

Assignment 4 Robot Car

รถหุ่นยนต์ (Robot car)

จัดทำโดย

นายชนสรณ์ ศิริวงศ์ รหัสนักศึกษา 62010153

วิชา 01076001 INTRODUCTION TO COMPUTER ENGINEERING
ภาคเรียนที่ 1 ปีการศึกษา 2566
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

คำนำ

รายงานฉบับนี้จัดทำขึ้นเพื่อศึกษาการสร้างรถหุ่นยนต์ที่สามารถเดินตามเส้นสีดำทึบและสามารถ ตรวจจับไฟกระพริบได้โดยนำความรู้เรื่อง Line tracking มาประยุกต์ใช้และพัฒนาบนรถหุ่นยนต์ที่ควบคุมด้วย บอร์ดไมโครคอลโทรลเลอร์และเพื่อได้ฝึกอัลกอริทึมในการเขียนโปรแกรมเพื่อควบคุมมอเตอร์ซึ่งเป็นล้อของรถ หุ่นยนต์ผ่านโมดูล L298N และสามารถตรวจจับไฟกระพริบได้

โดยผู้จัดทำหวังอย่างถึงที่สุดว่ารายงานฉบับนี้จะเป็นประโยชน์และ เป็นแรงบันดาลใจให้แก่ผู้ที่กำลัง ศึกษาการสร้างรถหุ่นยนต์ที่สามารถเดินตามเส้นสีดำทึบและสามารถตรวจจับไฟกระพริบได้

ผู้จัดทำ

นายชนสรณ์ ศิริวงศ์

สารบัญ

	หน้า
อุปกรณ์ที่ใช้	1
ทฤษฎีที่เกี่ยวข้อง	6
การออกแบบและพัฒนา	8
ปัญหาและอุปสรรค	13
สรุปผลการดำเนินงาน	14
แหล่งอ้างอิง	15

อุปกรณ์ที่ใช้

1. บอร์ด Arduino uno r3

ใช้สำหรับหรับพัฒนาเกมส์และเป็น Hardware หัวใจสำหรับการเชื่อมต่อกับอุปกรณีอื่นโดยภาษาที่ใช้ พัฒนานั้นจะเป็นภาษา C++

โดย Arduino Uno R3 เป็นบอร์ดไมโครคอนโทรลเลอร์ยอดนิยมซึ่งเป็นส่วนหนึ่งของแพลตฟอร์ม Arduino ซึ่งเป็นแพลตฟอร์มอิเล็กทรอนิกส์แบบโอเพ่นซอร์สที่ออกแบบมาสำหรับมือสมัครเล่น ผู้ผลิต และ นักเรียนเพื่อสร้างโครงการอิเล็กทรอนิกส์เชิงโต้ตอบ

2. เซนเซอร์ TCRT 5000

เซนเซอร์ TCRT5000 เป็นเซนเซอร์ที่ใช้ตรวจจับวัตถุโดยใช้แสดงอินฟาเรด โดยจะมี led แบบอิน ฟาเรดยิงแสดนอินฟาเรดออกไป และมีตัวรับแสงอินฟาเรดรับค่าแสงที่สะท้อนกลับมา เมื่อวัตถุอยู่ใกล้จะมีแสง สะท้อนกลับมามากกว่าวัตถุที่อยู่ไกล จึงสามารถนำมาเช็ควัตถุผ่าน หรือใช้ตรวจจับเส้นสีขาว/ดำได้ โดยเส้น ขาวจะให้แสงสะท้อนกลับมากกว่าสีดำ

3. เซนเซอร์ LDR Module

LDR Module เป็นโมดูลเซ็นเซอร์วัดความสว่างความเข้มแสง โดยใช้เซ็นเซอร์ LDR ในการตรวจจับ เมื่อมีการเปลี่ยนแปลงความเข้มแสงจะทำให้ความต้านทานเปลี่ยนแปลงตามความเข้มแสง โดยให้สัญญาณ Output ออกมา 2 แบบคือ

- Analog ระดับความเข้มของแสง ที่วัดได้เป็นค่า 0-1023
- Digital สัญญาณที่ได้คือ Logic 1 และ Logic 0 โดยหมุนตัว R ปรับค่าได้บนบอร์ดเพื่อตั้งระดับความ ต้องการของความเข้มแสงว่าจะให้สว่างเท่าใดจึงจะส่งค่าเอาต์พุตออกมา

4. USB Cable for Arduino UNO

สายเชื่อมต่อระหว่างบอร์ด Arduino และคอมพิวเตอร์เพื่ออัปโหลด Source code จากคอมพิวเตอร์ ลงบนบอร์ด Arduino

