Дискретная математика.

Тискин А. В. alextiskin@gmail.com

Содерждание:

- 1. Булевые функции
- 2. Комбинаторика
- 3. Теория графов

Булевые функции 1

Определение 1. $\mathbb{B} := \{0; 1\}$. Булевая функция $-f : \mathbb{B}^n \to \mathbb{B}$.

Множество булевых функций — P_2 . Множество булевых функция — $P_2^{(n)}$

Количестов всех булевых функция — $\left| P_2^{(n)} \right| = 2^{2^n}$.

Определение 2. Базовые функции:

- 0, 1 функции-константы.
- $\neg x := 1 x$
- \wedge и \vee стандартные AND и OR.

Определение 3. Булевая функция $f(x_1, \dots, x_i, \dots, x_n)$ существенно зависит от x_i , если существуют $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$, что $f(a_1, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n)$.

Определение 4. Пусть F — множество булевых функций. Тогда сигнатурой F или множе $cmвом \ \phi opмyл \ нad \ F$ называется множество итеративно заданных формул по принципу:

- формальный символ x;
- $f(A_1,\ldots,A_n)$, где $f\in F$, а A_1,\ldots,A_n уже определённые функции.

Формула реализует некоторую функцию (не обязательно из F). Формулы реализующие одну и ту же функцию называются эквивалентными.

Определение 5. Функция f выразима через F, если существует формула над F, реализующаая f.

Определение 6. Замыкание F — множество [F] функций, выразимых через F.

Утверждение 1.

• $F \subseteq [F]$

- $F_1 \subseteq F_2 \Rightarrow [F_1] \subseteq [F_2]$
- [[F]] = [F]

Определение 7. Множество F булевых функций называется замкнутым, если F = [F].

Определение 8. Пусть R замкнуто, а $Q \subseteq R$.

- Q полно для R, если [Q] = R.
- R конечно порожсдаемо, если сущесвтует конечное полное для R множество Q, подмножество R. Минимальное по включение Q базис R.

Определение 9. Функция f называется монотонной, если

$$\forall x_1 \leqslant x'_1, \dots, x_n \leqslant x'_n : f(x_1, \dots, x_n) \leqslant f(x'_1, \dots, x'_n).$$

Утверждение 2. Если F — множество монотонных функций, то [F] — множество монотонных функций.

Определение 10.

Литерал — это x или $\neg x$, где x — формальный символ (переменная).

Элементарная конъюкция — $Y_1 \wedge \cdots \wedge Y_k$, где Y_1, \dots, Y_k — литералы (с попарно различными элементами).

Дизтонктивная нормальная форма $(\mathcal{A}H\Phi)-Z_1\vee\cdots\vee Z_m$, где Z_1,\ldots,Z_m — (различные) элементарные конъюнкции.

Совершенная ДН Φ — для любой функции f от n переменных

$$f(x_1, \dots, x_n) = \bigvee_{f(\sigma_1, \dots, \sigma_n) = 1} x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n},$$

где $x^0 = x$, а $x^1 = \neg x$.

Утверждение 3. *Система* $\{\neg, \land, \lor\}$ *полна (в P*₂).

Следствие 0.1. Cucmemu $\{\neg.\land\}$, $\{\neg,\lor\}$, $\{1,\land,\oplus\}$, $\{\uparrow\}$ u $\{\downarrow\}$ nonumu.

Определение 11. Аналогично (совершенная) конъюктивная нормальная форма ($KH\Phi$).

Определение 12. Двойственная функция к $f-f^*:=\lnot f(\lnot x_1,\ldots,\lnot x_n).$

Свойтсва:

•
$$f^{**} = f$$

Утверждение 4 (принцип двойственности). Если f реализуема формулой Φ , то f^* реализуема формулой Φ^* , где все функции заменяются на двойственные.

Определение 13 (полином Жегалкина (над \mathbb{F}_2)). Выражение функции в базисе $\{1, \wedge, \oplus\}$.

$$f(x_1, \dots, x_n) = \sum_{\{i_1, \dots, i_s\} \subseteq \{1, \dots, n\}} a_{i_1, \dots, i_n} x_{i_1} \dots x_{i_s}$$

Теорема 1 (Жегалкин). Любая функция реализуется полиномом Жегалкина единственным образом (с точностью до пропуска членов тождественно равных 0 и перестановок слагаемых и сомножителей).

Построение полинома аналогично рассуждению в формуле включений-исключений. Сначала рассмотрим значение f в точке $(0,\ldots,0)$: оно определяет свободный член полинома. Далее рассмотрим значение f и имеющегося полинома (пока что состоящего только из, может быть, свободного члена) в точках вида $(0,\ldots,0,1,0,\ldots,0)$: по ним определяются коэффициенты при мономах первой степени (по аналогии с формулой включений-исключений). Так далее определяются все коэффициенты.

Определение 14. Функция f самодвойствена, если $f = f^*$.

Пример 1.

- e_i и $\neg e_i$ для любого n и i самодвойственны;
- \vee , \wedge , \oplus , \rightarrow , \leftarrow , \uparrow и \downarrow не самодвойствены.