Exercício mestrado 6

Augusto Calado Bueno (9779134) e Fernando Chiu Hsieh (9436743) September 2020

1 Problema

Deseja-se calcular a fórmula fechada de:

$$T(1) = 5 \tag{1}$$

$$T(n) = 3T(n/2) + 3n \tag{2}$$

com $n \in \{1, 2, 4, ..., 2^i\}$

2 Método da iteração

Demonstração :

Iteração 1:
$$T(n)=3T(n/2)+3n$$

 Iteração 2: $T(n)=3*[3T(n/4)+3n/2]+3n=3^2T(n/4)+9n/2+3n$
 Iteração 3:
$$T(n)=3*[3*[3T(n/8)+3n/4]+3n/2]+3n=3^3T(n/8)+27n/4+9n/2+3n$$
 ... Iteração i: $T(n)=3^iT(n/2^i)+\sum_{j=1}^i 3^jn/2^{j-1}$

As iterações vão acabar quando $T(n/2^i) = T(1)$, ou seja:

$$n/2^i = 1 \implies n = 2^i \implies i = \log_2 n$$

Substituindo $i = log_2 n$ na equação da iteração i:

$$T(n) = 3^{\log_2 n} T(1) + 6n * ((3/2)^{\log_2 n} - 1)$$

$$T(n) = 5 * 3^{\log_2 n} + 6n * ((3/2)^{\log_2 n} - 1)$$

3 Método da Árvore

Nível	Numero de folhas	Somatória
0	1	3n
1	3	9n/2
2	9	27n/4
3	27	81n/8
i-1	3^{i-1}	$ \begin{array}{c} 81n/8 \\ 3^{i}n/2^{i-1} \\ 3^{i} * 5 \end{array} $
i	3^i	$3^i * 5$

Realizando o somatório de todos os níveis da árvore temos:

$$T(n) = 3n + 9n/2 + 27n/4 + \dots + 3^{i}n/2^{i-1} + 3^{i} * 5$$

$$T(n) = \sum_{x=0}^{i-1} 3^{x+1}/2^{x} + 3^{i} * 5$$

As iterações vão acabar quando $T(n/2^i)=T(1),$ ou seja:

$$n/2^i = 1 \implies n = 2^i \implies i = \log_2 n$$

Substituindo $i = log_2 n$ na equação da iteração i:

$$T(n) = 5 * 3^{\log_2 n} + 6n * ((3/2)^{\log_2 n} - 1)$$

Figure 1: Árvore de recorrência

4 Método da substituição

Considerando que a fórmula encontrada acima é verdadeira:

4.1 Caso base

$$n = 1$$

$$T(1) = 3^{log_2 1} * 5 + 6n * ((3/2)^{log_2 1} - 1)$$

$$T(1) = 3^0 * 5 + 6 * (1 - 1)$$

$$T(1) = 5$$

4.2 Passo indutivo

Assumimos por hipótese de indução que a fórmula é correta para n/2. Assim:

$$\begin{split} n &\geq 2 \\ T(n) &= 3T(n/2) + 3n \\ T(n) &= 3\left[5 * 3^{log_2(n/2)} + 6(n/2) * ((3/2)^{log_2(n/2)} - 1)\right] + 3n \\ T(n) &= 3 * 5 * 3^{log_2n - log_22} + (3/2) * 6n * ((3/2)^{log_2n - log_22} - 1) + 3n \\ T(n) &= 5 * 3^{log_2n - 1 + 1} + 6n * ((3/2)^{log_2n - 1 + 1} - 3/2) + 3n \\ T(n) &= 5 * 3^{log_2n} + 6n * ((3/2)^{log_2n} - 3/2) + 3n \\ T(n) &= 5 * 3^{log_2n} + 6n * (3/2)^{log_2n} - 9n + 3n \\ T(n) &= 5 * 3^{log_2n} + 6n * (3/2)^{log_2n} - 6n \\ T(n) &= 5 * 3^{log_2n} + 6n * ((3/2)^{log_2n} - 1) \end{split}$$