1. Abszolút folytonosság

1.1. Definíció: Súlyfüggvény

Legyen (X, Ω, μ) mértéktér, $f \in L^+$ egy adott függvény. Ekkor a

$$\mu_f: \Omega \to [0, +\infty], \qquad \mu_f(A) \coloneqq \int_A f \, \mathrm{d}\mu \coloneqq \int f \cdot \chi_A \, \mathrm{d}\mu$$

leképezést súlyfüggvénynek nevezzük.

1.2. Állítás

Legyen (X, Ω, μ) mértéktér, $f \in L^+$. Ekkor a μ_f súlyfüggvény mérték.

1.3. Definíció

Legyen (X,Ω) mérhető tér, valamint $\mu,\nu:\Omega\to[0,+\infty]$ két mérték.

Azt mondjuk, hogy ν abszolút folytonos μ -re nézve (jelben $\nu \ll \mu$), ha

$$\mu(A) = 0 \implies \nu(A) = 0 \quad (A \in \Omega).$$

1.4. Lemma

Legyen (X,Ω) mérhető tér, $\mu,\nu:\Omega\to[0,+\infty]$ két mérték, ahol ν véges.

Ekkor $\nu \ll \mu$ azzal ekvivalens, hogy bármely $\varepsilon > 0$ -hoz van olyan $\delta > 0$:

$$\mu(A) < \delta \quad \Longrightarrow \quad \nu(A) < \varepsilon \qquad (A \in \Omega).$$

Bizonyítás.

 \implies Indirekt tegyük fel, hogy megadható olyan $\varepsilon > 0$ szám, amellyel

$$X_n \in \Omega$$
, $\mu(X_n) < \frac{1}{2^n}$ de $\nu(X_n) \ge \varepsilon$ $(n \in \mathbb{N})$.

Definiáljuk a soron következő halmazokat:

$$A_n := \bigcup_{k=n}^{\infty} X_k$$
 és $A := \bigcap_{k=0}^{\infty} A_k$ $(n \in \mathbb{N})$

Ekkor az (A_n) halmazsorozat monoton szűkülve tart az A-hoz, ezért

$$\mu(A) \le \mu(A_n) \le \sum_{k=n}^{\infty} \mu(X_n) \le \sum_{k=n}^{\infty} \frac{1}{2^k} \longrightarrow 0 \qquad (n \to \infty).$$

Tehát $\mu(A)=0$, vagyis az abszolút folytonosság miatt $\nu(A)=0$. Viszont a ν véges mérték és az (A_n) sorozat monoton szűkülve tart az A-hoz. Ezért

$$\nu(A) = \lim_{n \to \infty} \nu(A_n) \ge \lim_{n \to \infty} \nu(X_n) \ge \varepsilon > 0.$$

$$\mu(A) < \delta \implies 0 \le \nu(A) < \varepsilon.$$

Mivel itt az ε tetszőleges lehet, ezért $\nu(A) = 0$.