Emotions within speech

Unearth the hidden language

Lin He, Ruilin Ma 6th, Dec., 2022

A brief Intro

What we have and what we do.

- → The RAVDESS dataset
 - Ryerson Audio-Visual Database of Emotional **Speech** and Song. 24 actors, 60 trials per actor. 1440 files.
- → Eight distinct emotions neutral, calm, happy, sad, angry, fearful, disgust, surprised. 96 neutral samples, 192 samples for each others.
- → A CNN approach

Build a CNN network to train the classifier and test its accuracy.

_

How to distinguish these eight emotions effectively?

Figure showing the **emotion counts** of the investigated dataset.

We tried two approaches.

Based on Spectrogram

Based on Mel-Frequency Cepstral Coefficients (MFCCs)

Note

We adopted the MFCCs to create figures used as the input data for the CNN networks, for the reason that MFCC can reveal more features of a speech clip than the spectrogram.

Spectrogram: Merge merge merge!

A spectrogram of **one speech clip** with a fear emotion.

A spectrogram of the merging of **all speech clips** with a fear emotion.

Spectrogram: Different, but too much noise to distinguish.

A spectrogram of the merging of all speech clips with a **surprise** emotion.

A spectrogram of the merging of all speech clips with a **fear** emotion.

Data Transformation

The process of transforming Audio waves to MFCC Spectrograms.

→ Audio(.wav)

Time Domain
Original Human Speech Data

→ MFCC Spectrograms(.png)

Time Domain Image that contains all the features of the audio

Audio Wave

Normalization

Cut around all examples to 3 seconds

Example of a waveplot of an original audio file

Why not use Frequency Spectrograms?

Frequency spectrograms also contains features. However, humans are not able to tell the difference between these frequency domain features.

Thus, we introduce MFCC.

Frequencies

Transform all from time domain to frequency domain

Using STFT and calculating energy to generate Frequency Spectrograms

MFCC

Mel-scale makes the spectrogram more human auditory-liked.

$$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right).$$

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC

Triangular overlapping windows also leave more low frequencies information.

Note

We directly use

librosa.feature.mfcc()

to transform audio wave to mfcc matrix.

N_mfcc = 22

Data Preparation

We cut down the spectrogram size from ($432 \times 288 \times 3$) to ($240 \times 210 \times 3$).

Only reserve the most dense information area as CNN input.

Split the train set and test set with an ratio of 8 : 2.

CNN network: Use more conv layers to reduce params count

Layer (type)	Output Shape	Param #							
conv2d_6 (Conv2D)	 (None, 210, 240, 32)	128							
conv2d_7 (Conv2D)	(None, 210, 240, 16)	4624							
dropout_5 (Dropout)	(None, 210, 240, 16)	0							
max_pooling2d_2 (MaxPooling 2D)	(None, 42, 48, 16)	0							
conv2d_8 (Conv2D)	(None, 42, 48, 16)	2320							
dropout_6 (Dropout)	(None, 42, 48, 16)	0							
conv2d_9 (Conv2D)	(None, 42, 48, 16)	2320							
dropout_7 (Dropout)	(None, 42, 48, 16)	0							
conv2d_10 (Conv2D)	(None, 42, 48, 16)	2320							
dropout_8 (Dropout)	(None, 42, 48, 16)	0							
max_pooling2d_3 (MaxPooling 2D)	(None, 14, 16, 16)	0							
conv2d_11 (Conv2D)	(None, 14, 16, 32)	4640							
dropout_9 (Dropout)	(None, 14, 16, 32)	0							
flatten_1 (Flatten)	(None, 7168)	0							
dense_1 (Dense)	(None, 8)	57352							
Total params: 73,704 Trainable params: 73,704									

```
loss='categorical_crossentropy'
optimizer = Adam(learning_rate = 0.001),
metrics=['accuracy'])
batch_size = 16, epochs = 50
```

CNN network: A model with accuracy of roughly 60 percent.

3 independent runs of the classifier, obtaining **a test accuracy of more than 60 percent**. Stabilize below 70 percent as training budgets increase. Unstable predicting correctness for now.

Visualizing the boundary: Pattern within chaos

Visualizing the boundary: Pattern within chaos

Confusion matrix: How's prediction going?

Surprise and calm are most likely to be correctly identified. Fear and disgust are most likely to be misinterpreted.

neutra	10	4	1	1	0	0	0	0	16		-0.7	
caln	n 2	27	1	3	0	2	1	0	36		-0.6	
happy	у 0	3	20	1	1	1	1	1	28		-0.5	
se sa	d 3	3	2	18	0	2	2	2	32			
Actual Values tea	у 0	0	3	0	29	3	3	2	40		bercentage	
ACT fea	r 0	5	10	4	0	30	3	6	58		-0.3	
disgus	t 2	1	2	4	7	2	26	2	46		-0.2	
surprise	e 2	0	5	0	0	1	0	24	32		-0.1	
Tota	al 19	43	44	31	37	41	36	37	288			
	neutral	calm	happy	sad	angry	fear	disgust	surprise	Total		-0.0	
	Predicted Values											

Confusion matrix: How's prediction going?

Fear may sound like happy, but happy sounds unlikely to be fear. The classifier have a tendency for being happy and not being fearful.

Conclusions

- Extract features from audio speech to MFCC spectrogram.
- A CNN model that makes prediction on emotions.

Future Works

- Fine-Tune the CNN model.
- Finish the real-time prediction Interface.
- Test the emotion classification performance of the model on other languages.

Thanks for Listening!

Emotions within speech

Unearth the hidden language

Lin He , Ruilin Ma 6th, Dec., 2022