Hashing

Algorithm: Design & Analysis [09]

In the last class...

- Implementing Dictionary ADT
- Definition of red-black tree
- Black height
- Insertion into a red-black tree
- Deletion from a red-black tree

Hashing

- Hashing
- Collision Handling for Hashing
 - Closed Address Hashing
 - Open Address Hashing
- Hash Functions
- Array Doubling and Amortized Analysis

Hashing: the Idea

Collision Handling: Closed Address

Closed Address: Analysis

- Assumption: simple uniform hashing: for j=0,1,2,...,m-1, the average length of the list at E[j] is n/m.
- The average cost of an unsuccessful search:
 - Any key that is not in the table is equally likely to hash to any of the m address. The average cost to determine that the key is not in the list E[h(k)] is the cost to search to the end of the list, which is n/m. So, the total cost is $\Theta(1+n/m)$.

Closed Address: Analysis(cont.)

- For successful search: (assuming that x_i is the *i*th element inserted into the table, i=1,2,...,n)
 - For each *i*, the probability of that x_i is searched is 1/n.
 - \blacksquare For a specific x_i , the number of elements examined in a successful search is t+1, where t is the number of elements iserted into the same list as x_i , after x_i has been inserted. And for any j, the probability of that x_i is inserted into the same list of x_i

is 1/m. So, the cost is:

Cost for computing hashing

Expected number of elements in front of the searched one in the same linked list.

Closed Address: Analysis(cont.)

- The average cost of a successful search:
 - Define α =n/m as *load factor*,

The average cost of a successful search is:

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{i=i+1}^{n} \frac{1}{m}\right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm} \sum_{i=1}^{n-1} i$$

$$= 1 + \frac{n-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} = \Theta(1+\alpha)$$
Number of elements in front of

Cost for computing hashing

Number of elements in front of the searched one in the same linked list.

Collision Handling: Open Address

- All elements are stored in the hash table, no linked list is used. So, α , the load factor, can not be larger than 1.
- Collision is settled by "rehashing": a function is used to get a new hashing address for each collided address, i.e. the hash table slots are *probed* successively, until a valid location is found.
- The probe sequence can be seen as a permutation of (0,1,2,...,m-1)

Commonly Used Probing

Linear probing:

Given an ordinary hash function h, which is called an auxiliary hash function, the hash function is: (clustering may occur)

$$h(k,i) = (h'(k)+i) \mod m \quad (i=0,1,...,m-1)$$

Quadratic Probing:

Given auxiliary function h' and nonzero auxiliary constant c_1 and c_2 , the hash function is: (secondary clustering may occur)

$$h(k,i) = (h'(k)+c_1i+c_2i^2) \mod m \quad (i=0,1,...,m-1)$$

Double hashing:

Given auxiliary functions h_1 and h_2 , the hash function is:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m \quad (i=0,1,...,m-1)$$

Linear Probing: an Example

Equally Likely Permutations

- Assumption: each key is equally likely to have any of the m! permutations of (1,2...,m-1) as its probe sequence.
- Note: both linear and quadratic probing have only *m* distinct probe sequence, as determined by the first probe.

Analysis for Open Address Hash

Assuming uniform hashing, the average number of probes in an unsuccessful search is at most $1/(1-\alpha)$ ($\alpha=n/m<1$)

Note: the probabilit y of the first probed position being occupied

is
$$\frac{n}{m}$$
, and that of the j th($j > 1$) position occupied is $\frac{n-j+1}{m-j+1}$,

so, the probabilit y of the number of probe no less than i will be:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdot \cdots \cdot \frac{n-i+2}{m-i+2} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}$$

Then, the average number of probe is : $\sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}$

Analysis for Open Address Hash

Assuming uniform hashing, the average cost of probes in an successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ ($\alpha = n/m < 1$)

To search for the (i + 1)th inserted element in the table, the cost is the same as the cost for inserting it when there

are just *i* elements in the table. At that time, $\alpha = \frac{l}{m}$, so,

the cost is
$$\frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$$

For your reference:

Half full: 1.387; 90% full: 2.559

So, the cost is:

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \sum_{i=m-n+1}^{m} \frac{1}{i} \le \frac{1}{\alpha} \int_{m-n}^{m} \frac{dx}{x} = \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

Hashing Function

- A good hash function satisfies the assumption of simple uniform hashing.
- Heuristic hashing functions
 - The division method: $h(k)=k \mod m$
 - The multiplication method: $h(k) = \lfloor m(kA \mod 1) \rfloor$ (0<*A*<1)
- No single function can avoid the worst case $\Theta(n)$, so, "Universal hashing" is proposed.
- Rich resource about hashing function:
 Gonnet and Baeza-Yates: *Handbook of Algorithms and Data Structures*, Addison-Wesley, 1991

Array Doubling

- Cost for search in a hash table is $\Theta(1+\alpha)$, then if we can keep α constant, the cost will be $\Theta(1)$
- Space allocation techniques such as array doubling may be needed.
- The problem of "unusually expensive" individual operation.

Looking at the Memory Allocation

- hashingInsert(HASHTABLE H, ITEM x)
- **integer** *size*=0, *num*=0;
- **if** *size*=0 **then** allocate a block of size 1; *size*=1;
- if num=size then
- allocate a block of size 2size;
- move all item into new table;
- size=2size;
- insert *x* into the table;
- \blacksquare num=num+1;

Elementary insertion: cost 1

Insertion with

expansion: cost size

return

Worst-case Analysis of the Insertion

- For *n* execution of insertion operations
 - A bad analysis: the worst case for one hereion is the case when expansion if reported, so to n
 - So, the worst case cost is in $O(n^2)$.
- Note the expansion is required during the *i*th operation only if $i=2^k$, and the cost of the *i*th operation

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is exactly power of } 2\\ 1 & \text{otherwise} \end{cases}$$

So, the total cost is:
$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j < n + 2n = 3n$$

Amortized Time Analysis

- Amortized equation:
 amortized cost = actual cost + accounting cost
- Design goals for accounting cost
 - In any legal sequence of operations, the sum of the accounting costs is nonnegative.
 - The amortized cost of each operation is fairly regular, in spite of the wide fluctuate possible for the actual cost of individual operations.

Amortized Analysis: MultiPop Stack

Amortized cost: push:2; pop, multipop: 0

Amortized Analysis: Binary Counter

0	00000000	0	
1	00000001	1	
2	00000010	3	Cost measure: bit flip
3	00000011	4	Cost measure. on mp
4	00000100	7	
5	00000101	8	
6	00000110	10	amortized cost:
7	00000111	(11)	
8	00001000	15	set 1: 2
9	00001001	16	set 0: 0
10	00001010	18	
11	00001011	19	
12	00001100	22	
13	00001101	23	
14	00001110	25	
15	00001111	26	
16	00010000	31	

Accounting Scheme for Stack Push

- Push operation with array doubling
 - No resize triggered: 1
 - Resize $(n \rightarrow 2n)$ triggered: tn+1 (t is a constant)
- Accounting scheme (specifying accounting cost)
 - No resize triggered: 2*t*
 - Resize $(n\rightarrow 2n)$ triggered: -nt+2t
- So, the amortized cost of each individual push operation is $1+2t\in\Theta(1)$

Home Assignment

- pp.302-
 - **6.1**
 - **6.2**
 - **6.18**
 - **6.19**