

Sumário

O ambiente Matemático	1
Frações, Expoentes, Índices, Raízes e Pontos	3
Frações	3
Expoentes e Índices	4
Raízes	5
Pontos	6
Texto Dentro de Fórmulas	7
Delimitadores	7
Símbolos mais usados	8
Pacotes Fundamentais – American Mathematical Society	9
Conjuntos Numéricos	9
Funções	
Somatórios, Produtórios, Limites, Derivadas e Integrais	
Somatórios e Produtórios1	0
Limites, Derivadas e Integrais1	1
Matrizes1	
Referências	

Olá prezados alunos, na aula passada estudamos vários itens relacionados a formatação de textos, nesta aula vamos colocar em prática a parte que engloba mais a área de exatas: fórmulas, expres-

sões, símbolos, matrizes, entre outros. Espero que gostem, vamos lá!

O ambiente Matemático

As expressões matemáticas são o grande forte da escrita em LaTeX. Como foi visto na aula passada, a escrita matemática fica sempre no ambiente matemático, que inicia e termina com \$ ou \$\$. Estas duas maneiras, juntamente com o ambiente equation são os mais utilizados e serão o foco do nosso curso.

Quando e como usar:

\$ - o uso do cifrão no início e no fim de uma expressão matemática faz com que a expressão gerada fique juntamente ao texto à qual a expressão foi inserida. No TeXstudio, aperte Ctrl+Shift+M para criar o ambiente matemático utilizando apenas um cifrão.

\$\$ - o uso de dois cifrões no início e no fim de uma expressão matemática faz com que a expressão gerada fique destacada, sozinha em uma linha e centralizada.

♦ \begin{equation} ... \end{equation} – o uso do ambiente com a escrita matemática inserida fica também destacada e numerada. No TeXstudio, aperte Ctrl+Shift+N para criar o ambiente matemático utilizando dois cifrões.

Observe o seguinte exemplo (não se preocupe com os códigos que não conhece, vamos estuda-los ainda nesta aula):

Códigos do $input^1$:

¹ Na última aula ensinamos a utilizar o pacote \usepackage[latin1]{inputenc} (pode-se também utilizar o pacote \usepackage[utf8]{inputenct}) para acentuação automática, caso a utilização deste pacote não funcione, tente utilizar o pacote com uma pequena alteração, ou seja \usepackage[utf8]{inputenc}.

O comando \linespread{1.5} define o espaçamento entre linhas como sendo 1,5, a utilização do comando com o argumento (o valor entre parênteses) sendo 2 define o texto com espaçamento duplo, com argumento 1 define o texto com espaçamento simples.

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\linespread{1.5}

\begin{document}
    Seja a equação de segundo grau $ ax^2+bx+c=0 $, com $ a\neq 0 $, tem-se que o valor de $ x $ é dado por

