TRIGONOMETRY FORMULA LIST

by iovyntls

common values

θ/°	0°	30°	45°	60°	90°
θ / rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined

reciprocal

periodicity

$$\csc A = \frac{1}{\sin A}$$
$$\sec A = \frac{1}{\cos A}$$
$$\cot A = \frac{1}{\tan A}$$

$$\sin(A \pm 2\pi) = \sin A$$
$$\cos(A \pm 2\pi) = \cos A$$
$$\tan(A \pm \pi) = \tan A$$

co-function

$$\sin(\frac{\pi}{2} - A) = \cos A$$
$$\cos(\frac{\pi}{2} - A) = \sin A$$
$$\tan(\frac{\pi}{2} - A) = \cot A$$

sum & difference

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

pythagorean identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A - \tan^2 A = 1$$
$$\csc^2 A - \cot^2 A = 1$$

double angle

$$\sin(2A) = 2\sin A \cos A$$

$$= \frac{2\tan A}{1 + \tan^2 A}$$

$$\cos(2A) = \cos^2 A - \sin^2 A$$

$$= 1 - 2\sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

product to sum

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A + B) + \sin(A - B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A + B) - \sin(A - B) \right]$$

sum to product

$$\sin A \pm \sin B = 2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)$$
$$\cos A + \cos B = 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)$$
$$\cos A - \cos B = -2 \sin \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)$$

geometry

sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

cosine rule

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$A = \cos^{-1} \left(\frac{b^{2} + c^{2} - a^{2}}{2bc} \right)$$

area of triangle

$$\frac{1}{2}ab\sin C$$

Heron's formula

$$\label{eq:area} \begin{aligned} \operatorname{area} &= \sqrt{s(s-a)(s-b)(s-c)} \\ \operatorname{where} &s &= \frac{1}{2}(a+b+c) \end{aligned}$$

differentiation

•	J.,	
	f(x)	f'(x)
	$\tan x$	$\sec^2 x$
	$\csc x$	$-\csc x \cot x$
	$\sec x$	$\sec x \tan x$
	$\cot x$	$-\csc^2 x$
	$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}, f(x) < 1$
	$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
	$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
	$\cot^{-1} f(x)$	$-\frac{f'(x)}{1+[f(x)]^2}$
	$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2 - 1}}$
	$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

integration

f(x)	$\int f(x)$		
$\tan x$	$\ln(\sec x)$, $ x < \frac{\pi}{2}$		
$\cot x$	$\ln(\sin x),{\scriptscriptstyle 0$		
$\csc x$	$-\ln(\csc x + \cot x), {\scriptstyle 0 < x < \pi}$		
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$		