50 MHz Portable dual-trace oscilloscope PM3240

Instruction Manual/Gerätehandbuch/Mode d'emploi et d'entretien

9499 440 20302 790915/09/...

PHILIPS

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

WICHTIG

Bei Schriftwechsel über dieses Gerät wird gebeten, die genaue Typenbezeichnung und die Gerätenummer anzugeben. Diese befinden sich auf dem Leistungsschild.

IMPORTANT

RECHANGE DES PIECES DETACHEES (Réparations)

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez TOUJOURS indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

NOTE: The design of this instrument is subject to continuous development and improvement.

Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

BEMERKUNG:

Die Konstruktion und Schaltung dieses Geräts wird ständig weiterentwickelt und verbessert. Deswegen kann dieses Gerät von den in dieser Anleitung stehenden Angaben abweichen.

REMARQUES:

Cet appareil est l'objet de développements et améliorations continuels. En conséquence, certains détails mineurs peuvent différer des informations données dans la présente notice d'emploi et d'entretien.

CONTENTS

OPERATING MANUAL

1.	GENERAL INFORMATION	9
1.1.	Introduction	9
1.2.	Characteristics	10
1.2.1.	C.r.t.	. 10
1.2.2.	Vertical or Y axis	10
1.2.3.	Horizontal or X axis	11
1.2.4.	Main time-base	11
1.2.5.	Delayed time-base	12
1.2.6.	X deflection	12
1.2.7.	Triggering of the main time-base	12
1.2.8.	Triggering of the delayed time-base	13
1.2.9.	Calibration unit	13
1.2.10.	Power supply	13
1.2.11.	Environmental capabilities	13
1.2.12.	Mechanical data	14
1.2.13.	Accessories	14
	DIDECTIONS FOR HEE	17
2.	DIRECTIONS FOR USE	
2.1.	Installation	17 17
2.1.1.	Removing and fitting the front cover	17
2.1.2.	Mains voltage and fuse	17
2.1.3.	Earthing	
2.1.4.	Switching on	17
2.2.	Operating instructions	18
2.2.1.	Controls and sockets	18
2.2.2.	Preliminary settings	22
2.2.3.	Inputs A and B and their possibilities	22
2.2.4.	Triggering	23
2.2.5.	Time-base magnifier	24
2.2.6.	Use of the delayed time-base	24
2	SERVICE MANUAL	57
3.	SERVICE MANOAL	
3.1.	Description of the block diagram	57 59
3.2.	Circuit description	59
3.2.1.	Vertical deflection system	59
3.2.1.1.	Input attenuator	64
3.2.1.2.	Intermediate amplifier	65
3.2.1.3.	Channel selection logic	66
3.2.1.4.	Final Y amplifier	67
3.2.2.	Main time-base triggering	67
3.2.2.1.	Trigger input circuits and amplifier	67
3.2.2.2.	Trigger amplifier and multivibrator	68
3.2.2.3.	Auto-circuit	68
3.2.3.	Main time-base generator	68
3.2.3.1.	Sweep gating multivibrator	

3.2.3.2.	Switching transistors TS868, TS869 and TS870	68	
3.2.3.3.	Sweep speeds	68	
3.2.3.4.	Sawtooth take-off circuit	69	
3.2.3.5.	Hold-off circuit	69	
3.2.3.6.	NOT TRIG'D indicator	69	
3.2.3.7.	Delay-time function	70	
3.2.4.	Delayed time-base triggering	70	
3.2.5.	Delayed time-base generator	70	
3.2.5.1.	Sweep speeds	70 70	
3.2.5.2.	Hold-off circuit	70 70	
3.2.5.3.	Comparator	70 70	
3.2.5.4.	·		
3.2.6.	Delay time calibration unit	70 70	
	X-Deflection selector and blanking switching circuits	70	
3.2.6.1.	X-Deflection source selector	70	
3.2.6.2.	Blanking pulse switching circuit	71	
3.2.7.	Pre-amplifier for external X-deflection	72	
3.2.8.	X-amplifier	72	
3.2.9.	C.R.T. circuits	72	
3.2.9.1.	Z modulator circuit	72	
3.2.9.2.	Focusing circuit	73	
3.2.9.3.	H.T. Converter	73	
3.2.9.4.	Calibration unit	74	
3.2.9.5.	Graticule illumination control circuit	74	
3.2.10.	Power supply	74	
3.2.10.1.	Mains rectifier and ripple eliminator	74	
3.2.10.2.	Switching series regulator	74	
3.2.10.3.	Chopper circuit	75	
3.2.10.4.	Error sensing and regulator circuit	75	
3.2.10.5.	Current limiting circuit	76	
3.2.10.6.	Switching-on voltage-sensing circuit	76 76	
3.2.10.7.	Secondary supply voltages		
3.2.10.8.	Mains triggering opto-isolator	76 76	
3.2.11.	Optional MTB gate output, DTB gate output and external Z modulation	76 77	
J.Z.11.	Optional Wild gate output, Did gate output and external 2 modulation	77	
3.3.	Dismantling the instrument	79	
3.3.1.	General information		
3.3.7. 3.3.2.		79 70	
	Instrument cover plates and screen bezel	79 70	
3.3.3.	Removing the knobs	79	
3.3.4.	Time-base and X amplifier circuit board	79	
3.3.5.	Z Amplifier circuit board	82	
3.3.6.	Intermediate amplifier circuit board	82	
3.3.7.	Final Y amplifier circuit board	82	
3.3.8.	2kV Convertor	82	
3.3.9.	8kV Multiplier	82	
3.3.10.	Power supply circuit board	82	
3.3.11.	Delay line	83	
3.3.12.	Cathode ray tube	83	
3.3.13. ·	Push-button switches	83	
3.3.14.	Trigger source unit	84	
3.3.15.	Attenuator unit	84	
3.3.16.	Carrying handle	84	
3.3.17.	Special tools	84	
3.3.18.	Soldering micro-miniature semi-conductors	86	
3.4.	Survey of adjusting elements and auxiliary equipment	87	
3.5.	Test and repair hints	95	
3.5.1.	Control settings for waveforms	95	
3.5.2.	General information	95	
3.5.3.	Y-amplifier	95	

3.5.4.	Time-base and X-amplifier	95
3.5.5.	Instability	96
3.6.	Maintenance	96
3.7.	Checking and adjusting	97
3.7.1.	Performance check	97
3.7.1.1.	Preliminary control settings	97
3.7.1.2.	Cathode-ray tube	97
3.7.1.3.	Vertical axes	97 99
3.7.1.4.	Main time-base generator	101
3.7.1.5.	Delayed time-base generator	102
3.7.1.6.	X Deflection	103
3.7.1.7.	Mains voltage fluctuations	103
3.7.2.	Adjusting procedure	103
3.7.2.1.	Preliminary control settings	104
3.7.2.2.	Power supply	104
3.7.2.3.	Checking procedure	106
3.7.2.4.	Waveforms in the power supply	108
3.7.3.	Cathode ray tube circuit Trace rotation	, , ,
	Brilliance	
	Brilliance ratio	
	Focus and astigmatism	
	Geometry	
3.7.4.	Vertical deflection	108
G.7	Input attenuators	
	DC/0 balance	
	Attenuator balance	
	Variable gain balance	
	20kHz square wave response	
	100kHz square wave response	
	Input capacitance adjustment	
3.7.5.	Intermediate and final Yamplifier	110
	Gain channel A (B)	•
	Polarity balance channel B	
	Square wave response channel A (B)	111
3.7.6.	Triggering (M.T.B.)	111
3.7.7.	Horizontal deflection	111
	Main time base:	
	Stability	
	Time coefficients	
	Linearity and horizontal positioning	
	Gain adjustment	
	DC output level adjustment	
	Delayed time base:	
	Stability Time coefficients	
	Delay time	
	Delay time Delay time-calibration	
	X deflection with the mains signal	
3.7.8.	Calibration unit	114
5,7,0,	Summation diffe	
3.8.	Parts lists	114

FIGURES

1.1.	Portable 50MHz dual-trace oscilloscope PM3240	9
1.2.	Derating of the maximum permissible input voltage as a function of frequency	15
1.3.	Typical trigger sensitivity of channel A as a function of frequency	15
2.1.	Rear view of the instrument	16
2.2.	Removing the front cover	16
2.3.	Front view of the instrument	19
2.4.	Scanning the waveform by means of the LEVEL potentiometer	24
3.1.	Block diagram	61
3.2.	Unit location, top view	81
3.3.	Unit location, bottom view	81
3.4.	Removing the knobs	79
3.5.	Replacing a switch-segment of a push-button set	83
3.6.	Push-button set clamping device	83
3.7.	Tool for attenuator switches	85
3.8.	Tool for Position and Level potentiometers	85
3.9.	Dimensional drawings SOT - 23 and SOT - 43	86
3.10.	Adjustments points, top view	90
3.11.	Adjustments points, bottom view	91
3.12.	Effective signal delay	99
3.13.	Phase difference in X-Y mode	103
3.14.	Waveforms in the power - supply unit	107
3,15.	Mechanical parts, front view	138
3.16.	Mechanical parts, rear view	138
3.17.	Mechanical parts, top view	140
3.18.	Mechanical parts, bottom view	140
3.19.	Electrical item numbers, front panel	142
3.20.	Y-attenuator p.c. board	144
3.21.	Y-attenuator circuit diagram	145
3.22.	Y-attenuator assembly	145
3.23.	Intermediate Y amplifier p.c.board	147
3.24.	Circuit diagram intermediate Y amplifier	150
3.25.	Circuit diagram channel selection logic	151
3.26.	Final Y amplifier p.c. board	152
3.27.	Circuit diagram final Y amplifier	154
3.28.	Trigger unit p.c. board	156
3.29.	Circuit diagram trigger unit	158
3.30.	Circuit diagram time base unit	159
3.31.	Time base and X-amplifier p.c. board	162
3.32.	Circuit diagram X-amplifier	163
3.33.	Main time base switch	166
3.34.	Delayed time base switch	167
3.35.	Z unit and calibration unit p.c.board	168
3.36.	Delay time calibration p.c.board	168
3.37.	Circuit diagram Z unit, calibration unit and illumination unit	170
3.38.	Circuit diagram E.H.T. converter	173
3.39.	E.H.T. converter p.c.board	173
3.40.	Power supply p.c. board	174
3.41.	Circuit diagram power supply.	176
3.42.	Dummy load for power supply	177
3.43.	Cable lay-out, top view	178
3.44.	Cable lay-out, bottom view	179
3.45.	Cable lay-out, rear view	180
3.46.	Lay-out of additional p.c. board	180
3.47.	Location of the additional p.c. board	181
3.48.	Circuit diagram of additional unit MTB and DTB gate out and external Z-modulation	18

INHALT

BEDIENUNGSANLEITUNG

1.	ALLGEMEINES	25
1.1.	Einleitung	25
1.2.	Technische Daten	26
1.2.1.	Eiektronenstrahlröhre	26
1.2.2.	Vertikale oder Y-Achse	26
1.2.3.	Horizontale oder X-Achse	27
1.2.4.	Hauptzeitablenkung	27
1.2.5.	Verzögerte Zeitablenkung	28
1.2.6.	X-Ablenkung	28
1.2.7.	Triggerung der Hauptzeitablenkung	29
1.2.8.	Triggerung der verzögerte Zeitablenkung	29
1.2.9.	Kalibriereinheit	29
1.2.10.	Stromversorgung	29
1.2.11.	Umgebungseigenschaften	30
1.2.12.	Mechanische Daten	30
1.2.13.	Zubehör	30
2.	GEBRAUCHSANLEITUNG	33
2.1.	Inbetriebnahme	33
2,1.1.	Frontdeckel	33
2.1.2.	Netzspannungseinstellungen und Sicherungen	33
2.1.3.	Erdung	33
2.1.4.	Einschalten	33
2.2.	Bedienungsanleitung	34
2.2.1.	Bedienungsorgane und Buchsen	34
2.2.2.	Grundeinstellungen	38
2.2.3.	Eingänge A und B und ihre Möglichkeiten	38
2.2.4.	Triggerung	39
2.2.5.	Dehnung der Zeitablenkung	40
2.2.6.	Gebrauch der verzögerten Zeitablenkung	40
3.	SERVICEANLEITUNG (nur aufs Englisch)	
ABBILDUN	IGEN	
1.1.	Tragbarer Zweistrahl-Oszillograf PM3240	25
1.2.	Minderung der höchstzulässigen Eingangsspannung	31
1.3.	Typische Empfindlichkeit für interne Triggerung	31
2.1.	Rückansicht des Gerätes	32
2.2.	Abnehmen des Frontdeckels	32
2.3.	Vorderansicht des Gerätes	35
2.4.	Abtasten der Wellenform mittels des LEVEL Potentiometers	40

TABLE DES MATIERES

MODE D'EMPLOI

1.	GÉNÉRALITÉS	41
1.1.	Introduction	41
1.2.	Caractéristiques techniques	42
1.2.1.	Tube à rayons cathodiques	42
1.2.2.	Axe vertical ou Y	42
1.2.3.	Axe horizontal ou X	43
1.2.4.	Base de temps principale	43
1.2.5.	Base de temps retardée	44
1.2.6.	Déviation X	44
1.2.7.	Déclenchement de la base de temps principale	45
1.2.8.	Déclenchement de la base de temps retardée	45
1.2.9.	Unité d'étalonnage	45
1.2.10.	Alimentation	45
1.2.11.	Possibilités d'application en rapport avec l'environnement	45
1.2.12.	Caractéristiques mécaniques	46
1.2.13.	Accessoires	46
2.	MODE D'EMPLOI	49
2.1.	Installation	49
2.1.1.	Démontage et montage du couvercle frontal	49
2.1.2.	Adaptation à la tension secteur et fusibles	49
2.1.3.	Mise à la terre	49
2.1.4.	Enclenchement	49
2.2.	Utilisation	50
2.2.1.	Commandes et prises	50
2.2.2.	Réglages préliminaires	54
2.2.3.	Entrées A et B et leurs possibilités	54
2.2.4.	Déclenchement	55
2.2.5.	Agrandisseur de base de temps	56
2.2.6.	Utilisation de la base de temps retardée	56
3.	NOTICE DE SERVICE (seulement en anglais)	57
FIGURES		
HOORES		
1.1.	Oscilloscope double trace portatif PM3240	41
1.2.	Réduction de la tension d'entrée maximale admise	47
1.3.	Sensibilités typiques pour déclenchement	47
2.1.	Vue arrière de l'appareil	48
2.2.	Dépose du couvercle frontal	48
2.3.	Vue avant de l'appareil	51
2.4.	Analyse de la forme d'onde à l'aide du potentiomètre LEVEL	56

1. General information

1.1. INTRODUCTION

The PM 3240 Portable h.f. oscilloscope enables the measurement of signals at a high sensitivity (5 mV/DIV) over a large bandwidth (50 MHz).

There is a wide choice of display possibilities, such as one channel, two channels alternately or chopped, two channels added, with normal and inverted position for one input signal, and a main and delayed time-base.

The PM 3240 oscilloscope features a tapless power supply with low dissipation. This power supply works on any AC mains voltage between 90 V and 264 V, or any DC voltage between 100 V and 350 V, thus obviating the need of adjusting the instrument to the local mains voltage.

All these features make the oscilloscope suitable for a wide variety of applications.

Fig. 1.1. Portable 50MHz dual-trace oscilloscope PM 3240

1.2. **CHARACTERISTICS**

This instrument has been designed and tested according to IEC Publication 348 for Class I instruments and has been supplied in a safe condition. The present Instruction Manual contains information and warnings which shall be followed by the purchaser to ensure safe operation and to retain the instrument in a safe condition.

This specification is valid after the instrument has warmed up for 30 minutes. Properties expressed in numerical values with tolerances stated, are guaranteed by the manufacturer. Numerical values without tolerances are typical and represent the characteristics of an average instrument.

Designation		Specification	Additional information
1.2.1.	C.R.T.		
	Туре	PHILIPS D14-125 GH/37	Rectangular tube face, mesh type, post-accelerator, metal-backed phosphor
	Measuring area	80 mm x 100 mm	
	Screen type	P31 (GH) phosphor	P7 (GM) phosphor optional
	Photographic writing speed	> 750 cm/μs	Measured with Steinheil Oscillophot M5 camera. Aperture: 1:1,2 Object to image ratio: 1:0,5 Film: Polaroid 410 (10000 ASA) No pre-fogging Phosphor type P31 (GH)
	Total acceleration voltage	10 kV	
	Graticule	Internal	Continuously variable illumination
	Engravings	Centimetre divisions with sub- divisions of 2 mm along the central axes. Dotted lines indicate 10 % and 90 % of measuring lattice for measurement of rise time	
1.2.2.	VERTICAL OR Y AXIS		
1.2.2.1.	Response		
	Frequency range	d.c 50 MHz 10 Hz 50 MḤz	–3 dB bandwidth d.c. coupled–3 dB bandwidth a.c. coupled
	Rise time	≈ 7 ns	
	Overshoot	± 2 %	Measured with a test pulse of 6 DIV, rise time 2 ns, frequency 1 MHz.
1.2.2.2.	Deflection coefficients	5 mV/DIV 2 V/DIV	Nine calibrated positions in 1-2-5 sequence. Uncalibrated continuous control 1 : \geq 2,5
1.2.2.3.	Error limit	± 3 %	
1.2.2.4.	Max. permissible input voltage	± 400 V	d.c. + a.c. peak. Up to 20 mV position of input attenuator derating at frequencies over 500 kHz. See Fig. 1.2.
1.2.2.5.	Instability of the spot position		
	d.c. drift	< 0,3 DIV/h	At 20 ^o C in position 5 mV/DIV
	Temperature drift	< 60 μV/ ^O C	Typical value

Designation	Specification	Additional information
1.2.2.6. Maximum deflection		
Undistorted	24 DIV ≥ 6 DIV	For sine waves up to 15 MHz For sine waves up to 50 MHz
Shift range	16 DIV	8 divisions each in topward and downward direction reckoned from the central horizontal graticule line
1.2.2.7. Input impedance	1 MOhm//15 pF	
1.2.2.8. Input RC time	≈ 22 ms	Coupling switch to AC
1.2.2,9. Visible signal delay	Approximately 20 ns	
1.2.2.10. Display modes	Channel A only Channel ±B only Channels A and ±B chopped Channels A and ±B alternate Channels A and ±B added	
1.2.2.11. Chopper frequency	≈ 1 MHz	
1.2.2.12. Cross-talk between channels	1 : 500	2 divisions of signal amplitude at 50 MHz on one channel set to .2 V/DIV. Cross-talk is measured on other channel set to 20 mV/DIV.
1.2.2.13. Common-mode rejection factor	100 at 1 MHz	Measure with +A and —B added, after adjustment: max. common mode signal 8 divisions
1.2.3. HORIZONTAL OR X AXIS		
1.2.3.1. Display modes	 Main time base Main time base intensified by delayed time base Delayed time base XY Operation 	X deflection by: - Channel A signal - Channel B signal - Signal applied to EXT connector of main time base - Mains frequency
1.2.4. MAIN TIME BASE		
1.2.4.1. Operation	Automatic Triggered Single shot	Possibility of automatic free-running in the absence of triggering signals
1.2.4.2. Time coefficients	0,5 s/DIV 50 ns/DIV	Twenty-two calibrated positions on 1-2-5 sequence. Uncalibrated continuous control $1:\geq 2,5$ between the steps
1.2.4.3. Coefficient error	±3 %	+5 $^{\rm O}$ C +40 $^{\rm O}$ C Sweep accuracy ±5 % in positions .5 and .2 s/DIV, and .1 and .05 μ s/DIV.

Designation	Specification	Additional information
1.2.4.4. Expansion		
Magnification	5 x	Switched, calibrated
Additional error	±2 %	
Max. effective time coefficient	10 ns/DIV	
1.2.4.5. Variable hold-off time	The sweep hold-off time can be increased by at least a factor of 5.	
1.2.5. DELAYED TIME BASE		
1.2.5.1. Operation	Delayed time base starts at option either immediately after the delay time, or is triggerable after the delay time	
1.2.5.2. Time coefficient	1 ms/DIV 50 ns/DIV	Fourteen calibrated positions in 1-2-5 sequence. Uncalibrated continuous control $1:\geq 2,5$ between the steps
1.2.5.3. Coefficient error	±3 %	+5 $^{\rm O}$ C +40 $^{\rm O}$ C Sweep accuracy 5 % in positions .1 and .05 μ s/DIV
1.2.5.4. Delay time	Continuously variable between approx. 0,2 and 10x the time coefficient of the main time base by means of calibrated 10 turn dial knob.	Incremental error: ± 0,5 %.
1.2.5.5. Delay-time jitter	≤ 1 : 20 000	
1.2.6. X DEFLECTION		
X Deflection via channel ${\sf Y}_{\sf A}$ or ${\sf Y}$	YB	
1.2.6.1. Deflection coefficient	5 mV/DIV 2 V/DIV	Uncalibrated continuous control 2,5:1
1.2.6.2. Coefficient error	±10 %	
1.2.6.3. Bandwidth	0 1 MHz	-3 dB bandwidth over 8 DIV
1.2.6.4. Input impedance	1 MOhm//15 pF	
1.2.6.5. Phase difference	\leq 3° at 100 kHz	
External X deflection via EXT so	ocket	
1.2.6.6. Deflection coefficient	≤ 450 mV/DIV	Typical value 300 mV/DIV
1.2.6.7. Bandwidth	0 1 MHz	−3 dB bandwidth over 8 DIV
1.2.6.8. Input characteristics	Identical to Y channels	
1.2.6.9. Phase difference	\leq 3° at 100 kHz	
X Deflection with internal voltage	ge at mains frequency	
	-	iusted to 8 DIV at a mains voltage of
1.2.7. TRIGGERING OF THE MAIN	TIME BASE	
1.2.7.1. Source	Internal from channel A Internal from channel B	Internally adjustable for different

Internal from mains

External source

Internally adjustable for different

mains voltages

Designa	ation	Specification	Additional information
1.2.7.2.	Mode	Automatic	Automatic free-run of the time base generator approx. 100 ms after disappearance of the trigger signal.
		Manual level	
4070	8	Single sweep	
1.2.7.3.		+ or –	
1.2.7.4.	Sensitivity	Internal ≤ 0,5 DIV External ≤ 150 mV	Typical 1/3 DIV Typical 100 mV
1.2.7.5.	Filter bandwidth	DC: 0 - 50 MHz LF: 0 - 50 kHz LF: 10 Hz - 50 kHz HF: 50 kHz - maximum	Typical —15 dB bandwidth —3 dB, internal —3 dB, external —3 dB, both internal and external
<i>1.2.7.6</i> .	Level range		
	Internal triggering External triggering	≥ 16 DIV ≥ 4,8 V	Typical 24 DIV Typical 7,2 V
1.2.7.7.	Input characteristics	Identical to Y channels	
1.2.8.	TRIGGERING OF THE DELAYE	D TIME BASE	
1.2.8.1.	Source	Internal from channel A Internal from channel B External	
	Other characteristics are identical t	o TRIGGERING OF THE MAIN TI	ME BASE.
1.2.9.	CALIBRATION UNIT		
1.2.9.1.	Output voltage	3 V _{p-p}	
	Output current	р-р 6 mA	
	Error limit	±1 %	Both voltage and current
1.2.9.4.	Frequency	2 kHz ±2 %	Down to reago una darrom
	Protection	The output is protected against continuous short-circuits	
1.2.10.	POWER SUPPLY		
1.2.10.1.	Mains voltages	AC: any voltage between 100 and 240 V (± 10 %)	All voltages in one range
		DC: any voltage between 100 and 350 V	
1.2.10.2.	Mains frequency	46 to 440 Hz, or d.c.	
1.2.10.3.	Power consumption	23 W	
1.2.11.	ENVIRONMENTAL CAPABILITI	ES	
	The environmental data are valid or procedure. Details on these proced-	nly if the instrument is checked in ac ures and failure criteria are supplied	cordance with the official checking on request by the PHILIPS organisation

The environmental data are valid only if the instrument is checked in accordance with the official checking procedure. Details on these procedures and failure criteria are supplied on request by the PHILIPS organisation in your country, or by N.V. PHILIPS' GLOEILAMPENFABRIEKEN, TEST AND MEASURING DEPARTMENT, EINDHOVEN, HOLLAND.

1.2.11.1. Ambient temperature	+5 °C +40 °C -10 °C +55 °C -40 °C +70 °C	Rated range of use Limit range of operation Storage and transport conditions
1.2.11.2. Altitude	5 000 m (15 000′) 15 000 m (45 000′)	Operating Not operating

Designation	Specification	Additional information
1.2.11.3. Humidity	The instrument meets the requirements of the IEC 68 Db recommendations	
1.2.11.4. Bump	1000 bumps of 10 g, $\frac{1}{2}$ sine, 6 ms duration, in each of 3 directions.	
1.2.11.5. Vibration	30 minutes in each of three directions, 10-150 Hz; 0.7 mm p-p and 5 g max. acceleration.	
1.2.11.6. Recovery time	30 minutes for normal operation	Coming from10 °C and going to +20 °C at 60 % relative humidity
1.2.11.7. Electromagnetic interference	The instrument meets the VDE, Störgrad K, requirements	
1.2.12. MECHANICAL DATA		
1.2.12.1. Dimensions	Length 410 mm (16 1/4'') Width 316 mm (12 1/4'') Height 154 mm (6 1/8'')	Excl. controls, cover and feet

8,4 kg (185 LBS)

1.2.13. ACCESSORIES

1.2.12.2. Weight

1.2.13.1.Accessories delivered with the instrument

Two contrast filters, one installed, one supplied Front cover with storage space for accessories Collapsible viewing hood PM 9366 BNC-banana adaptor PM 9051 Cal. terminal to BNC adaptor Operating and service manual

1.2.13.2.Optional accessories

PM 8921	Passive probe set 1:1 (1,5m)
PM 8921 (L)	Passive probe set .1:1 (2,5m)
PM 8927	Passive probe set 10 : 1 (1,5m)
PM 8927 (L)	Passive probe set 10: 1 (2,5m)
PM 8932	Passive probe set 100 : 1 (1,5m)
	max. voltage 5600V
PM 8940	High voltage insulation amplifier for floating measurements at 650V rms
PM 8943	FET probe 1 : 1 -10 : 1 -100 : 1 -650MHz 3,5pF (1,5m)
PM 9355/01	Current probe 12Hz 70MHz.
PM 8960	19 ''RACK mount adapter
PM 8994	Set of accessories for probes
PM 8992	Accessory pouch
PM 9380	Oscilloscope camera
PM 8971	Camera adapter
PM 8910	Polaroid anti-glare filter
PM 9366	Collapsible viewing hood
PM 8980	Long type viewing hood
PM 8901	Battery Pack 24V dc and 330V dc
PM 8991	Oscilloscope trolley

Fig. 1.2. Derating of the maximum permissible input voltage as a function of frequency

Fig. 1.3. Typical trigger sensitivity as a function of frequency

Fig. 2.1. Rear view of the instrument

Fig. 2.2. Removing the front cover

2. DIRECTION FOR USE

2.1. INSTALLATION

2.1.1. Front cover

Removing :

- Turn the knob in the centre of the cover a quarter of a turn anti-clockwise to the

UNLOCKED position. (see fig. 2.2.)

- Lift off the cover.

Fitting

 Align the key of the front cover locking knob with the slot in the text plate of the instrument.

Fit the cover over the front of the oscilloscope.

Press and turn the locking knob a quarter of a turn clockwise to the LOCKED position.

The room in the front cover is available to accommodate accessories such as probes, collapsible viewing hood and so on.

To open the front cover press both tongues of the locking device and lift the inner plate.

The carrying handle can be rotated by depressing the pushbuttons located on its pivots.

Warning:

Before any connection is made to the instrument, the protective earth terminal shall be connected to a protective conductor (see section EARTHING).

This instrument generates high voltages and should not be operated with the cabinet covers removed. The mains plug must be removed before attempting any maintenance work.

2.1.2. Mains voltage and fuse

The ability of the instrument to operate at any mains voltage between 90V and 264V a.c. or between 100V and 350Vd.c. obviates the need of adaption to the local mains voltage.

The 1,6A delayed action fuse, which is located on the rear panel, is suited for all mains voltages. The use of repaired fuses and the short-circuiting of the fuse holder is dangerous and should be avoided.

2.1.3. Earthing

Before switching on, the instrument shall be connected to a protective earth conductor in one of the following ways:

Via the protective earth terminal at the rear (identified by the symbol $\frac{1}{=}$) or via the three-core mains lead, provided that the supply socket is equipped with an earth connection.

The protective action must not be negated by the use of an extension cable without a protective conductor.

Warning:

Any interruption of the protective conductor, either inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous Intentional interruption is prohibited. When an instrument is transferred from a cold to a warm environment condensation may cause a hazardous condition. Therefore, ensure that the earthing requirements are strictly observed.

2.1.4. Switching on

The POWER switch is incorporated in the graticule ILLUMination control on the front panel, immediately below the screen bezel. The oscilloscope must never be switched on whilst any circuit board has been removed. Never remove a circuit board until at least one minute after the oscilloscope has been switched off.

2.2. OPERATING INSTRUCTIONS

Before switching on, ensure that the oscilloscope has been correctly installed in accordance with section 2.1. INSTALLATION and that the precautions outlined have been observed.

2.2.1. Controls and sockets (fig. 2.3.)

2.2.1.1. Vertical channels

A/ALT/CHOP/ADD/R

A depressed

ALT depressed

CHOP depressed

ADD depressed

B depressed

POSITION

PULL TO INVERT B

AMPL./CAL. (blue)

BAL

(screw-driver operated)

GAIN

(screw-driver operated)

AC/0/DC

AC depressed

0 depressed

о обр. обоса

DC depressed

A 1 MOhm - 15 pF

B 1 MOhm - 15 pF

Display-mode controls; 5-way push-button switch.

Vertical deflection is achieved by the signal connected to the

input of channel A.

The display is switched over from one vertical channel to the

other at the end of every cycle of the time-base signal.

The display is switched over from one vertical channel to the

other at a fixed frequency.

Vertical deflection is achieved by the sum signal of channels

A and B.

Vertical deflection is achieved by the signal connected to the

input of channel B.

If no push-button is depressed, the instrument operates in the

A or B mode.

Continuously variable control giving vertical shift of the display.

Push-pull switch incorporated in the POSITION control for the

inversion of the signal polarity of channel B.

Step control of the vertical deflection coefficients; 9-way switch.

Continuously variable control of the vertical deflection

coefficients. In the CAL, position the deflection coefficient is

calibrated.

Continuously variable control of the direct voltage balance of

the vertical amplifiers.

Continuously variable control of the overall gain of the vertical

channels.

Signal coupling; 3-way push-button switch.

Coupling via a blocking capacitor

Connection between input circuit and input socket is

interrupted and the amplifier input is earthed

Direct coupling

No button depressed has the same effect as the AC button

depressed.

BNC input socket for channel A

BNC input socket for channel B

2.2.1.2. Horizontal channel

DEL'D TB - EXT, X DEFL - MAIN TB

DEL'D TB depressed

EXT. X DEFL depressed

Horizontal-deflection controls; 3-way push-button switch.

The horizontal deflection voltage is supplied by the delayed

time-base generator.

Horizontal deflection is achieved by an external signal applied to the input socket of the horizontal amplifier, by the channel A signal, by the channel B signal or by a mains-frequency signal.

MAIN TB depressed

POSITION

TB MAGN

2.2.1.3. Main time-base generator

LEVEL SLOPE

NOT TRIG'D

AUTO - TRIG - SINGLE
AUTO depressed

TRIG depressed SINGLE depressed

The horizontal deflection voltage is supplied by the main timebase generator.

A part of the trace is intensified when the delayed time-base is running. The delayed time-base generator is switched off when the DELD TIME/DIV switch is in position OFF'

No button depressed has the same effect as the MAIN TB button depressed.

Continuously variable control giving horizontal shift of the display; incorporates a push-pull switch which increases the horizontal deflection coefficient by a factor of 5. The magnifier is inoperative if an external X deflection signal is used.

Continuously variable control to select the level of the triggering signal at which the time-base generator starts.

This control incorporates a push-pull switch which enables choice of triggering on the positive- or negative-going edge of the triggering signal.

Pilot lamp which lights up when the time-base generator is not triggered.

Trigger-mode controls; 3-way push-button switch.

The main time-base generator is free-running in the absence of triggering signals.

The time-base generator is normally triggered.

After operating the SINGLE button, the time-base generator runs only once upon receipt of a trigger pulse.

If no button is depressed, the instrument operates in the SINGLE mode. If you do not obtain a display when the instrument is switched on and an input signal has been connected, check that the AUTO or TRIG push-button in the MTB compartment has been depressed.

Fig. 2.3. Front view of the instrument

TIME/DIV or DELAY TIME

Time-coefficient control of the main time-base; 22 way rotary

switch.

TIME/DIV - CAL (blue)

Continuously variable control of the time coefficient of the main

time-base.

In the CAL position the time coefficient is calibrated.

HOLD OFF

This control is used to increase the MTB sweep hold-off time.

It is calibrated (normal hold-off time) when turned fully clockwise.

Trigger coupling; 3-way push-button switch.

DC depressed

DC - LF - HF

Triggering signals are direct-coupled.

LF depressed

Coupling via low-pass filter for frequencies up to 50 kHz (for external triggering via band-pass filter of 10 Hz - 50 kHz).

HF depressed

Coupling via a high-pass filter for frequencies higher than 50 kHz. No push-button depressed has the same effect as button DC $\,$

depressed.

TRIG or X DEFL

Trigger source or external X deflection selector; 4-way push-button

switch.

A depressed

Internal triggering or X deflection signal derived from channel A.

B depressed

Internal triggering or X deflection signal derived from channel B. Triggering on external signal connected to the adjacent 1 MOhm-

15 pF socket.

EXT depressed

When the EXT X DEFL button of the horizontal deflection controls is depressed, this socket is connected to the input of the

horizontal amplifier.

MAINS depressed

Triggering or X deflection signal derived from an internal voltage

with the mains frequency.

No push-button depressed has the same effect as button A depressed.

1 MOhm - 15 pF

BNC socket for external triggering or horizontal deflection.

2.2.1.4. Delayed time-base generator

DELAY TIME

Continuously variable control of the delay time, operating together with the TIME/DIV controls of the main time-base

generator.

LEVEL SLOPE Continuously variable control to select the level of the triggering signal at which the delayed time-base generator starts. This control incorporates a push-pull switch which enables choice of triggering on the positive- or negative-going edge of the triggering signal.

TIME/DIV

Time-coefficient control of the delayed time-base; 15-way rotary

switch.

Incorporates an OFF position in which the delayed time-base

generator is switched off.

TIME/DIV - CAL (blue)

Continuously variable control of the time coefficient of the delayed time-base generator. In the CAL position the time

coefficient is calibrated.

DC - LF - HF

Trigger coupling; 3-way push-button switch.

DC depressed

Triggering signals are direct-coupled.

LF depressed

Coupling via low-pass filter for frequencies up to 50 kHz (for external triggering via band-pass filter of 10 Hz to 50 kHz).

HF depressed

Coupling via a high-pass filter for frequencies higher that 50 kHz.

No button depressed has the same effect as the DC button

depressed.

A - B - EXT - MAIN TB

Trigger source and starting point of the delayed time-base; 4-way

push-button switch.

A depressed

Triggerable, after delay time, on channel A signal.

B depressed

Triggerable, after delay time, on channel B signal.

EXT depressed

Triggerable, after delay time, on an external signal connected to

the adjacent 1 M Ω //15 pF socket.

MAIN TB depressed

Delayed time-base starts immediately after delay time.

1 MOhm - 15 pF

BNC input socket for external triggering signal.

2.2.1.5. Cathode-ray tube

ILLUM POWER Continuously variable control of the graticule illumination;

incorporates mains switch. Pilot lamp indicated the ON state, a few

seconds after switching on.

INTENS

Continuously variable control of the trace brilliance.

FOCUS

Continuously variable control of the electron-beam focusing.

