الإجابة التمودجية لموضوع امتحان البكالوريا دورة: 14206 الإجابة التمودجية لموضوع الشعبة: علوم تجريبية المدة

المدة: 03 سا و نصف

العلامة				
مجموع	مجزأة	عناصر الإجابة الموضوع 01		
		التمرين الأول: (3,5 ن)		
		1 – أ – معادلة انحلال الحمض (HA) في الماء:		
	0.50	$HA(aq) + H_2O(l) = A^-(aq) + H_3O^+(aq)$		
1.00	0.50	ب- البرتوكول التجريبي: * ذكر الوسائل و المواد الكيميائية المستعملة. (أو شكل توضيحي إن أمكن). * خطوات العمل:		
1.00	0.50	m=0,9 وزن الكتلة $m=0,9$		
	0.50	ورن المصنف $m=0,9$ g - و ضع الكتلة m في حوجلة عيارية $m=0,9$ بها كمية من الماء المقطر ، المزج ، إتمام الحجم إلى خط العيار ، ثم سد الحوجلة و رجها لمجانسة المحلول المحضر .		
		2- أ- أسماء العناصر:		
	050	-1 مسبار الـ pH متر . -2 محلول حمض السولفاميك .		
	030	-3 مخلاط مغناطیسي. -4 سحاحة. -5 محلول هیدروکسید الصودیوم.		
		ملاحظة: (0.25 لإجابتين صحيحتين و 0.50 لأربع إجابات صحيحة)		
2.50	0.50	$H_3 O^+(aq) + OH^-(aq) = 2H_2 O(l)$ ب- معادلة تفاعل المعايرة:		
	$0.25 \\ 0.25$	$C_A.V_A=C_b.V_{bE}$. و منه $n_A=n_{bE}$ عند النكافؤ $C_A.V_A=C_b.V_{bE}$. حساب التركيز المولي		
	0.25	$C_A = 5C_A' = 7.65 \times 10^{-2} mol.L^{-1}$ ومنه: $C_A = \frac{C_b \cdot V_{bE}}{V_A} = 1.53 \times 10^{-2} mol.L^{-1}$ ومنه:		
	0.25	V_A		
	0.25	$C_A = 7,65 \times 10^{-2} \text{mol.L}^{-1}$		
	0.25	$\cdot p \simeq 82\%$ اِذْن: $m' = 0,82$ د- تعيين النقاوة: $p \simeq 82\%$		
		التمرين الثاني: (4,5 ن)		
	0.25	$2I_{(aq)}^-=I_{2(aq)}+2\overline{e}$: المعادلتان النصفيتان : المعادلتان النصفيتان		
1.00	0.25	$H_2O_{2(aq)} + 2H_{(aq)}^+ + 2\bar{e} = 2 H_2O_{(\ell)}$		
1.00	0.25 0.25	$H_2O_{2(aq)}$ / $H_2O_{(\ell)}$ ، $I_{2(aq)}$ / $I_{(aq)}$ $:ox$ / red الثنائيتان $I_{(aq)}$		
		$n(I_{(aq)}^-) = 0.1 \times 36 \times 10^{-3} = 3.6 \text{ mmol}$: المزيج الأول : $n(I_{(aq)}^-) = 0.1 \times 36 \times 10^{-3} = 3.6 \text{ mmol}$: المزيج الأول :		
	0.25 0.25	$n(H_2O_{2(aq)}) = 0.1 \times 4 \times 10^{-3} = 0.4 \text{ mmol}$		
	0.25	$n\left(\left.\mathrm{I}_{\mathrm{(aq)}}^{-} ight)=0.1 imes20 imes10^{-3}=2\mathrm{mmol}$: المزيج الثاني		
	0.25	$n (H_2 O_{2(aq)}) = 0.1 \times 2 \times 10^{-3} = 0.2 \text{ mmol}$		
1.25		ب- جدول التقدم: (يقبل الجدول بالعبارات الحرفية لكميات المادة)		
		$2I_{(aq)}^- + H_2O_{2(aq)} + 2H_{(aq)}^+ = I_{2(aq)} + H_2O_{(\ell)}$ المعادلة		
		كميات المادة بـ (mmol) التقدم حالة الجملة		
	0.25	0 3,6 0.4 0 الحالة الابتدائية		
		بوفرة x 3,6 $-2x$ 0,4 $-x$ الحالة الانتقالية		
		الحالة النهائية x_{max} $3.6-2x_{max}$ $0.4-x_{max}$ x_{max}		

