Recommendation systems via approximate matrix factorization

Semenova Diana, Luzinsan Anastasia, Soluyanova Zlata November 2024

Introduction

Recommendation systems play a crucial role in predicting user preferences for products by utilizing collaborative filtering techniques. This approach analyzes collective user behavior to enhance user experience, particularly in e-commerce and streaming platforms like Netflix. The economic implications of effective recommendations are significant, as evidenced by initiatives like the Netflix Prize competition in 2007, which offered \$1 million for a 10% improvement in prediction accuracy.

The success of these systems hinges on the quality of their algorithms, with matrix factorization being a prominent method due to its ability to decompose user-item interaction matrices into lower-dimensional representations that capture latent user preferences and item characteristics.

Problem statement

We seek to decompose a matrix X into two low-rank matrices $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$, such that:

$$X \approx UV^T$$

The optimization problem can be written as:

$$\min_{U,V} \|W \odot (X - UV^{T})\|_{F}^{2} + \lambda_{\text{reg}} (\|U\|_{F}^{2} + \|V\|_{F}^{2})$$

where:

- W is a binary mask matrix indicating observed entries ($W_{ij} = 1$ if X_{ij} is observed, 0 otherwise).
- ⊙ represents element-wise multiplication (Hadamard product).
- λ_{reg} is a regularization parameter to prevent overfitting.
- $\|\cdot\|_F$ denotes the Frobenious norm.

Nonnegative matrix factorization

The Multiplicative Update (MU) algorithm iteratively updates W and H by minimizing the reconstruction error: $\min_{W,H} ||X - WH||_F^2$ subject to $W \ge 0$ and $H \ge 0$. Here, $||\cdot||_F$ denotes the Frobenious norm. Update Equations

The MU algorithm applies the following element-wise update rules for W and H:

- 1. Update for $H: [H \leftarrow H \circ \frac{W^T X}{W^T W H}]$
- 2. Update for $W: [W \leftarrow W \circ \frac{XH^T}{WHH^T}]$

where (o) denotes element-wise multiplication, and division is also element-wise.

Nonnegative matrix factorization result

Parameters:

- Initialization of U and V random
- Number of iterations 100
- Tolerance = 10^{-10}

RMSF obtained:

- validation loss 1.0897
- test loss 1.1098

Block coordinate descent

The method alternates between solving for U and V while fixing the other. These updates involve solving quadratic subproblems derived from the above objective. a) fix U and update V: For each column j of V, the update is:

$$V[j,:] = \arg\min_{V_j} \|W[:,j] \odot (X[:,j] - UV_j^T)\|_2^2 + \lambda_{\text{reg}} \|V_j\|_2^2$$

Extract only the known entries in column *j*:

Known indices: known_idx = $\{i : W[i,j] = 1\}$. $U_{\text{known}} \in \mathbb{R}^{|\text{known_idx}| \times r}$ and $X_{\text{known}} \in \mathbb{R}^{|\text{known_idx}|}$.

Solve the normal equation:

$$A = U_{\text{known}}^T U_{\text{known}} + \lambda_{\text{reg}} I_r, \quad b = U_{\text{known}}^T X_{\text{known}}$$

$$V[j,:] = A^{-1}b$$

b) the same, but now fix V, update U

Block coordinate descent result

Parameters:

- Initialization of U and V SVD
- Number of iterations 5
- Tolerance = 10^{-4}
- Regularization parameter 0.99

RMSE obtained:

- validation loss 0.87613
- test loss 0.9386

Update: gradient descent

Let the objective function to be minimized be the same. Now:

1. **Update** *U*: The gradient of the loss function with respect to *U* is given by:

$$\nabla_U L(U, V) = -2(X - UV^T)V + 2\lambda U$$

The update for *U* is performed by applying gradient descent:

$$U \leftarrow U - \alpha_U \nabla_U L(U, V)$$

where α_U is the learning rate (step size).

Update V: The same as for U

Update: gradient descent result

Parameters:

- Initialization of U and V random
- Number of iterations 100
- Tolerance = 10^{-10}

RMSE obtained:

- validation loss 0.8761
- test loss 0.8564

Hyperparameters tuning

Using Optuna to understand hyperparameter importances

Figure: Hyperparameters importances.

Using Optuna to understand hyperparameter importances

Figure: Hyperparameters importances.

Nonnegative matrix factorization

Hyperparameter	Value
Best Rank (r)	5
Initialization Method	SVD
Regularization Parameter (λ_{reg})	0.99

Table: The final results from NMF

Update: gradient descent

Hyperparameter	Best Value
r init_UV λ_{reg} c Internal Patience γ β	5 SVD 0.0562 12 9 0.0240 0.0416
Initial Validation RMSE	3.7532

Table: The final results from BCGD

Model comparison

Figure: Error value for different models

Summary

We employed three algorithms for matrix factorization:

- Non-negative Matrix Factorization (NMF)
- Block Coordinate Descent (BCD)
- BCD with Gradient Descent (BGCD)

To enhance performance, a range of parameter settings were investigated:

- Initializations: random initialization, Singular Value Decomposition (SVD), with SVD demonstrating better results.
- Number of Latent Factors
- Step Size Adaptation: two step size strategies were tested: the Armijo rule and adaptive step size calculation

Thank you for your attention!