8E and 8F: Finding the Probability P(Y==1|X)

8E: Implementing Decision Function of SVM RBF Kernel

After we train a kernel SVM model, we will be getting support vectors and their corresponsing coefficients α_i

Check the documentation for better understanding of these attributes:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

```
Attributes:
              support_: array-like, shape = [n_SV]
                   Indices of support vectors
              support_vectors_: array-like, shape = [n_SV, n_features]
                   Support vectors.
              n_support_: array-like, dtype=int32, shape = [n_class]
                   Number of support vectors for each class.
               dual_coef_: array, shape = [n_class-1, n_SV]
                   Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1
                   classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the
                   section about multi-class classification in the SVM section of the User Guide for details
              coef_: array, shape = [n_class * (n_class-1) / 2, n_features]
                   Weights assigned to the features (coefficients in the primal problem). This is only available in the
                   case of a linear kernel.
                   coef_ is a readonly property derived from dual_coef_ and support_vectors_.
              intercept_: array, shape = [n_class * (n_class-1) / 2]
                   Constants in decision function.
               fit status : int
                   0 if correctly fitted, 1 otherwise (will raise warning)
              probA_: array, shape = [n_class * (n_class-1) / 2]
               probB_: array, shape = [n_class * (n_class-1) / 2]
                   If probability=True, the parameters learned in Platt scaling to produce probability estimates from
                   decision values. If probability=False, an empty array. Platt scaling uses the logistic function
                   1 / (1 + exp(decision_value * probA_ + probB_)) Where probA_ and probB_ are learned
                   from the dataset [R20c70293ef72-2]. For more information on the multiclass case and training
                   procedure see section 8 of [R20c70293ef72-1].
```

As a part of this assignment you will be implementing the decision_function() of kernel SVM, here decision_function() means based on the value return by decision_function() model will classify the data point either as positive or negative

Ex 1: In logistic regression After traning the models with the optimal weights w we get, we will find the value $\frac{1}{1+\exp(-(wx+b))}$, if this value comes out to be < 0.5 we will mark it as negative class, else its positive class

Ex 2: In Linear SVM After training the models with the optimal weights w we get, we will find the value of sign(wx+b), if this value comes out to be -ve we will mark it as negative class, else its positive class.

Similarly in Kernel SVM After training the models with the coefficients α_i we get, we will find the value of $sign(\sum_{i=1}^n (y_i \alpha_i K(x_i, x_q)) + intercept)$, here $K(x_i, x_q)$ is the RBF

kernel. If this value comes out to be -ve we will mark x_q as negative class, else its positive class.

```
RBF kernel is defined as: K(x_i, x_q) = exp(-\gamma ||x_i - x_q||^2)
```

For better understanding check this link: https://scikit-

learn.org/stable/modules/svm.html#svm-mathematical-formulation

▼ Task E

```
1. Split the data into X_{train} (60), X_{cv} (20), X_{test} (20)
```

```
2. Train SVC(gamma=0.001, C=100.) on the (X_{train}, y_{train})
```

3. Get the decision boundry values f_{cv} on the X_{cv} data i.e. f_{cv} = decision_function(X_{cv}) you need to implement this decision_function()

▼ Pseudo code

the values y_i , α_i , and intercept can be obtained from the trained model return # the decision_function output for all the data points in the Xcv

fcv = decision_function(Xcv, ...) # based on your requirement you can pass any other parameters

