Machine learning with ontologies

Robert Hoehndorf

Before the tutorial

See https://github.com/bio-ontology-research-group/ontology-tutorial:

- install Docker (e.g.: apt-get install docker)
- docker pull coolmaksat/embeddings:latest
- docker pull leechuck/ontology-ml:latest
- docker run -i -t -p 8888:8888
 leechuck/ontology-ml /bin/bash -c "jupyter notebook
 - --notebook-dir=/home/borg/ontology-tutorial/
 - --ip='0.0.0.0' --port=8888 --no-browser
 - --allow-root"

Overview

Ontologies and graphs

Machine learning and ontologies
Graph-based methods
Translating embeddings
Syntactic approaches
Model-theoretic approaches

Conclusion

Ontologies, axioms, and bioinformatics

- ontologies are ubiquitous
- rich formal characterization (axioms)
- how can they be used for (predictive) data analysis?
 - "fuzzy", similarity-based search
 - predictive analysis and machine learning
 - background knowledge

Learning goals

- machine learning with ontologies as features (or background knowledge)
- unsupervised or supervised:
 - here: mostly unsupervised feature learning
- focus on existing tools and methods
 - Jupyter Notebooks and code examples
- not covered:
 - learning ontologies (axioms, definitions) from data
 - natural language processing
 - reasoning with ontologies
 - learning on "knowledge graphs"
 - machine learning theory

Agenda

- Introduction: ontologies, axioms, reasoning, graphs
- Machine learning:
 - graph-based
 - syntactic
 - ▶ model-theoretic
- (Semantic similarity)
 - probably not

Preliminaries: ontologies

- Specific artifacts expressing the intended meaning of a vocabulary in terms of primitive categories and relations describing the nature and structure of a domain of discourse
 - ▶ in order to account for the competent use of vocabulary in real situations (such as annotations in databases, etc.)
- the intended meaning of *primitive* categories and relations is expressed through axioms (axiomatic method, Tarski)

Preliminaries: axioms

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.
- relations between instances arise from interactions, configurations, etc., of individuals
 - my arm is part of me, the duration of my influenza was 10 days
- axioms specify the conditions that instances of a class must satisfy
 - every instance of Hand is a part of an instance of Arm

Description Logics: overview

- TBox: axioms pertaining to the terminology of the domain (classes)
- ABox: axioms stating facts (assertions) about the world
- RBox: axioms holding for relations
- Reasoning: derive implicitly represented knowledge (e.g., subsumption)
- ullet a "knowledge graph" is an ABox + RBox

Manchester OWL Syntax

DL Syntax	Manchester Syntax	Example
$C \sqcap D$	C and D	Human and Male
$C \sqcup D$	C or D	Male or Female
$\neg C$	not C	not Male
∃ <i>R</i> . <i>C</i>	R some C	hasChild some Human
∀R.C	R only C	hasChild only Human
$(\geq nR.C)$	R min n C	hasChild min 1 Human
$(\leq nR.C)$	R max n C	hasChild max 1 Human
(= nR.C)	R exactly n C	hasChild exactly 1 Human
$\{a\} \sqcup \{b\} \sqcup$	{a b}	{John Robert Mary}

Ontologies provide background knowledge

Annotation	Value			
label	T cell aggregation			
definition	The adhesion of one T cell to one or more other T cells via adhesion molecules.			
class	http://purl.obolibrary.org/obo/GO_0070489			
ontology	GO-PLUS			
Equivalent	leukocyte aggregation and (has participant some T cell)			
SubClassOf	lymphocyte aggregation, has participant some T cell			
has_obo_namespace	biological_process			
Id	GO:0070489			
synonyms	T-cell aggregation, T lymphocyte aggregation, T-lymphocyte aggregation			

Ontologies provide background knowledge

Annotation	Value
label	T cell activation
definition	The change in morphology and behavior of a mature or immature T cell resulting from exposure to a mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is specific.
class	http://purl.obolibrary.org/obo/GO_0042110
ontology	GO-PLUS
Equivalent	cell activation and (has input some T cell)
SubClassOf	has input some T cell, lymphocyte activation
has_obo_namespace	biological_process
ld	GO:0042110
synonyms	T-lymphocyte activation, T lymphocyte activation, T-cell activation

