DIVISION ALGEBRAS AND THE PICARD NUMBER OF A RAMIFIED CYCLIC COVERING

TIMOTHY J. FORD

1. Introduction and Statement of Problem

Let k denote a field in which n is invertible, and assume k contains ζ , a primitive nth root of unity. Let $A = k[x_1, \ldots, x_m]$ be the affine coordinate ring of \mathbb{A}_k^m and $K = k(x_1, \ldots, x_m)$ the field of rational functions. Given an irreducible polynomial f in A we consider the affine variety in $\mathbb{A}_k^{m+1} = \operatorname{Spec} k[x_1, \ldots, x_m, z]$ defined by the equation $z^n = f$. Let $T = A[z]/(z^n - f)$, $R = A[f^{-1}]$, and $S = T[z^{-1}]$. Then T is a ramified cyclic extension of A, and S is a Galois extension of R. Identifying z with $\sqrt[n]{f}$, the quotient field of T (and S) is L = K(z) and L/K is a Kummer extension with cyclic Galois group. Let σ denote the K-algebra automorphism of $L = K(\sqrt[n]{f})$ defined by $z \mapsto \zeta z$. Let $G = \{1, \sigma, \ldots, \sigma^{n-1}\}$ be the cyclic group generated by σ . Then G is a group of A-automorphisms of T, a group of T-automorphisms of T, and a group of T-automorphisms of T is a group of T-automorphism of T. The rings together with their quotient fields appear in the following commutative diagram.

(1)
$$T = A[\sqrt[n]{f}] \longrightarrow S = R[\sqrt[n]{f}] \longrightarrow L = K(\sqrt[n]{f})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$A \longrightarrow R = A[f^{-1}] \longrightarrow K$$

This article studies connections between K-division algebras and divisor classes on the affine varieties Spec T and Spec S. Arithmetic in the Brauer group of K is exploited to study the Picard group Pic S and the class group Cl(T). We give sufficient conditions on f such that the Picard group Pic S is nontrivial. For many examples, the Picard numbers are computed. Associated to the Galois extension S/R is the so-called seven term exact sequence of Chase, Harrison and Rosenberg:

(2)
$$1 \to H^1(G, S^*) \xrightarrow{\alpha_1} Pic(R) \xrightarrow{\alpha_2} (Pic S)^G \xrightarrow{\alpha_3} H^2(G, S^*) \xrightarrow{\alpha_4} B(S/R) \xrightarrow{\alpha_5} H^1(G, Pic S) \xrightarrow{\alpha_6} H^3(G, S^*)$$

[1, Corollary 5.5] or [9, Theorem 13.3.1]. Since A and R = A[1/f] are factorial, Pic A = Pic R = 0. Since G is cyclic, [10, Theorem 8.5.20] and the exact sequence (2) imply that $H^i(G,S^*) = \langle 1 \rangle$ for i = 1,3,... In our context, (2) reduces to the exact sequence

$$(3) \qquad \langle 1 \rangle \to (\operatorname{Pic} S)^G \xrightarrow{\alpha_3} \operatorname{H}^2(G, S^*) \xrightarrow{\alpha_4} \operatorname{B}(S/R) \xrightarrow{\alpha_5} \operatorname{H}^1(G, \operatorname{Pic} S) \to \langle 1 \rangle$$

In Section 2 below, the goal is to derive sufficient conditions on n and f such that there exist nontrivial elements in the image of α_5 . In Section 3, we derive sufficient conditions

Date: October 2, 2024. Preliminary Report.

1

on n and f such that there exists a homomorphism

(4)
$$B(S/R) \xrightarrow{\gamma_5} H^1(G,Cl(T))$$

and for any N > 0, the image of γ_5 contains a subgroup of order N or greater.

2. Double Covers

In this section we continue to use the notation established above, with some modifications. The cyclic covering T/A is assumed to be quadratic. Thus, n=2, and $L=K(\sqrt{f})$. The varieties are surfaces, thus m=2, and we write A=k[x,y]. The polynomial f is always square-free, but not necessarily irreducible. Let $f=f_1\cdots f_n$ be the factorization of f into irreducibles in the factorial ring A. The group of units of R is equal to $k^*\times\langle f_1\rangle\times\cdots\langle f_n\rangle$, which is isomorphic to $k^*\times\mathbb{Z}^{(n)}$. By the Kummer sequence, $H^1(R,\mu_2)\cong (\mathbb{Z}/2)^{(n)}$. Since $H^1(R,\mu_2)$ classifies the étale double covers of R, we view S as a representative of the class [S] in $H^1(R,\mu_2)$ corresponding to $f=f_1\cdots f_n$. Fixing [S] in one factor of the cup product \smile : $H^1(R,\mu_2)\times H^1(R,\mu_2)\to H^2(R,\mu_2)$ [18, p. 172] and following with the Kummer theory map $H^2(R,\mu_2)\to 2$ B(R), we have a homomorphism $(\cdot)\cup[S]:H^1(R,\mu_2)\to 2$ B(R). The image of $(\cdot)\cup[S]$ is denoted by $H^1(R,\mu_2)\to 2$ B(R) split by $H^1(R,\mu_2)\to 2$ B(R) is a cyclic crossed product, hence is in the image of the cup product map. In this sense, the classes of Azumaya algebras in $H^1(R,R)$ represent the obvious elements in $H^1(R,R)$. The short exact sequence of Theorem 2.1(a) is a special case of (2).

Theorem 2.1. In the notation established above, the following are true.

(a) There is an exact sequence of abelian groups

$$0 \to \operatorname{B}^{\smile}(S/R) \to \operatorname{B}(S/R) \xrightarrow{\alpha_5} \operatorname{Pic} S \otimes \mathbb{Z}/2 \to 0.$$

(b) The restriction-corestriction sequence

$$0 \to \mathrm{B}(S/R) \to {}_2\mathrm{B}(R) \xrightarrow{\mathrm{res}^2} {}_2\mathrm{B}(S) \xrightarrow{\mathrm{cor}^2} {}_2\mathrm{B}(R) \to 0$$

is exact

(c) The $\mathbb{Z}/2$ -rank of Pic $S \otimes \mathbb{Z}/2$ is less than or equal to the $\mathbb{Z}/2$ -rank of ${}_2B(R)$.

Proof. [6, Theorem 2.1] and its proof.

Theorem 2.2. In the notation established above, assume f is irreducible. The following are true.

- (a) $B^{\smile}(S/R) = \langle 0 \rangle$.
- (b) $\alpha_5: B(S/R) \cong Pic S \otimes \mathbb{Z}/2$.
- (c) $\dim_{\mathbb{Z}/2} H^1(S, \mu_2) = \dim_{\mathbb{Z}/2} H^1(R, \mu_2) = 1$.
- (d) $\dim_{\mathbb{Z}/2} H^2(S, \mu_2) = 2 \dim_{\mathbb{Z}/2} H^2(R, \mu_2)$.
- (e) For all i > 0, $H^{i}(G, S^{*}) = \langle 1 \rangle$.
- (f) $(\operatorname{Pic} S)^G = \langle 0 \rangle$.

Proof. [6, Theorem 2.8]

Proposition 2.3. If I is a prime ideal of S of height one, then I is a free R-module of rank two. There exist elements a,b in I such that I=aS+bS.

Proof. Let I be a height one prime ideal in S. Then I is a rank one reflexive module and because S is non-singular, I is a rank one projective S-module (for example, [10, Theorem 12.6.9] or [13, Corollary II.6.16]). Since S is a free R-module of rank two, it follows that I is a projective R-module of rank two. By [19], the R-module I decomposes into a direct sum of two rank one projective modules. Since PicR = 0, it follows that I is a free R-module.

2.1. Motivational Examples.

Example 2.4. Let $f = f_1 f_2 f_3 f_4 \in k[x,y]$, where f_1, f_2, f_3, f_4 are four linear polynomials in general position. Let $R = k[x,y][f^{-1}]$, $S = R[\sqrt{f}]$. Using [4, Theorem 4], we see that $_2B(R) = (\mathbb{Z}/2)^{(6)}$ and a basis consists of the symbol algebras $\{(f_i, f_j)_2 \mid i < j\}$. The group $B^{\smile}(S/R)$ is the subgroup of $_2B(R)$ generated by $\{(f, f_i)_2 \mid 1 \le i \le 4\}$. One computes that $B^{\smile}(R)$ is a group of order 2^3 . Let $F_i = Z(f_i)$ be the line defined by $f_i = 0$. Let $P_{12} = F_1 \cap F_2$ and $P_{34} = F_3 \cap F_4$. Let ℓ be the linear equation of the line L through P_{12} and P_{34} . Let $\Lambda = (f, \ell)_2$. As in [4, Theorem 4], one computes

(5)
$$(f,\ell)_2 \sim (f_1 f_2, \ell)_2 (f_3 f_4, \ell)_2$$
$$\sim (f_1, f_2)_2 (f_3, f_4)_2$$

is in B(S/R) and not in B^{\smile}(S/R). By Theorem 2.1, $\alpha_5(\Lambda)$ represents a non-trivial element of Pic(S) $\otimes \mathbb{Z}/2$.

