TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning

Sung Whan Yoon (presenter), Jun Seo and Jaekyun Moon

Jun 11 @ ICML 2019

Few-Shot Learning

- Handling previously unseen classification tasks (episodes)
 - Training model with widely varying episodes (episodic training) [Vinyals et al., 2016]

TapNet: Task-Adaptive Projection Network

- Model description (three key elements)
 - Feature extractor f_{θ}
 - Learnable reference vectors $\mathbf{\Phi} = [\boldsymbol{\phi}_1; \cdots; \boldsymbol{\phi}_N]$
 - Task-adaptive projection space M
 - » Project references Φ and embedded queries to M, and apply metric-based classification

How to Construct Projection Space M

- Construction of projection space via linear nulling
 - Error vector between per-class average c_k and reference ϕ_k should be zero-forced in ${\bf M}$.
 - For every episode, compute $\mathbf{M} = \text{null}([\epsilon_1; \epsilon_2; \epsilon_3; \epsilon_4; \epsilon_5])$ anew

MoonLab

Classification and Learning

- Classifying in the task-adaptive space
 - Project Φ and embedded queries to $M \to Classify$ the projected queries with projected Φ .
 - Loss based on distance in **M** is used to update $f_{ heta}$ and $oldsymbol{\Phi}$

MoonLab

Observations

- Projection space gives better separation of classes
- Reference vector tips actually grow apart with training

Results and Conclusions

Visit Poster #4 in Pacific Ballroom for further results!

- Non-learning-based and explicit task-adaptation method
- Excellent generalization performance

	5-way miniImageNet	
Methods	1-shot	5-shot
Matching Nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
MAML (Finn et al., 2017)	$48.70 \pm 1.84\%$	$63.15 \pm 0.91\%$
Prototypical Nets (Snell et al., 2017)	$49.42 \pm 0.78\%$	$68.20 \pm 0.66\%$
SNAIL (Mishra et al., 2017)	$55.71 \pm 0.99\%$	$68.88 \pm 0.92\%$
adaResNet (Munkhdalai et al., 2018)	$56.88 \pm 0.62\%$	$71.94 \pm 0.57\%$
Transductive Propagation Nets (Liu et al., 2018)	$55.51 \pm 0.86\%$	$69.86 \pm 0.65\%$
TADAM-α (Oreshkin et al., 2018)	$56.8 \pm 0.3\%$	$75.7 \pm 0.2\%$
TADAM-TC (Oreshkin et al., 2018)	$58.5 \pm 0.3\%$	$\textbf{76.7} \pm \textbf{0.3}\%$
TapNet (Ours)	$61.65 \pm 0.15\%$	$76.36 \pm 0.10\%$

	5-way tieredImageNet	
Methods	1-shot	5-shot
MAML (as evaluated in (Liu et al., 2018))	$51.67 \pm 1.81\%$	$70.30 \pm 1.75\%$
Prototypical Nets (as evaluated in (Liu et al., 2018))	$53.31 \pm 0.89\%$	$72.69 \pm 0.74\%$
Relation Nets (as evaluated in (Liu et al., 2018))	$54.48 \pm 0.93\%$	$71.31 \pm 0.78\%$
Transductive Propagation Nets (Liu et al., 2018)	$59.91 \pm 0.94\%$	$73.30 \pm 0.75\%$
TapNet (Ours)	$63.08 \pm 0.15\%$	$80.26 \pm 0.12\%$

