

MongoDB, Mongoose and Cloud Storage

Frank Walsh, Diarmuid O'Connor

Agenda

- Cloud Databases
- MongoDB
- Mongoose
- Mongo in the cloud

Databases in Enterprise Apps

- Most data driven enterprise applications need a database
 - Persistence: storage of data
 - Concurrency: many applications sharing the data at once.
 - Integration: multiple systems using the same
 DB
- Enterprise Application DBs require backups, fail over, maintenance, capacity provisioning.
 - Typically handled by a Database
 Administrator (the DBA).

Structured & Unstructured Data

- Relational Databases:
 - Organise data into structured tables and rows
 - Relations have to be simple, they cannot contain any structure such as a nested record or a list
- In memory data structures
 - Much more varied structure
 - Lists, Queues, Stacks, Graphs,Hashing

Relational Database

In Memory Data Structures

Databases in the Cloud

For some apps, a traditional relational database may not be the best fit

 Organisations are capturing more data and processing it quicker – can be expensive/difficult on traditional DB

- Traditionally, relational database is designed to run on a single machine in predicable environment
- May be economic to run large data and computing loads on clusters.
- Hard to estimate scaling requirements, particularly if it's a web app?
- Are you going to do Data mining?
- One approach is to use the Cloud for you DB
 - Designed for scale
 - Can be outsourced so you don't have to deal with infrastructure requirements.

Cloud DB Advantages

- Removes Management costs
- Inherently scalable
- Latency is predictable and constant
- No need to define schemas(if NoSQL) etc.
- Lots of Cloud DB offerings out there
 - SQL based
 - NoSQL based
- If organisation policy/standards do not allow outsourcing:
 - Can host yourself, most NoSQL DBs are free.

Cloud Database Practices

- Drop Consistency
 - this makes distributed systems much easier to build
- Drop SQL and the relational model
 - simpler structures are easier to distribute:
 - key/value pairs
 - structured documents
 - pseudo-tables
 - tend to be schema-free, accepting data as-is
- Offer HTTP interfaces using XML or JSON
 - Web APIs!!!

Designing Distributed Data

- App data is not homogeneous
 - some kinds of data will be much larger
- consider using different databases for different requirements:
- user details, billing needs consistency
 - require traditional database
- user data, content needs partition tolerance
 - replicate to keep safe
- analytics, sessions needs availability
 - "eventually consistent" is good enough

MONGODB

Introduction

- Document-oriented database
- A record in MongoDB is a document, which is a data structure composed of field and value pairs.
- MongoDB documents are similar to JSON objects
- Field Values can be other documents, arrays, arrays of other documents.
 - Reduces need for "Joins"
- Community support popular choice

Mongo Terminology

- Each database contains a set of "Collections"
- Collections contain a set of JSON documents
 - there is no schema (in the DB...)
- The documents can all be different
 - means you have rapid development
 - adding a property is easy just starting using in your code
- Makes deployment easier and faster
 - roll-back and roll-forward are safe unused properties are just ignored
- Collections can be indexed and queries
- Operations on individual documents are atomic

```
MongoDB Server
  Database
   Collection
      Document
      {" id":" 5c92448b...",
      "name":"Frank",
      "gender"
                Document
                {"_id":" 3a92c48b...",
                "name":"Frank",
                "gender":"male".
      Document
                              /e"}
      {" id":" 7292b48b...",
      "name":"Frank",
      "status":"active",
      "upvotes":0}
```

Mongo Documents

- MongoDB stores data records as BSON documents.
 - BSON is a binary representation of JSON documents.
- Each document stored in a collection requires a unique _id field and is reserved for use as a primary key.
- If an inserted document omits the _id field, the MongoDB driver automatically generates an ObjectId for the _id field.
 - ObjectId values consist of 12 bytes.

```
_id: ObjectId("5c92448b7fbccf28a0c501aa")
name: "Contact 4"
address: "49 Upper Street"
phone_number: "934-4290"
```

Getting Started (locally)

Install Mongo community edition for your OS:

Install MongoDB > Install MongoDB Community Edition

Install MongoDB Community Edition

These documents provide instructions to install MongoDB Community Edition.

