Marine Mammal Science

Cetacean genome size diversity

Journal:	Marine Mammal Science
Manuscript ID	MMSCI-4563.R3
Manuscript Type:	Note
Date Submitted by the Author:	n/a
Complete List of Authors:	Oziolor, Elias; Baylor University Department of Environmental Science, Environmental Science Gregory, T. Ryan; University of Guelph, Biology Bickham, John; Texas A&M University St. Leger, Judy; SeaWorld Parks and Entertainment, Research and Science Matson, Cole; Baylor University Department of Environmental Science, Environmental Science
Keywords:	Cetacea, C-value, evolution, genome size, whale, dolphin, diversity

SCHOLARONE™ Manuscripts

1	Cetacean genome size diversity
2	Elias M. Oziolor ^{1,a,*} , T. Ryan Gregory ^{2,a,} John W. Bickham ³ , Judy St. Leger ⁴ , Cole W. Matson ¹
3	
4	¹ Department of Environmental Science, Center for Reservoir and Aquatic Systems Research,
5	and the Institute for Biomedical Studies, Baylor University, Waco, TX 76798, USA
6	² Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
7	³ Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX
8	77845, USA
9	⁴ Animal Care – Research and Pathology, SeaWorld Parks and Entertainment, San Diego, CA
10	92109, USA
11	
12	
13	^a These authors contributed equally to this manuscript.
14	*Corresponding author: Elias M. Oziolor
15	Email: emoziolor@ucdavis.edu
16	
17	
18	
19	
20	
21	
22	Keywords: Body mass, brain size, Cetacea, C-value, encephalization quotient, evolution,
23	genome size, whale

Sirenians and cetaceans are unique among mammals for exhibiting a purely aquatic
lifestyle, resulting in dramatic morphological, physiological, and behavioral changes (Gatesy et
al. 2013). Freed from the constraints of gravity by the buoyancy of water, cetaceans have
evolved a range of body sizes, from the relatively diminutive Maui's dolphin (Cephalorhynchus
hectori maui) at 1 m in length and 50 kg in mass to the largest animal ever known, the blue
whale (Balaenoptera musculus) at ~30 m and almost 200,000 kg (Jefferson 1993, Montgomery
et al. 2013). Modern dolphins, porpoises, and other whales (classically placed in the order
"Cetacea") are nested phylogenetically within the order Artiodactyla of even-toed ungulates
(Gatesy et al. 2013). A revised order Cetartiodactyla reflects these new phylogenetic insights and
emphasizes the close evolutionary affinity of whales to their terrestrial relatives (Gatesy et al.
2013).
Cetacea contains 88 extant species, divided into the 70 toothed whales (Odontoceti) and
the 18 baleen whales (Mysticeti). Due to the protected status of many whales combined with
inherent challenges in sampling, several aspects of their biology remain poorly described. Large-
scale genomic analyses have become available for cetaceans only quite recently and include
members of both toothed and baleen whales (McGowen et al. 2012, Keane et al. 2016).
However, estimates of total genome size are still quite rare. At present, the Animal Genome Size
Database contains data for only five species of cetaceans, most of which come from a single
study published more than 10 yr ago (Du and Wang 2006).
Genome size has been shown to correlate with various cellular, morphological,
developmental, and physiological parameters in mammals and other animals (Gregory 2005,
Smith and Gregory 2009), but it has not been possible to examine potential relationships such as
these in cetaceans. In other taxa, it has been observed that genome size, through the intermediate

47	of cell size, is related to resting metabolic rate, diving ability, migration distance, cold tolerance,
48	longevity, relative brain size, body size, and other such organism-level parameters (Gregory
49	2001, 2005; Andrews and Gregory 2009; Smith and Gregory 2009). We provide flow cytometric
50	estimates for 18 species of cetaceans (primarily odontocetes) as well as the hippopotamus
51	(Hippopotamus amphibious), the closest living relative of cetaceans, and another predominantly
52	aquatic mammal, the bearded seal (Erignathus barbatus), to provide information for future
53	comparisons that explore the evolutionary relationships of genome size in cetaceans.
54	Spleens were collected during postmortem evaluations from stranded or captive animals.
55	Samples from stranded animals were collected under NOAA's responsibility to the MMPA 1972
56	under Section 109(h), and a Stranding Agreement as part of the Marine Mammal Health and
57	Stranding Response Act. Samples from animals under managed care, or captivity, were collected
58	during necropsy examinations from animals held under USDA/APHIS Registration No: 58-C-
59	0077. All samples (Table S1, S2) were stored at -80°C until analysis.
60	Spleen samples were used to establish genome size with a flow cytometry protocol
61	originally developed by Vindelov and Christensen (1994) and modified by Oziolor et al. (2014).
62	A minimum of 10,000 cells were used to establish a mean genome size of each sample.
63	Information about the available cetaceans with previously established genome sizes by flow
64	cytometry (7 individuals; 5 species) was added to this analysis from the Animal Genome Size
65	Database. Chicken blood was used as a standard (accepted as 1.25 picograms (pg)) and was co-
66	prepared with samples.
67	Haploid nuclear DNA contents in mammals range approximately 5-fold from 1.63 pg in
68	Carriker's round-eared bat (Lophostoma carrikeri) to 8.40 pg in the polyploid red viscacha rat
69	(<i>Tympanoctomys barrerae</i>), averaging 3.21 pg \pm 0.85 SD (Gregory 2017). Some groups, most

