Carlos Gross-Martinez

CDA3201C

Logic Design Course

Lab 5: State Machine

State Machine Truth Table

• CDA3201 • Intro to Logic Design • Lab Assignment 5

Name: Car Os Gross - Martings Grade: /20

5) [20] At right is the state diagram for a Moore sequential circuit which monitors two inputs X₁X₀. When the two inputs X₁X₀ are 00, the output Z toggles at every clock. When the two inputs X₁X₀ are 11, the output Z toggles at every other clock. When the two inputs X₁X₀ are different, the output Z holds its state and does not change until the inputs are equal again.

Use the following table with the gray code assigned (easier to fill in the K-Map if use gray code)

Present State (Q)		Input (X)	Output (Z)	Next State (Q+)		Flip Flop Transition	
State Name	Q ₁ Q ₀	X1 X0	Z	State Name	$Q_1^+ Q_0^+$	J ₁ K ₁	J ₀ K ₀
Α	0 0	0 0		C	1 1	IX	1X
		0 1	0	A	0 0	0 ×	0×
		11		В	01	0 ×	IX
		1 0		A	00	OX	OX
В	0 1	00		D	10	1X	XI
		0 1	0	B	01	OX	XO
		11		C	1 1	IX	XO
		1 0		В	01	OX	X0
С	1 1	0 0		A	00	XI	Χl
		0 1		C	11	XO	×0
		11		D	10	XO	XI
		10		C	1 1	XO	XO
D	1 0	0 0		B	0 1	XI	IX
		0 1		D	10	XO	OX
		11	1	A	00	XI	OX
		10		D	10	XO	OX

5.a) [TA-4] Fill in the output and the next state columns of the table

5.b) [TA-4] Fill in the the next state columns of the table

State Machine Q-Maps and JK Excitation Table

CDA3201 • Intro to Logic Design •	Lab Assignment	
Name: Carlos Gross_Martinez	Grade:	/20

Flip Flop Transition indicates what is the input needed for J and K to cause the change from the present state to the next state. Before we can fill the Flip Flop Transition columns of the table, complete the JK truth table. Note: Action can be the following H = Hold (don't change), S=Sct, R=Reset, T=Toggle (change).

Then complete the JK Excitation Table that permits the Flip Flop to change from Q to Q+

J	K	Q	Action	Q+	$Q \rightarrow Q^{+}$	Action J K
0	0	0	Hold	0	0 + 0	H 0 0 0 X
0	1	0	Reset	0	0 → 1	5161X
1	0	0	Set	1	1 → 0	To!XI
1	1	0	Toggle	10	$1 \rightarrow 1$	\$ 9 8 XO

In the table on the first page highlight the values of Q_1 , ${Q_1}^+$ and area under J_1 K_1 in one color, use a different highlight for Q_0 , ${Q_0}^+$ and J_0 K_0 . Using the Excitation table compare the same color $Q \to Q^+$ to fill the value under corresponding J K to complete the JK Transition table

- 5.e) [2] Fill the JK input maps for each of the two flip-flops. Note how easy it is to fill in from the table because we are using the gray code for numbering.
- 5.d) [2] Write the JK inputs and Z output expressions in a minimized form:

State Machine Logic Drawing

State Machine Quartus Waveform

Picture of Completed Circuit on Breadboard

