Lecture 4 Relational Model

Data Models and Database Design

- Think "logically" when design a database, need some kind of framework to design the database
- Like designing a data structure in some programming language, a data model is like a type system, but is abstract
- Organize the data into tables in the relational data model
- Initially no need to worry about how these tables are implemented

Relational Model Concepts

- The relational model of data is based on the concept of a mathematical relation
- A relation is a mathematical concept based on set theory
- The strength of the relational approach to data management comes from the formal foundation provided by the theory of relations

Relational Model Concepts

The model was first proposed by Dr. E.F.
Codd of IBM in 1970 in the following paper:
"A Relational Model for Large Shared Data
Banks," Communications of the ACM, June
1970

The above paper caused a major revolution in the field of Database management and earned Ted Codd the coveted Turing Award

What is a Relational Database?

Routes

RId	RName	Grade	Rating	Height
1	Last Tango	ΙΙ	12	100
2	Garden Pat	h I	2	60
3	The Sluice	I	8	60
4	Picnic	III	3	400

Climbers	
----------	--

Cl	in	ıbs
----	----	-----

CId Cname S	kill	<u>Age</u>	CId	RId	Date	Dur	<u>ation</u>
123 Edmund	EXP	80	123	1	10/10/8	88	5
214 Arnold	BEG	25	123	3	11/08/	87	1
313 Bridget	EXP	33	313	1	12/08/	89	5
212 James	MED	27	214	2	08/07/	92	2
			313	3	06/07/	94	3

Can two columns in the same relation have the same name?

Yes

No

Total Results: 0

Can two columns in the same relation have the same name?

Yes

No

Can two columns in the same relation have the same name?

Yes

No

Why is the Database Like This?

- Each route has an id, a name, a grade (an estimate of the time needed), a rating (how difficult it is), and a height
- Each climber has an id, a name, a skill level and an age
- A climb records who climbed what route on what date and how long it took (duration)
- The data values in these tables are all "simple"

Describing Relations

- Relations are described by a schema which can be expressed in various ways
- A database schema is usually expressed in a data definition language (DDL)

Expressing Constraints

In SQL, constraints are defined as follows:

```
CREATE TABLE Climbers CREATE TABLE Climbs

(CId INTEGER, (CId INTEGER,
CName CHAR(20), RID INTEGER,
Skill CHAR(4), Date DATE,
Age INTEGER, Duration INTEGER,
PRIMARY KEY (CId), PRIMARY KEY (CId, RId, Date),
UNIQUE (CName, Age)); FOREIGN KEY (CId) REFERENCES
Climbers,
FOREIGN KEY (RId) REFERENCES
Routes);
```

Informal Definition

- RELATION: A table of values
 - A relation is a set of rows
 - A relation is alternatively a set of columns
 - Each row represents a fact that corresponds to a realworld entity or relationship
 - Each row has an item or set of items that uniquely identifies that row in the table
 - Sometimes row-ids or sequential numbers are assigned to identify the rows in the table
 - Each column is called by its column name or column header or attribute name

Relational Model Terminology

- Table = relation
- Column headers = attributes
- Row = tuple
- Possible values of each attribute = domain
 - E.g., the domain of CName is string, the domain of Rating is real
- Relation schema = relation name + attributes + other structure information
 - E.g., keys, other constraints
- Relation instance is the current set of rows for a relation schema
- Database schema = collection of relation schemas

Schema Definition

- The **schema** of a relation: $R(A_1, A_2, ..., A_n)$
- Relation schema R is defined over attributes A₁, A₂, ... A_n
 - R: Name
 - Degree: # of attributes n
 - Cardinality: # of tuples (rows)

Example

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

- CUSTOMER is a relation defined over four attributes Cust-id, Cust-name, Address, Phone#
- Each attribute has a domain or a set of valid values
 - E.g., the domain of Cust-id could be 6 digit numbers
- A tuple is an ordered set of values
 - <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
- A relation may be regarded as a set of tuples (rows)

