第一次习题课 群文件《期中 & 期末试题》

期末试题

1.2014~2015(双语)1.

Determine if the following systems are consistent.

(a).
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_2 = 1 \\ x_2 - 2x_3 = 3 \end{cases}$$
 (b).
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 - 2x_3 = 1 \\ x_2 + 2x_3 = 6 \end{cases}$$

解:

(a) 增广矩阵:

$$\begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 1 & -2 & | & 3 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & -2 & | & 2 \end{bmatrix} \xrightarrow{r_3 \times \left(-\frac{1}{2}\right)} \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix} \xrightarrow{r_1 + r_3} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{r_1 - r_2} \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

所以解得: $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ 。

$$\begin{bmatrix}
1 & 1 & 1 & | & 0 \\
0 & 1 & -2 & | & 1 \\
0 & 1 & 2 & | & 6
\end{bmatrix}
\xrightarrow{r_3 - r_2}
\begin{bmatrix}
1 & 1 & 1 & | & 0 \\
0 & 1 & -2 & | & 1 \\
0 & 0 & 4 & | & 5
\end{bmatrix}
\xrightarrow{r_3 \times \left(\frac{1}{4}\right)}
\begin{bmatrix}
1 & 1 & 1 & | & 0 \\
0 & 1 & -2 & | & 1 \\
0 & 0 & 1 & | & \frac{5}{4}
\end{bmatrix}
\xrightarrow{r_2 + 2r_3}
\begin{bmatrix}
1 & 1 & 0 & | & -\frac{5}{4} \\
0 & 1 & 0 & | & \frac{14}{4} \\
0 & 0 & 1 & | & \frac{5}{4}
\end{bmatrix}$$

$$\xrightarrow{r_1 - r_2}
\begin{bmatrix}
1 & 0 & 0 & | & -\frac{19}{4} \\
0 & 1 & 0 & | & \frac{7}{2} \\
0 & 0 & 1 & | & \frac{5}{4}
\end{bmatrix}$$

 $2.2015 \sim 2016 \equiv .1.$

$$\begin{cases} kx_1 + x_2 + x_3 = k - k \\ x_1 + kx_2 + x_3 = -2 \end{cases}$$

当 k 为何值时,线性方程组 $\begin{cases} kx_1+x_2+x_3=k-3\\ x_1+kx_2+x_3=-2\\ x_1+x_2+kx_3=-2 \end{cases}$ 有唯一解,无解和有无穷多解?当方程组有无穷

 \Diamond

多解时求出所有解。

解:

增广矩阵

$$\begin{bmatrix} k & 1 & 1 & k - 3 \\ 1 & k & 1 & -2 \\ 1 & 1 & k & -2 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & k & 1 & -2 \\ k & 1 & 1 & k - 3 \\ 1 & 1 & k & -2 \end{bmatrix} \xrightarrow{r_2 - k r_1} \begin{bmatrix} 1 & k & 1 & -2 \\ 0 & 1 - k^2 & 1 - k & 3(k - 1) \\ 0 & 1 - k & k - 1 & 0 \end{bmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & k & 1 & -2 \\ 0 & 1 - k & k - 1 & 0 \\ 0 & 1 - k^2 & 1 - k & 3(k - 1) \end{bmatrix} \xrightarrow{r_3 - (1 + k) r_2} \begin{bmatrix} 1 & k & 1 & -2 \\ 0 & 1 - k & k - 1 & 0 \\ 0 & 0 & (1 - k)(k + 2) & 3(k - 1) \end{bmatrix}$$

讨论:

(1) 解不存在: 即存在矛盾方程 (增广矩阵主元列在最右列)。 即对于 r_3

$$\begin{cases} (1-k)(k+2) = 0\\ 3(k-1) \neq 0 \end{cases} \Rightarrow k = -2$$

(2) 存在唯一解: 主元列三个元素都不为 0. 即

$$\begin{cases} 1 \neq 0 \\ 1 - k \neq 0 \\ (1 - k)(k + 2) \neq 0 \end{cases} \Rightarrow k \neq 1 \mathbb{E} k \neq -2$$