5. L298N Motor Driver Module

L298N Motor Driver Module เป็นโมดูลขับมอเตอร์ราคาถูก ใช้ชิฟ L298N สามารถขับมอเตอร์ได้ 2 ตัวแบบแยกอิสระ สามารถควบคุมความเร็วมอเตอร์ได้ ใช้ไฟ 5 โวลต์ สามารถรับไฟเข้า 7-35 โวลต์ได้ มี วงจรเรกูเรเตอร์ในตัว ขับมอเตอร์กระแสสูงสุดได้ 2A

6. DC Motor

มอเตอร์ไฟฟ้ากระแสตรง หรือ ดี.ซี.มอเตอร์ (D.C. Motor) เป็นเครื่องกลชนิดหนึ่งที่เปลี่ยนจาก พลังงานไฟฟ้าให้เป็นพลังงานกล โดยปกติมีขั้วต่อไฟฟ้าอยู่สองขั้ว คือ ขั้วบวกและขั้วลบ เมื่อต่อขั้ว ไฟฟ้าทั้ง สองเข้าแบตเตอรี่โดยตรงมอเตอร์จะหมุนไปทางหนึ่ง แต่ถ้าสลับขั้วต่อไฟฟ้ากับแบตเตอรี่ มอเตอร์จะหมุนใน ทิศทางตรงกันข้าม

7. โครงรถ Robot Car

โครงรถ Robot car นี้จะประกอบไปด้วยโครงหุ่นยนต์ ล้อ และ DC motor ที่มาในตัว

8. ถ่านชาร์จ

ไว้สำหรับเป็นพลังงานให้รถหุ่นยนต์ทำงานโดยมีแรงดันเฉลี่ยอยู่ที่ 8 โวลต์

10. ไม้ไอติม

ไม้ไอติมไว้สำหรับเป็นส่วนเสริมเพิ่มเติมที่เอาไว้ยึดระหว่างโมดูล TCRT 5000 และตัวรถหุ่นยนต์

ทฤษฎีที่เกี่ยวข้องและ Library

1. Line Tracking sensor

เป็นการอ่านค่าจากเซนเซอร์ TCRT 5000 ที่ได้จากสีขาวและสีดำทึบแล้วนำมาเก็บเป็นค่า error เพื่อ นำมาใช้ในการบังคับตัวหุ่นยนต์ซึ่งค่า error ที่ได้อาจมีตั้งแต่ -5,-4,-3 ไปเรื่อยๆจนถึง 5 เนื่องจากการเดินตาม เส้นสีดำทึบนั้นไม่ได้มีแค่เส้นตรงเพียงอย่างเดียวยังมีการเข้าโค้ง การเลี้ยวหักศอกในองศาที่ต่างกันดังนั้นจึง จำเป็นที่จะต้องเก็บค่า error มาวิเคราะห์อีกทีว่า ณ ปัจจุบันรถอยู่ในตำแหน่งใดของเส้นทึบและจะไปต่อได้ อย่างไรดังรูปภาพประกอบ

2. เทคนิคการบังคับหุ่นแบบ PID

เป็นระบบควบคุมแบบป้อนกลับ ซึ่งค่าที่นำไปใช้ในการคำนวณเป็นค่าความผิดพลาดที่หามาจากความ แตกต่างของตัวแปรในกระบวนการและค่าที่ต้องการ ตัวควบคุมจะพยายามลดค่าผิดพลาดให้เหลือน้อยที่สุด ด้วยการปรับค่าสัญญาณขาเข้าของกระบวนการเพื่อให้หุ่นยนต์อยู่ตรงกลางเส้นขณะวิ่ง

3. การตรวจจับไฟกระพริบ

เป็นการอ่านค่าอนาล็อกจาก Module LDR ว่ามีเมื่อมีไฟกระพริบจะมีค่าสัญญาณเป็นเท่าไหร่เมื่อ เทียบกับตอนที่ยังไม่กระพริบเพื่อนำมาเขียนเงื่อนไขและอัลกอริทึมในการนับจำนวนครั้งที่ไฟกระพริบ

4. สัญญาณ PWM

Pulse Width Modulation(PWM) เป็นเทคนิคที่ทำให้สามารถอ่าน/เขียนข้อมูลแบบ analog ด้วย สัญญาณ digital ได้ โดยตัวควบคุมการสร้างสัญญาณดิจิตอล (Digital control) จะสร้างสัญญาณคลื่นสี่เหลี่ยม ออกมาดังรูปที่ 1 โดยสัญญาณที่สร้างออกมาจะสลับกันระหว่าง เปิด(HIGH) กับ ปิด(LOW) รูปแบบสัญญาณ เปิด-ปิดนี้สามารถจำลองเป็นแรงดันไฟฟ้าระหว่าง เปิด (5 Volts) กับ ปิด (0 Volts)

