数值分析・课程作业・第四章

姓名:潘林越 班级:数学与应用数学 2020-2 班 学号: 15194694

1. 构造函数的差商表.

x_i	$y_i = f(x_i)$	一阶差商	二阶差商
0	<u>1</u>		
1	2	<u>1</u>	
2	4	1.5	$\underline{0.5}$

所以二次插值多项式为 $P_2(x) = 1 + 1 \times (x - 0) + 0.5(x - 0)(x - 1) = 0.5x^2 + 0.5x + 1.$

3. 用 0.5,0.6,0.7,0.4 四点构造函数的差商表.

x_i	$\sin x_i$	一阶差商	二阶差商	三阶差商
0.5	0.47943			
0.6	0.56464	0.8521		
0.7	0.64422	0.82395	<u>-0.2815</u>	
0.4	0.38942	0.9001	-0.2400	<u>-0.1383</u>

用 0.5,0.6 两点进行插值,得到线性插值多项式为 $P_1(x) = 0.47943 + 0.8521(x - 0.5) = 0.05338 + 0.8521x$. 所以 $\sin 0.57891 \approx P_1(0.57891) = 0.54667$. 截断误差约为 $|R_1(x)| \approx |f[0.5,0.6,0.7](x-0.5)(x-0.6)| \approx 4.68 \times 10^{-4}$.

用 0.5,0.6,0.7 三点进行插值,得到二次插值多项式为 $P_2(x) = 0.47943 + 0.8521(x - 0.5) - 0.2815(x - 0.5)(x - 0.6) = -0.2815x^2 + 1.16175x - 0.03107$. 所以 $\sin 0.57891 \approx P_2(0.57891) = 0.54714$. 截断误差约为 $|R_2(x)| \approx |f[0.5,0.6,0.7,0.4](x - 0.5)(x - 0.6)(x - 0.7)| \approx 2.79 \times 10^{-5}$.

- 4. 根据拉格朗日余项定理,有 $R_3(x) = f(x) P_3(x) = \frac{f^{(4)}(\xi)}{4!} \prod_{i=0}^3 (x x_i), \xi \in [-1, 2]$, 并有 $f^{(4)}(x) = 4!$,则 $x^4 - P_3(x) = (x + 1)x(x - 1)(x - 2)$,即 $P_3(x) = x^4 - (x + 1)x(x - 1)(x - 2) = 2x^3 + x^2 - 2x$.
- 6. 有 $R_1(x) = \frac{f''(\xi)}{2!}(x-x_0)(x-x_1)$,则 $|R_1(x)| \le \frac{1}{2} \max_{x_0 \le x \le x_1} |(x-x_0)(x-x_1)| \max_{x_0 \le x \le x_1} |f''(x)| = \frac{1}{8}(x_1-x_0)^2 \max_{x_0 \le x \le x_1} |f''(x)|, \quad x \in [x_0,x_1],$ 证毕.

15. 采用基函数的思想,首先求出分别满足下列插值条件的五个基本的四次埃尔米特插值多项式 $\alpha_0(x)$, $\alpha_1(x)$, $\alpha_2(x)$, $\beta_0(x)$, $\beta_1(x)$

g(x)	g(0)	g(1)	g(2)	g'(0)	g'(1)
$\alpha_0(x)$	1	0	0	0	0
$\alpha_1(x)$	0	1	0	0	0
$\alpha_2(x)$	0	0	1	0	0
$\beta_0(x)$	0	0	0	1	0
$\beta_1(x)$	0	0	0	0	1

设 $g(x) = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$. 则 $(g(0), g(1), g(2), g'(0), g'(1))^{\mathrm{T}} = (a_4, a_0 + a_1 + a_2 + a_3 + a_4, 16a_0 + 8a_1 + 4a_2 + 2a_3 + a_4, a_3, 4a_0 + 3a_1 + 2a_2 + a_3)^{\mathrm{T}} = \mathbf{A}\boldsymbol{\alpha}$,其中

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 16 & 8 & 4 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}, \boldsymbol{\alpha} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}. \boldsymbol{\pi} \boldsymbol{A}^{-1} = \begin{bmatrix} -1.25 & 1 & 0.25 & -0.5 & -1 \\ 4.5 & -4 & -0.5 & 2 & 3 \\ -4.25 & 4 & 0.25 & -2.5 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

所以

$$\alpha_0(x) = (x^4, x^3, x^2, x, 1) \mathbf{A}^{-1} (1, 0, 0, 0, 0)^{\mathrm{T}} = -1.25x^4 + 4.5x^3 + -4.25x^2 + 1.$$

同理

$$\alpha_1(x) = x^4 - 4x^3 + 4x^2, \quad \alpha_2(x) = 0.25x^4 - 0.5x^3 + 0.25x^2,$$

$$\beta_0(x) = -0.5x^4 + 2x^3 - 2.5x^2 + x, \quad \beta_1(x) = -x^4 + 3x^3 - 2x^2.$$

被插值函数 f(x) 具有以下插值条件

所构造的四次埃尔米特插值多项式即为

$$P(x) = -2\alpha_1(x) + 3\alpha_2(x) + \beta_1(x) = -9.25x^2 + 9.5x^3 - 2.25x^4.$$

17. 等距节点函数表如下.

\overline{x}	-4	-3	-2	-1	0	1	2	3	4
e^x	0.018316	0.049787	0.13534	0.36788	1	2.7183	7.3891	20.086	54.598

在每个子区间上分别作线性插值,得

$$P_1(x) = f(x_i) \frac{x - x_{i+1}}{x_i - x_{i+1}} + f(x_{i+1}) \frac{x - x_i}{x_{i+1} - x_i}, x \in [x_i, x_{i+1}], i = 0, 1, \dots, n - 1.$$

计算结果列于下表.

$x \in$	[-4,-3]	[-3,-2]	[-2,-1]	[-1,0]	
f(x)	0.031471x + 0.1442	0.085553x + 0.30645	0.23254x + 0.60042	0.63212x + 1	
$x \in$	[0,1]	[1,2]	[2,3]	[3,4]	
f(x)	1.7183x + 1	4.6708x - 1.9525	12.697x - 18.005	34.512x - 83.450	

要使截断误差不超过 10^{-6} ,因 $|f(x)-P_1(x)|\leq \frac{h^2}{8}\max|f''(x)|$,则需 $\frac{h^2}{8}\mathrm{e}^4\leq 10^{-6}$,所以

$$h \le 3.82 \times 10^{-4}.$$