Do we need recursive subtree composition in dependency parsing?

Miryam de Lhoneux

UPPSALA UNIVERSITET

10 December 2019 Workshop on Data-driven Approaches to Parsing and Semantic Composition

Overview

- Tree vs. sequential LSTMs for parsing
- BiLSTM parsing
- Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- Conclusion

Outline for section 1

- Tree vs. sequential LSTMs for parsing
- 2 BiLSTM parsing
- 3 Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- 5 Conclusion

Recurrent

Recursive

the largest city

$$c(h,d,r) = tanh(W[h;d;r] + b)$$

$$c(h,d,r) = tanh(W[h;d;r] + b)$$
$$h_i = c(h_{i-1},d,r)$$

$$c(h, d, r) = tanh(W[h; d; r] + b)$$

 $city_1 = c(city_0, largest, left - nmod)$

$$c(h, d, r) = tanh(W[h; d; r] + b)$$

 $city_1 = c(city_0, largest, left - nmod)$
 $city_2 = c(city_1, the, left - det)$

English PTB Chinese CTB

	English PTB	Chinese CTB
S-LSTM without composition	89.6	83.6

	English PTB	Chinese CTB
S-LSTM without composition	89.6	83.6
S-LSTM with composition	90.9	85.7

	English PTB	Chinese CTB
S-LSTM without composition	89.6	83.6
S-LSTM with composition	90.9	85.7
BiLSTM	91.2	85.0

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux Miguel Ballesteros Joakim Nivre Department of Linguistics and Philology, Uppsala University IBM Research AI, Yorktown Heights, NY

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux Miguel Ballesteros Joakim Nivre Department of Linguistics and Philology, Uppsala University IBM Research AI, Yorktown Heights, NY

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux Miguel Ballesteros Joakim Nivre Department of Linguistics and Philology, Uppsala University IBM Research AI, Yorktown Heights, NY

BiLSTM + composition?

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux[♠] Miguel Ballesteros[♠] Joakim Nivre[♠]
Department of Linguistics and Philology, Uppsala University

[♠] IBM Research AI, Yorktown Heights, NY

- BiLSTM + composition?
- Examine composition in simple architecture

Recursive Subtree Composition in LSTM-Based Dependency Parsing

Miryam de Lhoneux[♠] Miguel Ballesteros[♦] Joakim Nivre[♠] Department of Linguistics and Philology, Uppsala University [♦] IBM Research AI, Yorktown Heights, NY

- BiLSTM + composition?
- Examine composition in simple architecture
- Typologically diverse languages

What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?

Miryam de Lhoneux, Sara Stymne and Joakim Nivre

What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?

Miryam de Lhoneux, Sara Stymne and Joakim Nivre

What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?

Miryam de Lhoneux, Sara Stymne and Joakim Nivre

Characterise what our parser learns about language

What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?

Miryam de Lhoneux, Sara Stymne and Joakim Nivre

- Characterise what our parser learns about language
- Examine what our parser learns about auxiliary verb constructions (AVCs)

What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?

Miryam de Lhoneux, Sara Stymne and Joakim Nivre

- Characterise what our parser learns about language
- Examine what our parser learns about auxiliary verb constructions (AVCs)
- Investigate the role of composition for AVCs

Outline for section 2

- 1 Tree vs. sequential LSTMs for parsing
- 2 BiLSTM parsing
- 3 Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- **(5)** Conclusion

Kiperwasser and Goldberg (2016); de Lhoneux et al. (2017)

Xthe

 X_{the} X_{brown} X_{fox} X_{jumped} X_{root}

Transition-Based Parsing using BiLSTMs

Transition-Based Parsing using BiLSTMs

Transition-Based Parsing using BiLSTMs

$$c_{head} = tanh(W[h;d;r] + b)$$

$$c_{head} = tanh(W[h; d; r] + b) + rc$$

$$c_{head} = tanh(W[h; d; r] + b) + rc$$

 $c_{head} = LSTM([h; d; r])$

$$c_{head} = tanh(W[h; d; r] + b) + rc$$

 $c_{head} = LSTM([h; d; r]) + lc$

Outline for section 3

- 1 Tree vs. sequential LSTMs for parsing
- 2 BiLSTM parsing
- 3 Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- 5 Conclusion