\begin{equation}
    x=\frac{-b\pm \sqrt{\Delta}}{2a}
    \end{equation}
    onde $ \Delta $ é dado pela expressão:
    $$ \Delta=b^2-4ac $$
\end{document}
```

Resultado do *output*:

Seja a equação de segundo grau $ax^2 + bx + c = 0$, com $a \neq 0$, tem-se que o valor de x é dado por

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} \tag{1}$$

onde Δ é dado pela expressão:

$$\Delta = b^2 - 4ac$$

É importante saber utilizar as três maneiras de criação de um ambiente matemático, uma vez que, como no exemplo acima, as vezes necessitamos combina-las.

Frações, Expoentes, Índices, Raízes e Pontos

Frações

Dentro do ambiente matemático, a escrita de frações é feita de diversas maneiras em diversas situações. Por exemplo, se digitar o comando \$ a/b \$ o resultado será dado da mesma maneira que foi escrito, agora de desejar uma fração escrita da maneira mais usual, numerador sobre denominador, o comando básico a se usar é o \$ \frac{numerador}{denominador} \$, quando o comando \frac é utilizado em um texto não destacado (ou seja, na própria linha) a fração é "achatada" para que possa ser alinhada corretamente com a altura do texto, caso deseje que isso não aconteça, ou seja, que a linha seja ajustada a fração, o comando a ser

3/14

utilizado deve ser o \dfrac{numerador}{denominador}. Quando o numerador e/ou denominador conter apenas um caractere (dígito) não se faz necessário o uso das chaves – porém o uso não muda o comando – ou seja, você pode escrever a fração 1 sobre 2 com o comando \frac 1 2. observe alguns exemplos:

Código	Resultado
\$ a/b \$	a/b
\$ a/b+c \$	a/b+c
\$ a/(b+c) \$	a/(b+c)
\$\frac{a}{b} \$	$\frac{a}{b}$
\$ \dfrac{a}{b} \$	$\frac{a}{b}$
\$ \frac{a}{b+c} \$	$\frac{a}{b+c}$
\$ \dfrac{a}{b+c} \$	$\frac{a}{b+c}$
\$ \frac a b \$	$\frac{a}{b}$
\$ \frac a b+c \$	$\frac{a}{b} + c$
\$ \frac a {b+c} \$	$\frac{a}{b+c}$
\$ \frac12 \$	$\frac{1}{2}$

A utilização das frações no texto é interessante, por exemplo a fração $\frac{a}{b}$ foi ajustada para ficar no tamanho certo da linha e foi gerada com o comando $\frac{a}{b}$, mas se eu utilizar o comando $\frac{a}{b}$ será a linha que irá se ajustar, observe a fração $\frac{a}{b}$. As frações também podem ser utilizadas destacadas no texto, os códigos

\$\$\frac{1}{1-\frac{1}{6}}=\frac{1}{\frac 1 5}=5 \$\$ gera

$$\frac{1}{1 - \frac{1}{6}} = \frac{1}{\frac{1}{5}} = 5$$

Expoentes e Índices

Os expoentes são gerados sempre com o símbolo de circunflexo, ou seja ^, sempre que o expoente conter mais de um dígito, deve ser colocado entre chaves.

Os índices seguem as mesmas regras que os expoentes e são gerados com o símbolo $_$ conhecido como underline.

Quando expoentes e índices são digitados juntos, a ordem dos mesmo não irá alterar em nada o resultado. Observe os exemplos:

Código	Resultado
\$ a^b \$	a^b
\$ a^b+c \$	$a^b + c$
\$ a^{b+c} \$	a^{b+c}
\$a_b \$	a_b
\$ a_b+c \$	$a_b + c$
\$ 5^{12} \$	5^{12}
\$ 5^12 \$ ERRADO!	$5^{1}2$
\$ x_{31} \$	x_{31}
\$ x_31 \$ ERRADO!	x_31
\$ x^2_1 \$	x_1^2
\$ x_1^2 \$	x_1^2
\$ x_{10}^{23} \$	x_{10}^{23}
\$ x^{23}_{10} \$	x_{10}^{23}

Raízes

As raízes são geradas com o comando \sqrt[índice]{radicando} ou para raízes quadradas \sqrt{radicando}, o que é bem intuitivo, omitindo-se o índice de uma raiz, temos que esta é uma raiz quadrada. Observe os exemplos:

Códigos	Resultado
\$ \sqrt{x} \$	\sqrt{x}
\$ \sqrt[3]{x^2} \$	$\sqrt[3]{x^2}$
