EDA PROJECT

INT - 353

CONTINUOUS ASSESSMENT – 3

On

SHARK TANK INDIA DATASET ANALYSIS

By
Aman Vishwakarma
12113404

Submitted to

Anjana Maam

Introduction

This data set was selected to work on the "Shark Tank India data. I have taken the data from "Kaggle.com" to create this dataset. In this dataset the data consists from 20 December 2021, to 4 February 2022.

"Shark Tank" is a popular international television show format that features aspiring entrepreneurs pitching their business ideas to a panel of wealthy investors in the hope of securing investment deals.

Key Concept-

"Shark Tank India" features a panel of potential investors, termed as "Sharks", who listen to entrepreneurs' pitch ideas for a business or product they wish to develop. These self-made multi-millionaires judge the business concepts and products pitched and then decide whether to invest their money to help market and mentor each contestant.

Terminology-

Due Diligence	This refers to the general responsibility of a business to audit and investigate details for the matter at hand. While this could be in response to a rising issue, performing due diligence is common practice before a transaction with an outside party.
---------------	---

Franchise

Valuation

This refers to the general responsibility of a business to audit and investigate details for the matter at hand. While this could be in response to a rising issue, performing due diligence is common practice before a transaction with an outside party.

Valuation is the calculative process to assess a company's/asset's worth. To do this, an analyst will take a look at the way the business is composed and managed.

Franchise

Valuation

This refers to the general responsibility of a business to audit and investigate details for the matter at hand. While this could be in response to a rising issue, performing due diligence is common practice before a transaction with an outside party.

Valuation is the calculative process to assess a company's/asset's worth. To do this, an analyst will take a look at the way the business is composed and managed.

Cash Flow	Cash flow refers to the net amount of monetary capital transferred to and from a business. Inflow refers to the cash businesses receive while outflow refers to the cash businesses spend.
Gross	This term refers to the total that is made before calculating any gross deductions . These deductions include tax liability, paychecks, union dues, retirement plans, etc.
Net	"Net" is also known as "net income" or "net earnings". Either way, it's determined as the sales amount minus the cost of operating expenses, interest, depreciation, etc.
Margin	Margin refers to the amount of cash a broker borrows in order to buy an investment. Mathematically, it's determined by the amount of the total value of investment minus the loan amount.

Capital	Capital is a very general term that doesn't only apply to finances, at least not in a direct sense. "Capital" can refer to anything that offers value and can point to both tangible and intangible capital.
Return	Also known as a financial return, a "return" refers to the cash made/lost on an investment over time. Percentage changes or price changes usually represent these value shifts.

Data Understanding-

Data Understanding-

Episode number	Number of the episode
Pitch number	Number of the Pitch
Brandname	Name of the brand Idea behind the brand building
Idea	

Deal	Deal done or not ; 1 - YES, 0 - NO
Pitcheraskamount	Amount asked by the Pitchers
Ask equity	Equity offered by the pitchers
Askvaluation	Valuation asked by pitchers
Dealamount	Final Deal Amount
Deal equity	Final Deal equity percentage
Shark Name	Name of the Sharks in the show

Reason-

Reason-

1. Entrepreneurial Strategies: You can examine the various strategies employed by entrepreneurs to persuade the sharks to invest in their businesses. This can include pitch tactics, valuation methods, and negotiation skills.

- 2. Predictive Analytics: If you have access to data on which businesses succeeded or failed post-investment, you could explore predictive analytics to identify factors that contribute to a business's long-term success or failure.
- 3. Diverse Entrepreneurship: The show features a wide range of entrepreneurs from various industries, including technology, fashion, food, and more. This diversity can provide a rich dataset with a broad scope.
- 4. Real-world Business Cases: "Shark Tank" presents real entrepreneurs seeking real investments from experienced investors. Analysing the show's data can provide insights into the challenges, successes, and failures that entrepreneurs face when pitching their businesses.
- 5. Investment and Valuation Data: The heart of "Shark Tank" is the negotiation between entrepreneurs and the "sharks" (investors) over equity and valuation. Analysing these negotiations can provide valuable insights into investment trends and business valuation practices.
- 6. Education and Learning: Using "Shark Tank" data for educational purposes can be highly engaging for students studying entrepreneurship, finance, marketing, or business strategy. It can serve as a real-world case study.
- 7. Entertainment Value: Aside from its educational and analytical potential, "Shark Tank" data can simply be fun to work with due to its entertainment value. It allows you to dive into the world of innovative products, charismatic entrepreneurs, and sometimes dramatic negotiations.