Ontologies provide background knowledge

exosome sapiens MSN Moesin T cell UniProt Homo aggregation sapiens							
aggregation sapiens Cellular response to testosterone stimulus IL6 Interleukin-6 positive regulation of T cell proliferation IL6 Interleukin-6 T-helper 17 cell lineage sapiens	_ M	SN	Moesin			UniProt	HDA
response to testosterone stimulus IL6 Interleukin-6 positive regulation of T cell proliferation IL6 Interleukin-6 T-helper 17 cell lineage saplens	M	SN	Moesin			UniProt	IDA
regulation of T cell proliferation IL6 Interleukin-6 T-helper 17 UniProt Homo ISS cell lineage saplens	_ M	SN	Moesin	response to testosterone		UniProt	IDA
cell lineage sapiens		IL6	Interleukin-6	regulation of T cell	BHF-U		
		IL6	Interleukin-6	cell lineage	UniPro		

Problem statement (first attempt):

Given a set of biological entities and their ontology-based annotations. Can we discover *new* relations between the biological entities, or between entities and classes in the ontology?

Problem statement (first attempt):

Given a set of biological entities and their ontology-based annotations. Can we discover *new* relations between the biological entities, or between entities and classes in the ontology?

• what relations, and when is a fact "new"?

Problem statement (first attempt):

Given a set of biological entities and their ontology-based annotations. Can we discover *new* relations between the biological entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - ▶ depends on the relation!

Problem statement (first attempt):

Given a set of biological entities and their ontology-based annotations. Can we discover *new* relations between the biological entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - depends on the relation!
- finding new facts is only one (minor?) use case
 - other uses: encode background knowledge for machine learning models (e.g., function prediction); add new classes; expand definition; etc.

Semantic similarity

semantic similarity measures:

- for words, terms, classes
- role of background knowledge:
 - statistical/distributional semantics, large corpora
 - ontologies: (graph) topology
- similarity measures: hand-crafted or data-driven?

Semantic similarity: some examples

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- Which mouse knockout resembles Bardet-Biedl Syndrome 8?
- Are there mouse knockouts that resemble the side effects of diclofenac?
- Which genetic disease produces similar symptoms to ebola?
- Does functional similarity correlate with phenotypic similarity?

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - different measures for different kinds of similarity
 - usually interpretable (and explainable)

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - ▶ different measures for different kinds of similarity
 - usually interpretable (and explainable)
- machine learning methods are mostly data-driven
 - ▶ the architecture of the model is still hand-crafted
 - usually hard to interpret

Ontologies and graphs

 semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?
- relational patterns are implicit in OWL axioms
 - ▶ in first order logic
 - needs to translate them into OWL
 - defined in OBO Relation Ontology

Relations as patterns

Relations as patterns

- OBO Relation Ontology (RO):
 - ▶ https://github.com/oborel/obo-relations
- Basic Formal Ontology (BFO):
 - provides top-level classes
 - ► Continuant, Process, Function, Material object, etc.
 - used for some OBO Foundry ontologies
- RO and BFO provide a top-level system of classes and relations shared across many biomedical ontologies
- this system may define patterns used to generate graphs

Relations as patterns

```
• X SubClassOf: Y: X \xrightarrow{\text{is-a}} Y
• X SubClassOf: part-of some Y: X \xrightarrow{\text{part-of}} Y
• X SubClassOf: regulates some Y: X \xrightarrow{\text{regulates}} Y
• X DisjointWith: Y: X \xleftarrow{\text{disjoint}} Y
• X EquivalentTo: Y: X \xleftarrow{\equiv} Y, \{X,Y\}
```

← 🗆 →

Asserted and inferred

- relation patterns can be asserted or inferred
- X SubClassOf: part-of some Y
- Y SubClassOf: part-of some Z
- part-of o part-of SubPropertyOf: part-of
- $\bullet \vdash X \text{ SubClassOf: } part-of some Z$

