IIC3253

Repaso: de AES a Funciones de Hash

¿Cómo construimos una función de hash?

Partamos simplificando el problema:

Input de largo arbitrario → output de largo fijo

Input de largo fijo → output de largo fijo

$$h:\{0,1\}^{2n} \to \{0,1\}^n$$

¿Podemos usar un esquema de cifrado?

 $Enc_k:\{0,1\}^n
ightarrow \{0,1\}^n$ para cada llave $k \in \{0,1\}^n$

¿Y si vemos la llave como otra variable?

$$Enc_k(m) = Enc(k,m): \{0,1\}^n imes \{0,1\}^n o \{0,1\}^n$$

Toma 2n bits y devuelve n bits \checkmark

Definimos la función $h'(x) = Enc_{x_0}(x_1)$, donde x_0 son los primeros n bits de x y x_1 los últimos n bits.

¿Es h' resistente a pre-imagen?

¿Dado $y \in \{0,1\}^n$, puedo encontrar un valor x tal que y = h'(x)?

Sea $k \in \{0,1\}^n$ un valor cualquiera. Definimos x como $k||Dec_k(y)$.

Tenemos $h'(x) = Enc_k(Dec_k(y))$

Demuestre que $Enc_k(Dec_k(y)) = y$

¿Cómo lo arreglamos?

Davies-Meyer

$$h'(x)=h'(x_0||x_1)=Enc_{x_0}(x_1)igoplus x_1$$

Si Enc viene de un esquema criptográfico *ideal*, entonces h' es resistente a colisiones

Llamaremos a esta primera función de hash de largo fijo nuestra función de compresión.

¿Cómo construimos una función de hash?

Partamos simplificando el problema:

Input de largo fijo

$$h':\{0,1\}^{2n} o \{0,1\}^n$$

¿Input de largo múltiplo de n?

Merkle-Damgård

bloque de n bits

¿Resistente a colisiones?

Nos gustaría demostrar que si h' es resistente a colisiones, entonces h es resitente a colisiones

Por contrapositivo: Un algoritmo que encuentra colisiones para h permite encontrar colisiones para h'

¿Teniendo a una colisión en h, puedo encontrar una colisión en h'?

Supongamos que h(m)=h(m') con m
eq m'

Si m y m' tienen el mismo largo, vamos a encontrar una colisión en h'

¿Y si no tienen el mismo largo?

Podríamos **no** tener una colisión en h' si conociéramos x_0 tal que $h'(x_0) = H_0$

Definimos H_0 como un *nothing-up-my-sleeve number*, y suponemos que nadie conoce una pre-imagen x_0