oxidized form		reduced form	n	$\varepsilon^{\circ\prime}$ (V)
$NAD^{+} + H^{+} + 2e^{-}$	\rightarrow	NADH	2	-0.32
fumarate $+2H^+ + 2e^-$	\rightarrow	succinate	2	0.03
$Q + 2H^+ + 2e^-$	\rightarrow	QH_2	2	0.04
$cytochrome\ c\ (Fe^{3+}) + e^{-}$	\rightarrow	$cytochrome\ c\ (Fe^{2+})$	1	0.24
$\frac{1}{2}O_2 + 2H^+ + 2e^-$	\rightarrow	H_2O	2	0.82

transfer reaction		protons	Location	
\overline{NADH}	\rightarrow	QH_2	4	Complex I
succinate	\rightarrow	QH_2	0	Complex II
QH_2	\rightarrow	$2\ cytochrome\ C$	4	Complex III
$2\ cytochrome\ C$	\rightarrow	H_2O	2	Complex IV

- 1. Fill in the diagram above. Label the proton transfer events.
- 2. Why does succinate have to enter at complex II rather than complex I?

COMPLEX I TRANSPORTS 4 PINTOLS USING ENERGY TYAM NADH + Q + HT -> NADT+QHZ. SUCCINATE AND QHZ HAVE SAME 2°, SO THERE IS NO ENERGY TO DO TRANSPORT. THIS, SUCCINATE & ENTOL BY ALTOWATE PATHNAY.

3. Which step extracts the most useful energy for generating ATP per V? Does this surprise you? $QH_2 \rightarrow C\gamma + C$. $(4 + H^+/(0.14 - 0.04 N))$. SURFLISES ME. I FILMED YIM'D GET MST BALL OUT OF $O_2 \rightarrow H_2O$ RXX. MOSE EARLY THORE.