Note: Make sure the values you get as fcv, should be equal to outputs of clf.decision_function(Xcv)

```
# you can write your code here:
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, rando
X_train, X_cv, y_train, y_cv = train_test_split(X_train, y_train, test_size=0.25, stratify
gamma = 0.001
C = 100
clf = SVC(gamma=0.001, C=100)
clf.fit(X_train, y_train)
def rbf(sv , xq , gamma):
  norm = np.linalg.norm(sv-xq) #Ref: https://numpy.org/doc/stable/reference/routines.linal
  return np.exp(-gamma *(norm**2))
def decision_function(X_cv, gamma, support_vectors, dual_coef, intercept):
  decision_vector = []
  for xq in X_cv :
    dec func = 0
    for sv , dc in zip(support_vectors , dual_coef[0]):
      dec_func += (dc * rbf(sv,xq, gamma))
    dec func += intercept[0]
    decision vector.append(dec func)
  return decision_vector
#Ref: https://stackoverflow.com/questions/28503932/calculating-decision-function-of-svm-ma
support_vectors = clf.support_vectors_
dual coef = clf.dual coef
intercept = clf.intercept_
f cv = decision function(X cv, gamma, support vectors, dual coef, intercept)
f cv
      -3.1748997412459854,
      -2.366717641975759,
      -2.901590701699055,
      -2.3192528399363876,
      -2.373278255987037,
      -3.5735612349099366,
      2.230949074865487,
      -1.3626440834731905,
      -3.751153721776168,
      -4.249949703533437,
      -3.1268468440302595,
      -1.8384547649728855,
```

```
-1.7931390598356582,
-2.3536582065896337,
0.6596433638622532,
-2.4275465811304766,
-3.0741882553244775,
-2.014893883063001,
-2.206103266686304,
-3.967644211831063,
-2.4788490996646058
-0.24307561356567042,
-0.8340415545414341,
-3.381495197484062,
1.466648216275809,
-3.5288946145997837,
1.6122858794697752,
-2.242126068824751,
-2.130527864246451,
-4.55915081926023,
-3.3055768413916464,
-4.538021731808419,
-0.5624791865838485
-4.384676214485301,
1.3113715568940965,
-0.5951872715785864,
-3.252127982368682,
-3.2003656921917294,
0.6801193892455988,
-0.24478785152286342,
-4.250642322973738,
-1.5406460638303425,
-1.8918388089433247,
1.0109727887849917,
-1.1925276002116245,
0.655739860794947,
-0.6934681349253164,
1.637995589935196,
-2.1731271075475913,
-0.8404261997400564,
-2.8858385669219526,
0.1977137289995543,
-2.5610688247787206,
-3.0265637971080164,
-1.7269803168228943,
-4.091764811005637,
1.218336823884039,
-2.9703137478718613,
0.6783630045649094,
 E /11EEA0337A6011
```

