Loan Approval Predicton Key Strain S

HELLO EVERYONE

I AM KAMAL AND IN THIS PROJECT I
UTILIZE PYTHON CODE TO PREDICT
THE LONE APPROVEL

Loan_Approval_predicton

```
In [114]: ## Installing all required libraries'
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
   %matplotlib inline
```

Importing CSV File to Jupter Notebook

Viewing the Dataset

[9]: df

[9]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	

Viewing columns Info

```
In [13]:
        df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 614 entries, 0 to 613
        Data columns (total 13 columns):
                               Non-Null Count Dtype
         #
             Column
                                              object
             Loan_ID
                               614 non-null
             Gender
                               601 non-null
                                              object
             Married
                               611 non-null
                                              object
             Dependents
                                              object
                               599 non-null
             Education
                               614 non-null
                                              object
             Self_Employed
                                               object
                               582 non-null
             ApplicantIncome
                               614 non-null
                                               int64
             CoapplicantIncome 614 non-null
                                              float64
             LoanAmount
                                              float64
                               592 non-null
                                              float64
             Loan_Amount_Term
                              600 non-null
             Credit_History
                                              float64
                              564 non-null
             Property_Area 614 non-null
                                              object
             Loan_Status
                               614 non-null
                                               object
         dtypes: float64(4), int64(1), object(8)
        memory usage: 62.5+ KB
```

Viewing Columns name

step 06

Finding Null values in Columns

```
In [17]: df.isnull().sum()
Out[17]: Loan_ID
         Gender
                               13
         Married
         Dependents
                               15
         Education
         Self_Employed
                               32
         ApplicantIncome
         CoapplicantIncome
                                0
         LoanAmount
                               22
         Loan_Amount_Term
                               14
```

Checking for Outliners

```
In [7]: ## Checking for Outliners
         plt.figure(figsize=(8,5))
         sns.boxplot(data=df)
    Out[7]: <Axes: >
            80000
            70000
            60000
            50000
            40000
            30000
            20000
            10000
```

ApplicantIncomeCoapplicantIncome LoanAmount Loan_Amount_Term Credit_History

Null Values of Qualitative Columns Fill with Median

```
In [23]: df['LoanAmount']=df['LoanAmount'].fillna(df['LoanAmount'].median())
    df['Loan_Amount_Term']=df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mean())
    df['Credit_History']=df['Credit_History'].fillna(df['Credit_History'].median())
```

step 08

Null Values of Categorical Columns Fill with Mode

```
In [28]: df['Gender']=df['Gender'].fillna(df['Gender'].mode()[0])
    df['Married']=df['Married'].fillna(df['Married'].mode()[0])
    df['Dependents']=df['Dependents'].fillna(df['Dependents'].mode()[0])
```

In [30]: df['Self_Employed']=df['Self_Employed'].fillna(df['Self_Employed'].mode()[0])

Checking Null Values Again

```
In [31]: df.isnull().sum()
Out[31]:
         Loan_ID
         Gender
         Married
         Dependents
         Education
         Self_Employed
         ApplicantIncome
         CoapplicantIncome
         LoanAmount
         Loan_Amount_Term
         Credit_History
         Property_Area
         Loan_Status
         dtype: int64
```


Finding People who taken the loan by Gender

```
Out[38]: <Axes: xlabel='Gender', ylabel='count'>
             500
             400
             200
             100
                                                              Female
                               Male
```

Gender

```
In [38]: print('People who taken the loan by Gender')
    print(df['Gender'].value_counts())
    sns.countplot(x='Gender',data=df)

People who taken the loan by Gender
```

Gender
Male 502
Female 112

Name: count, dtype: int64

Finding People who taken the loan by Married Statues


```
In [39]: print('People who taken the loan by Married')
    print(df['Married'].value_counts())
    sns.countplot(x='Married',data=df)
```

People who taken the loan by Married Married

Yes 401 No 213

Name: count, dtype: int64

Finding People who taken the loan For Education

```
Out[40]: <Axes: xlabel='Education', ylabel='count'>
             500
             400
             300
             200
             100
                              Graduate
                                                            Not Graduate
                                              Education
```

```
In [40]: print('People who taken the loan by Education')
    print(df['Education'].value_counts())
    sns.countplot(x='Education',data=df)
```

People who taken the loan by Education Education

Graduate 480 Not Graduate 134

Name: count, dtype: int64

Calculating Total Income

In [56]: df['Total_income']=df['ApplicantIncome']+df['CoapplicantIncome']
 df.head()

Out[56]:

:)an_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_
01002	Male	No	0	Graduate	No	5849	0.0	128.0	360.0	1.0	
01003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	
01005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	
01006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	
01008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	
4											+

Applying Log Transformation on Applicant-Income

```
In [51]: ## Applying Log Transformation

df['ApplicantIncomelog'] = np.log(df['ApplicantIncome']+1)
    sns.distplot(df['ApplicantIncomelog'])
```