Results: BiLSTM + composition

Results: BiLSTM + composition

Results: BiLSTM + composition

Results: BiLSTM ablations

Results: BiLSTM ablations

Results: BiLSTM ablations

Results: BiLSTM ablations + composition

Results: BiLSTM ablations + composition

Results: BiLSTM ablations + composition

Word representation

Word representation

Word representation

Composition gap recovery

	[bw+lc]-bw	[fw+lc]-fw
pos+char+	1.4	0.6
pos+char+ pos+char- pos-char+ pos-char-	1.3	0.6
pos-char+	1.6	0.7
pos-char-	2	1

Average

Composition gap recovery

	[bw+lc]-bw	bi-bw	%rec. [fw+lc]-fw	bi-fw	%rec.
pos+char+	1.4	1.6	87.5 0.6	6.3	9.5
pos+char-	1.3	1.8	72.2 \ 0.6	6.6	9.1
pos-char+	1.6	1.9	84.2 0.7	7.3	9.6
pos-char-	2	3.1	64.5 1	8.7	11.5

Average

Conclusions from this study

Subtree composition does not reliably help a BiLSTM transition-based parser

Conclusions from this study

- Subtree composition does not reliably help a BiLSTM transition-based parser
- The backward part of the BiLSTM is crucial, especially for right-headed languages

Conclusions from this study

- Subtree composition does not reliably help a BiLSTM transition-based parser
- The backward part of the BiLSTM is crucial, especially for right-headed languages
- The forward part of the BiLSTM is less crucial

Conclusions from this study

- Subtree composition does not reliably help a BiLSTM transition-based parser
- The backward part of the BiLSTM is crucial, especially for right-headed languages
- The forward part of the BiLSTM is less crucial
- A backward LSTM + subtree composition performs close to a BiLSTM

Conclusions from this study

- Subtree composition does not reliably help a BiLSTM transition-based parser
- The backward part of the BiLSTM is crucial, especially for right-headed languages
- The forward part of the BiLSTM is less crucial
- ullet A backward LSTM + subtree composition performs close to a BiLSTM
- POS information and subtree composition are two partially redundant ways of constructing contextual information

• This study: recursive composition does not help

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help
- Gontrum (2019): attention does not help

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help
- Gontrum (2019): attention does not help
- All information needed is in small set of token representations from stack and buffer

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help
- Gontrum (2019): attention does not help
- All information needed is in small set of token representations from stack and buffer
- Token representations encode subtree information?

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help
- Gontrum (2019): attention does not help
- All information needed is in small set of token representations from stack and buffer
- Token representations encode subtree information?
 - Do we even need parsing algorithms? (Nivre, 2019)

- This study: recursive composition does not help
- Falenska and Kuhn (2019): structural features do not help
- Gontrum (2019): attention does not help
- All information needed is in small set of token representations from stack and buffer
- Token representations encode subtree information?
 - Do we even need parsing algorithms? (Nivre, 2019)
 - Trees can be decoded directly from BERT contextual embeddings (Hewitt and Manning, 2019)

• Linzen et al. (2016) and Gulordava et al. (2018): LM LSTMs learn agreement

- Linzen et al. (2016) and Gulordava et al. (2018): LM LSTMs learn agreement
- Ravfogel et al. (2018) and Ravfogel et al. (2019): Yes but using local heuristics

- Linzen et al. (2016) and Gulordava et al. (2018): LM LSTMs learn agreement
- Ravfogel et al. (2018) and Ravfogel et al. (2019): Yes but using local heuristics
- Something like that happening here?

Outline for section 4

- 1 Tree vs. sequential LSTMs for parsing
- 2 BiLSTM parsing
- 3 Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- **5** Conclusion

Dependency Parsing

Dependency Parsing

Dependency Parsing

Dependency Parsing

	parsing	Tesnière
Unit of syntax	words	

That could work

	parsing	Tesnière
Unit of syntax	words	nucleus

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words		

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words	dependency	

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words	dependency	dependency, transfer, junction

Dependency Parsing

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words	dependency	dependency, transfer, junction

UD compatible with Tesnière

Dependency Parsing

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words	dependency	dependency, transfer, junction

UD compatible with Tesnière But parsers don't know that

Dependency Parsing

	parsing	Tesnière
Unit of syntax	words	nucleus
Relations between words	dependency	dependency, transfer, junction

UD compatible with Tesnière But parsers don't know that Or do they?

