BIZOD cvt04

Segmentace, k-means, binární obrazy, segmentace silnice

jan.tesar@fbmi.cvut.cz

Segmentace

- Rozdělit obraz na určité části
 - Často pozadí od popředí
 - Oddělení jednotlivých objektů
- Pro člověka zcela intuitivní
 - Vychází ze zkušeností
 - Perspektiva,
 - Znalost objektů
 - Znalost stínů,...
- Pro počítač "složitá"
 - ► Proč?

Paní co krávu neviděla

- Paní S. začala ve středním věku díky chirurgickému zákroku vidět. Dostavilo se však především zmatení. Mozek "nechápal" příchozí informace. Po nějaké době se naučila rozpoznávat objekty.
- Při pohledu na louku viděla jen změť černobílých bodů a kolem body zelené. Krávu rozpoznala až ve chvíli, kdy se natočila bokem tak jak se ji naučila.
- Podobně jsou na tom počítače vnímají body, nemají dlouholetou zkušenost.

Vidění po pixelech

Vidění po pixelech

nebe bicák

Segmentace kytky

- Převed'te obraz na binární imbinarize(Ag,th)
- Jakou hodnotu nastavíte pro práh?
- Otsu threshold metoda pro získání "správného" prahu z obrázku. Udělá stejnou věc jako následující k-means algoritmus
- th = graythresh(A)
- Th = multithresh(A,N) pro více prahů
- Stále nevýhoda toho, že určitá barva bude vždy segmentována jako jedna kategorie (popředí - pozadí). To řeší pokročilejší metody
- Segmentujte kytku pomocí otsu metody

k-means

- Obecná metoda na shlukování.
 - Rozdělí data do předem daného počtu shluků.
- Funguje pro jakýkoliv počet parametrů
 - Co parametr, to rozměr, zde 2 parametry (dobrá vizualizace)

K-means při segmentaci obrazů

- Shlukování pixelů podobných vlastností
 - Často pouze odstín -> 1 parametr ->1D-> pohyb po histogramu
- V matlabu implementovaná funkce kmeans
 - Vstup: vektor hodnot (odstíny pixelů) počet shluků (K)
 - Výstup: index shluku pro každý pixel
 - Nutné "zvektorovat a zmaticovat" obraz ((:), reshape)
- Využijte nastavení colormap (hot, jet,...)
- Segmentujte kytku
- Zajímavá úloha více než 2 třídy, dalším parametrem je souřadnice x a y

Segmentace v hsv

- Hue (odstín "duhy"), Saturation (mezi barvou a černobílým odstínem), Value (mezi černou a bílou)
 - Také 3 matice, ale nejsou v nich jednotlivé barvy
- rgb2hsv trojrozměrná matice (odstít, saturace a hodnota)
- Proved'te segmentaci s pomocí odstínu
- Segmentaci vizualizujte zašedotónováním pozadí.

colorThresholder

- Užitečná Matlab aplikace pro prahování obrázků
- Různé barevné modely
- Export výsledku, či kódu
- Apps -> Image Processing -> Color Thresholder

Segmentace pomocí hran a binární matematické morfologie

- Načtěte obrázek cell.tif
- Detekujte hrany (edge)
 - Zvolte vhodný práh
- Dilatujte obraz (imdilate)
 - Přidá a pospojuje pixely
 - Zvolte vhodný stukturní element (strel)
- Zaplňte obraz (imfill)
- X obj. na hraně (imclearborder)
- Erodujte obraz (imerode)
 - Vyhladí
 - Proved'te i víckrát
- Zobrazte segmentaci (bwperim)

Hledání silnice

Pomocí podobných postupů jako v předchozí úloze nalezněte středovou čáru z čelního výhledu

- Funkce které zřejmě budete potřebovat:
 - ▶ im2bw
 - bwareaopen bin. otevření ~ odstranení malých objektů
 - imclearborder odstranení objektů na hraně obrazu
 - bwboundaries tvorba regionů
 - label2rgb obarvení regionů
 - regionprops vlastnosti regionů
 - Vlastnost regionů, která se zřejmě bude hodit je "kolečkovost" (Eccentricity), (od dokonalého kruhu až po čáru)
- Povšimněte si toho, že "algoritmus" musíte hodně poladit pro tuto konkrétní úlohu, tento konkrétní obrázek
 - Snažíme se vytvářet postupy, které fungují v co nejširším záběru (pro různé obrázky silnic)