Discrete Mathematics

Adil M. Khan Professor of Computer Science Innopolis University

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater!

-Albert Einstein-

Discrete Mathematics

□Study of Discrete Objects

Consisting of Distinct Objects

- □ Problems Solved Using Discrete Math
 - How many ways are there to choose a valid password?
 - What's the probability of winning a lottery?
 - How to encrypt a message?
 - What is the shortest path b/w two cities?
 - How to sort a list of integers?
 - How to prove that an algorithm works correctly?
 - •
 - •
 - •

Why Study Discrete Mathematics???

- □ Ability to understand and create mathematical arguments
- ☐Gateway to more advanced courses
 - Algorithms
 - Database theory
 - Automata theory
 - Compiler theory
 - Computer security
 - Operating system

Topics we'll study

□Logic and Proofs □ Sequences and Recursion ☐ Mathematical Induction ☐Set Theory □ Functions **□**Relations □Counting and Probability ☐Graphs and Trees

Today's Lecture

- **□** Integers:
 - Arithmetic Properties
 - Powers
 - Divisibility
 - Primes of Composite Numbers
- **□** Rational Numbers
 - Equivalent fractions
 - Operating with fractions
 - Decimals
- ☐ Irrational Numbers
- **□** Real Numbers
 - Square roots
 - N-th roots
 - Logarithms
 - Inequalities
- **□** Oder of Operations

Numbers

 \square N= {0,1,2,3,...} The set of Natural Numbers

 \square **Z**= {..., -2,-1,0,1,2,...} The set of Integers

- $\mathbf{Q} = \{ p/q \mid p, q \in \mathbb{Z}, \text{ and } q \neq 0 \}$ The set of rational numbers
- \square \mathcal{R} , the set of real number. e.g. Real Space

Q Irrational Numbers

☐ Simple rule of Addition

- For an integer **a**,
- 0+a = a+0 = a
- a+(-a)=0, and (-a)+a=0
- -a is the **additive inverse** of a.

We use "Minus a" rather than "Negative a"

☐ Rules of Addition

□ Commutativity

• If **a** and **b** are integers, then

•
$$a + b = b + a$$

☐ Associativity

• If **a**, **b** and **c** are integers, then

•
$$(a + b) + c = a + (b + c)$$

☐ Rules of Addition

- If $\mathbf{a} + \mathbf{b} = \mathbf{0}$, then $\mathbf{b} = -\mathbf{a}$ and $\mathbf{a} = -\mathbf{b}$
- Proof

$$a + b = 0$$

Add –a to both sides

$$a+b+(-a)=0+(-a)$$
 // commutativity, identity $-a+a+b=-a$ //associativity, additive inverse $0+b=-a$ //identity $b=-a$

As desired.

Similarly we can find: a = -b

- **☐** Rules of Addition
 - If **a**, **b** are positive integers, then **a** + **b** is also positive integer.
 - If **a**, **b** are negative integers, then **a** + **b** is also negative integer.
 - If we have the relationship b/w three integers.

•
$$a+b=c$$

Then we can drive other relationships b/w them.

$$\mathbf{a} = \mathbf{c} - \mathbf{b}$$
 $\mathbf{b} = \mathbf{c} - \mathbf{a}$

 \square Example: Solve for x.

$$x + 3 = 5$$
$$x = 5 - 3$$

$$x = 2$$

□ Rules of Addition

Cancellation rule for addition

• If
$$\mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{c}$$
, then $\mathbf{b} = \mathbf{c}$

Exercise:

Prove that if $\mathbf{a} + \mathbf{b} = \mathbf{a}$, then $\mathbf{b} = 0$?

□ Rules of Multiplication

- **□** Commutativity
 - If **a** and **b** are integers, then
 - a * b = b * a
- ☐ Associativity
 - If a, b and c are integers, then
 - (a * b) * c = a * (b * c)
- For any integer a
 - 1 * a = a and 0 * a = 0

□ Rules of Multiplication

□ Distributivity

- a * (b + c) = a * b + a * c
- (b+c)*a=b*a+c*a

Using all these properties

- -1 * a = -a
- -(a * b) = (-a) * (b) or -(a * b) = a * (-b)
- (-a) * (-b) = a * b

□ Powers

- An exponent is used to indicate repeated multiplication.
- ☐ Tells how many times the base is used as a factor.
 - $a * a = a^2$
 - $a * a * a = a^3$

In general if n is a positive integer,

• $a^n = a * a * a ... a$ (product is taken n times)

We say a^n is the *n-th power of* a.

