برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه پنجم: ظرفیت شنون و تتای لواژ (۲)

مرور ظرفیت شنون

 $\alpha(G^k) =$ اندازه بزرگترین واژهنامه خوب برای ارسال ullet

$$\alpha(G^{k+\ell}) \ge \alpha(G^k)\alpha(G^\ell).$$

$$\alpha(G^{k+\ell}) \ge \alpha(G^k)\alpha(G^\ell).$$

کد k_حرفی	,
000	

$$\alpha(G^{k+\ell}) \ge \alpha(G^k)\alpha(G^\ell).$$

$$\alpha(G^{k+\ell}) \ge \alpha(G^k)\alpha(G^\ell).$$

کد k_حرفی	رفی
000	

کد k+lحرفی	

$$\alpha(G^{k+\ell}) \ge \alpha(G^k)\alpha(G^\ell).$$

$$rac{1}{k}\loglpha(G^k)$$
 عتوسط اطلاعات هر حرف:

$$rac{1}{k}\loglpha(G^k)$$
 عتوسط اطلاعات هر حرف:

بیشترین نرخ ارسال با گراف G:

$$\sigma(G) = \sup \left\{ \frac{1}{k} \log \alpha(G^k) : k \in \mathbb{N} \right\},$$

$$rac{1}{k}\loglpha(G^k)$$
 عتوسط اطلاعات هر حرف:

بیشترین نرخ ارسال با گراف G:

$$\sigma(G) = \sup \left\{ \frac{1}{k} \log \alpha(G^k) : k \in \mathbb{N} \right\},$$

$$\alpha(C_5^2) \geq 5$$

$$rac{1}{k}\loglpha(G^k)$$
 عتوسط اطلاعات هر حرف:

بیشترین نرخ ارسال با گراف G:

$$\sigma(G) = \sup \left\{ \frac{1}{k} \log \alpha(G^k) : k \in \mathbb{N} \right\},$$

$$\sigma(C_5) \ge \frac{1}{2}\log 5, \qquad \alpha(C_5^2) \ge 5$$

3.2.1 Lemma. For every graph G = (V, E), $\sigma(G)$ is bounded and satisfies

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right).$$

3.2.1 Lemma. For every graph G = (V, E), $\sigma(G)$ is bounded and satisfies

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right).$$

$$\sigma(G) \le \log |V| \qquad \qquad \alpha(G^k) \le |V|^k$$

3.2.1 Lemma. For every graph G = (V, E), $\sigma(G)$ is bounded and satisfies

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right).$$

$$\sigma(G) \le \log |V|$$
 $\alpha(G^k) \le |V|^k$

ابرجمعی
$$(x_k)_{k\in\mathbb{N}} = (\log lpha(G^k))_{k\in\mathbb{N}}$$

همگرا به سوپریمم
$$\left(rac{x_k}{k}
ight)_{k\in\mathbb{N}}$$

نویسههای لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

$$\Theta(G) = 2^{\sigma(G)}$$

نویسههای لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

نويسههاي لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\alpha(G) \leq \Theta(G)$$

نويسههاي لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\alpha(G) \leq \Theta(G) \leq |V|$$

نويسههاي لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\alpha(G) \leq \Theta(G) \leq |V|$$

$$\Theta(C_2) \ge \sqrt{5}$$
 $\sigma(C_5) \ge \frac{1}{2} \log 5$,

نویسههای لوواژ

$$\sigma(G) = \lim_{k \to \infty} \left(\frac{1}{k} \log \alpha(G^k) \right)$$

ظرفیت شنون (به روایت لوواژ)

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\alpha(G) \leq \Theta(G) \leq |V|$$

واقعا چند است؟

$$\Theta(C_2) \ge \sqrt{5}$$

$$\sigma(C_5) \ge \frac{1}{2}\log 5,$$

 ϑ تابع

نمایش متعامد یکه برای گراف

- گراف G،
- دو راس i و j مشابه: متصل یا برابر

نمایش متعامد یکه برای گراف

- گراف G،
- دو راس i و j مشابه: متصل یا برابر

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_i^T \mathbf{u}_j = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$$

نمایش متعامد یکه برای گراف

• گراف G،

• دو راس i و j مشابه: متصل یا برابر

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_i^T \mathbf{u}_j = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_i^T \mathbf{u}_j = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that $\mathbf{u}_i^T \mathbf{u}_i = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$

$$artheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n rac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.2 Definition. An orthonormal representation of a graph G = (V, E)with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\}\in\overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$
3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value

 $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\} \in \overline{E}. \tag{3.3}$$

3.3.3 Definition. The theta function
$$\vartheta(G)$$
 of G is the smallest value

 $\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$

(G)

 $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

مثال: گراف كامل

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that $\mathbf{u}_i^T \mathbf{u}_i = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$

$$artheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n rac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

مثال: گراف کامل

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that $\mathbf{u}_i^T \mathbf{u}_i = 0$ if $\{i, i\} \in \overline{E}$. (3.3)

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\}\in\overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$
3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G .

