TP Boitier d'accésoire réacteur d'avion

Selim FARCI Dimitrie BENOIT Eugénie MORAIS

December 2024

Sommaire

1	Introduction										
2	Phase 1										
	2.1 Calculs Diamètre des engrenages										
	2.2 Schéma cinématique										
3	Phase II										
	3.1 Calcul de dimensionnements de roulement										
	3.1.1 Application Numérique										
	3.2 Dimensionnement de l'arbre										

1 Introduction

2 Phase 1

Il est demandé de proposer un schéma cinématique de la transmission en précisant les diamètres primitifs des pignons tout en respectant :

- La configuration imposée et les contraintes citées,
- Les rapports de transmission par engrenage compris entre 1 et 2,
- Sens de rotation (SH, SIH),
- Les contraintes de dimensionnement des pignons (Da < 150 mm) afin d'optimiser la masseet l'encombrement du boîtier.

FIGURE 1 – Schéma Cinématique

2.1 Calculs Diamètre des engrenages

On calcule les rapports de réductions :

$$R = \frac{N_s}{N_e} = \frac{D_e}{D_s}$$

Rapport de réductions :

2.2 Schéma cinématique

3 Phase II

Il est demandé d'effectuer le calcul d'avant-projet de l'arbre d'entrée, c'est à dire le dimensionnement :

- Des engrenages aux critères de vitesses et de résistance, Des roulements au critère de durée de vie ,
- Des cannelures selon la méthode normalisée,
- Des arbres de transmission au critère de résistance.

3.1 Calcul de dimensionnements de roulement

Une liaison pivot à pour schéma schéma cinématique équivalant :

FIGURE 2 – Schéma cinématique de l'arbre d'entrée

Ajouter également le schéma cinématique de l'arbre (en 1er)

On isole l'arbre d'entrée : on défini les torseurs des actions mécanique exercée sur cette arbre

$$\{\vec{T}_{A}roulement\} = \begin{bmatrix} R_{x}a & 0 \\ R_{y}a & 0 \\ R_{z}a & 0 \end{bmatrix}$$

$$\tag{1}$$

$$\{\vec{T}_{C}roulement\} = \begin{bmatrix} 0 & 0 \\ R_{y}c & 0 \\ R_{z}c & 0 \end{bmatrix}$$
(2)

$$\{\vec{T}_C m\} = \begin{bmatrix} 0 & Cm \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \tag{3}$$

On se place au démarrage, on prend en compte donc seulement la force tangantiel Ft et radiale Fr appliqué sur le pignon sur l'arbre d'entrée provenant du démarreur.

$$\{\vec{T}_F\} = \begin{bmatrix} 0 & 0\\ Fr & 0\\ Ft & 0 \end{bmatrix} \tag{4}$$

$$\{\vec{T}_G\} = \begin{bmatrix} 0 & 0\\ 0 & 0\\ 0 & 0 \end{bmatrix} \tag{5}$$

$$\{\vec{T}_H\} = \begin{bmatrix} 0 & 0\\ 0 & 0\\ 0 & 0 \end{bmatrix} \tag{6}$$

On applique le PFS en A : Résultantes fondamentales de la statique

$$\vec{M}_{A}(RoulementA) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + \vec{A}\vec{A} \wedge \begin{bmatrix} Rx_{a}\\Ry_{a}\\Rz_{a} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\vec{M}_{A}(RoulementC) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + \vec{A}\vec{C} \wedge \begin{bmatrix} 0\\Ry_{c}\\Rz_{c} \end{bmatrix} = \begin{bmatrix} 0\\AC * Rzc\\AC * Ryc \end{bmatrix}$$

$$\vec{M}_{A}(pignonF) = \begin{bmatrix} 0\\0\\0 \end{bmatrix} + \vec{A}\vec{F} \wedge \begin{bmatrix} 0\\Ft\\Fr \end{bmatrix} = \begin{bmatrix} 0\\AF * Ft\\AF * Fr \end{bmatrix}$$

