Digital Electronics 2004 – Paper 2 Question 3 (SWM)

This question covers lectures:

- 1 binary
- 2 Boolean algebra and addition
- 3 $logic\ minimisation$
- 4 more on adders
- 5-flip-flops
- 6 sync state machines

Sketch Answer

First, let's start with a state transition table:

Inputs				Outputs		
A	D2	D1	D0	D2'	D1'	D0'
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	1	0	1
0	1	1	1	1	1	0
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	0	0	0

[4 marks]

Equation for D0 One can see from the state transition table that whatever the control input is, D0'= D0

[4 marks]

Equation for D1 This is a little more difficult. We could go back to basic adder designs, or simply determine the equation from a K-map vis:

From this K-map, it can be seen that $D1' = \overline{D0 \oplus D1 \oplus A}$

[4 marks]

Equation for D2 Similarly, for D2 we could just determine the equation from a K-map:

$$D2' = \overline{A} \quad \overline{D_0} \quad \overline{D_1} \quad \overline{D_2} \quad +$$

$$\overline{A} \quad D_0 \quad D_2 \quad +$$

$$\overline{D_0} \quad D_1 \quad D_2 \quad +$$

$$A \quad \overline{D_1} \quad D_2 \quad +$$

$$A \quad D_0 \quad D_1 \quad \overline{D_2} \quad +$$

$$A \quad D_0 \quad D_1 \quad \overline{D_2} \quad +$$

$$A \quad D_0 \quad D_1 \quad \overline{D_2} \quad +$$

4 marks for the circuit diagram.