Introduction to Algorithms

Dr. Navjot Singh Design and Analysis of Algorithms

- Informally,
 - A tool for solving a well-specified computational problem.

Example: sorting

input: A sequence of numbers.

output: An ordered permutation of the input.

issues: correctness, efficiency, storage, etc.

- An algorithm is a <u>finite</u> sequence of <u>unambiguous</u> instructions for solving a well-specified computational problem.
- Important Features:
 - Finiteness: Total number of steps used in algorithm should be finite.
 - Definiteness: Each step of algorithm must be clear and unambiguous.
 - Input: The algorithm must accept zero or more input.
 - Output: The algorithm must produce at least one output.
 - Effectiveness: Each step must be basic and essential.

- In terms of mathematical models of computational platforms (general-purpose computers).
- One definition Turing Machine that always halts.
- Other definitions are possible (e.g. Lambda Calculus.)
- Mathematical basis is necessary to answer questions such as:
 - Is a problem solvable? (Does an algorithm exist?)
 - Complexity classes of problems. (Is an efficient algorithm possible?)

Algorithm Analysis

- Determining performance characteristics.
 - (Predicting the resource requirements.)
 - Time, memory, communication bandwidth etc.
 - Computation time (running time) is of primary concern.
- Why analyze algorithms?
 - Choose the most efficient of several possible algorithms for the same problem.
 - Is the best possible running time for a problem reasonably finite for practical purposes?
 - Is the algorithm optimal (best in some sense)? Is something better possible?

- Run time expression should be machine-independent.
 - Use a model of computation or "hypothetical" computer.
 - Our choice RAM model (most commonly-used).
- Model should be
 - Simple.
 - Applicable.

RAM Model

- Generic single-processor model.
- Supports simple constant-time instructions found in real computers.
 - Arithmetic (+, -, *, /, %, floor, ceiling).
 - Data Movement (load, store, copy).
 - Control (branch, subroutine call).
- Run time (cost) is uniform (1 time unit) for all simple instructions.
- Memory is unlimited.
- Flat memory model no hierarchy.
- Access to a word of memory takes 1 time unit.
- Sequential execution no concurrent operations.

Model of Computation

- Should be simple, or even simplistic.
 - Assign uniform cost for all simple operations and memory accesses.
 (Not true in practice.)
 - Question: Is this OK?
- Should be widely applicable.
 - Can't assume the model to support complex operations.
 - **Ex:** No SORT instruction.
 - Size of a word of data is finite.
 - Why?

- Call each simple instruction and access to a word of memory a "primitive operation" or "step."
- Running time of an algorithm for a given input is
 - The number of steps executed by the algorithm on that input.
- Often referred to as the complexity of the algorithm.

Complexity and Input

- Complexity of an algorithm generally depends on
 - Size of input.
 - Input size depends on the problem.
 - Examples: No. of items to be sorted.
 - No. of vertices and edges in a graph.
 - Other characteristics of the input data.
 - Are the items already sorted?
 - Are there cycles in the graph?

	n	$n \log n$	n^2	n^3	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	$< 18 \min$	$10^{25} ext{ years}$
n = 100	< 1 sec	< 1 sec	$1 \sec$	1s	10^{17} years	very long
n = 1000	< 1 sec	< 1 sec	$1 \sec$	$18 \min$	very long	very long
n = 10,000	< 1 sec	< 1 sec	$2 \min$	$12 \mathrm{\ days}$	very long	very long
n = 100,000	< 1 sec	$2 \sec$	3 hours	32 years	very long	very long
n = 1,000,000	$1 { m sec}$	$20 \sec$	12 days	31,710 years	very long	very long

- O(1) constant. Fixed amount of work, regardless of the input size
 - add two 32 bit numbers
 - determine if a number is even or odd
 - sum the first 20 elements of an array
 - delete an element from a doubly linked list
- O(log n) logarithmic. At each iteration, discards some portion of the input (i.e. half)
 - binary search

- O(n) linear. Do a constant amount of work on each element of the input
 - find an item in a linked list
 - determine the largest element in an array
- O(n log n) log-linear. Divide and conquer algorithms with a linear amount of work to recombine
 - Sort a list of number with MergeSort
 - FFT

Some examples

- $O(n^2)$ quadratic. Double nested loops that iterate over the data
 - Insertion sort
- $O(2^n)$ exponential
 - Enumerate all possible subsets
 - Traveling salesman using dynamic programming
- O(n!)
 - Enumerate all permutations
 - determinant of a matrix with expansion by minors

Worst, Average, and Best-case Complexity

- Worst-case Complexity
 - Maximum steps the algorithm takes for any possible input.
 - Most tractable measure.
- Average-case Complexity
 - Average of the running times of all possible inputs.
 - Demands a definition of probability of each input, which is usually difficult to provide and to analyze.
- Best-case Complexity
 - Minimum number of steps for any possible input.
 - Not a useful measure. Why?

Pseudo-code Conventions

- Indentation (for block structure).
- Value of loop counter variable upon loop termination.
- Conventions for compound data. Differs from syntax in common programming languages.
- Call by value <u>not</u> reference.
- Local variables.
- Error handling is omitted.
- Concerns of software engineering ignored.

• ...

Example - Linear Search

INPUT: a sequence of *n* numbers, *key* to search for.