Questions for Analysis-

A dataset related to "Shark Tank" can yield a wide range of interesting and insightful queries. Here are some queries and questions you can explore using this dataset:

- 1. Success Rate Analysis:
- What is the overall success rate of entrepreneurs securing investments from the sharks?

- How does the success rate vary by industry or product category?
- Do entrepreneurs with specific backgrounds or demographics have a higher success rate?
 - 2.Investment Patterns:
- Which shark invests the most frequently, and in which types of businesses?
- Are there any trends in the types of deals (equity percentage, valuation) that the sharks prefer?
 - Do sharks collaborate on deals, and if so, under what circumstances?
 - **3**. Valuation Analysis:
 - What is the average valuation of businesses that appear on "Shark Tank"?
- How do entrepreneurs' initial valuations compare to the final valuations after negotiations?
 - Are there any correlations between valuation and post-investment success?
 - 4.Pitch Performance:
- How do entrepreneurs' pitch quality, charisma, and presentation skills affect their chances of securing an investment?
 - Is there a correlation between the length of a pitch and its success?
 - Which types of pitches are more likely to result in offers from the sharks?
 - 5.Post-Investment Outcomes:
 - What is the long-term success rate of businesses that secure investments on the show?
 - How much revenue or growth do businesses experience after receiving investments?
 - Are there common challenges or issues that businesses face post-investment?

- **6**.Shark Preferences:
- Which industries or product categories do specific sharks prefer to invest in?
- Do certain sharks have distinct investment strategies or criteria?
- How has the investment behavior of individual sharks evolved over different seasons?
 - 7. Entrepreneur Demographics:
- What are the demographic characteristics (age, gender, location) of the entrepreneurs who appear on the show?
- Do certain demographics tend to perform better or worse in terms of securing investments?
 - 8. Consumer Trends and Preferences:
- Are there trends in the types of products or services that receive the most attention from the sharks?
 - How do consumer preferences reflected on the show compare to broader market trends?
 - 9.Predictive Modeling:
- Can you develop a predictive model to forecast which businesses are likely to secure investments based on various factors from their pitch?
 - What factors are the most influential in predicting investment success?
 - 10. Ethical and Social Impact:
- Are there any ethical or social impact considerations related to the businesses that secure investments on "Shark Tank"?
 - How do the sharks evaluate businesses with a social or environmental mission?

Questions and Answers

- Question1-What are the names and data types of the columns?
- Ans- The Shark Tank TV show dataset typically consists of information related to the entrepreneurs and their pitches to the investors. The specific columns and their data types can vary depending on the source and version of the dataset. However, I can provide you with a general idea of the common columns and their data types that you might find in a Shark Tank dataset:

•

- 1. Entrepreneur Information:
- - Entrepreneur Name
- - Entrepreneur Gender
- - Entrepreneur Age
- - Entrepreneur Location

•

- 2. Pitch Details:
- -Product Name
- -Product Description
- -Product Category
- - Investment Amount Requested
- - Equity Offered

•

- 3. Shark Information:
- - Shark Name (String)
- Shark Gender
- - Shark Net Worth
- - Shark Deal Status

•

- 4. Pitch Outcome:
- - Deal Outcome
- Amount Invested
- - Equity Given
- Valuation

• Question2-What are the basic summary statistics?

Ans-Basic summary statistics are fundamental metrics that provide a concise and informative overview of a dataset.

- 1. Mean :The mean is the sum of all values in a dataset divided by the number of values. It represents the central value of the data distribution.
- 2. Median :The median is the middle value of an ordered dataset. It is less sensitive to outliers than the mean and represents the central tendency.
- 3. Mode: The mode is the value that appears most frequently in a dataset. dataset can have one mode, more than one mode, or no mode at all.
- 4. Range: The range is the difference between the maximum and minimum values in a dataset.
- Question3-Are there any categorical variables and missing values ? t .

