投资决策流程

所有过程均可复现

- 1: 安装工具包
- A: ClementineV12
- B: pycharm
- C: 区分度算法工具
- 2: 流程

甄选行业-》挑选股票-》特征工程-》精选股票

- 3: 模型参数评估指标(见流程里面)
- 4: 相关文件
- 5: GB 的算法原理及算法设计
- 6: 关于模型优化
- 7: 风险预警及换股策略

以上流程全部实现后会形成一个模型部署文件,以后只要调用这个部署文件就可以,目前 这个文件是: function.py

甄选行业

- 1: 区分度算法
- 2: 神经网络算法
- 3: 线性回归算法
- 1: 区分度算法模型评价指标

区分度模型之所以能用于选股是建立在道氏理论的第一假设:股价走势反应一切市场信

息。我们通过收集尽可能多的股票信息来挑选股票。

需要用知测软件来做模型(已经给吴老师安装好了,也教会她如何使用了。) 首先使用大智慧把所有行业及行业相关的数据全部导出到 excel,并做好预处理。见文件 (**行业 20191124 - 副本.txt 和行业 20191124 - 副本.xls**,其中 txt 用于知测软件使用,xls 用于 clementine 使用),然后用知测做模型,模型评估参数如下:

评分模型及主要统计量

样本类型	区分度(Divergence)	ROC面积	Gini系数	KS值	KS 评分 / KS 尺度化评分	通过室(KS Pass Rate)	判定系数(R-squared)
训练样本(Training)	24.693	0.999	0.999	98.315	2.044 / 499.000	40.509	0.727

区分度见下图

Divergence图

然后导出文件就能得到每个行业的打分情况。见文件 **export-区分度.txt** 其中前 50 个行业及得分如下

其中前5	0 个行业及	得分如下		
SERIES	代码	名称	UNSCALED_SCORE	SCALINGSCORE
1	994453'	谷歌概念	30. 67367322	601
2	994164'	网红经济	26. 77335233	587
3	994238'	智慧停车	25. 72912207	583
4	994440'	京东概念	25. 65738297	583
5	994126'	汽车电子	25. 64096905	583
8	994177'	血液制品	24. 82939153	580
10	994062'	国产软件	24. 74506669	579
11	994421'	独角兽概念	24. 18004624	577
12	994431'	自主可控	23. 81574445	576
13	994353'	无人零售	23. 56582127	575
14	992044'	贵州	23. 55295858	575
16	994283'	特种玻璃	23. 39981903	575
17	994086'	健康中国	23. 28783265	574
20	994489'	超高清	23. 26752355	574
21	994419'	富士康概念	21. 91140811	569
23	993939'	白酒	21. 87810597	569
24	994176'	信息安全	21. 85397821	569
25	994420'	工业互联网	21. 82241778	569
26	994483'	新基建	21. 81207014	569
27	993063'	抗癌药物	21. 81134575	569
28	991006'	电子设备	21. 78574932	569
29	994228'	SAAS	21. 56043153	568
30	994097'	壳资源	21. 5145308	568
31	994082'	集成电路	21. 42258499	568
32	994142'	生物识别	21. 26997208	567
33	994318'	新版医保	21. 23589771	567
34	994428'	仿制药	21. 14758941	567

35	994537'	医用耗材	20. 92803295	566
36	994512'	休闲食品	20. 82957404	566
37	993075'	次新股	20. 64711601	565
38	993756'	LED	20. 61567111	565
39	994387'	定制家居	20. 44390275	564
40	992058'	山东	20. 28275175	564
42	993979'	医疗美容	20. 20898779	563
43	991043'	互联网	20. 13341929	563
44	994487'	纳米银线	19. 96393034	562
45	994198'	在线旅游	19. 96048072	562
46	994286'	体外诊断	19. 95956819	562
48	994384'	贵州国资	19. 74345079	562
49	994203'	智能交通	19. 74046583	562
50	994479'	光刻胶	19. 66566018	561
51	993980'	人工智能	19. 40280424	560

2: 神经网络算法

使用文件 **20191124** - **副本**.xls 作为导入 clementine 的数据,对数据做神经网络算法(已 经给吴老师安装好 clementine 并教会了她如何使用),模型输出的参数如下:

200	/字段 GB 的结果 比较 \$N-GB 与 GB	5
	最小误差	-0.193
	最大误差	0.334
	平均误差	0.007
	绝对平均误差	0.041
	标准差	0.056
	线性相关	0.774
	发生率	540