If **m**, **n** are positive integers, then

•
$$a^{m+n} = a^m * a^n$$

□ Powers

•
$$(a^m)^n = a^{m * n}$$

Some important formulas

•
$$(a + b)^2 = a^2 + b^2 + 2ab$$

•
$$(a - b)^2 = a^2 + b^2 - 2ab$$

•
$$(a + b) (a - b) = a^2 - b^2$$

☐ Even and Odd integers

- ☐ An even integer is an integer which can be written in the form 2n for some integer n
 - 2 = 2 * 1
 - 4 = 2 * 2
 - 6 = 2 * 3
- ☐ An odd integer is an integer that differs from an even integer by 1.
- It can be written in the form $2m \pm 1$ for some integer m.
 - 1 = (2 * 1) 1
 - 3 = (2 * 2) 1
 - 7 = (2 * 3) + 1

☐ Theorem

- Let **a**, **b** be integers,
 - If a is even and b is also even, then a + b is also even
 - If \mathbf{a} is even and \mathbf{b} is odd, then $\mathbf{a} + \mathbf{b}$ is odd
 - If \mathbf{a} is odd and \mathbf{b} is even, then $\mathbf{a} + \mathbf{b}$ is odd
 - If a is odd and b is also odd, then a + b is also even

□ Exercise.

• Let's prove the Second statement

□ Divisibility

- Given two integers a and b, with $a \neq 0$, we say that **a divides b**, or that **b is divisible by a** if there is an integer c, such that $\mathbf{b} = \mathbf{a} * \mathbf{c}$.
- ☐ Remember that every integer is divisible by 1 because we can always write
 - n = 1 * n
- ☐ Also, every positive integer is divisible by itself.

- \square By a rational numbers, we mean a fraction as $\frac{m}{n}$, where **m** and **n** are integers, $n \neq 0$.
 - m is called numerator
 - n is called **denominator**
- ☐ Improper fraction
 - m larger than or equal to n
- ☐ Proper fraction
 - **m** smaller than **n**

□ Equivalent Fractions

☐ Two fractions that represent the same value.

$$\bullet \quad \frac{1}{2} = \frac{2}{4}$$

How can we know whether two fractions are equivalent?

- ☐ Rule for cross-Multiplication
 - Let m, n, r, s be integers and assume that $n\neq 0$ and $s\neq 0$. Then

•
$$\left(\frac{m}{n}\right) = \left(\frac{r}{s}\right)$$
, iff $m * s = r * n$

□ Simplifying Fractions

- ☐ We can simplify four special fractions forms
 - ☐ Fractions that have the same numerator and denominator.

•
$$1 = \frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \frac{4}{4} = \dots$$

☐ Fractions that have a denominator of 1.

•
$$\frac{5}{1} = 5$$
, $\frac{24}{1} = 24$, $\frac{-6}{1} = -6$

 \Box Fractions that have a numerator of 0.

•
$$\frac{0}{8} = 0$$
, $\frac{0}{71} = 0$, $\frac{0}{-10} = 0$

☐ Fractions that have a denominator of 0

•
$$\frac{7}{0} = \infty$$
, $\frac{-17}{0} = \infty$, (∞ =Infinity=Undefined Value)

□ Simplifying Fractions

- ☐ Cancellation Rule for Fractions
 - \square Let a be a non-zero integer. Let **m**, **n** be integers, and $n \neq 0$, then

•
$$\frac{am}{an} = \frac{m}{n}$$

Proof: By applying the rule for cross-multiplication and using the associativity and commutativity laws.

□ Simplifying Fractions

☐ A fraction is in <u>simplest form</u> when the numerator and denominator have no common factors (or divisors) other than 1.

☐ Theorem:

☐ "Any positive rational number has an expression as a fraction in the lowest form."

□ Operating with Fractions

☐ Addition (or Subtraction) with same denominator.

•
$$\frac{a}{d} + \frac{b}{d} = \frac{a+b}{d}$$
 or $\frac{a}{d} - \frac{b}{d} = \frac{a-b}{d}$

☐ With different denominator:

•
$$\frac{m}{n} + \frac{r}{s} = \frac{ms + rn}{ns}$$
 or $\frac{m}{n} - \frac{r}{s} = \frac{ms - rn}{ns}$

☐ Follows the same basic rules as addition of integers (commutativity and association)

□ Multiplication:

$$\Box$$
 Let $a = \frac{m}{n}$

• Then for any positive integer **k**, such that

•
$$a^k = \left(\frac{m}{n}\right)^k = \frac{m^k}{n^k}$$

☐ Follows the same basic rules as multiplication of integers.

