Laboratoria zestaw 4 Krystian Baran 145000 23 marca 2021

1 Przykład projektu zaliczeniowego cz 1

Długość X (w [mm]) detalu produkowanego na pewnym automacie jest zmienną losową o gestości prawdopodobieństwa

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-x^2 + 40x - 400}{0.08}\right), x \in \mathbb{R}$$

- 1. Rozpoznać rozkład długości detalu i jego parametry, wyznaczyć drugi moment zwykły długości detalu, sporządzić krzywą gęstości i dystrybuantę.
- 2. Obliczyć prawd. zdarzeń: $|X-19.98| \ge 0.02, |X-\mathbb{E}X| < \mathbb{D}X.$
- 3. Dla jakiej wartości stałej b zachodzi równość $P(x_{0.05} < X < b) = 0.90$?
- 4. Wyznaczyć kwartyle długości detalu oraz obliczyć wartości gęstości dla nich.
- 5. Wyznaczyć przedział, w którym mieści się 95% produkowanych detali po złomowaniu 5% detali o największej odchyłce długości od wymiaru przeciętnego.
- 6. Co wynika z faktu, że łączna długość 180 wyprodukowanych detali będzie mniejsza od 358[cm]?
- 7. Detal spełnia normę długości, jeśli jego długość mieści się w dopuszczalnym przedziale (19,6; 20,4) [mm]. W celu sprawdzenia dokładności produkcji zmierzona zostanie długość 180 losowo wybranych detali.
 - (a) Wprowadzić zmienną losową opisującą wynik sprawdzania normy długości badanej partii detali. Podać jej rozkład i sporządzić wykresy PMF i CDF.
 - (b) Obliczyć prawd. zdarzenia, że w badanej partii detali, co najmniej 175 z nich spełni normę długości.
 - (c) Wyznaczyć wartość oczekiwaną, odchylenie standardowe oraz modę liczby detali, które spełnią normę długości i prawdopodobieństwo dla mody.

1

Korzystając z przekształceń funkcję gęstości sprowadza się to funkcji gęstości rozkładu normalnego z parametrami μ i σ .

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-x^2+40x-400}{0.08}\right) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-20)^2}{2\cdot(0.2)^2}\right)$$
$$N(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\cdot\sigma^2}\right)$$

Zatem $\mu = 20$ i $\sigma = 0.2$.

2

Dla $|X - 19.98| \ge 0.02$:

$$\begin{split} P(|X-19.98| \geqslant 0.02) &= 1 - P(|X-10.98| < 0.02) \\ &= 1 - P(-0.02 < X - 19.98 < 0.02) \\ &= 1 - P(19.96 < X < 20) \\ &= 1 - F_{N(20,0.2)}(20) + F_{N(20,0.2)}(19.96) \\ &\stackrel{R}{=} 1 - pnorm(20, 20, 0.2) + pnorm(19.96, 20, 0.2) \\ &\approx 1 - 0.5 + 0.4207403 \approx 0.9207403 \end{split}$$

Gdzie $pnorm(x,\mu,\sigma)$ to funkcja z R obliczająca wartość dystrybuanty rozkładu normalnego dla danego x i z danymi parametrami μ i σ .

Dla
$$|X - \mathbb{E}X| < \mathbb{D}X$$
 wiemy że $\mu = \mathbb{E}X$ i że $\sigma = \mathbb{D}X$. Zatem:
$$P(|X - \mathbb{E}X| < \mathbb{D}X) = P(|X - 20| < 0.2) = P(-0.2 < X - 20 < 0.2)$$
$$= P(19.8 < X < 20.2)$$
$$= F_{N(20,0.2)}(20.2) - F_{N(20,0.2)}(19.8)$$
$$\stackrel{R}{=} pnorm(20.2, 20, 0.2) - pnorm(19.8, 20, 0.2)$$
$$\approx 0.8413447 - 0.1586553 \approx 0.6826894$$

Gdzie pnorm() to ta sama funkcja co wcześniej. Zatem $P(|X-19.98| \ge 0.02) = 0.92$ a $P(|X-\mathbb{E}X| < \mathbb{D}X) = 0.68$.

