

Ayudantía 12

Problema 1

Encuentre tres números positivos cuya suma sea 12 y la suma de sus cuadrados es la más pequeña posible.

Problema 2

Usted diseña un edificio en forma de paralelepípedo rectangular con tal de minimizar la perdida de calor. Las fachadas este y oeste pierden calor con una razón de $10 \text{ MJ/}m^2/\text{día}$, las fachadas norte y sur con una razón $8 \text{ MJ/}m^2/\text{día}$, el suelo a $1 \text{ MJ/}m^2/\text{día}$ y el techo a $5 \text{ MJ/}m^2/\text{día}$. Cada muralla debe ser de al menos 30m y la altura de al menos 4m. El volumen total debe ser exactamente $4000 \text{ } m^3$.

- Encuentre y grafique el dominio de pérdida de calor como una función del largo de los lados.
- Encuentre las dimensiones que minimizan la pérdida de calor.
- Evalúe a posibilidad de mejorar el diseño si se levanta el requerimiento sobre las murallas.

Problema 3

1) Encuentre el mínimo y el máximo en la función: f(x,y,z)=yz+xy sujeta a las restricciones xy=1 e $y^2+z^2=1$

Problema 4

Encuentre los puntos en el cono $z^2 = x^2 + y^2$ más cercanos al punto (4, 2, 0).

Problema 5^*

Sea $f:(-1,1)\times [-1,1]\to \mathbb{R}$ una función continua tal que

- f(x,-1) = f(x,1) = 1 para todo $x \in (-1,1)$.
- Existe una función continua $g:[-1,1]\to\mathbb{R}$ tal que $0\le g(y)\le 1$ y $\lim_{x\to -1}f(x,y)=\lim_{x\to 1}f(x,y)=g(y)$ para todo $y\in[-1,1].$
- f(0,0) = 0.

Determine si f tiene un máximo absoluto y/o un mínimo absoluto en $(-1,1) \times [-1,1]$.