Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №2 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ»

Вариант №5

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1 Цель работы		в работы	2		
2	Исх	ходные данные	2		
3	Исс	следование параметрического стабилизатора	2		
	3.1	Выбор стабилитрона	2		
	3.2	Расчет параметров схемы	2		
	3.3	Коэффициент стабилизации	2		
	3.4	Коэффициент полезного действия	3		
	3.5	Схема параметрического стабилизатора постоянного напряжения	3		
	3.6	Влияние сопротивления нагрузки на работу стабилизатора	3		
	3.7	Скачкообразное изменение нагрузки	4		
	3.8	Нагрузки разного вида при скачкообразном изменении входного напря-			
		жения	5		
4	Исс	Исследование однотранзисторного последовательного линейного ста-			
	билизатора		8		
	4.1	Выбор стабилитрона	8		
	4.2	Расчет параметров схемы	8		
	4.3	Коэффициент стабилизации	9		
	4.4	Схема однотранзисторного последовательного линейного стабилизато-			
		ра постоянного напряжения	9		
	4.5	Влияние сопротивления нагрузки на работу стабилизатора	9		
	4.6	Скачкообразное изменение нагрузки	11		
	4.7	Нагрузки разного вида при скачкообразном изменении входного напря-			
		жения	11		
5	Исследование компенсационного стабилизатора постоянного напря-				
	жен	кин	14		
	5.1	Выбор стабилитрона	14		
	5.2	Расчет параметров схемы	14		

Цель работы

Цель работы – исследование и сравнение характеристик различных схемных решений стабилизаторов на дискретных элементах и стабилизатора в интегральном исполнении.

Исходные данные

В таблице ниже представлены исходные данные для варианта №5

$U_{\text{вых.}}$, В	8
$R_{\rm H.}, { m Om}$	3500
$U_{\text{Bx.}}, B$	16

Исследование параметрического стабилизатора

Выбор стабилитрона

Выходное напряжение (напряжение стабилизации) составляет 8 В, тогда возьмем стабилитрон типа EDZV8.2В $\Rightarrow U_{\rm cr.}=8.2$ В. При подаче 8.2 В он начнет проводить ток (при < 8.2 В ничего не будет делать, при > 8.2 В «сбросит» лишнее напряжение через себя, удерживая на нагрузке примерно 8.2 В; теперь $U_{\rm вых.}=8.2$ В). Этот стабилитрон имеет рассеиваемую мощность $P_{\rm cr.}=0.15$ Вт, дифференциальное сопротивление $r_{\rm cr.}=30$ Ом

Расчет параметров схемы

Рассчитаем максимальный ток, текущий через стабилитрон

$$I_{\text{CT. MAKC.}} = \frac{P_{\text{CT.}}}{U_{\text{CT.}}} = \frac{0.15}{8.2} = 0.0182926829 \text{ A}$$

Рассчитаем ток нагрузки

$$I_{\scriptscriptstyle \rm H.} = I_{\scriptscriptstyle \rm CT.} = \frac{U_{\scriptscriptstyle \rm BMX}}{R_{\scriptscriptstyle \rm H.}} = \frac{8.2}{3500} = 0.0023428571~{\rm A}$$

Рассчитаем номинальное значение тока на стабилитроне

$$I_{\text{ct. hom.}} = \frac{I_{\text{ct. Makc.}} - I_{\text{ct.}}}{2} = \frac{0.018 - 0.002}{2} = 0.0079749129 \text{ A}$$

Определим балластное сопротивление резистора

$$R_{6.} = \frac{U_{\text{bx.}} - U_{\text{bix.}}}{I_{\text{ct. hom.}} + I_{\text{h.}}} = \frac{16 - 8.2}{0.008 + 0.002} = 755.9773090503 \text{ Om}$$

Коэффициент стабилизации

Определим коэффициент стабилизации

$$k_{\text{ct.}} = \left(1 - \frac{R_{6.} \left(I_{\text{ct. Hom.}} + I_{\text{H.}}\right)}{U_{\text{bx.}}}\right) \cdot \frac{R_{6.} + r_{\text{ct.}}}{r_{\text{ct.}}},$$

$$k_{\text{\tiny CT.}} = \left(1 - \frac{755.977 \left(0.008 + 0.002\right)}{16}\right) \cdot \frac{755.977 + 30}{30} = 13.4271123629;$$

