

# **EX3ms CHEAT SHEET**

Worksheet function and command reference (color code: pub, std, adv)

### Functions in the sheet

| Sheet name | Description                              | Extracted data                       |  |
|------------|------------------------------------------|--------------------------------------|--|
| Data       | Original data                            |                                      |  |
| Graph      | Plots in binding and kinetic energies    | From data sheet                      |  |
| Check      | Plots in each scan                       | From data sheet by "No" command      |  |
| Time       | Plots in time scale and fluence analysis | From data sheet by "Obb" command     |  |
| Fit        | Background subtraction and peak Fitting  | From graph sheet                     |  |
| Ana        | A summary of fitting results             | From fit sheets                      |  |
| Cmp        | A summary of BG subtracted profiles      | From fit sheets                      |  |
| Rto        | A summary of peak areas from Ana         | From ana sheets                      |  |
|            | report                                   |                                      |  |
| Photo      | Plots of XAS data                        | From data sheet                      |  |
| Ехр        | Data table exported from graph sheet     | From graph sheet                     |  |
| Eck        | Data table exported from check sheet     | From check sheet                     |  |
| Norm       | Data normalized                          | From graph sheet                     |  |
| Diff       | Data subtracted                          | From graph sheet                     |  |
| Edge       | Pre and post-edge correction             | From graph sheet                     |  |
| Lcmb       | Linear combination fit                   | From graph sheet                     |  |
| Graph_Norm | Plots based on the Norm sheet            | From norm sheet                      |  |
| Fit_Norm   | Peak fitting based on the Norm sheet     | From graph_norm sheet                |  |
| Graph_Edge | Plots based on the Edge sheet            | From edge sheet                      |  |
| Fit_Edge   | Peak fitting based on the Edge sheet     | From graph_edge sheet                |  |
| Graph_Lcmb | Plots based on the Lcmb sheet            | From Icmb sheet                      |  |
| Fit_Lcmb   | Peak fitting based on the Lcmb sheet     | From graph_lcmb sheet                |  |
| Pyt        | Lmfit python script for curve fit        | From Fit sheet                       |  |
| Calc       | Simulation parameters                    |                                      |  |
| Sim        | Simulated data                           | From Calc sheet                      |  |
| Vms        | Data table exported in VAMAS format      | From Graph sheet by "vms" or "vamas" |  |
| VAMAS      | Data imported from VAMAS format          |                                      |  |
| Exp_Fit    | Data exported from Fit sheet             | From Fit sheet by "exp" command      |  |

### Manual data load format template

| Technique | Trigger in A1 | Queries | Graph x-axis | Fitting |
|-----------|---------------|---------|--------------|---------|
|-----------|---------------|---------|--------------|---------|

| PES          | KE/eV | PE & elements            | BE & KE    | Yes in BE scale |
|--------------|-------|--------------------------|------------|-----------------|
| XPS          | BE/eV | PE & elements            | BE & KE    | Yes in BE scale |
| XAS          | PE/eV | Elements                 | PE         | Yes in PE scale |
| Grating scan | GE/eV | Gap/1st har.& e          | PE         | No              |
| AES          | AE/eV | Elements                 | EE & dN/dE | No              |
| RGA          | QE/eV | NA                       | Mass       | Yes in mass     |
| Manual scan  | ME/eV | NA                       | Position   | Yes in x        |
| Histogram    | HE/eV | NA                       | Position   | Yes in x        |
| Photodiode   | FE/eV | Gap/1 <sup>st</sup> har. | PE         | No              |

