Материал курса *λ-исчисление*, 2024

Содержание

1.	. Конверсия и редукция	
	1.1. Основные понятия	
	1.2. Оператор подстановки и $\beta\eta$ -конверсия	
	1.3. Комбинаторы и согласованность	
	1.4. Нормальные формы	
	1.5. Редукция	
	1.6. Теорема Чёрча-Россера	
	1.7. Стандартная редукция	
	1.8. Редукционные стратегии	
2.	. λ-Представимость	
	2.1. Основные понятия	
	2.2. Рекурсивные функции	
	2.3. Теорема Клини	15
	2.4. Числа Чёрча	
	2.5. Числовые системы	
3.	. Теорема о неразрешимости	19
Бі	Библиография	

1. Конверсия и редукция

1.1. Основные понятия

Определение 1.1.1. Рассмотрим счётное множество $V = \{v, v', v'', ...\}$. Элементы этого множества будут называться *переменными*. Множество λ -выражений, Λ , — это наименьшее множество, удовлетворяющее следующим условиям:

- (1) $x \in V \Rightarrow x \in \Lambda$;
- (2) $x \in V, M \in \Lambda \Rightarrow (\lambda x M) \in \Lambda;$ (абстракция, морально: определение функции)
- (3) $M \in \Lambda, \ N \in \Lambda \Rightarrow (MN) \in \Lambda.$ (комбинация, морально: применение функции к аргументу)

<u>Пример 1.1.1.</u> λ -выражения в формальной нотации:

Нотация

- (1) x, y, z, ... обозначают произвольные переменные из множества V.
- (2) M, N, K, ... обозначают произвольные λ -выражения из Λ .
- (3) Внешние скобки опускаются: $(\lambda x(yz)) \to \lambda x. (yz).$
- (4) Многократная абстракция сокращается:

$$\lambda x_1(\lambda x_2(\lambda...(\lambda x_n M)...)) \rightarrow \lambda x_1, x_2, ..., x_n \cdot M \rightarrow \lambda \vec{x} \cdot M$$

(5) Многократная комбинация сокращается:

$$((...((M_1M_2)M_3)...)M_n)N \to M_1M_2...M_nN \to \overrightarrow{M}N$$

(6) Комбинация берёт приоритет над абстракцией: $\lambda x.~(yz) \rightarrow \lambda x.~yz$

<u>Определение 1.1.2.</u> Пусть $M-\lambda$ -выражение. Множества $\mathrm{TV}(M),\ \mathrm{FV}(M),\ \mathrm{BV}(M)\subset V$ определяются индуктивно:

M	$\mathrm{TV}(M)$	$\mathrm{FV}(M)$	$\mathrm{BV}(M)$
$x \in V$	$\{x\}$	$\{x\}$	Ø
$\lambda x. N$	$\{x\} \cup \mathrm{TV}(N)$	$\mathrm{FV}(N)\setminus\{x\}$	$\{x\} \cup \mathrm{BV}(N)$
NK	$\mathrm{TV}(N) \cup \mathrm{TV}(K)$	$\mathrm{FV}(N) \cup \mathrm{FV}(K)$	$\mathrm{BV}(N) \cup \mathrm{BV}(K)$

Замечание 1.1.1. В данный момент существуют не вполне осмысленные λ -выражения. Так, в выражении $(\lambda x.\ xy)x$ переменная x выступает одновременно связанной и свободной, а в выражении $\lambda x.\ \lambda x.\ xx$ переменная x связывается дважды. Обе этих проблемы можно исправить заменой связанных переменных: $(\lambda x.\ xy)x \to (\lambda u.\ uy)x,\ \lambda x.\ \lambda x.\ xx \to \lambda x.\ \lambda u.\ uu.$ Сейчас мы формализуем эту идею.

<u>Определение 1.1.3.</u> Пусть □ — бинарное отношение на множестве Λ . Тогда □ называется совместимым с операциями, если:

$$M \sqsubset N \Rightarrow \lambda x. \ M \sqsubset \lambda x. \ N,$$

 $M \sqsubset N \Rightarrow ZM \sqsubset ZN,$
 $M \sqsubset N \Rightarrow MZ \sqsubset NZ.$

<u>Определение 1.1.4.</u> Тождественное равенство (\equiv) обозначает полностью идентичный состав символов: $\lambda x. \ xy \not\equiv \lambda u. \ uy.$

Определение 1.1.5. Отношение α -конгруэнтности ($\stackrel{\alpha}{=}$) на Λ — это наименьшее подмножество $\Lambda \times \Lambda$, удовлетворяющее следующим условиям:

- (1) $M \stackrel{\alpha}{=} M$;
- (2) $\lambda x.\ M \stackrel{\alpha}{=} \lambda y.\ (M[x \to y]),$ при условии что $y \notin \mathrm{TV}(M);$
- $(3) \stackrel{\alpha}{=}$ совместимо с операциями.

Определение 1.1.6. Пусть $M-\lambda$ -выражение. M называется *корректным* в следующих случаях:

- (1) $M \equiv x \in V$;
- (2) $M \equiv \lambda x$. N, причём N корректно, а также $x \notin BV(N)$;
- (3) $M \equiv NK$, причём N, K корректны, а также $BV(N) \cap FV(K) = \emptyset$ и $FV(N) \cap BV(K) = \emptyset$.

<u>Упражнение</u> Доказать, что если M корректно, то $\mathrm{FV}(M)\cap\mathrm{BV}(M)=\varnothing$, $\mathrm{FV}(M)\cup\mathrm{BV}(M)=\mathrm{TV}(M)$.

Упражнение Пусть $M-\lambda$ -выражение. Доказать, что существует корректное λ -выражение N, такое, что $M\stackrel{\alpha}{=} N$.

Договорённость (правило переменных): Пусть λ -выражения $M_1,M_2,...,M_n$ выступают в едином контексте. Тогда мы будем предполагать, что все комбинации этих выражений корректны. Более того, с данного момента мы будем факторизовать множество Λ по отношению λ -конгруэнтности, то есть $M \equiv N \Leftrightarrow M \stackrel{\alpha}{\equiv} N$.

Определение 1.1.7. λ -выражение M называется *замкнутым* (или *комбинатором*), если $\mathrm{FV}(M) = \varnothing$. Λ^0 обозначает множество всех замкнутых λ -выражений.

Определение 1.1.8. M является подвыражением N ($M \subset N$), если M лежит во множестве Sub(N):

N	$\mathrm{Sub}(N)$	
$x \in V$	$\{x\}$	
$\lambda x. K$	$\{\lambda x.\ K\} \cup \mathrm{Sub}(K)$	
K_1K_2	$\operatorname{Sub}(K_1) \cup \operatorname{Sub}(K_2) \cup \{K_1K_2\}$	

Определение 1.1.9. Пусть $F, M \in \Lambda$. Тогда

- $F^0M \equiv M$; $F^{n+1}M \equiv F(F^nM)$
- $FM^{\sim 0} \equiv F$; $FM^{\sim n+1} \equiv (FM^{\sim n})M$

1.2. Оператор подстановки и $\beta\eta$ -конверсия

Определение 1.2.1. Пусть $M \in \Lambda$, $x \notin BV(M)$. Пусть также $N \in \Lambda$. Результат подстановки N вместо x, M[x := N], определяется индуктивно:

$$x[x \coloneqq N] \equiv N;$$
 $y[x \coloneqq N] \equiv y, \; \text{если} \; y \not\equiv x;$ $(\lambda y. \; M')[x \coloneqq N] \equiv \lambda y. \; (M'[x \coloneqq N]);$ $(M_1M_2)[x \coloneqq N] \equiv (M_1[x \coloneqq N])(M_2[x \coloneqq N]).$

Замечание 1.2.1. Рассмотрим $M \equiv \lambda y.\ x,\ N \equiv yy.$ Тогда по предыдущему определению мы получаем $M[x:=N] \equiv \lambda y.\ yy$, что настораживает, ведь $M \equiv \lambda y.\ x \stackrel{\alpha}{=} \lambda u.\ x \equiv M'$, тогда как

$$M[x := N] \equiv \lambda y. \ yy \stackrel{\alpha}{\neq} \lambda u. \ yy \equiv M'[x := N].$$

Однако заметим, что такая ситуация некорректна, ведь $\mathrm{BV}(M) \cap \mathrm{FV}(N) = \{y\} \neq \emptyset$.

