

LAPORAN AUDIT ENERGI INTERNAL 2015

"OPTIMISASI STATION HEAT RATE DENGAN MENGATUR TINGKAT PEMBEBANAN UNIT 5 & 6 DI PLTU PAITON II"

PT. YTL Jawa Timur

Kompleks Pembangkit Listrik PLTU Paiton Jl. Raya Surabaya-Situbondo km.141 Paiton Probolinggo, Jawa Timur 67291

LAPORAN AUDIT ENERGI INTERNAL 2015

OPTIMISASI STATION HEAT RATE DENGAN MENGATUR TINGKAT PEMBEBANAN UNIT 5 & 6 DI PLTU PAITON II

PT. YTL Jawa Timur

Menyetujui:

Penyusun:

Marcus L. Parinussa (Manajer Energi)

Prayoga (Auditor Energi Internal) SK: 91122 2149 0101004 2013 HKE 083 00004 2013

OPTIMISASI STATION HEAT RATE DENGAN MENGATUR TINGKAT PEMBEBANAN UNIT 5 & 6 DI PLTU PAITON II

RINGKASAN UTAMA (Executive Summary)

Telah dilakukan pengujian kinerja heat rate (heat rate performance test) unit 5 dan 6 di PLTU Paiton II dengan 4 tingkat pembebanan : 450 MW, 500 MW, 550 MW dan 610 MW (100% beban). Secara keseluruhan tujuan utama rangkaian pengujian ini adalah mendapatkan tingkat pembebanan optimum dari masingmasing unit yang menghasilkan efisiensi termal plant tertinggi disaat memenuhi tiap tingkat beban (dispatch) plant yang diminta PLN-P3B.

Pelaksanaan pengujian kinerja heat rate unit 5 dilakukan dalam rentang waktu dari tanggal 12 Februari 2015 sampai dengan 22 April 2015. Sedangkan Unit 6 dilaksanakan pada rentang waktu 9 Desember 2014 hingga 23 September 2015. Hasil yang didapatkan adalah sebagai berikut:

a. Data Unit 50

NO	ITEMS	UNIT	LOAD (MW NETT))
	TIEMS	UNIT	455.18	502.71	551.32	606.49
1	Corrected Gross Turbine Heat Rate	kCal/kwh	1911.19	1956.30	1954.45	1981.85
2	Boiler Efficiency Test Result (LHV)	%	93.177	93.178	93.162	92.805
3	Net Heat Rate Test Result	kCal/kwh	2152.75	2202.32	2197.33	2231.91
4	Plant Efficiency	%	39.94	39.04	39.13	38.53

b. Data Unit 60

NO	ITEMS	UNIT	LOAD (MW NETT)					
	TILIMS	ONIT	458.10	506.34	554.39	613.29		
1	Corrected Gross Turbine Heat Rate	kCal/kwh	2120.61	2063.14	2008.78	1978.11		
2	Boiler Efficiency Test Result (LHV)	%	94.183	93.376	92.634	93.521		
3	Unit Nett Heat Rate (Corr)	kCal/kwh	2381.01	2311.95	2265.16	2203.52		
4	Plant Efficiency	%	36.11	37.19	37.96	39.02		

Secara umum terlihat bahwa dengan adanya kenaikan beban unit 5 maka terdapat tren sebagai berikut:

- 1. Nilai turbine heat rate gross (corr) semakin naik
- 2. Nilai efisiensi boiler semakin turun
- 3. Nilai heat rate unit netto (efisiensi termal plant) semakin naik

Sedangkan pada Unit 6, trend yang didapat saat terjadi kenaikan beban adalah:

- 1. Nilai turbine heat rate gross (corr) semakin turun (semakin baik)
- 2. Nilai boiler efisiensi cenderung bervariasi
- 3. Nilai heat rate unit netto (efisiensi termal plant) semakin turun (semakin baik)

Pemicu utama naiknya nilai heat rate unit adalah karena temperatur uap utama mengalami penurunan dengan naiknya beban unit 5. Sedangkan pada Unit 6, unit heat rate semakin baik seiring dengan kenaikan beban.

Daftar Isi:

Ringkasan Utama (Executive Summary)

- 1 Latar Belakang
- 2 Tujuan Melakukan Audit
- 3 Deskripsi Fasilitas yang Diaudit
- 4 Status Energi Saat Ini
- 5 Program Uji dan Metode
- 6 Persiapan dan Pelaksanaan Pengujian
- 7 Hasil
- 8 Diskusi Hasil
- 9 Potensi Efisiensi yang Dapat Dicapai
- 10 Rekomendasi dan Kesimpulan

BAGIAN 1 - Latar Belakang

Efisiensi termal dari unit pembangkit tenaga listrik dapat diwakili oleh heat rate (tingkat panas), yang merupakan ukuran dari jumlah energi (disini menggunakan satuan kCal) yang digunakan untuk menghasilkan satu satuan kilowatthour listrik. Sebuah unit pembangkit dengan heat rate yang lebih rendah, atau yang lebih efisien, dapat menghasilkan jumlah energi listrik yang sama sekalipun mengkonsumsi lebih sedikit bahan bakar, dibandingkan dengan unit pembangkit dengan heat rate yang lebih tinggi. Dengan demikian, heat rate yang lebih baik pada pembangkit listrik dapat menurunkan biaya bahan bakar dan membantu mencapai kepatuhan terhadap peraturan lingkungan.

Sebagian besar pembangkit listrik tenaga batubara dalam sistem grid Jawa Bali dirancang untuk operasi pada beban dasar (base load). Namun kondisi sebenarnya saat ini menunjukkan bahwa sebagian besar PLTU batubara beroperasi pada beban parsial, yang selalu berubah mengikuti permintaan beban yang diatur oleh PLN-P3B Pusat.

PLTU Paiton II, yang dioperasikan dan dipelihara oleh PT YTL Jawa Timur, mengoperasikan 2 unit (unit 5 dan unit 6) yang identik dalam hal : kapasitas dan spesifikasi komponen. PLN-P3B Pusat mempersyaratkan bahwa ke-2 unit tsb harus memikul tingkat beban yang sama dalam rentang pengoperasiannya. Namun data operasi kedua unit menunjukkan kecenderungan yang berbeda untuk parameter yang berhubungan langsung dengan tingkat kinerjanya, misalnya: suhu uap utama, suhu uap reheat dan suhu gas buang.

BAGIAN 2 - Tujuan Melakukan Audit

Pengujian heat rate unit 5 dan 6 bertujuan untuk melihat pengaruh perubahan beban unit terhadap heat ratenya. Dengan mengetahui trend heat rate terhadap tingkat beban tertentu dalam rentang operasi sehari-hari maka:

- 1. Dapat menentukan pola operasi pembebanan unit 5 yang terbaik, dan bila digabung dengan pola operasi pembebanan unit 6, akan menghasilkan heat rate plant yang optimum.
- 2. Mengurangi kerja siklik salah satu unit dengan cara memberikan prioritas perubahan beban terlebih dahulu kepada unit yang paling efisien pada tingkat beban lebih tinggi. Hal ini akan mengurangi laju kerusakan komponen utama unit.

