Examination Control Division 2072 Ashwin

Exam.			
Level	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV/II	Time	3 hrs.

Subject: - Simulation and Modeling (CT753)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. What is Simulation and Modeling? Explain when simulation is appropriate and not appropriate tool. [2+6]
- Explain static mathematical model with suitable example.

[6] 5

- 3. What is analog computer; explain with its pros and cons. Explain the analog computer model for liver with necessary figures.
- [4+6]
- 4. What are the characteristics of queuing system? Discuss any one practical application of queuing system.
- 5+5] 7
- 5. What are the key features of Markov chain? Given that chance of a Honda Bike user to buy Honda Bike at next purchase is 70% and that his next purchase will be Yamaha Bike is 30% and change of a Yamaha Bike user to buy Yamaha Bike at next purchase is 80% and change that his next purchase will be Honda Bike is 20%. What is the probability to buy Yamaha Bike after three purchase of a current Honda Bike user?

S. D. -

What are the properties of random numbers? Explain the steps of Gap test algorithm with example.

يٰ 4+61

 A sequence of 10,000 five digital numbers has been generated and analysis indicates the following combinations and frequencies.

[8] 6

Combinations (i)	O served Frequency (O _i)
All different	34 0
One pair	45.0
Two pair	1150.
Three of a kind	750
Full house	85
Four of a kind	40
Five of a kind	15
Total	10,000

Based on Poker Test Check whether the number are independent. Use $\alpha=0.05$ and N=6 is 12.592

8. What is calibration and validation of models? Explain with practical example.

[5] 3

9. Define initial Bias. Explain the methods for the elimination of initial bias.

[5] 🤼

Explain in brief the simulation in JAVA with example.

[6] 4-

11. Explain the different level of abstraction for the simulation of computer system.

6 4

水水油

Examination Control Division 2071 Bhadra

Exam.		Regular / Back	
Levei	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV/II	Time	3 hrs.

Subject: - Simulation and Modelling (CT753)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.

₹

- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. What is simulation and modelling? Explain the steps in simulation study. [2+6]
- 2. Explain the dynamic physical model with example. [6]
- What is analog method? Explain with example of automobile suspension problem. [4+6]
- 4. What is the model of queuing system? What do you mean by the Kendall's notation in queuing systems? What is the meaning of M/D/8/15/LIFO in queuing system? Explain.

[5+2.5+2.5]

[6]

Given figure shows Coke and Pepsi purchaser

- a) If currently Coke purchaser, what is the probability of Pepsi purchaser in 3rd purchase?
- b) If 55% of people use Coke today, what percentage of people will use Coke after 3 purchases?
- 6. Write an algorithm for gap test. Formulate 4-digit poker test with suitable data with example. [4+6]
- 7. Define pseudo random numbers. The following numbers have been generated 0.44, 0.19, 0.88, 0.27, 0.55, 0.13, 0.63, 0.74, 0.11 and 0.33. Use the Kolmogorov-Smirnov test with α = 0.05 to determine, if the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. (Note that the critical value of D for α 0.05 and N = 10 is 0.410.

[2+6]

[5]

- 8. Explain the iterative process of calibrating a model with example.
- How can you use estimation methods in an analysis of simulation output? Explain with
 example.
 - [6]
- 10. Explain with example of simulation in JAVA with single server queue model.
- [7]
- 11. Explain with CPU simulation by sketching a simulation model of computer system.

[6]

Examination Control Division 2070 Bhadra

Exam.		Regular	
Level	1315	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV / II	Time	3 hrs.

Subject: - Simulation and Modeling (CT753)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Necessary chart is attached herewith.
- ✓ Scientific calculator is allowed.
- Assume suitable data if necessary.

	Assume surrable data if necessary.	
J.	Define modeling and simulation. Explain steps involved in simulation study.	[2+6]
2.	What is dynamic mathematical model? Explain with examples.	[6]
3,	 Explain significance of differential equation in the context of continuous system simulation. 	(3)
	b) Develop an analog computer model of the liver and explain it.	[7]
4,	Mention the characteristics of queuing system. Explain the Kendall's notation in queuing systems. What is the meaning of M/D/6/10/FIFO in queuing system? {2.5+:	5+2.5]
5.	Explain Markov Chain with an appropriate example.	[6]
6.	a) What is a random number? What are the problems associated with generating pseudo- random numbers.	[8]
÷	b) A set of 10,000 4-digit random values have been generated. An observation shows than 5065 values have all different digits, 2000 have 2 of a kind digits, 760 have 3 of a kind, 1500 have 2 pairs and 675 have all same digits. Test these values for randomness using Poker test (Use α = 0.05).	[7]
7.	Explain Naylor and Finger's steps used in validation in brief.	15
8.	What is initial bias? What is the approach for climination of initial bias?	[5]
9.	Explain the at least 5 GPSS block diagram symbols with example.	[6]
10	Write short notes on: (any three)	[3×3]
	a) Calibration of a model b) Application of queuing system c) Convolution in random number d) CPH simulation	100

