Aidan Mokalla

MATH 112: Introduction to Analysis

Fall 2023 Semester

Homework 8: Due Monday December 04, 11:00pm PST.

Instructions

- Write your full name, "Homework 8", and the date at the top of the first page.
- Show all work and explain your reasoning. Write in complete sentences.
- Typeset your solutions in LaTeX.
- Submit a single .pdf file to Gradescope under the assignment "Homework 8".
- You must use Gradescope to electronically match problems to pages in your .pdf
- Questions? Email me or come to office hours.
- You are strongly encouraged to work together! Just write up your own solutions.

Assignment (4 Problems: 25 + 25 + 25 + 25 = 100 points total.)

□ **Problem 1** [Series] Determine if the given series converges or not. Give a proof.

PS: I know we did some of these a specific way in class, which I am not.

• 1.1 [5 points] $\sum_{k=0}^{\infty} \frac{4k}{k+1}$

We know that for two series a_k and b_k with positive terms, if $\lim_{k\to\infty} \frac{a_k}{b_k} = c$ where c is a finite rational and c > 0 (i.e., $b_k \in \Theta(a_k)$), then either both series converge or both diverge.

Let's compare the given series with $\sum_{k=1}^{\infty} \frac{4k}{k} = \sum_{k=1}^{\infty} 4$. Let:

$$a_k := \frac{4k}{k+1}$$
 and $b_k := 4$

Calculating the limit of $\frac{a_k}{b_k}$:

$$\lim_{k \to \infty} \frac{\frac{4k}{k+1}}{4} = \lim_{k \to \infty} \frac{k}{k+1}$$

$$= \lim_{k \to \infty} \frac{1}{1 + \frac{1}{k}}$$

$$=\lim_{k\to\infty}(\frac{1}{1}+\frac{1}{k})$$

$$= \lim_{k \to \infty} \frac{1}{1} + \lim_{k \to \infty} \frac{1}{k} = 1$$

Therefore, since this limit is a finite and greater than 0, and the series $\sum_{k=1}^{\infty} 4$ diverges, the given series $\sum_{k=0}^{\infty} \frac{4k}{k+1}$ also diverges.

• 1.2 [5 points] $\sum_{k=0}^{\infty} \frac{4^k}{k!}$

Consider the exponential series $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. This series converges for all real values of x. Specifically, for x=4, the series becomes $\sum_{k=0}^{\infty} \frac{4^k}{k!}$, which is the series in question.

Our test from before states that for two series a_k and b_k where $0 \le a_k \le b_k$ for all $k \ge n_0$ for some $n_0 \in \mathbb{Z}_+$, if b_k converges, then a_k also converges.

Here, the series $\sum_{k=0}^{\infty} \frac{4^k}{k!}$ is non-negative and is the series for e^4 , which we know to converge.¹ Therefore, by our test, our series $\sum_{k=0}^{\infty} \frac{4^k}{k!}$ converges.

• 1.3 [5 points] $\sum_{k=0}^{\infty} \frac{(\mathbf{i}\pi)^k}{k!}$ where $\mathbf{i} \in \mathbb{C}$ is the imaginary unit and $\pi \in \mathbb{R}$.

Like before, this series represents the exponential function for the complex number $i\pi$: The exponential function is defined as $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$. For our series, $z = i\pi$.

We know that a series a_k converges absolutely if the series of the absolute values of its terms, $\sum |a_k|$, converges.

For $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$, let z = a + bi be a complex number, where $a, b \in \mathbb{R}$. The absolute value of the term is $|\frac{z^k}{k!}|$. The magnitude of z = a + bi is $|z| = \sqrt{a^2 + b^2}$. Thus, the absolute value of the k-th term is:

$$\left| \frac{z^k}{k!} \right| = \frac{|z|^k}{k!}$$

We compare this with $\sum_{k=0}^{\infty} \frac{|z|^k}{k!}$, which is $e^{|z|}$. Since $e^{|z|}$ converges for real |z|, this series converges. Since $e^{|z|}$ converges and bounds the terms $\frac{z^k}{k!}$ in magnitude, by comparison, the series $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ converges absolutely for all complex numbers z.

We know that the exponential function e^z converges absolutely for all complex numbers z. Therefore, the series $\sum_{k=0}^{\infty} \frac{(i\pi)^k}{k!}$ converges.

• 1.4 [10 points] $\sum_{\ell=0}^{\infty} (-1)^{\ell} \frac{x^{2\ell}}{(2\ell)!}$ where $x \in \mathbb{R}$ satisfies $|x| \le 112$.

