NLP研究热点变迁

Pre-transformer

- RNN
- LSTM
- GRU

Time

RECURRENT NEURAL NETWORK

A bidirectional recurrent neural network processes the input both forward and backward to improve the representations it produces.

AUTO-ENCODER

An autoencoder uses an encoder to compress an input into a representation and a decoder to reconstruct the input from the representation.

SEQ2SEQ MODEL FOR TRANSLATION

Given a sentence, a Recurrent Neural Network encodes the sentence and then iteratively generates a translation.

后transformer时代

• **自然语言处理发展进程**(后transformer时代)范式转移与统一范式

自然语言推理 The boy is sleeping The boy is resting

Field of Study	# Papers	Representative Papers	Field of Study	# Papers	Representative Papers	
Machine Translation	12,922	Liu et al. (2020), Goyal et al. (2022)	Visual Data in NLP	2,401	Tan and Bansal (2019), Xu et al. (2021)	
Language Models	11,005	Devlin et al. (2019), Ouyang et al. (2022)	Ethical NLP	2,322	Blodgett et al. (2020), Perez et al. (2022)	
Representation Learning	6,370	Reimers and Gurevych (2019), Gao et al. (2021b)	Question Answering	2,208	Karpukhin et al. (2020), Liu et al. (2022b))	
Text Classification	6,117	Wei and Zou (2019), Hu et al. (2022)	Tagging	1,968	Malmi et al. (2019), Wei et al. (2020)	
Low-Resource NLP	5,863	Gao et al. (2021a), Liu et al. (2022a)	Summarization	1,856	Liu and Lapata (2019), He et al. (2022)	
Dialogue Systems & Conversational Agents	4,678	Zhang et al. (2020), Roller et al. (2021)	Green & Sustainable NLP	1,780	Strubell et al. (2019), Ben Zaken et al. (2022)	
Syntactic Parsing	4,028	Zhou and Zhao (2019), Glavaš and Vulić (2021)	Cross-Lingual Transfer	1,749	Conneau et al. (2020), Feng et al. (2022)	
Speech & Audio in NLP	3,915	Baevski et al. (2022), Wang et al. (2020)	Morphology	1,749	McCarthy et al. (2020), Goldman et al. (2022)	
Knowledge Representation	2,967	Schneider et al. (2022), Safavi and Koutra (2021)	Explainability & Interpretability in NLP	1,671	Danilevsky et al. (2020), Pruthi et al. (2022)	
Structured Data in NLP	2,803	Herzig et al. (2020), Yin et al. (2020)	Robustness in NLP	1,621	Hendrycks et al. (2020), Meade et al. (2022)	

Transformers

• Self-attention

Attention is all you need

https://github.com/huggingface/transformers

TRANSFORMER

The encoder-decoder transformer used for translation. Encoder on the left, decoder on the right. Note that the decoder takes in its previously generated words during generation.

Task		Original Paradigm		Shifted Paradigm				
тс	Paradigm Input Output Example	Class X Y (Devlin et al., 2019)	\Rightarrow	Matching \mathcal{X}, \mathcal{L} $\mathcal{Y} \in \{0,1\}$ (Chai et al., 2020)	Seq2Seq \mathcal{X} y_1, \cdots, y_m (Yang et al., 2018a)	(M) LM $f_{prompt}(\mathcal{X})$ $g(\mathcal{Y})$ (Schick and Schütze, 2021a)		
NLI	Paradigm Input Output Example	Matching $\mathcal{X}_a, \mathcal{X}_b$ \mathcal{Y} (Chen et al., 2017b)	\Rightarrow	Class $\mathcal{X}_a \oplus \mathcal{X}_b$ \mathcal{Y} (Devlin et al., 2019)	Seq2Seq $f_{prompt}(\mathcal{X}_a, \mathcal{X}_b)$ \mathcal{Y} (McCann et al., 2018)	(M) LM $f_{prompt}(\mathcal{X}_a, \mathcal{X}_b)$ $g(\mathcal{Y})$ (Schick and Schütze, 2021a)		
NER	Paradigm Input Output Example	SeqLab x_1, \cdots, x_n y_1, \cdots, y_n (Ma and Hovy, 2016)	\Rightarrow	Class \mathcal{X}_{span} \mathcal{Y} (Fu et al., 2021)	MRC $\mathcal{X}, \mathcal{Q}_y$ \mathcal{X}_{span} (Li et al., 2020)	Seq2Seq \mathcal{X} $(\mathcal{X}_{ent_i}, \mathcal{Y}_{ent_i})_{i=1}^m$ (Yan et al., 2021b)	(M) LM \mathcal{X} $g(\mathcal{Y})$ (Cui et al., 2021)	
ABSA	Paradigm Input Output Example	Class \mathcal{X}_{asp} \mathcal{Y} (Wang et al., 2016)	\Rightarrow	Matching $\mathcal{X}, \mathcal{S}_{aux}$ \mathcal{Y} (Sun et al., 2019)	MRC $\mathcal{X}, \mathcal{Q}_{asp}, \mathcal{Q}_{opin}, \mathcal{Q}_{sent}$ $\mathcal{X}_{asp}, \mathcal{X}_{opin}, \mathcal{Y}_{sent}$ (Mao et al., 2021)	Seq2Seq \mathcal{X} $(\mathcal{X}_{asp_i}, \mathcal{X}_{opin_i}, \mathcal{Y}_{sent_i})_{i=1}^m$ (Yan et al., 2021a)	(M) LM $f_{prompt}(\mathcal{X})$ $g(\mathcal{Y})$ (Li et al., 2021)	
RE	Paradigm Input Output Example	Class X Y (Zeng et al., 2014)	\Rightarrow	MRC $\mathcal{X}, \mathcal{Q}_y$ \mathcal{X}_{ent} (Levy et al., 2017)	Seq2Seq \mathcal{X} $(\mathcal{Y}_i, \mathcal{X}_{sub_i}, \mathcal{X}_{obj_j})_{i=1}^m$ (Zeng et al., 2018)	(M) LM $f_{prompt}(\mathcal{X})$ $g(\mathcal{Y})$ (Han et al., 2021)		
Summ	Paradigm Input Output Example	SeqLab / Seq2Seq $\mathcal{X}_1, \dots, \mathcal{X}_n$ / $\mathcal{X}, \mathcal{Q}_{summ}$ $\mathcal{Y}_1, \dots, \mathcal{Y}_n \in \{0,1\}^n$ / \mathcal{Y} (Cheng and Lapata, 2016) (McCann et al., 2018)	\Rightarrow	Matching $(\mathcal{X}, \mathcal{S}_{cand_i})_{i=1}^n$ $\hat{\mathcal{S}}_{cand}$ (Zhong et al., 2020)	(M) LM X, Keywords/Prompt y (Aghajanyan et al., 2021)			
Parsing	Paradigm Input Output Example	Seq2ASeq $(\mathcal{X}, \mathcal{C}_t)_{t=0}^{m-1}$ $\mathcal{A} = a_1, \cdots, a_m$ (Chen and Manning, 2014)	\Rightarrow	(M) LM $(\mathcal{X}, \mathcal{Y}_i)_{i=1}^k$ $\hat{\mathcal{Y}}$ (Choe and Charniak, 2016)	SeqLab x_1, \cdots, x_n $g(y_1, \cdots, y_n)$ (Strzyz et al., 2019)	MRC $\mathcal{X}, \mathcal{Q}_{child}$ \mathcal{X}_{parent} (Gan et al., 2021)	Seq2Seq \mathcal{X} $g(y_1,\cdots,y_m)$ (Vinyals et al., 2015)	

