Université de Carthage ****

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

EXAMEN

Session principale

Matière: Transfert thermique Documents Autorisés: NON

Classes: 2TA Enseignants: Dr.. Dorra Lounissi

Dr. Sana Kordoghli

Durée : 1h30 **Date :** 04/01/2023

Exercice 1 (6 points)

Une surface chaude à 100 ° C est refroidie en attachant des ailettes en aluminium de 3 cm de long et de 0,25 cm de diamètre chacune ($\lambda = 237$ W / m. K), La distance entre les centres des ailettes est de 0,6 cm (voir figure)

Si la température du milieu environnant est de 30 $^{\circ}$ C, et le coefficient de convection entre les surfaces et le milieu ambiant est de 35 W / m^2 .K.

1- Déterminer le flux de chaleur dégagée par une surface carrée de section S = 1m*1mde la plaque.

2- Déterminer alors ces ailettes.

l'effectivité globale de

Exercice 2 (8 points)

Un collecteur solaire est constitué d'un tube de cuivre horizontal de diamètre 5 cm et d'épaisseur négligeable enfermé dans un mince tube de verre concentrique de 9 cm de diamètre. Le collecteur reçoit un flux de chaleur radiatif de source solaire. L'eau est chauffée en traversant

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

le tube, et l'espace annulaire entre le tube de cuivre et de verre est rempli d'air immobilisé à une pression de 1 atm. Par temps clair, à une température extérieur est égale à 25°C les températures des surfaces du tube de cuivre et de verre sont mesurées être 65°C et 35°C, respectivement.

- 1- Déterminer le flux de chaleur $\Phi_{cv\ ext}$ par unité de longueur perdu par convection vers l'extérieur ?
- 2- Pour un débit de circulation d'eau égale à 10⁻⁵ kg/s, déterminer le coefficient de convection à l'intérieur du tube de cuivre si la température moyenne de l'eau à l'intérieur du tube est estimée être 35°C. En déduire le flux de chaleur par unité de longueur Φ_{cv int} transféré par le tube en cuivre à l'eau.
- 3- Comparer les deux flux et interpréter.

Exercice 3 (6 points)

Considérons un tube rectangulaire lisse de 10 m de long, avec a = 50 mm et b = 25 mm, qui est maintenu à une constante température de surface. L'eau liquide entre dans le tube à 20° C avec un débit massique de 0,01 kg/s.

Déterminez la température nécessaire de la surface du tube pour chauffer l'eau jusqu'à la température de sortie souhaitée de 80°C. (On utilisera les propriétés de l'eau à la température moyenne entre l'entrée et la sortie).

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria ****

Année Universitaire 2022-2023

Annexe 1

Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry	Characteristic length L _c	Range of Ra	Nu			
Vertical plate	L	104-109 1010-1013 Entire range	$\begin{array}{ll} \text{Nu} = 0.59 \text{Ra}_L^{\text{jris}} & \text{(9-}\\ \text{Nu} = 0.1 \text{Ra}_L^{\text{in}} & \text{(9-}\\ \text{Nu} = \left\{0.825 + \frac{0.387 \text{Ra}_L^{\text{jris}}}{1 + (0.492 \text{Pr})^{\text{Oto}} 1^{\text{NCI}}}\right\}^2 & \text{(9-}\\ \text{(complex but more accurate)} \end{array}$			
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate ${\rm Replace}\ g\ {\rm by}\ g\ {\rm cos}\theta {\rm for} 0<\theta<60^\circ$			
Horizontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface T,	A _* /p	10*-10* 10*-10*1	$\begin{aligned} Nu &= 0.59 Ra_L^{10} \\ Nu &= 0.1 Ra_L^{25} \end{aligned}$	(9-22) (9-23)		
(b) Lower surface of a hot plate (or upper surface of a cold plate) Hot surface		10=-10:1	$Nu=0.27Ra_{\chi}^{1r4}$	(9-24)		
Vertical cylinder	L		A vertical cylinder can be treated as a vertical plate when $D \geq \frac{35L}{Gr_L^{36}}$			
Horizontal cylinder	D	$Ra_D \le 10^{12}$	$Nu = \left\{0.6 + \frac{0.387Ra_0^{18}}{[1 + (0.559/Pr)^{(816)}]^{8377}}\right\}^2$	(9-25)		
Sphere	D	$Ra_B \le 10^{11}$ (Pr ≥ 0.7)	$Nu = 2 + \frac{0.589 R u_0^{346}}{[1 + (0.4699 Pr)^{916}]^{40}}$	(9–26)		

