Analysis 1: Chapter 3 Set Theory Exercises

Problem (Exercise 3.4.6). Let X be a set. Show that the collection of all subsets of X is a set.

Proof. Appealing to the Axiom of Infinity and the Pair Set Axiom we have that $\{0,1\}$ is a set. By the Power Set Axiom there exists a set containing all functions from X to $\{0,1\}$ which we shall denote as $\{0,1\}^X$. Define the property P(f,S) pertaining to each $f \in \{0,1\}^X$ and any object S to be the statement S is a set and $S = f^{-1}(\{1\})$. There is at most one set S such that P(f,S) is true for each $f \in \{0,1\}^X$. Thus by the Axiom of Replacement $Q := \{S : S = f^{-1}(\{1\}) \text{ for some } f \in \{0,1\}^X \}$ exists and is a set. All that remains to show is that every element of Q is a subset of X and every subset of X is contained in Q. Let Z be an arbitrary element of Q, then there exists some function $f \in \{0,1\}^X$ such that $Z = f^{-1}(\{1\})$ which is indeed a subset of X. Conversely let Z be a subset of X. We shall show that there exists some function $f \in \{0,1\}^X$ such that $Z = f^{-1}(\{1\})$. For each $X \in X$ define $X \in X$ define X

Problem (Exercise 3.4.7). Let X and Y be sets. A function $f: X' \to Y'$ from a subset X' of X to a subset Y' of Y is said to be a partial function from X to Y. If X and Y are sets show that the collection of all partial functions from X to Y is a set.

Remark. The idea for the proof we shall give is analogous to a sort of double looping construct procedure in a computer programming language. In particular let 2^X and 2^Y be the collections of all subsets of X and Y respectively which are sets by the previous exercise. Informally, or each element of 2^X we loop through each element of 2^Y creating a set containing all sets of function spaces where a function space is just the set of all functions from some particular element of 2^X to some particular element of 2^Y . Then we use the Axiom of Union to unbox all these sets function spaces to get a set of all function spaces. Unboxing these sets in the same manner we get the set of all partial functions from X to Y

Proof. Since X and Y are sets by the previous exercise asserts that the collection of all subsets of X is a set and also that the collection of all subsets of Y is set. Let 2^X and 2^Y denote these sets respectively. For each $X' \in 2^X$ and any object S define the property P(X', S) to be the statement S is a set such that for all objects z, we have

$$z \in S \iff z = Y'^{X'} \text{ for some } Y' \in 2^Y.$$

There is at most one set S such that P(X',S) is true for each $X' \in 2^X$. Thus by the Axiom of Replacement there exists a set $Q := \{S : P(X',S) \text{ is true for some } X' \in 2^X\}$. We observe that Q is a family of sets thus by the axiom of the union the set $\bigcup Q$ exists. This set like Q is also a family of sets. Thus applying the Axiom of Union once again we have that the set $\bigcup (\bigcup Q)$ exists. We claim that every element of $\bigcup (\bigcup Q)$ is a partial function from X to Y and that every partial function from X to Y is contained in $\bigcup (\bigcup Q)$. Let Y' be an arbitrary element of $\bigcup (\bigcup Q)$ then $Y' \in T$ for some $Y' \in Q$. But then any such $Y' \in Q$ we have for every object $Y' \in Q$ that $Y' \in Q$ is and only if $Y' \in Q$ is a partial function from $Y' \in Q$ then for some $Y' \in Q$ is a partial function from $Y' \in Q$ is a partial function function function function function function function function function funct