TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 07.-11.01.2019

10. Übung Analysis III für Mathematiker(innen)

(Verteilungsfunktion, Vervollständigung der Borel- σ -Algebra, messbare Funktionen)

Themen der großen Übung am 17.12.

Regularität des von λ^* auf $\mathcal{M}^* := \mathcal{M}^*(\mathbb{R}^d)$ induzierten λ (vgl. Hausaufgabe 35) zeigt:

Lemma. Ist $A \in \mathcal{M}^*$, so existieren eine F_{σ} -Menge F und eine G_{δ} -Menge¹ G mit $F \subseteq A \subseteq G$ und $\lambda(F) = \lambda(A) = \lambda(G)$.

Dann schließen wir mit Hilfe der (Haus-)Aufgabe 36: Der Maßraum (\mathbb{R}^d , \mathcal{M}^* , λ^*) ist die Vervollständigung des Borel-Lebesgue-Maßes λ auf (\mathbb{R}^d , \mathcal{B}).

Man beachte, dass daraus folgt, dass die λ^* -messbaren Mengen genau die Lebesgue messbaren Mengen (im Sinne von Kapitel 2.1) sind: Bezeichne mit \mathcal{L} die (vollständige) σ -Algebra der Lebesgue messbaren Mengen in \mathbb{R}^d , dann gilt nach Übung 9:

$$\mathcal{B} \subset \mathcal{L} \subset \mathcal{M}^*$$

und weil \mathcal{M}^* die Vervollständigung der Borel- σ -Algebra ist, gilt auch $\mathcal{M}^* \subseteq \mathcal{L}$ (somit Gleichheit). Insbesondere ist also $(\mathbb{R}^d, \mathcal{L}, \lambda) = (\mathbb{R}^d, \mathcal{M}^*, \lambda)$, also charakterisieren Aufgaben 35, 36 und das Lemma Lebesgue messbaren Mengen.

Sei $F : \mathbb{R} \to \mathbb{R}$ nicht fallend. Dann zeigen wir:

- (i) F besitzt höchstens abzählbar viele Unstetigkeitsstellen.
- (ii) F besitzt eine rechtsstetige Modifikation, d.h. eine nicht fallende rechtsstetige Funktion $G: \mathbb{R} \to \mathbb{R}$, die sich nur auf einer Nullmenge von F unterscheidet.
- (iii) F ist Borel-messbar.

Seien $(\Omega, \mathcal{F}, \mu)$, (X, Σ, λ) Maßräume und $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ die Vervollständigung von $(\Omega, \mathcal{F}, \mu)$. Für $A \in \mathcal{F}$ mit $\mu(A^c) = 0$ sei $f : A \to X \mathcal{F}^A$ - Σ -messbar, wobei \mathcal{F}^A die Spur- σ -Algebra auf A bezeichnet. Dann ist jede Fortsetzung von f auf Ω bereits \overline{F} - Σ -messbar.

¹Erinnerung: Eine F_{σ} -Menge ist eine abzählbare Vereinigung von abgeschlossenen Mengen, und eine G_{δ} -Menge ist ein abzählbarer Durchschnitt von offenen Mengen.

Tutoriumsvorschläge

29. Aufgabe

Sei Ω eine nicht leere Menge. Zeigen Sie, dass ein Mengensystem $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ genau dann ein Dynkin-System ist, wenn gelten:

- (i) $\Omega \in \mathcal{C}$.
- (ii) Sind $A, B \in \mathcal{C}$ und $A \subseteq B$, so ist $B \setminus A \in \mathcal{C}$.
- (iii) Ist $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{C}$ und $A_1\subseteq A_2\subseteq A_3\subseteq\cdots$, dann ist $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{C}$.

30. Aufgabe

Seien (X_1, \mathcal{F}_1) und (X_2, \mathcal{F}_2) Messräume, und seien $E_1, E_2, E_3, \dots \in \mathcal{F}_1$ paarweise disjunkte Mengen mit $X_1 = \bigcup_{n \in \mathbb{N}} E_n$. Weiter betrachten wir Abbildungen $f_n \colon E_n \to X_2$ für $n \in \mathbb{N}$. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (i) Die Abbildung $f: X_1 \to X_2$, definiert durch $x \mapsto f_n(x)$ für $x \in E_n$, ist \mathcal{F}_1 - \mathcal{F}_2 -messbar.
- (ii) Jedes f_n ist $\mathcal{F}_1^{E_n}$ - \mathcal{F}_2 -messbar.

