Library dldg

AUG 6 1956

Reference book not to be taken from the Library.

PART A IONOSPHERIC DATA

ISSUED JULY 1956

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 143
PART A

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

Issued 23 JULY 1956

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
Predicted and Observed Sunspot Numbers	5
Norld-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	8, 9, 19, 30
Tables of Ionospheric Data	9
Graphs of Ionospheric Data	30
Index of Tables and Graphs of Ionospheric Data in CRPL-F143 (Part A)	60

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955). Also, beginning with January 1956, additional meanings are assigned to T: A smoothed value which better fits the observations, replacing a doubtful or clearly inconsistent observed value; and to U: foF2 minus foF1 is 0.5 Mc or less (used with (M3000)F2).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h°F2 (and h°E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

At night B for fEs is counted on the low side when there is a numerical value of foF2; otherwise it is omitted from the median count.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice

in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report TRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h*Fl, foFl, h*E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h*Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month				Pred	icted	Sunspot Number						
	1956	1955	1954	1953	1952	1951	1950	1949	1948	1947	1946	
December		42	11	15	33	53	86	108	114	126	85	
November	147	35	10	16	38	52	8 7	112	115	124	83	
October	135	31	10	17	43	52	90	114	116	119	81	
September	119	30	8	18	46	54	91	115	117	121	79	
August	105	27	8	18	49	57	96	111	123	122	77	
July	95	22	8	20	51	60	101	108	125	116	73	
June	89	18	9	21	52	63	103	108	129	112	67	
May	77	16	10	22	5 2	68	102	108	130	109	67	
April	68	13	10	24	52	74	101	109	133	107	62	
March	60	14	11	27	52	7 8	103	111	133	105	51	
February	53	14	12	29	51	82	103	113	133	90	46	
January	48	12	14	30	53	85	105	112	130	88	42	

The latest available information follows concerning the corresponding observed Zürich numbers (some of which may be subject to minor change) beginning with the minimum of April 1954.

Observed Sunspot Number

Month Ja	n.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954 1955							_		8 55		9 72	

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 60 and figures 1 to 120 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina Decepcion I.

Commonwealth of Australia, Department of the Interior: Macquarie I.

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Inverness, Scotland
Port Lockroy
Singapore, British Malaya
Slough, England

Defence Research Board, Canada: Baker Lake, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China: Formosa, China

French National Center for Telecommunications Studies: Tananarive, Madagascar

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz. Germany

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Yamagawa, Japan Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:

Campbell I.

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Tromso, Norway

Manila Observatory: Baquio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Nairobi, Kenya (East African Meteorological Department)

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps: Adak, Alaska Ft. Monmouth, New Jersey Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narsarssuak, Greenland
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Talara, Peru (Instituto Geofisico de Huancayo)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 61 through 71 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

The interpretation of a cell is as follows: UF 32

The U is a weight meaning doubtful. Other weights are I, interpolated, D, greater than, and E, less than. Absence of a letter in the upper left position means full weight is given to the observation.

Symbols such as F above are given in the upper right position.

There should be no difficulty in the placing of the decimal point. For the time being, a final zero will be found in each value of foFl and foE. Thus at a later date it will be possible to register more closely scaled values of these characteristics, whenever such are reported.

