1장 머신러닝과 딥러닝

① 생성일	@2024년 9월 22일 오후 2:11	
: 태그	Week 1	

1-1 머신러닝과 딥러닝

- 인공 지능이란 인간의 지능을 모방하여 사람이 하는 일을 컴퓨터.가 할 수 있도록 하는 기술로 인공지능을 구현하는 방법으로 머신러닝과 딥러닝이 있음
- 인공지능>머신러닝>딥러닝
- 머신러닝은 주어진 데이터를 인간이 먼저 전처리 (이미지 데이터라면 사람이 학습 데이터를 컴퓨터가 인식할 수 있도록 준비해두어야 함. 데이터의 특징을 스스로 추출하지 못함.)
- 딥러닝은 인간이 하던 작업을 생략. 대량의 데이터를 신경망에 적용하면 컴퓨터가 스스로 분석

구분	머신 러닝	딥러닝	
동작 원리	입력 데이터에 알고리즘을 적용하여 예측을 수 행한다.	정보를 전달하는 신경망을 사용하여 데이터 특 징 및 관계를 해석한다.	
재사용	입력 데이터를 분석하기 위해 다양한 알고리즘 을 사용하며, 동일한 유형의 데이터 분석을 위 한 재사용은 불가능하다.	구현된 알고리즘은 동일한 유형의 데이터를 분석하는 데 재사용된다.	
데이터	일반적으로 수천 개의 데이터가 필요하다.	수백만 개 이상의 데이터가 필요하다.	
훈련 시간	단시간	장시간	
결과	일반적으로 점수 또는 분류 등 숫자 값	출력은 점수, 텍스트, 소리 등 어떤 것이든 가능	

1-2 머신러닝이란

- 머신러닝은 인공지능의 한 분야로, 컴퓨터가 스스로 대용량 데이터에서 지식이나 패턴을 찾아 학습하고 예측을 수행하는 것.
- 머신러닝의 학습과정

* 레이블은 지도 학습에서 정답을 의미

- 이때 실제 데이터의 특징이 잘 반영되고 편향되지 않는 훈련 데이터를 확보하는 것이 중요
- 보통 데이터와 테스트 데이터의 분리 비율은 8:2
- [모델선택 → 모델 학습 및 평가 → 평가 바탕으로 모델 업데이트] 단계를 반복하면서 주 어진 문제를 가장 잘 풀 수 있는 모델을 찾음

- 이때 훈련 데이터에 대한 정확도는 높은 반면 검증 데이터셋에 대한 정확도가 낮다면 훈련데이터셋에 과적합이 일어났을 가능성이 잇음. 이 경우 정규화나 에포크를 줄이는 방식으로 과적합을 막을 수 있음
- ▼ ? 정규화나 에포크를 줄이는 방식이 과적합을 줄이는 이유?
 - L1 정규화: 가중치의 절댓값 합을 손실함수에 추가하여 일부 가중치가 0이 되도록 유도. 모델을 더 단순하게 만듦

- L2 정규화: 가중치의 제곱합을 손실함수에 축하여 모든 가중치가 너무 크지 않도록 제한. 모델이 특정한 데이터 포인트에 과도하게 적응하지 않도록 도움
- 에포크(전체 데이터셋을 모델이 한번 학습하는 과정 의미)를 줄이면 모델이 데이터 를 지나치게 반복해서 학습하는 것을 방지할 수 있음

❤ 표 1-2 지도 학습, 비지도 학습, 강화 학습

구분	유형	알고리즘
지도 학습 (supervised learning)	분류(classification)	 K-최근접 이웃(K-Nearest Neighbor, KNN) 서포트 벡터 머신(Support Vector Machine, SVM) 결정 트리(decision tree) 로지스틱 회귀(logistic regression)
	회귀(regression)	선형 회귀(linear regression)
비지도 학습 (unsupervised learning)	군집(clustering)	• K-평균 군집화(K-means clustering) • 밀도 기반 군집 분석(DBSCAN)
	차원 축소 (dimensionality reduction)	주성분 분석 (Principal Component Analysis, PCA)
강화 학습 (reinforcement learning)	_	마르코프 결정 과정 (Markov Decision Process, MDP)

