NUME:	
PRENUME:	
GRUPA:	

Examen Analiză Numerică & Metode Numerice Matematică, Anul III

- I. (a) Prezentați algoritmul metodei Newton-Raphson.
 - (b) Enumerați avantajele și dezavantajele metodei Newton-Raphson (i.e. cerințele, dependența de prima aproximare, izolarea soluției, viteza de convergență a metodei).
 - (c) Determinați relația dintre două erori consecutive ale șirului de aproximări date de metoda Newton-Raphson.
 - (d) Determinați/demonstrați viteza de convergență a metodei Newton-Raphson.
- II. Fie $\mathbf{A} = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R}), n \geq 3$, o matrice tridiagonală astfel încât

$$a_{ii} = 2$$
, $i = \overline{1, n}$; $a_{i, i+1} = a_{i+1, i} = -1$, $i = \overline{1, n-1}$

Considerăm vectorii $\mathbf{a}^{(j)} = (a_{1j} a_{2j} \dots a_{nj})^{\mathsf{T}} \in \mathbb{R}^n, \ j = \overline{1, n}, \ \text{şi } \mathbf{v}^{(k)} = \left(v_1^{(k)} v_2^{(k)} \dots v_n^{(k)}\right)^{\mathsf{T}} \in \mathbb{R}^n, k = \overline{1, n}, \text{ ale cărui componente sunt definite prin}$

$$v_j^{(k)} = \begin{cases} j(n+1-k), & j = \overline{1,k} \\ k(n+1-j), & j = \overline{k+1,n}. \end{cases}$$

- (a) Dați definiția normei matriciale $\|\cdot\|_{\infty}$ și formula de calcul pentru aceasta. Calculați $\|\mathbf{A}\|_{\infty}$.
- (b) Calculați produsul scalar $\langle \mathbf{v}^{(k)}, \mathbf{a}^{(j)} \rangle_2$, $k, j = \overline{1, n}$.
- (c) Folosind (b), determinați componentele matricei \mathbf{A}^{-1} și verificați că \mathbf{A}^{-1} este simetrică.
- (d) Determinați $\|\mathbf{A}^{-1}\|_{\infty}$ și calculați $\kappa_{\infty}(\mathbf{A})$.
- III. Fie $n \ge 1, f: [a, b] \subset \mathbb{R} \longrightarrow \mathbb{R}$ derivabilă și nodurile $a \le x_0 < x_1 < \dots x_n \le b$.
 - (a) Determinați $\ell_0\in \mathscr{P}_{2n}$ și $h_i,k_i\in \mathscr{P}_{2n},\,i=\overline{1,n},$ astfel încât polinomul

$$P_{2n}(x) = \ell_0(x) f(x_0) + \sum_{i=1}^n \left[h_i(x) f(x_i) + k_i(x) f'(x_i) \right] \in \mathscr{P}_{2n}$$

satisface următoarea problemă de interpolare

$$P_{2n}(x_i) = f(x_i), \quad i = \overline{0, n}; \qquad P'_{2n}(x_i) = f'(x_i), \quad i = \overline{1, n}.$$

(b) Dacă $f \in \mathbf{C}^{2n+1}[a,b]$, arătați că

$$\forall x \in [a, b], \quad \exists \xi = \xi(x) \in [a, b]: \quad f(x) = P_{2n}(x) + \frac{f^{(2n+1)}(\xi)}{(2n+1)!} \psi_{2n+1}(x),$$

unde
$$\psi_{2n+1}(x) := (x - x_0) \prod_{i=1}^{n} (x - x_i)^2 \in \mathscr{P}_{2n+1}.$$

IV. Fie
$$f:[a,b] \longrightarrow \mathbb{R}$$
 integrabilă, unde $-\infty < a < b < \infty$, și $I(f) := \int_a^b f(x) \, \mathrm{d}x$.

- (a) Determinați formula de cuadratură a trapezului, $I_1(f)$, pentru I(f) pornind de la polinomul de interpolare Lagrange $P_1 \in \mathscr{P}_1$ asociat funcției f și nodurilor de interpolare $x_0 = a$ și $x_1 = b$.
- (b) Dacă $f \in C^2[a, b]$, determinați eroarea de cuadratură a trapezului, $E_1(f)$.
- (c) Aplicați metoda de cuadratură adaptivă pentru $f \in \mathrm{C}^2[a,b]$ și o toleranță dată $\varepsilon > 0$ folosind formula de cuadratură a trapezului.

BAREM:

Problema	Oficiu	(a)/Punctaj		(b)/Punctaj		(c)/Punctaj		(d)/Punctaj	
I	1	3		3		2		2	
II	1	3		3		2		2	
III	1	6		4		_		_	
IV	1	3		3		4		_	

TIMP DE LUCRU: 180 minute