

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М32021	К работе допущен:
Студент: Корнилов Н. В.	Работа выполнена:
Преподаватель: Тимофеева Э. О.	Отчёт принят:

Рабочий протокол и отчет по лабораторной работе № 5.06 «Квантовая криптография»

1. Цель работы:

- Изучение основных принципов квантовой связи
- Создание зашифрованного сообщения
- Обнаружение перехватчика
- 2. Объект исследования:
 - Импульсный источник света
- 3. Рабочие формулы и исходные данные:

Ali	ce		Bob	
State	Basis, Bit	Chosen Basis	State	Measured Bit
		+	$\widehat{M}_{+} 0^{\circ}\rangle = 0^{\circ}\rangle$	0
0°}	+,0	×	$\widehat{M}_{\times} 0^{\circ}\rangle = \frac{1}{\sqrt{2}} 45^{\circ}\rangle - \frac{1}{\sqrt{2}} -45^{\circ}\rangle$	0 or 1
		+	$\widehat{M}_{+} \left 90^{\circ} \right\rangle = - \left 90^{\circ} \right\rangle$	1
90°}	+,1	×	$\widehat{M}_{\times} \left 90^{\circ} \right\rangle = \frac{1}{\sqrt{2}} 45^{\circ}\rangle + \frac{1}{\sqrt{2}} -45^{\circ}\rangle$	0 or 1
45°}	×, 1	+	$\widehat{M}_{+} 45^{\circ}\rangle = \frac{1}{\sqrt{2}} 0^{\circ}\rangle - \frac{1}{\sqrt{2}} 90^{\circ}\rangle$	0 or 1
		×	$\widehat{M}_{\times} 45^{\circ}\rangle = 45^{\circ}\rangle$	1
-45°}	×, 0	+	$\widehat{M}_{+} \left -45^{\circ} \right\rangle = \frac{1}{\sqrt{2}} \left 0^{\circ} \right\rangle + \frac{1}{\sqrt{2}} \left 90^{\circ} \right\rangle$	0 or 1
		×	$\widehat{M}_{\times} \left -45^{\circ} \right\rangle = \left - -45^{\circ} \right\rangle$	0

4. Оборудование:

- Установка состоит из 3 основных элементов: Алиса, Боб и Ева. Алиса оптическая плита, блок управления с источником излучения, полуволновая пластинка с маркировкой "— 45° 0° 45° 90°". Боб оптическая плита, светоделительный куб, два детектора сигнала, полуволновая пластинка с маркировкой "0° 45°". Ева оптическая плита, блок управления с источником излучения, полуволновая пластинка с маркировкой "— 45° 0° 45° 90°", светоделительный куб, два детектора сигнала, полуволновая пластинка с маркировкой "0° 45°".
- Полуволновая пластинка

• Блок управления источником излучения

• Детектор сигнала

5. Схема установки:

6. Результаты прямых измерений и их обработки (таблицы, примеры расчётов):

Создание секретного ключа

Стенерируем случайные наборы базисов для Алисы и Боба, а также случайный набор битов для Алисы. Длина набора – 52 бита.

Для Алисы получим такую таблицу:

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Базис	Χ	+	+	Χ	Χ	+	Χ	Χ	+	+	+	+	Χ	Χ	Χ	+	+	+	+	Χ	Χ	+	+	Χ	+	Χ
Бит	0	0	1	0	1	0	1	1	0	1	1	1	1	0	0	1	1	1	0	0	1	0	1	1	0	0
Nº	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Базис	Χ	Χ	Χ	+	+	Χ	Χ	+	Χ	Χ	Χ	Χ	+	Χ	+	Х	+	Χ	Х	Χ	+	Х	+	+	Χ	Χ
Бит	1	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	1

Передадим сообщение с Алисы на Боба

Получим для Боба вот такую таблицу:

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Базис	Χ	Χ	Χ	Χ	+	+	Χ	Χ	Χ	Χ	+	+	+	+	+	Х	Χ	+	+	+	+	Χ	Χ	Χ	+	Х
Бит	0	0	0	0	1	0	1	1	0	0	1	1	1	1	0	1	0	1	0	0	1	0	1	1	0	0
Nº	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Базис	+	Χ	Χ	+	Χ	Х	+	Χ	Χ	+	Χ	Χ	Χ	Χ	+	+	+	Χ	+	+	+	Χ	Χ	+	Χ	Х
Бит	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	1	1

Выберем те сообщения, где базис совпал и получим секретный ключ длиной 28 бит

0001 1111 0100 1001 0000 0001 0011

Кодирование слова

В качестве слова для сообщения возьмем: TCSG - 10011 00010 10010 00110

Используем первые 20 из 28 бит нашего секретного ключа

Слово			T					С					S					G		
Исходное	1	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0
Ключ	0	0	0	1	1	1	1	1	0	1	0	0	1	0	0	1	0	0	0	0
Зашифрованное	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0

Для передачи сообщения используем базис +

Алиса передает сообщение:

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Базис	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Бит	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0

Боб получает сообщение:

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Базис	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Бит	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0

Расшифровка сообщения

Полученное	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0
Ключ	0	0	0	1	1	1	1	1	0	1	0	0	1	0	0	1	0	0	0	0
Расшифрованное	1	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0
Слово			T					С					S					G		

Введение в установку Евы и обнаружение перехватчика Алисой и Бобом

Переданное Алисой сообщение

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Базис	+	+	Χ	+	Χ	+	Χ	+	Χ	+	+	+	Χ	Χ	Χ	Χ	+	Χ	Χ	+	Χ	+	Χ	+	+	+
Бит	0	0	0	0	1	0	1	1	1	1	1	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0
Nº	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Базис	+	+	+	+	Χ	+	+	Χ	+	Χ	Χ	+	Χ	+	+	+	+	Χ	Χ	Χ	Χ	Χ	+	+	Χ	+
Бит	1	0	1	1	0	1	0	1	1	1	1	0	1	1	0	1	1	1	0	1	0	1	0	0	0	0

