# Prva parcijalna provjera znanja iz predmeta Električni krugovi II

#### Zadatak 1.

1.1. U kolu poznatih parametara R, L, C djeluje naponski generator konstantnog napona E i naponski generator promjenljivog napona e(t). Postavite diferencijalnu jednačinu koja opisuje promjenu napona na kondenzatoru  $u_c(t)$  tokom prelaznog procesa, ako se u trenutku t=0 prekidač P trenutno prebacuje iz položaja (1) u položaj (2).



Rješenje:

$$-u_c(t) = L\frac{di_L(t)}{dt} + Ri_L(t)$$
 (1)

$$E - u_c(t) = RC \frac{du_c(t)}{dt} - Ri_L(t)$$
 (2)

Iz jednačine (2) slijedi: 
$$i_L(t) = \frac{u_c(t)}{R} - \frac{E}{R} + C \frac{du_c(t)}{dt}$$
 (3)

Diferenciranjem relacije (3), dobija se: 
$$\frac{di_L(t)}{dt} = \frac{1}{R} \frac{du_c(t)}{dt} + C \frac{d^2u_c(t)}{dt^2}$$
 (4)

Uvrštavanjem jednačina (3) i (4) u jednačinu (1), dobija se:

$$LC\frac{d^2u_c(t)}{dt^2} + \left(\frac{L}{R} + RC\right)\frac{du_c(t)}{dt} + 2u_c(t) = E$$

1.2. Za kolo iz prethodnog zadatka odredite zavisne početne uslove. Poznate vrijednosti su:  $E = 10 (V); R = 10 (\Omega); L = 10 (mH); C = 100 (\mu F); e(t) = 173 \cdot sin(577t + 30^{\circ}) (V).$ 

## Rješenje:

Struja kroz zavojnicu je definisana izrazom: 
$$i_L(t) = \frac{e(t)}{\mathcal{Z}_e}$$
 (5)

Ekvivalentna impedansa kola je:  $\mathcal{Z}_e = R + j\omega L = |\mathcal{Z}_e| \angle \varphi$ 

$$|\mathcal{Z}_e| = \sqrt{R^2 + (\omega L)^2} = 11,54 \Omega$$
  $\varphi = arctg \frac{\omega L}{R} = 30^\circ$ 

Uvrštavanjem vrijednosti za  $|\mathcal{Z}_e|$  i  $\varphi$  u jednačinu (5), dobija se:

$$i_{I}(t) = 15 \cdot \sin 577t$$

Nezavisni početni uslovi su:  $i_L(t) = 0$ ;  $u_c(0) = E = 10 V$ 

Zavisni početni uslov se može dobiti iz relacije (2): 
$$\frac{du_c(0)}{dt} = \frac{E - u_c(0) + Ri_L(0)}{RC} = 0$$

Zavisni početni uslov se može dobiti iz relacije (1): 
$$\frac{di_L(0)}{dt} = \frac{-u_c(0) - Ri_L(0)}{I_c} = -1000 \text{ A/s}$$

1.3. U kolu na slici, koje je u stacionarnom stanju, u trenutku t=0 prekidač se prebacuje iz položaja (1) u položaj (2). Odrediti izraz za lik struje kroz zavojnicu, uz pretpostavku da je početna elektrostatička energija u kondenzatoru jednaka nuli. Poznati parametri su  $R=0.5~(\Omega)$ ;  $L = 0.5 (H); C = 0.5 (F); E = 1 (V); i_L(0) = 2 A.$ 



$$E = L\frac{di_L(t)}{dt} + Ri_L(t) - RC\frac{du_c(t)}{dt}$$
 (1)

$$u_c(t) = Ri_L(t) - RC \frac{du_c(t)}{dt}$$
 (2)

Primjenom Laplace-ove transformacije, uz uslov da je  $u_c(0) = 0$ , dobijamo:

$$\frac{E}{p} = pLI_L(p) - Li_L(0) + RI_L(p) - pRCU_c(p)$$
(3)

$$U_c(p) = RI_L(p) - pRCU_c(p)$$
(4)

