

Patent Office Canberra

I, KIM MARSHALL, MANAGER EXAMINATION SUPPORT AND SALES, hereby certify that the annexed is a true copy of the Provisional specification in connection with Application No. PO 6974 for a patent by THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH filed on 23 May 1997

I further certify that the annexed specification is not, as yet, open to public inspection.

PRIORITY DOCUMENT

WITNESS my hand this First day of June 1998

KIM MARSHALL

MANAGER EXAMINATION SUPPORT AND

SALES

AUSTRALIAN
PROVISIONAL NO. DATE OF FILING
PO6974 23 MAY 97
PATENT OFFICE

The Council of The Queensland Institute of Medical Research

AUSTRALIA

Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"A novel gene and uses therefor"

The invention is described in the following statement:

7

A NOVEL GENE AND USES THEREFOR

The present invention relates generally to a novel human gene and to derivatives and mammalian, animal, avian, insect, nematode, and microbial homologues thereof. The present invention further provides pharmaceutical compositions and diagnostic agents as well as genetic molecules useful in gene replacement therapy and recombinant molecules useful in protein replacement therapy.

Throughout this specification and the claims which follow, unless the context requires otherwise,

10 the word "comprise", or variations such as "comprises" or "comprising", will be understood to

imply the inclusion of a stated integer or group of integers but not the exclusion of any other

integer or group of integers.

*

Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined at the end of the description.

The increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the medical and allied health fields. There is growing need to develop recombinant and genetic molecules for use in diagnosis, conventional pharmaceutical preparations as well as gene and protein replacement therapies.

In work leading up to the present invention, the inventors sought to identify and clone human genes which might be useful as potential diagnostic and/or therapeutic agents. One area of particular interest is in the field of signal transduction.

25

Knowledge of cellular interaction in the control of cell proliferation is essential in the rational design of specific therapeutic strategies aimed at controlling proliferative disorders. Such proliferative disorders including a range of cancers, inflammatory conditions and proliferative disorders including a range of cancers, inflammatory conditions and atherosclerosis. An important aspect of cellular interaction is in signal transduction via receptors to intracellular transducers. One key signal transducer is Ras which couples the

receptors for diverse extracellular signals to different effectors. Ras directly activates the downstream kinase Raf which in turn induces the mitogen activated protein kinase (MAPK) cascade.

- 5 The Ras is an example of a guanine nucleotide exchange factor (GEF). A mutation in a GEF such as Ras has been implicated in development of a range of cancers and tumours. There is a need, therefore, to identify new GEFs and to develop therapeutic and diagnostic protocols based on modulating function of the GEF singalling pathways.
- 10 Accordingly, one aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a guanine nucleotide exchange factor (GEF) or a derivative of said gene regulator.
- 15 More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:
 - (i) a nucleotide sequence set forth in SEQ ID NO:1;
 - (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:2;
- 20 (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
 - (iv) a nucleotide sequence capable of hybridizing under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).
- 25 Preferably, the percentage similarity is at least about 50%. More preferably, the percentage similarity is at least about 60%.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative

stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The term "similarity" as used herein includes exact identity between compared sequences at the nucleotide or amino acid level. Where there is non-identity at the nucleotide level, "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, "similarity" includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels.

The present invention extends to nucleic acid molecules with percentage similarities of approximately 65%, 70%, 75%, 80%, 85%, 90% or 95% or above or a percentage in between.

The nucleic acid molecule of the present invention is hereinafter referred to as constituting the "mcg7" gene. The protein encoded by mcg7 is referred to herein as "MCG7" and is involved in signal transduction.

The present invention extends to the naturally occurring genomic mcg7 nucleotide sequence or corresponding cDNA sequence or to derivatives thereof. Derivatives contemplated in the present invention include fragments, parts, portions, mutants, homologues and analogues of MCG7 or the corresponding genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to MCG7 or single or multiple nucleotide substitutions, deletions and/or additions to mcg7. Derivatives also includes modifications to nucleotide bases or amino acid residues to, for example, alter glycosylation sites or amino acid side chains. "Additions" to the amino acid or nucleotide sequences include fusions with

other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to "MCG7" or "mcg7" includes references to all derivatives thereof including functional derivatives and immunologically interactive derivatives of MCG7.

5 The mcg7 of the present invention is particularly exemplified herein from humans and in particular from human chromosome 11q13.

The present invention also extends, however, to a range of homologues from, for example, primates, livestock animals (eg. sheep, cows, horses, donkeys, pigs), companion animals (eg. 10 dogs, cats) laboratory test animals (eg. rabbits, mice, rats, guinea pigs), birds (eg. chickens, ducks, geese, parrot), insects, nematodes, eukaryotic microorganisms and captive wild animals (eg. deer, foxes, kangaroos). Reference herein to *mcg7* or MCG7 includes reference to these molecules of human origin as well as novel forms of non-human origin.

15 The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli, Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human mcg7 gene portion, which mcg7 gene portion is capable of encoding an mcg7 polypeptide or a functional or immunologically interactive derivative thereof.

Preferably, the mcg7 gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said mcg7 gene portion in an appropriate cell.

In addition, the *mcg7* gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding glutathione-Stransferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

It is proposed in accordance with the present invention that MCG7 is a GEF involved in signal transduction. Mutations in *mcg7* or MCG7 may result in defective control of cell proliferation leading to the development of or a propensity to develop various types of cancer.

15

A deletion or aberration in the *mcg7* gene may also be important in the detection of cancer or a propensity to develop cancer. An aberration may be a homozygous mutation or a heterozygous mutation. The detection may occur at the foetal or post-natal level. Detection may also be at the germline or somatic cell level. Furthermore, a risk of developing cancer may be determined by assaying for aberrations in the parents of a subject under investigation.

According to this aspect of the present invention, there is contemplated a method of detecting a condition caused or facilitated by an aberration in mcg7, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said mcg7 wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

The nucleotide substitutions, additions or deletions may be detected by any convenient means 30 including nucleotide sequencing, restriction fragment length polymorphism (RFLP), polymerase chain reaction (PCR), oligonucleotide hybridization and single stranded

conformation polymorphism analysis (SSCP) amongst many others. An aberration includes modification to existing nucleotides such as to modify glycosylation signals amongst other effects.

5 In an alternative method, aberrations in the *mcg7* gene are detected by screening for mutations in MCG7.

A mutation in MCG7 may be a single or multiple amino acid substitution, addition and/or deletion. The mutation in mcg7 may also result in either no translation product being produced or a product in truncated form. A mutation may also be an altered glycosylation pattern or the introduction of side chain modifications to amino acid residues.

According to this aspect of the present invention, there is provided a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG7 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.

A particularly convenient means of detecting a mutation in MCG7 is by use of antibodies.

Accordingly another aspect of the present invention is directed to antibodies to MCG7 and its derivatives. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to MCG7 or may be specifically raised to MCG7 or derivatives thereof. In the case of the latter, MCG7 or its derivatives may first need to be associated with a carrier molecule. The antibodies to MCG7 of the present invention are particularly useful as diagnostic agents.

For example, antibodies to MCG7 and its derivatives can be used to screen for wild-type MCG7 or for mutated MCG7 molecules. The latter may occur, for example, during or prior to certain cancer development. A differential binding assay is also particularly useful. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of normal MCG7 levels or the presence of wild-type MCG7 may be important for

diagnosis of certain cancers or a predisposition for development of cancers or for monitoring certain therapeutic protocols.

As stated above antibodies to MCG7 of the present invention may be monoclonal or polyclonal or may be fragments of antibodies such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies.

