Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 5. Quality Engineering

• SQE: Software Quality Engineering

Key SQE Activities

SQE in Software Process

QA to SQE

• QA activities need additional support:

- Planning and goal setting
- Management:
 - when to stop?
 - adjustment and improvement, etc.
 - all based on assessments/predictions

Assessment of quality/reliability/etc.:

- Data collection needed
- Analysis and modeling
- Providing feedback for management

QA + above

=> software quality engineering (SQE)

SQE Process

- SQE process to link major SQE activities: Fig 5.1 (p.54)
 - Pre-QA planning;
 - QA: covered previously (Ch.3 & 4);
 - Post-QA analysis and feedback (maybe parallel instead of "post-")

SQE and **QIP**

- QIP (quality improvement paradigm):
 - Step 1: understand baseline
 - Step 2: change then assess impact
 - Step 3: package for improvement
- QIP support:
 - o overall support: experience factory
 - measurement/analysis: GQM (goal-question-metric paradigm)
- SQE as expanding QA to include QIP ideas.

Pre-QA Planning

- Pre-QA planning:
 - Quality goal
 - Overall QA strategy:
 - QA activities to perform?
 - measurement/feedback planning
- Setting quality goal(s):

- Identify quality views/attributes
- Select direct quality measurements
- · Assess quality expectations vs. cost

Setting Quality Goals

- Identify quality views/attributes
 - o customer/user expectations,
 - o market condition,
 - o product type, etc.
- Select direct quality measurements
 - o direct: reliability
 - o defect-based measurement
 - other measurements
- Assess quality expectations vs. cost
 - cost-of-quality/defect studies
 - o economic models: COCOMO etc

Forming QA Strategy

- QA activity planning
 - evaluate individual QA alternatives
 - strength/weakness/cost/applicability/etc.
 - o match against goals
 - integration/cost considerations
- Measurement/feedback planning:
 - o define measurements (defect & others)
 - o planning to collect data
 - o preliminary choices of models/analyses
 - feedback & followup mechanisms, etc.

Analysis and Feedback

- Measurement:
 - defect measurement as part of defect handling process
 - o other data and historical baselines
- Analyses: quality/other models
 - o input: above data
 - output/goal: feedback and followup
 - focus on defect/risk/reliability analyses
- Feedback and followup:
 - frequent feedback: assessments/predictions
 - o possible improvement areas
 - project management and improvement

• Details in Part IV.

SQE in Software Processes

- SQE activities (cid:26) development activities:
 - quality planning (cid:26) product planning
 - QA activities (cid:26) development activities
 - analysis/feedback (cid:26) project management
- Fitting SQE in software processes:
 - o different start/end time
 - o different sets of activities, sub-activities, and focuses
 - in waterfall process: more staged
 (planning, execution, analysis/feedback)
 - in other processes:
 more iterative or other variations

SQE in Waterfall Process

Quality Planning:

Setting quality goals Select quality assurance strategies

Making adjustments based on feedback

QA Phase: Testing

Quality Assurance:

Quality gates: at phase transition pairs, e.g., passing design reviews before coding Other QA activities scattered over all phases, e.g. inspecting specs/desing/code/test cases

Quality Assessment and Improvement

INPUT: measurement from QA and development activities OUTPUT: quality assessment and other analysis results

- Fig 5.2 (p.61) above
 - o activity start/finish line
 - o different focus and effort (later)

SQE Effort Profile

- QE activity/effort distribution/dynamics:
 - o different focus in different phases
 - different levels (qualitatively)
 - o different build-up/wind-down patterns
 - impact of product release deadline

(deadline-driven activities)

- planning: front heavy
- QA: activity mix
 (early vs. late; peak variability? deadline?)
- analysis/feedback: tail heavy
 (often deadline-driven or decision-driven)

SQE Effort in Waterfall Process

Development Time

- Effort profile above (Fig 5.3, p.63)
 - planning/QA/analysis of total effort
 - general shape/pattern only

(actually data would not be as smooth)

- o in other processes:
 - similar but more evenly distributed