无锡太湖学院物联网工程学院面试汇报

汇报人: 张辉耀

汇报时间: 2022 年 4 月 24 号

教育背景

- 本科 大连工业大学
- 硕士 上海东华大学
 - 专业: 数字化纺织工程
 - 研究内容: 椭圆傅立叶和凸包算法在人体建模的应用
- 博士 日本京都工艺纤维大学
 - 专业: 先端纤维学
 - 研究内容: 遗传算法和神经网络在材料科学的应用

研究契机

Figure 1: 层合材料的应用一 (Graphic courtesy of M.C. Gill Corporation, http://www.mcgillcorp.com.)

Figure 2: 层合材料的应用

(https://www.thegillcorp.com)

什么是层合材料?

Figure 3: 层合材料结构图 (来源: Autar k. kaw 2006)

怎样设计?

■ 目标: 强度

■ 约束条件: 重量, 成本等

■ 变量: 铺层角度, 铺层数, 材料等

- 1. 构造目标函数 f(x).
- 2. 为满足约束条件,添加惩罚项 φ₁(x), φ₂(x),···,φ_n(x)
- 3. **重新构造目标函数** $f(x)+c_1\phi_1(x)+c_2\phi_2(x)+\cdots+c_n\phi_n(x)$

Figure 4: 遗传算法流程 图

- 1. 构造目标函数 f(x).
- 2. 为满足约束条件,在群体中 维护不同的子群
- 3. 不改变目标函数 f(x).

Figure 5: General flowchart_{7/20} of proposed GA model.

- 活跃个体:如果一个个体的约束值远小于约束条件,那么我们称该个体为活跃个体,该个体所在的子群为活跃子群。
- 潜在个体:如果一个个体的约束值小于约束条件,那 么我们称该个体为潜在个体,该个体所在的子群为潜 在子群。
- 合适个体:如果一个个体的约束值满足约束条件,那 么我们称该个体为合格个体,该个体所在的子群为合 适子群。

自适应变异算子

$$\mathsf{md} = [\mathit{CT}_1, \cdots, \mathit{CT}_{n-1}, \mathit{CT}_n] - [\mathit{ICV}_1, \cdots, \mathit{ICV}_{n-1}, \mathit{ICV}_n]$$

- md 表示变异向量
- *CT*; 表示第 i 个约束条件,比如质量,强度等。
- ICV; 表示当前个体的相应的约束值。

自适应变异算子

length mutation =

$$\begin{cases} \textit{LMC}*[0,\sum_{i=1}^{\textit{N}}\textit{md}_i] & \text{if } \sum_{i=1}^{\textit{N}}\textit{md}_i > 0 \\ \textit{LMC}*[\sum_{i=1}^{\textit{N}}\textit{md}_i, 0] & \text{if } \sum_{i=1}^{\textit{N}}\textit{md}_i < 0 \end{cases}$$

LMC 表示长度变异系数。

$$P(AM) =$$

$$\begin{cases} 0.5, \ \mathsf{AM} = [0, \mathit{AMC} \sum_{i=1}^{\mathit{N}} (|\mathit{CT}_i - \mathit{CV}_i|)] \\ 0.5, \ \mathsf{AM} = [\mathit{AMC} \sum_{i=1}^{\mathit{N}} (-|\mathit{CT}_i - \mathit{CV}_i|), 0] \end{cases}$$

AMC 表示角度变异系数。

研究成果

Table 1: 实验结果对比

Cross Ply $[0_{\it M}/90_{\it N}]$	Choudhury ar	nd Mondal's study	Present study			
Material	Glass-Epoxy	Graphite-Epoxy	Glass-Epoxy	Graphite-Epoxy		
М	68	17	76	19		
N	72	18	49	2		
no. of lamina(n)	140	35	125	21		
SR	2.01	2.10	2.08	2.15		
weight	9.10	1.84	8.12	1.10		
cost	140	87.50	125	53		

研究成果

- Huiyao Zhang, Atsushi Yokoyama. 2021. A Technique for Constrained Optimization of Cross-ply Laminates Using a New Variant of Genetic Algorithm. International Journal of Advanced Computer Science and Applications, 12(6): 760-767.
- Huiyao Zhang, Atsushi Yokoyama. 2022. Optimum
 Design of Laminated Composites for Minimum Thickness
 by a Variant of Genetic Algorithm. Journal of Textile
 Engineering(accepted)

问题二:如何预测层合材料的强度?

