Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Теоретическая информатика и компьютерные технологии»

Лабораторная работа №1 по предмету «Численные методы линейной алгебры»:

«Алгоритм «разделяй и властвуй» для трехдиагональной симметрической матрицы»

Студент ИУ9-72(Б)	М.М. Масягин
	(Подпись, дата)
Преподаватель	А.Ю. Голубков
	(Подпись, дата)

Москва, 2019 г.

Оглавление

Введение	3
1 Постановка задачи	
2 Описание алгоритма	
Основная идея алгоритма	
Разбиение трехдиагональной матрицы	
Решение для малых матриц	
Дефляция	
Поиск собственных значений	
Решение векового уравнения	
Итоговый алгоритм	
3 Реализация	
4 Тестирование	
5 Возможные оптимизации	
Заключение	
Список питературы	12

Введение

Численные методы линейной алгебры (ЧМЛА) — это раздел современной науки, находящийся на пересечении вычислительной математики и линейной алгебры. Целью данной дисциплины является разработка и анализ алгоритмов для численного решения матричных задач.

ЧМЛА имеют большое прикладное значение. Например, на них основываются вся современная компьютерная графика и науки о машинном обучении и анализе данных.

Одной из наиболее важных задач ЧМЛА является задача нахождения собственных значений и собственных векторов матриц, как в общем виде, так и для специальных матриц.

В данной лабораторной работе рассматривается алгоритм поиска собственных векторов и собственных значений для трехдиагональной симметрической матрицы методом «разделяй и властвуй».

1 Постановка задачи

Пусть дана симметрическая трехдиагональная матрица:

$$T = \begin{pmatrix} a_{11} & b_{12} & & & \\ a_{21} & a_{22} & \ddots & & \\ & \ddots & \ddots & b_{n-1n} \\ & & b_{nn-1} & a_{nn} \end{pmatrix}$$

Необходимо представить ее в виде произведения трех матриц: $Q \cdot \Lambda \cdot Q^T$ (1), где Q — матрица, столбцы которой являются собственными векторами матрицы T , Λ - диагональная матрица с соответствующими собственными значениями на главной диагонали, Q^T - транспонированная матрица Q .

Данная задача может быть решена классическим QR-алгоритмом, главными преимуществами которого являются простота реализации и устойчивость (алгоритм считается вычислительно устойчивым, т.к. производится ортогональными преобразованиями подобия). Однако QR-алгоритм не подходит для обработки очень больших матриц в силу своей вычислительной сложности, поэтому в 1981 Дж. Куппен разработал новый алгоритм для решения данной задачи, основывающийся на методе «разделяй и властвуй». О нем и пойдет речь далее.

2 Описание алгоритма

Основная идея алгоритма

Основной идеей метода «разделяй и властвуй» является разбиение исходной задачи на более мелкие, простые подзадачи, которые в свою очередь также рекурсивно разбиваются на еще более простые подзадачи. Не является исключением и данный алгоритм. Его действие состоит из трех основных шагов:

- 1. Разбиваем исходную симметрическую трехдиагональную матрицу на две матрицы (также симметрические и трехдиагональные) меньшего размера;
- 2. Находим разложения (1) маленьких матриц;
- 3. На их основе строим разложение (1) исходной матрицы;

Разбиение трехдиагональной матрицы

Запишем исходную матрицу Т в следующем виде:

$$= \begin{pmatrix} T_1 & \\ & T_2 \end{pmatrix} + \rho \cdot u \cdot u^T , \text{ где } \rho = \pm b_m \text{ и } u = \begin{pmatrix} \pm e_m \\ e_1 \end{pmatrix} (2).$$

Разбиение можно выбрать по любому m, однако наиболее логично использовать $m=\frac{n}{2}$. В таком случае e_m - вектор размера $m=\frac{n}{2}$, а e_1 - это вектор размера n-m .

Решение для малых матриц

Пусть у нас имеются решения задачи $Q_i \cdot \Lambda_i \cdot Q_i^T$ (3) для двух малых матриц i=1,2 . Вычислим на их основе разложение для исходной матрицы Q .

