## DESIGN AND DEVELOPMENT OF DAMPED BORING BAR USING CELLULAR SOLIDS



Batch 3

#### STUDENT DETAILS

NAME

ROLL NO.

K. ADITYA ANIRUDH

22M501

Guide: Dr. P R THYLA Prof. and Head

Co Guide: Dr. N MAHENDRAKUMAR Assist. Prof.

#### **Problem definition**

- A large length to diameter ratio vibration(chatter) often occurs and it leads to a negative impact on the processing quality and processing performance
- Damping is a way to limit vibrations and is essential for protecting the system in which it operates at high speeds
- To improve machining performance of the tool by eliminating vibration

COURSE CODE. CLASS. PAGE
15M720 BE SW SEM 9 3

## **Objective**

 To design and develop a high damped cellular structure boring bar instead of conventional solid bar to improve the dynamic stability of the boring tool to bore smaller diameter holes

## Literature survey

#### **Classification of Cellular Materials**

- ☐ Duarte, N. Peixinho et al., 2019
- Based on the base material, these materials are grouped into cellular metals, cellular ceramics and cellular polymers
- Stochastic structure are porous and it has high energy absorbing capacity
- Open cell structure High surface area
- Closed cell structure has high structural efficiency, and damping



## Classification and selection of cellular material in mechanical design

#### ☐ Dhruv bhate et al., 2019

- Cellular material is classified in three leve!
  - Tessellation, Element type, Connectivity
- Biomimetic approach is used in selection of cellular structure
- Toucan beak structure high dynamic stiffness, Closed cell foam structure







Fig.1 Toucan beak structure

COURSE CODE. CLASS. PAGE

15M720 BE SW SEM 9 6

# **Cellular Materials characteristics The Mechanical Properties of Cellular Solids**

#### ■ M.F. ASHBY R et al., 1998

- Mechanics of natural materials such as wood, corks, bones etc.,
- Cellular solids simultaneous optimization of strength, stiffness, weight
- Cellular solids foundation for designing with foams for load bearing structure
- Foam filled sandwich structure gives longitudinal and flexural stiffness



Fig.2 Cells in cork



**Fig. 3** Sections through corks. (Axis of symmetry of the cork structure)



Fig.4 Sandwich structure in wood

#### □ F- J. Ulm et al., 2001

- Mechanical behaviour of cellular solids linear elastic ,cell wall buckle , densification
- Increased moment of inertia in sandwich panel efficient bending and buckling stiffness
- Combinations of face and core materials are used;
  - Faces steel, aluminum, or wafer board
  - Cores foamed polyurethane, foamed polystyrene bead board, or foamed glass
- Sandwich panel economic material



b b b BENDING

Fig.5 Stress strain curve for cellular solids

Fig.6 Bending in sandwich panel

## How cellular structure absorbs energy?

#### Gibson et.al, cellular solids,

- Energy absorbing capacity of cellular solids is higher than dense solids
- Cell wall buckles up to densification, so energy is absorbed up to densification
- Using elastomeric material provides linear elastic buckling of cell wall
- Increase in relative density reduces the elastic buckling range



Fig.7 Elastic buckling of honeycombs



**Fig.8** Energy absorption curve **Source**: Gibson et.al, cellular solids

# Numerical inverse engineering as a route to determine the dynamic mechanical properties of metallic cellular solids

- V.H. Carneiro et al., 2020
- Direct experimental approaches on low damping cellular solids tends to be tampered by external damping sources, an indirect numerical inverse engineering approach is presented as a solution
- Numerical inverse engineering is carried on Al based stochastic structure to determine damping ratio



Fig.9 3D-printed model



Fig.10 Experimental setup for vibration testing

### **Summary**

- > Sandwich structure has high longitudinal and bending stiffness
- > Stochastic structure has high energy absorbing capacity
  - Closed cell structure has better damping
- > Numerical inverse engineering is used for determining damping ratio

## **Gaps in literature**

- Cellular solids is not implemented in boring tool
- Very few studies on FEA of closed cell structure





