TEMA 2: FORMAS BILINEALES Y FORMAS CUADRÁTICAS

Índice

1.	Aplicaciones multilineales y tensores	2
2.	Formas bilineales. Ejemplos. Expresión matricial. Congruencia de matrices 2.1. Relación entre las expresiones matriciales en dos bases diferentes	3
3.	Clasificación de métricas y formas cuadráticas reales 3.1. Primera clasificación de métricas	6 8
4.	Bases ortogonales y ortonormales. Ley de inercia de Sylvester. Criterio de Sylvester	12
5.	Isometrías entre espacios vectoriales métricos	16

1. Aplicaciones multilineales y tensores

Definición 1.1 (Aplicación multilineal). Sean $V_1, V_2, \dots V_r, W$ espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Una aplicación multilineal (r veces lineal) de $V_1 \times V_2 \times \dots \times V_r$ en W es una aplicación $T: V_1 \times V_2 \times \dots \times V_r \longrightarrow W$ que verifica

$$T(v_1, v_2, \dots, v_{i-1}, \lambda a + \mu b, v_{i+1}, \dots, v_r) = \lambda T(v_1, v_2, \dots, v_{i-1}, a, v_{i+1}, \dots, v_r) + \mu T(v_1, v_2, \dots, v_{i-1}, b, v_{i+1}, \dots, v_r)$$

$$\forall \lambda, \mu \in \mathbb{K}, \ \forall a, b \in V_i, \ \forall i \in \{1, \dots, r\}$$

Observación. Multilineal y lineal no guardan relación, salvo en el caso en el que r=1.

Definición 1.2 (Tensor). Sea $V(\mathbb{K})$ un espacio vectorial. Un tensor r veces covariante y s veces contravariante (o de tipo (r, s)) es una aplicación multilineal de

$$\underbrace{V\times V\times \cdots \times V}_r \times \underbrace{V^*\times V^*\times \cdots \times V^*}_s \text{ en } \mathbb{K}$$

 $T_{r,s}(V) = \text{familia de tensores de tipo } (r,s).$

 $T_{r,0}(V)$ = tensores covariantes de tipo (r,0) o r-convariantes.

 $T_{0,s}(V)$ = tensores contravariantes de tipo (0,s) o s-contravariantes.

Ejemplos.

1.
$$T_{1,0}(V) = V^*$$
, $T_{0,1}(V) = V^{**} \cong V$, $T_{0,0}(V) = \mathbb{K}$

- 2. Producto escalar usual en \mathbb{R}^n
- 3. Producto vectorial en \mathbb{R}^3
- 4. Producto mixto en \mathbb{R}^3
- 5. Determinante
- 6. $T_{1,1}(V) \cong \operatorname{End}(V)$

Propiedades.

- 1. $T_{r,s}(V)$ es un espacio vectorial sobre \mathbb{K}
- 2. $\dim(T_{r,s}(V)) = \dim(V)^{r+s}$. En particular,

formas bilineales
$$T_{2,0}(V) \cong T_{0,2}(V) \cong T_{1,1}(V)$$

Definición 1.3 (Producto tensorial). Dados $T \in T_{r,s}(V)$ y $T' \in \mathcal{T}_{r',s'}(V)$ se define su producto tensorial

$$T \otimes T' \in \mathcal{T}_{r+r',s+s'}(V)$$

por la fórmula

$$T \otimes T'(v_1, \dots, v_r, u_1, \dots, u_{r'}, \varphi_1, \dots, \varphi_2, \psi_1, \dots, \psi_{s'}) =$$

$$T(v_1, \dots, v_r, \phi_1, \dots, \phi_s) \cdot T(u_1, \dots, u_{r'}, \psi_1, \dots, \psi_{s'})$$

 $\forall v_1, \dots, v_r, u_1, \dots, u_{r'} \in V, \ \forall \phi_1, \dots, \phi_r, \psi_1, \dots, \psi_{s'} \in V^*$

Ejemplos.

1.
$$T_{1,0}(V) = V^*, \phi, \psi \in V^*$$
. Entonces $\phi \otimes \psi \in \mathcal{T}_{2,0}(V)$
 $\phi \otimes \psi(u,v) = \phi(u)\psi(v), \quad \forall u,v \in V$

2.
$$T_{0,1}(V) = V^{**} \cong V, u, v \in V$$
. Entonces $u \otimes v \in \mathcal{T}_{0,2}(V)$
 $u \otimes v(\phi, \psi) = \phi(u)\psi(v), \quad \forall \phi, \psi \in V^*$

3.
$$\phi \in T_{1,0}(V), u \in T_{0,1}(V)$$
. Entonces $\phi \otimes u, u \otimes \phi \in \mathcal{T}_{1,1}(V)$
 $\phi \otimes u(v,\psi) = \phi(v)\psi(u) = \psi(u)\phi(v) = u \otimes \phi(v,\phi), \quad \forall v \in V, \quad \forall \psi \in V^*$

Observación. En general, $T \otimes T' \neq T' \otimes T$

2. Formas bilineales. Ejemplos. Expresión matricial. Congruencia de matrices

A partir de ahora, consideremos $\mathbb{K} = \mathbb{R}$.

Definición 2.1 (Forma bilineal). Una forma bilineal sobre un espacio vectorial V es una aplicación $b: V \times V \longrightarrow \mathbb{R}$ que verifica

I)
$$b(\lambda u + \mu v, w) = \lambda b(u, w) + \mu b(v, w) \quad \forall \lambda, \mu \in \mathbb{R}, \ \forall u, v, w \in V$$

II)
$$b(u, \lambda v + \mu w) = \lambda b(u, v) + \mu b(u, w) \quad \forall \lambda, \mu \in \mathbb{R}, \ \forall u, v, w \in V$$

Denotemos por $\mathcal{B}(V) = \{\text{formas bilineales sobre } V\} = \{b : V \times V \longrightarrow \mathbb{R} \mid b \text{ es lineal}\}$

Ejemplos.

1.
$$\mathbb{R}^n, A \in \mathcal{M}_n(\mathbb{R}), \quad b_A : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$b_A(u,v) = uAv$$

2.
$$\mathcal{M}_n(\mathbb{R}), M \in \mathcal{M}_n(\mathbb{R}), \quad b_M : \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$\bullet$$
 $b_M(A,B) = \operatorname{tr}(AMB)$

$$b'_M(A,B) = \operatorname{tr}(AMB^t)$$

$$b_M''(A,B) = \operatorname{tr}(A^t M B)$$

$$b_M'''(A,B) = \operatorname{tr}(A^t M B^t)$$

3.
$$\mathbb{R}_n[x], \quad b: \mathbb{R}_n[x] \times \mathbb{R}_n[x] \longrightarrow \mathbb{R}$$

•
$$b_1(p(x), q(x)) = \int_{-1}^{1} p(x)q(x)dx$$

•
$$b_2(p(x), q(x)) = \int_{-1}^{1} p'(x)q''(x)dx$$

•
$$b_3(p(x), q(x)) = \int_{-1}^1 p(x)q(x)\sin(x)dx$$

•
$$b_4(p(x), q(x)) = p(1)q(3)$$

•
$$b_5(p(x), q(x)) = p'(3)q''(4)$$

Sean V un espacio vectorial de dimensión $n, b \in \mathcal{B}(V), B = \{v_1, \dots, v_n\}$ base de $V, u, w \in V$ con $u = (a_1, a_2, \dots, a_n)_B$ y $w = (b_1, b_2, \dots, b_n)_B$. Entonces $u = \sum_{i=1}^n a_i v_i, w = \sum_{i=1}^n b_i v_i$.

$$b(u, w) = b\left(\sum_{i=1}^{n} a_i v_i, \sum_{i=1}^{n} b_i v_i\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} a_i b_j b(v_i, v_j)$$

Definición 2.2 (Expresión matricial de una forma bilineal). Dados V un espacio vectorial de dimensión n, b una forma bilineal sobre V y $B = \{v_1, \ldots, v_n\}$ una base de V se define la matriz de b en la base B, $\mathcal{M}(b, B)$, como la matriz cuadrada de orden n dada por

$$\mathcal{M}(b,B) = (b(v_i,v_j))_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$$

Observación.