เราเรียกช่วงที่เป็นปิดหรือเปิดตามการทำงาน เพราะช่วงที่เป็นปิดแรงดันไฟฟ้าจะเป็น 0 ทำให้ไม่มีการทำงาน ส่วนช่วงที่เป็นเปิดคือช่วงที่มีแรงดันไฟฟ้า ทำให้อุปกรณ์ทำงานได้

การออกแบบและพัฒนา

เริ่มต้นด้วยการออกแบบถ้าเราบอกว่าเราต้องการสร้างรถหุ่นยนต์ที่สามารถเดินตามเส้นดำทึบและ สามารถตรวจจับไฟกระพริบได้เช่นกัน โดยมีเงื่อนไขดังนี้

- 1) สามารถเดินตามเส้นตรง เส้นโค้ง มุม และเส้นประได้
- 2) สามารถหยุดรอสัญญาณไฟตรงแยก เพื่อเลี้ยวตามสัญญาณไฟ
 - กระพริบ 1 ครั้งให้ไปทางซ้าย
 - กระพริบ 2 ครั้งให้ไปทางขวา
- 3) การควบคุมหุ่นยนต์เป็นแบบอัตโนมัติ
 - เริ่มทำงานด้วยสวิตซ์เปิด-ปิด อยู่ในจุดที่ใช้งานง่าย
 - วางส่วนประกอบให้มีความมั่นคงแข็งแรงสามารถอัปโหลดโปรแกรมได้ง่าย
 - จัดสายให้เรียบร้อยไม่ให้พันกันกับอุปกรณ์อื่นๆ

โดยสนามแข่งรถจะเป็นพื้นไวนิลสีขาวล้วนและมีเส้นสีดำทึบไว้สำหรับรถเดินตามเส้นซึ่งจะมี รายละเลียดดังนี้

- 1) สนามขนาดประมาณ 2X3 เมตร
- 2) เส้นหนาประมาณ 3 เซนติเมตร
- 3) มุมต่างๆในสนามจะมีตั้งแต่ 30,40,60,90 และ 135 องศา
- 4) จุดตั้งสัญญาณไฟจะมีทั้งหมด 3 จุดได้แก่ จุด A จุด b1 และจุด b2

มาถึงในส่วนของขั้นตอนการประกอบตัวรถหุ่นยนต์โดยในที่นี่นักศึกษาออกแบบให้วางบอร์ด Arduino uno r3 ไว้บนชั้นที่ 2 ของตัวรถ(ชั้นเดียวกันกับรางถ่าน) และ L298N ไว้ชั้นที่ 1 ของตัวรถ(ชั้น เดียวกันกับ DC Motor) และนำไม้ไอติม 3 อันมาเจาะรูแล้วนำไปยึดกับตัวรถเพื่อใช้เป็นฐานสำหรับวางโมดูล เซนเซอร์ TCRT 5000 และใช้กาวนาโนแบบเหนียวมากสำหรับยึดตัวโมดูลกับไม้ไอติมส่วนโครงไม้ไอติมจะ ใช้น็อตตัวผู้-เมียในการยึดแทนเนื่องจากมีความแข็งแรงกว่าดังรูป

ส่วนต่อมาจะเป็นในส่วนของการพัฒนาซอฟต์แวร์ร่วมกับฮาร์ดแวร์เริ่มแรกที่สุดสำหรับการพัฒนาใน หัวข้อนี้นั่นก็คือการ Calibrate นั่นเองซึ่งจะเป็นการทดสอบค่าที่สอดคล้องกันของฮาร์ดแวร์แต่ละตัวเพื่อเวลา ใช้งานจริงจะได้ทำงานที่สอดคล้องและเข้ากันได้ยกตัวอย่างเช่นการ Caribrate มอเตอร์ซึ่งจริงๆแล้วมอเตอร์ แต่ละตัวนั่นมักมีรอบหมุนที่ไม่เท่ากันต่อให้ใช้สัญญาณอินพุต PWM ที่เท่ากันก็ตาม

```
2 int enB = 6;
 3 int in1 = 9;
 4 int in2 = 8;
5 int in3 = 5;
6 int in4 = 4;
9 {
10 // set all the motor control pins to outputs
11 pinMode (enA, OUTPUT);
12 pinMode(in1, OUTPUT);
13 pinMode (in2, OUTPUT);
14 pinMode(in3, OUTPUT);
15 pinMode (in4, OUTPUT);
17 }
18 void loop()
19 {
21 digitalWrite(in1, HIGH);
22 digitalWrite(in2, LOW);
23 digitalWrite(in3, HIGH);
24 digitalWrite(in4, LOW);
25 analogWrite(enA, 80);
26 analogWrite(enB, 100);
```

