

Year 12 Mathematics Extension 2 HSC Trial Examination 2011

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - 120

- Attempt Questions 1 8
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

BLANK PAGE

Total Marks - 120

Attempt Questions 1 - 8

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Marks

- a) Evaluate:
 - i) By completing the square, find $\int \frac{2}{x^2 + 4x + 13} dx$
 - ii) Use integration by parts to evaluate $\int 3xe^x dx$.
 - iii) Evaluate $\int_0^1 xe^{-x^2} dx$
- b) Use the substitution $t = tan \frac{\theta}{2}$ to evaluate

$$\int_0^{\frac{\pi}{2}} \frac{1}{\cos\theta + 2\sin\theta + 3} d\theta$$

Answer correct to 3 significant figures.

c) i) Find real numbers a, b and c such that:

$$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$$

ii) Hence find
$$\int \frac{7x+4}{\left(x^2+1\right)(x+2)} dx$$

End of Question 1.

Question 2 (15 marks) Use a separate writing booklet

Marks

a) Given A = 3 - 4i and B = 5 + 3i, express the following in the form x + iy, where x and y are real numbers.

i) B – A

ii) \overline{AB}

 $\frac{A}{B}$

iv) \sqrt{A}

b) If $z = 1 - \sqrt{3} i$,

i) Express z in mod-arg form.

ii) Show that z^6 is an integer.

c) On the Argand diagram, sketch the region where the inequalities $2 \le \left| \ z \right| \le 5 \quad \text{and} \quad \arg\frac{\pi}{6} < \arg\frac{2\pi}{3} \quad \text{hold simultaneously.}$

d)

The points A and B are drawn on an Argand Diagram and are represented by the lines p and q respectively.

Copy this diagram into your answer booklet.

On this diagram plot the points C(-q) and D(p-q).

End of Question 2.

Question3 (15 marks) Use a separate writing booklet

Marks

a) i) Sketch the curve f(x) = (x+1)(x-2)(x+3) showing the intercepts with the coordinate axes.

2`

ii) On the same diagram, sketch the graph of y = x - f(x)

2

iii) The area bounded by y = f(x), the x – axis and the ordinates x = -3 and x = -1 is rotated about the y – axis.

3

Use cylindrical shells to find the volume of the solid of revolution formed.

- b) A particle of unit mass moves in a straight line against a resistance equal to $v + v^2$ where v is its velocity. Initially the particle is at the origin and is travelling with velocity q where q > 0.
 - i) Show that *v* is related to displacement by the formula

2

 $x = -\ln\left(1 + v\right) + c$

3

ii) Show that the time t which has elapsed when the particle is travelling with velocity v is given by:

3

$$t = \ln \frac{q(1+v)}{v(1+q)}$$

2

iii) Find v as a function of t.

1

iv) Find the value of v as $t \to \infty$.

End of Question 3.

Question 4 (15 marks) Use a separate writing booklet

Marks

- a) The equation $x^4 + 2x^3 7x^2 20x 12 = 0$ has a double root. Find this root and hence solve this equation.
- b) The equation $x^3 4x^2 + 2x 7 = 0$ has roots α , β and γ . Find an equation which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.
- c) The graph of y = f(x) is shown below.

On separate axes draw sketches of the following, showing any critical features.

$$y = \frac{1}{f(x)}$$

ii)
$$y = f'(x)$$

iii)
$$y = \pm \sqrt{f(x)}$$

Question 4 continues on the next page

Question 4 continued.

d) 4

The diagram above shows a solid which has the circle $x^2 + y^2 = 16$ as its base. The cross-section perpendicular to the x axis is an equilateral triangle. Calculate the volume of the solid.

End of Question 4.

b)

Question 5 (15 marks) Use a separate writing booklet

Marks

3

The cubic $y = x^3$ is rotated about the y axis $\{x : 0 \le x \le 2\}$ to form a solid. Calculate the volume of this solid using the method of slicing.

3

Two equal circles touch externally at B. XB is a diameter of one circle. XZ is the tangent from X to the other circle and cuts the first circle at Y. Prove that 2XZ = 3XY.

c) Use the principle of Mathematical induction to prove that:

3

$$\frac{d}{dx}\left[x^2+1\right]^n=2xn\left[x^2+1\right]^{n-1} \text{ for } n\geq 1, \ n\in\mathbb{Z}.$$

Note: You should not use the function of a function rule (chain rule) as part of your proof.

d) i) Derive the reduction formula

2

$$\int x^{m} (\ln x)^{n} dx = \frac{x^{m+1} (\ln x)^{n}}{m+1} - \frac{n}{m+1} \int x^{m} (\ln x)^{n-1} dx$$

Hence or otherwise, find $\int_{1}^{e} x^{3} (\ln x)^{3} dx$

End of Question 5.

Question 6 (15 marks) Use a separate writing booklet

Marks

- a) A hyperbola has equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - i) Verify that the point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola.

- 2
- ii) The normal to the hyperbola at P cuts the x-axis at M and N is the foot of the perpendicular from P to the x-axis. Prove that the equation of the normal at P is:

3

- $ax \sin \theta + by = (a^2 + b^2) \tan \theta$.
- iii) Show that $OM = e^2ON$, where O is the origin and e is the eccentricity of the hyperbola.

3

iv) Prove that $SM = e \times SP$, where S is the focus of the hyperbola.

3

b) Find the equation of the tangent to the curve $x^2y + 2x - 2xy = 0$ at the point (1, 2).

2

Given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$, where a and b are real numbers, factorise P(z) over real numbers.

2

End of Question 6.

Question 7 (15 marks) Use a separate writing booklet

Marks

- a) A local council consists of 6 independents and 5 others aligned to political parties. A committee of 5 members is to be chosen at random.
 - i) How many committees of 5 can be chosen?

1

ii) How many of these committees will have a majority of independents?

