

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

Ideal Filters

Discrete-time Fourier Analysis Systems

TRAN Hoang Tung

Information and Communication Technology (ICT) Department University of Science and Technology of Hanoi (USTH)

April 06, 2021

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

Ideal Filter

1 The Discrete-time Fourier Transform (DTFT)

Digital Signal Processing

TRAN Hoang Tung

The Discrete-time Fourier Transform (DTFT)

Frequency Presentation of LT Systems

- 1 The Discrete-time Fourier Transform (DTFT)
- 2 Frequency Presentation of LTI Systems
- 3 Ideal Filters

Definition

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

Ideal Filter

The Discrete-time Fourier Transform (DTFT)

$$X(e^{j\omega}) \stackrel{\triangle}{=} \mathcal{F}[x(n)] = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LTI Systems

- 1 The Discrete-time Fourier Transform (DTFT)
- 2 Frequency Presentation of LTI Systems
- 3 Ideal Filters

Frequency Response

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LTI Systems

Ideal Filters

Definition

The DTFT of an impulse response is called the frequency response (or transfer function) of an LTI system

$$H(e^{j\omega n}) \stackrel{\triangle}{=} \mathcal{F}[h(n)] = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$$

Digital Signal Processing

TRAN Hoang Tung

The
Discretetime Fourier
Transform
(DTFT)

Frequency Presentation of LTI Systems

Response to a Complex Exponential $e^{j\omega_0 n}$

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LTI Systems

Response to Sinusoidal $x(n) = cos(\omega_0 n)$

Digital Signal Processing

TRAN Hoang Tung

The
Discretetime Fourier
Transform
(DTFT)

Frequency Presentation of LTI Systems

USTHY Frequency Response from Difference Equations

Digital Signal Processing

TRAN Hoang Tung

Frequency Presentation of LTI **Systems**

$$y(n) + \sum_{l=1}^{N} a_l y(n-l) = \sum_{m=0}^{M} b_m x(n-m)$$

$$h_{(0)} + 2h_{(1)} - 7h_{(2)} = \delta_{(-1)} + 3\delta_{(-3)} = 0$$

$$h_{(1)} + 2h_{(0)} - 7h_{(1)} = \delta_{(0)} + 3\delta_{(-2)} = 1$$

$$h_{(2)} + 2h_{(1)} - 7h_{(0)} = \delta_{(1)} + 3\delta_{(-1)} = 0$$

no input: -> has no output

Frequency Response from Difference Equations

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LTI Systems

Ideal Filters

Given an LTI system

$$y(n) + \sum_{l=1}^{N} a_l y(n-l) = \sum_{m=0}^{M} b_m x(n-m)$$
its frequency response is
$$H(e^{j\omega}) = \frac{\sum_{m=0}^{M} b_m e^{-j\omega m}}{1 + \sum_{l=1}^{N} a_l e^{-j\omega l}}$$

$$y(e^{j\omega}) \dots = y(e^{j\omega})$$

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

- 1 The Discrete-time Fourier Transform (DTFT)
- 2 Frequency Presentation of LTI Systems
- 3 Ideal Filters

STH FRANCE UNIVERSITY

Characteristics

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourie Transform (DTFT)

Presentation of LTI Systems

JSTH

Pole-zero patterns

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

Pole-zero patterns

Digital Signal Processing

TRAN Hoang Tung

The Discretetime Fourier Transform (DTFT)

Frequency Presentation of LT Systems

