An intermezzo on cones

To a lattice $N \simeq \mathbb{Z}^n$ we associate a real sector space $N_R = N \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}^n$. The dual rector space $M_R \simeq \operatorname{Hom}_R(N_R, R) \simeq \operatorname{M} \otimes_{\mathbb{Z}} \mathbb{R}$ comes from the dual lattice $M = \operatorname{Hom}_Z(N, \mathbb{Z})$.

A convex polyhedral cone (CPC) in $N_{\rm IR}$ is a set of the form

 $\sigma = \text{cone}(S) = \left\{ \underbrace{S'}_{n \in S} \lambda_n u \mid \lambda_n \in \mathbb{R}_{\geq 0} \right\} \subset \mathbb{N}_{\mathbb{R}},$ where (S) C No is a faite subset.

where SCNR is a finite subset.

A CPC σ is rational if σ = cone (S) for SCN.

(finite)

Given a CPC σ C N_R , its dual cone is $\sigma' = \int m \in M_R \mid \langle m, u \rangle \geqslant_0 \quad \text{for all } u \in \sigma \rangle$ $\text{FACT: } \sigma' \text{ is a CPC and } (\sigma')' = \sigma.$

Let $H_m = \{u \in N_R \mid \langle m, u \rangle = 0 \} \subset N_R$, $H_m^+ = \{u \in N_R \mid \langle m, u \rangle \geqslant 0 \} \subset N_R$.

A face τ of τ is given by $\tau = \sigma \cap H_m$ for some $m \in \sigma^\vee$.

We write $\tau \preceq \sigma$ and $\tau \prec \sigma$ if $\tau \neq \sigma$.

If $\{m_1, ..., m_s\} \subset M$ generate σ^v , then $\sigma = H_{m_1}^+ \cap \cdots \cap H_{m_s}^+$, and vice versa.

- · facer are CPCs
- てくて、t'くて ⇒ てハでくくで
- てろか、でくて ⇒ でとか
- If TST, N, W GT, Hen U+W GT → NET and W GT.
- · there is a bijective, inclusion-reversing correspondence between faces of σ and face of σ' :

A CPC is strongly convex if $\{0\}$ is a face of σ . Equivalently $\sigma((-\sigma)) = \{0\}$, or dum $\sigma' = n$. A national CPC (RCPC) in N_R is smooth if its minimal generators form part of a \mathbb{Z} -basis of \mathbb{N} .

A RCPC in Np is sumplicial if its minimal generators are R- briarly independent.

(obviously: smooth => simplicial)

Examples: all 2-dim cones are simplicial.

is not smooth, is.

• (one $\{(1,0,0),(0,1,0),(1,0,1),(0,1,0)\}$) is not simplicial.

1.5 Cones and affine tonic varieties

Let σ be a RCPC. Consider the semigroup $S_{\sigma} = \sigma^{\vee} \cap M \subseteq M$

Yordan's lemma: So is affire.

Theorem: Let o C No be a RCPC with simigroup So = ornM. Then Mr = Specm (C[So]) = Spec (C[o'nM]) is an affine toric variety. Furthermore, No C dim Up = n (=> the deax bours of Up is Tw <=> of is strongly convex. proof: The first statement is obvious. We also know that dim Nor = rank ZSor. The key is to show name $\mathbb{Z}S_{\sigma} = n \iff \mathbb{Z}S_{\sigma} = M$ <=> o strongly convex 10 Example: $\sigma = (one(e_1, ..., e_n) \subset \mathbb{R}^n, r \leqslant n.$ then $\sigma' = \text{Cone}(e_1, ..., e_{\lambda_1}, \pm e_{\lambda_{+1}}, ..., \pm e_{\lambda_n})$ and Mr = Speck C[x1,...,x1,x1, x1, x1] $= \mathbb{C}^{n} \times \mathbb{C}^{+} \mathbb{C}^{n-n}.$

-> Ur looks like this for all smooth comes or.

