Faculdade São Paulo Tech School Análise e Desenvolvimento de Sistemas

Sistema de Monitoramento de Gás em Postos GNV

São Paulo 2025

Faculdade São Paulo Tech School Análise e Desenvolvimento de Sistemas

Felipe Barbosa do Patrocínio - 01252103

Giovanni Angel Alipaz Chambi - 01252135

João Henrique Sapia - 01252084

Kayke Rodrigues da Silva - 01252104

Leonardo Tomas Feitosa da Silva - 01252013

Luana Tejon Aranega - 01252085

Wagner Reis Silva Bronstein - 01252090

Sistema de Monitoramento de Gás em Postos GNV

Trabalho desenvolvido para a disciplina de Tecnologia da Informação do curso de Análise e Desenvolvimento de Sistemas da Faculdade São Paulo Tech School

Orientador: Marcos

São Paulo 2025

Sumário

1. CONTEXTUALIZAÇÃO	4
1.1 O que é GNV?	4
1.2 Mercado de GNV no Brasil	5
1.3 Qual é o preço do GNV?	5
1.4 Riscos e acidentes durante o abastecimento de GNV	6
1.5 Sensor de Gás Inflamável MQ-2	8
2. OBJETIVO	9
3. JUSTIFICATIVA	9
4. ESCOPO	10
4.1 Descrição resumida do projeto	10
4.2 Resultado esperado	10
4.3 Requisitos do projeto	10
4.4 Limites e exclusões	10
4.5 Macro cronograma	11
4.6 Recursos necessários	11
4.7 Riscos	12
4.8 Restrições	12
4.9 Partes interessadas	12
5. PREMISSAS	13
6. RESTRIÇÕES	13
7. BACKLOG DO PROJETO	14
8 REFERÊNCIAS BIBLIOGRÁFICAS	15

1. Contextualização

1.1 O que é GNV?

O Gás Natural Veicular (GNV) é um combustível composto principalmente por metano (CH), derivado do gás natural ou de biometano, usado em veículos automotores. Armazenado sob alta pressão (até cerca de 200 bar) e é indicado como uma alternativa mais limpa e econômica comparada à gasolina e ao etanol. Além disso, o GNV pode ser reconhecido como GNC (Gás Natural Comprimido) ou GNL (Gás Natural Liquefeito), este último é resfriado até -160 °C para reduzir o volume.

O GNV se divide em 5 "gerações" na qual sua tecnologia foi evoluindo ao longo do tempo. A primeira geração era para carros com carburador, funcionando com ajuste manual de mistura ar/gás. Depois veio a segunda, feita para veículos com injeção eletrônica monoponto, trazendo um controle eletrônico básico. A terceira foi uma evolução da anterior, utilizando dois atuadores para equilibrar melhor a mistura entre ar e gás. Já na quarta passou a contar com injeção contínua, controlada por uma central eletrônica. Por último, a quinta geração trouxe a injeção sequencial por bicos, com central avançada, que oferece um desempenho muito mais próximo da gasolina.

Figura 1 - Explicando o GNV

Fonte: AutoPapo

1.2 Mercado de GNV no Brasil

De acordo com a ABEGÁS, o Brasil tem a quarta maior frota mundial de veículos leves movidos a GNV, de cerca de 2,5 milhões. O combustível teve consumo médio mensal de 6,26 milhões de m³ /dia no ano passado, crescimento de 5,5% sobre os 5,93 milhões do ano anterior. Somente o Sudeste totalizou 4,2 milhões de m³ /dia de GNV. Em seguida, Nordeste com 1,4 milhão de m³ /dia; Sul com 578 mil m³ /dia; Norte com 27 mil m³ /dia; e Centro-Oeste com 18 mil m³ /dia.

Segundo a ABEGÁS, no Brasil, existem cerca de 1,7 mil postos com GNV, especialmente concentrados na faixa litorânea. O mercado de postos para veículos pesados (alta vazão) cresceu 202% entre 2023 e 2025, passando de 40 para 121 unidades.

Fonte: Elaborado pelo autor.

1.3 Qual é o preço do GNV?

O preço do GNV é definido em metros cúbicos (m³) e varia conforme o estado. O valor que os postos pagam às distribuidoras no Brasil está, entre média R\$3,00 a R\$3,20 por m³, mas existem grandes diferenças entre os estados, de R\$1,45 (MT) até R\$4,10 por m³ (MG). Já para o consumidor final, varia entre R\$4,00/ m³ até R\$6,00/ m³, dependendo do estado e o período.

