

SEQUENCE LISTING

<110> Skånemejerier AB

<120> NEW ENZYME AND ITS USE

<130> 75086

<150> US 60/320,139

<151> 2003-04-24

<150> US 60/481,598

<151> 2003-11-05

<160> 18

<170> PatentIn version 3.2

<210> 1

<211> 458

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 1

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu
1 5 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys
20 25 30

Leu Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp
35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala
50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe
65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn
85 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr
100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile
115 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly

130

135

140

Gly Asn Val Thr Tyr Gln Gly Val Ala Val Thr Arg Ser Arg Lys Glu
145 150 155 160

Gly Ile Ala His Asn Tyr Lys Asn Glu Thr Glu Trp Arg Ala Asn Ile
 165 170 175

Asp Thr Val Met Ala Trp Phe Thr Glu Glu Asp Leu Asp Leu Val Thr
180 185 190

Leu Tyr Phe Gly Glu Pro Asp Ser Thr Gly His Arg Tyr Gly Pro Glu
 195 200 205

Ser Pro Glu Arg Arg Glu Met Val Arg Gln Val Asp Arg Thr Val Gly
210 215 220

Tyr Leu Arg Glu Ser Ile Ala Arg Asn His Leu Thr Asp Arg Leu Asn
225 230 235 240

Leu Ile Ile Thr Ser Asp His Gly Met Thr Thr Val Asp Lys Arg Ala
245 250 255

Gly Asp Leu Val Glu Phe His Lys Phe Pro Asn Phe Thr Phe Arg Asp
260 265 270

Ile Glu Phe Glu Leu Leu Asp Tyr Gly Pro Asn Gly Met Leu Leu Pro
275 280 285

Lys Glu Gly Arg Leu Glu Lys Val Tyr Asp Ala Leu Lys Asp Ala His
290 295 300

Pro Lys Leu His Val Tyr Lys Lys Glu Ala Phe Pro Glu Ala Phe His
305 310 315 320

Tyr Ala Asn Asn Pro Arg Val Thr Pro Leu Leu Met Tyr Ser Asp Leu
325 330 335

Gly Tyr Val Ile His Gly Arg Ile Asn Val Gln Phe Asn Asn Gly Glu
 340 345 350

His Gly Phe Asp Asn Lys Asp Met Asp Met Lys Thr Ile Phe Arg Ala
 355 360 365

Val Gly Pro Ser Phe Arg Ala Gly Leu Glu Val Glu Pro Phe Glu Ser
370 375 380

Val His Val Tyr Glu Leu Met Cys Arg Leu Leu Gly Ile Val Pro Glu
385 390 395 400

Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr Glu
405 410 415

Ser Ala Leu Pro Pro Asp Ala Leu Leu Val Ala Asp Gly Pro Cys Leu
420 425 430

Pro Ser Leu Ser Gln Ala Lys Gly Cys Met Pro Leu Ser Pro Ala Ala
435 440 445

Pro Thr Pro Ala Trp Leu Leu Trp Cys Trp
450 455

<210> 2
<211> 1701
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 2
gtccatctgg aaggcccagc atgagaggcc cggccgtcct cctcaactgtg gctctggcca
60

