# Unsupervised Learning

#### Andrea De Simone





## > Invitation

# **Market Segmentation**





#### **Social Networks**

#### > Invitation

#### **Fraud Detection**





#### **Hacker Intrusions**

## > Invitation

# **Data compression**



#### > Outline

# 1. Cluster Analysis

- K-means
- Hierarchical clustering

## 2. Anomaly detection

- Multi-variate Gaussian model
- Nearest Neighbors

# 3. Dimensionality Reduction

- Principal Component Analysis

#### > References

- James, Witten, Hastie, Tibshirani, "An Introduction to Statistical Learning", Springer (2013), Chapter 10.
- Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning", Springer (2008), Chapter 14.
- Coursera/Udacity courses
  - https://www.coursera.org/learn/machine-learning
  - https://eu.udacity.com/course/machine-learning-unsupervised-learning--ud741
- sklearn tutorial online

# > Types of Machine Learning

Supervised Learning





Unsupervised Learning

# > Supervised Learning

#### labelled data



#### Classification



Logistic Regression Neural Networks Decision Trees Nearest Neighbors

#### Regression



Polynomial Regression Neural Networks Support Vector Machines Nearest Neighbors

. . .

machine "learns" the model

$$f(x) = y$$

...or the conditional density P(Y|X)

$$P(X,Y) = P(Y|X) \cdot P(X)$$

# > Unsupervised Learning

unlabelled data

$$\{\boldsymbol{x}_i\}_{i=1}^N$$

features



Cluster Analysis
Dimensionality Reduction
Anomaly Detection

. . .

machine "learns"
patterns, structures, representations, etc.
of the data

...or the properties of the joint pdf P(X)

> Supervised/Unsupervised?

## What do your data look like?







#### > Task

# What is your task?

organize data by similarity ———— CLUSTER ANALYSIS

find unexpected events (outliers) ANOMALY DETECTION

reduce the dimension of feature space

DIMENSIONALITY REDUCTION

••

## > Supervised vs. Unsupervised

#### **Supervised Learning**

- optimization objective (loss function)
- performance metrics
- low/medium dimensions of feature space
- interested in estimates
   of location parameters

#### **Unsupervised Learning**

- no loss function
  - → harder than supervised
- data mining without a model
- typically high-dimensional feature space
- interested in more complex properties of data

Unsupervised learning may be used to **pre-process** data for Supervised learning

# 1 CLUSTER ANALYSIS

# > Cluster Analysis

# **Approaches to Clustering**

- group objects based on their "similarity" by:
  - maximizing similarity within same cluster
  - minimizing similarity between different clusters

#### K-means

- very popular and simple
- need to specify number of clusters

#### Hierarchical

- need to specify dissimilarity measure
- bottom-up (agglomerative)
- top-down (divisive)

#### **Basic idea**

- initialize cluster centers (centroids)
- assign points to cluster with smallest distance to its centroid
- update centroids to mean of cluster points
- 4. iterate 2. and 3.









[Voronoi tassellation]

- Input: set of N examples (points)  $\{x^{(1)},\dots,x^{(N)}\}$   $x^{(i)}\in\mathbb{R}^D$
- **Input:** number of clusters *K*
- 1. randomly initialize K cluster centroids  $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$
- 2. repeat {

- cluster assignment 
$$C(i) = \underset{1 \le j \le K}{\operatorname{argmin}} ||x^{(i)} - \mu_j||^2$$
 (cluster to which

 $x^{(i)}$  is assigned)

**for** k=1 **to** K (loop over centroids)

- cluster partitions 
$$N_k = \sum_{i=1}^N I(C(i) = k)$$
 (s.t.  $\sum_{k=1}^K |N_k| = N$ )

- move cluster centroids 
$$\mu_k = \frac{1}{|N_k|} \sum_{i \in N_k} x^{(i)}$$

} until assignments do not change

• Output: cluster centroids  $\mu_1, \ldots, \mu_K$ 

# **Optimization objective**

• minimize over cluster assignments C(i) and cluster centroids  $\mu_k$ 

$$\min_{\{C\},\{\mu\}} L(\{C\},\{\mu\})$$

$$L(\{C\}, \{\mu\}) \equiv L(C(1), \dots, C(N), \mu_1, \dots, \mu_K) = \sum_{j=1}^K \sum_{i \in N_k} ||x^{(i)} - \mu_j||^2$$

