X3-Class HiPerFET™ **Power MOSFET**

IXFA72N30X3

300V **72A** $19m\Omega$

N-Channel Enhancement Mode **Avalance Rated**

TO-263

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	300	V	
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	300	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _c = 25°C	72	A	
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	150	Α	
I _A	T _C = 25°C	36	A	
E _{AS}	$T_c = 25^{\circ}C$	1	J	
dv/dt	$I_{\rm S} \leq I_{\rm DM}, V_{\rm DD} \leq V_{\rm DSS}, T_{\rm J} \leq 150^{\circ} \rm C$	20	V/ns	
P_{D}	T _C = 25°C	390	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Solderino Heating / Cooling rate, 175°C - 210°C	300 50	°C/min	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force	1065 / 2.214.6	N/lb	
Weight		2.5	g	

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

SymbolTest ConditionsCharacteristic V $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min. Typ.		Values Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	300			V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 1.5 \text{mA}$	2.5		4.5	V
GSS	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 750	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			19	mΩ

Symbol	Symbol Test Conditions Cha			racteristic Values		
$(T_J = 25^{\circ}C, l)$	Unless Otherwise Specified)	Min.	Тур.	Max		
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	36	60	S		
R_{Gi}	Gate Input Resistance		1.7	Ω		
C _{iss}			5400	pF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		800	pF		
C _{rss}			2	pF		
	Effective Output Capacitance					
$C_{o(er)}$	Energy related $\bigvee_{GS} = 0V$		310	pF		
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1200	pF		
t _{d(on)}	Resistive Switching Times		22	ns		
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		25	ns		
t _{d(off)}	$R_{\rm G} = 5\Omega$ (External)		86	ns		
t _f	Ti _G = 032 (External)		11	ns		
$\mathbf{Q}_{g(on)}$			82	nC		
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		25	nC		
Q _{gd}			25	nC		
R _{thJC}				0.32 °C/W		

Source-Drain Diode

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Chara Min.	cteristic Typ.	Values Max	
Is	$V_{GS} = 0V$			72	Α
I _{SM}	Repetitive, pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			288	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_{_{\rm F}} = 36A, -di/dt = 100A/\mu s$ $V_{_{\rm R}} = 100V$		100 750 15		ns nC A

Note: 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 36A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 36A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

100

1,000

V_{DS} - Volts

10

Fig. 14. Forward-Bias Safe Operating Area

