UNIVERSITY OF PITTSBURGH INFRASTRUCTURE SENSING

COLLABORATION WORKSHOP

H₂ Sensing with an Optical Fiber Sensor in the Subsurface H₂ Storage Conditions

Daejin Kim^{1,2}, Alexander Shumski^{1,2}, Kara Tinker^{1,2}, Djuna Gulliver¹, Ruishu Wright¹ (¹National Energy Technology Laboratory; ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA)

Subsurface Hydrogen Storage Monitoring H₂ concentration to ensure the integrity and safety of subsurface H₂ storages reservoirs (~100% RH) temperature Three different types of underground gas storage 438542 Salt Formations e.g. Less than 50% of Capacity of Marlin Field in AU 100 TWh H₂ Storage 388 Salt Caverns **Tanks** @200 bar and 60° C @1 bar and 20° 35845000 m³ Liquid H₂ (energyinfrastructure.org) require to store 100 TWh of **Subsurface Sensor Development Reactor (SSDR)** Automation with LabView Multimode Fiber Coreless Fiber Multimode Fiber (10 cm) • High-Temperature High-Pressure: H₂ sensor 450 °C, 4500 psi Experimental conditions: • Multi-phase: aqueous, gas installed inside the vessel ~ 80 °C, 1000 psi, 99% RH • **Gas**: **H₂**, CO₂, **CH₄**, N₂, Air

• The H₂ concentration has decreased more with the biotic sample than the abiotic sample.

the subsurface storage environment.

future.

• The H₂ sensing responses indicate that H₂ is consumed with both abiotic and biotic samples under

Repeatability of hydrogen sensing at different temperature and pressure will be carried out in near