自動機與形式語言 Homework 2

Class 02 B03902086 李鈺昇

(1)(2)

(3)

(a)

Regular. Regex: $b^*ab^*ab^*ab^*$

(b)

Regular. Regex: $(b^*ab^*ab^*)^*$

(c)

Regular. Regex: $(\Sigma\Sigma)^*$

(d)

Nonregular.

Suppose L is regular, and the pumping length is p. Take $s = a^p b a^p \in L$. Clearly $|s| = 2p + 1 \ge p$, and pumping lemma says that there exists x, y, z such that $s = xyz, |y| > 0, |xy| \le p, xy^i z \in L \ \forall i \ge 0$. Thus $y \ne \epsilon$ and y consists only of a's.

If we examine $xy^0z=xz$, then there would be fewer a's on the left side of b (|y|>0), implying that $xz\notin L$. Hence L is NOT regular.

(e)

Nonregular

Suppose L is regular, and the pumping length is p. Take $s=a^q\in L$, where $q\geq p$ is a chosen prime (possible since primes are unbounded). Clearly $|s|=q\geq p$, and pumping lemma says that there exists x,y,z such that $s=xyz,|y|>0,|xy|\leq p,xy^iz\in L\ \forall i\geq 0$. Thus $y\neq \epsilon$ and y consists only of a's.

Now let r = |x| + |z| and consider three cases:

- r=0In this case, $x=z=\epsilon$ and |y|=q. Examine $xy^qz=y^q$, whose length is q^2 , not a prime (q is a prime so q>1). So $xy^qz\notin L$.
- r=1Examine $xy^0z=xz$, whose length is |xz|=|x|+|z|=r=1, not a prime. So $xy^0z\notin L$.
- r > 1Examine xy^rz , whose length is |x| + r|y| + |z| = (|y| + 1)r, not a prime (|y| > 0 so |y| + 1 > 1). So $xy^rz \notin L$.

In each case, pumping lemma fails, so L is NOT regular.

(4)

(a)

• Reflexivity: Fix one $u \in \Sigma^*$. Now $\forall w \in \Sigma^*$, since trivially uw = uw, we immediately have $u \sim_L u$.

- Symmetry: $\forall u, v \in \Sigma^*$, $u \sim_L v$ $\Longrightarrow \forall w \in \Sigma^*, uw \in L \text{ iff } vw \in L$ $\Longrightarrow \forall w \in \Sigma^*, vw \in L \text{ iff } uw \in L$ $\Longrightarrow v \sim_L u$.
- $$\begin{split} \bullet \quad & \text{Transitivity: } \forall x,y,z \in \Sigma^*, \\ & x \sim_L y \text{ and } y \sim_L z \\ & \Longrightarrow \forall w \in \Sigma^*, xw \in L \text{ iff } yw \in L \text{ and } yw \in L \text{ iff } zw \in L \\ & \Longrightarrow \forall w \in \Sigma^*, xw \in L \text{ iff } zw \in L \\ & \Longrightarrow x \sim_L z. \end{split}$$

(b)

Suppose $u \sim_L v$. Take $w = \epsilon \in \Sigma^*$, then uw = u and vw = v. By definition we know $u \in L$ iff $v \in L$, which implies either $u, v \in L$ or $u, v \notin L$.

(c)

Assume $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$.

Suppose $u, v \in \Sigma^*$ with $\mathcal{A}(u) = \mathcal{A}(v) = q$ for some $q \in Q$. Then we consider the two possible cases:

- $q \in F$ In this case, both u and v are accepted by A, so $u, v \in L$.
- $q \notin F$ In this case, both u and v are rejected by \mathcal{A} , so $u, v \notin L$.

Thus $u \in L$ iff $v \in L$, that is, $u \sim_L v$.

(d)

Let n = |Q|. Suppose $\#(\sim_L) > n$, then there are at least n+1 words $s_1, s_2, \ldots, s_{n+1}$ such that $s_i \not\sim_L s_j, i \neq j$. From (c) we can conclude that for $u, v \in \Sigma^*$, if $u \not\sim_L v$, then $\mathcal{A}(u) \neq \mathcal{A}(v)$. So s_1, \ldots, s_{n+1} satisfies $\mathcal{A}(s_i) \neq \mathcal{A}(s_j), i \neq j$, which means that their are n+1 distinct states. But \mathcal{A} has only n states, a contradiction. So $\#(\sim_L)$ is finite, and more specifically $\#(\sim_L) \leq n = |Q|$.

(5)

(a)

Let $M = \{1, ..., m\}$. For each $i \in M$, take one arbitrary word $s_i \in C_i$. Then let $S = \{i | s_i \in L\} \subseteq M$. Now I shall show that $L = \bigcup_{i \in S} C_i$.

