STATS 406 F15: Lab 05

1 More on rejection sampling

 \bullet $\bf Recap: (What is rejection sampling?)$

Goal: sample from PDF f(x).

Method: use g that satisfies

$$f(x) \le Mg(x)$$

for all x, where:

- -g is a distribution we know how to sample from.
- *M* is a proper constant.

Sample X from PDF g(x), and accept with probability f(X)/(Mg(X)).

- Remarks:
 - We only need to know f up to a constant factor. (Theoretical proof omitted.) This is helpful when the normalizing constant for f(x) is expensive to compute. Examples:

$$f_1(x) \propto \frac{1}{(1+|x|^{\alpha})^{\beta}}$$
, for $\alpha\beta > 1$
 $f_2(x) \propto e^{-x^2} \cdot \mathbbm{1}[x>C]$, for $C=\text{constant}$
 $f_3(x) \propto \Phi(x)$, where $\Phi=\text{CDF}(N(0,1))$ and $x\leq 0$

- Meaningfulness: rejection sampling enables sampling from many "peculiar" distributions.
- Another scenario where rejection sampling is meaningful.

Example: (Truncated standard normal distribution)

$$f(x) \propto e^{-\frac{x^2}{2}} \cdot \mathbb{1}[x \ge C]$$
, for $C = \text{constant}$

- * A nerdy approach: (Essentially a naive rejection sampling)
 - 1. Sample X from N(0,1).
 - 2. Reject X if X < C.

This works fine when C is negative or a small positive number. But what if $C \ge 2$? (Recall the 1-, 2- and 3- sigma rule you learned in a preliminary course like STATS 250.)

If C=3, about 99% of the candidate sampled X will be rejected!

- * A refined rejection sampling: (only consider the challenging C > 0 case)
 - 1. Choose a proper M such that $f(x) \leq Mg(x)$ but f(x) and Mg(x) as close as possible.

* Set

$$M = \sup_{x \ge C} \frac{f(x)}{g(x)}$$

where the RHS equals f(C)/g(C) in this example, since both f(x) and g(x) are decreasing, and f(x) decreases at a faster rate than g(x).

- 2. Sample X from $g(x) := e^{-(x-C)} \mathbb{1}[x \ge C]$.
 - * This is an exponential distribution with rate $\lambda = 1$ and location shift C.
- 3. Given X, sample Y from Unif[0, Mg(X)]. Accept X if $Y \leq f(X)$ and reject X otherwise.
 - * Equivalent to sampling Y from Unif[0,1] and accept X if $Y \leq f(X)/(Mg(X))$, as in textbooks, but we did differently to facilitate graphical illustration.

Implementation: see Lab_5.r

- * NOTICE: The code example used two ways to empirically check that the rejection method did produce the desired distribution:
 - 1. Fact: sampling from a distribution $f(x) \Leftrightarrow$ uniformly sample from the region between x-axis and f(x).
 - * In the example, accepted(dark green) points uniformly spread over this region.
 - 2. For some fixed a, b in the domain of x, compare $\hat{F}(b) \hat{F}(a)$ (recall what $\hat{F}(x)$ is we saw it last week) and $\int_a^b f(x) dx$.
 - * In the example, the proportion of accepted points falling in $\{(x,y): a \leq x \leq b\}$ (which is $\hat{F}(b) \hat{F}(a)$, check this!) is close to $\int_a^b f(x) dx$.

2 Monte Carlo integration

- Goal: Compute $I := \int_a^b f(x) dx$, where a < b, by Monte Carlo methods.
- Method:
 - 1. Choose a proper distribution $\pi(x)$, such that $\pi(x) > 0$ on [a, b].
 - 2. Rewrite the integral as

$$I = \int_{a}^{b} \frac{f(x)}{\pi(x)} \cdot \pi(x) dx = \mathbb{E}\left[\frac{f(x)}{\pi(x)}\right]$$

and the integral I can be estimated by

$$\hat{I} = \hat{\mathbb{E}}\left[\frac{f(x)}{\pi(x)}\right] = \frac{1}{n} \left\{ \frac{f(X_1)}{\pi(X_1)} + \ldots + \frac{f(X_n)}{\pi(X_n)} \right\}$$

for X_1, \ldots, X_n sampled from PDF $\pi(x)$.

- Easy case: when a and b are finite, usually choosing $\pi(x) = 1/(b-a)$ (uniform distribution on [a,b]) is good enough.
- More challenging case: with a and/or b being infinity, we need to carefully choose $\pi(x)$.

Example: Let

$$f(x) = \sin\left\{\frac{\cos(x)}{x^3}\right\}$$

Compute the following Lebesgue integral:

$$I = \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \sin\left\{\frac{\cos(x)}{x^3}\right\} dx$$

- * This is indeed a valid integral, because $\sin |\cos(x)/x^3|$ is integrable.
- * By negative symmetry of the integrand, we immediately know I = 0.
- * Now following the steps above, we should choose a proper $\pi(x)$, and rewrite

$$I = \int_{-\infty}^{+\infty} \frac{\sin\left\{\frac{\cos(x)}{x^3}\right\}}{\pi(x)} \cdot \pi(x) dx = \mathbb{E}\left[\sin\left\{\frac{\cos(X)}{X^3}\right\} / \pi(X)\right]$$

for $X \stackrel{\text{PDF}}{\sim} \pi(x)$. Then estimate I by

$$\hat{I} = \hat{\mathbb{E}}\left[\sin\left\{\frac{\cos(X)}{X^3}\right\} \middle/ \pi(X)\right] = \frac{1}{n}\left[\sin\left\{\frac{\cos(X_1)}{X_1^3}\right\} \middle/ \pi(X_1) + \ldots + \sin\left\{\frac{\cos(X_n)}{X_n^3}\right\} \middle/ \pi(X_n)\right]$$

with X_1, \ldots, X_n drawn from PDF $\pi(x)$.

- * Consider two choices of $\pi(x)$.
 - 1. Cauchy: $\pi(x) \propto 1/(1+x^2)$.
 - (+) Here $\lim_{x\to+\infty} f(x)/\pi(x) = 0$. The estimator \hat{I} is "stable" in the sense that

$$\operatorname{Var}\left[\sin\left\{\frac{\cos(X)}{X^3}\right\}\middle/\pi(X)\right]<+\infty$$

Cauchy PDF is a fine choice for $\pi(x)$.

- 2. Normal: $\pi(x) \propto e^{-x^2/2}$.
 - (-) Here, however, we notice that $\lim_{x\to+\infty} f(x)/\pi(x) = 0$, and worse

$$\operatorname{Var}\left[\sin\left\{\frac{\cos(X)}{X^{3}}\right\} \middle/ \pi(X)\right] = \mathbb{E}\left[\sin\left\{\frac{\cos(X)}{X^{3}}\right\} \middle/ \pi(X)\right]^{2}$$

$$= \int_{-\infty}^{+\infty} \sin^{2}\left\{\frac{\cos(x)}{x^{3}}\right\} \middle/ \pi(x) dx$$

$$\sim \int_{-\infty}^{+\infty} \cos^{2}(x) \frac{x^{-6}}{e^{-\frac{x^{2}}{2}}} dx = +\infty \quad \text{(Why?)}$$

- (-) As a consequence, asymptotically, we have a consistent estimation for I, but cannot consistently estimate a confidence interval using standard error (whose expectation is infinity). In finite sample, we cannot sense how close our estimator \hat{I} is to the true I. Normal PDF is a bad choice for $\pi(x)$.
- # Implementation: see Lab_5.r