1.
$$b(u, w) = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \mathcal{M}(b, B) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \quad \forall u, w \in V$$

2.
$$b' \in \mathcal{B}(V)$$
, $b = b' \iff \mathcal{M}(b, B) = \mathcal{M}(b', B)$

2.1. Relación entre las expresiones matriciales en dos bases diferentes

Sea V un espacio vectorial de dimensión n, y sean B y B' dos bases de V. Sean $u,v\in V.$ Entonces:

$$u = (a_1, a_2, \dots, a_n)_B = (a'_1, a'_2, \dots, a'_n)_{B'}$$

 $v = (b_1, b_2, \dots, b_n)_B = (b'_1, b'_2, \dots, b'_n)_{B'}$

Sea $P = M(\mathrm{Id}_V, B', B)$ la matriz cambio de base de B' a B. Entonces

$$P\begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad P\begin{pmatrix} b_1' \\ \vdots \\ b_n' \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Tenemos entonces

$$b(u,v) = (a_1, \dots, a_n) \cdot M(b,B) \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = (a'_1, \dots, a'_n) \cdot P^t \cdot M(b,B) \cdot P \cdot \begin{pmatrix} b'_1 \\ \vdots \\ b'_n \end{pmatrix}$$
$$= (a'_1, \dots, a'_n) \cdot M(b,B') \cdot \begin{pmatrix} b'_1 \\ \vdots \\ b'_n \end{pmatrix}$$
$$\implies \boxed{M(b,B') = P^t \cdot M(b,B) \cdot P}$$

Definición 2.3 (Congruencia de matrices). Dadas $M, N \in \mathcal{M}_n(\mathbb{R})$ se dice que M y N son congruentes si existe una matriz regular P tal que $M = P^t \cdot N \cdot P$.

Observación.

- 1. "Ser congruente" es una relación de equivalencia en $\mathcal{M}_n(\mathbb{R})$
- 2. Si $b \in \mathcal{B}(V)$ y B y B' son bases de V, entonces M(b,B) y M(b,B') son congruentes. Recíprocamente, si $b \in \mathcal{B}(V)$, y B es una base de V, entonces $N \in \mathcal{M}_n(\mathbb{R})$ es una matriz congruente con M(b,B) si existe una única base B' de V tal que M(b,B') = N.
- 3. Si $M, N \in \mathcal{M}_n(\mathbb{R})$ son congruentes, entonces:
 - a) M es simétrica $\iff N$ es simétrica.
 - b) M es antisimétrica $\iff N$ es antisimétrica.
- 4. "Ser congruente" y "ser semejante" no guardan relación alguna.
- 5. Si $M, N \in \mathcal{M}_n(\mathbb{R})$ son congruentes, entonces:
 - a) rg(M) = rg(N)
 - b) M es regular $\iff N$ es regular.
 - c) det(M) y det(N) tienen el mismo signo.

Proposición 2.1. Sea V un espacio vectorial real de dimensión n. El conjunto $\mathcal{B}(V)$ tiene de forma natural una estructura de espacio vectorial real de dimensión n^2 . Además, fijada una base B de V, la aplicación

$$F_B: \mathcal{B}(V) \longrightarrow \mathcal{M}_n(\mathbb{R})$$

 $b \longmapsto M(b, B)$

es un isomorfismo de espacios vectoriales.

Definición 2.4 (Forma bilineal traspuesta). Dada $b \in \mathcal{B}(V)$, se define la forma bilineal traspuesta de la forma bilineal b, b^t , como la aplicación $b^t : V \times V \longrightarrow \mathbb{R}$ dada por

$$b^t(u,v) = b(v,u)$$

Proposición 2.2. Se define la aplicación trasposición

$$T: \mathcal{B}(V) \longrightarrow \mathcal{B}(V)$$
$$b \longmapsto T(b) = b^t$$

Se tiene entonces que

- a) T es lineal.
- b) $T^2 = \operatorname{Id}_{\mathcal{B}(V)} \implies T$ es un automorfismo. $T^{-1} = T$ y T es una simetría vectorial.

Definición 2.5 (Forma bilineal simétrica y antisimétrica). Sean V un espacio vectorial y $b \in \mathcal{B}(V)$. Se dice que b es una forma bilineal simétrica si $b = b^t$, es decir, si

$$b(u, v) = b(v, u), \quad \forall u, v \in V$$

Denotemos por

$$\mathcal{B}_S(V) = \{b \in \mathcal{B}(V) \mid b \text{ es simétrica}\}\$$

Se dice que b es una forma bilineal antisimétrica si $b = -b^t$, es decir, si

$$b(u, v) = -b(v, u) \iff b(u, u) = 0, \quad \forall u, v \in V$$

Denotemos por

$$\mathcal{B}_A(V) = \{ b \in \mathcal{B}(V) \mid b \text{ es antisimétrica} \}$$

Proposición 2.3. Sea V un espacio vectorial de dimensión n. Se verifican:

- I) $\mathcal{B}_S(V)$ y $\mathcal{B}_A(V)$ son subespacios vectoriales de $\mathcal{B}(V)$
- II) $\mathcal{B}(V) = \mathcal{B}_S(V) \oplus \mathcal{B}_A(V)$. Además, si $b \in \mathcal{B}(V)$,

$$b = \underbrace{\frac{1}{2}(b+b^t)}_{\in \mathcal{B}_S(V)} + \underbrace{\frac{1}{2}(b-b^t)}_{\in \mathcal{B}_A(V)}$$

- III) Son equivalentes:
 - a) $b \in \mathcal{B}_S(V)$
 - b) $\forall B \ base \ de \ V, \ M(b,B) \in \mathcal{S}_n(\mathbb{R})$
 - c) $\exists B \text{ base de } V \text{ tal que } M(b,B) \in \mathcal{S}_n(\mathbb{R})$
- IV) Son equivalentes:
 - a) $b \in \mathcal{B}_A(V)$
 - b) $\forall B \ base \ de \ V, \ M(b,B) \in \mathcal{A}_n(\mathbb{R})$
 - c) $\exists B \text{ base de } V \text{ tal que } M(b,B) \in \mathcal{A}_n(\mathbb{R})$
- V) Si $B = \{v_1, \ldots, v_n\}$ es una base de V y $B^* = \{\phi_1, \ldots, \phi_n\}$ es la base dual de B, los conjuntos de formas bilineales

$$B_1 = \{ \phi_i \otimes \phi_j + \phi_j \otimes \phi_i \mid 1 \le i, j \le n \} \cup \{ \phi_i \otimes \phi_i \mid 1 \le i \le n \}$$

$$B_2 = \{ \phi_i \otimes \phi_j - \phi_j \otimes \phi_i \mid 1 \le i < j \le n \}$$

son bases de $\mathcal{B}_S(V)$ y $\mathcal{B}_A(V)$, respectivamente. Por tanto,

$$\dim(\mathcal{B}_S(V)) = \frac{n(n+1)}{2}$$

$$\dim(\mathcal{B}_A(V)) = \frac{n(n-1)}{2}$$

Además, si $F_B: \mathcal{B}(V) \longrightarrow \mathcal{M}_n(\mathbb{R})$ es el isomorfismo de la proposición 2.1, entonces

$$F_B(\mathcal{B}_S(V)) = \mathcal{S}_n(\mathbb{R})$$

$$F_B(\mathcal{B}_A(V)) = \mathcal{A}_n(\mathbb{R})$$

Ejemplos.

