Реализация эффективного взаимодействия между платформой для анализа экспрессии генов Morpheus и библиотекой вычислительных методов R/Bioconductor

Зенкова Д.М., группа М3436,

руководитель: Сергушичев А.А., к.т.н.

#### Анализ экспрессии генов

- Экспрессия генов процесс преобразования наследственной информации от гена в РНК или белок
- Анализ экспрессии часто используемый метод при исследованиях в биологии



|    | Α    | В        | С           | D           | E           | F           | G           | Н          | 1           | J          | K           | L           | М           | N           |
|----|------|----------|-------------|-------------|-------------|-------------|-------------|------------|-------------|------------|-------------|-------------|-------------|-------------|
| 1  | ID   | symbol   | GSM357839   | GSM357841   | GSM357842   | GSM357843   | GSM357844   | GSM357845  | GSM357847   | GSM357848  | GSM357849   | GSM357850   | GSM357852   | GSM357853   |
| 2  | 2009 | Rps29    | 16.32141057 | 16.30051518 | 16.25429304 | 16.32141057 | 16.30051518 | 16.3214106 | 16.2104266  | 16.3214106 | 16.23220169 | 16.25429304 | 16.30051518 | 16.25429304 |
| 3  | 2212 | 1 Rpl13a | 16.27241391 | 16.23220169 | 16.32141057 | 16.30051518 | 16.27241391 | 16.2724139 | 16.30051518 | 16.3005152 | 16.32141057 | 16.2104266  | 16.25429304 | 16.2104266  |
| 4  | 2009 | 1 Rps3a1 | 16.23220169 | 16.18528469 | 16.30051518 | 16.25429304 | 16.25429304 | 16.3005152 | 16.32141057 | 16.1622511 | 16.25429304 | 16.23220169 | 16.32141057 | 16.27241391 |
| 5  | 6767 | 1 Rpl38  | 16.2104266  | 16.25429304 | 16.27241391 | 16.27241391 | 16.2104266  | 16.254293  | 16.16225112 | 16.1359833 | 16.2104266  | 16.27241391 | 16.23220169 | 16.32141057 |
| 6  | 1924 | 1 Tmsb4x | 16.30051518 | 16.32141057 | 16.23220169 | 16.2104266  | 16.32141057 | 16.1852847 | 16.25429304 | 16.2724139 | 16.10255505 | 16.06215078 | 16.27241391 | 16.23220169 |
| 7  | 6718 | 6 Rplp2  | 16.16225112 | 16.2104266  | 16.18528469 | 16.23220169 | 16.13598328 | 16.1359833 | 16.18528469 | 16.254293  | 16.30051518 | 16.32141057 | 16.2104266  | 16.30051518 |
| 8  | 6709 | 7 Rps10  | 16.10255505 | 16.12314465 | 16.05120582 | 16.12314465 | 16.12314465 | 16.1231446 | 16.03531296 | 16.0621508 | 16.03531296 | 16.08954522 | 16.08954522 | 16.08954522 |
| 9  | 2008 | 4 Rps18  | 16.18528469 | 16.16225112 | 16.2104266  | 16.16225112 | 16.23220169 | 16.1622511 | 15.9457813  | 16.035313  | 16.08954522 | 16.16225112 | 16.12314465 | 16.16225112 |
| 10 | 5412 | 7 Rps28  | 16.06215078 | 15.98154012 | 15.95751874 | 16.10255505 | 16.03531296 | 16.0714312 | 16.12314465 | 16.2104266 | 16.0103654  | 15.9457813  | 16.05120582 | 15.99551072 |
| 11 | 2008 | Rps24    | 15.98154012 | 15.96795367 | 15.99551072 | 15.98154012 | 16.07143124 | 16.102555  | 16.10255505 | 16.0895452 | 15.85007321 | 15.85007321 | 16.18528469 | 16.10255505 |
| 12 | 1998 | 1 Rpl37a | 16.03531296 | 16.06215078 | 15.91137633 | 16.06215078 | 15.96795367 | 16.0512058 | 16.08954522 | 16.0714312 | 15.99551072 | 16.05120582 | 16.13598328 | 16.06215078 |
| 13 | 1183 | 7 Rplp0  | 15.9457813  | 16.07143124 | 16.13598328 | 16.07143124 | 15.93889341 | 16.0621508 | 16.23220169 | 16.2322017 | 16.18528469 | 16.18528469 | 16.16225112 | 16.13598328 |
| 14 | 1362 | 7 Eef1a1 | 15.96795367 | 15.9457813  | 16.03531296 | 16.0103654  | 16.0103654  | 15.9815401 | 16.13598328 | 16.1231446 | 16.06215078 | 16.03531296 | 16.03531296 | 16.12314465 |
| 15 | 1678 | Rpsa     | 16.08954522 | 16.10255505 | 16.06215078 | 16.18528469 | 16.08954522 | 16.2322017 | 16.02104671 | 15.9955107 | 16.27241391 | 16.30051518 | 16.07143124 | 16.02104671 |
| 16 | 2011 | 5 Rps7   | 16.13598328 | 16.13598328 | 16.12314465 | 16.13598328 | 16.16225112 | 16.2104266 | 15.7690479  | 15.9113763 | 15.54340319 | 15.66058358 | 15.93160941 | 15.85599438 |
| 17 | 2010 | 2 Rps4x  | 15.99551072 | 16.02104671 | 15.96795367 | 15.96795367 | 16.05120582 | 16.035313  | 15.91137633 | 15.9815401 | 15.88458581 | 15.88458581 | 15.96795367 | 15.87372876 |
| 18 | 6789 | 1 Rpl4   | 16.05120582 | 16.0103654  | 16.08954522 | 16.05120582 | 16.10255505 | 16.0210467 | 15.96795367 | 15.9181346 | 16.13598328 | 16.07143124 | 16.10255505 | 15.98154012 |