2.2.1.6. Miscellaneous

CAL

Output socket on which a square-wave voltage of 3 V_{p-p} and a

current of 6 mA at a frequency of 2 kHz are available.

Amplitude accuracy: ±1 %. Frequency accuracy: ±2%.

The output is protected against continuous short-circuits.

Measuring-earth socket.

Fig. 2.3. Front view of the instrument

2.2.2. Preliminary settings

As the following settings are identical for both vertical channels, only the procedure for channel A has been indicated.

2.2.2.1. Adjusting the d.c. balance

- Operate push-button A of the display-mode controls.
- Operate push-button AUTO of the trigger-mode controls.
- Operate push-button A of the trigger-source controls.
- Operate push-button MAIN TB of the horizontal deflection controls.
- Set the AMPLitude switch to 5 mV and the continuous control to CALibrated.
- Centre the trace with the POSITION controls.
- Set the INTENSity and FOCUS controls for a sharp, well-defined trace.
 The controls not mentioned may occupy any position.
- Check that the trace does not jump when the AMPL switch is switched between the 5 and 10 mV positions.
 If necessary, readjust the BALance control on the front panel immediately below the AMPLitude control.

2.2.2.2. Adjusting the gain

Unless otherwise stated, the controls occupy the same position as in the previous adjusting procedure.

- Set the AC-0-DC switch to DC.
- Set the AMPLitude switch to .5 V and the continuous control to CALibrated.
- Connect the CALibration socket to the A input socket.
- Check that the trace height is exactly 6 divisions.
 If necessary, readjust the GAIN control on the front panel, immediately below the AMPLitude switch.

2.2.3. Inputs A and B and their possibilities

The oscilloscope has been provided with two identical channels, each of which can be used for either YT measurements in combination with one or both time-base generators, or XY measurements in combination with the external horizontal channel.

2.2.3.1. YT Measurements

To display one signal, either of the two vertical channels can be selected by operating either push-button A or push-button B of the display-mode controls.

When push-button ALT or CHOP is depressed, two different signals can be displayed simultaneously. The Y deflection coefficient and the polarity can be selected for each channel individually. When the ALT button is operated, the display is switched over from one channel to the other at the flyback of the time-base signal. Although the ALTERNATE mode can be used at all sweep speeds of the time-base generator, the CHOPPED mode will give a better display quality for long sweep times, because during these long sweep times the alternate display of the two input signals is clearly visible to the eye.

In the CHOPPED mode, the display is switched over from one channel to the other at a fixed frequency. If push-button ADDED of the display-mode switch is operated, the signal voltages of both vertical channels are added. Depending on the position of the channel B polarity switch, either the sum or the difference of the input signals is displayed.

2.2.3.2. XY Measurements

If push-buttons EXT X DEFL of the horizontal-deflection controls and A of the TRIG OR X DEFL controls are operated, the time-base generators are switched off. A signal applied to the vertical A channel is then used for horizontal deflection. The AC/0/DC switch and the step attenuator of channel A remain operative. Continuous control of the deflection coefficients is possible with the continuous control AMPL and horizontal trace shift with the X POSITION control.

Vertical channel B may also be used for X deflection.

To this end, the B button of the TRIG OR X DEFL controls is depressed.

It is also possible to use an internal voltage at the mains frequency or a signal applied to the EXT socket at the bottom right-hand side of the front panel for X deflection, after depressing the relevant push-button of the TRIG OR X DEFL controls.

2.2.3.3. AC/0/DC switch

The signals under observation are fed to input socket(s) A and/or B and the AC/0/DC switch is set to either AC or DC, depending upon the composition of the signal. As the vertical amplifier is d.c. coupled, the full bandwidth of the instrument is available and d.c. components are displayed as trace shifts in the DC position of the AC/0/DC switch.

This may be inconvenient when small signals superimposed on high d.c. voltages must be displayed. Any attenuation of the signal will also result in attenuation of the small a.c. component. The remedy is to use the AC position of the input switch, which employs a blocking capacitor, to suppress the d.c. component. Some pulse droop, however, will occur when I.f. square-wave signals are displayed.

The 0 position interrupts the signal and earths the amplifier input for quickly determining the 0 V level.

2.2.4. Triggering

If a signal must be displayed, the horizontal deflection must always be started on one fixed point of the signal in order to obtain a stationary display. The time-base generator is, therefore, started by narrow trigger pulses formed in the trigger unit and controlled by a signal originating from one of the vertical input signals, an internal voltage at mains frequency or an external source.

2.2.4.1. Trigger coupling

Three different trigger-coupling methods can be chosen with the DC/LF/HF switch. In the HF and LF positions, the transfer characteristic is limited (see also curve on page 15.)

In position DC the trigger signal is passed unchanged.

In position LF, a 0 Hz (10 Hz for external triggering) to 50 kHz band-pass filter is inserted. This position can be used to reduce interference from noise.

In position HF, a 50 kHz high-pass filter is inserted.

This position can be used to reduce interference from e.g. hum.

2.2.4.2. Selecting the trigger source and setting the trigger level

The trigger signal is obtained from channel A (button A depressed), channel B (button B operated), an external source (button EXT depressed) or from an internal voltage at mains frequency (button MAINS depressed). The trigger pulse shaper is a multivibrator switched by the output signal of a trigger amplifier.

The trigger signal, which is affected by the continuous AMPLitude control is, together with direct voltages which are adjustable with the LEVEL potentiometer, fed to the input of the trigger amplifier.

Depending on the LEVEL setting, a certain part of the trigger signal will be amplified by this amplifier.

The multivibrator is thus switched at a fixed point of the trigger signal (see fig. 2.4.). This means that, with the aid of the LEVEL control, it is possible to scan the shape of the trigger signal (in case of internal triggering A or B equal to the shape of the signal to be displayed) and, thus, to choose the point where the multivibrator will be switched.

The LEVEL potentiometer is fitted with a push-pull switch which allows selection of the trigger slope.

2.2.4.3. Automatic triggering

When the AUTOmatic button of the AUTO-TRIG-SINGLE switch is operated, and if there are no trigger pulses available, the time-base generator is automatically free-running.

The trace is, therefore, always visible. The AUTOmatic mode can be used in all cases where also the TRIG mode is usable, except with signal frequencies lower than 10 Hz or pulse trains with an off time exceeding 100 ms. As soon as trigger pulses are available, the free-running state of the time-base generator is automatically terminated and the time-base generator is triggered again as described in sections 2.2.4.1. and 2.2.4.2. When the TRIGgered or SINGLE button is operated, the auto-circuit is switched off. The LEVEL setting can also be used in the AUTOmatic mode.

2.2.4.4. SINGLE sweep triggering

When effects which occur only once have to be observed (usually photographed), it is often desirable to ensure that only one sawtooth is generated, even though several trigger pulses might be produced after the phenomenon of interest. Of course, the single sawtooth in question must be triggered by a trigger pulse. To this end, the SINGLE button must be pressed. The first trigger pulse that appears after the button has been released will start the time-base generator.

The time-base generator is then blocked until the SINGLE button is pressed again. The NOT TRIG'D lamp will light up as soon as the SINGLE button has been released, until the trigger pulse arrives.

Fig. 2.4. Scanning the waveform by means of the LEVEL potentiometer.

2.2.5. Time-base MAGNifier

The time-base magnifier is operated by a push-pull switch incorporated in the horizontal-POSITION control. If this switch is pulled to position x5, the sweep speeds of the main time-base generator are increased by a factor of 5. Thus, the portion of the signal displayed over a width equal to one division in the centre of the screen in the x1 position (T B MAGNifier depressed), will occupy the full width of the screen in the x5 position.

Any portion of the trace can be brought on to the screen by the horizontal-POSITION control for scrutinisation. In the x5 position, the time coefficient is determined by dividing the indicated TIME/DIV value by 5.

2.2.6. Use of the delayed time-base

The delayed time-base can be used for the accurate study of complex signals. When push-button MAIN TB of the delayed t.b. trigger-source controls is operated, immediately the delayed-time base is on (i.e. the TIME/DIV switch is not at OFF), a portion of the displayed signal is intensified in the MAIN TB position of the horizontal deflection controls. The DELAY TIME control enables this intensified portion to be shifted along the time axis. The duration of the intensified portion, its length, can be controlled in steps and continuously by means of the TIME/DIV controls of the delayed time-base generator. When push-button DEL'D TB of the horizontal deflection controls is operated, the intensified portion occupies the full width of the screen. In the DEL'D TB position, the delay time, (i.e. the interval between the starting point of the main time-base and the starting point of the delayed time-base) is determined by the settings of the main TIME/DIV controls and the DELAY TIME control.

If one of the other del'd t.b. trigger-source controls is operated, the delayed time-base is started by the first trigger pulse that occurs after the selected delay time. This trigger pulse is supplied by the trigger unit of the delayed time-base generator. This position is used when time jitter would otherwise give a blurred image of the detail under observation. This time jitter could be part of the signal being investigated or, at extreme magnifications, originate in the time-base circuits.

1. Allgemeines

1.1. EINLEITUNG

Der tragbare Oszillograf PM 3240 gestattet Messungen von Signalen bei hoher Empfindlichkeit (5 mV/Teil) über eine grosse Bandbreite (50 MHz).

Es gibt eine grosse Auswahl von Darstellungsmöglichkeiten. Es können ein oder zwei Kanäle dargestellt werden. Die Addition beider Kanäle ist ebenfalls möglich.

Durch die Invertierungsmöglichkeit einer Kanal können auch Differenzen gebildet werden. Der Oszillograf ist mit einer Hauptzeitablenkung und einer verzögerten Zeitablenkung ausgerüstet.

Der PM 3240 hat eine Speisung mit niedriger Verlustleisung, die bei jeder beliebigen Wechselspannung zwischen 90 und 264 V oder jeder beliebigen Gleichspannung zwischen 100 und 350 V, wodurch sich eine Einstellung auf die örtliche Netzspannung erübrigt.

Durch all diese Eigenschaften eignet sich der Oszillograf für einen grossen Einsatzbereich.

Abb. 1.1. Tragbarer Zweistrahl-Oszillograf PM 3240.

TECHNISCHE DATEN 1.2.

Temperatur Drift

Dieses Gerät ist gemäss IEC 348, Sicherheitsbestimmungen für elektrische Mess- und Regeleinrichtungen, gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Um diesen Zustand zu erhalten und einen gefahrlosen Betrieb sicherzustellen, muss der Anwender die Hinweise und Warnvermerke beachten, die in der vorliegenden Anleitung enthalten sind.

Diese Spezifikation gilt nach 30 Minuten Anwärmzeit des Gerätes. Zahlenwerte mit Toleranzengabe werden garantiert. Zahlenwerte ohne Toleranzangabe geben die Eigenschaften eines durchschnittlichen Gerätes an und sind nur zur Orientierung.

:	sind nur zur Orientierung.		
Benennu	ng	Beschreibung	Nähere Angaben
	ELEKTRONENSTRAHLRÖHRE Typ	PHILIPS D14-125GH/37	Rechteckiger Schirm, mit Netzelek- trode und Nachbeschleunigung, metallhinterlegter Leuchtschirm.
	Ausnutzbare Schirmfläche Schirmtyp	80 mm x 100 mm P31 (GH) Phosphor	P7 (GM) Phosphor auf Wunsch lieferbar
	Photografische Schreibge- schwindigkeit	> 750 cm/μs	Gemessen mit Steinheil Oscillophot M5 Kamera. Blende: 1:1,2 Bildausschnitt Verhältnis: 1:0,5 Film: Polaroid 410 (10000 ASA) Keine Vorbelichtung Phosphor Typ P31 (GH)
	Gesamte Beschleunigungsspannung	10 kV	Destarbalauchtung
	Raster	Intern	Stufenlos einstellbare Rasterbeleuchtung
	Einleitung	Zentimetereinteilung mit Untereinteilung von 2 mm an den mittleren Achsen. Gestrichelte Linien bei 10 % und 90 % des Messrasters, zur Messung von Anstiegzeiten	
1.2.2.	VERTIKALE ODER Y-ACHSE		
1.2.2.1.	Kennlinie Frequenzbereich	d.c 50 MHz 10 Hz 50 MHz	-3 dB, Gleichspannungskopplung-3 dB, Wechselspannungskopplung
	Anstiegzeit	≈ 7 ns	Gemessen mit Testpulse von 6 Teilen, Anstiegzeit 2 ns, Frequenz 1 MHz
	Überschwingen	±2 %	Neun kalibrierte Stellungen, Folge
1.2.2.2	. Ablenkkoeffizienten	5 mV/Teil 2 V/Teil	Neun kanbrierte Stehungert, Forson 1-2-5. Nicht kalibriert stufenlos einstellbar $1 : \ge 2,5$
1.2.2.3	3. Fehlergrenze	±3 %	a
1.2.2.4	4. Hochstzulässige Eingangsspannun	ng ±400 V	Gleichspannung + Spitzenwert einer Wechselspannung. Bis zur 20 mV Stellung des Eingangsabschwächers Minderung bei Frequenzen über 500 kHz. Siehe Abbildung 1.2.
1.2.2.	5. Instabilität des Leuchtflecks	<u>.</u> ' .	Bei 20 °C im Position 5 mV/Teil
	Gleichspannungsdrift	< 0,3 Teil pro Stunde	Typischer Wert

 $60 \, \mu \text{V}/^{\text{O}} \text{V}$

Typischer Wert

Benennung	Beschreibung	Nähere Angaben
1.2.2.6. Maximale Ablenkung		
Unverzerrt	24 Teile ≥ 6 Teile	Für seines förmige Wellen bis. 15 MHz Für seines förmige Wellen bis 50 MHz
Verschiebungbereich	16 Teile	8 Teile über und unter mittleren Rasterlinie.
1.2.2.7. Eingangsimpedanz	1 MOhm//15 pF	
1.2.2.8. Zeitkonstante der Eingangs- schaltung	ca. 22 ms	Kopplungsschalter auf AC
1.2.2.9. Sichtbare Signalverzögerung	ca. 20 ns	
1.2.2.10. Darstellungsmöglichkeiten	nur Kanal +A nur Kanal +B oder –B Kanäle A und ±B zerhackt Kanäle A und ±B abwechselnd Kanäle A und ±B addiert	
1.2.2.11. Chopperfrequenz	≈ 1 MHz	
1.2.2.12. Übersprechen zwischen Kanälen	1:500	2 Teile Signalamplitude bei 50 MHz auf einem Kanal, eingestellt auf 0.2 V/Teil. Übersprechen wird gemessen am anderen Kanal, eingestellt auf 20 mV/Teil.
1.2.2.13. Gleichtak tunterdrückung	100 bei 1 MHz	Gemessen mit +A und —B addiert; Max. Gleichtaktsignal 8 Teile
1.2.3. HORIZONTALE ODER X ACHS	E	
1.2.3.1. Darstellungsweisen	 Hauptzeitablenkung Hauptzeitablenkung aufgehellt durch verzögerte Zeitablenkung Verzögerte Zeitablenkung 	X Ablenkung durch:
	- XY-Betrieb	 Kanal A Signal Kanal B Signal Signal über EXT Anschluss der Hauptzeitablenkung Netzfrequenz
1.2.4. HAUPTZEITABLENKUNG		
1.2.4.1. Betriebsart	Getriggert Automatisch Einmalig	Automatischer Freilauf bei Abwesen- heit von Triggersignalen möglich
1.2.4.2. Zeitmassstäbe	0,5 s/Teil 50 ns/Teil	 In 22 Kalibrierten Stufen, Folge 1-2-5. Dazwischen stufenlos einstellbar 1 : ≥ 2,5 nicht kalibriert
1.2.4.3. Fehlergrenze des Zeitmassstabes		F 00 140 00
	±3 %	$+$ 5 °C $+$ 40 °C Zeitablenkungs-Genauigkeit \pm 5 % für Positionen 0,5 und 0,2 s/Teil und für 0,1 und 0,05 μ s/Teil

Benennung		Beschreibung	Nähere Angaben
1.2.4.4.	Anzeigendehnung		
	Dehnung	5 x	Geschaltet, kalibriert
	Zusätzliche Abweichung	±2 %	
	Kürzester Zeitmassstab	10 ns/Teil	
1.2.4.5.	Regelbare Sperrzeit	Die Hautpzeitbasis-Sperrzeit kann mindestens 5x erhöht werden.	
1.2.5.	VERZÖGERTE ZEITABLENKUI	NG	
1.2.5.1.	Betriebsart	Verzögerte Zeitablenkung startet nach Wahl, entweder sofort nach Ablauf der Verzögerungszeit oder nach Empfang des ersten Trigger- impulses nach Verstreichen der Verzögerungszeit	
<i>1.2.5.2</i> .	Zeitmassstäbe	1 ms/Teil 50 ns/Teil	In 14 kalibrierten Stufen (Folge 1-2-5). Dazwischen stufenlos einstellbar 1 : ≥ 2,5 nicht kalibriert.
<i>1.2.5.3.</i>	Fehlergrenze des Zeitmassstabes		
		±3 %	+ 5 °C +40 °C
		•	Zeitablenkungs-Genauigkeit 5 % für Position .1 und .05 ns/Teil.
1.2.5.4.	Verzögerungszeit	Stufenlos regelbar zwischen etwa 0,2 und 10x der Zeitkoeffizient der Hauptzeitablenkung mittels kalibrierte 10-Schlag Wahlknopf	Zusätzliche Fehler ± 0.5 %
1.2.5.5.	Verzögerungszeitjitter	≤ 1 : 20 000	
1.2.6.	X ABLENKUNG		
	X Ablenkung über Y _A oder Y _B		
1.2.6.1.	Ablenkkoeffizient	5 mV/Teil 2 V/Teil	Nicht kalibriert stufenlos einstellbar 1: ≥2.5
1.2.6.2.	Koeffizientabweichung	±10 %	
1.2.6.3.	Bandbreite	· 0 1 MHz	–3 dB Bandbreite über 8 Teile
1.2.6.4.	Eingangsimpedanz	1 MOhm//15 pF	
1.2.6.5.	Phasenverschiebung	≤ 3 ⁰ bei 100 kHz	
	Externe X Ablenkung über Buchse	EXT	
1.2.6.6.	Ablenkkoeffizient	≤ 450 mV/Teil	Typischer Wert 300 mV/Teil
1.2.6.7.	Bandbreite	0 1 MHz	−3 dB Bandbreite über 8 Teile
1.2.6.8.	Eingangscharakteristiken	Gleiche Werte wie Y Kanäle	
1.2.6.9.	Phasenverschiebung	≤ 3 ⁰ bei 100 kHz	

Benennung

Beschreibung

Nähere Angaben

X Ablenkung mit interner Spannung bei Netzfrequenz

Die Ablenkung ist von der Netzspannung abhängig und ist bei Lieferung auf 8 Teile bei einer Netzspannung von 220 V eingestellt.

1.2.7. TRIGGERUNG DER HAUPTZEITABLENKUNG

1.2.7.1. Triggerquelle

Intern von Kanal A Intern von Kanal B Intern von Netz Extern

1.2.7.2. Betriebsart

Automatische Triggerung

Automatischer Freilauf des Zeitablenkgenerators etwa 100 ms nach Verschwinden des Triggersignals.

Normale Triggerung Einmaliger Ablauf der Zeitablenkung

1.2.7.3. Triggerflanke

+ oder –

1.2.7.4. Triggerempfindlichkeit

Intern ≤ 0,5 Teil Extern ≤ 150 mV

Typischer Wert 1/3 Teil Typischer Wert 100 mV

1.2.7.5. Filterbandbreite

DC 0 - 50 MHz

Typischer Wert –15 dB Bandbreite –3 dB, Intern

LF: 0 - 50 kHz LF: 10 Hz - 50 kHz

-3 dB, Extern

HF: 30 kHz - maximum

-3 dB, Intern und Extern

1.2.7.6. Pegelbereich

≥ 16 Teile≥ 4,8 V

Typischer Wert 24 Teile Typischer Wert 7,2 V

1.2.7.7. Eingangscharakteristiken

gleicher Wert wie Y-Kanäle

1.2.8. TRIGGERUNG DER VERZÖGERTEN ZEITABLENKUNG

1.2.8.1. Triggerquelle

Intern von Kanal A Intern von Kanal B

Extern

Übrige Eigenschaften sind die gleichen wie bei TRIGGERUNG DER HAUPTZEITABLENKUNG

1.2.9. KALIBRIERUNGSEINHEIT

1.2.9.1. Ausgangsspannung

 $3 V_{ss}$

1.2.9.2. Ausgangsstrom

6 mA

1.2.9.3. Fehlergrenze

±1 %

Spannung und Strom

1.2.9.4. Frequenz

2 kHz ± 2 %

1.2.9.5. Sicherung

Der Ausgang ist gegen Dauerkurzschlüsse gesichert

1.2.10. STROMVERSORGUNG

1.2.10.1.Netzspannungen

Jede Wechselspannung zwischen

Alle Spannungen in einem Bereich

100 und 240 V (± 10 %). Jede Gleichspannung zwischen 100 und 350 V.

1.2.10.2. Netzfrequenz

46-440 Hz, oder Gleichspannung

1.2.10.3. Leistungsbedarf

23 W

Benennung Beschreibung Nähere Angaben

1.2.11. UMGEBUNGSEIGENSCHAFTEN

Die Umgebungsdaten gelten nur, wenn das Gerät gemäss dem offiziellen Prüfverfahren kontrolliert wird. Einzelheiten betreffend diese Verfahren sowie Funktionsstörungs-Kriterien sind auf Anfrage bei der PHILIPS-Organisation Ihres Landes oder bei N.V. PHILIPS' GLOEILAMPENFABRIEKEN, ABTEILUNG TEST- UND MESSGERATE, EINDHOVEN, HOLLAND erhältlich.

+5 °C...+40 °C Betrieb innerhalb Spezifikation 1.2.11.1. Umgebungstemperaturen Arbeitsbereich -10 °C...+55 °C -40 °C...+70 °C Lagerung und Transport Betriebsfähig 5000 m 1.2.11.2. Höhe nicht Betriebsfähig 15000 m Das Gerät entspricht den Anforderungen gemäss IEC 68 Db Standard 1.2.11.3. Feuchtigkeit 1000 Stösse von 10 g. 1/2 Sinus, Dauer 6 ms, in jeder 3 Richtungen 1.2.11.4. Stossfestigkeit 30 Minuten in jeder der drei Richtungen, 10-150 Hz; 0,7 mm (Spitze-1.2.11.5. Vibration Spitze) und 5 g maximale Beschleunigung.

1.2.11.16. Akklimationszeit 30 Minuten für Normalbetrieb

Kommend von -10 °C nach +20 °C bei 60 % relativer Feuchtigkeit

1.2.11.17. Störgrad Das Gerät entspr

Das Gerät entspricht den Anforderungen gemäss VDE Störgrad K.

1.2.12. MECHANISCHE DATEN

1.2.12.1. Abmessung

Länge 410 mm

Ohne Bedienungsorgane, Deckel

und Füsse

Breite 316 mm Höhe 154 mm

1.2.12.2. Gewicht

8,4 kg

1.2.13. ZUBEHÖR

1.2.13.1. Standardzubehör

Zwei Kontrastfilterscheiben, eine installiert und eine mitgeliefert.

Abdeckhaube mit Aufbewahrungsraum für Zubehör.

Faltbarer Lichtschutztubus PM 9366.

BNC Übergangsstecker PM 9501.

CAL Anschlussklemme - BNC Adapter

Anleitung

1.2.13.2.Wahlzubehör

1:1(1,5m) Passiver Messkopf PM 8921 1:1(2,5m) PM 8921 (L) Passiver Messkopf Passiver Messkopf 10:1 (1,5m) PM 8927 Passiver Messkopf 10:1 (2,5m) PM 8927 (L) Passiver Messkopf 100 ' 1 (1,5m) Höchstzulässige Spannung 5600V PM 8932 Hochspannungs issolation verstärker PM 8940 FET Messkopf 1:1 -10:1 -100:1 -650MHz, 3,5pF (1,5m) PM 8943 Strom Messkopf 12Hz 70 MHz PM 9355/01 19 " Gestelleinbau PM 8960 Zubehör für Messköpfe PM 8994 Zubehörtasche PM 8992 Oszillografkamera PM 9380 Adapter für Kamera PM 8971 Polaroidfilter PM 8910

PM 9366 Faltbarer Lichtschutztubus PM 8980 Langer Lichtschutztubus PM 8901 Batteriespeisung 330Vdc

PM 8991 Rollwagen

Abb. 1.2. Minderung der höchstzulässige Eingangsspannung als Funktion der Frequenz

Abb. 1.3. Typische Empfindlichkeit für Triggerung als Funktion der Frequenz

Abb. 2.1. Rückansicht des Gerätes

Abb. 2.2. Abnehmen des Frontdeckels

2. GEBRAUCHSANLEITUNG

2.1. INBETRIEBNAHME

2.1.1. Frontdeckel

Abnehmen

: - Den Knopf in der Mitte des Deckels eine viertel Umdrehnung nach links drehen

(Stellung UNLOCKED) (siehe Abb. 2.2.)

- Deckel abnehmen.

Aufsetzen

: - Den Verriegelungsknopf in Stellung UNLOCKED drehen.

- Deckel an der Vorderseite des Oszillografen befestigen.

- Knopf eindrücken und eine viertel Umdrehung nach rechts drehen (Stellung LOCKED)

Im Innern des Deckels kann Zubehör wie z.B. Messköpfe, faltbarer Lichtschutztubus usw. aufbewahrt werden. Die Platte im Innern des Deckels lässt sich durch Zusammendrücken der beiden Zungen an der Verrieglungsvorrichtung herausheben.

Der Handgriff lässt sich drehen, wenn die Druckknöpfe auf ihren Lagern eingedrückt werden.

Warnung

Vor Anschluss des Geräts muss die Erdschutzklemme mit einem Schutzleiter verbunden

werden (siehe Abschnitt "ERDEN).

In diesem Gerät werden hohe Spannungen erzeugt, deshalb darf es niemals in geöffnetem

Zustand eingeschaltet werden.

Vor Wartungsarbeiten ist der Netzstecker zu ziehen und ist darauf zu achten dass alle

Hochspannung führenden Teile entladen sind.

2.1.2. Netzspannung und Sicherung

Da das Gerät bei jeder Netzspannung zwischen 90V und 264V Wechselspannung oder zwischen 100V und 350V Gleichspannung betriebsfähig ist erübrigt sich das Umschalten auf die örtliche Netzspannung.

Die an der Geräterückwand vorhandenen Sicherung von 1,6A träge ist für alle Netzspannungen geeignet. Verwendung reparierter Sicherungen und das Kurzschliessen des Sicherungshalters ist gefährlich und daher unzulässig.

2.1.3. Erdung

Vor dem Einschalten muss das Gerät auf eine der folgenden Arten mit einem Erdschutzleiter verbunden werden. Aus Sicherheitsgründen muss der Oszillograf entweder über den Erdanschluss an der Rückseite (gekennzeichnet

1, oder über das dreiadrige Netzkabel, vorausgesetzt das Gerät wird an eine Schukosteckdose angeschlossen, geerdet werden.

Diese Schutzmassnahme darf nicht unwirksam gemacht werden, z.B. durch eine unvollkommene Verlängerungsleitung!

Warnung

Jede Unterbrechung des Schutzleiters innerhalb oder ausserhalb des Geräts ist aus

sicherheitsgründen unzulässig.

Wenn ein Gerät von kalter in warme Umgebung gebracht wird kann Kondensation einen gefährlichen Zustand verursachen. Deshalb ist darauf zu achten dass die

Erdungsvorschriften strikt befolgt werden.

2.1.4. Einschalten

Der Schalter POWER ist gekoppelt mit der Rasterbeleuchtungseinsteller ILLUM und befindet sich an der Vorderseite des Gerätes unter dem Bildröhrenrahmen.

Der Oszillograf darf niemals eingeschaltet werden, wenn eine Leiterplatte oder Baustein entfernt wurde. Eine Leiterplatte oder Baustein darf nicht früher als eine Minute nach Ausschaltung des Gerätes entfernt werden.

2.2. BEDIENUNGSANLEITUNG

Vor dem Einschalten ist zu kontrollieren, ob der Oszillograf gemäss Abschnitt 2.1. "INBETRIEBNAHME" angeschlossen ist, und ob die dort erwähnten Vorsorgemassnahmen beachtet wurden.

2.2.1. Bedienungsorgane und Buchesen (Abb. 2.3.)

2.2.1.1. Vertikalkanäle

A/ALT/CHOP/ADD/B Einstellung der Darstellungsarten, Drucktastenschalter mit

5 Stellungen.

A eingedrückt Vertikalablenkung durch Signal von Kanal A.

ALT eingedrückt Das Bild wird am Ende (jeder Periode) des Zeitablenksignales von

einem Vertikalkanal auf den anderen umgeschaltet.

CHOP eingedrückt Das Bild wird mit einer Festfrequenz von einem Kanal auf den

anderen umgeschaltet.

ADD eingedrückt Vertikalablenkung durch die Summe der Signale von Kanal A und B.

B eingedrückt Vertikalablenkung durch Signal von Kanal B.

Wird keine Taste eingedrückt ist die Betriebsweise des Gerätes wie

bei Einstellung A oder B eingedrückt.

POSITION Stufenlose Einstellung der vertikalen Lage des Bildes.

PULL TO INVERT B Zug-Druck Schalter zur Umkehrung der Signalpolarität Kanal B.

AMPL Stufenweise Einstellung der Vertikalablenkkoeffizienten. Wahlschalter

mit 9 Stellungen.

AMPL/CAL (blau) Stufenlose Einstellung der Vertikalablenkkoeffizienten.

In Stellung CAL ist der Ablenkkoeffizient kalibriert.

BAL Stufenlose Einstellung des Gleichspannungsgleichgewichtes des

(Schraubenziehereinstellung) Vertikalverstärkers.

GAIN Stufenlose Einstellung der Gesamtverstärkung der Vertikalkanäle.

(Schraubenziehereinstellung)

AC/0/DC Signalkopplung, Drucktastenschalter mit 3 Stellungen.

AC eingedrückt Kopplung über einen Sperrkondensator.

0 eingedrückt Verbindung zwischen Eingangsschaltung und Eingangsbuchse wird

unterbrochen und der Verstärkereingang geerdet.

DC eingedrückt Direkte Kopplung

Ist keine Taste eingedrückt so gilt Einstellung AC.

A 1 MOhm - 15 pF BNC Eingangsbuchse für Kanal A

B 1 MOhm - 15 pF BNC Eingangsbuchse für Kanal B

2.2.1.2. Horizontaler Kanal

DEL'D TB - EXT. X DEFL. - MAIN TB Einstellung der Horizontalablenkung, Drucktastenschalter mit 3

Stellungen.

DEL'D TB eingedrückt Die Horizontalablenkspannung wird vom verzögerten Zeitablenk-

generator geliefert.

EXT. X DEFL eingedrückt Horizontalablenkung durch das Signal von Kanal A, das Signal von

Kanal B oder durch ein Netzfrequenzsignal.

MAIN TB eingedrückt Horizontalablenkspannung wird vom Hauptzeitablenkgenerator

geliefert; ein Teil der Darstellung wird aufgehellt (Ausgenommen in Stellung OFF des TIME/DIV Schalters des verzögerten Zeitablenk-

generators).

Ist keine Taste eingedrückt so gilt Einstellung MAIN TB.

POSITION TB MAGN

Stufenlose Einstellung der horizontalen Lage des Bildes; gekoppelt mit einem Zug-Druck-Schalter der den Horizontalablenkkoeffizienten 5 mal steigert.

2.2.1.3. Hauptzeitablenkgenerator

LEVEL SLOPE

NOT TRIG'D

AUTO - TRIG - SINGLE

AUTO eingedrückt

TRIG eingedrückt

SINGLE eingedrückt

Stufenlose Einstellung des Triggersignalpegels bei welchem der Zeitablenkgenerator startet. Diese Einstellung ist gekoppelt mit einem Zug-Druck-Schalter zur Triggerungswahl auf der positiv oder negativ gerichteten Flanke des Triggersignales.

Signallampe leuchtet auf bei Wartestellung des Zeitablenkgenerators.

Triggerart-Einstellungen; Drucktastenschalter mit 3 Stellungen.

Liegt kein Triggersignal an so läuft der Hauptzeitablenker frei.

Der Zeitablenkgenerator wird auf normale Weise getriggert.

Nach Betätigung der Taste SINGLE, läuft der Zeitablenkgenerator nach Empfang eines Triggersignals nur einmal ab.

Abb. 2.3. Vorderansicht des Gerätes

TIME/DIV or DELAY TIME

Einstellung des Zeitkoeffizienten der Hauptzeitablenkung;

Drehschalter mit 22 Stellungen.

TIME/DIV-CAL (blau)

Stufenlose Einstellung des Zeitkoeffizienten der Hauptzeitablenkung.

Diese Einstellung ermöglicht Dehnung der Hauptzeitbasis-Sperrzeit.

In Stellung CAL ist der Zeitkoeffizient kalibriert.

HOLD OFF

(Regelbare Sperrzeit)

Sie ist kalibriert (normale Sperrzeit) wenn gedreht in Uhrzeigersinn.

DC-LF-HF

Triggerkopplung; Drucktastenschalter mit 3 Stellungen.

DC

Triggersignale direkt gekoppelt.

LF

Kopplung über Tiefpass für Frequenzen bis 50 kHz (für externe

Triggerung über einen Bandfilter von 10 Hz bis 50 kHz).

HF

Kopplung über Hochpass für Frequenzen über 50 kHz.

Ist keine Taste eingedrückt so gilt Einstellung DC.

TRIG oder X DEFL

Wähler für Triggerquelle oder externe X Ablenkung. Drucktasten-

schalter mit 4 Stellungen.

Α

Internes Trigger- oder X-Ablenksignal von Kanal A.

В **EXT** Internes Trigger- oder X-Ablenksignal von Kanal B.

Triggerung auf externes Signal über angrenzende 1 MOhm - 15 pF Buchse.

Durch eindrücken der Taste EXT X-DEFL der Horizontalablenkungs-Einstellung wird diese Buchse mit dem Eingang des Horizontalver-

stärkers verbunden.

MAINS

Triggerung- oder X-Ablenkungssignal von einer internen Spannung

mit der Netzfrequenz.

Ist keine Taste eingedrückt so gilt Einstellung A.

1 MOhm - 15 pF

BNC Buchse für externe Triggerung oder Horizontalablenkung.

2.2.1.4. Verzögerter Zeitablenkgenerator

DELAY TIME

Stufenlose Einstellung der Verzögerungszeit, wirkt zusammen mit

der TIME/DIV Einstellung des Hauptzeitablenkgenerators.

LEVEL

SLOPE

Stufenlose Einstellung zur Pegelwahl des Triggerungsignals, bei welchem der verzögerte Zeitablenkgenerator startet. Diese Einstellung

ist gekoppelt an einen Zug-Druck-Schalter zur Triggerungswahl auf der positiv oder negativ gerichteten Flanke des Triggersignals.

TIME/DIV

Einstellung des Zeitkoeffizienten der verzögerten Zeitablenkung.

Drehschalter mit 15 Stellungen.

In Stellung OFF wird die verzögerte Zeitablenkung abgeschaltet.

TIME/DIV - CAL (blau)

Stufenlose Einstellung des Zeitkoeffizienten der verzögerten Zeitablenkung. In Stellung CAL ist der Zeitkoeffizient kalibriert.

DC - LF - HF

Triggerkopplung; Drucktastenschalter mit 3 Stellungen.

DC

Triggersignale direkt gekoppelt.

LF

Kopplung über Tiefpass für Frequenzen bis 50 kHz (für externe

Triggerung über einen Bandfilter von 10 Hz bis 50 kHz).

HF

Kopplung über Hochpass für Frequenzen über 50 kHz.

Ist keine Taste eingedrückt so gilt Einstellung DC.

A - B - EXT - MAIN TB

Α

Internes Triggerungssignal von Kanal A.

В

Internes Triggerungssignal von Kanal B.

EXT

Triggerung auf ein externes Signal über angrenzende 1 MOhm - 15 pF

Triggerquellen Einstellungen; Drucktastenschalter mit 4 Stellungen

Buchse.