For example, specific antibodies can be used to screen for wild-type MCG7 molecule or specific mutant molecules such as molecules having a certain deletion. This would be important, for example, as a means for screening for levels of MCG7 in a cell extract or other biological fluid or purifying MCG7 made by recombinant means from culture supernatant fluid or purified from a cell extract. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

15

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of wild-type MCG7 or to a specific mutant phenotype or to a deleted or otherwise altered region.

Both polyclonal and monoclonal antibodies are obtainable by immunization of a suitable animal or bird with MCG7 or its derivatives and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal or bird with an effective amount of MCG7 or antigenic parts thereof or derivatives thereof, collecting serum from the animal or bird, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting MCG7 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG7 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG7 complex to form, and then detecting said complex.

Preferably, the biological sample is a cell extract from a human or other animal or a bird.

The presence of MCG7 may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4, 424,279 and 4,018,653. These include both single-site and two-site or "sandwich" assays of the non-competitive types, as well as traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

20

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigenlabelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing

with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention the sample is one which might contain MCG7 including cell extract or, tissue biopsy. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the MCG7 or an antigenic part thereof or a derivative thereof or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes) and under suitable conditions (e.g. 25°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

P:\OPER\EJH\MCG7.PRV - 3

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-10 galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the 15 enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present 20 in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are

particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

As stated above, the present invention extends to genetic constructs capable of encoding 5 MCG7 or functional derivatives thereof. Such genetic constructs are also contemplated to be useful in modulating expression of specific genes in which *mcg7* is involved in tissue-specific or temporal regulation.

Accordingly, another aspect of the present invention is directed to a genetic construct comprising a nucleotide sequence encoding a peptide, polypeptide or protein and *mcg7* or a functional derivative or homologue thereof capable of modulating the expression of said nucleotide sequence.

P:\OPER\EIH\MCG7.PRV - 23/5/91

The present invention is further described with reference to the following non-limiting figures and Examples.

In the Figures:

5

Figure 1 is a representation showing similarity of MCG7 with GEFs of organisms.

Figure 2(a) is a representation of the nucleotide sequence and corresponding amino acid sequence of mcg7. An exon is shown in the nucleotide sequence in lower case (nucleotides 10 183-298).

Figure 2(b) is a representation of the nucleotide sequence and corresponding amino acid sequence of mcg7 but without the exon shown in Fig. 2(a). The cDNA molecules of Fig. 2(a) and Fig.2(b) differ by the inclusion and exclusion of the exon shown in Figure 2(a) in lower case.

Figure 3 is a representation showing a comparison between MCG7 and a homologue from *Caenorhabditis elegans* using BEST FIT algorithm. This top codon is also present in a mouse EST and sequence alignment between human and mouse ESTs suggests this region represents the 5' UTR. Furthermore, protein homology with the *C. elegans* protein (shown below) suggests the underlined ATG codon to represent the true initiation codon.

In the figure, the following sequences are colour coded:

25 orange 1 nematode DVDEEDEVEDIEF

orange 3 human DVDGDGHISQEEF

nematode DHDRDGFISQEEF

orange 4 human DQNQDGCISREEM nematode DVDMDGQISKDEL

pink 2 human HFVHVAEKVVQLQNFNTLMAVVGGLSHSSISRLKETH
5 nematode KFVHVAKHLRKINNFNTLMSVVGGITHSSVARLAKTY

yellow 5

human HNFQESNSLRPVACRHCKALILGIYKQGLKCRACGVNCHKQCKDRLSVE nematode HNFHETTFLTPTTCNHCNKLLWGILRQGFKCKDCGLAVHSCCKSNAVAE

Figure 4 is a representation of an alignment of human and murine mcg7 nucleotide sequences.

Figure 5 is a representation of further 5' nucleotide and corresponding amino acid sequence for *mcg*7.

15

10

Figure 6 is a graphical representation of GDP release assay.

Experiment #1 (mean of duplicates).

Exchange reaction contained 36pMols of GSTmcg7 (N-terminally truncated) and 1.6-12.8 pMols of recombinant N-Ras.GDP.

Reaction time 6 mins.

20 Estimated reaction constants:

 $K_m = 2.1 \mu M$, $V_{max} = 37 pMol/6 min/36 pMol [Expt#1]$

 $K_m = 1.5 \mu M$, $V_{max} = 30.3 pMol/6 min/36 pMol [Expt#2]$

25

EXAMPLE 1

A human gene (designated mcg7) was identified and isolated from chromosome 11q13 which encodes a protein that bears striking homology with guanine nucleotide exchange factors 5 (GEFs) from a wide variety of organisms (Fig. 1).

EXAMPLE 2

The composite *mcg7* cDNA sequence is at least 2.4kb in length and Figures 2(a) and 2(b) show a predicted amino acid sequence of 609 amino acids. Alternative start sites may yield a protein of 714 amino acids (Fig.5).

EXAMPLE 3

15 A mcg7 homologue from C. elegans has been identified, the product of which is highly conserved with that of MCG7 (Fig. 3). There are several salient features of the protein which have been highlighted in Fig. 3 - namely: a guanine nucleotide binding region (pink), a diacylglycerol binding region (yellow), and "EF-hand"-calcium binding regions (orange). In addition, there are several potential cAMP, protein kinase C, and casin kinase II phosphorylation sites, as well as a number of potential sites for glycosylation (not indicated).

EXAMPLE 4

A number of partial human and murine EST clones exist for mcg7.

EXAMPLE 5

The best characterised GEFs are the family of *ras* oncoproteins, which play a pivotal role in signal transduction and when mutated are responsible for tumour development. A variety of therapeutic regimes for cancer treatment have been designed to specifically interfere with the

ras signalling pathways. There is potential, therefore that the product of mcg7 could also be a target for such clinical strategies.

EXAMPLE 6

- 5 Intitiation codons for mcg7.
 - The nucleotide sequence for mcg7 cDNA was extended 5' with genomic DNA sequence from Genbank accession number AC000134 (positions 1-321) and analysed for additional coding sequence 5' to the putative initiation codon (nt 681-683). An additional in-frame ATG occurs at position nt 495-497 when the alternatively splice exon (position nt 504-609) is present.
- 10 This closely matches the Kozak consensus. When this exon is absent, then the ATG is not in-frame and other possible initiation codons are absent resulting translation shown in lower case lettering. Further evidence that the initiation codon at position nt 681-683 is the true intitation site is given below in Figure 4.
- 15 Alignment of human and murine mcg7 cDNA sequences is shown in Figure 4. The murin sequence represents a composite of 2 cDNA sequences from the expressed sequence tag database (accession numbers W71787 and AA237373). The putative initiation codon is at position nt 360-362. Both murine ESTs appear to have an upstream in-frame stop codon at position nt 326-328, downstream of the differentially spliced exon. Nucleotide differences between human and murine sequences are shown in lower case lettering and identical residues are indicated with asterisks.

The data are shown in Figures 4 and 5 and strongly suggest that the ATG codon at position nt 360-362 encodes the N-terminus of MCG7.

25

EXAMPLE 7

Figure 6 shows data from experiments indicating that a truncated version of mcg7 when expressed as a GST fursion protein can function as a Ras guanine nucleotide exchange factor.

30 In brief, Ras (unprocessed) is loaded with ³H-GDP then incubated in the presence of excess

cold GTP \pm GSTmcg7. Full details of our assay can be found in Porfiri et al. J. Biol. Chem. 269, 22672-22677 (1994).