Além disso, para os veículos que ainda não têm o sistema GNV, é necessário instalar um cilindro específico e o kit dele, na qual envolve custos de mão de obra especializada. O custo médio da instalação de um kit de 1ª geração costuma ser mais baixo (kit simples, ajuste manual), enquanto um kit da 5ª geração, com injeção sequencial eletrônica, mais moderno é mais caro. Estipulase que a instalação de kits de 2ª e 3ª geração (veículos mais antigos) fica entre R\$ 1.800 e R\$ 2.800, enquanto um kit de 5ª geração, incluindo a instalação, costuma custar entre R\$ 4.500 e R\$ 5.000, podendo chegar um pouco acima, dependendo do veículo e da oficina.

Figura 2 - ANP/Base dos Dados/IBGE

1.4 Riscos e acidentes durante o abastecimento de GNV

O abastecimento de veículos com GNV envolve altas pressões, podendo chegar a 220 kgf/cm² (~220 bar), conforme o limite estabelecido pela ANP. Quando essa norma não é respeitada, os riscos aumentam, já que pressões acima do permitido podem provocar falhas nos bicos de abastecimento, válvulas e até rupturas nos cilindros, ocasionando em vazamentos e até explosões. Além disso, o uso de componentes inadequados ou não homologados pelo INMETRO agrava a probabilidade de vazamentos e acidentes.

Figura 3 - Um "dispenser" onde abastece os carros com GNV

Fonte: GASNET

Outro ponto crítico é a manutenção preventiva, pois somente sistemas revisados regularmente em oficinas credenciadas garantem segurança no abastecimento. A ausência de inspeções e manutenções dos cilindros a cada cinco anos torna o conjunto vulnerável a falhas estruturais e vazamentos. Dados do Sindirepa-RJ mostram que, em 2025, mais de 60% da frota de veículos com GNV no Rio de Janeiro circulava de forma irregular. Semelhantemente, segundo o Sindicato das Empresas de Inspeção Veicular (SIVESP), em São Paulo, cerca de 78% dos carros a GNV estavam em desacordo com as normas.

De acordo com dados da ANP, um dos maiores causadores de acidentes (cerca de 96%) no abastecimento é a utilização de cilindros e componentes irregulares, muitas vezes instalados de forma clandestina. Esses materiais comprometem a integridade do sistema e podem levar a rupturas e explosões.

Alguns casos graves reforçaram esses riscos:

Em 2022, na cidade de Maracanaú, no Nordeste, um veículo estava sendo abastecido com Gás Natural Veicular (GNV), quando acabou explodindo, destruindo uma boa parte da estrutura do posto. Um funcionário e o dono do

veículo estavam por perto, mas saíram sem ferimentos. Segundo o corpo de bombeiros, o cilindro do gás foi parar a uma distância de 60 metros.

Em maio de 2025, um veículo explodiu durante o abastecimento de GNV em Nova Iguaçu (RJ), destruindo parte do posto. O local ficou destruído, mas ninguém se feriu.

Também maio de 2025, houve outra explosão de um cilindro de GNV, no posto Cruz Vermelha, Centro do Rio de Janeiro. O frentista Paulo Barbosa dos Santos, de 60 anos, não resistiu aos ferimentos e morreu dois dias depois. O motorista Guaraci Ferreira Costa faleceu no mesmo dia.

Figura 4 - Explosões em postos demonstram riscos com o GNV

Fonte: FENEPOSPETRO

De acordo com a WATT, um posto de pequeno porte em área urbana, com vendas médias de 300 mil litros por mês, pode faturar cerca de R\$ 1,8 milhão. No entanto, a lucratividade na venda de combustíveis é relativamente baixa, segundo Hamad Bolfaine, varia entre 2% e 5% por litro vendido. O que realmente torna os postos rentáveis são os serviços adicionais oferecidos na sua estrutura, como loja de conveniência, trocas de óleo, lava-rápido etc. Assim, quando um posto precisa interromper temporariamente suas atividades para reparar danos causados por um acidente, não apenas a venda de combustíveis é afetada, mas toda a sua operação, afetando gravemente o seu faturamento

Fonte: WebPosto

1.5 Sensor de Gás Inflamável MQ-2

O sensor MQ-2 é um dispositivo eletrônico que serve para detectar gases inflamáveis (como GLP, metano, propano, butano, hidrogênio e álcool) e fumaça, sendo muito utilizado em sistemas de segurança e com Arduino. Ele emprega um elemento de aquecimento interno, fazendo aumentar a temperatura do material semicondutor (geralmente dióxido de estanho). Esse material é sensível a gases inflamáveis, e, quando exposta a eles, modifica sua resistência elétrica. O módulo inclui uma saída analógica para medir a concentração com precisão e uma saída digital que é ativada quando a concentração excede um limite definido pelo utilizador através de um pequeno potenciômetro.

