Отчет по лабораторной работе №2.2.1 Исследование взаимной диффузии газов

Бичина Марина группа Б04-005 1 курса $\Phi \Theta \Phi M$ 22.03.2021

1 Аннотация

Цель работы:

- 1. регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов
- 2. определение коэффициента диффузии по результатам измерений

Оборудование:

- 1. измерительная установка
- 2. форвакуумный насос
- 3. баллон с газом (Не)
- 4. манометр
- 5. источник питания
- 6. магазин сопротивлений
- 7. гальванометр
- 8. секундомер

2 Теоретическая часть

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b, подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, \quad j_b = -D_{ba} \frac{\partial n_b}{\partial x}$$
 (1)

где $D_{ab}=D_{ba}=D$ - коэффициент взаимной диффузии компонентов

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными: $P=(n_{He}+n_Bk_{\rm B},\ T=const,\$ где n_{He},n_B – концентрации диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_B=\Delta n_{He}.$ Следовательно, достаточно ограничиться описанием диффузии одного из компонентов (остановимся на гелии)

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала $(n_{He} \ll n)$. Кроме того, атомы гелия существенно легче молекул, составляющих воздух $(\mu_{He} \ll \mu_{N_2}, \mu_{O_2})$, значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц

гелия на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен:

$$D = \frac{1}{3}\lambda \langle v \rangle, \tag{2}$$

где $\langle v \rangle = \sqrt{\frac{8RT}{\pi \mu}}$ — средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0 \sigma}$ — их длина свободного пробега, n_0 — концентрация рассеивающего фона, σ — сечение столкновения частиц примеси с частицами фона.

В общем случае необходимо учитывать диффузию каждого из компонентов. Более подробное рассмотрение показывает, что для бинарной смеси формула (2) сохраняется, если:

- 1. Под λ понимать величину $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_B=\frac{P}{k_{\rm B}T}$ полная концентрация частиц
- 2. Под $\langle v \rangle$ понимать среднюю относительную скорость частиц разных сортов.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе, и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально $(D \propto \frac{1}{P})$

Для исследования взаимной диффузии используется установка, изображенная на рисунке 1. Два сосуда с примерно одинаковыми объемами $V_1 \approx V_2 \equiv V$ соединены трубкой длины l и сечения S. Сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов в обоих сосудах с течением времени выравниваются.

Рассмотрим этот процесс. Решение задачи упрощается, если сделать несколько допущений:

- 1. Пренебрежем объемом соединительной трубки, поскольку он мал по сравнению с объемами сосудов
- 2. Концентрацию газов в каждом из сосудов будем считать постоянной по всему объему сосуда
- 3. Предположим, что процесс выравнивания концентраций происходит в основном благодаря диффузии в трубке

Тогда диффузионный потом в любом сечении трубки одинаков, поэтому $J=-DS(\partial n/\partial x)$ не меняется вдоль трубки, следовательно:

$$J = -DS \frac{n_1 - n_2}{I} \tag{3}$$

Обозначим через Δn_1 и Δn_2 изменения в объемах V за время Δt . Тогда $V_1\Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ – изменению этого компонента в V_2 . Из закона сохранения вещества $V_1\Delta n_1=-V_2\Delta n_2$. Тогда получим:

$$V\frac{dn_1}{dt} = -DS\frac{n_1 - n_2}{l}, \quad V\frac{dn_2}{dt} = DS\frac{n_1 - n_2}{l}$$
 (4)

Вычтя уравнения друг из друга, найдем:

$$\frac{n_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS(\frac{2}{V}) \tag{5}$$

Интегрируя, получим:

$$n_1 - n_2 = (n_1 - n_2)_0 e^{(-t/\tau)} (6)$$

где $(n_1 - n_2)_0$ – разность концентраций в начальный момент времени,

$$\tau = \frac{V}{2} \frac{l}{SD} \tag{7}$$

– постоянная времени процесса, определяемая геометрией установки и величиной коэффициента диффузии D.

