GPL, MLP Are symbolic regressor: Takes in $(R^{n+1}) \rightarrow string$ Eg it takes in $\{(1, 2), (2, 3), (3, 4)\} \rightarrow "x + 1"$

To get a baseline for MLP:
Give three things (and withhold one thing)
X, Y, and TX (withhold TY)
MLP will take X and Y and return eqn.
We take the eqn and TX and we get PY
Then we can compare PY with TY for the error score.

Focus on 1 variable 30 points?
Try to get it to work

On [0, 3] y=x y=3-x

Hyperparameter	Simple	Complicated
# variables	1	2+
Datapoints spacing	Mesh	random
# datapoints	Many [30]	few
Set of operators	Few [+, x, sqrt, sin]	many
Equation complexity	Simple (few levels) 2	Complex (many levels)
Interval	Smaller [0, 3]	Bigger
Input to model	(x,y)	(x, y)
# decimals	2	4+
# number of training equations	Many (5 million?)	Many many more
Constant values: how many	Not too many (50%)	Many (80%)
Constant values: range	Small [-1, 1]	Large (-5, 5)
Use pointnet?	Yeah - deep!!	
Sort datapoints?	irrelevant	
Output constants in eqn?	No, learn structure only	

X:

(2.8, 2.8)->f10

(0.1, 0.1)->f1

(0.2, 0.2)->f2

. . .

(2.9, 2.9)->f11 ---> f2

3-x:

(0.1, 2.9)->g1

(0.2, 2.8)->g2

(2.8, 0.2) ->g10

(2.9, 0.1)->g11