Chapter 6 Inference for categorical data¹

Department of Mathematics & Statistics North Carolina A&T State University

 $^{^{1}\}mbox{These}$ notes use content from OpenIntro Statistics Slides by Mine Cetinkaya-Rundel.

Popular kids

In the dataset popular, students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them. A two-way table separating the students by grade and by choice of most important factor is shown below. Do these data provide evidence to suggest that goals vary by grade?

5 th 88 55 33		Grades	Popular	Sports
-+h	-	63	31	25
6^{th} 06 55 3	5^{th}	88	55	33
0 90 33 3,	6^{th}	96	55	32

Chi-square test of independence

► The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 ${\cal H}_A$: Grade and goals are dependent. Goals vary by grade.

Chi-square test of independence

► The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade. H_A : Grade and goals are dependent. Goals vary by grade.

▶ The test statistic is calculated as

$$\chi^2_{df} = \sum_{i=1}^k \frac{(O-E)^2}{E} \quad \text{ where } \quad df = (R-1) \times (C-1),$$

where k is the number of cells, R is the number of rows, and C is the number of columns.

Note: We calculate df differently for one-way and two-way tables.

Chi-square test of independence

► The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade. H_A : Grade and goals are dependent. Goals vary by grade.

The test statistic is calculated as

$$\chi^2_{df} = \sum_{i=1}^k \frac{(O-E)^2}{E} \qquad \text{where} \qquad df = (R-1) \times (C-1),$$

where k is the number of cells, R is the number of rows, and C is the number of columns.

Note: We calculate df differently for one-way and two-way tables.

The p-value is the area under the χ^2_{df} curve, above the calculated test statistic.

Expected counts in two-way tables

 $Expected\ Count = \tfrac{(row\ total)\times(column\ total)}{table\ total}$

Expected counts in two-way tables

 $Expected\ Count = \tfrac{(row\ total) \times (column\ total)}{table\ total}$

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5^{th}	88	55	33	176
6^{th}	96	55	32	183
Total	247	141	90	478

Expected counts in two-way tables

$$Expected\ Count = \tfrac{(row\ total) \times (column\ total)}{table\ total}$$

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5^{th}	88	55	33	176
6^{th}	96	55	32	183
Total	247	141	90	478

$$E_{row~1,col~1} = \frac{119 \times 247}{478} = 61$$

Expected counts in two-way tables

$$Expected\ Count = \frac{(row\ total) \times (column\ total)}{table\ total}$$

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5^{th}	88	55	33	176
6^{th}	96	55	32	183
Total	247	141	90	478

$$\begin{split} E_{row~1,col~1} &= \frac{119 \times 247}{478} = 61 \\ E_{row~1,col~2} &= \frac{119 \times 141}{478} = 35 \end{split}$$

What is the expected count for the highlighted cell?

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5^{th}	88	55	33	176
6^{th}	96	55	32	183
Total	247	141	90	478

- A) $\frac{176 \times 141}{478}$
- B) $\frac{119 \times 141}{478}$
- C) $\frac{176 \times 247}{478}$
- D) $\frac{176 \times 478}{478}$

What is the expected count for the highlighted cell?

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5^{th}	88	55	33	176
6^{th}	96	55	32	183
Total	247	141	90	478

A)
$$\frac{176 \times 141}{478}$$

$$\rightarrow$$
52

B)
$$\frac{119 \times 141}{478}$$

C)
$$\frac{176 \times 247}{478}$$

D)
$$\frac{176 \times 478}{478}$$

more than expected # of 5th graders have a goal of being popular

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed count.

	Grades	Popular	Sports	Total
4^{th}	63 <mark>61</mark>	31 35	25 <mark>23</mark>	119
5^{th}	88 <mark>91</mark>	55 <mark>52</mark>	33 <mark>33</mark>	176
6^{th}	96 <mark>95</mark>	55 <mark>54</mark>	32 <mark>34</mark>	183
Total	247	141	90	478

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed count.

	Grades	Popular	Sports	Total
4^{th}	63 <mark>61</mark>	31 35	25 <mark>23</mark>	119
5^{th}	88 <mark>91</mark>	55 <mark>52</mark>	33 <mark>33</mark>	176
6^{th}	96 <mark>95</mark>	55 <mark>54</mark>	32 <mark>34</mark>	183
Total	247	141	90	478

$$\chi^2 = \sum \frac{(63-61)^2}{61} + \frac{(31-35)^2}{35} + + \frac{(32-34)^2}{34} = 1.3121$$

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed count.

	Grades	Popular	Sports	Total
4^{th}	63 <mark>61</mark>	31 <mark>35</mark>	25 <mark>23</mark>	119
5^{th}	88 <mark>91</mark>	55 <mark>52</mark>	33 <mark>33</mark>	176
6^{th}	96 <mark>95</mark>	55 <mark>54</mark>	32 <mark>34</mark>	183
Total	247	141	90	478

$$\begin{array}{lll} \chi^2 & = & \displaystyle \sum \frac{(63-61)^2}{61} + \frac{(31-35)^2}{35} + \\ + & \displaystyle \frac{(32-34)^2}{34} = 1.3121 \\ df & = & \displaystyle (R-1) \times (C-1) = (3-1) \times (3-1) = 2 \times 2 = 4 \end{array}$$

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

$$\chi^2 = 1.3121$$
 $df = 4$

- A) More than 0.3
- B) Between 0.3 and 0.2
- C) Between 0.2 and 0.1
- D) Between 0.1 and 0.05
- E) Less than 0.001

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

$$\chi^2 = 1.3121$$
 $df = 4$

- A) **More than 0.3**
- B) Between 0.3 and 0.2
- C) Between 0.2 and 0.1
- D) Between 0.1 and 0.05
- E) Less than 0.001

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 H_A : Grade and goals are dependent. Goals vary by grade.

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 H_A : Grade and goals are dependent. Goals vary by grade.

Since p-value is high, we fail to reject H_0 . The data do not provide convincing evidence that grade and goals are dependent. It doesn't appear that goals vary by grade.