Examen - 24 de julio de 2014.

Ejercicio 1.

- a. Ver teórico.
- **b.** Por letra mcd(a, b) = mcd(4, a) por lo que, mcd(a, b) = 1, 2 o 4. Veamos caso por caso.
 - Si mcd(a, b) = 1: se tiene que cumplir que $ab = 675 = 3^35^2$ y como son coprimos las posibilidades son:
 - a = 1, b = 675, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 25, b = 27, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 27, b = 25, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 675, b = 1, que cumple las hipótesis.
 - Si mcd(a, b) = 2: se cumple que $ab = 4 \times 675 = 2700 = 2^23^35^2$ y las posibilidades son:
 - a = 2, b = 1350, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 50, b = 54, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 54, b = 50, que cumple las hipótesis.
 - a = 1350, b = 2, que cumple las hipótesis.
 - Si mcd(a,b) = 4: se cumple que $ab = 16 \times 675 = 10800 = 2^43^35^2$ y las posibilidades son:
 - a = 4, b = 2700, que cumple las hipótesis.
 - a = 100, b = 108, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 108, b = 100, que no cumple $a \equiv 4 \pmod{b}$.
 - a = 2700, b = 4, que cumple las hipótesis.

En conclusión las soluciones son a=675, b=1, a=1350, b=2, a=4, b=2700, a=2700, b=4 y a=54, b=50.

Ejercicio 2.

a. La solución módulo $mcm(6, 11, 13) = 6 \cdot 11 \cdot 13 = 858$ es

$$x = 4 \times (11 \cdot 13)^{-1} \pmod{6} \times (11 \cdot 13) + 0 \times (6 \cdot 13)^{-1} \pmod{11} \times (6 \cdot 13)$$
$$+1 \times (6 \cdot 11)^{-1} \pmod{13} \times (6 \cdot 11)$$
$$= 4 \times (11 \cdot 13)^{-1} \pmod{6} \times (11 \cdot 13) + 1 \times (6 \cdot 11)^{-1} \pmod{13} \times (6 \cdot 11).$$

Hallemos los inversos involucrados,

$$(11 \cdot 13)^{-1} \pmod{6} \equiv (-1)^{-1} \pmod{6} \equiv 5 \pmod{6},$$

$$(6 \cdot 11)^{-1} \pmod{13} \equiv 1^{-1} \pmod{13} \equiv 1 \pmod{13}.$$

Por lo que $x = 2926 \equiv 352 \pmod{858}$.

b. Por el teorema chino del resto $x \equiv 22^{300} \pmod{4290}$ si y solo si

$$\left\{ \begin{array}{ll} x \equiv 22^{300} & (\text{m\'od } 5) \\ x \equiv 22^{300} & (\text{m\'od } 6) \\ x \equiv 22^{300} & (\text{m\'od } 11) \\ x \equiv 22^{300} & (\text{m\'od } 13) \end{array} \right. \text{ si y solo si } \left\{ \begin{array}{ll} x \equiv 2^0 & (\text{m\'od } 5) \\ x \equiv 4^{300} & (\text{m\'od } 6) \\ x \equiv 0^{300} & (\text{m\'od } 11) \\ x \equiv 9^0 & (\text{m\'od } 13) \end{array} \right. \text{ si y solo si } \left\{ \begin{array}{ll} x \equiv 1 & (\text{m\'od } 5) \\ x \equiv 4 & (\text{m\'od } 6) \\ x \equiv 0 & (\text{m\'od } 11) \\ x \equiv 1 & (\text{m\'od } 13) \end{array} \right.$$

y utilizando la parte anterior, el sistema es equivalente a

$$\begin{cases} x \equiv 1 \pmod{5} \\ x \equiv 352 \pmod{858} \end{cases}$$

Como $2 \times 858 - 343 \times 5 = 1$ entonces $x \equiv 352 \times (-343) \times 5 + 1 \times 2 \times 858 \pmod{4290} \equiv 2926 \pmod{4290}$

Ejercicio 3.

- a. Ver teórico.
- b. Ver teórico.
- c. Sabemos que $D_3 = \{id, s, sr, sr^2, r, r^2\}$ y $r^3 = id$, $s^2 = id$ y $rs = sr^2$. Por el teorema de Lagrange, sabemos que si H es un subgrupo de D_3 tiene que tener orden 1, 2, 3 o 6 ya que $|D_3| = 6$. Si un subgrupo tiene orden primo tiene que ser cíclico, por lo que los subgrupos de D_3 tienen que ser los generados por elementos del mismo y D_3 . Veamos cuales son los subgrupos:
 - {id}.

