Tugas Besar II IF3170 Inteligensi Buatan Implementasi Algoritma Pembelajaran Mesin

Oleh:

Fazel Ginanda 13521098

Akhmad Setiawan 13521164

Irgiansyah Mondo 13521167

Satria Octavianus Nababan 13521168

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung

1. Penjelasan Implementasi KNN

Langkah pertama adalah membaca data latih dari *file* dan menyimpannya ke dalam variabel. Data latih tersebut dipisah menjadi fitur dan label kemudian disimpan dalam variabel yang menggunakan struktur data *list*. Variabel tersebut diberi nama train_features dan train_label. Sebelum disimpan, setiap nilai dari fitur data latih diubah tipe datanya menjadi *integer* dan *float*. Kemudian, hal yang sama juga dilakukan terhadap data validasi. Variabel yang menyimpan data validasi tersebut adalah test_features dan test_label.

Langkah selanjutnya adalah menghitung jarak antara setiap *instance* dari data validasi dengan seluruh *instance* pada data latih. Besaran jarak ditentukan dengan *euclidean distance*. Kemudian, dibentuk sebuah list yang setiap elemennya terdiri dari pasangan *instance* dari data latih beserta nilai jarak yang sudah dihitung sebelumnya. *List* tersebut diurutkan menaik berdasarkan jarak. Kemudian, dari list tersebut diambil sebanyak k elemen pertama yang merupakan k tetangga terdekat dari sebuah *instance* data validasi.

Setelah k tetangga terdekat dari sebuah *instance* data latih diperoleh, berikutnya ditentukan label yang sesuai untuk *instance* tersebut. Penentuan label berdasarkan label yang paling banyak muncul dari k tetangga terdekat *instance* tersebut. Setiap prediksi label dari data validasi disimpan dalam *list predictions*. Terakhir, dihitung akurasi dari algoritma dengan cara membandingkan setiap elemen dari *predictions* dengan elemen yang bersesuaian di *validation_label*. Nilai akurasi yang didapatkan tersebut ditampilkan sebagai keluaran dari algoritma ini.

2. Penjelasan Implementasi Naive-Bayes

Implementasi Naive Bayes dilakukan dengan menggunakan fungsi-fungsi berikut.

1. load data(file path):

Fungsi ini digunakan untuk membaca data dari file CSV menggunakan csv_reader. Setelah di-load, dilakukan juga pemisahan antara kolom-kolom fitur dan label target.

separate_by_class(features, labels):

Fungsi ini digunakan untuk mengelompokkan data dari kolom-fitur berdasarkan kelas target (price_range) menggunakan *dictionary*, sehingga terdapat 4 *key* (0, 1, 2, 3) dengan masing-masing memiliki *values* berupa baris dari data-data yang berkaitan.

3. summarize_data(data):

Fungsi ini digunakan untuk menghitung statistik untuk fitur numerik (mean dan standard deviation) berdasarkan kelompok kelas targetnya untuk nanti digunakan saat mencari probabilitas $P(X_{input}|class_target)$. Selain itu pada data non-numerik (kategorikal), dicari probabilitas kemunculan masing-masing nilai 1 dan 0 (digunakan untuk mencari $P(1|class_target)$ dan $P(0|class_target)$ untuk keempat $class_target$.

4. train_naive_bayes(train_file_path):

Fungsi ini digunakan untuk memanggil data latih yakni data_train.csv (load_data), memisahkan data latih berdasarkan kelas target (separate_by_class), menghitung statistik untuk setiap kelompok kelas target (summarize_data), lalu menyimpannya sebagai model (statistik) dalam *file pickle*.

5. calculate_numerical_probability(x, mean, stdev):

Fungsi ini digunakan untuk menghitung probabilitas Gaussian untuk fitur-fitur numerik.

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Gambar 1 Probabilitas Gaussian

Sumber: What is Naive Bayes Classifier? [Explained With Example] | upGrad blog

6. calculate_class_probabilities(summaries, input):

Menghitung probabilitas kemungkinan pengkategorian kelas untuk sebuah *input instance* baru berdasarkan perhitungan perkalian probabilitas *Gaussian* dan kategorikal sesuai dengan kelasnya masing-masing. Setiap kelas akan memperoleh masing-masing probabilitas seberapa mungkin sebuah *instance* akan masuk ke kategori kelas tersebut.

7. predict(summaries, input):

Memprediksi kelas untuk *input instance* baru berdasarkan probabilitas kelas yang telah dikalkulasi pada kelas sebelumnya. Prediksi dilakukan dengan membandingkan probabilitas setiap kelas dan dipilih probabilitas yang tertinggi.

