Bestemmelse af motor parametere

Resistance (R)

Spændingen skrues langsom op til lige inden motoren starter.

Herefter aflæses spændingen og strømmen til motoren for at beregne modstanden af motoren.

$$U = 2.5 \mathrm{V}$$

$$I = 1.2A$$

Det resultere til:

$$R=rac{U}{I}=2.08\Omega$$

Inductance (L)

Spænd bolten så motoren forbliver i stilstand.

Giv en $14\mathrm{V}$ step voltage til motoren aflæs strømkurven(grønne kurve) ved brug af tang amperet koblet til oscilloscopet.

Scope indstillinger og måling:

DS0-X 1102G, CN57266227: Fri May 10 14:24:04 2024

Aflæs maks strømmen (22A) udfra grafen og herefter udregn strømmen ved 63.2% som er

Derefter ses tidskontanten udfra grafen ved $13.9 {
m A}$ at den er $21.6 \mu S$. Herefter kan man udregne L som er $44.93 \mu H$ hvilket er givet af: $au=\frac{L}{R} \Leftrightarrow L= au\cdot R$

```
%% 1
%L
clear; close all;
[File1,Path1] = uigetfile('*.csv', '');
FullFile1 = fullfile(Path1,File1);
table1 = readtable(FullFile1);

plot(table1.Var1,table1.Var3);
grid on;
```

Ke

Lad motoren køre frit ved forskellige spændinger og aflæs rotationer ved hjælp af tachometer.

Angular velocity er givet som:

$$\omega = RPM \cdot 2 \cdot \frac{\pi}{60}$$

 K_e er givet som:

$$K_e = rac{U-Ri}{\omega}$$

Tachometeret giver RPM som kan omregnes til ω og spændingen er givet fra strømforsyningen. Resultaterne for K_e kan se i tabellen:

Voltage [V]	Current [A]	RPM	Angular velocity [rad/s]	K_e
2.5	0.9	250	26.18	2.398783e-02
5	1.2	950	99.48	2.516994e-02
7.5	1.4	1680	175.92	2.607867e-02
10	1.5	2420	253.421	2.714841e-02
12.5	1.6	3130	327.77	2.798279e-02
14	1.7	3560	372.49	2.806849e-02

Matlab beregninger:

Kt and B

Indstil bolten så det bremser motoren og derefter aflæs spændingen fra torquemeter gradvist ved forskellige spændings intervaller fra strømforsyningen til motoren.

Newton meter relation til spænding for motoren: $10 \mathrm{Nm} = 5.001 \mathrm{V}$

 K_t findes som:

$$\frac{\text{meassured voltage}}{\text{torquemeter voltage}} \cdot \text{torquemeter Nm}$$

Nu skal de to tabeller bruges sammen så der skal tages K_t (y-axis) fra den nedenstående og plottes med angular velocity for den overstående tabels(x-axis) og med dette kan B findes som hældningen af den funktion.

Voltage [V]	Current [A]	Newton/meter voltage	K_t torque [Nm]
1	0.3	30mV	0.059
2	0.9	60mV	0.119
3	2.1	200mV	0.399
4	4.1	500mV	0.999
5	6	770mV	1.539
6	8.4	1.1V	2.199

Voltage [V]	Current [A]	Newton/meter voltage	K_t torque [Nm]
7	10.6	1.37V	2.739
8	12.7	1.68V	3.359
9	14.6	2V	3.999
10	16.8	2.3V	4.599
11	18.6	2.56V	5.118
12	20.1	2.76V	5.518
13	20.5	2.88V	5.758
14	24.2	3.22V	6.438

Her er de data som er blevet brugt til grafen for ${\cal B}.$

Angular velocity	K_t
26,18	0,259
99,48	1,539
175,92	3,359
253,421	4,599
327,77	5,758
372,49	6,428

Plot:

0 50 100 150 200 250 300 350 400

Hældningen blev fundet til at være: $B=0.017\,$

Liste over fundne data:

•
$$R=2.08\Omega$$
, $L=44.93\mu H$

K_t	K_e
0.059	2.398783e-02
0.119	2.516994e-02
0.399	2.607867e-02
0.999	2.714841e-02
1.539	2.798279e-02
2.199	2.806849e-02
2.739	-
3.359	-
3.999	-
4.599	-
5.118	-
5.518	-
5.758	-
6.438	-

Matlab beregninger:

```
%% 3
close all; clear;
R = 2.08;
RPM = [250 950 1680 2420 3130 3560];
U = [2.5 5 7.5 10 12.5 14];
current = [0.9 1.2 1.4 1.5 1.6 1.7];
for i = 1:length(RPM)
    angular(i) = (RPM(i) * 2 * pi)/60;
end
torquevol = 5.001;
torqueconstant = 10;
Nmvol = [30E-3 60E-3 200E-3 500E-3 770E-3 1.1 1.37 1.68 2 2.3 2.56 2.76 2.88 3.22];
for i = 1:length(Nmvol)
   Kt(i) = (Nmvol(i) / torquevol) * torqueconstant
end
fprintf('Kt %d,\n',Kt)
newKt = [0.259 1.539 3.359 4.599 5.758 6.428];
plot(angular,newKt);
xlabel('\omega','FontSize',14);
ylabel('K_t','FontSize',14);
b = polyfit(angular, newKt, 1);
slope = b(1)
grid on;
```