Посчитаем оценку $k_{\text{ст.}}$ (приближенно коэффициент стабилизации)

$$\hat{k}_{\text{ct.}} = \frac{R_{6.}U_{\text{вых.}}}{r_{\text{ct.}}U_{\text{вх.}}} = 12.9146123629$$

Коэффициент полезного действия

Определим коэффициент полезного действия

$$\eta = \frac{I_{\text{\tiny CT. HOM.}} U_{\text{\tiny CT.}}}{U_{\text{\tiny BX.}} \left(I_{\text{\tiny CT. HOM.}} + I_{\text{\tiny H.}}\right)} = \frac{0.008 \cdot 8.2}{16 \left(0.008 + 0.002\right)} = 0.3961265720 \approx 40\%$$

Схема параметрического стабилизатора постоянного напряжения

Соберем схему параметрического стабилизатора постоянного напряжения с учетом наших расчетов. Конденсатор в расчетах не участвовал (со временем перестанет проводить ток) – он нужен для сглаживания пульсаций (фильтр шумов)

Рис. 1: Схема параметрического стабилизатора постоянного напряжения

Влияние сопротивления нагрузки на работу стабилизатора

Проверим выходное напряжение цепи и ток на стабилизаторе при постоянном входном напряжении 16 В и различных сопротивлениях нагрузки. $V(n001) \equiv U_{\text{вх.}}$, $V(n002) \equiv U_{\text{вых.}}$, $I(D2) \equiv I_{\text{ст.}}$. Результаты представлены на рис. 2–5

Рис. 2: Выходное напряжение при $R_{\rm H.}=1000~{
m Om};~U_{
m вых.~cp.}=8.1884~{
m B}$

Рис. 3: Выходное напряжение при $R_{\text{н.}} = 3500$ Ом; $U_{\text{вых. ср.}} = 8.1933$ В

Рис. 4: Выходное напряжение при $R_{\rm H.}=10000~{
m Om};~U_{
m вых.~cp.}=8.1941~{
m B}$

Рис. 5: Выходное напряжение при $R_{\rm H.}=100000~{
m OM};~U_{
m вых.~cp.}=8.1945~{
m B}$

Выходное напряжение с увеличением сопротивления нагрузки немного увеличивается, при этом стабилитрон потребляет больше тока. Максимальное значение тока на стабилитроне в 18 мА не было достигнуто (при $R_{\rm H.}=100000$ Ом получили $I_{\rm ct.}\approx 10.243$ мА).

Скачкообразное изменение нагрузки

Подадим скачкообразную нагрузку PULSE(16 18 5m 1u 1u 10m 10m). Входное напряжение представлено на рис. 6

Рис. 6: Скачкообразная нагрузка с 16 В до 18 В

При таком входном напряжении на выходе получаем

Рис. 7: Выходное напряжение при скачкообразной нагрузке

Скачок напряжения на выходе значительно меньше скачка на входе. Стабилизатор удержал напряжение в районе $8.2~\mathrm{B}$. Напряжение до скачка $8.193294~\mathrm{B}$, после $8.194724~\mathrm{B}$.

Нагрузки разного вида при скачкообразном изменении входного напряжения

Снимем осциллограммы выходных напряжений стабилизатора при скачкообразном изменении входного напряжения для нагрузок разного вида. На схеме на рис. 1 представлена активно-емкостная нагрузка. Для начала построим схему только лишь активной нагрузки

Рис. 8: Схема параметрического стабилизатора: активная нагрузка

Подадим на вход скачкообразный сигнал PULSE(16 18 5m 1u 1u 1m 10m), который представлен на рис. 9

Рис. 9: Повторяющаяся скачкообразная нагрузка с 16 В до 18 В

Посмотрим выходное напряжение при активной скачкообразной нагрузке

Рис. 10: Выходное напряжение при активной скачкообразной нагрузке

Посмотрим выходное напряжение при **активно-емкостной** нагрузке. Схема была представлена на рис. 1

