1 Show that a subset U of a topological space X is open if and only if for every $x \in U$, there exists an open neighborhood V of x that is contained in U.

Solution " \Longrightarrow "

Let U be open in X. For every $x \in U$, U is an open neighborhood of x contained in U.

"⇐="

Let U be a subset such that for all $x \in U$, there exists an open neighborhood V_x of x contained in U. Then

$$U = \bigcup_{x \in U} V_x.$$

Since each V_x is open and topologies are closed under arbitrary unions, U is open.

- **2** Let $A \subseteq B$ be subsets of a topological space X. Show that the subspace topology on A from X is the same as the subspace topology on A from B, where B has the subspace topology from X.
- **Solution** Let U be an open set from the subspace topology on A from X. Then there exists an open set $D \subseteq X$ such that $U = D \cap A$. Since $A \subseteq B$, $A = A \cap B$, so $U = D \cap A \cap B = (D \cap B) \cap A$. Hence, since topologies are closed under finite unions, U is also in the subspace topology on A from B, where B has the subspace topology from X.

Let U be an open set from the subspace topology on A from B. Then there exists an open set $D \subseteq B$ such that $U = D \cap A$. Since D is an open set in B with the subspace topology from X, there exists an open set $E \subseteq X$ such that $D = E \cap B$. Hence, $U = E \cap B \cap A = E(\cap B \cap A) = E \cap A$. Hence U is also in the subspace topology from A on X.

Thus, a set U is in the subspace topology on A from X if and only if it is in the subspace topology on A from B, so they are the same topology.

3 Let X be a nonempty set, and choose $b \in X$. Set $A = X - \{b\}$, and let \mathcal{T}_A be a topology on A. Find the finest topology on X for which \mathcal{T}_A is the subspace topology on A from X. On the other hand, show that there is not, in general, a topology on X for which \mathcal{T}_A is the subspace topology on A and which is coarser than all the other topologies on X with this property.

Solution Choose $\mathcal{B} = \mathcal{T}_A \cup \{b\}$. This forms a basis for a topology \mathcal{T}_X on X.

$$X - \{b\} = A \in \mathcal{B}$$
, so $A \cup \{b\} = X$. Thus, $\bigcup_{U \in \mathcal{B}} = X$.

Let $U, V \in \mathcal{B}$ such that $U \cap V \neq \emptyset$. Then we must have either $U, V \in \mathcal{T}_A$ or $U = V = \{b\}$. Otherwise, $U \cap V = \emptyset$, since $\{b\} \notin \mathcal{B}$.

If $U, V \in \mathcal{T}_A$, then for all $x \in U \cap V$, $U \cap V$ is an open neighborhood of x contained in $U \cap V$.

If $U = V = \{b\}$, then we must have that x = b, so $\{b\}$ is an open neighborhood of x.

Hence, \mathcal{B} is a basis for a topology on X. Moreover, the subspace topology on A from X is equal to \mathcal{T}_A , since if $U \in \mathcal{T}_X$, then $U \cap A = U$ or $U \cap A = U - \{b\} \in \mathcal{T}_A$, and we can get all elements of \mathcal{T}_A also since $\mathcal{T}_A \subseteq \mathcal{T}_X$.

This is also the finest topology on X satisfying the properties. Indeed, if there were a finer topology \mathcal{T}' on X, then there exists $U \in \mathcal{T}'$ such that $U \notin \mathcal{T}_X$. Then $U - \{b\} \notin \mathcal{T}_X$ either because otherwise, $U - \{b\} \in \mathcal{T}_A \implies U = (U - \{b\}) \cup \{b\} \in \mathcal{T}_X$. But $U \cap A = U - \{b\} \notin \mathcal{T}_A$, which is a contradiction. Hence, the topology generated by \mathcal{B} is the finest topology satisfying the conditions of the problem.

Consider the trivial topology on A, $\mathcal{T}_A = \{\emptyset, A\}$ and the trivial topology on X, $\mathcal{T}_X = \{\emptyset, X\}$. Then $\emptyset \cap A = \emptyset$ and $X \cap A = A$, so the subspace topology of A from X is \mathcal{T}_A . But \mathcal{T}_X is clearly the most coarse topology on X.

- 4 Let \mathcal{B} be a basis for a topology \mathcal{T} on a set X. Show that \mathcal{T} is the intersection of all topologies that contain \mathcal{B} .
- **Solution** Let B be the intersection of all topologies containing \mathcal{B} .

$$B \subseteq \mathcal{T}$$

This is clearly true since \mathcal{T} is a topology containing \mathcal{B} .

$$\mathcal{T} \subseteq B$$

Let $U \in \mathcal{T}$. Then there exists $\{U_i\}_{i \in I} \subseteq \mathcal{B}$ such that $U = \bigcup_{i \in I} U_i$. Hence, U must be in every topology containing \mathcal{B} , since topologies are closed under arbitrary unions.

Thus, by double inclusion, $\mathcal{T} = B$.

- **5** The lower limit topology on \mathbb{R} has basis the intervals [a,b) with a < b, and in the textbook it is shown that it is strictly finer than the Euclidean topology.
 - a. Show that the lower limit topology is strictly coarser than the discrete topology.
 - b. Find the closure of (a, b) for a < b in the lower limit topology.
- **Solution** a. Note that the discrete topology contains the lower limit topology since the discrete topology contains every subset of \mathbb{R} .

