Vertex Centric & Bulk Synchronous Parallel Models and Solutions

Kaustubh Beedkar kaustubh.beedkar@iitd.ac.in

CSE IIT Delhi

Recap: Graphs 101

- ▶ Graph G = (V, E)
 - Abstract representation of a set of objects (vertices V)
 - Some pairs of these objects are connected by links (edges E)
 - Edges can be directed or undirected, can have labels, weights, ...
- Examples

Real word graph examples

Web around Wikipedia

Image source

Real word graph examples

Social network

Image source

Graph algorithms

- PageRank
- Clustering
- Connected components
- Diameter finding/shortest path
- Graph pattern mining
- Machine learning/data mining (MLDM) algorithms
 - Belief propagation
 - Gaussian non-negative matrix factorization
 - ...

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

$$k = 0$$
 $PR(v_1)$ 0.25
 $PR(v_2)$ 0.25
 $PR(v_3)$ 0.25
 $PR(v_4)$ 0.25

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

$$k = 0$$
 $PR(v_1)$ 0.25
 $PR(v_2)$ 0.25
 $PR(v_3)$ 0.25
 $PR(v_4)$ 0.25

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

	k = 0	k = 1
$PR(v_1)$	0.25	0.37
$PR(v_2)$	0.25	0.08
$PR(v_3)$	0.25	0.33
$PR(v_4)$	0.25	0.20

$$\triangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

	k = 0	k = 1	k = 2
$PR(v_1)$	0.25	0.37	0.43
$PR(v_2)$	0.25	0.08	0.12
$PR(v_3)$	0.25	0.33	0.27
$PR(v_4)$	0.25	0.20	0.16

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

	k = 0	k = 1	k = 2	k = 3
$PR(v_1)$	0.25	0.37	0.43	0.35
$PR(v_2)$	0.25	0.08	0.12	0.14
$PR(v_3)$	0.25	0.33	0.27	0.29
$PR(v_4)$	0.25	0.20	0.16	0.20

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

	k = 0	k = 1	k = 2	k = 3	k = 4
$PR(v_1)$	0.25	0.37	0.43	0.35	0.39
$PR(v_2)$	0.25	0.08	0.12	0.14	0.11
$PR(v_3)$	0.25	0.33	0.27	0.29	0.29
$PR(v_4)$	0.25	0.20	0.16	0.20	0.19

$$\blacktriangleright PR_{k+1}(u) = \sum_{v \in B_u} \left(\frac{PR_k(v)}{|F_v|} \right)$$

• PR(u): Page rank of node u

• F_u : Out-neighbors of node u

• B_u : In-neighbors of node u

	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$PR(v_1)$	0.25	0.37	0.43	0.35	0.39	0.39	0.38
$PR(v_2)$	0.25	0.08	0.12	0.14	0.11	0.13	0.13
$PR(v_3)$	0.25	0.33	0.27	0.29	0.29	0.28	0.28
$PR(v_4)$	0.25	0.20	0.16	0.20	0.19	0.19	0.19

Real-world graphs are huge!

 ${\sim}1\text{T indexed pages}$

 ${\sim}1\text{B Users}$

 $\sim\!$ 450M active users

>100M Ratings, 230M Users, 17K Movies

Large-scale graph processing challenges

- ► Each vertex depends on its neighbors, recursive
- Recursive problems are nicely solved iteratively
- Challenges
 - partitioning
 - recursive joins
 - graph data is often unstructured
 - and highly irregular
 - poor locality of memory access

Systems for distributed graph processing

Systems for distributed graph processing

► In this lecture

MapReduce for large-scale graph processing

- MapReduce drawbacks
 - Each job is executed N times
 - Overhead of job bootstrap
 - Mappers send values and structure
 - Extensive IO at input, shuffle & sort, output
 - Disk I/O and Job scheduling quickly dominate the runtime

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- O Discussion
 - Dataflow engines
 - Summary

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

Google Pregel

- ► A system for large-scale graph processing
- ▶ Bulk Synchronous Parallel (BSP) as execution model
- ▶ Intuitive API that let's you "think like a vertex"
- ► Fault tolerance by checkpointing

Bulk Synchronous Parallel (BSP)

- Originally developed by Leslie Valiant
- Key idea:

Local

Computation

Communication

Barrier Synchronisation

- Processors
- Have some local memory
- Can perform some (local) computation

- Processors can communicate pairwise
- Communication can overlap with another node's computation

Bulk Synchronous Parallel (BSP)

- ► A BSP program proceeds in a sequence of **supersteps**
 - 1. Superstep 1
 - Get required data
 - Compute Yes or No?
 - Exchange messages Yes or No?

