CS613 Final Project

Group 9: Stroke Prediction Model

Authors: Danny Li - Tien Nguyen - Emily Wang

Part1. Preprocessing

In [1]:

```
# Import libraries
import numpy as np
import math
import csv
import pandas as pd
import random
from collections import defaultdict
from matplotlib import pyplot as plt
```

In [44]:

```
1
   def count branch(var, y):
 2
        br = []
 3
        for i in range(len(var)):
 4
            if var.ndim ==2:
 5
                num = var[0,0]
 6
                #print(num)
 7
            else:
                num = var[i]
 8
 9
            if num not in br:
10
                br.append(num)
11
        #print(br)
12
        class_num = []
        for i in range(len(y)):
13
14
            if y[i] not in class num:
15
                class num.append(y[i])
16
17
            d br = defaultdict()
18
        for item in br:
            d_br[item] = dict.fromkeys(class_num, 0)
19
20
        for ele in range(len(y)):
            for i in br:
21
                for j in class_num:
22
23
                     if var[ele]==i and y[ele] == j:
24
                         d br[i][j]+=1
25
        return d br
26
27
   def entropy ind(num, total):
28
29
        This function return the entropy value given the ratio of the attribute
30
31
        if num ==0:
32
            return 0
33
        else:
34
            return (-num/total)*np.log2(num/total)
35
36
   # This function calculate entropy of a branch
37
   #input: a dict
38
   def entropy_br(d_br):
39
        br en = defaultdict()
        keys = list(d br.keys())
40
        total = np.sum(list(d_br.values()))
41
        for item in keys:
42
            br en[item] = 0
43
44
        for i in range(len(keys)):
45
            br en[keys[i]] += entropy ind(d br[keys[i]],total)
46
        en= np.sum(list(br_en.values()))
47
        return [en, total]
48
49
   # This function calculate the entropy of a feature
50
   #entropy and count could be an array
51
   def entropy_var(entropy, count):
52
        en var = 0
53
        total = np.sum(count)
54
        if total ==0:
55
            return entropy
56
        for i in range(len(entropy)):
57
            en_var += (count[i]/total)*entropy[i]
58
        return en var
59
```

```
60
   # This function return the feature that has min entropy
61
   def top12features(dataset, header):
       en all = []
62
63
       en dict = defaultdict()
64
       for i in range(dataset.shape[1]-1):
           en ls = []
65
            count ls = []
66
67
            d br = count branch(dataset[:,i],dataset[:,-1])
            for key in d br.keys():
68
                ind en, ind count = entropy br(d br[key])
69
                en_ls.append(ind en)
70
71
                count ls.append(ind count)
72
            en_avg = entropy_var(np.array(en_ls), np.array(count_ls))
73
           en dict[i]=en avg
       en sorted = sorted(en dict.items(), key=lambda item:item[1])
74
75
       top12 = en sorted[:12]
       ls index = sorted([item[0] for item in top12])
76
77
       d = defaultdict()
       for item in ls index:
78
79
            d[header[item]]=dataset[:,item]
80
       d[header[-1]] = dataset[:, -1]
81
       df = pd.DataFrame(data=d)
82
       return df
```

In [45]:

```
s data = pd.read csv('data.csv')
   df = s data.dropna(axis='columns')
 2
 3
   f index = list(range(2,20))
   f index.append(52)
 5
   df initial = s data.iloc[:,f index]
   df initial = df initial.dropna()
 6
7
   df initial=df initial.drop(df initial[df initial['RDEF1']=='C'].index)
   df initial=df initial.drop(df initial[df initial['RDEF2']=='C'].index)
8
   df_initial=df_initial.drop(df_initial[df_initial['RDEF3']=='C'].index)
9
   df initial=df initial.drop(df initial[df initial['RDEF4']=='C'].index)
10
   df initial=df initial.drop(df initial[df initial['RDEF5']=='C'].index)
11
   df initial=df initial.drop(df initial[df initial['RDEF6']=='C'].index)
12
   df_initial=df_initial.drop(df_initial[df_initial['RDEF7']=='C'].index)
13
14
   df initial=df initial.drop(df initial[df initial['RDEF8']=='C'].index)
   df initial=df initial.drop(df initial[df initial['DNOSTRK']=='U'].index)
15
16
17
   df initial.SEX = df initial.SEX.replace({'M':0,'F':1}).astype(np.uint8)
   df initial = df initial.replace({'Y':1,'N':0})
18
19
   df initial.RCONSC = df initial.RCONSC.replace({'F':0,'D':1, 'U':2}).astype(np.ui)
20
   df initial['DNOSTRK'] = df initial['DNOSTRK'].replace([0,1],[1,0])
21
   plt.rcParams['font.sans-serif']=['SimHei']
22
23
   plt.figure(figsize=(6,9))
24
   labels = [u'stroke',u'no-stroke']
25
   sizes = [12767, 312]
26
   colors = ['blue','red']
27
   explode = (0,0)
28
   patches,text1,text2 = plt.pie(sizes,
29
                          explode=explode,
30
                          labels=labels,
31
                          colors=colors,
                          autopct = '%3.2f%%',
32
33
                          shadow = False,
34
                          startangle =90,
35
                          pctdistance = 0.6)
36
   plt.axis('equal')
37
   plt.show()
```

/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshe ll.py:3146: DtypeWarning: Columns (31) have mixed types.Specify dtype option on import or set low memory=False.

has raised = await self.run ast nodes(code ast.body, cell name,

In [46]:

```
paper features = df initial[['AGE','SEX','RSLEEP','RATRIAL', 'RVISINF', 'RDEF1'
   top12 features = top12features(np.array(df initial), list(df initial.columns))
 3
   p nstrk = paper features[paper features['DNOSTRK']==0]
 5
   p strk = (paper features[paper features['DNOSTRK']==1]).sample(n = len(p nstrk))
   p_balanced_data = pd.concat([p_strk, p_nstrk])
7
   t nstrk = top12 features[top12 features['DNOSTRK']==0]
   t_strk = (top12_features[top12_features['DNOSTRK']==1]).sample(n = len(t_nstrk))
9
   t balanced data = pd.concat([t strk, t nstrk])
10
11
12
  df_initial.to_csv('18features.csv', header = True, sep = ",", index = False)
   paper_features.to_csv('12paper_features.csv', header = True, sep = ",", index =
13
   top12_features.to_csv('12top_features.csv', header = True, sep = ",", index = Fa
14
   p_balanced_data.to_csv('12paper_features_balanced.csv', header = True, sep = ",
16 t_balanced_data.to_csv('12top_features_balanced.csv', header = True, sep = ",",
```