然后导出文件就能得到每个行业的打分情况。见文件 export-neuro.xls 其中前 50 个行业及得分如下:

no	代码	名称	\$N-GB
1	994247'	昨日涨停	0.43730929
2	994453'	谷歌概念	0.34486257
6	994450'	脸书概念	0.27738447
7	994472'	抖音概念	0.26847779
11	994384'	贵州国资	0.24796489
17	994286'	体外诊断	0.22672166
5	994454'	眼科概念	0.22297132
39	993386'	预盈预增	0.2008617
3	994123'	苹果产业链	0.18959628
104	994427'	无感支付	0.18463997
54	991020'	酒及饮料	0.1805187

53	994537'	医用耗材	0.17857906
108	994079'	机器视觉	0.17841791
48	993939'	白酒	0.17350777
13	994241'	降解材料	0.17343566
63	994475'	芬太尼概念	0.16545841
72	994239'	盖板玻璃	0.15915769
107	993064'	医疗器械	0.15800813
65	991028'	医疗卫生	0.15717255
31	993975'	增强现实	0.15169452
92	994188'	乙肝疫苗	0.15033966
66	991006'	电子设备	0.15002677
47	994447'	PCB 概念	0.14963588
79	994415'	抗流感	0.14833708
10	993971'	细胞治疗	0.14714522
295	994442'	网易概念	0.14659615
9	994240'	GPU	0.1453312
87	994177'	血液制品	0.14439125
141	994403'	覆铜板	0.14428412
12	994474'	麻醉概念	0.14293299
14	992044'	贵州	0.14099113
42	994062'	国产软件	0.13638896
8	994202'	智能穿戴	0.13573997
38	994428'	仿制药	0.13421157
43	994397'	芯片概念	0.12848366
34	994095'	抗癌治癌	0.12809189
37	993063'	抗癌药物	0.1276954
19	993053'	苹果三星	0.12560147
55	994479'	光刻胶	0.12508324
71	994081'	激光概念	0.12417827
91	994356'	华为概念	0.12381396
240	993933'	疫苗	0.12351831
36	994318'	新版医保	0.1229208
504	994233'	养鸡	0.12178947
88	994144'	生物医药	0.12008959
124	994518'	操作系统	0.11929451
114	993047'	安防	0.11877935
30	994424'	6G 概念	0.11867425
23	994168'	无线充电	0.11853995
61	994416'	小米概念	0.11828613

3: 线性回归算法

使用文件 **20191124** - **副本.xls** 作为导入 clementine 的数据,对数据做线性回归算法,模型输出的参数如下:

□ 输出字段 GB 的结果

白 比较 \$E-GB与 GB

74% AC OC -1 OC	
最小误差	-0.18
最大误差	0.241
平均误差	0.0
绝对平均误差	0.037
标准差	0.052
线性相关	0.816
发生率	540

然后导出文件就能得到每个行业的打分情况。见文件 **export_regress2.xls** 其中前 50 个行业及得分如下:

共中的 50 2	1 11 亚汉付,	刀 知 1:	
no	代码	名称	\$N-GB
5	994454'	眼科概念	0. 258944173
48	993939'	白酒	0. 197181366
53	994537'	医用耗材	0. 195625735
108	994079'	机器视觉	0. 17125673
55	994479'	光刻胶	0. 168930624
15	993951'	智能手机	0. 160259207
95	994002'	区块链	0. 15519826
47	994447'	PCB 概念	0. 150622375
4	994351'	智能音箱	0. 149226831
69	994512'	休闲食品	0. 145988728
66	991006'	电子设备	0. 139098536
28	991043'	互联网	0. 134363334
71	994081'	激光概念	0. 133985218
43	994397'	芯片概念	0. 131091208
8	994202'	智能穿戴	0. 129358245
91	994356'	华为概念	0. 128777768
121	994431'	自主可控	0. 127922101
474	994317'	次新开板	0. 125885265
132	993057'	网络安全	0. 121948513
127	993978'	人脸识别	0. 121685228
33	994347'	腾讯云	0. 121047456
77	993980'	人工智能	0. 118922832
67	994050'	高送转	0. 118793996
61	994416'	小米概念	0. 117387858
41	994292'	金融机具	0. 11733688
49	993970'	基因测序	0. 117042093
87	994177'	血液制品	0. 11568743