Install on Linux

Install MongoDB Community Edition and required dependencies on Linux.

Install on macOS

Install MongoDB Community Edition on macOS systems from MongoDB archives.

Install on Windows

Install MongoDB Community Edition on Windows systems and optionally start MongoDB as a Windows service.

Specify a directory for your db files and start Mongodb server.

mkdir db mongod -dbpath db

Getting Started (locally)

- Install Mongo Compass, Graphical User Interface for managing MongoDB.
 - For windows, comes as part of mongodb install
 - Other platforms can get it <u>here</u>:

MONGOOSE

Mongoose Overview

- Mongoose is a object-document model module in Node.js for MongoDB
 - Wraps the functionality of the native MongoDB driver
 - Exposes models to control the records in a doc
 - Supports validation on save
 - Extends the native queries

elegant mongodb object modeling for node.js

Let's face it, writing MongoDB validation, casting and business logic boilerplate is a drag. That's why we wrote Mongoose.

Mongoose first?

- Shortcut to understanding the basics
- Similar to Object Relational Mapping libraries like JPA/Hibernate
- Easier concept if coming from relational DB background.

Installing & Using Mongoose

1. Run the following from the CMD/Terminal

```
npm install --save mongoose
```

2. Import the module

```
import mongoose from 'mongoose';
```

3. Connect to the database

```
mongoose.connect(process.env.mongoDB);
```

Mongoose Schemas and Models

- Mongoose supports models
 - i.e. fixed types of documents
 - Compiled from a mongoose.Schema definition
 - Each of the properties must have a type
 - Number, String, Boolean, array, object
- Instances of models represent documents in the Database
- All document manipulation (create/read/update/delete) is handled by models

```
const mongoose = require('mongoose'),
Schema = mongoose.Schema;

const ContactSchema = new Schema({
   name: String,
   address: String,
   age: Number,
   email: String,
   updated: Date
});

const ContactModel = mongoose.model('contacts', ContactSchema);
```

Mongoose Schemas – Arrays & sub-documents

```
Comments property is
                                              an Array of
     const mongoose = require('mongoose
                                           CommentSchemas
     Schema = mongoose.Schema;
     const CommentSchema = new Schema({
       body: {type: String, required:true},
       author: {type: String, /required:true},
       upvotes:Number
 8
       });
 9
10
      const PostSchema = r/ew Schema({
11
         title: {type: String, required:true},
         link: {type: ≸tring, optional:true},
12
                   {type: String, required:true},
13
14
         comments: [CommentSchema],
       upvotes: { type: Number, min: 0, max: 100 }
15
16
     });
17
18
     export default mongoose.model('posts', PostSchema);
```

Mongoose Schema – Built-in Validation

constraints on properties :

```
import mongoose from 'mongoose';
const Schema = mongoose.Schema;
const ContactSchema = new Schema({
  name: {type: String, required:[true, 'Name is a required property']},
  address: String,
  age: {
    type: Number,
    min: 0,
    max: 120, required: true
  email: String,
  updated: {
    type: Date,
    default: Date.now,
export default mongoose.model('Contact', ContactSchema);
```

Mongoose Custom Validation

 Developers can define custom validation on their properties (e.g. validate email field is correct format)

```
ContactSchema.path('email').validate((email) => {
  var emailRegex = /^([\w-\].]+@([\w-]+\.)+[\w-]{2,4})?$/;
  return emailRegex.test(email);
}, 'A valid e-mail address is required');
```

Using Regular Expression
(regex) to test for a valid
email. If you've not come
across them before check out
https://www.w3schools.com/
jsref/jsref_obj_regexp.asp

Data Manipulation Mongoose

- Mongoose supports all the CRUD operations:
 - Create -> Model.create()
 - Read –> Model.find()
 - Update –> Model.update(condition, props, cb)
 - Remove –> Model.remove()
- Can operate with "error first" callbacks or promises.

Create Contact with Mongoose

```
import mongoose from 'mongoose';
const Schema = mongoose.Schema;

const ContactSchema = new Schema({
   name: String,
   address: String,
   age: {
     type: Number,
     min: 0,
     max: 120,
   },
   email: String,
   updated: {
     type: Date,
     default: Date.now,
   },
});

export default mongoose.model('Contact', ContactSchema);
```

```
// Create a contact, using async handler
router.post('/', asyncHandler(async (req, res) => {
   const contact = await Contact.create(req.body);
   res.status(201).json(contact);
}));
```

Update Contact with Mongoose

```
// Update a contact
router.put('/:id', asyncHandler(async (req, res) => {
   if (req.body._id) delete req.body._id;
   const contact = await Contact.update({
     _id: req.params.id,
}, req.body, {
     upsert: false,
});
   if (!contact) return res.sendStatus(404);
   return res.json(200, contact);
}));
```

Mongoose Queries

 Mongoose provides a more expressive version of the native MongoDB

```
Instead of:
 {$or: [{conditionOne: true}, {conditionTwo: true}]Do: .where({conditionOne:true}).or({conditionTwo: true})
```

Mongoose Queries

- Mongoose supports many queries:
 - For equality/non-equality
 - Selection of some properties
 - Sorting
 - Limit & skip
- All queries are executed over the object returned by Model.find*()
 - Model.findOne() returns a single document, the first match
 - Model.find() returns all
 - Model.findById() queries on the _id field.

```
// Delete a contact
router.delete('/:id', asyncHandler(async (req, res) => {|
   const contact = await Contact.findById(req.params.id);
   if (!contact) return res.send(404);
   await contact.remove();
   return res.status(204).send(contact);
}));
```

Mongoose Queries

Can build complex queries and execute them later

```
const query = ContactModel.where('age').gt(17).lt(66)
where('county').in(['Waterford','Wexford','Kilkenny']);
query.exec((err,contacts)=>{...})
```

 The above finds all contacts where age >17 and <66 and living in either Waterford, Kilkenny or Wexford

Mongoose Sub-Docs

Ex: Hacker News – Adding a comment to a post.

```
// add comment
router.post('/:id/comments', asyncHandler( async (req, res) => {
    const id = req.params.id;
    const comment = req.body;
    const post = await Post.findById(id);
    post.comments.push(comment);
    await post.save();
    return res.status(201).send({post});
}));
```

Mongoose Sub-Docs

 Updating a Sub-Document(e.g. incrementing the upvotes for a comment)

```
router.post('/:postId/comments/:commentId/upvotes', asyncHandler( async (req, res) => {
   const commentId = req.params.commentId;
   const postId = req.params.postId;
   const post = await Post.findById(postId);
   post.comments.id(commentId).upvotes++;
   await post.save();
   return res.status(201).send({post});
}));
```

Each subdocument is assigned it's own _id from MongoDB.This is a special method to access sub documents

Mongo Sub docs

Removing a sub document

```
router.delete('/:postId/comments/:commentId', asyncHandler( async (req, res) => {
   const commentId = req.params.commentId;
   const postId = req.params.postId;
   const post = await Post.findById(postId);
   post.comments.id(commentId).remove();
   await post.save();
   return res.status(201).send({post});
}));
```

SCHEMA METHODS

Static & Instance Methods

```
ContactSchema.statics.findByEmail = (email) => {
 return this.findOne({
                                                                             Static Method: belongs to
   email: email
                                                                              schema. Independent of
 });
                                                                              any document instance
ContactSchema.methods.compareEmail = function (candidateEmail) {
 const isMatch = this.email === candidateEmail;
                                                                             Instance Method: belongs
                                                                              to a specific document
 if (!isMatch) {
                                                                                    instance.
   throw new Error('Password mismatch');
 return this;
```

MongoDB as a Service

- Best practice for initial development is to host MongDB process on your development machine
- In production environments, Mongo will be hosted:
 - on it's own instance or
 - provisioned as a service

MongoDB as a Service

MongoDB as a Service

- Some providers allow free access tier
- Provide user credentials wrapped in a URL
- All you need to do is update your config with the relevant URL
- Again, be careful to ignore credentials when pushing to github/public repo

Connect to MscCluster

When entering your password, make sure that any special characters are URL encoded.

Having trouble connecting? View our troubleshooting documentation