3

Dowolny kwantyl rozkładu normalnego wyznacza się za pomocy standardowego rozkładu normalnego, to znaczy:

$$\begin{split} x_p &= \mu + \sigma \Phi^{-1}(p) \\ \text{Zatem, podstawiając } Z &= \frac{X-20}{0.2} \sim N(0,1) \\ P(x_{0.05} < X < b) &= P\Big(\frac{x_{0.05}-20}{0.2} < \frac{X-20}{0.2} < \frac{b-20}{0.2}\Big) \\ &= \Phi\Big(\frac{b-20}{0.2}\Big) - \Phi\Big(\frac{x_{0.05}-20}{0.2}\Big) \\ &= \Phi\Big(\frac{b-20}{0.2}\Big) - \Phi\Big(\frac{20+0.2 \cdot \Phi^{-1}(0.05)-20}{0.2}\Big) \\ &= \Phi\Big(\frac{b-20}{0.2}\Big) - 0.05 = 0.9 \\ &\Phi\Big(\frac{b-20}{0.2}\Big) = 0.95 \\ &\frac{b-20}{0.2} = \Phi^{-1}(0.95) \\ b &= 20+0.2 \cdot \Phi^{-1}(0.95) = x_{0.95} \end{split}$$

4

Kwartyle wyznaczamy za pomocą funkcji z R $qnorm(p, \mu, \sigma)$ która oblicza wartość kwartyla p dla podanych μ i σ .

$$x_{0.25} = qnorm(0.25, 20, 0.2) = 19.8651$$

 $x_{0.5} = qnorm(0.5, 20, 0.2) = 20$
 $x_{0.75} = qnorm(0.75, 20, 0.2) = 20.1349$

Wartości gęstości w tych punktach są następujące:

$$f_{N(20,0.2)}(19.8651) = dnorm(19.8651, 20, 0.2) = 1.588872$$

 $f_{N(20,0.2)}(20) = dnorm(20, 20, 0.2) = 1.994711$
 $f_{N(20,0.2)}(20.1349) = dnorm(20.1349, 20, 0.2) = 1.588872$

Gdzie $dnorm(x, \mu, \sigma)$ to funkcja Z R obliczająca wartość funkcji gęstości w danym x i danymi parametrami μ i σ .

5

Nie rozwiązane.

6

Nie rozwiązane.

7

Załóżmy ze każdy detal produkowany jest niezależnie; wtedy prawdopodobieństwo wyprodukowania k detali które mieszczą się w przedziale będzie miało rozkład dwumianowy z parametrami n=180 i p=P(19.6 < X < 20.4).

$$P(Y = k) = {180 \choose k} p^k \cdot (1-p)^{180-k}, k = 0, 1, 2 \dots$$

Jako pierwsze trzeba obliczyć p.

$$\begin{split} p &= P(19.6 < X < 20.4) \\ &= F_{N(20,0.2)}(20.4) - F_{N(20,0.2)}(19.6) \\ &\stackrel{R}{=} pnorm(20.4,20,0.2) - pnorm(19.6,20,0.2) \\ &\approx 0.9772499 - 0.02275013 \approx 0.9544997 \end{split}$$

Zatem p=0.95. Wykres gęstości i dystrybuanty zostały sporządzone w R i wyglądają następująco:

Rysunek 1: Gęstość

Rysunek 2: Dystrybuanta

Prawdopodobieństwo, że co najmniej 175 detali spełni normę jest następujące:

$$P(Y \ge 175) = 1 - P(Y < 175)$$

$$\stackrel{R}{=} 1 - pbinom(175, 180, 0.95)$$

$$\approx 1 - 0.9492507 \approx 0.05074934$$

Zatem prawdopodobieństwo wykonania, co najmniej 175 detali według normy wynosi 0.05.

Wartość oczekiwana zmiennej losowej Y wynosi:

$$\mathbb{E}Y = n \cdot p = 180 \cdot 0.95 = 171$$

Variancja zmiennej losowej Y wynosi:

$$\mathbb{D}^2(Y) = n \cdot p \cdot (1 - p) = 180 \cdot 0.95 \cdot 0.05 = 85.5$$

Odchylenie standardowe zmiennej losowej Y wynosi:

$$\mathbb{D}Y = \sqrt{85.5} \approx 9.2466$$

Aby obliczyć wartość modalną sprawdzimy warunek: $(n+1)p = 181 \cdot 0.95 = 171.95$. Jest to liczba rzeczywista, zatem wartość modalna wynosi 171.

Prawdopodobieństwo, że wyprodukujemy dokładne wartość modalna odcinków spełniających normę wynosi:

$$P(Y=171) = dbinom(171, 180, 0.85) = 0.1351751$$

Gdzie dbinom(k,n,p) to funkcja z R obliczająca wartość gęstości dla danego k i danych parametrów n i p.

