Short-time Fourier Transform (STFT)

$$X_{l}\left[k
ight] = \sum_{n=-N/2}^{N/2-1} w\left[n
ight] x\left[n+lH
ight] e^{-j2\pi kn/N} \qquad l = 0, 1, \dots,$$

w: analysis window

l: frame number

H: Hop size

The output is a sequence of spectra.

each one have same size of magnitudes and phase but each one differently because input will be a different fragment of the sound.

Transform of a windowed Sinewave

$$x\left[n
ight] = A_0 \cos(2nk_0n/N) = rac{A_0}{2}e^{j2\pi k_0n/N} + rac{A_0}{2}e^{-2\pi k_0n/N}$$

$$x\left[k\right] = \sum_{n=-N/2}^{N/2-1} w\left[n\right] x\left[n\right] e^{-j2\pi k n/N}$$

$$= \sum_{n=N/2}^{N/2-1} W[n] \left(\frac{A_0}{2} e^{j2\pi k_0 n/N} + \frac{A_0}{2} e^{-j2\pi k_0 n/N} \right) e^{-j2\pi k n/N}$$

$$=\sum_{n=-N/2}^{N/2-1}W\left[n\right]\frac{A_{0}}{2}e^{j2\pi k_{0}n/N}e^{-j2\pi kn/N}+\sum_{n=-N/2}^{N/2-1}W\left[n\right]\frac{A_{0}}{2}e^{-j2\pi k_{0}n/N}e^{-j2\pi kn/N}$$

$$=rac{A_{0}}{2}\sum_{n=-N/2}^{N/2-1}W\left[n
ight] e^{-j2\pi(k-k_{0})n/N}+rac{A_{0}}{2}\sum_{n=-N/2}^{N/2-1}W\left[n
ight] e^{-j2\pi(k+k_{0})n/N}$$

$$= \frac{A_0}{2} W [k - k_0] + \frac{A_0}{2} W [k + k_0]$$

- D We wish to have narrow main-lobe and low side-lobe.
 - @ magnitude spectrum as smooth as possible.
- Window size.

larger window size will have more information capture.

Even-odd window size

won't affect magnitude spectrum, but affect phase spectrum odd Size of Samples can be perfectly symmetric around zero and get the zero phase value

FFT size

larger FFT size will have much smoother magnitude spectrum.

thop Size

Window size · 1/4 is good

Time frequency compromise

Window size L

time resolution ?

frequency resolution of

window size T

time resolution

frequency resolution ?

Inverse STFT shift progressively
$$y[n] = \sum_{l=0}^{L-1} Shift_{lH,n} \left[\frac{1}{N} \sum_{k=-N/2}^{N/2-1} X_l[k] e^{j2\pi kn/N} \right]$$

each output frame is:

$$yw_{l}[n] = x(n+lH)w[n]$$

and the output sound is =

$$y\left[n
ight] =\sum_{l=0}^{L-1}yw_{1}\left[n
ight] =x\left[n
ight] \sum_{l=0}^{L-1}w\left[n-lH
ight]$$

STFT system