Detecting Cancer Metastases on Gigapixel Pathology Images

Zizhao Wang & Sabrina Li

Outline

- Motivation
- Method
 - Data generation
 - Image Augmentation
 - Model
 - o Evaluation & Heatmap Generation
- Results
- Future works

Motivation

Tumor examination

- Require expertise
- Time consuming
- Error prone

Deep learning can improve

Speed, accuracy

Method - Dataset Generation

Data point: image patch at level 0 and 1, size 299x299

Label: if tumor cell exists in 128x128 center

Choose "normal" and "tumor" with equal probability (balanced dataset)

Select slide containing chosen class of patch uniformly

Sample patch from the slide with >50% tissues

Method - Image Augmentation

Rewrite ImageDataGenerator to ensure two input images get the same preprocessing

- Rotation 90 degrees
- Flipping (vertical & horizontal)
- Shift (8 pixels)

Method - Model

- Inception as base
- Input are two images at level 0 and 1 respectively
- Concatenate final layer from Inception
- Predict label with fully connected layer

Prediction

- Generate 299*299 patches for each row
- Skip patches with tissue percentage < 50
- Get predicted probabilities from trained model
- Choose a threshold to determine if a patch has tumor

Evaluation

Precision

Recall

Recall =
$$\frac{\text{true positive}}{\text{true positive} + \text{false negative}}$$

F1 score

F1 score =
$$2 * \frac{\text{precision*recall}}{\text{precision+recall}}$$

Predicted

		Negative	Positive
Actual	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

Positive: Tumor Negative: Normal

Results

Threshold	Precision	Recall	F1 score
0.5	0.54	0.94	0.69
0.7	0.71	0.90	0.80
0.9	0.90	0.83	0.86

Heatmaps for true mask and prediction (slide 91)

Future Work

- Generate more training data to improve the accuracy using GCP
- Compare the performance of multi-scale model with the single-scale model

Code Walkthrough