Supplemental Information for

The Regional Atmospheric Chemistry Mechanism,

Version 2

Wendy S. Goliff¹, William R. Stockwell^{2*} and Charlene V. Lawson²

¹College of Engineering Center for Environmental Research and Technology, University of California, Riverside'

²Howard University, Department of Chemistry, Washington, DC

Contents

Table S1. RACM2 species list	2
Table S2a. The RACM2 Chemical Mechanism: Photolysis Reactions	
Table S2b. The RACM2 Chemical Mechanism, Thermal Reactions	10
Table S2c. The RACM2 Chemical Mechanism: Reaction Rate Constants of the Form	
k = T2 C exp (-D/T)	36
Table S2d. The RACM2 Chemical Mechanism: Troe Reaction Parameters	36
Table S2e. The RACM2 Chemical Mechanism: Troe Equilibrium Reactions	37
Table S2f. The RACM2 Chemical Mechanism: Reactions With Special Rate Expressions	37
Comparison of RACM1 and RACM2 Mechanisms for "Real Atmosphere" Cases	39

Table S1. RACM2 species list.

Species	Definition	Carbon #	MW	Species	Definition	Carbon #	MW
СО	Carbon monoxide	1	28	ACD	Acetaldehyde	2	44
CO2	Carbon dioxide	1	44	ACE	Acetylene	2	26
H2	Hydrogen		2	ACO3	Acetyl peroxy radicals	2	75
H2O	Water		18	ACT	acetone	3	58
H2O2	Hydrogen peroxide		34	ACTP	Peroxy radicals formed from ACT	3	89
HNO3	Nitric acid		63	ADCN	Aromatic-NO3 adduct from PHEN	6	156
HNO4	Pernitric acid		79	ADDC	Aromatic-HO adduct from CSL	7	125
НО	Hydroxy radical		17	ALD	C3 and higher aldehydes	3	58
HO2	Hydroperoxy radical		33	API	Alpha-pinenes and other cyclic terpenes with one double bond	10	136
HONO	Nitrous acid		47	APIP	Peroxy radicals formed from API	10	185
N2	Nitrogen		28	BALD	Benzaldehyde and other aromatic aldehydes	7	106
N2O5	Dinitrogen pentoxide		108	BALP	Peroxy radicals formed from BALD	7	137
NO	Nitric oxide		30	BAL1	Peroxy radicals formed from BALD	7	121
NO2	Nitrogen dioxide		46	BAL2	Peroxy radicals formed from BALD	7	105
NO3	Nitrogen trioxide		62	BEN	Benzene	6	78

O1D	Excited state oxygen atom, O(¹ D)	16	BENP Peroxy radicals formed from BEN		6	127
O2	Oxygen	32	CH4	methane	1	16
О3	Ozone	48	СНО	Phenoxy radical formed from CSL	7	139
O3P	Ground state oxygen atom, O(³ P)	16	CSL	Cresol and other hydroxy substituted aromatics	7	108
SO2	Sulfur dioxide	64	DCB1	Unsaturated dicarbonyls	4.5	91
SULF	Sulfuric acid	98	DCB2	Unsaturated dicarbonyls	7	110
			DCB3	Unsaturated dicarbonyls	4	84
			DIEN	Butadiene and other anthropogenic dienes	4	54
			ЕОН	Ethanol	2	46
			EPX	Epoxide formed in TOL, XYL and XYO reactions	7.75	122. 5
			ETE	ethene	2	28
			ETEG	Ethylene glycol	2	62
			ETEP	Peroxy radicals formed from ETE	2	77
			ETH	ethane	2	30
			ЕТНР	Peroxy radicals formed from ETH	2	61
			GLY	Glyoxal	2	58
			НС3	Alkanes, esters and alkynes with HO rate constant (298 K, 1 atm) less than 3.4x10-12 cm3 s-1	3.6	44
			НС3Р	Peroxy radicals formed from HC3	3.6	75

HC5	Alkanes, esters and alkynes with HO rate constant (298 K, 1 atm) between 3.4x10-12 and 6.8x10-12 cm3 s-1	5.6	72
HC5P	Peroxy radicals formed from HC5	5.6	103
HC8	Alkanes, esters and alkynes with HO rate constant (298 K, 1 atm) greater than 6.8x10-12 cm3 s-1	7.9	114
HC8P	Peroxy radicals formed from HC8	7.9	145
НСНО	Formaldehyde	1	30
HKET	Hydroxy ketone	3	74
ISHP	Beta-hydroxy hydroperoxides from ISOP+HO2	5	118
ISO	Isoprene	5	68
ISON	Beta-hydroxyalkylnitrates from ISOP+NO alkylnitrates from ISO+NO3	5	147
ISOP	Peroxy radicals formed from ISO+HO	5	117
KET	ketones	5	86
KETP	Peroxy radicals formed from KET	5	117
LIM	d-limonene and other cyclic diene-terpenes	10	136
LIMP	Peroxy radicals formed from LIM	10	185
MACP	Peroxy radicals formed from MACR+HO	4	101

MACR	methacrolein	4	70
MAHP	Hydroperoxides from	4	102
	MACP+HO2		
MCP	Peroxy radical formed from MACR + HO which does not form MPAN	4	119
MCT	Methyl catechol	7	124
МСТО	Alkoxy radical formed from MCT+HO and MCT+NO3	7	123
MCTP	Radical formed fro MCT+O3 reaction	7	172
MEK	Methyl ethyl ketone	4	72
MEKP	Peroxy radicals formed from MEK	4	103
MGLY	Methylglyoxal and other alpha-carbonyl aldehydes	3	72
MO2	Methyl peroxy radical	1	47
МОН	methanol	1	32
MPAN	Peroxymethacryloylnitrate and other higher peroxyacylnitrates from isoprene oxidation	4	148
MVK	Methyl vinyl ketone	4	70
MVKP	Peroxy radicals formed from MVK	4	119
NALD	nitrooxyacetaldehyde	2	105
OLI	Internal alkenes	5	68
OLIP	Peroxy radicals formed	5	117
	from OLI		

OLNN	NO3-alkene adduct reacting to form carbonitrates + HO2	3	136
OLT	Terminal alkenes	3.8	42
OLTP	Peroxy radicals formed from OLT	3.8	91
ONIT	Organic nitrate	3.5	119
OP1	Methyl hydrogen peroxide	1	48
OP2	Higher organic peroxides	2	62
ORA1	Formic acid	1	46
ORA2	Acetic acid and higher acids	2	60
ORAP	Peroxy radical formed from ORA2 + HO reaction	2	109
PAA	Peroxyacetic acids and higher analogs	2	76
PAN	Peroxyacetyl nitrate and higher saturated PANs	2	121
PER1	Peroxy intermediate formed from TOL	7.1	141
PER2	Peroxy intermediate formed from TOL	7.1	157
PHEN	phenol	6	94
РНО	Phenoxy radical formed from phenol	6	93
PPN	Peroxypropionyl nitrate	3	135
RCO3	Higher saturated acyl peroxy radicals	3	90
ROH	C3 and higher alcohols	3	60
TLP1	Peroxy radicals formed from TOL	7.1	91

TOL	Toluene and less reactive aromatics	7.1	92
TOLP	Peroxy radicals formed from TOL	7.1	141
TR2	Peroxy radicals formed from TOL	7.1	109
UALD	Unsaturated aldehydes	5	84
UALP	Peroxy radicals formed from UALD	5	133
XO2	Accounts for addition NO to NO2 conversions	N/a	N/a
XY2	Peroxy radicals formed from XYL	8.9	124
XYL1	Peroxy radicals formed from XYL	8.9	156
XYM	M-xylene	8.9	106
XYP	P-xylene	8.9	106
XYLP	Peroxy radicals formed from XYL	8.9	155
XYO	o-xylene	8.9	106
XYO2	Peroxy radicals formed from XYO	8.9	155
XYOP	Peroxy radicals formed from XYO	8.9	155

Table S2a. The RACM2 Chemical Mechanism: Photolysis Reactions

Reaction	Reaction	Photolysis	Cross Section	Quantum
No.		Frequency	Notes	Yield
		$\frac{1}{s^{-1}}$		Notes
R001	$O_3 + h\nu \rightarrow O^3P + O_2$	4.31 x 10 ⁻⁴	JPL 2011	1
R002	$O_3 + h\nu \rightarrow O^1D + O_2$	1.67 x 10 ⁻⁵	JPL 2011	JPL 2011
R003	$H_2O_2 + hv \rightarrow 2 HO$	5.98 x 10 ⁻⁶	JPL 2011	2
R004	$NO_2 + hv \rightarrow O^3P + NO$	8.41×10^{-3}	JPL 2011	JPL 2011
R005	$NO_3 + hv \rightarrow NO + O_2$	2.28 x 10 ⁻²	JPL 2011	JPL 2011
R006	$NO_3 + hv \rightarrow O^3P + NO_2$	1.80 x 10 ⁻¹	JPL 2011	JPL 2011
R007	$HONO + hv \rightarrow HO + NO$	1.22×10^{-3}	JPL 2011	JPL 2011
R008	$HNO_3 + h\nu \rightarrow HO + NO_2$	4.59×10^{-7}	JPL 2011	2
R009	$\text{HNO}_4 + \text{hv} \rightarrow 0.20 \text{ HO} + 0.80$	5.21 x 10 ⁻⁶	JPL 2011	2,3
	$HO_2 + 0.80 NO_2 + 0.20 NO_3$			
R010	$HCHO + hv \rightarrow H_2 + CO$	4.02×10^{-5}	JPL 2011	JPL 2011
R011	$HCHO + hv \rightarrow 2 HO_2 + CO$	4.02×10^{-5}	JPL 2011	JPL 2011
R012	$ACD + h\nu \rightarrow HO_2 + MO_2 + CO$	3.45×10^{-6}	JPL 2011	JPL 2011
R013	$ALD + h\nu \rightarrow HO_2 + ETHP + CO$	4.41×10^{-6}	JPL 2011	4
R014	$ACT + h\nu \rightarrow MO_2 + ACO_3$	9.91 x 10 ⁻⁷	JPL 2011	JPL 2011
R015	$UALD + h\nu \rightarrow 1.22 HO_2 +$	1.15 x 10 ⁻⁵	5	6
	$0.784 \text{ ACO}_3 + 1.22 \text{ CO} + 0.35$			
	HCHO + 0.434 ALD + 0.216			
	KET		_	
R016	$MEK + hv \rightarrow 0.50 \text{ MO}_2 + 0.50$	1.10×10^{-6}	7	8
D015	$ETHP + ACO_3$	0.60 10-6		
R017	$KET + hv \rightarrow ETHP + ACO_3$	8.60×10^{-6}	9	8
R018	$HKET + hv \rightarrow HO_2 + ACO_3 +$	1.48 x 10 ⁻⁶	10, R17	R17 (KET)
	НСНО		(KET)	, ,
		6		
R019	$MACR + hv \rightarrow 0.34 \text{ HO} + 0.66$	3.55×10^{-6}	JPL 2011	JPL 2011
	$HO_2 + 0.67 ACO_3 + 0.33 MACP$			
	$+ 0.34 \text{ XO}_2 + 0.67 \text{ CO} + 0.67$			
D020	HCHO	7.50 10-7	IDI 2011	IDI 2011
R020	$MVK + hv \rightarrow 0.3 MO_2 + 0.3$	7.59×10^{-7}	JPL 2011	JPL 2011
D021	MACP + 0.7 CO + 0.7 UALD	4.95 x 10 ⁻⁶	JPL 2011	IDI 2011
R021	$GLY + hv \rightarrow H_2 + 2 CO$	4.93×10^{-5}		JPL 2011
R022	GLY + hv \rightarrow 2 CO + HCHO	2.37×10 6.03×10^{-5}	JPL 2011	JPL 2011
R023	$GLY + hv \rightarrow 2 HO_2 + 2 CO$	6.03×10^{-4}	JPL 2011	JPL 2011
R024	$MGLY + hv \rightarrow HO_2 + ACO_3 + CO$	0.03 X 10	JPL 2011	JPL 2011
R025	DCB1 + hv \rightarrow 1.5 HO ₂ + 0.5	6.03 x 10 ⁻⁴	R24 (MGLY)	R24 (MGLY)
2020	$ACO_3 + 2 XO_2 + CO + 0.5 GLY$	0.00 1.10	112 (1/1021)	112 (111021)
	+ 0.5 MGLY			
	- · · · · · · · · · · · ·			

Table S2a - Continued. The RACM2 Chemical Mechanism: Photolysis Reactions

Reaction	Reaction	Photolysis	Cross	Quantum
No.		Frequency	Section	Yield
		s^{-1}		
R026	DCB2 + hv \rightarrow 1.5 HO ₂ + 0.5	6.03×10^{-4}	R24	R24
	$ACO_3 + 2 XO_2 + CO + 0.5 GLY$		(MGLY)	(MGLY)
	+ 0.5 MGLY	_		
R027	$BALD + hv \rightarrow CHO + HO_2 + CO$	3.32×10^{-5}	12,	SAPRC07
			SAPRC07	
R028	$OP1 + h\nu \rightarrow HO + HO_2 + HCHO$	4.11×10^{-6}	JPL 2011	13, JPL 2011
R029	$OP2 + hv \rightarrow HO + HO_2 + ALD$	4.11×10^{-6}	R29 (OP1)	R29 (OP1)
R030	$PAA + h\nu \rightarrow HO + MO_2$	5.93×10^{-7}	JPL 2011	14
R031	$ONIT + h\nu \rightarrow HO_2 + NO_2 + 0.20$	1.96 x 10 ⁻⁶	15	15
	ALD + 0.80 KET			
R032	$PAN + h\nu \rightarrow ACO_3 + NO_2$	3.81×10^{-7}	JPL (2011)	JPL (2011)
R033	$PAN + h\nu \rightarrow MO_2 + NO_3 + CO_2$	2.26×10^{-7}	JPL (2011)	JPL (2011)