Do LSTM-based parsers learn the notion of dissociated nucleus?

Do LSTM-based parsers learn the notion of dissociated nucleus? Dissociated nucleus \sim nucleus

Do LSTM-based parsers learn the notion of dissociated nucleus?

Dissociated nucleus \sim nucleus

Diagnostic classifier

Do LSTM-based parsers learn the notion of dissociated nucleus?

Dissociated nucleus \sim nucleus

Diagnostic classifier

Do LSTM-based parsers learn the notion of dissociated nucleus?

Dissociated nucleus \sim nucleus

Diagnostic classifier

Diagnostic classifier: task

Transitivity: has object? True/False

Transitivity: has object? True/False

Agreement: Person + Number (sg/pl + 1/2/3)

Agreement: Person + Number (sg/pl + 1/2/3)

Dataset

		FMV train	dev	punct train	dev	AVC train	dev
Т	Catalan	14K	2K	7K	964	12K	2K
	Croatian	6K	803	4K	491	5K	653
	Dutch	9K	618	6K	516	5K	251
	Finnish	12K	1K	9K	1K	4K	458
Α	Catalan	14K	2K	7K	964	12K	2K
	Croatian	6K	803	4K	491	5K	653
	Dutch	9K	618	6K	516	5K	246
	Finnish	10K	1K	8K	850	4K	443

Agreement

Agreement did FMV punct Transitivity did FMV

Agreement

Transitivity

Conclusions from this study

• Our parser does not learn the notion of dissociated nucleus

Conclusions from this study

- Our parser does not learn the notion of dissociated nucleus
- Composition helps learning this

Outline for section 5

- 1 Tree vs. sequential LSTMs for parsing
- 2 BiLSTM parsing
- 3 Composition in a BiLSTM-parser
- 4 Composition for Auxiliary Verb Constructions
- Conclusion

Conclusions

Composition does not help accuracy of a BiLSTM parser

Conclusions

- Composition does not help accuracy of a BiLSTM parser
- Composition might be useful to learn relations of transfer

Conclusions

- Composition does not help accuracy of a BiLSTM parser
- Composition might be useful to learn relations of transfer

Future Work

• Token vectors encode subtrees or parser uses heuristics?

Conclusions

- Composition does not help accuracy of a BiLSTM parser
- Composition might be useful to learn relations of transfer

Future Work

- Token vectors encode subtrees or parser uses heuristics?
- LSTMs vs Transformer

Thanks!

Thanks!

References

- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based dependency parsing with stack long short-term memory. In *Proceedings of ACL-IJCNLP*.
- Agnieszka Falenska and Jonas Kuhn. 2019. The (Non-)Utility of Structural Features in BiLSTM-based Dependency Parsers. In *Proceedings of ACL*.
- Johannes Gontrum. 2019. Attention Mechanisms for Transition-based Dependency Parsing. Master's thesis, Uppsala University.
- Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. 2018. Colorless green recurrent networks dream hierarchically. In *Proceedings of NAACL*.
- John Hewitt and Christopher D Manning. 2019. A Structural Probe for Finding Syntax in Word Representations. In *Proceedings of NAACL*.
- Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. *Transactions of the Association for Computational Linguistics*, 4:313–327.
- Miryam de Lhoneux, Miguel Ballesteros, and Joakim Nivre. 2019a. Recursive subtree composition in LSTM-based dependency parsing. In *Proceedings of NAACL*.
- Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre. 2017. From raw text to universal dependencies look, no tags! In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.*
- Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2019b. What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions? arXiv preprint arXiv:1907.07950. Under review.
- Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of LSTMs to learn syntax-sensitive dependencies. *Transactions of the Association for Computational Linguistics*, 4:521–535.
- Joakim Nivre. 2019. Is the End of Supervised Parsing in Sight? Twelve Years Later. Invited talk at EurNLP.
- Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019. Studying the inductive biases of RNNs with synthetic variations of natural languages. In *Proceedings of NAACL*.
- Shauli Ravfogel, Yoav Goldberg, and Francis Tyers. 2018. Can LSTM Learn to Capture Agreement? The Case of Basque. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.