Outline

MST Revisited

Lecture-Selection Problem and Huffman Encoding Problem
Lecture-Selection Problem
Huffman Encoding Problem

Waiting Customers Problem

Matroid

MST Revisited

MST revisited:

- ▶ to unify Prim and Kruskal algs
- to prove greedy algorithm using loop invariant

Prim and Kruskal in common:

- growing the MST one edge at a time
- ▶ adding a *safe* edge each time

Generic MST Algorithm

GENERIC-MST
$$(G = (V, E), w)$$

- 1: $X \leftarrow \emptyset$
- 2: **while** |X| < |V| 1 **do**
- 3: find a *safe* edge *e*
- 4: $X \leftarrow X \cup e$
- 5: end while
- 6: **return** *X*

Correctness Proof

Definition (Loop Invariant)

X is always a subset of some MST of G.

Correctness of MST.

Cut Property

Theorem (Cut Property)

If X is a subset of some MST T of G = (V, E), choice of e :

- \triangleright partition V into a cut (S, V S) such that no edge in X crosses (S, V - S)
- \triangleright e is the lightest edge across (S, V S)

then, $X \cup e$ is a subset of some MST T' of G.

Cut Property

Cut Property

Correctness of Cut Property.

Given $X \subset T$ (T is some MST), +e

- e ∈ T, done.
- $e \notin TS$, Exchange Argument: $T' = T \cup \{e\} \{e'\}$

- ightharpoonup T' is a tree (connected, n-1 edges)
- $w(T') = w(T) w(e) + w(e') \le w(T) \Rightarrow w(T') = w(T)$

MST Revisited

Unify Prim & Kruskal algorithms:

Prim: partition between growing tree and other trivial trees

Kruskal: partition between trees in forest

Summary: Using loop invariant to prove the correctness of greedy algorithms.

Lecture-Selection

Problem (Lecture-Selection)

n lectures $L = \{L_1, L_2, \dots, L_n\}$ in one day:

- $ightharpoonup L_i:(s_i,f_i)$
- $ightharpoonup L_i, L_i$ are compatible (o.w., conflicting) if:

$$s_i > f_i \vee s_i > f_i$$

► Goal: To listen to as many mutually compatible lectures as possible.

Heuristic Lecture-Selection

Trial & Error:

- earliest-started lecture first.
- shortest lecture first.

- fewest conflict lecture first

Earliest-Finished Lecture First

Example (Earliest-Finished Lecture First)

It is recursive:

$$L = \{L_1, L_2, \dots, L_n\}$$
 sorted by f_i

choose
$$f = L_1$$

$$L' = \{L'_1, L'_2, \ldots\}$$

Correctness Proof

Induction on n:

- ▶ B.S.: n = 1, trivial.
- ► I.H.: < n (strong induction)
- \triangleright I.S.: = n

Lemma (I.S.)

$$L = \{L_1, L_2, \dots, L_n\}$$
 sorted by f_i ,

choose
$$f = L_1$$

$$L' = \{L'_1, L'_2, \ldots\}.$$

Given (I.H.): X' is optimal to L',

To prove: $X = X' \cup \{f\}$ is optimal to L.

Correctness Proof

I.S.: Proof by Contradiction.

$$L = \{L_1, L_2, \dots, L_n\}$$
 sorted by f_i , $f = L_1$ $L' = \{L'_1, L'_2, \dots\}$.

Correctness Proof

Lemma (Optimal Substructure)

Suppose X is optimal to L, $f \in X$, L's subproblem is L', then, X contains X' which is optimal to L'.

Condition: $f \in X$ is optimal

$$l_3$$
 l_4 l_5 l_6 l_2

- ▶ $l_1 \in X = \{l_1, l_2\}$ is not optimal.
- ▶ X does not contain the optimal solution to (I_2, I_5, I_6) .

Correctness Proof

Lemma (Greedy Choice)

There exists optimal solution containing f to L.

Proof.

Let O be any optimal solution to L.

- ▶ $f \in O$, done.
- f ∉ O.
 - ▶ $g \leftarrow$ the earliest-finished lecture in O
 - ► Exchange Argument: $O' = O \{g\} \cup \{f\}$

Lecture-Selection

Prove the correctness of greedy algorithms:

- ► apply Greedy Choice and Optimal Substructure in mathematical induction;
- ► apply Exchange Argument in Greedy Choice

Huffman Encoding

Problem (Huffman 01 Encoding (1))

- ▶ characters C[1...n]; frequencies F[1...n]
- fixed length code
- variable length code
 - ► Morse code (e.g., SOS)
 - prefix code: no code is a prefix of some other code

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y's, and only one z.

