

Project Initialization and Planning Phase

Date	07 JULY 2024
Team ID	739828
Project Title	Optimising food delivery
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

To explain an Air Quality Index (AQI) analyzer using machine learning (ML), you can structure it similarly to the project proposal template shown in the image. Here's an outline:

Project Overview	proposar temprate shown in the image. Trere's an outline.	
Objective	Develop a machine learning system to optimize food delivery processes, minimizing delivery times and enhancing customer satisfaction.	
Scope	Implement a system that can analyze historical and real-time data to predict optimal delivery routes, estimate delivery times, and allocate resources efficiently. The project will cover data collection, model training, and integration with existing food delivery platforms.	
Problem Statement		
Description	Food delivery services often face challenges in predicting delivery times accurately due to various factors such as traffic conditions, weather, and restaurant preparation times. Inefficiencies in route planning can lead to delayed deliveries, increased costs, and unsatisfied customers.	
Impact	Optimizing food delivery can significantly enhance customer satisfaction, reduce operational costs, and improve overall efficiency. Accurate predictions and optimized routes can lead to timely deliveries, better resource management, and increased competitiveness in the food delivery market.	
Proposed Solution		
Approach	Utilize supervised machine learning techniques, such as regression models, decision trees, and neural networks, to analyze historical and real-time data for optimizing delivery routes and times. The solution will involve data preprocessing, feature engineering, model training, and evaluation.	

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	High-performance CPUs/GPUs	e.g., 2 x NVIDIA V100 GPUs		
Memory	Sufficient RAM for large datasets	e.g., 32 GB		
Storage	Large storage for data, models, and logs.	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Tenser flow, sklearn, keras.		
Libraries	Pandas, NumPy, Matplotlib for data manipulation and visualization	e.g., numpy, pandas.		
Development Environment	Jupyter Notebooks, IDEs	e.g., Pycharm		
Data				
Data	Source: Government and private environmental monitoring agencies, open data	e.g., Kaggle		

Data collection:	Sources: Restaurant data, traffic data, weather data, historical delivery times	
	Types: Delivery time, traffic conditions, weather conditions, order details CSV, JSON, real-time API feeds	
Data preprocessing:	Cleaning: Handle missing values, remove outliers	
	Transformation: Normalize/standardize data	
	Feature Engineering: Create new features from raw data	
Model Training:	Algorithms: Linear regression, random forest, gradient boosting, deep learning models	
	Evaluation: Cross-validation, performance metrics (RMSE, MAE, R2 score)	
	Integration: Real-time data ingestion and prediction Visualization: Dashboards and alerts for delivery times and route optimization	

platforms (e.g., Kaggle) Size: Varies depending on the region and time span Format: CSV, JSON, real-time API	
feeds	

