Технология программирования на ЭВМ, ММ-1 (дом) Массивы 02 ноября 2018

1. Дано целое n от 1 до 10^3 , далее n целых чисел от -10^6 до 10^6 . Посчитать количество чисел, равных первому и последнему соответственно.

Ввод	7
	3 3 3 2 3 1 2
Вывод	4 2

2. Дано целое x от 1 до $2\cdot 10^{18}$. Найти минимальное число Фибоначчи, которое больше числа x. Вывести порядковый номер числа Фибоначчи и само число. То вывести n и f_n такие, что $f_{n-1}\leqslant x< f_n$, где $f_0=0,\ f_1=1,\ f_k=f_{k-1}+f_{k-2}$ при k>1.

Ввод	10	3	1234567890987654321
Вывод	7 13	5 5	89 1779979416004714189

3. Дано целое n от 1 до 10^3 , далее n целых чисел от -10^6 до 10^6 . Вывести минимум и позиции минимальных элементов.

Ввод	7	5
	1 3 3 2 3 1 2	-1 -1 -2 1 2
Вывод	1	-2
	1 6	3

4. Дано целое n от 1 до 100 и n различных целых чисел от 0 до 999. Отсортировать массив методом подсчета (метод подсчета смотрите в презентации). Использовать другие методы сортировки запрещено.

Ввод	5	5	3
	1 6 4 8 2	8 6 4 3 1	1 2 3
Вывод	1 2 4 6 8	1 3 4 6 8	1 2 3

5. Дано целое n от 1 до 10^3 . Далее n целых чисел от 0 до 999. Найти все наиболее часто встречающиеся числа в порядке возрастания. Использовать метод подсчета.

Ввод	10)								
	8	1	7	8	7	1	5	3	1	7
Вывод	1	7								

6. Дано целое n от 1 до 10^3 . Далее n различных целых чисел от -10^6 до 10^6 . Вывести все инверсии называется такая пара элементов массива $a_i > a_j$, где i < j. Инверсии вывести в по порядку индексов.

Ввод	5
	11 15 12 14 13
Вывод	15 12
	15 14
	15 13
	14 13

7. Дано целое положительное n от 1 до 10. Далее матрица размером $n \times n$ из целых чисел от -100 до 100. Найти количество всех ненулевых элементов над главной диагональю и под главной диагональю.

Ввод	3	5
	2 5 0	1 2 3 2 1
	2 2 3	2 1 0 1 2
	2 2 2	0 0 0 0 0
		1 2 3 2 1
		0 0 0 0 0
Вывод	2 3	6 4

8. Дано целое положительное n от 1 до 10. Далее матрица размером $n \times n$ из целых чисел от -100 до 100. Далее вектор размера n. Найти произведение этой матрицы на данный вектор.

Ввод	2	3
	1 2	1 2 3
	1 0	1 0 1
	-3	2 1 0
	4	1
		2
		3
Вывод	5	14
	-3	4
		4

9. Дано целое положительное n от 1 до 10. Далее матрица размером $n \times n$ из целых чисел от -100 до 100. Найти все седловые точки (седловая точка — элемент матрицы $a_{i,j}$ такой, что $a_{i,j}$ больше всех элементов i-й строки и меньше всех элементов j-го столбца. Вывести позицию седловой точки и ее значение.

Ввод	3	4
	13 5 0	2 3 4 5
	12 1 1	1 2 3 2
	14 4 4	6 5 4 3
		2 3 5 4
Вывод	2 1	2 3
	12	3

10. Дано целое n от 1 до 10^6 . Построить решето Эратосфена в виде массива 0 и 1 ($a_i=0$ — число i не простое, $a_i=1$ — i число простое для $i\geqslant 1$).

Ввод	20
Вывод	0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0