Для проверки применимости квазистационарного течения убедимся, что время τ много больше характерного времени диффузии одной частицы вдоль трубки длиной $l\colon t_{\rm диф} \sim \frac{l^2}{D} \ll \tau$.

Для измерения концентраций применяются датчики теплопроводности D_1 и D_2 (см. рис. 1) и используется зависимость теплопроводности газовой смеси от её состава. Тонкая проволока радиуса $r_{\rm np}$, протянутая вдоль оси цилиндра радиуса $R_{\rm q}$, нагревается током. Тепло от проволоки к стенке цилиндра передаётся главным образом вследствие теплопроводности газа, находящегося внутри цилиндра. Количество тепла переданного стенке цилиндра в единицу времени, определяется по формуле

$$Q = \varkappa \frac{2\pi L}{\ln(R_{\text{II}}/r_{\text{np}})} (T_1 - T_2) \tag{8}$$

где \varkappa - теплопроводность, L - длина нити, T_1, T_2 - температуры проволочки и стенки. При Q=const температура проволоки и её сопротивление определяются теплопроводностью газа и, следовательно, его составом. Для измерения разности концентраций газов используется мостовая схема, представленная на рисунке 2 (см. описание установки).

При разности концентраций, равной 15%, поправка к линейному закону не превышает 0.5%, что для наших целей достаточно.

В процессе диффузии разность концентраций убывает по экспоненциальному закону.

$$N = N_0 e^{-t/\tau} \tag{9}$$

По тому же закону изменяются во времени показания гальванометра:

$$U = U_0 e^{-t/\tau} \tag{10}$$

Измеряя экспериментально зависимость U(t), можно получить характерное время процесса τ , откуда определить коэффициент диффузии D.

2.1 Описание установки:

Установка состоит из двух сосудов $V_1 \approx V_2 \equiv V$, соединенных краном K_3 , форвакуумного насоса, манометра M и системы напуска гелия, включающей в себя краны K_6 , K_6' , K_7 . Дополнительный кран K_6' служит для вакуумной изоляции установки от системы подачи гелия. Для подачи воздуха в установку служит кран K_5 . Сосуды V_1 и V_2 и порознь и вместе можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны K_1 , K_2 , K_4 , K_5 . Манометр M_4 регистрирует давление газа, до которого заполняют тот или другой сосуды. Краны K_4 , K_5 и K_6' обладают повышенной вакуумплотностью и хорошо изолируют установку от протечек.

Рис. 1: Установка для исследования взаимной диффузии газов

В силу того, что в сосуд требуется подавать малое давление гелия, кран K_6 снабжен дозатором. Подробный разрез крана K_6 приведен на рисунке 3.

На рисунке 2 приведена схема электричского соединения D_1 и D_2 – сопротивления проволок датчиков парциального давления, которые состовляют одно плечо моста. Второе плечо моста состовляют сопротивления r_1 , R_1 , r_2 , R_2 , $r_1 \ll R_1$, $r_2 \ll R_2$, R_1 и R_2 спаренные, их подвижные контакты находятся на общей оси. Оба они используются для грубой регулировки моста. Точная балансировка моста выполняется потенциометром R. Последовательо с гальванометром Γ , стоящим в диагонали моста, поставлен магазин сопротивления M_R . Когда мост балансируют, магазин сопротивлений выводят на ноль.

Рис. 2: Мостовая схема с датчиками теплопроводности для измерения разности концентраций газов

Рис. 3: Кран K_6

2.2 Контрольные вопросы:

1. Показать, что в условиях опыта концентрацию газов можно считать постоянной по всему объему сосуда V_1 (и V_2)

Концентрацию газа в сосуде V_1 можно считать равной концентрации в сосуде V_2 , поскольку по условию мы напускаем в них одинаковое давление. В условиях эксперимента газы идеальные \Longrightarrow мы можем воспользоваться уравнением Менделеева-Клапейрона $PV = \frac{N}{N_a}RT$; $P = \frac{N}{N_a}T$; $P = \frac{N}{N_a}T$

