# Special Topics on Basic EECS I VLSI Devices Lecture 18

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

## Switching from OFF to ON

- It takes some time before the diode is turned on and reaches the steady state.
  - Charging up the depletion-layer capacitor
  - Filling up the p- and n-regions with excess minority carriers
- Similarly, when a diode is switched from the ON state to the OFF state, it takes some time before the diode is turned off.

## **Excessive minority carriers**

- (The lightly doped side is often referred to as the base of the diode. The other one is called the emitter.)
  - Total excess minority-carrier charge per unit area

$$Q_B = -q \int_0^W (n_p - n_{p0}) dx$$
 Taur, Eq. (2.144)

- For a wide-base diode,

$$Q_B = J_n(x=0)\tau_n$$

Taur, Eq. (2.145)

For a narrow-base diode,

$$Q_B = J_n(x=0)t_B$$

Taur, Eq. (2.146)

Base-transit time,  $\frac{W^2}{2D_n}$ 

## Discharging time of a forward-biased diode

• External voltage changes from  $V_F$  to  $V_R$  at t=0. Assume that  $|V_F|$  and  $|V_F|$  are sufficiently higher than 1.0 V.

$$-At t < 0$$
,





GIST Lecture

4

## Reverse voltage of $V_R$

- Electrons at the edge of the depletion region are swept away by the electric field in the depletion region towards the n<sup>+</sup> emitter at a saturated velocity.
  - The reverse current is limited by the external resistor,



GIST Lecture

5

### Later,

- The reverse current is limited by the diffusion of electrons instead of by the external resistor.
  - Finally, when all the excess electrons removed, the pn diode is completely off.

## **MOS** capacitors

Basis of CMOS technology



## **Energy band diagram**

- Three components
  - Metal, silicon dioxide, and p-type silicon



## Consider $V_g = V_{sub} = 0 \text{ V}$ .

- Rule: Align the Fermi level.
  - -The energy difference is

$$q\Phi_{S}-q\Phi_{m}$$

- It means that a non-zero electric field is applied in the oxide layer.





When 
$$V_g = \Phi_m - \Phi_s < 0$$
,

- The energy band at gate moves upward.
  - -There is no energy difference.
  - It means that the energy band becomes flat.
  - -This gate voltage is called the flatband voltage,  $V_{fb}$ .





## Draw the energy band diagram at $V_g = V_{fb}$ .

- Since the energy band is flat, it is not difficult.
  - The electron energy barrier is 3.1 eV between the conduction bnads of silicon and silicon dioxide.



## Consider $V_g = V_{sub} = 0$ V, again.

- Non-zero electric field is found.
  - However, the energy difference,  $q\Phi_s-q\Phi_m$ , cannot be solely applied to the oxide layer. Why?



## Surface potential, $\phi_s$

- A downward bending of bands in the p-type silicon near the surface
  - It is important to note that

$$V_g - V_{fb} = \phi_s + V_{ox}$$

Taur, Eq. (2.172)

At the silicon-oxide interface,

$$\epsilon_{ox}|\mathbf{E}_{ox}| = \epsilon_{si}|\mathbf{E}_{si}|$$

Taur, Eq. (2.173)

-Since 
$$\epsilon_{ox} = 3.9\epsilon_0$$
 and  $\epsilon_{si} = 11.7\epsilon_0$ ,  $|\mathbf{E}_{ox}| \approx 3|\mathbf{E}_{si}|$ 

#### **TCAD** simulation

- Model parameter
  - -Workfunction of 4.17 eV
  - -Oxide thickness of 20 Å
  - -P-type doping of 1X10<sup>18</sup> cm<sup>-3</sup>



- $V_g$  = -2.0 V -Accumulation
- Hole density



•  $V_g = -0.94 \text{ V}$ 

Flatband condition



- $V_g$  = 0.0 V - Depletion
- Space charge



- $V_g = 1.0 \text{ V}$ -Inversion
- Electron density



## Thank you!