

# ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

# МАТЕРИАЛЫ ОПТИЧЕСКИЕ

методы определения показателей ослабления ГОСТ 3520—92

Издание официальное

**КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР Москва** 

### ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

### материалы оптические

### Методы определения показателей ослабления

FOCT 3520—92

Optical materials.

Methods for determination of linear attenuation coefficients

**OKCTY 4409** 

Дата введения 01.07.93

Настоящий стандарт распространяется на оптические материалы: стекло бесцветное и цветное, кварцевое стекло, кристаллические материалы и устанавливает используемые при контроле методы определения спектрального показателя ослабления в области спектра от 0,1 до 25 мкм и показателя ослабления для источника A по ГОСТ 7721.

Пояснения терминов, встречающихся в стандарте, приведены в приложении 1.

### 1. МЕТОД ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО ПОКАЗАТЕЛЯ ОСЛАБЛЕНИЯ

1.1. Сущность метода

Метод определения спектрального показателя ослабления заключается в измерении спектрального коэффициента пропускания  $\tau(\lambda)$  образца оптического материала и последующем расчете показателя ослабления  $\mu(\lambda)$ .

Рекомендации по выбору способа измерения τ (λ) приведены в

приложении 2.

1.2. Требования к отбору образцов

1.2.1. Отбор пробы для изготовления образца следует проводить по нормативно-технической документации, утвержденной в установленном порядке.

1.2.2. Образец должен иметь форму пластины или параллелс-

пипеда с плоскопараллельными рабочими поверхностями.

### Издание официальное

С Издательство стандартов, 1992

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР 1.2.3. Размеры образца определяются конструкцией и размерами держателя и должны быть такими, чтобы при измерении через образец проходил весь измерительный пучок лучей.

Размер образца в направлении прохождения излучения (толщина) должен обеспечивать проведение измерения коэффициента

пропускания от 0,10 до 0,90.

1.2.4. Наименьшие размеры рабочего участка образца в форме пластины (параллелепипеда) должны на 2 мм превышать размеры падающего на образец пучка лучей.

Наибольшая толщина пластины должна быть такой, чтобы оп-

тическая длина пути не превышала 30 мм.

Толщина параллелепипеда должна быть от 50 до 250 мм и выбираться в зависимости от требований к точности определения показателя ослабления.

1.2.5. Для измерения коэффициента внутреннего пропускания

изготовляют два образца: длинный и короткий.

Разница между толщинами образцов должна обеспечивать, по возможности, наибольшую разность их коэффициентов пропускания.

Оба образца должны быть изготовлены из одного или близко расположенных кусков блока контролируемого оптического материала и отполированы совместно.

1.2.6. Допуск параллельности и перпендикулярности рабочих и

опорных поверхностей образца — 30'.

Допуск плоскостности рабочих поверхностей образца — 10 интерференционных полос.

1.2.7. Параметр шероховатости рабочих поверхностей образца

 $R_z$  должен быть не более 0,050 мкм по ГОСТ 2789.

Класс чистоты рабочих поверхностей должен быть не ниже IV класса по ГОСТ 11141.

На боковых (нерабочих) поверхностях не должно быть выко-

лок и раковин.

Рабочие поверхности образца из химически неустойчивого оптического материала должны быть отполированы не ранее чем за трое суток перед измерением, образцы должны храниться в эксикаторе по ГОСТ 25336.

1.2.8. Образец не должен содержать видимых невооруженным глазом свилей, пузырей и включений, поглощающих, рассеивающих или отклоняющих пучок лучей, проходящих через образец.

Качество образца, изготовленного из материала, к которому не предъявляются требования по показателю рассеяния, должно соответствовать по свилям и пузырям требованиям, установленным для материала.

1.3. Требования к средствам измерений

1.3.1. Для измерения спектрального коэффициента пропускания используют следующие приборы:

спектра от 0,1 до 0,2 мкм — вакуумные спектрофотов области метры;

от 0,2 до 2,5 мкм — спектрофотометры для УВИ области;

от 2,5 до 25 мкм — инфракрасные спектрофотометры.

Тип прибора следует выбирать с учетом требований к показателю ослабления, установленных в нормативно-технической документации на конкретный материал.

1.3.2. Все используемые средства измерений должны быть по-

верены или аттестованы.

1.3.3. Рекомендуемые приборы приведены в приложении 3. 1.3.4. При измерениях коэффициентов пропускания менее 0,10 для изменения масштаба фотометрической шкалы используют образцовые меры пропускания, обеспечивающие проведение этих измерений в диапазоне показаний от 0,10 до 0,90 по фотометрической шкале.

•Требования к форме, размерам и обработке поверхностей — по ип. 1.2.2—1.2.8.

Образцовая мера пропускания должна быть аттестована по коэффициенту пропускания в рабочем диапазоне длин волн. Для коэффициентов пропускания от 0,01 до 0,05 включительно погрешность не должна быть более 2·10<sup>-3</sup>, для коэффициентов пропускания свыше 0,05 погрешность не должна быть более 5·10<sup>-3</sup>.

1.3.5. Для измерения толщины образца применяют микрометры с ценой деления 0,01 мм по ГОСТ 6507.

Образцы толщиной свыше 100 мм измеряют штангенциркулсм с ценой деления нониуса 0,05 мм по ГОСТ 166.

1.3.6. Для проверки плоскостности поверхностей образца при-

меняют пробное стекло по ГОСТ 2786.

1.3.7. Для измерения температуры рабочего пространства возле образца применяют термометры по ГОСТ 28498 с диапазоном измерения от 0 до 50 °C и ценой деления шкалы 1 °C.

1.3.8. Допускается использование других средств измерений с

погрешностями не более заданных.