BAGIAN 3 - Deskripsi Fasilitas yang Diaudit

Audit pengujian heat rate unit 5 dan 6 ini meliputi area boiler, turbin, dan auxiliary. Spesifikasi dari peralatan-peralatan di area tersebut dijelaskan sebagai berikut:

BOILER

Type : Outdoor, Forced Circulation, and Balanced Draft

Pulverizer Coal Fired, Tangential Firing & Low NO_X

Manufacturer : ABB CE

Boiler Efficiency : 92.5 % at MCR (LHV Basis)

Design load	100% (650MW)	50% (325MW)
Coal	Kideco - roto	Kideco – roto
Superheater Flow	546 kg/s	263 kg/s
Superheater outlet temp.	543 °C	543°C
Superheater outlet press.	174.6 bar	104 bar
Drum Pressure	187.2 bar	110 bar
Reheater Flow	470 kg/s	235 kg/s
Reheater outlet temp.	540 °C	540°C
Feedwater temp	278 °C	240°C
Coal Fired	268.2 T/h	139.6 T/h
Approx. T/MW	0.412	0.429

Coal Storage Bunkers : 6 per unit

Coal Bunker Capacity : 6 x 500 Ton

Coal Mills / Feeders : 6 per unit

Mills Capacity : 6 x 66 T/h

Feeders Capacity : 6 x 89 T/h

Ignition fuel : Diesel Oil (Cap. Tank 720 M³)

Component	Capacity & description					
Fuel oil pump.	3 x 100 %, screw type					
Forced Draft Fan	2 x 50 %, Axial Type , TLT Babcock. Blade pitch controller.					
Induced Draft Fan	2 x 50 %, Axial Type , TLT Babcock. Blade pitch controller					
Primary Air Fan	2 x 50 %, Centrifugal Type , ABB Solyvent, inlet dampers					
I filliary All I all	controller					
Seal Air Fan	2 x 100%, Centrifugal Type					
Scanner air Fan	2 x 100%, Centrifugal Type					
Boiler Water Circ.	3 x 60%, Hayward Tyler Glandless motor, Single Stage					
Pump Centrifugal pump with Double Discharge						
Oil guns	30 % Boiler Load, HEA ignitor with atomises oil by					
Oii guiis	services air, 12 per Unit					

BOILER GAS- PASS

Design load	100 % (650 MW)	50% (325 MW)
Coal	Kideco – Roto	Kideco – roto
Air heater temp. inlet	372 °C	301 °C
Air heater temp outlet	127 °C	108 °C
Furnace pressure	-1.2 mbar	-1.2 mbar
Stack temp. outlet	76 °C	76 °C
Pri/ sec. Air temp inlet A/ HTR	32.2 °C / 27.2 °C	32.2 °C / 26 °C
Pri/ sec. Air temp outlet A/ HTR	357 °C / 341 °C	284 °C / 281 °C

STEAM TURBINE GENERATOR SET

Turbine Manufacturer : SIEMENS

Turbine Type : HMN Series 4 (1 HP, 1 IP, 2 LP)
HP Turbine : Single Flow, Double Shell, 14 stages

Barrel Type outer Casing

2 Combined Stop & Control Valves

IP Turbine : Double Flow, Double Shell Casing, 2x13 stages

2 combined stop & control valves

LP Turbine (2 Off) : Double Flow, Multi Shell Casing, 2x7stages

Condenser (2 Off) : * Single Flow, Two lines, Titanium Tubes arranged in

series

* Capacity : 580 m³

* Pressure : -1 bar

* Temp.max : 85 °C

Extraction Stage : 8 (HP: 1, IP: 3, LP: 4)

Rated Speed : 3000 rpm

Casings : 4 (1 HP, 1IP, 2 LP)

LP Exhaust Pressure : 0,0649 Bar

Evacuation pump : 3 x 50%, Liquid water ring Type

Tube cleaning : Sponge Balls Type

Design load	100 % (650MW)	75% (487MW)	50% (325MW)
Main Steam flow	546 kg/ s	400 kg/ s	264 kg/ s
Main Steam pressure	167 bar	128 bar	100 bar
Main Steam temperature	538 °C	538 °C	538 °C
Cold reheat temp	332 .2 °C	334 °C	330 °C
Cold reheat pressure	42. 7 bar	32 bar	21 bar
Hot reheat temp	538 °C	538 °C	538 °C
Hot reheat pressure	38.8 bar	29 bar	19 bar

Generator Type : THDF 115 / 67, 2 poles

Generator Rating : 789 MVA
Voltage Output : 21 KV
Frequency : 50 Hz
Power Factor : 0,85 Lag
Ampere : 21,692 A

H₂ Cooling Pressure : 4.5 bar, 2 x 100% Gas drier

Stator Cooling : primary water system, ion exchanger and alkalizer unit.

2 X 100 % pump with press. Disch. 5 bar

Seal oil : 3 X 100 % pumps, include 1 pump DC power supply

Excitation : - Pilot exc. : 220V / 195A, 400Hz

- Main exc. : * 600V / 7500A

* 820V / 10250A

Electrical Output (100%) : 650 MW (Gross), house load ± 29 MW

BAGIAN 4 - Status Energi Saat Ini

4.1 Jumlah Produksi Tahun 2010 - 2015

Jumlah produksi listrik PLTU Paiton Unit 5 & 6 setiap tahunnya tidaklah sama. Jumlah produksi listrik ini dipengaruhi oleh permintaan pengiriman energi listrik oleh PT. PLN selaku pembeli (yang ditunjukkan oleh parameter *Load Factor*) dan juga lamanya unit *in service* tiap tahunnya. Untuk tahun 2015 ini Load factor rata-rata adalah 84.31%. Dari tabel dibawah dapat kita lihat jumlah produksi listrik, kebutuhan batubara dan konsumsi energi spesifik PLTU Paiton Unit 5 & 6 dari tahun 2010 sampai tahun 2015.

Konsumsi Energi Spesifik merupakan pembagian antara Pemakaian Energi (Gjoule) dan Produksi Listrik (GWh), dimana Pemakaian Energi (Gjoule) adalah gabungan antara konsumsi batubara, bahan bakar minyak dan kebutuhan listrik baik houseload maupun impor dari 150 kV PLN. Sedangkan Produksi listrik merupakan besarnya energi yang dihasilkan oleh 2 unit.

KONSUMSI ENERGI SPESIFIK TAHUN 2010 - 2014

Pemakaian Energi (GJoule) (A)		Produksi (GWh) (B)	Konsumsi Energi Spesifik (GJoule/GWh) (C=A/B)	
2010	101.187.333	8.410	12.031	
2011	97.801.413	8.162	11.982	
2012	100.339.444	8.450	11.874	
2013	93.708.605	8.062	11.623	
2014	99.351.307	8.433	11.781	

KONSUMSI ENERGI SPESIFIK BULANAN TAHUN 2014 - 2015

Bulan	Pemakaian Energi (GJoule) (A)	Produksi (GWh) (B)	Konsumsi Energi Spesifik (GJoule/GWh) (C=A/B)
September 2014	9.270.801	795	11.655
Oktober 2014	9.708.359	836	11.610
Nopember 2014	7.661.449	649	11.803
Desember 2014	8.368.946	702	11.909
Januari 2015	7.883.849	653	12.076
Februari 2015	7.068.428	587	12.038
Maret 2015	8.668.088	721	12.027
April 2015	7.128.650	582	12.256
Mei 2015	9.037.551	757	11.931
Juni 2015	8.958.005	754	11.885
Juli 2015	7.919.575	665	11.903
Agustus 2015	6.750.779	565	11.951

BAGIAN 5 - Program Uji dan Metode

Program pengujian heat rate unit 5 dan 6 dilakukan dengan metode sebagai berikut:

- Rentang beban yang digunakan dalam pengujian heat rate mengacu kepada beban harian yang umum didapat, yaitu dari beban 450 MW sampai dengan beban penuh 100% 610 MW net. Untuk itu ditentukan 4 titik beban yang akan digunakan : 450 MW, 500 MW, 550 MW dan 610 MW net.
- 2. Tidak ada pengaturan kondisi operasi unit baik sebelum maupun saat pengujian berlangsung. Kondisi operasi yang digunakan adalah sebagaimana yang dilakukan sehari-hari. Jadi tidak mengacu kepada standar pengujian apapun, seperti yang biasa digunakan : ASME 4 (untuk boiler) dan ASME 6 (untuk turbin uap).
- 3. Unit dibiarkan stabil selama 0.5 jam sebelum memulai pengambilan data pengujian.
- 4. Hasil heat rate unit diperoleh dengan menghitung/mengdownload 3 komponen utama : turbin heat rate gross, efisiensi boiler dan daya auxiliary (auxiliary power)

