

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 008 379 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 14.06.2000 Bulletin 2000/24 (51) Int Cl.⁷: **B01D 53/94**, F01N 3/20, F02D 41/02

(21) Numéro de dépôt: 99402884.3

(22) Date de dépôt: 19.11.1999

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés:

AL LT LV MK RO SI

(30) Priorité: 09.12.1998 FR 9815639

(71) Demandeur: INSTITUT FRANCAIS DU PETROLE 92852 Rueil-Malmaison Cedex (FR) (72) Inventeurs:

- Bouchez, Mathias 92190 Meudon (FR)
- Mabilon, Gil 78420 Carrières sur Seine (FR)
- Martin, Brigitte
 69230 Saint Genis Laval (FR)
- Bourges, Patrick
 92500 Rueil-Malmaison (FR)
- (54) Procédé et dispositif d'élimination des oxydes d'azote dans une ligne d'échappement de moteur à combustion interne
- (57) -La présente invention concerne un dispositif d'élimination des oxydes d'azote dans une ligne d'échappement de moteur (1) à combustion interne fonctionnant en mélange pauvre, comprenant un moyen (3) pour piéger les oxydes d'azote, un moyen pour régénérer lesdits oxydes d'azote lorsque le moyen de piégeage est saturé, un moyen (2) de traitement des hydrocarbures disposé en amont du moyen (3) de piégeage des oxydes d'azote, un moyen (4) d'injection d'hydrocarbures placé en amont du moyen (2) de traitement des hydrocarbures, un moyen (7) de mesure de la richesse des gaz.
 Conformément à l'invention, le moyen (2) de traitement des hydrocarbures est un catalyseur d'oxyda-
- tion partielle (ou ménagée) des hydrocarbures qui coopère avec ledit moyen (3) pour piéger les oxydes d'azote et qui permet d'obtenir à sa sortie des gaz ayant une faible concentration en oxygène (O₂) et de fortes concentrations en monoxyde de carbone (CO) ainsi qu'en hydrogène (H₂).
- En outre on prévoit un moyen destiné à enregistrer et à traiter les données issues des différents capteurs et/ou mémorisées de sorte que l'on réalise une régénération efficace du piège à NOx (3) sans perturber le fonctionnement du moteur.

25

Description

[0001] La présente invention concerne le domaine du traitement des gaz émis à l'échappement de moteurs à allumage commandé en mélange pauvre et de moteurs diesel.

[0002] De tels moteurs émettent en effet un certain nombre de polluants qu'il est nécessaire d'éliminer et ce d'autant plus efficacement que les normes se sévérisent notamment dans les pays industrialisés.

[0003] Parmi les polluants les plus nombreux et les plus gênants pour l'environnement, on peut citer les oxydes d'azote.

[0004] Il est connu d'éliminer ce type de polluants en faisant passer les gaz d'échappement à travers des catalyseurs (dits DéNO_x) destinés à convertir les oxydes d'azote. Ceci nécessite une post injection de réducteurs tels que des hydrocarbures par exemple. Les catalyseurs connus étant actifs sur une plage de température donnée, on peut être amené à disposer, dans le pot catalytique, plusieurs catalyseurs ayant des formulations différentes c'est-à-dire des plages d'activité différentes. On agrandit ainsi le domaine d'action des éléments catalytiques.

[0005] A titre illustratif, les formulations utilisées pour les basses températures sont de type Platine/Alumine ou Platine/Zéolithe. Les températures pour lesquelles ces catalyseurs sont les plus actifs sont de 200°C à 250°C.

[0006] Les catalyseurs dits "Hautes températures" sont actifs en général entre 300°C et 500°C. Ce sont par exemple des catalyseurs de type Cuivre/Zéolithe.

[0007] Cependant, dans ce contexte, un problème se pose lorsque les gaz d'échappement ne sont pas, au niveau du ou des catalyseurs, dans une plage de température pour laquelle la conversion des oxydes d'azote est suffisante.

[0008] L'efficacité globale de tels systèmes de post traitement reste cependant limitée. A titre d'exemple un catalyseur Platine/Alumine avec une post injection de gazole présente couramment une efficacité sur les oxydes d'azote inférieure à 50 %.

