

(19) 日本国特許庁 (J P)

(12) 公 開 特 許 公 報 (A)

(11) 特許出願公開番号

特調2002-91577

(P2002-91577A)

(43)公開日 平成14年3月29日(2002.3.29)

(51) Int.Cl. ⁷	識別記号	F I	マーク(参考)
G 0 5 F 1/10		G 0 5 F 1/10	P 2 G 0 3 6
G 0 1 R 31/00		G 0 1 R 31/00	5 G 0 6 6
H 0 2 J 1/00	3 0 6	H 0 2 J 1/00	3 0 6 F 5 H 4 1 0

審査請求 未請求 請求項の数 3 O.L. (全 9 頁)

(21)出願番号	特願2000-281647(P2000-281647)	(71)出願人	592207186 株式会社計測技術研究所 神奈川県横浜市都筑区茅ヶ崎南2丁目12番 2号
(22)出願日	平成12年9月18日(2000.9.18)	(72)発明者	似鳥 塤治 神奈川県横浜市都筑区茅ヶ崎南2-12-2 株式会社計測技術研究所内 Fターム(参考) 2G036 AA10 AA19 BA37 BA46 5G065 AA00 EA01 HA08 JA01 LA02 MA10 NA02 NA03 5H410 BB05 CC02 DD02 DD05 EA11 EA37 EB16 EB37 FF05 FF25

(54) 【発明の名称】 電子負荷装置

(57) 【要約】

【課題】多出力スイッチング電源の負荷試験に供する電子負荷装置において、供試電源装置の個々の電圧出力に対する負荷を安定に供給し、かつ非絶縁でありながら高周波コンデンサノイズに影響されずに負荷試験状態でのリップルやノイズの測定を可能とする一体型多出力電子負荷装置を提供する。

【解決手段】電子負荷装置の負荷制御演算増幅手段の一方で、供試電源装置の電圧出力線の電流検出用抵抗の両端での電圧降下量を差動増幅した電圧を加えて帰還制御するとともに、該演算増幅手段の出力に接地との電位差を補正する差動増幅手段を設けることにより、供試電源装置の個々の電圧出力線の導線抵抗による影響を除外し、かつ供試電源装置の電圧出力端子と電子負荷装置入力端子間にコモンモードチョークコイルを付加することにより高周波コモンモードノイズを実用周波数帯域で大幅に減少させ、非絶縁でありながら安定した多出力負荷試験を可能とする電子負荷装置を実現する。

图 1

【特許請求の範囲】

【請求項1】非絶縁型多出力スイッチング電源装置の負荷試験に供する多出力電子負荷装置において、供試電源装置の個々の電圧出力に対応した所定の電子負荷を発生させる演算増幅手段への一方の電圧入力に供試電源装置の個々の電圧出力の電流検出抵抗による電圧降下を差動増幅手段により増幅した電圧を加えるとともに、該初段演算増幅手段の出力に差動増幅による二次増幅手段を設け、この二次増幅手段の差動電圧入力の一方を接地することにより供試電源装置の個々の電圧出力の電圧出力線の導線抵抗による電圧降下に影響されずに供試電源装置の個々の電圧出力に対して所定の負荷を供することができることを特徴とした一体型多出力電子負荷装置。

【請求項2】請求項1に記載の電子負荷装置において、電流検出用差動増幅手段と二次増幅手段に用いられる差動増幅手段の入力抵抗値を、供試電源装置の電圧出力線導線抵抗に対して充分に大きな抵抗値とすることにより、非絶縁型でありながら供試電源装置の個々の電圧出力の共通コモン線と接地間での電位差による電子負荷制御への影響を除外できる一体型多出力電子負荷装置。

【請求項3】請求項1～2に記載の電子負荷装置において、該電子負荷装置の電圧出力端子にコモンモードチョークコイルを設けることにより、実用周波数帯域において供試電源装置から該電子負荷装置を経由する高周波コモンモード電流を減少させ、供試電源装置の負荷時でのリップルやノイズの測定に影響を与えないことを特徴とした電子負荷装置。

【発明の詳細な説明】

【0001】

【発明が属する技術分野】本発明は、非絶縁型多出力スイッチング電源装置の負荷試験に使用される電子負荷装置に関するものである。

【0002】

【従来の技術】各種情報処理機器や音響機器等に使用される電源装置には、非絶縁型多出力スイッチング電源が広く使用されているが、該電源装置の個々の電圧出力に対する電子負荷試験は個別のフローティング型電子負荷装置を接続して行われている。

