The Application of Next Generation Electric Propulsion Systems to Mars Exploration

Michael D. West, Christine Charles, Orson Sutherland & Rod W. Boswell

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Overview of EP Systems

Electrothermal

- propellant heated by electrical process & expanded through a nozzle
- − resistojets (hydrazine, $I_{sp} \approx 300$ sec, 300 mN, $\epsilon \approx 80\%$, 750 W)
- − arcjets (hydrazine, $I_{sp} \approx 600$ sec, 250 mN, ε ≈ 40%, 1.5k W)

Electrostatic

- propellant accelerated by electrostatic forces to ionise particles
- − ion thruster (xenon, $I_{sp} \approx 4000$ sec, 100 mN, ε ≈ 65%, 0.75 27 kW)
- − FEEP (cesium, $I_{sp} \approx 10000$ sec, <5 mN, $\epsilon \approx 95\%$, ≈ 500W)

Electromagnetic

- propellant accelerated by combined action of electric & magnetic fields
- − MPD/Li-LFA (lithium, $I_{sp} \approx 4000$ sec, 12.5 N, ε ≈ 48%, 200 kW)
- − Hall thruster (xenon, $I_{sp} \approx 1800$ sec, 80 mN, $\epsilon \approx 50\%$, 200 kW)

Station Keeping & Orbit Transfers

- Used on Russian satellites since 1970s.
- > 150 EP systems have flown
- Applications
 - Attitude control
 - Station keeping
 - Drag reduction
 - Orbit changing functions
 - · Gentle spiral trajectories
- Advantages
 - High precision thrust
 - Low propellent consumption
 - Long life

Interplanetary Travel

- Deep Space 1 (Braille asteroid -1998)
 - ion thruster, 12kg Xe, 1800 hr thrust
- Hayabusa (Itokawa 2003)
 - 4 ion thrusters, 22kg Xe, >26,000 hrs
- SMART-1 (Moon 2003)
 - Hall thruster, 12kg Xe, 0.07 N, 1.5 year trip

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Interplanetary Travel

DAWN (Ceres & Vesta - 2007)

4 ion thrusters, 250kg Xe, 90mN, 6 yr trip

BepiColombo (Mercury - 2013)

ion thruster, 0.24 N, 6 yr trip

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Dual-Stage 4 Grid (DS4G) Ion Thruster

- ESA test campaigns 2005 & 2006
 - 43 aperture grid
 - Max 30kV beam potential
 - Thrust = 2.7 mN
 - Isp = 14000 sec

- Total Power = 300 W
- Mass ultilisation efficiency = 96%
- Total efficiency = 63%
- Thrust density = 0.86 nN/cm²
- Beam divergence = 4-6°

Helicon Double Layer Thruster (HDLT)

- Magnetoplasmadynamic system
- Simple design no moving parts
- Low thrust but scalable (~1-10mN)
- Propellants H₂, O₂, Xe, Ar
- No electrodes or neutraliser needed
 - Long operating life
- High exhaust velocity > 10 km/sec
- V_{exhaust} ~ 15 km/sec with O₂
- Beam divergence ~ 2°
- Scalable in size and power

Helicon Double Layer Thruster (HDLT)

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Propulsion System Parameters

$$P_e = rac{F_{ ext{max}} \cdot I_{sp}}{2 \cdot \eta_{th}}$$

where F_{max} is maximum thrust level, I_{sp} is specific impulse, η_{th} is thruster efficiency and P_{e} is electrical input power

For Mars missions optimum $I_{sp} \sim 3000 \text{ sec}$ and thrust $\sim 100\text{N}$

From Schmidt, T. D. & Auweter-Kurtz, M., 2005, 'Adequate electric propulsion system parameters for piloted Mars missions', IEPC-2005 Proceedings.

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Mars Mission Requirements

Crewed Missions

- Fast transit times
- Numerous abort options
- Power for life support
- High system redundancy
- Reasonable acceleration
 - avoid van Allen belt radiation

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Cargo Missions

- High payload capacity
 - reduce propellent
- Transit time non critical
- Nominal power requirements
- Autonomous & limited complexity
- Reusable system

Mission Scenarios

Traditional Direct NEP or SEP

- Large vehicle constructed on orbit
 - separate nuclear reactor from crew
 - sufficient solar panel array
- Long spiral from LEO
- Continuous operation
 - long acceleration & deceleration
- Land & leave vehicle in Mars orbit
- Spiral (yet shorter) from Mars orbit

