HLMA101 - Partie B : Algèbre linéaire

Chapitre 8 Calcul matriciel et applications linéaires

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

1. Applications linéaires et matrices

2. Composition, produit matriciel et inversibilité

3. Image et noyau

Sommaire

1. Applications linéaires et matrices

Définition

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application.

On dit que Φ est une application linéaire si :

 $\forall X \in \mathbb{R}^p, \forall Y \in \mathbb{R}^p, \forall (\lambda, \mu) \in \mathbb{R}^2, \quad \Phi(\lambda X + \mu Y) = \lambda \Phi(X) + \mu \Phi(Y)$

Note : La condition est équivalente à :

(i) $\forall X \in \mathbb{R}^p, \forall \lambda \in \mathbb{R}, \quad \Phi(\lambda X) = \lambda \Phi(X)$

(ii) $\forall X \in \mathbb{R}^p, \forall Y \in \mathbb{R}^p, \quad \Phi(X + Y) = \Phi(X) + \Phi(Y)$

Remarque : Définition valable aussi dans C.

Motivation

On peut réinterpréter un système linéaire et sa résolution comme un problème portant sur l'application

$$\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$$

$$(x_{1},...,x_{p}) \mapsto (a_{1,1}x_{1}+\cdots+a_{1,p}x_{p},...,a_{n,1}x_{1}+\cdots+a_{n,p}x_{p})$$

Résoudre le système $\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ \vdots & \vdots & \vdots \\ a_{2,p}x_p &= b_2 \end{cases}$

Φ.

Que peut-on dire des applications du type de Φ ?

Théorème

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application.

Il y a équivalence entre :

- (i) $\boldsymbol{\Phi}$ est une application linéaire
- (ii) il existe $(a_{i,j})_{1\leqslant i\leqslant n}$ de coefficients réels tels que $\forall (x_1, \dots, x_p) \in \mathbb{R}^p$ $\Phi((x_1,...,x_p)) = (a_{1,1}x_1 + \cdots + a_{1,p}x_p,...,a_{n,1}x_1 + \cdots + a_{n,p}x_p)$

Preuve.

Égalité de deux matrices

Deux matrices sont égales lorsque :

- ♦ elles ont même taille
- ♦ les coefficients de chaque matrice sont égaux lorsqu'ils ont des indices de ligne et de colonne identique.

Égalité de deux matrices

Deux matrices $M=\left(a_{i,j}\right)_{\begin{subarray}{c}1\le i\le n\\1\le j\le p\end{subarray}}$ et $N=\left(b_{i,j}\right)_{\begin{subarray}{c}1\le i\le q\\1\le j\le r\end{subarray}}$ sont

égales lorsque :

- \Rightarrow n = q **et** p = r
- \diamond $a_{i,j} = b_{i,j}$ pour tout $1 \le i \le n$ et $1 \le j \le p$.

On a vu qu'un système linéaire peut être représenté par une

On vient de voir le lien avec les applications linéaires, et donc un lien entre applications linéaires et matrices.

On va s'intéresser à faire du calcul sur les matrices.

Des exemples

Exercices

Exemple 1

Vous avez trouvé
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
?

Exemple 2

Vous avez trouvé

$$\forall (i,j) \in \{1,...,n\} \times \{1,...,p\}, \quad a_{i,j} = \frac{1}{i+j}?$$

Quelques matrices particulières

Matrices triangulaires

Une matrice carrée ${\cal T}$ est triangulaire supérieure lorsque tous les termes qui sont strictement sous la diagonale sont nuls. Si on note $T=(t_{i,j})_{\begin{subarray}{c}1\leq i\leq n\\1\leq j\leq p\end{subarray}}$, alors T est une matrice

triangulaire supérieure lorsque $t_{i,j} = 0$ dès que i > j.

$$T_1 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & \pi \end{pmatrix}$$
 est triangulaire supérieure

$$T_1 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & \pi \end{pmatrix} \text{ est } \qquad \qquad T_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ \pi & 0 & 0 \end{pmatrix} \text{ est }$$

Quelques matrices particulières

Matrices échelonnées

Une matrice A de $\mathscr{M}_{n,p(\mathbb{R})}$ est dite échelonnée lorsque :

- ♦ Toutes les lignes non nulles se situent au dessus des lignes
- chaque premier coefficient non nul d'une ligne se situe sur une colonne à droite du premier coefficient non nul de la ligne précédente;
- tous les coefficients situés sous un premier coefficient non nul d'une ligne sont nuls.

