Drops of LTSpice

Working with WAV files

So, you are working with audio and created a filter.

It seems to be working well.

But it would be so cool if you could put on a real song and see the results of your filter, right?

Yes, LTSpice can do this!

First, let's understand how to open an audio file.

This is a Voltage Source feature. First, hold CTRL and right-click on Voltage Source.

In Value, add the line: wavefile="input.wav" chan=0

Open Symbo	ol: C:\Users\AppData\Local\LTspice\lib\sym\	voltage.asy	
Attribute	Value	Vis.	^
Prefix	V		
InstName	V1	X	
SpiceModel			
Value	wavefile="input.wav" chan=0	X	
Value2			
SpiceLine			
Spicel ine2			~

The chan parameter is not mandatory. It's to select the channel if it is stereo.

And done! Your audio is already inside the LTSpice.

360mV

450mV

-540mV

0.93s

1.03s

1.13s

1.23s

Recording output WAV files is also very easy. First, add a directive.

And done! Your simulation already creates the WAV file.

Now, you can really test your filter.

Francesco Sacco linkedin.com/in/saccofrancesco