Kai Müller Blatt 2

Ferienkurs Theoretische Mechanik, SS 2008

1 Aufgaben für Dienstag

1.1 Rotierender Draht

Ein Massenpunkt sein auf einem halbkreisförmigen masselosen rotierenden Draht reibungsfrei befestigt. Der Draht drehe um eine Achse mit konstantem ω . Das ganze befinde sich im kräftefreien Raum (keine Gravitation!!)

- (a) Was sind die dynamischen Variablem? Stellen Sie die Lagrangefunktion auf und leiten Sie die Bewegungsgleichungen ab.
- (b) Betrachten Sie kleine Schwingungen um $\theta=\pi/2+\Psi$. Linearisieren Sie die entstehenden DGL für kleine Winkel Ψ und lösen Sie sie.
- (c) Ist die Energie erhalten? Grund?

1.2 Widerholung zu Eigenwerten und Eigenvektoren

Bestimmen Sie Eigenwerte und Eigenvektoren der folgenden Matrix

$$\hat{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.3 Drei gekoppelte Massen

Drei identische Massen m sind durch drei identische Federn mit Federkonstante k miteinander verbunden. Hierbei gleiten die Massen und Federn reibungsfrei entlang einer festen Kreislinie mit Radius R.

- (a) Setzen Sie eine Lagrangefunktion für dieses System auf und bestimmen Sie die Bewegungsgleichungen für Schwingungen um die Gleichgewichtspositionen.
- (b) Zeigen Sie, dass die Eigenfrequenzen durch

$$\omega_1^2 = 0 \qquad \qquad \omega_2^2 = \omega_3^2 = \frac{3k}{m}$$

gegeben sind und bestimmen Sie die dazugehörigen Normalmoden

1.4 Schwingung des CO₂ - Moleküls

Ein idealisiertes CO_2 - Molekül bestehe aus einer linearen Anordnung aus drei Massenpunkten mit $m_1 = m_3 = M$ und $m_2 = m$.

Die Massenpunkte seien durch Feder
n der Federkonstante k verbunden. Betrachten Sie kleine Auslenkungen x_i aus den Ruhelagen entlang der x-Achse.

- (a) Stellen Sie die Lagrangefunktion auf und bestimmen Sie die Bewegungsgleichungen
- (b) Bestimmen Sie die Eigenfrequenzen und Eigenmoden
- (c) Erklären Sie die Moden anschaulich

1.5 Drei Massen, fester Rand

Drei gleiche Massen m sind durch Federn der Federkonstante k wie folgt verbunden:

2

(a) Berechnen Sie die Eigenfrequenzen und Eigenschwingungen des Systems.

1.6 Spontane Symmetriebrechung

Bei einer spontanen Symmetriebrechung besitzt die Lagrangefunktion eine bestimmte Symmetrie, der Grundzustand jedoch nicht.

Betrachten Sie einen masselosen Ring der im Schwerefeld der Erde mit der Winkelgeschwindigkeit ω rotiert und auf dem eine Masse m reibungsfrei gleiten kann.

- (a) Stellen Sie die Lagrangefunktion $L(\theta, \dot{\theta})$ auf und zeigen sie dass Sie unter der Transformation $\theta \to -\theta$ invariant ist.
- (b) Bestimmen Sie die Gleichgewichtslage θ und zeigen Sie dass diese für Werte $\omega^2 > \frac{g}{R}$ von 0 verschieden ist.
- (c) Wann handelt es Sich also um eine spontane Symmetriebrechung?

1.7 Fliehkraftregler

Zwei Massen m sind mit vier masselosen, schwenkbaren Armen der Länge l
 an einer senkrechten Stange befestigt. Der obere Aufhängepunkt ist an der Stange fixiert. Am unteren befindet sich eine Masse M, die reibungsfrei aufwärts und abwärts gleiten kann, wenn sich die Massen m von der Stange weg, oder auf sie zu bewegen. Die Anordnung rotiert mit konstanter Winkelgeschwindigkeit ω um die senkrechte Stange und auf die Massen wirkt die Erdanziehungskraft.

(a) Stellen Sie die Lagrangefunktion $L(\theta, \dot{\theta})$ auf.

 $\mathit{Hinweis}$: Die kinetische Energie hat drei Anteile: einen von der Masse M, einen aus der Rotation der Massen m und einen proportional zu $m\dot{\theta}^2$

- (b) Bestimmen Sie die zugehörigen Bewegungsgleichungen
- (c) Bestimmen Sie die Höhe z der Masse M als Funktion von ω für eine gleichbleibende Drehung des Systems, d.h. ohne senkrechte Bewegung. Geben Sie diese Höhe gegenüber der niedrigsten Position von M an.

1.8 System mit Erhaltungsgroessen

Zwei Massen m_1 und m_2 seien durch einen Faden der Laenge l verbunden, der durch ein Loch in der Tischplatte geführt ist. Die Masse m_1 bewegt sich reibungsfrei auf der Tischplatte, m_2 kann nur vertikale Bewegungen ausführen. Es gelte die Gravitation.

- (a) Stellen Sie die Lagrangefunktion auf mit den Koordinaten ϕ und x der Länge des Fadens über dem Tisch.
- (b) Leiten Sie die Bewegungsgleichungen ab
- (c) Welche Erhaltungsgrößen gibt es?
- (d) Vereinfachen sie die Bewegungsgleichung mit Hilfe der Erhaltungsgrößen
- (e) Unter welcher Beziehung von L_z und x gibt es stabile Kreisbahnen?
- (f) Betrachten Sie kleine Auslenkungen $a=x-x_0$ aus der stabilen Kreisbahn x_0 und lösen Sie die Bewegungsgleichung.