Part 2. Machine Learning Classifiers

2.1. Logistic Regression

In [65]:

```
def cal pr(th, y hat val, y val): #thread
1
2
        # count TP, FP, FN
3
       TP = 0
 4
       FP = 0
       TN = 0
 5
       FN = 0
 6
7
        for i in range(len(y hat val)):
8
9
            if y hat val[i] >= th and y val[i] == 1:
10
                TP += 1
           elif y hat val[i][0] >= th and y val[i][0] == 0:
11
                FP += 1
12
13
            elif y_hat_val[i][0] 
14
15
            else:
16
                TN +=1
        if TP == 0:
17
18
            return 0,0
19
       pre = TP/(TP+FP)
        rec = TP/(TP+FN)
20
21
        f measure = 2*pre*rec/(pre+rec)
        accuracy = (TP + TN)/(TP+TN+FP+FN)
22
23
        return pre, rec, f measure, accuracy
24
25
   def Logistic Regression(filename):
26
        data= pd.read csv(filename)
27
        spam rand = data.sample(frac=1, random state=0)
28
29
        num train = math.ceil(((2/3)*len(spam rand)))
30
        num valid = len(spam rand)-num train
31
32
       train = spam rand.iloc[0:num train,:]
33
       val = spam rand.iloc[num train:,:]
34
35
       X_train = np.ones(num_train).reshape(-1,1)
36
        # zscore the training data
37
        for j in range(len(train.columns)-1): #of features
38
            vector = train.iloc[:,j].to numpy()
39
           mean = np.mean(vector)
           std = np.std(vector,ddof=1)
40
41
            stand = (vector-mean)/std
42
           X train = np.append(X train, stand.reshape(-1,1), axis=1)
43
44
        # add bias feature
                             validation part
       X val = np.ones(num valid).reshape(-1,1) # // validation
45
46
47
        # zscore the validation data
        for j in range(len(train.columns)-1):
48
49
            vector val = val.iloc[:,j].to numpy()
50
           vector = train.iloc[:,j].to numpy()
51
           mean = np.mean(vector)
52
            std = np.std(vector,ddof=1)
53
            stand = (vector val-mean)/std
54
           X val = np.append(X val,stand.reshape(-1,1),axis=1)
55
56
        np.random.seed(0)
57
        omega = np.random.uniform(-0.01,0.01,X_train.shape[1]).reshape(-1,1)
58
59
       y hat = 1 / (1 + np.exp(-X train.dot(omega)))
```

```
60
        y train = train.iloc[:,-1].to numpy().reshape(-1,1)
61
         j = np.mean(y train*(np.log(y hat))+(1-y train)*(np.log(1-y hat)))
62
         y val = val.iloc[:,-1].to numpy().reshape(-1,1)
63
         y hat val = 1 / (1 + np.exp(-X val.dot(omega)))
64
         j val = np.mean(y val*(np.log(y hat val))+(1-y val)*(np.log(1-y hat val)))
65
66
         # terminate until meet criteria
67
        count = 0
68
         value change = 1
69
70
         list1 = [j]
71
         list2 = [j val]
72
73
        while count <= 1000 and value change >= 2**-23: # number of epoch
74
             #print(count)
75
             omega = omega + (10**(-4))*(X train.T.dot(y train-y hat))
76
             y hat = 1 / (1 + np.exp(-X train.dot(omega)))
77
             for i in range(len(y hat)):
78
                 if y hat[i][0] == 1:
79
                     y hat[i][0] = y hat[i][0] - 0.01
                 if y hat[i][0] == 0:
80
81
                     y_hat[i][0] = y_hat[i][0] + 0.01
82
             j_new = np.mean(y_train*(np.log(y_hat))+(1-y_train)*(np.log(1-y_hat)))
83
             value change = np.abs(j new-j)
84
             y \text{ hat val} = 1 / (1 + np.exp(-X val.dot(omega)))
85
86
             for k in range(len(y hat val)):
87
                 if y hat val[k][0] == 1:
88
                     y_hat_val[k][0] = y_hat_val[k][0] - 0.01
89
                 if y hat val[k][0] == 0:
90
                     y hat val[k][0] = y hat val[k][0] + 0.01
91
             j val new = np.mean(y val*(np.log(y hat val))+(1-y val)*(np.log(1-y hat
92
93
             list1.append(j new)
94
             list2.append(j val new)
95
             j = j new
             count += 1
96
97
        pre train, recall train, f_train, accuracy_train = cal_pr(0.5,y_hat, y_trai
98
99
         print("Training")
100
         print("Precision\tRecall\t\tf-Measure\tAccuracy")
101
         print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre train, recall train
102
         pre_valid, recall_valid, f_valid, accuracy_valid = cal_pr(0.5,y_hat_val, y_
103
104
         print("Validation")
         print("Precision\tRecall\t\tf-Measure\tAccuracy")
105
         print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre valid, recall valid
106
```

In [66]:

```
1 # Logistic Regression for 18-Features dataset
2 Logistic_Regression('18features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.976	1.000	0.988	0.976
Validation			
Precision	Recall	f-Measure	Accuracy
0.977	1.000	0.988	0.977

In [67]:

```
1 # Naive Bayes for 12-paper-Features dataset
2 Logistic_Regression('12paper_features.csv')
```

Training Precision Recall f-Measure Accuracy 1.000 0.988 0.976 0.976 Validation Recall f-Measure Precision Accuracy 0.977 1.000 0.988 0.977

In [68]:

```
1 # Logistic Regression for 12-top-Features dataset
2 Logistic_Regression('12top_features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.976	1.000	0.988	0.976
Validation			
Precision	Recall	f-Measure	Accuracy
0.977	1.000	0.988	0.977

In [69]:

```
# Logistic Regression for 12-paper-Features balanced dataset
Logistic_Regression('12paper_features_balanced.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.692	0.594	0.639	0.683
Validation			
Precision	Recall	f-Measure	Accuracy
0.697	0.600	0.645	0.635

In [70]:

```
1 # Logistic Regression for 12-top-Features balanced dataset
2 Logistic_Regression('12top_features_balanced.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.709	0.619	0.661	0.700
Validation			
Precision	Recall	f-Measure	Accuracy
0.683	0.487	0.569	0.591

2.2. Naive Bayes

In [36]:

```
# Function to z score the training dataset
 1
 2
   def zscore train(dataset):
        zx train = (dataset - dataset.mean(axis = 0))/np.std(dataset,axis = 0,ddof
 3
 4
        return zx train
 5
   # Function to z-score the validation dataset using the mean and standard deviat
 6
   def zscore valid(valid set, train set):
 7
        zx valid = (valid set - train set.mean(axis = 0))/np.std(train set,axis = 0
        return zx valid
 8
 9
   # Function to count for output true positive (TP), true negative (TN), false po
10
11
   def confMatrixPara(pred y, y):
        TP = 0
12
        TN = 0
13
14
       FP = 0
15
       FN = 0
16
        for i in range(len(pred y)):
17
            if pred y[i] == y[i] ==1:
                TP +=1
18
19
            elif pred_y[i] == y[i] ==0:
20
21
            elif (pred y[i] == 0) and (y[i] == 1):
22
                FN +=1
23
            else:
24
                FP +=1
25
        return TP, TN, FP, FN
26
27
   def count class(array y):
28
        ls = []
29
        for i in array y:
30
            if i not in ls:
31
                ls.append(i)
32
        return ls
33
34
35
   # Function to calculate for the required statistics
36
   def statistics result(TP, TN, FP, FN, array):
37
        precision =TP/(TP+FP)
38
        recall = TP/(TP + FN)
39
        f measure = 2*precision*recall/(precision+recall)
        accuracy = (1/len(array))*(TP+TN)
40
        return precision, recall, f_measure, accuracy
41
42
43
   def pdf(x, mean, std):
44
        return np.exp(-0.5*((x-mean)/std)**2)/(std*np.sqrt(2*np.pi))
45
   def probability(x_valid, prior, mean_ls, std_ls):
46
47
        prob = np.log(prior)
        for i in range(len(mean ls)):
48
49
            pdf i = pdf(x valid[i], mean ls[i], std ls[i])
50
            if pdf i ==0:
51
                return 0
52
            else:
53
                prob = prob+ np.log(pdf i)
54
        return np.exp(prob)
55
56
   # Function to apply threshold for classification
57
   def apply_threshold(array, threshold):
58
        array2 = np.zeros((array.shape))
59
        for i in range(len(array)):
```

```
60
             if array[i] >= threshold:
                 array2[i] = 1
 61
 62
             else:
 63
                 continue
 64
         return array2
 65
    def Naive Bayes(filename):
 66
         data = pd.read csv(filename, sep = ',')
 67
         data list = data.values.tolist()
 68
 69
         # Randomize the data
 70
         np.random.seed(0)
 71
         np.random.shuffle(data list)
 72
         data rand = np.array(data list)
 73
 74
 75
         # Separate features data and rename to x and y
 76
         y data = np.array(data rand[:, -1])
 77
         x data = np.array(data rand[:, :-1])
 78
 79
         # Selecte the first 2/3 (round up) of the data for training and the remaini
         num train = math.ceil(((2/3)*len(data rand)))
 80
 81
         y_train = y_data[:num_train]
 82
         x train = x data[:num train,:]
 83
         y valid = y data[num train:]
 84
         x valid = x data[num train:,:]
 85
 86
         # Zcores the features training data
 87
         zx_train = zscore_train(x_train)
 88
         zx valid = zscore valid(x valid, x train)
 89
 90
         class set = count class(y train)
 91
         data set = []
 92
         prior set = []
 93
         mean set= []
 94
         std set = []
         for i in class set:
 95
 96
             array = zx_train[y_train==i]
 97
             data set.append(array)
             prior_= len(array)/len(zx_train)
 98
 99
             prior set.append(prior )
             mean =np.array([np.mean(array[:, j]) for j in range(array.shape[1])])
100
101
             std = np.array([np.std(array[:,j],ddof = 1) for j in range(array.shape
             mean = mean [std \geq 1e-4]
102
103
             std_ = std_[std_ >= 1e-4]
104
             mean set.append(mean )
105
             std set.append(std )
106
107
         training =[]
         for i in range(len(zx train)):
108
109
             p_set = []
110
             for j in range(len(class set)):
111
                 p = probability(zx train[i], prior set[j], mean set[j], std set[j]
112
                 p set.append(p )
             pred_train_y =class_set[p_set.index(max(p_set))]
113
114
             training.append(pred_train_y)
115
         TP_train, TN_train, FP_train, FN_train = confMatrixPara(training, y_train)
116
         pre_train, recall_train, f_train, accuracy_train = statistics_result(TP_tra
117
118
         print("Training")
119
         print("Precision\tRecall\t\tf-Measure\tAccuracy")
         print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre_train, recall_train
120
```

```
121
122
        prediction =[]
         for i in range(len(zx valid)):
123
124
             p set = []
125
             for j in range(len(class set)):
                 p_ = probability(zx_valid[i], prior_set[j], mean_set[j], std_set[j]
126
127
                 p set.append(p )
128
             pred y =class set[p set.index(max(p set))]
             prediction.append(pred_y)
129
130
         TP valid, TN valid, FP valid, FN_valid = confMatrixPara(prediction, y_valid
131
        pre_valid, recall_valid, f_valid, accuracy_valid = statistics_result(TP_val
132
133
        print("Validation")
        print("Precision\tRecall\t\tf-Measure\tAccuracy")
134
135
        print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre valid, recall valid
```

In [37]:

Training

```
1 # Naive Bayes for 18-Features dataset
2 Naive_Bayes('18features.csv')
```

Precision	Recall	f-Measure	Accuracy
0.980	0.943	0.961	0.925
Validation			
Precision	Recall	f-Measure	Accuracy
0.980	0.940	0.960	0.923

In [40]:

Training

```
1 # Naive Bayes for 12-paper-features dataset
2 Naive_Bayes('12paper_features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.979	0.963	0.971	0.943
Validation			
Precision	Recall	f-Measure	Accuracy
0.979	0.960	0.969	0.941

In [41]:

```
1 # Naive Bayes for 12-top-features dataset
2 Naive_Bayes('12top_features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.979	0.951	0.965	0.932
Validation			
Precision	Recall	f-Measure	Accuracy
0.980	0.946	0.962	0.928

In [47]:

```
1 # Naive Bayes for 12-top-features dataset
2 Naive_Bayes('12paper_features_balanced.csv')
```

Training Recall f-Measure Precision Accuracy 0.722 0.528 0.610 0.680 Validation Recall Precision f-Measure Accuracy 0.730 0.470 0.571 0.611

In [48]:

```
# Naive Bayes for 12-top-features dataset
Naive_Bayes('12top_features_balanced.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.727	0.594	0.654	0.702
Validation			
Precision	Recall	f-Measure	Accuracy
0.675	0.487	0.566	0.587

2.3. Decision Tree

In [51]:

```
# This function return the feature that has min entropy
 1
   def find node(dataset):
 2
 3
        en all = []
 4
        for i in range(dataset.shape[1]-1):
            en ls = []
 5
 6
            count ls = []
 7
            d br = count branch(dataset[:,i],dataset[:,-1])
            for key in d br.keys():
 8
 9
                 ind en, ind count = entropy br(d br[key])
10
                en ls.append(ind en)
11
                count ls.append(ind count)
            en avg = entropy var(np.array(en ls), np.array(count ls))
12
13
            en all.append(en avg)
14
        node = en all.index(min(en all))
15
        return node
16
17
   # array is a dictionaty
18
   def leaf node(array):
19
        d = dict()
20
        for key in array.keys():
21
            num = 0
22
            for item in array[key]:
23
                 if num <= array[key][item]:</pre>
24
                     num = array[key][item]
25
                     d[key]=item
26
        return d
27
28
29
   def create set(pre set, node):
30
        count br = set(pre set[:,node])
31
        d = \{\}
32
        data = np.delete(pre set, obj = node,axis =1)
33
        for i in range(len(count br)):
            array ls = []
34
35
            for j in range(len(pre_set)):
36
                 if pre set[:,node][j]==(list(count br))[i]:
37
                     array ls.append(data[j,:])
38
            d[(list(count_br))[i]] = np.array(array_ls)
39
40
        return d
41
   def DTL(data,root, d):
42
43
        if len(data)<=1:</pre>
44
            children=[]
45
            for key, array in data.items():
46
                n = array
47
                shape n = (np.array(n)).shape
48
                ls y =[]
49
                 for i in array[:,-1]:
50
                     if i not in ls y:
51
                         ls_y.append(i)
52
                 if shape_n[0]<=1:
53
                     return n[0][-1]
54
                elif shape n[1] \le 2:
55
                     if len(ls y) \le 1:
56
                         return ls_y[0]
57
58
                     num br0 = count branch(array[:,:-1],array[:,-1])
59
                     if len(num br0)<=1:</pre>
```

```
60
                          dict = list(num br0.values())
                          keys = list(dict [0].keys())
 61
                          values = list(dict [0].values())
 62
                          a = keys [values .index(max(values ))]
 63
 64
                          return a
 65
                      else:
                          d = leaf_node(num_br0)
 66
 67
                          return d
 68
                  elif len(ls y)<=1:</pre>
 69
                      return ls y[0]
 70
                 else:
 71
                      node = find node(array)
 72
                      child data = create set(array, node)
 73
                      children.append({key:DTL(child data,node,d)})
 74
         else:
 75
             children = []
 76
             for value, array in data.items():
 77
                  if array.ndim ==1:
 78
                      continue
 79
                 elif array.shape[1] <=2:</pre>
                      num br0 = count branch(array[:,:-1], array[:,-1])
 80
                      if np.isscalar(num br0):
 81
                          d = num br0
 82
 83
 84
                          d = leaf node(num br0)
                      return d
 85
 86
                 else:
 87
                      node = find_node(array)
 88
                      child data = create set(array, node)
 89
                      children.append({value:DTL(child data,node,d)})
 90
 91
             return {root:children}
 92
 93
    def testing tree(valid sample, tree):
 94
         if tree is None:
 95
             return 1
 96
         elif len(tree)>0:
 97
             node = list(tree.keys())
 98
             values = list(tree.values()) #list dict type
 99
             if np.isscalar(values[0]):
100
                 return values
101
             else:
102
                 ans = valid sample[node]
103
                  for i in range(len(values[0])):
104
                      d = values[0][i]
                      if ans != list(d.keys()):
105
                          continue
106
107
                      else:
108
                          new tree = list(d.values())[0]
109
                          if np.isscalar(new_tree):
110
                               return new tree
111
                          new array = del col(valid sample, node)
112
                          result = testing tree(new array, new tree)
113
                      return result
114
115
         else:
116
             d = list(tree.values())
             return d
117
118
     def del col(valid sample, node):
119
         new_array = np.delete(valid_sample, obj = node)
120
```

```
121
         return new array
122
    def decision tree(filename):
123
         # Read in the data from csv file and save it to a list
124
         data = pd.read csv(filename, sep = ',')
125
126
         data list = data.values.tolist()
127
128
         # Randomize the data
129
         np.random.seed(0)
130
         np.random.shuffle(data list)
131
         data rand = np.array(data list)
132
133
         # Separate features data and rename to x and y
134
         y data = np.array(data rand[:, -1])
135
         x data = np.array(data rand[:, :-1])
136
         # Selecte the first 2/3 (round up) of the data for training and the remaini
137
138
         num train = math.ceil(((2/3)*len(data rand)))
139
         y train = y data[:num train]
140
         x train = x data[:num train,:]
         y_valid = y_data[num_train:]
141
142
         x valid = x data[num train:,:]
143
         # Zcores the features training data
144
145
         zx train = zscore train(x train)
146
         zx valid = zscore valid(x valid, x train)
147
148
         mean_train =np.array([np.mean(zx_train[:, i]) for i in range(zx_train.shape
149
         mean_valid =np.array([np.mean(zx_valid[:, i]) for i in range(zx_train.shape
150
151
         zx trainb = np.zeros((zx train.shape))
         for i in range(zx train.shape[1]):
152
153
             for j in range(len(zx_train)):
                 if zx train[j, i] >= mean train[i]:
154
155
                     zx trainb[j,i] = 1
156
                 else:
157
                     continue
158
         zx validb = np.zeros((zx valid.shape))
159
         for i in range(zx_valid.shape[1]):
160
             for j in range(len(zx valid)):
                 if zx_valid[j, i] >= mean_valid[i]:
161
162
                     zx \ validb[j,i] = 1
163
                 else:
164
                     continue
165
         z_train = np.concatenate((zx_trainb, np.reshape(y_train, (len(y_train), 1))
166
167
168
         data = z_train[:, :]
169
         tree = defaultdict()
170
         root = find_node(data)
171
         dict = create set(data, root)
172
173
         decision tree = DTL(dict ,root, None)
174
         training =[]
175
         for i in range(len(zx trainb)):
176
             pre = testing_tree(zx_trainb[i], decision_tree)
177
             training.append(pre)
178
179
         TP_train, TN_train, FP_train, FN_train = confMatrixPara(training, y_train)
180
         pre train, recall train, f train, accuracy train = statistics result(TP tra
         print("Training")
181
```