а	b	С	d	е	f
45	13	12	16	9	5
000	001	010	011	100	101
0	101	100	111	1101	1100

Huffman Encoding

000000000

Problem (Huffman 01 Encoding (2))

E : binary prefix code

$$L(E) = \sum_{c \in C} f_c \cdot I_E(c), \qquad L = \min_E L(E)$$

Binary Prefix Code

Representation of binary prefix code by full binary tree

$$L(T) = \sum_{c \in C} f(c) \cdot d_T(c)$$
 $L = \min_{T} L(T)$

Huffman Encoding Algorithm

It is recursive:

$$C[1\ldots n], F[1\ldots n],$$

$$f_{n+1} = f_1 + f_2$$
 as lowest siblings

$$C'[3...n+1], F'[3,...n+1]$$

Correctness Proof

Induction on n = |C|:

- ▶ B.S.: n = 1, 2, trivial.
- ▶ I.H.: < n
- ▶ 1.5.: = n

Lemma (I.S.)

$$C[1...n], F[1...n], f_{n+1} = f_1 + f_2, C'[3...n+1], F'[3,...n+1].$$

Given (I.H.): T' is optimal for C', F',

To prove: $T' + \{f_1, f_2\}$ is optimal for C, F.

Correctness Proof

I.S.: Proof by Contradiction.

$$C[1 \ldots n], F[1 \ldots n], f_{n+1} = f_1 + f_2, C'[3 \ldots n+1], F'[3, \ldots n+1].$$

suppose
$$(T,C,F)$$
 $\xrightarrow{\text{choose } f = f_1 + f_2 \\ \text{unfold } T \leftarrow f_1,f_2 \ T'} (T',C',F')$

$$(T'',C,F) \xrightarrow{\text{merge } f_{n+1} = f_1 + f_2, T'' \rightarrow T''' \\ f_1,f_2 \text{ as}} (T''',C',F')$$
lowest siblings $\text{optimal substructure}$

Correctness Proof

Merge (
$$T \rightarrow T'$$
; $T'' \rightarrow T'''$):

$$L(T) = \sum_{i=1}^{n} f(i)d_{T}(c_{i})$$

$$= L(T') - f_{n+1} \cdot d_{T'}(c_{n+1}) + f_{1} \cdot d_{T}(c_{1}) + f_{1} \cdot d_{T}(c_{1})$$

$$= L(T') - (f_{1} + f_{2}) \cdot (d_{T}(c_{1}) - 1) + (f_{1} + f_{2}) \cdot d_{T}(c_{1})$$

$$= L(T') + f_{1} + f_{2}.$$

$$L(T'') = L(T''') + f_{1} + f_{2}$$

$$L(T''') = L(T''') - f_{1} - f_{2} < L(T) - f_{1} - f_{2} = L(T')$$

Correctness Proof

Lemma (Greedy Choice)

Let x, y be two least frequent characters of (C, F), There exists optimal code tree with x, y as lowest siblings.

Proof.

Let T be any optimal code tree.

- ▶ with x, y as lowest siblings, done.
- ▶ o.w., Exchange Argument: $T \Rightarrow T' \Rightarrow T''(a \Leftrightarrow x, b \Leftrightarrow y)$

$$f(x) \le f(a), f(y) \le f(b) \Rightarrow L(T'') \le L(T') \le L(T)$$

T'' is optimal to (C, F) with x, y as lowest siblings.

Huffman Encoding

Prove the correctness of greedy algorithms:

- ▶ apply Greedy Choice and Optimal Substructure in mathematical induction:
- ► apply Exchange Argument in Greedy Choice

Waiting Customers

Problem (Waiting Customers (P10))

- \triangleright n waiting customers $t_1, t_2, \ldots, t_k \ldots t_n$
- for k^{th} : $T(k) = \sum_{i=1}^{k} t_i$
- to minimize $T = \sum_{i=1}^{n} \sum_{i=1}^{k} t_i$

Claim: T is minimized iff t_1, \ldots, t_n are in non-decreasing order.

Prove by Contradiction:

Otherwise, there are, in T two neighbouring pair $t_i > t_{i+1}$ and t_i is before t_{i+1} ,

Exchange Argument: swap $t_i \Leftrightarrow t_{i+1}$ to get T'.

$$T'-T=(t_{i+1}+(t_i+t_{i+1}))-(t_i+(t_{i+1}+t_i))=t_{i+1}-t_i<0.$$

Matroid

Matroid: characterize mathematically the problems which can be solved by greedy algorithm in many cases.

With Matroid:

- cast your problem in terms of Matroid language
- ► Matroid has the Greedy Choice Property and the Optimal Substructure Property
- Matroid problem can be solved by greedy algorithm mechanically

[Section 16.4 @CLRS]

Summary

Greedy algorithm — How to justify your greediness?

- loop invariant MST, Dijkstra
- greedy choice + optimal substructure lecture-selection, Huffman encoding
- exchange argument
 - waiting customers
- Matroid theory