1. $\mathbb{R}^n, A \in \mathcal{M}_n(\mathbb{R}), \quad b_A, \text{ que cumple } \lambda b_A + \mu b_{A'} = b_{\lambda A + \mu A'} \text{ y } M(b_A, B_u) = A$

$$b_A^t = b_{A^t} \implies \begin{cases} b_A \in \mathcal{B}_S(\mathbb{R}^n) \iff A \in \mathcal{S}_n(\mathbb{R}) \\ b_A \in \mathcal{B}_A(\mathbb{R}^n) \iff A \in \mathcal{A}_n(\mathbb{R}) \end{cases}$$

$$b_A = \underbrace{b_{\frac{A+A^t}{2}}}_{\in \mathcal{B}_S(\mathbb{R}^n)} + \underbrace{b_{\frac{A-A^t}{2}}}_{\in \mathcal{B}_A(\mathbb{R}^n)}$$

- 2. Consideramos las formas lineales b_M, b_M', b_M'', b_M''' , en el espacio $\mathcal{M}_2(\mathbb{R})$, donde $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - $\bullet b_M = b'_M \Longleftrightarrow M = 0$
 - $\bullet b_M = b_M'' \iff M = 0$
 - $\bullet b_M = b_M''' \iff b = c = 0, a = d \iff M = aI_2$
 - $\bullet \ b_M' = b_M'' \Longleftrightarrow b = c = 0, a = d \Longleftrightarrow M = aI_2$
 - $\quad \blacksquare \ b_M' = b_M''' \Longleftrightarrow M = 0$
 - $b_M'' = b_M''' \iff M = 0$
 - $\bullet b_M, b_M''' \in \mathcal{B}_S(\mathcal{M}_2(\mathbb{R})) \Longleftrightarrow M = aI_2$
 - $b_M, b_M''' \in \mathcal{B}_A(\mathcal{M}_2(\mathbb{R})) \iff M = 0$
 - $b'_M, b''_M \in \mathcal{B}_S(\mathcal{M}_2(\mathbb{R})) \iff M \in \mathcal{S}_2(\mathbb{R})$
 - $b'_M, b''_M \in \mathcal{B}_A(\mathcal{M}_2(\mathbb{R})) \Longleftrightarrow M \in \mathcal{A}_2(\mathbb{R})$

3. Clasificación de métricas y formas cuadráticas reales

Definición 3.1 (Métrica). Sea V un espacio vectorial real. Una métrica g sobre V es una forma bilineal y simétrica definida sobre V. Un espacio vectorial métrico es un par (V, g) formado por un espacio vectorial real y una métrica g sobre V.

A partir de ahora, EVM significa espacio vectorial métrico.

Definición 3.2. Sea (V,g) un EVM. Se define la forma cuadrática asociada a g, ω_g , como la aplicación $\omega_g: V \longrightarrow \mathbb{R}$ dada por:

$$\omega_g(v) = g(v, v), \forall v \in V$$

Propiedades.

1.
$$\omega_q(\lambda v) = \lambda^2 \omega_q(v), \forall \lambda \in \mathbb{R}, \forall v \in V$$

2.
$$g(u,v) = \frac{1}{2} (\omega_g(u+v) - \omega_g(u) - \omega_g(v)) \frac{1}{4} (\omega_g(u+v) - \omega(u-v))$$

Definición 3.3 (Forma cuadrática). Sea V un espacio vectorial real. Una forma cuadrática sobre V es una aplicación $\omega:V\longrightarrow\mathbb{R}$ que verifica:

- a) $\omega(\lambda v) = \lambda^2 \omega(v), \forall \lambda \in \mathbb{R}, \forall v \in V$
- b) La aplicación $g_{\omega}: V \times V \longrightarrow \mathbb{R}$, dada por

$$g_{\omega}(u,v) = \frac{1}{2} \left(\omega(u+v) - \omega(u) - \omega(v) \right)$$

es una métrica sobre ${\cal V}$

Denotaremos $\mathcal{F}(V)$ a la familia de formas cuadráticas definidas sobre V, esto es,

$$\mathcal{F}(V) = \{\omega : V \longrightarrow \mathbb{R} \mid \omega \text{ es una forma cuadrática}\}\$$

Proposición 3.1. Sea V un espacio vectorial real de dimensión n. El conjunto $\mathcal{F}(V)$ tiene, de forma natural, estructura de espacio vectorial real de dimensión $\frac{n(n+1)}{2}$. Además, las aplicaciones

$$\Omega_1 : \mathcal{B}_S(V) \longrightarrow \mathcal{F}(V)$$

$$g \longmapsto \Omega_1(g) = \omega_g$$

$$\Omega_2 : \mathcal{F}(V) \longrightarrow \mathcal{B}_S(V)$$

$$\omega \longmapsto \Omega_2(\omega) = g_{\omega}$$

son aplicaciones lineales y verifican

$$\Omega_1 \circ \Omega_2 = \mathrm{Id}_{\mathcal{F}(V)}, \quad \Omega_2 \circ \Omega_1 = \mathrm{Id}_{\mathcal{B}_S(V)}$$

En consecuencia, Ω_1 y Ω_2 son isomorfismos y $\Omega_1^{-1} = \Omega_2$

Definición 3.4 (Perpendicularidad). Sea (V, g) un EVM. Dos vectores, $u, v \in V$ se dice que son perpendiculares u ortogonales $(u \perp v)$ si g(u, v) = 0.

Si $u \in V$ y $U \subseteq V$ es un subespacio vectorial de V, se dice que u y U son perpendiculares u ortogonales $(u \perp U)$ si $g(u, v) = 0, \forall v \in U$.

Si U y W son subespacios vectoriales de V, se dice que U y W son perpendiculares u ortogonales $(U \perp W)$ si $g(u, w) = 0, \forall u \in U, \forall w \in W$.

Si U_1, U_2, \dots, U_k son k subespacios vectoriales de V, se dice que V es suma ortogonal de U_1, U_2, \dots, U_k

$$V = U_1 \bigcirc U_2 \bigcirc \cdots \bigcirc U_k$$

si
$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$$
 y $U_i \perp U_j \forall i, j \in \{1, \dots, k\}, i \neq j$

Observación.

- 1. $u \perp v \iff \omega_a(u+v) = \omega_a(u) + \omega_a(v) \longrightarrow \omega_a(u+v) = \omega_a(u-v)$
- 2. Si $U = \mathcal{L}(\{u_1, \dots, u_k\})$ entonces $v \perp U \iff v \perp u_i, \forall i \in \{1, 2, \dots, k\}$
- 3. Si $U = \mathcal{L}(\{u_1, \dots, u_k\})$ y $W = \mathcal{L}(\{w_1, \dots, w_s\})$, entonces

$$U \perp W \iff u_i \perp w_j \forall i \in \{1, \dots, k\}, \forall j \in \{1, \dots, s\}$$

Definición 3.5 (Tipos de métricas). Sea V un espacio vectorial real y g una métrica sobre V, $g \neq 0$. Se dice que:

- 1. g es degenerada si $\exists u \in V, u \neq 0$ tal que $g(u, v) = 0 \ \forall v \in V \ (\iff u \perp v \forall v \in V)$.
- 2. g es no degenerada si g no es degenerada, es decir, si $\forall u \in V, u \neq 0$, se cumple que $g(u,v) \neq 0$.
- 3. g es definida positiva o euclídea si $\forall u \in V, u \neq 0$ se cumple que $\omega_g(u) = g(u, u) > 0$
- 4. g es definida negativa si $\forall u \in V, u \neq 0$ se cumple que $\omega_g(u) = g(u, u) < 0$
- 5. g es semidefinida positiva si $\forall u \in V$ se cumple que $\omega_g(u) = g(u, u) \ge 0$ y $\exists u_0 \in V, u_0 \ne 0$ tal que $\omega_g(u_0) = g(u_0, u_0) = 0$.
- 6. g es semidefinida negativa si $\forall u \in V$ se cumple que $\omega_g(u) = g(u,u) \leq 0$ y $\exists u_0 \in V, u_0 \neq 0$ tal que $\omega_g(u_0) = g(u_0,u_0) = 0$
- 7. g es indefinida si $\exists u, v \in V$ tales que $\omega_g(u) = g(u, u) > 0$ y $\omega_g(v) = g(v, v) < 0$

Se dice que un EVM (V, g) es:

- 1. degenerado si g es degenerada
- 2. no degenerado si g es no degenerada
- 3. definido positivo o euclídeo si g es euclídea

- 4. definido negativo si g es definido negativo
- 5. semidefinido positivo si g es semidefinido positivo
- 6. semidefinido negativo si g es semidefinido negativo
- 7. indefinido si g es indefinida.

