Probeklausur

Ausgabe: Di, 30.1.2018 keine Abgabe Besprechung: Mo, 5.2.2018

Diese Probeklausur soll Ihnen den Umfang und Schwierigkeitsgrad der E6 Klausur verdeutlichen.

Für Studierende E6p (Lehramt und Bachelor plus) sind die Aufgaben A4 sowie B3 optional.

Zugelassene Hilfsmittel: Taschenrechner, Schreibutensilien. Viel Erfolg!

Aufgabenteil A (Anteil 50%)

Aufgabe A1: Festkörper-Bindungen (5 Punkte)

- Skizzieren Sie das Lennard-Jones Potential der van-der-Waals Bindung und bezeichnen Sie quantitativ die Abstandsabhängigkeit des attraktiven und repulsiven Potentialanteils.
- Wie groß sind die typischen Bindungsenergien (Größenordnung) von van-der-Waals gebundenen Kristallen?
- · Welche Kristallstruktur wird von solchen Kristallen angenommen?

Aufgabe A2: Beugungsverfahren an Kristallen (5 Punkte)

- Beschreiben Sie die drei wichtigsten Röntgenbeugungsverfahren (Laue-Verfahren, Debye-Scherrer-Verfahren, Drehkristallverfahren) an kristallinen Materialien schematisch und skizzieren sie für jedes der Verfahren ein typisches Messergebnis.
- Welche Informationen über den Kristall liefern die einzelnen Verfahren?

Aufgabe A3: Debye-Modell (5 Punkte)

- Skizzieren Sie die phononische Zustandsdichte in der Debye-N\u00e4herung und bezeichnen Sie ihre Frequenzabh\u00e4ngigkeit.
- Durch welche Kristallparameter wird die Debye-Frequenz w_D eines Kristalls bestimmt?
- Worin gleichen sich die Debye-Zustandsdichte sowie die "reale" Zustandsdichte eines Kristalls?

Aufgabe A4: Bloch-Wellen (5 Punkte) (*)

- Erklären Sie das Bloch'sche Theorem und konstruieren Sie (Skizze) eine Blochwelle für ein eindimensionales Gitter im Ortsraum.
- Welche Wellenzahlen k der Blochwelle sind mit den festen Randbedingungen des endlichen Kristalls verträglich?

Aufgabe A5: Phononendispersion (4 Punkte)

- Welche experimentellen Streuverfahren eignen sich zur Bestimmung der Phononendispersion eines Kristalls? Beschreiben Sie ein Ihnen bekanntes Verfahren genau.
- Welche Verfahren ermöglichen den Zugang zur gesamten ersten Brillouinzone und warum?

Aufgabenteil B (Anteil 50%)

Aufgabe B1: Ionische Bindung (7 Punkte)

a) Zeigen Sie, dass für eine eindimensionale Kette aus alternierenden positiven und negativen Ionen die Madelung Konstante $\alpha=2\cdot ln2$ ist.

Hinweis: Verwenden Sie hierfür die Taylorreihenentwicklung für ln(1+x):

$$ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k.$$

- b) Berechnen Sie die Bindungsenergie (in eV) pro Ion in einem NaCl Kristall. Nehmen Sie dazu eine Madelung Konstante von $\alpha=1,75$ und einen repulsiven Exponenten von 8, also $U_{rep}\propto 1/r^8$ und einen Gleichgewichtsabstand von $r_0=0,28~nm$ an.
- c) Der Abstand zweier nächster Nachbarn von Na und CI Ionen in einem NaCI Kristall ist $a=0,24\ nm$. Wie gross ist der Abstand zweier benachbarter Na Ionen?
- d) Warum sind Ionenkristalle keine elektrischen Leiter? Warum sind ionische Kristalle im optischen Bereich durchsichtig?

Aufgabe B2: Das freie Elektronengas (7 Punkte)

- a) Berechnen Sie unter der Annahme eines freien Elektronengases (bei T=0K) die Fermi-Energie (in eV), die Fermi-Wellenzahl, die Fermi-Temperatur und die Fermi-Geschwindigkeit für Lithium (Li). Hinweis: Dichte $\varrho_{Li}=0,534$ $\frac{e}{gm^3}$, molare Masse $M_{Li}=6,941$ $\frac{q}{mol}$.
- b) Ermitteln Sie die Fermi-Energie (in eV) von Zink aus der (temperaturabhängigen) molaren Wärmekapazität seiner Elektronen von $c_{v,mol}=\alpha T$ mit $\alpha=3,74\cdot 10^{-4}$ $\frac{J}{molK^2}$.

 Hinweis: Zink hat die Wertigkeit Z=2 und die Stoffmenge n ergibt sich durch $n=\frac{N}{ZN_A}$.

Aufgabe B3: Phononen (6 Punkte) (*)

Untersuchen Sie die Normalschwingungen einer linearen Kette, in der die Kraftkonstante der Wechselwirkung zwischen nächsten Nachbarn abwechselnd C und 10C betragen. Die Massen seien gleich und der Abstand nächster Nachbarn sei a/2. Dies stellt ein einfaches Modell für einen Kristall aus zweiatomigen Molekülen wie z.B. H_2 dar.

- a) Bestimmen Sie $\omega(k)$ bei k=0 und $k=\pi/a$. Hinweis: Verwenden Sie die Ansätze $u_s=ue^{iska}e^{-i\omega t}$ und $v_s=ve^{iska}e^{-iwt}$.
- b) Skizzieren Sie den Verlauf der Dispersionsrelation (Achsenbeschriftung!), tragen Sie die Extremwerte ein und kennzeichnen Sie den optischen sowie den akustischen Zweig.

Aufgabe B4: Beugung (4 Punkte)

Betrachten Sie eine lineare Atomfolge ABABA...AB mit einer Bindungslänge A-B gleich a/2...AB

Die Formfaktoren der Atome A, B seien f_A und f_B .

Der einfallende Röntgenstrahl steht senkrecht auf der Atomkette.

Zeigen Sie, dass die Intensität des gebeugten Strahls

- a) für ungerade Beugungsordnungen n proportional zu $|f_A f_B|^2$
- b) für gerade n proportional zu $|f_A + f_B|^2$ ist.

Hinweis: Berechnen Sie den Strukturfaktor.

Naturkonstanten $k_B=1,38\cdot 10^{-23}\,\frac{J}{K}=8,62\cdot 10^{-5}\,\frac{eV}{K}$ Reduziertes Wirkungsquantum: $\hbar=\frac{h}{2\pi}=1,055\cdot 10^{-34}\,Js=6,582\cdot 10^{-16}\,eVs$ Avogadro-Konstante: $N_A=6,022\cdot 10^{23}\,\frac{1}{mol}$ Elektronenmasse: $m_{e^-}=9,11\cdot 10^{-31}\,kg$ Elementarladung: $e=1,6\cdot 10^{-19}\,C$ Permittivität des Vakuums: $\epsilon_0=8,85\cdot 10^{-12}\,\frac{As}{V}$