[0009] Il existe par ailleurs des catalyseurs sur lesquels les oxydes d'azote viennent s'adsorber sous différentes formes. A titre d'exemple les NO_X peuvent être stockés sous forme de nitrates ou s'insérer dans une structure oxyde. Ces catalyseurs sont couramment appelés "pièges à NO_X"

[0010] Le piège à NO_X de type "nitrate" est un catalyseur qui permet de stocker à sa surface, en milieu oxydant, des oxydes d'azote. Généralement il est composé d'un métal précieux déposé sur ou à proximité d'une masse basique qui est généralement un oxyde ou un mélange d'oxydes d'alcalins, d'alcalino terreux ou de terres rares. En mélange pauvre (excès d'oxygène), le NO (NO_X=NO+NO2) qui se trouve majoritairement dans les gaz d'échappement est oxydé par le métal précieux pour former du NO2. Ce NO2 migre à la surface du ca-

talyseur pour s'adsorber ensuite sur l'oxyde et former un nitrate. Ces nitrates sont stables en milieu oxydant sur une très large plage de température. Pour désorber ces nitrates de la surface du catalyseur, il faut monter à haute température en milieu oxydant ou bien réaliser un mélange réducteur.

[0011] La régénération uniquement thermique du piège à NO_X ne permettant pas de traiter les oxydes d'azote réémis à l'échappement, un second catalyseur (type $DéNO_X$ continue par exemple) est alors nécessaire pour les réduire.

[0012] La demande de brevet EP-A1-0 540 280 décrit une régénération thermique de ce type, avec un piège à NO_X, muni d'un système de réchauffage des gaz, suivi d'un catalyseur de réduction des oxydes d'azote. Les deux catalyseurs sont montés en dérivation de la ligne d'échappement principale. Selon ce document, un système de vanne permet de diminuer, lors des phases de déstockage du piège, la VVH (rapport entre le débit de gaz et le volume du catalyseur qui traduit le temps de contact des gaz avec le catalyseur). Ainsi le taux de conversion des NO_X sur le catalyseur de réduction des oxydes d'azote est amélioré. Néanmoins, avec cette configuration, la partie du flux gazeux passant par le conduit principal ne traverse pas le catalyseur de réduction des NO_X.

[0013] Une régénération par la richesse permet de réduire les NO_X désorbés par une catalyse de type trois voies en déposant sur le catalyseur un métal noble adéquat (rhodium par exemple).

[0014] Avec un moteur essence fonctionnant en mélange pauvre, la transition de pauvre à riche est compatible avec son mode de fonctionnement par contre avec un moteur Diesel, obtenir une richesse supérieure à 1 est plus difficile à mettre en oeuvre.

[0015] Une mise en oeuvre connue consiste à injecter des hydrocarbures dans la ligne d'échappement en amont du catalyseur, lorsque les nitrates doivent être désorbés du piège à NO_X. Le brevet US 5 201 802 illustre un mode de réalisation de ce type. Cependant, bien que cette méthode permette d'obtenir des richesses momentanément supérieures à 1, le mélange gazeux obtenu contient de l'oxygène en concentration important ce qui est pénalisant pour la régénération.

[0016] Un autre procédé connu consiste à réinjecter des gaz brûlés à l'admission, ceci à des taux très élevés et à gérer la richesse à l'admission moteur. Le document EP-A1-0 829 623 divulgue un procédé de ce type.

[0017] Cette dernière stratégie présente l'inconvénient de perturber le fonctionnement du moteur et de rendre le contrôle moteur plus complexe.

[0018] La présente invention comprend une régénération d'un piège à NO_X, basée essentiellement sur la variation de la richesse des gaz d'échappement; et qui ne perturbe pas le fonctionnement du moteur.

[0019] La régénération d'un piège à NO_X comprend ici à la fois le déstockage des NO_X et leur réduction, la réduction étant assuré par le piège à NO_X .

35

[0020] Il s'agit, plus précisément, de permettre la régénération du piège à $\mathrm{NO_X}$ en diminuant la concentration en oxygène et en augmentant les concentrations en monoxyde de carbone CO et en hydrogène H2 dans les gaz d'échappement en amont du piège à $\mathrm{NO_X}$. CO et H2 étant par définition de bons réducteurs étant issus de l'oxydation partielle d'hydrocarbures post-injectés. Le monoxyde de carbone agit à la fois sur le déstockage et sur la réduction.