The decision function output for all the data points in the Xcv: clf.decision function(X cv)

```
-1./275554, -3.//ט5/3/3, -3.עבשכענעש, -1.2742/טס, -1.2742/טס,
-2.68852276, -1.3925468 , -3.23558252, -2.3200091 , -2.97706875,
-2.31286139, 0.22882942, -2.27795692, -2.36421912, -1.90817487,
-2.72642553, -3.02881163, 0.40798879, 0.4395717, -1.23873678,
-0.21057563, -3.53557214, 1.11880212, 1.63538729, -3.67599531,
-3.51539854, -2.45992361, -2.16139896, -3.52305814, -1.36736211,
-3.12621073, -1.83833515, 1.89675418,
                                       2.06933816, -1.76660455,
                                      1.38519937, -1.88456953,
1.03229334, -3.00619463, -3.19375237,
-2.79600489, -2.86321146, -0.97257066, -3.84177916, 1.905331
-2.09548223, -3.10524789, -0.42642993, 0.23485501, -3.24949081,
```

```
-1.46056528, -3.58565278, -0.66161349, 1.63352162, -3.02119787,
-0.83988327, -2.58605312, -2.65402395, -2.79869721, -3.09330434,
1.6729751 , 1.09062559, -5.1634246 , -2.51656483, -0.05687025,
-3.32941649, -1.6903695, -1.620158, -4.20885442, -2.37526288,
1.50425079, -2.68460966, -1.62326581, -2.92920055, -3.78685586,
1.77078717, -3.33319929, 0.4979334, 1.33764543, -1.20099865,
1.45208765, -3.06360694, -3.46351682, -2.90619908, -0.91782615,
-1.75822344, -4.2374109 , -1.86406829, -3.64509418, -2.8222831 ,
-3.32655432, -2.87528889, -2.36162303, 2.13779414, -2.76507641,
-2.60536498, -2.75974166, -2.85542468, 0.83706501, 2.44983352,
-0.02473069, -3.46600621, 2.19262518, -5.12008012, -2.46893698,
-3.2326429 , -2.99677102, -2.07125582, 3.47727913, -3.61559047,
1.91880542, 0.67657938, -3.49360467, -3.04056889, 1.69923583,
-0.44479607, -2.10531892, -4.09388469, -0.20387945, -1.57513472,
-1.07807313, -4.34771262, -3.06045908, -3.11146032, -3.57687815,
0.67917467, -2.80618142, -0.60553749, 1.36955234, -0.75435127,
-2.02488966, -2.41127424, -3.88531351, -3.0133622, 0.97189442,
1.172032 , -3.48189226, -3.77407935, 2.28718274, 1.70030878,
-3.07360795, -2.540047 , -1.49707139, -1.59582857, -2.39360785,
-3.92524522, 2.04713801, 1.03753176, -2.85507535, -3.09802005,
-3.09099971, -2.90973483, 2.30831486, 1.82377642, -4.77074081,
-1.77118232, -0.69140543, -3.3901122 , -3.92010083, -1.08668557,
2.00397567, 1.55469013, -2.78804528, -3.08971049, -3.88374231,
-3.31931005, -3.15500523, -3.68031916, -2.6553185 , 1.46030682,
0.28160632, 1.31413107, 1.71576595, -3.22089574, 1.68365276,
-3.11392537, -4.10493374, -0.67828322, -3.32591427, -4.00975732,
-1.64462349, -2.35139509, 0.49085591, 1.8198019, -2.48400644,
-0.04273748, -1.12371372, 1.73767945, -1.67470768, 2.25514328,
2.13046134, 0.95606246, -2.51449864, 0.54182106, -3.2245202,
1.3261451 , 3.92505931, -2.62961149, -0.25417885, -3.7417615 ,
1.62386292, -2.17839623, -2.38059804, -4.15080552, 0.9673356 ,
-2.12019889, 2.33173966, -3.48685402, 1.77225149, 2.60361242,
2.05396132, 1.92023785, -2.37430995, -3.29616114, -1.18051616,
-1.76495936, -2.25729339, -5.07551389, 2.31161035, 1.49596473,
-4.76661302, -0.36216339, -3.26427218, -3.16155285, 1.680044
1.72005311, -0.20172613, 1.91757899, -3.78592742, -2.45786093,
-3.44665774, 0.40743096, -2.57651175, -2.18236254, 1.51120899,
3.41273663, -3.31343402, -3.17489974, -2.36671764, -2.9015907,
-2.31925284, -2.37327826, -3.57356123, 2.23094907, -1.36264408,
-3.75115372, -4.2499497, -3.12684684, -1.83845476, -1.79313906,
-2.35365821, 0.65964336, -2.42754658, -3.07418826, -2.01489388,
-2.20610327, -3.96764421, -2.4788491 , -0.24307561, -0.83404155,
-3.3814952 , 1.46664822, -3.52889461, 1.61228588, -2.24212607,
-2.13052786, -4.55915082, -3.30557684, -4.53802173, -0.56247919,
-4.38467621, 1.31137156, -0.59518727, -3.25212798, -3.20036569,
0.68011939, -0.24478785, -4.25064232, -1.54064606, -1.89183881,
1.01097279, -1.1925276, 0.65573986, -0.69346813, 1.63799559,
-2.17312711, -0.8404262 , -2.88583857, 0.19771373, -2.56106882,
-3.0265638 , -1.72698032 , -4.09176481 , 1.21833682 , -2.97031375 ,
0.678363 , -5.41155093, -1.51324634, 1.43029028, -1.80320408,
```

8F: Implementing Platt Scaling to find P(Y==1|X)

Let the output of a learning method be f(x). To get calibrated probabilities, pass the output through a sigmoid:

$$P(y=1|f) = \frac{1}{1 + exp(Af + B)}$$
 (1)

where the parameters A and B are fitted using maximum likelihood estimation from a fitting training set (f_i, y_i) . Gradient descent is used to find A and B such that they are the solution to:

$$\underset{A,B}{argmin} \{ -\sum_{i} y_{i} log(p_{i}) + (1 - y_{i}) log(1 - p_{i}) \}, \quad (2)$$

where

$$p_i = \frac{1}{1 + exp(Af_i + B)} \tag{3}$$

Two questions arise: where does the sigmoid train set come from? and how to avoid overfitting to this training set?

If we use the same data set that was used to train the model we want to calibrate, we introduce unwanted bias. For example, if the model learns to discriminate the train set perfectly and orders all the negative examples before the positive examples, then the sigmoid transformation will output just a 0,1 function. So we need to use an independent calibration set in order to get good posterior probabilities. This, however, is not a draw back, since the same set can be used for model and parameter selection.

To avoid overfitting to the sigmoid train set, an out-of-sample model is used. If there are N_+ positive examples and N_- negative examples in the train set, for each training example Platt Calibration uses target values y_+ and y_- (instead of 1 and 0, respectively), where

$$y_{+} = \frac{N_{+} + 1}{N_{+} + 2}; \ y_{-} = \frac{1}{N_{-} + 2}$$
 (4)

For a more detailed treatment, and a justification of these particular target values see (Platt, 1999).

Check this PDF

▼ TASK F

4. Apply SGD algorithm with (f_{cv},y_{cv}) and find the weight W intercept b Note: here our data is of one dimensional so we will have a one dimensional weight vector i.e W.shape (1,)

Note1: Don't forget to change the values of y_{cv} as mentioned in the above image. you will calculate y+, y- based on data points in train data

Note2: the Sklearn's SGD algorithm doesn't support the real valued outputs, you need to use the code that was done in the 'Logistic Regression with SGD and L2' Assignment after modifying loss function, and use same parameters that used in that assignment.

```
def log_loss(w, b, X, Y):
    N = len(X)
    sum_log = 0
    for i in range(N):
        sum_log += Y[i]*np.log10(sig(w, X[i], b)) + (1-Y[i])*np.log10(1-sig(w, X[i], b))
    return -1*sum_log/N
```

if Y[i] is 1, it will be replaced with y+ value else it will replaced with y- value

```
5. For a given data point from X_{test}, P(Y=1|X)=rac{1}{1+exp(-(W*f_{test}+b))} where f_{test} = decision_function( X_{test} ) , W and b will be learned as
```

Note: in the above algorithm, the steps 2, 4 might need hyper parameter tuning, To reduce the complexity of the assignment we are excluding the hyerparameter tuning part, but intrested students can try that

If any one wants to try other calibration algorithm istonic regression also please check these tutorials

- 1. http://fa.bianp.net/blog/tag/scikit-learn.html#fn:1
- 2. https://drive.google.com/open?id=1MzmA7QaP58RDzocB0RBmRiWfl7Co_VJ7
- 3. https://drive.google.com/open?id=133odBinMOIVb_rh_GQxxsyMRyW-Zts7a
- 4. https://stat.fandom.com/wiki/Isotonic_regression#Pool_Adjacent_Violators_Algorithm

