Théorème des deux carrés :

I Le développement

Le but de ce développement est de démontrer le théorème des deux carrés dans l'anneau $\mathbb{Z}[i]$. Ce résultat est utile car il sert à trouver les irréductibles de $\mathbb{Z}[i]$ (aux inversibles près).

On désigne \mathcal{P} l'ensemble des nombres premiers (au sens usuel). Si $p \in \mathcal{P}$ et $n \in \mathbb{N}^*$, on note $v_p(n)$ la valuation p-adique de l'entier n. On note également $N : \mathbb{Z}[i] \longrightarrow \mathbb{N}$ l'application définie par $N(z) = |z|^2$ ainsi que l'ensemble $\Sigma = \{n \in \mathbb{N} \text{ tg } \exists (a,b) \in \mathbb{N}^2 \text{ tg } n = a^2 + b^2\}.$

On commence tout d'abord par démontrer le lemme suivant :

Lemme 1: [Perrin, p.57]

Soit $p \in \mathcal{P}$.

Les assertions suivantes sont équivalentes :

 $* p \in \Sigma$. $* L'élément p n'est pas irréductible dans <math>\mathbb{Z}[i]$.

* On a p = 2 ou $p \equiv 1$ [4]

Preuve:

Soit p un nombre premier (au sens usuel).

* Supposons que $p \in \Sigma$:

Il existe alors $(a,b) \in \mathbb{N}^2$ tel que $p=a^2+b^2=(a+ib)(a-ib)$. On ne peut avoir a=0 ou b=0 car sinon p qui est un nombre premier serait nul ou un carré. Donc $a\pm ib \notin \mathbb{Z}[i]^{\times}$ (car $\mathbb{Z}[i]^{\times}=\{-i;i;-1;1\}$), de sorte que p n'est pas irréductible.

* Supposons que p n'est pas irréductible dans $\mathbb{Z}[i]$:

Il existe deux nombres $z,\omega\in\mathbb{Z}[i]$ non inversibles tels que $p=z\omega.$ On a alors :

$$p^2 = N(p) = N(z\omega) = N(z)N(\omega)$$

Comme z et ω ne sont pas des inversibles de $\mathbb{Z}[i]$, on a alors $N(z) \neq 1$ et $N(\omega) \neq 1$ et comme p est un nombre premier, on en déduit que $N(z) = N(\omega) = p$. Ainsi, en écrivant z = a + ib avec $(a,b) \in \mathbb{Z}$, on obtient $p = N(z) = a^2 + b^2 \in \Sigma$.

* Comme l'anneau $\mathbb{Z}[i]$ est principal, p est réductible si, et seulement si, l'idéal (p) n'est pas premier, ce qui équivaut à $\mathbb{Z}[i]/(p)$ n'est pas intègre. Or, on a les isomorphimes suivants par le troisième théorème d'isomorphisme :

$$\mathbb{Z}[i]/(p) \cong \left(\mathbb{Z}[X]/(X^2+1)\right)/(p) \cong \mathbb{Z}[X]/(p,X^2+1) \cong \mathbb{F}_p[X]/(X^2+1)$$

Ce dernier anneau n'est pas intègre, si et seulement si, $X^2 + 1$ est réductible dans l'anneau $\mathbb{F}_p[X]$, ce qui équivaut à ce que -1 soit un carré dans \mathbb{F}_p . Cette dernière

condition est équivalente à p=2 ou $p\equiv 1$ [4], d'où le résultat.

On a donc démontré le lemme par implications circulaires.

Théorème 2 : Théorème des deux carrés [Perrin, p.58] :

Soit $n \in \mathbb{N}^*$.

 $n \in \Sigma$ si, et seulement si, pour tout $p \in \mathcal{P}$ vérifiant $p \equiv 3$ [4], l'entier $v_p(n)$ est pair.

Preuve:

Soit $n = \prod_{p \in \mathcal{P}} p^{v_p(n)} \in \mathbb{N}^*$ (décomposition en facteur premier).

* Supposons que $v_p(n)$ est pair pour tout nombre premier p vérifiant $p \equiv 3$ [4]:

On a alors
$$n = 2^{v_2(n)} \prod_{\substack{p \in \mathcal{P} \\ p \equiv 1}} p^{v_p(n)} \prod_{\substack{p \in \mathcal{P} \\ p \equiv 3}} \left(p^{\frac{v_p(n)}{2}} \right)^2$$
. Or, puisque $2 \in \Sigma$, que les

carrés des entiers naturels appartiennent à Σ et que Σ est stable par multiplication, on en déduit que $n \in \Sigma$.

* Supposons que $n \in \Sigma$:

On fixe un nombre premier $p \in \mathcal{P}$ tel que $p \equiv 3$ [4].

On montre par récurrence sur $k \in \mathbb{N}$ la propriété suivante :

 \mathcal{P}_k : "Pour tout $n \in \Sigma \setminus \{0\}$ avec $v_p(n) \leq k$, l'entier $v_p(n)$ est pair"

- Initialisation pour k = 0:

La propriété \mathcal{P}_0 est vérifiée (car tous les $v_p(n)$ sont nuls, donc pairs). La propriété est donc bien initialisée.