- 1. Assumed to be equal to 1.00 minus the quantum yield of R002 (O¹D).
- 2. Assumed to be unity
- 3. Stoichiometry: JPL 2011 above 200 nm
- 4. Heicklen et al. (1986)
- 5. Based upon crotonaldehyde
- 6. Magneron et al. 2002
- 7. Yujing and Mellouki 2000
- 8. Set to 0.34, Raben and Moortgat (1996)
- 9. C₂H₅COC₂H₅ used as surrogate Yujing and Mellouki 2000
- 10. Products from hydroxyacetone
- 11. OLIP added for mass balance
- 12. Products Zhu and Cronin (2000)
- 13. Set to 1.00
- 14. Orlando, J. J. and G. S. Tyndall, 2003 assumed to be unity
- 15. Talukdar et al. (1997)

 Table S2b. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
	Inorganic Reactions				
R034	$O_3 + HO \rightarrow HO_2 + O_2$	1.70×10^{-12}	940	7.26×10^{-14}	1
R035	$O_3 + HO_2 \rightarrow HO + 2 O_2$	1.00×10^{-14}	490	1.93×10^{-15}	2
R036	$O_3 + NO \rightarrow NO_2 + O_2$	1.40×10^{-12}	1310	1.73×10^{-14}	1
R037	$O_3 + NO_2 \rightarrow NO_3 + O_2$	1.40×10^{-13}	2470	3.53×10^{-17}	1
R038	$O^3P + O_2 \rightarrow O_3$	Table 2f		1.40×10^{-14}	1
R039	$O^3P + O_3 \rightarrow 2 O_2$	8.00×10^{-12}	2060	7.99×10^{-15}	1
R040	$O^1D + O_2 \rightarrow O^3P + O_2$	3.20×10^{-11}		3.20×10^{-11}	1
R041	$O^1D + N_2 \rightarrow O^3P + N_2$	1.80×10^{-11}	-107	2.58×10^{-11}	1
R042	$O^1D + H_2O \rightarrow 2 HO$	2.20×10^{-10}		2.20×10^{-10}	1
R043	$H_2 + HO \rightarrow H_2O + HO_2$	7.70×10^{-12}	2100	6.72×10^{-15}	1
R044	$HO + HO_2 \rightarrow H_2O + O_2$	4.80×10^{-11}	-250	1.11×10^{-10}	1
R045	$2 \text{ HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$	Table 2f		2.90×10^{-12}	1
R046	$2 HO_2 + H_2O \rightarrow H_2O_2 + H_2O + O_2$	Table 2f		6.42×10^{-30}	1
R047	$H_2O_2 + HO \rightarrow HO_2 + H_2O$	2.90×10^{-12}	160	1.70×10^{-12}	1
R048	$NO + O^3P \rightarrow NO_2$	Table 2d		1.66×10^{-12}	2
R049	$NO + HO \rightarrow HONO$	Table 2d		7.40×10^{-12}	2
R050	$NO + HO_2 \rightarrow NO_2 + HO$	3.45×10^{-12}	-270	8.90×10^{-12}	1
R51	$NO + HO_2 \rightarrow HNO_3$	Table 2f			1

 $Table\ SS2b2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	K*	Note
R052	$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$	3.30×10^{-39}	-530	1.95×10^{-38}	1
R053	$HONO + HO \rightarrow NO_2 + H_2O$	2.50×10^{-12}	-260	5.98×10^{-12}	1
R054	$NO_2 + O^3P \rightarrow NO + O_2$	5.50×10^{-12}	-188	1.03×10^{-11}	1
R055	$NO_2 + O^3P \rightarrow NO_3$	Table 2d		3.28×10^{-12}	2
R056	$NO_2 + HO \rightarrow HNO_3$	Table 2d		1.06×10^{-11}	2
R057	$HNO_3 + HO \rightarrow NO_3 + H_2O$	Table 2f		1.50×10^{-13}	1
R058	$NO_3 + HO \rightarrow NO_2 + HO_2$	2.00×10^{-11}		2.00×10^{-11}	1
R059	$NO_3 + HO_2 \rightarrow 0.7 \text{ HO} + 0.7 \text{ NO}_2 + 0.3 \text{ HNO}_3$ Products Le Bras 1997	4.00×10^{-12}		4.00×10^{-12}	1
R060	$NO_3 + NO \rightarrow 2 NO_2$	1.80×10^{-11}	-110	2.60×10^{-11}	1
R061	$NO_3 + NO_2 \rightarrow NO + NO_2 + O_2$	4.50×10^{-14}	1260	6.57×10^{-16}	2
R062	$2 \text{ NO}_3 \rightarrow 2 \text{ NO}_2 + \text{O}_2$	8.50×10^{-13}	2450	2.29×10^{-16}	2
R063	$NO_3 + NO_2 \rightarrow N_2O_5$	Table 2d		1.18×10^{-12}	2
R064	$N_2O_5 \rightarrow NO_2 + NO_3$	Table 2e		4.44×10^{-2}	2
R065	$N_2O_5 + H_2O \rightarrow HNO_3 + HNO_3$	2.50×10^{-22}		2.50×10^{-22}	1
R066	$NO_2 + HO_2 \rightarrow HNO_4$	Table 2d		1.14×10^{-12}	2
R067	$HNO_4 \rightarrow HO_2 + NO_2$	Table 2e		7.19×10^{-2}	2
R068	$HNO_4 + HO \rightarrow NO_2 + H_2O + O_2$	1.30×10^{-12}	-380	4.65×10^{-12}	1, 3
R069	$SO_2 + HO \rightarrow SULF + HO_2$	Table 2d		9.58×10^{-13}	2
R070	$CO + HO \rightarrow HO_2 + CO_2$	Table 2f		2.15×10^{-13}	1

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
	Alkanes + HO				
R071	$CH_4 + HO \rightarrow MO_2 + H_2O$	1.85×10^{-12}	1690	6.39×10^{-15}	1
R072	$ETH + HO \rightarrow ETHP + H_2O$	6.90×10^{-12}	1000	2.41×10^{-13}	1
R073	$HC3 + HO \rightarrow HC3P + H_2O$	7.68×10^{-12}	370	2.22×10^{-12}	4
R074	$HC5 + HO \rightarrow HC5P + H_2O$	1.01×10^{-11}	245	4.44×10^{-12}	5
R075	$HC8 + HO \rightarrow 0.049 HO_2 + 0.951$ $HC8P + H_2O + 0.025 ALD + 0.024$ HKET	2.82×10^{-11}	273	1.13×10^{-11}	6
	Alkenes + HO				
R076	$ETE + HO \rightarrow ETEP$	Table 2d		8.20×10^{-12}	2
R077	$OLT + HO \rightarrow OLTP$	5.72×10^{-12}	-500	3.06×10^{-11}	7
R078	$OLI + HO \rightarrow OLIP$	1.33×10^{-11}	-500	7.11×10^{-11}	7
R079	$DIEN + HO \rightarrow OLIP$	1.48×10^{-11}	-448	6.65×10^{-11}	8
	Alkynes + HO				
R080	ACE + HO \rightarrow 0.65 HO + 0.35 HO ₂ + 0.35 CO + 0.650 GLY + 0.35 ORA1	Table 2d		7.47×10^{-13}	2
	Aromatics + HO				
R081	BEN + HO \rightarrow 0.648 HO ₂ + 0.352 BENP + 0.118 EPX + 0.53 PHEN	2.33×10^{-12}	193	1.22×10^{-12}	9
R082	TOL + HO \rightarrow 0.177 HO ₂ + 0.763 TR2 + 0.06 TLP1 + 0.177 CSL	1.81×10^{-12}	-354	5.93×10^{-12}	10
R083	$XYM + HO \rightarrow 0.177 HO_2 + 0.763$	2.31×10^{-11}		2.31×10^{-11}	10
R084	XY2 + 0.06 XYL1 + 0.117 CSL $XYP + HO \rightarrow 0.177 HO_2 + 0.763$ XY2 + 0.06 XYL1 + 0.117 CSL	1.43×10^{-11}		2.13×10^{-11}	10

 $Table\ 2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	K [*]	Note
R085	$XYO + HO \rightarrow 0.177 HO_2 + 0.763$ XYO2 + 0.06 XYL1 + 0.117 CSL	1.36×10^{-11}		1.36×10^{-11}	10
	$Biogenic\ Hydrocarbons+HO$				
R086	$ISO + HO \rightarrow ISOP$	2.54×10^{-11}	-410	1.00×10^{-10}	11
R087	$API + HO \rightarrow APIP$	1.21×10^{-11}	-440	5.29×10^{-11}	1
R088	$LIM + HO \rightarrow LIMP$	4.20×10^{-11}	-401	1.61×10^{-10}	12
	Aldehydes + HO				
R089	$HCHO + HO \rightarrow HO_2 + H_2O + CO$	5.50×10^{-12}	-125	8.36×10^{-12}	2
R090	$ACD + HO \rightarrow ACO_3 + H_2O$	4.38×10^{-12}	-366	1.49×10^{-11}	13
R091	$ALD + HO \rightarrow RCO_3 + H_2O$	5.10×10^{-12}	-405	1.98×10^{-11}	1
	Ketones + HO				
R092	$ACT + HO \rightarrow ACTP + H_2O$	Table 2f		1.78×10^{-13}	14
R093	$MEK + HO \rightarrow MEKP + H_2O$	1.30×10^{-12}	25	1.20×10^{-12}	1
R094	$KET + HO \rightarrow KETP + H_2O$	2.80×10^{-12}	- 10	2.90×10^{-12}	15
R095	$HKET + HO \rightarrow HO_2 + H_2O + MGLY$	3.00×10^{-12}		3.00×10^{-12}	16
	Unsaturated Carbonyls + HO				
R096	MACR + HO \rightarrow 0.57 MACP + 0.43 MCP	8.0×10^{-12}	-380	2.9×10^{-11}	1
R097	$MVK + HO \rightarrow MVKP$	2.60×10^{-12}	-610	2.01×10^{-11}	8
R098	UALD + HO \rightarrow 0.313 ACO ₃ + 0.687 UALP Dicarbonyls + HO	5.77×10^{-12}	-533	3.45×10^{-11}	17

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
R099	$GLY + HO \rightarrow HO_2 + H_2O + 2 CO$	1.10×10^{-11}		1.10×10^{-11}	8
R100	$MGLY + HO \rightarrow ACO_3 + H_2O + CO$	9.26×10^{-13}	-830	1.50×10^{-11}	18, 19
R101	DCB1 + HO \rightarrow 0.52 HO ₂ + 0.33 CO + 0.40 ALD + 0.78 KET + 0.10 GLY + 0.01 MGLY	2.8×10^{-11}	-175	5.04×10^{-11}	20
R102	DCB2 + HO \rightarrow 0.52 HO ₂ + 0.33 CO + 0.13 MEK + 0.10 GLY + 0.01 MGLY + 0.78 OP2	2.8×10^{-11}	-175	5.04×10^{-11}	20
R103	DCB3 + HO \rightarrow 0.56 HO ₂ + 0.21 MACP + 0.11 CO + 0.27 GLY + 0.01 MGLY + 0.79 OP2	1.00×10^{-13}		1.00×10^{-13}	20
	Oxygenated Aromatics + HO				
R104	$BALD + HO \rightarrow BALP + H_2O$	5.32×10^{-12}	-243	1.20×10^{-11}	21
R105	PHEN + HO \rightarrow 0.73 HO ₂ + 0.20 ADDC + 0.07 CHO + 0.73 MCT	6.75×10^{-12}	-405	2.63×10^{-11}	9
R106	$CSL + HO \rightarrow 0.73 \ HO_2 + 0.20 \ ADDC + 0.07 \ CHO + 0.73 \ MCT$	4.65×10^{-11}		4.65×10^{-11}	9
R107	$EPX + HO \rightarrow HO_2 + XO_2 + CO +$ ALD	2.8×10^{-11}	-175	5.04×10^{-11}	20
R108	$MCT + HO \rightarrow MCTO$	2.05×10^{-10}		2.05×10^{-10}	9
	$Alcohols\ and\ Glycols+HO$				
R109	$MOH + HO \rightarrow HO_2 + HCHO$	2.85×10^{-12}	345	8.96×10^{-13}	1
R110	$EOH + HO \rightarrow HO_2 + ACD$	3.00×10^{-12}	-20	2.81×10^{-12}	1
R111	ROH + HO \rightarrow HO ₂ + 0.719 ALD + 0.184 ACD	2.60×10^{-12}	-200	1.33×10^{-12}	1

