

Estrutura desta apresentação

- Superfície cônica
- Seções cônicas
 - Degeneradas
 - Não degeneradas
- Parábolas
 - Definição geométrica
 - Elementos
 - Equações com vértice na origem

Superfície cônica

Sejam e e r duas retas concorrentes e não perpendiculares que se intersecionam num ponto O.

Com e fixado, gira-se r ao redor de e 360° (mantendo o ângulo entre as retas constante).

Esse processo garante a criação de uma superfície cônica circular infinita formada por duas folhas separadas pelo vértice O.

Superfície cônica

Superfície cônica

Nomenclatura:

- A reta r recebe o nome de geratriz da superfície cônica;
- A reta *e* recebe o nome de **eixo** da superfície;
- Conforme a classificação da superfície no slide anterior, o ponto *O* é chamado de **vértice.**

Seções Cônicas

Ao intersecionar a superfície cônica com um plano π , têm-se as chamadas **seções cônicas**.

Há dois tipos de seções cônicas:

- **1. Degeneradas:** caso o plano π passe pelo vértice O. Podem ser:
 - i. Um ponto;
 - ii. Uma reta;
 - iii. Duas retas.
- 2. Não degeneradas: caso o plano π NÃO passe pelo vértice O. Podem ser:
 - i. Parábola;
 - ii. Circunferência;
 - iii. Elipse;
 - iv. Hipérbole.

As seções cônicas

i. Um ponto, se π só tem o ponto O em comum com a superfície cônica.

ii. Uma reta, se o plano π tangencia a superfície cônica.

iii. Duas retas, se o plano π formar com o eixo um ângulo menor do que este faz com a geratriz

i. Uma **parábola**, se π for paralelo a uma geratriz da superfície.

i. Uma **circunferência**, se π for perpendicular ao eixo.

iii. Uma **elipse**, se π for oblíquo ao eixo e cortar apenas uma das folhas da superfície.

i. Uma **hipérbole**, se π for paralelo ao eixo e

Sejam uma reta d e um ponto F não pertencente a d.

"Uma parábola é o lugar geométrico dos pontos do plano que são **equidistantes** de F e d."

Ou seja, um ponto P pertence à parábola se

$$d(F,P) = d(P,d)$$

Elementos:

• **Foco:** o ponto *F*

• **Diretriz:** a reta d

• Eixo: a reta e que passa por F e é perpendicular a d

• Vértice: o ponto V da parábola que está no eixo

Definiu-se geometricamente o que seria a parábola. Qual seria o próximo passo?

Defini-la **analiticamente**!

Serão apresentadas as equações de quatro casos de parábolas:

1. Parábola com vértice na origem

- i. O eixo da parábola é o eixo dos y
- ii. O eixo da parábola é o eixo dos x

2. Parábola com vértice fora da origem

- i. O eixo da parábola é paralelo ao eixo dos y
- ii. O eixo da parábola é paralelo ao eixo dos x

Observação: Apesar de ser possível obter as equações da parábola para eixos inclinados, isto não será feito nesta disciplina.

1. Parábola com vértice na origem

- i. O eixo da parábola é o eixo dos y
- Assume-se que a distância do eixo x até o foco é $\frac{p}{2}$.
- Esta será também, por extensão, a distância do eixo \boldsymbol{x} até a reta \boldsymbol{d} .
- Escolhe-se um ponto qualquer P(x, y) da parábola.
- Note que há como encontrar um ponto P' tal que d(P,d)=d(P',P).

Com essas considerações, tem-se:

- $V(0,0) \in P(x,y)$

- $F\left(0, \frac{p}{2}\right)$ $d: y = -\frac{p}{2}$ $P'\left(x, -\frac{p}{2}\right)$

Da definição de parábola,

$$d(F,P) = d(P,d)$$

$$d(F,P) = d(P',P)$$

$$|\overrightarrow{FP}| = |\overrightarrow{P'P}|$$

$$|\overrightarrow{FP}|^2 = |\overrightarrow{P'P}|^2$$

$$(x-0)^2 + \left(y - \frac{p}{2}\right)^2 = (x-x)^2 + \left[y - \left(-\frac{p}{2}\right)\right]^2$$

$$x^2 + \left(y - \frac{p}{2}\right)^2 = 0^2 + \left(y + \frac{p}{2}\right)^2$$

 $x^{2} + y^{2} - 2 \cdot y \cdot \frac{p}{2} + \left(\frac{p}{2}\right)^{2} = y^{2} + 2 \cdot y \cdot \frac{p}{2} + \left(\frac{p}{2}\right)^{2}$

 $x^2 - py = py$

 $x^2 = 2py$

$$V(0,0) \in P(x,y)$$

$$F\left(0,\frac{p}{2}\right)$$

$$d: y = -\frac{p}{2}$$

$$P'\left(x, -\frac{p}{2}\right)$$

$$x^2 = 2py$$

Esta é a equação reduzida da parábola com vértice na origem tendo o eixo dos y como eixo.

O valor p recebe o nome **parâmetro** da parábola ($p \neq 0$).

Note que, como se colocou o foco acima do eixo dos x, assumiuse p>0, pois $F\left(0,\frac{p}{2}\right)$. Isso garantiu y>0.

Portanto, se p>0, tem-se uma parábola com **concavidade voltada para cima**!

Caso p < 0, tem-se uma parábola com **concavidade voltada para** baixo.

1. Parábola com vértice na origem

ii. O eixo da parábola é o eixo dos x

Neste caso, tem-se:

- $V(0,0) \in P(x,y)$
- $F\left(\frac{p}{2},0\right)$
- $d: x = -\frac{p}{2}$
- $P'\left(-\frac{p}{2},y\right)$

Da definição de parábola,

$$d(F,P) = d(P,d)$$
$$d(F,P) = d(P',P)$$
$$|\overrightarrow{FP}| = |\overrightarrow{P'P}|$$
$$|\overrightarrow{FP}|^2 = |\overrightarrow{P'P}|^2$$

$$V(0,0) \in P(x,y)$$

$$F\left(\frac{p}{2},0\right)$$

$$d: x = -\frac{p}{2}$$

$$P'\left(-\frac{p}{2},y\right)$$

$$(x - \frac{p}{2})^{2} + (y - 0)^{2} = \left[x - \left(-\frac{p}{2}\right)\right]^{2} + (y - y)^{2}$$

$$(x - \frac{p}{2})^{2} + y^{2} = \left(x + \frac{p}{2}\right)^{2} + 0^{2}$$

$$x^{2} - 2 \cdot x \cdot \frac{p}{2} + \left(\frac{p}{2}\right)^{2} + y^{2} = x^{2} + 2 \cdot x \cdot \frac{p}{2} + \left(\frac{p}{2}\right)^{2}$$

$$y^{2} - px = px$$

$$y^{2} = 2px$$

$$y^2 = 2px$$

Esta é a equação reduzida da parábola com vértice na origem tendo o eixo dos x como eixo.

Note que, como se colocou o foco à direita do eixo dos y, assumiu-se p>0, pois $F\left(\frac{p}{2},0\right)$. Isso garantiu x>0.

Portanto, se p > 0, tem-se uma parábola com concavidade voltada para a direita!

Caso p < 0, tem-se uma parábola com **concavidade voltada para a esquerda.**