Ist keine Taste eingedrückt so gilt Einstellung A.

MAIN TB

Verzögerte Zeitablenkung startet gleich nach Ablauf der Verzögerungs-

zeit

1 MOhm - 15 pF

BNC Eingangsbuchse für externes Triggersignal.

2.2.1.5. Elektronenstrahlröhre

ILLUM

POWER

INTENS

FOCUS

Stufenlose Einstellung der Rasterbeleuchtung; zugleich Netzschalter.

Signallampe zeigt Betriebszustand (ON) an.

Stufenlose Einstellung der Helligkeit des Bildes.

Stufenlose Einstellung zur Fokussierung des Elektronenstrahls.

2.2.1.6. Verschiedenes

CAL

Ausgangsbuchse an der eine Rechteckspannung von 3 $\rm V_{SS}$ und ein Strom von 6 mA mit einer Frequenz von 2 kHz zur Verfügung steht.

Amplituden-Genauigkeit: ±1 %. Frequenz-Genauigkeit: ±2 %.

Der Ausgang ist gegen Dauerkurzschlüsse gesichert.

L

Messerde

Abb. 2.4. Vorderansicht des Gerätes

2.2.2. Grundeinstellungen

Da die folgenden Einstellungen für beide vertikale Kanäle gleich sind, ist nur die Vorschrift für Kanal A gegeben.

2.2.2.1. Einstellen Gleichspannungsgleichgewicht

- Drucktaste A des Darstellungsartenschalters betätigen.
- Drucktaste AUTO des Triggerartenschalters betätigen.
- Drucktaste MAIN TB des Horizontalablenkungsschalters betätigen.
- Schalter AMPL in Stellung 5 mV und stufenlosen Einsteller in Stellung CAL bringen.
- Bild mit Einsteller POSITION zentrieren.
- Mit Einstellern INTENS und FOCUS die Schärfe des Bildes regeln.
 Nicht erwähnte Einstellungen dürfen in jeder beliebigen Stellung stehen.
- Es ist darauf zu achten dass das Bild nicht springt, wenn der Schalter zwischen der 5- und 10 mV-Stellung betätigt wird.

Nötigenfalls Einstellung BAL an der Vorderseite unter dem Schalter AMPL erneut einstellen.

2.2.2.2. Verstärkungseinstellung

Falls nicht anders angegeben sind die Bedienungsorgane in den selben Stellungen wie in vorgehender Einstellvorschrift.

- Schalter AC-0-DC in Stellung DC.
- Schalter AMPL in Stellung .5 V und stufenlosen Einsteller in Stellung CAL.
- Buchse CAL mit Eingangsbuchse A verbinden.
- Prüfen ob die Bildhöhe 6 Teile beträgt.
 Nötigenfalls Einstellung GAIN unter dem Schalter AMP neu einstellen.

2.2.3. Eingänge A und B und ihre Möglichkeiten

Der Oszillograf besitzt zwei identische Kanäle, die entweder zusammen mit einem oder beiden Zeitablenkgeneratoren für YT Messungen, oder aber zusammen mit dem externen Horizontalkanal für XY Messungen verwendet werden können.

2.2.3.1. YT-Messungen

Zur Darstellung eines Signals ist einer der beiden Vertikalkanäle mit Taste A oder Taste B der Darstellungsartenschalter zu wählen.

Wird Taste ALT oder CHOP gedrückt, können zwei verschiedene Signale gleichzeitig abgebildet werden. Der Y-Ablenkkoeffizient und die Polarität können für jeden Kanal getrennt gewählt werden. Wird Taste ALT betätigt wird die Darstellung beim Rücklauf des Zeitablenksignals von einem Kanal auf den anderen umgeschaltet. Obwohl Stellung ALT für alle Ablenkzeiten verwendet werden kann, ergibt für lange Ablenkzeiten Stellung CHOPPED eine bessere Bildgüte, da das abwechselnde Darstellen der beiden Eingangssignale während dieser langen Ablenkzeiten deutlicher sichtbar ist.

In Stellung CHOPPED, wird die Darstellung mit einer Festfrequenz von einem Kanal auf den anderen umgeschaltet.

In Stellung ADDED des Darstellungsartenschalters werden die Signalspannungen der beiden vertikalen Kanäle addiert. Abhängig von der Stellung der Polaritätsschalter von Kanal B wird entweder die Summe oder die Differenz der Eingangssignale dargestellt.

2.2.3.2. XY-Messungen

Wenn Drucktaste EXT X DEFL des Horizontalablenkungsschalters und Taste A des TRIG OR X DEFL-Schalters eingedrückt sind ist der Zeitablenkgenerator ausgeschaltet. Ein Signal das über Kanal A zugeführt wird kann nur zur Horizontalablenkung verwendet werden. Der Schalter AC/0/DC und der Stufenabschwächer von Kanal A bleiben wirksam.

Einsteller X DEFL/HOLD OFF ermöglicht stufenlose Einstellung der Ablenkungskoeffizienten, für horizontale Verschiebung des Bildes wird Einsteller X POSITION verwendet.

Für X Ablenkung kann auch der vertikale Kanal B verwendet werden. In diesem Fall Taste B des TRIG OR X DEFL-Schalters eindrücken. Es ist ferner möglich eine interne Spannung der Netzfrequenz, oder ein Signal angelegt an die EXT Buchse (Vorderseite rechts unten), für die X-Ablenkung zu verwenden. Zu diesem Zweck die betreffende Drucktaste des TRIG OR X DEFL-Schalters eindrücken.

2.2.3.2. AC/0/DC Schalter

Die zu beobachtenden Signale sind an die Buchse (n) A und/oder B zu legen und der AC/0/DC Schalter abhängig von der Zusammensetzung der Signale auf AC oder DC zu stellen. Da der vertikale Verstärker gleichspannungsgekoppelt ist, ist die ganze Bandbreite des Gerätes verfügbar und die Gleichspannungskomponenten werden in Stellung DC des AC/0/DC-Schalters als Bildverschiebungen sichtbar.

Sind kleine Signale hohen Gleichspannungen überlagert kann dies störend sein. Jede Abschwächung des Signals verursacht auch eine Abschwächung der kleinen Wechselspannungskomponenten. In diesem Falle ist der Eingangsschalter in AC Stellung zu bringen wodurch ein Sperrkondensator die Gleichspannungs- und Niederfrequenz-Signale unterdrückt. Dies hat Dachschräge zur Folge bei Darstellungen von Niederfrequenzsignalen. Stellung 0 unterbricht das Signal und erdet den Verstärkereingang um den 0 V Pegel schnell bestimmen zu können.

2.2.4. Triggerung

Wenn ein Signal dargestellt werden soll, muss, um ein stillstehendes Bild zu erhalten, die Horizontalablenkung stets an einem festen Punkt des Signals gestartet werden.

Der Zeitablenkgenerator wird folglich von in der Triggereinheit erzeugten schmalen Triggerimpulsen gestartet und durch ein Signal gesteuert das entweder den vertikalen Eingangssignalen, einer internen Netzfrequenzspannung oder einer externen Quelle entstammen kann.

2.2.4.1. Triggerkopplung

Mit Schalter DC/LF/HF kann man drei verschiedene Triggerkopplungsarten wählen. In den Stellungen HF und LF ist die Übertragungscharakteristik begrenzt.

In Stellung DC wird das Triggersignal unverändert durchgelassen.

In Stellung LF wird ein 0 Hz (10 Hz bei externer Triggerung) bis 50 kHz Bandpass eingesetzt. Diese Stellung dient zur Verminderung von Störungen durch Rauschen.

In Stellung HF wird ein 50 kHz Hochpass eingesetzt. Diese Stellung kann zum Herabsetzen von Störungen durch Brummen verwendet werden.

2.2.4.2. Selektieren der Triggerquelle und Einstellen des Triggerpegels

Das Triggersignal kann von Kanal A (Taste A gedrückt), von Kanal B (Taste B gedrückt), von einer externen Quelle (Taste EXT gedrückt) oder einer internen Spannung mit Netzspannung (Taste MAINS gedrückt) entnommen werden.

Der Triggerimpulsformer ist ein zweifach gesteuerter Multivibrator, der von den Ausgangssignalen eines Differenzverstärkers gesteuert wird.

Das Triggersignal, das nicht vom stufenlosen Einsteller AMPL beeinflusst wird, wird zusammen mit Gleichspannungen die mittels Potentiometer LEVEL einstellbar sind, den Eingängen des Differenzverstärkers zugeführt.

Abhängig von der LEVEL Einstellung wird ein bestimmter Teil des Triggersignals durch den Differenzverstärker verstärkt.

Die Multivibrator ist somit auf einen festen Punkt des Triggersignals geschaltet (Abb. 2.4.). Das bedeutet, dass es mit Hilfe des Einstellers LEVEL möglich ist die Form des Triggersignals abzutasten (bei interner Triggerung A oder B gleich der Form des darzustellenden Signals) und somit den Punkt zu wählen, an dem der Multivibrator umgeschaltet wird.

Der Potentiometer ist mit einem Zug-Druck-Schalter versehen, der die Wahl der Triggerflanke erlaubt.

2.2.4.3. Automatische Triggerung

Wenn Taste AUT des AUTO-TRIG-SINGLE-Schalters gedrückt ist - und wenn keine Triggerimpulse vorhanden sind - ist der Zeitablenkgenerator automatisch freilaufend. Das Bild ist daher stets sichtbar. Die Stellung AUTO kann in allen Fällen verwendet werden in welchen auch Stellung TRIG anwendbar ist, ausgenommen bei Signalfrequenzen niedriger als 10 Hz oder Impulsreihen mit einer "AUS"-Zeit über 100 ms. Sobald Triggerimpulse vorhanden sind, wird der Freilauf des Zeitablenkgenerators automatisch beendet und der Zeitablenkgenerator erneut getriggert wie erwähnt in Abschnitt 2.2.4.1. und 2.2.4.2. Wird Taste TRIG oder Taste SINGLE eingedrückt ist die Automatik ausgeschaltet.

2.2.4.4. SINGLE-SWEEP-Triggerung

Wenn einmalige Vorgänge beobachtet (und in der Regel fotografiert) werden müssen, ist es oft wünschenswert dafür zu sorgen, dass nur ein Sägezahn erzeugt wird, selbst wenn möglicherweise nach Darstellung dieses Vorgangs mehrere Triggerimpulse erzeugt würden. Zu diesem Zweck Taste SINGLE eindrücken. Der erste Triggerimpuls, der nach Loslassen der gedrückten Taste erscheint, startet den Zeitablenkgenerator. Der Zeitablenkgenerator wird dann blockiert bis Taste SINGLE wieder betätigt wird. Die Lampe NOT TRIG'D leuchtet auf sobald Taste SINGLE losgelassen wird und erlischt erst wenn der Sägezahn beendet ist.

Abb. 2.4. Abtasten der Wellenform mittels des LEVEL Potentiometers.

2.2.5. Dehnung der Zeitablenkung

Die Dehnung der Zeitablenkung wird mit einem Zug-Druck-Schalter TB MAGN der an den Einsteller für horizontale POSITION gekoppelt ist, eingestellt. Wenn dieser Schalter in Stellung x5 gezogen ist wird ein 5 mal schnellerer Zeitmassstab des Hauptzeitablenkgenerators eingestellt. Folglich wird der Signalteil, welcher in der x1 Stellung (TB MAGN eingedrückt) über eine Breite von ein Teil (DIV) in der Schirmmitte dargestellt wird, in der x5 Stellung über die Gesamtbreite des Schirmes geschrieben.

Jeder Teil des Bildes kann mit dem horizontalen POSITION Einsteller zur genauen Beobachtung sichtbar gemacht werden.

In der x5 Stellung wird der Zeitkoeffizient durch Teilen des gegebenen Wertes TIME/DIV. durch 5 ermittelt.

2.2.6. Gebrauch der verzögerten Zeitablenkung

Die verzögerte Zeitablenkung kann zur genauen Beobachtung komplexer Signale verwendet werden. Wenn die Drucktaste MAIN TB der Triggerquellenschalter nach Einschalten des verzögerten Zeitablenkung (dass heisst TIME/DIV Schalter nicht in Stellung OFF) eingedrückt wird, wird sofort ein Teil des dargestellten Signals in Stellung MAIN TB des Horizontalablenkungs-Schalters zusätzlich aufgehellt. Mit dem DELAY TIME Einsteller ist dieser zusätzlich aufgehellte Teile über die Zeitachse verschiebbar. Die Zeitdauer dieses zusätzlich aufgehellten Teils ist mit den Einstellern TIME/DIV des verzögerten Zeitablenkgenerators sowohl stufenweise wie stufenlos einstellbar. Mit Drucktaste DEL'D TB des Horizontalablenkungs-Schalters wird der zusätzlich aufgehellte Teil über die gesamte Schirmbreite sichtbar gemacht. In Stellung DEL'D TB, wird die Verzögerungszeit (dass heisst die Zeit zwischen dem Startpunkt der Hauptzeitablenkung und dem Startpunkt der verzögerten Zeitablenkung) bestimmt durch die Einstellungen des Schalters TIME/DIV der Hauptzeitablenkung und die des DELAY TIME Einstellers.

Falls Taste A, B oder EXT. der Triggerquellenschalter ist gedrückt startet der erste Triggerimpuls nach der gewählten Verzögerungszeit die verzögerte Zeitablenkung. Die Triggereinheit des verzögerten Zeitablenkgenerators liefert diesen Triggerimpuls. Diese Stellung kommt zur Anwendung wenn durch Jitter eine undeutliche Darstellung zu beobachten ist. Dieses Jitter kann durch das beobachtende Signal selbst oder durch externe Dehnung in den Zeitablenkschaltungen entstehen.

1. Généralités

1.1. INTRODUCTION

L'oscilloscope portatif PM 3240 permet de mesurer des signaux de faible amplitude (5 mV/DIV) sur une gamme de fréquence étendue (50 MHz).

Il y a un large choix d'affichages possibles, tels que: l'une ou l'autre voie, deux voies alternées ou commutées, deux voies additionnées, en positions normales et inversées pour les deux signaux d'entrée, avec base de temps principale et retardée.

L'oscilloscope PM 3240 se caractérise par une alimentation à faible dissipation. Cette unité d'alimentation fonctionne pour une tension alternative comprise entre 90 et 264 V ou une tension continu comprise entre 100 et 350 V de sorte qu'il n'est pas nécessaire d'adapter l'appareil à la tension secteur locale.

Toutes ces caractéristiques donnent au présent oscilloscope une grande variété d'applications.

Fig. 1.1. Oscilloscope double trace portatif v.h.f. PM 3240.

1.2. CARACTERISTIQUES

Cet appareil a été conçu et testé conformément à la norme C.E.I. 348 pour appareils de classe I. A sa livraison il répond aux règles de sécurité. La présente notice comporte les informations et les avertissements nécessaires à l'utilisateur afin d'assurer le fonctionnement de l'appareil dans les conditions de sécurité et de le maintenir conforme à la norme.

Les spécifications sont valables après que l'appareil a été préchauffé pendant 30 minutes.

Les valeurs indiquées avec tolérance sont garanties. Les chiffres sans tolérance ne servent qu'à titre d'information et correspondent aux charactéristiques d'un appareil moyen.

Désignation		Spécification	Information supplémentaire			
1.2.1.	TUBE A RAYONS CATHODIQ	UES	om supplementaire			
	Туре	PHILIPS D14-125 GH/37	Tube à face rectangulaire, type domed mesh, post-accélérateur, couche phosphore doublée de métal			
	Aire de mesure	80 mm x 100 mm	prosprioro dodorec de metal			
	Type d'écran	Phosphore P31 (GH)	en option, couche phosphore P7 (GM)			
	Vitesse d'écriture photographique	e > 750 cm/μs	Mesuré avec un appareil photographique Steinheil Oscillophot M5 Ouverture: 1:1,2 Rapport objet/image: 1:0,5 Film: Polaroid 410 (10000 ASA) Pas de pré-voilage			
	Tension d'accélération totale	10 kV	Phosphore du type P31 (GH)			
	Graticule	Interne	Huminotion			
	Gravures	Divisions centimétriques avec subdivisions de 2 mm sur les axes centraux. Les lignes interrompues indiquent les points 10 % et 90 % pour la mesure du temps de montée.	Illumination continuellement variable			
1.2.2.	AXE VERTICAL OU Y					
1.2.2.1.	Bande passante					
	Gamme de fréquence	continu à 50 MHz 10 Hz 50 MHz	(-3 dB) largeur de bande en couplage continu (-3 dB) largeur de bande en couplage alternatif			
	Temps de montée	≈ 7 ns	Mesuré avec tension de bloque à 6 div.			
	Dépassement	±2 %	temps de montée 2 ns, frequenze 1 MHz			
1.2.2.2.	Coefficients de déviation	5 mV/DIV 2 V/DIV	en 9 positions étalonnées (progression 1-2-5) avec commande continue non-calibrée			
1.2.2.3. E	rreur limite	±3 %	1 : ≥ 2,5 par potentiomètre			
	Tension d'entrée maximale admise	±400 V	tension continue + tension alternative crête. Jusqu'à la position 20 mV de l'atténuateur d'entrée réduction de la tension d'entrée maximale admise à fréquences > 500 kHz Voir Fig. 1.2			
1.2.2.5.	Instabilité de la position du spot					
. (Dérive de trace	< 0,3 Div/h	A 20 ^o en position 5 mV/Div.			
I	-	< 60 μV/°C	Valeur typique			

0,5 et 0,2 s/div et 0,1 et 0,05 $\mu s/div$.

Désignation	Spécification	Information supplémentaire		
1.2.2.6. Déviation maximale				
Sans distorsion	24 divisions	Pour tensions sinusoidals jusqu'à 15 MHz		
	≥ 6 divisions	Pour tensions sinusoidals jusqu'à 50 MHz		
Gamme de décadrage	16 divisions	8 divisions vers le haut et vers la bas à partir de la ligne centrale horizontale du graticule		
1.2.2.7. Impédance d'entrée	1 MOhm//15 pF			
1.2.2.8. Constant de temps RC d'entrée	environ 22 ms	Commutateur de couplage en position AC		
1.2.2.9. Retard visible du signal	environ 20 ns			
1.2.2.10. Modes d'affichage	Voie A seulement Voie + ou —B seulement Voies A et ±B découpées Voies A et ±B alternées Voies A et ±B additionnées			
1.2.2.11. Fréquence de commutation	≈ 1 MHz			
1.2.2.12. Diaphonie entre voies	1:500	avec un signal de 2 divisions d'amplitude à 50 MHz sur une voie réglée sur 0,2 V/DIV. La diaphonie est mesurée sur l'autre voie réglée sur 20 mV/DIV		
1.2.2.13. Facteur de réjection en mode commun	100 à 1 MHz	En mode +A et —B additionés; signal max. en mode commun: 8 div.		
1.2.3. AXE HORIZONTAL OU X				
1.2.3.1. Modes de représentation	 Base de temps principale Base de temps principale intensifiée par base de temps retardée Base de temps retardée Fonctionnement XY 	Déviation X par: — le signal voie A — le signal voie B — le signal appliqué au connecteur EXT de la base de temps principale — la fréquence secteur		
1.2.4. BASE DE TEMPS PRINCIPALE				
1.2.4.1. Fonctionnements	Déclenché	En automatique, la base de temps est		
1.2.4.1. Fonctionnements	Automatique Balayage unique	en fonctionnement libre en l'absence de signaux de déclenchement		
1.2.4.2. Vitesses de balayage	0,5 s/div 50 ns/div	en 22 positions étalonnées (progression 1-2-5) Commande continue non-étalonnée 1 : ≥ 2,5 entre les échelons par potentiomètre		
1.2.4.3. Précision de mesure	±3 %	entre +5 °C et +40 °C précision ±5 % sur les positions		

+20 °C à 60 % d'humidité relative

1.2.11. POSSIBILITES D'APPLICATION EN RAPPORT AVEC L'ENVIRONNEMENT

Les données d'environnement ne s'appliquent que lorsque l'appareil est contrôlé conformément aux processus officiels. Pour plus de détails sur ces processus et les critères de panne, s'adresser à l'organisation Philips locale ou à N.V. Philips' Gloeilampenfabrieken, Test and Measuring Department, Eindhoven, Holland.

1.2.11.1. Température ambiante	+5 °C +40 °C -10 °C +55 °C -40 °C +70 °C	Gamme nominale d'utilisation Gamme limite de fonctionnement Gamme d'emmagasinage et de transport		
1.2.11.2. Altitude	5 000 m 15 000 m	Fonctionnement A l'arrêt		
1.2.11.3. Humidité	L'appareil répond aux normes lE	C 68 Db		
1.2.11.4. Choc	1000 chocs de 10 g, $\frac{1}{2}$ sinusoïde, durée 6 ms, dans chacune des directions			
1.2.11.5. Vibration	30 min. dans chacune des trois directions, 10-150 Hz; 0,7 mm crête-à-crête et 5 g accélération maximale.			
1.2.11.6. Temps de rétablissement	30 minutes (en fonctionnement	quand l'appareil passe de $-10~^{ m O}{ m C}$ à		

L'appareil répond aux normes VDE, Störgrad K

1.2.11.7. Perturbation electromagnétique

1.2.12. CARACTERISTIQUES MECANIQUES

1.2.12.1. Dimensions	Longueur 410 mm	Non compris commandes, couvercle		
		et pieds		

Largeur 316 mm Hauteur 154 mm

normal)

1.2.12.2. Poids 8,4 kg

1.2.13. ACCESSOIRES

1.2.13.1. Accessoires livrés avec l'appareil

2x Filtre de contraste, un instalé et un livré Couvercle frontal avec emplacements pour accessoires Visière pliante PM 9366 Adaptateur BNC-Banane PM 9051 Adaptateur CAL - BNC Notice d'emploi et d'entretien.

1.2.13.2.Accessoires en option

DV4 0004

PM 8921	Sonde passive [1:1(1,5m)
PM 8921 (L)	Sonde passive 1:1 (2,5m)
PM 8927	Sonde passive 10 : 1 (1,5m)
PM 8927 (L)	Sonde passive 10:1 (2,5m)
PM 8932	Sonde passive 100 : 1 (1,5m) haute tension 5600V
PM 8940	Amplificateur issolation haute tension
PM 8943	Sonde FET 1:1 -10:1 -100:1 -650MHz, 3,5pF (1,5m)
PM 9355/01	Sonde de courant 12Hz 70MHz
PM 8960	Adaptateur pour rack 19''
PM 8994	Accessoires pour sondes
PM 8992	Sac à accessoires
PM 9380	Caméra d'enregistrement
PM 8971	Adaptateur pour caméra
PM 8910	Filtre Polaroid
PM 9366	Visiére pliante
PM 8980	Visiére longue
PM 8901	Alimentation batteries 330Vdc.
PM 8991	Chariot

Fig. 1.2. Réduction de la tension d'entrée maximale admise

Fig. 1.3. Sensibilités typiques pour déclenchement interne et externe

Fig. 2.1. Vue arrière de l'appareil

Fig. 2.2. Dépose du couvercle frontal

2. MODE D'EMPLOI

2.1. INSTALLATION

2.1.1. Démontage et montage du couvercle frontal

Démontage

: - Tourner le bouton au centre du couvercle d'un quart de tour vers la gauche (position

UNLOCKED) (voir fig. 2,2,)

- Enlever le courvercle

Montage

: - Tourner le bouton de verrouillage vers position UNLOCKED

- Fixer le couvercle sur la partie avant de l'oscilloscope

- Enfoncer le bouton et le tourner d'un quart de tour vers la droite (position LOCKED)

Des accessoires telles que sondes, visière repliable et autres peuvent être stockés dans le couvercle frontal. Pour accéder à cet espace exercer une pression sur les pattes de l'unité de verrouillage et soulever la plaque.

Pour faire pivoter la poignée, il faut enfoncer les boutons-poussoirs aux étriers.

Attention

Avant de brancher l'appareil, la protection de terre doit être connectée à une connexion de terre. Le présent appareil produit des tensions élevées et ne peut donc pas être utilisé avec les plaques du châssis déposée. La fiche secteur doit être enlevée et tous les points haute tension déchargés avant de procéder à n'importe quel travail d'entretien.

2.1.2. Adaptation à la tension secteur et fusible

La capacité d'utilisation à toute tension secteur comprise entre 90 et 264V alternatif ou entre 100 et 350V continu supprime la nécessité d'adapter le PM3240 à la tension secteur locale.

Le porte-fusible monté sur le panneau arrière porte un fusible à action retardée de 1,6A. L'utilisation de fusibles réparés et le court-circuitage de porte-fusibles sont vivement déconseillés.

2.1.3. Mise à la terre

Avant toute mise sous tension, l'appareil doit être connecté à la terre de l'une des manières suivantes:

Par la borne de terre de l'appareil (symbole 📥).

Par la cordon secteur à trois conducteurs. La fiche secteur ne doit être introduite que dans une prise possédant un contact de terre. La mise à la terre ne doit pas être éliminée par l'emploi d'un câble prolongateur sans conducteur de terre.

Attention

: Toute interruption de la ligne de terre, à l'intérieur ou à l'exterieur de l'appareil ou le débranchement de la borne de terre peuvent rendre l'appareil dangereux. L'interruption intentionnelle est formellement interdite.

Lorsqu'un appareil passe d'un endroit froid à un endroit chaud, la condensation peut provoquer un certain risque. En conséquence, il faut appliquer strictement les prescription de mise à la terre.

2.1.4. Enclenchement

Le commutateur POWER est incorporé dans la commande d'illumination de graticule ILLUM (panneau avant), juste sous le bord de l'écran.

L'oscilloscope ne doit jamais être enclencé lorsqu'une platine ou un bloc a été enlevé. Ne déposer de platine ou de bloc qu'une minute au moins après la mise hors service de l'oscilloscope.

2.2. UTILISATION

Avant d'enclencher, l'appareil, s'assurer qu'il est installé conformément à la section 2.1. INSTALLATION et que les précautions requises ont êtê prises.

2.2.1. Commandes et prises (fig. 2.3.)

R

2.2.1.1. Voies verticales

Commandes du mode d'affichage; sélecteur à 5 boutons-poussoirs A/ALT/CHOP/ADD/B

La déviation verticale est obtenue seulement par le signal appliqué

à l'entrée de la voie A.

L'affichage est permuté d'une voie verticale à l'autre, et ce à la fin ALT

de chaque cycle du signal de base de temps.

L'affichage est permuté d'une voie verticale à l'autre à une fréquence CHOP

fixe.

La déviation verticale est obtenue par la somme des signaux A et B. ADD

La déviation verticale est obtenue seulement par le signal appliqué

à l'entrée de la voie B.

Si aucun bouton-poussoir n'est enfoncé, l'appareil fonctionne la

voie A seule ou la voie B seule.

Commande continuellement variable pour le positionnement **POSITION**

vertical des traces.

Commutateur push-pull pour l'inversion de la polarité de signal NORM/INVERT

d'entrée (seule voie B) PULL TO INVERT B

Commutateur à 9 positions des coefficients de déviation verticale. AMPL.

Commande continuellement variable des coefficients de déviation AMPL./CAL. (bleu)

verticale. En position CAL. le coefficient de déviation est étalonné.

Commande continuellement variable pour l'équilibrage en tension BAL (accessible par tournevis)

continue des amplificateurs verticaux.

Commande continuellement variable du gain des voies verticales.

(accessible par tournevis) Mode de couplage du signal d'entrée; commutateur à trois boutons-AC/0/DC

poussoirs.

Couplage par l'intermédiaire d'un condensateur de liaison. AC

La connexion entre l'entrée de l'amplificateur et la prise d'entrée 0

est interrompue et l'entrée de l'amplificateur est mise à la terre.

Couplage direct DC

Si aucun bouton n'est enfoncé, on obtient le même effet que

lorsque le bouton AC est enfoncé.

Prise d'entrée BNC pour voie A A 1 MOhm - 15 pF

Prise d'entrée BNC pour voie B B 1 MOhm - 15 pF

2.2.1.2. Voie horizontale

Commandes de la déviation horizontale; par commutateur à 3 DEL'D TB - EXT. X DEFL - MAIN TB boutons-poussoirs

> La déviation horizontale est fournie par le générateur de base de DEL'D TB

> temps retardée.

La déviation horizontale peut être obtenue par un signal d'origine EXT. X DEFL extérieure appliqué à la prise d'entrée de l'amplificateur horizontal, par le signal de voie A, par le signal de voie B ou par un signal à la fréquence du secteur.

MAIN TB

La tension de déviation horizontale est fournie par le générateur de

base de temps principale.

Une partie de la trace est intensifiée (sauf en position OFF du commutateur TIME/DIV du générateur de base de temps retardée). Si aucun bouton n'est enfoncé, on obtient le même effet que lorsque

le bouton MAIN TB est enfoncé.

POSITION TB MAGN Commande continuellement variable pour le positionnement horizontal des traces; cette commande comprend un commutateur push-pull que augmente le coefficient de déviation horizontale d'un facteur 5.

2.2.1.3. Générateur de base de temps principale

LEVEL

SLOPE

Commande continuellement variable pour sélectionner le niveau du signal de déclenchement, auquel le générateur de base de temps principale démarre. Cette commande comprend un commutateur push-pull, qui permet de déclencher sur le front positif ou négatif du signal de déclenchement.

NOT TRIG'D

Lampe témoin qui s'allume lorsque le générateur de base de temps

principale est en position d'attente.

AUTO - TRIG - SINGLE

Commande de mode de déclenchement; commutateur à trois

boutons-poussoirs.

AUTO

Le générateur de base de temps principale est en fonctionnement

libre en l'absence de signaux de déclenchement.

TRIG

Le générateur de base de temps est déclenché normalement.

SINGLE

Le générateur de base de temps ne démarre qu'une seule fois à la

réception d'une impulsion de déclenchement.

Si aucun bouton n'est enfoncé, l'appareil fonctionne en mode SINGLE.

Fig. 2.3. Vue avant de l'appareil

TIME/DIV or DELAY TIME

Commande de la vitesse de balayage de la base de temps principale;

commutateur rotatif à 22 positions.

TIME/DIV - CAL (bleu)

Commande continuellement variable de la vitesse de balayage de la base de temps principale. (En position CAL, la vitesse de balayage

est étalonnées).

HOLD OFF

(temps de blocage variable)

Cette commande est utilisée pour augmenter le temps de blocage du balayage de base de temps principale. Le temps de blocage est étaloné (temps de blocage normal) quand la commande est tournée

Choix du couplage de déclenchement: commutateur à 3 positions

complètement vers la droite.

DC - LF - HF

DC

Les signaux de déclenchement sont couplés directement.

LF Couplage par le filtre passe-bas pour des fréquences allant jusqu'à

50 kHz (de 10 Hz à 50 kHz pour déclenchement externe).

HF

Couplage par un filtre passe-haut pour des fréquences supérieures

Si aucun bouton-poussoir n'est enfoncé, on obtient le même effet

que si la touche DC était enfoncée.

TRIG ou X DEFL

Commutateur à 4 boutons-poussoirs qui permet de sélectionner ou la source de déclenchement ou la déviation X par une source extérieure

Signal de déclenchement interne ou de déviation X provenant de la

voie A.

R

Α

Signal de déclenchement interne ou signal de déviation X provenant

de la voie B.

EXT

Déclenchement par un signal externe appliqué à la prise adjacente

1 MOhm - 15 pF.

Lorsque le bouton EXT X DEFL des commandes de déviation horizontale est enfoncé, cette prise est connectée à l'entrée de

l'amplificateur horizontal.

MAINS

Signal de déclenchement ou de déviation X provenant d'une tension

interne à la fréquence du secteur.

Si aucun bouton-poussoir n'est enfoncé, on obtient le même effet

que si le bouton A était enfoncé.

1 MOhm - 15 pF

Prise BNC pour déclenchement externe ou déviation horizontale.

2.2.1.4. Générateur de base de temps retardée

DELAY TIME MULTIPLIER

Commande continuellement variable du temps de retard, utilisée en association avec les commandes TIME/DIV du générateur de base

de temps principale.

LEVEL SLOPE

Commande continuellement variable qui permet de sélectionner le niveau du signal de déclenchement auquel le générateur de base de temps retardée démarre. Cette commande comprend un commutateur push-pull qui permet de démarrer sur le front positif ou

négatif du signal de déclenchement.

TIME/DIV

Commande du coefficient de temps pour base de temps retardée;

commutateur rotatif à 15 positions.

Comprend une position OFF, grâce à laquelle le générateur de base

de temps retardée est déclenché.

TIME/DIV - CAL (bleu)

Commande continuellement variable du coefficient de temps de la base de temps retardée. En position CAL, le coefficient de temps

du commutateur est étalonné.

DC - LF - HF

Couplage de déclenchement; commutateur à 3 boutons-poussoirs.

Les signaux de déclenchement sont couplés directement. DC

Couplage par un filtre passe-bas pour les fréquences jusqu'à 50kHz LF

(pour le déclenchement par un signal exterieur, le filtre passe-bas

agit de 10Hz à 50kHz)

Couplage par un filtre passe-haut pour fréquences supérieure à 50kHz. HF

Si aucun bouton n'est enfoncé, on obtient le même effet que si le

bouton DC était enfoncé.

A - B - EXT - MAIN TB Commande de la source de déclenchement; commutateur à 4

boutons-poussoirs.

Signal de déclenchement interne prélevé de la voie A

Signal de déclenchement interne prélevé de la voie B

Déclenchement par application d'un signal externe à la douille **EXT**

adjacente 1 MOhm - 15 pF.

Si aucun bouton n'est enfoncé, on obtient le même effet que si le

bouton A était enfoncé.

Base de temps retardée est demarrée immédiatement après le temps

du retard.

Prise d'entrée BNC pour le signal de déclenchement externe. 1 MOhm - 15 pF

2.2.1.5. Tube à rayons cathodiques

Α

В

MAIN TB

Commande continuellement variable de l'illumination de graticule; ILLUM **POWER**

comprend le commutateur secteur. La lampe témoin indique la

position ON.

Commande continuellement variable pour la brillance de la trace. INTENS

Commande continuellement variable pour la focalisation du faisceau.

2.2.1.6. Divers

CAL

FOCUS

Prise de sortie sur laquelle une tension rectangulaire de 3 V_{CC} et un

courant de 6 mA sont disponibles à une fréquence de 2 kHz.

Précision d'amplitude: ±1 % Précision de fréquence: ±2 %

La sortie est protégée contre les courts-circuits continus.

Douille de terre de mesure

Fig. 2.3. Vue avant de l'appareil

2.2.2. Réglages préliminaires

Etant donné que les réglages suivants sont identiques pour les deux voies verticales, seul le processus pour la voie A est décrit.

2.2.2.1. Réglage de la balance continue

- Actionner le bouton-poussoir A des commandes de mode d'affichage.
- Actionner le bouton-poussoir AUTO des commandes de mode de déclenchement.
- Actionner le bouton-poussoir MAIN TB des commandes de déviation horizontale.
- Régler le commutateur AMPL sur 5 mV et la commande continue sur CAL (étalonnée).
- Centrer la trace avec la commande POSITION.
- Régler les commandes INTENS et FOCUS afin d'obtenir une trace nette et fine.
 Les commandes non-mentionnées peuvent occuper n'importe quelle position.
- Vérifier si la trace ne saute pas lorsque le commutateur AMPL est commuté entre les positions 5 et 10 mV.
 Au besoin, rajuster la commande BAL sur le panneau avant placée immédiatement sous la commande AMPL.

2.2.2.2. Réglage du gain

Sauf indications contraires, les commandes occupent la même position que pour le processus de réglage précédent.

- Régler le commutateur AC-0-DC sur DC.
- Régler le commutateur AMPL sur .5 V et la commande continue sur CAL (étalonnée).
- Connecter la prise d'étalonnage CAL à la prise d'entrée A.
- Vérifier si la hauteur de trace est exactement de 6 divisions.
 Au besoin, rajuster la commande GAIN sur le panneau avant, juste sous le commutateur AMPL.

