Algorithmique

— introduction générale —

Jacques TISSEAU

LISYC EA 3883 UBO-ENIB-ENSIETA Centre Européen de Réalité Virtuelle Ecole Nationale d'Ingénieurs de Brest

enib © 2007

Définition

• information automatique (P. Dreyfus, 1962)

Définition

- information automatique (P. Dreyfus, 1962)
- informatique : science du traitement automatique de l'information

Définition

- information automatique (P. Dreyfus, 1962)
- informatique : science du traitement automatique de l'information

$Matériel \leftrightarrow Logiciel$

• matériel : ordinateurs (J. Perret, 1955)

Définition

- information automatique (P. Dreyfus, 1962)
- informatique : science du traitement automatique de l'information

$Matériel \leftrightarrow Logiciel$

• matériel : ordinateurs (J. Perret, 1955)

• logiciel : ensemble de programmes remplissant une fonction déterminée, permettant l'accomplissement d'une tâche donnée

Ordinateur

Ordinateur

Architecture de Von Neumann

- élément central : processeur (unité arithmétique et logique, unité de controle)
- échanges avec les autres composants : stocker, récupérer et transférer des données

Ordinateur

Architecture de Von Neumann

- élément central : processeur (unité arithmétique et logique, unité de controle)
- échanges avec les autres composants : stocker, récupérer et transférer des données
- bus d'adresse : désigner le composant
- bus de données : véhiculer l'information

Ordinateurs

Ordinateurs

Micro-processeurs Intel

8086 80486

Micro-processeurs Intel

8086

Pentium 4

80486

Core Duo

Algorithme

• mathématicien persan du 9ème siècle Al-Khwarizmi

Algorithme

- mathématicien persan du 9^{ème} siècle Al-Khwarizmi
- méthode de calcul qui indique la démarche à suivre pour résoudre une série de problèmes équivalents en appliquant dans un ordre précis une suite finie de règles

■TD 5.2

Algorithme

- mathématicien persan du 9ème siècle Al-Khwarizmi
- méthode de calcul qui indique la démarche à suivre pour résoudre une série de problèmes équivalents en appliquant dans un ordre précis une suite finie de règles

■TD 5.2

Algorithmique

• art de construire des algorithmes

Algorithme

- mathématicien persan du 9ème siècle Al-Khwarizmi
- méthode de calcul qui indique la démarche à suivre pour résoudre une série de problèmes équivalents en appliquant dans un ordre précis une suite finie de règles

■TD 5.2

Algorithmique

- art de construire des algorithmes
- validité, robustesse, réutilisabilité

Algorithme

- mathématicien persan du 9^{ème} siècle Al-Khwarizmi
- méthode de calcul qui indique la démarche à suivre pour résoudre une série de problèmes équivalents en appliquant dans un ordre précis une suite finie de règles

■TD 5.2

Algorithmique

- art de construire des algorithmes
- validité, robustesse, réutilisabilité
- complexité, efficacité

■TD 5.3

Du problème au code source

Du problème au code source

- Un algorithme exprime la structure logique d'un programme : il est indépendant du langage de programmation.
- La traduction de l'algorithme dans un langage de programmation dépend du langage choisi.

Du code source à son exécution

Objectifs

acquérir les notions fondamentales de l'algorithmique et les mettre en œuvre avec un langage opérationnel (python).

Objectifs |

acquérir les notions fondamentales de l'algorithmique et les mettre en œuvre avec un langage opérationnel (python).

Pré-requis

• Bac scientifique

Objectifs

acquérir les notions fondamentales de l'algorithmique et les mettre en œuvre avec un langage opérationnel (python).

Pré-requis

• Bac scientifique

3 objectifs majeurs

instructions de base

Objectifs

acquérir les notions fondamentales de l'algorithmique et les mettre en œuvre avec un langage opérationnel (python).

Pré-requis

• Bac scientifique

3 objectifs majeurs

- instructions de base
- procédures et fonctions

Objectifs

acquérir les notions fondamentales de l'algorithmique et les mettre en œuvre avec un langage opérationnel (python).

Pré-requis

Bac scientifique

3 objectifs majeurs

- instructions de base
- procédures et fonctions
- structures de données linéaires

Métaphore musicale

Faire ses gammes

- apprentissage d'un langage algorithmique (semestre 1)
- pédagogie par objectifs

Métaphore musicale

Faire ses gammes

- apprentissage d'un langage algorithmique (semestre 1)
- pédagogie par objectifs

Jouer les grands classiques

- apprentissage des algorithmes classiques (semestres 1 et 2)
- pédagogie par l'exemple

Métaphore musicale

Faire ses gammes

- apprentissage d'un langage algorithmique (semestre 1)
- pédagogie par objectifs

Jouer les grands classiques

- apprentissage des algorithmes classiques (semestres 1 et 2)
- pédagogie par l'exemple

Composer ses propres morceaux

- apprentissage de la conception d'algorithmes (semestre 2)
- pédagogie par problèmes

Objectifs comportementaux

Savoir-être

rigueur

respect des consignes, précision, exactitude $\acute{e}crit \leftrightarrow image$

Objectifs comportementaux

Savoir-être

rigueur

respect des consignes, précision, exactitude $\acute{\text{e}}$ crit \leftrightarrow image

• persévérance

aller au bout des choses $finir \leftrightarrow papillonner$

Objectifs comportementaux

Savoir-être

rigueur

respect des consignes, précision, exactitude \acute{e} crit \leftrightarrow image

persévérance

aller au bout des choses $finir \leftrightarrow papillonner$

autonomie

pratique personnelle, autoformation initiatives \leftrightarrow assistances

Planning

Horaires

- Cours/TD : 24h (1× 3h toutes les 2 semaines) en salle banalisée
- TD: 21h (1×3 h toutes les 2 semaines) en salle informatique