2

b) The equation $x^3 - 3x^2 + ax + 8 = 0$ has roots that are in arithmetic sequence. Find the value of a and hence solve the equation.

4

c) i) Differentiate $\sin^{-1} x - \sqrt{1 - x^2}$

2

ii) Hence show that $\int_0^a \sqrt{\frac{1+x}{1-x}} dx = \sin^{-1} a + 1 - \sqrt{1-a^2}$ for 0 < a < 1.

1

d) Given that $sin^{-1}x$, $cos^{-1}x$ and $sin^{-1}(1-x)$ are acute:

3

2

i) Show that:

$$\sin(\sin^{-1}x - \cos^{-1}x) = 2x^2 - 1.$$

ii) Solve:

 $\sin^{-1}x - \cos^{-1}x = \sin^{-1}(1-x)$

End of Question 7

Question 8 (15 marks) Use a separate writing booklet

Marks

3

- a) i) Write expressions for $sin(\alpha \beta)$ and $cos(\alpha \beta)$ and hence show that: $tan(\alpha \beta) = \frac{tan(\alpha tan(\beta))}{1 + tan(\alpha)tan(\beta)}$
 - ii) Hence write an expression for $tan\left(\alpha-\frac{\pi}{3}\right)$ in terms of $tan\alpha$.
- b) Given $f(x) = x \log_e(1 + x^2)$
 - i) Show that $f'(x) \ge 0$ for all values of x.
 - ii) Hence deduce that $e^x > 1 + x^2$ for all positive values of x.
- Show that the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_0, y_0)$ has equation: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

ii)

In the diagram above, the line *PN* is the normal to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at $P(x_0, y_0)$ and S_1 and S_2 are the foci of the ellipse. $\angle NPS_1 = \alpha$ and $\angle NPS_2 = \beta$. Show that $\alpha = \beta$.

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Questi	on 1 Trial HSC Examination - Mathematics Extension 2	2011
	Solution	Criteria
1(a) (i)	$\int \frac{2}{x^2 + 4x + 13} dx = 2 \int \frac{dx}{(x+2)^2 + 3^2}$	2 Marks: Correct answer.
	$= \frac{2}{3} \tan^{-1} \frac{(x+2)}{3} + c$	1 Mark: Correctly completes the square
1(a) (ii)	$\int 3xe^x dx = 3\int x \frac{d}{dx} (e^x) dx$	2 Marks: Correct answer.
	$= 3(xe^x - \int e^x dx)$ $= 3xe^x - 3e^x + c$	1 Mark: Set up of the integration by parts.
1(a) iii)	$\int_0^1 x e^{-x^2} dx = -\frac{1}{2} \int_0^1 -2x e^{-x^2} dx$ $= -\frac{1}{2} \left[e^{-x^2} \right]_0^1$	2 Marks: Correct answer.
	$= -\frac{1}{2}(e^{-1} - e^{0})$ $= \frac{1}{2}(1 - \frac{1}{e})$	1 Mark: Integrates correctly
	$=\frac{e-1}{2e}$	
1(b)	$t = \tan\frac{\theta}{2}$ $dt = \frac{1}{2}\sec^2\frac{\theta}{2}d\theta$	4 Marks: Correct answer.
	$dt = \frac{1}{2}(1+t^2)d\theta$ $d\theta = \frac{2}{1+t^2}dt$	3 Marks: Correctly determines the primitive function
	When $\theta = 0$ then $t = 0$ and when $\theta = \frac{\pi}{2}$ then $t = 1$	
	$\cos \theta + 2\sin \theta + 3 = \frac{1 - t^2 + 2(2t) + 3(1 + t^2)}{1 + t^2}$ $= \frac{2(t^2 + 2t + 2)}{1 + t^2}$ $= \frac{2[1 + (t + 1)^2]}{1 + t^2}$	2 Marks: Correctly expresses the integral in terms of <i>t</i>
		1 Mark: Correctly
		finds $d\theta$ in terms of dt and

Questi	on 1 Trial HSC Examination - Mathematics Extension 2	2011
	$\int_0^{\frac{\pi}{2}} \frac{1}{\cos\theta + 2\sin\theta + 3} d\theta = \int_0^1 \frac{1 + t^2}{2[1 + (t+1)^2]} \times \frac{2}{1 + t^2} dt$	determines the new limits.
	$=\int_{0}^{1}\frac{1}{1+(t+1)^{2}}dt$	
	$= \left[\tan^{-1}(t+1)\right]_0^1$	
	$= \tan^{-1} 2 - \frac{\pi}{4}$	
	=0.322	
1(c) (i)	$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$	3 Marks: Correct answer.
	$7x+4 = (ax+b)(x+2)+c(x^2+1)$	2 Marks:
	Let $x = -2$ and $x = 0$	Calculates two of
	$-10 = 5c 4 = b(0+2) - 2(0^2+1)$	the variables
	c = -2 b = 3	1 Mark: Makes
	Equating the coefficients of $x^2 = a - 2$	some progress in
	a=2	finding a,b or c .
	$\therefore a = 2, \ b = 3 \text{ and } c = -2$	
1(c) (ii)	$\int \frac{7x+4}{\left(x^2+1\right)(x+2)} dx = \int \left(\frac{2x+3}{\left(x^2+1\right)} - \frac{2}{(x+2)}\right) dx$	2 Marks: Correct answer.
	$= \int \left(\frac{2x}{(x^2+1)} + \frac{3}{(x^2+1)} - \frac{2}{(x+2)}\right) dx$	1 Mark: Correctly finds one of the
	$= \ln(x^2 + 1) + 3\tan^{-1} x - 2\ln x + 2 + c$	integrals.
	/15	