【0003】これは、該電源装置のコモン線が共通となっていることと、個々の電圧出力回路が非絶縁形式であることから、該電源装置の個々の電圧出力に対する所望の電子負荷を付与する制御回路において、負荷電流検出手段と所定の電子負荷量に到達すべき電圧設定値との偏差検出において、該電源装置の電圧出力回路での導線抵抗及び該電源装置の電圧発生回路内部での接地及びコモン線への回り込み電流による電位差の存在が主要な原因となっている。

【0004】また、情報処理機器や通信機器向けの該電源装置では負荷特性試験時のリップルやノイズの同時測定も行われていることから、該電源装置の個々の電圧出

力に接続する電子負荷装置はフローティング型でなければ、電子負荷装置と該電源装置の電圧出力共通コモン線間に高周波コモンモードノイズの回り込みが発生しリップルやノイズの試験に多大な影響を及ぼしてしまう。

【0005】この、電圧出力毎に個別の電子負荷装置を接続して電子負荷試験を行うことは、試験装置の高価格化と装置の複雑さを招き、また試験全体の条件を制御するコントローラーからの通信インターフェースの増加や、該電源装置の個々の電圧出力に対する負荷特性量の時間的同期の確保が困難となる等の要因を含んでおり、結果として検査設備の保守運用面での煩雑さを高める要因となっている。

【0006】

【発明が解決しようとする課題】本発明では、多出力スイッチング電源の負荷試験に供する電子負荷装置において供試電源装置の個々の電圧出力への電子負荷制御回路を、供試電源装置の共通コモン線と接地間に発生する電位差による影響を補正する手段を設けることにより、従来の技術では個別のフローティング型電子負荷装置を接続していたのに対して、一体型で多出力に対応できる電子負荷装置を提供し、供試電源装置の負荷特性試験装置の複雑さを解消するとともに、供試電源装置の生産工程における負荷試験の効率向上をはかるものである。

【0007】

【課題を解決するための手段】本発明は、多出力スイッチング電源の負荷特性試験に供せられる一体型多出力電子負荷装置において、供試電源装置の個々の電圧出力の電流値検出用抵抗の両端に発生する電位差を差動増幅して、所定の電子負荷量を制御する演算増幅手段に帰還制御をかけるとともに、該演算増幅手段の出力に接地との電位差補正を行う差動増幅手段を設け、この差動増幅手段の出力を供試電源装置の個々の電圧出力に接続されているトランジスタやMOSFET等による負荷電流制御素子に接続することにより、供試電源装置の個々の電圧出力線の導線抵抗による共通コモン線と接地間に発生する電位差の影響を除外することで、非絶縁型でかつ一体化した多出力電子負荷装置を提供することが可能となる。

【0008】また、前述の差動増幅手段の入力抵抗値を供試電源装置の電圧出力線導線抵抗より充分に大きくすることで、供試電源の電圧出力線からの電子負荷装置内電流帰還制御ループ以外への不要な電流の回り込みを防ぐことができるため、非絶縁型でありながら絶縁型電子負荷装置と同等の電子負荷量制御が可能となる。

【0009】さらに、本発明による電子負荷装置の個々の電圧入力端子にコモンモードチョークコイルを挿入することにより、供試電源装置の電圧出力共通コモン線から電子負荷装置を経由する実用周波数帯域での高周波コモンモード電流を絶縁型電子負荷装置以上に減衰させることが可能となるために、供試電源装置の負荷試験時で

のリップルやノイズ測定試験に影響を与えずに負荷特性試験が可能となる。

【0010】

【発明の実施の形態】以下に本発明による実施の形態を図と表を参照しながら説明する。

【0011】

【実施例】図1は、本発明の請求項1に記載する1実施例の形態を示している。供試電源装置の一つの電圧出力E2から流れる電流IE2の値は、電流検出用抵抗R1の両端に発生する電位差VA3inとして差動増幅手段A3に入力され、差動増幅手段A3により増幅された帰還制御電圧VA3outとして、所定電子負荷を発生させる演算増幅手段A1に接続される。この演算増幅手段A1により本発明による一体型多出力電子負荷装置の負荷制御電圧E1と帰還制御電圧VA3outとの差分電圧が演算増幅されて、差動増幅手段A2の片方の入力