Figura 6 - Sensor de gás inflamável MQ-2

Fonte: RoboCore

2. OBJETIVO

Monitorar e alertar vazamentos de gás em postos de combustível com GNV, garantindo maior segurança para os funcionários, clientes e a própria estrutura do posto. O projeto utilizará sensores de gases inflamáveis que possuem alta precisão e registrarão rapidamente em um sistema a porcentagem de gás no ar, reduzindo o risco de

acidentes graves, como incêndios e explosões.

3. JUSTIFICATIVA

A ANP aponta que 96% dos acidentes com GNV são por causa de irregularidades, como vazamentos nos cilindros e componentes, e que mais de 78% dos veículos com GNV estão irregulares, expondo o posto a riscos graves de acidente sem um sistema de

monitoramento adequado. O sensor detecta vazamentos em tempo real, evitando prejuízos financeiros com a destruição da estrutura que pode chegar a mais de R\$1 milhão, a compra de novos dispensers, que custa em média R\$4500,00, além da perda de matéria-prima (GNV). Um posto de pequeno porte fatura diariamente cerca de R\$ 60 mil, um acidente pode paralisar as operações por vários dias.

4. ESCOPO

4.1 Descrição resumida do projeto

Criar um sistema de monitoramento de gás inflamável por meio de um sensor MQ-2, focado em postos de combustíveis com GNV, para mitigar os riscos de acidentes fatais, como incêndios e explosões, que envolvam vazamento de gás. Protegendo, assim, os funcionários, clientes e a estrutura do local.

4.2 Resultado esperado

Reforçar a segurança do local, registrando a cada 1 segundo a porcentagem de gás no ar, enviando os registros para um banco de dados, passando as informações para a dashboard e alertando ao usuário o nível de perigo.

4.3 Requisitos do projeto

- Instalação do sistema de monitoramento: Ligar o sensor de gás MQ-2 ao Arduino, para registrar a porcentagem de gás no ar.
- Armazenamento dos registros: Inserir e armazenar os registros do sensor em um banco de dados.
- Implementação de um site institucional: Na página inicial do site, conter as informações da empresa, com opções de cadastro e login do usuário no menu
- Criação da dashboard: Desenvolver uma dashboard para o usuário, contendo a porcentagem de gás no ar e gráficos com a média da porcentagem do dia.
- Emissão de alertas: Informar a gravidade do vazamento (baixa, média e grave) de acordo com a porcentagem registrada e emitir alertas
- Voltagem: Fonte de alimentação de 110 ou 220 volts

4.4 Limites e exclusões

Incluído no projeto:

Sistema de monitoramento de gás utilizando o sensor MQ-2, registro dos dados de cada sensor no banco de dados, site institucional da empresa, sistema de cadastro e login do usuário e dashboard com gráficos da média de porcentagem diária, a porcentagem atual e que emite alertas de acordo com a porcentagem de gás no ar.

• Excluído do projeto:

- ✓ Instalação do sistema em postos de combustível sem GNV;
- ✓ Cálculo da quantidade de combustível que vazou do carro;
- ✓ Funções que não sejam a coleta de dados pelo sensor, informações e alertas na dashboard;
- ✓ Registro de outros sensores, como de temperatura e ultrassônico.

4.5. Macro Cronograma

Etapa	Duração estimada
Levantamento de requisitos	20 dias
Elaboração da documentação	10 dias
Desenvolvimento	40 dias
Testes e implantação	20 dias

4.6 Recursos Necessários

Recurso	Quantidade	Carga horária estimada
Sensor MQ-2	1 ou mais	-
Arduino	1 ou mais	-
Jumpers	3 ou mais	-
Fonte de energia	1 ou mais	-
Gestor de Projeto	1	480
Analista de Sistemas	2	480
Analista de Negócios	1	480
Analista de Dados	1	480
Analista de TI	1	480
Ferramenta de Gestão (Trello)	-	Acesso contínuo
Computador	7	-

4.7 Riscos

- A danificação ou falta de recursos necessários pode gerar atrasos no progresso do projeto;
- Possíveis falhas técnicas no sensor ou no sistema de monitoramento podem comprometer a eficiência total da solução;
- Resistência dos funcionários ou gerentes do posto em aprender a utilizar a nova tecnologia pode afetar a implementação;
- A falta de acesso à energia elétrica.

