Interfaces de E/S

Interfaces de E/S

Resumo

- Nível de abstração: HW
- Portas lógicas CMOS
- Níveis de tensão TTL, CMOS
- Diagrama temporal
- Dreno/Coletor aberto
- Consumo de energia CMOS
- Fan-in & Fan-out

Complementary MOS

V _{in}	V _{out}
0	1 0

$V_{\rm in}$	V _{out}
0	1
1	0

Capacitância de Carga (entrada de outra porta CMOS)

Portas lógicas CMOS

George Boole, (1815-1864)

Portas lógicas CMOS – ???

Portas lógicas CMOS – AND

Portas lógicas CMOS

Conceito de ligação complementar dos MOSFETs

ANTENÇÃO

Conceito de ligação complementar dos MOSFETs

Exemplo:

ANTENÇÃO

Conceito de ligação complementar dos MOSFETs

Exemplo:

 V_{DD} M_4 M_4 M_2 M_2

Curto-circuito!

NÃO funciona como uma porta lógica!

Portas lógicas CMOS – ???

Dica!!

AND =>

Portas lógicas CMOS – NAND

ab	У
0 0	1
01	1
10	1
11	0

Portas lógicas CMOS – ???

Portas lógicas CMOS – OR

Portas lógicas CMOS – NOR

ab	У
0.0	1
0 1	0
10	0
11	0

Buffer Tri-state

Buffer Tri-state

Saída Dreno Aberto – Open Drain

Saída Dreno Aberto – *Open Drain*

Resistor Pull-up

Saída Dreno Aberto – Open Drain

Saída Dreno Aberto – Open Drain "wired NOR"

Saída Dreno Aberto – Open Drain "wired NOR"

- Wired NOR
- Wired AND
- Múltiplas sinalizações (por ex.: interrupções ver coletor aberto)

Existe também o Coletor Aberto

Ex.: Coletor Aberto – Habilitar SSD

O que exibem os displays?

O que exibem os displays?

Ex.: Coletor Aberto – Conexão a linha compartilhada

Ex.: Coletor Aberto – Conexão a linha compartilhada

Ex.: Coletor Aberto – linhas de interrupção compartilhadas

Níveis de tensão x Níveis lógico

Níveis de tensão x Níveis lógico - TTL

Níveis de tensão x Níveis lógico - CMOS

Diagramas temporais

Diagramas temporais

Diagramas temporais

Consumo de Energia

Consumo de energia

$$P_{\rm T} = P_{\rm static} + P_{\rm dynamic}$$

$$P_{\rm T} = P_{\rm static} + P_{\rm dynamic}$$

1 – Idle

$$P_{short} = \frac{1}{T} \int_{0}^{T} V_{DD} \times I_{short}$$

2 - (Des)ligando

1 – Idle

2 – (Des)ligando

3 – Carga do capacitor

1 – Idle

2 – (Des)ligando

3 – Carga do capacitor

$$P_{\text{dynamic}} = P_{\text{short}} + P_{\text{cap}}$$

1 – Idle

2 – (Des)ligando 3 – Carga do capacitor

$$P_{\text{cap}} = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt = \frac{1}{T} \int_{0}^{T} V_{\text{DD}}i(t)dt = \frac{V_{\text{DD}}}{T} \int_{0}^{T} i(t)dt = \frac{V_{\text{DD}}}{T} \cdot C_{L}V_{\text{DD}} = C_{L}V_{\text{DD}}^{2}f$$

1 – Idle

2 – (Des)ligando

3 – Carga do capacitor 4 – Descarga

$$P_{\text{cap}} = 0$$

1 – Idle

2 – (Des)ligando

3 – Carga do capacitor 4 – Descarga

$$P_{\text{dynamic}} = P_{\text{short}} + P_{\text{cap}}$$

1 – Idle

2 – (Des)ligando

3 – Carga do capacitor 4 – Descarga

$$P_{\text{dynamic}} = C_{\text{Leq}} V_{\text{DD}}^2 f$$

Fan-in & Fan-out

Fan-in

Número de entradas de uma porta lógica.

Fan-in

Número de entradas de uma porta lógica.

Fan-out

Número de entradas que uma saída de porta lógica suporta.

Fan-out

Número de entradas que uma saída de porta lógica suporta.

Fan-out = 10

IMPORTANTE: Proteção de E/S !!!