- 2. Через какое время после открытия крана K_3 диффузионный поток в трубке можно считать одинаковым во всем сечении трубки? Через время, равное $t=3\tau$, когда разница в концентрациях будет достаточно мала
- 3. Каким будут результаты опыта, если воздух и гелий поменять местами (например, исходное давление гелия P=40 торр, а воздуха P=4 торр? Коэффициент взаимной диффузии уменьшится, поскольку скорость движения частиц воздуха в несколько раз меньше, чем гелия
- 4. Почему следует ожидать, что график зависимости D от 1/P должен иметь вид прямой линии? D зависит от длины свободного пробега λ , λ обратно зависит от концентрации частиц ($\lambda = \frac{1}{\sigma*n}$), а из уравнения Менделеева-Клапейрона давление прямо пропорционально концентрации $P = \frac{nRT}{N_a}$

3 Ход работы:

1. Ознакомимся со схемой установки. Перепишем параметры установки:

$$V_1 = V_2 = V = 775 \pm 10 \text{ cm}^3, \ \frac{L}{S} = 5,3 \pm 0.1 \text{ cm}^{-1}$$

проверим, что краны K_4 , K_5 K_6' закрыты перед началом откачки.

- 2. Включим питание электрической схемы установки. Откроем краны K_1 , K_2 , K_3 . Поскольку манометр измеряет разность давления внутри резервуаров с атмосферным в $\frac{\text{кгc}}{\text{см}^2}$ необходимо записать показание манометра при полностью откачанном сосуде $P_0 = 99, 5 \frac{\text{кгc}}{\text{см}^2}$ (оно равно атмосферному) и в дальнейшем постоянно вычитать из него показания прибора, тем самым будет найдено давление внутри установки.
- 3. Очистим установку от всех газов, которые в ней есть. Для этого откроем кран K_4 . Включим форвакуумный насос и соединим его с установкой, повернув ручку крана K_5 длинным концом рукоятки влево (на установку). Откачаем установку до давления ≈ 0.1 торр, что достигается непрерывной работой насоса в течение 3–5 минут. Для прекращения откачки ручку крана K_5 поставим длинным концом вверх, выключим насос
- 4. Напустим в установку воздух до рабочего давления (вначале $P \approx 40$ торр), открыв кран K_5 , чтобы сбалансировать мост на рабочем давлении. Сбалансируем мост.

- 5. Заполним установку рабочей смесью согласно порядку предложенному в указании к работе: в сосуде V_2 должен быть воздух, а в сосуде V_1 смесь воздуха с гелием.
- 6. Проведём измерения. Для этого откроем кран K_3 , заснимем на видео процесс падения напряжения на гальванометре на 40-50% Будем продолжать аналогичные измерения при различных значениях $P_{\rm pa6}$ в интервале 40-200 торр. Результаты измерений сведены в таблицы ниже:

Данные при $P_{\Sigma} = 40$ торр:

t, c	5	10	15	20	25	30	35	40	45	50	55	60
<i>v</i> , мВ	1356	1355	1344	1329	1300	1268	1237	1207	1180	1158	1124	1098
t, c	65	70	75	80	85	90	95	100	105	110	115	120
v, мВ	1072	1045	1028	997	969	946	924	902	880	858	839	819
t, c	125	130	135	140	145	150	155	160	165	170	175	180
<i>v</i> , мВ	799	778	759	741	722	705	688	669	653	638	620	607

Данные при $P_{\Sigma} = 80$ торр:

1 ' 1	5													
v, мВ	901	899	887	874	868	848	834	819	808	797	783	772	760	747
t, c	75	80	85	90	95	100	105	110	115	120	125	130	135	140
v, мВ	737	727	716	706	694	684	679	666	656	646	636	625	616	609
t, c	145	150	155	160	165	170	175	180	185	190	195	200	205	210
v, мВ	599	592	584	575	566	557	549	542	539	528	518	511	503	498