from sklearn.linear model import SGDClassifier

```
N_positive = []
N_negative = []
for i in y_train:
    if i == 1:
        N_positive.append(i)
    else:
        N_negative.append(i)

N_positive = len(N_positive)
N_negative = len(N_negative)
N_positive, N_negative

(904, 2096)
```

```
9/25/21, 7:33 PM
                               10 Assignment Behavior of Linear Models 8E F LR SVM.ipynb - Colaboratory
   y_positive - (N_positive + 1)/ (N_positive + 4)
   y_positive
         0.9988962472406181
   y_negative = 1 / (N_negative + 2)
   y_negative
         0.00047664442326024784
   new_y_cv = []
   for j in y_cv:
     if j != 1:
       new_y_cv.append(y_negative)
     elif j == 1:
       new_y_cv.append(y_positive)
   new_y_cv
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.9988962472406181.
          0.9988962472406181,
          0.9988962472406181,
          0.9988962472406181,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.9988962472406181,
          0.00047664442326024784,
          0.00047664442326024784,
          0.9988962472406181,
          0.9988962472406181,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.9988962472406181,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.9988962472406181,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0.00047664442326024784,
          0 00017661117376071781
```

0.00047664442326024784,

```
0.9988962472406181,
      0.00047664442326024784,
      0.9988962472406181,
      0.00047664442326024784,
      0.00047664442326024784,
      0.00047664442326024784,
      0.00047664442326024784,
      0.00047664442326024784,
      0.00047664442326024784,
      0.9988962472406181,
      0.9988962472406181,
      0.9988962472406181,
      0.00047664442326024784,
      0.00047664442326024784,
      0.9988962472406181,
      0.00047664442326024784,
      0.00047664442326024784,
      0.00047664442326024784,
%%time
from tqdm import tqdm
import math
from math import log
def initialize_weights(dim):
  dim = X_train[0]
  w = np.zeros((1,))
  b = 0
  return w,b
dim = X_train[0]
w,b = initialize_weights(dim)
#1)sigmoid:
def sigmoid(z):
  return 1. / (1 + np. exp(-z))
#2)logloss:
def logloss(y true,y pred):
  loss = -sum(map(lambda y_true, y_pred: y_true*np.log10(y_pred) + (1-y_true)*np.log10(1-y_
  return loss
#3)gradient dw
def gradient_dw(x,y,w,b,alpha,N):
  dw = x * (y - sigmoid(np.dot(w, x) + b)) - (alpha / N) * w
  return dw
#4)gradient_db
def gradient_db(x,y,w,b):
  db = y - sigmoid(np.dot(w, x) + b)
  return db
#log loss:
log_loss=[]
epoch_list = []
```

```
def train(X_train,y_train):
  w,b = initialize_weights(X_train[0])
  eta0 = 0.0001
  for e in tqdm(range(epochs)):
    y tr pred=[]
    y_ts_pred=[]
    for p in range(len(X_train)):
      w = w + (eta0 * gradient_dw(X_train[p], y_train[p], w, b, alpha, N))
