MA 450: Honors Abstract Algebra Notes

Lecturer: Linquan Ma Transcribed by Josh Park

Fall 2024

Contents

12 Introduction to Rings	2
12.1 Motivation & Definition	2
12.2 Examples of Rings	2
12.3 Properties of Rings	3
12.4 Subrings	
13 Integral Domains	4
13.1 Definition and Examples	4
13.2 Fields	
14 Ideals and Factor Rings	6
14.1 Ideals	
14.2 Factor Rings	7
14.3 Prime Ideals and Maximal Ideals	9
15 Ring Homomorphisms	11
15.1 Definition and Examples	11
15.2 Properties of Ring Homomorphisms	12
15.3 The Field of Quotients	14
16 Polynomial Rings	15
16.1 Notation and Terminology	15
17 Factorization of polynomials	17

Lecture 32 (11/8)

12 Introduction to Rings

12.1 Motivation & Definition

Definition 12.1 (Ring). A <u>ring</u> R is a set with two binary operations: a + b and $a \cdot b = ab$ such that for all $a, b, c \in R$,

- 1. a + b = b + a
- 2. (a+b)+c=a+(b+c)
- 3. \exists an additive identity 0, a + 0 = a
- 4. \exists an element $-a \in R$ such that a + (-a) = 0
- 5. (ab)c = a(bc)
- $6. \ a(b+c) = ab + ac$

$$(b+c)a = ba + ca$$

So a ring is an abelian group under addition, and also has an associative multiplication that is left and right distributive over addition.

- The multiplication need not be commutative. When it is, we say the ring is commutative.
- A unity (or identity): a nonzero element that is an identity under multiplication.
- unit: a nonzero element of a commutative ring with identity that has a multiplicative inverse.
- In R, $a \mid b$ if $\exists c \in R$ such that b = ac.
- $n \in \mathbb{Z}_{>0}$, $na = \underbrace{a + a + \dots + a}_{\text{n times}}$

12.2 Examples of Rings

Example 12.1. $(\mathbb{Z}, +\times)$ is a commutative ring with identity and units $=\pm 1$

Example 12.2. $(\mathbb{Z}_n, +\times)$ is a commutative ring with identity and units = U(n)

Example 12.3. $(\mathbb{Z}[x], +\times)$ is a commutative ring with identity

Example 12.4. $(\mathbb{M}_2[\mathbb{Z}], +\times)$ is a non-commutative ring with identity

Example 12.5. $(2\mathbb{Z} = \{\text{even integers}\}, +\times)$ is a comm ring without identity

Example 12.6. ({continuous functions on $\mathbb{R}, +\times$ }) is a comm ring with identity f(x) = 1

Example 12.7. ({continuous functions on \mathbb{R} whose graphs pass through $(1, 0), +\times$ }) is a comm ring without identity

Note f(1) = 0, g(1) = 0, f + g, fg

Example 12.8 (Direct sum). Let R_1, R_2, \ldots, R_n be rings. Construct

$$R_1 \oplus R_2 \oplus \cdots \oplus R_n = \{(r_1, r_2, \dots, r_n) \mid r_i \in R_i\}$$

with component-wise addition and multiplication. This ring is called the <u>direct sum</u> of R_1, R_2, \ldots, R_n .

12.3 Properties of Rings

Theorem 12.1 (Rules of Multiplication). For all $a, b, c \in R$,

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. a(-b) = (-a)b = -(ab)
- 3. (-a)(-b) = ab
- $4. \ a(b-c) = ab ac$

$$(b-c)a = ba - ca$$

- 5. (-1)a = -a
- 6. (-1)(-1) = 1

Note. Properties 5 and 6 only hold if R has an identity 1

Proof of property 1. Clearly 0+a0=a0=a(0+0)=a0+a0, so by cancellation 0=a0 and similarly 0a=0

Theorem 12.2 (Uniqueness of the Unity and Inverses). If a ring R has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

Proof. 1, 1' \implies 1=1·1' = 1'

 $a \qquad ab = ba = 1$

ac = ca = 1

 $c = c \cdot 1 = c(ab) = (ca)b = 1 \cdot b = b$

Warning. In general, $ab = ac \implies b = c$ (cancellation rule does not hold in general for multiplication).

