National and Regional Carbon-Pricing Instruments

Jacob Bradt Section 9 ECON 1661 / API-135: Spring 2022

April 1, 2022

Announcements

- Office hours today from 3:00-5:00pm EDT
- Problem set #4 due Wednesday, April 13 at 12:00pm EDT
- Midterm grades and solutions posted

Outline

Review: Theory and Intuition behind Carbon Pricing

Designing Carbon Pricing Policies

Carbon Pricing, Market Failures, and Complementary Policies

Distributional Impacts of Carbon Pricing

Outline

Review: Theory and Intuition behind Carbon Pricing

Designing Carbon Pricing Policies

Carbon Pricing, Market Failures, and Complementary Policies

Distributional Impacts of Carbon Pricing

Review: National carbon tax

- Upstream tax on carbon-content of coal, natural gas & petroleum
 - Places a tax on the carbon content of fossil fuels
- Tax automatically generates revenues, which can be used for various purposes
- Certainty in compliance cost (carbon price), but uncertainty in total emissions abatement
- Cost-minimizing control where MC = tax

Review: National carbon tax

- Upstream tax on carbon-content of coal, natural gas & petroleum
 - Places a tax on the carbon content of fossil fuels
- Tax automatically generates revenues, which can be used for various purposes
- Certainty in compliance cost (carbon price), but uncertainty in total emissions abatement
- Cost-minimizing control where MC = tax

Review: National carbon tax

- Upstream tax on carbon-content of coal, natural gas & petroleum
 - Places a tax on the carbon content of fossil fuels
- Tax automatically generates revenues, which can be used for various purposes
- Certainty in compliance cost (carbon price), but uncertainty in total emissions abatement
- Cost-minimizing control where MC = tax

Review: National cap-and-trade

- Upstream regulation on carbon-content of coal, natural gas, & petroleum
 - Allocates allowances for the carbon content of fossil fuels
 - Supply and demand for allowances generates a price
- If allocation occurs via auction, it can also generate revenues
- Certainty in quantity of emissions abatement, but uncertainty in costs
- Cost-minimizing control where MC = equilibrium permit price

Review: National cap-and-trade

- Upstream regulation on carbon-content of coal, natural gas, & petroleum
 - Allocates allowances for the carbon content of fossil fuels
 - Supply and demand for allowances generates a price
- If allocation occurs via auction, it can also generate revenues
- Certainty in quantity of emissions abatement, but uncertainty in costs
- Cost-minimizing control where MC = equilibrium permit price

Review: National cap-and-trade

- Upstream regulation on carbon-content of coal, natural gas, & petroleum
 - Allocates allowances for the carbon content of fossil fuels
 - Supply and demand for allowances generates a price
- If allocation occurs via auction, it can also generate revenues
- Certainty in quantity of emissions abatement, but uncertainty in costs
- Cost-minimizing control where MC = equilibrium permit price

Outline

Review: Theory and Intuition behind Carbon Pricing

Designing Carbon Pricing Policies

Carbon Pricing, Market Failures, and Complementary Policies

Distributional Impacts of Carbon Pricing

Designing carbon pricing policies

- If well-designed, a carbon tax and a cap-and-trade program can be quite similar in terms of their impacts
- Both encourage least-cost abatement for given abatement objective ("first-best" solution)
- ⇒ Specific design of carbon taxes and cap-and-trade programs is more consequential than the chosice between the two instruments

Hybrid policy instruments

- Definition: a hybrid or "safety-valve" policy instrument refers to a combined cap-and-trade and tax system
- Price ceiling: government can announce in advance that it is willing to sell (an unlimited number of) additional allowances at a specific price (the "trigger" price)
- Price floor: government can announce it will buy allowances at a specific price or set a minimum allowance price at auctions
- Combination of a price ceiling and price floor creates a "price collar" \Longrightarrow limits the volatility of permit prices
 - As the difference between the price ceiling and price floor goes to zero, the cap-and-trade system becomes a tax