				Table 1									Table 2				
Washing	ton, 0, C.	(38.7°	N, 77.1°	W)				June 1956	Upsala,	Sweden (59.8°N,	17.6°E)					May 1956
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08	270 280 270 280 280 280 270 320 380 430	6.2 5.8 5.3 4.9 4.4 4.4 5.1 5.6 5.7 6.1	280 230 220 210 210	3.80 4.30 4.70 4.90	129 111 105 103 101	2.40 2.90 3.20 3.40	3.5 3.3 3.5 3.7 3.9 3.0 4.0 5.8 6.4 5.0	2.80 2.80 2.80 2.80 2.90 2.90 2.90 2.90 2.70	00 01 02 03 04 05 06 07 08	290 300 300 300 320 335 360 370 360 350	5.7 5.1 5.0 5.0 5.6 5.9 6.3 6.6 7.1	270 260 240 240 230 230	3.2 3.75 4.2 4.6 4.8 4.9	130 115 110 110 110	E E 1.85 2.25 2.7 3.0 3.2 3.3	1.8 3.3 3.4	2.7 2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.8
10 11 12 13 14 15 16 17 18 19 20 21 22 23	420 470 470 460 430 430 430 400 360 320 280 250 260 270 280	6. 2 6. 1 6. 2 6. 4 6. 6 6. 6 6. 9 7. 0 7. 2 7. 0 7. 4 7. 2 6. 8 6. 4	200 205 210 205 210 220 220 230 240 260	5.00 5.00 5.20 5.10 5.00 5.00 4.90 4.60 4.10	101 101 101 101 101 103 105 109 110	3.50 3.60 3.80 3.80 3.60 3.60 3.10 2.60	5.0 5.2 5.4 4.8 4.6 5.0 3.6 4.4 3.6 4.9 3.7	2.70 2.60 2.60 2.00 2.70 2.65 2.70 2.75 2.30 2.90 2.90 2.80 2.80	10 11 12 13 14 15 16 17 18 19 20 21 22 23	355 350 350 350 355 350 350 340 300 290 275 260 265 280 290	7.7 7.9 7.8 8.0 7.9 7.6 7.9 7.3 7.3 7.3 7.4 6.9 6.4 6.2	230 220 220 220 220 230 240 240 250 260	5.1 5.2 5.2 5.1 5.1 5.0 4.9 4.5 4.0 3.5	105 105 105 105 105 105 105 105 110 115 120	3.35 3.4 3.5 3.45 3.4 3.2 3.1 2.9 2.6 2.1 1.5 E	2.8 2.5 2.0	2.8 2.8 2.8 2.8 2.8 2.8 2.9 3.0 2.9 2.9 2.9 2.9 2.9

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: $15.0^{\circ}E$, 5weep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

May 1956 Es (M3000)F2
Es (M3000)F2
.3
9
4
0
1
0
0
0
7
4. 4. 4. 4. 4. 4. 4. 3. 4. 3.

Time: 180.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

Time: 15.0°E. 5weep: 2.5 Mc to 12.0 Mc in 2 minutes.

Ft. Mon	mouth, Ne	w Jersey	(40.3°N	Table 5				May 1956	Okinawa	I. (26.3	°N, 127.	8°E)	<u>Table 6</u>				May 1956
Time	h°F2	foF2	h*F1	foFl	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	285 290 280 290 270 260 305 360 390 360 325 325 320 280 280 280 260 250	6.2 5.4 (4.9) (4.5) 4.8 5.6.2 6.4 6.2 7.0 7.3 7.2 7.4 7.7 8.1 8.1	245 230 210 200 210 210 210 220 220 220 240 255	3.8 4.7 4.9 5.1 5.2 5.4 5.3 5.0 4.7 4.4	111 111 109 109 109 109 109 1109 115 117	2.6 (3.0) (3.3) (3.5) (3.7) (3.8) (3.9) (3.7) 3.5 (3.3) 3.0 (2.5)	3.5 (3.1) (4.0) (2.7) 1.9 2.4 3.2 3.5 3.6 3.8 3.6 3.7 3.8 3.7 3.3 3.6 3.7 3.2	2.65 2.70 2.70 2.80 (2.75) 2.95 3.00 2.85 2.80 2.80 2.70 2.70 2.70 2.75 2.80 2.90 2.90 2.90	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	290 270 260 260 260 250 260 250 240 (250) 370 350 350 350 350 350 350 360 260 260 260 260 260 260 260 260 260 2	12.6 12.3 10.8 8.7 8.2 7.5 8.0 8.8 9.3 10.2 11.2 12.6 13.4 14.0 14.2 14.5 14.8 13.7 13.3 12.0	240 230 225 220 220 215 230 230 230 255 250		133 114 111 111 111 111 111 111 111 111	(1,9) (2,6) (3,2) (3,5) (3,8) (4,0) (4,0) (3,9) (3,9) (3,5) (3,2) (3,5) (3,2) (2,5)	3.6 4.3 3.8 3.0 2.7 3.4 3.3 4.8 5.7 7.0 7.0 7.2 6.5 6.4 5.7 5.6 5.2 4.8	2.75 2.90 2.90 2.85 2.80 2.85 3.00 3.05 2.95 2.80 2.65 2.57 2.70 2.75 2.70 2.75 2.80 2.85 2.90 2.90 2.65
21 22 23	260 280 280	7.5 7.0 (6.6)					(4.4) (5.2) 3.9	2.80 2.80 (2.70)	21 22 23	300 320 300	12.4 11.8 12.5					3.7 3.3 4.1	2.60 2.55 2.65