Example 2.5. As in Example 2.4, let f_1, f_2, f_3, f_4 be four linear polynomials in general position. Let $F_i = Z(f_i)$ be the line defined by $f_i = 0$. Let $P_{12} = F_1 \cap F_2$, $P_{34} = F_3 \cap F_4$, and let ℓ be the linear equation of the line L through P_{12} and P_{34} . Let F_0 be the line at infinity and let P_{05} be the point $F_0 \cap L$. Let F_5 be a line through P_{05} which is in general position with respect to F_1, F_2, F_3, F_4, L . Let $f = f_1 f_2 f_3 f_4 f_5$, $R = k[x,y][f^{-1}]$, and $S = R[\sqrt{f}]$. Then ${}_2B(R) = (\mathbb{Z}/2)^{(10)}$ and a basis consists of the symbol algebras $\{(f_i, f_j)_2 \mid i < j\}$. The group P(S/R) is the subgroup of P(S/R) generated by P(S/R) is a group of order P(S/R). One computes

(6)
$$(f,\ell)_2 \sim (f_1 f_2, \ell)_2 (f_3 f_4, \ell)_2$$
$$\sim (f_1, f_2)_2 (f_3, f_4)_2$$

is in B(S/R) and not in B^{\smile}(S/R). By Theorem 2.1, $\alpha_5(\Lambda)$ represents a non-trivial element of Pic(S) $\otimes \mathbb{Z}/2$.

Example 2.6. Pick a linear polynomial $\ell \in k[x,y]$, and let $L = Z(\ell)$ be the line in \mathbb{A}^2 defined by ℓ . Generalizing Example 2.5, a large class of f are presented such that $G = Z(\ell)$ is split by $R[\sqrt{f}]$. Let $m \geq 2$ and pick distinct points P_1, \ldots, P_m on L. Let F_1, \ldots, F_{2m} be general lines in \mathbb{A}^2 satisfying $P_i \in F_{2i-1} \cap F_{2i}$. Let $f_j = 0$ be the linear equation for F_j and set $f = f_1 f_2 \cdots f_{2m}$. Let $R = k[x,y][f^{-1}]$ and $S = R[\sqrt{f}]$. Then $_2 B(R) = (\mathbb{Z}/2)^{(r)}$ where $r = 1 + 2 + \cdots + (2m - 1)$ and a basis consists of the symbol algebras $\{(f_i, f_j)_2 \mid i < j\}$. The group $B^{\sim}(S/R)$ is the subgroup of $_2 B(R)$ generated by $\{(f, f_j)_2 \mid 1 \leq j \leq 2m - 1\}$. One computes that $B^{\sim}(S/R)$ is a $\mathbb{Z}/2$ -module of rank 2m - 1. Let $\Lambda = (f, \ell)_2$. One computes

(7)
$$(f,\ell)_2 \sim (f_1 f_2, \ell)_2 (f_3 f_4, \ell)_2 \cdots (f_{2m-1} f_{2m}, \ell)_2$$

$$\sim (f_1, f_2)_2 (f_3, f_4)_2 \cdots (f_{2m-1}, f_{2m})_2$$

is in B(S/R) and not in B^{\smile}(S/R). By Theorem 2.1, $\alpha_5(\Lambda)$ represents a non-trivial element of Pic(S) $\otimes \mathbb{Z}/2$.

2.2. **Division Algebras over** K **and Primes of** S. As in diagram (1), A = k[x,y], f is square-free, $T = A[z]/(z^2 - f)$, $R = A[f^{-1}]$ and $S = T[z^{-1}]$. Let π : Spec $T \to S$ pec A be the corresponding morphism of surfaces. Since R and S are regular surfaces, $B(S/R) \to B(L/K)$ is one-to-one. An element of B(S/R) is represented by a central K-division algebra $\Lambda \in B(L/K)$ and the ramification divisor of Λ is contained in F = Z(f). By the crossed product theorem, the division algebra Λ is a symbol $(f,h)_2$ for some h in K^* (for instance, see [20, Corollary 7.11]). Since h is unique up to norms from L^* , we can assume h is a square-free element of A. Factoring h into irreducibles, the Brauer class of Λ is a product of classes of the form $(f,g)_2$, where g is an irreducible element of A. Denote by C = Z(g) the irreducible curve on Spec A defined by B. Consider the divisor $C = \pi^{-1}(C)$ on Spec B. The diagrams

(8)
$$\tilde{C} \xrightarrow{\subseteq} \operatorname{Spec} T \qquad T \longrightarrow T/Tg$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$C \xrightarrow{\subseteq} \operatorname{Spec} A \qquad A \longrightarrow A/Ag$$

commute, where (8) shows the morphisms of varieties on the left, and the coordinate rings on the right.

Proposition 2.7. As above, $\pi : \operatorname{Spec} T \to \operatorname{Spec} A$ is the affine double plane defined by $z^2 = f$, where A = k[x,y] and K = k(x,y). Assume g is irreducible in A and the K-symbol algebra $(f,g)_2$ ramifies only along F = Z(f). If C = Z(g), then $\tilde{C} = \pi^{-1}(C)$ is not irreducible. The curve \tilde{C} is reducible with only one irreducible component if and only if g divides g. Otherwise g is reducible and has two irreducible components.

Proof. If g divides f, then any prime of T containing g also contains z. In this case, g has a unique minimal prime in T, namely P = (g,z). In the local ring T_P , the element g has valuation 2. This shows Div(g) = 2P. So \tilde{C} is reducible with only one irreducible component. Note that in this case, $(f,g)_2$ is in $B^{\smile}(S/R)$.

Now assume g does not divide f. Then g is irreducible in $R = A[f^{-1}]$. Let Q denote the prime ideal Rg in R. The field $K(C) = R_Q/QR_Q$ is the function field of C. Because $S = T \otimes_A R$ is Galois over R, $S \otimes_R K(C)$ is separable of degree two over K(C). Either $S \otimes_R K(C)$ is a field, or a direct sum of two copies of K(C) (for example, see [10, Corollary 5.5.9] or [15, Proposition III.4.1]). If $S \otimes_R K(C)$ is a field, then Sg is a prime ideal in S, so \tilde{C} is irreducible. In this case, the ramification of $(f,g)_2$ along the divisor C is the non-zero class of $S \otimes_R K(C)$ in $H^1(K(C), \mu_2)$. This case does not arise because we are assuming $(f,g)_2$ is unramified along C.

The last possibility is that $S \otimes_R K(C)$ is a direct sum of two copies of K(C). In this case there are two minimal primes of Sg. Let P be one of them. The other is necessarily $\sigma(P)$ (for example [10, Theorem 6.3.6] or [17, (5.E), Theorem 5]). Because the residue fields of R_Q and S_P are equal, the image of QR_Q generates the maximal ideal of S_P . This means g is a local parameter for S_P . The divisor of g on Spec S is $P + \sigma(P)$.

In Proposition 2.8 we prove a partial converse to Proposition 2.7. If C = Z(g) splits over S into $\tilde{C} = \tilde{C}_1 + \tilde{C}_2$ where \tilde{C}_1 and \tilde{C}_2 are disjoint, then the K-symbol algebra $(f,g)_2$ is shown to represent a Brauer class in the image of $B(R) \to B(K)$.

Proposition 2.8. In the context of Proposition 2.7, suppose $g \in R$ is irreducible and that S/(g) is isomorphic to the direct sum of two copies of R/(g).

	(1,0)	(z,0)	(0,g)	(0,z-h)
(1,0)	(1,0)	(z,0)	(0,g)	(0,z-h)
(z,0)	(z,0)	(f,0)	(0,zg)	(0,z(z-h))
(0,g)	(0,g)	(0,-zg)	(g,0)	(-z-h,0)
(0,z-h)	(0,z-h)	(0,-z(z-h))	(z-h,0)	(-u,0)

TABLE 1. Multiplication table for $\Delta(I)$ in Proposition 2.8.

- (a) There is an element h in R (0) such that the minimal primes of g in S are I = (g, z h) and $\sigma(I) = (g, z + h)$.
- (b) The symbol algebra $(f,g)_2$ over K represents a class ξ in B(S/R).
- (c) The coset $\alpha_5(\xi)$ in Pic $S \otimes \mathbb{Z}/2$ is represented by the ideal I.