Ques	tion 2 Trial HSC Examination - Mathematics Extension 2	2011	
Part	Solution	Marks	Comment
a)	i. $B - A = (5 + 3i) - (3 - 4i)$ = $5 + 3i - 3 + 4i$ = $2 + 7i$	1	
	ii. $\overline{AB} = \overline{(3-4i)(5+3i)}$ = $\overline{15+9i-20i+12}$ = $\overline{27-11i}$	1	Expansion
	= 27 - 11i $= 27 + 11i$	1	Conjugate
	iii. $\frac{A}{B} = \frac{3 - 4i}{5 + 3i}$ $= \frac{3 - 4i}{5 + 3i} \times \frac{5 - 3i}{5 - 3i}$ $= \frac{15 - 9i - 20i - 12}{25 + 9}$	1	Realising denominator
	$=\frac{3-29i}{34}=\frac{3}{34}-\frac{29}{34}i$	1	Answer
	iv. Let $\sqrt{A} = x + iy$ (a and b real) $\therefore A = x^2 - y^2 + 2xyi$ $\therefore x^2 - y^2 = 3 - (1)$ $2xy = -4$ $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2$ $= 3^2 + 4^2$ $= 25$	1	Any fair method
	$x^{2} + y^{2} = 5 \qquad (2)$ $(1) + (2) \qquad 2x^{2} = 8 \qquad \Rightarrow \qquad x = \pm 2$ $(2) - (1) \qquad 2y^{2} = 2 \qquad \Rightarrow \qquad y = \pm 1$		
	Since $2xy = -4$ $\sqrt{A} = \pm (2 - i)$	1	Answer

Quest	tion 2 Trial HSC Examination - Mat	2011	
Part	Solution	Marks	Comment
b)	i. $r = \sqrt{1+3} = 2$		
	$\tan \theta = \frac{-\sqrt{3}}{1} = -\sqrt{3}$		
	$\therefore \theta = -\frac{\pi}{3}$		M I A E
	$1 - \sqrt{3} \ i = 2 \ cis \left(-\frac{\pi}{3} \right)$	1	Mod-Arg Form
	ii. $z = 1 - \sqrt{3} i = 2 \left[\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right]$	/ _	
	$\therefore z^6 = 64 \left[\cos \left(-\frac{6\pi}{3} \right) + i \sin \left(-\frac{6\pi}{3} \right) \right]$]	Use of De Moivre's
	= 64	1	Solution
c)			
	y ↑		
	5	1	Circles
	$\frac{\pi}{3}$ $\frac{\pi}{6}$	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Rays
		1	Correct Region

Quest Part d)	Solution		Marks 2	2011 Comment 1 each for correctly plotting C and D
d)			2	1 each for correctly plotting C and D
		C D		
			/15	

Questi	on 3 Trial HSC Examination - Mathematics Extension 2		2011	
Part	Solution	Marks	Cor	nment
a) j	i. $f(x) = (x+1)(x-2)(x+3)$		1	
			1	Intercepts
			1	Correct shape
				1
	-6			
	-6			
l i	ii. $y = x - f(x)$			
			2	Deduct a mark
				for a major feature missing
				or incorrect,
				or 111 0 011 000 ,

iii. Solution Marks Comment)uesti	on 3 Trial HSC Examination - Mathematics Extension 2		2011
$f(x) = (x+1)(x-2)(x+3)$ $= (x^3 + 2x^2 - 5x - 6)$ By cylindrical shells $V = \int_{a}^{5} 2\pi xy dx$ $V = \int_{1}^{3} 2\pi x \left(x^3 + 2x^2 - 5x - 6\right) dx$ $= 2\pi \int_{1}^{3} \left(x^4 + 2x^3 - 5x^2 - 6x\right) dx$ $= 2\pi \left[\left(17\frac{1}{10}\right) - \left(-3\frac{29}{30}\right)\right]$ $= \frac{632\pi}{15}$ i. i. $\ddot{x} = -(v + v^2)$ $v \frac{dv}{dx} = -(v + v^2)$ $v \frac{dv}{dx} = -(v + v^2)$ $\frac{dv}{dx} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$		-	Marks	Comment
$= 2\pi \int_{1}^{3} (x^{4} + 2x^{3} - 5x^{2} - 6x) dx$ $= 2\pi \left[\frac{x^{5}}{5} + \frac{x^{4}}{2} - \frac{5x^{3}}{3} - 3x^{2} \right]_{1}^{3}$ $= 2\pi \left[\left(17 \frac{1}{10} \right) - \left(-3 \frac{29}{30} \right) \right]$ $= \frac{632\pi}{15}$ i. $\ddot{x} = -(v + v^{2})$ $v \frac{dv}{dx} = -(v + v^{2})$ $\frac{dv}{dx} = -(v + v^{2})$ $\frac{dv}{dx} = \frac{-(v + v^{2})}{v}$ $\frac{dx}{dv} = \frac{-1}{1 + v}$ $x = -\int \frac{1}{1 + v} dv$	art	Solution iii. $y = f(x)$ $f(x) = (x+1)(x-2)(x+3)$ $= (x^3 + 2x^2 - 5x - 6)$ By cylindrical shells $V = \int_a^b 2\pi xy \ dx$		Comment
$= 2\pi \int_{1}^{3} (x^{4} + 2x^{3} - 5x^{2} - 6x) dx$ $= 2\pi \left[\frac{x^{5}}{5} + \frac{x^{4}}{2} - \frac{5x^{3}}{3} - 3x^{2} \right]_{1}^{3}$ $= 2\pi \left[\left(17 \frac{1}{10} \right) - \left(-3 \frac{29}{30} \right) \right]$ $= \frac{632\pi}{15}$ i. i. $\ddot{x} = -(v + v^{2})$ $v \frac{dv}{dx} = -(v + v^{2})$ $\frac{dv}{dx} = \frac{-(v + v^{2})}{v}$ $\frac{dv}{dx} = \frac{-1}{1 + v}$ $x = -\int \frac{1}{1 + v} dv$		• 4		
$= 2\pi \left[\frac{x^5}{5} + \frac{x^4}{2} - \frac{5x^3}{3} - 3x^2 \right]_1^3$ $= 2\pi \left[\left(17\frac{1}{10} \right) - \left(-3\frac{29}{30} \right) \right]$ $= \frac{632\pi}{15}$ 1 i. $\ddot{x} = -\left(v + v^2 \right)$ $v \frac{dv}{dx} = -\left(v + v^2 \right)$ $\frac{dv}{dx} = -\left(v + v^2 \right)$ $\frac{dv}{dx} = \frac{-\left(v + v^2 \right)}{v}$ $\frac{dx}{dv} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$		• •		1
$= 2\pi \left[\left(17 \frac{1}{10} \right) - \left(-3 \frac{29}{30} \right) \right]$ $= \frac{632\pi}{15}$ 1 i. $\ddot{x} = -\left(v + v^2 \right)$ $v \frac{dv}{dx} = -\left(v + v^2 \right)$ $\frac{dv}{dx} = \frac{-\left(v + v^2 \right)}{v}$ $\frac{dv}{dx} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$		• 1		1
i. $ \ddot{x} = -\left(v + v^2\right) $ $ v \frac{dv}{dx} = -\left(v + v^2\right) $ $ \frac{dv}{dx} = \frac{-\left(v + v^2\right)}{v} $ $ \frac{dx}{dv} = \frac{-1}{1+v} $ $ x = -\int \frac{1}{1+v} dv $				
$x = -(v + v^{2})$ $v \frac{dv}{dx} = -(v + v^{2})$ $\frac{dv}{dx} = \frac{-(v + v^{2})}{v}$ $\frac{dx}{dv} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$		$=\frac{632\pi}{15}$		1
$v\frac{dv}{dx} = -\left(v + v^2\right)$ $\frac{dv}{dx} = \frac{-\left(v + v^2\right)}{v}$ $\frac{dx}{dv} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$				
$\frac{dv}{dx} = \frac{-\left(v + v^2\right)}{v}$ $\frac{dx}{dv} = \frac{-1}{1+v}$ $x = -\int \frac{1}{1+v} dv$		$v\frac{dv}{dx} = -\left(v + v^2\right)$		
$x = -\int \frac{1}{1+v} dv$		$\frac{dv}{dx} = \frac{-\left(v + v^2\right)}{v}$		
				1
				1