Ans-import pandas as pd

print(categorical columns)

```
# Load your dataset (replace 'your_dataset.csv' with the actual dataset file path)

df = pd.read_csv('your_dataset.csv')

# Check for categorical variables

categorical_columns = df.select_dtypes(include=['object'])

if not categorical_columns.empty:

print("Categorical Variables:")
```

```
# Check for missing values
 missing values = df.isnull().sum()
 if not missing values.empty:
   print("\nMissing Values:")
   print(missing values)
Question4-Are there any outliers in the data? If so use box plots, histograms
 and visualize.
 Ans-import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 # Load your dataset (replace 'your dataset.csv' with the actual dataset file path)
 df = pd.read csv('your dataset.csv')
 # Specify the numeric columns you want to analyze for outliers
 numeric columns = df.select dtypes(include=['int64', 'float64'])
 # Create box plots for numeric columns
 plt.figure(figsize=(12, 6))
 sns.boxplot(data=numeric columns)
 plt.title('Box Plot of Numeric Columns (Outliers)')
 plt.xticks(rotation=90)
```

```
plt.show()
# Create histograms for numeric columns
plt.figure(figsize=(12, 6))
numeric columns.hist(bins=20, figsize=(12, 6))
plt.title('Histograms of Numeric Columns')
plt.tight_layout()
plt.show()
   • Question5-Is the data balanced or imbalanced? Visualize .
      Ans-import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Load your dataset (replace 'your dataset.csv' with the actual dataset
      file path)
      df = pd.read csv('your dataset.csv')
      # Specify the categorical variable you want to analyze (replace
      'target column' with the actual column name)
      categorical column = 'target column'
      # Create a count plot to visualize the distribution
      plt.figure(figsize=(8, 6))
      sns.countplot(data=df, x=categorical column)
```

```
plt.title(f'Distribution of {categorical_column}')
plt.xlabel(categorical_column)
plt.ylabel('Count')
plt.xticks(rotation=90)
plt.show()
```

• Question6-What is the target variable?

Ans-The target variable, also known as the dependent variable, is the variable in a dataset that you are trying to predict or explain. It is the variable whose values you want to model or analyze based on the values of other variables

- 1. Regression Analysis:In regression tasks, the target variable is a continuous or numeric variable that you want to predict..
- 2. Classification Analysis: In classification tasks, the target variable is a categorical variable that you want to classify or predict. For example, in spam email detection, the target variable could be "spam" or "not spam."
- 3. Time Series Analysis: In time series analysis, the target variable is typically a variable that varies over time, such as stock prices, temperature, or sales revenue.
- Question7-What are the units of measurement for numerical columns?

Ans-The units of measurement for numerical columns in a dataset depend on the specific dataset and the nature of the variables. Numerical columns can represent a wide range of measurements, and their units can vary accordingly. Here are some common examples of numerical columns and their potential units of measurement:

1. **Age:** Numeric variable representing a person's age. The unit of measurement is typically "years

- 2. **Weight:** Numeric variable representing a person's weight. The unit of measurement is typically "kilograms" (kg) or "pounds" (lbs).
- 3. **Height:** Numeric variable representing a person's height. The unit of measurement is typically "centimeters" (cm) or "inches" (in).
- 4. **Time:** Numeric variable representing time. The unit of measurement can be "seconds" (s), "minutes" (min), "hours" (hr), or other time units.
- Question8-Do you have domain clarification? Brief it .

Ans-Certainly! In the context of data analysis and data science, "domain clarification" refers to the process of gaining a deep understanding of the specific field or industry to which the data belongs.

1. Understanding the Domain:

- Domain clarification starts with acquiring a solid understanding of the field or industry associated with the dataset. This could be healthcare, finance, retail, education, or any other domain.

2. Industry Jargon

- Familiarize yourself with the industry-specific jargon, terminology, and concepts. Different domains have their own set of terms and definitions.

3. Data Relevance:

- Determine which aspects of the domain are most relevant to the dataset and analysis. Not all information may be pertinent to your specific goals.

5. Data Sources:

- Understand the sources of the data and how it was collected within the domain. Know if there are any data quality or bias issues specific to the domain.

• Question9-Are there any time-based trends or pattern?

Ans-To identify time-based trends or patterns in a dataset, you can perform time series analysis or visualizations. Time-based trends are common in many domains, and they can provide valuable insights into how data changes over time. Here are steps you can follow to assess time-based trends:

1. Data Preparation:

- Ensure that your dataset includes a time-related column, such as a timestamp, date, or period, that indicates when each observation was recorded or measured.

2. Data Visualization:

- Create time series plots or line plots to visualize the data over time. The x-axis should represent time, and the y-axis represents the variable of interest. Use different colors or styles to distinguish between different categories or groups if applicable.

3. Seasonal Decomposition:

- Use seasonal decomposition techniques, such as decomposition into trend, seasonality, and residuals (e.g., using the decomposition function in Python's statsmodels library), to separate the data into its underlying components. This helps identify recurring patterns and trends.

4. Time Series Analysis:

- Perform time series analysis techniques like autocorrelation and partial autocorrelation analysis to detect any temporal dependencies or patterns in the data.

5. Statistical Tests:

- Apply statistical tests, such as the Augmented Dickey-Fuller test for stationarity or other relevant tests, to check for trends and seasonality in the data.

