本次习题课有以下两个内容.

- 一. 关于曲线与曲面积分的总结.
- 二. 第二型曲面积分, Gauss定理以及 Stokes 定理的应用.
- 一. 关于曲线与曲面积分的总结.
- 1. 一维积分基本定理
- (i) 区间上的积分 $\int_{[a,b]} f'(x)dx = f(b) f(a)$ (Newton-Leibniz公式);
- (ii) 曲线上的积分 $\int_{C_{AB}^+} \nabla f(r) \cdot dr = f(B) f(A)$ (线积分基本定理), 这里 C_{AB} 表示连接起点 A 和终点 B 的平面或或空间任意一条有向曲线.
- 2. 二维积分的基本定理
- (i) 平面域上的 Green 公式

向量形式

$$\iint_{D} rot(F) dx dy = \int_{\partial D^{+}} [F(r) \cdot \tau(r)] ds, \quad (旋度形式)$$

$$\iint_{D} div(F) dx dy = \int_{\partial D^{+}} [F(r) \cdot n(r)] ds, \quad (散度形式)$$

这里 $\tau(r)$ 和 n(r) 分别表示边界曲线 ∂D^+ 的单位正切向和单位外法向, D 为平面有界闭域.

分量形式

$$\iint_{D} (Q_{x} - P_{y}) dx dy = \int_{\partial D^{+}} P dx + Q dy, \quad (旋度形式)$$

$$\iint_{D} (P_{x} + Q_{y}) dx dy = \int_{\partial D^{+}} -Q dx + P dy, \quad (散度形式)$$

其中 P,Q 为平面域 D 上的连续可微函数.

(ii) 曲面积分的 Stokes 公式

向量形式

$$\iint_{S^+} [rot(F) \cdot n] dS = \int_{\partial S^+} (F \cdot \tau) ds$$

这里 τ 代表边界曲线 ∂S^+ 的单位切向量, 曲面 S^+ 与其边界 ∂S^+ 的定向协调.

分量形式

$$\iint_{S^+} (R_y - Q_z) dy dz + (P_z - R_x) dz dx + (Q_x - P_y) dx dy$$
$$= \int_{\partial S^+} P dx + Q dy + R dz,$$

设 P,Q,R 为曲面 S 上的连续可微函数.

3. 三维积分的基本定理(Gauss定理)

$$\iiint_{\Omega} div F dV = \iint_{\partial \Omega^+} F \cdot dS,$$

这里 $\partial\Omega^+$ 代表空间有界域 Ω 的边界曲面, 其正法向朝外. 设 F=(P,Q,R), 则 Gauss 公式的分量形式为

$$\iiint_{\Omega} (P_x + Q_y + R_z) dV = \iint_{\partial \Omega^+} P dy dz + Q dz dx + R dx dy.$$

- 4. 微分算子的重要关系(参见课本第228页习题4.7题9(4)(5)):
- (i) $rot(\nabla) = 0$, 即对任意 C^2 函数 f, $rot(\nabla f) = 0$;
- (ii) div(rot) = 0, 即对任意 C^2 向量场 F, div(rotF) = 0.
- 二. 第二型曲面积分, Gauss定理以及 Stokes 定理的应用.
- 1. 记曲面 S 为锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2ax$ 所截取的有界部分。 规定曲面 S 的正法向向下. 所得的定向曲面记为 S^+ . 求如下第一和第二型曲面积分

$$\iint_{S} z dS \quad \text{for} \quad \iint_{S^{+}} \sqrt{x^{2} + y^{2} + z^{2}} (x dy \wedge dz + y dz \wedge dx + z dx \wedge dy).$$

2. 设 S^+ 是锥面的一个部分 $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$, 规定其正法向向下. 求积分

$$I = \iint_{S^+} x dy \wedge dz + 2y dz \wedge dx + 3(z - 1) dx \wedge dy.$$

3. 记 S^+ 为圆柱面 $x^2 + y^2 = 1$ 位于 $0 \le z \le 2$ 的部分, 正法向朝外. 计算曲面积分

$$\iint_{S^+} x(y-z)dy \wedge dz + (x-y)dx \wedge dy.$$

4. 计算高斯积分

$$\iint_{S} \frac{\cos(\vec{r}, \vec{n})}{|\vec{r}|^2} dS,$$

其中 S 是一个不经过原点的光滑封闭曲面, 点 $\vec{r}=(x,y,z)\in S$, \vec{n} 代表点 $(x,y,z)\in S$ 处的单位外法向.