Евой

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Базис	+	+	+	Χ	Х	Χ	Χ	Χ	Χ	+	Χ	Χ	Χ	Χ	+	+	+	Χ	+	Χ	+	+	+	Χ	+	+
Бит	0	0	1	1	1	1	1	0	1	1	0	1	0	0	1	0	0	1	1	1	1	1	1	0	0	0
Nº	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Базис	Χ	Х	+	Χ	+	+	Χ	+	+	+	Χ	+	Χ	+	+	+	Χ	Χ	+	Χ	Χ	+	Χ	+	+	+
Бит	0	1	1	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1	0	1	0	1	1	0	0	0

Полученное Бобом

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Базис	Χ	+	+	+	Х	+	Χ	+	Χ	+	+	+	+	Χ	Χ	+	+	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	+
Бит	0	0	1	0	1	0	1	0	1	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
Nº	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
Базис	Χ	+	+	+	+	+	Χ	Χ	+	+	Χ	+	Χ	Χ	Χ	Х	+	Χ	+	+	+	+	Χ	+	+	+
Бит	0	0	1	0	0	1	0	1	1	0	1	0	1	1	1	1	1	1	0	0	1	1	1	0	0	0

Помеченные цветом значения соответствую битам, базисы которых совпали у Алисы и Боба. При этом зеленый цвет означает, что также совпали и полученные биты, а оранжевый – биты не совпали.

Итоговые секретные ключи:

У Алисы: 00101111100101111100111111011100

У Боба: 0010101100000100000101111011100

7 из 31 (23%) переданных битов не совпадают, что позволяет определить, что в передачу сообщения была внедрена Ева.

7. Графики

8. Выводы и анализ результатов работы

В первой части эксперимента мы смогли понять основные принципы работы квантовой связи и алгоритма случайного распределения квантового ключа ВВ84 и с помощью их создать секретный ключ.

Во второй части работы при помощи этого ключа нам удалось успешно зашифровать, передать, а затем расшифровать полученное сообщение.

В третьей части работы, при создании секретного ключа шифрования, мы смогли заметить, что в процесс была внедрена Ева, что следует из анализа полученных нами данных.

9. Ответы на контрольные вопросы:

а. В чем заключается метод одноразового ключа?

Метод одноразового ключа, также известный как шифр с одноразовым блокнотом, является криптографическим алгоритмом, который предлагает теоретически идеальную безопасность при соблюдении определенных условий. Принцип заключается в использовании случайного ключа, который имеет ту же длину, что и сообщение, которое нужно зашифровать или расшифровать. Ключ используется только однажды и затем уничтожается. Для шифрования и расшифрования используется применение операции XOR над сообщением и ключом.

b. Каковы правила данного метода шифрования?

- 1. Генерация ключа: Создайте случайный ключ, который имеет ту же длину, что и сообщение, которое нужно зашифровать. Ключ должен быть настоящим случайным числом, а не генерироваться алгоритмически.
- 2. Секретность ключа: Убедитесь, что ключ абсолютно секретен и известен только отправителю и получателю.
- 3. Шифрование: Отправитель комбинирует свое сообщение с ключом с использованием операции XOR на битовом уровне. Полученный результат является зашифрованным сообщением.
- 4. Передача: Зашифрованное сообщение передается получателю по каналу связи. Поскольку ключ и сообщение имеют одинаковую длину, а ключ случаен, зашифрованное сообщение будет выглядеть как случайный набор данных.
- 5. Расшифровка: Получатель комбинирует зашифрованное сообщение с тем же ключом снова с использованием операции XOR. Это приводит к восстановлению исходного текста сообщения.
- 6. Одноразовое использование ключа: Ключ должен использоваться только однажды и затем уничтожаться. Повторное использование ключа может привести к уязвимостям и возможности раскрытия информации.

с. Чем одно-базисная система отличается от двух-базисной?

В одно-базисной системе используется только один базис для кодирования и измерения квантовых состояний. Такая система позволяет Еве угадать нужный базис и незаметно получить доступ к передаваем данным. В двух-базисной системе используются два ортогональных базиса для кодирования и измерения квантовых состояний (0 и 90, -45 и 45). Благодаря такой системе, в случае внедрения Евы у Алисы и Боба есть возможность это определить из-за появления несовпадений битов при одинаковых базисах.

d. Для чего в установке используется полуволновая пластинка? Полуволновая пластинка — это оптический элемент, который используется для изменения поляризации света. В лабораторной работе полуволновые пластинки используются для подготовки и кодирования квантовых состояний в различных поляризационных базисах.

е. Как производится выполнение протокола шифрования?

Шифрование в лабораторной выполняется при помощи применения операции побитовой операции XOR над секретным одноразовым ключом и сообщением. Дешифрование является аналогичной операцией.

f. Как можно обнаружить перехватчика сообщения (Еву)?

Обнаружить перехватчика можно при появлении случайных ошибок в алгоритме генерации секретного ключа между Алисой и Бобом. Согласно теории, порядка 25% из переданных битов между Алисой и Бобом, в одном базисе, будут иметь разные значения.

g. Как выбираются Алисой базис и бит при создании ключа шифрования?

Для обеспечения высокой надежности шифрования базис и биты при создании ключа должны выбираться АБСОЛЮТНО случайно. Для генерации таких чисел могут использоваться такие источники как физические шумы, такие, как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучение.

h. Каковы правила бинарного сложения?

$$0 + 0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$1 + 1 = 0$$