

Beyond Linear Costs

Structured OT

How can we encode interactions in the cost function?

Think of cost as function over set of matches

Want: cost of additional match lower if "coherent" with previous matches

Set Function $F:\{0,1\}^{nm}\mapsto \mathbb{R}^+$

 $M = \{(i, j), (k, l)\}$

F(M) := cost of this matching

 \mathbf{H} $\Gamma \in \Pi(\mathbf{a},\mathbf{b})$

Classic OT Formulation:

Structured OT Beyond Linear Costs

Classic OT Formulation:

$$\min_{\Gamma \in \Pi(\mathbf{a},\mathbf{b})} \sum_{i,j} \Gamma_{ij} C_{ij}$$

Cost function is **linear**, separable in Γ_{ij}

- How can we encode interactions in the cost function?
- Think of cost as function over set of matches

Want: cost of additional match lower if "coherent" with previous matches

Submodularity in a nutshell