

Hoofdstuk 1

Complexe getallen

1.1 Nieuwe getallen

1.2 Rekenen met complexe getallen

- 1.2.1 Optellen en vermenigvuldigen van complexe getallen
- 1.2.2 Delen van complexe getallen
- 1.2.3 Eigenschappen van de optelling en de vermenigvuldiging in C
- V 1.2.4 Complexe getallen en orde

1.3 Vierkantswortels en vierkantsvergelijkingen in C

- 1.3.1 Vierkantswortels van een complex getal
- 1.3.2 Vierkantsvergelijkingen in C

Opdracht 1 bladzijde 11

Reken de haakjes uit zoals je in $\mathbb R$ zou doen. Hou er rekening mee dat $i^2 = -1$. Schrijf het resultaat in de vorm a + bi.

1
$$(4+3i)+(-1+2i) = 3+5i$$

2
$$-(7-8i) = -7+8i$$

3
$$(-2+5i)-(-1+3i) = -1+2i$$

4
$$(3+i) \cdot (-2i) = 2-6i$$

5
$$(2+i) \cdot (4+i) = 8+6i-1=7+6i$$

Opdracht 2 bladzijde 12

Bereken

1
$$(2-i) - (-7+3i) = 9-4i$$

2
$$(3-2i)(2+3i) = 6+9i-4i-6i^2 = 12+5i$$

3
$$(\sqrt{2} - i\sqrt{3})(\sqrt{3} - i\sqrt{2}) = \sqrt{6} - 2i - 3i - \sqrt{6} = -5i$$

4
$$(1-3i)^2 = (1-3i)(1-3i) = 1-3i-3i-9 = -8-6i$$

Opdracht 3 bladzijde 13

Bereken de reële getallen x en y als

1
$$(3+4i)(x+yi)=7+26i$$

$$\Leftrightarrow$$
 3x + 3yi + 4xi + 4yi² = 7 + 26i

$$\Leftrightarrow$$
 $(3x - 4y) + (4x + 3y)i = 7 + 26i$

$$\Leftrightarrow \begin{cases} 3x - 4y = 7 \\ 4x + 3y = 26 \end{cases} \Leftrightarrow \begin{cases} 12x - 16y = 28 \\ -12x - 9y = -78 \end{cases} \Leftrightarrow \begin{cases} -25y = -50 \\ 3x - 4y = 7 \end{cases} \Leftrightarrow \begin{cases} y = 2 \\ 3x = 7 + 4 \cdot 2 \end{cases} \Leftrightarrow \begin{cases} y = 2 \\ x = 5 \end{cases}$$

2
$$i(x + yi) + (x + yi) = (6 - 2i)(x + yi)$$

$$\Leftrightarrow$$
 xi - y + x + yi = 6x + 6yi - 2xi + 2y

$$\Leftrightarrow$$
 $(x - y) + (x + y)i = (6x + 2y) + (-2x + 6y)i$

$$\Leftrightarrow \begin{cases} x-y=6x+2y \\ x+y=-2x+6y \end{cases} \Leftrightarrow \begin{cases} -5x-3y=0 \\ 3x-5y=0 \end{cases} \Leftrightarrow \begin{cases} x=0 \\ y=0 \end{cases}$$

Opdracht 4 bladzijde 13

Bereken

1
$$(x + yi)(x - yi) = x^2 - xyi + xyi + y^2 = x^2 + y^2$$

2
$$(x + yi)^2 - (x - 2yi)^2 = (x + yi)(x + yi) - (x - 2yi)(x - 2yi)$$

= $x^2 + 2xyi - y^2 - x^2 + 4xyi + 4y^2 = 3y^2 + 6xyi$

Opdracht 5 bladzijde 13

Bereken

1
$$i^3$$
, i^4 , i^5 , i^6 , i^7 , i^8
 $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^6 = -1$, $i^7 = -i$, $i^8 = 1$

2
$$i^{4n}$$
, i^{4n+1} , i^{4n+2} en i^{4n+3} als $n \in \mathbb{N}_0$
 $i^{4n} = (i^4)^n = 1^n = 1$
 $i^{4n+1} = i^{4n} i = i$
 $i^{4n+2} = i^{4n} i^2 = -1$
 $i^{4n+3} = i^{4n} i^3 = -i$

3 i^n , met *n* jouw geboortejaar bijv. $i^{1999} = i^{4 \cdot 499 + 3} = -i$

Opdracht 6 bladzijde 13

1 Bereken
$$(2+3i)(2-3i)$$
.
 $(2+3i)\cdot(2-3i)=4-6i+6i+9=13$

2 Bepaal het complexe getal z = a + bi waarvoor geldt dat $(2 + 3i) \cdot z = 1$. Uit $(2 + 3i) \cdot (2 - 3i) = 13$ volgt: $(2 + 3i) \cdot (2 - 3i) \cdot \frac{1}{13} = 1$. Daarom: $(2 + 3i) \cdot z = 1$ voor $z = \frac{1}{13} \cdot (2 - 3i) = \frac{2}{13} - \frac{3}{13}i$.

Opdracht 7 bladzijde 16

Bereken zonder rekentoestel.

$$1 \quad \frac{1}{12+5i} \quad = \frac{12-5i}{144+25} = \frac{12-5i}{169}$$

2
$$\frac{1-i}{1+i} = \frac{(1-i)^2}{1+1} = \frac{\chi - 2i}{2} = -i$$

3
$$\frac{3-i}{5i}$$
 = $\frac{(3-i)(-5i)}{25}$ = $\frac{-15i+5i^2}{25}$ = $\frac{-1-3i}{5}$

4
$$\frac{7-i}{1+i} - \frac{4}{i} = \frac{(7-i)(1-i)}{2} - \frac{-4i}{1} = \frac{7-7i-i-1}{2} + 4i = \frac{6-8i}{2} + 4i = 3$$

5
$$(3+2i)^{-2}$$
 = $\frac{1}{(3+2i)^2}$ = $\frac{1}{5+12i}$ = $\frac{5-12i}{169}$

6
$$(2+5i) \cdot \overline{(2-6i)} = (2+5i)(2+6i) = 4+12i+10i-30 = -26+22i$$

Opdracht 8 bladzijde 16

Toon aan dat $\frac{a+bi}{c+di}$ en $\frac{a-bi}{c-di}$ toegevoegde complexe getallen zijn.

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$
(*)

$$\frac{a - bi}{c - di} = \frac{(a - bi)(c + di)}{c^2 + d^2} = \frac{(ac + bd) + (ad - bc)i}{c^2 + d^2}$$

$$=\frac{(ac+bd)-(bc-ad)i}{c^2+d^2}$$

→ complex toegevoegde van (*)

Opdracht 9 bladzijde 16

Toon aan dat $\bar{z}^2 = -i$ als $z^2 = i$.

Gegeven: $z^2 = i$

Te bewijzen: $\overline{z}^2 = -i$

Bewijs:

Stel z = a + bi, dan geldt:

$$z^2 = (a + bi)^2 = (a^2 - b^2) + 2abi = i$$
, dus $a^2 - b^2 = 0$ en $2ab = 1$ (*)

$$\bar{z}^2 = (a - bi)^2 = (a^2 - b^2) - 2abi = -i$$

Opdracht 10 bladzijde 18

Toon aan dat de volgende formules voor merkwaardige producten die gelden in $\mathbb R$ ook gelden in $\mathbb C$. Noteer bij elke overgang op welke van de eigenschappen voor de optelling en de vermenigvuldiging in $\mathbb C$ je steunt.

$$\begin{aligned} \mathbf{1} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

2
$$(z_1 + z_2)(z_1 - z_2) = z_1^2 - z_2^2$$
 $(z_1, z_2 \in \mathbb{C})$
 $(z_1 + z_2)(z_1 - z_2) = z_1^2 - z_1z_2 + z_2z_1 - z_2^2$ de vermenigvuldiging is distributief t.o.v. de optelling in \mathbb{C}
 $= z_1^2 - z_1z_2 + z_1z_2 - z_2^2$ de vermenigvuldiging is commutatief in \mathbb{C}
 $= z_1^2 - z_1^2$

Opdracht 11 bladzijde 21

Bepaal een getal z = a + bi waarvoor geldt $z^2 = i$.

$$(a + bi)^2 = i$$

$$\Leftrightarrow$$
 a² – b² + 2abi = i

$$\Leftrightarrow \begin{cases} a^2 - b^2 = 0 \\ 2ab = 1 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{4b^2} - b^2 = 0 \\ a = \frac{1}{2b} \end{cases} \Leftrightarrow \begin{cases} 1 - 4b^4 = 0 \\ a = \frac{1}{2b} \end{cases} \Leftrightarrow \begin{cases} b^4 = \frac{1}{4} \\ a = \frac{1}{2b} \end{cases}$$

$$\Leftrightarrow \begin{cases} b = \frac{1}{\sqrt{2}} \text{ of } b = \frac{-1}{\sqrt{2}} \\ a = \frac{1}{2b} \end{cases} \Leftrightarrow \begin{cases} b = \frac{1}{\sqrt{2}} \text{ of } b = \frac{-1}{\sqrt{2}} \\ a = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} \text{ of } a = \frac{-\sqrt{2}}{2} = \frac{-1}{\sqrt{2}} \end{cases}$$

$$z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
 of $z = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$

Opdracht 12 bladzijde 22

Bepaal de vierkantswortels van

1
$$16 + 30i$$

$$(x + yi)^2 = 16 + 30i$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 16 \\ 2xy = 30 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{225}{x^2} = 16 \\ y = \frac{15}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 - 16x^2 - 225 = 0 \\ y = \frac{15}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{16 + 34}{2} = 25 \text{ of } x^2 = \frac{16 - 34}{2} = -9 \\ y = \frac{15}{x} \end{cases}$$

$$\Leftrightarrow$$
 $\begin{cases} x=5 \text{ of } x=-5 \\ y=3 \text{ of } y=-3 \end{cases}$

De vierkantswortels van 16 + 30i zijn 5 + 3i en -5 - 3i.