Methods and tools

OBO Format represents ontologies as graphs:

- Protege/OWLAPI: OBO export
- OBO toolsets (e.g., ROBOT)
- https://github.com/bio-ontology-research-group/ Onto2Graph

Methods and tools

OBO Format represents ontologies as graphs:

- Protege/OWLAPI: OBO export
- OBO toolsets (e.g., ROBOT)
- https://github.com/bio-ontology-research-group/ Onto2Graph
- a conversion of an ontologies into a graph will almost always lead to a loss of information

Methods and tools

OBO Format represents ontologies as graphs:

- Protege/OWLAPI: OBO export
- OBO toolsets (e.g., ROBOT)
- https://github.com/bio-ontology-research-group/ Onto2Graph
- a conversion of an ontologies into a graph will almost always lead to a loss of information
- edges should be "meaningful": not merely syntax
 - the RDF serialization of OWL is a graph and contains all information but is a bad idea for semantic similarity or machine learning (more later)

An example: protein-protein interactions and GO functions

Machine learning with ontologies: approaches

- graph-based
- syntactic
- model-theoretic

How to measure similarity?

From Harispe et al., Semantic Similarity From Natural Language And Ontology Analysis, 2015.

How to measure similarity?

- Shortest Path
 - applicable to arbitrary "knowledge graphs"
 - does not capture similarity well over all edge types, e.g., disjointWith, differentFrom, opposite-of, etc.
- Random Walk
 - with or without restart
 - iterated
 - ▶ does not consider edge labels ⇒ captures only adjacency of nodes
 - scores whole graph with probability of being in a state
 - can take multiple seed nodes
 - can be used to find disease genes

Graph-based learning

• feature learning on graphs

Graph-based learning

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

Graph-based learning

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - ► analogy- or translation-based
 - ► https://github.com/SmartDataAnalytics/PyKEEN

Graph-based learning

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - analogy- or translation-based
 - ► https://github.com/SmartDataAnalytics/PyKEEN
- Graph Convolution Neural Networks (not discussed here)

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbf{R}^n$.

- key idea: preserve *some* structure of the graph in \mathbb{R}^n (under operations in \mathbb{R}^n)
- ullet Rⁿ enables *new* operations (such as many similarity measures)
- useful as feature vectors

- FOXP2 is characterized by adjacent and close nodes and edges
- different edges may "transmit" information differently

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

• Exploring the graph:

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Word2Vec

Maximize:

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{-c \le j \le c, j \ne 0} \log p(w_{n+j}|w_n) \tag{1}$$

with

$$p(w_o|w_i) = \frac{\exp(v_{w_o}^{\prime T} v_{w_i})}{\sum_{w=1}^{W} \exp(v_w^{\prime T} v_{w_i})}$$
(2)

(at least conceptually; different strategies are used to approximate Eqn. 2)

Word2Vec

Word2Vec and Random Walks

- random walks "flatten" a graph
 - walks capture node neighborhood
 - ▶ and generate a "corpus"
- random walks capture graph "structure"
 - ▶ hub-nodes, communities, etc.
 - determine "importance" of nodes
- embeddings capture co-occurrence
 - Similar graph neighborhood ⇒ similar co-occurrence ⇒ similar vector
- embeddings generate "feature" vectors
 - functions from symbols (words, labels) into \mathbb{R}^n

What to do with embeddings?