Synchronize

- 2. Superstep 2
 - Get required data
 - Compute Yes or No?
 - Exchange messages Yes or No?

Synchronize

3. Superstep 3

...

Synchronize

. . .

BSP as a programming model for graphs

- Assumptions
 - Vertex synonymous to processor
 - Vertex can send/receive messages to/from its neighboring vertices
 - Each vertex has an ID and a value
 - Each edge (may) also have an ID and a value
 - Each vertex knows which vertex it is connected to
- ► Think of computation as a Vertex Centric Task

▶ What can a Vertex do?

- ▶ What can a Vertex do?
 - Get its ID

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value
 - Using edge ID

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value
 - Using edge ID
 - Using the ID of the target vertex

- ▶ What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value
 - Using edge ID
 - Using the ID of the target vertex
 - Gets values of all edges connected to a vertex

- What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value
 - Using edge ID
 - Using the ID of the target vertex
 - Gets values of all edges connected to a vertex
 - Add/remove a specific edge

- What can a Vertex do?
 - Get its ID
 - Get/set its value
 - Get/count its edges
 - Get/set a specific edge's value
 - Using edge ID
 - Using the ID of the target vertex
 - Gets values of all edges connected to a vertex
 - Add/remove a specific edge
 - Start/Stop computing

Vertex-centric BSP

- ► Each vertex has an id/value, list of adj. neighbor ids, edge values
- Each vertex in invoked in each superstep
- ► Can re-compute its value and send messages to other vertices, which are delivered over superstep barriers
- ▶ Adv. features: termination votes, combiners, aggegrators, topology mutation

Example: Dijkstra's single source shortest path algorithm

► Superstep 0

Initialize

- ► Superstep 0
 - Initialize
 Propagate

- ► Superstep 0
 - Initialize
 - Propagate
 - Halt

- Superstep 0
 - Initialize
 - PropagateHalt
- ► Superstep 1
 - GetMessages

- Superstep 0
 - Initialize
 - Propagate
- ► Superstep 1

 ∞

 ∞

- Superstep 0
 - Initialize
 - Propagate
 - Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate

- Superstep 0
 - Initialize
 - Propagate Halt
- ► Superstep 1
 - GetMessages

 - Update Propagate Halt

- Superstep 0
 - Initialize
 - Propagate
 - Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
 - Halt
- ► Superstep 2

- Superstep 0
 - Initialize
 - PropagateHalt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
 - Halt
- ► Superstep 2
 - GetMessages

- Superstep 0
 - Initialize
 - Propagate
 - Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
 - Halt
- ► Superstep 2
 - GetMessages
 - Update

- ► Superstep 0
 - Initialize
 - Propagate
- Halt
- Superstep 1
 - GetMessages
 - Update
 - Propagate
- Halt
- ► Superstep 2
 - GetMessages
 - Update
 - Propagate

Vertex Centric & BSP

- ► Superstep 0
 - Initialize
 - Propagate
- Halt
- Superstep 1
 - GetMessages
 Update
 - Propagate
 - Halt
- ► Superstep 2
 - GetMessages
 - Update
 - Propagate
 - Halt

- Superstep 0
 - Initialize
 - Propagate
 - Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
 - Halt
- ► Superstep 2
 - GetMessages
 - Update
 - Propagate
 - Halt
- Superstep 3
 - GetMessages

- Superstep 0
 - Initialize
 - Propagate
- Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
- Halt
- ► Superstep 2
 - GetMessages
 - Update
 - Propagate
 - Halt
- Superstep 3
 - GetMessages
 - Update

- Superstep 0
 - Initialize
 - Propagate
 - Halt
- ► Superstep 1
 - GetMessages
 - Update
 - Propagate
 - Halt
- ► Superstep 2
 - GetMessages
 - Update
 - Propagate
 - Halt
- Superstep 3
 - GetMessages
 - Update
 - Propagate
 - Halt