1.4. Требования к подготовке измерений

- 1.4.1. Подготовку прибора к измерению и проверку его работы проводят согласно прилагаемой к нему инструкции по эксплуатации.
- 1.4.2. Рабочие поверхности образца должны быть тщательно очищены от загрязнений. Допускается использовать этиловый спирт по ГОСТ 18300 или спирто-эфирную смесь СЭ-90 для чистки оптических деталей.

1.5. Требования к проведению измерений 1.5.1. Образец следует установить в держателе прибора перпендикулярно оптической оси пучка лучей.

1.5.2. Измерение спектрального коэффициента пропускания следует проводить в соответствии с инструкцией по эксплуатации

прибора.

При выборе режима измерений необходимо учитывать, что погрешность измерения спектрального коэффициента пропускания, обусловленная спектральной шириной щели монохроматора, не должна превышать допускаемой основной погрешности измерения.

Измерения проводят в зависимости от типа прибора при постоянных заданных длинах волн либо через равномерные, целесообразно выбранные промежутки, с регистрацией спектра или путем отругота по тонкам

отсчета по точкам.

На спектрофотометрах, имеющих шкалу оптических плотностей, измерения проводят аналогично измерению спектрального коэффициента пропускания.

1.5.3. Каждое показание по шкале прибора следует снимать не менее трех раз. За окончательный результат принимают среднее

арифметическое полученных отсчетов.

1.5.4. Измерение спектрального коэффициента внутреннего пропускания следует проводить при последовательной установке в рабочий канал прибора сначала короткого образца толщиной  $s_1$ . затем длинного образца толщиной  $s_2$ .

Спектральный коэффициент внутреннего пропускания образца толщиной s, равной  $s_2-s_1$ , определяют как отношение измеренного значения коэффициента пропускания длинного образца к коэф-

фициенту пропускания короткого образца.

1.5.5. При измерении образца, изготовленного из материала со значительно выраженной зависимостью коэффициента пропускания от температуры на рабочем участке спектра необходимо контролировать температуру образца или проводить измерения в камере, в которой поддерживают заданную температуру.

Для таких образцов вместе с результатами измерения указы-

вают температуру образца во время измерения.

1.5.6. При измерении спектрального коэффициента пропускания со значением менее 0,10 на приборах с однолучевой схемой в рабочий канал вводят аттестованную образцовую меру с коэффициентом пропускания  $\tau_c$  и, регулируя ширину щели, устанавливают по фотометрической шкале значение коэффициента пропускания, равное 1,00. Затем закрывают шторкой рабочий канал, убирают образцовую меру, устанавливают измеряемый образец, открывают шторку и регистрируют показание прибора  $\tau_{изм}$ .

При измерении на приборах с двулучевой схемой сначала помещают в рабочий канал аттестованную образцовую меру с коэффициентом пропускания  $\tau_c$ , а в канал сравнения — регулируемый ослабитель, с помощью которого устанавливают отсчет 1,00 пофотометрической шкале. Регулировкой ширины щели и усиления

обеспечивают необходимую чувствительность приемно-регистрирующей системы.

Затем закрывают шторкой рабочий канал, убирают образцовую меру, устанавливают измеряемый образец, открывают шторку и

регистрируют показание прибора тизм.

Коэффициент пропускания образца определяют как произведение коэффициента пропускания образцовой меры, взятого по свидетельству об аттестации, и коэффициента пропускания, изме-

ренного на приборе.

1.5.7. При измерении спектрального коэффициента пропускания более 0,90 на приборе типа ФМТИ в рабочий канал вводят аттестованную образцовую меру с коэффициентом пропускания те, равным наименьшему значению измеряемого коэффициента пропускания. С помощью образцовой меры устанавливают начальный отсчет по фотометрической шкале.

В рабочий канал вводят измеряемый короткий образец толщи-

ной  $s_1$  и регистрируют показание прибора  $m_1$ .

Выводят образцовую меру и регистрируют показание  $m_2$ .

Затем выводят короткий образец и устанавливают длинный образец толщиной  $s_2$ , регистрируют показание прибора  $m_3$ .

Спектральный коэффициент внутреннего пропускания образца толщиной s, равной  $s_2$ — $s_1$ , определяют по формуле (15).

- 1.6. Требования к обработке, оформлению и оценке результатов измерений
- 1.6.1. При измерении спектрального коэффициента пропускания на приборе с однократным прохождением излучения через образец (типов СФ-46, ИКС-29 и др.) показатель ослабления  $\mu$  ( $\lambda$ ) рассчитывают по формуле

$$\mu(\lambda) = -\frac{1}{s} \lg \tau_i(\lambda), \tag{1}$$

- где s толщина образца (или разность толщин длинного и короткого образцов), мм;
  - $\tau_i$  ( $\lambda$ ) спектральный коэффициент внутреннего пропускания образца, в долях единицы.
- 1.6.1.1. Значение коэффициента внутреннего пропускания  $\tau_i(\lambda)$  рассчитывают с погрешностью не более  $1\cdot 10^{-3}$  по формуле

$$\tau_{i}(\lambda) = \sqrt{\left[\frac{1}{\tau(\lambda)} \cdot \frac{8n^{2}(\lambda)}{(n(\lambda)-1)^{*}}\right]^{2} + \left[\frac{n(\lambda)+1}{n(\lambda)-1}\right]^{4}} - \frac{1}{\tau(\lambda)} \cdot \frac{8n^{2}(\lambda)}{(n(\lambda)-1)^{*}}, \qquad (2)$$

где τ(λ) — спектральный коэффициент пропускания, измеренный на приборе;

