5. Sensores de nivel y proximidad

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA. Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.

Contenidos

- Ultrasonidos
- Sensor resistivo
- Sensor óptico
- Sensor inductivo
- Sensor capacitivo
- 6 Reed switch (interruptor de lengüeta)
- Efecto Hall

- Ultrasonido: cuando frec. > frec. audible oído humano ($\approx 20KHz$).
- Basada en efecto Doppler, pues onda es atenuada por objeto a medir.
 - Y es la medición de esa atenuación (por receptor) la clave del sensor.
- El núcleo del sensor es un material piezoeléctrico.
 - Recordemos, piezoelectricidad: V_{out} debido a F_{in} o F_{out} debido a V_{in} .
- Onda us. generada por deformación del material, que es excitado (V_{in}) .
- Funcionamiento: emisión cíclica de onda de ↑↑ frec. y ↓↓ duración.
 - Onda se propaga por medio hasta ser reflejada en objeto y volver eco.
 - Circuito acondiciona/ determina periodo entre emisión y recepción:

$$d = \frac{1}{2}v_s t \tag{1}$$

donde:

d: distancia del emisor-receptor al objeto [m]

 v_{ε} : velocidad del sonido

t : tiempo transcurrido [s]

- E. Doppler: cambio aparente de frec. onda al rebotar en objeto móvil.
- ullet El cambio de frec. es \propto vel. relativa del emisor reflector:

$$\Delta f = f_{\rm e} - f_{\rm r} + 2f_{\rm e} \frac{v}{v_{\rm s}} cos\theta \tag{2}$$

f_e : frecuencia emitida

 f_r : frecuencia recibida

heta : ángulo entre velocidad y dirección de propagación

v_s : velocidad del sonido

v : velocidad del objeto o fluido

 Δf : diferencia de frecuencias

• Respecto al tiempo que tarda desde emisor hasta llegar a receptor:

$$t = \frac{(d/\text{sen}\theta)}{v_s + v\cos\theta} \tag{3}$$

- Reflexión: similar a sensor de presencia convencional (ópt., magnét.).
- Ventana: tiene cambio de estado cuando objeto dentro de ventana.
- Barrera bidirec.: como anterior, y requiere objeto reflector en ventana.
 - Útil para objetos de difícil detección; e.g. superficies irregulares.
- Supresión 1^{er} plano: como ventana pero evita esquinas indeseables.
 - E.g. líquido en botella, pues medición afectada por boca de botella.
- Medidor dist.: se diseña ventana cuyos límites corresponden a V o I...
 - ...medido en receptor. Esta salida es, en general, analógica.
- Det. defectos: emisor-receptor enfrentados, detectar defectos objetos.
 - Deben ser finos, no aislantes ni absorbentes: hojas, láminas, cartones.

- Uso como transductor entre cambio resist. y nivel llenado líquido.
 - En Tema 3 lo vimos para medición de pos. angular: potenciómetro.

- Ahora, elem. móvil es un flotador situado en contenedor.
 - Se suele usar pot. rotacional, aunque también se podría con lineal.
 - Al ↑ nivel en contenedor ⇒ cambio de resistencia.
 - Si elem. móvil se mueve en sentido $+ \implies R_{1-2} \downarrow, R_{2-3} \uparrow$.
 - Si elem. móvil se mueve en sentido $\implies R_{1-2} \uparrow, R_{2-3} \downarrow$.
 - ullet Para saber en qué punto está el elem. móvil, se usa un divisor de V:

$$V_{out} = \frac{R_1}{R_1 + R_2} V_T (4)$$

- Para uso como medidor prox. se suele emplear modo reflexión directa.
 - Intensidad señal en receptor depende de proximidad de objeto a emisor.
 - Recordemos las configuraciones y aplicaciones que vimos en Tema 4.
- Lo más habitual es configurar el fototransistor en modo activo.
 - Medir cambio de V según intensidad luz recibida por elem. fotosensible.
 - En este modo se debe cumplir la siguiente condición:

$$V_{CC} > R_L \cdot I_C \tag{5}$$

donde:

 R_L : resistencia de carga I_C : corriente del colector

 V_{CC} : voltaje de alimentación

- Ppio.: la inductancia de una bobina cambia en presencia de conductor.
- La bobina está colocada como parte de un circuito de puente.
- Sensor autoinducido, pues conductor cambia L equiv. de ese circuito.
- Además de bobina+núcleo, sensor requiere de estos componentes:
 - Circ. oscilador: induce campo magnét. emitido por sensor ($I_{Faucault}$, T.1).
 - ullet Circ. detector: percibe cambio amplitud de ese campo o señal acond.
 - ullet Circ. acondiciona/: genera salida sensor = cambio estado bajooalto.
- ullet Vtja.: no requieren contacto con objeto a detectar $\Longrightarrow \downarrow$ desgaste.
- Dvtja.: solo sensitivos a conductores, y dist. det. según conductor.

