Text Classification Using Label Names Only: A Language Model Self-Training Approach

Yu Meng¹, Yunyi Zhang¹, Jiaxin Huang¹, Chenyan Xiong², Heng Ji¹, Chao Zhang³, Jiawei Han¹

¹University of Illinois at Urbana-Champaign, IL, USA

²Microsoft Research, WA, USA ³Georgia Institute of Technology, GA, USA

¹{yumeng5, yzhan238, jiaxinh3, hengji, hanj}@illinois.edu

²chenyan.xiong@microsoft.com ³chaozhang@gatech.edu

EMNLP 2020

但宇豪 2021/4/6

3 steps to train the model

(1) Associates semantically related words with the label names

(2) Finds category-indicative words and trains the model to predict their implied categories

(3) Generalizes the model via self-training

Step1 Find Category Words

 将语料中label词语所对应的hidden state映射到词表的维度,取 top50的词语。取最终统计结果中的top100词语,认为它们可以代表该类别的语义。

Sentence	Language Model Prediction
The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,
Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

Label Name	Category Vocabulary	
politics	politics, political, politicians, government, elections, politician, democracy, democratic, governing, party, leadership, state, election, politically, affairs, issues, governments, voters, debate, cabinet, congress, democrat, president, religion,	
sports	sports, games, sporting, game, athletics, national, athletic, espn, soccer, basketball, stadium, arts, racing, baseball, tv, hockey, pro, press, team, red, home, bay, kings, city, legends, winning, miracle, olympic, ball, giants, players, champions, boxing,	
business	business, trade, commercial, enterprise, shop, money, market, commerce, corporate, global, future, sales, general, international, group, retail, management, companies, operations, operation, store, corporation, venture, economic, division, firm,	
technology	technology, tech, software, technological, device, equipment, hardware, devices, infrastructure, system, knowledge, technique, digital, technical, concept, systems, gear, techniques, functionality, process, material, facility, feature, method,	

Table 2: The label name used for each class of AG News dataset and the learned category vocabulary.

Step2 Masked Category Prediction

-- Word-level classification

$$egin{align} \mathcal{L}_{MCP} &= -\sum_{(w,c_w) \in \mathcal{S}_{ ext{ind}}} \log p(c_w \mid m{h}_w), \ p(c \mid m{h}) &= \operatorname{Softmax}\left(W_cm{h} + m{b}_c
ight), \ \end{aligned}$$

Step3 Self-Training(Soft-label)

-- Sentence-level classification

$$p_{ij} = p(c_j \mid oldsymbol{h}_{d_i: exttt{ iny CLS]}}).$$

$$q_{ij} = rac{p_{ij}^2/f_j}{\sum_{j'} \left(p_{ij'}^2/f_{j'}\right)}, \, f_j = \sum_i p_{ij},$$

$$\mathcal{L}_{ST} = \text{KL}(Q \| P) = \sum_{i=1}^{N} \sum_{j=1}^{K} q_{ij} \log \frac{q_{ij}}{p_{ij}},$$

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
Weakly-Sup.	BERT w. simple match	0.752	0.722	0.677	0.654
	LOTClass w/o. self train	0.822	0.860	0.802	0.853
	LOTClass	0.864	0.911	0.865	0.916
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015) BERT (Devlin et al., 2019)	0.872 0.944	0.983 0.993	0.853 0.945	0.945 0.972

➤ How many labeled documents are label names worth?

(a) **Supervised BERT**: Test acc. vs. number of labeled documents.

➤ Sensitivity to different words as label names?

Label Name	Category Vocabulary	
commerce	commerce, trade, consumer, retail, trading, merchants, treasury, currency, sales, commercial, market, merchant, economy, economic, marketing, store, exchange, transactions, marketplace, businesses, investment, markets, trades, enterprise,	
economy	economy, economic, economics, economics, currency, trade, future, gdp, treasury, sector, production, market, investment, growth, mortgage, commodity, money, markets, commerce, economical, prosperity, account, income, stock, store,	

Table 7: Different label names used for class "business" of AG News dataset and the learned category vocabulary.

➤ Advantages over GloVe

Label Name	Category Vocabulary	
good	good, excellent, fine, right, fair, sound, wonderful, high, okay, sure, quality, smart, positive, solid, special, home, quick, safe, beautiful, cool, valuable, normal, amazing, successful, interesting, useful, tough, fun, done, sweet, rich, suitable,	
bad	bad, terrible, horrible, badly, wrong, sad, worst, worse, mad, dark, awful, mean, rough, rotten, much, mixed, dumb, nasty, sorry, thing, negative, funny, far, go, crazy, weird, lucky, german, shit, guy, ugly, short, weak, sick, gross, dangerous, fake,	

Table 4: The label name used for each class of *Amazon* dataset and the learned category vocabulary.

Label Name	Category Vocabulary	
good	good, better, really, always, you, well, excellent, very, things, think, way, sure, thing, so, n't, we, lot, get, but, going, kind, know, just, pretty, i, 'll, certainly, 're, nothing, what, bad, great, best, something, because, doing, got, enough, even,	
bad	bad, good, things, worse, thing, because, really, too, nothing, unfortunately, awful, n't, pretty, maybe, so, lot, trouble, something, wrong, got, terrible, just, anything, kind, going, getting, think, get, ?, you, stuff, 've, know, everything, actually,	

Table 8: GloVe 300-d pre-trained embedding for category understanding on Amazon dataset.

➤ LOTClass VS BERT w. Simple Match

(c) LOTClass vs. BERT w. simple match during self-training.

- The potential of weakly-supervised classification has not been fully explored.
 - Only use the BERT-base-uncased model
 - •Use at most 3 words per class as label names
 - Refrain from using other dependencies like back translation systems for augmentation

➤ Applicability of weak supervision in other NLP tasks.

•NER

Aspect-based sentiment analysis

- ➤ Limitation of weakly-supervised classification.
 - I find it sad that just because Edward Norton did not want to be in the film or have anything to do with it, people automatically think the movie sucks without even watching it or giving it a chance."

- ➤ Collaboration with semi-supervised classification.
 - •no training documents:

generate labeled examples for initializing semi-supervised methods

•both training documents and label names are available:

joint objective can be designed to train the model, with word-level tasks + document-level tasks