Final Exam: Financial Econometrics

MSFT: Financial Engineering, 2014-2015

Instructions:

- You have two and half hours.
- No notes are allowed.
- Answer all questions with clarity.

A. Let $\{\epsilon_0, \epsilon_1, \ldots\}$ be i.i.d with mean zero and variance σ_{ϵ}^2 . Consider a process $\{y_0, y_1, \ldots\}$ generated by, for $y_0 = 0$,

$$y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}. \tag{1}$$

- 1. Show that $\{y_1, y_2, \ldots\}$ is covariance stationary. Derive the expressions for the autocovariances $\gamma_j = E(y_t, y_{t-j})$ for $j = 1, 2, \cdots$.
- 2. Let

$$r_{tj} \equiv E[y_t|y_{t-j}, y_{t-j-1}, \dots, y_0, y_{-1}] -E[y_t|y_{t-j-1}, y_{t-j-2}, \dots, y_0, y_{-1}]$$
(2)

where t = j, j + 1, ... and j = 0, 1, ... Prove

$$r_{t0} = \epsilon_t, \ r_{t1} = \theta_1 \epsilon_{t-1}, \ r_{t2} = \theta_2 \epsilon_{t-2}, \ r_{t3} = 0, \ r_{t4} = 0, \dots$$

3. Let

$$\bar{y}_n \equiv \frac{1}{n} \sum_{i=1}^n y_i. \tag{3}$$

Compute the mean and the variance of $\sqrt{n}\bar{y}_n$.

B. Consider the standard GARCH(1, 1) model

$$r_t = \mu + h_t^{\frac{1}{2}} z_t, \quad z_t \to i.i.d \ N(0,1);$$
 (4)

$$h_t = \omega + \alpha (r_{t-1} - \mu)^2 + \beta h_{t-1} \tag{5}$$

where $\omega > 0$, $\alpha > 0$, $\beta \ge 0$ and $\alpha + \beta < 1$.

1. Compute the unconditional mean, variance, skewness, and kurtosis of the return distribution. Discuss which stylized facts of asset returns and volatility can be captured by the GARCH(1,1) model and which cannot?

- 2. Define $v_t = \epsilon_t^2 h_t$. Show that v_t is a white noise and the $r_t \mu$ sequence acts as an ARMA(1, 1) process.
- C. We consider the monthly returns of the S&P 500 index starting from 1926 for 792 observations. Firstly, we use a AR(3)-GARCH(1, 1) model with the normal errors and have the following fitted model

$$r_t = 0.0078 + 0.032r_{t-1} - 0.029r_{t-2} - 0.008r_{t-3} + e_t, (6)$$

$$h_t = 0.000084 + 0.1213e_{t-1}^2 + 0.8523h_{t-1}, (7)$$

and the maximized log likelihood function LLF = 501.6. We also run the standard GARCH(1, 1) model and obtain

$$r_t = 0.0076 + e_t,$$
 (8)

$$h_t = 0.000086 + 0.1216e_{t-1}^2 + 0.8511h_{t-1},$$
 (9)

and the maximized log likelihood function LLF = 498.9.

- 1. Which model should be selected at the 5% significance level? Does your result change at the 10% level? (See attached table of critical values of χ^2 distribution.)?
- 2. What is the unconditional variance of returns under your preferred model?
- 3. In Figure 1, we present the estimated volatility process, the standardized residuals, the sample ACF of the standardized residuals, and the sample ACF of the squared standardized residuals for the GARCH(1, 1) model. Discuss whether the GARCH(1, 1) model is adequate to model our data?
- 4. If you are the model builder, what further diagnosis should you conduct to refine the model?
- **D.** Figure 2 plots the national average home sales and the national average home rental price in the US from 1975 through 2007. Prices are normalized so that both averages are 100 in 1975. Since both prices seem to follow random walk processes, and they are determined by similar factors such as policies, earning incomes and so on, they could not get too far apart.
 - 1. Explain in detail, step by step, how you would test the hypothesis that these two prices are cointegrated assuming you know the cointegrating relationship.
 - 2. Suppose that you determine the prices are cointegrated and estimate the following Error Correction Model (ECM):

$$\Delta y_t = \begin{bmatrix} 6.2 \\ 1.2 \end{bmatrix} + \begin{bmatrix} 0.43 & 0.11 \\ 0.08 & 0.54 \end{bmatrix} \Delta y_{t-1} + \begin{bmatrix} -0.12 \\ 0.02 \end{bmatrix} z_{t-1} + \begin{bmatrix} \epsilon_t \\ \eta_t \end{bmatrix}, \quad (10)$$

where $y_t = \begin{bmatrix} sales_t \\ rent_t \end{bmatrix}$ and $z_t = sales_t - rent_t$. Provide an interpretation of the coefficients on z_{t-1} . Do they make sense?

- 3. In the last period, 2007, sales = 160, rent = 97, and $\Delta y_t = \begin{bmatrix} -6.1 \\ 3.2 \end{bmatrix}$. Find the one-step ahead forecast for the change in the home price index and the change in the rental price index.
- 4. Again, in the last period, 2007, sales = 160, rent = 97, and $\Delta y_t = \begin{bmatrix} -6.1 \\ 3.2 \end{bmatrix}$. Find the two-step ahead forecast for the change in the home price index and the change in the rental price index.
- 5. Suppose instead that both sales and rent appear to follow random walk processes, but you conclude that the two series are not cointegrated. Explain how you would model the series in this case. Be specific and write down a possible model.

