Numerical Linear Alabra Homeworle 9

Alexander Hurnirch hurnisch (g) msu. odu

- (a) If λ is an ew of A and $\mu \in \mathbb{C}$, then $\lambda \mu$ is an ew of $A \mu I$.
- (b) If A is real and λ is an ew of A, then so is $-\lambda$. \times
- (c) If A is real and λ is an ew of A, then so is $\overline{\lambda}$.
- (d) If λ is an ew of A and A is nonsingular, then λ^{-1} is an ew of A^{-1} .
- (e) If all the ew's of A are zero, then A = 0.
- (f) If A is hermitian and λ is an ew of A, then $|\lambda|$ is a singular value of A. \vee
- (g) If A is diagonalizable and all its ew's are equal, then A is diagonal. \checkmark

(a) True. Proof:

$$\lambda$$
 is ew of $A(=> AeE(A-\lambda I)=0$
=> $AeE(A-\mu I-(\lambda-\mu)I)=deE(A-\lambda I)=0$
(=> $\lambda-\mu$ is ew of $A-\mu$ I

(b) False. Proof:

Take the matrix A=XI with ew \ with a'sessail multiplicity m. So here I is real and has en \, but not -\.

A =
$$\lambda I$$
, $\lambda = a + bi$, $b \neq 0$, $a, b \in \mathbb{R}$

= λI , $\lambda = a + bi$, $b \neq 0$, $a, b \in \mathbb{R}$

(d) True. Proof: 1x=1x2=7 Ax'x=x
· · · · · · · · · · · · · · · · · · ·
Additionally we find the Amon singular
currer pondines en to be lie same!
(e) False. Proof:
Take $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \neq 0$
dot(A-27) = - (1-2)(1+2) + 1 = 2 = 0
) A has the only ew 1=0 and A \$0.
(f) True Proof in textbook:
Theorem 5.5. If $A = A^*$, then the singular values of A are the absolute
values of the eigenvalues of A. Follows from 5.4 2!
Proof. As is well known (see Exercise 2.3), a hermitian matrix has a complete set of orthogonal eigenvectors, and all of the eigenvalues are real. An equiva-
lent statement is that (5.1) holds with X equal to some unitary matrix \hat{Q} and Λ a real diagonal matrix. But then we can write
$A = Q\Lambda Q^* = Q \Lambda \operatorname{sign}(\Lambda)Q^*, \tag{5.2}$
where $ \Lambda $ and sign(Λ) denote the diagonal matrices whose entries are the
numbers $ \lambda_j $ and sign (λ_j) , respectively. (We could equally well have put the factor sign (Λ) on the left of $ \Lambda $ instead of the right.) Since sign $(\Lambda)Q^*$ is
unitary whonever O is unitary (5.2) is an SVD of A with the singular values

where $|\Lambda|$ and $\operatorname{sign}(\Lambda)$ denote the diagonal matrices whose entries are the numbers $|\lambda_j|$ and $\operatorname{sign}(\lambda_j)$, respectively. (We could equally well have put the factor $\operatorname{sign}(\Lambda)$ on the left of $|\Lambda|$ instead of the right.) Since $\operatorname{sign}(\Lambda)Q^*$ is unitary whenever Q is unitary, (5.2) is an SVD of A, with the singular values equal to the diagonal entries of $|\Lambda|$, $|\lambda_j|$. If desired, these numbers can be put into nonincreasing order by inserting suitable permutation matrices as factors in the left-hand unitary matrix of (5.2), Q, and the right-hand unitary matrix, $\operatorname{sign}(\Lambda)Q^*$.

(g) True. Proof. Let's go the other way:

A is diagonizable and all en's are it

Let B = I = X A X with X hon-singular

(similarity transformation)

24.2. Here is Gerschgorin's theorem, which holds for any $m \times m$ matrix A, symmetric or nonsymmetric. Every eigenvalue of A lies in at least one of the m circular disks in the complex plane with centers a_{ii} and radii $\sum_{j\neq i} |a_{ij}|$. Moreover, if n of these disks form a connected domain that is disjoint from the other m-n disks, then there are precisely n eigenvalues of A within this domain.