Упражнение Доказать, что оператор подстановки уважает α -конгруэнтность, если рассматриваемые выражения соблюдают правило переменных. Иначе говоря,

$$\left. \begin{array}{l} M \stackrel{\alpha}{=} M' \\ N \stackrel{\alpha}{=} N' \end{array} \right\} \, \Rightarrow \, M[x \coloneqq N] \stackrel{\alpha}{=} M'[x \coloneqq N'].$$

Подсказка: очевидно, что $M[x\coloneqq N]\stackrel{\alpha}{=} M'[x\coloneqq N]$. Остаётся доказать индукцией по структуре M, что $M[x\coloneqq N]\stackrel{\alpha}{=} M[x\coloneqq N']$.

<u>Лемма 1.2.1.</u> (о подстановке): Пусть $M, N, L \in \Lambda$. Тогда если $x \not\equiv y$ и $x \notin FV(L)$, то

$$(M[x := N])[y := L] \equiv (M[y := L])[x := N[y := L]]$$

<u>Доказательство</u>: Индукция по структуре λ -выражения M.

- (1) База: $M \equiv u \in V$. Тогда рассмотрим три случая:
 - $u \equiv x$. Тогда обе части тождественно равны $N[y \coloneqq L]$, так как $x \not\equiv y$.
 - $u\equiv y$. Тогда обе части равны L, так как $L[x\coloneqq\ldots]=L$, ведь $x\notin\mathrm{FV}(L)$.
 - $u \not\equiv x, y$. Тогда обе части равны u.
- (2) Переход.
 - $M \equiv \lambda z$. M'. По правилу переменных и определению оператора подстановки мы имеем $z \notin \mathrm{FV}(NL)$ и $z \not\equiv x, y$. Тогда по предположению индукции

$$\begin{split} (\lambda z.\ M')[x \coloneqq N][y \coloneqq L] &\equiv \lambda z.\ M'[x \coloneqq N][y \coloneqq L] \\ &\equiv \lambda z.\ M'[y \coloneqq L][x \coloneqq N[y \coloneqq L]] \\ &\equiv (\lambda z.\ M')[y \coloneqq L][x \coloneqq N[y \coloneqq L]]. \end{split}$$

• $M\equiv M_1M_2$. Доказательство аналогично.

q.e.d.

Определение 1.2.2. ($\beta\eta$ -конверсия): Отношение $\beta\eta$ -конверсии (=) — это наименьшее подмножество $\Lambda \times \Lambda$, удовлетворяющее следующим условиям:

(1) $(\lambda x. M)N = M[x := N];$

 $(\beta$ -конверсия)

(2) λx . Mx = M, при условии что $x \notin TV(M)$;

 $(\eta$ -конверсия)

- (3) = отношение эквивалентности;
- (4) = совместимо с операциями.

Если M=N, мы говорим, что «M равно N», или «M конвертируется в N». Запись « $\lambda \vdash M=N$ » означает, что конверсию M=N можно вывести из вышеуказанных правил.

Теорема 1.2.1. (о неподвижной точке): $\forall F \in \Lambda : \exists X \in \Lambda : FX = X$.

<u>Доказательство</u>: Пусть $W \equiv \lambda x.\ F(xx)$ и $X \equiv WW.$ Тогда имеем

$$X \equiv WW \equiv (\lambda x. F(xx))W = F(xx)[x := W] \equiv F(WW) \equiv FX,$$

q.e.d.

<u>Утверждение 1.2.1.</u> (fallacy): $\forall M, N \in \Lambda : \lambda \vdash M = N$

<u>Доказательство</u>: Рассмотрим $F \equiv \lambda x, y, yx$. Тогда для любых M, N имеем

$$FMN \equiv ((\lambda x. (\lambda y. yx))M)N = (\lambda y. yM)N = NM.$$

В частности, Fyx = xy. Однако

$$Fyx \equiv ((\lambda x. (\lambda y. yx))y)x = (\lambda y. yy)x = xx.$$

Тогда xy=xx, а значит $F_1\equiv \lambda x,y.$ $xy=\lambda x,y.$ $xx\equiv F_2.$ Теперь для любого $M\in\Lambda$ имеем

$$M = (\lambda x. x)M = F_1(\lambda x. x)M = F_2(\lambda x. x)M = (\lambda x. x)(\lambda x. x) = (\lambda x. x),$$

и по транзитивности $M=(\lambda x.\ x)=N$ для любых $M,N\in\Lambda.$ В чём ошибка?

<u>Лемма 1.2.2.</u> Оператор подстановки уважает конверсию. Иначе говоря, если $M=M',\ N=N',$ то M[x:=N]=M'[x:=N'].

<u>Доказательство</u>: Пусть M = M', N = N'. Тогда

$$M[x := N] = (\lambda x. M)N = (\lambda x. M')N = (\lambda x. M')N' = M'[x := N'].$$

q.e.d.

1.3. Комбинаторы и согласованность

Определение 1.3.1.

- $\mathbf{I} \equiv \lambda x. x$
- $\mathbf{K} \equiv \lambda x, y. \ x$
- $\mathbf{K}_{\star} \equiv \lambda x, y. y$
- $S \equiv \lambda x, y, z. \ xz(yz)$
- $\mathbf{Y} \equiv \lambda f. \ (\lambda x. \ f(xx))(\lambda x. \ f(xx))$ комбинатор неподвижной точки: $\forall F \in \Lambda: \ F(\mathbf{Y}F) = \mathbf{Y}F.$ Этот комбинатор позволяет моделировать простую рекурсию. Рассмотрим λ -выражение M, определённое рекуррентной формулой:

$$Mx \equiv FxM$$
.

Определим $G \equiv \lambda y$. λx . Fxy. Тогда M приобретает явную форму: $M \equiv \mathbf{Y}G$ (упражнение).

Определение 1.3.2.

- (1) Выражение вида M = N называется равенством;
- (2) Равенство M = N называется *замкнутым*, если $M, N \in \Lambda^0$;
- (3) Пусть \mathcal{T} формальная теория, т.е. набор правил, с помощью которых можно выводить равенства (наподобие λ -теории). Тогда \mathcal{T} называется согласованной (нотация $\mathrm{Con}(\mathcal{T})$) если \mathcal{T} не доказывает все замкнутые равенства. В противном случае \mathcal{T} называется противоречивой.
- (4) Если \mathcal{T} это набор равенств, то $\lambda + \mathcal{T}$ обозначает теорию, полученную добавлением равенств из \mathcal{T} к стандартному списку аксиом $\beta\eta$ -конверсии.

Определение 1.3.3. Пусть $M, N \in \Lambda$. Тогда M и N называются несовместимыми (нотация M # N), если теория $\lambda + (M = N)$ противоречива.

<u>Пример 1.3.1.</u> I # K

<u>Доказательство</u>: Имеем $\mathbf{I}MN = \mathbf{K}MN$ для любых $M, N \in \Lambda$. По определению комбинаторов \mathbf{I} и \mathbf{K} , имеем MN = M. Подставляя $M \equiv \mathbf{I}$, получаем $N = \mathbf{I} \ \forall N \in \Lambda$.

1.4. Нормальные формы

Определение 1.4.1.

- (1) λ -выражение M называется $\beta\eta$ -нормальной формой, если оно **не** имеет подвыражений вида $(\lambda x.\ M)N$ или $\lambda y.\ (My)$ (где $y\notin \mathrm{TV}(M)$).
- (2) M имеет нормальную форму N, если M=N и N- нормальная форма.

Пример 1.4.1.

- І находится в нормальной форме;
- **KI** имеет нормальную форму λy . **I**;
- Комбинатор $\Omega = (\lambda x. \ xx)(\lambda x. \ xx)$ не имеет нормальной формы (доказательство позже).

Воспоминания о будущем.

- (1) M может иметь максимум одну нормальную форму;
- (2) $\Omega = (\lambda x. xx)(\lambda x. xx)$ не имеет нормальной формы;
- (3) λ согласованная теория.

1.5. Редукция

Замечание 1.5.1. В правилах конверсии есть определённая асимметрия. Так, о конверсии

$$(\lambda x. x^2 + 1)3 = 10$$

можно сказать, что «10 является результатом упрощения выражения $(\lambda x.\ x^2+1)3$ », но никак не в обратную сторону. Сейчас мы формализуем эту асимметрию.

Определение 1.5.1.

- (1) Отношение \to (редукция за один шаг) это наименьшее подмножество $\Lambda \times \Lambda$, такое что:
 - $(\lambda x. M)N \to M[x := N];$
 - $\lambda x.\ Mx \to M$, если $x \notin \mathrm{TV}(M)$;
 - \rightarrow совместимо с операциями.
- (2) Отношение \rightarrow (редукция) это замыкание \rightarrow до предпорядка: \rightarrow = Preord(\rightarrow);
- (3) Отношение = (конгруэнтность или эквивалентность или равенство) это замыкание \rightarrow до отношения эквивалентности: (=) = Equiv(\rightarrow)

Определение 1.5.2.

