Семинар 13. Сингулярное разложение матрицы эксперимента и спектральное разложении матрицы ковариции

Table of Contents

Семинар 13. Сингулярное разложение матрицы эксперимента и спектральное разложении матрицы	
ковариции	1
Немного теорвера и матстата	1
Матрица ковариации:	.2
Спектральное разложение матрицы ковариации <=> сингулярное разложение матрицы измерений	i: . 5
Пример корреляции при бросании двух монеток	5
Примеры использования	_
Пример использования - детерминированные данные: колебание грузика на пружине и два датчика	8
Пример использования: "случаные" данные1	_
Генерация исходных данных по трем свойствам (два из них - коррелированы)	10
Метод анализа главный компонент позволяет установить насколько коррелированы исходные данные, а также дает линейное преобразование исходных данных в "новые", в которых базис соответствует	
собственным векторам матрицы ковариации2	
Питература	<u></u> 21

Немного теорвера и матстата

У нас есть случаная переменная, которая может принимать некоторый (дискретный) набор возможных значений:

$$x \sim x_1 \dots x_N$$

Вероятность переменной иметь некоторое определенноей значение из этого дискретного набора характеризуется набором вероятностей:

$$P \sim p_1 \dots p_N$$
, $\Sigma_i p_i = 1$

Для некоторой случайно переменной, которая получается из некоторого распределения P, математическое ожидание будет:

$$m = \mathbb{E}(x \sim P) = \sum_{i} p_i x_i$$

Среднее значение результатов набора из M испытаний:

$$\mu = rac{\sum_{j=1}^{M} x_j}{M}$$
 - применяется для экспериментальной оценки мат. ожидания.

Разброс данных характеризуется вариацией:

$$\nu = \mathbb{E}[(x-m)^2] = \Sigma_i p_i (x_i - m)^2$$

Для экспериментальной оценки вариации:

$$\sigma = \frac{\sum_{j=1}^{M} (x_j - \mu)^2}{M - 1}$$

Если случаная величина характеризуется векторов, то есть состояний несколько, например, $\begin{bmatrix} x \\ y \end{bmatrix}$, каждая из компонент идет из своего распределения, то :

$$\sigma_x = \frac{\sum_{j=1}^{M} (x_j - \mu_x)^2}{M - 1}, \sigma_y = \frac{\sum_{j=1}^{M} (y_j - \mu_y)^2}{M - 1}$$

Если есть две переменных, то появляется ковариация, которая характеризуется совместной вероятностью события с вектором состояний $\begin{bmatrix} x_i \\ v_i \end{bmatrix}$.

$$\nu = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \sum_{ik} p_{ik}(x_i - m_x)(y_k - m_y)$$

 p_{ik} - совместная вероятность

Матрица ковариации:

 $\stackrel{
ightarrow}{X_1...X_m...X_M}$ - вектора результатов испытания (определения N свойств) "образца" размером $N \times 1$ каждый (вектора состояния некоторого случайного процесса).

M - число испытаний, N - число свойств (N < M)

 $\stackrel{
ightarrow}{\mu} = \mu_1...\mu_n...\mu_N$ - средние значения по всем испытаниям для каждого из свойств: $\mu_n = \frac{\sum_{i=1}^M x_{ni}}{M}$

```
clearvars
x1 = sym("x1",[2 1])
```

x1 =

 $\begin{pmatrix} x_{11} \\ x_{12} \end{pmatrix}$

$$x2 = sym("x2",[2 1])$$

x2 =

 $\begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix}$

$$x3 = sym("x3",[2 1])$$

x3 =

 $\begin{pmatrix} x_{31} \\ x_{32} \end{pmatrix}$

$$mu = sym("mu",[2,1])$$

mu =

$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

% три измерения двух свойств N = 2, M = 3

Матрица матрица испытаний $[N \times M]$:

 $A = [\overrightarrow{X_1} - \overrightarrow{\mu}, ..., \overrightarrow{X_m} - \overrightarrow{\mu}, ..., \overrightarrow{X_N} - \overrightarrow{\mu}]$ - каждый столбец - вектор результатов измерений (вектор состояния), смещенный на среднее значение ([...] - операция конкатенации)

$$A = [x1-mu, x2-mu, x3-mu]$$

A =

$$\begin{pmatrix} x_{11} - \mu_1 & x_{21} - \mu_1 & x_{31} - \mu_1 \\ x_{12} - \mu_2 & x_{22} - \mu_2 & x_{32} - \mu_2 \end{pmatrix}$$

Экспериментальная оценка матрицы ковариации (симметричная матрица размером $N \times N$):

$$C = \frac{AA^T}{(M-1)} \tag{3}$$

C =

$$\begin{pmatrix} \frac{(\mu_1 - x_{11})^2}{2} + \frac{(\mu_1 - x_{21})^2}{2} + \frac{(\mu_1 - x_{31})^2}{2} & \sigma_1 \\ \sigma_1 & \frac{(\mu_2 - x_{12})^2}{2} + \frac{(\mu_2 - x_{22})^2}{2} + \frac{(\mu_2 - x_{32})^2}{2} \end{pmatrix}$$

where

$$\sigma_1 = \frac{(\mu_1 - x_{11}) (\mu_2 - x_{12})}{2} + \frac{(\mu_1 - x_{21}) (\mu_2 - x_{22})}{2} + \frac{(\mu_1 - x_{31}) (\mu_2 - x_{32})}{2}$$

Диагональные элементы матрицы C_{nn} - коэффициенты вариации (n=1...N), для n - го свойства :

$$C_{nn} = \frac{\sum_{i=1}^{M} (x_{ni} - \mu_n)^2}{M - 1}$$

Если из диагональных элементов извлечь корень и поделить на количество экспериментов L, то получим стандартное отклонение среднего арифметического.

