

ANALIZĂ MATEMATICĂ În Complex.

Culegere de probleme

Delia-Maria KEREKES

ANALIZĂ MATEMATICĂ ÎN COMPLEX

Culegere de probleme

Editura UTPRESS

Str. Observatorului nr. 34

400775 Cluj-Napoca Tel.: 0264-401.999

e-mail: utpress@biblio.utcluj.ro http://biblioteca.utcluj.ro/editura

Director: ing. Dan Colțea

Recenzia: Prof.univ.dr. Dorian Popa

Prof.univ.dr. Alexandru I. Mitrea

Pregătire format electronic: Gabriela Groza

Copyright © 2022 Editura UTPRESS

Reproducerea integrală sau parțială a textului sau ilustrațiilor din această carte este posibilă numai cu acordul prealabil scris al editurii UTPRESS.

ISBN 978-606-737-614-2

Cuprins

<u> Capitolul 1</u>

- ,	i cu numere complexe.	
- 0	ia corpului numerelor complexe	5
1.1	Reprezentarea numerelor complexe	
1.2	Topologia corpului numerelor complexe	
1.3	Puterea complexă a numărului e	
1.4	Radicalul de ordinul n în complex $\dots \dots \dots$	
1.5	Logaritmul unui număr complex	
1.6	Puterea complexă a unui număr complex nenul	9
1.7	Probleme propuse	10
1.8	Indicații și răspunsuri	10
Capitolii	<u>l 2</u>	
·	olomorfe	15
2.1	Noțiunea de funcție complexă	15
2.2	Funcții monogene. Condițiile Cauchy-Riemann	15
2.3	Funcții olomorfe	18
2.4	Interpretarea geometrică	
a de	erivatei unei funcții complexe	24
2.5	Funcțiile circulare și funcțiile hiperbolice	24
2.6	Funcțiile raționale și omografice	
2.7	Probleme propuse	
2.8	Indicații și răspunsuri	
Capitolii	<u>U 3</u>	
Integral	a în complex	43
3.1	Integrala curbilinie a unei funcții	
com	plexe de variabilă complexă	43
3.2	Teorema lui Cauchy. Formula lui Cauchy	44
3.3	Probleme propuse	48
3.4	Indicații și răspunsuri	49

Analiză matematică în complex ——

Capitoli	<u>d 4</u>	
Serii Ta	ylor. Serii Laurent	53
4.1	Serii Taylor	53
4.2	Serii Laurent	54
4.3	Probleme propuse	58
4.4	Indicații și răspunsuri	59
<u>Capitolii</u> Teorema	a reziduurilor si aplicatii	63
5.1	Singularitățile unei funcții complexe	53
5.2	Reziduuri. Calculul reziduurilor	56
5.3	Teorema reziduurilor și a semireziduurilor	
5.4	Integrale de tipul $\int_a^{a+2\pi} R(\sin x, \cos x) dx$	75
5.5	Integrale de tipul $\int_{-\infty}^{\infty} R(x)dx \dots $	30
	Integrale de tipul $\int_{-\infty}^{\infty} R(x)e^{j\lambda x}dx$	
5.7	Probleme propuse	37

Operații cu numere complexe. Topologia corpului numerelor complexe

1.1 Reprezentarea numerelor complexe

Fie $\mathbb{C} = \{z = x + jy : x \in \mathbb{R}, y \in \mathbb{R}, j^2 = -1\}$. Corpul comutativ $(\mathbb{C}, +, \cdot)$, unde $z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2), z_1 z_2 = (x_1 y_1 - x_2 y_2) + j(x_1 y_2 + x_2 y_1), z_1 = x_1 + j y_1 \in \mathbb{C}$ și $z_2 = x_2 + j y_2 \in \mathbb{C}$, se numește *corpul numerelor complexe*.

Scrierea z=x+jy se numește reprezentarea algebrică a numărului complex z, x se numește partea reală a lui z, y partea imaginară și notăm x=Rez, respectiv y=Imz. Conjugatul numărului complex z este $\bar{z}=x-jy$, iar modulul este numărul real pozitiv $|z|=\sqrt{x^2+y^2}$.

fig. 1.1

Dacă z = a + jb, atunci punctul M(a,b) din planul Oxy se numește imaginea geometrică a lui z. Fiind dat M(a,b), numărul complex z = a + jb se numește afixul punctului M. Planul Oxy se numește planul complex,

axa Ox axa reală, iar axa Oy axa imaginară. Au loc egalitățile

$$|z| = OM = |\overrightarrow{OM}| = \sqrt{a^2 + b^2}.$$

Unghiul $t \in [0, 2\pi)$ dintre versorul \overrightarrow{i} al axei Ox și vectorul \overrightarrow{OM} se numește argumentul redus al lui z și se notează $t = \arg z$ (vezi figura 1.1), în vreme ce mulțimea $\operatorname{Arg} z = \{\arg z + 2k\pi : k \in \mathbb{Z}\} = \arg z + 2\pi\mathbb{Z}$ se numește mulțimea argumentelor numărului complex z. Numărul $\operatorname{arg} z$ se mai numește determinarea principală a argumentului, iar $\operatorname{Arg} z$ determinarea generală a argumentului lui z. Pe de altă parte,

$$\arg z = \left\{ \begin{array}{l} \operatorname{arctg} \frac{b}{a}, \ \operatorname{dac\check{a}} \ a > 0, \ b \geq 0 \ (\operatorname{cadranul} \ \operatorname{I}) \\ \pi/2, \ \operatorname{dac\check{a}} \ a = 0, \ b > 0 \ (\operatorname{semiaxa} \ \operatorname{pozitiv\check{a}} \ Oy) \\ \operatorname{arctg} \frac{b}{a} + \pi, \ \operatorname{dac\check{a}} \ a < 0, \ b \in \mathbb{R} \ (\operatorname{cadranele} \ \operatorname{II} \ \operatorname{si} \ \operatorname{III}) \\ 3\pi/2, \ \operatorname{dac\check{a}} \ a = 0, \ b < 0 \ (\operatorname{semiaxa} \ \operatorname{negativ\check{a}} \ Oy) \\ \operatorname{arctg} \frac{b}{a} + 2\pi, \ \operatorname{dac\check{a}} \ a > 0, \ b < 0 \ (\operatorname{cadranul} \ \operatorname{IV}) \end{array} \right.$$

Argumentul lui z = 0 nu se definește.

Fie $z = a + jb \in \mathbb{C}^*$ și $t = \arg z$. Dacă notăm $r = |z| = \sqrt{a^2 + b^2}$, atunci $z = r(\cos t + j \sin t)$ se numește reprezentarea trigonometrică a lui z.

1.2 Topologia corpului numerelor complexe

Cât privește structura metrică, (\mathbb{C}, d) este un spațiu metric, iar metrica sau distanța pe \mathbb{C} este $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}_+$, $d(z_1, z_2) = |z_1 - z_2|$, $\forall z_1, z_2 \in \mathbb{C}$.

Fie $z_0 \in \mathbb{C}$ și r > 0. Atunci

- ♣ $\Delta(z_0;r)=\{z\in\mathbb{C}:\ |z-z_0|< r\}=\{z\in\mathbb{C}:\ d(z,z_0)< r\}$ este discul deschis de centru z_0 și de rază r. $\Delta(0;1)$ se numește discul unitate deschis.
- ♣ $\Gamma(z_0; r) = \{z \in \mathbb{C} : |z z_0| = r\} = \text{Fr}\Delta(z_0; r)$ este *cercul* de centru z_0 și de rază r și frontiera discului deschis. $\Gamma(0; 1)$ se numește *cercul unitate*.
- **♣** $\bar{\Delta}(z_0; r) = \{z \in \mathbb{C} : |z z_0| \le r\}$ este discul închis de centru z_0 și de rază r. $\bar{\Delta}(z_0; r) = \Delta(z_0; r) \cup \Gamma(z_0; r)$.
- **4** $U(z_0; r, R) = \{z \in \mathbb{C} : r < |z z_0| < R\}$, unde 0 < r < R, este coroana circulară de centru z_0 și de raze r și R. Observăm că $U(z_0; r, R) = \Delta(z_0; R) \setminus \bar{\Delta}(z_0; r)$.

1.3 Puterea complexă a numărului e

Formula lui Euler sau reprezentarea exponențială a unui număr complex asociază unui număr real t, numărul complex

$$e^{jt} = \cos t + j\sin t,$$

situat pe cercul unitate.

Aşadar, dacă z = x + jy, atunci

$$e^z = e^x(\cos y + j\sin y) = e^{\operatorname{Re}z}(\cos(\operatorname{Im}z) + j\sin(\operatorname{Im}z)).$$

Observăm că
$$e^{j\pi} = \cos \pi + j \sin \pi = -1$$
, $e^{jn\pi} = \cos n\pi + j \sin n\pi = (-1)^n + 0j = (-1)^n$ și $e^{z+2k\pi j} = e^z \cdot e^{2k\pi j} = e^z (-1)^{2k} = e^z$.

Dacă $z=r(\cos t+j\sin t)$ este reprezentarea trigonometrică a lui z, atunci $z=re^{jt}$ și obținem următoarea reprezentare exponențială

$$z = |z|e^{j\arg z}$$
 sau $z = |z|e^{jt}$, cu $t \in \text{Arg}z$.

1.4 Radicalul de ordinul n în complex

Fie $z \in \mathbb{C}$ și $n \in \mathbb{N}$, $n \geq 2$. Se numește radical complex de ordinul n al lui z, mulțimea $\sqrt[n]{z} = \{w \in \mathbb{C} : w^n = z\}$. Dacă $z = r(\cos t + j\sin t) = re^{jt}$, cu r = |z| și $t = \arg z$, atunci

$$\sqrt[n]{z} = \left\{ \sqrt[n]{r} \left(\cos \frac{t + 2k\pi}{n} + j \sin \frac{t + 2k\pi}{n} \right) : 0 \le k \le n - 1 \right\},$$

$$\sqrt[n]{z} = \left\{ \sqrt[n]{r} e^{j(t + 2k\pi)/n} : 0 \le k \le n - 1 \right\}$$

sau

$$(\sqrt[n]{z})_{\mathbb{C}} = \left\{ \left(\sqrt[n]{|z|}\right)_{\mathbb{R}} e^{j(\arg z + 2k\pi)/n} : 0 \le k \le n - 1 \right\},$$

unde $\sqrt[n]{r}$ este radicalul aritmetic (singurul număr real pozitiv s cu proprietatea $s^n = r$). Observăm că radicalul complex de ordinul n are n elemente (sau determinări), iar $\sqrt[n]{r}e^{jt/n}$ este determinarea principală a radicalului si se obtine pentru k = 0.

Astfel, $(\sqrt{16})_{\mathbb{R}} = 4$, dar $(\sqrt{16})_{\mathbb{C}} = \{-4, 4\}$ și $(\sqrt[3]{8})_{\mathbb{R}} = 2$, dar $(\sqrt[3]{8})_{\mathbb{C}} = \{2, -1 \pm j\sqrt{3}\}.$

1.5 Logaritmul unui număr complex

Fie $z \in \mathbb{C}^*$. Mulțimea $\text{Log} z = \{w \in \mathbb{C} : w^n = z\}$ se numește logaritmul complex al lui z. Logaritmul numărului complex 0 nu se definește.

Dacă $z=re^{jt}$, atunci logaritmul complex are în $\mathbb C$ o infinitate de determinări, și anume

$$\operatorname{Log} z \xrightarrow{\underline{mot}} \operatorname{Ln} z = \{ \ln r + j(t + 2k\pi) : k \in \mathbb{Z} \} = \ln r + j(t + 2\pi\mathbb{Z})$$

sau

$$\operatorname{Log} z = \{\ln|z| + j(\arg z + 2k\pi) : k \in \mathbb{Z}\} = \ln|z| + j(\arg z + 2\pi\mathbb{Z}),$$

unde r = |z|, $t = \arg z$, iar $\ln r$ este logaritmul real al numărului r > 0. Pe de altă parte, luând k = 0, obținem determinarea principală a logaritmului complex, și anume

$$\log z \xrightarrow{not} \ln z = \ln|z| + j \cdot \arg z, \ z \in \mathbb{C}^*.$$

1.5.1 Exemple

a)
$$\text{Log}(1 - j\sqrt{3}) = \left\{ \ln|1 - j\sqrt{3}| + j\left(\arg(1 - j\sqrt{3}) + 2k\pi\right) : k \in \mathbb{Z} \right\}$$

$$= \left\{ \ln\sqrt{1 + 3} + j\left(\arctan(-\sqrt{3}) + 2\pi + 2k\pi\right) : k \in \mathbb{Z} \right\}$$

$$= \left\{ \ln 2 + j\left(\frac{5\pi}{3} + 2k\pi\right) : k \in \mathbb{Z} \right\} = \ln 2 + j\left(\frac{5\pi}{3} + 2\pi\mathbb{Z}\right).$$

Determinarea principală a logaritmului este $\log (1 - j\sqrt{3}) = \ln 2 + \frac{5\pi}{3}j$.

b) Log
$$\left(\frac{j}{3}\right) = \left\{\ln\left|\frac{j}{3}\right| + j\left(\arg\frac{j}{3} + 2k\pi\right) : k \in \mathbb{Z}\right\}$$

$$= \left\{\ln\frac{1}{3} + j\left(\frac{\pi}{2} + 2k\pi\right) : k \in \mathbb{Z}\right\}$$

$$= -\ln 3 + j\left(\frac{\pi}{2} + 2\pi\mathbb{Z}\right).$$

Determinarea principală a logaritmului este $\log\left(\frac{j}{3}\right) = -\ln 3 + \frac{\pi}{2}j$, cu

$$\operatorname{Re}\left(\log \frac{j}{3}\right) = -\ln 3$$
 și $\operatorname{Im}\left(\log \frac{j}{3}\right) = \frac{\pi}{2}$.

c) Log
$$e = \{ \ln |e| + j(\arg e + 2k\pi) : k \in \mathbb{Z} \}$$

= $\{ 1 + 2k\pi j : k \in \mathbb{Z} \} = 1 + 2\pi j\mathbb{Z}.$

Determinarea principală a logaritmului Log e este log $e = \ln e = 1$.

Merită să amintim aici faptul că determinarea principală a logaritmului complex al unui număr real x > 0 coincide cu logaritmul real natural al numărului x, deoarece $\text{Log } x = \ln x + 2k\pi j$, $k \in \mathbb{Z}$, iar determinarea principală este $\log x = \ln x$ (i.e. $(\ln x)_{\mathbb{C}} = (\ln x)_{\mathbb{R}}$).

1.6 Puterea complexă a unui număr complex nenul

Fie $z \in \mathbb{C}^*$ și $\alpha \in \mathbb{C}$. Prin puterea α a numărului z înțelegem mulțimea z^{α} , definită prin $z^{\alpha} = e^{\alpha \text{Log } z}$. Fiecare din elementele acestei mulțimi se numește determinare, iar numărul $e^{\alpha \log z}$, unde $\log z = \ln |z| + j \arg z$ se numește determinarea principală a puterii z^{α} .

1.6.1 Exemple

a)
$$(-j)^j = e^{j\text{Log}(-j)} = \left\{ e^{j(\ln|-j|+j(\arg(-j)+2k\pi))} : k \in \mathbb{Z} \right\}$$

= $\left\{ e^{j^2(3\pi/2+2k\pi)} : k \in \mathbb{Z} \right\} = \left\{ e^{-3\pi/2-2k\pi} : k \in \mathbb{Z} \right\} = e^{-3\pi/2+2\pi\mathbb{Z}}.$

Determinarea principală este $e^{-3\pi/2} \in \mathbb{R}$.

b)
$$(1+j)^{-j} = e^{-j\text{Log}\,(1+j)} = \left\{ e^{-j(\ln|1+j|+j(\arg(1+j)+2k\pi))} : k \in \mathbb{Z} \right\}$$

 $= \left\{ e^{-j(\ln\sqrt{2}+j(\pi/4+2k\pi))} : k \in \mathbb{Z} \right\} = \left\{ e^{\pi/4+2k\pi}e^{-j\ln\sqrt{2}} : k \in \mathbb{Z} \right\}$
 $= e^{\pi/4+2\pi\mathbb{Z}} \cdot e^{-j\ln\sqrt{2}}.$

Determinarea principală este

$$e^{\pi/4}e^{-j\ln\sqrt{2}} = e^{\pi/4}\left(\cos\left(\frac{\ln 2}{2}\right) - j\sin\left(\frac{\ln 2}{2}\right)\right).$$

1.7 Probleme propuse

1. Fie $z = x + jy \in \mathbb{C}$ și M(x,y) = M(z). Determinați următoarele mulțimi din planul complex:

$$A_{0} = \left\{ (x,y) : \left| \frac{z-2}{z+2} \right| < \sqrt{2} \right\}$$

$$A_{1} = \left\{ (x,y) : 1 \le |2z-1-2j| < 3 \right\}$$

$$A_{2} = \left\{ (x,y) : |z-1+3j| + |z-2| = 6 \right\}$$

$$A_{3} = \left\{ (x,y) : |z+3| - |z-3-6j| = 4\sqrt{2} \right\}$$

$$A_{4} = \left\{ (x,y) : |z+2-2j| = |z-3-4j| \right\}$$

$$A_{5} = \left\{ (x,y) : |z-j| + \operatorname{Re}(z) \le 2 \right\}$$

$$A_{6} = \left\{ (x,y) : \frac{\pi}{4} < \operatorname{arg} \frac{j+z}{j-z} \le \frac{\pi}{2} \right\}.$$

2. Determinați următorii radicali complecși:

a)
$$\sqrt[7]{j}$$
; b) $\sqrt[4]{-1+j}$; c) $\sqrt{\frac{-1+3j}{1+2j}}$.

3. $S\check{a}$ se rezolve în \mathbb{C} ecuatiile:

a)
$$(2-j)z^5+3+j=0$$
; b) $z^6-z^3+1-j=0$; c) $z^4+z^2+1=0$;

d)
$$z^{10} = (1 + \sqrt{3}j)\bar{z}$$
.

4. Să se calcul<u>e</u>ze:

a)
$$\log \frac{-1 - j\sqrt{3}}{2}$$
; **b)** $\log (-1)$; **c)** $j^{(1-j)^2}$; **d)** $(ej)^j$; **e)** j^{j^j}

5. Determinați partea reală și partea imaginară pentru determinările principale ale logaritmilor sau puterilor complexe de mai jos:

a)
$$\log \frac{-\sqrt{2} + \sqrt{2}j}{2}$$
; b) $\log(-\sqrt[4]{5})$; c) $(j\sqrt{3} - 1)^{-j}$; d) $(j-1)^{1+j\sqrt{3}}$;

e)
$$(1+j)^j$$
; f) $(-j)^{-\pi j}$; g) $1^{\sqrt{2}}$; h) e^j

1.8 Indicații și răspunsuri

1. Avem $|z-2| < \sqrt{2}|z+2| \Leftrightarrow |x-2+jy| < \sqrt{2}|x+2+jy| \Leftrightarrow (x-2)^2 + y^2 < 2(x+2)^2 + 2y^2$, adică $x^2 + 12x + 4 + y^2 > 0$, de unde rezultă că $(x+6)^2 + y^2 > 32$. Prin urmare, $A_0 = \mathbb{C} \setminus \overline{\Delta}(-6; 4\sqrt{2})$.

Observăm că $1 \leq |2z - 1 - 2j| < 3 \Leftrightarrow \frac{1}{2} \leq \left|z - \left(\frac{1}{2} + j\right)\right| < \frac{3}{2}$ și, de aici, $z \in U\left(z_0; \frac{1}{2}, \frac{3}{2}\right) \cup \Gamma\left(z_0; \frac{1}{2}\right)$, cu $z_0 = \frac{1}{2} + j$. În concluzie, $A_1 = U\left(z_0; \frac{1}{2}, \frac{3}{2}\right) \cup \Gamma\left(z_0; \frac{1}{2}, \frac{3}{2}\right)$.

Fie $F_1(1, -3) \equiv F_1(1 - 3j)$ și $F_2(2, 0) \equiv F_2(2)$. Deci $|z - 1 + 3j| + |z - 2| = 6 \Leftrightarrow d(M, F_1) + d(M, F_2) = 6 = 2a$. Prin urmare, A_2 este elipsa cu distanța focală $F_1F_2 = \sqrt{10} = 2c$ și semiaxele a = 3, respectiv $b = \frac{\sqrt{26}}{2}$ $(a^2 = b^2 + c^2)$.

Dacă considerăm $F_1(-3,0) \equiv F_1(-3)$ și $F_2(3,6) \equiv F_2(3+6j)$, atunci $|z+3|-|z-3-6j|=4\sqrt{2} \Leftrightarrow d(M,F_1)-d(M,F_2)=4\sqrt{2}=2a$. Deci A_3 este o ramură a hiperbolei cu distanța focală $F_1F_2=6\sqrt{2}=2c$ și semiaxele $a=2\sqrt{2}$, respectiv $b=\sqrt{10}$ ($c^2=a^2+b^2$).

Luând $A(-2,2) \equiv A(-2+2j)$ și $B(3,4) \equiv B(3+4j)$, obținem $|z+2-2j| = |z-3-4j| \Leftrightarrow d(M,A) = d(M,B)$ și A_4 este mediatoarea segmentului AB.

Se poate observa că $|z - j| + Rez \le 2 \Leftrightarrow |x + j(y - 1)| \le 2 - x \Leftrightarrow x^2 + (y - 1)^2 \le (2 - x)^2 \Leftrightarrow x \le \frac{-y^2 + 2y + 3}{4}$. De aici, $A_5 = \{(x, y) : x \le \frac{-y^2 + 2y + 3}{4}\}$.

Fie
$$Z = \frac{j+z}{j-z}$$
, $Z = X + jY$. Atunci

$$Z = \frac{x + j(y+1)}{-x + j(1-y)} = \frac{(x + j(y+1))(-x - j(1-y))}{(-x + j(1-y))(-x - j(1-y))}$$
$$= \frac{-x^2 - y^2 + 1}{x^2 + (1-y)^2} - \frac{2x}{x^2 + (1-y)^2}j,$$

de unde obținem $X = \frac{-x^2-y^2+1}{x^2+(1-y)^2}$ și $Y = -\frac{2x}{x^2+(1-y)^2}$. Pe de altă parte,

$$\frac{\pi}{4} < \arg \frac{j+z}{j-z} \le \frac{\pi}{2} \Leftrightarrow 0 \le X < Y$$

și, prin urmare,

$$A_6 = \{(x,y) : -2x > -x^2 - y^2 + 1, -x^2 - y^2 + 1 \ge 0\}$$

= $\{(x,y) : (x-1)^2 + y^2 > 2, x^2 + y^2 \le 1\} = \bar{\Delta}(0;1) \cap (\mathbb{C} \setminus \bar{\Delta}(1;\sqrt{2})).$

2. a)
$$\sqrt[7]{j} = \left\{ e^{j\left(\frac{\pi}{14} + \frac{2k\pi}{7}\right)} : 0 \le k \le 6 \right\};$$

b)
$$\sqrt[4]{-1+j} = \left\{ \sqrt[8]{2}e^{j\left(\frac{3\pi}{16} + \frac{k\pi}{2}\right)} : 0 \le k \le 3 \right\};$$

c)
$$\sqrt{\frac{-1+3j}{1+2j}} = \sqrt{1+j} = \left\{ \sqrt[4]{2}e^{j\left(\frac{\pi}{8}+k\pi\right)} : 0 \le k \le 1 \right\}.$$

3. a) Cum
$$z^5 = \frac{3+j}{-2+j}$$
, $S = \left\{ \sqrt[10]{2}e^{j\left(\frac{\pi}{4} + \frac{2k\pi}{5}\right)} : 0 \le k \le 4 \right\}$;

b) Fie $z^3 = u$. Ecuația devine: $u^2 - u + 1 - j = 0$, de unde obținem

$$u_1 = 1 + j \text{ și } u_2 = -j. \text{ Deci}$$

$$\begin{split} S &= \sqrt[3]{1+j} \; \cup \sqrt[3]{-j} \\ &= \left\{ \sqrt[6]{2} e^{j\left(\frac{\pi}{12} + \frac{2k\pi}{3}\right)} : \; 0 \le k \le 2 \right\} \cup \left\{ e^{j\left(\frac{\pi}{2} + \frac{2k\pi}{3}\right)} : \; 0 \le k \le 2 \right\}. \end{split}$$

c) Notând $z^2=u,$ ecuația din enunț devine $u^2+u+1=0.$ De aici, $u_{1,2}=-\frac{1}{2}\pm j\frac{\sqrt{3}}{2}$ și, prin urmare

$$\begin{split} S &= \sqrt{\frac{-1+j\sqrt{3}}{2}} \cup \sqrt{\frac{-1-j\sqrt{3}}{2}} \\ &= \left\{ e^{j\left(\frac{\pi}{3}+k\pi\right)} : \ 0 \le k \le 1 \right\} \cup \left\{ e^{j\left(\frac{2\pi}{3}+k\pi\right)} : \ 0 \le k \le 1 \right\} \\ &= \left\{ \frac{1}{2}(1 \pm j\sqrt{3}); \frac{1}{2}(-1 \pm j\sqrt{3}) \right\}. \end{split}$$

d) Înmulțind ecuația cu z, obținem $z^{11}=(1+j\sqrt{3})|z|^2$ și, de aici, $|z|^{11}=|1+j\sqrt{3}|\cdot|z|^2$. Dacă $z\neq 0$, atunci $|z|^9=|1+j\sqrt{3}|=2$, de unde rezultă că $|z|=2^{\frac{1}{9}}$. Așadar, $z^{11}=(1+j\sqrt{3})\left(2^{\frac{1}{9}}\right)^2$, adică

$$z \in \sqrt[11]{(1+j\sqrt{3})2^{\frac{2}{9}}} = \left\{ \sqrt[11]{|1+j\sqrt{3}|2^{\frac{2}{9}}}e^{j(\frac{\pi}{3}+2k\pi)/11}; \ 0 \le k \le 10 \right\}$$
$$= \left\{ 2^{\frac{1}{9}}e^{j(\frac{\pi}{33}+\frac{2k\pi}{11})}; \ 0 \le k \le 10 \right\} = S_1.$$

Soluția finală este $S = \{0\} \cup S_1$.

4. a) Avem

$$\operatorname{Log} \frac{-1-j\sqrt{3}}{2} = \left\{ \ln \left| \frac{-1-j\sqrt{3}}{2} \right| + j \left(\arg \frac{-1-j\sqrt{3}}{2} + 2k\pi \right) : \ k \in \mathbb{Z} \right\}$$
$$= \left\{ j \left(\frac{4\pi}{3} + 2k\pi \right) : \ k \in \mathbb{Z} \right\} = j \left(\frac{4\pi}{3} + 2\pi\mathbb{Z} \right);$$

b)
$$\text{Log}(-1) = \{\ln |-1| + j (\arg (-1) + 2k\pi) : k \in \mathbb{Z}\} = (2\mathbb{Z} + 1)\pi j;$$

c)
$$j^{(1-j)^2} = j^{-2j} = e^{-2j\operatorname{Log}(j)} = \left\{ e^{-2j(\ln|j| + j(\arg(j) + 2k\pi))} : k \in \mathbb{Z} \right\}$$

= $\left\{ e^{2(\frac{\pi}{2} + 2k\pi)} : k \in \mathbb{Z} \right\} = e^{\pi + 4\pi\mathbb{Z}}.$

d)
$$(ej)^j = e^{j\text{Log}(ej)} = e^{j(\ln|ej| + j(\arg(ej) + 2\pi\mathbb{Z}))}$$

= $e^{j(1+j(\frac{\pi}{2} + 2\pi\mathbb{Z}))} = e^{j-\frac{\pi}{2} + 2\pi\mathbb{Z}}$.

e)
$$j^{j^j} = e^{j^j \text{Log} j} = e^{j^j \cdot j(\frac{\pi}{2} + 2\pi \mathbb{Z})} = e^{j^{j+1}(\frac{\pi}{2} + 2\pi \mathbb{Z})}$$
,

unde

$$j^{j+1} = e^{(j+1)\operatorname{Log} j} = e^{j(j+1)(\frac{\pi}{2} + 2\pi\mathbb{Z})} = e^{(-1+j)(\frac{\pi}{2} + 2\pi\mathbb{Z})}.$$

Aşadar,

$$j^{j} = e^{\left(\frac{\pi}{2} + 2\pi\mathbb{Z}\right) \cdot e^{\left(-1 + j\right)\left(\frac{\pi}{2} + 2\pi\mathbb{Z}\right)}}.$$

- **5. a)** $\log \frac{-\sqrt{2}+\sqrt{2}j}{2} = \ln \left| \frac{-\sqrt{2}+\sqrt{2}j}{2} \right| + j\arg \frac{-\sqrt{2}+\sqrt{2}j}{2} = \frac{3\pi}{4}j = z$, $\operatorname{Re}z = 0$, $\operatorname{Im}z = \frac{3\pi}{4}$;
- **b)** $\log \left(-\sqrt[4]{5}\right) = \ln \left|-\sqrt[4]{5}\right| + j\arg \left(-\sqrt[4]{5}\right) = \frac{1}{4}\ln 5 + \pi j = z, \text{ Re}z = \frac{1}{4}\ln 5,$ $\text{Im}z = \pi;$
 - c) Cum

$$(j\sqrt{3}-1)^{-j} = e^{-j\text{Log}(j\sqrt{3}-1)} = \left\{ e^{-j\left(\ln 2 + j\left(\frac{2\pi}{3} + 2k\pi\right)\right)} : k \in \mathbb{Z} \right\}$$
$$= \left\{ e^{\left(\frac{2\pi}{3} + 2k\pi\right) - j\ln 2} : k \in \mathbb{Z} \right\},$$

 $z=e^{\frac{2\pi}{3}-j\ln 2}=e^{\frac{2\pi}{3}}\left(\cos(\ln 2)-j\sin(\ln 2)\right)$ este determinarea principală, $\mathrm{Re}z=e^{\frac{2\pi}{3}}\cos(\ln 2),$ iar $\mathrm{Im}z=-e^{\frac{2\pi}{3}}\sin(\ln 2);$

$$\mathbf{d)} \ (j-1)^{1+j\sqrt{3}} = e^{(1+j\sqrt{3})\operatorname{Log}(j-1)}$$

$$= \left\{ e^{(1+j\sqrt{3})\left(\frac{\ln 2}{2} + j\left(\frac{3\pi}{4} + 2k\pi\right)\right)} : k \in \mathbb{Z} \right\}$$

$$= \left\{ e^{\frac{\ln 2}{2} - \sqrt{3}\left(\frac{3\pi}{4} + 2k\pi\right)} \cdot e^{j\left(\frac{3\pi}{4} + \frac{\sqrt{3}}{2}\ln 2 + 2k\pi\right)} : k \in \mathbb{Z} \right\}.$$

De aici, $z=e^{\frac{\ln 2}{2}-\frac{3\sqrt{3}\pi}{4}+j\left(\frac{3\pi}{4}+\frac{\sqrt{3}}{2}\ln 2\right)}$ este determinarea principală a puterii complexe, partea reală fiind $\operatorname{Re} z=e^{\frac{\ln 2}{2}-\frac{3\sqrt{3}\pi}{4}}\cos\left(\frac{3\pi}{4}+\frac{\sqrt{3}}{2}\ln 2\right),$ iar partea imaginară $\operatorname{Im} z=e^{\frac{\ln 2}{2}-\frac{3\sqrt{3}\pi}{4}}\sin\left(\frac{3\pi}{4}+\frac{\sqrt{3}}{2}\ln 2\right);$

e) Avem

$$(1+j)^{j} = e^{j\text{Log}(1+j)} = e^{j\left(\frac{1}{2}\ln 2 + j\left(\frac{\pi}{4} + 2\pi\mathbb{Z}\right)\right)} = e^{\frac{\ln 2}{2}j - \frac{\pi}{4} - 2\pi\mathbb{Z}}$$

și, de aici, $z = e^{-\frac{\pi}{4}} \cdot e^{\frac{\ln 2}{2}j} = e^{-\frac{\pi}{4}} \left(\cos \left(\frac{\ln 2}{2} \right) + j \sin \left(\frac{\ln 2}{2} \right) \right)$ este determinarea principală. Prin urmare, $\operatorname{Re} z = e^{-\frac{\pi}{4}} \cos \left(\frac{\ln 2}{2} \right)$, iar $\operatorname{Im} z = e^{-\frac{\pi}{4}} \sin \left(\frac{\ln 2}{2} \right)$.

f) Deoarece

$$(-j)^{-\pi j} = e^{-\pi j \operatorname{Log}(-j)} = e^{-\pi j^2 \left(\frac{3\pi}{2} + 2\pi z\right)} = e^{\frac{3\pi^2}{2} + 2\pi^2 \mathbb{Z}},$$

determinarea principală este $z=e^{\dfrac{3\pi^2}{2}},$ cu $\mathrm{Re}z=e^{\dfrac{3\pi^2}{2}}$ și $\mathrm{Im}z=0.$

g) Observám cá

$$1^{\sqrt{2}} = e^{\sqrt{2}\text{Log}1} = e^{2\sqrt{2}\pi j\mathbb{Z}}$$

determinarea principală a puterii complexe este $z=e^0=1,\ \mathrm{Re}z=1$ și $\mathrm{Im}z=0.$

h) Observám cá

$$e^{j} = e^{j\text{Log}e} = e^{j(\ln|e| + j(0 + 2\pi\mathbb{Z}))} = e^{j + j^{2} \cdot 2\pi\mathbb{Z}} = e^{j - 2\pi\mathbb{Z}}$$

având determinarea principală $z=e^j=(\cos 1+j\sin 1)$. Re $z=\cos 1$, iar ${\rm Im}z=\sin 1$.

Funcții olomorfe

2.1 Noțiunea de funcție complexă

Fie $E \subseteq \mathbb{C}$ o mulțime dată. Funcția $f: E \to \mathbb{C}$, care atașează fiecărui număr complex $z \in E$ numărul complex $f(z) \in \mathbb{C}$ se numeștie funcție complexă de variabilă complexă.

Dacă z = x + jy, atunci

$$f(z) = P(x, y) + jQ(x, y), (x, y) \in E$$

este reprezentarea algebrică a funcției f(z), în vreme ce

$$f(z) = |f(z)|e^{j\arg f(z)}$$

este reprezentarea trigonometrică. Se poate observa că $P(x,y) = \text{Re}\,f(z)$ și $Q(x,y) = \text{Im}\,f(z)$.

Dacă $f: E \subseteq \mathbb{C} \to \mathbb{C}$ este o funcție complexă a.î. $\infty \in E'$ (i.e. punctul de la infinit este punct de acumulare pentru mulțimea E), atunci prin comportarea funcției f la ∞ înțelegem comportarea în 0 a funcției g, definite prin $g(z) = f\left(\frac{1}{z}\right), z \in \mathbb{C}^*$, astfel încât $\frac{1}{z} \in E$.

2.2 Funcții monogene. Condițiile Cauchy-Riemann

Fie $G \subseteq \mathbb{C}$ o mulțime deschisă, $z_0 \in G$ un punct fixat, $z_0 = x_0 + jy_0$ și $f: G \to \mathbb{C}$, f(z) = P(x,y) + jQ(x,y), $z = x + jy \in G$, o funcție dată. Dacă există limita

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

și este finită, i.e. $f'(z_0) \in \mathbb{C}$, atunci funcția f se numește monogenă sau derivabilă în z_0 . Mai mult, funcțiile P și Q admit derivate parțiale în punctul (x_0, y_0) și au loc egalitățile:

$$(C - R) \begin{cases} \frac{\partial P}{\partial x}(x_0, y_0) = \frac{\partial Q}{\partial y}(x_0, y_0) \\ \frac{\partial P}{\partial y}(x_0, y_0) = -\frac{\partial Q}{\partial x}(x_0, y_0), \end{cases}$$

numite și condițiile de monogenitate Cauchy-Riemann în punctul z₀.

Invers, dacă funcțiile P și Q admit derivate parțiale pe o vecinătate a unui punct $z_0 \in G$, care sunt pe deasupra continue în z_0 și dacă sunt îndeplinite condițiile Cauchy-Riemann (C-R), atunci funcția f este monogenă în z_0 . Observăm așadar că punctele de monogenitate ale unei funcții se determină din condițiile (C-R).

 $\ \, \Phi \,$ Dacă $f:G\subseteq \mathbb C\to \mathbb C$ este o funcție monogenă în $z_0=x_0+jy_0\in G,$ atunci

$$f'(z_0) = \frac{\partial P}{\partial x}(x_0, y_0) + j\frac{\partial Q}{\partial x}(x_0, y_0).$$

Mai mult, ținând cont de condițiile (C-R), putem scrie și

$$f'(z_0) = \frac{\partial P}{\partial x}(x_0, y_0) - j\frac{\partial P}{\partial y}(x_0, y_0),$$

$$f'(z_0) = \frac{\partial Q}{\partial y}(x_0, y_0) + j\frac{\partial Q}{\partial x}(x_0, y_0),$$

$$f'(z_0) = \frac{\partial Q}{\partial y}(x_0, y_0) - j\frac{\partial P}{\partial y}(x_0, y_0).$$

 $\ \, \ \, \ \,$ Dacă scriem funcția f ca o funcție ce depinde de variabilele z și $\bar{z},$ atunci

(2.1)
$$(C-R) \Leftrightarrow \frac{\partial f}{\partial \bar{z}} = 0,$$

iar derivata în punctul de monogenitate z_0 se calculează cu formula

$$f'(z_0) = \frac{\partial f}{\partial z}(z_0).$$

De cele mai multe ori, este mai ușor să verificăm condițiile (C-R) folosind relația (2.1), decât să calculăm funcțiile P și Q.

În cele ce urmează, vom determina prin două metode punctele de monogenitate ale următoarelor funcții, respectiv valoarea derivatelor în aceste puncte.

2.2.1 Exemple

a) Fie
$$f(z) = z^3 + 2\bar{z}^2 - 4\bar{z} + 2 - 3j$$
.

Metoda I

Punând z = x + jy în expresia funcției, obținem $f(z) = (x + jy)^3 + 2(x - jy)^2 - 4(x - jy) + 2 - 3j = x^3 + 3x^2yj - 3xy^2 - y^3j + 2x^2 - 4xyj - 2y^2 - 4x + 4yj + 2 - 3j$, de unde $P(x,y) = x^3 - 3xy^2 + 2x^2 - 2y^2 - 4x + 2$ și $Q(x,y) = 3x^2y - y^3 - 4xy + 4y - 3$. Condițiile de monogenitate Cauchy-Riemann, scrise într-un punct arbitrar z = x + jy, sunt:

$$\begin{cases} \frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} \\ \frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x} \end{cases} \Leftrightarrow \begin{cases} 3x^2 - 3y^2 + 4x - 4 = 3x^2 - 3y^2 - 4x + 4 \\ -6xy - 4y = -6xy + 4y, \end{cases}$$

de unde rezultă $x=1,\ y=0.$ Așadar, singurul punct în care f este monogenă este $z_0=1$ și

$$f'(1) = \frac{\partial P}{\partial x}(1,0) + j\frac{\partial Q}{\partial x}(1,0) = 3 + 0j = 3.$$

Metoda a II-a

Deoarece funcția f este deja scrisă ca o funcție de variabilele z și \bar{z} , condițiile (C-R) $\Leftrightarrow \frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow 4\bar{z} - 4 = 0 \Leftrightarrow \bar{z} = 1 \Leftrightarrow x - jy = 1$, ceea ce înseamnă că x = 1, y = 0 și deci, singurul punct de monogenitate al funcției f este $z_0 = 1$. Mai mult,

$$f'(1) = \frac{\partial f}{\partial z}(1) = 3z^2 \Big|_{z=1} = 3.$$

b) Fie $f(z) = |z|^2 + 2 \text{Re}z \cdot \text{Im}z$.

 $Metoda\ I$

Înlocuind pe z cu x+jy în expresia funcției f, obținem $f(z)=x^2+y^2+2xy=(x+y)^2$. Așadar, $P(x,y)=(x+y)^2$, iar Q(x,y)=0. Condițiile (C-R) se reduc la relația x+y=0. Prin urmare, f este monogenă în toate punctele de forma $z_{\alpha}=\alpha-j\alpha, \ \alpha\in\mathbb{R}$ și

$$f'(z_{\alpha}) = \frac{\partial P}{\partial x}(\alpha, -\alpha) + j\frac{\partial Q}{\partial x}(\alpha, -\alpha) = (2(x+y) + 0j)|_{x=\alpha, y=-\alpha} = 0.$$

Metoda a II-a

Pentru a scrie funcția doar cu ajutorul variabilelor z și \bar{z} , folosim relațiile $|z|^2=z\bar{z}$, $\mathrm{Re}z=x=\frac{z+\bar{z}}{2}$, $\mathrm{Im}z=y=\frac{z-\bar{z}}{2j}$ și obținem

$$f(z) = z\bar{z} + \frac{z^2 - \bar{z}^2}{2j}.$$

Prin urmare,

(C-R)
$$\Leftrightarrow \frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow z - \frac{\bar{z}}{j} = 0 \Leftrightarrow x + jy + j(x - jy) = 0$$

 $\Leftrightarrow (x + y) + j(x + y) = 0 \Leftrightarrow x + y = 0.$

De aici deducem că punctele de monogenitate ale funcției f sunt de forma $z_{\alpha}=\alpha-j\alpha,\ \alpha\in\mathbb{R}$ și

$$f'(z_{\alpha}) = \frac{\partial f}{\partial z}(z_{\alpha}) = (\bar{z} - jz)\Big|_{z=\alpha-j\alpha, \ \bar{z}=\alpha+j\alpha} = 0.$$

2.3 Funcții olomorfe

O funcție $f: G \to \mathbb{C}$ se numește olomorfă pe mulțimea deschisă G dacă f este monogenă în fiecare punct $z_0 \in G$. Vom nota cu $\mathscr{H}(G)$ mulțimea tuturor funcțiilor olomorfe pe G. O funcție f se numește $\hat{intreag}$ dacă $f \in \mathscr{H}(G)$. În cele ce urmează, vom nota cu $C^n(G)$ mulțimea funcțiilor $f: G \to \mathbb{C}$ cu proprietatea că Re f si Im f sunt de clasă $C^n(G)$, $n \in \mathbb{N}$.

Fie $D\subseteq\mathbb{C}$ un domeniu și $f:D\to\mathbb{C},\,f(z)=P(x,y)+jQ(x,y),\,z=x+jy.$ Dacă $f\in\mathcal{H}(D)\cap C^2(D)$ atunci P și Q sunt armonice pe D, adică $\Delta P=0$ și $\Delta Q=0$ pe D, unde $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ este operatorul diferențial al lui Laplace.