```
182
        print("Precision\tRecall\t\tf-Measure\tAccuracy")
183
        print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre train, recall train
184
185
        pre_y = []
        for i in range(len(zx validb)):
186
             pre = testing_tree(zx_validb[i], decision_tree)
187
188
             pre y.append(pre)
189
        TP valid, TN valid, FP valid, FN valid = confMatrixPara(pre y, y valid)
190
        pre valid, recall valid, f valid, accuracy valid = statistics result(TP val
191
        print("Validation")
192
        print("Precision\tRecall\t\tf-Measure\tAccuracy")
193
194
        print("{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(pre valid, recall valid
```

In [52]:

```
1 # Decision Tree for 18-Features dataset
2 decision_tree('18features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.985	1.000	0.992	0.985
Validation			
Precision	Recall	f-Measure	Accuracy
0.977	0.985	0.981	0.963

In [53]:

```
1 # Decision Tree for 12-paper-Features dataset
2 decision_tree('12paper_features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.976	1.000	0.988	0.975
Validation			
Precision	Recall	f-Measure	Accuracy
0.975	0.999	0.987	0.973

In [54]:

```
1 # Decision Tree for 12top-Features dataset
2 decision_tree('12top_features.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.977	1.000	0.988	0.976
Validation			
Precision	Recall	f-Measure	Accuracy
0.976	0.997	0.986	0.973

In [55]:

```
# Decision Tree for 12-paper-Features balanced dataset
decision_tree('12paper_features_balanced.csv')
```

Training Precision Recall f-Measure Accuracy 0.716 0.906 0.800 0.815 Validation Precision Recall f-Measure Accuracy 0.504 0.652 0.569 0.562

In [56]:

```
# Decision Tree for 12-top-Features balanced dataset
decision_tree('12top_features_balanced.csv')
```

Training			
Precision	Recall	f-Measure	Accuracy
0.702	0.952	0.808	0.817
Validation			
Precision	Recall	f-Measure	Accuracy
0.540	0.698	0.609	0.587
0.540	0.698	0.609	0.587

2.4. Random Forest

In [57]:

```
def random forest(train, valid, sample size, tree numbers):
 1
 2
        y_valid = valid[:,-1]
 3
        x \text{ valid} = \text{valid}[:,:-1]
 4
 5
        # sample size
        count = 0
 6
        tree ls = []
 7
        while count < tree numbers:</pre>
 8
 9
            train sample = np.array(random.choices(train,k =sample size))
10
            y train = train sample[:,-1]
11
            x_train = train_sample[:,:-1]
12
13
            # Zcores the features training data
14
            zx train = zscore train(x train)
15
            zx valid = zscore valid(x valid, x train)
16
            mean train =np.array([np.mean(zx train[:, i]) for i in range(zx train.sl
17
            mean_valid =np.array([np.mean(zx_valid[:, i]) for i in range(zx_train.st
18
19
20
            zx trainb = np.zeros((zx train.shape))
21
            for i in range(zx_train.shape[1]):
22
                for j in range(len(zx train)):
23
                     if zx train[j, i] >= mean train[i]:
24
                         zx trainb[j,i] = 1
25
                     else:
26
                         continue
27
            zx validb = np.zeros((zx valid.shape))
            for i in range(zx valid.shape[1]):
28
29
                for j in range(len(zx valid)):
                     if zx_valid[j, i] >= mean_valid[i]:
30
31
                         zx \ validb[j,i] = 1
32
                     else:
33
                         continue
34
35
            z_train = np.concatenate((zx_trainb, np.reshape(y_train, (len(y_train),
36
37
            data = z_train[:, :]
38
39
            root = find node(data)
40
            dict = create set(data, root)
            decision_tree = DTL(dict_,root, None)
41
42
            #print(decision tree)
43
            tree ls.append(decision tree)
44
            count+=1
45
46
        predictions = []
47
48
        for i in range(len(zx validb)):
49
            pre ls = []
50
            for j in range(len(tree ls)):
51
                pre = testing_tree(zx_validb[i], tree_ls[j])
52
                pre_ls.append(pre)
53
            for item in range(len(pre ls)):
54
                if isinstance(pre ls[item], list):
55
                     ls = pre_ls[item]
56
                     pre ls[item]=ls[0]
57
            pre_y = max(set(pre_ls), key = pre_ls.count)
58
            predictions.append(pre y)
59
```

```
TP valid, TN valid, FP valid, FN valid = confMatrixPara(predictions, y valid
60
       pre valid, recall valid, f valid, accuracy valid = statistics result(TP valid)
61
62
       return pre valid, recall valid, f valid, accuracy valid
63
64
65
   def random forest results(filename, tree numbers, sample size):
66
       # Read in the data from csv file and save it to a list
       df = pd.read csv(filename, sep = ',')
67
       data list = df.values.tolist()
68
69
70
       # Randomize the data
71
       np.random.seed(0)
72
       np.random.shuffle(data list)
73
74
75
       # Selecte the first 2/3 (round up) of the data for training and the remaining
76
       num train = int(np.ceil((2/3)*len(data list)))
77
       train = data list[:num train]
78
       valid = np.array(data list[num train:])
79
       print("#tree\tPrecision\tRecall\t\tf-Measure\tAccuracy")
80
81
       for i in tree numbers:
            pre_valid, recall_valid, f_valid, accuracy_valid = random_forest(train,
82
            print("{:.2f}\t{:.3f}\t\t{:.3f}\t\t{:.3f}\t\t{:.3f}\".format(i, pre valid
83
```