Iz jednačine (4) slijedi: 
$$U_c(p) = \frac{RI_L(p)}{1 + pRC}$$
 (5)

Uvrštavanjem jednačine (5) u jednačinu (3), dobija se:

$$\frac{E}{p} = pLI_L(p) - Li_L(0) + RI_L(p) - pRC \frac{RI_L(p)}{1 + pRC}$$

$$E + pI_L(0) - \left(r^2I_L + rR_L(p) - \frac{p^2R^2C}{1 + pRC}\right)I_L(p)$$

$$E + pLi_L(0) = \left(p^2L + pR - \frac{p^2R^2C}{1 + pRC}\right)I_L(p)$$

Izraz za struju kroz zavojnicu je: 
$$I_L(p) = \frac{p^2 \big(RLCi_L(0)\big) + p \big(RCE + Li_L(0)\big) + E}{p(p^2RLC + pL + R)}$$

Za date vrijednosti parametara: 
$$I_L(p) = \frac{0.25p^2 + 1.25p + 1}{p(0.125p^2 + 0.5p + 0.5)}$$

1.4. Za kolo sa slike odredite učestanost prave rezonancije. Poznati parametri su: R, L, C.



$$i_L(t) = C \frac{du_c(t)}{dt}$$

$$LC\frac{d^2u_c(t)}{dt^2} + RC\frac{du_c(t)}{dt} + u_c(t) = 0$$

Karakteristična jednačina dobijene diferencijalne jednačine je:  $LCp^2 + RCp + 1 = 0$ 

Korjeni karakteristične jednačine su: 
$$p_{1,2} = -\frac{R}{2L} \pm j \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

Učestanost prave rezonancije je: 
$$\omega_{pr} = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

#### Zadatak 2.

U kolu na slici, koje se nalazi u stacionarnom režimu rada, u trenutku t=0 otvara se prekidač. Koristeći klasičnu metodu odrediti vremensku funkciju  $u_c(t)$  za promjenu napona na kondenzatoru poslije komutacije. Poznate vrijednosti su: E=11 (V); R=10 ( $\Omega$ ); L=10 (H); C=0,1 (F).



### Rješenje:

Za t < 0 nezavisni početni uslovi za struju kroz zavojnicu i za napon na krajevima kondenzatora mogu se odrediti iz slijedećih izraza:

$$E = -11Ri_L(0); u_c(0) = -10Ri_L(0)$$

$$i_L(0) = -0.1 (A); u_c(0) = 10 (V)$$

Za  $t \ge 0$ , mogu se postaviti jednačine dinamičke ravnoteže napisane prema KZS i KZN:

$$3Ri_L(t) + L\frac{di_L(t)}{dt} = E - u_c(t) \tag{1}$$

$$R\left(C\frac{du_c(t)}{dt} - i_L(t)\right) - L\frac{di_L(t)}{dt} - 3Ri_L(t) = 0$$
(2)

Iz jednačne (2) slijedi: 
$$L\frac{di_L(t)}{dt} = RC\frac{du_c(t)}{dt} - 4Ri_L(t)$$
 (3)

Uvrštavanjem jednačne (3) u jednačinu (1) slijedi:

$$3Ri_L(t) + RC\frac{du_c(t)}{dt} - 4Ri_L(t) = E - u_c(t)$$
(4)

Iz jednačine (4) slijedi: 
$$i_L(t) = C \frac{du_c(t)}{dt} + \frac{u_c(t)}{R} - \frac{E}{R}$$
 (5)

Diferenciranjem jednačine (5) slijedi: 
$$\frac{di_L(t)}{dt} = C \frac{d^2 u_c(t)}{dt^2} + \frac{1}{R} \frac{du_c(t)}{dt}$$
 (6)

