Survey of Nanoscale Digital System Technology

Mark L. Chang ACME Seminar May 10, 2002

Where did I get this info?

- Evening workshop at FCCM'02
- Mike Butts moderator
- Panelists
 - Andre DeHon Caltech
 - Phil Keukes HP Labs

Nanoelectronics is T.N.B.T.™©®

- The Next Big Thing
- Molecular-scale devices
 - Programmable only
 - Good for FPGA and NVRAM architectures
 - Up to 1 trillion devices/sq. cm.
 - 1 million times smaller than today's "micro-scale" devices
- Mass fabricated cheaply
- Have some lab results right now
- Timeline
 - 16 Kbit RAM: 2005
 - Niche products: 2008
 - Equivalent to CMOS density: 2011

Carbon Nanotubes (NTs)

- Carbon sheet one atom thick, wrapped around like a tube
- Variant of the BuckyBall carbon molecule
- 1-5 nm wide, several mm long
- It is a single molecule
 - Extremely strong
 - Flexible
- Both a metal and semiconductor
 - Depends on lattice geometry
 - No way to synthesize pure batch of either yet

Silicon Nanowires (NWs)

- Single-crystal of silicon
 - 6-20 nm diameter, 1-30 um long
- Fabricated in bulk by laser-assisted growth
- Ge, Au, GaP, GaN, InP NWs have also been made
- p-type and n-type NWs
 - Doped with phosphorus and boron
- Can be wire or semiconductor

Transistors and Diodes

- Diode: cross two doped NWs
 - 90% yield
 - 1V up to 5V turn-on adjustable via oxidation
- FET: oxide between NWs
 - p: Si NW channel
 - n: GaN NW gate
 - Voltage gain = 5

More Logic

NOR Address Level

Molecular Switches

- Organic molecules with two parts
- Interlocking rings
- Applying voltage oxidizes the molecules and shifts the rings
 - 2v opens, -2v closes
- Non-volatile programmable switch

Molecular Switches

Mechanical Switches

- NW/NT crossbar
- Programmable array of non-volatile bistable switches
 - Charge attracts wires to touch
 - Van der Waals force sticks them together
 - Opposite charge repels and opens the junction
- Diode array
 - Semiconducting lower half should make diodes at the junctions

Logic Gates

- Build NOR from NW-FET crossbar arrays
 - Grow oxide over NW bottom wire to form FET
 - One time programmable
 - Static power dissipation

Bottom-Up Self-Assembly

- We can't make nano-circuits top-down
 - Lithography can't get to the nano scale
- Make them bottom-up with chemical self-assembly
 - Their own physical properties keep them in regular order, much like crystals do when they grow
- Fluid flow self-assembly
 - Flow rate and duration controls wire separatio
 - Higher flow, more alignment
 - Longer duration, more density
 - Crossbar generated in two passes

Implications

- Defect tolerance is necessary
 - Nature of chemical process is uncertain
 - Alignment imperfect at single molecule level
- Programmable designs
 - FPGA with lots of spares
 - Test and program around defects
- Cheap fab, cheap gates
 - Batch chemical process makes regular materials
 - Fabrication cost per device practically zero

Crosspoint Density

- CMOS crosspoint costs about 8 transistors
 - SRAM cell, big n-channel pass transistor
 - Far larger than minimum feature size
- NW or NT crosspoint fits iniside the wire crossover
- Area difference is 625x
- Makes NanoFPGAs very attractive

Interface to Microelectronics

- Need to get out to the micro world
- Can't position any features at the nano scale
- Connect log(n)
 microwires to a set of N
 nanowires to make
 decoders

System Level Interconnect

- Programmable OR/NOR, NVRAM nanoarrays
- Interconnect arrays through
 - Extending NWs across multiple arrays
 - Through fully populated interconnect crossbars
 - NW-FET buffer/registers in-between when needed
- Interface to microwires with Nlog(N) decoders

No free lunch™

- Power:
 - 10¹¹ devices/cm² * 1 nanowatt/device = 100 watts/cm²
 - That's a lot of juice!
- Signal integrity/crosstalk not addressed
- Quantum effects?
 - Electrons can act like waves too...
- Reliability
 - Creeping defects after fab?
 - Cosmic ray damage or hardness?
- Programming effort
 - Work around defects to get a defect-free generic array
 - OR place & route a billion gates!

What do we get for Gigagates?

- Macro-scale computing
 - Massive massive parallel machines
 - Simulations (ASCI red/white/blue)
 - Weather
- Micro-scale computing
 - 100 MIPS in 10 sq. um.
 - Powered by ambient light
 - Biosensors