notably bats, have particularly small and constrained genomes, whereas others, such as rodents,
have genomes that cover a much wider range (Gregory 2017) (Fig. 1). The expanded data set
presented here suggests that cetaceans have genome sizes that are typical for mammals. As
shown in Figure 1, the cetaceans studied to date have genome sizes that fall within the range
observed among terrestrial artiodactyls, though they exhibit a larger average size than other
members of the Cetartiodactyla (3.68 pg \pm 0.40 SD for cetaceans vs. 3.39 pg \pm 0.55 SD in
terrestrial artiodactyls). The hippopotamus, which is the closest living relative of cetaceans, was
found in the present study to have a genome size of 3.39 pg $-i.e.$, average for an artiodactyl.
The smallest genomes so far reported for Cetartiodactyla (~2.7 pg) are found in species
such as giraffes (Giraffa camelopardalis), camels (Camelus bactrianus), and llamas (Lama
glama) (Gregory 2017). Interestingly, camels and llamas have erythrocytes that are not only
enucleate like those of other adult mammals but are atypical in shape. Whereas most mammals
(including cetaceans) have erythrocytes that are shaped as biconcave discs, those of some
terrestrial artiodactyls may be tiny, spherical, oval, or crescent-shaped (Gulliver 1875). Previous
relationships have shown the strong relationship between enucleate cell size and genome size in
mammals (Gregory 2000, 2001). Thus, it is possible that achieving these unique erythrocyte
morphologies requires smaller than average nuclei in progenitor cells, and thus smaller than
average genomes. Unfortunately, data on cetacean genome sizes and cell sizes are insufficient
for a detailed assessment of any correlation between these two parameters, but across mammals

erythrocyte sizes are in the range that would be expected given their genome sizes (Hawkey

relationship between genome size and overall cell size. However, it can be said that cetacean

(Gregory 2000) and vertebrates more broadly (Gregory 2001), there is a strong positive

1975, Gregory 2000).

Aside from cetaceans, only a few other aquatic mammals have been studied for genome size thus far (Gregory 2017). However, even with this limited information, it appears that there is significant variability in genome size across species that share an aquatic lifestyle. For example, the bearded seal genome size was estimated in the present study as 2.96 pg, which is similar to published estimates for the spotted seal (*Phoca largha*; 2.94 pg) and California sea lion (*Zalophus californianus*; 3.15 pg) (Du and Wang 2006). All are smaller than the mammalian average. By contrast, the Florida manatee (*Trichechus manatus*) has a much larger estimated genome size of 4.67 pg (Redi *et al.* 2007).

Cetaceans are remarkable for many reasons, though they remain a challenge to study. Very little information has been available on the genome sizes of cetaceans, in part because of the difficulty in obtaining material for analysis. The addition of 18 new estimates for cetaceans, as well as their closest living relative, the hippopotamus, represents an important step toward filling this gap in the animal genome size dataset. It is important to note that it is difficult to make any informed phylogenetically independent contrasts in cetaceans with the data we have available because of the necessity to obtain large enough sample sizes of each species represented. This is a direction that should be prioritized for future investigations.

ACKNOWLEDGEMENTS

We thank the Baylor University Molecular Biosciences Center for providing access to the flow cytometer used in this study. We thank Lexi Mena and Nancy Stedman of SeaWorld Parks and Entertainment, Megan Stolen and Wendy Durden of the Hubbs-SeaWorld Research Institute and Frances Gulland from The Marine Mammal Center for their contributions in sample collection and management of samples. EMO performed the genome size estimates. EMO and TRG analyzed the data and wrote the manuscript. JWB advised on analysis and edited

manuscript. JSL organized and provided samples as well as edited manuscript. CWM organized study reviewed the manuscript and troubleshot data acquisition.