2 −4

$$(x + yi)^2 = -4$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = -4 \\ 2xy = 0 \end{cases} \Leftrightarrow \begin{cases} -y^2 = -4 \text{ of } x^2 = -4 \end{cases} \Leftrightarrow \begin{cases} y = 2 \text{ of } y = -2 \\ x = 0 \text{ of } y = 0 \end{cases}$$

De vierkantswortels van -4 zijn 2i en -2i.

3
$$-\frac{3}{4}-i$$

$$(x + yi)^{2} = -\frac{3}{4} - i$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = -\frac{3}{4} \Leftrightarrow \begin{cases} x^{2} - \frac{1}{4x^{2}} = -\frac{3}{4} \\ y = \frac{-1}{2x} \end{cases} \Leftrightarrow \begin{cases} 4x^{4} + 3x^{2} - 1 = 0 \\ y = \frac{-1}{2x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{-3+5}{8} = \frac{1}{4} \text{ of } x^2 = \frac{-3-5}{8} = -1 \\ y = \frac{-1}{2x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{1}{2} \text{ of } x = \frac{-1}{2} \\ y = -1 \text{ of } y = 1 \end{cases}$$

De vierkantswortels van $-\frac{3}{4}$ – i zijn $\frac{1}{2}$ – i en $-\frac{1}{2}$ + i.

Opdracht 13 bladzijde 22

Los op in C.

1
$$1 + 4z^2 = 0$$
 $\Leftrightarrow z^2 = -\frac{1}{4} = \frac{1}{4}i^2 \Leftrightarrow z = \frac{1}{2}i \text{ of } z = -\frac{1}{2}i$

2
$$z^2 = -8 + 6i$$
 $\Leftrightarrow (x + yi)^2 = -8 + 6i$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = -8 \\ 2xy = 6 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{9}{x^2} = -8 \\ y = \frac{3}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 + 8x^2 - 9 = 0 \\ y = \frac{3}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{-8+10}{2} = 1 \text{ of } x^2 = \frac{-8-10}{2} = -9 \\ y = \frac{3}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 1 \text{ of } x = -1 \\ y = 3 \text{ of } y = -3 \end{cases}$$

$$\Leftrightarrow$$
 z = 1 + 3i of z = -1 - 3i

3
$$(-2+i)z^2 = 22+19i$$

$$\Leftrightarrow z^2 = \frac{22 + 19i}{-2 + i} = \frac{(22 + 19i)(-2 - i)}{5} = \frac{-44 - 22i - 38i + 19}{5} = \frac{-25 - 60i}{5} = -5 - 12i$$

$$\Leftrightarrow$$
 $(x + yi)^2 = -5 - 12i$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = -5 \\ 2xy = -12 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{36}{x^2} = -5 \\ y = \frac{-6}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 + 5x^2 - 36 = 0 \\ y = \frac{-6}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{-5+13}{2} = 4 \text{ of } x^2 = \frac{-5-13}{2} = -9 \\ y = \frac{-6}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 2 \text{ of } x = -2 \\ y = -3 \text{ of } y = 3 \end{cases}$$

$$\Leftrightarrow$$
 z = 2 - 3i of z = -2 + 3i

Opdracht 14 bladzijde 24

Los de vierkantsvergelijkingen op in \mathbb{C} .

1
$$4z^2 - 4z + 5 = 0$$

 $D = 16 - 80 = -64$
 $d = 8i$
 $\Leftrightarrow z = \frac{4 + 8i}{8} = \frac{1}{2} + i \text{ of } z = \frac{4 - 8i}{8} = \frac{1}{2} - i$

2
$$z^2 - 2iz + 3 = 0$$

 $D = -4 - 12 = -16$
 $d = 4i$
 $\Leftrightarrow z = \frac{2i + 4i}{2} = 3i \text{ of } z = \frac{2i - 4i}{2} = -i$

3
$$z^2 + (1 - 2i)z - 2i = 0$$

$$D = (1 - 2i)^2 - 4 \cdot (-2i) = 1 - 4i - 4 + 8i = 1 + 4i - 4 = (1 + 2i)^2$$

$$d = 1 + 2i$$

$$\Leftrightarrow z = \frac{\sqrt{1 + 2i + 1 + 2i}}{2} = 2i \text{ of } z = \frac{-1 + 2\sqrt{1 - 1} - 2\sqrt{1}}{2} = -1$$

4
$$iz^{2} - 2z + 3 - i = 0$$

 $D = 4 - 4i(3 - i) = 4 - 12i - 4 = -12i$
 $(x + yi)^{2} = -12i \Leftrightarrow \begin{cases} x^{2} - y^{2} = 0 \\ 2xy = -12 \end{cases} \Leftrightarrow \begin{cases} x^{2} - \frac{36}{x^{2}} = 0 \\ y = \frac{-6}{x} \end{cases} \Leftrightarrow \begin{cases} x^{4} - 36 = 0 \\ y = \frac{-6}{x} \end{cases}$

$$\Leftrightarrow \begin{cases} x^{2} = 6 \text{ of } x^{2} = -6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \sqrt{6} \text{ of } x = -\sqrt{6} \\ y = -\sqrt{6} \text{ of } y = \sqrt{6} \end{cases}$$

$$\Leftrightarrow z = \frac{2 + \sqrt{6} - i\sqrt{6}}{2i} \text{ of } z = \frac{2 - \sqrt{6} + i\sqrt{6}}{2i}$$

$$\Leftrightarrow z = \frac{2i + i\sqrt{6} + \sqrt{6}}{-2} \text{ of } z = \frac{2i - i\sqrt{6} - \sqrt{6}}{-2}$$

$$\Leftrightarrow z = -\frac{\sqrt{6}}{2} - \left(1 + \frac{\sqrt{6}}{2}\right)i \text{ of } z = \frac{\sqrt{6}}{2} + \left(-1 + \frac{\sqrt{6}}{2}\right)i$$

5
$$(1+i)z^2 + (2-4i)z - 7 - 9i = 0$$

$$D = (2-4i)^2 - 4(1+i)(-7-9i) = 4 - 16i - 16 + 28 + 36i + 28i - 36$$

$$= -20 + 48i$$

$$d = 4 + 6i$$

$$\Leftrightarrow z = \frac{-2 + 4i + 4 + 6i}{2 + 2i} = \frac{2 + 10i}{2 + 2i} = \frac{(1+5i)(1-i)}{2} = \frac{1-i+5i+5}{2} = 3 + 2i$$
of $z = \frac{-2 + 4i - 4 - 6i}{2 + 2i} = \frac{-6 - 2i}{2 + 2i} = \frac{(-3-i)(1-i)}{2} = \frac{-3+3i-i-1}{2} = -2+i$

Opdracht 15 bladzijde 27

Bereken zonder rekentoestel.