Principiul identității funcțiilor olomorfe

Fie $f,g:D\to\mathbb{R}$ două funcții olomorfe pe domeniul $D\subseteq\mathbb{C}$ (adică $f,g\in\mathcal{H}(D)$). Dacă $f(x)=g(x),\,\forall x\in D\cap\mathbb{R},$ atunci $f(z)=g(z),\,\forall z\in D.$ Spre exemplu, $\cos 2x=1-2\sin^2 x,\,\forall x\in\mathbb{R},$ implică $\cos 2z=1-2\sin^2 z,$

2.3.1 Exemple

 $\forall z \in \mathbb{C}.$

Vom determina în continuare o funcție olomorfă căreia îi cunoaștem partea sa reală. Similar se procedează dacă se știe partea imaginară.

a) Determinații funcția olomorfă $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{C}, f(z) = P(x,y) + jQ(x,y), z = x + jy, dacă$

$$P(x,y) = \text{Re } f(z) = \frac{y}{x^2 + y^2} - 3x^2y + y^3 \text{ si } f(1) = 2j.$$

Determinăm mai întâi f'(z). Avem

$$f'(z) = \frac{\partial P}{\partial x} + j \frac{\partial Q}{\partial x} \xrightarrow{\underline{(C-R)}} \frac{\partial P}{\partial x} - j \frac{\partial P}{\partial y}$$
$$= -\frac{2xy}{(x^2 + y^2)^2} - 6xy - j \left(\frac{x^2 - y^2}{(x^2 + y^2)^2} - 3x^2 + 3y^2 \right), \ (x, y) \neq (0, 0).$$

Luând y=0, obținem $z=x+0j=x\in\mathbb{R}$ și

$$f'(z) = f'(x) = -j\left(\frac{1}{x^2} - 3x^2\right) = -j\left(\frac{1}{z^2} - 3z^2\right), \ \forall z \in \mathbb{R}^*.$$

Utilizând principiul identității funcțiilor olomorfe, deducem că

$$f'(z) = -j\left(\frac{1}{z^2} - 3z^2\right), \ \forall z \in \mathbb{C}^*,$$

deci $f(z)=\int f'(z)dz=j\left(\frac{1}{z}+z^3\right)+k,\ k\in\mathbb{C}$. Folosind condiția inițială f(1)=2j, obținem k=0 și, prin urmare,

$$f(z) = j\left(\frac{1}{z} + z^3\right), \ \forall z \in \mathbb{C}^*.$$

b) Determinați funcția olomorfă f(z) = P(x,y) + jQ(x,y), z = x + jy, dacă $Q(x,y) = \text{Im } f(z) = \phi\left(\frac{x}{y}\right), \ unde \ \phi \in C^2(\mathbb{R}) \ este \ o \ funcție \ dată.$

Cum f este olomorfă, $\Delta Q=0$. Folosind notația $u=\frac{x}{y}$, obținem $Q(x,y)=\phi(u),$

$$\frac{\partial Q}{\partial x} = \phi'(u)u_x' = \frac{1}{y}\phi'(u) \quad \text{si} \quad \frac{\partial^2 Q}{\partial x^2} = \frac{1}{y^2}\phi"(u).$$

Analog,

$$\frac{\partial Q}{\partial u} = \phi'(u)u_y' = -\frac{x}{v^2}\phi'(u)$$

și

$$\frac{\partial^2 Q}{\partial y^2} = \left(-\frac{x}{y^2}\right)_y' \phi'(u) + \left(-\frac{x}{y^2}\right) \left(\phi'(u)\right)_y'$$
$$= \frac{2x}{y^3} \phi'(u) + \frac{x^2}{y^4} \phi''(u).$$

Utilizând condiția $\Delta Q = 0$, deducem că

$$\frac{1}{y^2} \left(\frac{2x}{y} \phi'(u) + \left(1 + \frac{x^2}{y^2} \right) \phi''(u) \right) = 0 \Leftrightarrow$$

$$2u\phi'(u) + (1 + u^2)\phi''(u) = 0 \Leftrightarrow \left((1 + u^2)\phi'(u) \right)' = 0 \Leftrightarrow$$

$$\phi'(u) = \frac{c_1}{1 + u^2} \Leftrightarrow \phi(u) = c_1 \operatorname{arctg} u + c_2, \ c_1, c_2 \in \mathbb{R}.$$

Aşadar,

$$Q(x,y) = \phi\left(\frac{x}{y}\right) = c_1 \operatorname{arctg} \frac{x}{y} + c_2.$$

Cunoscând acum partea imaginară a funcției f, procedăm ca la punctul a). Pornim de la derivata funcției, adică

$$f'(z) = \frac{\partial P}{\partial x} + j \frac{\partial Q}{\partial x} \stackrel{(C-R)}{=} \frac{\partial Q}{\partial y} + j \frac{\partial Q}{\partial x}$$

$$= -\frac{c_1 x}{y^2} \frac{1}{1 + \frac{x^2}{y^2}} + j \frac{c_1}{y} \frac{1}{1 + \frac{x^2}{y^2}}$$

$$= -\frac{c_1 x}{x^2 + y^2} + j \frac{c_1 y}{x^2 + y^2}, \quad (x, y) \neq (0, 0).$$

Luând $y = 0, z = x \in \mathbb{R}$ și

$$f'(z) = f'(x) = -\frac{c_1}{r} = -\frac{c_1}{r}, \ \forall z \in \mathbb{R}^*.$$

Conform principiului identității funcțiilor olomorfe,

$$f'(z) = -\frac{c_1}{z}, \ \forall z \in \mathbb{C}^*$$

și, prin urmare, $f(z) = \int \left(-\frac{c_1}{z}\right) dz = -c_1 \log z + k_1, z \in \mathbb{C}^*, c_1 \in \mathbb{R}, k_1 \in \mathbb{C}.$

Încercăm acum să determinăm o funcție olomorfă f, căreia îi cunoaștem modulul.

c) Să se determine funcția complexă $f \in \mathcal{H}(D), D \subseteq \mathbb{C}$ dacă

$$|f(z)| = (x^2 + y^2 + 2x + 1)e^{\pi x}, \ z = x + jy \text{ si } f(-j) = 2j.$$

Observăm că dacă f(z) = P(x, y) + jQ(x, y), atunci

$$|f(z)| = \sqrt{P^2(x,y) + Q^2(x,y)},$$

cu alte cuvinte știm din ipoteză o relație între partea reală și partea imaginară a funcției f. Deoarece

$$\operatorname{Log} f(z) = \left\{ \ln |f(z)| + j(\arg f(z) + 2k\pi) : \ k \in \mathbb{Z} \right\},\,$$

iar determinarea principală a logaritmului funcției f(z) este

$$\log f(z) = \ln|f(z)| + j\arg f(z) = \pi x + \ln(x^2 + y^2 + 2x + 1) + j\arg f(z).$$

Notând $g(z) = \log f(z) \Leftrightarrow f(z) = e^{g(z)}$, obținem funcția $g(z) = P_1(x,y) + jQ_1(x,y)$, căreia îi cunoaștem partea reală $P_1(x,y) = \pi x + \ln(x^2 + y^2 + 2x + 1)$.

Pornim de la derivata funcției

$$g'(z) = \frac{\partial P_1}{\partial x} + j \frac{\partial Q_1}{\partial x} = \frac{(C-R)}{2} \frac{\partial P_1}{\partial x} - j \frac{\partial P_1}{\partial y}$$
$$= \pi + \frac{2(x+1)}{x^2 + y^2 + 2x + 1} - j \frac{2y}{x^2 + y^2 + 2x + 1}$$

și lu
ăm y=0. Atunci $z=x+0j=x\in\mathbb{R}$ și

$$g'(z) = g'(x) = \pi + \frac{2(x+1)}{(x+1)^2} = \pi + \frac{2}{x+1} = \pi + \frac{2}{z+1}, \ \forall z \in \mathbb{R} \setminus \{-1\}.$$

Conform principiului identității funcțiilor olomorfe,

$$g'(z) = \pi + \frac{2}{z+1}, \ \forall z \in \mathbb{C} \setminus \{-1\},$$

iar $g(z) = \int g'(z)dz = \pi z + 2\log(z+1) + c$, $z \in \mathbb{C} \setminus \{-1\}$, $c \in \mathbb{C}$, de unde $f(z) = e^{\pi z + 2\log(z+1) + c} = e^{\pi z + c}(z+1)^2, \ z \in \mathbb{C} \setminus \{-1\}, \ c \in \mathbb{C}.$

Folosind condiția inițială f(-j) = 2j, obținem

$$e^{-\pi j + c} (1 - j)^2 = 2j \Leftrightarrow -2j (\cos \pi - j \sin \pi) e^c = 2j \Leftrightarrow e^c = 1 \Leftrightarrow c = 0.$$

Aşadar,

$$f(z) = e^{\pi z}(z+1)^2.$$

Similar procedăm dacă cunoaștem argumentul funcției.

d) Să se determine funcția complexă $f \in \mathcal{H}(D), D \subseteq \mathbb{C}$ dacă $\arg f(z) = 3y + \arctan \frac{y}{x+1}, \quad z = x+jy, \ x \neq -1 \text{ și } f(-j\pi) = -1+j\pi.$

Determinarea principală a logaritmului complex al lui f(z) este

$$\log f(z) = \ln|f(z)| + j\arg f(z) = \ln|f(z)| + j\left(3y + \arctan\frac{y}{x+1}\right).$$

Notând $g(z) = \log f(z) \Leftrightarrow f(z) = e^{g(z)}$, obținem funcția g(z) = P(x, y) + jQ(x, y), cu Im $g(z) = Q(x, y) = 3y + \arctan \frac{y}{x+1}$. În continuare,

$$g'(z) = \frac{\partial P}{\partial x} + j \frac{\partial Q}{\partial x} \xrightarrow{\underline{(C-R)}} \frac{\partial Q}{\partial y} + j \frac{\partial Q}{\partial x}$$

$$= 3 + \frac{1}{x+1} \frac{1}{1 + \frac{y^2}{(x+1)^2}} - j \frac{y}{(x+1)^2} \frac{1}{1 + \frac{y^2}{(x+1)^2}}$$

$$3 + \frac{x+1}{y^2 + (x+1)^2} - j \frac{y}{y^2 + (x+1)^2}.$$

Luând $y = 0, z = x \in \mathbb{R}$ și

$$g'(z) = g'(x) = 3 + \frac{1}{x+1} = 3 + \frac{1}{z+1}, \ \forall z \in \mathbb{R} \setminus \{-1\}.$$

Conform principiului identității funcțiilor olomorfe,

$$g'(z) = 3 + \frac{1}{z+1}, \ \forall z \in \mathbb{C} \setminus \{-1\}$$

și $g(z) = \int g(z)dz = 3z + \log(z+1) + c$, $c \in \mathbb{C}$, de unde

$$f(z) = e^{3z+c}e^{\log(z+1)} = e^{3z+c}(z+1).$$

În final, deoarece $f(-j\pi) = -1 + j\pi$, adică $e^{-3\pi j + c}(1 - j\pi) = -1 + j\pi$, obținem $(\cos 3\pi - j \sin 3\pi)e^c = -1 \Leftrightarrow c = 0$. Funcția căutată este

$$f(z) = e^{3z}(z+1).$$

e) Fie $f: D \subseteq \mathbb{C} \to \mathbb{C}$, z = x + jy, o funcție olomorfă pe D, astfel încât $P(x,y) \neq 0$, $\forall (x,y) \in D$. Să se arate că dacă P^4 este armonică în D, atunci f este constantă.

Deoarece $f \in \mathcal{H}(D)$, P este armonică, adică

(2.2)
$$\Delta P = 0 \Leftrightarrow \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0.$$

Pe de altă parte și ${\cal P}^4$ este armonică, adică

(2.3)
$$\Delta P^4 = 0 \Leftrightarrow \frac{\partial^2 P^4}{\partial x^2} + \frac{\partial^2 P^4}{\partial y^2} = 0.$$

Avem

(2.4)
$$\frac{\partial P^4}{\partial x} = 4P^3 \frac{\partial P}{\partial x} \Longrightarrow \frac{\partial^2 P^4}{\partial x^2} = 12P^2 \left(\frac{\partial P}{\partial x}\right)^2 + 4P^3 \frac{\partial^2 P}{\partial x^2}$$

Analog,

(2.5)
$$\frac{\partial P^4}{\partial y} = 4P^3 \frac{\partial P}{\partial y} \Longrightarrow \frac{\partial^2 P^4}{\partial y^2} = 12P^2 \left(\frac{\partial P}{\partial y}\right)^2 + 4P^3 \frac{\partial^2 P}{\partial y^2}.$$

Din (2.3), (2.4) și (2.5) obținem

$$12P^2\left(\left(\frac{\partial P}{\partial x}\right)^2 + \left(\frac{\partial P}{\partial y}\right)^2\right) + 4P^3\left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2}\right) = 0.$$

Utilizând apoi relația (2.2), deducem că

$$P^{2}\left(\left(\frac{\partial P}{\partial x}\right)^{2} + \left(\frac{\partial P}{\partial y}\right)^{2}\right) = 0,$$

iar din ipoteza $P(x,y) \neq 0, \, \forall (x,y) \in D,$ rezultă

$$\left(\frac{\partial P}{\partial x}\right)^2 + \left(\frac{\partial P}{\partial y}\right)^2 = 0, \ \forall (x, y) \in D$$

și deci $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} = 0$. Așadar, $f'(z) = \frac{\partial P}{\partial x} - j\frac{\partial P}{\partial y} = 0$. Prin urmare, $\exists \ c \in \mathbb{C} \ \text{a.i.} \ f(z) = c, \ \forall z \in D, \ \text{adică} \ f \ \text{este constantă.}$

2.4 Interpretarea geometrică a derivatei unei funcții complexe

Fie $f: D \subseteq \mathbb{C} \to \mathbb{C}$ o funcție olomorfă pe domeniul D și transformarea Z = f(z). Considerăm de asemenea γ o curbă netedă din planul (z) și $\Gamma = f(\gamma)$ imaginea sa în planul (Z).

- ♣ Modulul derivatei $|f'(z_0)|$ se mai numește și coeficientul de deformare liniară în punctul z_0 și caracterizează deformarea (contracție pentru $|f'(z_0)| < 1$ sau dilatare pentru $|f'(z_0)| > 1$) dimensiunilor liniare în z_0 . Notăm dl $(f; z_0) = |f'(z_0)|$.
- ♣ Dacă $f'(z_0) \neq 0$, atunci $\arg f'(z_0)$ reprezintă unghiul de rotație al tangentei la curba (γ) în punctul z_0 prin transformarea Z = f(z).

2.5 Funcțiile circulare și funcțiile hiperbolice

Funcțiile sinus (sin), cosinus (cos), sinus hiperbolic (sh) și cosinus hiperbolic (ch) se definesc după cum urmează:

$$\begin{aligned} \sin: \mathbb{C} &\to \mathbb{C}, & \sin z = \frac{e^{jz} - e^{-jz}}{2j}, \ \forall z \in \mathbb{C} \\ \cos: \mathbb{C} &\to \mathbb{C}, & \cos z = \frac{e^{jz} + e^{-jz}}{2}, \ \forall z \in \mathbb{C} \\ \mathrm{sh}: \mathbb{C} &\to \mathbb{C}, & \mathrm{sh}z = \frac{e^z - e^{-z}}{2}, \ \forall z \in \mathbb{C} \\ \mathrm{ch}: \mathbb{C} &\to \mathbb{C}, & \mathrm{ch}z = \frac{e^z + e^{-z}}{2}, \ \forall z \in \mathbb{C} \end{aligned}$$

Funcțiile sin, cos, sh și ch sunt funcții întregi (olomorfe pe \mathbb{C}) și au loc egalitățile:

$$(\sin z)' = \cos z$$
, $(\cos z)' = -\sin z$, $(\operatorname{sh} z)' = \operatorname{ch} z$, $(\operatorname{ch} z)' = \operatorname{sh} z$, $\forall z \in \mathbb{C}$.

În ce privește periodicitatea, funcțiile sin și cos au perioada $T = 2k\pi$, $k \in \mathbb{Z}$, iar funcțiile sh și ch au perioada $T = 2k\pi j$, $k \in \mathbb{Z}$.

Funcțiile tangentă (tg), cotangentă (ctg), tangentă hiperbolică (th) și cotangentă hiperbolică (cth) se definesc astfel:

$$\operatorname{tg}: \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\} \to \mathbb{C}, \operatorname{tg} z = \frac{\sin z}{\cos z} = -j\frac{e^{2jz} - 1}{e^{2jz} + 1}$$

$$\operatorname{ctg}: \mathbb{C} \setminus \{k\pi : \ k \in \mathbb{Z}\} \to \mathbb{C}, \quad \operatorname{ctg}z = \frac{\cos z}{\sin z} = j\frac{e^{2jz} + 1}{e^{2jz} - 1}$$

$$\operatorname{th}: \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi : \ k \in \mathbb{Z}\} \to \mathbb{C}, \quad \operatorname{th}z = \frac{\operatorname{sh}z}{\operatorname{ch}z} = \frac{e^{2z} - 1}{e^{2z} + 1}$$

$$\operatorname{cth}: \mathbb{C} \setminus \{k\pi j : \ k \in \mathbb{Z}\} \to \mathbb{C}, \quad \operatorname{cth}z = \frac{\operatorname{ch}z}{\operatorname{sh}z} = \frac{e^{2z} + 1}{e^{2z} - 1}.$$

Funcțiile tg, ctg, th și cth sunt olomorfe pe orice domeniu (sau mulțime deschisă) inclus în multimea lor de definiție. Derivatele lor sunt:

$$(\operatorname{tg} z)' = \frac{1}{\cos^2 z}, \ (\operatorname{th} z)' = \frac{1}{\operatorname{ch}^2 z}, \ (\operatorname{ctg})' = -\frac{1}{\sin^2 z} \ \operatorname{si} \ (\operatorname{cth} z)' = -\frac{1}{\operatorname{sh}^2 z}.$$

Au loc următoarele relații între sin, sh, cos, ch, tgz, thz, ctgz și cthz:

$$\sin(jz) = j \operatorname{sh} z; \ \sin z = -j \operatorname{sh}(jz); \ \operatorname{sh}(jz) = j \operatorname{sin} z; \ \operatorname{sh} z = -j \operatorname{sin}(jz);$$
$$\cos(jz) = \operatorname{ch} z; \ \cos z = \operatorname{ch}(jz); \ \operatorname{tg}(jz) = j \operatorname{tg} z; \ \operatorname{ctg}(jz) = -j \operatorname{ctg} z;$$
$$\operatorname{tg} z = -j \operatorname{th} z; \ \operatorname{th} z = -j \operatorname{tg}(jz); \ \operatorname{ctg} z = j \operatorname{cth} z; \ \operatorname{cth} z = j \operatorname{ctg}(jz).$$

2.6 Funcțiile raționale și omografice

Dacă p și q sunt două polinoame prime între ele, atunci funcția rațională

$$R: \mathbb{C} \setminus \{z \in \mathbb{C} : q(z) = 0\} \to \mathbb{C}, \ R(z) = \frac{p(z)}{q(z)}$$

este olomorfă pe orice mulțime deschisă, inclusă în mulțimea sa de definiție.

Fie $a, b, c, d \in \mathbb{C}$ a.î. $ad \neq bc$. Funcția rațională f definită prin

$$f(z) = \begin{cases} \frac{az+b}{cz+d}, & \text{dacă } c \neq 0 \text{ si } z \in \mathbb{C} \setminus \left\{-\frac{d}{c}\right\} \\ \frac{az+b}{d}, & \text{dacă } c = 0 \text{ si } z \in \mathbb{C} \end{cases}$$

se numeste funcție omografică (circulară), iar transformarea

$$Z = f(z) = \frac{az+b}{cz+d}$$

se numește transformare omografică sau circulară. Merită să amintim aici că orice transformare omografică transformă orice cerc într-un cerc sau dreaptă și orice dreaptă într-o dreaptă sau cerc.

2.7 Probleme propuse

1. Să se determine punctele în care următoarele funcții complexe $f: \mathbb{C} \to \mathbb{C}$ sunt monogene și să se calculeze valoarea derivatei în aceste puncte:

a)
$$f(z) = -z^5 + \frac{2}{3}\bar{z}^3 + 6\bar{z}^2 + 18\bar{z} - jz + 5 - 7j;$$

b)
$$f(z) = 3z^2 + z\bar{z} + 2\bar{z}^2 - 5\bar{z} + 1 + 3j;$$

c)
$$f(z) = z^3 + \frac{1}{3}\bar{z}^3 - \frac{1-2j}{2}\bar{z}^2 + (3-3j)\bar{z} - z + 3j;$$

d)
$$f(z) = |z|^8 - \frac{1}{2}\bar{z};$$
 e) $f(z) = z^3\bar{z} + 2j|z|^2;$

f)
$$f(z) = z^2 \bar{z} + 4j \text{Re}z;$$
 g) $f(z) = (z^2 + 18j)|z|^2;$

h)
$$f(z) = (z^2 - 8j) \text{Im} z$$
.

2. Determinați funcția olomorfă f(z) = P(x,y) + jQ(x,y), z = x + jy dacă:

a)
$$P(x,y) = \frac{y}{x^2 + y^2} + e^{-y}\cos x$$
, $f(j) = 1 + e^{-1}$

b)
$$Q(x,y) = \frac{x-1}{x^2+y^2-2x+1} - 3x$$
, $f(0) = -j$

c)
$$Q(x,y) = e^{2x}(x\sin 2y + y\cos 2y), \quad f(0) = e^{2x}(x\sin 2y + y\cos 2y),$$

d)
$$P(x,y) = (\sinh x - x \cosh x) \cos y + y \sin x \sin y$$
, $f(j) = j(\sin 1 - \cos 1)$

e)
$$Q(x,y) = (x^2 - y^2) \arctan \frac{y}{x} + xy \ln(x^2 + y^2), \quad f(e) = e^2$$

$$\mathbf{f)} \ Q(x,y) = \frac{\mathrm{sh}2y}{\cos 2x - \mathrm{ch}2y}, \quad f\left(\frac{\pi}{2}\right) = 1$$

g)
$$P(x,y) - Q(x,y) = e^{x^2 - y^2} (\cos 2xy - \sin 2xy), \quad f(-j) = e^{-1}$$

h)
$$P(x,y) + Q(x,y) = (x+y)(\sin x - \cos x)\cosh y + (x-y)(\sin x + \cos x)\sinh y$$
, $f(0) = 0$

i)
$$\arg f(z) = 2y - \arctan \frac{y}{x}$$
, $f(1) = e^2$

$$\mathbf{j)} \operatorname{arg} f(z) = 3x + y + \operatorname{arctg} \frac{y}{x}, \quad f(\pi) = -\pi$$

k)
$$|f(z)| = (x^2 + y^2)e^{-2y}, \quad f(j) = -e^{-2}$$

1)
$$|f(z)| = e^{2\sin x \cosh y}$$
, $f(0) = 1$

- **3.** Să se determine funcția olomorfă f(z) = P(x,y) + jQ(x,y), z = x + jy în fiecare din situațiile de mai jos, știind că $\phi \in \mathbb{C}^2(\mathbb{R})$:
 - **a)** $P(x,y) = \phi\left(\frac{y}{x}\right);$ **b)** $Q(x,y) = xy\phi(x^2 y^2);$
 - c) $P(x,y) = \phi(x^2 y^2)$; d) $Q(x,y) = \phi(x^2 + y^2)$;
 - $\mathbf{e)} \ P(x,y) = \phi\left(\frac{x^2 + y^2}{x}\right).$
 - 4. Determinați:
- **a)** Coeficientul de deformare liniară și unghiul de rotație pentru transformarea

 $Z = \frac{2z+3j}{j(z+1)+5}$ în punctul $z_0 = 2+j$.

b) Regiunile din plan care se dilată și cele care se contractă prin transformarea

 $Z = \frac{3z - 10j}{z + 2j}$

- 5. Determinați:
- a) Muțimea din planul complex cu proprietatea că în fiecare punct al său coeficientul de deformare liniară al transformării

$$Z = \frac{jz - 1}{5z + j} \ este \ 1.$$

b) Mulțimea de puncte din plan cu proprietatea că unghiul de rotație prin transformarea

 $Z = \frac{z+2-j}{-z+1+j} \text{ este nul.}$

6. Să se determine imaginea domeniului

$$D = \left\{ (x, y) \in \mathbb{R}^2 : |z| \le 1, \ 0 < \arg z \le \frac{\pi}{10} \right\},\,$$

prin transformările: a) $Z = z^5$; b) $Z = z^{15}$; c) $Z = z^{25}$.

7. Să se determine imaginea discului unitate $\Delta(0,1)$ prin transformarea omografică

$$Z = \frac{-z + 2j}{1 + 2jz}.$$

8. Determinați partea reală și partea imaginară pentru următoarele numere complexe:

a)
$$\sin\left(\frac{\pi}{3} + j \ln 5\right)$$
; **b)** $e^{1 + \frac{3\pi}{2}j}$; **c)** $\tan\left(\frac{\pi}{2} - 2j\right)$;

d)
$$\frac{1}{j}\sin\left(\frac{2\pi}{3}+j\ln 2\right)$$
; e) $j\cos\left(\frac{3\pi}{4}-j\ln 3\right)$;

f) ch
$$(1 + \frac{\pi}{2}j)$$
; **g)** th $(\ln 2 - \pi j)$.

9. $S\check{a}$ se rezolve în \mathbb{C} ecuațiile:

a)
$$\sin z = \sqrt{2};$$
 b) $\cos z - j \sin z = 2j;$

c)
$$shz + chz = j;$$
 d) $2jchz + jshz + 1 = 0;$

e)
$$4\text{ch}z + \text{sh}z = j;$$
 f) $\cos z - 2\sin z = 1;$

g)
$$\sin z = \cos z;$$
 h) $\tan z = \frac{1 + j\sqrt{3}}{2}.$

10. Demonstrați următoarele egalități:

a)
$$\sin 2z = 2 \sin z \cos z$$
; b) $\cos 2z = \cos^2 z - \sin^2 z$;

c)
$$\sin^2 z = \frac{1 - \cos 2z}{2}$$
; d) $\cos^2 z = \frac{1 + \cos 2z}{2}$;

e)
$$\sinh^2 z = \frac{-1 + \cosh 2z}{2};$$
 f) $\cosh^2 z = \frac{1 + \cosh 2z}{2};$

g)
$$\overline{\sin z} = \sin \overline{z}$$
; h) $\overline{\cos z} = \cos \overline{z}$; i) $\cosh 2z = \sinh^2 z + \cosh^2 z$;

j)
$$\sin^3 z = \frac{3}{4}\sin z - \frac{1}{4}\sin 3z;$$
 k) $\cos^4 z = \frac{1}{8}\cos 4z + \frac{1}{2}\cos 2z + \frac{3}{8};$

1)
$$sh(z_1 + z_2) = shz_1 chz_2 + shz_2 chz_1$$
, unde $z_1, z_2 \in \mathbb{C}$.

11. Demonstrați următoarele egalități:

a)
$$\operatorname{Re}(\operatorname{sh} z) = \operatorname{sh} x \cos y;$$
 b) $\operatorname{Im}(\operatorname{ctg} z) = \frac{\operatorname{sh} 2y}{\cos 2x - \operatorname{ch} 2y};$

c)
$$|\sin z| = \sqrt{\sin^2 x + \sinh^2 y};$$
 d) $|\cosh z| = \sqrt{\cos^2 y + \sinh^2 x};$

e)
$$\operatorname{Re} \frac{1+j\operatorname{tg} z}{1-j\operatorname{tg} z} = \cos 2z$$
, $\operatorname{iar} \operatorname{Im} \frac{1+j\operatorname{tg} z}{1-j\operatorname{tg} z} = \sin 2z$.

12. Demonstrați că dacă |a| < 1

$$1 + a\cos x + a^{2}\cos 2x + \dots = \frac{1 - a\cos x}{1 - 2a\cos x + a^{2}}$$

$$\sin x + a^{2}\sin 2x + \dots = \frac{a\sin x}{1 - 2a\cos x + a^{2}}.$$

2.8 Indicații și răspunsuri

- **1. a)** $\frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow 2(\bar{z}+3)^2 = 0 \Leftrightarrow \bar{z} = -3$. Singurul punct de monogenitate este $z_0 = -3$, iar $f'(z_0) = \frac{\partial f}{\partial z}(-3) = (-5z^4 j)|_{z=-3} = -405 j$.
- **b)** $\frac{\partial f}{\partial \bar{z}} = z + 4\bar{z} 5 = 0 \Leftrightarrow 5(x 1) 3jy = 0 \Leftrightarrow x = 1, y = 0$. Obținem punctul de monogenitate $z_0 = 1$, cu $f'(z_0) = \frac{\partial f}{\partial z}(1) = (6z + \bar{z})\big|_{z=\bar{z}=1} = 7$.
- c) $\frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow \bar{z}^2 (1 2j)\bar{z} + 3 3j = 0 \Longrightarrow \bar{z}_1 = 1 + j, \ \bar{z}_2 = -3j \Longrightarrow z_1 = 1 j \ \text{si} \ z_2 = 3j.$ Derivatele în aceste puncte sunt: $f'(1 j) = \frac{\partial f}{\partial z}(1 j) = (3z^2 1)|_{z=1-j} = -1 6j$, respectiv $f'(3j) = \frac{\partial f}{\partial z}(3j) = (3z^2 1)|_{z=3j} = -28$.
- **d)** Scriem f în funcție de variabilele z și \bar{z} . Astfel, $f(z) = (z\bar{z})^4 \frac{1}{2}\bar{z}$. $\frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow z^4\bar{z}^3 = \frac{1}{8} \Leftrightarrow x(x^2 + y^2)^3 + jy(x^2 + y^2)^3 = \frac{1}{8}$. Obținem y = 0 și $x = \frac{1}{\sqrt[7]{8}}$. Prin urmare, $z_0 = \frac{1}{\sqrt[7]{8}}$ și $f'(z_0) = 4z^3\bar{z}^4|_{z=\bar{z}=\frac{1}{\sqrt[7]{8}}} = \frac{1}{2}$.
- e) Cum $f(z) = z^3 \bar{z} + 2jz\bar{z}$, $\frac{\partial f}{\partial \bar{z}} = 0 \Leftrightarrow z(z^2 + 2j) = 0$. Punctele de monogenitate sunt $z_0 = 0$, $z_1 = 1 j$ și $z_2 = -1 + j$, iar derivatele în aceste puncte sunt $f'(z_0) = (3z^2\bar{z} + 2j\bar{z})|_{z=0} = 0$, $f'(z_1) = 4 4j$ și, respectiv, $f'(z_2) = -4 + 4j$.
- f) Deoarece Re $z=\frac{z+\bar{z}}{2},\ f(z)=z^2\bar{z}+2j(z+\bar{z}).$ Punctele de monogenitate sunt $z_{1,2}=\pm(1-j),\ \mathrm{cu}\ f'(z_1)=(2z\bar{z}+2j)|_{z=1-j}=4+2j$ și $f'(z_2)=(2z\bar{z}+2j)|_{z=-1+j}=4+2j.$
- **g)** Rescriem funcția sub forma $f(z) = z^3 \bar{z} + 18jz\bar{z}$ și observăm că $\frac{\partial f}{\partial \bar{z}} = z(z^2 + 18j) = 0 \Longrightarrow z_0 = 0, z_{1,2} = \pm (3 3j).$ Derivatele sunt $f'(z_0) = 0, f'(z_1) = f'(3 3j) = 108(1 j),$ respectiv $f'(z_2) = f'(-3 + 3j) = 108(1 + j).$
- h) Cum Im $z = \frac{z \overline{z}}{2j}$, obținem $f(z) = \frac{1}{2j}(z^3 z^2\overline{z} 8jz + 8j\overline{z})$. Deoarece condițiile (C-R) $\Leftrightarrow \frac{\partial f}{\partial \overline{z}} = 0 \Leftrightarrow \frac{1}{2j}(-z^2 + 8j) = 0 \Leftrightarrow z^2 8j = 0 \Leftrightarrow z^2 = 4 \cdot 2j = 4(1+j)^2$, deducem de aici că punctele de monogenitate sunt $z_{1,2} = \pm 2(1+j)$, cu derivatele $f'(z_1) = \frac{1}{2j}(3z^2 2z\overline{z} 8j)\Big|_{z=2+2j} = 8(1+j) = f'(z_2)$.

2. a) Derivata funcției f este

$$f'(z) = \frac{\partial P}{\partial x} + j \frac{\partial Q}{\partial x} \xrightarrow{\underline{(C-R)}} \frac{\partial P}{\partial x} - j \frac{\partial P}{\partial y}$$
$$= -\frac{2xy}{(x^2 + y^2)^2} - e^{-y} \sin x - j \left(\frac{x^2 - y^2}{(x^2 + y^2)^2} - e^{-y} \cos x \right).$$

Luând y = 0, obținem $z = x \in \mathbb{R}$ și

$$f'(z) = f'(x) = -\sin x - j\left(\frac{1}{x^2} - \cos x\right) = -\sin z - j\left(\frac{1}{z^2} - \cos z\right), \ \forall z \in \mathbb{R}^*.$$

Conform principiului identității funcțiilor olomorfe,

$$f'(z) = -\sin z - j\left(\frac{1}{z^2} - \cos z\right), \ \forall z \in \mathbb{C}^*.$$

În final, $f(z)=\int f'(z)dz=\frac{1}{z}j+e^{jz}+c,\ c\in\mathbb{C}$. Folosind condiția inițială $f(j)=1+\frac{1}{e}$, deducem că c=0 și, prin urmare, $f(z)=\frac{1}{z}j+e^{jz}$, $z\in\mathbb{C}^*$.

b)
$$f'(z) = \frac{\partial Q}{\partial y} + j\frac{\partial Q}{\partial x} = -\frac{2y(x-1)}{(x^2+y^2-2x+1)^2} + j\left(\frac{y^2-(x-1)^2}{(x^2+y^2-2x+1)^2} - 3\right).$$

Alegând y=0 și folosind principiul identității funcțiilor olomorfe, obținem

$$f'(z) = \cos z - j\left(\frac{1}{(z-1)^2} + 3\right), \ \forall z \in \mathbb{C} \setminus \{1\}$$

și, de aici, $f(z)=\sin z+j\frac{1}{z-1}-3jz+c,\,c\in\mathbb{C}.$ În cele din urmă, folosind condiția inițială, deducem că c=0 și

$$f(z) = \sin z + j\left(-3z + \frac{1}{z-1}\right), z \in \mathbb{C} \setminus \{1\}$$

c)
$$f'(z) = \frac{\partial Q}{\partial y} + j\frac{\partial Q}{\partial x} = e^{2x} (2x\cos 2y + \cos 2y - 2y\sin 2y) + j (2e^{2x} (x\sin 2y + y\cos 2y) + e^{2x} \sin 2y).$$

De aici, $f'(z) = (2z+1)e^{2z}$, $\forall z \in \mathbb{C}$ și $f(z) = ze^{2z} + c$, $c \in \mathbb{C}$. Cum f(0) = e, deducem că c = e și $f(z) = ze^{2z} + e$.

d)
$$f'(z) = \frac{\partial P}{\partial x} - j\frac{\partial P}{\partial y} = -x \operatorname{sh} x \cos y + y \sin y \operatorname{ch} x$$

 $-j((x \operatorname{ch} x - \operatorname{sh} x) \sin y + (\sin y + y \cos y) \operatorname{sh} x).$

Drept urmare, $f'(z) = -z \operatorname{sh} z$, $\forall z \in \mathbb{C}$ și $f(z) = \operatorname{sh} z - z \operatorname{ch} z + c$, $c \in \mathbb{C}$. Cum $f(j) = j(\sin 1 - \cos 1)$, deducem că c = 0 și $f(z) = \operatorname{sh} z - z \operatorname{ch} z$.

e)
$$f'(z) = \frac{\partial Q}{\partial y} + j\frac{\partial Q}{\partial x} = -2y \operatorname{arctg} \frac{y}{x} + x \ln(x^2 + y^2) + x$$

 $+ j\left(2x \operatorname{arctg} \frac{y}{x} + y \ln(x^2 + y^2) + y\right).$

Luând y=0 și folosind principiul identității funcțiilor olomorfe, obținem $f'(z)=z+2z\log z, \ \forall z\in\mathbb{C}^*$ și $f(z)=z^2\log z+c,\ c\in\mathbb{C}$. Folosind acum condiția inițială, obținem c=0 și $f(z)=z^2\log z,\ z\in\mathbb{C}^*$.

f) Cum
$$f'(z) = \frac{\partial Q}{\partial y} + j\frac{\partial Q}{\partial x} = \frac{2\operatorname{ch}2y(\cos 2x - \operatorname{ch}2y) + 2\operatorname{sh}^2 2y}{(\cos 2x - \operatorname{ch}2y)^2} + 2j\frac{\sin 2x \operatorname{sh}2y}{(\cos 2x - \operatorname{ch}2y)^2},$$

luând y=0 și folosind principiul identității funcțiilor olomorfe, obținem $f'(z)=\frac{2}{\cos 2z-1},$ adică $f(z)=\operatorname{ctg} z+c,$ $c\in\mathbb{C}.$ În final, deoarece $f\left(\frac{\pi}{2}\right)=1,$ deducem că c=1 și, prin urmare, $f(z)=1+\operatorname{ctg} z.$

g) Derivând parțial în raport cu x și y relația din ipoteză, obținem

$$(2.6) \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial x} = 2xe^{x^2 - y^2}(\cos 2xy - \sin 2xy) - 2ye^{x^2 - y^2}(\sin 2xy + \cos 2xy)$$
 şi

$$(2.7) \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y} = -2ye^{x^2 - y^2}(\cos 2xy - \sin 2xy) - 2xe^{x^2 - y^2}(\sin 2xy + \cos 2xy).$$

Adunând și scăzând apoi relațiile (2.6) și (2.7) și folosind condițiile Cauchy-Riemann, deducem că

(2.8)
$$\frac{\partial Q}{\partial x} = 2xe^{x^2 - y^2} \sin 2xy + 2ye^{x^2 - y^2} \cos 2xy$$

și

(2.9)
$$\frac{\partial P}{\partial x} = 2xe^{x^2 - y^2}\cos 2xy - 2ye^{x^2 - y^2}\sin 2xy.$$

Prin urmare, ținând cont de (2.8) și (2.9),

$$f'(z) = \frac{\partial P}{\partial x} + j\frac{\partial Q}{\partial x}$$
$$= 2e^{x^2 - y^2}(x\cos 2xy - y\sin 2xy) + 2je^{x^2 - y^2}(x\sin 2xy + y\cos 2xy).$$

Luând apoi y = 0, $f'(z) = 2ze^{z^2}$, obținem $f(z) = e^{z^2} + c$, $c \in \mathbb{C}$. Cum $f(-j) = e^{-1}$, deducem că c = 0 și $f(z) = e^{z^2}$.

- h) Procedând similar cu g), obținem $f(z) = z(\sin z \cos z)$.
- i) $\log f(z) = \ln |f(z)| + j \arg f(z)$, $\operatorname{deci} g(z) \stackrel{not}{=} \log f(z) = \ln |f(z)| + j \left(2y \operatorname{arctg} \frac{y}{x}\right)$, $\operatorname{cu} P(x, y) = \operatorname{Re} g(z) = \ln |f(z)|$ $\operatorname{si} Q(x, y) = \operatorname{Im} g(z) = 2y \operatorname{arctg} \frac{y}{x}$. De aici, $g'(z) = \frac{\partial Q}{\partial y} + j \frac{\partial Q}{\partial x} = 2 \frac{x}{x^2 + y^2} + j \frac{y}{x^2 + y^2}$.

Luând y=0, conform principiului identității funcțiilor olomorfe, obținem $g'(z)=2-\frac{1}{z},\ \forall z\in\mathbb{C}^*$ și $g(z)=2z-\log z+c,\ c\in\mathbb{C}$. Prin urmare, $f(z)=e^{g(z)}=\frac{1}{z}e^{2z+c}$. Din condiția $f(1)=e^2$, rezultă c=0 și $f(z)=\frac{1}{z}e^{2z},\ z\in\mathbb{C}^*$.

- **j)** Analog cu i), obtinem $f(z) = ze^{-\pi + (1+3j)z}$.
- **k)** Cum $\log f(z) = \ln |f(z)| + j \arg f(z)$, obținem $g(z) = \frac{not}{} \log f(z) = \ln(x^2 + y^2)e^{-2y} + j \arg f(z)$, cu $P(x,y) = \operatorname{Re} g(z) = \ln(x^2 + y^2)e^{-2y} = -2y + \ln(x^2 + y^2)$ și $Q(x,y) = \operatorname{Im} g(z) = \arg f(z)$. De aici,

$$g'(z) = \frac{\partial P}{\partial x} - j\frac{\partial P}{\partial y} = \frac{2x}{x^2 + y^2} - j\left(-2 + \frac{2y}{x^2 + y^2}\right).$$

Punând y=0 și folosind principiul identității funcțiilor olomorfe, deducem că $g'(z)=2j+\frac{2}{z}, \ \forall z\in\mathbb{C}^*$ și $f(z)=z^2e^{2jz+c}$. Din condiția inițială, obținem c=0, deci $f(z)=z^2e^{2jz}=z^2(\cos 2z+j\sin 2z)$.

l) Similar cu k), obținem $f(z) = e^{2\sin z}$.

3. a) Folosind notația $u = \frac{y}{x}$, $P(x, y) = \phi(u)$ și au loc relațiile

$$\frac{\partial P}{\partial x} = -\frac{y}{x^2}\phi'(u), \quad \frac{\partial^2 P}{\partial x^2} = \frac{y^2}{x^4}\phi''(u) + \frac{2y}{x^3}\phi'(u)$$

și

$$\frac{\partial P}{\partial y} = \frac{1}{x}\phi'(u), \quad \frac{\partial^2 P}{\partial y^2} = \frac{1}{x^2}\phi''(u).$$

Funcția f fiind olomorfă, P este armonică, adică $\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0$. De aici, $(u^2 + 1)\phi''(u) + 2u\phi'(u) = 0 \Leftrightarrow \left((u^2 + 1)\phi'(u)\right)' = 0 \Leftrightarrow \phi'(u) = \frac{c_1}{u^2 + 1} \Leftrightarrow \phi(u) = c_1 \operatorname{arctg} u + c_2, c_1, c_2 \in \mathbb{R}$. Așadar, $P(x, y) = c_1 \operatorname{arctg} \frac{y}{x} + c_2$ și

$$f'(z) = \frac{\partial P}{\partial x} - j\frac{\partial P}{\partial y} = -\frac{c_1 y}{x^2 + y^2} - j\frac{c_1 x}{x^2 + y^2}.$$

Luând y=0 și folosind principiul identității funcțiilor olomorfe, obținem $f'(z)=-j\frac{c_1}{z}, \ \forall z\in\mathbb{C}^*.$ De aici, $f(z)=-jc_1\mathrm{log}z+k,\ c_1\in\mathbb{R},\ k\in\mathbb{C}.$

b) Notând $u = x^2 - y^2$, $Q(x, y) = xy\phi(u)$ și

$$\frac{\partial Q}{\partial x} = y\phi(u) + 2x^2y\phi'(u), \quad \frac{\partial^2 Q}{\partial x^2} = 6xy\phi'(u) + 4x^3y\phi''(u)$$

și

$$\frac{\partial Q}{\partial y} = x\phi(u) - 2xy^2\phi'(u), \quad \frac{\partial^2 Q}{\partial y^2} = -6xy\phi'(u) + 4xy^3\phi''(u).$$

Din $\Delta Q = 0 \Leftrightarrow \frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} = 0$, deducem că $4xy(x^2 + y^2)\phi''(u) = 0$, $\forall x, y \in \mathbb{R}$ (f fiind olomorfă). Deci $\phi''(u) = 0$, de unde rezultă că $\phi'(u) = c_1 u$ și $\phi(u) = c_1 u + c_2$, cu $c_1, c_2 \in \mathbb{R}$. Așadar, $Q(x, y) = xy \left(c_1(x^2 - y^2) + c_2\right)$ și

$$f'(z) = \frac{\partial Q}{\partial y} + j \frac{\partial Q}{\partial x} = x \left(c_1(x^2 - y^2) + c_2 \right) - 2c_1 x y^2 + j \left(y (c_1(x^2 - y^2) + c_2) + 2c_1 x^2 y \right).$$

După ce luăm y=0 și aplicăm principiul identității funcțiilor olomorfe, obținem $f'(z)=z(c_1z^2+c_2)$. De aici, $f(z)=c_1z^4+c_2z^2+k$, cu $c_1,c_2\in\mathbb{R}$

și $k \in \mathbb{C}$.

c) Fie $u = x^2 - y^2$. Atunci $P(x, y) = \phi(u)$ și au loc relațiile

$$\frac{\partial P}{\partial x} = 2x\phi'(u), \quad \frac{\partial^2 P}{\partial x^2} = 2\phi'(u) + 4x^2\phi''(u)$$

și

$$\frac{\partial P}{\partial y} = -2y\phi'(u), \quad \frac{\partial^2 P}{\partial y^2} = -2\phi'(u) + 4y^2\phi''(u).$$

Procedând similar cu a), $\Delta P = 0 \Leftrightarrow \phi''(u) = 0$, de unde $\phi(u) = c_1 u + c_2$, $c_1, c_2 \in \mathbb{R}$ și, prin urmare, $P(x, y) = c_1(x^2 - y^2) + c_2$. În final, $f'(z) = 2c_1 z$ și $f(z) = c_1 z^2 + k$, cu $c_1 \in \mathbb{R}$ și $k \in \mathbb{C}$.

d) Notând $u = x^2 + y^2$, $Q(x, y) = \phi(u)$ și

$$\frac{\partial Q}{\partial x} = 2x\phi'(u), \quad \frac{\partial^2 Q}{\partial x^2} = 2\phi'(u) + 4x^2\phi''(u)$$

și

$$\frac{\partial Q}{\partial y} = 2y\phi'(u), \quad \frac{\partial^2 Q}{\partial y^2} = 2\phi'(u) + 4y^2\phi''(u).$$

Analog cu punctul b), $\Delta Q = 0 \Leftrightarrow (u\phi'(u))' = 0$, de unde rezultă $\phi(u) = c_1 \ln |u| + c_2$, $c_1, c_2 \in \mathbb{R}$. De aici, $Q(x,y) = c_1 \ln(x^2 + y^2) + c_2$, $f'(z) = \frac{2c_1j}{z}$ și $f(z) = c_1j\log z + k$, cu $c_1 \in \mathbb{R}$, $k \in \mathbb{C}$ și $z \in \mathbb{C}^*$.

e) Fie
$$u = \frac{x^2 + y^2}{x}$$
. Atunci $P(x, y) = \phi(u)$ și

$$\frac{\partial P}{\partial x} = \frac{x^2 - y^2}{x^2} \phi'(u), \quad \frac{\partial^2 P}{\partial x^2} = \frac{2y^2}{x^3} \phi'(u) + \left(\frac{x^2 - y^2}{x^2}\right)^2 \phi''(u)$$

și

$$\frac{\partial P}{\partial y} = \frac{2y}{x}\phi'(u), \quad \frac{\partial^2 P}{\partial y^2} = \frac{2}{x}\phi'(u) + \frac{4y^2}{x^2}\phi''(u).$$

Din condiția $\Delta P=0$, luând y=0, obținem $\left(x^2\phi'(x)\right)'=0$ și apoi $\phi(x)=-c_1\frac{1}{x}+c_2,\ c_1,c_2\in\mathbb{R},\ x\in\mathbb{R}^*.$ În consecință,

$$P(x,y) = \phi\left(\frac{x^2 + y^2}{x}\right) = -\frac{c_1x}{x^2 + y^2} + c_2.$$

De aici,
$$f'(z) = \frac{c_1}{z^2}$$
 și $f(z) = -c_1 \frac{1}{z} + k$, cu $c_1 \in \mathbb{R}$, $k \in \mathbb{C}$ și $z \in \mathbb{C}^*$.