Ques			201	1
Part	Solution	Marks	Con	mment
	ii.			
	$\frac{dv}{dt} = -\left(v + v^2\right)$			
	$\frac{dt}{dv} = -\frac{1}{\left(v + v^2\right)}$			
	$t = -\int \frac{dv}{\left(v + v^2\right)}$			
	$t = -\int \frac{dv}{v(1+v)} \qquad \frac{1}{v(1+v)} = \frac{A}{v} + \frac{B}{1+v}$			
	$t = -\int \left(\frac{1}{v} - \frac{1}{1+v}\right) dv$			
	$t = \int \left(\frac{1}{(1+v)} - \frac{1}{v}\right) dv \qquad v = 0 A = 1$			
	$t = \ell n (1 + v) - \ell n (v) + c \qquad 1 = 1 + v + Bv$		1	Expression for <i>t</i>
	$t = \ell n \left(\frac{1+v}{v} \right) + c \qquad Bv = -v \therefore B = -1$			
	When $t = 0$, $v = q$			
	$0 = \mathbb{Z}n\left(\frac{1+q}{q}\right) + c$			
	$c = -\ln\left(\frac{1+q}{q}\right)$			
	$c = \ell n \left(\frac{q}{1+q} \right)$		1	Value of c
	$\therefore t = \ell n \left(\frac{1+v}{v} \right) + \ell n \left(\frac{q}{1+q} \right)$			
	$t = \ell n \left(\frac{q (1 + v)}{v (1 + q)} \right)$		1	Solution
	iii. Now $e^{t} = \frac{q(1+v)}{v(1+q)}$			
	$v\left(1+q\right)e^{-t} = q + qv$		1	
	$v e^{t} + qve^{t} = q + qv$ $v e^{t} + qve^{t} - qv = q$			
	$v\left(e^{t}+qe^{t}-q\right)=q$			
	$v = \frac{q}{e^t + qe^t - q}$		1	
	$e^{t}+qe^{t}-q$		1	Value
	iv. $As t \to \infty, v \to 0$			

Quest	tion 4 Trial HSC Examination - Mathematics Extension 2		2011
Part	Solution	Marks	Comment
a)	i. $x^4 + 2x^3 - 7x^2 - 20x - 12 = 0$ If $f(x) = x^4 + 2x^3 - 7x^2 - 20x - 12$		
	Double root then $f'(x) = 4x^{3} + 6x^{2} - 14x - 20 = 0$		
	Test roots of $f'(x)$ Since $f'(-2) = f(-2) = 0$, there is a double root at $x = -2$.	1	Double root
	Therefore $f(x)$ is divisible by $(x + 2)^2$ i.e. $x^2 + 4x + 4$		
	By division, $f(x) = (x^2 + 4x + 4)(x^2 - 2x - 3)$ = $(x + 2)^2 (x - 3)(x + 1)$	1	Division
L	i.e. Solutions $x = -2, -2, 3, -1$ $x^3 - 4x^2 + 2x - 7 = 0$	1	Solution
b)	For roots of $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$ $x = \frac{1}{X}$		
	$ \therefore \left(\frac{1}{X}\right)^3 - 4\left(\frac{1}{X}\right)^2 + 2\left(\frac{1}{X}\right) - 7 = 0 $ $ \frac{1}{X^3} - \frac{4}{X^2} + \frac{2}{X} - 7 = 0 $ $ 1 - 4X + 2X^2 - 7X^3 = 0 $	1	Substitution
	ie. Equation is $7x^3 - 2x^2 + 4x - 1 = 0$	1	Equation