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 135.0°E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

		Tabl	

Time: 120.0°E.

Sweep: 1.1 Mc to 19.5 Mc in 15 minutes, manual operation.

Time: 15.0°E.

Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

h¹E

121

foE

2.00 2.30 2.60 (2.80) (3.00) (3.10) 3.20 (3.40) (3.30) (3.10) (3.00) (2.80) 2.50 2.10

(1.80)

f Es

2.1 1.1

April 1956

(M3000)F2

2.45 2.50 2.45 2.45 2.50 2.50 2.50 2.55 2.55 2.66 2.55 2.65 2.70 2.80 2.80 2.70 2.50

Table	9
	_

Fairban	ks. Alaska (64.9°	<u>Table 9</u> N. 147.8°W)				April 1956	Anc	horaç	je, Alask	a (61.2°	N, 149.9	Table) (°W)	10
Time	h'F2 foF2	h'Fl foFl	h°E	foE	f Es	(M3000)F2	Tim	e	h¹F2	foF2	h'F1	foFl	h
00	(4,4)				4.4	(2,60)	00			3.9			
01	(5.0)				4.9	(2,60)	01			4.0			
02	(4.7)				4.9	(2,55)	02			3.8			
03	(4.6)				4.6	(2,60)	03	- 1		4.2			
04	(5.0)				4.5	(2,60)	04			4.4			
05	(5.5)				4.0	(2,60)	05	- 1		4.5		3.20	1
06	(5.4)	(3,6)	111	2.3	2.3	(2,60)	06	- 1		5.1		3.60	1
07	(5.4)	(4.0)	111	(2,8)		(2.50)	07	- 1		5.5		4.00	1
08	(5.4)	(4.2)	111	2.9		(2,55)	08			5.9		4.30	1
09	(5,8)	(4.4)	111	(3, 1)		(2,60)	09			6.0		4.40	1
10	(6.0)	(4.6)	111	(3,2)		(2,60)	10			6.1		4.60	1
11	6.1	(4.6)	111	(3, 2)		2,60	11	- 1		6.4		4.80	1
12	6.4	(4.7)	111	(3,2)		2.65	12			6.4		4.80	1
13	6.6	(4.8)	111	3.2		2,65	13	- 1		6.4		4.80	1
14	6.8	(4.7)	111	(3,2)		2.65	14			6.7		4.80	1
15	6.8	(4.5)	111	(3,0)		2.70	15	- 1		7.0		4.80	1
16	7.3		111	2.8		2,80	16			7.0		4.50	1
17	(7.0)		117	2.5		(2.85)	17			7.4			1
18	(6,8)		116	(2,2)		(2,90)	18	- 1		6.8			1
19	(6.2)		123		1.8	(3,00)	19			6.7			-
20	(5.6)				3.1	(2,90)	20			5.8			
21	(5,2)				3.5	(2.90)	21			5.4			
22	(5.2)				3.6	(2,80)	22			4.2			
23	(4.5)				4.2	(2,70)	23			4.1			