Shortest path (code snippet)

```
1 public static class ShortestPathVertex extends Vertex < Text, IntWritable, IntWritable > {
        public void compute(Iterator<IntWritable> messages) throws IOException {
         int minDist = isStartVertex() ? 0 : Integer.MAX_VALUE;
4
         while (messages.hasNext()) {
6
            IntWritable msg = messages.next();
            if (msg.get() < minDist) {</pre>
               minDist = msg.get():
         if (minDist < this.getValue().get()) {</pre>
            this.setValue(new IntWritable(minDist)):
            for (Edge<Text, IntWritable> e : this.getEdges()) {
               sendMessage(e, new IntWritable(minDist + e.getValue().get()));
16
         else {
            voteToHalt();
20
```

Pregel implementation

- ▶ Pregel uses master-worker architecture
- Initialization
 - Graph is partitioned by vertex ID (hash(ID) mod N)
 - vertex and its adjacency list live in the same partition
 - Master assigns partitions to workers which load graph in memory
- Master coordinates supersteps
 - During a superstep, workers invoke UDF on their local partitions during a superstep and asynchronously deliver messages
 - Execution continues as long as there are active vertices or messages to be delivered
 - During termination, vertices output their state as result of the computation
 - Synchronization barrier via distributed locking service
 - Fault tolerance is achieved through checkpointing

Apache Giraph

- Pregel is proprietary, but:
 - Apache Giraph is an open source implementation of Pregel
 - Runs on standard Hadoop infrastructure
 - Computation is executed in **memory** (also has out-of-core support)
 - Uses **Apache ZooKeeper** for synchronization

Bulk Synchronous Parallel

- Advantages
 - No race conditions
 - Synchronization barrier guarantees data consistency
 - ullet Simple to make fault tolerant o save data on barrier

Bulk Synchronous Parallel

- Advantages
 - No race conditions
 - Synchronization barrier guarantees data consistency
 - Simple to make fault tolerant \rightarrow save data on barrier
- Disadvantages
 - Costly performance since runtime of each superstep depends on slowest machine
 - No support for asynchronous, graph-parallel computations
 - Critical for MLDM algorithms

Properties of graph parallel algorithms

Dependency graph

Properties of graph parallel algorithms

Dependency graph

Local updates

Properties of graph parallel algorithms

Bulk Synchronous Parallel: recap

- Bulk Synchronous computation
 - Evaluate condition on all vertices for every phase
 4 phases with 9 computations ⇒ 36 computations

- Bulk Synchronous computation
 - Evaluate condition on all vertices for every phase
 4 phases with 9 computations ⇒ 36 computations
- Asynchronous computation (Wave-font)
 - Evaluate condition only when neighbor changes
 4 phases each with 2 computation ⇒ 8 computations

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

GraphLab

- Support for asynchronous updates
 - Critical for MLDM algorithms
 - Graph structured computation
 - Asynchronous iterative computation
 - Dynamic computation
 - Serializability
- GraphLab abstraction
 - Data graph
 - Update functions
 - Data consistency
- ► Shared memory (2010), Distributed memory (2012)

Data Graph

▶ Graph G = (V, E, D)

Data Graph

- ▶ Graph G = (V, E, D)
 - D_i is user defined data associated with vertex i

Data Graph

- ▶ Graph G = (V, E, D)
 - D_i is user defined data associated with vertex i
 - $D_{i o j}$ is user defined data associated with each edge i o j

Data Graph

- Graph G = (V, E, D)
 - D_i is user defined data associated with vertex i
 - $D_{i o j}$ is user defined data associated with each edge i o j
 - represents model parameters, algorithm state, and statistical data

Data Graph

- Graph G = (V, E, D)
 - D_i is user defined data associated with vertex i
 - $D_{i o j}$ is user defined data associated with each edge i o j
 - represents model parameters, algorithm state, and statistical data
- ► Example: Social network
 - Vertex Data D_i
 - User profile
 - Current interests estimates

29

Data Graph

- Graph G = (V, E, D)
 - D_i is user defined data associated with vertex i
 - $D_{i o j}$ is user defined data associated with each edge i o j
 - represents model parameters, algorithm state, and statistical data
- ► Example: Social network
 - Vertex Data D_i
 - User profile
 - Current interests estimates
 - Edge Data $D_{i \rightarrow j}$
 - Relationship (friend, relative, classmate,...)