Formal Definition

- The relation is a subset of the Cartesian product of the domains
 - Domain is used in a specific role conveyed by the attribute name
 - E.g., attribute Cust-name is defined over the domain of strings of 26 characters. The role these strings play in the CUSTOMER relation is that of the name of customers
- Formally,

```
Given R(A_1, A_2, ....., A_n)
```

$$r(R) \subseteq dom(A_1) \times dom(A_2) \times \times dom(A_n)$$

R: relation schema (intension)

r(R): a specific "value" or population of R (extension)

Example

- $D_1 = \{0,1\}$
- $D_2 = \{a, b, c\}$
- $r(R) \subseteq D_1 \times D_2$
- For example: r(R) = {<0,a>, <0,b>, <1,c>} is one possible "state" or "population" or "extension" r of the relation R, defined over domains D₁ and D₂

Definition Summary

Informal Terms	Formal Terms
Table	Relation
Column name	Attribute
Row	Tuple
Values in a column	Domain
Table Definition	Schema of a Relation
Populated Table	Extension

Example

More Relational Model Notations

- t[A_i] = v_i (the value of attribute A_i for tuple
 t)
- t[A_u, A_v, ..., A_w]: the tuple of t containing the values of attributes A₁₁, A_v, ..., A_w

Characteristics of Relations

- Ordering of tuples in a relation r(R):
 - Not ordered (like a set)
- Ordering of attributes in a relation schema R
 - Not important
 - However, the correspondence between the attributes in $R(A_1, A_2, ..., A_n)$ and the values in $t=\langle v_1, v_2, ..., v_n \rangle$ is maintained

Characteristics of Relations (Cont.)

Values in a tuple:

- A set of atomic values
- Each value in the domain is indivisible
- Composite and multi-valued attributes are not allowed
- null value: unknown or inapplicable to certain tuples

Example

STUDENT	Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
	Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25
	Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21

Relational Data Model

Relational Model Constraints

- Constraints are conditions that must hold on all valid relation instances
- Three main constraints:
 - 1. Key constraints (single relation)
 - 2. Entity integrity constraints (single relation)
 - 3. Referential integrity constraints (two relations)

Key Constraints

- Key constraints: No two tuples can have the same value for the key
- Superkey: A set of attributes SK of R such that no two tuples in any valid relation instance r(R) will have the same value for SK
 - For any distinct tuples t_1 and t_2 in r(R), $t_1[SK] ≠ t_2[SK]$
- Candidate Key: A "minimal" superkey
 - A superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey

Example 1

CAR(State, Reg#, SerialNo, Make, Model, Year)

- Two candidate keys:
 - $\text{Key1} = \{\text{State}, \text{Reg#}\}$
 - Key2 = {SerialNo}
 - Are Key1 and Key2 superkeys?
- {SerialNo, Make}: candidate key or superkey?
- Primary key: If a relation has several candidate keys, one is chosen arbitrarily to be the primary key
 - The primary key is underlined
 - Implies "not null"

Example 2

The CAR relation, with two candidate keys:
 License-number and Engine_serial_number

CAR

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Entity Integrity

- Relational Database Schema: A set of relation schemas that belong to the same database
 - $S = \{R_1, R_2, ..., R_n\}$, S is the name of the **database**
- Entity Integrity: The PK (primary key) attributes of each relation schema R in S cannot have null values in any tuple of r(R)
 - t[PK] ≠ null for any tuple t in r(R)
 - Why?
- Other attributes of R may be similarly constrained to disallow null values, even though they are not members of the primary key

Referential Integrity

- If a tuple in R₁ refers to R₂, it must refer to an existing tuple in R₂
- E.g., Dno in every Employee tuple must match Dnumber value of some tuple in the Department relation