4. a) dl $(f; z_0) = |f'(z_0)|$, unde Z = f(z) și $Z' = f'(z) = \frac{13 + 2j}{(j(z+1) + 5)^2}$. Așadar, deformarea liniară este

$$|f'(2+j)| = \left| \frac{13+2j}{(4+3j)^2} \right| = \frac{|13+2j|}{|4+3j|^2} = \frac{\sqrt{173}}{25} < 1,$$

adică o contracție. Unghiul de deformare liniară pentru transformarea Z este $\operatorname{rot}(f; z_0) = \operatorname{arg} f'(z_0) = \operatorname{arg} f'(2+j) = (\operatorname{arg}(13+2j) - 2\operatorname{arg}(4+3j))_{\operatorname{mod}2\pi} = \left(\operatorname{arctg} \frac{2}{13} - 2\operatorname{arctg} \frac{3}{4}\right)_{\operatorname{mod}2\pi}.$

- **b)** Cum $Z' = f'(z) = \frac{16j}{(z+2j)^2}$, obținem $|Z'| < 1 \Leftrightarrow |z+2j|^2 > 16 \Leftrightarrow |z+2j| > 4 \Leftrightarrow z \in \mathbb{C} \setminus \bar{\Delta}(-2j,4)$. În concluzie, se dilată mulțimile situate în $\Delta(-2j,4) \setminus \{-2j\}$, iar cele din exteriorul discului închis se contractă.
- **5. a)** Deoarece dl(f;z) = 1, $\forall z \in \mathbb{C}$, |f'(z)| = 1, unde Z = f(z). De aici, $\frac{4}{|5z+j|^2} = 1 \Leftrightarrow |5z+j| = 2 \Leftrightarrow \left|z + \frac{1}{5}j\right| = \frac{2}{5} \Leftrightarrow z \in \Gamma\left(-\frac{j}{5}, \frac{2}{5}\right)$.
- **b)** $Z' = f'(z) = \frac{3}{(-z+1+j)^2}$. Aşadar, $\operatorname{rot}(f;z) = \operatorname{arg} f'(z) = 0 \Leftrightarrow (\operatorname{arg} 3 2\operatorname{arg}(-z+1+j))_{\operatorname{mod} 2\pi} = 0 \Leftrightarrow (2\operatorname{arg}(-z+1+j))_{\operatorname{mod} 2\pi} = 0 \Leftrightarrow \operatorname{arg}(-z+1+j) \in \{0,\pi\}$. Aşadar $\operatorname{Re}(1-x+j(1-y)) \neq 0$ şi $\operatorname{Im}(1-x+j(1-y)) = 0$, adică $1-x \neq 0$ şi y=1. Obținem în final mulțimea $M = \{(x,y) \in \mathbb{R}^2 : x \neq 1, y=1\}$.
- **6. a)** Sfertul din cadranul I al discului unitate închis $\bar{\Delta}(0,1)$, fără segmentul OM, cu M(0,1). **b)** Porțiunea din discul unitate închis $\bar{\Delta}(0,1)$ situată în cadranele I, II și III, fără segmentul OM, cu M(0,1). **c)** Întregul disc unitate $\bar{\Delta}(0,1)$.
- 7. Mai întâi vom determina imaginea frontierei discului $\bar{\Delta}(0,1)$, și anume imaginea cercului $\Gamma(0,1)=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2=1\}=\{z\in\mathbb{C}:|z|=1\}$ prin transformarea Z=X+jY. Deoarece

$$Z = \frac{-z+2j}{1+2jz} = \frac{-x-jy+2j}{1+2j(x+jy)} = \frac{3x}{5-4y} + j\frac{4-5y}{5-4y},$$

deducem că
$$X = \frac{3x}{5-4y}$$
 și $Y = \frac{4-5y}{5-4y}$. De aici, $y = \frac{5Y-4}{4Y-5}$ și $x = \frac{3X}{5-4Y}$.

Impunând condiția $x^2 + y^2 = 1$, obținem

$$\frac{9X^2}{(5-4Y)^2} + \frac{25Y^2 - 40Y + 16}{(5-4Y)^2} = 1 \Leftrightarrow X^2 + Y^2 = 1.$$

Așadar, cercul unitate din planul (z) se transformă în cercul unitate din planul (Z). Cum transformarea omografică este o transformare continuă și $z=0 \xrightarrow{Z} Z=2j$, (punct din afara discului unitate), rezultă că discului unitate deschis $\Delta(0,1)$ din sistemul Oxy se transformă în exteriorul discului unitate închis din sistemul OXY.

discului unitate închis din sistemul OXY. 8. a) (Met. I) Folosind formula $\sin z = \frac{e^{jz} - e^{-jz}}{2j}, z \in \mathbb{C}$, obținem

$$w = \sin\left(\frac{\pi}{3} + j\ln 5\right) = \frac{e^{j\left(\frac{\pi}{3} + j\ln 5\right)} - e^{-j\left(\frac{\pi}{3} + j\ln 5\right)}}{2j}$$

$$= \frac{e^{\frac{\pi}{3}j}e^{-\ln 5} - e^{-\frac{\pi}{3}j}e^{\ln 5}}{2j}$$

$$= \frac{\left(\cos\frac{\pi}{3} + j\sin\frac{\pi}{3}\right) \cdot \frac{1}{5} - \left(\cos\frac{\pi}{3} - j\sin\frac{\pi}{3}\right) \cdot 5}{2j}$$

$$= \cos\frac{\pi}{3} \cdot \frac{\frac{1}{5} - 5}{2j} + j\sin\frac{\pi}{3} \cdot \frac{\frac{1}{5} + 5}{2j} = \frac{13\sqrt{3}}{10} + \frac{6}{5}j.$$

(Met. a II-a) Utilizând formulele $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$, $z_1, z_2 \in \mathbb{C}$ și $\cos(jz) = \operatorname{ch} z$, respectiv $\sin(jz) = j\operatorname{sh} z$, $z \in \mathbb{C}$, deducem că

$$w = \sin\left(\frac{\pi}{3} + j\ln 5\right) = \sin\frac{\pi}{3}\cos(j\ln 5) + \sin(j\ln 5)\cos\frac{\pi}{3}$$
$$= \frac{\sqrt{3}}{2}\operatorname{ch}(\ln 5) + \frac{j}{2}\operatorname{sh}(\ln 5)$$
$$= \frac{\sqrt{3}}{2} \cdot \frac{e^{\ln 5} + e^{-\ln 5}}{2} + \frac{j}{2} \cdot \frac{e^{\ln 5} - e^{-\ln 5}}{2}$$
$$= \frac{\sqrt{3}}{2} \cdot \frac{5 + \frac{1}{5}}{2} + \frac{j}{2} \cdot \frac{5 - \frac{1}{5}}{2} = \frac{13\sqrt{3}}{10} + \frac{6}{5}j.$$

De aici, $\operatorname{Re} w = \frac{13\sqrt{3}}{10}$, iar $\operatorname{Im} w = \frac{6}{5}$.

b) Deoarece $w = e^{1 + \frac{3\pi}{2}j} = e\left(\cos\frac{3\pi}{2} + j\sin\frac{3\pi}{2}\right) = -ej$, Re w = 0 și Im w = -e.

c)
$$w = \operatorname{tg}\left(\frac{\pi}{2} - 2j\right) = \frac{\sin\left(\frac{\pi}{2} - 2j\right)}{\cos\left(\frac{\pi}{2} - 2j\right)} = \frac{\sin\frac{\pi}{2}\cos 2j - \sin 2j\cos\frac{\pi}{2}}{\cos\frac{\pi}{2}\cos 2j + \sin\frac{\pi}{2}\sin 2j}$$
$$= \frac{\operatorname{ch2}}{j\operatorname{sh2}} = \frac{e^2 + e^{-2}}{j\left(e^2 - e^{-2}\right)} = -j\frac{e^4 + 1}{e^4 - 1}.$$

Aşadar, Re w = 0 şi Im $w = -\frac{e^4 + 1}{e^4 - 1}$.

d)
$$w = \frac{1}{j} \sin\left(\frac{2\pi}{3} + j\ln 2\right) = -j\left(\sin\frac{2\pi}{3}\cos(j\ln 2) + \sin(j\ln 2)\cos\frac{2\pi}{3}\right)$$

= $-j\left(\frac{\sqrt{3}}{2}\operatorname{ch}(\ln 2) - \frac{j}{2}\operatorname{sh}(\ln 2)\right) = -\frac{3}{8} - \frac{5\sqrt{3}}{8}j.$

De aici, $\text{Re } w = -\frac{3}{8}$, iar $\text{Im } w = -\frac{5\sqrt{3}}{8}$.

e)
$$w = j \cos\left(\frac{3\pi}{4} - j \ln 3\right) = j \left(\cos\frac{3\pi}{4}\cos(j \ln 3) + \sin\frac{3\pi}{4}\sin(j \ln 3)\right)$$

 $= j \left(-\frac{\sqrt{2}}{2}\operatorname{ch}(\ln 3) + j\frac{\sqrt{2}}{2}\operatorname{sh}(\ln 3)\right) = j \left(-\frac{\sqrt{2}}{2} \cdot \frac{5}{3} + \frac{\sqrt{2}}{2} \cdot \frac{4}{3}j\right)$
 $= -\frac{2\sqrt{2}}{3} - \frac{5\sqrt{2}}{6}j.$

Prin urmare, $\operatorname{Re} w = -\frac{2\sqrt{2}}{3}$, iar $\operatorname{Im} w = -\frac{5\sqrt{2}}{6}$.

$$\mathbf{f)} \ w = \operatorname{ch}\left(1 + \frac{\pi}{2}j\right) = \frac{e^{1 + \frac{\pi}{2}j} + e^{-1 - \frac{\pi}{2}j}}{2}$$

$$= \frac{e \cdot \left(\cos\frac{\pi}{2} + j\sin\frac{\pi}{2}\right) + \frac{1}{e} \cdot \left(\cos\frac{\pi}{2} - j\sin\frac{\pi}{2}\right)}{2} = \frac{e^2 - 1}{2e}j = j \text{sh}e.$$

De aici, $\operatorname{Re} w = 0$, iar $\operatorname{Im} w = \sinh 1$.

g)
$$w = \operatorname{th}(\ln 2 - \pi j) = \frac{\operatorname{sh}(\ln 2 - \pi j)}{\operatorname{ch}(\ln 2 - \pi j)} = \frac{2e^{-\pi j} - \frac{1}{2}e^{\pi j}}{2e^{-\pi j} + \frac{1}{2}e^{\pi j}}$$

$$= \frac{2 \cdot (\cos \pi - j \sin \pi) - \frac{1}{2} \cdot (\cos \pi + j \sin \pi)}{2 \cdot (\cos \pi - j \sin \pi) + \frac{1}{2} \cdot (\cos \pi + j \sin \pi)} = \frac{3}{5}.$$

În final, $\operatorname{Re} w = \frac{3}{5}$, iar $\operatorname{Im} w = 0$.

9. a) Deoarece $\sin z = \frac{e^{jz} - e^{-jz}}{2j}$, notând $e^{jz} = u$, ecuația inițială devine $u^2 - 2\sqrt{2}uj - 1 = 0$, cu soluțiile $u_{1,2} = (\sqrt{2} \pm 1)j$. În primul caz, pentru $e^{jz} = (\sqrt{2} + 1)j$, obținem

$$jz \in \text{Log}(\sqrt{2}+1)j = \left\{ \ln(\sqrt{2}+1) + j\left(\frac{\pi}{2}+2k\pi\right) : k \in \mathbb{Z} \right\}$$

și, de aici

$$z \in \left(\frac{\pi}{2} + 2\pi\mathbb{Z}\right) - j\ln\left(\sqrt{2} + 1\right) = S_1.$$

Similar, din $e^{jz} = (\sqrt{2} - 1)j$, deducem că

$$z \in \left(\frac{\pi}{2} + 2\pi\mathbb{Z}\right) - j\ln(\sqrt{2} - 1) = S_2.$$

Soluția finală este $S = S_1 \cup S_2$.

- **b)** Ecuația inițială este echivalentă cu $e^{-jz}=2j$, de unde $-jz\in$ Log $2j\Leftrightarrow -jz\in \ln 2+j\left(\frac{\pi}{2}+2\pi\mathbb{Z}\right)\Leftrightarrow z\in j\ln 2-\frac{\pi}{2}+2\pi\mathbb{Z}.$
 - c) Ecuația $\operatorname{sh} z + \operatorname{ch} z = j$ este echivalentă cu $e^z = j$, de unde

$$z \in \text{Log} j = j \left(\frac{\pi}{2} + 2\pi \mathbb{Z} \right).$$

d) Notând $e^z=u,$ obținem ecuația $3u^2-2ju+1=0,$ cu soluțiile $u_1=j$ și $u_2=-\frac{j}{3}.$ De aici,

$$z \in \operatorname{Log} j \cup \operatorname{Log} \left(-\frac{j}{3} \right) = j \left(\frac{\pi}{2} + 2\pi \mathbb{Z} \right) \cup \left(-\ln 3 + j \left(\frac{3\pi}{2} + 2\pi \mathbb{Z} \right) \right).$$

e) Folosind notația $e^z=u,$ ecuația devine $5u^2-2ju+3=0.$ Soluțiile

ei sunt $u_1 = j$ și $u_2 = -\frac{3}{5}j$. Așadar,

$$z \in \operatorname{Log} j \cup \operatorname{Log} \left(-\frac{3}{5} j \right) = j \left(\frac{\pi}{2} + 2\pi \mathbb{Z} \right) \cup \left(\ln \frac{3}{5} + j \left(\frac{3\pi}{2} + 2\pi \mathbb{Z} \right) \right).$$

f) Cu notația $e^{jz}=u$, obținem ecuația $(j-2)u^2-2ju+2+j=0$, cu soluțiile $u_1=-\frac{3+4j}{5}$ și $u_2=1$. De aici, $jz\in\mathrm{Log}\left(-\frac{3+4j}{5}\right)\cup\mathrm{Log}\,1=\left\{j\mathrm{arctg}\frac{4}{3}+(2\mathbb{Z}+1)\pi j\right\}\cup 2\pi j\mathbb{Z}$. În final,

$$z \in \left(\operatorname{arctg} \frac{4}{3} + (2\mathbb{Z} + 1)\pi\right) \cup 2\pi\mathbb{Z}.$$

g) Fie $e^{jz}=u$. Ecuația devine $(1-j)u^2-1-j=0$ și are soluțiile $u_{1,2}=\pm\frac{1}{\sqrt{2}}(1+j)$. Așadar, $jz\in\mathrm{Log}\left(\frac{1}{\sqrt{2}}(1+j)\right)\cup\mathrm{Log}\left(-\frac{1}{\sqrt{2}}(1+j)\right)=j\left(\frac{\pi}{4}+2\pi\mathbb{Z}\right)\cup j\left(\frac{5\pi}{4}+2\pi\mathbb{Z}\right)$ și, în final,

$$z \in \left(\frac{\pi}{4} + 2\pi\mathbb{Z}\right) \cup \left(\frac{5\pi}{4} + 2\pi\mathbb{Z}\right) = \frac{\pi}{4}(1 + 4\mathbb{Z}).$$

h) Ecuația este echivalentă cu $\frac{e^{2z}-1}{e^{2z}+1}=\frac{1+j\sqrt{3}}{2}$. Notând $e^{2z}=u$, obținem $u=\frac{3+j\sqrt{3}}{1-j\sqrt{3}}=j\sqrt{3}$. De aici, $2z\in\mathrm{Log} j\sqrt{3}=\left\{\ln\sqrt{3}+j\left(\frac{\pi}{2}+2\pi\mathbb{Z}\right)\right\}$ și $z\in\frac{1}{4}\ln 3+j\left(\frac{\pi}{4}+\pi\mathbb{Z}\right)$.

10. a)
$$2\sin z \cos z = 2\frac{e^{jz} - e^{-jz}}{2j} \cdot \frac{e^{jz} + e^{-jz}}{2} = \frac{e^{2jz} - e^{-2jz}}{2j} = \sin 2z.$$

b)
$$\cos^2 z - \sin^2 z = \left(\frac{e^{jz} + e^{-jz}}{2}\right)^2 - \left(\frac{e^{jz} - e^{-jz}}{2j}\right)^2 = \frac{e^{2jz} + e^{-2jz}}{2}$$

c)
$$\sin^2 z = \left(\frac{e^{jz} - e^{-jz}}{2j}\right)^2 = -\frac{e^{2jz} - 2 + e^{-2jz}}{4} = \frac{1 - \frac{e^{2jz} + e^{-2jz}}{2}}{2}$$
$$= \frac{1 - \cos 2z}{2}.$$

d), e), f) Analog.

g) $\overline{\sin z} = \overline{\sin(x + jy)} = \overline{\sin x \cos jy + \sin jy \cos x} = \overline{\sin x \cot y + j \cot x}$ = $\sin x \cot y - j \cot x \cos x = \sin x \cos jy - \sin jy \cos x = \sin(x - jy) = \sin \overline{z}$.

h) Similar cu g).

i)
$$\sinh^2 z + \cosh^2 z = \left(\frac{e^z - e^{-z}}{2}\right)^2 + \left(\frac{e^z + e^{-z}}{2}\right)^2 = \frac{e^{2z} + e^{-2z}}{2} = \cosh 2z.$$

j) Avem

$$\sin^3 z = \left(\frac{e^{jz} - e^{-jz}}{2j}\right)^3 = -\frac{e^{3jz} - 3e^{jz} + 3e^{-jz} - e^{-3jz}}{8j}$$
$$= \frac{3}{4} \cdot \frac{e^{jz} - e^{-jz}}{2j} - \frac{1}{4} \cdot \frac{e^{3jz} - e^{-3jz}}{2j} = \frac{3}{4}\sin z - \frac{1}{4}\sin 3z.$$

k) Analog cu punctul g),

$$\cos^4 z = \left(\frac{e^{jz} + e^{-jz}}{2}\right)^4 = \frac{e^{4jz} + 4e^{2jz} + 4e^{-2jz} + e^{-4jz} + 6}{16}$$
$$= \frac{1}{8} \cdot \frac{e^{4jz} + e^{-4jz}}{2} + \frac{1}{2} \cdot \frac{e^{2jz} + e^{-2jz}}{2} + \frac{3}{8} = \frac{1}{8}\cos 4z + \frac{1}{2}\cos 2z + \frac{3}{8}.$$

1) $\operatorname{sh}(z_1 + z_2) = -j \sin j(z_1 + z_2) = -j (\sin j z_1 \cos j z_2 + \sin j z_2 \cos j z_1)$ = $-j (j \operatorname{sh} z_1 \operatorname{ch} z_2 + j \operatorname{sh} z_2 \operatorname{ch} z_1) = \operatorname{sh} z_1 \operatorname{ch} z_2 + \operatorname{sh} z_2 \operatorname{ch} z_1.$

11. a) Deoarece

$$shz = \frac{e^{x+jy} - e^{-x-jy}}{2} = \frac{e^x(\cos y + j\sin y) - e^{-x}(\cos y - j\sin y)}{2}
= \cos y \frac{e^x - e^{-x}}{2} + j\sin y \frac{e^x + e^{-x}}{2} = \cos y \operatorname{sh} x + j\sin y \operatorname{ch} x,$$

 $\operatorname{Re}(\operatorname{sh} z) = \cos y \operatorname{sh} x.$

b) Ținând cont de formulele $\cosh^2 y - \sinh^2 y = 1$, $\sinh 2y = 2\sinh y \cosh y$ și $\cosh 2y = 1 + 2\sinh^2 y$, obținem

$$\operatorname{ctg} z = \frac{\cos z}{\sin z} = \frac{\cos(x + jy)}{\sin(x + jy)} = \frac{\cos x \cos jy - \sin x \sin jy}{\sin x \cos jy + \sin jy \cos x}$$

$$= \frac{\cos x \operatorname{ch} y - j \sin x \operatorname{sh} y}{\sin x \operatorname{ch} y + j \operatorname{sh} y \cos x} = \frac{\sin x \cos x - j \operatorname{sh} y \operatorname{ch} y}{\sin^2 x \operatorname{ch}^2 y + \operatorname{sh}^2 y \cos^2 x}$$

$$= \frac{\sin 2x - j \operatorname{sh} 2y}{2 \sin^2 x + 2 \operatorname{sh}^2 y} = \frac{\sin 2x - j \operatorname{sh} 2y}{-\cos 2x + 1 + 2 \operatorname{sh}^2 y}$$

$$= \frac{\sin 2x - j \operatorname{sh} 2y}{\operatorname{ch} 2y - \cos 2x} = \frac{\sin 2x}{\operatorname{ch} 2y - \cos 2x} - j \frac{\operatorname{sh} 2y}{\operatorname{ch} 2y - \cos 2x}$$

și de aici,
$$\operatorname{Im}(\operatorname{ctg} z) = \frac{\operatorname{sh} 2y}{\cos 2x - \operatorname{ch} 2y}$$
.

c) Având în vedere că $\cosh^2 y - \sinh^2 y = 1$, obținem

$$|\sin z| = |\sin(x+jy)| = |\sin x \cos jy + \sin jy \cos x|$$
$$= |\sin x \cosh y + j \sinh y \cos x| = \sqrt{\sin^2 x \cosh^2 y + \sinh^2 y \cos^2 x}$$
$$= \sqrt{\sin^2 x \cosh^2 y + \sinh^2 y (1 - \sin^2 x)} = \sqrt{\sin^2 x + \sinh^2 y}.$$

d) Analog,

$$|\operatorname{ch} z| = |\cos j z| = |\cos j(x + jy)| = |\cos(-y + jx)|$$

$$= |\cos y \cos j x + \sin y \sin j x| = |\cos y \operatorname{ch} x + j \sin y \operatorname{sh} x|$$

$$= \sqrt{\cos^2 y \operatorname{ch}^2 x + \sin^2 y \operatorname{sh}^2 x} = \sqrt{\cos^2 y \operatorname{ch}^2 x + (1 - \cos^2 y) \operatorname{sh}^2 x}$$

$$= \sqrt{\cos^2 y (\operatorname{ch}^2 x - \operatorname{sh}^2 x) + \operatorname{sh}^2 x} = \sqrt{\cos^2 y + \operatorname{sh}^2 x}.$$

e) Avem

$$\frac{1+j\operatorname{tg}z}{1-j\operatorname{tg}z} = \frac{1+j\frac{\sin z}{\cos z}}{1-j\frac{\sin z}{\cos z}} = \frac{\cos z + j\sin z}{\cos z - j\sin z}$$
$$= \frac{e^{jz}}{e^{-jz}} = e^{2jz} = \cos 2z + j\sin 2z.$$

12. Fie $z=ae^{jx}$. Deoarece |z|=|a|<1, folosind seria geometrică

$$1 + z + z^2 + \ldots = \frac{1}{1 - z},$$

obținem

$$1 + a(\cos x + j\sin x) + a^{2}(\cos 2x + j\sin 2x) + \dots = \frac{1}{1 - ae^{jx}}$$
$$= \frac{1 - ae^{-jx}}{(1 - ae^{jx})(1 - ae^{-jx})} = \frac{1 - a\cos x + aj\sin x}{1 - ae^{jx} - ae^{-jx} + a^{2}} = \frac{1 - a\cos x + aj\sin x}{1 - 2a\cos x + a^{2}}$$

și, de aici

$$(1 + a\cos x + a^2\cos 2x + \ldots) + j(a\sin x + a^2\sin 2x + \ldots)$$

———— Analiză matematică în complex —————

$$= \frac{1 - a\cos x}{1 - 2a\cos x + a^2} + j\frac{a\sin x}{1 - 2a\cos x + a^2}.$$

Identificând apoi părțile reale și, respectiv imaginare, obținem relațiile din enunț.

Integrala în complex

3.1 Integrala curbilinie a unei funcții complexe de variabilă complexă

Fie $G \subseteq \mathbb{C}$ o mulțime deschisă, nevidă și $f: G \to \mathbb{C}$ o funcție complexă continuă, f = P + jQ. Fie, de asemenea, $a, b \in \mathbb{R}$, a < b și (γ) o curbă netedă, $(\gamma): x = x(t), y = y(t), a \le t \le b$, unde $x \in C^1[a, b], y \in C^1[a, b]$ cu $|x'(t)|^2 + |y'(t)|^2 > 0$, $\forall t \in [a, b]$. Luăm z(t) = x(t) + jy(t), $a \le t \le b$ și presupunem că $z(t) \in G$, $\forall t \in [a, b]$.

În condițiile de mai sus, integrala curbilinie a funcției f pe curba (γ) este numărul complex

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt.$$

Dacă scriem f(z) = P(x,y) + jQ(x,y) și dz = dx + jdy, obținem

$$\int\limits_{\gamma} f(z)dz = \int\limits_{\gamma} P(x,y)dx - Q(x,y)dy + j\int\limits_{\gamma} P(x,y)dy + Q(x,y)dx.$$

Dacă (γ) este frontiera unui domeniu mărginit din plan, atunci (în absența unei alte precizări) sensul de parcurgere al curbei închise (γ) se consideră cel trigonometric.

3.1.1 Exemplu

Evaluați integrala

$$\int_{\gamma} (|z|^2 - 3(z+1)^2) dz,$$

unde a) (γ) este segmentul [MN] cu capătul inițial M(-1), respectiv cel final N(j).

b) (γ) este arcul de cerc de pe cercul unitate cu punctul inițial M(-1), respectiv cel final N(j). Coincid cele două integrale?

a) Deoarece ecuațiile parametrice ale dreptei MN sunt:

$$MN: \left\{ \begin{array}{ll} x=-1+t \\ y=t, & t\in \mathbb{R}, \end{array} \right.$$

o parametrizare a segmentului [MN] este x(t) = -1 + t, respectiv y(t) = t, cu $t \in [0, 1]$. De aici, z(t) = -1 + t + jt și

$$\mathcal{I}_1 = \int_{[MN]} (|z|^2 - 3(z+1)^2) dz = \int_0^1 (|z(t)|^2 - 3(z(t)+1)^2) z'(t) dt$$

$$= \int_0^1 (|-1+t+jt|^2 - 3(t+jt)^2) (1+j) dt$$

$$= (1+j) \int_0^1 (2(1-3j)t^2 - 2t + 1) dt = \frac{4}{3}(2-j).$$

b) În general, dacă curba (γ) este $\{z \in \mathbb{C} : |z - z_0| = r\}$ (adică cercul $\Gamma(z_0; r)$), parametrizarea pe care o folosim este $z(t) = z_0 + re^{jt}$, cu $t \in [0, 2\pi]$. Prin urmare, pentru arcul de cerc \widehat{MN} , considerăm $z(t) = e^{jt}$, cu $t \in [\pi, \frac{\pi}{2}]$, de unde $dz = z'(t)dt = je^{jt}dt$ și, de aici

$$\begin{split} \mathscr{I}_2 &= \int\limits_{\widehat{MN}} (|z|^2 - 3(z+1)^2) dz = \int_{\pi}^{\frac{\pi}{2}} \left(|e^{jt}|^2 - 3(e^{jt}+1)^2 \right) j e^{jt} dt \\ &= j \int_{\pi}^{\frac{\pi}{2}} (1 - 3(e^{2jt} + 2e^{jt} + 1)) e^{jt} dt = -j \int_{\pi}^{\frac{\pi}{2}} (2e^{jt} + 6e^{2jt} + 3e^{3jt}) dt \\ &= -j \left(2\frac{e^{jt}}{j} + 6\frac{e^{2jt}}{2j} + 3\frac{e^{3jt}}{3j} \right) \Big|_{\pi}^{\frac{\pi}{2}} = -2 \left(\cos t + j \sin t \right) \Big|_{\pi}^{\frac{\pi}{2}} \\ &- 3 \left(\cos 2t + j \sin 2t \right) \Big|_{\pi}^{\frac{\pi}{2}} - \left(\cos 3t + j \sin 3t \right) \Big|_{\pi}^{\frac{\pi}{2}} = 3 - j. \end{split}$$

Observăm că cele două integrale \mathscr{I}_1 și \mathscr{I}_2 nu coincid, valoarea lor depinzând de alegerea curbei (γ) , a drumului dintre M și N.

3.2 Teorema lui Cauchy. Formula lui Cauchy

♣ Teorema lui Cauchy-Goursat

Fie (γ) o curbă simplă, închisă și netedă sau netedă pe porțiuni și fie $D = \operatorname{Int}(\gamma)$ domeniul mărginit de (γ) . Dacă funcția complexă f este

olomorfă pe D și continuă pe γ , atunci

$$\int_{\gamma} (z)dz = 0.$$

3.2.1 Exemplu

Să se calculeze

$$\mathscr{I} = \int_{|z-1|=2\sqrt{2}} \frac{e^{z^2} - z\sin(z^2 + 5) + 7}{(\sinh z + \cosh z + 1)^2} dz$$

Observăm că $(\gamma) = \Gamma(1; 2\sqrt{2})$ (adică cercul de centru 1 și de rază $2\sqrt{2}$), iar $D = \Delta(1; 2\sqrt{2})$ este interiorul cercului (γ) . Pe de altă parte, funcția $f(z) = \frac{e^{z^2} - z \sin(z^2 + 5) + 7}{(\sinh z + \cosh z + 1)^2}$ este olomorfă (și continuă) în orice domeniu din $\mathbb{C} \setminus \{z \in \mathbb{C} : \sinh z + \cosh z + 1 = 0\}$. Așadar, ar trebui mai întâi să rezolvăm în \mathbb{C} ecuația

$$\operatorname{sh} z + \operatorname{ch} z + 1 = 0 \Leftrightarrow \frac{e^z - e^{-z}}{2} + \frac{e^z + e^{-z}}{2} + 1 = 0.$$

De aici, $e^z=-1 \Leftrightarrow z \in \operatorname{Log}(-1)=(2\mathbb{Z}+1)\pi j=\{...,-\pi j,\pi j,...\}.$ În continuare, evaluând poziția rădăcinilor $z_k=(2k+1)\pi j,\ k\in\mathbb{Z}$ față de curba $(\gamma)=\Gamma(1;2\sqrt{2}),$ concluzionăm că toate acestea se găsesc în exteriorul ei. Prin urmare, f este olomorfă în interiorul cercului (γ) (adică în discul $\Delta(1;2\sqrt{2})$) și este continuă pe cercul (γ) .

În final, din Teorema lui Cauchy-Goursat, deducem că $\mathcal{I}=0$.

3.2.2 Exemplu

Arătați că

$$\int_0^\infty \cos(ax^2) dx = \int_0^\infty \sin(ax^2) dx = \frac{1}{2} \sqrt{\frac{\pi}{2a}}, \ a > 0.$$

Avem

$$\int_0^\infty \cos(ax^2)dx \xrightarrow{\sqrt{ax}=t} \frac{1}{\sqrt{a}} \int_0^\infty \cos(x^2)dx.$$

Analog, $\int_0^\infty \sin(ax^2)dx = \frac{1}{\sqrt{a}} \int_0^\infty \sin(x^2)dx$. Considerám mai departe

integrala

$$\mathscr{I}_1 = \int\limits_{\gamma} e^{jz^2} dz,$$

fig. 3.1

de-a lungul curbei (γ) reprezentată în figura 3.1 de mai sus. Cum funcția $f(z) = e^{jz^2}$ este olomorfă pe \mathbb{C} , din Teorema lui Cauchy-Goursat deducem că $\mathscr{I}_1 = 0$. De aici,

(3.1)
$$\int_{[OA]} f(z)dz + \int_{\widehat{AB}} f(z)dz + \int_{[BO]} f(z)dz = 0.$$

Pe de altă departe,

$$\int\limits_{[OA]} f(z)dz = \int_0^1 e^{jR^2t^2} Rdt \xrightarrow{\underline{Rt=x}} \int_0^R e^{jx^2} dx,$$

parametrizarea folosită fiind z(t) = Rt, cu $t \in [0, 1]$. Dacă pentru arcul de cerc $\stackrel{\frown}{AB}$, considerăm $z(t) = Re^{jt}$, cu $t \in [0, \frac{\pi}{4}]$, obținem

$$\int_{\widehat{AB}} f(z)dz = \int_0^{\frac{\pi}{4}} e^{jR^2 e^{2jt}} jRe^{jt} dt.$$

Apoi, luând $z(t) = \frac{R}{\sqrt{2}} + j\frac{R}{\sqrt{2}}$, deducem că

$$\int\limits_{[BO]} f(z)dz = \frac{R}{\sqrt{2}}(1+j)\int_{1}^{0}e^{-t^{2}R^{2}}dt \xrightarrow{\underline{tR}=\underline{x}} -e^{\frac{\pi j}{4}}\int_{0}^{R}e^{-x^{2}}dx.$$

Folosind (3.1) și relațiile de mai sus, avem

$$\int_0^R e^{jx^2} dx = \int_0^R (\cos x^2 + j \sin x^2) dx$$

$$= -\int_0^{\frac{\pi}{4}} e^{jR^2(\cos 2t + j \sin 2t)} j R e^{jt} dt + e^{\frac{\pi}{4}j} \int_0^R e^{-x^2} dx$$
(3.2)

Apoi, deoarece

$$\begin{split} \left| \int_0^{\frac{\pi}{4}} e^{jR^2(\cos 2t + j\sin 2t)} jRe^{jt} dt \right| &\leq \int_0^{\frac{\pi}{4}} \left| e^{jR^2(\cos 2t)} \cdot e^{-R^2\sin 2t} jRe^{jt} \right| dt \\ &= R \int_0^{\frac{\pi}{4}} e^{-R^2\sin 2t} dt \stackrel{t = \frac{u}{2}}{=} \frac{R}{2} \int_0^{\frac{\pi}{2}} e^{-R^2\sin u} du \\ &\qquad \qquad (-\sin u \leq -\frac{2u}{\pi}, u \in [0, \frac{\pi}{2}]) \stackrel{R}{=} \frac{R}{2} \int_0^{\frac{\pi}{2}} e^{-\frac{2}{\pi}R^2u} du \\ &= \frac{R}{2} \cdot \frac{e^{-\frac{2}{\pi}R^2u}}{-\frac{2}{\pi}R^2} \bigg|_0^{\frac{\pi}{2}} = \frac{\pi}{4R} \left(1 - e^{-R^2}\right), \end{split}$$

trecând la limită pentru $R \to \infty$, obținem

(3.3)
$$\lim_{R \to \infty} \int_0^{\frac{\pi}{4}} e^{jR^2(\cos 2t + j\sin 2t)} jRe^{jt} dt = 0.$$

Pe de altă parte, folosind integrala lui Euler-Poisson $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, deducem că

(3.4)
$$\lim_{R \to \infty} e^{\frac{\pi j}{4}} \int_0^R e^{-x^2} dx = e^{\frac{\pi j}{4}} \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} e^{\frac{\pi j}{4}} = \frac{1}{2} \sqrt{\frac{\pi}{2}} + j \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

Așadar, din relațiile (3.2), (3.3) și (3.4) deducem că

$$\int_0^\infty (\cos x^2 + j \sin x^2) dx = \int_0^\infty e^{jx^2} dx$$

$$= \lim_{R \to \infty} \int_0^R e^{jx^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}} + j \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

În final,

$$\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}},$$

de unde rezultă că

$$\int_0^\infty \cos ax^2 dx = \int_0^\infty \sin ax^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2a}}.$$

♣ Formula lui Cauchy

Fie (γ) o curbă simplă, închisă, netedă (sau netedă pe porțiuni) și fie $D = \text{Int}(\gamma)$ și $z_0 \in D$. Dacă funcția complexă $f : D \cup \gamma \to \mathbb{C}$ este olomorfă pe D și continuă pe (γ) , atunci

$$f(z_0) = \frac{1}{2\pi j} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

♣ Formula generalizată a lui Cauchy

În condițiile Formulei lui Cauchy, are loc egalitatea

$$f^{(n)}(z_0) = \frac{n!}{2\pi j} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Așadar, orice funcție complexă $f: D \to \mathbb{C}$, olomorfă pe domeniul $D \subseteq \mathbb{C}$ admite derivate de orice ordin.