Quest	tion 4 Trial HSC Examination - Mathematics Extension 2		2011
	Solution	Marks	Comment
c)	i. $y = \frac{1}{f(x)}$ $y = \frac{1}{f(x)}$ $y = \frac{1}{f(x)}$ $y = \frac{1}{f(x)}$ $y = f'(x)$ $y = f'(x)$	2 Each	Deduct a mark for a major feature missing or incorrect, e.g. asymptotes not correct
	y = f'(x) $y = f'(x)$ $y = f'(x)$ $y = f'(x)$	2	
	iii. $y = \pm \sqrt{f(x)}$ $y = -\sqrt{f(x)}$ $y = -$	2	

Quest	tion 4 Trial HSC Ex	amination - Mathematics Extension 2		2011
Part	Solution		Marks	Comment
d)	$x^{2} + y^{2} = 16$ $y = \sqrt{16 - x^{2}}$ $\therefore l = 2\sqrt{16 - x^{2}}$ $\therefore h = \sqrt{3}$ $A(x) = \frac{1}{2}bh$	$sin 60 = \frac{h}{l}$ $h = l \sin 60$ $h = \frac{\sqrt{3}}{2} l$	1	Expression for h
	$= \frac{1}{2} \left(2\sqrt{16 - x^2} \right)$ $= \sqrt{3} \left(16 - x^2 \right)$	$\left(\sqrt{3}\sqrt{16-x^2}\right)$	1	Area
	$V = \int_{-4}^{4} \sqrt{3} \left(16 - x^2 \right)$	dx	1	Integral
	$= \sqrt{3} \left[16x - \frac{x^3}{3} \right]_{-4}^{4}$ $= \frac{256\sqrt{3}}{3}$		1	Answer
			/4 F	
			/15	

Quest	tion 5	Trial HSC Examination - Mathematics Extension 2		2011		
Part	Solution		Marks	Comment		
5(a)	Area of the $A = \pi x^2$ $= \pi (y^{\frac{1}{3}})$	e slice is a circle radius is x and height δy	3 N	Aarks: Correct answer.		
	$= \pi (y^3)$ $= \pi y^{\frac{2}{3}}$ $\delta V = \delta A.\delta$ $V = \lim_{\delta y \to 0} \sum_{y=0}^{8} \delta y = \delta A.\delta$	$\mathcal{S}y$	for	2 Marks: Correct integral for the volume of the solid.		
	$= \int_0^8 \pi y^{\frac{3}{5}}$ $= \pi \left[\frac{3}{5} y \right]$ $= \frac{3\pi}{5} \times 8$	$\int_{0}^{\frac{2}{3}} dy$ $\int_{0}^{\frac{5}{3}} \int_{0}^{8}$	exp	Tark: Correct pression for the tume of the solid.		
5(b)	X	A B C	2 N sig	Marks: Correct answer. Marks: Makes nificant progress vards the proof.		
	Proof: $\angle XYB = 9$ $\angle XZC = 9$ $BY \parallel CZ$ $\Delta XYB \parallel \Delta XYB \parallel \Delta XYB$ $\frac{XY}{XZ} = \frac{XB}{XC}$ However	ion: Join <i>BY</i> , produce <i>XB</i> to <i>C</i> , join <i>CZ</i> . 90° (angle in a semicircle is a right angle) 90° (angle between tangent and radius is a right angle) (corresponding angles are equal) $AXZC \text{ (equiangular)}$ $AXZC \text{ (equiangular)}$ $AXZC \text{ (equiangular)}$ $AXZC \text{ (equiangular)}$ $AXZC \text{ (BC = } \frac{1}{2}XB)$	circ	Mark: States a relevant cle theorem property nivalent statement.		
	$\frac{XY}{XZ} = \frac{2}{3}$ $\therefore 2XZ = 3$	3XY				

Quest	tion 5 Trial HSC Examination - Mathematics Extension 2		2011
Part	Solution	Marks	Comment
c)	Prove $\frac{d}{dx} \left[x^2 + 1 \right]^n = 2xn \left[x^2 + 1 \right]^{n-1}$		
	Test $n = 1$ $\frac{d}{dx} \left[x^2 + 1 \right]^1 = \frac{d}{dx} \left[x^2 + 1 \right]$ $= 2x$ $= 2x(1) \left[x^2 + 1 \right]^{1-1}$ $\therefore \text{ True for } n = 1$ Assume true for $n = k$ i.e. Assume $\frac{d}{dx} \left[x^2 + 1 \right]^k = 2xk \left[x^2 + 1 \right]^{k-1}$ Consider $n = k + 1$	1	
	Want to show $\frac{d}{dx} \left[x^2 + 1 \right]^{k+1} = 2x(k+1) \left[x^2 + 1 \right]^k$ LHS = $\frac{d}{dx} \left[x^2 + 1 \right]^{k+1} = \frac{d}{dx} (x^2 + 1) \left[x^2 + 1 \right]^k$ = $(x^2 + 1) \cdot 2kx(x^2 + 1)^{k-1} + (x^2 + 1)^k \cdot 2x$ = $2kx(x^2 + 1)^k + 2x(x^2 + 1)^k$ = $2x(k+1)(x^2 + 1)^k$ \therefore True for $n = k+1$ if true for $n = k$ But true for $n = 1$ \therefore true for $n = 1+1=2$ etc	1	
	Hence by Mathematical induction, true for all $n \ge 1$		
d)	i. $\int x^{m} (\ln x)^{n} dx \qquad u = (\ln x)^{n} v' = x^{m}$ $u' = \frac{n(\ln x)^{n-1}}{x} v = \frac{x^{m+1}}{m+1}$ $= uv - \int vu' dx$ $= \frac{(\ln x)^{n} x^{m+1}}{m+1} - \int \frac{x^{m+1} n (\ln x)^{n-1}}{x (m+1)} dx$ $= \frac{(\ln x)^{n} x^{m+1}}{m+1} - \frac{n}{m+1} \int \left[x^{m} (\ln x)^{n-1} \right] dx$	1	

