# Naive Bayes

Hendrik Orem, Ph.D., with thanks to Jameson Watts

01/26/2023

# Agenda

- 1. Review of Homework 3
- 2. The Naive Bayes algorithm
- 3. Dinner break
- 4. Tidy text and bag of words
- 5. Group work
- 6. Vocabulary

# The Naive Bayes Algorithm

# Bayes' Theorem

$$P(L \mid \text{features}) = \frac{P(\text{features} \mid L)P(L)}{P(\text{features})}$$

More generally...

$$P(\text{Thing1} \mid \text{Thing2}) = \frac{P(\text{Thing2} \mid \text{Thing1})P(\text{Thing1})}{P(\text{Thing2})}$$

## Bayes' Theorem Example

Suppose half of all emails are spam, and you've just purchased some software (hurray) that filters spam emails, claiming to detect 99% of spam and that the probability of a false positive (marking non-spam as spam) is 5%.

Now suppose an incoming email is marked as spam. What is the probability that it's a non-spam email?

Thing 1 = email is non-spam email

Thing 2 = emaill is marked as spam

 $P(thing2 \mid thing1) =$ 

P(thing 1) =

P(thing 2) =

# Bayes' Theorem Example Solution

Solution:

$$P(thing2 \mid thing1) = 5\%$$

$$P(thing1) = 50\%$$

$$P(\text{thing } 2) = 99\% * 50\% + 5\% * 50\%$$

$$0.05 * 0.5/(0.99 * 0.5 + 0.05 * 0.5) = 4.81\%$$

# Bayes' Theorem Exercises!

- 1. You have three cards: one is red on both sides, one is black on both sides, and one has one red side and one black side. You pick a card at random, and put it on the table on a random side, and the color showing is red. What is the probability that the other side is black?
- 2. Let's imagine half of all rainy days start off cloudy in the morning. However, we live in a cloudy place, and about 40% of days start off cloudy, and you know that 90% of days this time of year do not have rain. What are the odds it will rain today?

## **Solutions**

1. Solution:

Thing 1 = card is red-black

thing 2 = side up is red

P(side up is red | card is red-black) = 1/2

P(thing 1) = 1/3

$$P(\text{thing 2}) = 100\% * 1/3 + 50\% * 1/3 + 0\% * 1/3$$

so P(card is red-black | side up is red) = 1/3 \* 1/2 / (1/3 + 1/6) = 1/3

2. Solution:

thing 1 = rain during the day

thing 2 = cloudy in the morning

P (thing 
$$2 \mid \text{thing } 1) = 50\%$$

P(thing 1) = 10%

P(thing 2) = 40%

so we get P(thing 1 | thing 2) = 0.1\*0.5 / 0.4 = 0.125

## Algorithm

$$P(L \mid \text{features}) = \frac{P(\text{features} \mid L)P(L)}{P(\text{features})}$$

If we only care about choosing between two labels L1 and L2, then we only need the ratio:

$$\frac{P(L_1 \mid \text{features})}{P(L_2 \mid \text{features})} = \frac{P(\text{features} \mid L_1)}{P(\text{features} \mid L_2)} \frac{P(L_1)}{P(L_2)}$$

But how on earth can we get  $P(\text{features} \mid L)$ ? Well, we have to make an assumption. "Naive" in Naive Bayes means we keep it simple.

Really we would need P(Cherry, Fruit, Bordeaux | Chardonnay), "Naive" assumption is independence so the algorithm calculates P(Cherry | Chardonnay) \* P(Fruit | Chardonnay) \* P(Bordeaux | Chardonnay).

