ЛЕКЦИЯ Б4. Отношение порядка. Частичный, линейный порядки. Частичный порядок на конечном множестве. Диаграммы Хассе. Максимальный, минимальный, наибольший, наименьший элементы. Изоморфизм частичных порядков

Частичный порядок. Рефлексивное, транзитивное и антисимметричное бинарное отношение ρ на множестве A называется *частичным порядком* на A.

Пример 4.1. Бинарное отношение \leq на множестве действительных чисел R является частичным порядком: (а) рефлексивность: $\forall x \in A \ x \leq x$; (б) транзитивность: $\forall x, y, z \in A \ x \leq y, y \leq z \Rightarrow x \leq z$; (в) антисимметричность: $\forall x, y \in A \ x \leq y, y \leq x \Rightarrow x = y$.

Пример 4.2. Бинарное отношение \leq на множестве R^2 определяемое следующим образом: $\langle x_1, x_2 \rangle \leq \langle y_1, y_2 \rangle \Leftrightarrow x_i \leq y_i, \ i=1,2$ (называемое *отношением Парето*), является частичным порядком. Обоснование аналогично приведенному в примере 4.1. Аналогичным образом можно задать частичный порядок на R^3 , R^4 и т.д.

Пример 4.3. Бинарное отношение \subseteq на множестве 2^U всех подмножеств некоторого универсального множества $U \neq \emptyset$ (см. тему №1) является частичным порядком: (а) рефлексивность: $\forall A \in 2^U \ A \subseteq A$;

(б) транзитивность: $\forall A, B, C \in 2^U$ $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$; (в) антисимметричность: $\forall A, B \in 2^U$ $A \subset B, B \subset A \Rightarrow A = B$.

Пример 4.4. Рассмотрим отношение «подчиненности» на множестве должностей некоторого предприятия (см. рис. 4.1; овальными рамками и кружками обозначены сотрудники предприятия, не имеющие других в своем подчинении). По определению считаем, что каждый работник предприятия подчиняется самому себе (аналогично параллельности прямой самой себе в курсе геометрии). Для нормального функционирования предприятия отношение подчиненности с необходимостью должно быть антисимметричным (так как в противном случае найдутся две должности x и y такие, что x подчиняется y и, наоборот, y подчиняется x, что приводит к абсурдной ситуации). А для централизованного управления предприятием в целом, а также внутри любого его подразделения необходима транзитивность отношения подчиненности, чтобы распоряжения, отдаваемые руководителем данного подразделения предприятия, относились ко всем работникам этого подразделения.

Линейный порядок. Пусть ρ – частичный порядок на множестве A. Элементы $x, y \in A$ называются *сравнимыми по* ρ , если выполняется либо $x\rho y$, либо $y\rho x$. Частичный порядок ρ на множестве A называется *линейным*, если любые два элемента из A сравнимы по ρ .

Пример 4.5. Бинарное отношение \leq на множестве действительных чисел R является линейным порядком на R. Действительно, $\forall x, y \in R$ возможны случаи: (a) $\min(x, y) = x$, и тогда $x \leq y$; (б) $\min(x, y) = y$, и тогда $y \leq x$.

Пример 4.6. Отношение \leq на множестве R^2 (см. пример 4.2) не является линейным, так как пары $\langle 0,1 \rangle, \langle 1,0 \rangle \in R^2$ не сравнимы.

Пример 4.7. Бинарное отношение \subseteq на 2^U (см. пример 4.3) не является линейным при $|U| \ge 2$. Например, при $U = \{1; 2\}$, $A = \{1\}$, $B = \{2\}$ множества A и B не сравнимы (ни одно из них не является подмножеством другого.

Пример 4.8. Бинарное отношение «подчиненности» на множестве должностей некоторого предприятия, соответствующее рис. 4.1, не является линейным порядком, так как, например, кассир не подчиняется бригадиру 1, а бригадир 1 не подчиняется кассиру.

Множество A с заданным на нем отношением частичного (линейного) порядка ρ называется частично (линейно) упорядоченным.

