Servicios de la capa de enlace

Framing

Una entidad de la capa de Enlace en un emisor recibe una PDU de la capa de Red, o paquete, y crea una PDU de la capa de Enlace (frame, marco o trama) que la contiene. El frame puede incluir direcciones de enlace en la cabecera o header y un campo de cola o trailer de redundancia para control de integridad del frame.

En el lado del receptor, la capa de Enlace reconoce el frame, determinando dónde comienza y termina, separando los campos de header y trailer y entregando su contenido a la capa de Red.

###Control
de
acceso
al
medio
###Entrega
confiable

###Control de flujo

###Detección y corrección de errores

¿Cuáles son las diferencias en las funciones de control de flujo de la capa de Enlace y de Transporte? ¿Cuáles son las diferencias en las funciones de detección y corrección de errores de la capa de Enlace y de Transporte?

Detección y corrección de errores

En las PDU de las capas de Transporte y de Red encontramos el campo de Internet Checksum o suma de control para verificación de la integridad de las PDU. En la capa de Enlace, las funciones de control de errores son más sofisticadas y pueden detectar (y aun corregir) errores de uno o varios bits.

```
\#\#\# {\sf Esquemas}
{\rm de}
de-
tec-
ción
de
er-
rores
Bits
{\rm de}
pari-
\operatorname{dad}
Méto-
dos
de
sumas
{\rm de}
con-
\operatorname{trol}
(Check-
sums)
Con-
\operatorname{trol}
de
re-
dun-
dan-
cia
cíclico
(Cyclic
Re-
dun-
dancy
Check,
CRC)
\#\#\operatorname{Protocolos}
de
ac-
ceso
múlti-
\operatorname{ple}
```

Enlaces punto a punto (pointtopoint) En- ${\rm laces}$ defibraóptica, enlaces inalámbri- \cos direccionales (microondas, satelitales) En- ${\rm laces}$ deacceso múltiple О ${\rm de}$ di - ${\rm fusi\'{o}n}$ (broadcast) То- ${\rm dos}$ losno- $_{\rm del}^{\rm dgs}$ en-

lace están conectados Cuando

los

medios

son

com-

par-

tidos,

es

posi-

ble

que

 dos

o más

no-

dos

comien-

cen

una

trans-

misión

al

 ${\bf mismo}$

tiempo,

ha-

 ${\rm ciendo}$

que

los

 ${\rm frames}$

 $\operatorname{emi-}$

ti-

 dos

coli-

sio-

nen.

 El efecto

 ${\rm de}$

una

col-

isión

escor-

romper

los

 ${\rm frames}$

que

coli-4 sio-

nan

(hac-

er-

 ${\rm los}$ ir-

recono-

ci-

Características deseables de un protocolo de acceso múltiple

• Equitativo

Cuando haya M nodos que tienen datos para enviar compartiendo un canal de capacidad R, cada nodo deberá poder lograr en promedio una tasa de transferencia de R/M.

Descentralizado

Si existiera un único coordinador del acceso al medio, éste podría convertirse en un **cuello de botella** y en un **punto único de falla**. Un protocolo de acceso al medio descentralizado es aquel donde la decisión de cuál nodo será el siguiente en acceder es tomada en forma colaborativa por todos los nodos del enlace.

• Simple

Categorías de protocolos de acceso múltiple

Protocolos de particionamiento de canal

- TDM (Time Division Multiplexing)
- FDM (Frequency Division Multiplexing)

De toma de turnos

• Token Passing (Token Bus, Token Ring)

De acceso aleatorio

- ALOHA
- CSMA
- Ethernet

Direccionamiento de Enlace

Así como las direcciones IP corresponden a la capa de Red, existe un espacio de direcciones propio de la capa de Enlace.

- Las direcciones IP públicas son alcanzables desde cualquier punto de Internet. En cambio, las direcciones de la capa de Enlace sólo son visibles en el ámbito de un enlace.
- Las direcciones de enlace están fijas a los dispositivos de comunicaciones o
 interfaces y viajan con ellos. Cuando un dispositivo cambia de red, cambia
 de dirección IP pero conserva su dirección de Enlace. Una analogía válida
 relacionaría la dirección MAC con el DNI de una persona, y la dirección
 IP con el domicilio postal.
- Las direcciones IP tienen una estructura jerárquica, porque expresan un número de red o subred, y un número de host contenido en esa red. El espacio de direcciones de Enlace es plano.

En una LAN, los dispositivos de hardware, o interfaces, están configurados por el fabricante con direcciones de hardware o **direcciones MAC**. Las direcciones MAC están compuestas por seis octetos y suelen escribirse en notación hexadecimal (como, por ejemplo, **1A:23:F9:CD:06:9B**). Este formato aplica a las direcciones MAC en redes Ethernet, Token Ring, y WiFi. Otras tecnologías de capa de Enlace pueden tener direcciones conformadas de otra manera.

Una dirección MAC se separa en dos componentes: los tres primeros octetos (Organizational Unique Identifier, OUI) son asignados por IEEE a los fabricantes de dispositivos en forma única. Cada fabricante recibe su OUI y administra los tres restantes octetos a conveniencia, de modo de no liberar al mercado dos dispositivos con la misma dirección.