Example 12.9. In \mathbb{Z}_6 , notice $2 \cdot 3 = 0 = 3 \cdot 0$ but $2 \neq 0$

12.4 Subrings

Definition 12.2 (Subring). A subset $S \subseteq R$ is a subring of R if S is itself a ring with the operations of R

Theorem 12.3 (Subring Test). A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication.

i.e. if $a, b \in S$ then $a - b \in S$ and $ab \in S$

Example 12.10 (Trivial Subrings). $\{0\}$ and R will always be subrings of any ring R.

Example 12.11. $\{0,2,4\} \subseteq \mathbb{Z}_6$ is a subring

1 is the identity in \mathbb{Z}_6

4 is the identity in $\{0, 2, 4\}$ $(0 \cdot 4 = 0, 2 \cdot 4 = 2, 4 \cdot 4 = 4)$

Example 12.12. $n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$ is a subring of \mathbb{Z} that does not have any identity (if $n \neq 1$).

Lecture 33 (11/13)

Example 12.13. The set of Gauss integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .

13 Integral Domains

13.1 Definition and Examples

Definition 13.1 (Zero-Divisors). A <u>zero-divisor</u> is a nonzero element x of a commutative ring R such that there is a nonzero element $y \in R$ with xy = 0.

Example 13.1. In $R = \mathbb{Z}_6$, x = 2 is a zero-divisor

Definition 13.2 (Integral Domain). An <u>integral domain</u> is a commutative ring with unity and no zero-divisors.

Thus, in an integral domain, $ab = 0 \implies a = 0$ or b = 0.

Example 13.2. The ring of integers \mathbb{Z} is an integral domain.

Example 13.3. The ring of Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an integral domain.

Example 13.4. The ring $\mathbb{Z}[x]$ of polynomials with integer coefficients is an integral domain.

Example 13.5. The ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is an integral domain.

Example 13.6. The ring \mathbb{Z}_p where p is prime is not an integral domain.

Non-Example 13.1. The ring \mathbb{Z}_n where n is not prime is not an integral domain.

Note. Write n = ab where $1 < a, b < n \implies a, b$ are both zero-divisors in \mathbb{Z}_n .

Non-Example 13.2. The ring $\mathbb{Z} \oplus \mathbb{Z}$ is not an integral domain.

Note. $(1,0) \times (0,1) = (0,0)$

Theorem 13.1 (Cancellation). Let R be an integral domain. If $a \neq 0$, then $ab = ac \implies b = c$

Proof.
$$ab = 0$$
, $a \neq 0 \implies 0 = a^{-1}ab = b$

13.2 Fields

Definition 13.3 (Field). A field is a commutative ring with unity in which every nonzero element is a unit

Fact. Every field is an integral domain.

Examples. \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z}_p

Note (\mathbb{Z}_p) . $1 \le a < p$ then gcd(a, p) = 1; $as + pt = 1 \implies as = 1 \mod p \implies a$ is a unit in \mathbb{Z}_p

Non-Examples. \mathbb{Z} , $\mathbb{Z}[i]$

Theorem 13.2. A finite integral domain is a field.

Proof. $a \in R$ if $a = 1 \implies a^{-1} = 1$

Suppose $a \neq 1$. Consider a, a^2, a^3, \dots

R is finite $\implies \exists i > j$ such that $a^i = a^j$

$$a^i = a^j \cdot a^{i-j} \implies a^{i-j} = 1 \implies a \cdot (a^{i-j-1}) = 1 \implies a^{-1} = a^{i-j-1} \text{ exists in } R.$$

Example 13.7. $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\}$ is a field with 9 elements.

 $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$ need to check if $a,b \in \mathbb{Z}_3$ then $a^2+b^2 \neq 0$ in \mathbb{Z}_3 (unless a=b=0).

$$(1+2i)^{-1}$$
 in $\mathbb{Z}_3[i]$ is $\frac{1-2i}{1+4}=(1-2i)\cdot 2^{-1}=2(1+1\cdot i)=2+2i$

Example 13.8. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.

$$(a+b\sqrt{2})^{-1} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2}$$
$$= \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2} \quad (a^2-2b^2 \neq 0)$$

Definition 13.4 (Characteristic). The <u>characteristic</u> of a ring R is the least positive integer char(R) = n such that $\underbrace{nx}_{\sum^n x} = 0$ for all $x \in R$. If no such integer exists, we say R has characteristic 0.