Policy design choices

- Choice of instrument: tax, cap-and-trade, or hybrid
- Point of regulation: upstream vs. downstream
- Scope of regulation: across geographies, industries, GHG's
- Allocation of policy rents: allocation of permits, use of revenues
- Price volatility: price collar, banking/borrowing

Carbon pricing in practice

- Through 2020: 61 carbon pricing initiatives implemented/scheduled
- 31 ETS, 30 carbon taxes
- 46 national, 32 subnational jurisdictions
- Covers 22% of global GHG emissions (12 GtCO₂e)

Outline

Review: Theory and Intuition behind Carbon Pricing

Designing Carbon Pricing Policies

Carbon Pricing, Market Failures, and Complementary Policies

Distributional Impacts of Carbon Pricing

- Result is under-investment in R&D relative to what might be socially optimal
 - Will depend on the size of information spillovers across firms

- Result is under-investment in R&D relative to what might be socially optimal
 - Will depend on the size of information spillovers across firms
- BUT: incentives for technological innovation still stronger with carbon-pricing than command-and-control

Example problem: Carbon-pricing and innovation incentives (1/3)

The EPA wants to reduce emissions of CO_2 and is deciding between an equivalent performance standard and carbon tax. First, how can we design a performance standard and a carbon tax to be equivalent in terms of the level of aggregate abatement achieved?

Example problem: Carbon-pricing and innovation incentives (1/3)

The EPA wants to reduce emissions of CO_2 and is deciding between an equivalent performance standard and carbon tax. First, how can we design a performance standard and a carbon tax to be equivalent in terms of the level of aggregate abatement achieved?

- Pollution taxes require firms to pay a tax on each unit of pollution emitted \Rightarrow firms will abate up to the point where MC = tax
 - Key then is to set the tax equal to firms' marginal costs such that the total of individual firms' abatement sums to the aggregate target

Example problem: Carbon-pricing and innovation incentives (1/3)

The EPA wants to reduce emissions of CO_2 and is deciding between an equivalent performance standard and carbon tax. First, how can we design a performance standard and a carbon tax to be equivalent in terms of the level of aggregate abatement achieved?

- Pollution taxes require firms to pay a tax on each unit of pollution emitted \Rightarrow firms will abate up to the point where MC = tax
 - Key then is to set the tax equal to firms' marginal costs such that the total of individual firms' abatement sums to the aggregate target
- There are several ways to design the performance standard:
 - If all we care abaout is equality in terms of aggregate emissions abatement, we can set a uniform standard across all firms that sums to our aggregate abatement target
 - To get the identical outcome of our tax, we can assign each firm a specific abatement level such that marginal costs are equal across firms

Example problem: Carbon-pricing and innovation incentives (2/3)

Under a performance standard, the EPA requires Stavins Enterprises to abate 5 units. The firm has the following marginal cost curves:

$$MC_0 = Q$$

$$MC_1 = 0.5Q$$

where MC_0 and MC_1 are the firm's abatement costs w/o and w/ technological innovation. What are the cost savings from innovation under the standard?

- MC_1 is everywhere below MC_0
- q remains unchanged, but for each marginal unit of abatement, the incremental cost is less

Example problem: Carbon-pricing and innovation incentives (2/3)

Under a performance standard, the EPA requires Stavins Enterprises to abate 5 units. The firm has the following marginal cost curves:

$$MC_0 = Q$$

$$MC_1 = 0.5Q$$

where MC_0 and MC_1 are the firm's abatement costs w/o and w/ technological innovation. What are the cost savings from innovation under the standard?

- MC_1 is everywhere below MC_0
- q remains unchanged, but for each marginal unit of abatement, the incremental cost is less
- Area between MC_0 and MC_1 represents cost savings: $\frac{1}{2}(2.5)(5) = 6.25$

Example problem: Carbon-pricing and innovation incentives (3/3)

The EPA only knows MC_0 and sets a tax that results in 5 units of abatement based on this knowledge. What are the cost savings to the firm from innovation under the tax?

Example problem: Carbon-pricing and innovation incentives (3/3)

The EPA only knows MC_0 and sets a tax that results in 5 units of abatement based on this knowledge. What are the cost savings to the firm from innovation under the tax?