*+

Chi-Square Distribution Table

if he shaded even is equal to α for $\chi^2=\chi^2_\alpha$

df.	X ² BSS	Ү.омь	X ² 975	X.250	X.966	χ^2_{non} <	X.050	X.325	χ ² no	X ² .005
1	0.000	6.000	0.001	e.ñon	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.303	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1 064	7.779	2.488	11.143	13.277	14.860
5	0.412	0.554	0.837	1.145	1.610	9.236	11.070	12.883	15.086	16.750
в	0.676	0.872	1.237	1.635	2.204	10.645	12.593	14.449	16.8t2	18.548
7	0.989	1.339	1.690	2.167	2.833	12.017	54.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1 735	2.088	2.709	8.825	4.368	14.684	36,019	19.023	21.056	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26,757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28,300
13	3,565	4.307	5 000	5.892	7.042	19.813	22.362	24.736	27.688	29.819
14	4.076	4,660	5.629	6.571	7.790	21.064	23.635	26.119	29.141	31.319
15	4.60:	5.229	6.262	7.261	8.547	22,307	24.996	27.488	30.578	32.80
16	5.142	5.8)2	6.908	7.962	9.312	23.542	26.296	28.845	32.00C	34.267
17	5.69?	0.408	7.554	86/2	10.085	24.769	27.587	30,191	33.469	-35.718
18	0.265	7.015	8.231	9 390	10.865	25.989	28.869	31.526	34.805	37.156
29	6.844	7.633	8.807	30.117	11.651	27.204	30.144	32.852	35.191	38,582
20	7.434	8.250	9.591	\$0.851	12.443	26.412	32,410	94.170	37,566	39.997
21	8.034	8.897	10.283	21,59)	13.240	29,615	33.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40,289	42.796
23	9.260	10 196	11.689	13.691	14.848	32,007	35,172	38.070	41.638	44.163
26	9.886	10.856	12 40£	13.848	15.659	33,196	36.415	39.364	(2.980	45,555
25	10.520	11.524	13.329	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	17.808	12.879	14.573	16 161	18.114	36,741	48.113	43.195	46.963	49.640
28	12.461	13.565	15.308	16.978	18.939	37.916	43.337	44.461	48.278	50,990
29	12.721	14.256	15.047	17,708	19.708	39.087	42.557	45.722	42.588	52.330
391	13.787	14.953	16,791	18 493	20.599	49.236	43.773	46.979	50.802	53.672
4U	2(1.707	22.164	24.433	26,609	29.951	51,865	85.758	59,342	63.691	66 760
āĐ	27.991	29.707	30.367	34.764	37.589	63.167	67.505	71.420	76.154	79,490
60	30.534	37.485	40.482	13.188	45.459	74 307	79.082	83.298	88.379	91.952
70	43.276	45.442	48.768	51.789	55,329	85,527	60.531	95.023	100 475	104.21
80	(61.172	53,540	57.168	60.391	64.278	90.578	101.879	106.629	112.349	115.32
99	59.196	61.754	65.647	69.126	73.207	107.666	1:3.145	118.136	124.116	125.29
10Ù 3	67.328	70.065	74,292	77 929	82.368	118.498	124.342	129,561	135,807	240.16

Examination Control Division. 2069 Bhadra

Exam.		Regular / Back .	
Level	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	fV/It	Time	3 hrs.

