2.AdvExps 进阶性实验

本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程。

序号	实验名称	简介	文件地址	版本
1	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口	e0_AdvApiExps\.	个人版
		类实验,基于 0.ApiExps、1.BasicExps 文件夹		
		中的实验,本文件夹中均为针对本章的进阶		
		性接口类实验。		
2	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口	e1_MavlinkCtrl\Readme.pdf	个人集合版
		类实验,基于 0.ApiExps、1.BasicExps 文件夹		
		中的实验。		
3	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用	e1_MavlinkCtrl\1.MavSfunTest_Arm\Readme.pdf	个人集合版
		于小型无人载具的通信协议,于 2009 年首次		
		发布。该协议广泛应用于地面站(Ground		
		Control Station, GCS) 与无人载具		
		(Unmanned vehicles) 之间的通信,同时也		
		应用在载具上机载计算机与 Pixhawk 之间的		
		内部通信中,协议以消息库的形式定义了参		
		数传输的规则。MAVLink 协议支持无人固定		
		翼飞行器、无人旋翼飞行器、无人车辆等多		
		种载具。本实验将通过 CopterSim 软件在硬		

		件在环仿真时,通过 MAVLink 封装模块何		
		UDP 的方式,在 CopterSim 软件中显示解锁		
		信息。		
4	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用	e1_MavlinkCtrl\2.MavSfunTest_Con\Readme.pdf	个人集合版
		于小型无人载具的通信协议,于 2009 年首次		
		发布。本实验将基于 CopterSim 软件在硬件		
		在环仿真时,通过 MAVLink 封装模块 UDP 的		
		方式,实现无人机姿态控制。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	进阶性实验	本文件夹中的所有实验均为本讲中进阶的	Readme.pdf	个人集合版
		实验, 基于 0.ApiExps、1.BasicExps 文件夹中		
		的实验,用户在已经熟悉基于 RflySim 平台		
		开发本章中的实验, 该文件夹中的实验均为		
		本讲的进阶例程。		
2	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接	e0_AdvApiExps\.	个人版
		口类实验, 基于 0.ApiExps、1.BasicExps 文件		
		夹中的实验, 本文件夹中均为针对本章的进		
		阶性接口类实验。		
3	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接	e1_MavlinkCtrl\Readme.pdf	个人集合版
		口类实验, 基于 0.ApiExps、1.BasicExps 文件		
		夹中的实验。		
4	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种	e1_MavlinkCtrl\1.MavSfunTest_Arm\Readme.pdf	个人集合版
		用于小型无人载具的通信协议,于 2009 年		
		首次发布。该协议广泛应用于地面站		
		(Ground Control Station, GCS) 与无人载		
		具 (Unmanned vehicles) 之间的通信,同时		
		也应用在载具上机载计算机与 Pixhawk 之间		
		的内部通信中, 协议以消息库的形式定义了		
		参数传输的规则。MAVLink 协议支持无人固		
		定翼飞行器、无人旋翼飞行器、无人车辆等		

		多种载具。本实验将通过 CopterSim 软件在		
		硬件在环仿真时,通过 MAVLink 封装模块		
		何 UDP 的方式,在 CopterSim 软件中显示		
		解锁信息。		
5	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种	e1_MavlinkCtrl\2.MavSfunTest_Con\Readme.pdf	个人集合版
		用于小型无人载具的通信协议,于 2009 年		
		首次发布。本实验将基于 CopterSim 软件在		
		硬件在环仿真时,通过 MAVLink 封装模块		
		UDP 的方式,实现无人机姿态控制。		
6	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种	e1_MavlinkCtrl\1.MavSfunTest_Arm\Readme.pdf	个人集合版
		用于小型无人载具的通信协议,于 2009 年		
		首次发布。该协议广泛应用于地面站		
		(Ground Control Station, GCS) 与无人载		
		具 (Unmanned vehicles) 之间的通信, 同时		
		也应用在载具上机载计算机与 Pixhawk 之间		
		的内部通信中,协议以消息库的形式定义了		
		参数传输的规则。MAVLink 协议支持无人固		
		定翼飞行器、无人旋翼飞行器、无人车辆等		
		多种载具。本实验将通过 CopterSim 软件在		
		硬件在环仿真时,通过 MAVLink 封装模块		
		何 UDP 的方式,在 CopterSim 软件中显示		
		解锁信息。		
7	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种	e1_MavlinkCtrl\2.MavSfunTest_Con\Readme.pdf	个人集合版
		用于小型无人载具的通信协议,于 2009 年		
		首次发布。本实验将基于 CopterSim 软件在		
		硬件在环仿真时,通过 MAVLink 封装模块		

UDP 的方式,实现无人机姿态控制。	

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。