- (1) λ -выражения вида $(\lambda x.\ M)N$ называются β -редексами; соотв. отношения: $\underset{\beta}{\rightarrow}, \underset{\beta}{\twoheadrightarrow}, \equiv$
- (2) λ -выражения вида λx . Mx называются η -редексами. соотв. отношения: $\underset{\eta}{\rightarrow}$, $\underset{\eta}{\rightarrow}$, $\underset{\eta}{\rightarrow}$
- (3) $M-(\beta\eta\text{-})$ нормальная форма (или s нормальной форме), если M не содержит $(\beta\eta\text{-})$ редексов.
- (4) Пусть Δ редекс в выражении M. Запись $M\stackrel{\Delta}{\to} N$ означает, что N получается из M сокращением редекса $\Delta\colon\ N\equiv M[\Delta\to\Delta']$
- (5) Редукционный путь это последовательность (конечная или бесконечная) вида

$$\sigma: M_0 \overset{\Delta_0}{\to} M_1 \overset{\Delta_1}{\to} M_2 \to \dots$$

Пример 1.5.1.

• Определим $\omega_3 \equiv \lambda x.~xxx$. Это выражение порождает бесконечный редукционный путь:

$$\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \omega_3\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \omega_3\omega_3\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \dots$$

• Редекс не всегда однозначно задаётся редукцией:

$$\mathbf{I}(\mathbf{I}x) \stackrel{\mathbf{I}x}{\rightarrow} \mathbf{I}x, \quad \mathbf{I}(\mathbf{I}x) \stackrel{\mathbf{I}(\mathbf{I}x)}{\rightarrow} \mathbf{I}x$$

Утверждение 1.5.1. Пусть M — нормальная форма. Тогда:

- (1) $\nexists N: M \rightarrow N$;
- (2) $M \twoheadrightarrow N \Rightarrow M \equiv N$.

Доказательство:

- (1) Очевидно.
- (2) По определению \twoheadrightarrow , условие $M \twoheadrightarrow N$ влечёт два случая:
 - $M \to K_1 \to K_2 \to \dots \to N$ невозможно по (1);
 - $M \equiv N$ искомый.

q.e.d.

Определение 1.5.3. *Редукционный граф* выражения M (нотация ${
m Gr}(M)$) — это граф, в котором:

$$V = \{ N \in \Lambda \mid M \twoheadrightarrow N \}, E = \{ (N, K) \in V^2 \mid N \to K \}$$

<u>Определение 1.5.4.</u> Пусть \Box — произвольное отношение на множестве X. \Box обладает свойством Чёрча-Россера (нотация $CR(\Box)$), если

$$\forall x, x_1, x_2 \in X: \, (x \sqsupset x_1) \land (x \sqsupset x_2), \quad \exists z \in X: \, (x_1 \sqsupset z) \land (x_2 \sqsupset z).$$

Теорема 1.5.1. (о минимальном элементе): Пусть \Box рефлексивно и обладает свойством Чёрча-Россера. Тогда для отношения $\sim = \mathrm{Equiv}(\Box)$ справедливо:

$$x \sim y \Rightarrow \exists z : (x \supset z) \land (y \supset z)$$

<u>Доказательство</u>: Индукция по определению отношения \sim . Пусть $x\sim y$. Тогда возникают три случая:

- $x \sim y \Leftarrow x \sqsupset y$. Тогда положим $z \equiv y$.
- $x \sim y \Leftarrow y \sim x$. Тогда возьмём z по предположению индукции.
- $x\sim y \Leftarrow (x\sim L) \land (L\sim y)$. Тогда рассмотрим $z_1,z_2\in \Lambda: (z_1\sqsubset x,L) \land (z_2\sqsubset L,y)$. Поскольку $\operatorname{CR}(\sqsupset)$, найдётся λ -выражение z, такое, что $(z_1\sqsupset z) \land (z_2\sqsupset z)$. Оно искомое.

q.e.d.

1.6. Теорема Чёрча-Россера

Сначала мы докажем, что отношение $\underset{\beta}{\rightarrow}$ обладает свойством Чёрча-Россера.

<u>Лемма 1.6.1.</u> Пусть \Box — бинарное отношение на множестве X и пусть \Box' = $\mathrm{Trans}(\Box)$ — его транзитивное замыкание. Тогда $\mathrm{CR}(\Box)$ \Rightarrow $\mathrm{CR}(\Box')$.

<u>Доказательство</u>: Пусть $x\sqsupset' x_1,\ x\sqsupset' x_2$. Тогда для каждого отношения возможны два случая, и все четыре можно представить на диаграмме:

q.e.d.

<u>Определение 1.6.1.</u> Рассмотрим бинарное отношение →, определённое индуктивно следующим образом:

- (1) $M \rightsquigarrow M$;
- (2) $M \rightsquigarrow M' \Rightarrow \lambda x. M \rightsquigarrow \lambda x. M'$:
- (3) $M \rightsquigarrow M', N \rightsquigarrow N' \Rightarrow MN \rightsquigarrow M'N'$;

(4) $M \rightsquigarrow M', N \rightsquigarrow N' \Rightarrow (\lambda x. M)N \rightsquigarrow M'[x := N'].$

<u>Лемма 1.6.2.</u> Если $M \rightsquigarrow M'$ и $N \rightsquigarrow N'$, то $M[x := N] \rightsquigarrow M'[x := N']$.

<u>Доказательство</u>: Индукция по определению $M \rightsquigarrow M'$.

(1) $M \rightsquigarrow M' \Leftarrow M \rightsquigarrow M$. Тогда требуется доказать, что $M[x \coloneqq N] \rightsquigarrow M[x \coloneqq N']$. Проведём индукцию по структуре M:

M	Правая часть	Левая часть	Комментарий
x	N	N'	ОК
y	y	y	ОК
PQ	P[]Q[]	P[']Q[']	предп. инд.
$\lambda y. P$	$\lambda y. P[]$	$\lambda y.\ P[']$	аналогично

- (2) $M \rightsquigarrow M' \Leftarrow \lambda y. \ P \rightsquigarrow \lambda y. \ P'$, прямое следствие $P \rightsquigarrow P'$. По предположению индукции имеем $P[x \coloneqq N] \rightsquigarrow P'[x \coloneqq N']$, а тогда $\lambda y. \ P[x \coloneqq N] \rightsquigarrow \lambda y. \ P'[x \coloneqq N']$, что и требовалось показать.
- (3) $M \rightsquigarrow M' \Leftarrow PQ \rightsquigarrow P'Q'$, где $P \rightsquigarrow P'$ и $Q \rightsquigarrow Q'$. Тогда имеем

$$\begin{split} M[x \coloneqq N] &\equiv P[x \coloneqq N] Q[x \coloneqq N] \\ &\rightsquigarrow P'[x \coloneqq N'] Q'[x \coloneqq N'] \\ &\equiv M'[x \coloneqq N']. \end{split}$$

(4)
$$M \rightsquigarrow M' \Leftarrow (\lambda y. P)Q \rightsquigarrow P'[x := Q']$$
, где $P \rightsquigarrow P', Q \rightsquigarrow Q'$. Тогда

$$\begin{split} M[x \coloneqq N] &\equiv (\lambda y. \ P[x \coloneqq N])(Q[x \coloneqq N]) \\ &\rightsquigarrow P'[x \coloneqq N'][y \coloneqq Q'[x \coloneqq N']] \\ &\equiv P'[y \coloneqq Q'][x \coloneqq N'] \\ &\equiv M'[x \coloneqq N']. \end{split}$$

q.e.d.

Лемма 1.6.3.

- (1) $\lambda x. M \rightsquigarrow N$ влечёт $N \equiv \lambda x. M'$, где $M \rightsquigarrow M'$;
- (2) $MN \rightsquigarrow L$ влечёт либо
 - $L \equiv M'N'$, где $M \rightsquigarrow M'$ и $N \rightsquigarrow N'$, либо
 - $M \equiv \lambda x$. P, $L \equiv P'[x := N']$, $\partial e P \rightsquigarrow P'$, $N \rightsquigarrow N'$.

<u>Доказательство</u>: Очевидно.

Лемма 1.6.4. → удовлетворяет свойству Чёрча-Россера.

<u>Доказательство</u>: Пусть $M \rightsquigarrow M_1, \ M \rightsquigarrow M_2$. Проводим индукцию по определению $M \rightsquigarrow M_1$.