Examples. char(\mathbb{Z}) = 0, char(\mathbb{Z}_n) = n, char(\mathbb{Z}_2) = 2

Theorem 13.3. Let R be a ring with unity 1. If 1 has infinite order under addition, then char(R) = 0. If 1 has order n under addition, then char(R) = n

Proof.
$$n \cdot 1 = 0 \implies n \cdot x = \sum^n x = x \cdot \sum^n 1 = x \cdot 0 = 0$$

Theorem 13.4. If R is an integral domain, then char(R) is either 0 or prime.

Proof. Suppose $\operatorname{char}(R) = n \ge 0 \iff 1$ has finite order n under addition by Thm. If n = st where 1 < s, t < n, then

$$0 = n \cdot 1 = (s \cdot 1)(t \cdot 1)$$

so $s \cdot 1 = 0$ or $t \cdot 1 = 0$. Since char(1) = n, it must be that s = n or t = n. However, s, t < n.

14 Ideals and Factor Rings

14.1 Ideals

Definition 14.1 (Ideal). A subring I of a ring R is called a (two-sided) <u>ideal</u> of R if $\forall r \in R, \forall a \in I$ we have $ra \in I$ and $ar \in I$

- \bullet So a subring of R is an ideal if it "absorbs" elements of R
- An ideal of R is called a proper ideal if $I \neq R$

Theorem 14.1 (Ideal Test). A nonempty subset I of a ring R is an ideal if

- 1. $a b \in I$ whenever $a, b \in I$
- 2. $ra, ar \in I \ \forall a \in I, r \in R$

Example 14.1. For any ring R, $\{0\}$ and R are ideals.

Example 14.2. $n\mathbb{Z}$ is an ideal of \mathbb{Z} for all $n \in \mathbb{Z}$

Example 14.3. $\langle a \rangle := \{ ra \mid r \in R \}$ is an ideal of R for all commutative rings with unity and $a \in R$. This is called the principal ideal generated by a.

Example 14.4. $R = \mathbb{R}[x]$ $I = \langle x \rangle = \{\text{polynomials with constant term } 0\}$

Example 14.5. Let R be a commutative ring with unity, $a_1, a_2, \ldots, a_n \in R$. Then

$$I = \left\{ \sum_{i=1}^{n} r_i a_i \mid r_i \in R \right\}$$

is an ideal of R, called the ideal generated by $a_1, a_2, \ldots, a_n \in R$.

Lecture 34 (11/15)

Example 14.6. $R = \mathbb{Z}[x], I = \langle x, 2 \rangle = \{\text{polynomials with even constant terms}\}$

Non-Example 14.1. Let $R = \{\text{real valued functions in one variable}\}$. Then,

 $S = \{\text{differentiable functions in R}\}\$

is a subring of R but S is NOT an ideal of R.

14.2 Factor Rings

Theorem 14.2 (Existence of Factor Rings). Let R be a ring and let A be a subring of R. Then the set of cosets $\{r + A \mid r \in R\}$ is a ring under the operation

- (s+A) + (t+A) = s+t+A and
- (s+A)(t+A) = st + A

if and only if A is an ideal of R.

Pf sketch. A is an ideal of $R \implies$ addition and multiplication of cosets are <u>well-defined</u> (i.e. do not depend on the choice of representative)

Conversely, if A is not an ideal, then $\exists a \in R, r \in R$ such that $ar \notin A \neq A$.

Then

$$(a+A)(r+A) = ar + A \neq A$$

but

$$(a+A)(r+A) = (0+A)(r+A) = 0 \cdot r + A = 0 + a = A \quad (\Rightarrow \Leftarrow)$$

Example 14.7. $n\mathbb{Z}$ ideal of \mathbb{Z} .

$$\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \cdots, (n-1) + n\mathbb{Z}\} \cong \mathbb{Z}$$

$$(k + n\mathbb{Z}) + (\ell + n\mathbb{Z}) = k + \ell + n\mathbb{Z}$$

= $(k + \ell) \mod n + n\mathbb{Z}$

$$(k + n\mathbb{Z}) \cdot (\ell + n\mathbb{Z}) = k\ell + n\mathbb{Z}$$

Example 14.8. $2\mathbb{Z}/6\mathbb{Z} = \{0 + 6\mathbb{Z}, 2 + 6\mathbb{Z}, 4 + 6\mathbb{Z}\}$

Note. In general,

$$m \mid n \implies m\mathbb{Z}/n\mathbb{Z} = \left\{ 0 + n\mathbb{Z}, m + n\mathbb{Z}, 2m + n\mathbb{Z}, \cdots, m\left(\frac{n}{m} - 1\right) + n\mathbb{Z} \right\}$$

Example 14.9. $R = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \mid a_i \in n\mathbb{Z} \right\}, \quad I = \{\text{matrices in } R \text{ with even entries} \}$

Exercise. Let
$$R/I = \left\{ \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix} + I \mid r_i \in \{0,1\} \right\}$$
. Prove $R/I \cong M_2\{\mathbb{Z}_2\}$.

