School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Problem Set 5

Rings and their Properties

(Lessons 10 and 11)

1. Let *A* be a ring. The center of *A* is defined as

$$C(A) = \{ a \in A \mid \forall x \in A : ax = xa \}.$$

Prove that C(A) is a subring of A.

- **2.** We say that a proper ideal I of R is maximal if there exists no other proper ideal J of R properly containing I. Let $I = \langle n \rangle$ be a principal ideal in \mathbb{Z} . Show that I is maximal if and only if n = p with p a prime.
- **3.** Let I and J be ideals of a ring A. Prove that I + J is the smallest ideal of A containing both I and J.
- **4.** Let *I* and *J* be ideals of a ring *A*.
 - (i) Prove that IJ is an ideal contained in $I \cap J$.
 - (ii) Prove that if *A* is abelian and I + J = A, then $IJ = I \cap J$.
- 5. List all the homomorphisms from \mathbb{Z}_2 to \mathbb{Z}_4 .
- **6.** Let $R = M_2(\mathbb{Z})$. Prove that the elements

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

are nilpotents of R whose sum is not nilpotent. Conclude then that the set of nilpotents in the noncommutative ring $M_2(\mathbb{Z})$ is not an ideal.

- 7. Prove that any homomorphic image of a commutative ring is a commutative ring.
- **8.** The radical of *J* is the set

$$rad(I) = \{ a \in A \mid \exists n \in \mathbb{Z} : a^n \in I \}.$$

Prove that rad(I) is an ideal of A.

- **9.** Let *A* and *B* be rings and $\eta: A \to B$ a surjective homomorphism.
 - (i) Assume that *J* is an ideal of *A* such that $J \supseteq \text{Ker}(\eta)$. Prove that $\eta(J)$ is an ideal of *B*.
 - (ii) Assume that B is a field. Prove that $Ker(\eta)$ is a maximal ideal, i.e., it is a proper ideal which is not strictly contained in any strictly larger proper ideal.

10. Let $m, n \in \mathbb{Z}$. Prove that

$$m\mathbb{Z} + n\mathbb{Z} = \gcd(m, n)\mathbb{Z}.$$

- 11. Establish each of the following isomorphisms:
 - (i) $\mathbb{Z}_{20}/4\mathbb{Z}_{20} \cong \mathbb{Z}_4$.
 - (ii) $\mathbb{Z}_{12}/6\mathbb{Z}_{12} \cong \mathbb{Z}_6$.
 - (iii) $\mathbb{Z}_{72}/12\mathbb{Z}_{72} \cong \mathbb{Z}_{12}$.
 - (iv) $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$.
- **12.** Let $f: A \to B$ be a surjective homomorphism of rings, where B is a commutative ring. Let I be the ideal generated by elements of the form aa' a'a, with $a, a' \in A$. Show that:
 - (i) $I \subseteq \text{Ker } f$.
 - (ii) I = Ker f if and only if the canonical surjection:

$$A/I \rightarrow A/\operatorname{Ker} f \cong B$$

is an isomorphism.

13. Show that the ideal $\langle x^2 - 2 \rangle$ of $\mathbb{Z}[x]$ is prime but not maximal by proving that

$$\mathbb{Z}[x]/\langle x^2 - 2 \rangle \cong \mathbb{Z}[\sqrt{2}].$$

14. Let C[0,1] be the ring of continuous functions from [0,1] to \mathbb{R} with the structure described in Exercise 10.3.3. Show that

$$I = \left\{ f \in C[0,1] \mid f\left(\frac{1}{2}\right) = 0 \right\}$$

is a maximal ideal.

- **15.** Let *A* and *B* be rings. Show that an ideal of $A \times B$ can always be written in the form $I \times J$, with $I \subseteq A$ and $J \subseteq B$. Deduce that an ideal of $A \times B$ is maximal if and only if it can be written as one of the forms $I \times B$, with I maximal in A, or $A \times J$, with J maximal in B.
- **16.** Let A be a commutative ring and I a prime ideal of A such that A/I is finite. Show that I is maximal.
- **17.** Let *A* be a commutative ring and *I* a proper ideal of *A*. Show that *I* is prime if and only if $A \setminus I$ is closed under multiplication.

2