Semana 7: Correctitud y completitud de resolución

Problema a resolver

Sea P un conjunto de proposiciones, y Σ un conjunto de cláusulas en L(P), y recuerda que $\Sigma \vdash \bot$ indica que es existe una demostración por resolución de \bot desde el conjunto Σ . Entonces vas a demostrar:

Teorema (correctitud de resolución). Si $\Sigma \vdash \bot$ entonces Σ es inconsistente.

Teorema (completitud de resolución). Si Σ es inconsistente entonces $\Sigma \vdash \bot$.

Correctitud

Vamos a demostrar un resultado un poco más fuerte (por que simplifica la demostración). Para un conjunto Σ de cláusulas y una cláusula C, demostraremos que

Si
$$\Sigma \vdash C$$
 entonces $\Sigma \models C$.

Supongamos entonces que $\Sigma \vdash C$, para Σ y C definidos anteriormente. Tenemos que mostrar que $\Sigma \models C$. La demostración es por inducción en el largo de la demostración por resolución de C desde el conjunto Σ .

Caso base. El caso base es cuando la demostración por resolución de C desde el conjunto Σ tiene largo 1. argumenta por que $\Sigma \models C$ en ese caso.

Caso inductivo. Asume que, si existe una demostración por resolución de una cláusula C' desde un conjunto Σ' con k o menos reglas, entonces $\Sigma' \models C'$. Ahora supón que existe una demostración por resolución de C desde Σ , y que usa k+1 reglas. Demuestra que $\Sigma \models C$.

Completitud

La idea es hacer una inducción por la cantidad de variables en P. Supongamos entonces que Σ es inconsistente. Tenemos que demostrar que $\Sigma \vdash \bot$.

Caso base. El caso base es cuando P tiene cero variables. Entonces $\Sigma = \{\bot\}$, en cuyo caso podemos encontrar una demostración por resolución de \bot desde el conjunto Σ (la demostración que solo tiene un paso: $\{\bot\}$, o $\Sigma = \emptyset$, en cuyo caso Σ es trivialmente satisfacible y por tanto no corresponde a nuestra hipotesis.

Caso inductivo. Vamos a asumir que para todo conjunto Σ' construido usando k o menos proposiciones se tiene que si Σ' es inconsistente entonces $\Sigma' \vdash \bot$. Supón ahora un conjunto Σ de cláusulas construido usando k+1 proposiciones.

Sea ahora $p \in P$ una proposición cualquiera, y define

 $\mathcal{C}_p = \{C \in \Sigma \mid C \text{ usa el literal } p \text{ pero no usa } \neg p\}$ $\mathcal{C}_{\neg p} = \{C \in \Sigma \mid C \text{ usa el literal } \neg p \text{ pero no usa } p\}$ $\mathcal{C}_{p,\neg p} = \{C \in \Sigma \mid C \text{ usa tanto el literal } p \text{ como el literal } \neg p\}$ $\mathcal{C}_{-} = \{C \in \Sigma \mid C \text{ no usa ni el literal } p \text{ ni el literal } \neg p\}$

Lo primero es sacarnos de encima las cláusulas de la forma $C_1 \lor p \lor C_2 \lor \neg p \lor C_3$. Demuestra el siguiente Lema:

Lema 1. Σ es inconsistente si y solo si $\Sigma \setminus C_{p,\neg p}$ es inconsistente.

Por lo que asumiremos que Σ no contiene cláusulas con p y $\neg p$.

Ahora, sea \mathcal{D} el producto de aplicar la regla de resolución para cada par de cláusulas $C_p \in \mathcal{C}_p$ con una cláusula $C_{\neg p} \in \mathcal{C}_{\neg p}$. Como un ejemplo, si C_p es de la forma $A \lor p \lor B$ y $C_{\neg p}$ es de la forma $A' \lor \neg p \lor B'$, entonces aplicando

$$\begin{array}{c}
A \lor p \lor B \\
A' \lor \neg p \lor B' \\
\hline
A \lor B \lor A' \lor B',
\end{array}$$

tenemos que la cláusula $A \vee B \vee A' \vee B'$ pertenece a \mathcal{D} .

Nota que $\Gamma = \mathcal{C}_- \cup \mathcal{D}$ es un conjunto de cláusulas con k variables (no usa ni p ni $\neg p$), y por lo tanto podemos usar hipótesis de inducción: Si Γ es inconsistente, entonces $\Gamma \vdash \bot$. La demostración se sigue de los dos siguientes resultados (el primero fácil, el segundo algo más difícil):

Lema 2. Si $\Gamma \vdash \bot$ entonces $\Sigma \vdash \bot$. Para demostrar este Lema debes mostrar que toda demostración por resolución de \bot desde el conjunto Γ puede ser extendida a una demostración por resolución de \bot desde el conjunto Σ .

Lema 3. Si Σ es inconsistente, entonces Γ es inconsistente. Para demostrar esto puedes asumir por contradicción que Γ es satisfacible, por una valuación τ . En este caso, τ no está definida para p, ya que ni p ni $\neg p$ aparecen en Γ . Considera entonces que pasa al analizar las valuación τ^p y $\tau^{\neg p}$, donde

$$\tau^p = \begin{cases} \tau^p(q) = \tau(q), & q \neq p \\ \tau^p(p) = 1 \end{cases} \qquad \tau^{\neg p} = \begin{cases} \tau^{\neg} p(q) = \tau(q), & q \neq p \\ \tau^{\neg p}(p) = 0 \end{cases}$$

Completitud fuerte

Si bien nuestro sistema deductivo es correcto y completo para mostrar inconsistencias, podemos demostrar que no nos basta para resolver consecuencia lógica en general.

Ejercicio. Encuentra un conjunto Σ de cláusulas y una cláusula C tal que $\Sigma \models C$ pero en donde no es posible encontrar una demostración por resolución de C desde el conjunto Σ .

¿Cuál es el problema? Podríamos verificar si $\Sigma \models C$ mirando que $\Sigma \cup \{\neg C\}$ fuese inconsistente. El problema es que $\neg C$ ya no es una cláusula, habría que transformarla primero a una cláusula, y después aplicar resolución. ¿Será posible agregar algunas reglas a resolución de manera que el sistema deductivo resultante sea correcto y completo incluso para consecuencia lógica? En otras palabras, ¿podemos modificar resolución de tal forma que $\Sigma \models C$ si y solo si $\Sigma \vdash C$?

Si se puede! La clave es permitir la introducción de tautologías en cualquier momento de la resolución. Más específicamente, definimos una demostración por resolución fuerte de la siguiente manera:

Definición. Una demostración por resolución fuerte de una cláusula C desde un conjunto de cláusulas Σ es una secuencia C_1, C_2, \ldots, C_n de cláusulas tales que

- Para cada $i \leq n$,
 - $C_i \in \Sigma$, o bien
 - \bullet C_i es una tautología, o bien
 - existen j, k < i tal que C_i es producto de aplicar resolución sobre las cláusulas C_j y C_k , o bien
 - existe k < i tal que C_i es producto de aplicar factorización sobre C_k ;
- $C = C_n$

Escribimos $\Sigma \vdash_F C$ cuando existe una demostración por resolución fuerte de una cláusula C desde un conjunto de cláusulas Σ .

Ejercicio. Muestra que $\Sigma \vdash_F C$ si y solo si $\Sigma \models C$.