- useful for edge prediction, similarity, clustering, as feature vectors
 - supervised: edge prediction (e.g., SVM, ANN)
 - ▶ e.g.: find a function $f: \mathbb{R}^n \times \mathbb{R}^n \mapsto [0,1]$ s.t. $\sqrt{\frac{\sum_{t=1}^T (\hat{y_t} y_t)^2}{T}}$ (RMSE) is minimized for a set of true labels y_k
 - unsupervised: clustering, similarity, visualization
 - cosine similarity (for L2-normalized features)
 - Word2Vec embeddings capture similarity between co-occurrence vectors

Visualizing feature vectors: dimensionality reduction

- project *n*-dimensional vectors in 2D (or 3D) space
- and color with some known labels
 - ► high-level/general classes in an ontology work great
- PCA or t-SNE
- https://lvdmaaten.github.io/tsne/

Visualizing feature vectors

Features: supervised learning

- feature vectors represent graph neighborhood of nodes
 - ► adjacent nodes and edges
 - ontology classes (asserted & inferred)
- useful in supervised prediction tasks
- relation prediction:
 - ▶ input: two features vectors (from embedding function)
 - output: 0 or 1 (relation or not)
 - training data: positive and negative cases
 - ightharpoonup R(x,y) and $\neg R(x,y)$

Features: supervised learning

Object property	Source type	Target type	Without reasoning		With reasoning	
			F-measure	AUC	F-measure	AUC
has target	Drug	Gene/Protein	0.94	0.97	0.94	0.98
has disease annotation	Gene/Protein	Disease	0.89	0.95	0.89	0.95
has side-effect*	Drug	Phenotype	0.86	0.93	0.87	0.94
has interaction	Gene/Protein	Gene/Protein	0.82	0.88	0.82	0.88
has function*	Gene/Protein	Function	0.85	0.95	0.83	0.91
has gene phenotype*	Gene/Protein	Phenotype	0.84	0.91	0.82	0.90
has indication	Drug	Disease	0.72	0.79	0.76	0.83
has disease phenotype*	Disease	Phenotype	0.72	0.78	0.70	0.77

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Ontologies, graphs, and text

The <u>:FOXP2</u> gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>:FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/
- Walking RDF+OWL: random walks on RDF + Elk + Word2Vec
 - inference
- https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

Some limitations

- "word"-based (Word2Vec):
 - semantics is reduced to co-occurrence (in ABox/TBox statements)
 - "disjointWith" vs. "part-of" vs. "subClassOf"

Jupyter excercise

- Open the Jupyter notebook graph.ipynb
- Follow the examples in the first part of the notebook (random walks)
- If you don't have a powerful CPU in your laptop (with multiple cores), you may want to lower the number of iterations (n_iter) during TSNE
- some of the code will take a while to run
 - if things are too slow, you can keep it running while we continue or complete this after the tutorial

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbf{R}^n$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Minimize: $\sum_t \|\mu(s) + \mu(p) - \mu(o)\|$ (chose your norm, usually L2)

Entity and Relation Space

FOXP2 + binds = MET

- FOXP2 + binds = MET
- MAP + activates = MAPK3

- FOXP2 + binds = MET
- MAP + activates = MAPK3
- MET + binds = FOXP2

- FOXP2 + binds = MET
- MAP + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunctionG0:0044708

- FOXP2 + binds = MET
- MAP + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunction = G0:0044708
- ...

- FOXP2 + binds MET = 0
- MAP + activates -MAPK3 = 0
- MET + binds FOXP2 = 0
- ST7 + hasFunction G0:0044708 = 0
- ...