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: The Council of The Queensland Institute for Medical Research
 - (ii) TITLE OF INVENTION: A NOVEL GENE AND USES THEREFOR
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: DAVIES COLLISON CAVE
 - (B) STREET: 1 LITTLE COLLINS STREET
 - (C) CITY: MELBOURNE
 - (D) STATE: VICTORIA
 - (E) COUNTRY: AUSTRALIA
 - (F) ZIP: 3000
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: AUSTRALIAN PROVISIONAL
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: HUGHES, DR E JOHN L
 - (C) REFERENCE/DOCKET NUMBER: EJH/AF
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +61 3 9254 2777
 - (B) TELEFAX: +61 3 9254 2770
 - (C) TELEX: AA 31787
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2415 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 3..2188

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CG A	TT 1 le 5	rca ' Ser '	TTC Phe	CTC (Leu)	GCT Ala 5	CCC Pro	CAC His	AGG Arg	TCC Ser	CTC Leu 10	TCC Ser	CCA Pro	AAA Lys	TAT Tyr	TCC Ser 15	47
CAT His	CTT Leu	GTC Val	CTA Leu	GCC Ala 20	CAT His	CCC Pro	CCA Pro	GAC Asp	TAT Tyr 25	CTC Leu	AAG Lys	GAC Asp	CAG Gln	CTG Leu 30	TCC Ser	95
CCA Pro	CGC Arg	CCC Pro	CGA Arg 35	CCT Pro	CCA Pro	CTA Leu	GGC Gly	CTG Leu 40	TGC Cys	CAC His	CCG Pro	CTG Leu	CCT Pro 45	GCA Ala	GGA Gly	143
AGA (CGC Arg	CCG Pro 50	GTC Val	CCG Pro	GGC Gly	CGG Arg	GTT Val 55	Ser	CCC Pro	ATG Met	GGA Gly	ACG Thr 60	CAG Gln	CGC Arg	CTG Leu	191
TGT (GGC Gly 65	CGC Arg	GGG Gly	ACT Thr	CAA Gln	GGC Gly 70	TGG Trp	CCT Pro	GGC Gly	TCA Ser	AGT Ser 75	GAA Glu	CAG Gln	CAC His	GTC Val	239
CAG (Gln (80	GAG Glu	GCG Ala	ACC Thr	TCG Ser	TCC Ser 85	GCG Ala	GGT	TTG Leu	CAT His	TCT Ser 90	GGG Gly	GTG Val	GAC Asp	GAG Glu	CTG Leu 95	287
GGG (GTT Val	CGG Arg	TCC Ser	GAG Glu 100	CCC Pro	GGT Gly	GGG Gly	AGG Arg	CTC Leu 105	CCG Pro	GAG Glu	CGC Arg	AGC Ser	CTG Leu 110	GGC Gly	335
CCA (GCC Ala	CAC His	CCC Pro 115	GCG Ala	CCG Pro	GCG Ala	GCC Ala	ATG Met 120	GCA Ala	GGC Gly	ACC Thr	CTG Leu	GAC Asp 125	CTG Leu	GAC Asp	383
AAG (Lys (GGC Gly	TGC Cys 130	ACG Thr	GTG Val	GAG Glu	GAG Glu	CTG Leu 135	CTC Leu	CGC Arg	GGG Gly	TGC Cys	ATC Ile 140	GAA Glu	GCC Ala	TTC Phe	431
GAT (GAC Asp 145	TCC Ser	GGG Gly	AAG Lys	GTG Val	CGG Arg 150	GAC Asp	CCG Pro	CAG Gln	CTG Leu	GTG Val 155	CGC Arg	ATG Met	TTC Phe	CTC Leu	479
ATG A Met 1 160	ATG Met	CAC His	CCC Pro	TGG Trp	TAC Tyr 165	ATC. Ile	CCC	TCC Ser	TCT Ser	CAG Gln 170	CTG Leu	GCG Ala	GCC Ala	AAG Lys	CTG Leu 175	527
CTC (CAC His	ATC Ile	TAC Tyr	CAA Gln 180	CAA Gln	TCC Ser	CGG Arg	AAG Lys	GAC Asp 185	AAC Asn	TCC Ser	AAT Asn	TCC Ser	CTG Leu 190	Gln	575
GTG :	AAA Lys	ACG Thr	TGC Cys 195	CAC His	CTG Leu	GTC Val	AGG Arg	TAC Tyr 200	Trp	ATC	TCC Ser	GCC	TTC Phe 205	CCA Pro	GCG Ala	623
GAG Glu	TTT Phe	GAC Asp 210	TTG Leu	AAC Asn	CCG Pro	GAG Glu	TTG Leu 215	Ala	GAG Glu	CAG Gln	ATC	AAG Lys 220	Glu	CTG Leu	AAG Lys	671

 	-		GAA Glu				_	 		719
			ACC Thr 245							767
			AAA Lys						,	815
			CTG Leu							863
			CTG Leu							911
			AAC Asn							959
			TGG Trp 325						. 1	007
			CTG Leu							055
			CAG Gln						1	103
			TCC Ser						1	151
			ATC Ile						1	199
			TAT Tyr 405						1	247
			CCG Pro						1	295
			CTG Leu						1	343
								CTG Leu	1	391
	Val							CTG Leu	1	439

ŧ

CTG Leu 480	AGC Ser	CTG Leu	CTC Leu	ACG Thr	GTG Val 485	TCT Ser	CTG Leu	GAT Asp	CAG Gln	TAT Tyr 490	CAG Gln	ACG Thr	GAG Glu	GAT Asp	GAG Glu 495	1487
CTG Leu	TAC Tyr	CAG Gln	CTG Leu	TCC Ser 500	CTG Leu	CAG Gln	CGG Arg	GAG Glu	CCG Pro 505	CGC Arg	TCC Ser	AAG Lys	TCC Ser	TCG Ser 510	CCA Pro	1535
ACC Thr	AGC Ser	CCC Pro	ACG Thr 515	AGT Ser	TGC Cys	ACC Thr	CCA Pro	CCA Pro 520	CCC Pro	CGG Arg	CCC Pro	CCG Pro	GTA Val 525	CTG Leu	GAG Glu	1583
GAG Glu	TGG Trp	ACC Thr 530	TCG Ser	GCT Ala	GCC Ala	AAA Lys	CCC Pro 535	AAG Lys	CTG Leu	GAT Asp	CAG Gln	GCC Ala 540	CTC Leu	GTG Val	GTG Val	1631
GAG Glu	CAC His 545	ATC Ile	GAG Glu	AAG Lys	ATG Met	GTG Val 550	GAG Glu	TCT Ser	GTG Val	TTC Phe	CGG Arg 555	AAC Asn	TTT Phe	GAC Asp	GTC Val	1679
GAT Asp 560	GGG Gly	GAT Asp	GGC Gly	CAC His	ATC Ile 565	TCA Ser	CAG Gln	GAA Glu	GAA Glu	TTC Phe 570	CAG Gln	ATC Ile	ATC Ile	CGT Arg	GGG Gly 575	1727
AAC Asn	TTC Phe	CCT Pro	TAC Tyr	CTC Leu 580	AGC Ser	GCC Ala	TTT Phe	GGG Gly	GAC Asp 585	CTC Leu	GAC Asp	CAG Gln	AAC Asn	CAG Gln 590	GAT Asp	1775
GGC Gly	TGC Cys	ATC Ile	AGC Ser 595	AGG Arg	GAG Glu	GAG Glu	ATG Met	GTT Val 600	TCC Ser	TAT Tyr	TTC Phe	CTG Leu	CGC Arg 605	TCC Ser	AGC Ser	1823
TCT Ser	GTG Val	TTG Leu 610	GGG Gly	GGG Gly	CGC Arg	ATG Met	GGC Gly 615	TTC Phe	GTA Val	CAC His	AAC Asn	TTC Phe 620	CAG Gln	GAG Glu	AGC Ser	1871
AAC Asn	TCC Ser 625	TTG Leu	CGC Arg	CCC Pro	GTC Val	GCC Ala 630	TGC Cys	CGC Arg	CAC His	TGC Cys	AAA Lys 635	GCC Ala	CTG Leu	ATC Ile	CTG Leu	1919
GGC Gly 640	ATC	TAC Tyr	AAG Lys	CAG Gln	GGC Gly 645	CTC Leu	AAA Lys	TGC	CGA Arg	GCC Ala 650	TGT Cys	GGA Gly	GTG Val	AAC Asn	TGC Cys 655	1967
CAC His	AAG Lys	CAG Gln	TGC Cys	AAG Lys 660	GAT Asp	CGC Arg	CTG Leu	TCA Ser	GTT Val 665	GAG Glu	TGT Cys	CGG Arg	CGC Arg	AGG Arg 670	GCC Ala	2015
CAG Gln	AGT Ser	GTG Val	AGC Ser 675	CTG Leu	GAG Glu	GGG Gly	TCT Ser	GCA Ala 680	Pro	TCA Ser	CCC Pro	TCA Ser	CCC Pro 685	Met	CAC His	2063
AGC Ser	CAC His	CAT His 690	His	CGC Arg	GCC Ala	TTC Phe	AGC Ser 695	Phe	TCT Ser	CTG Leu	CCC	CGC Arg 700	CCT Pro	GGC Gly	AGG Arg	2111
CGA Arg	GGC Gly 705	Ser	AGG Arg	CCT Pro	CCA Pro	GAG Glu 710	Ile	CGT	GAG Glu	GAG Glu	GAG Glu 715	Val	CAG Gln	ACG Thr	GTG Val	2159
	Asp				GAC Asp 725	Ile				ATAG	ATGC	TG T	GGTT	GGAT	'C	2208