3.3.2 Definition. An orthonormal representation of a graph G = (V, E)with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

in that
$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\} \in \overline{E}.$$
 (3.3)

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$
3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value.

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

مثال: گراف تھی

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\} \in \overline{E}. \tag{3.3}$$

3.3.3 Definition. The theta function
$$\vartheta(G)$$
 of G is the smallest value

 $\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

$$\mathbf{u}_i = \mathbf{e}_i$$

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that $\mathbf{u}_i^T \mathbf{u}_i = 0 \text{ if } \{i, j\} \in \overline{E}. \tag{3.3}$

$$artheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n rac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

$$artheta(G)$$
 $\mathbf{c} = \sum_{i=1}^n \mathbf{u}_i / \sqrt{n}, \quad \mathbf{u}_i = \mathbf{e}_i$

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that $\mathbf{u}_i^T \mathbf{u}_i = 0$ if $\{i, j\} \in \overline{E}$. (3.3)

$$artheta_i \, \mathbf{u}_j = 0 \, \mathrm{ir} \, \{i,j\} \in E.$$
 $artheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \, \max_{i=1}^n rac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$

3.3.3 Definition. The theta function
$$\vartheta(G)$$
 of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G .

مثال: گراف تھی
$$artheta(G)$$
 = n $\mathbf{c} = \sum_{i=1}^n \mathbf{u}_i/\sqrt{n}$ $\mathbf{u}_i = \mathbf{e}_i$

كران بالا براى ظرفيت شنون گراف

$$\Theta(G) \le \vartheta(G)$$

 $\Theta(G) \leq \vartheta(G)$

قضيه:

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\} \in \overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

$$\Theta(G) \leq \vartheta(G)$$

3.3.2 Definition. An orthonormal representation of a graph G = (V, E) with n vertices is a sequence $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ of unit vectors in S^{n-1} such that

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=0 \text{ if } \{i,j\} \in \overline{E}. \tag{3.3}$$

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

3.3.3 Definition. The theta function $\vartheta(G)$ of G is the smallest value $\vartheta(\mathcal{U})$ over all orthonormal representations \mathcal{U} of G.

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

 $\Theta(G) \leq \vartheta(G)$

3.4.1 Definition. Let G = (V, E) and H = (W, F) be graphs. The strong product of G and H is the graph $G \cdot H$ with vertex set $V \times W$, and an edge between (v, w) and (v', w') if v is similar to v' in G and w is similar to w' in H.

(1, 1)

(2, 1)

 $\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$
 $\Theta(G) \le \vartheta(G)$

$$\Theta(G) \le \vartheta(G)$$

$$\lim_{k\to\infty} \sqrt[k]{\alpha(G^k)}$$

$$\leq \vartheta(G)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\Theta(G) \leq \vartheta(G)$$

$$\lim_{k\to\infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k\to\infty} \sqrt[k]{\vartheta(G^k)}$$

$$\leq \vartheta(G)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\Theta(G) \leq \vartheta(G)$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)}$$

$$\leq \vartheta(G)$$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

$$\Theta(G) \leq \vartheta(G)$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G)^k} \le \vartheta(G)$$

 $\Theta(G) \leq \vartheta(G)$

$$\Theta(G) = 2^{\sigma(G)} = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)}$$

3.4.2 Lemma. For all graphs G and H,

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G)^k} \le \vartheta(G)$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