Элементы матрицы C, стоящие вне диагонали, - коэффициенты ковариации n - го и m - го свойств:

$$C_{nk} = \frac{\sum_{i=1}^{M} [(x_{ni} - \mu_n)(x_{ki} - \mu_k)]}{M - 1} (n, k = 1...N, n \neq k)$$

Эти формулы понятнее, если посмотреть не на матрицу A, на транспонированную матрицу $B=A^T$, в матрице B, каждый столбец $(\stackrel{\rightarrow}{b}_n)$, размером $[M\times 1]$ будет соответствовать какому-то свойству, измеренному M раз. Тогда вектор средних $\stackrel{\rightarrow}{\mu}$ - это вектор средних значений по каждому из столбцов. То есть, хотя табличка данных одна и та же в зависимости от того как на нее смотреть ее интерпретация различна:

матрица A - это набор испытаний, в каждом из которых был определен некоторый набор свойств, матрица $B = A^T$ - это набор свойств, для каждого из которых было выполнено некоторое число испытаний.

B = transpose(A)

B =

$$\begin{pmatrix} x_{11} - \mu_1 & x_{12} - \mu_2 \\ x_{21} - \mu_1 & x_{22} - \mu_2 \\ x_{31} - \mu_1 & x_{32} - \mu_2 \end{pmatrix}$$

$$b1 = B(:,1)$$

b1 =

$$\begin{pmatrix} x_{11} - \mu_1 \\ x_{21} - \mu_1 \\ x_{31} - \mu_1 \end{pmatrix}$$

$$b2 = B(:,2)$$

b2 =

$$(x_{12} - \mu_2)$$

 $x_{22} - \mu_2$
 $(x_{32} - \mu_2)$

В соответствии с (3), матрица ковариации через матрицу свойств B выражается в виде:

$$C = AA^{T}/(M-1) = B^{T}B/(M-1)$$
(4)

То есть, диагональные элементы матрицы ковариации (вариация) $C_{nn} = \frac{\stackrel{\rightarrow}{b_n} \stackrel{\rightarrow}{b_n}}{M-1}$ - это просто скалярное произведение столбца матрицы B самого на себя, а элементы, стоящие вне диагонали - это скалярные

произведения различных столбцов матрицы B: $C_{nk} = \frac{\overrightarrow{b}_n \overrightarrow{b}_k}{M-1}$ скалярное произведение двух векторов характеризует то насколько один вектор "отстоит" от другого, по сути это проекция одного вектора на

характеризует то насколько один вектор "отстоит" от другого, по сути это проекция одного вектора на другой. Если оба вектора единичные по амплитуде, то это косинус угла между ними. Если скалярное произведение равно нулю, то вектора сонаправлены, то есть максимально "зависимы".

$$C_b = transpose(B)*B$$

$$C_{b} = \begin{pmatrix} (\mu_{1} - x_{11})^{2} + (\mu_{1} - x_{21})^{2} + (\mu_{1} - x_{31})^{2} & \sigma_{1} \\ \sigma_{1} & (\mu_{2} - x_{12})^{2} + (\mu_{2} - x_{22})^{2} + (\mu_{2} - x_{32})^{2} \end{pmatrix}$$

where

$$\sigma_1 = (\mu_1 - x_{11}) (\mu_2 - x_{12}) + (\mu_1 - x_{21}) (\mu_2 - x_{22}) + (\mu_1 - x_{31}) (\mu_2 - x_{32})$$

Спектральное разложение матрицы ковариации <=> сингулярное разложение матрицы измерений:

Пусть матрица измерений A имеет следующее сингулярное разложение:

$$A = U\Sigma V^T$$

Тогда матрица ковариации может быть представлена в виде:

$$C = AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = (U\Sigma V^T)(V\Sigma U^T) = U\Sigma^2 U^T$$
(5)

$$C = U\Sigma^2 U^T = U\Sigma^2 U^{-1}$$

 $C = P\Lambda P^{-1}$ - спектральное разложение матрицы ковариации

Столбцы матрицы собственных векторов не ортонормированы, однако, для симметричной положительно определенной матрицы C, которой является матрица ковариации, они ортогональны, то есть: $P^{-1} = P^T$, таким образом, левые сингулярные вектора матрицы испытаний есть нормированные собственные вектора матрицы ковариации, а собственные значения - квадраты сингулярных значений.

Пример корреляции при бросании двух монеток.

Испытание - однократное бросание двух монеток (вектор состояния системы из двух монеток -1/2 - решка, +1/2 - орел).

Свойство - состояние одной монетки.

Если монетки некоррелированы, то в каждом испытании состояние каждой из монет не зависит от состояния другой.