Observación.

- 1. Si g es euclídea, g es un producto escalar sobre V.
- 2. g es definida positiva \iff -g es definida negativa g es semidefinida positiva $\iff -g$ es semidefinida negativa
- 3. Si g es definida positiva o definida negativa $\implies g$ es no degenerada.
- 4. Si g es semidefinida positiva o semidefinida negativa $\implies g$ es degenerada.

Demostración: g semidefinida positiva $\implies \forall u \in V, g(u,u) \geq 0$ y $\exists u_0 \in V, u_0 \neq 0$ tal que $g(u_0, u_0) = 0$

Consideremos la función $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por

$$f(x) = \omega_g(xu_0 + v) = g(xu_0 + v, xu_0 + v)$$

donde $u_0 \in V, u_0 \neq 0, \omega_q(u_0) = 0$ y $v \in V$.

g semidefinida positiva $\implies f(x) \geq 0, \forall x \in \mathbb{R}$. Como g es bilineal, tenemos que

$$f(x) = x^2 \omega_g(u_0) + 2xg(u_0, v) + \omega_g(v) = 2x\underbrace{g(u_0, v)}_{=\alpha} + \underbrace{\omega_g(v)}_{=\beta} = 2\alpha x + \beta$$

Supongamos que $\alpha \neq 0$, entonces

$$f\left(-\frac{\beta}{2\alpha} - \alpha\right) = 2\alpha\left(-\frac{\beta}{2\alpha} - \alpha\right) + \beta = -\beta - 2\alpha^2 + \beta = -2\alpha^2 < 0,$$

lo que es una contradicción. Por tanto, $\alpha=0$, lo que implica que $g(u_0,v)=0 \forall v \in V \implies g$ es degenerada.

Si g es semidefinida negativa, entonces -g es semidefinida positiva $\implies -g$ es degenerada (por lo demostrado) $\implies g$ es degenerada.

3.1. Primera clasificación de métricas

Sea (V, g) un EVM con $g \neq 0$

Ejemplos.

1. Sea (V, g) un EVM, con $g \neq 00$ y con $\dim(V) = 1$, y sea $B = \{u\}$ una base de V. Sea $v \in V$, entonces $v = \lambda u$, para algún $\lambda \in \mathbb{R}$. Entonces $\omega_q(v) = \omega_q(\lambda u) = \lambda^2 \omega_q(u)$.

Si $\omega_q(u) > 0 \implies (V, g)$ es euclídeo.

Si $\omega_g(u) < 0 \implies (V, g)$ es definido negativo.

2. Sea (V, g) un EVM con dim(V) = 2 y $g \neq 0$

Entonces sabemos que existe una base B de V tal que

$$M(g,B) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \alpha \neq 0,$$

lo que implica que $\omega_q(v) = \alpha x^2 + \beta y^2$, donde $v = (x, y)_B$. Además:

- 1) g es euclídea $\iff \alpha > 0, \beta > 0$
- 2) g es definida negativa $\iff \alpha < 0, \beta < 0$
- 3) g es indefinida $\iff \alpha\beta < 0$. En particular, g es no degenerada.
- 4) g es semidefinida positiva $\iff \alpha > 0, \beta = 0$
- 5) g es semidefinida negativa $\iff \alpha < 0, \beta = 0$ Como consecuencia,
- 6) Son equivalentes:
 - i) g es euclídea.

ii)
$$\forall \{a,b\}$$
, base de V , tal que $M(g,\{a,b\}) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ se tiene que $\begin{cases} \det(M(g,\{a,b\})) > 0 \\ x > 0 \end{cases}$
iii) $\exists \{a,b\}$, base de V tal que $M(g,\{a,b\}) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ se tiene que $\begin{cases} \det(M(g,\{a,b\})) > 0 \\ x > 0 \end{cases}$

- 7) Son equivalentes:
 - i) g es definida negativa.

ii)
$$\forall \{a,b\}$$
, base de V , tal que $M(g,\{a,b\}) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ se tiene que $\left\{ \begin{array}{l} \det(M(g,\{a,b\})) > 0 \\ x < 0 \end{array} \right.$
iii) $\exists \{a,b\}$, base de V tal que $M(g,\{a,b\}) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ se tiene que $\left\{ \begin{array}{l} \det(M(g,\{a,b\})) > 0 \\ x < 0 \end{array} \right.$

- 8) Son equivalentes:
 - i) g es indefinida.
 - ii) $\forall \{a, b\}$, base de V, $\det(M(g, \{a, b\}) < 0$
 - iii) $\exists \{a, b\}$, base de V tal que $\det(M(g, \{a, b\}) < 0$
- 9) Son equivalentes:
 - i) g es semidefinida positiva.

$$\begin{array}{l} \text{ii)} \ \forall \{a,b\}, \ \text{base de } V, \ \text{se tiene que} \ \left\{ \begin{array}{l} \det(M(g,\{a,b\})) = 0 \\ \operatorname{tr}(M(g,\{a,b\})) > 0 \end{array} \right. \\ \text{iii)} \ \exists \{a,b\}, \ \text{base de } V \ \text{se tiene que} \ \left\{ \begin{array}{l} \det(M(g,\{a,b\})) = 0 \\ \operatorname{tr}(M(g,\{a,b\})) > 0 \end{array} \right. \\ \end{array}$$

- 10) Son equivalentes:
 - i) g es semidefinida negativa.

$$\begin{aligned} &\text{ii)} \ \ \forall \{a,b\}, \text{ base de } V, \text{ se tiene que } \left\{ \begin{array}{l} \det(M(g,\{a,b\})) = 0 \\ \operatorname{tr}(M(g,\{a,b\})) < 0 \end{array} \right. \\ &\text{iii)} \ \ \exists \{a,b\}, \text{ base de } V \text{ se tiene que } \left\{ \begin{array}{l} \det(M(g,\{a,b\})) = 0 \\ \operatorname{tr}(M(g,\{a,b\})) < 0 \end{array} \right. \end{aligned}$$

Definición 3.6 (Radical). Sea (V, g) un EVM con $\dim(V) = n$. Se define el radical de g, Rad(g) como el subconjunto de V dado por:

$$Rad(g) = \{v \in V \mid v \perp V\} = \{v \in V \mid v \perp u, \forall u \in V\} = \{v \in V \mid g(v, u) = 0, \forall u \in V\}$$

Por la bilinealidad de g, $\operatorname{Rad}(g)$ es un subespacio vectorial de V. Además, se definen la nulidad de g como el número

$$\operatorname{nul}(g) = \dim(\operatorname{Rad}(g))$$

y el rango de g como el número

$$rg(g) = n - nul(g)$$

Observación.

$$g$$
 es degenerada \iff Rad $(g) \neq \{0\} \iff$ nul $(g) > 0 \iff$ rg $(g) < n$
 g es no degenerada \iff Rad $(g) = \{0\} \iff$ nul $(g) = 0 \iff$ rg $(g) = n$

En lo que sigue, vamos a construir, cuando (V,g) es no degenerado, un isomorfismo natural entre V y V^* utilizando la métrica g.