Las direcciones MAC destino y origen (en ese orden) aparecen en la cabecera de todos los frames emitidos. En un medio compartido, cuando una estación gana el canal, comienza a transmitir su frame, el cual se difunde por el medio y alcanza a todas las estaciones. Sólo la estación cuya dirección física coincide con la dirección destino del frame lo procesa, extrayendo la PDU de capa de Red contenida y elevándola a la entidad de Red de ese nodo. Todas las demás estaciones simplemente descartan el frame.

Sin embargo, existe una dirección de capa de Enlace especial, la **dirección de broadcast**, que es reconocida como propia por todos los nodos de la red. Cuando un frame contiene como dirección destino la dirección de broadcast (**FF:FF:FF:FF:FF:FF)**, todos los nodos que reciben el frame lo procesan como si fuera dirigido a ellos. Los frames de broadcast son importantes en muchos protocolos que necesitan distribuir información o hacer consultas en toda la LAN.

Protocolo ARP

El protocolo de resolución de direcciones (Address Resolution Protocol, ARP) es el que relaciona la capa de Red con la capa de Enlace. Es el mecanismo que permite averiguar la dirección MAC de un nodo a quien se dirige un paquete.

Cada vez que un host necesita hacer llegar paquetes a otro nodo destino, debe conocer la dirección IP de ese destino para poder iniciar la solicitud a la entidad de capa de Red emisora. Esta dirección IP destino puede ser conocida de antemano por la aplicación, o puede haber sido el resultado de una traducción de nombres pedida a un servidor DNS.

Esta dirección IP es toda la información que tiene la entidad de Red emisora para hacer llegar su paquete a destino. Cuando la entidad de Red recibe la orden de emitir el paquete, debe determinar si el destino se encuentra en la misma red, o en una red diferente. La respuesta a esta pregunta es fundamental para que la capa de Enlace pueda construir correctamente el frame que transportará ese paquete.

Para responder esta pregunta, la capa de Red utiliza la **tabla de ruteo** o tabla de reenvío del host origen para encontrar una ruta al destino.

Se distinguen dos casos:

- Si la ruta elegida dice que la red del destino está directamente conectada al host, se debe construir un frame con la dirección destino igual a la dirección MAC del nodo destino.
- 2. Si la ruta elegida dice que la red del destino no es la misma que la del host, entonces esa red está más allá de un cierto router; y se debe construir un frame con la dirección destino igual a la dirección MAC del router.

En el caso 1, la entrega del paquete es local al ámbito de enlace, porque origen y destino están en la misma red. En cambio, en el caso 2, se necesita el servicio de un router que transporte el paquete más allá de la red de origen.

Ejemplo

Sea host A con la dirección IP 170.210.80.14/26, y cuyo router por defecto es R, con dirección 170.210.80.1. Supongamos que este host A hace ping, o cualquier otro tipo de tráfico basado en IP, hacia otro host B.

1. Si la dirección del host B fuera, por ejemplo, 170.210.80.8, entonces la entidad de Red del host A, aplicando la máscara de 26 bits de su configuración a la dirección destino de B, encontraría que la red destino es la misma que la red origen, ya que dirección(A) AND máscara = dirección(B)

- AND máscara. La entrega será local. Se encapsulará el paquete en un frame con la dirección MAC del host B y será enviado por la red.
- 2. Si la dirección del host B fuera, en cambio, 200.15.1.7, entonces la entidad de Red del host A determinará que la red destino **es otra**; y necesariamente la entrega deberá hacerse a través del router R. Se encapsulará el paquete en un frame con la dirección MAC **del router R** y este frame será enviado por la red. La interfaz del router R será la que procese el frame, extraiga el paquete, y lo someta al proceso de reenvío habitual que realizan los routers.

En ambos casos, se necesita la dirección MAC de un segundo nodo, ya sea el destinatario final, o el router intermedio. ¿Cómo se obtiene esta dirección MAC? Aquí es donde interviene el protocolo ARP.

Cuando la capa de Red del host A decida de quién es la dirección MAC que necesita (la de B o la de R), el protocolo ARP emitirá un frame de broadcast conteniendo una consulta ARP que, básicamente, dice "¿De quién es la dirección IP X.X.X.X?". Como el frame es emitido con destino a la dirección de broadcast, todos los nodos de la red lo procesarán. Aquel que esté configurado con la dirección IP presentada en la consulta emitirá una **respuesta ARP** dirigida al nodo A, y esta respuesta ARP contiene la dirección MAC buscada. A partir de aquí el nodo A puede terminar de construir el frame y enviarlo a la red.

Este tráfico ARP, aunque necesario, introduce una demora y crea una cierta carga en la red. Para minimizar estos inconvenientes, y como es sumamente probable que se vuelva a necesitar esta dirección MAC para el tráfico siguiente, esta relación dirección IP-dirección MAC recientemente averiguada se guarda en una cache, la **tabla ARP** del host. Eventualmente el tiempo de vida de esta entrada expirará, y la entrada será borrada de la tabla.