Proof. We are given that

$$\frac{S}{(g)} = \frac{\left(R/(g)\right)[z]}{(z^2 - f)}$$

is the trivial quadratic extension of R/(g). This means f is a non-zero square in R/(g). There exist u, h in R-(0) such that $f=ug+h^2$. Look at the ideal I=(g,z-h) in S. Since

$$S/I = \frac{k[x,y,z][f^{-1}]}{(g,z^2 - f,z - h)} \cong \frac{k[x,y][f^{-1}]}{(g)}$$

we see that *I* is prime of height one. A typical element of *S* can be written in the form a + b(z - h), for $a, b \in R$. If a, b, c, d are from *R*, then a typical element of *I* is

$$(a+b(z-h))g + (c+d(z-h))(z-h) = ag + b(z-h)g + c(z-h) + d(z-h)^{2}$$

$$= ag + b(z-h)g + c(z-h) + d(z^{2} - h^{2} - 2zh + 2h^{2})$$

$$= (a+du)g + (bg + c - 2dh)(z-h)$$

so I = Rg + R(z - h). By Proposition 2.3, g, z - h is a free R-basis for I. Since z is invertible in S, $I\sigma(I) = (g^2, g(z+h), g(z-h), ug) = Sg$. Let $\Delta(I)$ be the generalized cross product algebra, as defined in $[6, \S 2.2]$. Then $\Delta(I)$ is an Azumaya R-algebra which is split by S. As an R-module $\Delta(I)$ is generated by (1,0), (z,0), (0,g), and (0,z-h). Using equation [6, (16)], the multiplication table for $\Delta(I)$ is constructed in Table 1. Upon extending the ring of scalars to K, it is clear that $\Delta(I) \otimes_R K$ is isomorphic to the symbol algebra $(f,g)_2$. Therefore $(f,g)_2$ is unramified on Z(g), represents a class ξ in B(S/R), and $\alpha_5(\xi)$ is represented by the divisor class of the ideal I = (g,z-h).

Suppose f and g are as in Proposition 2.7 and g does not divide f. If C = Z(g) is rational and simply connected, then $\tilde{C} = \tilde{C}_1 + \tilde{C}_2$ is reducible if and only if the local intersection multiplicity of C and F at each point is even [13, Corollary IV.2.4].

Proposition 2.9. As always, A = k[x,y] and K = k(x,y). Suppose f and g are in A, f is square-free, g is irreducible, g does not divide f, and the K-symbol algebra $(f,g)_2$ is unramified along each prime divisor of $R = A[f^{-1}]$. If C = Z(g) on Spec R is either nonsingular, or has only unibranched singularities, then S/(g) is isomorphic to a direct sum of two copies of R/(g).

Proof. We are in the context of the paragraph preceding Proposition 2.7. Let $\Lambda = (f,g)_2$. The ramification $a_C(\Lambda)$ along C is given by the tame symbol. But R is factorial and g is irreducible. Therefore $a_C(\Lambda)$ is the quadratic extension $K(C)[z]/(z^2-f)$, which by

assumption represents the zero class in $H^1(K(C), \mathbb{Z}/2)$. Let \bar{C} denote the normalization of C. Because C has at most unibranched singularities, the natural map $H^1(C, \mathbb{Q}/\mathbb{Z}) \to H^1(\bar{C}, \mathbb{Q}/\mathbb{Z})$ is an isomorphism. For any closed point $p \in \bar{C}$, the natural map

$$H^1(\bar{C}, \mathbb{Q}/\mathbb{Z}) \to H^1(\bar{C}-p, \mathbb{Q}/\mathbb{Z})$$

is one-to-one by cohomological purity [18, Theorem VI.5.1]. By a direct limit argument, the natural map

$$H^1(\bar{C}, \mathbb{Q}/\mathbb{Z}) \to H^1(K(C), \mathbb{Q}/\mathbb{Z})$$

is one-to-one. Therefore, the unramified quadratic extension S/(g) represents the zero class in $H^1(C, \mathbb{Q}/\mathbb{Z})$. So S/(g) is isomorphic to a direct sum of two copies of R/(g). \square

Example 2.10. This example shows that if the curve R/(g) has a nodal singularity, the conclusion of Proposition 2.9 can fail. Let f = x + 1, $T = k[x,y,z]/(z^2 - f)$. Let $g = y^2 - x^2(x+1)$. In T the element g factors into (y-xz)(y+xz). Each factor is irreducible because the map $x \mapsto z^2 - 1$, $y \mapsto xz$ induces $T/(y-xz) \cong k[z]$. Since

$$\frac{T}{(y-xz,y+xz)} \cong \frac{k[z]}{(z(z^2-1))}$$

the elements y-xz and y+xz are not relatively prime, even in $S=T[z^{-1}]$. The conclusion of Proposition 2.9 is not satisfied. Now look at the symbol algebra $\Lambda=(f,g)_2$ over K=k(x,y). Since $1 \sim (x+1,x)_2$, we have

$$\Lambda \sim (x+1, x^{-2})_2(x+1, y^2 - x^2(x+1))_2$$
$$\sim (x+1, (y/x)^2 - (x+1))_2$$
$$\sim 1$$

Therefore, $(f,g)_2$ is split, hence unramified over R.

2.3. **A Construction.** Suppose our goal is to construct a double plane Spec $T \to \mathbb{A}^2$ with the property that the class group on the unramified set Spec $S \subseteq \operatorname{Spec} T$ is non-trivial and easy to compute. An approach based on Theorem 2.1 is to find f such that we can compute elements that are in $\operatorname{B}(S/R)$ but not in $\operatorname{B}^{\sim}(S/R)$. The preceding examples provide some insight on how to pick elements f and g in A such that $(f,g)_2$ is in $\operatorname{B}(S/R)$ and not in $\operatorname{B}^{\sim}(S/R)$. Start with a sequence of distinct irreducible polynomials f_1, \ldots, f_N in A = k[x,y], where $N \geq 3$. Put $f = f_1 f_2 \cdots f_j + (f_{j+1} \cdots f_N)^2$, for some j such that $2 \leq j < N$. If f is square-free, then $z^2 - f$ is irreducible and $T = A[z]/(z^2 - f)$ is integrally closed. Let g be any one of f_1, \ldots, f_j and $h = f_{j+1} \cdots f_N$. By construction, g does not divide f. Let $R = A[f^{-1}]$. The map

(9)
$$\frac{(R/(g))[z]}{(z^2-h^2)} \xrightarrow{\beta} \frac{R}{(g)} \oplus \frac{R}{(g)}$$

is an isomorphism, where β maps $z \mapsto (h, -h)$. If $S = T[z^{-1}]$, then S/(g) is isomorphic to the ring on the left hand side of (9). By Proposition 2.8, the symbol algebra $\Lambda = (f,g)_2$ ramifies only along the zeros of f. Also, the homomorphic image of $[\Lambda]$ under α_5 is the divisor class of the ideal I = (g, z - h). Upon restriction to the quotient field K = k(x, y), the symbol algebra $(f,g)_2$ is a division algebra if the ideal I = (g, z - h) represents a non-trivial class in $\text{Pic } S \otimes \mathbb{Z}/2$. The converse of this last statement is false, as shown in Example 2.6.

Example 2.11. This example is based on the construction of Section 2.3. Let ℓ_1, ℓ_2, ℓ_3 be three general linear polynomials in k[x,y]. Let $f = \ell_1 \ell_2 - \ell_3^2$. We can assume f is irreducible. Let F = Z(f), $L_i = Z(\ell_i)$, and F_0 the line at infinity. Let $L_1 \cdot L_3 = P_1$ and $L_3 \cdot F_0 = P_{03}$. We see that $F \cdot L_1 = 2P_1$. By a general position argument, we can assume $F_0 \cdot F = P_{01} + P_{02}$. For the symbol algebra $(f, \ell_1)_2$, the weighted path in the graph $\Gamma = \Gamma(F + L_1 + F_0)$ is shown in Figure 1. The cycle $F \to P_{01} \to F_0 \to P_{02} \to F$ is non-trivial.

FIGURE 1. The weighted path of $(f,g)_2$ in Example 2.11.

The fact that the cycle in Figure 1 represents a non-trivial element in $H_1(\Gamma, \mathbb{Z}/2)$ proves that $(f, \ell_1)_2$ is a non-trivial element of B(S/R). Since f is irreducible, Theorem 2.2 says $B^{\smile}(S/R) = (0)$. Therefore, the ideal $I = (\ell_1, z - \ell_3)$ is a non-trivial element of $Pic S \otimes \mathbb{Z}/2$.

Example 2.12. This example is based on the construction of Section 2.3. Start with a sequence of distinct irreducible polynomials f_1, \ldots, f_n in A = k[x,y], where $n \ge 2$. Set $f = f_1 f_2 \cdots f_n + h^2$, for some $h \in A$ such that f is irreducible. Let $R = A[f^{-1}]$, and $S = R[z]/(z^2 - f)$. Theorem 2.2 says $B(S/R) \cong \operatorname{Pic}(S) \otimes \mathbb{Z}/2$. Let g be any one of f_1, \ldots, f_n . Let F = Z(f), F_0 the line at infinity, G = Z(g), and H = Z(h). At a finite point P, the local intersection multiplicity $(F \cdot G)_P$ is divisible by 2. Assume there exists P_0 in $P_0 \cap F$ such that P_0 is not a point of P_0 and the local intersection multiplicity $P_0 \cap F_0$ is odd. If we assume deg P_0 is odd, then the weighted path in the graph $P_0 \cap F_0 \cap F_0$ of the symbol algebra $P_0 \cap F_0$ has loops of the type $P_0 \cap F_0 \cap F_0$ has loops of the type $P_0 \cap F_0 \cap F_0$ has loops of the type $P_0 \cap F_0 \cap F_0$ has a non-trivial element of $P_0 \cap F_0 \cap F_0$.

