Lineární algebra, transformace v rovině, fraktály

Radek Pelánek

IV122

Lineární algebra – pojmy

- skalár, vektor, matice
- sčítání, násobení, transpozice, inverze
- diagonální matice

Rozcvička

$$\left(\begin{array}{cc}2&-0,5\\-1&3\end{array}\right)\cdot\left(\begin{array}{c}3\\2\end{array}\right)=$$

Rozcvička

$$\left(\begin{array}{cc}2&-0,5\\-1&3\end{array}\right)\cdot\left(\begin{array}{c}3\\2\end{array}\right)=$$

Geometrická interpretace?

Rozcvička: geometrická interpretace

$$\left(\begin{array}{cc}
2 & -0,5 \\
-1 & 3
\end{array}\right)$$

Lineární a afinní transformace

- lineární transformace:
 - f(a+b) = f(a) + f(b)
 - $f(k \cdot a) = k \cdot f(a)$
- afinní transformace: lineární transformace + posun

Lineární a afinní transformace v rovině

- posunutí
- překlopení
- rotace
- změna velikosti

Jak zapsat pomocí vektorů a matic?

Lineární a afinní transformace v rovině

- lineární transformace \sim násobení maticí 2×2
 - ullet sloupce matice \sim "kam se zobrazí body [1,0] a [0,1]"
- ullet afinní transformace \sim násobení maticí $2 \times 2 +$ přičtení vektoru délky 2

Posunutí (translation)

Překlopení (reflexion)

Překlopení (reflexion)

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)$$

Změna velikosti (scaling)

Změna velikosti (scaling)

Rotace (rotation)

Rotace (rotation)

Shear

Tutor – úloha Transformace

- tutor.fi.muni.cz
- úloha Transformace
- úlohy obsahující v názvu "matice"

Homogenní souřadnice

- \bullet reprezentace afinních transformací pomocí matice 3×3
- bod (x, y) reprezentujeme vektorem (x, y, 1)
- skládání transformací = násobení matic (pozor na pořadí násobení)

Klasické souřadnice

Homogenní souřadnice

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} e \\ f \end{array}\right)$$

$$\left(\begin{array}{ccc}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right) \cdot \left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)$$

Homogenní souřadnice: příklady

Rotace Posunutí
$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix}$$

Úkol: implementace transformací

- ullet transformace reprezentujte maticí 3×3
- zvolte vhodnou reprezentaci obrazce v rovině (např. seznam úseček)
- implementujte:
 - generování základních transformací, např. rotation(angle), scaling(sx, sy)
 - skládání transformací
 - aplikaci transformace na obrazec
- otestujte

Rady

- funkcionální spíše než objektový styl programování
- transformace \sim matice \sim pole 3 \times 3 (není potřeba nic navíc)
- funkce pro generování, skládání, aplikaci

Ukázka 1

Repeat 10: rotation(20), scaling(1.1, 1.1), translation(5, 10)

Ukázka 2

Repeat 15: rotation(10), scaling(1.1, 0.8)

Ukázka 3

Repeat 25: shear(1.3), rotation(10), scaling(0.9,0.9), translation(50, 50)

Poznámka

- uvedené příklady nemají vyznačené osy
- pro stejnou sekvenci operací můžete tedy dostat jiný výstup

(rozmyslete si, vyzkoušejte)

Multiple Reduction Copy Machine (MRCM)

- speciální případ konceptu deterministic iterated function system
- iterovaně provádíme operaci: "nahraď obrazec několika zmenšenými kopiemi"
- iniciální obrázek není důležitý
- "atraktor" operace (pevný bod, invariant) typicky fraktál
- definice "zmenšených kopií" pomocí afinních transformací

MRCM: princip

Peitgen, Jurgens, Saupe. Chaos and Fractals

MRCM: příklady

Sierpińského příbuzní

Peitgen, Jurgens, Saupe. Chaos and Fractals

Sierpińského příbuzní

Peitgen, Jurgens, Saupe. Chaos and Fractals

Hvězda

а	Ь	С	d	e	f
0.255	0				0.6714
0.255	0	0	0.255	0.1146	0.2232
0.255	0				0.2232
0.370	-0.642	0.642	0.370	0.6356	-0.0061

Interpretace uvedených konstant

$$\left(\begin{array}{ccc}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right)$$

Hvězda – přímočaré generování

Kapradí (Barnsley fern)

Peitgen, Jurgens, Saupe. Chaos and Fractals

Kapradí (Barnsley fern)

а	b	С	d	e	f
		-0.037			
		0.226			
-0.15	0.283	0.26	0.237	0.575	0.084
0	0	0	0.16	0.5	0

Kapradí – přímočaré generování

Souvislosti

- princip MRCM souvisí s "chaos game" (generování Sierpińského trojúhelníku za využití náhody, bitmapově)
- zkuste se nad souvislostmi zamyslet a využít princip chaos game třeba pro generování kapradí