 COURSE CODE.
 CLASS.
 PAGE

 15M720
 BE SW SEM 9
 12

#### **Preface**

- A large length to diameter ratio vibration(chatter) often occurs and it leads to a negative impact on the processing quality and processing performance
- Implementation of alternate material over conventional material to enhance damping property
- Improving dynamic stiffness of system improves vibrostability



**Fig.11** A development history typical of many new material

**Source**: ASHBY R et al, Metal foams : A design guide M.F.., 2000

# Why we need to improve the dynamic stiffness of the boring bar?

## Improved dynamic stiffness in the Boring bar offers

- Chatter free operation
- Increases unconditional stable region
- Natural frequency of the system increases
- > Overhang length of tool can be increased
- Significant improvement in productivity and better surface quality



Fig.13 Stability lobe diagram



Fig. 12 Machined surface of chatter tool

**Source:** Jasiewicz M et al., Implementation of an algorithm to prevent chatter vibration in a CNC system materials. 2019

Source: Mfg Tech update, Chatter in milling

## How to Improve dynamic stiffness?

#### Factors influencing...



#### **Static stiffness**

- Clamping method
- Over hang length
- Young's modulus
- · Moment of inertia



$$\mathbf{n} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad ---3$$

'Natural frequency of the system depends mass and stiffness"



 COURSE CODE.
 CLASS.
 PAGE

 15M720
 BE SW SEM 9
 16



15M720

17

BE SW SEM 9

## Why to improve damping in boring bar?

#### **Problem definition**

- ➤ Vibration is often the **limiting parameter** in gaining high output in the machine i.e. speed, feed and depth of cut
- Damping is a way to limit vibrations and is essential for protecting the system in which it operates at high speeds
- Damped boring bar reduces cost of operation



**Fig.14** Chatter in boring bar **Source**: Kennametal



**Fig.15** Damping in cantilever beam **Source**: Kip Hanson et al. 2020,boring tool sme

## What is damping in boring bar?

#### **Objective**

- Damping is the dissipation of vibratory energy in solid mediums and structures over time and distance
- ➤ To design and develop a high damped cellular structure boring bar instead of conventional solid bar to improve the dynamic stability of the boring tool to bore smaller diameter holes



**Source**: ACC, Why damping is important for construction?

## Where we use damped boring bar?

The damped boring bars are used for manufacturing

- Machining small diameter holes
- Superior quality and highly accurate industrial automation equipment
- Automotive parts
- Medical implant accessories
- > Thin walled aerospace parts
- > IC engines, hydraulic cylinders



Fig.19 Machining medical implants

**Source**: New engineering practice BlogSpot



Fig.17 Thin wall machining



Fig.18 Engine block machining

COURSE CODE. CLASS. PAGE 15M720 BE SW SEM 9 20

## When damped boring bars are used?

- Large length to diameter ratio is required for machining
- High material removal rate is required
- When surface quality of machining is required to be improved by increasing the
  - ✓ Natural frequency
  - ✓ Static stiffness
  - ✓ Damping ratio
- Low operating cost is required



Fig.20 Conventional boring bar



Fig.21 Damped boring bar

**Source**: Canstockphoto

#### Who are beneficiaries?

- Manufacturing company who requires close tolerance with long overhang
- Aerospace and medical equipment manufacturer
- Small scale companies aiming for low production cost



Fig.22 Quality vs cost graph

**Source**: Colonialtool

## How to improve damping in boring bars?

- > Reducing critical damping constant improves vibrational damping of tool
- > Damping ratio:

$$\mathcal{E} = rac{c}{2\sqrt{mk}} \leftarrow rac{Damping constant}{Critical damping constant}$$

- > Replacing with low weight to high strength ratio material i.e. Cellular solids
- > Using high energy absorbing structure i.e. Fig. 23 Strength to weight ratio of cellular
- Using tuned mass dampers in tool.

Oil is added to increase the dampenin





engineering materials

**Source**: North Carolina State University, Materials research letters

## **Concluding remarks**

- > Damping plays a major role improving surface quality during boring
- > Overhang length of tool can be increased in damped boring bar
- Replacing conventional solid tools with low weight to high strength material improves damping
- Damped boring bars reduces operational cost
- Metal foams has low weight to strength ratio i.e. Cymat, Alulight, Alporas, ERG, Inco
- > Cellular structured solids has high energy absorbing capacity

## **Boring tool selection**

#### Overhang Lengths

Selection of overhang length for different boring tool materials.

