Narrowband ISDN (N-ISDN)

- Integrated Services Digital Network (ISDN) was the first fully digital WAN technology that integrated voice and non-voice services
- Caller ID from a database
- Remote meter readings
- Online alarms
- Other data
- Primary application of circuit switching

N-ISDN Architecture (1/2)

- · Digital bit pipe:
- Connecting the customer with the carrier
- Bidirectional flow of bits
- · Network terminating device: NT1
- Placed at the customer's side (ISDN "modem")
- Connects to the carrier's network
- An NT1 Can support up to 8 ISDN devices
- NT2: ISDN PBX (Private Branch eXchange)
- For supporting larger installations
- Provides a real-time interface for ISDN devices

2

N-ISDN Architecture (2/2)

- Bit pipe supports multiple channels arbitrarily interleaved using time division multiplexing:
- A: 4 KHz analog telephone channel
- B: 64 Kbps digital channel (voice or data)
- C: 8 or 16 Kbps digital channel
- D: 16 Kbps digital channel for out-of-band signaling
- · Standardized combinations:
- Basic rate: 2B + 1D
- Primary rate: 23B + 1D (U.S) / 30B + 1D (Europe)
- · Focused on 64 Kbps channels, therefore narrowband

N-ISDN Summary

- Massive attempt to replace analog telephone system with a digital one
- Most important shortcoming limited bandwidth
- LANs: 10 Mbps to 100 Mbps
- Managed to stay alive longer that it deserved
- Basic rate sold as Internet access method

Packet Switching

- · Based on message switching:
- No physical circuit path is established between sender and receiver; connectionless
- Blocks of data are sent, stored in *switching devices* (routers) then forwarded one hop at a time
- No limit on block size
- · Packet switching:
- Tight upper limit on block size
- Blocks buffered in memory
- Packets:
- Include a destination and sequence number
- Information about the data stream to which they belong
- Can follow different routes before being reassembled by the destination
- · New paradigm, changed the world

5

Circuit vs Packet Switching

Item	Circuit Switching	Packet Switching	
Dedicated path	Yes	No	
Bandwidth	Fixed	Dynamic	
Wasted bandwidth	Yes	No	
Store-and-forward	No	Yes	
Data follow same path	Yes	No	
Call setup in advance	Required	Not required	
Congestion	Setup	Every packet	
Charging	Time/Distance	Time/Bytes	

6

Broadband ISDN (B-ISDN)

- Based on ATM (Asynchronous Transfer Mode) technology
- Packet switching, well yes, but not really
- Emulates circuit switching using packet switching
- Therefore, backwards compatible with N-ISDN
- · Bandwidth increase by a factor of 2500
- 156 Mbps
- High expectations, thought to be the "universal telecommunications technology of the future"

B-ISDN Packets

· All information is carried in fixed size blocks

8

B-ISDN: Virtual Circuit Switching (1/3)

- No physical path is established, but a *virtual* one using packet switching
- · Route is chosen from source to destination
- Intermediate routers (switches) make table entries so they can route incoming packets along the virtual circuit path
- When a packet arrives, a switch:
- Inspects the packet's header to find the virtual circuit it belongs to
- Looks up that virtual circuit in its table to find which communication line to send it on

B-ISDN: Virtual Circuit Switching (2/3)

• Connection-oriented service paradigm:

10

B-ISDN: Virtual Circuit Switching (3/3)

- Permanent Virtual Circuit (PVC) paths are setup ahead of time after an agreement between a customer and a carrier
- Table entries are hard-coded in switches
- Charged monthly
- May be idle most of time
- No setup time; important in some applications (credit card verifications)
- Switched Virtual Circuit (SVC) paths:
- Like telephone calls
- Path is setup dynamically when needed; torn down afterwards

Asynchronous Transfer Mode (ATM)

- The underlying transfer technology of B-ISDN
- Data are divided into fixed size blocks called cells
- 53 bytes: 5 header, 48 payload

-			1 ,				
0	1	2	3	4	5	6	
	FLOW CONTROL			VPI (FIRST 4 BITS)			
	VPI (LAST 4 BITS)			VCI (FIRST 4 BITS)			
			VCI (MII	ODLE 8 BITS)			
	VCI (LA	AST 4 BIT	S)	PT		PRIO	
		CYC	CLIC RED	UNDANCY (CHECK		

12

3

ATM: Cell Header

- · VPI: Virtual Path Identifier
- · VCI: Virtual Channel Identifier
- Together identify the cell's destination
- PT: Payload type (voice or data)
- PRIO: Cell loss priority bit
- Can a packet be discarded when the network becomes congested?
- CRC: Used to verify that the cell was not damaged in transit

13

ATM: VPI/VCI

- · ATM connection: VC
- Actually stands for virtual channel
- Most people prefer the more descriptive term *virtual* circuit
- Each VC is assigned a 24-bit ID
- VPI: Specifies the path the VC follows through the network (8 bits)
- VCI: Specifies a single VC within the path (16 bits)
- · The two fields are not interpreted
- Viewed as a single 24-bit binary value that gives the connection identifier

14

ATM: Label Switching

- · ATM network formed using ATM switches
- Attachment points: ports
- · An ATM switch:
- Changes the VPI/VCI in each cell it handles
- Forwarding table specifying how incoming cells are forwarded:
- Each entry corresponds to a possible VPI/VCI for a given port (over which the cell will be sent)
- Replacement VPI/VCI
- The switch rewrites the VPI/VCI in the cell header with the replacement and forwards the cell

5

ATM: Label Switching Example S add VPI/CI port new VPI/CI old VPI/CI old

ATM: Network Setup

- ATM PVCs (provisioning):
- One pair of switches is considered at a time
- Data-specific VPI/VCI identifiers are not global
- A VPI/VCI that is not used is selected, a table entry is reserved
- On the next router the table is filled accordingly
- ATM SVCs:
- Connection request propagates and table entries are created
- If a router rejects the VC an error message is sent back
 - * Request and error messages are control traffic
 - * Denoted by global VPI/VCI values

17