BAGIAN 6 - Persiapan dan Pelaksanaan Pengujian

Tabel berikut mencantumkan tahap-tahap persiapan dan pelaksanaan pengujian heat rate unit 5 dan 6. Tahap dan urutan pelaksanaan pengujian ini berlaku umum untuk ke-4 tingkat beban

LANGKAH-LANGKAH PERSIAPAN DAN PELAKSANAAN PENGUJIAN HEAT RATE

<u>Unit : 50</u> <u>Tanggal : 12 Feb 2015</u>

No	Di-ti	Tentat	Tentative time		D	D4	Domork	
NO	Descriptions	Date	start	end	Resp officer	Dept	Remark	
1	Open AH A/B outlet grating & installed scafolding	11/Feb/2015			Eng Boiler	Eng	Already prepared (WO = 2015/39061)	
2	Cleaning sampling ports at AH A/B in/out	11/Feb/2015			Eng MH	Ops	Already prepared	
3	Install thermocuples at AH A/B SA/PA Inlet sides	11/Feb/2015			PP staff	Ops		
4	Fill the designated bunkers A, B, C by Berau, and D, E by Kideco	11/Feb/2015	20:00		Operator	Ops	Composition :running with 5 Mills i/s A,B,C,D,E	
5	Pyrite transport operation finished	12/Feb/2015	7:00		Operator	Ops		
6	Unit on 75% Load	12/Feb/2015	7:00	11:45	Operator	Ops	75% load = 450 MW net, with +/- 10MW	
7	Blowdown in normal operation	12/Feb/2015	7:30	11:45	Operator	Ops	No specific requirement	
8	Cycle Isolation valve in normal operation	12/Feb/2015	7:30	11:30	Operator	Ops	No specific requirement	
9	MU valve in normal operation	12/Feb/2015	7:30	11:45	Operator	Ops	No specific requirement	
10	All Sootblowers normal except accoustic horn	12/Feb/2015	7:30	11:45	Operator	Ops	Normal : could be	
11	Taking Flue Gas sampling at AH-A inlet	12/Feb/2015	8:00	9:00	I Made H	Ops	Start at AH-A side first	
12	Taking Flue Gas sampling at AH-A outlet	12/Feb/2015	8:00	9:00	Wahyu Her.	Ops	Start at AH-A side first	
13	Taking AH A/B PA in temp, SA in temp, and ambient air temp data, and humidity	12/Feb/2015	8:00	9:00	Susanto	Ops		
14	Taking Coal Sampling from all Coal Feeders in service	12/Feb/2015	8:00	9:00	Chemist	Ops		
15	Taking Condenser vacuum (manometer) reading and barometric pressure	12/Feb/2015	8:00	9:00	Operator	Ops		
16	Taking Sample of Bottom ash & fly ash	12/Feb/2015	9:00	9:45	PP staff	Ops		
17	Move all testing equipments from AH-A to AH-B	12/Feb/2015	9:00	9:45	PP staff	Ops		
18	Taking Flue Gas sampling at AH-B inlet	12/Feb/2015	10:00	11:00	I Made H	Ops		
19	Taking Flue Gas sampling at AH-B outlet	12/Feb/2015	10:00	11:00	Wahyu Her.	Ops		
20	Taking AH A/B PA in temp, SA in temp, and ambient air temp data, and humidity	12/Feb/2015	10:00	11:00	Susanto	Ops		
21	Taking Coal Sampling from all Coal Feeders in service	12/Feb/2015	10:00	11:00	Chemist	Ops		
22	Taking Condenser vacuum (manometer) reading and barometric pressure	12/Feb/2015	10:00	11:00	Operator	Ops		
23	Taking Sample of Bottom ash & fly ash	12/Feb/2015	11:00	11:45	PP staff	Ops		
24	Downloading boiler operating data from DCS	12/Feb/2015	11:45		PP staff	Ops		

UNIT HEAT RATE TEST - LIST OF PREPARATION TASKS

Unit : 60 Date : 09 Dec 2014

No	Descriptions	Descriptions Tentative time		Resp officer Dept		pt Remark		
NO	Descriptions	Date	start	end	Resp officer	Dept	Remark	
1	Open AH A/B outlet grating & installed scafolding	8/Dec/2014			Eng Boiler	Eng	Already prepared (WO = 2014/315967)	
	Cleaning sampling ports at AH A/B in/out	8/Dec/2014			Eng MH	Ops	Already prepared	
3	Install thermocuples at AH A/B SA/PA Inlet sides	8/Dec/2014			PP staff	Ops		
4	Fill the designated bunkers by Kideco and Adaro	8/Dec/2014	20:00		Operator	Ops	Composition : No specific requirement	
7	coal composition as usual	0/Dec/2014	20.00		Operator	Ops	(running with 5 Mills i/s A,B,C,D,E)	
	oodi oomposiion as asaai						(Turning with 5 lying 1/3 A,D,O,D,E)	
5	Pyrite transport operation finished	9/Dec/2014	7:00		Operator	Ops		
6	Unit on 100% Load	9/Dec/2014	7:00	11:45	Operator	Ops	100% load = 640 MW gross, with +/-	
							10MW	
	Blowdown in normal operation	9/Dec/2014	7:30		Operator	Ops	No specific requirement	
	Cycle Isolation valve in normal operation	9/Dec/2014	7:30		Operator	Ops	No specific requirement	
	MU valve in normal operation	9/Dec/2014	7:30	11:45	Operator	Ops	No specific requirement	
10	All Sootblowers (incl. acoustic horn) normal	9/Dec/2014	7:30	11:45	Operator	Ops	Normal : could be operated as necessary	
11	Taking Flue Gas sampling at AH-A inlet	9/Dec/2014	8:00	9:00	I Made H	Ops	Start at AH-A inlet first	
12	Taking Flue Gas sampling at AH-A outlet	9/Dec/2014	8:00	9:00	Wahyu Her.	Ops	Start at AH-A outlet first	
13	Taking AH A/B PA in temp, SA in temp, and	9/Dec/2014	8:00	9:00	Susanto	Ops		
	ambient air temp data, and humidity							
14	Taking Coal Sampling from all Coal Feeders in	9/Dec/2014	8:00	9:00	Chemist	Ops		
	service							
15	Taking Condenser vacuum (manometer) reading	9/Dec/2014	8:00	9:00	Operator	Ops		
	and barometric pressure							
	Taking Sample of Bottom ash & fly ash	9/Dec/2014	9:00		PP staff	Ops		
17	Move all testing equipments from AH-A to AH-B	9/Dec/2014	9:00	9:45	PP staff	Ops		
-	T. 1: 51 0	0/5 /0044	40.00					
	Taking Flue Gas sampling at AH-B inlet	9/Dec/2014	10:00		I Made H	Ops		
	Taking Flue Gas sampling at AH-B outlet	9/Dec/2014	10:00		Wahyu Her.	Ops		
20	Taking AH A/B PA in temp, SA in temp, and	9/Dec/2014	10:00	11:00	Susanto	Ops		
-	ambient air temp data, and humidity	0/5 /0044	40.00	44.00	01			
21	Taking Coal Sampling from all Coal Feeders in	9/Dec/2014	10:00	11:00	Chemist	Ops		
22	service	9/Dec/2014	40.00	11.00	Oneveter	0==		
22	Taking Condenser vacuum (manometer) reading	9/Dec/2014	10:00	11:00	Operator	Ops		
	and barometric pressure	0/D /0044	44.00	44.45	DD -1-#	0		
	Taking Sample of Bottom ash & fly ash	9/Dec/2014	11:00	11:45	PP staff	Ops		
24	Downloading boiler operating data from DCS	9/Dec/2014	11:45		PP staff	Ops		

BAGIAN 7 - Hasil

7.1 Heat Rate Turbin

Parameter operasi unit 5 dan 6 untuk ke-4 pengujian yang digunakan dalam perhitungan heat rate dirangkum dalam tabel berikut ini. Hasil perhitungan heat rate turbin dirangkum dalam tabel yang sama.