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
 1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                      \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                      \mathbf{e} \leftarrow \operatorname{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
 4: loop
          \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
              (h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) // \text{ sample a corrupted triplet}
              T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
11:
          end for
          Update embeddings w.r.t. \nabla \left[ \gamma + d(\mathbf{h} + \ell, \mathbf{t}) - d(\mathbf{h'} + \ell, \mathbf{t'}) \right]_{\perp}
12:
                                                     ((h,\ell,t),(h',\ell,t')) \in T_{batch}
```

13: end loop

Bordes et al. (2013). Translating Embeddings for ModelingMulti-relational Data.

Some properties of TransE

- graph-based
 - works well on RDF graphs
 - and ontology graphs
- 1:1 relations only
 - not suitable for hierarchies (1-N relations)
 - not suitable for N-N relations
 - no transitive, symmetric, reflexive relations

Entity and Relation Space

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$	Constraints/Regularization
TransE [14]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\ {f h} + {f r} - {f t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^d$	$-\ (\mathbf{h} - \mathbf{w}_r^\top \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^\top \mathbf{t} \mathbf{w}_r)\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1 \\ & \mathbf{w}_r^\top \mathbf{r} /\ \mathbf{r}\ _2 \leq \epsilon, \ \mathbf{w}_r\ _2 = 1 \end{aligned}$
TransR [16]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}^{k \times d}$	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ &\ \mathbf{M}_{r}\mathbf{h}\ _{2} \leq 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \leq 1 \end{aligned}$
TransD [50]	$\mathbf{h}, \mathbf{w}_h \in \mathbb{R}^d$ $\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_h^\top + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_r\mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ &\ (\mathbf{w}_{r}\mathbf{w}_{h}^{\top} + \mathbf{I})\mathbf{h}\ _{2} \leq 1 \\ &\ (\mathbf{w}_{r}\mathbf{w}_{t}^{\top} + \mathbf{I})\mathbf{t}\ _{2} \leq 1 \end{aligned}$
TranSparse [51]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\begin{aligned} \mathbf{r} &\in \mathbb{R}^k, \mathbf{M}_r(\theta_r) \in \mathbb{R}^{k \times d} \\ \mathbf{M}_r^1(\theta_r^1), \mathbf{M}_r^2(\theta_r^2) &\in \mathbb{R}^{k \times d} \end{aligned}$	$\begin{aligned} &-\ \mathbf{M}_r(\theta_r)\mathbf{h} + \mathbf{r} - \mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2 \\ &-\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h} + \mathbf{r} - \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2 \end{aligned}$	$\begin{split} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \\ &\ \mathbf{M}_r(\theta_r)\mathbf{h}\ _2 \leq 1, \ \mathbf{M}_r(\theta_r)\mathbf{t}\ _2 \leq 1 \\ &\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h}\ _2 \leq 1, \ \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _2 \leq 1 \end{split}$
TransM [52]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\theta_r \ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
ManifoldE [53]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-(\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _2^2 - \theta_r^2)^2$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$
TransF [54]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$(\mathbf{h} + \mathbf{r})^{\top} \mathbf{t} + (\mathbf{t} - \mathbf{r})^{\top} \mathbf{h}$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$
TransA [55]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d \times d}$	$-(\mathbf{h}+\mathbf{r}-\mathbf{t})^{\top}\mathbf{M}_r(\mathbf{h}+\mathbf{r}-\mathbf{t})$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}\ _{F} \le 1, [\mathbf{M}_{r}]_{ij} = [\mathbf{M}_{r}]_{ji} \ge 0$