cgctcctggc tccccgggcc ggagcaccgg tacaaagtca gggctccag aacaagctgc
120

tcctggtgtc ctgcacggc ttccgctgga actacgacca ggacgtggac acccccaacc
180

tggacgcccat gccccgagac ggggtgaagg cacgctacat gaccccccgc tttgtcacca
240

tgaccagccc ctgccacttc accctggtca ccggcaaata tatcgagaac cacggggtgtgg
300

ttcacaacat gtactacaac accaccagca aggtgaagct gccctaccac gccacgctgg
360

gcatccagag gtgggtggac aacggcagcg tgcccatctg gatcacagcc cagaggcagg
420

gcctgagggc tggctcccttc ttctacccgg gcgggaacgt cacctaccaa ggggtggctg
480

tgacgcggag ccggaaagaa ggcacatgcac acaactacaa aaatgagacg gagtgagag
540

cgaacatcga cacagtatg gcgtggttca cagaggagga cctggatctg gtcacactct
600

acttcgggga gccggactcc acgggccaca ggtacggccc cgagtccccg gagaggaggg
660

agatggtgcg gcaggtggac cggaccgtgg gctacctccg ggagagcatc gcgcgcaacc
720

acctcacaga ccgcctcaac ctgatcatca catccgacca cggcatgacg accgtggaca
780

aacgggctgg cgacctggtt gaattccaca agttcccaa cttcaccttc cgggacatcg
840

agtttgagct cctggactac ggaccaaacg ggatgctgct ccctaaagaa gggaggctgg
900

agaaggtgta cgatgccctc aaggacgccc accccaaagct ccacgtctac aagaaggagg
960

cgttccccga ggccttccac tacgccaaca accccaggg cacacccctg ctgatgtaca
1020

gcgaccttgg ctacgtcatc catggagaa ttaacgtcca gttcaacaat ggggagcacg
1080

gcttgacaa caaggacatg gacatgaaga ccatcttccg cgctgtggc cctagttca
1140

gggcgggcct ggaggtggag cccttgaga gcttccacgt gtacgagctc atgtgccggc
1200

tgtctggcat cgtccccag gccaacgatg ggcacctagc tactctgctg cccatgctgc
1260

acacagaatc tgctttccg cctgatgctc tgctggtcgc ggacggaccc tgccctccca
1320

gcttatccca ggccagaggc tgcattccac tgtcccccgc agcgccaacc cctgcttggc
1380

tgttatggtg ctggtaataa gcctgcagcc caggtccaaa gccccggcg agccggtccc
1440

ataaccggcc ccctgcccct gcccctgctc ctgctccctcc cttcgggccc ccctccctct
1500

gcaaaacccg ctcccgaaagc ggcgctgccc tctgcagcca cgcgggggcg cgcgggagtc
1560

tctcgccgc gctggaacct gcagacccgg cctcggtcag ctggggagggg cccggcccccgg
1620

cacaaagcac ccatggaat aaaggccaag ccgcgacagt cagaaaaaaaaaaaaaaaaaaaa
1680

aaaaaaaaaaaa aaaaaaaaaa a
1701

<210> 3
<211> 18
<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 3

Ala Phe Val Thr Met Thr Ser Pro Cys His Phe Thr Leu Val Thr Gly
1 5 10 15

Lys Tyr

<210> 4

<211> 458

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 4

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu
1 5 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys
20 25 30

Leu Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp
35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala
50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe
65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn
85 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr
100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile
115 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly
130 135 140

