Simple Sample

My Name 2024-10-03

1 Coordenadas no Espaço e Vetores no \mathbb{R}^3

1.1 Plano

1.2 Espaço

Exemplo: Localize no Espaço os pontos P=(1,2,3)e Q=(1,-2,3) Gráfico 3D de um vetor no espaço

1.3 Distancias entre pontos

Exemplo: $E \in \mathbb{R}$, descreva os pontos dados pelas equações:

a.
$$x = 5$$

b.
$$y = 3$$

c.
$$x^2 + y^2 = 1$$
 $d((x, y)(0, 0)) \rightarrow \sqrt{(x - 0)^2 + (y - 0)^2} = 1$ $\leftrightarrow \sqrt{x^2 + y^2} = 1 \leftrightarrow x^2 + y^2 = 1$

Exemplo: Que superficie em R^3 é representada pela seguinte equação?

a.
$$z = 3$$

A equação z = 3 representa o conjunto $\{(x, y, z)/z = 3\}$

b. y = 5

A equação y=5 representa um conjunto de todos os pontos do espaço que tem 2^{0} coordenadas igual a 5.

1.3.1 Formula de Distancias

Figure 1: Descrição da imagem

1.4 Esfera:

Definição Uma esfera de centro (a,b,c) e raio r é o conjunto de todos os pontos no espaço que estão a uma distancia e do ponto (a,b,c) e é descita por:

$$\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} = r^2 \leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 \tag{1}$$

Exemplo: Mostre que $x^2+y^2+z^2+4x-6y+2z+6=0$ é a equação de uma esfera. Identifique seu centro e raio. Solução: Podemos reescrever a e f fornecendo o seguinte modo. $x^2+4x+y^2-6y+z^2+2z+6=0 \leftrightarrow (x+2)^2-4+(y-3)^2-9+(z+1)^2-1+6=0$

 $(x+2)^2+(y-3)^2+(z+1)^2=8 \leftrightarrow (x-(-2))^2+(y-3)^2+(z-(-1))^2=8$ Assim, a e f dado descreve os pontos da esfera de contro (-2,3,-1) e o raio $r=\sqrt{8}$ Exercicio: Determine a região em $\mathbb R$ decrita pelas inequações: $1\leq x^2+y^2+z^2\leq 4$ e $z\geq 0$ Exemplo: $E\in\mathbb R$ qual é a superficie decrita pela equação $x^2+y^2=1$.

03.10.2024

Exemplo: Localize no \mathbb{R}^2 os pontos que satisfazem:

a.
$$(x-1)^2 + (y-2)^2 = 1$$
 e $z = 3$

b.
$$(x-4)(z-2)=0$$
 R: Note que $(x-4)(z-2)=0$ ocorre $\leftrightarrow x-4=0$ ou $z-2=0 \leftrightarrow x=4$ ou $z=2$

Exemplo: Srjam P=(-5,2,3) e Q=(3,4,-1). Determine a esuqeção da esfera que tem \overline{PQ}

Pmédio =
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right) P_u = u + \frac{1}{2}v = (x_1, y_1) + \frac{1}{2}(x_2 - x_1)(y_2 - y_1) = \left(\frac{x_2+x}{2}, \frac{y_2+y_1}{2}\right)$$

1.5 Vetores

Definição: Dados 2 pontos A ou B em \mathbb{R}^3 ou \mathbb{R}^2 , o segmento orientado a \overrightarrow{AB} é o segmento com ponto incicial A, ponto final V e orientado de $\overrightarrow{A} \to B$. **Definição:** Um segmento não nulo de \overrightarrow{AB} é equivalente a \overrightarrow{CD} ou \overrightarrow{AB} e \overrightarrow{CD} tem o mesmo comprimento e direção e sentido Dados dois segmentos orientados \overrightarrow{AB} e \overrightarrow{BC} , definimos: a soma de $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ Em geral, sejam u e v dois segmentos orientados. Para determina u+v, podemos seguir uma das duas abordagens:

FIGURA 12.12 (a) Interpretação geométrica do vetor soma. (b) A regra do paralelogramo da adição de vetores.

Figure 2: Descrição da imagem

Dado um segmento u de reta orientado \overrightarrow{AB} , existe um segmento de reta orientado \overrightarrow{v} , equiavalente a \overrightarrow{AB} e com ponto inicial em (0,0,0). Para especificiar \overrightarrow{v} precisamos apenas fornecer as coordenadas de um ponto final (a,b,c). De modo geral, o vetor $\overrightarrow{v}=\langle x,y,z\rangle$ é definido como o segmento de reta orientada com ponto inicial em (0,0,0) e ponto final (x,y,z).

Observação: Sejam u=< x,y,z>e $v=< x_2,y_2,z_2>$. Então: $u=v\leftrightarrow \{x_1=x_2$

 $y_1 = y_2$
 $z_1 = z_2$

Observação: Dados $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$, o vetor equivalente a \overrightarrow{AB} (ou vetor com representação \overrightarrow{AB}). $v=< x_2-x_1,y_2-y_1,z_2-z_1>$.

Exemplo: Dados $A=(1,4,0),\ B=(-1,1,-1)$ e C=(3,5,-10), encontre o vetor \overrightarrow{v} equivalente a \overrightarrow{AB} e as coordenadas do ponto D tal que $\overrightarrow{CD}=\overrightarrow{v}$ Solução: Segue se $v=< x_2-x_1, y_2-y_1, z_2-z_1>$ que v=<-1-(1), 1-(4), -1-(0)>=<-2, -3, -1>. Queremos encontrar D=(a,b,c) de tal modo que \overrightarrow{v} seja equiavalente a \overrightarrow{CD} . $<-2, -3, -1>=< a-3, b-5, c-(-10)>\leftrightarrow a-3=-2\to a=1b-5=-3\to b=2c+10=-1\to c=-11$

1.5.1 Operação com Vetores

Soma : Sejam $\overrightarrow{u} = \langle x_1, y_1, z_1 \rangle$ e $\overrightarrow{v} = \langle x_2, y_2, z_2 \rangle$. Definimos a soma $\overrightarrow{u} + \overrightarrow{v}$ por $\overrightarrow{u} + \overrightarrow{v} = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$.

Produto Escalar : Seja $k \in \mathbb{R}$ e $\overrightarrow{u} = \langle x_1, y_1, z_1 \rangle$. Definimos o produto $k * \overrightarrow{u} = \langle kx_1, ky_1, kz_1 \rangle$.

Comprimento: O comprimento de $\overrightarrow{u} = \langle x_1, y_1, z_1 \rangle \notin ||\overrightarrow{u}|| = \sqrt{x_1^2, y_1^2, z_1^2}$

Hello World! Today I am learning IATEX. IATEX is a great program for writing math. I can write in line math such as $a^2+b^2=c^2$. I can also give equations their own space:

$$\gamma^2 + \theta^2 = \omega^2 \tag{2}$$

If I do not leave any blank lines IATEX will continue this text without making it into a new paragraph. Notice how there was no indentation in the text after equation (1). Also notice how even though I hit enter after that sentence and here \downarrow IATEX formats the sentence without any break. Also look how it doesn't matter how many spaces I put between my words. For a new essay I can leave a blank space in my code.