118

116

117

119

120

121

123

126

127

DATA ACCESSIBILITY

All our data are accessible in Supplementary Information.

FUNDING

Funding for this project was provided by start-up funds to CWM from Baylor University.

125 FIGURES

Figure 1. Diversity in genome size estimates for some major groups of mammals, based on data

from the Animal Genome Size Database (Gregory 2017) and the present study (Table S1, S2).

- Each dot represents a single estimate. Numbers of species/individuals used are as follows:
- cetaceans (n=24/n=47); terrestrial artiodactyls (n=20/n=24); carnivores (n=28/n=43); bats
- 131 (n=25/n=28); primates (n=66/n=110); rodents (n=90/n=218)

133 REFERENCES

- 134 Andrews, C. B. and T. R. Gregory. 2009. Genome size is inversely correlated with relative brain
- size in parrots and cockatoos. Genome 52:261-267.

136

- Du, B. and D. Wang. 2006. C-values of seven marine mammal species determined by flow
- 138 cytometry. Zoological Science 23:1017-1020.

139

- 140 Gatesy, J., J. H. Geisler, J. Chang, et al. 2013. A phylogenetic blueprint for a modern whale.
- 141 Molecular Phylogenetics and Evolution 66:479-506.

142

- 143 Gregory, T. R. 2000. Nucleotypic effects without nuclei: Genome size and erythrocyte size in
- 144 mammals. Genome 43:895-901.

145

- 146 Gregory, T. R. 2001. The bigger the C-value, the larger the cell: Genome size and red blood cell
- size in vertebrates. Blood Cells Molecules and Diseases 27:830-843.

148

- 149 Gregory, T. R. 2005. Genome size evolution in animals. Elsevier Science By, Sara
- 150 Burgerhartstraat 25, Po Box 211, 1000 Ae Amsterdam, Netherlands.

151

152 Gregory, T. R. 2017. Animal genome size database. www.genomesize.com.

153

- 154 Gulliver, G. 1875. Observations on the sizes and shapes of the red corpuscles of the blood of
- vertebrates, with drawings of them to a uniform scale, and extended and revised tables of
- measurements. Proceedings of the Zoological Society of London, Part I: 474-495.

157

- Hawkey, C. M. 1975. Comparative mammalian haematology. The Whitefriars Press Ltd., Great
- 159 Britain.

160

- 161 Jefferson, T. A., Leatherwood S., Webber, M.A. 1993. FAO Species identification guide. Marine
- mammals of the world., Food and Agriculture Organization of the United Nations or of the
- 163 United Nations Environment Programme. Rome.
- Keane, M., J. Semeiks, A. E. Webb, et al. 2016. Insights into the evolution of longevity from the
- bowhead whale genome. Cell Reports 10:112-122.

- 167 McGowen, M. R., L. I. Grossman and D. E. Wildman. 2012. Dolphin genome provides evidence
- for adaptive evolution of nervous system genes and a molecular rate slowdown. Proceedings of
- the Royal Society B-Biological Sciences 279:3643-3651.

170	
171 172	Montgomery, S. H., J. H. Geisler, M. R. Mcgowen, C. Fox, L. Marino and J. Gatesy. 2013. The evolutionary history of cetacean brain and body size. Evolution 67:3339-3353.
173 174 175 176 177 178	Oziolor, E. M., E. Bigorgne, L. Aguilar, S. Usenko and C. W. Matson. 2014. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (<i>Fundulus grandis</i>) populations from the Houston Ship Channel, Texas. Aquatic Toxicology 150:210-219.
179 180 181	Redi, C. A., S. Garagna, M. Zuccotti and E. Capanna. 2007. Genome size: A novel genomic signature in support of Afrotheria. Journal of Molecular Evolution 64:484-487.
182 183 184	Smith, J. D. L. and T. R. Gregory. 2009. The genome sizes of megabats (Chiroptera: <i>Pteropodidae</i>) are remarkably constrained. Biology Letters 5:347-351.
185 186	Vindelov, L. L. and I. J. Christensen. 1994. Detergent and proteolytic enzyme-based techniques for nuclear isolation and DNA content analysis. Methods in Cell Biology, Vol 41 41:219-229.
	for nuclear isolation and DNA content analysis. Methods in Cell Biology, Vol 41 41:219-229.

Cetacean genome size diversity - Electronic supplemental material

Table 1. Genome size estimates for cetaceans and other species of interest from the present study and previously included in the Animal Genome Size Database.