### Command list in each sheet

| Command  | Cell               | Sheet  | Result                                        |
|----------|--------------------|--------|-----------------------------------------------|
| chem     | C10                | Graph, | Chemical shifts                               |
|          |                    | Cmp    |                                               |
| elem     | C10                | Graph  | Revise elements                               |
| intp     | A1                 | Data   | Interpolate data by B1 value                  |
| ana      | C10                | Graph  | Update Fit sheet                              |
| exp      | A1                 | Graph, | Export data with "E/eV" labels for X axis     |
|          |                    | Check, | (used to export each data into text file)     |
|          |                    | Cmp    |                                               |
| expo     | A1                 | Graph, | Export data with filename-related X axis      |
|          |                    | Check, | (used to paste it in Origin program or the    |
|          |                    | Cmp    | others)                                       |
| expk     | A1                 | Graph  | Export data with "KE/eV" kinetic energy axis  |
| comp     | D1                 | Graph  | Compare the spectra                           |
| auto     | A1                 | Graph, | Calibrate offset and multiple factors         |
|          |                    | Cmp    | (see the detailed functions below)            |
| cali     | A1                 | Graph  | Calibrate C1s peak position by fitting        |
| noise(n) | A1                 | Graph  | Remove shot noise when S/N > n (default 5)    |
| ana      | D4                 | Fit    | Summarize Fit sheets                          |
| ana      | A1                 | Ana    | Summarize Ana sheets into Rto sheet           |
| exp      | A1                 | Check  | Export data to be imported into elsewhere     |
| exp      | A1                 | Cmp    | Export data to be imported into elsewhere     |
| char     | A1                 | Graph  | Apply char for each workbook from cmp         |
|          | A1 & C1, = "KE/eV" | Eck    | Export text data files for each two-column    |
| debug    | A1                 | Graph  | Apply the same graph parameters to files      |
| debug    | D1                 | Fit    | Apply the same fit parameters from text files |
| debugn   | A1                 | Graph  | Add reference data to be normalized           |
| debuga   | D1                 | Fit    | Apply previous fit parameters from text files |
| debugf   | D1                 | Fit    | Apply RSF in the fit sheet only               |
| debugc   | D1                 | Fit    | Apply fit parameters in the fit sheet only    |
| debugp   | D1                 | Fit    | Apply previous fit parameters on fit sheet    |
| exp      | D1                 | Fit    | Export fit data in to Exp sheet               |
| expbn    | D1                 | Fit    | Add b to export BG, add n to rename data      |

| norm, diff | A1 | Graph | Normalize first data by second added data   |
|------------|----|-------|---------------------------------------------|
| cked       | A1 | Graph | Normalized by gold C K edge in database     |
| edge       | A1 | Graph | Pre and post edge correction.               |
| Icmb       | A1 | Graph | Linear combination of multiple spectra      |
|            |    | Time  | Fluence analysis interpolated in any points |
| vms        | A1 | Graph | Single export in vamas format               |
| vamas      | A1 | Graph | Multiple regions export in vamas format     |
| phi        | A2 | Data  | Export and plot from Multipak exported csv  |
| multi      | A2 | Data  | Plot graph from Multipak exported csv       |
| simulation | A1 |       | Simulate the spectrum with elements         |
| Imfit      | A4 | Fit   | Export Python code for Imfit                |

## Backgrounds in the fit sheet

| Type of BG              | A1 | B1    | C1    |
|-------------------------|----|-------|-------|
| Shirley BG              | sh | ab/bg |       |
| Tougaard BG             | to | bg    |       |
| Polynomial BG           | ро | ab/bg |       |
| Polynomial Normal BG    | ро | no    | ab/bg |
| Polynomial Shirley BG   | ро | sh    | ab/bg |
| Polynomial Tougaard BG  | ро | to    | ab/bg |
| Polynomial Edge BG      | ро | ed    | ab/bg |
| Polynomial AsLS BG      | ро | as    | ab/bg |
| Slope Shirley BG        | sl | sh    | ab/bg |
| Shirley Iterated BG     | sh | it    | bg    |
| Shirley Peak BG         | sh | ре    | abg   |
| Arctan BG               | ar | ab/bg |       |
| Erf BG                  | er | ab/bg |       |
| Victoreen BG            | vi | ab/bg |       |
| Double Exponential BG   | do | ab/bg |       |
| Lognormal               | lo | ab/bg |       |
| Sigmoid fit + spline BG | si | fi    |       |
| Sigmoid convoluted fit  | si | СО    | fi    |
| Double Sigmoid fit      | do | si    | fit   |
| User-defined function   | ud | fit   |       |
| SAXS                    | sa | fit   |       |
| CK (in fact, Arctan BG) | ck |       |       |

