

신경망 레이블 기술 및 공장 신경망 적용 기술

인공지능 기술의 대중화 (Al Democratization)를 위한 제2회 탱고 커뮤니티 컨퍼런스

소속 (주) 웨다

1 데이터 레이블링

03

- 1. 데이터 레이블링 개요
- 2. 제조산업의 데이터 레이블링

2 제조산업의 오토레이블링 적용 사례

10

1. A업체의 적용 사례

3 제조산업의 신경망 적용 기술 사례

12

- 1. 가스 실린더 기밀 검사 적용 사례
- 2. 인공지능 기반 안개상태 판별 사례
- 3. 배터리 셀 내부 불량 검출 사례
- 4. 케이블 제조 품질 검사 적용 사례

1. 데이터 레이블링

데이터 레이블링 개요

Image Data 분석 시간

전체 인공지능 개발 과정 중 Data Labeling 이 80% 소요

소요 시간 증가

 AI 학습의 80% 이상을 Labeling이 소요
자율주행 영상 1시간 Labeling 작업 시 8시간 소요 (Financial Times)

• 사람에 의한 Labeling 과정이 필수

지속적인 데이터 학습

•데이터 품질이 높을수록 학습 효과가 좋음

Human Labeling 의 문제점

●● Auto Labeling 기능을 활용한 사람의 개입 최소화 ●●

많은 사람이 필요

많은 데이터 필요

(\$) 많은 시간과 비용 소요

품질 저하

Ⅰ. 데이터 레이블링

제조 산업의 데이터 레이블링

NG OK

대외비

불량 데이터의 확보가 어려움

레이블링을 위한 전문 배경 지식 필요

데이터 레이블링을 위한 표준화가 어렵고 레이블링 작업에 작업자 주관적인 의견이 포함

Ⅰ. 데이터 레이블링

제조 산업의 데이터 레이블링

현업 담당자가 어떤 방식으로 불량을 레이블링 할지?

많은 데이터가 필요하기 때문에 한사람이 모든 레이블링을 진행 할 수 없을 때 여러 작업자가 불량에 대한 표준 레이블 기준을 확보할 수 있을지?

II. 제조 산업의 오토레이블링 적용 사례

Inspection Item	Defect Code	Good	No Good	Inspection Item	Defect Code	Good	No Good
Part Missing 부품:1608 Capacitor	Part Missing (컴품)	33	CO	Manhattan 부품:1608 Capacitor	Tombstone (세워작)	ao Ca	
Off-Location 부품:1608 Resistor	Off-Location (멋이남)			Insufficient Solder 무용:GFP 128P 0.5Pitch	Insufficient Solder (발부족)		
Polarity 무중:SSOP 48 Pin	Reverse Mount		300	Lead Bent 부품:QFP 128P 0.5Pitch	Lead Bent/Lift (리드렌/품)	RISZ	
Open 무중:QFP 8P 0.5Pitch	No Solder (미남)	Oisvu A		Part Broken 부 중:1608 Capacitor	Part Broken (해정)	05 CD 106	SOUR CO
Short 부중:QFP 128P 0.5Pitch	Solder Bridge (남타지)						

PCB 보드 위의 불량 여부, 불량 위치 판별 문제

15초에 한번씩 전체 기판에 대한 이미지 검사 수행

별도 불량 데이터 저장 없음

수집된 데이터에서 불량 / 정상 자동 판별 불가

> 초기 수집 데이터 46만건 (정상 불량 포함)

II. 제조 산업의 오토레이블링 적용 사례

A업체의 적용 사례

III. 제조산업의 신경망 적용 기술 사례

인공지능 기반 안개상태 판별 사례

III. 제조산업의 신경망 적용 기술 사례

베터리 셀 내부 불량 검출 사례

감사합니다.

