CÁLCULO II, GRADO MATEMÁTICAS-INFORMÁTICA

- 1) Razona si son verdaderas o falsas las siguientes afirmaciones:
 - a) El polinomio de Taylor de la función $f(x) = x^2 3$ de orden 3 (centrado) en 1 es $x^2 3$.
 - b) Si f es una función integrable en [a,b] tal que $\int_a^b f(x) dx \ge 0$, entonces $f(x) \ge 0$ para cualquier $x \in [a,b]$.
 - c) Sea f una función derivable en un intervalo. Si f' se anula en dos puntos, entonces la función f se puede anular en cuatro puntos.
- 2) Demuestra que $x \frac{x^3}{3} \le \arctan(x) \le x, \, \forall \, x \in \mathbb{R}_0^+$.
- 3) Calcula $\lim_{x\to 0} \frac{\log(1+x)\sin(x) x^2 + x^3}{x^3}$.
- 4) Sea $f: [0, +\infty[\longrightarrow [0, +\infty[$ una función continua tal que $f(\mathbb{R}^+) \subset \mathbb{R}^+$. Supongamos además que

$$f(x)^2 = 2 \int_0^x f(t) dt, \quad \forall x \in \mathbb{R}^+.$$

- a) Prueba que f es derivable y calcula su derivada.
- b) Demuestra que f(x) = x, para todo $x \ge 0$.
- 5) Calcula la longitud de la gráfica de la función $f:[0,\frac{\pi}{6}] \to \mathbb{R}$, $f(x) = \ln(\cos x)$. Fórmula a aplicar: si $f:[a,b] \to \mathbb{R}$ es $C^1[a,b]$, la longitud de la gráfica entre los puntos (a,f(a)) y (b,f(b)) viene dada por

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$