```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
import scipy.stats
from scipy.stats import norm, binom, poisson
from dtaidistance import dtw

import json
```

Different position of the sun

- right
- behind
- left
- front

Layered folders, parse into 2d lists of dicts

```
In [7]:
        import os
        txt lists = [[], [], [], []]
        for root, dirs, files in os.walk("./Simulations Sun Azimuth/route highway epoch24 clear-sunset-right"):
            for file in files:
                if file.endswith(".txt"):
                     with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read string = f.read()
                         json object = json.loads(read string)
                         txt lists[0].append(json object)
        for root, dirs, files in os.walk("./Simulations Sun Azimuth/route highway epoch24 clear-sunset-behind"):
            for file in files:
                if file.endswith(".txt"):
                     with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read_string = f.read()
                        json_object = json.loads(read_string)
                        txt_lists[1].append(json_object)
```

Examining results

```
In [8]: count_array = []
         for txt list in txt lists:
             count = 0
             for txt in txt list:
                 if txt[' checkpoint']['records'][0]['status'] == 'Completed':
                     count += 1
             count array.append(count/50)
         print(count array)
         [1.0, 1.0, 1.0, 1.0]
In [14]: count array = []
         outOfLane array = []
         for txt list in txt lists:
             count = 0
             outOfLane = 0
             for txt in txt list:
                 count += txt[' checkpoint']['records'][0]['scores']['score route']
                 if not txt[' checkpoint']['records'][0]['infractions']['outside route lanes']:
                         outOfLane += 1
             count array.append(count/50)
             outOfLane array.append(outOfLane/50)
         print(count array, outOfLane array)
```

Setting up into 2d lists of DataFrames

```
In [34]: dim = (4, 50)
         df array = np.ndarray(dim, dtype=object)
In [85]: dir_path = './Simulations_Sun_Azimuth'
         # list to store files
          res = []
          count = 0
          # Iterate directory
         for path in os.listdir(dir path):
             # check if current path is a file
               print(path)
             if not os.path.isfile(os.path.join(dir path, path)):
                 folder list = []
                 for folder in os.listdir(os.path.join(dir path, path)):
                      folder_list.append(folder)
                 folder list.sort()
                   print(folder_list)
                 for i in range(len(folder list)):
                      folder = folder list[i]
                      temp = os.path.join(os.path.join(dir path, path), folder)
                      file array = []
                      for file in os.listdir(temp):
                          file array.append(file)
                      file array.sort()
                      df = pd.DataFrame()
                      for file in file array:
                         if " ctl.csv" in file:
                              df = pd.read csv(temp + '/' + file)
                          elif " cvip.csv" in file:
                              df = pd.concat([df, pd.read_csv(temp + '/' + file)], axis=1)
                          elif " traj.csv" in file:
                              df = pd.concat([df, pd.read csv(temp + '/' + file)], axis=1)
                      df array[count][i%50]=df
              count += 1
         legend = ['behind', 'front', 'left', 'right']
```

	ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	cvip_y	cvip_z	ts	agent_id	
0 4	462340	0	0.900000	-0.010153	0.0	462340	0	500.491189	198.767441	-95.832657	-499.819366	462340	0	192
1 4	462341	0	0.900000	-0.000256	0.0	462341	0	5.595580	195.567444	-90.832657	0.100000	462341	0	192
2 4	462342	0	0.900000	-0.011467	0.0	462342	0	5.592365	195.567444	-90.832657	0.095407	462342	0	192
3 4	462343	0	0.900000	-0.005085	0.0	462343	0	5.589578	195.567444	-90.832657	0.084691	462343	0	192
4 4	462344	0	0.900000	0.000549	0.0	462344	0	5.587154	195.567444	-90.832657	0.069311	462344	0	192
•••	•••	•••	•••				•••							
752	463092	0	0.489402	-0.001344	0.0	463092	0	54.806424	192.563019	97.781723	0.001830	463092	0	193
753 4	463093	0	0.495243	-0.001923	0.0	463093	0	54.905613	192.558350	98.114845	0.001836	463093	0	193
754	463094	0	0.478484	-0.001697	0.0	463094	0	55.004119	192.553375	98.447456	0.001843	463094	0	193
755 4	463095	0	0.461957	-0.002489	0.0	463095	0	55.102002	192.548126	98.779610	0.001849	463095	0	193
756 4	463096	0	0.466184	-0.001888	0.0	463096	0	55.199272	192.542572	99.111313	0.001854	463096	0	193

Since no accident, check cvip

```
In [82]: df_cvip_avg_dict = {}
for weather in range(4):
    df_avg = df_array[weather][0]['cvip']
    for i in range(1, len(df_array[weather])):
        df_avg += df_array[weather][i]['cvip']
    df_avg = df_avg.interpolate().dropna()/100
    df_cvip_avg_dict.update({legend[weather]: df_avg.copy()})
    df_avg = df_avg[1:]
    df_avg.plot(figsize=(15, 6))
    plt.legend(legend)
    plt.title("CVIP")
plt.show()
```



```
In [83]:
    df_steer_avg_dict = {}
    for weather in range(4):
        df_avg = df_array[weather][0]['steer']
        for i in range(1, len(df_array[weather])):
            df_avg += df_array[weather][i]['steer']
        df_avg = df_avg.interpolate().dropna()/100
        df_steer_avg_dict.update({legend[weather]: df_avg.copy()})
        df_avg.plot(figsize=(15, 6))
        df_avg = df_avg[1:]
        plt.legend(legend)
        plt.title("Steer")
plt.show()
```

400

600

700

500

```
In [84]:
    df_throttle_avg_dict = {}
    for weather in range(4):
        df_avg = df_array[weather][0]['throttle']
        for i in range(1, len(df_array[weather])):
            df_avg += df_array[weather][i]['throttle']
        df_avg = df_avg.interpolate().dropna()/100
        df_throttle_avg_dict.update({legend[weather]: df_avg.copy()})
        df_avg.plot(figsize=(15, 6))
        df_avg = df_avg[1:]
        plt.legend(legend)
        plt.title("throttle")
    plt.show()
```

300

100

200


```
In [78]: fig = plt.figure(figsize=(15, 6))

for i in legend:
    df_steer_avg_dict[i].plot.density()
    plt.xlabel("steer")
    plt.title('Density distribution of steer')
    plt.legend(legend)
    plt.show()
```



```
In [79]: fig = plt.figure(figsize=(15, 6))

for i in legend:
    df_cvip_avg_dict[i].plot.density()
    plt.xlabel("cvip")
    plt.title('Density distribution of cvip')
    plt.legend(legend)
    plt.show()
```



```
In [80]: fig = plt.figure(figsize=(15, 6))

for i in legend:
    df_throttle_avg_dict[i].plot.density()
    plt.xlabel("throttle")
    plt.title('Density distribution of throttle')
    plt.legend(legend)
    plt.show()
```


