USUELLES

FONCTIONS

EXERCICE 1.

Résoudre dans \mathbb{R} les équations suivantes :

- 1. $2^x + 3^x = 5$:
- 2. $9^{x} 2^{x+\frac{1}{2}} = 2^{x+\frac{7}{2}} 3^{2x-1}$.

EXERCICE 2.*

Soit $\alpha \in \mathbb{R}$. Soit pour $n \in \mathbb{N}^*$, f_n la fonction définie par

$$f_n: \mathbb{R} \to \mathbb{R}, \ x \mapsto n^{\alpha} x e^{-nx}.$$

- 1. Discuter la limite à x fixé, de la suite $(f_n(x))_{n\geq 1}$.
- **2.** Montrer que $\forall n \in \mathbb{N}$, f_n admet un maximum sur \mathbb{R} que l'on notera u_n .
- 3. Discuter la limite de la suite $(u_n)_{n\geq 1}$.

Exercice 3.★

Prouver que pour tout $\alpha \in \mathbb{R}$,

$$\lim_{n\to +\infty} \left(1+\frac{\alpha}{n}\right)^n = e^{\alpha}.$$

Exercice 4.★

Trouver la plus grande valeur de $\sqrt[n]{n}$, pour $n \in \mathbb{N}^*$.

EXERCICE 5.

Trouver tous les couples (a, b) d'entiers naturels supérieurs ou égaux à 2 et a < b tels que $a^b = b^a$.

EXERCICE 6.★★

Prouver que

$$\forall x \in]0,1[, x^{x}(1-x)^{1-x} \geqslant \frac{1}{2}.$$

EXERCICE 7.

Soient 0 < a < b. Prouver que, $\forall x > 0$,

$$ae^{-bx} - be^{-ax} > a - b$$
.

EXERCICE 8.

Etudier en $+\infty$ les expressions suivantes :

$$1. \ \frac{e^{-\sqrt{\ln(n)}}}{1/n}$$

3.
$$\frac{e^{-\sqrt{n}}}{\sqrt{n}\ln(n)}$$
4.
$$\frac{n}{(\ln(n))^{-\ln n}}$$

2.
$$\frac{e^{-\sqrt{n}}}{1/n^2}$$

4.
$$\frac{\mathfrak{n}}{(\ln(\mathfrak{n}))^{-\ln \mathfrak{n}}}$$

EXERCICE 9.

Déterminer les limites en $\pm \infty$ des expressions suivantes :

1.
$$x^2e^{-3x}4^x$$

3.
$$x^2e^{-x}$$

2.
$$\chi^2 4^{\chi}$$

4.
$$4^{x}e^{-x}$$

EXERCICE 10.★

Pour tout $n \in \mathbb{N}$ et x dans \mathbb{R} , on pose :

$$f_n(x) = x^n(1-x).$$

Quelle est la limite de $f_n(x)$ lorsque n tend vers $+\infty$? Prouver que f_n admet un maximum sur [0,1], noté u_n . La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle?

EXERCICE 11.

Soit $\lambda > 0$. On pose $f(x) = e^{\lambda x}$ et on considère l'équation (E) suivante :

$$e^{\lambda e^{\lambda x}} = x$$

- 1. Étudier les variations et les limites de la fonction f.
- **2.** Soit $x \in \mathbb{R}$ tel que f(x) = x. Montrer que x est solution de (E).
- 3. Montrer que, réciproquement, si x est solution de (E) alors f(x) = x.
- **4.** Dresser le tableau de variations de la fonction $g: x \mapsto f(x) x$.
- 5. En déduire, selon les valeurs de λ le nombre de solutions de l'équation (E).

EXERCICE 12.

Tracer la courbe de

$$x \in \mathbb{R} \mapsto f(x) = \cos(x) + \frac{1}{2}\cos(2x).$$

FONCTIONS

EXERCICE 13.

Tracer le graphe des fonctions définies par

- 1. $x \mapsto \arccos(\cos(x)) \frac{1}{2}\arccos(\cos(2x))$.
- 2. $x \mapsto \frac{x}{2} \arcsin\left(\sqrt{\frac{1+\sin(x)}{2}}\right)$.

EXERCICE 14.

On cherche à résoudre sur $\mathbb R$ l'équation suivante :

$$\arctan(x-3) + \arctan(x) + \arctan(x+3) = \frac{5\pi}{4}.$$

- 1. Prouver que x = 5 est solution.
- 2. Conclure.

EXERCICE 15.★

Tracer les graphes des fonctions définies sur \mathbb{R} par

$$x \longmapsto \sin^4(x) + \cos^4(x)$$
 et $x \longmapsto \sin^5(x) + \cos^5(x)$.