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercices

Exemple 1

Écrire la matrice $A \in \mathcal{M}_{3,4}(\mathbb{R})$ telle que pour tout $(i,j) \in \{1,2,3\} \times \{1,\ldots,4\}, \text{ si } 1 \le i+j \le j+2, \ a_{i,j} = i \text{ et } a_{i,j} = j$

Exemple 2

Soit la matrice

$$\begin{pmatrix} \frac{1}{1+1} & \frac{1}{1+2} & \cdots & \frac{1}{1+n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{1+n} & \cdots & \cdots & \frac{1}{2n} \end{pmatrix}$$

Donner une expression simple des coefficients de A en fonction de l'indice de ligne et de colonne.

Quelques matrices particulières

Matrice nulle et Matrice Identité

- \diamond L'élément de $\mathcal{M}_{n,p}(\mathbb{R})$ telle que tous les coefficients sont nuls est notée \mathcal{O} ou $\mathcal{O}_{n,p}$
- \diamond La matrice Identité de $\mathcal{M}_n(\mathbb{R})$ est la matrice dont tous les coefficients sont nuls, sauf ceux de la diagonale qui sont égaux à 1. Elle est notée I_n .

Quelques matrices particulières

Matrices diagonales

Une matrice D est diagonale lorsque :

- ♦ Elle est carrée
- Seuls ses coefficients sur la diagonale ne sont pas forcément nuls.

Définition

On appelle matrice colonne ou vecteur colonne une matrice de taille (p,1).

Théorème

 $\mathcal{M}_{p,1}(\mathbb{R})$ est en bijection avec \mathbb{R}^p .

i.e. on peut toujours représenter un vecteur de \mathbb{R}^p comme une matrice

Opérations sur les matrices colonnes

Ce sont des traductions matricielles des combinaisons linéaires.

Définition de la somme

Somme de matrices

Soit A et B deux matrices de même taille $n \times p$:

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \text{ et } B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

La somme de A et B, notée A+B, est la matrice C de taille $n \times p$:

$$\forall i,j \in \{1\dots n\} \times \{1\dots p\}, \ c_{i,j} = a_{i,j} + b_{i,j}$$

Si A et B ne sont pas de même taille, la somme n'est pas définie

Somme de matrices

Autrement dit
$$\text{Si } A = \begin{pmatrix} a_{1,1} & \dots & a_{1,r} \\ \vdots & & \vdots \\ a_{q,1} & \dots & a_{q,r} \end{pmatrix} \text{ et } B = \begin{pmatrix} b_{1,1} & \dots & b_{1,r} \\ \vdots & & \vdots \\ b_{q,1} & \dots & b_{q,r} \end{pmatrix} \text{ sont dans } \\ \mathcal{M}_{q,r}(\mathbb{R}),$$

alors
$$A + B = \begin{pmatrix} a_{1,1} + b_{1,1} & \dots & a_{1,r} + b_{1,r} \\ \vdots & & \vdots \\ a_{q,1} + b_{q,1} & \dots & a_{q,r} + b_{q,r} \end{pmatrix}$$

Somme de matrices

Soit $A, B, C \in \mathcal{M}_{n,p}(\mathbb{R})$. On a :

