Python

理論與實作

黃熠程 2022/01/15

想像一下,你手上有一個設計藍圖,你可以根據這個藍圖,蓋出任意外觀的房子

類別 class

物件 object

類別 class

物件object

類別(class)

物件(object)

物件(object)

Python 內建有三種基本類別

integer	整數1號	整數2號	•••
float	浮點數1號	浮點數2號	•••
string	字串1號	字串2號	•••
•••	•••	•••	•••

Python 資料型態

類別(class)

物件(object)

描述:value

500坪

100坪

Python 資料型態

類別(class)

物件(object)

描述:value

integer

integerObj

宣告

10

C/C++ C#

Java

Integer integerObj = 10

javaScript

var integerObj = 10

python

integerObj = 10

動態宣告

```
integer,parameter :: NX=200,NY=200,NZ=30
      integer, parameter :: dx = 1000, dy = 1000, dz = 250
     real, parameter :: rlatd = 22.25, rlond = 119.75
     real, parameter :: lon l = 118.29151, lat l = 20.900108
     real, parameter :: lon g = 9.72325634E-03, lat g = 8.99927784E-03
!~background
     real :: u0(NX,NY,NZ),v0(NX,NY,NZ),qv0(NX,NY,NZ),t0(NX,NY,NZ)
!~ascat
      integer,parameter :: sea info=358
     real :: sea site(3,sea info)
     integer :: sea site id(sea info)
     character*13 :: infile sea(sea info)
     INTEGER :: ID,YY,MM,DD,HH,NN,itime
     REAL :: pre,temp,td,RH,WIND,WINDIR
     real :: alt(sea info),lon(sea info),lat(sea info)
     real :: spd(sea info),dir(sea info)
     real, parameter :: badpt = -999.98999
     real :: ua(sea info), va(sea info)
     real, parameter :: u hfactor=-7.7368259E-02
     real, parameter :: v hfactor=0.612216
     real, parameter :: u mfactor=-0.6058777
     real, parameter :: v mfactor=-0.1411584
     real, parameter :: u_lfactor=6.8603404E-02
     real, parameter :: v lfactor=0.1272687
```

沒有動態宣告的狀況...

C++之父: Bjarne Stroustrup Java之父: James Gosling

Python之父: Guido van Rossum

Python 資料型態

類別(class)	物件(object)	描述:value
integer	整數1號	10
float	浮點數1號	10.567
string	字串1號	"hello"
•••	•••	•••
SomthingClass	Object1	Any Value

A = 10

B = 10.567

C = "hello"

•••

Python 數學計算

數學符號	功能
+	加法
_	減法
*	乘法
/	除法
//	只取得整數的除法
%	取餘數

不同類別不能混在一起計算

Using Colab to check python variable type ...

Alworkshop0201

超式(Function)

Speech Recognition

Image Recognition

Python 的函式

Python 的自訂函式

```
def 函式名稱(input something):
....
return something
```

```
def 函式名稱():
```

••••

Using Colab to create your own function ...

Alworkshop0202

Practice

自訂類別

類別(class)

物件(object)

描述:value

500坪

客廳多大?

幾個廁所?

幾個門?

描述太少了.....

墾別(type)

integer

物件(object)

integerObj

描述:value

10

類別(Class)

屬性(properties)

integer

客廳大小

100

integer

廁所數量

4

integer

門數量

10

Using Colab to check python Class...

Alworkshop0203

Python Class

在這設計藍圖中,有"客廳", 廚房" …等特徵,程式設計中,我們稱為 <mark>屬性</mark>(properties)或

我們還能定義一些<mark>行為</mark>(behaviors),例如打開門,開啟水龍頭,這些行為在所有的房子(物件)中都能用到

套房A.開門()

套房B.開門()

=模型

Using Colab to check python Class...

Alworkshop0204

Numpy

向量

var1	var2	var3	var4	var5	var6
編號O	編號1	編號2	編號3	編號4	編號5

矩陣

Row(列)

var1	var2	var3	var4	var5	var6
	100				
var7	var8	var9	var10	var11	var12
var13	var14	var15	var16	var17	var18

C<u>o</u>lumn (行)

Numpy 基本介紹

· 基本資料型態 array,可以用來存放與處理多維資料

<class 'numpy.ndarray'>

• numpy.ndarray 建立時可指定元素型態,dtype可顯示跟指定元素型態

```
a = np. array([1, 5, 9], dtype = 'int64')
print(a. dtype)
int64
```

• shape()方法可以得知每一維度的個數,進一步推算 row 與 column

```
a = np.array([1, 5, 9], dtype = 'int64')
print(a. shape)
b = np.array([[1, 5, 9], [2, 6, 10]], dtype = 'int64')
print(b. shape)

(3,)
(2, 3)
2 6 10
```

矩陣方向都是 先列後行

Using Colab to check python Class...

Alworkshop0205

矩阵切片 Alworkshop0205

• print(c[:, 0]) # 指定第0行,所有列

 1
 2
 3

 4
 5
 6

 7
 8
 9

```
print(c[:, 0]) # 指定第0行,所有列
print(c[:, 1]) # 指定第1行,所有列
print(c[:, 2]) # 指定第2行,所有列
[1 4 7]
[2 5 8]
[3 6 9]
```

• print(c[:2, :2]) # 指定第0~1列,第0~1行

print(c[:2, :2]) # 指定第0~1列,第0~1行

矩陣方向都是 先列後行

流程控制

Python 的流程控制

```
If (邏輯判斷a):
描述 ...
elif(邏輯判斷b):
描述 ...
else:
描述 ...
```

```
邏輯判斷運算
             判斷是否"等於" (equivalent)
             判斷是否"不等於" (not equivalent)
             判斷是否"大於" (greater than)
             判斷是否"大於或等於" (greater than or equivalent)
             判斷是否"小於" (less than)
             判斷是否"小於或等於" (less than or equivalent )
判斷集合的運算
 and 兩判斷式皆為真.AND.才為真
 or 兩判斷式至少一個為真.OR.才為真
```

Using Colab to check python if statement...

Alworkshop0206

Python 的流程控制

```
for iterating_var in sequence:
    statements(s)
```

Using Colab to check python if statement... Alworkshop0206

Summary

• Python中所有變數皆是物件,其型別由等號右邊決定