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix}$$
$$+ \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix}$$

 $B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k^2 - h_{k-1}^2)_i = 1, 2, 6, j = 1, 2, 6,$ $D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k^3 - h_{k-1}^3)_i = 1, 2, 6, j = 1, 2, 6$

Maximum stress failure

$$SF_{MS}^{k} = \min \text{ of } \begin{cases} SF_{X}^{k} = \begin{cases} \frac{X_{t}}{\sigma_{11}}, \text{ if } \sigma_{11} > 0 \\ \sigma_{t}^{k}, \text{ if } \sigma_{11} < 0 \end{cases} \\ SF_{Y}^{k} = \begin{cases} \frac{Y_{t}}{\sigma_{22}}, \text{ if } \sigma_{22} > 0 \\ \frac{Y_{t}}{\sigma_{22}}, \text{ if } \sigma_{22} < 0 \end{cases} \\ SF_{S}^{k} = \begin{cases} \frac{S}{|\mathbf{r}_{12}|} \end{cases} \end{cases}$$

Tsai-wu failure theory

$$\begin{aligned} H_1\sigma_1 + H_2\sigma_2 + H_6\tau_{12} + H_{11}\sigma_1^2 + H_{22}\sigma_2^2 \\ + H_{66}\tau_{12}^2 + 2H_{12}\sigma_1\sigma_2 < 1 \end{aligned}$$

如何设计网络的拓扑结构?

Figure 6: 神经网络模型

Figure 7: 用于层合材料强度预测的神经网络

Figure 8: 材料预测模型

Table 2: 网络结构的二进制表示

Nodes	<i>i</i> ₁	i_2	i ₃	i ₄	i 5	<i>i</i> ₆	i ₇	i ₈	i 9	i_{10}	i_{11}	i_{12}	i_{13}	i_{14}	i_{15}	i ₁₆	f	f
h_1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
h_2	0	1	1	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1
h_3	1	0	0	1	0	1	1	0	1	1	0	0	1	0	0	0	0	0
h_4	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1
h_5	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	0	1

Figure 9: Examples of three ANNs, with (a) and (b) as parent ANNs, and (c) as the child of (a) and (b).

17/20

2. Preparation of Training Data

Table 3: Part of train dataset

	Output				
Load	Laminate Structure	Material Property	Failure Property	MS	Tsai-Wu
-70,-10,-40,	90,-90,4,1.27,	38.6,8.27,0.26,4.14,	1062.0,610.0,31,118,72,	0.0102,	0.0086
-10,10,0,	-86,86,80,1.27,	181.0,10.3,0.28,7.17,	1500.0,1500.0,40,246,68,	0.4026,	2.5120
-70,-50,80,	-38,38,4,1.27,	116.6,7.67,0.27,4.173,	2062.0,1701.0,70,240,105,	0.0080,	0.0325
-70,80,-40,	90,-90,48,1.27,	38.6,8.27,0.26,4.14,	1062.0,610.0,31,118,72,	0.0218,	0.1028
-20,-30,0,	-86,86,60,1.27,	181.0,10.3,0.28,7.17,	1500.0,1500.0,40,246,68,	0.6481,	0.9512
0,-40,0,	74,-74,168,1.27,	181.0,10.3,0.28,7.17,	1500.0,1500.0,40,246,68,	1.3110,	3.9619

研究成果

Table 4: Comparsion of Fully-connected Neural Network and GA-based Neural Network

Model	Training Error	Validation Error		
Fully-connected ANN	0.051	0.050		
GA-based ANN	0.054	0.055		

Huiyao Zhang, Atsushi Yokoyama. 2021. Predicting Strength Ratio of Laminated Composite Material with Evolutionary Artificial Neural Network. International Journal of Advanced Computer Science and Applications, 12(6): 11-18.

谢谢