Visão Computacional

Breve introdução com foco na tarefa de reconhecimento

Vitor Greati¹ Vinícius Campos¹

¹Universidade Federal do Rio Grande do Norte

Sumário

O gap semântico

Visão Computacional

Para além de pixels

Reconhecimento em Visão Computacional

Técnicas envolvidas

Abordagem tradicional

Abordagem com Deep Learning

Aplicações

Percepção humana

O que você percebe nestas imagens?

Percepção humana

O que você percebe nestas imagens?

A facilidade com que respondemos a essa pergunta se deve ao nosso sistema visual **nativo** extremamente poderoso!

A percepção do computador

As matrizes de pixels

À primeira vista...

A percepção do computador

As matrizes de pixels

À primeira vista...

```
[[ 42
      23 19 ....
                    21 29 25]
                                        [[222 224 224 ..., 204 201 200]
  40 40 36 ...,
                           21]
                                         [223 225 223 ..., 201 203 204]
      30 36 ...,
                    30
                            27]
                                         [226 226 226 ..., 204 202 205]
[115 78 45 ...,
                   28 36
                           171
                                         [210 203 208 ..., 192 188 189]
     78 192 ...,
                  35 31
                           36]
                                         [206 206 207 ..., 190 188 189]
 [ 67
 67
      79 104 ...,
                    34 32
                            31]]
                                         [210 208 210 ..., 191 193 185]]
[[138 137 137 ..., 107 107 107]
                                        [[ 48 45 40 ....
                                                                29 311
                                                 43 ...,
[135 134 134 ..., 107 107 107]
                                          45 46
                                                           28
                                                                    301
[130 129 129 ..., 107 107 107]
                                           41
                                                                    291
[145 145 146 .... 142 142 142]
                                         [101 101 103 .... 64 51
                                                                    321
 [146 145 144 ..., 144 144 145]
                                         [ 98
                                                  99 ..., 63 71
                                                                    57]
 [147 146 144 ..., 145 145 146]]
                                         97
                                                                    65]]
```

A percepção do computador

As matrizes de pixels

À primeira vista...

```
[ 42 23 19 ..., 21 29 25]
[ 40 40 36 ..., 24 24 21]
[ 28 30 36 ..., 30 13 27]
                                                       [[222 224 224 ..., 204 201 200]
                                                        [223 225 223 ..., 201 203 204]
                                                         [226 226 226 ..., 204 202 205]
 [115 78 45 ..., 28 36 17]
                                                        [210 203 208 ..., 192 188 189]
 [ 67 78 192 ..., 35 31 36]
[ 67 79 104 ..., 34 32 31]
                                                        [206 206 207 ..., 190 188 189]
                                      31]]
                                                         [210 208 210 ..., 191 193 185]]
[[138 137 137 ..., 107 107 107]
                                                        \begin{bmatrix} \begin{bmatrix} 48 & 45 & 40 & \dots & 28 & 29 & 31 \end{bmatrix} \\ \begin{bmatrix} 45 & 46 & 43 & \dots & 28 & 29 & 30 \end{bmatrix} 
 [135 134 134 ..., 107 107 107]
 [130 129 129 ..., 107 107 107]
                                                                                              29]
 [145 145 146 .... 142 142 142]
                                                        [101 101 103 ..., 64 51
                                                                                              321
                                                         [ 98 97 99 ..., 63 71
[ 97 97 97 ..., 38 57
 [146 145 144 ..., 144 144 145]
                                                                                              57]
 [147 146 144 ..., 145 145 146]]
```

Imagens digitais monocromáticas

Matrizes $I_j \in \mathbb{M}_{w_j \times h_j}([0, \dots, 255])$ ou funções $f_j : \{1, \dots, w_j\} \times \{1, \dots, h_j\} \to [0, 255]$, onde w_j é a largura e h_j é a altura da imagem j.

O gap semântico

Percepção humana × percepção da máquina

Gap semântico

Diferença entre a maneira como o ser humano **percebe** o conteúdo de uma imagem e como a imagem é **representada** de forma manipulável no computador.

Sumário

O gap semântico

Visão Computacional

Para além de pixels Reconhecimento em Visão Co Técnicas envolvidas Abordagem tradicional

Abordagem com Deep Learning

Aplicações

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

Entre as tarefas compreendidas nesse âmbito, estão:

Análise de movimento;

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

- Análise de movimento;
- Reconstrução de cenas;

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

- Análise de movimento;
- Reconstrução de cenas;
- Restauração de imagens;

Visão Computacional

Visão Computacional é uma área da Ciência da Computação cujo propósito é capacitar os computadores para extraírem informações de imagens, ou seja, permitir que tenham um entendimento visual do mundo.

- Análise de movimento;
- Reconstrução de cenas;
- Restauração de imagens;
- Reconhecimento.