- Hérédité :

On considère $k \in \mathbb{N}$ et on suppose que la propriété est vraie au rang k. Montrons que la propriété est encore vraie au rang k+1:

Soit $n \in \Sigma \setminus \{0\}$ tel que $v_p(n) \le k+1$.

On peut supposer que p divise n sinon le résultat est évident (car $v_p(n) = 0$).

Comme $n \in \Sigma \setminus \{0\}$, il existe $(a,b) \in \mathbb{N}^2 \setminus \{(0,0)\}$ tel que $n=a^2+b^2$ et on peut écrire $n=a^2+b^2=(a+ib)(a-ib)$. De plus, par le lemme précédent, on en déduit que p est irréductible dans $\mathbb{Z}[i]$ (car $p\equiv 3$ [4]), donc premier car l'anneau $\mathbb{Z}[i]$ est principal.

On en déduit que p divise a+ib ou a-ib dans $\mathbb{Z}[i]$, donc p divise a et b car $p \in \mathbb{Z}$. Ainsi, p divise a+ib et p divise a-ib (car p divise a et b).

Finalement, p^2 divise n et donc on peut appliquer l'hypothèse de récurrence à $\frac{n}{p^2}$. En effet, on a :

$$\frac{n}{p^2} = \left(\frac{a}{p}\right)^2 + \left(\frac{b}{p}\right)^2 \text{ avec } \frac{a}{p}, \frac{b}{p} \in \mathbb{Z} \text{ (par ce qui précède)}$$

On en conclut que l'entier $v_p(n) = v_p\left(\frac{n}{p^2}\right) + 2$ est pair, donc \mathcal{P}_{k+1} est vraie. La propriété est donc héréditaire.

Finalement, on a donc montré la propriété par récurrence.

Ainsi, on a démontré le théorème des deux carrés.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans le développement, on a utilisé 3 résultats importants :

Lemme 3: [Perrin, p.56]

L'ensemble Σ est stable par multiplication.

Preuve:

Soient $n, n' \in \Sigma$.

Il existe alors $a, b, c, d \in \mathbb{N}$ tels que $n = a^2 + b^2$ et $n' = c^2 + d^2$.

On a donc:

$$nn' = (a^2 + b^2)(c^2 + d^2) = N(a+ib)N(c+id) = N((ac-bc)+i(ad+bc)) = (ac-bd)^2 + (ad+bc)^2$$

Proposition 4: [Perrin, p.56]

L'ensemble des éléments inversibles de $\mathbb{Z}[i]$ est donné par :

$$\mathbb{Z}[i]^{\times} = \{z \in \mathbb{Z}[i] \text{ tq } N(z) = 1\} = \{-i; i; -1; 1\}$$

Preuve:

* Soit $z \in \mathbb{Z}[i]^{\times}$.

Il existe alors $\omega \in \mathbb{Z}[i]$ tel que $z\omega = 1$.

On a alors le relation $N(z)N(\omega)=N(z\omega)=N(1)=1$ dans \mathbb{N} , donc N(z)=1.

* Soit $z \in \mathbb{Z}[i]$ tel que N(z) = 1.

On a alors $N(z)=z\overline{z}=1$ et puisque $\overline{z}\in\mathbb{Z}[i]$, on obtient que \overline{z} est l'inverse de z dans $\mathbb{Z}[i]$, d'où $z\in\mathbb{Z}[i]^{\times}$.

* Enfin, on a l'égalité entre les deux derniers ensembles puisque l'inclusion du dernier vers le deuxième est immédiate (simple calcul) et réciproquement, les seules solutions de l'équation $N(z) = N(a+ib) = a^2 + b^2 = 1$ sont -i, i, -1 et 1.

Finalement, on a les égalités d'ensembles.

Lemme 5 : [Perrin, p.75]

Soit $p \in \mathcal{P}$.

-1 est un carré dans \mathbb{F}_p si, et seulement si, p=2 ou $p\equiv 1$ [4].

Preuve:

Soit $p \in \mathcal{P}$.

* Si p=2, alors $\overline{-1}=\overline{1}=\overline{1}^2$ dans \mathbb{F}_2 et on a le résultat. On peut donc supposer p>2 dans la suite.

* L'ensemble des carrés de \mathbb{F}_p^* est l'image du morphisme de groupes $f: \mathbb{F}_p^* \longrightarrow \mathbb{F}_p^*$ défini par $f(x) = x^2$. Or, comme $\operatorname{Ker}(f) = \{-1; 1\}$, on obtient par le premier théorème d'isomorphisme qu'il y a $\frac{p-1}{2}$ carrés dans \mathbb{F}_p^* . On en déduit que les carrés de \mathbb{F}_p^* sont exactement les racines du polynôme

On en déduit que les carrés de \mathbb{F}_p^* sont exactement les racines du polynôme $X^{\frac{p-1}{1}} - \overline{1} \in \mathbb{F}_p[X]$. On en conclut que -1 est un carré dans \mathbb{F}_p^* si, et seulement si, $(-1)^{\frac{p-1}{2}} = 1$, c'est-à-dire $p \equiv 1$ [4].

