B-Splines Cúbica C^2

ghao@cin.ufpe.br

January 7, 2014

Abstract

Algorithm to compute the control points of a \mathbb{C}^2 Cubic B-Spline and its correspondent Bézier's Curve.

1 Algorithm

Consider the vector $[u_0, u_1, ..., u_L]$ Let $p_0, p_1, ..., p_{L+3}$ be the vertexes of the control polygon and $d_0, d_1, ..., d_{L+3}$ the control points of the C^2 Cubic B-Spline S(c) such that:

1.
$$d_0 = p_0$$

2.
$$d_1 = p_1$$

3.
$$d_2 = (1 - \alpha)p_1 + \alpha p_2$$
, where $\alpha = \frac{\Delta u_1}{\Delta u_1 + \Delta u_2}$

4.
$$d_{3L-3} = (1 - \alpha)p_{3L-4} + \alpha p_{3L-2}$$
, where $\alpha = \frac{\Delta u_L}{\Delta u_L + \Delta u_{L+1}}$

5.
$$d_{3L-2} = (1 - \alpha)p_L + \alpha p_{L+1}$$
, where $\alpha = \frac{\Delta u_L}{\Delta u_{L-1} + \Delta u_L}$

6.
$$d_{3L-1} = p_{L+1}$$

7.
$$d_{3L} = p_{L+2}$$

8. For
$$i = 1, ..., L - 2$$

(a)
$$d_{3i} = (1 - \alpha)p_{3i-1} + \alpha p_{3i+1}$$
, where $\alpha = \frac{\Delta u_i}{\Delta u_i + \Delta u_{i+1}}$

(b)
$$d_{3i+1} = (1 - \alpha)p_{i+1} + \alpha p_{i+2}$$
, where $\alpha = \frac{\Delta u_i}{\Delta u_i + \Delta u_{i+1} + \Delta u_{i+2}}$

(c)
$$d_{3i+2} = (1 - \alpha)p_{i+1} + \alpha p_{i+2}$$
, where $\alpha = \frac{\Delta u_i + \Delta u_{i+1}}{\Delta u_i + \Delta u_{i+1} + \Delta u_{i+2}}$

Also consider, for j = 0, ..., L:

1.
$$u_0 = dist(d_0, d_2)$$

2.
$$u_i = u_{i-1} + dist(d_i, d_{i+2})$$

e $\Delta u_i = u_i - u_{i-1}$, where dist(a,b) is the distance between the points a and b.