Horaires

- Cours/TD : 24h (1× 3h toutes les 2 semaines) en salle banalisée
- TD : 21h (1× 3h toutes les 2 semaines) en salle informatique

Planning prévisionnel

Voir site Web

iroise.enib.fr/moodle

Documents

Support de cours

- copie papier des transparents projetés pendant le cours
- plage de prise de notes

Documents

Support de cours

- copie papier des transparents projetés pendant le cours
- plage de prise de notes

Notes de cours

- compléments au cours
- exercices corrigés

Documents

Support de cours

- copie papier des transparents projetés pendant le cours
- plage de prise de notes

Notes de cours

- compléments au cours
- exercices corrigés

Site WEB

- planning prévisionnel
- exemples corrigés d'évaluations
- notes des élèves
- forum

Contrôle d'autoformation

- contrôle des connaissances acquises par auto-formation
- durée 30' (en début d'une séance de cours)

Contrôle d'autoformation

- contrôle des connaissances acquises par auto-formation
- durée 30' (en début d'une séance de cours)
- $\bullet \to \text{note d'autoformation (coefficient 1)}$

Contrôle d'autoformation

- contrôle des connaissances acquises par auto-formation
- durée 30' (en début d'une séance de cours)
- $\bullet \to \text{note d'autoformation (coefficient 1)}$

Contrôle de synthèse

- contrôle des compétences acquises sur un thème donné
- durée 1h20 (pendant une séance de cours)

Contrôle d'autoformation

- contrôle des connaissances acquises par auto-formation
- durée 30' (en début d'une séance de cours)
- $\bullet \to \text{note d'autoformation (coefficient 1)}$

Contrôle de synthèse

- contrôle des compétences acquises sur un thème donné
- durée 1h20 (pendant une séance de cours)
- $\bullet \to 2$ DS (coefficient 1 chacun)

Contrôle de TD

- contrôle sur la préparation des exercices de TD
- durée 10' (en début d'une séance de TD)

Contrôle de TD

- contrôle sur la préparation des exercices de TD
- durée 10' (en début d'une séance de TD)

Contrôle d'attention

- QCM « à chaud » sur les points abordés pendant un cours
- durée 5' (en fin d'une séance de cours)

■TD 5.1

Contrôle de TD

- contrôle sur la préparation des exercices de TD
- durée 10' (en début d'une séance de TD)

Contrôle d'attention

- QCM « à chaud » sur les points abordés pendant un cours
- durée 5' (en fin d'une séance de cours)

■TD 5.1

Contrôles d'attention + Contrôles de TD note de travail (coefficient 1)

Notation

« 0, c'est parfait! »

note \equiv distance à l'objectif

Notation

« 0, c'est parfait! »


```
0: « en plein dans le mille! » \rightarrow l'objectif est atteint
```

- \rightarrow on se rapproche de l'objectif 1 : « pas mal! »
- 2: « tout juste sur la cible! » \rightarrow on est encore loin de l'objectif
- 3 : « même pas touchée! » → l'objectif n'est pas atteint

Evaluation des enseignements

Evaluation des enseignements

- « contrat pédagogique »
- 1 évaluation des enseignements par semestre (sur le site Web)

Evaluation des enseignements

- « contrat pédagogique »
- 1 évaluation des enseignements par semestre (sur le site Web)
- améliorer les enseignements

Premier cycle ENIB

Semestre	Thème	Horaires
S1	Algorithmique	45 h
S2	Méthode de développement	45 h
S3	Programmation procédurale	45 h
S3	Programmation par objets	45 h
S4	Programmation pour l'embarqué	45 h

Cycle ingénieur ENIB Tronc commun

Semestre	Thème	Horaires
S5	Programmation par objets	45 h
S6	Programmation par objets	45 h
S6	Modèles pour l'ingénierie des systèmes	45 h
S6	Bases de données	22 h
S7	Systèmes embarqués 1	45 h
S7	Systèmes embarqués 2	45 h
S7	Réseaux	45 h
S8	Projet Professionnalisant en Equipe	350 h
S10	Stage en entreprise	20 sem

Cycle ingénieur ENIB

Semestre	Thème	Horaires
S7	Administration Systèmes et Réseaux	45 h
S7	Génie Logiciel	45 h
S7	Systèmes d'Information	45 h
S7	Interfaces Homme-Machine	45 h
S7	Applications Réparties	45 h

Cycle ingénieur ENIB Modules optionnels informatique

Semestre	Thème	Horaires
S9	Systèmes distribués	45 h
S9	Contrôle adaptatif	45 h
S9	Styles de programmation	45 h
S9	Simulation	45 h
S9	Réalité Virtuelle	45 h

Recherche en informatique à l'ENIB LISYC/CERV

LISYC

Laboratoire d'Informatique des SYstèmes Complexes

- EA 3883 UBO-ENIB-ENSIETA
- 5 équipes \approx 75 enseignants-chercheurs

Recherche en informatique à l'ENIB LISYC/CERV

LISYC

Laboratoire d'Informatique des SYstèmes Complexes

- EA 3883 UBO-ENIB-ENSIETA
- 5 équipes ≈ 75 enseignants-chercheurs

$\mathbb{C}\mathrm{ERV}$

Centre Européen de Réalité Virtuelle

- établissement de l'ENIB
- $\bullet \approx 55$ enseignants-chercheurs
- 3 équipes LISYC : ARéVi, EBV, SARA
- 3 entreprises : cervVAL, STAGO, Virtualys

Recherche en informatique à l'ENIB LISYC/CERV