- (1) $M \rightsquigarrow M_1 \Leftarrow M \equiv M_1$. Тогда положим $Z \equiv M_2$.
- (2) $M \rightsquigarrow M_1 \Leftarrow (\lambda x.\ P)Q \rightsquigarrow P'[x := Q']$, где $P \rightsquigarrow P', Q \rightsquigarrow Q'$. Демма 1.6.3 позволяет рассмотреть два подслучая:
 - $M_2 \equiv (\lambda x.\ P'')Q''$, где $P \rightsquigarrow P'',\ Q \rightsquigarrow Q''$. По предположению индукции существуют λ -выражения Z_P,Z_Q , такие, что

$$P' \rightsquigarrow Z_P, \ P'' \rightsquigarrow Z_P, \ Q' \rightsquigarrow Z_Q, \ Q'' \rightsquigarrow Z_Q.$$

<u>Лемма 1.6.2</u> позволяет взять $Z \equiv Z_P \big[x \coloneqq Z_Q \big]$ в качестве искомого (упражнение).

- $M_2 \equiv P''[x := Q'']$ аналогично.
- (3) $M \rightsquigarrow M_1 \Leftarrow PQ \rightsquigarrow P'Q'$, где $P \rightsquigarrow P', Q \rightsquigarrow Q'$. Снова два подслучая:
 - $M_2 \equiv P''Q''$, причём $P \rightsquigarrow P''$, $Q \rightsquigarrow Q''$. Тогда аналогично берём $Z \equiv Z_P \big[x \coloneqq Z_Q \big]$.
 - $P \equiv (\lambda x.\ P_1),\ M_2 \equiv P_1''[x\coloneqq Q'']$ и $P_1 \rightsquigarrow P_1'',\ Q \rightsquigarrow Q''$. Лемма 1.6.3 гарантирует, что $P' \equiv \lambda x.\ P_1'$, где $P_1 \rightsquigarrow P_1'$. Применяя предположение индукции, берём $Z = Z_{P_1} \left[x\coloneqq Z_Q\right]$.
- (4) $M \rightsquigarrow M_1 \Leftarrow \lambda x.\ P \rightsquigarrow \lambda x.\ P'$, где $P \rightsquigarrow P'$. Тогда $M_2 \equiv \lambda x,\ P''$. По предположению индукции возьмём $Z = \lambda x.\ Z_P$.

q.e.d.

<u>Лемма 1.6.5.</u> $\underset{\beta}{\twoheadrightarrow}$ — это транзитивное замыкание \rightsquigarrow .

Доказательство: Очевидно по определению.

Теорема 1.6.1. (Чёрча-Россера):

- (1) $\underset{\beta}{\twoheadrightarrow}$ удовлетворяет свойству Ч.-Р.;
- $(2) \ \stackrel{\beta}{M} = N \Rightarrow \exists Z : \left(M \underset{\beta}{\twoheadrightarrow} Z \right) \wedge \left(N \underset{\beta}{\twoheadrightarrow} Z \right).$
- <u>Доказательство</u>: Упражнение.

Следствие

- (1) Если M имеет β -нормальную форму N, то $M \overset{*}{\to} N$.
- (2) М может иметь максимум одну нормальную форму.

Доказательство:

- (1) Пусть M = N, где $N \beta$ -нормальная форма. Тогда существует λ -выражение Z, такое, что $M \twoheadrightarrow Z$ и $N \twoheadrightarrow Z$ (<u>Теорема 1.5.1</u>). Однако раз N нормальная форма, мы заключаем, что $N \equiv Z$ (<u>Утверждение 1.5.1</u>), и $M \twoheadrightarrow N$.
- (2) Пусть $N_1,N_2-\beta$ -нормальные формы выражения M. Тогда $N_1 \twoheadrightarrow_\beta Z$ и $N_2 \twoheadrightarrow_\beta Z$ для некоторого Z. Следовательно, $N_1 \equiv Z \equiv N_2.$

q.e.d.

Теперь мы перейдём к η -редукции.

<u>Определение 1.6.2.</u> Пусть $\beth_1, \beth_2, \beth_3, \beth_4$ — бинарные отношения на множестве X. Следующая диаграмма,

означает « $\forall x, x_1, x_2 \in X : (x \square_1 x_1) \land (x \square_2 x_2), \exists z \in X : (x_2 \square_3 z) \land (x_1 \square_4 z)$ ».

Замечание 1.6.1. Свойство Чёрча-Россера можно переформулировать в этой нотации.

<u>Определение 1.6.3.</u> Пусть $□_1$ и $□_2$ — два бинарных отношения на X. Мы говорим, что $□_1$ и $□_2$ коммутируют, если

9

Замечание 1.6.2. Отношение □ обладает свойством Ч.-Р. ⇔ □ коммутирует само с собой.

Утверждение 1.6.1. (лемма Хиндли-Росена): Пусть \square_1 , $\square_2 \subset X \times X$ таковы, что

- (1) $CR(\square_1), CR(\square_2);$
- $(2) \supset_1 u \supset_2$ коммутируют.

Тогда $\operatorname{Trans}(\beth_1 \cup \beth_2)$ также обладает свойством Чёрча-Россера.

<u>Доказательство</u>: Упражнение.

<u>**Пемма 1.6.6.**</u> Пусть \square_1,\square_2 — бинарные отношения на множестве X. Допустим также, что

Тогда отношения $\operatorname{Preord}(\square_1)$ и $\operatorname{Preord}(\square_2)$ коммутируют.

| <u>Доказательство</u>: Диаграммный поиск (лень рисовать).

<u>Пемма 1.6.7.</u> $\underset{n}{\twoheadrightarrow}$ удовлетворяет свойству Чёрча-Россера.

<u>Доказательство</u>: Так как $\Rightarrow = \operatorname{Preord}(\underset{\eta}{\to}) = \operatorname{Trans}(\operatorname{Refl}(\underset{\eta}{\to}))$, достаточно доказать утверждение для отношения $\operatorname{Refl}(\underset{\eta}{\to}) =: (\rightsquigarrow)$ (<u>Лемма 1.6.1</u>). Предположим теперь, что $M \rightsquigarrow M_1$ и $M \rightsquigarrow M_2$. Без ограничения общности, допустим, что все три выражения M, M_1, M_2 различны (иначе очевидно). Индукция по определению $M \rightsquigarrow M_1$:

- (1) $M \rightsquigarrow M_1 \Leftarrow \lambda x.\ Px \rightsquigarrow P.$ Тогда $M_2 = \lambda x.\ P'x$, где $P \rightsquigarrow P'$. Положим $Z \equiv P'$ и дело в шляпе.
- (2) $M\rightsquigarrow M_1 \Leftarrow KP\rightsquigarrow KP'$, где $P\rightsquigarrow P'$. Тогда если $M_2\equiv K'P, K\rightsquigarrow K'$, то положим $Z\equiv K'P'$. Если же $M_2\equiv KP''$, $P'\rightsquigarrow P''$, то воспользуемся предположением индукции: $\exists Z_P:P',P''\rightsquigarrow Z_P$. Положим $Z=KZ_P$.
- (3) $M \rightsquigarrow M_1 \Leftarrow PK \rightsquigarrow P'K$, где $P \rightsquigarrow P'$. Аналогично с предыдущим случаем.
- (4) $M \rightsquigarrow M_1 \Leftarrow \lambda x. P \rightsquigarrow \lambda x. P'$, где $P \rightsquigarrow P'$.
 - (a) $M_2 \equiv \lambda x.\ P'', P \rightsquigarrow P''.$ Тогда положим $Z \equiv \lambda x.\ Z_P$, где Z_P взято из предположения индукции.
- (b) $P\equiv P_0x,\, M_2\equiv P_0.$ Тогда $P'\equiv P_0'x,$ и мы можем положить $Z\equiv P_0'.$ q.e.d.

<u>Пемма 1.6.8.</u> Пусть $\leadsto = \operatorname{Refl}(\underset{n}{\rightarrow})$. Пусть также $M \leadsto M'$ и $N \leadsto N'$. Тогда

$$M[x \coloneqq N] \xrightarrow{\eta} M'[x \coloneqq N'].$$

<u>Доказательство</u>: Индукция по определению отношения ↔.