المجابة النموذجية لموضوع امتحال البكالوريا دورة: FT

المدة: 03 ساعات و نصف

الشعبة: علوم تجريبية	اختبار مادة: العلوم الفيزيائية
----------------------	--------------------------------

العلامة		عناصر الإجابة
مجموع	مجزأة	عصر الإجاب
	0.25 0.25	$\left[I_{2}\right]_{f}=rac{n(I_{2})_{f}}{V_{T}}=rac{x_{ ext{max}}}{V_{T}} \qquad \left[I_{2}\right]_{f}=rac{0.4}{0.06}=6.67 \text{ mmol/L} ight.$: التركيز النهائي:
1.05	0.25	I_2 = 6,2 mmol/L من البيان $t=30\mathrm{min}$ ب $t=30\mathrm{min}$
1.25	0.25 0.25	$[I_2]_{30} < [I_2]_f$ جـ $[I_2]_{30} < [I_2]_{30}$ ج. $[I_2]_{30}$ بيتوقف عند هذه اللحظة لأن $[I_2]_{30} < [I_2]_{30}$
	0.25	$\mathbf{v}_{vol} = \frac{1}{V} \frac{dn(I_2)}{dt} \Rightarrow \mathbf{v}_{vol} = \frac{d[I_2]}{dt}$: السرعة الحجمية :
	0.25	
1.00	0.25	$v_{vol1}=0.24~ m mmol.min^{-1}.L^{-1}$ ب $v_{vol2}=0.12~ m mmol.min^{-1}.L^{-1}$ ب $v_{vol2}=0.12~ m mmol.min^{-1}.L^{-1}$
	0.25	$v_{vol2} = 0,12 Infinot . Infi$
		نستنتج أن سرعة التفاعل تتزايد بتزايد التراكيز الابتدائية للمتفاعلات.
		السبت المستج العاص تترب بتربي التركير الإبتائية المتعاصرات
		التمرين الثالث: (4,0 ن)
	0.25	$ au$: $ au$ = $t_{1/2}$ / $\ln 2$ نحسب المدة الزمنية $ au$ 5 لكل عنصر حيث $ au$: $ au$
	0.25	نجد بالنسبة للسيزيوم 137 $ ightarrow 216.4 ightharpoonup 216.4$ سنة
0.75	0.25	t=30~ans أو عدد الانوية في اللحظة $t=30~ans$ بالنسبة للسيزيوم $t=30~ans$ سنة
	0.25	الفاصل الزمني بين الحادثة و 2016 هو 30 سنة ومنه: ${}^{134}_{55}$ Cs يختفي تماما ويبقى ${}^{137}_{55}$ 6 في الطبيعة .
	0.25	$^{137}_{55}Cs ightarrow ^{137}_{56}Ba+eta^-$ اً- معادلة التفكك - eta^-
0.50	0.25	ب- نصف العمر لا يتعلق بدرجة الحرارة ولا بالكمية الابتدائية للعنصر المشع.
		Z و Z :
	0.25	$Z=38$ ، $x\!=\!2$ بتطبيق قانوني الانحفاظ نجد:
	0.25	ب- النواة الأكثر استقرارا:
	0.25	$\frac{E_{l}}{A} {\binom{140}{X}e} = 8,28 \frac{MeV}{nucl\acute{e}on} \qquad {^{`}}\frac{E_{l}}{A} {\binom{94}{S}r} = 8,59 \frac{MeV}{nucl\acute{e}on}$
	0.25	
2.75	0.25 0.25	نلاحظ أن: $\left(rac{E_I}{A} ight)>rac{E_I}{A}^{140}$ انلاحظ أن: $\left(rac{E_I}{A} ight)>rac{E_I}{A}^{140}$ هي الأكثر استقرارا.
	0.25	$E_{lib} = E_l ({}^{94}Sr) + E_l ({}^{140}Xe) - E_l ({}^{235}U) = 221,86MeV : E'_{lib}$
	0.25	$E'_{lib} = E_{lib} \times N = E_{lib} \times \frac{m.N_A}{M} = 5,686 \times 10^{20} MeV = 9,09 \times 10^4 kJ$
	0.25	M (تقبل النتيجة بالاشارة السالبة) M الموافقة:
	0.25	$1 \mod(C H) \rightarrow 58 \text{ a} \rightarrow 1126 \text{ kI}$
	0.25	$m(C_4 H_{10}) \rightarrow 38g \rightarrow 1120 \text{ kJ}$ $m(C_4 H_{10}) = 4,682 \text{ kg}$ $m \rightarrow 9,09 \times 10^4 \text{ kJ}$
	0.25	

