# ITGS217 Discrete Structures

التراكيب المنفصلة

المنطق Logic

د. رضوان حسین

#### المنطق

- المنطق يعرّف القواعد الأساسية لوصف الحقائق
  - المنطق الرياضي يكشف هذه القواعد بالتفصيل
- √ وهو يشكل إثبات رسمي للحقائق formal proof
  - دراسة المنطق الرياضي Mathematical Logic:
    - طريقة جيدة لتعلم المنطق على أساس سليم
- كتابة إثباتات رسمية بمنطق رياضى يشبه كثيراً برمجة الحاسوب
  - لأن القواعد محددة بوضوح clearly defined
- المنطق ضروريّ جداً للسببية الرياضية Mathematical Reasoning
  - · فهو مهم لتصميم البرامج, و أيضاً تصميم الدوائر الإلكترونية

#### المنطق الاقتراحي Propositional Logic

- المنطق الاقترحي هو نظام مبني على اقتراحات propositions
- الاقتراح: عبارة statement (جملة مُحكَمَة) تقريرية declarative تكون إما صحيحة أو خاطئة (وليس كلاهما).
- نقول أن القيمة الصادقة (الصائبة, الحقيقة) truth value لاقتراح ما تكون
  - صحیحة True •
  - أو خاطئة (F) False
  - يشار إليهما بالقيمتين 1 و 0 في الدوائر المنطقية

- " الفيلة أكبر من الفئران"
- هل هذه عبارة statement?
  - هل هذا اقتراح proposition؟
- ما هي قيمة الصواب truth value ما هي قيمة الفرضية؟

"1900 > 2018 " •

نعم

هل هذه عبارة statement؟

نعم

هل هذا اقتراح proposition؟

خطـاً false

ما هي قيمة الصواب truth value لهذه الفرضية؟

- "y > 5 " •
- هل هذه عبارة statement؟
  - هل هذا اقتراح proposition؟
- الأن قيمة الصواب truth value تعتمد على قيمة و ولكن هذه القيمة غير محددة.
- نسمي هذا النوع من العبارات بالدوال الاقتراحية أو العبارات المفتوحة propositional functions or open statements

• " اليوم هو 27 يناير و 99 < 10 "

نعم

هل هذه عبارة statement?

نعم

eproposition هل هذا اقتراح

خطـاً false

ما هي قيمة الصواب truth ما هي عيمة الصواب value

- " لو سمحت لا تنم أثناء المحاضرة "
  - هل هذه عبارة statement؟
  - هل هذا اقتراح proposition؟
    - العبارات فقط يمكن أن تكون اقتراحات

- " هل يستطيع إبراهيم أن يذهب معك؟ "
  - هل هذه عبارة statement؟
  - هل هذا اقتراح proposition؟
    - هذا سؤال وليس عبارة تقريرية declarative, العبارات فقط يمكن أن تكون فرضيات

- "خذ حبتي آسبرين"
- هل هذه عبارة statement؟
- هل هذا اقتراح proposition؟
- هذا أمر imperative وليس جملة تقريرية declarative, العبارات فقط يمكن أن تكون اقتراحات

- "x + 4 > 9 " •
- هل هذه عبارة statement?
- هل هذا اقتراح proposition؟
- ... لأن قيمة الصواب للقتراح تكون صحيحة عند قيم محددة للمتغير x مثل 6, وتكون خاطئة عندقيم أخرى للمتغير x مثل 5

- " هي طالبة في كلية تقنية المعلومات"
  - ه هذه عبارة statement؟
    - هل هذا اقتراح proposition؟
- لأن قيمة الصواب truth value لهذا الاقتراح تعتمد على إلى من يشير ضمير الغائب هي.

- "x < y if and only if y > x"
  - نعم

هل هذه عبارة statement?