Perbandingan Data Pengujian Heat Rate U50 - Sisi Turbine								
	Date :	12-Feb-2015	22-Apr-2015	12-Mar-2015	21-Apr-2015			
	Time :	09:56 - 11:52	09:28 - 11:32	09:00 - 11:05	9:13 - 11:12			
Parameters	Units	450 MW	500 MW	550 MW	610 MW			
Generator Output	MW	484.96	535.37	585.48	642.76			
Generator Net Output	MW	455.18	502.71	551.32	606.49			
Main Steam Pressure	Bar G	128.95	143.19	157.17	167.52			
Main Steam Temperature	°C	539.89	536.74	533.34	530.94			
Main Steam Flow	kg/sec	426.03	474.24	516.25	572.83			
Eco Inlet Feedwater Pressure	Bar G	142.54	158.22	173.46	185.93			
Eco Inlet Feedwater Temperature	°C	263.09	268.84	273.70	278.89			
Feedwater Flow	kg/sec	417.15	471.30	517.81	576.19			
SH Spray Water Pressure	Bar G	150.42	167.73	184.47	199.20			
SH Spray Water Temperature	°C	181.02	185.64	189.50	193.79			
SH Spray Flow	kg/sec	2.19	0.19	0.00	0.05			
Cold Reheat Pressure	Bar G	30.44	34.01	37.23	41.01			
Cold Reheat Temperature	°C	334.12	330.81	326.91	325.03			
Extr. Steam Press to HP Htr A8	Bar G	48.20	53.57	58.34	64.30			
Extr. Steam Temp to HP Htr A8	°C	397.18	393.29	388.62	387.13			
Extr. Steam Temp A8 Drain Temp	°C	243.44	250.72	254.24	260.76			
HP Heater A8 FW outlet Temp	°C	267.96	273.71	278.46	283.74			
HP Heater A8 FW inlet Temp	°C	240.64	246.06	250.56	255.27			
Extr. Steam Flow to HP Htr A8	kg/sec	25.51	30.18	34.28	40.18			
Extr. Steam HP Htr A8 drain to HP Htr A7	kg/sec	22.41	26.40	30.81	36.38			
Extr. Steam Press to HP Htr A7	Bar G	29.71	33.19	36.29	39.99			
Extr. Steam Temp to HP Htr A7	°C	333.60	330.08	326.00	324.05			
Extr. Steam Temp A7 Drain Temp	°C	218.65	223.53	227.85	232.50			
HP Heater A7 FW inlet Temp	°C	207.83	212.54	216.61	220.91			
Extr. Steam Flow to HP Htr A7	kg/sec	28.77	33.81	38.47	43.98			
Reheat Steam Flow	kg/sec	371.28	414.66	449.34	490.07			
Hot Reheat Pressure	Bar G	28.18	31.57	34.59	38.16			
Hot Reheat Temperature	°C	526.56	517.88	517.21	526.48			
RH Spray Flow	kg/sec	0.73	5.73	7.29	3.00			
Avrg LP Turbine Exhaust Pressure	Bar abs	0.07	0.07	0.07	0.08			
CW Inlet Temperature	°C	29.54	30.57	28.06	30.53			
TG Uncorrected Gross Heat Rate	kJ/kWh	8385.84	8420.11	8333.46	8304.76			
TG Uncorrected Nett Heat Rate	kJ/kWh	8934.48	8967.10	8849.75	8801.36			
Rankine Cycle Efficiency Gross	%	0.43	0.43	0.43	0.43			
Rankine Cycle Efficiency Nett	%	0.40	0.40	0.41	0.41			
TG Uncorrected Gross Heat Rate	kCal/kWh	2002.92	2011.11	1990.41	1983.56			
TG Uncorrected Nett Heat Rate	kCal/kWh	2133.96	2141.75	2113.73	2102.17			
Corrected Gross Heat Rate	kJ/kWh	8001.75	8190.58	8182.83	8297.54			
Corrected Gross Heat Rate	kCal/kWh	1911.19	1956.30	1954.45	1981.85			

Partial Heat Rate Test U60 Comparison - Turbine Side									
	Date :	23 September 2015	22 September 2015	6 August 2015	9 December 2014				
	Time :	10:40 - 15:05	09:10 - 11:46	09:45 - 11:35	9:32 - 11:44				
Parameters	Units	450 MW	500 MW	550 MW	610 MW				
Generator Output	MW	480.12	530.12	580.46	640.22				
Generator Net Output	MW	458.10	506.34	554.39	613.29				
Main Steam Pressure	Bar G	127.63	141.59	155.79	165.96				
Main Steam Temperature	°C	541.25	541.14	540.34	538.83				
Main Steam Flow	kg/sec	424.23	469.84	518.47	574.55				
Eco Inlet Feedwater Pressure	Bar G	139.89	155.02	170.95	183.34				
Eco Inlet Feedwater Temperature	°C	265.12	271.16	275.04	280.96				
Feedwater Flow	kg/sec	396.38	443.30	505.80	564.17				
SH Spray Water Pressure	Bar G	147.96	164.55	182.55	197.11				
SH Spray Water Temperature	°C	181.27	185.49	189.35	193.74				
SH Spray Flow	kg/sec	16.82	16.63	4.41	3.99				
Cold Reheat Pressure	Bar G	29.96	33.11	36.37	40.37				
Cold Reheat Temperature	°C	330.94	329.15	326.40	325.87				
Extr. Steam Press to HP Htr A8	Bar G	47.62	52.38	57.67	63.56				
Extr. Steam Temp to HP Htr A8	°C	400.30	397.85	394.77	394.30				
Extr. Steam Temp A8 Drain Temp	°C	241.20	247.36	251.68	257.60				
HP Heater A8 FW outlet Temp	°C	259.36	265.28	271.24	275.12				
HP Heater A8 FW inlet Temp	°C	238.62	243.21	247.50	253.44				
Extr. Steam Flow to HP Htr A8	kg/sec	18.05	22.08	27.79	29.09				
Extr. Steam HP Htr A8 drain to HP Htr A7	kg/sec	22.05	25.97	30.35	36.12				
Extr. Steam Press to HP Htr A7	Bar G	29.28	32.38	35.62	39.39				
Extr. Steam Temp to HP Htr A7	°C	330.92	328.88	325.39	324.60				
Extr. Steam Temp A7 Drain Temp	°C	209.79	214.41	217.32	222.60				
HP Heater A7 FW inlet Temp	°C	206.97	211.47	215.61	219.33				
Extr. Steam Flow to HP Htr A7	kg/sec	25.54	29.06	33.80	41.10				
Reheat Steam Flow	kg/sec	379.48	417.53	455.46	502.79				
Hot Reheat Pressure	Bar G	27.98	30.99	34.02	37.71				
Hot Reheat Temperature	°C	524.13	523.40	519.87	524.03				
RH Spray Flow	kg/sec	0.02	0.14	0.03	0.02				
Avrg LP Turbine Exhaust Pressure	Bar abs	0.06	0.07	0.07	0.08				
CW Inlet Temperature	°C	28.39	27.89	27.88	29.34				
TG Uncorrected Gross Heat Rate	kJ/kWh	8410.31	8342.88	8291.17	8265.07				
TG Uncorrected Nett Heat Rate	kJ/kWh	8814.48	8734.73	8680.92	8628.05				
Rankine Cycle Efficiency Gross	%	42.80%	43.15%	43.42%	43.56%				
Rankine Cycle Efficiency Nett	%	40.84%	41.21%	41.47%	41.72%				
TG Uncorrected Gross Heat Rate	kCal/kWh	2008.77	1992.66	1980.31	1974.08				
TG Uncorrected Nett Heat Rate	kCal/kWh	2105.30	2086.26	2073.40	2060.77				
Corrected Gross Heat Rate	kJ/kWh	8878.52	8637.90	8410.33	8281.92				
Corrected Gross Heat Rate	kCal/kWh	2120.61	2063.14	2008.78	1978.11				

Trend heat rate turbin untuk 4 tingkat beban ditunjukan dalam grafik berikut.