に接続される。この差動増幅手段A2の差動入力のもう一方は接地されており、演算増幅手段A1の出力電圧VA1outと接地間の電位差として差動増幅手段A2で増幅されて、負荷電流制御素子Q1に出力され、この差動増幅手段A2の出力電圧VA2outでの負荷電流制御素子Q1の相互コンダクタンスGQ1により増幅された電流が負荷電流IE2となる。

【0012】本発明による一体型多出力電子負荷装置では、図1にしめす各増幅手段に図2の(1)～(6)にしめす増幅回路を、表1の(1)～(16)でしめす組合せで構成することにより、供試電源装置の各種の電圧出力や極性の組合せに対して電子負荷側の負荷制御電圧の極性が同一でも対応可能となるように構成されている。

【表1】

表1

	E1の極性	A1の増幅回路	A2の増幅回路	A3の増幅回路	Q1の極性	E2の極性
(1)	+	AMP3	AMP1	AM:21	N	+
(2)	+	AMP4	AMP2	AM:21	N	+
(3)	+	AMP5	AMP2	AM:22	N	+
(4)	+	AMP6	AMP1	AM:22	N	+
(5)	+	AMP3	AMP2	AM:22	P	-
(6)	+	AMP4	AMP1	AM:22	P	-
(7)	+	AMP5	AMP1	AM:21	P	-
(8)	+	AMP6	AMP2	AM:21	P	-
(9)	-	AMP3	AMP2	AM:22	N	+
(10)	-	AMP4	AMP1	AM:22	N	+
(11)	-	AMP5	AMP1	AM:21	N	+
(12)	-	AMP6	AMP2	AM:21	N	+
(13)	-	AMP3	AMP1	AM:21	P	-
(14)	-	AMP4	AMP2	AM:21	P	-
(15)	-	AMP5	AMP2	AM:22	P	-
(16)	-	AMP6	AMP1	AM:22	P	-

【0013】また、図2の(1)、(2)にしめす差動増幅手段への回路例AMP1、AMP2でのr1～r4の抵抗値は

$$r_2 \times r_3 = r_1 \times r_4$$

の関係を保つことにより十分な同相電圧除去比を得ることができる。また、AMP3～AMP6の増幅器回路構成には、説明を簡略化するために負帰還ループ特性を实用上適正化するための周波数特性補償回路を省略してある。

【0014】図1の回路構成で各増幅手段に表2の(3)の増幅回路を適用した実施例での各部の動作を詳細に説明する。供試電源装置の電圧出力E2から流れる電流IE2の電流量は、電流検出用抵抗R1の両端での電位差VA3inとして差動増幅手段A3に入力されることから

$$VA3in = IE2 \times R1 \dots \text{式(1)}$$

として表される。差動増幅手段A3の出力電圧VA3outは、VA3inと差動増幅手段A3の増幅倍率GA3との積であり、式(1)との関係から

$$VA3out = VA3in \times GA3$$

$$= IE2 \times R1 \times GA3 \dots \text{式(2)}$$

と表される。

【0015】この出力電圧VA3outは電圧出力E2から流れる電流IE2を所定電流量に保つための帰還制御電圧として負荷制御電圧E1と共に、演算増幅手段A1に接続される。ここで演算増幅手段A1の出力電圧VA1outは、出力電圧VA3outと演算増幅手段A1の増幅倍率GA1との積であり、式(2)の関係から

$$\begin{aligned} VA_{1out} &= (E_1 - VA_{3out}) \times GA_1 \\ &= (E_1 - IE_2 \times R_1 \times GA_3) \times GA_1 \dots \text{式(3)} \end{aligned}$$

と表される。この出力電圧VA_{1out}は差動増幅手段A₂に接続される。この差動増幅手段A₂の出力電圧V

$$\begin{aligned} VA_{2out} &= VA_{1out} \times GA_2 \\ &= (E_1 - IE_2 \times R_1 \times GA_3) \times GA_1 \times GA_2 \dots \text{式(4)} \end{aligned}$$

と表される。

ここで、供試電源の電圧出力E₂から流れる電流量IE₂は、負荷電流制御素子Q₁の出力電圧VA_{2out}での

$$\begin{aligned} IE_2 &= VA_{2out} \times GQ_1 \\ &= (E_1 - IE_2 \times R_1 \times GA_3) \times GA_1 \times GA_2 \times GQ_1 \dots \text{式} \\ &\quad (5) \end{aligned}$$

と表される。

【0016】この式(5)を展開すると

$$IE_2 = \frac{E_1}{R_1 \times GA_3} \times \frac{1}{\left(1 + \frac{1}{R_1 \times GA_1 \times GA_2 \times GA_3 \times GQ_1}\right)} \dots \text{式(6)}$$

