Elasticity

Econ 50 | Lecture 3 | January 12, 2013

What is elasticity?

What is elasticity?

a measure of the responsiveness

of an endogenous variable

to a change in an exogenous variable.

What is elasticity not?

What is elasticity not?

ELASTICITY IS NOT SLOPE

ELISTICITY SLOPEITIS memegenerator.net

Comparative Statics

change in exogenous variable

change in endogenous variables

Comparative Statics: Examples

- An increase in price leads to a decrease in quantity demanded
- An increase in price leads to an increase in quantity supplied
- If X and Y are complements, an increase in the price of good X leads to a decrease in quantity demanded of good Y
- If X and Y are substitutes, an increase in the price of good X leads to an increase in quantity demanded of good Y

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} > 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} < 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

SUBSTITUTES

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} > 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} < 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

SUBSTITUTES

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} > 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

COMPLEMENTS

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} < 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

SUBSTITUTES

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} > 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

TNFFRTOR

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

COMPLEMENTS

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} < 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

SUBSTITUTES

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} > 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

COMPLEMENTS

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial P_Y} < 0 \quad \frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

INFERIOR

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} < 0$$

NORMAL

$$\frac{\partial Q_X^D(P_X, P_Y, I, \dots)}{\partial I} > 0$$

Elasticity

% change in some endogenous variable

% change in some exogenous variable

Price Elasticity of Demand

% change in quantity demanded

% change in price

Cross-Price Elasticity of Demand

% change in quantity demanded of X

% change in price of Y

Income Elasticity of Demand

% change in quantity demanded

% change in income

Price Elasticity of Supply

% change in quantity supplied

% change in price

Calculating Elasticities

- Midpoint method
- Point method
- Log-log method

Midpoint Method

$$\frac{\%\Delta Y}{\%\Delta X} = \frac{\frac{\Delta Y}{Y_M}}{\frac{\Delta X}{X_M}} = \frac{\frac{Y_1 - Y_0}{\frac{1}{2}(Y_0 + Y_1)}}{\frac{X_1 - X_0}{\frac{1}{2}(X_0 + X_1)}}$$

Point Method

$$\frac{\%\Delta Y}{\%\Delta X} = \frac{\frac{dY}{Y}}{\frac{dX}{X}} = \frac{dY}{dX} \times \frac{X}{Y}$$

Point Method

SLOPE

$$\frac{\%\Delta Y}{\%\Delta X} = \frac{\frac{dY}{Y}}{\frac{dX}{X}} = \frac{dY}{dX} \times \frac{X}{Y}$$

Log-Log Method

$$\frac{\%\Delta Y}{\%\Delta X} = \frac{d\ln Y}{d\ln X}$$

$$Q_x = aP_x^2 I^{\frac{3}{2}} w^{-\frac{1}{3}} N_C^{\frac{1}{2}} N_F^{\frac{1}{2}}$$

$Q_x = aP_x^2 I^{\frac{3}{2}} w^{-\frac{1}{3}} N_C^{\frac{1}{2}} N_F^{\frac{1}{2}}$

$$Q_x = aP_x^2 I^{\frac{3}{2}} w^{-\frac{1}{3}} N_C^{\frac{1}{2}} N_F^{\frac{1}{2}}$$

$$\ln Q_x = \ln a + 2\ln P_x + \frac{3}{2}\ln I - \frac{1}{3}\ln w + \frac{1}{2}\ln N_C + \frac{1}{2}\ln N_F$$

$$Q_x = aP_x^2 I^{\frac{3}{2}} w^{-\frac{1}{3}} N_C^{\frac{1}{2}} N_F^{\frac{1}{2}}$$

$$\ln Q_x = \ln a + 2\ln P_x + \frac{3}{2} \ln I (-\frac{1}{3}) \ln w + \frac{1}{2} \ln N_C + \frac{1}{2} \ln N_F$$

$$Q_x = aP_x^2 I^{\frac{3}{2}} w^{-\frac{1}{3}} N_C^{\frac{1}{2}} N_F^{\frac{1}{2}}$$

$$\ln Q_x = \ln a + 2 \ln P_x + \frac{3}{2} \ln I - \frac{1}{3} \ln w + \frac{1}{2} \ln N_C + \frac{1}{2} \ln N_F$$

$$\frac{\partial \ln Q_x}{\partial \ln P_x} = 2 \qquad \frac{\partial \ln Q_x}{\partial \ln w} = -\frac{1}{3}$$