A Prediction Model Project in Python: Summary

Bernardo Di Chiara

February 21st 2020

Table of Contents

- Overview
- Input Datasets
- Input Variables
- Data Preparation Steps
- Data Cleaning Steps
- Exploratory Data Analysis
- Selected Variables for Prediction Models
- Data Preparation
- Used Evaluation Metrics
- Exploratory Prediction Model
- Used Models
- Prediction
- Conclusions
- References

Overview

- Based on a <u>Kaggle</u> challenge by the Michigan Data Science Team and the Michigan Student Symposium for Interdisciplinary Statistical Sciences: Detroit Blight Ticket Compliance
- Blight violation fines are issued by the city to individuals who allow their properties to remain in a deteriorated condition.
- Many of these fines remain unpaid.
- Goal: predict when a given blight ticket will be paid on time
- The work has been done by using Python.

Input Datasets

- train.csv: the training set
 - 250306 entries, including 90426 entries will null value in the target variable (159880 useful entries)
 - 34 variables
 - each entry corresponds to a single blight ticket.
 - timestamp cutoff at the end of year 2011 to avoid data leakage
 - target variable: compliance
 - True if the ticket was paid early, on time, or within one month of the hearing date
 - False if the ticket was paid later than one month after the hearing date or not at all
 - Null if the violator was found not responsible
- test.csv: the test set
 - 61001 entries
 - 27 variables (no target variable)
- addresses.csv: mapping from ticket id to violation addresses
 - 311307 entries (sum of train and test data sets entries)
 - 121769 unique addresses
- latlons.csv: mapping from violation addresses to lat/lon coordinates
 - 121769 entries

Input Variables (1/3)

Variable name	Description	Presence in dataset	
ticket_id	unique identifier for blight tickets	train, test, addresses	
agency_name	Agency that issued the ticket	train, test	
inspector_name	name of the inspector that issued the ticket	train, test	
violator_name	name of the person/organization that the ticket was issued to		
<pre>violation_street_number, violation_street_name, violation_zip_code</pre>	address where the violation occurred	train, test	
<pre>mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country</pre>	mailing address of the violator	train, test	
ticket_issued_date	date and time the ticket was issue	train, test	
hearing_date	date and time the violator's hearing was scheduled	train, test	
<pre>violation_code, violation_description</pre>	type of violation	train, test	

Input Variables (2/3)

Variable name	Description	Presence in dataset
disposition	judgment and judgement type	train, test
fine_amount	violation fine amount, excluding fees	train, test
admin_fee	20 dollars fee assigned to responsible judgements	train, test
state_fee	10 dollars fee assigned to responsible judgments	train, test
late_fee	10% fee assigned to responsible judgments if the fine and fees imposed are not paid by the hearing date	train, test
discount_amount	discount applied, if any	train, test
clean_up_cost	clean-up or graffiti removal cost	train, test
judgment_amount	sum of all fines and fee	train, test
grafitti_status	flag for graffiti violations	train, test
payment_amount	amount paid, if any	train
payment_date	date payment was made, if it was received	train
payment_status	current payment status as of Feb 1 2017	train
balance_due	fines and fees still owed	train
collection_status	flag for payments in collections	train

Input Variables (3/3)

Variable name	Description	Presence in dataset
compliance	target variable	train
compliance_detail	more information on why each ticket was marked compliant or non-compliant	train
address	a combination of violation_street_number and violation_street_name	addresses, latlonss
lat	latitude corresponding to the violation address	lationss
lon	longitude corresponding to the violation address	lationss

• If the property owner complies before the hearing, the fine is withdrawn

Data Preparation Steps

- The address and the latlons data sets have been merged by using the address as a key and the result has been merged with both the train and the test datasets by using the ticket_id as a key.
- A new categorical variable (violator_cat) has been created to divide violators in 4 classes based on the amount of violations by using the violator_name variable as input.
 - 45.652 out of 119. 992 violators have had more than 1 accident
 - 1864 of them have had more that 10 accidents
 - 19 of them have had more that 100 accidents
- Other two categorical variables (late_fee and discount) have been created to indicate whether
 there has been a late fee and whether there has been a discount (since the late fee is always a
 fixed percentage of the fine amount and the discount, when applied, it is within a very narrow
 percentage range).
- Year and month have been extracted from the ticket_issued_date into two separate variables (year and month).

Data Cleansing Steps

• Three entries with wrong data in the ticket issued date have been eliminated from the train dataset.

```
1938-10-09 15:30:00
1963-03-17 10:00:00
1988-05-06 20:00:00
```

- The entries with finite value in the compliance (entries related to responsible violators) have been selected from the train dataset.
- The few entries with null values on the coordinates and in the violator category variable have been filled by using the mean for the numerical variables and the most frequent value for the categorical variable.
- It has been verified automatically that there were no miss-spelled addresses in the additional files.