Order	Unranked	Family	Species	Common Name	GS	STD	n	Source
Cetartiodactyla	Mysticeti	Balaenopteridae	Megaptera novaeangliae	Humpback whale	3.71		1	Present study
Cetartiodactyla	Mysticeti	Balaenidae	Balaena mysticetus	Bowhead whale	2.93			Keane et al. (2015)
Cetartiodactyla	Odontoceti	Delphinidae	Cephalorhynchus commersonii	Commerson's dolphin	3.20	0.057	2	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Delphinus delphis	Common dolphin	3.56	0.170	5	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Globicephala macrorhynchus	Short-finned pilot whale	3.56	0.269	2	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Grampus griseus	Risso's dolphin	3.60	0.302	4	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Lagenorhynchus obliquidens	Pacific white-sided dolphin	3.70	0.170	2	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Lissodelphis borealis	Northern right whale dolphin	3.74		1	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Orcinus orca	Killer whale	4.13	0.081	3	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Pseudorca crassidens	False killer whale	3.56		1	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Stenella longirostris	Spinner dolphin	3.45	0.275	2	Present study
Cetartiodactyla	Odontoceti	Delphinidae	Tursiops truncatus	Common bottlenose dolphin	3.51	0.240	6	Present study
			" "		3.03			Kato et al. (1980)
			" "		3.27			Du and Wang (2006)
Cetartiodactyla	Odontoceti	Delphinidae	Sousa chinensis chinensis	Indo-Pacific humpback dolphin	3.46			Du and Wang (2006)
Cetartiodactyla	Odontoceti	Kogiidae	Kogia breviceps	Pygmy sperm whale	3.48	0.261	4	Present study
Cetartiodactyla	Odontoceti	Kogiidae	Kogia sima	Dwarf sperm whale	3.51		1	Present study
Cetartiodactyla	Odontoceti	Monodontidae	Delphinapterus leucas	Beluga, white whale	3.55	0.120	2	Present study
			<i>II II</i>		3.29			Du and Wang (2006)
Cetartiodactyla	Odontoceti	Ziphiidae	Mesoplodon densirostris	Blainville's beaked whale	4.44		1	Present study
Cetartiodactyla	Odontoceti	Ziphiidae	Mesoplodon europaeus	Gervais' beaked whale	4.22	0.042	2	Present study
Cetartiodactyla	Odontoceti	Ziphiidae	Ziphius cavirostris	Cuvier's beaked whale	4.66		1	Present study
Cetartiodactyla	Odontoceti	Phocoenidae	Neophocaena a. asiaeorientalis	Yangtze finless porpoise	3.46			Du and Wang (2006)
Cetartiodactyla	Odontoceti	Physeteridae	Physeter macrocephalus	Sperm whale	3.44		1	Present study
Cetartiodactyla	Odontoceti	Lipotidae	Lipotes vexillifer	Baiji / Yangtze river dolphin	3.91			Du and Wang (2006)
Cetartiodactyla		Hippopotamidae	Hippopotamus amphibius	Hippopotamus	3.39		1	Present study
Carnivora		Phocidae	Erignathus barbatus	Bearded seal	2.96		1	Present study
Carnivora		Phocidae	Phoca largha	Spotted seal / Largha seal	2.94			Du and Wang (2006)
Carnivora		Otariidae	Zalophus californianus	California sea lion	3.15			Du and Wang (2006)