Данные при $P_{\Sigma} = 120$ торр:

, , ,												60		
<i>v</i> , мВ	777	773	766	757	749	740	731	723	714	706	699	692	685	677
t, c	75	80	85	90	95	100	105	110	115	120	125	130	135	140
v, мВ	669	662	656	647	642	633	627	622	614	607	603	596	589	586
t, c	145	150	155	160	165	170	175	180	185	190	195	200	205	210
<i>v</i> , мВ	580	573	568	563	554	550	544	539	534	528	525	520	516	508

Данные при $P_{\Sigma} = 160$ торр:

t, c	5	10	15	20	25	30	35	40	45	50	55	60	65	70
v, мВ	744	741	735	730	724	718	712	706	700	692	686	679	673	668
t, c	75	80	85	90	95	100	105	110	115	120	125	130	135	140
<i>v</i> , мВ	663	657	653	645	641	634	632	626	621	614	610	604	602	596
t, c	145	150	155	160	165	170	175	180	185	190	195	200	205	210
<i>v</i> , мВ	591	587	581	576	571	569	565	561	557	552	549	545	540	537

Данные при $P_{\Sigma} = 200$ торр:

1 / 1	5													
<i>v</i> , мВ	616	616	613	607	604	598	591	585	580	577	571	567	562	557
t, c	75	80	85	90	95	100	105	110	115	120	125	130	135	140
v, мВ	554	550	547	540	537	533	530	525	523	518	514	513	508	504
1 ' 1	145													
<i>v</i> , мВ	502	498	494	494	490	487	483	482	477	476	470	468	464	464

По полученным данным построим графики зависимости V(t), чтобы определить, какими значениями нам стоит пренебречь (рисунок 4)

Видим, что при $P_{\Sigma}=40$ торр и при $P_{\Sigma}=80$ торр первые 3 значения не соответствуют общей тенденции графика \Rightarrow при построении зависимости от lnV(t) мы не будем включать эти точки в график

7. Для каждого из давлений построим графики, откладывая по оси абсцисс время, а по оси ординат - логарифм от показаний гальванометра.

График будем строить, воспользовавшись методом наименьших квадратов

$$y = a + bx$$

:

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \quad a = \langle y \rangle - b * \langle x \rangle \tag{11}$$

Погрешность в этом случае можно найти по формуле:

$$\sigma_b \approx \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2}; \quad \sigma_a \approx \sigma_b \sqrt{\lambda x^2 \rangle - \lambda x \rangle^2}$$
 (12)

График зависимости lnV(t) $P_{\Sigma} = 40$ **торр:** Построим график зависимости lnV(t) Здесь $x \Rightarrow t, y \Rightarrow \log V$. Для этого сперва определим константы, необходимые для подсчета коэффициента b_1 при данном значении давления:

$$\langle t \rangle = 82, 5$$

$$\langle \log V \rangle = 6,8154$$

$$\langle t^2 \rangle = 921, 25$$

$$\langle \log V^2 \rangle = 46,5079$$

$$\langle t * \log V \rangle = 550,4822$$

Всего бралось N=34 точек для аппроксимации.

Найдем константу:

$$b_1 = \frac{550,4822 - 82,5 * 6,8154}{921,25 - 82,5^2} = -0,0049$$

$$\sigma_{b_1} = \frac{1}{\sqrt{34}} \sqrt{\frac{46,5079 - 6,8154^2}{921,25 - 82,5^2} - 0,0049^2} = 0,1 * 10^{-3}$$

График зависимости lnV(t) $P_{\Sigma} = 80$ **торр:** Определим константы, необходимые для подсчета коэффициента b_2 при данном значении давления:

$$\langle t \rangle = 102, 5$$

$$\langle \log V \rangle = 6,5093$$

$$\langle t^2 \rangle = 14179$$

$$\langle \log V^2 \rangle = 42,4037$$

$$\langle t * \log V \rangle = 656,3320$$

Всего бралось N=42 точек для аппроксимации.

