廃棄物処理における線形問題の応用

目次

- ・問題の説明
- 定式化
- ①パラメータ (入力情報)
- ②決定変数
- ③制約条件
- ④目的関数
- 結果
- ・まとめ

廃棄物処理センター (SAVE IT COMPANY)

4種類の廃棄物を収集し、組み合わせて資源化している。

これから求めるもの

- ①パラメータ (入力情報)
- ②決定変数
- 3制約条件
- 4目的関数

①パラメータ 製品データ

グレード	仕様	資源化コスト(\$/ポンド)	売値(\$/ ポンド)
A	材料1: 全体の30%以下 材料2: 全体の40%以上 材料3: 全体の50%以下 材料4: ちょうど20%	3.00	8.50
В	材料1:全体の50%以下 材料2:全体の10%以上 材料4:ちょうど10%	2.50	7.00
С	材料 1 :全体の70%以下	2.00	5.50

①パラメータ 材料 (廃棄物) データ

材料	量(ポンド/1週 間)	処理にかかるコスト (\$)	追加制約
1	3,000	3.00	①少なくとも半分以上の量を資
2	2,000	6.00	源化すること。 ②\$30,000は使う。
3	4,000	4.00	— \$00,000 VO 1X 7 C
4	1,000	5.00	

2 決定変数

• とりあえずなんか定義してみる…

 y_i :1週間に生産されるグレードi製品の量(i=A,B,C)

製品のグレードは材料の割合によって決まることから

 Z_{ij} :グレードi製品における材料jの割合(i =A,B,C; j=1,2,3,4)

材料jにおいて、

1週間に使用できる材料jの量= $Z_{Aj}y_A + Z_{Bj}y_B + Z_{Cj}y_C$

材料データより、1週間に使用できる材料の量は3000ポンドであることから

$$Z_{Aj}y_A + Z_{Bj}y_B + Z_{Cj}y_C \le 3000$$

2 決定変数

$$Z_{Aj}y_A + Z_{Bj}y_B + Z_{Cj}y_C \le 3000$$

- \rightarrow これは正当な制約条件ではない。つまり $Z_{Aj}y_A$ などは決定変数ではない。
- ※左辺が線形関数で表現されておらず、様々な製品(A,B,C)が関わっているため。
- ★2種類の変数を1種類の変数に置き換える

$$x_{ij} = Z_{ij}y_i$$
 (For $i = A, B, C; j = 1,2,3,4$)
= グレード i 製品における材料 j の量

決定変数は x_{ii} :グレードiにおける材料jの量

③制約条件

②で求めた決定変数 x_{ij} を使ってモデルの制約条件を定義する。

$$x_{i1}+x_{i2}+x_{i3}+x_{i4}=1$$
週間に製作されたグレード i 製品の量
$$x_{Aj}+x_{Bj}+x_{Cj}=1$$
週間に使用された材料 j の量
$$\frac{x_{ij}}{x_{i1}+x_{i2}+x_{i3}+x_{i4}}=$$
グレード i 製品における材料 j の割合

※製品データより、グレードAにおいて材料1は全体の30%以下なので、

$$\frac{x_{A1}}{x_{A1} + x_{A2} + x_{A3} + x_{A4}} \le 0.3$$

両辺を分母で割ると

$$x_{A1} \le 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

(3)制約条件

 $x_{C1} \le 0.7(x_{C1} + x_{C2} + x_{C3} + x_{C4})$

1. Mixture specifications (second column of Table 3.16): 製品データの仕様による、材料の割合の制約 $x_{A1} \le 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 1) $x_{A2} \ge 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 2) $x_{A3} \le 0.5(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 3) $x_{A4} = 0.2(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 4) $x_{B1} \le 0.5(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 1) $x_{B2} \ge 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 2) $x_{B4} = 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 4)

2. Availability of materials (second column of Table 3.17):

材料データによる、材料の最大使用制約
$$x_{A1} + x_{B1} + x_{C1} \le 3,000$$
 (material 1) $x_{A2} + x_{B2} + x_{C2} \le 2,000$ (material 2) $x_{A3} + x_{B3} + x_{C3} \le 4,000$ (material 3) $x_{A4} + x_{B4} + x_{C4} \le 1,000$ (material 4).

3. Restrictions on amounts treated (right side of Table 3.17): 材料データによる、材料の最小使用制約

$$x_{A1} + x_{B1} + x_{C1} \ge 1,500$$
 (material 1)
 $x_{A2} + x_{B2} + x_{C2} \ge 1,000$ (material 2)
 $x_{A3} + x_{B3} + x_{C3} \ge 2,000$ (material 3)
 $x_{A4} + x_{B4} + x_{C4} \ge 500$ (material 4).

