

Technische Hochschule Rosenheim

Fakultät für Informatik

Seminararbeit

im Masterstudiengang Informatik - Schwerpunkt Software Engineering

Thema: Optimisierungsmethoden neuronaler Netze

Autor: Victor Wolf victorwolf@outlook.de

MatNr. 845615

Version vom: 25. November 2019

Betreuer: Prof. Dr. Holaubek

Zusammenfassung

Diese Arbeit wird sich mit verschiedenen Optimisierungsmethoden neuronaler Netze beschäftigen und Sie auf Basis von Beispiel Datensätzen evaluieren, wie dem Boston House Price Datensatz. Hierbei wird eine Metrik definiert um die Ergebnis der einzelnen Optimisierungsmethode zu vergleichen.

Eine Optimisierungsmethode ist eine Möglichkeit die Fehlerfunktion $J(\theta)$ des neuronalen Netzes zu verbessern.

Hierbei wird auf den Lern Prozess des Neuronalen Netzes eingegangen. Besonderen Fokus wird der 'Gradient Descent', zu Deutsch Gradientenabstieg, einnehmen, da dies die Grundlage des Lernens darstellt. Dieser sucht im mehrdimensionalen Raum die Minima der nichtlinearen Fehlerfunktion und es gibt verschiedene Möglichkeiten diese Suche zu verbessern. Nach der theoretischen Aufarbeitung, werden wir ein paar Eigenschaften über diese Optimisierungsmethoden annehmen und diese anhand der Test Daten überprüfen.

Abstract

This work will focus on explaning the different optimization methods of neural networks and evaluating them on example datasets like the boston house price data. We will define a metric to be able to evaluate the performance of the different optimizer.

An optimization method is a way to improve the performance of the error function $J(\theta)$ of the neural network.

Furthermore this work will give a detailed explanation of the learning process of Neural Networks especially focusing on the Gradient Descent, which is the foundation of learning in neural networks. This algorithm aims to find local minima in the Hyperplane of the non-linear error function and there are multiple ways to improve its search. After the Theory, we will assume some properties about those optimization methods and test those assumptions by evaluating the metrics of these neural networks.

Inhaltsverzeichnis 3

Inhaltsverzeichnis

1	Einleitung						
2	The	oretisc	che Grundlagen	4			
	2.1	Neuro	onale Netze	. 4			
	2.2	Gradie	ent Descent	. 6			
	2.3	Optim	nisierungsmethoden	. 6			
		2.3.1	Stochastic Gradient Descent	. 6			
		2.3.2	Adagrad	. 6			
		2.3.3	Adam	. 6			
3	Eva	luation	1	6			
4	Fazi	it		6			
Literaturverzeichnis							
Ei	Eidesstattliche Erklärung 8						

1 Einleitung

2 Theoretische Grundlagen

2.1 Neuronale Netze

Künstliche Neuronale Netze kurz KNNs sind der menschliche Versuch das biologische Nervensystem nachzuahmen. Sie basieren auf der Tatsache der Reizweitergabe. So wird ein Eingangsreiz von Rezeptoren aufgenommen und über verschiedene sogenannter Neuronen weitergegeben. Durch diese Weitergabe wird das Signal verändert, bis ein Ausgangssignal interpretiert werden kann. Diese Funktionsweise macht man sich bei künstlichen Neuronalen Netzen zu nutze. Der Eingangsreiz sind hier die sogenannten "features", der Ausgangsreiz eine Klasse oder ein Wert der interpretiert werden kann. Wir wollen uns hier nun nur auf die "Feed Forward" Netze fokussieren. Das bedeutet das Neuronen ihre Ausgabe nur in eine Richtung schicken dürfen.

Abbildung 1: Beispiel eines Feed Forward KNNs

KNNs existieren in zwei Zuständen der Trainingsphase und der Arbeitsphase. Die Trainingsphase ist die interessantere und wird in dieser Arbeit beleuchtet. Hier werden durch Optimierung der Fehlerfunktion die Neuronen so ëingestellt", dass sie einen möglichst gute Vorhersage treffen.

Im Folgenden soll nun der Begriff des Neurons formalisiert werden, um die Verbesserungsmöglichkeiten des Gradienten Verfahrens in Abschnitt 2.3 nachvollziehen zu können.

Definition 2.1 [Bur97, Kapitel 1.2] Ein (**formales**) Neuron ist eine Funktion κ : $\mathbb{R}^n \to \mathbb{R}^m$ definiert durch:

• eine Aktivierungsfunktion $T: \mathbb{R} \to \mathbb{R}$

- ein gewichteter Vektor $\vec{w} = \{w_1, w_2, ..., w_n\}$
- und eine Schwelle $\Theta \in \mathbb{R}$.