OUTPUT: *true* if *key* occurs in the sequence, *false*

Li	nearSearch(A, key)	cost	times
1	$i \leftarrow 1$	c_1	1
2	while $i \le n$ and $A[i] != key$	c_2	\mathcal{X}
3	$\mathbf{do}\ i++$	c_3	<i>x</i> -1
4	if $i \leq n$	c_4	1
5	then return true	c_5	1
6	else return false	c_6	1

x ranges between 1 and n+1.

So, the running time ranges between

$$c_1 + c_2 + c_4 + c_5 -$$
best case

and

$$c_1 + c_2(n+1) + c_3n + c_4 + c_6$$
 - worst case

Example - Linear Search

INPUT: a sequence of *n* numbers, *key* to search for.

OUTPUT: *true* if *key* occurs in the sequence, *false*

LinearSearch(A, key)	cost	times
$1 i \leftarrow 1$	1	1
2 while $i \le n$ and $A[i] != key$	1	$\boldsymbol{\mathcal{X}}$
3 do $i++$	1	<i>x</i> -1
4 if $i \leq n$	1	1
5 then return true	1	1
6 else return false	1	1

Assign a cost of 1 to all statement executions.

Now, the running time ranges between

$$1+1+1+1=4-$$
 best case

and

$$1+(n+1)+n+1+1=2n+4-$$
 worst case

Example - Linear Search

INPUT: a sequence of *n* numbers, *key* to search for.

OUTPUT: *true* if *key* occurs in the sequence, *false*

LinearSearch(A, key)	cost	times
$1 i \leftarrow 1$	1	1
2 while $i \le n$ and $A[i] != key$	1	\mathcal{X}
3 do $i++$	1	<i>x</i> -1
4 if $i \leq n$	1	1
5 then return true	1	1
6 else return false	1	1

If we assume that we search for a random item in the list, on an average, Statements 2 and 3 will be executed n/2 times. Running times of other statements are independent of input.

Hence, average-case complexity is 1 + n/2 + n/2 + 1 + 1 = n+3

Order of growth

- Principal interest is to determine
 - how running time grows with input size Order of growth.
 - the running time for large inputs <u>Asymptotic complexity</u>.
- In determining the above,
 - Lower-order terms and coefficient of the highest-order term are insignificant.
 - Ex: In $7n^5+6n^3+n+10$, which term dominates the running time for very large n?
- Complexity of an algorithm is denoted by the highest-order term in the expression for running time.
 - Ex: O(n), Θ(1), Ω(n²), etc.
 - Constant complexity when running time is independent of the input size denoted O(1).
 - <u>Linear Search</u>: Best case Θ(1), Worst and Average cases: Θ(n).
- More on O, Θ , and Ω in next class. Use Θ for the present.

- Complexity function can be used to compare the performance of algorithms.
- Algorithm A is more efficient than Algorithm B for solving a problem, if the complexity function of A is of lower order than that of B.
- Examples:
 - Linear Search $\Theta(n)$ vs. Binary Search $\Theta(\lg n)$
 - Insertion Sort $\Theta(n^2)$ vs. Quick Sort $\Theta(n \lg n)$

Multiplication

- classical technique: O(nm)
- divide-and-conquer: $O(nm^{ln 1.5}) \sim O(nm^{0.59})$ For operands of size 1000, takes 40 & 15 seconds respectively on a Cyber 835.

Sorting

- insertion sort: $\Theta(n^2)$
- merge sort: ⊕(n lg n)
 For 10⁶ numbers, it took 5.56 hrs on a supercomputer using machine language and 16.67 min on a PC using C/C++.

- Computer speeds double every two years, so why worry about algorithm speed?
- When speed doubles, what happens to the amount of work you can do?
- What about the demands of applications?

No. of items sorted

H/W Speed Comp. of Alg.	1 M*	2 M	Gain
$O(n^2)$ $O(n \lg n)$	1000 62700	1414 118600	1.414 1.9

^{*} Million operations per second.

- Higher gain with faster hardware for more efficient algorithm.
- Results are more dramatic for more higher speeds.

- Proving (beyond "any" doubt) that an algorithm is correct.
 - Prove that the algorithm produces correct output when it terminates.
 Partial Correctness.
 - Prove that the algorithm will necessarily terminate. <u>Total Correctness.</u>

Techniques

- Proof by Construction.
- Proof by Induction.
- Proof by Contradiction.

- Logical expression with the following properties.
 - Holds true before the first iteration of the loop Initialization.
 - If it is true before an iteration of the loop, it remains true before the next iteration – Maintenance.
 - When the loop terminates, the invariant along with the fact that the loop terminated — gives a useful property that helps show that the loop is correct – Termination.
- Similar to mathematical induction.
 - Are there differences?

Correctness Proof of Linear Search

- Use Loop Invariant for the while loop:
 - At the start of each iteration of the while loop, the search *key* is not in the subarray A[1..*i*-1].

```
LinearSearch(A, key)

1 i \leftarrow 1

2 while i \le n and A[i] != key

3 do i++

4 if i \le n

5 then return true

6 else return false
```

- ◆If the algm. terminates, then it produces correct result.
 - ◆Initialization.
 - ◆Maintenance.
 - **◆**Termination.
- •Argue that it terminates.

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to algorithms. MIT press, 2009
- Dr. David Kauchak, Pomona College
- Prof. David Plaisted, The University of North Carolina at Chapel Hill