- 1. Fie x_1, x_2, x_3 rădăcinile complexe ale ecuației $x^3 4x + 1 = 0$.
- (i) Să se calculeze $x_1^7 + x_2^7 + x_3^7$.
- (ii) Câte dintre x_1, x_2, x_3 sunt reale?
- (iii) Fie $f = (X_1^2 X_1X_2 + X_2^2)(X_1^2 X_1X_3 + X_3^2)(X_2^2 X_2X_3 + X_3^2) \in \mathbf{Z}[X_1, X_2, X_3]$. Să se calculeze $f(x_1, x_2, x_3)$.
- **2.** Fie $A = \{a + ib\sqrt{3} | a, b \in \mathbf{Z}\}$ și $K = \{a + ib\sqrt{3} | a, b \in \mathbf{Q}\}$. Să se arate că:
- (i) A este subinel al lui C, dar A nu este subcorp al lui C.
- (ii) K este subcorp al lui \mathbb{C} .
- (iii) Inelele A și \mathbf{Z} nu sunt izomorfe.
- (iv) Corpurile K și \mathbf{C} nu sunt izomorfe.
- 3. (i) Să se demonstreze că există izomorfisme de inele $\frac{\mathbf{Z}[X]}{(X+3)} \simeq \mathbf{Z}$ și $\frac{\mathbf{Q}[X]}{(X+3)} \simeq \mathbf{Q}$.
- (ii) Să se arate că $\frac{\mathbf{Q}[X]}{(X^2-9)} \simeq \mathbf{Q} \times \mathbf{Q}$, dar $\frac{\mathbf{Z}[X]}{(X^2-9)}$ nu este izomorf cu $\mathbf{Z} \times \mathbf{Z}$.
- (iii) Să se arate că pentru orice ideal I al lui $\mathbf{Q}[X]$ cu $I \neq \mathbf{Q}[X]$, inelul factor $\frac{\mathbf{Q}[X]}{I}$ are un subinel izomorf cu \mathbf{Q} .
- (iv) Să se dea exemplu de ideal J al lui $\mathbf{Z}[X]$ cu $J \neq \mathbf{Z}[X]$, pentru care inelul factor $\frac{\mathbf{Z}[X]}{J}$ nu are un subinel izomorf cu \mathbf{Z} .
- **4.** Fie $f = X^4 + X^3 + X^2 + X + \hat{1}$ şi $g = X^2 + X$, polinoame din $\mathbb{Z}_2[X]$.
- (i) Să se determine câtul și restul împărțirii lui f la g.
- (ii) Să se determine c.m.m.d.c al polinoamelor f și g în $\mathbb{Z}_2[X]$.
- (iii) Să se arate că f este ireductibil în $\mathbb{Z}_2[X]$.