TM1629A是LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU数字接 口、数据锁存器、LED 高压驱动等电路。主要应用于冰箱、空调 、家庭影院等产品的高 段位显示屏驱动。

二、 特性说明

- 采用功率CMOS 工艺
- 显示模式 16 段×8 位
- ▶ 辉度调节电路(占空比8级可调)
- ▶ 串行接口 (CLK, STB, DIO)
- ▶ 振荡方式: RC 振荡 (450KHz<u>+</u>5%)
- 内置上电复位电路
- ➤ 采用SOP32封装

三、管脚定义:

GRID4 1	•	32 GRID5
GRID3 2		31 GRID6
VSS 3		30 VSS
GRID2 4		29 GRID7
GRID1 5		28 GRID8
VSS 6		27 VDD
DIO 7		26 SEG16
CLK 8	TM1629A	25 SEG15
STB 9	TOP VIEW	24 SEG14
VDD 10		23 SEG13
SEG1 11		22 SEG12
SEG2 12		21 SEG11
SEG3 13		20 SEG10
SEG4 14		19 SEG9
SEG5 15		18 SEG8
SEG6 16		17 SEG7
		_

四、 管脚功能说明:

符号	管脚名称	说明				
DIO	数据输入	在时钟上升沿输入串行数据,从低位开始。				
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处 理被终止。当STB 为高时,CLK 被忽略				
CLK	时钟输入	时钟上升沿输入串行数据。				
SEG1~SEG16	输出 (段)	段输出,p管开漏输出				
GRID1∼GRID8	输出 (位)	位输出,N管开漏输出				
VDD	逻辑电源	5V±10%				
VSS	逻辑地	接系统地				

五、 显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到TM1629A 的数据,地址从00H-0FH共16字 节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下表:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
)	高四位)	xHU (×		低四位)	xxHL ()	高四位	xxHU (¡			氐四位)	HL (作	X
	В7	В6	В5	В4	В3	В2	В1	ВО	В7	В6	В5	В4	В3	B2	В1	ВО
GRID1	•	HU	01			HL	01			HU	00			HL	00	
GRID2		BHU	03			BHL	03			HU	02			HL	02	
GRID3		05HU			05HL				HU	04			HL	04		
GRID4		′HU	07			'HL	07			HU	06		1	HL	06	
GRID5		PHU	09			ΉL	09			HU	08			HL	08	
GRID6		BHU	OE			BHL	OB			HU	0A			.HL	0A	
GRID7		DHU	OE			HL	00			HU	0C			HL	0C	
GRID8		HU	OF			HL				HU	0E			HL	0E	

表 (1)

写LED显示数据的时候,按照从低位地址到高位地址,从字节的低位到高位操作;在运用中没

有使用到的SEG输出口,在对应的BIT地址位写0。

六、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码, 取最高B7、B6两位比特 位以区别不同的指令。

B7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数 据无效(之前传送的指令或数据保持有效)。

6.1 数据命令设置:

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB LSB

В7	В6	B5 B4		В3	В2	В1	во	功能	说明		
0	1	·				0	0	**#***********************************	它数据到日二字 左 四		
0	1			4		1	0	数据写模式设置	写数据到显示寄存器		
0	1	无关项	页,填		0			地址增加模式设置	自动地址增加		
0	1	()		1			地址增加侯八反直	固定地址		
0	1			0				测试模式设置(内	普通模式		
0	1			1				部使用)	测试模式		

6. 2 地址命令设设置:

M	SB		LSB							
В7	В6	В5	В4	В3	В2	В1	ВО	显示地址		
1	1			0	0	0	0	00H		
1	1			0	0	0	1	01H		
1	1			0	0	1	0	02H		
1	1			0	0	1	1	03H		
1	1			0	1	0	0	04H		
1	1			0	1	0	1	05H		
1	1	无关	项,	0	1	1	0	06H		
1	1	填	0	0	1	1	1	07H		
1	1			1	0	0	0	08H		
1	1			1	0	0	1	09H		
1	1			1	0	1	0	0AH		
1	1			1	0	1	1	OBH		
1	1						1	0	0	0CH
1	1				1	0	1	0DH		
1	1			1	1	1	0	OEH		
1	1			1	1	1	1	OFH		

该指令用来设置显示寄存器的地址;如果地址设为10H 或更高,数据被忽略,直到有效地 址被设定;上电时,地址默认设为00H。

6.3 显示控制:

MSB

В7	В6	В5	B4	В3	B2	В1	во	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	沙 小 粉 是 江 空	设置脉冲宽度为 10/16
1	0	无关项	页,填		1	0	0	消光数量设置	设置脉冲宽度为11/16
1	0	C)		1	0	1		设置脉冲宽度为 12/16
1	0		1 1 0			设置脉冲宽度为 13/16			
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				日二五子次四	显示关
1	0			1				显示开关设置	显示开

七、串行数据传输格式:

接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)

八、 显示:

1、驱动共阴数码管:

图 (2)

图2给出共阴数码管的连接示意图,如果让该数码管显示 "0",那你需要在GRID1为低电平 的时候让SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平, SEG7为低电平, 查看表(1)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00H
В7	B6	B5	B4	В3	B2	B1	ВО	

LED 驱动控制专用电路

TM1629A

2、驱动共阳数码管:

图 (3)

图3给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2,GRID3,GRID4,GRID5,GRID6为低电平的时候让SEG1为高电平,在GRID7为低电平的时候让SEG1为低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	08H
0	0	0	0	0	0	0	1	0AH
0	0	0	0	0	0	0	0	0CH
В7	В6	B5	B4	В3	B2	B1	ВО	

▲注意: SEG1-16为P管开漏输出, GRID1-8为N管开漏输出, 在使用时候, SEG1-16只能接LED的阳极, GRID只能接LED的阴极, 不可反接。

九、 应用时串行数据的传输:

9. 1 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据,最多16BYTE,数据传送完毕才将"STB"置高。

©Titan Micro Electronics

www.titanmec.com

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多16 bytes)

Command4: 显示控制命令

9.2 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发 送完毕, "STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重 新设置第2个数据需要存放的地址,最多16BYTE数据传送完毕, "STB"置高。

DЮ Command1 Command2 Command3 Data1 Command4 Command5

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5: 显示控制命令

9. 3程序设计流程图

采用地址自动加1的程序设计流程图:

采用固定地址的程序设计流程图:

十. 应用电路:

10. 1 TM1629A 驱动共阳数码屏硬件电路,如图(4):

图 (4)

TM1629A 驱动共阴数码屏硬件电路,如图(5):

图 (5)

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1629A芯片放置,加强滤波 效果。

- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1629A供电应选用5V。

11

十一、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号		单位
逻辑电源电压	VDD	-0.5 ~+7.0	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	V
LED Seg 驱动输出电流	101	-50	mA
LED Grid 驱动输出电流	IO2	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +80	°C
储存温度	Tstg	-65 ~+150	°C

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		٧	-
高电平输入电压	VIH	0.7 VDD	-	VDD	\	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	loh1	-20	-25	-40	mA	Seg1~Seg11, Vo=vdd-2V
同电干制山电流	loh2	-20	-30	-50	mA	Seg1~Seg11, Vo=vdd-3V
低电平输出电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容许量	Itolsg	-	4	5	%	VO=VDD - 3V, Seg1~Seg11
输出下拉电阻	RL		10	X	ΚΩ	K1~K3
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		٧	CLK, DIN, STB
低电平输入电压	VIL		1	0.3 VDD	٧	CLK, DIN, STB
滞后电压	VH	-	0.35	-	٧	CLK, DIN, STB
动态电流损耗	IDDdyn		-	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

11111 C				<u> </u>			
参数	符号	最小	典型	最大	单位		测试条件
振荡频率	fosc	-	500	-	KHz	R = 16.5 KΩ	
	†PLZ	-	-	300	ns		CLK → DOUT
传输延迟时间	†PZL	-	-	100	ns	CL =	= 15pF, RL = 10K Ω
	TTZH 1	-	-	2	μs		Seg1~Seg11
上升时间	TTZH 2	-	-	0.5	μs	CL = 300p F	Grid1~Grid4 Seg12/Grid7~ Seg14/Grid5
下降时间	TTHZ	i		120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	1		-	MHz	占空比50%	
输入电容	CI	-		15	рF	-	

时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	参数 符号		典型	最大	单位	测试条件	
时钟脉冲宽度	PWCLK	400	-	-	ns	-	
选通脉冲宽度	PWSTB	1	-	-	μs	-	
数据建立时间	tSETUP	100	-	-	ns	-	
数据保持时间	tHOLD	100	-	-	ns	-	
CLK →STB 时间	†CLK STB	1	-	-	μs	CLK ↑ →STB ↑	
等待时间	tWAIT	1	-	-	μs	CLK↑→CLK↓	

时序波形图: **STB** PW_{CLK} | PWalk _ tclk-stb CLK **t** SETUP thold DIN **-t**tzh 90% Sn/Gn

10%

LED 驱动控制专用电路

TM1629A

十二、 封装尺寸

尺 寸 标 注	最 小 (mm)	最 大 (mm)	尺寸 标注	最 小(mm)	最 大(mm)	
A	20.88 21.08		C4	0. 99TYP		
A1	0.3	0.5	D1	0.55	0.95	
A2	1. 21	7TYP	D2	1.45		
A3	0.77TYP		R1			
В	10. 2	10.6	R2			
B1	7.42	7.62	θ 1	8°TYP		
B2	8.9	TYP	θ 2	15°TYP		
C1	2.14	2.34	θ 3	4°TYP		
C2	0.2	0.32	θ 4	14°TYP		
C3	0.10	0. 25				

DETAIL "X"

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

修订历史

版本	发行日期	修订简介
V1.0	2008-08-04	修订版发行
V1.1	2012-07-16	修订版发行