Quest	tion 5 Trial HSC Examination - Mathematics Extension 2		2011
Part	Solution	Marks	Comment
d)	ii. $\int_{1}^{e} x^{3} (\ln x)^{3} dx = \left[\frac{x^{4} (\ln x)^{3}}{4} \right]_{1}^{e} - \frac{3}{4} \left(\int_{1}^{e} x^{3} (\ln x)^{2} \right) dx$		
	$= \left[\frac{x^4 (\ln x)^3}{4} \right]_1^e - \frac{3}{4} \left\{ \left[\frac{x^4 (\ln x)^2}{4} \right]_1^e - \frac{2}{4} \int_1^e (x^3 (\ln x)^1) dx \right\}$	1	
	$= \left[\frac{x^4 (\ln x)^3}{4} - \frac{3x^4 (\ln x)^2}{16} \right]_1^e + \frac{3}{8} \left\{ \int_1^e (x^3 (\ln x)^1) dx \right\}$ $= \left[\frac{x^4 (\ln x)^3}{4} - \frac{3x^4 (\ln x)^2}{16} \right]_1^e + \frac{3}{8} \left\{ \left[\frac{x^4 (\ln x)^1}{4} \right]_1^e - \frac{1}{4} \int_1^e (x^3 (\ln x)^0) dx \right\}$	1	
	$= \left[\frac{x^4 (\ln x)^3}{4} - \frac{3x^4 (\ln x)^2}{16} + \frac{3x^4 (\ln x)^1}{32} \right]_1^e - \frac{3}{32} \int_1^e x^3 dx$ $= \left[\frac{x^4 (\ln x)^3}{4} - \frac{3x^4 (\ln x)^2}{16} + \frac{3x^4 (\ln x)^1}{32} - \frac{3x^4}{128} \right]_1^e$	1	
	$= \left[\frac{e^4}{4} - \frac{3e^4}{16} + \frac{3e^4}{32} - \frac{3e^4}{128} \right] + \left[\frac{3}{128} \right]$ $= \frac{17e^4 + 3}{128}$	1	
		/15	

Quest	tion 6 Trial HSC Examination - Mathematics Extension 2	2011	
Part	Solution	Marks	Comment
a)	i. $ \frac{\left(a \sec \theta\right)^2}{a^2} - \frac{\left(b \tan \theta\right)^2}{b^2} = 1 $ $ LHS = \frac{a^2 \sec^2 \theta}{a^2} - \frac{b^2 \tan^2 \theta}{b^2} $	1	
	$= \sec^{2} \theta - \tan^{2} \theta$ $= 1 + \tan^{2} \theta - \tan^{2} \theta$ $= 1$ $= RHS$	1	
	Therefore P lies on the hyperbola		
	ii. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\therefore \frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$		
	$\therefore \frac{dy}{dx} = \frac{b^2 x}{a^2 y}$ At $(a \sec \theta, b \tan \theta)$ $\frac{dy}{dx} = \frac{b^2 (a \sec \theta)}{a^2 (b \tan \theta)} = \frac{b \sec \theta}{a \tan \theta}$	1	
	$\therefore m = \frac{b}{a} \csc \theta$ Gradient of Normal = $-\frac{a}{b} \sin \theta$ Equation:	1	
	$y - b \tan \theta = -\frac{a}{b} \sin \theta (x - a \sec \theta)$ $by - b^{2} \tan \theta = -ax \sin \theta + a^{2} \sec \theta \sin \theta$ $ax \sin \theta + by = b^{2} \tan \theta + a^{2} \tan \theta$ $ax \sin \theta + by = (a^{2} + b^{2}) \tan \theta \qquad(1)$	1	

Quest	tion 6	Trial HSC Examination - Mathematics Extension 2		2011
Part	Solution		Marks	Comment
	Solution iii. Coordinates For M , sub $ax \sin \theta = \left(\frac{a^2 + a^2}{a^2}\right)$ $\therefore x = \frac{\left(a^2 + a^2\right)}{a^2}$ Coordinates $\therefore OM = \frac{\left(a^2 + a^2\right)}{a^2}$ Now $e^2 OM$	s of N are $(a \sec \theta, 0)$ y = 0 into $(1)a^2 + b^2) \tan \thetab^2) \tan \thetasin \thetab^2) \sec \thetaas of M are \left(\frac{(a^2 + b^2) \sec \theta}{a}, 0\right)a^2 + b^2) \sec \thetaaaaaaaaa$	Marks 1	
	=	$\frac{a^2 + b^2}{a^2} = e^2$ $\left(\frac{a^2 + b^2}{a^2}\right) a \sec \theta$ $\left(\frac{a^2 + b^2}{a^2}\right) \sec \theta$ a OM	1	