On a donc démontré l'équivalence désirée.

II.2 Pour aller plus loin...

II.2.1 Les irréductibles de $\mathbb{Z}[i]$

Grâce au théorème des deux carrés, nous sommes désormais capable de donner les irréductibles de $\mathbb{Z}[i]$ (aux inversibles près) :

Proposition 6: [Perrin, p.58]

Les irréductibles de $\mathbb{Z}[i]$ sont exactement, aux éléments inversibles près :

- * Les entiers premiers $p \in \mathbb{N}$ tels que $p \equiv 3$ [4].
- * Les entiers de Gauss a+ib dont la norme est un nombre premier.

Preuve:

- * D'après le lemme, les nombres premiers $p\in\mathbb{N}$ vérifiant la relation $p\equiv 3$ [4] sont irréductibles dans $\mathbb{Z}[i]$.
- * Soit $z \in \mathbb{Z}[i]$ tel que N(z) soit un nombre premier.

Si on écrit $z = \omega_1 \omega_2$ avec $(\omega_1, \omega_2) \in \mathbb{Z}[i]^2$, alors $N(z) = N(\omega_1)N(\omega_2)$ dans \mathbb{N} . Comme N(z) est un nombre premier, on obtient $N(\omega_1) = 1$ ou $N(\omega_2) = 1$, donc ω_1 ou ω_2 est inversible dans $\mathbb{Z}[i]$.

Finalement, l'élément z est irréductible dans $\mathbb{Z}[i]$.

* Réciproquement, soit $z \in \mathbb{Z}[i]$ non nul et non inversible.

Alors z divise l'élément $N(z) = z\overline{z} \in \mathbb{N} \setminus \{0; 1\}.$

Soit $p \in \mathbb{N}$ un diviseur premier de $N(z) \geq 2$.

- Si $p \equiv 3$ [4], alors p est irréductible dans $\mathbb{Z}[i]$.

- Si $p \not\equiv 3$ [4], alors d'après le théorème, il existe un couple $(a,b) \in \mathbb{N}^2$ tel que $p=a^2+b^2=(a+ib)(a-ib)$.

Par le sens direct, les nombres $a\pm ib$ sont irréductibles dans $\mathbb{Z}[i]$. On a montré que z divise un produit d'éléments irréductibles de la forme annoncée, donc il ne peut y avoir d'autres éléments irréductibles.

II.2.2 D'autres théorèmes sur les carrés

On peut se demander si tout entier est la somme de trois carrés d'entiers. Le résultat suivant apporte alors une réponse :

Théorème 7 : Théorème des trois carrés :

Un entier naturel est la somme de trois carrés d'entiers si, et seulement si, il n'est pas de la forme $4^k(8\ell+7)$ avec $(k,\ell) \in \mathbb{N}^2$.

Remarque 8:

L'ensemble $\Gamma = \{n \in \mathbb{N} \text{ tq } \exists (a,b,c) \in \mathbb{N}^3 \text{ tq } n = a^2 + b^2 + c^2\}$ n'est pas stable par produit contrairement à la situation précédente. En effet, on a par exemple :

$$(1^2 + 3^2 + 4^2)(2^2 + 3^2 + 5^2) = 26 \times 38 = 988 = 4(8 \times 30 + 7) \notin \Gamma$$

Pour finir, on a le résultat suivant, parfois appelé théorème de Lagrange :

Théorème 9 : Théorème des quatre carrés [Gourdon, p.54] :

Tout entier naturel est la somme de quatre carrés d'entiers.

Remarque 10:

 $\overline{* \text{Si } (a, b, c, d) \in \mathbb{N}^4}$, alors en utilisant la relation dans le corps des quaternions :

$$(a + bi + cj + dk)(a - bi - cj - dk) = a^{2} + b^{2} + c^{2} + d^{2}$$

On remarque que l'ensemble $\Delta = \{n \in \mathbb{N} \text{ tq } \exists (a,b,c,d) \in \mathbb{N}^4 \text{ tq } n = a^2 + b^2 + c^2 + d^2\}$ est stable pour la multiplication.

* On peut déduire le théorème des quatre carrés du théorème des trois carrés. En effet, il suffit de prouver que l'entier $4^k(8\ell+7)$ est la somme de quatre carrés d'entiers pour tout $(k,\ell) \in \mathbb{N}^2$. Or on a la relation : $4^k(8\ell+7) = 4^k(8\ell+6) + \left(2^k\right)^2$, et par le théorème des trois carrés, le nombre $4^k(8\ell+6)$ est une somme de trois carrés, d'où le résultat.

II.3 Recasages

Recasages : 121 - 122 - 127.

III Bibliographie

- Daniel Perrin, Cours d'algèbre.
- Xavier Gourdon, Les maths en tête, Algèbre et Probabilités.