KG2E [45]	$\begin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_h, \! \boldsymbol{\Sigma}_h) \\ \mathbf{t} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_t, \! \boldsymbol{\Sigma}_t) \\ \boldsymbol{\mu}_h, \boldsymbol{\mu}_t \! \in \! \mathbb{R}^d \\ \boldsymbol{\Sigma}_h, \boldsymbol{\Sigma}_t \! \in \! \mathbb{R}^{d \times d} \end{aligned}$	$\mathbf{r} \sim \mathcal{N}(\boldsymbol{\mu}_r, \boldsymbol{\Sigma}_r) \ \boldsymbol{\mu}_r \in \mathbb{R}^d, \boldsymbol{\Sigma}_r \in \mathbb{R}^{d imes d}$	$\begin{aligned} -\mathrm{tr}(\boldsymbol{\Sigma}_r^{-1}(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)) - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}_r^{-1} \boldsymbol{\mu} - \ln \frac{\det(\boldsymbol{\Sigma}_r)}{\det(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)} \\ - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \ln(\det(\boldsymbol{\Sigma})) \\ \boldsymbol{\mu} &= \boldsymbol{\mu}_h + \boldsymbol{\mu}_r - \boldsymbol{\mu}_t \\ \boldsymbol{\Sigma} &= \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_t \end{aligned}$	$\begin{split} & \ \boldsymbol{\mu}_h\ _2 \leq 1, \ \boldsymbol{\mu}_t\ _2 \leq 1, \ \boldsymbol{\mu}_r\ _2 \leq 1 \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_h \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_t \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_r \leq c_{max}\mathbf{I} \end{split}$
TransG [46]	$\begin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_h, \sigma_h^2 \mathbf{I}) \\ \mathbf{t} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_t, \sigma_t^2 \mathbf{I}) \\ \boldsymbol{\mu}_h, \boldsymbol{\mu}_t \! \in \! \mathbb{R}^d \end{aligned}$	$\begin{aligned} \boldsymbol{\mu}_{r}^{i} \sim & \mathcal{N} \big(\boldsymbol{\mu}_{t} \!\!-\!\! \boldsymbol{\mu}_{h}, \! (\boldsymbol{\sigma}_{h}^{2} \!\!+\!\! \boldsymbol{\sigma}_{t}^{2}) \mathbf{I} \big) \\ \mathbf{r} &= \sum_{i} \boldsymbol{\pi}_{r}^{i} \boldsymbol{\mu}_{r}^{i} \in \mathbb{R}^{d} \end{aligned}$	$\textstyle \sum_i \pi_r^i \exp \left(-\frac{\ \mu_h + \mu_r^i - \mu_t\ _2^2}{\sigma_h^2 + \sigma_t^2} \right)$	$\ \boldsymbol{\mu}_h\ _2 \leq 1, \ \boldsymbol{\mu}_t\ _2 \leq 1, \ \boldsymbol{\mu}_r^i\ _2 \leq 1$
UM [56]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	_	$-\ {f h}-{f t}\ _2^2$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
SE [57]	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	$\mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{d \times d}$	$-\ \mathbf{M}_r^1\mathbf{h}-\mathbf{M}_r^2\mathbf{t}\ _1$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$

Wang et al. Knowledge Graph Embedding: A Survey of Approaches and Applications.

PyKEEN

- Python package to generate knowledge graph embeddings
- supports many different graph embedding types: TransE, TransR, TransD, RESCAL, etc.
- hyperparameter optimization ("HPO") and evaluation included
- https://github.com/SmartDataAnalytics/PyKEEN

Some limitations

- graph-based (same as random walks):
 - ontologies are not graphs!
 - converting ontologies to graphs loses information
 - ▶ no axioms, no definitions

Jupyter excercise

- run the PyKEEN part of graph.ipynb
- again: this may take a while
- you can also explore https://github.com/SmartDataAnalytics/PyKEEN
- try to expand the notebook to predict "new" relations
 - ▶ using numpy directly, or PyKEEN's predictions methods

Ontologies: axioms, not graphs!

Overview	Browse DLQuery Download
Annotation	Value
label	B cell apoptotic process
definition	Any apoptotic process in a B cell, a lymphocyte of B lineage with the phenotype CD19-positive and capable of B cell mediated immunity.
class	http://purl.obolibrary.org/obo/GO_0001783
ontology	GO-PLUS
Equivalent	apoptotic process and (occurs in some B cell)
