Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 2

Abgabe auf Moodle bis zum 20. November

Fixiere ein Gitter $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \subseteq \mathbb{C}$. Sie können bei jeder Aufgabe die Ergebnisse der vorherigen nutzen, auch wenn Sie diese nicht bearbeitet haben. Sie können 16 Punkte + 3 Bonuspunkte erreichen.

- **6. Aufgabe:** (2+2+1+2+1+2=10 Punkte)
 - (a) Sei M eine abzählbare Menge und sei $a_m \in \mathbb{C}$ für jedes $m \in M$. Wähle eine beliebige Abzählung, also eine Bijektion $\varphi : \mathbb{N}_0 \to M$. Wir nennen die Reihe $\sum_{m \in M} a_m$ absolut konvergent, falls $\sum_{k=0}^{\infty} |a_{\varphi(k)}|$ konvergiert, und definieren dann

$$\sum_{m \in M} a_m := \sum_{k=0}^{\infty} a_{\varphi(k)} .$$

Zeigen Sie: Die Definition von absoluter Konvergenz und der Wert der Reihe hängen nicht ab von der Wahl von φ .

(b) Fixiere die Grundmasche $\mathcal{F} = \{s\omega_1 + t\omega_2 \mid 0 \le s, t \le 1\}$ des Gitters Γ mit Volumen $v = \text{vol}(\mathcal{F})$ und Durchmesser $\delta = \max\{|z - w| \mid z, w \in \mathcal{F}\}$. Für reelles r > 0 sei

$$A_r(\Gamma) := \#\{\gamma \in \Gamma \mid |\gamma| \le r\} .$$

Zeigen Sie für $r > \delta$ die Ungleichungen $\pi(r-\delta)^2 \leq v \cdot A_r(\Gamma) \leq \pi(r+\delta)^2$.

- (c) Es gibt ein reelles C>0 sodass $A_{n+1}(\Gamma)-A_n(\Gamma)\leq C\cdot n$ für alle ganzen $n\geq 1$.
- (d) Für festes reelles $\alpha > 2$ und ganze $n \ge 1$ gilt

$$S_n := \sum_{\substack{\gamma \in \Gamma \\ n < |\gamma| \le n+1}} |\gamma|^{-\alpha} < Cn^{1-\alpha} .$$

- (e) Die Reihe $\sum_{n=0}^{\infty} S_n$ konvergiert. Hinweis: Integralkriterium.
- (f) Folgern Sie aus (a) und (e): Für ganze $k \geq 3$ konvergiert die Reihe $G_k = \sum_{0 \neq \gamma \in \Gamma} \gamma^{-k}$ absolut. Sie ist Null für ungerade k.

Lösung:

(a) Sei $\varphi_2: \mathbb{N}_0 \to M$ eine zweite Abzählung von M. Dann ist $\psi = \varphi^{-1} \circ \varphi_2$ eine Bijektion von \mathbb{N}_0 nach \mathbb{N}_0 , also eine Umordnung. Ist die Reihe $\sum_{k=0}^\infty a_{\varphi(k)}$ absolut konvergent, so lassen sich die Sumanden beliebig umordnen, damit konvergiert auch $\sum_{n=0}^\infty |a_{\varphi(\psi(n))}| = \sum_{n=0}^\infty |a_{\varphi_2(n)}|$ und es gilt $\sum_{k=0}^\infty a_{\varphi(k)} = \sum_{n=0}^\infty a_{\varphi_2(n)}$. Vertauschen der Rollen von φ und φ_2 zeigt, dass die Definition mit φ äquivalent ist zur Definition mit φ_2 .

(b) Sei $A = \bigcup_{\substack{\gamma \in \Gamma \\ |\gamma| \leq r}} \gamma + \mathcal{F}$. Nach Konstruktion hat A das Volumen $vol(A) = A_r(\Gamma) \cdot v$. Es bleibt nur noch zu zeigen, dass

$$B_{r-\delta}(0) \subseteq A \subseteq B_{r+\delta}(0)$$
.

