4.1 Helmholtz decomposition

Let $\Omega \subset \mathbb{R}^3$ be an open set. For any scalar function $u \in H^1(\Omega)$ and vector function $\mathbf{u} \in (H^1(\Omega))^3$, define

$$\mathbf{grad} u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}\right)^{\top},$$

$$\operatorname{div} \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3},$$

$$\mathbf{curl} \mathbf{u} = \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}, \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}, \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}\right)^{\top}.$$

For simplicity, we denote $\nabla u = \operatorname{\mathbf{grad}} u$, $\nabla \cdot \mathbf{u} = \operatorname{div} \mathbf{u}$, $\nabla \times \mathbf{u} = \operatorname{\mathbf{curl}} \mathbf{u}$.

Define corresponding Hilbert spaces

$$H^{1}(\Omega) = \{ u \in L^{2}(\Omega) : \nabla u \in L^{2}(\Omega) \},$$

$$H(\operatorname{div}, \Omega) = \{ \mathbf{u} \in (L^{2}(\Omega))^{3} : \nabla \cdot \mathbf{u} \in L^{2}(\Omega) \},$$

$$H(\operatorname{curl}, \Omega) = \{ \mathbf{u} \in (L^{2}(\Omega))^{3} : \nabla \times \mathbf{u} \in (L^{2}(\Omega))^{3} \},$$

and subspaces with zero traces

$$H_0^1(\Omega) = \{ u \in H^1(\Omega) : u = 0 \text{ on } \Gamma \},$$

$$H_0(\operatorname{div}, \Omega) = \{ \mathbf{u} \in H(\operatorname{div}, \Omega) : \mathbf{u} \cdot \mathbf{n} = 0 \text{ on } \Gamma \},$$

$$H_0(\operatorname{curl}, \Omega) = \{ \mathbf{u} \in H(\operatorname{curl}, \Omega) : \mathbf{n} \times \mathbf{u} = 0 \text{ on } \Gamma \}.$$

Define the differential operators in two dimensions

$$\mathbf{Grad}u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}\right)^{\top}, \quad \mathrm{Div}\mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2},$$
$$\mathbf{Curl}u = \left(\frac{\partial u}{\partial x_2}, -\frac{\partial u}{\partial x_1}\right)^{\top}, \quad \mathrm{Curl}\mathbf{u} = \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}.$$

Let Γ be a two-dimensional Lipschitz continuous manifold. Define the surface gradient and scalar curl as follows:

$$\nabla_{\Gamma} u = -\mathbf{n} \times (\mathbf{n} \times \nabla u)$$
 and $\operatorname{Curl}_{\Gamma} \mathbf{u} = (\nabla \times \mathbf{u}) \cdot \mathbf{n}$, on Γ .

The surface divergence and vector curl can be defined by using the duality

$$\int_{\Gamma} \operatorname{div}_{\Gamma} \mathbf{u} \, v = -\int_{\Gamma} \mathbf{u} \cdot \nabla_{\Gamma} v \quad \text{for all } v \in C_0^{\infty}(\Gamma),$$
$$\int_{\Gamma} \mathbf{curl}_{\Gamma} u \cdot \mathbf{v} = \int_{\Gamma} u \operatorname{curl}_{\Gamma} \mathbf{v}, \quad \mathbf{v} \in (C_0^{\infty}(\Gamma))^3.$$

Lemma 4.1.1. Let K_1 and K_2 be two Lipschitz domains. Denote $\Sigma = \partial K_1 \cap \partial K_2$ and $D = K_1 \cup K_2 \Sigma$.

1. Let $u_1 \in H^1(K_1), u_2 \in H^1(K_2)$ and define $u \in L^2(D)$

$$u = \begin{cases} u_1 & in \ K_1, \\ u_2 & in \ K_2. \end{cases}$$

If $u_1 = u_2$ on Σ , then we have $u \in H^1(D)$.

2. Let $\mathbf{u}_1 \in H(\text{curl}, K_1), \mathbf{u}_2 \in H(\text{curl}, K_2)$ and define $\mathbf{u} \in L^2(D)$

$$\mathbf{u} = \begin{cases} \mathbf{u}_1 & in \ K_1, \\ \mathbf{u}_2 & in \ K_2. \end{cases}$$

If $\mathbf{u}_1 \times \mathbf{n} = \mathbf{u}_2 \times \mathbf{n}$ on Σ , then we have $\mathbf{u} \in H(\text{curl}, D)$.

3. Let $\mathbf{u}_1 \in H(\operatorname{div}, K_1), \mathbf{u}_2 \in H(\operatorname{div}, K_2)$ and define $\mathbf{u} \in L^2(D)$

$$\mathbf{u} = \begin{cases} \mathbf{u}_1 & in \ K_1, \\ \mathbf{u}_2 & in \ K_2. \end{cases}$$

If $\mathbf{u}_1 \cdot \mathbf{n} = \mathbf{u}_2 \cdot \mathbf{n}$ on Σ , then we have $\mathbf{u} \in H(\operatorname{div}, D)$.

Proof. 1. It suffices to prove $\nabla u \in (L^2(D))^3$ and

(4.1)
$$\nabla u = \begin{cases} \nabla u_1 & \text{in } K_1, \\ \nabla u_2 & \text{in } K_2. \end{cases}$$

For any $\mathbf{v} \in H_0(\text{div}, D)$, it follows from the integration by parts that

$$\int_{D} u \nabla \cdot \mathbf{v} = \int_{K_{1}} u_{1} \nabla \cdot \mathbf{v} + \int_{K_{2}} u_{2} \nabla \cdot \mathbf{v}$$

$$= -\int_{K_{1}} \nabla u_{1} \cdot \mathbf{v} - \int_{K_{2}} \nabla u_{2} \cdot \mathbf{v} + \int_{\Sigma} (u_{1} - u_{2}) \mathbf{v} \cdot \mathbf{n}$$

$$= -\int_{K_{1}} \nabla u_{1} \cdot \mathbf{v} - \int_{K_{2}} \nabla u_{2} \cdot \mathbf{v}.$$

Hence we have $\nabla u \in (L^2(D))^3$. Taking $\mathbf{v} \in H_0(\text{div}, K_i), i = 1, 2 \text{ yields } (4.1.3)$.