Tlme: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	1								Table 1	<u>2</u>			
Narsars	suak, Gre	enland (61.2°N,	45.4°W)				Aprll 1956	Maui, F	lawaii (20	.8°N, 15	6.5°W)		April 1956			
Time	h'F2	foF2	h'F1	foFl	h * E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2
00		(4.6)					4.3	(2.70)	00	270	10.0						2,80
01	ł						3.8		01	270	9.4					2.2	2.85
02							4.3		02	260	8.3						2.90
03	ı						4.2		03	260	6.8					1.8	2.80
04	ļ						4.4		04	270	6.4					1.9	2.65
05	ł	(5.0)					4.0	(2,90)	05	270	5.9					2.0	2.70
06	1	(5.4)			111	2.5	3.8	(3.00)	06	290	6.0					3.1	2,75
07	1	(5.9)			109	2.8	3.2	2.90	07	250	8.3	240		118	2.4	4.1	3.00
08	i	(6.2)		(4.4)	109	3.0		(2.90)	08	250	10.1	230		111	3.0	5.6	2,90
09	t	6.2		(4.5)	111	3.2		(2.75)	09	260	11.2	225	·	109	3.4	5.8	2.70
10	l	6.6		(4.6)	109	(3.3)		2.70	10	280	12.4	215	5.0	109	3.8	5.6	2.60
11		6.8		4.9	109	3.5		2.65	11	340	13.2	210		109	3.8	5.4	2,60
12		(7.0)		(5.0)	109	(3.5)		(2.60)	12	330	14.4	220		109	4.0	5.8	2.65
13	1	(7.4)		(4.7)	109	(3.4)		(2.70)	13	350	15.2	230	5.6	109	4.0	5.6	2.70
14		(7.3)		4.7	108	(3.3)		(2.70)	14	350	15.6	230	(5.9)	109	3.9	4.6	2.70
15	ŀ	(7.3)		(4.5)	109	3,2		(2.70)	15	320	15.3	230	5.9	109	3.8	5.3	2,70
16	l	(6.7)		(4.5)	109	3.0		(2.80)	16	320	14.9	240		109	3.5	5.0	2.70
17		(6,6)			111	2.7	3.0	(2.80)	17	290	14.3	250		117	3.0	4.4	2.80
18	1	(6.4)			115	2.7	4.0	(2.90)	18	260	13.6			121	2.2	4.2	2,85
19		(6.0)			123	.2.2	4.0	(2.80)	19	260	13.2					4.2	2.80
20							4.2		20	260	12.7					4.1	2.70
21							4.8		21	270	12.0					3.8	2.70
22							4.5		22	270	11.2					4.2	2.70
23							4.4		23	280	10.8					2.6	2,80

Time: 45.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table	

Puerto	Rico, W.	I. (18.5	ON. 67.2	OM)				April 1956	Guam I.	(13.6°N,	144.9°E	:)					April 1956
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*Fl	foF1	h'E	foE	f Es	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	h F 2 280 270 250 250 250 270 290 280 240 250 280 305 305 302 320 320 320 320	9.5 8.8 8.2 7.0 6.6 6.2 6.4 8.5 10.0 11.2 12.0 12.3 13.0 12.8 12.8 12.2	270 230 230 220 220 220 220 220 240	foF1 4.8 5.1 5.3 5.5 5.4 5.1 5.0	111 109 109 109 (111) 112 111 111 115	<pre></pre>	fEs (4.1) 3.1 3.3 3.1 (2.8) (3.4) (2.2)		Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	h*F2 250 240 225 230 230 240 2	foF2 14.4 13.0 10.0 8.8 8.2 6.7 6.6 9.3 11.4 12.4 12.6 13.0 13.4 13.4 13.4 14.0	230 220 <220 210 215 210 220 230	foF1	117 111 111 111 111 111 111 111	2,20 3,00 3,40 3,60 3,80 3,90 3,80 3,80 3,30	1.8 2.1 2.5 3.2 3.4 3.8	(M3000)F2 3, 15 3, 20 3, 10 3, 00 3, 10 3, 10 3, 00 3, 10 2, 90 2, 70 2, 45 2, 30 2, 30 2, 30 2, 30 2, 30 2, 35 2, 40
17 18	250 250	11.7	240 265		115	₹3,0	3.4	2.75	17 18	260	14.0 13.5	240		113 121	2.90 2.10	2.8	2.45 2.50
19	250 250 270	11.4 10.7 10.4	265				2.8 3.5	2.73 2.80 2.75	19 20	305 380	13.5 12.9 12.4			121	2.10	2.1	2.50 2.40 2.30
20 21 22	280 290	9.8 9.5					3.5 (3.7)	2.75 2.75	21 22	320 290	12.1 12.8					2.0	2.45 2.65
23	280	9.8						2.80	23	260	13.0					2.1	3.00