Steel boring bars: Up to 4 x D

Carbide boring bars: Up to 6 x D

Steel damped boring bars short design: Up to 7 x D

Carbide reinforced damped boring bars: Up to 14 x D



Fig.25 Overhang length

**Source:** Sandvik Coromant Manual, How to reduce vibration in metal cutting



Fig.26 Boring bars – BB1 & BB2

| Properties                   | BB1                             | BB2    |
|------------------------------|---------------------------------|--------|
| Size –<br>Dia/length<br>(mm) | 10/125                          | 10/125 |
| Material                     | Steel ( with alloying elements) | Steel  |
| Cross Section                | Hollow                          | Solid  |
| Cost (INR)                   | 11,250                          | 3,500  |

Table.1 Properties of tool



## **Benchmarking data**

#### **EXPERIMENTAL MODAL ANALYSIS – FREE FREE CONDITION**

| Parameter                | BB1  | BB2  |
|--------------------------|------|------|
| Natural<br>Frequency(Hz) | 2908 | 2846 |



Fig. 27 (a-c) Experimental modal analysis setup and testing

#### **BORING BAR FEA - MODAL ANALYSIS**

#### **GEOMETRY AND MATERIAL**





TOOL:BB1

**TOOL:BB2** 

MANUFACTURER: SANDVIK COROMANT MANUFACTURE: WIDIA

MASS: 0.064 Kg MASS: 0.069 Kg

**COOLANT DIA:**3mm

| PART          | MATERIAL | YOUNGS<br>MODULUS | POISON<br>RATIO | DENSITY        |
|---------------|----------|-------------------|-----------------|----------------|
| BORING<br>BAR | STEEL    | 210GPa            | 0.3             | 7890<br>Kg/m3  |
| INSERT        | CARBIDE  | 600GPa            | 0.2             | 14800<br>Kg/m3 |
| SLEEVE        | STEEL    | 210GPa            | 0.3             | 7890<br>Kg/m3  |

**Table.2** Mechanical properties of boring tool

**Preprocessor**: Hyper mesh

Solver : OptiStruct

**Postprocessor**: Hyper view

#### **MESH CRITERIA**

Element size: 1 mm

Element type: 3D tetrahedral

second order

Tet collapse : 0.2

Number of elements

BB1 = 57071

BB2 = 60915



#### **MODAL ANALYSIS - FREE FREE CONDITION**



TOOL:BB1

| 1 <sup>ST</sup> MODAL | EXPERIMENTAL |
|-----------------------|--------------|
| FREQUENCY             | RESULT       |
| 2964 Hz               | 2908Hz       |

Generalized Generalized

|         |      |              |              | ocncrarized  | ochcialized  |  |
|---------|------|--------------|--------------|--------------|--------------|--|
| Subcase | Mode | Frequency    | Eigenvalue   | Stiffness    | Mass         |  |
| 1       | 1    | 5.141907E-02 | 1.043778E-01 | 1.043778E-01 | 1.000000E+00 |  |
| 1       | 2    | 5.341533E-02 | 1.126397E-01 | 1.126397E-01 | 1.000000E+00 |  |
| 1       | 3    | 5.429686E-02 | 1.163883E-01 | 1.163883E-01 | 1.000000E+00 |  |
| 1       | 4    | 5.443759E-02 | 1.169924E-01 | 1.169924E-01 | 1.000000E+00 |  |
| 1       | 5    | 5.865880E-02 | 1.358395E-01 | 1.358395E-01 | 1.000000E+00 |  |
| 1       | 6    | 6.449059E-02 | 1.641922E-01 | 1.641922E-01 | 1.000000E+00 |  |
| 1       | 7    | 2.964649E+03 | 3.469816E+08 | 3.469816E+08 | 1.000000E+00 |  |
| 1       | 8    | 3.068312E+03 | 3.716712E+08 | 3.716712E+08 | 1.000000E+00 |  |
| 1       | 9    | 7.812315E+03 | 2.409457E+09 | 2.409457E+09 | 1.000000E+00 |  |
| 1       | 10   | 8.063843E+03 | 2.567106E+09 | 2.567106E+09 | 1.000000E+00 |  |
|         |      |              |              |              |              |  |

