

# 中华人民共和国国家标准

**GB/T** 35276—2017

# 信息安全技术 SM2 密码算法使用规范

Information security technology—SM2 cryptographic algorithm usage specification

2017-12-29 发布 2018-07-01 实施

中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会

## 目 次

| 前  | 言・  |                | Ι |
|----|-----|----------------|---|
| 弓  | 言・  | ]              | П |
| 1  | 范目  | 围              | 1 |
| 2  | 规刻  | 苞性引用文件         | 1 |
| 3  | 术证  | 吾和定义           | 1 |
| 4  | 缩田  | 略语             | ] |
| 5  | SM  | I2 的密钥对 ······ | ] |
|    | 5.1 | SM2 私钥 ·····   | 1 |
|    | 5.2 | SM2 公钥 ·····   |   |
| 6  | 数扎  | 据转换            | 2 |
|    | 6.1 | 位串到8位字节串的转换    | 2 |
|    | 6.2 | 8 位字节串到位串的转换   | 2 |
|    | 6.3 | 整数到8位字节串的转换    | 2 |
|    | 6.4 | 8 位字节串到整数的转换   | 2 |
| 7  | 数扎  | 据格式            | 3 |
|    | 7.1 | 密钥数据格式         | 3 |
|    | 7.2 | 加密数据格式         | 3 |
|    | 7.3 | 签名数据格式         |   |
|    | 7.4 | 密钥对保护数据格式      | 3 |
| 8  | 预友  | 处理             | 4 |
|    | 8.1 | 预处理 1          | 4 |
|    | 8.2 | 预处理 2          | 4 |
| 9  | 计算  | 算过程            | 4 |
|    | 9.1 | 生成密钥           | 4 |
|    | 9.2 | 加密             |   |
|    | 9.3 | 解密             |   |
|    | 9.4 | 数字签名           | 5 |
|    | 9.5 | 签名验证           | Ę |
|    | 9.6 | 密钥协商546        | 5 |
| 1( | ) 用 | 户身份标识 ID 的默认值  | 7 |

### 前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由全国信息安全标准化技术委员会(SAC/TC 260)提出并归口。

本标准起草单位:北京海泰方圆科技股份有限公司、卫士通信息产业股份有限公司、无锡江南信息 安全工程技术中心、兴唐通信科技股份有限公司、山东得安信息技术有限公司、上海格尔软件股份有限 公司。

本标准主要起草人:刘平、蒋红宇、柳增寿、李元正、徐强、谭武征、孔凡玉、王妮娜。

5/10

### 引 言

SM2 椭圆曲线公钥密码算法(以下简称 SM2)是由 GB/T 32918 给出的一组非对称算法,其中包括 SM2-1 椭圆曲线数字签名算法、SM2-2 椭圆曲线密钥协商协议、SM2-3 椭圆曲线加密算法。

本标准的目标是保证 SM2 使用的正确性,为 SM2 密码算法的使用制定统一的数据格式和使用方法。

本标准中涉及的 SM3 算法是指 GB/T 32905 给出的一种密码杂凑算法。

本标准仅从算法应用的角度给出 SM2 密码算法的使用说明,不涉及 SM2 密码算法的具体编制细节。



### 信息安全技术 SM2 密码算法使用规范

#### 1 范围

本标准规定了 SM2 密码算法的使用方法,以及密钥、加密与签名等的数据格式。 本标准适用于 SM2 密码算法的使用,以及支持 SM2 密码算法的设备和系统的研发和检测。

#### 2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 32905-2016 信息安全技术 SM3 密码杂凑算法

GB/T 32918.1-2016 信息安全技术 SM2 椭圆曲线公钥密码算法 第1部分:总则

GB/T 32918.2-2016 信息安全技术 SM2 椭圆曲线公钥密码算法 第 2 部分:数字签名算法

GB/T 32918.3—2016 信息安全技术 SM2 椭圆曲线公钥密码算法 第3部分:密钥交换协议

GB/T 32918.4-2016 信息安全技术 SM2 椭圆曲线公钥密码算法 第 4 部分:公钥加密算法

GB/T 32918.5-2017 信息安全技术 SM2 椭圆曲线公钥密码算法 第 5 部分:参数定义

#### 3 术语和定义

下列术语和定义适用于本文件。

3.1

#### 算法标识 algorithm identifier

用于标明算法机制的数字化信息。

3.2

#### SM2 密码算法 SM2 cryptographic algorithm

由 GB/T 32918(所有部分)定义的一种算法。

3.3

#### SM3 密码算法 SM3 cryptographic algorithm

由 GB/T 32905-2016 定义的一种算法。

#### 4 缩略语

下列缩略语适用于本文件。

ECB:电码本模式(Electronics Code Book)

ECC: 椭圆曲线密码算法(Elliptic Curve Cryptography)