Будем далее для произвольного отношения частичного прядка вместо символа ρ (общего для всех бинарных отношений), использовать символ \leq . Введем для произвольного отношения частичного порядка \leq на множестве A ассоциированное с ним отношение строгого порядка < на множестве A, определяемое условием: $\forall x,y\in A\; x < y \Leftrightarrow x \leq y$, $x \neq y$. Из определения < следует, что \leq \leq <.

Упражнение 4.1. Доказать, что отношение строгого порядка \prec на множестве A является антисимметричным и транзитивным.

Решение. Антисимметричность следует из утверждения 3.1 (см. тему №3). Покажем транзитивность. Пусть $x, y, z \in A$, x < y, y < z. Покажем, что x < z. Из x < y, y < z следует, что $x \le y$, $y \le z$, откуда (используя транзитивность \le) $x \le z$. Тогда, если предположить невыполнение условия x < z, то получаем, что x = z. Однако, из условий: $x = z, x \le y$, $y \le z$, в силу антисимметричности \le , получаем, что x = y, а это противоречит условию x < y.

Пусть A - частично упорядоченное множество, a, $b \in A$. Назовем *сегментом* множество $[a,b] = \{x \in A \mid a \le x \le b\}$. Например, в соответствии со схемой, приведенной на рис. 4.1 (см. пример 4.4) [курьер, директор]={курьер, главбух, директор}.

Замечание 4.1. Пусть A — частично упорядоченное множество с заданным на нем бинарным отношением частичного (линейного) порядка \leq . Тогда любое его подмножество B также частично (линейно) упорядочено бинарным отношением частичного (линейного) порядка $\leq \cap B^2$ (докажите рефлексивность, антисимметричность, транзитивность бинарного отношения $\leq \cap B^2$; а в случае линейного порядка \leq докажите сравнимость любых двух элементов из B по $\leq \cap B^2$). Для простоты обозначений, для произвольных элементов $x, y \in B$ в случае $\langle x, y \rangle \in \leq \cap B^2$ кратко пишем $x \leq y$.

Пусть A – частично упорядоченное множество. Элемент $a \in A$ называется максимальным (минимальным) по \leq на множестве A, если $\forall x \in A$ из того, что $a \leq x$ ($x \leq a$) следует, что a = x. Элемент $a \in A$ называется наибольшим (наименьшим) по \leq на множестве A, если $\forall x \in A$ $x \leq a$ ($a \leq x$). Следующее утверждение очевидно.

Утверждение 4.1. Пусть A — частично упорядоченное множество. Элемент $a \in A$ является *максимальным (минимальным)* по \leq на множестве A, тогда и только тогда, когда не существует элемента $x \in A$ такого, что $a \prec x$ ($x \prec a$).

Пример 4.9. В примере 4.4 минимальными элементами будут сотрудники предприятия, которые не имеют никого в своем подчинении (изображены овальными рамками или кружками), а наименьшие элементы отсутствуют. В этом же примере единственным максимальным, а также наибольшим элементом является директор.

Пример 4.10. В примере 4.3 единственным минимальным, а также наименьшим элементом является множество \varnothing , а единственным максимальным, а также наибольшим элементом — множество U .

Пример 4.11. В примерах 4.1,4.2 отсутствуют минимальные, максимальные, наименьшие, наибольшие элементы.

Утверждение 4.2. Пусть A – частично упорядоченное множество, a – наибольший (наименьший) элемент на множестве A. Тогда a – единственный максимальный (минимальный) элемент на A.

Доказательство. Будем проводить рассуждения для наибольшего элемента a (для наименьшего элемента a рассуждения аналогичны). Докажем, что элемент a является максимальным. Действительно, для любого элемента $x \in A$ такого, что $a \leqslant x$, имеем: $a \leqslant x$, $x \leqslant a$ (используем то, что a — наибольший элемент на A), откуда в силу антисимметричности \leqslant , выполняется a = x. Пусть теперь a_1 — еще один максимальный элемент на A. Тогда из того, что a — наибольший элемент на A, имеем: $a_1 \leqslant a$, откуда, используя то, что a_1 — максимальный элемент на A, получаем, что $a_1 = a$.

Пусть A – частично упорядоченное множество, $x, y \in A$. Будем говорить, что y покрывает x, если (a) x < y; (б) не существует элемента $z \in A$ такого, что x < z < y.