Time: 60.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 14

Ta	D.	lе	- 1

				1able 1	<u>. J</u>								Table 1	0			
Talara,	Peru (4.	6°5, 81.	3°W)					April 1956	Huancay	o, Peru (12.0°S,	75.3°W)					April 1956
Time	h'F2	foF2	h'Fl	foF1	h º E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h'F1	foF1	h ª E	foE	f Es	(M3000)F2
00	220	10.5					3.3	2.90	00	230	9.0						3.00
01	230	9.7					3.3	2.90	01	220	8.2					3.8	3.00
02	240	9.5						2.95	02	230	7.2					3.6	3.10
03	240	8.6						3,05	03	240	6.7					3.5	3.15
04	240	7.9					1.5	3.00	04	240	5.9					2.1	3.10
05	250	6.6					2.1	3.00	05	250	5.0						3.15
06	250	5.8					2.7	3.00	06	270	6.0					4.8	2.90
07	260	8.6			131	2.2	3.8	2.95	07	250	9.6			119	2.5	8.2	3.00
08	250	10.9	240		119	3.1	4.6	2.85	08	(240)	11.8	230		111	3.2	10.6	2.85
09		11.8	230		114	3.5	5.2	2.60	09		13.0	220		107		12.5	2,60
10		12.2	220		113	3.8	6.6	2.40	10	(270)	12.9	210		105		12.8	2.40
11		12.0	215		111	4.0		2.35	11		12.4	200		105		13.6	2,30
12		12.0	210	4.9	111	4.0	5.4	2.25	12		12.3	200		105		13.2	2.25
13	(270)	12.3	210	5.1	109	4.1	5.0	2.20	13	(270)	11.8	200		105		13.2	2.30
14	(260)	12.7	200	4.9	109	3.9	5.6	2.25	14		11.8	200		103		13.0	2.25
15	(250)	12.8	210		111	3.6	6.0	2.35	15	(210)	11.8	200		105		12.5	2.25
16	230	12.8	220		111	3.3	6.2	2.35	16	240	11.8	230		107	3.2	12.0	2.25
17	250	12.5			113	2.8	5.5	2.30	17	260	11.6			111	2.6	9.5	2,25
18	280	(12,5)					6.2	2.30	18	300	11.2			150	1.7		2,25
19	350	(12.1)					4.5	(2,20)	19	380	10.2						2.15
20	360	(11.7)					4.0	2.30	20	330	9.7						2.35
21	290	(11.6)					4.5	(2.50)	21	280	9.6						2,60
22	240	(11.5)					5.5	(2.80)	22	240	9.4						2.85
23	220	11.2					3.3	2.90	23	230	9.0						2.95

