# Эконометрика в задачах и упражнениях

Решебник с Монте-Карло и эконометрессами

Дмитрий Борзых, Борис Демешев

7 января 2015 г.

# Глава 1

# Решения и ответы к избранным задачам

```
1.1. да, да, да, нет 1.2.  
1.3.  
1.4.  
1.5. \hat{\alpha} + \hat{\gamma} = 0 и \hat{\beta} + \hat{\delta} = 1  
1.6.  
1.7.  
1.8. \hat{\beta} = \sum x_i y_i / \sum x_i^2  
1.9. \hat{\beta} = \bar{y}  
1.10. \hat{\beta}_2 = \sum (x_i - \bar{x})(y_i - \bar{y}) / \sum (x_i - \bar{x})^2, \hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}  
1.11. \hat{\beta} = \sum x_i (y_i - 1) / \sum x_i^2  
1.12. (300 - \hat{\beta}_1)^2 + (200 - \hat{\beta}_2)^2 + (400 - \hat{\beta}_1 - \hat{\beta}_2)^2 \rightarrow \min  
1.13. 2 \cdot (10 - \hat{\beta})^2 + (3 - \hat{\beta})^2 \rightarrow \min  
1.14.
```

- 1.15. да, возможно. Два вытянутых облачка точек. Первое облачко даёт первую регрессию, второе—вторую. Прямая, соединяющая центры облачков, общую.
- 1.16. Нет. Коэффициенты можно интерпретировать только «при прочих равных», т.е. при равных x. Из-за разных x может оказаться, что у мужчин  $\bar{y}$  меньше, чем  $\bar{y}$  для женщин. 1.17.

- 1.18.
- 1.19. Оценки МНК линейны по объясняемой переменной. Если сложить объясняемые переменные в этих двух моделях, то получится вектор из единичек. Если строить регрессию вектора из единичек на константу и r, то получатся оценки коэффициентов 1 и 0. Значит,  $\hat{\beta}_1 + \hat{\gamma}_1 = 1$ ,  $\hat{\beta}_2 + \hat{\gamma}_2 = 0$
- 1.20. Увеличатся в 100 раз
- 1.21. да
- 1.22.  $R^2 = 0$
- 1.23.  $TSS_1 = TSS_2, R_2^2 \geqslant R_2^1, ESS_2 \geqslant ESS_1, RSS_2 \leqslant RSS_1$
- 1.24.
- 1.25.  $y_i^* = 7 + 3(y_i \bar{y})/s_y$
- 2.1.
- 2.2.
- 2.3.  $c_i = c \cdot x_i$ , где  $c \neq 0$
- 2.4.
- 2.5.
- 2.6.
- 2.7.
- 2.8.
- 2.9.
- 2.10.
- 2.11.
- 2.12.
- 2.13. Через теорему Гаусса–Маркова или через условную минимизацию,  $c_i = 1/n$
- 2.14.
- 2.15.
- 2.16.

1. 
$$\hat{\beta} = \frac{\sum y_t t}{\sum t^2}$$

2. 
$$\mathbb{E}(\hat{\beta}) = \beta$$
 и  $\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{t=1}^T t^2}$ 

- 3. Да, состоятельна
- 2.17. несостоятельна
- 2.18.
- 2.19. Вроде бы равносильно переносу начала координат и применению результата для регрессии без свободного члена. Должна остаться несмещенность.
- 2.20.
- 2.21. Не прав. Ковариация  $Cov(y_i, \hat{y}_i)$  зависит от i, это не одно неизвестное число, для которого можно предложить одну оценку.
- 2.22. формула  $\sum (y_i \bar{y})^2/(n-1)$  неприменима так как  $\mathbb{E}(y_i)$  не является константой
- 2.23.  $R^2$  это отношение выборочных дисперсий  $\hat{y}$  и y.
- 2.24. Как отсутствие систематической ошибки.
- 2.25. нет, нет, нет
- 2.26.  $RSS/\sigma^2 \sim \chi^2_{n-k}$ ,  $\mathbb{E}(RSS) = (n-k)\sigma^2$ ,  $Var(RSS) = 2(n-k)\sigma^4$ ,  $\mathbb{P}(10\sigma^2 < RSS < 30\sigma^2) \approx 0.898$
- 2.27.
- 2.28.
- 2.29.
- 2.30. Можно взять четыре наблюдения равноотстоящих по вертикали от данной прямой. Подбирая остатки, добиваемся нужного  $R^2$ .
- $2.31.\ \hat{\beta_1} = -4890\ \text{и}\ \hat{\beta_2} = 2.5$

$$X = egin{bmatrix} 1 & 1 \\ 1 & 2 \\ \dots & \dots \\ 1 & 12 \end{bmatrix}$$
 — матрица исходных регрессоров;  $\tilde{X} = egin{bmatrix} 1 & 1+1994 \\ 1 & 2+1994 \\ \dots & \dots \\ 1 & 12+1994 \end{bmatrix}$  — матрица новых регрессоров.

$$\tilde{X} = X \cdot D$$
, где  $D = \begin{bmatrix} 1 & 1994 \\ 0 & 1 \end{bmatrix}$ .

Итак, уравнение регрессии с новыми регрессорами имеет вид  $y = \tilde{X}\beta + \varepsilon$  и МНК-оценки коэффициентов равны:

$$\hat{\beta} = \left(\tilde{X}^T \tilde{X}\right)^{-1} \tilde{X}^T y = \left( [XD]^T [XD] \right)^{-1} [XD]^T y = D^{-1} (X^T X)^{-1} (D^T)^{-1} D^T X^T y = D^{-1} (X^T X)^{-1} X^T y$$

$$\hat{\beta} = D^{-1} \hat{\beta}_{old} = \begin{bmatrix} 1 & -1994 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 95 \\ 2.5 \end{bmatrix} = \begin{bmatrix} -4890 \\ 2.5 \end{bmatrix}$$
(1.1)

2.32. Мы можем существенно упростить решение, воспользовавшись матричным представлением:

$$\tilde{\beta}_{2}^{a} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{x_{i}} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} y \quad (1.2)$$

$$\mathbb{E}\tilde{\beta}_{2}^{a} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}y_{i}}{x_{i}} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \begin{bmatrix} \mathbb{E}y_{1} \\ \mathbb{E}y_{2} \\ \vdots \\ \mathbb{E}y_{n} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \begin{bmatrix} \beta_{1} + \beta_{2}x_{1} \\ \beta_{1} + \beta_{2}x_{2} \\ \vdots \\ \beta_{1} + \beta_{2}x_{n} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \begin{bmatrix} \beta_{1} & \frac{1}{n} \\ \beta_{1} & \frac{1}{n} \end{bmatrix} + \beta_{2} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \frac{\beta_{1}}{n} \sum_{k=1}^{n} \frac{1}{x_{k}} + \beta_{2} \quad (1.3)$$

Значит, смещение для первой оценки равно  $\frac{\beta_1}{n}\sum_{k=1}^n \frac{1}{x_k}$ .

$$\operatorname{Var}(\tilde{\beta}_{2}^{a}) = \operatorname{Var}\left(\frac{1}{n}\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} y\right) =$$

$$\frac{1}{n^{2}}\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \operatorname{Var}(y)\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix}^{T} =$$

$$\frac{1}{n^{2}}\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \operatorname{Var}(\varepsilon)\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix}^{T} =$$

$$\frac{1}{n^{2}}\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \sigma_{\varepsilon}^{2} I\begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix}^{T} =$$

$$\frac{\sigma_{\varepsilon}^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{x_{k}^{2}} \quad (1.4)$$

Перейдём ко второй оценке. 
$$\tilde{\beta}_2^b = \frac{\overline{y}}{\overline{x}} = \frac{1}{\overline{x}} \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} y$$

$$\mathbb{E}\tilde{\beta}_{2}^{b} = \frac{\overline{y}}{\overline{x}} = \frac{1}{\overline{x}}\frac{1}{n}\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \mathbb{E}y = \frac{1}{\overline{x}}\frac{1}{n}\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \beta_{1} + \beta_{2}x_{1} \\ \beta_{1} + \beta_{2}x_{2} \\ \vdots \\ \beta_{1} + \beta_{2}x_{n} \end{bmatrix} = \frac{1}{\overline{x}}\frac{1}{n}\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \beta_{1}\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \beta_{2}\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \end{bmatrix} = \frac{1}{n}\frac{\beta_{1}n}{\overline{x}} + \frac{1}{n}\frac{\beta_{2}\sum x_{i}}{\overline{x}} = \frac{\beta_{1}}{\overline{x}} + \beta_{2} \quad (1.5)$$

Значит, смещение равно  $\frac{\beta_1}{\overline{x}}$ .

$$\operatorname{Var}(\tilde{\beta}_{2}^{b}) = \frac{1}{\overline{x}^{2}} \frac{1}{n^{2}} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \operatorname{Var}(y) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{\overline{x}^{2}} \frac{1}{n^{2}} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \operatorname{Var}(\varepsilon) \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{\sigma_{\varepsilon}^{2}}{\overline{x}^{2} n} \quad (1.6)$$

2.33. Известно, что для парной регрессии  $t_{\hat{eta}_2}^2=rac{R^2}{(1-R^2)/(n-2)}$ . Поэтому из выражения  $t_{\hat{eta}_2}^2=rac{0.05^2}{(1-0.05^2)/(n-2)}=$  $\frac{0.05^2(n-2)}{1-0.05^2}$  становится очевидным, что при надлежащем выборе числа наблюдений можно сделать величину  $t_{\hat{\beta}_2}$  сколь угодно большой. 2.34. Пусть  $Y_i=\beta_1+\beta_2X_i+\varepsilon_i,\ i=1,\dots,n.$ 

Тогда 
$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{\varepsilon}_i$$

$$Y_{i} - \overline{Y} + \overline{Y} = \hat{\beta}_{1} + \hat{\beta}_{2}(X_{i} - \overline{X} + \overline{X}) + \hat{\varepsilon}_{i}$$

$$Y_{i} - \overline{Y} = \underbrace{\hat{\beta}_{1} - \overline{Y} + \hat{\beta}_{2}\overline{X}}_{=0} + \hat{\beta}_{2}(X_{i} - \overline{X}) + \hat{\varepsilon}_{i}$$

$$Y_i - \overline{Y} = \hat{\beta}_2(X_i - \overline{X}) + \hat{\varepsilon}_i$$

$$y_i \equiv Y_i - \overline{Y}, i = 1, \dots, n$$

$$x_i \equiv X_i - \overline{X}, \ i = 1, \dots, n$$

$$y_i = \hat{\beta}_2 x_i + \hat{\varepsilon}_i$$

$$\mathbf{y}_{1} = \beta_{2}\mathbf{x}_{1} + \varepsilon_{1}$$
  
 $\mathbf{y} = \hat{\beta}_{2}\mathbf{x} + \hat{\varepsilon}$ , где  $\mathbf{y} = \begin{bmatrix} y_{1} & \dots & y_{n} \end{bmatrix}^{T}$ ,  $\mathbf{x} = \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix}^{T}$ ,  $\varepsilon = \begin{bmatrix} \varepsilon_{1} & \dots & \varepsilon_{n} \end{bmatrix}^{T}$   
 $\mathbf{x}^{T}\mathbf{y} = \hat{\beta}_{2}\mathbf{x}^{T}\mathbf{x} + \underbrace{\mathbf{x}^{T}\hat{\varepsilon}}_{0}$ 

$$\hat{\beta}_2 = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{x}^T \mathbf{x}} \tag{1.7}$$

Аналогично получаем, что в обратной регрессии  $X_i = \beta_3 + \beta_4 Y_i + \xi_i, i = 1, \dots, n$ 

$$\hat{\beta}_4 = \frac{\mathbf{y}^T \mathbf{y}}{\mathbf{v}^T \mathbf{v}} \tag{1.8}$$

$$ESS = (\hat{Y} - \overline{Y}_i)^T (\hat{Y} - \overline{Y}_i)$$
 Заметим, что  $\hat{Y} - \overline{Y}_i = (I - \pi)(\hat{Y} - \overline{Y}_i)$ . Действительно,  $(I - \pi)(P - \pi) = P - \pi$ , следовательно,  $\hat{Y} - \overline{Y}_i = (P - \pi)Y = (I - \pi)(P - \pi)Y = (I - \pi)(\hat{Y} - \overline{Y}_i)$ . Далее,  $\hat{Y} - \overline{Y}_i = (I - \pi)(\hat{Y} - \overline{Y}_i) = (I - \pi)(\hat{\beta}_1 + \hat{\beta}_2 X - \overline{Y}_i) = \hat{\beta}_2 \mathbf{x}$ 

Значит,  $ESS = \hat{\beta}_2^2 \mathbf{x}^T \mathbf{x}$ .

Получаем:

$$R^{2} = \frac{ESS}{TSS} = \frac{\hat{\beta}_{2}^{2} \mathbf{x}^{T} \mathbf{x}^{(2)}}{\mathbf{y}^{T} \mathbf{y}} = \frac{\mathbf{x}^{T} \mathbf{y}^{(2)}}{(\mathbf{x}^{T} \mathbf{x})(\mathbf{y}^{T} \mathbf{y})} = \operatorname{Corr}^{2}(X, Y)$$
(1.9)

Заметим также, что из формул (1.7), (1.8) и (1.9) следует, что  $R^2 = \hat{\beta}_2 \hat{\beta}_4$ .

Если  $\operatorname{Corr}^2(X,Y) = 1$ , то  $R^2 = \hat{\beta}_2 \hat{\beta}_4 = 1$ .

Отметим также, что из  $R^2=1$  следует, что  $\hat{\varepsilon}_1=\ldots=\hat{\varepsilon}_n=0$  и  $\hat{\xi}_1=\ldots=\hat{\xi}_n=0$ . Тогда  $Y_i=\hat{\beta}_1+\hat{\beta}_2X_i+\underbrace{\hat{\varepsilon}_i}_{=0}$  и  $X_i=\hat{\beta}_3+\hat{\beta}_4Y_i+\underbrace{\hat{\xi}_i}_{=0}$ ,  $i=1,\ldots,n$ .

$$X_i = \hat{\beta}_3 + \hat{\beta}_4 Y_i = (\overline{X} - \hat{\beta}_4 \overline{Y}) + \hat{\beta}_4 Y_i = \left(\overline{X} - \frac{1}{\hat{\beta}_2} \overline{Y}\right) + \frac{1}{\hat{\beta}_2} Y_i$$

 $\hat{\beta}_2 X_i = (\hat{\beta}_2 \overline{X} - \overline{Y}) + Y_i$ 

$$Y_i = (\overline{Y} - \hat{\beta}_2 \overline{X}) + \hat{\beta}_2 X_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

Следовательно, в случае когда  $Corr^2(X,Y) = 1$ , линия парной регрессии Y на X совпадает с линией парной регрессии X на Y.

- 2.35. Да, если строить регрессию функции от y на функцию от x. А если строить регрессию просто y на x, то оценка наклона будет распределена симметрично около нуля.
- 2.36. Да, является. Любые, кроме констант.  $Var(\hat{\beta}_{2,IV}) = \sigma^2 \sum (z_i \bar{z})^2 / (\sum (z_i \bar{z})x_i)^2$ . 2.37.
- 2.38. Вспомните про  $t, \chi^2, F$  распределения
- 2.39.  $\hat{\lambda} = RSS/(n-2)$  т.к.  $Var(\varepsilon_i) = \lambda$ . Оценка  $\hat{\beta}_2$  является несмещенной, но  $\mathbb{E}(\hat{\beta}_1) = \beta_1 + \lambda$ . Можно предложить несмещенную оценку  $\hat{\beta}'_1 = \hat{\beta}_1 - RSS/(n-2)$ . 2.40.

```
df1 \leftarrow data.frame(x = c(1,2,3,4), y = c(5,3,3,4))
df2 \leftarrow data.frame(y = rep(df1\$y,10), x = rep(df1\$x,10))
m1 <- lm(data=df1, y~x)
m2 \leftarrow lm(data=df2, y^x)
library(memisc)
##
## Attaching package: 'memisc'
##
## The following object is masked from 'package:plyr':
##
##
      rename
##
##
   The following object is masked from 'package:car':
##
##
      recode
##
   The following object is masked from 'package: Hmisc':
##
##
##
      %nin%
##
   The following objects are masked from 'package:stats':
##
##
##
      contr.sum, contr.treatment, contrasts
##
## The following object is masked from 'package:base':
##
##
      as.array
mt <- mtable(m1,m2,
  summary.stats=c("N",
    "Deviance", "R-squared", "sigma", "F", "p"))
```

#### write.mtable(mt, forLaTeX=TRUE)

|             | m1      | m2       |
|-------------|---------|----------|
| (Intercept) | 4.500   | 4.500*** |
|             | (1.313) | (0.301)  |
| X           | -0.300  | -0.300** |
|             | (0.480) | (0.110)  |
| N           | 4       | 40       |
| Deviance    | 2.300   | 23.000   |
| R-squared   | 0.164   | 0.164    |
| sigma       | 1.072   | 0.778    |
| F           | 0.391   | 7.435    |
| p           | 0.595   | 0.010    |

 $\overline{3.1.}$  t-статистики

3.2.

