Chapitre 9 : fonctions du second degré Seconde 11

1 Étude de la fonction carré

Nous allons étudier la **fonction carré** définie sur $\mathbb R$ comme :

$$f: x \mapsto x^2$$
.

On peut aussi dire que pour tout nombre réel x, $f(x) = x^2$.

1.1 Signe et variation

Proposition 1 *Quel que soit* $x \in \mathbb{R}$, x^2 *est positif.*

Proposition 2 Sur $[0; +\infty[$ la fonction carré est Sur $]-\infty;0]$ la fonction carré est

On synthétise ces informations dans le tableau de variation suivant :

1.2 Courbe représentative

FIGURE 1 – Courbe représentative de la fonction carré dans un repère orthonormé.

Remarque : La courbe représentative de la fonction carré est une **parabole**.

Symétrie : On a, pour tout nombre réel $(-x)^2 =$. Donc les points $M(x;x^2)$ et $M'(x;(-x)^2)$ sont

1.3 Comparer des carrés

Enonçons une conséquence des variations de la fonction carré.

Théorème 1
$$Si \ 0 \le a < b$$
, $alors \ a^2 < b^2$. $Si \ 0 \ge a > b \ alors \ a^2 < b^2$.

Remarque : Pour se rappeler du théorème on raisonne directement sur le tableau de variation ou la courbe représentative. Exemple dans le cas $a < b \le 0$

Exemples: Comparer les carrés des nombres suivants sans calculatrice

- 1. 2 et 4.
- 2. -1 et -2.
- 3. 10^{45} et 10^{46} .
- 4. 10^{-44} et 10^{-43} .

1.4 Utiliser la courbe pour résoudre une inéquation

Nous nous intéressons ici à la résolution de l'inéquation :

Utiliser la courbe pour résoudre une inéquation (version enseignant)

Nous nous intéressons ici à la résolution de l'inéquation :

Méthode : On cherche tous les points de la parabole dont l'ordonnée est inférieure ou égale à 4. Pour cela on trace la droite d:y=4. Elle coupe la parabole en deux points de coordonnées (2;4) et (-2;4). On relève les abscisses des points de la parabole qui sont **en dessous** de la droite. Et on en déduit :

$$\mathcal{S} = [-2; 2].$$

2 Fonctions polynômes du second degré

2.1 Généralités

Définition 1 Une fonction polynôme du second degré est une fonction définie pour tout x de \mathbb{R} par une expression du type $f(x) = ax^2 + bx + c$ où a, b et c sont des nombres réels, et $a \neq 0$.

2.2 Sens de variation

x	$-\infty$	+∞
f		

Cas a > 0

x	$-\infty$	$+\infty$
f		

Cas a < 0

2.3 Représentation graphique

Remarque : La courbe représentative d'un polynôme du second degré est symétrique par rapport à la droite d'équation .