

Teória sietí – prednáška 4

Úloha vrstvy prevádzky?

Nájsť kompromis medzi kvalitou a efektívnosťou siete.

- 1. z ekonomických dôvodov musí byť kapacita siete menšia než sú možné požiadavky na prenos
- 2. požiadavky na prenos vznikajú náhodne

Riešenie?

Policing – odmietnuť záťaž prevyšujúcu kapacitu siete

Shaping – odložiť záťaž prevyšujúcu kapacitu siete na neskôr

Prvá úloha

Ako popísať proces, ktorý sa v sieti odohráva?

Vlastnosti procesu

- 1. javy sú nezávislé
- 2. javy nastávajú s rovnakou pravdepodobnosťou

Bernoulliho proces

čas

Bernoulliho proces

rozdelenie pravdepodobnosti

$$P\{\tau_k = n\} = P\{\tau = n\} = p(1-p)^{n-1}$$

 $\forall k, n = 1, 2, ...$

Iný popis v čase

Rozdelenie dĺžok intervalov medzi rámcami

Rozdelenie dĺžok zhlukov rámcov

Stredné dĺžky medzier a zhlukov

Stredná dĺžka intervalov
$$\overline{\alpha} = \frac{1-p}{p}$$

Stredná dĺžka zhlukov rámcov
$$\overline{\beta} = \frac{p}{1-p}$$

Problém

Stredné dĺžky sú na sebe závislé!

$$\overline{\alpha} = \frac{1}{\overline{\beta}}$$

Iný popis v čase

Rozdelenie dĺžok intervalov a zhlukov rámcov

Riešenie

Stav procesu

$$P(S_k) = \sum_{\forall S_{k-1}} P(S_k / S_{k-1}) P(S_{k-1})$$

napr.

$$P(S_k = M) = P(S_{k-1} = M)(1-r) + P(S_{k-1} = R)p$$

11

$$\mathbf{P}(S_k) = (P(S_k = M), P(S_k = R)) =$$

$$= \mathbf{p}_k = (p_k(M), p_k(R))$$

$$(p_k(1), p_k(2)) = (p_{k-1}(1), p_{k-2}(2)) \begin{pmatrix} 1-r & r \\ p & 1-p \end{pmatrix}$$

$$\mathbf{p}_{k} = \mathbf{p}_{k-1}.\mathbf{P}$$

Matica pravdepodobností prechodov

$$\mathbf{P} = \begin{pmatrix} 1 - \mathbf{r} & \mathbf{r} \\ \mathbf{p} & 1 - \mathbf{p} \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$$

$$\mathbf{p}_{k} = \mathbf{p}_{k-1}.\mathbf{P}$$

$$\mathbf{p}_{k-1} = ?$$

$$\mathbf{p}_{k-1} = \mathbf{p}_{k-2}.\mathbf{P}$$

 \mathbf{p}_0

Aké je počiatočné rozdelenie pravdepodobnosti, ak na počiatku bol:

1. rámec
$$p_0 = (0,1)$$

2. medzera
$$p'_0 = (1,0)$$

Platí to u tohto procesu pre každé p, r?

Vymyslite také p,r, aby postupnosť p₂(k) konvergovala k číslu, ktoré závisí na p₀

Riešenie

Vymyslite také p,r, aby postupnosť p₂(k) konvergovala k číslu, ktoré závisí na p₀

Ergodický proces

Medzi l'ubovol'nou dvojicou stavov existuje nenulová pravdepodobnosť prechodu na viac krokov

Domáca úloha:

Vymyslite také p,r, aby postupnosť p₂(k) nekonvergovala

Invariantné rozdelenie

Invariantné rozdelenie

 $\pi = (\pi(1), \pi(2))$

$$\pi(1) = \pi(1)\frac{1}{2} + \pi(2)\frac{2}{3}$$

vyriešte!

$$\pi(2) = \pi(1)\frac{1}{2} + \pi(2)\frac{1}{3}$$

Riešením sú <u>všetky</u> π také, že platí

$$\pi = (4\alpha, 3\alpha), \quad \alpha \in \mathbb{R}$$

Čo s tým?