Propriétés de l'eau à la pression atmosphérique 1atm

Topricies de l'eau à la pression atmospherique fatin								
Temp °C	Masse volumique ρ(kg/m3)	C _p (kJ/kg.K)	Conductivité λ (W/m.K)	Viscosité dynamique μ (kg/m.s)	Viscosité Cinématique ν (m²/s)	Pr		
10	999,7	4,1952	0,57878	1305,9×10 ⁻⁶	13,063×10 ⁻⁷	9,4656		
20	998,21	4,1841	0,59801	1001,6×10 ⁻⁶	10,034×10 ⁻⁷	7,0078		
30	995,65	4,1798	0,61439	797,22×10 ⁻⁶	8,0071×10 ⁻⁷	5,4236		
40	992,22	4,1794	0,62849	652,73×10 ⁻⁶	6,5785×10 ⁻⁷	4,3406		
50	988,04	4,1813	0,64062	546,52×10 ⁻⁶	5,5313×10 ⁻⁷	3,5671		
60	983,2	4,185	0,651	466,04×10 ⁻⁶	$4,74\times10^{-7}$	2,9959		
70	977,76	4,1901	0,65976	403,55×10 ⁻⁶	4,1273×10 ⁻⁷	2,5629		
80	971,79	4,1968	0,66699	354,05×10 ⁻⁶	3,6433×10 ⁻⁷	2,2277		
90	965,31	4,2052	0,67279	314,18×10 ⁻⁶	3,2547×10 ⁻⁷	1,9637		

