Evaluating algorithms for missing value imputation in real battery data¹

Dauda Sheni^{1[0000-0002-4634-2538]}, Anton Basson^{1[0000-0001-7998-330X]}, Jacomine Grobler^{2[0000-0002-1868-0759]}

Appendix: Detailed Results

1. Introduction

This document serves as an appendix to the paper titled "Evaluating algorithms for missing value imputation in real battery data". This appendix begins with a description of the experiment carried out, the summarised training and cross-validation results, as well as the results from the Mann-Whitney U test. The k-NN algorithm emerges as the best performing, demonstrating efficient learning and generalization across all features This paper has shown that ML algorithms can be used for MVI and error correction, with k-NN and MICE providing efficient, and reliable estimates to missing values, with minimal training effort.

MVI performance is very good on features with lower standard deviation and cardinality, while it remains unreliable on others. The categorical features 'Material Weight' and 'Material Part Number', modelled as continuous features, also provide good results, further demonstrating the versatility of the imputation methods. These observations are critical for understanding the applicability and limitations of different imputation techniques for error correction in the HVB dataset.

2. Training Results

The training results in Figures 1-2 show the best performance for the 'Minimum Capacity' feature. The average error in the larger training set is higher than in the cross-validation set, indicating robustness in performance.

Figure 1: NRMSE across the continuous features during training.

¹ Sheni, D.N., Basson, A.H., Grobler, J.: Evaluating algorithms for missing value imputation in real battery data. (2024). Submitted to BCS-SGAI 2024.

Figure 2: RMSPE across the continuous features during training.

3. Cross-Validation Results

The cross-validation results are shown in Figures 3-4. The MICE and k-NN algorithms outperform the other algorithms, as in the training results. There is notable performance improvement in all algorithms.

Figure 3: NRMSE across the continuous features in the dataset.

Figure 4: RMSPE across the continuous features.

4. Mann-Whitney U Test

The Mann-Whitney U test revealed no statistical significance between the two imputation algorithms. In all other cases, the MICE and k-NN algorithm outperform the other three predictive algorithms. The results for the RMSPE and NRMSE metrics are shown in Tables 1 and 2, respectively.

Table 1: Mann-Whitney U Test on RMSPE for the continuous features

Material Part Number					Voltage						
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	Е	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	1	-1	MLP	-1	-1	0	0	0
SVM	-1	-1	-1	0	-1	SVM	-1	-1	0	0	0
Decision	-1	-1	1	1	0	Decision	-1	-1	0	0	0
Tree						Tree					
	Capacity Min						Capacity Mean				
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	Е	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	1	-1	MLP	-1	-1	0	1	-1
SVM	-1	-1	-1	0	-1	SVM	-1	-1	-1	0	-1
Decision	-1	-1	1	1	0	Decision	-1	-1	1	1	0
Tree						Tree					
	Cap	acity T	hrough	hput		Energy Throughput					
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	E	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	-1	-1	MLP	-1	-1	0	-1	-1
SVM	-1	-1	1	0	-1	SVM	-1	-1	1	0	-1

Decision	-1	-1	1	1	0	Decision	-1	-1	1	1	0
Tree						Tree					
	Capacity Aging Min						Capacity Aging Mean				
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	Е	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	-1	-1	MLP	-1	-1	0	-1	-1
SVM	-1	-1	1	0	-1	SVM	-1	-1	1	0	0
Decision	-1	-1	1	1	0	Decision	-1	-1	1	0	0
Tree						Tree					

Table 2: Mann-Whitney U Test on NRMSE for the continuous features

Material Part Number					Voltage						
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	Е	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	1	-1	MLP	-1	-1	0	-1	-1
SVM	-1	-1	-1	0	-1	SVM	-1	-1	1	0	0
Decision Tree	-1	-1	1	1	0	Decision Tree	-1	-1	1	0	0
		Mini Capa	mum acity				N	Iean C	Capacit	y	
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
) HCE	E	N	P	M	Tree) dec	E	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	-1	-1	MLP	-1	-1	0	-1	-1
SVM	-1	-1	1	0	-1	SVM	-1	-1	1	0	-1
Decision Tree	-1	-1	1	1	0	Decision Tree	-1	-1	1	1	0
	Cap	acity T	hrough	iput			Energy Throughput				
	MIC	kN	ML	SV	Decision		MIC	kN	ML	SV	Decision
	Е	N	P	M	Tree		Е	N	P	M	Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	0	0	MLP	-1	-1	0	0	0
SVM	-1	-1	0	0	0	SVM	-1	-1	0	0	0
Decision Tree	-1	-1	0	0	0	Decision Tree	-1	-1	0	0	0
	Minim	ium Ag	ging Ca	pacity		Mean Aging Capacity					
	MIC E	kN N	ML P	SV M	Decision Tree		MIC E	kN N	ML P	SV M	Decision Tree
MICE	0	0	1	1	1	MICE	0	0	1	1	1
kNN	0	0	1	1	1	kNN	0	0	1	1	1
MLP	-1	-1	0	-1	-1	MLP	-1	-1	0	-1	-1
SVM	-1	-1	1	0	-1	SVM	-1	-1	1	0	0
Decision Tree	-1	-1	1	1	0	Decision Tree	-1	-1	1	0	0