Foreign Key Constraints

- A foreign key constraint mostly involves two relations
- Specify a relationship among tuples in two relations:
 - The referencing relation (R₁) and the referenced relation (R₂)
 - FK (foreign key attributes) of R₁ reference PK
 (primary key attributes) or candidate key of R₂
- Displayed in a relational database schema as a directed arc from R₁.FK to R₂.PK or R₂.CK

Foreign Key

- A set of attributes in R₁ is a foreign key of R₁ that references relation R₂ if it satisfies the following two rules:
 - The attributes in FK have the same domain(s) as the primary key (PK) attributes or candidate key of R₂
 - A value in the foreign key column (or columns) of the the referencing relation R₁ can be either:
 - a value of an existing primary key or candidate key value in the referenced relation R₂
 - 2. is null
- In case (2), the FK in R₁ should not be a part of its own primary key

Example

- If no row exists in R2— violation of referential integrity
- Not all rows in R2 need to be referenced
- Value of a foreign key might not be specified
- Names of K1 and K2 need not to be the same

Does foreign key need to be unique?

Yes

No

Total Results: 0

Does foreign key need to be unique?

Yes

No

Does foreign key need to be unique?

Yes

No

Foreign Key (Cont.)

- Foreign key can refer to its own relation
- For example: SuperSSN is a FK that refers to SSN of Employee relation itself

Example 1

 Schema diagram for the COMPANY relational database schema (the primary keys are underlined)

Example 1 (Cont.)

 One possible relational database state corresponding to the COMPANY schema

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address		Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Ε	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT_LOCATIONS

Dnumber	Diocation			
1	Houston			
4	Stafford			
5	Bellaire			
5	Sugarland			
5	Houston			

WORKS ON

Pno	Hours
1	32.5
2	7.5
3	40.0
1	20.0
2	20.0
2	10.0
3	10.0
10	10.0
20	10.0
30	30.0
10	10.0
10	35.0
30	5.0
30	20.0
20	15.0
20	NULL
	1 2 3 1 1 2 2 3 10 20 30 10 10 30 30 20

Feen Dee Herry

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Example 1 (Cont.)

Foreign key constraints displayed on the COMPANY relational database schema diagram

Example 2

Example 2 (Cont.)

Other Types of Constraints

- Domain constraints: values of each attribute A must be an atomic value from the domain for that attribute, dom(A)
- Semantic Integrity Constraints:
 - Based on application semantics and cannot be expressed in a database schema
 - E.g., "one student cannot register for more than 9 credits"
 - A constraint specification language may have to be used to express these constraints
 - SQL-99 uses triggers and assertions

Exercise

Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:

STUDENT(<u>SSN</u>, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book_ISBN, Book_Title, Publisher, Author)

Add foreign key constraints to the schema above

Update Operations on Relations

INSERT a tuple

 Domain, key, entity, and referential integrity constraints can be violated

DELETE a tuple

Only referential integrity constraint can be violated

MODIFY a tuple

- Modify PK: delete one tuple and insert another in its place
- Modify FK: make sure the new value refers to an existing tuple in the referenced relation (or is null)
- Neither PK nor FK: only check new value is of the correct domain and data type

Update Operations on Relations (Cont.)

- Integrity constraints should not be violated by the update operations
- Several update operations may have to be grouped together
- Updates may propagate to cause other updates automatically

Update Operations on Relations (Cont.)

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Example

The instances below satisfy some constraints

Clim	bers:			Climbs:			
CId	CName	Skill	Age	CId	RId	Date	Duration
123	Edmund	EXP	80	123	1	10/10/88	3 5
214	Arnold	BEG	25	123	3	11/08/87	7 1
313	Bridget	EXP	33	313	1	12/08/89	5
212	James	MED	27	214	2	08/07/92	2 2
				313	1	06/07/94	1 3

- Insert (123, Jeremy, MED, 16) into Climbers?
- Insert (456, 2, 09/13/98, 3) into Climbs?
- Delete (313, Bridget, EXP, 33) from Climbers?
- Modify 123 to 456 in Climbers?