الم الموذجية الموذجية المودجية المودجي

المدة: 03 ساعات و نصف

الشعبة: علوم تجريبية

العلامة		عناصر الإجابة	
مجموع	مجزأة	T .	
	0.25 0.25	التمرين الرابع: (t ن) x (t ن) x (t المعادلات الزمنية (t ن) x (t الجملة المدروسة: الكرة، في مرجع سطحي أرضي الذي نعتبره غاليليا. $\overrightarrow{P}=m.\overrightarrow{a}$ نيوتن: $\overrightarrow{P}=m.\overrightarrow{a}$ أي: $\overrightarrow{P}=m.\overrightarrow{a}$	
3.00	0.25 0.25 0.50	$\begin{cases} a_x = \frac{dv_x}{dt} = 0 \\ a_y = \frac{dv_y}{dt} = -g \end{cases} \Rightarrow \begin{cases} v_x = v_0 \cos \alpha \\ v_y = -g t + v_0 \sin \alpha \end{cases}$:29	
	0.50	فنجد: $\begin{cases} x(t) = 5\sqrt{3} \ t \\ y(t) = -5.t^2 + 5.t + 2 \end{cases}$	
	0.25 0.25	$y = -\frac{1}{15}.x^2 + 0.58.x + 2$: $y = f(x)$ المسار $v_s = v_x = v_0 \cos \alpha = 8,66 \ m.s^{-1}$ ومنه: $v_y = 0$	
1.00	0.25 0.25 0.25 0.25	$0 < y < L$ يجب $x \ge d$ يجب $y = 1,11 \; \mathrm{m} < \; \mathrm{L} = 2.44 \; \mathrm{m}$ ومن معادلة المسار نجد: $x = d = 10 \; m$ النتيجة: لقد سجل اللاعب الهدف بهذه الرأسية.	
		التمرين التجريبي: (4,0 ن)	
0.75	0.50 0.25	$u_{R_2}=0 \iff i=0$ المدخل $y_1:$ يوافق المنحنى (b) . لأنه عند بلوغ النظام الدائم، يكون $y_1:$ المدخل $y_2:$ يوافق المنحنى $y_2:$ (يمنح $y_2:$ المعادلة التفاضلية للتيار $y_2:$ $y_2:$ $y_2:$ $y_2:$ المعادلة التفاضلية للتيار $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_2:$ $y_3:$ $y_2:$ $y_2:$ $y_3:$ y	
1.00	0.25 0.25 0.50	$E=u_{R_1}(t)+u_{R_2}(t)+u_{C}(t)$ بتطبیق قانون جمع التوترات: $E=u_{R_1}(t)+u_{R_2}(t)+u_{C}(t)$ و بالاشتقاق نجد: $E=(R_1+R_2)i(t)+u_{C}(t)$	
0.50	0.25 0.25	$:I_{0}$ عبارة $I_{0}:=\frac{E}{R_{1}+R_{2}}$ عند اللحظة $E=(R_{1}+R_{2}).~I_{0}:=0$ عند اللحظة $E=(R_{1}+R_{2}).~I_{0}:=0$	
0.25	0.25	$u_{R_2}(0) = R_2 I_0 = R_2 \frac{E}{R_1 + R_2}$: $u_{R_2}(t)$ عبارة $= -4$	
1.50	0.25 0.25 0.25 0.25 0.25 0.25	: استناج قیم کل من E و R_2 (R_2) R_2 = 4 R_2 (R_2) R_2 = 6 R_2 (R_2) R_2 = 7 R_2 = 8 R_2 = 7 R_2 = 7 R_2 = 7 R_2 = 8 R_2 = 7 R_2 = 8 R_2 = 8 R_2 = 9	