      b = b + (eta0 * gradient_db(X_train[p], y_train[p], w, b))
    for q in range(len(X_train)):
        z = np.dot(w,X_train[q])+b
        s = sigmoid(z)
        y_tr_pred.append(s)
    1_tr = logloss(y_train,y_tr_pred)
    log_loss.append(l_tr)
    epoch list.append(e)
  return w,b
     CPU times: user 2.63 ms, sys: 984 μs, total: 3.62 ms
     Wall time: 3.63 ms
alpha=0.0001
eta0=0.0001
N=len(f_cv)
epochs=50
w,b = train(f_cv, new_y_cv)
     100%| 50/50 [00:02<00:00, 20.12it/s]
W
     array([1.20619531])
b
     array([-0.15432535])
f test = clf.decision function(X test)
f test
            -1.41/3/0210+00, -3.13291/3/0+00, -3.0342/0010+00, -3.014473/90-01,
 \Box
            -3.35834587e+00, -3.70277116e+00, 1.49384786e+00, -3.62340171e+00,
            -1.58378131e+00, -2.84848182e+00, -1.93342272e+00, -1.53268960e+00,
             1.52933008e+00, -1.92656406e+00, 3.93152206e-01, -3.25235102e+00,
            -1.26463117e+00, -2.62124674e+00, -8.47250203e-01, -1.91451494e+00,
            -3.86791826e+00, -3.35394671e+00, -1.80346943e+00, 2.52238655e+00,
            -2.49560948e+00, 1.48295156e+00, -8.96898108e-02, -7.23345165e-01,
             1.25402965e+00, -2.46303335e+00, -2.91856518e+00, 2.02233101e+00,
            -1.88539053e+00, -3.12273308e+00, -3.56584494e+00, -4.13264291e+00,
            -3.09028929e+00, -3.10022357e+00, -3.46437578e+00,
                                                               1.48150898e+00,
```

```
-3.59523922e+00, -4.52080117e+00, -3.77689992e+00, -3.41166659e+00,
            -3.18618742e+00, 1.99021661e+00, -2.52270231e+00, -3.46606799e+00,
             6.68654114e-01, -5.37027658e+00, -1.14530760e+00, -2.45496128e+00,
            -3.68907769e+00, -2.91417291e+00, 4.90915297e-01, -3.21503398e+00,
            -3.01566992e+00, -2.00825284e+00, -2.69119621e+00, 2.22608429e+00,
             1.74155203e+00, -2.65047122e+00, 1.65188133e+00, -3.75059683e+00,
             2.51137876e+00, -2.36923150e+00, -3.03025083e+00, -3.24664901e+00,
            -2.30646013e+00, -1.22281224e+00, -1.44444127e+00, -3.65098977e+00,
            -2.73011063e+00, -2.05955674e+00, -4.87353721e+00, -1.59053692e+00,
             1.66046654e+00, -3.55099212e+00, -2.45352280e+00, -2.65886597e+00,
             5.86697997e-01, -3.09574362e+00, -3.12306804e+00, -1.17176338e+00,
            -3.74892300e-01, -1.68697968e+00, -2.73834563e+00, 2.22813673e+00,
            -2.53027927e+00, -2.42061192e+00, -3.82462824e+00, -3.34845630e+00,
            -3.75944857e+00, 1.91770377e-01, 1.57347978e+00, -2.10038279e+00,
            -2.61491132e+00, -1.67874856e+00, -2.75247867e+00, -4.23111263e+00,
            -3.33772117e+00, -3.43778021e+00, -4.48576207e+00, -1.67445934e+00,
            -2.18377704e+00, -1.99360145e+00, -2.34089854e-01, -2.61515230e+00,