Update function

$$f(v,S_v) \rightarrow (S_v,T)$$

- User defined function
- When applied to a vertex v, transforms the data in the scope S_v
- Schedules the future execution of the update functions on other vertices T

▶ **Update function** $f(v, S_v) \rightarrow (S_v, T)$

- User defined function.
- When applied to a vertex v, transforms the data in the scope S_v
- Schedules the future execution of the update functions on other vertices T
- ► PageRank example
 - f computes weighted sum of the current ranks of neighbors, update its own rank
 - neighbors are scheduled for update if required

Scopes often overlap

► Scopes often overlap

- Scopes often overlap
- Simultaneous execution of update functions can lead to race-conditions
 - may lead to inconsistent data
 - may lead to corrupt data

- Scopes often overlap
- Simultaneous execution of update functions can lead to race-conditions
 - may lead to inconsistent data
 - may lead to corrupt data
- ▶ MLDM algorithms perform better with strict consistency
 - Example: alternating least squares

- GraphLab provides three consistency models
 - Full consistency > Edge consistency > Vertex consistency
- ► Choice determines how much computations can overlap?

Full consistency

- Scopes of concurrently executing update functions do not overlap
- ▶ Update functions have **complete read/write access** to entire scope
- Concurrently executing update functions must be at least two vertices apart

Full consistency

- Scopes of concurrently executing update functions do not overlap
- ▶ Update functions have **complete read/write access** to entire scope
- ► Concurrently executing update functions must be at least two vertices apart

Edge consistency

- Allows update functions with slightly overlapping scopes
- ▶ Update function has exclusive read/write access to its vertex and adjacent edges
- Update function has read only access to adjacent vertices

Edge consistency

- Allows update functions with slightly overlapping scopes
- ▶ Update function has exclusive read/write access to its vertex and adjacent edges
- Update function has read only access to adjacent vertices

Vertex consistency

- ▶ Allows all update functions to run in parallel
- ▶ Update function has write access to central vertex data
- Update function has read only access to its adjacent edges
- Least consistent

Vertex consistency

- ▶ Allows all update functions to run in parallel
- ▶ Update function has write access to central vertex data
- ▶ Update function has read only access to its adjacent edges

Least consistent

Consistency and parallelism

Consistency and correctness

- Choice of consistency model impacts correctness
- GraphLab provides sequential consistency
 - For every parallel execution, there exists a sequential execution with same results
- Sequential consistency is guaranteed, if
 - Full consistency model is used
 - Edge consistency model is used and update functions do not modify data in adjacent vertices
 - Vertex consistency model is used and update functions only access local vertex data

Consistency and correctness

- Choice of consistency model impacts correctness
- GraphLab provides sequential consistency
 - For every parallel execution, there exists a sequential execution with same results
- Sequential consistency is guaranteed, if
 - Full consistency model is used
 - Edge consistency model is used and update functions do not modify data in adjacent vertices
 - Vertex consistency model is used and update functions only access local vertex data
- Q: Which consistency model would you use for PageRank?

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

Handling high-degree vertices

► Existing distributed graph computations systems perform poorly on **natural graphs** (Gonzalez et al. OSDI'12)

Handling high-degree vertices

- ► Existing distributed graph computations systems perform poorly on **natural graphs** (Gonzalez et al. OSDI'12)
- Natural graphs have highly skewed degree distributions
 - Problems with high degree vertices
 - limited single-machine resources
 - work imbalance
 - sequential computation
 - communication cost
 - graph partitioning

Handling high-degree vertices

- ► Existing distributed graph computations systems perform poorly on **natural graphs** (Gonzalez et al. OSDI'12)
- Natural graphs have highly skewed degree distributions
 - Problems with high degree vertices
 - limited single-machine resources
 - work imbalance
 - sequential computation
 - communication cost
 - graph partitioning

- GraphLab 2.0 (PowerGraph)

 - two-dimensional partitioning of the data graph ("vertex cut")

Graph partitioning: edge cut vs vertex cut

- ► Edge cut
- Used by Pregel/GraphLab
- Evenly assign vertices to machines

Graph partitioning: edge cut vs vertex cut

- ► Edge cut
- Used by Pregel/GraphLab
- Evenly assign vertices to machines

- Vertex cut
- Used by PowerGraph
- Evenly assign edges to machines

Kaustubh Beedkar Vertex Centric & BSP

G-A-S: example

G-A-S: example (Gather phase)

► Compute partial sums on each machine

G-A-S: example (Gather phase)

- ▶ Compute partial sums on each machine
- Master machine computes total sum

G-A-S: example (Apply phase)

- ► Apply accumulated value to center vertex
- ► Replicate value to mirrors

G-A-S: example (Scatter phase)

- Update adjacent edges and vertices
- ▶ Initiate neighboring vertex-programs if necessary