Example 2.13. This example is based on Example 2.12. This example shows that it is not necessary to assume the degree of p_1 is odd. Let ℓ_1, ℓ_2 be linear polynomials in k[x, y] and c an irreducible conic such that $f = \ell_1 c + \ell_2^2$ is an irreducible cubic. Assume ℓ_1, ℓ_2, c , and the line at infinity F_0 are in general position. In this example we prove that $(f, c)_2$ is a

division algebra. Let C = Z(c), F = Z(F), $L_i = Z(\ell_i)$, and F_0 the line at infinity. Let

(10)
$$C \cdot L_{1} = P_{1} + P_{2}$$

$$C \cdot L_{2} = P_{3} + P_{4}$$

$$L_{1} \cdot L_{2} = P_{5}$$

$$L_{1} \cdot F_{0} = P_{6}$$

$$L_{2} \cdot F_{0} = P_{7}$$

$$C \cdot F_{0} = P_{8} + P_{9}$$

Then

(11)
$$F \cdot C = 2F \cdot L_2 + F \cdot F_0$$
$$= 2L_2 \cdot C + C \cdot F_0$$
$$= 2P_3 + 2P_4 + P_8 + P_9$$
$$F \cdot F_0 = L_1 \cdot F_0 + C \cdot F_0$$
$$= P_6 + P_8 + P_9$$

From this we compute the weighted path in the graph $\Gamma(F+C+F_0)$ for the symbol algebra $(f,c)_2$, with coefficients in $\mathbb{Z}/2$. The graph and edge weights are shown in Figure 2. There

FIGURE 2. The weighted path of $(f,c)_2$ in Example 2.13

is one non-trivial loop, $F \to P_8 \to F_0 \to P_9 \to F$. Therefore $(f,c)_2$ is a division algebra and corresponds to a non-trivial element in B(S/R).

Notice that $F \cdot L_1 = 2P_5 + P_7$. Compute the weighted path in the graph $\Gamma(F + L_1 + F_0)$ for the symbol algebra $(f, \ell_1)_2$, with coefficients in $\mathbb{Z}/2$. There is a non-trivial cycle, $F \to P_6 \to F_0 \to P_7 \to F \to P_8 \to F_0 \to P_9 \to F$. This proves $(f, \ell_1)_2$ is a division algebra and corresponds to a non-trivial element in B(S/R). It follows that the order of Pic $S \otimes \mathbb{Z}/2$ is at least 4. The ideals $(c, z - \ell_2)$ and $(\ell_1, z - \ell_2)$ are independent in Pic $S \otimes \mathbb{Z}/2$.

Example 2.14. Say ℓ and c are in k[x,y], where ℓ is a line and c is an irreducible conic. Let C = Z(c), $L = Z(\ell)$. Let F_0 denote the line at infinity. Assume L, C and F_0 are in general

position. Let $f = \ell c - 1$ and assume f is irreducible. An argument similar to that used in Example 2.13 shows that over k(x,y), both $(f,\ell)_2$ and $(f,c)_2$ are division algebras.

2.4. More examples.

Example 2.15. As in Example 2.4, we consider a double plane ramified over four lines. We consider the case where two of the four lines are parallel. Start with a linear polynomial $\ell \in k[x,y]$ which defines the line $L = Z(\ell)$ in \mathbb{A}^2 . Pick a point P on L. Let F_1 and F_2 be general lines which are parallel to L. Let F_3 and F_4 be general lines that intersect L at P. Let f_i be the equation for F_i . Let $f = f_1f_2f_3f_4$, $R = k[x,y][f^{-1}]$, and $S = R[\sqrt{f}]$. Then p(R) is isomorphic to $(\mathbb{Z}/2)^{(5)}$. A basis consists of the symbol algebras

$$\{(f_1,f_3)_2,(f_1,f_4)_2,(f_2,f_3)_2,(f_2,f_4)_2,(f_3,f_4)_2\}.$$

The group $B^{\sim}(S/R)$ is the subgroup of ${}_2B(R)$ generated by $\{(f,f_1)_2,\ldots,(f,f_4)_2\}$. One computes that $B^{\sim}(S/R)$ is a $\mathbb{Z}/2$ -module of rank 3, with a basis being

$$\{(f_1,f_3)_2(f_1,f_4)_2,(f_2,f_3)_2(f_2,f_4)_2,(f_1,f_3)_2(f_2,f_3)_2(f_3,f_4)_2\}.$$

Let $\Lambda = (f, \ell)_2$. One computes $(f, \ell)_2 \sim (f_3 f_4, \ell)_2 \sim (f_3, f_4)_2$ which is in B(S/R), but not B $^{\sim}(S/R)$. Theorem 2.1 says $\alpha_5(\Lambda)$ represents a non-trivial element of Pic(S) $\otimes \mathbb{Z}/2$.

The case where f_1 and f_2 are parallel, and f_3 and f_4 are parallel is the subject of Example 2.16, where it is shown that α_5 is zero. The double plane ramified over four lines passing through a common point is studied in [8], where it is shown that α_5 is zero.

Example 2.16. Let $f = (x^2 - 1)(y^2 - 1) \in k[x,y]$. Set $R = k[x,y][f^{-1}]$ and $S = R[\sqrt{f}]$. Let $T = k[x,y,z]/(z^2 = f)$. As computed in [16], $Cl(T) \cong (\mathbb{Z}/2)^{(3)}$. By [6, Theorem 2.4], $H^1(G,Cl(T)) \cong Cl(T) \otimes \mathbb{Z}/2 \cong (\mathbb{Z}/2)^{(3)}$. As shown in [6, Theorem 2.5], $H^1(G,Cl(T)) \to B(S/R)$ is onto. Using [4], one can check that ${}_2B(R) \cong (\mathbb{Z}/2)^{(4)}$ and $B^{\smile}(S/R) \cong (\mathbb{Z}/2)^{(3)}$. This proves $B^{\smile}(S/R) = B(S/R)$ and $Pic S \otimes \mathbb{Z}/2 = (0)$. Consider the symbol algebra $(f,y-x)_2$. Check that

(12)
$$(f,y-x)_2 \sim ((x-1)(y-1),y-x)_2((x+1)(y+1),y-x)_2$$

$$\sim (x-1,y-1)_2(x+1,y+1)_2$$

$$\sim (f,(x-1)(y+1))_2$$

Upon restriction to the field K = k(x,y), $(f,y-x)_2$ is a division algebra. The ideal S(y-x) has two minimal primes, namely $(y-x,z-x^2+1)$ and $(y-x,z+x^2-1)$ and they are comaximal. The ring S/(y-x) is a direct sum of two copies of R/(y-x). The ring in Example 2.4 was a double plane ramified over four lines in general position. The ring in Example 2.15 was a double plane ramified over four lines, three of which are in general position. In both of these examples, it was shown that $\operatorname{Pic} S \otimes \mathbb{Z}/2$ was non-trivial. By comparison, in this example we find that $\operatorname{Pic} S \otimes \mathbb{Z}/2$ is trivial because the four lines are not sufficiently general.

One can check that the K-symbol algebra $\Lambda = (x-1,y-1)_2$ represents a class in B(R) that is not in B $^{\smile}(S/R)$. If L is the quotient field of T, then $\Lambda \otimes_K L$ is a division algebra over L. Moreover, $\Lambda \otimes_K L$ is unramified at every height one prime of T. By [3, Corollary 3] the sequence

(13)
$$0 \to B(L/T) \to B(T) \to B(V) \to 0$$

is exact, where V is the set of regular points of Spec T. We know that a maximal \mathcal{O}_V -order in $\Lambda \otimes L$ is Azumaya. It would be informative to have a description of an Azumaya T-algebra whose generic stalk is Brauer equivalent to $\Lambda \otimes L$.

