Mitigation Method Against Privacy Violations Attacks on FR Systems

Hackathon Demo

Members: Guy Elovici and Alon Schneider

Mentors: Prof. Asaf Shabtai and Dr. Edita Grolman

CBG Cyber Security Research Center at Ben Gurion University of the Negev

Outline

- ☐ Reminder Project Proposal
- ☐ Project Structure
- ☐ Initial System Results

Outline

- ☐ Reminder Project Proposal
- ☐ Project Structure
- ☐ Initial System Results

Reminder – Project Proposal

Introduction and Motivation

Introduction and Motivation

- We are Guy Elovici and Alon Schneider, 4th year students in data engineering.
- Our mentors are Prof. Asaf Shabtai and Dr. Edita Grolman.
- The field of our project is mitigation method against privacy violations attacks on face recognition (FR) systems.

• Face verification systems, one of the most common computer vision applications, are typically used to compare a photo ID (e.g., passport, driver's license) with an existing photo of an individual.

- Recent studies have demonstrated the ability to infer various sensitive information related to the dataset set that was used to train the machine learning (ML) model.
- Since FR models are trained on individuals' data (e.g., individuals' images), they are vulnerable to various privacy violation attacks.

- Most of the FR systems are based on deep neural networks, using publicly available pre-trained components, referred to as backbones, for inducing the FR model (for example, AlexNet, ResNet, and VGG)
- These backbones are commonly used and showed to be vulnerable for adversaries' goals i.e., privacy attack.
- The goal of this project is to propose a new defense mechanism against privacy violation attacks by masking the backbones influence on the trained model.

Outline ✓ Reminder – Project Proposal ✓ Introduction and Motivation ✓ Problem Definition ✓ Project Content We are here □ Initial System Results

Selected Use-Case

• Face verification with a photo ID. (e.g., passport, driver's license).

Data Set

- In this demo we use the Labeled Faces in the Wild (LFW) dataset.
 - This dataset contains more the 13,000 face images collected from the web
 - Each image is labeled with the person's name, which makes this dataset appropriate for face verification tasks.

FR System Structure

 This FR system structure will be created using PyTorch to implement the predictor network.

Privacy Violation Attacks Structure

- The implementation of existing privacy violation attacks will be done using the <u>Adversarial Robustness Toolbox (ART)</u> repository.
 - This repository contains existing privacy violation attacks with support for PyTorch models.

Mitigation Method Structure

- The structure of the mitigation method is creating a target model which contains multiple backbones.
 - This is done by creating a predictor which trains on embedding data of multiple backbones.
 - The result is a predictor which trains on different backbones, and this is masking the backbone's influence.

Outline ✓ Reminder – Project Proposal ✓ Introduction and Motivation ✓ Problem Definition ✓ Project Structure We are here ☐ Initial System Results

Initial System Components

- This demo contains the implementation of the FR system and a simple illustration of the mitigation method.
- In addition, we've implemented an existing membership inference attack which attacked our FR system in this demo.
- Overall, the demo has two main components:
 - Demonstrating our system on face verification tasks.
 - Demonstrating our mitigation method against an existing privacy violation attack.

Hackathon Demo APP

Initial Results

- Our FR model achieved an accuracy score of 0.86 on the LFW dataset.
- When we used the mitigation method, the accuracy score improved to 0.89.

Image 1

Image 2

Classifying... 🌋

The two images are of the same person 🔽

Initial Results

- When performing the membership inference attack on our FR model, the attack accuracy is 0.97.
- However, the attack accuracy on the mitigation method decreased to 0.82.

Questions?