[0021] Ainsi la présente invention a pour objet un dispositif d'élimination des oxydes d'azote dans une ligne d'échappement de moteur à combustion interne fonctionnant en mélange pauvre, comprenant un moyen pour piéger les oxydes d'azote, un moyen pour régénérer lesdits oxydes d'azote lorsque le moyen de piégeage est saturé, un moyen de traitement des hydrocarbures disposé en amont du moyen de piégeage des oxydes d'azote, un moyen d'injection d'hydrocarbures placé en amont du moyen de traitement des hydrocarbures, un moyen de mesure de la richesse des gaz.

[0022] Conformément à l'invention, le moyen de traitement des hydrocarbures est un catalyseur d'oxydation partielle (ou ménagée) des hydrocarbures qui coopère avec ledit moyen pour piéger les oxydes d'azote qui permet d'obtenir à sa sortie des gaz ayant une faible concentration en oxygène (O₂) et de fortes concentrations en monoxyde de carbone (CO) ainsi qu'en hydrogène (H₂); le dispositif selon l'invention comprend en outre un moyen destiné à enregistrer et à traiter les données issues des différents capteurs et/ou mémorisées de sorte que l'on réalise une régénération efficace du piège à NO_X sans perturber le fonctionnement du moteur.

[0023] Selon un mode de réalisation de l'invention, le moyen d'injection d'hydrocarbures, le moyen de traitement des hydrocarbures et le moyen de piégeage de NO_X sont disposés dans cet ordre et en série relativement au sens de circulation des gaz dans la ligne d'échappement.

[0024] Selon un mode particulier de réalisation de l'invention, le moyen d'injection d'hydrocarbures, le moyen de traitement des hydrocarbures et le moyen de piégeage des NO_X sont disposés dans la ligne principale d'échappement elle-même.

[0025] Conformément à une autre possibilité, le moyen d'injection d'hydrocarbures, le moyen de traitement des hydrocarbures et le moyen de piégeage des NO_X sont disposés dans une dérivation de la ligne principale d'échappement, le dispositif selon l'invention comprenant alors un moyen pour moduler le débit des gaz entre ladite dérivation et la ligne principale.

[0026] Sans sortir du cadre de l'invention, un moyen d'injection d'hydrocarbures, un moyen de traitement des hydrocarbures et un moyen de piégeage des oxydes d'azote peuvent être ainsi disposés à la fois dans la dérivation et dans la ligne principale, avec un moyen pour moduler le débit des gaz entre ladite dérivation et la ligne principale.

[0027] En outre, le dispositif selon l'invention peut

comprendre au moins un capteur de température qui peut être disposé en amont dudit moyen de traitement des hydrocarbures.

[0028] Par ailleurs, le dispositif selon l'invention peut comprendre un moyen de mesure de la quantité de NO_X piégés dans le moyen de piégeage, disposé en aval de ce dernier.

[0029] En outre, un deuxième capteur de température peut être placé dans la ligne d'échappement, en aval du moyen de traitement des hydrocarbures.

[0030] De façon particulière, le moyen de mesure de la richesse des gaz d'échappement peut être disposé en aval du moyen de piégeage des NO_X.

[0031] Sans sortir du cadre de l'invention, le moyen de mesure de la richesse des gaz d'échappement peut être disposé entre le moyen de traitement des hydrocarbures et le moyen de piégeage des NO_X.

[0032] Par ailleurs, la ligne d'échappement peut comprendre un moyen de préchauffage des gaz placé en amont du moyen de traitement des hydrocarbures.

[0033] La présente invention vise en outre un procédé d'élimination des oxydes d'azote dans une ligne d'échappement d'un moteur à combustion interne fonctionnant en mélange pauvre, caractérisé en ce qu'il consiste à :

- piéger les NOx dans un moyen approprié;
- injecter des hydrocarbures dans la ligne d'échappement en fonction de différents paramètres de fonctionnement du moteur et de l'état de saturation d'un moyen de piégeage des NO_x;
- oxyder partiellement les hydrocarbures dans un moyen spécifique afin d'obtenir le maximum de CO et H₂;
- régénérer ledit moyen de piégeage des NO_X grâce aux produits d'oxydation des hydrocarbures, notamment le CO et H₂;

[0034] Selon un aspect de l'invention, on surveille la quantité de NO_X stockée dans le moyen de piégeage des NO_X.

[0035] Conformément à un autre aspect de l'invention, on surveille la température des gaz en amont et/ou en aval du moyen de traitement des hydrocarbures.

