Tutorial 1

- Determine whether each of the following sentences is a statement.

 i) y + 3 is a positive integer. Not a statement

 ii) $128 = 2^6$. Statement

 - $x = 2^6$. Not a statement
 - Is 2 a positive number? Not a stetement

2. Give the negation of the following statement.

- 2 + 7 < 11 2 + 1 = 3 $2 + 1 \neq 3$
- iii) p: (2 is an even integer)and (8 is an odd integer.) q
- Today is Wednesday. iv)

in) Today is not Wednesday.

and: Λ

or : V

Let p, q, r be the propositions

p : You have a flu.

q: You miss the final exam.

r: You pass the course.

Express each of these propositions as in English sentences.

i)
$$p \vee q \vee r$$
 ii) $(p \wedge q) \vee (\sim q \wedge r)$

iii)
$$\sim p \land \sim q \land r$$

v: or

 Λ : and

~p : not p

- i) You have a flu or you miss the final exam or you pass the course.
- Either you have a flu and miss the final exam or you didn't miss the final exam and pass the course
- You did not have a flu and you did not miss the final exam and you pass the course.

4. Let h: "John is healthy."

w: "John is wealthy."

s: "John is wise."

 \wedge , \vee ,

Use the indicated letters and logical connectors to represent the following compound statements.

- i) John is healthy and wealthy. $h \land w$
- ii) John is healthy and not wise. h ∧ ∼೨
- iii) John is healthy and wealthy but not wise. h ^ w ^ >
- iv) John is not wealthy but he is healthy and wise. $\sim W \land (h \land S)$
- v) John is either wealthy or healthy, or both. w v h
- vi) John is wealthy or he is healthy but not wealthy and healthy.

 √∨ ✓ /

 √
- vii) John is neither healthy nor wealthy. ∼ (h ∧ w) or h l w
- viii) John is neither healthy, wealthy, nor wise.

~ (h nw ns)

Determine the truth or falsity of each of the following statement.

i) $(2 \ge 3)$ and (3) is a positive integer. False

ii) (2 < 3) or (3) is not a positive integer. True

iii) (2) is a prime but (3) is not a prime. False 5.

- It is not true that 2 is not a prime or 3 is prime. Fake It is false that 2 is prime or multiple of 4.) Fake
- V)

(i)
$$F \wedge T = F$$
 $(T \wedge T = T)$

(ii)
$$T \vee F = T \quad (F \vee F = F)$$

(iii)
$$T \wedge F = F$$

(iv)
$$\sim (f \vee T) = \sim T = F$$

(v) $\sim (T \vee F) = \sim T = F$

6. Find the truth value of each proposition if p and r are true and q is false.

- $\sim p \wedge (q \vee r)$ false ii) $p \wedge (\sim (q \vee \sim r))$ The iv) $(q \wedge r) \wedge (p \vee \sim r)$ false

ii)
$$T \wedge (\sim (F \vee F)) = T \wedge (\sim F) = T \wedge T = T$$

$$T = T \lor T = (T \land T) \lor (T \land T)$$

(iv)
$$(F\Lambda T) \Lambda (TVF) = F \Lambda T = F$$

7. Construct a truth table for the following compound statements.

i) $(p \vee q) \vee (q \vee r)$

v; not but

,		•			
P	9	r	P ¥ 9	q v r	(PYq) V (QYI)
0	0	0	Ð	0	0
0	0	1	0	1)
0	1	Q	1	1	0
0	1	1		0	1
1	0	0	1	0	1
-	0		1	1	0
ŀ	1	0	0	1	1
_	f		0	0	0

ii)
$$(p \downarrow q) \land (q \downarrow r)$$

 $P \downarrow Q \equiv \alpha (P \vee q)$ $0, 0 \Rightarrow 1$

	√	V	\checkmark	~	~	
	P	9	r	P49	915	(P+9) 1 (9+1)
	Ô	D	O	١		ſ
	0	0	(0	0
ſ	0	(D	0	0	0
ſ	0	١	(0	0	0
	1	0	0	0	. (0
ľ	١	0	(0	0	0
	- 1	1	D	0	ð	0
ſ	1	1		0	0	0
						1

iii)
$$(p \mid q) \land r$$

$$PIR = \sim (P \land R)$$

$$1,1 \Rightarrow 0$$

V	✓	✓	✓		
P	12	r	P19	(p1g) 1 r	
0	0	0	1	0	
0	0	1	1	l	-
0	1	0	1	0	_
0	١	ſ	1	1	_
1	0	0	1	O	-
1	0	1	1	1	-
1	1	0	0	0	_
- 1	ſ	1	0	0	_

iv) $(p \mid q) \lor (p \mid r)$ (P19) V (P1r) p Ir Pla pla = ~ (p 1 a) 0 \mathcal{O} 0 0 0 D