الم الموذجية المودجية المواجعة المواجع

المدة: 03 ساعات و نصف

الشعبة: علوم تجريبية

العلامة					
مجموع	مجزأة	عناصر الإجابة الموضوع 02			
		التمرين الأول: (4,0 ن)			
	0.25	$^{\circ}\mathrm{Chl} = \mathrm{V}\;(\mathrm{Cl}_2) = \mathrm{n}(\mathrm{Cl}_2).\mathrm{V}_{\mathrm{M}}$.1 لدينا من التعريف: $^{\circ}$			
	0.25	$n(Cl_2) = n(ClO^-) = C_0.V$; $V=1L \rightarrow {}^{\circ}Chl = C_0.V_M$			
0.50		2 . أ . معادلة تفاعل المعايرة :			
	0.25	$2S_2O_3^{-2} = S_4O_6^{-2} + 2e^-$: م.ن للأكسدة			
	0.25	ا ₂ + 2e ⁻ = 2l ⁻ : م.ن للإرجاع			
	0.25	$2S_2O_3^{-2}(aq) + I_2(aq) = S_4O_6^{-2}(aq) + 2I^-(aq)$: معادلة تفاعل الأكسدة . إرجاع			
	0.25	$C_1 = rac{C_2.V_{E}}{2V_1} \; \leftarrow \; rac{n(S_20_3^{-2})}{2} = rac{n(I_2)}{1} \; : $ ب عند التكافؤ يتحقق			
1.75	$0.25 \\ 0.25$	$C_0 = 4 C_1 = 2 \text{ mol.L}^{-1}$ د $C_1 = 0.5 \text{ mol.L}^{-1}$ د $C_1 = 0.5 \text{ mol.L}^{-1}$			
1.73	0.25	°ChI = 2x22.4= 44.8°			
	0.25	[CIO ⁻] ₀ = 2.15 mol/L :1- أ. من الشكل 1: .3			
	0.25	العينة A ليست حديثة الصنع			
		ب. عبارة السرعة الحجمية الاختفاء شوارد الهيبوكلوريت CIO:			
	0.25	$V_{V}(ClO^{-}) = -\frac{1}{V}\frac{dn(ClO^{-})}{dt} = -\frac{d[ClO^{-}]}{dt}$			
		عند اللحظة t = 50 jour عند اللحظة			
	0.25	امن المنحنى – 1: $V_{\text{vol}}(\text{CIO}^-)_{(200^\circ)} = 7.33 \times 10^{-3} \text{mol/(L.Jour)}$ نقبل النتائج ضمن المجال:			
1.75	0.25	$V_{v1} = [6.5; 7.5].10^{-3} \text{ unité}$ $V_{v0} = [14; 16].10^{-3} \text{ unité}$ $V_{v0} = [14; 16].10^{-3} \text{ unité}$			
	0.25	الإستنتاج: يكون تفكك ماء جافيل أسرع بارتفاع درجة الحرارة.			
	0.25	ج- النصيحة: يحفظ ماء جافيل في مكان بارد.			
		التمرين الثاني: (4,0 نقطة)			
	0.25	$^{10}_{4}{ m Be} ightarrow ^{10}_{5}{ m B} + ^{0}_{-1}{ m e}$ كتابة المعادلة: $^{10}_{-1}{ m Be}$			
0.50	0.25	$^1_0 ext{n} ightarrow ^1_1 ext{p} + ^0_1 ext{e}:$ باتج عن تحول نيوترون إلى بروتون حسب المعادلة			
	0.25	$N=N_0e^{-\lambda t}$: أ $-$ العبارة $-$ أ $-$ العبارة			
0.75		$N=rac{m}{M}$ ب - نعوض کل من N و N_0 باستعمال القانون $N=rac{m}{M}$ نحصل على			
0.73	0.50	$m(t)=m_0$ منه $rac{m}{M}.N_A=rac{m_0}{M}N_Ae^{-\lambda t}$			
	0.25	3- أ- زمن نصف العمر: هي المدة الزمنية اللازمة لتفكك نصف عدد الأنوية (كتلة) الابتدائية للعينة المشعة.			
	0.50	$t = t_{1/2} \Rightarrow m = \frac{m_0}{2}$; $\frac{m_0}{2} = m_0 e^{-\lambda t_{1/2}}$ $\Rightarrow t_{1/2} = \frac{\ln 2}{\lambda}$			
	0.25	$t_{1/2}=0.5~ans:$ من نصف العمر من البيان: لما $t=t_{1/2}$ لدينا: $t=t_{1/2}$ من البيان			
2.25	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.6}{0.5 \times 365,25 \times 24 \times 3600} = 4.37. \ 10^{-8} \ s^{-1}$				
	0.25 0.25	1/2			
	0.23	$m=1\mathrm{g}$ من البيان الكتلة المتبقية $t=1anncute t$ عند			