2.2.3. Entrées A et B et leurs possibilités

L'oscilloscope est pourvu de deux voies identiques, toutes deux pouvant être utilisées soit pour des mesures YT avec un ou deux générateurs de base de temps, soit pour des mesures XY avec la voie horizontale externe.

2.2.3.1. Mesures YT

Pour afficher un signal d'une des voies verticales, il suffit d'actionner le bouton-poussoir A ou B des commandes de mode d'affichage.

Lorsque le bouton-poussoir ALT ou CHOP est enfoncé, deux signaux différentes peuvent être affichés simultanément. Le coefficient de déviation Y et la polarité peuvent être sélectionnées pour chaque voie séparément. Lorsque le bouton ALT est actionné, l'affichage est commuté d'une voie à l'autre au retour du signal de base de temps.

Quoique le mode ALTERNATE puisse être utilisé à toutes les vitesses de balayage du générateur de base de temps, le mode CHOPPED donne une meilleure qualité d'affichage pour des vitesses de balayage lents en effet pendant les temps de balayage longs, l'affichage alterné des deux signaux d'entrée est visible.

En mode CHOPPED, l'affichage est permuté d'une voie à l'autre à une fréquence fixe. Si le bouton-poussoir ADDED du commutateur de mode d'affichage est actionné, les signaux des deux voies verticales sont additionnées. En fonction des positions du commutateur de polarité de voie B, la somme ou la différence des signaux d'entrée est affichée. Le mode ADDED permet également des mesures différentielles.

2.2.3.2. Mesures XY

Si les boutons-poussoirs EXT X DEFL des commandes de déviation horizontale et A des commandes TRIG OR X DEFL sont actionnés, les générateurs de base de temps sont déconnectés. Un signal appliqué à la voie verticale A est alors utilisé pour la déviation horizontale. Le commutateur AC/0/DC et l'atténuateur par échelons de la voie A restent en service. La commande continue des coefficients de déviation est possible avec la commande X DEFL/HOLD OFF et le décadrage de la trace horizontale avec la commande X POSITION.

La voie verticale B peut également être utilisée pour la déviation X pour ce faire, le bouton B des commandes TRIG OR X DEFL doit être enfoncé.

Pour la déviation X, il est également possible d'utiliser une tension interne à la fréquence du secteur ou un signal extérieur appliqué à la douille EXT située sur la partie inférieure droite du panneau avant ceci, après avoir enfoncé le bouton-poussoir correspondant des commandes TRIG OR X DEFL.

2.2.3.3. Commutateur AC/0/DC

Les signaux observés sont appliqués aux prises d'entrées A et/ou B et le commutateur AC/0/DC est réglé soit sur AC soit sur DC en fonction de la composition du signal. Du fait que l'amplificateur vertical est couplé directement, tout la bande passante de l'appareil est disponible et le composantes continues sont affichées comme des décalages de trace en position DC du commutateur AC/0/DC. Ceci peut ne pas convenir lorsque de petits signaux superposés à des tensions continues doivent être représentés. Chaque atténuation du signal résulte en une atténuation de la petite composante alternative.

Le remède à cet état est d'utiliser la position AC du commutateur d'entrée, lequel comprend un condensateur de liaison servant à supprimer les signaux continus et basse fréquence. Lorsque des signaux rectangulaires à basse fréquence sont représentés, on obtient une certaine pente de toit.

En position 0 le signal est interrompu et l'entrée de l'amplificateur est mise à la terre, sur cette position, le niveau 0 V est rapidement déterminé.

2.2.4. Déclenchement

Lorsqu'un signal doit être représenté, la déviation horizontale doit toujours être démarrée à un point fixe du signal, et ce afin d'obtenir une trace stationnaire. Le générateur de base de temps est donc démarré par des impulsions de déclenchement étroites produites dans l'unité de déclenchement et commandé par un signal qui peut provenir: d'un des signaux appliques aux entrées verticales, d'une tension interne à la fréquence du secteur, ou une source extérieur.

2.2.4.1. Couplage de déclenchement

Trois méthodes de couplage de déclenchement sont possibles avec le commutateur DC/LF/HF. En positions HF et LF, la caractéristique de transfert est limitée.

En position DC, le signal de déclenchement reste inchangé.

En position LF, un filtre passe-bande de 0 Hz (10 Hz pour déclenchement externe) à 50 kHz est incorporé. Cette position peut être utilisée pour réduire l'interférence du bruit.

En position HF, un filtre passe-haut de 50 kHz est incorporé.

Cette position peut être utilisée pour réduire l'interférence du ronflement par exemple.

2.2.4.2. Sélection de la source de déclenchement et réglage du niveau de déclenchement

Le signal de déclenchement est obtenu à partir de la voie A (bouton A enfoncé), de la voie B (bouton B enfoncé), d'une source externe (bouton EXT enfoncé) ou d'une tension interne à la fréquence du secteur (bouton MAINS enfoncé).

Le conformateur d'impulsions de déclenchement est un multivibrateur à double commande commuté par les signaux de sortie d'un amplificateur différentiel.

Le signal de déclenchement, sur lequel la commande continue AMPL n'a pas d'effet, est appliqué aux entrées de l'amplificateur différentiel de concert avec les tensions continues réglables avec le potentiomètre LEVEL. En fonction du réglage LEVEL, une certaine partie du signal de déclenchement est amplifiée par l'amplificateur différentiel.

Le multivibrator est donc commuté à un point fixe du signal de déclenchement (voir fig. 2.4.). Ceci signifie que, s'aidant de la commande LEVEL, il est possible de suivre le signal de déclenchement (en cas de déclenchement interne A ou B égal à la forme du signal à représenter) et donc, de choisir le point où le multivibrateur sera commuté.

Le potentiomètre LEVEL est pourvu d'un commutateur push-pull qui permet la sélection de la pente de déclenchement.

2.2.4.3. Déclenchement automatique

Lorsque le bouton AUTO du commutateur AUTO - TRIG - SINGLE est enfoncé, et qu'aucune impulsion de déclenchement n'est disponible, le générateur de base de temps fonctionne librement.

La trace est alors toujours visible. Le mode AUTO peut être utilisé dans tous les cas où le mode TRIG est également applicable, à l'exception de signaux dont la fréquence est inférieure à 10 Hz et des trains d'impulsions ayant un temps supérieur à 100 ms.

Dès que des impulsions de déclenchement sont disponibles, le fonctionnement libre du générateur de base de temps est automatiquement achevé et le générateur est à nouveau déclenché comme décrit aux paragraphes 2.2.4.1. et 2.2.4.2.

Lorsque les boutons TRIG ou SINGLE sont actionnés, le circuit automatique est mis hors circuit. Le réglage LEVEL peut également être utilisé en mode AUTO.

2.2.4.4. Déclenchement du balayage en SINGLE

Lorsque des effets uniques sont observés (par photographie), il faut s'assurer qu'une seule dent de scie est engendrée, même si plusieurs impulsions de déclenchement doivent être produites après le phénomène en question. Il va de soi que la dent de scie simple en question doit être déclenchée par une impulsion de déclenchement. Pour ce faire, le bouton SINGLE doit être enfoncé. La première impulsion de déclenchement apparaissant après le relâchement du bouton démarre le générateur de base de temps, celui ci est alors bloqué jusqu'à ce que le bouton SINGLE soit enfoncé à nouveau. La lampe NOT TRIG'D s'allume dès que le bouton SINGLE est relâché, et ce jusqu'à la fin de la dent de scie.

Fig. 2.4. Analyse de la forme d'onde à l'aide du potentiométre LEVEL.

2.2.5. Agrandisseur de base de temps MAGN

L'agrandisseur de base de temps est actionné par un commutateur push-pull à deux positions incorporé dans la commande POSITION horizontale. Lorsque ce commutateur est tiré en position x5, les vitesses de balayage du générateur de base de temps principale sont augmentées d'un facteur 5. Donc, en x1, (TB MAGN enfoncé) la portion du signal affichée sur une largeur égale à une division au centre de l'écran ocuppe la largeur totale de l'écran en position x5. Chaque portion de la trace peut être raportée sur l'écran à l'aide de la commande de POSITION horizontale.

En position x5, le coefficient de temps est déterminé en divisant par 5 la valeur TIME/DIV.

2.2.6. Utilisation de la base de temps retardée

La base de temps retardée peut être utilisée pour l'étude précise de signaux complexes. Lorsque le bouton-poussoir MAIN TB du commutateur de la source de déclenchement est actionné, la base de temps retardée est immédiatement enclenchée (le commutateur TIME/DIV n'est par sur OFF) et une portion du signal affiché est intensifiée en position MAIN TB des commandes de déviation horizontale. La commande DELAY TIME permet de décaler cette partie intensifiée le long de l'axe des temps. La durée de cette portion intensifiée ainsi que sa longueur peuvent être commandées par échelons et ce de façon continue à l'aide des commandes TIME/DIV du générateur de base de temps retardée. Lorsque le bouton-poussoir DEL'D TB des commandes de déviation horizontale est enfoncé, la portion intensifiée occupe la largeur totale de l'écran. En position DEL'D TB, le retard (c.à.d., l'intervalle entre le point de démarrage de la base de temps principale et le point de démarrage de la base de temps retardée) est déterminé par les réglages des commandes TIME/DIV principales et de la commande DELAY TIME.

Lorsque le bouton A, B ourEXT. du commutateur de la source de déclenchement est enfoncé, la base de temps retardée est démarrée par la première impulsion de déclenchement qui apparaît le retard sélectionné. Cette impulsion de déclenchement est produite par l'impulsion de déclenchement du générateur de base de temps retardée. Cette position est utilisée pour éviter une instabilité de la base de temps, laquelle donne une représentation floue d'un détail. Cette instabilité peut fair partie du signal à analyser ou, pour des agrandissements extrêmes, être produite dans les circuits de base de temps.

3. Service manual

3.1. DESCRIPTION OF THE BLOCK DIAGRAM (Fig. 3.1)

3.1.1. General information

The PM 3240 oscilloscope comprises the following parts:

- a dual-channel vertical deflection system
- a main time-base
- a delayed time-base
- a switching unit
- an X amplifier
- a Z modulator and c.r.t. circuit
- e.h.t. supplies
- a stabilized power supply.

3.1.2. Dual-channel vertical deflection system (unit 2A, 2B, 12,4 and 13 of fig. 3.1.)

Both the A and B vertical channels are almost identical circuits.

Channel B has a switch facility for signal inversion. The input signal to each channel is fed via a three-position coupling switch AC/0/DC to the input attenuator. In the AC position a capacitor is switched in series with the signal path. In the 0 position the input signal path is interrupted and attenuator input is earthed.

The input attenuator, controlled by the AMPL switch via reed relays, enables the adjustment of the vertical deflection sensitivity in calibrated steps. This attenuator consists of a high and low impedance part separated by a low-drift impedance converter. The d.c. balance of the entire channel is set by a BAL potentiometer which compensates for the d.c. offset voltage of the impedance converter.

The output signal of the attenuator is, via a $50-\Omega$ -coaxial cable, applied to a pre-amplifier stage in the intermediate amplifier where it is transformed into a push-pull current signal. The GAIN control varies the emitter current of the following stage, which is direct-coupled to a cascode voltage amplifying stage. This cascode amplifier provides the following functions:

- a signal for the trigger preamplifier
- shift for the Y trace by means of the POSITION control
- electronic switching of the selected channel modes
- phase inversion of the B channel by means of the PULL TO INVERT B switch.

The channel selector enables or inhibits the Y-signals as dictated by the channel selection logic. In the A, B, and ADD modes the channel selector logic setting depends of the vertical-display mode switch. In the ALT mode the channel selector logic is controlled by pulses derived from the sweep-gating multivibrator of the main time-base generator. In this way, the complete signal trace of channel A and channel B are alternately displayed on the c.r.t. screen.

In the CHOP mode the channel selector control pulses are derived from an oscillator running at a fixed frequency of approximately 2 MHz. These pulses cause the electronic switch in the channel selector to be successively opened and closed so that portions of the signals of channel A and channel B are alternately displayed repetitively.

A common output for the A and B channels feeds the delay line, which delays the vertical signals sufficiently to permit the steep leading edges of fast signals to be displayed. A delay-line correction circuit compensates for the distortion introduced by the delay line. A final stage feeds the Y signals to the vertical deflection plates of the c.r.t.

3.1.3. Time-bases

3.1.3.1. Main time-base (unit 16 and 8 of fig. 3.1.)

The trigger source/X deflection selector receives its signal from one of four sources:

- either A or B vertical channel via its trigger preamplifier
- from the EXT input socket
- from the opto-isolator in the mains power supply.

Selection of these sources is by means of the four-pushbutton unit in this stage.

From the selector stage, the signal is fed to either the X preamplifier for horizontal deflection (when external X signal is employed), or the trigger amplifier for starting the time-base generator. The input of the trigger differential amplifier stage contains the control for selecting the input frequency range of the trigger circuit. The trigger LEVEL adjustment and SLOPE selection switch are also incorporated in this stage. The SLOPE selector switches the differential amplifier to invert the polarity of the trigger signal to enable triggering of the input signals on either positive- or negative-going slopes.

The output of the trigger amplifier is applied to the trigger multivibrator, which produces well-defined trigger pulses. These trigger pulses are used to switch the sweep-gating multivibrator and, when the AUTO pushbutton has been selected, for driving the automatic circuit.

The sweep-gating multivibrator controls the starting and stopping of the integrator circuit that produces the sawtooth waveform required for the horizontal deflection. The integrator circuit consists of charging capacitors switched by transistors, and the resistors selected by the TIME/DIV switch to set the time coefficients in calibrated steps. Continuous control of these time coefficients is obtained by varying the charging current of the time-determining capacitors by means of the TIME/DIV potentiometer.

The hold-off circuit prevents the sweep gating multivibrator from responding to trigger pulses before the timebase capacitor has completely discharged. The hold-off time can be varied by means of potentiometer VARIABLE HOLD OFF. This facility enables suppression of trigger pulses within the hold-off time.

The resulting sawtooth signal of the integrator is fed to the X deflection selector, the hold-off multivibrator and the comparator which is part of the delayed time-base unit. The hold-off multivibrator resets the sweepgating multivibrator and inhibits its input during the flyback period of the sawtooth waveform. The hold-off circuit also incorporates the single-sweep circuit which causes the main time-base to produce a single sawtooth waveform after the SINGLE pushbutton has been depressed and on receipt of a trigger pulse.

The automatic free-run circuit or auto-circuit makes the time-base free-running when no trigger pulses are applied.

3.1.3.2. Delayed time-base (unit 8 of fig. 3.1.)

In principle, the delayed trigger-unit and time-base generator use similar circuits to those of the main trigger-unit and time-base generator. The delayed time-base always operates in the single-shot mode. The sweep is initiated by the main time-base generator which also serves as hold-off circuit for the delayed time-base.

The DELAY TIME control in conjunction with the comparator and reset multivibrator determine the delay time for the delayed time-base generator. The delayed time-base is operative unless its TIME/DIV switch is in the OFF position. It starts immediately after the delay time, or upon receipt of the first trigger pulse after the delay time. It can be triggered by the A, or B channels, or externally.

When pushbutton MAIN TB of the horizontal deflection mode controls is selected, the part of the trace coinciding with the delayed sweep is intensified.

The delay time calibration unit enables adjustment of the DELAY TIME control range.

3.1.4. Switching unit and X-amplifier (unit 8 of fig. 3.1.)

The X deflection selector couples the external X deflection signal from the X preamplifier, the output of the main time-base generator or the output of the delayed time-base generator to the X amplifier and from there to the horizontal deflection plates. The X amplifier comprises the horizontal trace positioning and 5x magnification controls.

The blanking pulse selector supplies blanking pulses to the Z amplifier. These pulses blank the trace at the end of the sweep of the main time-base and provide the extra bright-up pulse if the oscilloscope operates with a portion of the trace intensified. The blanking pulses during the switching of the traces in the chopped mode go direct from the channel selector logic to the Z amplifier.

59

3.1.5. Z-Amplifier and c.r.t. circuit (unit 11,6 and 15 of fig. 3.1.)

The Z amplifier receives two input signals. One originates in the time-base generator and is, via the switching circuit, applied to the Z amplifier to blank the trace during flyback. The other one is supplied by the channel selector logic to blank the trace during switching from channel to channel in chopped mode.

The INTENS potentiometer determines the amount of input current fed to the Z amplifier. At the output of the amplifier, the signal is split into two parts: an l.f. + d.c. part and an h.f. part. The h.f. part is fed direct to the Wehnelt cylinder of the c.r.t. The l.f. + d.c. part is modulated on to an oscillator signal and afterwards detected in a peak-to-peak detector. Both signals parts are combined again on the Wehnelt cylinder. The c.r.t. circuits comprise the FOCUS control and preset potentiometers for trace rotation, astigmatism and distortion.

The high voltage for the post-acceleration anode of the c.r.t. is supplied by a stabilised oscillator whose output voltage is rectified and multiplied by a factor of 5.

The calibrator, an integral part of the oscilloscope, is a square-wave generator which supplies an accurate voltage and current for calibration purposes.

The graticule illumination lamps receive current from the illumination circuit. The amount of supplied current depends on the position of the ILLUM potentiometer.

3.1.6. Stabilized power supply (unit 5 of fig. 3.1.)

The mains voltage is full-wave rectified and fed to a voltage regulator. The voltage regulator contains a current sensor which controls in such a way that the output voltages of the power supply stay within specified limits. The rectified mains voltage controls a blocking oscillator which generates a voltage at a frequency of approximately 20kHz. This voltage is applied to the primary winding of a transformer. The secondary voltages of this transformer are full-wave rectified, smoothed and applied to the various circuits.

The MAINS triggering signal is taken direct from the mains and, via an opto-isolator, fed to the trigger circuits at a safe level, completely isolated from the mains.

3.2. CIRCUIT DESCRIPTION

3.2.1. Vertical Deflection System

3.2.1.1. Input attenuator (fig. 3.21)

The attenuators for CH. A and CH. B are identical, both consisting of a triple high-ohmic and a triple low-ohmic voltage divider stage separated by an impedance converter with an a.c. and a d.c. path. The d.c. path is also used for drift correction. Because both attenuators are identical, only channel A is described.

The overall attenuation is determined by the combination of the selected sections of both voltage dividers. The various combinations are selected by reed relays that are controlled by the front panel switch SK10.

The high-ohmic voltage divider sections divide 1x, 10x or 100x, each section being switched by 2 reed relays. The low-ohmic voltage divider sections, incorporated in IC 102, divide 1x, 2x or 4x. With the overall combinations of attenuation 9 Y-delfection coefficients are realized from 5 mV/div to 2 V/div in a 1-2-5 sequence.

Constant input capacitance for the various attenuator positions is achieved by the trimmers C107, C102 and C111. In the high-ohmic voltage divider sections the capacitive attenuation for a.c. signals can be adjusted to the resistive attenuation for d.c. signals by means of the trimmers C108, C101 and C109.

The a.c. component of the input signals is fed to the gate of TS101. This gate is protected against excessive negative voltages by means of GR101. The d.c. component developed across R131 is fed to non inverting input 3 of differential amplifier IC101. R129 influences the d.c. voltage on this input and enables adjusting of the 0-DC BALANCE. A part of the impedance converter output signal (on the emitter of TS103) is used as a feedback signal applied to inverting input 2 of the differential amplifier. IC 101 compares the voltages on R131 and on the emitter of TS103 and compensates for possible differences. The controls LF GAIN (R132), ATTENUATOR BALANCE (R15) and C122 are incorporated in the feedback circuit. C122 compensates for the stray capacitance in the other input circuit of IC101 and makes 100 kHz SQUARE WAVE ADJUSTMENT possible.

Any d.c. drift in the attenuator circuit, for instance due to temperature changes, is fed to the differential amplifier to provide a correcting d.c. feedback voltage via the output of the differential amplifier (pin 6) to the impedance converter.

The output impedance of the attenuator unit is 50 ohms in all positions, thus presenting a correct impedance match for the coaxial cable link to the succeeding intermediate amplifier. R141 allows compensation of d.c. offset voltages at the output of the attenuator.

ions

Fig. 3.1 Block diagram

Input coupling switch SK16 (pushbuttons AC-0-DC) forms part of the attenuator input stage. When the a.c. position is selected, capacitor C104 is connected in series with the input and reduces the lower frequency limit to 10 Hz. When the d.c. position is selected RE106 is energised and C104 is bypassed via resistors R109 and R111 in series. Selection of the 0 pushbutton de-energises all reed relays, except RE108, in order to block the input signal. RE108 provides an earth path for the impedance converter via R116.

3.2.1.2 Intermediate amplifier (fig. 3.24.)

The intermediate amplifier comprises integrated circuits wherever there is the need for greater stability to safeguard against drift. As the signal paths for channel A and channel B are basically identical, only the channel A signal path is described.

The output signal from the channel A attenuator is applied via R306 to point 9 of IC301. This portion of the integrated circuit block consists of a differential amplifier using discrete transistor TS301 in the common-emitter tail circuit as a constant-current source to achieve high rejection. The RC network R308, C302 and C303 constitutes the h.f. response correction filter with C302 as the adjusting element. In this part of the circuit, the overall gain of the channel is adjustable by means of the front-panel preset GAIN control, R16, and the AMPL continuous control, R11, of the Y deflection coefficients. These control the signal current to the emitters of two transistors in common-base mode, which are also part of IC301.

This stage is followed by two discrete pnp transistors, TS302 and TS303, connected in common-base mode, which lower the d.c. potential. The collector outputs are resistor-coupled to the bases of an amplifier forming part of IC302. The emitters of this stage are fed from a constant-current source transistor, TS304. An h.f. correction network is also part of the common-emitter circuit, the adjusting elements of which are R342 and C316.

Trigger preamplifier

The emitters of the IC302 amplifier (pins 7 and 8) are also coupled to the bases of the trigger preamplifier, TS306 and TS308. Transistor TS307 provides a constant-current source for this preamplifier. A preset potentiometer, R351, in its base circuit provides a d.c. control for the trigger signal. The output from the trigger preamplifier is routed from the collector of TS306 via R348.

Buffer stage

The intermediate amplifying stages are isolated from the channel selector by two buffer amplifiers, TS313 and TS309, in common-base mode.

The front-panel POSITION potentiometer, R3, controls the position of the A display by dividing the output from a current-source from TS317 between two transistors, TS314 and TS316. These, in turn, control the direct currents of the transistors in the channel selector, which causes a voltage change over the collector resistors R514 and R517.

Pull to Invert B circuit

The B channel has provision for inverting the polarity of the Y signal. Pull switch SK27, PULL TO INVERT B, is mounted on the spindle of front-panel control R7. In the invert position the normal signal paths are blocked because TS413 and TS409 are switched off.

Inversion is achieved by TS411 and TS412 providing alternative paths for the signal when their bases are switched less negative by SK27. Possible unbalance between the two positions of the switch can be compensated by preset potentiometer R435 between the + 12 V rail and earth.

Channel selector (channels A and B described)

Channel switching is achieved by the channel selector comprising part of circuit blocks IC302, IC402, actuated by control signals originating in the Channel Selection Logic, described in the following section, 3.2.1.3. In the channel selector, switching diodes control the bases of the A and B channel output transistors, also part of IC302 and IC402. The collectors of these transistors are commoned to feed the output stage, TS503 and TS506, coupled to the delay line. The output signals that can be selected are: channel A only; channel B only; channels A and B added, chopped, or alternately displayed.

Switching transistors TS501 and TS502 enable or inhibit the two channels according to logic signals received from the channel selection logic. For example, the B channel is inhibited by a "low" signal (0 V) at the base of TS502. This allows TS502 to conduct and current is drawn via the diode network. As a result, the B channel output transistors are switched off.

The B channel is enabled by a "high" signal (+5 V), which switches off TS502 and makes the diode network non-conducting.

The A channel is switched is a similar manner to that described for the B channel. In the ADD mode, both channels are enabled and switch SK1 (D) short-circuits diode GR501 to provide the extra power requirements for the simultaneous display of both channels.

3.2.1.3. Channel selection logic (fig. 3.25.)

The channel selection logic consists of digital circuits employing dual-in-line integrated circuits IC1601, IC1602 and IC1603. Vertical display mode selection is made by the five-pushbutton switch, SK1. The outputs 3 and 6 of IC1602 are connected to the bases of TS501 and TS502 respectively in the channel selector stage of the intermediate amplifier.

Positive logic is used in the digital circuits, the levels being as follows:

logic "1": +5 V (high) logic "0": 0 V (low)

As described in the previous section, positive outputs (logic "1") enable the A and B channels. The levels on outputs 3 and 6 of IC1602 are determined by JK flip-flop IC1603.

The logic draws a higher current in the chopped mode than in the other modes. In order to load the power supply constantly this difference is compensated for by means of R1610 and SK1/1, 2, 3.

The different functions of the logic circuit are now described according to the operation of the display-mode controls.

- SK1: A selects channel A only. Input 2 of the JK flip-flop IC1603 is low, consequently output 6 is high. Input connection 5 to gate IC1602 is therefore high and the resulting low output on pin 6 blocks channel B. Output 8 of the JK flip-flop is low, consequently output 3 of IC1602 is high and channel A is enabled.
 SK1:B selects channel B only. Input 13 of the JK flip-flop IC1603 is low, consequently output 8
- SK1:B

 selects channel B only. Input 13 of the JK flip-flop IC1603 is low, consequently output 8 is high. Input 2 to gate IC1602 is therefore high and the resulting low output on pin 3 blocks channel A. Output 6 of the JK flip-flop is low, consequently output 6 of IC1602 is high and channel B is enabled.
- SK1: ADD adds channels A and B. Gate inputs 1 and 4 of IC1602 are both low and consequently both outputs 3 and 6 remain high irrespective of the state of the JK flip-flop. Both A and B channels are therefore enabled.

For convenience, the foregoing logic functions are summarised in the following truth table:

MODE	JK FLIP-FLOP			IC1602			
Pushbutton SK1	inputs 2	13	output:	s 8	gate 3	outputs 6	RESULT
A B ADD	low (high) (high)	(high) low (high)	high Iow hi/Io	low high Io/hi	high Iow high	low high high	ch. A ENABLED ch. B ENABLED chs. A+B ENABLED

SK1: CHOP

— selects channels A and B chopped. In this position a chopper generator (part of IC1601) is switched into the circuit. The pushbutton connects a "low" level to the input (12, 13) of an inverter (IC1602) to provide a "high" input at pin 10 of IC1601. This input initiates oscillations due to the feedback loop between pins 9 and 8, and 9 and 11 of IC1601. The frequency of oscillation is 2 MHz. This output is fed via IC1602 (pins 10 and 8) and IC1601 (pins 4 and 6) to trigger input (pin 12) of the JK flip-flop IC1603. In this way, the flip-flop is switched at a frequency of 1 MHz, this signal appearing alternately on inputs 2 and 5 of IC1602. The resulting alternate levels on output pins 3 and 6 provide the chopped control signals for the channel selector IC302, IC402, on the intermediate amplifiers.

During switch-over in the CHOP mode, the c.r.t. is blanked by pulses supplied by transistor TS1601. Normally the transistor is made fully conducting by the +6~V supply, via R1604, to its base.

However, in the CHOP mode the negative-going edges of the 2 MHz chopper signal are differentiated by C1602 and produce positive-going pulses at the collector of TS1601. These blanking pulses are fed to the Z amplifier via R1606.

SK1: ALT

- selects channel A and channel B alternately for display. In this mode, the JK flip-flop IC1603 is triggered by the main-time base gating signal which is present at input 2 of IC1601. Outputs 3 and 6 of IC1602 are, in turn, high and low and the input signal applied to the oscilloscope is alternately displayed by the channels A and B.

3.2.1.4. Final Y-amplifier (fig. 3.27)

The final Y amplifier basically comprises two common-base mode transistors, TS601 and TS602 together with circuit block IC601, followed by circuit block IC602 coupled to output transistors TS606 and TS607.

The delay line output is applied to the emitters of TS601 and TS602 via 50 ohm coaxial cables. The collectors of TS601 and TS602 are resistor-coupled to IC601 (pins 6 and 9). This integrated circuit provides h.f. networks between pins 7 and 8 for correction of frequency distortion inherent in the delay line.

The correction networks comprise capacitors and resistors which constitute variable and fixed filters in the emitter circuit. Transistor TS603 provides a constant-current source for this stage.

Collector supplies are derived from the +12 V rail via the series diodes GR601 and GR602.

The inputs to the final amplifier block IC602 are via pins 6 and 9, the bases of two transistors. The potentiometer, R641, in the common emitter circuits provides a preset gain control to allow for changes in circuit parameters; e.g. if a c.r.t. is replaced. Two additional transistors in the circuit block provide constant-current sources. The outputs of the final amplifier are coupled to the output transistors by diodes GR603 and GR609 which provide d.c. voltage drop. Resistors R649 and R668 supply the normal feed current to the final amplifier from the +45 V rail when there is no signal input.

As the two halves of the output stage are identical, only the output feeding the Y1 deflection plate of the c.r.t. is described. Because of the +6 V feed to the emitter of TS606, the base stands at slightly more than +6 V. Therefore, due to the voltage drop across the series zener diodes GR604 and GR606, the junction of GR603 and GR604 stands at approximately 23 V, being connected via R649 to the +45 V rail. The potential at that junction is maintained at 23 V under signal and no-signal conditions. When the signal applied to pin 6 of the final amplifier demands more current from the 45 V supply, this current is drawn via R656 from the output transistor TS604 to maintain the junction potential of 23 V.

Hence, less current is available for TS606, since transistor TS604 provides constant current. When the signal applied to the final amplifier demands less current, then the current is reversed through R656 to maintain the 23 V potential constant.

In this way, the currents through the output transistors TS606 and TS607 vary in accordance with the signals applied to the bases of the final amplifier. Consequently, the potentials applied to the Y1 and Y2 plates of the c.r.t. are replicas of the signals applied to the Y input sockets.

Coupling capacitor C623 provides a bypass for h.f. signals, to improve the deflection properties at high frequencies.

3.2.2. Main Time-base triggering

The trigger unit of the main time-base generator can select any one of four input sources as follows:

- the signal of channel A
- the signal of channel B
- an external source
- a signal derived from the mains.

All these sources can be used for both triggering and X deflection purposes. Source selection is by means of a four-position pushbutton switch SK21 that feeds the trigger signals to the trigger amplifier and pulse-shaping circuits.

3.2.2.1. Trigger input circuits and amplifier (fig. 3.29.)

Consider first a trigger signal received from the A channel via the preamplifier in the intermediate Y amplifier stages. This signal is coupled via a coaxial cable to a feedback amplifier TS753. The output is fed via emitter follower TS754 to the source selection switch SK21.

The B channel is identical to that described for the A channel.

Consider next a trigger signal applied to the EXT MTB socket BU8. This signal is fed via a potential dividing network and capacitor C702 to the base of emitter follower TS701, which together with a further emitter follower TS702 forms an impedance converter stage. These input transistors are protected against overloads by diode GR701 which bypasses excessive negative signals.

The remaining trigger source facility is from the mains supply. This trigger signal is fed to the trigger unit from an opto-isolator, a photo-coupling device in the power supply unit. The input from C1824 is applied via filter R717, C704 to the trigger source selector switch SK21, and hence to the trigger coupling switch SK19 via resistor R732.

The three-position pushbutton switch SK19 enables choice of either a.c. or d.c. coupling of the input signal selected. In the DC position, resistors R703 and R704 provide a d.c. bypass across capacitor C702.

There are two modes of a.c. coupling; namely, LF and HF. If LF is selected, resistor R729 and capacitor C709 form a low-pass filter network. If HF is selected, capacitor C708 and resistor R734 form a high-pass filter for the signal. In the DC position, both these networks are by-passed by SK19 (DC)

Each of the four input signal sources described, selectable by SK21, can be used for either triggering or horizontal deflection depending on which pushbutton of the three-position horizontal deflection switch SK2 is selected.

3.2.2.2. Trigger amplifier and multivibrator (fig. 3.29.)

When used for triggering, the output of the trigger coupling switch SK19 is fed to the base of emitter follower TS801 which feeds the trigger amplifier. This is a differential amplifier circuit, TS802, TS804, with a constant-current load, TS803, in the common-emitter circuit.

The trigger level is set by means of the front-panel control R10, LEVEL, which controls the base of emitter follower TS806. This, in turn, controls the base of one of the differential amplifier transistors, TS804.

The collector loads of the differential amplifier include transistors TS807 and TS808 fed from the +12 V rail. Switching diodes GR802, GR803, GR804 and GR806 form an electronic switching circuit which is operated by the SLOPE switch, SK5.

The SLOPE switch enables triggering on either the positive-going or the negative-going slope of the triggering signal depending upon the position of the switch. In the —ve position, diodes GR802 and GR803 conduct. Hence, the signal at the collector of TS807 is applied to the base of emitter follower TS809. In the +ve position of SK5, diodes GR804 and GR806 conduct and apply the signal at the collector of TS808 to the base of TS809.

Emitter follower TS809 is coupled to the trigger multivibrator TS811, TS812, which switches over in response to the trigger signals. The resulting square-wave pulses from R836 are differentiated by capacitor C856 on the time-base circuit. (fig. 3.30.)

The negative-going spikes cause TS851 to conduct and trigger the sweep-gating multivibrator of the main time-base via R871. The positive-going spikes switch TS852 to control the automatic triggering circuit. (fig. 3.30.)

3.2.2.3. Auto-circuit (fig. 3.30)

Basically, the auto-circuit comprises electrolytic capacitor C858 across the complementary transistors TS853 and TS854. Positive-going trigger pulses at the base of TS854 cause it to start conducting. Likewise, TS853 starts to conduct and capacitor C858 discharges. The output voltage of the auto-circuit is then approximately —10 V. This voltage is applied to the diode GR851 to make it non-conductive. The sweep-gating multivibrator levels are, therefore, such that it is driven by the negative-going trigger pulses received via TS851.

When no trigger pulses are available, TS853 and TS854 are non-conducting and C858 charges. Hence, GR851 conducts and the sweep-gating multivibrator levels are set so that initiation of the sweep is dependent only on the sweep feedback voltage. The main time-base sweep generator is therefore free-running.

3.2.3. Main time-base generator (fig. 3.30.)

The main time-base generator comprises the sweep-gating multivibrator, TS857, TS858, feeding switching transistors TS868 and TS869, the latter being effectively in parallel with the time-base capacitors of the integrator circuit. Transistor TS871 is used as a current source to charge these capacitors. Selection of the appropriate timing capacitors is by means of the TIME/DIV switch SK14 via switching transistors TS874 and TS876. The sawtooth voltage is developed across the selected time-base capacitor(s) by charging it to a certain level from the constant-current source. The capacitor is then short-circuited very rapidly which results in the characteristic sawtooth waveform.

The sawtooth voltage is fed to the transistors TS881, TS882, in Darlington pair configuration. This stage feeds the sawtooth voltage to the X deflection selector stage and also back to the input of the sweep-gating multivibrator via the hold-off circuit.

The main time-base generator circuit also includes a stage which serves to indicate whether the main time-base generator is triggered or not (GR1).

The various stages of the main time-base generator circuit are now considered in some detail.

3.2.3.1. Sweep-gating multivibrator (fig. 3.30.)

Sweep-gating multivibrator TS857 and TS858 is controlled by the following signals:

- the negative-going trigger spikes supplied by the main trigger multivibrator via the differentiating circuit,
- the voltage supplied by the hold-off multivibrator,
- the bias voltage supplied by the auto-circuit.

Potentiometer R873 provides a preset control of trigger stability. The collector circuit of TS857 includes TS856 which, as explained in the Y channel selection logic, provides the ALTERNATE control pulses. The output square-wave of the sweep-gating multivibrator is applied to the switching transistors TS868 and TS869.

3.2.3.2. Switching transistors TS 868, TS 869 and TS 870

These 3 transistors are controlled by TS 858 in the sweep-gating multivibrator. TS 868 takes over the current from the current source TS 871 during the MTB hold-off period. TS 870 discharges during this time the time-base capacitor. GR855 only conducts during the charging of the time-base capacitor. Because the voltage of the time-base capacitor comes close to the base voltage of current source TS 871 at the end of the MTB sweep GR 855 must have a low forward voltage. Therefore, this diode is a germanium type. TS 869 conducts during the MTB sweep and provides unblanking via R903 and GR 1062.