نعم

هل هذا اقتراح proposition؟

صح true

- ما هي قيمة الحقيقة truth value لهذا الاقتراح؟
- ... لأن قيمة الصواب للقتراح لا تعتمد على أي قيمة محددة في x و y

#### المنطق الاقتراحي Propositional Logic

- المنطق الاقتراحي هو لغة تبتعد عن محتوى النص وتركز عن الروابط المنطقية فيه
- كما لاحظنا في الأمثلة السابقة, يمكن ذمج اقتراحين أو أكثر لتشكل اقتراح واحد مذمج Compound proposition
  - يمكن صياغة formalize الاقتراحات بالحروف مثل p, q, r, s
- وصياغة عددة مشغلات operators منطقية (روابط connectives منطقية)

#### المشغلات (الروابط) المنطقية Logical Operators (connectives)

#### سنتعامل مع المشغلات المنطقية التالية:

```
    Negation (NOT, ¬)
    Conjunction (AND, ∧)
    Inclusive Disjunction (OR, ∨)
    الانفصال الاحتوائي " أو " أو " الاستثنائية
    Exclusive-or (XOR, ⊕)
    Implication (if – then, →)
    Biconditional (if and only if, ↔)
```

#### استخدام المشغلات المنطقية

- نفي الاقتراح Negation
- $p \sim p$  فرضية , نفي p يكتب  $p \sim p$  فرضية .
  - الفرضية p تقرأ "not p" أي نفي p
- قيم الصواب truth values لنفي p, p, هو عكس قيمة الصواب لفرضية p

#### مثال: استخدام المشغلات المنطقية

- نفي الاقتراح Negation
- ليكن الاقتراح p: " اليوم هو الجمعة "
- الاقتراح p : " اليوم ليس الجمعة "

#### جدول الصواب (النفي NOT)

• نفي الاقتراح Negation

Unary Operator, Symbol: —

| P         | ¬ P       |
|-----------|-----------|
| true (T)  | false (F) |
| false (F) | true (T)  |

#### استخدام المشغلات المنطقية

- التوافق (و Conjunction (AND)
  - و p اقتراحین , p اقتراحین
- p AND q و تقرأ  $p \land q$  و يكتب  $p \land q$  وتقرأ  $p \land q$
- التوافق p ^ q يكون صحيحاً true عندما p AND q كلاهما صحيح
  - ویکون خطأ false غیر ذلك otherwise
  - Binary Operator, Symbol: ۸
    مشغل لمتغیر ین

#### مثال: استخدام المشغل AND

- أوجد التوافق بين الاقتراحين p و p
- ليكن الاقتراح p: " اليوم هو الجمعة "
- و يكن الاقتراح q: " إنها تمطر اليوم"
  - ، التوافق بين p و p

"اليوم هو الجمعة وهي تمطر اليوم" :  $p \wedge q$ 

#### جدول الصواب (AND)

- ترابط (توافق) الاقتراحات Conjunction
- يحتوي الجدول على أربعة صفوف لأن به متغيرين منطقيين p و , q p و p , ولكل متغير قيمتين (صح أم خطأ), وعدد الصفوف هو العدد إثنين مرفوع لعدد المتغيرات = 2<sup>2</sup> = 4

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| T | T | T            |
| Т | F | F            |
| F | T | F            |
| F | F | F            |

#### استخدام المشغلات المنطقية

- الانفصال (أو Disjunction (inclusive OR)
  - و p اقتراحین , p انتکن p
- p OR q وتقرأ p  $\vee q$  و يكتب p وتقرأ p
- و الانفصال  $p \ vq$  يكون صحيحاً p عندما و أو p أو كلاهما صحيح الانفصال
  - ویکون خطأ false غیر ذلك otherwise

#### مثال: استخدام المشغل OR

- أوجد الانفصال بين الاقتراحين p و p
- ليكن الاقتراح p: " اليوم هو الجمعة "
- و يكن الاقتراح q: " إنها تمطر اليوم"
  - الانفصال بين p و p

p v q : "اليوم هو الجمعة أو هي تمطر اليوم"

#### جدول الصواب (Inclusive OR)

- انفصال الاقتراحات Disjunction
- Binary Operator, Symbol: ∨

| Р | Q | PvQ |
|---|---|-----|
| T | T | T   |
| Т | F | Т   |
| F | Т | Т   |
| F | F | F   |

#### استخدام المشغلات المنطقية

- الانفصال الاستثنائي (أو Exclusive OR (XOR)
  - و p اقتراحین p ا
- $p \oplus q$  يكتب و الانفصال الاستثنائي بين الاقتراحين و  $p \oplus q$ 
  - p XOR q وهي تمثل الاقتراح
- الانفصال الاستثنائي  $p \oplus q$  يكون وأحد فقط من p أو p صحيحاً
  - ویکون خطأ false غیر ذلك otherwise