Найдем константу:

$$b_2 = \frac{656,3320 - 102,5 * 6,5093}{14179 - 102,5^2} = -0,00296$$

$$\sigma_{b_2} = \frac{1}{\sqrt{42}} \sqrt{\frac{42,4037 - 6,5093^2}{14179 - 102,5^2} - 0,00296^2} = 0,1 * 10^{-3}$$

График зависимости lnV(t) $P_{\Sigma} = 120$ **торр:** Определим константы, необходимые для подсчета коэффициента b_3 при данном значении давления:

$$\langle t \rangle = 105$$

$$\langle \log V \rangle = 6,4460$$

$$\langle t^2 \rangle = 14875$$

$$\langle \log V^2 \rangle = 41,5676$$

$$\langle t * \log V \rangle = 668,7896$$

Всего бралось N=43 точек для аппроксимации.

Найдем константу:

$$b_3 = \frac{668,7896 - 105 * 6,4460}{14875 - 105^2} = -0,00209$$

$$\sigma_{b_3} = \frac{1}{\sqrt{43}} \sqrt{\frac{41,5676 - 6,4460^2}{14875 - 105^2} - 0,00209^2} = 0,1 * 10^{-3}$$

График зависимости lnV(t) $P_{\Sigma}=160$ **торр:** Определим константы, необходимые для подсчета коэффициента b_4 при данном значении давления:

$$\langle t \rangle = 105$$

$$\langle \log V \rangle = 6,4496$$

$$\langle t^2 \rangle = 14875$$

$$\langle \log V^2 \rangle = 41,6076$$

$$\langle t * \log V \rangle = 670,9393$$

Всего бралось N=43 точек для аппроксимации.

Найдем константу:

$$b_4 = \frac{670,9393 - 105 * 6,4496}{14875 - 105^2} = -0,00163$$

$$\sigma_{b_4} = \frac{1}{\sqrt{43}} \sqrt{\frac{41,6076 - 6,4492^2}{14875 - 105^2} - 0,00163^2} = 0,2 * 10^{-3}$$

График зависимости lnV(t) $P_{\Sigma}=200$ **торр:** Определим константы, необходимые для подсчета коэффициента b_5 при данном значении давления: $\langle t \rangle = 105$

$$\langle \log V \rangle = 6,2788$$

$$\langle t^2 \rangle = 14875$$

$$\langle \log V^2 \rangle = 39,4309$$

$$\langle t * \log V \rangle = 653,7311$$

Всего бралось N=43 точек для аппроксимации.

Найдем константу:

$$b_5 = \frac{653,7311 - 105 * 6,2788}{14875 - 105^2} = -0,0014$$

$$\sigma_{b_5} = \frac{1}{\sqrt{43}} \sqrt{\frac{39,4309 - 6,2788^2}{14875 - 105^2} - 0,0014^2} = 0,2 * 10^{-3}$$

Построим сводный график:

По угловым коэффициентам экспериментальных прямых и известным параметрам установки рассчитаем коэффициенты взаимной диффузии и их погрешности при выбранных давлениях по формулам:

$$D = -\frac{1}{2}Vb\frac{L}{S} \tag{13}$$

$$\sigma_D = D\sqrt{\left(\frac{\sigma_b}{b}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2}$$
(14)

где b - коэффициенты наклонов прямых

$$D_1 = \frac{1}{2}775*0,0049*5,3 = 10,0634, \qquad \sigma_{D_1} = 10,0634*\sqrt{1*10^{-8}+1,665*10^{-4}*3,56*10^{-4}} = 0,3$$

$$D_2 = \frac{1}{2}775*0,00296*5,3 = 6,0791, \qquad \sigma_{D_2} = 6,0791*\sqrt{1*10^{-8}+1,665*10^{-4}*3,56*10^{-4}} = 0,2$$

