Data Structure: Disjoint Set Skipped list

Yongjun Park
Hanyang University

Disjoint sets

- We assume that the sets being represented are pairwise disjoint.
- If S_i and S_j are two sets and i != j, then there is no element that is in both S_i and S_j
- Basic operations needed for Disjoint Set
 - union
 - find

$$S_1 = \{0, 6, 7, 8\}, S_2 = \{1, 4, 9\}, S_3 = \{2, 3, 5\}$$

 $S_1 \cup S_2 = \{0, 6, 7, 8, 1, 4, 9\}$

- maintain elements of S in a forest of inverted trees
 - pointers in the tree are directed towards the root.
 - the root of a tree has a NULL parent pointer
 - two elements are in the same set iff they are in the same tree.

$$S_1 = \{1, 6, 7, 8, 11, 12\}$$

- Find(S, i)
 - find the node containing i
 - follow the parent links up to the root.
 - return the root node as the "name" of the set.

$$S_1 = \{1, 6, 7, 8, 11, 12\}$$

$$S_2 = \{4, 3, 5, 13\}$$

Union(i, j)

$$S_1 = \{1, 6, 7, 8, 11, 12\}$$

$$S_2 = \{4, 3, 5, 13\}$$

$$S_1 \cup S_2 = \{1, 6, 7, 8, 11, 12, 4, 3, 5, 13\}$$

Init(S): set all parent to 0

ex) when
$$S = \{1, 2, 3\}, [1] = \{1\}, [2] = \{2\}, [3] = \{3\}$$

Union(S, t) link the root of one tree into the root of the other tree

ex) Union
$$(1, 2)$$
: $[1] = \{1, 2\}, [3] = \{3\}$

Find(S, i): follow the parent link

ex)
$$Find(S, 1) = 1$$
, $Find(S, 2) = 1$, $Find(S, 1) = Find(S, 2)$

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$ the current partition: $\{1, 6, 7, 8, 11, 12\}, \{2\}, \{3, 4, 5, 13\}, \{9, 10\}$

7	0	4	0	3	7	0	6	0	9	6	7	4
			4									

- there is no order how the tree should be structured
- the element is an index, not a key
- for each element, the array S[1..n] stores the index of the parent in the tree
- index of 0 means a null pointer

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$

the current partition: {1, 6, 7, 8, 11, 12}, {2}, {3, 4, 5, 13}, {9, 10}

- What is the time complexity for union?
- Union({2}, {9, 10})

If we link {9, 10} into {2}, the resulting height is 2

If we link {2} into {9, 10}, the resulting height is 1

How can we improve the simple union?

- to perform smart Union, each tree includes an extra information called *rank*, which is the height of the tree.
- link the tree with smaller rank to the tree with larger rank.
- where do we store the rank?
 - We only need to maintain the rank for the root nodes
 - One clever way is to store the negative of rank at the root node
 - if S[i] is strictly positive because it is a parent pointer (represented using array index).
 - Otherwise, i is a root and -S[i] is the rank of the tree.

S = {1, 2, 3, 4} Perform the following operation in order union(1, 2), union(2,3), union(3,4)

```
Disj_Sets S[n];
void Init(Disj_Sets *S)
      for (i = 1; i \le n; i++) S[i] = 0;
Set_Type Find1(Elt_Type x, Disj_Sets *S)
      while (S[x] > 0)
                           x = S[x];
      return x;
```

```
\label{eq:condition} \begin{tabular}{ll} \begin{tabular}{ll} void $Union(Disj\_Sets *S, Set\_Type r1, Set\_Type r2)$ \\ & if $(S[r2] < S[r1])$ \\ & S[r1] = r2; & /* if $|S[r2]| > |S[r1]|, add r1 to r2 */ else \\ & \{ & if $(S[r2] == S[r1])$ \\ & S[r2] = r1; & /* add r2 to r1 */ \\ & \} \\ \end{tabular}
```


Analysis of running time

```
Init() takes O(n), but is done once.
Union() takes a constant time, O(1).
Find() takes worst-case time proportional to the height of tree.
```

Theorem Using the Union() and Find1() procedure, any tree containing m elements has height at most log m.