Synchronous vs asynchronous graph processing

Synchronous (BSP)

- Computation in phases
 - all vertices participate
 - all messages are sent
- Simple to build
 - no race conditions
 - barrier guarantees consistency
 - simple fault tolerance
- Slow convergence
 - unsuitable for many MLDM problems

Asynchronous (GraphLab)

- Vertices see latest information from neighbors
- ► Hard to build
 - Race conditions all the time
 - fault tolerance more complex
 - termination detection
- Fast convergence
 - suitable for MLDM problems

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

Vertex-centric processin with dataflow engines

Spark

- GraphX component for graphs and graph-parallel computations
- ► Extends Spark RDD with **Property Graph** abstraction (cf. data graph of GraphLab)
- Provides several fundamental graph specific operators
 - e.g., subgraph, joinVertices, aggregateMessages
- Pregel API

SSSP using the GraphX Pregel API

```
1 // A graph with edge attributes containing distances
2 val graph: Graph[Long, Double] =
    GraphGenerators.logNormalGraph(sc. numVertices = 100).mapEdges(e => e.attr.toDouble)
5 val sourceld: VertexId = 23 // Source vertex
7 // Initialize the graph such that all vertices except the root have distance infinity.
8 val initialGraph = graph.mapVertices((id, _) =>
       if (id == sourceld) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
    (id, dist, newDist) => math.min(dist, newDist), // Vertex Program
12
13
    triplet => { // Send Message
       if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {</pre>
14
         Iterator((triplet.dstld, triplet.srcAttr + triplet.attr))
       } else {
16
         Iterator.empty
    \{a, b\} =  math.min(a, b) // Merge Message
19
println(sssp.vertices.collect.mkString("\n"))
```

Vertex-centric processing with dataflow engines

Flink

- ► Gelly API: Flink's graph-processing API and library
- Graph representation: DataSet of vertices & DataSet of edges (cf. Data graph of GraphLab)
- Provides several transformations and utilities suitable for graphs
 - $\hbox{ \bullet e.g., mapVertices, joinWithVertices, mapEdges, filterOnEdges, etc}\\$
- Supports Pregel like vertex-centric as well G-A-S computation model

Iterative graph processing with Gelly

- Supports Pregel like vertex-centric as well G-A-S computation
- ▶ Internally Flink's delta iteration

Vertex-centric

G-A-S

SSSP using Gelly's vertex centric API

```
1 DataSet<Edge<Long, Double>> edges = getEdgesDataSet(env);
2 Graph < Long, Double, Double > graph = Graph.fromDataSet(edges, new InitVertices(), env);
3 // Execute the vertex—centric iteration
4 Graph<Long, Double, Double> result = graph.runVertexCentricIteration(
      new SSSPComputeFunction(srcVertexId), new SSSPCombiner(), maxIterations);
6 // Extract the vertices as the result
7 DataSet<Vertex<Long, Double>> singleSourceShortestPaths = result.getVertices();
8 singleSourceShortestPaths.print();
1 /* SSSPComputeFunction */
                                                          1 /* SSSPComiber */
2 double minDistance = (vertex.getId().equals(srcId)) ? 0d : 2 double minMessage = Double.POSITIVE_INFINITY;
        Double.POSITIVE_INFINITY:
3 for (Double msg: messages)
                                                          4 for (Double msg: messages) {
                                                              minMessage = Math.min(minMessage, msg);
    minDistance = Math.min(minDistance, msg);
5 if (minDistance < vertex.getValue()) {</pre>
                                                          6 }
    setNewVertexValue(minDistance);
                                                          7 sendCombinedMessage(minMessage):
    for (Edge<Long, Double> e: getEdges()) {
      sendMessageTo(e.getTarget(), minDistance + e.
           getValue());
```

Outline

- Background
- Vertex-centric approaches
 - Pregel/Giraph
 - GraphLab
 - PowerGraph
- Oiscussion
 - Dataflow engines
 - Summary

Summary

- Google Pregel introduces vertex-centric BSP as alternative
- think like a vertex: distributed graph processing based on vertex update functions and messaging
- Giraph
 - Open source implementation of Google Pregel
- GraphLab
 - Extends Vertex-centric approach to support asynchronous updates
 - Data graph abstraction
 - Update function
 - Sequential consistency
- Powergraph
 - GraphLab 2.0
 - Counter measures for natural graphs (high degree vertices)
 - Vertex cut instead of edge cut
 - G-A-S paradigm