\$ \sqrt{x_0^2+x^2_1} \$	$\sqrt{x_0^2 + x_1^2}$
\$ \sqrt[5]{\frac{2}{x}} \$	$\sqrt[5]{\frac{2}{x}}$
\$ \sqrt{2x}=(2x)^{\frac12} \$	$\sqrt{2x} = (2x)^{\frac{1}{2}}$
<pre>\$ e^{x^{\sqrt{3\theta}}} \$</pre>	$e^{x^{\sqrt{3\theta}}}$
\$ \sqrt[3]{x+\sqrt{2e^x+1}} \$	$\sqrt[3]{x + \sqrt{2e^x + 1}}$
\$ \sqrt[\sqrt{21}]{2^{x_0}} \$	$\sqrt[\sqrt{21}]{2^{x_0}}$

Pratique, utilizando o TEXstudio, crie a seguinte expressão:

$$f(x_0, x_1, x_2, x_3) = \sqrt[3]{x_0 + \sqrt[4]{x_1 + \sqrt[5]{x_2 + \sqrt[6]{x_3 + \frac{1}{2^{K^2 - 1}}}}}$$

Pontos

Os pontos são bastantes utilizados na escrita matemática, e em especial temos o ponto que representa uma multiplicação, que utilizamos a todo momento, por exemplo: $2 \cdot 3 = 6$. Outros pontos de grande importância são as reticências, a tabela a seguir mostra os comandos necessários para cada tipo de pontos.

Códigos	Resultados
\$ \cdot \$	•
\$ \cdots \$	• • •
\$ \ldots \$	
\$ \vdots \$:
\$ \ddots \$	··.

Pratique, escreva a fórmula

$$\frac{a^n - b^n}{a - b} = a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}$$

Texto dentro de Fórmulas

Se dentro de um texto você escreve uma palavra que não seja própria da escrita matemática, isso pode fazer com que a escrita não matemática fique estranha e mal formatada, porém, para resolver este empasse é necessário a utilização de um dos comandos \mbox{texto} ou \text{texto} dentro do ambiente matemático. Exemplo:

Códigos	Resultados
\$ x_1=2 e x_2=-1 \$	$x_1 = 2ex_2 = -1$
\$ x_1=2 \mbox{e} x_2=-1 \$	$x_1 = 2ex_2 = -1$
\$ x_1=2 \mbox{ e } x_2=-1 \$	$x_1 = 2 e x_2 = -1$

Delimitadores

Os delimitadores são os parênteses, colchetes e chaves, porém ao colocálos delimitando uma fração, por exemplo, é comum se obter resultados não muito satisfatórios. Exemplos:

$$x_0 = (\frac{1}{2})^2$$
, $x_1 = [\frac{1}{6}]$ ou $x_2 = {\frac{1}{8}}$

As expressões acima foram geradas utilizando apenas os delimitadores do próprio teclado (lembre-se que para utilizar as chaves como feito acima o código utilizado foi $x_2={ \ frac 18 }$.

Para resolver este problema, basta colocar um \left e um \right antes de cada um dos delimitadores, ou seja \left(expressão \right), ou \left[expressão \right], ou \left \{ expressão \right \}, ou ainda \left. ou \right. quando desejar que um dos delimitadores não apareçam, observe os exemplos.

Código
$$\Longrightarrow$$
 Expressão

$$\$\$ \left(\frac{1}{2} \right)^x$$

$$\$\$ \left(\frac{1}{2} \right)^x$$

Utilizando estes comandos, os delimitadores se ajustam as situações necessárias, não obrigatoriamente a uma fração, mas a qualquer expressão, como por exemplo

$$M(b, i, \alpha, x) = \left(\sqrt{\lim_{b \to \infty} \left\{ \prod_{\alpha = b+1}^{(b+1)!} \left[x_0 \left(\sum_{k=1}^{\infty} \left(\int_0^3 \sec^3 \left(\frac{1}{\alpha^{x(\epsilon - 1)}} \right) \ dx \right) \right) \right] \right\}} \right)^{3/2} \left[\left(\left((2^x)^{1/2} \right)^{3/2} \right)^{5/2} \right]^i$$

Observe que na expressão acima, existem vários delimitadores de vários tamanhos, porém todos foram feitos utilizando os mesmos comandos \left e \right.

Símbolos mais usados

Símbolos como <, >, =, - e + podem ser utilizados diretamente do teclado, porém outros não, segue uma tabela com alguns símbolos².

 $^{^2}$ Tabela extraída de Apostila de LaTeX (Cariello $\it et~\it al.,~2011).$

Símbolo	Comando	Símbolo	Comando	Símbolo	Comando