This follows by proving the following Lemma.

Lemma Using the Union() and Find1() procedure, any tree with height *h* has at least 2^h elements.

If we prove the lemma, the following theorem holds.

Theorem After initialization, any sequence of n Unions and n Finds can be performed in time $O(n \log n)$.

Analysis of running time

<u>Proof</u>: Induction on the number of Unions performed to build the tree.

- Basis: No unions. Tree with 1 element of height 0. $2^0 = 1$
- <u>Induction Step:</u> Suppose the theorem is true for all trees built with fewer than k unions, and we want to prove the lemma for a tree T built with exactly k union operations. Such a tree is formed by unioning two trees T_1 and T_2 , of heights h_1 and h_2 and size h_1 and h_2 , respectively. Since these trees were formed with fewer than k unions $h_1 \ge 2^{h_1}$ and $h_2 \ge 2^{h_2}$.

Assume that T_2 was made a child of T_1 (that is, $h_2 \le h_1$)

- if
$$h_2 < h_1$$
 then $h = h_1$, and
 $n = n_1 + n_2 \ge 2^{h_1} + 2^{h_2} \ge 2^{h_1} = 2^h$
- if $h_2 = h_1$ then $h = h_2 + 1 = h_1 + 1$, and
 $n = n_1 + n_2 \ge 2^{h_1} + 2^{h_2} \ge 2^{h_2} + 2^{h_2} = 2^h$

path compression

- a simple heuristic to improve running time significantly
 (ALMOST gets rid of the log n factor in the running time O(n log n))
- If we compress the paths on each Find(), subsequent Find() will go much faster.
- "Compress the path" means that when we find the root we set all parent pointers of the node on our find path to the root.

- running time of Find2() is still proportional to the height of the tree
- each time you spend lots of time in Find2(), you make the tree flatter, thus making subsequent Find2() faster.

disjoint sets ADT

disjoint sets ADT

Idea: build a random maze by erasing edges.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

disjoint sets ADT

Idea: build a random maze by erasing edges.

0

3

skip lists

- linked lists do
 - insertion and deletion in O(1), but find in O(n)
 - not store sorted lists
- how can we make linked lists better?
- store in sorted linked lists?
- a randomized data structure: it uses the random number generator
- skip lists
 - use hierarchy of sorted linked lists
 - skip over lots of items to find an element
 - expected search time is O(log n) with high probability

perfect skip lists

- nodes are of variable size, including 1 and O(log n) pointers
- search(k)
 - if k = next_key, done
 - if k < next_key, go down a level</p>
 - if k > next_key, go right
 - In the worst case,
 - we have to go through all log *n* levels
 - at each level, we visit at most 2 nodes: $O(\log n)$

perfect skip lists: search

How about search(14)?

randomized skip lists

- perfect skip lists need to rearrange the entire list after insertion and deletion
- to insert or delete x,
 - search for x in the skip list
- find the position p_0, p_1, \ldots, p_i of the items that has the largest key less than x in each level $0, 1, \ldots, I$
 - The maximum level (the size of header node) should be log n when n is the maximum number of nodes allowed

```
struct skip_node {
     element_type element;
     int level;
     struct skip_node **forward;
} *s;

s = (skip_node*)malloc( sizeof(struct skip_node) );
s->forward = (skip_node**)malloc( sizeof(skip_node *)*(level+1) );
```

randomized skip lists: search

randomized skip lists: insert

randomized skip lists: insert

insert(14) at level 2


```
search(x);  # find x
level = 0;  # insert node in level 0
while (FLIP() == "heads")
    level ++;  # move the level of the new node up
```

randomized skip lists: insert

insert(14) at level 1

randomized skip lists: delete

randomized skip lists: delete