On one hand, pick any $s \in L$, clearly $s \in C_j$ for some $j \in M$, since \sim_L partitions $\Sigma^* \ni s$. Also $s_j \in C_j$, hence $s_j \sim_L s$. By (4)(b) and $s \in L$, we know $s_j \in L$. So $j \in S$ by definition of S, hence $s \in C_j \subseteq \bigcup_{i \in S} C_i$. Since the above holds for all $s \in L$, we have $L \subseteq \bigcup_{i \in S} C_i$.

On the other hand, pick any $s \in \bigcup_{i \in S} C_i$. Then $s \in C_j$ for some $j \in S$. By $j \in S$ and my definition of $S, s_j \in L$. We already know $s_j \in C_j$, so again $s_j \sim_L s$. With $s_j \in L$ and (4)(b), $s \in L$. Since the above holds for all $s \in \bigcup_{i \in S} C_i$, we have $\bigcup_{i \in S} C_i \subseteq L$.

Now rewrite $S = \{i_1, \dots, i_k\}$ where k = |S|. Hence $L = \bigcup_{i \in S} C_i = C_{i_1} \cup \dots \cup C_{i_k}$. This completes the proof.

(b)

 $\forall w_1, w_2 \in C_i, w_1 \sim_L w_2$, which by definition guarantees that $w_1 x \in L$ iff $w_2 x \in L$ for all $x \in \Sigma^*$. This implies $w_1 ax \in L$ iff $w_2 ax \in L$ for all $x \in \Sigma^*$. Again by definition, $w_1 a \sim_L w_2 a$, and thus $[w_1 a] = [w_2 a]$. Because the above holds for any i, the proof is done.

(c)

Claim For $s \in \Sigma^*$, $A(s) = p_j$ if and only if $s \in C_j$, $1 \le j \le m$.

• Proof: The proof is by induction on |s|. Base case, |s| = 0: So $s = \epsilon$, $\mathcal{A}(s) = q_0 = p_j$, where $s = \epsilon \in C_j$ as in the definition of \mathcal{A} . Now suppose the claim holds for all s with $|s| = n, n \ge 0$. Then for any s with |s| = n + 1, say $s = s_1 s_2 \cdots s_{n+1}$, we know the claim holds for $s_1 \cdots s_n$. So we can assume $\mathcal{A}(s_1 \cdots s_n) = p_i$ and $s_1 \cdots s_n \in C_i$ for some $1 \le i \le m$. As in the definition of δ , take $w = s_1 \cdots s_n \in C_i$ and $a = s_{n+1}$, then $\delta(p_i, s_{n+1}) = p_j$ and $[s] = [s_1 \cdots s_n s_{n+1}] = C_j$ for some $1 \le j \le m$. Thus $\mathcal{A}(s) = \delta(\mathcal{A}(s_1 \cdots s_n), s_{n+1}) = \delta(p_i, s_{n+1}) = p_j$ and $s \in C_j$. This induction step completes the proof.

Now we can work on the two directions of the problem.

- $L(\mathcal{A}) \subseteq L$ For any $s = s_1 s_2 \dots s_n \in L(\mathcal{A})$, there is a run $p_{j_0} s_1 p_{j_1} \dots s_{n-1} p_{j_{n-1}} s_n p_{j_n}$ with $\epsilon \in C_{j_0}$ and $\mathcal{A}(s) = p_{j_n} \in F$. With the above claim, we can conclude $s = \in C_{j_n}$. And $p_{j_n} \in F = \{p_{i_1}, \dots, p_{i_k}\}$, so $j_n \in \{i_1, \dots, i_k\}$, hence $s \in C_{i_1} \cup \dots \cup C_{i_k} = L$.
- $L \subseteq L(\mathcal{A})$ Suppose $s \in L = C_{i_1} \cup \cdots \cup C_{i_k}$. Then $s \in C_i$ for some $i \in \{i_1, \ldots, i_k\}$. With the claim, $\mathcal{A}(s) = p_i \in \{p_{i_1}, \ldots, p_{i_k}\} = F$. Hence \mathcal{A} accepts s, or $s \in L(\mathcal{A})$.

This completes the proof.

(d)

If L is regular, then some DFA \mathcal{A} recognizes it, and thus $\#(\sim_L) \leq |Q| < \infty$ by (4.d), where Q is the set of states of \mathcal{A} .

On the other hand, if $\#(\sim_L) = m < \infty$, then by the previous (5.abc) we can construct a DFA \mathcal{A} with m states such that $L(\mathcal{A}) = L$, implying L is regular.