- 1. Поскольку  $\frac{\hat{\sigma}_{\varepsilon}^2(n-k)}{\sigma_{\varepsilon}^2} \sim \chi^2(n-k)$ , где  $\hat{\sigma}_{\varepsilon}^2 = \frac{RSS}{n-k}$ , k=5.  $P(\chi_l^2 < \frac{\hat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} < \chi_u^2) = 0.8$ . Преобразовав, получим  $P(\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} < \sigma_{\varepsilon}^2 < \frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2}) = 0.8$ , где  $\chi_u^2 = \chi_{n-5;0.1}^2$ ,  $\chi_l^2 = \chi_{n-5;0.9}^2$  соответствующие квантили. По условию  $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2} = A = 45$ ,  $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} = B = 87.942$ . Поделим B на A, отсюда следует  $\frac{\chi_u^2}{\chi_l^2} = 1.95426$ . Перебором квантилей в таблице для хи-квадрат распределения мы находим, что  $\frac{\chi_{30;0.1}^2}{\chi_{30:0.9}^2} = \frac{40.256}{20.599} = 1.95426$ . Значит, n-5=30, отсюда следует, что n=35.
- 2.  $\hat{\sigma}_{\varepsilon}^2 = 45 \frac{\chi_u^2}{n-5} = 45 \frac{40.256}{30} = 60.384$

### Решение в R:

```
df <- 1:200
a <- qchisq(0.1,df)
b <- qchisq(0.9,df)
c <- b/a
d <- 87.942/45
penalty <- (c-d)^2
df.ans <- df[which(penalty==min(penalty))]</pre>
```

Количество степеней свободы n-5 должно быть равно  ${\tt df.ans}=30.$  3.3.

Упорядочим нашу выборку таким образом, чтобы наблюдения с номерами с 1 по 35 относились к мужчинам, а наблюдения с номерами с 36 по 58 относились к женщинам. Тогда уравнение

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 35 \quad (1.10)$$

соответствует регрессии, построенной для подвыборки из мужчин, а уравнение

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 E x p_i + \gamma_4 E x p_i^2 + \gamma_5 F e du_i + \gamma_6 M e du_i + \varepsilon_i, i = 36, ..., 58 \quad (1.11)$$

соответствует регрессии, построенной для подвыборки из женщин. Введем следующие переменные:

$$d_i = \begin{cases} 1, & \text{если } i\text{--oe наблюдение соответствует мужчине,} \\ 0, & \text{в противном случае;} \end{cases}$$

$$dum_i = \begin{cases} 1, & \text{если $i$--ое наблюдение соответствует женщине,} \\ 0, & \text{в противном случае.} \end{cases}$$

Рассмотрим следующее уравнение регрессии:

$$\ln W_{i} = \beta_{1}d_{i} + \gamma_{1}dum_{i} + \beta_{2}Edu_{i}d_{i} + \gamma_{2}Edu_{i}dum_{i} + \beta_{3}Exp_{i}d_{i} +$$

$$\gamma_{3}Exp_{i}dum_{i} + \beta_{4}Exp_{i}^{2}d_{i} + \gamma_{4}Exp_{i}^{2}dum_{i} + \beta_{5}Fedu_{i}d_{i} + \gamma_{5}Fedu_{i}dum_{i} +$$

$$\beta_{6}Medu_{i}d_{i} + \gamma_{6}Medu_{i}dum_{i} + \varepsilon_{i}, i = 1, ..., 58 \quad (1.12)$$

Гипотеза, которую требуется проверить в данной задаче, имеет вид

$$H_0: \begin{cases} \beta_1 = \gamma_1, \\ \beta_2 = \gamma_2, & H_1: |\beta_1 - \gamma_1| + |\beta_2 - \gamma_2| + \dots + |\beta_6 - \gamma_6| > 0. \\ \dots \\ \beta_6 = \gamma_6 \end{cases}$$

Тогда регрессия

$$\ln W_i = \beta_1 d_i + \gamma_1 du m_i + \beta_2 E du_i d_i + \gamma_2 E du_i du m_i + \beta_3 E x p_i d_i + 
\gamma_3 E x p_i du m_i + \beta_4 E x p_i^2 d_i + \gamma_4 E x p_i^2 du m_i + \beta_5 F e du_i d_i + 
\gamma_5 F e du_i du m_i + \beta_6 M e du_i d_i + \gamma_6 M e du_i du m_i + \varepsilon_i, i = 1, ..., 58 (1.13)$$

по отношению к основной гипотезе  $H_0$  является регрессией без ограничений, а регрессия

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 58 \quad (1.14)$$

является регрессией с ограничениями.

Кроме того, для решения задачи должен быть известен следующий факт:

 $RSS_{UR} = RSS_1 + RSS_2$ , где  $RSS_{UR}$  — это сумма квадратов остатков в модели:

$$\ln W_{i} = \beta_{1}d_{i} + \gamma_{1}dum_{i} + \beta_{2}Edu_{i}d_{i} + \gamma_{2}Edu_{i}dum_{i} + \beta_{3}Exp_{i}d_{i} +$$

$$\gamma_{3}Exp_{i}dum_{i} + \beta_{4}Exp_{i}^{2}d_{i} + \gamma_{4}Exp_{i}^{2}dum_{i} + \beta_{5}Fedu_{i}d_{i} +$$

$$\gamma_{5}Fedu_{i}dum_{i} + \beta_{6}Medu_{i}d_{i} + \gamma_{6}Medu_{i}dum_{i} + \varepsilon_{i}, i = 1, ..., 58 \quad (1.15)$$

 $RSS_1$  — это сумма квадратов остатков в модели:

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 35 \quad (1.16)$$

 $RSS_2$  — это сумма квадратов остатков в модели:

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 E x p_i + \gamma_4 E x p_i^2 + \gamma_5 F e du_i + \gamma_6 M e du_i + \varepsilon_i, i = 36, \dots, 58 \quad (1.17)$$

#### 1. Тестовая статистика:

$$T = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-m)},$$

где  $RSS_R$  – сумма квадратов остатков в модели с ограничениями;

 $RSS_{UR}$  – сумма квадратов остатков в модели без ограничений;

q – число линейно независимых уравнений в основной гипотезе  $H_0$ ;

n – общее число наблюдений;

т – число коэффициентов в модели без ограничений

2. Распределение тестовой статистики при верной  $H_0$ :

$$T \sim F(q, n-m)$$

3. Наблюдаемое значение тестовой статистики:

$$T_{obs} = \frac{(70.3 - (34.4 + 23.4))/6}{(34.4 + 23.4)/(58 - 12)} = 1.66$$

4. Область, в которой  $H_0$  не отвергается:

$$[0; T_{cr}] = [0; 2.3]$$

5. Статистический вывод:

Поскольку  $T_{obs} \in [0; T_{cr}]$ , то на основе имеющихся данных мы не можем отвергнуть гипотезу  $H_0$  в пользу альтернативной  $H_1$ . Следовательно, имеющиеся данные не противоречат гипотезе об отсутствии дискриминации на рынке труда между мужчинами и женщинами.

- 3.4.
- 3.5.
- 3.6.
- 3.7.
- 3.8.
- 3.9.

3.10. Смысл гипотезы: летом и осенью одинаковая зависимость и одинаковая зависимость зимой и весной. Ограниченная модель:  $\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 d$ , где d равна 1 для лета и осени. Наблюдаемое значение статистики  $F_{obs} = 1.375$ , критическое,  $F_{cr} = 3.5219$ . Гипотеза не отвергается.

- 3.11.
- 3.12.
- 3.13.
- 3.14.
- 3.15.
- 3.16.
- 3.17.
- 3.18.
- 3.19. значим
- 3.20. не значим
- 3.21.  $\alpha > 0.09$
- 3.22.
- 3.23.
- 3.24.

Ограниченная модель (Restricted model):

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Aqe}Age_i + \beta_{Aqe^2}Age_i^2 + \varepsilon_i$$

Heoграниченная модель (Unrestricted model):

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i \quad (1.18)$$

По условию  $ESS_R=90.3,\,RSS_R=60.4,\,TSS=ESS_R+RSS_R=90.3+60.4=150.7.$  Также сказано, что  $ESS_{UR}=110.3.$  Значит,  $RSS_{UR}=TSS-ESS_{UR}=150.7-110.3=40.4$ 

# 1. Спецификация:

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i \quad (1.19)$$

# 2. Проверка гипотезы

(a) 
$$H_0: \begin{cases} \beta_{Fedu} = 0 \\ \beta_{Medu} = 0 \end{cases}$$
  $H_a: |\beta_{Fedu}| + |\beta_{Medu}| > 0$ 

- (b)  $T=\frac{(RSS_R-RSS_{UR})/q}{RSS_{UR}/(n-k)}$ , где q=2 число линейно независимых уравнений в основной гипотезе  $H_0,\,n=25$  число наблюдений, k=6 число коэффициентов в модели без ограничения
- (c)  $T \sim F(q; n-k)$
- (d)  $T_{obs} = \frac{(RSS_R RSS_{UR})/q}{RSS_{UR}/(n-k)} = \frac{(60.4 40.4)/2}{40.4/(25 6)} = 4.70$
- (е) Нижняя граница = 0, верхняя граница = 3.52
- (f) Поскольку  $T_{obs} = 4.70$ , что не принадлежит промежутку от 0 до 3.52, то на основе имеющихся данных можно отвергнуть основную гипотезу на уровне значимости 5%. Таким образом, образование родителей существенно влияет на заработную плату.

```
3.25.
```

3.26.

3.27.

3.28.

3.29.

3.30.

- $3.31.\ 0.25\hat{\beta}_1 + 0.75\hat{\beta}_1',\ 0.25\hat{\beta}_2 + 0.75\hat{\beta}_2' \text{ if } 0.25\hat{\beta}_3 + 0.75\hat{\beta}_3'$
- 3.32. Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А дисперсии связаны соотношением  $Var(\hat{\beta}_a)^{-1} + Var(\hat{\beta}_b)^{-1} = Var(\hat{\beta}_{tot})^{-1}$  3.33.
- 3.34.

3.35.

3.36.

3.37.

3.38.

Из оценки ковариационной матрицы находим, что  $se(\hat{\beta}_{totsp} = \hat{\beta}_{livesp}) = 0.2696.$ 

Исходя из  $Z_{crit} = 1.96$  получаем доверительный интервал, [-0.8221; 0.2348].

Вывод: при уровне значимости 5% гипотеза о равенстве коэффициентов не отвергается.

- 3.39.
- 3.40.
- 3.41.

1. 
$$\mathbb{P}(\hat{\beta}_3 > se(\hat{\beta}_3)) = \mathbb{P}(t_{17} > 1) = 0.1657$$

2. 
$$\mathbb{P}(\hat{\beta}_3 > \sigma_{\hat{\beta}_3}) = \mathbb{P}(N(0,1) > 1) = 0.1587$$

3.42. В обоих случаях можно так подобрать коэффициенты  $\hat{\beta}$ , что  $kr_i = \widehat{kr}_i$ . А именно, идеальные прогнозы достигаются при  $\hat{\beta}_{p_1} = 1$ ,  $\hat{\beta}_{p_2} = 1$ ,  $\hat{\beta}_{p_3} = 1$ ,  $\hat{\beta}_{p_4} = 1$ ,  $\hat{\beta}_{p_5} = 1$  и (в первой модели)  $\hat{\beta}_1 = 0$ . Отсюда RSS = 0, ESS = TSS, поэтому  $R^2 = 1$  даже в модели без свободного члена. Получаем  $\hat{\sigma}^2 = 0$ , поэтому строго говоря t статистики и P-значения не существуют из-за деления на ноль.

На практике при численной минимизации RSS оказывается, что t-статистики коэффициентов при задачах принимают очень большие значения, а соответствующие P-значения крайне близки к нулю. В

первой модели особенной на практике будет t статистика свободного члена. В силу неопределенности вида 0/0 свободный коэффициент на практике может оказаться незначим.

3.43.

$$3.44.\ \hat{\beta}_2=0.41,\ \hat{\beta}_3=0.3,\ \hat{\beta}_4=-0.235,$$
 переменная  $x$  значима

$$3.45.\ \hat{eta}_2=0.75,\ \hat{eta}_3=0.625,\ \hat{eta}_4=0.845,$$
 переменные  $z$  и  $w$  значимы

$$3.46.\ RSS_1 > RSS_2 = RSS_3$$
, в моделях два и три, ошибка прогноза равна  $\hat{\beta}_4$ 

3.47.

3.48. 
$$RSS/\sigma^2 \sim \chi^2_{n-k}$$
,  $\mathbb{E}(RSS) = (n-k)\sigma^2$ ,  $Var(RSS) = 2(n-k)\sigma^4$ ,  $\mathbb{P}(5\sigma^2 < RSS < 10\sigma^2) \approx 0.451$ 

3.49. 
$$\mathbb{P}(\hat{s}_3^2 > \hat{s}_1^2) = 0.5$$
,  $\mathbb{P}(\hat{s}_1^2 > 2\hat{s}_2^2) = 0.5044$ ,  $\mathbb{E}(\hat{s}_2^2/\hat{s}_1^2) = 1.25$ ,  $\operatorname{Var}(\hat{s}_2^2/\hat{s}_1^2) = 4.6875$ 

3.50.90% во всех пунктах

3.51. Поскольку  $\hat{\mu}$ ,  $\hat{\nu}$ ,  $\hat{\gamma}$  и  $\hat{\delta}$  являются МНК-коэффициентами в регрессии  $y_i = \mu + \nu x_i + \gamma d_i + \delta x_i d_i + \varepsilon_i$ ,  $i = 1, \ldots, n$ , то для любых  $\mu$ ,  $\nu$ ,  $\gamma$  и  $\delta$  имеет место

$$\sum_{i=1}^{n} (y_i - \hat{\mu} - \hat{\nu}x_i - \hat{\gamma}d_i - \hat{\delta}x_id_i - \varepsilon_i)^2 \leqslant$$

$$\sum_{i=1}^{n} (y_i - \mu - \nu x_i - \gamma d_i - \delta x_i d_i - \varepsilon_i)^2 \quad (1.20)$$

Перепишем неравенство (1.20) в виде

$$\sum_{i=1}^{m} (y_i - (\hat{\mu} + \hat{\gamma}) - (\hat{\nu} + \hat{\delta})x_i)^2 + \sum_{i=m+1}^{n} (y_i - \hat{\mu} - \hat{\nu}x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - (\mu + \gamma) - (\nu + \delta)x_i)^2 + \sum_{i=m+1}^{n} (y_i - \mu - \nu x_i)^2 \quad (1.21)$$

Учитывая, что неравенство (1.21) справедливо для всех  $\mu$ ,  $\nu$ ,  $\gamma$  и  $\delta$ , то оно останется верным для  $\mu = \hat{\mu}$ ,  $\nu = \hat{\nu}$  и произвольных  $\gamma$  и  $\delta$ . Имеем

$$\sum_{i=1}^{m} (y_i - (\hat{\mu} + \hat{\gamma}) - (\hat{\nu} + \hat{\delta})x_i)^2 + \sum_{i=m+1}^{n} (y_i - \hat{\mu} - \hat{\nu}x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - (\hat{\mu} + \gamma) - (\hat{\nu} + \delta)x_i)^2 + \sum_{i=m+1}^{n} (y_i - \hat{\mu} - \hat{\nu}x_i)^2 \quad (1.22)$$

Следовательно

$$\sum_{i=1}^{m} (y_i - (\hat{\mu} + \hat{\gamma}) - (\hat{\nu} + \hat{\delta})x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - (\hat{\mu} + \gamma) - (\hat{\nu} + \delta)x_i)^2$$
(1.23)

Обозначим  $\tilde{\beta}_1 := \hat{mu} + \gamma$  и  $\tilde{\beta}_2 := \hat{\nu} + \delta$ . В силу произвольности  $\gamma$  и  $\delta$  коэффициенты  $\tilde{\beta}_1$  и  $\tilde{\beta}_2$  также произвольны. тогда для любых  $\tilde{\beta}_1$  и  $\tilde{\beta}_2$  выполнено неравенство:

$$\sum_{i=1}^{m} (y_i - (\hat{\mu} + \hat{\gamma}) - (\hat{\nu} + \hat{\delta})x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - \tilde{\beta}_1 - \tilde{\beta}_2 x_i)^2$$

которое означает, что  $\hat{\mu} + \hat{\gamma}$  и  $\hat{\nu} + \hat{\delta}$  являются МНК-оценками коэффициентов  $\beta_1$  и  $\beta_2$  в регрессии  $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ , оцененной по наблюдениям  $i = 1, \dots, m$ , то есть  $\hat{\beta_1} = \hat{\mu} + \hat{\gamma}$  и  $\hat{\beta_2} = \hat{\nu} + \hat{\delta}$ .