• cluster assignment step for fixed  $\mu_1, \ldots, \mu_k$ 

$$\min_{\{C\}} L(\{C\}, \{\mu\}) \longrightarrow C(i) = \underset{1 \le j \le K}{\operatorname{argmin}} ||x^{(i)} - \mu_j||^2$$

• move centroid step for fixed  $C(1), \ldots, C(N)$ 

$$\min_{\{\mu\}} L(\{C\}, \{\mu\}) \longrightarrow \mu_k = \underset{\{\mu\}}{\operatorname{argmin}} \sum_{i \in N_k} ||x^{(i)} - \mu||^2$$

#### **Random Initialization**

- pick K examples randomly  $\{x^{(Z_1)}, \dots, x^{(Z_K)}\}$
- set initial centroids:  $\mu_1 = x^{(Z_1)}, \dots, \mu_K = x^{(Z_K)}$

**Problem:** different initial conditions may end up with different clusters (different local minima)



**Solution:** run K-means for many different random initializations and choose clustering minimizing loss *L* 

#### **Choose K**

- what is the best value of *K*?
- Loss function decreases with K
- observation: let K\* be the "true" number of clusters
- if K>K\*:
   one of the clusters will break at least one of the "true" clusters;
   the loss function will decrease less
- this leads to the heuristic "kink" (or "elbow") method



- √ very simple, flexible, efficient
- √ fast, O(N) complexity
- need to input K
- works for well-shaped clusters
- sensitive to initial conditions
- sensitive to outliers

- no need to input number of clusters (K),
   but need measure of dissimilarity (or proximity) between clusters
- clusters at each level of the hierarchy come from merging/dividing clusters at previous level

#### Agglomerative:

- start with every point being a 1-point cluster (singleton);
- at each step the two closest clusters are <u>merged</u> into a single one;
- stop when one cluster encloses all points.

#### Divisive:

- start with one cluster enclosing all points;
- at each step the clusters are split into two based on dissimilarity;
- stop when all clusters are singletons, or zero intra-cluster dissimilarity

[from now on, agglomerative clustering]

# **Agglomerative Clustering Algorithm**

- **Input:** set of *N* examples (points)
- **Input:** dissimilarity measure *D* between clusters
- 1. each point is a 1-point cluster (singleton)
- 2. compute dissimilarity matrix between all points
- 3. repeat {
  - merge the two closest clusters into one cluster
  - update dissimilarity matrix

} until all points in one cluster

# **Single Link Proximity**

[a.k.a. Nearest-neighbor technique]



## **Complete Link Proximity**

$$D(A,B) = \max_{x \in A, y \in B} d(x,y)$$



# **Group Average Proximity**

$$D(A,B) = \frac{1}{N_A N_B} \sum_{x \in A} \sum_{y \in B} d(x,y)$$





#### Coordinates

|   | X    | У    |
|---|------|------|
| 1 | 0.40 | 0.53 |
| 2 | 0.22 | 0.38 |
| 3 | 0.35 | 0.32 |
| 4 | 0.26 | 0.19 |
| 5 | 0.08 | 0.41 |
| 6 | 0.45 | 0.30 |
|   |      |      |



#### Euclidean distances

|   | 1 | 2    | 3    | 4    | 5    | 6    |
|---|---|------|------|------|------|------|
| 1 | 0 | 0.23 | 0.22 | 0.37 | 0.39 | 0.24 |
| 2 |   | 0    | 0.14 | 0.19 | 0.16 | 0.24 |
| 3 |   |      | 0    | 0.16 | 0.27 | 0.10 |
| 4 |   |      |      | 0    | 0.22 | 0.22 |
| 5 |   |      |      |      | 0    | 0.37 |
| 6 |   |      |      |      |      | 0    |

#### Single Link Proximity



#### Euclidean distances

|   | 1 | 2    | 3    | 4    | 5    | 6    |
|---|---|------|------|------|------|------|
| 1 | 0 | 0.23 | 0.22 | 0.37 | 0.39 | 0.24 |
| 2 |   | 0    | 0.14 | 0.19 | 0.16 | 0.24 |
| 3 |   |      | 0    | 0.16 | 0.27 | 0.10 |
| 4 |   |      |      | 0    | 0.22 | 0.22 |
| 5 |   |      |      |      | 0    | 0.37 |
| 6 |   |      |      |      |      | 0    |

Points 3 and 6: smallest distance. Merge them into cluster.