Für die erste Inklusion sei $a \in B_{r-\delta}(0)$ beliebig. Dann ist $a = x\omega_1 + y\omega_t$ für reelle x und y. Setze $\gamma = \lfloor x \rfloor \omega_1 + \lfloor y \rfloor \omega_2 \in \Gamma$, dann ist $z := a - \gamma \in \mathcal{F}$. Aus der Dreiecksungleichung folgt $|\gamma| \leq |a| + |z| \leq r - \delta + \delta = r$, also ist $a \in A$. Das zeigt die erste Inklusion. Sei $a \in A$ beliebig, dann ist $a = \gamma + z$ mit einem $\gamma \in \Gamma$ und $|\gamma| \leq r$ und einem $z \in \mathcal{F}$. Also ist $|a| \leq |\gamma| + |z| \leq r + \delta$ (Dreiecksungleichung), was die zweite Inklusion zeigt.

- (c) Nach b) gilt $A_{n+1}(\Gamma) A_n(\Gamma) \le \frac{\pi}{v} \left((n+1+\delta)^2 (n-\delta)^2 \right) = \frac{\pi}{v} (2(n+1)\delta + 2n\delta) = \frac{\pi}{v} (2\delta + 4\delta n) \le C \cdot n$ für $C = \frac{\pi}{v} (6\delta)$.
- (d) Für jeden Summanden der Reihe gilt $|\gamma|^{-\alpha} \leq n^{-\alpha}$. Die Anzahl der Summanden in der endlichen Summe ist genau $A_{n+1}(\Gamma) A_n(\Gamma) \leq C \cdot n$. Insgesamt folgt $S_n \leq C \cdot n^{1-\alpha}$.
- (e) Der Summand S_n wird majorisiert durch $S_n \leq C \cdot n^{1-\alpha} \leq C \cdot \int_{n-1}^n x^{1-\alpha}$. Damit wird die Reihe majorisiert durch

$$\sum_{n=0}^{\infty} S_n \le S_0 + S_1 + C \cdot \sum_{n=2}^{\infty} \int_{n-1}^n x^{1-\alpha} \, \mathrm{d}x = S_0 + S_1 + C \cdot \int_1^{\infty} x^{1-\alpha} \, \mathrm{d}x = S_0 + S_1 + C \cdot \frac{1}{\alpha - 2} \, .$$

(uneigentliches Riemann-Integral). Nach dem Integralkriterium konvergiert also die Reihe.

(f) Wir zeigen, dass die Reihe $\sum_{\gamma \in \Gamma} \gamma^{-k}$ gleichmäßig konvergiert. Man könnte jetzt eine konkrete Abzählung $\varphi: \mathbb{N}_0 \to \Gamma \setminus \{0\}$ angeben, die zunächst alle Elemente $\gamma \in \Gamma$ mit $n < |\gamma| \le n+1$ für n=0 durchläuft, dann alle mit n=1 und so weiter. Das ist aber nicht nötig. Sei stattdessen φ eine beliebige Abzählung. Fixiere ein beliebiges $M \in \mathbb{N}_0$ beliebig und $N \in \mathbb{N}_0$ größer als $\max_{m < M} |\varphi(m)|$. Dann gilt

$$\sum_{m=0}^{M} |\varphi(m)|^{-k} \le \sum_{0 \le |\gamma| \le N+1} |\gamma|^{-k} \le \sum_{n=0}^{N} S_n.$$

Die endliche Summe $\sum_{n=0}^{N} S_n$ ist wegen e) durch eine von N unabhängige Konstante nach oben beschränkt. Nach dem Majorantenkriterium konvergiert also $\sum_{m=0}^{\infty} |\varphi(m)|^{-k}$. Nach a) konvergiert die Eisensteinreihe G_k absolut.

Für jede Abzählung $\varphi : \mathbb{N}_0 \to \Gamma \setminus \{0\}$ ist $\varphi_2(n) = -\varphi$ eine weitere Abzählung. Da der Wert der Eisensteinreihe unabhängig von der Wahl der Abzählung ist, folgt

$$G_k = \sum_{k=0}^{\infty} \varphi_2(k)^{-k} = \sum_{k=0}^{\infty} (-\varphi(k))^{-k} = (-1)^k G_k$$
.