Пример 4.12. Натуральные числа упорядочены естественным образом по возрастанию: 1 < 2 < 3 < 4 < 5... В этом примере 5 покрывает 4; 4 покрывает 3. Однако 5 не покрывает 3, поскольку 3 < 4 < 5.

Пример 4.13. Рассмотрим отношение \leq на множестве действительных чисел [0,1]. В этом примере не существует $x, y \in [0,1]$ таких, что y покрывает x. Предположим, например, что число 1 покрывает число $x \in [0,1]$. Тогда x < 1, откуда x < (x+1)/2 < 1, а это противоречит тому, что 1 покрывает x.

Частично упорядоченные конечные множества. Диаграммы Хассе. Основным утверждением этого раздела является

Утверждение 4.3. Пусть A — частично упорядоченное конечное множество. Тогда для любых элементов $x,y\in A$ для того, чтобы выполнялось условие x < y, необходимо и достаточно, чтобы нашлись: $k \ge 2$, $x_1, x_2,..., x_k \in A$ такие, что $x = x_1 < x_2 < ... < x_k = y$, и при этом $\forall i \in \{2,...,k\}$ x_i покрывает x_{i-1} .

Идея доказательства. Возможны два случая: (а) y покрывает x и в этом случае доказываемое утверждение выполняется при k=2, $x==x_1 < x_2=y$; (б) y не покрывает x. В случае (б) $\exists z \in A: x < z < y$. Далее, отдельно рассматриваем две пары элементов: x,z и z,y. Теперь уже возможны четыре случая: z покрывает (или не покрывает) x; y покрывает (или не покрывает) z. В любом из случаев покрытия часть требуемой последовательности оказывается найденной. В противных случаях найдутся очередные промежуточные элементы. Например, в случае, когда z не покрывает x и y не покрывает z, $\exists z_1, z_2 \in A: x < z_1 < z < z_2 < y$. В последнем случае отдельно рассматриваем уже четыре пары элементов: x, z_1 ; z_1, z ; z, z_2 ; z_2, y . Поскольку, в силу транзитивности z (см. упражнение 4.1), последовательность выделяемых таким

образом элементов множества A состоит из попарно различных членов, то, в силу конечности A, указанный процесс генерирования новых членов последовательности не является бесконечным и на некотором этапе получим конечную последовательность элементов множества A, удовлетворяющую нашим требованиям.

Утверждение 4.3 позволяет представить любое частично упорядоченное конечное множество A в виде наглядной схемы, называемой диаграммой Хассе. Элементы из A изображаются точками (маленькими кружочками), расположенными на схеме в соответствии со следующим правилом. Если элемент y покрывает элемент x, то точка, изображающая x, располагается ниже точки, изображающей y, и при этом эти точки соединяются прямолинейным отрезком. Таким образом, в силу утверждения 4.3, x < y равносильно тому, что на диаграмме найдется ломаная линия, «восходящая» от x к y (т.е. при движении по это ломаной от точки x к точке y будем всегда подниматься вверх).

Используя диаграмму Хассе, соответствующую некоторому конечному множеству A, с заданным на нем отношением частичного порядка \leq , нетрудно перечислить все упорядоченные пары, принадлежащие бинарному отношению \leq , а также определить минимальные и максимальные элементы. Действительно, в силу утверждений 4.1, 4.3, минимальным элементам соответствуют точки, не связанные прямолинейными отрезками с другими точками, находящимися ниже их (шуточно говоря: у них «ножек нет»). А максимальным элементам будут соответствовать точки, не связанные прямолинейными отрезками с другими точками, находящимися выше их (шуточно говоря: у них «рожек нет»).

Пример 4.14. Примером диаграммы Хассе является схема подчиненности на множестве должностей предприятия (см. рис. 4.1).

Упражнение 4.2. Диаграмма Хассе, соответствующая частичному порядку \leq , заданному на множестве $A = \{a, b, c, d, e, f, g, h, i\}$, представлена рис. 4.2. Определить все упорядоченные пары, принадлежащие \leq , минимальные и максимальные элементы, а также сегмент [a,b].