#### Single Link Proximity



#### Euclidean distances

|     | 1 | 2    | 4    | 5    | 3,6  |
|-----|---|------|------|------|------|
| 1   | 0 | 0.23 | 0.37 | 0.39 | 0.22 |
| 2   |   | 0    | 0.19 | 0.16 | 0.14 |
| 4   |   |      | 0    | 0.22 | 0.16 |
| 5   |   |      |      | 0    | 0.27 |
| 3,6 |   |      |      |      | 0    |
|     |   |      |      |      |      |

Update distances (distance to cluster = **min** distance to its constituents).

#### Single Link Proximity



#### Euclidean distances

|     | 1 | 2    | 4    | 5    | 3,6  |
|-----|---|------|------|------|------|
| 1   | 0 | 0.23 | 0.37 | 0.39 | 0.22 |
| 2   |   | 0    | 0.19 | 0.16 | 0.14 |
| 4   |   |      | 0    | 0.22 | 0.16 |
| 5   |   |      |      | 0    | 0.27 |
| 3,6 |   |      |      |      | 0    |
|     |   |      |      |      |      |

Iterate until you include all points into one cluster

#### Single Link Proximity



#### Euclidean distances

|     | 1 | 4    | 2,5  | 3,6  |  |
|-----|---|------|------|------|--|
| 1   | 0 | 0.37 | 0.23 | 0.22 |  |
| 4   |   | 0    | 0.19 | 0.15 |  |
| 2,5 |   |      | 0    | 0.14 |  |
| 3,6 |   |      |      | 0    |  |
|     |   |      |      |      |  |
|     |   |      |      |      |  |

#### Single Link Proximity



#### Euclidean distances

|     | 1 | 4    | 2,5  | 3,6  |  |
|-----|---|------|------|------|--|
| 1   | 0 | 0.37 | 0.23 | 0.22 |  |
| 4   |   | 0    | 0.19 | 0.15 |  |
| 2,5 |   |      | 0    | 0.14 |  |
| 3,6 |   |      |      | 0    |  |
|     |   |      |      |      |  |
|     |   |      |      |      |  |

#### Single Link Proximity



#### Euclidean distances

|    |       | 1 | 4    | 2,5,3,6 |  |
|----|-------|---|------|---------|--|
| •  | 1     | 0 | 0.37 | 0.22    |  |
|    | 4     |   | 0    | 0.15    |  |
| 2, | 5,3,6 |   |      | 0       |  |
|    |       |   |      |         |  |
|    |       |   |      |         |  |

#### Single Link Proximity



#### Euclidean distances

|    |       | 1 | 4    | 2,5,3,6 |  |
|----|-------|---|------|---------|--|
| ,  | 1     | 0 | 0.37 | 0.22    |  |
|    | 4     |   | 0    | 0.15    |  |
| 2, | 5,3,6 |   |      | 0       |  |
|    |       |   |      |         |  |
|    |       |   |      |         |  |

#### Single Link Proximity



#### Euclidean distances

|  | 4,2,5,3,6 | 1 |           |
|--|-----------|---|-----------|
|  | 0.22      | 0 | 1         |
|  | 0         |   | 4,2,5,3,6 |
|  |           |   |           |
|  |           |   |           |
|  |           |   |           |
|  | U         |   | 4,2,5,3,6 |

#### Single Link Proximity



#### Euclidean distances

| 5,3,6 |
|-------|
| 22    |
|       |
|       |
|       |
|       |
|       |

Single Link Proximity



#### Dendrogram



#### **Complete Link Proximity**



#### Euclidean distances

|   | 1 | 2    | 3    | 4    | 5    | 6    |
|---|---|------|------|------|------|------|
| 1 | 0 | 0.23 | 0.22 | 0.37 | 0.39 | 0.24 |
| 2 |   | 0    | 0.14 | 0.19 | 0.16 | 0.24 |
| 3 |   |      | 0    | 0.16 | 0.27 | 0.10 |
| 4 |   |      |      | 0    | 0.22 | 0.22 |
| 5 |   |      |      |      | 0    | 0.37 |
| 6 |   |      |      |      |      | 0    |

Points 3 and 6: smallest distance. Merge them into cluster.