المدة: 03 ساعات و نصف

العلامة

تحسة	علەم	الشعبة:
*****	7	55

العلامة		عناصر الاجابة						
مجموع	مجزأة		عناصر الإجابة					
	0.25	تقبل الاجابة حسابيا باستعمال العلاقة النظرية						
	0.50	$m_d=4-1=3\mathrm{g}$: الكتلة المتفككة						
	0.50	$N_d = \frac{m_d}{M} N_A$ $N_d = \frac{3}{10} \times 6,02 \times 10^{23} = 1,806 \times 10^{23} \text{ noyaux}$						
	0.25	$\mathbf{A} = \lambda.\mathbf{N} = \lambda.\frac{m.N_A}{M} \rightarrow \mathbf{m} = \frac{A.M}{\lambda N_A} , \mathbf{m} = 0.4 \text{ g} -1 -4$						
0.50	0.25	A Sura						
	0.23	ب- عمر العينة: بالاسقاط على البيان نجد: t = 1,6 an أو						
		$t = \frac{\ln m_0 - \ln m}{\lambda}$; $t = 609,849$ jours = 1,67 an : $m(t) = m_0 e^{-\lambda t}$						
					،: (4,0 نقطة)	التمرين الثالث		
					التفاعل:	1 – أ – معادلة		
	0.25	СН	$_{3}$ COOH (I) + C_{3} H $_{7}$	$_{7}$ OH (I) = CH ₃ CO	$OO-C_3H_7(1) + H_2O(1)$			
			ارات الحرفية لكميات المادة	يقبل الجدول بالعب	م: من البيان	ب – جدول التقد		
		الحالة	CH ₃ COOH (l)	$+ C_3H_7- OH (1) =$	$CH_3COO-C_3H_7(1)$	+ H ₂ O(l)		
	0.25	الابتدائية	0,05	0,08	0	0		
	0.25	الانتقالية	0.05 - x	0.08 - x	x	x		
	0.25	النهائية	0,01	0,04	0,04	0,04		
1.75	0.25	$ au_{ m f} = rac{x_f}{x_{max}} = rac{0.04}{0.05} = 0.8$ $x_{ m f} = 0.04 \; { m mol} : من البيان x_{ m f} = 0.04 \; { m mol} ج$						
	$0.25 \\ 0.25$	$x_{max} = 0.05$ $x_{max} = 0.05$ mol $x_{max} = 0.05$						
	0.50	$K = \frac{[CH_3COO - C_3H_7]_f[H_2O]_f}{[CH_3COOH]_f[C_3H_7OH]_f} = \frac{{x_f}^2}{(0.05 - x_f)(0.08 - x_f)} = 4$						
	0.25	إذن صنف الكحول: أولى						
	0.25	ر چي کي	· ·	ه /أه – اضد	دود التفاعل: - نزع الماء	ه – لتحسن مر		
	0.23		35	-, 5/5	_			
	0.25	2 - 1 - 0 معادلة تفاعل المعايرة : $-2 - 1 - 0$ CH-COOH(20) + OH ⁻ (20) = CH-COO ⁻ (20) + H-O(1)						
		$CH_3COOH(aq) + OH^-(aq) = CH_3COO^-(aq) + H_2O(L)$						
	0.25	. $V_E = 2V = 20$ mL \rightarrow يمثل $V_B = 2V = 20$ mL \rightarrow يمثل $V_B = V_B = V_B$ \rightarrow $n(OH^-) = C.V_B = 0.01$ mol						
1.25	0.25	F	` ,	,				
	0.25	$K = \frac{CH_3CO}{C}$	$\begin{bmatrix} O^{\scriptscriptstyle{\top}} \end{bmatrix}_f & \begin{bmatrix} H_3 O^{\scriptscriptstyle{\dagger}} \end{bmatrix} \\ \begin{bmatrix} H_0 O^{\scriptscriptstyle{\dagger}} \end{bmatrix} & \begin{bmatrix} H_3 O^{\scriptscriptstyle{\dagger}} \end{bmatrix} \end{bmatrix}$	$=\frac{K_a}{K_a} \rightarrow K=10^{0}$	$pK_e - pK_a$ = 1,6.10 ⁹	ج – تفاعل تام		
	0.25	$[CH_3COOH]$	$f \left[HO^{-} \right]_{f} \left[H_{3}O^{+} \right]$	K_c	\Rightarrow	تفاعل تام		
	0.23							

