西安电子科技大学

题 试

题号	-	=	三.1	三.2	三.3	三.4	三.5	三.6	总分
分数									

注意: 闭卷考试, 时间 120 分钟, 满分 100 分.

- 一、单项选择题(每小题 4分, 共 20分)
- 1.设事件 A 的发生必然导致 B 的发生,且 0 < P(B) < 1,则 $P(A|\overline{B}) = ($).
- (A) 0
- **(B)** $\frac{1}{4}$ **(C)** $\frac{1}{2}$
- **(D)** 1

2.设随机变量 $X \sim U[0,2]$, 令 $Y = \begin{cases} 0, X < 1 \\ X, X \ge 1 \end{cases}$,则 Y 的分布函数 $F_{\gamma}(y)$ 的问

断点的个数为().

- (\mathbf{A}) 0
- **(B)** 1
- **(C)** 2
- (\mathbf{D}) 3

3.设随机变量 X、Y相互独立,且分别服从参数为 1 和参数为 4 的指数分布, 则 P(X < Y) = ().

- (A) $\frac{1}{5}$ (B) $\frac{1}{3}$ (C) $\frac{2}{5}$ (D) $\frac{4}{5}$

4.设随机变量 $X_1, X_2, \dots, X_n, \dots$ 独立同分布, 其分布函数为 $F(x) = a + \frac{1}{2} \arctan \frac{x}{h}$ 则辛钦大数定律对此序列().

(A) 适用

(B) 当常数 a,b 取适当数值时适用

(C) 不适用

(D) 无法判别

5.设 X_1, X_2, X_3 为来自总体 $N(0, \sigma^2)(\sigma > 0)$ 的一个样本,则统计量 $\frac{X_1 - X_2}{\sqrt{2}|X_3|}$

服从的分布为().

- (A) F(1,1)
- **(B)** F(2,1)
- (C) t(1)
- (D) t(2)

第 1/4 页

- 二、填空题(每小题 4 分, 共 20 分)
- 1.设随机变量 X 分布律为 $P(X=1) = P(X=2) = \frac{1}{2}$, 在给定 X=i (i=1,2)

的条件下 $Y \sim U(0,i)$, 则 $P(Y \leq \frac{3}{2}) =$ ______.

2.设连续型随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, \quad &$ 其它 \end{cases} ,以 Y 表示对 X 的

三次独立重复观察中事件 $\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则 P(Y=2) =______

3.设二维随机变量 $(X,Y) \sim N(1,0;1,1;0)$,则P(XY-Y<0)=

4.设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n $(n \ge 2)$ 为来自总体 X 的一个样本。

 $\bar{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$, $\Leftrightarrow U_i = (X_i + X_{n+i} - 2\bar{X})^2$ $(i = 1, 2, \dots, n)$, \emptyset $EU_i = \underline{\hspace{1cm}}$

5.设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知, 由来自总体 X 的一个容量为 9 的样

本计算得到样本均值 $\bar{x}=6$,样本标准差s=0.5,则参数 μ 的置信水平为

0.95的置信区间为 $(t_{0.025}(8) = 2.306)$.

电源电压在 $200\sim240V$ 的概率($\Phi(0.8)=0.788$).

三、解答题 (每小题 10 分, 共 60 分)

1. 设电源电压不超过200 V、在200~240 V 和超过240 V 三种情况下,某种 电子元件损坏的概率分别为0.1,0.001和0.2, 假设电源电压服从正态分布 $N(220,25^2)$, 试求: (1) 该电子元件损坏的概率; (2) 该电子元件损坏时,

2.设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3Cx, & 0 < x < 2\sqrt{3} \\ 0, & \text{其它} \end{cases}$, 令 $Y = X^2$,试 求: (1) 常数 C ; (2) 概率 $P\left(\frac{1}{2} < X < 2\right)$; (3) X 的分布函数 ; (4) Y 的分布函数 $F_Y(y)$.

3. 设(X,Y)的联合概率密度为 $f(x,y) = \begin{cases} 1, \ 0 < x < 1 \ , \ 0 < y < 2x \ 0, \qquad \qquad$ 其它,试求: (1) 边缘概率密度 $f_X(x), f_Y(y)$; (2) Z = 2X - Y 的概率密度; (3) 条件概率 $P\left(Y \le \frac{1}{2} \middle| X \le \frac{1}{2}\right)$.

4.箱中装有 6 个球,其中红、白、黑球的个数分别为 1, 2, 3 个,现从箱中随机地取出 2 个球,记 X 为取出的红球数,Y 为取出的白球数. (1) 求随机变量(X,Y)的联合分布律; (2) 求 X,Y 的相关系数 ρ_{XY} .

第 3/4 页

5.设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{2}{\theta} xe^{\frac{x^2}{\theta}}, x > 0 \\ 0, x \le 0 \end{cases}$,其中 θ $(\theta > 0)$ 为未知参

数, $X_1,X_2,...,X_n$ 为来自总体X的一个样本,试求: (1) θ 的矩估计量 $\hat{\theta}_1$; (2) θ 的最大似然估计量 $\hat{\theta}_2$; (3) 问 $\hat{\theta}_2$ 是否为 θ 的无偏估计量? $\hat{\theta}_2$ 是否为 θ 的一致 (相合) 估计量?

6.某种元件的寿命 X (单位:小时)服从正态分布,现从一批这种元件中抽取 16 只,测得平均寿命 \overline{x} = 241.5 小时,标准差为 s = 99 小时,试问在显著性水平 α = 0.05 下可否认为元件的平均寿命大于 225 小时($t_{0.05}$ (15) = 1.7531)?