[0036] Par ailleurs, on surveille la richesse des gaz en amont et/ou en aval du moyen de piégeage des NO_X . [0037] De façon avantageuse, l'on injecte lesdits hydrocarbures additionnels lorsque le moyen de piégeage des NO_X est saturé, la température (T1) des gaz d'échappement est supérieure à une valeur de seuil (T_R) pour laquelle le moyen de traitement des hydrocarbures est actif, de façon à ce que la richesse (λ) des gaz d'échappement soit supérieure ou égale à une richesse donnée (λ_R) qui déclenche la régénération du moyen de piégeage.

[0038] Plus précisément, on injecte lesdits hydrocarbures pendant une durée (d_R) inférieure à une durée mémorisée, prédéterminée (d_{RMAX}).

[0039] Selon un aspect avantageux de l'invention, l'on module le débit des gaz d'échappement entre une voie principale et une dérivation de ladite voie.

[0040] Ainsi, l'on réchauffe en outre les gaz d'échappement avant leur oxydation partielle dans ladite dérivation.

De façon particulière, l'on arrête la régénéra-[0041] tion en fonction de l'information donnée par un capteur tel qu'une sonde de richesse, placé en aval du moyen de piégeage des NO_X.

[0042] D'autres avantages, caractéristiques, détails de l'invention apparaîtront mieux à la lecture de la description qui va suivre, faite à titre illustratif et nullement limitatif en référence aux dessins annexés sur lesquels :

- La figure 1 est un schéma d'une ligne d'échappement selon un mode de réalisation de l'invention;
- La figure 2 est un schéma de l'organisation des données nécessaires au procédé selon l'invention;
- La figure 3 est un organigramme relatif à un procédé de régénération d'un piège à NO_X selon le premier mode de réalisation de l'invention;
- La figure 4 est un schéma d'une ligne d'échappement selon un deuxième mode de réalisation de l'in-
- La figure 5 est une illustration de l'organisation des données selon le deuxième mode de réalisation de l'invention: et
- La figure 6 est un organigramme relatif au procédé de régénération d'un piège à NO_X selon le deuxième mode de réalisation de l'invention.

[0043] Selon le mode de réalisation de l'invention illustré par la figure 1, la ligne d'échappement du moteur 1 comprend essentiellement : un premier catalyseur 2 dénommé ci-après catalyseur d'oxydation ménagée qui permet de réaliser une oxydation partielle des hydrocarbures en monoxyde de carbone (CO) et en hydrogène (H_2) .

[0044] Un deuxième catalyseur 3 est placé dans la ligne principale d'échappement en aval du premier catalyseur 2 relativement au sens de propagation des gaz dans la ligne d'échappement. Ce deuxième catalyseur 3 est un "piège à NO_X" dont le mode de régénération (déstockage et réduction) se fait par la richesse.

[0045] Par ailleurs un moyen 4 d'injection d'hydrocarbures est prévu pour une post-injection ; le moyen 4 est disposé en amont des deux catalyseurs 2, 3. Cette postinjection peut être assurée par le système d'injection du moteur si cela est possible : un système d'injection de type common-rail, bien connu des spécialistes, peut ainsi assurer une telle post-injection à l'échappement. Un système d'injection spécifique, annexe à l'injection dans le moteur lui-même, peut aussi être prévu sans sortir du cadre de l'invention.

6

[0046] En outre, au moins un capteur de température peut être nécessaire à la mise en oeuvre de l'invention. [0047] Dans le mode de réalisation de la figure 1, deux capteurs de température 5, 6 sont prévus : l'un 5 situé en amont du catalyseur d'oxydation ménagée 2; le deuxième capteur de température 6 est placé entre le catalyseur 2 et le piège à NO_x 3.

[0048] Le capteur 5 permet de savoir si la température des gaz est suffisante pour oxyder les hydrocarbures injectés dans la phase de régénération du piège à NO_X 3.

[0049] Le capteur de température 6 donne la température à laquelle sont stockés les NO_X en mélange pauvre et permet, lors de la régénération, de connaître la variation de température due à la post-injection d'hydro-

[0050] En aval du piège à NO_X3, peut être implanté un capteur de NO_x8 destiné à évaluer la quantité de NO_X stockée, à un instant donné, dans le piège à NO_X

[0051] Enfin une sonde de richesse 7 peut être placée entre le premier et le deuxième catalyseur ; cette sonde de richesse 7 est préférentiellement être disposée en aval du piège à NO_x 3.