In [58]:

```
1 # Random Forest for 18-Features dataset with sample size = 8000
2 random_forest_results('18features.csv', [1,10],8000)
```

#tree	Precision	Recall	f-Measure	Accuracy
1.00	0.978	0.988	0.983	0.967
10.00	0.977	0.994	0.986	0.972

In [61]:

```
# Random Forest for 12-paper-Features dataset with sample size = 8000
random_forest_results('12paper_features.csv', [1,10,100,200,300,500],8000)
```

#tree	Precision	Recall	f-Measure	Accuracy
1.00	0.977	0.991	0.984	0.968
10.00	0.977	0.998	0.987	0.975
100.00	0.977	0.999	0.988	0.976
200.00	0.977	1.000	0.988	0.977
300.00	0.977	0.999	0.988	0.976
500.00	0.977	0.999	0.988	0.976

In [62]:

```
# Random Forest for 12-paper-Features dataset with sample size = 6000
random_forest_results('12paper_features.csv', [1,10],6000)
```

#tree	Precision	Recall	f-Measure	Accuracy
1.00	0.977	0.988	0.983	0.966
10.00	0.977	0.998	0.987	0.975

In [64]:

```
1 # Random Forest for 12-top-features dataset with sample size = 8000
2 random_forest_results('12top_features.csv', [1,10],8000)
```

#tree	Precision	Recall	f-Measure	Accuracy
1.00	0.977	0.993	0.985	0.970
10.00	0.977	0.999	0.988	0.975

Part 3 Cross Validation on Balanced Datasets

3.1 Logistic Regression

In [76]:

```
def cross valid LR(filename, k):
 1
 2
        sample = pd.read_csv(filename, header=0)
 3
        sample.shape
 4
        from scipy import stats
 5
        from sklearn.model selection import KFold
 6
        for item in k:
 7
            kf = KFold(n splits=item)
 8
            trains = []
 9
            tests = []
            for train, test in kf.split(sample):
10
11
                trains.append(train)
12
                tests.append(test)
13
14
            mse = []
15
            ls = []
16
            for num in range(item):
17
                cv train = sample.iloc[trains[num]]
                cv test = sample.iloc[tests[num]]
18
19
                train_X = np.ones(cv_train.shape[0]).reshape(-1,1)
20
                test X = np.ones(cv test.shape[0]).reshape(-1,1)
21
                train y = cv train.iloc[:,12].to numpy().reshape(-1,1)
22
                test_y = cv_test.iloc[:,12].to_numpy().reshape(-1,1)
23
24
                for i in range (12):
25
                    cv train temp = cv train.iloc[:,i].to numpy()
                    cv train temp mean = cv train.iloc[:,i].mean()
26
27
                    cv train temp std = cv train.iloc[:,i].std()
                    cv_train_temp_stand= (cv_train_temp-cv_train_temp_mean)/cv_train_
28
29
30
                    train_X = np.append(train_X,cv_train_temp_stand.reshape(-1,1),ax
31
32
                    cv test temp = cv test.iloc[:,i].to numpy()
33
                    cv_test_temp_stand = (cv_test_temp-cv_train_temp_mean)/cv_train_
34
35
                    test_X = np.append(test_X,cv_test_temp_stand.reshape(-1,1),axis=
36
37
                omega = np.random.uniform(-0.01, 0.01, train X.shape[1]).reshape(-1, 1)
38
39
                X train = train X
40
                y hat = 1 / (1 + np.exp(-X train.dot(omega)))
41
                y train = train y
42
                j = np.mean(y train*(np.log(y hat))+(1-y train)*(np.log(1-y hat)))
43
                y val = test y
44
                X val = test X
                y hat val = 1 / (1 + np.exp(-X val.dot(omega)))
45
46
                j_val = np.mean(y_val*(np.log(y_hat_val))+(1-y_val)*(np.log(1-y_hat_val))
47
                # terminate until meet criteria
48
49
                count = 0
50
                value_change = 1
51
52
                list1 = [j]
53
                list2 = [j val]
54
55
                while count <= 1000 and value change >= 2**-23:
56
                    #print(count)
57
                    omega = omega + (10**(-4))*(X_{train}.T.dot(y_{train}-y_{hat}))
58
                    y hat = 1 / (1 + np.exp(-X train.dot(omega)))
59
                    for i in range(len(y hat)):
```

```
60
                        if y hat[i][0] == 1:
                             y hat[i][0] = y hat[i][0] - 0.01
61
                        if y hat[i][0] == 0:
62
                             y_hat[i][0] = y_hat[i][0] + 0.01
63
                    j new = np.mean(y train*(np.log(y hat))+(1-y train)*(np.log(1-y
64
65
                    value_change = np.abs(j_new-j)
66
                    y hat val = 1 / (1 + np.exp(-X val.dot(omega)))
67
68
                    for k in range(len(y hat val)):
69
                        if y hat val[k][0] == 1:
70
                             y_hat_val[k][0] = y_hat_val[k][0] - 0.01
71
                        if y hat val[k][0] == 0:
72
                             y_hat_val[k][0] = y_hat_val[k][0] + 0.01
73
                    j val new = np.mean(y val*(np.log(y hat val))+(1-y val)*(np.log()
74
75
                    list1.append(j new)
76
                    list2.append(j_val_new)
77
                    j = j_new
78
                    count +=1
79
            n = 0
            \#y hat val = 1 / (1 + np.exp(-X val.dot(omega)))
80
81
            for i in range(len(y val)):
                if y_hat_val[i][0] >= 0.5 and y_val[i][0] == 1:
82
83
                    n += 1
84
                elif y hat val[i][0] < 0.5 and y val[i][0] == 0:
                    n += 1
85
86
87
            acc = n/len(y val)
88
            ls.append(acc)
89
            a = sum(ls)/len(ls)
90
            print("k\tAccuracy")
            print("{:.2f}\t{:.3f}".format(item, a))
91
```

In [78]:

```
1 # Cross-validation Logistic Regression on 12-paper-features-balanced dataset
2 cross_valid_LR("12paper_features_balanced.csv", [5,10,50,100,500])
```

```
k
        Accuracy
5.00
        0.484
k
        Accuracy
10.00
        0.645
        Accuracy
50.00
        0.667
k
        Accuracy
100.00
        0.667
k
        Accuracy
500.00
        1.000
```