3.3 Probleme propuse

- **1.** Calculați integrala $\int_{\gamma} f(z)dz$ dacă:
 - a) $f(z) = z^2 3\bar{z} + 2jz$; $(\gamma) : |z| = 1$
 - **b)** $f(z) = z + \bar{z} 3j$; $(\gamma) : |z j| = 3$
 - c) $f(z) = z 5\bar{z} + 3j$; $(\gamma) : y = x^3 + 2$, $x \in [0, 1]$
- d) $f(z)=2\bar{z}-z^2;~(\gamma)$ este arcul de cerc cu extremitățile A(-2) și B(-2j)
 - e) $f(z) = \frac{1}{2}(z 3\bar{z}); \ (\gamma)$ este segmentul [AB], cu A(1 j) și B(2 + j)

f)
$$f(z) = j|-z+j|+3\bar{z}-j; \ (\gamma): z=j-e^{\pi jt}; \ t \in [1,2]$$

- **g)** $f(z) = \text{Re}(z j) + j \text{Im}\bar{z}$; $(\gamma) = \widehat{AB} \cup [BC]$, unde \widehat{AB} este arcul de cerc cu extremitățile A(2) și B(-2), iar [BC] este segmentul de extremitățile B(-2) și B(-3j).
- 2. Utilizând Teorema lui Cauchy-Goursat și Formulele lui Cauchy, să se calculeze următoarele integrale:

$$\mathbf{a)} \int_{|z|=\frac{e}{4}} \frac{1+3 \operatorname{sh} z}{\sin z + \cos z} dz;$$

b)
$$\int_{|z-1+j|=\sqrt{2}} \frac{2+e^{jz}}{(z-1)(1-jz)} dz;$$

c)
$$\int_{|z|=1} \frac{(z+6)\sin \pi z}{z^2(z+2)(z-3)} dz;$$

d)
$$\int_{|z-1|=2} \frac{\sin(3\pi z^2) + \cos(3\pi z^2)}{(z-1)(z-2)} dz.$$

3.4 Indicații și răspunsuri

1. a) Fie parametrizarea $z(t)=e^{jt},\,t\in[0,2\pi].$ Prin urmare, $\bar{z}(t)=e^{-jt},\,z'(t)=je^{jt}$ și

$$\mathcal{I} = \int_{\gamma} f(z)dz = \int_{0}^{2\pi} f(z(t))z'(t)dt = \int_{0}^{2\pi} \left(e^{2jt} - 3e^{-jt} + 2je^{jt}\right)je^{jt}dt$$

$$= \int_{0}^{2\pi} \left(je^{3jt} - 2e^{2jt} - 3j\right)dt = \left(\frac{e^{3jt}}{3} - \frac{e^{2jt}}{j} - 3jt\right)\Big|_{0}^{2\pi}$$

$$= \frac{1}{3}(\cos 6\pi + j\sin 6\pi - \cos 0 - j\sin 0)$$

$$- \frac{1}{j}(\cos 4\pi + j\sin 4\pi - \cos 0 - j\sin 0) - 6\pi j = -6\pi j.$$

b) Făcând parametrizarea $z(t) = j + 3e^{jt}, t \in [0, 2\pi], \bar{z}(t) = -j + 3e^{-jt},$ $z'(t) = 3je^{jt}$ și

$$\mathscr{I} = \int_0^{2\pi} \left(j + 3e^{jt} - j + 3e^{-jt} - 3j \right) 3je^{jt} dt$$

$$=9j\int_{0}^{2\pi} \left(e^{2ejt} - je^{jt} + 1\right) dt = 9j\left(\frac{e^{2jt}}{2j} - e^{jt} + t\right)\Big|_{0}^{2\pi} = 18\pi j.$$

c) Fie x = t, $t \in [0, 2]$. Atunci $y = t^3 + 2$, $z(t) = x(t) + jy(t) = t + j(t^3 + 2)$, $\bar{z}(t) = t - j(t^3 + 2)$, $z'(t) = 1 + 3t^2j$ și

$$\mathscr{I} = \int_0^1 (-4t + 15j + 6jt^3)(1 + 3jt^2)dt$$
$$= \int_0^1 (-18t^5 - 6jt^3 - 45t^2 - 4t + 15j)dt = -20 + \frac{27}{2}j.$$

d) Luând $z(t)=2e^{jt},\ t\in\left[\pi,\frac{3\pi}{2}\right],\ \bar{z}(t)=2e^{-jt},\ z'(t)=2je^{jt}$ și

$$\mathscr{I} = 8j \int_{\pi}^{\frac{3\pi}{2}} \left(e^{-jt} - e^{2jt} \right) e^{jt} dt = -\frac{8}{3} + j \left(4\pi - \frac{8}{3} \right).$$

e) Pornind de la ecuația canonică a dreptei AB,

$$AB: x-1=\frac{y+1}{2}=t, t \in \mathbb{R},$$

vom face următoarea parametrizare a segmentului [AB]: x(t) = 1 + t,y(t) = -1 + 2t, cu $t \in [0,1].$ Prin urmare, z(t) = 1 + t + j(-1 + 2t), $\bar{z}(t) = 1 + t - j(-1 + 2t),$ z'(t) = 1 + 2j și

$$\mathscr{I} = \frac{1}{2} \int_0^1 \left(-2 - 2t + 4j(-1 + 2t) \right) (1 + 2j) dt = -\frac{3}{2} - 3j.$$

f) Din ipoteză $z(t)=j-e^{\pi jt},\,t\in[1,2],$ prin urmare $\bar{z}(t)=-j-e^{-\pi jt},$ $z'(t)=-\pi je^{\pi jt}$ și

$$\mathscr{I} = 3 \int_{1}^{2} (j + e^{-\pi jt}) \pi j e^{\pi jt} dt = 3j(\pi + 2).$$

g) Luând pentru arcul $\stackrel{.}{AB}$, $z(t)=2e^{jt}=2(\cos t+j\sin t)$, cu $t\in[0,\pi]$, iar pentru segmentul [BC], x(t)=-2+2t, y(t)=-3t, adică z(t)=-2+2t-3jt și $\overline{z}(t)=-2+2t+3jt$ cu $t\in[0,1]$, obținem

$$\mathscr{I} = \int_{\widehat{AB}} f(z)dz + \int_{[BC]} f(z)dz$$

$$= \int_0^{\pi} (2\cos t - 2j\sin t) \, 2je^{jt} dt + \int_0^1 (-2 + 2t + 3jt)(2 - 3j) dt$$
$$= 4j \int_0^{\pi} dt + \int_0^1 (-4 + 6j + 13t) dt = \frac{5}{2} + 2j(3 + 2\pi).$$

2. a) Mai întâi verificăm care este poziția rădăcinilor ecuației $\sin z + \cos z = 0$, față de curba $\gamma = \Gamma(0; \frac{e}{4})$. Pentru aceasta, notăm $e^{jz} = u$ și ecuația devine $u^2 = -j = \frac{1}{2}(1-j)^2$. De aici, $u_{1,2} = \pm \frac{\sqrt{2}}{2}(1-j)$ și, prin urmare,

$$jz \in \operatorname{Log}\left(\frac{\sqrt{2}}{2}(1-j)\right) \cup \operatorname{Log}\left(-\frac{\sqrt{2}}{2}(1-j)\right)$$

de unde deducem că rădăcinile ecuației sunt de forma $z_k = \frac{(4k+3)\pi}{4}, k \in \mathbb{Z}$. Cum $|z_k| > \frac{e}{4}, \ \forall z \in \mathbb{Z}$, deducem că funcția $f(z) = \frac{1+3 \, \mathrm{sh} z}{\sin z + \cos z}$ este olomorfă pe discul $\bar{\Delta}\left(0; \frac{e}{4}\right)$. Folosind, în final, Teorema lui Cauchy-Goursat, obtinem $\mathscr{I} = 0$.

b) Deoarece

$$\begin{split} f(z) &= \frac{1+j}{2} \cdot \frac{2+e^{jz}}{z-1} + \frac{-1+j}{2} \cdot \frac{2+e^{jz}}{1-jz} \\ &= \frac{1+j}{2} \cdot \frac{2+e^{jz}}{z-1} + \frac{1-j}{2j} \cdot \frac{2+e^{jz}}{z+j}, \end{split}$$

iar $z_1 = 1$ și $z_2 = -j$ sunt situate în discul $\Delta(1 - j; \sqrt{2})$,

$$\mathscr{I} = \frac{1+j}{2} \int_{|z-1+j|=\sqrt{2}} \frac{2+e^{jz}}{z-1} dz + \frac{1-j}{2j} \int_{|z-1+j|=\sqrt{2}} \frac{2+e^{jz}}{z+j} dz.$$

Folosind formulele lui Cauchy, obţinem:

$$\mathscr{I} = 2\pi j \cdot \frac{(1+j)(2+e^{jz})}{2} \bigg|_{z=1} + 2\pi j \cdot \frac{(1-j)(2+e^{jz})}{2} \bigg|_{z=-j}$$
$$= \pi(-1+j)(2+e^{j}) + \pi(1-j)(2+e)$$
$$= \pi(e-\cos 1 - \sin 1 + j(\cos 1 - \sin 1 - e)).$$

c) Observăm că doar $z_0=0\in\Delta(0;1),\ z_1=-2,z_2=3\notin\Delta(0;1).$ Prin urmare, scriem integrala după cum urmează:

$$\mathscr{I} = \int_{|z|=1} \frac{\sin \pi z}{(z+2)(z-3)} dz - \int_{|z|=1} \frac{\sin \pi z}{z^2} dz.$$

Utilizând Teorema și formulele lui Cauchy, obținem

$$\mathscr{I} = 0 - 2\pi j (\sin \pi z)'|_{z=0} = -2\pi j (\pi \cos \pi z)|_{z=0} = -2\pi^2 j.$$

d) Cum $z_1=1$ și $z_2=2$ aparțin discului deschis $\Delta(1;2)$, descompunând în fracții simple și folosind Formula lui Cauchy, obținem

$$\begin{split} \mathscr{I} &= \int\limits_{|z-1|=2} \frac{\sin(3\pi z^2) + \cos(3\pi z^2)}{z-2} dz - \int\limits_{|z-1|=2} \frac{\sin(3\pi z^2) + \cos(3\pi z^2)}{z-1} dz \\ &= 2\pi j \left(\left(\sin(3\pi z^2) + \cos(3\pi z^2) \right) \Big|_{z=2} - \left(\sin(3\pi z^2) + \cos(3\pi z^2) \right) \Big|_{z=1} \right) \\ &= 2\pi j (\sin 12\pi + \cos 12\pi - \sin 3\pi - \cos 3\pi) = 4\pi j. \end{split}$$

Serii Taylor. Serii Laurent

4.1 Serii Taylor

O funcție $f: G \to \mathbb{C}$, cu $G \subseteq \mathbb{C}$ o mulțime deschisă, este dezvoltabilă în serie Taylor în jurul punctului $z_0 \in G$ (sau într-o vecinătate a punctului $z_0 \in G$) dacă există un disc $\Delta(z_0; r) \subseteq G$, r > 0 și o serie de puteri $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ convergentă pe $\Delta(z_0; r) \subseteq G$, astfel încât

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \ \forall z \in \Delta(z_0; r).$$

Egalitatea de mai sus se numește dezvoltarea funcției f în serie Taylor în jurul punctului z_0 , iar membrul drept al egalității se numește seria Taylor atașată funcției f în jurul punctului z_0 (sau într-o vecinătate a lui z_0).

♣ Dacă f este o funcție olomorfă pe o mulțime deschisă $G \subseteq \mathbb{C}$, atunci f este dezvoltabilă în serie Taylor în jurul fiecărui punct din G (adică f este analitică), iar coeficienții seriei Taylor sunt

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi j} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz,$$

unde (γ) este un cerc arbitrar cu centrul în z_0 , situat în G.

4.1.1 Serii Taylor importante

a) Seria geometrică

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
, $\forall z \in \Delta(0;1)$, i.e. $|z| < 1$.

În particular,

$$\frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-1)^n z^n, \ \forall z \in \Delta(0;1).$$

b) Serii exponențiale, circulare, hiperbolice

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \ \forall z \in \mathbb{C}$$

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} z^{2n+1}, \ \forall z \in \mathbb{C}$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} z^{2n}, \ \forall z \in \mathbb{C}$$

$$\operatorname{sh} z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, \ \forall z \in \mathbb{C}$$

$$\operatorname{ch} z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \ \forall z \in \mathbb{C}$$

c) Seria logaritmică Fie $f(z) = \log(1+z)$ ramura uniformă în $\Delta(0;1)$ a funcției multivoce F(z) = Log(1+z), pentru care f(0) = 0. Atunci

$$\log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n, \ \forall z \in \Delta(0;1).$$

d) Seria binomială Fie $\alpha \in \mathbb{C}$ și $f(z) = (1+z)^{\alpha}$ ramura uniformă în $\Delta(0;1)$ a funcției multivoce $F(z) = (1+z)^{\alpha}$, pentru care f(0) = 1. Atunci

$$(1+z)^{\alpha} = 1 + \sum_{n=1}^{\alpha} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} z^n, \ \forall z \in \Delta(0;1).$$

♣ Pentru a dezvolta funcția $f: G \to \mathbb{C}$ în serie Taylor în jurul unui punct $z_0 \in G$, notăm $u = z - z_0 \Leftrightarrow z = u + z_0$, după care dezvoltăm funcția $g(u) = f(u + z_0)$ în serie Taylor în jurul originii.

4.2 Serii Laurent

Fie $z_0 \in \mathbb{C}$ un punct fixat. Orice serie de funcții de forma

$$\sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \dots + \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + \dots + a_n (z - z_0)^n + \dots,$$

unde $a_n \in \mathbb{C}$, $n \in \mathbb{Z}$, se numește serie Laurent centrată în z_0 .

Unei serii Laurent i se asociază seriile de funcții

$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n} \text{ si } \sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

care se numesc partea principală, respectiv partea tayloriană ale seriei Laurent. Observăm deci că seriile Laurent sunt serii de puteri ale binomului $(z - z_0)$, asemănătoare cu seriile Taylor, dar în care apar atât puteri pozitive, cât și negative ale lui $(z - z_0)$.

♣ Fie $D \subseteq \mathbb{C}$ un domeniu, $z_0 \in \mathbb{C}$ un punct dat și $f: D \to \mathbb{C}$ o funcție olomorfă. Dacă există o coroană circulară $U = U(z_0; r, R)$, cu 0 < r < R, a.î $\bar{U} \subseteq D$ și

(4.1)
$$a_n = \frac{1}{2\pi j} \int_{\gamma = \Gamma(z_0; \rho)} \frac{f(z)}{(z - z_0)^{n+1}} dz, \ n \in \mathbb{Z}$$

cu $r \le \rho \le R$, atunci seria Laurent $\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ este convergentă pe U și are suma f(z), adică are loc egalitatea

(4.2)
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n, \ \forall z \in U.$$

Dacă dezvoltarea în serie Laurent a funcției f are loc în coroana circulară $U(z_0; r, R)$ pentru orice r > 0, atunci se spune că funcția f este dezvoltabilă în serie Laurent în jurul punctului z_0 . În acest caz, dezvoltarea (4.4), cu coeficienții dați de (4.3), este valabilă pe domeniul $\{z \in \mathbb{C} : 0 < |z - z_0| < R\} = \Delta(z_0; R) \setminus \{z_0\}$, adică z_0 este singurul punct din $\Delta(z_0; R)$ în care f nu este monogenă.

4.2.1 Exemplu

Dezvoltați în serie Laurent funcția rațională

$$f(z) = \frac{19z + 35}{(z-1)(z+2)^3}, \ z \in \mathbb{C} \setminus \{-2, 1\}$$

- a) în jurul originii;
- **b)** $\hat{i}n \ jurul \ punctului \ z_0 = -2;$
- c) în jurul punctului $z_0 = 1$;
- d) $\hat{i}n \ domeniul \ D = \{z \in \mathbb{C} : |z+2| > 3\}.$

a) Cum f este olomorfă în discul $\Delta(0;1)$, seria Laurent a lui f în jurul originii se reduce la o serie Taylor. Descompunând în fracții simple, obținem

(4.3)
$$f(z) = \frac{2}{z-1} - \frac{2}{z+2} - \frac{6}{(z+2)^2} + \frac{1}{(z+2)^3}$$
$$= -\frac{2}{1-z} - \frac{1}{1+\frac{z}{2}} - \frac{3}{2\left(1+\frac{z}{2}\right)^2} + \frac{1}{8\left(1+\frac{z}{2}\right)^3}$$

Folosindu-ne de seria geometrică, deducem că

(4.4)
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad \text{si} \quad \frac{1}{1+\frac{z}{2}} = \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n, \ |z| < 1.$$

Derivând a doua egalitate din (4.4), obținem

(4.5)
$$\frac{1}{\left(1+\frac{z}{2}\right)^2} = \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z}{2}\right)^n, |z| < 1.$$

Derivând încă o dată egalitatea (4.5), rezultă că

$$\frac{1}{\left(1+\frac{z}{2}\right)^3} = \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} (n+1) n \left(\frac{z}{2}\right)^{n-1}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (n+2) (n+1) \left(\frac{z}{2}\right)^n, |z| < 1.$$

Din relațiile (4.3), (4.4), (4.5) și (4.6) deducem că

$$f(z) = \sum_{n=0}^{\infty} \left((-2)^{n+1} - 1 - \frac{3(n+1)}{2} + \frac{(n+1)(n+2)}{16} \right) \left(-\frac{z}{2} \right)^n, \ |z| < 1.$$

b) Notând $u = z + 2 \Leftrightarrow z = u - 2$, obținem

(4.7)
$$f(z) = g(u) = \frac{2}{u-3} - \frac{2}{u} - \frac{6}{u^2} + \frac{1}{u^3}, \ u \in \mathbb{C} \setminus \{0, 3\}.$$

Pe de altă parte, observăm că a dezvolta funcția f în jurul lui $z_0=-2$

este același lucru cu a dezvolta funcția g în jurul lui $u_0 = 0$. Dezvoltând așadar după puterile lui u, ajungem la

(4.8)
$$\frac{2}{u-3} = -\frac{2}{3\left(1-\frac{u}{3}\right)} = -\frac{2}{3}\sum_{n=0}^{\infty} \left(\frac{u}{3}\right)^n, \ |u| < 3.$$

Din (4.7) și (4.8) rezultă că

$$f(z) = -\frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{z+2}{3}\right)^n - \frac{2}{z+2}$$

$$-\frac{6}{(z+2)^2} + \frac{1}{(z+2)^3}, \ |z+2| < 3, \ z \neq -2.$$

Întrucât |z+2| < 3 și $z \neq -2$, dezvoltarea în serie Laurent (4.9) are loc în orice coroană circulară U(-2;r,3) cu 0 < r < 3. De asemenea, se poate vedea că partea principală a dezvoltării în serie Laurent (4.9) a funcției f în jurul punctului $z_0 = -2$ există și are 3 termeni.

c) Fie $u = z - 1 \Leftrightarrow z = u + 1$. A dezvolta funcția f în jurul lui $z_0 = 1$ este totuna cu a dezvolta funcția h în jurul lui $u_0 = 0$, unde

$$(4.10) h(u) = \frac{2}{u} - \frac{2}{u+3} - \frac{6}{(u+3)^2} + \frac{1}{(u+2)^3}, \ u \in \mathbb{C} \setminus \{-,3,0\}.$$

Folosind seria geometrică, obținem

(4.11)
$$\frac{1}{u+3} = \frac{1}{3\left(1+\frac{u}{3}\right)} = \frac{1}{3}\sum_{n=0}^{\infty} (-1)^n \left(\frac{u}{3}\right)^n, \ |u| < 3.$$

De aici, derivând de două ori, deducem egalitățile

(4.12)
$$\frac{1}{(u+3)^2} = \frac{1}{9} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{u}{3}\right)^n, \ |u| < 3.$$

si

(4.13)
$$\frac{1}{(u+3)^3} = \frac{2}{27} \sum_{n=0}^{\infty} (-1)^n (n+2)(n+1) \left(\frac{u}{3}\right)^n, \ |u| < 3.$$

În final, din relațiile (4.10), (4.11), (4.12) și (4.13) obținem următoarea

dezvoltare în serie Laurent a funcției f în jurul punctului $z_0 = 1$, adică în orice coroană circulară U(1; r, 3) cu 0 < r < 3:

$$(4.14) \ f(z) = \frac{2}{z-1} + \sum_{n=0}^{\infty} \frac{n^2 - 33n - 70}{54} \left(-\frac{1}{3} \right)^n \cdot (z-1)^n, \ |z-1| < 3, \ z \neq 1.$$

Observăm că partea principală a seriei Laurent (4.14) are un singur termen.

d) Notând $u = z + 2 \Leftrightarrow z = u - 2$, conform relației (4.7),

$$f(z) = g(u) = \frac{2}{u-3} - \frac{2}{u} - \frac{6}{u^2} + \frac{1}{u^3}, \ u \in \mathbb{C} \setminus \{0, 3\}.$$

Cum, din ipoteză, $|u| > 3 \Leftrightarrow \left| \frac{3}{u} \right| < 1$, folosind seria geometrică, obținem

$$\frac{1}{u-3} = \frac{1}{u} \cdot \frac{1}{1-\frac{3}{u}} = \sum_{n=0}^{\infty} \frac{3^n}{u^{n+1}}, \ |u| > 3.$$

De aici, deducem următoarea dezvoltare în serie Laurent:

$$f(z) = \frac{19}{(z+2)^3} + 2\sum_{n=3}^{\infty} \frac{3^n}{(z+2)^{n+1}},$$

care este valabilă în orice coroană circulară U(-2; 3, R) cu R > 3. Merită să menționăm aici faptul că dezvoltarea în acest caz nu are loc în jurul punctului $z_0 = -2$.

4.3 Probleme propuse

1. Dezvoltați următoarele funcții în serie Laurent în jurul punctelor indicate sau pe domeniile indicate:

a)
$$f(z) = \frac{11-z}{z^2+3z-4}$$
, $z_0 = 0$, $z_0 = -4$ și $z_0 = j$

b)
$$f(z) = z^3 \operatorname{sh}(z+j), \ z_0 = -j$$

c)
$$f(z) = \sin^3(z+1), z_0 = -1$$

d)
$$f(z) = \log(1 - \sqrt{2}z + 2z^2), z_0 = 0, f(0) = 0$$

e)
$$f(z) = \log \frac{1 - jz}{1 + jz}$$
, $z_0 = 0$, $f(0) = 4\pi j$

f)
$$f(z) = \frac{1}{z+2}e^{\frac{1}{z+1}}, z_0 = -1$$

g)
$$f(z) = \frac{3z+1}{(z+1)(z^2-1)}$$
, $z_0 = 0$, $z_0 = 1$, $z_0 = -1$ și în domeniul $D = \{z \in \mathbb{C} : |z-1| > 2\}$

h)
$$f(z) = \frac{z}{z^2 + 3z + 2}$$
, $|z| < 1$, $1 < |z| < 2$, $|z| > 2$

i)
$$f(z) = \frac{\text{ch} jz}{z+j}, z_0 = -j.$$

4.4 Indicații și răspunsuri

1. a) Descompunând în fracții simple funcția f, obținem

$$f(z) = \frac{2}{z-1} - \frac{3}{z+4}.$$

Pentru $z_0 = 0$, folosind seria geometrică, deducem că

$$f(z) = -\frac{2}{1-z} - \frac{3}{4\left(1+\frac{z}{4}\right)}$$
$$= -\sum_{n=0}^{\infty} \left(2 + \frac{3}{4} \cdot \left(-\frac{1}{4}\right)^n\right) z^n, \ |z| < 1.$$

Pentru $z_0 = -4$, notând $u = z + 4 \Leftrightarrow z = u - 4$,

$$f(z) = g(u) = \frac{2}{u - 5} - \frac{3}{u} = -\frac{2}{5\left(1 - \frac{u}{5}\right)} - \frac{3}{u}$$
$$= -\frac{3}{u} - \frac{2}{5} \sum_{n=0}^{\infty} \left(\frac{u}{5}\right)^n, \ |u| < 5.$$

Prin urmare,

$$f(z) = -\frac{3}{z+4} - \frac{2}{5} \sum_{n=0}^{\infty} \left(\frac{z+4}{5}\right)^n, \ z \in \Delta(-4;5) \setminus \{-4\}.$$

Pentru $z_0 = j$, fie $u = z - j \Leftrightarrow z = u + j$. De aici,

$$f(z) = h(u) = \frac{2}{u+j-1} - \frac{3}{u+j+4}$$

$$\begin{split} &= \frac{2}{(j-1)\left(1+\frac{u}{j-1}\right)} - \frac{3}{(j+4)\left(1+\frac{u}{j+4}\right)} \\ &= -\frac{j+1}{1+\frac{u}{j-1}} + \frac{3(j-4)}{17\left(1+\frac{u}{j+4}\right)} \\ &= -(1+j)\sum_{n=0}^{\infty} (-1)^n \cdot \left(\frac{u}{j-1}\right)^n + \frac{3(j-4)}{17}\sum_{n=0}^{\infty} (-1)^n \cdot \left(\frac{u}{j+4}\right)^n \\ &= -(1+j)\sum_{n=0}^{\infty} \left(\frac{1+j}{2}\right)^n \cdot u^n + \frac{3(j-4)}{17}\sum_{n=0}^{\infty} \left(\frac{j-4}{17}\right)^n \cdot u^n \\ &= \sum_{n=0}^{\infty} \left(-\frac{(1+j)^{n+1}}{2^n} + \frac{3(-4+j)^{n+1}}{17^{n+1}}\right) \cdot u^n, \quad |u| < \sqrt{2}, \end{split}$$

deci

$$f(z) = \sum_{n=0}^{\infty} \left(-\frac{(1+j)^{n+1}}{2^n} + \frac{3(-4+j)^{n+1}}{17^{n+1}} \right) \cdot (z-j)^n, \ z \in \Delta(j; \sqrt{2}).$$

b) Notând $u = z + j \Leftrightarrow z = u - j$, obținem

$$f(z) = g(u) = (u-j)^3 \text{sh}u = (u^3 - 3u^2j - 3u + j) \sum_{n=0}^{\infty} \frac{u^{2n+1}}{(2n+1)!}$$
$$= \left((z+j)^3 - 3(z+j)^2j - 3(z+j) + j \right) \sum_{n=0}^{\infty} \frac{(z+j)^{2n+1}}{(2n+1)!}.$$

De exemplu, $a_1 = j$.

c) Fie $u = z + 1 \Leftrightarrow z = u - 1$. Atunci

$$f(z) = g(u) = \sin^3 u = \frac{3}{4} \sin u - \frac{1}{4} \sin 3u = \frac{3}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} u^{2n+1} \left(1 - 3^{2n}\right)$$
$$= \frac{3}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(1 - 3^{2n}\right) (z+1)^{2n+1}.$$

d)
$$f(z) = \log\left(1 + 2\sqrt{2}z^3\right) - \log\left(1 + \sqrt{2}z\right)$$

= $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(2\sqrt{2}z^3\right)^n - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\sqrt{2}z\right)^n = \sum_{n=1}^{\infty} a_n z^n$,

unde
$$a_n = \frac{(-1)^n}{n} 2^{n/2}$$
, dacă $n \neq 3k$ și $a_{3k} = \frac{(-1)^{k-1}}{3k} 2^{(3k+2)/2}$, $|z| < \frac{\sqrt{2}}{2}$.

e)
$$f(z) = \log(1 - jz) - \log(1 + jz)$$

$$= 4\pi j + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (-jz)^n - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (jz)^n$$

$$= 4\pi j + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (jz)^n ((-1)^n - 1)$$

$$= 4\pi j + \sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{2n} (jz)^{2n} ((-1)^{2n} - 1)$$

$$+ \sum_{n=0}^{\infty} \frac{(-1)^{2n}}{2n+1} (jz)^{2n+1} ((-1)^{2n+1} - 1)$$

$$= 4\pi j + 2j \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1} z^{2n+1}, |z| < 1.$$

f) Notăm u = z + 1 și efectuăm produsul seriilor

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + \dots$$

și

$$e^{1/u} = 1 + \frac{1}{u \cdot 1!} + \frac{1}{u^2 \cdot 2!} + \frac{1}{u^3 \cdot 3!} + \dots$$

De exemplu, $a_0 = \cosh 1 - \sinh 1 = \frac{1}{e}$.

g)
$$f(z) = \frac{1}{z-1} - \frac{1}{z+1} + \frac{1}{(z+1)^2}$$
 (a se vedea *Exemplul 4.2.1*).

h)
$$f(z) = \frac{2}{z+2} - \frac{1}{z+1}$$
 (a se vedea *Exemplul 4.2.1*).

i) Punând $u = z + j \Leftrightarrow z = u - j$, obținem

$$f(z) = g(u) = \frac{1}{u} \operatorname{ch} j(u - j) = \frac{1}{u} \cos(u - j) = \frac{1}{u} (\cos u \operatorname{ch} 1 + j \sin u \operatorname{sh} 1)$$

$$= \operatorname{ch} 1 \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n-1}}{(2n)!} + j \operatorname{sh} 1 \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n+1)!}$$

$$= \operatorname{ch} 1 \sum_{n=-1}^{\infty} (-1)^{n+1} \frac{(z+j)^{2n+1}}{(2n+2)!} + j \operatorname{sh} 1 \sum_{n=0}^{\infty} (-1)^n \frac{(z+j)^{2n}}{(2n+1)!}$$

$$= \sum_{n=-1}^{\infty} a_n (z+j)^n, \quad \forall z \neq j,$$

unde
$$a_{2n} = j \frac{(-1)^n \sinh 1}{(2n+1)!}$$
, $n \ge 0$, iar $a_{2n+1} = \frac{(-1)^{n+1} \cosh 1}{(2n+2)!}$, $n \ge -1$.

Teorema reziduurilor și aplicații

5.1 Singularitățile unei funcții complexe

Fie $D \subseteq \mathbb{C}$ un domeniu și $f: D \to \mathbb{C}$ o funcție complexă.

- ♣ Un punct $z_0 ∈ D$ se numește **punct ordinar** pentru f dacă există un disc $\Delta(z_0; r)$, r > 0 a.î. $\Delta(z_0; r) ⊆ D$ și f este olomorfă pe $\Delta(z_0; r)$ ($f ∈ \mathcal{H}(\Delta(z_0; r); r)$). În acest caz, seria Laurent a funcției f în jurul lui z_0 se reduce la partea sa tayloriană.
- **4** Un punct $z_0 \in \mathbb{C}$ se numește **punct singular** pentru f dacă în orice disc $\Delta(z_0; r)$, r > 0, există puncte în care f este monogenă și puncte în care f nu este monogenă.
- ♣ Un punct singular $z_0 \in \mathbb{C}$ este un **punct singular izolat** pentru f dacă există un disc $\Delta(z_0; \rho)$, $\rho > 0$, a.î. z_0 este unicul punct singular al funcției f în acest disc.
- **♣** Un punct singular izolat $z_0 \in \mathbb{C}$ este un **punct singular eliminabil** (aparent) pentru f dacă și numai dacă limita $\lim_{z\to z_0} f(z)$ există și este finită.

Prin urmare, apare următoarea clasificare a punctelor singulare izolate neeliminabile z_0 (dacă nu există limita finită $\lim_{z\to z_0} f(z)$). Deci,

- ♣ dacă z_0 este un punct singular izolat pentru f și $\nexists \lim_{z\to z_0} f(z)$, atunci z_0 se numește **punct singular esențial** pentru f;
- **4** dacă z_0 este un punct singular izolat pentru f și $\lim_{z\to z_0} f(z) = \infty$, atunci z_0 se numește **pol** pentru f. Mai mult, există un unic $n \in \mathbb{N}^*$ (numit **ordin al polului**) și o unică funcție olomorfă $g: D \cup \{z_0\} \to \mathbb{C}$, astfel încât $g(z) = (z z_0)^n f(z)$, $\forall z \in D$ și $g(z_0) \neq 0$. Dacă n = 1, 2 sau 3, atunci z_0 se numește pol simplu, dublu, respectiv triplu.

Punctele singulare izolate se pot caracteriza și cu ajutorul seriilor Laurent. Astfel,

- ♣ dacă partea principală a seriei Laurent a funcției f în jurul punctului z_0 este nulă (adică $a_n = 0$, $\forall n \leq -1$), atunci punctul z_0 este un **punct** ordinar pentru f sau o singularitate eliminabilă;
- ♣ dacă partea principală a seriei Laurent a funcției f în jurul punctului z_0 conține un număr finit de termeni, adică există $n \in \mathbb{N}^*$ astfel încât

 $a_{-n} \neq 0$ și $a_{-m} = 0$, $\forall m \geq n+1$, atunci z_0 este un **pol de ordin** n pentru f. Pe de altă parte, ordinul polului z_0 pentru funcția f coincide cu ordinul zeroului $z = z_0$ pentru funcția $g = \frac{1}{f}$;

• dacă partea principală a seriei Laurent a funcției f în jurul punctului z_0 conține o infinitate de termeni, atunci z_0 este un **punct singular** esențial pentru f.

5.1.1 Exemple

a) Fie
$$f: \mathbb{C} \setminus \{0, 2j\} \to \mathbb{C}, f(z) = \frac{\sinh z}{z(z-2j)}$$
.

Punctul $z_0 = 0$ este o singularitate eliminabilă (punct singular aparent) deoarece

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sinh z}{z} \cdot \lim_{z \to 0} \frac{1}{z - 2j} \xrightarrow{\underline{t'H}} \lim_{z \to 0} \frac{(\sinh z)'}{z'} \cdot \frac{1}{(-2j)} = -\frac{\cosh 0}{2j} = \frac{j}{2},$$

adică este finită. Punctul $z_1=2j$ este un pol simplu (n=1), deoarece $\lim_{z\to 2j} f(z)=\infty$, iar funcția

$$g(z) = \frac{1}{f(z)} = \frac{z(z - 2j)}{\sinh z}$$

îl are pe $z_1=2j$ drept zero simplu.

b) Fie
$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, f(z) = \frac{e^{\frac{1}{z}}}{z}$$
.

Punctul $z_0 = 0$ este un punct singular esential deoarece

$$f(z) = \frac{1}{z} + \frac{1}{z^2 \cdot 1!} + \frac{1}{z^3 \cdot 2!} + \dots,$$

adică dezvoltarea în serie Laurent a lui f în jurul lui $z_0 = 0$ are o infinitate de termeni nenuli $(a_{-n} = \frac{1}{(n-1)!}, \forall n \in \mathbb{N}^*).$

c) Fie
$$f: \mathbb{C} \setminus \{-2, 1\} \to \mathbb{C}, f(z) = \frac{19z + 35}{(z-1)(z+2)^3}.$$

Folosind dezvoltările în serie Laurent ale funcției f în jurul punctelor $z_0 = 0$, $z_1 = -2$ și $z_2 = 1$ (a se vedea *Exemplul 4.2.1*), deducem că z_0 este punct ordinar, z_1 este pol de ordinul 3, iar z_2 este pol simplu pentru funcția f.

♣ Dacă

$$f(z) = \frac{g(z)}{q(z)},$$

unde g este o funcție olomorfă pe \mathbb{C} , iar q(z) este un polinom cu rădăcinile $z_1, z_2, \ldots z_n$, astfel încât $g(z_k) \neq 0, 1 \leq k \leq n$, atunci punctele singulare ale funcției f(z) sunt $z_1, z_2, \ldots z_n$. Fiecare din aceste puncte singulare este un pol cu ordinul de multiplicitate egal cu ordinul de multiplicitate al rădăcinii pentru polinomul q(z).

5.1.2 Exemple

a) Fie $f: \mathbb{C} \setminus \{0, \pm (1+j)\} \to \mathbb{C}$,

$$f(z) = \frac{e^{1+\text{ch}z} + \sin(\text{sh}z)}{z(z^2 - 2j)^2} = \frac{e^{1+\text{ch}z} + \sin(\text{sh}z)}{z(z - 1 - j)^2(z + 1 + j)^2}.$$

Punctele singulare ale funcției f sunt $z_0 = 0$ (pol simplu) și $z_{1,2} = \pm (1+j)$ (poli dubli), deoarece $g(0) \neq 0$ și $g(\pm (1+j)) \neq 0$, unde

$$g(z) = e^{1 + \operatorname{ch} z} + \sin(\operatorname{sh} z).$$

b) Fie $f: \mathbb{C} \setminus \{1, j\} \to \mathbb{C}$,

$$f(z) = \frac{\operatorname{ch}\left(\frac{\pi}{2}jz\right)}{(z-1)^2(z-j)^3}.$$

Avem $g(z) = \operatorname{ch}\left(\frac{\pi}{2}jz\right)$, respectiv $q(z) = (z-1)^2(z-j)^3$. Rădăcinile polinomului q sunt $z_1 = 1$ (dublă) și $z_2 = j$ (triplă). Observăm de asemenea că $g(j) = \operatorname{ch}\left(\frac{\pi}{2}j^2\right) = \operatorname{ch}\frac{\pi}{2} \neq 0$, iar $g(1) = \operatorname{ch}\left(\frac{\pi}{2}j\right) = \cos\frac{\pi}{2} = 0$. De aici, deducem că z_2 este pol triplu, însă z_1 nu este pol dublu.

Pentru z_1 scriem

$$f(z) = \frac{\operatorname{ch}(\frac{\pi}{2}j)}{z-1} \cdot \frac{1}{(z-1)(z-j)^3}$$

și constatăm că limita

$$\lim_{z \to 1} \frac{\operatorname{ch}\left(\frac{\pi}{2}jz\right)}{z - 1} \xrightarrow{\underline{l'H}} \lim_{z \to 1} \frac{\left(\operatorname{ch}\left(\frac{\pi}{2}jz\right)\right)'}{(z - 1)'}$$

$$= \lim_{z \to 1} \frac{\pi}{2}j\operatorname{sh}\left(\frac{\pi}{2}jz\right) = \frac{\pi}{2}j^2\operatorname{sin}\frac{\pi}{2} = -\frac{\pi}{2},$$

este finită și nenulă. Evaluând expresia rămasă din funcția f, adică expresia $\frac{1}{(z-1)(z-j)^3}$, deducem că z_1 este doar pol simplu.

Dacă

$$f(z) = g\left(\frac{p(z)}{q(z)}\right),$$

unde p și q sunt două polinoame prime între ele (fără rădăcini comune), iar $g \in \{\exp, \sin, \cos, \sinh, \cosh\}$, atunci rădăcinile lui q(z) sunt punct singulare esențiale pentru funcția f.

c) Dacă $f: \mathbb{C} \setminus \{\pm 2j\} \to \mathbb{C}$,

$$f(z) = \cos\frac{1-z}{z^2+4},$$

atunci $z_{1,2} = \pm 2j$ sunt puncte singulare esențiale pentru f.

5.2 Reziduuri. Calculul reziduurilor

Fie $f \in \mathcal{H}(D)$, $D \subseteq \mathbb{C}$ un domeniu și z_0 un punct singular izolat (pol de orice ordin sau punct singular esențial) al funcției f. Fie, de asemenea, r > 0 astfel încât $\bar{\Delta}(z_0; r) \setminus \{z_0\} \subseteq D$ și $\gamma = \Gamma(z_0; r)$. Atunci reziduul funcției f în punctul z_0 este definit de egalitatea

$$\operatorname{Rez}(f; z_0) = \frac{1}{2\pi j} \int_{\gamma} f(z) dz.$$

♣ Dacă

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

= \dots + \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + \dots + \frac{a_n}{(z - z_0)^n} + \dots

este dezvoltarea funcției f în serie Laurent în jurul punctului z_0 , atunci

$$Rez(f; z_0) = a_{-1},$$

adică $\operatorname{Rez}(f;z_0)$ este coeficientul lui $\frac{1}{z-z_0}$ din această dezvoltare.

Reziduul punctului de la infinit este egal cu același coeficient înmulțit cu <math>-1, adică

$$\operatorname{Rez}(f; \infty) = -a_{-1}$$

din dezvoltarea în serie Laurent în exteriorul unei coroane circulare

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n, \ |z| > R,$$

cu centrul în origine.

- ♣ Dacă z_0 este un punct ordinar sau o singularitate eliminabilă, atunci partea principală a seriei Laurent de mai sus este nulă $(a_{-n} = 0, \forall n \geq 1)$, deci $a_{-1} = 0$ și, prin urmare, $\text{Rez}(f; z_0) = 0$.
 - ♣ Calculul reziduului pentru poli Dacă z_0 este un pol de ordinul $n \in \mathbb{N}^*$, atunci

(5.1)
$$\operatorname{Rez}(f; z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} ((z-z_0)^n f(z))^{(n-1)}.$$

În particular, dacă z_0 este pol dublu (n=2), atunci

$$\operatorname{Rez}(f; z_0) = \lim_{z \to z_0} ((z - z_0)^2 f(z))'.$$

♣ Calculul reziduului pentru poli simpli

 $Metoda\ I$

Din formula (5.1), pentru n = 1, obținem

$$Rez(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$

Metoda II

Dacă $f(z) = \frac{g(z)}{h(z)}$, unde g și h sunt olomorfe într-o vecinătate a punctului z_0 , cu $g(z_0) \neq 0$, $h(z_0) = 0$ și $h'(z_0) \neq 0$ (condiția pentru pol simplu), atunci

$$\operatorname{Rez}(f; z_0) = \frac{g(z)}{h'(z)} \bigg|_{z=z_0}.$$

5.2.1 Exemple

a) Fie $f: \mathbb{C} \setminus \{1, j\} \to \mathbb{C}$,

$$f(z) = \frac{\sin 2\pi z}{z^2 - (1+i)z + i} = \frac{\sin 2\pi z}{(z-1)(z-i)}.$$

Rădăcinile numitorului sunt $z_1 = 1$ și $z_2 = j$. Deoarece limita

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \frac{1}{z - j} \cdot \lim_{z \to 1} \frac{\sin 2\pi z}{z - 1}$$
$$\frac{\ell' H}{1 - j} \cdot \lim_{z \to 1} 2\pi \cos 2\pi z = \pi (1 + j)$$

este finită, $z_1 = 1$ este un punct singular aparent (singularitate eliminabilă) pentru f și Rez(f; 1) = 0. Pe de altă parte, cum

$$\sin 2\pi z \Big|_{z=j} = \sin 2\pi j = j \operatorname{sh} 2\pi = j \frac{e^{4\pi} - 1}{2e^{2\pi}} \neq 0,$$

 $z_2 = j$ este un pol simplu (z_2 este rădăcină simplă pentru polinomul de la numitor). În final, Rez(f;j) se poate calcula cu formula pentru poli de ordinul 1, adică

$$Rez(f; j) = \lim_{z \to j} (z - j) \cdot \frac{\sin 2\pi z}{(z - 1)(z - j)} = \frac{\sin 2\pi j}{j - 1} = (1 - j) \cdot \frac{\sinh 2\pi z}{2}$$

sau

$$\operatorname{Rez}(f; j) = \frac{\sin 2\pi j}{(z-1)(z-j)'} \bigg|_{z=j} = (1-j) \cdot \frac{\sinh 2\pi}{2}.$$

Pentru a calcula reziduul într-un pol de ordinul n este de preferat să folosim mai degrabă formulele specifice de mai sus, decât să folosim metoda generală de calcul a reziduului care constă în dezvoltarea funcției în serie Laurent în jurul punctului și determinarea lui a_{-1} .

b) Reluând funcția $f: \mathbb{C} \setminus \{-2, 1\} \to \mathbb{C}$,

$$f(z) = \frac{19z + 35}{(z-1)(z+2)^3},$$

din Exemplul 4.2.1, observăm că $z_1 = 1$ este pol simplu, iar $z_2 = -2$ este pol de ordinul 3. Mai mult, folosindu-ne de dezvoltările în serie Laurent pe care le-am făcut în jurul punctelor z_1 și respectiv z_2 , deducem că Rez(f;1) = 2, iar Rez(f;-2) = -2.

Pe de altă parte, reziduurile se pot calcula și cu formulele mai sus menționate, și anume

$$\operatorname{Rez}(f;1) = \frac{19z + 35}{(z-1)'(z+2)^3} \bigg|_{z=1} = 2,$$

iar

$$\operatorname{Rez}(f; -2) = \frac{1}{2!} \cdot \lim_{z \to -2} \left((z+2)^3 \cdot \frac{19z + 35}{(z-1)(z+2)^3} \right)''$$
$$= \frac{1}{2} \cdot \left(\frac{19z + 35}{z-1} \right)'' \bigg|_{z=-2} = \frac{54}{(z-1)^3} \bigg|_{z=-2} = -2.$$

• Calculul reziduului în punctul de la infinit $(z_0 = \infty)$

Natura punctului $z_0 = \infty$ pentru funcția f(z) coincide cu natura punctului $z_0 = 0$ pentru funcția $g(z) = f\left(\frac{1}{z}\right)$ și, în general,

$$\operatorname{Rez}(f;\infty) = -\operatorname{Rez}\left(\frac{1}{z^2}f\left(\frac{1}{z}\right);0\right).$$

 $Dac\check{a} \lim_{|z| \to \infty} f(z) = 0, \ atunci$

$$\operatorname{Rez}(f; \infty) = -\lim_{|z| \to \infty} z f(z).$$

 $Dac\check{a} \lim_{|z| \to \infty} f(z) = c \neq 0, \ atunci$

$$\operatorname{Rez}(f; \infty) = \lim_{|z| \to \infty} z^2 f'(z).$$

5.2.2 Exemplu

Fie $f: \mathbb{C}^* \to \mathbb{C}$, $f(z) = z^2 e^{3j/z}$.

Dezvoltând în serie Laurent funcția f în jurul lui $z_0 = 0$,

$$f(z) = z^{2} \left(1 + \frac{3j}{z \cdot 1!} + \frac{(3j)^{2}}{z^{2} \cdot 2!} + \frac{(3j)^{3}}{z^{3} \cdot 3!} + \frac{(3j)^{4}}{z^{4} \cdot 4!} + \dots \right)$$
$$= z^{2} + \frac{3jz}{1!} + \frac{(3j)^{2}}{2!} + \frac{(3j)^{3}}{z \cdot 3!} + \frac{(3j)^{4}}{z^{2} \cdot 4!} + \dots,$$

observăm că z_0 este un punct singular esențial (partea principală având un număr infinit de termeni) și

Rez
$$(f;0)$$
 = coeficientul lui $\frac{1}{z} = a_{-1} = \frac{(3j)^3}{3!} = -\frac{9j}{2}$.

Pe de altă parte, natura punctului $z_0 = \infty$ pentru f fiind aceeași cu

cea a punctului $z_0 = 0$ pentru g, unde

$$g(z) = f\left(\frac{1}{z}\right) = \frac{1}{z^2}e^{3jz},$$

deducem că $z_0 = \infty$ este un pol dublu. În final,

$$\operatorname{Rez}(f;\infty) = -\operatorname{Rez}\left(\frac{1}{z^2}f\left(\frac{1}{z}\right);0\right) = -\operatorname{Rez}\left(\frac{1}{z^4}e^{3jz};0\right).$$

De aici rezultă că z_0 este un pol de ordinul 4 pentru funcția $h(z)=\frac{1}{z^4}e^{3jz}$ și, astfel

$$\operatorname{Rez}(f; \infty) = -\frac{1}{3!} \lim_{z \to 0} \left(z^4 \cdot \frac{e^{3jz}}{z^4} \right)^{\prime \prime \prime} = -\frac{1}{6} \left(e^{3jz} \right)^{\prime \prime \prime} \bigg|_{z=0} = \frac{9j}{2}.$$

5.3 Teorema reziduurilor și a semireziduurilor

5.3.1 Teorema reziduurilor

Fie γ o curbă simplă, netedă (sau netedă pe porțiuni), închisă și f o funcție complexă, cu următoarele proprietăți:

- 1) f este olomorfă în $Int(\gamma) \setminus \{z_1, z_2, ..., z_n\}$, unde $z_1, z_2, ..., z_n$ sunt poli de orice ordin sau puncte singulare esențiale;
 - 2) f este continuă pe γ .

Atunci

$$\int_{\gamma} f(z)dz = 2\pi j \sum_{k=1}^{n} \operatorname{Rez}(f; z_k).$$

5.3.2 Teoremă

Daă z_1, z_2, \ldots, z_n sunt toate punctele singulare ale funcției complexe f (adică f este olomorfă pe domeniul $D = \mathbb{C} \setminus \{z_1, z_2, \ldots, z_n\}$), atunci

$$\sum_{k=1}^{n} \operatorname{Rez}(f; z_k) + \operatorname{Rez}(f; \infty) = 0.$$

5.3.3 Teorema semireziduurilor

Fie γ o curbă simplă, netedă (sau netedă pe porțiuni), închisă și f o funcție complexă, cu următoarele proprietăți:

1) f este olomorfă în $Int(\gamma) \setminus \{a_1, a_2, \ldots, a_n\}$, unde a_1, a_2, \ldots, a_n sunt poli de orice ordin sau puncte singulare esențiale;

2) f este continuă pe $\gamma \setminus \{b_1, b_2, \dots, b_m\}$, unde b_1, b_2, \dots, b_m sunt **poli** simpli pentru f.