Подставим (3) в (2) и получим:

$$\begin{pmatrix} Q_1^T & & \\ & Q_2^T \end{pmatrix} \cdot \begin{pmatrix} T_1 & & \\ & T_2 \end{pmatrix} + \rho \cdot u \cdot u^T \end{pmatrix} \cdot \begin{pmatrix} Q_1 & & \\ & Q_2 \end{pmatrix} = \begin{pmatrix} \Lambda_1 & & \\ & \Lambda_2 \end{pmatrix} + \rho \cdot v \cdot v^T \quad \text{, ГДе} \quad v = \begin{pmatrix} Q_1^T & & \\ & Q_2^T \end{pmatrix} \cdot u = \begin{pmatrix} \pm lr(Q_1) \\ \pm fr(Q_2) \end{pmatrix}$$

 $lr(Q_1)$ - последняя строка Q_1 , $fr(Q_2)$ - первая строка Q_2 .

Наконец, мы подошли к задаче поиска собственных значений:

$$(D + \rho \cdot v \cdot v^T) \cdot X = \Lambda \cdot X$$
 , где $D = \Lambda_1 \otimes \Lambda_2 = diag(\lambda_1, \dots, \lambda_n)$.

Пусть $D + \rho \cdot v \cdot v^T = Q \cdot \Lambda \cdot Q^T$ - спектральное разложение, тогда:

$$T = \begin{pmatrix} Q_1 & \\ & Q_2 \end{pmatrix} \cdot Q \cdot \Lambda \cdot Q^T \cdot \begin{pmatrix} Q_1^T & \\ & Q_2^T \end{pmatrix} .$$

Дефляция

Некоторые собственные значения можно вычислить путем «дефляции».

Так, если в векторе v имеются нулевые элементы (элементы, которые можно считать нулями с некоторым приближением), то для них мы имеем:

$$(v_i=0 \rightarrow v^T \cdot e_i=0) \rightarrow (D+\rho \cdot v \cdot v^T) \cdot e_i=d_i \cdot e_i .$$

Таким образом, мы можем легко отыскать собственные вектора и собственные значения для всех нулей.

Если на диагонали матрицы D встречаются одинаковые элементы (элементы, которые можно считать одинаковыми с некоторым приближением), например, $d_i = d_j$, i < j, то мы можем найти вращение $G(i,j,\varphi)$, переводящее 0 в j-ую позицию v.

$$G^{T}\mathbf{v} = G(i, j, \varphi)^{T}\mathbf{v} = \begin{bmatrix} \times \\ \vdots \\ \sqrt{v_{i}^{2} + v_{j}^{2}} \\ \vdots \\ 0 \\ \vdots \\ \times \end{bmatrix} \leftarrow i$$

Заметим, что для $\forall \varphi$ истинно: $G(i,j,\varphi)^T \cdot D \cdot G(i,j,\varphi) = D$, $d_i = d_j$.

Таким образом, если в матрице D есть n одинаковых значений (или значений, которых мы можем считать одинаковыми), мы можем избавиться от n-1 значения.

В результате использования дефляции мы сильно упрощаем исходную задачу (дефляция «срабатывает» достаточно часто) поиска собственных значений матрицы $(D+\rho\cdot v\cdot v^T)$. Она сводится к задаче поиска собственных значений матрицы:

$$\begin{pmatrix} D_1 + \rho \cdot v_1 \cdot v_1^T & 0 \\ 0 & D_2 \end{pmatrix} = G^T \cdot (D + \rho \cdot v \cdot v \cdot T) \cdot G + E \quad \text{, где y} \quad D_1 \quad \text{нет совпадающих}$$

значений на главной диагонали, а v_1 не содержит нулей. Матрица G - это вращений.

Поиск собственных значений

Очевидно, что в $(D+\rho\cdot v\cdot v^T)$ $\rho\neq 0$. Также после дефляции мы знаем, что вектор v не содержит нулей, а все элементы D различны.

Мы можем переупорядочить диагональные элементы матрицы $(D + \rho \cdot v \cdot v^T)$ так, чтобы выполнялось неравенство: $d_1 < d_2 < ... < d_{n-1} < d_n$.

Заметим, что перестановки элементов D также переставляют и элементы вектора v .

Пусть (λ, x) - собственное значение и собственный вектор матрицы $(D+\rho\cdot v\cdot v^T)$. Тогда $(D-I\cdot\lambda)\cdot x=-\rho\cdot v\cdot v^T\cdot x$, $x=\rho\cdot (\lambda I-D)^{-1}\cdot v\cdot (v^T\cdot x)$ (4).

