Capítulo 11

Propriedades semânticas da Lógica de Predicados

Propriedades Semânticas

Definição (propriedades semânticas básicas da Lógica de Predicados) Sejam

fórmulas da Lógica de Predicados.

As propriedades semânticas básicas da Lógica de Predicados são definidas a seguir.

+ H é válida

se, e somente se,

para toda interpretação I, I[H]= T .

No caso em que a análise da interpretação de H não requer a interpretação de quantificadores,

então H é tautologicamente válida.

- Definição (propriedades semânticas básicas da Lógica de Predicados)
 - # H é satisfatível

se, e somente se, existe pelo menos uma interpretação I, tal que I[H]= T .

Exemplo: Seja H = p(x,y), I é uma interpretação sobre os naturais N, tal que I[p] = <. Se I[x] = 5 e I[y] = 9. Podemos afirmar que H é satisfatível.

- Definição (propriedades semânticas básicas da Lógica de Predicados)
- H é contraditória
 se, e somente se,
 para toda interpretação I, I[H]= F.
- H implica semanticamente G
 se, e somente se,
 para toda interpretação I, se I[H]= T então I[G]= T .
- H equivale semanticamente a G
 se, e somente se,
 para toda interpretação I, I[H]= I[G].

- Definição (propriedades semânticas básicas da Lógica de Predicados)
- Uma interpretação I satisfaz H se I[H]= T .
- O conjunto

$$\beta = \{H_1, H_2, ..., H_n, ...\}$$

é satisfatível

se, e somente se,

existe uma interpretação I, tal que

$$I[H_1] = I[H_2] = ... = I[H_n] = ... = T.$$

Nesse caso, I satisfaz o conjunto de fórmulas, o que é indicado por $I[\beta] = T$.

Dado um conjunto de fórmulas vazio, então toda interpretação I satisfaz esse conjunto.

- Definição (propriedades semânticas básicas da Lógica de Predicados)
- O conjunto

$$\beta = \{H1,H2,...,Hn,...\},$$
 implica semanticamente uma fórmula H,

se para toda interpretação I;

se
$$I[\beta] = T$$
, então $I[H] = T$.

Notação.

Como na Lógica Proposicional, se H é uma consequência lógica semântica de um conjunto de fórmulas β, então tal fato é indicado por

Notação.

Para simplificar, muitas vezes é utilizado no livro da disciplina apenas o termo "implicação" no lugar de "implicação semântica", ou "implicação sintática".

É o contexto quem determina qual tipo de termo está sendo utilizado.

De forma análoga, o termo "equivalência" pode representar "equivalência semântica", ou "equivalência sintática".

Notação.

Se a implicação ou equivalência é uma implicação ou equivalência semântica da Lógica Proposicional ou de Predicados, tal fato também deve estar indicado implicitamente no contexto.

Além disso, a notação

$$\models H$$

também indica que H é tautologia ou é válida.

Satisfatibilidade de Fórmulas

Validade de fórmulas

Implicações e Equivalências entre Fórmulas

Proposição (implicação)

Dada uma fórmula H e x uma variável qualquer da Lógica de Predicados,

```
se
H é válida,
então
(∀x)H é válida.
```

Lema (interpretação estendida e variável ligada)

Seja H uma fórmula na qual a variável x não ocorre livre.

Dada uma interpretação I sobre um domínio U, então

$$\forall$$
 d \in U, $\langle x \leftarrow d \rangle$ I[H]= I[H]