Рис. 11: Выходное напряжение при активно-емкостной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивной** нагрузки. Зададим значение индуктивности в 1 Γ н

Рис. 12: Схема параметрического стабилизатора: активно-индуктивная нагрузка

Посмотрим выходное напряжение при активно-индуктивной нагрузке

Рис. 13: Выходное напряжение при активно-индуктивной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивно-емкостной** нагрузки. Зададим значение индуктивности в 1 Γ н

Рис. 14: Схема параметрического стабилизатора: активно-индуктивно-емкостная нагрузка

Посмотрим выходное напряжение при активно-индуктивно-емкостной нагрузке

Рис. 15: Выходное напряжение при активно-индуктивно-емкостной скачкообразной нагрузке

Результат лучше всего получился на рис. 15. При увеличении емкости конденсатора пульсации будут сглаживаться еще больше.

Исследование однотранзисторного последовательного линейного стабилизатора

Выбор стабилитрона

Определимся со стабилизатором

$$U_{\text{CT.}} = U_{\text{BMX.}} + 0.6 = 8 + 0.6 = 8.6 \text{ B}$$

Самые близкие доступные стабилизаторы — EDZV8.2B на 8.2 B и EDZV9.1B на 9.1 B. Сравним по разнице между возможным и желаемым напряжениями на стабилизаторе и возьмем напряжение $U_{\rm cr.}$, при котором разница наименьшая

$$9.1 - 8.6 = 0.5$$
, $8.2 - 8.6 = -0.4$,

$$|-0.4| < |0.5| \Rightarrow$$
 берем EDZV8.2B

Пересчитаем выходное напряжение

$$U_{\text{BMX}} = U_{\text{CT}} - 0.6 = 8.2 - 0.6 = 7.6 \text{ B}$$

В теории теряем 5% от желаемых 8 В.

Расчет параметров схемы

Далее рассчитаем сопротивление на резисторе. Для транзистора 2N3055 выберем коэффициент передачи тока базы $h_{\rm FE\ MHH}$.

$$20 \le h_{\rm FE} \le 70 \Rightarrow h_{\rm FE~MHL} = 20$$

Определим минимальное входное напряжение

$$U_{\text{вх. мин.}} > U_{\text{вых.}} + 2.5 = 7.6 + 2.5 = 10.1 \Rightarrow U_{\text{вх. мин.}} = 11 \text{ B},$$

Рассчитаем максимальный выходной ток стабилизатора

$$I_{\scriptscriptstyle \mathrm{BbIX.\ MAKC.}} = h_{\scriptscriptstyle \mathrm{FE}} \cdot I_{\mathsf{6.}},$$

$$I_{6.~\mathrm{Makc.}} pprox I_{\mathrm{ct.~Makc.}} = rac{P_{\mathrm{ct.}}}{U_{\mathrm{ct.}}} = rac{0.15}{7.6} = 0.0197368421~\mathrm{A},$$

$$I_{\mathrm{bux.~Makc.}} = 20 \cdot 0.02 = 0.394736842~\mathrm{A}$$

Теперь посчитаем R

$$R pprox rac{U_{ ext{вх. мин.}} h_{ ext{FE мин.}}}{1.2 I_{ ext{вых. макс.}}} = rac{11 \cdot 20}{1.2 \cdot 0.395} = 464.4444445683 \ ext{Ом}$$

Коэффициент стабилизации

Определим коэффициент стабилизации по формуле

$$k_{\text{ct.}} = \frac{\Delta U_{\text{bx.}}}{U_{\text{bx.}}} \div \frac{\Delta U_{\text{bbix.}}}{U_{\text{bbix.}}} \bigg|_{R_{\text{tr}} = \text{const.}}$$

Значения $\Delta U_{\text{вых.}}$ возьмем с моделирования схемы, представленной на рис. 16, в LTspice при $U_{\text{вх. 1}}=16$ В, $U_{\text{вх. 2}}=17$ В

$$k_{\text{ct.}} = \frac{17 - 16}{16} \div \frac{7.9021 - 7.9013}{7.6} = 593.7499999994$$