1
$$(1+2i)^{-1}$$
 = $\frac{1}{1+2i}$ = $\frac{1-2i}{5}$ = $\frac{1}{5}$ - $\frac{2}{5}i$

2
$$\frac{3}{2-i}$$
 = $\frac{3(2+i)}{5}$ = $\frac{6}{5}$ + $\frac{3}{5}$ i

3
$$i^{-1} = \frac{1}{i} = \frac{-i}{1} = -i$$

4
$$\frac{-i^3}{i^5}$$
 = $\frac{-1}{i^2}$ = 1

5
$$(1+i)^2 = 1+2i-1=2i$$

6
$$(1+i)^3$$
 = 1 + 3i + 3i² + i³ = 1 + 3i - 3 - i = -2 + 2i

7
$$\frac{6+2i}{1+2i}$$
 = $\frac{(6+2i)(1-2i)}{5}$ = $\frac{6-12i+2i+4}{5}$ = 2-2i

$$8 \quad \frac{1+18i}{3+4i} + \frac{7-26i}{3-4i} \quad = \frac{(1+18i)(3-4i)+(7-26i)(3+4i)}{25} = \frac{3-4i+54i+72+21+28i-78i+104}{25}$$

$$=\frac{200+0i}{25}=8$$

9
$$\frac{1}{(1-i)^2} - \frac{1}{(1+i)^2} = \frac{1}{\chi - 2i} - \frac{1}{\chi + 2i} = -\frac{1}{2i} - \frac{1}{2i} = \frac{-1}{i} = \frac{-(-i)}{1} = i$$

10
$$\frac{(1-3i)(1+3i)}{1-i} = \frac{(1+9)(1+i)}{(1-i)(1+i)} = \frac{10(1+i)}{2} = 5+5i$$

11
$$\frac{(1-i\sqrt{3})^2}{1+i\sqrt{3}} = \frac{(1-2i\sqrt{3}-3)(1-i\sqrt{3})}{1+3} = \frac{(-2-2i\sqrt{3})(1-i\sqrt{3})}{4} = \frac{-2+2i\sqrt{3}-2i\sqrt{3}-2\cdot3}{4}$$
$$= \frac{-8}{4} = -2$$

12
$$\frac{3-5i\sqrt{3}}{9-i\sqrt{3}} = \frac{(3-5i\sqrt{3})(9+i\sqrt{3})}{81+3} = \frac{27+3i\sqrt{3}-45i\sqrt{3}+15}{84} = \frac{42-42i\sqrt{3}}{84} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Opdracht 16 bladzijde 27

Los op in C.

1
$$iz + 2 = 0$$
 $\Leftrightarrow z = \frac{-2}{i} = 2i$

2
$$(2+i)z-3-2i=0$$
 $\Leftrightarrow z=\frac{3+2i}{2+i}=\frac{(3+2i)(2-i)}{5}=\frac{6-3i+4i+2}{5}=\frac{8}{5}+\frac{1}{5}i$

3
$$2(z-4) = i(z-5)$$
 $\Leftrightarrow 2z-8 = iz-5i \Leftrightarrow (2-i)z=8-5i$
$$\Leftrightarrow z = \frac{8-5i}{2-i} = \frac{(8-5i)(2+i)}{5} = \frac{16+8i-10i+5}{5} = \frac{21}{5} - \frac{2}{5}i$$

4
$$3 - 2i + 2iz = 3i(z - 2)$$
 $\iff 3 - 2i + 2iz = 3iz - 6i \iff -iz = -3 - 4i$
 $\iff z = \frac{3 + 4i}{i} = \frac{-3i + 4}{1} = 4 - 3i$

Opdracht 17 bladzijde 27

Bereken

$$1 \quad 1 + \frac{x - yi}{x + yi} + \frac{x + yi}{x - yi} = 1 + \frac{(x - yi)^2}{x^2 + y^2} + \frac{(x + yi)^2}{x^2 + y^2}$$
$$= \frac{x^2 + y^2 + x^2 - 2xyi - y^2 + x^2 + 2xyi - y^2}{x^2 + y^2} = \frac{3x^2 - y^2}{x^2 + y^2}$$

$$\frac{2}{(x+yi)^2 + (x-yi)^2} = \frac{x^2 + 2xyt - y^2 + x^2 - 2xyi - y^2}{x^2 + 2xyi - y^2 - x^2 + 2xyi + y^2}$$

$$= \frac{2x^2 - 2y^2}{4xyi} = \frac{(x^2 - y^2)(-i)}{2xyi(-i)} = \frac{(y^2 - x^2)i}{2xy}$$

Opdracht 18 bladzijde 27

Bereken $(i - i^{-1})^{-1}$ zonder rekentoestel.

$$(i-i^{-1})^{-1} = (i-\frac{1}{i})^{-1} = (i+i)^{-1} = \frac{1}{2i} = \frac{-i}{2}$$

Opdracht 19 bladzijde 28

Bereken zonder rekentoestel.

1
$$i^{-735} = \frac{1}{i^{4} \cdot 183 + 3} = \frac{1}{i^{3}} = \frac{1}{-i} = i$$

2
$$i^{486} = i^{4 \cdot 121 + 2} = i^2 = -1$$

3
$$i^{3^3} = i^{27} = i^{4 \cdot 6 + 3} = i^3 = -i$$

Opdracht 20 bladzijde 28

Bewijs.

1
$$\forall z \in \mathbb{C} : \overline{z} = z$$

Stel $z = a + bi$, dan is $\overline{z} = \overline{a + bi} = \overline{a - bi} = a + bi = z$.

2
$$\forall z_1, z_2 \in \mathbb{C} : \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

Stel $z_1 = a_1 + b_1 i$ en $z_2 = a_2 + b_2 i$, dan geldt:

$$\overline{z_1 + z_2} = \overline{a_1 + b_1 i + a_2 + b_2 i} = \overline{(a_1 + a_2) + (b_1 + b_2) i} = (a_1 + a_2) - (b_1 + b_2) i$$

$$= a_1 - b_1 i + a_2 - b_2 i = \overline{z_1} + \overline{z_2}$$

3
$$\forall z_1, z_2 \in \mathbb{C} : \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

Stel $z_1 = a_1 + b_1 i$ en $z_2 = a_2 + b_2 i$, dan geldt:

$$\overline{z_1 \cdot z_2} = \overline{(a_1 + b_1 i) \cdot (a_2 + b_2 i)} = \overline{a_1 a_2 + a_1 b_2 i + a_2 b_1 i - b_1 b_2}$$

$$= \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1) i$$

$$= a_1 (a_2 - b_2 i) - b_1 (b_2 + a_2 i) = a_1 (a_2 - b_2 i) - b_1 i (a_2 - b_2 i)$$

$$= (a_1 - b_1 i) (a_2 - b_2 i) = \overline{z_1} \cdot \overline{z_2}$$

4
$$\forall z_1, z_2 \in \mathbb{C} : \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Stel $z_1 = a_1 + b_1 i$ en $z_2 = a_2 + b_2 i$, dan geldt:

$$\begin{split} \overline{\left(\frac{z_1}{z_2}\right)} &= \overline{\left(\frac{a_1 + b_1 i}{a_2 + b_2 i}\right)} = \overline{\left(\frac{(a_1 + b_1 i)(a_2 - b_2 i)}{a_2^2 + b_2^2}\right)} = \overline{\left(\frac{a_1 a_2 - a_1 b_2 i + a_2 b_1 i + b_1 b_2}{a_2^2 + b_2^2}\right)} \\ &= \overline{\left(\frac{(a_1 a_2 + b_1 b_2) + (a_2 b_1 - a_1 b_2) i}{a_2^2 + b_2^2}\right)} = \overline{\left(\frac{(a_1 a_2 + b_1 b_2) - (a_2 b_1 - a_1 b_2) i}{a_2^2 + b_2^2}\right)} \\ &= \overline{\left(\frac{a_1 a_2 + b_2 i) + b_1 (b_2 - a_2 i)}{a_2^2 + b_2^2}\right)} = \overline{\left(\frac{a_1 a_2 + b_2 i) - b_1 i (a_2 + b_2 i)}{a_2^2 + b_2^2}} \\ &= \overline{\left(\frac{a_1 - b_1 i)(a_2 + b_2 i)}{a_2^2 + b_2^2}\right)} = \overline{\left(\frac{a_1 - b_1 i}{a_2 - b_2 i}\right)} = \overline{\left(\frac{a_1 -$$

Opdracht 21 bladzijde 28

Stel dat $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}, z_1 + z_2 \in \mathbb{R} \text{ en } z_1 \cdot z_2 \in \mathbb{R}.$

Bewijs dat $z_2 = \overline{z_1}$.

Stel $z_1 = a_1 + b_1 i$ en $z_2 = a_2 + b_2 i$ met $b_1 \neq 0$ en $b_2 \neq 0$ want $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$.

$$z_1 + z_2 \in \mathbb{R} \iff (a_1 + a_2) + (b_1 + b_2)i \in \mathbb{R}$$

$$\Leftrightarrow$$
 $b_1 + b_2 = 0$

$$\Leftrightarrow b_1 = -b_2 \tag{1}$$

$$z_1 \cdot z_2 \in \mathbb{R} \iff (a_1 \, a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i \in \mathbb{R}$$

$$\iff a_1b_2 + a_2b_1 = 0$$

$$\Leftrightarrow a_1b_2 - a_2b_2 = 0$$
 (zie (1))

$$\Leftrightarrow a_1 - a_2 = 0 \qquad (b_2 \neq 0)$$

$$\Leftrightarrow a_1 = a_2$$
 (2)

Uit (1) en (2) volgt: $z_2 = a_2 + b_2 i = a_1 - b_1 i = \overline{z_1}$.