Gly Asn Val Thr Tyr Gln Gly Val Ala Val Thr Arg Ser Arg Lys Glu
145 150 155 160

Gly Ile Ala His Asn Tyr Lys Asn Glu Thr Glu Trp Arg Ala Asn Ile
165 170 175

Asp Thr Val Met Ala Trp Phe Thr Glu Glu Asp Leu Asp Leu Val Thr
180 185 190

Leu Tyr Phe Gly Glu Pro Asp Ser Thr Gly His Arg Tyr Gly Pro Glu
195 200 205

Ser Pro Glu Arg Arg Glu Met Val Arg Gln Val Asp Arg Thr Val Gly
210 215 220

Tyr Leu Arg Glu Ser Ile Ala Arg Asn His Leu Thr Asp Arg Leu Asn
225 230 235 240

Leu Ile Ile Thr Ser Asp His Gly Met Thr Thr Val Asp Lys Arg Ala
245 250 255

Gly Asp Leu Val Glu Phe His Lys Phe Pro Asn Phe Thr Phe Arg Asp
260 265 270

Ile Glu Phe Glu Leu Leu Asp Tyr Gly Pro Asn Gly Met Leu Leu Pro
275 280 285

Lys Glu Gly Arg Leu Glu Lys Val Tyr Asp Ala Leu Lys Asp Ala His
290 295 300

Pro Lys Leu His Val Tyr Lys Glu Ala Phe Pro Glu Ala Phe His
305 310 315 320

Tyr Ala Asn Asn Pro Arg Val Thr Pro Leu Leu Met Tyr Ser Asp Leu
325 330 335

Gly Tyr Val Ile His Gly Arg Ile Asn Val Gln Phe Asn Asn Gly Glu
340 345 350

His Gly Phe Asp Asn Lys Asp Met Asp Met Lys Thr Ile Phe Arg Ala
355 360 365

Val Gly Pro Ser Phe Arg Ala Gly Leu Glu Val Glu Pro Phe Glu Ser
370 375 380

Val His Val Tyr Glu Leu Met Cys Arg Leu Leu Gly Ile Val Pro Glu

385 390 395 400

Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr Glu
405 410 415

Ser Ala Leu Pro Pro Asp Gly Arg Pro Thr Leu Leu Pro Lys Gly Arg
420 425 430

Ser Ala Leu Pro Pro Ser Ser Arg Pro Leu Leu Val Met Gly Leu Leu
435 440 445

Gly Thr Val Ile Leu Leu Ser Glu Val Ala
450 455

<210> 5
<211> 1878
<212> DNA
<213> Unknown

<220>
<223> Unknown

<220>
<221> misc_feature
<222> (905)..(905)
<223> n is a, c, g, or t

<400> 5
gtccatctgg aaggcccagc atgagaggcc cggccgtcct cctcaactgtg gctctggcca
60

cgcctctggc tccccggggcc ggagcacccgg tacaaagtca gggctccag aacaagctgc
120

tccctgggttc cttcgacggc ttccgctgga actacgacca ggacgtggac acccccaacc
180

tggacgcccat ggcccgagac ggggtgaagg cacgctacat gaccccccggc tttgtcacca
240

tgaccagccc ctgccacttc accctggtca ccggcaaata tatcgagaac cacgggggtgg
300

ttcacaacat gtactacaac accaccagca aggtgaagct gccctaccac gccacgctgg
360

gcatccagag gtgggtggac aacggcagcg tgcccatctg gatcacagcc cagaggcagg
420

gcctgagggc tggctccttc ttctacccgg gcgggaacgt cacctaccaa ggggtggctg
480

tgacgcggag ccggaaagaa ggcacgcac acaactacaa aaatgagacg gagtggagag
540

cgaacatcga cacagtgtatgcgtggttca cagaggagga cctggatctg gtcacactct
600
acttcgggaa gccggactcc acgggccaca ggtacggccc cgagtccccg gagaggaggg
660
agatggtgcg gcaggtggac cggaccgtgg gctacctccg ggagagcatc ggcgcgaacc
720
acccacaga ccgcctcaac ctgatcatca catccgacca cggcatgacg accgtggaca
780
aacgggctgg cgacctggtt gaattccaca agttcccaa cttcaccttc cgggacatcg
840
agttttagct cctggactac ggaccaaactg ggtatgtctgc ccctaaagaa gggaggctgg
900
agaangtgta cgatgcctc aaggacgccc accccaagct ccacgtctac aagaaggagg
960
cgttccccga ggccttccac tacgccaaca accccagggt cacacccctg ctgatgtaca
1020
gcgaccttgg ctacgtcatc catggagaa ttaacgtcca gttcaacaat ggggagcacg
1080
gcttgacaa caaggacatg gacatgaaga ccatcttccg cgctgtggc cctagcttca
1140
gggcgggcct ggaggtggag cccttgaga gcgtccacgt gtacgagctc atgtgccggc
1200
tgctggcat cgtccccag gccaacgtatg ggcaccttagc tactctgtcg cccatgtgc
1260
acacagaatc tgctttccg cctgatggaa ggcctactct cctgccaag ggaagatctg
1320
ctctcccgcc cagcagcagg cccctctcg tcatggact gctggggacc gtgattcttc
1380
tgtctgaggt cgcataacgc cccatggctc aaggaagccg cggggagctg cccgcaggcc
1440
ctggccggc tgtctcgctg cgatgtctg ctggtcgcgg acggaccctg cctccccagc
1500
ttatcccagg ccagaggctg catgccactg tccccggcag cgccaaacccc tgcttggctg
1560
ttatggtgct ggtataataagc ctgcgagccc aggtccagag ccccccggcga gccggtccca
1620
taaccggccc cctgcccctg cccctgtcc tgctcctccc cttcgggccc ctcctctcg
1680
caaaaacccgc tcccgaagcg gcgtgccgt ctgcagccac gcggggggcgc gcgggagctc
1740

tgcccccgct ggaacctgca gaccggcct cggtcagctg ggaggggccc gccccggcac
1800

aaagcaccca tggataaaa ggccaagccg cgacagtcag caaaaaaaaaaaaaaaa
1860

aaaaaaaaaaa aaaaaaaaa
1878

<210> 6
<211> 415
<212> PRT
<213> Unknown

<220>
<223> Unknown

<400> 6

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu
1 5 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys
20 25 30