Схема однотранзисторного последовательного линейного стабилизатора постоянного напряжения

Построим схему однотранзисторного последовательного линейного стабилизатора постоянного напряжения, учитывая проведенные ранее расчеты

Рис. 16: Схема однотранзисторного последовательного линейного стабилизатора постоянного напряжения

Влияние сопротивления нагрузки на работу стабилизатора

Проверим выходное напряжение цепи и ток на стабилизаторе при постоянном входном напряжении 16 В и различных сопротивлениях нагрузки. $V(n001) \equiv U_{\text{вх.}}$, $V(n002) \equiv U_{\text{вых.}}$, $I(D2) \equiv I_{\text{ст.}}$. Результаты представлены на рис. 17–20

Рис. 17: Выходное напряжение при $R_{\rm H.}=1000~{
m Om};~U_{
m Bых.~cp.}=7.8687~{
m B}$

Рис. 18: Выходное напряжение при $R_{\rm H.}=3500~{
m Om};~U_{
m Bых.~cp.}=7.9013~{
m B}$

Рис. 19: Выходное напряжение при $R_{\rm H.}=10000~{
m Om};~U_{
m Bых.~cp.}=7.9284~{
m B}$

Выходное напряжение с увеличением сопротивления нагрузки немного увеличивается, при этом стабилитрон потребляет немного больше тока (в сравнении с результатами для первого задания, представленными на рис. 2–5, увеличение потребления тока значительно меньше).

Скачкообразное изменение нагрузки

Выполним моделирование скачкообразного изменения нагрузки аналогично первому заданию (входное напряжение представлено на рис. 6)

Рис. 21: Выходное напряжение при скачкообразной нагрузке

Скачок напряжения на выходе значительно меньше скачка на входе. Стабилизатор удержал напряжение в районе 8 В. Напряжение до скачка 7.9877738 В, после 7.989481 В.

Нагрузки разного вида при скачкообразном изменении входного напряжения

Снимем осциллограммы выходных напряжений стабилизатора при скачкообразном изменении входного напряжения для нагрузок разного вида. На схеме на рис. 16 представлена активно-емкостная нагрузка. Для начала построим схему только лишь активной нагрузки

Рис. 22: Схема параметрического стабилизатора: активная нагрузка

Подадим на вход скачкообразный сигнал аналогично первому заданию (см рис. 9). Посмотрим выходное напряжение при **активной** скачкообразной нагрузке

Рис. 23: Выходное напряжение при активной скачкообразной нагрузке

Посмотрим выходное напряжение при **активно-емкостной** нагрузке. Схема была представлена на рис. 16

Рис. 24: Выходное напряжение при активно-емкостной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивной** нагрузки. Зададим значение индуктивности в 100 Γ н

Рис. 25: Схема параметрического стабилизатора: активно-индуктивная нагрузка

Посмотрим выходное напряжение при активно-индуктивной нагрузке

Рис. 26: Выходное напряжение при активно-индуктивной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивно-емкостной** нагрузки. Зададим значение индуктивности в 100 Гн

Рис. 27: Схема параметрического стабилизатора: активно-индуктивно-емкостная нагрузка

Посмотрим выходное напряжение при активно-индуктивно-емкостной нагрузке

Рис. 28: Выходное напряжение при активно-индуктивно-емкостной скачкообразной нагрузке

Результат лучше всего получился на рис. 28. При увеличении емкости конденсатора пульсации будут сглаживаться еще больше.