Рис. 4.2

Решение. По определению частичного порядка, бинарное отношение \leq является рефлексивным, а следовательно, ему принадлежат все пары вида $\langle x, x \rangle$, где $x \in A$. Другие пары, принадлежащие \leq , определяем из диаграммы Хассе, используя соединения элементов прямолинейными отрезками и транзитивность \leq . Например, для элемента a имеем: a < i; $a < i < f \Rightarrow a < f$; $a < i < g \Rightarrow a < g$; $a < i < f < b \Rightarrow$ $\Rightarrow a < b$, откуда следует, что этому частичному порядку принадлежат пары: $\langle a, i \rangle$, $\langle a, f \rangle$, $\langle a, g \rangle$, $\langle a, b \rangle$. Действуя аналогичным образом, получаем следующее множество упорядоченных пар, принадлежащих \leq : $\{\langle a, a \rangle, \langle b, b \rangle, ..., \langle i, i \rangle, \langle a, i \rangle$, $\langle a, f \rangle, \langle a, g \rangle, \langle a, b \rangle, \langle c, i \rangle, \langle c, g \rangle, \langle c, f \rangle$,

 $\langle c,b \rangle$, $\langle d,g \rangle$, $\langle d,b \rangle$, $\langle e,f \rangle$, $\langle e,b \rangle$, $\langle f,b \rangle$, $\langle g,b \rangle$, $\langle h,i \rangle$, $\langle h,f \rangle$, $\langle h,g \rangle$, $\langle h,b \rangle$, $\langle i,g \rangle$, $\langle i,f \rangle$, $\langle i,b \rangle$ }. При этом b - максимален на A ; a,c,d,e,h - минимальны; $[a,b] = \{x \in A \mid a \leqslant x \leqslant b\} = \{a,b,f,g,i\}$.

Утверждение 4.4. Пусть A — конечное частично упорядоченное множество, $a \in A$. Тогда найдутся элементы $a_0, b_0 \in A$ такие, что a_0 — минимален на A , b_0 — максимален на A и при этом $a_0 \le a \le b_0$.

Доказательство. Докажем существование a_0 (для b_0 рассуждение аналогично). Если a — минимален на A, то полагаем $a_0 = a$. В противном случае найдется $a_1 \in A$: $a_1 < a$. Если a_1 — минимален на A, то полагаем $a_0 = a_1$. В противном случае, найдется $a_2 \in A$: $a_2 < a_1$. Если a_2 — минимален на A, то полагаем $a_0 = a_2$ и при этом $a_2 < a_1 < a \Rightarrow a_0 = a_2 < a$ (см. упражнение 4.1). В противном случае, переходим к рассмотрению элемента $a_3 < a_2$ и т.д. Таким образом, возможны два случая. Либо на некотором k -м этапе (где $k \ge 1$) мы получим конечную последовательность элементов $a_1, ..., a_k$ таких, что

$$a_k \prec a_{k-1} \prec \ldots \prec a_1 \prec a \,, \tag{4.1}$$

и при этом a_k минимален на A . Тогда, в силу транзитивности \prec (см. упражнение 4.1), используя (4.1), получаем $a_k \prec a$, т.е. в этом случае можно положить $a_0 = a_k$. Либо для любого номера $k \geq 1$ элемент a_k указанной последовательности не является минимальным на A . Однако этот случай противоречит конечности множества A , поскольку, в силу транзитивности \prec , из (4.1) следует, что все члены этой последовательности попарно различны.

Утверждение 4.5. Пусть A – конечное частично упорядоченное множество и множество минимальных (максимальных) элементов на A состоит из единственного элемента a_0 . Тогда a_0 является наименьшим (наибольшим) элементом на A .

Доказательство. Будем рассматривать случай, когда a_0 — единственный минимальный элемент (случай, когда a_0 — единственный максимальный элемент, рассматривается аналогично). Пусть x — произвольный элемент из A. Покажем, что $a_0 \leqslant x$, откуда и будет следовать, что a_0 является наименьшим на A. Из утверждения 4.4 следует, что для x найдется элемент a_1 , являющийся минимальным на A, такой, что $a_1 \leqslant x$. Но по условиям доказываемого утверждения $a_1 = a_0$.