[0052] Le fonctionnement d'une ligne d'échappement telle qu'elle vient d'être décrite structurellement est globalement le suivant :

[0053] Lorsque le moteur fonctionne en mélange pauvre, le catalyseur ou piège à NO_x 3 stocke tout ou partie des NO_X émis par le moteur 1. La fraction de NO_X stockée sur le catalyseur à l'instant t dépend à la fois de l'état de saturation dans lequel se trouve le piège à NO_X 3 (c'est-à-dire ce qu'il a pu stocker jusqu'à l'instant t) et des conditions de température, de débit, de concentration en NO_X, de richesse des gaz d'échappement. La quantité de NO_X stockée sur le catalyseur peut être estimée, soit à partir de données issues des cartographies du moteur, et d'un modèle mathématique ou éventuellement à l'aide du capteur de NO_x 8 placé en aval du piège à NO_x 3. Lorsque la quantité de NO_x stockée sur le catalyseur 3 atteint une valeur seuil S, la procédure de régénération est activée. On détermine en fonction des paramètres issus des cartographies du moteur comme la richesse et le débit des gaz d'échappement, la quantité d'hydrocarbures qui doit être post injectée afin d'obtenir momentanément une richesse supérieure à 1 dans la ligne d'échappement. On peut utiliser à cet effet la sonde de richesse proportionnelle 7 placée par exemple en aval du catalyseur d'oxydation ménagée 2 afin de boucler sur la consigne de post injection. Par ailleurs le capteur de température 5 placé en amont du premier catalyseur 2 indique si la température des gaz qui arrivent sur le catalyseur d'oxydation ménagée 2 est suffisante et donc s'il faut activer la post injection. Le catalyseur d'oxydation ménagée 2 consomme alors l'oxygène contenu dans les gaz d'échappement pour

former notamment du monoxyde de carbone (CO) et de l'hydrogène (H_2), deux éléments qui favorisent la régénération du piège à NO_X 3.

[0054] La figure 2 est un résumé des paramètres utilisés selon l'invention. On voit que le moteur 1 fournit deux types de données : le régime-moteur (N) et la position de l'accélérateur (a). A partir de ces données une cartographie C mémorisée par exemple dans une unité de contrôle électronique permet de déterminer d'autres paramètres tels que la richesse R en sortie moteur, le taux de NO_X en sortie moteur et le débit à l'échappement.

[0055] D'autres données, mesurées par le ou les capteurs de température 5, 6 ou le capteur de NO_X 8, permettent, en phase de stockage des NO_X de déterminer la quantité de NO_X stockée (Q NO_X) à un instant donné (t = n) si elles sont associées aux premières données. [0056] Un modèle mathématique est utilisé à la place ou additionnellement au capteur de NO_X 8, pour déterminer la concentration des NO_X dans les gaz.

[0057] Si un capteur 8 est utilisé additionnellement au modèle mathématique, il est alors possible d'ajuster en permanence les paramètres du modèle afin de suivre le comportement réel des catalyseurs dans la ligne d'échappement; ainsi on peut par exemple prendre en compte le vieillissement des catalyseurs.

[0058] En phase de régénération, la cartographie C fournit les mêmes données qu'en phase de stockage qui, associées aux mesures de température et de richesse, permettent de déterminer le débit d'hydrocarbures à injecter à l'échappement.

[0059] La figure 3 est un organigramme des différentes étapes conduisant ou non à la régénération du piège à NO_X 3.

[0060] Il apparaît que l'on surveille en permanence la quantité de NO_X (Q NO_X) stockée dans le piège à NO_X ; si cette valeur atteint un certain seuil S mémorisé dans une unité de contrôle électronique, alors on vérifie la température T_1 des gaz en amont du premier catalyseur 2 ; si cette température est supérieure à un seuil T_R qui correspond à la température minimum pour laquelle le premier catalyseur 2 est actif alors on s'intéresse à la richesse λ des gaz en aval du premier catalyseur 2.

[0061] La quantité d'hydrocarbures post-injectée est liée à la différence entre la richesse R des gaz en sortie moteur et la richesse-seuil λ_R nécessaire à la régénération.

[0062] En fin de régénération, on arrête l'injection d'hydrocarbures puis on recommence le processus de stockage des NO_X .