### Peak shapes in the fit sheet

| Syntax      | Shape           | Option a | Option b | #par | Ref.  |
|-------------|-----------------|----------|----------|------|-------|
| G (0)       | Gaussian        |          |          | 3    |       |
| DB G<br>(0) | Double Gaussian |          |          | 4    | Fityk |

| <u>EMG</u>                | Exponentially<br>Modified<br>Gaussian     | Distortion para.             |                                   | 4 | Fityk                         |
|---------------------------|-------------------------------------------|------------------------------|-----------------------------------|---|-------------------------------|
| L (1)                     | Lorentzian                                |                              |                                   | 3 |                               |
| DS L (1)                  | Doniac-Sunjic x<br>L                      | Asymmetric para.             |                                   | 5 | CasaXPS                       |
| <u>DB L (1)</u>           | Double<br>Lorentzian                      |                              |                                   | 4 | AAnalyzer                     |
| PEA                       | Pearson VII                               | Skewness                     |                                   | 4 | Fityk                         |
| SGL,<br>PGL (0-<br>1)     | G + L, G x L<br>(pseudo-Voigt)            |                              |                                   | 5 | Unifit<br>CasaXPS             |
| ASGL,<br>APGL             | Asymmetric V<br>Double Voigt              |                              |                                   | 5 | 10.1107/<br>S0021889884011043 |
| ESGL,<br>EPGL             | Exponential blended Voigt                 | Exponential decay parameters |                                   | 5 | CasaXPS                       |
| DS SGL,<br>DS PGL         | DS x L blended<br>V                       | Asymmetric parameter         | Ratio DSL:V                       | 6 | CasaXPS                       |
| UG SGL,<br>UG PGL         | Ulrik Gelius<br>blended Voigt             | Asymmetric parameter a       | Asymmetric parameter b            | 6 | CasaXPS                       |
| DSV<br>SGL,<br>DSV<br>PGL | DS x Voigt<br>blended Voigt               | Asymmetric parameter         | Ratio DSV:V                       | 6 | CasaXPS                       |
| <u>TSGL</u>               | Exponential blend SGL (MultiPak)          | Tail scale                   | Tail length at half max           | 6 | MultiPak                      |
| GL (0 < shape < 1)        | G + L with the<br>same FWHM<br>(MultiPak) |                              |                                   | 4 | MultiPak<br>Eq. to SGL        |
| MSGL                      | Asymmetric V                              | Asymmetric parameter         | Sigmoid-<br>center<br>translation | 6 | 10.1002/sia.5521              |
| CGL                       | Numerical convolution G x                 |                              |                                   | 4 | 10.1002/sia.2527              |
| F                         | Fano profile                              |                              |                                   | 4 | 10.1103/PhysRev.124.1866      |
| FG                        | FxG                                       |                              |                                   | 5 |                               |
| LOGN                      | Log normal                                | Mean (μ)                     |                                   | 4 |                               |

# Optimization mode of fittings

| Cell in Fit sheet | Syntax or Font style | Optimization |
|-------------------|----------------------|--------------|
| BE, FWHM, Ampl,   | Figures with Bold    | Constraints  |

| Shape, Options |                         |                            |
|----------------|-------------------------|----------------------------|
| A14            | Solve chi^2*            | Least chi square           |
| A14            | Solve Abbe              | Abbe criteria              |
| A10 (EF fit)   | Solve FD without Italic | Least chi square           |
| A10 (EF fit)   | Solve FD with Italic    | Abbe criteria              |
| A11 (EF fit)   | Solve GC without bold   | Gaussian convolution after |
|                |                         | FD + polynomial BG         |
| A11 (EF fit)   | Solve GC with bold      | FD + Polynomial BG first,  |
|                |                         | Gaussian convolution       |
|                |                         | together with FD + poly BG |

### Calibrations in offset/multiple factors

| A1 cell syntax in<br>Graph sheet | Offset factor                      | Multiple factor                  |
|----------------------------------|------------------------------------|----------------------------------|
| auto0                            | Set to 0                           | Set to 1                         |
| auto or auto1                    | First point to be zero             | End point to be unity            |
| auto10                           | Zero at point 10 from start point  | Unity at point 10 from end point |
| auto(1,10)                       | Zero from point 1 to 10 from       | Unity from point 1 to 10         |
|                                  | start point                        | from end point                   |
| auto[100:101,200:201]            | Zero in BE range between 100       | Unity in BE range between        |
|                                  | and 101 eV                         | 200 and 201 eV                   |
| automax / autowf                 | Zero at the lower side of a point  | Unity at max intensity point     |
|                                  | of data                            | of data                          |
| autop                            | Syntax previously done             | Syntax previously done           |
| auto{284.6}                      | BE at max. intensity to be         | NA (BE calibration by            |
|                                  | calibrated in 284.6 eV             | Charging factor)                 |
| auto'-7.8'                       | Charging correction at -7.8 eV     | NA (this is based on C1s BE      |
|                                  | for all spectra                    | calibration)                     |
| offset10                         | Offset spectra for water fall plot | NA                               |