- (1) $M \rightsquigarrow M' \Leftarrow M \rightsquigarrow M$. Доказательство следует индукцией по структуре M (упражнение).
- (2) $M \rightsquigarrow M' \Leftarrow \lambda y$. $M'y \rightsquigarrow M'$, причём $y \notin \mathrm{TV}(M')$. Мы также можем считать, что $y \notin \mathrm{TV}(N)$. Тогда

$$M[x\coloneqq N]\equiv (\lambda y.\ M'y)[x\coloneqq N]\equiv \lambda y.\ (M'[x\coloneqq N])y\underset{\eta}{\to} M'[x\coloneqq N] \xrightarrow{\eta} M'[x\coloneqq N'].$$

- (3) $M \rightsquigarrow M' \Leftarrow (\lambda y.\ P) \rightsquigarrow (\lambda y.\ P'), P \rightsquigarrow P'$. Упражнение.
- (4) $M \rightsquigarrow M' \Leftarrow PQ \rightsquigarrow P'Q, P \rightsquigarrow P'$. Упражнение. (5) $M \rightsquigarrow M' \Leftarrow PQ \rightsquigarrow PQ', Q \rightsquigarrow Q'$. Упражнение.

<u>Лемма 1.6.9.</u> $\underset{\beta}{\longrightarrow}$ коммутирует $c \xrightarrow{\eta}$.

<u>Доказательство</u>: <u>Лемма 1.6.6</u> сводит доказательство к следующей диаграмме:

Пусть $M \underset{\beta}{\to} M_1, M \underset{\eta}{\to} M_2$. Ищем $Z: M_1 \underset{\eta}{\twoheadrightarrow} Z, \ \Big(M_2 \underset{\beta}{\to} Z \lor M_2 \equiv Z\Big)$. Проводим индукцию по

- (1) $M \to M_1 \leftarrow (\lambda x. P)Q \to P[x := Q]$. Рассмотрим несколько случаев для M_2 :
 - (a) $M_2 \equiv (\lambda x.\ P')Q$, где $P \to P'$. По предыдущей лемме мы можем взять $Z \equiv P'[x \coloneqq Q]$
 - (b) $M_2 \equiv (\lambda x. \ P)Q'$, где $Q \xrightarrow{n} Q'$. Аналогично.
 - (c) $M_2 \equiv P'Q$, где $P \equiv P'x, \; x \notin \mathrm{TV}(P')$. Тогда

$$M_1 \equiv P[x \coloneqq Q] \equiv (P'x)[x \coloneqq Q] \equiv P'Q \equiv M_2.$$

Берём $Z \equiv M_1 \equiv M_2$. Больше случаев нет (упражнение).

- (2) $M \to M_1 \Leftarrow PQ \to P'Q$, где $P \to P'$. Упражнение. (3) $M \to M_1 \Leftarrow PQ \to PQ'$, где $Q \to Q'$. Упражнение. (4) $M \to M_1 \Leftarrow \lambda x. P \to \lambda x. P'$, где $P \to P'$. Снова рассмотрим несколько случаев для M_2 : (a) $M_2 \equiv \lambda x. P''$, где $P \to P''$. Тогда пользуемся предположением индукции: $Z \equiv \lambda x. Z_P$.

 - (b) $M_2 \equiv P''$, где $P \equiv P^{''}x, \ x \notin \mathrm{TV}(P'')$. Имеем β -редукцию $P \equiv P''x \xrightarrow{\beta} P'$. Для P'возникает два случая:
 - $P'\equiv P_1'x$, где $P'' o P_1'$. Тогда возьмём $Z\equiv P_1'$.
 - $P'' \equiv \lambda y. \; P_1'', \; P' \equiv P_1''[y \coloneqq x]$. Тогда заметим, что

$$M_1 \equiv \lambda x. \; P_1''[y \coloneqq x] \stackrel{\alpha}{=} \lambda y. \; P_1'' \equiv P'' \equiv M_2,$$

и мы опять берём $Z\equiv M_1\equiv M_2.$

q.e.d.

Теорема 1.6.2. (теорема Чёрча-Россера для $\beta\eta$ -редукции):

- (1) → удовлетворяет свойству Чёрча-Россера;
- (2) $M = N \Rightarrow \exists Z : (M \twoheadrightarrow Z) \land (N \twoheadrightarrow Z).$

<u>Доказательство</u>: Упражнение.

Следствие

- Если M имеет $\beta\eta$ -нормальную форму N, то $M \twoheadrightarrow N$;
- М может иметь максимум одну нормальную форму;
- Теория $\lambda\beta\eta$ согласованна;
- λ -выражение $\mathbf{\Omega} = (\lambda x. \ xx)(\lambda x. \ xx)$ не имеет нормальной формы.

<u>Доказательство</u>: Очевидно, применяя <u>Утверждение 1.5.1</u>.

1.7. Стандартная редукция

Определение 1.7.1.

(1) λ -выражение $M \in \Lambda$ называется внешней нормальной формой, если оно имеет форму

$$M \equiv \lambda x_1, ..., x_n \cdot x M_1 ... M_m$$

где $n, m \geqslant 0$.

(2) Если M имеет форму

$$M \equiv \lambda x_1, ..., x_n. (\lambda x. M_0) M_1 ... M_m, \ n \geqslant 0, m \geqslant 1,$$

то выражение $(\lambda x.\ M_0)M_1$ называется внешним редексом.

- (3) $\to (\text{соотв.} \to \text{)}$ редукция, в которой сокращаются только внешние редексы.
- (4) Редекс Δ называется внутренним, если он не внешний.
- (5) $\to (\text{соотв.} \to)$ редукция, в которой сокращаются только внутренние редексы.

Определение 1.7.2. Пусть $M-\lambda$ -выражение. Редекс Δ_1 в M левее редекса Δ_2 , если первая « λ » в Δ_1 левее, чем первая « λ » в Δ_2 .

<u>Лемма 1.7.1.</u> Пусть $M,N\in\Lambda$ и $M\twoheadrightarrow N$. Тогда существует $Z\in\Lambda$, такое, что $M\twoheadrightarrow_h Z\twoheadrightarrow_i N$.

Доказательство (эскиз): Ключ в том, что внешняя и внутренняя редукции коммутируют:

Редукция M N представляется как

$$M \xrightarrow{*} M_1 \xrightarrow{*} M_2 \xrightarrow{*} M_3 \xrightarrow{*} \dots \xrightarrow{*} N.$$

Переставляя редукции, получаем искомое разбиение.

Определение 1.7.3. Пусть σ — это редукционный путь, то есть

$$\sigma: M_0 \overset{\Delta_0}{\to} M_1 \overset{\Delta_1}{\to} M_2 \overset{\Delta_2}{\to} \cdots.$$

 σ называется $\mathit{стандартным},$ если $\forall i,$ $\forall j < i : \Delta_i -$ не результат сокращения редекса, находящегося левее $\Delta_j.$ Стандартная редукция обозначается $M \twoheadrightarrow N.$

Теорема 1.7.1. Пусть $M, N \in \Lambda$ и $M \twoheadrightarrow N$. Тогда $M \twoheadrightarrow N$.

<u>Доказательство</u>: Имеем $M \twoheadrightarrow_h Z \twoheadrightarrow_i N$ для какого-то $Z \in \Lambda$. Индукция по длине выражения N.

- (1) $N \equiv x \in V$. Тогда $Z \equiv x$ и доказательство завершено.
- (2) $N \equiv \lambda x_1,...,x_n$. $N_0N_1...N_m$, где n+m>0. Тогда Z должно иметь форму

$$\lambda x_1,...,x_n.\ Z_0Z_1...Z_m,$$

где $Z_i woheadrightarrow N_i$ при $0\leqslant i < m$. По предположению индукции имеем $Z_i woheadrightarrow N_i$. Тогда Z woheadrightarrow N и доказательство завершено.

1.8. Редукционные стратегии

Определение 1.8.1. (редукционная стратегия): Отображение $F:\Lambda \to \Lambda$ называется *редукционной стратегией*, если для любого $M\in \Lambda$ выполняется редукция

$$M \twoheadrightarrow F(M)$$
.

Определение 1.8.2.

(1) Пусть F — редукционная стратегия. F -редукционный путь выражения M — это последовательность

$$M, F(M), F^2(M), ...$$

(2) F называется *нормализующей*, если для любого $M \in \Lambda$, имеющего нормальную форму, $F^n(M)$ находится в нормальной форме для некоторого $n \in \mathbb{N}$.

Определение 1.8.3. *Крайняя левая редукционная стратегия,* F_l , определяется следующим образом:

- (1) $F_l(M) \equiv M$, если M в нормальной форме.
- (2) $F_l(M) \equiv M'$, если $M \stackrel{\Delta}{\to} M'$, где Δ крайний левый редекс в M.

Теорема 1.8.1. (о нормализации): F_l — нормализующая стратегия.