[0063] La figure 4 concerne un deuxième mode de réalisation de l'invention qui diffère du premier par le fait que le moyen d'injection 4, les catalyseurs 2, 3 ainsi que les différents capteurs de température 5, 6, de richesse 7 ou de NO_X 8 sont disposés non pas dans la ligne principale d'échappement 10 mais dans une dérivation 9. Une vanne ou tout autre moyen destiné à moduler le débit principal des gaz d'échappement issus du moteur

1, est disposé à la source du by-pass 9.

[0064] Cette configuration permet, par rapport à la première, de limiter le débit des gaz qui traverse les catalyseurs lors de la régénération du piège. On diminue ainsi la quantité d'hydrocarbures à post injecter pour passer à richesse supérieure à 1.

[0065] Pendant la phase de stockage des NO_X sur le piège à NO_X , la totalité des gaz d'échappement passe par le conduit comportant les catalyseurs. La post injection d'hydrocarbure n'est pas activée.

[0066] L'estimation de la quantité de NO_x stockée sur le catalyseur est identique à ce qui a été décrit ci-dessus. Lorsque la phase de régénération est activée, une partie des gaz est by passée grâce au moyen de vannage. On limite ainsi le débit qui traverse les catalyseurs ce qui permet de diminuer la VVH (Vitesse Volumique Horaire = Débit de gaz/Volume du catalyseur). La quantité d'hydrocarbures post injectée est fonction de la richesse des gaz d'échappement (fournie par les cartographies moteur) et de la fraction de débit bypassée. La fraction de débit X dans la dérivation 9 est fonction du débit total des gaz et de la position de la vanne 11 en tête de la dérivation 9. Comme précédemment, on peut utiliser une sonde de richesse proportionnelle placée en aval du catalyseur d'oxydation ménagée ou du piège à NO_x 3 afin de boucler sur la quantité d'hydrocarbures post injectée.

[0067] Selon encore un autre mode de réalisation de l'invention, la ligne d'échappement peut comprendre en outre un moyen 12 de chauffage des gaz d'échappement, disposé selon la figure 4 dans la dérivation 9, juste en amont du catalyseur d'oxydation ménagée 2.

[0068] Le principe de fonctionnement de ce mode de réalisation de l'invention est globalement le même que celui qui vient d'être décrit.

[0069] Les avantages du troisième mode de réalisation de l'invention peut être résumé de la façon suivante:

[0070] Comme il a été dit précédemment, la post injection d'hydrocarbures et donc la régénération du piège à NO_x 3 est assujettie au niveau de température des gaz qui traversent les catalyseurs 2 et 3. Ainsi, si ce niveau est insuffisant, la régénération du piège 3 ne peut être activée au détriment de l'efficacité globale du système. Il peut donc être intéressant d'adjoindre au système précédent, le dispositif 12 permettant de réchauffer les gaz afin d'élever le niveau de température lors des régénérations lorsque celui-ci est trop faible. Les capteurs de température 5, 6 placés respectivement en amont et en aval du catalyseur d'oxydation ménagée 2 permettent de gérer le système de réchauffage des gaz. L'intérêt du by pass 9 est alors double : diminuer la quantité d'hydrocarbures à post injecter pour passer à richesse supérieure à 1 et limiter l'énergie à dépenser pour réchauffer la fraction des gaz qui traverse le catalyseur 2.

[0071] D'une façon générale, l'intérêt de l'invention est de consommer, lors de la régénération du piège à

20

25

35

 ${
m NO}_{
m X}$, l'oxygène contenue dans les gaz d'échappement par les hydrocarbures post injectés sur le catalyseur d'oxydation ménagée 2, et de former du monoxyde de carbone CO et de l'hydrogène H2 en amont du piège à ${
m NO}_{
m X}$ 3. On obtient ainsi, lors d'une post injection d'hydrocarbures, un mélange en amont du piège à ${
m NO}_{
m X}$ qui est à richesse supérieure à 1, pauvre en oxygène et riche en CO et H2 ce qui est favorable à la fois à la désorption des nitrates et à la réduction sur le moyen (3) des ${
m NO}_{
m X}$ désorbés. Une amélioration notable de la phase de régénération du piège ${
m NO}_{
m X}$ 3 est ainsi obtenue.

