& 23/12/14.M.

COMP 3 - 6 (RC)

S.E. (Comp.) (Semester – III) (RC) Examination, Nov./Dec. 2014 INTEGRATED ELECTRONICS

Duration: 3 Hours Total Marks: 100

Instructions: i) Assume suitable data wherever required.

ii) Answer any five questions, selecting at least one from each Module.

MODULE-I

- 1. a) Describe different open-loop configurations of an Op-amp.
 - b) Derive an equation for the input resistance of an OPAMP with feedback in a voltage-series feedback amplifier configuration.
 - c) Give comparison between :
 Integrator circuit and differentiator circuit built using OPAMP.

 6
- a) Derive an equation for the V_{ab} i.e. voltage across the output terminals of the transducer bridge, for the differential instrumentation amplifier. (Assume the use of "resistive transducer" in a bridge).
 - b) Write a short note on :
 Zero crossing detector using OPAMP.
 - c) i) The frequency response of IC 741 C is shown below:

Determine the voltage gain that can be used to have a maximally flat response at 1 KHz.

ii) The output voltage of a certain OPAMP circuit change by 20 V in $4\,\mu$ s. What is its slew rate ?

3

8

6

8

MODULE - II

a) List various characteristic of a voltage regulator IC LM105.	
b) With a neat functional diagram, explain the timer IC555.	6
c) Explain with neat diagram, phase-locked loop.	7
4. a) Differentiate between:	6
High voltage regulator using IC723 V/s Low voltage regulator using IC723.	120
b) Design an astable multivibrator as a square wave oscillator. Draw the neat circuit diagram, equations derived and output waveform.	8~
Describe the following application of PLL: i) FM detector.	6
MODULE-III	
5. a) What are logic families ? Describe its different types.	6
b) Explain the working of a RTL gate. Draw necessary diagram.	6
c) i) State and explain any two characteristics of digital IC.	4
ii) Explain the working of a CMOS Inverter.	4
 a) Explain the working of a DTL gate. Draw necessary diagram. How is it different from a modified DTL gate? Explain. 	
b). Draw a neat diagram of a ECL gate and explain its working.	7
c) State some advantages and disadvantages of a TTL gate.	5
MODULE - IV	
7. a) Explain giving examples where A/D and D/A converters are used.	6
b) Describe A/D converter using Voltage-to-Frequency conversion. What is the use of monostable multivibrator circuit in it?	8

6

A.A.

c) Briefly explain the following specifications for D/A converter:

i) Resolution

ii) Linearity

iii) Accuracy

iv) Settling time.

8. a) Differentiator between weighted-resistor D/A converter and R-2R Ladder D/A converter.

b) Describe Dual-slope A/D converter. Carry out the analysis for the output of the counter w.r.t. its working functionality.

c) Explain some specifications of A/D converter.

-3-