Purchlive: Sufficiency + LRT give UMP level & Fest.

Alternative LRT

let T be a sufficient stat w/ PMF/PDF go(t)

Traditional LRT:
$$\lambda(\chi) = \frac{L(\hat{O}_{o})}{L(\hat{O})} = \frac{f_{\hat{o}}(\chi)}{f_{\hat{o}}(\chi)}$$

$$\lambda'(t) = \frac{L^*(\hat{\theta}_o)}{L^*(\hat{\theta})} = \frac{g_{\hat{\theta}_o}(t)}{g_{\hat{\theta}_o}(t)}$$

Test where I reject when $\lambda^* \leq C$

Test where I reject when $\lambda^r = C$ is equiv. to test where I reject when $\lambda \leq C$.

$$\lambda = \frac{\max_{\theta \in \Theta} f_{\theta}(x)}{\max_{\theta \in \Theta} f_{\theta}(x)} = \frac{\max_{\theta \in \Theta} g(\theta, t)h(x)}{\max_{\theta \in \Theta} f_{\theta}(x)} = 1^{*}$$
turns out $g(0, t) \propto g_{\theta}(t)$

Thim: Simple Hypotheses

Consider
$$H_0: \theta = \theta_0$$
 U. $H_a: \theta = \theta_a$

and reject when $\lambda^* \leq C$ where

 C is chosen so that

 $P_{\theta_0}(\lambda^* \leq C) = \infty$

	ben this is the UMP size & test.
	Unit about composite tests?
	e.s. Ho: 0 = 0. v. Ha: 0 > 0
	Defor: Monotone Likelihood Ratio Property (MCR univariate A fam of dists & fo JOEG hus
	MLR prop if $\forall 0, < 0_2$
	$f_{\theta_2}(x)$ is non-decreasing in x .
	$f_{o,}(x)$
•	Thrm: If fo is an exp. form of the
	9 (-1) - 1(a) la(v) punt (1(a) 2)

notes Page 3

$$f_0(x) = C(0) h(x) exp(w(0) x)$$

then this fam har MLP2 prop if $w(0)$ is non-dec. in O .

 $\frac{f_{o_{z}}(x)}{f_{o_{z}}(x)} = \frac{c(o_{z})h(x) \exp(\omega(o_{z})x)}{c(o_{z})h(x) \exp(\omega(o_{z})x)}$ $= \exp((\omega(o_{z}) - \omega(o_{z}))x)$ $\approx \exp((\omega(o_{z}) - \omega(o_{z}))x)$ $\approx e^{ax}$ increasing in x if $a \ge 0$ i.e. $\omega(o_{z}) \ge \omega(o_{z}).$

Thim! If T has MLR prop. Hon a test of the form that rej. when T>C

has a non-dee pomer function.

pf- Show that Oz>O, then B(Oz) >B(O1).

1.e. $1-F_{o_z}(c) > 1-F_{o_z}(c)$

('. Q. Fo, (c) - Fo, (c) > 0 CPF & T My param o A(c)

in general wald vered to ensure
$$\max_{\theta \in \Theta_0} P(T > c) = \infty$$

Thrm: Karlin-Rubin Consider testing

Ho: 0 = 00 v. Ha: 0>00

and let T be a sufficient stat
and let T be a <u>sufficient stat</u> for O and have the MLR property.
hen the fest that rejecte when
T>C where c chosen s.t.
where c chosen s.t.
$P_{\theta_o}(\tau > c) = \infty$
is the UMP level or text.
Alt: Ho: 0>00 V. Ha: 0<00
ther best test is to rej. when
T <c.< th=""></c.<>
8K, let Xn ~ N(u, 62) 52 Known.
Test Ho: U> No v. Ha: U< No.

$$f(t) = \sqrt{2\pi 6 \frac{2}{N}} \exp\left(-\frac{N}{26^2}(t-\mu)^2\right)$$

$$= \frac{\sqrt{N}}{\sqrt{2\pi 6^{2}}} exp(-\frac{N}{26^{2}}(t^{2}-2\mu t + \mu^{2}))$$

$$= \frac{\sqrt{N^2} \exp(-\frac{Nt^2}{26^2}) \exp(\frac{N\mu t}{6^2})}{\sqrt{(1\mu)}}$$

$$h(t) \qquad \exp(-\frac{N\mu t}{26^2})$$

$$C(\mu)$$

$$W(\mu) = \frac{N\mu}{6^2}$$

Sina W(u) is non-dec in u flom this fam has MUR property (3) & tool is to reject when $\overline{\chi} > C$ $P_{\mu_0}(\bar{x}>c)=\infty$ Mon M=Mo, X~N/No, 52N) $\frac{80 \quad \overline{X-\mu_0}}{6\sqrt{N}} \sim N(0,1)$ $\int P_{M_0}\left(\frac{\bar{X}-\mu_0}{6/\sqrt{N}}\right) = \propto$ N(0,1)

 $\frac{S_0}{6/\sqrt{N}} = 32$ 1. e. $C = \mu_0 + 9/\sqrt{N} \cdot 32$

Confidence Intervals

point restmation: $\hat{\theta} = \hat{\theta}(x) \in (-)$ idea: " $\hat{\theta} \approx \theta$ "

interval/set estimation: C = C(X) C(x)idea! " $\theta \in C$ "

Defn: Interval Estinator

An internal est of OF GCR

An interval est of $\theta \in C/C/K$ is a pair of state L and Us.t. $L(X) \leq U(X) \forall X \in X$

idea: "L = 0 = "

Defu: Coverage Prob

The coverage porch is

Po(L = 0 = u)

h.6: O fixed, L, U random

depe on o

 $\frac{1}{\theta} = \frac{1}{2} \frac{$

Defn: Confidence Coef

Worst case coverage prob.

1-x = minPo(L = 0 = u)

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(L \leq \theta \leq u \right)$$
conf. coef.

Call an interval est + conf. (orf a "Confidence interval" (CI)

Han do I build a CI?

Turns out that:

CI \iff HT

We can "invert" a size \propto HT to get a 1-x CI.

(a vice-versa)

Aside! What is a level & HT?

Tist a statemed: "reject when X \in 12"

Sit.

max P(XeR) < x.

max P(XeR) < ~.