Dieser Ausdruck ist notwendig Null für ungerade k.

7. Aufgabe: (2+1+1+1) = 5 Punkte

(a) Sei $K \subseteq \mathbb{C} \setminus \Gamma$ ein Kompaktum. Dann gibt es eine reelle Konstante C > 0 sodass für $0 \neq \gamma \in \Gamma$ und $z \in K$ gilt:

$$\left| \frac{1}{(z-\gamma)^2} - \frac{1}{\gamma^2} \right| \le C \cdot |\gamma|^{-3} .$$

(b) Die folgende Reihe ist kompakt absolut konvergent für $z \in \mathbb{C} \setminus \Gamma$ und definiert eine meromorphe Funktion auf \mathbb{C} :

$$p(z) = \frac{1}{z^2} + \sum_{0 \neq \gamma \in \Gamma} \left[\frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right] .$$

Hinweis: Verwenden Sie Aufgabe 6.

- (c) p' ist eine elliptische Funktion zu Γ mit dreifachen Polstellen in jedem $\gamma \in \Gamma$ und nirgendwo sonst. Hinweis: Hauptsatz von Weierstraß über normale Konvergenz.
- (d) p ist elliptisch und identisch zur Weierstraß- \wp -Funktion aus der Vorlesung. Hinweis: Aufgabe 5 angewandt auf p' und \wp' .

Lösung:

- (a) Sei K ein beliebiges Kompaktum. Das Kompaktum K ist beschränkt und das Gitter ist diskret und disjunkt zu K, also gibt es Konstanten R>0 und $\epsilon>0$ sodass für alle $z\in K$ und alle $0\neq\gamma\in\Gamma$ die folgenden Abschätzungen erfüllt sind:
 - $(1) |z| \le R ,$
 - (2) $|\gamma| > \epsilon$,
 - (3) $|z \gamma| > \epsilon$,
 - (4) $|z \gamma| \ge \frac{1}{2} \cdot |\gamma|$ falls $|\gamma| \ge 2R$.

Durch fragliche Term ist

$$\left| \frac{1}{(z-\gamma)^2} - \frac{1}{\gamma^2} \right| = \left| \frac{2z\gamma - z^2}{\gamma^2 (z-\gamma)^2} \right|$$

Der Zähler lässt sich für alle $\gamma \neq 0$ abschätzen durch $|2z\gamma - z^2| \leq 2R|\gamma| + R^2 \leq C_1|\gamma|$ für $C_1 := 2R + \frac{R^2}{\epsilon}$. Den Nenner schätzt man nach unten ab durch

$$|\gamma^2(z-\gamma)^2| \ge \begin{cases} \frac{1}{4}|\gamma|^4 & \text{falls } |\gamma| \ge 2R\\ \frac{\epsilon^2}{(2R)^2} \cdot |\gamma|^4 & \text{falls } |\gamma| < 2R \end{cases}$$

Jetzt setze $C = \max\{4C_1, C_1 \cdot \frac{(2R)^4}{\epsilon^4}\}$ dann folgt die Aussage direkt.

(b) Die Reihe konvergiert auf jedem Kompaktum K nach dem Majorantenkriterium absolut und gleichmäßig in $z \in K$. Man verwende die Abschätzung aus a) und die absolute Konvergenz der Eisensteinreihe G_3 . Dies definiert eine holomorphe Funktion $p: \mathbb{C} \setminus \Gamma \to \mathbb{C}$. Es bleibt zu zeigen, dass die Singularitäten Pole zweiter Ordnung sind:

Die Abschätzung aus a) gilt auch, wenn man Γ durch eine beliebige diskrete Teilmenge ersetzt, welche zu K disjunkt ist (mit dem gleichen Argument). Fixiere ein $0 \neq \gamma_0 \in \Gamma$. Dann ist die Reihe $\sum_{\gamma \in \Gamma \setminus \{0,\gamma_0\}} \left[\frac{1}{(z-\gamma)^2} - \frac{1}{\gamma^2} \right]$ kompakt konvergent auf $\{\gamma_0\} \cup \mathbb{C} \setminus \Gamma$. Damit ist die Funktion $p(z) - \left(\frac{1}{(z-\gamma_0)^2} - \frac{1}{\gamma_0^2} \right)$ holomorph fortsetzbar nach γ_0 . Also hat p(z) einen Pol zweiter Ordnung in γ_0 .