Quest	Question 6 Trial HSC Examination - Mathematics Extension 2			2011
Part	Solution		Marks	Comment
	Solution iii. $SM = ae - \frac{c}{a}$ $= ae \left(1 - \frac{c}{a}\right)$ $= \sqrt{a^2 e^2 - \frac{c}{a}}$ $= a\sqrt{e^2 - 2e}$ $= a\sqrt{e^2 - 2e}$ $= a\sqrt{e^2 sec}$	$\frac{a^{2} + b^{2}}{a} \sec \theta$ $\frac{a^{2} + b^{2}}{a} \sec \theta$ $-e \sec \theta$ $\frac{b^{2} = a^{2}(e^{2} - 1)}{a^{2} + b^{2} = a^{2}e^{2}}$ $\frac{a^{2} + b^{2} = a^{2}e^{2}}{a^{2} + b^{2} = a^{2}e^{2}}$ $\sqrt{(ae - a \sec \theta)^{2} + (0 - b \tan \theta)^{2}}$ $2ea^{2} \sec \theta + a^{2} \sec^{2} \theta + a^{2}(e^{2} - 1) \tan^{2} \theta$ $e \sec \theta + \sec^{2} \theta + (e^{2} - 1)(\sec^{2} \theta - 1)$ $e \sec \theta + \sec^{2} \theta + e^{2} \sec^{2} \theta - e^{2} - \sec^{2} \theta + 1$ $e \sec \theta + \sec^{2} \theta + e^{2} \sec \theta + 1$	Marks 1	
	$\begin{vmatrix} = a \sqrt{1 - e} \\ = a \sqrt{1 - e} se$		1	
	$\therefore e SP = ae$ $= SM$	$f(1-e \sec \theta)$	1	
b)	$x^2y + 2x -$	2xy = 0		
		$\frac{y}{x} + 2 - 2y - 2x\frac{dy}{dx} = 0$ $x = 2y - 2xy - 2$ $\frac{2xy - 2}{-2x}$	1	Implicit Differentiation
	At $(1, 2)$ $dy = 2(2)$	-2(1)(2)-2		
	$=\frac{-2}{-1}=2$			
	y-2=2(x) $y-2=2x-1$ $y=2x$,	1	Equation
c)	All the coeffi	cients of $P(z)$ are real. Then any complex roots occur in rs. Since $3+i$ is a root then $3-i$ is a root	1	3 – i with correct explanation

Question 6		Trial HSC Examination - Mathematics Extension 2		2011
Part	Solution	Solution		Comment
	Roots are	e $3+i$, $3-i$ and α	1	Correct answer
	(3+i)(3-i)	$-i)\alpha = -\frac{10}{1}$		
	(9-	i^2) $\alpha = -10$		
		$10\alpha = -10$		
		$\alpha = -1$		
	P(z) = 0	(z-1)[z-(3+i)][z-(3-i)]		
	= ($(z+1)(z^2-6z+10)$		
			/15	

Questi	on 7	2011		
Part	Solution		Marks	Comment
a)i)	From 11 peop = ${}^{11}C_5$ = 462	ole, total number of committees of 5	1	Correct
ii)	-	majority on a committee of 5, chosen from 6 (I) and 5 politically aligned (PA).		
	5 (I) 0 (PA)	Number = ${}^6C_5 \times {}^5C_0 = 6$		1 mark some progress showing
	4 (I) 1 (PA)	Number = ${}^{6}C_{4} \times {}^{5}C_{1} = 15 \times 5 = 75$	1	understanding
	3 (I) 2 (PA)	Number = ${}^{6}C_{3} \times {}^{5}C_{2} = 20 \times 10 = 200$		
	Total number = (6 + 75 + 2 = 281	of committees with Independent majority 00)	1	
b)	$x^3 - 3x^2 + ax$			
	Let Roots be	$\alpha - \beta, \alpha, \alpha + \beta$		
	Sum (1 at Tin	ne): $\alpha - \beta + \alpha + \alpha + \beta = \frac{-b}{a}$	1	
		$3\alpha = 3$ $\alpha = 1$		
		$(-\beta) \times \alpha \times (\alpha + \beta) = \frac{-d}{a}$ $(\alpha^3 - \alpha\beta^2) = -8$	1	
		$1 - \beta^2 = -8$		
		$\beta^2 = 9$		
		$\beta = \pm 3$		
b)	Sum (2 at a ti	me) =		
	$\alpha(\alpha-\beta)+\alpha$	$c(\alpha + \beta) + (\alpha - \beta)(\alpha + \beta) = \frac{c}{a}$	1	
		$3\alpha^2 - \beta^2 = a$		
		$3(1)^2 - 3^2 = a$ $a = -6$		
	Therefore roo	ts are $\alpha - \beta$, α , $\alpha + \beta$ i.e. $-2, 1, 4$	1	

Questio		2011		
Part	Solution		Marks	Comment
c)i)	$y = \sin^{-1} x - \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$ $= \frac{1}{\sqrt{1 - x^2}}$	$-\frac{1}{2}(1-x^2)^{-\frac{1}{2}} \times -2x$	1	1 Mark Correctly differentiates the
	$= \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$ $= \frac{1+x}{\sqrt{1-x^2}}$ $= \frac{1+x}{\sqrt{(1+x)}}$ $= \frac{\sqrt{1+x}}{\sqrt{1-x}}$		1	function 2 Marks: Correct answer.
	Result define	d for $-1 \le x \le 1$		
ii)	=	$ \begin{aligned} & \left[\sin^{-1} x - \sqrt{1 - x^2} \right]_0^a \\ & \left[(\sin^{-1} a - \sqrt{1 - a^2}) - (\sin^{-1} 0 - \sqrt{1}) \right] \\ & \left[\sin^{-1} a - \sqrt{1 - a^2} + 1 \right] \\ & \left[\sin^{-1} a + 1 - \sqrt{1 - a^2} \right] \end{aligned} $	1	1 Mark: Correct answer
d)i)	i) sur (let a sura	$sun'x - cos'x) = 3x^{2} - 1.$ $sun'x - cos'x$	2	I mark each for setting up sissa and sub. (2 marks). I mark for expansion
	= sua = 100.0 = 20.0 = 20.0 = 20.0 = RH	$cosb-cosasub$ $c-\int (-x^2)$ $cosb-cosasub$	1	
ii)	u sui (si u ant ant+n n = -1	<u>± 11+16</u>	2	1 marks.
		1 + 117		
			/15	