Atunci

$$\int\limits_{\gamma} f(z)dz = 2\pi j \sum_{k=1}^{n} \operatorname{Rez}(f; a_k) + \pi j \sum_{k=1}^{m} \operatorname{Rez}(f; b_k),$$

integrala din membrul stâng al egalității fiind luată în valoare principală.

5.3.4 Exemplu

Să se calculeze integrala

$$I(r) = \int_{|z+1|=r} \frac{1}{z} \cos \frac{\pi}{z-1} dz, \quad r > 0, \ r \neq 2.$$

Funcția $f: \mathbb{C} \setminus \{0,1\} \to \mathbb{C}$,

$$f(z) = \frac{1}{z} \cos \frac{\pi}{z - 1}$$

are două puncte singulare: $z_0 = 0$ (pol simplu) și $z_1 = 1$ (punct singular esențial). Calculăm în continuare Rez(f;0) și Rez(f;1). Astfel,

(5.2)
$$\operatorname{Rez}(f;0) = \frac{\cos\frac{\pi}{z-1}}{z'}\bigg|_{z=0} = \cos(-\pi) = -1.$$

Pentru a calcula Rez(f;1), dezvoltăm funcția f în serie Laurent în jurul lui $z_1=1$. Notând $u=z-1 \Leftrightarrow z=u+1$, obținem

$$f(z) = g(u) = \frac{1}{1+u} \cos \frac{\pi}{u}$$

$$= \left(1 - u + u^2 - u^3 + \dots\right) \left(1 - \frac{\pi^2}{u^2 \cdot 2!} + \frac{\pi^4}{u^4 \cdot 4!} - \dots\right)$$

$$= 1 - \frac{\pi^2}{u^2 \cdot 2!} + \frac{\pi^4}{u^4 \cdot 4!} - \dots$$

$$- u + \frac{\pi^2}{u \cdot 2!} - \frac{\pi^4}{u^3 \cdot 4!} + \dots$$

$$+ \dots$$

$$- u^3 - \frac{\pi^2 u}{2!} - \frac{\pi^4}{u \cdot 4!} - \dots$$

și, de aici,

$$\operatorname{Rez}(f;1) = \operatorname{Rez}(g;0) = \text{coeficientul lui } \frac{1}{u} \text{ din dezvoltarea lui } g(u)$$
$$= \frac{\pi^2}{2!} - \frac{\pi^4}{4!} + \frac{\pi^6}{6!} - \ldots = 1 - \cos \pi = 2.$$

Merită să menționăm aici că Rez(f;1) se poate determina și cu ajutorul Teoremei 5.3.2, adică este valabilă egalitatea

(5.3)
$$\operatorname{Rez}(f; 0) + \operatorname{Rez}(f; 1) + \operatorname{Rez}(f; \infty) = 0,$$

unde

(5.4)
$$\operatorname{Rez}(f; \infty) = -\operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right)$$
$$= -\operatorname{Rez}\left(\frac{1}{z}\cos\frac{\pi z}{1-z}; 0\right)$$
$$= -\frac{\cos\frac{\pi z}{1-z}}{z'}\bigg|_{z=0} = -\cos 0 = -1,$$

 $z_0 = 0$ fiind un pol simplu pentru funcția

$$h(z) = \frac{1}{z} \cos \frac{\pi z}{1 - z}.$$

Din (5.2), (5.3) și (5.4), deducem că Rez(f;1) = 2.

În continuare, aplicăm Teorema reziduurilor și a semireziduurilor, distingând mai multe cazuri, în funcție de poziția punctelor singulare $z_0 = 0$ și $z_1 = 1$ față de cercul $(\gamma) = \Gamma(-1; r)$ și interiorul său.

Dacă 0 < r < 1, atunci z_0 și z_1 se află în exteriorul cercului (γ) . Din Teorema lui Cauchy-Goursat, deducem că I(r) = 0.

Dacă r=1, atunci z_0 se găsește pe cercul (γ) , iar z_2 în exteriorul lui. Aplicând Teorema semireziduurilor, obținem

$$I(r) = \pi j \operatorname{Rez}(f; 0) = -\pi j.$$

Dacă $1 < r < 2, z_0 \in \text{Int}(\gamma)$, iar z_1 se află în exteriorul cercului (γ) . Prin urmare, aplicând Teorema reziduurilor,

$$I(r) = 2\pi j \operatorname{Rez}(f; 0) = -2\pi j.$$

În final, dacă $r > 2, z_0, z_1 \in \text{Int}(\gamma)$ și

$$I(r) = 2\pi j(\text{Rez}(f; 0) + \text{Rez}(f; 1)) = 2\pi j.$$

5.3.5 Exemplu

Fie $f: \mathbb{C} \setminus \{-1, j\} \to \mathbb{C}$,

$$f(z) = \frac{1}{z+1} \operatorname{sh}\left(\frac{1}{z-j}\right).$$

- a) Să se determine punctele singulare ale lui f;
- b) Să se calculeze $\operatorname{Rez}(f;1+j)$, $\operatorname{Rez}(f;-1)$, $\operatorname{Rez}(f;-j)$, $\operatorname{Rez}(f;j)$ și $\operatorname{Rez}(f;\infty)$;
 - c) Să se calculeze

$$\int_{|z-j|=2^s} f(z)dz$$

pentru $s \in \{-1, 1\}$.

- a) Punctele singulare ale funcției f sunt $z_1 = -1$ (pol simplu) și $z_2 = j$ (punct singular esențial).
- b) Deoarece 1+j și -j sunt puncte ordinare pentru f, deducem că Rez(f;1+j)=Rez(f;-j)=0. Mai departe,

$$\operatorname{Rez}(f; -1) = \lim_{z \to -1} (z+1) \cdot \frac{1}{z+1} \operatorname{sh}\left(\frac{1}{z-j}\right) = \operatorname{sh}\frac{1}{-1-j} = \operatorname{sh}\frac{-1+j}{2}.$$

Pentru a calcula $\mathrm{Rez}(f;j),$ putem proceda în două feluri. Notând $u=z-j \Leftrightarrow z=u+j,$ obținem

$$f(z) = g(u) = \frac{1}{u+1+j} \operatorname{sh} \frac{1}{u} = \frac{1}{(1+j)\left(1+\frac{u}{1+j}\right)} \operatorname{sh} \frac{1}{u} = \frac{1-j}{2} \cdot \frac{1}{1-\frac{j-1}{2}u} \operatorname{sh} \frac{1}{u}$$
$$= \frac{1-j}{2} \cdot \left(1+\frac{j-1}{2}u + \left(\frac{j-1}{2}\right)^2 u^2 + \dots\right) \left(\frac{1}{u} + \frac{1}{u^3 \cdot 3!} + \frac{1}{u^5 \cdot 5!} + \dots\right)$$

și

$$\operatorname{Rez}(f;j) = \operatorname{Rez}(g;0) = \operatorname{coeficientul\ lui} \frac{1}{u} \operatorname{din} g(u)$$
$$= \frac{1-j}{2} \cdot \sum_{n=0}^{\infty} \left(\frac{j-1}{2}\right)^{2n} \cdot \frac{1}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1-j}{2}\right)^{2n+1} \cdot \frac{1}{(2n+1)!} = \sinh\frac{1-j}{2}.$$

Putem aplica de asemenea și Teorema 5.3.2 pentru a calcula $\operatorname{Rez}(f;j)$. Astfel,

$$\operatorname{Rez}(f; -1) + \operatorname{Rez}(f; j) + \operatorname{Rez}(f; \infty) = 0,$$

unde

$$\operatorname{Rez}(f; \infty) = -\operatorname{Rez}\left(\frac{1}{z^2}f\left(\frac{1}{z}\right); 0\right)$$

$$= -\operatorname{Rez}\left(\frac{1}{z^2} \cdot \frac{z}{z+1}\operatorname{sh}\frac{z}{1-jz}; 0\right)$$

$$= -\operatorname{Rez}\left(\frac{1}{z(z+1)}\operatorname{sh}\frac{z}{1-jz}; 0\right) = -\operatorname{Rez}(g(z); 0).$$

Deoarece

$$\lim_{z \to 0} g(z) = \lim_{z \to 0} \frac{\sinh \frac{z}{1 - jz}}{\frac{z}{1 - jz}} \cdot \lim_{z \to 0} \frac{1 - jz}{z + 1} \xrightarrow{\underline{l'H}} 1,$$

deducem că $z_0 = 0$ este un punct aparent pentru funcția g și, prin urmare, $\text{Rez}(f; \infty) = 0$. De aici,

$$\operatorname{Rez}(f;j) = -\operatorname{Rez}(f;-1) - \operatorname{Rez}(f;\infty) = -\operatorname{sh}\frac{-1+j}{2} = \operatorname{sh}\frac{1-j}{2}.$$

c) Dacă s=-1, atunci $z_1=-1$ se află în exteriorul cercului $(\gamma)=\Gamma\left(j;\frac{1}{2}\right)$, iar $z_2=j\in \mathrm{Int}(\gamma)$. Aplicând Teorema reziduurilor,

$$\int_{\gamma} f(z)dz = 2\pi j \operatorname{Rez}(f;j) = 2\pi j \cdot \operatorname{sh} \frac{1-j}{2}.$$

Dacă s = 1, atunci $z_1, z_2 \in \text{Int}(\gamma) = \Gamma(j; 2)$ și

$$\int_{\gamma} f(z)dz = 2\pi j (\operatorname{Rez}(f; -1) + \operatorname{Rez}(f; j)) = 2\pi j \left(\operatorname{sh} \frac{1-j}{2} - \operatorname{sh} \frac{1-j}{2} \right) = 0.$$

Observăm că avem aici o funcție f care nu este olomorfă pe $\mathrm{Int}(\gamma)$ și totuși $\int\limits_{\gamma} f(z)dz=0.$

5.3.6 Exemplu

Să se determine toate singularitățile funcției

$$f(z) = \frac{1}{\sin\frac{1}{z^2}}$$

 $\dot{s}i \ s\check{a} \ se \ calculeze \ \mathscr{I} = \int\limits_{\gamma} f(z)dz, \ \mathrm{unde} \ (\gamma) = \left|z - \frac{2}{\sqrt{\pi}}\right| = \frac{1}{\sqrt{\pi}}.$

Singularitățile în planul finit sunt soluțiile ecuației $\sin(1/z^2) = 0$ (care este echivalentă cu $z^2 = \pm (1/k\pi)$, $k \in \mathbb{N}^*$), adică polii simpli $\pm 1/\sqrt{k\pi}$ și $\pm j/\sqrt{k\pi}$, $k \in \mathbb{N}^*$. Observăm de asemenea că $z_0 = 0$ este punct singular neizolat pentru funcția f. Pe de altă parte, natura punctului de la infinit este natura lui 0 pentru $f(1/z) = 1/\sin^2 z$, deci $z = \infty$ este pol dublu.

Cât privește calculul integralei \mathscr{I} , observăm că nu există singularități în interiorul lui (γ) , ci doar un punct pe curba (γ) , și anume $z_1 = 1/\sqrt{\pi}$. Prin urmare, din Teorema semireziduurilor deducem că

$$\mathscr{I} = \pi j \operatorname{Rez}\left(f; \frac{1}{\sqrt{\pi}}\right) = \frac{\pi}{\left(\sin\frac{1}{z^2}\right)'} \Big|_{z=\frac{1}{\sqrt{\pi}}}$$
$$= -\pi j \cdot \frac{z^3}{2\cos\frac{1}{z^2}} \Big|_{z=\frac{1}{\sqrt{\pi}}} = \frac{j\sqrt{\pi}}{2\pi}.$$

Vom prezenta în continuare câteva aplicații ale Teoremei reziduurilor și semireziduurilor.

5.4 Integrale de tipul

$$\mathscr{I} = \int_{a}^{a+2\pi} R(\sin x, \cos x) dx, \ a \in \mathbb{R}$$

unde $R(\sin x, \cos x) = \frac{p(\sin x, \cos x)}{q(\sin x, \cos x)}$, cu p și q polinoame prime între ele, iar $q(\sin x, \cos x) \neq 0$, $\forall x \in \mathbb{R}$.

Deoarece funcțiile sin și cos sunt periodice de perioadă 2π , are loc egalitatea

$$\mathscr{I} = \int_a^{a+2\pi} R(\sin x, \cos x) dx = \int_0^{2\pi} R(\sin x, \cos x) dx.$$

Notând $e^{jx} = z$, rezultă că jzdx = dz și

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j} = \frac{z^2 - 1}{2jz}, \ \cos x = \frac{e^{jx} + e^{-jx}}{2j} = \frac{z^2 + 1}{2z}.$$

Pe de altă parte, atunci când $x \in [0, 2\pi]$, z parcurge cercul unitate $(z \in \Gamma(0; 1) \Leftrightarrow |z| = 1)$. De aici,

$$\mathscr{I} = \int_{|z|=1} R\left(\frac{z^2-1}{2jz}; \frac{z^2+1}{2z}\right) \frac{1}{jz} dz = \int_{|z|=1} R_1(z) dz.$$

Folosind Teorema reziduurilor, obținem

(5.5)
$$\mathscr{I} = \int_{a}^{a+2\pi} R(\sin x, \cos x) dx = 2\pi j \sum_{|z_k| < 1} \text{Rez}(R_1; z_k),$$

unde $z_1, z_2, \ldots z_n$ sunt polii funcției raționale $R_1(z)$ situați în discul unitate $\Delta(0;1)$ (adică $|z_k| < 1$, $k = \overline{1,n}$).

♣ Analog se calculează integralele de forma

$$\mathscr{I}_1 = \int_a^{a+2\pi} R(\sin x, \cos x) \cos mx dx$$

și

$$\mathscr{I}_2 = \int_a^{a+2\pi} R(\sin x, \cos x) \sin mx dx,$$

dacă avem în vedere relațiile

$$\sin mx = \frac{z^{2m} - 1}{2jz^m}$$
 și $\cos mx = \frac{z^{2m} + 1}{2z^m}$, cu $z = e^{jx}$.

Se poate de asemenea să formăm expresia

$$\mathscr{I}_1 + j\mathscr{I}_2 = \int_a^{a+2\pi} R(\sin x, \cos x) e^{jmx} dx,$$

iar apoi să folosim substituția $e^{jx} = z$. Obținem astfel

$$\mathscr{I}_1 + j\mathscr{I}_2 = \int_{|z|=1} z^m R_1(z) dz,$$

care se calculează similar cu (5.5). Este de preferat totuși să folosim această metodă de calcul al integralei, deoarece calculele sunt mai scurte decât cele care rezultă din prima metodă.

5.4.1 Exemplu

Să se calculeze integrala

$$\mathscr{I} = \int_{-\pi}^{\pi} \frac{1 + \sin x}{2 - \cos x} dx.$$

Observăm mai întâi că

$$\mathscr{I} = \int_{-\pi}^{\pi} \frac{\sin x}{2 - \cos x} dx + \int_{-\pi}^{\pi} \frac{dx}{2 - \cos x} = 0 + \int_{0}^{2\pi} \frac{dx}{2 - \cos x} \in \mathbb{R},$$

prima integrală din membrul drept având valoarea 0 deoarece integrantul este o funcție impară.

Notând
$$e^{jx} = z$$
, rezultă că $jzdx = dz$, $\cos x = \frac{z^2 + 1}{2z}$ și

$$\mathcal{I} = \int_{|z|=1} \frac{1}{2 - \frac{z^2 + 1}{2z}} \cdot \frac{1}{jz} dz$$

$$= 2j \int_{|z|=1} \frac{1}{z^2 - 4z + 1} dz = 2j \int_{|z|=1} f(z) dz.$$

În continuare, deoarece polii simpli ai funcției f sunt $z_1 = 2 + \sqrt{3}$ și $z_2 = 2 - \sqrt{3}$, cu $|z_1| > 1$ și $|z_2| < 1$, din Teorema reziduurilor obținem

$$\mathcal{J} + j\mathcal{J} = 2j \cdot 2\pi j \text{Rez}(f; 2 - \sqrt{3}) = -4\pi \frac{1}{(z^2 - 4z + 1)'} \bigg|_{z = 2 - \sqrt{3}}$$
$$= -\frac{2\pi}{z - 2} \bigg|_{z = 2 - \sqrt{3}} = \frac{2\pi\sqrt{3}}{3}.$$

5.4.2 Exemplu

Să se calculeze integrala

$$\mathscr{I} = \int_0^{4\pi} \frac{\cos^2 10x}{5 - 4\cos x} dx.$$

Liniarizăm mai întâi funcția cosinus și obținem

$$\mathscr{I} = 2 \int_0^{2\pi} \frac{\cos^2 10x}{5 - 4\cos x} dx = \int_0^{2\pi} \frac{1 + \cos 20x}{5 - 4\cos x} dx.$$

Apoi atașăm integrala $\mathscr{J} = \int_0^{2\pi} \frac{\sin 20x}{5 - 4\cos x} dx$ și formăm expresia

$$\mathscr{I} + j \mathscr{J} = \int_0^{2\pi} \frac{1 + e^{20jx}}{5 - 4\cos x} dx.$$

Efectuând substituția $e^{jx} = z \Longrightarrow dx = \frac{1}{jz}dz$, obținem

$$\begin{aligned} \mathscr{I} + j \mathscr{J} &= \int\limits_{|z|=1} \frac{1 + z^{20}}{5 - 4 \cdot \frac{z^2 + 1}{2z}} \cdot \frac{1}{jz} dz \\ &= -\frac{1}{j} \int\limits_{|z|=1} \frac{z^{20} + 1}{2z^2 - 5z + 2} dz = -\frac{1}{j} \int\limits_{|z|=1} f(z) dz. \end{aligned}$$

Cum ecuația $2z^2-5z+2=0$ are rădăcinile $z_1=2$ și $z_2=\frac{1}{2}$, polii funcției f sunt z_1 și z_2 , cu $|z_1|>1$ și $|z_2|<1$. Din Teorema reziduurilor, rezultă că

$$\mathscr{I} + j \mathscr{J} = -\frac{1}{j} \cdot 2\pi j \operatorname{Rez}(f; z_2) = -2\pi \cdot \frac{z^{20} + 1}{(2z^2 - 5z + 2)'} \bigg|_{z = \frac{1}{2}}$$
$$= -2\pi \frac{z^{20} + 1}{4z - 5} \bigg|_{z = \frac{1}{2}} = \frac{2\pi}{3} \left(1 + 2^{-20} \right).$$

În final, $\mathscr{I} = \frac{2\pi}{3} \left(1 + 2^{-20}\right)$, adică partea reală a expresiei din membrul drept.

5.4.3 Exemplu

Să se calculeze

$$\mathscr{I} = \int_{\pi}^{5\pi} (1 - \sin x)^{92} \sin 43x \, dx.$$

Avem

$$\mathscr{I} = 2\int_0^{2\pi} (1 - \sin x)^{92} \sin 43x \, dx.$$

Ataşăm integrala $\mathscr{J} = 2\int_0^{2\pi} (1-\sin x)^{92} \cos 43x \, dx$ și formăm expresia

$$\begin{split} \mathscr{J} + j\mathscr{I} &= 2 \int_0^{2\pi} (1 - \sin x)^{92} e^{43jx} \, dx \\ &= \frac{e^{jx} = z}{2} \int_{|z| = 1} \left(1 - \frac{z^2 - 1}{2jz} \right)^{92} \cdot z^{43} \cdot \frac{1}{jz} dz \\ &= 2 \int_{|z| = 1} \frac{(-z^2 + 2jz + 1)^{92}}{z^{50}} \cdot \frac{1}{2^{92}j} dz \\ &= -\frac{j}{2^{91}} \int_{|z| = 1} \frac{(-z^2 + 2jz + 1)^{92}}{z^{50}} dz \\ &= -\frac{j}{2^{91}} \int_{|z| = 1} \frac{\left((jz + 1)^2 \right)^{92}}{z^{50}} dz = -\frac{j}{2^{91}} \int_{|z| = 1} \frac{(jz + 1)^{184}}{z^{50}} dz. \end{split}$$

Observăm că $z_0=0$ este un pol de pr
dinul 50 pentru funcția

$$f(z) = \frac{(jz+1)^{184}}{z^{50}}.$$

Pe de altă parte,

$$f(z) = \frac{1}{z^{50}}(jz+1)^{184} = \frac{1}{z^{50}} \sum_{k=0}^{184} C_{184}^k (jz)^k,$$

de unde rezultă că $\text{Rez}(f;0) = \text{coeficientul lui } \frac{1}{z} = \text{C}_{184}^{49} j^{49} = j \text{C}_{184}^{49}.$ În final,

$$\mathscr{J} + j\mathscr{I} = -\frac{j}{2^{91}} \cdot 2\pi j^2 C_{184}^{49} = \frac{\pi j}{2^{90}} C_{184}^{49},$$

de unde obținem $\mathscr{I} = \frac{\pi}{2^{90}} C_{184}^{49}$.

5.5 Integrale de tipul

$$\mathscr{I} = \int_{-\infty}^{\infty} R(x) dx,$$

unde $R(x) = \frac{p(x)}{q(x)}$ cu p și q polinoame prime între ele, $q(x) \neq 0$, $\forall x \in \mathbb{R}$ și grad $q - \text{grad } p \geq 2$.

Are loc egalitatea

(5.6)
$$\int_{-\infty}^{\infty} R(x)dx = 2\pi j \sum_{\text{Im } z_k > 0} \text{Rez}\left(R(z); z_k\right),$$

unde suma din membrul drept se referă la toți polii funcției raționale R(z) situați în semiplanul superior.

5.5.1 Exemplu

Să se calculeze

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{2x^3 + 5x^2 + x + 5}{(x^2 + 1)^2 (x^2 + 4)^2} dx.$$

Înainte de a calcula integrala, o rescriem ca sumă de alte două integrale, și anume

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{2x^3 + x}{(x^2 + 1)^2 (x^2 + 4)^2} dx + \int_{-\infty}^{\infty} \frac{5}{(x^2 + 1)(x^2 + 4)^2} dx$$
$$= 0 + \int_{-\infty}^{\infty} \frac{5}{(x^2 + 1)(x^2 + 4)^2} dx,$$

integrantul primei integrale din membrul drept fiind o funcție impară.

Fie $f: \mathbb{C} \setminus \{\pm j, \pm 2j\} \to \mathbb{C}$,

$$f(z) = \frac{5}{(z^2 + 1)(z^2 + 4)^2}.$$

Polii funcției raționale f sunt $z_{1,2}=\pm j$ (poli simpli) și $z_{3,4}=\pm 2j$ (poli dubli). Deoarece ${\rm Im}(-j)<0$ și ${\rm Im}(-2j)<0$, din (5.6) obținem

$$\mathscr{I} = 2\pi j \left(\operatorname{Rez}(f;j) + \operatorname{Rez}(f;2j) \right)$$

$$= 2\pi j \left(\frac{5}{(z^2+1)'(z^2+4)^2} \bigg|_{z=j} + \frac{1}{1!} \lim_{z \to 2j} \left((z-2j)^2 f(z) \right)' \right)$$

$$= 2\pi j \left(\frac{5}{2z(z^2+4)^2} \bigg|_{z=j} + \left(\frac{5}{(z^2+1)(z+2j)^2} \right)' \bigg|_{z=2j} \right)$$

$$= 2\pi j \left(\frac{5}{18j} - \frac{55}{288j} \right) = \frac{25\pi}{144}.$$

5.5.2 Exemplu

Să se calculeze

a)
$$\mathscr{I}_n(a) = \int_0^\infty \frac{1}{(x^2 + a^2)^n} dx, \ n \ge 1, \ a > 0;$$

b)
$$\mathscr{J} = \int_0^\infty \frac{x^2 + 5}{(x^2 + 4)^7} dx.$$

a) Observăm că polii funcției pare $f(z) = \frac{1}{(z^2 + a^2)^n}$ sunt $z_{1,2} = \pm aj$ (poli de ordinul n). Cum Im(aj) > 0, ținând cont de (5.6), obținem

$$\mathcal{I}_{n}(a) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(x^{2} + a^{2})^{n}} dx = \frac{1}{2} \cdot 2\pi j \operatorname{Rez}(f; aj)$$

$$= \frac{\pi j}{(n-1)!} \lim_{z \to aj} \left((z - aj)^{n} \cdot \frac{1}{(z - aj)^{n}(z + aj)^{n}} \right)^{(n-1)}$$

$$= \frac{\pi j}{(n-1)!} \left((z + aj)^{-n} \right)^{(n-1)} \Big|_{z=aj}$$

$$= \frac{\pi j}{(n-1)!} \cdot \frac{(-1)^{n-1}(2n-2)!}{(n-1)!} \cdot (2aj)^{-2n+1}$$

$$= \frac{\pi (2n-2)!}{(n-1)!^{2}(2a)^{2n-1}}.$$

b) Folosind rezultatul obținut la puncutul a),

$$\mathscr{J} = \int_0^\infty \frac{x^2 + 4 + 1}{(x^2 + 4)^7} dx = \int_0^\infty \frac{1}{(x^2 + 4)^6} dx + \int_0^\infty \frac{1}{(x^2 + 4)^7} dx$$
$$= \mathscr{I}_6(2) + \mathscr{I}_7(2) = \frac{10!\pi}{5!24!1} + \frac{12!\pi}{6!24!3} = \frac{1239\pi}{4!2}.$$

Integrale de tipul
$$\int_{-\infty}^{\infty} R(x)e^{j\lambda x}dx,$$

unde $R(x) = \frac{p(x)}{q(x)}$, $\lambda > 0$, iar p și q sunt polinoame prime între ele astfel încât grad $q - \operatorname{grad} p \ge 1$ și polinomul q are în $\mathbb{C} \setminus \mathbb{R}$ polii z_k , iar în \mathbb{R} doar polii simpli $b_1, b_2, \dots, b_m \in \mathbb{R}$.

Are loc egalitatea

(5.7)
$$\int_{-\infty}^{\infty} R(x)e^{j\lambda x}dx = 2\pi j \sum_{\text{Im } z_k > 0} \text{Rez}\left(R(z)e^{j\lambda z}; z_k\right) + \pi j \sum_{k=1}^{m} \text{Rez}\left(R(z)e^{j\lambda z}; b_k\right),$$

unde integrala se ia în valoare principală.

5.6.1Exemplu

Să se calculeze integrala

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{(x+1)e^{\pi \jmath x}}{x(x^2 - 4x + 8)} dx.$$

Functia $f: \mathbb{C} \setminus \{0, 2 \pm 2j\} \to \mathbb{C}$,

$$f(x) = \frac{(z+1)e^{\pi jz}}{z(z^2 - 4z + 8)},$$

are punctele singulare $z_0=0$ (pol real simplu) și $z_{1,2}=2\pm 2j$ (poli simpli complecși). Cum $\lambda = \pi > 0$, din (5.7) obținem

$$\begin{split} \mathscr{I} &= 2\pi j \mathrm{Rez}(f; 2+2j) + \pi j \mathrm{Rez}(f; 0) \\ &= 2\pi j \frac{(z+1)e^{\pi jz}}{z(z^2 - 4z + 8)'} \bigg|_{z=2+2j} + \pi j \frac{(z+1)e^{\pi jz}}{z'(z^2 - 4z + 8)} \bigg|_{z=0} \\ &= \frac{(3+2j)\pi}{4(1+j)} e^{-2\pi + 2\pi j} + \frac{\pi j}{8} = \frac{(3+2j)\pi}{4(1+j)} e^{-2\pi} (\cos 2\pi + j \sin 2\pi) + \frac{\pi j}{8} \\ &= \frac{(5-j)\pi e^{-2\pi}}{8} + \frac{\pi j}{8} = \frac{\pi}{8} \left((5-j)e^{-2\pi} + j \right). \end{split}$$

5.6.2 Exemplu

Să se calculeze integrala

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{e^{-3jx}}{(x^2 - 2x + 5)^2} dx.$$

Deoarece $\lambda = -3 < 0$, facem mai întâi substituția x = -t (dx = -dt). Astfel,

$$\mathscr{I} = \int_{-\infty}^{-\infty} \frac{e^{3jt}}{(t^2 + 2t + 5)^2} (-dt) = \int_{-\infty}^{\infty} \frac{e^{3jt}}{(t^2 + 2t + 5)^2} dt.$$

Funcția $f: \mathbb{C} \setminus \{-1 \pm 2j\} \to \mathbb{C}$,

$$f(z) = \frac{e^{3jz}}{(z^2 + 2z + 5)^2} = \frac{p(z)}{q(z)}e^{3jz},$$

cu $\lambda = 3 > 0$, p(z) = 1 și $q(z) = (z^2 + 2z + 5)^2$ (grad $q - \text{grad } p \ge 1$), are polii dubli $z_{1,2} = -1 \pm 2j \in \mathbb{C} \setminus \mathbb{R}$. Din (5.7), obținem

$$\mathcal{I} = 2\pi j \operatorname{Rez}(f; -1 + 2j)$$

$$= 2\pi j \lim_{z \to -1 + 2j} \left((z + 1 - 2j)^2 \cdot \frac{e^{3jz}}{(z + 1 - 2j)^2 (z + 1 + 2j)^2} \right)'$$

$$= 2\pi j \lim_{z \to -1 + 2j} \left(\frac{e^{3jz}}{(z + 1 + 2j)^2} \right)' = 2\pi j e^{3jz} \frac{3j(z + 1 + 2j) - 2}{(z + 1 + 2j)^3} \Big|_{z = -1 + 2j}$$

$$= \frac{7\pi}{16e^6} e^{-3j} = \frac{7\pi}{16e^6} (\cos 3 - j \sin 3).$$

5.6.3 Exemplu

Să se calculeze integrala

$$\mathscr{I}(a) = \int_0^\infty \frac{\cos ax}{(x^2 + 4)^3} dx, \ a \in \mathbb{R}.$$

Calculăm $\mathscr{I}(a)$ pentru $a \geq 0$ și constatăm că $\mathscr{I}(-a) = \mathscr{I}(a)$. Deoarece integrantul este o funcție pară,

$$\mathscr{I}(a) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos ax}{(x^2 + 4)^3} dx.$$

Fie

$$\mathscr{J}(a) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin ax}{(x^2 + 4)^3} dx,$$

care este 0, deoarece integrantul este impar și formăm expresia

$$\mathscr{I}(a) + j \mathscr{J}(a) = \mathscr{I}(a) + 0j = \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{ajx}}{(x^2 + 4)^3} dx.$$

Utilizând (5.6) pentru a=0, respectiv (5.7) pentru a>0 și ținând cont de faptul că funcția $f(z)=\frac{e^{ajz}}{(z^2+4)^3}$ are drept puncte singulare polii tripli $z_{1,2}=\pm 2j$, obținem

$$\begin{split} \mathscr{I}(a) &= \frac{1}{2} \cdot 2\pi j \text{Rez} (f; 2j) \\ &= \frac{\pi j}{2!} \lim_{z \to 2j} \left((z - 2j)^3 \cdot \frac{e^{ajz}}{(z - 2j)^3 (z + 2j)^3} \right)'' \\ &= \frac{\pi j}{2} \left(e^{ajz} (z + 2j)^{-3} \right)'' \Big|_{z = 2j} = \frac{\pi j}{2} \sum_{k=0}^{2} C_2^k (e^{ajz})^{(k)} \left((z + 2j)^{-3} \right)^{(2-k)} \Big|_{z = 2j} \\ &= \frac{\pi j}{2} \cdot e^{ajz} \left(\frac{12}{(z + 2j)^5} - \frac{6aj}{(z + 2j)^4} - \frac{a^2}{(z + 2j)^3} \right) \Big|_{z = 2j} \\ &= \frac{\pi}{512e^{2a}} (4a^2 + 6a + 3). \end{split}$$

5.6.4 Exemplu

Să se calculeze integrala lui Laplace

$$\mathscr{I}(a) = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx, \ a > 0.$$

Atașăm integrala

$$\mathscr{J}(a) = \int_{-\infty}^{\infty} \frac{\sin x}{x^2 + a^2} dx$$

și observăm că $\mathscr{J}(a)=0$, deoarece integrantul este o funcție impară. De aici, ținând cont că $z_{1,2}=\pm aj$ sunt poli simpli pentru funcția $f(z)=\frac{e^{jz}}{z^2+a^2}$ și utilizând formula (5.7), obținem

$$\mathscr{I}(a) = \mathscr{I}(a) + j \mathscr{J}(a) = \int_{-\infty}^{\infty} \frac{e^{jx}}{x^2 + a^2} dx$$
$$= 2\pi j \operatorname{Rez}(f; aj) = 2\pi j \frac{e^{jz}}{(z^2 + a^2)'} \bigg|_{z=aj} = \frac{\pi}{ae^a}.$$

5.6.5 Exemplu

Să se calculeze integrala lui Dirichlet

$$\mathscr{I} = \int_0^\infty \frac{\sin x}{x} dx.$$

Integrantul este o funcție pară, deci

$$\mathscr{I} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin x}{x} dx.$$

Fie $\mathscr{J} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x}{x} dx = 0$ și considerăm expresia

$$\mathcal{J} + j\mathcal{J} = j\mathcal{J} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{jx}}{x} dx$$
$$= \frac{\pi j}{2} \cdot \text{Rez}\left(\frac{e^{jz}}{z}; 0\right) = \frac{\pi j}{2} \cdot \frac{e^{jz}}{z'} \bigg|_{z=0} = \frac{\pi j}{2}.$$

De aici, $\mathscr{I} = \frac{\pi}{2}$.

5.6.6 Exemplu

Să se calculeze integrala

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{x e^{-2jx} \operatorname{ch}(3jx)}{x^2 - 6x + 10} dx.$$

Observăm mai întâi că $\mathscr{I}=\int_{-\infty}^{\infty}\frac{xe^{-2jx}\cos 3x}{x^2-6x+10}dx$ și construim

$$\mathscr{J} = \int_{-\infty}^{\infty} \frac{xe^{-2jx} \sin 3x}{x^2 - 6x + 10} dx.$$

De aici, ținând cont că singularitățile funcției $f(z) = \frac{ze^{jz}}{z^2 - 6z + 10}$ sunt polii simpli $z_1 = 3 + j$ și $z_2 = 3 - j$, cu $\text{Im}(z_1) > 0$ și $\text{Im}(z_2) < 0$, din (5.7) obținem

(5.8)
$$\mathscr{I} + j\mathscr{J} = \int_{-\infty}^{\infty} \frac{xe^{jx}}{x^2 - 6x + 10} dx = 2\pi j \operatorname{Rez}(f; 3 + j)$$
$$= 2\pi j \frac{ze^{jz}}{(z^2 - 6z + 10)'} \Big|_{z=3+j} = \pi j \frac{ze^{jz}}{z-3} \Big|_{z=3+j}$$
$$= \frac{\pi}{e} (3\cos 3 - \sin 3 + j(\cos 3 + 3\sin 3)).$$

Totuși, nu putem trage de aici concluzia că $\mathscr{I}=\mathrm{Re}(\mathscr{I}+j\mathscr{J})$, de vreme ce niciuna din integrale \mathscr{I} și \mathscr{J} nu sunt reale. Așadar, pentru a finaliza problema, calculăm și

$$\mathcal{I} - j \mathcal{J} = \int_{-\infty}^{\infty} \frac{xe^{-5jx}}{x^2 - 6x + 10} dx \xrightarrow{\underline{x} = -t} \int_{\infty}^{-\infty} \frac{-te^{5jt}}{t^2 + 6t + 10} (-dt)$$

$$= -\int_{-\infty}^{\infty} \frac{te^{5jt}}{t^2 + 6t + 10} dt \xrightarrow{\underline{(5.7)}} -2\pi j \operatorname{Rez} \left(\frac{ze^{5jz}}{z^2 + 6z + 10}; -3 + j \right)$$

$$= -2\pi j \frac{ze^{5jz}}{(z^2 + 6z + 10)'} \Big|_{z = -3 + j} = -\pi j \frac{ze^{5jz}}{z + 3} \Big|_{z = -3 + j}$$

$$= -\frac{\pi}{e^5} (-3\cos 15 + \sin 15 + j(3\sin 15 + \cos 15)).$$

În final, adunând și scăzând relațiile (5.8) și (5.9), obținem

$$\mathscr{I} = \frac{\pi}{2e^5} (e^4 (3\cos 3 - \sin 3) + 3\cos 15 - \sin 15) + \frac{\pi j}{2e^5} (e^4 (\cos 3 + 3\sin 3) - 3\sin 15 - \cos 15),$$

respectiv

$$\mathscr{J} = \frac{\pi}{2e^5} (e^4 (3\sin 3 + \cos 3) + 3\sin 15 + \cos 15) + \frac{\pi j}{2e^5} (e^4 (\sin 3 - 3\cos 3) + 3\cos 15 - \sin 15).$$

5.7 Probleme propuse

1. Calculați $\operatorname{Rez}(g;0)$, $\operatorname{Rez}(g;1)$ și $\operatorname{Rez}(g;\infty)$ dacă

a)
$$f(z) = 3 \log z$$
 și $g(z) = \left(f(z) + f\left(\frac{1}{z}\right) + 5z\right) \left(2\sin\frac{\pi}{z} + 3\cos\frac{\pi}{z}\right)$

b)
$$f(z) = z^2 e^{2jz}$$
 și $g(z) = \frac{1+2z}{f^2(z)}$

c)
$$f(z) = \frac{j}{z} - \frac{z^2}{z-1}$$
 și $g(z) = f^2(z) \sin \pi z^2$

d)
$$f(z) = \operatorname{sh} jz \ \operatorname{si} \ g(z) = \frac{1}{z-1} f(z) f\left(\frac{1}{z}\right)$$

e)
$$f(z) = 4 + \sin \frac{2}{z} + \sin z + \sin 3z$$
 și $g(z) = \frac{1}{1 - z^2} f\left(\frac{1}{z}\right)$

2. Folosind Teorema reziduurilor sau Teorema semireziduurilor, să se calculeze următoarele integrale:

a)
$$\int_{|z|=\sqrt{3}} \frac{e^{\pi z}}{z^3(1+jz)} dz$$
 b) $\int_{|z|=1} \frac{\sin \pi z}{(z-1)^2 \cos \pi z} dz$

c)
$$\int_{|3z+j|=1} \frac{e^{\pi jz}}{z(3z+j)^3} dz$$
 d)
$$\int_{|z|=2} \frac{z^{12} \sin \frac{3\pi j}{z}}{(z^2+2)^5 (z^2+jz+6)} dz$$

e)
$$\int_{\gamma} \frac{1+\sin\frac{\pi}{z}}{1+z} dz$$
, $\gamma = \left\{ (x,y) \in \mathbb{R}^2; \frac{x^2}{4} + \frac{y^2}{9} = 1 \right\}$

f)
$$\int_{|z|=3} \frac{z^9 \operatorname{ch} \frac{\pi}{z}}{(z^2+3)^5} dz$$
 g) $\int_{|2z+1|=4} \frac{\operatorname{sh}(\pi jz)}{(z-1)(z+1)^3} dz$

h)
$$\int_{|z-\frac{1}{2}|=\frac{1}{2}} \frac{1-\cosh\pi jz}{z^3(2z-1)^2} dz$$
 i)
$$\int_{|z+1|=2} \frac{e^{\frac{2\pi}{z^2}}}{(z^3-8)(z^2+2z+4)^8} dz$$

$$\mathbf{j)} \int_{|z+j|=\sqrt{2}} z \operatorname{etg} \pi z \, dz \qquad \mathbf{k)} \int_{|z-j|=1} \operatorname{tg} j z \, dz$$

1)
$$\int_{|z|=2} \frac{1}{2-z} \operatorname{sh} \frac{\pi j}{z} dz$$
 m) $\int_{|z+1|=\frac{3}{2}} \frac{e^{2\pi jz}}{z^3(1-2z)} dz$

n)
$$\int_{|z|=2} \frac{z^8 \sinh \frac{\pi}{z}}{(z^4+3)(z^2+1)^3} dz$$
 o)
$$\int_{|z|=3} \frac{z}{3-z} \sin \frac{\pi}{z} dz$$

$$\mathbf{p)} \int_{|z+1|=2\sqrt{2}} \frac{\operatorname{ch} \frac{j}{z} + \operatorname{ch} \frac{j}{z+1} + \operatorname{ch} \frac{j}{z-1}}{z} dz$$

q)
$$\int_{|z-1|=1}^{\infty} \frac{e^z \sin\frac{\pi}{z-1}}{(1-z)^4} dz$$
 r) $\int_{|z|=1}^{\infty} \frac{\operatorname{ctg} z \operatorname{cth} z}{z^3} dz$ **s)** $\int_{|z|=\frac{9}{2}\pi} \frac{e^z}{\sin^2 z} dz$

t)
$$\int_{|z-\pi j|=2\pi} \frac{e^{-z}}{(z^2+4\pi^2)^2} dz$$
 u) $\int_{|z|=1} \frac{e^{(\sin \pi z)/z}+3\cos z}{z^3} dz$

$$\mathbf{v}) \int_{|z|=2} \frac{z^9 e^{\frac{\pi}{z}}}{(z^8+8)(z^2-j)} dz \qquad \mathbf{x}) \int_{|z|=1} \frac{z^{12} \text{ch} \frac{3\pi}{z}}{(\pi z^3+3j)^3 (z^2+4)^2} dz$$

3. Să se calculeze următoarele integrale:

a)
$$\int_{|z-4|=2\pi} \frac{3+2\cos 2z}{\sin z - j\cos z - j} dz$$
 b) $\int_{|z-2j|=4} \frac{1+2\cos(z^2)}{\sin z + \sin z - j} dz$

c)
$$\int_{|z+j|=1} \frac{2+3\cos\frac{z}{2}}{\sin z + j(\cos z - 1)} dz$$
 d) $\int_{|z+j|=\pi} \frac{2+\sin z}{j(e+\cos z) - \sin z} dz$

e)
$$\int_{|z|=1} \frac{1+\sin 2jz}{e-\cos z+j\sin z}dz$$
 f)
$$\int_{|z|=2} \frac{1+\sin 2jz}{\cosh z+\sinh z-j}dz$$

g)
$$\int_{|z-2\pi j|=2\pi} \frac{1+2\operatorname{ch}(z^2)}{\operatorname{sh} z - \operatorname{ch} z + 1} dz$$
 h) $\int_{|2z-\pi|=\pi} \frac{\operatorname{tg} z}{(-\sin 2z + j\cos 2z - j)^2} dz$

4. Să se calculeze următoarele integrale reale:

a)
$$\int_0^{2\pi} \frac{dx}{a + \sin x}$$
, $a > 1$ **b)** $\int_{-\pi}^{\pi} \frac{1 - 3\cos x}{5 + 4\sin x} dx$

c)
$$\int_{-\pi}^{5\pi} \frac{5 + 2\cos x}{5 + 3\sin x} dx$$
 d) $\int_{0}^{3\pi} \frac{7 + \sin 2x}{\cos 2x + 5\sin^2 x} dx$

e)
$$\int_0^{2\pi} \frac{\cos nx}{1 - 2a\cos x + a^2} dx$$
, $n \in \mathbb{N}$, $a \in \mathbb{R}$, $|a| < 1$

f)
$$\int_0^{8\pi} \frac{\sin^3 2x}{5 + 4\sin\frac{x}{4}} dx$$
 g) $\int_{2\pi}^{4\pi} \frac{1 + \sin x}{(5 - 4\cos x)^2} dx$

h)
$$\int_0^{3\pi} \frac{\cos^2(3x)}{1 + 24\cos^2 x} dx$$
 i) $\int_0^{4\pi} \frac{1 - 2\cos^2 x - 3\sin^2 x}{7\sin x - 25} dx$

j)
$$\int_{\pi}^{5\pi} (1-\sin x)^{134} \sin 67x \, dx$$
 k) $\int_{-\pi}^{\pi} (1+\sin x)^{52} \sin 23x \, dx$

1)
$$\int_{4\pi}^{8\pi} (1 - \cos x)^{10} \cos 5x \, dx$$
 m) $\int_{0}^{4\pi} \cos^{4n} \left(\frac{x}{2}\right) \cos nx \, dx$, $n \in \mathbb{N}$

$$\mathbf{n)} \int_0^{8\pi} \sin^{8n} x \cos 2nx \, dx, \ n \in \mathbb{N} \quad \mathbf{o)} \int_{-7\pi}^{7\pi} \cos^{7n} \left(\frac{x}{7}\right) \cos nx \, dx, \ n \in \mathbb{N}$$

$$\mathbf{p} \int_0^{2\pi} (\sin^{2n} x - 2\cos^{2n} x) dx, \ n \in \mathbb{N} \quad \mathbf{q} \int_0^{2\pi} (\sin^{78} x - 3\cos^{100} x) dx$$

5. Să se calculeze următoarele integrale:

a)
$$\int_{-\infty}^{\infty} \frac{7x+1}{x^4+1} dx$$
 b) $\int_{0}^{\infty} \frac{dx}{x^8+1}$ c) $\int_{-\infty}^{\infty} \frac{2x^2-7x+6}{(x^2+1)(x^2+3)^3} dx$

d)
$$\int_{-\infty}^{\infty} \frac{x+3}{(x^2-4x+13)^4} dx$$
 e) $\int_{-\infty}^{\infty} \frac{x}{(x^2+4)(x^2-2jx+3)} dx$

f)
$$\int_{-\infty}^{\infty} \frac{3x^3 + 2x^2 + 17x + 8}{(x^2 + 1)(x^2 + 4)^3} dx$$
 g) $\int_{-\infty}^{\infty} \frac{-x + j}{(x^2 + 6x + 9 + 2j)^5} dx$

h)
$$\int_{-\infty}^{\infty} \frac{-jx^2 + jx - 3}{(x^2 + 2j)(x^2 + 2jx - 2)} dx$$
 i) $\int_{-\infty}^{\infty} \frac{x \sin^2 \pi x}{(x^2 - 3j)^2} dx$

j)
$$\int_{-\infty}^{\infty} \frac{x^n}{(x^2 + (1+3j)x - 4 + 3j)^{2n}} dx$$
, $n \in \mathbb{N}^*$

$$\mathbf{k}) \int_{-\infty}^{\infty} \frac{e^{\frac{x}{2}}}{\mathrm{ch}x} dx \qquad \mathbf{l}) \int_{0}^{\infty} \frac{\mathrm{ch}(\frac{x}{2})}{\mathrm{ch}x} dx \qquad \mathbf{m}) \int_{0}^{\infty} \frac{\mathrm{ch}x}{(1+\mathrm{ch}2x)^{2}} dx$$

$$\mathbf{n)} \int_{-\infty}^{\infty} \frac{\mathrm{ch}4x}{\mathrm{sh}8x - j} dx \quad \mathbf{o)} \int_{-\infty}^{\infty} \frac{1}{\mathrm{ch}^3(3x)} dx$$

6. Să se calculeze următoarele integrale:

a)
$$\int_{-\infty}^{\infty} \frac{x \cos x}{x^2 - 6x + 13} dx$$
 b) $\int_{-\infty}^{\infty} \frac{x^2 e^{3jx}}{(x^2 + 1)^2 (x^2 + 9)} dx$

c)
$$\int_{-\infty}^{\infty} \frac{e^{\pi jx}}{x^3 - x^2 + 2} dx$$
 d) $\int_{-\infty}^{\infty} \frac{e^{-jx} \sinh jx}{(x^2 + 4x + 5)^2} dx$

e)
$$\int_{-\infty}^{\infty} \frac{e^{-\pi jx} \cos \pi x}{x^2 - 2x + 5} dx$$
 f) $\int_{0}^{\infty} \frac{\cosh 3jx}{(x^2 + 8j)(x^2 + 18j)} dx$

g)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 + 2jx - 2)} dx$$
 h) $\int_{0}^{\infty} \frac{x \sin \frac{1}{x}}{1 + 64x^4} dx$
i) $\int_{-\infty}^{\infty} \frac{1 + j \operatorname{ch}(jx)}{(x - \pi j)^3} dx$ j) $\int_{-\infty}^{\infty} \frac{x^3 \sin \pi x}{(x^2 - 2j)^2} dx$
k) $\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2 - 2jx - 2)^2} dx$ l) $\int_{-\infty}^{\infty} \frac{\cos 2\pi x}{(x^2 + 1)^2 (4x^2 + 1)} dx$

5.8 Indicații și răspunsuri

1. a) Deoarece

$$\begin{split} g(z) &= \left(3 \mathrm{log} z + 3 \mathrm{log} \left(\frac{1}{z}\right) + 5 z\right) \left(2 \sin \frac{\pi}{z} + 3 \cos \frac{\pi}{z}\right) \\ &= 5 z \left(2 \sin \frac{\pi}{z} + 3 \cos \frac{\pi}{z}\right), \end{split}$$

 $z_0 = 0$ este punct singular esențial pentru funcția g, iar $z_1 = 1$ este punct ordinar, prin urmare, Rez(g; 1) = 0. Pe de altă parte,

$$Rez(g; \infty) = -Rez\left(\frac{1}{z^2}g\left(\frac{1}{z}\right); 0\right) = -Rez\left(\frac{1}{z^2} \cdot \frac{5(2\sin\pi z + 3\cos\pi z)}{z}; 0\right)$$
$$= -Rez\left(\frac{10\sin\pi z + 15\cos\pi z}{z^3}; 0\right) = -\frac{1}{2!}\lim_{z \to 0} \left(10\sin\pi z + 15\cos\pi z\right)''$$
$$= \frac{1}{2}\lim_{z \to 0} \left(10\pi^2\sin\pi z + 15\pi^2\cos\pi z\right) = \frac{15\pi^2}{2},$$

de vreme ce 0 este pol triplu pentru funcția $h(z) = (10 \sin \pi z + 15 \cos \pi z)/z^3$.

