

Printed Electrodermal Activity Sensor with Optimized Filter for Stress Detection

Haibin Zhao¹, Alexander Scholz², Michael Beigl¹, Si Ni, Surya A. Singaraju², and Jasmin Aghassi-Hagmann²

¹ Chair of Pervasive Computing Systems Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany ² Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany

Long-term, continuous, unobtrusive stress detection is important

Current Solution: smart watch/ wristband

price: €400 for apple watch, €1500 for Empatica wristband

wearability: non-flexible housing large size

ultra-low cost

flexibility

non-toxicity

Stress Detection

Sensor

Printed electrodermal activity sensor

Electrodermal activity sensor

Skin conductance that related to the sympathetic neural activity

Algorithm

Printed band-pass filter + threshold

Classic machine learning

Random forest, AdaBoost, Decision tree, ...

Artificial neural network

CNN, RNN, ...

Printed electrodermal activity (pEDA) sensor

Printed band-pass filter & printed diode

Hardware level optimization

Band-pass filter

System model

$$\dot{\mathbf{z}} = \begin{bmatrix} -\frac{R_1 + R_2}{R_1 R_2 C_1} & \frac{1}{R_2 C_1} \\ \frac{1}{R_2 C_2} & -\frac{1}{R_2 C_2} \end{bmatrix} \cdot \mathbf{z} + \begin{bmatrix} \frac{1}{R_1 C_1} \\ 0 \end{bmatrix} \cdot V_{in}$$

$$V_{out} = \begin{bmatrix} 1 & -1 \end{bmatrix} \cdot \mathbf{z}$$

where z is the state vector

Objective function

$$\min \sum_{t} f(\boldsymbol{p}, V_{in}, t) (1 - 2y_t)$$

f: summarizes the system model of filter p: vectorizes the design parameters of filter y_t : label at t, 1 for stress, 0 for non-stress

Comparison of convolutional filter and hardware filter

Hardware level optimization

Band-pass filter

Objective function

$$\min \sum_{t} f(\boldsymbol{p}, V_{in}, t) (1 - 2y_t)$$

differential equation no closed form

Optimization

Covariance matrix adaptive evolution (CMA-ES)

Threshold diode

Objective

higher threshold -> higher precision, lower recall lower threshold -> lower precision, higher recall

Optimization

grid search

Data source: WESAD dataset

trade-off: F1 score

Feasibility Test

EDA signal -> pEDA signal

collect data with **pEDA** and E4 at the same time (N=3)

find transformation from E4 signal to pEDA signal

$$\hat{x}_{pEDA} = \omega_1 \cdot x_{E4} + \omega_2$$

The proposed pEDA sensor can obtain comparable information to that of the state-of-the-art Empatica E4 wristband.

Future works

simulation -> real test on hardware

more sophisticated but dependable filters

take production error into optimization process

printed/soft battery

Thank you for your attention

