11. LITTLE – OMEGA (ω) NOTATION

DEFINITION: Let f and g be two functions that map a set of natural numbers, that is $f: \mathbb{N} \to \mathbb{R}$. Let $\omega(g)$ be the set of all functions with a similar rate of growth. The relation $f(n) = \omega(g(n))$ holds, if there exists two positive constants c and c0 such that:

$$f(n) > c \times g(n)$$
.

Example:1

Prove
$$f(n) = 5n^2$$
 is in $\omega(n)$

SOLUTION:

We know by definition:

$$f(n) > c \times g(n)$$
 for $n \ge n_0$

or,

$$0 < c \times g(n) < f(n)$$
 for $n \ge n_0$

Given to prove g(n) = n.

$$\Rightarrow 5n^2 > c \times n$$

We can write it as:

$$\Rightarrow f(n) > 5n$$

Hence c = 5 and:

$$\Rightarrow 5n^2 > 5n$$

$$\Rightarrow n > 1$$

Let
$$n_0 = 2 \ as \ n > 1$$

Therefore we get $n_0 = 2$ and c = 5

$N(n \ge n_0)$	$f(n)=5n^2$	$\boldsymbol{\omega} = \boldsymbol{c} \times \boldsymbol{g}(\boldsymbol{n}) = \boldsymbol{5} \times \boldsymbol{n}$
2	20	10
3	45	15
4	80	20
5	125	25
6	180	30
7	245	35

Hence $5n^2$ is in $\omega(n)$.

If we differentiate between $\Omegaig(g(n)ig)$ and $\omegaig(g(n)ig)$, we get: So for $\Omegaig(g(n)ig)$ we see that :

$$0 \le c \times g(n) \le f(n)$$
 for $n \ge n_0$

Therefore, we can tell that:

$$5n^2 \le 5n^2$$
, where $c = 5$ and $n_0 = 1$

Furthermore, it is also correct that:

$$\approx (5n^2 - n^2) \le 5n^2$$

$$\approx 4n^2 \leq 5n^2$$

Where c = 4 and

$$\approx 0 \leq n^2$$

$$\approx n \times n \geq 0$$

$$\approx n \geq \frac{0}{n}$$

$$\approx n \geq 0$$

Also, we can say that $n \ge 1$, hence $n_0 = 1$.

As set of Natural Real Numbers.

$N(n \ge n_0)$	$f(n)=5n^2$	$\Omega = c \times g(n) = 4 \times n^2$
1	5	4
2	20	16
3	45	36
4	80	64
5	125	100
6	180	144
7	245	196

Now plot the graph to see the difference between $\omegaig(g(n)ig)$ and $\Omegaig(g(n)ig)$.

Example:2

Prove
$$f(n) = 3n^3 + 2n + 7$$
 is in $\omega(n)$

SOLUTION:

We know by definition:

$$f(n) > c \times g(n)$$
 for $n \ge n_0$

or,

$$0 < c \times g(n) < f(n)$$
 for $n \ge n_0$

$$\Rightarrow f(n) > 3n + 2n + 7n$$

$$\Rightarrow f(n) > 12n$$

Therefore:

$$3n^3 + 2n + 7 > 12n$$

Hence c = 12 and :

$$3n^3 + 2n + 7 > 12n$$

$$\Rightarrow 3n^3 - 10n + 7 > 0$$

We can write it as:

$$(n-1)(3n^2+3n-7)<0$$

So we got:

$$\Rightarrow n-1 < 0$$

$$\Rightarrow -1 < -n$$

$$\Rightarrow n > 1$$

$$\Rightarrow 3n^{2} + 3n - 7 < 0$$
By Quadratic equation:
$$\Rightarrow n_{1,2} = \frac{\left(-b \pm \sqrt{b^{2} - 4ac}\right)}{2a}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{3^{2} - 4 \times 3 \times (-7)}\right)}{2 \times 3}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{9 + 84}\right)}{6}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{93}\right)}{6}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{93}\right)}{6}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{93}\right)}{6}$$

$$\Rightarrow \frac{\left(-3 \pm \sqrt{93}\right)}{6}$$

Therefore, we get,

$$\Rightarrow n < \frac{\left(-3 - \sqrt{93}\right)}{6} \text{ or } 1 < n < \frac{\left(-3 + \sqrt{93}\right)}{6}$$

$$\Rightarrow n < -2.11 (approx) or 1 < n < 1.11 (approx)$$

We will take only: n > 1, $let n_0 = 2$

$N(n \ge n_0)$	$f(n) = 3n^3 + 2n + 7$	$\boldsymbol{\omega} = \boldsymbol{c} \times \boldsymbol{g}(\boldsymbol{n}) = 12\boldsymbol{n}$
2	35	24
3	94	36
4	207	48
5	392	60
6	667	72
7	1050	84

Hence f is $\omega(g)$, or $f(n) = 3n^3 + 2n + 7$ is in $\omega(n)$.