Монетки максимально коррелированы, когда одна приклеена к другой.:

```
clearvars
points_number = 500; % число бросаний
% монетки независимы друг от друга
first_coin = (rand(points_number,1)>=0.5) - 0.5; % +-1/2 орел/решка, среднее - ноль
second_coin = (rand(points_number,1)>=0.5) -0.5;
disp("Матрица испытаний для независимых монет: ")
Матрица испытаний для независимых монет:
A = transpose([first_coin-mean(first_coin),second_coin-mean(second_coin)]) %
матрица испытаний
A = 2 \times 500
   -0.5240
           -0.5240
                     0.4760
                              0.4760
                                       0.4760
                                                 0.4760
                                                         -0.5240
                                                                   0.4760 ...
   0.5180
          -0.4820
                             -0.4820
                     0.5180
                                      -0.4820
                                               -0.4820
                                                         -0.4820
                                                                  -0.4820
disp("Матрица свойств: ")
Матрица свойств:
В = А' % матрица свойтсв
B = 500 \times 2
  -0.5240
          0.5180
  -0.5240
          -0.4820
   0.4760
           0.5180
          -0.4820
   0.4760
   0.4760
           -0.4820
   0.4760
           -0.4820
   -0.5240
           -0.4820
   0.4760
           -0.4820
   -0.5240
           -0.4820
   0.4760
           -0.4820
ncorrelated coins covariance matrix =
transpose([first_coin, second_coin])*[first_coin, second_coin]/(points_number-1);
disp("Монетки бросаются независимо друг от друга:")
Монетки бросаются независимо друг от друга:
disp(ncorrelated_coins_covariance_matrix)
   0.2505
            0.0030
   0.0030
            0.2505
disp("Матрица ковариации близка к диагональной - максимально несингулярна, колонки
полностью независимы")
Матрица ковариации близка к диагональной - максимально несингулярна, колонки полностью независимы
```

```
% монетки приклеены друг к другу одноименными концами
first_coin_dependent = (rand(points_number,1)>=0.5) - 0.5;
first_coin_dependent = first_coin_dependent-mean(first_coin_dependent);
disp("Матрица испытаний для склееных монет: ")
```

```
Acor=transpose([first_coin_dependent,first_coin_dependent]) % матрица испытаний
Acor = 2 \times 500
   0.4940
           -0.5060
                      0.4940
                                                             0.4940
                                                                     -0.5060 ...
                               -0.5060
                                          0.4940
                                                   0.4940
   0.4940
           -0.5060
                      0.4940
                               -0.5060
                                                             0.4940
                                          0.4940
                                                   0.4940
                                                                     -0.5060
```

correlated_coins_covariance_matrix =
transpose([first_coin_dependent,first_coin_dependent])*[first_coin_dependent,first_c
oin_dependent]/(points_number-1);
disp("Монетки склеены одноименными концами, матрица ковариации:")

Монетки склеены одноименными концами, матрица ковариации:

```
disp(correlated_coins_covariance_matrix)
```

```
0.2505 0.2505
0.2505 0.2505
```

disp("Матрица ковариации сингулярна, так как колонки одинаковы, то есть линейно зависимы")

Матрица ковариации сингулярна, так как колонки одинаковы, то есть линейно зависимы

```
disp("Сингулярное разложение матрицы ковариации для независимых монеток")
```

Сингулярное разложение матрицы ковариации для независимых монеток

```
[U,S] = svd(A)

U = 2×2

0.6940 -0.7200
```

```
disp("Спектральное разложение матрицы ковариации для независимых монеток")
```

Спектральное разложение матрицы ковариации для независимых монеток

```
[Q,L] = eig(A*A')
```

```
disp("Сингулярное разложение матрицы ковариации для склееных монеток")
```

Сингулярное разложение матрицы ковариации для склееных монеток

Спектральное разложение матрицы ковариации для склееных монеток

disp("Спектральное разложение матрицы ковариации для склееных монеток")

```
[Q,L] = eig(Acor*Acor')

Q = 2×2
   -0.7071   0.7071
   0.7071   0.7071
L = 2×2
   0   0
   0  249.9640
```

Примеры использования

Пример использования - детерминированные данные: колебание грузика на пружине и два датчика


```
clearvars
t = linspace(-pi,pi,100) % фаза движения
```

 $t = 1 \times 100$

```
-2.8243
  -3.1416
           -3.0781
                    -3.0147
                             -2.9512 -2.8877
                                                         -2.7608
                                                                    -2.6973 ...
X = cos(t) % закон движения грузика на пружине
X = 1 \times 100
  -1.0000
            -0.9980
                     -0.9920
                               -0.9819
                                        -0.9679
                                                 -0.9501
                                                           -0.9284
                                                                    -0.9029 ...
phi = 30; % угол ориентации камер относительно оси колебания грузика
c1 = X*cosd(phi); % показания камеры 1
c2=X*sind(phi); % показания камеры 2
A=[c1;c2] % матрица эксперимента
A = 2 \times 100
   -0.8660
            -0.8643
                     -0.8591
                               -0.8504
                                        -0.8383
                                                 -0.8228
                                                           -0.8040
                                                                    -0.7820 ...
            -0.4990
   -0.5000
                     -0.4960
                              -0.4910
                                        -0.4840
                                                 -0.4750
                                                           -0.4642
                                                                    -0.4515
scatter(c2,c1);
xlabel("Показания первого датчика")
ylabel("Показания второго датчика")
```