2. If suffices to prove $\nabla \times \mathbf{u} \in (L^2(D))^3$ and

(4.2)
$$\nabla \times \mathbf{u} = \begin{cases} \nabla \times \mathbf{u}_1 & \text{in } K_1, \\ \nabla \times \mathbf{u}_2 & \text{in } K_2. \end{cases}$$

Taking $\mathbf{v} \in (C_0^{\infty}(D))^3$, we have from the integration by parts that

$$\begin{split} \int_{D} \mathbf{u} \cdot (\nabla \times \mathbf{v}) &= \int_{K_{1}} \mathbf{u}_{1} \cdot (\nabla \times \mathbf{v}) + \int_{K_{2}} \mathbf{u}_{2} \cdot (\nabla \times \mathbf{v}) \\ &= \int_{K_{1}} \nabla \times \mathbf{u}_{1} \cdot \mathbf{v} + \int_{K_{2}} \nabla \times \mathbf{u}_{2} \cdot \mathbf{v} - \int_{\Sigma} (\mathbf{u}_{1} - \mathbf{u}_{2}) \times \mathbf{n} \cdot \mathbf{v} \\ &= \int_{K_{1}} \nabla \times \mathbf{u}_{1} \cdot \mathbf{v} + \int_{K_{2}} \nabla \times \mathbf{u}_{2} \cdot \mathbf{v}. \end{split}$$

Hence $\nabla \times \mathbf{u} \in (L^2(D))^3$. Taking $\mathbf{v} \in (C_0^{\infty}(K_i))^3$, i = 1, 2 yields (4.1.4).

3. Similar to the proof of 2.

Theorem 4.1.2. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $\Omega \subset\subset O$. There exits a bounded linear operator $E: H(\operatorname{curl}, \Omega) \to H(\operatorname{curl}, \mathbb{R}^3)$ such that

$$E\mathbf{u} = \mathbf{u} \ in \ \Omega, \quad \operatorname{supp}(E\mathbf{v}) \subset O, \quad for \ all \ \mathbf{u} \in H(\operatorname{curl}, \Omega).$$

Theorem 4.1.3. Let Ω be a simply connected Lipschitz domain. For $\mathbf{u} \in (L^2(\Omega))^3$, $\nabla \times \mathbf{u} = 0$ if and only if there exists $\varphi \in H^1(\Omega)/\mathbb{R}$ such that $\mathbf{u} = \nabla \varphi$.

Theorem 4.1.4. Let Ω be a bounded Lipschitz domain with boundary Γ . For $\mathbf{u} \in (L^2(\Omega))^3$ and satisfying

$$\nabla \cdot \mathbf{u} = 0 \ in \ \Omega, \quad \int_{\Gamma} \mathbf{u} \cdot \mathbf{n} = 0,$$

if and only if there exists $\mathbf{w} \in (H^1(\Omega))^3$ such that $\mathbf{u} = \nabla \times \mathbf{w}$. Furthermore, \mathbf{w} can be chose to satisfy $\nabla \cdot \mathbf{w} = 0$ and

$$\parallel \mathbf{w} \parallel_{(H^1(\Omega))^3} \le C \parallel \mathbf{u} \parallel_{(L^2(\Omega))^3}$$
.

It follows from Theorem 4.1.3 and Theorem 4.1.4 that we have the following Helmholtz decomposition theorem.

Theorem 4.1.5. For any vector field $\mathbf{u} \in (L^2(\Omega))^3$, it has the following decomposition

$$\mathbf{u} = \nabla q + \nabla \times \mathbf{w}, \ q \in H^1(\Omega)/\mathbb{R}, \ \mathbf{w} \in (H^1(\Omega))^3 \ satisfying \ \nabla \cdot \mathbf{w} = 0, \ (\nabla \times \mathbf{w}) \cdot \mathbf{n} = 0 \ on \ \Gamma.$$

Theorem 4.1.6. Let $\Omega \subset \mathbb{R}^3$ be a Lipschitz domain.

- 1. For any $\mathbf{u} \in H_0(\operatorname{curl}, \Omega)$, there exists $\mathbf{u}_0 \in (H_0^1(\Omega))^3$ and $\psi \in H_0^1(\Omega)$ such that $\mathbf{u} = \mathbf{u}_0 + \nabla \psi, \quad \parallel \mathbf{u}_0 \parallel_{(H^1(\Omega))^3} + \parallel \psi \parallel_{H^1(\Omega)} \leq C \parallel \mathbf{u} \parallel_{H(\operatorname{curl},\Omega)}.$
- 2. For any $\mathbf{u} \in H(\operatorname{curl},\Omega)$, there exists $\mathbf{u}_0 \in (H^1(\Omega))^3$ and $\psi \in H^1(\Omega)$ such that $\mathbf{u} = \mathbf{u}_0 + \nabla \psi, \quad \parallel \mathbf{u}_0 \parallel_{(H^1(\Omega))^3} + \parallel \psi \parallel_{H^1(\Omega)} \leq C \parallel \mathbf{u} \parallel_{H(\operatorname{curl},\Omega)}.$