- A + B = B + A (l'addition est commutative)
- (A+B)+C=A+(B+C)=A+B+C (l'addition est associative)
- ♦ $\mathcal{O}_{n,p} + A = A + \mathcal{O}_{n,p} = A : \mathcal{O}_{n,p}$ est <u>élément neutre</u> pour l'addition
- ♦ Il existe une unique matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ notée (-A) telle que :

$$A + (-A) = (-A) + A = \mathcal{O}_{n,p}$$

Produit d'une matrice par un réel

Définition de la multiplication externe

Soit $A\in\mathcal{M}_n(\mathbb{R})$ et soit $\lambda\in\mathbb{R}$. Le produit de λ et de la matrice A est la matrice C définie par :

$$\forall i,j \in \{1 \dots n\} \times \{1 \dots p\}, c_{i,j} = \lambda.a_{i,j}$$

On note $C = \lambda . A$.

Somme de matrices

Autrement dit Si $\lambda \in \mathbb{R}$ et $A = \begin{pmatrix} a_{1,1} & \dots & a_{1,r} \\ \vdots & & \vdots \\ a_{q,1} & \dots & a_{q,r} \end{pmatrix}$ est dans $\mathcal{M}_{q,r}(\mathbb{R})$,

alors
$$\lambda.A = \begin{pmatrix} \lambda.a_{1,1} & \dots & \lambda.a_{1,r} \\ \vdots & & \vdots \\ \lambda.a_{q,1} & \dots & \lambda.a_{q,r} \end{pmatrix}$$

Produit d'une matrice par un réel

Soit $A, B \in \mathcal{M}_{n,p}(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$. On a

1.
$$\lambda . (A + B) = \lambda . A + \lambda . B$$

2.
$$(\lambda + \mu).A = \lambda.A + \mu.A$$

3.
$$\lambda \cdot (\mu \cdot A) = (\lambda \mu) \cdot A$$

4. 1A = A

Produit d'une matrice avec une matrice colonne

Produit d'une matrice ligne par une matrice colonne

Soit $A=(a_j)\in \mathscr{M}_{1,p}(\mathbb{R})$ et $B=(b_i)\in \mathscr{M}_{p,1}(\mathbb{R})$. Le produit de A par B est la matrice C de taille 1×1 notée AB telle que :

$$c_{1,1} = a_1b_1 + a_2b_2 + \dots + a_pb_p = \sum_{k=1}^p a_kb_k.$$

Produit d'une matrice ligne par une matrice colonne

$$\begin{pmatrix} a_1 & a_2 & \dots & a_p \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \dots + a_p b_p$$

Produit d'une matrice par une matrice colonne

Soit $A=(a_{i,j})\in\mathcal{M}_{n,\rho}(\mathbb{R})$ et $X=(x_i)\in\mathcal{M}_{\rho,1}(\mathbb{R})$. Le produit de A par X est la matrice colonne C de taille $n\times 1$ notée AX telle que :

$$\forall i \in \{1 \dots n\}, \ c_{i,1} = a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,p}x_p = \sum_{k=1}^p a_{i,k}x_k.$$

Produit d'une matrice avec une matrice colonne

Produit d'une matrice par une matrice colonne

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} a_{1,1}x_1 + \dots + a_{1,p}x_p \\ a_{2,1}x_1 + \dots + a_{2,p}x_p \\ \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p \end{pmatrix}$$

Mise en œuvre pratique.

Exemple : Produit de
$$M = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 2 & 1 \\ 0 & 0 & -4 \\ -1 & 2 & 0 \end{pmatrix}$$
 et $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Produit de deux matrices

Produit d'une matrice par une matrice colonne Si on note A_i la j-ème colonne de la matrice A, on a alors :

$$AB = x_1A_1 + x_2A_2 + \cdots + x_nA_n$$

Le produit AB peut-être vu comme une combinaison linéaire des colonnes de A

Conséquence

Une application linéaire $\Phi:\mathbb{R}^p \to \mathbb{R}^n$ peut toujours s'écrire comme l'application : $\Phi:\mathbb{R}^p \to \mathbb{R}^n$ $X \mapsto AX$

où
$$A$$
 est la matrice
$$\begin{pmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,p} \end{pmatrix}$$

Remarque

On a bien
$$\forall X, Y \in \mathcal{M}_{p,1}(\mathbb{R}), \forall \alpha \in \mathbb{R}:$$

 $AX + AY = A(X + Y)$ et
 $A(a.X) = a.(AX)$

Vocabulaire

A est appelée la matrice représentant l'application linéaire dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^n .