COURSE CODE. CLASS. PAGE

15M720 BE SW SEM 9 30

Min = 3.269E-01 Grids 140606

Contour Plot



| С | OURSE CODE | . CLASS.    | PAGE |
|---|------------|-------------|------|
|   | 15M720     | BE SW SEM 9 | 31   |

# Properties of Cellular solids

- ➤ The mechanical behaviour of cellular materials can be described by analysing the mechanisms by which the cells deform
- At low relative densities, it is made up of a network of rod like elements which form open cells. At higher relative densities (greater than 0.2) it is made up of a network of plate-like elements forming closed Cells
- ➤ The results of the analysis depend on three parameters:
  - The type of structure the cells form (for example, open or closed cells)
  - The volume fraction of solids, or relative density
  - Properties of the cell wall material



**Fig. 28** a) Open cell structure b) closed cell structure

**Source**: Gibson et al., 1981

#### **Properties of cellular solids**



Fig. 29 Properties of cellular solids (a) Density (b) Young's modulus (c) Yield Strength (d) Conductivity

Source: Classification and selection of cellular materials in mechanical design,2019

# Study on Cellular solids cell shape, size and topology

### Cellular solids in nature

|                                  | Mechanical properties                          | Structure |
|----------------------------------|------------------------------------------------|-----------|
| Honeybee nest<br>(Periodic)      | High flexural , compressive strength           | (a)       |
| Trabecular bone (stochastic)     | Toughness under compressive and impact loading | (b)       |
| Dragonfly wing<br>(Hierarchical) | Flexural rigidity , flexural stiffness         | (c)       |

Table.3 Cellular solids in nature

**Fig. 30** Cellular solids in nature **(a)** Honeybee nest **(b)** Trabecular bone **(c)** Dragonfly wing.

#### Structure of cellular solids in nature

- Natural cellular solids are anisotropic, they have directional property
- Natural cellular solids have pore size of minimum 10 microns



Fig. 31 Natural cellular materials: (a) cork, (b) wood, (c) sponge, (d) coral, (e) bone (f) cuttle bone.

**Source :** Gibson et al., 1981

## Manufactured cellular solids

- Man made cellular solids are almost isotropic, meaning that their structure and their properties have no directionality
- Pore size of minimum 100 microns can be manufactured



**Fig. 32** Man-made cellular solids: (a) open cell polyurethane (b) closed cell polyurethane (c) aluminium honeycomb (d) copper (e) mullite (f) zirconia

Source: Gibson et al., 1981

## Cell shape

- Periodic structure Honeycomb has high flexural and compressive strength
- ➤ Selection of cell shape by Euler's law
   F E +V = 1 (Two dimension)
   C + F- E +V = 1 (Three

#### dimension)

- Using hexagonal prism structure has uniform infill throughout
- → 4 and 5 sided cells can be also implemented in hexagonal prism infill.
- Implementation of hexagonal prism(polyhedral)infill isotropic property can be achieved



Fig. 33 Packing of two dimensional cell to fill space



Fig. 34 Packing of polyhedral to fill space



#### **Cell size**

- > Parameters for selection of cell size
  - Vertical length of cell wall (h-height of cell wall)
  - Inclined length of cell wall (length of cell wall)
  - Thickness of the cell wall (t)
  - Angle between the vertical and inclined cell wall known as cell angle (θ)
  - Depth of the cell wall (d)
- Manufacturing by 3D printing limits the minimum size cell
- Minimum wall thickness manufactured by 3D printing is 400 microns

**Source**: msesuppliers, www.3ders.org



Fig.35 Honeycomb cell parameters

Young's modulus 
$$E_1^* = E_s \frac{\beta^3 \cos \theta}{(\alpha + \sin \theta) \sin^2 \theta}$$

Shear modulus 
$$G_{12}^* = E_s \beta^3 \frac{(\alpha + \sin \theta)}{\alpha^2 (1 + 2\alpha) \cos \theta}$$