# Setup

```
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
library(tidyverse)
library(caret)
library(naivebayes)
library(fastDummies)
#source('theme.R')

wine = read_rds("../resources/pinot.rds")
names(wine)[names(wine) == 'id'] = 'ID'
```

#### Some basic features

```
wino <- wine %>%
      mutate(year_f = as.factor(year)) %>%
      mutate(cherry = str_detect(description, "cherry")) %>%
      mutate(chocolate = str_detect(description, "chocolate")) %>%
      mutate(earth = str_detect(description, "earth")) %>%
      select(-description, year)
glimpse(wino)
## Rows: 8,380
## Columns: 9
## $ ID
                                              <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
## $ province <chr> "Oregon", "Oregon", "California", "Oregon", "O
                                              <dbl> 65, 20, 69, 50, 22, 25, 64, 55, 44, 38, 28, 45, 22, 55, 40, ~
## $ price
                                              <dbl> 87, 87, 87, 86, 86, 86, 91, 91, 91, 91, 85, 85, 85, 89, 89, ~
## $ points
## $ year
                                              <dbl> 2012, 2013, 2011, 2010, 2009, 2015, 2013, 2012, 2014, 2014, ~
                                             <fct> 2012, 2013, 2011, 2010, 2009, 2015, 2013, 2012, 2014, 2014, ~
## $ year_f
                                              <1gl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE~
## $ cherry
## $ chocolate <1g1> FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
```

#### A basic model

## 6707 samples

## \$ earth

<1gl> TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, ~

```
##
      8 predictor
##
      6 classes: 'Burgundy', 'California', 'Casablanca_Valley', 'Marlborough', 'New_York', 'Oregon'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 6035, 6038, 6037, 6038, 6036, 6036, ...
## Resampling results across tuning parameters:
##
##
     usekernel Accuracy
                           Kappa
##
     FALSE
                0.4635340 0.18240715
##
      TRUE
                0.4122263 0.09141955
##
## Tuning parameter 'laplace' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Kappa was used to select the optimal model using the largest value.
## The final values used for the model were laplace = 0, usekernel = FALSE
## and adjust = 1.
What's going on here?
```

# Maybe bin the data?

```
wino <- wino %>%
  select(-starts_with("year_")) %>%
  mutate(points_f = case_when(
    points < 90 ~ "low",</pre>
    points \geq 90 \& points < 96 \sim "med",
    points >= 96 ~ "high"
           ) %>%
  mutate(price_f = case_when(
    price < 16 ~ "low",</pre>
    price >= 16 & price < 41 ~ "med",</pre>
    price >= 41 ~ "high"
           ) %>%
  mutate(year_f = case_when(
    year < 2005 ~ "old",
    year >= 2005 & year < 2011 ~ "recent",</pre>
    year >= 2011 ~ "current"
           ) %>%
  select(-price,-points,-year)
  head(wino)
```

| ID | province   | cherry | chocolate | earth | points_f | price_f              | year_f  |
|----|------------|--------|-----------|-------|----------|----------------------|---------|
| 1  | Oregon     | FALSE  | FALSE     | TRUE  | low      | high                 | current |
| 2  | Oregon     | FALSE  | TRUE      | FALSE | low      | $\operatorname{med}$ | current |
| 3  | California | FALSE  | FALSE     | TRUE  | low      | high                 | current |
| 4  | Oregon     | FALSE  | FALSE     | FALSE | low      | high                 | recent  |
| 5  | Oregon     | FALSE  | FALSE     | TRUE  | low      | $\operatorname{med}$ | recent  |

| ID | province | cherry | chocolate | earth | points_f | price_f              | year_f  |
|----|----------|--------|-----------|-------|----------|----------------------|---------|
| 6  | Oregon   | FALSE  | FALSE     | FALSE | low      | $\operatorname{med}$ | current |

### Binned model

```
set.seed(504)
train <- wino[ wine_index, ]</pre>
test <- wino[-wine_index, ]</pre>
fit <- train(province ~ .,</pre>
             data = train,
             method = "naive_bayes",
             metric = "Kappa",
             trControl = control)
fit
## Naive Bayes
##
## 6707 samples
##
      7 predictor
##
      6 classes: 'Burgundy', 'California', 'Casablanca_Valley', 'Marlborough', 'New_York', 'Oregon'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 6037, 6035, 6037, 6038, 6035, 6036, ...
## Resampling results across tuning parameters:
##
##
     usekernel Accuracy
                            Kappa
##
     FALSE
                0.4571336 0.2539893
##
      TRUE
                0.5182601 0.1470779
##
## Tuning parameter 'laplace' was held constant at a value of 0
## parameter 'adjust' was held constant at a value of 1
## Kappa was used to select the optimal model using the largest value.
## The final values used for the model were laplace = 0, usekernel = FALSE
    and adjust = 1.
```

Little better, but let's look at the confusion matrix to see what might be going on.

#### Confusion Matrix

```
confusionMatrix(predict(fit, test),factor(test$province))
```

```
## Confusion Matrix and Statistics
##
##
                       Reference
## Prediction
                        Burgundy California Casablanca_Valley Marlborough New_York
##
     Burgundy
                             211
                                         311
                                                             13
                                                                          17
##
     California
                              17
                                         427
                                                              1
                                                                          12
                                                                                   11
                                                              9
##
     Casablanca_Valley
                               2
                                          27
                                                                           6
                                                                                    4
##
     Marlborough
                                           1
                                                                           2
                                                                                    1
                               1
                                                              1
##
     New_York
                               2
                                           4
                                                                           4
                                                                                    5
```

```
21
                                                                                    0
##
     Oregon
                               5
                                                                          4
##
                       Reference
                        Oregon
## Prediction
                           249
##
     Burgundy
##
     California
                           162
     Casablanca_Valley
##
##
     Marlborough
                            16
     New_York
                            10
##
##
     Oregon
                           106
##
## Overall Statistics
##
                  Accuracy : 0.4543
##
##
                     95% CI: (0.4302, 0.4785)
##
       No Information Rate: 0.4728
##
       P-Value [Acc > NIR] : 0.9386
##
##
                      Kappa: 0.2477
##
    Mcnemar's Test P-Value : <2e-16
##
##
## Statistics by Class:
##
##
                         Class: Burgundy Class: California Class: Casablanca Valley
## Sensitivity
                                  0.8866
                                                     0.5398
                                                                               0.34615
## Specificity
                                  0.5854
                                                     0.7698
                                                                              0.97389
## Pos Pred Value
                                  0.2618
                                                     0.6778
                                                                              0.17308
## Neg Pred Value
                                                                               0.98951
                                  0.9689
                                                     0.6510
## Prevalence
                                                     0.4728
                                                                              0.01554
                                  0.1423
## Detection Rate
                                  0.1261
                                                     0.2552
                                                                               0.00538
## Detection Prevalence
                                  0.4818
                                                     0.3766
                                                                              0.03108
## Balanced Accuracy
                                  0.7360
                                                     0.6548
                                                                              0.66002
##
                         Class: Marlborough Class: New_York Class: Oregon
## Sensitivity
                                   0.044444
                                                    0.192308
                                                                    0.19378
## Specificity
                                   0.987715
                                                    0.987857
                                                                    0.97158
## Pos Pred Value
                                   0.090909
                                                    0.200000
                                                                    0.76812
## Neg Pred Value
                                   0.973955
                                                    0.987257
                                                                    0.71270
## Prevalence
                                   0.026898
                                                    0.015541
                                                                    0.32696
## Detection Rate
                                   0.001195
                                                    0.002989
                                                                    0.06336
## Detection Prevalence
                                   0.013150
                                                    0.014943
                                                                    0.08249
## Balanced Accuracy
                                   0.516080
                                                    0.590082
                                                                    0.58268
```

Naive bayes is best when you want to consider a bunch of predictors simultaneously to get a 'holistic' view.

