CH 19 Functions

mrevanishere

November 30, 2020

1 Function

DEFINITION (Function): Let S and T be sets. A function from S to T is a rule that assigns to each $s \in S$ a single ele of T, denoted by f(s). We write

$$f: S \to T$$

to mean that f is a funtion from S to T. If f(s) = t, we often say f sends $s \to t$. DEFINITION (Image): iff $f: S \to T$ is a function, the image of f is the set of all ele of T that are equal to f(s) for some $s \in S$. We write f(S) for the image of f. Thus

$$f(S) = f(s)|s \in S$$

example

2 Important Functions

- (I) We say f is onto if the image f(S) = T; if for every $t \in T$ there exists $s \in S$ such that f(s) = t
- (II) We say f is one-to-one if whenever $s_1, s_2 \in S$ with $s_1 \neq s_2$, then $f(s_1) \neq f(s_2)$; f is 1-1 if f sends different elements of S to different elements of T. Or for all $s_1, s_2 \in S$

$$f(s_1) = f(s_2) \Rightarrow s_1 = s_2$$

- (III) We say that f is a bijection if f is both onto and 1-1 onto or surjective functions or surjections
- 1-1 or injective functions or injections

PROPOSITION 19.1: Let $f: S \to T$ be a function, where S and T are finite sets.

- (i) If f is onto, then $|S| \ge |T|$.
- (ii) If f is 1-1, then $|S| \leq |T|$.
- (iii) If f is a bijection, then |S| = |T|.

3 Pigeonhole Principle

If we put n+1 or more pigeons into n pigeonholes, then there must be a pigeonhole containing more than one pigeon.

4 Inverse Functions

DEFINITION: Let $f: S \to T$ be a bijection. The inverse function of f is the function from $T \to S$ that sends each $t \in T$ to the unique $s \in S$ such that f(s) = t. We denote the inverse function by $f^{-1}: T \to S$. Thus, for $s \in S, t \in T$,

$$f^{-1}(t) = s \Leftrightarrow f(s) = t$$

$$f^{-1}(f(s)) = s \text{ and } f(f^{-1}(t)) = t$$

5 Composition of Functions

DEFINITION: Let S, T, U be sets, and let $f: S \to T$ and $g: T \to U$ be functions. The composition of f and g is the function $g \circ f: S \to U$, which is defined:

$$(g \circ f)(s) = g(f(s))$$
 for all $s \in S$

Identity functions:

$$f^{-1} \circ f = \iota_S, f \circ f^{-1} = \iota_T$$

PROPOSITION 19.2: Let S, T, U be set se, and let $f:S\to T$ and $g:T\to U$ be functions. Then:

- (i) if f and g are both 1-1, so is $g \circ f$
- (ii) if f and g are both onto, so is $g \circ f$
- (iii) if f ang g are both bijections, so is $g \circ f$.

6 Counting Functions

PROPOSITION 19.3: Let S, T be finite sets, with |S| = m, |T| = n. Then the num of functions from S to T is equal to n^m .