<u>Доказательство</u>: Пусть выражение M имеет нормальную форму N. Тогда по теореме Чёрча-Россера имеем $M \twoheadrightarrow N$. Тогда по предыдущей теореме есть стандартный редукционный путь

$$\sigma: M \equiv M_0 \overset{\Delta_0}{\to} M_1 \overset{\Delta_1}{\to} \to \cdots \overset{\Delta_{n-1}}{\to} M_n \equiv N.$$

Утверждается, что σ — это редукционный путь стратегии F_l . Допустим противное. Тогда на каком-то шагу редекс Δ_i — не крайний левый, а значит он уже не сможет сократиться в дальнейшем. Тогда N — не нормальная форма. Противоречие.

2. λ -Представимость

2.1. Основные понятия

Определение 2.1.1. Пусть $A \equiv \lambda x, y. \ y(xxy)$. Комбинатор $\mathbf{\Theta} \equiv AA$ называется комбинатором Тьюринга.

Определение 2.1.2.

- (1) $\underline{\text{true}} \equiv \mathbf{T} \equiv \lambda x, y. \ x$
- (2) $\underline{\text{false}} \equiv \mathbf{F} \equiv \lambda x, y. y$
- (3) Пусть $B \in \Lambda$. Тогда запись

if B then M else N

обозначает λ -выражение BMN.

Определение 2.1.3. Пусть $M, N \in \Lambda$. Упорядоченная пара [M, N] определяется как

$$[M, N] \equiv \lambda z. zMN.$$

Определим также $(P)_0 \equiv P\mathbf{T}, \ (P)_1 \equiv P\mathbf{F}.$

Упражнение Показать, что $([M,N])_0 \twoheadrightarrow M$, $([M,N])_1 \twoheadrightarrow N$. Правда ли, что $[(P)_0,(P)_1]=P$? Определение 2.1.4. (конечные кортежи):

$$[M] \equiv M, \qquad [M_0, M_1, ..., M_{n+1}] \equiv [M_0, [M_1, ..., M_{n+1}]],$$

$$\langle M_0, M_1, ..., M_n \rangle \equiv \lambda z. \ z M_0 M_1 ... M_n$$

Определение 2.1.5.

(1)
$$\pi_i^n \equiv \lambda z. \ z \mathbf{F}^{\sim i} \mathbf{T}, \quad 0 \leqslant i < n,$$
 $\pi_n^n \equiv \lambda z. \ z \mathbf{F}^{\sim n}$

(2)
$$\mathbf{P}_i^n \equiv \lambda z. \ z(\lambda x_1, x_2, ..., x_n. \ x_i), \quad 0 \leqslant i \leqslant n$$

Упражнение Показать, что

$$\pi_i^n[M_0, M_1, ..., M_n] \twoheadrightarrow M_i, \quad \mathbf{P}_i^n\langle M_0, M_1, ..., M_n\rangle \twoheadrightarrow M_i$$

Теорема 2.1.1. (обобщённая теорема о неподвижной точке): Пусть $F_1, F_2, ..., F_n \in \Lambda$. Тогда существуют выражения $X_1, X_2, ..., X_n \in \Lambda$, такие, что

$$\begin{split} X_1 &= F_1 X_1 X_2 ... X_n, \\ X_2 &= F_2 X_1 X_2 ... X_n, \\ &\vdots \\ X_n &= F_n X_1 X_2 ... X_n. \end{split}$$

<u>Доказательство</u>: Определим выражения

$$M \equiv \lambda f, x. f(\mathbf{P}_1^n x)(\mathbf{P}_2^n x)...(\mathbf{P}_n^n x),$$

$$F \equiv \lambda x. \langle MF_1 x, MF_2 x, ..., MF_n x \rangle.$$

Тогда по теореме о неподвижной точке найдётся выражение $X\in\Lambda: X=FX$. Наконец, положим $X_i\equiv \mathbf{P}_i^nX$. Действительно,

$$X_i \equiv \mathbf{P}_i^n X = M F_i X = F_i X_1 X_2 ... X_n,$$

q.e.d.

Определение 2.1.6. Пусть $M,N\in\Lambda$. Композиция $M\circ N$ определяется как $\lambda x.$ M(Nx), где $x\notin\mathrm{FV}(M)\cup\mathrm{FV}(N)$.

Определение 2.1.7.

(1) Числа Барендрегта (или просто λ -числа) — это следующая последовательность λ -выражений:

$$\lceil 0 \rceil \equiv \mathbf{I}, \qquad \lceil n+1 \rceil \equiv \lceil \mathbf{F}, \lceil n \rceil \rceil$$

Заметим, что все λ -числа — различные нормальные формы.

(2) Определим

$$\mathbf{S}^+ \equiv \lambda z.~[\mathbf{F},z], \qquad \mathbf{P}^- \equiv \lambda z.~z\mathbf{F}, \qquad \mathbf{Zero} \equiv \lambda z.~z\mathbf{T}$$

<u>Упражнение</u> $\mathbf{S}^+(\lceil n \rceil) = \lceil n+1 \rceil$, $\mathbf{P}^-(\lceil n+1 \rceil) = \lceil n \rceil$, Zero $(\lceil 0 \rceil) = \mathbf{T}$, Zero $(\lceil n+1 \rceil) = \mathbf{F}$

Определение 2.1.8. Пусть $P: \mathbb{N}_0 \to \{\underline{\text{true}}, \underline{\text{false}}\}$ — предикат на натуральных числах. Запись

$$\mu m[P(m)]$$

обозначает наименьшее число m, такое, что выполняется P(m), если такое число существует. В противном случае $\mu m[P(m)]$ не определено.

2.2. Рекурсивные функции

Определение 2.2.1.

- (1) Числовая функция это отображение $\mathbb{N}_0^p \to \mathbb{N}_0$, для некоторого $p \in \mathbb{N}$.
- (2) Числовая функция $\varphi:\mathbb{N}_0^p\to\mathbb{N}_0$ называется λ -представимой, если существует выражение $F\in\Lambda$, такое, что

$$\forall n_1, n_2, ..., n_p \in \mathbb{N}_0: \qquad F \ulcorner n_1 \urcorner \ulcorner n_2 \urcorner \dots \ulcorner n_p \urcorner = \ulcorner \varphi \big(n_1, n_2, ..., n_p \big) \urcorner$$

(3) Если $\vec{n}=n_1,n_2,...,n_p$, то положим

$$\lceil \vec{n} \rceil = \lceil n_1 \rceil, \lceil n_2 \rceil, ..., \lceil n_p \rceil.$$

Определение 2.2.2. (первичные функции): Функции U_i^p , S^+ , Z называются *первичными*:

$$\begin{split} U_i^p \big(n_0, n_1, ..., n_p\big) &= n_i, \quad 0 \leqslant i \leqslant p, \\ S^+(n) &= n+1, \qquad Z(n) = 0. \end{split}$$

Определение 2.2.3. Пусть \mathcal{A} — некий класс числовых функций.

(1) \mathcal{A} называется замкнутым относительно суперпозиции, если для любых $\chi, \psi_1, \psi_2, ..., \psi_m \in \mathcal{A}$, функция

$$\varphi(\vec{n}) = \chi(\psi_1(\vec{n}), \psi_2(\vec{n}), ..., \psi_m(\vec{n}))$$

лежит в \mathcal{A} .

(2) $\mathcal A$ называется замкнутым относительно примитивной рекурсии, если для любых $\chi, \psi \in \mathcal A$, функция

$$\varphi(0, \vec{n}) = \chi(\vec{n}),$$

$$\varphi(k+1, \vec{n}) = \psi(\varphi(k, \vec{n}), k, \vec{n})$$

лежит в \mathcal{A} .

(3) \mathcal{A} называется замкнутым относительно минимизации, если для любой функции $\chi \in \mathcal{A}: \forall \vec{n} \ \exists m \ \chi(\vec{n},m)=0,$ функция

$$\varphi(\vec{n}) = \mu m [\chi(\vec{n},m) = 0]$$

лежит в \mathcal{A} .

(4) Класс \mathcal{R} рекурсивных функций – это наименьший класс числовых функций, который содержит все первичные функции, а также замкнут относительно суперпозиции, примитивной рекурсии и минимизации.

2.3. Теорема Клини

<u>Пемма 2.3.1.</u> Все первичные функции λ -представимы.

<u>Доказательство</u>: Очевидно.

Лемма 2.3.2. λ-представимые функции замкнуты относительно суперпозиции.

<u>Доказательство</u>: Упражнение.

<u>Лемма 2.3.3.</u> λ-представимые функции замкнуты относительно примитивной рекурсии.

