Pátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Pátá přednáška

Program

- věta o kompaktnosti
- hilbertovský kalkulus
- rezoluční metoda
- korektnost a úplnost rezoluce
- LI-rezoluce a Horn-SAT

Materiály

Zápisky z přednášky, Sekce 4.7-4.8 z Kapitoly 4, Kapitola 5

4.7 Věta o kompaktnosti

Kompaktnost

Věta (O kompaktnosti): Teorie má model, právě když každá její konečná část má model.

Důkaz: \Rightarrow Snadné: Model T je zjevně modelem každé její části.

 \leftarrow Nepřímo: buď T sporná, najdeme spornou konečnou $T' \subseteq T$.

Z úplnosti víme, že $T \vdash \bot$, tedy existuje i konečný tablo důkaz τ výroku \bot z T. Konstrukce τ má konečně mnoho kroků, použili jsme tedy jen konečně mnoho axiomů z T. Definujme:

$$T' = \{ \alpha \in T \mid T\alpha \text{ je položka v tablu } \tau \}$$

Tedy τ je tablo jen z teorie T', máme tablo důkaz $T' \vdash \bot$, dle korektnosti je T' sporná.

Aplikace kompaktnosti

vlastnost nekonečného objektu ${\mathcal O}$

vlastnost všech konečných podobjektů \mathcal{O}'

- vlastnost popíšeme pomocí (nekonečné) teorie T
- ullet ke každé konečné $T'\subseteq T$ sestrojíme konečný podobjekt \mathcal{O}'
- O' splňuje danou vlastnost
- to nám dává model T'
- dle Věty o kompaktnosti má i T model
- což ukazuje, že i nekonečný objekt ${\mathcal O}$ splňuje vlastnost

Věta o kompaktnosti má mnoho aplikací (několik z nich uvidíme později), následující příklad chápejte jako 'šablonu'.

Aplikace kompaktnosti: příklad

Důsledek: Spočetně nekonečný graf je bipartitní, právě když je každý jeho konečný podgraf bipartitní.

Důkaz: ⇒ Každý podgraf bipartitního grafu je bipartitní.

 \leftarrow G je bipartitní, právě když je obarvitelný 2 barvami. Mějme jazyk $\mathbb{P}=\{p_v\mid v\in V(G)\}$ (kde p_v je barva v) a uvažme teorii

$$T = \{p_u \to \neg p_v \mid \{u, v\} \in E(G)\}$$

Zřejmě G je bipartitní, právě když T má model. Dle Věty o kompaktnosti stačí ukázat, že každá konečná $T' \subseteq T$ má model.

Buď G' podgraf G indukovaný na vrcholech, o kterých T' mluví:

$$V(G') = \{ v \in V(G) \mid p_v \in Var(T') \}$$

Protože je T' konečná, je G' také konečný, tedy je dle předpokladu 2-obarvitelný. Libovolné 2-obarvení V(G') ale určuje model T'. \square

4.8 Hilbertovský kalkulus

Hilbertovský deduktivní systém

- jiný, původní dokazovací systém
- ullet používá jen logické spojky \lnot , ightarrow
- schémata logických axiomů $(\varphi, \psi, \chi$ jsou libovolné výroky)
 - (i) $\varphi \to (\psi \to \varphi)$

(ii)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

- (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
- odvozovací pravidlo: tzv. modus ponens

$$\frac{\varphi,\varphi\to\psi}{\psi}$$

- hilbertovský důkaz výroku φ z teorie T je konečná posloupnost výroků $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:
 - φ_i je logický axiom, nebo
 - φ_i je axiom teorie $(\varphi_i \in T)$, nebo
 - φ_i lze odvodit z předchozích pomocí odvozovacího pravidla
- existuje-li hilbertovský důkaz, píšeme: T ⊢_H φ

Příklad hilbertovského důkazu

Ukažme, že pro teorii $T=\{\neg\varphi\}$ a pro libovolný výrok ψ platí:

$$T \vdash_{\mathcal{H}} \varphi \to \psi$$

Hilbertovským důkazem je následující posloupnost výroků:

1.
$$\neg \varphi$$

2.
$$\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$$

3.
$$\neg \psi \rightarrow \neg \varphi$$

4.
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

5.
$$\varphi \rightarrow \psi$$

Korektnost a úplnost

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Důkaz: Indukcí dle délky důkazu ukážeme, že každý výrok φ_i z důkazu (tedy i $\varphi_n = \varphi$) platí v T.

- Je-li φ_i logický axiom, $T \models \varphi_i$ platí protože logické axiomy jsou tautologie.
- Je-li $\varphi_i \in T$, jistě platí $T \models \varphi_i$.
- Získáme-li φ_i pomocí modus ponens z φ_j a $\varphi_k = \varphi_j \to \varphi_i$ (pro nějaká j, k < i), víme z indukčního předpokladu, že platí $T \models \varphi_j$ a $T \models \varphi_j \to \varphi_i$. Potom ale platí i $T \models \varphi_i$. (Modus ponens je korektní odvozovací pravidlo)

Věta (o úplnosti hilbertovského kalkulu): $T \models \varphi \Rightarrow T \models_H \varphi$ Důkaz vynecháme.

Kapitola 5: Rezoluční metoda

Rezoluční metoda

5.1 Množinová reprezentace

Množinová reprezentace

5.2 Rezoluční důkaz

Rezoluční pravidlo

Rezoluční důkaz

Rezoluční strom, rezoluční uzávěr

5.3 Korektnost a úplnost rezoluční

metody

5.4 LI-rezoluce a Horn-SAT