(8)

Subject: - Simulation and Modeling (EG778CT)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
 - Explain the static mathematical models and dynamic mathematical models with example. What are the main differences between them? (10)
 - What is queuing system? How it is useful for simulation? Explain the different types
 of queuing system with example. (2+2+6)
 - 3. Explain Markov chains with example and its applications. (10)
 - Explain the digital analog simulator. Design the analog computer model of the liver and explain it. (4+8)
 - What are the two statistical properties of Random number? Explain the gap test algorithm with example. (2+8)
 - 6. A sequence of 1000 four digit numbers has been generated and analysis indicates the following combinations with frequencies:

Combination (i)	Observed Frequency(O;)					
Four different digits	570					
One pair	380					
Two pairs	34					
Three like digits	15					
Four like digits	1					
	1000					

Based on poker test check whether the numbers are independent. Use α =0.10 and N=4 is 7.78

- 7. Write different types of simulation output analysis. In the case of infinite population which output analysis method is applicable. Why? Explain. (4+6)
- Define the succession of events. Design a telephone system simulation model using GPSS symbols and explain in brief.

* + >

Examination Control Division 2068 Bhadra

Exam.		Regular / Back	·, · ·
Level	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV/II	Time	3 hrs.

Subject: - Simulation and Modeling

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Necessary table is attached herewith.
- ✓ Assume suitable data if necessary,

l.	Define	simulation	and	modeling.	Explain	dynamic	mathematical	modeling	with	an	
	example	e.									[2+6]

- 2. What is a distributed lag model? Explain with an example. [8]
- 3. What is Markov chain? Explain an application of Markov chain. [8]
- 4. What is a random number? Explain linear congruential method for generating random numbers with an example. [4-14]
- 5. Given below the sequence of 100 random numbers. Use chi-square test with $\alpha = 0.05$ to check the number for uniform distribution and serial auto correlation. [12]

-	09	05	92	15	10	90	23	15	84	27	20	77	35	25	72	44
1	30	65	43	35	60	56.	40	55	63	45	47	47	42	30	57	70
	66	30	91	65	24	99	70	18	8	76	13	14	80	05	72	56
i	21	85	96	28	90	35	94	85	40	07	78	49	10	72	56	1.5
	63	66	20	60	70	23	58	71	30	43	87	39	49	99	40	36
	98	45	30	09	50	24	14	55	18	07	92	87	64	53	22	76
-	35	42	11	.29	. 3			. 8					.88			

- 6. Explain a replication of runs in an analysis of simulation output with an example. [8]
- 7. Explain the significance of elimination of initial bias in modeling with an example. [8]
- 8. What is a GPSS? List some of the common block diagram symbols used in GPSS. [2-6]
- Explain a GPSS simulation model of a supermarket.

. .

TABLE 4-2 : Area in Right tail of a Chi-square Distribution.

Degrees of freedom	20	10	, os	.02	.01 -
i	1.642	2.706	. 3 841	5.412	6.635
. 2	3,219	4.605	5.991	7.824	9.210
3	4.642 -	6.25t	7.865	9.837	11.345
4	5,989	1.779.	9.448	14.658*	13.277
5	7.289	9.236	11.670	13.348	15.087
6	8.55B	10,645	12,592	15,033	15.812
7	9.803	12.017	14.067	16.622	18,475
8	11.030	13.362	15.507	18.168	20.090
9	12.242	14.684	16.919	19.679	21.666
10	13,442	15,987	18.307	21.161	23,209
. 1[14.631	17.275	19.675	22,618	24,725
12	15,812	18,549	21.026	124,054	26,217
13	16.985	19.812	22.362	25.472	27.688
14	t8,15]	21.064.	23.685	26,873	29.141
· 15	19.311	22.307	24.996	23.259	30.578
16	20.465	23.542	26.296	29.633	32,000
- 147	21.615	24.769	27.587	30.995	33,409
16 -	22.760	25.989	28.869	32.346	34.805
. 19	23.900	27.204	30.144	33.687	36.191
20	25.038	28,412 :	31,410	35,020	37.566
21	26.171	. 29.615	32.671	36.343	39.932
22	27,301	30.813	33.924	37.659	40.269
23	28.429	32,007	35.172	38.968 .	41,638
. 24	29.553	33.196	36.415	40.270	42.980
25	30.675	34.382	37.652	41.566	. 44.314
26	31.795	35.563	38.885	42.856	45.642
27	32.912	36.741	40.113	44,410	46.963
28	34.927	37.916	41.337	45.419	45,278
29	35,139	39.087	42.557	46.693	49.588
30	36.250	40.256	43.773	47.962	50.892

Examination Control Division 2067 Mangsir

· EXAM-		Regular / Back		
Linvel	BE	Full Marks	80	
Programme	BCT	Pass Marks	32	
Year / Post	TIV/B	Time	3 lats.	

