Your Name Goes Here	
Math 387 Analysis I	
Homework 6	

Problem List
3.1 {2,3,5}
3.2 {1,2,3,11}

H/T: Last Names Spring 2016 Due: Wednesday, March 9

Unassigned, but suggested: Problems 1,,7,8,10 in Section 3.1 Unassigned, but suggested: Problems 4,5,12 in Section 3.2

6.1 Problem 3.1.2

Prove Corollary 3.1.10.

 \Box Solution.

6.2 Problem 3.1.3

Prove Corollary 3.1.11.

 \Box

6.3 Problem 3.1.5

Let $A \subset S$. Show that if c is a cluster point of A, then c is a cluster point of S. Note the difference from Proposition 3.1.14.

 \Box Solution.

6.4 Problem 3.2.1

Using the definition of continuity directly prove that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2$ is continuous.

Solution.

6.5 Problem 3.2.2

Using the definition of continuity directly prove that $f:(0,\infty)\to\mathbb{R}$ defined by f(x):=1/x is continuous.

 \Box

6.6 Problem 3.2.3

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & \text{if } x \text{ is rational,} \\ x^2 & \text{if } x \text{ is irrational.} \end{cases}$$

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

Solution.

6.7 Problem 3.2.11

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Suppose f(c) > 0. Show that there exists an $\alpha > 0$ such that for all $x \in (c - \alpha, c + \alpha)$ we have f(x) > 0.

 \Box