For each angle shown, determine the quadrant (I, II, III, or IV) and the requested trig function values. For the quadrant, if the angle is a multiple of $\frac{\pi}{2}$, then enter +x, -x, +y, or -y, for angles on the positive x-axis, negative x-axis, positive y-axis, or negative y-axis.

	Quadrant	$\sin \theta$	$\cos \theta$
$\frac{\pi}{3}$	(V3 2	ام
$\frac{2\pi}{3}$	- 11	13	- 12
$\frac{5\pi}{6}$	11	-12	1312
$\frac{11\pi}{6}$	1√		512
$\frac{3\pi}{4}$	1)	ルコ	12/2
π	~ X	0	1
$\frac{7\pi}{4}$	1	- 1/2	일이
$\frac{11\pi}{3}$	١٧	- 1/3	-1 N
0	†×	0	(
$\frac{3\pi}{2}$	- y	- 1	0
$\frac{31\pi}{6}$	111	- 12	13/2
$\frac{11\pi}{4}$	l√	- 12	1/2

If a point with coordinates (a, b) is on the unit circle at rotation θ , then the point on the unit circle at rotation $\theta + \frac{\pi}{2}$ has what coordinates?

at coordinates?

$$C = \cos(\theta + \frac{\pi}{2}) = -\sin\theta = -b$$

 $d = \sin(\theta + \frac{\pi}{2}) = \cos\theta = a$

If a point with coordinates (a, b) is on the unit circle at rotation θ , then the point on the unit circle at rotation $\theta - \pi$ has what coordinates?

