Computer Graphics: Assignment 04

Lina Gundelwein, Letitia Parcalabescu, Anushalakshmi Manila ${\bf November~25,~2016}$

1 Euler Angles and even more Transformations

$$R = R_{2}(\phi) \cdot R_{y}(\theta) R_{x}(\Psi) = \begin{pmatrix} 0.7500 & -0.6495 & -0.1260 \\ 0.4330 & 0.6350 & -0.6495 \\ 0.5000 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.60 \cdot 0.60 & 0.4330 & 0.7500 \\ 0.5000 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.60 \cdot 0.60 & 0.4330 & 0.7500 \\ 0.60 \cdot 0.60 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.60 \cdot 0.60 & 0.60$$

- Set sun to coordinate center
- PushMatrix()
 - Rotate sun about angle ϕ_{sun} around y-axis
- popMatrix()
- PushMatrix()
 - Rotate earth about $\frac{360}{365}$ around y-axis
 - Translate earth and moon about $dist_{earth-sun}$
 - PushMatrix()
 - * Rotate earth about 23.5 around z-axis
 - * Rotate earth about ϕ_{earth} around y-axis
 - PopMatrix()
 - PushMatrix()
 - * Rotate moon about $\frac{360}{12}$ around y-axis
 - * Translate moon about $dist_{moon-earth}$
 - PopMatrix()
- popMatrix()