Gilt die Aussage auch für eine nicht abzählbare Familie $(E_i)_{i\in I}$ an Stelle von $(E_n)_{n\in\mathbb{N}}$?

31. Aufgabe

Seien Ω_1 und Ω_2 zwei nichtleere Mengen, $f:\Omega_1\to\Omega_2$ eine Abbildung und $\mathcal{C}\subseteq\mathcal{P}(\Omega_2)$ ein Mengensystem. Beweisen Sie, dass

$$f^{-1}(\sigma(\mathcal{C})) = \sigma(f^{-1}(\mathcal{C})).$$

32. Aufgabe

Seien $(\Omega, \mathcal{F}, \mu)$ und (X, Σ, λ) Maßräume und $f: \Omega \to X$ messbar. Zeigen Sie, dass jede Funktion $g: \Omega \to X$, die μ -fast überall mit f übereinstimmt $\overline{\mathcal{F}}$ - Σ -messbar ist. (Hier ist $\overline{\mathcal{F}}$ die Vervollständigung von \mathcal{F} bzgl. μ .)

Hausaufgaben

35. Aufgabe (6 Punkte)

Betrachten Sie $(\mathbb{R}^d, \mathcal{M}^*, \lambda)$, wobei $\mathcal{M}^* := \mathcal{M}^*(\mathbb{R}^d)$ die σ -Algebra der λ^* -messbaren Mengen mit dem durch das äußere (Lebesgue) Maß λ^* induzierten Maß λ sei. Zeigen Sie, dass λ regulär ist, d.h. dass für alle $A \in \mathcal{M}^*$ gilt

$$\lambda(A) = \inf\{\lambda(O) \mid O \subseteq \mathbb{R}^d \text{ ist offen und } A \subseteq O\}$$
$$= \sup\{\lambda(K) \mid K \subseteq \mathbb{R}^d \text{ ist kompakt und } K \subseteq A\}.$$

36. Aufgabe (3 Punkte)

Zeigen Sie, dass eine Menge $A \subseteq \mathbb{R}^d$ genau dann λ^* -messbar ist, wenn es eine σ -kompakte Menge $S \subseteq \mathbb{R}^d$ und eine λ^* -Nullmenge N gibt, so dass $A = S \cup N$ gilt.

Hinweis: Eine Menge heißt σ -kompakt, wenn sie eine abzählbare Vereinigung von kompakten Mengen ist.

37. Aufgabe (4 Punkte)

- (i) Sei μ ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathcal{B})$ mit Verteilungsfunktion F_{μ} , und es sei $x \in \mathbb{R}$. Zeigen Sie, dass F_{μ} genau dann stetig in x ist, wenn $\mu(\{x\}) = 0$ ist.
- (ii) Charakterisieren Sie das Wahrscheinlichkeitsmaß μ auf $(\mathbb{R}, \mathcal{B})$ mit Verteilungsfunktion $F_{\mu}(x) = \max\{0, \min\{x, 1\}\}$, indem Sie für beliebige $a \leq b$ den Wert von $\mu((a, b))$ berechnen.

38. Aufgabe (4 Punkte)

Es seien (Ω, \mathcal{F}) ein messbarer Raum, $f: \Omega \to [0, \infty]$ eine nichtnegative Funktion und $A := \{(\omega, y) \in \Omega \times \mathbb{R} \mid 0 < y < f(\omega)\}$. Zeigen Sie:

$$f$$
 ist \mathcal{F} - \mathcal{B} -messbar \iff $A \in \sigma(\mathcal{F} \times \mathcal{B})$.

Hinweis: Man beachte, dass \mathcal{B} hier die erweiterte Borel- σ -Algebra erzeugt von den offenen Mengen auf $[0, \infty[$ und $\{\infty\}$ bezeichnet!

39. Aufgabe (3 Punkte)

Seien $f, g: \Omega \to \mathbb{R}$ messbare numerische Funktionen mit $g(\omega) \neq 0$ für alle $\omega \in \Omega$. Zeigen Sie, dass dann auch $\frac{f}{g}$ eine messbare numerische Funktion ist.

Gesamtpunktzahl: 20