Wstęp do sztucznej inteligencji

Lab_04 – Klasyfikacja za pomocą algorytmu ID3

Bartosz Latosek 310 790

1. Wstęp

Celem ćwiczenia jest budowa i analiza algorytmu ID3 za pomocą którego dokonamy klasyfikacji zadanego zbioru danych.

Użyte biblioteki:

- Pygame
- Argparse
- MatPlotLib

1.1 Opis badanego zbioru danych

Badany zbiór danych składa się z 8 – atrybutowych obiektów będących reprezentacją ucznia przedszkola. Klasą ucznia jest prawdopodobieństwo przyjęcia go do placówki na rok szkolny.

| class values

not_recom, recommend, very_recom, priority, spec_prior

| attributes

parents: usual, pretentious, great_pret.

has_nurs: proper, less_proper, improper, critical, very_crit.

form: complete, completed, incomplete, foster.

children: 1, 2, 3, more.

housing: convenient, less_conv, critical.

finance: convenient, inconv.

social: nonprob, slightly_prob, problematic. health: recommended, priority, not_recom.

Obiekty zapisywane są w pliku tekstowym w formacie *csv* (bez nagłówka) * jako lista atrybutów zakończona klasą, do której obiekt przynależy.

Przykładowe dane:

usual,proper,complete,1,convenient,convenient,nonprob,recommended,recommend
pretentious,very_crit,completed,1,less_conv,inconv,problematic,priority,spec_prior
pretentious,very_crit,incomplete,1,less_conv,convenient,problematic,recommended,spec_prior

^{*} W tym momencie zaznaczę, że moja implementacja algorytmu nie jest zgeneralizowana tylko do zbioru danych *nursery*, ale do dowolnie tak zapisanego zbioru danych.

Rozkład wartości atrybutów:

```
{'usual': 4320, 'pretentious': 4320, 'great_pret': 4320}
{'proper': 2592, 'less_proper': 2592, 'improper': 2592, 'critical': 2592, 'very_crit': 2592}
{'complete': 3240, 'completed': 3240, 'incomplete': 3240, 'foster': 3240}
{'1': 3240, '2': 3240, '3': 3240, 'more': 3240}
{'convenient': 4320, 'less_conv': 4320, 'critical': 4320}
{'convenient': 6480, 'inconv': 6480}
{'nonprob': 4320, 'slightly_prob': 4320, 'problematic': 4320}
{'recommended': 4320, 'priority': 4320, 'not_recom': 4320}
```

Z powyższej grafiki wynika, że zbiór danych ułożony jest tak, aby każdy atrybut występował dokładnie tyle samo razy w całym zbiorze.

Rozkład wartości atrybutów ze względu na klasy:

Aby w pełni pokazać analizę zależności wartości atrybutu od klasy obiektu należałoby w sprawozdaniu zamieścić **7** (*liczba atrybutów*) * **5** (*liczba klas*) wykresów zależności. W związku z czym jako dowód przeanalizowania tej części zadania zamieszczam poniższą tekstową reprezentację tej zależności wraz z wyciągniętymi z niej wnioskami.

```
recommend
{'usual': 2}
{'proper': 2}
{'complete': 2}
{'complete': 2}
{'convenient': 2}
{'convenient': 2}
{'convenient': 2}
{'convenient': 2}
{'convenient': 2}

spec_prior
{'usual': 758, 'pretentious': 1264, 'great_pret': 2022}
{'critical': 1264, 'very_crit': 1518, 'improper': 758, 'proper': 252, 'less_proper': 252}
{'complete': 888, 'completed': 968, 'incomplete': 1052, 'foster': 1136}
{'c': 968, '3': 1136, 'more': 1136, '1': 804}
{'critical': 1608, 'convenient': 1052, 'less_conv': 1384}
{'convenient': 1856, 'inconv': 2188}
{'convenient': 1856, 'inconv': 2188}
{'convenient': 1440, 'pretentious': 1440, 'great_pret': 1440}
{'priority': 2466, 'recommended': 1578}

not_recom
{'usual': 1440, 'pretentious': 1440, 'great_pret': 1440}
{'conplete': 1080, 'completed': 1080, 'incomplete': 1080, 'foster': 1080}
{'1': 1080, '2': 1080, '3': 1080, 'more': 1080}
{'convenient': 1440, 'less_conv': 1440, 'critical': 1440}
{'convenient': 2160, 'inconv': 2160}
{'convenient': 2160, 'inconv': 2160}
{'nonprob': 1440, 'slightly_prob': 1440, 'problematic': 1440}
{'not_recom': 4320}

priority
{'usual': 1924, 'pretentious': 1484, 'great_pret': 858}
{'proper': 1344, 'less_proper': 1344, 'improper': 904, 'critical': 464, 'very_crit': 210}
{'complete': 1152, 'completed': 1092, 'incomplete': 1038, 'foster': 984}
{'1': 1206, '2': 1092, '3': 984, 'more': 994}
{'1': 1206, '2': 1092, '3': 984, 'more': 994}
{'convenient': 1618, 'less_conv': 1396, 'critical': 1252}
```

```
{'convenient': 2244, 'inconv': 2022}
{'nonprob': 1515, 'slightly_prob': 1515, 'problematic': 1236}
{'priority': 1854, 'recommended': 2412}

very_recom
{'usual': 196, 'pretentious': 132}
{'proper': 130, 'less_proper': 132, 'improper': 66}
{'complete': 118, 'completed': 100, 'incomplete': 70, 'foster': 40}
{'1': 148, '2': 100, '3': 40, 'more': 40}
{'convenient': 208, 'less_conv': 100, 'critical': 20}
{'inconv': 110, 'convenient': 218}
{'nonprob': 164, 'slightly_prob': 164}
{'recommended': 328}
```

Najciekawszy wydaje się przypadek klasy *recommend,* który można praktycznie od razu skategoryzować ze względu na jednoznaczność aż 7 z 8 atrybutów.

Drugim ciekawym przypadkiem jest klasa *not_recom* wraz z ostatnim parametrem *health*. Możemy tutaj zauważyć, że wartość *not_recom* jednoznacznie definiuje klasę *not_recom*. (W żadnej innej klasie nie występuje ta wartość tego konkretnego atrybutu).

Możemy też zauważyć, że ten sam atrybut dla klasy *very_recom* nie przyjmuje innej wartości niż *recommended* więc można by było na tej podstawie jednoznacznie wykluczać obiekty.

Można by jeszcze na siłę znaleźć kilka mniej oczywistych zależności, ale nie są one tak widoczne i znaczące jak powyższe trzy, w związku z czym pominę je w dalszej analizie problemu.

1.2 Algorytm

```
data: dataset, attributes
root = DecisionTreeNode
if \exists c \in dataset, \dot{z}ec \rightarrow class! = C:
  root->isLeaf = True
  root->classValue = C
else if !attribures:
  root->isLeaf = True
  root->classValue = most common Class in dataset
else:
  H = GeneralEntropy(dataset)
  all_entropies = EntropiesForAttributes(dataset, attrubutes)
  inf gain = [H - entropy for entropy in all entropies]
  root->decidingAttribute = Attribute with highest inf_gain
  for each value of Attribute with highest inf_gain:
    new_dataset = dataset - [data in dataset with data->Attribute with highest inf_gain != value]
    new_node = id3(new_dataset, attributes - Attribute with highest inf_gain)
    new_node->value = value
    root->children += new node
return root
```

Gdzie:

dataset – badany zbiór danych (początkowo wszystkie dane)
attributes – indeksy atrybutów branych pod uwagę w obecnej iteracji

1.3 Przykładowe drzewo

Utworzenie drzewa dla zbioru danych *nursery*.txt mija się z celem, gdyż jego rozłożystość wpływa negatywnie na czytelność schematu. W związku z czym poniższa wizualizacja przedstawia wynik działania algorytmu ID3 dla zbioru danych: (czy dzień nadaje się do gry w tenisa)

OUTLOOK, TEMP, HUMIDITY, WIND, DECISION

sunny,hot,high,weak,no
sunny,hot,high,strong,no
overcast,hot,high,weak,yes
rain,mild,high,weak,yes
rain,cool,normal,weak,yes
rain,cool,normal,strong,no
overcast,cool,normal,strong,yes
sunny,mild,high,weak,no
sunny,cool,normal,weak,yes
rain,mild,normal,weak,yes
sunny,mild,high,strong,yes
overcast,mild,high,strong,yes
overcast,hot,normal,weak,yes

rain, mild, high, strong, no

Drzewo wygenerowane za pomocą klasy Visualize

2. Analiza działania algorytmu

2.1 Analiza działania algorytmu w zależności od miejsca podziału zbioru danych na zbiór testowy i uczący

I Zbiór danych losowy I

Stosunek wielkości Z.U. do Z.T	Stosunek poprawnych do	Skuteczność
	niepoprawnych dedukcji klasy	
12960 : 0 (Z.U = Z.T)	12960 : 0	100,0%
9720 : 3240	3205 : 35	98,9%
6480 : 6480	6280 : 200	96,9%
3240 : 9720	9147 : 573	94,1%
960 : 12000	10826 : 1174	90,2%
100 : 12860	10546 : 2314	82,0%
10 : 12980	8576 : 4373	66,1%

Kolejność danych w ogólnym zbiorze danych była każdorazowo losowana a stosunek ustalany poprzez dzielenie tego zbioru na 2 podzbiory zgodne ze stosunkiem podanym w 1 kolumnie tabeli. Co ciekawe nawet przy bardzo małym zbiorze uczącym (ostatni wiersz tabeli) , drzewo jest w stanie poprawnie przewidzieć klasę w 2/3 przypadków.

I Zbiór danych wstępnie posortowany I

Stosunek wielkości Z.U. do Z.T	Stosunek poprawnych do niepoprawnych dedukcji klasy	Skuteczność
12960 : 0 (Z.U = Z.T)	12960 : 0	100.0%
9720 : 3240	2908 : 332	89.1%
6480 : 6480	4728 : 1752	72.9%
3240 : 9720	5932 : 3788	61.0%
960 : 12000	7292 : 4708	60,7%
100 : 12860	7416 : 5444	57,7%
10 : 12980	6839 : 6111	52.8%

W przypadku posortowanych danych wyniki są znacznie gorsze niż te dla losowych. Posortowane dane sprawiają, że w przypadkach zawartych w dalszych wierszach tabeli zbiór testowy zawiera klasy nie znajdujące się w zbiorze uczącym.

Wnioski:

Z tabeli wynika, że jesteśmy w stanie osiągnąć wysoką skuteczność modelu przy pomocy stosunkowo małego zbioru uczącego. Pierwsze 3 wiersze tabeli losowej i pierwszy wiersz wstępnie posortowanej można uznać za przypadek przeuczenia. Przypadek niedouczenia nie wystąpił w pierwszej, a w ostatniej wystąpił przy bardzo małym zbiorze uczącym co było przewidywalne.

1.2 Macierz błędów

Macierz błędów będzie wyznaczana na podstawie pomieszanego zbioru danych, na zbiorze danych testowym będącym w stosunku 1 : 2 ze zbiorem uczącym.

	Very_recom	Spec_prior	Priority	Not_recom	Recommend
Very_recom	71	0	14	0	0
Spec_prior	0	986	15	0	0
Priority	10	11	1066	0	0
Not_recom	0	0	0	1065	0
Recommend	2	0	0	0	0

macierz błędów

	Very_recom	Spec_prior	Priority	Not_recom	Recommend
Recall	85.5%	98.9%	97.3%	100%	0
Fallout	0.44%	0.66%	0.98%	0%	<0.01%
Precision	83.5%	98.5%	98%	100%	0%
Accuracy	99.2%	99.2%	98.5%	100%	99.9%
F1-score	84.5%	98.7%	97.7%	100%	0%

Wartości metryk

RECALL	FALLOUT	PRECISION	ACCURACY	F1-SCORE
98.3%	0.04%	98.3%	99.3%	98.3%

Uogólnione wartości metryk dla macierzy

Z powyższej tabeli widać, że algorytm działa zgodnie z oczekiwaniami i w większej ilości przypadków poprawnie wydedukuje klasę podanego obiektu.