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 728 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser His

1 10 15

Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser Pro 20 25 30

Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly Arg
35 40 45

Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu Cys
50 55 60

Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val Gln 65 70 75 80

Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu Gly 85 90 95

Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly Pro
100 105 110

Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr Leu Asp Leu Asp Lys 115 120 125

Gly Cys Thr Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe Asp 130 135 140

Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu Met 145 150 155 160

Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu Leu 165 170 175

His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln Val 180 185 190

Lys Thr Cys His Leu Val Arg Tyr Trp Ile Ser Ala Phe Pro Ala Glu 195 200 205

Phe Asp Leu Asn Pro Glu Leu Ala Glu Gln Ile Lys Glu Leu Lys Ala 210 215 220

Leu Leu Asp Gln Glu Gly Asn Arg Arg His Ser Ser Leu Ile Asp Ile 225 230 235 240 P:\OPER\EJH\MCG7.PRV - 23/5/94

Asp Ser Val Pro Thr Tyr Lys Trp Lys Arg Gln Val Thr Gln Arg Asn 250 Pro Val Gly Gln Lys Lys Arg Lys Met Ser Leu Leu Phe Asp His Leu 265 Glu Pro Met Glu Leu Ala Glu His Leu Thr Tyr Leu Glu Tyr Arg Ser 280 Phe Cys Lys Ile Leu Phe Gln Asp Tyr His Ser Phe Val Thr His Gly 295 Cys Thr Val Asp Asn Pro Val Leu Glu Arg Phe Ile Ser Leu Phe Asn 310 Ser Val Ser Gln Trp Val Gln Leu Met Ile Leu Ser Lys Pro Thr Ala 330 Pro Gln Arg Ala Leu Val Ile Thr His Phe Val His Val Ala Glu Lys Leu Leu Gln Leu Gln Asn Phe Asn Thr Leu Met Ala Val Val Gly Gly 360 Leu Ser His Ser Ser Ile Ser Arg Leu Lys Glu Thr His Ser His Val Ser Pro Glu Thr Ile Lys Leu Trp Glu Gly Leu Thr Glu Leu Val Thr Ala Thr Gly Asn Tyr Gly Asn Tyr Arg Arg Leu Ala Ala Cys Val 410 Gly Phe Arg Phe Pro Ile Leu Gly Val His Leu Lys Asp Leu Val Ala Leu Gln Leu Ala Leu Pro Asp Trp Leu Asp Pro Ala Arg Thr Arg Leu Asn Gly Ala Lys Met Lys Gln Leu Phe Ser Ile Leu Glu Glu Leu Ala Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu Leu Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu Leu Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro Thr Ser Pro Thr Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu Glu Trp Thr Ser Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val Glu 535 His Ile Glu Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val Asp 550 Gly Asp Gly His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly Asn 575 Phe Pro Tyr Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp Gly 585 580

Суз	Ile	Ser 595	Arg	Glu	Glu	Met	Val 600	Ser	Tyr	Phe	Leu	Arg 605	Ser	Ser	Ser	
Val	Leu 610	Gly	Gly	Arg	Met	Gly 615	Phe	Val	His	Àsn	Phe 620	Gln	Glu	Ser	Asn	
Ser 625	Leu	Arg	Pro	Val	Ala 630	Cys	Arg	His	Cys	Lys 635	Ala	Leu	Ile	Leu	Gly 640	
Ile	Tyr	Lys	Gln	Gly 645	Leu	Lys	Cys	Arg	Ala 650	Cys	Gly	Val	Asn	Cys 655	His	
Lys	Gln	Cys	Lys 660	Asp	Arg	Leu	Ser	Val 665	Glu	Cys	Arg	Arg	Arg 670	Ala	Gln	
Ser	Val	Ser 675	Leu	Glu	Gly	Ser	Ala 680	Pro	Ser	Pro	Ser	Pro 685	Met	His	Ser	
His	His 690	His	Arg	Ala	Phe	Ser 695	Phe	Ser	Leu	Pro	Arg 700	Pro	Gly	Arg	Arg	
Gly 705	Ser	Arg	Pro	Pro	Glu 710	Ile	Arg	Glu	Glu	Glu 715	Val	Gln	Thr	Val	Glu 720	
Asp	Gly	Val	Phe	Asp 725	Ile	His	Leu									
(2)	(ii) (ix)	SEC (7 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	QUENCAL DE LECUI	AME/I	HARACH: 30 nuclosed n	CTERION baleic ESS: line DNA CDS 170	STICASE PACIFICATION STATEMENT OF STATEMENT	CS: pairs i gle	ID NG							
CGA	TTTC	ATT (CCTC	GCTC	cc cz	ACAGO	GTCC	C TC	rccc	CAAA	ATA!	rtcc	CAT (CTTG'	ICCTAG	60
															TAGGCC	120
TGT	GCCA(ccc (GCTG(CCTG	CA GO	GAAG	ACGC(C CG(GTCC(CGGG	CCG	ggtt:		CC C ro H 1		175
	AAC Asn												Glu			223
		Pro													GAC Asp	271
	GAC Asp															300

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Pro His Gly Asn Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu

Arg Ser Leu Gly Pro Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr

Leu Asp Leu Asp Lys Gly Cys Thr Val Glu Glu Leu

DATED this 23rd day of May 1997

The Council of The Queensland Institute for Medical Research

By DAVIES COLLISON CAVE

Patent Attorneys for the Applicants

FIGURE 2

CG ATT TCA T Ile Ser F	TTC CTC GCT (Phe Leu Ala 1					47
CAT CTT GTC His Leu Val						95
CCA CGC CCC Pro Arg Pro			Cys His I			143
AGA CGC CCG Arg Arg Pro 50						191
TGT GGC CGC Cys Gly Arg 65						239
CAG GAG GCG Gln Glu Ala 80						287
GGG GTT CGG Gly Val Arg						335
CCA GCC CAC Pro Ala His			Ala Gly 3			383
AAG GGC TGC Lys Gly Cys 130						431
GAT GAC TCC Asp Asp Ser 145			Gln Leu V			479
ATG ATG CAC Met Met His 160						527
CTC CAC ATC Leu His Ile						575
GTG AAA ACG Val Lys Thr			Trp Ile			623
GAG TTT GAC		GAG TTG GCT	GAG CAG	ATC AAG GAG	CTG AAG	671
Figure 2 (co	ontinued)					
Glu Phe Asp 210		215		220	_	
GCT CTG CTA Ala Leu Leu 225	GAC CAA GAA Asp Gln Glu		g Arg His			719

