$10_{56} \ (K10a_{28})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2u^{34} + 4u^{33} + \dots + b - 2, \ 2u^{34} + 2u^{33} + \dots + a - 2, \ u^{35} + 2u^{34} + \dots - 2u - 1 \rangle$$

 $I_2^u = \langle -u^2 + b, \ a - u, \ u^3 - u^2 + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^{34} + 4u^{33} + \dots + b - 2, \ 2u^{34} + 2u^{33} + \dots + a - 2, \ u^{35} + 2u^{34} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{34} - 2u^{33} + \dots + 6u + 2 \\ -2u^{34} - 4u^{33} + \dots + 2u + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{34} + u^{33} + \dots - 4u - 1 \\ u^{34} + 2u^{33} + \dots + 9u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{32} - 5u^{30} + \dots + 4u + 1 \\ -u^{33} + 5u^{31} + \dots - 4u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{7} + 2u^{5} - 2u^{3} + 2u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$7u^{34} + 10u^{33} - 33u^{32} - 62u^{31} + 104u^{30} + 233u^{29} - 217u^{28} - 640u^{27} + 303u^{26} + 1349u^{25} - 205u^{24} - 2310u^{23} - 276u^{22} + 3206u^{21} + 1184u^{20} - 3622u^{19} - 2289u^{18} + 3265u^{17} + 3165u^{16} - 2158u^{15} - 3352u^{14} + 824u^{13} + 2806u^{12} + 244u^{11} - 1824u^{10} - 716u^9 + 828u^8 + 636u^7 - 230u^6 - 376u^5 - 32u^4 + 126u^3 + 61u^2 - 5u - 13$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{35} + 2u^{34} + \dots - 2u - 1$
c_2, c_3, c_5	$u^{35} - 4u^{34} + \dots + 3u - 1$
c_4, c_9	$u^{35} - u^{34} + \dots - 28u - 8$
c_6	$u^{35} - 2u^{34} + \dots + 36u - 36$
c_8, c_{10}	$u^{35} + 12u^{34} + \dots + 10u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{35} - 12y^{34} + \dots + 10y - 1$
c_2, c_3, c_5	$y^{35} - 34y^{34} + \dots + 19y - 1$
c_4, c_9	$y^{35} + 21y^{34} + \dots + 16y - 64$
c_6	$y^{35} - 12y^{34} + \dots + 22392y - 1296$
c_8, c_{10}	$y^{35} + 24y^{34} + \dots + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.664256 + 0.761558I		
a = -0.45768 - 1.47251I	1.24148 - 2.67684I	-4.78426 + 2.93641I
b = -1.76114 - 0.11415I		
u = -0.664256 - 0.761558I		
a = -0.45768 + 1.47251I	1.24148 + 2.67684I	-4.78426 - 2.93641I
b = -1.76114 + 0.11415I		
u = -0.741471 + 0.622830I		
a = -0.57819 + 1.67504I	-0.35079 + 1.76625I	-8.73044 - 2.55261I
b = 0.590055 + 1.240710I		
u = -0.741471 - 0.622830I		
a = -0.57819 - 1.67504I	-0.35079 - 1.76625I	-8.73044 + 2.55261I
b = 0.590055 - 1.240710I		
u = 1.037620 + 0.057613I		
a = 0.554534 - 0.308977I	-4.46867 - 2.44036I	-13.20394 + 3.90896I
b = 0.096321 - 0.988163I		
u = 1.037620 - 0.057613I		
a = 0.554534 + 0.308977I	-4.46867 + 2.44036I	-13.20394 - 3.90896I
b = 0.096321 + 0.988163I		
u = -1.04680		
a = 2.40428	-6.56245	-13.9210
b = 1.22975		
u = 0.647381 + 0.692758I		
a = -0.044489 + 0.551561I	-1.45204 + 0.58793I	-6.80279 + 0.37603I
b = -1.82365 + 0.07795I		
u = 0.647381 - 0.692758I		
a = -0.044489 - 0.551561I	-1.45204 - 0.58793I	-6.80279 - 0.37603I
b = -1.82365 - 0.07795I		
u = -0.636751 + 0.841462I		
a = 0.997900 + 0.837792I	-4.54695 - 6.58963I	-8.16646 + 3.21535I
b = 2.05544 - 1.02610I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.636751 - 0.841462I		
a = 0.997900 - 0.837792I	-4.54695 + 6.58963I	-8.16646 - 3.21535I
b = 2.05544 + 1.02610I		
u = 0.799224 + 0.732897I		
a = -0.137052 - 0.887085I	3.23509 - 1.72545I	-0.63608 + 2.52233I
b = 1.192050 - 0.720803I		
u = 0.799224 - 0.732897I		
a = -0.137052 + 0.887085I	3.23509 + 1.72545I	-0.63608 - 2.52233I
b = 1.192050 + 0.720803I		
u = 1.119540 + 0.118261I		
a = -1.43525 + 0.93911I	-11.18060 - 5.92010I	-14.7078 + 4.1258I
b = -0.508472 + 1.022410I		
u = 1.119540 - 0.118261I		
a = -1.43525 - 0.93911I	-11.18060 + 5.92010I	-14.7078 - 4.1258I
b = -0.508472 - 1.022410I		
u = -0.967598 + 0.636531I		
a = -0.986041 - 0.154167I	-1.09066 + 3.19486I	-9.71319 - 2.77080I
b = -1.50085 + 0.53336I		
u = -0.967598 - 0.636531I		
a = -0.986041 + 0.154167I	-1.09066 - 3.19486I	-9.71319 + 2.77080I
