BAC BLANC

EPREUVE DE MATHS

Du rée : 4H

Classes:7C

27/12/2017

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part/importante dans l'appréciation de la copie.

Exercice 1 (4 points)

On considère les matrices:
$$A = \begin{pmatrix} -5 & 2 & 1 & 1 \\ 1 & 1 & -2 & -1 \\ 0 & 1 & 3 & -2 \\ 2 & 4 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 8 \\ 7 \\ 9 \\ 5 \end{pmatrix} \text{ et } M = \begin{pmatrix} -27 & -25 & -1 & 20 \\ 12 & 0 & 6 & 30 \\ -6 & -50 & 22 & 10 \\ -3 & -75 & -39 & 30 \end{pmatrix}$$

- 1) Calculer le produit MB.
- 2) Sachant que $AM = \lambda I_4$, c'est-à-dire que $AM = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$; calculer la valeur du nombre réel λ .
- 3) En déduire la matrice inverse de A.
- 4) Résoudre le système suivant :

$$\begin{cases}
-5x + 2y + z + t = 8 \\
x + y - 2z - t = 7 \\
y + 3z - 2t = 9 \\
2x + 4y - z = 5
\end{cases}$$

Exercice 2 (5 points)

- 1) Soit m un entier relatif.
- a)Déterminer les valeurs de m tels que m+2 divise 5.
- b) Déterminer les valeurs de m tels que le nombre $\frac{3m+1}{m+2}$ soit un entier relatif.
- 2) Soit n un entier naturel.
- a)Trouvez, suivant les valeurs de n, le reste de la division euclidienne de 2ⁿ par 5.
- b) En déduire le reste de la division euclidienne de 2017²⁰¹⁸ par 5.
- 3) Soit $X = 2017^{2n+1} + 2018^{2n+1}$ où n'est un entier naturel.
- a) Montrez que pour tout entier naturel n, X est divisible par 5.
- b) Montrez que pour tout entier naturel n, X est divisible par 15.
- c) Montrez que pour tout entier naturel n, X est divisible par 269.

Exercice 3 (4 points)

Dans le plan orienté on considère un parallélogramme direct ABCD. Soient ADM; BAP et ACN des triangles directs rectangles isocèles respectivement en A; B et C. Les affixes des points A; B et C sont notées respectivement a; b et c.

- 1.a) Placer les données sur une figure.
- b) Exprimer en fonction de a ;b et c les affixes respectives p ;n ;m et d des points P ;N ;M et D.
- 2.a) Montrer que p-c=i(m-b). En déduire que PC=MB et $(PC)\perp(MB)$.
- b) Montrer que BN = MC et $(BN) \perp (MC)$.
- c) Montrer que les droites (AM); (BN) et (CP) sont concourantes.

Exercice 4 (7 points)

Le plan complexe est muni d'un repère orthonormé (O; u, v).

- 1) On pose: $P(z) = z^3 (5+6i)z^2 + (-2+22i)z + 14 12i$ où z est un nombre complexe.
- a) Calculer P(1+i).
- b) Déterminer les nombres a et b tels que pour tout z de \mathbb{C} : $P(z) = (z-1-i)(z^2+az+b)$.
- c) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.
- 2) Soient les points A, B et C d'affixes respectives $z_A = 1 + i$, $z_B = 1 + 4i$ et $z_C = 3 + i$.
- a) Placer les points A, B et C sur le repère.
- b) Donner l'expression complexe de la similitude directe f de centre A qui transforme B en C.
- c)Déterminer le rapport et un angle de f
- d) Donner l'expression complexe de fof et caractériser cette composée.
- 3) Dans la suite de l'exercice on considère les points M_n tels que $M_0 = B(1;4)$ et pour tout entier $n \in \mathbb{N}$ on pose $M_{n+1} = f(M_n)$. On note z_n l'affixe du point M_n .
- a) Calculer z_1 et reconnaitre M_1 .
- b) Montrer que pour tout $n \in \mathbb{N}$ on $a : z_n = 1 + i 2 + i 2 + 3 = 1 +$
- c) Démontrer que tous les points M_n sont situés sur l'une ou l'autre de deux droites que l'on précisera.
- d) Démontrer que le triangle $M_{n-1}M_nM_{n+1}$ est rectangle pour tout $n\geq 1$. En déduire un programme de construction géométrique du point M_{n+1} à partir de M_n et M_{n-1} pour tout $n\geq 1$.
- e) Sans calculer les affixes, placer les points M_0 , M_1 , M_2 , M_3 et M_4 sur la figure.

Fin.