Résumé sur les lois de probabilités

1 Variable aléatoire discrète :

1.1 Loi binomiale

La loi binomiale est une loi discrète, contrairement aux trois autres lois étudiées qui sont continues, elle ne peut prendre que des valeurs entières entre 0 et n, une valeur entière donnée par l'énoncé.

Pour justifier qu'une variable X suit une loi binomiale, on écrira la phrase suivante : "La variable X compte le nombre de répétitions d'une succession de n épreuves de Bernouilli (car deux issues), indépendantes (car tirage avec remise) et de même probabilité p".

Les valeurs n et p seront donnés dans l'énoncé.

On écrira $X \sim \mathcal{B}(n, p)$.

Son espérance est $n \times p$ et son écart-type est $\sqrt{n \times p \times (1-p)}$. Les calculs se feront systématiquement à la calculatrice :

1. P(X = k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra : Binomiale Ddp

Le nombre d'essai sera *n*, la probabilité de succès *p* et la valeur de *X* sera k.

2. $P(X \le k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra E : Binomiale FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.

3. $P(X \ge k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra E : Binomiale FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera n.

4. $P(i \le X \le j)$.

Sur la TI, on fera 5 : Probabilitées, 5 : Distributions, puis dans le menu des distributions, on prendra E : Binomiale FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

1.2 Loi de Poisson:

On associe cette loi à des événements qui se produisent rarement. Elle est associée à un paramètre : λ .

Son espérance sera : $\frac{1}{4}$.

On écrira $X \sim \mathcal{P}(\lambda)$.

Les calculs se feront systématiquement à la calculatrice :

1. P(X = k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra H : Poisson Ddp.

Le nombre d'essai sera *n*, la probabilité de succès *p* et la valeur de *X* sera k.

2. $P(X \le k)$.

Sur la TI, on fera 5 : Probabilitées, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.

3. P(X ≥ k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera 1000.

4. $P(i \le X \le j)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

1.3 Approximation de la loi binomiale par la loi de Poisson:

Sous de bonnes conditions, (que nous ne vérifirons pas), on peut approcher une loi $X \sim \mathcal{B}(n,p)$ par une loi de Poisson de paramètre $\lambda = n \times p$.

2 Variables aléatoires continues :

Ce sont les variables aléatoires dont nous calculons les probabilités au moyen d'intégrales.

2.1 Loi uniforme:

Cette loi intervient dans ces situations de choix aléatoires ou quand le terme "au hasard dans un intervalle ou entre deux valeurs" intervient. Par exemple pour X qui suit la loi uniforme sur [a;b]:

$$P(X \le y) = \frac{y-a}{b-a} = \int_{a}^{y} \frac{1}{b-a} dt$$

$$P(X \ge x) = \frac{b-x}{b-a} = \int_{x}^{b} \frac{1}{b-a} dt$$

$$P(x \le X \le y) = \frac{y-x}{b-a} = \int_{x}^{y} \frac{1}{b-a} dt$$

$$P(X = x) = 0$$

avec $x, y \in [a; b]$.

L'espérance de cette loi est $\frac{a+b}{2}$.

La fonction de densité de cette loi est $f(t) = \frac{1}{b-a}$.

La variable X ne pourra prendre ses valeurs qu'entre a et b et la probabilité qu'elle prenne ses valeurs ailleurs sera nulle.

On écrira $X \sim \mathcal{U}([a, b])$.

2.2 Loi exponentielle:

Cette loi intervient lors de vieillissements sans mémoire : l'écoulement du temps n'a pas d'influence sur le comportement de la variable.

TSELT 2 Mars 2020

Par exemple, pour X qui suit une loi exponentielle de paramètre λ :

$$P(X \le t) = 1 - e^{-\lambda \times t} = \int_0^t \lambda e^{-\lambda x} dx$$
$$P(X \ge t) = e^{-\lambda \times t}$$
$$P(X = t) = 0$$

avec $t \ge 0$.

L'espérance de cette loi est $\frac{1}{\lambda}$. La fonction de densité de cette loi est $f(x) = \lambda e^{-\lambda x}$. La variable X ne pourra prendre que des valeurs positives.

2.3 Loi normale

Pour une loi normale $N(\mu, \sigma)$, on a :

- 1. μ qui est la moyenne
- **2.** σ qui est l'écart-type.
- **3.** $P(X \le \mu) = P(X \ge \mu) = 0.5$.

Pour $t, u \in \mathbb{R}$:

- **1.** $P(X \le t)$ se calcule avec normalFDR, borne inf = -10^9 et borne sup t.
- **2.** $P(X \ge t)$ se calcule avec normalFDR, borne inf = t et borne sup 10^9 .
- **3.** $P(u \le X \le t)$ se calcule avec normalFDR, lower=u et upper=t.
- **4.** $P(\mu h \le Y \le \mu + h) = t \Leftrightarrow 2P(Y \le \mu + h) 1 = t \Leftrightarrow P(Y \le \mu + h) = \frac{1+t}{2}$, on trouve la valeur de $\mu + h$ en utilisant InverseNormale pour les TI: surface, c'est $\frac{1+t}{2}$.

Pour accéder à normalFDR, on fera les mêmes manipulations que dans le cas de la loi binomiale mais en choisissant les menus de la loi normale.

2.4 Approximation de la loi binomiale par la loi Normale:

Une loi binomiale $\mathcal{B}(n;p)$ peut être approchée par une loi normale de moyenne $n \times p$ et d'écart-type $\sqrt{n \times p \times (1-p)}$.

Il faut bien comprendre la signification du terme approcher dans ce contexte, il faudra prendre en compte la correction de continuité.

Pour $X \sim \mathcal{B}(n, p)$ et $Y \sim N(n \times p; \sqrt{n \times p \times (1 - p)})$:

- P(X = k) ne sera pas approximé par P(Y = k), qui est nul, mais par $P(k-0, 5 \le Y \le k+0, 5)$
- $P(i \le X \le j)$ sera approximé par $P(i-0,5 \le Y \le j+0.5)$
- $P(X \ge i)$ sera approximé par $P(Y \ge i 0.5)$.
- $P(X \le i)$ sera approximé par $P(Y \le i + 0.5)$.

Dans les exercices, on demandera surtout de donner les paramètres de la loi normale par laquelle on pourra approcher la loi binomiale.

TSELT 3 Mars 2020