Assessing Performance

13 questions

1 point

1.

If the features of Model 1 are a strict subset of those in Model 2, the TRAINING error of the two models can **never** be the same.

- True
- False

1 point

2.

If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lowest TRAINING error?

- O Model 1
- O Model 2
- O It's impossible to tell with only this information

1 point

3.

model	will USUALLY have lowest TEST error?
0	Model 1
0	Model 2
0	It's impossible to tell with only this information
	eatures of Model 1 are a strict subset of those in Model 2, which will USUALLY have lower BIAS?
0	Model 1
0	Model 2
0	It's impossible to tell with only this information
1 point	

If the features of Model 1 are a strict subset of those in Model 2. which

Which of the following plots of model complexity vs. RSS is most likely from TRAINING data (for a fixed data set)?

1 point

6.

Which of the following plots of model complexity vs. RSS is most likely from TEST data (for a fixed data set)?

7.

It is **always** optimal to add more features to a regression model.

O True

0	O False				
1 point 8. A simp	le model with few parameters is most likely to suffer from:				
0	High Bias				
0	High Variance				
1 point					
9. A comp O	olex model with many parameters is most likely to suffer from: High Bias High Variance				
O O O O O O O O O O O O O O O O O O O	High Bias High Variance				
O O O O O O O O O O O O O O O O O O O	High Bias High Variance el with many parameters that fits training data very well but does				
O O O O O O O O O O O O O O O O O O O	High Bias High Variance el with many parameters that fits training data very well but does on test data is considered to be				
O O O O O O O O O O O O O O O O O O O	High Bias High Variance el with many parameters that fits training data very well but does on test data is considered to be accurate				

1 point	
11. A comr degree	non process for selecting a parameter like the optimal polynomial is:
0	Bootstrapping
0	Model estimation
0	Multiple regression
0	Minimizing test error
0	Minimizing validation error
1 point	
	ng model complexity on test data (choose all that apply):
	Allows you to avoid issues of overfitting to training data
	Provides an overly optimistic assessment of performance of the resulting model
	Is computationally inefficient
	Should never be done
1 point	
Which	of the following statements is true (select all that apply): For a fixed complexity , in the limit of an infinite amount of training data,
	The noise goes to 0

Ш	Bias goes to 0
	Variance goes to 0
	Training error goes to 0
	Generalization error goes to 0
	Submit Quiz