 - $(sr)^2 = srsr = ssr^2r = s^2r^3 = id$, por lo que $\langle sr \rangle = \{id, sr\}$.
 - $(sr^2)^2 = sr^2sr^2 = rssr^2 = r^3 = id$, por lo que $(sr^2) = \{id, sr^2\}$.
 - $\langle r \rangle = \{ \mathrm{id}, r, r^2 \}.$
 - $\blacksquare D_3.$
- d. i) Como p es un primo impar tenemos que $\operatorname{mcd}(2,p)=1$ y por lo tanto $\varphi(2p)=\varphi(p)$. Además, nuevamente como $\operatorname{mcd}(2,p)=1$ podemos utilizar el teo. chino del resto y tenemos que $y^a\equiv 1$ (mód 2p) si y sólo si

$$\left\{ \begin{array}{ll} y^a \equiv 1 \pmod 2 \\ y^a \equiv 1 \pmod p \end{array} \right.$$

Por lo tanto, si x es impar, tenemos que x^a es impar y por lo tanto $x^a \equiv 1 \pmod{2}$. Entonces, si x es impar tenemos que $x^a \equiv 1 \pmod{2p}$ si y sólo si $x^a \equiv 1 \pmod{p}$. Y entonces $x^a \not\equiv 1 \pmod{p}$ si y sólo si $x^a \not\equiv 1 \pmod{p}$.

Por otro lado, si x es impar y coprimo con p tenemos que x es raíz primitiva módulo 2p si y sólo si $x^a \not\equiv 1 \pmod{2p}$ para todo a divisor de $\varphi(2p) = \varphi(p)$, y por lo visto recién, ésto sucede si y sólo si $x^a \not\equiv 1 \pmod{p}$ para todo a divisor de $\varphi(p)$; es decir, si y sólo si x es raíz primitiva módulo p.

ii) Como 11 es impar, por la pate anterior, alcanza ver que es raíz primitiva módulo 41 ya que $82 = 2 \cdot 41$. Veamos eso: hay que probar que $11^{\frac{\varphi(41)}{p}} \not\equiv 1 \pmod{41}$ para p = 2, 5 ya que $\varphi(41) = 40 = 2^35$. Usando exponenciación rápida:

$$\begin{array}{c|cc} n & 11^{2^n} \pmod{41} \\ \hline 0 & 11 \\ 1 & 121 \equiv -2 \\ 2 & 4 \\ 3 & 16 \\ 4 & 256 \equiv 10 \\ \end{array}$$

Ahora $\frac{\varphi(41)}{2} = 2^2 = 20 = 2^3 + 2^1$ y $\frac{\varphi(41)}{5} = 8 = 2^3$, por lo que $11^{\frac{\varphi(41)}{2}} \equiv 10 \cdot (-2)$ (mód 41) $\equiv 21$ (mód 41), y $11^{\frac{\varphi(41)}{5}} \equiv 16$ (mód 41).

iii) Si $f: U(82) \to D_3$ homomorfismo de grupos y $g \in U(82)$ entonces $g = 11^n$ por lo que $f(g) = f(11)^n$, y alcanza con dar el valor de $f(11) \in D_3$ para describir f.

Por las partes anteriores |Im(f)| divide $\text{mcd}(|U(82)|, |D_3|) = \text{mcd}(40, 6) = 2$, y |Im(f)| = 1 o 2. Vemos entonces que o(f(11)) = 1 o 2, y $f(11) = \text{id}, s, sr, sr^2$.

Ejercicio 4. Dados n = 209 y e = 17:

a. Para cifrar x debemos calcular x^{17} (mód 209), utilizamos exponenciación rápida:

n	$5^{2^n} \pmod{209}$
0	5
1	25
$\frac{2}{3}$	$625 \equiv -2$
3	4
4	16

Como
$$17 = 2^4 + 2^0$$
 entonces $5^{17} \equiv 5 \cdot 16 \pmod{209} \equiv 80 \pmod{209}$.

- **b.** Descomponemos n, $209 = 11 \cdot 19 \text{ y } \varphi(n) = 10 \cdot 18 = 180.$
- c. Para encontrar la función de descifrado debemos hallar d el inverso de 17 módulo 180. Utilizando el algoritmo de Euclides extendido vemos que d=53 y la funcion de descifrado es $D(y)=y^{53}\pmod{209}$. Calculamos D(10) usando exponenciación rápida:

$$\begin{array}{c|cc} n & 10^{2^n} \pmod{209} \\ \hline 0 & 10 \\ 1 & 100 \\ 2 & 10000 \equiv -32 \\ 3 & 1024 \equiv -21 \\ 4 & 23 \\ 5 & 111 \\ \end{array}$$

Ahora
$$53 = 2^5 + 2^4 + 2^2 + 2^0$$
 y $10^{53} \equiv 111 \cdot 23 \cdot (-32) \cdot 10 \pmod{209} \equiv 21 \pmod{209}$.

Hay otras formas de resolver esta parte, por ejemplo utilizando el teorema chino del resto. Tenemos que $x\equiv 10^{53}\pmod{209}$ si y sólo si

$$\begin{cases} x \equiv 10^{53} & (\text{m\'od } 11) \equiv (-1)^{53} \text{ (m\'od } 11) \equiv -1 \text{ (m\'od } 11) \\ x \equiv 10^{53} & (\text{m\'od } 19) \equiv 10^{3 \times 18 - 1} \text{ (m\'od } 19) \equiv 10^{-1} \text{ (m\'od } 19) \equiv 2 \text{ (m\'od } 19) \end{cases}$$

Y resolviendo el sistema anterior resulta $x \equiv 21 \pmod{209}$.