Z partii produkowanych wyrobów, wśród których jest 10% extra, pobierzemy próbę o liczności n=12, w celu sprawdzenia frakcji wyrobów extra w próbie.

- a) Jaki jest rozkład liczby wyrobów extra w próbie, tj. zm. l. T_n ?
- b) Czy rozsądne jest aproksymowanie zm. l. T_n rozkładem normalnym?
- c) Obliczyć prawd. zdarzenia $T_n \ge 2$.
- d) Obliczyć wartości oczekiwane i wariancje zm. losowych T_n i P_n .

a)

Rozkład liczby wyrobów extra można przybliżyć rozkładem hipergeometrycznym z parametrami N i $K=\frac{N\cdot 10}{100}$.

$$P(X = k) \sim \frac{\binom{N}{K} \binom{N-K}{12-k}}{\binom{N}{12}}$$

b)

Jeżeli $X \sim Hypergeom(N,K,n), \; p = \frac{K}{N}$ i Njest dostatecznie dużą liczbą, wtedy:

$$P(X \leqslant k) \approx \Phi\left(\frac{k - np}{\sqrt{np(1 - p)}}\right)$$

Zatem możemy przybliżyć rozkład prawdopodobieństwa do rozkładu normalnego.

 \mathbf{c}

Korzystając z aproksymacji z podpunktu **b** obliczamy wartość $p=\frac{K}{N}=\frac{N}{10N}=0.1.$ Wtedy $P(X\geqslant 2)$ wynosi:

$$P(X \ge 2) = 1 - P(X < 2) \approx 1 - \Phi\left(\frac{2 - 12 \cdot 0.1}{\sqrt{12 \cdot 0.1(0.9)}}\right)$$
$$\approx 1 - \Phi\left(\frac{0.8}{1.03923}\right) \approx 1 - \Phi(0.769800)$$
$$\approx 1 - \Phi(0.77) \approx 1 - 0.7794 \approx 0.2206$$

Zatem prawdopodobieństwo wynosi 0.22.

d)

Korzystając z gotowych wzorów na wartość oczekiwaną i wariancję rozkładu hipergeometrycznego otrzymujemy:

$$\mathbb{E}X = n\frac{K}{N} = 12 \cdot 0.1 = 1.2$$

$$\mathbb{D}^{2}(X) = n \frac{K}{N} \cdot \frac{N - K}{N} \cdot \frac{N - n}{N - 1}$$

$$= 1.2 \cdot \frac{N \cdot 0.9}{N} \cdot \frac{N - 12}{N - 1}$$

$$= 1.08 \cdot \left(1 - \frac{11}{N - 1}\right)$$

$$= 1.08 - \frac{11.08}{N - 1}$$

Zatem wartość oczekiwana nie jest zależna od liczby N, natomiast wariancja jest od niej zależna. Aby wariancja nie była wartością ujemną zakłada się, że liczba $N \geqslant 12$, ponieważ nie możemy wziąć więcej wyrobów niż ich jest.

Przypuśćmy, że w pewnej populacji ludzi wysokość kobiety: $X \sim N(168;5)$ [cm], a mężczyzny: $Y \sim N(187;7)$ [cm]. Z populacji tej wylosowani zostaną jedna kobieta i jeden mężczyzna. Obliczyć prawd., że

- a) mężczyzna będzie wyższy od kobiety o ponad 10[cm];
- b) kobieta będzie wyższa od mężczyzny.
- c) średnia arytmetyczna ich wysokości będzie w przedziale (170; 175) [cm].
- d) niższa z wylosowanych osób będzie niższa niż 160[cm].
- e) wyższa z wylosowanych osób będzie wyższa niż 180[cm].

a)

Prawdopodobieństwo, że mężczyzna będzie wyższy od kobiety można wyrazić następująco: P(Y>X+10).

Korzystając z liniowości rozkładu normalnego tj.

$$X \pm Y \sim N(\mu_X \pm \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$$

możemy podstawić zmienną losową $Z=Y-X\sim N(187-168,\sqrt{25+49})=N(19,\sqrt{74}).$ Wtedy

$$P(Y - X > 10) = P(Z > 10) = 1 - P(Z \le 10)$$

$$\stackrel{R}{=} 1 - pnorm(10, 19, \sqrt{74})$$

$$\approx 1 - 0.1477277 \approx 0.8522723$$

Zatem prawdopodobieństwo, że mężczy
zna będzie wyższy od kobiety o 10 [cm] wynosi $0.85.\,$

b)

Prawdopodobieństwo, że kobieta będzie wyższa od mężczyzny można wyrazić, jako P(X > Y).