b = -1.50085 - 0.53336I		
u = 0.923611 + 0.710370I		
a = -0.706663 + 0.972785I	2.85420 - 3.77887I	-1.29814 + 3.89618I
b = -1.261460 - 0.179818I		
u = 0.923611 - 0.710370I		
a = -0.706663 - 0.972785I	2.85420 + 3.77887I	-1.29814 - 3.89618I
b = -1.261460 + 0.179818I		
u = -1.044390 + 0.520208I		
a = -0.308880 - 1.070380I	-8.72011 + 1.04091I	-12.84142 - 2.04561I
b = 0.105718 - 0.418991I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.044390 - 0.520208I		
a = -0.308880 + 1.070380I	-8.72011 - 1.04091I	-12.84142 + 2.04561I
b = 0.105718 + 0.418991I		
u = -0.832533		
a = -0.863173	-1.36456	-6.49720
b = -0.390504		
u = 0.999651 + 0.662016I		
a = 0.70686 - 2.15648I	-2.49390 - 5.84473I	-8.96835 + 4.95079I
b = 1.84700 - 0.41941I		
u = 0.999651 - 0.662016I		
a = 0.70686 + 2.15648I	-2.49390 + 5.84473I	-8.96835 - 4.95079I
b = 1.84700 + 0.41941I		
u = 0.886910 + 0.817524I		
a = 1.29729 + 0.86025I	0.09589 - 3.04539I	-10.49856 + 3.07346I
b = 0.19926 + 2.00598I		
u = 0.886910 - 0.817524I		
a = 1.29729 - 0.86025I	0.09589 + 3.04539I	-10.49856 - 3.07346I
b = 0.19926 - 2.00598I		
u = -0.280203 + 0.733036I		
a = 0.964828 - 0.842495I	-6.48734 + 3.48149I	-9.01514 - 3.12997I
b = 0.673575 - 0.185802I		
u = -0.280203 - 0.733036I		
a = 0.964828 + 0.842495I	-6.48734 - 3.48149I	-9.01514 + 3.12997I
b = 0.673575 + 0.185802I		
u = -1.007860 + 0.690657I		
a = 0.76872 + 1.59182I	0.21056 + 8.20034I	-6.93623 - 7.67757I
b = 2.25197 + 0.62559I		
u = -1.007860 - 0.690657I		
a = 0.76872 - 1.59182I	0.21056 - 8.20034I	-6.93623 + 7.67757I
b = 2.25197 - 0.62559I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
•	u = -1.045240 + 0.713362I		
	a = -0.03530 - 2.41846I	-5.78918 + 12.39880I	-9.85333 - 7.70880I
	b = -2.14450 - 1.67720I		
	u = -1.045240 - 0.713362I		
	a = -0.03530 + 2.41846I	-5.78918 - 12.39880I	-9.85333 + 7.70880I
	b = -2.14450 + 1.67720I		
	u = -0.282825 + 0.410007I		
	a = -0.74438 + 1.30353I	-0.429568 + 1.170440I	-5.16678 - 5.64189I
	b = -0.006557 + 0.477496I		
•	u = -0.282825 - 0.410007I		
	a = -0.74438 - 1.30353I	-0.429568 - 1.170440I	-5.16678 + 5.64189I
	b = -0.006557 - 0.477496I		
•	u = 0.392648		
	a = 1.74649	-2.15415	-1.93570
	b = -0.848760		

II.
$$I_2^u = \langle -u^2 + b, \ a - u, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u + 1 \\ 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^2 + 7u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 - u^2 + 1$
c_2, c_3	$(u-1)^3$
c_4, c_9	u^3
<i>C</i> ₅	$(u+1)^3$
c_6, c_{10}	$u^3 - u^2 + 2u - 1$
c ₇	$u^3 + u^2 - 1$
<i>c</i> ₈	$u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^3 - y^2 + 2y - 1$
c_2, c_3, c_5	$(y-1)^3$
c_4, c_9	y^3
c_6, c_8, c_{10}	$y^3 + 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.877439 + 0.744862I	1.37919 - 2.82812I	-4.28809 + 2.59975I
b = 0.215080 + 1.307140I		
u = 0.877439 - 0.744862I		
a = 0.877439 - 0.744862I	1.37919 + 2.82812I	-4.28809 - 2.59975I
b = 0.215080 - 1.307140I		
u = -0.754878		
a = -0.754878	-2.75839	-16.4240
b = 0.569840		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^3 - u^2 + 1)(u^{35} + 2u^{34} + \dots - 2u - 1) $
c_2, c_3	$((u-1)^3)(u^{35} - 4u^{34} + \dots + 3u - 1)$
c_4,c_9	$u^3(u^{35} - u^{34} + \dots - 28u - 8)$
c_5	$((u+1)^3)(u^{35} - 4u^{34} + \dots + 3u - 1)$
c_6	$(u^3 - u^2 + 2u - 1)(u^{35} - 2u^{34} + \dots + 36u - 36)$
	$(u^3 + u^2 - 1)(u^{35} + 2u^{34} + \dots - 2u - 1)$
c ₈	$(u^3 + u^2 + 2u + 1)(u^{35} + 12u^{34} + \dots + 10u + 1)$
c_{10}	$(u^3 - u^2 + 2u - 1)(u^{35} + 12u^{34} + \dots + 10u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^3 - y^2 + 2y - 1)(y^{35} - 12y^{34} + \dots + 10y - 1)$
c_2, c_3, c_5	$((y-1)^3)(y^{35} - 34y^{34} + \dots + 19y - 1)$
c_4,c_9	$y^3(y^{35} + 21y^{34} + \dots + 16y - 64)$
c_6	$(y^3 + 3y^2 + 2y - 1)(y^{35} - 12y^{34} + \dots + 22392y - 1296)$
c_8, c_{10}	$(y^3 + 3y^2 + 2y - 1)(y^{35} + 24y^{34} + \dots + 10y - 1)$