1.3 Walidacja krzyżowa w zależności od parametru k

W przypadku analizy walidacji krzyżowej porównywane będą metryki uogólnione dla macierzy błędów dla każdego zbioru testowego, wydzielonego z pomieszanego zbioru danych.

k = 2

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	2168	0	0	0	0
Priority	0	2047	0	55	40
Recommend	0	0	0	0	2
Spec_prior	0	40	0	1967	0
Very_recom	0	32	0	0	129

Rec: 97.3% Fall: 0.06% Prec: 97.4% Acc: 98.9% F1: 97.3%

2.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	2152	0	0	0	0
Priority	0	2040	0	48	36
Recommend	0	0	0	0	0
Spec_prior	0	78	0	1959	0
Very_recom	0	55	0	0	112

Rec: 96.6% Fall: 0.08% Prec: 96.6% Acc: 98.6% F1: 96.6%

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	1426	0	0	0	0
Priority	0	1397	0	34	10
Recommend	0	0	0	0	1
Spec_prior	0	16	0	1313	0
Very_recom	0	28	0	0	95

Rec: 97.94% Fall: 0.52% Prec: 97.94% Acc: 99.18% F1: 97.94%

2.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	1436	0	0	0	0
Priority	0	1379	0	17	11
Recommend	0	0	0	0	0
Spec_prior	0	29	0	1355	0
Very_recom	0	20	0	0	73

Rec: 98.22% Fall: 0.45% Prec: 98.22% Acc: 99.29% F1: 98.22%

3.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	1458	0	0	0	0
Priority	0	1360	0	26	32
Recommend	0	0	0	0	1
Spec_prior	0	18	0	1313	0
Very_recom	0	25	0	0	87

Rec: 97.64% Fall: 0.59% Prec: 97.64% Acc: 99.06% F1: 97.64%

W związku z tym, że wartości metryk jak i dane w macierzy błędów nie różnią się znacząco, w kolejnych przypadkach k będę wypisywać dane jedynie dla jednego ze zbiorów testowych.

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	855	0	0	0	0
Priority	0	826	0	6	1
Recommend	0	0	0	0	0
Spec_prior	0	12	0	823	0
Very_recom	0	16	1	0	52

Rec: 98.61% Fall: 0.35% Prec: 98.61% Acc: 99.44% F1: 98.61%

k = 7

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	605	0	0	0	0
Priority	0	612	0	0	10
Recommend	0	0	0	0	1
Spec_prior	0	11	0	562	0
Very_recom	0	8	1	0	35

Rec: 98.0% Fall: 0.5% Prec: 98.0% Acc: 99.2% F1: 98.0%

k = 10

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	416	0	0	0	0
Priority	0	408	0	0	7
Recommend	0	0	0	0	1
Spec_prior	0	6	0	423	0
Very_recom	0	1	0	0	34

Rec: 98.84% Fall: 0.29% Prec: 98.84% Acc: 99.54% F1: 98.84%

1.

	Not_recom	Priority	Recommend	Spec_prior	Very_recom
Not_recom	214	0	0	0	0
Priority	0	201	0	0	4
Recommend	0	0	0	0	0
Spec_prior	0	2	0	213	0
Very_recom	0	0	0	0	14

Rec: 99.07% Fall: 0.23% Prec: 99.07% Acc: 99.63% F1: 99.07%

Wniosek

Jak widać, wartość parametru k przy losowo poukładanych danych wejściowych i walidacji krzyżowej nie ma znaczenia jeżeli chodzi o wartości metryk macierzy błędów. Jest to spowodowane tym, że przez losowanie dane są porozkładane równomiernie pomiędzy wszystkie zbiory uczące i zbiór testowy.