Example 2.17. Now we give an example where, in the context of Section 2.3, the symbol algebra $(f,g)_2$ is split, the ideal I=(g,z-h) represents a non-trivial class in Pic S, and I is in 2 Pic S. Start with the special case n=3 of $[6, \S 3.3]$. Let $f_1=2xy-1$, $\ell_1=x-1$, $\ell_2=x+1$, $f=f_1\ell_1\ell_2$, $R=k[x,y][f^{-1}]$, and $S=R[z]/(z^2-f)$. By [6, Proposition 3.4] we know that Pic S is infinite cyclic and is generated by the class of $I_1=(z-1,x)$. The divisor of x is $Div(x)=I_1+I_2$, where $I_2=(z+1,x)$. Take $g=x^2+y^2-1$. Check that

(14)
$$f_1 = g - (x - y)^2$$
$$f_2 f_3 = g - y^2$$

so the symbol algebras $(f_1,g)_2$ and $(f_2f_3,g)_2$ are split. It follows that $(f_1,g)_2(f_2f_3,g)_2 \sim (f,g)_2$ is also split. Multiply on both sides of (14),

(15)
$$f = f_1 f_2 f_3 = g \left(g - (x - y)^2 - y^2 \right) + (x - y)^2 y^2$$
$$= g \left(2xy - y^2 - 1 \right) + (x - y)^2 y^2$$

In the notation of Proposition 2.8, $u = 2xy - y^2 - 1$ and h = (x - y)y. Let I = (g, z - (x - y)y). Then I is a height one prime of S, $\sigma(I) + I = S$, and $I\sigma(I) = Sg$. The divisor of g is $Div(g) = I + \sigma(I)$. Let

(16)
$$m = g - (z - xy + y^{2})$$
$$= x^{2} + xy - 1 - z = x(x + y) - (z + 1)$$

Note that m is in I and $m(z+xy-y^2)=g(1+z-xy)$. Since $z+xy-y^2$ and 1+z-xy are not in I, the valuation of m at I is one. Any prime ideal that contains m must contain g or 1+z-xy. The ideal I is generated by m and g. Since $m+(1+z-xy)=x^2$, if a prime contains m and not g, then it contains x. Any ideal that has both m and x also has $z+1=xy+x^2-m$. Therefore, the only minimal primes of m are I and I_2 . One checks that $(z+1)^2=x^2(2xy+1)-2(x(x+y)-(z+1))$, from which it follows $m \in I_2^2$. Lastly, it is straightforward to check that $(z+1)^2-x^2(2xy+1)$ is not in I_2^3 , so the divisor of m is $Div(m)=2I_2+I$. Therefore, I is a non-trivial element in 2Pic(S).

Example 2.18. Let $f \in A = k[x,y]$ be a general polynomial of degree six. Let $R = A[f^{-1}]$, $S = R[\sqrt{f}]$. As observed in [14, §7] and [2, Example 1.2], S is an open subset of a K3 surface. Because f is general, it follows that Pic S = 0. We are in the context of Theorem 2.2. Therefore, Pic S = 0 and the sequence

$$0 \rightarrow {}_{2}\operatorname{B}(R) \xrightarrow{\operatorname{res}} {}_{2}\operatorname{B}(S) \xrightarrow{\operatorname{cor}} {}_{2}\operatorname{B}(R) \rightarrow 0$$

is exact.

Example 2.19. Let a_1, \ldots, a_n be distinct elements of k, and set $\ell_i = x - a_i$ for $i = 1, \ldots, n$. Let $f = y^2 - \ell_1 \cdots \ell_n$, $R = A[f^{-1}]$, and $S = R[\sqrt{f}]$. We are in the context of Theorem 2.2. As observed in [8], S is a nonsingular affine rational surface, $B(S/R) = {}_2B(R) \cong (\mathbb{Z}/2)^{n-1}$, and the sequence

$$0 \rightarrow 2 B(S/R) \rightarrow B(R) \rightarrow B(S) \rightarrow 0$$

is exact.

3. A CYCLIC COVERING OF DEGREE *n*

Let k be a field in which n is invertible, and assume k contains ζ , a primitive nth root of unity.

3.1. A Construction. Let \bar{k} be an algebraic closure of k. The example we consider is a cyclic covering of $\mathbb{A}^m = \operatorname{Spec} k[x_1, \dots, x_m]$ in $\mathbb{A}^{m+1} = \operatorname{Spec} k[x_1, \dots, x_m, z]$ defined by a single equation of the form $z^n = f$, where f is an irreducible polynomial in $k[x_1, ..., x_m]$. Our notation in this section will agree with that of Section 1. To define f, start with a sequence of irreducible polynomials f_1, \ldots, f_v in $A = k[x_1, \ldots, x_m]$ such that the polynomial $f = f_1 f_2 \cdots f_v + 1$ is irreducible in $\bar{k}[x_1, \dots, x_m]$. Let $T = A[z]/(z^n - f)$, $R = A[f^{-1}]$ and $S = R[z]/(z^n - f)$. Since f is irreducible, an application of Eisenstein's Criterion (for example, [11, Theorem 3.7.6]) shows T is an integral domain. The quotient field of Ais $K = k(x_1, ..., x_m)$ and that of T is $L = K[z]/(z^n - f)$. From the Jacobian and Serre's Criteria (for example, [10, Theorems 11.6.5 and 11.4.8] or [13, Theorem I.5.1 and Proposition II.8.23]), we know that $\bar{T} = T \otimes_k \bar{k}$ is normal. Since $T \to T \otimes_k \bar{k}$ is faithfully flat, T is integrally closed in L (see, for example, [10, Example 11.6.7]). Let σ be the A-algebra automorphism of T defined by $\sigma(z) = \zeta z$. Then we will also view σ as an R-automorphism of S and K-automorphism of L. Since f and n are invertible in R, by Kummer Theory S/R is Galois with group $G = \langle \sigma \rangle$ (see for example [9, Example 12.9.5] or [18, § III.4, pp. 125-126]). Since R is regular, so is S (see for example [10, Corollary 11.5.4]). The map $\pi: \operatorname{Spec} T \to \operatorname{Spec} A$ ramifies only over the hypersurface F = Z(f). Lying above F is the irreducible hypersurface defined by z = 0 and the ramification index is n. If we set $U = \operatorname{Spec} R$ and $V = \operatorname{Spec} S$, then we are in the context of [7, Section 1.1]. In particular, [7, Theorem 1.1] applies and there is a homomorphism

(17)
$$\gamma_5: \mathbf{B}(S/R) \to \mathbf{H}^1(G, \mathbf{Cl}(T))$$

of abelian groups. The goal of Section 3 is to derive sufficient conditions on f_1, \ldots, f_V such that there exists a subgroup of B(S/R) of order n^{V-1} which embeds in $H^1(G, Cl(T))$. This result appears below in Proposition 3.3. To compute the subgroup, and its image under γ_5 , the proof applies the results of [7, Sections 3 and 4].

Lemma 3.1. Let f_1 , f_2 be polynomials in $k[x_1,...,x_m]$ such that f_1 is irreducible in $k[x_1,...,x_m]$ and $f = f_1f_2 + 1$ is irreducible in $\bar{k}[x_1,...,x_m]$. For any $0 \le j < n$, consider the ideal $I = (\zeta^j z - 1, f_1)$ in $T = k[x_1,...,x_m]/(z^n - f)$. In the context of the previous paragraph the following are true.

- (a) I is a height one prime ideal in T.
- (b) I is an invertible fractional ideal of T in L, the quotient field of T, hence I represents a class in $Pic(T) \subseteq Cl(T)$.
- (c) Under the action of $G = \langle \sigma \rangle$ on Pic(T), the norm of I is the principal ideal Tf_1 . That is, $Tf_1 = I\sigma(I) \cdots \sigma^{n-1}(I)$.

In the notation of the first paragraph of Section 3, consider the ideals $P_1 = (z-1, f_1)$, ..., $P_{n-1} = (z-1, f_{v-1})$ in the ring T. For each i, Lemma 3.1 shows the norm of P_i is equal to Tf_i . Therefore we can construct the A-algebra $\Lambda_i = \Delta(T/A, P_i, f_i)$ as in [7, Definition 3.2]. By [7, Corollary 3.10], the generic stalk of Λ_i is $\Lambda_i \otimes_A K = (L/K, \sigma, f_i^{-1})$, which we identify with the symbol algebra $(f, f_i^{-1})_n$ over K. By [7, Corollary 3.12], $\Lambda_i \otimes_A R$ is an Azumaya R-algebra that is split by S. By [7, Theorem 4.17], the homomorphism (17) maps the Brauer class $[\Lambda_i \otimes_A R]$ to the 1-cocycle in $H^1(G, Cl(T))$ represented by the class of P_i . We have shown

Proposition 3.2. Assume $f_1, f_2, ..., f_v$, are irreducible polynomials in $k[x_1, ..., x_m]$, and the polynomial $f = f_1 f_2 \cdots f_v + 1$ is irreducible in $\bar{k}[x_1, ..., x_m]$. Then in the above context, the following are true.

- (a) For each i, $\Lambda_i \otimes_A R = \Delta(T/A, P_i, f_i) \otimes_A R$ is an Azumaya R-algebra split by S.
- (b) Under the homomorphism γ_5 of (17), the Brauer class $[\Lambda_i \otimes_A R]$ in B(S/R) is mapped by γ_5 to the 1-cocycle in $H^1(G,Cl(T))$ represented by the class of P_i .