- $n(\lambda)$  показатель преломления материала \* образца для длины волны  $\lambda$ , определенный с погрешностью не более  $1\cdot 10^{-3}$ .
- 1.6.1.2. Показатель ослабления  $\mu$  ( $\lambda$ ) для материалов, имеющих показатель преломления  $n(\lambda) < 3$  и коэффициент внутреннего пропускания образца толщиной 10 мм  $\tau_i(\lambda) > 0.83$ , рассчитывают по формуле

$$\mu(\lambda) = \frac{D(\lambda) - D_{\wp m}(\lambda)}{s} , \qquad (3)$$

где  $D(\lambda)$  — оптическая плотность образца, рассчитанная с погрешностью не более  $1\cdot 10^{-3}$  по формуле

$$D(\lambda) = -\lg \tau(\lambda); \tag{4}$$

 $D_{\rho m}$  ( $\lambda$ ) — поправка, характеризующая потери излучения при многократном отражении от обеих рабочих поверхностей образца (многократно отраженные внутри образца пучки попадают на приемник излучения), рассчитанная с погрешностью не более  $1 \cdot 10^{-3}$  по формуле

$$D_{\varrho m}(\lambda) = -\lg \frac{2n(\lambda)}{n^2(\lambda) + 1} . \tag{5}$$

1.6.2. Погрешность определения показателя ослабления Δμ(λ) при использовании приборов с однократным прохождением пучка излучения через образец рассчитывают по формуле

$$\Delta\mu(\lambda) = \frac{1}{s} \cdot \frac{\Delta\tau(\lambda)}{\tau(\lambda)} \cdot 0,434,\tag{6}$$

где  $\Delta \tau(\lambda)$  — абсолютная погрешность измерения коэффициента пропускания образца, рассчитанная по формуле

$$\Delta \tau(\lambda) = \Lambda + \left| \frac{d\tau(\lambda)}{d\lambda} \Delta \lambda \right| , \qquad (7)$$

- где A абсолютная погрешность показаний по шкале коэффициентов пропускания;
  - Δλ абсолютная погрешность установки заданной длины волны;
- $\frac{d au(\lambda)}{d \lambda}$  крутизна спектральной кривой пропускания образца, вычисленная как разность коэффициентов пропускания при длинах волн  $(\lambda+5)$  нм и  $(\lambda-5)$  нм, деленная на 10.
- 1.6.3. При измерении коэффициента пропускания  $\tau'(\lambda)$  на приборах, где нроисходит двойное прохождение пучка излучения через образец (типа СФ-26 с приставкой СДО-1 и др.), спектральный показатель ослабления  $\mu(\lambda)$  рассчитывают по формулам:

<sup>\*</sup> Показатель преломления находят по нормативно-технической документации на конкретный материал.

$$\mu(\lambda) = \frac{1}{s} \left[ \lg \frac{16n^2(\lambda)}{(n(\lambda)+1)^4} - \frac{1}{2} \lg \tau'(\lambda) \right], \tag{8}$$

где  $\tau'(\lambda)$  — отношение потока, дважды прошедшего образец, к потоку, упавшему на него, в долях единицы;

или 
$$\mu(\lambda) = \frac{1}{2s} \left[ D(\lambda) - 2D, (\lambda) \right], \qquad (9)$$

где  $D_{\rho}$  ( $\lambda$ ) — поправка, характеризующая потери излучения при однократном отражении от обеих рабочих поверхностей образца (многократно отраженные внутри образца пучки не попадают на приемник излучения), рассчитанная по формуле

$$D_{\rho}(\lambda) = -\lg \frac{16n^2(\lambda)}{(n(\lambda)+1)^4} . \tag{10}$$

1.6.3.1. Оптическую плотность образца  $D(\lambda)$  и поправку на отражение  $D_{\rho}(\lambda)$  рассчитывают по формулам (4) и (10) с погрешностью не более  $1\cdot 10^{-4}$ .

1.6.4. Погрешность определения показателя ослабления  $\Delta\mu$  (λ) при использовании приборов с двойным прохождением пучка излучения через образец рассчитывают по формуле

$$\Delta\mu(\lambda) = \frac{1}{2s} \cdot \frac{\Delta\tau'(\lambda)}{\tau'(\lambda)} \cdot 0,434,\tag{11}$$

где  $\Delta \tau'(\lambda)$  — абсолютная погрешность измерения  $\tau'(\lambda)$ , рассчитываемая по формуле (7).

1.6.5. При измерении коэффициента пропускания на приборах с использованием образцовой меры пропускания спектральный по-казатель ослабления для малопрозрачных материалов ( $\tau(\lambda) < 0.10$ ) рассчитывают по формулам (1) или (3).

Значение спектрального коэффициента пропускания образца

 $\tau(\lambda)$  рассчитывают по формуле

$$\tau(\lambda) = \tau_{H_{3M}}(\lambda) \cdot \tau_{c}(\lambda), \tag{12}$$

где  $\tau_{\text{изм}}(\lambda)$  — спектральный коэффициент пропускания, измеренный на приборе;

 $au_{c}(\lambda)$  — коэффициент пропускания образцовой меры.

1.6.5.1. Погрешность определения показателя ослабления  $\Delta \mu(\lambda)$  рассчитывают по формуле

$$\Delta\mu(\lambda) = \frac{1}{s} \left[ \frac{\Delta \tau_{\text{H3M}}(\lambda)}{\tau_{\text{H3M}}(\lambda)} + \frac{\Delta \tau_{\text{c}}(\lambda)}{\tau_{\text{c}}(\lambda)} \right] \cdot 0434, \tag{13}$$

где  $\Delta au_{\text{изм}}(\lambda)$  — погрешность, определяемая по формуле (7);  $\Delta au_{\text{с}}$  — погрешность аттестации образцовой меры пропускания.

1.6.6. При измерении коэффициента пропускания на приборе ФМТИ с использованием образцовой меры пропускания, спек-

тральный показатель ослабления для высокопрозрачных материалов  $(\tau(\lambda) > 0.90)$  рассчитывают по формуле

$$\mu(\lambda) = -\frac{\lg \tau_i(\lambda)}{s_2 - s_1} , \qquad (14)$$

где  $\tau_i(\lambda)$  — спектральный коэффициент внутреннего пропускания образца, рассчитанный по формуле (15) с погрешностью не более  $1\cdot 10^{-4}$ ,

 $s_1$ ,  $s_2$  — толщина образца короткого и длинного соответственно, мм.

