CIFAR10 mit PyTorch klassifizieren

Neuronale Netze in der Bildverarbeitung

Jan Hoegen Nico Weber

27. Oktober 2025

Hochschule Karlsruhe University of Applied Sciences

Inhaltsverzeichnis

- 1. Allgemeines zu PyTorch
- 2. Eigenes Modell zu CIFAR 10
- 3. Training und Hyperparameter
- 4. Hyperparameter mit Bayesian Search
- 5. Ausblick

IMPROVEremove all plt titles from figures. use latex caption

Allgemeines zu PyTorch

PyTorch im Überblick

Was ist PyTorch?

- Python-Bibliothek f
 ür Deep Learning
- Stark verbreitet in Forschung und Lehre [1]
- Unterstützt dynamische Berechnungsgraphen ("Define-by-Run")

Warum PyTorch?

- Einfache und flexible Modellimplementierung
- Direkte Nutzung von GPU-Beschleunigung
- Große Community, viele Tutorials und Ressourcen

Grundlegende Konzepte von Pytorch

Autograd Berechnet Gradienten automatisch für Backpropagation

nn.Module Basis für selbstdefinierte Modelle, enthält vordefinierte Layers

DataLoader Einfaches Laden, Batchen und Parallelisieren von Datensätzen

Optimizer Vorgefertigte Optimierer, z.B. Adam

Eigenes Modell zu CIFAR 10

Aufgabenstellung

- · Aufgabe: Klassifikation von CIFAR-10 Bildern
- · Datensatz:
 - · 10 Klassen
 - \cdot 60.000 Bilder, Größe 32 imes 32 imes 3
 - · Trainingsset: 49.000 Bilder
 - · Validierungsset: 1.000 Bilder
 - · Testset: 10.000 Bilder
- Ziel: Modell in maximal 10 Epochen trainieren, um Bilder korrekt zu klassifizieren

Architektur des Modells

Ergebnisse des besten Modells

- · Gewählte Hyperparameter:
 - · ch1 = 64, ch2 = 64, ch3 = 64
 - Lernrate = 0.00086
 - Weight Decay = 3.81e-6
- Best Validation Accuracy: 75.70%
- Trainings-Accuracy: 73%
- Test Accuracy: 75.05%

Accuracy für verschiedene Klassen

Confusion Matrix

Beispielvorhersagen

Training und Hyperparameter

Einstellungen für das Training

Trainingsdaten:

- \cdot 49.000 Trainingsbilder, Größe $32 \times 32 \times 3$
- · Batchgröße: 256
- DataLoader-Worker: 12 (hohe Parallelisierung)

Training:

- · Trainierbare Parameter: 604.810
- Iterationen pro Epoche: $\lceil 49,000/256 \rceil = 192$
- Epochen pro Trial: 10

Hyperparameter:

- Bayesian Search mit 20 Trials
- · Optimierte Parameter: ch1, ch2, ch3, Lernrate, Weight Decay

Genauigkeit während des Trainings

Early Stopping

Motivation:

- Verhindert Overfitting
- Stoppt Training, wenn Validierungsgenauigkeit über mehrere Epochen nicht steigt

Prinzip:

- · Wähle Grenzwert: patience
- · Nach jeder Epoche: Behalte den besten Validierungswert
- · Zähle Epochen ohne Verbesserung: epochs_no_improvement
- \cdot Stoppe, wenn epochs_no_improvement \geq patience

Hardware-Auslastung

Hardware:

• GPU: RTX 4060 Ti, 16 GB VRAM

· CPU: Ryzen 5 7600X, 12 Kerne

· RAM: 32 GB DDR5

Laufzeiten pro Trial

Gesamtdauer: ca. 15 Minuten

Hyperparameter mit Bayesian Search

Bayesian Search Erklärt

- Bayesian Search ist eine intelligente Methode zur Optimierung von Hyperparametern.
- Ziel: Maximierung der Validierungsgenauigkeit $f(Parameter) \rightarrow Validation Accuracy.$
- · Idee:
 - Es wird ein Modell erstellt, das die unbekannte Zielfunktion f abschätzt.
 - Nach jeder Evaluierung wird dieses Modell mit den neuen Ergebnissen aktualisiert.
 - Eine Acquisition Function wählt die nächsten Parameterwerte aus als Kompromiss zwischen **Exploration** (neue Bereiche testen) und **Exploitation** (bestehende gute Bereiche verfeinern).
- Vorteil: Findet gute Parameter mit deutlich weniger Versuchen als Random oder Grid Search.

Animation zu Bayesian Search

Anwendung auf unser Modell

- Anstatt zufällig
 Parameterkombinationen zu testen
 (Random Search) oder alle möglichen
 Kombinationen (Grid Search), wurde
 Bayesian Search verwendet.
- Das Modell der Funktion Validation Accuracy = f(Hyperparameter) wird kontinuierlich angepasst.
- Neue Vorschläge für Hyperparameter werden auf Basis bisheriger Ergebnisse erzeugt.

Abbildung 1: Relative Wichtigkeit der Hyperparameter

Bayesian Search Ergebnisse

Ausblick

Ausblick

quantitaiver Vergleich bayesian mit anderen methoden andere modelle etc

Literatur i

- [1] J. Bauer, ComputerVision2: Neuronale Netze in der Bildverarbeitung. 18. Juni 2025.
- [2] AnotherSamWilson, "Bayesian optimization of a function with a Gaussian process", besucht am 27. Okt. 2025. Adresse: https://commons.wikimedia.org/wiki/File:GpParBayesAnimationSmall.gif
- [3] S. Subramanian, S. Juarez, C. Breviu, D. Soshnikov und A. Bornstein, "PyTorch Tutorials: Beginner Basics", besucht am 26. Okt. 2025. Adresse: https://docs.pytorch.org/tutorials/beginner/basics/intro.html

Parallel Coordinate Plot