5. 计算如下第一和第二型曲面积分

$$\iint_{S} |z| dS \quad \not{\exists} \quad \iint_{S^{+}} |z| dx \wedge dy.$$

其中曲面 S 为球面 $x^2 + y^2 + z^2 = a^2$, 规定曲面 S 的正法向朝外.

6. 设 Ω 为由圆锥面 S: $x^2+y^2=z^2$ 与平面 Ax+By+Cz+D=0 所围成的圆锥体. 证明设此圆锥体的体积 $|\Omega|$ 可以表示为

$$|\Omega| = \frac{1}{3} \iint_{\partial \Omega} (\vec{r} \cdot \vec{n}) dS, \tag{1}$$

其中 $\partial\Omega$ 为圆锥体 Ω 的边界曲面, \vec{n} 为 $\partial\Omega$ 的单位外法向量.

7. 记 Γ^+ 为球面 $x^2 + y^2 + z^2 = R^2$ 和平面 $y = x \tan \theta$ 的交线即圆周, 从位于 x 正轴看去, 圆周 Γ^+ 正向为逆时针方向, 这里 R > 0, $0 < \theta < \frac{\pi}{2}$. 利用 Stokes 公式计算线积分

$$I = \oint_{I+} (y-z)dx + (z-x)dy + (x-y)dz.$$

8. 记 L^+ 为平面 x + y + z = 0 与球面 $x^2 + y^2 + z^2 = 1$ 的交线(圆周), 从 z 轴的正向朝下看去, L^+ 的正向逆时针方向. 求第二类曲线积分

$$I = \oint_{L^+} \frac{(y+1)dx + (z+2)dy + (x+3)dz}{x^2 + y^2 + z^2}.$$
 (2)

9. 设 S 为锥面 $z^2 = x^2 + y^2$ 位于 $0 \le z \le h$ 的那一部分, 正法向向下. 设 v = (x, y, z) 为流体运动的速度场. 求流体在单位时间里通过定向曲面 S 由内向外的流量 Q, 即求曲面积分

$$Q = \iint_{S^+} \vec{v}(r) \cdot \vec{n}(r) dS.$$

10. 设 $\Omega \subset \mathbb{R}^3$ 为一空间有界闭域, 其边界 $\partial\Omega$ 为逐片光滑的闭曲面. 记 \vec{n} 是 $\partial\Omega$ 的朝外单位法向量. 设 u, v 是 Ω 上的 C^2 函数. 证明

(i).
$$\iint_{\partial\Omega} \frac{\partial u}{\partial \vec{n}} dS = \iiint_{\Omega} \Delta u dV.$$

(ii).
$$\iint_{\partial\Omega} u \frac{\partial u}{\partial \vec{n}} dS = \iiint_{\Omega} |\nabla u|^2 dV + \iiint_{\Omega} u \Delta u dV.$$

(iii).
$$\iint_{\partial\Omega} \left(u \frac{\partial v}{\partial \vec{n}} - v \frac{\partial u}{\partial \vec{n}} \right) dS = \iiint_{\Omega} \left(u \Delta v - v \Delta u \right) dV.$$

这里 Δ 为 Laplace 算子, 即 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. (注: 这是课本第229页第4章总复习题第8题.)