# Dinner (and virtual high fives)

# You'RE SO VENN



# Tidytext and frequency distributions

# Tidytext

```
library(tidytext)
data(stop_words)
head(stop_words, 25)$word
## [1] "a"
                      "a's"
                                     "able"
                                                   "about"
                                                                  "above"
## [6] "according"
                      "accordingly" "across"
                                                   "actually"
                                                                  "after"
## [11] "afterwards"
                      "again"
                                     "against"
                                                   "ain't"
                                                                  "all"
## [16] "allow"
                      "allows"
                                                   "alone"
                                                                  "along"
                                     "almost"
## [21] "already"
                      "also"
                                     "although"
                                                   "always"
                                                                  "am"
```

### Create document term matrix

```
df <- wine %>%
  unnest_tokens(word, description) %>%
  anti_join(stop_words) %>% # get rid of stop words
```

```
filter(word != "wine") %>%
filter(word != "pinot") %>%
count(ID, word) %>%
group_by(ID) %>%
mutate(freq = n/sum(n)) %>%
mutate(exists = (n>0)) %>%
ungroup %>%
group_by(word) %>%
mutate(total = sum(n))
```

| ID | word            | n | freq      | exists | total |
|----|-----------------|---|-----------|--------|-------|
| 1  | 2012            | 1 | 0.0588235 | TRUE   | 71    |
| 1  | bottling        | 1 | 0.0588235 | TRUE   | 849   |
| 1  | characteristics | 1 | 0.0588235 | TRUE   | 61    |
| 1  | companion       | 1 | 0.0588235 | TRUE   | 22    |
| 1  | country         | 1 | 0.0588235 | TRUE   | 11    |
| 1  | earthy          | 1 | 0.0588235 | TRUE   | 804   |
| 1  | hearty          | 1 | 0.0588235 | TRUE   | 99    |
| 1  | herbal          | 1 | 0.0588235 | TRUE   | 438   |
| 1  | nonetheless     | 1 | 0.0588235 | TRUE   | 33    |
| 1  | pleasantly      | 1 | 0.0588235 | TRUE   | 28    |

# Top words in database

```
df %>%
  count(word) %>%
  arrange(desc(n)) %>%
  head(25)
```

| n    |
|------|
| 3724 |
| 3423 |
| 3048 |
| 2029 |
| 2025 |
| 1976 |
| 1973 |
| 1937 |
| 1856 |
| 1431 |
| 1410 |
| 1399 |
| 1371 |
| 1341 |
| 1335 |
| 1285 |
| 1185 |
| 1140 |
| 1130 |
|      |

| word    | n    |
|---------|------|
| bodied  | 1016 |
| spice   | 1015 |
| dark    | 1000 |
| plum    | 973  |
| fruits  | 945  |
| texture | 920  |

# Pivot wide and rejoin with wine

```
wino <- df %>%
  filter(total > 1000) %>%
  filter(total > 1000) %>%
  pivot_wider(id_cols = ID, names_from = word, values_from = exists, values_fill = list(exists=0)) %>%
  merge(select(wine,ID, province), all.y=TRUE) #%>%
  #drop_na()

#wino <- merge(select(wine,ID, province), wino, by="ID", all.x=TRUE) %>%
  # arrange(ID)
#View(wino)
wino <- replace(wino, is.na(wino), FALSE)

head(wino, 10) %>%
  select(1:5,province)
```

| $\overline{\mathrm{ID}}$ | drink | oak   | aromas | bodied | province   |
|--------------------------|-------|-------|--------|--------|------------|
| 1                        | FALSE | FALSE | FALSE  | FALSE  | Oregon     |
| 2                        | TRUE  | TRUE  | FALSE  | FALSE  | Oregon     |
| 3                        | FALSE | TRUE  | TRUE   | TRUE   | California |
| 4                        | FALSE | FALSE | FALSE  | FALSE  | Oregon     |
| 5                        | FALSE | FALSE | FALSE  | FALSE  | Oregon     |
| 6                        | TRUE  | FALSE | FALSE  | FALSE  | Oregon     |
| 7                        | FALSE | FALSE | FALSE  | FALSE  | California |
| 8                        | FALSE | FALSE | FALSE  | FALSE  | California |
| 9                        | FALSE | TRUE  | FALSE  | FALSE  | California |
| 10                       | FALSE | FALSE | FALSE  | FALSE  | Oregon     |

