Teacher Name: Sir Waqar Ahmed

Homework 1

1. For
$$\chi = \alpha \chi is$$
:

 $\vec{A} = 5\hat{i} - 3\hat{j} + 7\hat{k}$
 $\vec{X} = i + 0\hat{j} + 0\hat{k}$

$$|\vec{A}| = \sqrt{5^2 + (-3)^2 + 7^2}$$

 $|\vec{A}| = \sqrt{83}$
 $|\vec{X}| = \sqrt{1^2}$
 $|\vec{X}| = 1$

$$\vec{A} \cdot \vec{X} = |\vec{A}||\vec{X}|\cos\theta$$

 $(5\hat{i}-3\hat{j}+\vec{N}\hat{K}) \cdot (\hat{i}+0\hat{j}+0\hat{K}) = \sqrt{1}\sqrt{83}\cos\theta_{x-1}$
 $5 = \sqrt{83}\cos\theta_{x}$

$$\frac{10802 = -0}{\sqrt{83}}$$

$$\frac{1}{83}$$

$$\theta_{z} = \cos^{-1}\left(\frac{5}{\sqrt{83}}\right)$$

$$\Theta_{x} = 56.7^{\circ}$$

Angle between vector \overrightarrow{A} and $x-axis = 56.7^{\circ}$

For y-oxis:

$$\vec{Y} = 0\hat{i} + \hat{j} + 0\hat{K}$$

 $\vec{I}\vec{Y}\vec{I} = 1$
 $\vec{A} \cdot \vec{Y} = \vec{I}\vec{A}\vec{I}\vec{Y}\cos$

$$(5\hat{i} - 3\hat{j} + 7\hat{k}).(0\hat{i} + \hat{j} + 0\hat{k}) = \sqrt{83} \cos \theta_y$$

-3 = $\sqrt{83} \cos \theta_y$

$$\cos \theta_{y=-3}$$
 $\sqrt{83}$
 $\theta_{y=-\cos(\sqrt{3})}$
 $\sqrt{83}$

Angle between vector A and y-axis = 109.2°

For z-ozis:
$$\vec{Z} = 0\hat{i} + 0\hat{j} + \hat{x}\hat{k}$$

$$\# |\vec{z}| = 1$$

$$\vec{A} \cdot \vec{Z} = |\vec{A}||\vec{Z}|\cos\theta$$

 $(5\hat{i} - 3\hat{j} + 7\hat{k}) \cdot (0\hat{i} + 0\hat{j} + \hat{k}) = \sqrt{83}\cos\theta_z$
 $7 = \sqrt{83}\cos\theta_z$
 $\cos\theta_z = \frac{7}{\sqrt{83}}$

$$\Theta_{z=00s^{-1}}\left(\frac{7}{\sqrt{83}}\right)$$

2.
$$\vec{F} = q(\vec{v} \times \vec{B})$$

 $\vec{v} = 2\hat{i} + 4\hat{j} + 6\hat{k}$, $\vec{B} = B_x\hat{i} + B_y\hat{j} + B_z\hat{k}$

$$\vec{\nabla} \times \vec{B} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 6 \\ B_x & B_y & B_z \end{bmatrix}$$

=
$$\hat{i}$$
 | 4 6 | - \hat{j} | 2 6 | + \hat{K} | 2 4 | \hat{B}_{x} | \hat{B}_{z} | \hat{B}

As
$$B_x = B_y$$
,
 $\vec{V} \times \vec{B} = (4B_z - 6B_x)\hat{i} - (2B_z - 6B_x)\hat{j} + (2B_x - 4B_x)\hat{k}$
 $\vec{V} \times \vec{B} = (4B_z - 6B_x)\hat{i} - (2B_z - 6B_x)\hat{j} - 2B_x\hat{k}$

$$4\hat{i} - 20\hat{j} + 12\hat{k} = 2[(4B_z - 6B_z)\hat{i} - (2B_z - 6B_z)\hat{j} - 2B_z\hat{k}]$$