Uvrštavanjem jednačna (5) i (6) u jednačinu (1) slijedi:

$$3R\left(C\frac{du_{c}(t)}{dt} + \frac{u_{c}(t)}{R} - \frac{E}{R}\right) + L\left(C\frac{d^{2}u_{c}(t)}{dt^{2}} + \frac{1}{R}\frac{du_{c}(t)}{dt}\right) = E - u_{c}(t)$$

$$3RC\frac{du_{c}(t)}{dt} + 3u_{c}(t) - 3E + LC\frac{d^{2}u_{c}(t)}{dt^{2}} + \frac{L}{R}\frac{du_{c}(t)}{dt} + u_{c}(t) = E$$

$$LC\frac{d^{2}u_{c}(t)}{dt^{2}} + \left(3RC + \frac{L}{R}\right)\frac{du_{c}(t)}{dt} + 4u_{c}(t) = 4E$$
(7)

Opšte rješenje je dato kao zbir homogenog i partikularnog rješenja jednačine (7):

$$u_c(t) = u_{ch}(t) + u_{cn}(t)$$

Karakteristična jednačina koja odgovara homogenom dijelu diferencijalne jednačine ima oblik:

$$LCp^2 + \left(3RC + \frac{L}{R}\right)p + 4 = 0$$

čiji su korijeni  $p_{1,2}=-2$ 

Opšte rješenje diferencijalne jednačine koja opisuje promjenu napona na kondenzatoru tokom prelaznog režima ima oblik:

$$u_c(t) = e^{-2t}(A_1 + A_2t) + 11$$

Konstante  $A_1$  i  $A_2$  mogu se odrediti na osnovu:

- nezavisnog početnog uslova:  $u_c(0) = A_1 + 11 = 10 \Rightarrow A_1 = -1 (V)$
- zavisnog početnog uslova (iz relacije 5):  $\frac{du_c(t)}{dt}\bigg|_{t=0} = -\frac{u_c(0)}{CR} + \frac{E}{CR} + \frac{i_L(0)}{C} = 0 \ (V/s)$

Na osnovu opšteg rješenja slijedi:  $\frac{du_c(t)}{dt} = -2e^{-2t}(A_1 + A_2t) + e^{-2t}A_2$ 

odakle je 
$$\left. \frac{du_c(t)}{dt} \right|_{t=0} = -2A_1 + A_2 = 0 \Rightarrow A_2 = -2 \ (V)$$

Vremenski izraz za promjenu napona na kondenzatoru u toku prelaznog režima ima oblik:

$$u_c(t) = 11 - e^{-2t}(1+2t)(V)$$

#### Zadatak 3.

3.1. U jednom RLC kolu određuje se promjena struje kroz zavojnicu  $i_L(t)$  u toku prelaznog režima. Diferencijalna jednačina koja opisuje promjenu struje  $i_L(t)$  ima oblik:

$$LC\frac{d^2i_L(t)}{dt^2} + \left(\frac{L}{R} + 3RC\right)\frac{di_L(t)}{dt} + 4i_L(t) = \frac{E}{R}$$

Za koje vrijednosti kapaciteta kondenzatora  ${\it C}$  u kolu nastaje prelazni proces oscilatorno-prigušenog karaktera?

## Rješenje:

a) 
$$\frac{L}{R^2} < C < \frac{L}{9R^2}$$
 b)  $\frac{L}{9R^2} < C < \frac{L}{R^2}$  c)  $C = \frac{L}{9R^2}$  d)  $C = \frac{L}{3R^2}$ 

Da bi sopstveni režim kola bio oscilatorno-prigušeni, potrebno je ispuniti uslov:

$$\left(\frac{L}{R} + 3RC\right)^2 - 16LC < 0$$
, odakle se dobija:  $9R^4C^2 - 10LR^2C + L^2 < 0$ 

