MAT 3005 Applied Numerical Methods

Digital Assignment

Answer all the questions

Instructions: Write the solution in your note book and get signature from the faculty. After verification, upload the pdf copy in VTOP.

1. Find f(x) as a polynomial in x for the following data by Newton's divided difference formula

х	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

- 2. Using Lagrange interpolation, find the unique polynomial P(x) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 64.
- 3. Using Newton's divided difference method, find f(1.5) using the data f(1.0) = 0.7651977, f(1.3) = 0.6200860, f(1.6) = 0.4554022, f(1.9) = 0.2818186, and f(2.2) = 0.1103623.
- 4. Obtain the cubic spline approximation valid in the interval [1, 2], for the function given in the tabular form, under the natural cubic spline conditions

$$f''(0) = M(0) = 0$$
, and $f''(3) = M(3) = 0$. Hence, interpolate at $x = 1.5$.

х	0	1	2	3
f(x)	1	4	10	8

- $f(x) \qquad 1 \qquad 4 \qquad 10 \qquad 8$ 5. Evaluate $\int_0^2 e^x dx$ using the Simpson's rules with h = 1 and h = 1/2. Compare with exact solution. Improve the result using Romberg integration.
- 6. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ (i) trapezoidal rule, (ii) Simpson's rule. Also, check the result by actual
- 7. Evaluate the integral $I = \int_1^2 \frac{2x}{1+x^4} dx$ using Gauss two point and three point rules. Compare with the exact solution $I = tan^{-1}(4) - (\pi/4)$.
- 8. Given $y' = x^3 + y$, y(0) = 2, compute y(0.2), y(0.4) and y(0.6) using the Runge-Kutta method of fourth order.

- 9. Obtain the solution by the fourth order Runge-Kutta method y'' + y' + y = 0, y(0) = 1, y'(0) = 0, find the value of y(0.1).
- 10. Using the Adams-Bashforth predictor-corrector equations, evaluate y(1.4), if y satisfies $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.