Пример 4.15. Возвращаясь к упражнению 4.2, используя утверждение 4.5, заключаем, что элемент b является наибольшим на A, а, в силу утверждения 4.2, наименьшего на A элемента нет.

Рассмотрим теперь случай, когда конечное множество является линейно упорядоченным. **Утверждение 4.6.** Пусть A — конечное линейно упорядоченное множество, $|A| = n \ge 2$. Тогда элементы множества $A = \{a_1,...,a_n\}$ можно занумеровать таким образом, что $a_1 < a_2$ $< ... < a_n$, при этом a_1 является наименьшим на A, a_n — наибольшим, и $\forall i \in \{2,...,n\}$ a_i покрывает a_{i-1} .

Доказательство. В силу утверждения 4.4, в A найдутся минимальный и максимальный элементы: a_1 , a_n . Поскольку a_1 , a_n сравнимы со всеми другими элементами, то a_1 является

наименьшим, а a_n — наибольшим на A (см. утверждение 4.1). Заметим, что $a_1 \neq a_n$ (если $a_1 = a_n$, то $\forall a \in A$ $a_1 \leqslant a \leqslant a_n = a_1 \Rightarrow A = \{a_1\}$, а это противоречит условию $n \geq 2$), $a_1 \leqslant a_n$, а следовательно, $a_1 \lessdot a_n$, откуда, в силу утверждения 4.3, $\exists k \leq n-1$, $a_2,...,a_k \in A_n: a_1 \lessdot a_2 \lessdot ... \lessdot a_k \lessdot a_n$, где a_n покрывает a_k и $\forall i \in \{2,...,k\}$ элемент a_i покрывает элемент a_{i-1} . Покажем, что k = n-1. Предположим противное, т.е. пусть $k \lessdot n-1$. Тогда в A найдется элемент $b \notin \{a_1,...,a_k,a_n\}$. Поскольку a_1,a_n являются наименьшим и наибольшим элементами на A соответственно, то

$$a_1 < b < a_n . \tag{4.2}$$

Из (4.2) следует, что $k \geq 2$, поскольку при k=1 a_n покрывает a_1 , а это противоречит (4.2). Поскольку в линейно упорядоченном множестве все элементы сравнимы, то либо $b < a_k$, либо $a_k < b$, а так как a_n покрывает a_k , то, в силу (4.2), $b < a_k$. Совершенно аналогично доказывается, что $b < a_{k-1}$, $b < a_{k-2}$,..., $b < a_2$, откуда, используя (4.2), получаем $a_1 < b < a_2$, а это противоречит тому, что a_2 покрывает a_1 .

Для решения некоторых практических задач (см. замечание 4.2) нередко возникает необходимость расширения данного частичного порядка \leqslant на некотором множестве A до линейного $\leqslant_{\mathcal{I}}$, удовлетворяющего условию $\leqslant\subseteq \leqslant_{\mathcal{I}}$. В случае, когда A — конечное множество, существует простой практически реализуемый алгоритм такого расширения. Идея алгоритма простая. Выбираем любой максимальный элемент a_1 из A и делаем его наибольшим, т.е. включаем в \leqslant все пары вида $\left\langle x, a_1 \right\rangle$, $x \in A$. При этом очевидным образом сохраняются рефлексивность, антисимметричность, транзитивность получаемого таким образом бинарного отношения, т.е. оно снова является частичным порядком на A. Далее удаляем из множества A элемент a_1 , т.е. переходим к рассмотрению множества $A_1 = A \setminus \{a_1\}$, снова являющегося частично упорядоченным (см. замечание 4.1). Затем выделяем в A_1 любой максимальный элемент a_2 и делаем его наибольшим в A_1 , т.е. включаем в \leqslant все пары вида $\left\langle x, a_2 \right\rangle$, $x \in A_1$. Далее удаляем из множества A_1 элемент a_2 и переходим к рассмотрению множества $A_2 = A_1 \setminus \{a_2\}$ и т.д. Действуем так до тех пор, пока в текущем множестве A_i имеется более одного элемента. В случае же, когда в текущем множестве A_i остался один элемент, требуемый линейный порядок $\leqslant_{\mathcal{I}}$ построен (докажите сравнимость по $\leqslant_{\mathcal{I}}$ двух любых элементов из A).

