MA323 Lab 3

Ashish Kumar Barnawal

September 23, 2020

Question 1

Since it is a uniform distribution, we have all p_i equal. Thus

$$q_0 = 0, \ q_1 = \frac{1}{N}, \ q_2 = \frac{2}{N} \dots q_N = 1$$

where N is the size of the sequence $S = 1, 3, 5, ..., 9999 \setminus So$ for every $u \in \mathcal{U}[0,1]$ if the resulting number is S_k then $q_{k-1} \leq u < q_k$ or $k-1 \leq uN < k$. Therefore,

$$\lfloor uN\rfloor = k-1$$

Experimentally we get the following distribution (see Figure 1) for 100000 samples

Question 2

(a)

 $f(x) = 20x(1-x)^3$ attains its maximum value of $\frac{135}{64}$ at x = 1/4. As we're using $\mathcal{U}[0,1]$ so g(x) = 1 and thus $c = \frac{135}{64}$ is the minimum value of c satisfying $f(x) \leq cg(x)$.

(b)

upon generating the values, we get the following histogram (density). On average we need 2.108 iterations for $c = \frac{135}{64}$

Figure 1: number of 10^6

Figure 2: number of samples $= 10^6$

sample size	1000	10000	100000	500000	1000000
$\max p(x) - f(x) $	0.997	0.322	0.149	0.058	0.028

Seeing the results above, we can see that p(x) converges to f(x). Here p(x) is the PDF of our experimentally generated random variables

(c)

The following is the table for the number of iterations required on average to generate one random variable.

sample size	1000	10000	100000	500000	1000000
avg iterations	2.175	2.118	2.099	2.112	2.108

We expect average number of iterations to converge to

$$\frac{1}{P(U \le f(X)/cg(X))} = c = \frac{135}{64} = 2.109$$

which is indeed the case.

(d)

Table 1: $c=4$						
sample size	1000	10000	100000	500000	1000000	
avg. iterations	4.115	3.995	4.021	4.006	4.001	

We can see that in both cases average number of iterations converges to the value of c.

Question 3

The minimum values of c will be 1.2 as g(x) = 0.1 for all $x \in \{1, 2, ..., 10\}$. We can see that the distribution of values generated converge to required distribution.

Also, the average number of iterations converges to the values of c. In this case, c is taken to be 1.5 and 10

Table 3: $c = 1.5$						
$\operatorname{samples}$	1000	10000	100000	500000	1000000	
avg iterations	1.4640	1.4984	1.4979	1.5001	1.4999	

Here are the graphs showing the probabilities of our randomly generated variable.