 $2\hat{i} - 10\hat{j} + 6\hat{k} = (4B_z - 6B_z)\hat{i} - (2B_z - 6B_z)\hat{j} - 2B_z\hat{k}$

$$-2B_{x}=6$$

$$B_{x}=-3$$

$$B_{y}=B_{x}$$

$$B_{y}=-3$$

$$4B_{z}-6(-3)=2$$

$$4B_{z}+18=2$$

$$4B_{z}=-16$$

$$B_{z}=-4$$

$$\chi^{2} = \chi^{2} + \chi^{2} + \lambda \chi^{2} \cos \theta$$

$$\chi^{2} - 2\chi^{2} = \lambda \chi^{2} \cos \theta$$

$$-\chi^{2} = \lambda \chi^{2} \cos \theta$$

$$2\chi^{2} \cos \theta = -\chi^{2}$$

$$\cos \theta = -\frac{1}{2}$$

$$\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ}$$

4.
$$d = \sqrt{215^2 + 195^2}$$

 $d = \sqrt{290 \text{ km}}$

ii.
$$\theta = \tan^{-1}(\frac{195}{215})$$

to unexpected

: wind

51.
$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| |\sin \theta$$

$$= (5)(6) \sin 90$$

$$|\vec{a} \times \vec{b}| = 30 \text{ out of the page } (+\vec{z})$$

$$0 = 50.194^{\circ}$$
angle between a and $\vec{c} = 180 - 50.194^{\circ}$
 $= 129.806^{\circ}$

$$|\vec{a} \times \vec{c}| = (5)(\sqrt{6}i) \sin 29.806$$

 $|\vec{a} \times \vec{c}| = 30$

6.
$$\vec{A} \cdot \vec{B} = |A||B||\cos 90$$
 $\vec{A} \cdot \vec{B} = 0$
 $(2i + aj + K) \cdot (4i - 2j - 2K)$
 $8 - 2a - 2 = 0$
 $2a = 6$
 $0 = 3$

7. Solution is seme as Q3

$$\begin{vmatrix}
i & j & k \\
2 & -6 & -3 \\
4 & 3 & -1
\end{vmatrix}$$

$$= \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix}$$

$$= (6+9)\hat{i} - (-2+12)\hat{j} + (6+24)\hat{k}$$

$$= 15\hat{i} - 10\hat{j} + 30k$$

$$= 15^2 + (-10)^2 + (30)^2$$

= 1/15² + (-10)² + (30)²
Area of parallelogram = 35 units²

$$=\frac{1}{2}(35)$$

Area of triangle = 17.5 units

9.
$$-|\vec{A} \times \vec{B}| = |\vec{A}||\vec{B}| \sin \theta$$
 $\sqrt{(-5)^2 + (2)^2} = (3)(3) \sin \theta$
9 $\sin \theta = \sqrt{29}$
 $\theta = \sin^{-1}(\sqrt{29})$

10.
$$|\vec{w}| = \sqrt{3^2 + 4^2}$$
 $|\vec{w}| = 5$
 $|\vec{v}| = |\vec{w}| \text{ and } \vec{v} = 0 \hat{i} + a \hat{j}$
 $|\vec{v}| = 5 \hat{i}$

$$\vec{u} + \vec{w} = \vec{v}$$

$$\vec{u} = \vec{v} - \vec{w}$$

$$= 5\hat{j} - (3\hat{i} + 4\hat{j})$$

$$\vec{u} = -3\hat{i} + \hat{j}$$

$$\vec{u} = -3\hat{i} + \hat{j}$$

$$\vec{u} = \sqrt{10}$$

$$\hat{z}$$
 $\hat{j} \cdot (-\hat{j}) = |1||1||\cos|80$
 $\hat{j} \cdot (-\hat{j}) = -1$

ii. direction of
$$\hat{K} \times \hat{j} = in$$
 the direction of $-\hat{i}$ (west)

direction of (-2) x(-1)= in the direction of + Klout of the page)