- 3.52. не верно, поскольку  $R^2_{adi}$  может принимать отрицательные значения, а F(n-k,n-1) не может.
- 3.53. Сгенерировать сильно коррелированные x и z
- 3.54.
- 3.55.
- 3.56.
- 3.57. bootstrap, дельта-метод.
- 3.58.
- 3.59.
- 3.60. При наличии ошибок в измерении зависимой переменной оценки остаются несмещенными, их дисперсия растет. Однако оценка дисперсии может случайно оказаться меньше. Например, могло случиться, что ошибки  $u_i$  случайно компенсировали  $\varepsilon_i$ .
- 3.61.
- 3.62.
- 3.63.0
- 3.64. Проводим тест Чоу
- 3.65. Несмещенной является  $\hat{\sigma}^2$ , поэтому  $\hat{\sigma}$  смещена, но состоятельна.
- 4.1.
  - 1. В случае нестохастических регрессоров:

Пусть дана регрессионная модель  $y = X\beta + \epsilon$  с k регрессорами, включая свободный член и n наблюдениями, тогда если

- (а) регрессионная модель правильно специфицирована
- (b)  $\operatorname{rang}(X) = k$
- (с) X не являются стохастическими
- (d)  $\mathbb{E}(\epsilon) = 0$
- (e)  $Var(\epsilon) = \sigma^2 I$

то  $\hat{\beta} = (X'X)^{-1}X'y$  являются лучшими оценками в классе линейных несмещённых оценок, то есть BLUE-оценками.

В случае стохастических регрессоров:

Пусть дана регрессионная модель  $y=X\beta+\epsilon$  с k регрессорами, включая свободный член и n наблюдениями, тогда если

- (а) регрессионная модель правильно специфицирована
- (b) rang(X) = k
- (c)  $\mathbb{E}(\epsilon|X) = 0$
- (d)  $Var(\epsilon|X) = \sigma^2 I$

то  $\hat{\beta} = (X'X)^{-1}X'y$  являются лучшими оценками в классе линейных несмещённых оценок, то есть BLUE-оценками.

2. Да, верно. В самом деле,

$$\begin{split} \mathbb{E}(\hat{\beta}) &= \mathbb{E}((X'X)^{-1}X'y) = (X'X)^{-1}X'\mathbb{E}(y) = (X'X)^{-1}X'\mathbb{E}(X\beta + \epsilon) = \\ &= (X'X)^{-1}X'X\mathbb{E}(\beta) + (X'X)^{-1}X'\underbrace{\mathbb{E}(\epsilon)}_{=0} = \beta \end{split}$$

3.

$$Var(\hat{\beta}) = Var((X'X)^{-1}X'y) = (X'X)^{-1}X' Var(y)((X'X)^{-1}X')' = (X'X)^{-1}X' Var(X\beta + \epsilon)X(X'X)^{-1}$$

Так как  $\beta$  является константой, то  $Var(X\beta) = 0$ . Тогда

$$Var(\hat{\beta}) = (X'X)^{-1}X' Var(X\beta + \epsilon)X(X'X)^{-1} =$$

$$= (X'X)^{-1}X' Var(\epsilon)X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2X(X'X)^{-1} =$$

$$= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^{-1}X'X(X'X)^$$

4.2. Да, в общем случае (кроме случая  $\beta=0$  это верно. Так как  $\tilde{\beta}$  является несмещённой, то  $\mathbb{E}(\tilde{\beta})=\beta$ .

$$\mathbb{E}(\tilde{\beta}) = \mathbb{E}(((X'X)^{-1}X' + A)y) = \mathbb{E}[((X'X)^{-1}X' + A)(X\beta + \epsilon)] =$$

$$= \mathbb{E}(((X'X)^{-1}X' + A)X\beta) + ((X'X)^{-1}X' + A)\underbrace{\mathbb{E}(\epsilon)}_{=0} =$$

$$= \mathbb{E}(((X'X)^{-1}X'X\beta + AX\beta) = \beta + AX\beta$$

$$\mathbb{E}(\tilde{\beta}) = \beta$$

$$\beta + AX\beta = \beta$$

$$AX\beta = 0$$

Значит, либо AX = 0, либо  $\beta = 0$ .

Заметим, что при  $\beta=0$  при любом AX оценка  $\tilde{\beta}$  будет несмещённой. 4.3.

 $X'X = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$  $(X'X)^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 1.5 \end{pmatrix}$  $\operatorname{Var}(\hat{\beta}_1) = \operatorname{Var}(\hat{\beta})_{[1,1]} = \sigma^2$ 

$$Var(\hat{\beta}_2) = Var(\hat{\beta})_{[2,2]} = 1.5\sigma^2$$

$$Cov(\hat{\beta}_1, \hat{\beta}_2) = Var(\hat{\beta})_{[1,2]} = -\sigma^2$$

$$\operatorname{Corr}(\hat{\beta}_1, \hat{\beta}_2) = \frac{\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2)}{\sqrt{\operatorname{Var}(\hat{\beta}_1)} \operatorname{Var}(\hat{\beta}_2)} = \frac{\sigma^2}{\sigma \cdot \sqrt{1.5}\sigma} = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3}$$

Показательно, что значения y здесь не используются.

Otbet:  $\frac{\sqrt{6}}{3}$ .

4.4.

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X'X\hat{\beta} = X'y$$

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y$$

поэтому

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y = (D'X'XD)^{-1}D'X'X\hat{\beta} = (D'X'XD)^{-1}D'X'XDD^{-1}\hat{\beta} = D^{-1}\hat{\beta}$$

$$D^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} \hat{\alpha}_1 = \beta_1 - \beta_2 + \beta_3 \\ \hat{\alpha}_2 = \beta_2 - \beta_3 \\ \hat{\alpha}_2 = \beta_2 \end{cases}$$

14

4.5.

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X'X\hat{\beta} = X'y$$

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y$$

поэтому

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y = (D'X'XD)^{-1}D'X'X\hat{\beta} = (D'X'XD)^{-1}D'X'XDD^{-1}\hat{\beta} = D^{-1}\hat{\beta}$$

$$D^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} \hat{\alpha}_1 = \beta_1 - \beta_2 \\ \hat{\alpha}_2 = \beta_2 - \beta_3 \\ \hat{\alpha}_3 = \beta_3 \end{cases}$$

4.6.

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X'X\hat{\beta} = X'y$$

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y$$

поэтому

$$\hat{\alpha} = (D'X'XD)^{-1}D'X'y = (D'X'XD)^{-1}D'X'X\hat{\beta} = (D'X'XD)^{-1}D'X'XDD^{-1}\hat{\beta} = D^{-1}\hat{\beta}$$

$$D^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} \hat{\alpha}_1 = \beta_1 \\ \hat{\alpha}_2 = \beta_2 - \beta_3 \\ \hat{\alpha}_3 = \beta_3 \end{cases}$$

4.7. Да, верно.

$$\hat{\varepsilon}'\hat{y} = (y - \hat{y})'\hat{y} = (y - X\hat{\beta})'X\hat{\beta} = (y - X(X'X)^{-1}X'y)'X(X'X)^{-1}X'y =$$

$$= ((I - X(X'X)^{-1}X')y)'X(X'X)^{-1}X'y = y'(I - X(X'X)^{-1}X')X(X'X)^{-1}X'y =$$

$$= y'(X(X'X)^{-1}X' - X(X'X)^{-1}X'X(X'X)^{-1}X')y = y'(X(X'X)^{-1}X' - X(X'X)^{-1}X')y = 0$$

Да, верно.

$$\hat{y}'\hat{\varepsilon} = (\hat{\varepsilon}'\hat{y})' = 0$$

так как выше доказано, что  $he'\hat{y} = 0$ . 4.8.

1.

$$\hat{\gamma} = (Z'Z)^{-1}Z'y = A^{-1}(X'X)^{-1}(A')^{-1}A'X'y = A^{-1}(X'X)^{-1}X'y = A^{-1}\hat{\beta} \quad (1.24)$$

2. 
$$\hat{u} = y - Z\hat{\gamma} = y - XAA^{-1}\hat{\beta} = y - X\hat{\beta} = \hat{\varepsilon}$$

3. Пусть  $z^0 = \begin{pmatrix} 1 & z_1^0 & \dots & z_{k-1}^0 \end{pmatrix}$  — вектор размера  $1 \times k$  и  $x^0 = \begin{pmatrix} 1 & x_1^0 & \dots & x_{k-1}^0 \end{pmatrix}$  — вектор размера  $1 \times k$ . Оба эти вектора представляют собой значения факторов. Тогда  $z^0 = x^0 A$  и прогнозное значение для регрессии с преобразованными факторами равно  $z^0 \hat{\gamma} = x^0 A A^{-1} \hat{\beta} = x^0 \hat{\beta}$  прогнозному значению для регрессии с исходными факторами.

4.9.

1.

$$\mathbb{E}(\tilde{\beta}) = ((X'X)^{-1} + \gamma I)X'\mathbb{E}(y) =$$

$$((X'X)^{-1} + \gamma I)X'X\beta = \beta + \gamma X'X\beta \quad (1.25)$$

2.

$$\operatorname{Var}(\tilde{\beta}) = \operatorname{Var}(((X'X)^{-1} + \gamma I)X'y) = \\ \operatorname{Var}(((X'X)^{-1} + \gamma I)X'\varepsilon) = \\ (((X'X)^{-1} + \gamma I)X')\operatorname{Var}(\varepsilon)(((X'X)^{-1} + \gamma I)X')' = \\ (((X'X)^{-1} + \gamma I)X')\sigma_{\varepsilon}^{2}I(((X'X)^{-1} + \gamma I)X')' = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)X'X((X'X)^{-1} + \gamma I) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \\ \sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I$$

4.10. Да, верно.

$$R^{2} = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
$$TSS = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = y' \left( I - \frac{\overrightarrow{1}'}{\overrightarrow{1}^{2}} \right) y$$

не зависит от X.

$$RSS_a = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = y'(I - X(X'X)^{-1}X')y$$

$$RSS_b = y'(I - Z(Z'Z)^{-1}Z')y = y'(I - XD(D'X'XD)^{-1}D'X')y = y'(I - XD(D'X'XD)^{-1}D'X')y$$

так как D является квадратной и невырожденной, то используя формулу  $(AB)^{-1} = B^{-1}A^{-1}$ , получим:

$$RSS_b = y'(I - XD(D'X'XD)^{-1}D'X')y = y'(I - XDD^{-1}(X'X)^{-1}D'^{-1}D'X')y = y'(I - X(X'X)^{-1}X')y = y'(I - X(X'X)^{-1}X')y = xSS_a$$

Значит,

$$R_a^2 = 1 - \frac{RSS_a}{TSS_a} = 1 - \frac{RSS_b}{TSS_b} = R_b^2$$

4.11. Да, верно.

$$RSS_1 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = y'(I - X(X'X)^{-1}X')y$$

$$RSS_2 = y'(I - Z(Z'Z)^{-1}Z')y = y'(I - XD(D'X'XD)^{-1}D'X')y = y'(I - XD(D'X'XD)^{-1}D'X'$$

так как D является квадратной и невырожденной, то используя формулу  $(AB)^{-1} = B^{-1}A^{-1}$ , получим:

$$RSS_2 = y'(I - XD(D'X'XD)^{-1}D'X')y = y'(I - XDD^{-1}(X'X)^{-1}D'^{-1}D'X')y = y'(I - X(X'X)^{-1}X')y = RSS_1$$

- 4.12.
- 4.13.
  - 1. n = 5
  - 2. k = 3
  - 3. TSS = 10
  - 4. RSS = 2

5. 
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{pmatrix} = (X'X)^{-1}X'y = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

- 6.  $R^2 = 1 \frac{RSS}{TSS} = 0.8$ .  $R^2$  высокий, построенная эконометрическая модель «хорошо» описывает ланные
- 7. Основная гипотеза  $H_0: \beta_2 = 0$ , альтернативная гипотеза  $H_a: \beta_2 \neq 0$
- 8. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\widehat{Var}(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

- (b)  $T \sim t(n-k); n = 5; k = 3$
- (c)  $T_{obs} = \frac{\hat{\beta}_2 0}{\sqrt{\widehat{Var}(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 0}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}} = \frac{2 0}{\sqrt{\frac{2}{5-3}1.3333}} = 1.7321$
- (d) Нижняя граница = -2.920, верхняя граница = 2.920
- (e) Поскольку  $T_{obs} = 1.7321$ , что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 9.  $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$ , где  $F_T(|T_{obs}|)$  функция распределения t-распределения с n-k=5-3=2 степенями свободы в точке  $|T_{obs}|$ .  $p-value(T_{obs})=2tcdf(-|T_{obs}|,n-k)=2tcdf(-1.7321,2)=0.2253$ . Поскольку P-значение превосходит уровень значимости 10%, то основная гипотеза  $H_0:\beta_2=0$  не может быть отвергнута
- 10. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{Var}(\hat{\beta}_2)} = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

- (b)  $T \sim t(n-k)$ ; n=5; k=3
- (c)  $T_{obs} = \frac{\hat{\beta}_2 1}{\sqrt{\widehat{Var}(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2-1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660$
- (d) Нижняя граница = -2.920, верхняя граница = 2.920
- (e) Поскольку  $T_{obs} = 0.8660$ , что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 11. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{Var}(\hat{\beta}_2)} = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

- (b)  $T \sim t(n-k); n=5; k=3$
- (c)  $T_{obs} = \frac{\hat{\beta}_{2}-1}{\sqrt{\widehat{Var}(\hat{\beta}_{2})}} = \frac{\hat{\beta}_{2}-1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2-1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660$
- (d) Нижняя граница  $= -\infty$ , верхняя граница = 1.8856
- (e) Поскольку  $T_{obs}=0.8660$ , что принадлежит промежутку от  $-\infty$  до 1.8856, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%

12. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\widehat{Var}(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

(b) 
$$T \sim t(n-k); n = 5; k = 3$$

(c) 
$$T_{obs} = \frac{\hat{\beta}_{2}-1}{\sqrt{\widehat{Var}(\hat{\beta}_{2})}} = \frac{\hat{\beta}_{2}-1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2-1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660$$

- (d) Нижняя граница = -1.8856, верхняя граница  $= +\infty$
- (e) Поскольку  $T_{obs} = 0.8660$ , что принадлежит промежутку от -1.8856 до  $+\infty$ , то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 13. Основная гипотеза  $H_0: \beta_2 = \beta_3 = 0$ , альтернативная гипотеза  $H_a: |\beta_2| + |\beta_3| > 0$
- 14. Проверка гипотезы

(a) 
$$T = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k}; n = 5; k = 3$$

(b) 
$$T \sim F(n-k); n = 5; k = 3$$

(c) 
$$T_{obs} = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k} = \frac{0.8}{1-0.8} \cdot \frac{5-3}{2} = 4$$

- (d) Нижняя граница = 0, верхняя граница = 19
- (e) Поскольку  $T_{obs} = 4$ , что принадлежит промежутку от 0 до 19, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%. Следовательно, регрессия в целом незначима. Напомним, что  $R^2 = 0.8$ , то есть он высокий. Но при этом регрессия «в целом» незначима. Такой эффект может возникать при малом объёме выборки, например, таком, как в данной задаче
- 15.  $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$ , где  $F_T(|T_{obs}|)$  функция распределения F—распределения с k=3 и n-k=5-3=2 степенями свободы в точке  $T_{obs}$ .  $p-value(T_{obs})=1-fcdf(-|T_{obs}|,n-k)=1-fcdf(4,2)=0.2$ . Поскольку P—значение превосходит уровень значимости 10%, то основная гипотеза  $H_0:\beta_2=\beta_3=0$  не может быть отвергнута. Таким образом, регрессия «в целом» незначима
- 16. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 + \hat{\beta}_3 - (\beta_2 + \beta_3)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}}$$
, где  $\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3) = \widehat{\operatorname{Var}}(\hat{\beta}_2) + \widehat{\operatorname{Var}}(\hat{\beta}_3) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_2; \hat{\beta}_3) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$ 

- (b)  $T \sim t(n-k); n = 5; k = 3$
- (c)  $\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333.$  Тогда  $T_{obs}=\frac{\hat{\beta}_2+\hat{\beta}_3-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$
- (d) Нижняя граница = -4.3027, верхняя граница = 4.3027
- (e) Поскольку  $T_{obs} = 0.8660$ , что принадлежит промежутку от -4.3027 до 4.3027, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- 17. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 + \hat{\beta}_3 - (\beta_2 + \beta_3)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}}$$
, где  $\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3) = \widehat{\operatorname{Var}}(\hat{\beta}_2) + \widehat{\operatorname{Var}}(\hat{\beta}_3) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_2; \hat{\beta}_3) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$ 