SubClassOf	occurs in some B cell, lymphocyte apoptotic process
id	GO:0001783
has_obo_name	space biological_process

Ontologies: axioms, not graphs!

Gene Ontology:

- behavior DisjointWith: 'developmental process'
- behavior SubclassOf: only-in-taxon some metazoa
- 'cell proliferation' DisjointWith: in-taxon some fungi
- 'cell growth' EquivalentTo: growth and ('results in growth of' some cell)

• ...

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$.

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$.

For example, we can use co-occurrence within ax^{\perp} to constrain the embedding function, where the constraints on co-occurrence are formulated using the Word2Vec skipgram model.

Onto2Vec

Predicting PPIs: trainable similarity measures

Smaili et al. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.

Visualizing embeddings

Combination with text

- ontologies contain more than axioms:
 - ▶ labels, synonyms, definitions, authors, etc.
- Description Logic axioms != natural language
- transfer learning: learn on one domain/task, apply to another
 - e.g.: learn on literature, apply to ontologies
 - words have "meaning" in literature, Description Logic symbols have "meaning" in ontology axioms
- Ontologies Plus Annotations 2 Vec (OPA2Vec) combines both

Ontologies Plus Annotations 2 Vec

Axioms contribute to prediction tasks: GO and GO-PLUS

	Human	Yeast	Arabidopsis
GO_Onto2Vec	0.7660	0.7701	0.7559
GO_Onto2Vec_NN	0.8779	0.8711	0.8364
GO_plus_Onto2Vec	0.7880	0.7943	0.7889
GO_plus_Onto2Vec_NN	0.9021	0.8937	0.8834

Evaluating individual axioms

Testing how much each ontologies' axioms contribute to predictions:

	Hu	ıman	Arabidopsis	
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN
GO (Baseline)	0.7660	0.8779	0.7559	0.8364
ChEBI	0.7899(+0.0239)	0.8914(+0.0135)	0.7703(+0.0144)	0.8518(+0.0154
PO	0.7752(+0.0092)	0.8776(-0.0003)	0.7671(+0.0112)	0.8469(+0.0105)
CL	0.7743(+0.0083)	0.8810(+0.0031)	0.7612(+0.0053)	0.8371(+0.0007)
PATO	0.7657(-0.0003)	0.8768(-0.0011)	0.7563(+0.0004)	0.8380(+0.0016)

Evaluating definitions

Testing how much each ontologies' annotation properties contribute to predictions:

	Human			Arabidopsis	
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN	
GO (Baseline)	0.8727	0.9033	0.8613	0.8903	
ChEBI	0.8571(-0.0156)	0.8801(-0.0232)	0.8601(-0.0012)	0.8880(-0.0023)	
PO	0.8680(-0.0047)	0.8824(-0.0209)	0.8632(+0.0019)	0.8908(+0.0005)	
CL	0.8811(+0.0084)	0.9037(+0.0004)	0.8614(+0.0001)	0.8899(-0.0004)	
PATO	0.8562(-0.0165)	0.8711(-0.0322)	0.8544(-0.0069)	0.8860(-0.0043)	

OPA2Vec

- https:
 //github.com/bio-ontology-research-group/opa2vec
- command line tool
 - input: OWL ontology, set of entities with annotations/associations
 - output: vectors for each class and entity
- includes Elk and HermiT
- limitations: word-based
 - ► still ignores semantics!

OPA2Vec Jupyter excercise

- open the notebook OPA2Vec.ipynb
- run the whole notebook
 - this should be relatively fast and not take too much time on a modern laptop
- play with the prediction methods (cosine similarity)

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ► graph-based or based on axioms

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"

- none of the models discussed above are truly "semantic"
 - ▶ all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"
 - lacktriangle universal algebra over formal languages (with signature Σ)

Description Logic EL++

Name	Syntax	Semantics
top	T	$\Delta^{\mathcal{I}}$
bottom	Τ	Ø
nominal	{a}	$\{a^{\mathcal{I}}\}$
conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential	∃r.C	$ \{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} $
restriction		
generalized	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept		
inclusion		
role inclu-	$r_1 \circ \circ r_n \sqsubseteq r$	$r_1^{\mathcal{I}} \circ \circ r_n^{\mathcal{I}} \subseteq r^{\mathcal{I}}$
sion		

Models

- ullet Interpretations and Σ -structures
