Sujet 1.

- * Exercice 1. (Cours) Démontrer que si A et B sont deux événements, alors $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- **Exercice 2.** On dit qu'une variable aléatoire est sans mémoire si elle est à valeurs dans \mathbb{N}^* et que pour tout $k, n \in \mathbb{N}^*$, on a

$$\mathbb{P}(X > k + n | X > n) = \mathbb{P}(X > k).$$

- 1. Soit X une variable aléatoire suivant une loi géométrique de paramètre $p \in]0,1[$. Démontrer que X est sans mémoire.
- 2. Soit X une variable aléatoire sans mémoire. On pose $q = \mathbb{P}(X > 1)$.
 - (a) Démontrer que $\mathbb{P}(X > n) = q^n$ pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire que X suit une loi géométrique de paramètre p = 1 q.
- * Exercice 3. Une certaine maladie affectue une personne sur mille. On dispose d'un tes pour détecter cette maladie. Le test est effectif pour 99% des personnes effecivement malades mais est également positif pour 0, 2% des personnes saines.
 - 1. Traduire les données en termes de probabilités et faire un arbre de la situation.
 - 2. Quelle est la probabilité d'être en bonne santé lorsque le test est négatif?
 - 3. Quelle est la probabilité d'être malade lorsque le test est négatif?

Sujet 2.

- \star Exercice 1. (Cours) Démontrer que si A et B sont deux événements tels que $A \subset B$, alors $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- **Exercice 2.** Soient X et Y deux variables aléatoires. On suppose que X suit une loi de Poisson $\mathcal{P}(\lambda)$ et que la loi de Y conditionnée à l'événement (X = n) est une loi binomiale $\mathcal{B}(n, p)$ pour tout $n \in \mathbb{N}$. Déterminer la loi de Y.
- ★ Exercice 3. On considère une pièce non équilibrée : à chaque lancer, la probabilité d'obtenir pile est 2/3 et d'obtenir face est 1/3. On lance n fois la pièce, et les lancés sont supposés indépendants. On note X la variable aléatoire égale au nombre de lancers nécessaires pour obtenir deux piles consécutifs pour la première fois. On note p_n la probabilité $\mathbb{P}(X=n)$.
 - 1. Expliciter les événements (X=2), (X=3) et (X=4) et déterminer p_2 , p_3 et p_4 .
 - 2. Montrer que $p_n = \frac{2}{3}p_{n-2} + \frac{1}{3}p_{n-1}$ pour tout $n \ge 4$.
 - 3. En déduire l'expression de p_n pour tout n.
 - 4. Calculer $\mathbb{E}(X)$ et interpréter le résultat.

Sujet 3.

- * Exercice 1. (Cours) Soient $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ un espace probabilisé, $n \in \mathbb{N}$ avec $n \geq 2$ et A_1, \ldots, A_n des événements deux à deux incompatibles. Démontrer que $\mathbb{P}\left(\bigcup_{k=0}^n A_k\right) = \sum_{k=0}^n \mathbb{P}(A_k)$.
- ★ Exercice 2. Soit X une variabale aléatoire prenant ses valeurs dans \mathbb{N}^* . On suppose qu'il existe $p \in]0,1[$ tel que pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X = n) = p \mathbb{P}(X \ge n)$. Déterminer la loi de X.
- * Exercice 3. On tire un jeu de 52 cartes. Quelles sont les probabilités d'obtenir :
 - i) un brelan; ii) une couleur; iii) une paire;
 - iv) une suite; v) une suite couleur; vi) rien;

Sujet 1.

- * Exercice 1. Soient $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ un espace probabilisé, $n \in \mathbb{N}$ avec $n \geq 2$ et A_1, \ldots, A_n des événements deux à deux incompatibles. Démontrer que $\mathbb{P}\left(\bigcup_{k=0}^n A_k\right) = \sum_{lk=0}^n \mathbb{P}(A_k)$.
- * Exercice 2. Soit $P(X) = X^3 8X^2 + 23X 28$. Déterminer toutes les racines de P sachant que la somme de deux des racines est égale à la troisième. Factoriser P sur $\mathbb{R}[X]$ puis sur $\mathbb{C}[X]$.
- * Exercice 3. On tire un jeu de 52 cartes. Quelles sont les probabilités d'obtenir :
 - i) un brelan; ii) une couleur; iii) une paire;
 - iv) une suite; v) une suite couleur; vi) rien;

Sujet 2.

 \star Exercice 1. Résoudre dans $\mathbb{R}[X]$ les équations suivantes :

i)
$$P(X^2) = (X^2 + 1)P(X)$$
 ii) $P \circ P = P$

- * Exercice 2. On considère une pièce non équilibrée : à chaque lancer, la probabilité d'obtenir pile est 2/3 et d'obtenir face est 1/3. On lance n fois la pièce, et les lancés sont supposés indépendants. On note X la variable aléatoire égale au nombre de lancers nécessaires pour obtenir deux piles consécutifs pour la première fois. On note p_n la probabilité $\mathbb{P}(X=n)$.
 - 1. Expliciter les événements (X=2), (X=3) et (X=4) et déterminer p_2 , p_3 et p_4 .
 - 2. Montrer que $p_n = \frac{2}{9}p_{n-2} + \frac{1}{3}p_{n-1}$ pour tout $n \ge 4$.
 - 3. En déduire l'expression de p_n pour tout n.

Sujet 3.

- * Exercice 1. Démontrer que si A et B sont deux événements tels que $A \subset B$, alors $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- * Exercice 2. Soient $n \ge 1$ et $P_n(X) = nX^{n+2} (4n+1)X^{n+1} + 4(n+1)X^n 4X^{n-1}$. Vérifier que 2 est racine de P puis déterminer son ordre de multiplicité.
- * Exercice 3. Une certaine maladie affectue une personne sur mille. On dispose d'un tes pour détecter cette maladie. Le test est effectif pour 99% des personnes effecivement malades mais est également positif pour 0, 2% des personnes saines.
 - 1. Traduire les données en termes de probabilités et faire un arbre de la situation.
 - 2. Quelle est la probabilité d'être en bonne santé lorsque le test est négatif?
 - 3. Quelle est la probabilité d'être malade lorsque le test est positif?