Protein Synthesis and Gene Finding

Day 2

Bio Crash Course: DNA

Photo 51: X-ray diffraction created by Raymond Gosling under the supervision of Rosalind Franklin May, 1952

Double Helix Structure: Watson and Crick

DNA and the Central Dogma

The blueprints for making all the proteins necessary for life are contained within DNA.

Or, more succinctly: DNA Makes RNA, RNA makes Protein

Proteins

Proteins are chains of Amino Acids

Aside: Protein Secondary Structure Prediction

Goal: find the lowest energy configuration of an amino acid chain

Unfortunately this problem is hard!

How hard is it?

This hard: http://www.cs.berkeley.edu/~christos/hp.ps

Fold-it: a gameified approach to computing this structure

Proteinogenic Amino Acids

http://en.wikipedia.org/wiki/Amino_acid

DNA and Protein Synthesis

- **Stage 1:** an enzyme "decides" that it is time to synthesize a protein (epigenetics)
- Stage 2: DNA is unzipped and paired with a complementary strand of RNA (transcription)
- Stage 3: tRNA attaches amino acids to complementary segments of RNA (translation)

Protein Synthesis Detailed Example

Quick Aside: 5' vs. 3'

Protein Synthesis Step 1: Transcription Initiation

Protein Synthesis Step 2: Messenger RNA Attaches

Protein Synthesis Step 3: Messenger RNA Breaks Away

5' - AUGUUCCUGAUGUAAUU - 3'

Protein Synthesis Step 4: Amino Acid Chain Forms

Protein Synthesis Some things to Notice

DNA Codon Table

Standard genetic code

Standard genetic code									
1st	2nd base								3rd
base		Т		С		A		G	
т	TTT	(Phe/F) Phenylalanine	тст	(Ser/S) Serine	TAT	(Tyr/Y) Tyrosine	TGT	(Cyc/C) Cyctoine	Т
	TTC		TCC		TAC		TGC	(Cys/C) Cysteine	С
	TTA	- (Leu/L) Leucine	TCA		TAA	Stop (Ochre)	TGA	Stop (Opal)	A
	TTG		TCG		TAG	Stop (Amber)	TGG	(Trp/W) Tryptophan	G
С	СТТ		ССТ	(Pro/P) Proline	CAT	(His/H) Histidine	CGT		Т
	СТС		ccc		CAC		CGC	(Arg/R) Arginine	С
	СТА		CCA		CAA	(Gln/Q) Glutamine	CGA		Α
	ста		CCG		CAG		CGG		G
A	ATT	(Ile/I) Isoleucine	ACT	(Thr/T) Threonine	AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	Т
	ATC		ACC		AAC		AGC		С
	ATA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	Α
	ATG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G
G	GTT	(Val/V) Valine	GCT	(Ala/A) Alanine	GAT	(Asp/D) Aspartic acid	GGT		Т
	GTC		GCC		GAC		GGC	(Glv/G) Glycine	С
	GTA		GCA		GAA	(Glu/E) Glutamic acid	GGA		Α
	GTG		GCG		GAG		GGG		G

This code is read from 5' to 3' on the DNA strand

Mini-Project: Gene Finder!

- Create a python program that performs ab initio gene finding by
 - Determining which DNA segments likely code for proteins
 - Outputting the amino acid sequences coded by these regions of DNA
- Run these amino acid sequences through a search engine to determine their function!

Ab-Initio Gene Finding Strategy

- Tell-tale marker: suspiciously long ORFs
- Suspicious is defined as being improbable to find in non-coding DNA

Q: How can we possibly compute the probability of finding an ORF of a particular length in non-coding DNA?

(part of) Next time

Joanne Pratt will guest lecture on a genetic search engine called BLAST (and its uses) as well as the role of BLAST in studying pathogenesis.