Subject: - Simulation and Modeling

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Astempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- What is system modeling? Differentiate between static mathematical model and dynamic mathematical model with example. (3+7)
- 2. Define Markov Chains. Explain the key features and applications of Markov Chains. (4+6)
- Explain the analog method with example of automobile suspension problem. (10)
- 4. What are the components of a queuing system? How can you measures of system performance of queuing system? Explain. (4+6)
- 5. Explain the gap test and its algorithm with example. (10)
- 6. Explain the pseudo random numbers and its applications. The following numbers have been generated 0.54, 0.73, 0.98, 0.11, 0.29, 0.23, 0.65, 0.84 and 0.37. Use the Kolmogorov Smirnov test with α=0.05 to determine, if the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. (Note that the critical value of D for α=0.05 and N=9 is 0.432.
- Why an analysis of simulation output is important? Explain the elimination of initial bias with
 example. (2+8)
- 8. Design the manufacturing shop model using GPSS and explain it. (10)

Examination Control Division 2066 Magh

Exant.	Regular/Back		
Level	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV / II	Time	3 hrs.

Subject: - Simulation and Modeling

- Candidates are required to give their answers in their own words as for as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
 - Define simulation. What are the various steps in simulation study? Explain.(246)
 - 2. Explain the Markov chains with example and its applications. (8)
 - What are the characteristics of queuing systems? Explain the Kendall notation for queuing systems. Define the meaning of D/M/1/LIFO/8/40. (4+6+2)
 - Wention the properties of random numbers. Explain the methods of generating pseudo random numbers. (4+8)
 - State the various test for random numbers and explain briefly any one of uniformity test method. (4+6)
 - 6. A sequence of 1000 four-digit numbers has been generated and an ..., analysis indicates the following combinations and frequencies.

Combinations i	Observed Frequency , Ot	
Four Different digits	540	
One pair	320	
Two pairs	. 70	
Three like digit	50	
Four like digit	20	
	1000	

Description the poker test, test these numbers are independent. Use $\alpha=0.05$. (Note—that the critical value, $\alpha=0.05$ and N=4 is 9.49. (8)

- Bupish Levillandion method with example. Where we can apply this a method? (342)
- Explain the discrete systems modeling and simulation with GPSS. Explain the colephone system in GPSS model. (4+8)

8

Examination Control Division 2065 Baishakh

Exam.		Back	
Level	BE	Full Marks	80-
Programme	BCT	Pass Marks	32
Year / Part	IV / II	Time	3 hrs.

Subject: - Simulation and Modeling

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1.	What do you mean by simulation and modeling? Explain the types of models.	[4-4]
2.	Explain the static physical model, dynamic physical model and compare them.	[8]
3.	Explain the Markov chains and its application with example,	[8]
4.	What do you mean by distributed lag models in system simulation? Explain with example.	[8]
5.	What are the properties of random numbers? Explain the algorithm of Gap Test.	[3÷5]
6.	What do you mean by digital-analog simulators? Explain the analog methods with	
	example.	[4+6]
7.	Why poker test is used? Develop the poker test for four digit numbers.	[4+6]
8.	How can you use simulation run statistics in an analysis of simulation output?	[8]
9.	What do you mean by GPSS? Explain the simulation of telephone system.	[4÷8]

* * *

Examination Control Division

liver with example.

Exam.	Regular/Back		
Level	BE	Full Marks	80
Programme	BCT	Pass Marks	32
Year / Part	IV / II	Time	3 hrs.

[3+5]

Subject: - Simulation and Modeling

 Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. What do you mean by system modeling? Explain the advantages and disadvantages of simulation. [4+4]Explain the static mathematical model, dynamic mathematical model and compare them. [8] What do you mean by calibration and validation of model? Explain the iterative process of calibrating of model with example. [415] 4. Write down the characteristics of quencing system. Explain the queueing notation with [4+5] example. 5. Why random numbers are used in simulation? Explain the random number generation method with example. [3+5]

7. Why poker test is used? Develop the poker test for five-digit numbers. [4+6]

8. How can you use replication of runs in an analysis of simulation output? Explain. [8]

9. What do you mean by GPSS program? Explain the simulation of manufacturing shop. [4+8]

6. What do you mean by continuous system model? Design the analog computer model of