 $(\mathbf{x} \otimes \mathbf{y})^T (\mathbf{x}' \otimes \mathbf{y}')$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$G = (V, E)$$

$$H = (W, F)$$

$$-(v, E)$$

$$\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$$
 d

$$\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$$
, \mathbf{c}

$$ma H$$
,

$$artheta(G\cdot H)\leq artheta(G)artheta(H).$$

$$G = (V, E)$$

$$(\mathbf{u}_2,\ldots,\mathbf{u}_m)$$
و د

$$G = (V, E)$$
 $H = (W, F)$ $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$ \mathbf{c} $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ \mathbf{d}

$$(\mathbf{v}_n)_{\mathbb{F}}\mathbf{d}$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$G = (V, E)$$

$$H = (W, F)$$

$$\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$$
 \mathbf{c} $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ \mathbf{d}

$$G\cdot H$$
 $\mathcal{U}\otimes\mathcal{V}$ $\mathbf{c}\otimes\mathbf{d}$

3.4.2 Lemma. For all graphs
$$G$$
 and H , $\vartheta(G \cdot H) < \vartheta(G)$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$G = (V, E)$$

$$G=(V,E)$$
 $H=(W,F)$ $\mathcal{U}=(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_m)$, \mathbf{c} $\mathcal{V}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)$, \mathbf{d}

$$G \cdot H$$

$$egin{aligned} oldsymbol{G} \cdot H \ oldsymbol{\mathcal{U}} \otimes oldsymbol{\mathcal{V}} \cdot oldsymbol{\mathbf{c}} \otimes \mathbf{d} \ \\ \mathbf{x} \otimes \mathbf{y} = (x_1y_1, \dots, x_1y_n, x_2y_1, \dots, x_2y_n, \dots, x_my_1, \dots, x_my_n) \end{aligned}$$

$$(\mathbf{x}\otimes\mathbf{y})^T(\mathbf{x}'\otimes\mathbf{y}')$$

3.4.2 Lemma. For all graphs
$$G$$
 and H ,

$$artheta(G\cdot H)\leq artheta(G)artheta(H).$$

H = (W, F)

$$\vartheta(G \cdot H) \leq \vartheta(G)$$

$$G = (V, E)$$
 $H = (W, F)$ $\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$ \mathbf{c} $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ \mathbf{d}

$$G\cdot H$$
 $\mathcal{U}\otimes\mathcal{V}$, $\mathbf{c}\otimes\mathbf{d}$

$$\mathbf{x} \otimes \mathbf{y} = (x_1 y_1, \dots, x_1 y_n, x_2 y_1, \dots, x_2 y_n, \dots, x_m y_1, \dots, x_m y_n)$$

$$(\mathbf{x} \otimes \mathbf{y})^T (\mathbf{x}' \otimes \mathbf{y}') = \sum_{i=1}^m \sum_{j=1}^n x_i y_j x_i' y_j'$$

3.4.2 Lemma. For all graphs
$$G$$
 and H ,

$$artheta(G\cdot H)\leq artheta(G)artheta(H).$$

$$\vartheta(G \cdot H) \leq \vartheta(G)$$

$$G=(V,E)$$
 $H=(W,F)$ $\mathcal{U}=(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_m)$, \mathbf{c} $\mathcal{V}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)$, \mathbf{d}

$$G\cdot H$$
 $\mathcal{U}\otimes\mathcal{V}$ $\mathbf{c}\otimes\mathbf{d}$

H = (W, F)

$$\mathbf{x} \otimes \mathbf{y} = (x_1 y_1, \dots, x_1 y_n, x_2 y_1, \dots, x_2 y_n, \dots, x_m y_1, \dots, x_m y_n)$$

$$(\mathbf{x} \otimes \mathbf{y})^T (\mathbf{x}' \otimes \mathbf{y}') = \sum_{i=1}^m \sum_{j=1}^n x_i y_j x_i' y_j' = \sum_{j=1}^m x_i x_i' \sum_{j=1}^n y_j y_j'$$

3.4.2 Lemma. For all graphs
$$G$$
 and H ,

$$artheta(G\cdot H)\leq artheta(G)artheta(H).$$

$$\vartheta(G \cdot H) \leq \vartheta(G)$$

$$G = (V, E) H = (W, F)$$

$$\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$$
, \mathbf{c} $\mathcal{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, \mathbf{d} , $G \cdot H$, $\mathcal{U} \otimes \mathcal{V}$, $\mathbf{c} \otimes \mathbf{d}$

$$\mathbf{x} \otimes \mathbf{y} = (x_1 y_1, \dots, x_1 y_n, x_2 y_1, \dots, x_2 y_n, \dots, x_m y_1, \dots, x_m y_n)$$
 $(\mathbf{x} \otimes \mathbf{y})^T (\mathbf{x}' \otimes \mathbf{y}') = \sum_{i=1}^m \sum_{j=1}^n x_i y_j x_i' y_j' = \sum_{j=1}^m x_i x_i' \sum_{j=1}^n y_j y_j' = (\mathbf{x}^T \mathbf{x}') (\mathbf{y}^T \mathbf{y}').$