Now we apply Proposition 3.2 to algebraic surfaces. For the following, the polynomial ring A is k[x,y]. We derive sufficient conditions on the polynomials f_1,\ldots,f_V in A such that the Brauer classes represented by $\Lambda_1,\ldots,\Lambda_{V-1}$ are \mathbb{Z}/n -independent in the group B(S/R). In the usual way embed $\mathbb{A}^2_{\bar{k}}$ as an open subset of the projective plane $\mathbb{P}^2_{\bar{k}}$ and let F_{∞} denote the line at infinity. For $i=1,\ldots,V$, let $F_i=Z(f_i)$ be the projective plane curve in $\mathbb{P}^2_{\bar{k}}$ defined by f_i . Let $d_i=\deg f_i$ be the degree of f_i . The degree of $f=f_1f_2\cdots f_V+1$ is $d=d_1+\cdots+d_V$. Proposition 3.3 is a variation of [7, Proposition 5.3].

Proposition 3.3. In the above context, assume $v \ge 2$ and $f_1, f_2, \dots f_v$ are irreducible polynomials in k[x,y] satisfying the following.

- (A) In $\mathbb{P}^2_{\bar{k}}$ the curve $Z(f_1f_2\cdots f_v)$ intersects F_{∞} in $d=d_1+\cdots+d_v$ distinct points.
- (B) $f = f_1 f_2 \cdots f_v + 1$ is irreducible in $\bar{k}[x, y]$.
- (C) One of the following sets of conditions is satisfied:
 - (i) $1 = \gcd(d, n) = \gcd(d_1, n) = \cdots = \gcd(d_{\nu-1}, n)$.
 - (ii) gcd(d, n) = 1 and $0 \equiv d_1 \equiv \cdots d_{\nu-1} \pmod{n}$.

Then the following are true.

- (a) The classes represented by the symbol algebras $(f, f_1)_n, ..., (f, f_{\nu-1})_n$ generate a subgroup of B(L/K) of order $n^{\nu-1}$.
- (b) The classes represented by $\Lambda_1 \otimes_A R, \dots, \Lambda_{\nu-1} \otimes_A R$ generate a subgroup of B(S/R) of order $n^{\nu-1}$.
- (c) The classes represented by the ideals $P_1, \ldots, P_{\nu-1}$ generate a subgroup of $H^1(G, ClT)$ of order $n^{\nu-1}$.

Proposition 3.3 is proved utilizing the cycle space of the graph associated to a plane curve. Before the proof, we review the definition.

Definition 3.4. Let Y be a reduced curve in $\mathbb{P}^2_{\tilde{k}}$ and write $Y = Y_1 \cup \cdots \cup Y_m$, where the Y_i are the distinct irreducible components of Y. For each i let $\tilde{Y}_i \to Y_i$ be the normalization and define \tilde{Y} to be the disjoint union $\tilde{Y}_1 \cup \cdots \cup \tilde{Y}_m$. There is a natural map $\pi : \tilde{Y} \to Y$. Let $P = \{p_1, \ldots, p_s\}$ be the singular set of Y, and $\tilde{P} = \pi^{-1}(P) = \{q_1, \ldots, q_e\}$. The diagram

$$\tilde{P} = \{q_1 \dots, q_e\} \xrightarrow{\subseteq} \tilde{Y} = \tilde{Y}_1 \cup \dots \cup \tilde{Y}_m
\downarrow \pi
P = \{p_1, \dots, p_s\} \xrightarrow{\subseteq} Y = Y_1 \cup \dots \cup Y_m$$

commutes. To the curve Y is associated a bipartite graph $\Gamma(Y)$ with vertex set $\{\tilde{Y}_1,\ldots,\tilde{Y}_m\}\cup\{p_1,\ldots,p_s\}$ and edge set \tilde{P} . The edge $q\in\tilde{P}$ connects the vertex $\tilde{Y}_i\in\tilde{Y}$ to the vertex $p_j\in P$ if and only if $q\in\tilde{Y}_i$ and $\pi(q)=p_j$. By [5, Corollary 1.3] there is an isomorphism of abelian groups ${}_n\mathrm{B}(\mathbb{P}^2-Y)\to\mathrm{H}^1(\tilde{Y},\mathbb{Q}/\mathbb{Z})\oplus\mathrm{H}_1(\Gamma(Y),\mathbb{Z}/n)$ (modulo torsion divisible by char k). The element in the cycle space of $\Gamma(Y)$ associated to a symbol algebra can be computed using local intersection multiplicities [5, Theorem 2.1]. Suppose Y_i and Y_j intersect at the point p with local intersection multiplicity $\mu=(F_i,F_j)_p$. The definition simplifies if we assume both Y_i and Y_j are nonsingular at p. This is true in the application below. Let f_i and f_j be local equations for the two curves and consider the symbol algebra

 $(f_i, f_j)_n$ over the field of rational functions on \mathbb{P}^2 . Then near the vertex p, the cycle in Γ corresponding to $(f_i, f_j)_n$ looks like $F_i \xrightarrow{\mu} p \xrightarrow{-\mu} F_j$.

Proof of Proposition 3.3. The diagram

(18)
$$B(R) \longrightarrow B(R \otimes_k \bar{k})$$

$$\downarrow \qquad \qquad \downarrow$$

$$B(k(x,y)) \longrightarrow B(\bar{k}(x,y))$$

commutes. The ring R is a localization of k[x,y] in K = k(x,y), so the vertical arrows in (18) are one-to-one. Part (b) follows from Proposition 3.2 and Part (a). The diagram

(19)
$$B(S/R) \xrightarrow{\gamma_5} H^1(G,Cl(T))$$

$$\downarrow \qquad \qquad \downarrow$$

$$B(\bar{S}/\bar{R}) \longrightarrow H^1(G,Cl(T \otimes_k \bar{k}))$$

commutes. By [12, Proposition 2.1], $H^2(G, (T \otimes_k \bar{k})^*) = \langle 1 \rangle$, hence by [7, Theorem 1.1, Eq. (4)] the arrow in the bottom row of (19) is one-to-one. Therefore (c) follows from Proposition 3.2 and (b). To prove (a), by (18) it is enough to show the symbol algebras $(f, f_1)_n, \ldots, (f, f_{v-1})_n$ generate a subgroup of order n^{v-1} in $B(\bar{k}(x,y))$. For the remainder of the proof, we assume k is algebraically closed. If we write

$$(20) F_i \cdot F_{\infty} = Q_{i1} + \dots + Q_{id_i},$$

for $1 \le i \le v$, then the set $\{Q_{ij}\}$ contains d distinct points. Then

(21)
$$F \cdot F_{\infty} = \sum_{i=1}^{n} \sum_{j=1}^{d_i} Q_{ij}, \text{ and}$$

$$F \cdot F_i = dQ_{i1} + \dots + dQ_{id_i} \text{ for } 1 \le i \le v.$$

For each i, the symbol algebra $(f,f_i)_n$ represents a Brauer class on the open complement of the curve $F+F_1+\cdots+F_v+F_\infty$ in \mathbb{P}^2 . We use [5, Theorem 2.1] to associate to (f,f_i) a cycle in the edge space of the graph Γ associated to the plane curve $F+F_1+\cdots+F_v+F_\infty$. The edge weights are computed from the local intersection multiplicities. From (20) and (21) we compute the weighted path in the graph $\Gamma(F+F_1+F_\infty)$ for the symbol algebra $(f,f_1)_n$. The homology is computed with coefficients in \mathbb{Z}/n . The graph and edge weights are shown in Figure 3. For each $i=1,\ldots,v$ the graph for (f,f_i) is similar. It suffices to show that the cycles in the graph Γ corresponding to $(f,f_1)_n,\ldots,(f,f_{v-1})_n$ generate a subgroup of order n^{v-1} in $H_1(\Gamma,\mathbb{Z}/n)$. We sketch a proof of this assuming condition (C)(i) is satisfied. The proof when (C)(ii) is satisfied is left to the reader. Find u_1,\ldots,u_{v-1} such that $d_iu_i\equiv 1\pmod{n}$. The cycle in the graph for the symbol algebra $(f,f_1^{u_1})_n$ is shown in Figure 4. Figure 5 shows the cycle in the graph for $(f,f_1^{u_1}f_j^{-u_j})_n$, when 1< j< v. It is not hard to see that in the edge space of the graph Γ over \mathbb{Z}/n the cycles for $(f,f_1^{u_1})_n,(f,f_1^{u_1}f_2^{-u_2})_n,\ldots,(f,f_1^{u_1}f_{v-1}^{-u_{v-1}})_n$ are independent. This proves the symbol algebras $(f,f_1)_n,\ldots,(f,f_{v-1})_n$ generate a subgroup of order n^{v-1} in $\mathbb{B}(L/K)$. \square

3.2. **A Nonnormal Surface.** The surface $z^n = y^{n-1}(y - p(x))$. Let k be an algebraically closed field and $n \ge 2$ an integer which is invertible in k. In this section we study the divisor classes and algebra classes on the surface defined by $z^n = y^{n-1}(y - p(x))$, where $p(x) \in k[x]$ is a monic polynomial of degree d > 1. Let $f_1 = y$, $f_2 = y - p(x)$, and $f = f_1^{n-1}f_2$. Let