1.6.6.1. Спектральный коэффициент внутреннего пропускания образца  $\tau_i(\lambda)$  рассчитывают по формуле

$$\tau_i(\lambda) = \frac{m_3 - m_1}{m_2 - m_1} (1 - \tau_c) + \tau_c , \qquad (15)$$

где  $m_1$  — показание по шкале при введенной образцовой мере и коротком образце;

 $m_2$  — показания по шкале при введенном коротком образце;  $m_3$  — показания по шкале при введенном длинном образце;

 $m_3$  — показания по шкале при введенном длинном образце;  $\tau_c$  — значение коэффициента пропускания образцовой меры (в соответствии с паспортом).

1.6.6.2. Погрешность определения показателя ослабления  $\Delta \mu(\lambda)$  рассчитывают по формуле

$$\Delta\mu(\lambda) = \frac{1}{s_2 - s_1} \frac{\Delta \tau_i(\lambda)}{\tau_i(\lambda)} \cdot 0,434,\tag{16}$$

где  $\Delta \tau_i(\lambda)$  — погрешность определения коэффициента внутреннего пропускания, рассчитанная по формуле

$$\Delta \tau_i(\lambda) = \frac{1-\tau_c(\lambda)}{m_2-m_1} \times$$

$$\times \sqrt{2 \cdot \frac{m_1^2 + m_2^2 + m_3^2 - m_1 m_2 - m_2 m_3 - m_1 m_3}{(m_2 - m_1)^2} (\Delta m)^2 + \frac{(m_2 - m_3)^2}{(1 - \tau_c(\lambda))^2} \cdot [\Delta \tau_c(\lambda)]^2}, (17)$$

где  $\Delta m$  — фотометрическая погрешность прибора в делениях шкалы.

1.6.7. Окончательное значение спектрального показателя ослабления указывают с учетом погрешности измерений.

1.6.8. Результаты измерений и расчета записывают в журналы, примеры заполнения которых приведены в приложениях 4 и 5.

### 2. МЕТОД ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ОСЛАБЛЕНИЯ ДЛЯ ИСТОЧНИКА А

2.1. Сущность метода

2.1.1. Метод определения показателя ослабления для источника A заключается в измерении коэффициента пропускания  $\tau_A$  образца на фотометре с источником излучения, спектральное излучение которого соответствует источнику A, и приемником излучения, спектральная чувствительность которого приведена к относительной спектральной световой эффективности монохроматического излучения для дневного врения, и последующем расчете показателя ослабления  $\mu_A$ .

2.1.2. Метод основан на сравнении потока излучения, ослабленного образцом, с потоками, ослабленными образцовыми мера-

ми (градуированными секторами-ослабителями).

2.1.3. Метод измерения коэффициента внутреннего пропускания заключается в сравнительном измерении коэффициента пропускания длинного и короткого образцов и отнесении результата к слою стекла толщиной, равной разности толщин образцов.

2.2. Требования к отбору образцов

2.2.1. Образец должен иметь форму параллелепипеда с плоско-

параллельными рабочими поверхностями.

Размер образца в направлении прохождения излучения (толщина) должен обеспечивать проведение измерения коэффициента пропускания от 0,50 до 0,90. Рекомендуемая толщина образца от 100 до 300 мм.

Наименьшая сторона поперечного сечения образца должна на 2 мм превышать наибольший диаметр сходящегося светового пучка фотометра.

При расположении образца вблизи объектива при полностью раскрытой диафрагме сторона поперечного сечения образца дол-

жна быть не менее 40 мм.

2.2.2. Для измерения коэффициента внутреннего пропускания изготовляют два образца — длинный и короткий.

Требования к размерам образцов — по п. 1.2.5.

2.2.3. Допуск параллельности и перпендикулярности рабочих и опорных поверхностей образца — 2°C.

Допуск плоскостности рабочих поверхностей — 10 интерферен-

ционных полос.

Требования к обработке рабочих поверхностей — по пп. 1.2.7— —1.2.8.

- 2.3. Требования к средствам измерений
- 2.3.1. Для измерения коэффициента пропускания  $\tau_A$  образца применяют фотометры типа  $\Phi M$  94M в соответствии с приложением 3.

Приборы должны иметь свидетельства о поверке или метрологической аттестации.

2.3.2. Оптическая схема фотометра должна соответствовать следующим требованиям:

угловая сходимость измерительного пучка не должна превы-

шать 4°;

измерительный пучок лучей должен падать на входную рабочую поверхность образца под углом не более 3°;

измерительный пучок должен полностью падать на приемник

излучения, виньетирование не допускается;

многократное отражение измерительного пучка от оптических деталей фотометра и между деталями и образцом не допускается;

рассеянное и люминесцирующее излучение образца не должно

достигать приемника излучения.

Допускается применение измерительной схемы с многократным прохождением измерительного пучка через образец, дающим

большую длину хода луча в образце.