 $\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$(i,j) \qquad (i',j')$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$(i,j) \qquad (i',j')$$

$$(\mathbf{u}_i \otimes \mathbf{v}_j)^T (\mathbf{u}_{i'} \otimes \mathbf{v}_{j'}) = (\mathbf{u}_i^T \mathbf{u}_{i'}) (\mathbf{u}_j^T \mathbf{u}_{j'})$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

الف) نمایش متعامد یکه از گراف G. H است.

اگر در یکی از گرافها مشابه نباشند

$$(i,j) \qquad (i',j')$$

 $(\mathbf{u}_i \otimes \mathbf{v}_j)^T (\mathbf{u}_{i'} \otimes \mathbf{v}_{j'}) = (\mathbf{u}_i^T \mathbf{u}_{i'}) (\mathbf{u}_j^T \mathbf{u}_{j'})$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$(i,j)$$
 (i',j') اگر در یکی ازگراف ها مشابه (i,j) (i',j') نباشند $(\mathbf{u}_i\otimes\mathbf{v}_j)^T(\mathbf{u}_{i'}\otimes\mathbf{v}_{j'})=(\mathbf{u}_i^T\mathbf{u}_{i'})(\mathbf{u}_j^T\mathbf{u}_{j'})\overset{ ext{$=$}}{=}}0$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(\mathcal{U}\otimes\mathcal{V})$$
 \leq

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$egin{aligned} artheta(\mathcal{U}) &:= \min_{\|\mathbf{c}\|=1} \max_{i=1}^n rac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} \ artheta(\mathcal{U} \otimes \mathcal{V}) &\leq \end{aligned}$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$\vartheta(\mathcal{U} \otimes \mathcal{V}) \leq \max_{i \in V, j \in W} \frac{1}{((\mathbf{c} \otimes \mathbf{d})^T (\mathbf{u}_i \otimes \mathbf{v}_j))^2}$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^{T}\mathbf{u}_{i})^{2}}$$

$$\vartheta(\mathcal{U} \otimes \mathcal{V}) \leq \max_{i \in V, j \in W} \frac{1}{((\mathbf{c} \otimes \mathbf{d})^{T}(\mathbf{u}_{i} \otimes \mathbf{v}_{j}))^{2}}$$

$$= \max_{i \in V, j \in W} \frac{1}{(\mathbf{c}^{T}\mathbf{u}_{i})^{2}(\mathbf{d}^{T}\mathbf{v}_{j})^{2}}$$

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$artheta(\mathcal{U}\otimes\mathcal{V})~\leq~artheta(G)artheta(H)$$
 ب) در نامساوی صدق میکند

$$\vartheta(\mathcal{U}) := \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^{T}\mathbf{u}_{i})^{2}}$$

$$\vartheta(\mathcal{U} \otimes \mathcal{V}) \leq \max_{i \in V, j \in W} \frac{1}{((\mathbf{c} \otimes \mathbf{d})^{T}(\mathbf{u}_{i} \otimes \mathbf{v}_{j}))^{2}}$$

$$= \max_{i \in V, j \in W} \frac{1}{(\mathbf{c}^{T}\mathbf{u}_{i})^{2}(\mathbf{d}^{T}\mathbf{v}_{j})^{2}} = \vartheta(G)\vartheta(H)$$

$$\mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$1 = \mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$1 = \mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\alpha(G) \le \frac{1}{\min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2}$$

$$1 = \mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\alpha(G) \le \frac{1}{\min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2} = \max_{i \in I} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$1 = \mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\alpha(G) \le \frac{1}{\min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2} = \max_{i \in I} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} \le \max_{i \in V} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$1 = \mathbf{c}^T \mathbf{c} \ge \sum_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 \ge |I| \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2 = \alpha(G) \min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2$$

$$\alpha(G) \le \frac{1}{\min_{i \in I} (\mathbf{c}^T \mathbf{u}_i)^2} = \max_{i \in I} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} \le \max_{i \in V} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \vartheta(G)$$