#### **Complete Link Proximity**



#### Euclidean distances

|     | 1 | 2    | 4    | 5    | 3,6  |
|-----|---|------|------|------|------|
| 1   | 0 | 0.23 | 0.37 | 0.39 | 0.24 |
| 2   |   | 0    | 0.19 | 0.16 | 0.24 |
| 4   |   |      | 0    | 0.22 | 0.22 |
| 5   |   |      |      | 0    | 0.37 |
| 3,6 |   |      |      |      | 0    |
|     |   |      |      |      |      |

Update distances (distance to cluster = **max** distance to its constituents).

#### Complete Link Proximity



#### Euclidean distances

|     | 1 | 2    | 4    | 5    | 3,6  |  |
|-----|---|------|------|------|------|--|
| 1   | 0 | 0.23 | 0.37 | 0.39 | 0.24 |  |
| 2   |   | 0    | 0.19 | 0.16 | 0.24 |  |
| 4   |   |      | 0    | 0.22 | 0.22 |  |
| 5   |   |      |      | 0    | 0.37 |  |
| 3,6 |   |      |      |      | 0    |  |
|     |   |      |      |      |      |  |

Iterate until you include all points into one cluster

#### Complete Link Proximity



#### Euclidean distances

|     | 1 | 4    | 2,5  | 3,6  |  |
|-----|---|------|------|------|--|
| 1   | 0 | 0.37 | 0.39 | 0.24 |  |
| 4   |   | 0    | 0.22 | 0.22 |  |
| 2,5 |   |      | 0    | 0.37 |  |
| 3,6 |   |      |      | 0    |  |
|     |   |      |      |      |  |
|     |   |      |      |      |  |

#### **Complete Link Proximity**



#### Euclidean distances

|     | 1 | 4    | 2,5  | 3,6  |  |
|-----|---|------|------|------|--|
| 1   | 0 | 0.37 | 0.39 | 0.24 |  |
| 4   |   | 0    | 0.22 | 0.22 |  |
| 2,5 |   |      | 0    | 0.37 |  |
| 3,6 |   |      |      | 0    |  |
|     |   |      |      |      |  |
|     |   |      |      |      |  |

#### **Complete Link Proximity**



#### Euclidean distances

|       | 1 | 2,5  | 4,3,6 |  |
|-------|---|------|-------|--|
| 1     | 0 | 0.39 | 0.37  |  |
| 2,5   |   | 0    | 0.37  |  |
| 4,3,6 |   |      | 0     |  |
|       |   |      |       |  |
|       |   |      |       |  |
|       |   |      |       |  |

#### Complete Link Proximity



#### Euclidean distances

|       | 1 | 2,5  | 4,3,6 |
|-------|---|------|-------|
| 1     | 0 | 0.39 | 0.37  |
| 2,5   |   | 0    | 0.37  |
| 4,3,6 |   |      | 0     |
|       |   |      |       |
|       |   |      |       |
|       |   |      |       |

#### **Complete Link Proximity**



#### Euclidean distances

|         | 1,4,3,6 | 2,5  |  |
|---------|---------|------|--|
| 1,4,3,6 | 0       | 0.39 |  |
| 2,5     |         | 0    |  |
|         |         |      |  |
|         |         |      |  |
|         |         |      |  |
|         |         |      |  |

#### Complete Link Proximity



#### Euclidean distances

| 1,4,3,6 | 2,5  |        |
|---------|------|--------|
| 0       | 0.39 |        |
|         | 0    |        |
|         |      |        |
|         |      |        |
|         |      |        |
|         |      |        |
|         |      | 0 0.39 |