Данное равенство показывает, что x пропорционален $(\lambda \cdot I - D)^{-1}$. Мы можем потребовать, чтобы все x были нормированы, то есть $\|x\|=1$. В таком

случае $x = \frac{(\lambda \cdot I - D)^{-1}}{\|(\lambda \cdot I - D)^{-1}\|}$ (5). Домножив (4) слева на v^T получим:

$$v^T \cdot x = v^T \cdot \rho \cdot (\lambda I - D)^{-1} \cdot v \cdot (v^T \cdot x) .$$

С учетом того, что $v^T \cdot x \neq 0$ λ является собственным значением тогда и только тогда, когда:

$$f(\lambda) = 1 - \rho \cdot v^{T} \cdot (\lambda \cdot I - D)^{-1} \cdot v = 1 - \rho \cdot \sum_{k=1}^{n} \frac{v_{k}^{2}}{\lambda - d_{k}}.$$

Данное равенство называется «вековым уравнением».

Его корни лежат между диагональными элементами матрицы D , причем если $\rho>0$, то $d_1<\lambda_1< d_2<\lambda_2<...< d_n<\lambda_n$, а если $\rho<0$, то $\lambda_1< d_1<\lambda_2< d_2<...<\lambda_n< d_n$.

Таким образом, необходимо вычислить n-1 значение λ_i из интервалов (d_i,d_{i+1}) и одно значение из интервала $(d_n,+\infty)$ или $(-\infty,d_1)$.

Соответствующие им собственные вектора могут быть вычислены по формуле (5).

 v_k Вычисляются из соотношения:

$$v_k = \sqrt{\frac{\prod_{j=1}^{k-1} (d_k - \lambda_j) \prod_{j=k}^{n} (\lambda_j - d_k)}{\rho \prod_{j=1}^{k-1} (d_k - d_j) \prod_{j=k+1}^{n} (d_j - d_k)}}.$$

Решение векового уравнения

Само вековое уравнение решается посредством итерационного процесса.

Перепишем вековое уравнение в виде:

$$f(\lambda) = 1 + \underbrace{\sum_{k=1}^{i} \frac{v_k^2}{d_k - \lambda}}_{\psi_1(\lambda)} + \underbrace{\sum_{k=i+1}^{n} \frac{v_k^2}{d_k - \lambda}}_{\psi_2(\lambda)} = 1 + \psi_1(\lambda) + \psi_2(\lambda).$$

где $\psi_1(\lambda)$ - сумма положительных слагаемых, а $\psi_2(\lambda)$ - отрицательных.

$$h_{1}(\lambda) := \hat{c}_{1} + \frac{c_{1}}{d_{i} - \lambda} \qquad h_{1}(\lambda_{j}) = \psi_{1}(\lambda_{j}) \qquad h'_{1}(\lambda_{j}) = \psi'_{1}(\lambda_{j}).$$

$$c_{1} = \psi'_{1}(\lambda_{j})(d_{i} - \lambda_{j})^{2} > 0,$$

$$\hat{c}_{1} = \psi_{1}(\lambda_{j}) - \psi'_{1}(\lambda_{j})(d_{i} - \lambda_{j}) = \sum_{k=1}^{i} v_{k}^{2} \frac{d_{k} - d_{i}}{(d_{k} - \lambda_{j})^{2}} \leq 0.$$

$$h_{2}(\lambda) := \hat{c}_{2} + \frac{c_{2}}{d_{i+1} - \lambda} \qquad h_{2}(\lambda_{j}) = \psi_{2}(\lambda_{j}) \quad h'_{2}(\lambda_{j}) = \psi'_{2}(\lambda_{j})$$

$$c_{2} = \psi'_{2}(\lambda_{j})(d_{i+1} - \lambda_{j})^{2} > 0,$$

$$\hat{c}_{2} = \psi_{2}(\lambda_{j}) - \psi'_{2}(\lambda_{j})(d_{i+1} - \lambda_{j}) = \sum_{k=i+1}^{n} v_{k}^{2} \frac{d_{k} - d_{i+1}}{(d_{k} - \lambda)^{2}} \geq 0.$$

$$h(\lambda) = 1 + h_{1}(\lambda) + h_{2}(\lambda) = \underbrace{(1 + \hat{c}_{1} + \hat{c}_{2})}_{C_{3}} + \underbrace{\frac{c_{1}}{d_{i} - \lambda}}_{C_{1} - \lambda} + \underbrace{\frac{c_{2}}{d_{i+1} - \lambda}}_{C_{2}}.$$

Возьмем произвольное начальное λ_1 из нужного интервала и подставим его в данные формулы — выразим λ_2 и т.д. Обычно достаточно 2-3 шагов, чтобы алгоритм сошелся.

Итоговый алгоритм

- 1. На вход подается трехдиагональная симметрическая матрица T с вещественными элементами;
- 2. Если матрица T имеет вид (a) , то вернем: $(\Lambda = T, Q = 1)$;
- 3. Иначе разобьем матрицу T на две подматрицы: T1 и T2 .
 - 1. Запустим алгоритм со входной матрицей T_1 и выходными матрицами $Q_{1,}\Lambda_{1}$;
 - 2. Запустим алгоритм со входной матрицей T_2 и выходными матрицами $Q_{2,}\Lambda_{2}$;
- 4. На основе матриц Q_{1} , Λ_{1} , Q_{2} , Λ_{2} получим матрицы Q, Λ для матрицы T . Вернем их. Работа алгоритма завершена.

3 Реализация

Алгоритм написан в двух вариантах:

- 1. В однопоточном виде на чистом С99 без каких-либо зависимостей, то есть все «классы» матриц, векторов и т.д. реализованы собственноручно. В программе используются 16-байтные числа с плавающей точкой («long long double»), при этом если перевести программу на 8-байтные числа с плавающей точкой («double»), то ее можно скомпилировать и на С89-совместимом компиляторе. Таким образом обеспечивается легкая переносимость алгоритма практически на все существующие платформы;
- 2. В однопоточном виде на GNU Octave (данный вариант взят из дополнений к лекциям P. Arbenz).

4 Тестирование

Алгоритм тестировался на множестве матриц размера от 4x4 до 10x10 с фиксированным параметром точности: 0.0000001 и максимальным разрешенным числом итераций: 10.

Собственноручно написанный алгоритм показал невысокую производительность в связи с неэффективным методом вычисления обратной матрицы. Однако алгоритм на GNU Octave обсчитывает матрицу 10х10 менее чем за 0.5 с, что является удовлетворительным результатом.

Пример матрицы, используемой при тестировани:

1									1
1488	322	0	0	0	0	0	0	0	0
322	228	48	0	0	0	0	0	0	0
0	48	282	30	0	0	0	0	0	0
0	0	30	-1001	4	0	0	0	0	0
0	0	0	4	1.25	1	0	0	0	0
0	0	0	0	1	7	6	0	0	0
0	0	0	0	0	6	5	22	0	0
0	0	0	0	0	0	22	11	3	0
0	0	0	0	0	0	0	3	1	55
0	0	0	0	0	0	0	0	55	5
1									- 1

5 Возможные оптимизации

Реализованную программу можно оптимизировать как в алгоритмическом, так и в техническом плане. Кратко опишем возможные улучшения.

Как показывает практика, алгоритм Куппена имеет смысл использовать лишь для матриц достаточно большого порядка (25+). Для матриц меньшего порядка более эффективным является классическое QR-разложение. Таким образом, вызов основной рекурсивной функции алгоритма можно ограничить порядком матрицы не 1, а 25, для которого в свою очередь вызывать подпрограмму QR-разложения. Подобная оптимизация используется в библиотеке вычислительных алгоритмов LAPACK.

Серьезным преимуществом всех задач, решаемых методом «разделяй и властвуй», являтеся простота И очевидность ИΧ переноса на параллельные/распределенные платформы. Исключением не является и алгоритм Куппена. Для его распараллеливания достаточно инициализировать пул потоков и передавать каждому потоку пула свою подматрицу. Это может дать практически линейное увеличение производительности с увеличением числа потоков в пуле.

Также для повышения точности алгоритма можно воспользоваться его модификаций Гу-Эйзенштадта, незначительно увеличивающей вычислительную сложность.

Заключение

Таким образом, в ходе лабораторной работы был изучен способ вычисления собственных векторов и собственных значений симметрических трехдиагональных матриц методом «разделяй и властвуй», приведена его однопоточная реализация на языке Си, предложены различные варианты оптимизации алгоритма и написанной программы.

Список литературы

- 1. Arbenz P. Lecture Notes on Solving Large Scale Eigenvalue Problems // 2018
- 2. Arbenz P. Numerical Methods for Solving Large Scale Eigenvalue Problems // URL: http://people.inf.ethz.ch/arbenz/ewp/index.html (дата обращения: 24.12.2019)
- 3. Demmel J. Applied Numerical Linear Algebra // 1996
- 4. Rutter J. Serial Implementation of Cuppen's Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem // 1994
- 5. Голубков. А. Ю. Лекции по вычислительным методам линейной алгебры // 2013 2018;
- 6. AlgoWiki: Метод «разделяй и властвуй» вычисления собственных значений и векторов симметричной трехдиагональной матрицы // URL: https://algowiki-project.org (дата обращения: 24.12.2019)