Control Systems

G V V Sharma*

3

CONTENTS

1	Stability		1
	1.1	Second order System	1
2	Routh Hurwitz Criterion		2

4 Nyquist Plot 3

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

Compensators

svn co https://github.com/gadepall/school/trunk/ control/codes

1 STABILITY

1.1 Second order System

3

1.1. Consider the following second order system with the transfer function

$$G(s) = \frac{1}{1 + 2s + s^2} \tag{1.1.1}$$

Is the system stable?

Solution: The poles of

$$G(s) = \frac{1}{1 + 2s + s^2}$$
 (1.1.2)

are at

$$s = -1$$
 (1.1.3)

i.e., the left half of s-plane. Hence the system is stable.

1.2. Find and sketch the step response c(t) of the system.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.2

Solution: For step-response, we take input as unit-step function u(t)

$$C(s) = U(s).G(s) = \left[\frac{1}{s}\right] \left[\frac{1}{1+2s+s^2}\right]$$

$$= \frac{1}{s(1+s)^2}$$

$$= \frac{1}{s} - \frac{1}{(1+s)} - \frac{1}{(1+s)^2}$$
(1.2.2)

Taking the inverse Laplace transform,

$$c(t) = L^{-1} \left[\frac{1}{s} \right] - L^{-1} \left[\frac{1}{1+s} \right] - L^{-1} \left[\frac{1}{(1+s)^2} \right]$$

$$= (1 - e^{-t} - te^{-t}) u(t)$$
(1.2.5)

The following code plots c(t) in Fig. 1.2

codes/ee18btech11002/plot.py

1.3. Find the steady state response of the system using the final value theorem. Verify using 2.2.1

Solution: To know the steady response value

of c(t), using final value theorem,

$$\lim_{t \to \infty} c(t) = \lim_{s \to 0} sC(s) \tag{1.3.1}$$

We get

$$\lim_{s \to 0} s \left(\frac{1}{s}\right) \left(\frac{1}{1+s+s^2}\right) = \frac{1}{1+0+0} = 1$$
(1.3.2)

Using 2.2.1,

$$\lim_{t \to \infty} c(t) = \lim_{t \to \infty} \left(1 - e^{-t} - t e^{-t} \right) u(t)$$
 (1.3.3)
= $(1 - 0 - 0) = 1$ (1.3.4)

$$= (1 - 0 - 0) = 1 \tag{1.3.4}$$

1.4. Find the time taken for the system output c(t) to reach 94% of its steady state value.

Solution: Now, 94% of 1 is 0.94, so we should now solve for a positive t such that

$$1 - e^{-t} - te^{-t} = 0.94 (1.4.1)$$

The following code

codes/ee18btech11002/solution.py

provides the necessary solution as

$$t = 4.5228 \tag{1.4.2}$$

2 ROUTH HURWITZ CRITERION

2.1. Consider a unity feedback system as shown in Fig. 2.1, with an integral compensator $\frac{k}{s}$ and open-loop transfer function

$$G(s) = \frac{1}{s^2 + 3s + 2}$$
 (2.1.1)

where k greater than 0. Find its closed loop transfer function.

Fig. 2.1

Solution: The transfer function for negative feedback is given by

$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(2.1.2)

where H(s) = 1 for unity feedback system and G(s) is net forward open loop gain

$$G(s) = \left[\frac{1}{s^2 + 3s + 2}\right] \left[\frac{k}{s}\right] = \frac{k}{s^3 + 3s^2 + 2s}$$
(2.1.3)

2.2. Find the *characteristic* equation for G(s). Characteristic equation is..,

$$1 + G(s)H(s) = 0 (2.2.1)$$

$$=>1+\left[\frac{k}{s^3+3s^2+2s}\right]=0\tag{2.2.2}$$

$$=> s^3 + 3s^2 + 2s + k = 0$$
 (2.2.3)

2.3. Using the tabular method for the Routh hurwitz criterion, find k > 0 for which there are two poles of unity feedback system on $i\omega$ axis.

Solution: This criterion is based on arranging the coefficients of characteristic equation into an array called Routh array. For any characteristic equation q(s),

$$q(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n = 0$$
(2.3.1)

$$\begin{pmatrix} s^{n} \\ s^{n-1} \\ s^{n-2} \\ \vdots \end{pmatrix} \begin{pmatrix} a_{0} & a_{2} & a_{4} & \cdots \\ a_{1} & a_{3} & a_{5} & \cdots \\ b_{1} & b_{2} & b_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \dots \end{pmatrix}$$

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1} \tag{2.3.2}$$

$$b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1} \tag{2.3.3}$$

$$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1} \tag{2.3.4}$$

$$c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1} \tag{2.3.5}$$

For poles to lie on imaginary axis any one entire row of hurwitz matrix should be zero. Constructing the routh array for the characteristic equation obtained in equation(2.2.1)

$$s^3 + 3s^2 + 2s + k = 0 (2.3.6)$$

$$\begin{pmatrix} s^3 \\ s^2 \\ s^1 \\ s^0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & k \\ \frac{6-k}{3} & 0 \\ k & 0 \end{pmatrix}$$
 (2.3.7)

For poles on $j\omega$ axis any one of the row should be zero.

$$\frac{6-k}{3} = 0 \text{ or } k = 0 \tag{2.3.8}$$

But given k greater than 0 ...

$$6 - k = 0$$
 (2.3.9)
 $k = 6$ (2.3.10)

$$k = 6$$
 (2.3.10)

- 2.4. Repeat the above using the determinant method.
- 2.5. Verify your answer using a python code for both the determinant method as well as the tabular method.
 - 3 Compensators
 - 4 Nyquist Plot