Exploratory Data Analysis

Target value: Compliance

Distribution of values for the variable compliance in percentage

Exploratory Data Analysis Compliance details

Exploratory Data Analysis

Violator category (1/2)

Distribution of values for the variable violator_cat in percentage for different groups of violators

Exploratory Data Analysis

Violator category (2/2)

Percentage of compliant and non compliant responsible violators for each violator category

Compliant violators within the category

Non compliant violators within the category

Exploratory Data Analysis Agency name

Amount of tickets to responsible violators for each agency in percentage

Exploratory Data AnalysisDisposition

Distribution of values for the variable disposition in percentage for different groups of entries

Exploratory Data Analysis Fine amount

Distribution of values for the variable 'fine_amount'

Exploratory Data Analysis Late fee

Distribution of values for the variable late_fee in percentage for different groups of entries

Exploratory Data AnalysisDiscount

Distribution of values for the variable discount in percentage for different groups of entries

Exploratory Data AnalysisLocation

Bernardo Di Chiara

Exploratory Data Analysis Year

Percentage of tickets to responsible violators for each year

Percentage of compliant and non compliant responsible violators for each year

Exploratory Data AnalysisMonth

Percentage of tickets to responsible violators for each month

Percentage of compliant and non compliant responsible violators for each month

Selected Variables for Prediction Models

Variable name	Variable type	Details
ticket_id	numerical	used only as a key for alignment to the test dataset
agency_name	categorical (5 values)	
year	numerical	created feature
month	numerical	created feature
violator_cat	categorical (4 values)	created feature
lat	numerical	
lon	numerical	
disposition	categorical (13 values)	
fine_amount	numerical	
late_fee	categorical (2 values)	created feature
discount	categorical (2 values)	created feature
compliance	numerical	target value

Data Preparation

- The category names in the categorical variables have been aligned in the train and the test data sets.
- The categorical variables have been converted into indicator variables.
- Modifications have been done to the test dataset in order to align it with the modifications done to the training data set.
- A validation data set has been extracted from the train dataset to be used for model evaluation.
- The features have been normalized in a separate data set to be used with liner models.
- > A dataset with 32 features, containing sparse data

Used Evaluation Metrics

- Due to the presence of many unbalanced classes, accuracy was not a useful evaluation metrics.
- The AUC (area under the ROC curve) has been used.
- During parameter tuning, an overfitting coefficient has been defined in order to limit overfitting.
 - (AUC on train set AUC on validation set) / (AUC on validation set) * 100
- The overfitting coefficient has been kept below 1%.

Exploratory Prediction ModelDecision Tree

Feature importance for the most influential features

Used Models (1/2)

Model	Parameters Tuning	AUC on train set	AUC on validation set	Overfitting coefficient
Decision Tree	max_depth=6 min_samples_split=30 min_samples_leaf=15	0.8195	0.8144	0.63%
Logistic Regression	C=0.1 solver="liblinear"	0.7963	0.7913	0.64%
Linear Support Vector Machines	C=0.01	0.7977	0.7918	0.74
Random Forest	n_estimators=1000 max_depth=6 min_samples_split=24 min_samples_leaf=12	0.8210	0.8161	0.60
Gradient Boosted Decision Trees	n_estimators=1200 max_depth=5 min_samples_split=20 min_samples_leaf=10 learning_rate=0.0015	0.8287	0.8227	0.72%

Used Models (2/2)

2020-02-21 Bernardo Di Chiara A Prediction Model in Python Summary

Prediction

- The gradient boosted decision tree model has been applied to the test set.
- The probability that the blight ticket will be paid at latest within one month of the hearing date has been calculated.
- The resulting AUC on the test set has been 0.8221 (*).
 - ➤ The result is within the top 3 scores!

https://www.kaggle.com/c/detroit-blight-ticket-compliance/leaderboard

Detroit Blight Ticket Compliance

Help end blight in Detroit.
24 teams - 3 years ago

Overview Data Discussion Leaderboard Rules

Public Leaderboard Private Leaderboard

The private leaderboard is calculated with approximately 50% of the test data.

This competition has completed. This leaderboard reflects the final standings.

#	∆pub	Team Name	Notebook	Team Memi	pers	Score @
1	-	Jared Webb			8	0.83392
2	-	raskolnikov				0.82256
3	-	KS		9 9 2	9	0.82147

(*) obtained through a third party company

Conclusions

- An extensive data analysis has been performed after careful data preparation and cleansing.
- This has allowed to check extreme values and the consequent need for normalization, to help in the selection of the potential predictors (features) and to give hints about the prediction methods that would be most likely successful.
- This analysis has also helped to confirm that the selected features (like discount and late fee) would not introduce risks of data leakage.
- A Decision Tree model has been used as a preliminary model. Two linear classification models (Logistic Regression and Linear Support Vector Machines) as and two ensemble models (Random Forest and Gradient Boosted Decision Tree) have been fit as well.
- The models have been evaluated by using the AUC (area under the ROC curve) and the parameters have been fine tuned by keeping the AUC value on the train set less than 1% bigger than the AUC value on the validation set.
- The Gradient Boosted Decision Tree model has been selected.
- The result has been a AUC value of 0.8221 on the test set, not bad by considering that is would have been among the top 3 scores in the final competition!

References

- A_Prediction_Model_in_Python_Complete_Code
 - This file contains the complete code used to dump, prepare, clean, analyze and visualize data as well as the code used to fit and evaluate the prediction models and to make the prediction

https://github.com/BerniHacker/A_Prediction_Model_in_Python

Kaggle: Detroit Blight Ticket Compliance

https://www.kaggle.com/c/detroit-blight-ticket-compliance/overview