<u> </u>	\le	~	\sim	∞	\infty
≥	\ge	#	\neq	A	\forall
<u> </u>	\subset	\approx	\approx	3	\exists
\subseteq	\subseteq	≥	\approxeq	∄	\nexists
\supset	\supset	\simeq	\simeq	\cap	\cap
⊇	\supseteq	≡	\equiv	U	\cup
€	\in	~	\cong	\cap	\bigcap
∉	\notin		\perp	U	\bigcup
*	\not<	×	\times	±	\pm
*	\not>	Ø	\emptyset	干	\mp

Pacotes Fundamentais – American Mathematical Society

A AMS – American Mathematical Society (Sociedade Americana de Matemática) – distribui dois pacotes fundamentais para escrita de textos matemáticos com qualidade, portanto, a partir de agora vamos acrescentar em nossos preâmbulos os pacotes \usepackage{amsmath} e \usepackage{amssymb}, o primeiro acrescenta símbolos poderosos ao nosso ambiente matemático – como somatórios, integrais e matrizes – e o segundo nos permite utilizar várias fontes e símbolos adicionais – como os símbolos que usamos para os conjuntos numéricos.

Conjuntos Numéricos

Para representar os conjuntos numéricos, munidos dos pacotes acima citados, utilizamos o comando \mathbb{LETRA}.

Exemplos:

Conjunto	$C\'{o}digo$	Símbolos
Naturais	<pre>\$ \mathbb{N} \$</pre>	N
Inteiros	<pre>\$ \mathbb{I} \$</pre>	\mathbb{I}
Racionais	<pre>\$ \mathbb{Q} \$</pre>	Q
Irracionais	<pre>\$ \mathbb{I} \$</pre>	${\mathbb I}$
Reais	<pre>\$ \mathbb{R} \$</pre>	\mathbb{R}
Complexos	<pre>\$ \mathbb{C} \$</pre>	\mathbb{C}

Algumas variações são geradas com os códigos \$ \mathbb{R}_+ \$, \$ \mathbb{Z}_- \$ e \$ \mathbb{Q}^* \$ gerando respectivamente \mathbb{R}_+ , \mathbb{Z}_- , \mathbb{Q}^* .

Para os que tiverem curiosidade, os comandos para colocar símbolos e fórmulas em negrito ou com contorno, veja Apostila em LaTeX (Cariello, 2011) na página 22, item 3.5.2. Por não ser de grande relevância vamos omitir aqui.

Funções

Existem comandos corretos para cada tipo de função: seno, cosseno, tangente, cotangente, secante, cossecante, máx, log, ln, mín, entre outras.

No Lateral Reserver essas funções (dentro do ambiente matemático) é necessário do comando $\mbox{ hathrm{cos} \ }$; x \$ (o comando \; no Lateral Reserver do ambiente matemática para criar espaços, pois a tecla espaço não faz tal função) para gerar cos x, você pode fazê-lo para qualquer função, mas não é realmente necessário, o Lateral Reserver reconhece comandos do tipo \cos x, \sin x, \tan x e assim sucessivamente, gerando $\cos x$, $\sin x$ e $\tan x$. Note que no inglês o comum é usar $\sin x$, caso deseje usar sen x, utilize o comando \mathrm{sen} \; x. Mais adiante no curso, quando aprendermos a criar comandos, vamos contornar a maneira de utilizar sen x somente com o comando \sen x.

Somatórios, Produtórios, Limites, Derivadas e Integrais Somatórios e Produtórios

Os somatórios são gerados com o comando \sum (este comando gera o sigma do somatório), os limites são colocados utilizando os mesmos comandos de índice e expoente, ou seja, você pode utilizar o somatório sem os limites, com o limite inferior ou superior e com os dois, usando o comando \sum_{inferior}^{superior}, os produtórios são gerados com o comando \prod (este comando gera o pi maiúsculo do produtório) e os limites são dispostos da mesma maneira que no somatório, observe os exemplos:

Comando	Resultado
\$ \sum_{i=1}^{n} \frac{1}{n} \$	$\sum_{i=1}^{n} \frac{1}{n}$
\$\$ \sum_{i=1}^{n} \frac{1}{n} \$\$	$\sum_{i=1}^{n} \frac{1}{n}$
<pre>\$ \sum\limits_{i=1}^{n} \frac{1}{n} \$</pre>	$\sum_{i=1}^{n} \frac{1}{n}$