В случае, когда частичный порядок на конечном множестве A задан диаграммой Хассе, описанный алгоритм реализуется следующим образом. В силу утверждения 4.6, диаграмма Хассе строящегося линейного порядка \leq_{π} представляет собой ломаную линию, «восходящую» от наименьшего элемента к наибольшему (т.е. при движении по это ломаной от наименьшего элемента к наибольшему будем все время подниматься вверх). Выбираем любой максимальный элемент a_1 в A, помещаем его в верхней точке диаграммы Хассе для \leq_{π} и удаляем его из диаграммы Хассе для \leq (например, стираем его вместе со всеми прямолинейными отрезками, соединяющими его с другими элементами). Далее выбираем любой максимальный элемент в оставшейся диаграммы Хассе для \leq , помещаем его в следующую по высоте точку из диаграммы Хассе для $\leq_{\tilde{E}}$ и удаляем из текущей диаграммы Хассе для \leq . Действуем так, пока в диаграмме Хассе для \leq еще остаются элементы.

Пример 4.16. Используя описанный алгоритм, построим линейный порядок \leq_{π} , являющийся расширением частичного порядка \leq , заданного диаграммой Хассе на рис. 4.2, т.е. удовлетворяющий условию \leq \subseteq \leq_{π} . Очевидно, что линейный порядок \leq_{π} может быть построен несколькими способами. Один из возможных линейных порядков приведен на рис. 4.3.

Рис. 4.3

Замечание 4.2. Существует немало практических задач, в которых требуется осуществить расширение некоторого частичного порядка, заданного на конечном множестве, до линейного. Примером является организация производства на конвейере. Пусть $A = \{a_1, ..., a_n\}$ - множество операций, необходимых для изготовления некоторого изделия И. Тогда для любых двух операций a_i, a_j , где $i \neq j$, возможны три случая: (a) операция a_i может быть произведена только после выполнения операции a_i ; (б) операция a_i может быть произведена только после выполнения операции a_i ; (в) возможно выполнение операции a_i после a_i и наоборот. Рассмотрим бинарное отношение \leq на A, включающее в себя все пары вида $\langle a_i, a_i \rangle$, i=1,2,...,n, а также пары $\langle a_{i}, a_{j} \rangle$ такие, что операция a_{j} может быть произведена только после выполнения операции a_{i} . Очевидно, что это бинарное отношение является рефлексивным, антисимметричным и транзитивным, т.е. является частичным порядком на A. Заметим, что при сборке изделия V на конвейере необходимо расширить указанный частичный порядок до линейного \leq_{π} , поскольку сборка на конвейере предполагает линейно упорядоченную последовательность выполнения операций. Отметим, что неоднозначность такого расширения дает возможность ставить задачу оптимальной организации конвейера, а именно, выбора линейного порядка, при котором суммарная потеря рабочего времени (при заданных такте C и времени t_i выполнения каждой операции a_i , i = 1, 2, ..., n) достигает минимального значения, что обеспечивает максимальную производительность труда. Тактом работы конвейера назовем время, в течение которого конвейерная линия является неподвижной, чтобы обеспечить возможность выполнения на каждом рабочем месте необходимой последовательности работ. Например, в случае, если для выбранного линейного порядка $\leq_{_{\mathit{I\! I}}}$ выполняется $a_1 <_{_{\mathit{I\! I}}} a_2 <_{_{\mathit{I\! I}}} \ldots <_{_{\mathit{I\! I\! I}}} a_n$, потеря рабочего времени на первом рабочем месте составляет $C-t_1-...-t_{i_i}$, где $i_1=\max\{i\mid t_1+...+t_i\leq C\}$; потеря рабочего времени на втором рабочем месте составляет $C-t_{i_1+1}-...-t_{i_2}$, где $i_2=\max\{i\mid t_{i_1+1}+...+t_i\leq C\}$, и т.д.

ЗАДАЧИ

Задача 4.1. Доказать, что если $\,\rho$ – частичный порядок на $\,A$, то и $\,\rho^{^{-1}}$ – частичный порядок на $\,A$.

