

IEDA4000B Group Project, Richard Blažek, Tik Long Bryan Yeung

Motivation

- Volatility of renewable energy
- Backup energy sources e.g. hydro, gas
- Gas around two hours to ramp up power
- Renewable energy generation depends on weather
- We can predict it, if we have meteorological data

Prediction

- Old Dataset on temperature, wind, humidity and turbine power for every hour over five years
- O2 MLP model should use current data to predict power generated two hours later
- Training model on part of the data, then validating it

1.0 0.8 Prediction 6.0 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 Power generated

Validation

• $R^2 = 0.95$

Prediction error 0.3 0.2 -0.1 0.0 -0.1-0.2 -0.34000 2000 6000 8000 10000 12000

Battery

- Large enough to absorb errors
- 6 x S.D. of prediction error

Prescription

- Old Calculate how much gas power to generate for balancing fluctuations
- O2 The difference between energy consumption and production is stored to or taken from the battery
- Aim to meet the demand and refill battery for future needs

Simulation

- Blue lines limits of battery
- Red line battery state
- No blackout for six months 🎉

Energy Production

Assumptions

- Assuming constant demand for simplicity
 - It does matter in practice, we'd just add one more MLP,
 prescription would remain the same
- Assuming excess electricity is not a problem
 - Both wind turbines and gas power plants can ramp down quickly to avoid overgeneration

Training

- Dataset split into three parts for training MLP (first 60 %), for validation and estimating error SD (next 30 %), and for simulation (last 10 %)
- Using scikit-learn for MLP regression
- The rest is statistics using numpy and matplotlib

Possible extensions

Add cost considerations in deciding battery size

O2 Avoid overproduction to reduce gas consumption

Multiple electricity sources with different properties

Thank you!

Dataset source:

https://www.kaggle.com/datasets/mubashirrahim/wind-power-generation-data-forecasting