This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find the derivative of

$$f(x) = \frac{\sinh(x)}{3 - \cosh(x)}.$$

1.
$$f'(x) = \frac{3\sinh(x) + 1}{3 - \cosh(x)}$$

2.
$$f'(x) = \frac{3\cosh(x) - 1}{(3 - \cosh(x))^2}$$

3.
$$f'(x) = \frac{3\sinh(x)}{(3-\cosh(x))^2}$$

4.
$$f'(x) = \frac{3\cosh(x) + 1}{3 - \cosh(x)}$$

5.
$$f'(x) = \frac{3\sinh(x)}{3 - \cosh(x)}$$

002 10.0 points

Find all the critical points of

$$f(x) = x(5-x)^6.$$

1.
$$x = -5, \frac{5}{7}$$

2.
$$x = -\frac{5}{7}$$

3.
$$x = 1$$

4.
$$x = \frac{5}{7}$$

5.
$$x = 5, \frac{5}{7}$$

6.
$$x = -5, 1$$

7.
$$x = -1$$

8.
$$x = 5, 1$$

003 10.0 points

Find all the critical points of

$$f(x) = x(1-x)^{3/5}$$
.

1.
$$x = 1$$

2.
$$x = -1, -\frac{5}{8}$$

3.
$$x = -\frac{5}{8}$$

4.
$$x = -1, \frac{5}{8}$$

5.
$$x = -1$$

6.
$$x = \frac{5}{8}$$

7.
$$x = 1, \frac{5}{8}$$

8.
$$x = 1, -\frac{5}{8}$$

004 10.0 points

Find all the critical points of

$$f(x) = x(1+x)^{5/3}$$

1.
$$x = -1, \frac{3}{8}$$

2.
$$x = \frac{3}{8}$$

3.
$$x = -1, -\frac{3}{8}$$

4.
$$x = 1$$

5.
$$x = -1$$

6.
$$x = 1, -\frac{3}{8}$$

7.
$$x = -\frac{3}{8}$$

005 10.0 points

Find all the critical points of

$$f(x) = x(x+2)^{3/5}$$
.

1.
$$x = -\frac{5}{4}$$

2.
$$x = -2$$

3.
$$x = 2$$

4.
$$x = -2, -\frac{5}{4}$$

5.
$$x = -2, \frac{5}{4}$$

6.
$$x = 2, \frac{5}{4}$$

7.
$$x = \frac{5}{4}$$

8.
$$x = 2, -\frac{5}{4}$$

006 10.0 points

If f is the function whose graph is given by

which of the following properties does f NOT have?

1.
$$f'(x) > 0$$
 on $(4, 7)$

2.
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x)$$

3.
$$\lim_{x \to 4} f(x) = 5$$

4. critical point at x = 2

5. local maximum at x = 4

007 10.0 points

If the graph of the function defined on [-3, 3] by

$$f(x) = x^2 + ax + b$$

has an absolute minimum at (-1, 3), determine the value of f(1).

1.
$$f(1) = 6$$

2.
$$f(1) = 9$$

3.
$$f(1) = 7$$

4.
$$f(1) = 10$$

5.
$$f(1) = 8$$

008 10.0 points

Find all the critical points of f when

$$f(x) = \frac{x}{x^2 + 25}.$$

1.
$$x = -25, 25$$

2.
$$x = -5, 25$$

3.
$$x = -5, 5$$

4.
$$x = -25, 5$$

5.
$$x = 0.5$$

6.
$$x = -5, 0$$

009 10.0 points

Find all the critical points of f when

$$f(x) = x^{4/5}(x-5)^2.$$

1.
$$x = 0, \frac{5}{7}, 5$$

2.
$$x = 0, \frac{10}{7}, 5$$

3.
$$x = 0, \frac{10}{7}$$

4.
$$x = \frac{5}{7}$$
, 5

5.
$$x = 0, \frac{5}{7}$$

6.
$$x = \frac{10}{7}$$
, 5

010 10.0 points

Find all the critical points of

$$f(x) = \cos^2 x + \sqrt{3}\sin x$$

on $(-\pi/2, \pi/2)$.

1.
$$c = -\frac{\pi}{3}, \frac{\pi}{3}$$

2.
$$c = \frac{\pi}{6}$$

3.
$$c = -\frac{\pi}{3}, \ 0, \ \frac{\pi}{3}$$

4.
$$c = \frac{\pi}{3}$$

5.
$$c = 0$$

6.
$$c = -\frac{\pi}{6}, \ 0, \ \frac{\pi}{6}$$

011 10.0 points

Determine the absolute minimum value of

$$f(x) = x\sqrt{1-x^2} + 4$$

on [-1, 1].

- 1. absolute min. value = 5
- **2.** absolute min. value = 3
- 3. absolute min. value $=\frac{7}{2}$
- **4.** absolute min. value $=\frac{9}{2}$
- 5. absolute min. value $=\frac{5}{2}$
- **6.** absolute min. value = 4

012 10.0 points

Determine the absolute maximum value of

$$f(x) = \frac{4+2x}{x^2+5}$$

on the interval [-1, 2].

- 1. none of the other answers
- **2.** abs max = $\frac{8}{9}$
- 3. abs max = $\frac{7}{5}$
- 4. abs max = 1
- **5.** abs max = $\frac{1}{3}$

013 10.0 points

Determine if Rolle's Theorem can be applied to

$$f(x) = \frac{x^2 + 3x - 18}{x + 3}$$

on the interval [-6, 3], and if it can, find all numbers c satisfying the conclusion of that theorem.

1.
$$c = -3, -\frac{3}{2}$$

2.
$$c = -\frac{3}{2}$$

3. Rolle's Theorem not applicable

4.
$$c = -1$$

5.
$$c = -3$$

6.
$$c = -3, -15$$

014 10.0 points

Determine if Rolle's Theorem can be applied to

$$f(x) = \frac{x^2 + 2x - 8}{x + 6}$$

on the interval [-4, 2], and if it can, find all numbers c satisfying the conclusion of that theorem.

1.
$$c = -2$$

2. Rolle's Theorem not applicable

3.
$$c = -\frac{2}{3}$$

4.
$$c = -2, -10$$

5.
$$c = -2, -1$$

6.
$$c = -1$$

015 10.0 points

Determine if the function

$$f(x) = x\sqrt{12 - x}$$

satisfies the hypotheses of Rolle's Theorem on the interval [0, 12], and if it does, find all numbers c satisfying the conclusion of that theorem.

1.
$$c = 4, 5$$

2.
$$c = 8$$

3.
$$c = 5$$

4. hypotheses not satisfied

5.
$$c = 9$$

6.
$$c = 8$$
, 9

016 10.0 points

Determine if the function

$$f(x) = x^2 - x + 2$$

satisfies the hypotheses of the Mean Value Theorem (MVT) on the interval [-3, 3].

If it does, find all possible values of c satisfying the conclusion of the MVT.

1.
$$c = \frac{3}{2}$$

2.
$$c = -\frac{3}{2}$$

3.
$$c = -\frac{3}{2}, \ 0$$

4.
$$c = 0$$

5.
$$c = 0, \frac{3}{2}$$

6. hypotheses not satisfied

017 10.0 points

Determine if the function

$$f(x) = 3 - x - x^3$$

satisfies the hypotheses of the Mean Value Theorem (MVT) on the interval [-2, 1].

If it does, find all possible values of c satisfying the conclusion of the MVT.

1.
$$c = -\frac{1}{2}$$

- **2.** c = -1
- 3. hypotheses not satisfied

4.
$$c = \frac{1}{2}$$

5.
$$c = 0$$