Korzystając z podstawienia podobnie jak w podpunkcie a:

$$H = X - Y \sim N(168 - 187, \sqrt{74}) = N(-19, \sqrt{74})$$

$$P(X > Y) = P(X - Y > 0) = 1 - P(H \le 0)$$

$$\stackrel{R}{=} 1 - pnorm(0, -19, \sqrt{74})$$

$$\approx 1 - 0.9864024 \approx 0.01359758$$

Zatem prawdopodobieństwo, że kobieta będzie wyższa od mężczyzny wynosi 0.01.

c)

Prawdopodobieństwo że średnia arytmetyczna będzie w przedziale (170;175) można wyrazić jako $P\left(170<\frac{X+Y}{2}<175\right)$. Korzystając z podstawienia jak w poprzednich podpunktach.

$$T = X + Y \sim N(168 + 187, \sqrt{74}) = N(355, \sqrt{74})$$

$$\begin{split} P\Big(170 < \frac{X+Y}{2} < 175\Big) &= P(340 < T < 350) \\ &= F_{N(355,\sqrt{74})}(350) - F_{N(355,\sqrt{74})}(340) \\ &\stackrel{R}{=} pnorm(350,355,\sqrt{74}) - pnorm(340,355,\sqrt{74}) \\ &\approx 0.28054 - 0.04060444 \approx 0.2399355 \end{split}$$

Zatem prawdopodobieństwo, że średnia arytmetyczna będzie w przedziale wynosi $0.24.\,$

d)

Nie rozwiązane.

e)

Nie rozwiązane.

Opór R pewnego typu oporników elektrycznych można opisać rozkładem normalnym $N(\mu, \sigma)$. Koszt produkcji jednego opornika wynosi k, jego cena rynkowa zaś równa jest 5k, gdy $R \in (\mu - \sigma, \mu + \sigma)$ i 2k, jeżeli $R \in (\mu - 2\sigma, \mu - \sigma)$ lub $R \in (\mu + \sigma, \mu + 2\sigma)$. Oporniki, które nie spełnią podanych kryteriów, nie mogą być sprzedawane. Oblicz dochód na jeden opornik.

Jako pierwsze trzeba obliczyć prawdopodobieństwa, że rezystancja R będzie znajdować się w danych przedziałach. Oznaczymy je, jako p1, p2 i p3.

$$p1 = P(\mu - \sigma < X < \mu + \sigma) = P\left(\frac{\mu - \sigma - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{\mu + \sigma - \mu}{\sigma}\right)$$

Wtedy $\frac{X-\mu}{\sigma} \sim N(0,1)$, zatem:

$$P\Big(-1 < \frac{X - \mu}{\sigma} < 1\Big) = \Phi(1) - \Phi(-1) = 2 \cdot \Phi(1) - 1 \approx 2 \cdot 0.8413 - 1 \approx 0.6826$$

Ponieważ

$$P(\mu-2\sigma < X < \mu+2\sigma) = p1 + P(\mu-2\sigma < X < \mu-\sigma \lor \mu+\sigma < X < \mu+2\sigma) = p1 + p2$$
 to:

$$\begin{split} p2 &= P(\mu - 2\sigma < X < \mu + 2\sigma) - p1 \\ &= P\Big(\frac{\mu - 2\sigma - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{\mu + 2\sigma - \mu}{\sigma}\Big) - p1 \\ &= \Phi(2) - \Phi(-2) - p1 = 2 \cdot \Phi(2) - 1 - p1 \\ &\approx 2 \cdot 0.97725 - 1 - 0.6826 \approx 0.2719 \end{split}$$

Skoro p1 + p2 + p3 = 1 to można łatwo obliczyć p3:

$$p3 = 1 - p1 - p2 = 1 - 0.6826 - 0.2719 \approx 0.0455$$

Można teraz sporządzić tabele rozkładu dyskretnego opisującego dochód dla jednego rezystora

x_i	4k	k	-k	
$P(X=x_i)$	0.6826	0.2719	0.0455	

Z definicji wartości oczekiwanej można obliczyć spodziewany dochód na rezystora.

$$\mathbb{E}X = \sum_{i=1}^{n} x_i \cdot P(X = x_i) = 4k \cdot 0.6826 + k \cdot 0.2719 - k \cdot 0.0455 =$$

$$k \cdot (4 \cdot 0.6826 + 0.2719 - 0.0455) \approx k \cdot 2.9576$$

Zatem możemy się spodziewać dochód 3 razy większy niż cena produkcji rezystora.