Definición 3.7. Sea (V,g) un EVM con $\dim(V)=n.$ Se define la aplicación $\Phi:V\longrightarrow V^*$ dada por

$$\left. \begin{array}{l} \Phi(v): V \longrightarrow \mathbb{R} \\ \Phi(v)(u) = g(u,v), \forall u \in V \end{array} \right\} \forall v \in V$$

Proposición 3.2. Se verifican:

- a) Φ está bien definida.
- b) Φ es lineal.
- c) $\ker(\Phi) = \operatorname{Rad}(g)$
- d) Si B es una base de V y B^* su base dual, entonces

$$M(\Phi, B, B^*) = M(g, B)$$

e)
$$\operatorname{nul}(g) = \operatorname{nul}(\Phi) = n - \operatorname{rg}(M(g, B))$$

 $\operatorname{rg}(g) = \operatorname{rg}(\Phi) = \operatorname{rg}(M(g, B))$

- f) Son equivalentes las siguientes afirmaciones:
 - i) (V, g) es no degenerado.
 - ii) $Rad(g) = \{0\}$
 - iii) nul(g) = 0
 - iv) rg(g) = n
 - v) Φ es un isomorfismo.
 - vi) $\forall B \text{ base de } V, M(g, B) \text{ es regular.}$
 - vii) $\exists B \text{ base de } V \text{ tal que } M(g, B) \text{ es regular.}$

Observación. Si (V,g) es no degenerado a los isomorfismos Φ y Φ^{-1} se les denominan isomorfismos musicales:

$$\Phi = \text{isomorfismo bemol } = \flat : V \longrightarrow V^*$$

$$\Phi^{-1} = \text{isomorfismo sostenido} = \sharp : V^* \longrightarrow V$$

que actúan así:

$$b(v) \equiv v^{\flat} : V \longrightarrow \mathbb{R}$$
$$v^{\flat}(u) = q(u, v), \forall u, v \in V$$

$$\sharp(\varphi) \equiv \varphi^{\sharp} \in V, \ g(u, \varphi^{\sharp}) = \varphi(u), \forall u \in V, \forall \varphi \in V^{*}$$

Ejemplos.

1. $\mathbb{R}^n, A \in \mathcal{M}_n(\mathbb{R})$. Sea $b_A \in \mathcal{B}(\mathbb{R}^n)$, $b_A : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$, definido por $b_A(u, v) = u \cdot A \cdot v$. Entonces, $M(b_A, B_u) = A$. Tenemos que $b_A \in \mathcal{B}_S(\mathbb{R}^{\times}) \iff A \in \mathcal{S}_n(\mathbb{R}^{\times})$.

Entonces, a partir de ahora, $b_A = g_A$.

 ξ Cuándo se dice que A es euclídea, A es definida negativa o A es indefinida?

1.a) $A = I_n$, $g_A = g_u =$ métrica euclídea usual en \mathbb{R}^n o producto escalar usual en \mathbb{R}^n . Sean $u, v \in \mathbb{R}^n$, con $u = (x_1, \dots, x_n)$ y $v = (y_1, \dots, y_n)$. Entonces

$$g_u(u, v) = u \cdot v = \sum_{i=1}^n x_i y_i, \text{ y } \omega_{g_u}(u) = \sum_{i=1}^n x_i^2$$

1.b) Sean $n \in \mathbb{N}, p, q, r \in \mathbb{N}_0$, con p+q+r=n y r < n. Entonces, la matriz

$$A_{p,q} = \begin{pmatrix} I_p & 0 & 0\\ \hline 0 & -I_q & 0\\ \hline 0 & 0 & O_r \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

es diagonal. Sea $g_{A_{p,q}}=g_{p,q},\ u,v\in\mathbb{R}^n$ con $u=(x_1,\ldots,x_n)$ y $v=(y_1,\ldots,y_n)$. Entonces

$$g_{p,q}(u,v) = \sum_{i=1}^{p} x_i y_i - \sum_{j=p+1}^{p+q} x_j y_j$$

$$\omega_{g_{p,q}}(u) = \sum_{i=1}^{p} x_i^2 - \sum_{j=p+1}^{p+q} x_j^2$$

- $g_{p,q}$ es degenerada $\iff p+q < n \iff r > 0$.
- $g_{p,q}$ es no degenerada $\iff p+q=n \iff r=0$.
- $g_{p,q}$ es euclídea $\iff p = n, q = r = 0 \iff g_{p,q} = g_u$.
- $g_{p,q}$ es definida negativa $\iff q = n, p = r = 0.$
- $g_{p,q}$ es indefinida $\iff p > 0$ y q > 0.
- $g_{p,q}$ es semidefinida positiva $\iff q = 0 \text{ y } r > 0.$
- $g_{p,q}$ es semidefinida negativa $\iff p = 0 \text{ y } r > 0.$

El ejemplo p = n - 1, q = 1, r = 0, $g_{n-1,1}$, es conocida como la métrica de Lorentz-Minkowski en \mathbb{R}^n .

1.c) Sea $0 \neq M \in \mathcal{M}_n(\mathbb{R}), A = M^t \cdot M$, y consideremos g_A .

$$g_A(u,v) = u \cdot M^t \cdot M \cdot v = (M \cdot u)^t \cdot (M \cdot v) = g_u(Mu, Mv)$$

- g_A es euclídea $\iff M \in Gl(n, \mathbb{R})$
- g_A es semidefinida positiva $\iff \det(M) = 0$.
- Además, $Rad(g_A) = ker(M)$
- 2. $\mathcal{M}_2(\mathbb{R}), M = \begin{pmatrix} a & c \\ c & d \end{pmatrix}$.
 - b_M, b_M''' son métricas $\iff M = a \cdot I_2, a \in \mathbb{R}$. • $b_M(A, B) = \operatorname{tr}(A \cdot a \cdot I_2 \cdot B) = a \operatorname{tr}(A \cdot B) = a \operatorname{tr}(A^t B^t) = \operatorname{tr}(A^t \cdot a \cdot I_2 \cdot B^t) = b_M'''(A, B)$
 - $g(A, B) = \operatorname{tr}(A \cdot B)$ es métrica en $\mathcal{M}_n(\mathbb{R})$. $\omega_g(A) = \sum_{i,j=1}^n a_{i,j} \cdot a_{j,i}$.
 - b_M', b_M'' son métricas $\iff M \in \mathcal{S}_2(\mathbb{R})$
 - $b'_M = b''_M \iff M = a \cdot I_2, a \in \mathbb{R}.$
 - $M \in \mathcal{S}_n(\mathbb{R})$. Entonces $g_M(A, B) = \operatorname{tr}(A \cdot M \cdot B^t)$ y $g'_M(A, B) = \operatorname{tr}(A^t \cdot M \cdot B)$ son dos métricas en $\mathcal{S}_2(\mathbb{R})$.
 - $M = I_n$, $g_M = g'_M = g_u =$ métrica euclídea usual en $\mathcal{M}_n(\mathbb{R})$. $g_u(A, B) = \operatorname{tr}(A \cdot B^t) = \sum_{i,j=1}^n a_{i,j} \cdot b_{i,j}$ $\omega_{g_u}(A) = \sum_{i,j=1}^n (a_{i,j})^2$.
- 3. $\mathbb{R}_n[x]$. Consideramos las métricas $g_1, g_2, g_3, g_4 : \mathbb{R}_n[x] \times \mathbb{R}_n[x] \longrightarrow \mathbb{R}$ dadas por:

$$\begin{cases} g_1(p(x), q(x)) = \int_{-1}^1 p(x) \cdot q(x) dx \\ g_2(p(x), q(x)) = \int_{-1}^1 p'(x) \cdot q'(x) dx \\ g_3(p(x), q(x)) = \int_{-\pi/2}^{\pi/2} p(x) \cdot q(x) \cdot \operatorname{sen}(x) dx \\ g_4(p(x), q(x)) = p(3) \cdot q(3) \end{cases}$$

4. Métrica inducida en un subespacio vectorial (ejemplo teórico)

Sea (V,g) un EVM, y $U\subseteq V$ un subespacio vectorial de V. Entonces, la aplicación $g_{|U}:U\times U\longrightarrow \mathbb{R}$ dada por

$$g_{|U}(a,b) = g(a,b), \forall a,b \in U$$

es una métrica sobre U, con $\omega_{(g|U)} = (\omega_g)_{|U}$

A la métrica $g_{|U}$ se le conoce como la métrica g restringida a U o inducida en U.

Propiedades. Partiendo de $U \neq \{0\}$, un subespacio vectorial de V cualquiera:

- i) Si g es euclídea $\implies g_{|U}$ es euclídea.
- ii) Si g es definida negativa $\implies g_{|U}$ es definida negativa.
- iii) Si g es definida positiva $\Longrightarrow g_{|U}$ o bien es definida positiva (si $U \cap \operatorname{Rad}(g) = \{0\}$) o bien semidefinida positiva (si $U \cap \operatorname{Rad}(g) \neq \{0\}$). Además, si $g_{|U}$ es semidefinida positiva, entonces $\operatorname{Rad}(g_{|U}) = \operatorname{Rad}(g) \cap U$.
- iv) Si g es semidefinida negativa, entonces $g_{|U}$ o bien es definida negativa (si $U \cap \text{Rad}(g) = \{0\}$), o bien semidefinida negativa (si $U \cap \text{Rad}(g) \neq \{0\}$). Además, si $g_{|U}$ es semidefinida negativa, entonces $\text{Rad}(g_{|U}) = \text{Rad}(g) \cap U$.
- v) Si g es indefinida, $g_{|U}$ puede ser cualquier tipo de métrica.