<u>Доказательство</u>: Пусть функция φ задаётся соотношениями

$$\varphi(0, \vec{n}) = \chi(\vec{n}),$$

$$\varphi(k+1, \vec{n}) = \psi(\varphi(k, \vec{n}), k, \vec{n}),$$

где χ и ψ λ -представлены выражениями G и H соответственно. Рассмотрим выражение

$$X \equiv \lambda f. \ \lambda x, \vec{y}. \ (\underline{\text{if}} \ \ \mathbf{Zero} \ x \ \underline{\text{then}} \ \ G\vec{y} \ \underline{\text{else}} \ H \left(f(\mathbf{P}^{-}x)\vec{y} \right) (\mathbf{P}^{-}x) \vec{y} \right).$$

 λ -выражение $F \equiv \mathbf{Y} X$ представляет функцию φ (упражнение).

Определение 2.3.1. Пусть $P \in \Lambda$. Определим

$$H_P \equiv \mathbf{\Theta}(\lambda h, z. \text{ if } Pz \text{ then } z \text{ else } h(\mathbf{S}^+ z)),$$
$$\mu P \equiv H_P \lceil 0 \rceil.$$

<u>Утверждение 2.3.1.</u> Пусть $P \in \Lambda$ таково, что при всех $n \in \mathbb{N}_0$ либо $P^\lceil n \rceil = \mathbf{T}$, либо $P^\lceil n \rceil = \mathbf{F}$. Тогда:

- (1) $H_P z \rightarrow \underline{if} Pz \underline{then} z \underline{else} H_P(S^+ z);$
- (2) $\mu P = \lceil \mu n \lceil P \rceil \rceil = \mathbf{T} \rceil \rceil$ (если минимум существует).

<u>Доказательство</u>:

- (1) Упражнение.
- (2) Допустим, что $\mu n[P^{\ulcorner}n^{\urcorner}=\mathbf{T}]=m.$ Тогда имеем

$$H_P \lceil m \rceil = \lceil m \rceil$$
,

$$\forall n < m: \ H_P \ulcorner n \urcorner = H_P \ulcorner n + 1 \urcorner = H_P \ulcorner n + 2 \urcorner = \ldots = H_P \ulcorner m \urcorner = \ulcorner m \urcorner.$$

Отсюда получаем, что $\mu P \equiv H_P \lceil 0 \rceil = \lceil m \rceil$,

q.e.d.

Пемма 2.3.4. λ-представимые функции замкнуты относительно минимизации.

<u>Доказательство</u>: Пусть

$$\varphi(\vec{n}) = \mu m [\chi(\vec{n},m) = 0],$$

где $G \in \Lambda$ представляет функцию χ . Определим $F \in \Lambda$ как

$$F\vec{x} = \mu(\lambda y. \text{ Zero } (G\vec{x}y)).$$

По предыдущему утверждению, F представляет функцию φ .

<u>Следствие</u> Все рекурсивные функции λ -представимы.

<u>Лемма 2.3.5.</u> Пусть φ λ -представляется выражением F. Тогда для всех $\vec{n}, m \in \mathbb{N}_0$

$$\varphi(\vec{n}) = m \Leftrightarrow F^{\ulcorner}\vec{n}^{\urcorner} = {\ulcorner}m^{\urcorner}$$

<u>Доказательство</u>:

- (⇒) Очевидно по определению.
- (\Leftarrow) Предположим, что $F \lceil \vec{n} \rceil = \lceil m \rceil$. Тогда $\lceil \varphi(\vec{n}) \rceil = \lceil m \rceil$. Так как λ -числа это различные нормальные формы, по теореме Чёрча-Россера имеем $\varphi(\vec{n}) = m$,

q.e.d.

Теорема 2.3.1. (Клини): Функция $\varphi: \mathbb{N}_0^p \to \mathbb{N}_0$ рекурсивна $\iff \varphi \lambda$ -представима.

Доказательство (эскиз):

 (\Rightarrow) Очевидно.

- (\Leftarrow) Идея в том, чтобы воспользоваться тем фактом, что λ -теория сама по себе рекурсивна (λ -выражения рекурсивно определены). Для этого мы строим биекцию $g:\Lambda \leftrightarrow \mathbb{N}_0:g^{-1}$. Далее мы определяем ряд рекурсивных функций:
- $(1) \ \operatorname{Num}: \mathbb{N}_0 \to \mathbb{N}_0: \operatorname{Num}(m) = g(\lceil m \rceil).$
- (2) $\operatorname{Num}^{-1}: \mathbb{N}_0 \to \mathbb{N}_0: \operatorname{Num}^{-1}(g(\lceil m \rceil)) = m$
- (3) $\mathrm{App}: \mathbb{N}_0^p \to \mathbb{N}_0: \, \mathrm{App}(n_1, n_2, ..., n_k) = g\big(g^{-1}(n_1) \cdot g^{-1}(n_2) \cdot ... \cdot g^{-1}(n_k)\big)$
- (4) $\operatorname{Red}: \mathbb{N}_0 \to \mathbb{N}_0: \operatorname{Red}(g(M)) = g(N)$, где N нормальная форма M (если таковая существует).

Далее, рассмотрим функцию $\varphi:\mathbb{N}_0^p\to\mathbb{N}_0$, представленную λ -выражением F. Пусть $n_1,n_2,...,n_p$ — набор аргументов. Пусть f=g(F). Определим φ' как $\mathrm{Num}^{-1}\circ\mathrm{Red}\circ\mathrm{Appl}\circ$

$$\begin{split} &n_1, n_2, ..., n_p \\ & \downarrow \text{(Num)} \\ &m_1, m_2, ..., m_p \\ & \downarrow \text{(App)} \\ &m = \text{Appl}(f, m_1, ..., m_p) \\ & \downarrow \text{(Red)} \\ &r = \text{Red}(m) \\ & \downarrow \text{(Num}^{-1}) \\ &s = \text{Num}^{-1}(r) \end{split}$$

Будучи композицией рекурсивных функций, функция $\varphi':n_1,n_2,...,n_p\mapsto s$ рекурсивна. Более того, она совпадает с φ по предыдущей лемме.

2.4. Числа Чёрча

Определение 2.4.1. Числа Чёрча — это следующая последовательность λ -выражений:

$$c_0 \equiv \lambda f, x. \; x, \qquad c_{n+1} \equiv \lambda f, x. \; f(c_n f x).$$

В явном виде, $c_n \equiv \lambda f$. f^n .

Утверждение 2.4.1. Существуют λ -выражения H, H^{-1} , такие, что при всех $n \in \mathbb{N}_0$

$$H^\lceil n \rceil = c_n, \qquad H^{-1}c_n = \lceil n \rceil.$$

<u>Доказательство</u>: Пусть $S_c^+ \equiv \lambda a, b, c.\ b(abc)$. Очевидно, что $S_c^+ c_n = c_{n+1}$. Теперь рассмотрим

$$\begin{split} H &\equiv \lambda x. \ \underline{\text{if}} \ \ \textbf{Zero} \ x \ \underline{\text{then}} \ c_0 \ \underline{\text{else}} \ S_c^+(H(\mathbf{P}^-x)), \\ H^{-1} &\equiv \lambda x. \ x \mathbf{S}^{+} \ 0 \ \bar{\ }. \end{split}$$

Очевидно, что эти выражения являются искомыми.

<u>Следствие</u> Пусть $\varphi:\mathbb{N}_0^p \to \mathbb{N}_0$. Тогда φ λ -представима с помощью чисел Чёрча $\Longleftrightarrow \varphi$ рекурсивна.

<u>Доказательство</u>: Упражнение.

Лемма 2.4.1. Положим

$$\mathbf{A}_+ \equiv \lambda x, y, p, q. \ xp(ypq), \qquad \mathbf{A}_* \equiv \lambda x, y, z. \ x(yz), \qquad \mathbf{A}_{\mathrm{exp}} \equiv \lambda x, y. \ yx.$$

Тогда

$$\mathbf{A}_+ c_n c_m = c_{n+m}, \qquad \mathbf{A}_* c_n c_m = c_{nm}, \qquad \mathbf{A}_{\exp} c_n c_m = c_{n^m}$$

<u>Доказательство</u>: Очевидно, что $(f^n)^m = f^{nm}$. Отсюда все три утверждения следуют тривиально.

<u>Замечание 2.4.1.</u> Числа Чёрча хороши тем, что на них очень простая арифметика. Однако они плохи отсутствием естественного предшествующего элемента.