Poison ratio 
$$v_{12}^* = \frac{\cos^2 \theta}{(\alpha + \sin \theta) \sin \theta}$$
  
 $\beta = t/l \quad \alpha = h/l$ 

## Cell topology

- Pores having major axis parallel to the loading direction has better strength characteristics
- Large and low aspect ratio pores enhance flexural and compressive strength at the same relative density



#### Strength decreases

**Source**: Tuncer, N., et al. *Materials Science and Engineering* A 528 (2011):





**Fig.36** Comparison between a cellular solid and a solid with isolated pores

Source: Gibson et.al, Cellular solids 1997

## **Deformation mechanism of Honeycombs**

#### Cell wall bending

- Layer-wise collapse perpendicular to loading direction
  - Oscillation in stress strain curve



Fig.37 Cell wall bending

#### **Cell wall buckling**

- Shear localization occurs.
  Deformation at nearly constant applied stress by shear bands
  - Smooth stress strain diagram



Fig.38 Cell wall buckling

Source: Gibson et.al, Cellular solids 1997

## In-plane deformation

- ➤ In-plane occurs in x<sub>1</sub> and x<sub>2</sub> direction of the honeycombs
- ➤ The resistance to the cell wall bending and cell collapse goes up, giving a higher modulus and plateau stress and cell walls touch sooner, reducing the strain at which densification begins
- To calculate deformation
  - Isotropic two independent elastic moduli (young's modulus E and shear modulus G) and size value of plateau stress (σ)
  - Anisotropic  $(E_1 *, E_2 *, G_{12} *, \lambda_{12} *)$  two plateau stress  $(\sigma_1 *, \sigma_2 *)$



**Fig.39** In-plane deformation of honeycombs by cell wall bending **(a)** In X<sub>1</sub> direction **(b)** X<sub>2</sub> direction



Fig.40 In-plane mechanism of aluminium in compression X<sub>1</sub>, X<sub>2</sub> direction

## Out of plane deformation

- Out of plane deformation occurs in  $x_3$  direction of the honeycombs.
- Cell wall thickness determines the stiffness and strength when it is loaded along the axis in the x<sub>3</sub> direction



**Fig.41** Out-plane deformation of honeycombs in X<sub>3</sub> direction (a) In honeycombs (b) In unit cell



**Fig.42** Out-plane mechanism of aluminium in compression in X<sub>3</sub> direction

## Why sandwich structure?

- Two solid surfaces(skins) separated by a lightweight core
- Separation of skins by core increases moment of inertia, with little increase in weight
- Sandwich plate exhibits high bending stiffness (flexural rigidity) for lower mass and has a low shear modulus which makes them a better source of damping
- Mechanical behavior of sandwich panel depends on properties of core, face and on its geometry





Fig. 43 Load vs displacement of sandwiched structure

**Source**: ASHBY R et al, Metal foams: A design guide M.F.., 2000

### **DESIGN OF HONEYCOMB STRUCTURE**

Cellular solids relative density should be less than 0.3

#### RELATIVE DENSITY OF CELL AGGREGATE

$$\frac{\rho*}{\rho s} = \frac{2}{\sqrt{3}} \frac{t}{l} \left( 1 - \frac{2}{\sqrt{3}} \frac{t}{l} \right) --- Eq.26$$

$$\frac{t}{l} = 0.365$$

$$\frac{\rho*}{\rho s} = \frac{t/l \ (h/L + l)}{(h/l + sin \theta) \cos \theta} - Eq.27 \ \theta = 30$$

Substituting t/l in Eq.2

$$\frac{h}{l} = 0.566$$



Fig.44 Honeycomb cell parameters

## **Concluding remarks**

- Honeycomb structure has high flexural strength and compressive strength
- ➤ Cell size of minimum 400 microns wall thickness can be only manufactured
- ➤ High flexural strength is resulted in topology having pore size major axis in loading direction