Observación. Si (V, g) es degenerado y U es un complementario cualquiera de $\operatorname{Rad}(g)$, entonces $V = \operatorname{Rad}(g) \bigoplus U$ y $g_{|U}$ es no degenerado.

4. Bases ortogonales y ortonormales. Ley de inercia de Sylvester. Criterio de Sylvester

Definición 4.1 (Subespacio perpendicular u ortogonal a uno dado). Sean (V, g) un EVM y $U \subseteq V$ un subespacio vectorial de V. Se define el subespacio perpendicular u ortogonal a U, U^{\perp} , como

$$U^{\perp} = \{ v \in V \mid v \perp u, \forall u \in U \}$$

Propiedades.

- 1. U^{\perp} es un subespacio vectorial de V.
- 2. $\operatorname{Rad}(g) \subseteq U^{\perp}$, $\forall U$ subespacio vectorial de V.
- 3. $\{0\}^{\perp} = V$, y $V^{\perp} = \text{Rad}(g)$.
- 4. Si $u \in V, u \neq 0$, se tiene que o bien $\mathcal{L}(\{u\})^{\perp} = V$ (si $u \in \text{Rad}(g)$), o bien $\mathcal{L}(\{u\})^{\perp}$ es un hiperplano de V (si $u \notin \text{Rad}(g)$).
- 5. Si $U = \mathcal{L}(\{u_1, \dots, u_k\})$, entonces

$$U^{\perp} = \{ v \in V \mid v \perp u_i, 1 \le i \le k \} = \mathcal{L}(\{u_1\})^{\perp} \cap \mathcal{L}(\{u_2\})^{\perp} \cap \dots \cap \mathcal{L}(\{u_k\})^{\perp}$$

Proposición 4.1. Sea (V,g) un EVM no degenerado y U y W subespacios vectoriales de V. Se verifican:

- 1. $\dim(U^{\perp}) = \dim(V) \dim(U)$.
- 2. $(U^{\perp})^{\perp} = U$.
- 3. $U \subseteq W \iff W^{\perp} \subseteq U^{\perp}$.
- 4. $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$.

- 5. $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$.
- 6. $V = U \oplus U^{\perp} \iff g_{|U} \text{ es no degenerada} \iff g_{|U^{\perp}} \text{ es no degenerada.}$
- 7. Si $V = U \bigtriangleup U'$ para U' subespacio vectorial de V, entonces $U' = U^{\perp}$.

Definición 4.2 (Base ortogonal y base ortonormal). Sean (V, g) un EVM y $B = \{v_1, v_2, \dots, v_k\} \subseteq$ V un subconjunto de V formado por k vectores. Se dice que:

- 1. B es un subconjunto ortogonal si $v_i \perp v_j, \forall i, j \in \{1, \dots, j\}, i \neq j$.
- 2. B es un subconjunto ortonormal si B es ortogonal y $\omega_a(v_i) \in \{-1,0,1\} \forall i \in \{1,2,\ldots,k\}$.
- 3. B es una base ortogonal de V si B es una base de V y B es un subconjunto ortogonal de V. Equivalentemente, B es base de V y M(g,B) es diagonal.
- 4. B es una base ortonormal de V si B es una base de V y B es un subconjunto ortonormal de V. Equivalentemente, B es base de V y M(q, B) es diagonal con $\{-1, 0, 1\}$ en la diagonal.

Observación.

- 1. Si B es una base ortonormal de (V, g), entonces B es una base ortogonal de (V, g).
- 2. Si B es una base ortogonal de (V,g), y normalizo los vectores de B, obtengo una base B'que es ortonormal para g. (normalizar un vector \equiv hacer que su distancia sea 1).
- 3. Si B es una base ortonormal de (V, g), y dim(V) = n, entonces:

$$M(g,B) = A_{p,g} \in \mathcal{M}_n(\mathbb{R})$$

donde p + q = rg(M(g, B)) = rg(g), y r = nul(g) (ya definimos la matriz $A_{p,q}$ antes). Entonces, $B = \{u_1, ..., u_p, v_1, ..., v_q, w_1, ..., w_r\}$. En efecto,

- $\bullet \ \omega_a(u_1) = \dots = \omega_a(u_p) = 1$
- \bullet $\omega_a(v_1) = \cdots = \omega_a(v_a) = -1$
- $\mathcal{L}(\{w_1,\ldots,w_r\}) = \operatorname{Rad}(g)$

Sean $u = (a_1, \ldots, a_n)_B, v = (b_1, \ldots b_n)_B$. Entonces

- $g(u,v) = \sum_{i=1}^{p} a_i \cdot b_i \sum_{j=p+1}^{p+q} a_j \cdot b_j$ $\omega_g(u) = \sum_{i=1}^{p} a_i^2 \sum_{j=p+1}^{p+q} a_j^2$
- 4. Si (V,g) es no degenerado y B es una base ortonormal de V, ¿cómo puedo calcular de una forma sencilla las coordenadas de un vector respecto de B?

 $B = \{u_1, \ldots, u_p, v_1, \ldots, v_q\}$ es una base ortonormal. Sea $v \in V$, con $v = (a_1, \ldots, a_n)_B$. Entonces

- $a_i = g(v, u_i), \forall i \in \{1, \dots, p\}$
- $a_{n+i} = -g(v, v_i), \forall i \in \{1, \dots, p\}$
- 5. Si $\{v_1,\ldots,v_k\}$ es un subconjunto ortogonal de (V,g) tal que $\omega_g(v_i)\neq 0 \forall i=1,\ldots k,$ entonces $\{v_1,\ldots,v_k\}$ es linealmente independiente. En particular, si (V,g) es definido positivo o definido negativo y $\{v_1,\ldots,v_k\}$ es un subconjunto ortogonal de (V,g) formado por vectores no nulos entonces $\{v_1, \ldots, v_k\}$ es linealmente independiente.

Teorema 4.3. Todo espacio vectorial métrico tiene bases ortonormales.

<u>Demostración.</u> Sea (V,g) un EVM con dim(V)=n. Distinguir entonces dos casos:

- 1. (V,g) es no degenerado (inducción sobre n)
- 2. (V, g) es degenerado.

Teorema 4.4. Sean (V,g) un EVM de dimensión n y B una base ortonormal de (V,g). Si $M(g,B) = A_{p,q}$, entonces se verifican:

i)
$$r = \text{nul}(g)$$
 $y p + q = \text{rg}(g)$

ii) si p > 0, entonces

 $p = \max\{\dim(U) \mid U \text{ es un subespacio vectorial de } V, y g_{|U} \text{ es definida positiva}\}$

iii) si q > 0, entonces

 $1 = \max\{\dim(U) \mid U \text{ es un subespacio vectorial de } V, y g_{|U} \text{ es definida negativa}\}$

Demostración. Distinguir casos:

- 1. $g = 0 \iff p = q = 0, r = n$
- 2. g euclídea $\iff p = n, q = r = 0$
- 3. g definida negativa $\iff p = 0, q = n, r = 0$
- 4. g semidefinida positiva $\iff p > 0, q = 0, r > 0$
- 5. g semidefinida negativa $\iff p = 0, q > 0, r > 0$
- 6. g indefinida $\iff p > 0, q > 0$.

Teorema 4.5 (Teorema de Sylvester. Ley de inercia de Sylvester). En todo espacio vectorial métrico existen bases tales que la matriz de la métrica en dichas bases es una matriz diagonal, y em la diagonal aparecen unos, menos unos y ceros. Además, la cantidad de unos, menos unos y ceros no depende de la base que se elija, solo depende de la métrica.