Out[51]: <Axes: xlabel='ApplicantIncomelog', ylabel='Density'>

Applying Log Transformation on Loan-Amount

```
In [53]: df['LoanAmountlog'] = np.log(df['LoanAmount']+1)
    sns.distplot(df['LoanAmountlog'])
```

Out[53]: <Axes: xlabel='LoanAmountlog', ylabel='Density'>

Applying Log Transformation on Total-Income

```
In [57]: df['Total_income_log'] = np.log(df['Total_income']+1)
           sns.distplot(df['Total_income_log'])
          Out[57]: <Axes: xlabel='Total_income_log', ylabel='Density'>
                     1.0
                     0.8 -
                   Density
9.0
                     0.4
                     0.2 -
                     0.0
```

10

Total_income_log

11

12

Droping unnecessary columns

```
In [59]: ## Droping unnecessary columns
          cls = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term','Total_income','Loan_ID']
          df = df.drop(columns = cls , axis =1)
          df.head()
Out[59]:
              Gender Married Dependents Education Self_Employed Credit_History Property_Area Loan_Status ApplicantIncomelog LoanAmountlog Loan_Amount_Ter
                Male
                          No
                                          Graduate
                                                                                                      Υ
                                                                                                                                  4.859812
           0
                                                              No
                                                                            1.0
                                                                                       Urban
                                                                                                                   8.674197
                                                                                                                                                       5.88
                Male
                         Yes
                                          Graduate
                                                              No
                                                                            1.0
                                                                                        Rural
                                                                                                       Ν
                                                                                                                   8.430327
                                                                                                                                  4.859812
                                                                                                                                                       5.88
                                                                                       Urban
                                                                                                       Υ
                                                                                                                   8.006701
           2
                Male
                                          Graduate
                                                             Yes
                                                                           1.0
                                                                                                                                  4.204693
                                                                                                                                                       5.88
                         Yes
                                               Not
           3
                Male
                         Yes
                                                              No
                                                                            1.0
                                                                                       Urban
                                                                                                       Υ
                                                                                                                   7.857094
                                                                                                                                  4.795791
                                                                                                                                                       5.88
                                           Graduate
                                                                            1.0
                                                                                                                                  4.955827
                                                                                                                                                       5.88
                                          Graduate
                                                                                                      Υ
                Male
                         No
                                                              No
                                                                                       Urban
                                                                                                                   8.699681
```

Encoding Technique

Encoding Technique = Label Encoding or One Hot Encoding (We use Label encoding when we have only two types of outcomes like y/n so there we can easly place O/1 and on other hand when we have multiple or different out comes we use One Hot Encoding)

```
In [65]: ## Encoding Technique = Label Encoding or One Hot Encoding (We use Label encoding when we have only
from sklearn.preprocessing import LabelEncoder
cols = ['Gender', 'Married', 'Education', 'Self_Employed', 'Dependents', 'Property_Area', 'Loan_Status']
le = LabelEncoder()
for col in cols:
    df[col] = le.fit_transform(df[col])
```


After Converting All Elements into Numerical Form

In [67]: df.head(10)

Out[67]:

	Gende	r Married	Dependents	Education	Self_Employed	Credit_History	Property_Area	Loan_Status	ApplicantIncomelog	LoanAmountlog	Loan_Amount_Ter
	0	1 0	0	0	0	1.0	2	1	8.674197	4.859812	5.88
	1	1 1	1	0	0	1.0	0	0	8.430327	4.859812	5.88
	2	1 1	0	0	1	1.0	2	1	8.006701	4.204693	5.88
	3	1 1	0	1	0	1.0	2	1	7.857094	4.795791	5.88
	4	1 0	0	0	0	1.0	2	1	8.699681	4.955827	5.88
	5	1 1	2	0	1	1.0	2	1	8.597482	5.590987	5.88
	6	1 1	0	1	0	1.0	2	1	7.755339	4.564348	5.88
	7	1 1	3	0	0	0.0	1	0	8.018625	5.068904	5.88
	8	1 1	2	0	0	1.0	2	1	8.295798	5.129899	5.88
	9	1 1	1	0	0	1.0	1	0	9.460476	5.857933	5.88
4											•

Splitting the Data-Set into Dependent or independent.

```
In [68]: ## Splitting the Data-Set into Dependent or independent.

X = df.drop(columns='Loan_Status',axis=1)
Y = df['Loan_Status']
```

In [69]: X Out[69]: Gender Married Dependents Education Self_Employed Credit_History Property_Area ApplicantIncomelog LoanAmountlog Loan_Amount_Termlog Total Out[69]: 0 1 0 0 0 0 1.0 2 8.674197 4.859812 5.888878