If we differentiate between $\Omegaig(g(n)ig)$ and $\omegaig(g(n)ig)$, we get: So for $\Omegaig(g(n)ig)$ we see that :

$$0 \le c \times g(n) \le f(n)$$
 for $n \ge n_0$

Therefore, we can tell that:

$$3n^3 \leq 3n^3 + 2n + 7$$
, where $c = 3$ and $g(n) = n^3$ and $n_0 = 1$ $n \geq 1$.

$N(n \ge n_0)$	$f(n) = 3n^3 + 2n + 7$	$\boldsymbol{\omega} = \boldsymbol{c} \times \boldsymbol{g}(\boldsymbol{n}) = 3\boldsymbol{n}^3$
1	12	3
2	35	24
3	94	81
4	207	192
5	392	375
6	667	648
7	1050	1029

Now plot the graph to see the difference between $\omega(g(n))$ and $\Omega(g(n))$.

LITTLE OMEGA DEFINITION IN LIMITS -LITTLE OH RATIO THEOREM

DEFINITION: The relation $f(n) = \omega(g(n))$ holds good

if and only if
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$
.

Example:1

Prove
$$f(n) = 5n^2$$
 is in $\omega(n)$

SOLUTION:

We have
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2}{n}$$

$$\lim_{n\to\infty}\frac{5n^2}{n}=\lim_{n\to\infty}5n=\infty$$

[As by infinity property of limits : (Limits where x tends to ∞ acting upon polynomial function)= $\lim_{n\to\infty}(ax^n+\cdots+bx+c)=\infty$

,
$$a>0$$
]

Hence it satisfies:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty \ and \ it \ is \ in \ \omega(g(n)).$$

Example:2

Prove
$$f(n) = 3n^3 + 2n + 7$$
 is in $\omega(n)$

SOLUTION:

$$=\lim_{n\to\infty}\frac{f(n)}{g(n)}=\frac{(3n^3+2n+7)}{n}.$$

$$= \lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{3n^3}{n} + \frac{2n}{n} + \frac{7}{n} = 3n^2 + 2 + \frac{7}{n}.$$

$$= \lim_{n\to\infty} 3n^2 + \lim_{n\to\infty} 2 + \lim_{n\to\infty} \frac{7}{n}$$

$$pprox \lim_{n\to\infty} (3n^2) = \infty$$

[As by infinity property of limits: (Limits where x tends to ∞ acting upon polynomial function) = $\lim_{n\to\infty}(ax^n+\cdots+bx+c)=\infty$

,
$$a > 0$$

$$\approx \lim_{n\to\infty}(2)=2$$

[As
$$\lim_{n\to a} c = c$$
, where c is constant.]

$$\approx \lim_{n\to\infty} \left(\frac{7}{n}\right) = 0$$

[By infinity property , $\lim_{n\to\infty}\left(\frac{c}{x^a}\right)=0$]

Hence: $\infty + 2 + 0 = \infty$.

Therefore, it satisfies:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty \ and \ it \ is \ in \ \omega(g(n)).$$

Example:3

Prove
$$\frac{n^2}{3} = \omega(n)$$
.

Solution

$$=\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\left(\frac{\left(\frac{n^2}{3}\right)}{n}\right).$$

$$=\lim_{n\to\infty}\left(\frac{n^2}{3n}\right)$$

$$=\lim_{n\to\infty}\left(\frac{n}{3}\right)$$

$$=\frac{1}{3}\lim_{n\to\infty}(n)$$

$$\left[\lim_{n\to a}(c\times f(n))=c\times \lim_{n\to a}f(n), where \ c \ is \ constant\right]$$

$$= \frac{1}{3} \times \infty, \left[\lim_{n \to \infty} n = \infty \right]$$
$$= \infty$$

Hence it satisfies:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty \ and \ it \ is \ in \ \omega(g(n)).$$

One can observe that ω can be helpful in finding a loose lower bound and should not be used as tight bound.

For example: $\frac{n^3}{3} \neq \omega(n^2)$.