Waga netto X [tony] towarów wysyłanych w kontenerach określonych wymiarów jest normalną zm. l. o nieznanych parametrach. Wiadomo, że 65% kontenerów wykazuje wagę netto ponad 4,9 ton, a 25% kontenerów wagę netto mniejszą niż 4,2 tony.

- a) Wyznacz nieznane parametry rozkładu wagi netto towarów wysyłanych w tych kontenerach.
- b) Oblicz procent kontenerów, które mają wagę w przedziale od 4 do 5 ton?

Wiedząc, że 25% kontenerów ma wagę mniejszą niż 4.2 tony, wnioskujemy, że kwantyl $x_{0.25}=4.2$.

Natomiast, wiedząc, że 65% kontenerów ma wagę powyżej 4.9 ton, wnioskujemy, że kwantyl $x_{0.35}=4.9$.

Założmy, że $X \sim N(\mu, \sigma)$, wtedy:

$$\begin{cases} x_{0.25} = \mu + \sigma \cdot \Phi^{-1}(0.25) \\ x_{0.35} = \mu + \sigma \cdot \Phi^{-1}(0.35) \end{cases}$$

$$\begin{cases} 4.2 = \mu + \sigma \cdot \Phi^{-1}(0.25) \\ 4.9 = \mu + \sigma \cdot \Phi^{-1}(0.35) \end{cases}$$

$$\begin{cases} \mu = 4.2 - \sigma \cdot \Phi^{-1}(0.25) \\ 4.9 = 4.2 - \sigma \cdot \Phi^{-1}(0.25) + \sigma \cdot \Phi^{-1}(0.35) \end{cases}$$

$$\begin{cases} \mu = 4.2 - \sigma \cdot \Phi^{-1}(0.25) \\ 4.9 - 4.2 = \sigma(-\Phi^{-1}(0.25) + \Phi^{-1}(0.35)) \end{cases}$$

$$\Phi^{-1}(0.25) = qnorm(0.25, 0, 1) = -0.6744898$$

$$\Phi^{-1}(0.35) = qnorm(0.35, 0, 1) = -0.3853205$$

$$\begin{cases} \mu = 4.2 - \sigma \cdot \Phi^{-1}(0.25) \\ \sigma = \frac{0.7}{-\Phi^{-1}(0.25) + \Phi^{-1}(0.35)} \approx \frac{0.7}{-0.3853205 + 0.6744898} \end{cases}$$

$$\begin{cases} \mu = 4.2 + 2.420727 \cdot 0.6744898 \\ \sigma \approx 2.420727 \end{cases}$$

$$\begin{cases} \mu = 5.832265316 \\ \sigma \approx 2.420727 \end{cases}$$

Zatem $X \sim N(5.38, 2.42)$.

Aby obliczyć procent kontenerów, które znajdują się pomiędzy 4 a 5 ton postępujemy podobnie. Poszukamy kwantyle odpowiadające za wartość 4 i 5:

$$x_a = 5, x_b = 4$$

$$x_a = 5.83 + 2.24 \cdot \Phi^{-1}(a) \Rightarrow a = \Phi\left(\frac{5 - 5.84}{2.24}\right) = \Phi(-0.3429) = 1 - \Phi(0.3429) \approx 1 - 0.6331 \approx 0.3669$$

$$x_b = 5.83 + 2.24 \cdot \Phi^{-1}(b) \Rightarrow b = \Phi\left(\frac{4 - 5.84}{2.24}\right) = \Phi(-0.75619) = 1 - \Phi(0.75619) \approx 1 - 0.7764 \approx 0.2236$$

Aby znaleźć procent kontenerów pomiędzy 4 i 5 ton odejmujemy a od b

$$a - b = 0.3669 - 0.2236 = 0.1433$$

Zatem pomiędzy 4 i 5 ton znajduję się 14% kontenerów.

