Signals and Communication Theory

Discrete-time System Implementation

Alfonso Fernandez-Vazquez

Ingeniería en Sistemas Computacionales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Semestre Agosto-Diciembre 2021

- Introduction
- 2 First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

Introduction

Now we focus on the implementation of discrete-time systems.

Hardware options for implementing discrete-time systems can be

- Special-purpose (custom) chips such as application-specific integrated circuit (**ASICs**),
- Field-programmable gate arrays (FPGAs),
- General-purpose microprocessors or microcontrollers ($\mu P/\mu C$),
- Digital signal processors (DSP) with application-specific hardware (HW) accelerators.

Basic Building Blocks

Multiplier

$$x[n] \longrightarrow \bigcap^{\alpha} \alpha x[n]$$

Adder

Delay

Basic Structures: **Multiple Constant Multiplication** (MCM)

Basic Structures: **Delay Line**

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

First Order FIR System

$$H(z) = b_0 + b_1 z^{-1}$$

$$Y(z) = b_0 X(z) + b_1 z^{-1} X(z)$$

First Order Allpole IIR System

Type I1A structure

$$H(z) = \frac{1}{1 + a_1 z^{-1}}$$
$$Y(z) = -a_1 z^{-1} Y(z) + X(z)$$

Type I1B structure

First Order IIR System: Direct Form I Structure

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}}$$

$$= \underbrace{(b_0 + b_1 z^{-1})}_{\text{Type F1B}} \underbrace{\frac{1}{1 + a_1 z^{-1}}}_{\text{Type I1B}}$$

First Order IIR System: Direct Form I_t Structure

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}}$$

$$= \underbrace{\frac{1}{1 + a_1 z^{-1}}}_{\text{Type I1A}} \underbrace{(b_0 + b_1 z^{-1})}_{\text{Type F1A}}$$

First Order IIR System: Direct Form II Structure

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}}$$

$$= \underbrace{\frac{1}{1 + a_1 z^{-1}}}_{\text{Type I1B}} \underbrace{(b_0 + b_1 z^{-1})}_{\text{Type F1B}}$$

First Order IIR System: Direct Form II_t Structure

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}}$$

$$= \underbrace{(b_0 + b_1 z^{-1})}_{\text{Type F1A}} \underbrace{\frac{1}{1 + a_1 z^{-1}}}_{\text{Type I1A}}$$

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

Second Order FIR System

$$H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2}$$

$$Y(z) = b_0 X(z) + b_1 z^{-1} X(z) + b_2 z^{-2} X(z)$$

Second Order Allpole IIR System

$$H(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

$$Y(z) = -a_1 z^{-1} Y(z) - a_2 z^{-2} Y(z) + X(z)$$

Second Order IIR System: Direct Form I Structure

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \underbrace{\left(b_0 + b_1 z^{-1} + b_2 z^{-2}\right)}_{\text{Type F2B}} \underbrace{\frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}}_{\text{Type I2B}}$$

Second Order IIR System: Direct Form I_t Structure

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \underbrace{\frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}}_{\text{Type I2A}} \underbrace{\left(b_0 + b_1 z^{-1} + b_2 z^{-2}\right)}_{\text{Type F2A}}$$

Second Order IIR System: Direct Form II Structure

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \underbrace{\frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}}_{\text{Type I2B}} \underbrace{\left(b_0 + b_1 z^{-1} + b_2 z^{-2}\right)}_{\text{Type F2B}}$$

Second Order IIR System: Direct Form II_t Structure

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \underbrace{\left(b_0 + b_1 z^{-1} + b_2 z^{-2}\right)}_{\text{Type F2A}} \underbrace{\frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}}_{\text{Type I2A}}$$

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

Definition

A **cascade form** is obtained by expressing the numerator and denominator polynomials of the system function H(z) as a product of polynomials of first and second degree, i.e.,

$$H(z) = G \frac{\prod_{k=1}^{K} P_k(z)}{\prod_{m=1}^{M} D_m(z)},$$

where G is a gain constant and

$$P_k(z) = 1 + \beta_{1,k} z^{-1} + \beta_{2,k} z^{-2},$$

$$D_m(z) = 1 + \alpha_{1,m} z^{-1} + \alpha_{2,m} z^{-2}.$$

Example 1

Consider the following system function

$$H(z) = \frac{P_1(z)P_2(z)P_3(z)}{D_1(z)D_2(z)D_3(z)}.$$

Different realizations can be obtained by different pole/zero polynomial pairings.

In practice due to the finite wordlength effects, each such cascade realization behaves differently from others.

Example 1: Different Cascade Realizations

- Introduction
- First Order Systems
- Second Order Systems
- 4 High Order Systems
 - Cascade Forms
 - Parallel Forms

Definition

A parallel form can be obtained by making use of the partial fraction expansion.

A partial fraction expansion of the system function in z^{-1} leads to the **Parallel Form** I, that is,

$$H(z) = \gamma_0 + \sum_k \frac{\gamma_{0,k} + \gamma_{1,k} z^{-1}}{1 + \alpha_{1,k} z^{-1} + \alpha_{2,k} z^{-2}}.$$

Similarly, a partial fraction expansion of the system function in z leads to the **Parallel Form II**, i.e.,

$$H(z) = \beta_0 + \sum_{k} \frac{\beta_{1,k} z^{-1} + \beta_{2,k} z^{-2}}{1 + \alpha_{1,k} z^{-1} + \alpha_{2,k} z^{-2}}.$$

Example 2

Assume that the system function is given by

$$H(z) = \frac{0.44z^{-1} + 0.36z^{-2} + 0.02z^{-2}}{1 + 0.4z^{-1} + 0.18z^{-2} - 0.2z^{-3}}$$
$$= \frac{0.44z^{2} + 0.36z^{1} + 0.02}{z^{3} + 0.4z^{2} + 0.18z - 0.2}$$

Develop the cascade and parallel forms.

Answer to Example 2: Cascade Form

$$H(z) = \left(\frac{z^{-1}}{1 - 0.4z^{-1}}\right) \left(\frac{0.44 + 0.362z^{-1} + 0.02z^{-2}}{1 + 0.8z^{-1} + 0.5z^{-2}}\right)$$

Answer to Example 2: Parallel Form I

$$H(z) = -0.1 + \frac{0.6}{1 - 0.4z^{-1}} + \frac{-0.5 - 0.2z^{-1}}{1 + 0.8z^{-1} + 0.5z^{-2}}$$

Homework

• From [9], Projects 6.1, 6.2

[9] S. K. Mitra, **Digital Signal Processing Laboratory Using MATLAB**, 1999, McGraw Hill (labmanual.pdf)