The lower limit topology does not contain singletons, which are open sets in the discrete topology. Any union of the intervals [a, b) contains an open interval, and finite intersections also contain an open interval or are empty.

Hence, the lower limit topology is strictly coarser than the discrete topology.

- b. The closed sets under the lower limit topology are of the form (c, d], which we can get through intersections, where c < d. Hence, the closure of (a, b) must be (a, b]. Any smaller closed set does not contain (a, b).
- **6** Let A and B be subsets of a topological space. Prove or give a counterexample to each of the following statements regarding closures:
 - a. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - b. $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
- **Solution** a. Note that $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Indeed, if $x \in \overline{A}$, then for any open neighborhood U of x,

$$\emptyset \neq U \cap A \subseteq U \cap (A \cup B).$$

The same argument holds for if $x \in \overline{B}$. Thus, the claim holds.

Let $x \in \overline{A \cup B}$. Suppose that $x \notin \overline{A} \cup \overline{B}$. Then

$$x \in (\overline{A} \cup \overline{B})^{c} = (\overline{A})^{c} \cap (\overline{B})^{c}$$

which is open, since \overline{A} and \overline{B} are closed, and open sets are closed under finite intersections. Hence, there exists an open neighborhood U of x such that $U \cap A = U \cap B = \emptyset$. But this implies that

$$U\cap (A\cup B)=(U\cap A)\cup (U\cap B)=\emptyset\iff x\notin \overline{A\cup B}$$

which is a contradiction. Hence, the two sets are the same.

b. A counterexample is A = (0,1) and B = (1,2) under the Euclidean topology in \mathbb{R} .

$$\overline{A \cap B} = \emptyset \neq \{1\} = [0,1] \cap [1,2] = \overline{A} \cap \overline{B}$$

7 Consider \mathbb{R} with the Euclidean topology.

- a. Show that the subspace topology on \mathbb{Z} from \mathbb{R} is the discrete topology.
- b. Show that \mathbb{Q} is dense in \mathbb{R} , i.e., that \mathbb{R} is the closure of \mathbb{Q} in \mathbb{R} .

Solution a. The subspace topology will be a subset of the discrete topology, so it suffices to show that the discrete topology is a subset of the subspace topology on \mathbb{Z} from \mathbb{R} .

Let U be an element of the discrete topology. Then we can write $U = \{n_1, \ldots, n_k\}$, with $0 \le k \le \infty$, where k = 0 corresponds to the empty set, and $k = \infty$ corresponds to a set with infinitely many elements. If k = 0, then $U = \emptyset$, which is clearly part of the subspace topology.

Assume from now on that k > 0. Then for each $n_i \in U$, we can cover $\{n_i\}$ with the open set $V_i = (n_i - \frac{1}{2}, n_i + \frac{1}{2})$. Note that this interval contains no other integer, since the distance between any two different integers is at least 1. Then

$$U = \bigcup_{i=1}^{k} \{n_i\} = \bigcup_{i=1}^{k} (V_i \cap \mathbb{Z}) = \left(\bigcup_{i=1}^{k} V_i\right) \cap \mathbb{Z}.$$

Since topologies are closed under arbitrary unions, $\bigcup_{i=1}^{k} V_i$ is open, so U must be in the subspace topology. Hence, the two topologies are the same.

b. It suffices to show that for any open set U in \mathbb{R} that $U \cap \mathbb{Q} \neq \emptyset$. Indeed, then we would have that for all $x \in \mathbb{R}$, any open neighborhood of x intersects \mathbb{Q} , which implies that $x \in \overline{\mathbb{Q}}$.

Since the open intervals are a basis for the Euclidean topology on \mathbb{R} , we can show that $(a,b) \cap \mathbb{Q}$ is non-empty for all a < b.

By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < |b-a|$. By the same property, there exists $m \in \mathbb{Z}$ such that $m < na < m+1 \implies \frac{m}{n} < a < \frac{m}{n} + \frac{1}{n}$. Hence,

$$a < \frac{m}{n} + \frac{1}{n} < a + \frac{1}{n} < b$$

and $\frac{m}{n} + \frac{1}{n} \in \mathbb{Q}$ since $m, n \in \mathbb{Z}$ and the rational numbers are a field under regular addition and multiplication.

8 Show that a subset A of a topological space X is both open and closed if and only if it has empty boundary.

Solution " \Longrightarrow "

Let A be open and closed in X. Then $A = \overline{A} = \overset{\circ}{A} \implies \partial A = \overline{A} - \overset{\circ}{A} = \emptyset$.

"⇐="

Let A be a subset of X with empty boundary. Then $\overline{A} - \overset{\circ}{A} = \emptyset \implies \overline{A} \subseteq \overset{\circ}{A}$.

Note that $A \subseteq A$ since A is a union of subsets of A. Also, $A \subseteq \overline{A}$ since \overline{A} is the intersection of all closed sets containing A. Hence,

$$\overset{\circ}{A}\subseteq A\subseteq \overline{A}\subseteq \overset{\circ}{A}\implies \overset{\circ}{A}=A=\overline{A},$$

so A is open and closed in X.