## List of element groups to be identified

| Code | Group                 | Elements to be analyzed        |
|------|-----------------------|--------------------------------|
| AL   | Alkali metals         | Na,K,Rb,Cs                     |
| EA   | Alkaline Earth metals | Be,Mg,Ca,Sr,Ba,Ra              |
| TM   | Transition metals     | 3d + 4d + 5d transition metals |
| 3d   | 3d transition metals  | Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn   |
| 4d   | 4d transition metals  | Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd   |
| 5f   | 5d transition metals  | Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg   |
| SM   | Semi-metals           | B,Si,Ge,As,Sb,Te               |
| NM   | Non-metals            | C,N,O,P,S,Se                   |
| ВМ   | Basic metals          | Al,Ga,In,Sn,Tl,Pb,Bi           |
| НА   | Halogens              | F,Cl,Br,I,At                   |

| NG | Noble gases | Ne,Ar,Kr,Xe,Rn                     |
|----|-------------|------------------------------------|
| RM | Rare metals | La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm,Yb,Th,U |
| LA | Lanthanides | La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm,Yb      |
| AC | Actinides   | Th,U                               |

### Advanced syntax templates in the sheets

|                | Sheet | Cells | Formula         | Reference | Calibrated<br>#1 | Calibrated<br>#2 |
|----------------|-------|-------|-----------------|-----------|------------------|------------------|
| Extra photons  | Graph | C2    | ;100;200;333 eV |           |                  |                  |
| Specific scans | Graph | B8    | [1,2-4]         |           |                  |                  |
| Amp ratio      | Fit   | D14-  | (4;3)           | (4;       | 1;               | 3)               |
| BE diff        | Fit   | D15-  | [3.5;n3.5]      | [         | 3.5;             | n3.5]            |

Note1: "n" represents negative shift from reference.

Note2: Empty cells between brackets does not effect to the constraints.

#### List of Peak area

|            | Usages                                                              | Descriptions                                                                                                                                                                                                                                 | Factors to be effective                                                                                                                                |
|------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| P.<br>Area | Chemical state analysis                                             | Peak area calculated with analytical formula and without any factors                                                                                                                                                                         | Amplitude, FWHM                                                                                                                                        |
| S.<br>Area | Quantification of elements under the same condition                 | Peak area normalized with atomic sensitivity factor based on photo-ionization cross-section                                                                                                                                                  | Amplitude, FWHM, PE,<br>Sensitivity based on<br>element specified in the<br><i>Graph</i> sheet                                                         |
| N.<br>Area | Quantification of elements under the various measurement conditions | Peak area calculated in "S. Area" plus normalized with empirically calculated factors at BL CLAM2 including XPS mean-free path of photoelectrons, transmission function of electron energy analyzer based on pass energy, grating efficiency | Amplitude, FWHM, PE,<br>KE, Sensitivity, CAE,<br>Grating, MFP factor, a &<br>b specified in the <i>Fit</i><br>sheet based on formalism<br>from CasaXPS |

T.I./S.I./N.I. are numerically integrated areas with Trapezoidal rule applied to each corresponding area shown above.

### Batch processing for multiple files initiated by blank window

| Code | Mode             | Processing                                           |
|------|------------------|------------------------------------------------------|
| 0    | EX3ms command    | Apply the command of EX3ms at cell in specific sheet |
| 1    | CLAM2 txt2xlsx   |                                                      |
| 2    | XPS AlKa csv2txt | Multipak exported csv data to asci texts             |
| 3    | XAS SDD mca2txt  |                                                      |
| 4    | xlsx2update      |                                                      |

| 5  | xlsx2vamas             | Export vamas format files                         |
|----|------------------------|---------------------------------------------------|
| 8  | PE input mode          | XPS analysis with PE input                        |
| 9  | Push charts2ppt        | All chart in each graph sheet to push them in ppt |
| 10 | CLAM2 txt2fitting      |                                                   |
| 11 | Si2p fit1              | XPS fitting on Si2p low resolution                |
| 12 | Si2p fit2              | XPS fitting on Si2p high resolution               |
| 13 | Au4f fit (no PE input) | XPS                                               |

#### Workflow