            -2.51657064e+00, -1.79671624e+00, 9.20627983e-01, -3.45605261e+00,
            -7.70787257e-01, -1.64953105e+00, -3.98472395e-01, -3.01114945e+00,
            -4.58166451e+00, -2.70021543e+00, 2.70649920e+00, 1.94458888e+00,
            -3.16566177e+00, -3.66567609e+00, -2.47042520e-01, -3.69887228e+00,
            -2.00546396e+00, -1.45785428e+00, -5.02026335e+00, -2.68965520e+00,
            -2.45829100e+00, 1.14086854e+00, -2.49590628e+00, 1.07287426e+00,
            -4.23847054e+00, 1.15870206e+00, 2.06851052e+00, -3.13894169e+00,
            -2.87222352e+00, -3.71626775e+00, 2.13425735e+00, -1.97077126e+00,
             1.46486033e+00, -9.52910164e-01, -1.62037327e+00, -2.88138121e+00,
            2.09140642e+00, -2.77043150e+00, 1.01308891e+00, -3.08549254e+00,
            -2.48995231e+00, 1.50559703e+00, -2.38621217e+00, -2.34260343e+00,
            -2.62590859e+00, -3.22025762e+00, -3.27893480e+00, -2.26079375e+00,
            -3.61855525e+00, 1.34740079e+00, -3.37299648e+00, -1.85521809e+00,
            -2.10185975e+00, -2.67758972e+00, 2.11931852e+00, -2.71422556e+00,
            -2.81069693e+00, -2.85557060e+00, -2.98131487e+00, -2.46965954e+00,
            1.02681755e-01, 2.08996262e-01, 1.94186842e+00, -3.08416664e+00,
            -1.60606304e+00, 1.94687752e+00, -6.95347024e-01, -3.66891558e+00,
            1.14434808e+00, -5.06359006e+00, 2.43894871e+00, -2.05024078e+00,
            -2.06784438e+00, -2.52516966e+00, -7.30076228e-01, -2.22061748e+00,
             1.29788380e+00, -4.45178750e+00, 1.16867640e+00, -1.36205553e+00,
             1.59695258e+00, -3.23130852e+00, 1.23174095e+00, -3.01110772e+00,
             8.24880155e-02, -3.10850968e+00, 1.43829253e+00, -2.01077658e+00,
            -8.80885932e-01, -1.63019777e+00, -3.41880838e+00, -2.43434892e+00,
             3.69958499e-01, 2.08012418e+00, -2.48556329e+00, -2.40031503e+00,
            1.96588613e+00, -6.95972181e-01, 1.53325535e+00, -1.68198576e+00,
            -2.42146730e+00, -2.83981982e+00, -3.44607266e+00, 1.51830537e+00,
             8.37071343e-01, -2.20860436e+00, -1.01348273e+00, -1.85339103e+00,
            -1.69429741e+00, -3.26373164e+00, 1.77303571e+00, -3.68328708e+00,
            -2.10447427e+00, 1.99736719e+00, 2.52180539e+00, -3.51027996e+00,
            -3.61140790e+00, -1.48676548e+00, -2.11817479e+00, -3.20642657e+00,
            1.94208136e+00, 1.83280491e+00, -3.97629657e+00, 2.00567497e+00,
            -3.35274854e+00, 1.18641243e+00, -2.83866860e+00, 3.23038762e+00,
             5.07539953e-01. -3.65167202e+00. 1.70988485e+00. -3.17271333e+00.
p = 1 / 1 + np.exp(-((w*f_test)+b))
     array([5.68013225e+00, 1.21520137e+00, 2.28100774e+01, 7.10257907e+00,
            1.76823449e+01, 9.29237190e+01, 4.45242147e+01, 5.35348742e+00,
```

