BIFURCATION AND STABILITY FOR

A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION

CASE FILE COPY

Nathaniel Chafee*

Division of Applied Mathematics
Brown University
Providence, R.I. 02912

AMS 1970 Subject Classifications: Primary 35B40; Secondary 35B35, 35K35

*This research was supported in part by the National Aeronautics and Space Administration under grant NGL 40-002-015, and in part by the U.S. Army Research grant DA-ARO-D-31-124-71-G12.

List of symbols

Roman letters: lower case

f t

n u

ı x

Roman letters: upper case

X

ν

Greek letters: lower case

 λ lambda ϕ phi

 ξ xi ω omega

π pi

Mathematical symbols

∞ infinity

 $|| ||_1$

This note is a brief report on some research conducted by the author and E.F. Infante in 1971. A complete report on this same research is scheduled to appear in a separate article [1].

Let f be a given function continuously mapping the real line R into itself. Let λ be a given non-negative real number. Let $\phi:[0,\pi] \to R$ be any C^1 -smooth function such that $\phi(0) = \phi(\pi) = 0$. We shall be discussing the following problem. Find a function u continuously mapping the domain $\{(x,t)\colon 0\le x\le \pi,\ 0\le t<+\infty\}$ into R such that (i) the partial derivatives u_t and u_{xx} are defined and continuous on $[0,\pi]\times(0,+\infty)$; (ii) u satisfies the equations

$$u_{t}(x,t) = u_{xx}(x,t) + \lambda f(u(x,t)) \qquad (0 \le x \le \pi, 0 \le t \le +\infty)$$
 (la)

$$u(0,t) = u(\pi,t) = 0$$
 (0

$$u(x,0) = \phi(x) \qquad (0 \le x \le \pi) . \qquad (1c)$$

By a solution of (1) we mean a function u having the properties just specified.

Our primary goal in studying (1) is to determine the asymptotic behavior of solutions u of (1) as $t \to +\infty$. The investigation takes place under the following hypotheses concerning f.

 (H_1) f is a C^2 -smooth function mapping R into itself.

$$(H_2)$$
 f(0) = 0 and f'(0) > 0.

(H₃)
$$\limsup_{|\xi| \to +\infty} \xi^{-1} f(\xi) = 0$$

 (H_{ij}) sgn f"(ξ) = -sgn ξ for all $\xi \in \mathbb{R}$.

In that which follows we shall let X denote the space of all c^1 -smooth

functions $\phi:[0,\pi] \to \mathbb{R}$ such that $\phi(0) = \phi(\pi) = 0$. On X we impose a norm $|| \ ||_1$ by setting $||\phi||_1 = \sup\{|\phi'(x)|: 0 \le x \le \pi\}$ for all $\phi \in X$. X is a Banach space under $|| \ ||_1$.

It can be shown that, for any $\phi \in X$ and $\lambda \in [0,+\infty)$, Eqs. (1) have a unique solution $u(\phi,\lambda)$ defined on $[0,\pi] \times [0,+\infty)$. A non-trivial aspect of this assertion is the statement that the domain of definition for $u(\phi,\lambda)$ is all of $[0,\pi] \times [0,+\infty)$. We shall briefly return to this matter below.

For any $\phi \in X$, $\lambda \in [0, +\infty)$, $x \in [0, \pi]$, and $t \in [0, +\infty)$, we can let $u(x, t; \phi, \lambda)$ denote the value of $u(\phi, \lambda)$ at (x, t). With this in mind, we can define, for any $\lambda \in [0, +\infty)$, a nonlinear semigroup $\{U_{\lambda}(t)\}$ on X by setting $U_{\lambda}(t) \phi = u(\cdot, t; \phi, \lambda)$ for all $\phi \in X$ and $t \in [0, +\infty)$. It can be shown that $\{U_{\lambda}(t)\}$ is strongly continuous.