Demostración. Consecuencia de los dos teoremas anteriores.

Definición 4.6. Sean (V, g) un EVM de dimensión n y B una base ortonormal de (V, g). Si $M(g, B) = A_{p,q}$, se define el índice de g, indice(g), como la cantidad de menos unos que aparece en la diagonal de M(g, B), es decir,

$$indice(g) = q \implies 0 \le indice(g) \le rg(g)$$

Corolario 4.7. Sea (V, g) un EVM de dimensión n con $g \neq 0$. Se verifican:

- 1. (V,g) es euclídeo o definido positivo \iff $\operatorname{rg}(g) = n$, indice(g) = 0.
- 2. (V,g) es definido negativo \iff $\operatorname{rg}(g) = n$, $\operatorname{indice}(g) = n \iff$ $\operatorname{indice}(g) = n$.
- 3. (V, g) es semidefinido positivo \iff $\operatorname{rg}(g) < n$, indice(g) = 0.
- 4. (V,g) es semidefinido negativo \iff rg(g) < n, indice(g) = rg(g).
- 5. (V, g) es indefinido \iff 0 < indice(g) < rg(g).

Corolario 4.8. Sea V un espacio vectorial de dimensión n y ω una forma cuadrática definida sobre V. Se tiene que existen B una base de V y $p,q,r\in\mathbb{Z}$, con $p,q,r\geq 0$ y p+q+r=n (que solo dependen de ω) tales que si B viene dada por vectores $B=\{u_1,\ldots,u_p,v_1,\ldots,v_q,w_1,\ldots,w_r\}$ y $v\in V$ es un vector de coordenadas respecto de B, con $v=(x_1,x_2,\ldots,x_n)_B$, entonces

$$\omega(v) = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \dots - x_{p+q}^2$$

Además, $q = indice(g) \ y \ p + q = rg(g)$.

Corolario 4.9. Si $A \in \mathcal{S}_n(\mathbb{R})$, existen $p,q,r \in \mathbb{Z}$, con $p,q,r \geq 0$ y p+q+r=n (que solo dependen de A) tales que A es congruente a la matriz $A_{p,q}$, donde $p+q=\operatorname{rg}(g_A)=\operatorname{rg}(A)$ y $q=\operatorname{indice}(g_A)=\operatorname{indice}(A)$.

Además, si $A, B \in \mathcal{S}_n(\mathbb{R})$, se tiene que A y B son congruentes \iff $\operatorname{rg}(A) = \operatorname{rg}(B)$ y $\operatorname{indice}(A) = \operatorname{indice}(B)$.

Corolario 4.10 (Criterio de Sylvester).

<u>Previo al enunciado</u>: Sean (V,g) un EVM de dimensión $n, y B = \{v_1, \ldots, v_n\}$ una base de V. Sea M(g,B) = A. Entonces, dado $k \in \{1,\ldots,n\}$, definimos el subespacio vectorial $U_k = \mathcal{L}(\{v_1,v_2,\ldots,x_k\})$ de V de dimensión k. Entonces, $(U_k,g_{|U_k})$ es un EVM de dimensión k, $y B_k = \{v_1,v_2,\ldots,v_k\}$ es una base de U_k .

Si llamamos $A_k = M(g_{|U_k})$, entonces

$$A_{k} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix}, \text{ submatriz de } A$$

Denotemos por $\alpha_k(g, B) = \det(A_k) = menor angular de orden k de la matriz A.$

Criterio de Sylvester:

Sea (V, g) un EVM de dimensión n. Se verifican:

- i) son equivalentes:
 - a) (V,g) es euclídeo.
 - b) $\forall B \text{ base de } V, \ \alpha_k(g,B) > 0, \forall k = 1, \dots, n.$
 - c) $\exists B \text{ base de } V \text{ tal que } \alpha_k(g,B) > 0 \forall k = 1,\ldots,n$
- ii) son equivalentes:
 - a) (V,g) es definido negativo.
 - b) $\forall B \text{ base } de V, (-1)^k \alpha_k(g, B) > 0, \forall k = 1, ..., n.$
 - c) $\exists B \text{ base de } V \text{ tal que } (-1)^k \alpha_k(g, B) > 0 \forall k = 1, \dots, n$

Demostración.

- i) a \implies b). Se aplican:
 - (*) Si (V, g) es euclídeo y B una base de V, entonces $\det(M(g, B)) > 0$, ya que M(g, B) e I_n son congruentes.
 - (**) Si (V,g) es euclídeo y U es un subespacio de $V,U\neq\{0\}$, entonces $g_{|U}$ es una métrica euclídea en U.
 - $b) \implies c$ es trivial.
 - $c) \implies a$: inducción sobre n.
- ii) Se aplican:
 - (*) (V,g) es definido negativo \iff (V,-g) es euclídeo.
 - (**) Para todo $k \in \{1, ..., n\}$ se cumple que M(-g, B) = -M(g, B), $M(-g_{|U_k}, B_k) = -M(g_{|U_k}, B_k)$, $\det(-A_k) = (-1)^k \det(A_k)$ y $\alpha_k(-g, B) = (-1)^k \alpha_k(g, B)$.

Ejercicio. (Clasificación de espacios métricos para dimensión 3)

Sea (V,g) un EVM de dimensión 3, con $g \neq 0$, y $B = \{v_1,v_2,v_3\}$ una base de V. Sea

$$M(g,B) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \in \mathcal{S}_3(\mathbb{R})$$

Entonces, $\alpha_1(g, B) = a_{11}$, $\alpha_2(g, B) = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$, $\alpha_3(g, B) = \det(M(g, B))$.

Tenemos que:

1. g es euclídea $\iff \alpha_1, \alpha_2, \alpha_3 > 0$.

- 2. g es definida negativa $\iff \alpha_1 < 0, \alpha_2 > 0, \alpha_3 < 0.$
- 3. Si $\alpha_3 \neq 0$ ($\iff g$ no degenerada) y no se verifica ni 1. ni 2., entonces g es indefinida. Tenemos ahora dos posibilidades:
 - a) $\exists B'$ base de V tal que $M(g,B')=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Entonces g es indefinida, no degenerada, de rango 3 e índice $2 \iff \alpha_3 > 0$.
 - b) $\exists B'$ base de V tal que $M(g, B') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Entonces g es indefinida, no degenerada, de rango g e índice g (g).
- 4. Si $\alpha_3=0$ ($\iff g$ es degenerada) el criterio de Sylvester no es válido. Primer paso: $\log(g)\in\{1,2\}$?
 - a) $\operatorname{rg}(g)=2$. Entonces $\operatorname{Rad}(g)$ recta vectorial. Sea U un complementario cualquiera de $\operatorname{Rad}(g)$, esto es, $V=U\oplus\operatorname{Rad}(g)$. Entonces $V=U\bigoplus\operatorname{Rad}(g)$, y $g_{|U}$ es no degenerada. Por lo tanto, aplicando la clasificación en dimensión dos se tiene que:
 - a.1) si $g_{|U}$ es euclídea, entonces $\exists B'$ base de V tal que $M(g,B') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, que equivale a decir que g es semidefinida positiva de rango 2 e índice 0.
 - a.2) si $g_{|U}$ es definida negativa, entonces $\exists B'$ base de V tal que $M(g,B')=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, que equivale a decir que g es indefinida degenerada de rango 2 e índice 1.
 - b) rg(g) = 1. Entonces $\exists B'$ base de V tal que

$$M(g, B') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (\iff \operatorname{tr}(M(g, B)) > 0) \text{ o}$$

$$M(g, B') = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (\iff \operatorname{tr}(M(g, B)) < 0)$$

En el primer caso, g es semidefinida positiva de rango 1 e índice 0, y en el segundo, g es semidefinida negativa de rango 1 e índice 1.

5. Isometrías entre espacios vectoriales métricos

¿Cuándo dos EVM (V, g) y (V', g') son iguales desde el punto de vista de la teoría de espacios vectoriales métricos?