Tablice

Tablica 5. Dystrybuanta rozkładu normalnego N(0, 1)

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-\frac{1}{2}u^2) du$$

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	,5398	,5438	,5478	,5517	,5557	,5596	,5636	,5675	,5714	,5753
0,2	,5793	,5832	,5861	,5910	,5948	,5987	,6026	,6064	,6103	,6141
0,3	,6179	,6217	,6255	,6293	,6331	,6368	,6406	,6443	,6480	,6517
0,4	,6554	,6591	,6628	,6664	,6700	,6736	,6772	,6808	,6844	,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	,7257	,7291	,7324	,7357	,7389	,7422	,7454	,7486	,7517	,7549
0,7	,7580	,7611	,7642	,7673	,7703	,7734	,7764	,7794	,7823	,7852
0,8	,7881	,7910	,7939	,7967	,7995	,8023	,8051	,8078	,8106	,8133
0,9	,8159	,8186	,8212	,8238	,8264	,8289	,8315	,8340	,8365	,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	,8643	,8665	,8686	,8708	,8729	,8749	,8770	,8790	,8810	,8830
1,2	,8849	,8869	,8888	,8907	,8925	,8944	,8962	,8980	,8997	,90147
1,3	,90320	,90490	,90658	,90824	,90988	,91149	,91309	,91466	,91621	,91774
1,4	,91924	,92073	,92220	,92354	,92507	,92647	,92785	,92922	,93056	,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	,94520	,94630	,94738	,94845	,94950	,95053	,95154	,95254	,95352	,95449
1,7	,95543	,95637	,95728	,95818	,95907	,95994	,96080	,96164	,96246	,96327
1,8	,96407	,96485	,96562	,96638	,96712	,96784	,96856	,96926	,96995	,97062
1,9	,97128	,9 7193	,97257	,97320	,97381	,97441	,97500	,97558	,97615	,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	,98214	,98257	,98300	,98341	,98382	,98422	,98461	,98500	,98537	,98574
2,2	,98610	,98645	,98679	,98713	,98745	,98778	,98809	,98840	,98870	,98899
2,3	,98928	,98956	,98983	,9 ² 0097	,9 ² 0358	,9 ² 0613	,9 ² 0863	,9 ² 1106	,9 ² 1344	,9 ² 1576
2,4	,9 ² 1802	,9 ² 2024	,9 ² 2240	,9 ² 2451	,9 ² 2656	,9 ² 2857	,9 ² 3053	,9 ² 3244	,9 ² 3431	,9 ² 3613
2,5	0,9 ² 3790	0,9 ² 3963	0,9 ² 4132	0,9 ² 4297	0,9 ² 4457			0,9 ² 4915	0,9 ² 5060	0,9 ² 5201
2,6	,9 ² 5339	,9 ² 5473	,9 ² 5604	,9 ² 5731	,9 ² 5844	,9 ² 5975	,9 ² 6093	,9 ² 6207	,9 ² 6319	,9 ² 6427
2,7	,9 ² 6533	,9 ² 6636	,9 ² 6736	,9 ² 6833	,9 ² 6928	,9 ² 7020	,9 ² 7110	,9 ² 7197	,9 ² 7282	,9 ² 7365
2,8	,9 ² 7445	,9 ² 7523	,9 ² 7599	,9 ² 7673	,9 ² 7744	,9 ² 7814	,9 ² 7882	,9 ² 7948	,9 ² 8012	,9 ² 8074
2,9	,9 ² 8134	,9 ² 8193	,9 ² 8250	,9 ² 8305	,9 ² 8359	,9 ² 8411	,9 ² 8462	,9 ² 8511	,9 ² 8559	,9 ² 8605
3,0	0,9 ² 8650	0,9 ² 8694	0,9 ² 8736	0,9 ² 8777	0,9 ² 8817	0,9 ² 8856	0,9 ² 8893	0,9 ² 8930	0,9 ² 8965	0,9 ² 8999
3,1	,9³0324	,9³0646	,9³0957	,9 ³ 1260	,9 ³ 1553	,9 ³ 1836	,9 ³ 2112	,9 ³ 2378	,9 ³ 2636	,9 ³ 2886
3,2	,9 ³ 3129	,9 ³ 3363	,9³3590	,9 ³ 3810	,9³4002	,9 ³ 4230	,934429	,9 ³ 4623	,9 ³ 4810	,9 ³ 4991
3,3	,9 ³ 5166	,9 ³ 5335	,9 ³ 5499	,9 ³ 5658	,9 ³ 5811	,9 ³ 5959	,9 ³ 6103	,9 ³ 6242	,9 ³ 6376	,9 ³ 6505
3,4	,9 ³ 6631	,9 ³ 6752	,9 ³ 6869	,936982	,9 ³ 7091	,9 ³ 7197	,937299	,9 ³ 7398	,9 ³ 7493	,9 ³ 7585