Autovalori del Laplaciano di un grafo

Candidata: Maria Cristina Spiga Relatore: Prof. Andrea Loi

Università degli Studi di Cagliari Facoltà di Scienze Corso di Laurea in Matematica

A. A. 2019/2020

• Definizione di grafo e nozioni di base

- Definizione di grafo e nozioni di base
- Laplaciano e autovalori

- Definizione di grafo e nozioni di base
- Laplaciano e autovalori
- Tipi di grafo e legami con gli autovalori

- Definizione di grafo e nozioni di base
- Laplaciano e autovalori
- Tipi di grafo e legami con gli autovalori
- Problema isoperimetrico e costante di Cheeger

- Definizione di grafo e nozioni di base
- Laplaciano e autovalori
- Tipi di grafo e legami con gli autovalori
- Problema isoperimetrico e costante di Cheeger
- Dimostrazione della disuguaglianza di Cheeger

Che cos'è un grafo?

Grafo

Si definisce grafo G la coppia (V, E) dove V è l'insieme dei vertici v ed E è l'insieme degli archi $e = \{u, v\}$.

Vertici adiacenti

Due vertici $u, v \in V$ si dicono adiacenti se $\exists \{u, v\} \in E$.

Vertici adiacenti

Due vertici $u, v \in V$ si dicono adiacenti se $\exists \{u, v\} \in E$.

Grado di un vertice

Si definisce grado di un vertice v il numero di vertici ad esso adiacenti e si indica con d_v .

Vertici adiacenti

Due vertici $u, v \in V$ si dicono adiacenti se $\exists \{u, v\} \in E$.

Grado di un vertice

Si definisce grado di un vertice v il numero di vertici ad esso adiacenti e si indica con d_v .

Vertice isolato

Un vertice v di dice isolato se $d_v = 0$.

Grafo k-regolare

Un grafo è k-regolare quando tutti i suoi vertici sono di grado k.

Esempio di grafo 3-regolare

Matrice T

La matrice T è una matrice diagonale con $T(v, v) = d_v$.

Matrice T

La matrice T è una matrice diagonale con $T(v, v) = d_v$.

Matrice T

La matrice T è una matrice diagonale con $T(v, v) = d_v$.

$$T = egin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 & 0 \ 0 & 0 & 3 & 0 & 0 \ 0 & 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Matrice L

$$L(u,v) = egin{cases} d_v & ext{se } u = v, \ -1 & ext{se } u ext{ e } v ext{ sono adiacenti}, \ 0 & ext{altrimenti}. \end{cases}$$

Matrice L

$$L(u,v) = egin{cases} d_v & ext{se } u = v, \ -1 & ext{se } u ext{ e } v ext{ sono adiacenti}, \ 0 & ext{altrimenti}. \end{cases}$$

Matrice L

$$L(u,v) = egin{cases} d_v & ext{se } u = v, \ -1 & ext{se } u ext{ e } v ext{ sono adiacenti}, \ 0 & ext{altrimenti}. \end{cases}$$

Matrice di adiacenza

Si definisce matrice di adiacenza la matrice A tale che

$$A(u,v) = \begin{cases} 1 & \text{se } u \text{ è adiacente a } v, \\ 0 & \text{altrimenti.} \end{cases}$$

Matrice di adiacenza

Si definisce matrice di adiacenza la matrice A tale che

$$A(u,v) = \begin{cases} 1 & \text{se } u \text{ è adiacente a } v, \\ 0 & \text{altrimenti.} \end{cases}$$

Matrice di adiacenza

Si definisce matrice di adiacenza la matrice A tale che

$$A(u,v) = \begin{cases} 1 & \text{se } u \text{ è adiacente a } v, \\ 0 & \text{altrimenti.} \end{cases}$$

$$A = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right)$$

Laplaciano

Laplaciano di G

Il Laplaciano di un grafo G è la matrice così definita:

$$\mathcal{L}(u,v) = \begin{cases} 1 & \text{se } u = v \text{ e } d_v \neq 0, \\ -\frac{1}{\sqrt{d_u d_v}} & \text{se } u \text{ e } v \text{ sono adiacenti}, \\ 0 & \text{altrimenti.} \end{cases}$$
 (1)

Si tratta di una matrice simmetrica che si può esprimere anche come

$$\mathcal{L} = T^{-1/2}LT^{-1/2}$$

con la convenzione che $T^{-1}(v,v)=0$ per $d_v=0$.

- 4日 > 4日 > 4目 > 4目 > 目 り90

Laplaciano

Per un grafo k-regolare

$$\mathcal{L}=I-\frac{1}{k}A,$$

mentre per un grafo generico si ha

$$\mathcal{L} = T^{-1/2}LT^{-1/2} = I - T^{-1/2}AT^{-1/2}.$$

Laplaciano

Quoziente di Rayleigh di \mathcal{L}

Data $g:V\to\mathbb{R}$ arbitraria, il quoziente di Rayleigh di \mathcal{L} è

$$\frac{\langle g, \mathcal{L}g \rangle}{\langle g, g \rangle} = \frac{\langle g, T^{-1/2}LT^{-1/2}g \rangle}{\langle g, g \rangle}$$

$$= \frac{\langle f, Lf \rangle}{\langle T^{1/2}f, T^{1/2}f \rangle}$$

$$= \frac{\sum_{u \sim v} (f(u) - f(v))^2}{\sum_{v} f(v)^2 d_v}$$
(2)

con $g = T^{1/2}f$.

Spettro di ${\cal L}$

Spettro di \mathcal{L}

L'insieme di tutti gli autovalori λ_i (per $i=0,\ldots,n-1$) di $\mathcal L$ è detto spettro di $\mathcal L$ e si indica con

$$0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1}.$$

L'autovalore $\lambda_0 = 0$ è relativo all'autofunzione $T^{1/2}\mathbf{1}$.

L'autovalore λ_1

L'autovalore relativo all'autofunzione $g = T^{1/2}f$ è

$$\lambda_G = \lambda_1 = \inf_{f \perp T1} \frac{\sum_{u \sim v} (f(u) - f(v))^2}{\sum_{v} f(v)^2 d_v}$$
(3)

dove la funzione non banale f è detta **autofunzione armonica** di \mathcal{L} .

L'autovalore λ_{n-1}

$$\lambda_{n-1} = \sup_{f} \frac{\sum_{u \sim v} (f(u) - f(v))^{2}}{\sum_{v} f^{2}(v) d_{v}}.$$
 (4)

L'autovalore λ_k

$$\lambda_{k} = \inf_{f} \sup_{g \in P_{k-1}} \frac{\sum_{u \sim v} (f(u) - f(v))^{2}}{\sum_{v} (f(v) - g(v))^{2} d_{v}}$$

$$= \inf_{f \perp P_{k-1}} \frac{\sum_{u \sim v} (f(u) - f(v))^{2}}{\sum_{v} f(v)^{2} d_{v}}$$
(5)

dove P_i è il sottospazio generato dall'autofunzione ϕ_i corrispondente all'autovalore λ_i , per $i \leq k-1$.

Particolari tipi di grafo

Grafo connesso

Un grafo G si dice *connesso* se $\forall u, v \in V$ esiste un cammino che li collega.

Particolari tipi di grafo

Grafo completo

Dato un grafo G con n vertici, si dice che G è *completo* se ciascun vertice è adiacente agli altri n-1.

Particolari tipi di grafo

Grafo bipartito

Un grafo G è *bipartito* se $\exists V_1, V_2 \subset V$, con $V_1 \cap V_2 = \emptyset$, tali che

$$E = \{\{v_1, v_2\} \mid v_1 \in V_1 \, \land \, v_2 \in V_2\}.$$

Lemma: Per un grafo G con n vertici si ha:

i)

$$\sum_{i} \lambda_{i} \leq n$$

e vale l'uguaglianza se e solo se G non ha vertici isolati.

Lemma: Per un grafo *G* con n vertici si ha:

i)

$$\sum_{i} \lambda_{i} \leq n$$

e vale l'uguaglianza se e solo se G non ha vertici isolati.

ii) Per $n \geq 2$,

$$\lambda_1 \leq \frac{n}{n-1}$$

e vale l'uguale se e solo se il grafo è completo su n vertici. Per un grafo senza vertici isolati vale

$$\lambda_{n-1} \geq \frac{n}{n-1}$$
.

iii) Per un grafo non completo, $\lambda_1 \leq 1.$

- iii) Per un grafo non completo, $\lambda_1 \leq 1$.
- iv) Se G è connesso, allora $\lambda_1 > 0$. Se $\lambda_i = 0$ e $\lambda_{i+1} \neq 0$, allora G ha esattamente i+1 componenti connesse.

- iii) Per un grafo non completo, $\lambda_1 \leq 1$.
- iv) Se G è connesso, allora $\lambda_1 > 0$. Se $\lambda_i = 0$ e $\lambda_{i+1} \neq 0$, allora G ha esattamente i+1 componenti connesse.
- v) Per ogni $i \leq n-1$,

$$\lambda_i \leq 2$$
,

con $\lambda_{n-1}=2$ se e solo se una componente connessa di G è bipartita e non banale.

Limitazioni per gli autovalori di ${\cal L}$

- iii) Per un grafo non completo, $\lambda_1 \leq 1$.
- iv) Se G è connesso, allora $\lambda_1 > 0$. Se $\lambda_i = 0$ e $\lambda_{i+1} \neq 0$, allora G ha esattamente i+1 componenti connesse.
- v) Per ogni $i \leq n-1$,

$$\lambda_i \leq 2$$
,

- con $\lambda_{n-1}=2$ se e solo se una componente connessa di G è bipartita e non banale.
- vi) Lo spettro di un grafo è l'unione degli spettri delle sue componenti connesse.

Problema isoperimetrico per i grafi

In geometria

Trovare fra tutte le curve di una data lunghezza quella che racchiude l'area massima.

Problema isoperimetrico per i grafi

In geometria

Trovare fra tutte le curve di una data lunghezza quella che racchiude l'area massima.

In teoria dei grafi

Rimuovere meno archi possibile per disconnettere il grafo in due parti di dimensione fissata.

Volume di S e taglio

Volume di S

Preso $S \subseteq V$, si dice *volume* di S

$$vol S = \sum_{u \in S} d_u.$$

Volume di S e taglio

Volume di S

Preso $S \subseteq V$, si dice *volume* di S

$$vol S = \sum_{u \in S} d_u.$$

Taglio o edge-cut

Si definisce taglio o edge-cut l'insieme

$$E(S,\bar{S}) = \{\{u,v\} \in E \mid u \in S \land v \in \bar{S}\}.$$

La costante di Cheeger

Costante di Cheeger h_G

Dato $S \subset V$, si definisce

$$h_G(S) = \frac{|E(S,\bar{S})|}{\min(vol S, vol \bar{S})}.$$

La costante di Cheeger h_G di un grafo G è definita come

$$h_G = \min_{S} h_G(S).$$

Risulta che G è connesso se e solo se $h_G > 0$.

Problema isoperimetrico e costante di Cheeger

Dato che

$$|E(S,\bar{S})| \geq h_G \text{ vol } S,$$

il problema di determinare la costante di Cheeger h_G è equivalente al seguente

Problema

Fissato un numero m, trovare il sottoinsieme S con $m \le vol S \le vol \bar{S}$ tale che $E(S,\bar{S})$ contenga meno archi possibile.

Disuguaglianza di Cheeger

Teorema

Per un grafo connesso G, si ha

$$\frac{h_G^2}{2} < \lambda_1 \le 2h_G.$$

Limite superiore: $\lambda_1 \leq 2h_G$

Dimostrazione:

Scegliamo f in base ad un opportuno taglio C che definisce h_G e separa il grafo G in due parti, A e B:

$$f(v) = \begin{cases} rac{1}{vol A} & \text{se } v \in A, \\ -rac{1}{vol B} & \text{se } v \in B. \end{cases}$$

Limite superiore: $\lambda_1 \leq 2h_G$

Sostituendo f nella definizione (3) di λ_1 si ottiene:

$$\lambda_1 \leq |C|(\frac{1}{\operatorname{vol} A} + \frac{1}{\operatorname{vol} B}) \leq \frac{2|C|}{\min(\operatorname{vol} A, \operatorname{vol} B)} = 2h_G.$$

Consideriamo l'autofunzione armonica f di $\mathcal L$ relativa all'autovalore λ_1 . Riordiniamo i vertici di G in base a f, ovvero in modo tale che

$$f(v_i) \le f(v_{i+1})$$
 per $1 \le i \le n-1$.

Si può assumere, senza perdere di generalità, che

$$\sum_{f(v)<0} d_v \ge \sum_{f(u)\ge 0} d_u.$$

Per ogni i, $1 \le i \le n$, consideriamo il taglio

$$C_i = \{ \{v_j, v_k\} \in E \mid 1 \le j \le i < k \le n \}$$

e definiamo

$$\alpha = \min_{1 \le i \le n} \frac{|C_i|}{\min(\sum_{j \le i} d_j, \sum_{j > i} d_j)}.$$

Chiaramente risulta $\alpha \geq h_G$.

Consideriamo gli insiemi

$$V_+ = \{v \in V \mid f(v) \ge 0\}$$

е

$$E_+ = \{\{u, v\} \in E \mid u \in V_+ \ \lor \ v \in V_+\}$$

e definiamo la funzione

$$g(u) = \begin{cases} f(u) & \text{se } u \in V_+, \\ 0 & \text{altrimenti.} \end{cases}$$

Abbiamo che

$$\lambda_1 = \frac{\displaystyle\sum_{v \in V_+} f(v) \sum_{\{u,v\} \in E_+} (f(v) - f(u))}{\displaystyle\sum_{v \in V_+} f^2(v) d_v} > \frac{\displaystyle\sum_{\{u,v\} \in E_+} (g(u) - g(v))^2}{\displaystyle\sum_{v \in V} g^2(v) d_v}$$

$$= \frac{\displaystyle\sum_{\{u,v\}\in E_{+}}(g(u)-g(v))^{2} \sum_{\{u,v\}\in E_{+}}(g(u)+g(v))^{2}}{\displaystyle\sum_{v\in V}g^{2}(v)d_{v}\sum_{\{u,v\}\in E_{+}}(g(u)+g(v))^{2}}$$

$$\geq \frac{(\sum_{u \sim v} |g^2(u) - g^2(v)|)^2}{2(\sum_{v} g^2(v)d_v)^2}$$

$$\geq \frac{(\sum_{i} |g^{2}(v_{i}) - g^{2}(v_{i+1})||C_{i}|)^{2}}{2(\sum_{v} g^{2}(v)d_{v})^{2}} \geq \frac{(\sum_{i} (g^{2}(v_{i}) - g^{2}(v_{i+1}))\alpha \sum_{j \leq i} d_{j})^{2}}{2(\sum_{v} g^{2}(v)d_{v})^{2}}$$

$$\geq \frac{\alpha^2}{2} \geq \frac{h_G^2}{2}$$

e la dimostrazione è conclusa. \square