となる。ここで、

演算増幅手段A₁の増幅倍率GA₁ = 10⁶

差動増幅手段A₂の増幅倍率GA₂ = 1

負荷電流制御素子の相互インダクタンスGQ₁ = 20S

電流検出用抵抗R₁ = 5 × 10⁻³ Ω

$$IE_2 \Rightarrow \frac{1}{R_1 \times GA_1 \times GA_2 \times GA_3 \times GQ_1} \dots \text{式(7)}$$

式(7)に示すよう、式(6)の右辺の第2項部分は1

【数3】

と近似できることから、

$$IE_2 \doteq \frac{E_1}{R_1 \times GA_3} \dots \text{式(8)}$$

式(8)の等価式が成立する。

【0017】前述の各定数の場合、制御目標量電流値IE₂を10Aとするには負荷制御電圧E₁の値は10Vを与えることになる。また、負荷制御電圧E₁と制御目標量電流値IE₂は比例関係にあることから、供試電源の個々の電圧出力に対する任意の負荷電流IE₂に対しての制御は、式(8)の関係から負荷制御電圧E₁の値を制御することにより、目的とする負荷電流を付与することができる。本実施例の説明では、負荷電流制御素子をMOSFETとしているが、電界誘導トランジスタやバイポーラトランジスタ等を用いても同様の動作を実現できることは公知の技術である。

【0018】図3には、非絶縁型3出力スイッチング電源での本発明による電子負荷装置の接続例を示す。供試電源の3出力のうち電圧出力E₂とE₄は正極性、E₆は負極性のときの回路例であり、負荷制御基準電圧E₁、E₃、E₅は全て正極性である。供試電源の電圧出力E₂、E₄に接続されている電子負荷回路の増幅手段には表1の(3)の増幅回路が適用され、E₅に接続さ

A_{2out}は、出力電圧VA_{1out}と差動増幅手段A₂の増幅倍率GA₂との積であり、式(3)の関係から

相互インダクタンスをGQ₁との積であり、式(4)の関係から

【数1】

差動増幅手段A₃の増幅倍率GA₃ = 100

とすると、式(6)のR₁ × GA₁ × GA₂ × GA₃ × GQ₁の積は10⁷となり

【数2】

【数3】

れている電子負荷回路には表1の(7)の増幅手段が適用されている。図3のR₂、R₄、R₆は供試電源装置の個々の電圧出力線の導線抵抗である。

【0019】ここで、各電圧出力のコモン線が共通であることから導線抵抗R₂、R₄、R₆にも電圧降下が発生し、供試電源が非絶縁型多出力スイッチング電源であることから個々の電圧出力線の導線抵抗に電圧降下も加わって電圧出力の共通接地電位が変化し、この電位変化を等価的にE₇で表現している。これら電圧出力線導線抵抗R₂、R₄、R₆による電圧降下や共通接地電位E₇の電位が、電子負荷装置の接地に対し電位差を持った場合でも本発明の電子負荷装置では、各負荷制御回路の負荷電流制御ループのA₂及びA₃、A₅及びA₆、A₈及びA₉が差動増幅手段であることから、この電位差による影響は受けにくいことが明らかである。

【0020】さらに、本発明の電子負荷装置では供試電源の導線抵抗に対して、電流検出用抵抗から差動増幅手段を経由し、さらに演算増幅手段から差動増幅手段を経由して電流制御素子Q₁を流れる負荷電流制御のメイン

ループ以外への漏れ電流は極めてわずかである。例えば、導線抵抗 R_2 が $1 \times 10^{-2} \Omega$ とし、負荷電流 I_E が $10 A$ とした場合の導線抵抗による電位差は $1 \times 10^{-1} V$ であるが差動增幅回路 A_2, A_3 でのインピーダンスを $5 \times 10^3 \Omega$ とすると漏れ電流は $2 \times 10^{-5} A$ となり極めて微少な電流値となる。このことは非絶縁型多出力スイッチング電源に対して、本発明による非絶縁型多出力電子負荷装置を使用しても、供試電源の個々の出力電流間の干渉は極めて少なく、非絶縁型電子負荷であっても本発明による回路構成により直流的にも絶縁型電子負荷装置に近い状態とすることができる。

