CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 22: Bayes Nets - Sampling

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminders

- Programming project 3
 - Deadline: November 20th, 2023

- •Written assignment 4:
 - Deadline: November 29th, 2023

Thanh H. Nguyen 11/20/23

Bayes' Nets

- **✓**Representation
- **✓**Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample *u* into an outcome for the given distribution
 - Each target outcome is associated with a sub-interval of [0,1)
 - Sub-interval size is equal to probability of the outcome.

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$\begin{aligned} 0 &\leq u < 0.6, \rightarrow C = red \\ 0.6 &\leq u < 0.7, \rightarrow C = green \\ 0.7 &\leq u < 1, \rightarrow C = blue \end{aligned}$$

- If random() returns u = 0.83, then our sample is C = blue
- E.g., after sampling 8 times:

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i = 1, 2, ..., n
 - Sample x_i from $P(X_i | Parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

• This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event $N_{PS}(x_1 ... x_n)$
- Then $\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$ = $S_{PS}(x_1,\ldots,x_n)$ = $P(x_1\ldots x_n)$
- I.e., the sampling procedure is consistent

Example

• We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about $P(C \mid +w)$? $P(C \mid +r, +w)$? $P(C \mid -r, -w)$?
 - Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want $P(C \mid +s)$
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence instantiation
- For i = 1, 2, ..., n
 - Sample x_i from $P(X_i \mid Parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: return no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

Problem: sample distribution not consistent!

 Solution: weight by probability of evidence given parents

+c 0.5 -c 0.5

0.99

-W

- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n
 - if X_i is an evidence variable
 - $X_i = observation x_i for X_i$
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from $P(X_i \mid Parents(X_i))$
- return $(x_1, x_2, ..., x_n)$, w

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{t} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$

= $P(\mathbf{z}, \mathbf{e})$