進捗報告

2023/6/12 B4小島

バッファ回路

 M_1, M_2 のしきい電圧をそれぞれ V_{th1}, V_{th2} とする

前回の結果から $V_{th2}=0.42\,\mathrm{V}$ であった

prosecc: Rhom 0.18μm

V_{th1} の推定

$$\sqrt{I_1} = \sqrt{\frac{1}{2}\mu C_{ox}} \frac{W}{L} (v_{gs} - V_{th1})$$

$$\Rightarrow \sqrt{I_1} - v_{gs}$$
特性は直線になる

ソースの電位を0 Vから0.9 Vまで変化させたときのしきい電圧の変化を見る。

これには $v_{gs} > 0.7 V$ の範囲で最小 二乗法による回帰直線を求め、横 軸との切片をしきい電圧とした

V_{th1} の推定

しきい電圧はソース電圧に比例し、最小二乗法を用いると $V_{th1}(V_{ds})$ = $0.167781 \cdot V_{ds} + 0.424192 \, V_{th}$ と近似できた。

g_{m1} の計算

 v_{ds} を $0\sim0.9$ Vまで0.1 Vずつ変化させたときの $g_{m1}-v_{gs}$ 特性を調べた。

g_{m1} の計算

vds	А	В	intercept	vth
0.0	0.000244898	-0.000104933	0.428476345	0.418383464
0.1	0.000245287	-0.000109813	0.447691887	0.439197803
0.2	0.000245580	-0.000114449	0.466035508	0.458866898
0.3	0.000245797	-0.000118867	0.483598254	0.477466719
0.4	0.000245992	-0.000123120	0.500504081	0.495067898
0.5	0.000246218	-0.000127258	0.516850921	0.511731218
0.6	0.000246453	-0.000131276	0.532661400	0.527502230
0.7	0.000246760	-0.000135231	0.548026422	0.542417951
0.8	0.000247103	-0.000139105	0.562943388	0.556503743
0.9	0.000247540	-0.000142953	0.577494546	0.569797149
ave.	0.000246163			

$$g_{m1} = rac{\mu C_{ox}}{2} \cdot rac{W_1}{L_1} \cdot (v_{gs} - V_{th})$$
 $= K \cdot rac{W}{L} \cdot \left\{ v_{gs} - (0.168 \cdot v_{ds} - 0.424) \right\}$
 $pprox A \cdot v_{gs} + B$
 $\left(\therefore K \equiv rac{\mu C_{ox}}{2}, W_1 = L_1 = 1 \ \mu m
ight)$
 v_{gs} がしきい電圧より大きい範囲で線形近似を行った
これにより
 $g_{m1} pprox 246 imes 10^{-6} \cdot \left\{ v_{gs} - V_{th1}(V_{ds}) \right\}$

 $K \approx 246 \,\mu\text{S/V}$

v_{out} の計算

$$g_{m1} = 20 \text{ mS}$$

$$g_{m1} = 2 \sqrt{K \cdot \frac{W_1}{L_1}} \cdot i_1 = 20 \times 10^{-3}$$

$$K \cdot \frac{W_1}{L_1} = \frac{1}{i_1} \cdot 10 \times 10^{-6}$$

$$i_1 = K \cdot \frac{W_1}{L_1} \cdot \left\{ v_{gs} - V_{th1}(V_{ds}) \right\}^2 = i_2 + \frac{v_{out}}{50}$$
ここで、 $i_2 = 0$ とすると
$$\frac{1}{i_1} \cdot 10 \times 10^{-6} \cdot \left\{ v_{gs} - V_{th1}(V_{ds}) \right\}^2 = \frac{v_{out}}{50}$$

v_{out} の計算

$$\frac{1}{i_1} \cdot 10 \times 10^{-6} \cdot \left\{ v_{gs} - V_{th1}(V_{ds}) \right\}^2$$
 $= \frac{v_{out}}{50}$
これを i_1 について解くと
 $i_1 \approx \frac{(0.174 - 0.832 \cdot v_{out})^2}{2 \cdot v_{out} \times 10^3}$
これは左図のようになり、 $i_1 = 1$ mAのとき v_{out} を読むと
 $v_{out} \approx 0.185 \cdots, 0.234 \cdots V$
 $\approx 0.19, 0.23 \ V$
つまり、 $v_{out} = 0.23 \ V, i_1 = 1 \ mA$ のとき出力抵抗は $20 \ mS$ となる

W_1/L_1 の計算

$$\begin{split} V_{th1}(V_{ds}) &= 0.167781 \cdot V_{ds} + 0.424192 \, \text{V} \\ K &\approx 246 \, \mu\text{S/V} \\ i_1 &= 1 \times 10^{-3} = K \cdot \frac{W_1}{L_1} \cdot \left\{ v_{gs} - V_{th1}(1.8 - v_{out}) \right\}^2 \\ &= K \cdot \frac{W_1}{L_1} \cdot \left\{ 0.9 - v_{out} - (0.167781 \cdot v_{out} + 0.424192) \right\}^2 \\ &\approx \frac{W_1}{L_1} \cdot 1.111 \times 10^{-5} \\ \therefore \frac{W_1}{L_1} &= \frac{1 \times 10^{-3}}{1.111 \times 10^{-5}} = 90.009 \cdots \approx 90 \end{split}$$