5XTC0, Components in wireless technologies

Lab 1: Computer-aided circuit simulation tool QUCS

Student number 1819283

Daniel Tyukov A. Example

Exercise 1a - Short-circuit load ($Z_0 = 50\Omega$)

Circuit diagram:

Simulation results:

Explanation:

All power from the power source is reflected back but opposite phase. $\Gamma = Z_1 - Z_0 / Z_1 + Z_0 = (0-50) / (0+50) = -50/50 = -1$.

Exercise 1b - Short-circuit load ($Z_0 = 100\Omega$)

Circuit diagram:

Simulation results:

Explanation:

All power from the power source is reflected back but opposite phase. $\Gamma = Z_{\Gamma}Z_{0}/Z_{1} + Z_{0} =$ (0-100) / (0+100) =

Exercise 1c - Open-circuit load ($Z_0 = 50\Omega$)

Circuit diagram:

Simulation results:

Explanation:

All power from the power source is reflected back with same phase and amplitude, $Z_l = \inf_{l} |Z_l| + |Z_0| + |Z_0| = (0-50) / (0+50) = \inf_{l} |Z_l| + |Z_0| = (0-50) / (0+50) = \lim_{l} |Z_l| + |Z_l| +$

Exercise 1d - Open-circuit load ($Z_0 = 100\Omega$)

Circuit diagram:

Simulation results:

Explanation:

All power from the power source is reflected back with same phase and amplitude, $Z_l = \inf_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2}$

Exercise 1e - Matched load ($Z_0 = 50\Omega$)

Circuit diagram:

Simulation results:

Explanation:

 $Z_L = Z_0 \Gamma = 0$, with a matched filter there is 0 reflection coefficient perfect matching, no reflections.

Exercise 1f - Matched load ($Z_0 = 100\Omega$)

Circuit diagram:

Simulation results:

Explanation:

 $Z_L = Z_0 \Gamma = 0$, with a matched filter there is 0 reflection coefficient perfect matching, no reflections. (In this case very minimal insignificant reflection).

Exercise 1g - LC lumped element (resonator) as load ($Z_0 = 50\Omega$) Circuit diagram:

Simulation results:

Explanation:

 $f=1/2pi*sqrt(LC) \Rightarrow LC=2.5*10^-20=25*10^-21$ so we can use L= 1*10^-12 = 1pico and C = $25*10^-9 = 25$ nano

 $Z_LC= jwL + 1/jwC = j6.27$, $Z_total = Z_LC \parallel 50$, $\Gamma = (Z_total - Z_0) / (Z_total + Z_0) = 6.89 * 10^-13 - j8.3 * 10^-7 is the obtained reflection coefficient.$

Exercise 1g - LC lumped element (resonator) as load ($Z_0 = 100\Omega$) Circuit diagram:

Simulation results:

Explanation:

The exact same steps as in 1g just for $Z_0 = 100$

Exercise 2 - Quarter-wave transformer

Circuit diagram:

Simulation results:

Explanation:

 $Z1 = sqrt(Z_0 * R_L) = sqrt(50 * 100) = 71$ Ohm, lambda = c/f = 3* 10 ^8 / 1*10^9 = 0.3m and then L = lambda/4 = 75 mm.

 Γ = Z_in - Z_0 / Z_in + Z_0 -> Z_in = Z1^2/R_L where Z1 = sqrt(Z_0 * R_L) so Z_in=Z_0 so Γ = 0 in our case it is close to 0 so no reflection.

Exercise 3a – Lossy Quarter-wave transformer (1 dB/m)

Circuit diagram:

Simulation results:

Explanation:

attenuation for 75mm = aL = 1dB/m * 0.075 = 0.075 dB, exponential loss factor = e^{-2aL}=0.983, Z_in != Z_0 since we have real world attenuation, Z_in = Z_1^2/R_L * e^{-2aL} = 50 * 0.983 = 49.15 so the Γ ! = 0 so reflects more.

Exercise 3b – Lossy Quarter-wave transformer (50 dB/m)

Circuit diagram:

Simulation results:

Explanation:

Same operation as last question but due to higher attenuation more reflection as a higher reflection coefficient in the range of 0.1.

Exercise 4 – microstrip Quarter-wave transformer Circuit diagram:

Simulation results:

Why is L shorter as compared to the ideal Transmission line case?

The length L is shorter in the microstrip case compared to an ideal transmission line because the effective permittivity (ϵ eff=2.49) of the microstrip is lower than the substrate permittivity (ϵ r=4.2), causing the guided wavelength (λ _g) to be shorter than the free-space wavelength (λ 0).

Exercise 5 – Grounded co-planar line Quarter-wave transformer Circuit diagram:

Simulation results:

Which line is less lossy? The microstrip line of exercise 4, or this grounded coplanar line?

Microstrip Line (Exercise 4) Losses:

- Conductor Losses = 0.0058358 dB
- Dielectric Losses = 0 dB

Grounded Coplanar Line (Exercise 5) Losses:

- Conductor Losses = 0.00788319 dB
- **Dielectric Losses = 0.000239029 dB** (small but nonzero)

Comparison:

- The Grounded Coplanar Line has slightly higher conductor losses (0.00788 dB vs. 0.00583 dB).
- The **Dielectric Losses** in the grounded coplanar line are **slightly nonzero**, while they were effectively **0 dB** in the microstrip line.

Conclusion:

The **Microstrip Lineis less lossy** compared to the **Grounded Coplanar Line** due to **lower conductor and dielectric losses**. This is generally expected because in a grounded coplanar waveguide (GCPW), more of the current is concentrated along the edges, increasing conductor losses due to surface resistance effects.