#### مثال: استخدام المشغل XOR

- أوجد الانفصال الاستثنائي بين الاقتراحين p و p
- ليكن الاقتراح p : " عاطف سينجح في مادة ITGS217 "
- و يكن الاقتراح q: " عاطف سيرسب في مادة ITGS217"
  - ، الانفصال الاستثنائي بين p و p
  - " ITGS217 المادة التجمع المادة  $p \oplus q$

#### جدول الصواب (XOR)

- انفصال استثنائي للقتراحات Exclusive OR
- Binary Operator, Symbol: ⊕

| Р | Q | P   Q |
|---|---|-------|
| T | T | F     |
| Т | F | Т     |
| F | T | T     |
| F | F | F     |

#### مثال: استخدام المشغل OR أو XOR

- الاقتراح التالي لنص أسلوب المفاضلة " أو ", من سياق النص أوجد هل المقصود هو تعبير الانفصال الاحتوائي OR أم الانفصال الاستثنائي XOR ؟
  - " نبيل لديه أخ واحد أو ثلاث إخوة "
    - لايمكن أن يكون للشخص أخ واحد وثلاث إخوة
    - وبالتالي " أو " استخدمت بشكل استثنائي (XOR)

#### مثال: استخدام المشغل OR أو XOR

- الاقتراح التالي لنص أسلوب المفاضلة " أو ", من سياق النص أوجد هل المقصود هو تعبير الانفصال الاحتوائي OR أم الانفصال الاستثنائي XOR ؟
  - " للتسجيل في كلية تقنية المعلومات عليك اجتياز امتحان المفاضلة أو تكون طالب درست بقسم الحاسب بكلية العلوم"
    - يمكن أن يجتاز الطالب امتحان المفاضلة و أن يكون طالباً سابق بقسم الحاسب بكلية العلوم
      - وبالتالي " أو " استخدمت بشكل احتوائي (OR)

#### • الدلالة Implication

- تعریف: لتکن p و p اقتراحین.
- العبارة الشرطية p o q تكون اقتراحاً " إذا كانت p تدل على p"
  - أي p تؤدي إلى p
  - " if p, then q " •
- العبارة الشرطية تكون خطأ false عندما تكون p صح و تكون q خطأ
  - وتكون العبار صح عدا ذلك

### Implication (if - then)



Binary Operator, Symbol: →

| P | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| T | T | T                 |
| Т | F | F                 |
| F | Т | Т                 |
| F | F | T                 |

- $, p \rightarrow q$  الجملة الشرطية  $q \rightarrow q$
- تسمى p بالفرضية hypothesis أو مُعطى
- تسمى بالخلاصة conclusion أو النتيجة

#### مثال:

| þ | q | $p \rightarrow q$ |
|---|---|-------------------|
| Т | ٢ | Т                 |
| Т | F | F                 |
| F | T | Т                 |
| F | F | Т                 |

- "If I am elected, then I will lower taxes." .2
  - "If you get 100% on the final, .3 then you will get an A."

- مفهوم عبارة الشرط (implication) في التراكيب والرياضيات المنفصلة مختلف عن مفهوم الشرط في لغات البرمجة واللغات الطبيعية
  - المنطق الرياضي لعبارة الدلالة (الشرط) يحدد قيمة الصدق truth value ولايعتمد على علاقة الفعل ورد الفعل بين الفرضية
- لغة منطق الاقتراح Propositional Logic Language اصطناعية, ولكن نستخدم اللغة الطبيعية للشرح

- مثال:
- " إذا كانت كريمة تملك هاتف ذكي, إذاً 2 + 5 = 7 "
- نتيجة (قيمة الصدق) الاقتراح المنطقي تكون دائماً صبح true , لماذا؟
- و الما قيمة العبارة p o q دائماً صح طالما خلاصة conclusion الشرط صح
  - · مثال:
  - " إذا كانت فاطمة تملك هاتف ذكي, إذاً 4 + 6 = 17 "
  - نتيجة الاقتراح المنطقي تكون صح true في حالة واحدة, ما هي؟
    - باذا قيمة الفرضية hypothesis للعبارة p o q تكون خطأ p o q