8. load_naive_bayes_model(model_file_path):

Fungsi ini digunakan untuk memuat model Naive Bayes dari file pickle yang ditentukan.

9. evaluate_model(model, validation_data, target_labels):

Mengevaluasi model dengan memprediksi kelas untuk data data_validation berdasarkan model yang telah dibuat sebelumnya, serta menghitung akurasi prediksinya.

Adapun urutan eksekusi utamanya:

- Memuat data latih dari file CSV.
- Melatih model Naive Bayes.
- Memuat data validasi.
- Memuat model yang telah dilatih.
- Mengevaluasi model dan mencetak akurasi.

3. Perbandingan Hasil Prediksi dari Implementasi Algoritma dengan Hasil yang Didapatkan dari Penggunaan Pustaka

Perbandingan hasil prediksi pada implementasi manual dengan implementasi menggunakan *library scikit-learn* dihitung berdasarkan tingkat akurasinya.

1. KNN-Algorithm

Pada implementasi Algoritma KNN, akurasi yang diperoleh dari implementasi from scratch tidak jauh berbeda dengan implementasi menggunakan pustaka scikit-learn, yakni didapatkan akurasi berada pada rentang 91%-93% (tergantung nilai k). Berdasarkan percobaan yang kami lakukan, nilai k yang menghasilkan akurasi paling baik adalah 21 dengan akurasi sebesar 93,33% sebagaimana yang diperlihatkan di bawah ini.

Gambar 2 Hasil Prediksi dan Akurasi KNN Implementasi Manual (k=21)

Gambar 3 Hasil Prediksi dan Akurasi KNN Implementasi Pustaka sklearn (k=21)

Insight yang diperoleh, implementasi dari algoritma KNN secara manual telah mendekati baik, karena mampu menyamai implementasi dengan menggunakan bantuan pustaka scikit-learn. Selain itu, dari tingkat akurasi, implementasi algoritma ini cukup baik diterapkan karena memiliki akurasi yang lebih tinggi dibanding dengan Naive Bayes di bawah.

2. Naive Bayes-Algorithm

Pada implementasi Naive Bayes-Algorithm, akurasi yang diperoleh antara implementasi manual dengan implementasi menggunakan *library* cenderung tidak jauh berbeda, yakni berada di angka 78% - 79%

Gambar 4 Hasil Prediksi dan Akurasi Naive Bayes Implementasi Manual

```
PS C:\Users\Lenovo\Documents\AI\Tubes2 AI\src> python3 naive bayes sklearn.py
                           '1' '0' '3'
                                            '0'
                           '0' '0' '3'
                                        '0'
                                            '0'
                           '3' '1' '0'
                           '0' '3'
                           '0' '0' '1' '1'
     '0' '0' '3' '2' '0' '3' '2<mark>' '1' '2'</mark>
     '1' '0' '2' '1' '0' '3' '2' '3'
                                                    '0'
     '2' '0' '3' '1' '0' '1'
                                            '0'
     '1' '1' '2' '2' '2' '0'
                               '1' '3' '0'
                                            '0'
                                                         '0'
                                                             '0'
                                                     '0'
     '0' '0' '2' '1' '0'
                                        '0'
                                            '2'
         '0' '2' '0' '3'
                                       '2'
                           '0'
                               '0'
                           '0'
                                        '0'
                      '3'
                                        '2'
                                   '0' '2'
                                            '0'
                                                             '0'
              '0'
Accuracy: 78.166666666666666
```

Gambar 5 Hasil Prediksi dan Akurasi Naive Bayes Implementasi Pustaka sklearn

Insight yang diperoleh, berarti implementasi algoritma Naive Bayes yang dibuat secara manual sudah cukup baik, karena dibandingkan dengan menggunakan pustaka *scikit-learn* tidak menghasilkan akurasi yang jauh berbeda. Namun demikian, tingkat akurasinya tidak sebagus algoritma KNN, namun masih cukup baik karena mendekati 80%.

4. Pembagian Tugas

NIM	Nama	Tugas
13521098	Fazel Ginanda	KNN-Algorithm
13521164	Akhmad Setiawan	Naive Bayes-Algorithm
13521167	Irgiansyah Mondo	Naive Bayes-Algorithm
13521168	Satria Octavianus Nababan	KNN-Algorithm

5. Repository Github

https://github.com/fazelginanda/Tubes2_Al