NEPAL COLLEGE OF INFORMATION TECHNOLOGY MFCS_ASSIGNMENMENT_2

Level: Bachelor Semester – Spring Year: 2020 Programme: BEIT (2nd semester) Time: 1 week

Course: Mathematical Foundation of Computer Science

Students are required to give their answers in their own words as far as practicable.

- **1.** Solve The following recurrence relation:
 - a. $\mathbf{a_n} = \mathbf{5a_{n-1}} \mathbf{6a_{n-2}}$ with initial condition $\mathbf{a_0} = 1$ and $\mathbf{a_1} = 0$.
 - b. $\mathbf{a_n} = 4\mathbf{a_{n-1}} 4\mathbf{a_{n-2}}$ with initial condition $\mathbf{a_0} = 6$ and $\mathbf{a_1} = 8$.
 - c. $a_n = 7a_{n-2} + 6a_{n-3}$ with initial condition $a_0 = 9, a_1 = 10$, $a_2 = 32$.
 - d. $a_n a_{n-1} a_{n-2} = 0$
- **2.** Solve The following recurrence relation:
 - a. $\mathbf{a_n} = 3\mathbf{a_{n-1}} + 2^n$ with initial condition $\mathbf{a_0} = 5$
 - b. $\mathbf{a_n} = 2\mathbf{a_{n-1}} + 2^n$ with initial condition $\mathbf{a_0} = 2$
 - c. $a_n = 7a_{n-1} 10a_{n-2} + 16n$
 - d. $\mathbf{a_n} = 2\mathbf{a_{n-1}} + 2\mathbf{n}^2$ with initial condition $\mathbf{a_1} = 4$
 - e. $\mathbf{a_n} = 5\mathbf{a_{n-1}} + 6\mathbf{a_{n-2}} + 2^n$ with initial condition $\mathbf{a_0} = 1$, $\mathbf{a_1} = 4$
 - f. $\mathbf{a_n} = 5\mathbf{a_{n-1}} 6\mathbf{a_{n-2}} + 3\mathbf{n} + 2^{\mathbf{n}}$ with initial condition $\mathbf{a_0} = 0$, $\mathbf{a_1} = 1$, $\mathbf{a_2} = 2$
 - g. $\mathbf{a_n} = 7\mathbf{a_{n-1}} + 16\mathbf{a_{n-2}} + 12\mathbf{a_{n-3}} + n4^n$ with initial condition $a_0 = -2$ $a_1 = 0, a_2 = 5$
 - h. $a_n 6a_{n-1} + 8a_{n-2} = 3$ with initial condition $a_0 = 10$, $a_1 = 25$
- **3.** What do you understand by recurrence relation? Explain in brief. Setup a recurrence relation for the sequence representing the number of moves needed to solves Hanoi Tower puzzle.
- **4.** Find the explicit formula for Fibonacci sequence.
- **5.** An office buys a computer system for \$6,900. It is to be depreciated using reducing balance depreciation at the rate of 7% per annum.
 - a) Write down a recurrence relation which would model the value of the system after n years.
 - b) Use your recurrence relation to determine the value of the system after 1, 2 and 3 years.
 - c) What was the depreciation during the third year?