We again consider absolute convergence. The absolute value of the ℓ -th term of our series is:

¹A more general proof of this is given later.

$$\left| (-1)^{\ell} \frac{x^{2\ell}}{(2\ell)!} \right| = \frac{|x|^{2\ell}}{(2\ell)!}.$$

The series $\sum_{\ell=0}^{\infty} \frac{|x|^{2\ell}}{(2\ell)!}$ corresponds to the series for $e^{|x|^2}$, which converges for all real numbers, including $|x| \leq 112$.

Since $\sum_{\ell=0}^{\infty} \frac{|x|^{2\ell}}{(2\ell)!}$ converges and bounds the terms of our original series in magnitude, by comparison, the series $\sum_{\ell=0}^{\infty} (-1)^{\ell} \frac{x^{2\ell}}{(2\ell)!}$ converges absolutely for all $x \in \mathbb{R}$ with $|x| \leq 112$.

 \square **Problem 2** [Calculus] Consider the function $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ defined by

$$f(x) = \frac{1}{1-x}.$$

In each problem below, show your work and cite results from MATH 111 Calculus as needed.

• 2.1 [5 points] Calculate f'(x) and f'(5).

To find the derivative f'(x) of the function $f(x) = \frac{1}{1-x}$, we rewrite f(x) as $f(x) = (1-x)^{-1}$ and use the power rule for differentiation. Applying the power rule, which states that if $g(x) = x^n \Rightarrow g'(x) = nx^{n-1}$, we get:

$$f'(x) = \frac{d}{dx}(1-x)^{-1} = -1 \cdot (1-x)^{-2} \cdot (-1)$$
$$f'(x) = (1-x)^{-2}$$

Substitute x = 5 into f'(x):

$$f'(5) = (1-5)^{-2} = (-4)^{-2}$$
$$f'(5) = \frac{1}{16}$$

So,
$$f'(x)$$
 of $f(x) = \frac{1}{1-x}$ is $(1-x)^{-2}$, and $f'(5) = \frac{1}{16}$.

• 2.2 [5 points] Calculate f''(x) and f''(-1).

To find the second derivative, we differentiate the first derivative $f'(x) = (1-x)^{-2}$ again. Applying the power rule and the chain rule, we get:

$$f''(x) = \frac{d}{dx}[(1-x)^{-2}] = -2(1-x)^{-3} \cdot (-1)$$
$$f''(x) = 2(1-x)^{-3}$$

Substitute x = -1 into f''(x):

$$f''(-1) = 2(1 - (-1))^{-3} = 2(2)^{-3}$$
$$f''(-1) = \frac{2}{8} = \frac{1}{4}$$

So,
$$f''(x)$$
 of $f(x) = \frac{1}{1-x}$ is $2(1-x)^{-3}$, and $f''(-1) = \frac{1}{4}$.

• 2.3 [5 points] Calculate $f^{(k)}(x)$ and $f^{(k)}(0)$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

$$k = 0$$

$$- f^{(0)}(x) = f(x) = \frac{1}{1-x}$$

$$- f^{(0)}(0) = \frac{1}{1-0} = 1$$

$$k = 1$$

$$- f^{(1)}(x) = f'(x) = (1-x)^{-2}$$

$$- f^{(1)}(0) = (1-0)^{-2} = 1$$

$$k = 2$$

$$- f^{(2)}(x) = f''(x) = 2(1-x)^{-3}$$

$$- f^{(2)}(0) = 2(1-0)^{-3} = 2$$

$$k = 3$$

$$- f^{(3)}(x) = 6(1-x)^{-4}$$

$$- f^{(3)}(0) = 6(1-0)^{-4} = 6$$

$$k = 4$$

$$- f^{(4)}(x) = 24(1-x)^{-5}$$

$$- f^{(4)}(0) = 24(1-0)^{-5} = 24$$

$$k = 5$$

$$- f^{(5)}(x) = 120(1-x)^{-6}$$

$$- f^{(5)}(0) = 120(1-0)^{-6} = 120$$

• 2.4 [5 points] Propose an explicit formula for $f^{(k)}(x)$ in terms of x and k, then prove that your formula is correct for all $k \in \mathbb{N}$ by induction.

In general, $f^{(k)}(x)$ seems to be:

$$f^{(k)}(x) = k!(1-x)^{-(k+1)},$$

which is consistent with the specific values we calculated for $k \in \{0, 1, 2, 3, 4, 5\}$.

Base Case (k = 1):

We know that $f'(x) = (1-x)^{-2}$. This can be rewritten as $1! \cdot (1-x)^{-2}$, since 1! = 1. Thus, the formula holds for k = 1.