[V,S,U] = svd(A) % считаем сингулярное разложение $V = 2 \times 2$ 0.8660 0.5000 -0.8660 0.5000 $S = 2 \times 100$ 7.1063 0 0 0 0 0.0000 0 $U = 100 \times 100$ -0.1407 0.9839 0.0059 0.0197 -0.0036 -0.0173 -0.0002 -0.0182 ...

```
-0.1404
       -0.0174 -0.1466 -0.1575 -0.1347 -0.1200 -0.1321 -0.1124
-0.1396 -0.0269 0.9817 -0.0183 -0.0178 -0.0174 -0.0171 -0.0165
                       0.9799 -0.0193 -0.0186 -0.0186 -0.0177
-0.1382 -0.0407 -0.0200
       -0.0168 -0.0167 -0.0165
                                0.9837 -0.0160 -0.0156 -0.0152
-0.1362
               -0.0146 -0.0142 -0.0143
-0.1337
       -0.0025
                                         0.9858 -0.0137
                                                         -0.0135
       -0.0194 -0.0164 -0.0163 -0.0160 -0.0157
                                                 0.9847
-0.1306
                                                         -0.0149
                                -0.0134
                                        -0.0133 -0.0128
       -0.0006 -0.0136 -0.0133
-0.1271
                                                         0.9873
                                                 -0.0151
-0.1230
       -0.0243 -0.0162 -0.0162 -0.0158 -0.0154
                                                         -0.0146
-0.1184 -0.0043 -0.0132 -0.0129 -0.0129 -0.0128 -0.0124
                                                         -0.0122
```

% спектр сингулярных значений состоит из одного значения, это значит, что % нам достаточно одного датчика! cosd(phi) % косинус угла ориентации датчиков

ans = 0.8660

```
sind(phi) % синус угла ориентации датчиков
```

ans = 0.5000

```
V2 = [cosd(phi) sind(phi);...
sind(phi) -cosd(phi)] % матрица вращения на угол фи в двумерном пространстве
```

```
V2 = 2×2
0.8660 0.5000
0.5000 -0.8660
```

```
% Таким образом, V - матрица поворота rad2deg(subspace(A,[1;0])) % угол между подпространством матрицы измерений единичным вектором (вектор X рисунке), так как матрица
```

ans = 30.0000

```
% А - сингулярна (измерения полностью коррелированы), ее подпространство
% состоит из одного вектора, поэтому углом между поодпространством ее
% столбцов и вектором будет угол фи
disp("Матрица ковариации:")
```

Матрица ковариации:

0.2209

```
C = A*A'/(numel(t)-1)

C = 2×2
    0.3826    0.2209
```

Пример использования: "случаные" данные

0.1275

Генерация исходных данных по трем свойствам (два из них - коррелированы)

```
clearvars
rand_fun = "randn"; % выбираем статистику из которой набираются "экспериментальные
точки" randn - Гауссово распределение, rand - равномерное распределение от 0 до 1
rand_fun_handle = str2func(rand_fun); % форма распределения
points_number = 90; % число экспериментальных точек
```

```
X = 60 + rand_fun_handle(points_number,1); % генерим массив случайных точек
(результаты измерения первого параметра)
Y = 1.26+ 0.1*rand_fun_handle(points_number,1); % генерим массив случайных точек
(результаты измерения второго параметра) полностью случайны, не зависят от X
alfa_cor =0.75;
Ycor = 3 + (alfa_cor*X + (1-alfa_cor)*rand_fun_handle(points_number,1));% Ycor -
коррелирует с X
disp("Матрица свойств:")
```

Матрица свойств:

```
t1 = table(X,Y,Ycor,'VariableNames',["Прочность" "Теплопроводность" "Удельная поверхность"]);
disp(t1)
```

Прочность	Теплопроводность	Удельная поверхность
58.356	1.2349	46.696
60.48	1.5433	48.401
59.324	1.3219	48.062
60.844	1.2112	48.625
60.061	1.0559	47.72
58.85	1.2157	46.858
59.683	1.4396	48.475
59.969	1.2386	47.883
58.798	1.2389	47.181
61.537	0.97752	49.155
60.71	0.98332	48.459
59.591	1.1642	47.84
59.772	1.3748	47.786
60.166	1.0364	48.028
58.925	1.2973	46.993
59.669	1.3501	47.602
61.956	1.5059	49.285
61.068	1.2795	48.572
59.578	1.1383	47.633
59.056	1.1298	47.443
60.525	1.2397	48.409
61.22	1.4186	48.796
58.818	1.2081	47.177
58.823	1.4112	47.409
58.975	1.3574	47.58
59.855	1.316	48.228
60.938	1.357	48.281
61.109	1.3471	48.545
58.804	1.2873	47.224
60.025	1.1381	48.21
58.615	1.2219	46.363
59.912	1.3502	47.774
59.642	1.4155	47.681
60.184	1.1597	48.088
59.716	1.3461	47.436
60.832	1.2033	48.934
59.685	1.3291	47.432
59.668	1.1342	47.565
60.067	1.3126	48.056
60.35	1.1793	48.527
60.507	1.2283	48.557
58.662	1.2549	46.889
58.946	1.1224	47.124

