Stereo Matching Using Belief Propagation Algorithm

ISL Lab Seminar Han Sol Kang

Contents

Introduction

Stereo Vision

: Stereo vision is the extraction of 3D information from digital images, such as obtained by a CCD camera. **By comparing information about a scene from two vantage points**, 3D information can be extracted by examination of the relative positions of objects in the two panels. This is similar to the biological process **Stereopsis**.

Introduction

Applications

: Stereo vision is highly important in fields such as robotics, to extract information about the relative position of 3D objects in the

vicinity of autonomous systems.

Camera Geometry

Pin-hole camera model

: A simple camera without a lens

Camera Geometry

 $f_x: Z = x: X$

 $f_x X = Zx$

 $x = \frac{f_x X}{Z}$

 $=\frac{f_x X}{Z} + p_x$

Pin-hole camera model

Principal point

Principal point
$$(p_x, p_y)$$

Pin-hole

Image sensor

$$f_{y}: Z = y: Y$$

$$f_{y}Y = Zy$$

$$y = \frac{f_{y}Y}{Z}$$

$$= \frac{f_{y}Y}{Z} + p$$

Camera Geometry

Epipolar geometry

Stereo Camera model

$$\Delta PMC_{l} \xrightarrow{similar} \Delta P_{l}LC_{l}$$

$$\frac{X}{Z} = \frac{x_{l}}{f} \qquad \text{a}$$

$$\Delta PNC_{r} \xrightarrow{similar} \Delta P_{r}RC_{r}$$

$$\frac{X-b}{Z} = \frac{x_{r}}{f} \qquad \text{b}$$

from a
$$X = \frac{x_l}{f}Z$$
 from b $X = \frac{x_r}{f}Z + b$

$$\frac{x_l}{f}Z = \frac{x_r}{f}Z + b, \quad \frac{x_l - x_r}{f}Z = b$$

$$\therefore Z = \frac{bf}{x_l - x_r} \longrightarrow W$$

We need to disparity information

General idea

: Match along the epipolar line and Find best matching value

Correspondence problem

- Noise
- Low-texture region
- Occlusion
- Depth-discontinuity

Local method

SSD (Sum of Squared Difference)

$$SSD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} [I_{l}(x, y, y, t) - I_{r}(x - d, y)]^{2}$$

SAD (Sum of Absolute Difference)

$$SAD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{l}(x, y, t) - I_{r}(x - d, y)|$$

MAE(Mean Absolute Error)

$$MAE_{MN}(x, y, d) = \frac{1}{M \times N} \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{t}(x, y, t) - I_{r}(x - d, y)|$$

Global method

: Use the energy functions

$$E(d) = E_{data}(d) + \lambda E_{smoothness}(d)$$

Implementation:

Belief Propagation(BP), Graph Cut(GC), Dynamic Programing(DP)...

MRF (Markov Random Field)

: Undirected and cyclic

1) Positivity

$$P(f) > 0, \forall f$$

2) Markovianity

$$P(f_p | f_{P-\{p\}}) = P(f_p | f_{N_p})$$

HMM (Hidden Markov Model)

- Observable node(Y) : Image
- Hidden node(X): Disparity

Goal

: Computes **marginal probability** of hidden nodes

Attributes

- : **Iterative** algorithm
- : **Message passing** between neighboring hidden nodes

Procedure

- 1) Select random neighboring hidden nodes x_s , x_t
- 2) Send message m_{st} from x_s to x_t
- 3) Update belief about marginal probability

Probabilistic Stereo Model

posterior
$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$
 prior (Hypothesis) evidence (Data)