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k^*	Note
R112	$ETEG + HO \rightarrow HO_2 + ALD$	1.47×10^{-11}		1.47×10^{-11}	22
	Organic Peroxides + HO				
R113	OP1 + HO \rightarrow 0.35 HO + 0.65 MO ₂ + 0.35 HCHO	2.90×10^{-12}	-190	5.48×10^{-12}	8
R114	OP2 + HO \rightarrow 0.49 HO + 0.44 HC3P + 0.07 XO ₂ + 0.08 ALD + 0.41 KET	3.40×10^{-12}	-190	6.43×10^{-12}	23
R115	$ISHP + HO \rightarrow HO + MACR$	1.00×10^{-10}		1.00×10^{-10}	11
R116	$MAHP + HO \rightarrow MACP$	3.00×10^{-11}		3.00×10^{-11}	11
	Organic Acids + HO				
R117	$ORA1 + HO \rightarrow HO_2 + H_2O + CO_2$	4.50×10^{-13}		4.50×10^{-13}	24
R118	$ORA2 + HO \rightarrow 0.64 MO_2 + 0.36$ $ORAP + 0.64 CO_2$	2.20×10^{-14}	-1012	6.55×10^{-13}	25
R119	$PAA + HO \rightarrow 0.35 HO + 0.65 ACO_3 + 0.35 XO_2 + 0.35 HCHO$	2.93×10^{-12}	-190	5.54×10^{-12}	26
	Organic Nitrogen Containing Compounds + HO				
R120	$\begin{array}{l} PAN + HO \rightarrow XO_2 + H_2O + NO_3 + \\ HCHO \end{array}$	4.00×10^{-14}		4.00×10^{-14}	2
R121	$\begin{array}{l} \text{PPN} + \text{HO} \rightarrow \text{XO}_2 + \text{H}_2\text{O} + \text{NO}_3 + \\ \text{HCHO} \end{array}$	4.00×10^{-14}		4.00×10^{-14}	2
R122	$MPAN + HO \rightarrow NO_2 + HKET$	3.20×10^{-11}		3.20×10^{-11}	27
R123	$ONIT + HO \rightarrow HC3P + H_2O + NO_2$	5.31×10^{-12}	260	2.22×10^{-12}	
R124	$NALD + HO \rightarrow NO_2 + XO_2 + HKET$	5.60×10^{-12}	-270	1.39×10^{-11}	9, 11
R125	ISON + HO \rightarrow NALD + 0.07 HKET + 0.07 HCHO	1.30×10^{-11}		1.30×10^{-11}	9, 11

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
	$Alkenes + O_3$				
R126	ETE + $O_3 \rightarrow 0.08 \text{ HO} + 0.15 \text{ HO}_2 + 0.13 \text{ H}_2 + 0.43 \text{ CO} + \text{HCHO} + 0.37 \text{ ORA1}$	9.14×10^{-15}	2580	1.60×10^{-18}	1
R127	OLT + O ₃ \rightarrow 0.22 HO + 0.32 HO ₂ + 0.08 MO ₂ + 0.06 ETHP + 0.068 H ₂ O ₂ + 0.43 CO + 0.01 CH ₄ + 0.02 ETH + 0.56 HCHO + 0.44 ALD + 0.06 MEK + 0.03 ORA1 + 0.06 ORA2 + 0.01 ACD + 0.01 HKET + 0.015 HC3 + 0.04 HC3P + 0.03 ACT + 0.006 HC5 + 0.02 HC5P + 0.02 BALD + 0.032 BEN	4.33×10^{-15}	1800	1.03×10^{-17}	1
R128	OLI + O ₃ \rightarrow 0.46 HO + 0.07 HO ₂ + 0.32 MO ₂ + 0.07 ETHP + 0.026 H ₂ O ₂ + 0.37 CO + 0.04 CH ₄ + 0.01 ETH + 0.09 HCHO + 0.73 ALD + 0.017 KET + 0.017 ORA2 + 0.04 HC3P + 0.09 ACO3 + 0.01 HC3 + 0.457 ACD + 0.11 ACT + 0.44 HKET	4.40×10^{-15}	845	2.59×10^{-16}	1
R129	DIEN + O ₃ \rightarrow 0.09 O ³ P + 0.28 HO + 0.30 HO ₂ + 0.03 MO ₂ + 0.15 ACO ₃ + 0.02 KETP + 0.13 XO ₂ + 0.05 H ₂ + 0.001 H ₂ O ₂ + 0.36 CO + 0.35 OLT + 0.90 HCHO + 0.39 MACR + 0.15 ORA1	1.34×10^{-14}	2283	6.33×10^{-18}	8
R130	$ISO + O_3 \rightarrow 0.25 \text{ HO} + 0.25 \text{ HO}_2 + \\ 0.08 \text{ MO}_2 + 0.1 \text{ ACO}_3 + 0.1 \text{ MACP} + \\ 0.09 \text{ H}_2\text{O}_2 + 0.14 \text{ CO} + 0.58 \text{ HCHO} + \\ 0.461 \text{ MACR} + 0.189 \text{ MVK} + 0.28 \\ \text{ORA1} + 0.153 \text{ OLT}$	7.86×10^{-15}	1913	1.28×10^{-17}	11, 28
R131	$API + O_3 \rightarrow 0.85 \text{ HO} + 0.10 \text{ HO}_2 + \\ 0.20 \text{ ETHP} + 0.42 \text{ KETP} + 0.02 \text{ H}_2\text{O}_2 \\ + 0.14 \text{ CO} + 0.65 \text{ ALD} + 0.53 \text{ KET}$	5.00×10^{-16}	530	8.45×10^{-17}	8

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	\mathbf{k}^*	Note
R132	$\begin{array}{c} \text{LIM} + \text{O}_3 \rightarrow 0.85 \text{ HO} + 0.10 \text{ HO}_2 + 0.16 \\ \text{ETHP} + 0.42 \text{ KETP } 0.02 \text{ H}_2\text{O}_2 + 0.14 \\ \text{CO} + 0.46 \text{ OLT} + 0.04 \text{ HCHO} + 0.79 \\ \text{MACR} + 0.01 \text{ ORA1} + 0.07 \text{ ORA2} \end{array}$	2.95×10^{-15}	783	2.13×10^{-16}	8
R133	$\begin{aligned} \text{MACR} + \text{O}_3 &\rightarrow 0.19 \text{ HO} + 0.14 \text{ HO}_2 + \\ 0.10 \text{ ACO}_3 + 0.22 \text{ CO} + 0.50 \text{ MGLY} + \\ 0.45 \text{ ORA1} \end{aligned}$	1.36×10^{-15}	2112	1.14×10^{-18}	1, 11
R134	$\begin{aligned} \text{MVK} + \text{O}_3 &\rightarrow 0.16 \text{ HO} + 0.11 \text{ HO}_2 + \\ 0.28 \text{ ACO}_3 + 0.01 \text{ XO}_2 + 0.56 \text{ CO} 0.1 \\ \text{HCHO} + 0.54 \text{ MGLY} + 0.07 \text{ ORA1} \\ +0.07 \text{ ORA2} + 0.1 \text{ ALD} \end{aligned}$	7.51×10^{-16}	1520	4.59×10^{-18}	9, 20
R135	$\begin{aligned} \text{UALD} + \text{O}_3 &\rightarrow 0.1 \text{ HO} + 0.072 \text{ HO}_2 + \\ 0.008 \text{ MO}_2 + 0.002 \text{ ACO}_3 + 0.1 \text{ XO}_2 + \\ 0.243 \text{ CO} + 0.080 \text{ HCHO} + 0.420 \text{ ACD} \\ + 0.028 \text{ KET} + 0.491 \text{ GLY} + 0.003 \\ \text{MGLY} + 0.044 \text{ ORA1} \end{aligned}$	1.66×10^{-18}		1.66×10^{-18}	29
R136	DCB1 + O ₃ \rightarrow 0.05 HO + HO ₂ + 0.60 RCO3 + 0.6 XO2 +1.5 CO + 0.5 CO ₂ + 0.05 GLY + 0.08 MGLY + 0.65 OP2 + 0.05 HCHO	2.0×10^{-16}		2.00×10^{-16}	30
R137	$\begin{array}{l} DCB2 + O_3 \rightarrow 0.05 \; HO + HO_2 + 0.60 \\ RCO3 + 0.60 \; XO2 + 1.5 \; CO + 0.5 \; CO_2 + \\ 0.05 \; GLY + 0.08 \; MGLY + 0.70 \; DCB1 + \\ 0.65 \; OP2 + 0.05 \; HCHO \end{array}$	2.0×10^{-16}		2.00×10^{-16}	30
R138	DCB3 + O ₃ \rightarrow 0.05 HO + HO ₂ + 1.5 CO + 0.5 CO ₂ + 0.48 GLY + 0.70 DCB1 + 0.25 ORA1 + 0.25 ORA2 + 0.11 PAA	9.0×10^{-17}		9.00×10^{-17}	30
R139	EPX + $O_3 \rightarrow 0.05 \text{ HO} + 1.5 \text{ HO}_2 + 1.5$ CO + $0.5 \text{ CO}_2 + \text{GLY} + 0.85 \text{ BALD}$	1.0×10^{-16}		1.00×10^{-16}	20
R140	$MCTO + O_3 \rightarrow MCTP$	2.86×10^{-13}		2.86×10^{-13}	9

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	$\frac{A}{\text{cm}^3 \text{ s}^{-1}}$	E/R K	k [*]	Note
	Stable Organics + NO_3				
R141	ETE + NO ₃ \rightarrow 0.80 OLNN + 0.20 OLND	Table S2c		9.15×10^{-10}	8
R142	$\begin{array}{c} OLT + NO_3 \rightarrow 0.43 \ OLNN + 0.57 \\ OLND \end{array}$	1.79×10^{-13}	450	3.96×10^{-14}	7
R143	$OLI + NO_3 \rightarrow 0.11 OLNN + 0.89$ OLND	8.64×10^{-13}	-450	3.91×10^{-12}	7
R144	DIEN + NO ₃ \rightarrow 0.90 OLNN + 0.10 OLND + 0.90 MACR	1.00×10^{-13}		1.00×10^{-13}	8
R145	$ISO + NO_3 \rightarrow ISON$	3.03×10^{-12}	446	6.79×10^{-13}	11
R146	$\begin{array}{l} API + NO_3 \rightarrow 0.10 \ OLNN + 0.90 \\ OLND \end{array}$	1.19×10^{-12}	-490	6.16×10^{-12}	8
R147	$\begin{array}{c} LIM + NO_3 \rightarrow 0.71 \ OLNN + 0.29 \\ OLND \end{array}$	1.22×10^{-11}		1.22×10^{-11}	8, 31
R148	$HCHO + NO_3 \rightarrow HO_2 + CO + HNO_3$	2.00×10^{-12}	2440	5.58×10^{-16}	18
R149	$ACD + NO_3 \rightarrow ACO_3 + HNO_3$	1.40×10^{-12}	1900	2.39×10^{-15}	2
R150	$ALD + NO_3 \rightarrow RCO_3 + HNO_3$	3.76×10^{-12}	1900	6.42×10^{-15}	32
R151	$\begin{array}{l} MACR + NO_3 \rightarrow 0.32 \; MACP + 0.68 \\ XO_2 + 0.32 \; HNO_3 + 0.68 \; HCHO + 0.68 \\ MGLY + 0.68 \; NO2 \end{array}$	3.40×10^{-15}		3.40×10^{-12}	1, 18
R152	UALD + NO ₃ \rightarrow HO ₂ + XO ₂ + 0.668 CO + 0.332 HCHO + 0.332 ALD + ONIT	5.02×10^{-13}	1076	1.36×10^{-14}	33
R153	$GLY + NO_3 \rightarrow HO_2 + 2 CO + HNO_3$	2.90×10^{-12}	1900	4.95×10^{-15}	34
R154	$MGLY + NO_3 \rightarrow ACO_3 + CO + HNO_3$	3.76×10^{-12}	1900	6.42×10^{-15}	35

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	K*	Note
R155	PHEN + NO ₃ \rightarrow 0.4 CHO + 0.1 ADDC + 0.5 ADCN + 0.5 HNO ₃	3.78×10^{-12}		3.78×10^{-12}	20
R156	$CSL + NO_3 \rightarrow 0.4 \text{ CHO} + 0.1 \text{ ADDC} $ + 0.5 ADCN + 0.5 HNO ₃	1.06×10^{-12}		1.06×10^{-12}	9
R157	EPX + NO ₃ \rightarrow 0.50 HO + 1.50 HO ₂ + 1.50 CO + 0.50 CO ₂ + GLY + 0.50 NO ₂ + 0.50 HNO ₃	2.87× 10 ⁻¹³	1000	1.00×10^{-14}	8, 36
R158	$MCT + NO_3 \rightarrow MCTO + HNO_3$	2.01×10^{-10}		2.01×10^{-10}	9
R159	$MPAN + NO_3 \rightarrow MACP + NO_2$	2.20×10^{-14}	500	4.11×10^{-15}	11
	Decomposition of Intermediates From Aromatics				
R160	$TR2 \rightarrow 0.28 \text{ HO} + 0.29 \text{ HO}_2 + 0.28$ TOLP + 0.15 PER1 + 0.28 DCB2 + 0.01 CSL + 0.28 EPX	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10
R161	$TOLP \rightarrow 0.49 \text{ HO} + 0.01 \text{ HO}_2 + 0.50$ PER1 + 0.49 DCB2 + 0.01 CSL	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10
R162	$XY2 \rightarrow 0.158 \text{ HO} + 0.308 \text{ HO}_2 + 0.25$ RCO3 + 0.308 XYLP + 0.150 PER2 + 0.224 DCB2 + 0.01 CSL + 0.84 EPX	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10
R163	XYLP \rightarrow 0.39 HO + 0.01 HO ₂ + 0.50 PER2 + 0.49 DCB2 + 0.01 CSL	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10
R164	$XYO2 \rightarrow 0.158 \text{ HO} + 0.308 \text{ HO}_2 + 0.25 \text{ RCO3} + 0.308 \text{ XYLP} + 0.150$ PER2 + 0.224 DCB2 + 0.01 CSL + 0.84 EPX	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10
R165	XYOP \rightarrow 0.390 HO + 0.010 HO ₂ + 0.500 PER2 + 0.490 DCB2 + 0.010 CSL	$1.00 \times 10^{+3}$		$1.00 \times 10^{+3}$	10