60.239	1.2045	47.833
59.901	1.2047	47.799
59.04	1.2378	47.252
	1.3097	
59.234		47.072
60.25	1.4787	48.144
61.086	1.2797	48.585
59.194	1.1763	47.566
60.741	1.126	48.456
59.011	1.3332	47.069
60.616	1.2042	48.652
57.293	1.2229	45.842
59.981	1.1925	48.394
61.752	1.1732	49.446
60.211	1.3143	48.74
59.64	1.4104	47.944
59.007	1.1843	47.144
60.817	1.3675	48.378
59.861	1.1237	48.123
59.625	1.3642	47.816
60.434	1.2165	47.926
60.394	1.3209	48.029
61.482	1.3088	49.122
59.946	1.3055	47.821
60.076	1.2505	47.982
60.758	1.2516	48.535
	1.1405	
58.906		46.717
58.747	1.2851	47.055
60.356	1.3652	47.908
60.042	1.2794	47.967
62.225	1.1763	49.815
59.179	1.3419	47.086
60.301	1.3519	48.605
58.69	1.4384	47.097
60.613	1.3684	48.172
59.017	1.4368	47.341
58.902	1.4058	46.957
61.584	1.1936	48.89
61.117	1.124	48.86
60.244	1.0802	48.69
60.265	1.2798	48.372
61.656	1.0951	49.292
59.755	1.3323	48.017
59.386	1.3168	47.415
59.113	1.2006	47.362
59.745	1.2196	48.16
58.343	0.95449	46.743
59.381	1.1455	47.507

disp("Матрица испытаний:")

Матрица испытаний:

```
disp([X';Y';Ycor'])
58.3560 60.4796 59.3239 60.8438 60.0607 58.8500 59.6832 59.9688 58.7983 61.5371 60.7104
```

1.2349 1.5433 1.3219 1.2112 1.0559 1.2157 1.4396 1.2386 1.2389 0.9775 0.9833 46.6964 48.4006 48.0615 48.6250 47.7197 46.8584 48.4747 47.8833 47.1807 49.1545 48.4590

59

1

47

% СЧИТАЕМ СРЕДНИЕ И НОРМИРУЕМ

Xn = (X-mean(X)); % смещаем среднее для первого свойства Yn = (Y - mean(Y));% смещаем среднее для второго свойсва

```
Ycorn = ((Ycor - mean(Ycor))); % нормированные данные
% вначале рассмотрим матрицы 2х2
A2 = transpose([Xn,Yn]); % матрица испытаний для некоррелированных параметров (два
параметра)
A2cor = transpose([Xn,Ycorn]); % матрица испытаний для коррелированных параметров
(два параметра)
A3 = transpose([Xn,Yn,Ycorn]); % матрица испытаний для всех трех свойств
covMATuncor = A2*transpose(A2)/(points_number-1); % матрица ковариации для
некоррелированных данных
covMATcor = A2cor*transpose(A2cor)/(points_number-1); матрица ковариации для
коррелированных данных
covMAT3 = A3*transpose(A3)/(points_number-1);
disp("Матрица ковариации независимых друг от друга данных:")
Матрица ковариации независимых друг от друга данных:
disp(covMATuncor)
           -0.0041
   0.8660
  -0.0041
           0.0138
disp("Матрица ковариации взаимосвязанных данных Y="+alfa cor+"*X +"+(1-alfa cor)
+"*rand")
Матрица ковариации взаимосвязанных данных Y=0.75*X +0.25*rand
disp(covMATcor)
   0.8660
            0.6488
   0.6488
            0.5473
disp("Матрица ковариации для трех параметров {X=rand,rand,Y="+alfa_cor+"*X +"+(1-
alfa_cor)+"*rand}")
Матрица ковариации для трех параметров {X=rand,rand,Y=0.75*X +0.25*rand}
disp(covMAT3)
   0.8660
           -0.0041
                    0.6488
  -0.0041
          0.0138
                  -0.0033
   0.6488
           -0.0033
                    0.5473
scatter(t1.("Прочность"),t1.("Теплопроводность"));
```

xlabel(t1.Properties.VariableNames{1});
ylabel(t1.Properties.VariableNames{2});

title("Независимые параметры")

grid on


```
scatter(t1.("Прочность"),t1.("Удельная поверхность"));
xlabel(t1.Properties.VariableNames{1});
ylabel(t1.Properties.VariableNames{3});
title("Взаимосвязанные параметры")
grid on
```