3.2 Naive Bayes

In [87]:

```
def cross valid NB(filename, k ls):
 1
 2
        from sklearn.model selection import KFold
 3
        sample = pd.read csv(filename, header=0)
 4
        sample.shape
 5
 6
        for item in k ls:
 7
            kf = KFold(n splits=item)
            trains = []
 8
 9
            tests = []
            for train,test in kf.split(sample):
10
11
                trains.append(train)
12
                tests.append(test)
13
14
            mse = []
15
            ls = []
16
            for num in range(item):
17
                cv train = sample.iloc[trains[num]]
                cv test = sample.iloc[tests[num]]
18
19
                train_X = np.ones(cv_train.shape[0]).reshape(-1,1)
20
                test_X = np.ones(cv_test.shape[0]).reshape(-1,1)
21
                train y = cv train.iloc[:,12].to numpy().reshape(-1,1)
22
                test_y = cv_test.iloc[:,12].to_numpy().reshape(-1,1)
23
24
                for i in range (12):
25
26
                     cv train temp = cv train.iloc[:,i].to numpy()
27
                     cv train temp mean = cv train.iloc[:,i].mean()
28
                     cv train temp std = cv train.iloc[:,i].std()
29
                     cv_train_temp_stand= (cv_train_temp-cv_train_temp_mean)/cv_trai
30
31
                     train X = \text{np.append}(\text{train } X, \text{cv train temp stand.reshape}(-1, 1), a
32
33
                     cv_test_temp = cv_test.iloc[:,i].to_numpy()
34
                     cv test temp stand = (cv test temp-cv train temp mean)/cv train
35
36
                     test X = \text{np.append(test } X, \text{cv test temp stand.reshape}(-1,1), axis
37
38
                     X and lastcol = np.append(train X,train y.reshape(-1,1),axis=1)
39
                     X df = pd.DataFrame(X and lastcol)
40
41
42
                train spam = X df[X df[13]==1]
43
44
                # split into Non-Spam samples
45
                train nonspam = X df[X df[13]==0]
46
47
                dict spam = {}
                for i in range(13):
48
49
                     arr = train spam.iloc[:,i].to numpy()
50
                     dict spam[i] = []
51
                     dict_spam[i].append(np.mean(arr))
52
                     dict_spam[i].append(np.var(arr,ddof=1))
53
                     dict spam[i].append(np.std(arr,ddof=1))
54
55
56
                # create a dictionary to store the mean, variance, std for each featu
57
                dict nonspam = {}
58
                 for i in range(13):
59
                     arr = train nonspam.iloc[:,i].to numpy()
```

```
60
                     dict nonspam[i] = []
                     dict nonspam[i].append(np.mean(arr))
 61
 62
                     dict nonspam[i].append(np.var(arr,ddof=1))
 63
                     dict nonspam[i].append(np.std(arr,ddof=1))
 64
 65
                 import math
                 # calculate p(y=Spam)
 66
 67
                 pro spam = len(train spam)/len(train X)
 68
 69
                 # calculate p(y=Non-Spam)
 70
                 pro nonspam = len(train nonspam)/len(train X)
 71
 72
                 # create a function to calculate quassian distribution
 73
                 def P spam(x, mean, std):
 74
                     var = float(std)**2+10**-100
 75
                     denom = (2*math.pi*var)**.5
 76
                     num = math.exp(-(float(x)-float(mean))**2/(2*var))
 77
                     return num/denom
 78
 79
                 # calcualte all the probability in spam class
 80
 81
                 lst spam = []
                 for row in range(len(test X)):
 82
 83
                     lsts = []
 84
                     for col in range(12):
 85
                          pro = P spam(test X[row,:][col],dict spam[col][0],dict spam
 86
                          lst s.append(pro+10**-100)
 87
                     a= np.array(lst s)
 88
                     product = np.log(pro spam) + np.sum(np.log(a))
 89
                     lst spam.append(product)
 90
                 # calcualte all the probability in non-spam class
 91
 92
                 lst nonspam = []
 93
 94
                 for row in range(len(test X)):
 95
                     lst nons = []
 96
                     for col in range(12):
 97
                          pro = P spam(test X[row,:][col],dict nonspam[col][0],dict n
 98
                          lst_nons.append(pro+10**-300)
 99
                     a= np.array(lst nons)
100
                     product = np.log(pro nonspam)+np.sum(np.log(a))
101
                     lst nonspam.append(product)
102
103
                 # compare the probability for these two class
104
                 lst = []
105
                 for i in range(len(test X)):
106
                     if lst spam[i] >= lst nonspam[i]:
107
                          lst.append(1)
108
                     else:
109
                          lst.append(0)
110
111
                 # calculate Accuracy
112
                 count = 0
113
                 for i in range(len(test X)):
114
                     if test y[i] == lst[i]:
115
                          count += 1
116
                 Accuracy = count/len(test X)
117
                 ls.append(Accuracy)
118
                 a = sum(ls)/len(ls)
             print("k\tAccuracy")
119
             print("{:.2f}\t{:.3f}".format(item, a))
120
```

In [88]:

```
# Cross-validation Naive on 12-paper-features-balanced dataset
cross_valid_NB("12top_features_balanced.csv", [5,10,50,100,500])
```

k Accuracy 5.00 0.571 k Accuracy 10.00 0.616 k Accuracy 50.00 0.660 Accuracy 100.00 0.657 Accuracy 500.00 0.671