3.2.3.3. Sweep speeds

The sweep speed or time coefficient is determined by the value of the time-base capacitance in circuit, and also by the magnitude of the charging resistor selected.

The time-base capacitors are C866, C867 and C869. Capacitor C866 is always in circuit; the other two capacitors are selected by transistors TS874 and TS876. These operate as electronic switches and are either fully cut-off or fully-conducting. They are switched on by the application of a positive voltage to their bases from the TIME/DIV switch. According to the position of SK14, these transistors switch in the relevant capacitor in parallel with C866. As mentioned, the sweep speed is also dependent upon the magnitude of the constant-current charge supplied by transistor TS871. This current can be adjusted in steps by selecting the emitter resistance of TS871 by means of the TIME/DIV switch SK14. Continuous control of the charging current can be effected by varying the base drive to TS871 with the continuous sweep control, TIME/DIV potentiometer R14. In the CAL position of this potentiometer, switch SK15 closes and the charging current is solely determined by the calibrated emitter resistance.

To compensate for the temperature coefficient of the transistor (2 mV/degC) the base voltage of TS871 is supplied via transistor TS872. This also has the advantage of reducing the load on the TIME/DIV potentiometer.

Electrolytic capacitor C868 suppresses any possible ripple and interference present on the supply voltage rail. This transistor, in turn, has its base controlled by preset R914 when SK14 is in position $1 \div 8$. This provides a fine adjustment for the timing circuit since C867, 4,7 μ F, has ± 10 % tolerance, whereas the other two timing capacitors have a ± 1 % tolerance. In this position, the preset R914 provides an additional measure of control over the base voltage of TS871. In the positions of SK14 when C867 is not in circuit, the diode GR856 is blocked and the preset control R914 is inoperative.

3.2.3.4. Sawtooth take-off circuit

The sawtooth waveform generated by the time-base is applied to the Darlington pair, TS881 and TS882, the emitter output of the latter being coupled to the X deflection selector via GR1058 and GR1057, to the comparator circuit via R937 and to the hold-off circuit of the main time-base via GR857.

3.2.3.5. Hold-off circuit

The hold-off circuit prevents the sweep-gating multivibrator from responding to trigger pulses before the time-base capacitor has fully discharged. The sawtooth output from the Darlington pair is applied via diode GR857 to the base of emitter follower TS879.

Switching transistors TS877 and TS878 select the appropriate hold-off capacitor, according to the position of SK14, in a similar manner to that described for the main time-base integrator timing capacitors. Capacitor C862 is always in circuit irrespective of the TIME/DIV switch position.

Charging current for the hold-off capacitors flows via transistor TS879. When TS879 cuts off, the discharge current flows through the circuit with R925 and variable hold-off control R22. R22 allows adjusting of the desired hold-off time and is calibrated in its minimum resistance position. The voltage across the selected hold-off capacitors drives the Schmitt trigger, TS864, TS866, the hold-off multivibrator. The output signal from the hold-off multivibrator is applied to emitter follower TS 863 which, in turn, feeds the input of the sweep-gating multivibrator. The emitter-follower TS863 buffers the hold-off multivibrator from the triggering spikes of the trigger pulse-shaping circuits.

Switch SK9 in the base circuit of TS867 is normally open when AUTO and TRIG of the trigger-mode pushbutton switch are selected. However, when SINGLE mode is selected, SK9 provides via R896 and C864 (mounted on SK9) an earth to the base circuit of TS867 to reset the hold-off multivibrator. Furthermore, since AUTO is not selected, TS879 is cut off via R927 and SK9; consequently, the hold-off multivibrator is no longer reset by the sweep voltage.

When the oscilloscope is used with an external X deflection signal, the internal time-base generator is switched off by depressing the EXT X DEFL pushbutton of SK2. This feeds a +12 V supply via R892 and GR854 to the base of TS867. This transistor holds the hold-off multivibrator so that its output prevents the sweep-gating multivibrator from responding to trigger pulses.

3.2.3.6. "NOT TRIG'D" indicator

Light-emitting diode GR1 in the collector circuit of transistor TS861 serves two purposes:

- it provides a front-panel indication when the time-base generator is not triggered in the AUTO and TRIG modes; i.e., it indicates the absence of trigger pulses. In this condition, TS853 and TS854 are switched off and electrolytic capacitor C858 in the auto-circuit of the main trigger circuit charges. Consequently, the emitter of TS859 becomes less negative and the transistor cuts off. The earth applied via R882 switches on TS861 and the NOT TRIG'D diode, GR1, lights. On receipt of trigger pulses, C858 is discharged, TS859 conducts and cuts off TS861, thus extinguishing GR1, the current being taken over by TS862.
- In the SINGLE mode, the NOT TRIG'D lamp also serves as a reset indicator. On selection of the SINGLE pushbutton, the lamp remains on until the sweep is initiated by a trigger pulse. In this mode, the trigger pulse drives the base of TS859 dependent on the state of the hold-off multivibrator TS864, TS866.

Note: The instrument also operates in the SINGLE mode if none of the trigger-mode pushbuttons is depressed.

3.2.3.7. Delay-time function

The function of the DELAY TIME potentiometer R1 is to provide an adjustable d.c. voltage for comparison with the sweep voltage of the main time-base generator.

This comparison voltage is then used to start the delayed time-base generator at a pre-determined time during the sweep of the main time-base. The comparator circuit is described in the delayed time-base generator section (3.2.5.3.). The DELAY TIME potentiometer is a 10-turn front-panel control.

3.2.4. Delayed time-base triggering

The trigger unit of the delayed time-base is almost identical to that of the main time-base trigger unit, the circuits of which are described in section 3.2.2. Unlike the main time-base trigger unit, the delayed time-base trigger unit has provision for neither external X deflection, nor triggering from the mains frequency. There is, however, provision for triggering by the main time-base (see section 3.2.5.2.).

3.2.5. Delayed time-base generator

As the delayed time-base generator is basically similar to the main time-base generator (section 3.2.3.), only the essential differences are described.

3.2.5.1. Sweep speeds

The delayed time-base integrator circuit is a simplified version of the main time-base generator as there are fewer TIME/DIV ranges. Preset potentiometer R1097 provides a measure of control of the charging current to obtain exactly the same sweep speeds of main time-base and delayed time-base.

3.2.5.2. Hold-off circuit

The sawtooth voltage is coupled via the Darlington pair TS1066, and TS1067, and diode GR1052 to the hold-off multivibrator TS1057 and TS1058. Emitter follower, TS1056 provides the hold-off pulse for the input of the delayed sweep-gating multivibrator, TS1052 and TS1053. Transistor TS1054 is set by means of the comparator output signal direct-coupled to its base. This, in turn, resets the hold-off multivibrator, and thus the sweep-gating multivibrator via TS1056. If no trigger source has been selected, or SK20 is in the MAIN TB position, then the next sweep is initiated. However, if one of the A, B or EXT pushbuttons of SK20 has been selected, no earth is applied via R1071 and the sweep-gating multivibrator is switched over on the receipt of a trigger pulse at the base of TS1052. In the OFF position of the TIME/DIV switch SK12, the sweep-gating multivibrator is switched so that it no longer responds to either the trigger pulses or the reset pulses of the hold-off multivibrator. Similarly, when X-EXT deflection mode is selected on SK2, a +12 V supply via diode GR1064 also inhibits the delayed sweep-gating multivibrator.

3.2.5.3. Comparator

Transistors TS883 and TS884, connected as a long-tailed pair with TS886 as current source, form the comparator circuit. In this circuit, the d.c. voltage set by the DELAY TIME potentiometer R1 is compared with the sawtooth voltage generated by the main time-base.

When the amplitude of the sawtooth at the base of TS883 exceeds the set d.c. voltage applied to the base of TS884, the collector voltage of TS883 goes more negative and, via emitter-follower TS1054, resets the hold-off multivibrator and delayed sweep-gating multivibrator as previously described.

3.2.5.4. Delay time calibration unit

The DTB start at the end of the MTB sweep is adjusted by means of R979 which influences the base voltage of emitter follower TS887.

The DTB start at the beginning of the MTB sweep is adjusted by means of R987 which influences the base voltage of the emitter follower TS888. The combinations of the base-emitter voltages and diode voltages of TS887/GR862 and TS888/GR863 compensate for possible changes of the base-emitter voltage of TS881 and TS882 due to changes in ambient temperature.

3.2.6. X Deflection selector and blanking switching circuits

These circuits are part of the main time-base printed-circuit board.

3.2.6.1. X-Deflection source selector (fig. 3.3 0.)

Depending on the selected position of SK2, the circuit provides for X deflection by the main time-base signal, the delayed time-base signal or the signal from an external source.

The source selector circuit is described according to the pushbutton mode selected.

MAIN TB

— In this position of SK2, the +12 V supply is routed via the contacts and R1118 to the junction of diodes GR1057 and GR1058. These diodes conduct and provide a path for the output sawtooth of the main time-base via R1229 to the X amplifier. With the switch in this position, the diode networks, GR1053, GR1054 and GR1066, GR1067 are blocked. Consequently, signals from the delayed time-base and external X deflection preamplifier are not transmitted.

DEL'D TB

— In this position of SK2, the +12 V supply is routed via the switch contact and R1108 to the junction of diodes GR1053 and GR1054. These diodes now conduct and provide a path for the output sawtooth of the delayed time-base via R1229 to the X amplifier. With DEL'D TB selected, the signals from the main time-base and external X preamplifier are blocked by the diode networks.

EXT X DEFL

— In this position of SK2, the +12 V supply is routed via R1121 to the junction of diodes GR1066 and GR1067. These diodes now conduct and provide a path for the emitter output of TS1072 of the external X preamplifier. Similarly, the diode networks block the main and delayed time-base signals in this position. Another switch contact of SK2 (X-EXT.) removes an earth from the PULL FOR x5 switch, SK3, as this facility is not available when EXT X DEFL is selected.

3.2.6.2. Blanking pulse switching circuit

The switching transistors for blanking pulses for the main and delayed time-bases are TS869 and TS1059 respectively.

These transistors conduct during the sweep period of their respective time-bases; i.e. during the unblanking periode. Diodes GR1063 and GR1062 connect the collectors of these transistors to the Z amplifier via R1312. During blanking, these transistors are switched off and current is injected via the diodes GR1059, GR1062 and GR1063 and the resistors R1116 and R1117 to the Z-amplifier. This current is 3mA for complete blanking of trace.

During the sweep of the main time-base generator 3 mA flows into the main time-base generator via R903 so there is no current for R1312 and the trace is unblanked. If the delayed time-base TIME/DIV switch is at the OFF position, 3 mA flows into the delayed time-base via R1084, R1112. These currents are derived from the +12 V supply, and the potential developed across R1112 prevents TS1068 from being cut off and cuts off GR1063.

The switching is described in accordance with the signal selected by SK2.

MAIN TB

— With the TIME/DIV switch of the delayed time-base in the OFF position, TS1059 is permanently on; therefore, GR1063 is blocked. The current step from 0 to 3 mA is then applied to the Z amplifier, via GR1062 during main time-base blanking.

With the TIME/DIV switch of the delayed time-base operative; i.e., not in the OFF position, then bright-up of the main time-base trace by the delayed time-base occurs after the delay time selected. During the part of the sweep where only the main time-base is running (TS1059 cut off), no current flows to the Z amplifier via GR1062; i.e. trace unblanking.

However, the Z amplifier receives a small current from the delayed time-base via GR1063, dependent on the bias of TS1068 and the setting of R1116. Therefore, the trace is not completely unblanked. Immediately the delayed time-base starts TS1059 conducts and the emitter of TS1068 goes negative. Therefore, both TS1068 and GR1063 are cut off. The Z amplifier intensifies the entire trace. At the end of the delayed sweep, the small current flows through GR1063 again and the trace is once again completely unblanked. Potentiometer R1115 allows adjustment of the emitter potential of TS1068, in order to vary the current through R1116 and GR1063 during the time that TS1059 is cut off. Thus, the brightness of the intensified part of the trace can be varied.

Via R1109 this change is also transferred to the INTENS potentiometer (see Z-MOD., section 3.2.9.1.).

DEL'D TB

— If the delayed time-base is selected, GR1059 and GR1062 are non-conductive since the +12 V supply of GR1059 ceases. The current for TS869 in the main time-base is supplied by GR1061. Transistor TS1068 is switched off by the conduction of diode GR1056 and the 0 to 3 mA bright-up information is fed to the Z amplifier via diode GR1063.

EXT X DEFL

 If the EXT X DEFL pushbutton is depressed, the MTB and also the DTB are switched off. Therefore, there is no current through R1312 and the trace is unblanked.

3.2.7. Pre-amplifier for external X deflection

Transistors TS1069, TS1071 and TS1072, located on the main time-base printed-circuit board, form a pre-amplifier circuit for external X deflection signals. The input signal from R728 on the trigger source unit is routed to the base of transistor TS1071. The input signal may be one of the triggering signals; namely, a signal on the EXT input socket BU8, the channel A or channel B signal, or the mains-derived signal from the opto-isolator (see section 3.2.2.1.).

When the EXT X DEFL position of SK2 is selected the +12 V supply is routed via GR1065 to the emitter of transistor TS1069. TS1071 and TS1069 form a series-shunt feedback configuration: the gain can be adjusted by means of feedback resistor R1131 and the d.c. output level can be adjusted by means of resistor R1132. This series-shunt feedback configuration is followed by emitter follower TS1072. Since diodes GR1066 and GR1067 are conductive because of the +12 V via R1121, the emitter output signal from TS1072 is passed via R1229 to the X amplifier. In this postion, the main and delayed time-base are inhibited from the +12 V supply, routed via GR854 and GR1064 respectively.

3.2.8. X-Amplifier (fig. 3.32.)

The X amplifier is part of the time-base printed-circuit board U8. The X amplifier receives the input selected by mode switch SK2. This asymmetrical input voltage is fed to the base of transistor TS1201. Transistor TS1204 provides an anti-phase signal, variable by means of the front panel X POSITION potentiometer R2, to give a symmetrical signal to the next stage.

The potentiometer R2 varies the base bias of TS1204 which unbalances the push-pull amplifier resulting in horizontal trace shift on the c.r.t. screen.

The nominal gain of the amplifier can be increased by a factor of 5 by switching the current-source supply, using transistors TS1202 and TS1203 controlled by the front panel PULL FOR x5 switch, SK3.

Normally, current source TS1203 supplies the emitters of transistors TS1201 and TS1204 via the higher value resistors R1224 and R1222 and the diodes GR1203 and GR1204. However, when the PULL FOR x5 switch is selected, the base of TS1202 becomes less negative by the application of an earth (from SK2) via R1231 and SK3. Consequently, TS1202 conducts and TS1203 switches off. The current source is now via GR1201, GR1202 and the lower value resistors R1211 and R1213, which pass the additional current for the x5 gain increase.

Preset control of the gain is provided in the x1 position by R1223 and in the x5 position by R1209.

The x5 position is inoperative when the EXT X DEFL pushbutton of SK2 is depressed. In this position, the earth is disconnected from the SK2 contact that is coupled to SK3.

The two symmetrical output currents of TS1201 and TS1204 are fed to the final amplifier stages with feedback, for each defl. plate. Since these are identical, only one half is described. Basically, the amplifier comprises a cascode circuit using transistors TS1209, TS1211, with feedback via R1237 and R1242.

The cascode circuit is fed via transistor TS1206 in common-base configuration. Transistor TS1208 provides a constant-current source for the final amplifier stage. Zener diodes, GR1208 and GR1209 maintain the average voltage on the deflection plate X1 of c.r.t. B1 at +15 V. Capacitor C1204 improves the h.f. response and the trimming capacitor C1203 provides phase compensation over the feedback path.

3.2.9. C.R.T. Circuits

3.2.9.1. Z-modulator circuit (fig. 3.37.)

Basically, the Z unit comprises an amplifier and a modulator/demodulator circuit for the d.c. and low frequency components of the blanking signal. The latter circuit isolates the Z unit from the high potential (-1600 V) present on the c.r.t. cathode and Wehnelt cylinder.

Input signals to the Z amplifier are received from two sources:

- the blanking pulses from the time-base via R1312,
- the chopper blanking pulses from the channel selection logic via R1313.

As stated in section 3.2.6.2., the blanking current is 3 mA and the unblanking current 0 mA. Transistor TS1302, connected in common-base configuration, feeds the current pulses to the amplifier stage, TS1303, TS1304. Front panel control R20, the INTENS potentiometer, provides an adjustment of trace brilliance by regulating the base bias of TS1301.

The slider of R20 is also coupled to the delayed time-base bright-up circuit via a R1109 to maintain the desired intensity ratio for all settings of R20 (see also section 3.6.2.2.).

A portion of the input current is drained off via TS1301 depending on the setting of R20; the larger the current drain, the more brilliant the trace. Conversely, the more brilliant the trace, the less the common-base transistor TS1302 conducts.

Since TS1302 is cut-off, GR1301 is also non-conductive and a small current flows through R1307 and prevents TS1303 and TS1304 from bottoming.

The blanking signal is passed by TS1302 to the base of TS1303 via GR1301. The diode GR1302 in the collector circuit of TS1302 clamps the black level of the blanking current fed to the amplifier at 3 mA.

The output of the amplifier stage TS1303, TS1304 is coupled to emitter follower TS1306, the output of which switches between 4 V and 40 V approximately for blanking and unblanking respectively. At this point, the a.c. and d.c. components of the blanking signal are routed along different paths. The high frequency components of the signal are passed via capacitor C1308 to the Wehnelt cylinder of the c.r.t. The d.c. and low frequency components of the signal are passed via the low-pass filter R1325, C1306 and R1323 to the emitter of TS1308. Together with TS1307, TS1308 forms a multivibrator, the frequency of which is approximately 100 kHz.

The oscillator output on the collector of TS1308 is therefore modulated by the Z amplifier, the peak-to-peak value depending on the d.c. and l.f. components fed to the emitter of TS1308. The black level can be adjusted by the preset pot. meter R1327. Capacitor C1309 feeds this modulated signal to a peak-to-peak detector and also serves to isolate the high potential present on the c.r.t. cathode circuit. After demodulation by the detector circuit GR1307, GR1308, C1311, R1333, the d.c. and l.f. components are recombined with the h.f. component via R1334 and routed to the Wehnelt cylinder of the c.r.t. via R1336.

3.2.9.2. Focussing circuit (fig. 3.37.)

The voltage for the focussing electrode, G3 of the c.r.t., is derived from a potential divider network between the -1600 V supply from the H.T. converter and earth. The slider of the front-panel FOCUS potentiometer R21 is direct-coupled to the focussing electrode.

The cathode bias for the c.r.t. is also obtained from this divider network, the voltage drop across the neon tube B1301 providing the necessary voltage between cathode and Wehnelt cylinder G1 for complete blanking.

3.2.9.3. H.T. Converter (Fig. 3.38.)

The -1600 V supply for the cathode, Wehnelt cylinder and focus electrode, and the +8 kV supply for the post-acceleration anode G8 are derived from the h.t. convertor circuit.

Transistor TS1402 together with transformer T1401 forms an oscillator, operating at a frequency of between 25 kHz and 30 kHz. An a.c. waveform of 1600 V is developed across the secondary winding of the transformer. This voltage is rectified by diode GR1403 and smoothed by the filter network C1406, R1409 and C1407, to provide the —1600 V supply.

Regulation is obtained by rectifying (GR1402/C1402) the collector signal of TS1402. The d.c. potential of approx. 85 V thus obtained is compared with the +45 V supply voltage (R1401-R1402) in TS1401. If the voltage on the collector of TS1402 tends to drop (i.e. the output voltage decreases), TS1402 will start conducting more current and the output voltage increases.

Overload protection is provided by diode GR1402 which switches off if there is excessive current drain throughout GR1403 to the cathode circuit of the c.r.t. This results in the base of TS1401 going positive which reduces its collector current and switches off the oscillator.

The low-pass filter, L1401, C1401, prevents spurious oscillator pulses being fed back into the +45 V supply line.

3.2.9.4. Calibration unit (fig. 3.37.)

The calibration unit comprises a built-in square-wave generator using an operational amplifier with feedback loops. The frequency-determining components are resistor R1371 and capacitor C1318.

Point 3 of the operational amplifier IC1301 is kept equal to the average output voltage by capacitor C1317. In this way, the generator is independent of supply voltage fluctuations. Zener diode GR1316 determines the amplitude of the square-wave output, and potentiometer R1362 allows accurate adjustment of output voltage and current. The calibration unit gives an output of 3 V_{p-p} , 6 mA at a frequency of 2 kHz ± 2 %. The output is protected against continuous short-circuits.

3.2.9.5. Graticule illumination control circuit (fig. 3.37.)

This circuit comprises the constant current source TS1309/TS1311 that feeds the graticule illumination lamps LA1 and LA2. TS1317 drains away an amount of current from LA1 and LA2, depending on the position of front panel control R19.

3.2.10. Power Supply (fig. 3.41.)

The power supply is designed on the switching regulator principle, thus permitting the PM 3240 oscilloscope to be connected to any a.c. mains voltage between 90 V and 264 V, or any d.c. voltage between 90 V and 350V, without the need for mains voltage adaptors. All voltage output rails are stabilised and a current-limiting circuit protects against overloads.

The basic circuit functions of the power supply are as follows:

- mains rectifier and ripple elimination circuit
- switching series regulator
- chopper circuit
- error sensing and regulator circuit
- current-limiting circuit
- voltage sensing circuit
- secondary supply voltage circuits.

In principle, the power supply operates as follows. After rectification and elimination of the ripple, the smoothed voltage (between 100 V and 370 V) is fed to the switching series regulator. A pulse width modulated switching transistor and commutating diode supply a filter network which averages the voltage output to a fixed d.c. level. This voltage provides the supply for the chopper. The chopper provides the necessary alternating waveform for the supply transformer. In addition, part of the chopper square-wave output is rectified, compared with a reference voltage and is fed back to control the on-off ratio of the switching transistor.

3.2.10.1. Mains rectifier and ripple eliminator

The mains voltage or an alternative source of supply is applied to the mains filter unit FI1801 via the front panel POWER switch SK22 and fuse VL1.

The output of this filter feeds a second filter consisting of L1800, R1801 and C1804. These filters suppress mains-borne interference to the instrument and also interference from the instrument; e.g., switching transients, to the mains supply.

The mains rectifier GR1801 comprises four diodes in a bridge circuit. The ripple that remains after full-wave rectification is eliminated by the action of transistors TS1801 and TS1802 and their associated components.

The ripple elimination circuit operates as follows. The buffer capacitors C1806 and C1808 are charged to approximately the peak voltage of the mains supply. Assume that the output voltage across capacitor C1808 tends to rise with the instantaneous value of the ripple. Transistor TS1802 then draws less current as its emitter goes more positive. Therefore, less base current is applied to transistor TS1801; consequently, its collector voltage drops and counteracts the tendency for the output voltage to rise. By this means, the d.c. output level coincides with the lower level of the ripple voltage superimposed on the unsmoothed rectified voltage, and the ripple is effectively eliminated.

3.2.10.2. Switching series regulator

Transistor TS1807 is the switching transistor, the base of which is driven by the pulse-width modulated rectangular waveform. The filter network comprises the choke L1803 and the capacitor C1809. A constant current flows through L1803 during the turn-on time of TS1807 via its collector. During the turn-off time,

the back e.m.f. of L1803 provides a constant current via the commutating diode GR1804. This action is repeated at a frequency of approximately 20 kHz, the chopper frequency. The output voltage across C1809 is thus dependent upon the turn-on/turn-off ratio of the switching transistor TS1807. Resistor R1800 in serie with capacitor C1809 provides a constant regulation. To facilitate starting, a small base current is fed to transistor TS1807 via resistors R1803, R1804 and R1817.

Note that the value of R1817 depends on the current gain TS1807; refer to chapter "Checking and Adjusting" 3.7.2.2.

3.2.10.3. Chopper circuit

The chopper circuit is formed by the two selected transistors TS1804 together with the base drive transformer T1801, form a push-pull oscillator. The primary windings 3-4-5 of the converter transformer T1802 provide the collector loads for the chopper transistors. Winding 7-8 supplies the feedback winding of the driver transformer. As the driver transformer T1801 saturates easily, a square-wave signal is generated. As soon as the instrument is connected to the supply, the small base current applied to TS1807 via resistors R1803, R1804 and R1817 causes the transistor to turn on. Capacitor C1809 is thus charged by the collector current as described, and its voltage rises. After some time the voltage on GR1806 will be 75 volt and the voltage on trigger device GR1825 approx. 32 volt (the "fire voltage"). Now GR1825 will trigger and has a "breakback voltage" of about 6 volt. This voltage is divided over C1811 and C1812 and the voltage on C1812 becomes so high that one of the transistors TS1804 becomes conductive and the chopper starts. As soon as the chopper starts, the voltage across C1809 drops until TS1807 conducts, controlled by the regulator circuit and the potential across C1809 rises again to ≈95 V. During oscillation, a voltage is developed on the centre tap of the driver transformer T1801 of approximately 1 V negative with respect to the anode of GR1808. This negative potential on the base circuit prevents the conduction of both selected transistors TS1804 due to holestorage capacitance.

Resistor R1800 in series with C1809 prevents parasitic ringing of the circuit.

3.2.10.4. Error sensing and regulator circuit

Regulation of the chopper output is achieved by comparing a portion of its output voltage against a stable reference and feeding the error voltage back via an operational amplifier to control the on/off ratio of the switching transistor. The basic components of the sensing and regulating circuit are primary winding 7-8 of T1802, voltage-regulator integrated circuit IC1801, potentiometer R1834 and transistor TS1809.

The circuit operates as follows. The quare-wave voltage of approximately 9 V_{p-p} across winding 7-8 of T1802 is half-wave rectified by GR1812 and produces a d.c. voltage of approximately —8 V with a superimposed ripple of about 250 mV_{p-p} across capacitor C1817. This ripple voltage is the sensing voltage used for comparison, and is fed to the inverting input 2 of the operational amplifier IC1801 via capacitor C1821. Input 2 is also connected to point 4 of the integrated circuit via R1829. An internal stabilising network between points 4 and 5 results in an input voltage at point 2 of approximately —1 V together with the superimposed ripple of 400 mV_{p-p}. The non-inverting input 3 of IC1801 is connected to the wiper of R1834, the potentiometer that samples the output voltage across C1817 via R1836, R1833 and diode GR1813. Diode GR1813 conducts via R1832 because of the potential across C1816. The ripple voltage is eliminated from the non-inverting input 3 by capacitor C1818 which is coupled between the wiper of R1834 and the positive side of C1817. Although the ripple at the inverting input 3 approximates to a sawtooth waveform, because of the high gain of the amplifier, the output on point 6 is a rectangular waveform.

The on/off ratio of this rectangular waveform is dependent upon the amplitude of the ripple compared with the reference voltage. The frequency of the rectangular waveform is synchronous with the chopper frequency. The rectangular waveform on point 6 is applied to the base of TS1809 which, in turn, controls the on/off time of the switching transistor TS1807.

The overall function of the voltage sensing and regulator circuit is best considered by assuming a change in output. Any tendency for the output to increase would produce an increase in voltage across C1817. The voltage on input 2 of IC1801 will go more negative as result. Likewise, the voltage on input 3 will go more negative, but to a lesser extent because of the limiting action of the potentiometer R1834 and its associated circuit. Because of this differential, input 3 will be more positive with respect to input 2. In terms of the output on point 6, this means that the positive part of the rectangular waveform will be of longer duration over the duty-cycle. This signal is inverted by transistor TS1809, which results in transistor TS1807 being blocked for a longer period. Consequently, the output of the switching series regulator decreases and restores circuit equilibrium. Conversely, any tendency for the output to decrease would result in the switching transistor TS1807 being on for a longer period. The output of the switching series regulator would increase to restore circuit equilibrium.

In addition to output sensing, anticipatory control is provided from the mains voltage. Input 3 of IC1801 is also coupled to the rectified mains voltage via resistor R1806. Any variation in mains voltage will be reflected at the input 3 of IC1801. The resulting differential with respect to input 2 will produce a compensating regulating action as described.

3.2.10.5. Current limiting circuit

A current sensor circuit automatically cuts off the series regulator if excessive current is demanded by the circuit. The current-limiting circuit comprises transistor TS1808, trigger device TS1811 and their associated components.

The current supplied by the power unit flows through the series resistor R1819 and the potential drop across this resistor is used to control transistor TS1808. If the supply current becomes excessive, transistor TS1808 starts to conduct. In turn TS1811 fires and pulls the base of TS1812 to -8 V. TS1809 is now continuously conducting by the base current delivered via R1816 (the output of IC1801 does not draw any current as this is an emittor follower output). By the current through TS1809, the switching transistor TS1807 is then continuously blocked. Consequently, the chopper stops operating. However, the small base current fed to TS1807 via resistors R1803, R1804 and R1817 enables C1809 to charge slowly. When the Z-voltage of GR1806 and GR1825 is reached, the chopper restarts and is switched off again immediately if the overload or short-circuit persists. Depending on the mains voltage, this cycle is repeated approximately every second so long as the fault condition persists.

3.2.10.6. Switching-on voltage-sensing circuit

In similar manner to the current limiting circuit, a voltage sensing circuit cuts off the switching series regulator if, for any reason, the output voltage of the power supply is too low for the operational amplifier IC1801 to give satisfactory control. Voltage sensing is performed by transistor TS1812. During initial switch-on of the instrument, if the output across winding 7-8 is too low, TS1812 is cut off because Z-diode GR1835 is not yet conducting. Consequently, the positive potential developed across C1814 is applied via R1816 to the base of TS1809. This transistor conducts and turns off switching transistor TS1807. The circuit prevents damage to the switching transistor, which could occur if it were operated with insufficient base current.

3.2.10.7. Secondary supply voltages

The primary windings of the supply transformer T1802, as previously stated, are the collector load circuits of the chopper transistors. The secondary windings providing the voltages for the various circuits in the instrument are completely isolated from the mains power supply.

The filament of the c.r.t. is supplied by the voltage across secondary winding 17-18, rectified by GR1822 and smoothed by electrolytic capacitor C1827. The winding is a.c. coupled to earth via C1830. All other supply feeds are derived from tapping points on a single secondary winding, earthed at a single point to the transformer screen to reduce interference. Each supply is individually rectified and smoothed.

3.2.10.8. Mains opto-isolator

The trigger/deflection source derived from the mains supply is completely isolated from dangerous a.c. voltages by an opto-isolator TS1813. This consists of a light-emitting diode and photo-transistor combined in one envelope. The a.c. mains derived from the mains filters is rectified by diode GR1819 and smoothed by C1823 to provide d.c. current through the light-emitting diode. R1838 and R1840 are connected in series and have such a value that their dissipation stays within the permissible limits when using a d.c. mains voltage of 350 V. GR1815 protects the LED in TS1813 against too high reverse voltages. A portion of the a.c. mains is superimposed on this d.c. current, the magnitude depending on the setting of preset resistor R1841. The output is routed to R717 in the trigger amplifier via capacitor C1824.

3.2.11. Optional M.T.B. gate output, D.T.B. gate output and external Z-modulation (Fig. 3.46, 3.47, 3.48.)

General

The circuits for these 3 options can be mounted on a printed circuit board. The unit must be installed according to Fig. 3.47 on the side profile of the instrument beside the Z-unit. The lay-out of this unit after the components have been assembled is indicated in Fig. 3.46.

The necessary 3 BNC sockets can be mounted in any of the 5 holes provided in the rear frame of the instrument. Only in the rear cover plate 3 holes must be drilled.

Supply voltages: the wires for the necessary +6, +12 and -12 volt supply voltages are directly soldered to Stocko plug BU503 at the bottom side of the power supply unit.

Main time base gate output

The circuit comprises one transistor BC549C, which is driven by one of the transistors of the MTB sweep gating multivibrator. The collector of this BC549C transistor is the M.T.B. gate output. The output voltage level is about +6 volt during the M.T.B. sweep and about 0 volt during the hold-off period.

Installation:

Replace resistor R868 (on the T.B. unit next to the ALT pulse output) by a series circuit consisting of a 5,36 kOhm resistor and a 261 Ohm resistor. From the junction of both series resistors a 1 kOhm resistor and a coaxial 50 Ohm cable lead the signal to the amplifier stage on the additional printed circuit board (see Fig. 3.48). The output of the amplifier stage is connected to the BNC connector at the rear panel via a coaxial 50 Ohm cable.

Required material:

1 resistor	5,36	kOhm/MR2	5 532	2 1 1 6	54597
1 resistor 2	261	Ohm/MR2	5 532	2 116	54502
3 resistors	1	kOhm/MR2	5 532	2 116	54549
1 capacitor	10 nl	F, cer. plate	482	2 122	30043
1 transistor	BC54	19C	532	2 130	44246
1 metre coa	axial 50	Ohm cable	(per metre)532	2 320	10003
1 BNC con	nector		532	2 267	10004

Delayed time base output

The circuit comprises one transistor BC549C, which is driven by one of the transistors of the D.T.B. sweep gating multivibrator. The collector of this BC549C is the D.T.B. gate output. The output voltage level is about +6 volt during the D.T.B. sweep and 0 volt if the D.T.B. does not run.

Installation:

Replace resistor R1063 (on the T.B. unit next to contact 7 of Stocko plug BU808) by a series circuit consisting of a 5,36 kOhm resistor and 261 Ohm resistor. From the junction of both series resistors a 1 kOhm resistor and a coaxial 50 Ohm cable lead the signal to the amplifier stage on the additional printed circuit board (see Fig. 3.48). The output of the amplifier stage is connected to the BNC connector at the rear panel via a coaxial 50 Ohm cable.

Required material:

The same as used for the M.T.B. gate output.

External Z-modulation input, suitable for logic analysers

The circuit (see fig. 3.48) comprises 2 transistors, that both function as a emitter follower. The input circuit consists of 2 resistors and 2 capacitors in order to obtain the same input impedance as the vertical channels (1 MOhm//15 pF) and to obtain the right voltage level at which the display is blanked. This voltage level is approx. +4,5 volt, which is suitable for use with logic analysers.

The input circuit feeds the first emitter follower BC549C. The second emitter follower BC559 feeds TS1302 in the Z-amplifier.

Installation:

The BNC connector to be mounted on the rear of the oscilloscope is connected to the input of the Z-modulation circuit via a 50 Ohm coaxial cable. The output of the Z-modulation circuit is connected to the emitter of transistor TS1302 via another 50 Ohm coaxial cable.

Required material:

1 resistor 560 kOhm, CR37	4822 110 53181
1 resistor 680 kOhm, CR37	4822 110 53183
1 resistor 10 MOhm, CR37	4822 110 53214.
1 resistor 33,2 kOhm, MR25	5322 116 50482
1 resistor 33,2 Ohm, MR25	5322 116 50527
1 resistor 1 kOhm, MR25	5322 116 54549
1 resistor 750 Ohm, MR25	5322 116 54536
2 capacitors 10 nF, cer. plate	4822 122 30043
1 capacitor 27 pF, cer. plate	4822 122 30045
1 capacitor 33 pF, cer. plate	4822 122 31067
1 transistor BC549C	5322 130 44246
1 transistor BC559	5322 130 40963
1 metre coaxial 50 Ohm cable (per metre)	5322 320 10003
1 BNC connector	5322 267 10004

Adjustments:

After completion of the mounting procedure, the spot intensity must be readjusted in accordance with the adjusting procedure as described in section 3.7.3-Brilliance.

79

3.3. DISMANTLING THE INSTRUMENT

3.3.1. General information

This section provides the dismantling procedures required for the removal of components during repair and routine maintenance operations. All circuit boards removed from the oscilloscope should be adequately protected against damage, and all normal precautions regarding the use of tools must be observed. During dismantling procedures, a careful note of all leads disconnected must be made so that they may be reconnected to their correct terminals during assembly. For unit-location refer to Figs. 3.2. and 3.3.

Always ensure that the mains supply is disconnected before removing any instrument cover plates.