Determine which of the pairs of statement forms are logically equivalent. Justify your answers using truth tables. $\sim (p \land (\sim (p \land q))) p \text{ and } p \lor (\sim q \land \sim p)$ ~(pn(~(pna))) ~ qnnp P1~(P11) ~ (pnq) P19 not equal

,- not logically equivalent

ii)
$$(p \downarrow p) \downarrow (q \downarrow q) \text{ and } p \land q.$$

brd = v(brd) 0,0:1

P	9	PVP	949 CP	4p v (9 49)	PAP					
D	0			0	0					
O			0	9	0					
1	O	D	1	0	0					
1	1	O		1	1					
	logically equivalent equal									

iii) $(p \underline{V} q) \wedge r$ and $(p \wedge r) \underline{V} (q \wedge r)$.

P	•	r	P = 9	(P24) AT	Pvr	9.15	(11/4) × (11/4)			
0	0	0	O	0	0	0	0			
0	0	(0	0	O	0	0			
0	1	0	1	0	O	0	0			
O	ſ	(- 1	1	0	1	1			
1	D	D	- 1	0	O	0	0			
- 1	0	(- [(1	0	1			
١	-1	0	0	0	0	0	0			
1	- 1	(0	0	1		. 0			
	equal									

.. logically equivalent

 Use truth table to determine each of the statement forms below is a tautology, contradiction or contingency.

i)
$$((\sim p \land q) \land (q \land r)) \land \sim q$$

P	q	r	22	~9	~PAQ	9 Ar	(~p~q) ~ (q~r) ((~p~q) ~ (q~r)) ~~q
0	0	O	1	1	0	0	0	0
0	0	1	i	1	0	0	6	0
0		D	- 1	0	1	0	0	Ó
0		()	0		1		D
1	0	D	0	1	O	0	0	0
1	D	(0	1	0	0	0	0
1	1	0	0	0	O	O	0	O
	- (-	O	D	0	1		0
								\checkmark

: Contra d'Iction

ii) $(\sim p \vee q) \vee (p \wedge \sim q)$

P	7	ap	~9.	~PVq	PAQ	(~pvq) V (p~~q)
0	0		1	1	G	
0	(l	0	1	0	,
1	D	0	1	0		1
	1	O	Ŋ	1	0	

.. tautology

Simplify the following statements using law of logical equivalences.

i)
$$(p \vee q) \wedge \sim (\sim p \wedge q)$$

$$(2\times3)+(2\times4)$$

i)
$$(p \lor q) \land \sim (\sim p \land q)$$

ii) $((p \lor q) \land (p \lor \sim q)) \lor q$ = 2 (3+4)

$$= \frac{1}{2}(3+4)$$

i)
$$(PVQ) \wedge (PV \sim Q) = PV(Q \wedge \sim Q) = PVC = P$$

ii)
$$\left(PV\left(1^{\sqrt{2}}\right)\right)VQ \equiv PVQ_{y}$$

- 4) Identity laws:
- $p \wedge t \equiv p$
- $p \lor c \equiv p$
- 5) Negation/Inverse laws:
- $p \lor \sim p = t$
- $p \land p = c$

Use the law of logical equivalences to verify the following logical equivalences.

L#
$$(p \lor q) \lor (\sim p \land \sim q \land r) = p \lor q \lor r$$

ii)
$$\sim (p \downarrow q) - (\sim p \mid \sim q)$$

1) LHS:
$$(CPVQ)V \sim P$$
 $\wedge (CPVQ)V \sim Q$ $\wedge (CPVQ)V \cap$

$$= ((PV\sim P)VQ) \wedge (PV(QV\sim Q)) \wedge (PVQV \cap)$$

$$= (tVQ) \wedge (PV + V) \wedge (PVQV \cap)$$

$$= t \wedge t \wedge (PVQV \cap) = PVQV \cap_{H} (RHS)$$

ii) LHs:
$$\sim (PVQ) = \sim (\sim (PVQ))$$

= $PVQV$

RHS:
$$\sim P \mid \sim Q = \sim (\sim P \land \sim Q) = P \lor Q_{\#}(LHS)$$

9) Universal Bound / Domination laws:

$$p \lor t \equiv t$$

$$P \wedge C \equiv C$$