Problem londonskega stolpa

Ines Meršak

mentor: prof. dr. Sandi Klavžar

TODO. 2016

Klasični problem londonskega stolpa (Shallice)

- izumljen leta 1982
- 3 enako velike krogle različnih barv
- 3 palice različnih velikosti
- cilj igre je priti iz trenutnega stanja v neko dano stanje z minimalnim številom potez

Primer

končni položaj

Graf klasičnega problema londonskega stolpa

Lastnosti grafa

- 36 vozlišč (36 možnih stanj)
- po 12 vozlišč stopnje 2, 3, 4
- premer grafa je 8
- ravninski

Trditev

Klasični londonski graf vsebuje Hamiltonovo pot, ne pa tudi Hamiltonovega cikla.

Oznake

- J. R. Tunstall je prva predlagala razširitev na 4 krogle s podaljšanimi palicami
- n krogel različnih barv, $n \ge 2$
- p palic, $p \ge 3$
- vsako palico označimo s številom $k \in [p]$, njeno višino pa s h_k
- veljati mora $n \leq \sum_{k=1}^{p} h_k$
- veljavnost poteze
- vsako stanje lahko enolično predstavimo s permutacijo $s \in S_{n+n}$
- položaje oštevilčimo od leve palice proti desni, z vrha palice proti dnu

Primer

Definicija

Definicija

Londonski graf L_h^n , kjer je $p \ge 3$, $n \ge 2$, $h \in [n]^p$, $\sum_{k=1}^p h_k \ge n$:

ullet vozlišča: vse permutacije $s\in \mathcal{S}_{n+p}$, za katere velja:

$$\forall k \in [p]: 1 \leq s_{n+k} - s_{n+k-1} \leq h_k + 1, \ s_{n+p} = n + p,$$

 povezave: vsaki dve stanji (oz. pripadajoči permutaciji), med katerima lahko prehajamo z veljavno potezo, sta povezani

Povezanost grafa

V nadaljevanju bomo privzeli, da so palice urejene po velikosti naraščajoče, velja torej $h_1 \leq h_2 \leq \cdots \leq h_p$. Potreben pogoj za povezanost londonskega grafa je

Posplošen londonski stolp

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Izrek

Londonski graf L_h^n je povezan natanko tedaj, ko velja pogoj

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Ravninskost grafa

Posplošen londonski stolp

Slika: Vsi londonski grafi s p=3 in n=2 so ravninski. Prikazani so: $L_{111}^2 + L_{112}^2 + L_{122}^2 + L_{222}^2$.

Operacija subdivizije ohranja ravninskost.

Izrek Kuratowskega

Graf G je ravninski natanko tedaj, ko ne vsebuje subdivizije K_5 niti subdivizije $K_{3,3}$.

Posplošen londonski stolp

Trditev

Naj bo p=3. Tedaj so ravninski londonski grafi natanko grafi $L_h^2, L_{123}^3, L_{123}^3=L$ in L_{133}^3 .

Slika: Graf L_{133}^3 je ravninski.

Slika: Rdeči podgraf grafa L_{222}^3 je subdivizija grafa $K_{3,3}$.

Simetrije

TODO

Oxfordski graf

Oxfordski graf je poseben primer londonskega grafa, kjer velja, da so vse palice velikosti n, pri čemer je n število krogel. Oxfordski graf označimo z O_p^n , zanj torej velja $O_p^n := L_{n^p}^n$.

Lastnosti

Trditev

Število vozlišč oxfordskega grafa O_p^n je enako

$$\frac{(n+p-1)!}{(p-1)!}.$$

Trditev

Število povezav oxfordskega grafa O_p^n je enako

$$\frac{np}{2}\frac{(p-2+n)!}{(p-2)!}.$$

Primeri uporabe

- Problem londonskega stolpa je bil razvit z namenom merjenja sposobnosti načrtovanja in reševanja problemov pri bolnikih s poškodbami čelnega režnja možganov.
- Slabo reševanje londonskega stolpa se interpretira kot nezmožnost učinkovitega načrtovanja.
- Uporabljen je bil za ocenjevanje napredka bolezni pri bolnikih z Alzheimerjevo in Parkinsonovo boleznijo.
- Uporabljen je bil tudi za opazovanje vedenja majhnih otrok pri reševanju problemov.