6. Visualizations:

- Consider using heatmaps, calendar plots, or other specialized visualizations to highlight time-based patterns, especially if your data involves multiple dimensions or categories.
 - Question 10-Are there any correlations between variables? Calculate correlations

```
Ans-import pandas as pd
import numpy as np

# Load your dataset (replace 'your_dataset.csv' with the actual dataset file path)

df = pd.read_csv('your_dataset.csv')
```

Calculate Pearson's correlation matrix for all numeric columns correlation matrix = df.corr(method='pearson')

Display the correlation matrix
print("Pearson's Correlation Matrix:")
print(correlation matrix)

Code based questions are done on jupyter notebook in the form of pdf file below.

Thank You.

eda-3-1

November 10, 2023

- 0.1 Shark Tank India
- 0.2 "Unlocking India's entrepreneurial potential one pitch at a time on Shark Tank India!"
- 0.3 Question1-What are the names and data types of the columns?

```
[72]: import pandas as pd
      # Create a sample DataFrame
      data = {
          'Column1': [1, 2, 3, 4, 5],
          'Column2': ['A', 'B', 'C', 'D', 'E'],
          'Column3': [1.1, 2.2, 3.3, 4.4, 5.5]
      }
      df = pd.DataFrame(data)
      # Get column names
      column_names = df.columns
      # Get data types of columns
      column_data_types = df.dtypes
      # Print column names and data types
      print("Column Names:")
      print(column_names)
      print("\nData Types of Columns:")
      print(column_data_types)
     Column Names:
     Index(['Column1', 'Column2', 'Column3'], dtype='object')
     Data Types of Columns:
     Column1
                  int64
     Column2
                 object
                float64
     Column3
     dtype: object
```

0.4 Question2-What are the basic summary statistics?

```
[73]: import pandas as pd

# Create a sample DataFrame
data = {
    'Age': [25, 30, 35, 40, 45],
    'Income (in thousands)': [50, 60, 70, 80, 90],
    'Score': [85, 90, 78, 92, 88]
}

df = pd.DataFrame(data)

# Generate basic summary statistics
summary_statistics = df.describe()

# Print the summary statistics
print("Basic Summary Statistics for Numerical Columns:")
print(summary_statistics)
```

Basic Summary Statistics for Numerical Columns:

```
Age Income (in thousands)
                                            Score
count
       5.000000
                              5.000000
                                         5.000000
      35.000000
                             70.000000 86.600000
mean
       7.905694
std
                             15.811388
                                        5.458938
min
      25.000000
                             50.000000 78.000000
25%
      30.000000
                             60.000000 85.000000
50%
      35.000000
                             70.000000 88.000000
75%
      40.000000
                             80.000000 90.000000
      45.000000
                             90.000000 92.000000
max
```

Question-3:Are there any categorical variables and missing values

```
print("\nMissing Values:")
print(missing_values)

df.head(10)
```

Categorical Variables:

	brand_name	idea
0	BluePine Industries	Frozen Momos
1	Booz scooters	Renting e-bike for mobility in private spaces
2	Heart up my Sleeves	Detachable Sleeves
3	Tagz Foods	Healthy Potato Chips
4	Head and Heart	Brain Development Course
	•••	
112	Green Protein	Plant-Based Protein
113	On2Cook	Fastest Cooking Device
114	Jain Shikanji	Lemonade
115	Woloo	Washroom Finder
116	Elcare India	Carenting for Elders

[117 rows x 2 columns]

Missing Values:

minding varaob.	
episode_number	0
pitch_number	0
brand_name	0
idea	0
deal	0
pitcher_ask_amount	0
ask_equity	0
ask_valuation	0
deal_amount	0
deal_equity	0
deal_valuation	0
ashneer_present	0
anupam_present	0
aman_present	0
namita_present	0
vineeta_present	0
peyush_present	0
ghazal_present	0
ashneer_deal	0
anupam_deal	0
aman_deal	0
namita_deal	0
vineeta_deal	0
peyush_deal	0
ghazal_deal	0

```
0
     amount_per_shark
                                 0
     equity_per_shark
     dtype: int64
[11]:
                          pitch_number
                                                     brand_name
         episode_number
                        1
                                        1
                                           BluePine Industries
      1
                        1
                                        2
                                                 Booz scooters
      2
                        1
                                        3
                                           Heart up my Sleeves
      3
                        2
                                        4
                                                     Tagz Foods
      4
                        2
                                        5
                                                Head and Heart
                        2
      5
                                        6
                                                   Agro tourism
                        3
      6
                                        7
                                                    Qzense Labs
      7
                        3
                                       8
                                                      Peeschute
                        3
                                                           NOCD
      8
                                       9
      9
                        4
                                      10
                                                          Cosiq
                                                                    pitcher_ask_amount
                                                              deal
                                                       idea
      0
                                              Frozen Momos
                                                                 1
                                                                                    50.0
                                                                                    40.0
      1
         Renting e-bike for mobility in private spaces
      2
                                       Detachable Sleeves
                                                                 1
                                                                                    25.0
      3
                                     Healthy Potato Chips
                                                                 1
                                                                                    70.0
      4
                                 Brain Development Course
                                                                 0
                                                                                    50.0
      5
                                                    Tourism
                                                                 0
                                                                                    50.0
      6
                                  Food Freshness Detector
                                                                 0
                                                                                   100.0
      7
                                                                 1
                                                                                    75.0
                                     Disposable Urine Bag
      8
                                              Energy Drink
                                                                 1
                                                                                    50.0
      9
                                     Intelligent Skincare
                                                                 1
                                                                                    50.0
         ask equity
                       ask_valuation deal_amount deal_equity
                                                                        ashneer_deal
      0
                5.00
                             1000.00
                                               75.0
                                                             16.00
                                                                                    1
      1
               15.00
                              266.67
                                               40.0
                                                             50.00
                                                                                    1
      2
               10.00
                                               25.0
                                                             30.00
                                                                                    0
                               250.00
      3
                1.00
                                               70.0
                                                              2.75
                             7000.00
                                                                                    1
      4
                5.00
                             1000.00
                                                0.0
                                                              0.00
                                                                                    0
      5
                5.00
                             1000.00
                                                0.0
                                                              0.00
                                                                                    0
                0.25
                            40000.00
                                                0.0
                                                              0.00
      6
                                                                                    0
      7
                4.00
                             1875.00
                                               75.0
                                                              6.00
                                                                                    0
                2.00
                                               20.0
                                                                                    0
      8
                             2500.00
                                                             15.00
      9
                7.50
                               666.67
                                               50.0
                                                             25.00
                                                                                    0
                        aman_deal
                                    namita_deal
                                                  vineeta_deal
         anupam_deal
                                                                  peyush_deal
      0
                    0
                    0
                                 0
                                               0
                                                                             0
      1
                                                               1
      2
                    1
                                 0
                                               0
                                                               1
                                                                             0
      3
                    0
                                 0
                                               0
                                                               0
                                                                             0
      4
                    0
                                 0
                                               0
                                                               0
                                                                             0
```

total_sharks_invested

0

```
5
              0
                          0
                                         0
                                                         0
                                                                       0
6
              0
                                         0
                                                         0
                                                                       0
                          0
7
              0
                          1
                                         0
                                                         0
                                                                       0
                                         0
8
              0
                          0
                                                                       0
9
              1
                          0
                                         0
                                                         1
                                                                       0
   ghazal_deal
                 total_sharks_invested amount_per_shark equity_per_shark
0
              0
                                                         25.0
                                                                        5.333333
              0
                                        2
                                                         20.0
                                                                       25.000000
1
2
              0
                                        2
                                                         12.5
                                                                       15.000000
              0
                                                         70.0
3
                                        1
                                                                        2.750000
4
              0
                                        0
                                                          0.0
                                                                        0.000000
```

0

0

1

1

2

0.0

0.0

75.0

20.0

25.0

0.00000

0.00000

6.000000

15.000000

12.500000

[10 rows x 28 columns]

0

0

0

0

0

5

6

7

8

Question 4: Are there any outliers in the data? If so use box plots, histograms and visualize

```
[9]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     \# Load your dataset (replace 'your_dataset.csv' with the actual dataset file_\subseteq
      \hookrightarrow path)
     df = pd.read_csv("C:\\Users\\admin\\Shark Tank India Dataset.csv")
     # Specify the numeric columns you want to analyze for outliers
     numeric_columns = df.select_dtypes(include=['int64', 'float64'])
     # Create box plots for numeric columns
     plt.figure(figsize=(12, 6))
     sns.boxplot(data=numeric_columns)
     plt.title('Box Plot of Numeric Columns (Outliers)')
     plt.xticks(rotation=90)
     plt.show()
     # Create histograms for numeric columns
     plt.figure(figsize=(12, 6))
     numeric_columns.hist(bins=20, figsize=(12, 6))
     plt.title('Histograms of Numeric Columns')
     plt.tight_layout()
     plt.show()
```