When removing the E.H.T. cable from the post-acceleration anode of the c.r.t., both the cable connector and the c.r.t. anode contact must be discharged immediately by shorting them to chassis for several seconds with a well-insulated screwdriver.

Damage may result if the instrument is switched on when a circuit board has been removed, or if a circuit board is removed within one minute of switching off the instrument. In Fig. 3.43, 3.44 and 3.45 the cables lay-out between the various units is given.

3.3.2. Instrument cover plates and screen bezel

Both upper and lower cover plates can be removed after the four quick-release fasteners at the corners of each plate have been slackened; do not slacken more than two turns, otherwise the fasteners may come apart.

The screen bezel can be detached by pulling its upper or lower edge

3.3.3. Removing the knobs

3.3.3.1. Single knobs (fig. 3.4.)

- Prise off cap A
- Slacken screw (or nut) B
- Pull the knob from the spindle

3.3.3.2. Double knob (fig. 3.4.)

- Prise off cap A and slacken screw B
- Pull the inner knob from the spindle
- Slacken nut C and pull the outer knob from the spindle
 When fitting a knob or cap, ensure that the spindle is in a position which allows reference lines to be coincident with the markings on the text plate of the oscilloscope.

Fig. 3.4. Removing the knobs.

3.3.3.3. Delay-time multiplier knob (fig. 3.4.)

- Slacken screw D using a hexagonal key and pull the knob from the spindle
- Remove the nut E and withdraw the ring from the spindle.

When fitting the vernier control, turn the spindle of the potentiometer fully anticlockwise. Place the ring on the spindle so that the reference line corresponds to the zero mark on the calibrated scale. Then lock it with nut. E. Fit the inner knob so that its cam is engaged with the slot in the ring. Rotate the inner knob until its zero mark coincides with the reference line on the ring. Secure the assembly by tightening screw D.

3.3.4. Time-base and X-amplifier circuit board

This unit is the large rectangular printed-circuit board located on the underside of the instrument adjacent to the c.r.t.(for cable lay-out see fig. 3.44.)

For removal:

- unplug the ten multipole connectors
- unplug the two coaxial plugs on the board
- unsolder two connections to the Z-amplifier
- unsolder two trigger input connections
- unplug the X1 and X2 leads from the c.r.t.
- remove the five screws securing the circuit board to the chassis.

			(A)
	E	MAT D D C C C C C C C C C C C C C C C C C	163

Fig. 3.2. Unit location, top view

Fig. 3.3. Unit location, bottom view

FOR CABLE LAY-OUT (see fig. 3.44.)

3.3.5. Z-Amplifier circuit board

This unit is the small rectangular printed-circuit board located on the underside, and towards the rear of the instrument.

For removal:

- unplug the six multipole connectors
- unplug the two connections to the time-base
- unplug the coaxial connector to the intermediate amplifier
- remove the four retaining screws

3.3.6. Intermediate amplifier circuit board

This unit is located in mid-position adjacent to the c.r.t. on the upper side of the instrument.

For removal

- unplug the seven multipole connectors
- unplug the six coaxial plugs on the board
- unsolder the two coaxial leads from the delay line
- remove the four retaining screws.

3.3.7. Final Y amplifier circuit board

This unit is a small rectangular printed-circuit board located on the upper side of the instrument towards the rear, adjacent to the gun assembly of the c.r.t.

For removal:

- unplug the three multipole connectors
- unplug the Y1 and Y2 connections from the c.r.t.
- unsolder the two coaxial leads from the delay line
- remove the three retaining screws.

3.3.8. 2 kV Convertor

This unit is a small rectangular printed-circuit board rail-mounted on the under side of the instrument, adjacent to the base of the c.r.t. A metal housing gives protection against the high potentials developed in this circuit.

For removal:

- unscrew the metal protective housing
- unplug the multipole connectors
- -- unsolder the e.h.t. lead and remove from clip
- remove the two retaining screws from the rail-mounting.

For reassembly, the two securing nuts must be aligned in the rail. In the interests of safety, ensure that the protective housing is re-fitted.

3.3.9. 8 kV multiplier

This is a sealed unit located below the final Y amplifier circuit board adjacent to the c.r.t. gun.

For removal:

- discharge the c.r.t. post-acceleration anode and e.h.t. connector (see 3.3.1.) after disconnection from the
- unsolder the coaxial cable from the 2 kV convertor and remove from clip
- remove the delay-line and adjacent final Y amplifier
- spring the 8 kV unit retaining clips from the instrument frame (if necessary remove the power supply unit from the rear to obtain access to the retaining clips).

3.3.10. Power supply circuit board

This unit is a square printed-circuit board accessible from the rear of the instrument.

For removal:

- unscrew the rear cover plate of the instrument
- remove the two screws securing the circuit board to the rear panel
- unplug the five multipole connectors
- carefully withdraw the circuit board from its compartment.

3.3.11. Delay line

This unit is located on the upper side at the rear of the instrument, adjacent to the final Y-amplifier.

For removal

- unsolder the four coaxial leads
- remove the three screws securing the cover plate
- witdraw the delay line

3.3.12. Cathode-ray tube

For removal:

- slacken the brace round the neck of the c.r.t. and remove all side connections carefully to avoid bending the pins
- disconnect and discharge the e.h.t. connector and c.r.t. anode as recommended in section 3.3.1.
- remove the two rear cover plate screws
- carefully remove the tube base
- unplug the multipole connector of the orthogonality and trace-rotation coils on the final Y amplifier
- slacken the upper plastic centring bracket at the front of the c.r.t.
- remove the bezel by pulling its lower edge
- carefully withdraw the c.r.t. through the front panel of the instrument.

When fitting a c.r.t., the inside of the rubber sleeve should be sprinkled with industrial talc to facilitate insertion.

3.3.13. Pushbutton switches

Each of the pushbutton sets listed below is fitted to the front panel by means of clamping devices secured by hexagon screws:

- A/ALT/CHOP/ADD/B
- DEL'D TB/EXT X DEFL/MAIN TB
- AUTO/TRIG/SINGLE
- DC/LF/HF (main time-base)
- DC/LF/HF (delayed time-base)
- A/B/EXT/MAIN TB

To remove a push-button switch, the hexagon screws that secure it to the front panel must be removed. To replace one switch-section of a push-button set, refer to fig. 3.5.

To remove a push-button switch which is mounted on a p.c. board:

- Remove the printed-circuit board for replacing a switch in this unit
- Straighten the 4 retaining lugs of the relevant switch as shown in fig. 3.5.
- Break the body of the relevant switch by means of a pair of plier and remove the pieces. The soldering pins are then accessible.
- Remove the soldering pins and clean the holes in the printed-wiring board (e.g. with a suction soldering iron).
- Solder the new switch onto the printed-circuit board.
- Band the 4 retaining lugs back to their original positions.

Before a push-button switch is refitted to the front panel, it is advisable to stick the two parts of the clamping device together by means of adhesive tape or non-hardening glue, in order to facilitate replacement, refer to fig. 3.6.

Fig. 3.6. Push-button set clamping device

3.3.14. Trigger source unit

This unit comprises the trigger source and trigger coupling pushbutton switches, integral with the printed-circuit board. (for cable lay-out see fig. 3.44)

For removal:

- unplug the two multipole connectors
- unsolder the two coaxial leads which come from the intermediate Y-amplifier.
- unsolder the coaxial lead which goes to the time base unit.
- unsolder the two wires on both sides of the multipole connectors which go to the time base unit
- unsolder resistor R701 and R751 from the EXT sockets (fig. 3.28.)
- unsolder the earth connection from C762 (fig. 3.28)
- remove the retaining screw at the rear of the board
- remove the hexagonal front panel fixing screws as outlined in 3.3.13.

3.3.15. Attenuator unit

For removal:

- remove the appropriate AMPL knobs and the nut under these knobs
- unplug the multipole connector and the miniature coaxial plug on the INTERMEDIATE AMPLIFIER UNIT
- UNSOLDER THE THREE EARTH CONNECTIONS (see fig. 3.44)
- remove the two screws that secure the lower part of the attenuator unit to the front panel
- carefully lift the attenuator unit out of the oscilloscope.

3.3.16. Carrying handle

For removal:

- remove the upper and lower instrument cover plates
- remove the plastic strip which is snapped on to the grip by slight leverage under one edge
- remove the four hexagon screws which secure the grip to the brackets
- depress the pushbuttons in the brackets and turn the carrying handle vertically above the upper side of the oscilloscope
- keep the pushbutton of the right-hand bracket depressed and pull the bracket from its bearing
- remove the grip from the remaining bracket
- depress the pushbutton of the left-hand bracket and turn the latter vertically below the base of the instrument
- keep the pushbutton depressed and pull the bracket from its bearing.

3.3.17. Special tools

3.3.17.1. Special tool for the slotted nuts of attenuator switches

A tool can be made for this purpose as shown in Fig. 3.7. All dimensions are given in millimetres. The material is silver-steel N094, temepred 40-45 Rc. Service order code 5322 395 54023.

3.3.17.2. Special tool for the slotted nuts of the POSITION and LEVEL/SLOPE potentiometers

A tool can be made for this purpose as shown in Fig. 3.8. All dimensions are given in millimetres. The material is silver-steel N094, tempered 40-45 Rc. Service order code 5322 395 54024

Fig. 3.7. Tool for attenuator switches

Fig. 3.8. Tool for Position and Level potentiometers

3.3.18. Soldering micro-miniature semi-conductors

Fig. 3.9. Dimensional drawings SOT-23 and SOT-43

Because of the small dimensions of these SOT semi-conductors and the lack of space between the components on the printed-circuit board, it is necessary to use a miniature soldering iron with a pin-point tip (max. dia 1 mm) to solder a SOT on to a printed-circuit board.

Working method:

- Carefully unsolder one after the other the soldering tags of the semi-conductor.
- Remove all superfluous soldering material. Use a sucking iron or sucking copper litze wire.
- Check that the tags of the replacement part are clean and pre-tinned on the soldering places.
- Locate the replacement semi-conductor exactly on its place, and solder each tag to the relevant printed conductor on the circuit board.

NOTE: Bear in mind that the maximum permissible soldering time is 10 seconds during which the temperature of the tags must not exceed 250 deg C. The use of a solder with a low melting point is therefore recommended.

Take care not damage the plastic encapsulation of the SOT during the soldering procedure (softening point of the plastic is 150°C).

ATTENTION:

When you are soldering inside the instrument it is essential to use a low-voltage-soldering iron, the tip of which must be earthed to the mass of the oscilloscope.

Suitable soldering irons are:

- ORYX micro-miniature soldering instrument, type 6A, voltage 6V, in combination with PLATO pin-point tip type 0-569.
- ERSA miniature soldering iron, type minor 040 B, voltage 6V.
- Low voltage Mini Soldering Iron, Type 800/12 W 6 V, order no. 4822 395 10004, in combination with 1 mm-pin-point tip, order no. 4822 395 10012.

adjustment						1	1
•	adjusting e	element		adjusting resu	lt	requirements	example of instrument
3.7.2.3.			-				
Power Supply			1				0400 E30 0000E
Current gain of the switching				Remove transist mains voltage →		Isolated transformer 22 Ω (25W)	2422 529 00005 5322 115 50006
regulator transistor			1		1809 must be ± 56V	digital multimeter	PM2517 or PM2527
Value of the base resistor			1	•	Itage so that the voltage	Isolated transformer	2422 529 00005
R1817	R1817 is se	lected		across C1809 is			
	with transist	tor TS1807	-		vith C1809 → voltage across	1kΩ (0,5W) resistor	PM2517 or PM2527
					approximately 4V	digital multimeter	PIVI2317 01 PIVI2327
Checking power supply with					er is started: (mains: 40V)	50kΩ (0,5W) oscilloscope	PM3243 or PM3262
regulating circuit out of service				18kHz	2 a square wave of ±70V _{pp}	озентозсори	
					esistor of 22 Ω must be 1,5V	22Ω (25W)	5322 115 50006
			- 1			digital multimeter	PM2517 or PM2527
Regulating circuit					oltage until the voltage		· ·
	R1834	fig. 3.10.	1	over C1809 is ±	95V e of TS1807 can be varied	oscilloscope	PM3243 or PM3262
	111004	11g. 3.10.	1	with R1834	e of forces	330111333543	
				Power consump	tion must be ± 25W	watt-meter	
Current limitation				+45V: load 200		200Ω (25W)	D. 10547 D.10507
					n becomes active when	digital multimeter	PM2517 or PM2527
			ł		nt exceeds 30—35W. hen short-circuited then		
				power supply in			
Power supply				mains input: loc	al voltage	digital multimeter	PM2517 or PM2527
	R1834	fig. 3.10.			put to +45V ± 100mV		PM3243 or PM3262
					2: square wave 18–22kHz	oscilloscope	PINI3243 OF PINI3202
				with an ampl. of	±200V _{pp}		
070						•	
3.7.3.			ļ				
Cathode-ray tube circuit	B404		1	-			
Trace rotation	R684	fig. 3.10.		lime-base line p	arallel with horizontal		
Brilliance	R1327	fig. 3.11.		A barely visible			
Brilliance ratio	R1115	fig. 3.11.	Ì		y between MTB and		
Dimance (atto	111113	11g. 3.11.		DTB	y between with and		
Astigmatism.	R1344	fig. 3.11.		A sharp trace wi	th FOCUS potentiometer	sine-wave 10kHz	PM5127 or PM5771
Geometry	R1346	fig. 3.11.		Vertical lines m		sine-wave 10kHz 12V _{DD}	PM5127
, , , , , , , , , , , , , , , , , , ,						рр	
			- 1				1
374							
3.7.4.							
3.7.4. Vertical Deflection (both channels)					,	square wave 100Hz	PM5127 or PM5771
Vertical Deflection (both channels)	R132	fig. 3.11,		A well adjusted	attenuator for 100Hz	square-wave 100Hz	PM5127 or PM5771
Vertical Deflection (both channels) L.F. gain		fig. 3.11.			attenuator for 100Hz	square-wave 100Hz 100MHz oscilloscope	PM5127 or PM5771 PM3262
Vertical Deflection (both channels)	R132 R129	fig. 3.11. fig. 3.11.		Minimum time-l	pase jump when depress	· .	1
Vertical Deflection (both channels) L.F. gain DC/O balance	R129	fig. 3.11.		Minimum time-laternately DC a	pase jump when depress and O coupling	· .	1
Vertical Deflection (both channels) L.F. gain				Minimum time-laternately DC a time-base line ju when AMPL./D	pase jump when depress and O coupling mp not more than 0,3div.	· .	1
Vertical Deflection (both channels) L.F. gain DC/O balance	R129	fig. 3.11.		Minimum time-laternately DC a time-base line ju when AMPL./D	pase jump when depress and O coupling mp not more than 0,3div.	· .	1
Vertical Deflection (both channels) L.F. gain DC/O balance	R129	fig. 3.11.		Minimum time-laternately DC at time-base line juwhen AMPL./Dbetween 0,1V—Minimum time-	hase jump when depress and O coupling mp not more than 0,3div. V. control is switched 0,2V and 0,5V/DIV base line jump when var.	· .	1
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15	fig. 3.11. fig. 3.19.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is	wase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV wase line jump when var. operated.	. 100MHz oscilloscope	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance	R129 R15	fig. 3.11. fig. 3.19.		Minimum time-lalternately DC at time-base line juwhen AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre	hase jump when depress and O coupling mp not more than 0,3div. V. control is switched 0,2V and 0,5V/DIV coupling jump when var. operated.	100MHz oscilloscope 20kHz square-wave	1
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15	fig. 3.11. fig. 3.19.		Minimum time-lalternately DC at time-base line juwhen AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre	wase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV wase line jump when var. operated.	. 100MHz oscilloscope	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15	fig. 3.11. fig. 3.19.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an	oase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. If from overshoot and applitude as indicated	100MHz oscilloscope 20kHz square-wave	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141	fig. 3.11. fig. 3.19. fig. 3.11.		Minimum time-talternately DC at time-base line juwhen AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and arbelow: AMPL./DIV. sw 5mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. The from overshoot and applitude as indicated witch are from the frace height 6 div. ± 2%	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15	fig. 3.11. fig. 3.19.	{	Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. If from overshoot and aplitude as indicated witch Trace height 6 div. ± 2% 6 div. ± 2%	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141	fig. 3.11. fig. 3.19. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. If from overshoot and applitude as indicated into the first than the first	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141	fig. 3.11. fig. 3.19. fig. 3.11.	\	Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 50mV	pase jump when depress and O coupling properties of the coupling properties	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141	fig. 3.11. fig. 3.19. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 200mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV passe line jump when var. operated. If from overshoot and aplitude as indicated witch Trace height 6 div. ± 2%	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141 C108	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 10mV 200mV 500mV 500mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. If from overshoot and aplitude as indicated district in the folia of the	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141	fig. 3.11. fig. 3.19. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 20mV 500mV 100mV 500mV 1V	pase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. It is a from overshoot and aplitude as indicated as indicated in the folial foli	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 500mV 1V 2V	pase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. It is a from overshoot and aplitude as indicated witch are supposed of the coupling	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance	R129 R15 R141 C108	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 500mV 1V 2V	wase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV wase line jump when var. operated. e from overshoot and aplitude as indicated witch Trace height 6 div. ± 2% div. ±	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V	PM3262
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 1V 2V A well adjuste in all attenuating attenuating and an	wase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV wase line jump when var. operated. e from overshoot and aplitude as indicated witch Trace height 6 div. ± 2% div. ±	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz	PM3262 PM5127 PM5127 or PM5771
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 10mV 20mV 20mV 50mV 11V 2V A well adjuste in all attenuat square-wave fre rounding and v	wase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. If from overshoot and aplitude as indicated div. ± 2% 6 d	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer	PM5127 PM5127 or PM5771 PM3262 PM5127 and dummy
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre	wase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. If from overshoot and aplitude as indicated div. ± 2% 6 d	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100kHz square-wave via RC standardizer to input of oscilloscope	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 20mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below when AMPL adjusted in the square-wave for rounding and vindicated below	pase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. e from overshoot and aplitude as indicated div. ± 2% 6 div.	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below AMPL./DIV sw	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV passe line jump when var. operated. If from overshoot and aplitude as indicated witch Trace height 6 div. ± 2% 6 di	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 20mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below when AMPL adjusted in the square-wave for rounding and vindicated below	pase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. e from overshoot and aplitude as indicated div. ± 2% 6 div.	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109 C122	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 20mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below AMPL./DIV sw 5mV 10mV 20mV 5mV 10mV 20mV 5mV 10mV 20mV	ase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. e from overshoot and aplitude as indicated sitch Trace height 6 div. ± 2% 6 div. ± 2	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV 120mV	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109 C122	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 200mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below AMPL./DIV sw 5mV 10mV 20mV 50mV 10mV 20mV 50mV 10mV 20mV 50mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV passe line jump when var. operated. If from overshoot and applitude as indicated witch Trace height 6 div. ± 2% 7 div. ± 2%	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV 120mV 300mV	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109 C122	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 20mV 500mV 1V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below AMPL./DIV sw 5mV 10mV 20mV 5mV 10mV 20mV 5mV 10mV 20mV	ase jump when depress and O coupling mp not more than 0,3div. W. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. e from overshoot and aplitude as indicated sitch Trace height 6 div. ± 2% 6 div. ± 2	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V 3V 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV 120mV	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109 C122	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line juwhen AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 100mV 2V A well adjuste in all attenuat square-wave fre rounding and validated below 10mV 20mV 50mV 10mV 100mV	pase jump when depress and O coupling mp not more than 0,3div. V. control is switched 0,2V and 0,5V/DIV pase line jump when var. operated. e from overshoot and aplitude as indicated sitch Trace height 6 div. ± 2% 3 div.	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 60 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV 120mV 300mV 60mV 120mV 300mV 600mV	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX
Vertical Deflection (both channels) L.F. gain DC/O balance Attenuator balance Variable gain balance Square-wave response	R129 R15 R141 C108 C101 C109 C122	fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11. fig. 3.11.		Minimum time-laternately DC at time-base line ju when AMPL./D between 0,1V—Minimum time-GAIN control is Square-wave fre rounding and an below: AMPL./DIV. sw 5mV 10mV 20mV 50mV 11V 2V A well adjuste in all attenuat square-wave fre rounding and vindicated below AMPL./DIV sw 5mV 10mV 20mV 50mV 10mV 20mV 50mV 10mV 20mV 50mV	pase jump when depress and O coupling mp not more than 0,3div. IV. control is switched 0,2V and 0,5V/DIV base line jump when var. operated. If from overshoot and applitude as indicated into the foliated into t	20kHz square-wave rise time ≤ 200 n sec Amplitude 30mV 60mV 120mV 300mV 6V 12V square-wave 100kHz 100MHz oscilloscope 100kHz square-wave via RC standardizer to input of oscilloscope with an Amplitude 30mV 60mV 120mV 300mV 600mV 1,2V	PM3262 PM5127 or PM5771 PM3262 PM5127 and dummy probe 2:1 TEKTRONIX

adjustment		adjusting el	ement		adjusting result	requirements	example of instrument
<i>3.7.5.</i>							
Intermediate and final Y-ampl.							
Gain channel A and B		R16 (R18) R641 R645	fig. 3.19. fig. 3.10. fig. 3.10.		in its mid position a will adjusted gain. change when setting cannot be reached by R641 Variable gain control 1: 2,6 to 1: 3,5	square-wave 2kHz and exactly 3V _{pp}	PM5127 or PM5771
Polarity balance (channel B)		R435	fig. 3.10.		minimum time-base jump when the PULL TO INVERT switch is operated		
Square-wave response				Ī	pulse-top must be as straight as possible maximum error 0,1 div.	square-wave 100kHz rise-time ≤ 1 n sec.	TEKTRONIX PG506
Intermediate ampl. A	{	C302 C316/R342			AMPL/DIV switch 0,1V/div	amplitude input 0,6V	
Intermediate ampl. B	{	C402 C416/R442	fig. 3.10.		AMPL/DIV switch 0,5V/div	input 3V	
Final Y-amplifier	1	C603/R619 C606/R621 R622					
3.7.6. ~ · · ·				-			
Triggering Main time has trigger		DAE1 and	fin 2.10		EVT V deflection and EVT trigger course		
Main time-base trigger level		R451 and R351	fig. 3.10.		EXT. X deflection and EXT, trigger source then the dot must be in the centre of the sci	een.	
<i>3.7.7</i> .							
Horizontal deflection	ŀ						
Stability (M.T.B.)		R873	fig. 3.11.		R873 : 20 ⁰ past the point where the time- base line ceases to be displayed		
Time coefficients (M.T.B.)		R1223	fig. 3.11.		X1—8 centre periods exactly 8 divisions	time-marker signal 1m sec-ampl. 600mV	TEKTRONIX TG501
		R1209 R914	fig. 3.11. fig. 3.11.		X5–8 centre periods exactly 8 divisions X1–8 centre periods exactly 8 divisons	200μ sec. – 600mV 10msec. – 600mV	
Linearity and horizontal positioning		C1203 C1208	fig. 3.11. fig. 3.11.		8 centre-cycles must be 1 cycle/division	time-marker signal 0,01 μ sec.	TEKTRONIX TG501
-			-		X position the whole trace within the measuring graticale		
Gain adjustment of the preamplifier for ext. X-deflection		R1131	fig. 3.11,		horizontal deflection via Ya (6 div.) X deflection must be 6 div. (± 10%)	sine-wave 50kHz 6 divisions height	PM5127 or PM5771
DC output level of the preamplifier for ext. X-deflection		R1132	fig. 3.11.		base of TS1071 to earth potential then the spot must be in the horizontal centre of the screen (\pm 1 division)		
Stability (D.T.B.)		R1064	fig. 3.11.		R 1064: 20 ⁰ past the point where the time base line ceases to be displayed		
Time coefficients (D.T.B.)		R1097	fig. 3.11.		8 centre periods exactly, 8 divisions ± 2,5%	time-marker signal 1 m sec, ampl, 600 mV	TEKTRONIX TG501
Delay-time calibration		R987	fig. 3.10.		dial knob to 1.00— intensified part in the beginning of the second period	square-wave 1kHz	PM5127 or PM5771
		R979	fig. 3.10.		dial knob to 9.00— intensified part in the beginning of the 9th period.	square-wave 1kHz)	
X-deflection with mains signal		R1841	fig. 3.10.		trace width must be 10 div. ± 1div.	·	
3.7,8,							
Calibration unit		D1262	fic 2.11		signal of 2V 2VII- ± 29	oscilloscopo	PM3262
Calibration voltage	l	R1362	fig. 3.11.		signal of 3V _{pp} , 2kHz ± 2% CAL. current 6mA ± 1%	oscilloscope	1 1413202
				1	CAL. CONTENT ONIA 2 1%	l	

Fig. 3.10. Adjustments points, top view

Fig. 3.11. Adjustment points, bottom view

3.5. TEST AND REPAIR HINTS

3.5.1. General information

- Use an isolating transformer when measurements must be made in the power supply.
- For measuring on the printed-wiring boards, test-pins with sharp points must be used. Be careful not to cause a short-circuit by letting the test-pin slip from the test point.
- Use an appropriate soldering iron and solder with a low melting point, if micro-miniature semi-conductors
 must be replaced it is essential to earth the tip of the soldering iron to the mass of the oscilloscope.
- Be very careful not to bend the pins on the neck of the c.r.t., since this is likely to result in a gas-leak.
- Do not remove any transistor, when the oscilloscope is switched-on.
- Do not plug and unplug connectors when the instrument is switched on.
- Do not touch any trim potentiometers or trimmers before a fault has been located.
- If internal coaxial cables have been taken loose, take care not to make earth-short-circuit if the connector might slip over the p.c. board.
- If the H.T. plug of the c.r.t. is taken loose, carefully discharge both the H.T. cable and the H.T. connection
 of the c.r.t. for at least several seconds, to avoid the risk of electrical shocks.

3.5.2. The d.c. voltage levels and waveforms at the relevant points in the circuitdiagrams are measured with the following control settings:

- depress push-button A of the vertical display mode switch SK1
- depress push-button MAIN T.B. of the horizontal display mode switch SK2
- depress push-button AUTO of the M.T.B. trigger mode switch SK9
- set the POSITION potentiometer R3 at mid-range
- set the AMPL./DIV. switch SK10 to 1V/div. and potentiometer R11 to CAL.
- set the X POSITION potentiometer R2 at mid-range and push TB MAGN, switch SK3 to 1X
- set the MTB and DTB slope switch to + (SK5 and SK4)
- set the TIME/DIV switch SK14 of the MTB to 0,2 m sec/div. and set potentiometer R14 to CAL
- set the TIME/DIV switch SK12 of the DTB to OFF and potentiometer R13 to CAL
- depress push-button A of the MTB trigger source switch SK21
- depress push-button MAIN T.B. of the DTB trigger source switch SK20
- depress push-button DC of the MTB and DTB trigger freg. range switch (SK19 and SK18)
- depress push-button AC of the trigger coupling switch SK16
- adjust the MTB LEVEL potentiometer R10 for a stable, triggered display
- apply a square wave signal of $6V_{pp}$, frequency 1kHz to input socket A (BU4)

Attention: All waveforms are measured with AC coupling.

Auxiliary equipment:

Digital multimeter

e.g. Philips PM2517 or PM2527

Ocilloscope

e.g. Philips PM3262 with attenuator probe 10:1

Function generator

e.g. Philips PM5127

3.5.3. Y-amplifier

If there is a fault in one of the Y channels, it can easily be traced to a certain unit by combining the attenuator of one channel and the intermediate amplifier part of the other channel.

This is simply a matter of plugging coaxial cables.

Be careful if a reed relay in the attenuators must be replaced. Such a relay consists of a glass tube, containing the contact points, and a coil. The coil is fitted around the glass tube, with a piece of foil in between for shielding. Since the glass tube is rather fragile, the connection wire of the relay must be bent and soldered with caution. Do not twists the connection wires, as this may cause broken glass-metal seal and unreliable contact inside the glass-tube.

To locate an instability problem in the Y-amplifier, both input- or both output cables of the delay-line may be taken loose. The trace must then be approx. in the middle of the screen. Check also the c.r.t. side-connection pins on corrosion.

3.5.4. Time-base and X-amplifier

— The easiest way to test the time-base generator (we refer here to the main time-base generator, but a similar procedure applies to the delayed time-base) is to remove transistor TS868, switch in a low sweep speed and short-circuit the collector of TS871 to earth. During the time that this short-circuit is open, the time-base capacitor (869) is charged. The charging process can be traced through the time-base unit, where the changing level must be measured in all circuits.

A fault is then located at a point which does not follow the changing level.

The final stage of the X-amplifier can be checked by interconnecting both emittors of TS1206 and TS1207; the displayed dot must then be approx. in the middle of the screen.

3.5.5. Instability

Instability of the display could be caused by bad contacts in the multipole- or the miniature coaxial connectors. If necessary check also the wire clamping in the multipole plugs (good contact of the multipole earth connections of the power supply output is very important).

The inner female contact of the miniature coaxial connectors could be cleaned with a dia 0,75 mm twist drill.

3.6. MAINTENANCE

After removal, the cabinet plates may be cleaned with a mild non-abrasive household detergent. Do not use chemical solutions such as trichlorethylene and acetone.

The 3M company has developed a new cleansing pad (White Cleansing Pad, Catalogue No. 8440) which when soaked in water, ethanol or a common household cleansing agent will also penetrate holes and pores. This method is similar to that of abrasive cleaning pads but lacks their abrasive action.

Abrasive cleaning pads should not be used, otherwise surfacescratches will result.

The text plate may be cleaned with the same detergent, with alcohol or with white spirit. Always use a soft cloth or cotton wool.

3.7. CHECKING AND ADJUSTING

Introduction

The following information provides the complete checking and adjusting procedure for the PM 3240 oscilloscope. As various control functions are interdependent, a certain order of adjustment is often necessary. The procedure is, therefore, presented in a sequence which is best suited to this order, cross-reference being made to any circuit which may affect a particular adjustment. Before any adjustment or check, the instrument must attain its normal operating temperature. Under average conditions this will be approximately 30 minutes after switching on.

All controls which are mentioned without item numbers are located on the front panel of the oscilloscope.

Recommended test equipment

Digital multimeter, e.g. PHILIPS type PM2517 or PM2527

Pulse generator, rise-time ≤ 200 ns e.g. PH1LIPS type PM5127 or PM5771

Pulse generator, rise-time ≤ 1 ns e.g. Tektronix type PG506

Dummy probe 2:1

e.g. Tektronix type 067 .0537 .00.

Time-marker generator

e.g. Tektronix type TG501

Oscilloscope 100MHz

e.g. PHILIPS PM3262

3.7.1. Performance check

3.7.1.1. Preliminary control settings

- Set the POWER switch to OFF.
- Connect the instrument to the mains.
- Depress the ALT button of the vertical display mode switch.
- Depress the MAIN TB button of horizontal deflection switch.
- Depress the AUTO button of the trigger mode switch.
- Set the MAIN TIME/DIV switch to .1 ms.
- Set the DEL'D TIME/DIV switch to OFF.
- Set the AMPL switches to .1 V/DIV.
- Set the TIME/DIV and AMPL potentiometers to CAL.
- Set the TB MAGN switch to x1 (push).
- Set the POSITION potentiometers to their mid-positions.
- Turn the INTENS potentiometer fully clockwise.
 Controls not mentioned may remain in any position. For subsequent tests, unless otherwise stated, controls should be left in the same position as in the previous check.
- Set the POWER switch to ON.
- Check that the POWER ON lamp lights up.
- Check that the two time-base lines appear on the screen.
- Check the working of the graticule illumination control.

3.7.1.2. Cathode-ray tube

- Set the INTENS and FOCUS controls for a sharp, well-defined trace.
- Centre both time-base lines, using the POSITION potentiometers.
- Check that the traces run exactly in parallel with the central horizontal graticule line; if necessary, readjust in accordance with section 3.7.3.

3.7.1.3. Vertical axes

Balance

- Depress the A button of the vertical-display mode switch.
- Depress the 0 button of the AC-0-DC switch.
- Switch the AMPL step attenuator between positions 5 mV/DIV and 10 mV/DIV.
- Check that the trace does not jump. If necessary, readjust the BAL potentiometer on the front panel.
- Repeat for the B channel.

Gain and pulse response

- Depress button A(B) of the horizontal-display mode switch and DC of the AC-0-DC switches.
- Depress the PULL TO INVERT switch incorporated in the channel B POSITION potentiometer.
- Set the AMPL step attenuator to 10 mV/DIV.
- Set the AMPL continuous controls to CAL position.
- Apply a square-wave signal with a maximum rise-time of 1 ns, a peak-to-peak value of exactly 60 mV and a frequency of 1 kHz to input socket A(B).
- Set the MAIN TB switch to a suitable position.
- Obtain a stationary trace with the aid of the LEVEL potentiometer.
- Check that the trace height is 6 divisions. If necessary, adjust the GAIN potentiometer on the front panel.
- Check that the pulse-top is straight within 0,1 DIV.
- Increase the frequency of the input signal successively to 10 kHz, 100 kHz and 1 MHz.
- Check that the pulse-top remains straight within 0,1 DIV. at these frequencies.
- Set the MAIN TIME/DIV switch to .05 µs.
- Pull the TB MAGN control to its x5 position.
- Adjust the LEVEL control for a stable display.
- Check that the rise-time between 10 % and 90 % of the pulse height is \leq 7 ns.
- Push the TB MAGN control to its x1 position.

If the pulse response of both channels does not meet the requirements stated above, readjust the vertical amplifiers in accordance with section 3.7.4.

Bandwidth

- Depress the A button of the vertical-display mode switch.
- Set the AMPL vernier controls to CAL position.
- Set the AMPL switches of both channels to .1 V/DIV.
- Apply a sine-wave voltage of 800 mV_{p-p}, at 50 kHz to input socket A(B) (trace height 8 divisions).
- Increase the generator frequency to 50 MHz while retaining the amplitude of the input signal at 800 mV_{p-p}.
- Check that the trace height is at least 5,6 divisions.

Common-mode rejection

- Depress button ADD of the vertical-display mode switch.
- Pull the channel B PULL TO INVERT switch, incorporated in the POSITION potentiometer, in order to invert channel B signal.
- Set the AMPL switches to .1 V/DIV.
- Apply a sine-wave voltage simultaneously to sockets A and B.
- Check the rejection rate in accordance with the following table.

Note: Adjust the continuous AMPL control of channel A or channel B for minimum trace height.

Input voltage	Generator frequency	Max. trace height	Rejection factor
2,4 V	100 kHz	0,24 DIV	100
2,4 V	1 MHz	0,24 DIV	100

- Disconnect the input voltage.

Chopped mode

- Depress button CHOP of the vertical-display mode switch.
- Set the MAIN TIME/DIV switch to .2 μ s.
- Check that there are two time-base lines displayed which can be shifted in relation to each other using the POSITION controls.

Alternate mode

- Depress the ALT pushbutton of the vertical-display mode switch.
- Set the MAIN TIME/DIV switch to 10 μ s.
- Check that there are two time-base lines displayed which can be shifted in relation to each other using the POSITION controls.
- Set the MAIN TIME/DIV switch to .1 s.
- -- Check that the channels are switched over after every sweep of the sawtooth voltage.

Effective signal delay

- Set the MAIN TIME/DIV switch to .05 $\mu s.$
- Pull the TB MAGN control to x5.
- Set the channel A AMPL switch to .5 V.
- Apply a square-wave voltage of approximately 600 mV $_{p-p}$, repetition frequency approximately 100 kHz, rise-time \leq 1 ns, to input socket A.
- Adjust the LEVEL potentiometer to obtain a stable, stationary display.
- Set the channel A AMPL switch to position .1 V.
- Turn the INTENS potentiometer to maximum intensity.
- Check that the effective delay time T is larger than 1 dvision, see fig. 3.12.

Fig. 3.12. Effective signal delay

Dynamic range and position range

- Set the AMPL switches to .1 V/Div.
- Set the AMPL vernier controls to CAL.
- Apply a sine-wave voltage of 2,4 V, frequency 15 MHz, to input socket A(B).
- Depress button A(B) of the vertical-display mode switch.
- Check that the top and bottom parts of the sinewave can be displayed by means of the POSITION control
- Check that the displayed sinewave shows no distortion over the whole POSITION range.