2.3.3. Спектральная чувствительность приемника излучения  $S(\lambda)$  должна соответствовать или быть приведена к относительной спектральной световой эффективности монохроматического излучения для дневного зрения  $V(\lambda)$  в соответствии с формулой

$$\left| \frac{\Phi_{e\lambda} \cdot S(\lambda)}{\Phi_{e\ 0.555} \cdot \Phi_{(0.555)}} - \frac{\Phi_{A\lambda} \cdot V(\lambda)}{\Phi_{A\ 0.555} \cdot V_{(0.555)}} \right| \ll 0.05, \tag{18}$$

- где  $\Phi_{A\lambda}$  спектральная плотность потока излучения в видимой области спектра, соответствующая излучению абсолютно черного излучателя при температуре 2583 °C по ГОСТ 7721;
  - $\Phi_{e\lambda}$  относительное спектральное распределение измерительного потока;
- $\Phi_{A0,555}$  спектральная плотность потока излучения стандартного источника A для длины волны  $\lambda$ =0,555 мкм в относительных единицах по ГОСТ 7721;
  - $\Phi_{e^{0,555}}$  относительное спектральное распределение измерительного потока для длины волны 0,555 мкм;
  - $V_{(0,555)}$  относительная световая эффективность для длины волны 0,555 мкм;
  - $S_{(0,555)}$  чувствительность приемника излучения для длины волны 0,555 мкм;
    - $V(\lambda)$  относительная спектральная световая эффективность монохроматического излучения для дневного зрения по ГОСТ 8.332;
    - $S(\lambda)$  спектральная чувствительность приемника излучения.
- 2.3.4. Требования к инструменту для измерения толщины образца и проверки плоскостности его рабочих поверхностей по пп. 1.3.5—1.3.6.
- 2.3.5. Требования к средствам измерения температуры рабочего пространства возле образца по п. 1.3.7.
  - 2.4. Требования к подготовке измерений
  - .Подготовку прибора к измерению и проверку его работы про-

водят согласно прилагаемой к нему инструкции по эксплуатации. Подготовка образца к измерению — по п. 1.4.2.

2.5. Требования к проведению измерений

2.5.1. Образец следует установить в держателе прибора таким образом, чтобы прошедшие через образец лучи полностью попадали на приемник излучения, отраженные от поверхности образца лучи не должны попадать на приемник излучения.

2.5.2. Измерение коэффициента пропускания та следует прово-

дить в соответствии с инструкцией по эксплуатации прибора.

Измерения следует проводить при температуре  $(20\pm4)$  °C.

2.5.3. Отсчет по шкале прибора с введенным в пучок лучей образцом следует повторять для двух положений образца, установленного сначала одной рабочей поверхностью к приемнику излучения, затем другой. Образец при перестановке следует вращать вокруг вертикальной оси.

Каждое показание по шкале прибора следует снимать не менее трех раз. За окончательный результат принимают среднее

арифметическое полученных отсчетов.

2.5.4. При измерении образца, изготовленного из материала со значительно выраженной зависимостью коэффициента пропускания в видимой области спектра от температуры, необходимо контролировать температуру образца или измерения проводить в камере, в которой выдерживают заданную температуру. В этом случае вместе с результатами измерения указывают температуру образца во время измерения.

2.6. Требования к обработке, оформлению и

оценке результатов измерений

2.6.1. Показатель ослабления  $\mu_A$  рассчитывают по формуле

$$\mu_A = \frac{1}{s} (D_A - D_{\rho})$$
 (19)

или

$$\mu_A = -\frac{1}{s} \lg \tau_{iA} , \qquad (20)$$

где s — размер образца (или разность толщин длинного и короткого образцов) в направлении измерения, мм;

 $D_A$  — оптическая плотность образца, равная —  $lgt_A$ ;

поправка на отражение, учитывающая однократное отражение от обеих рабочих поверхностей образца, рассчитываемая по формуле (21) с погрешностью не более 1·10<sup>-4</sup>;

 $au_{iA}$  — коэффициент внутреннего пропускания для источника A, рассчитанный по формуле (22) с погрешностью не бо-

лее  $1 \cdot 10^{-4}$ .

2.6.1.1. Значение поправки ( $D_{
ho}$  ) рассчитывают по формуле

$$D_{p} = -2\lg \frac{4n_{e}}{(n_{e}+1)^{2}} , \qquad (21)$$

- где  $n_e$  показатель преломления материала образца для линии e ( $\lambda$ =0.5461 мкм), условно принимаемый постоянным в области спектра от 0,380 до 0,780 мкм, определяемый с погрешностью измерения не более  $1 \cdot 10^{-3}$ . Для материалов со средней дисперсией  $n_F$   $n_{C'} > 0,02$  показатель преломления рассчитывают как среднее арифметическое для длин волн 0,5461 и 0,5876 мкм.
- 2.6.1.2. Значение коэффициента внутреннего пропускания образца  $\tau_{iA}$  рассчитывают по формуле

$$\tau_{iA} = \tau_A \cdot \frac{(n_e+1)^4}{16n_e^2}$$
, (22)

где  $\tau_A$  — коэффициент пропускания образца для источника A, рассчитанный по формуле

$$\tau_A = \frac{a_x - a_1}{a_2 - a_1} (\tau_2 - \tau_1) + \tau_1, \tag{23}$$

где  $a_1$  — отсчет по шкале прибора при введенном ослабителе с меньшим коэффициентом пропускания  $\tau_1$ ;

 $a_2$  — отсчет по шкале прибора при введенном ослабителе с большим коэффициентом пропускания  $\tau_2$ ;

 $a_x$  — отсчет по шкале прибора при введенном образце.

Коэффициенты пропускания ослабителей  $\tau_1$  и  $\tau_2$  рассчитывают как отношение суммы углов  $\alpha$  и  $\beta$  раскрытия вращающихся калиброванных секторов к полному углу в соответствии с приложением 6.

2.6.2. Погрешность измерения коэффициента пропускания не должна быть более  $5 \cdot 10^{-4}$ .

$$\Delta \tau_A = \frac{0.014}{(a_2 - a_1)^2} \sqrt{(a_2 - a_1)^2 + (a_2 - a_x)^2 + (a_x - a_1)^2} \cdot \Delta a, \tag{24}$$

где  $\Delta a$  — фотометрическая погрешность прибора в делениях шкалы.

2.6.3. Попрешность определения показателя ослабления  $\Delta \mu_A$  рассчитывают по формуле

$$\Delta \mu_A = \frac{1}{s} \cdot \frac{\Delta \tau_A}{\tau_A} \cdot 0,434. \tag{25}$$

2.6.4. Результаты измерения и расчета записывают в журнал, пример заполнения которого приведен в приложении 6.

# ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, ИХ ПОЯСНЕНИЯ И ОБОЗНАЧЕНИЯ

Таблица 1

|                                                                        |                      | таолица в                                                                                                                                                         |
|------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Термин                                                                 | Обозначение          | Пояснение                                                                                                                                                         |
| 1. Коэффициент про-<br>пускания образца для<br>источника А             | $\tau_A$             | Отношение светового потока *, про-<br>шедшего через образец, к падающему<br>световому потоку                                                                      |
| 2. Коэффициент вну-<br>треннего пропускания<br>образца для источника A | $	au_{iA}$           | Отношение светового потока, достиг-<br>шего выходной поверхности образца, к<br>потоку, прошедшему через его входную                                               |
| 3. Спектральный коэффициент пропускания образца                        | τ(λ)                 | поверхность Отношение монохроматического пото- ка излучения, прошедшего через обра- зец, к падающему монохроматическому потоку излучения                          |
| 4. Спектральный коэффициент внутреннего пропускания образца            | τ ; (λ)              | Отношение монохроматического пото-<br>ка излучения, достигшего выходной по-<br>верхности образца, к потоку, прошед-<br>шему через его входную поверхность         |
| 5. Оптическая плот-<br>ность образца для ис-<br>точника <i>A</i>       | $D_{A}$ $D(\lambda)$ | Десятичный логарифм величины, обратной коэффициенту пропускания образца для источника А                                                                           |
| 6 Спектральная оптическая плотность                                    |                      | Десятичный логарифм величины, обратной спектральному коэффициенту пропускания образца                                                                             |
| 7. Показатель ослаб-<br>ления для источника A                          | μ Α                  | Величина, обратная расстоянию, на котором поток излучения источника $A$ , образующего параллельный пучок, ос-                                                     |
|                                                                        | (2)                  | лабляется в 10 раз в результате совместного действия поглощения и рассеяния в веществе                                                                            |
| 8. Спектральный по-<br>казатель ослабления                             | μ (λ)                | Величина, обратная расстоянию, на котором поток монохроматического излучения, образующего параллельный пу-                                                        |
|                                                                        |                      | чок, ослабляется в 10 раз в результате совместного действия поглощения и рассеяния в веществе.  Примечание. Понятие применимо лишь для слабо рассеивающих веществ |
|                                                                        |                      |                                                                                                                                                                   |

<sup>\*</sup> Световой поток — поток излучения, оцениваемый по относительной спектральной световой эффективности монохроматического излучения для дневного зрения по ГОСТ 8.332. Спектральное распределение потока излучения источника должно соответствовать стандартному источнику А ГОСТ 7721.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

### РЕКОМЕНДАЦИИ ПО ВЫБОРУ СПОСОБА ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ПРОПУСКАНИЯ ПРИ КОНТРОЛЕ ОПТИЧЕСКИХ МАТЕРИАЛОВ

Таблица 2

|                                                                                                                                                                                                                                                   |                                                                |                                                                                            | 1 4 0 11 11 14 2                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Характеристика<br>метода                                                                                                                                                                                                                          | Рекомендуе-<br>мый диапазон<br>показателя<br>ослабления,<br>см | Формулы рас-<br>чета показа-<br>толя ослабле-<br>ния и погреш-<br>ности его<br>определения | Назначение                                                                                                                                                   |
| Измерение коэффициента пропускания проводится путем сравнения потока излучения, прошедшего через образец, с потоком излучения, упавшим на него                                                                                                    | Св. 0,01                                                       | Пп. 1.6.11.6.2                                                                             | Контроль оптических материалов, предназначенных для работы в ультрафиолетовой, видимой и инфракрасной областях спектра                                       |
| Измерение коэффициента пропускания проводится путем сравнения потока излучения дважды прошедшего через образец, с потоком, прошедшим путь той же оптической длины в воз-                                                                          | Св. 0,001                                                      | Пп. 1.6.31.6.4                                                                             | Контроль малопогло-<br>щающих оптических ма-<br>териалов, технология по-<br>лучения которых позво-<br>ляет изготовить образцы<br>толщиной от 50 до<br>250 мм |
| духе Измерение коэффици- ента пропускания про- водится путем сравне- ния потока излучения, прошедшего через обра- зец, с потоком, прошед- шим через образцовую меру пропускания, ис- пользуемую для уве- личения масштаба фото- метрической шкалы | Св. 0,0001                                                     | Пп. 1.6.5—<br>—1.6.6.2                                                                     | Контроль оптических материалов малопрозрачных τ<0,1 и высокопрозрачных τ>0,9                                                                                 |
| Измерение коэффициента внутреннего пропускания проводится путем сравнения потоков, прошедших через длинный и короткий образиы                                                                                                                     | Св. 0,01                                                       | Пп. 1.6.1—1.6.2                                                                            | Контроль оптических материалов с коэффициентом отражения более 0,05                                                                                          |

