# L2 SECURITY

EN.600.444/644

Spring 2019

Dr. Seth James Nielson

#### OVERVIEW OF ETHERNET

- Inspired by AlohaNet (a wireless protocol!)
- Originally, a shared medium with collision detect
- Modern ethernet (e.g., Gig Ether) has no collisions
- Technically, the messages are called "frames"
  - Actually have a layer I and layer 2 component!
  - Also include "ethertype" which says what kind of data

# L2 COMMUNICATION

- Mac Addresses
- Broadcast support
- ARP map MAC to IP address

# ETHERNET TYPE II FRAME

802.3 Ethernet packet and frame structure

| Layer                        | Preamble | Start of frame delimiter | MAC<br>destination | MAC<br>source | 802.1Q<br>tag<br>(optional) | Ethertype<br>(Ethernet II)<br>or length<br>(IEEE 802.3) | Payload           | Frame check sequence (32-bit CRC) | Interpacket gap |
|------------------------------|----------|--------------------------|--------------------|---------------|-----------------------------|---------------------------------------------------------|-------------------|-----------------------------------|-----------------|
|                              | 7 octets | 1 octet                  | 6 octets           | 6 octets      | (4 octets)                  | 2 octets                                                | 46-1500<br>octets | 4 octets                          | 12 octets       |
| Layer 2<br>Ethernet<br>frame |          |                          | ← 64–1522 octets → |               |                             |                                                         |                   |                                   |                 |
| Layer 1<br>Ethernet          |          |                          |                    | 70            | 4500                        |                                                         |                   |                                   | 40              |

 $\leftarrow$  72–1530 octets  $\rightarrow$ 

packet & IPG

 $\leftarrow$  12 octets  $\rightarrow$ 

#### **PREAMBLE**



#### ETHERNET FRAME

# COMMON ETHERTYPE'S

#### EtherType values for some notable protocols $^{[8]}$

| EtherType | Protocol                                                                                                       |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0x0800    | Internet Protocol version 4 (IPv4)                                                                             |  |  |  |  |
| 0x0806    | Address Resolution Protocol (ARP)                                                                              |  |  |  |  |
| 0x0842    | Wake-on-LAN <sup>[9]</sup>                                                                                     |  |  |  |  |
| 0x22F3    | IETF TRILL Protocol                                                                                            |  |  |  |  |
| 0x22EA    | Stream Reservation Protocol                                                                                    |  |  |  |  |
| 0x6003    | DECnet Phase IV                                                                                                |  |  |  |  |
| 0x8035    | Reverse Address Resolution Protocol                                                                            |  |  |  |  |
| 0x809B    | AppleTalk (Ethertalk)                                                                                          |  |  |  |  |
| 0x80F3    | AppleTalk Address Resolution Protocol (AARP)                                                                   |  |  |  |  |
| 0x8100    | VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility <sup>[10]</sup> |  |  |  |  |

#### ADDRESS RESOLUTION PROTOCOL



#### L2 THREAT: ARP POISONING

- Address Resolution Protocol
- ARP request broadcast asks for IP address
- Node responds saying, "That's me!"
- Other nodes record the message in "ARP Cache"
- False response is called "poisoning"

#### **ATTACKS**

- Man-in-the-Middle (MITM)
  - Intercept communications meant for another principal
  - Screw up SDN
- DoS Change packets to mess with communications
  - Can also screw up SDN

#### **DEFENSES**

- Attacker must be connected to the local network
- Static ARP caches (small networks only)
- One-mac address per switch port
- MACsec
  - Complex key management problems
  - Does not stop a "legitimate" user from sending bad ARPs
  - Does make it auditable, however.

#### PORT STEALING

- Flood switches with ARP packets to change port mapping
- Ethernet, remember ,no longer does share media
- Instead, ports map to MAC addresses
- Attack:
  - Convince the switch that your computer owns target's port
  - After data is received, allow victim to take back port

#### **VLAN'S**

- VLAN Virtual LAN
- Typically uses a special TAG in the Ethernet frame
- May be on one or more physical LAN segments
- Creates a broadcast domain
- Traffic cannot move from one VLAN to another without routing

#### **VLAN SECURITY**

- Can reduce ARP attacks because ARP traffic is bounded
- However, has its own weaknesses and attacks
  - Abuse Dynamic Trunking Protocol to be part of all VLAN's
  - VLAN hopping using double tagging





#### **VLAN SECURITY**

- Don't use VLAN I (Native)
- Dedicated VLAN ID per port,
- Disable DTP on "user facing" ports
- Disable unused ports, put them in unused VLAN

# **DHCP**

- Request an IP address dynamically
- Sent over L2, of course, because no IP address yet

### **DHCP ATTACKS**

- Gobbler: Request ALL DHCP ADDRESSES!
- MITM: Pretend to be DHCP server
  - Give false gateway, get control of routes

### GENERAL CONCERNS FOR L2

- Who owns L2 security?
- Physical security of ports is often non-existant

#### LAYER 2 FIREWALL

- Can insert a firewall WITHOUT an IP address
- Must be used at a bridge point in the network
  - Sometimes this is done where a VPN connects
  - But can be used between any partition
- Firewall still inspects all the traffic (up to L7)
- Cannot be "targeted" (or even seen!) by attackers

#### MACSEC FRAME



#### MACSEC FRAME DETAILS

- EtherType 0x88E5
- TCI TAG control info, such as version number, features
- AN Association Number, identifies security association
- SL Short Length (if length is less than 48)
- Packet Number Used for IV/prevent replay
- SCI Secure Channel Identifier for optional station ID

#### MACSEC ADVANTAGES

- Data decrypted at each hop
- Permits examination of data for security scanning

#### MACSEC KEY AGREEMENT

- Preshared Keys
- The master session key which is a product of a successful Extensible Authentication Protocol (EAP) authentication
- Key distributed from an MKA key server

#### MKA KEYS

- MACSec Key Agreement Protocol (MKA) Discovery, Keys
- Connectivity Association Key (CAK) Master key (shared)
  - Pre-shared
  - Or EAP
- Connectivity Associations (CA) CA if share same CAK
- Secure Association Key (SAK) Session Key
- Key Server Elected peer that distributes SAK's

FAPAIITH
Figure 5. High-Level IEEE 802.1X and MACsec Sequence

