Chapter 16 – Spontaneity

Michael Brodskiy

Instructor: Mr. Morgan

April 13, 2021

- Thermodynamically Feasible Occurs by self
- Enthalpy (ΔH) Heat flow
- Most exothermic reactions are spontaneous, but not all
- Entropy (ΔS) Measurement of disorder. Higher value, higher disorder.
- Gas has highest entropy (disorder), with liquid next and then solid
 - 1. Solid \rightarrow Gas: Disorder Increasing, ΔS is positive.
 - 2. Gas \rightarrow Solid: Disorder Decreasing, ΔS is negative.
- ullet Gibbs Free Energy (ΔG) Measurement of doing spontaneous work
 - 1. $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$
 - 2. $\Delta G > 0$ Not Spontaneous
 - 3. $\Delta G < 0$ Spontaneous
 - 4. $\Delta G = 0$ At equilibrium
- Temperature Effects:

ΔH	ΔS	Spontaneous Under
+	+	High Temp
-	-	Low Temp
-	+	Any Temp
+	-	No Temp

- At non-standard conditions: $\Delta G = \Delta G^{\circ} + RT \ln(Q)$
- Equilibrium Constant: $\Delta G^{\circ} = -RT \ln(K)$

- \bullet ΔG is large and positive K is very small, meaning no products are formed, meaning that the reaction is not spontaneous
- ullet Activation energy (E_a) may explain why a reaction doesn't occur
- Adding ΔG Use non-spontaneous reaction with spontaneous reactions to make it spontaneous (couple reactions, like Hess's law)