#### A new model

```
## Naive Bayes
##
## 6707 samples
##
     24 predictor
##
      6 classes: 'Burgundy', 'California', 'Casablanca_Valley', 'Marlborough', 'New_York', 'Oregon'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 6035, 6038, 6037, 6038, 6036, 6036, ...
## Resampling results across tuning parameters:
##
     usekernel Accuracy
##
                           Kappa
                0.5485336 0.4068340
##
     FALSE
##
      TRUE
                0.5671734 0.3751128
##
## Tuning parameter 'laplace' was held constant at a value of TRUE
##
## Tuning parameter 'adjust' was held constant at a value of TRUE
## Kappa was used to select the optimal model using the largest value.
## The final values used for the model were laplace = TRUE, usekernel = FALSE
  and adjust = TRUE.
... now things are getting better.
```

### **Confusion Matrix**

```
confusionMatrix(predict(fit, test),factor(test$province))
```

```
## Confusion Matrix and Statistics
##
##
                       Reference
## Prediction
                        Burgundy California Casablanca_Valley Marlborough New_York
##
     Burgundy
                              212
                                          73
                                                               0
                                                                            5
                                         405
                                                               3
                                                                            5
##
     California
                                6
                                                                                     8
                                3
                                                              20
                                                                            4
                                                                                     6
##
     Casablanca_Valley
                                         126
                                                                                     2
##
     Marlborough
                                1
                                          57
                                                              1
                                                                           22
##
     New_York
                                9
                                          34
                                                               2
                                                                            2
                                                                                     4
                                7
                                                                            7
##
     Oregon
                                          96
                                                               0
                                                                                     0
##
                       Reference
## Prediction
                        Oregon
##
     Burgundy
                            163
##
     California
                            40
##
     Casablanca_Valley
##
     Marlborough
                            47
##
     New York
                              8
     Oregon
                            240
##
##
## Overall Statistics
##
##
                   Accuracy : 0.5397
                     95% CI: (0.5155, 0.5638)
##
##
       No Information Rate: 0.4728
       P-Value [Acc > NIR] : 2.447e-08
##
##
```

```
##
                     Kappa: 0.3912
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: Burgundy Class: California Class: Casablanca_Valley
## Sensitivity
                                  0.8908
                                                    0.5120
                                                                             0.76923
## Specificity
                                  0.8279
                                                     0.9297
                                                                             0.88585
## Pos Pred Value
                                  0.4619
                                                    0.8672
                                                                             0.09615
## Neg Pred Value
                                                                             0.99590
                                  0.9786
                                                    0.6799
## Prevalence
                                  0.1423
                                                     0.4728
                                                                             0.01554
## Detection Rate
                                  0.1267
                                                    0.2421
                                                                             0.01195
## Detection Prevalence
                                  0.2744
                                                    0.2791
                                                                             0.12433
## Balanced Accuracy
                                  0.8593
                                                    0.7209
                                                                             0.82754
##
                         Class: Marlborough Class: New_York Class: Oregon
## Sensitivity
                                    0.48889
                                                   0.153846
                                                                    0.4388
## Specificity
                                    0.93366
                                                   0.966606
                                                                    0.9023
## Pos Pred Value
                                    0.16923
                                                   0.067797
                                                                    0.6857
## Neg Pred Value
                                    0.98509
                                                   0.986369
                                                                    0.7680
## Prevalence
                                    0.02690
                                                   0.015541
                                                                    0.3270
## Detection Rate
                                    0.01315
                                                   0.002391
                                                                    0.1435
## Detection Prevalence
                                    0.07770
                                                   0.035266
                                                                    0.2092
## Balanced Accuracy
                                    0.71127
                                                   0.560226
                                                                    0.6705
```

