### Milestone 3

August 14, 2023

## 1 Milestone 3: Beyond Descriptive Statistics /Preparation By Aiman

## 2 Diving Deeper: Uncovering Correlations and Trends¶

Calculating Pearson Correlation Coefficient between Total Winter and Summer Olympic Medals 1- Calculate the total number of medals for each year in both the Winter and Summer Olympics.

2- Compute the Pearson correlation coefficient between these two sets of total medal counts.

```
SUM(CASE

WHEN Medal = "Gold" THEN 1 ELSE 0

END) AS gold_count,

SUM(CASE

WHEN Medal = "Silver" THEN 1 ELSE 0

END) AS silver_count,

SUM(CASE

WHEN Medal = "Bronze" THEN 1 ELSE 0

END) AS bronze_count

FROM summer_events

GROUP BY Year
```

```
[5]: winter_medal_by_year = pysqldf('''
               SELECT
                       Year,
                       COUNT(*) AS total_count,
                       SUM(CASE
                             WHEN Medal IS NOT NULL THEN 1 ELSE 0
                           END) AS medal_count,
                       SUM(CASE
                             WHEN Medal = "Gold" THEN 1 ELSE 0
                           END) AS gold_count,
                       SUM(CASE
                             WHEN Medal = "Silver" THEN 1 ELSE 0
                           END) AS silver_count,
                       SUM(CASE
                             WHEN Medal = "Bronze" THEN 1 ELSE 0
                           END) AS bronze_count
                       FROM winter_events
                       GROUP BY Year
     ''')
```

#### [6]: print(summer\_medal\_by\_year.head(10))

|   | Year | total_count | medal_count | ${\tt gold\_count}$ | silver_count | bronze_count |
|---|------|-------------|-------------|---------------------|--------------|--------------|
| 0 | 1896 | 380         | 143         | 62                  | 43           | 38           |
| 1 | 1900 | 1936        | 604         | 201                 | 228          | 175          |
| 2 | 1904 | 1301        | 486         | 173                 | 163          | 150          |
| 3 | 1906 | 1733        | 458         | 157                 | 156          | 145          |
| 4 | 1908 | 3101        | 831         | 294                 | 281          | 256          |
| 5 | 1912 | 4040        | 941         | 326                 | 315          | 300          |
| 6 | 1920 | 4292        | 1308        | 493                 | 448          | 367          |
| 7 | 1924 | 5233        | 832         | 277                 | 281          | 274          |
| 8 | 1928 | 4992        | 734         | 245                 | 239          | 250          |
| 9 | 1932 | 2969        | 647         | 229                 | 214          | 204          |

### [7]: print(winter\_medal\_by\_year.head(10))

|   | Year | total_count | medal_count | ${\tt gold\_count}$ | silver_count | bronze_count |
|---|------|-------------|-------------|---------------------|--------------|--------------|
| 0 | 1924 | 460         | 130         | 55                  | 38           | 37           |
| 1 | 1928 | 582         | 89          | 30                  | 28           | 31           |
| 2 | 1932 | 352         | 92          | 32                  | 32           | 28           |
| 3 | 1936 | 895         | 108         | 36                  | 37           | 35           |
| 4 | 1948 | 1075        | 135         | 41                  | 48           | 46           |
| 5 | 1952 | 1088        | 136         | 45                  | 44           | 47           |
| 6 | 1956 | 1307        | 150         | 51                  | 49           | 50           |
| 7 | 1960 | 1116        | 147         | 50                  | 48           | 49           |
| 8 | 1964 | 1778        | 186         | 61                  | 67           | 58           |
| 9 | 1968 | 1891        | 199         | 66                  | 70           | 63           |

Because the Winter Olympics began in 1924, while the Summer Olympics started back in 1896, there's a difference in the lengths of the arrays that show medal counts. To address this, I need to create a new table that only includes Summer Olympics data starting from 1924. This way, both datasets will have matching lengths, making it easier to compare the medal counts between Winter and Summer Olympics effectively.

```
[8]: summer_medal_by_year_1 = summer_medal_by_year[7:]
```

