

Floyd-Warshall vs Square-Sum Path Finding Methods

Abdelrahman Kamel (ak883) Hee Jung Ryu (hr99)

* Equations

- Square-Sum (Project 3)
 - Time Complexity O(n³log(n))

$$l_{ij}^{s+1} = \min_{k} \{ l_{ik}^s + l_{kj}^s \}.$$

- Floyd-Warshall
 - Time Complexity O(n³)

$$d_{ij} = \min \left(d_{ij}, d_{ik} + d_{kj} \right)$$

+

Flash Back @ Square Sum

+

Floyd-Warshall: Hypothesis

- Computation Time: Floyd-Warshall < Square-Sum
- Computation Time: FW = C * (SS / log(# of nodes)) for some constant C.

Floyd-Warshall vs No. of Nodes

Floyd-Warshall OMP (500 **Nodes**)

Floyd-Warshall vs Square-Sum: Speedup

Speedup Plot (3000 Nodes)

Floyd-Warshall vs Square-Sum: Serial Code

Memory Performance by Cache Hit/Miss

+

Conclusion & Looking forward to..

- FW: Parallelized Inner 2 Loops >> 2/3rd of the speedup
- FW: 2/3rd of the speedup >> Speed-up up to max 5 threads
- FW: Rarely any cache miss >> No need for blocking.
- FW OMP implementation has...
 - Max memory usage with rare cache miss;
 - Max improvement in performance at 5 threads;
 - Much faster than Square-Sum serial, OMP, and MPI codes.
 - Much faster than Floyd-Warshall serial.
- Amortized Computation Time:
 - FW Serial > C * (SS Serial / log(n))
 - FW OMP <= C * (SS OMP or MPI / log(n))

Looking forward to...

■ SS: Blocked Version for Square-Sum

■ FW: MPI Version for Floyd-Warshall

* Acknowledgements

■ Professor Bindel

+ THANKS!