3.3 Decision Tree

In [89]:

```
class GadId3Classifier:
1
     def fit(self, input, output):
2
3
        data = input.copy()
 4
       data[output.name] = output
        self.tree = self.decision tree(data, data, input.columns, output.name)
 5
 6
7
     def predict(self, input):
        # convert input data into a dictionary of samples
8
9
        samples = input.to dict(orient='records')
10
       predictions = []
11
        # make a prediction for every sample
12
13
        for sample in samples:
14
         predictions.append(self.make prediction(sample, self.tree, 1.0))
15
16
        return predictions
17
18
     def entropy(self, attribute column):
19
        # find unique values and their frequency counts for the given attribute
20
        values, counts = np.unique(attribute column, return counts=True)
21
        # calculate entropy for each unique value
22
23
        entropy list = []
24
        for i in range(len(values)):
25
2.6
         probability = counts[i]/np.sum(counts)
27
         entropy list.append(-probability*np.log2(probability))
28
29
        # calculate sum of individual entropy values
30
        total_entropy = np.sum(entropy_list)
31
32
        return total entropy
33
34
     def information gain(self, data, feature attribute name, target attribute name
35
        # find total entropy of given subset
36
       total entropy = self.entropy(data[target attribute name])
37
38
        # find unique values and their frequency counts for the attribute to be spl
39
       values, counts = np.unique(data[feature attribute name], return counts=True
40
        # calculate weighted entropy of subset
41
       weighted entropy list = []
42
43
        for i in range(len(values)):
44
45
          subset probability = counts[i]/np.sum(counts)
46
          subset_entropy = self.entropy(data.where(data[feature_attribute_name]==va
47
         weighted entropy list.append(subset probability*subset entropy)
48
49
        total weighted entropy = np.sum(weighted entropy list)
50
51
        # calculate information gain
52
        information_gain = total_entropy - total_weighted_entropy
53
54
        return information gain
55
56
     def decision tree(self, data, orginal data, feature attribute names, target a
57
        # base cases:
58
        # if data is pure, return the majority class of subset
59
       unique classes = np.unique(data[target attribute name])
```

```
60
         if len(unique classes) <= 1:</pre>
          return unique classes[0]
 61
         # if subset is empty, ie. no samples, return majority class of original dat
 62
 63
         elif len(data) == 0:
 64
          majority class index = np.argmax(np.unique(original data[target attribute
 65
          return np.unique(original data[target attribute name])[majority class ind
         # if data set contains no features to train with, return parent node class
 66
 67
         elif len(feature attribute names) == 0:
 68
           return parent node class
         # if none of the above are true, construct a branch:
 69
 70
         else:
 71
           # determine parent node class of current branch
 72
          majority class index = np.argmax(np.unique(data[target attribute name], r
 73
          parent node class = unique classes[majority class index]
 74
 75
           # determine information gain values for each feature
 76
          # choose feature which best splits the data, ie. highest value
 77
           ig values = [self.information gain(data, feature, target attribute name)
 78
          best feature index = np.argmax(ig values)
 79
          best feature = feature attribute names[best feature index]
 80
 81
           # create tree structure, empty at first
          tree = {best feature: {}}
 82
 83
 84
           # remove best feature from available features, it will become the parent
           feature attribute names = [i for i in feature attribute names if i != bes
 85
 86
 87
           # create nodes under parent node
 88
          parent attribute values = np.unique(data[best feature])
 89
           for value in parent attribute values:
 90
             sub data = data.where(data[best feature] == value).dropna()
 91
 92
             # call the algorithm recursively
             subtree = self.decision tree(sub data, orginal data, feature attribute
 93
 94
             # add subtree to original tree
 95
 96
             tree[best feature][value] = subtree
 97
 98
          return tree
 99
100
      def make prediction(self, sample, tree, default=1):
101
         # map sample data to tree
         for attribute in list(sample.keys()):
102
103
           # check if feature exists in tree
           if attribute in list(tree.keys()):
104
105
106
               result = tree[attribute][sample[attribute]]
107
             except:
108
               return default
109
110
             result = tree[attribute][sample[attribute]]
111
112
             # if more attributes exist within result, recursively find best result
113
             if isinstance(result, dict):
114
               return self.make prediction(sample, result)
115
             else:
116
               return result
    def cross valid DT(filename, k ls):
117
118
         sample = pd.read csv(filename, header=0)
119
120
         for item in k_ls:
```

```
121
             from sklearn.model selection import KFold
122
             kf = KFold(n splits=item)
             trains = []
123
124
             tests = []
             for train,test in kf.split(sample):
125
126
                 trains.append(train)
127
                 tests.append(test)
128
129
             mse = []
130
             ls = []
131
             for num in range(item):
132
                 cv train = sample.iloc[trains[num]]
                 cv test = sample.iloc[tests[num]]
133
                 train X = np.ones(cv train.shape[0]).reshape(-1,1)
134
135
                 test_X = np.ones(cv_test.shape[0]).reshape(-1,1)
136
                 train y = cv train.iloc[:,12].to numpy().reshape(-1,1)
137
                 test_y = cv_test.iloc[:,12].to_numpy().reshape(-1,1)
138
139
                 for i in range (12):
140
141
                      cv train temp = cv train.iloc[:,i].to numpy()
142
                      cv train temp mean = cv train.iloc[:,i].mean()
143
                      cv train temp std = cv train.iloc[:,i].std()
144
                      cv train temp stand= (cv train temp-cv train temp mean)/cv trai
145
146
                      train X = \text{np.append}(\text{train } X, \text{cv train temp stand.reshape}(-1, 1), a
147
148
                      cv test temp = cv test.iloc[:,i].to numpy()
149
                      cv test temp stand = (cv test temp-cv train temp mean)/cv train
150
151
                      test X = \text{np.append(test } X, \text{cv test temp stand.reshape}(-1,1), axis
152
153
                 train X = train X[:,1:13]
                 test X = \text{test } X[:,1:13]
154
155
156
157
                 train X = pd.DataFrame(train X)
158
                 train y = pd.DataFrame(train y)
159
                 test X = pd.DataFrame(test X)
160
                 test y = pd.DataFrame(test y)
                 train X.name = 'train X'
161
                 train y.name = 'train y'
162
                 test X.name = 'test X'
163
                 test y.name = 'test y'
164
165
166
167
                  from sklearn.metrics import accuracy score
168
                 model = GadId3Classifier()
169
                 model.fit(train X, train y)
170
171
                 y hat = model.predict(test X)
172
173
                    print(accuracy score(test y, y hat))
                 ls.append(accuracy score(test y, y hat))
174
175
                 a = sum(ls)/len(ls)
176
             print("k\tAccuracy")
177
             print("{:.2f}\t{:.3f}".format(item, a))
178
```

In [90]:

```
# Cross-validation Decision Tree on 12-paper-features-balanced dataset
cross_valid_DT("12paper_features_balanced.csv", [5,10,50,100,500])
```

k Accuracy
5.00 0.505
k Accuracy
10.00 0.534
k Accuracy
50.00 0.567