Propriété

Les colonnes de A sont

$$\Phi(e_1) = \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \dots \\ a_{n,1} \end{pmatrix} = A.e_1, \ \Phi(e_2) = \begin{pmatrix} a_{1,2} \\ a_{2,2} \\ \dots \\ a_{n,2} \end{pmatrix} = A.e_1, \dots, \ \Phi(e_p) = \begin{pmatrix} a_{1,p} \\ a_{2,p} \\ \dots \\ a_{n,p} \end{pmatrix} = A.e_p$$

Remarque : Pour connaître Φ , il suffit de connaître les vecteurs $\Phi(e_1),\ldots,\Phi(e_p)$, qui déterminent Φ de façon unique.

Exemples

1. Donner la matrice associée à l'application dans les bases canoniques de :

$$\Theta: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (x+3y,2x-y)$$

$$\Gamma: \quad \mathbb{R}^4 \quad \to \quad \mathbb{R}^2$$

$$(x,y,z,t) \quad \mapsto \quad (x+y+z,z-2t)$$

2. Décrire les applications dont la matrice associée dans les bases canoniques est :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} ; \quad B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 0 & 3 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Opérations sur les matrices et sur les applications

Soient Φ et Ψ deux applications linéaires de \mathbb{R}^p dans \mathbb{R}^n , de matrices représentatives M et M' dans les bases canoniques, et

- $\diamond \ \mathsf{L'application} \ \Phi + \Psi \colon \ \mathbb{R}^p \ \to \ \mathbb{R}^n$ $X \mapsto \Phi(X) + \Psi(X)$ représentée par M + M' dans les bases canoniques.
- ♦ L'application $a\Phi: \mathbb{R}^p \to \mathbb{R}^n$ est représentée par $X \mapsto a\Phi(X)$ a.M dans les bases canoniques.

Autrement dit : L'association entre applications linéaires et matrices dans les bases canoniques est cohérente avec les opérations d'addition et de multiplications par une constante.

Exemple introductif

Le tableau suivant donne la composition nutritionnelle de certains ingrédients (pour 1 gramme d'ingrédient).

| Chocolat | Caramel | Noisette | 0,05 | 0 | 0,1 | 0,6 | 0,9 | 0,2 | Lipides 0.3 0.01

Pour confectionner les barres chocolatées A et B, il faut les ingrédients dans les quantités suivantes (en grammes, pour une

arre).		Α	В
	Chocolat	35	20
	Caramel	10	22
	Noisette	5	10

Déterminer les compositions nutritionnelles des barres A et B (en

grammes, pour une barre).				
Composant - Barre	A	В		
Protéines	$0,05 \times 35 + 0 \times 10 + 0,1 \times 5$	$0,05 \times 20 + 0 \times 22 + 0,1 \times 10$		
Glucides	$0,6 \times 35 + 0,9 \times 10 + 0,2 \times 5$	$0,6 \times 20 + 0,9 \times 22 + 0,2 \times 10$		
Lipides	$0,3 \times 35 + 0,01 \times 10 + 0,6 \times 5$	$0,3 \times 20 + 0,01 \times 22 + 0,6 \times 10$		

Définition

Soit $A\in \mathscr{M}_{p,\mathbf{q}}(\mathbb{R})$ et $B\in \mathscr{M}_{\mathbf{q},r}(\mathbb{R})$ (nb lignes de B= nb colonnes de A!)

Le produit AB est défini comme la matrice C de $\mathcal{M}_{q,r}(\mathbb{R})$ dont les colonnes sont les produits AB_j où pour tout $j \in \{1, ..., p\}$, B_i est la j-ème colonne de B.

