0368-3248-01-Algorithms in Data Mining

Fall 2012

Lecture 6: Assignment 2

Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do not cite this note as a reliable source. If you find mistakes, please inform me.

1 Weak random projections

setup

In this question we will construct a simple and weak version of random projections. That is, given two vectors $x, y \in \mathbb{R}^d$ we will find two new vectors $x', y' \in \mathbb{R}^k$ such that from x' and y' we could approximate the value of ||x-y||. The idea is to define k vectors $r_i \in \mathbb{R}^d$ such that each $r_i(j)$ takes a value in $\{+1, -1\}$ uniformly at random. Setting $x'(i) = r_i^T x$ and $y'(i) = r_i^T y$ the questions will lead you through arguing that $\frac{1}{k}||x'-y'||_2^2 \approx ||x-y||_2^2$.

questions

- 1. Let z = x y, and z' = x' y'. Show that $z'(\ell) = r_{\ell}^T z$ for any index $\ell \in [1, \dots, k]$.
- 2. Show that $E\left[\frac{1}{k}||z'||_2^2\right] = E\left[(z'(\ell))^2\right] = ||z||_2^2$.
- 3. Show that

$$Var[(z'(\ell))^2] \le 4||z||_2^4.$$

Hint: for any vector w we have $||w||_4 \leq ||w||_2$.

4. From 3 (even if you did not manage to show it) claim that

$$\operatorname{Var}\left[\frac{1}{k}||z'||_2^2\right] \le 4||z||_2^4/k.$$

5. Use 3 and Chebyshev's inequality do obtain a value for k for which:

$$(1-\varepsilon)||x-y||_2^2 \le \frac{1}{k}||x'-y'||_2^2 \le (1+\varepsilon)||x-y||_2^2$$

with probability at least $1 - \delta$.