$$D_3 = \frac{1}{2}775*0,00209*5,3 = 4,2923, \qquad \sigma_{D_3} = 4,2923*\sqrt{1*10^{-8}+1,665*10^{-4}*3,56*10^{-4}} = 0,1$$

$$D_4 = \frac{1}{2}775*0,00163*5,3 = 3,3476, \qquad \sigma_{D_4} = 3,3476*\sqrt{4*10^{-8}+1,665*10^{-4}*3,56*10^{-4}} = 0,08$$

$$D_5 = \frac{1}{2}775*0,0014*5,3 = 2,8752, \qquad \sigma_{D_5} = 2,8752*\sqrt{4*10^{-8}+1,665*10^{-4}*3,56*10^{-4}} = 0,07$$

Результаты сведены в таблицу:

Р, торр	40	80	120	160	200
$D, \frac{c^2}{c}$	10,0634	6,0791	4,2923	3,3476	2,8752
$\sigma_D, \frac{c_{\rm M}^2}{c}$	0,3	0,2	0,1	0,08	0,07

По полученным данным для коэффициента D, построим график зависимости D(1/P), пользуясь MHK:

$$b = \frac{\langle D*1/P \rangle - \langle 1/P \rangle \langle D \rangle}{\langle (1/P)^2 \rangle - \langle (1/P) \rangle^2}, \quad a = \langle D \rangle - b \langle (1/P) \rangle$$

$$\langle 1/P \rangle = 1,142 * 10^{-2}$$

 $\langle D \rangle = 5,333$
 $\langle (1/P)^2 \rangle = 1,829 * 10^{-4}$
 $\langle D^2 \rangle = 35,29$
 $\langle D*(1/P) \rangle = 7,983 * 10^{-2}$
 $N=5$

$$b = \frac{7,983 * 10^{-2} - 1,142 * 10^{-2} * 5,333}{1,829 * 10^{-4} - (1,142 * 10^{-2})^2} = 358,48 \qquad a = 5,333 - 358,48 * 1,142 * 10^{-2} = 1,24$$

Найдем точку пересечения прямой $\mathbf{x}=1/748$ и $\mathbf{y}=1,24+358,48\mathbf{x}$ Получим значение коэффициента взаимной диффузии:

$$D = 1,24 + 358,48 * (1/748) \approx 1,72 \frac{\text{cm}^2}{c}$$

Оценим погрешность:

$$\sigma_b = \frac{1}{\sqrt{5}} \sqrt{\frac{35,29 - 5,333^2}{1,829 * 10^{-4} - 1,142 * 10^{-2}} - 358,48^2} = 11$$

$$\sigma_a = \sigma_b \sqrt{1,829 * 10^{-4} - (1,142 * 10^{-2})^2} = 0,08$$

$$\sigma_D = D\sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_a}{a})^2} = 1,72\sqrt{(\frac{11}{358,48})^2 + (\frac{0,08}{1,24})^2} \approx 0,1$$

4 Вывод:

- 1. Подтвердили линейную зависимость lnV(t)
- 2. Установили линейную зависимость D(1/P)
- 3. Рассчитали коэффициенты взаимной диффузии при

 $P_{\Sigma} = 40$ торр, равное $D_1 = 10, 1 \pm 0, 3 \frac{\text{см}^2}{c}$

 $P_{\Sigma}=80$ торр, равное $D_1=10,1\pm0,3\frac{c}{c}$ $P_{\Sigma}=80$ торр, равное $D_2=6,1\pm0,2\frac{cm^2}{c}$ $P_{\Sigma}=120$ торр, равное $D_3=4,3\pm0,1\frac{cm^2}{c}$ $P_{\Sigma}=160$ торр, равное $D_4=3,35\pm0,08\frac{cm^2}{c}$ $P_{\Sigma}=200$ торр, равное $D_1=2,88\pm0,07\frac{cm^2}{c}$

4. Получили численное значение коэффициента взаимной диффузии при давлении P = 748 торр, равное $D = 1, 7 \pm 0, 1 \frac{\text{см}^2}{c}$