Übungsserie 5

Abgabe: gemäss Angaben Dozent

Scannen Sie ihre manuelle Lösung für die Aufgaben 2 in die Datei Name_Vorname_Gruppe_ S5_Aufg2.pdf und fassen Sie diese mit de MATLAB-Dateien für Aufgaben 1 und 3 zusammen in die ZIP-Datei Name_Vorname_Gruppe_S5.zip. Laden Sie dieses File vor der nächsten Übungsstunde nächste Woche auf OLAT hoch. Die einzelnen m-Files müssen ausführbar sein und in den Kommentarzeilen (beginnen mit %) soll bei Funktionen ein Beispiel eines funktionierenden Aufrufs angegeben werden. Verspätete Abgaben können nicht mehr berücksichtigt werden.

Aufgabe 1 (30 Minuten):

Schreiben Sie eine Funktion [] = Name_Vorname_Gruppe_S5_Aufg1(f , xmin, xmax, ymin, ymax, hx, hy), welche Ihnen das Richtungsfeld der $\mathrm{DGL}y'(x) = f(x,y(x))$ auf den Intervallen $[x_{min},x_{max}]$ und $[y_{min},y_{max}]$ plottet mit der Schrittweite h_x in x-Richtung und h_y in y-Richtung. Benutzen Sie dafür die MATLAB Funktionen meshgrid() und quiver().

Gehen Sie dafür folgendermassen vor:

- (i) Mit meshgrid() erzeugen Sie zuerst die Koordinaten des Punkterasters in derxy- Ebene, z.B. [X,Y] = meshgrid(0:0.1:5,0:0.1:3)
- (ii) Mit Ihrer Funktion f(x,y) berechnen Sie anschliessend für jeden dieser Punkte die Steigung, z.B. Ydiff=f(X,Y). Die Funktion f muss also mit Vektoren rechnen können, also bei der Funktions-Definition unbedingt die Punkte nicht vergessen, z.B. $f = @(x,y) x.^2.*y.^2$
- (iii) Damit quiver() die entsprechenden Steigungsvektoren für jeden Punkt zeichnen kann, erwartet es für jeden Punkt in der (x,y)- Ebene neben den Koordinaten X und Y auch die x-Komponenten der jeweiligen Steigungsdreiecke und die entsprechenden y-Komponenten. Sie erhalten das gewünschte Resultat, wenn Sie für die y-Komponente des Steigungsdreiecks Ydiff übergeben und für die x-Komponente eine Matrix mit lauter Einsen.

Aufgabe 2 (60 Minuten):

Betrachten Sie die folgende DGL

$$\frac{dy}{dx} = \frac{x^2}{y}$$

auf dem Intervall $0 \le x \le 2.1$ mit y(0) = 2. Lösen Sie die DGL manuell mit

- (a) dem Euler-Verfahren mit h = 0.7.
- (b) dem Mittelpunkt-Verfahren mit h = 0.7.
- (c) dem modifizierten Euler-Verfahren mit h = 0.7.

Die exakte Lösung der DGL ist $y(x) = \sqrt{\frac{2x^3}{3} + 4}$. Berechnen Sie für (a)-(c) jeweils den absoluten Fehler $y(x_i) - y_i$ | für jedes x_i .

Aufgabe 3 (60 Minuten):

Schreiben Sie eine Funktion

[x, y_euler, y_mittelpunkt, y_modeuler] = Name_Vorname_Gruppe_S5_Aufg3(f ,a,b,n,y0), welche lhnen das Anfangswertproblem y'(x) = f(x,y(x)), $y(a) = y_0$ auf dem Intervall [a,b] mit n Schritten berechnet, sowohl mit dem Euler-Verfahren als auch mit dem Mittelpunkt-Verfahren und dem modifizierten Euler-Verfahren. Die Resultate werden in die Vektoren y_euler, y_mittelpunkt, y_modeuler geschrieben, x enthält die entsprechenden x_i -Werte. Ausserdem soll eine Grafik des Richtungsfeldes erzeugt (benutzen Sie dafür ihre Funktion aus Aufgabe 1) und die drei Lösungen eingezeichnet werden. Überprüfen Sie damit Ihre Resultate aus Aufgabe 2.