Revendications

- 1. Dispositif d'élimination des oxydes d'azote dans une ligne d'échappement de moteur (1) à combustion interne fonctionnant en mélange pauvre, comprenant un moyen (3) pour piéger les oxydes d'azote, un moyen pour régénérer lesdits oxydes d'azote lorsque le moyen de piégeage est saturé, un moyen (2) de traitement des hydrocarbures disposé en amont du moyen (3) de piégeage des oxydes d'azote, un moyen (4) d'injection d'hydrocarbures placé en amont du moyen (2) de traitement des hydrocarbures, un moyen (7) de mesure de la richesse des gaz, caractérisé en ce que ledit moyen d'injection est disposé sur la ligne d'échappement et en ce que le moyen (2) de traitement des hydrocarbures est un catalyseur d'oxydation partielle (ou ménagée) des hydrocarbures injectés qui permet d'obtenir à sa sortie des gaz ayant une faible concentration en oxygène (O2) et de fortes concentrations en monoxyde de carbone (CO) ainsi qu'en hydrogène (H₂), et en ce qu'il comprend en outre un moyen destiné à enregistrer et à traiter les données issues des différents capteurs et/ou mémorisées de sorte que l'on réalise une régénération efficace du piège à NO_X (3) sans perturber le fonctionnement du moteur.
- 2. Dispositif selon la revendication 1, caractérisé en ce que le moyen (4) d'injection d'hydrocarbures, le moyen (2) de traitement des hydrocarbures et le moyen (3) de piégeage de NO_X sont disposés dans la ligne d'échappement dans cet ordre et en série relativement au sens de circulation des gaz.
- 3. Dispositif selon la revendication 2, caractérisé en ce que le moyen (4) d'injection d'hydrocarbures, le moyen (2) de traitement des hydrocarbures et le moyen (3) de piégeage des NO_X sont disposés dans la ligne principale d'échappement elle-même.
- 4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le moyen (4) d'injection d'hydrocarbures, le moyen (2) de traitement des hydrocarbures et le moyen (3) de piégeage des

 ${
m NO}_{
m X}$ sont disposés dans une dérivation (9) de la ligne principale d'échappement, et en ce qu'il comprend en outre un moyen (11) pour moduler le débit des gaz entre ladite dérivation (9) et la ligne principale (10).

- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre au moins un capteur de température (5).
- Dispositif selon la revendication 5, caractérisé en ce que ledit capteur de température (5) est disposé en amont dudit moyen (2) de traitement des hydrocarbures.
- 7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un moyen (8) de mesure de la quantité de NO_X piégés dans le moyen de piégeage (3) disposé en aval du moyen (3) de piégeage des NO_X,
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un deuxième capteur de température (6) placé en aval dudit moyen (2) de traitement des hydrocarbures
- Dispositif selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que le moyen (7) de mesure de la richesse des gaz d'échappement est disposé en aval du moyen (3) de piégeage des NO_X.
- 10. Dispositif selon l'une quelconque des revendications 7 à 8, caractérisé en ce que le moyen (7) de mesure de la richesse des gaz d'échappement est disposé entre le moyen (2) de traitement des hydrocarbures et le moyen (3) de piégeage des NO_X.
- 40 11. Dispositif selon la revendication 10, caractérisé en ce que le moyen (7) de mesure de la richesse des gaz est placé en amont du deuxième capteur de température (6).
- 45 12. Dispositif selon l'une quelconque des revendications précédentes, caractérisée en ce qu'il comprend en outre un moyen (12) de préchauffage des gaz placé en amont du moyen (2) de traitement des hydrocarbures.
 - 13. Procédé d'élimination des oxydes d'azote dans une ligne d'échappement d'un moteur (1) à combustion interne fonctionnant en mélange pauvre, caractérisé en ce qu'il consiste à :
 - piéger les NO_X dans un moyen approprié (3);
 - injecter des hydrocarbures dans la ligne d'échappement en fonction de différents para-

mètres de fonctionnement du moteur et de l'état de saturation dudit moyen (3) de piégeage des NOv:

- oxyder partiellement les hydrocarbures dans un moyen spécifique (2);
- régénérer ledit moyen de piégeage des NO_X (3) par les produits d'oxydations des hydrocarbures injectés.
- 14. Procédé selon la revendication 13, caractérisé en ce que l'on surveille la quantité de NO_X stockée dans le moyen (3) de piégeage des NO_X.
- 15. Procédé selon l'une quelconque des revendications 13 ou 14, caractérisé en ce que l'on surveille la température des gaz en amont et/ou en aval du moyen (2) de traitement des hydrocarbures.
- 16. Procédé selon l'une quelconque des revendications 13 à 15, caractérisé en ce que l'on surveille la richesse des gaz en amont et/ou en aval du moyen (3) de piégeage des NO_X.
- Procédé selon l'une quelconque des revendications
 à 16, caractérisé en ce que l'on injecte lesdits hydrocarbures additionnels lorsque le moyen (3) de piégeage des NO_X est saturé, la température (T1) des gaz d'échappement est supérieure à une valeur de seuil (T_R) pour laquelle le moyen (2) de traitement des hydrocarbures est actif, de façon à ce que la richesse (λ) des gaz d'échappement soit supérieure ou égale à une richesse donnée (λ_R) qui déclenche la régénération du moyen de piégeage (3).
- 18. Procédé selon l'une quelconque des revendications 13 à 17, caractérisé en ce que l'on injecte lesdits hydrocarbures pendant une durée (d_R) inférieure à une durée mémorisée, prédéterminée (d_{RMAX}).
- 19. Procédé selon l'une quelconque des revendications 13 à 18, caractérisé en ce que l'on module le débit des gaz d'échappement entre une voie principale (10) et une dérivation (9) de ladite voie (10).
- 20. Procédé selon la revendication 19, caractérisé en ce que l'on réchauffe les gaz d'échappement avant leur oxydation partielle dans ladite dérivation (9).
- 21. Procédé selon l'une quelconque des revendications 13 à 20, caractérisé en ce que l'on arrête la régénération en fonction de l'information donnée par un capteur tel qu'une sonde de richesse, placé en aval du moyen (3) de piégeage des NO_X.

FIG. 2

? NOx (8)
R NOx
De
T₂
:
:
: Régéné. Regéné. Regéné.

FIG. 3

FIG. 6

Office européen des broucts RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 99 40 2884

DO	CUMENTS CONSIDERE	S COMME PERTINENTS	3	
Catégorie	Citation du document avec in des parties pertin		Revendication concernée	DEMANDE (Int.CI.7)
D,X			1-3,5,7	7, B01D53/94 F01N3/20 F02D41/02
Α	23 *		13-18,	21
Х			1,5	
Α	41 *		13-17,	21
P,X	EP 0 899 431 A (TOYC KAISHA) 3 mars 1999 * colonne 3, alinéa alinéa 38 * * colonne 21, alinéa alinéa 88 *	11 - colonne 12,	13,14, 16,17	
А	EP 0 814 248 A (NGK 29 décembre 1997 (19 * colonne 4, ligne *		1,7,13	B01D F02D F01N
A	DE 44 04 617 A (DAI AKTIENGESELLSCHAFT) 17 août 1995 (1995- * colonne 1, ligne 40 *		1,5,13 15	
Lep	l résent rapport a été établi pour tor	utes les revendications		
	Lieu de la recherche	Date d'achevement de la recherche		Examinatour
	LA HAYE	3 février 2000	0	oolan, G
X : pa Y : pa au A : arı O : div	CATEGORIE DES DOCUMENTS CITE riculièrement perinent à lui saul riculièrement perinent en combinaisor re document de la même catégorie ière-plan technologique rulgation non-écrite cument intercalaire	E ; document de date de dépé n avec un D ; cité dans la L : cité pour d'ai	ot ou après cette demande utres raisons	r, mais publie à la

EP 1 008 379 A1

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 40 2884

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Les dits members sont contenus au fichier informatique de l'Officeeuropéen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

03-02-2000

Document brevet of au rapport de reche		Date de publication	M fan	lembre(s) de la nille de brevet(s)	Date de publication
EP 829623	Α	18-03-1998	DE	19636790 A	12-03-199
US 5771685	Α	30-06-1998	DE GB JP	19744579 A 2318418 A 10128058 A	30-04-199 22-04-199 19-05-199
EP 899431	Α	03-03-1999	JP	11062563 A	05-03-199
EP 814248	Α	29-12-1997	JP US	10071325 A 5953907 A	17-03-199 21-09-199
DE 4404617	Α	17-08-1995	US	5586433 A	24-12-199

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

THIS PAGE BLANK (USPTO)