- = sensores US, detecta casi cualquier material (conductor o no).
- Usado como sensor nivel y proxim., generan un campo electrostático.
 - C. electrost.: influencia de cargas sobre el espacio circundante.
 - VS. sensores inductivos de proxim. (que generan campo electromag.).
 - Depende direcc. propagación y afecta a partículas cargadas eléctrica/.
 - Formado por dos electrodos dispuestos como discos concéntricos.
 - Si objeto aproxima, altera campo electrost. y capacitancia circuito.
 - ullet Cambio capacit. \Longrightarrow cambio estado \Longrightarrow activa circuito oscilador.
 - ullet Osc. dispara circ. activador \Longrightarrow salida: cambio estado bajo \to alto.

- Alteración campo electrost. diferente objeto conductor o dieléctrico¹.
 - ¹ ↓ conduct. (aislante) y forma dipolos eléctricos bajo campo eléctrico.
 - Todo material dieléctrico es aislante, pero no al revés.
 - Capacitancia \propto cte. dieléctrica \implies \uparrow cte. dieléc. \implies \uparrow detección.
 - ullet Cte. dieléc. líquidos \ggg sólidos \Longrightarrow Uso: nivel líquido en botes.
 - Dvtjas.: + costosos que inductivos y distancia detección que ópticos.

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d} \tag{6}$$

donde:

C : capacitancia [F]

 ε_0 : permitividad relativa del vacío $[\frac{F}{m}]$

 ε_r : permitividad relativa del medio A: área de solape de los electrodos $[m^2]$

D: distancia entre los electrodos [m]

- ullet + área de solape y + próximos unos con otros $\Longrightarrow \uparrow$ capacitancia.
- Si placa conductora como uno de los electrodos se forma capacitor...
 - ...parásito (C_0) entre electrodo y ambiente (aire es el dieléctrico).
- Al acercar el otro conductor, se forma un capacitor llamado C_T .
 - E.g. touch: capacitores conectados en paralelo $\implies \uparrow$ capacitancia.

- Diferencia con convencionales: input = capacitancia cuerpo humano.
- Muy usados en pantallas táctiles, smartphones, ordenadores, tablets.
- Capa de aislamiento eléctrico (cristal) + recubrimiento conductor.
 - Placa conductora: sirve como un electrodo del capacitor o botón táctil.
 - General/ de ITO (Indium Tin-doped Oxide, óxido de estaño indio).
- ullet Cuando conductor (dedo humano) se acerca, se forma capacitor $C_{\mathcal{T}}$.
- Según res. en cada pos. de placa, se tiene un valor de capacitancia.
 - Al tocar una zona $\implies \uparrow$ su capacitancia \implies conoce posición (x,y).
 - ullet Considerando panel HD (640 imes 480), con 2 capas ITO formando matriz.
 - \uparrow calidad \implies mejor respuesta. Incluso hay *multitouch*.

- Transductor entre un campo magnético y un contacto mecánico.
- Incluye 2/3 láminas ferromagnét. atraídas al inducir campo magnét.
 - Según dirección de campo, el contacto mecánico se abre o cierra.
 - Se cierra si eje polo magnét. ∥ eje switch. Se abre si están ⊥.
 - Si es de 3 terminales, tiene 2 contactos: uno NA y otro NC.
- Láminas son de Ni-Fe y están en gas inerte (N), protegidas del medio.
- Vtjas.: \downarrow coste y funciona/ sencillo (vida \approx billones conmutaciones).
- Dvtjas.: $\uparrow T$. o conmutación bajo \rightarrow alto \implies malo tareas \uparrow frec.

- Se requiere campo magnét. (imán permanente) y placa conductora.
- Ppio.: convertir campo magnét. en voltaje (voltaje Hall).
 - Corriente I en presencia de campo magnét. B, surge F. transversal...
 - ullet ...que busca equilibrar el efecto de ese campo, produciendo tensión $V_H.$
- ullet Formado por amplif. V y cir. comparador, emite señal cambio estado.
 - ullet Cuando obj. se acerca $\Longrightarrow V_H \longrightarrow$ se amplifica \longrightarrow bajo \to alto.
 - ullet Uso como sensor prox.: acoplar imán a objeto; si se acerca $\implies V_H.$
 - Si obj. ferromagnét., se usa imán cerca; campo debilita si obj. acerca.
- Usos: sensores en automóviles, alarmas puertas/ventanas, encoders.

5. Sensores de nivel y proximidad

Julio Vega

julio.vega@urjc.es

Sensores y actuadores