โดยรูปนี้เป็นตัวอย่างของการ Calibrate มอเตอร์ล้อทั้งสองของหุ่นยนต์สำหรับ<u>เดินหน้าตรง</u>จะเห็นได้ ว่าค่า analogWrite ที่ป้อนให้กับมอเตอร์ทั้งสองนั้นมีค่าไม่เท่ากัน

ส่วนต่อมาจะเป็นส่วนของการ Calibrate โมดูลเซนเซอร์ TCRT 5000 ซึ่งปกติแล้วค่า analogRead ของเซนเซอร์แต่ละตัวที่อ่านได้ยอมไม่เท่ากันอยู่แล้วฉะนั้น บ่อยครั้งที่นักศึกษาต้องเข้าไปเก็บค่าจริงที่สนามจริง เพื่อนำมาพัฒนาต่อไป

```
17 void loop() {
int ss0 = analogRead(sensor0);//200
int ss1 = analogRead(sensor1);//17
int ss2 = analogRead(sensor2);//250
21 int ss3 = analogRead(sensor3);//300
int ss4 = analogRead(sensor4);//500
2.3
24 Serial.print(ss0);
25 Serial.print(" ");
26 Serial.print(ss1);
27 Serial.print(" ");
28 Serial.print(ss2);
29 Serial.print(" ");
30 Serial.print(ss3);
31 Serial.print(" ");
32 Serial.println(ss4);
33 delay(500);
34 }
```

จากรูปนี้จะเห็นว่ามีการคอมเมนต์โค้ดด้วย "//" ซึ่งค่าที่อยู่หลังคอมเมนต์คือค่าที่โมดูลจับเส้นสีดำได้ ซึ่งจะเห็นได้ว่ามีค่าที่ไม่เท่ากันเลยนี้จึงเป็นเห็นผลหลักที่ทำไมก่อนการพัฒนารถหุ่นยนต์เราจึงต้องทำการ ตรวจสอบค่าที่สอดคล้องกับของแต่ละฮาร์ดแวร์ด้วย

ส่วนต่อมาจะเป็นการพัฒนารูปแบบการเดินรถต่างๆที่นำค่า error ของเซนเซอร์มาคิดร่วมด้วยโดย เทคนิคที่นักศึกษาใช้จะประยุกต์มาจากเทคนิค PID แต่ที่นักศึกษาไม่ใช่ PID เพราะการขับมอเตอร์ด้วยค่าต่างๆ ที่ส่งมาจาก Arduino นั้นไม่ค่อยต่างแบบมีนัยสำคัญเท่าไหร่จึงทำให้แม้จะจูนค่า PID มาดีเท่าไหร่รอบของการ หมุนรถก็ไม่ค่อยต่างกันเนื่องจากกระแสที่ใช้ขับเคลื่อนล้อมีไม่มากนักเพราะใช้ถ่านที่มีแรงดันเฉลี่ยอยู่ที่ 8 โวลต์ และยังต้องใช้ไฟไปเลี้ยงส่วนต่างๆของหุ่นยนต์อีกเช่น L298N หรือแม้กระทั้งโมดูลเซนเซอร์ TCRT 5000 นักศึกษาจึงตัดสินใจไม่ใช้เทคนิคดังกล่าวแต่หันมาปรับรอบหมุนและทิศทางของมอเตอร์เองโดยดูจากค่าที่ ตรวจจับได้ของเซนเซอร์

โดยเมื่อเซนเซอร์จับเส้นสีดำได้เราจะให้ค่า error ของเซนเซอร์นั้นเป็น 0 และถ้าจับไม่ได้จะให้ค่าเป็น 1 ดังรูป แต่ในรูปจะสลับกันถ้าเจอสีดำจะเป็น 1 เจอสีขาวจะเป็น 0 แต่สุดท้ายแล้วใช้หลักการเดียวกัน

ทีนี่เราก็เขียนเงื่อนไขเลยว่าถ้าเราเจอค่า error ที่ต่างกันไปเราจะให้มอเตอร์หมุนแบบไหนบ้างดัง ตัวอย่างโค้ด