Example 14.10 (\bigstar) . $\mathbb{Z}[i]$ and $\langle 2-i \rangle$

$$\mathbb{Z}[i]/\langle 2-i\rangle = \{0+\langle 2-i\rangle, \quad 1+\langle 2-i\rangle, \quad 2+\langle 2-i\rangle, \quad 3+\langle 2-i\rangle, \quad 4+\langle 2-i\rangle\}$$

$$5 = (2-i)(2+i) \implies 5 \in \langle 2-i\rangle$$

$$\implies 5+\langle 2-i\rangle = 0+\langle 2-i\rangle$$

$$i = 2-(2-i) \implies i+\langle 2-i\rangle = 2+\langle 2-i\rangle$$

$$\implies 2i+\langle 2-i\rangle = 4+\langle 2-i\rangle$$

$$\cdots \text{ etc } \cdots$$

$$\mathbb{Z}[i]/\langle 2-i\rangle \stackrel{\cong}{\to} \mathbb{Z}_5$$

$$a + \langle 2 - i \rangle \mapsto a \mod 5$$

$$i + \langle 2 - i \rangle \mapsto 2 \mod 5$$

$$a + bi = \max_{\text{mod } (2-i)} (a \text{ mod } 5) + 2b = (a + 2b) \text{ mod } 5$$

Example 14.11.
$$\mathbb{R}[x]$$
 and $\langle x^2 + 1 \rangle$

$$\mathbb{R}[x] = \{g(x) + \langle x^2 + 1 \rangle \mid g(x) \in \mathbb{R}[x]\}$$

$$= \{ax + b + \langle x^2 + 1 \rangle \mid a, b \in \mathbb{R}\} \cong \mathbb{C}$$

$$\Longrightarrow \mathbb{R} / \langle x^2 + 1 \rangle \cong \mathbb{C}$$

$$\mathbb{R} \to \mathbb{R}$$

$$x + \langle x^2 + 1 \rangle \mapsto i$$

$$(x + \langle x^2 + 1 \rangle)^2 = x^2 + \langle x^2 + 1 \rangle = -1 + \langle x^2 + 1 \rangle$$

Lecture 35

14.3 Prime Ideals and Maximal Ideals

Definition 14.2 (Prime Ideal, Maximal Ideal). A <u>prime ideal</u> P of a commutative ring R is a proper ideal of R such that if $a, b \in R$ and $ab \in P$, then $a \in P$ or $b \in P$.

A <u>maximal ideal</u> of a commutative ring R is a proper ideal A of R such that if B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

Example 14.12. $n\mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal $\iff n = 0$ or n prime.

Note. n = 0, if $a, b \in \mathbb{Z}$ such that ab = 0, then a = 0 or b = 0

n prime, if $a, b \in \mathbb{Z}$, $n \mid ab$ then $n \mid a$ or $n \mid b \checkmark$

Moreover, $n\mathbb{Z} \subseteq \mathbb{Z}$ is a maximal ideal $\iff n$ prime.

Example 14.13. $\langle 2 \rangle, \langle 3 \rangle$ are maximal ideals of \mathbb{Z}_{36} . More generally, if $n = \prod_{i=1}^r p_i^{k_i}, \ k_i \neq 0$, then $\langle p_i \rangle$ are maximal ideals of \mathbb{Z}_n

Example 14.14. $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$

Proof. Let B be an ideal containing $\langle x^2 + 1 \rangle$ and $B \neq \langle x^2 + 1 \rangle$.

$$\Longrightarrow \exists f(x) \in B \text{ such that } f(x) \notin \langle x^2 + 1 \rangle$$

$$\implies f(x) = (x^2 + 1) \cdot q(x) + r(x)$$
 with $r(x) \neq 0$ and $\deg r(x) < 2$.

$$\implies (ax+b) \cdot x - (x^2+1) \cdot a = bx - a \in B$$

$$\implies (ax + b) \cdot b - (bx - a) \cdot a = bx - a \in B$$

Since
$$r(x) \neq 0$$
 and $a^2 + b^2 \neq 0 \implies 1 \in B \implies B = \mathbb{R}[x]$

