0.1 Cyclotomic Extensions

F field, assume $x^n - 1$ is sep.

 $F(\zeta_n)/F$, ζ_n is a primitive n^{th} root of unity.

$$\{1, \zeta_n, ..., \zeta_n - 1\}$$

Roots of $x^n - 1$ and C_n , $x^n = 1$.

These extensions come up $f(x) = x^n - a, a \in F$.

$$\sqrt[n]{a}, \zeta_n \sqrt[n]{a}, \dots$$

Q: Number of generators of C_n ?

$$C_n = \langle b \rangle$$
.

$$|b|=n$$

$$|b^j| = \frac{n}{(j,n)}$$

Number of generators of $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$.

$$\phi(p) = p - 1$$

$$\phi(p^r) = p^r - p^{r-1}(p-1)$$

$$\{1, 2, \dots, p^r\}$$

Theorem 0.1 $a.b \in \mathbb{Z}$ are coprime, $\mathbb{Z}/ab\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$.

Ex:
$$\mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$

$$a + 6z \rightarrow \alpha + 2\mathbb{Z}, \alpha + 3\mathbb{Z}.$$

Ex:
$$\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

$$a + 4z \rightarrow \alpha + 2\mathbb{Z}, \alpha + 2\mathbb{Z}.$$

By induction, suppose that $n = p_1^{r_1} \dots p_k^{r_k}$.

 $p_1^{r_1}$... distinct primes.

$$\mathbb{Z}/n\mathbb{Z} = (\mathbb{Z}/p^{r_1}\mathbb{Z})^{\times} \times \ldots \times (\mathbb{Z}/p^{r_k}\mathbb{Z})^{\times}$$

$$\phi(n) = \phi(p_1^{r_1}) \dots \phi(p_k^{r_k}) = n \prod_{p|n} (1 - \frac{1}{p})$$

0.2 Study $Gal(F(\zeta_n)/F)$

Lemma $\sigma \in Gal(F(\zeta_n)/F)$

and let
$$\zeta \in \mu_n(F(\zeta_n)) = \{\zeta_n^k | 1 \le k \le n\}$$
 then $\exists a = a_\sigma, (a, n) = 1 \text{ s.t. } \sigma(\zeta) = \zeta^a$

Rem:

$$Gal(F(\zeta_n)/F) \to Perm(\{1, \zeta_n, ..., \zeta_n - 1\})$$

Pf: ζ_n is primitive, $\zeta_n = 1$, $\zeta_n^j \neq 1$, $1 \leq j \leq n$.

 $\sigma(\zeta_n)$ must be a generator.

$$\implies \sigma(\zeta_n) = \zeta_n^a, (a, n) = 1 \text{ for some } a.$$

$$\sigma(\zeta) = \sigma(\zeta_n^k) = \sigma(\zeta_m)^k = (\zeta_n^a)^k = (\zeta_n^k)^a$$

Thm:
$$Gal(F(\zeta_n)/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

 $\sigma \to a_{\sigma}$ an injective homo.

$$\sigma \tau = a_{\sigma} a_{\tau}$$

$$\zeta^{a_{\tau\sigma}} = (\tau\sigma)(\zeta) = \sigma(\tau(\zeta)) = \sigma(\zeta^{a\tau}) = (\sigma(\zeta))^{a\tau} = (\zeta^{a\sigma})^{a\tau} = \zeta^{a_{\sigma}, a_{\tau}}$$

$$\sigma \in \text{kernel} : \sigma(\zeta_n) = \zeta_n^1$$

$$F(\zeta_n)$$
 $\sigma_{|F} = id$

generated by $F, \zeta_n \implies \sigma = id$.

Cor: $Gal(F(\zeta_n)/F)$ abelian.

Next: $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

0.3 Cyclotomic Polynomials

 $\mathbb{Q}, x^n - 1, \zeta = \zeta_n$ primitive.

Def
$$\Phi_n(x) = \prod_{1 \le i \le n(i,n)=1} (x - \zeta^i)$$

$$\Phi_2(x) = x - (-1) = x + 1$$

$$\Phi(x) = (x - \zeta)(x - \zeta^2), \zeta^3 = 1 = x^2 - (\zeta + \zeta^2)x + 1$$

$$= x^2 + x + 1$$

$$\Phi_4(x) = x = (x+i)(x-i) = x^2 + 1$$