Mission Scenarios

Hybrid SEP/Chemical

- Cargo vehicle departs first
- 30-85 day spiral from LEO
- Crew follow in smaller vehicle
- Dock & proceed with either EP or chemical system
- Chemical system assists with Mars Orbit Insertion (MOI)

OR

- Cargo vehicle uses EP
- Crew vehicle use chemical

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Mars Mission Propulsion Options

Propulsion Option	Description	Advantages	Disadvantages
Chemical	Conventional cryogenic rocket engines, usually one stage per major maneuver (TMI, MOI & TEI). Insulated tanks with vapor-cooled shields to reduce boil off. Start T/W 0.1 to 0.25. I _{sp} ~ 460s.	 Mature technology High thrust, short burn times Ballistic interplanetary transfers facilitate implementing artificial gravity 	 Low performance leads to high IMLEO except for conjunction profile with long transfer times Cryogenic with H₂, low density, needs leak control Expendable system
Chemical & Aerocapture	As above except aerocapture used for MOI. Large aeroshell needed requiring either intact launch or in-space assembly. Lander may capture separately to simplify configuration	Reduces IMLEO by replacing one major maneuver with aerocapture	 Performance still marginal for 'hard year' opportunities Aerocapture risk: TPS/thermal, GN&C Expendable system
NTR	Nuclear thermal rocket engine, H2 propellant, I _{sp} ~ 900s. Insulated tanks as above; start T/W <= 0.1 to reduce nuclear engine size.	 Known technology Twice I_{sp} of chemical reduces IMLEO & sensitivity to opportunity High thrust, short burn times Ballistic interplanetary transfers facilitate implementing artificial gravity 	 Nuclear costs & risks Engine test protocols not resolved (containing radioactive products) Cryogenic with H₂, low density, needs leak control (worse for H₂) Expendable system

From Griffin, B, et al, 2004, 'A Comparison of Transportation Systems for Human Missions to Mars', Proceedings of Joint Propulsion Conference 2004, AIAA 2004-3834.

Mars Mission Propulsion Options

Propulsion Option	Description	Advantages	Disadvantages
SEP	Large (multi-MW) solar electric propulsion system, performs all major maneuvers. I _{sp} typically 3000s; MPD or comparable thrusters.	 Known technology with increasing flight experience High I_{sp} reduces IMLEO & sensitivity No hydrogen propellant Reusable system 	 Large size may require more space assembly High power EP systems not mature (TRL 2-3) Achievable power-to-mass ratios may exclude some opposition class profiles
NEP	Large (multi-MW) nuclear electric propulsion system, probably Brayton or liquid metal Rankine power generation, performs all major maneuvers. I _{sp} typically 3000s; MPD or comparable thrusters.	 Known technology (no space experience & few experimental prototypes) High I_{sp} reduces IMLEO & sensitivity No hydrogen propellant Potentially reusable system 	 Nuclear costs & risks Large size may require more space assembly High power EP systems not mature (TRL 2-3) Achievable power-to-mass ratios may exclude some opposition class profiles
SEP & Chemical	Large SEP 'tug' system ~ 1 MW delivers chemical interplanetary vehicle to highly elliptical Earth orbit (perhaps in parts for assembly). Chemical propulsion system departs from this orbit & proceeds as chemical option.	 Placement in elliptic orbit reduces chemical Δv ~ 3 km/s, reducing IMLEO & sensitivity to opportunity Same as chemical SEP 'tug' is reusable 	 Costs & mission complexity added by use of SEP 'tug' Cryogenic with H₂, low density, needs leak control Chemical component is expendable system

From Griffin, B, et al, 2004, 'A Comparison of Transportation Systems for Human Missions to Mars', Proceedings of Joint Propulsion Conference 2004, AIAA 2004-3834.

Space Plasma, Power & Propulsion Group Research School of Physical Sciences & Engineering The Australian National University, Canberra, Australia

Conclusions

- Electric propulsion is a maturing technology
- Australia is contributing to next generation EP system development
- The benefits of EP for Mars exploration warrant further research particularly in light of performance of next generation systems
 - desirable I_{sp} & thrust range
 - reduce propellant requirement & therefore reduce IMLEO
- Straight SEP or NEP systems are plausible (yet may not be practical)
- Hybrid approach may be the most appropriate more studies needed
- Irrespective, lets get to Mars anyway!! :o)

For more information visit http://sp3.anu.edu.au

