Architecture of the BeagleBone BLACK

CMPE-570 2141

Brent Dimmig, Paul Repka

Agenda

- Introduction
- Processor Overview
- ARM Cortex-A8
 - Pipeline
 - Branch Prediction
 - Cache
 - Extra Features
- System Architecture
- Operating Systems

- Design and Production
- Applications
- Comparison with the RasPi
- Conclusion
- Questions

Introduction

- Credit card sized single-board computer
- AM3358 1GHz ARM Cortex-A8
- 4GB eMMC flash storage
- 512MB DDR3 RAM
- Dual PRU 32-bit microcontrollers
- Open hardware

Processor Overview

- TI AM3358 Sitara™ Processor
- Based on ARM Cortex-A8 processor
- Implements ARMv7-A 32-bit ISA
- < 300 mW overall power consumption
- 65nm technology

Cortex A8 - Pipeline

- Statically scheduled
- Dual-issue in-order
- Dual pipelined ALU
 - Multiplier and load-store pipelines
- 13 stage integer pipeline
 - Additional 10-stage NEON pipeline
- Implements ARM's VFPv3

Cortex A8 - Program Flow Control

- Advanced branch prediction
 - > 95% accuracy
- 512-entry branch target buffer
 - 2-way set associative
- Global history buffer
 - 4096 2-bit saturating counters
- 10-bit history for last ten branches
- 4-bit history for Program Counter

Cortex A8 - Cache

- Two levels of cache
- Level 1 (L1) cache split for instructions and data
 - 32KB, 4-way set associative
 - Write-back replacement policy
 - 1 cycle penalty
- Level 2 (L2) unified cache
 - Configurable: 64KB to 2MB, 8-way set associative
 - Configurable replacement policy per page
 - 8 cycle penalty
- Global miss incurs at least a 20 cycle penalty

Cortex A8 - Extra Features

- Thumb-2
 - Allows 16-bit and 32-bit instructions to run side by side.
- ARM VFPv3, IEEE 754 compliant
 - Hardware floating point operations
- NEON media and signal coprocessor
 - SIMD architecture (vector operations)
 - 10 stage pipeline

System Architecture

- Powered by TPS65217C
 - 5V from adapter or host USB
- HDMI capabilities
- Boot from µSD card or eMMC
- Two 42-pin expansion ports
 - Common for hardware projects

Operating Systems

- Supports ARM compatible Linux 3.8 kernel
- Distros: Debian, Android, Ubuntu, Angstrom

Design and production

- BeagleBoard.org's newest board
- Non-profit corporation run by Texas Inst. employees
- Manufactured by CircuitCo
- All designs are fully open source
 - Supported by development community
- Cost: \$55
- Targeted towards developers and hobbyists
 - Allows rapid prototyping at low-cost

Comparison with the Raspberry Pl

BeagleBone Black

- Better interfaces with external sensors
- Faster, newer, better supported processor
- Includes an OS out of the box
- Runs Angstrom, Ubuntu and other OS's

Raspberry PI

- Better graphics capabilities
- Better audio capabilities
- Better community support
- Mainly runs Raspbian
- You can play Minecraft

Which would you choose?

Applications

- Robotics
 - Autonomous Vehicle Xplorer
 - OpenROV Underwater Robot
 - Dancing SpiderBot
- Media
 - LED displays
 - o Plotters
 - Mini arcade machines
- Manufacturing
 - 3D printing
 - CNC and milling machines

- Internet of Things
 - Tweeting intrusion detection
- Home automation
 - o Ninja Cloud
- Wearables
 - Wearable Dog Gear
- Sensor platforms
 - o High-altitude camera
 - Descriptive camera
 - The Sense of Things

Conclusion

The BeagleBone Black is an affordable single-board credit card sized computer. It has a powerful ARM Cortex A8 CPU, a full Linux OS, and allows for easy access to external sensors.

It is an open platform targeting students and hobbyists who want a hardware focussed alternative to the Raspberry PI.

Questions?