Gambar: Trend Gross Heat rate Turbin Unit 5 pada beban bervariasi

Gambar: Trend Gross Heat rate Turbin Unit 6 pada beban bervariasi

7.2 Efisiensi Boiler

Hasil analisis lab untuk bahan bakar batubara yang digunakan dan parameter operasi unit 5 untuk ke-4 beban yang digunakan dalam perhitungan efisiensi boiler dirangkum dalam tabel berikut ini.

Hasil perhitungan efisiensi boiler dirangkum dalam tabel yang sama.

P	artial Heat Ra	te Test U50 Compar	ison - Boiler Side (1/	/2)	
	Date :	12-Feb-2015	22-Apr-2015	12-Mar-2015	21-Apr-2015
	Time :	09:56 - 11:52 60% Lati - 40% Kideco	09:28 - 11:32	09:00 - 11:05	9:13 - 11:12
DAD AMETERS	Coal :		60% Lati - 40% Kideco	60% Lati - 40% Kideco	60% Lati - 40% Kideco
PARAMETERS	Units	450 MW	500 MW	550 MW	610 MW
Ultimate Analysis		52.48	52.43	51.91	52.23
Carbon	% weight	3.86	4.29	3.89	4.31
Hydrogen	% weight	14.14 0.62	12.83 1.01	13.82 0.81	12.77 1.01
Oxygen Nitrogen	% weight % weight	0.62	0.53	0.56	0.54
Sulphur	% weight	24.15	24.40	25.00	24.45
Moisture	% weight	4.36	4.50	4.02	4.70
Ash HHV AF constant volume	% weight Btu/lb	8720.11	9049.51	8868.41	8994.61
	Dtu/ib				
Unburned Combustible in Bottom Ash	% combustible	1.378	0.968	2.060	1.215
Unburned Combustible in Fly Ash	% combustible	0.095	0.220	0.200	0.215
Air Temperature					
Ambient air temperature	deg F	86.53	91.31	86.49	89.06
Test Reference Air Temperature	deg F	86.53	91.31	86.49	89.06
AH Inlet Air Temp Primary (A) AH Inlet Air Temp Primary (B)	deg F deg F	102.91 101.26	106.69 103.76	103.81 101.56	104.94 102.23
AH Inlet Air Temp Secondary (A)	deg F	84.14	85.77	84.37	86.68
AH Inlet Air Temp Secondary (B)	deg F	81.49	84.64	82.24	84.22
Primary Air Fraction at AH Inlet Design	% combust air	22.66	21.57	22.27	22.46
Secondary Air Fraction at AH Inlet Design	% combust. air	77.34	78.43	77.73	77.54
Gas Temperature	dog E	604.00	707.38	705 40	740.55
AH Inlet Gas Temperature (A) AH Inlet Gas Temperature (B)	deg F deg F	694.96 700.74	707.38 718.48	735.49 746.60	749.55 760.08
AH Outlet Gas Temperature (A)	deg F	272.37	280.62	283.28	298.43
AH Outlet Gas Temperature (B)	deg F	274.17	279.77	289.78	307.25
Moisture in Air at Fan Inlet					
Dry Bulb Temperature	deg F	86.53	91.31	86.49	89.06
Wet Bulb Temperature Relative Humidity (see Psychrometric chart)	deg F %	77.11 65.69	79.74 60.66	78.17 69.32	79.02 64.57
Atmospheric Pressure	in. Hg	30.28	30.32	30.34	30.31
Sat. Pressure at tdB (see Steam Table)	in. Hg	1.28	1.48	1.27	1.38
Р	Partial Heat Ra	te Test U50 Compar	ison - Boiler Side (2	/2)	
	Date :	10 5 1 0015			
mi	Date :	12-Feb-2015	22-Apr-2015	12-Mar-2015	21-Apr-2015
	Time :	09:56 - 11:52	22-Apr-2015 09:28 - 11:32	12-Mar-2015 09:00 - 11:05	21-Apr-2015 9:13 - 11:12
	Time : Coal :	09:56 - 11:52 60% Lati - 40% Kideco	09:28 - 11:32 60% Lati - 40% Kideco	09:00 - 11:05 60% Lati - 40% Kideco	9:13 - 11:12 60% Lati - 40% Kideco
PARAMETERS	Time :	09:56 - 11:52	09:28 - 11:32	09:00 - 11:05	9:13 - 11:12
AH Inlet Gas Analysis (per PTC 19.1)	Time : Coal : Units	09:56 - 11:52 60% Lati - 40% Kideco 450 MW	09:28 - 11:32 60% Lati - 40% Kideco 500 MW	09:00 - 11:05 60% Lati - 40% Kideco 550 MW	9:13 - 11:12 60% Lati - 40% Kideco 610 MW
	Time : Coal :	09:56 - 11:52 60% Lati - 40% Kideco	09:28 - 11:32 60% Lati - 40% Kideco	09:00 - 11:05 60% Lati - 40% Kideco	9:13 - 11:12 60% Lati - 40% Kideco
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B)	Time : Coal : Units W dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW	09:28 - 11:32 60% Lati - 40% Kideco 500 MW	09:00 - 11:05 60% Lati - 40% Kideco 550 MW	9:13 - 11:12 60% Lati - 40% Kideco 610 MW
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A)	Time : Coal : Units W dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW	09:28 - 11:32 60% Lati - 40% Kideco 500 MW	09:00 - 11:05 60% Lati - 40% Kideco 550 MW	9:13 - 11:12 60% Lati - 40% Kideco 610 MW
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B)	Time : Coal : Units % dry-vol % dry-vol % dry-vol % dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (A)	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (A) CO of flue gas at AH outlet (B)	Time : Coal : Units % dry-vol % dry-vol % dry-vol % dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (A) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel)	Time: Coal: Units % dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) FO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Meat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel	Time : Coal : Units % dry-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 0.00 452.39 272.62	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel	Time : Coal : Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol # dry-vol Btu/Lb AF fuel Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (A) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air	Time : Coal : Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol gbtu/Lb AF fuel Btu/Lb AF fuel Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 114.66	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol Btu/Lb AF fuel Btu/Lb AF fuel Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % try-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.42 0.02 2.265	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 22.20	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 2.251
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) FOR Gas Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses	Time: Coal: Units % dry-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 272:62 392:16 13.37 2.23 0.00 21.83	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.2.65	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 2.20	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 2.251
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol % try-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.42 0.02 2.265	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 22.20	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) To of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%)	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol to dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 14.84 11169.44	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 11.66 3.35 0.09 22.20 115.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Dry Gas	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol for dry-vol but/Lb AF fuel Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 2.72.62 392.16 13.37 2.23 0.00 2.183 14.84 1169.44	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 22.20 15.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) To of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%)	Time: Coal: Units % dry-vol % dry-vol % dry-vol % dry-vol % dry-vol to dry-vol	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 14.84 11169.44	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 11.66 3.35 0.09 22.20 115.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 2.72.62 392.16 13.37 2.23 0.00 2.1.83 14.84 1169.44 5.18 3.12 4.49 0.15	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.2.65 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 22.20 15.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Full the flue of the flu	Time: Coal: Units % dry-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 446.79 275.03 435.21 15.02 2.42 0.02 22.65 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 14.66 3.335 0.09 22.20 15.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12 5.38 3.09 4.90 0.17 0.03