Opdracht 22 bladzijde 28

Bereken $\frac{(1+i)^3}{(1-i)^3} - \frac{(1-i)^3}{(1-i)^3}$ zonder rekentoestel.

$$\frac{(1+i)^3}{(1-i)^3} - \frac{(1-i)^3}{(1+i)^3} = \left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$$

$$= \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^3 - \left(\frac{(1-i)^2}{(1+i)(1-i)}\right)^3$$

$$= \left(\frac{2i}{2}\right)^3 - \left(\frac{-2i}{2}\right)^3$$

$$= i^3 - (-i)^3$$

$$= -i - i$$

$$= -2i$$

Opdracht 23 bladzijde 28

Bereken $\left(\frac{1+i}{1-i}\right)^{30} + \left(\frac{1-i}{1+i}\right)^{30}$ zonder rekentoestel.

$$\left(\frac{1+i}{1-i}\right)^{30} + \left(\frac{1-i}{1+i}\right)^{30} = \left(\frac{(1+i)^2}{2}\right)^{30} + \left(\frac{(1-i)^2}{2}\right)^{30}$$

$$= \left(\frac{2i}{2}\right)^{30} + \left(\frac{-2i}{2}\right)^{30}$$

$$= i^{4\cdot7+2} + (-1)^{30} \cdot i^{4\cdot7+2}$$

$$= -1 + (-1)$$

$$= -2$$

Opdracht 24 bladzijde 28

Op de planeet Quaternion rekent men met onze reële getallen en de gewone vermenigvuldiging, maar ook nog met drie symbolen i, j en k die op de volgende manier worden vermenigvuldigd:

$$i \cdot i = -1$$
 $j \cdot j = -1$ $k \cdot k = -1$ $i \cdot j = k$ $j \cdot k = i$ $k \cdot i = j$

Als je bovendien weet dat de vermenigvuldiging op Quaternion associatief maar niet commutatief is, wat is dan $k \cdot j \cdot i$?

$$lackbox{ A}$$
 $lackbox{ A}$ $lackbox{ B}$ -1 $lackbox{ C}$ i $lackbox{ D}$ j $lackbox{ E}$ k

(Bron © VWO 2003, tweede ronde)

$$k \cdot j \cdot i = k \cdot (k \cdot i) \cdot i = (k \cdot k) \cdot (i \cdot i) = (-1) \cdot (-1) = 1$$

Antwoord A

Opdracht 25 bladzijde 28

Voor hoeveel reële getallen x is $x^2i + xi^2 + (xi)^2 + 1$ een zuiver imaginair getal?

 $x^{2}i + xi^{2} + (xi)^{2} + 1$ is zuiver imaginair

 \Leftrightarrow $x^2i - x - x^2 + 1$ is zuiver imaginair

$$\Leftrightarrow -x^2 - x + 1 = 0 \qquad (D = 5)$$

$$\Leftrightarrow x = \frac{1+\sqrt{5}}{-2}$$
 of $x = \frac{1-\sqrt{5}}{-2}$

Er zijn twee reële getallen waarvoor $x^2i + xi^2 + (xi)^2 + 1$ een zuiver imaginair getal is.

Opdracht 26 bladzijde 28

Stel z = a + bi met a en b reële getallen.

Bepaal a en b als $z^2 - 6z + 12$ reëel en strikt negatief is.

$$z^2 - 6z + 12 \in \mathbb{R}$$
 (1) en $z^2 - 6z + 12 < 0$ (2)

$$(a + bi)^2 - 6(a + bi) + 12 = a^2 - b^2 + 2abi - 6a - 6bi + 12$$

$$= (a^2 - b^2 - 6a + 12) + (2ab - 6b)i$$

(1) vereist:
$$2ab - 6b = 0 \iff 2b(a - 3) = 0$$

$$\Leftrightarrow$$
 b = 0 of a = 3

(2) vereist:
$$a^2 - b^2 - 6a + 12 < 0$$

• Stel b = 0, dan moet gelden:
$$a^2 - 6a + 12 < 0$$
 D = -12

• Stel a = 3, dan moet gelden:

$$9 - b^2 - 18 + 12 < 0$$

$$\Leftrightarrow$$
 $-b^2 + 3 < 0$

$$\Leftrightarrow$$
 b < $-\sqrt{3}$ of b > $\sqrt{3}$

b
$$-\sqrt{3}$$
 $\sqrt{3}$ $-b^2+3$ $-$ 0 $+$ 0 $-$

Besluit: a = 3 en $b \in]-\infty, -\sqrt{3}[\cup]\sqrt{3}, +\infty[$

Opdracht 27 bladzijde 29

Als $z^2 + 2z = -5$, waarom is dan ook $\bar{z}^2 + 2\bar{z} = -5$?

In opdracht 20 bewezen we:

$$\forall z_1, z_2 \in \mathbb{C}: \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \text{ en } \overline{\overline{z_1}} = z_1$$

Bijgevolg:

$$z^{2} + 2z = -5 \iff \overline{z^{2} + 2z} = \overline{-5}$$

$$\Leftrightarrow \overline{z^{2} + 2z} = -5$$

$$\Leftrightarrow \overline{z^{2} + 2} \cdot \overline{z} = -5$$

$$\Leftrightarrow \overline{7}^{2} + 2 \cdot \overline{7} = -5$$

Opdracht 28 bladzijde 29

Los op in \mathbb{C} .

1 $5z + 4\overline{z} + 5z^{-1} = 10$

$$\Leftrightarrow$$
 5(a + bi) + 4(a - bi) + $\frac{5}{a + bi}$ = 10 stel z = a + bi \neq 0

$$\Leftrightarrow$$
 5a + 5bi + 4a - 4bi + $\frac{5a - 5bi}{a^2 + b^2}$ = 10

$$\Leftrightarrow \begin{cases} 9a + \frac{5a}{a^2 + b^2} = 10 \\ b - \frac{5b}{a^2 + b^2} = 0 \end{cases} \Leftrightarrow \begin{cases} 9a(a^2 + b^2) + 5a = 10(a^2 + b^2) & (1) \\ b(a^2 + b^2) - 5b = 0 & (2) \end{cases}$$

(2):
$$b(a^2 + b^2) - 5b = 0 \iff a^2 + b^2 = 5$$
 of $b = 0$

• Als $a^2 + b^2 = 5$ dan wordt (1):

$$45a + 5a = 10 \cdot 5 \iff 50a = 50 \iff a = 1$$

en dus: $b^2 = 5 - 1 = 4 \iff b = 2$ of $b = -2$

Dan is
$$z = 1 + 2i$$
 of $z = 1 - 2i$.

• Als b = 0 dan wordt (1):

$$9a^3 + 5a = 10a^2 \Leftrightarrow a(9a^2 - 10a + 5) = 0$$

 $\Leftrightarrow a = 0 \text{ of } 9a^2 - 10a + 5 = 0 \Rightarrow \text{ geen re\"ele oplossing}$

Dan is z = 0, dit is onmogelijk.

Besluit: z = 1 + 2i of z = 1 - 2i.

2
$$z^2 + 3\overline{z}^2 + z - \overline{z} + 3 = 0$$

$$\Leftrightarrow$$
 $(a + bi)^2 + 3(a - bi)^2 + (a + bi) - (a - bi) + 3 = 0 stel z = a + bi$

$$\Leftrightarrow$$
 $a^2 - b^2 + 2abi + 3a^2 - 3b^2 - 6abi + 4 + bi + 3 = 0$

$$\Leftrightarrow 4a^2 - 4b^2 - 4abi + 2bi + 3 = 0$$

$$\Leftrightarrow \begin{cases} 4a^2 - 4b^2 + 3 = 0 & (1) \\ -4ab + 2b = 0 & (2) \end{cases}$$

(2):
$$-4ab + 2b = 0 \iff b = 0 \text{ of } a = \frac{1}{2}$$

• Als b = 0 dan wordt (1):

$$4a^2 + 3 = 0 \rightarrow \text{geen re\"ele oplossing}$$

• Als $a = \frac{1}{2}$ dan wordt (1):

$$1 - 4b^2 + 3 = 0 \iff b^2 = 1 \iff b = 1$$
 of $b = -1$

Dan is
$$z = \frac{1}{2} + i$$
 of $z = \frac{1}{2} - i$.

Besluit:
$$z = \frac{1}{2} + i$$
 of $z = \frac{1}{2} - i$.

Opdracht 29 bladzijde 29

Is $z = x + yi \neq -1$ en $x^2 + y^2 = 1$, dan is $\frac{z-1}{z+1}$ een zuiver imaginair getal of nul.

Bewijs.

$$\frac{z-1}{z+1} = \frac{(x+yi)-1}{(x+yi)+1} = \frac{(x-1)+yi}{(x+1)+yi} = \frac{((x-1)+yi))((x+1)-yi)}{(x+1)^2+y^2}$$
$$= \frac{(x-(1-yi))(x+(1-yi))}{x^2+2x+1+y^2} = \frac{x^2-(1-yi)^2}{2+2x}$$
$$= \frac{x^2-(1+2yi+x)^2}{2(x+1)} = \frac{2yi}{2(x+1)} = \frac{yi}{x+1}$$

- Als y = 0 dan is $\frac{yi}{x+1} = 0$ want uit $x + yi \neq -1$ volgt dat dan $x \neq -1$ dus de noemer is verschillend van 0.
- Als $y \ne 0$, dan is $\frac{yi}{x+1}$ een zuiver imaginair getal.

