

FloodSet Algorithm for Distributed Consensus

SWIPE

BY ARPIT BHAYANI

Flood Set Algorithm: Distributed Consensus

Reaching consensus is extremely important in \$1000 \$2000 any distributed network.
eg: we cannot have two datanodes in a cluster
Such that one thinks price = \$1000
while the other thinks price = \$2000
Depending on which node the stequest hils. He wer would see
the corresponding value, giving an inconsistent view
Somehow, the nodes need to agree on one value.
Achieving distributed consensus
is easy when No failures
- is impossible when network unreliable
- and tricky when unreliable process
Problem Stakment Complek n-node grapi
All nodes/processes start with some value
v E V. All non-faulty nodes processes are
required to agree to one vr EV or use
default vo

ARPIT BHAYANI

- 1. No two processes decide on different values either un ar default vo
- 2. If all processes start with VEV then they decide on v
- not converging to some other value

 3. all non-faulty processes eventually decides

FloodSet Algorithm

Cone Idea: Keep track of all the values seen so far

and use some decision rule at the end to pick one.

Every node maintains a set W that would hold all the values seen so far. WEV

if we assume at max f nodes would fail, then the Flood Set algorithm runs for f+1 rounds

decides the same value.

giving chances for f processes to fail.

After 1+1 rounds, the processes that survive

ARPIT BHAYANI

Every node will start with $W = \{v\}$ value that it holds and starts with

In each round, every node broadcasts W in the network.

When a node receives W from Others, it updats its own W by doing a set union.

After $f \neq 1$ rounds, every node i will have all possible values.

After f+1 rounds, every node i cuill have all possible values from the other nodes

Every node then decides

if its W contains L element, pick that V_{n}

if its W contains >1 elements, pick default vo if all nodes start with the same value, v only v will be sent across

and ofter ft1 rounds at all nodes W= 123

hence, everyone decides vn = v

ARPIT BHAYANI

Alternative decision strokgy

Depending on the wecase, we may choose any decision strakgy

1. pick the smallest one | so long as we have total ordering

2. pick the newest one | of the values

\$1000, 9:00:00 am
Total ordering on timestamp

\$2000, 9:00:01 am
\$1500, 9:00:02 am | nodes deciding on the latest one

Complexity Analysis

Floodset requires \$11 rounds and in each round

every node sends its W to every other node

Communication Complexity = O ((j+1) n2)