Reconhecimento

Tarefa de determinar se um certo fato (ocorrência ou atividade) está presente em uma imagem ou vídeo.

Reconhecimento

Tarefa de determinar se um certo fato (ocorrência ou atividade) está presente em uma imagem ou vídeo.

Apresenta-se geralmente para três principais propósitos:

Reconhecimento

Tarefa de determinar se um certo fato (ocorrência ou atividade) está presente em uma imagem ou vídeo.

Apresenta-se geralmente para três principais propósitos:

Classificação de objetos

Reconhecimento

Tarefa de determinar se um certo fato (ocorrência ou atividade) está presente em uma imagem ou vídeo.

Apresenta-se geralmente para três principais propósitos:

- Classificação de objetos
- Identificação

Reconhecimento

Tarefa de determinar se um certo fato (ocorrência ou atividade) está presente em uma imagem ou vídeo.

Apresenta-se geralmente para três principais propósitos:

- Classificação de objetos
- Identificação
- Detecção

Reconhecimento em Visão Computacional Desafios

Imagine que se queira reconhecer os gatos em uma imagem.

Quais os desafios envolvidos nisso?

Reconhecimento em Visão Computacional Desafios

Imagine que se queira reconhecer os gatos em uma imagem.

Quais os desafios envolvidos nisso?

Variação de ponto de vista

Não importa sob qual ângulo se fotografe um gato: ele continuará sendo um gato.

Variação de escala

Não importa a que distância o gato estará da câmera: ele continuará sendo um gato.

Deformação

Um gato pode estar esticando suas pernas ou/e contorcendo seu pescoço para se lamber, e isso não o faz ser outro ser além de um gato na imagem.

Visão Computacional

Desafios

Oclusão

Um gato pode estar espiando o mundo ao redor de dentro de uma caixa, apenas com a cabeça de fora, e ele continuará sendo um gato à lente de uma câmera em frente à caixa.

Iluminação

Um gato num estacionamento mal iluminado ainda é um gato.

Ruído de fundo

Um gato em frente à uma tela de TV repleta de ruído ainda é um gato.

Variações intra-classe

Gatos de diversas raças, cores e tamanhos serão sempre gatos.

Técnicas

Processamento de imagens digitais

De nível baixo

Operações primitivas para remoção de ruídos, melhoria contraste e nitidez. Aqui, a entrada e a saída do sistema são sempre imagens.

De nível médio

Segmentação e descrição dos objetos em uma forma adequada para o processamento e classificação de objetos individuais. Nesta, a entrada é uma imagem, e a saída geralmente é um conjunto de atributos extraídos da imagem.

De nível alto

Reconhecimento de objetos individuais, geralmente por meio de técnicas de reconhecimento de padrões (*Machine Learning*).

Técnicas

Machine Learning

Machine Learning

Área voltada à construir modelos computacionais capazes de aprimorar seu desempenho na resolução de problemas a partir da experiência.

Entre as técnicas mais comuns nesse contexto, destacam-se:

- Support Vector Machines;
- Random Forests.
- Multilayer Perceptron;
- Convolutional Neural Networks (Deep Learning);

Abordagem tradicional

Baseada em extração de descritores

A abordagem tradicional para a tarefa de reconhecimento combinava as etapas:

- 1. aquisição do conjunto de imagens;
- 2. divisão entre conjuntos de treino e testes;
- extração de descritores;
- 4. treinamento de um modelo de aprendizagem.
- 5. avaliação do modelo.

As imagens, nessa abordagem, perdem seu formato original de matrizes de pixels e se tornam **vetores de características** produzidos com o objetivo de **descrever os objetos** de interesse.

Abordagem com Deep Learning

Convolutional Neural Networks

Com as Deep Neural Networks, mais especificamente, as Redes Neurais Convolucionais, o processo demanda menos pré-processamento: a redes neural recebe **toda a matriz de pixels** e, em suas camadas, abstrai as características dos objetos, **produzindo elas mesmas os descritores**.

Com isso, o framework geral nessa abordagem se resume a:

- 1. aquisição das imagens;
- 2. divisão entre conjuntos de treino e testes;
- 3. treinamento de um modelo de aprendizagem.
- 4. avaliação do modelo.

Reconhecimento Automático de Placas

Figura: Etapas gerais de um processo de RAP. (Fonte: Autoral)

Reconhecimento de Faces (Expressões)

Figura: Reconhecimento de faces e de expressões. (Fonte: Mobile Vision - https://developers.google.com/vision/)

Reconhecimento de gestos

Figura: (Fonte: Wikipedia - https://en.wikipedia.org/wiki/Gesture_recognition)

Veículos Autônomos

Figura: (Fonte: Electronics Weekly - https://www.electronicsweekly.com/market-sectors/automotive-

electronics/ces-autonomous-cars-sensors-make-safe-2017-01/)