$$\vec{M}_A(pignonG) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + \vec{AG} \wedge \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$\vec{M}_A(pignonH) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + \vec{AH} \wedge \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$
(12)

$$PFD: \sum \vec{T} = 0 \tag{13}$$

TMS:
$$\begin{cases} 0 + 0 + 0 + 0 = Cm \\ 0 + (AC)Rzc + AF * ft = 0 \\ 0 + -AC * Ryc - AF * *Fr = 0 \end{cases} \begin{cases} Rzc = -\frac{AF \cdot F_t}{AC} \\ R_yc = -\frac{AF \cdot F_r}{AC} \end{cases}$$
(14)

TRS:
$$\begin{cases} Rxa + 0 + 0 = 0 \\ Rya + Ryc + Fr = 0 \\ Rza + Rzc + Ft = 0 \end{cases} \begin{cases} Rya = -Fr - Ryc \\ Rza = -Ft - Rzc \end{cases}$$
(15)

$$\begin{split} \mathbf{R}_{a} &= \sqrt{R_{ax}^{2} + R_{ay}^{2} + R_{az}^{2}} \\ R_{c} &= \sqrt{R_{cx}^{2} + R_{cy}^{2} + R_{cz}^{2}} \\ \mathbf{L}_{10h} &= \frac{\left(\frac{C}{P}\right)^{3} \times 10^{6}}{60 \times N} \iff C = \sqrt[3]{\frac{L_{10h} \times 60 \times N}{10^{6}} \times P} \end{split}$$

3.1.1 Application Numérique

Prenons les valeurs suivantes pour les paramètres : On calcul la force tangantiel et radiale en fonct du couple

$$F_t = \frac{2 \cdot c_m \cdot 10^2}{D_{\text{primitif}}} = 372.54 \,\text{N},$$
 (16)

$$F_r = F_t \cdot \tan(20^\circ) = 145.6 \,\text{N}.$$
 (17)

 $-AF = 193 \,\mathrm{mm}; AC = 153 \,\mathrm{mm}$

— $L10h = 2000 \,\mathrm{h}$

On trouve: $Ry_a = -356.38 Net Rz_a = -979.11 Net$

 $R_a = 5027.4N; R_c = 1041N$

 $\begin{aligned} & \text{Pour le roulement A}: \mathbf{C}_a = 51, 6kN \\ & Pour le roulement C: C_c = 10.7kN \end{aligned}$

3.2 Dimensionnement de l'arbre

On choisit le matériaux : 34 Cr Mo 4 Rpe = 525MPA On a également $\tau = \frac{M_t(x) \cdot R}{I_g(S)} = \frac{C_m}{\left(\pi \cdot \frac{R^4}{2}\right)} = 0.5 * Re$ $R_e = 1050 \, \text{MPa} \implies R_{pe} = \frac{1050}{2}$

Annexe 4 : Matériaux des arbres de transmissions

					Résistance à	Limite				
		Module	Coefficient	Masse	la rupture à	élastique à				
Nuan	ices normalisées	d'élasticité	de Poisson	volumique	la traction	la traction				
		E	ν	ρ	Rr	Re				
		(MPa)		(Kg/m³)	(MPa)	(MPa)				
	Λ.	, ,	ánáral etruetu		, ,	(····)				
	Aciers d'usage général - structures minces (tôles et profilés)									
	S 235	205000	0,3	7800	340	235				
	S 335	205000	0,3 7800		490	355				
	Aciers de construction mécanique									
: S	E 295	205000	0,3	7800	470	295				
Aciers et Fontes	S 355	205000	0,3	7800	490	355				
#	Aciers faiblement alliés (aucun élément d'addition ne dépasse 5% en masse)									
ers e	34 Cr Mo 4	205000	0,3	7800	700 à 1100	450 à 750				
Aci	36 Ni Cr Mo 16	205000	0,3	7800	1000 à 1750	800 à 1250				
	Aciers fortement alliés (acier inoxydable)									
	X 2 Cr Ni 19-11	205000	0,3	7800	440 à 640	185				
	Fonte à graphite sphéroïdal									
	FGS 400-15	165000	0,3	7200	400	250				