4. Restriction on treatment cost (right side of Table 3.17):

材料データによる、コスト制約
$$3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2}) + 4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) = 30,000.$$

5. Nonnegativity constraints:

(grade C, material 1).

$$x_{A1} \ge 0, \quad x_{A2} \ge 0, \quad \dots, \quad x_{C4} \ge 0.$$

4目的関数

目的

1週間における、3種類の製品の売上による**純利益の増大** ※純利益=全体収入一資源化コスト

純利益、つまり目的関数をZとおくと、

$$= 5.5(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 4.5(x_{B1} + x_{B2} + x_{B3} + x_{B4}) + 3.5(x_{C1} + x_{C2} + x_{C3} + x_{C4})$$

赤字は1ポンド量ごとの利益を表現している

※グレードA製品の場合

製品データより、1ポンドごとの売上が\$8.50、資源化コストが\$3.00なことから、1ポンドごとの利益は8.50-3.00=5.5となる。

問題の定式化

②決定変数

 x_{ij} :グレードi製品における材料jの量

4目的関数

Z:1週間における純利益

Maximize Z

$$= 5.5(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 4.5(x_{B1} + x_{B2} + x_{B3} + x_{B4}) + 3.5(x_{C1} + x_{C2} + x_{C3} + x_{C4})$$

グレード	仕様	資源化コスト(\$/ポン ド)	売値(\$/ポンド)
А	材料1: 全体の30%以下 材料2: 全体の40%以上 材料3: 全体の59%以下 材料4: ちょうど20%	3.00	8.50
В	材料1:全体の50%以下 材料2:全体の10%以上 材料4:ちょうど10%	2.50	7.00
С	材料1:全体の70%以下	2.00	5.50

材料	量(ポンド/1週 間)	資源化コスト(\$/ポン ド)	追加制約
1	3,000	3.00	①少なくとも半分以上の量を資源化すること。
2	2,000	6.00	
3	4,000	4.00	②\$30,000は使う。
4	1,000	5.00	

①パラメータ(入力情報)

②制約条件

1. Mixture specifications (second column of Table 3.16):

$$x_{A1} \le 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$
 (grade A, material 1)
 $x_{A2} \ge 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 2)
 $x_{A3} \le 0.5(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 3)
 $x_{A4} = 0.2(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 4)
 $x_{B1} \le 0.5(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 1)
 $x_{B2} \ge 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 2)
 $x_{B4} = 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 4)
 $x_{C1} \le 0.7(x_{C1} + x_{C2} + x_{C3} + x_{C4})$ (grade C, material 1).

2. Availability of materials (second column of Table 3.17):

$$x_{A1} + x_{B1} + x_{C1} \le 3,000$$
 (material 1)
 $x_{A2} + x_{B2} + x_{C2} \le 2,000$ (material 2)

$$x_{A2} + x_{B2} + x_{C2} = 2,000$$
 (material 2)

$$x_{A3} + x_{B3} + x_{C3} \le 4,000$$
 (material 3)

$$x_{A4} + x_{B4} + x_{C4} \le 1,000$$
 (material 4).

3. Restrictions on amounts treated (right side of Table 3.17):

$$x_{A1} + x_{B1} + x_{C1} \ge 1,500$$
 (material 1)

$$x_{A2} + x_{B2} + x_{C2} \ge 1,000$$
 (material 2)

$$x_{A3} + x_{B3} + x_{C3} \ge 2,000$$
 (material 3)

$$x_{A4} + x_{B4} + x_{C4} \ge 500$$
 (material 4).

4. Restriction on treatment cost (right side of Table 3.17):

$$3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2}) + 4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) = 30,000.$$

5. Nonnegativity constraints:

$$x_{A1} \ge 0, \quad x_{A2} \ge 0, \quad \dots, \quad x_{C4} \ge 0.$$

補足:制約条件

左辺を線形関数で表して 線形モデルに適した形にする

1. Mixture specifications (second column of Table 3.16):

$$x_{A1} \le 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$
 (grade A, material 1)
 $x_{A2} \ge 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 2)
 $x_{A3} \le 0.5(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 3)
 $x_{A4} = 0.2(x_{A1} + x_{A2} + x_{A3} + x_{A4})$ (grade A, material 4)
 $x_{B1} \le 0.5(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 1)
 $x_{B2} \ge 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 2)
 $x_{B4} = 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$ (grade B, material 4)
 $x_{C1} \le 0.7(x_{C1} + x_{C2} + x_{C3} + x_{C4})$ (grade C, material 1).

$$0.7x_{A1} - 0.3x_{A2} - 0.3x_{A3} - 0.3x_{A4} \le 0$$
 (grade A, material 1)
 $-0.4x_{A1} + 0.6x_{A2} - 0.4x_{A3} - 0.4x_{A4} \ge 0$ (grade A, material 2)
 $-0.5x_{A1} - 0.5x_{A2} + 0.5x_{A3} - 0.5x_{A4} \le 0$ (grade A, material 3)
 $-0.2x_{A1} - 0.2x_{A2} - 0.2x_{A3} + 0.8x_{A4} = 0$ (grade A, material 4)
 $0.5x_{B1} - 0.5x_{B2} - 0.5x_{B3} - 0.5x_{B4} \le 0$ (grade B, material 1)
 $-0.1x_{B1} + 0.9x_{B2} - 0.1x_{B3} - 0.1x_{B4} \ge 0$ (grade B, material 2)
 $-0.1x_{B1} - 0.1x_{B2} - 0.1x_{B3} + 0.9x_{B4} = 0$ (grade B, material 4)
 $0.3x_{C1} - 0.7x_{C2} - 0.7x_{C3} - 0.7x_{C4} \le 0$ (grade C, material 1).

すべての変数を左辺に移項

結果(このモデルにおける最適解)

グレード	一週間に使われた量			一週間に生産	
	材料				された量
	1	2	3	4	
A	412.3(19.2%)	859.6(40%)	447.4(20.8%)	429.8(20%)	2149
В	2587.7(50%)	517.5(10%)	1552.6(30%)	517.5(10%)	5175
С	0	0	0	0	0
計	3000	1377	2000	947	

目的関数Zの最適値=35,109,65 つまり一週間の全体利益は\$35,109,65

まとめ

今回のような問題は**混合問題(Blending problem**)という。

