Data Gathering

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/Water_Quality.csv')
df
```

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	7.112512	204.890456	20791.31898	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.05786	6.635246	334.564290	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.54173	9.275884	334.564290	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.41744	8.059332	356.886136	363.266516	18.436525	100.341674	4.628771	0
4	9.092223	181.101509	17978.98634	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
3271	4.668102	193.681736	47580.99160	7.166639	359.948574	526.424171	13.894419	66.687695	4.435821	1
3272	7.808856	193.553212	17329.80216	8.061362	332.566990	392.449580	19.903225	66.396293	2.798243	1
3273	9.419510	175.762646	33155.57822	7.350233	332.566990	432.044783	11.039070	69.845400	3.298875	1
3274	5.126763	230.603758	11983.86938	6.303357	332.566990	402.883113	11.168946	77.488213	4.708658	1
3275	7.874671	195.102299	17404.17706	7.509306	332.566990	327.459761	16.140368	78.698446	2.309149	1
3276 rows x 10 columns										

Next steps:

View recommended plots

df.columns

Data Cleaning

```
# Check if there are null values in the dataset
print(df.isnull().sum())
     ph
                        0
     Hardness
                        0
     Solids
                        0
     Chloramines
                        0
     Sulfate
                        0
     Conductivity
     Organic_carbon
                        0
     Trihalomethanes
                        0
     Turbidity
     Potability
                        0
     dtype: int64
# Checking if there are values that are duplicated
```

```
0 False
1 False
2 False
3 False
4 False
```

df.duplicated()

3272 False
3273 False
3274 False
3275 False
Length: 3276, dtype: bool

Exploratory Data Analysis

Summarizing the data
df.describe()

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	0r
count	3276.000000	3276.000000	3276.000000	3276.000000	3276.000000	3276.000000	
mean	7.081083	196.369496	22014.092526	7.122277	333.785123	426.205111	
std	1.470256	32.879761	8768.570828	1.583085	36.145701	80.824064	
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	
25%	6.277673	176.850538	15666.690300	6.127421	317.094638	365.734414	
50%	7.104445	196.967627	20927.833605	7.130299	334.564290	421.884968	
75%	7.870050	216.667456	27332.762125	8.114887	350.385756	481.792305	
max	14.000000	323.124000	61227.196010	13.127000	481.030642	753.342620	

stats = df[['ph','Hardness']].agg(['mean','median','std'])
stats

correlational_matrix = df.corr()
correlational_matrix

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	0rg
ph	1.000000	0.078850	-0.081895	-0.031893	0.014654	0.017009	
Hardness	0.078850	1.000000	-0.046899	-0.030054	-0.092718	-0.023915	
Solids	-0.081895	-0.046899	1.000000	-0.070148	-0.149809	0.013831	
Chloramines	-0.031893	-0.030054	-0.070148	1.000000	0.023490	-0.020486	
Sulfate	0.014654	-0.092718	-0.149809	0.023490	1.000000	-0.014196	
Conductivity	0.017009	-0.023915	0.013831	-0.020486	-0.014196	1.000000	
Organic_carbon	0.039866	0.003610	0.010242	-0.012653	0.027403	0.020966	
Trihalomethanes	0.003507	-0.012690	-0.008875	0.016627	-0.025759	0.001255	
Turbidity	-0.036362	-0.014449	0.019546	0.002363	-0.009523	0.005798	
Potabilitv	-0.003955	-0.013837	0.033743	0.023779	-0.026957	-0.008128	•

```
plt.hist(df['ph'], bins=10)
plt.title('Histogram of pH')
plt.xlabel('pH')
plt.ylabel('Frequency')
plt.show()
```



```
plt.scatter(df['ph'], df['Hardness'])
plt.title('Scatter Plot of pH vs Hardness')
plt.xlabel('Acidity of Water')
plt.ylabel('Concentration of Minerals')
plt.show()
```


Interpretation of Data

In this dataset, I focused on the relationship between the pH and the Hardness, the pH measures the acidity of a water and Hardness determines the concentration of minerals in the water and for it to be clean water, lower hardness is much better. The results for the mean, median, and standard deviation for the pH and the Hardness is no significant differences among its values and it is not skewed. The scatter plot of both variables are clustered, suggesting that it has strong relationship.