### [9]: print(summer\_medal\_by\_year\_1.head(10))

|    | Year | total_count | medal_count | gold_count | silver_count | bronze_count |
|----|------|-------------|-------------|------------|--------------|--------------|
| 7  | 1924 | 5233        | 832         | 277        | 281          | 274          |
| 8  | 1928 | 4992        | 734         | 245        | 239          | 250          |
| 9  | 1932 | 2969        | 647         | 229        | 214          | 204          |
| 10 | 1936 | 6506        | 917         | 312        | 310          | 295          |
| 11 | 1948 | 6405        | 852         | 289        | 284          | 279          |
| 12 | 1952 | 8270        | 897         | 306        | 291          | 300          |
| 13 | 1956 | 5127        | 893         | 302        | 293          | 298          |
| 14 | 1960 | 8119        | 911         | 309        | 294          | 308          |
| 15 | 1964 | 7702        | 1029        | 347        | 339          | 343          |
| 16 | 1968 | 8588        | 1057        | 359        | 340          | 358          |
|    |      |             |             |            |              |              |

Now second step is to calculate the Pearon correlation coefficient between the total number of medals in the winter and summer olympics from 1924 to 2016.

```
[10]: x = summer_medal_by_year_1.medal_count
y = winter_medal_by_year.medal_count
correlation_coefficient = np.corrcoef(x,y)

print("Pearson Correlation Coefficient:\n", correlation_coefficient)
```

```
Pearson Correlation Coefficient:
```

```
[[1. 0.94141801]
[0.94141801 1. ]]
```

```
[11]: sns.heatmap(correlation_coefficient, annot=True, cmap="coolwarm", linewidths=0.

→5)

plt.title("Pearson Correlation Coefficient Heatmap")

plt.show()
```



The Pearson Correlation Coefficient matrix reveals a robust positive correlation of around 0.9414 between a country's performance in the Winter Olympics and its performance in the Summer Olympics. This indicates that how well a country performs in one type of Olympics tends to be closely linked to its performance in the other type. However, it's essential to note that correlation doesn't imply causation, and additional investigation is needed to understand the factors driving this connection.

```
[12]: summer_std = np.std(x)
winter_std = np.std(y)
```

```
[13]: print("standard deviation of summer's medal count: ",summer_std)
print("standard deviation of winter's medal count: ",winter_std)
```

standard deviation of summer's medal count: 475.323015441357 standard deviation of winter's medal count: 152.56899942903493

From 1924 to 2016, we observed that the standard deviation of medal counts in the Summer Olympics is approximately three times larger than that in the Winter Olympics. This indicates that the performance of countries by year tends to exhibit greater variation in the Summer Olympics compared to the Winter Olympics. The wider spread of data points in the Summer Olympics suggests more pronounced fluctuations in medal counts over the years, reflecting a potentially more

dynamic and competitive landscape in those games.

## 3 Going Beyond: Exploring Hidden Connections and Influences

4 Analyzing the Influence of Age on Medal-Winning Probability

```
Pysqldf('''SELECT

CASE WHEN Age BETWEEN 24 AND 26 THEN 'Around 25'

ELSE 'Other Ages' END AS AgeGroup,

COUNT(*) AS TotalAthletes,

SUM(CASE WHEN Medal IS NOT NULL THEN 1 ELSE 0 END) AS MedalWinners,

ROUND((CAST(SUM(CASE WHEN Medal IS NOT NULL THEN 1 ELSE 0 END) AS FLOAT) /

→COUNT(*)) * 100, 2) AS MedalWinningPercentage

FROM

athlete_events

GROUP BY

AgeGroup;

'''')
```

```
[14]: AgeGroup TotalAthletes MedalWinners MedalWinningPercentage 0 Around 25 59102 9337 15.80 1 Other Ages 212014 30446 14.36
```

Summary: The analysis aimed to understand whether athletes around the age of 25 demonstrate a higher probability of winning medals in their respective events. The data was segmented into two age groups: "Around 25" (ages 24-26) and "Other Ages." The results revealed that athletes around 25 years old had a medal-winning percentage of 15.80%, while the medal-winning percentage for other age groups was 14.36%. This suggests that there is a slight increase in the likelihood of winning medals for athletes around the age of 25 compared to other age groups. This insight sheds light on the potential influence of age on peak athletic performance and success in competitive events.