4.8 Restrições

- O projeto será restrito somente à monitoração de gás natural veicular (GNV).
- O sistema será vendido somente para postos que forneçam combustível GNV.
- A implantação do sistema ocorrerá somente após a realização de testes.
- O prazo para a entrega do projeto é 19 dez. 2025.

4.9 Partes interessadas:

Parte Interessada	Papel no Projeto	Responsabilidade Principal
Gestor de Projeto	Liderança	Planejamento, acompanhamento e entregas
Analista de sistemas	Execução técnica	Desenvolvimento, testes e implantação
Analista de negócios	Interface com áreas envolvidas	Levantamento de requisitos e validações
Cliente	Demandante	Aprovação e validação das entregas
Analista de TI	Suporte técnico e infraestrutura	Monitoração do funcionamento do sistema

5. PREMISSAS

- ✓ O sensor estar revestido em uma case de material isolante a eletricidade e gás;
- ✓ O sensor ser conectado à uma rede Wi-Fi de pelo menos 10 megabytes;
- ✓ O sensor estar ligado em uma fonte de energia de no mínimo 5V;
- ✓ O posto vender combustível GNV;
- ✓ A instalação do sensor no dispenser (bomba de GNV) para melhor captação de vazamento de GNV pelo sensor;
- ✓ Treinamento da equipe para interpretar a emissão dos alertas;
- ✓ Manutenção e verificação periódica do sensor;
- ✓ O posto ter um dispositivo digital (computador ou celular) com acesso à internet para acessar o site que exibirá a porcentagem de gás no ar e emitirá alertas.

6. RESTRIÇÕES

- ✓ O projeto será restrito somente à monitoração de gás natural veicular (GNV);
- ✓ O sistema será vendido somente para postos que forneçam combustível GNV.
- ✓ A implantação do sistema ocorrerá somente após a realização de testes;
- ✓ O prazo para a entrega do projeto é 19 dez. 2025.

7. BACKLOG DO PROJETO

- Delegar as Responsabilidades de cada integrante;
- Definir as perguntas do Escopo;
- Levantar os requisitos;
- Elaborar a documentação do projeto;
- Criar a identidade Visual da Empresa;
- Montar um diagrama de Visão de Negócios;
- Definir a missão, visão e valores da empresa;
- Criar uma organização da empresa no GitHub;
- Criar um grupo no Trello para organizar as tarefas;
- Criar as tabelas do projeto no Banco de Dados MySQL;
- Montar os slides da apresentação do projeto;
- Desenvolver uma calculadora financeira;
- Desenvolver o Código do sensor MQ-2 na IDE do Arduino;
- Testar o funcionamento do sensor;
- Criar um protótipo do site institucional;
- Armazenar os registros do sensor no Banco de Dados;
- Implementar o site institucional;
- Desenvolver a opção de cadastro e login de usuário;
- Desenvolver a dashboard que o usuário terá acesso;
- Emitir um alerta na dashboard em caso de porcentagem perigosa.

8. REFERÊNCIAS BIBLIOGRÁFICAS

NEPIN. Sensores de detecção de gás: o que fazem e qual a sua importância. Nepin, 14 jan. 2024. Disponível em: www.nepin.com.br/blog/solucoes-industriais/sensores-de-deteccao-de-gas/. Acesso em: 19 ago. 2025.

SEMAPI. Por que adotar a detecção de vazamento de gases: veja as vantagens. Semapi, [s.d.]. Disponível em: https://semapi.com.br/por-que-adotar-a-deteccao-de-vazamento-de-gases-veja-as-vantagens/. Acesso em: 19 ago. 2025.

INDUSTRIAL SCIENTIFIC. Detecção de gás em tempo real: elevando a segurança com soluções de monitoramento ao vivo. Industrial Scientific, [7 meses atrás]. Disponível em:

www.indsci.com/pt/blog/detec%C3%A7%C3%A3o-de-g%C3%A1s-em-tempo-real-elevando-a-seguran%C3%A7a-com-solu%C3%A7%C3%B5es-demonitoramento-ao-vivo. Acesso em: 19 ago. 2025.