#### **Complete Link Proximity**





#### **Exercise:**

**Group Average Proximity** 





## **Summary**

diameter of a cluster A:  $D_A = \max_{x \in A, y \in A} d(x, y)$ 

is the largest inter-cluster dissimilarity

- Single link: tend to produce close clusters (with large diameters)
- Complete link: tend to produce compact clusters (with small diameters)
- Group average: compromise situation

- √ easy to implement
- √ no need to input number of clusters
- $\times$  O(N<sup>2</sup> log(N)) complexity
- × no minimization objective
- unable to undo previous merges

# 2 ANOMALY DETECTION

## > Anomaly Detection

## What is an Anomaly?



Anomalies and Outliers are basically the same thing: objects that are different from most other objects

"An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism"

[D. Hawkins - 1990]

## > Anomaly Detection

#### **Approaches to Anomaly Detection**

- Model-Based:
  - build model of the data
  - anomalies are objects not fitting the model well
- Distance (or Proximity)-Based:
  - compute distances between any pair of points
  - anomalies are objects distant from most of the others
- Density-Based:
  - estimate local density of points
  - anomalies are points lying in low-density regions

#### > Anomaly Detection / Model-based

# Model-based approach

idea: outliers occur at the tails of the prob. distribution

- model a probability distribution P(x) from data
- compute the probability for points under P(x)
- if  $P(x_i) < \varepsilon$ , then  $x_i$  is an outlier



- ✓ solid statistical foundation
- $\times$  need to infer the model P(x)
- poor in high-D



Standard Normal

#### > Anomaly Detection / Model-based

#### Multi-variate gaussian model

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$



hard to detect anomalies close to normal points

 $x^{(k)} \text{ is anomalous if } p(x^{(k)}; \mu, \Sigma) < \epsilon$ 

## Distance-based approach

idea: outliers are far apart from their neihgbors

- define a distance (proximity) measure D(x,y)
- compute distance  $D(x_i,x_j)$  for any pair of points
- compute outlier score:  $S(x_i) = f(D(x_i, x_j))$ , for any  $x_i, x_j$
- if  $S(x_i) > threshold$ , then  $x_i$  is an outlier
- or top *n* points with largest  $S(x_i)$  are outliers
  - ✓ simple and intuitive
  - ✓ more general than model-based
  - $\times$  complexity typically  $\sim O(n^2)$
  - sensitive to parameter choices

poor for widely different densities

## **Nested-Loop K-NN**

Outlier scoring based on distances of **nearest neighbors** (NN), e.g.

- distance to the k<sup>th</sup>-NN
- avg distance of the k-NN
- number of NN within distance r

Resolution adjusted with parameter *k* (or *r*)

#### Coordinates



|    | X   | У    |
|----|-----|------|
| 1  | 2.1 | 2.6  |
| 2  | 2.1 | 2.9  |
| 3  | 2.2 | 2.7  |
| 4  | 3.0 | 2.8  |
| 5  | 2.0 | 2.4  |
| 6  | 2.3 | 2.5  |
| 7  | 1.8 | 2.6  |
| 8  | 1.9 | 2.7  |
| 9  | 1.9 | 2.55 |
| 10 | 2.1 | 2.5  |
|    |     |      |

#### distances to k-NN



| k=3 | 1-NN | 2-NN | 3-NN |  |
|-----|------|------|------|--|
| 1   | 0.10 | 0.14 | 0.21 |  |
| 2   | 0.22 | 0.28 | 0.30 |  |
| 3   | 0.14 | 0.22 | 0.22 |  |
| 4   | 0.76 | 0.81 | 0.91 |  |
| 5   | 0.14 | 0.18 | 0.22 |  |
| 6   | 0.20 | 0.22 | 0.22 |  |
| 7   | 0.11 | 0.14 | 0.28 |  |
| 8   | 0.14 | 0.15 | 0.22 |  |
| 9   | 0.11 | 0.15 | 0.18 |  |
| 10  | 0.10 | 0.14 | 0.20 |  |
|     |      |      |      |  |





