CS5322 Database Security

Access Control vs. Inference

- Access controls ensure that all direct accesses to objects are authorized
- But they do not necessarily prevent inference of sensitive information

- Suppose that
 - We have an NUH medical database that contains the medical records below
 - We allow a US researcher to study the data, but do not allow him to know the patient identities

Name	Birth Date	Gender	ZIP	Disease
Alice	1960/01/01	F	10000	flu
Bob	1965/02/02	М	20000	dyspepsia
Cathy	1970/03/03	F	30000	pneumonia
David	1975/04/04	М	40000	gastritis

 A straightforward approach: restrict the US researcher's access to identifying information like names, IDs, etc.

lar	ne	Birth Date	Gender	ZIP	Disease
Alid	æ	1960/01/01	F	10000	flu
В	b	1965/02/02	М	20000	dyspepsia
at	hy	1970/03/03	F	30000	pneumonia
Sav	∕iḋ	1975/04/04	М	40000	gastritis
	Alio Bo	Alice Bob Cathy David	Alice 1960/01/01 Bob 1965/02/02 Cathy 1970/03/03	Alice 1960/01/01 F Bob 1965/02/02 M Cathy 1970/03/03 F	Alice 1960/01/01 F 10000 Bob 1965/02/02 M 20000 Cathy 1970/03/03 F 30000

- A straightforward approach: restrict the US researcher's access to identifying information like names, IDs, etc.
- It looks good at the first glance
- But does it provide sufficient privacy protection?
- No

Birth Date	Gender	ZIP	Disease
1960/01/01	F	10000	flu
1965/02/02	М	20000	dyspepsia
1970/03/03	F	30000	pneumonia
1975/04/04	М	40000	gastritis

 A straightforward approach: restrict the US researcher's access to identifying information like names, IDs, etc.

match

Name	Birth Date	Gender	ZIP
Alice	1960/01/01	F	10000
Bob	1965/02/02	М	20000
Cathy	1970/03/03	F	30000
David	1975/04/04	М	40000

Voter Registration List

Birth Date	Gender	ZIP	Disease
1960/01/01	F	10000	flu
1965/02/02	М	20000	dyspepsia
1970/03/03	F	30000	pneumonia
1975/04/04	М	40000	gastritis

Privacy incident: the MGIC case

Time: mid-1990s

Publisher: Massachusetts Group Insurance Commission (MGIC)

Data released: "anonymized" medical records

Result: A PhD student at MIT was able to identify the medical record of the governor of Massachusetts

match

Name	Birth Date	Gender	ZIP
Alice	1960/01/01	F	10000
Bob	1965/02/02	М	20000
Cathy	1970/03/03	F	30000
David	1975/04/04	М	40000

Voter Registration List

Birth Date	Gender	ZIP	Disease
1960/01/01	F	10000	flu
1965/02/02	М	20000	dyspepsia
1970/03/03	F	30000	pneumonia
1975/04/04	М	40000	gastritis

Privacy incident: the MGIC case

Research [Golle 06] shows that 63% of Americans can be uniquely identified by {date of birth, gender, zip code}

match

Name	Birth Date	Gender	ZIP
Alice	1960/01/01	F	10000
Bob	1965/02/02	М	20000
Cathy	1970/03/03	F	30000
David	1975/04/04	М	40000

Voter Registration List

Birth Date	Gender	ZIP	Disease
1960/01/01	F	10000	flu
1965/02/02	М	20000	dyspepsia
1970/03/03	F	30000	pneumonia
1975/04/04	М	40000	gastritis

Lesson Learned

- What went wrong?
- Intuition: Although the identifiers are removed from the data, some quasi-identifiers remain
- Can we solve the problem by removing quasiidentifiers? Unfortunately, no.

Name	Birth Date	Gender	ZIP
Alice	1960/01/01	F	10000
Bob	1965/02/02	М	20000
Cathy	1970/03/03	F	30000
David	1975/04/04	М	40000

Voter	Registration	List
-------	--------------	------

Birth Date	Gender	ZIP	Disease
1960/01/01	F	10000	flu
1965/02/02	М	20000	dyspepsia
1970/03/03	F	30000	pneumonia
1975/04/04	М	40000	gastritis

Privacy incident: the AOL case

- In 2006, AOL released an "anonymized" log of their search engine to support research
- Example of the log:

User ID	Query	Date/Time	
4417749	"Bitcoin price"		
4417749	"1MDB Scandal"		
4417749	"Clementi Mall opening hours"		

- Each user only has an ID, i.e., no identifier or quasiidentifier is released
- However, the New York Time was able to identify a user from the log

Privacy incident: the AOL case

- What the New York Time did:
 - Find all log entries for AOL user 4417749
 - Multiple queries for businesses and services in Lilburn,
 GA (population 11K)
 - Several queries for Jarrett Arnold
 - Lilburn has 14 people with the last name

 Arnold
 - NYT contacts them, finds out AOL User
 4417749 is Thelma Arnold
- The CTO of AOL resigned after the incident

Lesson Learned

- What went wrong?
- Intuition: Although all identifiers and quasiidentifiers are removed, the users' behavior traces (i.e., their search keywords) reveal their identities
- The same problem occurred in another incident in 2006

Privacy incident: the Netflix case

- In 2006, the Netflix movie rental service released some movie ratings made by its users, for a competition with a 1M USD prize
- Example of data:

User ID	Movie	Rating	Date
123	Scary Movie 1	5	2006.07.01
123	Scary Movie 2	4	2006.07.08
123	Scary Movie 3	4	2006.07.15

- Each user only has an ID, i.e., no identifier or quasiidentifier is released
- However, two researchers from U. Texas were able to link some users to some online identities

Privacy incident: the Netflix case

User ID	Movie	Rating	Date
123	Scary Movie 1	5	2006.07.01
123	Scary Movie 2	4	2006.07.08
123	Scary Movie 3	4	2006.07.16

IMDB ID	Movie	Rating	Date
456	Scary Movie 1	5	2006.07.01
456	Scary Movie 2	4	2006.07.09
456	Scary Movie 3	4	2006.07.15

What the researchers did:

- Go to a movie review site IMDB, and get the ratings made by the IMDB users, as well as the dates
- Match the an IMDB user to a Netflix user, if both users give the same ratings to the same movies on similar dates

Privacy incident: the Netflix case

User ID	Movie	Rating	Date
123	Scary Movie 1	5	2006.07.01
123	Scary Movie 2	4	2006.07.08
123	Scary Movie 3	4	2006.07.16

IMDB ID	Movie	Rating	Date
456	Scary Movie 1	5	2006.07.01
456	Scary Movie 2	4	2006.07.09
456	Scary Movie 3	4	2006.07.15

- In general, 99% of users can be identified with 8 ratings + dates
- Result: Netflix was sued; case settled out of court

Lessons learned

- Now we know that it is risky to publish detailed records of individual data, since
 - quasi-identifiers may reveal identities
 - behavior information may reveal identities, too
- What if we don't release detailed records, but only aggregate information?
- Answer: it could still fail to protect privacy

Privacy incident: the GWAS case

 The national institutes of health (NIH) used to publish aggregate information from genome wide association studies (GWAS)

Typical setup:

- Take the DNA of 1,000 individuals with a common disease (e.g., diabetes)
- Check the DNAs for 100,000 DNA markers
- For each marker, release its frequency in the 1,000 individuals

	Marker 1	Marker 2	Marker 3	 Marker 100,000
Frequency	0.02	0.03	0.05	 0.02

Privacy incident: the GWAS case

Homer et al. [2008] demonstrate that it is possible to infer whether an individual is in the test population (i.e., the 1,000 individuals)

	Marker 1	Marker 2	Marker 3		Marker 100,000
Frequency	0.02	0.03	0.05		0.02
			T x	(iaokui's DN	A Î
	Marker 1	Marker 2	Marker 3		Marker 100,000
Yes or No?	No	Yes	Yes		Yes

reference population

	Marker 1	Marker 2	Marker 3		Marker 100,000
Frequency	0.01	0.01	0.04	•••	0.01

Privacy incident: the GWAS case

Result: NIH removed public accesses to their GWAS results

test population

	Marker 1	Marker 2	Marker 3		Marker 100,000
Frequency	0.02	0.03	0.05		0.02
			T ×	(iaokui's DN	A Î
	Marker 1	Marker 2	Marker 3		Marker 100,000
Yes or No?	No	Yes	Yes		Yes
			refe	rence popul	ation
	Marker 1	Marker 2	Marker 3		Marker 100,000
Frequency	0.01	0.01	0.04	•••	0.01

Lessons learned

- Even aggregate information could endanger privacy, if the attacker could find the right background information to use
- In the GWAS case:
 - aggregation information: frequencies of DNA markers
 - background information: statistics from a reference population

Coming Next

How we may alleviate inference by using statistical databases

Statistical Database: Motivation

- Databases that are intended to alleviate inference of sensitive information
- Idea:
 - Do not provide access to detailed records
 - Only provide statistics of records through SUM, MEAN,
 MEDIAN, COUNT, MAX, and MIN, etc.

Statistical Database: Motivation

- "But we already know that statistics can be used for inference!"
- Yes. So a statistical database would apply some additional measure for inference control
 - Three canonical approaches:
 - Query auditing
 - Data perturbation
 - Output perturbation

Query Auditing

- Idea: Keep track of users' queries to a statistical database to see if the queries reveal sensitive information
- Two variants
 - Online auditing
 - Keep tack of queries in real time, and denies queries that are unsafe
 - Offline auditing
 - Keep a log of all queries, and run offline tests to check if any unsafe queries have been issued
- Online auditing is more difficult to do due to efficiency requirements

Data Perturbation

Idea:

- Modify the original data
- Answer users' queries on the modified data instead of the original one

Rationale:

 As long as the modification is done properly, queries on the modified data would not reveal too much sensitive information

Example:

Census data released by the US Census Bureau

Output Perturbation

Idea:

Inject noise into each query answer to conceal sensitive information

Example:

- Query: "How many student get A+?"
- Answer: [0, 5]

Difference from query auditing:

- Query auditing either denies a query or gives exact answers
- Output perturbation only gives noisy answers

Coming Next

- Query auditing
- Data perturbation
- (We won't talk about output perturbation as it is less commonly used.)

- The simplest form of query auditing
- Idea: impose requirements on the selectivity of each query
 - The selectivity of a query is defined as the number of tuples that satisfy the query predicate
 - Example: The query below has a selectivity of 4

SELECT SUM(Grade)
FROM Grades
WHERE Program = 'CS'

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Query set size control:
 - Each query's selectivity must be at least K
- Example: K = 2
 - Q1 is OK, but not Q2
- Rationale:
 - Queries with small selectivities (e.g., Q2) are likely to reveal sensitive information
- Question: Is this good enough?

Q1:	SELECT	SUM(Grade)
	FROM	Grades
	WHERE	Program = 'CS'
Q2:	SELECT FROM WHERE	SUM(Grade) Grades Program = 'CS' AND Gender = 'F'

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Question: Is this good enough?
 - No

difference attack

- Example: K = 2
 - Q3 and Q4's selectivities are 6 and 5, respectively
 - But Q3 Q4 reveals Alice's grade

Q3: SELECT SUM(Grade)

FROM Grades

Q4: SELECT SUM(Grade)

FROM Grades

WHERE Name <> 'Alice'

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Observation:
 - Q3 and Q4 two queries reveal information because they overlap a lot
- What if we require that queries should not overlap too much?

Q3:	SELECT FROM	SUM(Grade) Grades
Q4:	SELECT FROM WHERE	SUM(Grade) Grades Name <> 'Alice'

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Requirement: For any two queries Q and Q', their query set should overlap on at most r tuples
 - i.e., there should exist at most r tuples that satisfy the predicates in Q and Q' simultaneously
- Example: *r* = 1
 - If the user issues Q5 and then Q6, then Q6 would be denied, because their query sets overlap on 3 tuples

Q5:	SELECT	SUM(Grade)	Name	(
	FROM	Grades	Alice	
	WHERE	Program = 'CS'	Bob	
			Cathy	
Q6:	SELECT	SUM(Grade)	Daisy	
	FROM	Grades	Eric	
	WHERE	Program = 'CS'	Fred	
		AND Name <> 'Alice'		

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Requirement: For any two queries Q and Q', their query set should overlap on at most r tuples
 - i.e., there should exist at most r tuples that satisfy the predicates in Q and Q' simultaneously
- Example: *r* = 1
 - If the user issues Q7 and then Q8, then both queries would be answered, since their query sets overlap only on one tuple

Q7:	SELECT	SUM(Grade)
	FROM	Grades
	WHERE	Gender = 'F'
Q8:	SELECT	SUM(Grade)
	FROM	Grades
	WHERE	Program = 'CS'

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Requirement: For any two queries Q and Q', their query set should overlap on at most r tuples
 - i.e., there should exist at most r tuples that satisfy the predicates in Q and Q' simultaneously
- Is this good enough?
- No; not even we control both query selectivity and query set overlap

Q7:	SELECT	SUM(Grade)
	FROM	Grades
	WHERE	Gender = 'F'
Q8:	SELECT	SUM(Grade)
	FROM	Grades
	WHERE	Program = 'CS'
Q8:	FROM	Grades

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

- Consider the four queries below
- We require that
 - Each query should have a selectivity at least K = 2
 - Any two queries should overlap on at most r = 1 tuple
- Selectivities: Q7: 2; Q8: 2; Q9: 2; Q10: 3
- Overlaps: Any two queries have overlap at most 1
- However, (Q7 + Q8 + Q9 Q10)/3 reveals Alice's grade

Q7:	SELECT	SUM(Grade) FROM Grades	Name	Age	Gender	Program	Grade
	WHERE	Gender = 'F'	Alice	20	F	CS	100
	SUM(Grade) FROM Grades Program = 'CS'	Bob	21	M	CS	90	
		Cathy	21	F	IS	80	
			Dave	20	M	IS	70
Q9:		SUM(Grade) FROM Grades Age = 20			Grad	les	

Q10: SELECT SUM(Grade) FROM Grades

WHERE Name = 'Bob' OR Name = 'Cathy' OR Name = 'Dave'

- What went wrong?
- Checking the overlaps of all 2-query combinations is not sufficient
- What if we check the overlaps of all k-query (k > 2) combinations?
- Information could still be leaked if the attacker exploits more query correlations than just overlaps
- Conclusion: query set overlap control does not really work

Q7:	SELECT	SUM(Grade) FROM Grades	Name	Age	Gender	Program	Grade
	WHERE	Gender = 'F'	Alice	20	F	CS	100
Q8:	SELECT	SUM(Grade) FROM Grades		21	M	CS	90
Qo.	WHERE Program = 'CS'	,	Cathy	21	F	IS	80
			Dave	20	M	IS	70
Q9:		SUM(Grade) FROM Grades Age = 20			Grad	les	
Q10:		SUM(Grade) FROM Grades Name = 'Bob' OR Name = 'Cathy' (OR Nan	ne =	'Dave'		

- Keep a log of all queries issued by a user
- Use an advanced algorithm to decide whether the queries can reveal any particular tuple
- But this can only be done if the queries are restricted to a certain type

- Example: If we only allow SUM queries
 - ullet Each SUM query q_i can be modelled as a linear combination of the tuple values:

$$q_i = w_{i1} * x_1 + w_{i2} * x_2 + ... + w_{in} * x_n$$
, where

- x_i denotes the j-th tuple value, and
- $\mathbf{w}_{ij} = 1$ if q_i covers the j-th tuple, otherwise $w_{ij} = 0$

Answer =
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 80 \\ 90 \\ 90 \\ 100 \\ 90 \\ 90 \end{bmatrix}$$

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

Grades

- If we have m queries, then they form a linear system Q = WX, where
 - \Box the *i*-th element of Q is q_i ,
 - \square the *i*-th row of W is $[w_{i1}, w_{i2}, ..., w_{in}]$,
 - \Box and *i*-th element of X is x_i

Answer =
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 80 \\ 90 \\ 90 \\ 100 \\ 90 \\ 90 \end{bmatrix}$$

Name	Gender	Program	Grade
Alice	F	CS	80
Bob	M	CS	90
Cathy	F	IS	90
Daisy	F	IS	100
Eric	M	CS	90
Fred	M	CS	90

Grades

- If we have m queries, then they form a linear system Q = WX, where
 - \Box the *i*-th element of Q is q_i ,
 - the *i*-th row of W is $[w_{i1}, w_{i2}, ..., w_{in}]$,
 - \Box and *i*-th element of X is x_i

Example:
$$Q = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 90 \\ 90 \\ 100 \\ 90 \\ 90 \end{bmatrix}$$

- If the linear system can uniquely decide the value of a value x_k , then it means that the queries can reveal x_k
 - This can be check in a relatively efficient manner

- "OK! Let's extend this approach to handle more general types of queries, e.g., SUM + MAX + MIN!"
- Well, it is not going to work...
- It is difficult to design an efficient auditing algorithm when non-linear queries (e.g., MAX) are involved
- Furthermore, denial of queries can actually leak information...

Inference from Denial of Queries

- Suppose that a user issues Q1, and then Q2
- For Q1, the database returns count = 3 and sum = 270
- Now consider Q2
- From the database's perspective:
 - "If I return 90 as the answer of Q2, the user would know that all three CS students' grades are 90!"
 - "I have to deny Q2."

SELECT	COUNT(*), SUM(Grade)	Nam
FROM	Grades	Alice
WHERE	Program = 'CS'	Bob
		Cath
SELECT	MAX(Grade) FROM Grades	Dais
WHERE	Program = 'CS'	
	FROM WHERE SELECT	SELECT COUNT(*), SUM(Grade) FROM Grades WHERE Program = 'CS' SELECT MAX(Grade) FROM Grades WHERE Program = 'CS'

Name	Age	Gender	Program	Grade
Alice	20	F	CS	90
Bob	21	M	CS	90
Cathy	21	F	CS	90
Daisy	20	M	IS	80

Grades

Inference from Denial of Queries

- The user sees that Q2 is denied
- From the user's perspective:
 - "The database denies Q2, only if Q1 and Q2 can jointly reveal the grade of some particular student..."
 - "But Q1 only tells me that there are 3 CS students, and their grade sum is 270..."
 - "Why would the max CS grade reveal sensitive information?"
 - "Oh! It only happens when the max CS grade is 90!"
- The user then learns Alice, Bob, and Cathy's grades based on the denial of Q2

Q1:	SELECT	COUNT(*), SUM(Grade)	Name	Age	Gender	Program	Grade
	FROM	Grades	Alice	20	F	CS	90
	WHERE	Program = 'CS'	Bob	21	M	CS	90
			Cathy	21	F	CS	90
Q2:	SELECT	MAX(Grade) FROM Grades	Daisy	20	M	IS	80
	WHERE	Program = 'CS'			Grad	les	

Inference from Denial of Queries

- How to avoid inference from the denial of queries?
- Make sure that the auditing algorithm is data independent
- That is, the algorithm should
 - Consider all possible tables
 - Deny queries as long as there is one possible table on which the queries would reveal information
- Example:
 - Even if Cathy's grade is 80 instead of 90, the database should still deny Q2
 - This prevents the user from learning anything from the denial of Q2
- However, designing algorithms like this is difficult

Q1:	SELECT	COUNT(*), SUM(Grade)	Name	Age	Gender	Program	Grade
	FROM	Grades	Alice	20	F	CS	90
	WHERE	Program = 'CS'	Bob	21	M	CS	90
			Cathy	21	F	CS	90
Q2:		MAX(Grade) FROM Grades	Daisy	20	M	IS	80
	WHERE	Program = 'CS'			Grad	les	

Query Auditing: Summary

- We have discussed query auditing based on
 - Query set sizes
 - Query set overlaps
 - Linear systems
- All of them have limitations
- Strengthening them is not easy, especially because the denial of queries itself could reveal information

 Assume that an adversary can issue queries in the form of

> SELECT SUM(Grade) FROM Grades

WHERE ...

Name	Age	Gender	Program	Grade
Alice	20	F	CS	70
Bob	21	M	CS	80
Cathy	21	F	CS	90
Daisy	20	M	IS	100
Elsa	20	F	IS	90
Fion	21	F	IS	80
Gill	21	M	IS	70

with the following constraints:

Grades

- The query predicate can involve at most 2 attributes, and cannot involve Name
- Each query set size is at least 3, and
- Any two queries should overlap on at most 2 tuples
- Further assume that the adversary knows the Age, Gender, and Program of each student
- Demonstrate how the adversary may infer Alice's grade

One possible answer:

Q1: SELECT SUM(Grade)

FROM Grades WHERE Age = 20

Q2: SELECT SUM(Grade)

FROM Grades

WHERE Program = "CS"

Q3: SELECT SUM(Grade)

FROM Grades

WHERE (Age = 21 AND)

Program = "IS") OR

(Age = 20 AND)

Program = "CS")

Q4: SELECT SUM(Grade)

FROM Grades

WHERE (Age <> 20) OR

(Program <> "CS")

(Q1+Q2+Q3-Q4)/3 reveals Alice's grade

Name	Age	Gender	Program	Grade
Alice	20	F	CS	70
Bob	21	M	CS	80
Cathy	21	F	CS	90
Daisy	20	M	IS	100
Elsa	20	F	IS	90
Fion	21	F	IS	80
Gill	21	M	IS	70

Grades

- Consider a table Grades(Name, Grade)
- Suppose that an adversary can issue queries in the following form:

SELECT MEDIAN(Grade) FROM Grades WHERE [some conditions on Name]

- Examples
 - Median of {1, 3, 8, 10, 17} is 8
 - \square Median of $\{1, 8, 10, 17\}$ is (8+10)/2 = 9
- Suppose that
 - We monitor the adversary's queries and deny a query whenever it reveals a specific student's exact grade
 - But we ignores the information leaked by the denial of queries
- Show an example in which an adversary can infer a student's exact grade based on the query denial

- One possible answer:
 - Three median queries:
 - Q1: {A, B}
 - Q2: {A, B, C}
 - Q3: {A, C}
 - Three answers:
 - **Q1**: 20
 - **Q**2: 20
 - Q3: denied
 - The adversary can learn that Student A's grade must be 20

Name	Grade
Α	?
В	?
С	?

Coming Next

Data perturbation

Data Perturbation

- Idea:
 - Modify the original data
 - Answer users' queries on the modified data instead of the original one
- We will discuss a few methods for data perturbation

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- Idea: Modify the tuples to make them less distinguishable
- Observe that in the modified table
 - The first two tuples are indistinguishable based on Name, Age, Gender, and Program
 - The same goes for the third and fourth tuples
- This makes some query results less accurate
- Example 1: COUNT(*) WHERE Age = 20 AND Gender = 'F'
 - Query result: [0, 2]

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- Idea: Modify the tuples to make them less distinguishable
- Observe that in the modified table
 - The first two tuples are indistinguishable based on Name, Age, Gender, and Program
 - The same goes for the third and fourth tuples
- This makes some query results less accurate
- Example 2: SUM(Grade) WHERE Age = 20 AND Gender = 'M'
 - Query result: [0, 150]

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- Why would generalization work?
- Rationale:
 - ullet Whatever queries a user issues, the best that the user can infer is the generalized table T^*
 - \square Even if the user learns the whole T^* , he still cannot pinpoint the grade of any student
- Example:
 - \Box From T^* , the user cannot figure out which tuple belongs to Alice

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- But how much generalization is needed?
- We need a way to measure the degree of protection

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- A generalized table is k-anonymous, if each tuple is indistinguishable from at least k-1 other tuples on the non-sensitive attributes
- Example above: T* is 2-anonymous
- Rationale:
 - If there are k indistinguishable tuples, then the adversary won't be able to uniquely link an individual to any tuple

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- But does k-anonymity provide sufficient protection?
- No
- Why?
- Imagine that Alice's grade is 90 instead of 100

Name	Age	Gender	Program	Grade
Alice	20	F	CS	90
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	90
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- T* is still 2-anonymous
 - The adversary won't know whether Alice correspond to the first or second tuple
- But it does not matter...
- Both the first and second tuples have the same grade
- So the adversary knows that Alice's grade must be 90

Name	Age	Gender	Program	Grade
Alice	20	F	CS	90
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	90
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

What went wrong?

- k-anonymity ensures that an individual can be linked to at least k tuples via non-sensitive attributes
- But it does not ensure anything about the sensitive attribute of those tuples
- When those tuples happen to have homogeneous sensitive values, k-anonymity fails

Name	Age	Gender	Program	Grade
Alice	20	F	CS	90
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	90
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- How could we improve k-anonymity?
- Idea: Generalize tuples into indistinguishable groups, such that
 - Each group has a diverse set of sensitive values
- This leads to the notion of *l*-diversity

Data Perturbation: *l*-diversity

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- A generalized table is l-diverse, if each indistinguishable group of tuples has at least l well-represented sensitive values
 - □ The term "well-represented" is application dependent
- Example above:
 - If we define "well-represented" grades as grades that differ by at least
 5 pair-wise, then T* is 2-diverse
 - If we define "well-represented" grades as grades that differ by at least
 20 pair-wise, then T* is NOT 2-diverse

Data Perturbation: *l*-diversity

lame	Age	Gender	Program	Grade	_	Name	Age	Gender	Progra
lice	20	F	CS	100		*	20-21	F	CS
thy	21	F	CS	90		*	20-21	F	CS
	21	M	IS	80	V	*	20-21	M	IS
ave	20	M	IS	70		*	20-21	M	IS
	C	riginal	Table <i>T</i>				Gene	ralized	Table <i>T</i>

Rationale:

If there are / well-represented sensitive values in each indistinguishable group, then the adversary won't be able to uniquely link an individual to any particular sensitive value

Data Perturbation: *l*-diversity

Name	Age	Gender	Program	Grade
Alice	20	F	CS	100
Cathy	21	F	CS	90
Bob	21	M	IS	80
Dave	20	M	IS	70

Name	Age	Gender	Program	Grade
*	20-21	F	CS	100
*	20-21	F	CS	90
*	20-21	M	IS	80
*	20-21	M	IS	70

Original Table T

Generalized Table T*

- Is *l*-diversity "bulletproof"?
- No
 - Problem 1: It is not easy to correctly define what "l well-represented" sensitive values mean

Limitations of *l*-diversity

Name	Age	Gender	ZIP	Disease		Name	Age	Gender	ZIP	Disease
Alice	30	F	100000	Breast		*	30	*	1****	Breast
				Cancer						Cancer
Bob	30	M	190000	HIV	/	*	30		1****	1 11 V
Cathy	40	F	210000	Dyspepsia		*	40	*	2****	Dyspepsia
Dave	40	M	280000	Pneumonia		*	40	*	2****	Pneumonia
	C)riginal	Table 7	-			G	enerali	<i>zed</i> Tab	le <i>T*</i>

Example above:

- T* seems to be 2-diverse, since each indistinguishable group has at least two different diseases
- However, if an adversary knows Bob's Age, Gender, and ZIP code, then he can easily infer Bob's disease, because
 - Bob can be linked to the first two tuples
 - The first two tuples' sensitive values are breast cancer and HIV
 - Bob is very unlikely to have breast cancer

Limitations of *l*-diversity

Name	Age	Gender	ZIP	Disease		Name	Age	Gender	ZIP	Disease
Alice	30	F	100000	Breast		*	30	*	1****	Breast
				Cancer						Cancer
Bob	30	M	190000	HIV	/	*	30		1****	1 11 V
Cathy	40	F	210000	Dyspepsia		*	40	*	2****	Dyspepsia
Dave	40	M	280000	Pneumonia		*	40	*	2****	Pneumonia
	C)riginal	Table 7	-			G	enerali	<i>zed</i> Tab	le <i>T*</i>

What went wrong?

- The adversary was able to exclude some sensitive values from an indistinguishable group, based on a piece of background knowledge:
 - Men are unlikely to have breast cancer

Limitations of *l*-diversity

Name	Age	Gender	ZIP	Disease		Name	Age	Gender	ZIP	Disease
Alice	30	F	100000	Breast		*	30	*	1****	Breast
				Cancer	$\overline{}$					Cancer
Bob	30	M	190000	HIV		*	30	*	1****	HIV
Cathy	40	F	210000	Dyspepsia		*	40	*	2****	Dyspepsia
Dave	40	M	280000	Pneumonia		*	40	*	2****	Pneumonia
	C)riginal	Table 7	-			G	enerali	<i>zed</i> Tab	le <i>T*</i>

- How can we deal with this?
 - Need to take into account the adversary's background knowledge
 - But it is difficult predict what background knowledge the adversary may have
- And this is not the only problem that l-diversity have...
- The algorithm used to generate l-diverse tables could leak information

l-diversity Algo

Name	Age	Gender	ZIP	Disease
Alice	20	F	100000	Flu
Betty	20	F	100000	Measles
Carl	50	M	800000	Dyspepsia
Dave	50	M	820000	HIV
Fred	50	M	820000	Pneumonia

Name	Age	Gender	ZIP	Disease
*	20	F	100000	Flu
*	20	F	100000	Measles
*	50	M	8****	Dyspepsia
*	50	M	8****	HIV
*	50	M	8****	Pneumonia

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	****	Measles
*	20-50	*	****	Dyspepsia
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T₂*

- Consider the table T above
- We show two possible ways to generalize the table to satisfy 2-diversity
- Which one is better? T_1^* or T_2^* ?
- T_1^* is better since it preserves more information
- In general, when there are multiple ways to generate a l-diverse table, an algorithm would tend to choose one that preserves more information

1-diversity Algo

Name	Age	Gender	ZIP	Disease
Alice	20	F	100000	Flu
Betty	20	F	100000	Measles
Carl	50	M	800000	HIV
Dave	50	M	820000	HIV
Fred	50	M	820000	Pneumonia

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	****	Measles
*	20-50	*	****	HIV
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T₂*

- Now suppose Carl's disease is HIV instead of Measles
- Let's consider the two possible ways to generalize T
- T_1^* is no longer 2-diverse; but T_2^* still is
- So if we ask for a 2-diverse generalization, the algorithm would give us T_2^* , even though it preserves less information

l-diversity Algo

Name	Age	Gender	ZIP
Alice	20	F	100000
Betty	20	F	100000
Carl	50	M	800000
Dave	50	M	820000
Fred	50	M	820000

Name	Age	Gender	ZIP	Disease	
*	20	F	100000	Flu	
*	20	F	100000	Measles	V
*	50	M	8****	HIV	<u> </u>
*	50	M	8****	HIV	
*	50	M	8****	Pneumonia	

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	****	Measles
*	20-50	*	****	HIV
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T_2^*

- Suppose that we use T_2^* to answer queries
- Consider an adversary who knows the Age, Gender, and ZIP code of each individual
- He sees T_2^* , and starts thinking

l-diversity Algo

Name	Age	Gender	ZIP
Alice	20	F	100000
Betty	20	F	100000
Carl	50	M	800000
Dave	50	M	820000
Fred	50	M	820000

Name	Age	Gender	ZIP	Disease	
*	20	F	100000	Flu	
*	20	F	100000	Measles	~
*	50	M	8****	HIV	
*	50	M	8****	HIV	
*	50	M	8****	Pneumonia	

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	*****	Measles
*	20-50	*	****	HIV
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T₂*

- "T₂* puts Alice, Betty, and Carl into one group, and Dave and Fred into another..."
- "This is really bad in terms of information preservation..."
- "Why don't they put Alice and Betty into one group, and Carl, Dave, and Fred into another? It would preserve more information..."
- "It must be the case that putting Carl, Dave, and Fred together would violate 2-diverslity!"
- "Carl must have HIV!"

1-diversity Algo

Name	Age	Gender	ZIP
Alice	20	F	100000
Betty	20	F	100000
Carl	50	M	800000
Dave	50	M	820000
Fred	50	M	820000

Name	Age	Gender	ZIP	Disease	
*	20	F	100000	Flu	
*	20	F	100000	Measles	~
*	50	M	8****	HIV	<u> </u>
*	50	M	8****	HIV	
*	50	M	8****	Pneumonia	

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	*****	Measles
*	20-50	*	****	HIV
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T₂*

- What went wrong?
 - l-diversity ignores the fact that the adversary may know how the generalization algorithm works
 - Knowledge of the generalization algorithm could enable inference
- Kerckhoffs's principle (in cryptography):
 - A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

1-diversity Algo

Name	Age	Gender	ZIP
Alice	20	F	100000
Betty	20	F	100000
Carl	50	M	800000
Dave	50	M	820000
Fred	50	M	820000

Name	Age	Gender	ZIP	Disease	
*	20	F	100000	Flu	
*	20	F	100000	Measles	~
*	50	M	8****	HIV	
*	50	M	8****	HIV	
*	50	M	8****	Pneumonia	
Canavalized Table T *					

Generalized Table T_1^*

Name	Age	Gender	ZIP	Disease
*	20-50	*	****	Flu
*	20-50	*	****	Measles
*	20-50	*	****	HIV
*	50	M	820000	HIV
*	50	M	820000	Pneumonia

Generalized Table T_2^*

- How to address this problem?
- Need to take into account that the adversary may know the generalization algorithm's details
- This makes the design of generalization algorithm quite challenging

Data Perturbation in Practice

- Despite the deficiencies of generalization, it is commonly used in practice
 - Often along with k-anonymity instead of l-diversity
- Reason: It is easy to understand
- Three other approaches used in practice
 - Data swapping
 - Synthetic data generation
 - Random perturbation