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table	17

				Table 1	1								lable .	10			
8aker L	ake, Cana	da (64.3	PN, 96.0	ρ·W)				March 1956	Lindau/	Harz, Ger	many (51	6°N, 10	.1°E)				March 1956
Time	h¹F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h °F1	foF1	h'E	foE	f Es	(M3000)F2
00		5.0				Ε	<1.5	2.7	00	310	5.0					1.90	2.6
01		4.6				Ε	<1.5	2.7	01	305	4.8					2.15	2.7
02		5.0				Ε	<1.3	2.8	02	300	4.6					2.15	2.7
03		4.0				Ε	<1.6	2.65	03	280	4.4					2.10	2.75
04		3.6				Ε	<1.2	2.8	04	280	4.25					2,20	2.7
05		3.7			145	1.2	2.6	2.7	05	270	3.45					2.10	2.8
06		3.6			120	1.8	1.8	2.7	06	270	4.0				Ε	2.45	3.0
07		4.2			120	2.2	2.2	2.85	07	250	5.75			120	1.85	2.80	3.3
08		4.6		3.8	110	2.5	2.6	2.95	08	240	7.35	235		110	2.5	3.00	3.3
09		5.0		4.0	110	2.8	2.8	2.95	09	250	8.05	225		100	2.9	3.35	3.2
10		5.4		4.2	110	3.1	3.2	2.65	10	260	9.85	215		100	3.15	3.75	3,2
11	l	6.0		4.3	110	3.2	3.2	2.8	11	250	10.2	215		100	3.25	3.85	3,2
12		6.8		4.4	110	3.1		2.75	12	260	10.6	210		100	3.35	3.90	3.1
13	1	8.0		4.3	110	3.1	3.1	2.75	13	2 55	10.8	215		100	3.35	3.75	3.2
14		8.0		4.2	110	3.1		2.8	14	250	10.75	215		100	3.35	3.65	3,2
15	1	7.0		4.2	110	2.9	2.9	2.6	15	250	10.2	225		100	3.2	3.50	3.2
16		6.8		4.0	110	2.7		2.7	16	240	10.05	230		105	2.9	3.35	3.2
17		6.5		3.8	115	2.3	2.3	2.8	17	240	10,0	230		110	2.5	3.10	3.2
18		6.1			115	2.0	2.2	2.9	18	230	9.65			125	1.85	2.75	3.2
19		5.5			120	1.8	2.0	2.8	19	230	9.0				Ε	2.40	3.2
20		5.3			125	1.4	2.4	2.7	20	230	7.8					2.40	3.1
21		5.1			155	1.2	<2.4	2.8	21	240	6.8					2.20	2.95
22		5.2					3.0	2.7	22	270	6.1					1.90	2.8
23		5.0				E	3.0	2.75	23	280	5.65					2.15	2.8

Time: 90.0°W.
Sweep: March 1 through 6: 0.6 Mc to 15.0 Mc in 16 seconds.
March 7 through 31: 1.0 Mc to 16.0 Mc in 16 seconds.

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 4 minutes.

Table 19 Table 20 Schwarzenburg, Switzerland (46.8°N, 7.3°E) Baguio, P. I. (16.4°N, 120.6°E) March 1956 March 1956 (M3000)F2 foF1 h°E f Es Time h'F2 foF2 h'Fl foFl h'E foE f Es (M3000)F2 Time h*F2 foF2 h'F1 foE 240 230 220 220 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 5.0 2.9 2.9 3.0 13.6 3.20 300 300 300 300 285 270 270 3.20 3.30 3.20 01 02 5.0 5.0 4.8 4.6 4.2 4.0 5.4 7.8 9.2 13.1 11.0 03 04 05 3.0 3.05 230 6.3 3.00 2.95 2.90 3.10 2.95 2.80 2.40 2.30 2.40 2.50 2.55 2.50 2.35 5.4 6.0 9.1 11.2 12.7 240 270 3.2 2.0 2.6 3.3 4.0 4.3 4.5 06 07 08 220 200 200 250 240 100 2.0 2.4 2.8 3.1 3.2 3.4 3.4 3.3 121 2.4 3.1 3.5 (3.8) (3.9) (4.0) (3.9) (3.8) 3.5 3.1 2.6 235 115 111 111 111 100 100 ---09 10 11 12 13 14 15 (270) 230 220 210 210 205 220 200 200 200 9.6 100 100 100 100 100 100 ---13.4 13.3 12.8 13.0 13.0 13.5 13.9 10.6 111 111 111 111 111 111 (290) 200 200 200 200 200 200 200 200 210 240 11.0 3.9 5.1 4.2 3.3 1.6 ---11.0 11.0 230 240 240 100 100 100 3.0 2.7 2.1 16 17 10.5 250 10.0 10.0 9.0 8.0 6.9 18 19 280 350 13.8 13.0 20 21 22 330 (12.9)(12.9) 13.5 270 240 1.7 (2.80) 2.90 6.0 240 13.9 3.05

Time: 15.0°E.

Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Time: 120.0° E.