În final,
$$\operatorname{Rez}(g;0) = -\operatorname{Rez}(g;\infty) = -\frac{15\pi^2}{2}$$
.

b) Întrucât $g(z)=\frac{1+2z}{z^4e^{4jz}}$ și $z_0=0$ este pol de ordinul 4 pentru funcția g, deducem că

$$\begin{aligned} \operatorname{Rez}(g;0) &= \frac{1}{3!} \lim_{z \to 0} \left(z^4 \cdot \frac{1+2z}{z^4 e^{4jz}} \right)^{"'} = = \frac{1}{6} \left((1+2z)e^{-4jz} \right)^{"'} \bigg|_{z=0} \\ &= \frac{1}{6} \sum_{k=0}^{3} C_3^k (1+2z)^{(k)} \left(e^{-4jz} \right)^{(3-k)} \bigg|_{z=0} \\ &= \frac{1}{6} \left(C_3^0 (1+2z) \left(e^{-4jz} \right)^{"'} + C_3^1 (1+2z)' \left(e^{-4jz} \right)^{"} \right) \bigg|_{z=0} \end{aligned}$$

$$= \frac{1}{6} (64j(1+2z) - 96) e^{-4jz} \bigg|_{z=0} = -16 + \frac{32}{3}j$$

și $\operatorname{Rez}(g;\infty) = -\operatorname{Rez}(g;0) = 16 - \frac{32}{3}j$. Observăm de asemenea că $z_1 = 1$ este punct ordinar, prin urmare, $\operatorname{Rez}(g;1) = 0$.

c) Observăm că
$$g(z) = \frac{(-z^3 + j(z-1))^2}{z^2(z-1)^2} \sin \pi z^2$$
.

Deoarece $\lim_{z\to 0} g(z)=-\pi$, $z_0=0$ este un punct singular aparent pentru funcția g și $\mathrm{Rez}(g;0)=0$.

Pe de altă parte, cum

$$g(z) = \frac{\sin \pi z^2}{z - 1} \cdot \frac{(-z^3 + j(z - 1))^2}{z^2(z - 1)},$$

iar $\lim_{z\to 1}\frac{\sin\pi z^2}{z-1}$ $\frac{\ell'H}{z-1}$ $\lim_{z\to 1}2\pi z\cos\pi z^2=-2\pi$, rezultă că $z_1=1$ este pol simplu pentru g și

$$\operatorname{Rez}(g;1) = \lim_{z \to 1} (z-1) \cdot \frac{(-z^3 + j(z-1))^2 \sin \pi z^2}{(z-1)^2} = -2\pi.$$

În final, $\operatorname{Rez}(g; \infty) = -\operatorname{Rez}(g; 1) = 2\pi$.

d) Deoarece

$$g(z) = \frac{1}{z - 1} (j\sin z)(j\sin(1/z)) = \frac{1}{1 - z} \sin z \sin(1/z),$$

obținem că $z_1 = 1$ este pol simplu pentru funcția g și

$$\operatorname{Rez}(g; 1) = \frac{\sin z \sin(1/z)}{(1-z)'} \bigg|_{z=1} = -\sin^2 1.$$

Pe de altă parte, deoarece și $z_0 = 0$ și $z = \infty$ sunt puncte esențiale pentru funcția g, ne vom folosi de dezvoltarea în serie Laurent a lui g în jurul lui 0 pentru a determina Rez(g;0). Așadar, cum

$$g(z) = \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots\right) \left(\frac{1}{z} - \frac{1}{3!z^3} + \ldots\right) (1 + z + z^2 + \ldots),$$

pentru |z| < 1, deducem că

$$\begin{split} \operatorname{Rez}(g;0) &= \operatorname{coef.} \ \operatorname{lui} \ \frac{1}{z} = - \ \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots \\ &- \frac{1}{3!5!} + \frac{1}{3!7!} - \frac{1}{3!9!} + \dots \\ &- \frac{1}{5!7!} + \frac{1}{5!9!} - \frac{1}{5!11!} + \dots \\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!} \sum_{k=n+1}^{\infty} \frac{(-1)^{k+1}}{(2k-1)!}. \end{split}$$

În final, folosind Teorema 5.3.2, deducem că

$$\begin{aligned} \operatorname{Rez}(g; \infty) &= -\operatorname{Rez}(g; 1) - \operatorname{Rez}(g; 0) \\ &= \sin^2 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!} \sum_{k=n+1}^{\infty} \frac{(-1)^{k+1}}{(2k-1)!} \\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{(2k-1)!}. \end{aligned}$$

e) Mai întâi observăm că

$$g(z) = \frac{4 + \sin 2z + \sin(1/z) + \sin(3/z)}{1 - z^2}.$$

De aici, $z_0=0$ este punct singular esențial, iar $z_{1,2}=\pm 1$ sunt poli simpli. Pentru a calcula $\mathrm{Rez}(f;0)$, dezvoltăm în serie Laurent funcția g în jurul lui 0 și identificăm coeficientul lui 1/z din dezvoltare. Deoarece

$$g(z) = (1 + z^2 + z^4 + \dots) \left(4 + 2z - \frac{(2z)^3}{3!} + \frac{(2z)^5}{5!} - \dots \right)$$
$$+ (1 + z^2 + z^4 + \dots) \left(\frac{1}{z} - \frac{1}{z^3 3!} + \frac{1}{z^5 5!} - \dots + \frac{3}{z} - \frac{3^3}{z^3 3!} + \frac{3^5}{z^5 5!} - \dots \right),$$

rezultă că

$$\operatorname{Rez}(g;0) = \left(1 - \frac{1}{3!} + \frac{1}{5!} - \dots\right) + \left(3 - \frac{3^3}{3!} + \frac{3^5}{5!} - \dots\right) = \sin 1 + \sin 3.$$

Mai departe,

$$\operatorname{Rez}(g;1) = \frac{4 + \sin 2z + \sin(1/z) + \sin(3/z)}{(1 - z^2)'}\Big|_{z=1}$$
$$= -\frac{1}{2}(4 + \sin 1 + \sin 2 + \sin 3),$$

iar

$$\operatorname{Rez}(g; -1) = \frac{4 + \sin 2z + \sin(1/z) + \sin(3/z)}{(1 - z^2)'} \Big|_{z = -1}$$
$$= -\frac{1}{2}(-4 + \sin 1 + \sin 2 + \sin 3).$$

În final, $\operatorname{Rez}(g; \infty) = -\operatorname{Rez}(g; 0) - \operatorname{Rez}(g; 1) - \operatorname{Rez}(g; -1) = \sin 2$.

2. a) Funcția $f: \mathbb{C} \setminus \{0, j\} \to \mathbb{C}$,

$$f(z) = \frac{e^{\pi z}}{z^3(1+jz)},$$

are drept singularități pe $z_0=0$ (pol triplu) și $z_1=j$ (pol simplu). Ambele puncte se găsesc în interiorul cercului dat, prin urmare, din Teorema reziduurilor obtinem

$$\begin{split} \mathscr{I} &= 2\pi j \left(\text{Rez}(f;0) + \text{Rez}(f;j) \right) \\ &= 2\pi j \left(\frac{1}{2!} \lim_{z \to 0} \left(\frac{e^{\pi z}}{1+jz} \right)'' + \frac{e^{\pi z}}{z^3 (1+jz)'} \Big|_{z=j} \right) \\ &= 2\pi j \left(\frac{1}{2} \left(e^{\pi z} (1+jz)^{-1} \right)'' \Big|_{z=0} + \frac{e^{\pi z}}{jz^3} \Big|_{z=j} \right) \\ &= 2\pi j \left(\frac{1}{2} \sum_{k=0}^{2} C_2^k \left(e^{\pi z} \right)^{(k)} \left((1+jz)^{-1} \right)^{(2-k)} \Big|_{z=0} + e^{\pi j} \right) \\ &= 2\pi j \left(\frac{e^{\pi z}}{2} \left(\frac{\pi^2}{1+jz} - \frac{2\pi j}{(1+jz)^2} - \frac{2}{(1+jz)^3} \right) \Big|_{z=0} - 1 \right) \\ &= 2\pi j \left(\frac{\pi^2}{2} - \pi j - 2 \right). \end{split}$$

b) Punctele singulare ale funcției

$$f(z) = \frac{\sin \pi z}{(z-1)^2 \cos \pi z}$$

sunt polii simpli $z_1'=1$ și $z_k=\frac{2k+1}{2},\ k\in\mathbb{Z}$. Dintre acestea, $z_{-1},z_0\in \operatorname{Int}(\gamma)$, iar $z_1'\in(\gamma)$, unde $(\gamma)=\Gamma(0;1)$. Prin urmare, folosind Teorema semireziduurilor, obținem

$$\mathcal{I} = 2\pi j \left(\text{Rez} \left(f; -\frac{1}{2} \right) + \text{Rez} \left(f; \frac{1}{2} \right) \right) + \pi j \text{Rez}(f; 1)$$

$$= 2\pi j \left(\frac{\sin \pi z}{(z-1)^2 (\cos \pi z)'} \bigg|_{z=-\frac{1}{2}} + \frac{\sin \pi z}{(z-1)^2 (\cos \pi z)'} \bigg|_{z=\frac{1}{2}} \right)$$

$$+ \pi j \lim_{z \to 1} (z-1) \cdot \frac{\sin \pi z}{(z-1)^2 \cos \pi z}$$

$$= 2\pi j \left(-\frac{1}{\pi (z-1)^2} \bigg|_{z=-\frac{1}{2}} - \frac{1}{\pi (z-1)^2} \bigg|_{z=\frac{1}{2}} \right)$$

$$+ \pi j \lim_{z \to 1} \frac{\sin \pi z}{z-1} \cdot \lim_{z \to 1} \frac{1}{\cos \pi z}$$

$$= 2\pi j \left(-\frac{4}{9\pi} - \frac{4}{\pi} \right) + \pi^2 j = \frac{9\pi^2 - 80}{9} j.$$

c) Punctele singulare ale funcției $f: \mathbb{C} \setminus \left\{0, -\frac{1}{3}j\right\} \to \mathbb{C}$,

$$f(z) = \frac{e^{\pi j z}}{z(3z+j)^3}$$

sunt $z_0 = 0$ (pol simplu) și $z_1 = -\frac{1}{3}j$ (pol triplu). Cum $z_0 \in (\gamma)$, iar $z_1 \in \text{Int}(\gamma)$, unde $(\gamma) = \Gamma\left(-\frac{1}{3}j; \frac{1}{3}\right)$, folosind Teorema semireziduurilor, obținem

$$\begin{split} \mathscr{I} &= 2\pi j \text{Rez} \left(f; -\frac{1}{3} j \right) + \pi j \text{Rez} (f; 0) \\ &= 2\pi j \frac{1}{2!} \lim_{z \to -\frac{1}{3} j} \left(\left(z + \frac{1}{3} j \right)^3 \frac{e^{\pi j z}}{z (3z+j)^3} \right)'' + \pi j \frac{e^{\pi j z}}{z' (3z+j)^3} \bigg|_{z=0} \end{split}$$

$$= \frac{\pi j}{27} \left(e^{\pi j z} z^{-1} \right)'' \bigg|_{z=-\frac{1}{3}j} + \pi j^2 = \frac{\pi j}{27} \sum_{k=0}^{2} C_2^k \left(e^{\pi j z} \right)^{(k)} \left(z^{-1} \right)^{(2-k)} \bigg|_{z=-\frac{1}{3}j} - \pi$$

$$= \frac{\pi e^{\frac{\pi}{3}} \left(\pi^2 - 6\pi + 18 \right)}{9} - \pi.$$

d) Funcția $f: \mathbb{C} \setminus \{0, \pm \sqrt{2}j, 2j, -3j\} \to \mathbb{C}$,

$$f(z) = \frac{z^{12} \sin \frac{3\pi j}{z}}{(z^2 + 2)^5 (z^2 + jz + 6)}$$

are drept puncte singulare pe $z_0=0$ (punct singular esențial), $z_1=2j$ (pol simplu), $z_2=-3j$ (punct singular aparent) și $z_{3,4}=\pm\sqrt{2}j$ (poli de ordinul 5). Pentru a justifica că $z_2=-3j$ este punct singular aparent este suficient să observăm că

$$\lim_{z \to -3j} f(z) = \lim_{z \to -3j} \frac{z^{12}}{(z - 2j)(z^2 + 2)^5} \cdot \lim_{z \to -3j} \frac{\sin \frac{3\pi j}{z}}{z + 3j}$$

$$= \frac{(-3j)^{12}}{(-5j)(-7)^5} \cdot \lim_{z \to -3j} \frac{\sin \frac{3\pi j}{z}}{z + 3j} \frac{\underline{t'H}}{5 \cdot 7^5 j} \frac{3^{12}}{z \to -3j} \lim_{z \to -3j} -\frac{3\pi j}{z^2} \cos \frac{3\pi j}{z}$$

$$= \frac{3^{12}}{5 \cdot 7^5 j} \cdot \left(-\frac{3\pi j}{9}\right) = -\frac{3^{11}}{5 \cdot 7^5} \text{ (finitǎ)}.$$

Cum $z_0, z_3, z_4 \in \text{Int}(\gamma)$, iar $z_1 \in (\gamma)$, unde $(\gamma) = \Gamma(0; 2)$, din Teorema reziduurilor obținem

(5.10)
$$\mathscr{I} = 2\pi j \left(\operatorname{Rez}(f;0) + \operatorname{Rez}(f;\sqrt{2}j) + \operatorname{Rez}(f;-\sqrt{2}j) \right) + \pi j \operatorname{Rez}(f;2j).$$

Pe de altă parte, folosind Teorema 5.3.2, deducem că

(5.11)
$$\operatorname{Rez}(f;0) + \operatorname{Rez}(f;\sqrt{2}j) + \operatorname{Rez}(f;-\sqrt{2}j) + \operatorname{Rez}(f;2j) + \operatorname{Rez}(f;-3j) + \operatorname{Rez}(f;\infty) = 0.$$

Prin urmare, din (5.16) și (5.17) obținem

$$\mathscr{I} = -2\pi j \left(\operatorname{Rez}(f; 2j) + \operatorname{Rez}(f; -3j) + \operatorname{Rez}(f; \infty) \right) + \pi j \operatorname{Rez}(f; 2j)$$
$$= -\pi j \left(\operatorname{Rez}(f; 2j) + 2\operatorname{Rez}(f; -3j) + 2\operatorname{Rez}(f; \infty) \right).$$

Dar,

$$\begin{aligned} \operatorname{Rez}(f;\infty) &= -\operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right) \\ &= -\operatorname{Rez}\left(\frac{\sin 3\pi jz}{z^2 \left(2z^2 + 1\right)^5 \left(6z^2 + jz + 1\right)}; 0\right) = -\operatorname{Rez}(g(z); 0) \\ &= -\lim_{z \to 0} zg(z) = -\lim_{z \to 0} \frac{\sin 3\pi jz}{z} \cdot \frac{1}{\left(2z^2 + 1\right)^5 \left(6z^2 + jz + 1\right)} \\ &= -3\pi j, \end{aligned}$$

de vreme ce z=0 este pol simplu pentru funcția g. Mai mult, $\mathrm{Rez}(f;-3j)=0,$ iar

$$\operatorname{Rez}(f;2j) = \frac{z^{12} \sin \frac{3\pi j}{z}}{(z^2+2)^5 (z^2+jz+6)'} \bigg|_{z=2j} = -\frac{128}{5}j$$

Asadar,

$$\mathscr{I} = -\pi j \left(-\frac{128}{5} j - 6\pi j \right) = -\pi \left(\frac{128}{5} + 6\pi \right).$$

e) Funcția $f: \mathbb{C} \setminus \{0, -1\} \to \mathbb{C}$,

$$f(z) = \frac{1 + \sin\frac{\pi}{z}}{1 + z}$$

are drept singularități pe $z_0=0$ (punct singular esențial) și $z_1=-1$ (pol simplu). Cum ambele puncte sunt în interiorul elipsei (γ) , aplicând Teorema reziduurilor și Teorema 5.3.2, obținem

$$\begin{split} \mathscr{I} &= 2\pi j \left(\operatorname{Rez}(f;0) + \operatorname{Rez}(f;-1) \right) \\ &= -2\pi j \operatorname{Rez}(f;\infty) = 2\pi j \operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z} \right);0 \right) \\ &= 2\pi j \operatorname{Rez}\left(\frac{1+\sin\pi z}{z(1+z)};0 \right) = 2\pi j \frac{1+\sin\pi z}{z'(1+z)} \bigg|_{z=0} = 2\pi j. \end{split}$$

f) Singularitățile funcției $f: \mathbb{C} \setminus \{0, \pm \sqrt{3}j\} \to \mathbb{C}$,

$$f(z) = \frac{z^9 \operatorname{ch}\left(\frac{\pi}{z}\right)}{\left(z^2 + 3\right)^5}$$

sunt $z_0 = 0$ (punct singular esențial) și $z_{2,3} = \pm \sqrt{3}j$ (poli de ordinul 5). Deoarece toate punctele singulare sunt în interiorul cercului $(\gamma) = \Gamma(0;3)$, conform Teoremei reziduurilor,

$$\mathscr{I} = 2\pi j \left(\operatorname{Rez}(f;0) + \operatorname{Rez}(f;\sqrt{3}j) + \operatorname{Rez}(f;-\sqrt{3}j) \right)$$

$$= -2\pi j \operatorname{Rez}(f;\infty) = 2\pi j \operatorname{Rez} \left(\frac{1}{z^2} \cdot \frac{\frac{1}{z^9} \operatorname{ch} \pi z}{\left(\frac{1}{z^2} + 3\right)^5}; 0 \right)$$

$$= 2\pi j \operatorname{Rez} \left(\frac{\operatorname{ch} \pi z}{z \left(3z^2 + 1\right)^5}; 0 \right) = 2\pi j \frac{\operatorname{ch} \pi z}{z' \left(3z^2 + 1\right)^5} \Big|_{z=0} = 2\pi j$$

g) Funcția $f: \mathbb{C} \setminus \{-1, 1\} \to \mathbb{C}$,

$$f(z) = \frac{\sin(\pi j z)}{(z-1)(z+1)^3} = \frac{j\sin(\pi z)}{(z-1)(z+1)^3},$$

are singularitățile $z_1=-1$ (pol de ordinul 2) și $z_2=1$ (punct singular aparent) deoarece

$$\lim_{z \to -1} f(z) = j \lim_{z \to -1} \frac{\sin(\pi z)}{z+1} \cdot \lim_{z \to -1} \frac{1}{(z-1)(z+1)^2}$$

$$\frac{l'H}{z} -\pi j \lim_{z \to -1} \frac{1}{(z-1)(z+1)^2}$$

 \sin

$$\lim_{z \to 1} f(z) = j \lim_{z \to 1} \frac{\sin(\pi z)}{z - 1} \cdot \lim_{z \to 1} \frac{1}{(z + 1)^3} = \frac{l'H}{8} - \frac{\pi}{8}j \text{ (finitǎ)}.$$

Prin urmare, $\operatorname{Rez}(f;1)=0$. Mai departe, întrucât $z_1\in\operatorname{Int}(\gamma)$, unde $(\gamma)=\Gamma\left(-\frac{1}{2};2\right)$, din Teorema reziduurilor obținem

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f; -1)$$

$$= 2\pi j \lim_{z \to -1} \left((z+1)^2 \frac{j \sin \pi z}{(z-1)(z+1)^3} \right)' = -2\pi \lim_{z \to -1} \left(\frac{\sin \pi z}{z^2 - 1} \right)'$$

$$= -2\pi \lim_{z \to -1} \frac{\pi \left(z^2 - 1 \right) \cos \pi z - 2z \sin \pi z}{\left(z^2 - 1 \right)^2}$$

$$= \frac{l'H}{z} 2\pi \lim_{z \to -1} \frac{\left(\pi^2 z^2 - \pi^2 + 2 \right) \sin \pi z}{4z \left(z^2 - 1 \right)}$$

$$= 2\pi \lim_{z \to -1} \frac{\pi z}{z + 1} \cdot \lim_{z \to -1} \frac{\pi^2 z^2 - \pi^2 + 2}{4z (z - 1)} = -\frac{\pi^2}{2}.$$

h) Funcția $f: \mathbb{C} \setminus \{0; \frac{1}{2}\} \to \mathbb{C}$

$$f(z) = \frac{1 - \operatorname{ch} \pi j z}{z^3 (2z - 1)^2} = \frac{1 - \cos \pi z}{z^3 (2z - 1)^2},$$

are drept puncte singulare pe $z_0 = 0$ (pol simplu) deoarece

$$f(z) = \frac{1 - \cos \pi z}{z^2} \cdot \frac{1}{z(2z - 1)^2}$$
şi
$$\lim_{z \to 0} \frac{1 - \cos \pi z}{z^2} \xrightarrow{\underline{l'H}} \frac{\pi^2}{2} \text{(finită și nenulă)},$$

iar $z_1 = \frac{1}{2}$ este pol dublu. Deoarece $z_0 \in (\gamma)$ și $z_1 \in Int(\gamma)$, cu $(\gamma) = \Gamma\left(\frac{1}{2}; \frac{1}{2}\right)$, din Teorema semireziduurilor, deducem că

$$\mathscr{I} = \pi j \left(\operatorname{Rez}(f;0) + 2 \operatorname{Rez}\left(f;\frac{1}{2}\right) \right),$$

unde

$$\operatorname{Rez}(f;0) = \lim_{z \to 0} z \cdot \frac{1 - \cos \pi z}{z^3 (2z - 1)^2} = \lim_{z \to 0} \frac{1 - \cos \pi z}{z^2} \cdot \lim_{z \to 0} \frac{1}{(2z - 1)^2} = \frac{\pi^2}{2},$$

iar

$$\operatorname{Rez}\left(f; \frac{1}{2}\right) = \lim_{z \to \frac{1}{2}} \left(\left(z - \frac{1}{2}\right)^2 \cdot \frac{1 - \cos \pi z}{z^3 (2z - 1)^2} \right)'$$

$$= \frac{1}{4} \lim_{z \to \frac{1}{2}} \left(\frac{1 - \cos \pi z}{z^3} \right)' = \frac{1}{4} \cdot \frac{\pi z \sin \pi z - 3(1 - \cos \pi z)}{z^4} \Big|_{z = \frac{1}{2}}$$

$$=2(\pi-6).$$

Prin urmare,

$$\mathscr{I} = \pi j \left(\frac{\pi^2}{2} + 4\pi - 24 \right).$$

i) Singularitățile funcției

$$f(z) = \frac{e^{\frac{2\pi}{z^2}}}{(z^3 - 8)(z^2 + 2z + 4)^8} = \frac{e^{\frac{2\pi}{z^2}}}{(z - 2)(z^2 + 2z + 4)^9}$$

sunt $z_0=0$ (punct singular esențial), $z_{1,2}=-1\pm\sqrt{3}j$ (poli de ordinul 9) și $z_1=2$ (pol simplu). Cum $|z_k+1|<2$, pentru $k=\overline{0,2}$, adică $z_k\in \mathrm{Int}(\gamma)$, unde $(\gamma)=\Gamma(-1;2)$, folosind Teorema reziduurilor și Teorema 5.3.2, obținem

$$\mathscr{I} = 2\pi j \sum_{k=0}^{2} \operatorname{Rez}(f; z_k) = -2\pi j (\operatorname{Rez}(f; 2) + \operatorname{Rez}(f; \infty)),$$

unde

$$\begin{aligned} \operatorname{Rez}(f; \infty) &= -\operatorname{Rez}\left(\frac{1}{z^2} \cdot \frac{e^{2\pi z^2}}{\left(\frac{1}{z^3} - 8\right)\left(\frac{1}{z^2} + \frac{2}{z} + 4\right)^9}\right) \\ &= -\operatorname{Rez}\left(\frac{z^{19}e^{2\pi z^2}}{(1 - 8z^3)(1 + 2z + 4z^2)^9}; 0\right) = -\operatorname{Rez}(g; 0) = 0, \end{aligned}$$

punctul 0 fiind un punct ordinar pentru funcția g, iar

$$\operatorname{Rez}(f;2) = \frac{e^{\frac{2\pi}{z^2}}}{(z-2)'(z^2+2z+4)^9}\Big|_{z=2} = \frac{e^{\frac{\pi}{2}}}{12^9}.$$

În final,
$$\mathscr{I} = -2\pi j \frac{e^{\frac{\pi}{2}}}{12^9} = -\frac{\pi j e^{\frac{\pi}{2}}}{12^8}.$$

j) Funcția

$$f(z) = z \operatorname{ctg} \pi z = \frac{z \cos \pi z}{\sin \pi z},$$

are drept singularități soluțiile ecuației sin $\pi z=0$, adică punctele $z_k=k$, $k\in\mathbb{Z}$. Dintre acestea, doar $z_0=0$ este punct singular aparent, deci $\operatorname{Rez}(f;0)=0$, iar restul sunt poli simpli. Cum $z_{-1},z_1\in(\gamma)=\Gamma(-j;\sqrt{2})$, deoarece $|-1+j|=|1+j|=\sqrt{2}$, iar $z_0\in\operatorname{Int}(\gamma)$, folosind Teorema semireziduurilor, obținem

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f;0) + \pi j \left(\operatorname{Rez}(f;-1) + \operatorname{Rez}(f;1) \right)$$

$$= \pi j \left(\frac{z \cos \pi z}{(\sin \pi z)'} \bigg|_{z=-1} + \frac{z \cos \pi z}{(\sin \pi z)'} \bigg|_{z=1} \right) = \pi j \left(-\frac{1}{\pi} + \frac{1}{\pi} \right) = 0.$$

k) Fie

$$f(z) = \operatorname{tg} jz = \frac{\sin jz}{\cos jz} = j\frac{\operatorname{sh} z}{\operatorname{ch} z}.$$

Pentru a găsi punctele singulare ale funcției f, rezolvăm ecuația $\operatorname{ch} z = 0 \Leftrightarrow e^{2z} + 1 = 0 \Leftrightarrow 2z \in \operatorname{Log}(-1)$. Așadar, singularitățile sunt punctele $z_k = j\left(\frac{\pi}{2} + k\pi\right)$, $k \in \mathbb{Z}$. Dintre acestea, doar $\frac{\pi}{2}j \in \operatorname{Int}(\gamma)$, unde $(\gamma) = \Gamma(j; 1)$. Folosind Teorema reziduurilor,

$$\mathscr{I} = 2\pi j \operatorname{Rez}\left(f; \frac{\pi}{2}j\right) = 2\pi j \cdot \frac{j \operatorname{sh} z}{(\operatorname{ch} z)'} \bigg|_{z=\frac{\pi}{2}j} = -2\pi$$

l) Pentru funcția $f: \mathbb{C} \setminus \{0,2\} \to \mathbb{C}$,

$$f(z) = \frac{1}{2-z} \operatorname{sh} \frac{\pi j}{z} = \frac{j \sin \frac{\pi}{z}}{2-z},$$

 $z_0=0$ este punct singular esențial, iar $z_1=2$ este pol simplu. Deoarece $z_0\in \mathrm{Int}(\gamma)$, iar $z_1\in (\gamma)$, $(\gamma)=\Gamma(0,2)$, din Teorema semireziduurilor și Teorema 5.3.2, obținem

$$\mathcal{I} = 2\pi j \operatorname{Rez}(f;0) + \pi j \operatorname{Rez}(f;2)$$

$$= 2\pi j (-\operatorname{Rez}(f;2) - \operatorname{Rez}(f;\infty)) + \pi j \operatorname{Rez}(f;2)$$

$$= -\pi j \operatorname{Rez}(f;2) - 2\pi j \operatorname{Rez}(f;\infty)$$

$$= -\pi j \frac{j \sin \frac{\pi}{z}}{(2-z)'} \bigg|_{z=2} + 2\pi j \operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right);0\right)$$

$$= -\pi + 2\pi j \operatorname{Rez}\left(\frac{j\sin(\pi z)}{z(2z-1)}; 0\right) = -\pi,$$

de vreme ce 0 este punct singular aparent pentru funcția $g(z) = \frac{j\sin(\pi z)}{z(2z-1)}$ ($\lim_{z\to 0} g(z)$ este finită).

m) Singularitățile funcției $f: \mathbb{C} \setminus \{0, \frac{1}{2}\} \to \mathbb{C}$

$$f(z) = \frac{e^{2\pi jz}}{z^3(1-2z)},$$

sunt $z_0 = 0$ (pol de ordinul 3) și $z_1 = \frac{1}{2}$ (pol simplu). Dintre acestea, $z_0 \in \text{Int}(\gamma)$, iar $z_1 \in (\gamma)$, cu $(\gamma) = \Gamma(-1; \frac{3}{2})$. Folosind Teorema semireziduurilor, deducem că

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f;0) + \pi j \operatorname{Rez}\left(f; \frac{1}{2}\right)$$

$$= 2\pi j \frac{1}{2!} \lim_{z \to 0} \left(z^3 \cdot \frac{e^{2\pi jz}}{z^3(1-2z)}\right)'' + \pi j \frac{e^{2\pi jz}}{z^3(1-2z)'} \Big|_{z=\frac{1}{2}}$$

$$= \pi j \sum_{k=0}^{2} \operatorname{C}_{2}^{k} \left(e^{2\pi jz}\right)^{(k)} \left((1-2z)^{-1}\right)^{(2-k)} \Big|_{z=0} - \pi j \frac{e^{2\pi jz}}{2z^3} \Big|_{z=\frac{1}{2}}$$

$$= 4\pi j (2 - \pi^2 + 2\pi j) + 4\pi j = 4\pi j (3 - \pi^2 + 2\pi j).$$

n) Punctele singulare ale funcției

$$f(z) = \frac{z^8 \operatorname{sh}\left(\frac{\pi}{z}\right)}{(z^4 + 3)(z^2 + 1)^3}$$

sunt $z_0 = 0$ (punct singular esențial), soluțiile ecuației $z^4 + 3 = 0$, adică polii simpli z_k , cu $|z_k| = \sqrt[4]{3} < 2$, $k = \overline{1,4}$ și soluțiile ecuației $z^2 + 1 = 0$, adică $z_{5,6} = \pm j$ (poli de ordinul 2). Deoarece toate punctele se găsesc în interiorul cercului $(\gamma) = \Gamma(0; 2)$, cu ajutorului Teoremei reziduurilor și a Teoremei 5.3.2, putem scrie integrala după cum urmează:

$$\mathscr{I} = 2\pi j \sum_{k=0}^{6} \operatorname{Rez}(f; z_k) = -2\pi j \operatorname{Rez}(f; \infty) = 2\pi j \operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right)$$

$$= 2\pi j \operatorname{Rez}\left(\frac{\sinh z}{(3z^4 + 1)(z^2 + 1)^3}; 0\right) = 2\pi j \operatorname{Rez}(g; 0) = 0,$$

cea din urmă egalitate având loc deoarece z = 0 este punct ordinar pentru funcția g(z).

o) Funcția $f: \mathbb{C} \setminus \{0,3\} \to \mathbb{C}$,

$$f(z) = \frac{z}{3-z} \sin\left(\frac{\pi}{z}\right),\,$$

are drept singularități punctele $z_0 = 0$ (punt esențial) și $z_1 = 3$ (pol simplu). Pe de altă parte, $z_0 \in \text{Int}(\gamma)$, iar $z_1 \in (\gamma)$, unde $(\gamma) = \Gamma(0;3)$. Folosind Teorema semireziduurilor și Teorema 5.3.2, concluzionăm că

$$\mathcal{I} = 2\pi j \operatorname{Rez}(f; 0) + \pi j \operatorname{Rez}(f; 3)$$

$$= 2\pi j (-\operatorname{Rez}(f; 3) - \operatorname{Rez}(f; \infty)) + \pi j \operatorname{Rez}(f; 3)$$

$$= -2\pi j \operatorname{Rez}(f; \infty) - \pi j \operatorname{Rez}(f; 3),$$

unde

Rez
$$(f;3) = \frac{z \sin\left(\frac{\pi}{z}\right)}{(3-z)'} \bigg|_{z=3} = -3 \sin\frac{\pi}{3} = -\frac{3\sqrt{3}}{2},$$

iar

$$\operatorname{Rez}(f; \infty) = -\operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right) = -\operatorname{Rez}\left(\frac{\sin \pi z}{z^2 (3z - 1)}; 0\right)$$
$$= -\operatorname{Rez}(g; 0) = -\lim_{z \to 0} z \cdot \frac{\sin \pi z}{z^2 (3z - 1)}$$
$$= -\lim_{z \to 0} \frac{\sin \pi z}{\pi z} \cdot \lim_{z \to 0} \frac{\pi}{3z - 1} = \pi,$$

de vreme ce z=0 este pol simplu pentru funcția g. Așadar,

$$\mathscr{I} = \left(-2\pi + \frac{3\sqrt{3}}{2}\right)\pi j.$$

p) Fie funcția $f: \mathbb{C} \setminus \{0, -1, 1\} \to \mathbb{C}$,

$$f(z) = \frac{\operatorname{ch}\frac{j}{z} + \operatorname{ch}\frac{j}{z+1} + \operatorname{ch}\frac{j}{z-1}}{z}$$

$$= \frac{\cos\frac{1}{z} + \cos\frac{1}{z+1} + \cos\frac{1}{z-1}}{z}.$$

Observăm că $z_0 = 0$, $z_1 = -1$ și $z_2 = 1$ sunt puncte singulare esențiale pentru f. Pe de altă parte, toate se găsesc în interiorul cercului $(\gamma) = \Gamma(-1; 2\sqrt{2})$. Folosind Teorema reziduurilor, obținem

$$\begin{split} \mathscr{I} &= 2\pi j \sum_{k=0}^{2} \operatorname{Rez}(f; z_{k}) = -2\pi j \operatorname{Rez}(f; \infty) = 2\pi j \operatorname{Rez}\left(\frac{1}{z^{2}} f\left(\frac{1}{z}\right); 0\right) \\ &= 2\pi j \operatorname{Rez}\left(\frac{\cos z + \cos\frac{z}{z+1} + \cos\frac{z}{1-z}}{z}; 0\right) \\ &= 2\pi j \frac{\cos z + \cos\frac{z}{z+1} + \cos\frac{z}{1-z}}{z'}\bigg|_{z=0} = 6\pi j. \end{split}$$

q) Funcția $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}$,

$$f(z) = \frac{e^z \sinh \frac{\pi}{z - 1}}{(1 - z)^4}$$

îl are pe $z_1=1$ punct singular esențial, în interiorul cercului $\Gamma(1;1)$. Utilizând Teorema reziduurilor, deducem că

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f; 1).$$

Pentru a calcula însă acest reziduu, vom dezvolta în serie Laurent în jurul punctului $z_1=1$. Notând u=z-1,

$$f(z) = g(u) = \frac{e^{u+1}}{u^4} \operatorname{sh} \frac{\pi}{u}$$
$$= \frac{e}{u^4} \left(1 + \frac{u}{1!} + \frac{u^2}{2!} + \dots \right) \left(\frac{\pi}{u} + \frac{\pi^3}{u^3 3!} + \frac{\pi^5}{u^5 5!} + \dots \right)$$

și, de aici,

$$\operatorname{Rez}(f;1) = \operatorname{Rez}(g;0) = \operatorname{coeficientul\ lui} \frac{1}{u} = e \sum_{n=0}^{\infty} \frac{\pi^{2n+1}}{(2n+1)!(2n+4)!}.$$

În final,

$$\mathscr{I} = 2\pi e j \sum_{n=0}^{\infty} \frac{\pi^{2n+1}}{(2n+1)!(2n+4)!}.$$

r) Fie

$$f(z) = \frac{\operatorname{ctg} z \operatorname{cth} z}{z^3} = \frac{\cos z \operatorname{ch} z}{z^3 \sin z \operatorname{sh} z}.$$

Observăm că singularitățile funcției f sunt soluțiile ecuației $\sin z = 0$, adică $z_k = k\pi$, $k \in \mathbb{Z}$ și cele ale ecuației $\sin z = 0$, adică $z_0 = 0$ și $z_k' = k\pi j$, $k \in \mathbb{Z}^*$. Dintre acestea, toate sunt poli simpli cu excepția lui $z_0 = 0$ care este pol de ordinul 5, întrucât

$$f(z) = \frac{z^2}{\sin z \operatorname{sh} z} \cdot \frac{\cos z \operatorname{ch} z}{z^5},$$

iar $\lim_{z\to 0}\frac{z^2}{\sin z\, {\rm sh}z}=1$ (finită și nenulă). Folosind în continuare Teorema reziduurilor, concluzionăm că $\mathscr{I}=2\pi j{\rm Rez}(f;0)$, unde pentru calculul reziduului vom folosi dezvoltarea în serie Laurent a lui f în jurul lui 0. Așadar,

$$\begin{split} f(z) &= \frac{\left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \ldots\right) \left(1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \ldots\right)}{z^3 \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots\right) \left(z + \frac{z^3}{3!} + \frac{z^5}{5!} + \ldots\right)} \\ &= \frac{1 + \left(\frac{1}{4!} + \frac{1}{4!} - \frac{1}{2!2!}\right) z^4 + \ldots}{z^5 \left(1 + \left(\frac{1}{5!} + \frac{1}{5!} - \frac{1}{3!3!}\right) z^4 + \ldots\right)} = \frac{1 - \frac{1}{6} z^4 + \ldots}{z^5 \left(1 - \frac{1}{90} z^4 + \ldots\right)} \\ &= \frac{1}{z^5} \left(1 - \frac{1}{6} z^4 + \ldots\right) \left(1 + \frac{1}{90} z^4 + \ldots\right) = \frac{1}{z^5} \left(1 - \frac{7}{45} z^4 + \ldots\right), \end{split}$$

pe o vecinătate redusă a lui 0, deci $\text{Rez}(f;0) = \text{coeficientul lui } \frac{1}{z} = -\frac{7}{45}$ și, de aici, $\mathscr{I} = -\frac{14\pi j}{45}$.