5. Grid Search Results

The grid search results for the MLP algorithm are found in Table 3. The best solver is Adam with the ReLu function for the continuous features in the HVB dataset. The number of hidden neurons, and initial learning rate vary among the features, with similar features in the dataset having the same hyperparameters. The size of the grid space may have affected results, and increasing the grid search size may result in better MLP predictions. The grid search results for the decision tree and SVR algorithms are found in Tables 4 and 5, respectively.

Table 3: MLP Grid Search Results

Target Column	Number of Hidden	Initial Learning	Best CV Score (Neg	Test Score
	Neurons	Rate	MSE)	(MSE)
Material Part	55	0.1		
Number			-7.54E-05	0.9990
Material Weight	70	0.01	-1.17E-04	0.9982
Mean Aging	80	0.1		
Capacity			-1.35E-04	0.9996
Minimum Aging	80	0.01		
Capacity			-1.07E-04	0.9993
Mean Capacity	80	0.1	-1.37E-04	0.9997
Minimum Capacity	80	0.1	-1.19E-04	0.9997
Energy Throughput	80	0.05	-1.19E-04	0.9987
Capacity	80	0.05		
Throughput			-1.57E-04	0.9994
Charges	60	0.05	-1.46E-04	0.9991
Full Charges	80	0.01	-1.17E-04	0.9993
Voltage	70	0.01	-9.38E-05	0.9997

The 'best; splitting method is selected across all features for the decision tree algorithm. The 'Poisson' criterion is the most common splitting criterion.

Table 4: Decision Tree Grid Search Results

Target Column	Criterion	Maximum Depth	Minimum Samples in Leaf	Best CV Score (Neg MSE)	Test Score (MSE)
Material Part Number	Squared error	10	5	-0.0004	0.9632
Material Weight	Friedman MSE	10	10	-0.0004	0.9603
Mean Aging Capacity	Poisson	30	5	-0.0005	0.9481
Minimum Aging Capacity	Squared error	10	10	-0.0004	0.9622
Mean Capacity	Poisson	10	10	-0.0004	0.9623
Minimum Capacity	Poisson	10	10	-0.0004	0.9637
Energy Throughput	Poisson	10	10	-0.0004	0.9491
Capacity Throughput	Poisson	10	10	-0.0004	0.9590
Charges	Poisson	10	10	-0.0004	0.9561
Full Charges	Squared error	10	10	-0.0004	0.9581
Voltage	Friedman MSE	10	10	-0.0004	0.9609

The grid search results for the SVM (SVR) algorithm are shown in Table 5. There is less commonality with the hyperparameters for these features, but the 'Mean' and 'Minimum Capacity' features have the same hyperparameters.

Table 5:SVM Grid Search Results

Target Column	C	Epsilon	Kernel	Best CV Score (Neg MSE)	Test Score (MSE)
Material Part Number	10	0.05	RBF	-6.05E-03	0.8726
Material Weight	5	0.01	RBF	-6.17E-05	0.9988
Mean Aging Capacity	10	0.01	linear	-6.08E-05	0.9945
Minimum Aging Capacity	10	0.01	linear	-5.41E-05	0.9942
Mean Capacity	5	0.01	linear	-1.74E-05	0.9998
Minimum Capacity	2	0.01	linear	-2.12E-05	0.9997
Energy Throughput	8	0.01	RBF	-2.10E-05	0.9966
Capacity Throughput	5	0.01	RBF	-2.49E-05	0.9964
Charges	8	0.01	linear	-1.88E-04	0.7776
Full Charges	2	0.01	poly	-2.81E-04	0.5428
Voltage	10	0.1	RBF	-9.24E-03	0.7635