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

Annexe 2

Amicac 2							
Properties of	air at 1 atm pre	ssure					
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandt
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Numbe
<i>T</i> , °C	ρ, kg/m³	c _p , J/kg⋅K	k, W/m⋅K	α, m²/s	μ, kg/m-s	ν, m²/s	Pr
-150	2.866	983	0.01171	4.158 × 10 ⁻⁶	8.636 × 10 ⁻⁶	3.013 × 10=6	0.7246
-100	2.038	966	0.01582	8.036 × 10=6	1.189 × 10 ⁻⁵	5.837 × 10 ⁻⁶	0.7263
-50	1.582	999	0.01979	1.252 × 10 ⁻⁵	1.474 × 10 ⁻⁵	9.319 × 10 ⁻⁶	0.7440
-40	1.514	1002	0.02057	1.356 × 10 ⁻⁵	1.527 × 10 ⁻⁵	1.008 × 10 ⁻⁵	0.7436
-30	1.451	1004	0.02134	1.465 × 10 ⁻⁵	1.579 × 10 ⁻⁵	1.087 × 10 ⁻⁵	0.7425
-20	1.394	1004	0.02134	1.578 × 10 ⁻⁵	1.630 × 10 ⁻⁵	1.169 × 10 ⁻⁵	0.7423
-10	1.341	1005	0.02211	1.696 × 10 ⁻⁵	1.680 × 10 ⁻⁵	1.252 × 10 ⁻⁵	0.7387
0	1.292	1006	0.02364	1.818 × 10 ⁻⁵	1.729 × 10 ⁻⁵	1.338 × 10 ⁻⁵	0.7362
5	1.269	1006	0.02364	1.880 × 10 ⁻⁵	1.754 × 10 ⁻⁵	1.382 × 10 ⁻⁵	0.7352
10	1.246	1006	0.02439	1.944 × 10 ⁻⁵	1.778 × 10 ⁻⁵	1.426 × 10 ⁻⁵	0.7336
		1006		2.009 × 10 ⁻⁵	1.802 × 10 ⁻⁵	1.426 × 10 -5	0.7323
15	1.225 1.204		0.02476	2.074 × 10 ⁻⁵	1.802 × 10 ° 1.825 × 10 ° 5	1.516 × 10 ⁻⁵	0.7323
20		1007	0.02514				
25	1.184	1007	0.02551	2.141 × 10 ⁻⁵	1.849 × 10 ⁻⁵	1.562 × 10 ⁻⁵	0.7296
30	1.164	1007	0.02588	2.208 × 10 ⁻⁵	1.872 × 10 ⁻⁵	1.608 × 10 ⁻⁵	0.7282
35	1.145	1007	0.02625	2.277 × 10 ⁻⁵	1.895 × 10 ⁻⁵	1.655 × 10 ⁻⁵	0.7268
40	1.127	1007	0.02662	2.346 × 10 ⁻⁵	1.918 × 10 ⁻⁵	1.702 × 10 ⁻⁵	0.7255
45	1.109	1007	0.02699	2.416 × 10 ⁻⁵	1.941 × 10 ⁻⁵	1.750 × 10 ⁻⁵	0.7241
50	1.092	1007	0.02735	2.487 × 10 ⁻⁵	1.963 × 10 ⁻⁵	1.798 × 10 ⁻⁵	0.7228
60	1.059	1007	0.02808	2.632 × 10 ⁻⁵	2.008 × 10 ⁻⁵	1.896 × 10 ⁻⁵	0.7202
70	1.028	1007	0.02881	2.780 × 10 ⁻⁵	2.052 × 10 ⁻⁵	1.995 × 10 ⁻⁵	0.7177
80	0.9994	1008	0.02953	2.931 × 10 ⁻⁵	2.096 × 10 ⁻⁵	2.097 × 10 ⁻⁵	0.7154
90	0.9718	1008	0.03024	3.086×10^{-5}	2.139 × 10 ⁻⁵	2.201 × 10 ⁻⁵	0.7132
100	0.9458	1009	0.03095	3.243×10^{-5}	2.181 × 10 ⁻⁵	2.306 × 10 ⁻⁵	0.7111
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264 × 10 ⁻⁵	2.522 × 10 ⁻⁵	0.7073
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345 × 10 ⁻⁵	2.745 × 10 ⁻⁵	0.7041
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420 × 10 ⁻⁵	2.975 × 10 ⁻⁵	0.7014
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504 × 10 ⁻⁵	3.212 × 10 ⁻⁵	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.577 × 10 ⁻⁵	3.455×10^{-5}	0.6974
250	0.6746	1033	0.04104	5.890×10^{-5}	2.760 × 10 ⁻⁵	4.091 × 10 ⁻⁵	0.6946
300	0.6158	1044	0.04418	6.871 × 10 ⁻⁵	2.934 × 10 ⁻⁵	4.765 × 10 ⁻⁵	0.6935
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101 × 10 ⁻⁵	5.475 × 10 ⁻⁵	0.6937
400	0.5243	1069	0.05015	8.951×10^{-5}	3.261 × 10 ⁻⁵	6.219 × 10 ⁻⁵	0.6948
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997 × 10 ⁻⁵	0.6965
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563 × 10 ⁻⁵	7.806 × 10 ⁻⁵	0.6986
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846 × 10-5	9.515 × 10=5	0.7037
700	0.3627	1135	0.06581	1.598×10^{-4}	4.111 × 10-5	1.133×10^{-4}	0.7092
800	0.3289	1153	0.07037	1.855 × 10-4	4.362 × 10 ⁻⁵	1.326 × 10-4	0.7149
900	0.3008	1169	0.07465	2.122 × 10 ⁻⁴	4.600 × 10 ⁻⁵	1.529 × 10-4	0.7206
1000	0.2772	1184	0.07868	2.398 × 10 ⁻⁴	4.826 × 10 ⁻⁵	1.741 × 10-4	0.7260
1500	0.1990	1234	0.09599	3.908 × 10 ⁻⁴	5.817 × 10 ⁻⁵	2.922 × 10-4	0.7478

On donne pour les écoulements forcés internes :

- Régime Turbulent : $Nu_D = 0.023$. $Re^{0.8}$. $Pr^{1/3}$ pour $0.5 \le Pr \le 100$ - Régime laminaire : $Nu_D = 1.86$. $(Re. Pr)^{0.33}$. $\left(\frac{D}{L}\right)^{0.33}$. $\left(\frac{\mu}{\mu_s}\right)^{0.14}$ pour $Re. Pr. \frac{D}{L} > 1.86$ 10

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

Correction Examen 2022-2023

Exercice 1:

1- Le nombre d'ailette pour S=1 m²: $\frac{1}{0.006}$ = 166.66 $\Rightarrow N_{ail}$ = 166 * 166 = 27556 ailettes

Le flux dégagé par une seule ailette :

$$\Phi = \eta_{ail} * A_{ail} * h * (T_b - T_{\infty}) \text{ or } \eta_{ail} = \frac{\tanh(m*L_c)}{m*L_c}$$
 D'après les abaques.

