2018年TI杯大学生电子设计竞赛

A题:电流信号检测装置(本科)

1. 任务

如图1所示,由任意波信号发生器产生的信号经功率放大电路驱动后,通过导线连接10Ω电阻 负载,形成一电流环路,设计一采用非接触式传感的电流信号检测装置,检测环路电流信号的幅度 及频率,并将信号的参数显示出来。

图1 电流信号检测连接图

2. 要求

- (1) 设计一功率放大电路,当输入正弦信号频率范围为50Hz~1kHz时,要求流过 10Ω 负载电阻的电流峰峰值不小于1A,要求电流信号无失真。 (25分)
- (2) 用漆包线绕制线圈制作电流传感器以获取电流信号;设计电流信号检测分析电路,测量并显示电流信号的峰峰值及频率。 (15分)
- (3) 被测正弦电流峰峰值范围为10mA~1A,电流测量精度优于5%,频率测量精度优于1%。 (25分)
- (4) 任意波信号发生器输出非正弦信号时,基波频率范围为50Hz~200Hz,测量电流信号基波频率,频率测量精度优于1%;测量基本及各次谐波分量的幅度(振幅值),电流谐波测量频率不超过1kHz,测量精度优于5%。 (25分)

(5) 其他。

(**10**分)

(6) 设计报告

(20分)

项目	主要内容	满分
系统方案	方案描述、比较与选择	4
理论分析与计算	电流测量方法 谐波分量测量方法	5
电路设计	电路设计	5
测试方案与测试结果	测试方案 测试结果完整性 测试结果分析	4
设计报告结构 及规范性	摘要、报告正文结构、公式、图表的完整性和 规范性	2
总分		20

3. 说明

- (1) 为提高电流传感器的灵敏度,可用用漆包线在锰芯磁环上绕制线圈,制作电流传感器。
- (2)在锰芯磁环上绕N2匝导线,将流过被测电流的导线从磁环中穿过(N1=1),构成电流传感器。