Gornja nejednačina je zadovoljena za vrijednosti kapaciteta kondenzatora  $\mathcal C$  unutar intervala:

$$\frac{L}{9R^2} < C < \frac{L}{R^2}$$

3.2. U kolu na slici trenutno se, u trenutku t=0, zatvara prekidač P. Diferencijalna jednačina koja opisuje promjenu struje  $i_L(t)$  ima oblik:

$$L\frac{di_L(t)}{dt} + \frac{R_3 R_2}{R_2 + R_3} i_L(t) = 0$$

Potrebno je odrediti vremensku funkciju promjene napona  $u_0(t)$ , nakon komutacije. Poznato je:  $E=10~(V);~R_1=2~(\Omega);~R_2=3~(\Omega);~R_3=6~(\Omega);~L=2~(H);~i_L(0)=2~(A).$ 



Karakteristična jednačina je:  $2p + 2 = 0 \Rightarrow p = -1$ 

Opšte rješenje diferencijalne jednačine:  $i_L(t) = Ae^{-t} (A)$ 

Konstanta A može se odrediti na osnovu nezavisnog početnog uslova:  $i_L(0) = A = 2$ 

Vremenski izraz koji opisuje promjenu struje kroz zavojnicu je:  $i_L(t) = 2e^{-t}$  (A)

Funkcija promjene napona  $u_0(t)$  je:  $u_0(t) = L \frac{di_L(t)}{dt} = -4e^{-t}$  (V)

3.3. U kolu predstavljenom na slici poznati su parametri R, L, C, kao i učestanost  $\omega$  prostoperiodičnog napona u(t). Odredite učestanost prave antirezonancije.



## Rješenje:

a) 
$$\omega_{pa} = \sqrt{\frac{1}{LC} - 1}$$
 b)  $\omega_{pa} = \sqrt{\frac{R}{LC} - \frac{R}{L^2}}$  c)  $\omega_{pa} = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$  d)  $\omega_{pa} = \sqrt{1 - \frac{1}{LC}}$ 

Iz jednačina kola napisanih preko KZ nije teško zaključiti da je sopstveni odziv kola opisan diferencijalnom jednačinom:

$$\frac{d^2u_c(t)}{dt^2} + \frac{2R}{L}\frac{du_c(t)}{dt} + \frac{1}{LC}u_c(t) = 0$$

Rješenja karakteristične jednačine su:  $p_{1,2} = -\frac{R}{L} \pm j \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}} = -\sigma_s \pm j\omega_s$ 

Učestanost prave antirezonancije kola određena je kao:  $\omega_{pa} = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ 

3.4. Za reaktivno kolo sa slike odredite koliko je puta učestanost fazne rezonancije veća od učestanosti fazne antirezonancije. Rezonantne, odnosno antirezonantne učestanosti kola koje su jednake nuli, odnosno beskonačnosti, izostavite iz analize.



# Rješenje:

$$a) \frac{\omega_r}{\omega_a} = \sqrt{3}$$

$$b) \ \frac{\omega_r}{\omega_a} = \sqrt{2}$$

c) 
$$\frac{\omega_r}{\omega_a} = 3$$

d) 
$$\frac{\omega_r}{\omega_s} = 2$$

Ulazna impedansa kola je: 
$$\mathcal{Z}_{ul}=jrac{2\omega^3L^2C-3\omega L}{2\omega^2LC-1}$$

Iz uslova nastanka fazne rezonancije u kolu: 
$$Im\{$$

Iz uslova nastanka fazne antirezonancije u kolu:

$$Im\{\mathcal{Z}_{ul}\} = \frac{2\omega^3 L^2 C - 3\omega L}{2\omega^2 LC - 1} = 0 \implies \omega_r = \sqrt{\frac{3}{2LC}}$$

$$Im\{\mathcal{Y}_{ul}\} = -\frac{2\omega^2 LC - 1}{2\omega^3 L^2 C - 3\omega L} = 0 \implies \omega_a = \frac{1}{\sqrt{2LC}}$$

Očigledno je da vrijedi: 
$$\frac{\omega_r}{\omega_a} = \sqrt{3}$$