

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 50: Training Tricks

CONCEPTS COVERED

Concepts Covered:

- ☐ Deep Neural Network
 - Normalization
 - ☐ Underfitting/Ovefitting
 - ☐ Regularization
 - Dropout
 - ☐ Early Stopping

Regularization Early stopping

Overfitting/Underfittin g

- Overfitting occurs when a statistical model or machine learning algorithm captures the noise of the data.
- ☐ Intuitively, overfitting occurs when the model or the algorithm fits the data too well.

A statistical model or a machine learning algorithm is said to have underfitting when it cannot capture the underlying trend of the data.

Overfitting/Underfitting:

Degree: 1 Regression Degree: 4

Overfitting/Underfitting: Classification

Regularizati on

- ☐ Regularization is a way to prevent overfitting.
- ☐ L1 and L2 are the most common types of regularization used in training deep models.
- ☐ General cost function with regularization for training is defined as: Cost function = Loss + Regularization term
- Due to this regularization term, the numerical values of weights decrease because it assumes that a neural network with smaller weights leads to simpler models.
- ☐ So this helps to reduce overfitting.

Neguianzation. Li o

L2

- \square L1 regularizer: Cost function = Loss + $\lambda \sum |w|$
 - ☐ It penalizes absolute value of weights
 - ☐ It can make some weights to zero. So useful for model compression.
 - $f \lambda$ is a regularization hyper parameter. Controls the relative weight.
- \square L2 regularizer: Cost function = Loss + $\lambda \sum ||w||^2$
 - ☐ It penalizes second norm of weights.
 - ☐ It is also termed as weight decay as it pushes the weights near to zero. But it does not make exactly zero always.

Data Augmentation

- ☐ Increasing the size of training data is a way to prevent overfitting.
- ☐ It is difficult and costly to increase the training data.
- ☐ Data augmentation is a way to create a different image from one image while keeping the context same.
- ☐ There are a few ways of augmenting training data—rotating, flipping, scaling, shifting, contrast enhancement, brightness control, etc.

Dropout

Dropout

During Testing

features

Features learned by an autoencoder on MNIST with a single hidden layer of 256 rectified linear units with/ without dropout.

Without dropout

With dropout

Size

- While model complexity is fixed, dropout does not generalize the model for very small amount of data
- ☐ As the size of the data set is increased, the gain from doing dropout increases up to a point and then declines.
- ☐ There is a sweet spot where amount of data is large enough.

Earry Stopping

- Hyperparameters need to be tuned for good performance while training neural networks.
- Number of iteration is a hyperparameter to be tuned. Lesser iteration may lead to underfit and more iteration may lead to overfit.
- ☐ Early stopping attempts to remove the need of manually setting this value.
- ☐ It can also be considered a type of regularization method.

Earry Stopping

- ☐ Hyperparameters need to be tuned for good performance while training neural networks.
- Number of iteration is a hyperparameter to be tuned. Lesser iteration may lead to underfit and more iteration may lead to overfit.
- Early stopping attempts to remove the need of manually setting this value.
- ☐ It can also be considered a type of regularization method.

Stopping

Early stopping algorithm is as follows:

- ☐ Split data into train, validation and test set
- ☐ After each training epoch:
 - ☐ Evaluate the model performance using validation data
 - ☐ Save the best model evaluated on validation data
- ☐ Use final model that has the best validation performance for testing.

NPTEL ONLINE CERTIFICATION COURSES

Thank you