#### distances to kth-NN



|    | k=1  | k=3  | k=5  | k=7  |
|----|------|------|------|------|
| 1  | 0.1  | 0.21 | 0.22 | 0.30 |
| 2  | 0.22 | 0.30 | 0.40 | 0.45 |
| 3  | 0.14 | 0.22 | 0.30 | 0.36 |
| 4  | 0.76 | 0.91 | 0.95 | 1.10 |
| 5  | 0.14 | 0.22 | 0.32 | 0.36 |
| 6  | 0.20 | 0.22 | 0.40 | 0.45 |
| 7  | 0.11 | 0.28 | 0.32 | 0.42 |
| 8  | 0.14 | 0.22 | 0.28 | 0.32 |
| 9  | 0.11 | 0.18 | 0.21 | 0.40 |
| 10 | 0.10 | 0.20 | 0.22 | 0.32 |
|    |      |      |      |      |

#### distances to kth-NN



|    | k=1  | k=3  | k=5  | k=7  |
|----|------|------|------|------|
| 1  | 0.1  | 0.21 | 0.22 | 0.30 |
| 2  | 0.22 | 0.30 | 0.40 | 0.45 |
| 3  | 0.14 | 0.22 | 0.30 | 0.36 |
| 4  | 0.76 | 0.91 | 0.95 | 1.10 |
| 5  | 0.14 | 0.22 | 0.32 | 0.36 |
| 6  | 0.20 | 0.22 | 0.40 | 0.45 |
| 7  | 0.11 | 0.28 | 0.32 | 0.42 |
| 8  | 0.14 | 0.22 | 0.28 | 0.32 |
| 9  | 0.11 | 0.18 | 0.21 | 0.40 |
| 10 | 0.10 | 0.20 | 0.22 | 0.32 |
|    |      |      |      |      |

#### distances to kth-NN



|    | k=1  | k=3  | k=5  | k=7  |
|----|------|------|------|------|
| 1  | 0.1  | 0.21 | 0.22 | 0.30 |
| 2  | 0.22 | 0.30 | 0.40 | 0.45 |
| 3  | 0.14 | 0.22 | 0.30 | 0.36 |
| 4  | 0.76 | 0.91 | 0.95 | 1.10 |
| 5  | 0.14 | 0.22 | 0.32 | 0.36 |
| 6  | 0.20 | 0.22 | 0.40 | 0.45 |
| 7  | 0.11 | 0.28 | 0.32 | 0.42 |
| 8  | 0.14 | 0.22 | 0.28 | 0.32 |
| 9  | 0.11 | 0.18 | 0.21 | 0.40 |
| 10 | 0.10 | 0.20 | 0.22 | 0.32 |
|    |      |      |      |      |

## > Anomaly Detection / Density-based

## **Density-based approach**

idea: density around an outlier is very different from the density around its neighbors

- define a density measure d(x)
- compare density around a point with the density around its local neighbors: relative density(xi)
- compute outlier score:  $S(x_i) = f(\text{ relative density}(x_i))$ , for any  $x_i$
- if  $S(x_i) > threshold$ , then  $x_i$  is an outlier
  - √ can detect local anomalies
  - ✓ good with variable densities
  - $\times$  complexity typically  $\sim O(n^2)$

sensitive to parameter choices

## > Anomaly Detection / Density-based

#### **Local Outlier Factor (LOF)**

$$\operatorname{density}_{k}(p) = \left[\frac{1}{|N_{k}(p)|} \sum_{q \in N_{k}(p)} \operatorname{dist}_{k}(p, q)\right]^{-1}$$

 $|N_k(p)|$  : n. of points around p within distance to its k-th nearest neighbor

$$\text{relative-density}_k(p) = \frac{\text{density}_k(p)}{\frac{1}{|N_k(p)|} \sum_{q \in N_k(p)} \text{density}_k(q)}$$

#### > Anomaly Detection / Evaluation

- Suppose we have a Validation Set where some labels are known (anomaly/not anomaly)
- Run algo on Validation Set
- Evaluate metrics (confusion matrix, precision/recall, F-score)
- Choose parameters (epsilon, K, threshold, etc.)
   maximizing performance

it looks like supervised classification with highly unbalanced classes

#### > Anomaly Detection / Evaluation

#### **Confusion matrix**



# 3 DIMENSIONALITY REDUCTION

## > Dimensionality Reduction

## **Approaches to Dimensionality Reduction**

- Feature selection
  - choose subset of relevant features
  - Recursive Feature Elimination (RFE) + many others

- Feature projection
  - transform features into lower dimensional space
  - Principal Component Analysis (PCA) + many others

# **Principal Component Analysis**

- PCA projects the entire dataset onto a different feature (sub)space, to maximize the variance
- reduce dimensions from d to k, retaining most of the info
- the largest princ. comp. is the direction of *greatest variability*



Why max variance?