☐ Division:

- If **a** is a rational number and $\mathbf{a} \neq 0$, then there exists (\exists) a rational number, denoted by
 - a^{-1} such that
 - $a^{-1} * a = a * a^{-1} = 1$
- \square Note that if $a = \frac{m}{n}$ then $a^{-1} = \frac{n}{m}$
- \Box a⁻¹ is called the **multiplicative inverse** of a.

□ Decimals:

☐ Finite decimals give us examples of rational numbers.

•
$$1.4 = \frac{14}{10}$$

• $1.41 = \frac{141}{100}$
• $0.2 = \frac{1}{5}$
• $0.75 = \frac{3}{4}$

•
$$1.41 = \frac{141}{100}$$

•
$$0.2 = \frac{1}{5}$$

•
$$0.75 = \frac{3}{4}$$

•
$$0.3333... = 0.\overline{3} = \frac{1}{3}$$

Irrational Numbers

- \square A number that cannot be expressed as fraction of $\frac{p}{q}$ for any integers p and q.
 - ☐ Have decimal expressions that neither terminate nor become periodic
 - $\sqrt[2]{2} = 1.41421356237 \dots$
 - $\sqrt[2]{3} = 1.73205080757...$
 - $\pi = 3.14159265359 \dots$

•

Irrational Numbers

- \square Is $\sqrt[2]{25}$ an irrational number?
 - No!
 - Because $\sqrt[2]{25} = \pm 5$
- \square Is $\sqrt[2]{-1}$ an irrational number?
 - No or Yes??? In both cases HOW?

☐ Integers, Rational and Irrational Numbers are part of a larger system.

☐ Real Numbers can be described as all the numbers that consist of a decimal expansion, possibly infinite.

☐ Properties of Real Numbers:

- ☐ Addition:
 - a + b = b + a
 - a + (b + c) = (a + b) + c
 - For all (\forall) real numbers a, b, and c.
- ☐ Multiplication
 - a * b = b * a
 - a * (b * c) = (a * b) * c
 - \(\text{real numbers a, b, c.} \)
- \Box Also
 - a * (b + c) = a * b + a * c
 - (b+c)*a=b*a+c*a

☐ Absolute Value

☐ The non-negative values of a real number without regard to it sign.

• |a| = a for a positive a.

• |a| = -a for a negative a (in which case –a is positive).

• |0| = 0

- **□** Square Roots
 - If a > 0, then there exists (\exists) a number b such that (s.t).
 - $b^2 = a$
- □ N-th Roots
 - ☐ There exists a unique real number r such that
 - rⁿ = a
 It is called the n-th root of a, and is denoted by
 - $a^{1/n}$ or $\sqrt[n]{a}$

Logarithms

- ☐ Can be seen as the reverse operation of the exponentiation.
- ☐ The logarithm of a number is the exponent to which another fixed value, the **Base** must be raised to produce that number.
 - $\log_{10}(10000) = 4$, because $10^4 = 10000$
 - $\log_2(16) = 4$, because $2^4 = 16$
 - $\log_3\left(\frac{1}{3}\right) = -1$, because $3^{-1} = \frac{1}{3}$

Logarithms

- **☐** Properties of Logarithms:
 - ☐ Product:
 - $log_b(x * y) = log_b(x) + log_b(y)$
 - ☐ Quotient:
 - $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
 - □ Power:
 - $log_b(x^p) = p * log_b(x)$
 - ☐ Change of Base:
 - $\log_b(x) = \frac{\log_k(x)}{\log_k(b)}$

Inequalities

Symbol	Meaning	Example
>	Greater Than	(X+3) > 2, for any X
<	Less Than	(7X) < 28, $X = \{, -2, -1, 0, 1, 2, 3\}$
≥	Greater Than or Equal	$5 \ge (X - 1),$ $X = \{, -2, -1, 0, 1,, 5, 6\}$
<u><</u>	Less Than or Equal	$(2Y + 1) \le 7,$ $Y = \{, -2, -1, 0, 1, 2, 3\}$

 \Box Let **a**, **b**, **c** be real numbers,

- If a > b and b > c then a > c. (Transitivity)
- If a > b and c > 0 then a*c > b*c.
- If a > b and c < 0 then a*c < b*c.