



# SID: anti Sleep ID

#### what is SID?

SID is an ID lanyard holder that help in the prevention of sleepiness or drowsiness





#### how does SID work?

SID makes use of an accelerometer to detect the user's head orientation and sends out vibrations using vibration motor to alert the user.



## how was SID made?

### materials (body ni SID)



#### algorithm flow (mind ni SID)



#### algorithm flow

```
while (!Serial)
  delay(10);

Serial.println("Adafruit MPU6050 test!");

if (!mpu.begin()) {
    Serial.println("Failed to find MPU6050 chip");
    while (1) {
       delay(10);
    }
}
Serial.println("MPU6050 Found!");
```

### algorithm flow



#### algorithm flow

```
if (AccY > -9 && AccY < 2) {
 unsigned long current Time = millis();
 if (!delayInProgress) {
  delayInProgress = true;
  previousTime = currentTime; }
 if (currentTime - previousTime >= delayInterval) {
  if (currentTime - previousBlinkTime >= blinkInterval) {
   ledState = !ledState:
   motorState = !motorState:
   digitalWrite(ledPin, ledState);
   digitalWrite(motorPin1, motorState);
   digitalWrite(motorPin2, motorState);
   previousBlinkTime = currentTime; } } else {
 delayInProgress = false;
 digitalWrite(ledPin, LOW);
 digitalWrite(motorPin1, LOW);
 digitalWrite(motorPin2, LOW); }
```

#### other important code

mpu.setFilterBandwidth(MPU6050\_BAND\_21\_HZ);

SID makes use of the MPU6050's built in digital low pass filter (DLPF) to reduce noise

unsigned long currentTime = millis();

Instead of using delay() function, SID uses millis() to enable multitasking

```
#include <Adafruit MPU6050.h>
                                                      Serial.println("MPU6050 Found!");
#include <Adafruit Sensor.h>
#include <Wire.h>
                                                      mpu.setAccelerometerRange(MPU6050 RANGE 8 G);
                                                      mpu.setGyroRange(MPU6050 RANGE 500 DEG);
int motorPin1 = 4;
                                                      mpu.setFilterBandwidth(MPU6050 BAND 21 HZ);
                                                                                                                      if (currentTime - previousTime >= delayInterval) {
int motorPin2 = 7:
                                                                                                                       // interval has passed, start the 5 sec motor delay
                                                      delay(100);
                                                                                                                       if (currentTime - previousBlinkTime >= blinkInterval)
const unsigned long delayInterval = 5000;
const unsigned long blinkInterval = 500;
                                                      pinMode(ledPin, OUTPUT);
                                                                                                                        // delay has passed, turn on motor with blink
unsigned long previousTime = 0;
                                                                                                                   interval of 0.5 sec
unsigned long previousBlinkTime = 0;
                                                                                                                        ledState = !ledState;
const int ledPin = 13;
                                                     void loop() {
                                                                                                                        motorState = !motorState:
bool ledState = false:
                                                      sensors event ta, g, temp;
                                                                                                                        digitalWrite(ledPin, ledState);
bool delayInProgress = false;
                                                      mpu.getEvent(&a, &g, &temp);
                                                                                                                        digitalWrite(motorPin1, motorState);
bool motorState = false:
                                                                                                                        digitalWrite(motorPin2, motorState);
                                                      Serial.print("X: ");
                                                                                                                        previousBlinkTime = currentTime;
Adafruit MPU6050 mpu;
                                                      Serial.print(a.acceleration.x);
                                                      Serial.print(", Y: ");
void setup(void) {
                                                      Serial.print(a.acceleration.y);
                                                                                                                      else {
                                                      Serial.print(", Z: ");
                                                                                                                      // reset the delay
 pinMode(motorPin1, OUTPUT);
                                                      Serial.println(a.acceleration.z);
                                                                                                                      delayInProgress = false;
 pinMode(motorPin2, OUTPUT);
                                                                                                                      digitalWrite(ledPin, LOW);
                                                      float AccX = a.acceleration.x:
                                                                                                                      digitalWrite(motorPin1, LOW);
                                                      float AccY = a.acceleration.y;
 Serial.begin(115200);
                                                                                                                      digitalWrite(motorPin2, LOW);
                                                      float AccZ = a.acceleration.z:
 while (!Serial)
  delay(10);
                                                      if (AccY > -9 && AccY < 2) {
                                                                                                                     delay(1000);
                                                       unsigned long currentTime = millis();
 Serial.println("Adafruit MPU6050 test!");
                                                       if (!delayInProgress) {
 if (!mpu.begin()) {
                                                         delayInProgress = true;
  Serial.println("Failed to find MPU6050 chip");
                                                         previousTime = currentTime;
  while (1) {
   delay(10);
```

#### prototype limitations

accelerometer readings that correspond to sleeping position can still be improved

Further calibration is needed, and the device should be tested on a lot of people to incorporate a more universal position. In the next iteration of the prototype, add more acceleration input.

#### prototype limitations

vibrations from 1027 [sometimes] interfere with the MPU6050 readings

Adjust DFLP bandwidth to additionally filter noise caused by the vibration motor OR adjust the 1027 farther away from the accelerometer

#### buy now for 1500 php

## THANK YOU

#### REFERENCES

https://www.makerguides.com/how-to-use-an-mpu6050-3-axis-accelerometer-and-3-axis-gyrosensorwith-arduino/

https://circuitdigest.com/microcontroller-projects/arduino-multitasking-using-millis-in-arduino

images from bing images