<Figure size 864x432 with 0 Axes>

0.5 Question5-Is the data balanced or imbalanced? Visualize

Pearson's Correlation Matrix:

	episode_number	pitch_number	deal	\
episode_number	1.000000	0.998850	-0.214033	
pitch_number	0.998850	1.000000	-0.223068	
deal	-0.214033	-0.223068	1.000000	
pitcher_ask_amount	-0.069500	-0.074881	-0.106927	
ask_equity	-0.077674	-0.080792	-0.076438	
ask_valuation	-0.070829	-0.073517	-0.151695	
deal_amount	-0.187023	-0.199542	0.736002	
deal_equity	-0.114719	-0.119973	0.609043	
deal_valuation	-0.146336	-0.151003	0.409138	
ashneer_present	-0.342116	-0.338967	-0.020728	

	N - N	N - N	N - N	
anupam_present	NaN -0.342116	NaN -0.338967 -0	NaN	
aman_present	-0.107808		0.020728 0.065484	
namita_present	0.136628			
vineeta_present		0.157186 -0		
peyush_present	0.425047		0.084100	
ghazal_present	0.528721	0.535060 -0		
ashneer_deal	-0.116462		0.373509	
anupam_deal	-0.121671).454369	
aman_deal	-0.264855		0.461369	
namita_deal	-0.041819		0.430422	
vineeta_deal	-0.035758		342997	
peyush_deal	0.022564		.489898	
ghazal_deal	0.229482		225630	
total_sharks_invested	-0.121894		0.759342	
amount_per_shark	-0.157896		0.653882	
equity_per_shark	-0.073187	-0.079109	0.461046	
	pitcher_ask_amount	ask_equity	ask_valuation	\
episode_number	-0.069500	-0.077674	-0.070829	`
pitch_number	-0.074881		-0.073517	
deal	-0.106927		-0.151695	
pitcher_ask_amount	1.000000	0.470198	0.911174	
ask_equity	0.470198		0.260603	
ask_valuation	0.911174	0.260603	1.000000	
deal_amount	-0.080719	-0.177955	-0.090163	
deal_equity	-0.067233	0.288341	-0.155565	
deal_valuation	-0.045988	-0.310331	0.133363	
ashneer_present	0.040759	-0.047404	0.017809	
anupam_present	0.040739 NaN	0.047404 NaN	0.033817 NaN	
aman_present	0.040759		0.053817	
namita_present	0.029396	0.030743	0.033817	
vineeta_present	-0.104309	0.068224	-0.032090	
peyush_present	0.052044	-0.065365	-0.050228	
ghazal_present	-0.049727		-0.060577	
ashneer_deal	-0.044099	-0.088782	-0.052650	
anupam_deal	-0.050348	0.013584	-0.095488	
aman_deal	-0.053685	-0.140932	-0.085926	
namita_deal	-0.045850	0.027449	-0.035920	
vineeta_deal	-0.036575	0.096837	-0.068814	
peyush_deal	-0.052946	-0.026575	-0.089131	
ghazal_deal	-0.024308	0.071451	-0.050633	
total_sharks_invested	-0.084288	-0.028387	-0.140668	
amount_per_shark	-0.071281	-0.026367	-0.140666	
equity_per_shark	-0.050873	0.238074	-0.118541	
edarch Ther Prigry	-0.030673	0.230074	0.110041	
	deal_amount deal_o	equity deal_	_valuation \	
episode_number		114719	-0.146336	
pitch_number		119973	-0.151003	
• -				

deal	0.736002	0.609043	0.409138
pitcher_ask_amount	-0.080719	-0.067233	-0.045988
ask_equity	-0.177955	0.288341	-0.310331
ask_valuation	-0.090163	-0.155565	0.017869
deal_amount	1.000000	0.370487	0.636411
deal_equity	0.370487	1.000000	-0.082694
deal_valuation	0.636411	-0.082694	1.000000
ashneer_present	-0.026851	-0.093570	0.018973
anupam_present	NaN	NaN	NaN
aman_present	-0.026851	-0.093570	0.018973
namita_present	0.065587	-0.065976	0.073284
vineeta_present	-0.082982	0.014315	0.008492
peyush_present	-0.004062	0.088750	-0.138948
ghazal_present	-0.057153	0.062931	-0.082732
ashneer_deal	0.392853	0.127167	0.206179
anupam_deal	0.335148	0.267897	0.219510
aman_deal	0.482279	0.150735	0.360149
namita_deal	0.443929	0.136270	0.178616
vineeta_deal	0.315109	0.359560	-0.001066
peyush_deal	0.384539	0.399927	0.138179
ghazal_deal	0.188542	0.188478	-0.002742
total_sharks_invested	0.695950	0.432880	0.319298
amount_per_shark	0.793392	0.359031	0.581751
equity_per_shark	0.239212	0.897922	-0.080662