Решение. Рефлексивность и антисимметричность ρ^{-1} очевидны. Докажем транзитивность ρ^{-1} . Действительно, $\forall x, y, z \in A < x, y >, < y, z > \in \rho^{-1} \Rightarrow$ $< y, x >, < z, y > \in \rho \Rightarrow < z, x > \in \rho \Rightarrow < x, z > \in \rho^{-1}$.

Задача 4.2. Доказать, что всякое частично упорядоченное множество содержит не более одного наибольшего (наименьшего) элемента.

Решение. Пусть A — частично упорядоченное множество, a — наибольший элемент на A (для случая с наименьшим элементом рассуждение аналогично). Предположим, что b — также наибольший элемент. Тогда по определению наибольшего элемента $a \le b$, $b \le a$, откуда, в силу антисимметричности \le , a = b.

Задача 4.3. В частично упорядоченных множествах, заданных диаграммами Хассе, найти все упорядоченные пары, входящие в данный частичный порядок, максимальные, минимальные элементы, наибольший, наименьший элементы (если таковые имеются), определить сегмент [a,b]. Построить любой линейный порядок, являющийся расширением заданного частичного порядка.

Задача 4.4. Построить пример частично упорядоченного множества, имеющего один минимальный элемент, но не имеющего наименьшего элемента.

Решение. Пусть Z – множество целых чисел, линейно упорядоченное естественным образом (т.е. отношением \leq). Добавим к этому множеству комплексное число i. Оно не сравнимо с числами из Z, а поэтому является и минимальным и максимальным на множестве $Z \cup \{i\}$. Таким образом, искомым множеством является $Z \cup \{i\}$, частично упорядоченное указанным выше способом.

Задача 4.5. Пусть ρ_1, ρ_2 – линейные порядки на множестве A . Доказать, что $\rho_1 \circ \rho_2$ – линейный порядок $\Leftrightarrow \rho_1 = \rho_2$.

Решение. Пусть $\rho_1 \circ \rho_2$ – линейный порядок. Покажем, что $\rho_1 = \rho_2$ (рассуждение в обратную сторону очевидно; см. утверждение 3.4). Предположим, что $\rho_1 \neq \rho_2$, и, например, $\exists \langle x,y \rangle \in \rho_1 : \langle x,y \rangle \notin \rho_2$. В силу рефлексивности ρ_2 , выполняется $x \neq y$. Поскольку ρ_2 -линейный порядок, то $\langle y,x \rangle \in \rho_2$. Из рефлексивности ρ_1,ρ_2 следует (см. задачу 3.5(в)), что $\rho_1 \circ \rho_2 \supseteq \rho_1 \cup \rho_2$, а следовательно, $\langle x,y \rangle$, $\langle y,x \rangle \in \rho_1 \circ \rho_2$, $x \neq y$, что противоречит антисимметричности $\rho_1 \circ \rho_2$.

Задача 4.6. Построить линейный порядок на множествах: (a) N^2 , где $N = \{1,2,...\}$ – натуральный ряд; (б) $N \cup N^2 \cup N^3 \cup ...$

Решение. (a). Обходим точки из N^2 , например, согласно рис. 4.4.

б) Опишем так называемый «лексикографический порядок» (аналогичный порядку расположения слов в словаре; например, слово «аббат» расположено в словаре раньше слова «абзац», последнее слово раньше слова «арба», а последнее слово — раньше слова «Арбат» и т.д.) . Соответственно в рассматриваемом случае $\forall m,n\in\mathbb{N}=\{1,2,...\}$ выполняется: $\langle x_1,...,x_m\rangle$

 $\langle y_1,...,y_n \rangle$ \Leftrightarrow либо $x_1 < y_1$; либо $x_1 = y_1, m = 1, n \geq 2$; либо $m,n \geq 2, x_1 = y_1, x_2 < y_2$; либо $x_1 = y_1, \ x_2 = y_2, \ m = 2, n > 2$; либо $m,n \geq 3$, $x_1 = y_1, \ x_2 = y_2, x_3 < y_3$, и т.д. Для упражнения расположите в лексикографическом порядке последовательности: <1,2,3,1>,<2,2,1>,<1,1>,<1>,<1>,<1>,<1>,<1>.

