Learning to Sample in an Online Fashion for Robot Motion Planning

Rogerio Bonatti, Ratnesh Madaan, Brian Okorn, Sam Zeng

What are Rapidly-Exploring Random Trees (RRT)?

RRT: The Piano-Movers Problem

https://www.youtube.com/watch?v=rPgZyq15Z-Q&

What are Rapidly-Exploring Random Trees?

RRT: The Piano-Movers Problem

https://www.youtube.com/watch?v=rPgZyq15Z-Q&

Related work:

Learning heuristics

Learning distribution bias

Brian Ichter, James Harrison, and Marco Pavone, "Learning Sampling Distributions for Robot Motion Planning." *arXiv preprint* 2017

Contributions

Where should I sample here? What about now?

- Learn a sampling distribution using a representation jointly over the
 - fully-observable environment and
 - the current state of the search tree

What is a good sample?

Supervised sampling

Sample N valid states
Rank by fitness
Pick best K samples

How do we mimic this distribution?

Variational auto-encoder

RRT Sampling CVAE Network

Results: supervised training

Sequence of test time

Example of distributions in other environments

DAgger Training

DAgger results

RRT tree

DAgger tree (7 iterations)

What about harder problems?

Extension to higher state-spaces: 5DOF manipulator

Differences with respect to current approach (2D point robot):

- Current search tree is passed to CVAE as graph instead of an image
 - Adjacency map
 - Featurization (values of each state)
- Cost-to-go function is obtained by solving an optimal planner from sample to goal

Currently being implemented in OMPL for final report

RRT Sampling With Graph CVAE Network

Questions

- RRT Planning
- CVAE Sampling
- Convolutional Sampler
- DAgger Training
- Higher Dimensions
- Graph Sampler

Shifting Gaps

Forest

Mazes

Single Bugtrap

Multiple Bugtraps

Gaps and Forest

BACKUP

Some samples are more optimistic-in-the-face-of-partial-observability than others

- Ideally, we would want the learnt policy to take risks aka be "greedy" sometimes, depending on the planning progress, (number of (failed)) collision checks, etc.
- For instance, a simple conditioning variable could be the number of collision checks failed till now. If this is high, ideally the distribution should have more density near the graph.
 - On the contrary, if a lot of collisions were happening, the distribution can take risks
- A simple #gupta way of encoding this is add another channel with circles on the states that failed collision checks (it's kinda weird - one channel has black for obstacles - a bad region indicator, one channel has black for the graph - sample close to this indicator, one channel has black for the failed nodes - sample away from this indicator.
 I guess we should have some color for good things, and bad things?

Graph-based Features: Localized Spectral Filtering

Graph Coarsening using Heavy Edge Matching

What are Rapidly-Exploring Random Trees?

RRT: The Piano-Movers Problem

https://www.youtube.com/watch?v=rPgZyq15Z-Q&