FIGURE 3. The weighted path of $(f, f_1)_n$ in Proposition 3.3

FIGURE 4. The weighted path of $(f, f_1^{u_1})_n$ in Proposition 3.3

FIGURE 5. The weighted path of $(f, f_1^{u_1} f_j^{-u_j})_n$ in Proposition 3.3

 $A=k[x,y], R=A[f^{-1}], T=A[z]/(z^n-f)$ and $S=T[z^{-1}].$ The quotient field of A and R is K=k(x,y). The quotient field of T and S is $L=K[z]/(z^n-f).$ In A let $p(x)=\ell_1^{e_1}\cdots\ell_{v}^{e_{v}}$

be the unique factorization into irreducibles. Let $\alpha_1, \ldots, \alpha_v$ be the distinct roots of p(x). Let $F_i = Z(f_i)$ which we embed into \mathbb{P}^2 in the usual way. Let F_0 be the line at infinity. Then $F_1 \cdot F_2 = e_1 P_1 + \cdots + e_v P_v$, $F_1 \cdot F_0 = P_{01}$ and $F_2 \cdot F_0 = dP_{02}$. The graph Γ of the curve $F = F_0 + F_1 + F_2$ is seen in Figure 6. If i > 1, the node P_i and its edges exist only if $v \ge i$. This explains why the edges to P_2, \ldots, P_v are dashed. As in [9, Example 12.9.5], if σ is the A-algebra automorphism of T defined by $z \mapsto \zeta z$, then S/R is a cyclic Galois extension with group $\langle \sigma \rangle$. In our setting, (3) is an exact sequence. If n = 2, then f is square-free, and as in Section 2, T is a normal surface. If $n \ge 3$, then T is not integrally closed. One way to see this is to compute the singular locus of the surface $z^n = y^{n-1}(y - p(x))$ in \mathbb{A}^2 using the jacobian criterion (for example [10, Theorem 11.6.5]). Alternatively, if P is the prime ideal of height one generated by y and z in T, then the local ring T_P is not integrally closed. For instance, yz^{-1} is in L, yz^{-1} is not in T_P , but $(yz^{-1})^{n-1}$ is in T_P .

FIGURE 6. The graph in Section 3.2.

Proposition 3.5. *In the above context,*

- (1) $B(R) \cong (\mathbb{O}/\mathbb{Z})^{(v)}$.
- (2) The image of $\alpha_4: H^2(G,S^*) \to B(S/R)$ is a cyclic \mathbb{Z}/n -module.
- (3) $B(S/R) = {}_{n}B(R) \cong (\mathbb{Z}/n)^{(v)}$.
- (4) $H^1(G, Pic S)$ contains a subgroup that has order n^{v-1} .
- (5) $B(S) \cong (\mathbb{Q}/\mathbb{Z})^{(v)}$.
- (6) The sequence $0 \to_n B(R) \to B(R) \to B(S) \to 0$ is exact.

Proof. (1): Using [4, Theorem 5], $B(R) \cong (\mathbb{Q}/\mathbb{Z})^{(v)}$.

- (2): By [9, Section 13.4], the image of α_4 is generated by cyclic crossed products. For the Kummer extension S/R, cyclic crossed products can be identified as symbol algebras $(f,u)_n$, for $u \in R^*$. The group of units in R is $k^* \times \langle y \rangle \times \langle y p(x) \rangle$, and $(f,y)_n \sim (y-p(x),y)_n \sim (y^{-1},y-p(x))_n \sim (y^{n-1},y-p(x))_n \sim (f,y-p(x))_n$. Hence the image of α_4 is cyclic. The weighted element of the edge space corresponding to the symbol algebra $(y-p(x),y)_n$ is computed as in [5, § 2] and is shown in Figure 7. Therefore, as a function of the multiplicities e_1,\ldots,e_v , the order of the image of α_4 can be any positive divisor of
- (3): Let $L_i = Z(\ell_i)$. Then $L_i \cdot F_0 = P_{02}$, $L_i \cdot F_1 = P_i$, and $L_i \cdot F_2 = P_i + (d-1)P_{02}$. Let m > 1 be an integer that is invertible in k. Using the method of [5, § 2], the weighted path associated to the symbol algebra $(fy^{-n}, \ell_i)_m$ is computed to be $F_2 \to P_{02} \to F_0 \to P_{01} \to P_{01}$

FIGURE 7. The weighted path of $(y - p(x), y)_n$ in Proposition 3.5.

 $F_1 \to P_i \to F_2$. For i = 1, ..., v, these cycles make up a basis for $H_1(\Gamma, \mathbb{Z}/m)$. Therefore, a basis for m B(R) consists of the classes of the algebras

$$(22) (fy^{-n}, \ell_1)_m, \dots, (fy^{-n}, \ell_v)_m.$$

This shows that a basis of $_nB(R)$ consists of $(f,\ell_1)_n,\ldots,(f,\ell_\nu)_n$, all of which are in B(S/R), which proves (3).

- (4): This follows from (2), (3) and the exact sequence (3).
- (5): Consider the homomorphism of k-algebras

(23)
$$T = \frac{k[x, y, z]}{(z^n - y^{n-1}(y - p(x)))} \xrightarrow{\beta} U = k[x, w][(1 - w^n)^{-1}]$$

defined by $x \mapsto x$, $y \mapsto p(x)/(1-w^n)$, $z \mapsto wp(x)/(1-w^n)$. One checks that β is well defined and becomes an isomorphism upon adjoining 1/p(x), 1/z to T and 1/p(x), 1/w to U. Both rings in (23) are integral domains of Krull dimension two, hence β is one-to-one. Since U is rational, so is T. There is an isomomorphism

(24)
$$B(S[p(x)^{-1}]) \xrightarrow{\beta} B(k[x,w][p(x)^{-1},w^{-1},(1-w^n)^{-1}])$$

which is induced by the map β of (23). Using [4, Theorem 4], compute the Brauer group on the right hand side of (24). It is isomorphic to $(\mathbb{Q}/\mathbb{Z})^{(n+1)\nu}$, and a basis for the subgroup annihilated by m is made up of the symbol algebras

$$\{(w,\ell_i)_m \mid i=1,\ldots,v\} \cup \{(w-\zeta^j,\ell_i)_m \mid i=1,\ldots,v, j=0,\ldots,n-1\}.$$

Using β , it follows that the symbol algebras

(25)
$$\{(zy^{-1}, \ell_i)_m \mid i = 1, ..., \nu\} \cup \{((z - y\zeta^j)y^{-1}, \ell_i)_m \mid i = 1, ..., \nu, j = 0, ..., n - 1\}$$

make up a basis for the subgroup $_m B(S[p(x)^{-1}])$. There is an exact sequence [5, Corollary 1.4]

(26)
$$0 \to B(S) \to B(S[p(x)^{-1}]) \xrightarrow{a} H^1(S/(p(x)), \mu) \to 0.$$

The ring S/(p(x)) is the disjoint union of nv copies of the algebraic torus $k[z,z^{-1}]$. Therefore, $H^1(S/(p(x)),\mu)\cong (\mathbb{Q}/\mathbb{Z})^{(nv)}$. Look at the component of S/(p(x)) corresponding to the minimal prime $I_{ij}=(z-y\zeta^j,\ell_i)$. The symbol algebra $((z-y\zeta^j)y^{-1},\ell_i)_m$ is mapped

by the ramification map a in (26) to the Kummer extension $(S/I_{ij})[y^{-1/m}]$, which represents an element of order m in $H^1(S/(p(x)), \mathbb{Z}/m)$. It follows that in sequence (26), the group ${}_mB(S[p(x)^{-1}])$ maps onto $H^1(S/(p(x)), \mu_m)$ and a basis for ${}_mB(S)$ consists of $(zy^{-1}, \ell_i)_m$ for $i = 1, \ldots, \nu$. This shows $B(S) \cong (\mathbb{Q}/\mathbb{Z})^{(\nu)}$, which is (5).

(6): By (22), the symbol algebra

$$(zy^{-1}, \ell_i)_m \sim (zy^{-1}, \ell_i)_{nm}^n \sim (z^n y^{-n}, \ell_i)_{nm} \sim (fy^{-n}, \ell_i)_{nm}$$

is in the image of $B(R) \to B(S)$. Therefore, the sequence

$$(27) 0 \to_n \mathbf{B}(R) \to \mathbf{B}(R) \to \mathbf{B}(S) \to 0$$

is exact. As a homomorphism of abstract groups, the natural map $B(R) \to B(S)$ is "multiplication by n".

Proposition 3.6. *In the context of Section 3.2, if* $D = gcd(e_1, ..., e_v)$ *, then*

- (1) $S^* = k^* \times \langle z \rangle \times \langle y \rangle$.
- (2) $\operatorname{Pic} S = \operatorname{Cl}(S) \cong (\mathbb{Z}/D)^{n-1} \oplus \mathbb{Z}^{(n-1)(\nu-1)}$.

