Risk Analysis of Stochastic Processes using Polynomial Optimization

Jared Miller ^{1, 3}, Matteo Tacchi ², Mario Sznaier ³, Ashkan Jasour ⁴

¹ETH Zürich, ²GIPSA-lab (CNRS & Univ. Grenoble-Alpes), ³Northeastern University, ⁴Jet Propulsion Laboratory

Stochastic Processes

Time-t-indexed prob. dists. x(t)

Uniquely described by generator \mathcal{L}

E.g., wind when flying, thermal noise in circuits, molecular interactions

Expected Shortfall (ES)

ES: Average value above ϵ -quantile

Given state function p(x) (e.g., height)

Want to find maximal ES of p(x(t)) along $\mathcal L$ trajectories (with $x(0) \sim \mu_0$)

Coherent risk measure, tail-sensitive

Occupation Measures

Borel measure $\mu(A,B)$ given dynamics, distribution of initial conditions

Average time trajectories spend in each time-space set $A \times B \in [0,T] \times X$

Chance-Peak Convex Linear Programs (LPs)

Primal-dual infinite-dimensional LPs: $P^* = p_c^* = d_c^*$ (compactness and regularity)

Occ. meas. μ , terminal μ_{τ} , ES $\psi, \hat{\psi}$

$$p_c^* = \sup \operatorname{mean}(\psi)$$
 (1a)

$$\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger} \mu \tag{1b}$$

$$\langle 1, \psi \rangle = 1 \tag{1c}$$

$$\epsilon \psi + \hat{\psi} = p_{\#}\mu_{\tau} \tag{1d}$$

 $\mu, \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X)$ $\psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})$

 \mathcal{L} -Martingale law (1b), ES (1c)-(1d)

Auxiliary func. v(t,x), map w, scalar u

$$d_c^* = \inf \quad u + \langle v(0, \bullet), \mu_0 \rangle \tag{2a}$$

$$\mathcal{L}v \le 0$$
 (2b)

$$v \ge w \circ p \tag{2c}$$

$$u + \epsilon w > \mathrm{id}_{\mathbb{R}} \tag{2d}$$

$$w \ge 0 \tag{2e}$$

$$u \in \mathbb{R}, v \in \text{dom}(\mathcal{L}), w \in C(\mathbb{R})$$

 $\mathbb{E}[v(t)]$ falls (2b), v sits above ES (2c)-(2e)

Complexity

Sum-of-Squares (SOS) truncations to (2), hierarchy of Semidefinite Programs

Degree $k\in\mathbb{N}$, and $\Delta=\lfloor k/\deg p(x)\rfloor$ Restrict to $v\in\mathbb{R}[t,x]_{\leq 2k},\ w\in\mathbb{R}[z]_{\leq 2\Delta}$

Dynamics degree D:

$$\deg x^{\alpha} t^{\beta} \le 2k \implies \deg \mathcal{L} x^{\alpha} t^{\beta} \le 2D$$

Largest PSD Matrix constraints $\binom{1+n+D}{D}$

Degree-k SOS-truncations converge from above to P^* as $k \to \infty$

Numerical Examples

Stochastic processes with polynomial dynamics: \mathcal{L} sends $\mathbb{R}[t,x]$ to $\mathbb{R}[t,x]$

Max Mean \leq Max ES (gray/dotted: ours) \leq Max concentration-bound (previous)

All SOS truncations are bounds computed at degree k=6.

Certifiable analysis of stochastic trajectory behavior

Conclusion

Formed convex LPs to bound ES of stochastic processes

Polynomial Optimization (discretization) will converge to supremal ES

Technique Extensions:

- Distance Estimation
- Maximin Objectives
- Stochastic Hybrid Systems
- Non-Markovian processes

arxiv:2303.16064