29	994086'	健康中国	0. 11542714
107	993064'	医疗器械	0. 114824337
50	993974'	虚拟现实	0. 11466687
74	991004'	软件	0. 114555851
277	994231'	猪肉概念	0. 114113477
114	993047'	安防	0. 112722037
60	994500'	流媒体	0. 11132089
124	994518'	操作系统	0. 11107297
247	993752'	融资融券	0. 110832175
23	994168'	无线充电	0. 108464529
240	993933'	疫苗	0. 107826357
37	993063'	抗癌药物	0. 106826573
65	991028'	医疗卫生	0. 106635277
111	993979'	医疗美容	0. 105749691
94	994082'	集成电路	0. 105550603
20	994525'	ETC 概念	0. 105264397
233	991013'	农副食品	0. 101557032
76	993059'	手游	0. 100203617
31	993975'	增强现实	0. 099254123
39	993386'	预盈预增	0. 098780607
51	991045'	技术服务	0. 098597733
19	993053'	苹果三星	0. 096911492
85	994242'	半导体	0. 0963662

然后我们合并三种算法共同的行业,并按排名高低甄选了 13 个行业

月	茅号 ★	代码	名称
+	1*	994453	谷歌概念
\blacksquare	2 *	994454	眼科概念
±	3 ★	994537	医用耗材
\blacksquare	4 *	994079	机器视觉
\blacksquare	5 *	993939	白酒
\blacksquare	6 *	994177	血液制品
+	7 *	994447	PCB概念
•	8 *	991006	电子设备
+	9 *	994431	自主可控
+	10★	994512	休闲食品
±	11 *	994479	光刻胶
+	12. *	994384	贵州国资
ŧ	13 *	994286	体外诊断

然后分别把每个行业的所有股票放到一个股票池,总共583只股票

可生成一个板块数据:自选股 4.BLK。该文件可直接拷贝到大智慧后就能看到所选的所有股票。

第二步: 特征工程

1: 特征选取

首先从大智慧对这个板块的所有股票抽取所需数据,然后保持到 excel 中,见文件: feature.xls

2: 特征融合算法

可以使用多种算法(DecisionTree,GradientBoosting,ExtraTree,AdaBoost,randomforest,Lightgbm,XGB,DeepRandomforest)随意组合然后并再融合对 feature 中的 63 个特征做特征抽取,算法代码见文件 mul_algorithm.py.

目前特征融合算法改为并行计算,能很快出结果。之前因为采用 pipeline 方式是串行化,所以计算比较慢。这次改进后极大的提升了效率。

3: 入选股票和特征

第三步: 精选股票

1: 选股算法

神经网络算法

首先从大智慧对这个板块的所有股票抽取所需数据,然后保持到 excel 中,见文件: stock.xls

然后剔除相关性较强的几个变量,见下表:

然后带入模型计算,得到统计参数如下:

区分度算法:

首先从大智慧对这个板块的所有股票抽取所需数据,然后保持到 excel 中,见文件: stock.xls

然后剔除相关性较强的几个变量, 见下表:

然后带入模型计算,得到统计参数如下:

评分模型及主要统计量

样本类型	区分度(Divergence)	ROC面积	Gini系数	KS值	KS 评分 / KS 尺度化评分	通过室(KS Pass Rate)	判定系数(R-squared)
训练样本(Training)	21.112	0.999	0.998	97.658	1.128 / 502.000	43.073	0.722

K-s 值

Divergence 图

Divergence图形(训练样本)

决策树算法

数据处理方式同神经网络算法一致,直接看输出参数如下:

4: 相关文件

以上所有数据都放在 70 服务器的 zxh/stock/data 中

5: GB 的算法原理及算法设计

1: 算法原理

1.1: 首先把股价涨跌的原因分为外部因素和内部因素。

外部因素:外部因素有很多,但总体上还是反应在资金供求关系上,当流动性过剩,股市上扬,当流动性紧缩,股市下跌。详细论证可参看高盛高华的《股市与资金供求》报告。内部因素:内部因素也有很多,但总体上还是反应在财务数据上。当整体财务数据良好时,股价普涨,当整体财务数据不好时,股价普跌。

1.2: 在预测股价是否会上涨时首先剔除外部因素。

股市涨跌受到政治,经济,行业等诸多方面影响,由于外部因素有太多不可测的情况,所以在我们预测除外部因素影响外的股价是否会涨跌时,我们需要把这些不可测的情况剔除掉,只看公司本身是否创造了价值或者创造了多少价值来判断股价是否上涨,这就相对简单,并且也容易把握。

1.3: 如何剔除外部因素对股价的影响?