Example 14.15. $\langle x^2 + 1 \rangle$ is not a prime ideal in $\mathbb{Z}_2[x]$

Note. $(x+1)(x+1) = x^2 + 2x + 1 = x^2 + 1$ (since $2x \equiv 0 \pmod{2}$), but $x+1 \notin \langle x^2 + 1 \rangle$

Theorem 14.3. Let R be a commutative ring with unity, let A be an ideal of R. Then R/A is an integral domain $\iff A$ is prime

Proof. R/A = integral domain

$$\iff$$
 $(a+A)(b+A)=0+A$ implies $a+A=0+A$ or $b+A=0+A$

$$\iff ab + A = 0 + A \text{ implies } a \in A \text{ or } b \in A$$

 $\iff ab \in A \text{ implies } a \in A \text{ or } b \in A$

 $\iff A = \text{prime}$

Theorem 14.4. Let R be a commutative ring with unity and let A be an ideal of R. Then, R/A is a field $\iff A$ is a maximal ideal

Proof. (\Longrightarrow) Suppose R/A= field. Let $B\supsetneqq A$ be an ideal $(B\ne A)$. Then $\exists b\in B$ such that $b\not\in A$

$$\implies b + A \neq 0 + A \text{ in } R / A$$

$$\implies \exists c \text{ such that } (b+A)(c+A) = bc + A = 1 + A \text{ in } R / A$$

$$\implies bc - 1 = a \in A$$

$$\implies bc - a \in B \implies B = R \implies A = \text{maximal}$$

 (\longleftarrow) Conversely, suppose A = maximal.

For any $b + A \neq 0 + A \in R / A$ (i.e. $b \notin A$)

Consider $B = \{rb + a \mid r \in R, a \in A\}$ (check B is an ideal and $B \supseteq A, B \neq A$)

$$\implies B = R \implies \exists r \in A \text{ such that } rb + a = 1 \text{ for some } a \in A$$

$$\implies (r+A)(b+A) = (1+A)$$

 $\implies (b+A)$ is invertible in R/A

 $\implies R/A = \text{field}$

Corollary. Let R be a commutative ring with unity. Then all maximal ideals are prime.

Example 14.16. $4\mathbb{Z} \subseteq 2\mathbb{Z} = R$ maximal but not prime $(2 \cdot 2 = 4 \in 4\mathbb{Z})$ but $2 \notin 4\mathbb{Z}$

Example 14.17. $\langle x \rangle$ is a prime ideal in $\mathbb{Z}[x]$. $\mathbb{Z}[x]/\langle x \rangle \cong \mathbb{Z}$ is an integral domain but not a field, so $\langle x \rangle$ is not maximal.

$$\langle x \rangle \subsetneq \underbrace{\langle x, 2 \rangle}_{\text{maximal}} \subsetneq \mathbb{Z}[x] \qquad \frac{\mathbb{Z}[x]}{\langle x, 2 \rangle} \cong \mathbb{Z}_2$$

Lecture 36

15 Ring Homomorphisms

15.1 Definition and Examples

Definition 15.1 (Ring Homomorphism, Ring Isomorphism). A <u>ring homomorphism</u> $\phi: R \to S$ is a map that preserves the two operations:

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- 2. $\phi(ab) = \phi(a)\phi(b)$

A bijective ring homomorphism is called a ring isomorphism.

Examples.

- $\phi: \mathbb{Z} \to \mathbb{Z}_n, k \mapsto k \mod n$
- $\phi: \mathbb{C} \to \mathbb{C}, \ a+bi \mapsto a-bi \ (\text{isomorphism})$
- $\phi: \mathbb{R}[x] \to \mathbb{R}, \ f(x) \mapsto f(a)$ where $a \in \mathbb{R}$ Check that $\phi(f(x) + g(x)) = \phi(f(x)) + \phi(g(x))$ and $\phi(f(x)g(x)) = \phi(f(x))\phi(g(x))$

Example 15.1. $\phi: \mathbb{Z}_4 \to \mathbb{Z}_{10}, x \mapsto 5x$

(!!!)
$$\phi(x+y) = 5(x+y \mod 4) \mod 10$$

= $5x + 5y = \phi(x) + \phi(y)$
(\bigstar) $\phi(xy) = 5xy \mod 10$
= $5x5y \mod 10 = \phi(x)\phi(y)$

