République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2023 Session Normale **Epreuve: MATHEMATIQUES**

Série: C & TMGM Coefficient: 9 & 6 Durée: 4h

Exercice 1 (3 points)

Dans l'espace, muni d'un repère orthonormé direct (O; i, j, k), on considère les points A(1;-2;3), B(4;1;0), C(3;0;-2) et D(2;1;-2)

- 1. a) Calculer les produits scalaires suivants $\overrightarrow{AB} \cdot \overrightarrow{BC}$, $\overrightarrow{AB} \cdot \overrightarrow{CD}$ et $\overrightarrow{BC} \cdot \overrightarrow{CD}$.
- b) Justifier que B est le projeté orthogonal de A sur le plan (BCD).
- c) En déduire le volume du tétraèdre ABCD. 2. a) Donner une équation cartésienne du plan (ACD).
- 6 b) Calculer la distance du point B par rapport au plan (ACD) et en déduire l'aire du triangle ACD.

0.5pt 0.5pt 0.75pt

0.75pt

0.5pt

Exercice 2 (4 points)

Soit ABD un triangle rectangle en B tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}[2\pi]$.

On définit les points : O le milieu de [AD], C le symétrique de O par rapport à (BD), E et F les symétriques par rapport à O des points B et C respectivement. On note également G, H, I, J et K les milieux respectifs des segments [OB], [OC], [OD], [OE] et [OF].

- 1. Faire une figure soignée.
- 2. Caractériser l'homothétie h définie par h(A) = I et h(B) = J
- 3. Montrer qu'il existe une seule rotation r qui transforme A en B et G en H à caractériser
- 4. a) Montrer qu'il existe un unique antidéplacement f qui transforme A en F et O en E.
- b) Montrer que f est une symétrie glissante et donner sa forme réduite.
- 5. a) Montrer que S = h o r est une similitude directe d'angle $\frac{-2\pi}{2}$.

Préciser son centre et son rapport.

b) On note $S^2 = S \circ S$, $S^3 = S \circ S \circ S$ et $S^{n+1} = S \circ S^n$, pour tout entier $n \ge 2$. Caractériser S3 et montrer que S20062023 est une homothétie de rapport positif

0.5pt

1pt

0.5pt

0.75pt

0.25pt

0.5pt

0.5pt

Exercice 3 (4 points)

I. Soit m un nombre complexe non nul. Pour tout nombre complexe z, on note

$$P(z) = 2z^3 - (4 - 2i + 2m)z^2 + (m^2 + (3 - i)m + 2 - 3i)z - (m + 1)(m - i)$$

- 1. Résoudre, dans \mathbb{C} , l'équation $2z^2 2(1-i+m)z + (m+1)(m-i) = 0$.
- 2. Calculer P(1) et en déduire les solutions, dans \mathbb{C} , de l'équation P(z) = 0
- II. Le plan complexe est muni d'un repère orthonormal direct (O; ū, v).

On considère les points A, B, C, M, M, et M, d'affixes respectives

$$z_A = 1$$
, $z_B = -i$, $z_C = 1 - i$, $z_M = m$, $z_{M_1} = z_1 = \frac{(1 - i)(1 + m)}{2}$ et $z_{M_2} = z_2 = \frac{(1 - i)(1 + im)}{2}$.

- 1. Préciser les transformations f et g telles que, pour tout $m \in \mathbb{C}^*$, $f(M) = M_1$ et $g(M) = M_2$
- 2. Montrer que $z_2 = iz_1 i$ et en déduire que $M_2 \neq R(M_1)$ où R est une rotation à préciser.
- 3. On suppose, dans cette question, que M décrit le cercle de diamètre [AB] privé de O.
- a) Déterminer le lieu géométrique du point M
- b) Justifier que, si $m \neq -i$ alors $\frac{z_2 m}{z_1 m} = -i \frac{m 1}{i + m}$ puis en déduire que les points M, M₁ et M₂ sont alignés.

Epreuve de Mathématiques

- 0.75pt

4. On considère la parabole P de directrice (OB) et de foyer A. a) Déterminer le paramètre p et le sommet S de P.	0.5pt
b) Justifier que l'équation réduite de P s'écrit $y^2 = 2x - 1$ puis construire P.	0.25pt
c) Donner une équation de la tangente à P au point C.	0.25pt
Exercice 4 (4 points)	
Soit f la fonction définie sur $]-1;+\infty[$ par $f(x)=\frac{1+\ln(2x+2)}{2(x+1)}$.	
On note (C) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$ d'unité 2cm .	
1. Calculer $\lim_{x \to -1^+} f(x)$ et $\lim_{x \to +\infty} f(x)$	0.5pt
2. Calculer f'(x) et dresser le tableau de variation de f	0.75pt
3. a) Montrer que la courbe (C) admet un point d'inflexion A à préciser.	0.25pt
b) Justifier que la tangente T, à (C) en A, a pour équation $y = -\frac{1}{e}x - \frac{1}{e} + \frac{2}{\sqrt{e}}$	0.25pt
4. Déterminer l'intersection de (C) avec les axes de coordonnées	0.5pt
5. Soit g la restriction de f sur l'intervalle $I = \left[-\frac{1}{2}; +\infty \right[$. Montrer que g est une bijection de I	0.25pt
sur un intervalle J à préciser. On note g-1 sa réciproque.	
6. Construire T, (C) et (C') dans le repère (O, \vec{i}, \vec{j}) , ((C') étant la courbe de g^{-1}).	0.75pt
7. a) Montrer que, sur l'intervalle I, l'équation $f(x) = x$ admet une unique solution α et que $0.6 < \alpha < 0.7$	0.5pt
b) Calculer l'aire en cm² du domaine plan D délimité par les axes de coordonnées et les courbes (C) et (C')	0.25pt
Exercice 5 (5 points)	
On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{1+e^x}$ et on note Γ sa courbe	
représentative dans un repère orthonormal $(0; \vec{i}, \vec{j})$.	
1. a) Calculer et interpréter graphiquement $\lim_{x\to\infty} f(x)$ et $\lim_{x\to+\infty} f(x)$.	1pt
b) Calculer f'(x) puis dresser le tableau de variation de f	0.75pt
2. a) Calculer $f(x) + f(-x)$. En déduire que le point $I\left(0; \frac{1}{2}\right)$ est centre de symétrie pour Γ	0.5pt
b) Montrer que I est un point d'inflexion pour Γ et déterminer une équation de la tangente T à Γ en I.	0.5pt
c) Construire Γ et sa tangente T en I dans le repère $(0; \vec{i}, \vec{j})$.	0.5pt
3. On considère la suite (I_n) définie par : $I_0 = \int_0^1 f(x) dx$ et $\forall n \in \mathbb{N}^{^{\star}}$, $I_n = \int_0^1 \frac{e^{-ax}}{1+e^x} dx$	
a) Calculer I ₀ et montrer que (I _n) est décroissante et convergente.	0.75pt
b) Calculer $I_n + I_{n+1}$.	0.5pt
c) Montrer que $\forall n \in \mathbb{N}^*$, $\frac{1-e^{-n-1}}{2(n+1)} \le I_n \le \frac{1-e^{-n}}{2n}$ puis en déduire $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} (nI_n)$	0.5pt
Fin.	
	1 1

Baccalauréat 2023

Session Normale

Epreuve de Mathématiques

Séries C & TMGM

2/2