Inductive Step:

Assume the formula holds for some k = n: that $f^{(n)}(x) = n! \cdot (1-x)^{-(n+1)}$. We need to show that $f^{(n+1)}(x) = (n+1)! \cdot (1-x)^{-((n+1)+1)}$.

Differentiate $f^{(n)}(x)$ to get $f^{(n+1)}(x)$:

$$f^{(n+1)}(x) = \frac{d}{dx} [n! \cdot (1-x)^{-(n+1)}]$$

$$= n! \cdot \frac{d}{dx} [(1-x)^{-(n+1)}]$$

$$= n! \cdot (-(n+1)) \cdot (1-x)^{-(n+2)} \cdot (-1)$$

$$= n! \cdot (n+1) \cdot (1-x)^{-(n+2)}$$

$$= (n+1)! \cdot (1-x)^{-(n+2)}$$

Therefore, by induction, the formula $f^{(k)}(x) = k! \cdot (1-x)^{-(k+1)}$ is true for all $k \in \mathbb{N}_{\geq 1}$.

• 2.5 [5 points] Find $\varepsilon > 0$ so $f(0.8) \approx_{\varepsilon} \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} (0.8)^{k}$. Recall \approx_{ε} from Midterm 2.

We'll nominate $\varepsilon := 1.7 \in \mathbb{R}$.

We must then show that $|f(0.8) - \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} (0.8)^k < \varepsilon|$. Starting on the LHS:

$$|f(0.8) - \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} (0.8)^{k}| = \left| \frac{1}{1 - 0.8} - \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} (0.8)^{k} \right|$$
$$= \left| \frac{1}{0.2} - \sum_{k=0}^{4} \frac{k! \cdot (1 - 0)^{-(k+1)}}{k!} (0.8)^{k} \right|$$
$$= \left| 5 - \sum_{k=0}^{4} \frac{k! \cdot 1^{-(k+1)}}{k!} (0.8)^{k} \right|$$

Which we can expand to

$$= \left| 5 - \left(\frac{0! \cdot 1^{-(0+1)}}{0!} (0.8)^0 + \frac{1! \cdot 1^{-(1+1)}}{1!} (0.8)^1 + \frac{2! \cdot 1^{-(2+1)}}{2!} (0.8)^2 + \frac{3! \cdot 1^{-(3+1)}}{3!} (0.8)^3 + \frac{4! \cdot 1^{-(4+1)}}{4!} (0.8)^4 \right) \right|$$

$$= \left| 5 - \left(1 + 1^{-2} (0.8) + \frac{2 \cdot 1^{-(3)}}{2} (0.8)^2 + \frac{6 \cdot 1^{-(4)}}{6} (0.8)^3 + \frac{24 \cdot 1^{-(5)}}{24} (0.8)^4 \right) \right|$$

$$= \left| 5 - \left(1 + 0.8 + \frac{2}{2} (0.8)^2 + \frac{6}{6} (0.8)^3 + \frac{24}{24} (0.8)^4 \right) \right|$$

$$= \left| 4 - \left((0.8)^1 + (0.8)^2 + (0.8)^3 + (0.8)^4 \right) \right|$$

Computing this, we find the above value to be less than $1.7 \in \mathbb{R}$, which allows us to conclude that

$$=|f(0.8)-\sum_{k=0}^{4}\frac{f^{(k)}(0)}{k!}(0.8)^{k}|<1.7=\varepsilon,$$

which completes our proof that
$$\boxed{\text{for } \varepsilon = 1.7 \in \mathbb{R}, f(0.8) \approx_{\varepsilon} \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} (0.8)^{k}.}$$

□ **Problem 3** [Limits, Continuity, and Calculus] In L23, we defined the *limit* of a function. In this last week of MATH 112, we engage with this definition for three reasons:

- (A) To gain further practice with nested quantifiers, implications, inequalities, and absolute values four central topics in MATH 112 as review for the final.
- (B) To define *continuity* and *differentiability* of functions (supplementary reading L23) seen previously in MATH 111 without invoking the existence of infinitesimals "dx". In L10 we saw that infinitesimals do not exist in any Archimedean ordered field!
- (C) To better appreciate the analogous logical formulation of a limit of a sequence L15.

Recall from L23: given any function $f:\Omega\to\mathbb{C}$, we say that $\lim_{x\to x_0}f(x)=L$ if

$$\forall \varepsilon \in \mathbb{R}_+ \ \exists \delta \in \mathbb{R}_+ \ \forall x \in \Omega \ \left((0 < |x - x_0| < \delta) \ \Rightarrow \ (|f(x) - L| < \varepsilon) \right)$$

• 3.1 [15 points] Prove that if f(x) = 5x - 2 then $\lim_{x \to 1} f(x) = 3$ is true.

