent. 2 nd quarter	28.72	46.59	27.61	63.74	45.08	45.76

Table 5.4B

Standard deviations over time

Table 5.4C

Sharpe ratios over time

	All U.S.	Big/ Value	Big/ Growth	Small/ Value	Small/ Growth	Average of Four Comparison Portfolios
All years	0.12	0.93	0.85	2.81	0.72	1.33
21st century	-1.02	-1.71	0.34	-0.67	-0.37	-0.60
20th cent. 2 nd quarter	0.06	-0.19	0.19	0.47	0.34	0.20
20th cent. 2 nd half	-1.16	-0.09	-0.08	-0.39	0.18	-0.09

Table 5.4D

VaR (excess over normal distribution) expressed as a fraction of monthly standard deviation

Table 5.4E

Expected shortfall (excess over normal distribution) expressed as a fraction of monthly standard deviation

	All U.S.	Big/ Value	Big/ Growth	Small/ Value	Small/ Growth
Number of negative jumps	7.7	4.8	9.7	2.9	3.9
Expected jumps for equivalent normal	0.9	0.9	8.0	0.6	1.0
Difference = excess jumps	6.8	4.0	8.9	2.3	2.8
Average years between excess jumps	12.24	21.06	9.42	36.23	29.37
Expected excess returns between extra jumps (in units of SD)	16.90	32.91	17.16	104.23	28.98

Table 5.4F

Incidence of negative 3-sigma returns

	All U.S.	Big/Value	Big/Growth	Small/Value	Small/Growth
From 1,035-month history	17.18	19.79	19.31	22.98	18.08
From an equivalent normal	12.82	14.95	13.47	16.85	15.16
% Difference	33.99	32.35	43.35	36.39	19.23

Table 5.4G

Standard deviation conditional on excess return less than -10%

- 解读:次贷危机以后大量小企业消失,所以企业数量减少,而平均规模 上升。
- 拟合的正态分布,其参数(均值和方差)是根据那些收益率在 -10% 和 +10% 之间的数据估计出来的,极端的收益率数据被剔除了。
- 解读: 超额收益率都显著大于零,这说明承担风险确实有超额回报。
- 解读: 21世纪时间段,大公司表现差。
- 解读: 20世纪后50年平均收益率最高。Small/Value组的收益始终最高。

- 解读:第一个时期,标准差最大;小公司标准差大。
- 解读: 20世纪后50年,Sharpe Ratio一般是最高,但是并不显著。
- ■解读:第一个时期,平均收益率并不低(尽管有大萧条)。
- 解读: Small/Value 组合在所有时期收益率都最高,差别是显著的。
- ■解读:等权重组合的收益率高于市值加权的组合的收益率。
- 解读:标准差的范围在15%--63%,小公司组合的标准差更高。

- 解读:负偏度经常出现,峰度在所有时期所有组合中都大于3。
- 解读: Excess VaR, 经验分布VaR减去正态分布的VaR, 差额并不大。
- 解读: 经验分布的ES绝对值比正态分布的更高,说明有厚尾现象。
- 解读:大于3个标准差的负值的收益率(Negative Jump),根据实际数据计算在每1000个月发生2.9—9.7次。根据拟合的正态分布,每1000个月发生0.6—1.0次。但是极端负值收益率的影响并不大。
- 结论:用正态分布拟合收益率,基本可行,但是有时候低估了风险。

本讲小结

- 名义利率与实际利率
- 有效年利率与年化百分比利率
- 风险与风险溢价
- 非正态分布的风险度量

课堂练习

- 1. 假定你有**10**万美元。如果全部投资股票,你有**0.6**的概率得到期望收益**5**万美元,**0.4** 的概率损失**3**万美元。如果你把全部投资都投在无风险的国库券上,可获收益**5**千美元。试求投资的风险溢价。
- 2. 有一投资组合在下列市场情况下:熊市出现的概率0.2,收益率-25%;正常市场出现概率0.3,收益率10%;牛市出现概率0.5,收益率24%。求该资产组合的期望收益率和标准差。
- 3. 有一长期风险投资组合,月期望收益率为1%,标准差为5%,无风险收益率为0.5%。 求该长期资产组合的夏普比率。另外,如果期望收益率为每年12%,该资产组合夏普 比率又是多少?
- 4. 一家银行提供给你两种10万美元的定期存款利率:
 - (a) 月利率1%; (b) 年复利 (r_{cc}) 12%。你怎样选择?
- 5. 假定某指数基金股票看跌期权多头协议价格为**110**美元,一年后到期时现货市场价格 为**80**美元,此看跌期权的购买价格为**12**美元。求持有期收益率(HPR)。