3.4.5 Theorem (Lovász' bound). For every graph G, $\Theta(G) \leq \vartheta(G)$.

3.4.2 Lemma. For all graphs G and H,

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G)^k} \le \vartheta(G)$$

3.4.5 Theorem (Lovász' bound). For every graph G, $\Theta(G) \leq \vartheta(G)$.

3.4.2 Lemma. For all graphs G and H,

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G)^k} \le \vartheta(G)$$

3.4.5 Theorem (Lovász' bound). For every graph G, $\Theta(G) \leq \vartheta(G)$.

3.4.2 Lemma. For all graphs G and H,

$$\vartheta(G \cdot H) \le \vartheta(G)\vartheta(H).$$

$$\lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G^k)} \le \lim_{k \to \infty} \sqrt[k]{\vartheta(G)^k} \le \vartheta(G)$$

دور ۵ راسی

$$\Theta(C_5) = \sqrt{5}$$

$$0 = \mathbf{u}_5^T \mathbf{u}_2$$

$$\mathbf{u}_{i} = \frac{\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)}{\left\|\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)\right\|}$$

$$0 = \mathbf{u}_5^T \mathbf{u}_2 \qquad \Leftrightarrow \qquad (1, 0, z) \begin{pmatrix} \cos \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} \\ z \end{pmatrix}$$

$$\mathbf{u}_{i} = \frac{\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)}{\left\|\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)\right\|}$$

$$0 = \mathbf{u}_5^T \mathbf{u}_2 \qquad \Leftrightarrow \qquad (1, 0, z) \begin{pmatrix} \cos \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} \\ z \end{pmatrix} = \cos \frac{4\pi}{5} + z^2 = 0$$

$$\mathbf{u}_{i} = \frac{\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)}{\left\|\left(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z\right)\right\|}$$

$$0 = \mathbf{u}_5^T \mathbf{u}_2 \qquad \Leftrightarrow \qquad (1, 0, z) \begin{pmatrix} \cos \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} \\ z \end{pmatrix} = \cos \frac{4\pi}{5} + z^2 = 0$$

$$z = \sqrt{-\cos\frac{4\pi}{5}}$$

$$\mathbf{u}_{i} = \frac{(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z)}{\|(\cos\frac{2\pi i}{5}, \sin\frac{2\pi i}{5}, z)\|}$$

$$0 = \mathbf{u}_5^T \mathbf{u}_2 \qquad \Leftrightarrow \qquad (1, 0, z) \begin{pmatrix} \cos \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} \\ z \end{pmatrix} = \cos \frac{4\pi}{5} + z^2 = 0$$

$$z = \sqrt{-\cos\frac{4\pi}{5}}$$
 $\mathbf{u}_5 = \frac{\left(1, 0, \sqrt{-\cos\frac{4\pi}{5}}\right)}{\sqrt{1 - \cos\frac{4\pi}{5}}}$

 $\vartheta(C_5)$

 $\vartheta(C_5) \leq \vartheta(\mathcal{U})$

 $\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$

 $\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$

 $\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$

$$\frac{\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}}{= \frac{1 - \cos \frac{4\pi}{5}}{-\cos \frac{4\pi}{5}}} = \frac{1 - \cos \frac{4\pi}{5}}{-\cos \frac{4\pi}{5}}.$$

 $\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$

$$= \frac{1 - \cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}},$$

$$= \frac{1 - \cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}},$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$= \frac{1 - \cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}.$$

$$= \frac{1 - \cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}.$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$=\frac{1-\cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}$$

$$=\frac{1+\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}+1}{4}}$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$=\frac{1-\cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}.$$

$$=\frac{1+\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}+1}{4}} = \frac{4+\sqrt{5}+1}{\sqrt{5}+1}$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$=\frac{1-\cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}},$$

$$=\frac{1+\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}+1}{4}} = \frac{4+\sqrt{5}+1}{\sqrt{5}+1}$$

$$=\frac{5+\sqrt{5}}{\sqrt{5}+1}$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$=\frac{1-\cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}.$$

$$=\frac{1+\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}+1}{4}} = \frac{4+\sqrt{5}+1}{\sqrt{5}+1}$$

$$=\frac{5+\sqrt{5}}{\sqrt{5}+1} = \frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}$$

$$\vartheta(C_5) \le \vartheta(\mathcal{U}) \le \max_{i=1}^5 \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2} = \frac{1}{(\mathbf{c}^T \mathbf{u}_5)^2}$$

$$=\frac{1-\cos\frac{4\pi}{5}}{-\cos\frac{4\pi}{5}}.$$

$$=\frac{1+\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}+1}{4}} = \frac{4+\sqrt{5}+1}{\sqrt{5}+1}$$

$$=\frac{5+\sqrt{5}}{\sqrt{5}+1} = \frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1} = \sqrt{5}$$