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
	Peroxyacetynitrate Formation and Decomposition				
R166	$ACO_3 + NO_2 \rightarrow PAN$	Table 2d		8.68×10^{-12}	2
R167	$PAN \rightarrow ACO_3 + NO_2$	Table 2e		4.76×10^{-4}	2
R168	$RCO_3 + NO_2 \rightarrow PPN$	Table 2d		8.68×10^{-12}	2
R169	$PPN \rightarrow RCO_3 + NO_2$	Table 2e		4.76×10^{-4}	2
R170	$MACP + NO_2 \rightarrow MPAN$	Table 2d		5.14×10^{-12}	
R171	$MPAN \rightarrow MACP + NO_2$	$1.60 \times 10^{+16}$	13486	3.63×10^{-4}	11, 37, 38
	Organic Peroxy Radicals + NO				
R172	$MO_2 + NO \rightarrow HO_2 + NO_2 +$ HCHO	2.80×10^{-12}	-300	7.66×10^{-12}	2
R173	$ETHP + NO \rightarrow HO_2 + NO_2 + ACD$	2.60×10^{-12}	-365	8.84×10^{-12}	2
R174	$HC3P + NO \rightarrow 0.66 HO_2 + 0.131$ $MO_2 + 0.048 ETHP + 0.089 XO_2$ $+ 0.935 NO_2 + 0.504 ACD + 0.132$ ALD + 0.165 ACT + 0.042 MEK + 0.065 ONIT	4.00×10^{-12}		4.00×10^{-12}	39
R175	$\text{HC5P} + \text{NO} \rightarrow 0.200 \ \text{HO}_2 + 0.051$ $\text{MO}_2 + 0.231 \ \text{ETHP} + 0.235 \ \text{XO}_2$ $+ 0.864 \ \text{NO}_2 + 0.018 \ \text{HCHO} +$ $0.045 \ \text{ACD} + 0.203 \ \text{ALD} + 0.217$ $\text{ACT} + 0.033 \ \text{MEK} + 0.039 \ \text{KET}$ $+ 0.272 \ \text{HKET} + 0.136 \ \text{ONIT}$	4.00×10^{-12}		4.00×10^{-12}	39
R176	$HC8P + NO \rightarrow 0.606 \ HO_2 + 0.133$ $ETHP + 0.416 \ XO_2 + 0.739 \ NO_2 + 0.150 \ ALD + 0.642 \ KET + 0.261$ ONIT	4.00×10^{-12}		4.00×10^{-12}	39
R177	ETEP + NO \rightarrow HO ₂ + NO ₂ + 1.6 HCHO + 0.2 ALD	9.00×10^{-12}		9.00×10^{-12}	8

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	\textbf{k}^*	Note
R178	OLTP + NO \rightarrow 0.78 HO ₂ + 0.97 NO ₂ + 0.78 HCHO + 0.012 ACD + 0.44 ALD + 0.06 ACT + 0.13 MEK + 0.03 ONIT	4.00×10^{-12}		4.00×10^{-12}	39
R179	OLIP + NO \rightarrow 0.83 HO ₂ + 0.95 NO ₂ + 0.81 ACD + 0.20 ACT + 0.68 ALD + 0.09 KET + 0.02 HKET + 0.05 ONIT	4.00×10^{-12}		4.00×10^{-12}	39
R180	BENP + NO \rightarrow 0.918 HO ₂ + 0.918 NO ₂ + 0.459 DCB2 + 0.459 DCB3 + 0.918 GLY + 0.082 ONIT	2.54×10^{-12}	-360	8.50×10^{-12}	9
R181	$TLP1 + NO \rightarrow NO_2 + BALD$	4.00×10^{-12}		4.00×10^{-12}	10
R182	TOLP + NO \rightarrow 0.95 HO ₂ + 0.95 NO ₂ + 0.95 DCB2 + 0.050 ONIT	2.70×10^{-12}	-360	9.03×10^{-12}	10
R183	PER1 + NO \rightarrow 0.5 HO ₂ + 0.95 NO ₂ + 0.5 BALD + 0.5 MGLY + 0.5 DCB1 + 0.05 ONIT	2.70×10^{-12}	-360	9.03×10^{-12}	10
R184	$XYL1 + NO \rightarrow NO_2 + BALD$	4.00×10^{-12}		4.00×10^{-12}	10
R185	XYLP + NO \rightarrow 0.95 HO ₂ + 0.95 NO ₂ + 0.95 DCB3 + 0.050 ONIT	2.70×10^{-12}	-360	9.03×10^{-12}	10
R186	PER2 + NO \rightarrow 0.95 HO ₂ + 0.95 NO ₂ + 0.95 MGLY + 0.95 DCB1 + 1.05 DCB3 + 0.05 ONIT	2.70×10^{-12}	-360	9.03×10^{-12}	10
R187	$\begin{array}{l} {\rm XYOP + NO} \rightarrow 0.95~{\rm HO2} + 0.95~{\rm NO_2} + \\ 0.350~{\rm GLY} + 0.600~{\rm MGLY} + 0.700 \\ {\rm DCB1} + 0.073~{\rm DCB2} + 0.177~{\rm DCB3} + \\ 0.05~{\rm ONIT} \end{array}$	2.70×10^{-12}	-360	9.03×10^{-12}	40
R188	ISOP + NO \rightarrow 0.88 HO ₂ + 0.88 NO ₂ + 0.2 HCHO + 0.28 MACR + 0.44 MVK + 0.12 ISON + 0.021 GLY + 0.029 HKET + 0.27 ALD	2.43×10^{-12}	-360	8.13×10^{-12}	11, 28
R189	APIP + NO \rightarrow 0.82 HO ₂ + 0.82 NO ₂ + 0.23 HCHO + 0.43 ALD + 0.11 ACT + 0.44 KET + 0.07 ORA1 + 0.18 ONIT	4.00×10^{-12}		4.00×10^{-12}	8, 39

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	\mathbf{k}^*	Note
R190	LIMP + NO \rightarrow HO ₂ + NO ₂ + 0.05 OLI + 0.43 HCHO + 0.68 UALD + 0.07 ORA1	4.00×10^{-12}		4.00×10^{-12}	8, 39
R191	$ACO_3 + NO \rightarrow MO_2 + NO_2$	8.10×10^{-12}	-270	2.00×10^{-11}	40
R192	$RCO_3 + NO \rightarrow ETHP + NO_2$	8.10×10^{-12}	-270	2.00×10^{-11}	40
R193	$ACTP + NO \rightarrow ACO_3 + NO_2 + HCHO$	2.90×10^{-12}	-300	7.93×10^{-12}	2
R194	$\begin{aligned} \text{MEKP} + \text{NO} &\rightarrow 0.67 \text{ HO}_2 + \text{NO}_2 + 0.33 \\ \text{HCHO} + 0.67 \text{ DCB1} \end{aligned}$	4.00×10^{-12}		4.00×10^{-12}	39
R195	$\begin{aligned} \text{KETP} + \text{NO} &\rightarrow 0.77 \text{ HO}_2 + 0.23 \text{ ACO}_3 + \\ 0.16 \text{ XO}_2 + \text{NO}_2 + 0.46 \text{ ALD} + 0.54 \\ \text{MGLY} \end{aligned}$	4.00×10^{-12}		4.00×10^{-12}	41
R196	$\begin{aligned} & \text{MACP} + \text{NO} \rightarrow 0.75 \text{ HO}_2 + 0.25 \text{ ACO}_3 \\ & + \text{NO}_2 + 0.25 \text{ CO} + 0.75 \text{ HCHO} + 0.50 \\ & \text{MGLY} + 0.25 \text{ HKET} \end{aligned}$	2.54×10^{-12}	-360	8.50×10^{-12}	11
R197	$MCP + NO \rightarrow NO2 + 0.50 HO2 + 0.50$ HCHO + HKET	2.54×10^{-12}	-360	8.50×10^{-12}	
R198	$\begin{array}{l} \text{MVKP} + \text{NO} \rightarrow 0.3 \; \text{HO}_2 + 0.7 \; \text{ACO}_3 + \\ 0.7 \; \text{XO}_2 + \text{NO}_2 + 0.3 \; \text{HCHO} + 0.7 \; \text{ALD} \\ + \; 0.3 \; \text{MGLY} \end{array}$	2.54×10^{-12}	-360	8.50×10^{-12}	9
R199	UALP + NO \rightarrow HO ₂ + NO ₂ + 0.61 CO + 0.03 HCHO + 0.27 ALD + 0.18 GLY + 0.7 KET + 0.21 MGLY	2.54×10^{-12}	-360	8.50×10^{-12}	9
R200	$BALP + NO \rightarrow BAL1 + NO_2$	4.00×10^{-12}		4.00×10^{-12}	21
R201	$BAL1 + NO \rightarrow BAL2 + NO_2$	4.00×10^{-12}		4.00×10^{-12}	21
R202	ADDC + NO \rightarrow HO2 + NO ₂ + 0.32 HKET + 0.68 GLY + 0.68 OP2	2.70×10^{-12}	-360	9.03×10^{-12}	9
R203	$MCTP + NO \rightarrow MCTO + NO2$	2.70×10^{-12}	-360	9.03×10^{-12}	9

 $Table\ S2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k^*	Note
R204	$ORAP + NO \rightarrow HO_2 + NO_2 + GLY$	4.00×10^{-12}		4.00×10^{-12}	42
R205	$OLNN + NO \rightarrow HO_2 + NO_2 + ONIT$	4.00×10^{-12}		4.00×10^{-12}	41
R206	OLND + NO \rightarrow 2 NO ₂ + 0.287 HCHO + 1.24 ALD + 0.464 KET	4.00×10^{-12}		4.00×10^{-12}	41
R207	$ADCN + NO \rightarrow 2 NO_2 + GLY + OP2$	2.70×10^{-12}	-360	9.03×10^{-12}	9
R208	$XO_2 + NO \rightarrow NO_2$	4.00×10^{-12}		4.00×10^{-12}	39
	Organic Radical Termination with Nitrogen Dioxide				
R209	$BAL2 + NO_2 \rightarrow ONIT$	2.00×10^{-11}		2.00×10^{-11}	20, 21
R210	$CHO + NO_2 \rightarrow ONIT$	2.00×10^{-11}		2.00×10^{-11}	20
R211	$MCTO + NO_2 \rightarrow ONIT$	2.08×10^{-12}		2.08×10^{-12}	9
	$Organic\ Peroxy\ Radicals + HO_2$				
R212	$MO_2 + HO_2 \rightarrow OP1$	4.10×10^{-13}	-750	5.07×10^{-12}	2
R213	$ETHP + HO_2 \rightarrow OP2$	7.50×10^{-13}	-700	7.85×10^{-12}	2
R214	$HC3P + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R215	$HC5P + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R216	$HC8P + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R217	$ETEP + HO_2 \rightarrow OP2$	1.90×10^{-13}	-1300	1.49×10^{-11}	39, 43
R218	$OLTP + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R219	$OLIP + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R220	$BENP + HO_2 \rightarrow OP2$	2.91×10^{-13}	-1300	2.28×10^{-11}	9

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
R221	$TLP1 + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R222	$TOLP + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R223	$PER1 + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R224	$XYL1 + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R225	$XYLP + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R226	$PER2 + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R227	$XYOP + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R228	$ISOP + HO_2 \rightarrow ISHP$	2.05×10^{-13}	-1300	1.60×10^{-11}	11
R229	$APIP + HO_2 \rightarrow OP2$	1.50×10^{-11}		1.50×10^{-11}	39
R230	$LIMP + HO_2 \rightarrow OP2$	1.50×10^{-11}		1.50×10^{-11}	39
R231	$ACO_3 + HO_2 \rightarrow 0.44 \text{ HO} + 0.44 \text{ MO}_2 + 0.44 \text{ CO}_2 + 0.15 \text{ ORA2} + 0.41 \text{ PAA}$	4.3×10^{-13}	-1040	1.41×10^{-11}	1
R232	$RCO_3 + HO_2 \rightarrow 0.44 \text{ HO} + 0.44 \text{ ETHP} + 0.44 \text{ CO2} + 0.15 \text{ ORA2} + 0.41 \text{ PAA}$	4.3×10^{-13}	-1040	1.41×10^{-11}	1
R233	ACTP + $HO_2 \rightarrow 0.15 \text{ HO} + 0.15 \text{ ACO}_3 + 0.15 \text{ HCHO} + 0.850 \text{ OP2}$	1.15×10^{-13}	-1300	9.00×10^{-12}	1
R234	$MEKP + HO_2 \rightarrow OP2$	1.15×10^{-13}	-1300	9.00×10^{-12}	9
R235	$KETP + HO_2 \rightarrow OP2$	1.15×10^{-13}	-1300	9.00×10^{-12}	39
R236	$MACP + HO_2 \rightarrow MAHP$	1.82×10^{-13}	-1300	1.42×10^{-11}	11
R237	$MCP + HO_2 \rightarrow MAHP$	1.82×10^{-13}	-1300	1.42×10^{-11}	11
R238	$MVKP + HO_2 \rightarrow OP2$	7.70×10^{-14}	-1298	5.99×10^{-12}	9