(b) 
$$T \sim t(n-k); n = 5; k = 3$$

(c) 
$$\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333$$
. Тогда  $T_{obs}=\frac{\hat{\beta}_2+\hat{\beta}_3-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$ 

(d) Нижняя граница  $= -\infty$ , верхняя граница = 2.9200

(e) Поскольку  $T_{obs} = 0.8660$ , что принадлежит промежутку от  $-\infty$  до 2.9200, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

# 18. Проверка гипотезы

(a) 
$$T = \frac{\hat{\beta}_2 + \hat{\beta}_3 - (\beta_2 + \beta_3)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}}$$
, где  $\widehat{\operatorname{Var}}(\hat{\beta}_2 + \hat{\beta}_3) = \widehat{\operatorname{Var}}(\hat{\beta}_2) + \widehat{\operatorname{Var}}(\hat{\beta}_3) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_2; \hat{\beta}_3) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$ 

- (b)  $T \sim t(n-k); n = 5; k = 3$
- (c)  $\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333$ . Тогда  $T_{obs}=\frac{\hat{\beta}_2+\hat{\beta}_3-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_2+\hat{\beta}_3)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$
- (d) Нижняя граница = -2.9200, верхняя граница =  $+\infty$
- (e) Поскольку  $T_{obs} = 0.8660$ , что принадлежит промежутку от -2.9200 до  $+\infty$ , то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- 4.14.
- 4.15.
- 4.16.  $Var(\hat{\beta}) = \sigma^2(X'X)^{-1}$
- 4.17.  $(n-1)\sigma^2$ ,  $(n-k)\sigma^2$
- 4.18.  $TSS = y'(I \pi)y$ , RSS = y'(I P)y,  $ESS = y'(P \pi)y$ 4.19.  $\mathbb{E}(TSS) = (n 1)\sigma^2 + \beta'X'(I \pi)X\beta$ 4.20.  $(n 1)\sigma^2$ ,  $(n k)\sigma^2$ ,  $(k 1)\sigma^2$

- 4.22.  $\mathbb{E}(\varepsilon)=0,\,\mathbb{E}(\hat{\varepsilon})=0,\,\sum \varepsilon_i$  может оказаться равной нулю только случайно, в нормальной модели это происходит с вероятностью  $0, \sum \hat{\varepsilon}_i = 0$  в модели со свободным членом
- 4.23.  $\sum y_i^2 = \sum \hat{y}_i^2 + \sum \hat{\varepsilon}_i^2$ , TSS = ESS + RSS,
- 4.25. Спроецируем единичный столбец на «плоскость», обозначим его 1'. Делаем проекцию y на «плоскость» и на 1'. Далее аналогично.
- 4.26. Проекция y на  $\hat{y}$  это  $\hat{y}$ , поэтому оценки коэффициентов будут 0 и 1. Оценка дисперсии  $\frac{RSS}{(n-2)ESS}$ . Нарушены предпосылки теоремы Гаусса-Маркова, например, ошибки новой модели в сумме дают 0, значит коррелированы.
- 4.27. Либо в регрессию включена константа, либо единичный столбец (тут была опечатка, столбей) можно получить как линейную комбинацию регрессоров, например, включены дамми-переменные для каждого возможного значения качественной переменной.
- 4.28. Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А ковариационные матрицы связаны соотношением  $\operatorname{Var}(\hat{\beta}_a)^{-1} + \operatorname{Var}(\hat{\beta}_b)^{-1} =$  $\operatorname{Var}(\hat{\beta}_{tot})^{-1}$
- 4.29.
- 4.30.
- 4.31.
- 4.32. Подсказка: запишите матрицу X как блочную и, пользуясь матричным выражением для  $\hat{\beta}$  и формулой Фробениуса, найдите  $\hat{\beta}_2$ .
- 1. Да, верно.  $X=(X_1X_2)$  блочная матрица. Аналогично,  $\hat{\beta}=\left(\begin{array}{c} \hat{\beta}_1\\ \hat{\beta}_2 \end{array}\right)$  блочная матрица (хотя на самом деле вектор).

$$\hat{\beta} = (X'X)^{-1}X'y = ((X_1X_2)'(X_1X_2))^{-1}(X_1X_2)'y = \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} (X_1X_2))^{-1} \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} y =$$

$$= \begin{pmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{pmatrix}^{-1} \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} y$$

Запишем и докажем формулу Фробениуса для обращения блочных матриц.

Формула Фробениуса:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BH^{-1}CA^{-1} & -A^{-1}BH^{-1} \\ -H^{-1}CA^{-1} & H^{-1} \end{pmatrix}$$

где  $H = D - CA^{-1}B$ .

Докажем формулу, обращая матрицу методом Гаусса. Умножим слева на  $\begin{pmatrix} A^{-1} & 0 \\ 0 & I \end{pmatrix}$ 

$$\left(\begin{array}{c|c}A & B & I & 0 \\ C & D & 0 & I\end{array}\right) = \left(\begin{array}{c|c}I & A^{-1}B & A^{-1} & 0 \\ C & D & 0 & I\end{array}\right) =$$

вычтем из второй строки первую, умноженную на C

$$= \left(\begin{array}{c|c} I & A^{-1}B & A^{-1} & 0 \\ 0 & D - CA^{-1}B & -CA^{-1} & I \end{array}\right) =$$

умножим слева на  $\begin{pmatrix} I & 0 \\ 0 & (D-CA^{-1}B)^{-1} \end{pmatrix}$ 

$$= \begin{pmatrix} I & A^{-1}B & A^{-1} & 0 \\ 0 & I & -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix} =$$

вычтем из первой строки вторую, умноженную на  $A^{-1}B$ .

$$= \left(\begin{array}{c|cc} I & 0 & A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ 0 & I & -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{array}\right)$$

Значит,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix} = \\ = \begin{pmatrix} A^{-1} + A^{-1}BH^{-1}CA^{-1} & -A^{-1}BH^{-1} \\ -H^{-1}CA^{-1} & H^{-1} \end{pmatrix}$$

По формуле Фробениуса получим, что

$$\left( \begin{array}{cc} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{array} \right)^{-1} = \left( \begin{array}{cc} (X_1'X_1)^{-1} + (X_1'X_1)^{-1}X_1'X_2H^{-1}X_2'X_1(X_1'X_1)^{-1} & -(X_1'X_1)^{-1}X_1'X_2H^{-1} \\ -H^{-1}X_2'X_1(X_1'X_1)^{-1} & H^{-1} \end{array} \right),$$

где  $H = X_2'X_2 - X_2'X_1(X_1'X_1)^{-1}X_1'X_2$ . Верхняя строка в данном пункте не важна, и сейчас её опустим. Заметим, что

$$H = X_2'X_2 - X_2'X_1(X_1'X_1)^{-1}X_1'X_2 = X_2'(I - X_1(X_1'X_1)^{-1}X_1')X_2 = X_2'M_1X_2$$

Итак,

$$\begin{split} \hat{\beta} &= \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} X_1' X_1 & X_1' X_2 \\ X_2' X_1 & X_2' X_2 \end{pmatrix}^{-1} \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} y = \\ &= \begin{pmatrix} ? & ? \\ -H^{-1} X_2' X_1 (X_1' X_1)^{-1} & H^{-1} \end{pmatrix} \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} y = \\ &= \begin{pmatrix} ? & ? \\ -H^{-1} X_2' X_1 (X_1' X_1)^{-1} X_1' + H^{-1} X_2' \end{pmatrix} y = \\ &= \begin{pmatrix} ? & ? \\ H^{-1} X_2' (I - X_1 (X_1' X_1)^{-1} X_1') \end{pmatrix} y = \\ &= \begin{pmatrix} ? & ? \\ H^{-1} X_2' M_1 y \end{pmatrix} = \begin{pmatrix} ? & ? \\ (X_2' M_1 X_2)^{-1} X_2' M_1 y \end{pmatrix} \end{split}$$

$$\hat{\beta}_2 = (X_2' M_1 X_2)^{-1} X_2' M_1 y$$

Заметим свойства матрицы-проектора  $M_1$ .

$$M_1' = (I - X_1(X_1'X_1)^{-1}X_1')' = I - X_1(X_1'X_1)^{-1}X_1' = M_1$$

$$(M_1)^2 = (I - X_1(X_1'X_1)^{-1}X_1')^2 = I - 2X_1(X_1'X_1)^{-1}X_1' + X_1(X_1'X_1)^{-1}X_1' \cdot X_1(X_1'X_1)^{-1}X_1' = I - X_1(X_1'X_1)^{-1}X_1' = M_1$$

Значит,

$$\hat{\beta}_2 = (X_2' M_1 X_2)^{-1} X_2' M_1 y = (X_2' M_1 M_1 X_2)^{-1} X_2' M_1 M_1 y = (X_2' M_1' M_1 X_2)^{-1} X_2' M_1' M_1 y = ((M_1 X_2)' M_1 X_2)^{-1} (M_1 X_2)' M_1 y$$

но ведь и

$$\hat{\gamma}_2 = ((M_1 X_2)' M_1 X_2)^{-1} (M_1 X_2)' M_1 y$$

Значит,  $\hat{\beta}_2=\hat{\gamma}_2=((M_1X_2)'M_1X_2)^{-1}(M_1X_2)'M_1y$  , что и требовалось доказать.

2. Да, верно.

$$\hat{y} = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2$$

$$M_1\hat{\varepsilon} = M_1y - M_1\hat{y} = M_1y - M_1(X_1\hat{\beta}_1 + X_2\hat{\beta}_2) = M_1y - M_1X_2\hat{\beta}_2 - M_1X_1\hat{\beta}_1$$

$$M_1X_1 = (I - X_1(X_1'X_1)^{-1}X_1')X_1 = X_1 - X_1(X_1'X_1)^{-1}X_1'X_1 = 0$$

$$M_1\hat{\varepsilon} = M_1y - M_1X_2\hat{\beta}_2 = M_1y - M_1X_2\hat{\gamma}_2 = \hat{u}$$

$$M_1\hat{\varepsilon} = M_1(y - \hat{y}) = M_1(I - X(X'X)^{-1}X')y = (I - X(X'X)^{-1}X')y$$

так как  $M_1$  ортогональное дополнение к  $X_1$ , а  $(I - X(X'X)^{-1}X')y$  уже лежит в ортогональном дополнении к  $X_1$ , так как  $I - X(X'X)^{-1}X'$  ортогональное дополнение к к прямой сумме пространств  $X_1$  и  $X_2 - X_1 \oplus X_2$ .

4.33.

4.34. Докажем несмещенность МНК-оценок.

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left((X^T X)^{-1} X^T y\right) = (X^T X)^{-1} X^T \mathbb{E}(y) =$$
$$= (X^T X)^{-1} X^T \mathbb{E}(X\beta + \varepsilon) = (X^T X)^{-1} X^T X\beta = \beta$$

Обозначим  $\varphi(X,y)=(X^TX)^{-1}X^Ty$ . Тогда  $\hat{\beta}=\varphi(X,y)$ . Покажем, что функция  $\varphi$  линейна по переменной y.

1. 
$$\varphi(X, \lambda \cdot y) = (X^T X)^{-1} X^T (\lambda \cdot y) = \lambda (X^T X)^{-1} X^T y = \lambda \cdot \varphi(X, y)$$

$$2. \ \varphi(X,y+z) = (X^TX)^{-1}X^T(y+z) = (X^TX)^{-1}X^Ty + (X^TX)^{-1}X^Tz = \varphi(X,y) + \varphi(X,z)$$

Что и требовалось доказать.

4.35. Нет, так как для функции  $\varphi(X,y)=(X^TX)^{-1}X^Ty$  не выполнено, например, свойство однородности по переменной X. Действительно,

$$\varphi(X, \lambda \cdot y) = ((\lambda \cdot X)^T (\lambda \cdot X))^{-1} (\lambda \cdot X)^T y = \frac{1}{\lambda} \cdot (X^T X)^{-1} X^T y = \frac{1}{\lambda} \varphi(X, y)$$

4.36.  $\tilde{\beta} = (X^T C X)^{-1} X^T C y$ , где

$$C = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & n \end{bmatrix}$$

4.37.  $Pi=i\Leftrightarrow P\pi=\pi$  поскольку, если матрицу  $\pi$  записать по столбцам  $\pi=\frac{1}{n}\begin{bmatrix}i&i&\dots&i\end{bmatrix}$ , то можно записать следующую цепочку равенств  $P\pi=P\frac{1}{n}\begin{bmatrix}i&i&\dots&i\end{bmatrix}=\frac{1}{n}\begin{bmatrix}Pi&Pi&\dots&Pi\end{bmatrix}=\frac{1}{n}\begin{bmatrix}i&i&\dots&i\end{bmatrix}\Leftrightarrow Pi=i.$ 

Свойство  $P^2 = P$  имеет место независимо от выполнимости условия Pi = i. Действительно,  $P^2 = X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T = P$ .

Рассмотрите пример  $y = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$ ,  $x = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$ . Постройте регрессию  $y = \beta x + \varepsilon$  без свободного члена. Убедитесь, что  $\sum_{i=1}^n \hat{\varepsilon}_i = 0$  и  $\overline{Y} = \hat{Y} = 0$ , но  $Pi \neq i$ .

Ответ:  $P\pi = \pi$ 

$$4.38. (1), (2) \Leftrightarrow (3), (5)$$

4.39.

$$\mathbb{E}(\varepsilon^{T}\pi\varepsilon) = \mathbb{E}(\operatorname{tr}[\varepsilon^{T}\pi\varepsilon]) = \operatorname{tr}[\pi\varepsilon^{T}] = \operatorname{tr}[\pi\varepsilon^{T}] = \operatorname{tr}[\pi\varepsilon^{T}] = \operatorname{tr}[\pi \operatorname{Var}(\varepsilon)] = \operatorname{tr}\left[\frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \sigma_{n}^{2} \end{bmatrix} \right] = \frac{1}{n} \operatorname{tr}\left[\frac{1}{n} \operatorname{tr}\left[\frac{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}}{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}} \right] = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2} \quad (1.27)^{n} \operatorname{tr}\left[\frac{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}}{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}} \right] = \frac{1}{n} \operatorname{tr}\left[\frac{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}}{\sigma_{1}^{2} & \sigma_{2}^{2} & \dots & \sigma_{n}^{2}} \right]$$

4.40.

1.

$$RSS = \hat{\varepsilon}^T \hat{\varepsilon} y^T (I - P) y = y^T y - y^T P y = y^T y - y^T X (X^T X)^{-1} X^T y;$$
 (1.28)

При этом  $y^T y = 3924$ , а

$$y^T X (X^T X)^{-1} X^T y =$$

$$\begin{bmatrix} 460 & 810 & 615 & 712 \end{bmatrix} \begin{bmatrix} 0.038 & -0.063 & -0.063 & 0.100 \\ -0.063 & 1.129 & 1.107 & -2.192 \\ -0.063 & 1.107 & 1.110 & -2.170 \\ 0.100 & -2.192 & -2.170 & 4.292 \end{bmatrix} \cdot \begin{bmatrix} 460 \\ 810 \\ 615 \\ 712 \end{bmatrix} = 3051.2 \quad (1.29)$$

Итого, RSS = 3924 - 3051.2 = 872.8

$$\hat{\sigma}_{\varepsilon}^2 = \frac{RSS}{n-k} = \frac{872.8}{100-4} = 9.0917$$

$$\widehat{\mathrm{Var}}(\hat{\beta}) = \hat{\sigma}_{\varepsilon}^2(X^TX)^{-1} \Rightarrow \widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2) = -0.56939, \ \widehat{\mathrm{Var}}(\hat{\beta}_1) = 0.34251, \ \widehat{\mathrm{Var}}(\hat{\beta}_2) = 10.269$$

$$\widehat{\mathrm{Corr}}(\hat{\beta}_1, \hat{\beta}_2) = \frac{\widehat{\mathrm{Cov}}(\hat{\beta}_1, \hat{\beta}_2)}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_1)}\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_2)}} = -0.30361$$

2. (указание)  $\widehat{\mathrm{Corr}}(x_2,x_3) = \frac{\sum (x_{i2} - \overline{x}_2)(x_{i3} - \overline{x}_3)}{\sqrt{\sum (x_{i2} - \overline{x}_2)}\sqrt{\sum (x_{i3} - \overline{x}_3)}}$ . Все необходимые величины можно извлечь из матрицы  $X^TX$  — это величины  $\sum x_{i2}$  и  $\sum x_{i3}$ , а остальное — из матрицы  $X^T(I-\pi)X = X^TX - X^T\pi X = X^TX - (\pi X)^T\pi X$ . При этом имейте в виду, что  $\pi X = \begin{bmatrix} 1 & \overline{x}_1 & \overline{x}_2 & \overline{x}_3 \\ \dots & \dots & \dots \\ 1 & \overline{x}_1 & \overline{x}_2 & \overline{x}_3 \end{bmatrix}$  и  $\overline{x}_1 = 1.23$ ,  $\overline{x}_2 = 0.96$ ,  $\overline{x}_3 = 1.09$ 

3. 
$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \\ \hat{\beta}_4 \\ \hat{\beta}_5 \end{bmatrix} = \begin{bmatrix} 0.03767 & -0.06263 & -0.06247 & 0.1003 \\ -0.06263 & 1.129 & 1.107 & -2.192 \\ -0.06247 & 1.107 & 1.110 & -2.170 \\ 0.1003 & -2.192 & -2.170 & 4.292 \end{bmatrix} \begin{bmatrix} 460 \\ 810 \\ 615 \\ 712 \end{bmatrix} = \begin{bmatrix} -0.40221 \\ 6.1234 \\ 5.9097 \\ -7.5256 \end{bmatrix}$$

$$t = \frac{\hat{\beta}_2}{\sqrt{\operatorname{Var}(\hat{\beta}_2)}} \sim t_{100-4}$$

$$t=rac{\hat{eta}_2}{\sqrt{{
m Var}(\hat{eta}_2)}}=rac{6.1234}{\sqrt{10.269}}=1.9109\Rightarrow\hat{eta}_2$$
 — не значим.