 $\Theta(G) \leq \vartheta(G)$

واقعا چند است؟

$$\Theta(C_2) \ge \sqrt{5}$$

$$\sigma(C_5) \ge \frac{1}{2}\log 5,$$

3.5.1 Lemma.
$$\vartheta(C_5) \leq \sqrt{5}$$
.

$$\Theta(C_5) = \sqrt{5}$$

$$\Theta(G) \leq \vartheta(G)$$

واقعا چند است؟

$$\Theta(C_2) \ge \sqrt{5}$$

$$\sigma(C_5) \ge \frac{1}{2}\log 5,$$

3.5.1 Lemma.
$$\vartheta(C_5) \leq \sqrt{5}$$
.

$$\Theta(C_5) = \sqrt{5}$$

 ϑ برنامهریزی نیمهمعین برای محاسبه

چگونه $\vartheta(G)$ را محاسبه کنیم؟

همحاسبه $\vartheta(G)$ مفید است:

$$\Theta(G) \leq artheta(G)$$

چگونه
$$\vartheta(G)$$
 را محاسبه کنیم؟

محاسبه artheta(G) مفید است:

$$\Theta(G) \leq \vartheta(G)$$

• چگونه محاسبه کنیم؟

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

 $\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$= \max_{\mathcal{U}} \frac{1}{\sqrt{\vartheta(\mathcal{U})}}$$

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$\frac{1}{\sqrt{\vartheta(G)}} = \max_{\mathcal{U}} \frac{1}{\sqrt{\vartheta(\mathcal{U})}}$$

$$\vartheta(G) := \min_{\mathscr{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^n \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$\frac{1}{\sqrt{\vartheta(G)}} = \max_{\mathcal{U}} \frac{1}{\sqrt{\vartheta(\mathcal{U})}} = \max_{\mathcal{U}} \max_{\|\mathbf{c}\|=1} \min_{i \in V} |\mathbf{c}^T \mathbf{u}_i|$$

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$\frac{1}{\sqrt{\vartheta(G)}} = \max_{\mathcal{U}} \frac{1}{\sqrt{\vartheta(\mathcal{U})}} = \max_{\mathcal{U}} \max_{\|\mathbf{c}\|=1} \min_{i \in V} |\mathbf{c}^T \mathbf{u}_i|$$

maximize
$$t$$

subject to $\mathbf{u}_{i}^{T}\mathbf{u}_{j} = 0$ for all $\{i, j\} \in \overline{E}$
 $\mathbf{c}^{T}\mathbf{u}_{i} \geq t, \ i \in V$
 $\|\mathbf{u}_{i}\| = 1, \ i \in V$
 $\|\mathbf{c}\| = 1.$

$$\vartheta(G) := \min_{\mathcal{U}} \min_{\|\mathbf{c}\|=1} \max_{i=1}^{n} \frac{1}{(\mathbf{c}^T \mathbf{u}_i)^2}$$

$$\frac{1}{\sqrt{\vartheta(G)}} = \max_{\mathcal{U}} \frac{1}{\sqrt{\vartheta(\mathcal{U})}} = \max_{\mathcal{U}} \max_{\|\mathbf{c}\|=1} \min_{i \in V} |\mathbf{c}^T \mathbf{u}_i|$$

maximize
$$t$$

subject to $\mathbf{u}_{i}^{T}\mathbf{u}_{j} = 0$ for all $\{i, j\} \in \overline{E}$
 $\mathbf{c}^{T}\mathbf{u}_{i} \geq t, \ i \in V$
 $\|\mathbf{u}_{i}\| = 1, \ i \in V$
 $\|\mathbf{c}\| = 1.$

SDP?

گراف تام

3.7.5 Definition. A graph G is called perfect if $\omega(G') = \chi(G')$ for every induced subgraph G' of G.

3.7.5 Definition. A graph G is called perfect if $\omega(G') = \chi(G')$ for every induced subgraph G' of G.

3.7.2 Theorem. For every graph G = (V, E),

$$\omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}).$$

3.7.5 Definition. A graph G is called perfect if $\omega(G') = \chi(G')$ for every induced subgraph G' of G.

3.7.2 Theorem. For every graph G = (V, E),

$$\omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}).$$

الگوریتم محاسبه عدد رنگی و بزرگترین خوشه

پایان