Diagramme de Voronoï généralisé (DVG)

- Soit C, un polygone composé de n arêtes e et de k sommets concaves.
- 1 cellule de Voronoï, DV(e_i), est l'ensemble des points de C plus proches de e_i que de tout autre élément (arêtes, sommets concaves) de C.
- 1 arête de Voronoï est associée à exactement deux cellules
- 1 sommet de Voronoï est le point de rencontre de trois arêtes de Voronoï

- Diagramme de Voronoï généralisé (DVG)
 - Rappel : distance d'un point à un segment et points équidistants entre un point et un segment

Quels sont les points P à égale distance de e1 et e3 ?

- Les points sur la bissectrice de e1,e3 si P est à gauche de la normale N1
- Les points situés sur la parabole entre e3 et v2 si P est à droite de la normale N1

• Diagramme de Voronoï généralisé

- 1 arête de Voronoï peut être:
 - Une **médiatrice** entre deux sommets concaves.
 - Une bissectrice entre deux arêtes.
 - Une portion de parabole entre un sommet concave et une arête.
 - Une **normale** entre un sommet concave et son arête adjacente.

- DVG et Axe Médian (notion de squelettes)
 - Le DVG permet de tracer des contours " parallèles " au contour polygonal externe et permet ainsi de trouver le squelette de formes

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - La construction du diagramme de Voronoï ou de la triangulation de Delaunay d'un ensemble de points permet de répondre aux questions suivantes :
 - · Points les plus proches d'un site donné
 - · Couple de points de distance minimale
 - Etc...
 - Une autre problématique est la recherche des « plus courts chemins entre les points ».
 - La réponse à cette question est donnée par la construction d'un AREM (Arbre de REcouvrement Minimum) ou « Minimum Spanning Tree » (MST)

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - Un arbre de recouvrement d'un ensemble de points est un arbre qui passe exactement par tous les points de cet ensemble.
 - Le problème
 - étant donné un ensemble de N points du plan, construire un arbre de recouvrement dont la longueur cumulée des arêtes est minimale et dont les sommets sont exactement les N points.

 Diagramme de Voronoï et triangulation de Delaunay : Extensions

Exemples d'arbres recouvrant

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - Ces arbres de recouvrement ne sont pas minimaux car si on supprime une arête on peut la remplacer par une autre de longueur inférieure.

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - Calcul de l'arbre de recouvrement minimum : La somme des longueurs d'arêtes est minimale comparée à tous les arbres de recouvrement.

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - Exemple d'algorithme de construction

- Diagramme de Voronoï et triangulation de Delaunay : Extensions
 - Les applications des AREMs sont
 - La résolution des problèmes liés au positionnement et à la connectivité d'éléments :
 - Circuits électriques
 - Réseaux téléphoniques
 - D'autres applications comme celle du voyageur de commerce
 - Dans certains cas, la distance peut être remplacée par d'autres grandeurs (coût, vitesse, etc...)

Partitionnement

- Les méthodes de partitionnement consistent à diviser un espace à 1, 2, 3 ou k dimensions afin de pouvoir effectuer des opérations « facilement »
- Des exemples typiques sont la localisation d'objets (points, lignes, etc...), la gestion des intersections entre différents objets (lignes, solides 3D, etc...)
- Plusieurs types de structures peuvent être utilisées en fonction des données et des problèmes à résoudre

- Partitionnement : k-d arborescences
 - Soit E un ensemble de n points p₁, ..., p_n de R².
 - On coupe cet ensemble récursivement en deux parties de cardinalité équivalente selon une direction (verticale ou horizontale)

- Partitionnement : k-d arborescences
 - Une k-d arborescence peut être construite en O(n log(n))

Partitionnement : k-d arborescences

- Permet de répondre à la question : Quels sont les points contenus dans le rectangle r ?
- Le temps de recherche est de $\sqrt{n} + k$
- Extension au cas 3D

- Partitionnement : arbres BSP
 - Ces arbres sont des partitions binaires de l'espace (Binary Space Partitions)
 - Soit une droite d, elle divise le plan en deux demi-plans.
 - Il est facile de savoir si un point est à gauche ou à droite de la droite
 - Chaque demi-plan peut être à son tour divisé en deux par une nouvelle droite.

• Partitionnement : arbres BSP

- Partitionnement : arbres BSP
 - Les arbres BSP divisent l'espace en régions convexes (intersection de demiplans)
 - Chaque feuille de l'arbre est une partition convexe
 - Les directions des droites peuvent être quelconques
 - Les arbres BSP peuvent aussi être utilisés en 3D

- Partitionnement : arbres BSP
 - Quelques applications
 - Optimisation des calculs d'intersection pour le lancer de rayon
 - La scène est partitionnée par un arbre BSP 3D (en utilisant les boites englobantes des objets
 - Chaque feuille contient la liste des objets
 - On ne calcule les intersections que sur les feuilles traversées par les rayons
 - Calcul d'intersections entre polyèdres ou polygones
 - Pour calculer une intersection de deux polygones on fusionne les arbres BSP en mettant à jour les droites de séparation en fonction des intersections trouvées entre ces dernières