【0021】次に、請求項3に記載する発明の効果について説明する。情報通信機器や音響機器などに使用される多出力スイッチング電源では、電子負荷試験と同時に負荷発生時のリップルやノイズの測定が $100 KHz$ ～約 $20 MHz$ の周波数帯域において要求されており、非絶縁型の電子負荷装置を並列接続することは、供試電源の共通コモン線から電子負荷装置を経由して流れる高周波コモンモードノイズが前述のリップルやノイズ測定に多大な影響を与えるために、絶縁型電子負荷装置を個別に接続することを余儀なくされていた。

【0022】従来技術による絶縁型電子負荷装置での、高周波コモンモードノイズの測定結果を図5に示す。図5のA製品は株式会社計測技術研究所製のEL-302RB電子負荷装置であり、B製品はヒューレットパッカード社製HP6063A電子負荷装置での測定結果であり、それぞれの電子負荷端子と接地間でのインピーダンス値の周波数特性を示しており、 $1 MHz$ でのインピーダンスはA製品、B製品ともに約 3Ω であった。

【0023】図6にはA製品の電子負荷接続端子にコモンモードチョークコイルを付加した状態での測定結果であり、 $1 MHz$ でのインピーダンスは約 400Ω となっている。また、 $20 KHz$ 付近には付加したコモンモードチョークコイルの共振周波数帯域でのインピーダンス減衰が認められるが、前述の $100 KHz$ ～約 $20 MHz$ のリップルやノイズの実用測定周波数帯域では従来技

術による絶縁型電子負荷装置に対するインピーダンス改善効果は100倍以上であり、供試電源の共通コモン線から電子負荷装置を経由する高周波コモンモード電流の低減には本発明による電子負荷端子へのコモンモードチョークコイルの付加が有効であり、非絶縁型電子負荷装置でも供試電源装置のリップルやノイズ測定に影響を与えることなく負荷特性試験が可能であることを証明している。

【発明の効果】以上説明したように本発明の電子負荷装置は、試験対象である多出力スイッチング電源の個々の電圧出力線の導線抵抗に影響されることなく、非絶縁一体型でありながら供試電源装置の個々の電圧出力に所定の電子負荷を供するとともに、供試電源装置から電子負荷装置を経由する高周波コモンモード電流を実用周波数帯域で大幅に減少させてリップルやノイズの測定に影響を与えることなく負荷特性試験を行うことができる。

【図面の簡単な説明】

【図1】本発明の請求項1に記載する回路構成である。

【図2】図1の增幅手段に適用される増幅回路の組合せを示す。

【図3】本発明の請求項2に記載する多出力電源への対応回路構成を示す。

【図4】本発明の請求項3に記載する回路構成である。

【図5】絶縁型電子負荷装置による負荷端子～接地間インピーダンス測定結果

【図6】本発明での負荷端子～接地間インピーダンス測定結果

【符号の説明】

AMP1～AMP6 増幅手段に適用される増幅回路構成

a1 增幅素子

IN1, IN2 a1の入力

r1～r4 a1に接続される抵抗

OUT1, OUT2 a1の出力

T1 コモンモードチョークコイル

【図1】

図1

【図4】

図4

【図2】

図2

(1)AMP1

(2)AMP2

(3)AMP3

(4)AMP4

(5)AMP5

(6)AMP6

【図3】

図3

【図5】

【図6】

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002091577 A

(43) Date of publication of application: 29.03.02

(51) Int. Cl

G05F 1/10
G01R 31/00
H02J 1/00

(21) Application number: 2000281647

(71) Applicant: KEISOKU GIKEN CO LTD

(22) Date of filing: 18.09.00

(72) Inventor: NITORI KENJI

(54) ELECTRONIC LOAD DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an integral multi-output electronic load device which can supply a load stably to each voltage output of a test power unit and also can measure the ripples or noises during load test with no influence of high frequency common mode noise despite a non-insulation mode in an electronic load device that is used for the load test of a multi-output switching power supply.

SOLUTION: One of both load control arithmetic amplifying means of an electronic load device is provided with a differential amplifying means which applies the voltage that has given the differential amplification to voltage drop degrees at both ends of current detection resistance of a voltage output line of a test power unit to perform the feedback control and also corrects the potential difference set from grounding to the output of the arithmetic amplifying means. Thus, the influence due to the conductor resistance of each voltage output line of the test power unit is eliminated and also the high frequency common mode noise can be significantly reduced in the practical frequency bands by adding a common mode choke coil between the voltage output terminal of the test power unit and the input terminal

of the electronic load device. As a result, a stable multi-output load test is attained with the electronic load device despite a non-insulation mode.

COPYRIGHT: (C)2002,JPO