Example 15.2. Determine all ring homomorphisms $\mathbb{Z}_{12} \mapsto \mathbb{Z}_{30}$

Group homomorphisms: $x \mapsto ax$ where $|a| \mid \gcd(12,30) = 6$ (i.e., |a| = 1, 2, 3, or 6)

$$\implies a = 0, 15, 10, 20, 5, 25$$

Ring homomorphisms: $a = \phi(1) = \phi(1 \cdot 1) = \phi(1)\phi(1) = a^2 \mod 30$

$$\implies a \equiv a^2 \mod 30$$

$$\implies a \neq 5, \ a \neq 20 \ (\phi(xy) = axy = a^2xy = axay = \phi(x)\phi(y) \text{ mod } 30)$$

Thus there are 4 ring homomorphisms:

$$x \mapsto 0x \mod 30$$
 $x \mapsto 15x \mod 30$ $x \mapsto 10x \mod 30$ $x \mapsto 25x \mod 30$

Example 15.3. R commutative ring, char(R) = p > 0

$$\phi: R \to R, x \mapsto x^p$$

$$\phi(xy) = (xy)^p = x^p y^p = \phi(x)\phi(y)$$

$$\phi(x+y) = (x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} \binom{p}{i} x^i y^{p-i} = x^p + y^p = \phi(x) + \phi(y)$$
The divides (p) and the properties of t

15.2 Properties of Ring Homomorphisms

Theorem 15.1 (Properties of Ring Homomorphisms). Let $\phi: R \to S$ be a ring homomorphism. Then

- 1. $\phi(nr) = n\phi(r), \ \phi(r^n) = \phi(r)^n \quad \forall r \in \mathbb{R}, n \in \mathbb{Z}_{>0}$
- 2. A is a subring of $R \implies \phi(A) = \{\phi(a) \mid a \in A\}$ is a subring of S
- 3. A ideal and ϕ onto $S \implies \phi(A)$ ideal of S
- 4. $\phi^{-1}(B) = \{r \in R \mid \phi(r) \in B\}$ is an ideal of R
- 5. If R commutative, then $\phi(R)$ commutative
- \bigstar 6. If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S.
 - 7. ϕ is an isomorphism $\iff \phi$ is onto and $\ker \phi = \{r \in \mathbb{R} \mid \phi(r) = 0\} = \{0\}.$
 - 8. If ϕ is an isomorphism from R onto S, then ϕ^{-1} is an isomorphism from S onto R.

Lecture 37

Note. 3 is not true if ϕ is not onto; $\phi: \frac{\mathbb{Z}_{=A=R} \to \mathbb{Z} \oplus \mathbb{Z}_{=S}}{n \mapsto (n,n)}$

6 is not true if ϕ is not onto; $\phi: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ $n \mapsto (n,0)$

Theorem 15.2. Let $\phi: R \to S$ be a ring homomorphism. Then ker ϕ is an ideal of R.

Note. $x \in \ker \phi, y \in R;$ $xy \in \ker \phi;$ $\phi(xy) = \phi(x)\phi(y) = 0$ (since $\phi(x) = 0$)

Theorem 15.3. Let $\phi: R \to S$ be a ring homomorphism. Then $R / \ker \phi \mapsto \phi(R)$ is an isomorphism.

(i.e. $R / \ker \phi \cong \phi(R)$)

Theorem 15.4. Every ideal of a ring R is the kernel of a ring homomorphism.

Proof. $I \subseteq R \implies R \to R/I$ has kernel I

Example 15.4. Let $\phi: \frac{\mathbb{Z}[x] \to \mathbb{Z}}{f(x) \mapsto f(0)}$ be a ring homomorphism. Then $\ker \phi = \langle x \rangle$. By Thm 15.3, $\mathbb{Z}[x] / \langle x \rangle \cong \mathbb{Z}$. Since \mathbb{Z} is an integral domain but not a field, $\langle x \rangle$ is a prime but not maximal in $\mathbb{Z}[x]$.

Theorem 15.5. Let R be a ring with unity 1. The mapping $\phi: {\mathbb{Z} \to R} \atop n \mapsto n \cdot 1$ is a ring homomorphism.

Proof.

