Problem Set II

Amaan Rahman

February 23, 2023

Fundamentals

- 1. (a)
- 2. (a) The proof incorrectly defines a subset, stating that there exists an element in the smaller set that's in the larger set rather than that all elements in the smaller set are in the larger set.
 - (b) True
 - (c) Suppose A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Since $A \subseteq B$, every element in A is in B. Since $B \subseteq C$, every element in B is in C. Therefore, every element in A is in C implying $A \subseteq C$.
- 3. (a) The proof makes the statement that $B \subseteq A \cap B$ based on the givens. However, such a statement is invalid because B can contain elements outside of the set $A \cap B$ because B maybe larger than its intersection with A.
 - (b) False
 - (c) Suppose A, B, and C are sets such that $A \cap B \subseteq C$. Lets assume that $B \subseteq C$. Based on the transitive property of subsets, $B \subseteq A \cap B$. However, such a statement is false because B may contain elements outside its intersection with A violating the transitive property of subsets. Therefore, $B \subseteq C$ is false implying the claim is also false.

Advanced