Contents

1	Ove	Overview					
	1.1	1 What Operating Systems Do					
	1.2	Comp	uter-System Organization	2			
		1.2.1	Computer-System Operation	2			
		1.2.2	Storage Structure	2			
		1.2.3	I/O Structure	3			
	1.3	Comp	uter-System Architecture	3			
		1.3.1	Single-Processor Systems	3			
		1.3.2	Multiprocessor Systems	4			
		1.3.3	Clustered Systems	4			
	1.4	Opera	ting-System Structure	5			

1 Overview

1.1 What Operating Systems Do

Components of a Modern Computer System

An **operating system** is a software that

- manages and controls a computer's hardware;
- coordinates and optimizes utilization of hardware;
- provides a basis for application programs.

An operating system is similar to a *government*, who performs no useful function, but provides an environment within which other programs can do useful work.

	Ease of Use	One user monopolizes all resources.			
T. T.	Maximizing Utilization	Multiple users utilize resources simutaneously.			
User View {	Compromise	OS assigns and shares resources to different users.			
	Compromise OS assigns and shares resources to different users. Little or no User View				
Crystom Viore	Resource Allocator	rocesses numerous and possibly conflicting requests.			
System view	Control Program	processes numerous and possibly conflicting requests. manages the execution of user programs			

1.2 Computer-System Organization

1.2.1 Computer-System Operation

Rquires Memory Controllers — Memory Cycles

Figure: Components of Modern General-Purpose Computer

For a computer to start running, it

- 1. runs bootstamp program, which
 - tends to be simple.
 - is stored in **read-only memory** (ROM), or Electrically Erasable Programmable ROM
 - initializes all aspects of the OS, from CPU registers to device controllers to memory.
 - locates the operating system and loads it to memory (← know how to load and start)
- 2. loads service programs (**system daemons**: outside kernel, loaded at boot, runs entire time)

The event is signaled by an **interrupt** from either hardware or software.

1.2.2 Storage Structure

All forms of memory provide **an array of bytes**. Each byte has its own address.

Other types of memory:

- Cache: stores data to reduce time cost of further request for that data.
- ROM: cannot be changed \Rightarrow ONLY static programs (e.g., bootstamp program).
- EEPROM: change is slow \Rightarrow mostly static programs (e.g., factory-installed programs).

Hierarchy	Magnitude	Volatility	Implementation
Registers	bytes	√	MOSFET
Cache	16KB ~ 50MB	√	MOSFET
Main Memory	8GB ~ 64GB	√	MOSFET
Solid-state Disks	≥ 100 GB	O/x	Flash Memory
Magnetic Disks	≥ 500 GB	×	Magnetic Poles
Optical Disks		×	Pits & Lands
Magnetic Tapes	TB	×	Magnetic Memory

Table: Information and Hierarchy of Storage (higher in hierarchy ⇒ larger capacity, more expensive, and faster)

1.2.3 I/O Structure

Figure: I/O Structure

Figure: I/O Operation

This form creates overhead when bulk and/or frequent data movement, like disk and keyboard. By **direct memory access** (DMA), the driver fires only one interrupt and transfers a block of data from its local buffer the main memory, without CPU's intervention.

1.3 Computer-System Architecture

1.3.1 Single-Processor Systems

S.P.S.
$$\begin{cases} 1 \text{ GP CPU \& GP registers} & \text{GP instruction set} \\ \text{SP registers (from processors)} & \text{limited SP instruction set} \end{cases}$$
 runs user program
$$\begin{cases} \text{is managed by OS} \\ \text{only autonomously} \end{cases}$$

1.3.2 Multiprocessor Systems

Figure: Multiprocessor System Concepts

Multicore: includes multiple computing cores (owns registers and local cache) on a single chips; on-chip communication is faster and uses significantly less power than between-chip communication.

1.3.3 Clustered Systems

A **clustred sytem** are composed of two or more individual systems, or nodes, joined together.

Figure: General structure of a clustered system

Parallelization: divides a program into separate components to run on individual computers in the cluster \implies much greater computational power (significantly greater than multiple single-processor systems or even symmetric multiprocessor systems).

Parallel clusters: multiple hosts to access data on shared storage ⇒ access control and locks

1.4 Operating-System Structure