Remarque: on ne peut multiplier deux matrices que si nb colonnes de la première = nb lignes de la seconde.

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 et $N = \begin{pmatrix} 7 & 1 \\ 2 & 0 \\ -5 & -1 \end{pmatrix}$

$$MN = \begin{pmatrix} -4 & -2 \\ 8 & -2 \end{pmatrix}$$
 et $NM = \begin{pmatrix} 11 & 19 & 27 \\ 2 & 4 & 6 \\ -9 & -5 & -21 \end{pmatrix}$

Exemple 2
$$M = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{ et } \quad N = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

$$MN = \begin{pmatrix} 0 & 2 \\ -2 & 2 \end{pmatrix}$$
 et $NM = \begin{pmatrix} 1 & 1 \\ -3 & 1 \end{pmatrix}$

Sommaire

- 2. Composition, produit matriciel et inversibilité

Théorème

Soient $u: \mathbb{R}^q \to \mathbb{R}^p$, $v: \mathbb{R}^r \to \mathbb{R}^q$ applications linéaires. $u \circ v : \mathbb{R}^r \to \mathbb{R}^p$ est une application linéaire.

Si u est représentée par la matrice $A \in \mathcal{M}_{p,q}(\mathbb{R})$, v représentée par $B \in \mathcal{M}_{q,r}(\mathbb{R})$, $u \circ v$ représentée par $C \in \mathcal{M}_{p,r}(\mathbb{R})$ Quels liens entre A, B et C? Étudions C!

Produit de deux matrices

Soit $A = (a_{i,j}) \in \mathcal{M}_{n,r}(\mathbb{R})$ et $B = (b_{i,j}) \in \mathcal{M}_{r,p}(\mathbb{R})$. Le produit de A par B est la matrice C de taille $n \times p$ notée AB telle que :

$$c_{i,j} = \sum_{k=1}^r a_{i,k} b_{k,j}$$

L'élément à la i-ème ligne et la j-ème colonne de C est obtenu par produit de la i-ème ligne de A avec la j-ème colonne de B.

Remarques importantes

- 1. Le produit AB peut être défini sans que BA le soit,
- 2. Si A et B sont des matrices carrées de même taille, AB et BA sont définies, mais $AB \neq BA$ en général
- 3. Un produit peut être nul sans que l'une des matrices soit
- 4. La matrice I_n est <u>élément neutre</u> pour la multiplication dans $\mathcal{M}_n(\mathbb{R})$:

$$\forall A \in \mathcal{M}_n(\mathbb{R}), AI_n = I_nA = A.$$

Produit de deux matrices

Propriétés du produit

Soit A,B,C trois matrices telles que chacun des produits considérés ci-dessous existent, et soit $\lambda \in \mathbb{R}$

1.
$$(AB)C = A(BC)$$

$$2. (A+B)C = AC+BC$$

3.
$$A(B+C) = AB + AC$$

4.
$$A(\lambda.B) = (\lambda.A)B = \lambda.(AB)$$

Remarque

Ce cas couvre tous les produits de matrices particulières vues précédemment (matrice ligne avec matrice colonne, matrice avec matrice colonne).

Cas d'une matrice ligne avec une matrice Si $Z = (z_1, ..., z_n)$ et $M \in \mathcal{M}_{n,p}(\mathbb{R})$,

$$ZM = \left(\sum_{k=1}^{n} z_k.x_{k,i}\right)_{1 \le i \le p}$$

Remarque : ZM est la combinaison linéaire des lignes de M dont les coefficients sont donnés par Z.

Fait 1

Un système linéaire est une équation du type AX = B où $A \in \mathcal{M}_{n,p}(\mathbb{R}), \ X \in \mathbb{R}^p$, et $B \in \mathbb{R}^n$.