# ослабления приборы, применяемые для контроля показателя

| Таблица 3 | Гредел погрепности<br>определения показа-<br>теля ослабиения,<br>см —1 | $2.10^{-3}$                            | $2.10^{-3}$                     | 2.10-3                   | $2.10^{-3}$                         | 1.1,0-4        | 1.10-3                    | $2.10^{-3}$     | 1410-5                  | 1410-5         |   |
|-----------|------------------------------------------------------------------------|----------------------------------------|---------------------------------|--------------------------|-------------------------------------|----------------|---------------------------|-----------------|-------------------------|----------------|---|
|           |                                                                        |                                        |                                 |                          |                                     |                |                           |                 |                         |                |   |
|           | Рекоме. дусмый диа-<br>пазом посазателя<br>ослабления, см              | CB. 1·10-2                             | $C_{\rm B}$ . $1 \cdot 10^{-2}$ | CB. 1.10-2               | C <sub>B</sub> . 1·10 <sup>-2</sup> | CB. 1·10-3     | CB. 1·10-2                | CB. 1·10-2      | Cb. 1·10-4              | CB. 1·10-4     |   |
|           | Предел допускаемой<br>основной погреш-<br>ности нэмерешя с             | 1,0.1,0-2                              | 1,0.1,0-2                       | $1,0.10^{-2}$            | 1,0.1,0-2                           | $1,0.10^{-2}$  | $5,0.10^{-3}$             | 1,0.10-2        | 5,0.10-4                | 5,0.10-4       | ; |
|           | Рабочий диапазон<br>длин волн. м:м                                     | 0,10-0,35                              | 0,2-2,5                         | 0,2—1,1                  | 0,2-1,1                             | 0,2-1,1        | 2,38—25,0                 | 2,5—25,0        | 0,5—1,1                 | 0,38—0,78      |   |
|           | Обозначение техня-<br>ческих условий                                   | спектро-<br>М П покументания           | TV 3-3.44-76                    | TV 3-3.1841-84           | Tovumostrad                         | К ДОКУМентация | TV 3-3.1940-86            | TV 3-3.953-77   | Техническая             | документация   | , |
|           | Наименование и обозначе-<br>иие прибора                                | Вакуумный спектро-<br>фотометь ВСФ-3МП | Спектрофотометр                 | Спектрофотометр<br>СФ-46 | Спектрофотометр                     | 7              | Спектрофотометр<br>ИКС-25 | Спектрофотометр | Спектрофотометр<br>ФМТИ | Фотометр ФМ94М | ٠ |

Примечание. Допускается применение других приборов, обеспечивающих заданную точность измерений и имеющих свидетельства о поверке или метрологической аттестации.

ПРИЛОЖЕНИЕ 4 Рекомендуемое

# ПРИМЕР ЗАПОЛНЕНИЯ ЖУРНАЛА ДЛЯ ИЗМЕРЕНИЙ НА ПРИБОРАХ ТИПОВ СФ-46, ИКС-29, СФ-26 С ПРИСТАВКОЙ СДО-1

1. Для измерений на приборах типов СФ-46 и ИКС-29

| 15.02<br>Дата | З<br>Номер<br>образца | Н              | В (ФК-И)<br>аименовани<br>рка матери | ie, Hos                          | 17<br>вер варки<br>ыращивания | 10.01 (10.02)<br>Толщина<br>образца, мм |
|---------------|-----------------------|----------------|--------------------------------------|----------------------------------|-------------------------------|-----------------------------------------|
| λ, мкм        | τ(λ)*                 | <i>D</i> (λ)   | $D_{\varrho m}(\lambda)$             | $D(\lambda)-D_{\rho m}(\lambda)$ | μ(λ), cm <sup>-1</sup>        | Δμ(λ), см-1                             |
| 0,4<br>9,3    | 0,873                 | 0,059<br>0,367 | 0,029                                | 0,030                            | 0,030<br>0,35                 | ±0,005<br>±0,01                         |

<sup>\*</sup> При измерениях с аттестованной образцовой мерой  $\tau(\lambda)$  рассчитывают по формуле  $\tau(\lambda) = \tau_{H^{1M}} \ (\lambda) \cdot \tau_{c} \ (\lambda)$ .

Измерил:

Проверил:

2. Для измерений на приборах типа СФ-26 с приставкой СДО-1

| 18.03<br>Дата | 2<br>Номер<br>образца | Наименован   | Стекло K8 21  Наименование, марка материала  Номер варки, выращивания |                                 | 22, 80<br>Толщина<br>образца, см |
|---------------|-----------------------|--------------|-----------------------------------------------------------------------|---------------------------------|----------------------------------|
| λ, мкм        | τ(λ)                  | $D(\lambda)$ | D <sub>ρ</sub> (λ)                                                    | $D(\lambda)-2D_{\rho}(\lambda)$ | μ(λ), cm <sup>-1</sup>           |
| 0,55          | 0,749                 | 0,1255       | 0,0381                                                                | 0,0493                          | 0,0011                           |

 $\Delta \mu(\lambda) = \pm 0,0001 \text{ cm}^{-1}$ .

Измерил:

Проверил:

### ПРИМЕР ЗАПОЛНЕНИЯ ЖУРНАЛА ДЛЯ ИЗМЕРЕНИЙ НА ПРИБОРЕ ФМТИ

| 15.05 | 7                | Стекло К108                           | 5                              | 26.10                                | 195,30                             |
|-------|------------------|---------------------------------------|--------------------------------|--------------------------------------|------------------------------------|
| Дата  | Номер<br>образца | Наименова-<br>ние, марка<br>материала | Номер<br>варки,<br>выращивания | Толщина,<br>короткого<br>образца, мм | Толщина<br>длинного<br>образца, мм |

|                        |                     | Отсчеты по шка                                        | але вольтметра         |                                         |                     | <u> </u>      |  |
|------------------------|---------------------|-------------------------------------------------------|------------------------|-----------------------------------------|---------------------|---------------|--|
| Паши                   |                     | для                                                   | для рабочего канала    |                                         |                     |               |  |
| Длина<br>голны,<br>мкм | Номер<br>отсчета    | с коротким<br>образцом и<br>образцовой<br>мерой $m_1$ | с коротким<br>образцом | с длинным<br>образцом<br>т <sub>3</sub> | τ <sub>i</sub> (λ)* | μ(λ),<br>cm 1 |  |
|                        | 1                   | 17,14                                                 | 0,95                   | 15,70                                   |                     |               |  |
|                        | 2                   | 17,21                                                 | 1,14                   | 15,76                                   |                     |               |  |
|                        | 3                   | 17,08                                                 | 0,95                   | 15,72                                   |                     | i             |  |
|                        | 4                   | 17,16                                                 | 1,10                   | 15,73                                   |                     | <br> -        |  |
| <b>0</b> ,633          | 5                   | 17,11                                                 | 1,07                   | 15,76                                   |                     |               |  |
|                        | Среднее<br>значение | 17,14                                                 | 1,04                   | 15,73                                   | 0,9307              | 0,0018        |  |
|                        |                     |                                                       |                        |                                         |                     |               |  |