- الشرط المزدوج Biconditional statement
  - تعریف: لتکن p و p اقتراحین two propositions.
    - عبارة الشرط المزدوج  $p \leftrightarrow q$ , هي الاقتراح
    - " تتحق p إذا وفقط إذا تتحق p"
      - "p if and only if q" •
- العبارة الشرطية المزدوجة (bi-implication دلالة مزدوجة) تكون
  - صح true عندما تكون p و p لديهما نفس قيمة الصدق truth values
    - و تكون العبار خطأ false عدا ذلك

#### Biconditional (if and only if) الشرط المزدوج bi-implication الدلالة الموزدوجة

Binary Operator, Symbol: ↔

| P | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| T | T | T                     |
| Т | F | F                     |
| F | Т | F                     |
| F | F | Т                     |

#### تكافؤ العبارة الشرطية المزدوجة

• العبارة  $p \leftrightarrow q$  تكون صحيحة عندما:

العبارة  $p \to q$  صحيحة , والعبارة  $q \to p$  صحية أيضاً وتكون خاطئة غير ذلك

| þ | q | $p \rightarrow q$ | $q \rightarrow p$ | $(p \rightarrow q) \wedge (p \rightarrow p)$ |
|---|---|-------------------|-------------------|----------------------------------------------|
| Т | T | ٢                 | T                 | Т                                            |
| Т | F | F                 | Т                 | F                                            |
| F | Т | Т                 | F                 | F                                            |
| F | F | Т                 | Т                 | Т                                            |

- لهذا السبب نستخدم الجملة " إذا وإذا فقط if and only if
  - $ein(y) \leftarrow ein(y)$

#### تكافؤ العبارة الشرطية المزدوجة

- العبارة  $p \leftrightarrow q$  يمكن وصفها:
- " تحقق p ضروري لتحقق p " والعكس صحيح
- "p is necessary for q"
  - " تحقق p كاف لتحقق p " والعكس صحيح
- "p is suffeicient for q"
  - " إذا تحققت p إذاً تحققت p " و بالعكس
- "if *p*, then *q*"
  - وتختصر إلى " p iff q " بدلاً من " if and only if "

#### مثال: العبارة الشرطية المزدوجة

- لتكن p : العبارة " يمكنك السفر على الرحلة الجوية "
  - و تكن q : العبارة " عليك شراء تذكرة السفر "
    - $p \leftrightarrow q$  فتكون العبارة  $p \leftrightarrow q$ :
- " يمكنك السفر على الرحلة الجوية إذا وفقط إذا اشتريت تذكرة السفر"
  - هذه العبارة صحيحة إذا p و p كلاهما صح أو كلاهما خطأ
  - و هذه العبارة خاطئة إذا p و p لديهما قيمتين متناقظتين

# لغة المنطق الرياضي مقابل المنطق الطبيعي

- $: p \longleftrightarrow q$  العبارة •
- " يمكنك السفر على الرحلة الجوية إذا وفقط إذا اشتريت تذكرة السفر"
- في الوقع الطبيعي: يمكنك أن تحصل على تذكرة مجانية, فتسافر على الرحلة!
  - أو قد تشتري التذكرة وتفوتك الرحلة أو تنمع من السفر!

- معنى الشرط المزدوج غالباً لايكون ظاهراً explicit في اللغة الطبيعية
  - نحن نتكلم عن لغة منطق رياضي

#### لغة المنطق الرياضي مقابل المنطق الطبيعي

- مثلاً, العبارة باللغة العربية
- " إذا أنهيت غذاءك, عندها يمكنك تناول الفاكهة "
- المعنى المقصود هو " يمكنك تناول الفاكه إذا وفقط إذا أنهيت غذاءك "
  - كما يمكن أن تكتب " يمكنك تناول الفاكه فقط إذا أنهيت غذاءك "
    - منطقیاً هذه الجمل متکافئة,
    - $p \rightarrow q$  مع أن الأولى لها شكل
      - $p \longleftrightarrow q$  والثانية لها شكل
        - $p \leftarrow q$  والثالثة لها شكل

#### لغة المنطق الرياضي مقابل المنطق الطبيعي

- بسبب عدم الدقة في تعبيرات اللغة الطبيعية ووجود معان ضمنية في العبارات,
- ولأنه في الرياضيات والمنطق دائماً نحتاج لدقة precision وتحديد المعنى:
  - يجب التمييز بين عبارة الشرط < والشرط المزدوج

# نهاية المحاضرة, موضوعنا التالي:

المنطق Logic

... يتبع