How to find generators of So?

m & So is called ineducible if m = m'+m" with m', m" E So implies m' = 0 or m" = 0.

Prop: Let H= lm & So /m is irreducible y.

- (a) He is finite and generates So.
- (b) Il contains the ray generators of σ .
- (c) He is the minimal generating set w.r.t. inclusion

It is called the <u>Hilbert bounds</u> of So.

1.6 Points on affine toric varieties

Prop Let V = Specin (C[S]) for an affine semigroup SCM. Then there are 1:1 correspondences
between (a) points p & V

(b) maximal ideals mp & C[S]

(c) semigroup homomorphisms S-SC.

mage of @ is !!

proof (a) <1:15 (b) is standard and holds for

any affine variety.

(a) \rightarrow (c) given $p \in V$, defini $S \rightarrow C$ by $m \mapsto \chi^m(p)$.

(c) \rightarrow (b) given a semigroup honomorphism $\gamma: S \rightarrow \mathbb{C}$, we obtain an induced map of C-algebras $\mathbb{C}[S] \rightarrow \mathbb{C}$ which is surjective $(\gamma(o) = 1)$.

Call its bernel up. This is maximal because $0 \rightarrow m_p \rightarrow C[S] \rightarrow C \rightarrow 0$ is exact. (c) \rightarrow (a) (more concretely) Let $S = N + \delta$ with A = 1 m,,..., m, J. Let P = (x(m,),..,x(mg)) & C. If α, β ∈ N° are such that α-β ∈ ker fy, we have $p^{\alpha} - p^{\beta} = \prod_{i=1}^{3} \gamma(m_i)^{\alpha_i} - \prod_{i=1}^{3} \gamma(m_i)^{\beta_i}$ = $\chi(\Sigma | x_i | m_i) - \chi(\Sigma | \beta_i | m_i)$

hence $p \in Y_{\mathcal{H}}$. Moreover, in step $((a) \rightarrow (c))$ we associated the semigroup homomorphism $m_i \mapsto \chi^{m_i}(p) = p_i = \chi(m_i)$ to p.

Example: intruisic discription of the group action: $p \sim (m \mapsto \chi(m)) \implies t \cdot p \sim (m \mapsto \chi^m(t) \chi(m))$ Exercise 1.3.1

Prop Let V ke an affine tonic variety:

V = Specon (C[S]) = Yy C C^S (Jo = S\\0\forallo\).

(a) The hours action has a fixed point if and only if S is pointed. In this case, the fixed point is $\gamma: m \mapsto \begin{cases} 1 & \text{if } m=0 \\ 0 & \text{otherwise.} \end{cases}$

(b) The rows action has a fixed point if and only if $0 \in X_{\mathcal{U}}$, in which case it is 0.

 $\frac{mod}{mod}$ (a) $\chi^{m}(t) \gamma(m) = \gamma(m) + t$ => m = 0 st $\gamma(m) = 1$ or $m \neq 0$, $\gamma(m) = 0$

(b) follows smarghtforwardly from (a), and the fact that $0 \in C^s$ is fixed by $(C^*)^s \cap C^s$.

Con: Let U_{Γ} be the affine tonic variety corresponding to a strongly convex RCPC. Then the torus action has a fixed point iff dim $r = \dim N_R$. In this case, the fixed point is given by the max. ideal $\langle \chi^m \mid m \in S_{\Gamma} \setminus \{0\} \rangle \subseteq C[S_{\Gamma}]$.

Exercises: 1.3.1, 1.3.2, 1.3.3

Let G = Cone((1,2,3,4,5),(2,1,5,4,3),(5,4,3,2,1),(3,2,1),(3,2,1,5,4),(1,5,4,3,2))

Embed Up in the smallest possible authorite affice space. How small is this? Is Up smooth? What's its demension? How many binomials generate the toric ideal?