Quest	tion 8 Trial HSC Examination - Mathematics Extension 2	2011	
Part	Solution	Marks	Comment
a)	$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$ $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$ $\sin(\alpha - \beta)$	1	1 for the two expressions.
	$tan(\alpha - \beta) = \frac{sin(\alpha - \beta)}{cos(\alpha - \beta)}$ $= \frac{sin \alpha cos \beta - cos \alpha sin \beta}{cos \alpha cos \beta + sin \alpha sin \beta}$		
	Divide everything by $\cos \alpha \cos \beta$ $= \frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}$ $= \frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}$	1	Any fair proof
	$= \frac{\frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta}}{1 + \frac{\sin \alpha}{\cos \alpha} \frac{\sin \beta}{\cos \beta}}$	1	Final result
	$= \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ ii. $\tan \left(\alpha - \frac{\pi}{3}\right) = \frac{\tan \alpha - \tan \frac{\pi}{3}}{1 + \tan \alpha \tan \frac{\pi}{3}} = \frac{\tan \alpha - \sqrt{3}}{1 + \sqrt{3} \tan \alpha}$ $4(x) = \alpha - \log_{2}(1 + x^{2}) \qquad 1 + x^{2} > 0$	1	
1 \ ' \	3		
b)i)	1(x) = x - loge (1+x2), 1+x270	3	I mark correct
	and $1+x^{2} > 0 + x$. $= \frac{1+x^{2}-2x}{1+x^{2}}$ $= \frac{(x-1)^{2}}{1+x^{2}}$ and $1+x^{2} > 0 + x$ $= \frac{1+x^{2}}{1+x^{2}}$		deflessentation. 2 marks correct explanation; 1 mark reasonate attempt.
ii)	ii) deduce ex>1+x2	3	
	f'(x) > 0 means $f(x)$ monotonic increating -for $x=0$, $f(0)=0$] I mark.
	so for x >0, f(x) >0. so for x >0, x - loge(11x2) >0		JI mark.
	$u x > \log_e(1+x^2)$ $u e^x > 1+x^2, x > 0.$		I wash.

Question 8 Trial HSC Examination - Mathematics Extension 2				
	olution		Marks	Comment
) i.				
<u>x</u>	$\frac{y^2}{h^2} + \frac{y^2}{h^2} = 1$			
ci	·			
$\frac{2}{\pi}$	$\frac{x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$			
$\frac{1}{b}$	$\frac{y}{a^2}\frac{dy}{dx} = -\frac{2x}{a^2}$			
	$\frac{dy}{dx} = -\frac{b^2x}{a^2y}$			
	•			
A	At (x_0, y_0)	Equation $y - y_1 = m(x - x_1)$		
1	$m = -\frac{b^2 x_0}{a^2 y_0}$	$y - y_0 = -\frac{b^2 x_0}{a^2 y_0} (x - x_0)$	1	Gradient
		$a^2 y y_0 - a^2 y_0^2 = -b^2 x_0^2 + b^2 x x_0$		
		$b^2 x x_0 + a^2 y y_0 = a^2 y_0^2 + b^2 x^2$		
D	ivide every thing	by a^2b^2		
		$\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = \frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2}$		
В	$ut \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$		1	
	.:.	$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$		

Ques	tion 8 Trial HSC Examination - Mathematics Extension 2	2011	
Part	Solution	Marks	Comment
ii)	Ellipse is $\frac{x^2}{25} + \frac{y^2}{9} = 1$ or $9x^2 + 25y^2 = 225$ Equation of tangent is $\frac{xx_0}{25} + \frac{yy_0}{9} = 1$ Differentiate implicitly.	<i>x</i> →	
	$\frac{x_0}{25} + \frac{dy}{dx} \frac{y_0}{9} = 0$ Gradient of $PS_1 = \frac{y_0}{x_0 - 4}$ $\frac{dy}{dx} \frac{y_0}{9} = -\frac{x_0}{25}$ Gradient of $PS_2 = \frac{y_0}{x_0 + 4}$	1	1 for individual gradients
	Gradient of normal = $\frac{25y_0}{9x_0}$ $tan\alpha = \begin{vmatrix} \frac{25y_0}{9x_0} - \frac{y_0}{x_0 - 4} \\ 1 + \frac{25y_0}{9x_0} \cdot \frac{y_0}{x_0 - 4} \end{vmatrix} = \begin{vmatrix} \frac{25x_0y_0 - 100y_0 - 9x_0y_0}{9x_0(x_0 - 4)} \\ \frac{9x_0^2 - 36x_0 + 25y_0^2}{9x_0(x_0 - 4)} \end{vmatrix}$ $= \begin{vmatrix} \frac{16x_0y_0 - 100y_0}{9x_0^2 + 25y_0^2 - 36x_0} \end{vmatrix}$ $= \begin{vmatrix} \frac{4y_0(4x_0 - 25)}{225 - 36x_0} \end{vmatrix} \text{ since P lies on ellipse } 9x_0^2 + 25y_0^2 = 225$ $= \begin{vmatrix} \frac{4y_0(4x_0 - 25)}{9(25 - 4x_0)} \end{vmatrix}$		
	$ 9(25-4x_0) $ $= \left \frac{4y_0}{9}\right $ $tan\beta = \left \frac{\frac{25y_0}{9x_0} - \frac{y_0}{x_0 + 4}}{1 + \frac{25y_0}{9x_0} \cdot \frac{y_0}{x_0 + 4}}\right = \left \frac{\frac{25x_0y_0 + 100y_0 - 9x_0y_0}{9x_0(x_0 + 4)}}{\frac{9x_0^2 + 36x_0 + 25y_0^2}{9x_0(x_0 + 4)}}\right $ $= \left \frac{16x_0y_0 + 100y_0}{9x_0^2 + 25y_0^2 + 36x_0}\right $	1	1 for expressions for one angle or tan of angle
	$= \left \frac{4y_0 \left(4x_0 + 25 \right)}{9 \left(25 + 4x_0 \right)} \right \text{since P lies on ellipse } 9x_0^2 + 25y_0^2 = 225$ $= \left \frac{4y_0}{9} \right = tan\alpha$ $\therefore \alpha = \beta$	1 /15	1 for second angle and equality