Clase 19

La sesión anterior introducimos la definición de límite de una función en un punto:

Definición 1 Sean $f: A \longrightarrow \mathbb{R}$ una función, $c \in \mathbb{R}$ tal que existe $(a,b) \subseteq \mathbb{R}$ con $c \in (a,b)$ y $(a,b) \setminus \{c\} \subseteq A$, y $l \in \mathbb{R}$. Diremos que **el límite de** f(x), **cuando** x **tiende a** c, **es** l, denotado por

$$\lim_{x \to c} f(x) = l,$$

si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que para cualquier $x \in (a,b)$ que cumple que $0 < |x-c| < \delta$ se tiene que $|f(x)-l| < \varepsilon$.

En esta sesión estudiaremos, como consecuencia de las operaciones que se pueden realizar con las funciones, las operaciones entre los límites de funciones, en el mismo punto.

Aritmética de los límites de funciones

Antes de comenzar debemos advertir que esta clase no es $d\acute{e}j\grave{a}$ vu, lo que ocurre es que hay mucha similitud con la clase sobre aritmética de los límites de sucesiones y por esa razón muchas de las demostraciones quedarán como ejercicio.

Teorema 2 (El límite de una función es único) Sean $l, m \in \mathbb{R}$, $f : A \longrightarrow \mathbb{R}$ una función y $c \in \mathbb{R}$ tal que existe $(a,b) \subseteq \mathbb{R}$ con $c \in (a,b)$ y $(a,b) \setminus \{c\} \subseteq A$. Si

$$\lim_{x \to c} f(x) = l \qquad y \qquad \lim_{x \to c} f(x) = m,$$

entonces l = m.

Demostración. Ejercicio. ■

Definición 3 Sean $B \subseteq A$ y $f : A \longrightarrow \mathbb{R}$ una función. Diremos que f es:

- (1) una función acotada inferiormente en B si f(B) es un conjunto acotado inferiormente, es decir, si existe $m \in \mathbb{R}$ tal que $m \leq f(x)$, para todo $x \in B$.
- (2) una función acotada superiormente en B si f(B) es un conjunto acotado superiormente, es decir, si existe $M \in \mathbb{R}$ tal que $f(x) \leq M$, para todo $x \in B$.
- (3) una función acotada en B si f(B) es un conjunto acotado, es decir, si existe $M \in \mathbb{R}$ tal que $|f(x)| \leq M$, para todo $x \in B$.

Lema 4 Sean $l \in \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$ una función $y \in \mathbb{R}$ tal que existe $(a,b) \subseteq \mathbb{R}$ con $c \in (a,b)$ $y \in (a,b) \setminus \{c\} \subseteq A$. Si

$$\lim_{x \to c} f(x) = l,$$

entonces existe un intervalo I tal que $I \setminus \{c\} \subseteq A$ y la función f es acotada en $I \setminus \{c\}$.

Demostración. Como el límite de f, cuando x tiende a c, es l, para el número positivo 1, existe $\delta > 0$, tal que para cualquier $x \in (a,b)$ que cumple que $0 < |x-c| < \delta$ se tiene que |f(x)-l| < 1. Así, si $x \in (a,b)$ cumple que $x \in (c-\delta,c+\delta) \setminus \{c\}$ entonces

$$|f(x)| < 1 + |l|.$$

Por lo tanto, el intervalo $I=(a,b)\cap(c-\delta,c+\delta)$ (¿es un intervalo?) es el deseado.

Teorema 5 (Aritmética de los límites de funciones) Sean $l, m, k \in \mathbb{R}$, $f, g : A \longrightarrow \mathbb{R}$ dos funciones $y \in \mathbb{R}$ tal que existe $(a, b) \subseteq \mathbb{R}$ con $c \in (a, b)$ $y \in (a, b) \setminus \{c\} \subseteq A$. Si

$$\lim_{x \to c} f(x) = l \qquad y \qquad \lim_{x \to c} g(x) = m,$$

entonces:

- (1) $\lim_{x \to c} (f+g)(x) = l+m$.
- $(2) \lim_{x \to c} (kf)(x) = kl.$
- (3) $\lim_{x \to c} (f g)(x) = l m.$
- $(4) \lim_{x \to c} (fg)(x) = lm.$
- (5) Si $m \neq 0$, entonces existe un intervalo I tal que $I \setminus \{c\} \subseteq A$ y $g(x) \neq 0$ para todo $x \in I$, además $\lim_{x \to c} \left(\frac{1}{g}\right)(x) = \frac{1}{m}.$
- (6) Si $m \neq 0$, entonces existe un intervalo I tal que $I \setminus \{c\} \subseteq A$ y $g(x) \neq 0$ para todo $x \in I$, más $a\acute{u}n$, $\lim_{x \to c} \left(\frac{f}{g}\right)(x) = \frac{l}{m}$.

Demostración. Como ya advertimos antes, solo demostraremos algunos incisos y el resto quedan como ejercicios. Sea $\varepsilon > 0$.

