

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-I Cohort 2020-24 > EECE105L-Odd 2020 > 25 December - 31 December > Quiz 6

Started on Friday, 19 February 2021, 7:04 PM

State Finished

Completed on Friday, 19 February 2021, 7:34 PM

Time taken 30 mins

Grade 2.00 out of 5.00 (40%)

Question 1

Incorrect

Mark 0.00 out of 1.00 Calculate the current (in mA) flowing through a PN junction diode when voltage across diode is 0.68 Volts. Given the reverse saturation current is 84×10^{-15} A and the non-ideality factor as 1. Assume that the diode is working at 300K.

Constants that may require during calculations: The Boltzmann constant (k) = 1.38×10^{-23} JK⁻¹, charge (q) = 1.6×10^{-19} C.

Select one:

- 21.869
- 57.527
- 38.351 X
- 9.588

Your answer is incorrect.

The correct answer is: 21.869

${\tt Question}~2$

Correct

Mark 2.00 out of 2.00

The silicon diodes shown in the circuit have a reverse saturation current of 1 nA. Given that the cut-in voltage of the diode is 0.7 V. The supply voltage is $V_s = 10$ Volt. Find the voltage (in Volt) across resistor R_2 when $R_1 = 8.4$ k Ω and $R_2 = 3.1$ k Ω . Assume that the circuit is operating at 300 K.

Select one:

- 0.7
- 2.696
- 7.304
- -10.000

Your answer is correct.

The correct answer is: 2.696

Question $\bf 3$

Incorrect

Mark 0.00 out of 2.00

Silicon diodes D_1 and D_2 are having a reverse saturation current of 16 nA. Find the value of R_2 (in $k\Omega$) so that 6.1 mA current flows through R_2 when source voltage V_S = 6 Volt and R_1 = 3.8 $k\Omega$. The cut-in voltage of the diode is 0.7 V and the diode is operating at 300 K.

Select one:

- 1.395
- 0.754
- 0.869 💢
- 0.115

Your answer is incorrect.

The correct answer is: 0.115