Note.
$$(m \cdot 1) = \underbrace{(1+1+\cdots+1)}_{m-\text{times}}$$
 $(n \cdot 1) = \underbrace{(1+1+\cdots+1)}_{n-\text{times}}$

 $\mathbb{Z} \to R$ Remark. $1 \mapsto r$ is a group homomorphism, but not a ring homomorphism unless $r^2 = r$. $n \mapsto n \cdot r$

Corollary 15.5.1. If R is a ring with unity an $\operatorname{char}(R) = 0$, then R contains a subring isomorphic to \mathbb{Z} . If $\operatorname{char}(R) = n > 0$, then R contains a subring isomorphic to \mathbb{Z}_n .

Proof. Let 1 be the unity. Consider $S = \{k \cdot 1 \mid k \in \mathbb{Z}\}$. Then $\phi : \mathbb{Z} \to S$ is a ring homomorphism $\Longrightarrow \mathbb{Z} / \ker \phi \cong S$.

 $\operatorname{char}(0): \ker \phi = 0 \implies \mathbb{Z} \cong S$

$$\operatorname{char}(n) : \ker \phi = \langle n \rangle \implies S \cong \mathbb{Z} / \langle n \rangle \cong \mathbb{Z}_n$$

Corollary 15.5.2. If F is a field of char(p) > 0 then F contains a subfield isomorphic to \mathbb{Z}_p .

If F is a field of char(0) then F contains a subfield isomorphic to \mathbb{Q} .

Proof. By Cor 15.5.1, F contains \mathbb{Z}_p if $\operatorname{char}(F) = p > 0$. If $\operatorname{char}(F) = 0$, then Cor 15.5.1 says F contains a subring S isomorphic to \mathbb{Z} . In this case, let $T = \{ab^{-1} \mid a, b \in S, b \neq 0\}$. Then T is well defined since F is a field.

Exercise. T is a subring.

Then T is isomorphic to \mathbb{Q} .

Exercise. $\phi: \frac{\mathbb{Q} \to T}{\frac{m}{n} \mapsto (m \cdot 1)(n \cdot 1)^{-1}}$ is an isomorphism.

- Intersections of subfields of fields are also fields $(F_1 \subseteq F, F_2 \subseteq F, \underbrace{F_1 \cap F_2}_{\text{field}} \subseteq F)$
- Every field has a smallest subfield which is called the prime subfield of the field.

Corollary 15.5.3. $char(F) = p > 0 \implies$ the prime subfield of F is isomorphic to \mathbb{Z}_p

 $char(F) = 0 \implies the prime subfield of F is isomorphic to <math>\mathbb{Q}$

15.3 The Field of Quotients

Theorem 15.6. Let D be an integral domain. Then there exists a field F = Q(D) called the <u>field of quotients</u> of D that contains a subring isomorphic to D.

Example 15.5. $D = \mathbb{Z} \implies F = \mathbb{Q}$

Proof. Let $S = \{(a,b) \mid a,b \in D, b \neq 0\}$. Define an equivalence relation on S; $(a,b) \equiv (c,d)$ if ad = bc.

Let F be the set of equivalence classes of S under the relation \equiv and denote the equivalence class that contains (x,y) by $\frac{x}{y}$. Define addition and multiplication on F as follows:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Exercise. need to verify that both operations are well defined

i.e.

$$\frac{a}{b} = \frac{a'}{b'}, \ \frac{c}{d} = \frac{c'}{d'} \implies \frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'} \text{ and } \frac{ac}{bd} = \frac{a'c'}{b'd'}$$

- F is a field. Let 1 be the unity of D. Then $\frac{0}{1}$ is the additive identity and $\frac{1}{1}$ is the multiplicative identity. Additive inverse of $\frac{a}{b}$ is $\frac{-a}{b}$. Multiplicative inverse of $\frac{a}{b}$ (when $a \neq 0$) is $\frac{b}{a}$.
- The mapping $\phi: \frac{D \to F}{x \mapsto \frac{x}{1}}$ is an isomorphism from D to $\phi(D)$.

Example 15.6. $D = \mathbb{Z}[x]$

$$\begin{split} Q(D) &= \left\{ \frac{f(x)}{g(x)} \;\middle|\; g(x) \neq 0, \; f(x) \in \mathbb{Z}[x] \right\} \\ \mathbb{Q}(x) &= Q(\mathbb{Q}[x]) = \left\{ \frac{f(x)}{g(x)} \;\middle|\; g(x) \neq 0, \; f(x) \in \mathbb{Q}[x] \right\} \end{split}$$

Note. $g(x) \neq 0 \implies$ not the zero polynomial. g(x) = x - 1 is allowed

Lecture 38

16 Polynomial Rings

16.1 Notation and Terminology

Definition 16.1 (Ring of Polynomials over R). Let R be a commutative ring.

$$R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in R, \ n \in \mathbb{Z}_{>0}\}$$

is called the ring of polynomials over R in the indeterminate x.

