

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 1PR and (Science
Double Award) (4SD0) Paper 1PR

Question number	Answer		Notes		Marks
1 (a)	B (124);				1
	A is incorrect because this is the number of protons C is incorrect because this is the number of protons and neutrons D is incorrect because this is twice the number of protons added to the neutrons				
(b)	C (a high frequency electromagnetic wave);				1
	A is incorrect because this is the description of alpha radiation B is incorrect because this is the description of beta radiation D is incorrect because this is the description of neutron radiation				
(c)	all 4 rows correct = 3 marks;;; 2-3 rows correct = 2 marks;; any 1 row correct = 1 mark;				3
	Variable	Independent variable	Dependent variable	Control variable	
	count measured using the detector		✓		
	distance between source and detector			✓	
	number of lead sheets	✓			
	time period for measuring the count			✓	
	more than one tick in a row negates the mark for that row				

Total for Question 1 = 5 marks

Question number	Answer	Notes	Marks	
10 (a) (i)	substitution into a = $\Delta v / t$; evaluation to 3 or more s.f.;		2	
	e.g. acceleration = (4.20 - 1.45) / 0.286 (acceleration =) 9.62 (m/s ²)			
(ii)	idea that air resistance / friction also acts on ball; which opposes the ball's weight;	allow drag allow idea that frictional force is upwards whilst weight is downwards allow idea that resultant force is less that weight ignore idea of reaction time / other human errors	2	
(iii)	substitution into $v^2 = u^2 + 2 \times a \times s$; rearrangement;	allow use of a=9.6, 9.8, 9.81 or 10	3	
	evaluation;	reject 'change in speed × time' giving 0.78(65) as incorrect physics allow answers using correct average velocity.		
	e.g. $4.20^2 = 1.45^2 + (2 \times 9.6 \times s)$ $s = (v^2 - u^2) / 2a$ (s =) 0.809 (m)	allow range 0.78-0.81 (m)		
(b) (i)	suitable scale on both axes; all points plotted correctly to nearest half square;		2	
	Distance between 0.5 sight gates 0.4 sight gat			
(ii)	smooth curve drawn with an even distribution of data points either side;	ECF candidate plotting	1	
(iii)	gradient of graph is equal to the speed / velocity of the ball;		3	
	gradient is increasing (as time increases); speed / velocity is increasing (as time increases);	allow "curve gets steeper" allow idea of greater distance in a unit of time DOP		
		award 1 mark for idea that graph is a curve if no other marks awarded		

Total for Question 10 = 13 marks

	estion mber	Answer	Notes	Marks	
	(a)	substitution into $p_1 \times V_1 = p_2 \times V_2$ OR rearrangement; evaluation of volume; correctly expressed in standard form; e.g. $100 \times 0.0043 = 270 \times V_2$ OR $V_2 = p_1 \times V_1 / p_2$ $(V_2 =) 0.0016 \text{ (m}^3)$ $(V_2 =) 1.6 \times 10^{-3} \text{ (m}^3)$	allow 0.00159 (m³) allow 1.59×10 ⁻³ (m³)	3	
(1	(b) (i)	idea that particles move more slowly at lower temp;	allow RA if clear allow lower kinetic energy (KE) reject no KE	3	
		particles collide with walls less often; particles collide with walls less force;	allow particles colliding less hard note: with walls/eq must be mentioned once		
	(ii)	dimensionally correct substitution into $p_1 / T_1 = p_2 / T_2$; conversion of either temperature into kelvin; rearrangement; correct subsequent evaluation of p_2 with consistent conclusion;	ignore units can be implied	4	
		e.g. $270 / 293 = p_2 / 275$ $293 \text{ or } 275 \text{ used anywhere in calculation}$ $p_2 = 270 \times 275 / 293$ $(p_2 =) 253 \text{ (kPa) so light will not show}$	27 (kPa) so light will show scores 3 marks 243 (kPa) so light will show scores 2 marks		

Total for Question 11 = 10 marks

Question number	Answer	Notes	Marks
12 (a)	idea that the temperature outside the box is greater than the temperature inside the box;	however described e.g. "it is hotter outside the box than inside the box"	1
(b)	any two from: MP1. air / cardboard is a poor conductor / (good) insulator; MP2. air is a gas (which are poor conductors); MP3. particles in air are far apart / collide with each other rarely; MP4. idea that thicker objects (of the same material) conduct slower;	ignore idea of trapped air condone idea of 'non- conductor'	2
(c)	idea that air (particles) cannot move around; lid stops or reduces convection currents forming;	e.g. air cannot flow or air trapped accept idea that box is a solid and convection is impossible in solids for 1 mark	2
(d)	white / silver; (because) these are poor emitters of infrared / radiation;	accept 'radiators' for emitters ignore references to absorption or reflection	2

Total for Question 12 = 7 marks