#### morpheus.js

- Веб-приложение, созданное для визуализации и анализа числовых матриц
- Не требует информатической подготовки
- Имеет реализацию некоторых функций, но их недостаточно для полноценного анализа



#### R/Bioconductor

- R язык программирования для статистической обработки данных
- Bioconductor хранилище готовых реализаций биоинформатических алгоритмов и методов обработки биологических данных
- Для использования Bioconductor необходимо знание R

#### Цель работы

Разработать веб-приложение, интегрирующее возможности визуального анализа morpheus.js и методы анализа библиотек Bioconductor

#### Задачи

- Разработать способ взаимодействия между јзклиентом и R (и встроить его в morpheus.js)
- Реализовать интерфейс для нескольких стандартных методов анализа
- Соединить все в одном веб-приложении phantasus

## Взаимодействие через OpenCPU API

- Система для интеграции R через HTTP API
- Имеет библиотеку opencpu.js для работы из JavaScript, реализованную с помощью Ajax

 Для каждого вызова OpenCPU создает новую временную сессию, ключ которой в дальнейшем можно использовать для новых вызовов

#### Схема взаимодействия



#### Реализованные функции в phantasus

Необходимый минимум для исследования:

- loadGEO загрузка и визуализация данных по идентификатору в репозитории Gene Expression Omnibus (GEO)
- pcaPlot реализация метода главных компонент и визуализация результата в виде интерактивного графика с помощью Plotly.js
- **kmeans** кластеризация генов

#### Дополнительные функции:

• **limma** - анализ дифференциальной экспрессии для сравнения образцов

# Схема начала работы с данными



# Добавление нового функционала



## Различия между phantasus.js и morpheus.js

- Добавлена поддержка ProtoBuf со стороны клиента
- Графические интерфейсы для функций pcaPlot, kmeans, limma
- Код для поддержки актуального ключа сессии с ExpressionSet

#### Запуск приложения

- Два варианта запуска и использования Webприложения:
  - 1. Запустить R-пакет phantasus через R непосредственно
  - 2. Загрузить Docker-образ и запустить от него Docker-контейнер
- Приложение работает в режиме single-user
- Для запуска параллельных сессий используется balancer в apache2

#### Внедрение

- Веб-приложение используется в лабораториях:
  - Максима Артемова в Washington University in St. Louis
  - Laurent Yvan-Charvet в Université Nice Sophia Antipolis
- Демонстрация приложения входит в программу семинара по системной биологии:
  - Сидней, Австралия, 10-13 апреля 2017 г.
    (<u>https://register.gimr.garvan.org.au/systemsbiology/</u>)
  - Санкт-Петербург, 14-19 мая 2017 г.
    (<a href="http://bioinformaticsinstitute.ru/sbw2017">http://bioinformaticsinstitute.ru/sbw2017</a>)