2.5. Числовые системы

<u>Определение 2.5.1.</u> Последовательность λ -выражений $d_0, d_1, d_2, ...$ называется *числовой системой*, если существуют λ -выражения \mathbf{S}_d^+ и **Zero** $_d$, удовлетворяющие следующим равенствам:

$$\begin{aligned} \mathbf{S}_d^+ d_n &= d_{n+1}, & \forall n \in \mathbb{N}_0, \\ \mathbf{Zero}_d b_0 &= \mathbf{T}, & \mathbf{Zero}_d d_{n+1} &= \mathbf{F}, & \forall n \in \mathbb{N}_0. \end{aligned}$$

Замечание 2.5.1. Каждая числовая система однозначно определяется нулевым элементом d_0 и функцией следующего элемента \mathbf{S}_d^+ . Поэтому мы будем писать $d=(d_0,\mathbf{S}_d^+)$.

Определение 2.5.2. Пусть $d = (d_0, \mathbf{S}_d^+)$ — числовая система.

- (1) d называется *нормальной*, если все выражения d_k находятся в нормальной форме.
- (2) d называется adeкватной, если все рекурсивные функции λ -представляются с помощью чисел d_k . Иными словами, для любой рекурсивной $\varphi:\mathbb{N}_o^p\to\mathbb{N}_0$ существует λ -выражение $F\in\Lambda$, такое, что

$$\forall n_1, n_2, ..., n_p \in \mathbb{N}_0: \ Fd_{n_1}d_{n_2}...d_{n_p} = d_{\varphi(n_1, n_2, ..., n_p)}.$$

<u>Утверждение 2.5.1.</u> Пусть d — числовая система. Тогда d адекватна в том и только том случае, если существует функция предшествующего элемента, \mathbf{P}_d^- , такая что

$$\forall n \in \mathbb{N}_0: \ \mathbf{P}_d^- d_{n+1} = d_n.$$

<u>Доказательство</u>:

(\Rightarrow) По определению.

(\Leftarrow) Доказательство аналогично таковому для λ -чисел (упражнение).

q.e.d.

3. Теорема о неразрешимости

Определение 3.1.

- (1) Биекция $g:\Lambda \leftrightarrow \mathbb{N}_0:g^{-1}$ называется кодированием λ -выражений. Для выражения $M\in \Lambda$ число g(M) называется его числом Гёделя.
- (2) Рекурсивная функция $au: \mathbb{N}_0^2 \to \mathbb{N}_0$, такая, что

$$\tau(g(M),g(N))=g(MN),$$

называется функцией комбинации. Мы предположим, что такая существует.

(3) Рекурсивная функция $\kappa: \mathbb{N}_0 \to \mathbb{N}_0$, такая, что

$$\kappa(n) = g(\lceil n \rceil),$$

называется ϕ ункцией нумерации λ -чисел.

Определение 3.2. Пусть $M-\lambda$ -выражение. Тогда λ -число $\lceil M \rceil$ определяется как

$$\lceil M \rceil = \lceil g(M) \rceil.$$

Определение 3.3.

(1) Множества $\mathcal{A}, \mathcal{B} \subset \mathbb{N}_0$ называются *рекурсивно сепарабельными*, если существует рекурсивная функция $\varphi : \mathbb{N}_0 \to \{0,1\}$, такая, что

$$n \in \mathcal{A} \Rightarrow \varphi(n) = 0,$$

$$n \in \mathcal{B} \Rightarrow \varphi(n) = 1.$$

Два множества $\mathcal{A}', \mathcal{B}' \subset \Lambda$ называются рекурсивно сепарабельными, если рекурсивно сепарабельны множества $g(\mathcal{A}'), g(\mathcal{B}')$.

(2) Множество \mathcal{A} называется *рекурсивным* (или *разрешимым*), если \mathcal{A} и \mathcal{A}^C рекурсивно сепарабельны.

Определение 3.4. Пусть $\mathcal{A}\subset\Lambda$. Тогда \mathcal{A} называется замкнутым относительно конверсии, если для любых $M,N\in\Lambda$:

$$\left. \begin{array}{l} M \in \mathcal{A} \\ N = M \end{array} \right\} \Rightarrow N \in \mathcal{A}.$$

Теорема 3.1. (Скотта-Карри о неразрешимости): Пусть \mathcal{A} , \mathcal{B} — непустые подмножества Λ , замкнутые относительно конверсии. Тогда \mathcal{A} и \mathcal{B} не рекурсивно сепарабельны.

<u>Доказательство</u>: Рассмотрим \mathcal{A} , \mathcal{B} как в условии и допустим, что \mathcal{A} и \mathcal{B} разделяются функцией φ . Имеем

$$M \in \mathcal{A} \Rightarrow \varphi(g(M)) = 0,$$

$$M \in \mathcal{B} \Rightarrow \varphi(g(N)) = 1.$$

По теореме Клини φ представляется неким λ -выражением F. Иными словами,

$$M \in \mathcal{A} \Rightarrow F^{\Gamma}M^{\Gamma} = [0]$$
.

$$M \in \mathcal{B} \Rightarrow F^{\Gamma}M^{\gamma} = [1]$$

Пусть функции τ и κ представляются выражениями T и K соответственно (Определение 3.1). Имеем

$$T \lceil M \rceil \lceil N \rceil = \lceil XY \rceil$$
.

$$K \lceil n \rceil = \lceil \lceil n \rceil \rceil$$
.

Возьмём произвольные $M\in\mathcal{A},\ N\in\mathcal{B}.$ Было бы круто построить λ -выражение J, такое, что

$$F \lceil J \rceil = \lceil 0 \rceil \Rightarrow J = B,$$

 $F \lceil J \rceil = \lceil 1 \rceil \Rightarrow J = A.$

В таком случае мы придём к противоречию. Действительно, пусть j=g(J). Тогда $\varphi(j)$ — это либо 0, либо 1. Имеем

$$\varphi(j)=0 \Rightarrow F \lceil J \rceil = \lceil 0 \rceil$$

$$\Rightarrow J=B$$

$$\Rightarrow J \in \mathcal{B} \ \, \text{(в силу замкнутости относительно конверсии)}$$

$$\Rightarrow \varphi(j)=1. \ \, \text{(по определению)}$$

$$\varphi(j)=1 \Rightarrow \varphi(j)=0. \ \, \text{(аналогично)}$$

Теперь мы построим J. Требуемое свойство выражается формулой

$$J= ext{if Zero } (F \lceil J \rceil) ext{ then } B ext{ else } A = ext{Zero } (F \lceil J \rceil) B A$$

Мы не можем напрямую воспользоваться теоремой о неподвижной точке, потому что $\lceil J \rceil$, вообще говоря, не λ -представимо для произвольного $J \in \Lambda$. Поэтому мы используем небольшой трюк. Пусть $y \notin \mathrm{FV}(AB)$. Положим

$$H \equiv \lambda y. \ (\mathbf{Zero} \ (F(Ty(Ky))) \ B \ A),$$

 $J \equiv H^{\Gamma}H^{\gamma}.$

Нетрудно видеть, что J удовлетворяет нужным соотношениям.

<u>Следствие</u> Пусть $\mathcal{A} \subset \Lambda$ замкнуто относительно конверсии и таково, что $\mathcal{A} \neq \emptyset$, $\mathcal{A}^C \neq \emptyset$. Тогда \mathcal{A} не разрешимо.

<u>Доказательство</u>: Упражнение.

<u>Следствие</u> Множество всех λ -выражений, имеющих нормальную форму, не разрешимо.

<u>Доказательство</u>: Упражнение.

<u>Следствие</u> Отношение конверсии (=) не разрешимо. То есть, не существует рекурсивной функции $\varphi: \mathbb{N}_0^2 \to \mathbb{N}_0$, такой, что

$$\begin{split} M &= N \, \Rightarrow \, \varphi(g(M),g(N)) = 0, \\ M &\neq N \, \Rightarrow \, \varphi(g(M),g(N)) = 1, \end{split}$$

<u>Доказательство</u>: Пусть такая функция нашлась. Тогда возьмём $\mathcal{A} = \{M \in \Lambda \mid M = \mathbf{I}\}$. Очевидно, что \mathcal{A} нетривиально и замкнуто относительно конверсии. Однако функция $\psi(n) = \varphi(n,g(\mathbf{I}))$ явно разделяет \mathcal{A} и его дополнение:

$$M \in \mathcal{A} \Rightarrow \psi(g(M)) = 0, \qquad M \notin \mathcal{A} \Rightarrow \psi(g(M)) = 1,$$

противоречие.

Библиография

- [1] Barendregt H. P., The Lambda calculus: its syntax and semantics, т. 103. 1984.
- [2] Barendregt H. P. и Barendsen E., Introduction to Lambda calculus. 2000.
- [3] J. Roger Hindley и Jonathan P. Seldin, Lambda-calculus and combinators, an introduction. 2008.