Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 07

02 de Abril

MAT1106 - Introducción al Cálculo

1) Sean $\{x_n\}_{n\in\mathbb{N}},\ \{y_n\}_{n\in\mathbb{N}}$ succesiones. Se define $\{z_n\}_{n\in\mathbb{N}}$ como

$$z_n := x_n + y_n$$

En base a esto, demuestre o de un contrajemplo de:

- a) Si $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{z_n\}_{n\in\mathbb{N}}$ es monótona.
- b) Si $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{z_n\}_{n\in\mathbb{N}}$ es creciente.
- 2) Sean $\{x_n\}_{n\in\mathbb{N}},\ \{y_n\}_{n\in\mathbb{N}}$ sucesiones. Se define $\{w_n\}_{n\in\mathbb{N}}$ como

$$w_n := x_n y_n$$

En base a esto, demuestre o de un contrajemplo de:

- a) Si $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{w_n\}_{n\in\mathbb{N}}$ es monótona.
- b) Si $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{w_n\}_{n\in\mathbb{N}}$ es creciente.
- 3) Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión monótona tal que $a_n\neq 0 \forall n\in\mathbb{N}$. ¿Es

$$\left\{\frac{1}{a_n}\right\}_{n\in\mathbb{N}} := \frac{1}{a_n}$$

monótona?

4) Se define $\{a_n\}_{n\in\mathbb{N}}$ como

$$a_n = \begin{cases} 1 & \text{si } n = 1\\ \sqrt{3a_{n-1} + 4} & \text{si } n > 1 \end{cases}$$

Demuestre que $\{a_n\}_{n\in\mathbb{N}}$ es monótona.

- 5) Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión. Se define $\{y_n\}_{n\in\mathbb{N}}$ como $y_n=x_{2n}$ y $\{z_n\}_{n\in\mathbb{N}}$ como $z_n=x_{2n-1}$. En base a esto:
 - a) ¿ Es posible que $\{x_n\}_{n\in\mathbb{N}}$ sea no monótona, pero $\{y_n\}_{n\in\mathbb{N}}$ y $\{z_n\}_{n\in\mathbb{N}}$ sean monótonas?
 - b) Pruebe que si $\{x_n\}_{n\in\mathbb{N}}$ es monótona, entonces $\{y_n\}_{n\in\mathbb{N}}$ y $\{z_n\}_{n\in\mathbb{N}}$ son monótonas.
 - c) Demuestre o dé un contrajemplo: Si $\{y_n\}_{n\in\mathbb{N}}$ y $\{z_n\}_{n\in\mathbb{N}}$ son estríctamente monótonas, entonces $\{x_n\}_{n\in\mathbb{N}}$ es estrictamente monótona.