\$\$ \sum_{i=1}^{n} \left(\frac{1}{n}\right) \$\$	$\sum_{i=1}^{n} \left(\frac{1}{n}\right)$
<pre>\$ \prod_{i=1}^{n} \frac{1}{n} \$</pre>	$\prod_{i=1}^{n} \frac{1}{n}$
\$\$ \prod_{i=1}^{n} \frac{1}{n} \$\$	$\prod_{i=1}^{n} \frac{1}{n}$
<pre>\$ \prod\limits_{i=1}^{n} \frac{1}{n} \$</pre>	$\prod_{i=1}^{n} \frac{1}{n}$
\$\$ \prod_{i=1}^{n} \left(\frac{1}{n}\right) \$\$	$\prod_{i=1}^{n} \left(\frac{1}{n}\right)$

Limites, Derivadas e Integrais

A inserção de limites se dá usando o comando \lim, que é bastante intuitivo, da mesma maneira que as integrais que são geradas com o comando \int. Para os limites de integração são utilizados os mesmos comandos que os somatórios e produtórios, para a tendência do limite, é utilizado apenas a parte inferior dos limitantes de integração, da seguinte maneira \lim_{x\to 2} ou \lim_{x \rightarrow 2} tanto o comando \to como o comando \rightarrow definem setas para a direita.

Para integrais duplas, basta utilizar \iint e para as triplas utilize \iiint, o LaTeX ainda aceita até uma "integral quadrupla" com \iiiint, para integrais de contorno, utilize \oint. Veja os exemplos a seguir.

Comando	Resultado
\$ \int_{a}^{b} f(x)\;dx \$	$\int_{a}^{b} f(x) dx$
\$\$ \int_{a}^{b} f(x)\;dx \$\$	$\int_{a}^{b} f(x) \ dx$
$\int \int \int dx dx dx dx dx dx$	$\int_{a}^{b} f(x) dx$
\$ \iint_{R} f(x)\;dR \$	$\iint_{R} f(x) \ dR$
\$\$ \iint_{R} f(x)\;dR \$\$	$\iint_{R} f(x) \ dR$
<pre>\$ \iint\limits_{R} f(x)\;dR \$</pre>	$\iint\limits_{R} f(x) \ dR$
<pre>\$\$ \iint\limits_{R} f(x)\;dR \$\$</pre>	$\iint\limits_R f(x) \ dR$
<pre>\$ \iiint_{V} f(x)\;dV \$</pre>	$\iiint_V f(x) \ dV$
\$\$ \iiint_{V} f(x)\;dV \$\$	$\iiint_V f(x) \ dV$
<pre>\$ \iiint\limits_{V} f(x)\;dV \$</pre>	$\iiint\limits_V f(x) \ dV$
<pre>\$\$ \iiint\limits_{V} f(x)\;dV \$\$</pre>	$\iiint\limits_V f(x) \ dV$
<pre>\$ \lim_{x\to a} \frac{x^n-a^n}{x-a} \$</pre>	$\lim_{x\to a} \frac{x^n-a^n}{x-a}$
\$\$ \lim_{x\to a} \frac{x^n-a^n}{x-a} \$\$	$\lim_{x \to a} \frac{x^n - a^n}{x - a}$

Para a escrita de derivadas basta usar o apóstrofo, ou seja f'(x) ou f''(x) ou até $f^{(n)}(x)$, caso deseje utilizar a notação de Leibniz, é tão fácil quanto a anterior, basta utilizar os comandos de frações, ex: $\frac{d^3y}{dy^3}$.

Matrizes

O item 3.7 de Apostila de LaTeX de Cariello (2011) trás detalhadamente como trabalhar matrizes no ambiente matemático, como segue:

3.7 Matrizes

Para inserir uma matriz usamos o ambiente array. As colunas são separadas pelo símbolo & e as linhas por \\. É necessário dizer qual será o alinhamento das colunas, por exemplo, começar uma matriz com \begin{array}{clrc} diz que a matriz tem 4 colunas, onde a primeira e a última são centralizadas, a segunda é alinhada à esquerda (left) e a terceira à direita (right). Lembre-se que uma matriz é um objeto matemático, logo deve vir entre cifrões. Para inserir delimitado-res(chaves, parênteses, etc), usamos os comandos \left antes de \begin{array} e \right depois de \end{array}, seguidos do delimitador desejado.

Exemplo 3.7.1. A matriz

foi produzida por:

\$\$\left[\begin{array}{ccllrr}
1& 2 & 3 & 4 & 5 & 6 \\
12 & 356 & 275 & 43 & 57 & 1042
\end{array}\right]\$\$

Por hoje é isso, até a próxima aula.

Referências

CARIELLO, Daniel. CARNEIRO, Evaneide Alves. REZENDE, Germano Abud de. Apostila de LaTeX. Universidade Federal de Uberlândia: Uberlândia-MG, 2011. 70p.