UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE MATEMÁTICA

Matemática II (MAT022) Clase 22

Coordinación MAT022

Contenidos

- 1 Centroides
 - Centroide de una curva
 - Centroide de una región plana

- 2 Teorema de Pappus
 - Teorema de Pappus para superficies
 - Teorema de Pappus para volúmenes

Centroides

Centroide de una curva

Definición

Sea C la curva plana suave dada por las ecuaciones $(x(t),y(t)),t\in [a,b]$. Se define el centroide de la curva C como el punto de coordenadas $(\overline{x},\overline{y})$ dadas por:

$$\bar{x} = \frac{\int_{a}^{b} x \, ds}{\int_{a}^{b} ds} = \frac{\int_{a}^{b} x(t) \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt}{\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt}$$

$$\overline{y} = \frac{\int_{a}^{b} y \, ds}{\int_{a}^{b} ds} = \frac{\int_{a}^{b} y(t) \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt}{\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt}$$

Centroide de una región plana

Definición

Considere funciones $f_1, f_2 : [a,b] \to \mathbb{R}$ continuas con $f_1(x) \le f_2(x)$ para $x \in [a,b]$ y la región plana dada por

$$R = \left\{ (x, y) \in \mathbb{R}^2 : a \le x \le b \text{ y } f_1(x) \le y \le f_2(x) \right\}$$

se define el centroide de R como el punto $(\overline{x}, \overline{y})$ dado por

$$\bar{x} = \frac{\int_{a}^{b} x \, dA}{\int_{a}^{b} dA} = \frac{\int_{a}^{b} x (f_{2}(x) - f_{1}(x)) \, dx}{\int_{a}^{b} (f_{2}(x) - f_{1}(x)) \, dx}$$

$$\overline{y} = \frac{\int_{a}^{b} \left(\frac{f_2(x) + f_1(x)}{2}\right) (f_2(x) - f_1(x)) dx}{\int_{a}^{b} (f_2(x) - f_1(x)) dx}$$

Teorema de Pappus

Teorema de Pappus para superficies

Sean C una curva suave y L una recta (que no corta C) en \mathbb{R}^2 . Si C rota en torno a L entonces el área de la superficie generada es igual al producto de la longitud de la curva por la distancia recorrida por el centroide.

Teorema de Pappus para volúmenes

El volumen de un sólido de revolución obtenido al rotar una región plana R en torno a una recta L es igual al área de la región plana multiplicada por la distancia recorrida por el centroide de la región.

Ejemplos

- 1 Calcular el centroide de una semicircunferencia de radio a.
- **2** Encontrar el área de la superficie obtenida el rotar el semicírculo $y = \sqrt{a^2 x^2}$ $x \in [-a, a]$ en torno a la recta x + y = 2a.
- **3** Encontrar el volumen del toro obtenido al rotar el círculo $(x-a)^2+y^2 \le b^2$ (0 < b < a) alrededor del eje Y.

Ejemplos

1 Determinar el volumen del sólido obtenido al rotar la región de la figura alrededor del eje Y.

