

2017—2018 学年第一学期 《高等数学 (2-1)》期中考试卷

(工科类)

专业班级	
姓 名	
学号	
开课系室_	基础数学系
考试日期_	2017年11月11日

题号	_		11)	四	五	六	七	八	总 分
本题满分	12	18	10	18	8	12	10	12	
本题得分									
阅卷人									

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共八道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共8页。

- 一. 简答与选择题(共4小题,每小题3分,共计12分)
 - 1. 试说明数列 $\{x_n\}$ 收敛与数列 $\{x_n\}$ 有界的关系.

本题满分 12 分			
本			
题			
得			
分			

2. 试说明函数 f(x) 在 x_0 点可导与连续的关系.

3. 选择题: 设函数 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当 n 为大于 2 的正 整数时, $f^{(n)}(x) = ($

- - (A) $n![f(x)]^{n+1}$; (B) $n![f(x)]^{2n}$;
 - (C) $n[f(x)]^{n+1}$; (D) $[f(x)]^{2n}$.
- 4. 选择题: 若函数 f(x) 在 x_0 点取得极值,则(

 - (A) $f'(x_0) = 0$; (B) $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在; (C) $f''(x_0) > 0$; (D) $f'(x_0) = 0$, f''(x) < 0.

二. (共3小题,每小题6分,共计18分)

1. 求极限: $\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{1}{n^2+n}\right)$.

本题满分 18 分			
本			
题			
得			
分			

2. 求极限: $\lim_{x\to 0} \frac{\ln(1+\sin^2 x)}{e^{x^2}-1}$.

3. 求极限:
$$\lim_{x\to 1} (\frac{1}{\ln x} - \frac{1}{x-1})$$
.

三. (10 分) 设函数 $f(x) = \frac{x|x-2|}{(x^2-4)\sin x}$, 指出函数的间断点,并判断其类型.

本题满分10分			
本			
题			
得			
分			

四. (共3小题,每小题6分,共计18分)

1. 设
$$f(x) = x(x+1)(x+2)\cdots(x+2017)$$
, 求 $f'(0)$.

本	题满分 18 分
本	
题	
得	
分	

3. 设方程
$$\sqrt[x]{y} = \sqrt[y]{x}$$
 $(x > 0, y > 0)$ 确定二阶可导函数 $y = y(x)$,求 $\frac{d^2y}{dx^2}$.

五. (8 分) 设函数
$$f(x) = \begin{cases} a+2+b(1+\sin x), & x<0 \\ e^{ax}-1, & x\geq 0 \end{cases}$$
 , 试确定常数 a,b , 使 $f(x)$ 在 $x=0$ 点可导,并求 $f'(0)$.

本题满分8分			
本			
题			
得			
分			

六.应用题(共2小题,每小题6分,共计12分)

1. 求摆线
$$\begin{cases} x = a \ (t - \sin t) \\ y = a \ (1 - \cos t) \end{cases}$$
 在 $t = \frac{\pi}{2}$ 处的切线方程.

本	题满分 12 分
本	
题	
得	
分	

2. 如果将一个边长为6米的正方形铁皮的四角各剪去同样大小的小正方形后,制成一个无盖盒子,问剪去小正方形的边长为多少米时,可使盒子的容积最大?

七. $(10\ eta)$ 已知 f(x)=x-5rctan x,试讨论函数的单调区间、极值、凸性、拐点 .

本题满分 10 分		
本		
题		
得		
分		

八. 证明题(共2小题,每小题6分,共计12分)

1. 证明: 当x > 1时, 有 $2\sqrt{x} > 3 - \frac{1}{x}$.

本	题满分 12 分
本	
题	
得	
分	

2. 设函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = f(1) = 0,

证明: 至少存在一点 $\xi \in (0,1)$,使得 $f(\xi) + f'(\xi) = 0$.

各章分值分配: 第1章 25分; 第2章 38分; 第3章 37分.