1-3 딥러닝이란

- 인간의 신경망 원리를 모방한 심층 신경망 이론을 기반으로 고안된 머신러닝의 일종
- 인간의 신경망 (뉴련/시냅스) 에 착안하여 컴퓨터에 개념을 적용
- 딥러닝 모델의 학습과정

- 모델 정의 단계에서 신경망을 생성. 일반적으로 은닉층의 개수가 많을 수록 성능이 좋아 지지만 과적합이 발생할 확률이 높아짐
- 모델 컴파일 단계에서 활성화 함수, 손실 함수, 옵티마이저를 선택함. 예를 들어 훈련 데 이터셋이 연속형 형태라면 Mean Squared Error, 이진 분류라면 Cross Entropy를 사용함.
- 모델 훈련 단계에서 한번에 처리할 데이터의 양을 지정함. 전체 훈련 데이터셋에서 일정한 묶음으로 나누어 처리할 수 있는 배치와 훈련의 횟수인 에포크 선택이 중요함. 이때 훈련 과정에서 값의 변화를 시각적으로 표현하여 눈으로 확인해보면서 파리미터와 하이 퍼파라미터에 대한 최적의 값을 찾을 수 있어야 함.

[훈련 데이터셋 1000개에 대한 배치크기가 20이라고 가정]

1. 샘플 단위 20개 마다 모델 가중치를 한번씩 업데이트 시킴. 따라서 총 50번의 가중치가 업데이트 됨

- 2. 이때 에포크가 10이라면, 가중치를 50번 업데이트를 10번 반복 → 총 500번 가중치 업데이트
- 딥러닝 학습과정에서 중요한 핵심 구성요소는 신경망(데이터셋의 어떤 특성이 중요한지 스스로 가르쳐 줄 수 있는 기능)과 역전파(가중치 값을 업데이트하기 위함. 미분을 통한 방법)

딥러닝 학습 알고리즘

1. 지도학습

- cv에서 이미지 분류에 가장 많이 사용되는 기술 합성곱 신경망 Convolutional Neural Network, CNN → 목적에 따라 이미지분류, 이미지 인식, 이미지 분할로 분류 가능
- 시계열 데이터를 분류할 때 사용되는 것이 순환 신경망 Recurrent Neural Network, RNN → 하지만 이때 역전파 과정에서 기울기 소멸 문제 발생할 수 있음 → gate를 3개 추가 → LSTM Long Short-Term Memory (과거의 정보를 잊기 위한 망각 게이트, 현재 정보를 기억하기 위한 입력게이트, 최종결과를 위한 출력게이트)

2. 비지도 학습

- Work Embedding: 자연어를 벡터로 표현. 이때 벡터화하는 기술로 Word2Vec과 GloVe 사용
- Clustering은 아무런 정보가 없는 상태에서 데이터를 분류하는 방법으로 머신러닝과 함께 사용되면 모델 성능을 높일 수있음

3. 전이학습 Transfer Learning

- 사전 학습이 완료된 모델 pre-trained model로 우리가 원하는 학습에 미세 조정 기법을 이용하여 학습시키는 방법
- VGG, Inception, MobileNet과같은 사전 학습 모델을 사용

구분	유형	알고리즘
지도 학습(supervised learning)	이미지 분류	CNN AlexNet ResNet
	시계열 데이터 분석	•RNN •LSTM
비지도 학습 (unsupervised learning)	군집 (clustering)	 가우시안 혼합 모델(Gaussian Mixture Model, GMM) 자기 조직화 지도(Self-Organizing Map, SOM)
	차원 축소	 오토인코더(AutoEncoder) 주성분 분석(PCA)
전이 학습(transfer learning)	전이 학습	• 버트(BERT) • MobileNetV2
강화 학습(reinforcement learning)	-	마르코프 결정 과정(MDP)