

Software Design and Architecture Homework 1

Team:

Vigan Demiri 221536

Genti Nuhiu 221525

Jahja Nur Zulbeari 221544

2. Short Project Description

The Macedonian Stock Exchange Data Analysis System is a web-based application developed to automate data collection, processing, and analysis of historical stock data from the Macedonian Stock Exchange. Designed for a range of users, including investors, analysts, and financial institutions, this system provides streamlined access to up-to-date stock data spanning at least ten years. The system enables users to analyze market trends, retrieve complete issuer lists, and access structured data for further insights.

Using a **pipe-and-filter architecture**, the application facilitates efficient data processing from acquisition to storage, supporting reliable data transformation and storage in Macedonian-standard formats. Users can retrieve historical data for all issuers, analyze real-time trends, and perform periodic updates, all through a user-friendly interface that optimizes market analysis and investment decision-making.

3. Specification of Functional and Non-functional Requirements

Functional Requirements

1. Data Collection

- **FR 1.1**: The system shall retrieve historical data for a minimum of ten years for each stock issuer.
- FR 1.2: The system shall automatically check and update the database daily with new data.
- FR 1.3: The system shall automatically retrieve a complete list of stock issuers from the Macedonian Stock Exchange website each day.
- **FR 1.4**: The system shall filter out non-stock issuers (e.g., bonds) from the retrieved issuer list.
- FR 1.5: The system shall retrieve key stock metrics such as the opening price, closing price, highest price, lowest price, trading volume, and trading date for each trading day.

2. Data Processing and Transformation

- FR 2.1: The system shall transform dates into a consistent format (YYYY.MM.DD) for all entries.
- FR 2.2: The system shall format all numeric values with a period as a decimal separator and a comma for thousands.
- FR 2.3: The system shall validate all numeric data before storing it in the database to ensure accuracy and consistency.

3. Data Storage

- FR 3.1: The system shall store all data in a structured database, ensuring efficient access and updating.
- o **FR 3.2**: The system shall prevent duplicate data entries when adding new data.
- o **FR 3.3**: The system shall merge newly retrieved data with existing records in the database.
- FR 3.4: The system shall ensure data integrity during the storage process.

4. Performance Tracking

 FR 4.1: The system shall measure and display the time required for initial data loading and each subsequent update.

Non-functional Requirements

1. Performance and Scalability

- NFR 1.1: The system shall be capable of processing large historical datasets without performance degradation.
- NFR 1.2: The system shall complete the initial data loading process within 30 minutes.
- NFR 1.3: The system shall complete daily updates within 5 minutes.
- NFR 1.4: The system shall optimize data retrieval and processing times to support efficient operations.
- NFR 1.5: The system shall operate efficiently, consuming minimal computational resources.

2. Availability and Reliability

- o **NFR 2.1**: The system shall maintain an availability rate of 99.9% on a monthly basis.
- NFR 2.2: The system shall include mechanisms to handle network interruptions without data loss or corruption.

3. Scalability

- o **NFR 3.1**: The system shall support adding new filters to the pipeline as needed.
- NFR 3.2: The system shall handle up to a 200% increase in the number of issuers from its initial capacity.
- NFR 3.3: The system shall be capable of integrating additional data sources in the future.

4. Maintainability and Extensibility

- o **NFR 4.1**: The system shall provide alerts for any data retrieval or processing failures.
- NFR 4.2: The system architecture shall support easy modification, debugging, and extension of the pipe-and-filter processes.

5. Data Integrity and Compliance

- NFR 5.1: The system shall implement mechanisms to verify data integrity at every processing stage.
- NFR 5.2: The system shall comply with the Macedonian Stock Exchange's data access policies.
- NFR 5.3: The system shall limit server requests to avoid overloading the Macedonian Stock Exchange website.

4. Personas and descriptive narrative

Persona 1: Financial Analyst - Ana

- Ana is a financial analyst working at an investment firm. She uses stock data to analyze historical trends and provide investment advice to clients.
- Ana needs up-to-date, reliable stock data formatted for easy analysis. She uses this application to quickly access accurate data in the Macedonian format.
- Ana opens the app, requests the latest data for Macedonian Stock Exchange issuers, and within seconds, receives the most recent information.

Persona 2: Individual Investor - Marko

- Marko is a young investor interested in the Macedonian Stock Exchange. He uses the app to track trends and decide where to invest.
- Marko frequently checks the app for the latest stock market updates. When he opens it, he reviews
 data for issuers over a chosen period and knows that the app automatically updates to the latest
 available data for each issuer.