Собственные значения и собственные вектора матрицы ковариации:

```
[Q,L] = eig(covMATcor, 'vector')
Q = 2 \times 2
   0.6170
            -0.7869
            -0.6170
   -0.7869
L = 2 \times 1
   0.0385
    1.3747
ax = draw_vector([], "Scattered data", "", "point", A2cor(1,:), A2cor(2,:));
fig13
draw_vector(ax, "Собственные вектора матрицы ковариации", "", "vector", Q(:,1), Q(:,2))
ans =
 Axes (Собственные вектора матрицы ковариации) with properties:
            XLim: [-1 1]
            YLim: [-1 1]
          XScale: 'linear'
          YScale: 'linear'
   GridLineStyle: '-'
        Position: [0.1300 0.1100 0.7750 0.8150]
           Units: 'normalized'
 Show all properties
[U,S,V] = svd(A2cor) % SVD разложение
```

```
U = 2 \times 2
   0.7869
             0.6170
   0.6170
            -0.7869
S = 2 \times 90
                                                                           0 · · ·
  11.0612
                           0
                                     0
                                              0
                                                        0
             1.8517
                           0
                                     0
                                              0
                                                        0
                                                                 0
                                                                           0
V = 90 \times 90
            -0.0004
                      -0.0776
                                0.1056
                                         0.0218
                                                  -0.1170
                                                            -0.0391
                                                                      0.0073 · · ·
   -0.1792
   0.0670
            -0.0170
                     -0.2485
                              -0.0085
                                         0.1309
                                                   0.1162
                                                            -0.3115
                                                                      0.0318
            -0.2580
                                                           -0.0796
   -0.0341
                      0.9332
                                0.0054
                                         0.0338
                                                   0.0204
                                                                      0.0084
             0.0090
                      0.0063
                                0.9905
                                       -0.0016
                                                   0.0108
   0.1054
                                                            0.0027
                                                                     -0.0006
   -0.0008
             0.1328
                      0.0337
                               -0.0011
                                         0.9827
                                                  -0.0125
                                                            0.0410
                                                                     -0.0043
                      0.0191
   -0.1350
             0.0954
                                0.0112
                                       -0.0119
                                                   0.9762
                                                            0.0296
                                                                     -0.0027
           -0.3139 -0.0791
                                0.0015
                                         0.0409
   0.0145
                                                   0.0310
                                                             0.9031
                                                                      0.0100
   0.0018
             0.0326
                    0.0084
                             -0.0005
                                        -0.0043
                                                  -0.0029
                                                             0.0101
                                                                      0.9989
   -0.1207
           -0.0588
                    -0.0195
                                0.0113
                                         0.0082
                                                  -0.0078
                                                            -0.0180
                                                                      0.0022
   0.1843
             0.0150
                      0.0108
                               -0.0166
                                        -0.0027
                                                   0.0189
                                                             0.0044
                                                                     -0.0010
I = ones(size(A2cor, 2), 1);
% если данные линейно коррелированы, почему бы не попробовать зафитить их
% полиномом первой степени
% A2cor(2,:) = lsqr_fit(1) + lsqr_fit(2)*A2cor(1,:)
vandermonde_matrix = [I A2cor(1,:)'] % матрица Вадермонда (что это?)
vandermonde_matrix = 90 \times 2
   1.0000
           -1.5599
   1.0000
             0.5637
   1.0000
            -0.5920
   1.0000
             0.9279
   1.0000
            0.1448
   1.0000
            -1.0659
   1.0000
           -0.2327
   1.0000
           0.0529
   1.0000
            -1.1176
   1.0000
             1.6212
lsqr_fit = atan(vandermonde_matrix\A2cor(2,:)') % решаем задачу метода наименьших
квадратов (
lsqr_fit = 2 \times 1
   -0.0000
   0.6430
a lsqrt = [cos(lsqr_fit(2));sin(lsqr_fit(2))]
a lsqrt = 2 \times 1
   0.8003
   0.5996
draw vector(ax, "Собственные вектора матрицы ковариации и сингулярные вектора
матрицы испытаний",["u1" "u2"],"vector",U(:,1),U(:,2)*S(2,2)/S(1,1),a_lsqrt)
ans =
 Axes (Собственные вектора матрицы ковариации и сингулярные вектора матрицы испытаний) with properties:
```

XLim: [-1 1] YLim: [-1 1]

```
XScale: 'linear'
YScale: 'linear'
GridLineStyle: '-'
Position: [0.1300 0.1100 0.7750 0.8150]
Units: 'normalized'
```

Show all properties

```
xlim(ax,[-3,3])
ylim(ax,[-3,3])
legend(ax,["data" "1-й собственный вектор матрицы ковариации" ...
"2-й собственный вектор матрицы ковариации" "u1*s1" "u2*s2/s1" "фиттинг
полиномом первой степени "])
```

твенные вектора матрицы ковариации и сингулярные вектора матрицы исп


```
% transpose(Q)*U
disp("Матрица сингулярных значений матрицы испытаний (в квадрате и нормированы на
(1-N)):")
```

Матрица сингулярных значений матрицы испытаний (в квадрате и нормированы на (1-N)):

Матрица собственных значений матрицы ковариации :

diag(eig(covMATcor))

Таким образом, левые сингулярные вектора дают направление векторов вдоль главных осей эллипса, первая главная ось соотвествует направлению, на которое сумма проекций максимальна.

Проекция столбцов матрицы A на вектор $\overrightarrow{u_1}$:

$$\overrightarrow{u}_1^T A = \overrightarrow{u}_1^T U \Sigma V^T = \overrightarrow{u}_1^T \sum_{i=1}^m [\sigma_i \overrightarrow{u}_i \overrightarrow{v}_i] = \sigma_1 \overrightarrow{v}_1^T$$

Амплитуда суммы проекций столбцов матрицы это длина этого вектора:

$$||\overrightarrow{u}_1^T A|| = ||\sigma_1 \overrightarrow{v}_1|| = \sigma_1$$

Направление первого левого сингулярного вектора показывает вектор, сумма проекций векторов состояния (столбцы матрицы измерений) на который максимальна!