Exercice 16.★

On pose, pour $x \ge 0$, $f(x) = \arccos\left(\frac{1-x}{1+x}\right)$.

- 1. La fonction f est-elle bien définie?
- 2. Justifier que tout réel positif x peut s'écrire sous la forme $x = \tan^2(\theta/2)$
- **3.** Soit $x \ge 0$. Simplifier f(x) en posant $x = \tan^2(\theta/2)$ avec $0 \le \theta < \pi$.

EXERCICE 17.★★

On pose $y = \arcsin\left(\frac{1+\sqrt{5}}{4}\right)$. Calculer $\cos(4y)$ et en déduire la valeur de y.

EXERCICE 18.

Soient a et b deux nombres réels positifs. Prouver qu'il existe un unique $c \in \mathbb{R}$ tel que

$$\arctan(a) - \arctan(b) = \arctan(c)$$
.

Exprimer c en fonction de a et b.

Exercice 19.★

Prouver l'égalité suivante :

$$4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}.$$

EXERCICE 20.★

Prouver l'égalité suivante :

$$\arctan(3) - \arcsin\left(\frac{1}{\sqrt{5}}\right) = \frac{\pi}{4}.$$

EXERCICE 21.★

Prouver que, pour tout $x \in \mathbb{R}$:

$$\arctan(x) + 2\arctan\left(\sqrt{1+x^2} - x\right) = \frac{\pi}{2}.$$

EXERCICE 22.★★

On cherche à résoudre dans \mathbb{R} l'équation suivante :

$$\arctan(2x) + \arctan(x) = \frac{\pi}{4}.$$

- 1. Montrer que si x est solution, alors nécessairement x vérifie l'équation $2x^2 +$ 3x - 1 = 0.
- 2. Etudier la réciproque.

EXERCICE 23.★

Résoudre dans \mathbb{R} les équations suivantes :

- 1. $\arcsin(\tan(x)) = x$.
- 2. $\arcsin(x) + \arcsin(\sqrt{1-x^2}) = \frac{\pi}{2}$.

EXERCICE 24.★

Prouver que, $\forall x \in]-1,1[$,

$$\arcsin(x) = \arctan\bigg(\frac{x}{\sqrt{1-x^2}}\bigg).$$

EXERCICE 25.★★

Pour $n \in \mathbb{N}$, on pose pour tout réel $x \in [-1, 1]$:

$$f_n(x) = \cos(n \arccos(x)).$$

Montrer que f_n est une fonction polynomiale.

EXERCICE 26.★

On souhaite établir que $\forall x \in [0, 1]$:

$$\arcsin(\sqrt{x}) = \frac{\pi}{4} + \frac{1}{2}\arcsin(2x - 1).$$

- 1. Première méthode : en utilisant la dérivation.
- 2. Seconde méthode : en utilisant les formules de trigonométrie. On pourra poser $x = \sin^2(u)$.

EXERCICE 27.

Simplifier les expressions suivantes (il ne doit plus figurer de fonctions trigonométriques directes et réciproques) :

$$f(x) = \sin(\arctan x)$$
 $g(x) = \cos(\arctan x)$

EXERCICE 28.

Résoudre l'équation :

$$\arccos x = \arcsin 2x$$

EXERCICE 29.

Résoudre dans $\mathbb R$ les équations suivantes. On raisonnera avec soin.

- 1. $\arcsin\left(\frac{1}{1+x^2}\right) + \arccos\frac{3}{5} = \frac{\pi}{2}$.
- $2. \arccos x = 2\arccos \frac{3}{4}.$
- 3. $\arccos x = \arccos \frac{1}{4} + \arcsin \frac{1}{3}$.
- 4. $\arcsin x = \arctan 2x$.
- 5. $\arcsin 2x = \arctan x$.

EXERCICE 30.

Comparer $\cos(\sin x)$ et $\sin(\cos x)$.

EXERCICE 31.

On considère la fonction numérique f telle que $f(x) = (x^2 - 1) \arctan \frac{1}{2x - 1}$.

- 1. Quel est l'ensemble de définition \mathcal{D} de f?
- **2.** Montrer que f est dérivable sur \mathcal{D} et mettre f'(x) sous la forme f'(x) = 2xg(x) pour $x \in \mathcal{D} \setminus \{0\}$.
- **3.** Montrer que pour tout $x \in \mathbb{R}$, $2x^4 4x^3 + 9x^2 4x + 1 > 0$.
- 4. Etudier g et en déduire le tableau de variations de f.