- (1) Por hipótesis, para el número positivo $\varepsilon/2$, existen $\delta_1, \delta_2 > 0$ tales que:
 - (I) para cualquier $x \in (a, b)$ que cumple que $0 < |x c| < \delta_1$ se tiene que $|f(x) l| < \varepsilon/2$.
 - (II) para cualquier $x \in (a, b)$ que cumple que $0 < |x c| < \delta_2$ se tiene que $|g(x) m| < \varepsilon/2$.

Así, si $\delta = \min\{\delta_1, \delta_2\}$, entonces para cualquier $x \in (a, b)$ que cumple que $0 < |x - c| < \delta$ se tiene que

$$\begin{split} |(f+g)(x)-(l+m)| &= |f(x)+g(x)-l-m| \\ &= |(f(x)-l)+(g(x)-m)| \\ &\leq |f(x)-l|+|g(x)-m| \\ &< \varepsilon/2+\varepsilon/2 \\ &= \varepsilon. \end{split}$$

- (3) Se sigue de los incisos (1) y (2).
- (5) Para los números positivos $\frac{|m|}{2}$ y $\frac{\varepsilon |m|^2}{2}$, existen δ_1 y δ_2 , respectivamente, tales que:
 - (I) para cualquier $x \in (a, b)$ que cumple que $0 < |x c| < \delta_1$ se tiene que $|g(x) m| < \frac{|m|}{2}$.
 - (II) para cualquier $x \in (a, b)$ que cumple que $0 < |x c| < \delta_2$ se tiene que $|g(x) m| < \frac{\varepsilon |m|^2}{2}$.

De (11), se tiene que |m|-|g(x)|<|m|/2, para todo $x\in(a,b)$ que cumple que $0<|x-c|<\delta_1$ y de aquí que

$$0 < \frac{|m|}{2} < |g(x)|,$$

para todo $x \in (a, b)$ que cumple que $0 < |x - c| < \delta_1$. De donde $g(x) \neq 0$, para todo $x \in (a, b)$ que cumple que $x \in (c - \delta_1, c + \delta) \setminus \{c\}$. Note también que

$$\frac{1}{|g(x)|} < \frac{2}{|m|},\tag{1}$$

para todo $x \in (a, b)$ que cumple que $x \in (c - \delta_1, c + \delta) \setminus \{c\}$.

Así, si $\delta = \min\{\delta_1, \delta_2\}$, entonces para todo $x \in (a, b)$ que cumple que $0 < |x - c| < \delta$ se tiene que

$$\left| \frac{1}{g(x)} - \frac{1}{m} \right| = \left| \frac{g(x) - m}{mg(x)} \right| \tag{2}$$

$$= \frac{|g(x) - m|}{|m||g(x)|} \tag{3}$$

$$<\frac{\varepsilon|m|^2}{2|m||g(x)|}\tag{4}$$

$$=\frac{\varepsilon|m|}{2|g(x)|}\tag{5}$$

$$<\frac{2\varepsilon|m|}{2|m|}\tag{6}$$

$$=\varepsilon,$$
 (7)

donde (4) se da por (111) y (6) se da por (1).

(6) Se sigue de los incisos (4) y (5).

Ejemplo 6 Sea $c \in \mathbb{R}$. Muestre que

$$\lim_{x \to c} x^3 = c^3.$$

Solución. En la clase 19, demostramos que

$$\lim_{x \to c} x = c \qquad \text{y} \qquad \lim_{x \to c} x^2 = c^2.$$

Así, del inciso (4) del Teorema 5, se tiene que

$$\lim_{x \to c} x^3 = \lim_{x \to c} x \cdot x^2 = c \cdot c^2 = c^3.$$

Este ejemplo ya debe darles una idea de cómo demostrar que, para cualquier $n \in \mathbb{N}$,

$$\lim_{x \to c} x^n = c^n.$$

Ejemplo 7 Muestre que

$$\lim_{x \to c} \frac{x^3 + 3x - 6}{1 + x^2} = \frac{c^3 + 3c - 6}{1 + c^2}.$$

Solución. Sabemos que $\lim_{x\to c} x^3 = c^3$, $\lim_{x\to c} x^2 = c^2$, $\lim_{x\to c} x = c$, $\lim_{x\to c} 6 = 6$ y que $\lim_{x\to c} 1 = 1$. Se sigue de los incisos (1), (2) y (3) del Teorema 5, que

$$\lim_{x \to c} x^3 + 3x - 6 = c^3 + 3c - 6$$

y que

$$\lim_{x \to c} 1 + x^2 = 1 + c^2.$$

Ahora, como $1 + c^2 \neq 0$, del inciso (6) del Teorema 5, se tiene que

$$\lim_{x \to c} \frac{x^3 + 3x - 6}{1 + x^2} = \frac{c^3 + 3c - 6}{1 + c^2}.$$