Mit dem entsprechenden Argument zeigt man, dass $p(z) - \frac{1}{z^2}$ holomorph nach Null fortsetzbar ist. Also ist p meromorph mit Polen zweiter Ordnung in den Gitterpunkten.

(c) Die Reihe konvergiert kompakt, lässt sich also termweise ableiten. Damit ist p' gegeben durch folgende kompakt konvergente Reihe

$$p'(z) = -2\sum_{\gamma \in \Gamma} (z - \gamma)^{-3} .$$

Diese Reihe ist nach Konstruktion elliptisch. Sie hat Pole dritter Ordnung in den Gitterpunkten, weil die Polordnung beim Ableiten um Eins zunimmt.

(d) Nach Aufgabe 5 gilt $p' = c \cdot \wp'$ mit einer Konstanten c, weil auch \wp' dieselbe Polordnung hat. Der Hauptteil in Null ist jeweils $-2z^{-3}$, damit gilt c = 1, also $p' = \wp'$. Damit haben p und \wp dieselbe Ableitung, also gibt es eine komplexe Konstante C mit $p = \wp + C$. Der konstante Term der Laurententwicklung von \wp ist nach Konstruktion Null. Das Residuum von p in Null ist Null, da p(z) = p(-z) gerade ist. Den konstanten Term von p erhält man also durch

$$C = \lim_{z \to 0} (p(z) - \frac{1}{z^2}) = \lim_{z \to 0} \sum_{0 \neq \gamma \in \Gamma} \left[\frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right] .$$

Der Limes vertauscht mit der Reihe, weil die Reihe kompakt konvergiert außerhalb von $\Gamma \setminus \{0\}$. Jeder Summand geht gegen Null für $z \to 0$. Damit ist C = 0, also $p = \wp$.

Diese Reihe wird oft als Definition der Weierstraß- \wp -Funktion verwendet.

- **8. Aufgabe:** (1+1+2=4 Punkte) Sei $f(z) = \wp(z) \frac{1}{z^2}$. Zeigen Sie:
 - (a) Die meromorphe Funktion f hat in Null eine hebbare Singularität.
 - (b) Für $k \geq 1$ ist die k-te Ableitung von f in einer Umgebung von Null

$$f^{(k)}(z) = (-1)^k (k+1)! \sum_{0 \neq \gamma \in \Gamma} \frac{1}{(z-\gamma)^{k+2}}$$
.

Hinweis: Hauptsatz von Weierstraß über normale Konvergenz und Aufgabe 7.

(c) \wp lässt sich um Null als Laurent-Reihe entwickeln:

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2} \cdot z^{2k}$$

mit Konvergenzbereich $0<|z|<\min_{0\neq\gamma\in\Gamma}|\gamma|$ und G_k wie in Aufgabe 6.

Lösung:

- (a) Wir haben in der letzten Aufgabe schon gezeigt, dass $f(z) = p(z) \frac{1}{z^2} = \sum_{0 \neq \gamma \in \Gamma} \left[\frac{1}{(z-\omega)^2} \frac{1}{\gamma^2} \right]$ eine hebbare Singularität in Null hat. Die Reihe konvergiert dabei kompakt in einer Umgebung von Null.
- (b) Damit lässt sich f in Null ableiten und die Ableitung vertauscht mit der Reihe

$$f'(z) = \sum_{0 \neq \gamma \in \Gamma} \left[-2(z - \omega)^{-3} \right] .$$

Durch vollständige Induktion folgt die Aussage.

(c) Die Laurentkoeffizienten zu positivem Index sind $a_{\nu} = \frac{1}{k!} f^{(k)}(0) = (k+1)G_{k+2}$. Das Vorzeichen $(-1)^k$ kann ignoriert werden, da alle Terme mit ungeradem k verschwinden. Der Konvergenzbereich ist größte Kreisring $D_{0,R}(0)$ um Null, der zu Γ disjunkt ist.