11. 设 $D \subset \mathbb{R}^2$ 为平面有界闭域, 设函数 u(x,y) 在闭域 D 上调和, 即 $\triangle u = u_{xx} + u_{yy} = 0$, 则对闭域 D 中的任意内点 (x_0,y_0) , 函数值 $u(x_0,y_0)$ 可表示为

$$u(x_0, y_0) = \frac{1}{2\pi} \int_{\partial D^+} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) dl, \tag{3}$$

其中函数 v 如下定义

$$v(x,y) = \ln \sqrt{(x-x_0)^2 + (y-y_0)^2},$$
(4)

 \vec{n} 代表边界边界曲线 ∂D^+ 的单位外法向, $\frac{\partial u}{\partial n}$ 和 $\frac{\partial v}{\partial n}$ 分别代表为函数 u 和 v 关于方向 n

的方向导数. (公式(3)的意思是调和函数在区域内的值由其边界值所确定). 进一步证明

$$u(x_0, y_0) = \frac{1}{2\pi\varepsilon} \int_{\partial D_{\varepsilon}} u(x, y) dl, \qquad (5)$$

其中 D_{ε} 代表闭圆盘 $(x-x_0)^2+(y-y_0)^2\leq \varepsilon^2, \varepsilon>0$ 充分小, 使得闭圆盘 $D_{\varepsilon}\subset D$.

注1: 这题实际上是课本第230页习题第4章总复习题第9题. 仅仅表述略有不同.

注2: 公式 (5) 揭示了调和函数的均值性质.

12. 设 $\Omega \subset \mathbb{R}^3$ 为空间有界开区域, 其闭包记作 $\overline{\Omega}$. 设函数 u(x,y,z) 在闭域 $\overline{\Omega}$ 上连续, 在开域 Ω 上调和, 即 $\Delta u = u_{xx} + u_{yy} + u_{zz} = 0$, 则对任意内点 $P_0 = (x_0,y_0,z_0) \in \Omega$ 的函数值 $u(P_0)$ 可表示为

$$u(P_0) = \frac{1}{4\pi} \iint_{\partial \Omega^+} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) dS, \tag{6}$$

其中函数 v 如下定义

$$v(x, y, z) = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}},$$
(7)

n 代表边界曲面 $\partial\Omega^+$ 的单位外法向, $\frac{\partial u}{\partial n}$ 和 $\frac{\partial v}{\partial n}$ 分别代表为函数 u 和 v 关于方向 n 的方向导数.

<u>注1</u>: 这题实际上是课本第230页习题第4章总复习题第10题(1). 也是上题二维情形的结论在三维情形的推广. 公式(6)表达同样的意思, 即调和函数在区域内的值由其边界值所确定.

<u>注2</u>: 为了解答这道题, 我们需要建立几个引理, 其中 Lemma 2 实际上就是课本习题第230页习题第4章总复习题第10题(2).

<u>注3</u>: 公式 (6) 实际上就是课本第230页第4章总复习题第10题结论(1), 因为 $\frac{\partial v}{\partial n} = -\frac{\cos(r,n)}{|r|^2}$. 可参见如下 Lemma 4 及其证明.

提示:建立如下四个引理.

<u>Lemma 1</u>: 由式 (4) 定义的函数 v(x,y,z) 在 $\mathbb{R}^3 \setminus \{P_0\}$ 上调和, 即 $\Delta v = 0$.

Lemma 2: 对任意给定的内点 $P_0 = (x_0, y_0, z_0) \in \Omega$, 存在 $\delta_0 > 0$, 使得对任意 $\delta \in (0, \delta_0]$, 闭球 $B_\delta : (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \le \delta^2$ 包含在开域 Ω 中, 并且

$$\iint_{\partial\Omega^{+}} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) dS = \iint_{S_{s}^{+}} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) dS, \tag{8}$$

其中 $S_{\delta} = \partial B_{\delta}$, 即 S_{δ} 为以 P_{0} 为心, 以 $\delta > 0$ 为半径的球面, 曲面 $\partial \Omega^{+}$ 和 S_{δ}^{+} 的正法向均朝外.

Lemma 3: 对于任意 $\delta \in (0, \delta_0]$, 我们有

$$\iint_{S_{\delta}^{+}} v \frac{\partial u}{\partial n} dS = 0.$$

Lemma 4: 对于任意 $\delta \in (0, \delta_0]$, 我们有

$$\iint_{S_{\delta}^{+}} -u \frac{\partial v}{\partial n} dS = 4\pi u(P_{\delta}),$$

其中 $P_{\delta} \in S_{\delta}$.