4.41.

1. 
$$\widehat{\mathrm{Cov}}\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{bmatrix} = \hat{\sigma}_{\varepsilon}^2 (X^T X)^{-1}$$
 — несмещённая оценка для ковариационной матрицы

$$\begin{bmatrix} \hat{\beta}_3 \end{bmatrix}$$
 МНК-коэффициентов. Действительно,  $\mathbb{E}\widehat{\text{Cov}}\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{bmatrix} = \mathbb{E}\hat{\sigma}_{\varepsilon}^2(X^TX)^{-1} = \sigma_{\varepsilon}^2(X^TX)^{-1} = \text{Cov}\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{bmatrix}.$ 

Поэтому искомая оценка  $\widehat{\mathrm{Cov}}(\hat{\beta}_2,\hat{\beta}_3)=\hat{\sigma}_{\varepsilon}^2\left[(X^TX)^{-1}\right]_{23}$ , где  $\left[(X^TX)^{-1}\right]_{23}$  — элемент матрицы  $(X^TX)^{-1}$ , расположенный во второй строке, 3-м столбце.

Заметим, что 
$$\hat{\sigma}_{\hat{\beta}_2}^2 = \hat{\sigma}_{\varepsilon}^2 \left[ (X^T X)^{-1} \right]_{22} \Rightarrow 0.7^2 = \hat{\sigma}_{\varepsilon}^2 \cdot (3030) \Rightarrow \hat{\sigma}_{\varepsilon}^2 = 0.00016172$$

Значит, 
$$\widehat{\mathrm{Cov}}(\hat{\beta}_2, \hat{\beta}_3) = 0.00016172 \cdot (-589) = -0.095253$$
.

2. 
$$t = \frac{\hat{\beta}_2 + \hat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\widehat{\text{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}} \sim t_{n-k}$$

Требуется проверить  $H_0: \beta_2 + \beta_3 = 1$ .

$$\widehat{\mathrm{Var}}(\hat{\beta}_2 + \hat{\beta}_3) = \widehat{\mathrm{Var}}(\hat{\beta}_2) + \widehat{\mathrm{Var}}(\hat{\beta}_3) + 2\widehat{\mathrm{Cov}}(\hat{\beta}_2, \hat{\beta}_3) = 0.7^2 + 0.138^2 + 2 \cdot 0.095253 = 0.319044$$

$$t = \frac{\hat{\beta}_2 + \hat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\widehat{\text{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}} = \frac{0.76 + 0.19 - 1}{\sqrt{0.319044}} = -0.088520674$$

Значит, гипотеза не отвергается на любом «разумном» уровне значимости.

3. Мы знаем, что  $\frac{\hat{\beta}_2 + \hat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\text{Var}}(\hat{\beta}_2 + \hat{\beta}_3)} \sim t_{n-k} = t_{15-3}$ , поэтому построить доверительный интервал для  $\beta_2 + \beta_3$  не составляет труда.  $\mathbb{P}\left(\left|\frac{\hat{\beta}_2 + \hat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\text{Var}}(\hat{\beta}_2 + \hat{\beta}_3)}\right| < t^*\right) = 0.95$ 

Обозначим  $se=\sqrt{\widehat{\mathrm{Var}}(\hat{eta}_2+\hat{eta}_3)},$  тогда:

$$\mathbb{P}\left(\left|\frac{\hat{\beta}_{2} + \hat{\beta}_{3} - \beta_{2} - \beta_{3}}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_{2} + \hat{\beta}_{3})}}\right| < t^{*}\right) = 
\mathbb{P}\left(-t^{*}se < \hat{\beta}_{2} + \hat{\beta}_{3} - \beta_{2} - \beta_{3} < t^{*}se\right) = 
\mathbb{P}\left(-t^{*}se - (\hat{\beta}_{2} + \hat{\beta}_{3}) < -\beta_{2} - \beta_{3} < -(\hat{\beta}_{2} + \hat{\beta}_{3}) + t^{*}se\right) = 
\mathbb{P}\left((\hat{\beta}_{2} + \hat{\beta}_{3}) + t^{*}se > \beta_{2} + \beta_{3} > (\hat{\beta}_{2} + \hat{\beta}_{3}) - t^{*}se\right) \quad (1.30)$$

Отсюда получаем доверительный интервал

$$\beta_2 + \beta_3 \in$$
 
$$[(0.76 + 0.19) - 2.16 \cdot 0.319; (0.76 + 0.19) + 2.16 \cdot 0.319] \quad (1.31)$$

Или  $0.26 < \beta_2 + \beta_3 < 1.639$ 

### 4.42.

И

Метод наименьших квадратов:

$$\hat{\varepsilon}'\hat{\varepsilon} \to \min_{\hat{\beta}}$$

$$(y - \hat{y})'(y - \hat{y}) \to \min_{\hat{\beta}}$$

$$(y - X\hat{\beta})'(y - X\hat{\beta}) \to \min_{\hat{\beta}}$$

$$y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta} \to \min_{\hat{\beta}}$$

Воспользуемся тем, что :  $\frac{\partial x'A}{\partial x'}=A', \frac{\partial Ax}{\partial x'}=A, \frac{\partial x'Ax}{\partial x'}=x'(A'+A)$  Условие первого порядка:

$$-2(X'y)' + (X'X + (X'X)')\hat{\beta}' = 0$$
$$-2X'y + 2\hat{\beta}X'X = 0$$

 $\hat{\beta} = (X'X)^{-1}X'y$ 

$$Var(\hat{\beta}) = Var((X'X)^{-1}X'y) = (X'X)^{-1}X' Var(y)((X'X)^{-1}X')' = (X'X)^{-1}X' Var(X\beta + \epsilon)X(X'X)^{-1}$$

Так как  $\beta$  является константой, то  $Var(X\beta) = 0$ . Тогда

$$Var(\hat{\beta}) = (X'X)^{-1}X' Var(X\beta + \epsilon)X(X'X)^{-1} =$$

$$= (X'X)^{-1}X' Var(\epsilon)X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2X(X'X)^{-1} =$$

$$= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}$$

4.43. Находим X'X, её элементы и есть то, что нужно. 4.44.

$$\widehat{Var}(\hat{\beta}_{1} + \hat{\beta}_{2} - \hat{\beta}_{3}) = \text{Var}(\hat{\beta}_{1}) + \text{Var}(\hat{\beta}_{2}) + \text{Var}(\hat{\beta}_{3}) + 2 \text{Cov}(\hat{\beta}_{1}, \hat{\beta}_{2}) - 2 \text{Cov}(\hat{\beta}_{1}, \hat{\beta}_{3}) - 2 \text{Cov}(\hat{\beta}_{2}, \hat{\beta}_{3})$$

$$\widehat{Var}(\hat{\beta}_1 + \hat{\beta}_2 - \hat{\beta}_3) = 1/3 + 4/3 + 2 - 2/3 + 2 = 5$$

4.45. Из того, что 
$$\widehat{Var}(\hat{\beta}) = \sigma^2 \cdot (X'X)^{-1}$$
 видно, что  $\sigma^2 = \frac{1}{3}$ .  $RSS = \sigma^2 \cdot (n-k) = 1/3 \cdot 2 = 2/3$ 

$$R^2 = 49\frac{1}{3}/50 = 148/150$$

 $F=rac{R^2/(k-1)}{(1-R^2)/(n-k)}=rac{148/2}{2/2}=74$   $F_{0.05,2,2}^{crit}=19<74$  гипотеза отвергается, регрессия значима. 5.1.

5.2.

5.3.

5.4. 
$$\hat{\theta} = 1/\bar{Y}, \ \hat{\beta} = \bar{X}/\bar{Y}, \ \hat{a} = 1/(1+\bar{X})$$

5.5. В данном примере мы имеем

 $\theta = \begin{bmatrix} \mu & \nu \end{bmatrix}'$  — вектор неизвестных параметров

 $\Theta = \mathbb{R} \times (0; +\infty)$  — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$L(\theta) = \prod_{i=1}^{n} f_{X_i}(x_i, \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\nu}} \cdot \exp\left\{-\frac{(x_i - \mu)^2}{2\nu}\right\} = (2\pi)^{-n/2} \cdot \nu^{-n/2} \cdot \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu}\right\}$$
(1.32)

Логарифмическая функция правдоподобия:

$$l(\theta) := \ln L(\theta) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \nu - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu}$$

$$\Theta_{UR} = \Theta$$

$$\Theta_R = \{(0,1)\}$$

Из системы уравнений

$$\begin{cases} \frac{\partial l}{\partial \mu} = \frac{\sum_{i=1}^{n} (x_i - \mu)}{\nu} = 0\\ \frac{\partial l}{\partial \nu} = -\frac{n}{2\nu} + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu^2} = 0 \end{cases}$$

находим

$$\hat{\theta}_{UR} = (\hat{\mu}_{UR}, \hat{\nu}_{UR})$$
, где  $\hat{\mu}_{UR} = \overline{x} = -1.5290$ ,  $\hat{\nu}_{UR} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1.0603$   $\hat{\theta}_R = (\hat{\mu}_R, \hat{\nu}_R) = (0, 1)$ 

По имеющимся данным находим

$$l(\hat{\theta}_R) = -\frac{10}{2} \ln(2\pi) - \frac{10}{2} \ln 1 - \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1} = -26.1804$$
 $l = -\frac{10}{2} \ln(2\pi) - \frac{10}{2} \ln(1.0603) - \frac{\sum_{i=1}^n (x_i + 1.5290)^2}{2 \cdot 1.0603} = -14.4824$ 
 $LR_{\text{набл}} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-26.1804 + 14.4824) = 23.3959$ 

Критическое значение  $\chi^2$  распределения с двумя степенями свободы, отвечающее уровню значимости 5%, равно 5.9915. Следовательно, тест отношения правдоподобия говорит о том, что гипотеза  $H_0$  должна быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера

$$\begin{split} \frac{\partial^2 l}{\partial \mu^2} &= -\frac{n}{v}, \ \frac{\partial^2 l}{\partial \nu \partial \mu} = -\frac{\sum_{i=1}^n (x_i - \mu)}{\nu^2}, \ \frac{\partial^2 l}{\partial \nu^2} = \frac{n}{2\nu^2} - \frac{\sum_{i=1}^n (x_i - \mu)^2}{\nu^3} \\ \mathbb{E} \frac{\partial^2 l}{\partial \nu \partial \mu} &= -\frac{\sum_{i=1}^n \mathbb{E}(x_i - \mu)}{\nu^2} = 0, \ \mathbb{E} \frac{\partial^2 l}{\partial \nu^2} = \frac{n}{2\nu^2} - \frac{\sum_{i=1}^n \mathbb{E}(x_i - \mu)^2}{\nu^3} = \frac{n}{2\nu^2} - \frac{n\nu}{nu^3} = -\frac{n}{2\nu^2} \\ I(\theta) &= -\mathbb{E} \left[ \frac{\partial^2 l}{\partial \mu^2} \frac{\partial^2 l}{\partial \nu \partial \mu} \frac{\partial^2 l}{\partial \nu^2} \right] = \begin{bmatrix} \frac{n}{\nu} & 0 \\ 0 & \frac{n}{2\nu^2} \end{bmatrix} \\ I(\hat{\theta}_{UR}) &= \begin{bmatrix} \frac{n}{\nu} & 0 \\ 0 & \frac{n}{2\nu^2} \end{bmatrix} = \begin{bmatrix} \frac{10}{1.0603} & 0 \\ 0 & \frac{10}{2\cdot 1.0603^2} \end{bmatrix} = \begin{bmatrix} 9.4307 & 0 \\ 0 & 4.4469 \end{bmatrix} \\ g(\hat{\theta}_{UR}) &= \begin{bmatrix} \hat{\mu}_{UR} - 0 \\ \hat{\nu}_{UR} - 1 \end{bmatrix} = \begin{bmatrix} -1.5290 - 0 \\ 1.0603 - 1 \end{bmatrix} = \begin{bmatrix} -1.5290 \\ 0.0603 \end{bmatrix} \\ \frac{\partial g}{\partial \theta'} &= \begin{bmatrix} \frac{\partial g_1}{\partial \mu} & \frac{\partial g_1}{\partial \nu} \\ \frac{\partial g_2}{\partial \mu} & \frac{\partial g_2}{\partial \nu} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \frac{\partial g'}{\partial \theta} &= \begin{bmatrix} \frac{\partial g_1}{\partial \mu} & \frac{\partial g_2}{\partial \nu} \\ \frac{\partial g_1}{\partial \nu} & \frac{\partial g_2}{\partial \nu} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ W_{\text{Ha}6\text{J}} &= g'(\hat{\theta}_{UR}) \cdot \begin{bmatrix} \frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR}) \end{bmatrix}^{-1} g(\hat{\theta}_{UR}) = \\ \begin{bmatrix} -1.5290 & 0.0603 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9.4307 & 0 \\ 0 & 4.4469 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1.5290 \\ 0.0603 \end{bmatrix} = 22.0635 \end{split}$$

Тест Вальда также говорит о том, что на основании имеющихся наблюдений гипотеза  $H_0$  должна быть отвергнута.

$$\begin{split} I(\hat{\theta}_R) &= \begin{bmatrix} \frac{n}{\hat{\nu}_R} & 0 \\ 0 & \frac{n}{2 \cdot \hat{\nu}_R^2} \end{bmatrix} = \begin{bmatrix} \frac{10}{1} & 0 \\ 0 & \frac{10}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix} \\ \frac{\partial l}{\partial \theta}(\hat{\theta}_R) &= \begin{bmatrix} \frac{\sum_{i=1}^n (x_i - \hat{\mu}_R)}{\hat{\nu}_R} \\ -\frac{n}{2 \cdot \hat{\nu}_R} + \frac{\sum_{i=1}^n (x_i - \hat{\mu}_R)^2}{2 \cdot \hat{\nu}_R^2} \end{bmatrix} = \begin{bmatrix} \frac{\sum_{i=1}^n (x_i - 0)}{1} \\ -\frac{10}{2 \cdot 1} + \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} -15.29 \\ 11.9910 \end{bmatrix} \\ LM_{\text{Ha}6\pi} &= \begin{bmatrix} \frac{\partial l}{\partial \theta}(\hat{\theta}_R) \end{bmatrix}' \cdot I^{-1}(\hat{\theta}_R) \cdot \begin{bmatrix} \frac{\partial l}{\partial \theta}(\hat{\theta}_R) \end{bmatrix} = \begin{bmatrix} -15.29 & 11.9910 \end{bmatrix} = \cdot \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -15.29 \\ 11.9910 \end{bmatrix} = 52.1354 \end{split}$$

Тест множителей Лагранжа также указывает на то, что гипотеза  $H_0$  должна быть отвергнута.

5.6. В данной задаче мы имеем:

 $\theta = p$  — вектор неизвестных параметров

 $\Theta = (0,1)$  — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$L(\theta) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} p^{x_i} \cdot (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} \cdot (1-p)^{n-\sum_{i=1}^{n} x_i}$$

Логарифмическая функция правдоподобия:

$$l(\theta) := \ln L(\theta) = \left(\sum_{i=1}^{n} x_i\right) \cdot \ln p + \left(n - \sum_{i=1}^{n} x_i\right) \cdot \ln(1-p)$$

$$\Theta_{UR} = \Theta$$
$$\Theta_R = \{0.5\}$$

Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0$$

получаем

$$\hat{ heta}_{UR}=\hat{p}_{UR},$$
 где  $\hat{p}_{UR}=\overline{x}=0.42$ 

$$\hat{\theta}_R = \hat{p}_R = 0.5$$

По имеющимся данным находим

$$\begin{split} &l(\hat{\theta}_R) = 42 \cdot \ln(0.5) + (100 - 42) \cdot \ln(1 - 0.5) = -69.3147 \\ &l(\hat{\theta}_{UR} = 42 \cdot \ln(0.42) + (100 - 42) \cdot \ln(1 - 0.42) = -68.0292 \\ &LR_{\text{\tiny Ha6,I}} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-69.3147 + 68.0292) = 2.5710 \end{split}$$

Критическое значение  $\chi^2$  распределения с одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза  $H_0: p = 0.5$  не может быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера

$$\begin{split} \frac{\partial^2 l}{\partial p^2} &= -\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n - \sum_{i=1}^n x_i}{(1-p)^2} \\ I(\theta) &= -\mathbb{E}\left[\frac{\partial^2 l}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n - \sum_{i=1}^n x_i}{(1-p)^2}\right] = -\left(-\frac{np}{p^2} - \frac{n - np}{(1-p)^2}\right) = \frac{n}{p(1-p)} \\ I(\hat{\theta}_{UR}) &= \frac{n}{\hat{p}_{UR}(1-\hat{p}_{UR})} = \frac{100}{0.42 \times (1-0.42)} = 172.4138 \\ g(\hat{\theta}_{UR}) &= \hat{\theta}_{UR} - 0.5 = 0.42 - 0.5 = -0.08 \\ \frac{\partial g}{\partial \theta'} &= 1', \ \frac{\partial g'}{\partial \theta} &= 1 \end{split}$$

 $W_{\text{набл}} = g'(\hat{\theta}_{UR}) \cdot \left[ \frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR}) \right]^{-1} g(\hat{\theta}_{UR}) = [-0.08]' \cdot [1' \cdot 172.4138^{-1} \cdot 1]^{-1} \cdot [-0.08] = 2.6272$ 

Тест Вальда также говорит о том, что гипотеза 
$$H_0$$
 не отвергается.

$$\begin{split} I(\hat{\theta}_R) &= \frac{n}{\hat{p}_R(1-\hat{p}_R)} = \frac{100}{0.5 \times (1-0.5)} = 400\\ \frac{\partial l}{\partial \theta}(\hat{\theta}_R) &= \frac{\sum_{i=1}^n x_i}{\hat{p}_R} - \frac{n - \sum_{i=1}^n x_i}{1-\hat{p}_R} = \frac{42}{0.5} - \frac{100-42}{1-0.5} = -32\\ LM_{\text{Ha6d}} &= \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right]' \cdot I^{-1}(\hat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right] = [-32]' \cdot [400]^{-1} \cdot [-32] = 2.56 \end{split}$$

Согласно тесту множителей Лагранжа, основная гипотеза  $H_0$  не может быть отвергнута.

5.7. В данной задаче мы имеем

 $\theta = \lambda$  — вектор неизвестных параметров

 $\Theta = (0, +\infty)$  — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$L(\theta) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^{n} x_i}}{x_1! \dots x_n!} e^{-\lambda n}$$

Логарифмическая функция правдоподобия:

$$l(\theta) := \ln L(\theta) = \left(\sum_{i=1}^{n} x_i\right) \cdot \ln \lambda - \sum_{i=1}^{n} \ln(x_i!) - \lambda n$$

$$\Theta_{UR} = \Theta$$
$$\Theta_R = \{2\}$$

Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0$$

получаем

ногу касм
$$\hat{ heta}_{UR}=\hat{\lambda}_{UR}$$
, где  $\hat{\lambda}_{UR}=\overline{x}=1.7$   $\hat{ heta}_{R}=\hat{p}_{R}=2$ 

По имеющимся данным находим

$$\begin{split} &l(\hat{\theta}_R) = (80 \cdot 1.7) \cdot \ln(2) - \sum_{i=1}^n \ln(x_i!) - 2 \cdot 80 = -65.7319 \\ &l(\hat{\theta}_{UR} = (80 \cdot 1.7) \cdot \ln(1.7) - \sum_{i=1}^n \ln(x_i!) - 1.7 \cdot 80 = -63.8345 \\ &LR_{\text{\tiny Ha}6\pi} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-65.7319 + 63.8345) = 3.7948 \end{split}$$

Критическое значение  $\chi^2$  распределения с одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза  $H_0: \lambda = 2$  не может быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица

Фишера 
$$\frac{\partial^2 l}{\partial p^2} = -\frac{\sum_{i=1}^n x_i}{\lambda^2}$$

$$\begin{split} I(\theta) &= -\mathbb{E}\left[\frac{\partial^2 l}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum_{i=1}^n x_i}{\lambda^2}\right] = -\left(-\frac{n\lambda}{\lambda^2}\right) = \frac{n}{\lambda} \\ I(\hat{\theta}_{UR}) &= \frac{n}{\hat{\lambda}_{UR}} = \frac{80}{1.7} = 47.0588 \\ g(\hat{\theta}_{UR}) &= \hat{\theta}_{UR} - 2 = 1.7 - 2 = -0.3 \\ \frac{\partial g}{\partial \theta'} &= 1', \, \frac{\partial g'}{\partial \theta} = 1 \end{split}$$

 $W_{\text{набл}} = g'(\hat{\theta}_{UR}) \cdot \left[\frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR})\right]^{-1} g(\hat{\theta}_{UR}) = [-0.3]' \cdot [1' \cdot 47.0588^{-1} \cdot 1]^{-1} \cdot [-0.3] = 4.2352$  Поскольку наблюдаемое значение статистики Вальда превосходит критическое значение 3.8414, то гипотеза  $H_0$  должна быть отвергнута.

$$I(\hat{\theta}_R) = \frac{n}{\hat{\lambda}_R} = \frac{80}{2} = 40$$

$$\frac{\partial l}{\partial \theta}(\hat{\theta}_R) = \frac{\sum_{i=1}^n x_i}{\hat{\lambda}_R} - n = \frac{80 \cdot 1.7}{2} - 80 = -12$$

$$LM_{\text{набл}} = \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right]' \cdot I^{-1}(\hat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right] = [-12]' \cdot [40]^{-1} \cdot [-12] = 3.6$$

Согласно тесту множителей Лагранжа, основная гипотеза  $H_0$  не может быть отвергнута.

- 5.8.
- 5.9.
- 5.10.
- 5.11.
- 5.12.
- 5.13.
- 5.14.  $\hat{p}_1 = X_1/n, \ \hat{p}_2 = X_2/n.$
- 5.15. Функция правдоподобия:

$$\mathcal{L} = \prod_{i=1}^{n} \frac{\theta (\ln X_i)^{\theta - 1}}{X_i}$$

Логарифм функции правдоподобия:

$$\ln \mathcal{L} = \sum_{i=1}^{n} \left[ \ln \left( \theta (\ln X_i)^{\theta - 1} \right) - \ln X_i \right] = \sum_{i=1}^{n} \left[ \ln \theta + (\theta - 1) \ln \ln X_i - \ln X_i \right] = n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln \ln X_i - \sum_{i=1}^{n} \ln X_i$$

$$\frac{\mathbb{P}\ln\mathcal{L}}{\mathbb{P}\theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \ln\ln X_i$$

FOC:

$$\frac{\mathbb{P}\ln\mathcal{L}}{\mathbb{P}\theta} = 0 \Rightarrow \frac{n}{\theta} = -\sum_{i=1}^{n} \ln\ln X_{i} \Rightarrow \hat{\theta}_{\mathrm{ML}} = -\frac{n}{\sum_{i=1}^{n} \ln\ln X_{i}}$$

Подставим имеющиеся данные:  $-\frac{n}{\sum \ln \ln X_i} = -\frac{100}{-30} = \frac{10}{3}$ .

(b) (3 балла) Так как оценки ММП асимптотически нормальны, то для нахождения доверительного интервала достаточно найти стандартное отклонение параметра и домножить на квантиль двухстороннего распределения:  $\mathbb{P}\left(\left\{|\hat{\theta}-\theta|\leqslant z_{0,025}\sqrt{\mathrm{Var}(\hat{\theta})}\right\}\right)=0.95$ . Известно, что  $\widehat{\mathrm{Var}}(\hat{\theta})=-\boldsymbol{H}^{-1}|_{\hat{\theta}}$ . Матрица  $\boldsymbol{H}$ —это матрица вторых производных логарифма функции правдоподобия.

$$\boldsymbol{H} = \frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P}\theta^2} = -\frac{n}{\theta^2} \Rightarrow -\boldsymbol{H}^{-1} = \frac{\theta^2}{n} \Rightarrow \widehat{\operatorname{Var}}(\hat{\theta}) = \frac{100/9}{100} = \frac{1}{9} \Rightarrow \hat{\sigma}_{\theta} = \frac{1}{3}$$

Следовательно, с вероятность 0,95  $\theta$  лежит в интервале  $\frac{10}{3} \pm 1,96 \cdot \frac{1}{3} \approx \frac{10}{3} \pm \frac{2}{3}$ , или [2,680; 3,987].

(c) ( $3 \times 3 = 9$  баллов) Тест Вальда выглядит следующим образом:

$$W = (\mathbf{c}(\boldsymbol{\theta}) - \boldsymbol{q})' (\boldsymbol{C} \boldsymbol{I}^{-1}(\boldsymbol{\theta}) \boldsymbol{C}')^{-1} (\mathbf{c}(\boldsymbol{\theta}) - \boldsymbol{q}) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$

За C обозначено  $\frac{\mathbb{P}\mathbf{c}(\boldsymbol{\theta})}{\mathbb{P}\boldsymbol{\theta}}$ , за I — информационная матрица Фишера  $(I(\boldsymbol{\theta}) = -\mathbb{E}\left(\frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P}\boldsymbol{\theta}^2}\right))$ . В данном случае  $\boldsymbol{\theta} = \boldsymbol{\theta}$ , и нулевая гипотеза  $\mathbf{c}(\boldsymbol{\theta}) = \boldsymbol{q}$  выглядит как  $\boldsymbol{\theta} = 1$   $(\mathbf{c}(\boldsymbol{\theta}) = \boldsymbol{\theta})$  — одномерный случай, одна степень

свободы хи-квадрата,  $W \stackrel{\mathcal{H}_0}{\sim} \chi_1^2$ .  $\mathbf{c}'(\theta) = 1$ , поэтому расчётная статистика выглядит следующим образом:

$$W = (\hat{\theta} - \theta_0) \frac{n}{\theta^2} (\hat{\theta} - \theta_0) = \left(\frac{10}{3} - 1\right) \cdot \frac{100}{100/9} \cdot \left(\frac{10}{3} - 1\right) = 49$$

Тест отношения правдоподобия:

$$LR = -2(\ln \mathcal{L}_{R} - \ln \mathcal{L}_{UR}) \stackrel{\mathcal{H}_{0}}{\sim} \chi_{r}^{2}$$

$$LR = -2\left(\left[n\ln\theta_0 + (\theta_0 - 1)\sum_{i=1}^n\ln\ln X_i - \sum_{i=1}^n\ln X_i\right] - \left[n\ln\hat\theta + (\hat\theta - 1)\sum_{i=1}^n\ln\ln X_i - \sum_{i=1}^n\ln X_i\right]\right) = \\ = -2\left(100\ln 1 + (1-1)(-30) - 100\ln\frac{10}{3} - \left(\frac{10}{3} - 1\right)(-30)\right) = -2\left(-100\ln\frac{10}{3} + \frac{7}{3} \cdot 30\right) \approx 100.8$$

Тест множителей Лагранжа:

$$LM = \mathbf{S}(\theta_0)' \mathbf{I}^{-1}(\theta_0) \mathbf{S}(\theta_0) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$

 $S=\frac{\mathbb{P}\ln\mathcal{L}}{\mathbb{P}\theta}\big|_{\theta_0}$ . В точке  $\theta_0$  значение частной производной логарифма функции правдоподобия равно  $\frac{100}{1}-30=70,~ I^{-1}(\theta_0)=\frac{\theta_0^2}{n}=\frac{1}{100},$  откуда

$$LM = 70 \cdot \frac{1}{100} \cdot 70 = 49$$

Для уровня значимости 5 % критическое значение  $\chi_1^2$  равно  $\approx 3.84$ , поэтому во всех трёх тестах гипотеза  $\mathcal{H}_0$ :  $\theta=1$  отвергается.

5.16.

$$\boldsymbol{\theta} = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix}, \quad \mathcal{L} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X_i - \mu)^2}{2\sigma^2}\right), \quad \ln \mathcal{L} = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$$

$$\text{FOC:} \quad \frac{\mathbb{P} \ln \mathcal{L}}{\mathbb{P} \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu), \quad \frac{\mathbb{P} \ln \mathcal{L}}{\mathbb{P} (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2$$

$$\frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P} \mu^2} = -\frac{n}{\sigma^2}, \quad \frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P} \mu \mathbb{P} (\sigma^2)} = -\frac{1}{(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu), \quad \frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P} (\sigma^2)^2} = \frac{n}{2(\sigma^2)^2} - \frac{1}{(\sigma^2)^3} \sum_{i=1}^n (X_i - \mu)^2$$

Т. к. даны  $\sum X_i$  и  $\sum X_i^2$ , то можно вывести, что  $\sum (X_i - \mu)^2 = \sum X_i^2 - \sum 2\mu X_i + \sum \mu^2 = \sum X_i^2 - 2\mu \sum X_i + n\mu^2$ .

Из условий первого порядка следует, что ММП-оценка матожидания  $\hat{\mu}_{\rm ML}$  — это выборочное среднее, а дисперсии  $\hat{\sigma}_{\rm ML}^2$  — выборочная дисперсия (без коррекции на одну степень свободы):

$$\hat{\mu}_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{100}{100} = 1, \quad \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 = \frac{1}{100} (900 - 2 \cdot 1 \cdot 100 + 100 \cdot 1^2) = \frac{800}{100} = 8$$

$$(b)$$
  $(2+2=4$  балла)

$$\boldsymbol{I}(\boldsymbol{\theta}) = -\mathbb{E}\left(\frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P}\boldsymbol{\theta}^2}\right), \quad \boldsymbol{I}(\hat{\boldsymbol{\theta}}) = \begin{pmatrix} \frac{n}{\hat{\sigma}^2} & 0 \\ 0 & \frac{n}{2(\hat{\sigma}^2)^2} \end{pmatrix} = \begin{pmatrix} \frac{100}{8} & 0 \\ 0 & \frac{100}{128} \end{pmatrix}, \quad \boldsymbol{I}^{-1}(\hat{\boldsymbol{\theta}}) = \begin{pmatrix} \frac{2}{25} & 0 \\ 0 & \frac{32}{25} \end{pmatrix}$$

Так как ММП-оценки асимптотически нормальны, то 95%-й доверительный интервал для вектора неизвестных параметров выглядит как

$$\begin{pmatrix} \hat{\mu} \pm z_{\frac{\alpha}{2}} \sqrt{\widehat{\text{Var}}(\hat{\mu})} \\ \hat{\sigma}^2 \pm z_{\frac{\alpha}{2}} \sqrt{\widehat{\text{Var}}(\hat{\mu})} \end{pmatrix} \approx \begin{pmatrix} 1 \pm 1,96\sqrt{\frac{2}{25}} \\ 8 \pm 1,96\sqrt{\frac{32}{25}} \end{pmatrix} \approx \begin{pmatrix} [0,446;1,554] \\ [5,783;10,217] \end{pmatrix}$$

 $(c) (3 \times 3 = 9$  баллов)

Тест Вальда:

$$W = (c(\sigma^2) - \sigma_0^2)' (CI^{-1}(\boldsymbol{\theta})C')^{-1} (c(\sigma^2) - \sigma_0^2) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$

 $\frac{\mathbb{P}c}{\mathbb{P}\sigma^2}=1$ , поэтому

$$W = (8-1)^2 \frac{n}{2(\sigma^2)^2} = 49 \cdot \frac{100}{128} \approx 38,28$$

Тест отношения правдоподобия:

$$LR = -2(\ln \mathcal{L}_{R} - \ln \mathcal{L}_{UR}) \stackrel{\mathcal{H}_{0}}{\sim} \chi_{r}^{2}$$

$$\begin{split} LR &= -2 \Big( \ln \mathcal{L}(\sigma_0^2) - \ln \mathcal{L}(\hat{\sigma}^2) \Big) = -2 \left( -\frac{n}{2} \ln \sigma_0^2 - \frac{1}{2\sigma_0^2} \cdot 800 + \frac{n}{2} \ln \hat{\sigma}^2 + \frac{1}{2\hat{\sigma}^2} \cdot 800 \right) = \\ &\qquad -2 \left( -50 \ln 1 - \frac{1}{2} \cdot 800 + 50 \ln 8 + \frac{1}{16} \cdot 800 \right) \approx 492 \end{split}$$

Тест множителей Лагранжа:

$$LM = \mathbf{S}(\sigma_0^2)' \mathbf{I}^{-1}(\sigma_0^2) \mathbf{S}(\sigma_0^2) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$
$$\mathbf{I}(\sigma_0^2) = \frac{n}{2(\sigma_0^2)^2} = 50, \quad \mathbf{S}(\sigma_0^2) = \frac{\mathbb{P}\ln\mathcal{L}}{\mathbb{P}(\sigma^2)} \Big|_{\sigma_0^2} = -\frac{100}{2} + \frac{1}{2} \cdot 800 = 350$$
$$LM = 350^2 \cdot \frac{1}{50} = 2450$$

Для уровня значимости 5 % критическое значение  $\chi_1^2$  равно  $\approx 3.84$ , поэтому во всех трёх тестах гипотеза  $\mathcal{H}_0$ :  $\sigma^2=1$  отвергается.