EXERCICE 32.

- 1. Que vaut $\tan \frac{\pi}{6}$? Rappeler la formule donnant $\tan(a-b)$ en fonction de $\tan a$ et $\tan b$.
- 2. Montrer que parmi 7 réels quelconques, il en existe toujours deux notés x et y vérifiant $0 \le \frac{x-y}{1+xy} \le \frac{1}{\sqrt{3}}$.

EXERCICE 33.

Résoudre dans \mathbb{R} l'équation

$$\arcsin x - \arccos x = \frac{\pi}{6}$$

EXERCICE 34.

On note $f: x \mapsto \arcsin(x) + \arcsin(2x)$.

- 1. Déterminer l'ensemble de définition I de f.
- **2.** Calculer $f(\frac{1}{2})$.
- ${\bf 3.}\,$ Justifier que f induit une bijection de I sur un intervalle J à préciser.
- 4. Justifier que l'équation $f(x) = \frac{\pi}{2}$ admet une unique solution dans I. On ne cherchera pas à résoudre cette équation dans cette question.
- **5.** Résoudre l'équation $f(x) = \frac{\pi}{2}$.

EXERCICE 35.

Résoudre $\operatorname{ch}(x) + 2\operatorname{sh}(x) = 2$ dans \mathbb{R} .

EXERCICE 36.★

Soient $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$. Simplifier les sommes

$$S_n = \sum_{k=0}^n \operatorname{ch}(k\mathfrak{a} + \mathfrak{b}) \quad \mathrm{et} \quad \Sigma_n = \sum_{k=0}^n \operatorname{sh}(k\mathfrak{a} + \mathfrak{b}).$$

EXERCICE 37.

Dresser le tableau de variation et tracer la courbe représentative de la fonction f définie par

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x)}.$$

EXERCICE 38.

Soient $a, b \in \mathbb{R}$. Prouver que

$$e^{a} - e^{b} = 2e^{\frac{a+b}{2}} \operatorname{sh}\left(\frac{a-b}{2}\right),$$

 $_{
m et}$

$$e^{a} + e^{b} = 2 e^{\frac{a+b}{2}} \operatorname{ch}\left(\frac{a-b}{2}\right).$$

Exercice 39.★

 $L'object if \ de \ cet \ exercice \ est \ de \ simplifier \ une \ somme \ hyperbolique.$

1. Montrer que pour tout réel x, on a

$$\operatorname{th}(2x) = \frac{2\operatorname{th}(x)}{1 + \operatorname{th}^2(x)},$$

et en déduire que pour tout réel x non nul,

$$\frac{2}{\operatorname{th}(2x)} - \frac{1}{\operatorname{th}(x)} = \operatorname{th}(x).$$

 ${\bf 2.}\;\;\alpha$ étant un réel strictement positif et ${\bf n}$ un entier naturel, simplifier

$$\Lambda_n = \sum_{k=0}^n 2^k \operatorname{th}(2^k \alpha).$$

Exercice 40.★

Etablir que

$$\forall x \in \mathbb{R}, \quad \arctan(e^x) = \arctan(\operatorname{th}(x/2)) + \frac{\pi}{4}.$$

EXERCICE 41.

On pose

$$f(x) = \arctan(\sinh(x))$$
 et $g(x) = \arccos\left(\frac{1}{\cosh(x)}\right)$.

- 1. Justifier que f et q sont définies sur \mathbb{R} et dérivables sur \mathbb{R}^* .
- 2. Montrer que

$$\forall x \in \mathbb{R}_+, f(x) = g(x) \text{ et } \forall x \in \mathbb{R}_-, f(x) = -g(x).$$

EXERCICE 42.

On pose $f(x) = \arctan(\operatorname{sh} x)$ et $g(x) = \arccos\left(\frac{1}{\operatorname{ch} x}\right)$.

- 1. Vérifier que f et g sont bien définies sur \mathbb{R} . Sur quels domaines sont elles dérivables?
- **2.** Calculer f' et g' sur leurs domaines de définition, et en déduire que f(x) = g(x) pour tout $x \ge 0$. Quelle relation existe-t-il entre f(x) et g(x) pour x < 0?

EXERCICE 43.

On pose $f(x) = \arctan(\sinh x) + \arccos(\tanh x)$.

- 1. Donner le domaine de définition et le domaine de dérivabilité de f.
- 2. Montrer que f' est nulle sur son domaine de dérivabilité.
- 3. Montrer que $\arctan \frac{5}{12} + \arccos \frac{5}{13} = \frac{\pi}{2}$.