Likelihood

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$
Matching cost function $F(s, d_s) = |I_l(i, j) - I_r(i - d_s, j)|$

$$P(Y \mid X) \propto \prod_s \exp(-F(s, d_s))$$

$$d_s: \text{ disparity candidate at pixel s}$$

Example

Disparity(x_s)	d=0	d=1	d=2	d=3	d=4
$Value(y_s)$	135	130	128	16	32

Prior

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

$$P(X) \propto \prod_{s} \prod_{t \in N(s)} \exp(-V(d_s, d_t))$$

Constraint function $V(d_s, d_t) = |d_s - d_t|$

 d_s : disparity candidate at pixel s

 d_t : disparity candidate at pixel t

Example

Final model

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

$$\propto P(Y \mid X)P(X)$$

$$\propto \prod_{s} \exp(-F(s,d_s)) \prod_{s} \prod_{t \in N(s)} \exp(-V(d_s,d_t))$$

$$= \prod_{s} \psi_{s}(x_{s}, y_{s}) \prod_{s} \prod_{t \in N(s)} \psi_{st}(x_{s}, x_{t})$$

 Ψ_s : local evidence for node \mathcal{X}_s

 ψ_{st} : compatibility between nodes x_{s} and y_{t}

MAP 📥

maximize marginal probability (maximize belief)

Message Passing

: Message m_{st} from x_s to x_t

$$m_{st}(\mathbf{x}_t) = \kappa \max_{(\mathbf{x}_s)} \left[\psi_s(\mathbf{x}_s, \mathbf{y}_s) \psi_{st}(\mathbf{x}_s, \mathbf{x}_t) \right] \mathbf{1}_{\mathbf{x}_t \in N(s) \setminus t} m_{ks}(\mathbf{x}_s)$$

 $m_s(x_s)$: local evidence

Belief Update

: Belief $b(x_s)$

Implementation of message, belief and disparity

$$m_{st}^{i+1}(x_t) = \kappa \max_{x_s} \left[\psi_s(x_s, y_s) \psi_{st}(x_s, x_t) \prod_{x_k \in N(x_s) \setminus x_t} m_{ks}^i(x_s) \right]$$

$$b_s(x_s) = \kappa \psi_s(x_s, y_s) \prod_{x_k \in N(x_s) \setminus x_t} m_{ks}(x_s)$$

$$d_s^{MAP} = \arg\max_{x_k} b_s(x_k)$$

take the negative logarithm of each equation

$$M_{ij}^{t+1}(x_j) = c \min_{x_i} \left[M_i(x_i) + \phi_c(x_i, x_j) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}^t(x_i) \right]$$

$$B_i(x_i) = c \left[M_i(x_i) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}(x_i) \right]$$

$$x_s^{MAP} = \arg\min_{x} B_s(x_k)$$

Example

Right image

 $M_{k_2}(x_{k_2})$

70

$$M_{k_1}(x_{k_1})$$

$$M_s(x_s)$$

1) Initialize
$$\Omega_{D} = \{1,2,3\}$$

$$M_{st}^{0}(x_{t}) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

$$M_{st}^{i+1}(x_{t}) = c \min_{x_{s}} \left[M_{s}(x_{s}) + \phi_{c}(x_{s}, x_{t}) + \sum_{x_{k} \in N(x_{s}) \setminus x_{t}} M_{ks}^{i}(x_{s}) \right]$$

$$M_{st}^{0}(x_{s}) = M_{st}^{0}(x_{s}) = M_{k_{2}s}^{0}(x_{s}) = M_{k_{3}s}^{0}(x_{s}) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

$$M_{k_1s}^0(x_s) = M_{k_2s}^0(x_s) = M_{k_3s}^0(x_s) = [0 \quad 0 \quad 0]^{\frac{1}{2}}$$