s) Singularitățile funcției $f(z)=\frac{e^z}{\sin^2 z}$ sunt polii dubli $z_k=k\pi,\,k\in\mathbb{Z}.$ Dintre aceștia, doar z_k , cu $k=\overline{-4,4}$ sunt în interiorul cercului $(\gamma)=\Gamma(0;1)$. Prin urmare, folosind Teorema reziduurilor, obținem

$$\mathscr{I} = 2\pi j \sum_{k=-4}^{4} \operatorname{Rez}(f; z_k),$$

unde

$$\begin{aligned} \operatorname{Rez}(f; z_k) &= \lim_{z \to k\pi} \left((z - k\pi)^2 \cdot \frac{e^z}{\sin^2 z} \right)' = \lim_{u \to 0; \, u = z - k\pi} \left(\frac{u^2 e^{u + k\pi}}{\sin^2 (u + k\pi)} \right)' \\ &= e^{k\pi} \lim_{u \to 0} \left(\frac{u^2 e^u}{\sin^2 u} \right)' = e^{k\pi} \lim_{u \to 0} \frac{(2u + u^2) \sin u - 2u^2 \cos u}{\sin^3 u} \cdot e^u \\ &= e^{k\pi} \lim_{u \to 0} \frac{u^3 e^u}{\sin^3 u} \cdot \lim_{u \to 0} \frac{(2u + u^2) \sin u - 2u^2 \cos u}{u^3} \\ &= e^{k\pi} \lim_{u \to 0} \frac{(2 + u) \sin u - 2u \cos u}{u^2} \\ &= \frac{l'H}{u \to 0} \frac{e^{k\pi} \lim_{u \to 0} \frac{(2u + 1) \sin u + u \cos u}{2u}}{2u} = \frac{l'H}{u} e^{k\pi}. \end{aligned}$$

În final,

$$\mathscr{I} = 2\pi j \sum_{k=-4}^{4} e^{k\pi} = 2\pi j \left(1 + 2 \sum_{k=1}^{4} \operatorname{ch} k\pi \right).$$

t) Singularitățile funcției $f(z) = \frac{e^{-z}}{(z^2 + 4\pi^2)^2}$ sunt polii dubli $z_{1,2} = \pm 2\pi j$. Cum $|2\pi j - \pi j| = \pi < 2\pi$, iar $|-2\pi j - \pi j| = 3\pi > 2\pi$, deducem că doar $2\pi j$ este în interiorul cercului $\Gamma(\pi j; 2\pi)$. Folosind Teorema reziduurilor, obținem

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f; 2\pi j) = 2\pi j \lim_{z \to 2\pi j} \left((z - 2\pi j)^2 \cdot \frac{e^{-z}}{(z^2 + 4\pi^2)^2} \right)'$$

$$= 2\pi j \left(\frac{e^{-z}}{(z + 2\pi j)^2} \right)' \Big|_{z = 2\pi j} = -2\pi j e^{-z} \cdot \frac{z + 2\pi j + 2}{(z + 2\pi j)^3} \Big|_{z = 2\pi j}$$

$$= -2\pi j \cdot \frac{2 + 4\pi j}{(4\pi j)^3} = \frac{1 + 2\pi j}{16\pi^2}.$$

u) Deoarece $z_0 = 0$ este pol de ordinul 3 pentru funcția

$$f(z) = \frac{e^{(\sin \pi z)/z} + 3\cos z}{z^3},$$

conform Teoremei reziduurilor, avem

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f;0) = 2\pi j \cdot \frac{1}{2!} \lim_{z \to 0} \left(z^3 \cdot \frac{e^{(\sin \pi z)/z} + 3\cos z}{z^3} \right)''$$
$$= \pi j \lim_{z \to 0} \left(e^{(\sin \pi z)/z} + 3\cos z \right)'' = \frac{\pi j}{3} (-9 - e^{\pi} \pi^3).$$

v) Funcția $f(z) = \frac{z^9 e^{\frac{\pi}{z}}}{(z^8+8)(z^2-j)}$ are drept singularități pe $z_0=0$ (punct singular esențial), cele 8 soluții z_k , $k=\overline{1,8}$ ale ecuației $z^8+8=0$ (poli simpli) și soluțiile ecuației $z^2-j=0$, adică $z_{9,10}=\pm(1+j)/\sqrt{2}$ (poli simpli). Observăm de asemenea că $|z_k|<2$, $\forall k=\overline{0,10}$, adică toate punctele singulare ale funcției f sunt în interiorul cercului $(\gamma)=\Gamma(0;2)$. Folosind în continuare Teorema reziduurilor și Teorema 5.3.2, obținem

$$\mathscr{I} = 2\pi j \sum_{k=0}^{11} \text{Rez}(f; z_k) = -2\pi j \text{Rez}(f; \infty)$$

$$= 2\pi j \text{Rez} \left(\frac{1}{z^2} \cdot \frac{e^{\pi z}/z^9}{(1/z^8 + 8)(1/z^2 - j)}; 0 \right)$$

$$= 2\pi j \text{Rez} \left(\frac{e^{\pi z}}{z(1 + 8z^8)(1 - z^2 j)}; 0 \right)$$

$$= 2\pi j \frac{e^{\pi z}}{z'(1 + 8z^8)(1 - z^2 j)} \Big|_{z=0} = 2\pi j.$$

Merită să subliniem aici faptul că nici nu ne interesează cum arată rădăcinile ecuației $z^8+8=0$, de vreme ce nu calculăm reziduurile funcției f în aceste puncte. Ceea ce contează este că acestea se găsesc în interiorul cercului (γ) .

cercuiu (γ). $z^{12} \operatorname{ch} \frac{3\pi}{z}$ **x)** Funcția $f(z) = \frac{z^{12} \operatorname{ch} \frac{3\pi}{z}}{(\pi z^3 + 3j)^3 (z^2 + 4)^2}$ are drept singularități pe $z_0 = 0$ (punct esențial), soluțiile $z_{1,2,3}$ ale ecuației $\pi z^3 + 3j = 0$ (poli de ordinul 3) și soluțiile ecuației $z^2 + 4 = 0$, adică polii simpli $z_{4,5} = \pm 2j$ (observăm că $\operatorname{ch}(3\pi/2j) = \operatorname{ch}(-3\pi/2j) = \cos(3\pi/2) = 0$). Deoarece $|z_k| < 1$, pentru $k = \overline{0,3}$ și $|z_k| > 1$ pentru $k = \overline{4,5}$, din Teorema reziduurilor și Teorema 5.3.2, obținem

$$\begin{split} \mathscr{I} &= 2\pi j \sum_{k=0}^{3} \operatorname{Rez}(f; z_{k}) \\ &= -2\pi j (\operatorname{Rez}(f; 2j) + \operatorname{Rez}(f; -2j) + \operatorname{Rez}(f; \infty)), \end{split}$$

unde

$$\begin{aligned} \operatorname{Rez}(f;2j) &= \lim_{z \to 2j} (z-2j) \cdot \frac{z^{12} \operatorname{ch} \frac{3\pi}{z}}{(\pi z^3 + 3j)^3 (z-2j)^2 (z+2j)^2} \\ &= \lim_{z \to 2j} \frac{\operatorname{ch} \frac{3\pi}{z}}{z-2j} \cdot \lim_{z \to 2j} \frac{z^{12}}{(\pi z^3 + 3j)^3 (z+2j)^2} \\ &= \frac{l'H}{4} \cdot \frac{3\pi j}{4} \cdot \frac{(2j)^{12}}{(\pi (2j)^3 + 3j)^3 (4j)^2} = -\frac{192\pi}{(8\pi - 3)^3}, \end{aligned}$$

 $\operatorname{Rez}(f; -2j) = -\frac{192\pi}{(8\pi + 3)^3}$ (se procedează similar), iar

$$\begin{aligned} \operatorname{Rez}(f;\infty) &= -\operatorname{Rez}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right) = -\operatorname{Rez}\left(\frac{\operatorname{ch}(3\pi z)}{z(\pi + 3jz^3)^3(1 + 4z^2)^2}; 0\right) \\ &= -\frac{\operatorname{ch}(3\pi z)}{z'(\pi + 3jz^3)^3(1 + 4z^2)^2}\Big|_{z=0} = -\frac{1}{\pi^3}. \end{aligned}$$

În final,
$$\mathscr{I} = 2\pi j \left(\frac{192\pi}{(8\pi - 3)^3} + \frac{192\pi}{(8\pi + 3)^3} + \frac{1}{\pi^3} \right).$$

3. a) Punctele singulare ale funcției

$$f(z) = \frac{3 + 2\cos 2z}{\sin z - j\cos z - j}$$

sunt soluțiile ecuației $\sin z - j \cos z - j = 0 \Leftrightarrow j \sin z + \cos z + 1 = 0$. De aici, $e^{jz} = -1$, deci $jz \in \text{Log}(-1)$, prin urmare, $z \in -j\text{Log}(-1) = \{(2k+1)\pi; k \in \mathbb{Z}\}$. Singurele puncte singulare din interiorul cercului $\Gamma(4; 2\pi)$ sunt polii simpli $z_0 = \pi$ și $z = 3\pi$. Aplicând Teorema reziduurilor, obținem

$$\begin{split} \mathscr{I} &= 2\pi j (\text{Rez}(f;\pi) + \text{Rez}(f;3\pi)) \\ &= 2\pi j \frac{3 + 2\cos 2z}{(\sin z - j\cos z - j)'} \bigg|_{z=\pi} + 2\pi j \frac{3 + 2\cos 2z}{(\sin z - j\cos z - j)'} \bigg|_{z=3\pi} \\ &= 2\pi j \frac{3 + 2\cos 2z}{\cos z + j\sin z} \bigg|_{z=\pi} + 2\pi j \frac{3 + 2\cos 2z}{\cos z + j\sin z} \bigg|_{z=3\pi} \\ &= -20\pi j. \end{split}$$

b) Punctele singulare ale funcției

$$f(z) = \frac{1 + 2\cos(z^2)}{\operatorname{sh}z + \operatorname{ch}z - 1}$$

sunt soluțiile ecuației $\operatorname{sh} z + \operatorname{ch} z = 1 \Leftrightarrow e^z = 1$, adică polii simpli $z_k = 2k\pi j$, $k \in \mathbb{Z}$. Cum doar $z_0 = 0 \in \operatorname{Int} \Gamma(2j;4)$, aplicând Teorema reziduurilor, obținem

$$\mathscr{I} = 2\pi j \text{Rez}(f;0) = 2\pi j \frac{1 + 2\cos(z^2)}{(\text{sh}z + \text{ch}z - 1)'} \bigg|_{z=0}$$
$$= 2\pi j \frac{1 + 2\cos(z^2)}{\text{ch}z + \text{sh}z} \bigg|_{z=0} = 6\pi j.$$

c) Funcția

$$f(z) = \frac{2 + 3\cos\frac{z}{2}}{\sin z + j(\cos z - 1)}$$

are drept singularități soluțiile ecuației $\sin z + j(\cos z - 1) = 0 \Leftrightarrow j \sin z - \cos z + 1 = 0 \Leftrightarrow e^{-jz} = 1 \Leftrightarrow -jz \in \text{Log}(1) = \{2k\pi j; k \in \mathbb{Z}\}, \text{ adică polii simpli } z_k = 2k\pi, k \in \mathbb{Z}.$ Dintre acestea, doar $z_0 = 0$ se află pe cercul $\Gamma(-j;1)$. Conform Teoremei semireziduurilor,

$$\mathscr{I} = \pi j \text{Rez}(f; 0) = \pi j \frac{2 + 3\cos\frac{z}{2}}{(\sin z + j(\cos z - 1))'} \bigg|_{z=0} = 5\pi j.$$

d) Punctele singulare ale funcției

$$f(z) = \frac{2 + \sin z}{j(e + \cos z) - \sin z}$$

sunt soluțiile ecuației $j(e+\cos z)-\sin z \Leftrightarrow e+\cos z+j\sin z=0 \Leftrightarrow e^{jz}=-e \Leftrightarrow jz \in \text{Log}(-e)=\{1+j(2k+1)\pi;\ k\in\mathbb{Z}\},\ \text{adică polii simpli}\ z_k=(2k+1)\pi-j,\ k\in\mathbb{Z}.$ Cum doar $z_{-1}=-\pi-j$ și $z_0=\pi-j$ se găsesc pe cercul $\Gamma(-j;\pi)$, din Teorema semireziduurilor, deducem că

$$\mathscr{I} = \pi j (\operatorname{Rez}(f; -\pi - j) + \operatorname{Rez}(f; \pi - j))$$

$$= \pi j \left(\frac{2 + \sin z}{(j(e + \cos z) - \sin z)'} \bigg|_{z = -\pi - j} + \frac{2 + \sin z}{(j(e + \cos z) - \sin z))'} \bigg|_{z = \pi - j} \right)$$

$$= \pi j \left(\frac{2 + \sin z}{-j \sin z - \cos z} \bigg|_{z = -\pi - j} + \frac{2 + \sin z}{-j \sin z - \cos z} \bigg|_{z = \pi - j} \right)$$

$$= \pi j \left(\frac{2 + \sin(\pi - j)}{-j \sin(\pi - j) + \cos(\pi - j)} + \frac{2 + \sin(\pi - j)}{-j \sin(\pi - j) + \cos(\pi - j)} \right)$$

$$= 2\pi j \frac{2 + j \sin z}{-j(j \sin z) + \cosh z} = 2\pi j \frac{2 + j \sin z}{\sinh z + \cosh z} = 2\pi j \frac{2 + j \sin z}{e}.$$

e) Funcția

$$f(z) = \frac{1 + \sin z}{e - \cos z + j \sin z}$$

are drept puncte singulare soluțiile ecuației $e - \cos z + j \sin z = 0 \Leftrightarrow e^{-jz} = e \Leftrightarrow -jz \in \text{Log}\,e = \{1 + 2k\pi j; k \in \mathbb{Z}\}, \text{ adică polii simpli } z_k = 2k\pi + j, k \in \mathbb{Z}.$ Dintre acestea, $z_0 = j$ se află pe cercul $\Gamma(0;1)$. Prin urmare, conform Teoremei semireziduurilor,

f) Singularitățile funcției

$$f(z) = \frac{1 + \sin 2jz}{\operatorname{ch}z + \operatorname{sh}z - j}$$

sunt soluțiile ecuației $\operatorname{ch} z + \operatorname{sh} z - j = 0 \Leftrightarrow e^z = j$, adică polii simpli $z_k = \frac{(4k+1)\pi}{2}j, \ k \in \mathbb{Z}$. Cum singurul punct din interiorul cercului $\Gamma(0;2)$ este $z_0 = \frac{\pi}{2}j$, din Teorema reziduurilor obținem

$$\mathscr{I} = 2\pi j \operatorname{Rez}\left(f; \frac{\pi}{2}j\right) = 2\pi j \frac{1 + \sin 2jz}{(\operatorname{ch}z + \operatorname{sh}z - j)'} \bigg|_{z = \frac{\pi}{2}j}$$

$$= 2\pi j \frac{1 + \sin 2jz}{\sinh z + \cosh z} \bigg|_{z=\frac{\pi}{2}j} = 2\pi j \frac{1}{\sinh \frac{\pi}{2}j + \cosh \frac{\pi}{2}j} = 2\pi j \frac{1}{j \sin \frac{\pi}{2} + \cos \frac{\pi}{2}} = 2\pi.$$

g) Funcția

$$f(z) = \frac{1 + 2\operatorname{ch}(z^2)}{\operatorname{sh}z - \operatorname{ch}z + 1}$$

are drept singularități soluțiile ecuației $\operatorname{sh} z - \operatorname{ch} z + 1 = 0 \Leftrightarrow e^{-z} = 1$, adică polii simpli $z_k = 2k\pi j, \ k \in \mathbb{Z}$. Dintre acestea, $z_0 = 0, z_2 = 4\pi j \in (\gamma) = \Gamma(2\pi j; 2\pi)$, iar $z_1 = 2\pi j \in \operatorname{Int}(\gamma)$. Folosind Teorema semireziduurilor, deducem că

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f; 2\pi j) + \pi j (\operatorname{Rez}(f; 0) + \operatorname{Rez}(f; 4\pi j)),$$

unde

$$\operatorname{Rez}(f; 2\pi j) = \frac{1 + 2\operatorname{ch}(z^2)}{(\operatorname{sh} z - \operatorname{ch} z + 1)'} \bigg|_{z = 2\pi j} = \frac{1 + 2\operatorname{ch}(4\pi^2)}{\cos 2\pi - j\sin 2\pi} = 1 + 2\operatorname{ch}(4\pi^2),$$

$$\operatorname{Rez}(f; 0) = \frac{1 + 2\operatorname{ch}(z^2)}{(\operatorname{sh} z - \operatorname{ch} z + 1)'} \bigg|_{z = 0} = \frac{1 + 2\operatorname{ch} 0}{\operatorname{ch} 0 - \operatorname{sh} 0} = 3,$$

iar

$$\operatorname{Rez}(f; 4\pi j) = \frac{1 + 2\operatorname{ch}(z^2)}{(\operatorname{sh} z - \operatorname{ch} z + 1)'} \bigg|_{z = 4\pi j} = \frac{1 + 2\operatorname{ch}(16\pi^2)}{\cos 4\pi - j\sin 4\pi} = 1 + 2\operatorname{ch}(16\pi^2).$$

În final,
$$\mathscr{I} = 2\pi i (3 + 2\operatorname{ch}(4\pi^2) + \operatorname{ch}(16\pi^2)).$$

h) Rescriem mai întâi funcția f după cum urmează:

$$f(z) = \frac{\sin z}{j^2(\cos 2z + j\sin 2z - 1)^2\cos z} = -\frac{\sin z}{(e^{2jz} - 1)^2\cos z}$$
$$= -\frac{\frac{e^{jz} - e^{-jz}}{2j}}{(e^{2jz} - 1)^2\cos z} = -\frac{e^{2jz} - 1}{2je^{jz}(e^{2jz} - 1)^2\cos z}$$
$$= -\frac{1}{2je^{jz}(e^{2jz} - 1)\cos z} = -\frac{1}{2j}g(z)$$

Observăm apoi că singularitățile funcției g sunt polii simpli $z_k = k\pi$,

 $k \in \mathbb{Z}$ (soluțiile ecuației $e^{2jz} - 1 = 0$) și polii simpli $z_k' = \frac{(2k+1)\pi}{2}, k \in \mathbb{Z}$ (soluțiile ecuației $\cos z = 0$). Dintre acestea, $z_0 = 0$ și $z_1 = \pi$ aparțin cercului $(\gamma) = \Gamma\left(\frac{\pi}{2}; \pi\right)$, iar $z_0' = \frac{\pi}{2}$ se găsesște în interiorul lui (γ) . Din Teorema semireziduurilor obținem

$$\begin{split} \mathscr{I} &= -\frac{1}{2j} \cdot 2\pi j \mathrm{Rez}\left(g; \frac{\pi}{2}\right) - \frac{1}{2j} \cdot \pi j \left(\mathrm{Rez}(g; 0) + \mathrm{Rez}(g; \pi)\right) \\ &= -\pi \mathrm{Rez}\left(g; \frac{\pi}{2}\right) - \frac{\pi}{2} \left(\mathrm{Rez}(g; 0) + \mathrm{Rez}(g; \pi)\right), \end{split}$$

unde

$$\begin{aligned} \operatorname{Rez}\left(g; \frac{\pi}{2}\right) &= \frac{1}{e^{jz}(e^{2jz} - 1)(\cos z)'} \bigg|_{z = \frac{\pi}{2}} \\ &= -\frac{1}{e^{jz}(e^{2jz} - 1)\sin z} \bigg|_{z = \frac{\pi}{2}} = -\frac{1}{e^{\frac{\pi}{2}j}(e^{\pi j} - 1)\sin\frac{\pi}{2}} = \frac{1}{2j}, \end{aligned}$$

în vreme ce

$$\operatorname{Rez}(g;0) = \frac{1}{e^{jz}(e^{2jz} - 1)' \cos z} \bigg|_{z=0} = \frac{1}{e^{jz} \cdot 2je^{2jz} \cos z} \bigg|_{z=0} = \frac{1}{2j},$$

iar

$$\begin{aligned} \operatorname{Rez}(g;\pi) &= \frac{1}{e^{jz}(e^{2jz}-1)'\cos z} \bigg|_{z=\pi} = \frac{1}{e^{jz} \cdot 2je^{2jz}\cos z} \bigg|_{z=\pi} = \frac{1}{2j}. \\ \widehat{\operatorname{In}} \text{ final, } \mathscr{I} &= -\frac{\pi}{2j} - \frac{\pi}{4j} - \frac{\pi}{4j} = \pi j. \end{aligned}$$

4. a) Fie $e^{jx}=z$. Atunci $je^{jx}dx=dz$, cu $dx=\frac{1}{jz}dz$ și $\sin x=\frac{e^{jx}-e^{-jx}}{2j}=\frac{z^2-1}{2jz}$. De aici,

$$\mathscr{I} = \int_0^{2\pi} \frac{dx}{a + \sin x} dx = \int_{|z|=1}^{\pi} \frac{1}{a + \frac{z^2 - 1}{2iz}} \cdot \frac{1}{iz} dz = 2 \int_{|z|=1}^{\pi} \frac{1}{z^2 + 2ai - 1} dz.$$

Cum integrantul are polii simpli $z_1 = \left(-a + \sqrt{a^2 - 1}\right)j$ și $z_2 =$

 $\left(-a-\sqrt{a^2-1}\right)j,$ cu $|z_1|<1$ și $|z_2|>1,$ din Teorema reziduurilor obținem

$$\mathscr{I} = 4\pi j \operatorname{Rez} \left(\frac{1}{z^2 + 2ajz - 1}; \left(\sqrt{a^2 - 1} - a \right) j \right)$$
$$= 4\pi j \frac{1}{(z^2 + 2ajz - 1)'} \Big|_{z = (\sqrt{a^2 - 1} - a)j} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

b) Fie

$$\mathscr{I} = \int_{-\pi}^{\pi} \frac{1 - 3\cos x}{5 + 4\sin x} dx = \int_{0}^{2\pi} \frac{1 - 3\cos x}{5 + 4\sin x} dx \text{ si } \mathscr{J} = 3 \int_{0}^{2\pi} \frac{\sin x}{5 + 4\sin x} dx.$$

De aici,

$$\mathscr{I} - j \mathscr{J} = \int_0^{2\pi} \frac{1 - 3e^{jx}}{5 + 4\sin x} dx$$

$$= \underbrace{\frac{e^{jx} = z}{}}_{|z| = 1} \int_{|z| = 1} \frac{1 - 3z}{5 + 4\frac{z^2 - 1}{2jz}} \cdot \frac{1}{jz} dz = \int_{|z| = 1} \frac{1 - 3z}{2z^2 + 5jz - 2} dz.$$

Funcția $f(z)=\frac{1-3z}{2z^2+5jz-2}$ are polii simpli $z_1=-\frac{j}{2}$ și $z_2=-2j$, cu $|z_1|<1$ și $|z_2|>1$. Din Teorema reziduurilor obținem

$$\mathcal{I} - j \mathcal{J} = 2\pi j \text{Rez}\left(f; -\frac{j}{2}\right)$$

$$= 2\pi j \frac{1 - 3z}{(2z^2 + 5jz - 2)'} \bigg|_{z = -\frac{j}{2}} = \frac{\pi}{3}(2 + 3j)$$

și, de aici, $\mathscr{I} = \frac{2\pi}{3}$.

c) Avem

$$\mathscr{I} = 2 \int_0^{2\pi} \frac{5 + 2\cos x}{5 + 3\sin x} dx \ \text{si} \ \mathscr{J} = 4 \int_0^{2\pi} \frac{\sin x}{5 + 3\sin x} dx.$$

De aici,

$$\mathscr{I} + j \mathscr{J} = 2 \int_0^{2\pi} \frac{5 + 2e^{jx}}{5 + 3\sin x} dx = \frac{e^{jx} = z}{2} \int_{|z| = 1}^{2\pi} \frac{5 + 2z}{3z^2 + 10jz - 3} dz.$$

Deoarece integrantul are polii simpli $z_1=-\frac{j}{3}$ și $z_2=-3j$, cu $|z_1|<1$ și $|z_2|>1$, aplicând Teorema reziduurilor, obținem

$$\mathscr{I} + j \mathscr{J} = 8\pi j \operatorname{Rez} \left(\frac{5 + 2z}{3z^2 + 10jz - 3}; -\frac{j}{3} \right)$$
$$= 8\pi j \frac{5 + 2z}{(3z^2 + 10jz - 3)'} \bigg|_{z = -\frac{j}{3}} = \frac{\pi}{3} (15 - 2j)$$

și, în final $\mathscr{I} = 5\pi$.

d) Avem

$$\mathscr{I} = \int_0^{3\pi} \frac{7 + \sin 2x}{\cos 2x + \frac{5}{2}(1 - \cos 2x)} dx \xrightarrow{2x=t} \int_0^{6\pi} \frac{7 + \sin t}{5 - 3\cos t} dt$$

$$= 3 \int_0^{2\pi} \frac{7 + \sin t}{5 - 3\cos t} dt \xrightarrow{e^{jt} = z} 3 \int_{|z| = 1} \frac{7 + \frac{z^2 - 1}{2jz}}{5 - 3\frac{z^2 + 1}{2z}} \cdot \frac{1}{jz} dz$$

$$= -3 \int_{|z| = 1} \frac{z^2 + 14jz - 1}{z(-3z^2 + 10z - 3)} dz = -3 \int_{|z| = 1} f(z) dz.$$

Cum polii simpli ai funcției f sunt $z_0=0,\ z_1=\frac{1}{3}$ și $z_2=3,$ cu $|z_0|,|z_1|<1$ și $|z_2|>1,$ din Teorema reziduurilor obținem

$$\begin{split} \mathscr{I} &= -6\pi j \left(\operatorname{Rez}(f;0) + \operatorname{Rez}\left(f;\frac{1}{3}\right) \right) \\ &= -6\pi j \left(\frac{z^2 + 14jz - 1}{z'(-3z^2 + 10z - 3)} \bigg|_{z=0} + \frac{z^2 + 14jz - 1}{z(-3z^2 + 10z - 3)'} \bigg|_{z=\frac{1}{3}} \right) = \frac{21\pi}{2}. \end{split}$$

e) Fie

$$\mathscr{I}_n = \int_0^{2\pi} \frac{\cos nx}{1 - 2a\cos x + a^2} dx \quad \mathscr{J}_n = \int_0^{2\pi} \frac{\sin nx}{1 - 2a\cos x + a^2} dx.$$

De aici,

$$\mathscr{I}_n + j \mathscr{J}_n = \int_0^{2\pi} \frac{e^{jnx}}{1 - 2a\cos x + a^2} dx$$

$$\frac{e^{jx}=z}{|z|=1} \int \frac{z^n}{1-2a \cdot \frac{z^2+1}{2z}+a^2} \cdot \frac{1}{jz} dz$$

$$= j \int_{|z|=1} \frac{z^n}{az^2-(a^2+1)z+a} dz.$$

Cum punctele singulare ale integrantului sunt polii simpli $z_1 = \frac{1}{a}$ și $z_2 = a$, cu $|z_1| > 1$ și $|z_2| < 1$, aplicând Teorema reziduurilor, obținem

$$\mathcal{I}_n + j \mathcal{J}_n = 2\pi j^2 \text{Rez} \left(\frac{z^n}{az^2 - (a^2 + 1)z + a}; a \right)$$
$$= -2\pi \frac{z^n}{(az^2 - (a^2 + 1)z + a)'} \bigg|_{z=a} = \frac{2\pi a^n}{1 - a^2}$$

și, de aici, $\mathscr{I}_n = \frac{2\pi a^n}{1 - a^2}$.

f) Avem

$$\mathscr{I} = \frac{\frac{x}{4} = t}{4} + \int_{0}^{2\pi} \frac{\sin^{3} 8t}{5 + 4\sin t} dt = 4 \int_{0}^{2\pi} \frac{3\sin 8t - \sin 24t}{5 + 4\sin t} dt$$

și considerăm integrala $\mathscr{J} = 4 \int_0^{2\pi} \frac{3\cos 8t - \cos 24t}{5 + 4\sin t} dt$. De aici,

$$\begin{split} \mathscr{J} + j\mathscr{I} &= 4 \int_0^{2\pi} \frac{3e^{8jt} - e^{24jt}}{5 + 4\sin t} dt \xrightarrow{\underline{e^{jt}} = z} 4 \int\limits_{|z| = 1} \frac{3z^8 - z^{24}}{5 + 4\frac{z^2 - 1}{2jz}} \cdot \frac{1}{jz} dz \\ &= 4 \int\limits_{|z| = 1} \frac{3z^8 - z^{24}}{2z^2 + 5jz - 2} dz. \end{split}$$

Fie în continuare funcția $f(z)=\frac{3z^8-z^{24}}{2z^2+5jz-2}$ cu polii simpli $z_1=-\frac{j}{2}$ și $z_2=-2j$, cu $|z_1|<1$ și $|z_2|>1$. Folosind Teorema reziduurilor, obținem

$$\mathscr{J} + j\mathscr{I} = 2\pi j \operatorname{Rez}\left(f; -\frac{j}{2}\right) = 8\pi j \frac{3z^8 - z^{24}}{(2z^2 + 5jz - 2)'} \Big|_{z = -\frac{j}{2}}$$
$$= 8\pi j \frac{3z^8 - z^{24}}{4z + 5j} \Big|_{z = -\frac{j}{2}} = \frac{\pi}{3} \left(3 \cdot 2^{-5} - 2^{-21}\right)$$

și, în final, $\mathscr{I} = 0$, respectiv $\mathscr{J} = \frac{\pi}{3} \left(3 \cdot 2^{-5} - 2^{-21} \right)$.

g) (Metoda I) Integrala se poate scrie

$$\mathscr{I} = \int_0^{2\pi} \frac{1 + \sin x}{(5 - 4\cos x)^2} dx \text{ si considerăm integrala } \mathscr{J} = \int_0^{2\pi} \frac{\cos x}{(5 - 4\cos x)^2} dx,$$

apoi formăm expresia

$$\begin{split} \mathscr{J} + j\mathscr{I} &= \int_0^{2\pi} \frac{j + e^{jx}}{(5 - 4\cos x)^2} dx \, \frac{e^{jx} = z}{|z| = 1} \int \frac{z + j}{\left(5 - 4\frac{z^2 + 1}{2z}\right)^2} \cdot \frac{1}{jz} dz \\ &= \frac{1}{j} \int \frac{z(z + j)}{(2z^2 - 5z + 2)^2} dz = 2\pi \text{Rez} \left(\frac{z(z + j)}{(2z^2 - 5z + 2)^2}; \frac{1}{2}\right) \\ &= 2\pi \lim_{z \to \frac{1}{2}} \left(\left(z - \frac{1}{2}\right)^2 \cdot \frac{z(z + j)}{(2z^2 - 5z + 2)^2}\right)' = \frac{\pi}{2} \left(\frac{z(z + j)}{(z - 2)^2}\right)' \Big|_{z = \frac{1}{2}} \\ &= \frac{2\pi}{27} (4 + 5j), \end{split}$$

de unde concluzionăm că $\mathscr{I} = \frac{10\pi}{27}$. (Metoda a II-a) Avem

$$\begin{split} \mathscr{I} &= \int_0^{2\pi} \frac{1 + \sin x}{(5 - 4\cos x)^2} dx \\ &= \int_{-\pi}^{\pi} \frac{\sin x}{(5 - 4\cos x)^2} dx + \int_0^{2\pi} \frac{dx}{(5 - 4\cos x)^2} = 0 + \int_0^{2\pi} \frac{dx}{(5 - 4\cos x)^2}, \end{split}$$

prima integrală având valoarea 0 deoarece integrantul este o funcție impară. Mai departe, procedăm similar cu metoda I. Aṣadar,

$$\mathscr{J} = \frac{e^{jx} = z}{|z| = 1} \int_{|z| = 1} \frac{1}{\left(5 - 4\frac{z^2 + 1}{2z}\right)^2} \cdot \frac{1}{jz} dz$$

$$= \frac{1}{j} \int_{|z| = 1} \frac{zdz}{(2z^2 - 5z + 2)^2} = 2\pi \operatorname{Rez}\left(\frac{z}{(2z^2 - 5z + 2)^2}; \frac{1}{2}\right)$$

$$= 2\pi \lim_{z \to \frac{1}{2}} \left(\left(z - \frac{1}{2}\right)^2 \cdot \frac{z}{(2z^2 - 5z + 2)^2}\right)' = \frac{\pi}{2} \left(\frac{z}{(z - 2)^2}\right)' \Big|_{z = \frac{1}{2}} = \frac{10\pi}{27}.$$

h) Observám cá

$$\mathscr{I} = \frac{1}{2} \int_0^{3\pi} \frac{1 + \cos 6x}{13 + 12 \cos 2x} dx$$

$$= \frac{2x = t}{4} \int_0^{6\pi} \frac{1 + \cos 3t}{13 + 12 \cos t} dt = \frac{3}{4} \int_0^{2\pi} \frac{1 + \cos 3x}{13 + 12 \cos x} dx.$$

Dacă

$$\mathscr{J} = \frac{3}{4} \int_0^{2\pi} \frac{\sin 3x}{13 + 12\cos x} dx,$$

atunci

$$\mathscr{I} + j \mathscr{J} = \frac{3}{4} \int_0^{2\pi} \frac{1 + e^{3jx}}{13 + 12\cos x} dx = \frac{e^{jx} = z}{2\pi} \frac{3}{4j} \int_{|z| = 1} \frac{z^3 + 1}{6z^2 + 13z + 6} dz.$$

Folosind în continuare Teorema reziduurilor, obținem

$$\mathscr{I} + j \mathscr{J} = 2\pi j \cdot \frac{3}{4j} \operatorname{Rez} \left(\frac{z^3 + 1}{6z^2 + 13z + 6}; -\frac{2}{3} \right)$$
$$= \frac{3\pi}{2} \cdot \frac{z^3 + 1}{(6z^2 + 13z + 6)'} \Big|_{z = -\frac{2}{3}} = \frac{19\pi}{90}.$$

i) Deoarece

$$\mathscr{I} = -2\int_0^{2\pi} \frac{1+\sin^2 x}{7\sin x - 25} dx$$
$$= -2\int_0^{2\pi} \frac{1+\frac{1-\cos 2x}{2}}{7\sin x - 25} dx = \int_0^{2\pi} \frac{-3+\cos 2x}{7\sin x - 25} dx,$$

luând

$$\mathscr{J} = \int_0^{2\pi} \frac{\sin 2x}{7\sin x - 25} dx,$$

obținem

$$\mathscr{I} + j \mathscr{J} = \int_0^{2\pi} \frac{-3 + e^{2jx}}{7\sin x - 25} dx \xrightarrow{\underline{e^{jx} = z}} 2 \int_{|z| = 1} \frac{z^2 - 3}{7z^2 - 50jz - 7} dz$$
$$= 4\pi j \operatorname{Rez} \left(\frac{z^2 - 3}{7z^2 - 50jz - 7}; \frac{1}{7} j \right) = 4\pi j \cdot \frac{z^2 - 3}{(7z^2 - 50jz - 7)'} \Big|_{z = \frac{1}{7} j}$$

$$=\frac{37\pi}{147}=\mathscr{I}.$$

j) Observám cá

$$\mathscr{I} = 2\int_0^{2\pi} (1 - \sin x)^{134} \sin 67x dx \text{ si fie } \mathscr{J} = 2\int_0^{2\pi} (1 - \sin x)^{134} \cos 67x dx.$$

De aici,

$$\begin{split} \mathscr{J} + j\mathscr{I} &= 2\int_{0}^{2\pi} (1 - \sin x)^{134} e^{67jx} dx \\ &= \frac{e^{jx} = z}{2} \int_{|z| = 1} \left(1 - \frac{z^2 - 1}{2jz} \right)^{134} \cdot \frac{z^{67}}{jz} dz \\ &= -\frac{1}{2^{133}j} \int_{|z| = 1} \frac{\left(-z^2 + 2jz + 1 \right)^{134}}{z^{68}} dz = -\frac{1}{2^{133}j} \int_{|z| = 1} \frac{(jz + 1)^{268}}{z^{68}} dz \\ &= -\frac{1}{2^{133}j} \int_{|z| = 1} f(z) dz = -\frac{\pi}{2^{132}} \operatorname{Rez}(f; 0). \end{split}$$

Pentru a calcula Rez(f;0), ne folosim de dezvoltarea în serie Laurent a funcției f în jurul lui $z_0=0.$ Deoarece

$$f(z) = \frac{1}{z^{68}}(jz+1)^{268} = \frac{1}{z^{68}} \sum_{k=0}^{268} C_{268}^{k}(jz)^{k},$$

rezultă că $\operatorname{Rez}(f;0) = \operatorname{coeficientul} \operatorname{lui} \frac{1}{z} = -C_{268}^{67} j.$

În final,
$$\mathscr{J}+j\mathscr{I}=\frac{\pi j}{2^{132}}C_{268}^{67}$$
 și, de aici, $\mathscr{I}=\frac{\pi}{2^{132}}C_{268}^{67}$.

- **k)** Analog cu j), obținem $\mathscr{I} = -\frac{\pi}{2^{51}}C_{104}^{29}$.
- l) Procedăm similar cu j) sau rescriem integrala după cum urmează:

$$\mathscr{I} = \int_0^{4\pi} (1 - \cos x)^{10} \cos 5x dx = 2^{10} \int_0^{4\pi} \sin^{20} \frac{x}{2} \cos 5x dx.$$

Dacă

$$\mathscr{J} = 2^{10} \int_0^{4\pi} \sin^{20} \frac{x}{2} \sin 5x dx,$$

atunci

$$\mathcal{I} + j \mathcal{J} = 2^{10} \int_{0}^{4\pi} \sin^{20} \frac{x}{2} e^{5jx} dx$$

$$= \frac{e^{\frac{jx}{2}} = z}{2^{10}} \int_{|z|=1}^{2^{10}} \left(\frac{z^{2}-1}{2jz}\right)^{20} \cdot \frac{2z^{10}}{jz} dz$$

$$= \frac{1}{2^{9}j} \int_{|z|=1}^{2^{10}} \frac{\left(z^{2}-1\right)^{20}}{z^{11}} dz = 2\pi j \frac{1}{2^{9}j} \operatorname{Rez}\left(\frac{\left(z^{2}-1\right)^{20}}{z^{11}}; 0\right)$$

$$= -\frac{\pi}{2^{8}} C_{20}^{5},$$

deci $\mathscr{I}=-\frac{\pi}{2^8}C_{20}^5$ (în calculul reziduului am ținut cont de faptul că $\left(z^2-1\right)^{20}=\sum_{k=0}^{20}z^{2k}(-1)^{20-k}$).

m) Fie

$$\mathscr{I}_n = \int_0^{4\pi} \cos^{4n} \frac{x}{2} \cos nx dx \text{ si } \mathscr{J}_n = \int_0^{4\pi} \cos^{4n} \frac{x}{2} \sin nx dx.$$

Atunci

$$\mathcal{I}_n + j \mathcal{J}_n = \int_0^{4\pi} \cos^{4n} \frac{x}{2} e^{jnx} dx$$

$$\frac{e^{\frac{jx}{2} = z}}{|z| = 1} \int_{|z| = 1} \left(\frac{z^2 + 1}{2z} \right)^{4n} \cdot \frac{2z^{2n}}{jz} dz = \frac{2}{2^{4n}j} \int_{|z| = 1} \frac{\left(z^2 + 1\right)^{4n}}{z^{2n+1}} dz$$

$$= \frac{4\pi}{2^{4n}} \operatorname{Rez}\left(\frac{\left(z^2 + 1\right)^{4n}}{z^{2n+1}}; 0\right) = \frac{4\pi}{2^{4n}} C_{4n}^n,$$

de unde deducem că $\mathscr{I}_n = \frac{4\pi}{2^{4n}} C_{4n}^n$ (în calculul reziduului am folosit $\left(z^2+1\right)^{4n} = \sum_{k=0}^{4n} C_{4n}^k z^{2k}$).

n) Dacă

$$\mathscr{I}_n = \int_0^{8\pi} \sin^{8n} x \cos 2nx dx = 4 \int_0^{2\pi} \sin^{8n} x \cos 2nx dx$$

și

$$\mathcal{J}_n = 4 \int_0^{2\pi} \sin^{8n} x \sin 2nx dx.$$

atunci

$$\mathcal{I}_n + j \mathcal{J}_n = 4 \int_0^{2\pi} \sin^{8n} x e^{2njx} dx$$

$$\frac{e^{jx} = z}{2} \frac{4}{2^{8n} j} \int_{|z| = 1} \frac{\left(z^2 - 1\right)^{8n}}{z^{6n+1}} dz$$

$$= \frac{8\pi}{2^{8n}} \operatorname{Rez}\left(\frac{\left(z^2 - 1\right)^{8n}}{z^{6n+1}}; 0\right) = \frac{(-1)^{5n} 8\pi}{2^{8n}} C_{8n}^{3n} = \mathcal{I}_n.$$

o) Avem

$$\mathscr{I}_{n} = \int_{0}^{14\pi} \cos^{7n} \frac{x}{7} \cos nx dx \xrightarrow{x=7t} 7 \int_{0}^{2\pi} \cos^{7n} t \cos 7nt dt$$

și considerăm

$$\mathcal{J}_n = 7 \int_0^{2\pi} \cos^{7n} t \sin 7nt \, dt.$$

Atunci

$$\mathcal{J}_n + j \mathcal{J}_n = 7 \int_0^{2\pi} \cos^{7n} t \, e^{7jnt} dt$$

$$\frac{e^{jt} = z}{2} \int_{|z| = 1}^{2\pi} \left(\frac{z^2 + 1}{2z} \right)^{7n} \cdot \frac{z^{7n}}{jz} dz = \frac{7}{2^{7n}j} \int_{|z| = 1}^{2\pi} \frac{\left(z^2 + 1 \right)^{7n}}{z} dz$$

$$= \frac{14\pi}{2^{7n}} \operatorname{Rez} \left(\frac{\left(z^2 + 1 \right)^{7n}}{z}; 0 \right) = \frac{14\pi}{2^{7n}} \cdot \frac{\left(z^2 + 1 \right)^{7n}}{z'} \Big|_{z=0}^{2\pi} = \frac{14\pi}{2^{7n}}.$$

În final, $\mathscr{I}_n = \frac{14\pi}{2^{7n}}$.

p) Avem

$$\mathscr{I} = \frac{e^{jx} = z}{|z| = 1} \int_{|z| = 1} \left(\left(\frac{z^2 - 1}{2jz} \right)^{2n} - 2 \left(\frac{z^2 + 1}{2z} \right)^{2n} \right) \cdot \frac{1}{jz} dz$$

$$= \frac{1}{2^{2n}j} \int_{|z| = 1} \frac{(-1)^n (z^2 - 1)^{2n} - 2(z^2 + 1)^{2n}}{z^{2n+1}} dz$$

$$= \frac{1}{2^{2n}j} \int_{|z| = 1} f(z) dz = \frac{2\pi}{2^{2n}} \operatorname{Rez}(f; 0).$$

Pe de altă parte,

$$f(z) = \frac{(-1)^n \sum_{k=0}^{2n} C_{2n}^k z^{2k} (-1)^{2n-k} - 2 \sum_{k=0}^{2n} C_{2n}^k z^{2k}}{z^{2n+1}},$$

de unde rezultă că Rez(f;0)=coef. lui $z^{2n}=(-1)^{2n}\mathbf{C}_{2n}^n-2\mathbf{C}_{2n}^n=-\mathbf{C}_{2n}^n$ și, de aici

$$\mathscr{I} = -\frac{2\pi}{2^{2n}} C_{2n}^n = -2\pi \cdot \frac{(2n-1)!!}{(2n)!!}.$$

q) Procedând similar cu p), deducem că

$$\mathscr{I}_{2n} = \int_0^{2\pi} \sin^{2n} x dx = \int_0^{2\pi} \cos^{2n} x dx = \frac{2\pi}{2^{2n}} \mathcal{C}_{2n}^n.$$

Prin urmare,
$$\mathcal{I} = \mathcal{I}_{78} - 3\mathcal{I}_{100} = \frac{2\pi}{278} C_{78}^{39} - \frac{6\pi}{2100} C_{100}^{50}$$
.