# 5 Investigating the Relationship: Do Developed Countries Earn More Olympic Medals?

| F4 = 3 |    | _                          |     | ggrprm (1/ 1 1 1) |
|--------|----|----------------------------|-----|-------------------|
| [15]:  | _  | Team                       | NOC | COUNT(Medal)      |
|        | 0  | United States              | USA | 5637              |
|        | 1  | Soviet Union               | URS | 2503              |
|        | 2  | Germany                    | GER | 2165              |
|        | 3  | Great Britain              | GBR | 2068              |
|        | 4  | France                     | FRA | 1777              |
|        | 5  | Italy                      | ITA | 1637              |
|        | 6  | Sweden                     | SWE | 1536              |
|        | 7  | Canada                     | CAN | 1352              |
|        | 8  | Australia                  | AUS | 1320              |
|        | 9  | Russia                     | RUS | 1165              |
|        | 10 | Hungary                    | HUN | 1135              |
|        | 11 | Netherlands                | NED | 1040              |
|        | 12 | Norway                     | NOR | 1033              |
|        | 13 | East Germany               | GDR | 1005              |
|        | 14 | China                      | CHN | 989               |
|        | 15 | Japan                      | JPN | 913               |
|        | 16 | Finland                    | FIN | 900               |
|        | 17 | Switzerland                | SUI | 691               |
|        | 18 | Romania                    | ROU | 653               |
|        | 19 | South Korea                | KOR | 638               |
|        | 20 | Denmark/Sweden             | DEN | 597               |
|        | 21 | West Germany               | FRG | 586               |
|        | 22 | Poland                     | POL | 565               |
|        | 23 | Spain                      | ESP | 489               |
|        | 24 | Czechoslovakia             | TCH | 488               |
|        | 25 | Brazil                     | BRA | 475               |
|        | 26 | Belgium                    | BEL | 468               |
|        | 27 | Austria                    | AUT | 450               |
|        | 28 | Cuba                       | CUB | 409               |
|        | 29 | Yugoslavia                 | YUG | 390               |
|        | 30 | Bulgaria                   | BUL | 342               |
|        | 31 | Unified Team               | EUN | 279               |
|        | 32 | Argentina<br>Thessalonki-1 | ARG | 274               |
|        | 33 |                            | GRE | 255               |
|        | 34 | New Zealand                | NZL | 228               |
|        | 35 | Ukraine                    | UKR | 199               |
|        | 36 | India                      | IND | 197               |
|        | 37 | Jamaica                    | JAM | 157               |
|        | 38 | Croatia                    | CRO | 149               |
|        | 39 | Czech Republic             | CZE | 144               |
|        | 40 | Belarus                    | BLR | 139               |
|        | 41 | South Africa               | RSA | 131               |
|        | 42 | Pakistan                   | PAK | 121               |
|        | 43 | Mexico                     | MEX | 110               |
|        | 44 | Kenya                      | KEN | 106               |
|        | 45 | Nigeria                    | NGR | 99                |

| 46 | Turkey     | TUR | 95 |
|----|------------|-----|----|
| 47 | Serbia     | SRB | 85 |
| 48 | Kazakhstan | KAZ | 77 |
| 49 | Iran       | IRI | 68 |

Summary: Our analysis of historical Olympic medal counts by country indicates a pattern where developed nations such as the United States, Soviet Union, Germany, and Great Britain have consistently secured substantial medal counts. While this trend supports the hypothesis that developed countries accumulate more medals, it's crucial to recognize that various factors beyond development status contribute to these achievements. Further exploration is necessary to fully grasp the intricate interplay between a country's development and its success in the Olympics.