C'est la même chose que la **recherche des antécédents de** *B* par l'application linéaire :

$$\Theta \colon \mathbb{R}^p \to \mathbb{R}^n$$

$$X \mapsto AX$$

Fait 2

Les opérations élémentaires sur les matrices (des systèmes) se traduisent par des multiplications matricielles :

 Échange de deux lignes : Multiplication à gauche par

$$i \begin{pmatrix} i & j & j \\ \frac{1}{\sqrt{2}} & | & 0 & | & 0 \\ \hline 0 & | & \frac{1}{\sqrt{2}} & | & 0 \\ -\frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \hline 0 & | & 0 & | & \frac{1}{\sqrt{2}} & 1 \end{pmatrix}$$

Méthode « pratique » de calcul de produit

Calcul du produit
$$AB$$
 où $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 4 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0 \end{pmatrix}$
$$\begin{pmatrix} 1 & 4 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 39 & 7 \\ 4 & 40 & 18 \end{pmatrix}$$

$$AB = \begin{pmatrix} 4 & 29 & 7 \\ 4 & 40 & 18 \end{pmatrix}$$

Note

La non-commutativité est la seule propriété "élémentaire" des opérations sur les matrices qui différe des propriétés des opérations usuelles sur les nombres.

Vérification facile (mais fastidieuse) : bon exercice!

Fait 2

Les opérations élémentaires sur les matrices (des systèmes) se traduisent par des multiplications matricielles :

- ♦ Échange de deux lignes : multiplication à gauche par ...
- Multiplication d'une ligne par un réel : multiplication à gauche par...
- ♦ Ajout d'un multiple d'une ligne à une autre ligne : multiplication à gauche par...

Remarque : Après opérations élémentaires, on a remplacé le système AX = B par le système PAX = PB où P est un produit de matrices d'opérations élémentaires.

Fait 2

Les opérations élémentaires sur les matrices (des systèmes) se traduisent par des multiplications matricielles :

 Multiplication d'une ligne par un réel : Multiplication à gauche par

$$i\begin{pmatrix} \frac{i}{1} & i & 0\\ \frac{1}{1} & \alpha & \frac{1}{1} \\ 0 & i & \frac{1}{1} \end{pmatrix}$$

Fait 2

Les opérations élémentaires sur les matrices (des systèmes) se traduisent par des multiplications matricielles :

♦ Ajout d'un multiple d'une ligne à une autre ligne : Multiplication à gauche par

Théorème

Soit $A \in \mathcal{M}_n(\mathbb{R})$, une matrice inversible. Il existe une unique matrice B de $\mathcal{M}_n(\mathbb{R})$ telle que $AB = BA = I_n$. On l'appelle **inverse de** A et on la note A^{-1} .

Preuve

Exemples

- ♦ Soient A et B dans $\mathcal{M}_n(\mathbb{R})$, inversibles. Alors AB est inversible, et $(AB)^{-1} = B^{-1}A^{-1}$
- \diamond Pour tout n entier, l_n est inversible, d'inverse elle-même.
- ♦ Les matrices élémentaires (matrices des opérations élémentaires sur les lignes) sont inversibles.

Preuve.

Corollaire : Deux systèmes se déduisant l'un de l'autre par une suite finie d'opérations élémentaires ont le même ensemble de solutions.

Preuve.

Image (rappel)

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application linéaire.

 $\operatorname{Im}(\Phi) = \{ Y \in \mathbb{R}^n / \exists X \in \mathbb{R}^p, \, \Phi(X) = Y \}$

C'est l'image de Φ .

Remarque : La définition n'est pas spécifique aux applications linéaires (mais on réserve souvent la notation Im pour les applications linéaires).

Noyau

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application linéaire.

Le noyau de Φ est $\ker \Phi = \{X \in \mathbb{R}^p / \Phi(X) = 0\}$

Remarque : Définition spécifique aux applications linéaires.

Matrice inversible

Soit $A \in \mathcal{M}_n(\mathbb{R})$, une matrice carrée. On dit que A est **inversible** si il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$AB = BA = I_n$$

Attention : On ne parle de matrice inversible que pour les matrices carrées.

Remarque: Bien souvent $AB \neq BA$ donc il faut vérifier les deux conditions (comme pour les applications réciproques).