5. a) Observăm mai întâi că

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{7x+1}{x^4+1} dx = \int_{-\infty}^{\infty} \frac{7x}{x^4+1} dx + \int_{-\infty}^{\infty} \frac{dx}{x^4+1} = 0 + \int_{-\infty}^{\infty} \frac{dx}{x^4+1},$$

integrantul primei integrale din membrul drept fiind o funcție impară. De aici, polii funcției raționale $f(z)=\frac{1}{z^4+1}$ sunt rădăcinile ecuației $z^4+1=0 \Leftrightarrow z^4=j^2$, adică $z^2=\pm j=\frac{1}{2}(\pm 2j)=\frac{1}{2}(1\pm j)^2$, de unde obținem $z_{1,2}=\pm\frac{1}{\sqrt{2}}(1+j)$ și $z_{3,4}=\pm\frac{1}{\sqrt{2}}(1-j)$ (poli simpli). Deoarece

$$\begin{split} & \operatorname{Im} \left(-\frac{1}{\sqrt{2}} (1+j) \right) < 0 \text{ și } \operatorname{Im} \left(\frac{1}{\sqrt{2}} (1-j) \right) < 0, \, \operatorname{din} \, (5.6) \text{ obținem} \\ & \mathscr{I} = 2\pi j \left(\operatorname{Rez} \left(f; \frac{1}{\sqrt{2}} (1+j) \right) + \operatorname{Rez} \left(f; -\frac{1}{\sqrt{2}} (1-j) \right) \right) \\ & = 2\pi j \left(\frac{1}{(z^4+1)'} \bigg|_{z=\frac{1}{\sqrt{2}} (1+j)} + \frac{1}{(z^4+1)'} \bigg|_{z=-\frac{1}{\sqrt{2}} (1-j)} \right) = \frac{\pi}{\sqrt{2}}. \end{split}$$

b) Avem

$$\mathscr{I} = \int_0^\infty \frac{dx}{x^8 + 1} = \frac{1}{2} \int_{-\infty}^\infty \frac{dx}{x^8 + 1},$$

deoarece integrantul este o funcție pară. De aici, polii simpli ai funcției $f(z)=\frac{1}{z^8+1}$, sunt rădăcinile ecuației $z^8=-1 \Leftrightarrow z\in \sqrt[8]{-1}$, adică $z_k=e^{j(2k+1)\pi/8}$; $k=\overline{0,7}$. Dintre aceștia, doar z_k , cu $k=\overline{0,3}$ au partea imaginară strict pozitivă, prin urmare, folosind (5.6), obținem

$$\begin{split} \mathscr{I} &= \pi j \left(\text{Rez}(f; e^{\frac{\pi}{8}j}) + \text{Rez}(f; e^{\frac{3\pi}{8}j}) + \text{Rez}(f; e^{\frac{5\pi}{8}j}) + \text{Rez}(f; e^{\frac{7\pi}{8}j}) \right) \\ &= \pi j \left(\frac{1}{(z^8+1)'} \bigg|_{z=e^{\frac{\pi}{8}j}} + \frac{1}{(z^8+1)'} \bigg|_{z=e^{\frac{3\pi}{8}j}} + \frac{1}{(z^8+1)'} \bigg|_{z=e^{\frac{5\pi}{8}j}} \right) \\ &+ \pi j \frac{1}{(z^8+1)'} \bigg|_{z=e^{\frac{7\pi}{8}j}} = -\frac{\pi j}{8} \left(e^{\frac{\pi}{8}j} + e^{\frac{3\pi}{8}j} + e^{\frac{5\pi}{8}j} + e^{\frac{7\pi}{8}j} \right) \\ &= -\frac{\pi j}{8} \cdot 2\sqrt{2}j \cos \frac{\pi}{8} = \frac{\pi\sqrt{2}}{4} \cos \frac{\pi}{8}. \end{split}$$

c) Rescriem mai întâi integrala după cum urmează:

$$\mathscr{I} = -7 \int_{-\infty}^{\infty} \frac{x}{(x^2 + 1)(x^2 + 3)^3} dx + \int_{-\infty}^{\infty} \frac{2(x^2 + 3)}{(x^2 + 1)(x^2 + 3)^3} dx$$
$$= 0 + 2 \int_{-\infty}^{\infty} \frac{1}{(x^2 + 1)(x^2 + 3)^2} dx,$$

prima integrală din membrul drept fiind 0 deoarece integrantul este o funcție impară. Cum polii funcției raționale $f(z) = \frac{1}{(z^2+1)(z^2+3)^2}$ sunt $z_{1,2} = \pm j$ (poli simpli) și $z_{3,4} = \pm \sqrt{3}j$ (poli dubli), din (5.6) obținem

$$\mathscr{I} = 4\pi j \left(\operatorname{Rez}(f; j) + \operatorname{Rez}(f; \sqrt{3}j) \right),$$

unde

$$\operatorname{Rez}(f;j) = \frac{1}{(x^2+1)'(x^2+3)^2} \bigg|_{z=j} = \frac{1}{8j},$$

iar

$$\operatorname{Rez}(f; \sqrt{3}j) = \lim_{z \to \sqrt{3}j} \left((z - \sqrt{3}j)^2 \cdot \frac{1}{(z^2 + 1)(z - \sqrt{3}j)^2 (z + \sqrt{3}j)^2} \right)'$$
$$= \lim_{z \to \sqrt{3}j} \left(\frac{1}{(z^2 + 1)(z + \sqrt{3}j)^2} \right)' = -\frac{\sqrt{3}}{18j}.$$

Prin urmare,
$$\mathscr{I} = 4\pi j \left(\frac{1}{8j} - \frac{\sqrt{3}}{18j} \right) = \frac{\pi}{18} (9 - 4\sqrt{3}).$$

d) (Metoda I) Polii funcției raționale $f(z) = \frac{z+3}{(z^2-4z+13)^4}$ sunt rădăcinile ecuației $z^2-4z+13=0$, adică $z_1=2+3j$ și $z_2=2-3j$ (poli de ordinul 4). Deoarece Im $z_1>0$, iar Im $z_2<0$, din (5.6) obținem

$$\mathcal{I} = 2\pi j \operatorname{Rez}(f; 2+3j)
= 2\pi j \cdot \frac{1}{3!} \lim_{z \to 2+3j} \left((z-2-3j)^4 \cdot \frac{z+3}{(z-2-3j)^4(z-2+3j)^4} \right)^{\prime\prime\prime}
= \frac{\pi j}{3} \left((z+3)(z-2+3j)^{-4} \right)^{\prime\prime\prime} \Big|_{z=2+3j}
= \frac{\pi j}{3} \sum_{k=0}^{3} \operatorname{C}_3^k (z+3)^{(k)} \left((z-2+3j)^{(-4)} \right)^{(3-k)} \Big|_{z=2+3j}
= \frac{\pi j}{3} \left((z+3) \left((z-2+3j)^{(-4)} \right)^{\prime\prime\prime} + 3(z+3)^{\prime} \left((z-2+3j)^{(-4)} \right)^{\prime\prime} \right) \Big|_{z=2+3j}
= \frac{\pi j}{3} \cdot \frac{100}{6^6 j} = \frac{25\pi}{34992}.$$

(Metoda a II-a) Observăm că

$$\begin{split} \mathscr{I} & \xrightarrow{x-2=t} \int_{-\infty}^{\infty} \frac{t+5}{(t^2+9)^4} dt \\ & = \int_{-\infty}^{\infty} \frac{t}{(t^2+9)^4} dt + 5 \int_{-\infty}^{\infty} \frac{dt}{(t^2+9)^4} = 0 + 5 \int_{-\infty}^{\infty} \frac{dt}{(t^2+9)^4}, \end{split}$$

prima integrală din membrul drept fiind egală cu 0, deoarece integrantul este o funcție impară. Fie $f(z) = \frac{1}{(z^2+9)^4}$, cu polii de ordinul 4 $z_{1,2} = \pm 3j$. Deoarece Im(-3j) < 0 și Im(3j) > 0, din (5.6) obținem

$$\mathscr{I} = 10\pi j \operatorname{Rez}(f; 3j) = 10\pi j \cdot \frac{1}{3!} \lim_{z \to 3j} \left((z - 3j)^4 \cdot \frac{1}{(z - 3j)^4 (z + 3j)^4} \right)^{\prime\prime\prime}$$
$$= \frac{5\pi j}{3} \lim_{z \to 3j} \left((z + 3j)^{-4} \right)^{\prime\prime\prime} = -\frac{5\pi j}{3} \cdot \frac{120}{(z + 3j)^7} \bigg|_{z = 3j} = \frac{25\pi}{34992}.$$

e) Punctele singulare ale funcției raționale $f(z) = \frac{z}{(z^2+4)(z^2-2jz+3)}$ sunt $z_{1,2}=\pm 2j$ și $z_3=3j,\ z_4=-j$ (poli simpli). Deoarece $\mathrm{Im}(-2j)<0$ și $\mathrm{Im}(-j)<0$, din (5.6) obținem

$$\mathcal{I} = 2\pi j (\text{Rez}(f; 2j) + \text{Rez}(f; 3j))$$

$$= 2\pi j \left(\frac{z}{(z^2 + 4)'(z^2 - 2jz + 3)} \bigg|_{z=2j} + \frac{z}{(z^2 + 4)(z^2 - 2jz + 3)'} \bigg|_{z=3j} \right)$$

$$= \frac{\pi j}{30}.$$

f) Rescriem integrala după cum urmează:

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{3x^3 + 2x^2 + 18x + 8}{(x^2 + 1)(x^2 + 4)^3} dx$$

$$= \int_{-\infty}^{\infty} \frac{3x^3 + 18x}{(x^2 + 1)(x^2 + 4)^3} dx + \int_{-\infty}^{\infty} \frac{2x^2 + 8}{(x^2 + 1)(x^2 + 4)^3} dx$$

$$= 0 + 2 \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 4)^2},$$

prima integrală din membrul drept fiind 0, deoarece integrantul este o funcție impară. Deoarece funcția rațională $f(z) = \frac{1}{(z^2+1)(z^2+4)^2}$ are polii simpli $z_{1,2} = \pm j$ și polii dubli $z_{3,4} = \pm 2j$, din (5.6) obținem

$$\mathscr{I} = 4\pi j \left(\text{Rez}(f;j) + \text{Rez}(f;2j) \right)$$

$$= 4\pi j \left(\frac{1}{(z^2+1)'(z^2+4)^2} \bigg|_{z=j} + \lim_{z \to 2j} \left(\frac{1}{(z^2+1)(z+2j)^2} \right)' \right) = \frac{5\pi}{72}.$$

g) Observám cá

$$\mathscr{I} = \frac{x+3=t}{t} \int_{-\infty}^{\infty} \frac{-t+3+j}{(t^2+2j)^5} dt$$

$$= -\int_{-\infty}^{\infty} \frac{t}{(t^2+2j)^5} dt + (3+j) \int_{-\infty}^{\infty} \frac{dt}{(t^2+2j)^5} = 0 + \int_{-\infty}^{\infty} \frac{dt}{(t^2+2j)^5},$$

prima integrală din membrul drept având valoarea 0 deoarece integrantul este o funcție impară. Cum polii funcției $f(z) = \frac{1}{(z^2 + 2j)^5}$ sunt $z_{1,2} = \pm (1-j)$ (poli de ordinul 5), conform relației (5.6),

$$\mathcal{I} = 2\pi j(3+j)\operatorname{Rez}(f;-1+j)$$

$$= 2\pi j(3+j) \cdot \frac{1}{4!} \lim_{z \to -1+j} \left((z+1-j)^5 \cdot \frac{1}{(z+1-j)^5(z-1+j)^5} \right)^{(4)}$$

$$= \frac{\pi j(3+j)}{12} \left((z-1+j)^{(-5)} \right)^{(4)} \Big|_{z=-1+j} = \frac{\pi j(3+j)}{12} \cdot \frac{1680}{(z-1+j)^4} \Big|_{z=-1+j}$$

$$= \frac{140\pi j(3+j)}{(-2+2j)^9} = \frac{35\pi}{2^{11}} (2-j).$$

h) Funcția rațională $f(z)=\frac{-jz^2+jz-3}{(z^2+2j)(z^2+2jz-2)}$ are polii simpli $z_{1,2}=\pm(1-j)$ și $z_{3,4}=-j\pm1$. De aici, deorece doar Im(-1+j)>0, din (5.6) obținem

$$\mathscr{I} = 2\pi j \operatorname{Rez}(f; -1 + j)$$

$$= 2\pi j \frac{-jz^2 + jz - 3}{(z^2 + 2j)'(z^2 + 2jz - 2)} \bigg|_{z = -1 + j} = \frac{\pi}{8} (1 - 6j).$$

- i) $\mathcal{I} = 0$, deoarece integrantul este o funcție impară.
- **j)** Observăm că funcția $f(z) = \frac{z^n}{(z^2 + (1+3j)z 4 + 3j)^{2n}}$ are drept puncte singulare pe $z_1 = -2 j$ și $z_2 = 1 2j$ (poli de ordinul 2n). Cum $\text{Im}(z_1), \text{Im}(z_2) < 0$, obținem $\mathscr{I} = 0$.
 - k) Avem

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{e^{\frac{x}{2}}}{\operatorname{ch} x} dx = \int_{-\infty}^{\infty} \frac{2e^{\frac{x}{2}}}{e^x + e^{-x}} dx = \int_{-\infty}^{\infty} \frac{2e^{\frac{3x}{2}}}{e^{2x} + 1} dx$$
$$\frac{e^{\frac{x}{2}} = t}{2} + \int_{0}^{\infty} \frac{t^2}{t^4 + 1} dt = 2 \int_{-\infty}^{\infty} \frac{t^2}{t^4 + 1} dt,$$

ultima egalitate având loc deoarece integrantul este par. De aici, cum singularitățile funcției raționale $f(z)=\frac{z^2}{z^4+1}$ sunt $z_{1,2}=\pm(1+j)/\sqrt{2}$ și $z_{3,4}=\pm(1-j)/\sqrt{2}$ (poli simpli), conform relației (5.6)

$$\mathscr{I} = 4\pi j \left(\text{Rez} \left(f; \frac{1+j}{\sqrt{2}} \right) + \text{Rez} \left(f; -\frac{1-j}{\sqrt{2}} \right) \right)$$

$$= 4\pi j \left(\frac{z^2}{(z^4+1)'} \bigg|_{z=\frac{1+j}{\sqrt{2}}} + \frac{z^2}{(z^4+1)'} \bigg|_{z=-\frac{1-j}{\sqrt{2}}} \right)$$

$$= 4\pi j \left(\frac{z^3}{4z^4} \bigg|_{z=\frac{1+j}{\sqrt{2}}} + \frac{z^3}{4z^4} \bigg|_{z=-\frac{1-j}{\sqrt{2}}} \right) = \pi \sqrt{2}.$$

l) Observám cá

$$\int_{-\infty}^{\infty} \frac{e^{\frac{x}{2}}}{\operatorname{ch}x} dx = \int_{-\infty}^{0} \frac{e^{\frac{x}{2}}}{\operatorname{ch}x} dx + \int_{0}^{\infty} \frac{e^{\frac{x}{2}}}{\operatorname{ch}x} dx$$

$$= \frac{x = -t}{\int_{0}^{\infty} \frac{e^{-\frac{t}{2}}}{\operatorname{ch}t} dt} + \int_{0}^{\infty} \frac{e^{\frac{x}{2}}}{\operatorname{ch}x} dx = 2 \int_{0}^{\infty} \frac{\operatorname{ch}\left(\frac{x}{2}\right)}{\operatorname{ch}x} dx = \pi \sqrt{2},$$

conform lui k). De aici,

$$\int_0^\infty \frac{\operatorname{ch}\left(\frac{x}{2}\right)}{\operatorname{ch}x} dx = \frac{\pi}{\sqrt{2}}.$$

m) Avem

$$\mathscr{I} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\operatorname{ch} x}{(1 + \operatorname{ch} 2x)^2} dx = \int_{-\infty}^{\infty} \frac{\frac{e^x + e^{-x}}{2}}{\left(1 + \frac{e^{2x} + e^{-2x}}{2}\right)^2} dx$$

$$= \int_{-\infty}^{\infty} \frac{e^{3x}}{(e^{2x} + 1)^3} dx \xrightarrow{\underline{e^x = t}} \int_0^{\infty} \frac{t^2}{(t^2 + 1)^3} dt = \frac{1}{2} \int_{-\infty}^{\infty} \frac{(t^2 + 1) - 1}{(t^2 + 1)^3} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(t^2 + 1)^2} dt - \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(t^2 + 1)^3} dt = \mathscr{I}_2 - \mathscr{I}_3,$$

unde

$$\mathscr{I}_2 = \frac{1}{2} \cdot 2\pi j \operatorname{Rez}\left(\frac{1}{(z^2+1)^2}; j\right) = \pi j \lim_{z \to j} \left((t-j)^2 \frac{1}{(t-j)^2(t+j)^2}\right)'$$

$$= \pi j \left((t+j)^{-2} \right)' \bigg|_{t=j} = \frac{-2\pi j}{(t+j)^3} \bigg|_{t=j} = \frac{\pi}{4},$$

iar

$$\mathcal{J}_{3} = \frac{1}{2} \cdot 2\pi j \operatorname{Rez}\left(\frac{1}{(z^{2}+1)^{3}}; j\right) = \frac{\pi j}{2!} \lim_{t \to j} \left((t-j)^{3} \frac{1}{(t-j)^{3}(t+j)^{3}}\right)''$$
$$= \frac{\pi j}{2!} \left((t+j)^{-3}\right)' \Big|_{t=j} = \frac{6\pi j}{(t+j)^{5}} \Big|_{t=j} = \frac{3\pi}{16}.$$

De aici,
$$\mathscr{I} = \frac{\pi}{4} - \frac{3\pi}{16} = \frac{\pi}{16}$$
.

n) Deoarece

$$\mathscr{I} = \frac{4x=t}{4} \int_{-\infty}^{\infty} \frac{\operatorname{ch} t}{\operatorname{sh} 2t - j} dt = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\frac{e^t + e^{-t}}{2}}{\frac{e^{2t} - e^{-2t}}{2} - j} dt$$

$$= \int_{-\infty}^{\infty} \frac{e^t (e^{2t} + 1)}{e^{4t} - 2je^{2t} - 1} dt = \frac{e^t = x}{4} \int_{0}^{\infty} \frac{x^2 + 1}{x^4 - 2jx^2 - 1} dx$$

$$= \frac{1}{8} \int_{-\infty}^{\infty} \frac{x^2 + 1}{(x^2 - j)^2} dx,$$

iar funcția $f(z) = \frac{z^2 + 1}{(z^2 - i)^2}$ are drept puncte singulare polii dubli $z_{1,2} =$ $\pm (1+j)/\sqrt{2}$, conform relației (5.6), obținem

$$\begin{split} \mathscr{I} &= \frac{1}{8} \cdot 2\pi j \text{Rez} \left(f; \frac{1+j}{\sqrt{2}} \right) \\ &= \frac{\pi j}{4} \lim_{z \to \frac{1+j}{\sqrt{2}}} \left(\left(z - \frac{1+j}{\sqrt{2}} \right)^2 \cdot \frac{z^2 + 1}{\left(z^2 - j \right)^2} \right)' \\ &= \frac{\pi j}{4} \left((z^2 + 1) \cdot \left(z + \frac{1+j}{\sqrt{2}} \right)^{-2} \right)' \bigg|_{z = \frac{1+j}{\sqrt{2}}} = \frac{\pi j}{8\sqrt{2}}. \end{split}$$

o) Observám cá

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{1}{\operatorname{ch}^3(3x)} dx = \int_{-\infty}^{\infty} \left(\frac{e^{3x} + e^{-3x}}{2} \right)^{-3} dx$$

$$= \int_{-\infty}^{\infty} \frac{8e^{9x}}{\left(e^{6x} + 1\right)^3} dx \xrightarrow{e^{3x} = t} \frac{8}{3} \int_0^{\infty} \frac{t^2}{(t^2 + 1)^3} dt$$
$$= \frac{8}{3} \cdot \frac{\pi}{16} = \frac{\pi}{6},$$

vezi punctul m) de mai sus.

6. a) Integralei noastre $\mathscr I$ îi asociem integrala

$$\mathscr{J} = \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 16x + 13} dx$$

și formăm expresia

$$\mathscr{I} + j\mathscr{J} = \int_{-\infty}^{\infty} \frac{xe^{jx}}{x^2 - 6x + 13} dx.$$

Deoarece funcția $f(z)=\frac{ze^{jz}}{z^2-6z+13}$ are drept singularitți polii simpli $z_1=3+2j$ și $z_2=3-2j$, din (5.7), cu $\lambda=1>0$, obținem

$$\mathscr{I} + j\mathscr{J} = 2\pi j \operatorname{Rez}(f; 3+2j) = 2\pi j \frac{ze^{jz}}{(z^2 - 6z + 13)'} \bigg|_{z=3+2j}$$
$$= \frac{\pi}{2} \cdot (3+2j)e^{-2+3j} = \frac{\pi}{2e^2} \left(3\cos 3 - 2\sin 3 + j(3\sin 3 + 2\cos 3) \right)$$

și, de aici, $\mathscr{I} = \frac{\pi}{2e^2} (3\cos 3 - 2\sin 3).$

b) Punctele singulare ale funcției $f(z)=\frac{z^2e^{3jz}}{(z^2+1)^2(z^2+9)}$ sunt $z_{1,2}=\pm j$ (poli dubli) și $z_{3,4}=\pm 3j$ (poli simpli). Confrom relației (5.7), cu $\lambda=3$, obținem

$$\mathscr{I} = 2\pi j \left(\text{Rez}(f;j) + \text{Rez}(f;3j) \right)$$

$$= 2\pi j \left(\lim_{z \to j} \left(\frac{z^2 e^{3jz}}{(z+j)^2 (z^2+9)} \right)' + \frac{z^2 e^{3jz}}{(z^2+9)'(z^2+1)^2} \Big|_{z=3j} \right)$$

$$= -\frac{\pi}{64e^9} \left(3 + 7e^6 \right).$$

c) Funcția
$$f(z)=\frac{e^{\pi jz}}{z^3-z^2+2}=\frac{e^{\pi jz}}{(z+1)(z^2-2z+2)}$$
 are polii simpli

 $z_0=-1\in\mathbb{R}$ și $z_{1,2}=1\pm j.$ De aici, folosind (5.7) cu $\lambda=\pi,$ deducem că

$$\begin{split} \mathscr{I} &= 2\pi j \text{Rez}(f; 1+j) + \pi j \text{Rez}(f; -1) \\ &= 2\pi j \frac{e^{\pi j z}}{(z^3 - z^2 + 2)'} \bigg|_{z=1+j} + \pi j \frac{e^{\pi j z}}{(z^3 - z^2 + 2)'} \bigg|_{z=-1} \\ &= \frac{\pi}{5e^{\pi}} \left(-2 + (1 - e^{\pi})j \right). \end{split}$$

d) Observám cá

$$\mathscr{I} = j \int_{-\infty}^{\infty} \frac{e^{-jx} \sin x}{(x^2 + 4x + 5)^2} dx.$$

Fie $\mathscr{J} = j \int_{-\infty}^{\infty} \frac{e^{-jx} \cos x}{(x^2 + 4x + 5)^2} dx$ și formăm expresia

$$\mathscr{J} + j\mathscr{I} = j \int_{-\infty}^{\infty} \frac{e^{-jx} \cdot e^{jx}}{(x^2 + 4x + 5)^2} dx = j \int_{-\infty}^{\infty} \frac{1}{(x^2 + 4x + 5)^2} dx$$

$$= \frac{(5.7)}{-2\pi} - 2\pi \text{Rez} \left(\frac{1}{(z^2 + 4z + 5)^2}; -2 + j \right)$$

$$= -2\pi \lim_{z \to -2+j} \left((z + 2 - j)^2 \frac{1}{(z + 2 - j)^2 (z + 2 + j)^2} \right)'$$

$$= -2\pi \left((z + 2 + j)^{-2} \right) \Big|_{z = -2+j} = \frac{\pi}{2} j.$$
(5.12)

De aici, deoarece s-ar putea ca \mathscr{I} și \mathscr{J} să nu fie reale, nu putem trage concluzia că $\mathscr{I} = \operatorname{Im}\left(\frac{\pi}{2}j\right)$. Fie în continuare

$$\mathcal{J} - j\mathcal{J} = j \int_{-\infty}^{\infty} \frac{e^{-2jx}}{(x^2 + 4x + 5)^2} dx \xrightarrow{\underline{x} = -t} j \int_{-\infty}^{\infty} \frac{e^{2jt}}{(t^2 - 4t + 5)^2} dt$$

$$\xrightarrow{\underline{(5.7)}} -2\pi \operatorname{Rez} \left(\frac{e^{2jz}}{(z^2 - 4z + 5)^2}; 2 + j \right)$$

$$= -2\pi \lim_{z \to 2+j} \left((z - 2 - j)^2 \frac{e^{2jz}}{(z - 2 - j)^2 (z - 2 + j)^2} \right)'$$

$$= -2\pi \left(\frac{e^{2jz}}{(z - 2 + j)^2} \right)' \Big|_{z = 2+j} = -\frac{3\pi}{2e^2} \sin 4 + \frac{3\pi}{2e^2} j \cos 4.$$

În final, scăzând relațiile (5.12) și (5.13), deducem că

$$2j\mathscr{I} = \frac{3\pi}{2e^2}\sin 4 + \left(\frac{\pi}{2} - \frac{3\pi}{2e^2}\cos 4\right)j$$

și, astfel,

$$\mathscr{I} = \frac{\pi}{4e^2} \left(e^2 - 3e^{4j} \right).$$

e) Fie

$$\mathscr{J} = \int_{-\infty}^{\infty} \frac{e^{-\pi jx} \sin \pi x}{x^2 - 2x + 5} dx$$

și considerăm expresia

$$\mathscr{I} + j \mathscr{J} = \int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 5} dx \xrightarrow{\underline{(5.6)}} 2\pi j \operatorname{Rez} \left(\frac{1}{z^2 - 2z + 5}; 1 + 2j \right)$$

$$(5.14) \qquad = 2\pi j \frac{1}{(z^2 - 2z + 5)'} \bigg|_{z=1+2j} = \frac{\pi}{2}.$$

Mai departe, deoarece s-ar putea ca cel puțin una din integralele $\mathscr I$ sau $\mathscr I$ să nu fie reale, nu putem concluziona că $\mathscr I=\frac{\pi}{2}$. Fie, așadar

$$\mathscr{I} - j \mathscr{J} = \int_{-\infty}^{\infty} \frac{e^{-2\pi jx}}{x^2 - 2x + 5} dx \xrightarrow{\underline{x} = -t} \int_{-\infty}^{\infty} \frac{e^{2\pi jt}}{t^2 + 2t + 5} dt$$

$$\xrightarrow{\underline{(5.7)}} 2\pi j \operatorname{Rez} \left(\frac{e^{2\pi jz}}{z^2 + 2z + 5}; -1 + 2j \right)$$

$$= 2\pi j \frac{e^{2\pi jz}}{(z^2 + 2z + 5)'} \bigg|_{z = -1 + 2j} = \frac{\pi}{2e^{4\pi}}.$$

În final, adunând și scăzând relațiile (5.14) și (5.15) de mai sus, obținem $\mathscr{I} = \frac{\pi}{4e^{4\pi}}(e^{4\pi}+1) \in \mathbb{R}$ și $\mathscr{J} = \frac{\pi}{4}j\left(-1+\frac{1}{e^{4\pi}}\right) \in \mathbb{C} \setminus \mathbb{R}$.

f) Observám mai întâi că

$$\mathscr{I} = \int_0^\infty \frac{\cos 3x}{(x^2 + 8j)(x^2 + 18j)} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\cos 3x}{(x^2 + 8j)(x^2 + 18j)} dx,$$

integrantul fiind o funcție pară. Fie, în continuare,

$$\mathscr{J} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin 3x}{(x^2 + 8j)(x^2 + 18j)} dx = 0,$$

deoarece funcția de integrat este impară. Prin urmare, întrucât singularitățile funcției $f(z) = \frac{e^{3jz}}{(z^2+8j)(z^2+18j)}$ sunt polii simpli $z_{1,2} = \pm 2(1-j)$ și $z_{3,4} = \pm 3(1-j)$, deducem că

$$\mathcal{I} = \mathcal{I} + j \mathcal{J} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{3jx}}{(x^2 + 8j)(x^2 + 18j)} dx$$

$$= \frac{1}{2} \cdot 2\pi j \left(\operatorname{Rez}(f; -2 + 2j) + \operatorname{Rez}(f; -3 + 3j) \right)$$

$$= \frac{(5.7)}{2} \pi j \left(\frac{e^{3jz}}{(z^2 + 8j)'(z^2 + 18j)} \Big|_{z=-2+2j} + \frac{e^{3jz}}{(z^2 + 8j)(z^2 + 18j)'} \Big|_{z=-3+3j} \right)$$

$$= \frac{\pi}{240e^9} \left(-3e^3(\cos 6 + \sin 6) + 2(\cos 9 + \sin 9) \right)$$

$$+ \frac{\pi}{240e^9} j \left(3e^3(\sin 6 - \cos 6) + 2(\cos 9 - \sin 9) \right).$$

 $\mathscr{J} = \int_{-\infty}^{\infty} \frac{\cos x}{x(x^2 + 2ix - 2)} dx.$

Calculăm în continuare expresiile $\mathscr{J}+j\mathscr{I}$ și $\mathscr{J}-j\mathscr{I}$. Ținând cont de faptul că funcția $f(z)=\frac{e^{jz}}{z(z^2+2jz-2)}$ are polul simplu real $z_0=0$ și polii simpli complecși $z_{1,2}=\pm 1-j$, cu $\mathrm{Im}(z_1)<0$ și $\mathrm{Im}(z_2)<0$, din (5.7) obținem

(5.16)
$$\mathscr{J} + j\mathscr{I} = \int_{-\infty}^{\infty} \frac{e^{jx}}{x(x^2 + 2jx - 2)} dx$$
$$= \pi j \operatorname{Rez}(f; 0) = \pi j \frac{e^{jz}}{z'(z^2 + 2jz - 2)} \bigg|_{x=0} = -\frac{\pi j}{2}.$$

Pe de altă parte,

g) Fie

$$\mathscr{J} - j\mathscr{I} = \int_{-\infty}^{\infty} \frac{e^{-jx}}{x(x^2 + 2jx - 2)} dx = \frac{x = -t}{-\infty} - \int_{-\infty}^{\infty} \frac{e^{jt}}{t(t^2 - 2jt - 2)} dt.$$

Considerând funcția $g(z) = \frac{e^{jz}}{z(z^2 - 2jz - 2)}$, cu polul simplu real $z_0 = 0$ și polii simpli complescși $z_{1,2} = j \pm 1$, din (5.7), cu $\lambda = 1$, deducem că

$$\mathcal{J} - j\mathcal{J} = -\pi j \operatorname{Rez}(g; 0) - 2\pi j \left(\operatorname{Rez}(g; 1+j) + \operatorname{Rez}(g; -1+j) \right)$$

$$= -\pi j \frac{e^{jz}}{z'(z^2 - 2jz - 2)} \bigg|_{z=0} - 2\pi j \frac{e^{jz}}{z(z^2 - 2jz - 2)'} \bigg|_{z=1+j}$$

$$(5.17) \qquad -2\pi j \frac{e^{jz}}{z(z^2 - 2jz - 2)'} \bigg|_{z=-1+j} = \pi j \left(\frac{1}{2} - \frac{1}{e} (\cos 1 + \sin 1) \right).$$

Scăzând relațiile (5.16) și (5.17), obținem $\mathscr{I} = \frac{\pi}{2e}(\sin 1 + \cos 1 - e)$.

h) Avem

$$\mathscr{I} = \frac{x = \frac{1}{t}}{\int_{-\infty}^{0} \frac{\frac{1}{t} \sin t}{\frac{64}{t^4} + 1} \cdot \left(-\frac{1}{t^2} \right) dt} = \int_{0}^{\infty} \frac{t \sin t}{t^4 + 64} dt$$
$$= \frac{1}{2} \int_{-\infty}^{\infty} \frac{t \sin t}{t^4 + 64} dt.$$

Dacă $\mathscr{J}=\frac{1}{2}\int_{-\infty}^{\infty}\frac{t\cos t}{t^4+64}dt$, deoarece funcția $f(z)=\frac{ze^{jz}}{z^4+64}$ are polii simpli $z_{1,2}=\pm 2(1+j)$ și $z_{3,4}=\pm 2(1-j)$, obținem

$$\mathcal{J} + j\mathcal{I} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{te^{jt}}{t^4 + 64} dt$$

$$\frac{(5.7)}{=} \frac{1}{2} \cdot 2\pi j \left(\text{Rez}(f; 2 + 2j) \text{Rez}(f; -2 + 2j) \right)$$

$$= \pi j \left(\frac{ze^{jz}}{(z^4 + 64)'} \Big|_{z=2+2j} + \frac{ze^{jz}}{(z^4 + 64)'} \Big|_{z=-2+2j} \right) = \frac{\pi j \sin 2}{16e^2}$$

și, de aici, $\mathscr{I} = \frac{\pi \sin 2}{16e^2}$.

i) Observám cá

$$\mathscr{I} = \int_{-\infty}^{\infty} \frac{1 + j \cos x}{(x - \pi j)^3} dx.$$

Fie $\mathscr{J} = \int_{-\infty}^{\infty} \frac{j \sin x}{(x - \pi i)^3} dx$. Deoarece s-ar putea ca cel puțin una

din integralele \mathscr{I} și \mathscr{I} să nu fie reală, calculăm în continuare expresiile $\mathscr{I} + j \mathscr{I}$ și $\mathscr{I} - j \mathscr{I}$. Așadar, de vreme ce polul de ordinul 3 al funcției $f(z) = \frac{1 + je^{jz}}{(z - \pi j)^3}$ este $z_1 = \pi j$ cu $\operatorname{Im}(z_1) > 0$, din (5.6) și (5.7) obținem

$$\mathscr{I} + j \mathscr{J} = \int_{-\infty}^{\infty} \frac{1 + je^{jx}}{(x - \pi j)^3} dx = 2\pi j \operatorname{Rez}(f; \pi j)$$

$$= 2\pi j \cdot \frac{1}{2!} \lim_{z \to \pi j} \left((x - \pi j)^3 \frac{1 + je^{jx}}{(x - \pi j)^3} \right)''$$

$$= \pi j \left(1 + je^{jx} \right)'' \Big|_{z = \pi j} = \pi j \cdot (-je^{jx}) \Big|_{z = \pi j} = \pi e^{-\pi}.$$
(5.18)

Pe de altă parte,

(5.19)
$$\mathscr{I} - j \mathscr{J} = \int_{-\infty}^{\infty} \frac{1 + je^{-jx}}{(x - \pi j)^3} dx \xrightarrow{x = -t} \int_{-\infty}^{\infty} \frac{1 + je^{jt}}{(-t - \pi j)^3} dt = 0,$$

deoarece polul de ordinul 3 al integrantului este $t_1 = -\pi j$ cu $\text{Im}(t_1) < 0$. În final, adunând și scăzând relațiile (5.18) și (5.19), deducem că

$$\mathscr{I} = \frac{\pi e^{-\pi}}{2} \text{ si } \mathscr{J} = -\frac{\pi e^{-\pi} j}{2}.$$

j) Fie $\mathscr{J}=\int_{-\infty}^{\infty}\frac{x^3\cos(\pi x)}{(x^2-2j)^2}dx$, o integrală nulă deoarece funcția de integrat este impară. De aici,

$$\begin{split} j\mathscr{I} &= \mathscr{J} + j\mathscr{I} = \int_{-\infty}^{\infty} \frac{x^3 e^{\pi j x}}{(x^2 - 2j)^2} dx \xrightarrow{\underline{(5.7)}} 2\pi j \text{Rez} \left(\frac{z^3 e^{\pi j z}}{(z^2 - 2j)^2}; z = 1 + j \right) \\ &= 2\pi j \lim_{z \to 1+j} \left((z - 1 - j)^2 \cdot \frac{z^3 e^{\pi j z}}{(z - 1 - j)^2 (z + 1 + j)^2} \right)' \\ &= 2\pi j \left(\frac{z^3 e^{\pi j z}}{(z + 1 + j)^2} \right)' \Big|_{z=1+j} = 2\pi j \frac{(3z^2 + \pi j z^3)(z + 1 + j) - 2z^3}{(z + 1 + j)^3} e^{\pi j z} \Big|_{z=1+j} \\ &= -\frac{\pi j}{2e^{\pi}} (2 - \pi + \pi j) \end{split}$$

și, în final, $\mathscr{I} = -\frac{\pi}{2e^{\pi}}(2 - \pi + \pi j).$

k) Asociem integralei \mathscr{I} din enunț integrala $\mathscr{I} = \int_{-\infty}^{\infty} \frac{\sin 3x}{(x^2 - 2jx - 2)^2} dx$.

Apoi, ținând cont de faptul că funcția $f(z) = \frac{e^{3jz}}{(z^2 - 2jz - 2)^2}$ are polii simpli $z_{1,2} = \pm 1 + j$ cu $\text{Im}(z_1) > 0$ și $\text{Im}(z_2) > 0$, din (5.7) deducem că

$$\mathcal{I} + j \mathcal{J} = \int_{-\infty}^{\infty} \frac{e^{3jx}}{(x^2 - 2jx - 2)^2} dx
= 2\pi j (\operatorname{Rez}(f; -1 + j) + \operatorname{Rez}(f; 1 + j))
= 2\pi j \left(\left(\frac{e^{3jx}}{(z+1-j)^2} \right)' \Big|_{z=1+j} + \left(\frac{e^{3jx}}{(z+1-j)^2} \right)' \Big|_{z=-1+j} \right)
(5.20) = \frac{\pi}{e^3} (\sin 3 - 3\cos 3).$$

Pe de altă parte,

(5.21)
$$\mathscr{I} - j \mathscr{J} = \int_{-\infty}^{\infty} \frac{e^{-3jx}}{(x^2 - 2jx - 2)^2} dx \xrightarrow{\underline{x} = -t} \int_{-\infty}^{\infty} \frac{e^{3jt}}{(t^2 + 2jt - 2)^2} dt = 0,$$

deoarece polii funcției $g(z) = \frac{e^{3jz}}{(z^2 + 2zt - 2)^2}$ sunt $z_{3,4} = \pm 1 - j$ cu Im $(z_3) < 0$ și Im $(z_4) < 0$. În final, adunând și scăzând relațiile (5.20) și (5.21), obținem

l) Considerăm integrala $\mathscr{J}=\int_{-\infty}^{\infty}\frac{\sin 2\pi x}{(x^2+1)^2(4x^2+1)}dx$, care are valoare 0 deoarece integrantul este o funcție impară. Întrucât funcția $f(z)=\frac{e^{2\pi jx}}{(x^2+1)^2(4x^2+1)}$ are polii dubli $z_{1,2}=\pm j$ și polii simpli $z_{3,4}=\pm j/2$ cu $\mathrm{Im}(j)>0$ și $\mathrm{Im}(j/2)>0$, din (5.7) obținem

$$\begin{split} \mathscr{I} &= \mathscr{I} + j \mathscr{J} = \int_{-\infty}^{\infty} \frac{e^{2\pi jx}}{(x^2 + 1)^2 (4x^2 + 1)} dx \\ &= 2\pi j \left(\operatorname{Rez}(f; j) + \operatorname{Rez}\left(f; \frac{1}{2}j\right) \right), \end{split}$$

unde

$$\operatorname{Rez}(f;j) = \lim_{z \to j} \left((z-j)^2 \cdot \frac{e^{2\pi jz}}{(z-j)^2 (z+j)^2 (4z^2+1)} \right)'$$
$$= \left(\frac{e^{2\pi jz}}{(z+j)^2 (4z^2+1)} \right)' \Big|_{z=j} = -\frac{6\pi + 11}{36j} e^{-2\pi},$$

iar

$$\operatorname{Rez}\left(f; \frac{1}{2}j\right) = \frac{e^{2\pi jz}}{(z^2+1)^2(4z^2+1)'}\Big|_{z=\frac{1}{2}j} = \frac{4e^{-\pi}}{9j}.$$

Prin urmare,
$$\mathscr{I} = \frac{\pi e^{-2\pi}}{18} (16e^{\pi} - 6\pi - 11).$$

Bibliografie

- [1] Brânzănescu V., Stănășilă O., Matematici speciale, Ed. All, 1998.
- [2] Câșlaru C., Prepeliță V., Drăgușin C., Matematici speciale, Ed. Fair Partners, București, 2002.
- [3] Corovei I., Gurzău M., Ivan M., Tomuța F., Probleme de matematici speciale, Lito U.T. Cluj-Napoca, 1988.
- [4] Crstici B., Bânzaru T., Lipovan O. și col., Matematici speciale, EDP, București, 1981.
- [5] Gavrea, I., Matematici speciale, Ed. Mediamira, Cluj-Napoca, 2006.
- [6] Homentcovschi D., Funcții complexe cu aplicații în știință și tehnică, Ed. Tehnică, București, 1986.
- [7] Howell R. W., Mathews J. H., Complex analysis for mathematics and engineering, sixth ed., Jones and Bartlett, Sudbury, MA, 2012.
- [8] Indolean I., Mureșan V., Matematici speciale, Lito U.T. Cluj-Napoca, 1987.
- [9] Mitrea A. I., Analiză matematică în complex, Ed. Mediamira, Cluj-Napoca, 2005.
- [10] Mitrea A. I., Lungu N., Dumitraș D., Capitole speciale de matematică, Ed. Albastră (Microinformatica), Cluj-Napoca, 1996.
- [11] Mitrea A. I., Matematici pentru tehnologia informației. Transformări integrale și discrete, Ed. Mediamira, 2005.
- [12] Mitrea A. I., Matematici speciale, Ed. Mediamira, 2015.
- [13] Mocanu P., Funcții complexe, Lito UBB, 1972.
- [14] Mocică, Gh., Probleme de funcții speciale, EDP București, 1988.
- [15] Niţă A., Stănăşilă T., 1001 de probleme rezolvate și exerciții fundamentale (coordonator Stănășilă O.), Ed. All, București, 1997.
- [16] Opriș Gh., Matematici speciale, Lito UTCN, 1990.
- [17] Pavel G., Tomuţa F., Gavrea I., Matematici speciale. Aplicaţii, Ed. Dacia, Cluj-Napoca, 1981.

- [18] Prepeliță V., Câșlaru C., Drăgușin C., Matematici speciale, Ed. Fair Partners, București, 2002.
- [19] Rudner V., Nicolescu C., Probleme de matematici speciale, EDP, București, 1982.
- [20] Selinger V., Blaga L., Dezs o G., Matematici speciale Culegere de probleme, Lito UTCN, 1984.
- [21] Spiegel M., Lipschutz, S., Schiller J., Spellman D., Schaum's Outline of Complex Variables, 2ed. US: McGraw-Hill, 2009.
- [22] Smirnov V. I., Matematici speciale, vol. II, EDP, București, 1960.
- [23] Stoka M., Funcții de variabile reale și funcții de variabilă complexă, EDP, București, 1964.
- [24] Şabac I. Gh., Matematici speciale, EDP, București, 1981.
- [25] Toader Gh., Capitole de Matematici Speciale, U. T. Press, Cluj-Napoca, 2004.