反映整体股市涨跌的上证指数或者深成指的涨跌代表了所有外部因素和内部因素导致股价涨跌的成因。所以在预测个股涨跌时我们剔除上证指数或深成指某段时间的涨跌幅时,其实就是近似的剔除了外部因素对个股的影响(大家下来自己想想看是不是这样的)。

1.4: 股票是否被低估或高估(市场平均水平)由他的内在价值或者说是内部驱动因素决定。

如何评价股票是否被低估或高估?

在剔除外部因素对股价的影响后,剩下的股价的涨跌就是由股票内在价值或者说是内部驱动 因素造成的,当然,它也是市场行为决定的,但是,市场的行为未必是最优选择,他往往包 含了非理性交易行为,这当中的隐含风险大部分人是不清楚的。而且即便全体股民的行为都 是理性的交易行为, 当这当中的潜在风险大部分人也是不清楚的。 假设某股票内在价值高于 平均市场行为涨跌幅(此时是指已经剔除外部因素对股价的影响),那么该股票就是被低估, 如果我们总是能买入被市场行为远远低估的股票,那么无论市场处于理性或非理性行为,我 们都能盈利。那要如何来评价每个股票的市场行为是否都合理的反应其内在价值呢?或者说 如何量化每只股票的内在价值与其市场行为的涨跌(剔除外部因素对股价的影响)是否对应 呢?

GB 的算法设计

2.1、计算剔除大盘的后每个基金在某个时间段的涨跌幅

```
当大盘为跌的时候:
aa:=count (1191105 < date < 1191229, 0);
11:=(c-ref(c,aa))/ref(c,aa);
zf := 11+0.0348;
zf:
当大盘为涨的时候:
aa:=count(date>1190806,0);
11:=(c-ref(c,aa))/ref(c,aa);
if 11>0 and 11<0.0226 then zf:=0.0226-11;
else zf:=11-0.0226;
zf:
本次 GB 的值-0.045 是统计从 20190806 统计到 20191124 上证指数的涨跌幅计算
的。
2.2、计算超过或者低于平价涨跌幅的 GB(把 GB 变为逻辑变量后也可以做神经
```

网络或者其他分类算法,比如逻辑回归, fish 判别,遗传算法,决策树,森林区 分度等等) aa:=count(date>1190806,0):

```
11:=(c-ref(c, aa))/ref(c, aa);
if 11>-0.011 then gb:=1;
else gb:=0;
gb;
RSI 计算公式
REFLINE: 0, 20, 50, 80, 100;
aa:=count(date>1191203, 0);
bb:=count(date>1191126,0);
LC := REF (CLOSE, bb);
LCA:=ref(close, aa):
RSI1:SMA (MAX (LCA-LC, 0), N1, 1)/SMA (ABS (LCA-LC), N1, 1)*100;
```

RSI2:SMA (MAX (LCA-LC, 0), N2, 1)/SMA (ABS (LCA-LC), N2, 1)*100;

```
kdj计算公式
REFLINE: 0, 20, 50, 80, 100;
aa:=count(date>1191203, 0);
\label{eq:RSV:=(ref(c, aa)-LLV(ref(c, aa), N))/(HHV(ref(c, aa), N)-LLV(ref(c, aa), N))*100;} \\
K:SMA(RSV, M1, 1);
D:SMA(K, M2, 1);
J:3*K-2*D;
BIAS 计算公式
aa:=count(date>1191203, 0);
cl:=ref(close, aa);
BIAS1 : (c1-MA(c1, L1))/MA(c1, L1)*100;
BIAS2 : (c1-MA(c1, L2))/MA(c1, L2)*100;
BIAS3 : (c1-MA(c1, L3))/MA(c1, L3)*100;
MACD 计算公式
aa:=count(date>1191203, 0);
cl:=ref(close, aa);
```

 $RSI3:SMA\left(MAX\left(LCA-LC,0\right),N3,1\right)/SMA\left(ABS\left(LCA-LC\right),N3,1\right)*100;$

7:风险预警及换股策略

DEA : EMA(DIFF, M);

DIFF : EMA(c1, SHORT) - EMA(c1, LONG);

MACD : 2*(DIFF-DEA), COLORSTICK;