$$M_{st}^{1}(x_{t}=1)$$

$$= \min \left(\frac{(2+0+M_{k_1s}^0(x_s=1)+M_{k_2s}^0(x_s=1)+M_{k_3s}^0(x_s=1))}{(30+1+M_{k_1s}^0(x_s=2)+M_{k_2s}^0(x_s=2)+M_{k_3s}^0(x_s=2))}, \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=1)+M_{k_2s}^0(x_s=2)+M_{k_3s}^0(x_s=1))}{(72+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_3s}^0(x_s=3))} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=1)+M_{k_2s}^0(x_s=2)+M_{k_3s}^0(x_s=2))}{(72+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_3s}^0(x_s=3))} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=1)+M_{k_1s}^0(x_s=2)+M_{k_2s}^0(x_s=2)+M_{k_3s}^0(x_s=3))}{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_3s}^0(x_s=3))} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_3s}^0(x_s=3))}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3))} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3))} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_2s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)}{(2+2+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)} \right) = 2 \left(\frac{(2+0+M_{k_1s}^0(x_s=3)+M_{k_1s}^0(x_s=3)}{(2+2+M_{k_$$

$$M_{st}^{1}(x_{t}=2)$$

 $M_t(x_t)$

$$= \min \left\{ (2+1+M_{k_1s}^0(x_s=1)+M_{k_2s}^0(x_s=1)+M_{k_3s}^0(x_s=1)), \\ (30+0+M_{k_1s}^0(x_s=2)+M_{k_2s}^0(x_s=2)+M_{k_3s}^0(x_s=2)), \\ (72+1+M_{k_1s}^0(x_s=3)+M_{k_2s}^0(x_s=3)+M_{k_3s}^0(x_s=3)) \right\} = 3$$

Example

 X_1 2 31 70 $M_{k_1}(x_{k_1})$

$$\Omega_{D} = \{1,2,3\}$$

$$M_{st}^{1}(x_{t} = 3)$$

$$M_{st}^{1}(x_{t}) = c \min_{x_{s}} M_{s}(x_{s}) + \phi_{c}(x_{s}, x_{t}) + \sum_{x_{k} \in N(x_{s}) \setminus x_{t}} M_{ks}^{1}(x_{s}) \end{bmatrix}$$

$$= \min \left((2 + 2 + M_{k_{1}s}^{0}(x_{s} = 1) + M_{k_{2}s}^{0}(x_{s} = 1) + M_{k_{3}s}^{0}(x_{s} = 1)), (30 + 1 + M_{k_{1}s}^{0}(x_{s} = 2) + M_{k_{2}s}^{0}(x_{s} = 2) + M_{k_{3}s}^{0}(x_{s} = 2)), (72 + 0 + M_{k_{1}s}^{0}(x_{s} = 3) + M_{k_{2}s}^{0}(x_{s} = 3) + M_{k_{3}s}^{0}(x_{s} = 3)) \right)$$

$$M_{st}^{1} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^{T}$$

$$M_{k_{1}s}^{1}(x_{s}) = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^{T}$$

$$M_{k_{2}s}^{1}(x_{s}) = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}^{T}$$

$$M_{k_{3}s}^{1}(x_{s}) = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}^{T}$$

Example

$$\Omega_D = \{1, 2, 3\}$$

70

 $M_{k_2}(x_{k_2})$

$$B_t(x_t = 1) = 2 + 11 = 13$$

 $B_t(x_t = 2) = 2 + 12 = 14$
 $B_t(x_t = 3) = 1 + 13 = 14$
 $B_t(x_t) = \begin{bmatrix} 13 & 14 & 14 \end{bmatrix}^T$,

$$B_{s}(x_{s}) = c \left[M_{s}(x_{s}) + \sum_{x_{k} \in N(x_{s}) \setminus x_{t}} M_{ks}(x_{s}) \right]$$

$$x_{s}^{MAP} = \underset{x_{k}}{\operatorname{arg \, min}} B_{s}(x_{k})$$

$$B_t(x_t) = \begin{bmatrix} 13 & 14 & 14 \end{bmatrix}^T, \qquad x_t^{MAP} = \arg\min_{x_k} B_t(x_k) = 1$$

 k_3 4 40 90 $M_{k_3}(x_{k_3})$

Experimental Results

♣ Aloe^{*}

Experimental Results

Lab

1=5

Thamk touil