3.7.1.4. Main time-base generator

Trigger slope and level

- Depress button A of the vertical-display mode switch.
- Set the channel A AMPL switch to .2 V/DIV.
- Depress the AC button of the channel A AC-0-DC switch.
- Depress the DC button of the main time-base trigger frequency range switch.
- Apply a sinewave signal with an amplitude of 1,6 V to input socket A, frequency approximately 30 kHz.
- Set the MAIN TIME/DIV switch to such a position that a few cycles of the input sinewave are displayed.
- Push the SLOPE switch to its + position.
- Check that the time-base generator starts on the positive-going part of the sinewave and moves upwards when the LEVEL potentiometer is turned clockwise.
- Pull the SLOPE switch to its position.

- Check that the time-base generator starts on the negative-going part of the sinewave.
- Set the AMPL switch to .1 V/DIV.
- Position the trace in such a way that the trigger point is visible
- Check that it is possible to shift the starting point of the sinewave over 16 divisions, by means of the LEVEL control.
- Push the SLOPE switch to its + position.
- Position the trace in such a way that the trigger point is visible
- Check that it is possible to shift the starting point of the sinewave over 16 divisions, by means of the LEVEL control.
- Check that the maximum control range of the LEVEL potentiometer does not exceed 32 divisions.

Trigger sensitivity

- Adjust the main time-base LEVEL potentiometer for a stationary display.
- Set the MAIN TIME/DIV switch to such a position that a reasonable number of sinewaves is written on the screen.
- Set the trigger sensitivity in accordance with the table below.

Input Signal	Frequenc y	Vertical- display mode	MTB trigger mode	MTB trigger freq. range	MTB trigger source	Trace Height/Volts
		Sk1	Sk9	Sk 19	Sk21	
YA (BU4) YB (BU5) EXT (BU8)	20 Hz 10 kHz 50 MHz 30 kHz 30 kHz 50 MHz 50 MHz 20 Hz 50 MHz 20 Hz 50 MHz	В	AUTO TRIG TRIG	DC LF HF DC	A B EXT	0,5 div 0,5 div 0,5 div 0,5 div 1,5 div 0,5 div 0,5 div 0,5 div 150 mV 1000mV

Single-sweep operation

- Set the AMPL switch to .2 V/DIV.
- Set the LEVEL control to mid-range.
- Set the MAIN TIME/DIV switch to .1 s.
- Apply a signal that gives a trace height of approximately 8 divisions to input socket YA.
- Depress the $\bf 0$ button of the channel A AC-0-DC switch.
- Push the SINGLE button of the trigger-mode controls.
- Check that the NOT TRIG'D lamp lights up.
- Depress button AC of the channel A AC-0-DC switch.
- Check that the trace is written once and that the NOT TRIG'D lamp is extinguished at the start of the sweep.

Triggering at mains frequency

- Depress the AUTO button of the trigger-mode controls.
- Depress the HF button of the trigger frequency range switch.
- Set the MAIN TIME/DIV switch to 5 ms.
- Apply a sinewave signal at mains frequency to input socket A.
- Adjust the AMPL controls of channel A to obtain a trace height of 3 divisions (The triggered display is not stable).
- Depress the MAINS button of the trigger-source controls.
- Check that a stable display can be obtained by means of the LEVEL potentiometer.

Time coefficients

- Apply a time-marker signal to the YA input.
- Check the sweep times at each position of the MTB TIME/DIV switch (cont. control knob in CAL position).
 The centre 8 time-marker periods must coincide with the centre 8 divisions of the display.
- Check also with the TB MAGN knob in x5 position.

If the requirements stated above are not met, readjust the main time-base generator in accordance with section 3.7.7.

- Check that the control range of the TIME/DIV continuous control is 1:2,6 to 1:3,5.

3.7.1.5. Delayed time-base generator

Trigger slope and level

- Depress button DEL'D TB of the horizontal-deflection switch.
- Depress button A of the del'd time-base trigger-source controls.
- Set the channel A-AMPL switch to .2 V/DIV.
- Depress the AC button of the channel A AC-0-DC switch.
- Depress the DC button of the delayed time-base-trigger-coupling controls.
- Turn the DELAY TIME multiplier knob fully anti-clockwise.
- Set the MAIN TIME/DIV switch to 20 µs and the DEL'D TIME/DIV switch to 10 µs.
- Apply a sinewave signal with an amplitude of 1,6 V to input socket A, frequency approximately 30 kHz.
- Push the SLOPE switch of the delayed time-base generator to its + position.
- Check that the time-base generator starts on the positive-going part of the sinewave and shifts upwards when the LEVEL potentiometer is turned clockwise.
- Pull the SLOPE switch of the delayed time-base generator to its position.
- Check that the time-base generator starts on the negative-going part of the sinewave.
- Set the AMPL switch to .1 V/DIV.
- Position the trace in such a way that the trigger point is visible
- Check that it is possible to shift the starting point of the sinewave over 16 divisions by means of the delayed time-base LEVEL control.
- Push the SLOPE switch of the delayed time-base generator to its + position.
- Position the trace in such a way that the trigger point is visible
- Check that it is possible to shift the starting point of the sinewave over 16 divisions by means of the delayed time-base LEVEL control.
- Check that the maximum control range of the LEVEL potentiometer does not exceed 32 divisions.

Trigger sensitivity

- Depress button DEL'D TB of the horizontal-deflection controls.
- Set the delayed time-base LEVEL potentiometer to obtain a stationary display.
- Set the MAIN TIME/DIV switch one position lower (longer sweep time) than the DEL'D TIME/DIV switch.
- Adjust the DEL'D TIME/DIV switch to such a position that a reasonable number of sinewaves is written on the screen (not for 20 Hz).
- Check the trigger sensitivity in accordance with the table below.

Input signal	Frequency	Vertical- display mode	DTB trigger	DTB trigger source	Trace Height/Volts
		Sk1	Sk 18	Sk20	
YA (BU4)	20 Hz 10 kHz 50 MHz	А	DC	А	0,5 div 0,5 div 0,5 div
	30 kHz 30 kHz 50 MHz		LF HF		0,5 div 1,5 div 0,5 div
YB (BU5)	20 Hz 50 MHz	В	DC	В	0,5 div 0,5 div
EXT (BU7)	20 Hz 50 MHz		DC	EXT	150 mV 1000mV

Time coefficients

- Apply a time-marker signal to the YA input.
- Check the sweep times at each position of the DTB TIME/DIV switch (cont. control knob in CAL position), always keeping the MTB TIME/DIV knob one position lower than the DTB TIME/DIV knob.
 The centre 8 time-marker periods must coincide with the centre 8 divisions of the display.
- If necessary, check also with the TB MAGN. knob in x5 position.

If the requirements stated above are not met, readjust the delayed time-base generator in accordance with section 3.7.7. — Delayed time-base

Check that the control range of the TIME/DIV continuous control is 1:2,6 to 1:3,5.

Delay time multiplier

- Depress the MAIN TB button of the horizontal-deflection controls.
- Depress button MAIN TB of the delayed time-base trigger-source controls.
- Set the MAIN TIME/DIV switch to 1 ms and the DEL'D TIME/DIV switch to .1 ms.
- Apply a time-marker signal with a repetition time of 1 ms to input socket A.
- Adjust the LEVEL potentiometer of the main time-base generator for a stable, triggered display.
- Check that the intensity modulation of the delayed time-base is visible.
- Check that the starting point of the delayed time-base (beginning of the intensified portion) can be continuous shifted in relation to the main time-base by rotating the DELAY-TIME controls.
 Do not take into account the first and last half-divisions of the trace.

3.7.1.6. X-Deflection

X-Deflection via channel A

- Depress button A of the vertical display-mode switch
- Set channel A AMPL./div.switch to 0,5V/div
- Depress button AC of the channel A AC-0-DC switch
- Depress button A of the X-deflection selector (M.T.B. trigger source)
- Apply a sine-wave voltage of exactly 3V_{pp} 2kHz to input socket of channel A
- Check that the trace-width is approximately 6 divisions

X-Deflection via channel B

- Depress button B of the vertical display-mode switch
- Set the channel B AMPL/div. switch to 0,5V/div.
- Depress button AC of the channel B AC-0-DC switch
- Depress button B of the X-deflection selector (M.T.B. trigger source)
- Apply a sine-wave voltage of exactly 3V_{pp}, 2kHz, to input socket of channel B
- Check that the trace-width is approximately 6 divisions

External X deflection

- Depress button EXT of the X deflection selector
- Apply a sinewave voltage of exactly 3 V_{p-p}, frequency approximately 10 kHz, to the EXT input socket.
- Check that the trace width is 6,5 to 10 divisions.

Bandwidth

- Adjust the amplitude of the input signal to obtain a trace width of 6 divisions.
- Increase the frequency of the input signal to 1 MHz.
- Check that the trace width is at least 4,2 divisions.

Phase difference

- Depress the A button of the vertical-display mode switch.
- Depress button EXT X DEFL of the horizontal-deflection controls.
- Set the AMPL switches to .1 mV/DIV.
- Depress button A of the X deflection selector.
- Depress the DC buttons of the AC-0-DC switches
- Apply a sinewave voltage at a frequency of 10 kHz to input socket A.
- Check that a solid line, at an angle of 45° is displayed.
- Increase the frequency of the input signal to 100 kHz.
- Check that the phase error does not exceed 3°,

see fig. 3.13 in which—equals the sine of the phase error angle.

X deflection with internal mains voltage

- Depress button MAINS of the X deflection selector
- Check that the trace width is 8 divisions, ± 1,5 div.;
 If necessary, readjust in accordance with section 3.7.7. X-deflection with mains signal

Fig. 3.13. Phase difference in X-Y mode.

3.7.1.7. Mains voltage fluctuations

- Depress button CHOP of the display-mode controls.
- Set the AMPL switches to .5 V/DIV.
- Set the MTB TIME/DIV and the LEVEL knob for a reasonable display.
- Depress buttons AC of the signal-coupling controls.
- Pull the TB GAIN switch to its x5 position.
- Interconnect the CAL sockets and the A and B input sockets.
- Check that neither the trace width nor the trace height changes when the mains voltage is varied between
 90 V and 260 V. Also check that the trace brilliance does not change.

3.7.2. Adjusting procedure

3.7.2.1. Preliminary control settings

- Depress the PULL TO INVERT switch incorporated in the channel B.
- Set the POSITION potentiometers to their mid-positions.
- Depress buttons DC of the AC-0-DC switches.
- Rotate the DELAY TIME multiplier knob fully anti-clockwise.
- Depress button MAIN TB of the horizontal-deflection controls.
- Push the TB MAGN control to position x1.
- Depress buttons MAIN TB and AUTO of the trigger-mode controls.
- Set the MAIN TIME/DIV switch to 1 ms and the DEL'D TIME/DIV switch to OFF.
- Set the continuous TIME/DIV controls to CAL.
- Depress buttons DC of the trigger-coupling controls.
- Depress buttons A of the trigger-source controls.

All adjustment points are indicated in the Survey of adjusting elements (section 3.4. and fig. 3.10 and 3.11)

3.7.2.2. Power supply

Warning:

Use an isolating mains transformer when working in the power supply unit. Bear in mind that the main part of this unit is connected direct to the mains. As it is preferred to check the proper function of the power supply with adjustable mains voltage, use of a variable transformer (insulated version) is recommended.

Attention:

The power supply unit is provided with a pre-set potentiometer R1834 which controls the d.c. output of the circuit. DO NOT READJUST THIS POTENTIOMETER UNLESS IT IS STRICTLY NECESSARY.

A consequence of readjusting this potentiometer is that all d.c. output voltages change, so that several circuits of the oscilloscope (e.g. time base sweep) must be recalibrated. In the factory this potentiometer has been adjusted to the nominal value of the +45V output.

This voltage must be +45V, + or -100mV.

General

The best way to check the power supply is, when this unit is connected to the normal circuitry of the PM3240. Provisions habe been taken that the unit, after being taken out, remains connected to the instrument.

To facilitate the removal, first disconnect the various connections of the power supply unit.

The supply currents can be measured on each contact of the power supply output connectors. To disconnect one contact of a connector carefully press (twice) the spring at the side of the contact and lift the contact out. Inserting an additional contact provided with a peice of extension wire simplifies current measurement. After replacing the original contact check the spring locking-action to prevent the contact from coming loose later-on.

When the power supply unit is overloaded, the current limitation is actuated. As a result of this, the power supply goes in the "hiccup" mode (2seconds cycle time approx.). This is caused by, successively, slow charging of the capacitor C1809, starting of the chopper, activation of current limiting transistor TS1808, discharging of the regulator circuit capacitor and so on.

Another reason for the power supply going in the "hiccup" mode is, when the switching transistor TS1807 gets no base current from the regulator circuit. In this case capacitor C1809 is slowly charged until the chopper circuit starts which causes the discharge of the capacitor in a short time, and so on.

If necessary, the power supply unit only, can be checked with the aid of a dummy load, consisting of load resistors and capacitors, see fig. 3.42.

If a fault is suspected in the power supply, the following procedure may help you to find what is wrong.

NOTE:

The power supply must always be loaded with the nominal load.

Required instruments

- Variable mains transformer with isolated windings (e.g. Philips bench model 2422 529 00005 or panel model 2422 529 00006;
 - input 220V, output 0-248V/3 A).
- Watt meter (to measure mains power input).
- Oscilloscope (5MHz bandwidth) e.g. PM3243
- Resistor 100 Ω , 25 W (5322 115 50015)
- Resistor 22 Ω , 25 W (5322 115 50006)
- Resistor of 1k Ω and 50k Ω , 0,5W.

3.7.2.3. Checking procedure

In the first part of this procedure the current gain of the switching regulator transistor is checked (and the value of the base resistor R1817).

Then the power supply circuit is checked while the regulating circuit is out of service (switching regulator transistor short-circuited). In this case always check that the voltage across C1809 never exceeds the sum of the voltages across GR1806 and GR1807.

Next the regulating circuit and current limitation is checked.

Proceed as follows:

- Connect the isolating/variable transformer to the mains.
- Connect the power supply unit in series with a 22ohm, 25W resistor and via a Watt-meter to the isolating/variable transformer.
- Remove current sensing transistor TS1808
- Set the variable transformer to 0 volt
- Switch on the oscilloscope and increase the variable transformer output to 40V
- Check that the voltage across C1809 amounts to approx. 56V (the chopper circuit is not oscillating).
- If this voltage across C1809 does not appear, check the ripple eliminator circuit (TS1801 and TS1802),
 R1819 and check the chopper circuit on short-circuit
- Switch-off the instrument
- After the voltage across C1809 has completely disappeared, switch-on again and check that the voltage across
 C1809 is present again after approx. 2 seconds.

(The speed of charging depends on the current gain of TS1807 and the value of R1817).

R1817

- Increase the power supply input voltage until the voltage across C1809 amounts to 90V.
- Connect a 1 kohm (0,5W) resistor in parallel to C1809
- The voltage across C1809 must now be approximately 4V
- If this 4V can not be reached, change unit TS1807
- Remove the resistor $1k\Omega$ (0.5W)

The unit comprises a transistor BDY93 or BUX82 and a selected resistor R1817. This transistor and resistor is selected according to the following procedure.

First the transistor is preheated during 100 hours in an oven at 125°C. The reason for this is that under the influence of heat the current gain of this transistor decreases to a certain value. This phenomena formerly caused that the power supply of a new instrument did not start (especially in a cold environment) after the instrument had been used for some time.

Now the power transistors are preheated, the problem mentioned above has been abolished.

After 100 hours of preheating the transistors are selected for current gain (hfe). A current of 0,3mA is applied to the base and the collector current is measured:

```
IC = 2,4 .... 3,6mA; R1817 must be 27,4k, IC = 3,6 .... 5,4mA; R1817 must be 36,5k, IC = 5,4 .... 8,1mA; R1817 must be 56,2k.
```

After that a current of 10mA is applied to be base and if the collector current is less than 250mA (at a collector voltage of 50Volt) the transistor is rejected.

The production of the present TS1807 transistor type BDY93 is stopped within some time.

The successor for this transistor will be the type BUX82. In future this transistor will be delivered together with a selected resistor R1817 under the same code number as the BDY93 (5322 130 44707).

The selection procedure for the new type will be the same as used for the old type except for the 0,3mA base current selection. The collector current ranges are:

```
IC = 2,4 .... 3,6mA , R1817 must be 27,4k, IC = 3,6 .... 5,4mA , R1817 must be 36,5k, IC = 5,4 .... 8,1mA , R1817 must be 56,2k, IC = 8,1 .... 11,4mA , R1817 must be 78,4k.
```

- Adjust the mains input voltage to 40V
- Short-circuit emittor-collector of TS1807
- Start the chopper circuit (TS1804, TS1806) by connecting for a short moment the base of TS1804 via a 50kohm (0,5W) resistor to point 4 of transformer T1802.
- Check the voltage on point 5 of T1802. This must be a square wave of approx. 70V_{pp}, frequency approx.
 18kHz.
- The voltage across the 22 ohm series resistor in the mains input must be approx. 1,5V.
- If the chopper does not oscillate, check the chopper circuit itself.
 If the chopper goes in the "hiccup" mode when the 50 kohm resistor remains connected, check the d.c. output circuits and the circuit connected to points 7 and 8 of T1802.
- Remove the 22ohm resistor in the mains input.
- Increase the mains input voltage until the voltage over C1809 amounts to 100V (not higher, otherwise the

Z-diodes GR1806 and GR1807 will blow up).

The chopper must start automatically.

- Check the pulse on the base of TS1807.
 Adjust with the variable transformer the voltage across C1809 to ± 95V check that this pulse can be varied with R1834. If not check the regulator circuit.
- The power consumption must be 25W approx.
- Remove the short-circuit across TS1807; check that the pulse on the base of TS1807 changes at this moment.
- Fit current sensing transistor TS1808.
- Check that the chopper circuit cuts out (goes in the "hiccup" mode) when the load of the power supply is increased by approx. 50%. To this end connect a 200 ohm 25W resistor to the +45V output. The current limitation goes "on" when the power output exceeds 30-35 W.

Also when the +45V output is short-circuited, the power supply goes in the "hiccup" mode.

- Adjust the mains input voltage with the variable transformer to the nominal local voltage.
- If necessary adjust the +45V output voltage (+ or 100mV is allowed) with the aid of R1834
- Check again the voltage on point 5 of T1802 with an oscilloscope. The frequency must be 18-22 kHz;
 check the shape of the chopper voltage: this must be a square wave of ± 200V_{pp}
- Vary the mains voltage between 90 and 248V.
 Check that the +45V output remains constant (between + or 200mV).
 Check the 50% overload current limitation at 248V.

3.7.2.4. Waveforms in the power supply unit fig. 3.14.

(Photographs taken from storage oscilloscope PM3243 with a 10: 1 attenuator probe)

1. Mains ripple eliminator (TS1801)

- a. A.C. Voltage on the emitter of TS1801
- b. A.C. Voltage on the collector of TS1801.

Both voltages are measured with respect to the negative pole of electrolytic capacitor C1806.

Mains voltage 220V.

PM3243 settings: 0,5V/DIV; 5 ms/DIV; triggering from the mains.

2. Regulator input voltage versus voltage across switching transistor TS1807

- a. Voltage on p3 with respect to p2 of IC1801
- b. Collector-emitter voltage of TS1801; lower line is 0V

Mains voltage 220V

PM3243 settings:

20 mV/DIV for A; 100V/DIV for B (100: 1 attenuator probe and 1V/DIV)

20 ms/DIV; external triggering from p5 of T1802

3. Chopper

- a. Voltage between p2 and p3 of transformer T1801
- b. Voltage between p7 and p8 of transformer T1802

Mains voltage 220V

PM3243 settings: 0,5V/DIV; 10μs/DIV; external triggering from p5 of T1802

4. Switching transistor TS1807

Current flowing through R1819

- a. Mains voltage 110V
- b. Mains voltage 220V

PM3243 settings: 50mV/DIV (=25mA/DIV); 20µs/DIV; external triggering from p5 of T1802

5. Regulator input voltage at 220V and 110V mains voltage

Voltage on p3 with respect to p2 of IC1801

- a. at 220V
- b. at 110V

PM3243 settings: 20mV/DIV; 20ms/DIV; external triggering from p5 of T1802

6. Switching-on period

- a. Voltage across R1819
- b. Voltage on p8 of IC1801 with respect to p1 and p10

Lower line is 0V

Mains voltage 220V

PM3243 settings: 5ms/DIV; 20mV/DIV for A; 0,1V/DIV for B; external triggering from p5 of T1802; single shot.

7. Switching-on period

As photograph 6a, but with PM3243 setting of 50 ms/DIV.

MAT 331

Fig. 3.14. Waveforms in the power-supply unit

3.7.3. Cathode-ray tube circuit

Trace rotation (R684)

- Depress button A of the vertical-display mode switch.
- Depress button MAIN TB of the horizontal-deflection controls
- Centre the time-base line, using the POSITION controls
- Check that the time-base line runs exactly parallel with the horizontal lines of the graticule; if necessary readjust TRACE ROT. potentiometer R684.

Brilliance (R1327)

- No vertical deflection
- Depress button EXT X DEFL of the horizontal-deflection controls (no horizontal-deflection).
- Turn the INTENS potentiometer 90° from the left-hand stop.
- Check that the dot is barely visible. If necessary, readjust potentiometer R1327 on Z-unit.

Brilliance ratio (R1115)

- Depress button A of the vertical-display mode switch
- Depress button MAIN TB of the horizontal-deflection controls
- Turn the DELAY TIME control to its mid-position
- Set the MAIN TIME/DIV switch to 1 ms and the DEL'D TIME/DIV switch to .2ms
- Set the INTENS potentiometer to a position 180° from its anti-clockwise stop.
- Check that the trace of the main time-base generator is just visible over the entire screen and that the portion determined by the delayed time-base generator is brighter. If necessary, readjust the INTENS RATIO potentiometer R1115 on time base unit.

Focus and astigmatism (R1344)

- Depress button A of the vertical-display mode switch
- Depress button MAIN TB of the horizontal-deflection controls
- Set the delayed time-base TIME/DIV switch to OFF.
- Apply a sinewave signal at a frequency of 10kHz to input socket A
- Adjust the trace height to 6 divisions, using the AMPL switch and venier
- Set the MAIN TIME/DIV switch and the LEVEL potentiometer to such a position that several complete cycles are displayed
- Set the INTENS potentiometer for normal brilliance
- Check that a reasonably sharp trace can be obtained with the aid of the FOCUS potentiometer. If necessary readjust astigmatism potentiometer R1344 on Z-unit

Geometry (R1346)

- Depress button A of the vertical-display mode switch
- Depress button MAIN TB of the horizontal-deflection controls
- Set the DEL'D TIME/DIV switch to OFF
- Apply a sinewave voltage of 12V_{pp}, frequency approximately 10kHz to input socket A
- Set the channel A AMPL switch to .1V/DIV
- Set the MAIN TIME/DIV switch to .2ms
- Check that the displayed vertical lines are straight; if necessary, readjust potentiometer R1346 on Z-unit

3.7.4. Vertical Deflection

Input attenuators

The input attenuators are identical for both channels. Therefore, only one channel is described.

L.F. gain adjustment (R132)

Besides the adjustment points in the intermediate amplifier both attenuators have an LF gain adjustment point R132. To be sure that the attenuator unit is well adjusted connect an oscilloscope e.g. PHILIPS PM3265 to its output. Apply a 100Hz square wave signal to the input of the unit and adjust R132, if necessary. The attenuator has in the 5mV/div. position an attenuation of 1,25x.

The attenuator output must have its normal load of approx. 50ohms, for instance the intermediate amplifier.

DC/0 balance (R129)

- Set R141 (output DC offset compensation) to its mid position.
- Set the AMPL./DIV switch to 5mV/div.
- Depress alternately the DC and 0 coupling switches and adjust R129 to minimum time-base line jump.

Attenuator balance (R15)

- Set R141 (output DC offset compensation) to its mid position.
- Centre the time-base line, using the POSITION control
- Check that the time-base line does not jump more than 0,3 div when the AMPL./DIV control is switched between 0,1V, 0,2V and 0,5V/div; if necessary, adjust R15 (BAL. on front panel) for minimum jump.

Variable gain balance (R141)

- Centre the time-base line, using the POSITION control
- Adjust R141 (output DC offset compensation) to minimum time-base line jump when operating the var.
 GAIN control.

20kHz square wave response adjustment (C108, C101 and C109)

- Depress button A (B) of the vertical-display mode switch
- Set the MAIN TIME/DIV switch to 20μs
- Depress button DC of the AC-0-DC switch
- Apply a square-wave signal, frequency approximately 20kHz, rise time ≤ 200 ns and amplitude as indicated
 in the table below, to input socket A (B)
- Check that the displayed square-wave is free from overshoot and rounding

AMPL/DIV switch Sk10/11	Input signal on A (B) BU 4/5	Adjustment	Trace height
5 mV	30 mV	C108	6 div. ± 2%
10 mV	60 mV		6 div. ± 2%
20 mV	120 mV		6 div. ± 2%
50 mV	300 mV		6 div. ± 2%
100 mV	600 mV		6 div. ± 2%
200 mV	1,2V		6 div. ± 2%
500 mV	3 V		6 div. ± 2%
1 V	6 V	C109	6 div. ± 2%
2 V	12 V		6 div. ± 2%

Maximum admissible pulse-top error : 2%

100kHz square-wave response adjustment (C122)

Besides the 100kHz adjustment points in the intermediate amplifier the attenuators have a 100kHz adjustment trimmer C122. This trimmer works on all attenuator positions. To be sure that the attenuator unit is well adjusted, connect an oscilloscope with a bandwidth of 50MHz or more e.g. PHILIPS PM3262 to the output of the attenuator and set C122 to maximum square-wave response. The attenuator output must have its normal load of approx. 50 ohms (for instance the intermediate amplifier). The attenuator has in the 5mV/div position an attenuation of 1,25x.

Input capacitance adjustment

- Apply a 100kHz square-wave signal with the voltages mentioned in the table above via an input RC Standardizer
 of 1 M Ohm/15 pF to input socket A (B).
- Check that the displayed square-wave is free of rounding and overshoot; maximum admissible pulse-top error:
 2%; if necessary, readjust in accordance with table below.

Via Standardizer Input to BU 4/5	Adjustment	Trace height
30 mV		3 div. ± 2%
60 mV	C107	3 div. ± 2%
120 mV		3 div. ± 2%
300 mV		3 div. ± 2%
600 mV	C102	3 div. ± 2%
1,2 V		3 div. ± 2%
3 V		3 div. ± 2%
6 V }	C111	3 div. ± 2%
12 V		3 div. ± 2%
	30 mV 60 mV 120 mV 300 mV 600 mV 1,2 V 3 V 6 V	Input to BU 4/5 30 mV 60 mV 120 mV 300 mV 600 mV 1,2 V 3 V 6 V C101

3.7.5. Intermediate and final Y-amplifier

Gain channel A (B) (R16 (18) fig. 3.19, R641 and R645)

- Depress button A (B) of the vertical display mode switch
- Set the AMPL/DIV switch to 0.5V/div
- Set the var. GAIN control R11 (12) of fig. 3.19. to CAL.
- Depress button DC of the AC-0-DC switch
- Apply a square-wave voltage with an amplitude of exactly 3V to input socket A (B) frequency approx. 2kHz.
- Check that the trace is exactly 6 divisions, if necessary adjust the GAIN preset potentiometer (R16) on the front panel.
- After adjustment, the GAIN preset potentiometer should occupy its mid position. If necessary, adjust potentiometer R641 in the final Y-amplifier unit.
 - If the setting cannot be reached with R641, change R645 to a suitable resistance value between 249 ohm and 1k ohm.
- Check that the control range of the var. GAIN control is at least 1: 2.6 to 1: 3.5.

Polarity balance channel B (R435)

Check that the trace does not jump when the PULL TO INVERT switch is operated. If necessary, adjust R435.

Square-wave response channel A (B)

- Depress button A (B) of the vertical-display mode switch
- Set the A (B) AMPL switch to 20 mV/DIV
- Depress the PULL TO INVERT switch incorporated in the channel B POSITION control
- Set the MAIN TIME/DIV switch to .05 μ s
- Apply a square-wave voltage of approximately 120mV_{pp}, rise time ≤ 1ns, repetition frequency approximately 100kHz
- Check that the pulse-top is as straight as possible, maximum pulse-top error including ringing and overshoot
 0,1 div.

Adjustments		
C302	}	intermediate ampl. Ch. A
C316/R342	,)	
C603/R619 C606/R621 R622		final Y-amplifier
C402 C416/R442	}	intermediate ampl. Ch. B

Check the square-wave response in positions 0.1V/div (input voltage 0.6V) and 0.5V/div (input voltage 3V) of the AMPL/DIV switch.

Triggering 3.7.6.

MAIN TB trigger level and DC balance of X amplifier (R451/R351)

- Depress button A of the vertical-display mode switch.
- Depress button MAIN TB of the horizontal-deflection controls.
- Depress button AUTO of the trigger-mode controls.
- Set the MAIN TIME/DIV switch to .5 ms.
- Depress button MAIN TB of the DEL'D TB trigger-source controls.
- Depress button A of the main time-base trigger-source controls.
- Push the TB MAGN switch to position x1.
- Set the X POSITION potentiometer to such a position that the time-base line starts at the extreme left-hand line of the graticule.
- Depress button EXT X DEFL of the horizontal-deflection controls and button EXT of the main time-base trigger-source controls.
- Check that the dot is in the centre of the screen; maximum deviation: 2 divs.
- Centre the dot by means of the X POSITION potentiometer.
- Depress button B of the main time-base trigger-source controls.
- Check that the dot is in the centre of the screen; if necessary, readjust potentiometer R451 on interm. Y-ampl.
- Depress button A of the main time-base trigger-source controls.
- Check that the dot is in the middle of the screen; if necessary, readjust potentiometer R351 on interm. Y-ampl.

3.7.7. Horizontal deflection

Main time-base

Stability (R873)

- Depress both 0 buttons of the AC-0-DC switches.
- Depress button MAIN TB of the horizontal-deflection controls.
- Depress button TRIG of the trigger-mode controls.
- Set the DEL'D TIME/DIV switch to OFF.
- Rotate the main time-base LEVEL control fully anti-clockwise.
- Turn STAB potentiometer R873 fully anti-ciockwise.
- Check that there is a time-base line written.
- Rotate STAB potentiometer R873 approximately $20^{\rm O}$ past the point where the time-base line ceases to be displayed.
- Depress button AUTO of the trigger-mode controls.
- Check that there is a time-base line written again.

Time coefficients (R1223, R1209, R914)

As the power supply may affect the sweep times, it must be checked before readjusting the sweep times, refer to 3.7.2.3.

- Depress button A of the vertical-display mode switch.
- Set the AMPL switch to .1 V/DIV.
- Depress button DC of the AC-0-DC switch.
- Depress button MAIN TB of the horizontal-deflection controls.
- Push the TB MAGN switch to position x1.
- Depress button AUTO of the trigger-mode controls
- Set the MAIN TIME/DIV vernier control to CAL.
- Set the MAIN TIME/DIV switch to 1 m sec.
- Depress button DC of the trigger-coupling controls.
- Depress button A of the trigger-source controls.
- Apply a time-marker signal at a repetition rate of 1 ms to input socket A, amplitude approximately 600 mV.
- Check that the 8 centre periods cover exactly 8 divisions; if necessary, readjust potentiometer R1223
- Pull the TB MAGN switch to position x5.
- Set the time-marker generator to 200 $\mu s.$
- Check that the 8 centre cycles cover exactly 8 divisions; if necessary, readjust potentiometer R1209
- Push the TB MAGN control to position x1.
- Set the MAIN TIME/DIV switch to 10 ms.
- Set the time-marker generator to 10 ms.
- Check that the 8 centre cycles cover exactly 8 divisions; if necessary, readjust potentiometer R914
- Check that the control range of the TIME/DIV continuous control is 1:2,6 to 1:3,5.
- Check the remaining positions of the TIME/DIV switch; the centre 8 periods should always cover exactly 8 divisions, ± 2.5 %. On the end positions .5 s, .2 s, .1 μ s and .05 μ s the tolerance is ± 3.5 %.
- Also check that the length of the time-base line always exceeds 10 divisions.

Linearity and horizontal positioning (C1203, C1208)

- Set the MAIN TIME/DIV control to .05 μ s.
- Pull the TB MAGN switch to its x5 position.
- Apply a time-marker signal with a pulse repetition frequency of .01 μs to input socket A.
- Check that the 8 centre cycles cover exactly 8 divisions.
- Check also that for the 8 centre cycles a display of 1 cycle/division is obtained; if necessary, readjust trimmer capacitors C1203 and C1208.
- Check that all other cycles have a width of 1 division by shifting the whole train of pulses across the screen.
 Do not take into account the first and last five cycles.
- Also check that with the X POSITION potentiometer fully anti-clockwise and fully clockwise the beginning and the end of the trace is written within the measuring graticule.

Gain and balance adjustment of the preamplifier for ext. X-deflection

Gain adjustment (R1131)

- This adjustment must be carried out after the gain of the channel A and B pick off amplifiers and the final X-amplifier have been adjusted.
- Apply a sine wave of 6 div. height and a frequency of approx. 50 kHz to the channel A input.
- $-\,$ Set the instrument to the X via $Y_{\mbox{\scriptsize A}}$ mode.
- Check that the horizontal deflection is about the same (6 div. \pm 10 %) as the vertical deflection.
- If necessary, change R1131 to a resistance value between 18,7 and 21,5 kOhm to obtain the right X-deflection.
- Note that R1131 also influences the horizontal shift. Therefore, adjust R1131 first and afterwards R1132.

DC output level adjustment (R1132)

- This adjustment must be carried out after the gain adjustment.
- Set the HORIZONTAL POSITION control so that the MTB line starts at the most left line of the graticule.
- Connect the base of TS1071 to earth potential.
- Depress the button EXT. X DEFL. of the horizontal deflection controls
- Check that the display shows a spot in the horizontal centre of the graticule (± 1 div.).
- If necessary, change R1132 to a resistance value between 31,6 and 40,2 kOhm to obtain the right X position of the spot.

Delayed time-base

Stability (R1064)

- Depress button DEL'D TB of the horizontal-deflection controls.
- Depress button A of the delayed time-base trigger-source controls.
- Depress button 0 of the channel A AC-0-DC switches.
- Set the MAIN TIME/DIV switch to .5 ms.
- Set the DEL'D TIME/DIV switch to .2 ms.
- Turn the delayed time-base LEVEL control fully anti-clockwise.
- Turn STAB potentiometer R1064 fully clockwise.
- Check that a time-base line is displayed.
- Rotate STAB potentiometer R1064 approximately 20^o beyond the point where the time-base line ceases to be displayed.
- Depress button MAIN TB of the delayed time-base trigger-source controls.
- Check that the time-base line is displayed again.

Time coefficients (R1097)

- Depress button A of the vertical-display mode switch.
- Set the AMPL switch to .1 V/DIV.
- Depress button DC of the AC-0-DC switch.
- Rotate the DELAY TIME control fully anti-clockwise.
- Depress button DEL'D TB of the horizontal-deflection controls.
- Depress button AUTO of the main time-base trigger-mode controls.
- Depress button A of the delayed time-base trigger-source controls.
- Set the TIME/DIV continuous controls to the CAL positions.
- Set the TIME/DIV switch to 1 m sec.
- Apply a time-marker signal at a repetition rate of 1 ms and an amplitude of approximately 600 mV to input socket A.
- Check that the 8 centre periods cover exactly 8 divisions; if necessary, readjust potentiometer R109?
- Check that the control range of the delayed time-base TIME/DIV contin. control is 1:2,6 to 1:3,5.
- Check the remaining positions of the DEL'D TIME/DIV switch.
 Keep the DELAY TIME control fully anti-clockwise during this check, and the MAIN TIME/DIV switch one position lower than the DEL'D TIME/DIV switch. In this way, the delayed time-base can complete an entire sweep.
- Check that the 8 centre periods always cover 8 divisions, ± 2.5 % except in the positions .1 μ s and .05 μ s, where the tolerance is ± 3.5 %.
- Check that in all positions of the DEL'D TIME/DIV switch the length of the time-base line exceeds 10 divisions.
- Check that no time-base line is written when the DEL'D TIME/DIV switch occupies the OFF position.