ROBOCORE. Sensor de gás inflamável e fumaça MQ-2. Robocore, [s.d.]. Disponível em: www.robocore.net/sensor-gas/sensor-de-gas-inflamavel-e-fumaca-mq-2. Acesso em 19 ago. 2025.

Canal High Torque. Vale a pena converter um motor para GNV? YouTube, 2025. Disponível em: https://youtu.be/2Ms0eY2AOul?si=YjRrBxcuY82PmP8X. Acesso em: 19 ago. 2025.

FELDMAN, Boris. GNV foi tendência promissora, mas não vale mais a pena. AutoPapo, 21 out. 2022. Disponível em: https://autopapo.com.br/blog-do-boris/gnv-foi-moda/. Acesso em: 20 ago. 2025.

NAKATA AUTOMOTIVA. Em tempos de gasolina cara, vale a pena converter para GNV? Nakata Blog, 1 jun. 2022. Disponível em: https://blog.nakata.com.br/vale-a-pena-converter-para-gnv/. Acesso em: 22 ago. 2025.

ELETROGATE. Sensor de gás MQ-2 inflamável e fumaça. Eletrogate, [s.d.]. Disponível em: www.eletrogate.com/sensor-de-gas-mq-2-inflamavel-e-fumaca. Acesso em: 22 ago. 2025.

ICCT. How upstream methane leakage further weakens the argument for natural gas trucks. ICCT, jan. 2025. Disponível em: https://theicct.org/how-upstream-methane-leakage-further-weakens-the-argument-for-natural-gas-trucks-jan25/. Acesso em: 22 ago. 2025.

USINAINFOS. Sensor de gás Arduino MQ-2 para gases inflamáveis e fumaça. Usina Info, [s.d.]. Disponível em: www.usinainfo.com.br/blog/sensor-de-gas-arduino-mq-2-para-gases-inflamaveis-e-fumaca. Acesso em: 23 ago. 2025.

HWLIBRE. Guia completo do sensor MQ-2 para Arduino: operação e aplicações. HWLibre, [s.d.]. Disponível em: https://pt.hwlibre.com/Guia-completo-do-sensor-MQ-2-para-Arduino%3A-opera%C3%A7%C3%A3o-e-aplica%C3%A7%C3%B5es/. Acesso em: 25 ago. 2025.

BRASIL POSTOS. Quanto custa construir um posto de combustível? Veja os preços em média aqui abaixo. Brasil Postos, [s.d.]. Disponível em: www.brasilpostos.com.br/noticias/proprietario-do-posto/quanto-custa-construir-um-posto-de-gasolina-precos/. Acesso em: 26 ago. 2025.

REDAÇÃO NSC. Lei que condiciona abastecimento do Gás Natural Veicular à apresentação de documento gera polêmica em Blumenau. NSC Total, 8 set. 2015. Disponível em: www.nsctotal.com.br/noticias/lei-que-condiciona-abastecimento-do-gas-natural-veicular-a-apresentacao-de-documento-gera. Acesso em: 29 ago. 2025.

SANTANA, Nicole. Explosões de carros GNV: de quem é a "culpa"? Garagem360, 15 ago. 2022. Disponível em: https://garagem360.com.br/explosoes-de-carros-gnv-de-quem-e-a-culpa/. Acesso em: 29 ago. 2025.

WATTBRAS. Qual o lucro de um posto de gasolina? WattBras, [s.d.]. Disponível em: https://wattbras.com.br/blog/qual-o-lucro-de-um-posto-de-gasolina/. Acesso em: 29 ago. 2025.

WEBPOSTO. 5 coisas que você precisa saber antes de abrir um posto de combustível. WebPosto, [s.d.]. Disponível em: https://webposto.com.br/blog/dicas/5-coisas-que-voce-precisa-saber-antes-de-abrir-um-posto-de-combustivel/. Acesso em: 2 set. 2025.

OI. Como escolher a velocidade da internet. Oi, [s.d.]. Disponível em: https://oi.com.br/especiais/como-escolher-a-velocidade-da-internet/. Acesso em: 2 set. 2025.

TRIBUTEBEM. Posto de gasolina dá lucro? Entenda os fatos antes de investir. Tributebem, [s.d.]. Disponível em: https://tributebem.com/blog/posto-degasolina-da-lucro-entenda-os-fatos-antes-de-investir. Acesso em: 2 set. 2025.