- With innovation, $q \uparrow b/c$ will abate until $MC_1 = \tau$

Example problem: Carbon-pricing and innovation incentives (3/3)

The EPA only knows MC_0 and sets a tax that results in 5 units of abatement based on this knowledge. What are the cost savings to the firm from innovation under the tax?

- With innovation, $q\uparrow$ b/c will abate until $MC_1= au$
- Abatement done w/o innovation is now cheaper ⇒ save area A
- Tax bill also ↓, b/c it is cheaper w/innovation to abate some of the firm's emissions w/o innovation ⇒ save area B

-
$$A + B = \frac{1}{2}(2.5)(5) + \frac{1}{2}(2.5)(5) = 12.5$$

Outline

Review: Theory and Intuition behind Carbon Pricing

Designing Carbon Pricing Policies

Carbon Pricing, Market Failures, and Complementary Policies

Distributional Impacts of Carbon Pricing

Prior wisdom about distributional impacts: Regressive

CARBON INTENSITY BY U.S. STATE

Prior wisdom about distributional impacts: Regressive

AVERAGE MONTHLY EXPENDITURES

furniture &

equipment

Across all households at less than 200% of the federal poverty line and with at least one child, 2015-2019 \$200 \$150 \$100 \$50 Alcohol Diapers Tovs Books Education Childcare Children's Cigarettes Cable Healthcare Cell

Clothing & Tobacco

Equity-efficiency trade-off of a US carbon tax: Goulder et al. $(2019)^1$

- CGE model with two types of impacts:
 - "Source side:" how the tax affects wage, capital, and transfer incomes
 - "Use side:" how the tax alters the prices of goods and services
- Find that absent revenue recycling:
 - Source side impacts are progressive
 - Use side impacts are regressive

¹Goulder, L.H., M.A.C. Hafstead, G. Kim and X. Long. 2019. "Impacts of a carbon tax across US household income groups: What are the equity-efficiency trade-offs." *Journal of Public Economics*, 175: 44-64.

What about the revenues?

- The overall distributional impact (and cost) of a carbon-pricing policy will depend on what is done with the tax (or auction) revenues
- Many of the *direct* effects of a carbon price are likely regressive
- Options for revenue use:
 - Cut other distortionary taxes (e.g., income taxes)
 - Lump-sum rebates to households
 - Invest in energy efficiency and/or R&D
 - Compensate workers/regions disproportionately impacted
- Key question: can we use revenues to make carbon pricing more equitable or politically acceptable?

What about the revenues?

Revenue use	Possible mechanisms	Rationale
Household rebates	Periodic checks; income tax	Returns payments to house-
	rebates	holds; highly progressive
Labor income tax	Reduced payroll tax rates; re-	Returns payments to workers;
reduction	duced personal income tax	increases incentives to work
	rates on wage income	and develop skills
Capital income tax	Reduced corporate income tax	Returns payments to capital
reduction	rates; reduced personal in-	owners; increases incentives
	come tax rates on capital in-	to invest and work
	come	
Rebates to regu-	Freely allocated allowances;	Returns payments to busi-
lated entities	tax exemptions	nesses

Equity-efficiency trade-off of a US carbon tax: Goulder et al. (2019)

- Use their model to study the effect of different revenue recycling programs
- Shows that recycling does matter: impacts are sensitive to the way in which revenues are recycled
- Caveats: only one sociodemographic measure (income); more granular differences; variation across settings

Concluding thoughts

- With 60+ carbon pricing initiatives implemented or scheduled, there is substantial variation in design in practice
- Key take-aways:
 - Design decisions more important than given instrument choice
 - Carbon-pricing as necessary but not sufficient
 - In a holistic sense, distributional impacts of carbon-pricing may not be as substantial as we thought
- Next week: while the important underlying economic principles hold in all settings, many of what are ultimately the most important political factors are context-specific:
 - → Leakage/competitiveness concerns
 - → Distributional concerns w/ correlated air pollutants
 - → Political economy considerations