## Selection of material

| Properties                    | 17-4 PH<br>Stainless Steel | H13 Tool<br>Steel   | Inconel 625 | Titanium<br>(Ti6Al4V) |  |  |
|-------------------------------|----------------------------|---------------------|-------------|-----------------------|--|--|
| Density, ρ g/cm <sup>3</sup>  | 7.75                       | 7.80                | 8.44        | 4.83                  |  |  |
| Young's<br>modulus, E -GPa    | 210                        | 250                 | 200         | 113                   |  |  |
| Ultimate tensile strength MPa | 1050-1250                  | 1420-1500           | 558-765     | 900-950               |  |  |
| Poisson's ratio, v            | 0.27-0.30                  | 0.27-0.30 0.26-0.28 |             | 0.31-0.37             |  |  |
| Cost<br>(RS)(approx.)         | 12,000/Kg                  | 17,000/Kg           | 12,000/Kg   | 20,000/Kg             |  |  |

**Table.4** Materials for manufacturing cellular solids

**Source**: Msesuppliers, www.3ders.org

➤ Material is finalized based on availability of manufacturing resources

| COURSE CODE. |        | . CLASS.    | PAGE |
|--------------|--------|-------------|------|
|              | 15M720 | BE SW SEM 9 | 49   |

# Why additive manufacturing for cellular materials ?

- > Additive manufacturing offers advantages
  - Local tunability
  - Complex, Non-stochastic shapes
  - Low cost penalty for complexity
  - Multi-material
- > Additive manufacturing considerations
  - Dimensional accuracy
  - Feature resolution
  - Defects
  - Cleaning
  - Inspection

| С | OURSE CODE | . CLASS.    | PAGE |
|---|------------|-------------|------|
|   | 15M720     | BE SW SEM 9 | 50   |

## Linear static analysis

#### Loads and boundary condition

Solid structured bar



Honeycomb structured bar





#### Finite element model

#### Solid structured bar



#### Honeycomb structured bar



**Preprocessor**: Hyper mesh

Solver : OptiStruct

Postprocessor : Hyper view

| MATERIAL YOUNGS MODULUS E |        | POISON<br>RATIO<br>V | DENSITY<br>ρ  |  |
|---------------------------|--------|----------------------|---------------|--|
| STEEL                     | 210GPa | 0.3                  | 7890<br>Kg/m3 |  |

#### Mesh convergence study



#### No of elements

Number of elements = 121649



| Thickness (t) (mm) | Height (h)<br>(mm) | Length (I)<br>(mm) | Displacement (mm) | Stiffness<br>(kN/mm) | Mass<br>(kg) |  |
|--------------------|--------------------|--------------------|-------------------|----------------------|--------------|--|
| 0.5                | 0.70               | 1.38               | 0.105             | 2.380                | 0.034        |  |
| 0.6                | 0.85               | 1.67               | 0.095             | 2.631                | 0.039        |  |
| 0.7                | 0.98               | 1.94               | 0.082             | 3.048                | 0.041        |  |
| 0.8                | 1.12               | 2.22               | 0.075             | 3.333                | 0.046        |  |
| 1                  | 1.40               | 2.77               | 0.064             | 3.906                | 0.053        |  |
| Solid bar          |                    |                    | 0.0571            | 4.378                | 0.077        |  |

**Table.5** FEA results of honeycomb structure bar



Solid specimen

Honey comb structure specimen

#### Inference:

Increase in wall thickness improves the bending stiffness of honey comb structure



| TASK                | Problem Definition /<br>Objective | Literature<br>review | Methodology | Boring tool selection<br>and performance<br>target | Study on<br>cellular solids<br>in nature | Specimen<br>design | Cellular<br>structure<br>design | FEA<br>Validation | Topology<br>optimization | Optimized<br>FEA<br>validation |
|---------------------|-----------------------------------|----------------------|-------------|----------------------------------------------------|------------------------------------------|--------------------|---------------------------------|-------------------|--------------------------|--------------------------------|
| START DATE          | 22-07-2021                        | 29-07-2021           | 05-08-2021  | 13-08-2021                                         | 16-08-2021                               | 01-09-2021         | 04-09-2021                      | 16-09-2021        | 01-10-2021               | 11-10-2021                     |
| DAYS TO<br>COMPLETE | 7                                 | 84                   | 7           | 2                                                  | 15                                       | 2                  | 11                              | 14                | 9                        | 10                             |

## Thank you