<sup>\*</sup> $\tau_i$  ( $\lambda$ ) — коэффициент внутреннего пропускания, рассчитанный по формуле  $\tau_i$  ( $\lambda$ ) =  $\frac{m_3-m_1}{m_2-m_1}$  (1- $\tau_c$ ) + $\tau_c$  =  $\frac{15.73-17.14}{1.04-17.14} \cdot (1-0.9240) +0.9240 =0.9307; <math>\mu(\lambda) = \frac{-\lg \tau_i}{s_2-s_1} \frac{(\lambda)}{195.30-26.10} = 0.0018 \text{ см}^{-1};$   $\Delta\mu(\lambda) = \pm 0.00003 \text{ см}^{-1}.$ 

Измерил:

Проверил:

### ПРИМЕР ЗАПОЛНЕНИЯ ЖУРНАЛА ДЛЯ ИЗМЕРЕНИЙ НА ФОТОМЕТРЕ С ИСТОЧНИКОМ А

| 11.03 | 1                | Стекло К8                | 4                           | 110,01                 | $n_e$         | =1,518    |
|-------|------------------|--------------------------|-----------------------------|------------------------|---------------|-----------|
| Дата  | Номер<br>образца | Наименова-<br>ние, марка | Номер варки,<br>выращивания | Толщина<br>образца, мм | $D_{\varrho}$ | == 0,0376 |
|       | • •              | материала                | •                           |                        |               |           |

### Характеристика ослабителей:

$$\begin{array}{lll} \alpha_1 = 144 \, ^{\circ}1'; & \beta_1 = 143 \, ^{\circ}55'; & \alpha_2 = 162 \, ^{\circ}4'; & \beta_2 = 162 \, ^{\circ}1'; \\ \tau_1 = & \frac{144 \, ^{\circ}1' + 143 \, ^{\circ}55'}{360 \, ^{\circ}} = 0.7981; & \tau_2 = & \frac{162 \, ^{\circ}4' + 162 \, ^{\circ}1'}{360 \, ^{\circ}} = 0.9002. \end{array}$$

| <i>a</i> <sub>1</sub>                | <i>a</i> 2                                | a <sub>x</sub>                            | ************************************** | $D_{\Lambda}$ | μ <sub>A</sub> , cm <sup>-1</sup> |
|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|---------------|-----------------------------------|
| 2,80<br>3,00<br>3,20<br>3,00<br>3,30 | 46,80<br>47,00<br>46,80<br>47,10<br>47,00 | 29,80<br>29,40<br>29,80<br>29,70<br>30,00 |                                        |               |                                   |
| Среднее<br>значение:<br>3,06         | 46,94                                     | 29,74                                     | 0,8602                                 | 0,0654        | <b>0,</b> 0025                    |

<sup>\*</sup> т  $_A$  рассчитан по формуле

$$\tau_A = \frac{a_x - a_1}{a_2 - a_1} (\tau_2 - \tau_1) + \tau_1 = \frac{29,74 - 3,06}{46,94 - 3,06} (0,9002 - 0,7981) + 0,7981 = 0,8602;$$

$$\mu_A = \frac{D_A - D_p}{s} = \frac{0.0654 - 0.0376}{11} = 0.0025 \text{ cm}^{-1};$$

$$\Delta \mu_A = \pm 0,00005 \text{ cm}^{-1}$$
.

Измерил:

Проверил:

# информационные данные

### 1. РАЗРАБОТЧИКИ

- В. И. Пучков; Е. А. Иозеп, канд. техн. наук; Л. С Иутинская; В. Г. Докучаев; А. П. Иванова; Р. А. Лебикова; М. А. Круглякова; С. Ю. Герасимов
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 28.01.92 № 76
- 3. СРОК ПРОВЕРКИ 1997 г.; периодичность проверки 5 лет
- 4. B3AMEH ΓΟCT 3520-84, OCT 3-6410-88, OCT 3-106-81
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

| Обозначение НТД,<br>на который дана ссылка | Номер пункта, подпункта, приложения |
|--------------------------------------------|-------------------------------------|
| ГОСТ 8.33278                               | 2.3.3; приложение 1                 |
| ΓΟCT 16689                                 | 1.3.5                               |
| ΓΟCT 2786—82                               | 1.3.6                               |
| <b>ΓΟ</b> CT 278973                        | 1.2.7                               |
| <b>ΓΟ</b> CT 650790                        | 1.3,5                               |
| <b>ΓΟ</b> CT 7721—89                       | Вводная часть; 2.3.3; приложе       |
|                                            | ние 1                               |
| <b>ΓΟ</b> CT 11141—81                      | 1.2.7                               |
| ΓOCT 18300—87                              | 1,4.2                               |
| Γ <b>O</b> CT 25336—82                     | 1.2.7                               |
| Γ <b>O</b> CT 2849890                      | 1.3.7                               |
| ТУ 3—3.44—76                               | Приложение 3                        |
| ТУ 3—3.953—77                              | Приложение 3                        |
| ТУ 33.184184                               | Приложение 3                        |
| TY 33.1940 -86                             | Приложение 3                        |

### Редактор Л. Д. Курочкина Технический редактор Г. А. Теребинкина Корректор Т. А. Васильева

Сдано в наб. 26.02.92. Подп. в неч. 06.04.92. Усл. н. л. 1,25. Усл. круотт. 1,25. Уч. язд. л. 1,26, Тираж 457 экз.