8: 剔除多重共线性后的模型情况 剔除多重共线之前的数据情况如下

系数ª

		共线性	统计里	
<u></u>		容差	VIF	
1	最新	.328	3.046	
	总手	.232	4.310	
	每股收益	.155	6.454	
	市净率	.807	1.239	
	净利润	.025	40.003	
	每股净资产	.158	6.329	
	主营收入	.156	6.422	
	营业利润	.015	68.927	
	市盈率	.984	1.016	
	净资产收益率	.450	2.223	
	每股经营现金	.641	1.559	
	每股公积金	.256	3.911	
	流动负债	.183	5.460	
	长期负债	.233	4.291	
	股东权益	.039	25.607	
	资本公积金	.183	5.470	
	经营现金流量	.224	4.457	
	投资收益	.668	1.497	
	主营收入同比	.923	1.084	
	净利闰同比	.986	1.015	
	股东权益比	.733	1.364	
	销售毛利率	.810	1.235	
	阶段换手	.031	31.858	
	阶段涨幅	.260	3.852	
	阶段振幅	.178	5.614	
	阶段成交量	.009	109.272	
	阶段成交额	.014	70.875	
	阶段换手	.012	81.582	
	阶段涨幅	.183	5.469	
	阶段振幅	.130	7.680	
	阶段成交量	.008	120.793	
	阶段成交额	.005	198.914	
	阶段换手	.005	193.979	
	阶段涨幅	.099	10.144	
	阶段振幅	.070	14.287	
	阶段成交量	.002	418.371	
	阶段成交额	.002	503.745	
	阶段换手	.002	406.991	
	阶段涨幅	.072	13.898	

剔除多重共线之后的数据情况如下

系数ª

	共线性线	共线性统计量			
模型	容差	VIF			
1 最新	.320	3.126			
总手	.286	3.497			
每股收益	.144	6.932			
市净率	.784	1.276			
净利润	.024	40.832			
每股净资产	.164	6.104			
主营收入	.155	6.469			
营业利润	.014	69.542			
市盈率	.982	1.018			
净资产收益率	.410	2.437			
每股经营现金	.634	1.577			
每股公积金	.275	3.639			
流动负债	.178	5.622			
长期负债	.232	4.312			
股东权益	.039	25.949			
资本公积金	.178	5.624			
经营现金流量	.220	4.555			
投资收益	.666	1.503			
主营收入同比	.923	1.083			
净利闰同比	.983	1.018			
股东权益比	.727	1.376			
销售毛利率	.813	1.231			
阶段换手	.116	8.635			
阶段涨幅	.400	2.497			
阶段振幅	.394	2.535			
阶段成交量	.065	15.287			
阶段成交额	.046	21.828			
阶段换手	.071	14.004			
阶段涨幅	.664	1.506			
阶段振幅	.409	2.442			
阶段成交量	.052	19.371			
阶段成交额	.029	34.708			
阶段换手	.082	12.190			
阶段涨幅	.628	1.592			
阶段振幅	.373	2.679			
阶段成交量	.056	17.942			
阶段成交额	.046	21.636			
阶段换手	.082	12.205			
阶段涨幅	.522	1.917			
阶段振幅	.282	3.543			

剔除多重共线之前的模型统计量情况如下

评分模型及主要统计量

样本类型	区分度(Divergence)	ROC面积	Gini系数	KS值	KS 评分 / KS
训练样本(Training)	2.832	0.881	0.762	60.178	-0.242 / 4
验证样本(Validation)	0.620	0.715	0.430	31.892	0.079 / 4

剔除多重共线之后的模型统计量情况如下

评分模型及主要统计量

样本类型	区分度(Divergence)	ROC面积	Gini系数	KS值	K
训练样本(Training)	2.731	0.877	0.754	60.255	
验证样本(Validation)	0.630	0.711	0.423	32.072	

ROC图

这两个文件是最新一期最好模型的模型部署文件的 java 版本和 python 版

div-score 这个文件是针对 python 版的模型部署对每个股票进行区分度打分的程序 现在有一点小 bug,不过已经可以针对所有财务数据和技术指标打分并统计结果了,江恩周期的打分因为在做模型的时候软件会自动把变量名称改了,需要逐一比对,还在调试,不过

明天程序可以全部出来。周日我会针对今天收盘的数据做一次计算并发到群里,我们可以在排名靠前的股票中挑选。

需要说明一点的是,之前做 alpha 组合的时候是挑选前 20-50 个股票一起买入,因为我们的模型并没有做到最优化,只能靠多选来抵消模型的不精确,如果只挑选 4-10 只股票就要好好研究个股的基本面。

买卖股票的具体原则:

1: 买跌不买涨,卖涨不卖跌