	ashneer_present	•••	ashneer_deal	$anupam_deal$
episode_number	-0.342116		-0.116462	-0.121671
pitch_number	-0.338967	•••	-0.117380	-0.129104
deal	-0.020728		0.373509	0.454369
pitcher_ask_amount	0.040759		-0.044099	-0.050348
ask_equity	-0.047404		-0.088782	0.013584
ask_valuation	0.053817		-0.052650	-0.095488
deal_amount	-0.026851	•••	0.392853	0.335148
deal_equity	-0.093570		0.127167	0.267897
deal_valuation	0.018973	•••	0.206179	0.219510
ashneer_present	1.000000	•••	0.205939	-0.005886
anupam_present	NaN		NaN	NaN
aman_present	1.000000		0.205939	-0.005886
namita_present	-0.141843		-0.001957	0.018596
vineeta_present	-0.387059	•••	-0.127833	-0.108356
peyush_present	-0.252768		0.010581	0.095532
ghazal_present	-0.823754		-0.142857	-0.016971
ashneer_deal	0.205939	•••	1.000000	0.203653
anupam_deal	-0.005886	•••	0.203653	1.000000
aman_deal	0.246972		0.311859	0.211158
namita_deal	-0.025346		0.116921	0.134733
vineeta_deal	-0.108422		0.220354	0.185069
peyush_deal	-0.143856	•••	0.219578	0.324617

wharal doal	-0.47	5201	-0.024079	0.139591	
<pre>ghazal_deal total_sharks_invested</pre>	-0.47		0.573341	0.609817	
amount_per_shark	-0.04		0.107673	0.003017	
equity_per_shark	-0.10		-0.049699	0.063640	
equity_per_snark	-0.10	2568	-0.049099	0.003040	
	aman_deal	namita_deal	vineeta_deal	peyush_deal \	
episode_number	-0.264855	-0.041819	-0.035758		
pitch_number	-0.272245	-0.053756	-0.028765	0.013214	
deal	0.461369	0.430422	0.342997		
pitcher_ask_amount	-0.053685	-0.045850	-0.036575		
ask_equity	-0.140932	0.027449	0.096837		
ask_valuation	-0.085926	-0.075664	-0.068814		
deal_amount	0.482279	0.443929	0.315109		
deal_equity	0.150735	0.136270	0.359560		
deal_valuation	0.360149	0.178616	-0.001066		
ashneer_present	0.246972	-0.025346	-0.108422		
anupam_present	NaN	NaN	NaN		
aman_present	0.246972	-0.025346	-0.108422	-0.143856	
namita_present	0.043412	0.155022	-0.051660		
vineeta_present	-0.234098	-0.150433	0.337100		
peyush_present	-0.002776	0.073610	-0.194332		
ghazal_present	-0.251628	0.005846	0.163984		
ashneer_deal	0.311859	0.116921	0.220354		
anupam_deal	0.211158	0.134733	0.185069		
aman_deal	1.000000	0.294019	0.024582		
namita_deal	0.294019	1.000000	0.142601		
vineeta_deal	0.024582	0.142601	1.000000		
peyush_deal	0.120692	0.151757	-0.028006		
ghazal_deal	-0.141494	0.247520	0.442232	0.203965	
total_sharks_invested	0.549698	0.559506	0.464893	0.560000	
amount_per_shark	0.323914	0.232283	0.061331	0.198726	
equity_per_shark	0.007305	0.024287	0.113549	0.311324	
1 7-1 -					
	ghazal_deal	_	cks_invested	amount_per_shark	\
episode_number	0.229482		-0.121894	-0.157896	
pitch_number	0.226210		-0.131541	-0.166871	
deal	0.225630		0.759342	0.653882	
pitcher_ask_amount	-0.024308		-0.084288	-0.071281	
${\tt ask_equity}$	0.071451		-0.028387	-0.165141	
${\tt ask_valuation}$	-0.050633		-0.140668	-0.066631	
deal_amount	0.188542		0.695950	0.793392	
deal_equity	0.188478		0.432880	0.359031	
deal_valuation	-0.002742		0.319298	0.581751	
ashneer_present	-0.475201		-0.026656	-0.049810	
anupam_present	NaN		NaN	NaN	
aman_present	-0.475201		-0.026656	-0.049810	
namita_present	0.081264		0.073785	0.066861	
vineeta_present	0.221751		-0.137834	-0.048368	

peyush_present	0.144814	0.122518	-0.037216
ghazal_present	0.471940	0.014639	-0.049405
ashneer_deal	-0.024079	0.573341	0.107673
anupam_deal	0.139591	0.609817	0.088905
aman_deal	-0.141494	0.549698	0.323914
namita_deal	0.247520	0.559506	0.232283
vineeta_deal	0.442232	0.464893	0.061331
peyush_deal	0.203965	0.560000	0.198726
ghazal_deal	1.000000	0.394771	0.004715
total_sharks_invested	0.394771	1.000000	0.293030
amount_per_shark	0.004715	0.293030	1.000000
equity_per_shark	0.025510	0.138429	0.407074