# Maybe we can find words associated with our sparse provinces?

```
df %>%
  left_join(select(wine, ID, province), by = "ID") %>%
  count(province, word) %>%
  group_by(province) %>%
  top_n(5,n) %>%
  arrange(province, desc(n))
```

| word province  tannins Burgundy drink Burgundy acidity Burgundy red Burgundy | n<br>763<br>673<br>652<br>630<br>575 |
|------------------------------------------------------------------------------|--------------------------------------|
| drink Burgundy acidity Burgundy                                              | 673<br>652<br>630<br>575             |
| acidity Burgundy                                                             | 652<br>630<br>575                    |
|                                                                              | 630<br>575                           |
| red Burgundy                                                                 | 575                                  |
|                                                                              |                                      |
| fruits Burgundy                                                              |                                      |
| cherry California                                                            | 1917                                 |
| palate California                                                            | 1587                                 |
| black California                                                             | 1336                                 |
| flavors California                                                           | 1332                                 |
| fruit California                                                             | 1289                                 |
| flavors Casablanca_Valley                                                    | 114                                  |
| aromas Casablanca_Valley                                                     | 101                                  |
| finish Casablanca_Valley                                                     | 93                                   |
| plum Casablanca_Valley                                                       | 69                                   |
| palate Casablanca_Valley                                                     | 65                                   |
| drink Marlborough                                                            | 140                                  |
| cherry Marlborough                                                           | 124                                  |
| fruit Marlborough                                                            | 119                                  |

| word    | province    | n    |
|---------|-------------|------|
| finish  | Marlborough | 107  |
| noir    | Marlborough | 84   |
| notes   | Marlborough | 84   |
| cherry  | New_York    | 105  |
| noir    | New_York    | 83   |
| tannins | New_York    | 76   |
| palate  | New_York    | 71   |
| finish  | New_York    | 64   |
| fruit   | Oregon      | 1730 |
| flavors | Oregon      | 1187 |
| cherry  | Oregon      | 1092 |
| finish  | Oregon      | 787  |
| tannins | Oregon      | 506  |

# Group exercise

Use the top words by province to...

- 1. Engineer more features that capture the essence of Casablanca, Marlborough and New York
- 2. Look for difference between California and Oregon
- 3. Use what you find to run naive Bayes models that achieve a Kappa that approaches 0.5

# Vocabulary

- Naive Bayes
- Correlation
- Residual
- Kappa
- Parameter Tuning
- Conditional Probability

# **Bonus Code**

```
library(scales)
wtxt <- wine %>%
  unnest_tokens(word, description) %>%
  anti_join(stop_words) %>%
  filter(str_detect(string = word, pattern = "[a-z+]")) %% # get rid weird non alphas
  filter(str_length(word)>3) %>% # get rid of strings shorter than 3 characters
  group_by(word) %>%
  mutate(total=n()) %>%
  ungroup()
wtxt %>%
    filter(province=="Oregon" | province=="California") %>%
    filter(!(word %in% c("wine", "pinot", "drink", "noir", "vineyard", "palate", "notes", "flavors", "bottling"
    filter(total > 400) %>%
    group_by(province, word) %>%
    count() %>%
    group_by(province) %>%
    mutate(proportion = n / sum(n)) %>%
```

```
pivot_wider(id_cols = word, names_from = province, values_from = proportion) %>%
ggplot(aes(x = Oregon, y = California, color = abs(Oregon - California))) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001), low = "darkslategray4", high = "gray75") +
theme(legend.position="none") +
labs(x = "Oregon", y = "California", title = "Words describing Pinot Noir from California and Oregon")
```

#### Words describing Pinot Noir from California and Oregon



```
dtxt <- wtxt %>%
  filter(province=="Oregon" | province=="California") %>%
  filter(!(word %in% c("wine","pinot","drink","noir","vineyard","palate","notes","flavors","bottling","
  filter(total > 400) %>%
  group_by(province, word) %>%
  count() %>%
  group_by(province) %>%
  mutate(proportion = n / sum(n)) %>%
  pivot_wider(id_cols = word, names_from = province, values_from = proportion) %>%
  mutate(diff=Oregon-California)

dtxt %>%
  top_n(25, diff) %>%
  mutate(word = reorder(word, diff)) %>%
```

```
ggplot(aes(word, diff)) +
geom_col() +
xlab(NULL) +
coord_flip()
```