Definición 5.1. Sean (V,g) y (V',g') dos EVM y $f:V\longrightarrow V'$ una aplicación. Se dice que f es una isometría si f verifica:

- 1. f es un isomorfismo
- 2. $\forall u, v \in V, g'(f(u), f(v)) = g(u, v)$

Se dice que dos EVM (V, g) y (V', g') son isométricos si existe una isometría $f: (V, g) \longrightarrow (V', g')$. Si (V, g) es un EVM denotaremos por

$$\mathrm{Iso}(V,g) = \{ f : (V,g) \longrightarrow (V,g) \mid f \text{ es una isometría} \}$$

Veamos que en algunos casos la condición (2) de la anterior definición implica la condición (1).

Sean (V,g), (V',g') dos EVM y $f:V\longrightarrow V'$ una aplicación que verifica (2). Se tiene que $\forall u,v,w\in V, \forall \lambda,\mu\in\mathbb{R}$ se verifica que

$$g'(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v), f(w)) = g(\lambda f(u) + \mu f(v) - \lambda f(u) - \mu f(v), f(w)) = g(0, f(w)) = 0$$

Por lo tanto,

$$\omega_{g'}(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v))$$

$$= g'(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v), f(\lambda u + \mu v) - \lambda f(u) - \mu f(v))$$

$$= g'(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v), f(\lambda u - \mu v)) - \lambda g'(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v), f(u))$$

$$- \mu g'(f(\lambda u + \mu v) - \lambda f(u) - \mu f(v), f(v))$$

$$= 0 - \lambda \cdot 0 - \mu \cdot 0 = 0, \ \forall u, v \in V, \forall \lambda, \mu \in \mathbb{R}$$

Proposición 5.1. Sean (V,g) y (V',g') EVM y $f:V \longrightarrow V'$ una aplicación. Se verifican:

- 1. Si g y g' son métricas no degeneradas, f es sobreyectiva y f verifica la condición (2) de la definición anterior, entonces f es una isometría.
- 2. Si g y g' son métricas euclídeas o métricas definidas negativas, $\dim(V) = \dim(V')$ y f verifica la condición (2) de la definición anterior, entonces f es una isometría.

¿Cómo traducir la condición (2) de la definición anterior en coordenadas?

Sean (V,g) y (V',g') EVM, con $\dim(V)=n$ y $\dim(V')=m$, y $f:V\longrightarrow V'$ una aplicación lineal. Supongamos que f verifica que $g'(f(u),f(v))=g(u,v),\ \forall u,v\in V.$ Sean $B=\{u_1,\ldots,u_n\}$ y $B'=\{v_1,\ldots,v_n\}$ bases de V y V', respectivamente. Si $u=(a_1,\ldots,a_n)_B$ y $v=(b_1,\ldots,b_n)_B$. Entonces,

$$g(u,v) = (a_1, \dots, a_n) \cdot \underbrace{M(g,B)}_{n \times n} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

у

$$(a_1, \dots, a_n) \cdot \underbrace{M(f, B, B')^t}_{n \times m} \cdot \underbrace{M(g', B')}_{m \times m} \cdot \underbrace{M(f, B, B')}_{m \times n} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = g'(f(u), f(v))$$

y como g(u, v) = g'(f(u), f(v)), tenemos que

$$M(f, B, B')^t \cdot M(g', B') \cdot M(f, B, B') = M(g, B)$$

Proposición 5.2. Sean (V, g) y (V', g') EVM y $f: V \longrightarrow V'$ un isomorfismo. Son equivalentes:

- 1. f es una isometría.
- 2. $\omega_{a'}(f(u)) = \omega_a(u), \ \forall u \in V.$
- 3. $\forall B \text{ base de } V, \forall B' \text{ base de } V', \text{ se verifica } M(f, B, B')^t \cdot M(g', B') \cdot M(f, B, B') = M(g, B)$
- 4. $\exists B \text{ base de } V, \exists B' \text{ base de } V' \text{ tales que } M(f, B, B')^t \cdot M(g', B') \cdot M(f, B, B') = M(g, B)$

Corolario 5.2. Sean (V,g) y (V',g') EVM tales que $\dim(V) = \dim(V')$, $\operatorname{rg}(g) = \operatorname{rg}(g')$ e $\operatorname{indice}(g) = \operatorname{indice}(g')$, y sea $f: V \longrightarrow V'$ una aplicación lineal. Son equivalentes:

- 1. f es una isometría.
- 2. $\forall B \text{ base ortonormal de } (V,g), f(B) \text{ es una base ortonormal de } (V',g').$
- 3. $\exists B \text{ base ortonormal de } (V,g), \text{ tal que } f(B) \text{ es una base ortonormal de } (V',g').$

Corolario 5.3. Sean (V, g) y (V', g') EVM. Son equivalentes:

- 1. (V, q) y (V', q') son isométricas.
- 2. $\dim(V) = \dim(V')$, $\operatorname{rg}(g) = \operatorname{rg}(g')$ e indice $(g) = \operatorname{indice}(g')$

Proposición 5.3. Se verifican:

- 1. La composición de isometrías es isometría.
- 2. La inversa de una isometría es una isometría.
- 3. La identidad de (V,g), un EVM, en sí mismo es una isometría.
- 4. La relación binaria "ser isometríco" en la familia de espacios métricos es una relación de equivalencia.
- 5. $(\operatorname{Iso}(V,g),0)$ es un subgrupo de $(\operatorname{Aut}(V),0)$

Algunas consecuencias de todo lo expuesto hasta ahora para EVM euclídeas. Sea (V,g) un EVM euclídeo de dimensión n.

1. Sea $f:V\longrightarrow V$ una aplicación. Entonces

$$f \in \operatorname{Iso}(V,g) \Longleftrightarrow g(f(u),f(v)) = g(u,v) \Longleftrightarrow \left\{ \begin{array}{l} \omega_g(f(v)) = \omega_g(v) \\ f(u+v) = f(u) + f(v) \end{array} \right.$$

2. Si $f \in \text{Iso}(V, g)$ y B es una base ortonormal de (V, g), entonces

$$\underbrace{M(g,B)}_{=I_n} = M(f,B)^t \cdot \underbrace{M(g,B)}_{=I_n} \cdot M(f,B) \implies M(f,B)^t \cdot M(f,B) = I_n$$

$$\implies \begin{cases} M(f,B) \in Gl(n,\mathbb{R}) \\ M(f,B)^{-1} = M(f,B)^t \end{cases}$$

3. Si B y B' son bases ortonormales de (V, g), como $I_V \in \text{Iso}(V, g)$, entonces:

$$\underbrace{M(g,B')}_{=I_n} = M(I_V,B',B)^t \cdot \underbrace{M(g,B)}_{=I_n} \cdot M(I_V,B',B) \implies M(I_V,B',B)^t \cdot M(I_V,B',B) = I_n$$

Definición 5.4. Se dice que $A \in \mathcal{M}_n(\mathbb{R})$ es una matriz ortogonal si $A^t \cdot A = I_n$, es decir, $A \in Gl(n,\mathbb{R})$ y $A^{-1} = A^t$. Denotaremos por

$$O(n) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A \text{ es ortogonal} \}$$

el grupo ortogonal de orden n.

Proposición 5.4. Se verifican:

- 1. Si $A \in O(n)$, entonces $det(A) = \pm 1$.
- 2. Si $A \in O(n)$ y $\lambda \in \mathbb{R}$ es un valor propio de A, entonces $\lambda = \pm 1$.
- 3. Si $f \in \text{End}(V)$, son equivalentes:
 - a) $f \in \operatorname{Iso}(V, g)$
 - b) $\forall B \text{ base ortonormal de } (V,g) \mid M(f,B) \in O(n).$
 - c) $\exists B \text{ base ortonormal de } (V,g) \text{ tal que } M(f,B) \in O(n).$
- 4. Si B es una base ortonormal de (V,g) y B' es otra base de V, son equivalentes:
 - a) B' es una base ortonormal de (V,g)
 - b) $M(I_V, B', B) \in O(n)$
- 5. Si B es una base ortonormal de (V, g), la aplicación

$$F_B : \operatorname{Iso}(V, g) \longrightarrow O(n)$$

 $f \mapsto M(f, B)$

es un isomorfismo de grupos.