Opdracht 30 bladzijde 29

Stel $z_1 = a + bi$, $z_2 = c + di$ en $z_3 = e + fi$.

1 Bereken $z_1 + (z_2 + z_3)$ en $(z_1 + z_2) + z_3$ en toon op die manier aan dat de optelling in \mathbb{C} associatief is.

$$z_1 + (z_2 + z_3)$$

$$= (a + bi) + ((c + di) + (e + fi))$$

$$= (a + bi) + ((c + e) + (d + f)i) \qquad \text{definitie optelling in } \mathbb{C}$$

$$= (a + c + e) + (b + d + f)i \qquad (1) \qquad \text{definitie optelling in } \mathbb{C}$$

$$(z_1 + z_2) + z_3$$

$$= ((a + bi) + (c + di)) + (e + fi)$$

$$= ((a + c) + (b + d)i) + (e + fi) \qquad \text{definitie optelling in } \mathbb{C}$$

$$= (a + c + e) + (b + d + f)i \qquad (2) \qquad \text{definitie optelling in } \mathbb{C}$$

$$(1) = (2) \implies z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$$

2 Toon op analoge manier aan dat de vermenigvuldiging in C associatief is.

Te bewijzen:
$$z_1(z_2z_3) = (z_1z_2)z_3$$

Bewijs

$$z_1(z_2z_3)$$

$$= (a + bi)((c + di)(e + fi))$$

$$= (a + bi)((ce - df) + (cf + de)i)$$

$$= (a(ce - df) - b(cf + de)) + (a(cf + de) + b(ce - df))i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$= (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i$$

$$\begin{split} &(z_1z_2)z_3\\ &=((a+bi)(c+di))(e+fi)\\ &=((ac-bd)+(ad+bc)i)(e+fi)\\ &=((ac-bd)e-(ad+bc)f)+((ac-bd)f+(ad+bc)e)i\\ &=(ace-bde-adf-bcf)+(acf-bdf+ade+bce)i\\ &=(ace-bde-adf-bcf)+(acf-bdf+ade+bce)i\\ \end{split}$$

$$(1) = (2) \implies z_1(z_2z_3) = (z_1z_2)z_3$$

- **3** Bewijs de commutativiteit van de optelling en de vermenigvuldiging in C.
 - · Commutativiteit van de optelling

Te bewijzen:
$$z_1 + z_2 = z_2 + z_1$$

$$z_1 + z_2 = (a + bi) + (c + di) = (a + c) + (b + d)i$$

 $z_2 + z_1 = (c + di) + (a + bi) = (c + a) + (d + b)i$

$$= (a + c) + (b + d)i$$

- (1) definitie optelling in $\mathbb C$ definitie optelling in $\mathbb C$
- (2) optelling is commutatief in \mathbb{R}

$$(1) = (2) \implies z_1 + z_2 = z_2 + z_1$$

· Commutativiteit van de vermenigvuldiging

Te bewijzen:
$$z_1 z_2 = z_2 z_1$$

Bewijs

$$z_{1} \cdot z_{2} = (a + bi) \cdot (c + di)$$

$$= (ac - bd) + (ad + bc)i \qquad (1) \qquad \text{definitie vermenigvuldiging in } \mathbb{C}$$

$$z_{2} \cdot z_{1} = (c + di) \cdot (a + bi)$$

$$= (ca - db) + (da + cb)i \qquad \text{definitie vermenigvuldiging in } \mathbb{C}$$

$$= (ac - bd) + (ad + bc)i \qquad (2) \qquad \text{vermenigvuldiging is commutatief in } \mathbb{R}$$

$$(1) = (2) \implies z_1 z_2 = z_2 z_1$$

4 Bewijs de distributiviteit van de vermenigvuldiging t.o.v. de optelling in C.

Te bewijzen:
$$z_1(z_2 + z_3) = z_1z_2 + z_1z_3$$

 $= Z_1Z_2 + Z_1Z_3$

Bewijs

$$\begin{split} z_1(z_2+z_3) &= (a+bi)((c+di)+(e+fi)) \\ &= (a+bi)((c+e)+(d+f)i) & \text{definitie optelling in } \mathbb{C} \\ &= (a(c+e)-b(d+f))+(b(c+e)+a(d+f))i & \text{definitie vermenivuldiging in } \mathbb{C} \\ &= ((ac-bd)+(ae-bf))+((bc+ad)+(be+af))i & \text{distr., comm. \& assoc. in } \mathbb{R} \\ &= ((ac-bd)+(bc+ad)i)+((ae-bf)+(be+af)i) & \text{definitie optelling in } \mathbb{C} \\ &= (a+bi)(c+di)+(a+bi)(e+fi) & \text{definitie vermenigvuldiging in } \mathbb{C} \end{split}$$

Opdracht 31 bladzijde 30

Bereken de vierkantswortels van de volgende complexe getallen.

1
$$5 + 12i$$

$$(x + yi)^2 = 5 + 12i$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 5 \\ 2xy = 12 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{36}{x^2} = 5 \\ y = \frac{6}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 - 5x^2 - 36 = 0 \\ y = \frac{6}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{5+13}{2} = 9 \text{ of } x^2 = \frac{5-13}{2} = -4 \\ y = \frac{6}{x} \end{cases} \Leftrightarrow \begin{cases} x = 3 \text{ of } x = -3 \\ y = 2 \text{ of } y = -2 \end{cases}$$

De vierkantswortels van 5 + 12i zijn 3 + 2i en -3 -2i.

$$-1 = i^2$$

De vierkantswortels van -1 zijn i en -i.

$$-3 = 3i^2$$

De vierkantswortels van -3 zijn i $\sqrt{3}$ en $-i\sqrt{3}$.

4
$$1 + 2i\sqrt{6}$$

$$(x + yi)^2 = 1 + 2i\sqrt{6}$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 1 \\ 2xy = 2\sqrt{6} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 1 \\ 2xy = 2\sqrt{6} \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{6}{x^2} = 1 \\ y = \frac{\sqrt{6}}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 - x^2 - 6 = 0 \\ y = \frac{\sqrt{6}}{x} \end{cases}$$

$$\begin{cases} x^2 = \frac{1+5}{2} = 3 & \text{of } x^2 = \frac{1-5}{2} = -2 \\ y = \frac{\sqrt{6}}{x} \end{cases}$$
 een reële oplossing

$$\Leftrightarrow \begin{cases} x = \sqrt{3} & \text{of } x = -\sqrt{3} \\ y = \sqrt{2} & \text{of } y = -\sqrt{2} \end{cases}$$

De vierkantswortels van $1 + 2i\sqrt{6}$ zijn $\sqrt{3} + i\sqrt{2}$ en $-\sqrt{3} - i\sqrt{2}$.

$$(x + yi)^2 = 4i$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 0 \\ 2xy = 4 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{4}{x^2} = 0 \\ y = \frac{2}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 - 4 = 0 \\ y = \frac{2}{x} \end{cases}$$

$$\begin{cases} x \\ y = 2 \text{ of } x^2 = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{2}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \sqrt{2} & \text{of } x = -\sqrt{2} \\ y = \sqrt{2} & \text{of } y = -\sqrt{2} \end{cases}$$

De vierkantswortels van 4i zijn $\sqrt{2} + i\sqrt{2}$ en $-\sqrt{2} - i\sqrt{2}$.

6
$$-7 + 24i$$

$$(x + yi)^2 = -7 + 24i$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = -7 \\ 2xy = 24 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{144}{x^2} = -7 \\ y = \frac{12}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 + 7x^2 - 144 = 0 \\ y = \frac{12}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{-7 + 25}{2} = 9 & \text{of } x^2 = \frac{-7 - 25}{2} = -16 \\ y = \frac{12}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 3 & \text{of } x = -3 \\ y = 4 & \text{of } y = -4 \end{cases}$$

De vierkantswortels van -7 + 24i zijn 3 + 4i en -3 - 4i.

78+6i

$$(x + yi)^2 = 8 + 6i$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = 8 \\ 2xy = 6 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{9}{x^2} = 8 \\ y = \frac{3}{x} \end{cases} \Leftrightarrow \begin{cases} x^4 - 8x^2 - 9 = 0 \\ y = \frac{3}{x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{8+10}{2} = 9 \text{ of } x^2 = \frac{8-10}{2} = -1 \\ y = \frac{3}{x} \end{cases} \Leftrightarrow \begin{cases} x = 3 \text{ of } x = -3 \\ y = 1 \text{ of } y = -1 \end{cases}$$

De vierkantswortels van 8 + 6i zijn 3 + i en -3 - i.

8
$$(1+2i)^4$$

De vierkantswortels van $(1 + 2i)^4$ zijn $(1 + 2i)^2 = 1 + 4i - 4 = -3 + 4i$ en $-(1 + 2i)^2 = -(-3 + 4i) = 3 - 4i$.

Opdracht 32 bladzijde 30

Los op in C.