Proof. We have

(28)
$$k[x,w][p(x)^{-1},w^{-1},(1-w^n)^{-1}]^* = k^* \times \langle w \rangle \times \prod_{i=0}^{n-1} \langle w - \zeta^j \rangle \times \prod_{i=1}^{\nu} \langle \ell_i \rangle.$$

Using the map β of (23) we find $zy^{-1} \mapsto w$, $(z - y\zeta^j)y^{-1} \mapsto w - \zeta^j$, hence

(29)
$$S[p(x)^{-1}]^* = T[p(x)^{-1}, z^{-1}]^* = k^* \times \langle zy^{-1} \rangle \times \prod_{i=0}^{n-1} \left\langle \frac{z - y\zeta^j}{y} \right\rangle \times \prod_{i=1}^{\nu} \langle \ell_i \rangle.$$

Using (29), we see that $z, y, z - y\zeta, \ldots, z - y\zeta^{n-1}, \ell_1, \ldots, \ell_v$ make up a basis for the abelian group $S[p(x)^{-1}]^*/k^*$. The elements z and y are units of S. In S the minimal primes of ℓ_i are $(z - y\zeta^j, \ell_i), j = 0, \ldots, n-1$ and the minimal primes of $z - y\zeta^j$ are $(z - y\zeta^j, \ell_i), i = 1, \ldots, v$. It is routine to verify that

(30)
$$\operatorname{Div}(\ell_i) = \sum_{j=0}^{n-1} (z - y\zeta^j, \ell_i)$$
$$\operatorname{Div}(z - \zeta^j y) = \sum_{i=1}^{\nu} e_i (z - y\zeta^j, \ell_i).$$

Since $S[p(x)^{-1}]$ is factorial, the Nagata sequence ([10, Theorem 11.4.14])

(31)
$$1 \to S^* \to S[p(x)^{-1}]^* \xrightarrow{\text{Div}} \bigoplus_{i=1}^{v} \bigoplus_{j=0}^{n-1} \mathbb{Z}(z - \zeta^j y, \ell_i) \to \text{Cl}(S) \to 0$$

is exact. In (31), the image of Div is a free \mathbb{Z} -module of rank v + n - 1. This proves $S^* = k^* \times \langle z \rangle \times \langle y \rangle$. Using (30), one checks that the nonzero elementary divisors of the map Div are 1 with multiplicity v and D with multiplicity n - 1.

Proposition 3.7. In the context of Section 3.2, if n = 2 and $D = \gcd(e_1, ..., e_v)$, then $T^* = k^*$, $Cl(T) \cong \mathbb{Z}/(2D) \oplus \mathbb{Z}^{(v-1)}$ and $H^1(G, Cl(T)) \cong (\mathbb{Z}/2)^{(v)}$.

Proof. Since n=2, T is the affine surface defined by the equation $z^2=y(y-p(x))$, hence we are in the context of Section 2. In particular, T is normal. By Proposition 3.6(1), $S^*=k^*\times\langle z\rangle\times\langle y\rangle$. From the Nagata sequence

$$1 \to T^* \to S^* \xrightarrow{\text{Div}} \mathbb{Z}F_1 \oplus \mathbb{Z}F_2$$

we know that S^*/T^* is free of rank two. It follows that $T^* = k^*$. Using the homomorphism β of (23), we have

(32)
$$k[x,w][p(x)^{-1},w^{-1},(1-w^2)^{-1}]^* = k^* \times \langle w \rangle \times \langle 1-w \rangle \times \langle 1+w \rangle \times \prod_{i=1}^{\nu} \langle \ell_i \rangle.$$

Using β we find $zy^{-1} \mapsto w$, $(z-y)y^{-1} \mapsto w-1$, $(z+y)y^{-1} \mapsto w+1$, hence

(33)
$$T[p(x)^{-1}, z^{-1}]^* = k^* \times \langle zy^{-1} \rangle \times \langle (z-y)y^{-1} \rangle \times \langle (z+y)y^{-1} \rangle \times \prod_{i=1}^{\nu} \langle \ell_i \rangle.$$

Since *U* is factorial, Nagata's Theorem says the class group of *T* is generated by the minimal primes of z, $z^2 - y^2$, y, and $\ell_1, \dots, \ell_{\nu}$. It is routine to verify that

(34)
$$\operatorname{Div}(z) = (z, y) + (z, y - p(x))$$

$$\operatorname{Div}(z - y) = (z, y) + e_1(z - y, \ell_1) + \dots + e_v(z - y, \ell_v)$$

$$\operatorname{Div}(z + y) = (z, y) + e_1(z + y, \ell_1) + \dots + e_v(z + y, \ell_v)$$

$$\operatorname{Div}(y) = 2(z, y)$$

$$\operatorname{Div}(\ell_i) = (z - y, \ell_i) + (z + y, \ell_i)$$

$$\operatorname{Div}(y - p(x)) = 2(z, y - p(x)).$$

The class group Cl(T) is generated by the 2v + 2 prime divisors

(35)
$$(z,y),(z,y-p(x)),(z-y,\ell_1),\ldots,(z-y,\ell_v),(z+y,\ell_1),\ldots,(z+y,\ell_v).$$

Using the principal divisors $\mathrm{Div}(\ell_i) = (z-y,\ell_i) + (z+y,\ell_i) \sim 0$ and $\mathrm{Div}(z) = (z,y) + (z,y-p(x)) \sim 0$, we can eliminate half of the generators and all but two of the relations. The group $\mathrm{Cl}(T)$ is generated by the v+1 divisors $(z,y),(z-y,\ell_1),\ldots,(z-y,\ell_v)$ modulo the two principal divisors $2(z,y),(z,y)+e_1(z-y,\ell_1)+\cdots+e_v(z-y,\ell_v)$. If $D=\gcd(e_1,\ldots,e_v)$, then

(36)
$$\operatorname{Cl}(T) \cong \mathbb{Z}/(2D) \oplus \mathbb{Z}^{(\nu-1)}$$

$$\operatorname{H}^{1}(G,\operatorname{Cl}(T)) \cong (\mathbb{Z}/2)^{(\nu)}$$

which completes the proof. Note that (36) together with Proposition 3.5 (3) show that B(S/R) is isomorphic to $H^1(G,Cl(T))$, which agrees with the conclusion of [6, Theorem 2.7].

REFERENCES

- [1] S. U. Chase, D. K. Harrison, and Alex Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. No. **52** (1965), 15–33. MR 0195922 (33 #4118)
- [2] T. J. Ford, The Brauer group and ramified double covers of surfaces, Comm. Algebra 20 (1992), no. 12, 3793–3803. MR 1191982 (93m:14013)
- [3] _____, On the Brauer group of a desingularization of a normal surface, Comm. Algebra 20 (1992), no. 12, 3785–3791. MR 1191981 (93j:13005)
- [4] Timothy J. Ford, On the Brauer group of $k[x_1, \dots, x_n, 1/f]$, J. Algebra **122** (1989), no. 2, 410–424. MR 999083 (90d:13005)
- [5] ______, On the Brauer group of a localization, J. Algebra 147 (1992), no. 2, 365–378. MR 1161299 (93c:13004)

- [6] ______, The relative Brauer group of an affine double plane, Comm. Algebra 41 (2013), no. 9, 3277–3298.MR 3169456
- [7] ______, The relative Brauer group and generalized cyclic crossed products for a ramified covering, J. Algebra 450 (2016), 1–58. MR 3449685
- [8] _____, The Brauer group of an affine double plane associated to a hyperelliptic curve, Comm. Algebra 45 (2017), no. 4, 1416–1442. MR 3576667
- [9] ______, Separable algebras, Graduate Studies in Mathematics, vol. 183, American Mathematical Society, Providence, RI, 2017. MR 3618889
- Commutative algebra, algebra book containing intro-An duction to the theory of commutative algebra. Available URL: the https://tim4datfau.github.io/Timothy-Ford-at-FAU/preprints/CA.pdf, 2024.
- [11] ______, Introduction to abstract algebra, Open Math Notes, American Mathematical Society, 2024, available at the URL: https://www.ams.org/open-math-notes/omn-view-listing?listingId=110827.
- [12] Timothy J. Ford and Drake M. Harmon, The relative Brauer group and generalized cross products for a cyclic covering of affine space, J. Pure Appl. Algebra 218 (2014), no. 4, 721–730. MR 3133701
- [13] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57 #3116)
- [14] M.-A. Knus, R. Parimala, and V. Srinivas, Azumaya algebras with involutions, J. Algebra 130 (1990), no. 1, 65–82. MR 1045736
- [15] Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d'Azumaya, Springer-Verlag, Berlin, 1974, Lecture Notes in Mathematics, Vol. 389. MR 0417149 (54 #5209)
- [16] Martin Lorenz, Class groups of multiplicative invariants, J. Algebra 177 (1995), no. 1, 242–254. MR 1356370 (96j:16036)
- [17] Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Ben-jamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344 (82i:13003)
- [18] James S. Milne, Étale cohomology, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
- [19] M. Pavaman Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242–253. MR 0241434 (39 #2774)
- [20] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI, 1999. MR 1692654 (2000f:16023)

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431 $\it Email\ address: ford@fau.edu$