			(a)	7							٠		'	•		
ATA Ile 240	GAC Asp	AGC Ser	GTC Val	CCT Pro	ACC Thr 245	TAC Tyr	AAG Lys	TGG Trp	AAG Lys	CGG Arg 250	CAG Gln	GTG Val	ACT Thr	CAG Gln	CGG Arg 255	767
AAC Asn	CCT Pro	GTG Val	GGA Gly	CAG Gln 260	AAA Lys	AAG Lys	CGC Arg	AAG Lys	ATG Met 265	TCC Ser	CTG Leu	TTG Leu	TTT Phe	GAC Asp 270	CAC His	815
CTG Leu	GAG Glu	CCC Pro	ATG Met 275	GAG Glu	CTG Leu	GCG Ala	GAG Glu	CAT His 280	CTC Leu	ACC Thr	TAC Tyr	TTG Leu	GAG Glu 285	TAT Tyr	CGC Arg	863
TCC Ser	TTC Phe	TGC Cys 290	AAG Lys	ATC Ile	CTG Leu	TTT Phe	CAG Gln 295	GAC Asp	TAT Tyr	CAC His	AGT Ser	TTC Phe 300	GTG Val	ACT Thr	CAT His	911
GGC Gly	TGC Cys 305	ACT Thr	GTG Val	GAC Asp	AAC Asn	CCC Pro 310	GTC Val	CTG Leu	GAG Glu	CGG Arg	TTC Phe 315	ATC Ile	TCC Ser	CTC Leu	TTC Phe	959
AAC Asn 320	AGC Ser	GTC Val	TCA Ser	CAG Gln	TGG Trp 325	GTG Val	CAG Gln	CTC Leu	ATG Met	ATC Ile 330	CTC Leu	AGC Ser	AAA Lys	CCC Pro	ACA Thr 335	1007
GCC Ala	CCG Pro	CAG Gln	CGG Arg	GCC Ala 340	CTG Leu	GTC Val	ATC Ile	ACA Thr	CAC His 345	TTT Phe	GTC Val	CAC His	GTG Val	GCG Ala 350	GAG Glu	1055
AAG Lys	CTG Leu	CTA Leu	CAG Gln 355	CTG Leu	CAG Gln	AAC Asn	TTC Phe	AAC Asn 360	ACG Thr	CTG Leu	ATG Met	GCA Ala	GTG Val 365	GTC Val	GGG Gly	1103
GGC Gly	CTG Leu	AGC Ser 370	CAC His	AGC Ser	TCC Ser	ATC Ile	TCC Ser 375	CGC Arg	CTC Leu	AAG Lys	GAG Glu	ACC Thr 380	CAC His	AGC Ser	CAC His	1151
GTT Val	AGC Ser 385	CCT Pro	GAG Glu	ACC Thr	ATC Ile	AAG Lys 390	CTC Leu	TGG Trp	GAG Glu	GGT Gly	CTC Leu 395	ACG Thr	GAA Glu	CTA Leu	GTG Val	1199
ACG Thr 400	GCG Ala	ACA Thr	GGC Gly	AAC Asn	TAT Tyr 405	GGC Gly	AAC Asn	TAC Tyr	CGG Arg	CGT Arg 410	CGG Arg	CTG Leu	GCA Ala	GCC Ala	TGT Cys 415	1247
GTG Val	GGC Gly	TTC Phe	CGC Arg	TTC Phe 420	CCG Pro	ATC Ile	CTG Leu	GGT Gly	GTG Val 425	CAC His	CTC Leu	AAG Lys	GAC Asp	CTG Leu 430	GTG Val	1295
GCC Ala	CTG Leu	CAG Gln	CTG Leu	GCA Ala	CTG Leu	CCT Pro	GAC Asp	TGG Trp	CTG Leu	GAC Asp	CCA Pro	GCC Ala	CGG Arg	ACC Thr	CGG Arg	1343
Figu	re 2	(cc	ontir	ued)												
			435					440					445			
CTC Leu	AAC Asn	GGG Gly 450	GCC Ala	AAG Lys	ATG Met	AAG Lys	CAG Gln 455	CTC Leu	TTT Phe	AGC Ser	ATC Ile	CTG Leu 460	GAG Glu	GAG Glu	CTG Leu	1391
GCC Ala	ATG Met 465	GTG Val	ACC Thr	AGC Ser	CTG Leu	CGG Arg 470	CCA Pro	CCA Pro	GTA Val	CAG Gln	GCC Ala 475	AAC Asn	CCC Pro	GAC Asp	CTG Leu	1439
CTG Leu 480	AGC Ser	CTG Leu	CTC Leu	ACG Thr	GTG Val 485	TCT Ser	CTG Leu	GAT Asp	CAG Gln	TAT Tyr 490	CAG Gln	ACG Thr	GAG Glu	GAT Asp	GAG Glu 495	1487
CTG Leu	TAC Tyr	CAG Gln	CTG Leu	TCC Ser 500	CTG Leu	CAG Gln	CGG Arg	GAG Glu	CCG Pro 505	CGC Arg	TCC Ser	AAG Lys	TCC Ser	TCG Ser 510	CCA Pro	1535

			ACG Thr 515													1583
			TCG Ser					AAG					CTC			1631
			GAG Glu													1679
			GGC Gly													1727
			TAC Tyr													1775
			AGC Ser 595													1823
			GGG Gly													1871
			CGC Arg													1919
			AAG Lys													1967
			TGC Cys													2015
Figu	ire 2	2 (c	onti	nued)	ı											
				660					665					670		
			AGC Ser 675												CAC His	2063
			His												AGG Arg	2111
CGA Arg	GGC Gly 705	Ser	AGG Arg	CCT Pro	CCA Pro	GAG Glu 710	ATC Ile	CGT Arg	GAG Glu	GAG Glu	GAG Glu 715	GTA Val	CAG Gln	ACG Thr	GTG Val	2159
	Asp		GTG Val							ATAG	ATGC:	rg t(GGTT(GGAT(2	2208
AAG	GACT	CAT	TCCT	GCCT'	rg G	AGAA	AATA	C TT	CAAC	CAGA	GCA	GGGA	GCC '	TGGG(GGTGTC	2268
GGG	GCAG	GAG	GCTG	GGGA'	rg G	GGGT	GGGA'	T AT	GAGG	GTGG	CAT	GCAG	CTG 2	AGGG	CAGGGC	2328
CAG	GGCT	GGT	GTCC	CTAA	GG T	TGTA	CAGA	C TC	TTGT	GAAT	ATT'	TGTA	TTT '	TCCA	GATGGA	2388
ATA	AAAA	GGC	CCGT	GTAA'	TT A	ACCT	TCA									2416