- Model $\mathfrak A$ of a formula ϕ : ϕ is true in $\mathfrak A$ ($\mathfrak A \models \phi$)
- Theory T: set of formulas
- ullet ${\mathfrak A}$ is a model of T if ${\mathfrak A}$ is a model of all formulas in T
- Ontologies are (special kinds of) theories

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
- ullet any consistent \mathcal{EL}^{++} theory has infinite models

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
- ullet any consistent \mathcal{EL}^{++} theory has infinite models
- any consistent EL++ theory has models in \mathbb{R}^n (Loewenheim-Skolem, upwards)

Key idea

- for all $r \in \Sigma(T)$ and $C \in \Sigma(T)$, define $f_e(r)$ and $f_e(C)$
- $f_e(C)$ maps to points in an open n-ball such that $f_e(C) = C^{\mathcal{I}}$: $C^{\mathcal{I}} = \{x \in \mathbb{R}^n | \|f_e(C) x\| < r_e(C)\}$
 - ▶ these are the *extension* of a class in \mathbb{R}^n
- $f_e(r)$ maps a binary relation r to a vector such that $r^{\mathcal{I}} = \{(x,y)|x + f_e(r) = y\}$
 - ► that's the TransE property for *individuals*
- use the axioms in T as constraints

Algorithm

- normalize the theory:
 - every \mathcal{EL}^{++} theory can be expressed using four normal forms (Baader et al., 2005)
- eliminate the ABox: replace each individual symbol with a singleton class: a becomes {a}
- rewrite relation assertions r(a,b) and class assertions C(a) as $\{a\} \sqsubseteq \exists r.\{b\}$ and $\{a\} \sqsubseteq C$
 - something to remember for the next class-vs-instance discussion?
- normalization rules to generate:
 - $ightharpoonup C \Box D$
 - $ightharpoonup C \sqcap D \sqsubseteq E$
 - **►** *C* \sqsubseteq $\exists R.D$
 - **▶** ∃*R*.*C* □ *D*

$$loss_{C \sqsubseteq D}(c, d) = \max(0, ||f_{\eta}(c) - f_{\eta}(d)|| + r_{\eta}(c) - r_{\eta}(d) - \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
(3)

Let $h=\frac{r_{\eta}(c)^2-r_{\eta}(d)^2+\|f_{\eta}(c)-f_{\eta}(d)\|^2}{2\|f_{\eta}(c)-f_{\eta}(d)\|}$, then the center and radius of the smallest n-ball containing the intersection of $\eta(C)$ and $\eta(D)$ are $f_{\eta}(c)+\frac{h}{\|f_{\eta}(c)-f_{\eta}(d)\|}(f_{\eta}(d)-f_{\eta}(c))$ and $\sqrt{r_{\eta}(c)^2-h^2}$.

$$loss_{C \sqsubseteq \exists R.D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(4)

$$loss_{\exists R.C \sqsubseteq D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)\| - r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(5)

$$loss_{C \sqcap D \sqsubseteq \bot}(c, d, e) = \max(0, r_{\eta}(c) + r_{\eta}(d) - ||f_{\eta}(c) - f_{\eta}(d)|| + \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
(6)

EL Embeddings

□ Person	(7)
⊑ Person	(8)
\sqsubseteq <i>Male</i>	(9)
\sqsubseteq Female	(10)
\sqsubseteq Parent	(11)
\sqsubseteq Parent	(12)
$\sqsubseteq \bot$	(13)
\sqsubseteq Mother	(14)
\sqsubseteq Father	(15)
\sqsubseteq Parent	(16)
⊑ Person	(17)
$\sqsubseteq \exists hasChild. \top$	(18)
	☐ Person ☐ Male ☐ Female ☐ Parent ☐ Parent ☐ L ☐ Mother ☐ Father ☐ Parent ☐ Person

EL Embeddings

- model with $\Delta = R^n$
- support quantifiers, negation, conjunction,...

IJCAI 2019

Jupyter excercise

- Run the new Docker image coolmaksat/embeddings:latest
- docker run -i -t -p 8888:8888
 coolmaksat/embeddings /bin/bash -c "jupyter
 notebook --notebook-dir=/usr/src/app/
 --ip='0.0.0.0' --port=8888 --no-browser
 --allow-root"

Summary

- ontologies contain background knowledge that is useful as background knowledge:
 - axioms
 - ► natural language (definitions, labels, synonyms)

Summary

- ontologies contain background knowledge that is useful as background knowledge:
 - axioms
 - natural language (definitions, labels, synonyms)
- feature learning (deep learning) on ontologies encodes this background knowledge
 - using ontology graphs, axioms, or model structures

Open research questions

Where is our semantics, in the machine learning model or the axioms?

- implicit or explicit?
- example: transitive relations
- ...