Regresja

lgor Wojnicki

March 17, 2024

Plan prezentacji

Regresja liniowa

Regresja wielomianowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja logistyczna

Regresja liniowa, Dane

Regresja – trochę nieszczęśliwa nazwa: regresja do średniej (obserwacja biologiczna).

```
import numpy as np
  X = 2 * np.random.rand(100, 1) # wektor pionowy
2
  y = 4 + 3 * X + np.random.randn(100, 1)
                            # ^- liczba losowa, szum Gaussa
       14 -
       12
```


Regresja liniowa, Linear Regression, równania

$$\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \ldots + \Theta_n x_n$$

$$\hat{y} = h_{\mathbf{\Theta}}(\mathbf{x}) = \mathbf{\Theta} \cdot \mathbf{x}$$

Rozwiązanie polega na znalezieniu Θ , który minimalizuje funkcję celu (kosztu) Root Mean Square Error (RMSE) dla m instancji:

$$RMSE(\boldsymbol{X}, h_{\boldsymbol{\Theta}}) = \sqrt{\frac{1}{m_i} \sum_{i=1}^{m} (\boldsymbol{\Theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2}$$

albo MSE (prościej):

$$MSE(\boldsymbol{X}, h_{\boldsymbol{\Theta}}) = \frac{1}{m_i} \sum_{i=1}^{m} (\boldsymbol{\Theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2$$

Ktoś rozumie?

Regresja liniowa, równanie normalne

- Równanie: y = 4 + 3x
- ► Model regresji liniowej (h hipoteza):

$$\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \ldots + \Theta_n x_n$$

$$\hat{y} = h_{\mathbf{\Theta}}(x) = \mathbf{\Theta} \cdot x$$

Równanie normalne:

$$\hat{\boldsymbol{\Theta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

4D > 4A > 4B > 4B > B 990

Regresja liniowa, predykcja: y = 4 + 3x¹ X_new = np.array([[0], [2]])

0.25

0.00

0.50

2 X_new_b = np.c_[np.ones((2, 1)), X_new] # staty komponent d

g print(y_predict := X_new_b.dot(theta_best))

[[3.9872083] [9.72137701]] 14 -**Predictions** 12 10 -8 6 2

0.75

1.00

V-

1.25

1.50

1.75

2.00

Regresja, prościej

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print(lin_reg.intercept_, lin_reg.coef_, "\n",
lin_reg.predict(X_new))

[3.9872083] [[2.86708435]]
[[3.9872083]
[9.72137701]]
```

Uwaga: Regresja liniowa jest metodą parametryczną tj. opartą o model a nie instancje – do wykonania predykcji potrzebuje trzymać w pamięci parametry modelu a nie zbiór uczący, liczba parametrów jest znana przed rozpoczęciem procesu uczenia.

Uwaga: złożoność obliczeniowa

- Macierz wartości cech musi się zmieścić w pamięci.
- ▶ Główny problem: odwracanie macierzy X^TX o rozmiarze: $(n+1) \times (n+1)$, złożoność: od $O(n^{2\cdot 4})$ do $O(n^3)$
- Scikit Learn używa algorytmu odwracania macierzy Singular Value Decomposition (SVD) o złożoności $O(n^2)$, złożoność dla ilości instancji (próbek) jest liniowa O(m)

Plan prezentacji

Regresja liniowa

Regresja wielomianowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja logistyczna

Regresja wielomianowa, Dane

m = 100

```
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
     10
     8
     2
                             X_1
```

Regresja wielomianowa, Polynomial Regression

```
from sklearn.preprocessing import PolynomialFeatures
   poly_features=PolynomialFeatures(degree=2,include_bias=False
   X_poly = poly_features.fit_transform(X)
3
   print(X[0], X_poly[0]) # (-0.31479346)^2=0.09909492
   lin_reg = LinearRegression()
5
   lin_reg.fit(X_poly, y)
6
   print(lin_reg.intercept_, lin_reg.coef_)
   print(lin_reg.predict(
       poly_features.fit_transform([[0],[2]])))
   print(lin_reg.coef_[0][1] * 2**2 + lin_reg.coef_[0][0] * 2
10
         + lin_reg.intercept_[0])
11
   [-0.31479346] [-0.31479346 0.09909492]
   [2.10826468] [[1.06225693 0.45372695]]
   [[2.10826468]
    [6.04768632]]
   6.047686318001189
```

 $ightharpoonup x^2$ jako dodatkowa cecha, równanie: $y = 0.5 * x^2 + x + 2$

Regresja wielomianowa

Podsumowanie, Regresja Wielomianowa

Regularyzacja modelu wielomianowego, tj. ograniczenie modelu celem minimalizacji przeuczenia (overfitting): zmniejszenie stopnia wielomianu.

Plan prezentacji

Regresja liniowa

Regresja wielomianowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja logistyczna

K-Najbliższych Sąsiadów

- KNN: k-Nearest Neighbors
- Znajdź k najbliższych sąsiadów
 - regresja: średnia wartość dla w/w sąsiadów.
 - klasyfikacja: większościowa etykieta wśród w/w sąsiadów.
- ► Najbliższych:
 - odległość euklidesowa,
 - podobieństwo kosinusowe,
 - odległość Czebyszewa, Hamminga...

K-Najbliższych Sąsiadów, przykład

 Uwaga: KNN jest metodą nieparametryczną tj. opartą o instancje, a nie model – do wykonania predykcji potrzebuje trzymać w pamięci cały zbiór uczący.

Jak wygląda regresja KNN?