		Gender	Married	Dependents	Education	Self_Employed	Credit_History	Property_Area	ApplicantIncomelog	LoanAmountlog	Loan_Amount_Termlog	Total
	0	1	0	0	0	0	1.0	2	8.674197	4.859812	5.888878	
	1	1	1	1	0	0	1.0	0	8.430327	4.859812	5.888878	
	2	1	1	0	0	1	1.0	2	8.006701	4.204693	5.888878	
	3	1	1	0	1	0	1.0	2	7.857094	4.795791	5.888878	
	4	1	0	0	0	0	1.0	2	8.699681	4.955827	5.888878	
(609	0	0	0	0	0	1.0	0	7.972811	4.276666	5.888878	
(610	1	1	3	0	0	1.0	0	8.320448	3.713572	5.198497	
(611	1	1	1	0	0	1.0	2	8.996280	5.537334	5.888878	
(612	1	1	2	0	0	1.0	2	8.933796	5.236442	5.888878	
(613	0	0	0	0	1	0.0	1	8.430327	4.897840	5.888878	

614 rows × 11 columns

In [70]: Y

Out[70]: 0 1

1 0

2 1

3 1

609 1

610 1

611 1

612 1

613

Name: Loan_Status, Length: 614, dtype: int32

Importing all Machine_learing Models Which is reqired for ML-Algorithm

```
In [72]: ## Importing all Machine_learing Models Which is reqired for ML-Algorithm
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.metrics import accuracy_score, confusion_matrix
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.neighbors import KNeighborsClassifier
```

Now we are going to Split our data-set in form of Traning and Teasting

```
In [73]: ## Now we are going to Split our data-set in form of Traning and Teasting .
|
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25,random_state=42)
```

Preforming Logistic Regression

```
In [89]: ## Logistic Regression
         model1 = LogisticRegression()
         model1.fit(X_train,Y_train)
         y_pred_model1 = model1.predict(X_test)
         accuracy = accuracy_score(Y_test,y_pred_model1)
In [90]: accuracy
         ## Converting into Percentage.
         accuracy*100
Out[90]: 77.272727272727
In [78]: ## Accuarcy = The ratio of the correctly predicted values to the total values.
In [79]: score = cross_val_score(model1,X,Y,cv=6)
         score
Out[79]: array([0.82524272, 0.77669903, 0.7745098 , 0.81372549, 0.833333333,
                0.8333333])
In [80]: np.mean(score)*100
Out[80]: 80.94739513928548
```

Preforming Decision Tree Classifier

```
In [91]: ## Decision_Tree_Classifier
         model2 = DecisionTreeClassifier()
         model2.fit(X_train,Y_train)
         y_pred_model2 = model2.predict(X_test)
         accuracy = accuracy_score(Y_test,y_pred_model2)
         print("Accuracy of Decision tree Model : ",accuracy*100)
         Accuracy of Decision tree Model : 71.42857142857143
In [92]: | score = cross_val_score(model2,X,Y,cv=6)
```

Out[92]: 70.84047211117456

np.mean(score)*100

score

K_Neighbors_Classifier

```
In [94]: ## K_Neighbors_Classifier

model4 = KNeighborsClassifier(n_neighbors =3)
model4.fit(X_train,Y_train)
y_pred_model4 = model4.predict(X_test)
accuracy = accuracy_score(Y_test,y_pred_model4)
print("Accuracy of K Neighbors Model : ",accuracy*100)
```

Accuracy of K Neighbors Model: 71.42857142857143

genreate_classification_report

```
In [97]: from sklearn.metrics import classification_report

def genreate_classification_report(model_name,Y_test,y_pred):
    report = classification_report(Y_test,y_pred)
    print(f"classification report for {model_name}:\n{report}\n")

genreate_classification_report(model1,Y_test,y_pred_model1)
genreate_classification_report(model2,Y_test,y_pred_model2)
genreate_classification_report(model3,Y_test,y_pred_model3)
genreate_classification_report(model4,Y_test,y_pred_model4)
```

classification	report	for	Logistic	Regression	():
	nrecisio	n	recall	f1-score	

		8		() -
	precision	recall	f1-score	support
0	0.91	0.39	0.55	54
1	0.75	0.98	0.85	100
accuracy			0.77	154
macro avg	0.83	0.68	0.70	154
weighted avg	0.81	0.77	0.74	154

classification report for DecisionTreeClassifier():

crassificación report for		beerstonn eeerdosinie ().				
	precision	recall	f1-score	support		
0	0.61	0.50	0.55	54		
1	0.75	0.83	0.79	100		
accuracy			0.71	154		
macro avg	0.68	0.67	0.67	154		
weighted avg	0.71	0.71	0.71	154		

classification report for RandomForestClassifier():

		precision	recall	f1-score	support
	0	0.89	0.46	0.61	54
	1	0.77	0.97	0.86	100
accura	су			0.79	154
macro a	vg	0.83	0.72	0.73	154
weighted a	vg	0.81	0.79	0.77	154

classification report for KNeighborsClassifier(n_neighbors=3):

	precision	recall	f1-score	support	
0	0.63	0.44	0.52	54	
1	0.74	0.86	0.80	100	
accuracy			0.71	154	
macro avg weighted avg	0.69 0.70	0.65 0.71	0.66 0.70	154 154	

Thank You

