

Optimal Market Positioning for Blue Bottle

YONGJU KIM JEONG WHAN LEE

Introduction & Goal

Background Data

Model Analysis

Assumptions
Optimal Solution

Results

Concusion

TABLE OF CONTENTS

INTRODUCTION

BLUE BOTTLE - LAUNCH IN KOREA

#3 biggest market for cafés

• \ 3.9 T (\\$3.2 B) in 2017

1st store in 2019 (Seoul)

Oligopoly: 6 players control 90%

BACKGROUND DATA

CRITERIA: HOW KOREANS CHOOSE COFFEE

PLAYERS

Oligopolistic Market

- Top 6 players dominate ≈ 90%
- 30+ franchise stores
- 9ok+ cafes in Korea

Recognition & Pricing

Brand	Price (KRW)	Brand reputation score (2019)
Starbucks	4,100	3,228,049
Twosome Place	4,100	792,145
Ediya	3,200	636,330
Hollys	4,100	334,763
Angel-in-us	4,800	228,564
Coffee Bean	4,800	474,797
Average	4,183	949,108
Median	4,100	555,564

^{*} Price for a Tall/Small Americano

MODEL ANALYSIS

ASSUMPTIONS – SALOP'S CIRCLE

Polar Coordinates

- Distance: $\frac{|x_1 x_2|}{2\pi} \times 2\pi = |x_1 x_2| \ \forall x_1, x_2 \in [0, 2\pi)$
- Each firm is equidistant before Blue Bottle enters
 - Distance = $\frac{\pi}{3}$ on the circumference

Utility

- Assume constant utility value V ("habitual consumption")
- Net Utility = *V* price travel cost

Consumers

- V is large enough s.t every consumer has unit demand
- Pays lower travel cost for higher recognized brands

SOLVING THE MODEL - VARIABLES

- L firm Left, B Blue Bottle, R firm Right
- Locations (α_L , α_B , α_R)
 - $0 = \alpha_L < \alpha_B < \alpha_R = \frac{\pi}{3}$ (equidistant circle)
- Travel Costs (t_L, t_B, t_R)
 - $t = -\frac{1}{\sqrt{r}}$
- Prices (p_L, p_B, p_R)
- Production Costs = o
- Brand Reputation "r"
 - Brand reputation score / 100,000
 - Assume Blue Bottle r = 0.1 (lowest)

MATHEMATICAL OPTIMUM

• Indifferent consumers:

$$(\mathbf{x}_{\mathrm{L}}, \mathbf{x}_{\mathrm{R}}) = \left(\frac{\mathbf{t}_{B}\alpha_{B} + \mathbf{t}_{\mathrm{L}}\alpha_{\mathrm{L}} - \mathbf{p}_{\mathrm{L}} + \mathbf{p}_{B}}{\mathbf{t}_{B} + \mathbf{t}_{\mathrm{L}}}, \frac{\mathbf{t}_{B}\alpha_{B} + \mathbf{t}_{\mathrm{R}}\alpha_{\mathrm{R}} + \mathbf{p}_{\mathrm{R}} - \mathbf{p}_{B}}{\mathbf{t}_{B} + \mathbf{t}_{\mathrm{R}}}\right)$$

Optimal price:

$$p^* = \frac{\frac{t_B \alpha_B + t_L \alpha_L - p_L}{t_B + t_L} \frac{t_B \alpha_B + t_R \alpha_R + p_R}{t_B + t_L}}{-2\left(\frac{1}{t_B + t_B} + \frac{1}{t_B + t_L}\right)}$$

• FOC [α]:

$$\frac{\partial p^*}{\partial \alpha_B} = \frac{\left(\frac{1}{t_B + t_L} - \frac{1}{t_B + t_R}\right) t_B}{-2\left(\frac{1}{t_B + t_R} + \frac{1}{t_B + t_L}\right)}$$

$$\frac{\mathbf{t_L}\alpha_{\mathrm{L}} - \mathbf{p_L}}{\mathbf{t_B} + \mathbf{t_L}} - \frac{\mathbf{t_R}\alpha_{\mathrm{R}} + \mathbf{p_R}}{\mathbf{t_B} + \mathbf{t_R}} = \gamma$$

Optimal location:

$$\alpha^* = \gamma \left(\frac{\partial \mathbf{p}^*}{\partial \alpha_B} + \frac{\left(\frac{1}{\mathsf{t}_B + \mathsf{t}_R} - \frac{1}{\mathsf{t}_B + \mathsf{t}_L} \right) \mathsf{t}_B}{2 \left(\frac{1}{\mathsf{t}_B + t_R} + \frac{1}{\mathsf{t}_B + t_L} \right)} \right) \left(\left(\frac{1}{\mathsf{t}_B + \mathsf{t}_R} - \frac{1}{\mathsf{t}_B + \mathsf{t}_L} \right) \frac{\partial \mathbf{p}^*}{\partial \alpha_B} \mathsf{t}_B \right)^{-1}$$

• Profit of Blue Bottle at optimum:

$$\pi_B = (x_R - x_L)p^*$$

RESULTS

RESULTS

Firm L	Firm R	π_{B}^{*} (profit)	p* (price)	α* (location)
Starbucks	Ediya	6.8333	2.1443	0.2401
Starbucks	Angel-in-us	9.6674	2.6490	0.7357
Twosome Place	Coffee Bean	9.0191	2.5845	0.8168
Angel-in-us	Coffee Bean	10.3564	2.9121	0.2061

- Construct 15 possible pairs of existing firms
- Used Python to supplement our calculations

CONCLUSION

CONCLUSION

- Model explains the intuition of market positioning
 - Competing w/ lower branded, higher priced firms is easier
- Limitations
 - Difficulty of client of maintaining low prices
 - Brand identity
 - Costs
 - Multi-period competition

A&D