Equivalence in Foundations

Laney Gold-Rappe and Hans Halvorson

June 28, 2024

- The old consensus: Zermelo-Frankel set theory won the early 20th century battle about the foundations of mathematics
- Main competitors:
 - Finitism
 - Intuitionism
 - Type theory

New developments

- Category theory and the use of topos theory in various branches of pure mathematics (Grothendieck, Mac Lane, Lawvere)
- Martin-Löf type theory
- Computation
- Homotopy type theory (HoTT)

- In the 1970s and 80s, Sol Feferman argued against category-theoretic foundations for principled (philosophical) reasons
- The idea that **Set** and **Cat** are incommensurable foundations was challenged via results of Mitchell, Osius, and Mathias
 - But what exactly did they prove?
- Steve Awodey: Set, Cat, and Typ are equivalent

What do we mean by equivalent?

Bi-interpretability: syntax and semantics

Shulman's theorem

- Shulman's procedure is to construct a model of ETCS from a model of ZF, and vice versa.
- What are the permitted constructions?
- In what sense does the construction need to be uniform, i.e. not dependent on specific features of a model?
- What needs to be shown about the constructions?

Shulman's Theorem

- Given V, we take V_0 to be its domain, and V_1 the set of definable functional relations between elements of V_0 .
- ② It's fairly easy to see that V_0 and V_1 are a model of ETCS.
 - The empty set is an initial object.
 - 2 Any singleton set is a terminal object.

Questions about Shulman's result

 The construction of APGs from a model Set of ETCS seems to require infinitary procedures. Is this move permitted by the standard definition of bi-interpretability?

Type theory: Kemeny or Awodey?