#### 5 SM2 的密钥对

#### 5.1 SM2 私钥

SM2 私钥是大于 1 且小于 n-1 的整数(n 为 SM2 算法的阶,其值见 GB/T 32918.5—2017 的第 2

#### GB/T 35276-2017

章),简记为 k,长度为 256 位。

#### 5.2 SM2 公钥

SM2 公钥是 SM2 曲线上的一个点,由横坐标和纵坐标两个分量来表示,记为(x,y),简记为 Q,每个分量的长度为 256 位。

#### 6 数据转换

#### 6.1 位串到8位字节串的转换

位串长度若不是8的整数倍,需先在它的左边补0,以保证它的长度为8的倍数,然后构造8位字节串,转换过程如下:

输入:一个长度为 blen 的位串 B。

输出:一个长度为 mlen 的字节串 M,其中 mlen 的取值为(blen+7)/8 的整数部分。

动作:将位串  $B=B_0B_1$  ······ $B_{blen-1}$  转换到 8 位字节串  $M=M_0M_1$  ······ $M_{mlen-1}$  采用如下方法:

从  $1 \leq i \leq \text{mlen} - 1$ ,设置:

 $\mathbf{M}_{i} = \mathbf{B}_{\mathsf{blen}-8-8(\mathsf{mlen}-1-i)} \, \mathbf{B}_{\mathsf{blen}-7-8(\mathsf{mlen}-1-i)} \, \cdots \, \mathbf{B}_{\mathsf{blen}-1-8(\mathsf{mlen}-1-i)}$ 

对于M<sub>0</sub>,最左边8-blen%8位设置为0,右边设置为B<sub>0</sub>B<sub>1</sub>······B<sub>8-8(mlen)+blen-1</sub>。

输出 M。

#### 6.2 8位字节串到位串的转换

8位字节串到位串转换过程如下:

输入:一个长度为 mlen 的 8 位字节串 M。

输出:一个长度为 blen=(8 \* mlen)的位串 B。

动作:将 8 位字节串  $M = M_0 M_1 \cdots M_{mlen-1}$ 转换到位串  $B = B_0 B_1 \cdots B_{blen-1}$ 采用如下方法:

从  $0 \le i \le \text{mlen} - 1$ ,设置: $B_{8i}B_{8i+1}$ ······· $B_{8i+7} = M_i$ 

输出 B。

#### 6.3 整数到8位字节串的转换

一个整数转换为 8 位字节串,基本方法是将其先使用二进制表达,然后把结果位串再转换为 8 位字节串。以下是转换流程:

输入:一个非负整数 x,期望的 8 位字节串长度 mlen。基本限制为:

 $2^{8(\text{mlen})} > x$ 

输出:一个长度为 mlen 的 8 位字节串 M。

动作:将基于  $2^8 = 256$  的 x 值  $x = x_{\text{mlen}-1} 2^{8(\text{mlen}-1)} + x_{\text{mlen}-2} 2^{8(\text{mlen}-2)} + \cdots + x_1 2^8 + x_0$  转换为一个 8 位字节串  $M = M_0 M_1 \cdots M_{\text{mlen}-1}$  采用如下方法:

从  $0 \le i \le \text{mlen} - 1$ ,设置: $M_i = x_{\text{mlen} - 1-i}$ 

输出 M。

#### 6.4 8 位字节串到整数的转换

可以简单地把8位字节串看成以256为基表示的整数,转换过程如下:

输入:一个长度 mlen 的 8 位字节串 M。

输出:一个整数x。

动作:将一个 8 位字节串  $M=M_0M_1\cdots M_{mlen-1}$ 转换为整数 x 方法如下: 将  $M_i$  看作 $[0\sim255]$ 中的一个整数

$$x = \sum_{i=0}^{\text{mlen}-1} 2^{8(\text{mlen}-1-i)} M_i$$

输出 x。

#### 7 数据格式

#### 7.1 密钥数据格式

SM2 算法私钥数据格式的 ASN.1 定义为:

SM2PrivateKey ::= INTEGER

SM2 算法公钥数据格式的 ASN.1 定义为:

SM2PublicKey ::= BIT STRING

SM2PublicKey 为 BIT STRING 类型,内容为  $04 \parallel X \parallel Y$ ,其中,X 和 Y 分别标识公钥的 x 分量和 y 分量,其长度各为 256 位。

#### 7.2 加密数据格式

SM2 算法加密后的数据格式的 ASN.1 定义为:

SM2Cipher ::= SEQENCE{

XCoordinateINTEGER,—x 分量YCoordinateINTEGER,—y 分量HASHOCTET STRING SIZE(32),—杂凑值CipherTextOCTET STRING—密文

