

Copyright © 2020 Canadian Internet Registration Authority ("CIRA"). All rights reserved. This material is proprietary to CIRA, and may not be reproduced in whole or in part, in either electronic or printed formats, without the prior written authorization of CIRA.

IoT Turning Point: Hardcoded vs. Zero Touch

Today - Hardcoded

IoT Turning Point: Hardcoded vs. Zero Touch

Domain Names & IoT Devices are similar

Physical SIM vs eSIM (digital SIM)

SIM

- Have a set of secure credentials stored digitally
- They have to be installed and activated in-store
- Plastic card easy to break/lose
- Needs space for physical installation
- Have to change SIM cards when changing providers

eSIM

- Can be remotely provisioning over the air
- Can't be lost and no in-store visit needed
- Save on space as it's embedded on the device
- Reduction of mechanical failures
- Change MNO providers remotely
- Multiple profiles on one device

Standards Body to Enable

Zero Touch, Remote eSIM Provisioning by MNO

Side

IoT Client

Application

IoT Server

Application

loT Backend

(D)TLS IP

Connection

De-facto APIs already exist

The loT SAFE eSIM can:

eSIM are mini HSM like TPM!

Compute signature → to enable bidirectional TLS Handshake

ENABLING IOT CONNECTIVITY

By downloading the Registry Payload to the eSIM

Registry Payload

Application/Cloud Service Provider

- ASP CERTS
- Domain name / URL / FQDN
- Port Number
- IoT, ASP & other Certificates
- SSID credentials

Zero Touch

CITO Secure loT Registry

Activation

Transfer

IoT Registry Ecosystem

Secure TLS connection after

activation

Application
Service Providers
(ASP)

Customer

Registry Payload

ASP Onboarding

MNO Onboarding

IoT Registry Onboarding

ASP/Cloud Onboarding (like Registrar onboarding)

- We need to know what their end point config is.
 - URL, port, ASP CERT, etc...
- We provide the IoT Registry root cert, DNS information

Enough information the IoT device to connect with the ASP

IoT Registry Onboarding

MNO Onboarding (new)

- Setup trusted connection
- Provide CIRA root certs
- Enough info to send a Registry Payload to the IoT device

Enough information the IoT device to connect with the ASP

Zero Touch

Activation

Transfer

IoT Device Registration with IoT Registry

- Customer adds a new device with IoTASP
- EPP like API between ASP and IoT Registry
 - Create, activate IoT device
 - Remove, update IoT device
 - Check status
 - Push IoT public CERT to ASP
 - Etc...
- Need to develop IETF Standard for the API

Zero Touch

Activation

Transfer

Activation

IoT Device Activation when "live" on MNO mobile network

- Once IoT device is live on MNO Network
 - we ask the IoT device via MNO to create a new key pair (public/private)
 - the MNO sends the IoT device CSR the IoT registry to sign
 - The IoT Registry returns a signed CERT to the MNO and ASP
 - The MNO sends the signed CERT on the IoT eSIM
 - The IoT Registry published a hash of the CERT in DNS w/DNSSEC
- The authenticity/identification of the IoT device can be verified with the signed CERT and via DNSSEC

This is when we push the Registry Payload to the IoT Device

Activation

Registry Payload – enabling a new root of trust leveraging DNSSEC

- IoT registry CIRA profile
- IoT Registry related CERTs
- CIRA DoT Trusted Recursive CERT
- IANA root trust anchor
- CN Unique value per SIM linked with eUICCID (unique eSIM ID)

Pre-provisioned at SIM activation

Downloaded over-the-air

^{*} Private / Public Key pair generated on-board

Zero Touch

Activation

Transfer

Transfer between entities

Application Service Providers

Registry Payload ParkoServe

- **IoT Unique Certificate CN#1**
- SSID (for home users)

Mobile IoT Device

Registry Payload

- iot.carparkserv.ca:8883
- IoT Unique Certificate (CN#2)
- SSID (for home users)

Zone

A New Root of Trust -DNSSEC

Leveraging the public DNS & DNSSEC to validate the authenticity of

eSIM

✓ DNS ✓

IoT eSIM

Public Key

signed

- IoT security applets
- cloud service providers public keys

A few digs ©

DNSSEC as the new root of trust for IoT devices and it works!

kdig +tls 1.8912230200031010008f.iotregistry.ca cert @dot.ciralabs.ca +dnssec

```
jacques@CIRA-20180025:~$ kdig +tls 1.8912230200031010008f.iotregistry.ca cert @dot.ciralabs.ca +dnssec +short
1 1 0 MqxTUYwvzhzjVEHT/g0PZooWyUBWsbOoaRWgkZhafV8=
CERT 13 4 3600 20201022000000 202010010000000 43891 iotregistry.ca. 7WfAq071EzZy6yRpiEUSme0M3fDzwj8nM4DyYh5AVWJz+
```

- The IoT Registry has a real time publicly available, trusted and verifiable Certificate Revoke List (CRL) function in the DNS with NSEC
 - kdig +tls 2.8912230200031010008f.iotregistry.ca cert @dot.ciralabs.ca +dnssec

```
AUTHORITY SECTION:
                                               ns01.iotregistry.ca. hos
iotregistry.ca.
                               ΙN
.8912230200031010008f.iotregistry.ca. 3447
1.1.iotregistry.ca.
                                       NSEC
                       3447
                               ΙN
iotregistry.ca.
                       3447
                               ΙN
                                               SOA 13 2 3600 2020102200
 8912230200031010008f.iotregistry.ca. 3447
                                               ΙN
                                                        RRSIG NSEC 13
```


One IoT Registry per country, per ccTLD ?!?!?!

- We need your help to take this concept to the next level
- We tried to fast fail this concept for the last year
 & it's growing
 - https://github.com/CIRALabs/CIRA-SecureloT-Registry
 - https://cira.ca/loT
- CIRA implementing and contributing to GSMA loT SAFE standard development