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Air	Time: Coal: Whits Gry-vol Gr	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15 0.03	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55 5.13 3.04 4.80 0.17 0.03 0.00	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 11.66 3.35 0.09 22.20 15.09 1193.88 5.15 3.20 4.4.7 0.17 0.04	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12 5.38 3.09 4.90 0.17 0.03 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Full the flue of the flu	Time: Coal: Units % dry-vol Btu/Lb AF fuel	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 446.79 275.03 435.21 15.02 2.42 0.02 22.65 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 14.66 3.335 0.09 22.20 15.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12 5.38 3.09 4.90 0.17 0.03
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Refuse Formation of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation	Time: Coal: Units % dry-vol Btu/Lb AF fuel % % % % % % % %	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.03 0.03 0.00 0.00	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 275.03 435.21 15.02 2.42 0.02 2.56 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 22.20 15.09 1193.88	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 4.84-24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12 5.38 3.09 4.90 0.017 0.03 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Moisture in Fuel Moisture in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Measured Boiler Efficiency	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 0.00 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.00 0.03 0.00 0.05	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.45 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.17 0.04 0.00 0.02 0.05	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Possible of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Total Losses Measured Boiler Efficiency Measured Boiler Efficiency Measured efficiency (HHV)	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.000 0.00 272:62 392:16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.03 0.00 0.02 0.05 0.05 0.05 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.000 0.000 275.03 435.21 15.02 2.42 0.02 22.65 15.40 1230.55 5.13 3.04 4.80 0.17 0.03 0.03 0.00 0.25 0.25 0.17	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.01 0.07 0.04 0.00 0.02 5.15 9.25 6.96 6.96 6.96 6.96 6.96 6.96 6.96 6.9	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 1261.12 5.38 3.09 4.90 0.17 0.03 0.03 0.00 0.05
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Measured Boiler Efficiency Measured efficiency (LHV) Measured efficiency (LHV)	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 0.00 272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.00 0.03 0.00 0.05	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.45 15.40 1230.55	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.17 0.04 0.00 0.02 0.05	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Measured Boiler Efficiency Measured efficiency (HHV) Measured efficiency (LHV)	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 452.39 272.62 392.16 13.37 2.23 0.00 21.83 1.184 1169.44 5.18 3.12 4.49 0.15 0.03 0.00 0.25 0.17 13.40	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 464.79 275.03 435.21 15.02 2.44 0.02 2.65 11.34 40 1230.55 5.13 3.04 4.80 0.17 0.03 0.00 0.00 0.25 0.17 13.58	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 457.57 283.74 397.18 14.66 3.335 0.09 22.20 1193.88 5.15 3.20 4.47 0.17 0.04 0.00 0.025 0.17 13.45	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 15.31 1261.12 5.38 3.09 4.90 0.17 0.03 0.00 0.25 0.17 14.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Measured efficiency (HHV) Measured Boiler Efficiency Measured efficiency (LHV) Parastitic Power	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 2.00 2.72.62 392.16 13.37 2.23 0.00 2.21 3.14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.00 0.02 0.05 0.17 13.40 86.60 93.18	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55 5.13 3.04 4.80 0.17 0.03 0.00 0.02 0.17 13.58	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 6.43 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.17 0.04 0.00 0.02 0.25 0.17 13.45 86.55 93.13	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Possible of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Measured Boiler Efficiency Measured efficiency (HHV) Measured efficiency (LHV) Plant Heat Rate and Plant Efficiency Turbine Gross Heat Rate (Corr)	Time: Coal: Units % dry-vol % Tuel % Tuel % Tuel % % % % % % % % % % % % % % % % % % %	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.000 0.00 21.83 1272.62 392.16 13.37 2.23 0.00 21.83 14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.03 0.00 0.05 0.05 0.05 0.07 13.40 86.60 93.18	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.000 0.000 275.03 435.21 15.02 2.42 0.02 22.65 15.40 1230.55 5.13 3.04 4.80 0.017 0.03 0.00 0.00 0.00 0.00 0.00 1.1049 1.568	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.01 0.04 0.00 0.02 5 0.17 13.45	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00 484.24 278.72 441.68 15.75 2.84 0.07 22.51 1261.12 5.38 3.09 4.90 0.17 0.03 0.00 0.02 55 0.17 14.00 86.00 92.81
AH Inlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH inlet (A) Oksigen of flue gas at AH inlet (B) AH Outlet Gas Analysis (per PTC 19.1) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (A) Oksigen of flue gas at AH outlet (B) CO of flue gas at AH outlet (B) Heat Loss Calculation - HHV (Btu/Lb AF fuel) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Air Combustible in Refuse Formation of CO Radiation Unmeasured losses Total Losses Heat Loss Calculation - HHV (%) Dry Gas Moisture in Fuel Combustion of H2 in Fuel Moisture in Fuel Combustion of CO Radiation Unmeasured losses Total Losses Measured efficiency (HHV) Measured efficiency (LHV) Parastite Power	Time: Coal: Units % dry-vol % dry-	09:56 - 11:52 60% Lati - 40% Kideco 450 MW 5.59 4.60 6.82 6.16 0.00 0.00 2.00 2.72.62 392.16 13.37 2.23 0.00 2.21 3.14.84 1169.44 5.18 3.12 4.49 0.15 0.03 0.00 0.02 0.05 0.17 13.40 86.60 93.18	09:28 - 11:32 60% Lati - 40% Kideco 500 MW 6.47 3.78 7.16 5.56 0.00 0.00 275.03 435.21 15.02 2.42 0.02 2.265 15.40 1230.55 5.13 3.04 4.80 0.17 0.03 0.00 0.02 0.17 13.58	09:00 - 11:05 60% Lati - 40% Kideco 550 MW 6.42 2.95 6.96 4.36 0.00 0.00 0.00 457.57 283.74 397.18 6.43 397.18 14.66 3.35 0.09 1193.88 5.15 3.20 4.47 0.17 0.04 0.00 0.02 0.25 0.17 13.45 86.55 93.13	9:13 - 11:12 60% Lati - 40% Kideco 610 MW 4.80 3.24 5.58 4.53 0.00 0.00