}

其中, HASH 为使用 SM3 算法对明文数据运算得到的杂凑值, 其长度固定为 256 位。CipherText 是与明文对应的密文。

#### 7.3 签名数据格式

SM2 算法签名数据格式的 ASN.1 定义为:

SM2Signature ::= SEQUENCE{

R INTEGER, —签名值的第一部分 S INTEGER —签名值的第二部分

#### 7.4 密钥对保护数据格式

在 SM2 密钥对传递时,需要对 SM2 密钥对进行加密保护。具体的保护方法为:

- a) 产生一个对称密钥;
- b) 按对称密码算法标识指定的算法对 SM2 私钥进行加密,得到私钥的密文。若对称算法为分组 算法,则其运算模式为 ECB;
- c) 使用外部 SM2 公钥加密对称密钥得到对称密钥密文;
- d) 将私钥密文、对称密钥密文封装到密钥对保护数据中。

SM2 密钥对的保护数据格式的 ASN.1 定义为:

SM2EnvelopedKey ::=SEQUENCE{

#### GB/T 35276-2017

symAlgIDAlgorithmIdentifier,一对称密码算法标识symEncryptedKeySM2Cipher,一对称密钥密文Sm2PublicKeySM2PublicKey,—SM2 公钥Sm2EncryptedPrivateKeyBIT STRING—SM2 私钥密文

8 预处理

#### 8.1 预处理 1

预处理 1 是指使用签名方的用户身份标识和签名方公钥,通过运算得到 Z 值的过程。Z 值用于预处理 2,也用于 SM2 密钥协商协议。

输入: ID 字节串 用户身份标识

Q SM2PublicKey 用户的公钥

输出: Z 字节串 预处理1的输出

计算公式为:

 $Z = SM3(ENTL \parallel ID \parallel a \parallel b \parallel x_G \parallel y_G \parallel x_A \parallel y_A)$ 

式中:

ENTL ——为由 2 个字节表示的 ID 的比特长度;

ID ——为用户身份标识;

a、b ——为系统曲线参数;

 $x_G,y_G$  ——为基点;

x<sub>A</sub>、y<sub>A</sub> ——为用户的公钥。

详细的计算过程见 GB/T 32918.2-2016 的 5.5 和 GB/T 32905-2016 的第 5 章。

#### 8.2 预处理 2

预处理 2 是指使用 Z 值和待签名消息,通过 SM3 运算得到杂凑值 H 的过程。杂凑值 H 用于 SM2 数字签名。

输入: Z 字节串 预处理2的输入

M 字节串 待签名消息

输出: H 字节串 杂凑值

计算公式为:

 $H = SM3(Z \parallel M)$ 

详细的计算过程见 GB/T 32918.2—2016 的 6.1 和 GB/T 32905—2016 的第 5 章。

#### 9 计算过程

#### 9.1 生成密钥

SM2 密钥牛成是指牛成 SM2 算法的密钥对的过程,该密钥对包括私钥和与之对应的公钥。

输入: 无

输出: k SM2PrivateKey SM2 私钥

Q SM2PublicKey SM2 公钥

详细的计算过程见 GB/T 32918.1-2016 的 6.1。

#### 9.2 加密

SM2 加密是指使用指定公开密钥对明文进行特定的加密计算,生成相应密文的过程。该密文只能由该指定公开密钥对应的私钥解密。

输入: Q SM2PublicKey SM2 公钥

m 字节串 待加密的明文数据

输出: c SM2Cipher 密文

其中:

输出参数 c 的格式由本规范 7.2 中定义;

输出参数 c 的 XCoordinate、YCoordinate 为随机产生的公钥的 x 分量和 y 分量。

输出参数 c 中的 HASH 的计算公式为:

 $HASH = SM3(x \parallel m \parallel y)$ 

式中:

x,y—Q的x分量和y分量;