Leu Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp
35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala
50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe
65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn
85 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr
100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile
115 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly
130 135 140

Gly Asn Val Thr Tyr Gln Gly Val Ala Val Thr Arg Ser Arg Lys Glu
145 150 155 160

Gly Ile Ala His Asn Tyr Lys Asn Glu Thr Glu Trp Arg Ala Asn Ile

165

170

175

Asp Thr Val Met Ala Trp Phe Thr Glu Glu Asp Leu Asp Leu Val Thr
 180 185 190

Leu Tyr Phe Gly Glu Pro Asp Ser Thr Gly His Arg Tyr Gly Pro Glu
 195 200 205

Ser Pro Glu Arg Arg Glu Met Val Arg Gln Val Asp Arg Thr Val Gly
 210 215 220

Tyr Leu Arg Glu Ser Ile Ala Arg Asn His Leu Thr Asp Arg Leu Asn
 225 230 240

Leu Ile Ile Thr Ser Asp His Gly Met Thr Thr Val Asp Lys Arg Ala
 245 250 255

Gly Asp Leu Val Glu Phe His Lys Phe Pro Asn Phe Thr Phe Arg Asp
 260 265 270

Ile Glu Phe Glu Leu Leu Asp Tyr Gly Pro Asn Gly Met Leu Leu Pro
 275 280 285

Lys Glu Gly Arg Leu Glu Lys Val Tyr Asp Ala Leu Lys Asp Ala His
 290 295 300

Pro Lys Leu His Val Tyr Lys Lys Glu Ala Phe Pro Glu Ala Phe His
 305 310 320

Tyr Ala Asn Asn Pro Arg Val Thr Pro Leu Leu Met Tyr Ser Asp Leu
 325 330 335

Gly Tyr Val Ile His Gly Arg Ile Asn Val Gln Phe Asn Asn Gly Glu
 340 345 350

His Gly Phe Asp Asn Lys Asp Met Asp Met Lys Thr Ile Phe Arg Ala
 355 360 365

Val Gly Pro Ser Phe Arg Ala Gly Leu Glu Val Glu Pro Phe Glu Ser
 370 375 380

Val His Val Tyr Glu Leu Met Cys Arg Leu Leu Gly Ile Val Pro Glu
 385 390 395 400

Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr
 405 410 415

<210> 7
<211> 10
<212> PRT
<213> Unknown

<220>
<223> Unknown

<400> 7

Phe Val Thr Met Thr Ser Pro Cys His Phe
1 5 10

<210> 8
<211> 8
<212> PRT
<213> Unknown

<220>
<223> Unknown

<400> 8

Phe Val Thr Met Thr Ser Pro Cys
1 5

<210> 9
<211> 7
<212> PRT
<213> Unknown

<220>
<223> Unknown

<400> 9

Pro Thr Lys Thr Phe Pro Asn
1 5

<210> 10
<211> 27
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 10
ggcccagcat gagaggcccg gccgtcc
27

<210> 11
<211> 27
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 11
ggacggccgg gcctctcatg ctgggcc
27

<210> 12
<211> 20
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 12
taatacgact cactataggg
20

<210> 13
<211> 18
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 13
tccgagatct ggacgagc
18

<210> 14
<211> 40
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 14
ggcccgagac ggggtgaagg cacgctacat gaccccccgc
40

<210> 15
<211> 23
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 15
tggcccggtgg agtccggctc ccc
23

<210> 16
<211> 15
<212> PRT
<213> Unknown

<220>
<223> Unknown

<400> 16

Lys Leu Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp
1 5 10 15

<210> 17
<211> 31
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 17
atggatccat gagaggcccg gccgtcctcc t
31

<210> 18
<211> 31
<212> DNA
<213> Unknown

<220>
<223> Unknown

<400> 18
acgtcgactt accagcacca taacagccaa g
31