# $(d) (3 \times 3 = 9$ баллов)

Тест Вальда выглядит следующим образом:

$$W = (\mathbf{c}(\hat{\boldsymbol{\theta}}) - \boldsymbol{q})' (C\boldsymbol{I}^{-1}(\hat{\boldsymbol{\theta}})\boldsymbol{C}')^{-1} (\mathbf{c}(\hat{\boldsymbol{\theta}}) - \boldsymbol{q}) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$

За C обозначено  $\frac{\mathbb{P}\mathbf{c}(\boldsymbol{\theta})}{\mathbb{P}\boldsymbol{\theta}}$ , за I — информационная матрица Фишера ( $I(\boldsymbol{\theta}) = -\mathbb{E}\left(\frac{\mathbb{P}^2 \ln \mathcal{L}}{\mathbb{P}\boldsymbol{\theta}^2}\right)$ ). В данном случае нулевая гипотеза  $\mathbf{c}(\boldsymbol{\theta}) = \boldsymbol{q}$  записывается как  $\mathbf{c}(\boldsymbol{\theta}) = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ , поэтому все статистики имеют две степени свободы хи-квадрата.  $C = \frac{\mathbb{P}\mathbf{c}}{\mathbb{P}\boldsymbol{\theta}} = \begin{pmatrix} \frac{\mathbb{P}c_1}{\mathbb{P}\mu} & \frac{\mathbb{P}c_2}{\mathbb{P}\mu} \\ \frac{\mathbb{P}c_1}{\mathbb{P}\sigma^2} & \frac{\mathbb{P}c_2}{\mathbb{P}\sigma^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{c}(\boldsymbol{\theta}) - \boldsymbol{q} = \begin{pmatrix} 1 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$ , поэтому расчётная статистика выглядит следующим образом:

$$W = \begin{pmatrix} -1 & 7 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{100}{8} & 0 \\ 0 & \frac{100}{128} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix} \begin{pmatrix} -1 \\ 7 \end{pmatrix} = \begin{pmatrix} -1 & 7 \end{pmatrix} \begin{pmatrix} \frac{25}{2} & 0 \\ 0 & \frac{25}{32} \end{pmatrix} \begin{pmatrix} -1 \\ 7 \end{pmatrix} = 50,78$$

Тест отношения правдоподобия:

$$LR = -2(\ln \mathcal{L}_{R} - \ln \mathcal{L}_{UR}) \stackrel{\mathcal{H}_{0}}{\sim} \chi_{r}^{2}$$

$$LR = -2\left(\ln \mathcal{L}(\boldsymbol{q}) - \ln \mathcal{L}(\hat{\boldsymbol{\theta}})\right) =$$

$$= -2\left(-\frac{n}{2}\ln\sigma_0^2 - \frac{1}{2\sigma_0^2}\left(\sum X_i^2 - 2\mu_0\sum X_i + n\mu_0^2\right) + \frac{n}{2}\ln\hat{\sigma}^2 + \frac{1}{2\hat{\sigma}^2}\left(\sum X_i^2 - 2\hat{\mu}\sum X_i + n\hat{\mu}^2\right)\right) =$$

$$= -2\left(-\frac{100}{2}\ln 1 - \frac{1}{2}(900 - 2 \cdot 2 \cdot 100 + 100 \cdot 2^2) + \frac{100}{2}\ln 8 + \frac{1}{16}(900 - 2 \cdot 1 \cdot 100 + 100 \cdot 1)\right) \approx 592$$

Тест множителей Лагранжа:

$$LM = \mathbf{S}(\boldsymbol{\theta}_0)' \mathbf{I}^{-1}(\boldsymbol{\theta}_0) \mathbf{S}(\boldsymbol{\theta}_0) \stackrel{\mathcal{H}_0}{\sim} \chi_r^2$$

$$\mathbf{I}(\boldsymbol{\theta}_0) = \begin{pmatrix} \frac{n}{\sigma_0^2} & 0\\ 0 & \frac{n}{2(\sigma_0^2)^2} \end{pmatrix} = \begin{pmatrix} 100 & 0\\ 0 & 50 \end{pmatrix}, \quad \mathbf{I}^{-1}(\boldsymbol{\theta}_0) = \begin{pmatrix} \frac{1}{100} & 0\\ 0 & \frac{1}{50} \end{pmatrix}$$

$$\mathbf{S}(\boldsymbol{\theta}_0) = \begin{pmatrix} \frac{1}{\sigma_0^2} (100 - 100\mu_0)\\ -\frac{100}{2\sigma_0^2} + \frac{1}{2(\sigma_0^2)^2} (900 - 200\mu_0 + 100\mu_0^2) \end{pmatrix} = \begin{pmatrix} -100\\ 400 \end{pmatrix}$$

$$LM = \begin{pmatrix} -100 & 400 \end{pmatrix} \begin{pmatrix} \frac{1}{100} & 0\\ 0 & \frac{1}{50} \end{pmatrix} \begin{pmatrix} -100\\ 400 \end{pmatrix} = 3300$$

Для уровня значимости 5 % критическое значение  $\chi^2_2$  равно  $\approx 5{,}99$ , поэтому во всех трёх тестах гипотеза  $\mathcal{H}_0$ :  $\boldsymbol{\theta} = \boldsymbol{\theta}_0$  отвергается.

- 5.17. Можно решать перебором вариантов.
- 6.1. f(x) чётная,  $\mathbb{E}(X) = 0$ ,  $\text{Var}(X) = \pi^2/3$ , логистическое похоже на  $N(0, \pi^2/3)$
- 6.2.  $\ln\left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}\right) = \beta_1 + \beta_2 x_i.$
- 6.3.
- 6.4.
- 6.5.
- 6.6. Для краткости введем следующие обозначения:  $y_i = honey_i, d_i = bee_i^{-1}$ .
  - 1. Функция правдоподобия имеет следующий вид:

$$L(\beta_{1},\beta_{2}) = \prod_{i=1}^{n} \mathbb{P}_{\beta_{1},\beta_{2}} \left( \{Y_{i} = y_{i}\} \right) = \prod_{i:y_{i}=0} \mathbb{P}_{\beta_{1},\beta_{2}} \left( \{Y_{i} = 1\} \right) \cdot \prod_{i:y_{i}=1} \mathbb{P}_{\beta_{1},\beta_{2}} \left( \{Y_{i} = 0\} \right) = \prod_{i:y_{i}=1} \Lambda(\beta_{1} + \beta_{2}d_{i}) \cdot \prod_{i:y_{i}=0} \left[ 1 - \Lambda(\beta_{1} + \beta_{2}d_{i}) \right] = \prod_{i:y_{i}=1,d_{i}=1} \Lambda(\beta_{1} + \beta_{2}) \cdot \prod_{i:y_{i}=1,d_{i}=0} \Lambda(\beta_{1}) \cdot \prod_{i:y_{i}=0,d_{i}=1} \left[ 1 - \Lambda(\beta_{1} + \beta_{2}) \right] \cdot \prod_{i:y_{i}=0,d_{i}=0} \left[ 1 - \Lambda(\beta_{1}) \right] = \prod_{i:y_{i}=0,d_{i}=1} \Lambda(\beta_{1} + \beta_{2})^{\#\{i:y_{i}=1,d_{i}=1\}} \cdot \Lambda(\beta_{1})^{\#\{i:y_{i}=1,d_{i}=0\}} \cdot \left[ 1 - \Lambda(\beta_{1} + \beta_{2}) \right]^{\#\{i:y_{i}=0,d_{i}=0\}} \cdot \left[ 1 - \Lambda(\beta_{1}) \right]^{\#\{i:y_{i}=0,d_{i}=0\}} \cdot \left[ 1 - \Lambda(\beta$$

где

$$\Lambda(x) = \frac{e^x}{1 + e^x} \tag{1.34}$$

логистическая функция распределения, #A означает число элементов множества A.

2. Введём следующие обозначения:

$$a := \Lambda(\beta_1) \tag{1.35}$$

 $<sup>^{1}</sup>Y_{i}$  — случайный Мёд,  $y_{i}$  — реализация случайного Мёда (наблюдаемый Мёд)

$$b := \Lambda(\beta_1 + \beta_2) \tag{1.36}$$

Тогда с учетом имеющихся наблюдений функция правдоподобия принимает вид:

$$L(a,b) = b^{12} \cdot a^{32} \cdot [1-b]^{36} \cdot [1-a]^{20}$$

Логарифмическая функция правдоподобия:

$$l(a,b) = \ln L(a,b) = 12 \ln b + 32 \ln a + 36 \ln[1-b] + 20 \ln[1-a]$$

Решая систему уравнений правдоподобия

$$\begin{cases} \frac{\partial l}{\partial a} = \frac{32}{a} - \frac{20}{1-a} = 0\\ \frac{\partial l}{\partial b} = \frac{12}{b} - \frac{36}{1-b} = 0 \end{cases}$$

получаем  $\hat{a} = \frac{8}{13}$ ,  $\hat{b} = \frac{1}{4}$ . Из формул (1.34) и (1.35), находим  $\hat{\beta}_{1,UR} = \ln\left(\frac{\hat{a}}{1-\hat{a}}\right) = \ln\left(\frac{8}{5}\right) = 0.47$ . Далее, из (1.34) и (1.36) имеем  $\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} = \ln\left(\frac{\hat{b}}{1-\hat{b}}\right)$ . Следовательно,  $\hat{\beta}_{2,UR} = \ln\left(\frac{\hat{b}}{1-\hat{b}}\right) - \hat{\beta}_{1,UR} = \ln\left(\frac{1}{3}\right) - \ln\left(\frac{8}{5}\right) = -1.57$ .

3. Гипотеза, состоящая в том, что «правильность Мёда не связана с правильностью пчёл» формализуется как  $H_0: \beta_2 = 0$ . Протестируем данную гипотезу при помощи теста отношения правдоподобия. Положим в функции правдоподобия  $L(\beta_1,\beta_2)$   $\beta_2 = 0$ . Тогда с учетом (1.35) и (1.36) получим

$$L(a, b = a) = a^{32+12} \cdot [1 - a]^{20+36}$$

В этом случае логарифмическая функция правдоподобия имеет вид:

$$l(a, b = a) := L(a, b = a) = 44 \ln a + 56 \ln[1 - a]$$

Решаем уравнение правдоподобия

$$\frac{\partial l}{\partial a} = \frac{44}{a} - \frac{56}{1-a} = 0$$

и получаем  $\hat{a} = \frac{11}{25}$ . Следовательно, согласно (1.34) и (1.35),  $\hat{\beta}_{1,R} = -0.24$  и  $\hat{\beta}_{2,R} = 0$ .

Статистика отношения правдоподобия имеет вид:

$$LR = -2(l(\hat{\beta}_{1,R}, \hat{\beta}_{2,R}) - l(\hat{\beta}_{1,UR}, \hat{\beta}_{2,UR}))$$

и имеет асимптотическое  $\chi^2$  распределение с числом степеней свободы, равным числу ограничений, составляющих гипотезу  $H_0$ , т.е. в данном случае  $LR \stackrel{a}{\sim} \chi_1^2$ .

Находим наблюдаемое значение статистики отношения правдоподобия:

$$l(\hat{\beta}_{1,R}, \hat{\beta}_{2,R}) = l(\hat{a}_R, \hat{b}_R = \hat{a}_R) = 44 \ln \hat{a}_R + 56 \ln[1 - \hat{a}_R] = 44 \ln \left[\frac{11}{25}\right] + 56 \ln \left[1 - \frac{11}{25}\right] = -68.59 \quad (1.37)$$

$$l(\hat{\beta}_{1,UR}, \hat{\beta}_{2,UR}) = l(\hat{a}_{UR}, \hat{b}_{UR}) = 12 \ln \hat{b}_{UR} + 32 \ln \hat{a}_{UR} + 36 \ln[1 - \hat{b}_{UR}] + 20 \ln[1 - \hat{a}_{UR}] = 12 \ln\left[\frac{1}{4}\right] + 32 \ln\left[\frac{8}{13}\right] + 36 \ln\left[1 - \frac{1}{4}\right] + 20 \ln\left[1 - \frac{8}{13}\right] = -61.63 \quad (1.38)$$

Следовательно,  $LR_{\text{набл}} = -2(-68.59 + 61.63) = 13.92$ , при этом критическое значение  $\chi^2$  распределения с одной степенью свободы для 5% уровня значимости равна 3.84. Значит, на основании теста отношения правдоподобия гипотеза  $H_0: \beta_2 = 0$  должна быть отвергнута. Таким образом, данные показывают, что, в действительности, правильность мёда связана с правильностью пчёл.

4.

$$\hat{\mathbb{P}}\{honey = 0 | bee = 0\} = 1 - \hat{\mathbb{P}}\{honey = 1 | bee = 0\} = 1 - \frac{\exp\{\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} \cdot 0\}}{1 + \exp\{\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} \cdot 0\}} = 1 - \frac{\exp\{\ln\left(\frac{8}{5}\right)\}}{1 + \exp\{\ln\left(\frac{8}{5}\right)\}} = 1 - 0.62 = 0.38 \quad (1.39)$$

```
7.1.
```

7.2. увеличить количество наблюдений, уменьшить дисперсию случайной ошибки

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.  $r^* = -1/2$ 

7.9. 
$$r^* = -1/3$$

8.1.

- 8.2. Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на  $|x_i|$ .
- 8.3. Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на  $\sqrt{|x_i|}$ .
- 8.4.  $\operatorname{Var}(\varepsilon_i) = cx_i^4$
- 8.5.  $Var(\varepsilon_i) = cx_i$
- 8.6. По графику видно, что с увеличением общей площади увеличивается разброс цены. Поэтому разумно, например, рассмотреть следующие подходы:
  - 1. Перейти к логарифмам, т.е. оценивать модель  $\ln price_i = \beta_1 + \beta_2 \ln totsp_i + \varepsilon_i$
  - 2. Оценивать квантильную регрессию. В ней угловые коэффициенты линейной зависимости будут отличаться для разных квантилей переменной price.
  - 3. Обычную модель линейной регрессии с гетероскедастичностью вида  $Var(\varepsilon_i) = \sigma^2 totsp_i^2$

8.7.