 $k \neq 1$ 且 $k \neq -2$,继续对阶梯矩阵进行初等行变换

所以方程组存在唯一解时: $k \neq 1$ 且 $k \neq -2$, 解为

$$\mathbf{x} = \begin{bmatrix} -\frac{5k+1}{k+2} \\ \frac{3}{k+2} \\ \frac{3}{k+2} \end{bmatrix}, \quad k \neq 1 \mathbb{E} k \neq -2$$

(3) 存在无穷解: 至少存在一个自由变量。由阶梯矩阵可以看出

$$\begin{cases} (k-1)(k+2) = 0 \\ 3(k-1) = 0 \end{cases} \Rightarrow k = 1$$

把 k=1 代入阶梯矩阵:

$$\begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow x = \begin{bmatrix} -2 - c_1 - c_2 \\ c_1 \\ c_2 \end{bmatrix}$$

 \Diamond

所以
$$x$$
的解为 $x = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} c_1 + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} c_1 \quad c_1, c_2 \in R.$

$$3.2017\sim2018 \quad \square.3.$$

$$\begin{cases} 2x_1 - x_2 + 4x_3 - 3x_4 = -4 \\ x_1 + x_3 - x_4 = -3 \\ 3x_1 + x_2 + x_3 = 1 \end{cases}$$
的通解。
$$3x_1 + x_2 + x_3 = 1$$

$$7x_1 + 7x_2 - 3x_4 = 3$$

解:

增广矩阵

$$\begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 1 & 0 & 1 & -1 & | & -3 \\ 7 & 0 & 7 & -3 & | & 3 \end{bmatrix} \xrightarrow{r_2 - \frac{1}{2}r_1} \begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -1 \\ 0 & \frac{7}{2} & -7 & \frac{15}{2} & | & 17 \end{bmatrix} \xrightarrow{r_3 - 7r_2} \begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -1 \\ 0 & 0 & 0 & 4 & | & 24 \end{bmatrix}$$

$$\xrightarrow{r_1 \times \frac{1}{2}} \begin{bmatrix} 1 & -\frac{1}{2} & 2 & -\frac{3}{2} & | & -2 \\ 0 & 1 & -2 & 1 & | & -2 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix} \xrightarrow{r_2 - r_3} \begin{bmatrix} 1 & -\frac{1}{2} & 2 & 0 & | & 7 \\ 0 & 1 & -2 & 0 & | & -8 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix} \xrightarrow{r_1 + \frac{1}{2}r_2} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 3 \\ 0 & 1 & -2 & 0 & | & -8 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix}$$

由最简阶梯型矩阵可以看出:

$$x_1 = 3 - x_3$$
 $x_2 = x_3 - 8$ $x_3 = x_3$ $x_4 = 6$

令 $x_3 = C, C \in R$,则

$$x = \begin{bmatrix} 3 - C \\ C - 8 \\ C \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ -8 \\ 0 \\ 6 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix} C, C \in R$$

 $4.2018 \sim 2019 \equiv .1.$

设
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 2 \\ x_1 + \lambda x_2 + x_3 = 2 \end{cases}$$
 , λ 为何值时,该方程组无解、唯一解、无穷解? 并且在有唯一解时求出
$$x_1 + x_2 + \lambda x_3 = 2$$

 \Diamond

解;有无穷多解时,求出全部解并用向量表示。

解:

增广矩阵

$$\begin{bmatrix} \lambda & 1 & 1 & \lambda & -2 \\ 1 & \lambda & 1 & 2 \\ 1 & 1 & \lambda & 2 \end{bmatrix} \xrightarrow{r_1 \Leftrightarrow r_2} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ \lambda & 1 & 1 & \lambda - 2 \\ 1 & 1 & \lambda & 2 \end{bmatrix} \xrightarrow{r_2 \to r_1} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda^2 & 1 - \lambda & -\lambda - 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \end{bmatrix}$$

$$\xrightarrow{r_2 \Leftrightarrow r_3} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \\ 0 & 1 - \lambda^2 & 1 - \lambda & -\lambda - 2 \end{bmatrix} \xrightarrow{r_3 - (\lambda + 1)r_2} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \\ 0 & 0 & (\lambda - 1)(-2 - \lambda) & -\lambda - 2 \end{bmatrix}$$

