数学模型

补充材料1-3. 数学建模初等案例

椅子能在不平的地面上放稳吗

通常~三只脚着地 放稳~四只脚着地 问题分析

假

- 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形;
- 地面高度连续变化,可视为数学上的连续 曲面;
- 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

• 椅子位置 利用正方形(椅脚连线)的对称性

用 θ (对角线与x轴的夹角)表示椅子位置

• 四只脚着地 椅脚与地面距离为零

距离是的函数

四个距离 (四只脚)

正方形 对称性

两个距离

B,D 两脚与地面距离之和 $\sim g(\theta)$

正方形ABCD

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

地面为连续曲面

 $f(\theta)$, $g(\theta)$ 是连续函数

椅子在任意位置 至少三只脚着地

对任意 $\theta, f(\theta), g(\theta)$ 至少一个为0

数学 问题

 $f(\theta), g(\theta)$ 是连续函数;

对任意 θ , $f(\theta) \cdot g(\theta) = 0$;

且 g(0)=0, f(0)>0.

证明:存在 θ_0 ,使 $f(\theta_0) = g(\theta_0) = 0$.

模型求解

给出一种简单、粗糙的证明方法

将椅子旋转90°,对角线AC和BD互换。

由g(0)=0, f(0)>0, 知 $f(\pi/2)=0$, $g(\pi/2)>0$.

 $\diamondsuit h(\theta) = f(\theta) - g(\theta), \quad \emptyset h(0) > 0 \quad \pi h(\pi/2) < 0.$

由f,g的连续性知h为连续函数,据连续函数的基本性

质,必存在 θ_0 ,使 $h(\theta_0)=0$,即 $f(\theta_0)=g(\theta_0)$.

因为 $f(\theta) \cdot g(\theta) = 0$, 所以 $f(\theta_0) = g(\theta_0) = 0$.

评注和思考 建模的关键 ~ θ 和 $f(\theta)$, $g(\theta)$ 的确定

假设条件的本质与非本质。考察四脚呈长方形的椅子

小船(至多2人)

2 商人们怎样安全过河

问题(智力游戏)

随从们密约,在河的任一 岸,一旦随从的人数比商 人多,就杀人越货.

但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河?

△△△ 3名商人

泂

××× 3名随从

问题分析多步决策过程

决策~每一步(此岸到彼岸或彼岸到此岸)船上的人员要求~在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.

模型构成

 x_k ~第k次渡河前此岸的商人数

$$x_k, y_k=0,1,2,3;$$

 y_k ~第k次渡河前此岸的随从数

$$k=1,2,...$$

 $s_k = (x_k, y_k)$ ~过程的状态

S~允许状态集合

$$S=\{(x, y)| x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2\}$$

 u_k ~第k次渡船上的商人数

$$u_k, v_k = 0,1,2;$$

 v_k ~第k次渡船上的随从数

$$d_k = (u_k, v_k)$$
~决策

$$D=\{(u,v)|u+v=1,2\}$$
~允许决策集合

$$s_{k+1} = s_k + (-1)^k d_k$$

~状态转移律

多步决策 问题 求 $d_k \in D(k=1,2,...n)$, 使 $s_k \in S$, 并按转移律由 $s_1=(3,3)$ 到达 $s_{n+1}=(0,0)$.

模型求解

- 穷举法 ~ 编程上机
- 图解法

状态s=(x,y)~16个格点 允许状态~10个。点 允许决策~移动1或2格; k奇,左下移; k偶,右上移.

 d_1, \ldots, d_{11} 给出安全渡河方案

评注和思考

规格化方法, 易于推广

$$S=\{(x, y)|x=0, y=0,1,2,3;$$

$$x=3, y=0,1,2,3; x=y=1,2$$

考虑4名商人各带一随从的情况

3 如何预报人口的增长

背景

世界人口增长概况

年								
人口(亿)	5	10	20	30	40	50	60	

中国人口增长概况

年	1908	1933	1953	1964	1982	1990	1995	2000
人口(亿)	3.0	4.7	6.0	7.2	10.3	11.3	12.0	13.0

研究人口变化规律

控制人口过快增长

常用的计算公式

今年人口 x_0 ,年增长率r

k年后人口

$$x_{k} = x_{0}(1+r)^{k}$$

指数增长模型——马尔萨斯提出(1798)

基本假设:人口(相对)增长率 r 是常数

$$x(t)$$
 ~时刻 t 的人口

$$\frac{x(t+\Delta t)-x(t)}{x(t)} = r\Delta t$$

$$\frac{dx}{dt} = rx, \ x(0) = x_0$$

$$x(t) = x_{\scriptscriptstyle 0} e^{rt}$$

$$x(t) = x_0(e^r)^t \approx x_0(1+r)^t$$

随着时间增加,人口按指数规律无限增长

指数增长模型的应用及局限性

- 与19世纪以前欧洲一些地区人口统计数据吻合
- 适用于19世纪后迁往加拿大的欧洲移民后代
- 可用于短期人口增长预测
- 不符合19世纪后多数地区人口增长规律
- 不能预测较长期的人口增长过程
- 19世纪后人口数据 人口增长率 r不是常数(逐渐下降)

阻滯增长模型(Logistic模型)

数学模型

人口增长到一定数量后,增长率下降的原因:

资源、环境等因素对人口增长的阻滞作用

且阻滞作用随人口数量增加而变大 🖒 r是x的减函数

假设 $r(x) = r - sx \quad (r, s > 0)$ r~固有增长率(x很小时)

 x_m ~人口容量(资源、环境能容纳的最大数量)

$$\Rightarrow r(x_m) = 0 \Rightarrow s = \frac{r}{x_m} \quad r(x) = r(1 - \frac{x}{x_m})$$

数学模型

阻滯增长模型(Logistic模型)

$$\frac{dx}{dt} = rx \qquad \Longrightarrow \quad \frac{dx}{dt} = r(x)x = rx(1 - \frac{x}{x_m})$$

$$x(t) = \frac{x_m}{1 + (\frac{x_m}{x_0} - 1)e^{-rt}}$$

x(t)~S形曲线,x增加先快后慢

阻滯增长模型(Logistic模型)

参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, x_m

利用统计数据用最小二乘法作拟合例:美国人口数据(单位~百万)

 1860
 1870
 1880

 1960
 1970
 1980
 1990

 31.4
 38.6
 50.2

 179.3
 204.0
 226.5
 251.4

$$r=0.2557, x_m=392.1$$

专家估计

阻滯增长模型(Logistic模型)

模型检验

用模型计算2000年美国人口,与实际数据比较

$$x(2000) = x(1990) + \Delta x = x(1990) + rx(1990)[1 - x(1990)/x_m]$$

$$\Rightarrow$$
 $x(2000) = 274.5$ 实际为281.4 (百万)

模型应用——预报美国2010年的人口

加入2000年人口数据后重新估计模型参数

$$\Rightarrow$$
 r=0.2490, x_m =434.0 \Rightarrow $x(2010)=306.0$

Logistic 模型在经济领域中的应用(如耐用消费品的售量)