Let $\lambda \epsilon [0, +\infty)$. By an equilibrium solution of (1) (corresponding to λ) we mean a function $u_0 \epsilon X$ such that $U_{\lambda}(t)u_0 = u_0$ for all $t\epsilon [0, +\infty)$. By virtue of (H_2) , the origin $\phi_0 = 0$ in X is an equilibrium solution of (1) for every $\lambda \epsilon [0, +\infty)$.

To discuss the existence of other equilibrium solutions for (1), we introduce a sequence of real numbers $\{\lambda_n\}_{n=1}^{+\infty}$ by setting $\lambda_n=n^2/f'(0)$ for each integer $n\geq 1$. By virtue of (H_2) , we have $0<\lambda_1<\lambda_2<\cdots<\lambda_n<\cdots$. We are now ready to state our first theorem.

Theorem 1. For any integer $n \ge 1$ and any number $\lambda \in [\lambda_n, +\infty)$, Eqs. (1) have two equilibrium solutions $u_n^{\pm}(\lambda)$ possessing the following three properties:

- (i) $u_n^{\pm}(\lambda) = 0$ if and only if $\lambda = \lambda_n$.
- (ii) The mappings $\lambda \longleftrightarrow u_n^{\pm}(\lambda)$ from $[\lambda_n, +\infty)$ into X are each continuous. In particular, $u_n^{\pm}(\lambda) \to 0$ as $\lambda \to \lambda_n$. Also, $||u_n^{\pm}(\lambda)||_1 \to +\infty$ as $\lambda \to +\infty$.

(iii) For any $\lambda \epsilon(\lambda_n \neq \infty)$, $u_n^{\pm}(\lambda)$ has exactly n+1 zeros $x_0^{\pm}(\lambda)$, $x_1^{\pm}(\lambda)$, ..., $x_n^{\pm}(\lambda)$ in $[0,\pi]$ with $0 = x_0^{\pm}(\lambda) < x_1^{\pm}(\lambda) < \ldots < x_n^{\pm}(\lambda) = \pi$. Moreover, for each integer $q = 0,1,\ldots,n-1$, we have $(-1)^q u_n^{+}(x;\lambda) > 0 \text{ if } x_q^{+}(\lambda) < x < x_{q+1}^{+}(\lambda) \text{ and we have } (-1)^q u_n^{-}(x;\lambda) < 0 \text{ if } x_q^{-}(\lambda) < x < x_{q+1}^{-}(\lambda).$

In addition to the preceding assertions, we have that for any $\lambda\epsilon[0,+\infty) \text{ Eqs. (1) have no equilibrium solutions other than the zero solution}$ $u_0=0 \text{ and those elements } u_n^\pm(\lambda), \ n\geq 1, \text{ such that } \lambda_n\leq \lambda.$

On the basis of Assertion (ii) in Theorem 1, we may state that, for any integer $n \geq 1$, the two equilibrium solutions $u_n^{\pm}(\lambda)$ bifurcate from the zero solution as λ increases from λ_n .

Now we come to our second theorem.

Theorem 2. For any $\phi \in X$ and any $\lambda \in [0, +\infty)$, there exists an equilibrium solution $u_0(\phi, \lambda)$ of (1) such that $U_{\lambda}(t)\phi \rightarrow u_0(\phi, \lambda)$ as $t \rightarrow +\infty$.

The question arises, given $\phi \in X$ and $\lambda \in [0,+\infty)$, to which of the equilibrium solutions described in Theorem 1 is $u_0(\phi,\lambda)$ equal? A partial answer to this query is given in the following theorem.

Theorem 3. For any $\lambda\epsilon[0,\lambda_1]$, the zero solution $u_0=0$ of (1) is globally asymptotically stable in the sense of Liapunov. In particular, for each $\phi\epsilon X$ and $\lambda\epsilon[0,\lambda_1]$, we have $\left|\left|U_{\lambda}(t)\phi\right|\right|_1 \to 0$ as $t \to +\infty$. For any $\lambda\epsilon(\lambda_1,+\infty)$, the zero solution $u_0=0$ of (1) is unstable. For any $\lambda\epsilon(\lambda_1,+\infty)$, the solutions $u_1^{\pm}(\lambda)$ are each asymptotically stable in the sense of Liapunov. Finally, for any integer $n \geq 2$ and any $\lambda\epsilon[\lambda_1,+\infty)$, the solutions $u_1^{\pm}(\lambda)$ are each unstable.