输出参数 c 中 CipherText 为加密密文,其长度等于明文的长度。

详细的计算过程见 GB/T 32918.4-2016 的 6.1。

#### 9.3 解密

SM2 解密是指使用指定私钥对密文进行解密计算,还原对应明文的过程。

输入: d SM2PrivateKey SM2 私钥

c SM2Cipher 密文

输出: m 字节串 与密文对应的明文

m 为 SM2Cipher 经过解密运算得到的明文,该明文的长度与输入参数 c 中 CipherText 的长度相同。

详细的计算过程见 GB/T 32918.4—2016 的 7.1。

#### 9.4 数字签名

SM2 签名是指使用预处理 2 的结果和签名者私钥,通过签名计算得到签名结果的过程。

输入: d SM2PrivateKey 签名者私钥

H 字节串 预处理 2 的结果

输出: sign SM2Signature 签名值

详细的计算过程见 GB/T 32918.2—2016 的 6.1。

#### 9.5 签名验证

SM2 签名验证是指使用预处理 2 的结果、签名值和签名者的公钥,通过验签计算确定签名是否通过验证的过程。

输入: H 字节串预 处理2的结果

sign SM2Signature 签名值

Q PublicKey 签名者的公钥

输出:为"真"表示"验证通过",为"假"表示"验证不通过"。

详细的计算过程见 GB/T 32918.2-2016 的 7.1。

#### 9.6 密钥协商

密钥协商是在两个用户之间建立一个共享秘密密钥的协商过程,通过这种方式能够确定一个共享

#### GB/T 35276-2017

#### 秘密密钥的值。

设密钥协商双方为 A、B,双方的密钥对分别为 $(d_A$  , $Q_A$ )和 $(d_B$  , $Q_B$ ),双方需要获得的密钥数据的比特长度为 klen。密钥协商协议分为两个阶段。

第一阶段:产生临时密钥对

用户 A:

调用生成密钥算法产生临时密钥对 $(r_A, R_A)$ ,将  $R_A$ 和用户 A 的用户身份标识  $ID_A$ 发送给用户 B。 用户 B.

调用生成密钥算法产生临时密钥对 $(r_B, R_B)$ ,将  $R_B$ 和用户 B 的用户身份标识  $ID_B$ 发送给用户 A。第二阶段:计算共享秘密密钥

用户 A:

#### 输入参数:

| $\mathbf{Q}_{\mathrm{A}}$  | SM2PublicKey  | 用户 A 的公钥       |
|----------------------------|---------------|----------------|
| $\mathbf{Q}_{\mathrm{B}}$  | SM2PublicKey  | 用户 B 的公钥       |
| $R_{\mathrm{A}}$           | SM2PublicKey  | 用户 A 的临时公钥     |
| $\mathrm{ID}_{\mathrm{A}}$ | OCTET STRING  | 用户 A 的用户身份标识   |
| $R_{\scriptscriptstyle B}$ | SM2PublicKey  | 用户 B 的临时公钥     |
| $\mathrm{ID}_{\mathrm{B}}$ | OCTET STRING  | 用户B的用户身份标识     |
| $d_{A} \\$                 | SM2PrivateKey | 用户 A 的私钥       |
| $r_{\rm A}$                | SM2PrivateKey | 用户 A 的临时私钥     |
| klen                       | INTEGER       | 需要输出的密钥数据的比特长度 |

#### 输出参数:

K OCTET STRING 位长为 klen 的密钥数据



#### 步骤:

- a) 用  $ID_A$ 和  $Q_A$ 作为输入参数,调用预处理 1 得到  $Z_A$ ;
- b) 用 ID<sub>B</sub>和 Q<sub>B</sub>作为输入参数,调用预处理 1 得到 Z<sub>B</sub>;
- c) 以 klen、 $Z_A$ 、 $Z_B$ 、 $d_A$ 、 $r_A$ 、 $R_A$ 、 $Q_B$ 、 $R_B$ 为输入参数,进行运算得到 K。 用户 B:

#### 输入参数:

| $\mathbf{Q}_{\mathrm{B}}$  | SM2PublicKey  | 用户 B 的公钥       |
|----------------------------|---------------|----------------|
| $Q_{\mathrm{A}}$           | SM2PublicKey  | 用户 A 的公钥       |
| $R_{\scriptscriptstyle B}$ | SM2PublicKey  | 用户 B 的临时公钥     |
| $\mathrm{ID}_{\mathrm{B}}$ | OCTET STRING  | 用户B的用户身份标识     |
| $R_{\mathrm{A}}$           | SM2PublicKey  | 用户 A 的临时公钥     |
| $\mathrm{ID}_A$            | OCTET STRING  | 用户 A 的用户身份标识   |
| $d_{\scriptscriptstyle B}$ | SM2PrivateKey | 用户 B 的私钥       |
| $r_{\mathrm{B}}$           | SM2PrivateKey | 用户B的临时私钥       |
| klen                       | INTEGER       | 需要输出的密钥数据的比特长度 |

#### 输出参数:

K OCTET STRING 位长为 klen 的密钥数据

#### 步骤:

- a) 用 IDA和 QA作为输入参数,调用预处理 1 得到 ZA;
- b) 用 ID<sub>B</sub>和 Q<sub>B</sub>作为输入参数,调用预处理 1 得到 Z<sub>B</sub>;
- c) 以 klen、 $Z_A$ 、 $Z_B$ 、 $d_B$ 、 $r_B$ 、 $R_B$ 、 $Q_A$  、 $R_A$ 为输入参数,进行运算得到 K。 详细的计算过程见 GB/T 32918.3—2016 的 6.1。

#### 10 用户身份标识 ID 的默认值

无特殊约定的情况下,用户身份标识 ID 的长度为 16 字节,其默认值从左至右依次为: 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38。