จะเห็นได้ว่าเมื่อต่างเงื่อนไขกันเราก็จะให้เอาต์พุตที่ต่างกันออกไปเพื่อให้ตัวหุ่นยนต์สามารถเดินตาม เส้นได้ มาในส่วนของขั้นตอนสุดท้ายคือการตรวจจับไฟกระพริบแน่นอนว่าเราจะต้องทำการ Calibrate โมดูล LDR เสียก่อนเพื่อจะได้รู้ว่าเมื่อมีไฟกระพริบโมดูลจะให้ค่าเท่าไหร่ออกมาและตอนยังไม่กระพริบโมดูลจะให้ค่าเท่าไหร่ออกมาดังรูป(โค้ดตัวอย่างการ Calibrate โมดูลเซนเซอร์ LDR)

```
void loop() {
  int inp = analogRead(A5);
  Serial.print(inp);
  Serial.print(" ");
  Serial.println(count);
int start time = millis();
  if(inp < 300 && toggle_count == true) {//350</pre>
    count += 1;
toggle_count = false;
// while(millis() - start_time < 3000){</pre>
inp = analogRead(A5);

if (inp > 500) {

toggle gount = true:
          toggle count = true;
1//
: //
           break;
1//
1//
   if(inp > 400) {//380}
    toggle_count = true;
```

นี้เป็นตัวอย่างการ Calibrate และนับจำนวนครั้งที่ไฟกระพริบโดยจะเห็นได้ว่าเมื่อมีไฟกระพริบ ldr จะให้ค่าที่น้อยกว่าเท่ากับ 300 ออกมาแต่ถ้าไม่มีการกระพริบของไฟ ldr จะให้ค่าที่มากกว่า 400 ออกมา โดย รถจะหยุดรอรับสัญญาณไฟที่จุด A ตามในรูปสนามโดยจะหยุดก็ต่อเมื่อเซนเซอร์ทุกตัวอ่านค่าได้เท่ากับ 0 0 0 0 หรือก็คืออ่านสีกำหมดนั่นเอง

ปัญหาและอุปสรรค

- 1. ค่าที่เซนเซอร์ TCRT ส่งคืนกลับมามีค่าไม่เท่ากันตลอดทั้งสนาม วิธีแก้ไข: ทำการ Calibrate ค่าใหม่ที่ละเอียดกว่าเดิม
- 2. กระแสที่ใช้ขับมอเตอร์ไม่เพียงพอทำให้ค่าความต่างของ PWM ไม่เห็นผลต่างเท่าที่ควร วิธีแก้ไข: กลับขั้วมอเตอร์สำหรับหมุนล้อเพื่อให้เกิดความต่างของ PWM ที่มากกว่า
- 3. แรงเสียดทานที่ล้อน้อยเกินไปทำให้เกิดการฟรีของล้อบ่อย
 วิธีแก้ไข: นำเยื่อกาวบางๆมาทาที่ล้อเพื่อเพิ่มสัมประสิทธิ์ความเสียดทาน

สรุปผลการดำเนินงาน

การจำลองสร้างรถหุ่นยนต์ที่สามารถเดินตามเส้นสีดำทึบและสามารถตรวจจับไฟกระพริบได้โดยนำ ความรู้เรื่อง Line tracking มาประยุกต์ใช้นั่นมีความยากพอสมควรเนื่องจากในทางปฏิบัติแล้วฮาร์ดที่นำมาใช้ ย่อมเกิด Noise มากในระดับนึงและรอบของการทดสอบแต่ละครั้งก็มีผลลัพธ์ที่ต่างกันทำให้การพัฒนาหุ่นยนต์ หรือการเขียนโปรแกรมมีความยากพอสมควรที่จะจูนค่าที่เหมาะสมให้กับหุ่นยนต์

สุดท้ายนี้ผู้จัดทำหวังว่ารายงานฉบับนี้จะเป็นประโยชน์และแรงบันดาลใจให้แก่ผู้ที่กำลังศึกษาการ จำลองสร้างรถหุ่นยนต์ที่สามารถเดินตามเส้นสีดำทึบและสามารถตรวจจับไฟกระพริบได้โดยนำความรู้เรื่อง Line tracking มาประยุกต์ใช้ร่วมด้วยพร้อมกับพัฒนาบนบอร์ด Arduino uno r3

แหล่งอ้างอิง

- สอนการใช้ PID ประยุกต์กับหุ่นยนต์เดินตามเส้นเบื้องต้น https://www.youtube.com/watch?v=zVbqXbINK68&list=LL&index=23&t=105s
- พื้นฐานPIDง่ายๆ Ep.1

https://www.youtube.com/watch?v=mfyYFsqEubc&list=LL&index=22