STAT5030 Assignment1

Due: January 30, 2023

- 1. Prove that $rank(\boldsymbol{x}) = rank(\boldsymbol{x}^{\top} \boldsymbol{x})$.
- 2. Prove (or disprove) the following:
 - (a) If $PXX^{\top}P^{\top} = QXX^{\top}Q^{\top}$, then PX = QX.
 - (b) If $PXX^{\top} = QXX^{\top}$, then PX = QX.
- 3. Suppose that \mathbf{A} is $n \times p$ of rank r and that \mathbf{A} is partitioned as

$$m{A} = \left[egin{array}{ccc} m{A}_{11} & m{A}_{12} \ m{A}_{21} & m{A}_{22} \end{array}
ight].$$

where A_{11} as $r \times r$ of rank r. Prove that a generalized inverse of A is given by

$$\boldsymbol{A}^{-} = \left[\begin{array}{cc} \boldsymbol{A}_{11}^{-} & 0 \\ 0 & 0 \end{array} \right].$$

4. Let

$$m{A} = \left[egin{array}{ccc} 2 & 6 \\ 1 & 3 \\ 3 & 9 \\ 5 & 15 \end{array}
ight],$$

- (a) Find the Moore-Penrose inverse.
- (b) Find a generalized inverse different from Moore-penrose inverse.
- 5. Let $X_{n \times p}$ be a matrix of rank k and the first column is vector with all elements equal to 1. Further more, J is a matrix with all elements 1. Let

$$egin{array}{lll} A = & x(x^ op x)^- x^ op, \ B = & I_n - x(x^ op x)^- x^ op, \ C = & x(x^ op x)^- x^ op - rac{1}{n}J, \ D = & I_n - rac{1}{n}J. \end{array}$$

- (a) Prove that A, B, C and D are symmetric and idempotent.
- (b) Find the rank of A, B, C and D.
- 6. Let

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{array} \right),$$

- (a) Find a symmetric generalized inverse for \boldsymbol{A} .
- (b) Find a nonsymmetric generalized inverse for \boldsymbol{A} .
- 7. Prove that the system of equations Ax = c has at least one solution vector x if and only if $\operatorname{rank}(A) = \operatorname{rank}(A, c)$.
- 8. Prove that the system of equations Ax = c has a solution if and only of for any generalized inverse A^- of A

$$AA^-c=c$$

- 9. Prove that if **A** is $n \times p$ of rank p < n, then A^- is a left inverse of **A**, namely, $A^-A = I$
- 10. Let X be $m \times n$, X^- is the corresponding generalized inverse, and r(X) = k > 0. Prove that:
 - (a) $r(X^{-}) \geq k$.
 - (b) X^-X and XX^- are idempotent.
 - (c) $r(X^{-}X) = r(XX^{-}) = k$.
 - (d) $X^{-}X = I$ if and only if r(X) = n.
 - (e) $tr(X^{-}X) = tr(XX^{-}) = k = r(X)$.
 - (f) If X^- is any G-inverse of X, then $(X^-)^{\top}$ is a G-inverse of X^{\top} .
- 11. For $K = X(X^{T}X)^{-}X^{T}$, prove that:
 - (a) $K = K^{\top}$, $K = K^2$ (Symmetric Idempotent).
 - (b) $\operatorname{rank}(\boldsymbol{K}) = \operatorname{rank}(\boldsymbol{X}) = r.(\operatorname{rank}(\boldsymbol{K}) = tr(\boldsymbol{K}) = \operatorname{rank}(\boldsymbol{X}))$
 - (c) KX = X. $(X^{T}K = X^{T})$
 - (d) $(X^{\top}X)^{-}X^{\top}$ is a G-inverse of X for any G-inverse of $X^{\top}X$.
- 12. Prove the properties:
 - (a) The Moore-Penrose inverse is unique.
 - (b) $r(A^+) = r(A)$.
 - (c) If \mathbf{A} is symmetric idempotent, $\mathbf{A}^+ = \mathbf{A}$.