- 8.8. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта.  $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = f(x_i)$ 
  - 1. Тестовая статистика  $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$ , где  $n_1 = 11$  число наблюдений в первой подгруппе,  $n_3 = 11$  число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
  - 2. Распределение тестовой статистики при верной  $H_0$ :  $GQ \sim F_{n_3-k,n_1-k}$
  - 3. Наблюдаемое значение  $GQ_{obs} = 1.41$
  - 4. Область, в которой  $H_0$  не отвергается:  $GQ \in [0; 3.44]$
  - 5. Статистический вывод: поскольку  $GQ_{obs} \in [0; 3.44]$ , то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза  $H_0$  не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 8.9. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта.  $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = f(x_i)$

- 1. Тестовая статистика  $GQ=\frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)},$  где  $n_1=21$  число наблюдений в первой подгруппе,  $n_3=21$  число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- 2. Распределение тестовой статистики при верной  $H_0$ :  $GQ \sim F_{n_3-k,n_1-k}$
- 3. Наблюдаемое значение  $GQ_{obs} = 6.49$
- 4. Область, в которой  $H_0$  не отвергается:  $GQ \in [0; 3.12]$
- 5. Статистический вывод: поскольку  $GQ_{obs} \notin [0; 3.12]$ , то на основании имеющихся наблюдений на уровне значимости 1% основная гипотеза  $H_0$  отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 8.10. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта.  $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = f(x_i)$ 
  - 1. Тестовая статистика  $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$ , где  $n_1 = 11$  число наблюдений в первой подгруппе,  $n_3 = 11$  число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
  - 2. Распределение тестовой статистики при верной  $H_0$ :  $GQ \sim F_{n_3-k,n_1-k}$
  - 3. Наблюдаемое значение  $GQ_{obs} = 2.88$
  - 4. Область, в которой  $H_0$  не отвергается:  $GQ \in [0; 3.44]$
  - 5. Статистический вывод: поскольку  $GQ_{obs} \in [0; 3.44]$ , то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза  $H_0$  не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 8.11. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта.  $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = f(x_i)$ 
  - 1. Тестовая статистика  $GQ=\frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)},$  где  $n_1=21$  число наблюдений в первой подгруппе,  $n_3=21$  число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
  - 2. Распределение тестовой статистики при верной  $H_0$ :  $GQ \sim F_{n_3-k,n_1-k}$
  - 3. Наблюдаемое значение  $GQ_{obs} = 5.91$
  - 4. Область, в которой  $H_0$  не отвергается:  $GQ \in [0; 2.21]$
  - 5. Статистический вывод: поскольку  $GQ_{obs} \notin [0; 2.21]$ , то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза  $H_0$  отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 8.12. Протестируем гетероскедастичность ошибок при помощи теста Уайта.  $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i.$ 
  - 1. Тестовая статистика  $W=n\cdot R_{aux}^2$ , где n число наблюдений,  $R_{aux}^2$  коэффициент детерминации для вспомогательной регрессии.
  - 2. Распределение тестовой статистики при верной  $H_0$ :  $W \sim \chi^2_{k_{aux}-1}$ , где  $k_{aux}=6$  число регрессоров во вспомогательной регрессии, считая константу.
  - 3. Наблюдаемое значение тестовой статистики:  $W_{obs} = 18$
  - 4. Область, в которой  $H_0$  не отвергается:  $W \in [0; W_{crit}] = [0; 11.07]$

5. Статистический вывод: поскольку  $W_{obs} \notin [0; 11.07]$ , то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза  $H_0$  отвергается. Таким образом, тест Уайта выявил гетероскедастичность.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

8.21.

8.22.

8.23. 0.0752, 5, 10

8.24. k(k+1)/2

8.25.

8.26. Известно, что оценки параметров, получаемые по обобщённому методу наименьших квадратов,

являются наилучшими, поэтому:  $\delta^2 \begin{bmatrix} x_1 & 0 \dots 0 & 0 \\ 0 & & 0 \\ & \dots & 0 \\ 0 & 0 \dots 0 & x_n \end{bmatrix}$ 

8.27.

$$\operatorname{Cov}(\hat{\beta}_{GLS}, \varepsilon) = \operatorname{Cov}\left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y, \varepsilon\right) = \\ \operatorname{Cov}\left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} \varepsilon, \varepsilon\right) = \\ = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} \operatorname{Cov}(\varepsilon, \varepsilon) = \\ (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} X^T \Sigma^{-1} X^T \Sigma^{-1} X^T \Sigma^{-1} X^T$$
 (1.40)

8.28. Для нахождения эффективной оценки воспользуемся взвешенным методом наименьших квадратов. Разделим каждое из уравнений  $y_i = \beta_1 + \varepsilon$  на корень из дисперсии  $\varepsilon_i$  с тем, чтобы ошибки в полученных уравнениях имели равные дисперсии (в этом случае можно будет сослаться на т. Гаусса-Маркова). Итак, после деления і-го уравнения на величину  $\sqrt{x_i}/\sigma_\varepsilon$ , мы получаем:

$$\begin{bmatrix} y_1 \sqrt{x_1} / \sigma_{\varepsilon} \\ y_2 \sqrt{x_2} / \sigma_{\varepsilon} \\ \vdots \\ y_n \sqrt{x_n} / \sigma_{\varepsilon} \end{bmatrix} = \beta_1 \begin{bmatrix} \sqrt{x_1} / \sigma_{\varepsilon} \\ \sqrt{x_2} / \sigma_{\varepsilon} \\ \vdots \\ \sqrt{x_n} / \sigma_{\varepsilon} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \sqrt{x_1} / \sigma_{\varepsilon} \\ \varepsilon_2 \sqrt{x_2} / \sigma_{\varepsilon} \\ \vdots \\ \varepsilon_n \sqrt{x_n} / \sigma_{\varepsilon} \end{bmatrix}$$

Поскольку условия т. Гаусса-Маркова для последней модели выполнены, то МНК-оценка для последней модели будет наиболее эффективной. Поэтому

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i \sqrt{x_i} / \sigma_{\varepsilon}) (\sqrt{x_i} / \sigma_{\varepsilon})}{\sum_{i=1}^n (\sqrt{x_i} / \sigma_{\varepsilon})} = \frac{\sum_{i=1}^n y_i x_i}{\sum_{i=1}^n x_i^2}$$

8.29.

8.30. В предположении о гомоскедастичности,  $\gamma_2 = 0$ , оценка правдоподобия совпадает с МНК-оценкой, значит  $\hat{\beta} = \sum y_i x_i / \sum x_i^2$ . И  $\hat{s}_i^2 = RSS/n$ , значит  $\hat{\gamma}_1 = \ln(RSS/n)$ .

- 9.1
- 9.2.
- 9.3.
- 9.4.
- 9.5.
- 9.6.

9.7. чтобы избежать переполнения при подсчете произведения всех  $y_i$ 

- 9.8.
- 9.9.

10.1.  $u_i^2 = \varepsilon_i^2 = 1$ ,  $\mathbb{E}(\hat{\beta} \mid x_1 = 0, x_2 = 1) = 0.2\beta$ ,  $\mathbb{E}(\hat{\beta} \mid x_1 = 0, x_2 = 2) = 0.8\beta$ . Интуитивно объясняем: рисуем прямую по двум точкам. Мы знаем абсциссы точек с точностью  $\pm 1$ . Если точки близки, то это может сильно менять оценку наклона, если точки далеки, то случайность слабо влияет на наклон.

- 10.2.
- 10.3.
- 10.4.
- 11.1.
- 11.2.
  - 1. Процесс AR(2), т.к. две первые частные корреляции значимо отличаются от нуля, а гипотезы о том, что каждая последующая равна нулю не отвергаются.
  - 2. Можно использовать одну из двух статистик

Ljung-Box = 
$$n(n+2)\sum_{k=1}^{3} \frac{\hat{\rho}_k^2}{n-k} = 0.4289$$

Box-Pierce = 
$$n \sum_{k=1}^{3} \hat{\rho}_k^2 = 0.4076$$

Критическое значение хи-квадрат распределения с 3-мя степенями свободы для  $\alpha=0.05$  равно  $\chi^2_{3,crit}=7.8147$ . Вывод: гипотеза  $H_0$  об отсутствии корреляции ошибок модели не отвергается.

11.3.

- 1.  $H_0$ : ряд содержит единичный корень,  $\beta = 0$ ;  $H_0$ : ряд не содержит единичного корня,  $\beta < 0$
- 2. ADF = -0.4/0.1 = -4,  $ADF_{crit} = -2.89$ ,  $H_0$  отвергается
- 3. Ряд стационарен
- 4. При верной  $H_0$  ряд не стационарен, и t-статистика имеет не t-распределение, а распределение Дики-Фуллера.
- 11.4.
- 11.5.
- 11.6.
- 11.7.
- 11.8.
- 11.9. 11.10.
- 1.  $\mathbb{E}(\varepsilon_t) = 0$ ,  $\operatorname{Var}(\varepsilon_t) = \sigma^2/(1-\rho^2)$ 
  - 2.  $\operatorname{Cov}(\varepsilon_t, \varepsilon_{t+h}) = \rho^h \cdot \sigma^2 / (1 \rho^2)$

3. 
$$Corr(\varepsilon_t, \varepsilon_{t+h}) = \rho^h$$

- 11.11.
- 11.12. все линейные комбинации стационарны
- 11.13. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.
- 11.14.
- 11.15.  $x_t = (1 L)^t y_t$
- 11.16.  $F_n = L(1+L)F_n$ , значит  $F_n = L^k(1+L)^kF_n$  или  $F_{n+k} = (1+L)^kF_n$
- 11.17. а неверно, б верно.
- 11.18.
- 11.19.
- 11.20.
- 11.21.
- 11.22.
- 11.23. 1, 2, 2
- 11.24.
- 11.25.
- 11.26.
- 11.27.
- 11.28.
- 11.29. 1. Поскольку имеют место соотношения  $\varepsilon_1 = \rho \varepsilon_0 + u_1$  и  $Y_1 = \mu + \varepsilon_1$ , то из условия задачи получаем, что  $\varepsilon_1 \sim N(0, \sigma^2/(1-\rho^2))$  и  $Y_1 \sim N(\mu, \sigma^2/(1-\rho^2))$ . Поэтому

$$f_{Y_1}(y_1) = \frac{1}{\sqrt{2\pi\sigma^2/(1-\rho^2)}} \exp\left(-\frac{(y_1-\mu)^2}{2\sigma^2/(1-\rho^2)}\right).$$

Далее, найдем  $f_{Y_2|Y_1}(y_2|y_1)$ . Учитывая, что  $Y_2 = \rho Y_1 + (1-\rho)\mu + u_2$ , получаем  $Y_2|\{Y_1 = y_1\} \sim N(\rho y_1 + (1-\rho)\mu, \sigma^2)$ . Значит,

$$f_{Y_2|Y_1}(y_2|y_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_2 - \rho y_1 - (1-\rho)\mu)^2}{2\sigma^2}\right).$$

Действуя аналогично, получаем, что для всех  $t\geqslant 2$  справедлива формула

$$f_{Y_t|Y_{t-1}}(y_t|y_{t-1}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \rho y_{t-1} - (1-\rho)\mu)^2}{2\sigma^2}\right).$$

Таким образом, находим функцию правдоподобия

$$L(\mu, \rho, \sigma^2) = f_{Y_T, \dots, Y_1}(y_T, \dots, y_1) = f_{Y_1}(y_1) \prod_{t=2}^T f_{Y_t | Y_{t-1}}(y_t | y_{t-1}),$$

где  $f_{Y_1}(y_1)$  и  $f_{Y_t|Y_{t-1}}(y_t|y_{t-1})$  получены выше.

2. Для нахождения неизвестных параметров модели запишем логарифмическую условную функцию правдоподобия:

$$l(\mu, \rho, \sigma^2 | Y_1 = y_1) = \sum_{t=2}^{T} \log f_{Y_t | Y_{t-1}}(y_t | y_{t-1}) =$$

$$= -\frac{T-1}{2} \log(2\pi) - \frac{T-1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1-\rho)\mu)^2.$$

Найдем производные функции  $l(\mu, \rho, \sigma^2 | Y_1 = y_1)$  по неизвестным параметрам:

$$\frac{\partial l}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\rho - 1),$$

$$\frac{\partial l}{\partial \rho} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\mu - y_{t-1}),$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{T-1}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1-\rho)\mu)^2.$$

Оценки неизвестных параметров модели могут быть получены как решение следующей системы уравнений:

$$\begin{cases} \frac{\partial l}{\partial \mu} = 0, \\ \frac{\partial l}{\partial \rho} = 0, \\ \frac{\partial l}{\partial \sigma^2} = 0. \end{cases}$$

Из первого уравнения системы получаем, что

$$\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1} = (T-1)(1-\hat{\rho})\hat{\mu},$$

откуда

$$\hat{\mu} = \frac{\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1}}{(T-1)(1-\hat{\rho})} = \frac{3-\hat{\rho} \cdot 3}{4 \cdot (1-\hat{\rho})} = \frac{3}{4}.$$

Далее, если второе уравнение системы переписать в виде

$$\sum_{t=2}^{T} (y_t - \hat{\mu} - \hat{\rho}(y_{t-1} - \hat{\mu}))(y_{t-1} - \hat{\mu}) = 0,$$

то легко видеть, что

$$\hat{\rho} = \frac{\sum_{t=2}^{T} (y_t - \hat{\mu})(y_{t-1} - \hat{\mu})}{\sum_{t=2}^{T} (y_{t-1} - \hat{\mu})^2}.$$

Следовательно,  $\hat{\rho} = -1/11 = -0.0909$ .

Наконец, из третьего уравнения системы

$$\hat{\sigma}^2 = \frac{1}{T-1} \sum_{t=2}^{T} (y_t - \hat{\rho}y_{t-1} - (1-\hat{\rho})\hat{\mu})^2.$$

Значит,  $\hat{\sigma}^2 = 165/242 = 0.6818$ . Ответы:  $\hat{\mu} = 3/4 = 0.75$ ,  $\hat{\rho} = -1/11 = -0.0909$ ,  $\hat{\sigma}^2 = 165/242 = 0.6818$ . 11.30. Рассмотрим модель без константы. Тогда ковариационная матрица коэффициентов пропорциональна матрице

$$\begin{pmatrix} 1 & -\hat{\rho}_1 \\ -\hat{\rho}_1 & 1 \end{pmatrix}$$

- 11.31.
- 11.32.
- 11.33.
- 11.34.
- 11.35.
- 11.36.
- 11.37.
- 11.38. Процесс стационарен только при  $y_1 = 4 + \frac{2}{\sqrt{3}} \varepsilon_1$ . Фразу нужно понимать как «у стохастического разностного уравнения  $y_t = 2 + 0.5y_{t-1} + \varepsilon_t$  есть стационарное решение».
  - 1.  $\mathbb{E}(\varepsilon_t) = 0$ ,  $\mathrm{Var}(\varepsilon_1) = \sigma^2$ ,  $\mathrm{Var}(\varepsilon_t) = 2\sigma^2$  при  $t \geqslant 2$ . Гетероскедастичная.

15.1.

- 2.  $Cov(e_t, e_{t+1}) = \sigma^2$ . Автокоррелированная.
- 3.  $\hat{\beta}$  несмещенная, неэффективная
- 4. Более эффективной будет  $\hat{\beta}_{gls} = (X'V^{-1}X)^{-1}X'V^{-1}y,$  где

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Матрица V известна с точностью до константы  $\sigma^2$ , но в формуле для  $\hat{\beta}_{gls}$  неизвестная  $\sigma^2$  сократится. Другой способ построить эффективную оценку — применить МНК к преобразованным наблюдениям, т.е.  $\hat{\beta}_{gls} = \frac{\sum x_i' y_i'}{\sum x_i'^2}$ , где  $y_1' = y_1, \ x_1' = x_1, \ y_t' = y_t - y_{t-1}, \ x_t' = x_t - x_{t-1}$  при  $t \geqslant 2$ .

```
12.1.
12.2.
12.3. f(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)
12.4.
12.5.
13.1.
13.2.
13.3.
14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.
14.10.
14.11.
14.12.
14.13.
14.14. Например, A = (1, 2, 3), B = (1, 0, 1)'
14.15. tr(I) = n, tr(\pi) = 1, tr(P) = k
14.16.
14.17.
14.18. n \times m, m \times n, I
14.19.
14.20.
14.21.
```

15.2.

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

15.9. По определению ковариационной матрицы:

$$Var(\xi) = \begin{pmatrix} Var(\xi_1) & Cov(\xi_1, \xi_2) & Cov(\xi_1, \xi_3) \\ Cov(\xi_2, \xi_1) & Var(\xi_2) & Cov(\xi_2, \xi_3) \\ Cov(\xi_3, \xi_1) & Cov(\xi_3, \xi_2) & Var(\xi_3) \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

$$\operatorname{Var}(\xi_{1} + \xi_{2} + \xi_{3}) = \operatorname{Var}\left(\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} & \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix} \right) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \operatorname{Var}\left(\begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 9 \quad (1.41)$$

15.10.

$$\mathbb{E}(z_1) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \quad (1.42)$$

$$\operatorname{Var}(z_1) = \operatorname{Var}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \operatorname{Var}\left(\frac{\xi_1}{\xi_2}\right) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

15.11. 
$$\mathbb{E}(z_2) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Поскольку  $z_2 = z_1 + \binom{1}{1}$ , где  $z_1$  — случайный вектор из предыдущей задачи, то  $\mathrm{Var}(z_2) = \mathrm{Var}(z_1)$ . Сдвиг случайного вектора на вектор-константу не меняет его ковариационную матрицу.

 $15.12.\ B$  данном примере проиллюстрирована процедура центрирования случайного вектора — процедура вычитания из случайного вектора его математического ожидания.

$$\mathbb{E}(z_3) = \mathbb{E}\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}\right) = \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \mathbb{E}\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

17.10. 17.11. 17.12.

```
Заметим, что вектор z_3 отличается от вектора z_1 (из задачи 15) сдвигом на вектор-константу
поэтому Var(z_3) = Var(z_1).
15.13.
15.14.
15.15.
15.16.
15.17. Каждый из вариантов возможен
15.18.
16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.
16.10.
16.11. по \chi^2-распределению 16.12. u \sim N(0,I)
17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
17.7.
17.8.
17.9.
```