Der Vektor $\vec{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ wird auf den Vektor $\vec{y} = (y, y, ..., y) \in \mathbb{R}^m$ mit identischen Komponenten durch die folgende Rechenvorschrift abgebildet

$$\kappa(\vec{x}) := (T(\sum_{i=1}^{n} w_i x_i - \Theta), ..., T(\sum_{i=1}^{n} w_i x_i - \Theta)) = \vec{y} \in \mathbb{R}^m$$
 (1)

Hier seien ein paar Beispiele für Aktivierungsfunktionen angegeben

• Identität T_I

$$T(x) := x = T_I(x)$$

• Binary step

$$T(x) := \begin{cases} 0, \text{ for } x < 0 \\ 1, \text{ for } x \ge 0 \end{cases} =: T_1(x)$$

• Sigmoid

$$T(x) := \frac{1}{1 + e^{-x}} =: T_S(x)$$

• Tangens hyperbolicus

$$T(x) := \frac{1 + tanh(x)}{2} =: T_H(x)$$

Dies sind nur ein paar wenige Beispiele. Jede Funktion $T: \mathbb{R} \to \mathbb{R}$ die $\lim_{x \to -\infty} T(x) = 0$ and $\lim_{x \to \infty} T(x) = 1$ erfüllt, kann als Aktivierungsfunktion genutzt werden.

Definition 2.2 [Mic, Kapitel 2] Die **Fehlerfunktion** $J(\theta)$ eines Neuronalen Netzes ist eine differenzierbare Funktion für die gilt:

- $J(\theta) = \frac{1}{n} \sum_{x} J_x$ wobei x ein Eingabe Datum beschreibt.
- $J(\theta)$ lässt sich aus der Summe der Elemente des Ausgabe Vektors darstellen.

Die erste Eigenschaft bedeutet, dass die gesamte Fehlerfunktion sich auch durch die Fehlerfunkton der einzelnen Eingabe Daten darstellen lässt. Diese Fehlerfunktion wird im nächsten Abschnitt minimiert werden, um eine optimale Parameterbelegung der Gewichte \vec{w} zu finden. Beispiele für eine solche Funktion wäre der mittlere quadratische Fehler.

4 Fazit 6

2.2 Gradient Descent

Der Gradient Descent oder zu Deutsch Gradienten Abstiegsverfahren ist ein Weg eine Zielfunktion $J(\theta)$ parametrisiert durch $\theta \in \mathbb{R}^n$ zu minimieren. Man aktualisiert diese Parameter in Richtung des stärksten Abstiegs der Zielfunktion $\nabla_{\theta}J(\theta)$. Die Lern Rate μ bestimmt dabei die Größe der Aktualisierungsschritte. Das Verfahren folgt also der Richtung des Abstiegs der Oberfläche der Zielfunktion in ein Tal, welches ein lokales Minimum beschreibt. [Rud]

Im Fall eines neuronalen Netzes ist die Zielfunktion $J(\theta)$ die Fehlerfunktion des neuronalen Netzes.

Definition 2.3 [Kön02] Der **Gradient** ∇ der total differenzierbaren Funktion f: $\mathbb{R}^n \to \mathbb{R}$ im Punkt $a \in \mathbb{R}$ ist im Falle des Standard Skalar Produkt definiert durch:

$$\nabla f := \frac{\partial f}{\partial x_1} \hat{e}_1 + \dots + \frac{\partial f}{\partial x_n} \hat{e}_n \tag{2}$$

2.3 Optimisierungsmethoden

- 2.3.1 Stochastic Gradient Descent
- 2.3.2 Adagrad
- 2.3.3 Adam

3 Evaluation

4 Fazit

Literaturverzeichnis 7

Literaturverzeichnis

[Bur97] Burkhard Lenze: Einführung in die Mathematik neuronaler Netze. Berlin : Logos Verlag, 1997

- [Kön02] KÖNIGSBERGER: Analysis 2. Springer Berlin Heidelberg, 2002. ISBN 3540435808
- [Mic] MICHAEL NIELSEN: Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/index.html
- [Rud] RUDER, Sebastian: An overview of gradient descent optimization algorithms. http://arxiv.org/pdf/1609.04747v2

Eidesstattliche Erklärung

Eidesstattliche Erklärung zur Seminararbeit

Ich versichere, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen Prüfungsbehörde vorgelegen.

Unterschrift: Ort, Datum	Unterschrift:	Ort, Datum:
--------------------------	---------------	-------------