0.083101

1.000000

equity_per_shark episode_number -0.073187 pitch_number -0.079109 0.461046 pitcher_ask_amount -0.050873 0.238074

ask_equity ask_valuation -0.118541 deal_amount 0.239212 deal_equity 0.897922 deal_valuation -0.080662 ashneer_present -0.102568 anupam_present NaNaman_present -0.102568 -0.114103 namita_present vineeta_present 0.028488

ghazal_present 0.040184 ashneer_deal -0.049699 $anupam_deal$ 0.063640 0.007305 aman_deal $namita_deal$ 0.024287 vineeta_deal 0.113549 peyush_deal 0.311324 ghazal_deal 0.025510 total_sharks_invested 0.138429 amount_per_shark 0.407074

[26 rows x 26 columns]

equity_per_shark

peyush_present

deal

0.6 Question6-What is the target variable?

```
[70]: import pandas as pd
      from sklearn.linear_model import LinearRegression
      # Create a sample DataFrame
      data = {
          'X1': [1, 2, 3, 4, 5],
          'X2': [2, 4, 5, 4, 5],
          'y': [3, 6, 8, 8, 10]
      }
      df = pd.DataFrame(data)
      # Define features (X) and the target variable (y)
      X = df[['X1', 'X2']]
      y = df['y']
      # Create a linear regression model
      model = LinearRegression()
      # Fit the model to the data
      model.fit(X, y)
      # Make predictions
      predictions = model.predict(X)
      # Print the predictions
      print("Predictions:", predictions)
```

Predictions: [3. 6. 8. 8. 10.]

0.7 Question 7-What are the units of measurement for numerical columns?

```
[71]: import pandas as pd

# Create a sample DataFrame
data = {
    'Length (inches)': [10.2, 8.5, 12.7, 9.8, 11.0],
    'Weight (pounds)': [0.5, 0.4, 0.7, 0.6, 0.8],
    'Price (dollars)': [25, 30, 35, 28, 40],
    'Product Name': ['Widget A', 'Widget B', 'Widget C', 'Widget D', 'Widget E']
}

df = pd.DataFrame(data)

# Display summary statistics for numerical columns
numerical_summary = df.describe()
```

```
# Identify unique values in non-numeric columns
unique_product_names = df['Product Name'].unique()

# Print summary statistics and unique product names
print("Summary Statistics for Numerical Columns:")
print(numerical_summary)

print("\nUnique Product Names:")
print(unique_product_names)
```

Summary Statistics for Numerical Columns:

	Length (inches)	Weight (pounds)	Price (dollars)
count	5.000000	5.000000	5.00000
mean	10.440000	0.600000	31.60000
std	1.553383	0.158114	5.94138
min	8.500000	0.400000	25.00000
25%	9.800000	0.500000	28.00000
50%	10.200000	0.600000	30.00000
75%	11.000000	0.700000	35.00000
max	12.700000	0.80000	40.00000

Unique Product Names:

['Widget A' 'Widget B' 'Widget C' 'Widget D' 'Widget E']

0.8 Question -8

```
[18]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Load your dataset (replace 'your_dataset.csv' with the actual dataset file_
       \hookrightarrow path)
      df = pd.read_csv("C:\\Users\\admin\\Shark Tank India Dataset.csv")
      # Specify the categorical variable you want to analyze (replace 'target_column'
       ⇔with the actual column name)
      categorical_column = df['brand_name']
      # Create a count plot to visualize the distribution
      plt.figure(figsize=(20, 6))
      sns.countplot(data=df, x=categorical_column)
      plt.title(f'Distribution of {categorical_column}')
      # plt.xlabel(categorical_column)
      plt.ylabel('Count')
      plt.xticks(rotation=90)
      plt.show()
```


0.9 Question 9: Do you have domain clarification? Brief it

```
[67]: print("Total deal amount : ", df['Total Deal Amount'].sum())
print("Total Successful deals : ", (df['Got Deal']==1).sum())
print("Average deal amount (ADA, in dollars):", (df['Total Deal Amount'].sum()/

G(df['Got Deal']==1).sum()))
```

Total deal amount: 226488166.0

Total Successful deals: 765

Average deal amount (ADA, in dollars): 296062.96209150326

0.10 Question 10-Are there any correlations between variables? Calculate correlations

plt.show()

[]: