Theorem: Galois Subextensions

Let K/F be a finite Galois extension, then:

- 1. if $H \leq G$, K^H/F is Galois if and only if $H \leq G$. In this case $\operatorname{Gal}(K^H/F) \cong \frac{G}{H}$;
- 2. if $F \subseteq E \subseteq K$, E/F is Galois if and only if $\operatorname{Gal}(K/E) \subseteq G$. In this case $\operatorname{Gal}(E/F) \cong \frac{\operatorname{Gal}(K/F)}{\operatorname{Gal}(K/E)}$

Example: Galois Correspondence

Let $\zeta_3=e^{\frac{2\pi i}{3}}$ then the splitting field of $f(X)=X^3-2\in\mathbb{Q}[X]$ is $K=\mathbb{Q}\left(\sqrt[3]{2},\zeta_3\right)$ where $\mathrm{Gal}(K/\mathbb{Q})\cong S_3$. Then we can observe the following generators of $\mathrm{Gal}(K/\mathbb{Q})$, $\sigma_1:K\to K$ and $\sigma_2:K\to K$. They are defined by

$$\sigma_1(\zeta_3) = \zeta_3, \quad \sigma_1(\sqrt[3]{2}) = \sqrt[3]{2}\zeta_3, \quad \sigma_2(\zeta_3) = \zeta_3^2, \quad \sigma_2(\sqrt[3]{2}) = \sqrt[3]{2}.$$

Then the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ are given by $\langle \sigma_1 \rangle$, $\langle \sigma_2 \rangle$, $\langle \sigma_1 \sigma_2 \rangle$, $\langle \sigma_1^2 \sigma_2 \rangle$ such that we have the following correspondence by checking which generators of $\operatorname{Gal}(K/\mathbb{Q})$ fixes which basis elements:

