Divergences.el

Divergences is a Julia package that makes it easy to evaluate the value of divergences and their derivatives. These divergences are used to good effects in the package MomentBasedEstimators.

Definition

A divergence between $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$ is defined as

$$D(a,b) = \sum_{i=1}^{n} \gamma(a_i/b_i)b_i,$$

where $\gamma: D \subseteq \mathbb{R} \to \mathbb{R}_+$ is convex on twice differentiable on the interior of its domain D. The divergence function is normalized as to satisfy

•
$$\gamma(1) = 0$$
, $\gamma'(1) = 0$, and $\gamma''(1) = 0$.

Example of divergences

The following divergence types are defined by Divergences.

Cressie-Read

The type CressieRead is a family of divergences. Members of this family are indexed by a function γ indexed by parameter α

$$\gamma_{\alpha}^{CR}(a,b) = \frac{\left(\frac{a}{b}\right)^{1+\alpha} - 1}{\alpha(\alpha+1)} - \frac{\left(\frac{a}{b}\right) - 1}{\alpha}$$

Notice that $\nabla_x \gamma_\alpha^{CR}$

Kullback-Leibler divergence

$$\gamma^{KL}(a,b) = \frac{a_i}{b_i} \log(a_i/b_i) - \frac{a_i}{b_i} - 1$$

Reverse Kullback-Leibler divergence

$$\gamma^{RKL}(a,b) = -log(a/b) + a/b - 1$$

1

Using Divergences

using Divergences

Suppose a = [0.2, 0.4, 0.4] and b = [0.1, 0.3, 0.6].

```
a = [0.2, 0.4, 0.4]

b = [0.1, 0.3, 0.6]
```

evaluate(KullbackLeibler(), a, b)

0.0915162218494357