Probabilidade e Estatística Aula 3 – Convergência estocástica

Luis A. F. Alvarez

27 de janeiro de 2025

VETORES ALEATÓRIOS

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade.
- Um vetor aleatório $\mathbf{Y}:\Omega\mapsto\mathbb{R}^k$ é uma função tal que cada coordenada $\mathbf{Y}_I:\Omega\mapsto\mathbb{R},\ I=1,\ldots,k$, é uma variável aleatória real.
- Um vetor aleatório induz uma distribuição de probabilidade sobre $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, dada por $\mathbb{P}_{\mathbf{Y}}[B] = \mathbb{P}[\mathbf{Y}^{-1}(A)]$, $A \in \mathcal{B}(\mathbb{R}^k)$.
- Pelo lema do π -sistema, essa distribuição de probabilidade é carectarizada pela função de distribuição $F_{\mathbf{Y}}: \mathbb{R}^k \mapsto [0,1]$, dada por:

$$F_{m{Y}}(m{c}) \coloneqq \mathbb{P}_{m{Y}}\left[\prod_{l=1}^k (-\infty, m{c}_k]\right], \quad m{c} \in \mathbb{R}^k.$$

Convergência quase-certa

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, e $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ uma sequência de vetores aleatórios.
- Dizemos que Y_n converge quase-certamente para um vetor aleatório Y, denotado por $Y_n \overset{\text{q.c.}}{\longrightarrow} Y$, se:

$$\mathbb{P}[\{\omega: \mathbf{Y}_n(\omega) \nrightarrow \mathbf{Y}(\omega)\}] = 0.$$

- Sequência de funções \boldsymbol{Y}_n convergem (ponto a ponto), a não ser num conjunto de pontos de probabilidade zero.

LEMA

 $\mathbf{Y}_n \overset{q.c.}{\to} \mathbf{Y}$ se, e somente se, para todo $\epsilon > 0$:

$$\mathbb{P}\left[\limsup_{n}\{\omega:\|\boldsymbol{Y}_{n}(\omega)-\boldsymbol{Y}(\omega)\|>\epsilon\}\right]=0.$$

Convergência em probabilidade

- Dizemos que \boldsymbol{Y}_n converge em probabilidade para um vetor aleatório \boldsymbol{Y} , denotado por $\boldsymbol{Y}_n \overset{p}{\to} \boldsymbol{Y}$, se, para todo $\epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}\left[\left\{\omega: \|\boldsymbol{Y}_n(\omega) - \boldsymbol{Y}(\omega)\| > \epsilon\right\}\right] = 0.$$

LEMA

Se $\mathbf{Y}_n \stackrel{q.c.}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$.

Convergência em distribuição

- Dizemos que \mathbf{Y}_n converge em distribuição para um vetor aleatório \mathbf{Y} , denotado por $\mathbf{Y}_n \overset{d}{\to} \mathbf{Y}$, se as funções de distribuição dos \mathbf{Y}_n , $\{F_{\mathbf{Y}_n}\}_{n\in\mathbb{N}}$, convergem para a função de distribuição $F_{\mathbf{Y}}$ nos pontos em que $F_{\mathbf{Y}}$ é contínua.
 - Isto é, $\lim_n F_{\boldsymbol{Y}_n}(\boldsymbol{c}) = F_{\boldsymbol{Y}}(\boldsymbol{c})$ para todo \boldsymbol{c} em que $F_{\boldsymbol{Y}}$ é contínua.
 - Conjunto de pontos em que uma função de distribuição é descontínua é enumerável \Longrightarrow se há convergência em distribuição, então, para qualquer $\boldsymbol{c} \in \mathbb{R}^k$, é sempre possível encontrar um $\boldsymbol{c}' \geq \boldsymbol{c}$ em que a função de distribuição converge.

LEMA

Se $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{d}{\to} \mathbf{Y}$.

Lema (Trecho do Lema Portmanteau)

 $\mathbf{Y}_n \stackrel{d}{ o} \mathbf{Y}$ se, e somente se, para qualquer $f: \mathbb{R}^k \mapsto \mathbb{R}$ contínua e limitada.

$$\mathbb{E}[f(\mathbf{Y}_n)] \to \mathbb{E}[f(\mathbf{Y})].$$

Convergência em L^p

- Dizemos que \boldsymbol{Y}_n converge para um vetor aleatório \boldsymbol{Y} na norma L^p , denotado por $\boldsymbol{Y}_n \overset{L_p}{\to} \boldsymbol{Y}$, se $\|\boldsymbol{Y}_n \boldsymbol{Y}\|_p \to 0$.
- Pela desigualdade de Markov, convergência em L_p implica convergência em probabilidade.
 - Recíproca não é, no geral, verdadeira.

TEOREMA DO MAPA CONTÍNUO

TEOREMA

Seja $(\boldsymbol{X}_n)_n$ uma sequêncai de vetores aleatórios, \boldsymbol{X} um vetor aleatório, e $f: \mathbb{R}^k \mapsto \mathbb{R}^l$ uma função contínua num conjunto C do domínio tal que: $\mathbb{P}[\{\omega: \boldsymbol{X}(\omega) \in C\}] = 1$. Então:

- 1. $\boldsymbol{X}_n \stackrel{q.c.}{\to} \boldsymbol{X} \implies f(\boldsymbol{X}_n) \stackrel{q.c.}{\to} f(\boldsymbol{X}).$
- 2. $\mathbf{X}_n \stackrel{p}{\to} \mathbf{X} \implies f(\mathbf{X}_n) \stackrel{p}{\to} f(\mathbf{X})$.
- 3. $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X} \implies f(\mathbf{X}_n) \stackrel{d}{\to} f(\mathbf{X}).$
 - Modos de convergência quase certa, em probabilidade e distribuição são preservados por transformações contínuas.

RESULTADOS ADICIONAIS E LEMA DE SLUTSKY

LEMA

- 1. Se $X_n \stackrel{d}{\to} X$ e $||X_n Y_n|| \stackrel{p}{\to} 0$, então $Y_n \stackrel{d}{\to} X$.
- 2. Se $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{p}{\to} c$, onde $c \in \mathbb{R}^k$ é constante, então $(X_n, Y_n) \stackrel{d}{\to} (X, c)$.
- 3. Se $X_n \stackrel{p}{\to} X$ e $Y_n \stackrel{p}{\to} Y$, então $(X_n, Y_n) \stackrel{p}{\to} (X, Y)$.

COROLÁRIO (LEMA DE SLUTSKY)

Sejam $X_n \stackrel{d}{\to} \mathbf{X}$ e $Y_n \stackrel{p}{\to} c$, duas sequências de variáveis aleatórias reais, onde $c \in \mathbb{R}$ é constante, então:

- $X_n + Y_n \stackrel{d}{\rightarrow} X + c$.
- $X_n \cdot Y_n \stackrel{d}{\to} X \cdot c$.
- Se $c \neq 0$, $X_n/Y_n \stackrel{d}{\rightarrow} X/c$.

NOTAÇÃO O E o PARA SEQUÊNCIAS NÃO ESTOCÁSTICAS

Notação O_P e o_P para sequências estocásticas

Função geradora de momentos

Função característica