Example: The induced
$$\infty$$
-norm $\|A\|_{\infty} := \sup_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}}$ can be evaluated as

$$\|A\|_{\infty} = \max_{i \in S_1, -i, S_j = 1} \sum_{j=1}^{j} |A_{ij}|_{\infty}, \quad A_j \in \mathbb{R}^{n}$$

$$=: S$$

$$\|Ax\|_{\infty} = \max_{i \neq j} |\sum_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |A_{ij}|_{\infty} |A_{ij}|_{\infty} = S_{ij} |A_{ij}|_{\infty}$$

$$\|Ax\|_{\infty} = \max_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |\sum_{\alpha \neq i, j} |A_{ij}|_{\infty} |A_{ij}|_{\infty} = S_{ij} |A_{ij}|_{\infty} |A_{ij}|_{\infty} |A_{ij}|_{\infty} |A_{ij}|_{\infty} = S_{ij} |A_{ij}|_{\infty} |A_{$$

To see that
$$\|A\|_{\infty} \ge S$$
, let $\log \in S_1, ..., N_s$ be subthat $S = \underbrace{\sum_{j=1}^{n} a_{i \neq j}} = S_s$.

Let $\underset{j=1}{\text{Let}} \times GR^n$ be defined by $x_j = S_s = S_s$, if $\underset{j=1}{\text{Let}} \times GR^n = S_s$.

Then $\|Ax\|_{\infty} \ge |X_j| = \underbrace{\sum_{j=1}^{n} a_{i \neq j}} = S_s$.

Also, $\|x\|_{\infty} = 1$, so $\underbrace{\|Ax\|_{\infty}}_{\|x\|_{\infty}} \ge S_s$.

Hence $\|A\|_{\infty} \ge S_s$.

Eigenvalues satisfy the polynomial equation
$$Av = \lambda v$$

$$det(A - \lambda I) = 0$$

$$v = 0$$

$$Av = \lambda v$$

$$Av =$$

Let
$$\|\cdot\|_{V}$$
 be a vector norm on \mathbb{R}^{n} . Let $A \in \mathbb{R}^{n \times n}$ and let $A \in \sigma(A)$.

Then there exists $\hat{V} \in \mathbb{R}^{n} \setminus \{0\}$ and $E > 0$ s.t.

 $\|A\hat{V}\|_{V} > \|A\|$ and $\|A^{k}\hat{V}\|_{V} > E\|A\|^{k}$.

Proof: Full proof is in the notes, but is an assessed.

If \exists real eigenvector $V \in \mathbb{R}^{n} \setminus \{0\}$ then $\|A^{k}V\| = \|A^{k}V\| = \|A^{k}$

Proof: First part: Let
$$\lambda \in \sigma(A)$$
 be such that $|\lambda| = p(A)$.

Then by previous Lemma $\exists \hat{y} \in \mathbb{R}^n \setminus \underbrace{\S \circ \S} \quad \text{s.t.} \quad \underbrace{\|A\hat{y}\|_{V}} = |\lambda|$

Then $\Im(A) = |\lambda| \leq \underbrace{\|A\hat{y}\|_{V}} \leqslant \sup_{y \in \mathbb{R}^n} \underbrace{\|Ay\|_{V}} = \|A\|_{M}$.

Second part - beyond stape of cause.

See books on matrix analysis"

For symmetric real matrices, S(A) is actually a norm.

Lemma: If $A \in \mathbb{R}^{n \times n}$ is symmetric then $S(A) = \|A\|_2 = \sup_{\substack{X \in \mathbb{R}^n \\ X \neq 0}} \frac{\|A \times \|_2}{\|X \|_2}$ No proof given here, but this is a fact you should know. The substitution of \mathbb{R}^n .

(think about diagnolisation ...)

Eigenvolves are raineded to the behaviour of powers of A:

Let $A \in \mathbb{R}^{n \times n}$. Then $\lim_{k \to \infty} A^k = 0 \iff s(A) < 1$.

Proof: Suppose $A^k \xrightarrow{k \to \infty} 0$. Let $\|\cdot\|_V$ be a rectur norm and $\|\cdot\|_M$ its induced previous lemma

natrix norm. Then

easy to prove! $(g(A))^k \leqslant g(A^k) \leqslant \|A^k\|_M \to 0$. So g(A) < 1.

In fact we have equality.

Now suppose S(A) < 1. Chaose E > 0 s.t. S(A) < 1 - E. (e.g. take $E = \frac{1}{2}(1-S(A))$) $E = \frac{1}{2}(1-S(A))$ and induced norm $\|\cdot\|_{M}$ s.t. $\|A\|_{M} \le S(A) + E < 1$.

But then $\|A^{h}\|_{M} \le \|A\|_{M} \|B\|_{M}$ proporties of induced nows $\|AB\|_{M} \le \|A\|_{M} \|B\|_{M}$ plus induction

Griven $A \in \mathbb{R}^{n \times n}$, a conjex number $A \in \mathbb{C}$ is called an eigenvalue of A if $\exists v \in \mathbb{C}^n \setminus \{0\}$ such that [Av = Av].

"eigenvector" associated to A (these may be more than one)

We call $\sigma(A) = \{A \in \mathbb{C} \mid s.t. \mid A \text{ is an eigenvalue of } A.\}$ the spectrum of A.