Figure 1

			Smallest	
			Sum	
		High	Probabili	ty
Sequences producing	High-scoring Segment Pairs:	Score	P(N)	N
	•			
gml PID e236178	(Z70752) F25B3.3 [Caenorhabditis ele	307	3.0e-124	8
gi 1293099	(U53884) aimless RasGEF [Dictyosteli	202	7.8e-22	5
gi 1655941	(U67326) Ras-GRF2 [Mus musculus]	152	3.6e-16	4
pir s30356	CDC25 protein homolog - yeast (Candi	150	2.2e-15	3
	CELL DIVISION CONTROL PROTEIN 25	150	2.2e-15	3
sp P28818 GNRP_RAT	GUANINE NUCLEOTIDE RELEASING PROTEIN	166	2.6e-15	3
prf 1814463A	guanine nucleotide-releasing factor	166	2.6e-15	3
pir B46199	nucleotide-exchange-factor homolog c	167	1.le-14	1
gn1 PID e238680	(X97560) hypothetical protein L1309	158	3.0e-14	3
pir S22693	CDC25 protein homolog - mouse /gi 50	167	3.7e-14	2
	SCD25 PROTEIN /gi 457494 (M26647) SD	158	4.6e-14	3
SDIP26674 STE6 SCHPO	STE6 PROTEIN /pir S28098 ste6 prote	160	5.2e-14	2
pir S28407	CDC25 protein homolog - mouse	167	1.2e-13	3
	GUANINE NUCLEOTIDE RELEASING PROTEIN	167	1.2e-13	3
gi 386047	(S62035) Ras-specific guanine nucleo	153	2.0e-13	2
	CELL DIVISION CONTROL PROTEIN 25 /pi	142	4.5e-13	2
pir S14177	SCD25 protein - yeast (Saccharomyces	152	5.7e-13	3
gi 433720	(L26584) CDC25 [Homo sapiens]	153	6.0e-13	3
gn1 PID e241744	(Z68880) T14G10.2 (Caenorhabditis el	157	7.2e-13	1
gil]3484	(X03579) CDC25 protein (aa 1-1588) [136	3.4e-12	3
	CELL DIVISION CONTROL PROTEIN 25 /pi	136	3.4e-12	3
gi 915328	(U24070) Munc13-1 [Rattus norvegicus]	151	5.5e-12	1
pir A46199	nucleotide-exchange-factor homolog c	149	5.6e-12	1
pdb 1PTR	Molecule: Protein Kinase C Delta Ty	136	1.5e-11	1
gi 915330	(U24071) Munc13-2 [Rattus norvegicus]	150	1.6e-11	2
gi 474982	(D21239) 'C3G protein' [Homo sapiens	131	3.3e-11	3
gi 1763306	(U75361) Munc13-3 [Rattus norvegicus]	153	6.4e-11	2
gi 806957	quanine-nucleotide exchange factor C	128	7.8e-11	3
	GUANINE NUCLEOTIDE DISSOCIATION STIM	133	1.0e-10	2
pir BVBYL1	LTE1 protein - yeast (Saccharomyces	139	1.9e-10	1
gi 452242	(D21354) a putative guanine nucleoti	139	2.7e-10	1
	LOW TEMPERATURE ESSENTIAL PROTEIN /p	139	2.7e-10	1
gi 509050	(Z22521) protein kinase C delta [Hom	137	4.0e-10	ì
gi 520587	(D10495) protein kinase C delta-type	137	4.6e-10	ì
	PROTEIN KINASE C. BRAIN ISOZYME (PKC	137	4.7e-10	1
pir S35704	protein kinase C (EC 2.7.1) delta	137	4.7e-10	1
	PROTEIN KINASE C, DELTA TYPE (NPKC-D	137	4.7e-10	1
pir S40279	protein kinase C mu - human /pir A5	137	4.9e-10	1
sp P09215 KPCD_RAT	PROTEIN KINASE C, DELTA TYPE (NPKC-D	135	9.0e-10	1
gi 520878	(Z34524) serine/threonine protein ki	133	1.8e-09	1
gi 1519719	(U68142) RalGDS-like [Homo sapiens]	115	3.8e-09	3
3-1				

]	FIGURE 2		
			0	
		1		
		2		
•				
				-

MCG7 - Cloning of a novel human gene that encodes a guanine exchange factor

CGATTTCATTCCTCGCTCCCCACAGGTCCCTCTCCCCAAAATATTCCCATCTTGTCCTAG 60 I S F L A P H R S L S P K Y S H L V L CCCATCCCCAGACTATCTCAAGGACCAGCTGTCCCCACGCCCCGACCTCCACTAGGCC 120 AHPPDYLKDQLSPRPPLG TGTGCCACCGCTGCCTGCAGGAAGACGCCCGGTCCCGGGCCGGGTTAGCCCCATGGGAA 180 L C H P L P A G R R P V P G R V S P M G 59 T Q R L C G R G T Q G W P G S S E Q H V aggaggcgacctcgtccgcgggtttgcattctggggtggacgagctggGGGTTCGGTCCG 300 Q E A T S S A G L H S G V D E L G V R S E P G G R L P E R S L G P A H P A P A A TGGCAGGCACCTGGACCTGGACAAGGGCTGCACGGTGGAGGAGCTGCTCCGCGGGTGCA 420 M A G T L D L D K G C T V E E L L R G C TCGAAGCCTTCGATGACTCCGGGAAGGTGCGGGACCCGCAGCTGGTGCGCATGTTCCTCA 480 I E A F D D S G K V R D P Q L V R M F L TGATGCACCCCTGGTACATCCCCTCCTCTCAGCTGGCGGCCAAGCTGCTCCACATCTACC 540 M M H P W Y I P S S O L A A K L L H I Y AACAATCCCGGAAGGACAACTCCAATTCCCTGCAGGTGAAAACGTGCCACCTGGTCAGGT 600 Q Q S R K D N S N S L Q V K T C H L V R ACTGGATCTCCGCCTTCCCAGCGGAGTTTGACTTGAACCCGGAGTTGGCTGAGCAGATCA 660 Y W I S A F P A E F D L N P E L A E Q I AGGAGCTGAAGGCTCTGCTAGACCAAGAAGGGAACCGACGGCACAGCAGCCTAATCGACA 720 K E L K A L L D Q E G N R R H S S L I D TAGACAGCGTCCCTACCTACAAGTGGAAGCGGCAGGTGACTCAGCGGAACCCTGTGGGAC 780 I D S V P T Y K W K R Q V T Q R N P V G AGAAAAAGCGCAAGATGTCCCTGTTGTTTGACCACCTGGAGCCCATGGAGCTGGCGGAGC 840 Q K K R K M S L L F D H L E P M E L A E ATCTCACCTACTTGGAGTATCGCTCCTTCTGCAAGATCCTGTTTCAGGACTATCACAGTT 900 H L T Y L E Y R S F C K I L F Q D Y H S TCGTGACTCATGGCTGCACTGTGGACACCCCGTCCTGGAGCGGTTCATCTCCCTCTTCA 960 F V T H G C T V D N P V L E R F I S L F ACAGCGTCTCACAGTGGGTGCAGCTCATGATCCTCAGCAAACCCACAGCCCCGCAGCGGG 1020 N S V S Q W V Q L M I L S K P T A P Q R CCCTGGTCATCACACACTTTGTCCACGTGGCGGAGAAGCTGCTACAGCTGCAGAACTTCA 1080 A L V I T H F V H V A E K L L Q L Q N F ACACGCTGATGGCAGTGGTCGGGGGCCTGAGCCACAGCICCATCTCCCGCCTCAAGGAGA 1140 N T L M A V V G G L S H S S I S R L K E CCCACAGCCACGTTAGCCCTGAGACCATCAAGCTCTGGGAGGGTCTCACGGAACTAGTGA 1200 T H S H V S P E T I K L W E G L T E L V CGGCGACAGGCAACTATGGCAACTACCGGCGTCGGCTGGCAGCCTGTGTGGGCTTCCGCT 1260 T A T G N Y G N Y R R R L A A C V G F R TCCCGATCCTGGGTGTGCACCTCAAGGACCTGGTGGCCCTGCAGCTGGCACTGCCTGACT 1320 F P I L G V H L K D L V A L Q L A L P D GGCTGGACCCAGCCCGGACCCGGCTCAACGGGGCCAAGATGAAGCAGCTCTTTAGCATCC 1380 W L D P A R T R L N G A K M K Q L F S I TGGAGGAGCTGGCCATGGTGACCAGCCTGCGGCCACCAGTACAGGCCAACCCCGACCTGC 1440 L E E L A M V T S L R P P V Q A N P D L TGAGCCTGCTCACGGTGTCTCTGGATCAGTATCAGACGGAGGATGAGCTGTACCAGCTGT 1500 LSLLTVSLDQYQTEDELYQL CCCTGCAGCGGGAGCCGCCTCCAAGTCCTCGCCAACCAGCCCCACGAGTTGCACCCCAC 1560 S L Q R E P R S K S S P T S P T S C T P CACCCCGGCCCCCGGTACTGGAGGAGTGGACCTCGGCTGCCAAACCCAAGCTGGATCAGG 1620 PPRPPVLEEWTSAAKPKLDQ CCCTCGTGGTGGAGCACATCGAGAAGATGGTGGAGTCTGTGTTCCGGAACTTTGACGTCG 1680

Figure 2a (cont...)

A	_	V	V	E	Н	I		K		v	Ε	s	v	F	R	N	F	ם	v	559
Α	TGG	GGA:	rgg	CCA	CAT	CTC	ACA	GGA.	AGA	TTA	CAC	מדמב	ים תר	reco	raac	יא אר	ارس -	2000	TACC	
D	G	D	G	н	T	s	0	E	E	F										•
T	C N C C	7000	_		_	_					Q	I	Ι	R	G	N	F	P	Y	579
_	CAGC	-6-(-11.	ا ليان		CTO	CGA	CCA	GAA	CAC	GAT	rggc	CTGC	ATC	CAGO	CAGO	GAG	GAG	ATGG	1800
L	_	Α	F	G	D	L	D	Q	N	Q	D	G	С	I	s	R	E	E	М	599
T	TTCC	TAT	TTC	CCT	GCGC	CTC	CAG	CTC	rgre	TTC	GGG	GGG	CGC	'ATC	GGC	יייייר	יכידא	CAC	'AACT	3000
V	s	Y	F	L	R	s	s	s	v	T.	G	G	R	м						
т	CCAG	CAC	יאככ	ה אמרי	ייייטרי ייייטרי	_	-	-	•	_					G	F	V	H	N	619
F	ocac	- CAC	700	MAC	-100					GCC	TGC	CGC	CAC	TGC	'AAA	GCC	CTG	ATC	CTGG	1920
-	Q	E	S	.N	S	L	R	P	V	Α	C	R	H	C	K	Α	L	Ι	L	639
G	CATC	TAC	AAG	CAC	GGC	CTC	CAA	TGC	CGA	GCC	TGT	'GGA	GTG	AAC	TGC	CAC	AAG	CAG	TGCA	1980
G	I	Y	K	0	G	L	к	C	R	А	С	G	v	N	-C	Н				
. AC	GAT	CGC	СТС	ידים מיזידי	CTT	'C'AC	יייי	יכפר								п.	K	Q	C TCTG	659
ĸ	D	R	τ.	s	,,	OAC								GTG.	AGC	CTG	GAG	GGG'	TCTG	2040
	_		_	_	V	E	C	R	R	R	А	Q	S	V	S	L	E	G	s	679
CF	CCC	TCA	CCC	TCA	.CCC	ATG	CAC	AGC	CAC	CAT	CAC	CGC	GCC'	TTC	AGC'	TTC'	тст	CTG	CCC	2100
A	P	S	P	S	P	M	H	S	H	Н	Н	R	Α	F	s	F	s	L	P	
GC	CCT	GGC.	AGG	CGA	GGC	TCC	AGG	ССТ	CCA	G N C					~~~	- r			F GTGG	699
R	P	G	R	R	G	s	R										CAG	ACGO	FTGG	2160
••	-	_	••		_	_		P	₽	E	Ι	R	E	E	E	V	Q	T	V	719
AG	GAT	افافات	J'I'G	T.T.T.	GAC.	ATC	CAC	TTG	TAA'	rag/	ATG	CTG	TGG:	rtgo	GAT	CAAC	GAC	TC	ATTC	2220
E.	D	G	V	F	D	I	H	L	*											728
CT	GCC:	TTG	GAG.	AAA	ATA	CTT	CAA	CCA	GAG	~ <u>A</u> C C	CAC	200	raaa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2000		~~-	GGC	. – –
TG	GGG	ስምር <i>ር</i>	cac	этс	במאי	יידי איז יידי איז	C N C (~ C m/		ma		300.			LGIC	الالالال	عري بي و	AGGA	IGGC	2280
CC	CTD I	100			SOA.		GAG(361	ري د ال	4160	AGC	TGA	AGGC	CAC	GGG	CCAC	GGC	TGG	TGT	2340
CC	CTA	100.	L'I'G'	TAC	AGA	JTC'	TTG:	rga.	ATA:	TTT	TAT	TTT	CCA	GAT	GGZ	ATA	AAA	AGG	CCC	2400
	GTA																			

CGAT	ттсі	ላ ጥጥር	тОТ	cac	rcc	CCA	CAG	GTC	CCT	CTC	CCC	AAA	ATA	TTC	CCA	TCT	TGT	CCT	AG	60
CCCA	TCC	יככי	AGA	CTA'	$_{ m TCT}$	CAA	GGA	CCA	GCT	GTC	CCC	ACG	CCC	CCG	ACC	TCC	ACT	AGG	CC	120
TGTG	CCAC		TOT	GCC'	TGC	AGG	AAG	ACG	CCC	GGT	CCC	GGG	CCG	GGT	TAG	CCC	CAT	GGG	AA	180
1010			-																	
CGGG	GTT	:GG	rcc	GAG	ccc	GGT	GGG	AGG	CTC	CCG	GAG	CGC	AGC	CTG	GGC	CCA	GCC	CAC	CC	
a	v	r	s	е	q	q	g	r	1	р	е	r	s	1	g	p	a	h	р	
CGCG	CCG	GCG	GCC	ATG	GCA	.GGC	ACC	CTG	GAC	CTG	GAC	AAG	GGC	TGC	ACG	GTG	GAG	GAG	CT	

Figure 3

human nematode	MAGTLDLDKGCTVEELLRGCIEAFDDSGKVRDPQLVRMFLMMHPWYIPSSQLAAK MSSKVEEDQHQELLTEDQLVARCVECFEVDEKDEVELEKTVDALFLSHQWLSDSLSLITH
human nematode	LLHIYQQSRKDNSNSLQVKTCHLVRYWISAFPAEFDLNPELAEQIKELKALLDQEGNRRH FVNFYQETRNVEQREAVCRAVSFWIEKFPMHFDAQPQVCAQVVRLKTIA-EDINENI *** * * * * * * * * * * * * * * *
human nematode	SSLIDIDSVPTYKWKRQVTQRNPVDRKKRKMSL RNGLDVSALPSFAWLRAVSVRNPLAKQTIVRVDFETLPTPGTPPPFPIASKKFSLTAFSL ** * * * * * * * * * * * * * * * * * *
human nematode	LFDHLEPMELAEHLTYLEYRSFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWVQ SFVQASPSDISTSLSHIDYRVLSRISITELKQYVKDGHLRSCPMLERSISVFNNLSNWVQ * * * * * * * * * * * * * * * * * * *
human nematode	LMILSKPTAPORALVITA WARRAND ONE WILMAVVGGLSHSSISRIKETHSHVSPE CMILNKTTPKERAEILVAN AVLSND
human nematode	TIKLWEGLTELVTATGNYGNYRRRLAACVG-FRFPILGVHLKDLVALQLALPDWLDPART IKKELTQLTNLLSAQHNFCEYRKALGACNKKFRIPIIGVHLKDLVAINCSGANFEKTKCI * ** * * *. ** ** ** **************
human nematode	RLN-GAKMKQLFSILEELAMVTNRLPPVHANPDLLSLLTVLLDQYQTEDELYQLCLQREP SSDKLVKLSKLLSNFLVFNQKGHNLPEMMDLINTLKVSLDIRYNDDDIYELSLRREP * * *
human nematode	RSKSSPTSPTSCTPPPRPPVLEEWTSAAKPKLDQALVVEHIEKMVESVFRNFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
human nematode	SOEFOLIRGNFPYLSAFGDLETWOOGCISTON VSYFLRSSS-VLGGRMGFVHNFQESN SOEFOLIAGNFPFIDAFVNI WYMDGGISTON KYTYFMAANKVIKDLRRGFKHNFHEIT
human nematode	SLRPVACRHCKALILGIYKQGLKCRACGVNCHKQCKDRLSVECRRRAQSVSLEGFAPSPS FLTPTTCNHCNKLLWGILRQGFKCKDCGLAVHSCCKSNAVAECRRKSSSNLTRAAEWFAS
human nematode	PMTATITAPSVSFCPALAGEAPGLQRSVRRYYRRWRMGCLTSTCNRCCGWIKDSFLPWRK PR-GSMRSRIINTCNN-SGSTPDEEIGLVSLACEEVFEDDDLADISSAS * * *
human nematode	YFNQSREPGGVGAGGWGWDMRVACS YRTA* * .