- distant points in  $(x_1,x_2)$  are also distant in  $(e_1,e_2)$
- minimize distances between original and projected points

• projected coordinates:  $X' = X \cdot e$ 

- X: Nxd, e: dx1
- maximize the variance of projections:  $\max_e \frac{1}{N} (X \cdot e)^T (X \cdot e) \Big|_{e^T e = 1}$
- implement constraint by Lagrange multiplier:

$$\max_{e} \frac{1}{N} (X \cdot e)^{T} (X \cdot e) \Big|_{e^{T} e = 1} = \max_{e} L$$

$$L = \frac{1}{N} (X \cdot e)^{T} (X \cdot e) - \lambda (e^{T} e - 1)$$

- minimize L:  $0 = \frac{\partial L}{\partial e^T} = \frac{1}{N}(X^TXe) \lambda e$
- same as eigenvalue equation:  $\Sigma e = \lambda e$

covariance matrix

$$\Sigma \equiv \frac{1}{N} X^T \cdot X$$

the directions of max variance are the eigenvectors of the cov. matrix

- Input: set of N examples (points),  $\{x^{(1)},\ldots,x^{(N)}\}$   $x^{(i)}\in\mathbb{R}^d$
- Input: number of principal components k
- 1. normalize data (zero mean, unit variance)  $x^{(i)} o \frac{x^{(i)} \operatorname{avg}(x)}{\operatorname{std}(x)}$
- 2. compute dxd covariance matrix:  $\Sigma = \frac{1}{N}X^T \cdot X = \frac{1}{N}\sum_{i=1}^{N}(x^{(i)})^T(x^{(i)})$
- 3. Diagonalize covariance and find eigenvectors:  $\Sigma = V \Sigma_{\mathrm{diag}} V^T$  V:  $\mathit{dxd}$
- 4. projection matrix W by truncating V to the first k columns (top k eigenvalues): W = V(:, 1:k) W: dxk
- 5. Project data along principal components:  $Z = X \cdot W$ Z: Nxk
- Output: new projected features Z living on k-dim space

#### **Aside on SVD:**

 Step 3 is typically replaced by Singular Value Decomposition (SVD) of X

$$X = U \cdot D \cdot V^T$$

- U (Nxd): left singular vectors
   V (dxd): right singular vectors
   D (dxd): diagonal matrix of singular values of X
- The singular values of X are the square roots of the non-zero eigenvalues of both  $X^TX$  and  $XX^T$ .
- No need to compute  $X^TX$ , better performance

- reconstruct original features  $X_{approx} = Z \cdot W^T$

• error (as fraction of variance): 
$$\frac{\sum_{i=1}^{N}|x^{(i)}-x_{\text{approx}}^{(i)}|^2}{\sum_{i=1}^{N}|x^{(i)}|^2}=1-\frac{\sum_{j=1}^{k}(\Sigma_{\text{diag}})_{jj}}{\sum_{j=1}^{d}(\Sigma_{\text{diag}})_{jj}}$$

$$\sigma_1^2 \ge \sigma_2^2 \ge \ldots \ge \sigma_n^2$$

• so want to maximize  $R\equiv \frac{\sum_{j=1}^k(\Sigma_{\mathrm{diag}})_{jj}}{\sum_{j=1}^d(\Sigma_{\mathrm{diag}})_{jj}}$  ("variance explained")

 $R \ge 0.99$  "99% of variance explained"



De Simone

- ✓ intuitive
- √ very general (applicable to ~ every dataset)
- √ good for coarse-grained classes
- only linear
- $\times$  expensive (complexity O( $N^3$ ,  $D^3$ ))
- × poor for fine details

#### > Conclusions

 Unsupervised learning: tool to understand un-labelled data

 Look for Structures/Anomalies/Representations etc. of data

Very active field of research

Lots of applications yet to be explored