## Доступность

https://artyomovlab.wustl.edu/phantasus

- Код доступен на github под MIT
  - https://github.com/ctlab/phantasus R-пакет
  - https://github.com/ctlab/phantasus.js js-клиент
- Docker-ofpas
  - https://hub.docker.com/r/dzenkova/phantasus

#### Результаты

- Применен способ взаимодействия между јѕ-клиентом и R через OpenCPU
- Реализован интерфейс для функций: pcaPlot, kmeans, limma
- Добавлена возможность загружать данные из GEO
- Все компоненты соединены в приложении phantasus
- Приложение было внедрено в лаборатории, а также представлено на семинаре по системной биологии

Реализация эффективного взаимодействия между платформой для анализа экспрессии генов Morpheus и библиотекой вычислительных методов R/Bioconductor

Зенкова Д.М., группа М3436,

руководитель: Сергушичев А.А., к.т.н.

#### Дальнейшая деятельность по проекту

- Добавить автоматическое тестирование для JavaScript-кода и R-кода проекта phantasus
- Подробно документировать весь исходный код
- Подготовить проект к добавлению в Bioconductor и подать заявку
- Внедрить Google Analytics для сбора статистики об использовании веб-приложения

# Визуализация метода главных компонент: pcaPlot



## Кластеризация генов: kmeans

#### Ключ сессии с ES Количество кластеров



#### Рендер аннотации





Анализ дифференциальной экспрессии:



#### Gene Expression Omnibus

Series GSE14308 Query DataSets for GSE14308 Status Public on Ian 08, 2009 Title Epigenetic Mechanisms Underlie T Cell Plasticity Mus musculus Organism Experiment type Expression profiling by array Summary Multipotential naïve CD4+ T cells differentiate into distinct lineages including T helper 1 (Th1), Th2, Th17, and inducible T regulatory (iTreg) cells. The remarkable diversity of CD4+ T cells begs the question whether the observed changes reflect terminal differentiation with heritable epigenetic modifications or plasticity in T cell responses. We generated genome-wide histone H3 lysine 4 (H3K4) and lysine 27 (H3K27) trimethylation maps in naïve, Th1, Th2, Th17, iTreg, and natural (n)Treg cells. We found that although modifications of signature cytokine genes (Ifng, II4, and II17) partially conform to the expectation of lineage commitment, critical transcription factors such as Tbx21 exhibit a broad spectrum of epigenetic states, consistent with our Samples (12) demonstration of T-bet and IFN-gamma induction in nTreg cells. Our data ■ Less... suggest an epigenetic mechanism underlying the specificity and plasticity of effector and regulatory T cells and also provide a framework for understanding complexity of CD4+ T helper cell differentiation. Overall design Different T helper subsets are profiled for mRNA expression. Contributor(s) Wei L, Wei G, Zhu J, Hu-Li J, O'Shea JJ, Zhao K Wei G, Wei L, Zhu J, Zang C et al. Global mapping of H3K4me3 and H3K27me3 Citation(s) reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009 Jan 16;30(1):155-67. PMID: 19144320 Submission date Jan 06, 2009 Last update date Apr 17, 2017 Contact name Lai Wei E-mail weil2@mail.nih.gov Phone 3014961480 Organization name NIH/NEI/NCCAM Street address 10 Center Dr. Room 2B47 City Bethesda State/province MD ZIP/Postal code 20892 USA Country Platforms (1) GPL1261 [Mouse430 2] Affymetrix Mouse Genome 430 2.0 Array Samples (12) GSM357839 Th2-1 # More... GSM357841 Th2-2 GSM357842 Th1-2

https://www.ncbi.nlm.nih.gov/geo

GSM357839 Th2-1

GSM357841 Th2-2

GSM357842 Th1-2

GSM357843 Th17-1

GSM357844 Th1-1

GSM357845 Th17-2

GSM357847 Naive-1

GSM357848 Naive-2

GSM357849 iTreg-1

GSM357850 iTreg-2

GSM357852 nTreg-1

GSM357853 nTreq-2

#### Получение данных из GEO: loadGEO



GSE14308 ×

File Edit View Tools Help

Rows Columns ▼

showing 45,101/45,101 rows, 12/12