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	\mathbf{k}^*	Note
R239	$UALP + HO_2 \rightarrow OP2$	7.70×10^{-14}	-1298	5.99×10^{-12}	9
R240	$ADDC + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	20
R241	$CHO + HO_2 \rightarrow CSL$	1.00×10^{-11}		1.00×10^{-11}	20
R242	$MCTP + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	9
R243	$ORAP + HO_2 \rightarrow ONIT$	1.15×10^{-13}	-1300	9.00×10^{-12}	44
R244	$OLNN + HO_2 \rightarrow ONIT$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R245	$OLND + HO_2 \rightarrow ONIT$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
R246	$ADCN + HO_2 \rightarrow OP2$	3.75×10^{-13}	-980	1.00×10^{-11}	9
R247	$XO_2 + HO_2 \rightarrow OP2$	1.66×10^{-13}	-1300	1.30×10^{-11}	39
	Organic Peroxy Radicals + Methyl Peroxy Radical				
R248	$MO_2 + MO_2 \rightarrow 0.74 \text{ HO}_2 + 1.37 \text{ HCHO} + 0.63 \text{ MOH}$	9.50×10^{-14}	-390	3.51×10^{-13}	19, 45
R249	ETHP + $MO_2 \rightarrow HO_2 + 0.75 \text{ HCHO} + 0.75 \text{ ACD} + 0.25 \text{ MOH} + 0.25 \text{ EOH}$	1.18×10^{-13}	-158	2.00×10^{-13}	39, 43
R250	$\begin{aligned} & HC3P + MO_2 \rightarrow 0.894 \; HO_2 + 0.080 \\ & MO_2 + 0.026 \; ETHP + 0.026 \; XO_2 + 0.827 \\ & HCHO + 0.198 \; ALD + 0.497 \; KET + \\ & 0.050 \; GLY + 0.25 \; MOH + 0.25 \; ROH \end{aligned}$	9.46×10^{-14}	-431	4.02×10^{-13}	39
R251	$HC5P + MO_2 \rightarrow 0.842 \ HO_2 + 0.018$ $MO_2 + 0.14 \ ETHP + 0.191 \ XO_2 + 0.777$ $HCHO + 0.251 \ ALD + 0.618 \ KET +$ $0.25 \ MOH \ + 0.25 \ ROH$	1.00×10^{-13}	-467	4.79×10^{-13}	39
R252	$HC8P + MO_2 \rightarrow 0.910 HO_2 + 0.090$ ETHP + 0.281 $XO_2 + 0.750 HCHO +$ 0.197 ALD + 0.652 KET + 0.250 MOH + 0.250 ROH	4.34×10^{-14}	-633	3.63×10^{-13}	39

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	\mathbf{k}^*	Note
R253	ETEP + $MO_2 \rightarrow HO_2 + 1.95 \text{ HCHO} + 0.15 \text{ ALD} + 0.25 \text{ MOH} + 0.25 \text{ ETEG}$	1.71×10^{-13}	-708	1.84×10^{-12}	39
R254	OLTP + $MO_2 \rightarrow HO_2 + 1.5 \text{ HCHO} + 0.705 \text{ ALD} + 0.045 \text{ KET} + 0.25 \text{ MOH} + 0.25 \text{ ROH}$	1.46×10^{-13}	-708	1.57×10^{-12}	39
R255	OLIP + $MO_2 \rightarrow HO_2 + 0.750 \text{ HCHO} + 1.28 \text{ ALD} + 0.218 \text{ KET} + 0.250 \text{ MOH} + 0.250 \text{ ROH}$	9.18×10^{-14}	-708	9.87×10^{-13}	39
R256	BENP + $MO_2 \rightarrow 1.6 HO_2 + HCHO + 0.459 DCB2 + 0.459 DCB3 + 0.6 GLY$	3.56×10^{-14}	-708	3.83×10^{-13}	9
R257	$TLP1 + MO_2 \rightarrow HO_2 + HCHO + BALD$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R258	TOLP + $MO_2 \rightarrow 2 HO_2 + HCHO + 0.271 GLY + DCB2$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R259	$\begin{array}{l} PER1 + MO_2 \rightarrow 2 \ HO_2 + HCHO + \\ MGLY + DCB1 \end{array}$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R260	$XYL1 + MO_2 \rightarrow HO_2 + HCHO + BALD$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R261	XYLP + $MO_2 \rightarrow 2 HO_2 + HCHO + DCB2$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R262	$PER2 + MO2 \rightarrow 2 HO2 + HCHO + MGLY + DCB1 + 1.05 DCB3$	3.56×10^{-14}	-708	3.83×10^{-13}	20
R263	$XYOP + MO_2 \rightarrow 2 HO_2 + HCHO +$ 0.368 GLY + 0.632 MGLY + 0.737 DCB1 + 0.077 DCB2 + 0.186 DCB3	3.56×10^{-14}	-708	3.83×10^{-13}	20
R264	$\begin{split} & \text{ISOP} + \text{MO}_2 \rightarrow \text{HO}_2 + 1.31 \text{ HCHO} + \\ & 0.159 \text{ MACR} + 0.250 \text{ MVK} + 0.250 \\ & \text{MOH} + 0.250 \text{ ROH} .+ 023 \text{ ALD} + .018 \\ & \text{GLY} + .016 \text{ HKET} \end{split}$	3.40×10^{-14}	-221	7.14×10^{-14}	11, 28
R265	APIP + $MO_2 \rightarrow HO_2 + 0.75 \text{ HCHO} + 0.75 \text{ ALD} + 0.75 \text{ KET} + 0.25 \text{ MOH} + 0.25 \text{ ROH}$	3.56×10^{-14}	-708	3.83×10^{-13}	39

 $Table\ S2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction	Reaction	A,	E/R	\mathbf{k}^*	Note
No. R266	LIMP + $MO_2 \rightarrow HO_2 + 1.04 \text{ HCHO} + 0.192 \text{ OLI} + 0.308 \text{ MACR} + 0.25 \text{ MOH} + 0.25 \text{ ROH}$	$\frac{\text{cm}^3 \text{s}^{-1}}{3.56 \times 10^{-14}}$	-708	3.83×10^{-13}	39
R267	$ACO_3 + MO_2 \rightarrow 0.9 \ HO_2 + 0.90 \ MO_2 + 0.4 \ CO_2 + HCHO + 0.1 \ ORA2$	2.0×10^{-11}	-500	1.07×10^{-10}	40
R268	$RCO_3 + MO_2 \rightarrow 0.9 \ HO_2 + 0.90 \ MO_2 + 0.4 \ CO_2 + HCHO + 0.1 \ ORA2$	2.0×10^{-11}	-500	1.07×10^{-10}	40
R269	ACTP + $MO_2 \rightarrow 0.5 \ HO_2 + 0.5 \ ACO_3 + 1.5 \ HCHO + 0.25 \ MOH + 0.25 \ ROH + 0.125 \ ORA2$	7.50×10^{-13}	-500	4.01×10^{-12}	41
R270	MEKP + $MO_2 \rightarrow 0.834 HO_2 + HCHO + 0.334 DCB1 + 0.25 MOH + 0.25 ROH$	6.91×10^{-13}	-508	3.80×10^{-12}	39
R271	KETP + $MO_2 \rightarrow HO_2 + 0.75 \text{ HCHO} + 0.50 \text{ DCB1} + 0.25 \text{ MOH} + 0.25 \text{ ROH}$	6.91×10^{-13}	-508	3.80×10^{-12}	39
R272	$\begin{aligned} & \text{MACP} + \text{MO}_2 \rightarrow 0.5 \text{ HO}_2 + 0.269 \text{ ACO}_3 \\ & + 0.5 \text{ CO} + 1.66 \text{ HCHO} + 0.250 \text{ MOH} + \\ & 0.250 \text{ ROH} + 0.067 \text{ ORA2} + 0.25 \text{ MO}_2 \end{aligned}$	3.40×10^{-14}	-221	7.14×10^{-14}	11
R273	$\begin{aligned} &\text{MCP} + \text{MO}_2 \rightarrow \text{NO}_2 + \text{HO}_2 + 1.5 \text{ HCHO} \\ &+ .5 \text{ HKET} + .25 \text{ MOH} + .25 \text{ ROH} \end{aligned}$	3.40×10^{-14}	-221	7.14×10^{-14}	11
R274	$\begin{array}{l} \text{MVKP} + \text{MO}_2 \rightarrow \text{HO}_2 + 1.16 \text{ ACO}_3 + \\ 1.16 \text{ XO}_2 + 1.5 \text{ HCHO} + 1.75 \text{ ALD} + \\ 0.50 \text{ MGLY} + 0.25 \text{ MOH} + 0.25 \text{ ROH} + \\ 0.292 \text{ ORA2} \end{array}$	3.40×10^{-14}	-221	7.14×10^{-14}	11
R275	$\begin{aligned} &UALP + MO_2 \rightarrow HO_2 + 0.305 \ CO + \\ &0.773 \ HCHO + 0.203 \ ALD + 0.525 \ KET \\ &+ 0.135 \ GLY + 0.105 \ MGLY + 0.25 \\ &MOH + 0.25 \ ROH \end{aligned}$	3.40×10^{-14}	-221	7.14×10^{-14}	11
R276	$BALP + MO_2 \rightarrow HO_2 + BAL1 + HCHO$	3.56×10^{-14}	-708	3.83×10^{-13}	39
R277	$BAL1 + MO_2 \rightarrow HO_2 + BAL2 + HCHO$	3.56×10^{-14}	-708	3.83×10^{-13}	39

 $Table\ S2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction No.	Reaction	$cm^3 s^{-1}$	E/R K	\mathbf{k}^*	Note
R278	ADDC + $MO_2 \rightarrow 2 HO_2 + HCHO + 0.32$ HKET + 0.68 GLY + 0.68 OP2	3.56×10^{-14}	-708	3.83×10^{-13}	9, 39
R279	$MCTP + MO_2 \rightarrow HO_2 + MCTO + HCHO$	3.56×10^{-14}	-708	3.83×10^{-13}	9, 39
R280	$ORAP + MO_2 \rightarrow HO_2 + HCHO + GLY$	7.50×10^{-13}	-500	4.01×10^{-12}	46
R281	OLNN + $MO_2 \rightarrow 2 HO_2 + HCHO +$ ONIT	1.60×10^{-13}	-708	1.72×10^{-12}	39
R282)	OLND + $MO_2 \rightarrow 0.50 \ HO_2 + 0.50 \ NO_2$ + 0.965 HCHO + 0.93 ALD + 0.348 KET + 0.25 MOH + 0.25 ROH + 0.50 ONIT	9.68 × 10 ⁻¹⁴	-708	1.04×10^{-12}	39
R283	ADCN + $MO_2 \rightarrow HO_2 + 0.7 \text{ NO}_2 +$ HCHO + 0.7 GLY + 0.7 OP2 + 0.3 ONIT	3.56×10^{-14}		3.56×10^{-14}	9
R284	$XO_2 + MO_2 \rightarrow HO_2 + HCHO$	5.99×10^{-15}	-1510	9.48×10^{-13}	39
	Organic Peroxy Radicals + Acetyl Peroxy Radical				39
R285	$ETHP + ACO_3 \rightarrow 0.500 \text{ HO}_2 + 0.5 \text{ MO}_2 + ACD + 0.5 \text{ ORA}_2$	1.03×10^{-12}	-211	2.09×10^{-12}	39
R286	$\text{HC3P} + \text{ACO}_3 \rightarrow 0.394 \text{ HO}_2 + 0.580$ $\text{MO}_2 + 0.026 \text{ ETHP} + 0.026 \text{ XO}_2 + 0.130$ HCHO + 0.273 ALD + 0.662 KET + 0.067 GLY + 0.500 ORA2	6.90×10^{-13}	-460	3.23×10^{-12}	39
R287	$\text{HC5P} + \text{ACO}_3 \rightarrow 0.342 \text{ HO}_2 + 0.518$ $\text{MO}_2 + 0.140 \text{ ETHP} + 0.191 \text{ XO}_2 +$ 0.042 HCHO + 0.381 ALD + 0.824 KET + 0.500 ORA2	5.59×10^{-13}	-522	3.22×10^{-12}	39

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	$\frac{A}{\text{cm}^3}$ s ⁻¹	E/R K	k [*]	Note
R288	$HC8P + ACO_3 \rightarrow 0.303 \ HO_2 + 0.5 \ MO_2 + 0.067 \ ETHP + 0.208 \ XO_2 + 0.217 \ ALD + 0.642 \ KET + 0.495 \ ORA2$	2.47×10^{-13}	-683	2.44×10^{-12}	39
R289	ETEP + ACO ₃ \rightarrow 0.5 HO ₂ + 0.5 MO ₂ + 1.6 HCHO + 0.2 ALD + 0.5 ORA2	9.48×10^{-13}	-765	1.23×10^{-11}	39
R290	$\begin{aligned} & OLTP + ACO_3 \rightarrow 0.50 \; HO_2 + 0.50 \; MO_2 \\ & + HCHO + 0.94 \; ALD + 0.06 \; KET + 0.50 \\ & ORA2 \end{aligned}$	8.11×10^{-13}	-765	1.06×10^{-11}	39
R291	OLIP + ACO ₃ \rightarrow 0.50 HO ₂ + 0.50 MO ₂ + 1.71 ALD + 0.29 KET + 0.50 ORA2	5.09×10^{-13}	-765	6.62×10^{-12}	39
R292	BENP + $ACO_3 \rightarrow 0.60 \text{ HO}_2 + MO_2 + 0.459 \text{ DCB2} + 0.458 \text{ DCB3} + 0.60 \text{ GLY}$	7.40×10^{-13}	-765	9.63×10^{-12}	9
R293	$TLP1 + ACO_3 \rightarrow MO_2 + BALD$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R294	$TOLP + ACO_3 \rightarrow HO_2 + MO_2 + DCB2$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R295	$\begin{array}{l} PER1 + ACO_3 \longrightarrow HO_2 + MO_2 + MGLY \\ + DCB1 \end{array}$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R296	$XYL1 + ACO_3 \rightarrow MO_2 + BALD$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R297	$XYLP + ACO_3 \rightarrow HO_2 + MO_2 + DCB2$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R298	$\begin{aligned} & PER2 + ACO_3 \rightarrow HO_2 + MO_2 + MGLY \\ & + DCB1 + 1.05 \ DCB3 \end{aligned}$	7.40×10^{-13}	-765	9.63×10^{-12}	10
R299	$XYOP + ACO_3 \rightarrow HO_2 + MO_2 + 0.368$ GLY + 0.632 MGLY + 0.737 DCB1 + 0.077 DCB2 + 0.186 DCB3	7.40×10^{-13}	-765	9.63×10^{-12}	10
R300	ISOP + ACO ₃ \rightarrow 0.5 HO ₂ + 0.5 MO ₂ + 0.75 HCHO + 0.159 MACR+ 0.25 MVK + 0.5 ORA2 + .031 ALD + .024	8.40×10^{-14}	-221	1.76×10^{-13}	11, 28
R301	GLY + .033 HKET APIP + ACO ₃ \rightarrow 0.5 HO ₂ + 0.5 MO ₂ + ALD + KET + ORA2	7.40×10^{-13}	-765	9.63×10^{-12}	39