Consider |f(x) - 3|:

$$|f(x) - 3| = |(5x - 2) - 3| = |5x - 5| = 5|x - 1|$$

We want $5|x-1| < \varepsilon$. Rearrange this:

$$5|x-1| < \varepsilon \Rightarrow |x-1| < \frac{\varepsilon}{5}$$

Define δ in terms of ε :

$$\delta = \frac{\varepsilon}{5}$$

With this δ , if $0 < |x - 1| < \delta$, then:

$$5|x-1| < \varepsilon \Rightarrow |(5x-2)-3| < \varepsilon$$

Therefore, $\lim_{x\to 1} f(x) = 3$ for f(x) = 5x - 2.

• 3.2 [10 points] Prove that if f(x) = 5x - 2 then $\lim_{x \to 1} f(x) = 11$ is false.

We need to find an $\varepsilon > 0$ such that for any $\delta > 0$, there exists some x with $0 < |x - 1| < \delta$ and $|f(x) - 11| \ge \varepsilon$. First, evaluate f(1):

$$f(1) = 5 \cdot 1 - 2 = 3$$

Choose ε smaller than the difference between 11 and f(1). Take $\varepsilon = \frac{1}{2}|11 - 3| = 4$. Consider any $\delta > 0$ and choose x = 1. For this x, $0 < |x - 1| < \delta$ but |f(x) - 11| = |3 - 11| = 8, which is greater than $\varepsilon = 4$.

Since an $\varepsilon > 0$ exists (here, 4) for which no $\delta > 0$ can satisfy the limit condition, the statement $\lim_{x\to 1} f(x) = 11$ is false.

 \square **Problem 4** [Taylor Approximation] Suppose that $f: \Omega \to \mathbb{R}$ is a function with domain $\Omega \subseteq \mathbb{R}$. Fix $x_0 \in \Omega$. The n^{th} Taylor polynomial approximation of f near x_0 is the polynomial

$$Tay_{n,f,x_0}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

For example, in Problem 2.5 above, we consider the function $f: \Omega \to \mathbb{R}$ defined on the domain $\Omega = \mathbb{R} \setminus \{1\}$ by the formula $f(x) = \frac{1}{1-x}$, then found that the 4^{th} Taylor polynomial approximation of f near $x_0 = 0$ is the quartic polynomial $\text{Tay}_{4,f,x_0}(x) = 1 + x + x^2 + x^3 + x^4$. In L24, we will briefly encounter the statement of Taylor's theorem with remainder which quantifies how good of a job these Taylor polynomials do in approximating f near x_0 .

For each given $n \in \mathbb{N}$, each formula defining a function $f : \mathbb{R} \to \mathbb{R}$, and each $x_0 \in \mathbb{R}$ below, calculate $\text{Tay}_{n,f,x_0}(x)$ using your background from MATH 111.

• 4.1 [5 points] n = 2, $f(x) = 1 + x^2 - x^3$, $x_0 = 0$

f(x) and its derivatives:

1.
$$f(x) = 1 + x^2 - x^3$$

2.
$$f'(x) = 2x - 3x^2$$

3.
$$f''(x) = 2 - 6x$$

The derivatives at $x_0 = 0$:

1.
$$f(0) = 1$$

2.
$$f'(0) = 2 \cdot 0 - 3 \cdot 0^2 = 0$$

3.
$$f''(0) = 2 - 6 \cdot 0 = 2$$

Plugging these values into the Taylor polynomial formula for n=2:

$$Tay_{2,f,0}(x) = \frac{f(0)}{0!}x^0 + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!}x^2$$

$$Tay_{2,f,0}(x) = 1 + 0 \cdot x + \frac{2}{2}x^2$$

$$Tay_{2,f,0}(x) = 1 + x^2$$

Thus, the 2^{nd} Taylor polynomial approximation of $f(x) = 1 + x^2 - x^3$ near $x_0 = 0$ is $\text{Tay}_{2,f,0}(x) = 1 + x^2$.