	Rate Test U60 Com	parison - Boiler Side	•	
	23 September 2015 10:40 - 15:05	22 September 2015 09:10 - 11:46	6 August 2015 09:45 - 11:35	9 December 2014 9:32 - 11:44
	60% Adaro - 40% Kideco	60% Adaro - 40% Kideco	60% Adaro - 40% Kideco	60% Adaro - 40% Kideco
PARAMETERS	450 MW	500 MW	550 MW	610 MW
Coal				
Ultimate Analysis				
Carbon	54.07	53.44	53.31	51.15
Hydrogen	3.66	3.62	4.32	4.23
Oxygen	13.68	14.58	14.57	15.20
Nitrogen	0.68	0.69	0.67	0.72
Sulphur	0.14 24.70	0.12 24.75	0.12 24.35	0.20 25.50
Moisture Ash	3.09	24.75	24.35	25.50 3.02
HHV AF constant volume	9059.41	8968.51	9032.41	8828.11
Ash	-			
Unburned Combustible in Bottom Ash	2.04	2.38	7.41	0.82
Unburned Combustible in Fly Ash	0.19	0.21	0.34	0.02
	0.15	0.21	0.54	0.07
Air Temperature Ambient air temperature	87.52	87.12	85.33	91.27
Test Reference Air Temperature	87.52	87.12	85.33	91.27
AH Inlet Air Temp Primary (A)	104.11	102.31	102.89	107.17
AH Inlet Air Temp Primary (B)	103.43	101.41	100.64	105.51
AH Inlet Air Temp Secondary (A)	85.66	84.43	84.18	86.56
AH Inlet Air Temp Secondary (B)	82.36	82.33	80.66	85.85
Primary Air Fraction at AH Inlet Design	24.97	25.61	23.17	23.55
Secondary Air Fraction at AH Inlet Design	75.03	74.39	76.83	76.45
Gas Temperature				
AH Inlet Gas Temperature (A)	664.02	685.85	710.11	742.02
AH Inlet Gas Temperature (B)	670.24	698.11	715.80	747.31
AH Outlet Gas Temperature (A)	243.15	271.11	298.76	287.86
AH Outlet Gas Temperature (B)	259.36	285.24	289.72	290.39
Moisture in Air at Fan Inlet				
Dry Bulb Temperature	87.52	87.12	85.33	91.27
Wet Bulb Temperature	75.97	76.78	75.99	77.10
Relative Humidity (see Psychrometric chart) Atmospheric Pressure	59.21 30.37	62.88 30.38	65.51 30.32	53.19 30.01
Sat. Pressure at tdB (see Steam Table)	1.32	1.30	1.23	1.48
AH Inlet Gas Analysis (per PTC 19.1)	1.52	1.50	1.23	1.40
Oksigen of flue gas at AH inlet (A)	5.71	5.85	5.38	4.23
Oksigen of flue gas at AH inlet (A)	4.96		4.29	3.54
AH Outlet Gas Analysis (per PTC 19.1)	6.86		6.44	
Oksigen of flue gas at AH outlet (A)	5.79		5.21	5.21
Oksigen of flue gas at AH outlet (A)	0.00	0.00	0.01	4.91
CO of flue gas at AH outlet (A)	0.00		0.04	0.000
CO of flue gas at AH outlet (B)				0.002
Heat Loss Calculation - HHV (Btu/Lb AF fuel)				
Dry Gas	399.21	450.58	497.35	431.29
Moisture in Fuel	276.10		277.50	288.50
Combustion of H2 in Fuel	367.71	367.81	442.57	430.20
Moisture in Air	11.19	13.39	14.52	12.33
Combustible in Refuse	2.53	2.64	6.87	0.97
Formation of CO	0.00		8.56	0.50
Radiation	22.67			
Unmeasured losses Total Losses	15.42 1094.83			15.03
	1094.03	1154.16	1278.13	1193.84
Heat Loss Calculation - HHV (%)				
Dry Gas	4.40	5.02	5.50	4.88
Moisture in Fuel Combustion of H2 in Fuel	3.04 4.05			3.26 4.87
Moisture in Air	0.12			
Combustible in Refuse	0.12			
Formation of CO	0.00			
Radiation	0.25			0.17
Unmeasured losses	0.17		0.17	0.17
Total Losses	12.07	12.86	14.13	13.51
Measured Boiler Efficiency				
Measured efficiency (HHV)	87.93	87.14	85.87	86.49
Measured efficiency (LHV)	94.18	93.38	92.63	93.52
Plant Heat Rate and Plant Efficiency				
Parasitic Power	1.0575	1.0464	1.0446	1.0418
Turbine Gross Heat Rate (Corr)	2120.61			
Unit Nett Heat Rate (Corr)	2381.01			
	36.11262			

Trend efisiensi boiler untuk 4 tingkat beban ditunjukan dalam grafik berikut.

Gambar: Trend efisiensi boiler Unit 5 pada beban bervariasi

Gambar : Trend efisiensi boiler Unit 6 pada beban bervariasi

7.3 Heat Rate / Efisiensi Termal

Perhitungan heat rate unit dilakukan dengan menggunakan rumus sbb:

Heat rate unit net = (HRTG) / (EB) * (PP) (kCal/kWh), dimana :

HRTG = heat rate turbin gross

- EB = Efisiensi boiler

- PP = Parasitic power (lihat tabel perbandingan data sisi boiler di atas)

Sedangkan korelasi antara efisiensi termal unit dan heat rate unit net adalah sbb:

Efisiensi termal = 859.845 / (Net heat rate unit) (%)

Grafik berikut menunjukkan trend heat rate unit terhadap 4 tingkat beban.

Gambar : Trend heat rate Unit 5 pada beban bervariasi

Gambar: Trend heat rate Unit 6 pada beban bervariasi

Grafik berikut menunjukkan trend efisiensi termal unit terhadap 4 tingkat beban.

Gambar: Trend efisiensi termal Unit 5 pada beban bervariasi

Gambar: Trend efisiensi termal Unit 5 pada beban bervariasi

BAGIAN 8 - Diskusi Hasil

Dari hasil perhitungan untuk mendapatkan heat rate turbin gross, efisiensi boiler dan heat rate unit (efisiensi termal), dan grafik korelasi antara ke 4 parameter tersebut dengan beban yang berbeda terlihat bahwa:

- Pada Unit 5, terdapat perbedaan trend antara hasil komisioning dan kondisi saat ini untuk heat rate turbin gross, dimana kondisi saat ini mengalami penurunan heat rate turbin dengan naiknya beban unit. Faktor utama penyebab hal itu adalah karena temperatur uap utama (main steam temperature) mengalami penurunan dengan naiknya beban.
- 2. Terdapat persamaan trend antara hasil komisioning dan kondisi saat ini untuk efisiensi boiler, dimana efisiensi boiler mengalami penurunan dengan naiknya beban.
- 3. 2 point di atas menyebabkan heat rate unit (dan efisiensi termal) untuk kondisi saat ini mengalami penurunan dengan naiknya beban, hal yang berbeda bila dibandingkan dengan hasil komisioning. Heat rate turbin merupakan faktor penentu (determining factor) yang mengubah arah trend heat rate unit tersebut.
- 4. Sedangkan pada unit 6, trend gross turbine heat rate antara kondisi saat ini dengan saat komisioning masih sama, yakni cenderung naik (semakin kecil) seiring dengan kenaikan beban (load). Begitu pula dengan trend boiler efisiensi dan plant net heat rate.

BAGIAN 9 - Potensi Efisiensi yang Dapat Dicapai

Gambar : Trend heat rate Unit 5 pada beban bervariasi

Gambar : Trend heat rate Unit 6 pada beban bervariasi

Dari kedua grafik di atas terlihat bahwa heat rate Unit 5 semakin besar seiring dengan kenaikan beban (*load factor*). Sedangkan heat rate unit 6 berlaku sebaliknya, yaitu heat rate semakin rendah (semakin baik) dengan kenaikan beban (*load factor*).

Berikut adalah tabel pembebanan untuk tahun 2014. Dari sini kita bisa mengetahui tingkat pembebanan kedua unit dari dispatch terendah 650 MW hingga beban penuh 1220 MW. Dari tabel terlihat bahwa potensi penghematan dapat diperoleh dengan pembebanan antara 700 MW – 1150 MW. Pembebanan ini apabila di jumlahkan selama 1 tahun adalah selama 4037 jam operasi atau setara dengan 46.0845% dari total jam operasi pembangkitan. Asumsi ini dipakai untuk menentukan besar perkiraan penghematan selama 1 tahun.