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k^*	Note
R302	LIMP + ACO ₃ \rightarrow 0.5 HO ₂ + 0.5 MO ₂ + 0.192 OLI + 0.385 HCHO + 0.308 MACR + 0.5 ORA2	7.40×10^{-13}	-765	9.63×10^{-12}	39
R303	$ACO3 + ACO_3 \rightarrow 2 MO_2 + 2 CO_2$	2.50×10^{-12}	-500	1.34×10^{-11}	47, 48
R304	$RCO3 + ACO_3 \rightarrow MO_2 + ETHP + 2 CO_2$	2.50×10^{-12}	-500	1.34×10^{-11}	47, 48
R305	$\begin{array}{l} ACTP + ACO_3 \rightarrow 0.50 \text{ MO}_2 + 0.50 \\ ACO_3 + HCHO + 0.75 \text{ ORA2} \end{array}$	7.51×10^{-13}	-565	5.00×10^{-12}	39, 49
R306	MEKP + $ACO_3 \rightarrow 0.33 \ HO_2 + 0.50 \ MO_2$ + 0.33 HCHO + 0.334 DCB1 + 0.50 ORA2	7.51×10^{-13}	-565	5.00×10^{-12}	39
R307	KETP + ACO ₃ \rightarrow 0.50 HO ₂ + 0.50 MO ₂ + 0.50 DCB1 + 0.50 ORA2	7.51×10^{-13}	-565	5.00×10^{-12}	39
R308	$\begin{aligned} \text{MACP} + \text{ACO}_3 &\rightarrow 0.50 \text{ HO}_2 + 0.50 \text{ MO}_2 \\ + 0.167 \text{ ACO}_3 &+ 0.167 \text{ CO} + \text{HCHO} + \\ 0.167 \text{ HKET} + 0.33 \text{ MGLY} + 0.583 \\ \text{ORA2} \end{aligned}$	8.40×10^{-14}	-221	1.76×10^{-13}	11
R309	MCP + ACO ₃ \rightarrow NO ₂ + .5 HO ₂ + HCHO .5 HKET + .5 MO ₂ + .5 ORA2	8.40×10^{-14}	-221	1.76×10^{-13}	11
R310	$\begin{array}{l} \text{MVKP} + \text{ACO}_3 \rightarrow 0.5 \; \text{HO}_2 + 0.5 \; \text{MO}_2 + \\ 1.16 \; \text{ACO}_3 + 1.16 \; \text{XO}_2 + \text{HCHO} + 2.3 \\ \text{ALD} + 0.50 \; \text{MGLY} + 1.083 \; \text{ORA2} \end{array}$	8.40×10^{-14}	-221	1.76×10^{-13}	11, 50
R311	$\begin{aligned} &UALP + ACO_3 \rightarrow 0.50 \; HO_2 + 0.50 \; MO_2 \\ &+ 0.50 \; CO + 0.030 \; HCHO + 0.27 \; ALD + \\ &0.70 \; KET + 0.18 \; GLY + 0.105 \; MGLY + \\ &0.5 \; ORA2 \end{aligned}$	8.40×10^{-14}	-221	1.76×10^{-13}	50
R312	$BALP + ACO_3 \rightarrow MO_2 + BAL1$	7.40×10^{-13}	-765	9.63×10^{-12}	51
R313	$BAL1 + ACO_3 \rightarrow MO_2 + BAL2$	7.40×10^{-13}	-765	9.63×10^{-12}	51
R314	ADDC + ACO ₃ \rightarrow 2 HO ₂ + MO ₂ + 0.32 HKET + 0.68 GLY + 0.68 OP2	7.40×10^{-13}	-708	7.95×10^{-12}	20

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	$\frac{A}{\text{cm}^3 \text{ s}^{-1}}$ 7.40×10^{-13}	E/R K	k [*]	Note
R315	$MCTP + ACO_3 \rightarrow HO_2 + MO_2 + MCTO$	7.40×10^{-13}	-708	7.95×10^{-12}	9
R316	$ORAP + ACO_3 \rightarrow MO_2 + GLY$	7.51×10^{-13}	-565	5.00×10^{-12}	52
R317	$OLNN + ACO_3 \rightarrow HO_2 + MO2 + ONIT$	8.85×10^{-13}	-765	1.15×10^{-11}	39
R318	OLND + ACO ₃ \rightarrow 0.50 MO ₂ + NO ₂ + 0.287 HCHO + 1.24 ALD + 0.464 KET + 0.50 ORA2	5.37×10^{-13}	-765	6.99×10^{-12}	39
R319	ADCN + ACO ₃ \rightarrow HO ₂ + MO ₂ + 0.7 NO ₂ + 0.7 GLY + 0.7 OP2 + 0.3 ONIT	7.40×10^{-13}	-708	7.95×10^{-12}	9
R320	$XO_2 + ACO_3 \rightarrow MO_2$	3.40×10^{-14}	-1560	6.37×10^{-12}	39
	Organic Peroxy Radicals + NO_3				
R321	$MO_2 + NO_3 \rightarrow HO_2 + NO_2 + HCHO$	1.20×10^{-12}		1.20×10^{-12}	39
R322	$ETHP + NO_3 \rightarrow HO_2 + NO_2 + ACD$	1.20×10^{-12}		1.20×10^{-12}	39
R323	$\begin{aligned} & HC3P + NO_3 \rightarrow 0.254 \; HO_2 + NO_2 \\ & + 0.140 \; MO_2 + 0.503 \; ETHP + 0.092 \; XO_2 \\ & + 0.095 \; ACT + 0.519 \; ACD + 0.147 \; ALD \\ & + 0.075 \; MEK \end{aligned}$	1.20×10^{-12}		1.20×10^{-12}	39
R324	$\begin{aligned} & \text{HC5P} + \text{NO}_3 \rightarrow 0.488 \; \text{HO}_2 + 0.055 \; \text{MO}_2 \\ & + 0.28 \; \text{ETHP} + 0.485 \; \text{XO}_2 + \text{NO}_2 + \\ & 0.024 \; \text{HCHO} + 0.241 \; \text{ALD} + 0.06 \; \text{KET} \\ & + 0.063 \; \text{MEK} + 0.247 \; \text{ACT} + 0.048 \\ & \text{ACD} + 0.275 \; \text{HKET} \end{aligned}$	1.20×10^{-12}		1.20×10^{-12}	39
R325	$\text{HC8P} + \text{NO}_3 \rightarrow 0.82 \; \text{HO}_2 + 0.18 \; \text{ETHP} + 0.563 \; \text{XO}_2 + \text{NO}_2 + 0.203 \; \text{ALD} + 0.869 \; \text{KET}$	1.20×10^{-12}		1.20×10^{-12}	39
R326	ETEP + $NO_3 \rightarrow HO_2 + NO_2 + 1.6$ HCHO + 0.2 ALD	1.20×10^{-12}		1.20×10^{-12}	39
R327	OLTP + $NO_3 \rightarrow 0.79 HO_2 + NO_2 + 0.79$ HCHO + 0.47 ALD + 0.09 ACT + 0.02 ACD + 0.18 MEK	1.20×10^{-12}		1.20×10^{-12}	39

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
R328	OLIP + NO ₃ \rightarrow 0.86 HO ₂ + NO ₂ + 0.72 ALD + 0.20 ACT + 0.85 ACD + 0.04 HKET + 0.11 KET	1.20×10^{-12}		1.20×10^{-12}	39
R329	$BENP + NO_3 \rightarrow HO_2 + NO_2 + 0.50$ $DCB2 + 0.50 DCB3 + GLY$	1.20×10^{-12}		1.20×10^{-12}	9
R330	$TLP1 + NO_3 \rightarrow NO_2 + BALD$	1.20×10^{-12}		1.20×10^{-12}	10
R331	$TOLP + NO_3 \rightarrow HO_2 + NO_2 + DCB2$	1.20×10^{-12}		1.20×10^{-12}	10
R332	$PER1 + NO_3 \rightarrow 0.5 HO_2 + NO_2 + 0.5$ MGLY + 0.5 DCB1 + 0.5 BALD	1.20×10^{-12}		1.20×10^{-12}	10
R333	$XYL1 + NO_3 \rightarrow NO_2 + BALD$	1.20×10^{-12}		1.20×10^{-12}	10
R334	$XYLP + NO_3 \rightarrow HO_2 + NO_2 + DCB3$	1.20×10^{-12}		1.20×10^{-12}	10
R335	$\begin{aligned} \text{PER2} + \text{NO}_3 &\rightarrow \text{HO}_2 + \text{NO}_2 + \text{MGLY} + \\ \text{DCB1} + 1.05 \text{ DCB3} \end{aligned}$	1.20×10^{-12}		1.20×10^{-12}	10
R336	$XYOP + NO_3 \rightarrow HO_2 + NO_2 + 0.368$ GLY + 0.632 MGLY + 0.737 DCB1 + 0.077 DCB2 + 0.186 DCB3	1.20×10^{-12}		1.20×10^{-12}	20
R337	$\begin{split} & \text{ISOP} + \text{NO}_3 \rightarrow \text{HO}_2 + \text{NO}_2 + 0.75 \\ & \text{HCHO} + 0.318 \text{ MACR} + 0.5 \text{ MVK} + \\ & 0.024 \text{ GLY} + .033 \text{ HKET} + .031 \text{ ALD} \end{split}$	1.20×10^{-12}		1.20×10^{-12}	11, 28
R338	$\begin{array}{l} APIP + NO_3 \longrightarrow HO_2 + NO_2 + ALD + \\ KET \end{array}$	1.20×10^{-12}		1.20×10^{-12}	39
R339	$LIMP + NO_3 \rightarrow HO_2 + NO_2 + 0.385 OLI + 0.385 HCHO + 0.615 MACR$	1.20×10^{-12}		1.20×10^{-12}	39
R340	$ACO_3 + NO_3 \rightarrow MO_2 + NO_2$	4.00×10^{-12}		4.00×10^{-12}	39, 53
R341	$RCO_3 + NO_3 \rightarrow ETHP + NO_2$	4.00×10^{-12}		4.00×10^{-12}	39, 53

 $Table\ S2b-Continued.\ The\ RACM2\ Chemical\ Mechanism,\ Thermal\ Reactions$

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	k [*]	Note
R342	$ACTP + NO_3 \rightarrow ACO_3 + NO_2 + HCHO$	1.20×10^{-12}		1.20×10^{-12}	39
R343	$\begin{aligned} \text{MEKP} + \text{NO}_3 &\rightarrow 0.67 \text{ HO}_2 + \text{NO}_2 + 0.33 \\ \text{HCHO} + 0.67 \text{ DCB1} \end{aligned}$	1.20×10^{-12}		1.20×10^{-12}	39
R344	$KETP + NO_3 \rightarrow HO_2 + NO_2 + DCB1$	1.20×10^{-12}		1.20×10^{-12}	39
R345	$\begin{aligned} \text{MACP} + \text{NO}_3 &\rightarrow \text{HO}_2 + 0.33 \text{ ACO}_3 + \\ \text{NO}_2 + 0.33 \text{ CO} + \text{HCHO} + 0.33 \text{ HKET} \\ + 0.667 \text{ MGLY} \end{aligned}$	1.20×10^{-12}		1.20×10^{-12}	11
R346	$MCP + NO_3 \rightarrow NO_2 + HO_2 + HCHO$ HKET	1.20×10^{-12}		1.20×10^{-12}	49
R347	$\begin{array}{l} \text{MVKP} + \text{NO}_3 \rightarrow 0.3 \text{ HO}_2 + 0.7 \text{ ACO}_3 + \\ 0.7 \text{ XO}_2 + \text{NO}_2 + 0.3 \text{ HCHO} + 0.7 \text{ ALD} \\ + \text{MGLY} \end{array}$	1.20×10^{-12}		1.20×10^{-12}	9
R348	$\begin{array}{l} UALP + NO_{3} \rightarrow HO_{2} + NO_{2} + 0.61 \ CO \\ + 0.03 \ HCHO + 0.27 \ ALD + 0.7 \ KET + \\ 0.18 \ GLY + 0.21 \ MGLY \end{array}$	1.20×10^{-12}		1.20×10^{-12}	9
R349	$BALP + NO_3 \rightarrow BAL1 + NO_2$	1.20×10^{-12}		1.20×10^{-12}	9
R350	$BAL1 + NO_3 \rightarrow BAL2 + NO_2$	1.20×10^{-12}		1.20×10^{-12}	9
R351	ADDC + NO ₃ \rightarrow HO ₂ + NO ₂ + 0.32 HKET + 0.68 GLY + 0.68 OP2	1.20×10^{-12}		1.20×10^{-12}	9
R352	$MCTP + NO_3 \rightarrow NO_2 + MCTO$	1.20×10^{-12}		1.20×10^{-12}	39
R353	$ORAP + NO_3 \rightarrow HO_2 + NO_2 + GLY$	1.20×10^{-12}		1.20×10^{-12}	39
R354	$OLNN + NO_3 \rightarrow HO_2 + NO_2 + ONIT$	1.20×10^{-12}		1.20×10^{-12}	39
R355	OLND + NO ₃ \rightarrow 2 NO ₂ + 0.287 HCHO + 1.24 ALD + 0.464 KET	1.20×10^{-12}		1.20×10^{-12}	39
R356	$ADCN + NO_3 \rightarrow 2 NO_2 + GLY + OP2$	1.20×10^{-12}		1.20×10^{-12}	9