Page 10 of 11

Table S1. Genome size estimate and source of sample for each individual specimen

Species ID	Species	Common Name	Sex	Age	Specimen	1c Genome Size (pg)	Location	Captive/Stranded
Hubbs-1209-Mn	Megaptera novaeangliae	Humpback whale	F	juvenile	Spleen	3.71	Atlantic	Stranded
SW031065	Cephalorhynchus commersonii	Commerson's dolphin	F	adult	Spleen	3.24		Managed care
SW070493	Cephalorhynchus commerconii	Commerson's dolphin	M	calf	Spleen	3.16		Managed care
SW100075	Delphinus delphis	Common dolphin	M	juvenile	Spleen	3.35	Pacific	Stranded
SW110953	Delphinus delphis	Common dolphin	M	calf	Spleen	3.42	Pacific	Stranded
SW070794	Delphinus delphis	Common dolphin	M	adult	Spleen	3.73		Managed care
SW110122	Delphinus delphis	Common dolphin	M	juvenile	Spleen	3.69	Pacific	Stranded
SW140476	Delphinus delphis	Common dolphin	M	yearling	Spleen	3.61	Pacific	Stranded
SW120472	Globicephala macrorhynchus	Short-finned pilot whale	M	adult	Spleen	3.37		Managed care
Hubbs-1036-Gm	Globicephala macrorhynchus	Short-finned pilot whale	F	adult	Spleen	3.75	Atlantic	Stranded
SW131056	Grampus griseus	Risso's dolphin	F	adult	Spleen	3.59	Pacific	Stranded
SWC150590	Grampus griseus	Risso's dolphin	M	calf	Spleen	4.03	Pacific	Stranded
Hubbs-1222-Gg	Grampus griseus	Risso's dolphin	F	adult	Spleen	3.37	Atlantic	Stranded
Hubbs-1266-Gg	Grampus griseus	Risso's dolphin	F	adult	Spleen	3.41	Atlantic	Stranded
SW060970	Lagenorhynchus obliquidens	Pacific white-sided dolphin	F	calf	Spleen	3.82		Managed care
SW070571	Lagenorhynchus obliquidens	Pacific white-sided dolphin	M	adult	Spleen	3.58		Managed care
SW060524	Lissodelphis borealis	Northern right whale dolphin	M	calf	Spleen	3.74	Pacific	Stranded
SW070782	Orcinus orca	Killer whale	M	adult	Spleen	4.22		Managed care
SW080429	Orcinus orca	Killer whale	F	juvenile	Spleen	4.07		Managed care
SW100830	Orcinus orca	Killer whale	F	adult	Spleen	4.09		Managed care
Hubbs-1304-Pc	Pseudorca crassidens	False killer whale	F	adult	Spleen	3.56	Atlantic	Stranded
Hubbs-1315-Tt	Tursiops truncatus	Common bottlenose dolphin	F	adult	Spleen	3.61	Atlantic	Stranded
Hubbs-1319-Tt	Tursiops truncatus	Common bottlenose dolphin	M	adult	Spleen	3.28	Atlantic	Stranded
Hubbs-1332-Tt	Tursiops truncatus	Common bottlenose dolphin	F	adult	Spleen	3.15	Atlantic	Stranded
Hubbs-13108-Tt	Tursiops truncatus	Common bottlenose dolphin	M	adult	Spleen	3.77	Atlantic	Stranded
Hubbs-13109-Tt	Tursiops truncatus	Common bottlenose dolphin	M	adult	Spleen	3.66	Atlantic	Stranded
SW101050	Tursiops truncatus	Common bottlenose dolphin	F	sub-adult	Spleen	3.59	Pacific	Stranded
SWFa1601B	Feresa attenuata	Pygmy killer whale	F	juvenile	Spleen	3.36	Atlantic	Stranded
SWSL1601B	Stenella longirostris	Spinner dolphin	F	adult	Spleen	3.64	Atlantic	Stranded
SWSL1602B	Stenella longirostris	Spinner dolphin	M	adult	Spleen	3.25	Atlantic	Stranded
Hubbs-1215-Kb	Kogia breviceps	Pygmy sperm whale	M	adult	Spleen	3.66	Atlantic	Stranded
Hubbs-1126-Kb	Kogia breviceps	Pygmy sperm whale	F	adult	Spleen	3.73	Atlantic	Stranded
Hubbs-1127-Kb	Kogia breviceps	Pygmy sperm whale	M	calf	Spleen	3.32	Atlantic	Stranded
Hubbs-1224-Kb	Kogia breviceps	Pygmy sperm whale	M	adult	Spleen	3.19	Atlantic	Stranded

Marine Mammal Science

Cetacean genome size diversity - Electronic supplemental material

Hubbs-1141-Ks	Kogia sima	Dwarf sperm whale	F	adult	Spleen	3.51	Atlantic	Stranded
SW120552	Delphinapterus leucas	Beluga, white whale	F	calf	Spleen	3.63		Managed care
SW140560	Delphinapterus leucas	Beluga, white whale	F	adult	Spleen	3.46		Managed care
Hubbs-1105-Md	Mesoplodon densirostris	Blainville's beaked whale	M	adult	Spleen	4.44	Atlantic	Stranded
Hubbs-0822-Me	Mesoplodon europaeus	Gervais' beaked whale	F	adult	Spleen	4.03	Atlantic	Stranded
Hubbs-1006-Me	Mesoplodon europaeus	Gervais' beaked whale	F	adult	Spleen	3.97	Atlantic	Stranded
Hubbs-1121	Ziphius cavirostris	Cuvier's beaked whale	F	juvenile	Spleen	4.66	Atlantic	Stranded
TMMC: C-233	Physeter macrocephalus	Sperm Whale	M	calf	Spleen	3.44	Pacific	Stranded
SWF-Eb-0705-B	Mammalia	Erignathus barbatus	M	adult	Spleen	2.96		Managed care
BGT54209	Hippopotamus amphibius	Hippopotamus	F	Adult	Spleen	3.39		Managed care
		Hippopotamus						