

Chapter 2 Entropy Coding

- Statistical modeling and entropy
- Huffman coding
- Milestone: predictive still image codec

Marginal entropy

Definition

$$H(X) = -\sum_{x \in A_X} p_X(x) \log_2 p_X(x)$$

- Predefined Code Table
 - Average codeword length (AWL)
 - Minimum average codeword length

$$\min(AWL) = -\sum_{x \in A_X} [p_X(x)] \log_2 p_C(x)$$
Source Code table

Common code table (E2-1c)

$$AWL_{1} = -\sum_{x \in A_{X_{1}}} p_{1}(x) \cdot \log_{2} p_{C}(x) \qquad \mathsf{p}_{1}$$

$$AWL_{2} = -\sum_{x \in A_{X_{2}}} p_{2}(x) \cdot \log_{2} p_{C}(x) \qquad \mathsf{p}_{2}$$

$$AWL_{3} = -\sum_{x \in A_{X_{2}}} p_{3}(x) \cdot \log_{2} p_{C}(x) \qquad \mathsf{p}_{3}$$

Matlab code to get the PMF (pixel value 0~255):

PMF = hist(im(:), lower_bound:upper_bound); PMF = PMF/sum(PMF); Note: the lower_bound and upper_bound are not for a specific image, but for the general case (e.g. $0\sim255$ for RGB values, $-128\sim255$ for YCbCr values).

Joint entropy

Definition

$$H(X,Y)$$

$$= E[-\log_2 p_{X,Y}(x,y)]$$

$$= -\sum_{y} \sum_{x} p_{X,Y}(x,y) \log_2 p_{X,Y}(x,y)$$

Statistical modeling

PMF(S2, S3) = PMF(S2, S3)+1;

Conditional entropy

Definition

$$H(X | Y) = E[-\log_2 p_{X|Y}(x, y)] = -\sum_{y} \sum_{x} p_{X,Y}(x, y) \log_2 p_{X|Y}(x, y)$$

$$p_{X|Y}(x,y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)} = \frac{p_{X,Y}(x,y)}{\sum_{x \in Y} p_{X,Y}(x_0,y)}$$

Statistical modeling

Normalize the $p_{X,Y}(x,y)$ in every column

Huffman coding

Example:

- hist(im(:), lower_bound:upper_bound) ----> PMF
- buildHuffman(PMF)
- Use enc_huffman_new() and dec_huffman_new()
- Bytestream = enc_huffman_new(data-lower_bound+1, BinCode, Codelengths)
- Bitrate = length(bytestream)*8 / (image_width * image_height)

Code table training

Lossless predictive coding (E2-6)

- Encoder
 - Predictor P(S)=F(S1',S2',S3')
 - Residual E = S P
 - Huffman coding E
- Decoder
 - Huffman decoding for E
 - Reproduce predictor P
 - Reconstruct S' = P + E

Pseudo code for encoder:

Loop: for each pixel

$$E = S - P$$

E' = Encode(E)

$$S' = P + E'$$

PSNR

Lossless predictive coding: encoding

Lossless predictive coding: decoding

previous line of current field line of interlaced previous field current line of current field

Luminance signal Y

$H(S_0)$	Predictor			H(e)	0 11 1
[bit]	a_1	a_2	a_3	[bit]	Criterion
7.34	7/8	-5/8	3/4	4.30	minimum variance
734	7/8	-1/2	5/8	4.29	minimum entropy

Chrominance signal Cb Cr

$H(S_0)$	Predictor			H(e)	Critorion
[bit]	a_1	a_2	a_3	[bit]	Criterion
5.57	5/8	-1/2	7/8	2.87	minimum variance
5.57	3/8	-1/4	7/8	2.82	minimum entropy