

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160503402

FCC REPORT

(BLE)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6 inches Android non-touch LCD Media Player

Model No.: DT156-AS4-1080, 502-1596ATM

FCC ID: 2AB6ZDT156-AS4-1080

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 14 Jun., 2016

Date of report issued: 16 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jun., 2016	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Tested by: 16 Jun., 2016

Test Engineer

Reviewed by: Date: 16 Jun., 2016

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3		TENTS	
4		Γ SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT ANDMODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TEST	FRESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED PEAK OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	16
	6.6.1	Conducted Emission Method	16
	6.6.2	Radiated Emission Method	
	6.7	Spurious Emission	22
	6.7.1	Conducted Emission Method	22
	6.7.2	Radiated Emission Method	23
7	TEST	SETUP PHOTO	28
8	FUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.
Test according to ANSI C63.4:2014 and ANSI C63.10:2013

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

	-
Product Name:	15.6 inches Android non-touch LCD Media Player
Model No.:	DT156-AS4-1080, 502-1596ATM
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.0 dBi
AC Adapter:	Model: PS24A120K2000UD Input: AC100-240V 50/60Hz 1.0A Output: DC 12.0V, 2000mA
Remark:	Model No.: DT156-AS4-1080, 502-1596ATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

Project No.:CCISE1605034

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE160503402

5.3 Test environment andmode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure: 1010 mbar					
Test mode:					
Operation mode Keep the EUT in continuous transmitting with modulation					

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.0 dBi

Project No.:CCISE1605034

6.2 Conducted Emission

through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be	-						
TestFrequencyRange: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-3-0 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50chm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50chm/50uH coupling impedance with 50chm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table/Insulation plane Receiver Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Requirement:	FCC Part15 C Section 15.207					
Class / Severity: Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm Filter Ac power EUT Equipment Under Test LISN Line impedience Stabilization Network Test table/Insulation plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Method:	ANSI C63.4:2014					
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane LISN Aux EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table/Insulation plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	TestFrequencyRange:	150 kHz to 30MHz					
Limit: Frequency range (MHz)	Class / Severity:	Class B					
Test procedure Prequency range (Min2)	Receiver setup:	RBW=9kHz, VBW=30kHz					
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane LISN	Limit:	[[] [] [] [] [] [] [] [] [] [Limit (c	dBuV)			
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane Regulipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details		Frequency range (MHZ)	Quasi-peak	Average			
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane Reference Plane							
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Reference Plane Reference Plane Regulpment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Refer to section 5.7 for details Refer to section 5.3 for details				-			
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane Reference Plane Regulpment Under Test LISN Line impedence Stabilization Network Test table height-0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details		·		50			
a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Test setup: Reference Plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.6m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details							
AUX Equipment E.U.T Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted 					
AUX Equipment E.U.T Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test setup:	Reference Plane					
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network					
	Test Instruments:	Refer to section 5.7 for details					
Test results: Passed	Test mode:	Refer to section 5.3 for details					
	Test results:	Passed					

Measurement Data

Neutral:

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 15.6" Android non-touch LCD Media Player : DT15-A4-1080 EUT

Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.155	44.76	0.17	10.78	55.71	65.74	-10.03	QP
2	0.170	30.45	0.17	10.77	41.39	54.94	-13.55	Average
3	0.185	43.68	0.16	10.77	54.61	64.24	-9.63	QP
4	0.185	28.53	0.16	10.77	39.46	54.24	-14.78	Average
2 3 4 5 6 7 8 9	0.205	44.00	0.16	10.76	54.92	63.40	-8.48	QP
6	0.205	31.60	0.16	10.76	42.52	53.40	-10.88	Average
7	0.240	39.02	0.16	10.75	49.93	62.08	-12.15	QP
8	0.249	30.46	0.16	10.75	41.37	51.78	-10.41	Average
9	0.255	39.02	0.16	10.75	49.93	61.60	-11.67	QP
10	0.499	29.82	0.16	10.76	40.74	46.01	-5.27	Average
11	0.510	37.79	0.16	10.76	48.71	56.00	-7.29	QP
12	0.535	24.97	0.16	10.76	35.89	46.00	-10.11	Average

Trace: 9

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 EUT

Model Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

emark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2.5	MHz	dBu₹	<u>d</u> B		dBu₹	dBu₹	<u>dB</u>	
1	0.155	46.13	0.26	10.78	57.17	65.74	-8.57	QP
2	0.165	32.09	0.26	10.77	43.12	55.21	-12.09	Average
3	0.195	43.95	0.26	10.76	54.97	63.80	-8.83	QP
4	0.195	28.83	0.26	10.76	39.85	53.80	-13.95	Average
4 5 6	0.223	41.47	0.26	10.75	52.48	62.70	-10.22	QP
6	0.249	25.51	0.26	10.75	36.52	51.78	-15.26	Average
7	0.252	40.89	0.26	10.75	51.90	61.69	-9.79	QP
8 9	0.285	34.31	0.26	10.74	45.31	60.68	-15.37	QP
9	0.505	35.76	0.27	10.76	46.79	56.00	-9.21	QP
10	0.510	24.81	0.27	10.76	35.84	46.00	-10.16	Average
11	0.541	22.72	0.27	10.76	33.75	46.00	-12.25	Average
12	0.751	20.99	0.28	10.79	32.06	46.00	-13.94	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.5 Power Spectral Density

FCC Part15 C Section 15.247 (e)
ANSI C63.4:2014 and KDB558074
8dBm
Spectrum Analyzer
E.U.T
Non-Conducted Table
Ground Reference Plane
Refer to section 5.7 for details
Refer to section 5.3 for details
Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.6 Band Edge