Разница между методом наименьших квадратов и сингулярным разложением показана на рисунке:

Линейная алгебра построена так, чтобы она без проблемы экстраполировалась на пространства б**о**льшей размерности.

Три ...

```
covMAT3
```

ylim(ax2,[-3,3]);

legend(ax2,["data" "u1*s1" "u2*s2/s1" "u3*s3/s1"]);

```
covMAT3 = 3 \times 3
   1.0916
         -0.0051
                    0.8389
  -0.0051
           0.0076
                    0.0015
   0.8389
           0.0015
                    0.6862
%ax2 = draw_vector([], "Scattered data", "", "point", A3(1,:), A3(2,:), A3(3,:));
[U,S,V] = svd(A3)
U = 3 \times 3
   0.7858
           -0.6030
                    0.1378
  -0.0018
           0.2206
                    0.9754
   0.6185
           0.7667
                   -0.1722
S = 3 \times 90
  12.4868
                        0
                                0
                                         0
                                                 0
                                                          0
                                                                  0 . . .
              0
          1.5448
                        0
                                0
                                                          0
       0
                                         0
                                                 0
                                                                  0
       0
                  0.7698
                                0
                                                                  0
V = 90 \times 90
  -0.0537
         -0.0577 -0.0005
                           0.0930 -0.1385 -0.0205
                                                     0.2151
                                                             0.0160 ...
  -0.0471
         0.0921 0.0738 -0.0041 0.0301 0.0198
                                                     0.0214
                                                             -0.2072
  -0.1837
         0.0753 -0.0500 -0.1249 -0.1424 -0.0607
                                                     0.1278
                                                             -0.1466
   -0.0209
  -0.1531 0.0915
                  -0.0893 -0.0006 0.9645 -0.0101
                                                     0.0424
                                                             -0.0055
  -0.0274 0.0416 -0.0454 -0.0044 -0.0111 0.9959
                                                     0.0109
                                                             -0.0029
   0.2279 -0.0910 0.0348 -0.0093 0.0406 0.0092
                                                     0.9443
                                                              0.0098
  -0.0130 0.2292 0.1145 -0.0186 -0.0141 -0.0049
                                                     0.0212
                                                              0.9417
  -0.1475 -0.0396 0.0023 0.0183 -0.0149 -0.0009
                                                     0.0258
                                                              0.0108
                                                              0.0196
   0.2338 -0.1356 0.0254 -0.0053
                                    0.0448
                                             0.0107
                                                     -0.0609
U(:,3)'*U(:,2)
ans = -1.3878e-16
ax2 =draw_vector([], "Scattered data", "", "vector", U(:,1), U(:,2), U(:,3));
fig11
draw_vector(ax2, "Scattered data", "", "point", A3(1,:), A3(2,:), A3(3,:));
xlim(ax2,[-3,3]);
```


Пять...

```
clearvars -except points_number rand_fun_handle alfa_cor
X1 = randn(points_number,1);
X2 = randn(points_number,1);
X3 = randn(points_number,1);
alfas1 = [0.01, 0.01, 0.07];
alfas2 = [0,0,0.08];
alfas2 = alfas2/sum(alfas2);alfas1 = alfas1/sum(alfas1);
X4 = (1-alfa_cor)*rand_fun_handle(points_number,1) +
alfa_cor*sum([X1,X2,X3].*alfas1,2);
X5 = (1-alfa_cor)*rand_fun_handle(points_number,1) +
alfa_cor*sum([X1,X2,X3].*alfas2,2);
C = transpose([X1,X2,X3,X4,X5])*[X1,X2,X3,X4,X5]/(points_number-1)
C = 5 \times 5
   1.2861
            0.2160
                     0.0660
                              0.1608
                                       0.0737
   0.2160
            1.0458
                    -0.0964
                              0.0713
                                      -0.0456
   0.0660
           -0.0964
                     1.1366
                              0.7230
                                       0.8458
   0.1608
            0.0713
                     0.7230
                              0.5497
                                       0.5387
   0.0737
           -0.0456
                     0.8458
                              0.5387
                                       0.7022
SIG = svds(C)/(points_number-1)
```

```
SIG = 5×1
0.0258
0.0159
0.0102
0.0008
0.0004
```

вывод:

Метод анализа главный компонент позволяет установить насколько коррелированы исходные данные, а также дает линейное преобразование исходных данных в "новые", в которых базис соответствует собственным векторам матрицы ковариации.