FIGURE 3 – MAtériaux arbre

$${\rm R}_{pe}=\frac{R_e}{S}=\frac{1050}{2}=525\,{\rm MPa}.$$
 On choisit donc le matériaux : 34 Cr Mo 4

On a :
$$\tau = \frac{M_t(x) \cdot R}{I_g(S)} = \frac{C_m}{\left(\pi \cdot \frac{R^3}{2}\right)}$$
 (18)

$$\tau = 0.5 \cdot R_{pe} = 0.5 \cdot 525 = 262.5 \text{ MPa.}$$

$$\tau = \frac{M_t(x) \cdot R}{I_g(S)} = \frac{C_m}{\left(\pi \cdot \frac{R^4}{2}\right)} \implies R = \sqrt[3]{\frac{C_m \cdot 2}{\pi \cdot \tau}} = 36mm$$
(19)

d	П	В	E	Co	Ρ,				des deux cotés	d'un cotes)
nm			ΚN		kN	tr/min		kg	-	
35 suite	72 72 80	17 23 21	31,2 25,5 35,1	17,6 15,3 19	0,75 0,655 0,815	20 000 - 19 000	13 000 6 300 12 000	0,26 0,4 0,46	6207 ETN9 62207-2RS1 • 6307	-
	80 80 80	21 21 21	35,1 35,1 35,1	19 19 19	0,815 0,815 0,815	19 000 - 19 000	17 000 6 000 9 500	0,54 0,46 0,48	6307 M • 6307-2R5H • 6307-2Z	6307-RSH
	80 100	31 25	33,2 55,3	19 31	0,815 1,29	16 000	6 000 10 000	0,68 0,97	62307-2R51 6407	-
0	52 52 62	7 7 12	4,49 4,49 13,8	3,75 3,75 10	0,16 0,16 0,425	26 000 26 000 -	13 000 16 000 6 700	0.034 0.032 0,12	• 61808-2RZ • 61808 • 61908-2RS1	-
	62 68	12 12 9	13,8 13,8 13,8	10 10 10,2	0,425 0,425 0,44	24 000 24 000 22 000	12 000 14 000 14 000	0.12 0.12 0.13	• 61908-2RZ • 61908 • 16008	-
	68 68 68	15 15 15	17,8 17,8 17,8	11 11 11	0,49 0,49 0,49	22 000 - 22 000	14 000 6 300 11 000	0,19 0,2 0,2	• 6008 • 6008-2R51 6008-2RZ	6008-RS: 6008-RZ
	68 68 80	15 21 18	17,8 16,8 32,5	11 11 19	0,49 0,49 0,8	22 000 - 18 000	11 000 6 300 11 000	0,2 0,27 0,37	► 6008-2Z 63008-2R51 ► 6208	6008-Z - -
	80 80 80	18 18 18	32,5 32,5 32,5	19 19 19	0,8 8,0 8,0	- 18 000 18 000	5 600 9 000 9 000	0,37 0,38 0,38	 6208-2R5H 6208-2RZ 6208-2Z 	► 6208-RSF 6208-RZ 6208-Z
	80 80 90	18 23 23	35,8 30,7 42,3	20,8 19 24	0,88 0,8 1,02	18 000 - 17 000	11 000 5 600 11 000	0,34 0,47 0,63	6208 ETN9 62208-2RS1 • 6308	-
	90 90 90	23 23 23	42,3 42,3 42,3	24 24 24	1,02 1,02 1,02	17 000 17 000	5 000 8 500 8 500	0,64 0,65 0,65	 6308-2RSH 6308-2RZ 6308-2Z 	• 6308-RSI 6308-RZ 6308-Z
	90 110	33 27	41 63.7	24 36.5	1,02	14 000	5 000 9 000	0,92 1.25	62308-2R51 6408	-

FIGURE 4 – Catalogue roulements

On choisit les roulements : 61908-ZRZ 6508