Discrete-Time Signal Processing Midterm

2011.4.20

Solution

1.

We desire the step response to a system whose impulse response is

$$h[n] = a^{-n}u[-n]$$
, for $0 < a < 1$.

The convolution sum:

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

The step response results when the input is the unit step:

$$x[n] = u[n] = \begin{cases} 1, & \text{for } n \ge 0 \\ 0, & \text{for } n < 0 \end{cases}$$

Substitution into the convolution sum yields

$$y[n] = \sum_{k=-\infty}^{\infty} a^{-k} u[-k] u[n-k]$$

For $n \leq 0$:

$$y[n] = \sum_{k=-\infty}^{\infty} a^{-k}$$
$$= \sum_{k=-n}^{\infty} a^{k}$$
$$= \frac{a^{-n}}{1-a}$$

For n > 0:

$$y[n] = \sum_{k=-\infty}^{0} a^{-k}$$
$$= \sum_{k=0}^{\infty} a^{k}$$
$$= \frac{1}{1-a}$$

The difference equation:

$$y[n] - \frac{1}{2}y[n-1] = x[n] + 2x[n-1] + x[n-2]$$

Taking the Fourier transform of both sides,

$$Y(e^{j\omega})[1-\frac{1}{2}e^{-j\omega}] = X(e^{j\omega})[1+2e^{-j\omega}+e^{-j2\omega}].$$

Hence, the frequency response is

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$
$$= \frac{1 + 2e^{-j\omega} + e^{-j2\omega}}{1 - \frac{1}{2}e^{-j\omega}}.$$

3.

We have

$$w[n] = \begin{cases} \frac{1}{2}(1 + \cos(\frac{2\pi n}{M}), & \text{for } 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Thus,

$$\begin{split} W(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} \frac{1}{2} (1 + \cos(\frac{2\pi n}{M})) e^{-j\omega n} \\ &= \sum_{n=-\infty}^{\infty} \frac{1}{2} (1 + \frac{1}{2} e^{j\frac{2\pi n}{M}} + \frac{1}{2} e^{-j\frac{2\pi n}{M}}) e^{-j\omega} \\ &= (\frac{1}{2} \delta(\omega) + \frac{1}{4} \delta(\omega + \frac{2\pi}{M}) + \frac{1}{4} \delta(\omega - \frac{2\pi}{M})) \end{split}$$

For an LTI system, we use the convolution equation to obtain the output:

$$y[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Let n = m + N:

$$y[m+N] = \sum_{k=-\infty}^{\infty} x[m+N-k]h[k]$$
$$= \sum_{k=-\infty}^{\infty} x[(m-k)+N]h[k]$$

Since x[n] is periodic, x[n] = x[n + rN] for any integer r. Hence,

$$y[m+N] = \sum_{k=-\infty}^{\infty} x[m-k]h[k]$$
$$= y[m]$$

So, the output must also be periodic with period N.

5.

Let the input be $x[n] = \delta[n-1]$, if the system is causal then the output, y[n], should be zero for n < 1. Let's evaluate y[0]:

$$y[0] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} Y(e^{j\omega}) d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-j\omega} e^{-j\omega/2} d\omega$$
$$= -\frac{2}{3\pi}$$
$$\neq 0.$$

This proves that the system is not causal.

$$x[n] = \begin{cases} n, & 0 \le n \le N-1 \\ N, & N \le n \end{cases} = n \ u[n] - (n-N)u[n-N]$$

$$n \ x[n] \Leftrightarrow -z \frac{d}{dz} X(z) \Rightarrow n \ u[n] \Leftrightarrow -z \frac{d}{dz} \frac{1}{1-z^{-1}} \quad |z| > 1$$

$$n \ u[n] \Leftrightarrow \frac{z^{-1}}{(1-z^{-1})^2} \quad |z| > 1$$

$$x[n-n_0] \Leftrightarrow X(z) \cdot z^{-n_0} \Rightarrow (n-N)u[n-N] \Leftrightarrow \frac{z^{-N-1}}{(1-z^{-1})^2} \quad |z| > 1$$

therefore

$$X(z) = \frac{z^{-1} - z^{-N-1}}{(1 - z^{-1})^2} = \frac{z^{-1}(1 - z^{-N})}{(1 - z^{-1})^2}$$

7.

$$G(z) = \sin(z^{-1})(1 + 3z^{-2} + 2z^{-4})$$

$$= (z^{-1} - \frac{z^{-3}}{3!} + \frac{z^{-5}}{5!} - \frac{z^{-7}}{7!})(1 + 3z^{-2} + 2z^{-4})$$

$$= \sum_{n=0}^{\infty} g[n]z^{-n}$$

g[11] is simply the coefficient in front of z^{-11} in this power series expansion of G(z):

$$g[11] = -\frac{1}{11!} + \frac{3}{9!} - \frac{2}{7!}.$$

8.

$$X(z) = e^{z} + e^{1/z} \quad z \neq 0$$

$$X(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} + \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^{n} = \sum_{n=-\infty}^{0} \frac{1}{(-n)!} z^{-n} + \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n} \Longrightarrow x[n] = \frac{1}{|n|!} + \delta[n]$$

$$x[n] = x_c(nT)$$

$$= \sin\left(2\pi(100)n\frac{1}{400}\right)$$

$$= \sin\left(\frac{\pi}{2}n\right)$$

10.

Notice first that $H(e^{j\omega}) = 10j\omega, -\pi \le \omega < \pi$.

(i) After sampling,

$$x[n] = \cos(\frac{3\pi}{5}n),$$

$$y[n] = |H(e^{j\frac{3\pi}{5}})|\cos(\frac{3\pi}{5}n + \angle H(e^{j\frac{3\pi}{5}}))$$

$$= 6\pi\cos(\frac{3\pi}{5}n + \frac{\pi}{2})$$

$$= -6\pi\sin(\frac{3\pi}{5}n)$$

$$y_c(t) = -6\pi\sin(6\pi t).$$