Riešením je aj
$$\pi = (4,3)$$
, $\alpha = 1$
 $\pi = (4,3)$ nie je rozdelením
pravdepodobnosti
Aby ním bolo, musí platiť
 $4\alpha + 3\alpha = 1 \Rightarrow \alpha = \frac{1}{7}$

 $\boldsymbol{\pi} = (\frac{4}{7}, \frac{3}{7})$

Záver

Invariantné rozdelenie pravdepodobnosti

$$\pi = (\pi(1), ..., \pi(n))$$

procesu so stavmi $\{S_1,...,S_n\}$ a maticou pravdepodob-

$$\mathbf{P} = \left(\begin{array}{cccc} p_{1,1} & \dots & p_{1,n} \\ \dots & \dots & \dots \\ p_{n,1} & \dots & p_{n,n} \end{array}\right)$$

nájdeme riešením sústavy lineárnych algebraických rovníc

$$\pi = \pi P$$
, $\sum_{i=1}^{\infty} \pi_i = 1$

Nájdite invariantné rozdelenie uvedeného neergodického procesu.

Nájdite invariantné rozdelenie iného neergodického procesu s dvomi stavmi.

Nájdite invariantné rozdelenie uvedeného ergodického procesu.

Naprogramujte rekurentný vzťah $\mathbf{p}_k = \mathbf{p}_{k-1}\mathbf{P}$ a zistite, ako závisí konvergencia \mathbf{p}_k na matici pravdepodobností prechodov \mathbf{P} a počiatočnom rozdelení \mathbf{p}_0 .

KIS-FRI ZU

Na linke s rýchlosťou 100 Mbit/s bol nameraný u toku s rámcami 40 Byte (dané veľkosťou tokenu v limitéri) stredný interval medzi rámcami 150 rámcov a stredný zhluk rámcov 25 rámcov. Vypočítajte pravdepodobnosť, že:

- náhodne vybraný slot obsahuje rámec,
- slot vzdialený o tri sloty bude prázdny,
- za interval 8ms príde viac než 200 rámcov.

Invariantné rozdelenie - rovnováha

$$\pi(1) = \pi(1) p_{11} + \pi(2) p_{21}$$

$$\pi(1) (1 - p_{11}) = \pi(2) p_{21}$$

$$\pi(1) p_{12} = \pi(2) p_{21}$$

Formálny dôkaz za domácu úlohu

Matica prechodov

$$\mathbf{P} = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ q & 1-p-q & p & 0 & \dots \\ 0 & q & 1-p-q & p & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

Graf prechodov

Invariantné rozdelenie

$$\pi_0 = \pi_0 (1-p) + \pi_1 q$$

$$\pi_k = \pi_{k-1} p + \pi_k (1-p-q) + \pi_{k+1} q, \quad k = 1,2,...$$

$$\pi_0 p = \pi_1 q$$

$$\pi_k (p+q) = \pi_{k-1} p + \pi_{k+1} q, \quad k = 1,2,...$$

Veta o zachovaní toku pravdepodobnosti

$$\pi_0 p = \pi_1 q$$

$$\pi_k (p+q) = \pi_{k-1} p + \pi_{k+1} q, \quad k = 1,2,...$$

Iné rozdelenie stavov?

$$\pi_{k} p = \pi_{k+1} q, \quad k = 0,1,...$$

$$\pi_{k+1} = \frac{p}{q} \pi_k = \rho \pi_k, \quad k = 0,1,...$$

Invariantné rozdelenie

$$\pi_{k} = \rho^{k} \pi_{0}, \quad k = 0,1,...$$

$$\sum_{k=0}^{\infty} \pi_{k} = 1$$

Riešenie

$$\sum_{k=0}^{\infty} \rho^k \pi_0 = 1 \implies \pi_0 = \left(\frac{1}{1-\rho}\right)^{-1}, \quad \rho < 1$$

$$\pi_{k} = \rho^{k} (1 - \rho)$$
, $k = 0,1,...$

Invariantné rozdelenie

Postup:

- 1. určenie stavov
- 2. určenie rezov
- 3. napísanie rovníc o zachovaní toku
- 4. vyriešenie rovníc

Prednáška 4

Ďakujem za pozornosť