1.0 Mc to 25.0 Mc in 13.5 seconds. Sweep:

Leopole	dville, B	elgian Co	ongo (4.4	Table 2 S, 15.2				March 1956	Talara,	Peru (4.	6°S, 81.3	3°W)	Table :	22			March 1956
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2
00 01	220 230	11.0 9.5						2.7 2.7	00 01	210 220	10.6					3.5 3.6	3.00 2.90
02 03	235	8.0						2.8	02	240	8.4					3.4	3.05
04	230 220	6.9 4.0					1.6 1.7	2.9 3.1	03 04	230 240	7.3 5.9					3.2 3.0	3.15 3.20
05 06	250 250	5.0 8.8	240		120	2.6	2.5 3.2	2.8 2.9	05 06	240 240	5.0 4.5					3.1 3.9	3.20 3.10
07 08	255 265	10.2 11.0	230 220		110 110	3.2 3.6	3.4	2.8 2.5	07 08	260 240	7.8 10.8	240		129 117	2.1 3.0	4.2	3.10 3.00
09 10	300	11.5	220		110	3.8		2.4	09		12.1	225		113	3.5	5.2	2.70
11	390 400	13.2 >13.6	210 225		110 110	4.0		2.4	10 11		12.5 12.5	215 210		111 111	3.9 4.1	6.2 3.7	2.50 2.35
12 13	380 380	>14.0 15.5	230 230		110 11 0	4.0 4.0		2.4 <2.5	12 13	(270)	12.6 12.6	200 200	5.2	111 109	4.1 4.1		2.30 2.25
14 15	365 360	>14.0	230 240		110 110	3.6 3.3		<2.5 <2.5	14 15	(280) (250)	12.5 12.6	200 200	5.0 4.6	109 109	4.0 3.7	5.6	2.25 2.30
16	335	>14.0	250		115	2.6	3.0	2.5	16		12.6	210		109	3.3	4.4	2.40
17 18	310 305		270				2.4	<2.8 <2.7	17 18	240 270	12.6 (12.4)	230		111 125	2.9 2.4	3.9 3.9	2.40 2.40
19 20	280 225	>14.0 >14.0							19 20	320 380	(12.4) 12.0					3.8 3.3	2.35 2.30
21 22	220 215	>16.0 >16.0						<3.0 2.9	21 22	300 230	(12.2) (12.0)					2.4 3.3	(2,50) (2,85)
23	220	>13.8						2.9	23	210	(11.0)					3.5	2.95

Time: 0.0°.

Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 0.0°.

Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

Time:

75.0°W. 1.0 Mc to 25.0 Mc in 13.5 seconds. Sweep:

February 1956

(M3000)F2

				Table									Table 2	6			
Johanne	sburg, On	ion of S	. Africa	(26,2°S	, 28.1°	E)		March 1956	Wathero	o, W. Aus	tralia (30.3°S,	115.9°E)				March 1956
Time	h'F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*F1	foF1	h'E	foE	f Es	(M3000)F2
00	260	5,6					1.8	2.9	00	270	6.1					2.5	2,7
01	260	5.1					1.8	2.8	01	28ს	6.0					2.5	2,7
02	250	4.6					2.0	2.8	02	270	5.8					2.6	2.8
03	<250	4.2						2.8	03	260	5.0					2,3	2.8
04	<260	4.2						2.8	04	260	4.8					2.5	2.8
05	<250	3.8						2.8	05	260	4.7					2.5	2.8
06	260	4.8						2.9	06	280	4.9				1.3	2.0	2.9
07	240	8.1	240		120	2.4		3.2	07	250	7.2	270			2.3	2.4	3.2
08	250	9.8	230	4.4	110	3.0		3.2	08	260	8.0	240	4.5		2.9	3.3	3.1
09	250	11.0	220	4.8	110	3,4	3.9	3.0	09	270	9.2	220	4.9		3.3	3.9	3.0
10	270	11.6	210	5.1	110	3,6	3.9	2.9	10	270	9.5	210	5.0		3.5	3.9	2.9
11	270	11.9	210	5.1	110	3.8	4.0	2.8	11	300	10.0	210	5.3		3.7	4.0	2.9
12	290	12.2	210	5.4	110	3.9		2.8	12	310	10.5	220	5.5		3.8	4.1	2.9
13	300	12.4	210	5.4	110	4.0		2.8	13	300	10.9	220	5.5		3.8	4.1	2.9
14	300	12.4	220	5.3	110	3.9		2.7	14	320	11.0	230	5.3		3.7	4.0	2.8
15	300	12.5	230	5.0	110	3,6		2.8	15	310	10.5	230	5.2		3.6	3.9	2.8
16	280	12,2	230	4.9	110	3.3	4.2	2.8	16	280	10.1	240	4.8		3.4	3.9	2.9
17	260	11.9	240		110	2.8	3.8	2.9	17	250	9.2	250	4.5		2.9	3.9	3.0
18	240	11.5			120	2.0	3.1	2.9	18	250	8.4				2.1	2.8	3.0
19	230	10.7					3.0	3.0	19	240	8.1					2.7	3.0
20	230	9.2					2.6	3.0	20	240	7.3					2.4	2.8
21	240	8.1					2.2	2.9	21	250	7.1					2.0	2.8
22	250	7.2					2.3	2.9	22	260	6.8					1.6	2.8
23	250	6.3					2.0	2.9	23	280	6.2					2.0	2.8
									-								