Table 1: Paradigms shift in NLP tasks. TC: text classification. NLI: natural language inference. NER: named entity recognition. ABSA: aspect-based sentiment analysis. RE: relation extraction. Summ: text summarization. Parsing: syntactic/semantic parsing. f and g indicate pre-processing and post-processing, respectively. \mathcal{L} means label description. \oplus means concatenation. \mathcal{X}_{asp} , \mathcal{X}_{opin} , \mathcal{Y}_{sent} mean aspect, opinion, and sentiment, respectively. \mathcal{S}_{aux} means auxiliary sentence. \mathcal{X}_{sub} , \mathcal{X}_{obj} stand for subject entity and object entity, respectively. \mathcal{S}_{cand} means candidate summary. \mathcal{C}_t is the configuration at time step t and \mathcal{A} is a sequence of actions.

Conference and journals

- AAAI
- IJCAI
- ICML
- NeurlPS
- ACL
- ICLR
- WWW
- SIGIR

- EMNLP
- TASLP
- COLING
- TAC
- NAACL
- KBS
- NLPCC
- NC
- CONLL
- NLE

Conference List https://conferencelist.info/upcoming/

Deadline https://ccfddl.github.io/

Pre-training and Fine-tuning

- BERT
- GPT
- T5

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Improving Language Understanding by Generative Pre-Training

Transfer learning

- BERT masked language modeling (MLM), next sentence prediction (NSP)
- GPT predicting the next word
- BART denoising (masking, sentence permutation, token deletion, document rotation)

Label verbalize

Solving classification as a generation task (T5)

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Graph / Contrastive learning

SimCSE: Simple Contrastive Learning of Sentence Embeddings

https://arxiv.org/abs/2104.08821

Prompt-based Fine-tuning

- Making Pre-trained Language Models Better Few-shot Learners
- FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Instruction tuning

- <u>Instruction Induction: From Few Examples to Natural Language Task</u> <u>Descriptions</u>
- Training language models to follow instructions with human feedback

CoT

- Tree of Thoughts: Deliberate Problem Solving with Large Language Models
- https://arxiv.org/abs/2305.10601
- Automatic Chain of Thought Prompting in Large Language Models
- https://arxiv.org/abs/2210.03493
- Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
- https://arxiv.org/abs/2201.11903
- Self-Consistency Improves Chain of Thought Reasoning in Language Models
- https://arxiv.org/abs/2203.11171
- Large Language Models Are Human-Level Prompt Engineers
- https://arxiv.org/abs/2211.01910
- Distilling Reasoning Capabilities into Smaller Language Models
- https://arxiv.org/abs/2212.00193
- Analysing Mathematical Reasoning Abilities of Neural Models
- https://arxiv.org/abs/1904.01557
- Large Language Models are Zero-Shot Reasoners
- https://arxiv.org/abs/2205.11916
- Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
- https://arxiv.org/abs/2205.09712
- ART: Automatic multi-step reasoning and tool-use for large language models
- https://arxiv.org/abs/2303.09014

Baseline https://github.com/kyegomez/tree-of-thoughts