```
import matplotlib.pyplot as plt
plt.clf()
plt.scatter(X, y, c="blue")

X_new1 = np.arange(-3, 3, 0.001).reshape(-1,1)
plt.plot(X_new1, knn_reg.predict(X_new1), c="red")
f = "knn.png"
plt.savefig(f)
print(f)
```

Regresja KNN

Plan prezentacji

Regresja liniowa

Regresja wielomianowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja logistyczna

Metoda Gradientu Prostego, Gradient Descent

Minimalizacja funkcji celu (kosztu) MSE. Czyli co zrobić jeżeli nie ma równania normalnego.

Gradient descent, za mały krok (learning rate)

Gradient descent, za duży krok (learning rate)

Gradient descent, lokalne minimum

Na szczęście MSE dla regresji liniowej jest wypukła :) Ale w ogólnym przypadku można nie znaleźć minimum!

Gradient Descent, problem

- W każdej iteracji trzeba obliczyć gradient funkcji celu (kosztu) na podstawie całego zbioru uczącego :(
- Dla regresji liniowej nie ma sensu, ten sam wynik co dla równania normalnego.
 - W ogólnym przypadku gdy nie ma równania liniowego metody gradientowe mają większy sens.
- Rozwiązanie: Stochastic Gradient Descent
- Uwaga: skala cech powinna być taka sama, aby kształt funkcji celu był symetryczny; jeżeli tak nie jest algorytm może nie zmierzać do minimum.

Stochastic Gradient Descent

- Zamiast używać całego zbioru uczącego, wybierz losowo instancję ze zbioru uczącego i policz dla niej gradient.
- Nie trzeba trzymać całego zbioru uczącego w pamięci: możliwość implementacji out-of-core.
- Nieregularny, "skacze" po znalezionych wartościach − z drugiej strony pozwala to na wyjście z minimum lokalnego.

Stochastic Gradient Descent, regresja liniowa

- ▶ 1000 epok (epoch) tj. iteracji lub jeżeli różnica mniejsza niż 0.001 w stosunku do poprzedniej epoki
- ▶ learning rate = 0.1 (rozmiar kroku / współczynnika uczenia).

Stochastic Gradient Descent, klasyfikacja binarna, raz jeszcze

Funkcja liniowa dzieląca instancje należące do różnych klas. https://scikit-learn.org/stable/modules/sgd.html#classification

Stochastic Gradient Descent, wiele klas

Funkcja liniowa dla każdej klasy oddzielająca instancje tej klasy od reszty, strategia OvR (One-vs-Rest).

Plan prezentacji

Regresja liniowa

Regresja wielomianowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja logistyczna

Regresja logistyczna, Logistic Regression

- ► Uwaga: to nie jest regresja, ale klasyfikacja!
- Obliczenie prawdopodobieństwa czy instancja należy do określonej klasy.
- Binarny klasyfikator: jeżeli prawdopodobieństwo > 50% to należy do klasy.

Regresja logistyczna, dane

```
from sklearn import datasets
  iris = datasets.load iris()
g print(iris.keys(),"\n",
        iris.DESCR)
4
5
  dict_keys(['data', 'target', 'target_names', 'DESCR', 'feat'
    .. _iris_dataset:
   Iris plants dataset
```

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes
:Attribute Information:

- sepal length in cm
- sepal width in cm

4 D > 4 B > 4 B > 4 B > 9 Q @

Regresja logistyczna, uczenie

Regresja logistyczna, predykcja

```
petal_width = [[1.7], [1.5]]
print(log_reg.predict(petal_width),"\n",
log_reg.predict_proba(petal_width))

[1 0]
    [[0.45722097 0.54277903]
    [0.66709636 0.33290364]]
```

- kwiatek o szerokości płatka 1.7 cm jest Iris virginica, 54%
- kwiatek o szerokości płatka 1.5 cm nie jest Iris virginica, 66%

Regresja logistyczna, jak to działa?

Wiele klas, Softmax, uczenie

```
X = iris["data"][:, (2, 3)] # dlugość, szerokość platka
  y = iris["target"]
3
  softmax_reg = LogisticRegression(multi_class="multinomial",
                         solver="lbfgs",
5
                         C=10, random state=42)
6
  softmax_reg.fit(X, y)
  print(y) # 3 klasy, Iris: virginica, versicolor, setosa
  2 21
   Bez "multinomial": strategia one-vs-the-rest
```

- "C": regularyzacja modelu, im mniejszy tym bardziej.
- ▶ "solver": Large-scale Bound-constrained Optimization

Softmax, predykcja

```
petal = [[5, 1.8]]
print(softmax_reg.predict(petal), "\n",
softmax_reg.predict_proba(petal))

[2]
[[2.08323402e-06 1.84645895e-01 8.15352022e-01]]
```

kwiatek o długości płatka 5 cm i szerokości 1.8 cm jest to Iris setosa, 80%