Exemples

- ♦ $M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ Considérons $N = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$ $MN = NM = I_2$. M est inversible.
- where inversible. $M' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ Cherchons $N' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $M'N' = I_2$.

 Pas de solution : M' n'est pas inversible

Fait

Il existe (plein) de matrices non-inversibles!

Sommaire

- 1. Applications linéaires et matrices
- 2. Composition, produit matriciel et inversibilité
- 3. Image et noyau

Théorème

- \diamond Im Φ est un sous-espace vectoriel de \mathbb{R}^n .
- $\diamond\ \ker\Phi$ est un sous-espace vectoriel de \mathbb{R}^p .

Preuve.

Note : On remarque au passage que $0 \in \operatorname{Im}\Phi \subset \mathbb{R}^n$ et $0 \in \ker\Phi \subset \mathbb{R}^p$.

Liens aux systèmes linéaires

On considère un système linéaire de matrice (des coefficients) A dans $\mathcal{M}_{n,p}$ (n équations, p inconnues).

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ $X \mapsto AX$

- \diamond ker Φ est l'ensemble des solutions du système AX = 0, et
- $\diamond \ \mathsf{Im} \Phi \ \mathsf{est} \ \mathsf{l'ensemble} \ \mathsf{des} \ B \in \mathbb{R}^n \ \mathsf{tels} \ \mathsf{que} \ \mathsf{le} \ \mathsf{système} \\ AX = B \ \mathsf{soit} \ \mathsf{compatible}.$

Remarque : On en déduit que $X=0\in\mathbb{R}^p$ est toujours une solution de AX=0 et $B=0\in\mathbb{R}^n$ est toujours un second membre "compatible".

Interprétation en termes de systèmes linéaires

Pour résoudre

$$AX = B$$

On définit $\Phi \colon \mathbb{R}^p \to \mathbb{R}^n$ application linéaire $X \mapsto AX$

- Soit B n'est pas compatible (i.e. B ∉ ImΦ) :
 Ensemble des solutions = Ø
 (au moins une ligne nulle dans la partie non-augmentée)
- \diamond Soit B est compatible $(B \in Im\Phi)$:
 - Si Φ est injective : Une et une seule solution (que des variables principales)
 - Si Φ non injective : Ensemble infini de solutions : s.e.a. dirigé par ker Φ (au moins une variable libre)

Méthode de calcul de l'inverse d'une matrice (inversible)

On a vu que lorsqu'une matrice carrée A est inversible, alors $\Phi\colon \mathbb{R}^n \to \mathbb{R}^n$ est bijective et il existe P, produit de $X\mapsto AX$

matrices élémentaires telle que PA = I.

Comme P est inversible, $A = P^{-1}$ est inversible et $A^{-1} = P$. Il faut donc identifier P.

Méthode

On applique le pivot de Gauss à la matrice A et on applique les mêmes transformations à la matrice I_n

En pratique, on place les matrices côte à côte

$$\left(\begin{array}{c|c} A & I_n \end{array}\right) \rightsquigarrow \left(\begin{array}{c|c} PA & P \end{array}\right) \rightsquigarrow \left(\begin{array}{c|c} I_n & A^{-1} \end{array}\right)$$

La méthode de Gauss Jordan

Quel est l'inverse de $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 3 & -1 \\ 2 & 1 & -5 \end{pmatrix}$?

On écrit la forme simplifiée de $AB = I_n$:

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 1 & 3 & -1 & 0 & 1 & 0 \\ 2 & 1 & -5 & 0 & 0 & 1 \end{pmatrix}$$

puis on réduit A.

Théorème

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application linéaire.

- $\Leftrightarrow \ker \Phi = \{0\} \iff \Phi \text{ injective}$
- $\diamond \operatorname{Im} \Phi = \mathbb{R}^n \quad \Longleftrightarrow \quad \Phi \text{ surjective}$

Preuve.

