NLP and Deep Learning MAT3399

Lecture 9: Question Answering

Tuan Anh Nguyen @ Aimesoft ted.nguyen95@gmail.com

Question Answering?

Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing that is concerned with building systems that automatically answer questions that are posed by humans in a natural language.

There are different QA variants:

- Extractive QA: The model extracts the answer from a context.
- Generative QA: The model generates the answer in free text.
 - Open Generative QA: The model is given the question and context.
 - Closed Generative QA: The model is given the question only.

Extractive QA vs Generative QA

In this lecture, we mostly focus on Extractive QA.

Is this really "Question Answering"?

Architecture of a Completed QA System

How does it work?

Goal: We try to predict the start/end position of the answer in the context -> Everything between the start & end token is considered the answer.

We pass the question along with the context like this:

[CLS] Which name is also used to describe the Amazon rainforest in English? [SEP] The Amazon rainforest, also known in English as Amazonia or the Amazon Jungle [SEP]

Question Answering Head for Both Start & End token

How to Choose the Best Start & End Token Pair?

We'll look at the logit scores for the n_best start logits and end logits, excluding positions that give:

- An answer that wouldn't be inside the context
- An answer with negative length
- An answer that is too long (we limit the possibilities at max_answer_length=30)

Handle Long Context

The model for document reader has limitation on how many token you can pass to the model. How can we handle very long context?

Answer: Split context into chunks.

Which way is better?

Best Models to Use for QA

Encoder models like BERT, RoBERTA are popular for QA task.

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

Evaluation

We use exact match and F1 score to evaluate QA task:

Exact match (EM): This is basically accuracy. For each question+answer pair, if the *characters* of the model's prediction exactly match the characters of (one of) the True Answer(s), EM = 1, otherwise EM = 0.

F1 score: The number of shared words between the prediction and the truth is the basis of the F1 score: precision is the ratio of the number of shared words to the total number of words in the *prediction*, and recall is the ratio of the number of shared words to the total number of words in the *ground truth*.

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Coding Exercise

Try nguyenvulebinh/vi-mrc-base model for Vietnamese QA.

Finetune vinai/phobert-base with Vietnamese SQUAD dataset. Download data here.

See how to finetune model:

https://huggingface.co/learn/nlp-course/chapter7/7