Theorems 1-3 are proved in the article [1] already mentioned. We shall not repeat the proofs here but shall rather confine ourselves to making the following remarks.

Our approach to studying Eqs. (1) is to interpret (1) as a dynamical system on X and then to apply certain methods associated with the Liapunov theory of stability. The methods we have in mind are set forth in [2], [3] and [4] and are often referred to as the invariance principle in stability theory.

An essential tool in our use of the invariance principle is the following Liapunov functional:

$$V_{\lambda}(\phi) = \int_{0}^{\pi} \left\{ \frac{1}{2} \phi'(\mathbf{x})^{2} - \lambda \int_{0}^{\phi(\mathbf{x})} \mathbf{f}(\xi) d\xi \right\} d\mathbf{x} \quad (\phi \in X, \lambda \in [0, +\infty)) . \tag{2}$$

For each $\lambda \in [0, +\infty)$, Eq. (2) defines a functional V_{λ} mapping X into R. For any $\phi \in X$ and $\lambda \in [0, +\infty)$, it can be shown that

$$\dot{\mathbf{v}}_{\lambda}(\mathbf{U}_{\lambda}(\mathsf{t})\phi) = -\int_{0}^{\pi} |\mathbf{u}_{\mathsf{t}}(\mathbf{x},\mathsf{t};\phi,\lambda)|^{2} d\mathbf{x} \qquad (\mathsf{t} > 0) . \tag{3}$$

Consider any $\phi \in X$ and $\lambda \in [0,+\infty)$. Using V_{λ} one can show that the solution $u(\phi,\lambda)$ is defined everywhere on $[0,\pi] \times [0,+\infty)$. This is a matter which we have mentioned earlier in this note. Of more immediate interest is the fact that, using V_{λ} , one can show that $u(\phi,\lambda)$ has a nonempty compact connected invariant ω -limit set $\omega(\phi,\lambda) \subset X$. Here, one also uses the invariance principle referred to two paragraphs above. That same principle together with Eq. (3) tells us that any element in $\omega(\phi,\lambda)$ must be an equilibrium solution of (1).

Therefore, one now seeks the equilibrium solutions of Eqs. (1). This means that one studies the two-point boundary-value problem

$$u''(x) + \lambda f(u(x)) = 0$$

$$u(0) = u(\pi) = 0$$

$$(0 \le x \le \pi, 0 \le \lambda \le +\infty).$$
(4)

The results of our investigation are stated in Theorem 1. In particular, we see that, for any $\lambda \epsilon [0,+\infty)$, each equilibrium solution of (1) is isolated in X. Hence, for any $\phi \epsilon X$ and $\lambda \epsilon [0,+\infty)$, the set $\omega(\phi,\lambda)$ consists of exactly one equilibrium solution of (1). From this there follows Theorem 2.

Theorem 3 is established using arguments from the classical theory of calculus of variations. We shall not attempt to describe these arguments here.

References

- 1. Chafee, N., and E.F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., to appear.
- 2. LaSalle, J.P., An invariance principle in the theory of stability, <u>Int. Symp. Diff. Eqs. Dyn. Sys.</u>, ed. by J.K. Hale and J.P. LaSalle, Academic Press, New York, 1967, pp. 277-286.
- 3. Hale, J.K., and E.F. Infante, Extended dynamical systems and stability theory, Proc. Nat. Acad. Sci. U.S.A., vol. 58, no. 2 (1967), 405-409.
- 4. Hale, J.K., Dynamical systems and stability, <u>J. Math. Anal. Appl.</u> 26 (1969), 39-59.
- 5. Matkowsky, B.J., A simple nonlinear dynamic stability problem, Bull. Amer. Math. Soc. 76 (1970), 620-625.