1
$$25z^2 + 1 = 0 \iff z^2 = \frac{-1}{25} \iff z = \frac{1}{5}i \text{ of } z = \frac{-1}{5}i$$

2
$$z^2 + 16 = 0$$
 \Leftrightarrow $z^2 = -16$ \Leftrightarrow $z = 4i$ of $z = -4i$

3
$$z^4 - 1 = 0$$
 $\Leftrightarrow z^4 = 1 \Leftrightarrow z^2 = 1$ of $z^2 = -1$
 $\Leftrightarrow z = 1$ of $z = -1$ of $z = i$ of $z = -i$

4
$$z^4 + 1 = 0$$
 \iff $z^4 = -1$ \iff $z^2 = i$ of $z^2 = -i$

•
$$(x + yi)^2 = i \Leftrightarrow \begin{cases} x^2 - y^2 = 0 \\ 2xy = 1 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{1}{4x^2} = 0 \\ y = \frac{1}{2x} \end{cases} \Leftrightarrow \begin{cases} 4x^4 - 1 = 0 \\ y = \frac{1}{2x} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 = \frac{1}{2} \text{ of } x^2 = \frac{-1}{2} \\ y = \frac{1}{2x} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{2}} \text{ of } x = \frac{-1}{\sqrt{2}} \\ y = \frac{1}{\sqrt{2}} \text{ of } y = \frac{-1}{\sqrt{2}} \end{cases}$$

Hieruit volgt: $z^2 = i \iff z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ of $z = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$

•
$$(x + yi)^2 = -i \Leftrightarrow$$

$$\begin{cases} x^2 - y^2 = 0 \\ 2xy = -1 \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{1}{4x^2} = 0 \\ y = \frac{-1}{2x} \end{cases} \Leftrightarrow \begin{cases} 4x^4 - 1 = 0 \\ y = \frac{-1}{2x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{1}{2} \text{ of } x^2 = \frac{-1}{2} \\ y = \frac{-1}{2x} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{2}} \text{ of } x = \frac{-1}{\sqrt{2}} \\ y = \frac{-1}{\sqrt{2}} \text{ of } y = \frac{1}{\sqrt{2}} \end{cases}$$

Hieruit volgt: $z^2 = -i \iff z = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ of $z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$

De oplossingen van $z^4 + 1 = 0$ zijn dus:

$$z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
, $z = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$, $z = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ en $z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.

5
$$(3z+i)(2z-i)=0 \iff z=\frac{-i}{3} \text{ of } z=\frac{i}{2}$$

6
$$(iz-5)(6+2iz)=0 \Leftrightarrow z=\frac{5}{i}=-5i \text{ of } z=\frac{-6}{2i}=3i$$

Opdracht 33 bladzijde 30

Los op in C.

1
$$z^2 - 30z + 289 = 0$$

 $D = 900 - 4 \cdot 289 = -256$
 $d = 16i$
 $\Leftrightarrow z = \frac{30 + 16i}{2} = 15 + 8i$ of $z = \frac{30 - 16i}{2} = 15 - 8i$

2
$$z^2 + 2(1+i)z + 2i = 0$$

$$D = 4(1+i)^2 - 4 \cdot 2i = 4 \cdot 2i - 8i = 0$$

$$\Leftrightarrow z = \frac{-2(1+i)}{2} = -1 - i$$

3
$$z^2 + (1 - 2i)z - 2i = 0$$

$$D = (1 - 2i)^2 - 4 \cdot (-2i) = 1 - 4i - 4 + 8i = 1 + 4i - 4 = (1 + 2i)^2$$

$$d = 1 + 2i$$

$$\Leftrightarrow z = \frac{-1 + 2i + 1 + 2i}{2} = 2i \quad \text{of} \quad z = \frac{-1 + 2i - 1 - 2i}{2} = -1$$

4
$$z^4 + 6z^2 + 8 = 0$$

 $D = 36 - 4 \cdot 8 = 4$
 $d = 2$
 $\Leftrightarrow z^2 = \frac{-6 + 2}{2} = -2$ of $z^2 = \frac{-6 - 2}{2} = -4$
 $\Leftrightarrow z = i\sqrt{2}$ of $z = -i\sqrt{2}$ of $z = 2i$ of $z = -2i$

5
$$2z^2 - (1+i)z + 1 + i = 0$$

$$D = (1+i)^2 - 4 \cdot 2 \cdot (1+i) = 2i - 8 - 8i = -8 - 6i$$

$$d = 1 - 3i$$

$$\Leftrightarrow z = \frac{1+i+1-3i}{4} = \frac{2-2i}{4} = \frac{1}{2} - \frac{1}{2}i \quad \text{of} \quad z = \frac{1+i-1+3i}{4} = \frac{4i}{4} = i$$

6
$$z^2 + (5 - 2i)z + 5 - 5i = 0$$

$$D = (5 - 2i)^2 - 4 \cdot (5 - 5i) = 25 - 20i - 4 - 20 + 20i = 1$$

$$\Leftrightarrow z = \frac{-5 + 2i + 1}{2} = \frac{-4 + 2i}{2} = -2 + i \quad \text{of} \quad z = \frac{-5 + 2i - 1}{2} = \frac{-6 + 2i}{2} = -3 + i$$

7
$$iz^3 + (1-5i)z^2 + (6i-2)z = 0$$

 $\Leftrightarrow z(iz^2 + (1-5i)z + (6i-2)) = 0$
 $\Leftrightarrow z = 0$ of $iz^2 + (1-5i)z + 6i - 2 = 0$
 $D = (1-5i)^2 - 4i(6i-2) = 1 - 10i - 25 + 24 + 8i = 1 - 2i - 1 = (1-i)^2$
 $d = 1-i$
 $\Leftrightarrow z = 0$ of $z = \frac{-1+5i+1-i}{2i} = \frac{4i}{2i} = 2$ of $z = \frac{-1+5i-1+i}{2i} = \frac{-2+6i}{2i} = 3+i$

8
$$z^4 - 3z^2 + 4 = 0$$

 $D = 9 - 4 \cdot 4 = -7$
 $d = i\sqrt{7}$
 $\Leftrightarrow z^2 = \frac{3 + i\sqrt{7}}{2}$ of $z^2 = \frac{3 - i\sqrt{7}}{2}$
• $(x + yi)^2 = \frac{3 + i\sqrt{7}}{2}$
 $\Leftrightarrow \begin{cases} x^2 - y^2 = \frac{3}{2} \\ 2xy = \frac{\sqrt{7}}{2} \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{7}{16x^2} = \frac{3}{2} \\ y = \frac{\sqrt{7}}{4x} \end{cases} \Leftrightarrow \begin{cases} 16x^4 - 24x^2 - 7 = 0 \\ y = \frac{\sqrt{7}}{4x} \end{cases}$

$$\Leftrightarrow \begin{cases} 2xy = \frac{\sqrt{7}}{2} & \Leftrightarrow \\ y = \frac{\sqrt{7}}{4x} & \Leftrightarrow \end{cases} \begin{cases} y = \frac{\sqrt{7}}{4x} \end{cases}$$

$$\begin{cases} x^2 = \frac{24 + 32}{32} = \frac{7}{4} & \text{of } x^2 = \frac{24 - 32}{32} = \frac{-1}{4} \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = \frac{24 + 32}{32} = \frac{7}{4} & \text{of } x^2 = \frac{24 - 32}{32} = \frac{-1}{4} \\ y = \frac{\sqrt{7}}{4x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\sqrt{7}}{2} & \text{of } x = \frac{-\sqrt{7}}{2} \\ y = \frac{\sqrt{7}}{4\frac{\sqrt{7}}{2}} = \frac{1}{2} & \text{of } y = \frac{\sqrt{7}}{4\frac{-\sqrt{7}}{2}} = \frac{-1}{2} \end{cases}$$

•
$$(x + yi)^2 = \frac{3 - i\sqrt{7}}{2}$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = \frac{3}{2} \\ 2xy = \frac{-\sqrt{7}}{2} \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{7}{16x^2} = \frac{3}{2} \\ y = \frac{-\sqrt{7}}{4x} \end{cases} \Leftrightarrow \begin{cases} 16x^4 - 24x^2 - 7 = 0 \\ y = \frac{-\sqrt{7}}{4x} \end{cases}$$

geen reële oplossing

$$\Leftrightarrow \begin{cases} x^2 = \frac{24 + 32}{32} = \frac{7}{4} & \text{of } x^2 = \frac{24 - 32}{32} = \frac{-1}{4} \\ y = \frac{-\sqrt{7}}{4x} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\sqrt{7}}{2} & \text{of } x = \frac{-\sqrt{7}}{2} \\ y = \frac{-1}{2} & \text{of } y = \frac{1}{2} \end{cases}$$

De oplossingen van
$$z^4 - 3z^2 + 4 = 0$$
 zijn $z = \frac{\sqrt{7}}{2} + \frac{1}{2}i$, $z = \frac{-\sqrt{7}}{2} - \frac{1}{2}i$, $z = \frac{\sqrt{7}}{2} - \frac{1}{2}i$ en $z = \frac{-\sqrt{7}}{2} + \frac{1}{2}i$.