		التمرين الرابع: (4,0 نقطة)
0.50	0.50	الله أدم التيار الكهربائي المبين في الدارة سالبة (i<0) لأن جهته عكس الجهة الإصطلاحية. 1
	0.25	$U_C+U_R=0$: المعادلة التفاضلية للتوتر U_c : بتطبيق قانون جمع التوترات : U_c
0.75	0.50	$U_c + \frac{1}{RC} \frac{dU_c}{dt} = 0 \leftarrow Uc + RC \frac{dU_c}{dt} = 0$

الإجابة النموذجية للوطوع امتحال البكالوريا دورة: PL2016

المدة: 03 ساعات و نصف العلامة

العلامة		عناصر الإجابة			
مجموع	مجزأة	عاصر الإجابة			
		3 - بتعويض الحل في المعادلة التفاضلية واستعمال الشروط الابتدائية:			
	0.50	نقبل الإجابة بالمطابقة مع المعادلة Ae $^{-lpha t}(1- ext{RC}lpha\;)\;=0\Longrightarrow\;\;lpha=rac{1}{RC}$			
0.75	0.25	$lpha$ المعطأة في نص التمرين في تحديد Uc(0) = Ae 0 = E \Longrightarrow A = E			
	0.50	InUc = − 50 t + 1,8 ← InUc = − a t + b : من البيان - 1 − 4			
	0.25	ب – العلاقة النظرية: InUc = - α t + InE			
1.50	$0.25 \\ 0.25$	$\alpha = 50 \text{ s}^{-1}$ و E = 6V			
	0.25	$\alpha = \frac{1}{RC} \implies C = \frac{1}{RC} = 2 \mu F$			
		RC $R.lpha$.			
0.50	0.50	$E = E_{C}(0) - E_{C}(2.5\tau) = \frac{1}{2}CE^2 - \frac{1}{2}CE^2e^{-5} = \frac{1}{2}CE^2(1 - e^{-5}) \approx \frac{1}{2}CE^2$			
0.50					
		نستنتج أن الطاقة المخزنة في المكثفة حولت تقريبا كليا.			
		التمرين التجريبي: (4,0 ن)			
		. G_6 ، G_5 ، G_4 ، G_3 ، G_2 : المواضع المواضع المواضع المواضع المواضع . G_6 ،			
	0.25	$V_{G_n} = \frac{G_{n-1}G_{n+1}}{2}$: بتطبیق العلاقة			
	0.25	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
	0.25	v(cm.s ⁻¹) 75,0 112,5 150,0 187,5 225,0			
1.50		ب - إيجاد قيمة التسارع في المواضع G ₅ ،G ₄ ،G ₃			
	0.25	$a_{Gn} = \frac{v_{n+1} - v_{n-1}}{2}$: بتطبیق العلاقة			
		2			
	0.25				
		, , , , , , , , , , , , , , , , , , , ,			
	0.25	ج – بما أن المسار مستقيم وتسارع مركز عطالة الجسم ثابت فإن الحركة مستقيمة متغيرة بانتظام.			
	0.25	R $= 1 - 2$			
	0.25	ب - بتطبيق القانون الثاني لنيوتن في معلم غاليلي (سطحي أرضي):			
1.25	$0.25 \\ 0.25$	$\sum \vec{F} \operatorname{ext} = m. \overrightarrow{a_G} \Rightarrow \vec{P} + \vec{R} = m \vec{a}$			
	0.25	$a=5,74~\mathrm{m.s^{-2}}$ ، $a=\mathrm{g.sin}\alpha$ نجد:			
		نلاحظ أن: a _{exp} < a _{th} . لأنه في الواقع الاحتكاكات غير مهملة.			
	0.25	$\sum \vec{F} \operatorname{ext} = m. \overrightarrow{a_G} \Rightarrow \vec{P} + \vec{R} + \vec{f} = m \vec{a} \qquad -1 - 3$			
	$0.25 \\ 0.25$	$f = m (g.\sin \alpha - a) = m (a_{th} - a_{exp})$; $f = 0.94 \text{ N}$ نجد:			
1.25	0.25				
	0.25	ب- بتطبيق مبدأ انحفاظ الطاقة على الجملة (جسم+أرض) بين النقطتين A و Β			
	0.25 0.25	$\frac{1}{2} \text{ m } v_B^2 = \text{mg.AB.sin}\alpha - f.\text{AB} \; ; \; v_B = \sqrt{2.AB \; (g.\sin\alpha - \frac{f}{m})} \; ; \; v_B = 3.02 \; \text{m/s}$			