M - матрица эксперимента

S = svds(M,N) - первые N ее сингулярных значений, чем ближе они друг к другу, тем более некоррелированными являются колонки в таблице

Литература

- 1. Gilbert Strang. Linear algebra and learning from data. MIT (2019)
- 2. Gilbert Strang. Introduction to linear algebra. 2016 (Есть перевод старой версии книги : Г.Стрэнг Введение в линейную алгебру)
- 3. youtube: канал MIT OpenCourseWare, курс лекций MIT: 18.06SC Linear Algebra (2011)
- 4. youtube: канал MIT OpenCourseWare, курс лекций: MIT 18.065 Matrix methods in Data Analysis, Signal processing, and Mechine Learning (2018)
- 5. youtube: канал AMATH 301, лектор Nathan Kutz, лекции: The singular Value Decomposition and Principal Componen Analysis

```
function ax = draw vector(ax,ttl,names,type,varargin)
\% функция строит двух- и трех-мерные вектора, а также рассеянные данные из
% матрицы
% ах - оси (если пустые, то создаются новые)
% ttl - заголовок картинки
% names - имена векторов
% type:
%
        "vector" - аргументы, которые передаются после интерпретируются
%
                    как отдельные вектора
%
        "point" - в этом случае передается матрица в качестве аргумента и
%
        столбцы матрицы строятся при помощи функций scatter и scatter3 d
        в зависимости от размерности массива
    arguments
        ax = []
        ttl string =strings(0,1)
        names string =strings(0,1)
       type string {mustBeMember(type,["vector" "point"])}="vector"
```

```
end
arguments (Repeating)
    varargin double
end
was_empty = isempty(ax); % это признак того, что все строится на новых осях
if was_empty
    ax = get_next_ax();
else
    hold(ax,"on");
   % if ~isempty(ax.Legend)
          leg_before = ax.Legend.String;
   % else
   %
          leg_before = strings(0,1);
   % end
end
if strcmp(type,"vector")
    is_3D = numel(varargin{1})==3;
        if is 3D
            [x,y,z] = make_xy(varargin{1});
            plot3(ax,x,y,z,'LineWidth',2,'Marker','o');
            hold on
            for iii = 2:numel(varargin)
                    [x,y,z] = make_xy(varargin{iii});
                    plot3(ax,x,y,z,'LineWidth',2,'Marker','o');
            end
            grid on
            hold off
        else
            [x,y] = make_xy(varargin{1});
            plot(ax,x,y,'LineWidth',2,'Marker','o');
            hold on
            for iii = 2:numel(varargin)
                    [x,y] = make_xy(varargin{iii});
                    plot(ax,x,y,'LineWidth',2,'Marker','o');
            end
            grid on
            hold off
        end
        if isempty(names)||(numel(names)~=numel(varargin))
            legend(ax,string(1:numel(varargin)));
        else
            % if ~was_empty
                   names= [names(:);leg before(:)];
            % end
            legend(ax,names);
        end
        xlim(ax,[-1 1]);
        ylim(ax,[-1 1]);
```

```
if ~isempty(ttl)
                title(ax,ttl);
            end
    else
        %data_number = numel(varargin); % число массивов данных
        is_3D = numel(varargin)==3;
        data = varargin{1};
        if size(data,2)>1
            data = transpose(data);
            is transpose = true;
        else
            is_transpose = false;
        end
        if ~is_transpose
            for iii = 2:numel(varargin)
                data = [data,varargin{iii}];
            end
        else
            for iii = 2:numel(varargin)
                data = [data,transpose(varargin{iii})];
            end
        end
        if is_3D
            scatter3(ax,data(:,1),data(:,2),data(:,3));
        else
            scatter(ax,data(:,1),data(:,2));
        end
    end
    if ~was_empty
            hold(ax, "off");
    end
end
function [x,y,z] = make_xy(col)
% добавляет к координатам вектора нули так, чтобы при помощи функции plot
% строилась линия
    switch numel(col)
        case 1
            x = [col(1)];
            y = 0;
            z = 0;
        case 2
            x = [0 col(1)];
            y = [0 col(2)];
            z = zeros(1,2);
        case 3
            x = [0 col(1)];
            y = [0 col(2)];
            z = [0 col(3)];
```

```
end
end
function [bpar,bper,ang] = projection_matrix(A,b)
\% функция считает угол между вектором и пространством столбцов матрицы А
    for ii =1:size(A,2)
        A(:,ii) = A(:,ii)/norm(A(:,ii));
    end
    beta = A*transpose(A)*b;
    beta = beta/norm(beta); % нормируем вектор beta
    Pbeta = beta*transpose(beta); % оператор проектирования вектора на
    bpar = Pbeta*b;
    bper = b-bpar;
    ang = rad2deg(acos(norm(bpar)/norm(b)));
end
function [new_ax,fig_handle] = get_next_ax(index)
% функция, которая возвращает новые оси на новой фигуре
    arguments
        index = []
    end
    persistent N;
    if isempty(index)
        if isempty(N)
            N=1;
        else
            N = N+1;
        end
        fig handle = figure(N);
        clf(fig_handle);
        new_ax = axes(fig_handle);
        disp("fig"+ N)
    else
        fig_handle = figure(index);
        clf(fig_handle);
        new_ax = axes(fig_handle);
    end
end
function mem_size = mem_size_summ(varargin)
% функция считает объем несокльких переменных в памяти base workspace
    names = string(varargin);
    mem size = 0;
    base_vars = evalin("base","whos");
    flag = arrayfun(@(X)any(strcmp(X.name,names)),base_vars);
    if ~any(flag)
        return
    end
    mem_size = sum(arrayfun(@(X)X.bytes,base_vars(flag)));
end
function folder = get_folder()
% текущая папка
folder = fileparts(matlab.desktop.editor.getActiveFilename);
```