3.55283825e+01, 3.07035937e+01, 6.29381700e+01, 1.22639657e+00, 3.14370270e+00, 1.75961812e+00, 3.85539263e+01, 7.40486716e+01, 1.65420132e+00, 1.12566407e+00, 5.98681477e+01, 7.28745114e+01, 2.42806023e+00, 1.69557126e+01, 1.14738668e+00, 8.49188615e+00,

```
4.96403197e+01, 6.60032102e+01, 1.53300093e+01, 7.50474655e+01,
1.38618392e+00, 1.02684308e+00, 1.06097682e+00, 1.14697853e+00,
1.04557881e+01, 9.10536779e+00, 1.96524867e+00, 3.11652488e+01,
8.39519217e+01, 1.14684946e+00, 2.46644511e+00, 2.05839174e+01,
3.50569088e+01, 2.66775510e+01, 3.56734385e+01, 1.28024194e+00,
2.15920044e+00, 6.36923187e+00, 1.16039128e+02, 5.82434552e+01,
1.49616539e+01, 7.99974427e+01, 3.71636355e+01, 1.69986244e+02,
1.12962290e+00, 3.99525216e+00, 4.71932437e+00, 2.05939748e+01,
2.01806381e+01, 2.18234108e+01, 1.13913329e+00, 1.22670083e+01,
1.71409132e+02, 5.87457777e+00, 4.24764929e+01, 1.64706802e+01,
4.99947531e+00, 1.11242617e+01, 1.23210156e+00, 1.26896730e+02,
1.86090104e+01, 1.18039781e+01, 6.28564959e+01, 2.52553378e+01,
2.91260672e+01, 6.81936980e+00, 1.05592394e+00, 7.00671867e+01,
2.34096923e+01, 2.48783626e+00, 1.12828391e+00, 1.15384966e+00,
1.09823253e+00, 8.38405013e+00, 2.08277304e+01, 1.05939172e+01,
4.70543183e+01, 1.84240626e+00, 5.20620549e+01, 1.28459471e+01,
1.35825472e+02, 2.59510758e+01, 8.35729489e+00, 2.03782086e+01,
3.17897415e+01, 2.94338093e+01, 1.32114273e+01, 8.69707956e+01,
1.12160017e+01, 1.14930818e+01, 1.90737889e+01, 2.21305612e+02,
1.09900183e+00, 2.90273551e+00, 6.54205948e+00, 3.96604918e+00,
3.23918692e+00, 2.54445202e+01, 1.10656499e+00, 1.19282206e+00,
1.30692151e+00, 1.40364765e+00, 1.11946338e+01, 1.22372899e+00,
1.34294114e+01, 1.15676464e+00, 1.09785744e+00, 1.25482745e+02,
4.15338424e+01, 7.05634510e+01, 1.76093404e+01, 1.03291936e+02,
6.55452059e+00, 9.18370590e+01, 1.12553269e+01, 2.86572026e+01,
2.95774776e+00, 1.17311986e+02, 6.40929271e+01, 1.08596259e+02,
8.82590937e+01, 1.09239253e+02, 1.11944996e+00, 1.15253127e+00,
3.11878985e+01, 3.21400947e+01, 1.88477936e+02, 2.61174291e+01,
1.59139930e+00, 1.12332097e+00, 2.51027235e+00, 1.16732628e+00,
1.06225393e+02, 2.72521052e+01, 7.99867344e+00, 3.99563323e+01,
2.26927569e+02, 1.21261518e+00, 2.98785164e+01, 1.77445311e+01,
1.18224144e+00, 4.25202231e+01, 4.70380199e+01, 1.00509845e+00,
5.66043973e+01, 2.79333089e+00, 1.13124867e+00, 1.10400015e+00,
5.94801666e+01, 4.77298977e+01, 3.07362705e+01, 1.02294361e+01,
3.02130700e+00, 3.25873541e+01, 3.96788828e+01, 1.39836679e+01,
7.98790854e+00, 1.65797651e+00, 1.06041213e+00, 1.53676439e+00,
2.87615931e+00, 2.93887954e+01, 1.99210008e+00, 8.42762395e+01,
1.11559063e+00, 2.57945204e+00, 1.03249130e+00, 8.34198577e+01,
1.18186482e+02, 4.62469540e+00, 1.09616643e+00, 5.11993363e+01,
2.93135054e+01, 1.11416992e+00, 4.89177238e+01, 3.49669890e+00,
1.79813826e+00, 2.92240633e+00, 2.31486913e+01, 1.06001148e+00,
2.03081795e+01, 4.92913287e+01, 1.77061572e+00, 1.34907374e+01,
1.17241303e+00, 1.66137942e+01, 1.43824937e+00, 4.39769921e+01,
3.40260366e+00, 1.44016047e+01, 1.15529799e+01, 2.46464415e+01,
1.37663680e+00, 3.75394870e+01, 1.40544336e+00, 1.95855620e+00,
2.81664209e+01, 8.75094156e+01, 1.27347541e+00, 1.35564903e+00,
2.84845924e+01, 6.47080581e+00, 1.49896284e+02, 7.28677930e+00,
1.06433566e+00, 4.42117731e+01, 7.74922064e+01, 1.16807028e+00,
1.08489510e+00, 2.42696465e+00, 4.17332906e+01, 3.07456140e+00,
5.66459954e+01, 1.84964733e+01, 1.25667575e+00, 6.48357778e+01,
1.35040966e+02, 1.18342324e+01, 2.20257333e+00, 1.05982573e+00,
1.31953383e+02, 3.36890408e+01, 1.14181050e+00, 4.21550263e+00,
               1 01/12/5050102
                               1 0/0107160:00 1 00100000:01
```

Thank you!

✓ 0s completed at 5:13 PM

×