• 4.2 [5 points] n = 2, $f(x) = 1 + x^2 - x^3$, $x_0 = 1$

f(x) and its derivatives:

1.
$$f(x) = 1 + x^2 - x^3$$

2.
$$f'(x) = 2x - 3x^2$$

3.
$$f''(x) = 2 - 6x$$

The derivatives at $x_0 = 1$:

1.
$$f(1) = 1$$

2.
$$f'(1) = -1$$

3.
$$f''(1) = -4$$

Plug these values into the formula for n=2:

$$Tay_{2,f,1}(x) = \frac{f(1)}{0!}(x-1)^0 + \frac{f'(1)}{1!}(x-1)^1 + \frac{f''(1)}{2!}(x-1)^2$$

$$Tay_{2,f,1}(x) = 1 - (x-1) - 2(x^2 - 2x + 1)$$

$$Tay_{2,f,1}(x) = -2x^2 + 3x$$

Thus, the 2^{nd} Taylor polynomial approximation of $f(x) = 1 + x^2 - x^3$ near $x_0 = 1$ is $\text{Tay}_{2,f,1}(x) = -2x^2 + 3x$.

• 4.3 [5 points] n = 3, $f(x) = e^x$, $x_0 = 0$

Since $f(x) = e^x$, all derivatives are also e^x . Thus:

1.
$$f(x) = e^x$$

2.
$$f'(x) = e^x$$

3.
$$f''(x) = e^x$$

$$4. f'''(x) = e^x$$

All derivatives at x = 0 are $e^0 = 1$:

1.
$$f(0) = 1$$

2.
$$f'(0) = 1$$

3.
$$f''(0) = 1$$

4.
$$f'''(0) = 1$$

Plug these values into the formula for n = 3:

$$Tay_{3,f,0}(x) = \sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}$$

$$Tay_{3,f,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

Thus, the 3^{rd} Taylor polynomial approximation of $f(x) = e^x$ near $x_0 = 0$ is Tay_{3,f,0}(x) = $1 + x + \frac{x^2}{2} + \frac{x^3}{6}.$

• 4.4 [5 points] n = 4, $f(x) = \cos x$, $x_0 = 0$

f(x) and its derivatives:

- 1. $f(x) = \cos x$
- 2. $f'(x) = -\sin x$
- 3. $f''(x) = -\cos x$
- 4. $f'''(x) = \sin x$ 5. $f^{(4)}(x) = \cos x$

The derivatives at $x_0 = 0$:

- 1. f(0) = 1
- 2. f'(0) = 0
- 3. f''(0) = -1
- 4. f'''(0) = 0
- 5. $f^{(4)}(0) = 1$

Plug these values into the formula for n = 4:

$$Tay_{4,f,0}(x) = \sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} x^k$$

$$Tay_{4,f,0}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

Thus, the 4th Taylor polynomial approximation of $f(x) = \cos x$ near $x_0 = 0$ is $\text{Tay}_{4,f,0}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$.

• 4.5 [5 points] n = 4, $f(x) = \frac{1}{112-x}$, $x_0 = 0$

f(x) and its derivatives:

1.
$$f(x) = \frac{1}{112-x}$$

2.
$$f'(x) = \frac{1}{(112-x)^2}$$

3.
$$f''(x) = \frac{2}{(112-x)^3}$$

4.
$$f'''(x) = \frac{6}{(112-x)^4}$$

1.
$$f(x) = \frac{1}{112-x}$$

2. $f'(x) = \frac{1}{(112-x)^2}$
3. $f''(x) = \frac{2}{(112-x)^3}$
4. $f'''(x) = \frac{6}{(112-x)^4}$
5. $f^{(4)}(x) = \frac{24}{(112-x)^5}$

The derivatives at $x_0 = 0$:

1.
$$f(0) = \frac{1}{112}$$

2.
$$f'(0) = \frac{1}{112^2}$$

3.
$$f''(0) = \frac{2}{112^3}$$

1.
$$f(0) = \frac{1}{112}$$

2. $f'(0) = \frac{1}{112^2}$
3. $f''(0) = \frac{2}{112^3}$
4. $f'''(0) = \frac{6}{112^4}$
5. $f^{(4)}(0) = \frac{24}{112^5}$

5.
$$f^{(4)}(0) = \frac{24}{112^5}$$

Plug these values into the formula for n=4:

$$Tay_{4,f,0}(x) = \frac{1}{112} + \frac{1}{112^2}x + \frac{1}{112^3}x^2 + \frac{1}{112^4}x^3 + \frac{1}{112^5}x^4$$

Thus, the 4th Taylor polynomial approximation of $f(x) = \frac{1}{112-x}$ near $x_0 = 0$ is $\text{Tay}_{4,f,0}(x) = \frac{1}{112} + \frac{1}{112^2}x + \frac{1}{112^3}x^2 + \frac{1}{112^4}x^3 + \frac{1}{112^5}x^4$.