Avec:
$$m = \sqrt{\frac{4*h}{(\lambda*D)}}$$
; $L_c = L + D/4$ et $A_{ail} = \pi D L_c$

Ainsi le flux total dégagé par la surface S est $\Phi_T = \Phi * N_{ail}$

A.N : m= 15,3716271 m-1;
$$L_c$$
 =0,030625 m ; A_{ail} =0,00024041 m-2; η_{ail} = 0,932

$$\Phi = 0,549 \,\mathrm{W} , \Phi_T = 15128,94 \,\mathrm{W}$$

2.
$$\varepsilon = \frac{\mathit{Flux}\,\mathit{d\'egag\'e}\,\mathit{par}\,\mathit{les\,ailettes}}{\mathit{flux}\,\mathit{d\'egag\'e}\,\mathit{sans\,ailettes}}$$
 $\Phi_{\mathit{sans\,ail}} = s*h*(T_b-T_\infty)$

A.N :
$$\varepsilon = 6,175$$

Exercice 2

1-
$$\Phi_{cv \, ext} = h * S * (T_{verre} - T_{\infty})$$

 $Convection\ naturelle\ autour\ d'un\ cyclindre\ horizontal$

$$Ra = Gr * Pr = \frac{g \cdot \beta}{v^2} \cdot (T_{verre} - T_{\infty}) \cdot D^3$$

$$T_f = \frac{T_{verre} - T_{\infty}}{2} = 30^{\circ}C : \beta = \frac{1}{T_f} = 0.0033; \nu = 1.608 \frac{10^{-5}m^2}{s}; Pr$$

$$k = 0.02588 W/(m.K)$$

$$\Rightarrow Ra = 6.77 \ 10^5 \le 10^{12}$$

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

D

$$Nu = \left\{0.6 + \frac{0.387 Ra_D^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}}\right\}^2$$

Nu = 13.08

$$h = 3.7612 \frac{W}{m^2.K}$$

$$\Rightarrow \Phi_{cv \ ext} = 10.63 \ W/m$$

2-
$$T_f = \frac{T_{cuivre} - T_m}{2} = 50^{\circ}C$$
; $\rho = 988,04 \frac{\text{kg}}{\text{m3}}$; $k = 0,64062 \frac{\text{W}}{\text{m.K}}$; $\mu = 546,52 \times 10^{-6} \frac{\text{m}^2}{\text{s}}$; $P_r = 3,5671$

$$Re = \frac{4 * \dot{m}}{\pi . D. \nu} = 460.6 \implies régime la minaire$$

Régime laminaire :
$$Nu_D = 1.86$$
. $(Re. Pr)^{0.33}$. $\left(\frac{D}{L}\right)^{0.33}$. $\left(\frac{\mu}{\mu_s}\right)^{0.14}$ pour $Re. Pr. \frac{D}{L} > 10$

Condition vérifiée, $Nu_D = 8.22 \ (\mu_s (65^{\circ}C) = 434.795 \times 10^{-6} \frac{\text{m}^2}{\text{s}})$

$$h = 101.09 \frac{W}{m^2. K}$$

$$\Rightarrow \Phi_{cv int} = 555.49 W/m$$

Exercice 3

$$Tm = (Te+Ts)/2 = 50^{\circ}C$$
,

$$\dot{Q} = \text{h. S}_{\text{latérale}}.(\text{Tsurface-Tm}) = \dot{m}.\text{Cp.}(\text{Ts-Te})$$

Cp = 4,1813 kJ/(kg.K),
$$\lambda = 0.64062$$
 (W/m.K), $\nu = 5.5313 \times 10^{-7}$ (m²/s), Pr = 3.5671

$$\dot{Q} = 0.01 * 4.1813 * (80 - 20) = 2.5 \, kW$$

$$Tsurface = \frac{\dot{Q}}{h. S_{latérale}} + Tm$$

h? Re = 12075.28 avec Lc = 4S/P =0.033 m et v = $\dot{m}/(S*\rho)$ = 0.2024 m/s régime turbulent (Re >2300)

$$Nu = 64,7665403$$
, $h = 1257,29518 \text{ W/(m}^2\text{.K)}$

Université de Carthage ****

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria ****

Année Universitaire 2022-2023