Opdracht 34 bladzijde 30

Los de vergelijking $\frac{z}{z-2i} - \frac{3iz}{(z+i)(z-2i)} = 2$ op in \mathbb{C} .

$$\frac{z}{z-2i} - \frac{3iz}{(z+i)(z-2i)} = 2$$
 Voorwaarde: $z \neq 2i, z \neq -i$ (*)

$$\Leftrightarrow$$
 $z(z + i) - 3iz = 2(z + i)(z - 2i)$

$$\Leftrightarrow z^2 + iz - 3iz = 2z^2 + 2iz - 4iz + 4$$

$$\Leftrightarrow$$
 $z^2 + 4 = 0$

$$\Leftrightarrow z^2 = -4$$

$$\Leftrightarrow$$
 z=2i of z=-2i (oplossing geschrapt wegens (*))

De oplossing van de vergelijking is z = -2i.

Opdracht 35 bladzijde 30

Bepaal $m \in \mathbb{R}$ zodat de vergelijking $z^2 - (3+i)z + m + 2i = 0$ een reële oplossing heeft. Bepaal daarna de tweede oplossing.

Stel $x \in \mathbb{R}$ is een oplossing van de vergelijking, dan geldt:

$$x^2 - (3 + i)x + m + 2i = 0$$

$$\Leftrightarrow$$
 $(x^2 - 3x + m) + (-x + 2)i = 0$

$$\Leftrightarrow \begin{cases} x^2 - 3x + m = 0 \\ -x + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} 4 - 6 + m = 0 \\ x = 2 \end{cases} \Leftrightarrow \begin{cases} m = 2 \\ x = 2 \end{cases}$$

Er is een reële oplossing als m = 2.

Uit de formules voor de oplossingen $\frac{-b+d}{2a}$ en $\frac{-b-d}{2a}$ van een complexe

vierkantsvergelijking $az^2 + bz + c = 0$, blijkt dat hun som s gelijk is aan $\frac{-b}{a}$, zoals ook in \mathbb{R}

het geval is. We gebruiken dit hier om de tweede oplossing z₂ te bepalen.

$$z^{2} - (3 + i)z + 2 + 2i = 0$$

 $s = \frac{3+i}{1} = 2 + z_{2} \iff z_{2} = 1 + i$

De tweede oplossing is 1 + i.

Opdracht 36 bladzijde 30

Bepaal een vierkantsvergelijking met reële coëfficiënten waarvan 3 + 2i een wortel is.

We kunnen de vergelijking noteren als $z^2 + az + b = 0$ met $a, b \in \mathbb{R}$.

3 + 2i is een wortel van de vergelijking, dus:

$$(3+2i)^2 + a(3+2i) + b = 0$$

$$\Leftrightarrow$$
 9 + 12i - 4 + 3a + 2ai + b = 0

$$\Leftrightarrow \begin{cases} 5+3a+b=0 \\ 12+2a=0 \end{cases} \Leftrightarrow \begin{cases} b=-5-3(-6)=13 \\ a=-6 \end{cases}$$

Een mogelijke vierkantsvergelijking is $z^2 - 6z + 13 = 0$.

Opdracht 37 bladzijde 30

Stel een formule op om de vierkantswortels van z = a + bi te bepalen.

x + yi is een vierkantswortel van a + bi

Stel b ≠ 0

$$(x + yi)^2 = a + bi$$

$$\Leftrightarrow \begin{cases} x^2 - y^2 = a \\ 2xy = b \end{cases} \Leftrightarrow \begin{cases} x^2 - \frac{b^2}{4x^2} = a \\ y = \frac{b}{2x} \end{cases} \Leftrightarrow \begin{cases} 4x^4 - 4ax^2 - b^2 = 0 \end{cases} \tag{1}$$

We lossen (1) op:

$$4x^{4} - 4ax^{2} - b^{2} = 0$$

$$D = 16a^{2} - 4 \cdot 4(-b^{2}) = 16a^{2} + 16b^{2} > 0 \quad (b \neq 0)$$

$$\Leftrightarrow x^{2} = \frac{4a + 4\sqrt{a^{2} + b^{2}}}{8} \quad \text{of} \quad x^{2} = \frac{4a - 4\sqrt{a^{2} + b^{2}}}{8}$$

$$\Leftrightarrow x^{2} = \frac{a + \sqrt{a^{2} + b^{2}}}{2} \quad (3) \quad \text{of} \quad x^{2} = \frac{a - \sqrt{a^{2} + b^{2}}}{2} \quad (4)$$

Nu is
$$\frac{a+\sqrt{a^2+b^2}}{2} > 0$$
 en $\frac{a-\sqrt{a^2+b^2}}{2} < 0$ want:
$$b \neq 0 \implies b^2 > 0 \implies a^2+b^2 > a^2 \implies -\sqrt{a^2+b^2} < -a < \sqrt{a^2+b^2}$$
$$\implies a-\sqrt{a^2+b^2} < 0 < a+\sqrt{a^2+b^2} \implies \frac{a-\sqrt{a^2+b^2}}{2} < 0 < \frac{a+\sqrt{a^2+b^2}}{2}$$

Daarom heeft (4) geen oplossingen ($x \in \mathbb{R}$).

Uit (3) vinden we:

$$x = \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}}$$
 of $x = -\sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}}$

De positieve waarde voor x invullen in (2) geeft

$$y = \frac{b}{2\sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}}} = \frac{b\sqrt{\sqrt{a^2 + b^2} - a}}{\sqrt{2}\sqrt{a + \sqrt{a^2 + b^2}} \cdot \sqrt{\sqrt{a^2 + b^2} - a}}$$
$$= \frac{b\sqrt{\sqrt{a^2 + b^2} - a}}{\sqrt{2}\sqrt{a^2 + b^2} - a} = \frac{b}{|b|}\sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}}$$

De negatieve waarde voor x invullen geeft analoog ook de tegengestelde y-waarde.

We vinden dus:

$$x + yi = \pm \left(\sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} + \frac{b}{|b|}\sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}}i\right)$$

Merk hierbij op dat $\frac{b}{|b|} = \begin{cases} 1 & \text{als } b > 0 \\ -1 & \text{als } b < 0 \end{cases}$

Stel b = 0

De (complexe) vierkantswortels uit a ≥ 0 zijn \sqrt{a} en $-\sqrt{a}$.

De (complexe) vierkantswortels uit a < 0 zijn i $\sqrt{|a|}$ en $-i\sqrt{|a|}$.

Opdracht 38 bladzijde 31

Bereken zonder rekentoestel.

1
$$(5-12i)^{-1}$$
 = $\frac{5+12i}{169}$ = $\frac{5}{169}$ + $\frac{12}{169}i$

2
$$\frac{(\sqrt{2}-i)(\sqrt{2}+i)}{i} = \frac{2+1}{i} = -3i$$

3
$$\frac{5i(2+i)^2}{2-i}$$
 = $\frac{5i(4+4i-1)(2+i)}{5}$ = $i(3+4i)(2+i)$ = $i(6+3i+8i-4)$ = $i(2+11i)$ = $-11+2i$

Opdracht 39 bladzijde 31

Bereken de reële getallen x en y als

1
$$(x + yi) + (1 + 5i) = (x + yi)(1 + 5i)$$

$$\Leftrightarrow x + 1 + (y + 5)i = x - 5y + (5x + y)i$$

$$\Leftrightarrow \begin{cases} x+1=x-5y \\ y+5=5x+y \end{cases} \Leftrightarrow \begin{cases} y=\frac{-1}{5} \\ x=1 \end{cases}$$

2
$$(-2+4i)(x+yi)+3(x+yi)=4(2+i)$$

$$\Leftrightarrow$$
 -2x - 2yi + 4xi - 4y + 3x + 3yi = 8 + 4i

$$\Leftrightarrow$$
 x - 4y + (4x + y)i = 8 + 4i

$$\Leftrightarrow \begin{cases} x-4y=8 \\ 4x+y=4 \end{cases} \Leftrightarrow \begin{cases} x=8+4y \\ y+4(8+4y)=4 \end{cases} \Leftrightarrow \begin{cases} x=8+4y \\ y+32+16y=4 \end{cases} \Leftrightarrow \begin{cases} x=8+4y \\ 17y=-28 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 8 + 4\left(\frac{-28}{17}\right) = \frac{24}{17} \\ y = \frac{-28}{17} \end{cases}$$

Opdracht 40 bladzijde 31

Voor welke waarde van b is $\frac{2+i}{hi-1}$ een reëel getal?

A
$$-\frac{3}{2}$$

A
$$-\frac{3}{2}$$
 B $-\frac{1}{2}$ **c** $\frac{1}{2}$

$$c = \frac{1}{2}$$

$$\mathbf{E} = \frac{3}{2}$$

(Bron © Alabama Statewide Mathematics Contest, 2010)

$$\frac{2+i}{bi-1} = \frac{(2+i)(-1-bi)}{(bi-1)(-1-bi)} = \frac{-2-2bi-i+b}{b^2+1} = \frac{(b-2)-(2b+1)i}{b^2+1}$$

Dit getal moet reëel zijn dus 2b + 1 = 0 \Leftrightarrow b = $\frac{-1}{2}$.

Dit is antwoord B.

Opdracht 41 bladzijde 31

Bereken $\left(\frac{1+i}{1-i}\right)^{2013}$ zonder rekentoestel.

$$\mathbf{B} - \mathbf{i}$$

$$(\mathbf{c})i$$

$$\mathbf{E}$$
 $-2i$

(Bron © Alabama Statewide Mathematics Contest, 2013)

$$\left(\frac{1+i}{1-i}\right)^{2013} = \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^{2013} = \left(\frac{2i}{2}\right)^{2013} = i^{4\cdot 503+1} = i$$

Antwoord C.

Opdracht 42 bladzijde 31

Los op in C.

1
$$z^2 - 7z + 13 - i = 0$$

 $D = 49 - 4(13 - i) = -3 + 4i$
 $d = 1 + 2i$
 $\Leftrightarrow z = \frac{7 + 1 + 2i}{2} = 4 + i$ of $z = \frac{7 - 1 - 2i}{2} = 3 - i$

2
$$(2-3i)z^2 + 4z + 2 + i = 0$$

$$D = 16 - 4(2-3i)(2+i)$$

$$= 16 - 4(4+2i-6i+3)$$

$$= 16 - 28 + 16i = -12 + 16i$$

$$d = 2 + 4i$$

$$\Leftrightarrow z = \frac{-4+2+4i}{2(2-3i)} = \frac{-1+2i}{2-3i} = \frac{(-1+2i)(2+3i)}{13} = \frac{-8}{13} + \frac{1}{13}i$$
of $z = \frac{-4-2-4i}{2(2-3i)} = \frac{-3-2i}{2-3i} = \frac{(-3-2i)(2+3i)}{13} = \frac{-13i}{13} = -i$

3
$$z^4 - z^2 - 2 = 0$$

 $D = 1 - 4(-2) = 9$
 $d = 3$
 $\Leftrightarrow z^2 = \frac{1+3}{2} = 2$ of $z^2 = \frac{1-3}{2} = -1$
 $\Leftrightarrow z = \sqrt{2}$ of $z = -\sqrt{2}$ of $z = i$ of $z = -i$

4
$$16z^4 - 24z^2 + 25 = 0$$

D = $576 - 4 \cdot 16 \cdot 25 = -1024$
d = $32i$
 $\Leftrightarrow z^2 = \frac{24 + 32i}{32} = \frac{3}{4} + i$ of $z^2 = \frac{24 - 32i}{32} = \frac{3}{4} - i$
 $\Leftrightarrow z = 1 + \frac{1}{2}i$ of $z = -1 - \frac{1}{2}i$ of $z = 1 - \frac{1}{2}i$ of $z = -1 + \frac{1}{2}i$

5
$$\frac{z+i}{z-i} + \frac{2}{z(z-i)} + 1 = 0$$
 voorwaarden: $z \neq i, z \neq 0$ (*)

$$\Leftrightarrow$$
 $(z + i)z + 2 + z(z - i) = 0$

$$\Leftrightarrow$$
 $z^2 + iz + 2 + z^2 - iz = 0$

$$\Leftrightarrow$$
 2z² + 2 = 0

$$\Leftrightarrow z^2 = -1$$

$$\Leftrightarrow$$
 $z = -i$ of $z = -i$

De oplossing is z = -i.

Opdracht 43 bladzijde 32

Bereken $(x + yi)^3 - (x - yi)^3$.

$$(x + yi)^3 - (x - yi)^3$$

$$= (x^3 + 3x^2yi + 3x(yi)^2 + (yi)^3) - (x^3 - 3x^2yi + 3x(yi)^2 - (yi)^3)$$

$$= (x^3 + 3x^2yi - 3xy^2 - y^3i) - (x^3 - 3x^2yi - 3xy^2 + y^3i)$$

$$= 6x^2vi - 2v^3i$$

$$= 2yi(3x^2 - y^2)$$

Opdracht 44 bladzijde 32

Bepaal het toegevoegd complex getal van $\left(\frac{a+bi}{a-bi}\right)^2 - \left(\frac{a-bi}{a+bi}\right)^2$.

We werken deze uitdrukking eerst uit:

$$\left(\frac{a+bi}{a-bi}\right)^{2} - \left(\frac{a-bi}{a+bi}\right)^{2} \\
= \left(\frac{(a+bi)^{2}}{(a-bi)(a+bi)}\right)^{2} - \left(\frac{(a-bi)^{2}}{(a+bi)(a-bi)}\right)^{2} \\
= \left(\frac{a^{2} + 2abi - b^{2}}{a^{2} + b^{2}} + \frac{a^{2} - 2abi - b^{2}}{a^{2} + b^{2}}\right) \left(\frac{a^{2} + 2abi - b^{2}}{a^{2} + b^{2}} - \frac{a^{2} - 2abi - b^{2}}{a^{2} + b^{2}}\right) \\
= \frac{2a^{2} - 2b^{2}}{a^{2} + b^{2}} \cdot \frac{4abi}{a^{2} + b^{2}} = \frac{8(a^{2} - b^{2})abi}{(a^{2} + b^{2})^{2}}$$

Het complex toegevoegde getal is dus $-\frac{8(a^2-b^2)abi}{(a^2+b^2)^2}$.

Opdracht 45 bladzijde 32

Stel a en b zijn natuurlijke getallen en c is een reëel getal.

Bepaal a en b als $(a + bi)^3 = -74 + ci$.

$$(a + bi)^3 = -74 + ci$$
 $a,b \in \mathbb{N}$ en $c \in \mathbb{R}$

$$\Leftrightarrow a^3 + 3a^2bi + 3ab^2i^2 + b^3i^3 = -74 + ci$$

$$\Leftrightarrow$$
 a³ + 3a²bi - 3ab² - b³i = -74 + ci

$$\Leftrightarrow \begin{cases} a^3 - 3ab^2 = -74 & (1) \\ 3a^2b - b^3 = c & (2) \end{cases}$$

Uit (1) volgt dat a \cdot ($a^2 - 3b^2$) = -74, zodat a en $a^2 - 3b^2$ gehele delers van -74 moeten zijn, met a positief. We overlopen de verschillende mogelijkheden.

•
$$a = 1 \text{ en } a^2 - 3b^2 = -74$$

$$1-3b^2 = -74 \Leftrightarrow b^2 = 25 \Leftrightarrow b=5$$
 of $b=-5$

We vinden als earste oplossing a = 1 en b = 5.

•
$$a = 2 \text{ en } a^2 - 3b^2 = -37$$

$$4 - 3b^2 = -37 \iff b = \sqrt{\frac{41}{3}} \text{ of } b = -\sqrt{\frac{41}{3}}$$

Er is in dit geval geen oplossing in N.

• Op analoge wijze kun je nagaan dat er ook voor a = 37 en a = 74 geen natuurlijke waarde voor b te vinden is.

De enige oplossing is bijgevolg a = 1 en b = 5.

Opdracht 46 bladzijde 32

Bepaal alle complexe getallen waarvan de vierde macht reëel en kleiner dan -64 is.

Stel z = a + bi, dan moet gelden:
$$\begin{cases} (a + bi)^4 \in \mathbb{R} & (1) \\ (a + bi)^4 < -64 & (2) \end{cases}$$

$$(a + bi)^{4} = (a + bi)^{2}(a + bi)^{2}$$

$$= (a^{2} + 2abi - b^{2})(a^{2} + 2abi - b^{2})$$

$$= a^{4} + 2a^{3}bi - a^{2}b^{2} + 2a^{3}bi + 4a^{2}b^{2}i^{2} - 2ab^{3}i - a^{2}b^{2} - 2ab^{3}i + b^{4}$$

$$= a^{4} - 6a^{2}b^{2} + b^{4} + (4a^{3}b - 4ab^{3})i$$
(3)

(1) vereist:
$$4a^3b - 4ab^3 = 0$$

 $\Leftrightarrow 4ab(a^2 - b^2) = 0$
 $\Leftrightarrow a = 0$ of $b = 0$ of $a^2 - b^2 = 0$
 $\Leftrightarrow a = 0$ of $b = 0$ of $a = b$ of $a = -b$

Als a = 0, dan is $z^4 = b^4i^4 = b^4 > 0$. Dit is in strijd is met (2).

Als b = 0, dan is $z^4 = a^4 > 0$, wat ook in strijd is met (2).

Dus
$$a = b$$
 of $a = -b$.

Invullen in (3) geeft:
$$(a + bi)^4 = (a + (\pm a)i)^4$$

= $a^4 - 6a^2 (\pm a)^2 + (\pm a)^4$
= $-4a^4$

Voorwaarde (2) wordt dan: $-4a^4 < -64$

$$\Leftrightarrow$$
 a⁴ > 16
 \Leftrightarrow a <-2 of a > 2

De complexe getallen die aan beide voorwaarden voldoen zijn a \pm ai met a < -2 of a > 2.