

Department of Mathematics and Natural Sciences MAT120: Integral Calculus and Differential Equations Assignment-3

TA 1	r	
	ame	١.
Τ.4	ame	

Section: ID:

Use this page as the cover page of your Assignment.

Total $10 \times 10 = 100$.

- 1. Evaluate $\iint y \, dA$, R is the region in the first quadrant enclosed between the circle $x^2 + y^2 = 25$ & the line x + y = 5.
- 2. Evaluate $\iint_R xy$ dA, R is the region enclosed by $y = \sqrt{x}$, y = 6 x, y = 0.
- 3. Evaluate $\iint 2y \, dA$, R is the region in the first quadrant bounded above the circle $(x-1)^2 + y^2 = 1$ & below by the line y = x.
- 4. Find the area of the region inside the circle $r = 4 \sin \theta$ and outside the circle r=2.
- 5. Evaluate the iterated integral by converting to polar co-ordinates

a.
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$$

a.
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$$
 b. $\int_{-4}^{0} \int_{-4-\sqrt{16-x^2}}^{0} 3xy \, dy \, dx$.

- 6. Find volume of the solid bounded by the surface $z = \sqrt{y}$ and the planes x + y = 1, x = 0 & z = 0.
- 7. Evaluate $\iiint xyz \, dV$ where G is the solid in the first octant that is bounded by the parabolic cylinder $z = 2 - x^2$ and the planes z = 0, y = x & y = 0.
- 8. Use cylindrical coordinates to find the volume of the solid that is bounded above by the sphere $x^2 + y^2 + z^2 = 1$ and below by the cone $z = \sqrt{x^2 + y^2}$.
- 9. Use spherical coordinates to find the volume of the solid enclosed by the sphere $x^2 + y^2 + z^2 = 4a^2$ and the planes z = 0 & z = a.
- 10. Use spherical coordinates to find the volume of the solid within the sphere $x^2 + y^2 + z^2 = 9$, outside the cone $z = \sqrt{x^2 + y^2}$, and above the xy-plane.