Algèbre linéaire Chapitre 5

Definition 0.1

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ une matrice de taille $n \times n$ à coefficients réels. Pour $1 \leq i, j \leq n$, on définit \hat{A}_{ij} comme étant la matrice de taille $(n-1) \times (n-1)$ obtenue en supprimant dans A la i-ème ligne et la j-ème colonne. Le déterminant de A est le nombre réel défini récursivement par

$$\det A = a_{11} \det \hat{A}_{11} - a_{12} \det \hat{A}_{12} + \dots + (-1)^{n+1} a_{1n} \det \hat{A}_{1n},$$

où det(a) = a pour tout $(a) \in M_{1 \times 1}(\mathbb{R})$.

Lemma 0.2 (Règle de Sarrus)

Soit $A = (a_{ij}) \in M_{3\times 3}(\mathbb{R})$. Alors

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Proposition 0.3

Soient $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ et $1 \leq p, r \leq n$. Alors

$$\det A = a_{p1}(-1)^{p+1} \det \hat{A}_{p1} + a_{p2}(-1)^{p+2} \det \hat{A}_{p2} + \dots + a_{pn}(-1)^{p+n} \det \hat{A}_{pn}$$
$$= a_{1r}(-1)^{r+1} \det \hat{A}_{1r} + a_{2r}(-1)^{r+2} \det \hat{A}_{2r} + \dots + a_{nr}(-1)^{r+n} \det \hat{A}_{nr}.$$

Proposition 0.4

Soient $A \in M_{n \times n}(\mathbb{R})$, $\lambda \in \mathbb{R}$ et $1 \le r, s \le n$. Alors les affirmations suivantes sont vérifiées.

- 1. $\det L_{rs}(\lambda)A = \det A$.
- 2. $\det T_{rs}A = -\det A$.
- 3. $\det D_r(\lambda)A = \lambda \det A$.
- 4. $\det AL_{rs}(\lambda) = \det A$.
- 5. $\det AT_{rs} = -\det A$.
- 6. $\det AD_r(\lambda) = \lambda \det A$.

Proposition 0.5

Si $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ est une matrice triangulaire (inférieure ou supérieure), alors son déterminant est égal au produit de ses coefficients diagonaux, i.e.

$$\det A = a_{11}a_{22}\cdots a_{nn}.$$

Proposition 0.6

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$. Alors $\det A^T = \det A$.

Proposition 0.7

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$. Alors A est inversible si et seulement si $\det A \neq 0$.

Theorem 0.8

Soient $A, B \in M_{n \times n}(\mathbb{R})$. Alors $\det(AB) = \det A \det B$.

Corollary 0.9

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice inversible. Alors $\det A^{-1} = \frac{1}{\det A}$.

Corollary 0.10

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices semblables. Alors det $A = \det B$.

Theorem 0.11

Soit $A \in M_{2\times 2}(\mathbb{R})$ une matrice de taille 2×2 à coefficients réels. Alors l'aire du parallélogramme défini par les colonnes de A est égale à $|\det A|$.

Theorem 0.12

Soit $A \in M_{3\times 3}(\mathbb{R})$ une matrice de taille 3×3 à coefficients réels. Alors le volume du parallélépipède défini par les colonnes de A est égale à $|\det A|$.

Theorem 0.13 (Formule de Cramer)

Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice inversible de taille $n \times n$, $X = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^T$, où x_1, \dots, x_n sont des inconnues et $b \in M_{n \times 1}(\mathbb{R})$. Alors la solution unique du système linéaire AX = b est donnée par

$$x_i = \frac{\det A_i(b)}{\det A},$$

où pour tout $1 \le i \le n$, la matrice $A_i(b)$ est obtenue en remplaçant la i-ème colonne de A par b.

Definition 0.14

Soit $A=(a_{ij})\in M_{n\times n}(\mathbb{R})$ une matrice de taille $n\times n$ à coefficients réels. La matrice des cofacteurs de A est la matrice cof $A\in M_{n\times n}(\mathbb{R})$ de taille $n\times n$ définie par

$$(\operatorname{cof} A)_{ij} = (-1)^{i+j} \hat{A}_{ij},$$

ceci pour tous $1 \le i, j \le n$.

Theorem 0.15

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ une matrice inversible. Alors $A^{-1} = \frac{1}{\det A}(\operatorname{cof} A)^T$.