Corollaire

Soit $\Phi: \mathbb{R}^p \to \mathbb{R}^n$ une application linéaire, et soit $B \in \mathbb{R}^n$.

- \diamond ou bien $\Phi^{-1}(\{B\}) = \emptyset$,
- \diamond ou bien $\Phi^{-1}(\{B\})$ est un sous-espace affine dirigé par $\ker \Phi$

Preuve.

Théorème

Soit $\Phi \colon \mathbb{R}^p \to \mathbb{R}^n$ application linéaire.

$$X \mapsto AX$$

On a équivalence entre :

- (i) Φ est bijective
- (ii) n = p et A est inversible.

Remarque: Très spécifique aux applications linéaires.

Corollaire

Si $\Phi : \mathbb{R}^p \to \mathbb{R}^n$ est une application linéaire bijective, alors n = p.

Remarque : La réciproque est fausse.

Preuve du théorème.

La méthode de Gauss Jordan

On cherche à obtenir l'inverse (éventuel) d'une matrice carrée ${\it M.}$

Principe de la méthode

- 1. On cherche à résoudre l'équation $MN = I_n$ (d'inconnue la matrice N)
- 2. On écrit cette équation sous la forme matricielle simplifiée : $(M|I_n)$
- 3. On réduit la matrice ${\it M}$ à une matrice échelonnée
- 4. On réduit la matrice à une matrice échelonnée réduite
- 5. La matrice obtenue la cas échéant « à droite » est l'inverse de M.

Étape 1 :
$$L_2 \leftarrow L_2 - L_1$$
 et $L_3 \leftarrow L_3 - 2L_1$

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 1 & 3 & -1 & 0 & 1 & 0 \\ 2 & 1 & -5 & 0 & 0 & 1 \end{pmatrix}$$

devient

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -3 & -1 & -2 & 0 & 1 \end{pmatrix}$$

Étape 2 : $L_3 \leftarrow L_3 + 3L_2$

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -3 & -1 & -2 & 0 & 1 \end{pmatrix}$$

devient

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 2 & -5 & 3 & 1 \end{pmatrix}$$

La matrice est échelonnée.

Étape 4 et 5 : $L_1 \leftarrow 1L_1 - L_2$ puis on divise L_2 et L_3 par 2

$$\begin{pmatrix} 1 & 2 & 0 & -4 & 3 & 1 \\ 0 & 2 & 0 & 3 & -1 & -1 \\ 0 & 0 & 2 & -5 & 3 & 1 \end{pmatrix}$$

devient

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5/2 & 3/2 & 1/2 \end{pmatrix} \begin{array}{cccc} -7 & -4 & 2 \\ 3/2 & -1/2 & -1/2 \\ -5/2 & 3/2 & 1/2 \\ \end{array}$$

Conclusion

$$A^{-1} = \begin{pmatrix} -7 & -4 & 2\\ 3/2 & -1/2 & -1/2\\ -5/2 & 3/2 & 1/2 \end{pmatrix}$$

Théorème

Soit A une matrice carrée.

- ♦ Si il existe B carrée de même taille que A telle que AB = I, alors A est inversible et $B = A^{-1}$.
- ♦ Si il existe C carrée de même taille que A telle que CA = I, alors A est inversible et $C = A^{-1}$.

Preuve.

Étape 3 :
$$L_2 \leftarrow 2L_2 - L_3$$
 et $L_1 \leftarrow L_1 + L_3$

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 2 & -5 & 3 & 1 \end{pmatrix}$$

devient

$$\begin{pmatrix} 1 & 2 & 0 & -4 & 3 & 1 \\ 0 & 2 & 0 & 3 & -1 & -1 \\ 0 & 0 & 2 & -5 & 3 & 1 \end{pmatrix}$$

Théorème

Soit $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire.

On a équivalence entre :

- (i) Φ est bijective
- (ii) Φ est injective
- (iii) Φ est surjective

Remarques :

- Très spécifique aux applications linéaires.
- Ne pas confondre avec le théorème précédent.

Preuve.