MATH3007 Assignment 10

Due in class (12pm), Dec 19th

Problem 1. (40pts) Use <u>branch-and-bound method</u> to solve the following integer program. You are allowed to use <u>LP solver</u> to solve each linear program (the relaxed problems). Please <u>specify</u> the branch-and-bound tree and what you did at each node (similar as to what we did in the lecture slides).

maximize
$$17x + 12y$$

subject to $10x + 7y \le 40$
 $x + y \le 5$
 $x, y \ge 0$
 $x, y \in \mathbb{Z}$

Problem 2. (40pts) You have n items with sizes $a_1, ..., a_n$ to be packed into some bins. Each bin has capacity V. Formulate an integer program to find the packing method that uses the least number of bins. Hint: Use I_j to denote whether bin j is used; use $\underline{x_{ij}}$ to denote whether item \underline{i} should be placed in bin \underline{j} . (This is called bin packing problem.)

• Now consider a real case where you have items with <u>size 4, 4, 5, 7</u> and the capacity of <u>each bin is 10.</u> Formulate the IP in that case. What are the optimal solutions to the IP and its LP relaxation? Is there an integrality gap in this case?

Problem 3. (20pts) Consider a seller who sells m different products. For product j, there are B_j units in inventory. There are n customers, each customer i is interested in buying a bundle of the product S_i , where $S_i \subseteq \{1, ..., m\}$ and is willing to pay a price v_i for it. For each customer, the seller can only decide to accept his entire request S_i or reject him. The objective of the seller is to maximize the revenue.

- Formulate this problem as an integer program.
- Consider the following example $B_1 = 1$, $B_2 = 2$, $B_3 = 3$, $S_1 = \{1, 2\}$, $v_1 = 2$, $S_2 = \{3\}$, $v_2 = 1$, $S_3 = \{1, 3\}$, $v_3 = 3$, $S_4 = \{2, 3\}$, $v_4 = 2$, $S_5 = \{2\}$, $v_5 = 2$. What is the optimal solution to the LP and IP respectively? What is the integrality gap?