

Adapters in Speech Transformers

SSL in ESPnet: A Quick re-cap

Two ways we use upstream model features:

- 1. Freeze and take last layer
- 2. Weighted sum of hidden states

SSL Fine-tuning challenges

- The entire front-end + pre-encoder + encoder + post-encoder + decoder (A very big graph) difficult to optimize
- 2. Hyper-parameter search is costly
- Batch-size difference between pre-training of these SSL models like Wav2vec2 and HuBERT and our fine-tuning creates instability in training

Should we just fine-tune last few layers?

- For task specific adaptation recent papers based on empirical analysis suggest re-initializing the last 2 layers
- 2. But higher pre-trained layers encode more phonemic information which is important for adapting to new languages, then how do fine-tune the higher layers in a parameter efficient manner

Table 2: Validation WER on TD, LS, and SB of models pre-trained (PT) on various subsets of {TD, LS, SB}, and fine-tuned (FT) on TD-10h, LS-10h, or SB-10h.

	TED-LIUM (TD) dev WER					
X	FT on TD-10h		FT on LS-10h		FT on SB-10h	
	PT on X	X+TD	PT on X	X+TD	PT on X	X+TD
None	diverge	9.93	diverge	10.99	diverge	11.32
SF	12.12	9.60	14.82	11.08	99.63	11.04
LS	9.81	8.59	12.92	8.91	13.08	10.39
SF+LS	9.13	8.91	10.61	9.67	12.25	10.75
1.1.1.1 (1.1.1.1.1 WED						
**	LibriSpeech (LS) dev-other WER					
X	FT on TD-10h		FT on LS-10h		FT on SB-10h	
_	PT on X	X+LS	PT on X	X+LS	PT on X	X+LS
None	diverge	14.60	diverge	10.53	diverge	17.92
SF	28.91	14.30	20.36	10.44	94.38	15.53
TD	23.44	12.81	15.36	9.71	27.50	15.46
SF+TD	20.50	13.58	14.42	10.39	21.99	13.89
Switchboard (SB) RT03 WER						
37	EVE 7					
X	FT on TD-10h		FT on LS-10h		FT on SB-10h	
	PT on X	X+SF	PT on X	X+SF	PT on X	X+SF
None	diverge	18.90	diverge	19.30	diverge	10.80
TD	35.70	16.20	34.60	17.40	18.70	11.00
LS	33.60	17.80	36.50	16.10	18.20	11.00
TD+LS	29.70	17.40	28.90	16.90	15.60	10.80

(a) Transformer with adapters.

(b) An adapter cell.

EFFICIENT ADAPTER TRANSFER OF SELF-SUPERVISED SPEECH MODELS FOR **AUTOMATIC SPEECH RECOGNITION**

Bethan Thomas[†] Samuel Kessler*[‡] Salah Karout[†]

†Huawei R&D UK

[‡]University of Oxford

Combining task and language knowledge

Image source: MAD-X paper https://arxiv.org/pdf/2005.00052.pdf


```
model = AutoModelForSequenceClassification.from_pretrained("bert-base-
model.load_adapter("sentiment/sst-2@ukp")
model.set_active_adapters("sst-2")
```

```
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("AdapterHub is awesome!")
input_tensor = torch.tensor([
        tokenizer.convert_tokens_to_ids(tokens)
])
outputs = model(input_tensor)
```


Related work

- Lightweight Adapter Tuning for Multilingual Speech Translation https://arxiv.org/pdf/2106.01463.pdf (Must-C Dataset)
 - https://github.com/formiel/fairseq/blob/master/examples/speech_to_text/docs/adapters.md
- Exploiting Adapters for Cross-lingual Low-resource Speech Recognition https://arxiv.org/pdf/2105.11905.pdf (Source code not available, but experiments conducted using ESPnet

Possible benefits

- 1. Task + language adaptation
- 2. Easy to share pre-trained SSL models for different type of tasks due to smaller memory footprint
- 3. Support for extreme low resource-setting

Thank you for your attention!

