

MVA Track Quality Estimation for the Belle II Experiment

Tracking Meeting

Michael Eliachevitch(michael.eliachevitch@kit.edu) | 12 April 2019

Track Quality Indicator

- Goal: Enable physics analysts to choose working point on the efficiency vs. purity receiver operating curve (ROC)
- assign a quality indicator (QI) to the final tracks
- include low-level tracking information in addition to already existing information from the fit (e.g. χ^2),
- Solution: Train an multivariate (MVA) classifier = track quality estimator

Features for Training the Quality Estimator

- training target: MC truth to discriminate fake (and clone) from correct tracks in training
- input variables: use all information available during the reconstruction
- intermediate quality estimators: CDC QE, VXDTF QE
 - many features only available to the tracking algorithms in the subdetectors, e.g.
 - CDC: drift lengths, ADC signals, . . .
 - SVD: charge, energy loss, triplet fit . . .
- hit patterns and hit weights from the track fit
- momentum and positional information (four-vectors)
- timing information
- **merger information**: χ^2 and differences in track parameters
- event-level variables: bias?

Example Feature Distributions

From fit: e.g. track-parameters

- these are not the most important ones, just examples
- heavily correlated with other variables: FastBDT can learn that

Training and Validation

- use single steering file with b2luigi
 - combined training and validation of all three classifiers: CDC QE, VXDTF QE and Combined Track QE
 - easy to iterate over different parameter combinations (e.g. grid search)
- $lue{}$ 5000 events (\sim 50 000 tracks) for each training and separate dataset for validation
- currently used background: 15th_overlay_phase3_Feb2018

CDC Quality Estimator Performance

- CDC-only tracking with background
- normalized to tracks findable in the CDC
- currently trained with clones as background
 - \rightarrow study?

VXDTF2 Quality Estimator Performance

- VXD-only tracking with background
- normalized to tracks findable in the VXD
- trained with fakes as background class only
- in contrast to CDC QE, fake rate falls very steeply at low QI

Combined Quality Estimation

- combining features of all track finders yields good fake suppression with only small finding efficiency losses
- no impact on fitted parameter resolutions in correct PR track seen (plots in backup)

Current Status and ToDo's

- CDC and VXDTF quality estimators merged, combined quality indicator on branch feature/BII-2127-General-MVA-QI
- currently finalizing (refactoring) branch, e.g. warnings during training
- want to compare training with fake-only background in CDC
- train without event-level variables?
 - \Rightarrow easy with luigi
- create final payloads
- will create (TUPPR) PR soon so that discussions can happen in the comments

Backup

MVA Training Parameters

- $lue{}$ train on 5000 events (\sim 50 000 tracks) each for training and testing
- number of input features for combined QE: 96

CDC QE: 20SVD QE: 27

- FastBDT parameters
 - 200 trees
 - 8 levels
 - size of random sample: 50 %
 - shrinkage: 0.1

Input Features for the SVD and CDC Quality Estimators

CDC QE input features

adc_max, adc_mean, adc_min, adc_sum, adc_variance, drift_length_max, drift_length_mean, drift_length_min, drift_length_sum, drift_length_variance, empty_s_max, empty_s_mean, empty_s_min, empty_s_sum, empty_s_variance, has_matching_segment, pt, s_range, size, sz_slope

SVD QE input features

NSpacePoints, charge_max, charge_mean, charge_min, charge_std, energyLoss_max, energyLoss_mean, energyLoss_min, energyLoss_std, seedCharge_max, seedCharge_mean, seedCharge_min, seedCharge_std, size_max, size_mean, size_min, size_std, tripletFit_Chi2, tripletFit_PMag, tripletFit_P_Eta, tripletFit_P_Mag, tripletFit_P_Phi, tripletFit_P_X, tripletFit_P_Y, tripletFit_P_Z, tripletFit_Pt, tripletFit_QI

Input Features for the Combined Quality Estimator

CDC_FitSuccessful. CDC_QI. Fit_Charge. Fit_Chi2. Fit_NFailedPoints. Fit_Ndf. Fit_PVal. Fit_Successful. N_CDCRecoTracks. N_CDC hits. N_PXDRecoTracks. N_PXD hits. N_RecoTracks. N_SVDRecoTracks, N_SVD_hits, N_TP_noKalmanFitterInfo, N_diff_PXD_SVD_RecoTracks, N diff SVD CDC RecoTracks, N no TrackPoint, N total hits, POCA Mom Mag, POCA Mom Phi, POCA Mom Pt, POCA_Mom_Theta, POCA_Mom_Z, POCA_Pos_Mag, POCA_Pos_Phi, POCA_Pos_Pt, POCA_Pos_Theta, POCA_Pos_Z, PXD_QI, RTs_Min_Mom_diff_Mag, RTs_Min_Mom_diff_Mag_idx, RTs_Min_Mom_diff_Pt, RTs_Min_Mom_diff_Pt_idx, RTs_Min_Pos_diff_Phi, RTs_Min_Pos_diff_Phi_idx, RTs_Min_Pos_diff_Theta, RTs_Min_Pos_diff_Theta_idx, SVD_CDC_CDCwall_Chi2, SVD_CDC_CDCwall_Mom_diff_Eta, SVD_CDC_CDCwall_Mom_diff_Mag, SVD_CDC_CDCwall_Mom_diff_Phi, SVD_CDC_CDCwall_Mom_diff_Pt, SVD_CDC_CDCwall_Mom_diff_Theta, SVD_CDC_CDCwall_Mom_diff_Z, SVD_CDC_CDCwall_Pos_diff_Eta, SVD_CDC_CDCwall_Pos_diff_Mag, SVD_CDC_CDCwall_Pos_diff_Phi, SVD_CDC_CDCwall_Pos_diff_Pt, SVD_CDC_CDCwall_Pos_diff_Theta, SVD_CDC_CDCwall_Pos_diff_Z. SVD_CDC_POCA_Mom_diff_Eta. SVD_CDC_POCA_Mom_diff_Mag. SVD_CDC_POCA_Mom_diff_Phi. SVD_CDC_POCA_Mom_diff_Pt. SVD_CDC_POCA_Mom_diff_Theta. SVD_CDC_POCA_Mom_diff_Z, SVD_CDC_POCA_Pos_diff_Eta, SVD_CDC_POCA_Pos_diff_Mag, SVD_CDC_POCA_Pos_diff_Phi, SVD_CDC_POCA_Pos_diff_Pt, SVD_CDC_POCA_Pos_diff_Theta, SVD_CDC_POCA_Pos_diff_Z. SVD_FitSuccessful.

Nonexistent Impact on Resolutions?

