Prelucrarea Semnalelor

Cod: 03.S.08.O.209

Titulari de curs: Dan Ştefănoiu, Bogdan Dumitrescu

Durată: 42 h curs, 28 h aplicații de laborator

Valoare ECTS: 5 credite / 60

Obiectiv. Scopul acestui curs este de a introduce principalele concepte şi terminologia specifică Prelucrării Semnalelor continuale şi (mai ales) discrete, cu deschidere către aplicații practice.

Structura cursului. Cursul este structurat în 8 capitole enumerate după Bibliografie.

Structura laboratorului. Lucrările de laborator se desfășoară după un plan care include 4 teme în mod minimal și 6 teme în mod maximal, enumerate în final. Fiecare temă de laborator propune implementarea cîte unui algoritm.

Bibliografie minimală

- [OpSc85] Oppenheim A.V., Schafer R. Digital Signal Processing, Prentice Hall, Upper Saddle River, New Jersey, USA, 1985.
- [PrMa96] Proakis J.G., Manolakis D.G. Digital Signal Processing. Principles, Algorithms and Applications., Prentice Hall, Upper Saddle River, New Jersey, USA, 1996.
- [SoSt89] Söderström T., Stoica P. System Identification, Prentice Hall, London, UK, 1989.
- [StD96a] Ştefănoiu D. Introducere în Prelucrarea Numerică a Semanlelor, Centrul de multiplicare al Universității "Politehnica" din București, România, 1996.
- [StD96b] Ştefănoiu D. Tehnici de calcul în Prelucrarea Numerică a Semnalelor, Centrul de multiplicare al Universității "Politehnica" din Bucureşti, România, 1996.

Programa analitică a cursului

- 1. Privire de ansamblu asupra domeniului Prelucrării Semnalelor (3h / 3h)
 - 1.1. Note istorice
 - 1.2. Conceptul de "semnal"
 - 1.3. Clasificări ale semnalelor
 - 1.4. Problema generală a Prelucrării Semnalelor
 - 1.5. O soluție clasică: dezvoltarea în serie Fourier
- 2. Algebra secventelor discrete de semnal (6h / 9h)
 - 2.1. Sistele liniare invariante la deplasări temporale
 - 2.2. Stabilitate
 - 2.3. Cauzalitate
 - 2.4. Descrierea şi reprezentarea semnalelor folosind ecuații cu diferențe (grafuri de semnale, Teorema de reprezentare a lui Tellegen)
- 3. Reprezentarea în frecvență a semnalelor (3h / 12h)
 - 3.1. Tipori de Transformări ale lui Fourier (Continuă, Discretizată, Serii Fourier, Discretă)
 - 3.2. Proprietăți de simetrie și convoluție ale Transformărilor lui Fourier
 - 3.3. Transformata Z în Prelucrarea Semnalelor
- 4. Eşantionarea şi interpolarea semnalelor (3h / 15h)
 - 4.1. Dualitatea eşantionare-interpolare.
 - 4.2. Teoreme fundamentate de eşantionare (Vallée Poussin, Shannon-Kotel'nikov, Shannon-Nyquist)
 - 4.3. Alierea în frecvență
 - 4.4. Interpolarea exactă
- 5. Serii Fourier Discrete (3h / 18h)
 - 5.1. Definiție
 - 5.2. Proprietăți speciale de simetrie și convoluție
- 6. Transformata Fourier Discretă (6h / 24h)
 - 6.1. Dualitatea dintre secvențele de semna cu durată finită şi secvențele periodice de semnal
 - 6.2. Proprietăți de convoluție liniară și circulară
 - 6.3. Proprietăți de simetrie
 - 6.4. Recuperarea Transformatei Z folosind valori ale sale pe cercul unitar
- 7. Algoritmi Fourier rapizi clasici (FFT) (12h / 36h)
 - 7.1. Principiul fundamental al algoritmilor de tip FFT
 - 7.2. Algoritmul lui Goertzel
 - 7.3. Decimarea în timp (algoritmul de tip Cooley-Tukey, complexitate, îmbunătățiri aduse de calculul de tip "fluture")

- 7.4. Decimarea în frecvență (algoritmul de tip Cooley-Tukey, complexitate, îmbunătățiri aduse de calculul de tip "fluture")
- 7.5. Algoritmi Cooley-Tukey generalizați
- 7.6. Algoritmi Singleton
- 7.7. Algoritmi FFT pentru semnale compozite
- 7.8. Exemple: semnale cu durate divizibile prin 3 sau prin 4
- 8. Analiză spectrală (6h / 42h)
 - 8.1. Problema analizei spectrale (netezirea spectrelor estimate ale semnalelor)
 - 8.2. Metoda lui Bartlett
 - 8.3. Metoda lui Welch
 - 8.4. Modelarea auto-regresivă (AR și ARMA) în estimarea spectrală (Algoritmul Levinson-Durbin)

Teme de laborator

1. Algoritmul lui Goertzel	(4h / 4h)
2. Algoritmul FFT cu decimare în timp	(6h / 10h)
3. Algoritmul FFT cu decimare în frecvență	(4h / 14h)
4. Algoritmul lui Bartlett	(4h / 18h)
5. Algoritmul lui Welch	(4h / 22h)
6. Algoritmul Levinson-Durbin	(6h / 28h)