Due by 11:59pm on May 6th.

- Your answers should be neatly written and logically organized.
- Do your best to solve these problems by yourself, but ask for help from others if you're stuck. Asking for help is usually a good move with research problems!
- *The solutions you turn in should be your own.*
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

ESSAY QUESTION

Using examples from class (or elsewhere), write 1-2 pages of TEX* to argue for or against the following claim: Spectra are more fundamental to algebraic topology than spaces.

Cite any resources you use.

PROBLEMS

Answer 3 out of the following 5 problems.

- (1) Define a category $\mathbb{Z}p$ of "zpectra" whose objects are \mathbb{Z} -indexed sequences of spaces $\{X_n\}_{n\in\mathbb{Z}}$ together with structure maps $\sigma_i \colon \Sigma X_i \to X_{i+1}$ for all $i \in \mathbb{Z}$. A morphism of zpectra $f \colon X \to Y$ is a sequence of continuous maps $f_i \colon X_i \to Y_i$ that commute with the structure maps of X and Y.
 - The ztable homotopy groups of a zpectrum X are defined by $\pi_k X := \operatorname{colim}_{n \in \mathbb{Z}} \pi_{n+k} X_n$. A ztable equivalence of zpectra is a map that induces isomorphisms on stable homotopy groups.
 - Prove that the homotopy category of zpectra and ztable equivalences is equivalent to ho(Sp).
- (2) Let $X \xrightarrow{f} Y \to Z$ be a cofiber sequence such that f is zero in ho($\mathbb{S}p$). Show that $Z \simeq Y \vee \Sigma X$.
- (3) Let $\widehat{\operatorname{Sp}}$ be any symmetric monoidal category of spectra. Given a spectrum X, define $T(X) := \bigvee_{n \geq 0} X^{\wedge n}$.
 - (a) Prove that T(X) is an associative ring spectrum.
 - (b) Prove that the functor $T: \widehat{\mathfrak{Sp}} \to Mon(\widehat{\mathfrak{Sp}})$ is left adjoint to the forgetful functor $U: Mon(\widehat{\mathfrak{Sp}}) \to \widehat{\mathfrak{Sp}}$, where $Mon(\widehat{\mathfrak{Sp}})$ is the category of monoids in $\widehat{\mathfrak{Sp}}$, i.e. associative ring spectra.
- (4) Let X be a symmetric spectrum. Recall that the symmetric spectrum $\operatorname{sh}^1 X$ is the symmetric spectrum with $(\operatorname{sh}^1 X)_n = X_{1+n}$, where Σ_n acts on X_{1+n} as the subgroup of Σ_{1+n} consisting of those permutations of $\{1,\ldots,n+1\}$ leaving 1 fixed.
 - (a) Construct a symmetric spectrum (sh^{-1} X) with n-th space $(\Sigma_n)_+ \wedge_{\Sigma_{n-1}} X_{n-1}$.
 - (b) Show that sh^{-1} is a functor on symmetric spectra which is left adjoint to sh^{1} .
- (5) If R is a commutative ring spectrum and $x \in \pi_n R$, let $R[x^{-1}]$ be the homotopy colimit of

$$R \xrightarrow{x} \Sigma^{-n} R \xrightarrow{x} \Sigma^{-2n} R \xrightarrow{x} \cdots$$

where by abuse of notation we write $x : \Sigma^n R \to R$ for any suspension/desuspension of the map

$$\Sigma^{n}R = S^{n} \wedge R \xrightarrow{x \wedge id_{R}} R \wedge R \xrightarrow{\mu} R.$$

Show that $\pi_*(R[x^{-1}]) = (\pi_*R)[x^{-1}].$

^{*}Or 1-2 pages single spaced in a word processor, about 500-1000 words. I am not a stickler for essay length.

REFERENCES

- [HHR16] Michael Hill, Michael Hopkins, and Douglas Ravenel. On the nonexistence of elements of Kervaire invariant one. *Ann. of Math.* (2), 184(1):1–262, 2016.
- [Sch07] Stefan Schwede. An untitled book project about symmetric spectra. http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf, 2007.