Table S2b – Continued. The RACM2 Chemical Mechanism, Thermal Reactions

Reaction No.	Reaction	A, cm ³ s ⁻¹	E/R K	K^*	Note
R357	$XO_2 + NO_3 \rightarrow NO_2$	1.20×10^{-12}	IX	1.20×10^{-12}	39
	Self Reaction of RCO3 Radical				
R358	$RCO_3 + RCO_3 \rightarrow 2 ETHP + 2 CO_2$				40, 47
	Organic Nitrate Radical Cross Reactions				
R359	$OLNN + OLNN \rightarrow HO_2 + 2 ONIT$	7.00×10^{-14}	-1000	2.00×10^{-12}	39
R360	OLNN + OLND \rightarrow 0.50 HO ₂ + 0.50 NO ₂ + 0.202 HCHO + 0.640 ALD + 0.149 KET + 1.50 ONIT	4.25×10^{-14}	-1000	1.22×10^{-12}	39
R361	OLND + OLND \rightarrow NO ₂ + 0.504 HCHO + 1.21 ALD + 0.285 KET + ONIT	2.96×10^{-14}	-1000	8.47×10^{-13}	39
	Operator Radical + Operator Radical				
R362	$XO_2 + XO_2 \rightarrow$	7.13×10^{-17}	-2950	1.41×10^{-12}	39
	Operator Radical + RCO3 Radical				
R363	$XO_2 + RCO_3 \rightarrow ETHP + CO_2$	2.50 x 10 ⁻¹²	-500	1.34×10^{-11}	40, 47

The rate constants are calculated for 298 K and 1 atm. The units for first order reactions are s^{-1} , second order rate constants are cm³ s⁻¹ and for third order the units are cm⁶ s⁻¹.

Note 1: IUPAC Web version [January 2010]; Note 2: Sander et al. [2011]; Note 3: Uselman et al. In Nitrogeneous Air Pollutants, Chemical and Biological Implications, 1979; Note 4: Rate constants used for aggregated species taken from Atkinson, 2003; El Boudali et al., 2001; IUPAC 2010; Talukdar et al., 1994.; Note 5: Rate constants used for aggregated species taken from Veillerot et al., 1996; El Boudali et al., 1996; Picquet et al., 1998; Wilson et al., 2006; Note 6: Rate constants used for aggregated species taken from Wilson et al., 2006, Atkinson, 2003 and Aschmann and Atkinson, 1998; Note 7: no change from RACM1; Note 8: Atkinson and Arey, 2003; Note 9: MCM V3.2; Note 10: Calvert et al., 2002; Note 11: Geiger et al., 2003; Note 12: Gill and Hites, 2002; Note 13: Sivakumaran and Crowley, 2003; Note 14: Gierczak et al., 2003; Note 15: Wallington and Kurylo, 1987; Note 16: Orlando et al., 1999; Note 17: Magneron et al., 2002; Note 18: Atkinson et al., 2006; Note 19: Tyndall et al., 1995; Note 20: Carter, 2010; Note 21: Ferri et al., 2001 and Semadeni et al., 1995; Note 22: Aschmann and Atkinson,

1998; Note 23: Estimated for propyl hydroperoxide; Note 24: Singleton et al., 1988; Note 25: Butkovskaya et al., 2004 and De Smedt et al., 2005; Note 26: Assumed the same as OP1 + HO; Note 27: Orlando et al., 2002; Note 28: Rate constant is average of Grosjean and Grosjean, 1998 and Sato et al., 2004; MVK, MACR and ISON from Sprengnether et al. 2002, small compounds from Galloway et al. 2011; Note 29: MACR-MVK split according to Carter, 1996; Note 30: Determined by fitting model simulations to chamber data. Experiment EC331 (toluene + n-butane) was used; Note 31: Rate constant from Atkinson and Arey 2003 and products from Spittler et al., 2006; Note 32: Based on propanal. The E/R of ACD together with the recommended k(298) for propanal was used to determine the A factor for ALD; Note 33: Rate constant take to be $2*k_{ALD}$ - k_{ETH} ; E/R same as ALD + NO₃; Note 34: Salgado et al., 2008; Note 35: assumed the same as ALD + NO3; Note 36: Rate from Bierbach et al., 1994, Products from DCB1 + O3; Note 37: Kirchner and Stockwell, 1996; Note 38: using RACM1 product yields and dividing DCB value among DCB1,2,3; Note 33: Tyndall et al., 2001; Note 39: Roberts and Bertman, 1992; Note 40: Carter and Atkinson, 1996; Note 41: Rate from HCP3 + NO; Note 42: Rate from ACTP + NO; Note 43: Lebras, 1997; Note 44: Rate from ACTP + HO2; Note 45: Same as ACTP + MO2; Note 46: Lightfoot, 1992; Note 47: Tyndall et al., 2001; Note 48: Bridier et al., 1993; Note 49: Rate constant from GEOS-CHEM version 5-07-8; Note 50: Rate assumed same as MVKP+ACO3; Note 51: Rate constant assumed same as TOLP+ACO3; Note 52: Rate assumed same as ACTP+ACO3; Note 53: Wayne, 2000.

Table S2c. The RACM2 Chemical Mechanism: Reaction Rate Constants of the Form $\mathbf{k}=\mathbf{T2}$ C exp (-D/T)

Reaction	Reaction	С	D	Note
No.		$K^{-2} \text{ cm}^3 \text{ s}^{-1}$	K	
R137	ETE + NO ₃ \rightarrow 0.80 OLNN + 0.20 OLND	4.88×10^{-18}	2282	1

Note 1: Atkinson and Arey, 2003

Table S2d. The RACM2 Chemical Mechanism: Troe Reaction Parameters

Reaction No.	Reaction	$\frac{k_o^{300}}{{ m cm}^6{ m s}^{-1}}$	n	$k_{\infty}^{300} { m cm}^3 { m s}^{-1}$	m	Note
R48	$NO + O^3P \rightarrow NO_2$	9.00×10^{-32}	1.5	3.00×10^{-11}	0	1
R49	$NO + HO \rightarrow HONO$	7.00×10^{-31}	2.6	3.60×10^{-11}	0.1	1
R54	$NO_2 + O^3P \rightarrow NO_3$	2.50×10^{-31}	1.8	2.20×10^{-11}	0.7	1
R55	$NO_2 + HO \rightarrow HNO_3$	1.80×10^{-30}	3.0	2.80×10^{-11}	0	1
R62	$NO_3 + NO_2 \rightarrow N_2O_5$	2.00×10^{-30}	4.4	1.40×10^{-12}	0.7	1
R65	$NO_2 + HO_2 \rightarrow HNO_4$	2.0×10^{-31}	3.4	2.90×10^{-12}	1.1	1
R68	$SO_2 + HO \rightarrow SULF + HO_2$	3.30×10^{-31}	4.3	1.60×10^{-12}	0	1
R75	$ETE + HO \to ETEP$	1.00×10^{-28}	4.5	8.80×10^{-12}	0.85	1
R79	ACE + HO \rightarrow 0.65 HO + 0.35 HO ₂ + 0.35 CO + 0.650 GLY + 0.35 ORA1	5.50×10^{-30}	0.0	8.30×10^{-13}	-2.0	1
R164	$ACO_3 + NO_2 \rightarrow PAN$	9.70×10^{-29}	5.6	9.30×10^{-12}	1.5	1
R166	$RCO_3 + NO_2 \rightarrow PPN$	9.70×10^{-29}	5.6	9.30×10^{-12}	1.5	1

Note 1, Sander et al. [2011]

Table S2e. The RACM2 Chemical Mechanism: Troe Equilibrium Reactions

Reaction No.	Reaction	A	В	$\frac{k_o^{300}}{{ m cm}^6}{ m s}^{-1}$	n	$\frac{k_{\infty}^{300}}{{ m cm}^3}{ m s}^{-1}$	m	Note
R63	$ \begin{array}{c} N_2O_5 \rightarrow \\ NO_2 + NO_3 \end{array} $	$3.70 \times 10^{+26}$	11,000	2.20×10^{-30}	3.9	1.50×10^{-12}	0.7	1
R66	$\begin{array}{c} HNO_4 \rightarrow \\ HO_2 + NO_2 \end{array}$	$4.76 \times 10^{+26}$	10,900	2.00×10^{-31}	3.4	2.90×10^{-12}	1.1	1
R165	$PAN \rightarrow ACO_3 + NO_2$	$1.16 \times 10^{+28}$	13,954	9.70×10^{-29}	5.6	9.30×10^{-12}	1.5	1
R167	$PPN \rightarrow RCO_3 + NO_2$	$1.16 \times 10^{+28}$	13,954	9.70×10^{-29}	5.6	9.30×10^{-12}	1.5	1

Note 1, Sander et al. [2011]

Table S2f. The RACM2 Chemical Mechanism: Reactions With Special Rate Expressions

Reaction No.	Reaction	Rate Constant Expression ^a cm ³ s ⁻¹	Note
R38	$O^3P + O_2 \rightarrow O_3$	$[M] \times 5.60 \times 10^{-34} \times (T/300) **(-2.6)$	1
R45	$2 HO_2 \rightarrow H_2O_2 + O_2$	$2.2 \times 10^{-13} \times \exp(600/T) + 1.90 \times 10^{-33} \times$	1
		$[M] \times \exp(980/T)$	
R46	$2 HO2 + H2O \rightarrow H2O2 + H2O + O2$	$3.08 \times 10^{-34} \times \exp(2800/T) + 2.59 \times 10^{-54} \times$	1
		$[M] \times \exp(3180/T)$	
R51	$NO + HO_2 \rightarrow HNO_3$	$\begin{aligned} k_1 &= 3.45 \text{e-}12*\text{exp}(270/\text{T}) \\ k_2 &= (530/\text{Y}) + (4.8 \text{ x } 10^{-6})*\text{pressure - } 1.73 \\ k &= k_1*k_2/100 \end{aligned}$	1
R56	$HNO_3 + HO \rightarrow NO_3 + H_2O$	$\begin{aligned} k &= k_0 + k_3/(1 + k_3 / k_2) \\ k_0 &= 2.4 \times 10^{-14} \times exp(460/T) \\ k_2 &= 2.4 \times 10^{-17} \times exp(2199/T) \\ k_3 &= 6.5 \times 10^{-34} \times exp(1335/T) \times [M] \end{aligned}$	1

R69
$$CO + HO \rightarrow HO_2 + CO_2$$
 $1.44 \times 10^{-13} \times (1. + 0.8 \times [M] / 4 \times 10^{+19})$ 1

R90 ACT + HO
$$\rightarrow$$
 ACTP + H₂O $1.39 \times 10^{-13} + 3.72 \times 10^{-11} \times \exp(-2044/T)$ 2

Note 1, IUPAC Web version [January 2010]

Note 2: Gierczak et al., 2003

^aThe unit of T is K. The units for second order rate constants are cm 3 s $^{-1}$ and for third order the units are cm 6 s $^{-1}$. Pressure is in units of Pascal. For all of the above, [M] is the concentration of air in molecules cm 3 .

Comparison of RACM1 and RACM2 Mechanisms for "Real Atmosphere" Cases

Box-model simulations made with the RACM1 and RACM2 were compared to provide an assessment of their differences in calculated ozone, HNO₃, H₂SO₄, PAN, H₂O₂ and HCHO. The simulations were made based on the urban case discussed in [Stockwell et al., 2012]. The two-day simulations were made for surface conditions with a pressure of 1 atmosphere, a temperature of 298 K and a relative humidity of 50%, Table S3. Physical losses, such as deposition, of ozone, HNO₃, H₂O₂, H₂SO₄ etc. were not included because the purpose was to compare their chemical production by the two mechanisms.

The initial ozone concentration was taken to be a near background value of 30 ppb for all simulations. The photolysis rate coefficients were calculated for a latitude of 40° at summer solstice. The photolysis rate coefficients for the photochemical reactions of both mechanisms were calculated using the delta-Eddington radiative transfer model. To make the simulations as equivalent as possible the revised photolysis rate coefficients for the RACM2 mechanism were used for both mechanisms or they were mapped from the RACM2 mechanism to those of RACM1 as appropriate.

The initial conditions consisted of four inorganic variations, Table S4, and four organic variations, Table S5. The four inorganic variations were run with the four organic variations for a total of sixteen simulations. The sixteen simulations represent a wide range of initial conditions. Although not all combinations are representative of typical conditions, the simulations provide an extensive comparison of the two mechanisms.

For the inorganic variations A, B and C represent somewhat aged air masses that range from rural to moderately polluted while case D represents a polluted case with fresh emissions. For the inorganic variations A, B and C the initial carbon monoxide concentration was 100 ppb and D was 1000 ppb. The initial SO_2 was taken similarly to be 5 ppb for A, B and C and increased to 30 ppb for case D. The NO and NO_2 concentrations were varied from case A in multiples of 5 and 10 to give cases B and C and in Case D the initial NO_x was 10 ppb with a NO/NO_2 ratio of 4.