Задача 4.7. Показать, что, если A, A_1 – частично упорядоченные множества с частичными порядками \leq , \leq 1, соответственно, функция $f:A\to A_1$ осуществляет взаимно-однозначное соответствие между множествами A, A_1 , функция f является монотонной, т.е. $\forall x_1, x_2 \in A$ $x_1 \leq x_2 \Rightarrow f(x_1) \leq 1$ $f(x_2)$, то функция $f^{-1}:A_1\to A$ может не быть монотонной.

Решение. Пусть $A = A_1 = \{a, b, c\}$. Частично упорядочим множество A двумя способами, заданными диаграммами Хассе, изображенными на рис.4.5. Первая диаграмма соответствует частичному порядку \leq , а вторая – линейному порядку \leq 1. Пусть $\forall x \in A$ f(x) = x1. Тогда функция $f: (A, \leq) \to (A, \leq_1)$ является монотонной, а функция $f^{-1} = f: (A, \leq_1) \to (A, \leq)$ не является монотонной, поскольку $b \leq_1 c$, но b и c не сравнимы по \leq 4 (т.е. $b \leq c$ не выполняется).

Определение. Пусть A, A_1 – частично упорядоченные множества с частичными порядками \leq , \leq 1 соответственно. Тогда, если существует биективная функция $f:A \to A_1$ такая, что функции f, f^{-1} являются монотонными, то говорят, что f является изоморфизмом частично упорядоченных множеств (A, \leq), (A_1 , \leq 1).

Задача 4.8. Доказать, что (N, \leq) , (N, \geq) , где $N = \{1, 2, ...\}$ – натуральный ряд, не изоморфны.

Решение. В случае изоморфизма образ минимального элемента очевидным образом снова будет минимальным, максимального — максимальным, наименьшего — наименьшим, наибольшего — наибольшим. Но тогда частичные порядки (N, \leq) , (N, \geq) не изоморфны, поскольку в (N, \leq) существует наименьший элемент, но отсутствует наибольший, а в (N, \geq) — наоборот.

Задача 4.9. Рассмотрим частичный порядок \leq на множестве натуральных чисел N = $\{1,2,...\}$: $\forall k,m \in \mathbb{N}$ 2k-1 < 2m, т.е. любое нечетное число меньше любого четного, а множества четных и нечетных чисел расположены «естественным» образом по возрастанию. Доказать, что (\mathbb{N},\leq) , (\mathbb{N},\leqslant) не изоморфны.

Решение. Предположим противное. Пусть существует изоморфизм $f:(N,\leq) \to (N,\leqslant)$, и $a=f^{-1}(2)$. Тогда $\forall k\in N$ $f^{-1}(2k-1)< a$, а это противоречит конечности множества $\{1,2,...,a\}$.

Задача 4.10. Доказать, что любое непустое частично упорядоченное множество A изоморфно некоторой системе подмножеств множества A, упорядоченной включением \subseteq .

Решение. Пусть \leq — отношение частичного порядка на A . Для любого элемента $a \in A$ обозначим $A_a = \{x \in A \mid x \leqslant a\}$. Очевидно, что $\forall a \in A \ a \in A_a$. Рассмотрим отображение $f: A \to 2^A$ такое, что $\forall a \in A \ f(a) = A_a$. Докажем инъективность этого отображения. Пусть

 $a,b\in A, f(a)=f(b)$. Покажем, что a=b . Действительно, $A_a=f(a)=f(b)=A_b\Rightarrow a\in A_a=A_b, b\in A_b=A_a\Rightarrow a\leqslant b\,, b\leqslant a\Rightarrow a=b\,.$ Докажем теперь изоморфизм $(A,\leqslant), (f(A),\subseteq).$ (a) Если $a,b\in A, a\leqslant b\,$, то $\forall x\in A\quad x\leqslant a\Rightarrow x\leqslant b\,$, а следовательно, $f(a)=\{x\in A\mid x\leqslant a\}\subseteq \{x\in A\mid x\leqslant b\}=f(b).$ (б) Обратно, если $a,b\in A, f(a)\subseteq f(b)$, то $a\in A_a=f(a)\subseteq f(b)=A_b\Rightarrow a\in A_b\Rightarrow a\leqslant b\,.$