6.6.1 Conducted Emission Method

Tost Poquiroment:	ECC Part15 C Section 15 247 (d)						
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2014 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2						

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4:2014					
TestFrequencyRange:	2.3GHz to 2.5GHz					
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value	
	7.5070 101.2	Peak	1MHz	10Hz	Average Value	
Limit:	Freque	ency	Limit (dBuV/		Remark	
	Above 1		54.0 74.0	0	Average Value Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi- 					
Test setup:	sheet. Furn Table 0.8m A	4m	Antenna Horn Ante Spectrum Analyzer Amplifi	enna		
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 Condition

EUT

Model Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor					
-	MHz	dBu∇	<u>dB</u> /m	 <u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	 -
	2390.000 2390.000					74.00 54.00		

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 Condition EUT

Model Test mode : BLE-L Mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

		ReadAntenna Cable Preamp Freq Level Factor Loss Factor						
MHz	dBu∜		<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 : BLE-H Mode Site Condition EUT

Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT REMARK:

	Freq		Antenna Factor						
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	₫B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500								
2	2483.500	12.23	23.70	6.85	0.00	42.78	54.00	-11.22	Average

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 : BLE-H Mode Condition EUT

Model Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK:

	ReadAntenna Freq Level Factor				Limit Level Line			Remark	
	MHz	−dBuV	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2014 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205					
Test Method:	ANSI C63.4:201	4						
TestFrequencyRange:	9KHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7,0000 10112	Peak	1MHz	10Hz	Average Value			
Limit:	_							
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz 88MHz-216MHz		43.5		Quasi-peak Value Quasi-peak Value			
	216MHz-960MH		46.0		Quasi-peak Value Quasi-peak Value			
	960MHz-1GHz	_	54.0		Quasi-peak Value			
			54.0		Average Value			
	Above 1GHz	-	74.0		Peak Value			
Test Procedure:	the ground todetermine 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make to find the meters and to find the make the limitspen of the EUT have 10dB	at a 3 meter at the position was set 3 meter was set 3 meter was set 3 meter was an a height is well to determine the protected and very suspected and with a sign level of the cified, then the wouldbe reparagin woulds.	camber. The of the highes neters away funted on the tovaried from one the maximutical polarization, the Enna was tuned ewas turned fiding. In Maximum Hothe EUT in peresting could boorted. Otherwood bere-tested	table was a tradiation. Trom the interpretation of a variance meter to the interpretation of the interpretatio	ele 0.8 meters above rotated 360 degrees electroner above of the field strength. antenna are set to electrone to 360 degrees electrone and ele			

Page 23 of 29

Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 Condition

EUT

Model Test mode : BLE mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki REMARK :

EMAKK									
	Freq		Antenna Factor					Over Limit	
-	MHz	dBu₹	<u>dB</u> /m	dB	dB	dBu√/m	$\overline{dBuV/m}$		
1	45.695	47.56	17.28	1.29	29.85	36.28	40.00	-3.72	QP
2 3 4	140.835	52.26	11.63	2.41	29.27	37.03	43.50	-6.47	QP
3	268.485	51.91	12.05	2.86	28.51	38.31	46.00	-7.69	QP
4	383.932	52.07	15.40	3.09	28.71	41.85	46.00	-4.15	QP
5	537.589	49.19	17.79	3.82	29.06	41.74	46.00	-4.26	QP
6	807, 429	46.01	20.66	4.33	28, 17	42, 83	46,00	-3.17	OP

Vertical:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-1080 Condition

EUT

Model Test mode : BLE mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

CHETTE									
	Freq		Antenna Factor				Limit Line	Over Limit	
_	MHz	dBu∇		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	167.824	50.89	9.82	2.64	29.07	34.28	43.50	-9.22	QP
2	294.114	55.06	12.47	2.92	28.46	41.99	46.00	-4.01	QP
3	432.546	50.27	16.10	3.16	28.84	40.69	46.00	-5.31	QP
4	547.098	49.21	17.98	3.87	29.09	41.97	46.00	-4.03	QP
5	631.688	46.72	18.69	3.89	28.84	40.46	46.00	-5.54	QP
6	758.041	44.49	20.43	4.36	28.43	40.85	46.00	-5.15	QP

Above 1GHz

Test channel:		Lo	west	Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.12	35.99	10.57	40.24	51.44	74.00	-22.56	Vertical
4804.00	46.35	35.99	10.57	40.24	52.67	74.00	-21.33	Horizontal

Test channel:		Lo	west	Le	evel:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.13	35.99	10.57	40.24	44.45	54.00	-9.55	Vertical
4804.00	37.02	35.99	10.57	40.24	43.34	54.00	-10.66	Horizontal

Test channel:		Mi	iddle	Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.71	36.38	10.66	40.15	52.60	74.00	-21.40	Vertical
4884.00	45.13	36.38	10.66	40.15	52.02	74.00	-21.98	Horizontal

Test channel:		М	iddle	Le	Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.41	36.38	10.66	40.15	43.30	54.00	-10.70	Vertical
4884.00	35.78	36.38	10.66	40.15	42.67	54.00	-11.33	Horizontal

Test channel:		Hiç	ghest	Le	vel:	/el: P		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.15	36.71	10.73	40.03	53.56	74.00	-20.44	Vertical
4960.00	45.63	36.71	10.73	40.03	53.04	74.00	-20.96	Horizontal

Test channel:		Hiç	ghest	Le	Level: A		verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.14	36.71	10.73	40.03	44.55	54.00	-9.45	Vertical
4960.00	35.62	36.71	10.73	40.03	43.03	54.00	-10.97	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366