讨论:

(1) 解不存在: 即存在矛盾方程 (增广矩阵主元列在最右列)。即对于 r_3

$$\begin{cases} (\lambda - 1)(-2 - \lambda) = 0 \\ -\lambda - 2 \neq 0 \end{cases} \Rightarrow \lambda = 1$$

(2) 存在唯一解: 主元列三个元素都不为 0. 即

$$\begin{cases} 1 \neq 0 \\ 1 - \lambda \neq 0 \\ (\lambda - 1)(-2 - \lambda) \neq 0 \end{cases} \Rightarrow \lambda \neq 1 \mathbb{H} \lambda \neq -2$$

 $\lambda \neq 1$ 且 $\lambda \neq -2$,继续对阶梯矩阵进行初等行变换

所以方程组存在唯一解时: $\lambda \neq 1$ 且 $\lambda \neq -2$, 解为

$$\mathbf{x} = \begin{bmatrix} \frac{\lambda - 3}{\lambda - 1} \\ \frac{1}{\lambda - 1} \\ \frac{1}{\lambda - 1} \end{bmatrix} \; , \quad \lambda \neq 1 \, \mathbb{H} \, \lambda \neq -2$$

(3) 存在无穷解: 至少存在一个自由变量。由阶梯矩阵可以看出

$$\begin{cases} (\lambda - 1)(-2 - \lambda) = 0 \\ -2 - \lambda = 0 \end{cases} \Rightarrow \lambda = -2$$

把 $\lambda = -2$ 代入阶梯矩阵:

$$\begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{3}} \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 + 2r_2} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

由最简阶梯型矩阵可以看出:

$$x_1 = 2 + x_3$$
 $x_2 = x_3$ $x_3 = x_3$

$$x = \begin{bmatrix} 2+C \\ C \\ C \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} C , C \in R$$

 \Diamond

 \Diamond

5.2019~2020 一.4. $\begin{cases} x_1+x_2=-a_1\\ x_2+x_3=a_2\\ x_3+x_4=-a_3\\ x_4+x_1=a_4 \end{cases}$ 有解, a_1,a_2,a_3,a_4 应满足的条件是 $\underline{a_1+a_2-a_3+a_4=0}$ 。

解:

增广矩阵

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 1 & 0 & 0 & 1 & a_4 \end{bmatrix} \xrightarrow{r_4 - r_1} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & -1 & 0 & 1 & a_1 + a_4 \end{bmatrix} \xrightarrow{r_4 + r_2} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & 0 & 1 & 1 & a_1 + a_2 + a_4 \end{bmatrix}$$

$$\xrightarrow{r_4 - r_3} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & 0 & 0 & a_1 + a_2 - a_3 + a_4 \end{bmatrix}$$

若方程有解: $a_1 + a_2 - a_3 + a_4 = 0$

6. 期末 2019-2020 二 1.

设
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. 求满足 $AX = XA$ 的全部的矩阵 X .

解:

设
$$X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
,

$$AX = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix}$$
$$XA = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix}$$

AX = XA, \mathbb{P}

$$\begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix} \implies \begin{cases} d = 0 & a = e & b = f \\ g = 0 & h = d = 0 & i = e = a \\ 0 = 0 & g = 0 & h = 0 \end{cases}$$

 \Diamond

 \Diamond

所以
$$x = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$$
, 其中 a, b, c 是任意常数。

期中试题

2017~2018 二.3. 判断命题是否成立并给出理由 若 $A^2 = B^2$,则 A = B 或 A = -B。

解:

判断是否成立:否。

理由:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

可以看出 $A^2 = B^2$, 但是 $A \neq B, A \neq -B$