		Without	Program	gram With Pro		rogram Without Prog.		With Program	Difference	Service		
									Station Weight.	Station		
Station Load	U	50	ι	J60	U	50	U	60	NHR	Weight. NHR	(Saving)	Hours
Dispatch	Load	NHR	Load	NHR	Load	NHR	Load	NHR	kCal/kWh	kCal/kWh	kCal/kWh	
1220	610	2233	610	2200	610	2233	610	2200	2216	2216	0	2731
1150	575	2217	575	2239	540	2202	610	2200	2228	2201	27	456
1100	550	2206	550	2266	490	2180	610	2200	2236	2191	45	773
1050	525	2195	525	2293	440	2158	610	2200	2244	2183	62	391
1000	500	2184	500	2320	390	2136	610	2200	2252	2175	77	658
950	475	2173	475	2348	340	2114	610	2200	2260	2169	91	401
900	450	2162	450	2375	325	2107	575	2239	2269	2191	77	761
850	425	2151	425	2402	325	2107	525	2293	2277	2222	55	132
800	400	2140	400	2429	325	2107	475	2348	2285	2250	35	194
750	375	2129	375	2457	325	2107	425	2402	2293	2274	19	157
700	350	2118	350	2484	325	2107	375	2457	2301	2294	7	114
650	325	2107	325	2511	325	2107	325	2511	2309	2309	0	0

Jumlah service hour pada beban $700 - 1150 \, MW = 4037$ jam Prosentase service hour $700-1150 \, MW$ selama 1 tahun = 46.08 % Dengan melihat ke load factor *station* rata-rata tahun Bulan Agustus '14 – Agustus '15 sebesar 85.21 % sebagai acuan untuk asumsi LF rata2 ke depan bisa diperoleh besarnya heat rate dari persamaan regresi tersebut. Pada asumsi LF tersebut, unit berada pada beban 1039.56 MW. Pada saat kondisi normal, unit akan didispatch dengan beban yang sama yakni sekitar 520 MW. Dari grafik Net unit heat rate diatas, didapatkan besar heat rate unit 5 adalah 2192.8 kcal/kWh, sedangkan heat rate unit 6 adalah 2298.8 kcal/kWh.

Dari sini terlihat bahwa pada LF 84.31% unit heat rate pada unit 6 lebih tinggi dibandingkan unit 5. Untuk mendapatkan unit heat rate yang optimum, sebaiknya unit 6 dioperasikan dengan beban penuh yaitu 100% (610 Mw nett), sedangkan unit 5 memikul beban sisanya yaitu 68.6% (430 MW nett)

Asumsi	LF = 85.21%	atau setara =	1039.562	MW	
Unit	Beban awal MW	HR kCal/kWh	Beban variasi MW	HR kCal/kWh	Potensi
Offic	Deball awai ivivv	Α	Depair variasi ivivv	В	A-B
50	519.78	2192.81	429.562	2153.09	39.71
60	519.78	2298.83	610	2200.43	98.39

Unit Based					
Parameter	U50	U60	Units		
Potensi saving =	39.71	98.39	kCal/kWh		
Produksi Unit/year =	4,401,138.68	4,446,535.40	MWh/year		
(August '14 - August '15)					
Total beban saat 700-1150 MW	2,028,241,650.03	2,049,162,490.60	kWh/year		
Coal Calorivic value =	5,026.50	5,002.60	kCal/kg		
Saving panas/year =	80,550,407,893.19	201,622,919,940.22	kCal/year		
Coal Saving/year =	16,025.15	40,303.63	Ton/Unit		

	STATION BASED		
Saving panas/year =	282,173,327,833.41	kCal/year	
Coal Saving/year =	56,328.77	Ton/year	
Station Weight HR Net =	2,180.87	kCal/kWh	
Saving setara kWh/year =	129,385,546.43	kWh/year	
CO2 reduction =	115,153,136.32	kg/year	
=	115,153.14	ton/year	
		•	

Selisih dari heat rate unit 5 sebelum dan setelah dilakukan optimasi sebesar 39.71 kcal/kwh, sedangan Unit 6 sebesar 98.39 kcal/kwh. Total potensi penghematannya adalah 138.11 kCal/kWh. Potensi penghematan ini setara dengan penghematan batubara sebesar 56,328.77 ton dan pengurangan emisi CO₂ sebesar 115,153.14 ton per tahun.

BAGIAN 10 – Rekomendasi dan Kesimpulan

Dari diskusi hasil pengujian pada bagian 8 tersebut di atas dapat disimpulkan bahwa kenaikan beban menyebabkan heat rate unit mengalami penurunan (nominal heat rate unit mengalami kenaikan), yang terutama dipicu oleh turunnya temperatur uap utama.

Untuk mendapatkan nilai optimum dari heat rate plant terhadap perubahan beban plant maka direkomendasikan **Rencana Kerja Efisiensi Energi** sbb :

- 1. Melakukan langkah-langkah perbaikan kondisi operasi unit 5 agar temperatur uap utama bisa meningkat (atau minimum tidak menurun) dengan naiknya beban unit.
- 2. Dari test yang sudah dilaksanakan di ketahui bahwa unit 6 lebih efisien saat berada di beban tinggi dan sebaliknya unit 5 lebih efisien saat di beban rendah. Oleh karena itu, bila diminta menaikkan beban oleh PLN-P3B maka diusahakan agar beban unit 6 yang terlebih dahulu dinaikan hingga ke beban maksimum, baru kemudian disusul menaikan beban unit 5 hingga mencapai dispatch plant yang sesuai dengan permintaan PLN-P3B.
- 3. Akan dilakukan pengetesan ulang untuk unit 6 pada 2 beban (450 MW dan 610 MW) untuk memverifikasi data yang sudah ada. Pengetesan akan dilaksanakan setelah unit outage bulan April 2016. Hal ini di maksudkan untuk melihat konsistensi dari trend pengukuran yg sudah ada. Apabila trend unit heat rate konsisten maka rekomendasi dari Audit Internal ini dapat dilaksanakan.

LAMPIRAN

BADAN NASIONAL SERTIFIKASI PROFESI

INDONESIAN PROFESSIONAL CERTIFICATION AUTHORITY

SERTIFIKAT KOMPETENSI CERTIFICATE OF COMPETENCE

91122 2149 0101004 2013

Dengan ini menyatakan bahwa, This is to certify that,

> **PRAYOGA** HKE 083 00004 2013

Telah kompeten pada Bidang: Is competent in the area of :

Manajemen Energi Sub Bidang Industri Energy Management on Sub Division of Industry

> Dengan Kualifikasi / Kompetensi : With Qualification / Competency : sebagai

as: Auditor Energi Industri Energy Audit on Industry

Sertifikat ini berlaku untuk : 3 (tiga) tahun This certificate is valid up to : 3 (three) Years

> Jakarta, 5 Juni 2013 Jakarta, Juni 5th 2013

Ir. Parlindungan Marpaung

Ketua Chairman

Daftar Unit Kompetensi List of Unit(s) of Competency

No	Kode Unit Kompetensi Code of Competency Unit	Judul Unit Kompetensi Title of Competency Unit
1	JPI.AI01,001,01	Menerapkan Keselamatan dan Kesehatan Kerja (K3 Salety and Work Health Implementation
2	JPI.AI02.001.01	Menyiapkan Proses Audit Energi Preparing on Energy Audit Process
3	JPI.AI02.002.01	Melakukan Survei Lapangan Conducting Field Surveys
4	JPI.AI02.003.01	Melakukan Analisis Data Survei Lapangan Conducting Data Analysis on Field Surveys
5	JPI.AI02.004.01	Membuat Laporan Audit Energi Energy Audit Reporting

Tanda tangan pemilik (Signature of holder) Manajer Sertifikasi Certification Manager

Ir. M. Nasai Hamid