Searching For Long-Lived Particles with HCAL Segmentation in CMS at the Large Hadron Collider

Katherine Avanesov^{1,3}, Harvey Newman^{1,3}, Kiley Kennedy^{2,3}, Gillian Kopp^{2,3}

¹The Division of Physics, Mathematics, and Astronomy, California Institute of Technology, ²Department of Physics, Princeton University, ³CMS

Introduction

Searches for Long-Lived Particles (LLPs) with lifetimes > 0.1 ns, motivated by both Standard Model and BSM theories (dark matter, matter–antimatter asymmetry, supersymmetry).

Focus on Higgs decays H→XX→bbb, leveraging the new depth segmentation of the CMS Hadronic Calorimeter (HCAL) for identifying LLP decays within HCAL.

LLP Signatures

- Trackless due to decays in the HCAL
- Displaced vertex
- Narrower energy spread
- Longer lived particles will deposit less energy in the earlier layers of HCAL
- Delayed due to longer lifetime and path length

Clustered calorimeter hits Clustered Trackless 2.95 m HCAL 1.77 m ECAL 1.29 m Tracker

LLP Search Strategy

 Searching for H→ss→bbbb that decays within the HCAL (≈2-3m depth)

Online Selection

Already developed L1
 Trigger to select LLP matching events (Higher
 energy fraction in HCAL
 segmentation, Time
 delay, Jet Energy
 threshold 40GeV)

Offline Selection

 Developing a powerful LLP event tagger using jet metrics and 3D energy deposition patterns within the HCAL

Motivation and Data generation

LLP signatures differ significantly from prompt jets in several raw variables (e.g., jet energy depth fraction, neutral hadron fraction). Even a single variable can yield a high ROC AUC. However, with ~100 million events and <1% signal, we need high sensitivity at very low background efficiency, motivating the use of powerful classification techniques.

Signal

 MC-generated LLP events, based on different combinations of Higgs Mass and LLP Mass; Each file contains roughly 100k entries (reduces to 30-70k after pre-selections)

Background

- Run3 Skim for W+ Jets ≈ 80M events
- Training performed against W+ jets (other sources of background include QCD and Z+ jets)

Variable Importance

perJet_NeutralHadEFrac

 $perJet_TrackOPt$

perJet_EnergyFrac_Depth1

perJet_ChargedHadEFrac

perJet_Track1Pt

perJet_Track2Pt

perJet_S_phiphi

 $perJet_Track0dR$

perJet_EnergyFrac_Depth2

perJet_S_etaphi

Dense NN (Multi-)Classifier: MH350-MS160

Training on 3D Jet Images

3D Image Sample from Signal and Background

Explainability of 3DCNN: Gradient-Weighted Class Activation Mapping (GradCAM)

GradCAM extracts the learned features of a CNN by mapping the importance of each pixel based on its influence on the final output score.

Background GradCAM:

- Model sees only individual, localized hot towers rather than groups of energy clusters
- Even when towers are close-by, an overlap of the 3x3 kernel shape is seen

Signal GradCAM:

- Activation pattern mimics the shape of the jet cluster
- Model perceives nearby hot towers as one energy cluster

Conclusion and Future Steps

- Promising exploration of machine learning-based methods for tagging delayed jets and identifying long-lived particles.
- Each model exhibits some degree of interpretability.
- Most notable achievement so far is a 90% signal efficiency at just 0.01% background efficiency (3D Jet Image tagger).