			,		
	ATTTCATT	CCTCGCTCCC	CACAGGTCCC	TCTCCCCAAA	ATATTCCCAT
CTTGTCCTAG 60 human CC	CATCCCCC .	AGACTATCTC	AAGGACCAGC	TGTCCCCACG	CCCCGACCT
CCACTAGGCC 120	TGCCACCC	GCTGCCTGCA	GGAAGACGCC	CGGTCCCGGG	CCGGGTTAGC
CCCATCCCAA 180					
human CG CAGCACGTCC 240	CAGCGCCT	GTGTGGCCGC	GGGACTCAAG	GCTGGCCTGG	CTCAAGIGAA
mouse			***tcag**	****ag****	t******
a*gt> human AG	GAGGCGAC	CTCGTCCGCG	GGTTTGCATT	CTGGGGTGGA	CGAGCTGGGG
GTTCGGTCCG 300					acagg

	****t**a	**-*catt**	******	***aa**aa*	9
aaat**> human AG	CCCGGTGG	GAGGCTCCCG	GAGCGCAGCC	TGGGCCCAGC	CCACCCCGCG
CCCCCCCCA 360					
mouse **	*a*t***	******tga	***t*t*a*t	******	***-*tg**a
*****a****>				GGN GGGTGGN	CCACCTCCTC
	-	CCTGGACCTG	GACAAGGGCT	GCACGGTGGA	GGAGCIGCIC
CGCGGGTGCA 420	**da****	<u>_******</u>	******	****C****	*****
********	_				
human TO	GAAGCCTT	CGATGACTCC	GGGAAGGTGC	GGGACCCGCA	GCTGGTGCGC
ATCTTCCTCA 480	1				
	******	t*******	**a*****	*a**t**a**	***a*****
********		CTCCTACATC	CCCTCCTCTC	AGCTGGCGGC	CAAGCTGCTC
		CIGGIACAIC	cccrccrc	7.001.00000	
CACATCTACC 540	, 		******	*******	g**a*****

		GAAGGACAAC	TCCAATTCCC	TGCAGGTGAA	AACGTGCCAC
CTGGTCAGGT 60			******	*a***a***	******
	g*******			<u> </u>	
t********* human A	CTGGATCTC	CGCCTTCCCA	GCGGAGTTTC	ACTTGAACCC	GGAGTTGGCT
CACCACATCA 66	n				
	******	a******	**a*****C	* ********	a***C****
a****	GC	СССТСТССТ	CACCAAGAA(GGAACCGAC	G GCACAGCAGC
human A CTAATCGACA 72		GGCICIGCIA	CACCIDIO		
mouse	******	** ******	** ******	** *******	a* ********
C****					
human	TAGACAGC	GT			
730	*c**g**t	**			
mouse	- 9 -				

$C \Lambda$	ccc	СТС	GGA	AGG	GAG	GTT	TGG	GGT	'CGG	TGG	TTT	CAC	AGT	GAG	TGT	GTC	TGA	AGC	CAAA	60
TC	CTC	GGA.	חממ	CGT	TAC	'CCG	CTC	TCC	TAG	GCC	CGG	CTA	GTG	GGG	ACC	CCA	ACC	GCC'	TGCG	120
									*	A	Ŕ	L	V	G	T	P	T	Α	C >	
GC	TGC	CCC'	TCC	CAA	GTI	CCI	'CCC	TGT	'TGG	CCA	.GGC	ATC	CAG	GTC	TCC	AGT	CTC	CGA	GCTG	180
G	C	P	S	Ω	V	P	P	C	W	Р	G	I	Q	V	S	S	L	R	A>	
CGGAGAACCCACCGCCACATGCGGCTGCCCCTTTCCATTCGACCCTGTGGGGAGCCAGGC A E N P P P H A A A P F H S T L W G A R>												240								
Δ	E	N	P	P	P	Н	Α	Α	Α	P	F	H	S	T	L	W	G	A	R>	
TT	CCG	GGG	CCC	CGI	TCC	TCC	TGT	GTG	AAC	TGG	GCC	CCC	CGC	CCC	CAT	TCC	CAG	ACA	TCAA	300
Τ.	P	G	P	R	S	S	С	V	N	W	Α	P	R	Ρ	H	S	Q	T	S>	
GG	CCG	CGT	CTC	CAG	ATA	GCC	ACG	ATT	TCA	ATTC	CTC	GCT	CCC	CAC	AGG	TCC	CTC	TCC	CCAA	360
P	P	R	Τ,	0	Ι	Α	Т	I	S	F	L	Α	P	Н	R	S	L	S	P>	
ΔΔ	- ጥልጥ	TCC	CAT	CTI	GTC	CTA	.GCC	CAT	CC	CCA	GAC	TAT	CTC	AAC	GAC	CAG	CTG	TCC	CCAC	420
V	v	5	н	Τ.	v	L	A	Н	P	₽	D	Y	L	K	D	Q	L	s	P>	
GC		CGA	 ССТ	ירכז	CTE	AGGC	СТС	TGC	CAC	CCG	CTG	CCI	GCA	GGA	AGA	CGC	CCG	GTC	CCGG	480
B	P	R	P	P	L	G	L	С	Н	P	L	P	А	G	R	R	P	V	P>	
GC	CGG	GTT	AGC	CCC	ATC	GGA	ACG	cag	gcgc	catg	tgt	ggc	cgc	ggg	act	caa	ggc	tgg	cctg	540
			*	a	h	q	n													
G	R	V	s	P	М	G	T	Q	R	L	С	G	R	G	T	Q	G	W	P>	
G R V S P M G T Q R L C G R G T Q G W P> gctcaagtgaacagcacgtccaggaggcgacctcgtccgcgggtttgcattctggggtgg											gtgg	600								
C	S	S	E	O	Н	V	0	E	Α	T	s	S	Α	G	L	H	S	G	V >	
30	aan 'aan	cta	aGG	GT1	rcg(TCC	GAC	CCC	GGT	rgge	AGC	CTC	CCC	GAC	CGC	AGC	CTG	GGC	CCAG	660
D	949	t.	G	v	R	s	Е	P	G	G	R	L	P	E	R	S	L	G	P>	
D E L G V R S E P G G R L P E R S L G P> CCCACCCCGCGCCGGCGGCCATGCAGGCACCCTGGACCAGGGCTGCACGGTGG										720										
-	. CAC	יייייייייייייייייייייייייייייייייייייי	. ט ב כ	ם	2	Δ.	M	A	G	т	L	D	L	D	ĸ	G	С	T	V>	

Figure 6