Measurments taken 92 calendar days since BOC. Data Passes (pass id, power [MWt], boron [ppm], control bank A/B/C/D/E positions [step])

- 1 3388.6 608. 228. 228. 228. 207. 230.
- 2 3407.7 606. 228. 228. 228. 207. 230.
- 3 3359.8 627. 228. 228. 228. 207. 230.
- 4 3359.8 631. 228. 228. 228. 207. 230.
- 5 3359.8 634. 228. 228. 228. 207. 230.
- 6 3359.8 633. 228. 228. 228. 207. 230.
- 7 3359.8 631. 228. 228. 228. 207. 230.
- 8 3359.8 622. 228. 228. 228. 207. 230.
- 9 3359.8 634. 228. 228. 228. 207. 230.
- 10 3359.8 617. 228. 228. 228. 207. 230.
- 11 3359.8 623. 228. 228. 228. 207. 230.
- 12 3359.8 616. 228. 228. 228. 207. 230.
- 13 3359.8 612. 228. 228. 228. 207. 230.

Average Power [MWt]: 3365.7

Inlet Coolant Temperature [°F]: 557.1 Core Burnup [MWD/MT]: 1023.3 Average Boron [ppm]: 622.615384615

Figure 1: Renormalized data after spline

Figure 2: Unnormalized data after spline

Figure 3: Radial detector measurements (axially integrated).

J1	0.663	F1	0.601
N2	0.519	K2	1.114
H2	1.150	НЗ	0.972
F3	0.944	D3	0.969
В3	0.515	P4	0.706
N4	0.970	H4	1.306
L5	1.327	G5	1.291
E5	1.304	C5	1.207
R6	0.596	N6	0.939
K6	1.402	Н6	1.373
В6	1.123	M7	1.060
J7	1.273	F7	1.126
C7	1.226	R8	0.640
N8	0.958	L8	1.098
J8	1.036	F8	1.361
D8	1.296	C8	0.971
B8	1.160	P9	0.775
G9	1.326	E9	1.381
A9	0.678	L10	1.108
J10	1.123	D10	1.312
R11	0.525	L11	1.270
H11	1.114	E11	1.364
A11	0.511	K12	1.275
G12	1.079	D12	1.162
N13	0.648	L13	1.180
H13	0.994	B13	0.551
N14	0.529	J14	0.798
F14	1.148	D14	0.793
L15	0.488	H15	0.669

Table 1: Full core radial detector measurements (axially integrated).

Figure 4: Quarter core (full core folded) radial measurements.

D14	0.793	Н9	1.036
D10	1.293	D12	1.162
E11	1.316	E13	1.207
E15	0.525	B12	0.706
B13	0.540	C13	0.648
C12	0.970	C11	1.180
C10	0.942	F9	1.123
F8	1.367	C14	0.517
F11	1.108	A11	0.500
A10	0.599	F14	1.128
E8	1.106	E9	1.336
H10	1.367	H11	1.106
H12	1.301	H13	0.974
H14	1.155	H15	0.655
D9	1.060	D8	1.301
C8	0.974	В9	0.798
В8	1.155	G15	0.663
G14	0.775	G13	1.226
G12	1.079	G10	1.126
A8	0.655	A9	0.678
F10	1.402	G8	1.036
G9	1.299		

Table 2: Quarter core radial detector measurements (axially integrated).

Figure 5: Radial detector measurements (tilt corrected).

Figure 6: Radial detector measurements (simulate normalized to tilt corrected data).

Figure 7: Radial detector absolute difference (simulate minus tilt corrected data).

Figure 8: Radial detector measurements (simulate normalized to detector data).

Figure 9: Radial detector absolute difference (simulate minus detector data).