INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI

COMPUTATIONAL FLUID DYNAMICS *ASSIGNMENT – 03* <u>LID DRIVEN CAVITY PROBLEM</u>

submitted by :- lokesh kumar verma
RollNo. 224103314
(fluid and thermal)

Discretization of the governing equations:

• Discretized equation of stream function:

$$\varphi_{i,j} = \frac{\varphi_{i+1,j} + \varphi_{i-1,j} + \beta^2(\varphi_{i,j+1} + \varphi_{i,j-1}) + \Delta x^2 \omega_{i,j}}{2(1 + \beta^2)}$$

• Discretized equation of vorticity:

$$=\frac{\omega_{i,j}}{\omega_{i+1,j}+\omega_{i-1,j}+\beta^2(\omega_{i,j+1}+\omega_{i,j-1})-\frac{1}{4}\beta Re(\omega_{i+1,j}-\omega_{i-1,j})(\varphi_{i,j+1}+\varphi_{i,j-1})+\frac{1}{4}\beta Re(\omega_{i,j+1}-\omega_{i,j-1})(\varphi_{i+1,j}-\varphi_{i-1,j})}{2(1+\beta^2)}$$

Boundary Conditions:

• Boundary conditions for stream function(φ):

Vertical walls: For $1 \leq j \leq j_{max}$, $\varphi_{1,j} = \varphi_{i_{max},j} = 0$ Horizontal walls: For $1 \leq i \leq i_{max}$, $\varphi_{i,1} = \varphi_{i,j_{max}} = 0$

• Boundary conditions for vorticity(ω):

Wall-vorticity at the left side-wall,

$$\omega_{1,j} = -\frac{2\varphi_{2,j}}{(\Delta x)^2}$$
 for $2 \le j \le j_{max-1}$

Wall-vorticity at the right side wall,

$$\omega_{i_{max},j} = -\frac{2\varphi_{i_{max-1},j}}{(\Delta x)^2} \ for \ 2 \le j \le j_{max-1}$$

Wall-vorticity at the bottom wall,

$$\omega_{i,1} = -\frac{2\varphi_{i,2}}{(\Delta y)^2} \text{ for } 2 \le i \le i_{max-1}$$

Wall-vorticity at the top wall,

$$\omega_{i,j_{max}} = -\frac{2\varphi_{i,j_{max-1}} + 2\Delta yU}{(\Delta y)^2} \text{ for } 2 \le i \le i_{max-1}$$

CASE I

For Reynolds number=100 the obtained results from the program are as follows:

(i) contour plot

(ii) U-velocity vectors plot

(iii) V-velocity vectors plot

(iv) comparison graph between the obtained results of u with the standard ghia results:

(v) comparison graph between the obtained results of v with the standard ghia results:

(vi) The vorticity contour plot is obtained as shown below

(vii) Iterations for convergence

No of iterations required for convergence in calculating the stream function and omega values so as to have the error reduced to a maximum of 0.00001 were 7655.

CASE-II

For Reynolds number=100 the obtained results from the program are as follows:

(i) contour plot

(i) U-velocity vectors plot

(ii) V-velocity vectors plot

(iii) comparison graph between the obtained results of u with the standard ghia results

(iv) comparison graph between the obtained results of v with the standard ghia results

(v) The vorticity contour plot is obtained as shown below

(vi) Iterations for convergence

No of iterations required for convergence in calculating the stream function and omega values so as to have the error reduced to a maximum of 0.00001 were 5548.