Delay time

- Depress button A of the vertical-display mode switch.
- Depress button DC of the AC-0-DC switches.
- Depress button MAIN TB of the horizontal-deflection controls.
- Depress button AUTO and MAIN TB of the trigger-mode controls.
- Set the DEL'D TIME/DIV switch to 1 μ s.
- Set the MAIN TIME/DIV switch to 1 ms.
- Depress button DC of the trigger-coupling controls.
- Depress button A of the trigger-source controls.
- Rotate the TIME/DIV cont. controls to CAL.
- Apply a time-marker signal at a repetition rate of 1 ms.
- Set the LEVEL control of the main time-base for a triggered display.
- Check that the intensity modulation by the delayed time-base is visible over the entire range of the INTENS potentiometer.
- Check that the starting point of the delayed time-base can be continuously shifted along the main time-base
 line with the aid of the DELAY TIME control. Ignore the first and last half-divisions.

Delay-time calibration

(Start- and stop pot. meters R987 and R979; located on the small p.c. board underneath the c.r.t.)

- Delayed time-base sweep .1 ms/DIV.
- Main time-base sweep 1 ms/DIV.
- Depress button MAIN TB of the horizontal display switch.
- Depress button A of the vertical display switch.
- Depress button A of the main time-base trigger source switch.
- Apply a 1 ms square-wave signal to the ch. A input.
- Set the DELAY TIME MULTIPLIER dial knob to 1.00.
- Adjust start pot. meter R987 (front panel side) so, that the beginning of the intensified part coincides with the beginning of the 2nd period.
- Set the DELAY TIME MULTIPLIER dial knob to 9.00.
- Adjust stop pot. meter R979 so, that the beginning of the intensified part coincides with the beginning of the 9th period.
- Repeat both adjustments for optimum result.

X-Deflection with the mains signal (R1841)

- Depress button EXT X DEFL of the horizontal deflection controls
- Depress button MAINS of the X deflection-source controls.
- Check that the trace width is 10 divisions, ±1 div.; if necessary; readjust potentiometer R1841

ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
C 1836 C 1837 C 1838 C 1839 C 1841 C 1842 C 1843 C 1844 C 1846	4822 124 20469 4822 124 20469 4822 124 20469 4822 124 20454 4822 124 20454 4822 124 20454 4822 124 20454 4822 124 20454 4822 124 20454	68UF 68UF 68UF 68UF 150UF 150UF 150UF	-10+50 -10+50 -10+50 -10+50 -10+50 -10+50 -10+50 -10+50	16 16 16 6,3 6,3 6,3	ELECTROLYTIC
C 1847 C 1848	4822 124 20454 4822 124 20454	150UF 150UF	-10+50 -10+50	6,3 6,3	ELECTROLYTIC ELECTROLYTIC
C 1849	4822 124 20454	150UF	-10+5 0	6,3	ELECTROLYTIC

ITEM	ORDERING NUMBER	онм	TOL (%)	TYFE	REMARKS
5 1222222222333333333333444444455555555555	48222 1116 504566 48222 1116 54567 48222 1116 54567 53222 1116 54567 53222 1116 54067 53222 1116 504547 53222 1116 504547 53222 1116 504547 53222 1116 504547 53222 1116 504547 53222 1116 504546 53222 1116 504546 53222 1116 504546 53222 1116 504546 53222 1116 504526 53222 1116 504667 53222 116 50	106383KK 8637837KK 173375533805703662335228 23, 1740362335228 1740362335228 1740362335228 1740362335228 1740362335228 1740362335228 1740362370366303661494703228 17403222707833333303661494703228 1740322270783333333333333333333333333333333	5151511515151511511011 55110115111511155555511511111111	656565665656565655W55 .6655W55655566666666556555555556555W66556655655	METTALON FILL MM POTALETTALON FILL MM METTALON FILL MM POTALON

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
5 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	48222 1116 504647 48322 1117 30067 48222 1116 504587 48222 1116 504587 48222 1116 504447 53222 1116 504587 48222 1116 505456 48222 1116 505456 48222 1116 505456 48222 1116 505456 500452 48222 1116 50546 500467	41,37336338705700 K KK K K K K K K K K K K K K K K K K	1 20 1 1 1 1 5 5 1 1 20	665656556655W655W55 .6655W556555555556666666556565555555555	CARBALN FILL M PO THE LAND THE

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	ORDER ING NUMBER 4822 111 30245 4822 111 30067 5322 116 50568 4822 111 30067 5322 116 50568 5322 116 50667 50667 506	4934964363130793939937862381274316360701573532733355905593789822211 45157363130793939399273862381274316360701573532733355905593789822211 4515736313079393939273862381274316360701573532733355905593789822211 4515736313079393939273862381274316360701573532733355905593789822211 4515736313079393939273862381274316360701573532733355905593789822211 45157363130793939392738623812743163607015773532733355905593788888 K K K K K K K K K K K K K K K K K	51511115151115111111111111111111111111	6565555666655556555555555655556555565555	METAL FILM CARBON METAL FILM METAL FILM METAL FILM CARBON METAL FILM CARBON METAL FILM CARBON METAL FILM CARBON METAL FILM METAL FILM

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	53222 116 5055277 116 504549 9 5 5 3 3 2 2 2 1 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 5 2 2 2 1 1 6 5 0 5 0 5 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2 2 2 1 1 6 6 5 0 5 0 5 2 2	K KKKKK KKK KKKK KKKK KKKKK KKKKK KKKKK KKKK	115111111511111111111111111111111111111	55655555555555555555555555555555555555	FILL MM MMMM MMMM II FILL LLLL FFILLL FFILL FFILLL FFILL FFILLL FFILLT FFILLT FFILLT FFILLT FFILLT FFILLT FFILL FFILLT F

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	5322 116 54696 5322 116 54696 50527 116 50527 116 50527 303324 5322 116 505324 111 303324 5322 116 50586 508996 508996 5322 116 508996 5322 116 508996 5322 116 504596 5322 116 504596 5322 116 504596 5322 116 504596 5322 116 504596 5322 116 504596 5322 116 504596 5322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596 53322 116 504596<	33,2 10,5K 100 22 6,81K 3,34K 1,54K 18,7 18,7 22 6,511 22 4,02K 22 4,02K	1111551511115115115115511111111111111155515555	5555666565566565656565555555555556655555	METALL N FILL LILL LILL M MMM M M M M M M M M M M

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	5322 116 50459 5322 116 504527 5322 116 505086 5322 116 505086 5322 116 505086 5322 116 505086 505086 505086 505086 5322 116 505086 505086 5045134 505086 505086 5045436 505086 50677 50677 50677 50708 50677 50677 5086 5045436 505066 5096 5045439 50677 5097 5067 50677 5097 5067 50677 5097 5067 50677 5097 5067 50677 5097 5077 5077 5097 5077 5077 5097 5077 5077 5097 5077 5077 5097 5077 5077 5097 5077 5077 5097 5077 5077	2 3632 412 323 4 342 12 29244 55 1 15524,74,74,788,81252 622126037442103132452238162575611494220223272320007557379522618281252 24,,3,,46 32,3 4 8 ,40,,,,,,412 707,,41662,8423200075573795226118281252 24,,3,4,4,662,84232723200075573795226118281252 29244 55 1 1524,74,74,74,74,74,74,74,74,74,74,74,74,74	11111111111111111111111111111111111111	55555556555556565656565656565656565656	METTALL FILL M MMM M MMMMMMMMMMMMMMMMMMMMMMMM

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	116 545484 5322 116 540484 117 30494 118 540464 119 30396 111 30396 111 30396 111 30396 111 30396 111 30396 111 303996 112 30396 113 30396 114 5405895 115 50322 116 508895 116 508895 116 508895 116 5045895 116 5045896 117 30396 118 5045896 119 63396 110 63396 110 633036 110 633036 110 633036 110 633036 110 633036 110 633036 110 630596 110 6	3 422 1 6 111 6 4 11 6261111 3 11 1 2 2 2 2 551 2 9 5362 3 422 1 6 1 1 6 4 11 6261111 3 11 1 2 2 2 2 551 2 551 2 9 5 3 6 2 6 3 6 5 7 7 2 1 1 2 2 2 5 5 1 2 6 7 7 1 5 5 2 6 7 7 1 5 5 6 7 7 1 5 5 6 7 7 1 5 5 6 7 7 1 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	111110551511115115115111111111111111111	55555W66565556556556555555555555555555	METALL FILLM METALL FILLM METALL FILLM METALL METAL

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
234678912346789123467891234567891234678912346789123467891234678912322222222222222222222222222222222222	ORDERING NUMBER 5322 116 54608 5322 116 54635 4822 111 30067 5322 116 555236 4822 111 30067 5322 116 50579 5322 116 50579 5322 116 54587 5322 116 54587 5322 116 54587 5322 116 54549 5322 116 54549 5322 116 54549 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 30279 5322 111 54549 5322 111 50577 5322 116 54561 54561 55322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 54561 5322 116 55233 5322 116 55233 5322 116 55233 5322 116 55457 5322 116 55457 5322 116 55457 5322 116 5621 5322 116 54619 5322 116 546511 5322 116 54619 5322 116 54619 5322 116 54619 5322 116 54619	76 8 ,3 3,451 1265121 129131 9 43182 8814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 1265121 129131 9 43182 88814 3 254582 87,000 129131 129131 9 43182 88814 3 254582 87,000 129131 9 43182 88814 3 254582 87,000 129131 129	11555115111101555555511111111111111155111555555	5566565565555W566666555555W55555555555	METALLAL FILLM METALL FILLM METALL FILLM METALL FILLM METALL FILLM METALL N METAL

ITEM ORDERING	NUMBER	ОНМ	TOL (%)	TYPE	REMARKS
R 1228	50568 50442 50442 63187 63187 5431689 42196 54071 42207 54689 54721 14094 54704 54704	4,99 48,7K 48,7K 1M 511 100K 1,2M 2,5 5,6M 82,5K 178K 100K 121K 301K	1 1 1 5 5 5 5 1 2 2 1 1	MR255 MR2255 MR22255 CR22237 MR23237 MR255 WR255 MR255 MR255 MR255	METALL FILLM METAL
R 1350 5322 116		100K	1	MR25	METAL FILM

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
TRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	ORDERING NUMBER 546192 116 545026 54669 54669 54669 554669 554669 554669 554669 554669 554669 554669 554669 554669 554669 554669 55469 553222 116 55468 55469 553222 116 55468 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55469 553222 116 55455 553222 116 55456 50636 50	16 16 4464 1599 22122 22224 3 2 1 1 2 1 1 2 81 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111111111111111111111111111111111	55555555555555555555555555555555555555	METTALL FILLUM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 1836 R 1837 R 1838 R 1839 R 1840 R 1844 R 1842 R 1843 R 1844 R 1845 R 1846 R 1846 R 1847 R 1848	5322 116 54558 4822 110 63178 5322 116 54629 5322 116 546592 4822 110 23156 5322 101 14144 5322 116 54655 5322 116 54643 5322 116 54643 5322 116 54696 5322 116 54469 5322 116 54469	8,25K 470K 14K 4,02K 68K 470K 30,1K 20,5K 20,5K 511 100 100	1 5 1 20 1 1 1	MR C C C C C C C C C C C C C C C C C C C	METAL FILM CARBON METAL FILM METAL FILM CARBON TRINMING POTM METAL FILM
R 1849 R 1851	5322 116 54619 5322 116 54648	10K 24,9K	i	MR25	METAL FILM

ITEM	ORDERING NUMBER	TYPE/DESCRIPTION
Diodes GR10010234660078912012346670055467788006GR8885567866005GR8880012346670055546778888005134661234667100055546788880510005554678888855678888855678888855678888885567888888556788888885626666666666	5322 130 34595 5322 130 34595 5322 130 340283 5322 130 30644 5322 130 30644 5322 130 30644 5322 130 30862 4822 130 34382 4822 130 34382 4822 130 30613	CQY24A-I PH CQY24A-I PH BAV275 BA182 BA279-B88V2 BZX79-B8V2 BZX79-B8V2 BZX79-B8V2 BAW62

ITEM	ORDERING NUMBER	TYPE/DESCRIPTION
GR1308 GR1309 GR1311 GR1312 GR1316 GR1317 GR1401 GR1402 GR1403 GR1416 GR1417 GR1418 GR1419 GR1419	4822 130 30842 4822 130 30842 4822 130 30613 4822 130 34173 4822 130 34173 4822 130 30842 4822 130 30842 4822 130 30842 5322 130 34594 5322 130 34594 5322 130 34594 5322 130 34594 5322 130 34594 5322 130 34594	BAV21 BAV21 BAW62 BAW62 BZX79-C5V6 BZX79-C5V6 BAV21 BAV21 BAV21 BY409-A BY409-A BY409-A BY409-A BY409-A BY409-A
GR1801	4822 130 30521	BY179 PH
GR1802	5322 130 34107	BZX61-C13
GR1803	5322 130 34297	BZX79-C10
GR1804	4822 130 30817	BYX55-600
GR1805	5322 130 34055	BAX12
GR1806	5322 130 34034	BZX61-C75
GR1807	5322 130 30565	BZX61-C47
GR1808	4822 130 30613	BAW62
GR1809 GR1811 GR1812 GR1813 GR1815 GR1816 GR1817 GR1817 GR1818	4822 130 30839 4822 130 30839 4822 130 30839 4822 130 30613 4822 130 30613 4822 130 30613 4822 130 30613	BY206 PH BY206 PH BY206 PH BAW62 BAW62 BZX75-C1V4 BAW62 BAW62 BAW62
GR1819	4822 130 30195	BYX10 PH
GR1820	4822 130 30613	BAW62
GR1821	5322 130 34297	BZX79-C10
GR1822	5322 130 34605	BAX12
GR1823	4822 130 30839	BY206 PH
GR1824	4822 130 30839	BY206 PH
GR1825	4822 130 20039	BR100-03
GR1826	4822 130 30839	BY206 PH
GR1827	4822 130 30839	BY206 PH
GR1828	4822 130 30839	BY206 PH
GR1829 GR1829 GR1831 GR1832 GR1833 GR1835 GR1835 GR1837 GR1838 GR1839 GR1842 GR1844 GR1844	4822 130 30839 4822 130 30839 4822 130 34605 5322 130 34605 5322 130 34605 5322 130 34605 4822 130 34605 5322 130 34605	BY206 PH BAW62 BAW12 BAX12

ITEM	ORDERING N	UMBER	TYPE/DESCRIPTION
Transistors			
123123467893444444444113346789123467891212346789121234678912123123467891212346789121234678912123467891212346789121234678912123467891212346789121234678912123467891212346789121234678912123467891212346789121234678912123467891212346789121234678912123467891234678912123467891246789124678912467891246789124678912467891246789124678912467891246789124678912467891246789124678918918918918918918918918918918918918918	13300000000000000000000000000000000000	44444444444444444444444444444444444444	OBFFC5549999999999999999999999999999999999
TS864	4822 130	40963	BC559

ITEM	ORDERING	NUMBER	TYPE/DESCRIPTION
TTSS88678901234678912310006789121212207891213133307891215518234678912121222078912131333078912155181880891212122207891234551888888000121212122078912375518888888800001212121005534678900012121310055346789000123416888888880000121213100553467890001234168888888880000000000000000000000000000	3000000000000000000000000000000000000	44444444444444444444444444444444444444	BBCS254499 BBCS25554499 CC CCS5552499 CC CCS5552499 CC CCS5554499 CC CCS5555499 CC CCS5555499 CC CCS5555499 CC CCS5555499 CC CCS5555499 CC CCS555499 CC CCS555499 CC CCS555499 CC CCS555499 CC CCCS555499 CC CC CCS555499 CC CCCS555499 CC CCCS555499 CC CCCS555499 CC CCCS555499 CC CCCCS555499 CC CCCCS555499 CC CCCCS555499 CC CCCCS555499 CC CCCCS555499 CC CCCCCS555499 CC CCCCCS555499 CC CCCCCS555499 CC CCCCCS555499 CC CCCCCS555499 CC CCCCCCS555499 CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Integrated circuits IC101	ITEM	ORDERING NUMBER	TYPE/DESCRIPTION
IC102 5322 111 94032 RESITORS TF CIRC IC301 5322 209 84355 OQ 002 IC302 5322 209 84355 OQ 002 IC401 5322 209 84355 OQ 002 IC402 5322 209 84355 OQ 002 IC601 5322 209 84355 OQ 002 IC601 5322 209 84355 OQ 002 IC602 5322 209 84355 OQ 002 IC1301 5322 209 8452 UA709CT SC IC1601 5322 209 84528 N7400N SC IC1602 5322 209 84512 N7426N SC IC1603 5322 209 84166 N7472N SC	Integrated circ	uits	
10.1801 3322 207 67033 6872376 7.0	IC102 IC301 IC302 IC401 IC402 IC601 IC602 IC1301 IC1601 IC1602	5322 111 94032 5322 209 84355 5322 209 84355 5322 209 84355 5322 209 84355 5322 209 84355 5322 209 84355 5322 209 84525 5322 209 84528 5322 209 84528	RESITORS TF CIRC OQ 002 UA709CT SC N7400N SC N7426N SC

ITEM	ORDERING NUMBER	TYPE/DESCRIPTION
Miscellaneous		
B 1301 B1	5322 131 24054 5322 131 90021	CRT
ITEM	ORDERING NUMBER	FARAD TOL (%) VOLTS REMARKS
FI1801	5322 121 44261	NETFILT ER POLYESTER FOIL
ITEM	ORDERING NUMBER	TYPE/DESCRIPTION
L1401 L1302 L1303 L 1800 L 1803 L 1804 L 1806 L 1807 L 1808 L 1812 L 1813 L 1814 L 1813 L 1814 L 1816 L 1818 L 1819 L 1821 LA2 RE1003 RE1004 RE1007 R	5322 281 64154 5322 526 14001 5322 526 14001 5322 526 14001 5322 526 14001 5322 152 24027 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 10052 5322 281 64154 5322 158 20052 5322 281 64154 5322 158 20052 5322 280 24076 5322 273 44043 5322 273 44043 5322 273 64061 5322 273 54061 5322 148 84023 5322 146 14069 ORDERING NUMBER	COIL ROTARY COIL RF CHOKE RING RF CHOKE RING COIL COIL COIL COIL COIL COIL COIL COIL
T 1802 VL1 X 1 RE101 RE102 RE103 RE104 RE106 RE107 RE108 RE109 RE111 RE112	5322 148 84026 4822 253 30024 5322 268 44019 5322 280 24126 5322 280 24126	1.6A 5×20 MM BNC CONNECTOR GLASS TUBE RELAY C .

138

3.8.2.	Mechanical parts				
	Item	Order number	Description		
		5322 255 44031	Heat sink for transistors TS608 and TS604 on the		
			Y-amplifier p.c.b.		
	- (6. 045)				
	Front (fig. 3.15.)				
	1	5322 414 14011	Knob for push-button switches		
	2	5322 414 34134	Knob, dia 10mm		
		5322 492 64337	Retaining spring		
		5322 414 74015	Cover, grey with dash		
	3	5322 414 34079	Knob, dia 18.7 mm, shaft dia. 6 mm		
		5322 414 34091	Knob, dia 10 mm, shaft dia. 4 mm		
		5322 414 74029	Cover, blue with dash		
	4	5322 414 34147	Ten turn dial.		
	5	5322 414 34081	Knob, dia 24 mm, shaft dia. 6 mm		
		5322 414 34119	Knob, dia 14 mm, shaft dia. 4 mm		
		5322 414 74016	Cover, blue with dash		
	6	5322 447 94147	Upper cabinet plate, complete		
	7	5322 417 24024	Quick-fastener, complete		
		5322 498 54082	Grip brackets left and right and grip bar.		
		5322 498 54044	Bracket, left hand side		
		5322 498 54043	Bracket, right hand side		
		5322 498 54045	Grip		
		5322 528 34113	Ratchet block (of bracket)		
		5322 535 74401	Locking pin		
		5322 492 54155	Spring		
		5322 455 84051	Blue text strip in grip bar		
		5322 498 54042	Plastic strip at rear of grip bar		
	9	5322 455 84047	Front text plate		
	10	5322 447 94146	Lower cabinet plate, complete		
	11	5322 414 34133	Knob, dia. 10 mm, shaft dia. 1/8"		
		5322 414 74031	Cover, grey		
	12	5322 267 10004	BNC socket		
	13	5322 535 80523	Earth socket		
		5322 505 14178	Serrated nut for earth socket		
	14	5322 462 44155	Rubber foot		
	15	5322 255 44088	Holder for led		
	16	5322 267 14014	Cal. socket		
		5322 405 94073	Cal. current loop		
		5322 505 14184	Plastic nut		
		5322 263 54003	BNC-cal. socket adapter		
	17	5322 447 94145	Aluminium side strip of cabinet		
	• •	4822 502 30047	Self tapping screw for side strip		
	18	5322 480 34046	Contrast filter, grey		
		5322 480 34074	Contrast filter, blue		
	19	5322 466 74059	Bezel		
		•			

Fig. 3.15. Mechanical parts, front view

Fig. 3.16. Mechanical parts, rear view

Item	Order number	Description
		2000.75.017
Rear (Fig. 3.16)	,	
20	5322 462 44154	Foot, complete
21	5322 447 94148	Rear cabinet plate
22	5322 321 14001	Mains cable with plug
23	5322 256 34019	Fuse holder
24	5322 325 60119	Cable cleat
25	5322 405 94046	Earth terminal

139		
Item	Order number	Description
Top view (fig. 3.17)		
26	5322 447 94143	Cast-aluminium front plate
27	5322 381 14151	Clamping buffer for c.r.t. front
28	5322 255 24015	Socket for lamp
	5322 134 44123	Lamp type 370 18V-40mA
29	5322 462 54138	Mu-metal c.r.t. shield
	5322 150 14015	Trace rotation coil for c.r.t.
30	4822 505 10029	Square nut M3 in side strip
31	5322 532 74014	Rubber sleeve of c.r.t.
	5322 255 70159	C.R.T. socket
32	5322 447 94144	Cast-aluminium rear plate, for the oscilloscopes PM3240/00 ÷ PM3240/07
	5322 447 94504	Cast-aluminium rear plate, for PM3240/08 and following versions.
Bottom view (fig. 3.	18)	
33	5322 320 14027	Coax. socket, mounted on p.c. board \$ only for PM 3240/00
34	5322 535 94656	Plastic spindle ÷ PM 3240/07
Coaxial cables		
5322 320 14031	440 mm cable with plugs	(between Z-ampl. unit and intern: ampl. unit)
		for PM 3240/00 ÷

For the PM3240/08 and following series a new, more reliable type of 50 ohm connector is used. In future the units that are delivered by service also will be equipped with this type of connector. If such a unit is used in an instrument with old 50 ohm connectors the following parts are available to facilitate unit interconnection:

PM 3240/07

- Old 50 ohm coax connectors on the p.c.b. can be replaced by the new type. This new type consists of the socket itself (ord. code 5322 268 24116) and a contact pin (ord. code 5322 268 14141).

500 mm cable with plugs

- A set of cables with new coax connectors is available (ord, code 5322 320 14102). The set contains cables with one connector with a length of 24 cm (2x) and 25 cm (1x). The set also contains cables with a connector on each end and a length of 29 cm (2x), 30 cm (1x), 50 cm (1x) and 65 cm (1x).

5322 320 14027

(1x) and 65 cm (1x)).		
Multi pole plugs and so	ockets		
	4822 266 30071	3-pole plug (at cable)	(Stocko MKF 803-1-0-303)
	4822 265 30121	3-pole socket (on p.c. board)	(Stocko MKS 823-1-0-303)
	4822 266 30072	4-pole plug	(Stocko MKF 804-1-0-404)
	4822 265 30119	4-pole socket	(Stocko MKS 824-1-0-404)
	4822 266 30073	6-pole plug	(Stocko MKF 806-1-0-606)
	4822 265 30117	6-pole socket	(Stocko MKS 826-1-0-606)
	4822 266 40057	7-pole plug	(Stocko MKF 807-1-0-707)
	4822 265 40119	7-pole socket	(Stocko MKS 827-1-0-707)
Push-button switches		·	
	5322 405 94074	Male clamping piece)
	5322 405 94075	Female clamping piece	mounting parts (see fig. 3.6.)
	5322 502 11142	Screw M3 x 20)
	5322 276 14101	2 change-over switch wi	th short axis
	5322 276 14158	2 change-over switch wi	th long axis
	5322 276 14359	2 change-over switch wi	th short axis (release key)
	5322 278 74007	reset bar for maximum	
	5322 466 85843	support for max. 11 sw 10,16 mm)	itches (space between the switches
	5322 466 85841	•	ches (spaces : 4 x 10,16 and
	5322 466 85842	· · ·	tches (space : 10 x 10,16 and
	5322 276 44083	security system for max	c. 5 switches
Rotary switch.	5322 273 44043	AMP/DIV switch, SK10	

MAT 334

Fig. 3.17. Mechanical parts, top view

140

Fig. 3.18. Mechanical parts, bottom view

Front cover box

5322 447 94169	Front cover box, complete
5322 535 94761	Locking key
5322 466 85467	Inner plate
5322 492 34453	Spring
4822 530 70126	Circlip

Item	Order number	Description
Special parts and tools		
(3)	5322 505 14185	Special nut for attenuator switch
(5)	5322 505 14186	Special nut for potentiometer unit
	5322 395 54023	Tool for item (3) Ref. fig. 3.7.
	5322 395 54024	Tool for item (5) Ref. fig. 3.8.
Units		
Y-attenuator compl.	5322 218 64083	
Intermediate amplifier	5322 216 54121	
Delay line	5322 320 44033	
Final Y-amplifier	5322 216 54122	
Trigger source unit	5322 216 54123	
Time base and X-ampl. unit	5322 216 64258	
Delay time multiplier cal. unit	5322 216 64259	
MTB switch complete	5322 105 34025	
DTB switch complete	5322 105 34026	
Z-amplifier	5322 216 54181	
1600V generator	5322 216 54117	
8 kV multiplier	5322 218 64048	
Power supply	5322 216 54116	
Mains filter unit	5322 218 64045, only for oscill	oscope versions PM3240/00 ÷ PM3240/07
Mains filter FI1801	5322 121 44261, only for PM32	240/08 and following versions.
TS1804 selected pair with	5322 216 64257	
heatsink		
TS1807 BDY93 with selected) ·	
base resistor R1817, in future	5322 130 44707	
it will be BUX82 with selected		
base resistor R1817	1	

141

Fig. 3.19. Electrical item numbers, front panel

142

Fig. 3.20. Y-attenuator p.c. board

Fig. 3.21. Y-

Fig.

C105 S15 RE103 RE1			
POSITIONS February February			
INSULATION RINGS q. 3.22. Y-attenuator assembly			

1	56	

Fig. 3.28. Trigger unit p.c. board

TRIGG. SOURCE

Fig. 3.32. Circuit diagram X-amplifier

TIME BASE CAPACITOR AND CURRENT SOURCE RESISTOR TO BE ACTIVE AS A FUNCTION OF THE MTB KNOB POSITION

Fig. 3.33. Main time base switch

TIME BASE CAPACITOR AND CURRENT SOURCE RESISTOR TO BE ACTIVE AS A FUNCTION OF THE DTB KNOB POSITION

Fig. 3.34. Delayed time base switch

Fig. 3.36. Delay time calibration p.c. board

Fig. 3.37. Circuit diagram Z unit, calibration unit and illumination unit

The d.c. levels in the circuit diagrams and the waveforms shown below are measured with the control settings given in chapter "TEST AND REPAIR HINTS" section 3.5.2.

Fig. 3.38. Circuit diagram E.H.T. converter

Fig. 3.39. E.H.T. converter p.c. board

Fig. 3.40. Power supply p.c. board

Fig. 3.42. Dummy load for power supply

Fig. 3.43. Cable lay-out, top view

Fig. 3.44. Cable lay-out, bottom view

Fig. 3.46. Lay-out of additional p.c. board

Fig. 3.47. Location of the additional p.c. board

Fig. 3.48. Circuit diagram of additional unit MTB and DTB gate out and external Z-modulation

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

•	2	③ Typenumber		4
Country Day Mor	Country Day Month Year		/Version	Factory/Serial no.
3 2 1 5 0	4 7 5	0 P M 3 2 6	0 0 2	D O 0 7 8 3
	CODED I	FAILURE DESCR	IPTION	6
(5)		_	,	.
Installation Pre sale repair Preventive	Location 0 0 2 1	T S 0 6	3 1 2	Job completed
maintenance Corrective maintenance Other				Working time (8)
	witzerland ·		he various boxes:	
②Day Month Year [1] ③Type number/Version	5 0 4 7 5 n O P M 3	= 15 April 1975 2 6 0 0 2 =	•	M 3260, version 02 (in later his number is placed in front of
Factory/Serial numbe	er D O 0 0	7 8 3 = DO 7	83 These data are the instrument	e mentioned on the type plate of t
Nature of call: Enter Coded failure descrip		relevant box		
Location		Component/seque	nce no.	Category
These four boxes are us o isolate the problem a Write the code of the prowing the following of this part (refer to 'FLISTS' in the manual). Example: 0001 for Un 000A for Un 0075 for iter if units are not numbe fill in the four boxes; so sheet.	area. Dart Joseph Grand Control PARTS It 1 It A In 75 It A	graticule, 990002 Knob (initiation) 990003 Probe (or to instrur) 990004 Leads and 990005 Holder (value, boad) 990006 Complete board, h 990007 Accessory	y component. conent d in the circuit signation is exters must be rom the left) nd boxes and re written (in ne last digit most box) in d boxes. ified in the /Not applicable r rack (text polem, grip, rail, etc.) cl. dial knob, cap hly if attached nent) d associated plugs rally etc.) e unit (p.w. t. unit, etc.) y (only those	
·		990008 Documer suppleme 990009 Foreign of 990099 Miscellan	nt, etc.) object	

- ① Job completed: Enter a cross when the job has been completed.
- Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

1 2 = 1,2 working hours (1 h 12 min	.)
-------------------------------------	----

PHILIPS

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Controls Welding Industrial Data-processing Systems Scientific & Industrial Equipment Division

791115

TEST AND MEASURING EQUIPMENT

OSC 57

CONCERNS THE 50MHZ PORTABLE DUAL-TRACE OSCILLOSCOPE PM 3240

Already published for manual 9499 440 17702 : OSC 38

RE: Additional information for manual 9499 440 20302

- a) Jeanrenaud push-button switches.
- b) Resistor values of the final Y-amplifier circuit diagram (fig. 3.27.)

a) Jeanrenaud push-button switches

The push-button switches used in the PM 3240 are only available in parts, mentioned in the mechanical parts list (section 3.8.2.) on page 139.

To compose the several push-button units, the following parts are required:

			sĸ								
	Push-button parts	Service codenumber	1	2	9	16	17	18	19	20	21
1	2-change-over switch (short axis)	5322 276 14101			2	3	3				
2	2-change-over switch (long axis)	5322 276 14158	5	3				3	3	4	4
3	2-change-over switch (release key)	5322 276 14359			1						
4	reset bar for max. 6 switch segments	5322 278 74007	1	1	1	1	1	1		1	1
5	support for max. 11 switches (spaces between the switch segments are 10,16mm)	5322 466 85843	1	1	1	1	1				
6	support for max. 6 switches (spaces between the switch segments are 4x10,16mm and 1x25,4mm)	5322 466 85841						1			
7	support for max. 12 switches (spaces between the switch segments are 10x10,16mm and 1x25,4mm)	5322 466 85842								1	
8	security support for max. 5 switches (mounted on the back of the switch segments)	5322 276 44083	1	1				1	1	1	1

The reset bar (item 4) and the supports (items 6,7 and 8) must be sawn on the required size.

b) Resistor values of the final Y-amplifier circuit diagram

The values of the following resistors in the drawing of the final Y-amplifier circuit diagram (fig. 3.27) on page 154 must be changed into:

These values are also mentioned in the electrical parts list (section 3.8.1.).

PHILIPS

SERVICE

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

810126

TEST AND MEASURING EQUIPMENT

OSC 88

OSCILLOSCOPE PM 3240 (X).

Already published: Cd 857, Cd 867, Cd 869, Cd 911, Cd 913, OSC 19, OSC 20 belonging to manual 9499 440 15202 for the PM 3240 up to version 04.

-OSC 10, OSC 38 belonging to manual 9499 440 17702 for the PM 3240/04

-OSC 57 belonging to manual 9499 440 20302 for the PM 3240/09

Subject:

Modifications to manual 9499 440 20302 for the PM 3240/11 and the PM 3240X/48 and following versions.

Contents:

- 1. Z-unit (B 1301)
- 2. EHT converter unit (R 1408)
- 3. Final Y amplifier (TS 604, TS 608)
- 4. Earthing of the rear cabinet-plate.
- 5. Removing the carrying handle.
- 6. New type of fuse-holder.

1. Z-unit.

The neon-tube B 1301 (ZA 1004) is changed to: zenerdiode BZX 61 C 82 ordering number 5322 130 35005

This modification is introduced, because the neon-tube is no longer available.

When the neon-tube is ordered under ordering number 5322 131 90021, this tube will be delivered as long as it is available. After that the zenerdiode BZX 61 C 82 will be delivered.

If the neon-tube must be replaced by the zenerdiode, adapt and readjust the following:

- The zenerdiode must be mounted as indicated in fig. 1.

Fig. 1. Part of Z-unit (fig. 3.35 and 3.37 of the manual)

- To improve the Brilliance adjustment range of R 1327 the resistors R 1324 and R 1326 must be changed to:

R 1324 2k8 5322 116 55587 R 1326 2k67 5322 116 55616

- Readjust the intensity (Brilliance R 1327) as described in section 3.7.3 of the PM 3240 manual.

2. EHT converter unit.

To improve the performance of this unit resistor R 1408 is changed to 24 k9, ordering number 5322 116 54648

3. Final Y amplifier.

The transistors TS 604 and TS 608 are changed to: BFX 48 ordering number 5322 130 40208 This modification is introduced because the FW 5324 is no longer available.

4. Earthing of the rear cabinet plate.

The earthing of the rear cabinet plate is improved for safety purposes.

The rear cabinet plate must be mounted with two screws, toothed-rings and lock-washers on the cabinet.

Removing the carrying handle.

When the carrying handle can not be removed as described in the PM 3240 manual, proceed as follows.

- 1. Remove the upper and lower cabinet plates.
- 2. Remove the plastic strip which is snapped on to the grip
- 3. Remove the four screws which secure the grip to the brackets (these screws have been locked with a sealing varnisch).
- 4. Depress the push-buttons in the brackets and turn the carrying handle as far as possible to the upper side of the oscilloscope.
- 5. Keep the push-button of the right-hand bracket depressed and pull the bracket from its bearing 1)
- 6. Remove the grip from the remaining bracket.
- 7. Depress the push-button of the left-hand bracket and turn the latter as far as possible to the lower side of the instrument.
- 3. Keep the push-button depressed and pull the bracket from its bearing.

If it is impossible to remove the left-hand bracket in this way, remove also its bearing in a similar way as described in footnote 1).

- 1) With some instrument it may be impossible to remove the handle in the described way. This is due to an extra securing plate in the right-hand bearing. In that case, **DO NOT USE FORCE**, but work in accordance with the following procedure which replaces points 3, 4 and 5.
 - 3. Remove the two screws which secure the grip to the right-hand bracket.
 - 4. Remove the two hexagonal bolts which secure the right-hand bearing to the side strip.
 - 5. Depress the push-button of the right-hand bracket and take the bearing from the bracket.

6. Fuse holder.

During production a new type of fuse-holder is introduced. Ordering number of this new type fuse-holder is 5322 256 34081.