For E
Park
Second
Park

(a) Prove the first part of Gerschgorin's theorem. (Hint: Let λ be any eigenvalue of A, and x a corresponding eigenvector with largest entry 1.)

(a) Let
$$\lambda$$
 be any eigenvalue of A , and x
a corresponding eigenvector x with largest entry $x_i = 1$ (which can always be obtained).

($|x_j| \le 1$, $j \ne i$)

So $A = \lambda \times -1$ $\ge a_{ij} x_j = \lambda \stackrel{\wedge}{x_i} = \lambda$
 $i = \lambda$

(c) Give estimates based on Gerschgorin's theorem for the eigenvalues of

$$A = \begin{pmatrix} 8 & 1 & 0 \\ 1 & 4 & \epsilon \\ 0 & \epsilon & 1 \end{pmatrix}, \qquad |\epsilon| < 1.$$

- (d) Find a way to establish the tighter bound $|\lambda_3 1| \le \epsilon^2$ on the smallest eigenvalue of A. (Hint: Consider diagonal similarity transformations.)
- (c) The 3 disks are:

Fince none of them overly, we know that each one of them contains exactly one ew.

Additionally, A is symmetric (hernitian), tro-store all 3 ews are real (Theorem 24.7).

50 me Knon: 1, > 1/2 > 1, /2/3 ER

with $|\lambda, -8| \le 1$ $|\lambda_3 - 1| \le \mathcal{E}$ $|\lambda_2 - 4| \le 1 + \mathcal{E}$ (d) (ouridor the similarity transformation A-> X-1 AX with X = diag(1,1, E-1):

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & E \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0$$

According to Theorem 74.3 B has the same eigenvalues as A. Therefore we can again apply Serich sorin's Theorem as in part (c). This time we obtain

- **25.1.** (a) Let $A \in \mathbb{C}^{m \times m}$ be tridiagonal and hermitian, with all its sub- and superdiagonal entries nonzero. Prove that the eigenvalues of A are distinct. (Hint: Show that for any $\lambda \in \mathbb{C}$, $A \lambda I$ has rank at least m 1.)
- (b) On the other hand, let A be upper-Hessenberg, with all its subdiagonal entries nonzero. Give an example that shows that the eigenvalues of A are not necessarily distinct.

=) B is also Exidingenal with all its saband superdingenal entries nonzero.

so M is upper-tringular and its diagonal
entries are nonzero. Therefore, M is of full
rank m-1. From that it directly follows,
trut runk (B) 7, m-1 (m-1 if clebb=0
m if debb \$\pm\$0.

If
$$deE(B) = 0 = run/(B) = m-1$$
 and is an ev of A and the eightspace it the nullspace of B.

We already know that A is

Theorem 24.7. A hermitian matrix is unitarily diagonalizable, and its eigenvalues are real.

Theorem 24.5. An $m \times m$ matrix A is nondefective if and only if it has an eigenvalue decomposition $A = X\Lambda X^{-1}$.

=> Any hermition matrix is non detective.

So we have proven that all lightralues of A hove scometric malliplicity 1 and A is wondefective.

Therefore, every eigenvalue has algebraic malbiplicity I which means every eigenvalue is distinct.

(b)

Example: (1 0 0)

1 10

P - (1-x)

Hus 1=1 with algebraic multiplicity 3

CMSE 823 – Numerical Linear Algebra Homework 9

Alexander Harnisch

24.3

Here are some examples of the resulting plot. Most of the plots turn out to look something like this:

However, sometimes oscillations occur:

And there are also some where it seems to be something in between:

I've played around with this a lot and tried to figure out what leads to the different outcomes. Sadly I did not come up with anything conclusive. I think it most likely has something todo with the imaginary parts of the eigenvalues. Where some combination of more imaginary contribution leads to the oscillations. However, I did not find a conclusive rule.