Исследование компенсационного стабилизатора постоянного напряжения

Выбор стабилитрона

Выберем стабилитрон измерительного моста со значением напряжения стабилизации, равным половине выходного напряжения стабилизатора

$$U_{\text{ct. 1}} = \frac{U_{\text{вых.}}}{2} = \frac{8}{2} = 4 \text{ B}$$

При этом условии обеспечивается наилучшая стабилизация. Выбираем стабилитрон EDZV3.9В – его напряжение стабилизации близко к расчитанному. Тогда

$$U_{\text{ct. 1}} = 3.9 \text{ B}, I_{\text{ct. 1}} = 5 \text{ MA}$$

Расчет параметров схемы

Определим значение сопротивления балластного резистора $R_{6.}$. Падение напряжения на балластном сопротивлении составляет

$$U_{R_6} = U_{\text{вых.}} - U_{\text{ст. 1}} = 8 - 3.9 = 4.1 \text{ B}$$

Значение сопротивления балластного резистора может быть рассчитано по закону Ома

$$R_{6.} = \frac{U_{R_{6.}}}{I_{\text{CT. 1}}} = \frac{4.1}{5 \cdot 10^{-3}} = 820 \text{ Om}$$

Рассчитаем значения делителя напряжения $R_1...R_3$. Традиционно переменный резистор R_2 используется для возможности подстройки выходного напряжения схемы. В LTspice есть проблема – отсутствие в пакете переменного резистора, поэтому в работе будем использовать делитель на базе двух сопротивлений R_1 и R_3 . Зададим ток через делитель в 10 раз меньше, чем ток стабилизации стабилитрона

$$I_{\text{дел.}} = \frac{I_{\text{ст. 1}}}{10} = \frac{5 \cdot 10^{-3}}{10} = 0.5 \text{ MA}$$

В стабилизаторе компенсационного типа транзисторы работают в активном режиме. Известно, что в активном режиме напряжение между базой и эмиттером биполярного транзистора составляет 0.6...0.7 В, выберем значение

$$U_{\rm B9} = 0.65 \; \rm B$$

Таким образом потенциал базы, равный падению напряжения на резисторе R_3 составляет

$$U_{R_3} = U_{\text{ct. 1}} + 0.65 = 4.55 \text{ B}$$

A на R_1

$$U_{R_1} = U_{\text{вых.}} - U_{R_3} = 8 - 4.55 = 3.45 \text{ B}$$

Зная падения напряжения на резисторах и ток через делитель, можно рассчитать значения сопротивлений по закону Ома

$$R_3 = \frac{U_{R_3}}{I_{\text{дел.}}} = \frac{4.55}{0.5 \cdot 10^{-3}} = 9.1 \text{ кОм},$$

$$R_1 = \frac{U_{R_1}}{I_{\text{лел.}}} = \frac{3.45}{0.5 \cdot 10^{-3}} = 6.9 \text{ кОм};$$

В реальности мы не сможем найти резисторы с такими сопротивлениями, вопрос балансировки схемы нам бы помог решить переменный резистор R_2 . Выберем второй источник опорного напряжения, в качестве источника опорного напряжения выберем стабилитрон EDZV13B с напряжением стабилизации $U_{\rm cr.\ 2}=13$ В и током $I_{\rm cr.\ 2}=5$ мА. Найдем значение сопротивления балластного резистора $R_{\rm CM}$ для номинальный значений параметров схемы

$$R_{\rm CM} = \frac{U_{\rm bx.} - U_{\rm ct.~2}}{I_{\rm ct.~2}} = \frac{16 - 13}{5 \cdot 10^{-3}} = 600 \,\, {\rm Om}$$

Рассчитаем значение сопротивления резистора $R_{\rm K}$. Для стабильной работы цепи опорного напряжения (ст. 2), необходимо, чтобы $R_{\rm K}$ не оказывал на эту цепь шунтирующего действия. Поэтому ток $R_{\rm K}$ должен быть не менее, чем в 2 раза меньше тока стабилитрона

$$I_{R_{
m K}} = rac{I_{
m ct.~2}}{2} = rac{5 \cdot 10^{-3}}{2} = 2.5 \
m mA$$

Кроме того, на нём падает разность между входным и выходным напряжениями

$$U_{R_{\rm K}} = U_{\text{\tiny BX.}} - U_{\text{\tiny BMX.}} = 16 - 8 = 8 \text{ B},$$

$$R_{
m K} = rac{U_{R_{
m K}}}{I_{R_{
m K}}} = rac{8}{2.5 \cdot 10^{-3}} = 3.2 \; {
m кOm};$$