Figure 2

Table A2.5 Chi-squared critical values for different values of α and degrees of freedom, υ

. . . 9. 6

υ	0.995	0.990	0.975	0.9	50	0.900	0.750	0.500	0.2	250	0.100	0.050	0.025	0.010	0.005
1	0.00004			98 0.0	0393	0.01579	0.1015	0.454	9 1	.323	2.706	3.841	5.024	6.635	7.879
2	0.01003	0.0201	0.050	65 0.1	026	0.2107	0.5754	1.386	2	.773	4.605	5.991	7.378		
3	0.07172	0.1148	0.215	8 0.3	518	0.5844	1.213	2.366	4	.108	6.251	7.815		11.345	
4	0.2070	0.2971			107	1.064	1.923	3.357	5	.385	7.779		711.143	13.277	14.860
5	0.4117	0.5543	0.831			1.610	2.675	4.351	6	.626	9.236	11.070	12.833	15.086	
6	0.6757	0.8721				2.204	3.455	5.348	7.	.841	10.645	12.592	14.449	16.812	18.54
7	0.9893	1.239	1.690			2.833	4.255	6.346	9	.037	12.017	14.067	16.013	18.475	20.27
8	1.344	1.646	2.180			3.490	5.071	7.344	10.				17.535		21.95
9	1.735	2.088	2.700			4.168	5.899	8.343	11.					21.666	
10	2.156	2.558	3.247			4.865	6.737	9.342	12.					23.209	
11	2.603	3.053	3.816	4.5	75	5.578	7.584	10.341	13.		17.275			24.725	
12	3.074	3.571	4.404		26	6.304	8.438	11.340	14.	.845	18.54			26.217	
13	3.565	4.107	5.009	5.8	92	7.041	9.299	12.340	15.	.984	19.812	22.362	24,736	27.688	29.819
14	4.075	4.660	5.629	6.5	71	7.790	10.165	13.339	17.	117	21.064		26.119		
15	4.601	5.229	6.262	7.2	51	8.547	11.036	14.339	18.	.245	22.307			30.578	32.80
16	5.142	5.812	6.908	7.9	52	9.312	11.912	15.338	19.	.369	23.542	26.296	28.845	32.000	34.26
17	5.697	6.408	7.564	8.6	72 1	0.085	12.792	16.338			24.769	27.587	⁾ 30.191		35.718
18	6.265	7.015	8.231	9.3	90 1	0.865	13.675	17.338	21.	.605	25.989		31.526		37.156
19	6.844	7.633	8.907	10.1	17 1	1.651	14.562	18.338	22.	.718	27.204	30.143		36.191	
20	7.434	8.260	9.591	10.8	51 1	2.443	15.452	19.337	23.	.828	28.412	31.410	34.170		
21	8.034	8.897	10.283	11.59	1 1	3.240	16.344	20.337	24.	.935	29.615	32.670			41.401
22	8.643	9.542	10.982	12.3	38 1	4.041	17.240	21.337	26.	.039	30.813	33.924	36.781	40.289	
23	9.260	10.196	11.688	13.090	14.84	18 18.1	37 22.3	37 27.	141	32.0	07 35.	172 3	8.076	41.638	44.181
24	9.886	10.856	12.401	13,848	15.65	59 19.0	37 23.3	37 28.	241	33.1	96 36.	415 3	9.364	42.080	45.558
25	10.520	11.524	13.120	14.611	16.47				339	34.3	82 37.	652 4	0.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.29				434	35.5	63 38.	885 4	1.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.11				528	36.7	41 40.	113 4	3.194	46.963	49.645
28	12.461	13.565	15.308	16.928	18.93				620	37.9			4.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.76				711	39.0			5.722	49.588	52.336
30	13.787	14.954	16.791	18.493	20.5				800	40.2			6.979	50.892	53.672
35	17.192	18.509	20.569	22.465	24.7				223	46.0			3.203	57.342	60.275
40	20.707	22.164	24.433	26.509	29.0				616	51.8			9.342	63.691	66.766
45	24.311	25.901	28.366	30.612	33.3				985	57.50			5.410	69.957	73.166
50	27.991	29.707	32.357	34.764	37.68				334	63.1			1.420	76.154	79.490
55	31.735	33.571	36.398	38.958	42.0				665	68.7			7.381	82.292	85.749
60	35.535	37.485	40.482	43.158	46.4				981	74.3			3.298	85.379	91.952
70	43.275	45.442	48.758	51.739	55.3				577	85.5				00.425	
80	51.172	53.540	57.153	60.391	64.2				130	96.5				12.329	
90	59.196	61.754	65.647	69.126	73.2			34 98.6		107.56				24.116	
100	67.328	70.065	74.222	77.929	82.3			34 109.						35.807	
120	83.829	86.909	91.568				24 119.3								
150		112.655					87 149.3								
	152.224														
250	196.145	200.929	208.095	214.392	221.80	9 234.5	80 249.3	34 264.	694	279.9	47 287.	889 29	5.691 3	04.948	311.361

Source: Biomatella Taldas for Statisticions (1900) and and 1911 1911 1911 1911 1911