Addition and multiplication are as usual.

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

If $a_n \neq 0$, then $\deg(f) = n$ and a_n is called the leading coefficient of f.

If $a_n \neq 0$ is the multiplicative identity of R, then f is called a <u>monic</u> polynomial.

 a_0 is called the <u>constant term</u> of f.

If $f(x) = a_0$ then f is called a constant polynomial.

Theorem 16.1. If D is an integral domain, then D[x] is an integral domain.

Proof.
$$f(x) = a_n x^n + \underbrace{\cdots}_{\text{lower degree}}, \quad g(x) = a_m x^m + \underbrace{\cdots}_{\text{lower degree}}, \quad a_n^{\neq 0}, a_m^{\neq 0} \in D$$

$$f(x) \cdot g(x) = (a_n \cdot a_m)x^{m+n} + \underbrace{\cdots}_{\text{lower degree}}$$

D integral domain $\implies a_n \cdot a_m \neq 0 \implies f(x) \cdot g(x) \neq 0$ since the leading term is nonzero.

Theorem 16.2 (Division Algorithm for F[x]). Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exists unique polynomials g(x) and g(x) and g(x) in g(x) such that

$$f(x) = q(x)g(x) + r(x)$$
 and either $r(x) = 0$ or $\deg r(x) < \deg g(x)$

$Pf\ sketch.$

• May assume g(x) is monic (F = field).

Say
$$g = x^n + a_{n-1}x^{n-1} + \cdots$$

• use x^n to "cancel" terms in f(x)

$$f(x) = b_m x^m + \cdots$$
 with $m \ge n$

$$f(x) - b_m x^{m-n} \cdot g(x) = \text{polynomial of degree} < m$$

Then proceed by induction on degree.

Example 16.1. In $\mathbb{Z}_5[x]$,

$$f(x) = 3x^4 + x^3 + 2x^2 + 1$$
$$g(x) = x^2 + 4x + 2$$

Corollary 16.2.1 (Remainder Theorem). Let F be a field and $f(x) \in F[x]$. Then a is a zero of $f(x) \iff x - a$ is a factor of f(x)

Proof. f(x) = (x - a)q(x) + r (where r is a constant)

$$\begin{array}{ll} a \text{ is a zero of } f \Longleftrightarrow f(a) = 0 \Longleftrightarrow r = 0 \\ \iff f(x) = (x-a)q(x) \\ \iff (x-a) \text{ is a factor of } f \end{array}$$

Corollary 16.2.2 (Factor Theorem). A polynomial of degree n over a field has at most n zeros counting multiplicity.

Pf sketch. use Cor 16.2.1

Example 16.2. Every polynomial in $\mathbb{C}[x]$ of deg n has exactly n zeros counting multiplicity.

Cor is not true for arbitrary polynomial rings.

Example 16.3. $x^2 + 3x + 2$ in $\mathbb{Z}_6[x]$ has <u>four</u> zeros in \mathbb{Z}_6 (1, 2, 4, 5).

Definition 16.2 (Principal Ideal Domain (PID)). A principal ideal domain (PID) is an integral domain R such that every ideal has the form $\langle a \rangle = \{ra \mid r \in R\}$ for some $a \in R$

Theorem 16.3. For any field F, F[x] is a PID.

Proof. Let I be an ideal in F[x].

Assume $I \neq \{0\} = \langle 0 \rangle$

Let g be a polynomial in I that has minimum degree.

Then $I = \langle g(x) \rangle$ by the division algorithm

Theorem 16.4. \mathbb{Z} is a PID.

Example 16.4. $\mathbb{Z}[x]$ is not a PID. (e.g. $\langle x, 2 \rangle$ is not principal)

Lecture 38

17 Factorization of polynomials

Definition 17.1 (Irreducible Polynomial). Let D be an integral domain. A polynomial $f(x) \in D[x]$ that is neither 0 nor a unit in D[x] is said to be <u>irreducible</u> over D if whenever f(x) = g(x)h(x), then g(x) or h(x) is a unit in D[x]. A nonzero, nonunit element of D[x] that is *not* irreducible is said to be <u>reducible</u>.