The initial organic mixture is a relatively realistic mixture based on measurements made at Howard University's atmospheric field site near Beltsville, Maryland [Stockwell et al., 2012]. Table S5 shows the initial organic mixing ratios used for the simulations. The NMOC2 column represents an approximation to the Beltsville measurements and in general the NMOC1, NMOC3 and NMOC4 represent multiples of 0.1, 5 and 10 of NMOC2. The total organic mixing ratios were 19.09, 190.9, 954.5 and 1909 ppbC for NMOC1, NMOC2, NMOC3 and NMOC4, respectively. These when combined with the inorganic variations lead to a wide range of VOC to NO_x ratios, Table S6. These ratios are not always typical of atmospheric conditions but provide a wide range of conditions for comparing RACM1 and RACM2.

Tables S7 and S8 show the peak ozone simulated by the two mechanisms. The maximum ozone is 30.00 ppb for RACM1 and RACM2 in cases NMOC1-C and NMOC1-D and for RACM2 in case NMOC-D because the mechanisms yielded a net ozone loss from the 30.00 ppb initial conditions. Otherwise the

tables show that RACM2 predicts lower ozone concentrations than RACM1 for most of the simulations. Figure S1 shows that the RACM2 mechanism forecasts less ozone than RACM1 for most of the initial conditions simulated and that this trend to lower predictions increases at the higher ozone mixing ratios.

RACM2 forecasts less HNO₃ than RACM1, Figure S2. This indicated that there is less reactive nitrogen available for ozone and HNO₃ formation in the RACM2 simulations than in the RACM1 simulations. The tendency of RACM2 to produce less ozone and HNO₃ than RACM1 is consistent with the forecasted mixing ratios of PAN, Figure S3. The formation of PAN removes NO₂ and acetyl-peroxy radicals from the system. The higher mixing ratios of PAN suggest that RACM2 has lower levels of NO_x available for ozone formation under the more polluted conditions. The lower levels of NO_x in RACM2 forecasts lead also to higher mixing ratios of hydrogen peroxide forecasted by RACM2 than RACM1, Figure S4.

RACM2 forecasts more HCHO than RACM1; this may be due to the greater level of detail of the organic chemistry in RACM2, Figure S5. Although the photolysis of HCHO produces HO₂; the two mechanisms predict almost the same mixing ratios of H₂SO₄. The mixing ratio of H₂SO₄ is indicative of integrated hydroxyl concentrations. This agreement indicates that there is considerable agreement for the integrated hydroxyl concentrations between the two mechanisms, Figure S6.

Table S3. Conditions used for all simulations.

Table 53. Collutions used for all simulations.					
Initial Condition	Value				
Start-Time	6:00				
Duration	48 hr				
Temperature	298.15 K				
Pressure	1013.25 mbar				
Date for photolysis calculation	June 21				
Latitude	40°				
Mixing Ratio					
$\overline{\text{H}_2\text{O}}$	15500 ppm				
Methane	1800. ppb				
H_2	550 ppb				
O_3	30 ppb				

Table S4. Inorganic initial concentrations as varied in simulations.

Case	A	В	С	D
	(ppb)	(ppb)	(ppb)	(ppb)
Carbon Monoxide	100.	100.	100.	1000.
Nitric Oxide	0.1	0.5	1.0	8.0
Nitrogen Dioxide	0.4	2.0	4.0	2.0
Sulfur Dioxide	5.0	5.0	5.0	30.0

Table S5. Non-methane organic compound initial concentrations as varied in simulations.

	NMOC1	NMOC2	NMOC3	NMOC4
	(ppb)	(ppb)	(ppb)	(ppb)
Ethane	0.30	3.0	15.0	30.
Slow Reacting	1.00	10.	50.0	100.
Alkanes				
Medium Reacting	0.25	2.5	12.5	25.
Alkanes				
Fast Reacting Alkanes	0.15	1.5	7.50	15.
Ethene	0.20	2.0	10.0	20.
Internal Alkenes	0.10	1.0	5.0	10.
Terminal Alkenes	0.20	2.0	10.0	20.
Dienes	0.05	0.5	2.5	5.
Benzene	0.09	0.9	4.5	9.
Toluene	0.20	2.0	10.0	20.
Xylene	0.20	2.0	10.0	20.
o-Xylene	0.10	1.0	5.0	10.
Methanol	0.01	0.1	0.5	1.
Ethanol	0.01	0.1	0.5	1.
Higher Alcohols	0.01	0.1	0.5	1.
Formaldehyde	0.25	2.5	12.5	25.
Acetylene	0.20	2.0	10.0	20.
Acetaldehyde	0.10	1.0	5.0	10.
Higher Aldehyde	0.05	0.5	2.5	5.
Acetone	0.03	0.3	1.5	3.
Methyl Ethyl Ketone	0.20	2.0	10.0	20.
Higher Ketone	0.20	2.0	10.0	20.
Glyoxal	0.02	0.2	1.0	2.
Methylglyoxal	0.01	0.05	0.25	0.5
Methacrolein	0.01	0.1	0.5	1.0
Methyl Vinyl Ketone	0.01	0.1	0.5	1.0
Isoprene	0.34	3.4	17.0	34.
α-Pinenes	0.10	1.0	5.0	10.
d-Limonene	0.10	1.0	5.0	10.

Table S6. NOx/VOC ratios for cases simulated.

		Total NMOC (ppbC)			
		NMOC1	NMOC2	NMOC3	NMOC4
NOx	(ppbN)	19.09	190.9	954.5	1909.
A	0.5	38.18	381.80	1909.00	3818.0
В	2.5	7.64	76.36	381.80	763.6
C	5.0	3.82	38.18	190.90	381.8
D	10.	1.91	19.09	95.45	190.9

Table S7. RACM1 maximum ozone mixing ratios.

	RACM1 O ₃ (ppb)				
	A	В	C	D	
NMOC1	38.74	34.96	30.00	30.00	
NMOC2	55.81	80.45	56.61	41.48	
NMOC3	62.85	110.99	94.43	71.24	
NMOC4	105.59	157.19	153.30	122.59	

Table S8 RACM2 maximum ozone mixing ratios.

	RACM2 O ₃ (ppb)				
	A	В	C	D	
NMOC1	36.33	31.54	30.00	30.00	
NMOC2	57.51	54.11	38.57	30.00	
NMOC3	66.58	90.85	58.82	43.30	
NMOC4	105.20	145.87	94.70	73.97	

Figure Captions

Figure S1. Plot of maximum ozone mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 6 - 10. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

Figure S2. Plot of maximum HNO₃ mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 6 - 10. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

Figure S3. Plot of maximum PAN mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 1 - 4. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

Figure S4. Plot of maximum H_2O_2 mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 1 – 4. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

Figure S5. Plot of maximum HCHO mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 1 - 4. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

Figure S6. Plot of maximum H_2SO_4 mixing ratios estimated from RACM2 versus those estimated by RACM1 for the conditions given in Tables 1-4. The solid line is the 1-1 line of perfect agreement while the dashed line is the regression line between the two mechanisms.

References

Aschmann, S.M.; Atkinson, R., 1998. Kinetics of the gas-phase reactions of the OH radical with selected glycol ethers, glycols, and alcohols. International Journal of Chemical Kinetics 30, 533–540.

Atkinson, R., 2003. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmospheric Chemistry and Physics 3, 2233–2307.

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., 2006. Evaluated kinetic and photochemical data for atmospheric chemistry: volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics 6, 3625–4055.

Bierbach, A., Barnes, I., Becker, K.H., Wiesen, E., 1994. Atmospheric Chemistry of Unsaturated Carbonyls - Butenedial, 4-Oxo-2-Pentenal, 3-Hexene-2,5-Dione, Maleic-Anhydride, 3h-Furan-2-One, And 5-Methyl-3h-Furan-2-One. Environmental Science & Technology 28, 715–729.

Bridier, I., Veyret, B., Lesclaux, R., Jenkin, M.E., 1993. Flash photolysis study of the UV spectrum and kinetics of reactions of the acetonylperoxy radical. Journal of the Chemical Society, Faraday Transactions 89, 2993–2997.

Carr, S., Heard, D.E., Blitz, M.A., 2009. Comment on atmospheric hydroxyl radical production from electronically excited NO₂ and H₂O. Science 324, 336b.

Carter W.P.L, 1996. Condensed atmospheric photooxidation mechanisms for isoprene. Atmospheric Environment 30, 4275–4290.

Carter, W.P.L., Atkinson, R., 1996. Development and Evaluation of a Detailed Mechanism for the Atmospheric Reactions of Isoprene and NO_x. International Journal of Chemical Kinetics 28, 497–530.

El Boudali, A.; Le Calve, S.; Le Bras, G.; Mellouki, A. 1996. Kinetic studies of OH reactions with a series of acetates. Journal of Physical Chemistry 100, 12364–12368.

Ferri, D., Astorga, C., Tedeschi, R., Winterhalter, R., Viidanoja, J., Bolzacchin, i E., Jensen, N.R., Larsen, B.R., Hjorth, J., 2001. Photo-oxidation of benzene, toluene and benzaldehyde: identification and

quantification of reaction products in the gas-phase and in particles, In: Eighth European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, Torino, Italia, 17–20 September 2001.

Galloway, M. M., Huisman, A. J., Yee, L. D., Chan, A. W. H., Loza, C. L., Seinfeld, J. H., and Keutsch, F. N., 2011. Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high NOx conditions. Atmospheric Chemistry and Physics 11, 10779–10790.

Gierczak T., Gilles, M.K., Bauerle, S., Ravishankara, A.R., 2003. Reaction of Hydroxyl Radical with Acetone. 1. Kinetics of the Reactions of OH, OD, and ¹⁸OH with Acetone and Acetone-d6. Journal of Physical Chemistry A 107, 5014–5020.

Li, S., Matthews J., Sinha, A., 2008. Atmospheric hydroxyl radical production from electronically excited NO₂ and H₂O. Science 319, 1657–1660.

Lightfoot, P.D, Cox, R.A., Crowley, J.N., Destriau M., Hayman, G.D., Jenkin, M.E., Moortgat, G.K., Zabel, F., 1992. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. Atmospheric Environment 26, 1805–1961.

Orlando, J.J. Tyndall, G.S., Bertman, S.B., Chen, W., Burkholder, J.B., 2002. Rate coefficient for the reaction of OH with CH2=C(CH3)C(O)OONO2 (MPAN). Atmospheric Environment 36, 1895–1900.

Orlando, J.J., Tyndall, G.S., Fracheboud, J.-M., Estupiñan, E.G., Haberkorn, S., Zimmer A., 1999. The rate and mechanism of the gas-phase oxidation of hydroxyacetone. Atmospheric Environment 33, 1621–1629.

Picquet, B.; Heroux, S.; Chebbi, A.; Doussin, J-F.; Durand-Jolibois, R.; Monod, A.; Loirat, H.; Carlier, P., 1998. Kinetics of the reactions of OH radicals with some oxygenated volatile organic compounds under simulated atmospheric conditions. International Journal of Chemical Kinetics 30, 839–847.

Roberts, J.M., Bertman, S.B., 1992. The thermal decomposition of peroxyacetic nitric anhydride (PAN) and peroxymethacrylic nitric anhydride (MPAN). International Journal of Chemical Kinetics 24, 297–307.

Semadeni, M., Stocker, D.W., Kerr, J.A., 1995. The temperature dependence of the OH radical reactions with some aromatic compounds under simulated tropospheric conditions. International Journal of Chemical Kinetics 27, 287–304.

Sivakumaran V., Crowley, J.N., 2003. Reaction between OH and CH3CHO Part 2. Temperature dependent rate coefficients (201–348 K). Physical Chemistry Chemical Physics 5, 106–111.

Talukdar, R.K.; Melouki, A.; Gierczak, T.; Barone, S.; Chiang, S-Y.; Ravishankara, A.R. 1994. Kinetics of the reactions of OH with alkanes. International Journal of Chemical Kinetics 26, 973–990.

Tyndall, G.S., Cox, R.A., Granier, C., Lesclaux, R., Moortgat, G.K., Pilling, M.J., Ravishankara, A.R., Wallington, T.J., 2001. Atmospheric chemistry of small organic peroxy radicals. Journal Of Geophysical Research-Atmospheres 106, 12157–12182.

Tyndall, G.S., Staffelbach, T.A., Orlando, J.J., Calvert, J.G., 1995. Rate coefficients for the reactions of OH radicals with Methylglyoxal and Acetaldehyde. International Journal of Chemical Kinetics 27, 1009–1020.

Uselman, W.M., Levine, S.Z., Chan, W.H., Calvert, J.G., Shaw, J.H., 1979. A kinetic study of the mechanism of peroxynitric acid formation in irradiated mixtures of chlorine, hydrogen, nitrogen dioxide and nitric oxide in air, in Nitrogenous Air Pollutants, Chemical and Biological Implications, edited by D. Grosjean, Ann Arbor Sci., Ann Arbor Mich., 1979.

Veillerot, M.; Foster, P.; Guillermo, R.; Galloo, I.C., 1996. Gas-phase reaction of n-butyl acetate with the hydroxyl radical under simulated tropospheric conditions: relative rate constant and product study. International Journal of Chemical Kinetics 28, 235–243.

Wallington T.J., Kurylo M.J., 1987. Flash photolysis resonance fluorescence investigation of the gasphase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240-440 K. Journal of Physical Chemistry 91, 5050–5054.

Wayne, R.P., 2000. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and Their Satellites. Oxford University Press, Oxford.

Wilson, E.W., Jr., Hamilton, W.A., Kennington, H.R., Evans B., III, Scott N.W. 2006. Measurement and Estimation of Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes and Cycloalkanes. Journal of Physical Chemistry A 110, 3593–3604.