Time: 30.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time

Time: $120.0^{\circ}E$. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 45 seconds.

Reykjavik, Iceland (64.1°N, 21.8°W)

h'F2 foF2 h'F1

				Table 2	7			
Capeton	m, Union_	of S. Af	rica (34	.2°S, 18	.3°E)			March 1956
Time	h'F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00	260	4.7					1.7	2.9
01	270	4.4						2.7
02	280	4.2						2.6
03	280	4.0					2.0	2.7
04	270	4.0						2.7
05	250	3.8						2.8
06	270	3.5						2,7
07	250	5.9			140	1.9		3.0
08	250	8.4	240	4.2	120	2.6		3.1
09	250	9.7	230	4.5	110	3.1		3.1
10	260	10.9	220	4.9	110	3.5	3.5	2.9
11	280	11.8	210	5.0	110	3.7	4.0	2.8
12	270	12.1	210	5.1	110	3.8		2.8
13	280	12.3	220	5.2	110	3.8	3.8	2.8
14	280	12.5	230	5.4	110	3.8		2.8
15	280	12,5	230	4.8	110	3.7		2.7
16	270	12.3	240	4.4	110	3.5		2.8
17	260	12.0	240	4.0	110	3.1		2.8
18	250	11.7	250		120	2.6	3.0	2.9
19	230	11.1			120		2.4	3.0
20	220	9.2					2.0	3.0
21	230	7.7						3.0
22	240	6.7						3.0
23	250	5.4						3.0

Time: 30.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

00	l e			4.0	
01				3.7	
02				4.0	
03				3.6	
04				3.0	
05	(3, 4)			2.8	(3,00)
06	(3.1)			2.9	
07	(3,1)			-	(3.10)
08	(4,1)				(3,30)
09	5, 2				(3,40)
10	6.0		(2,2)		3,40
11	7,0				3.35
12	7.7		(2.6)		3.30
13	(8,0)	120	(2.6)		(3.30)
14	(8,2)	 113	(2.7)		(3,30)
15	(7, 6)	120			(3,35)
16	(7, 9)				(3,30)
17	(7,6)				(3,30)
18	(5.8)				(3, 15)
19	(5, 2)			4.4	(2,90)
20				3.5	
21				3.8	
22				4.0	
23				3.8	
_0				0.0	

Table 28

foFl

h'E

foE

f Es

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

				Table 2	9								Table :	30			
Lindau/	Harz, Ger	many (51	.6°N, 10	. 1°E)	_		Fe	bruary 1956	Wakkanai	. Japan	(45.4°N,	141.7°E	E)			Fe	ebruary 1956
Time	h'F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2
00	300	3.4					2.0	2.9	00	310	4.5						
01	285	3.5					1.9	2.9	01	300	4.4						
02	290	3.4					2.0	2.9	02	270	4.2						
03	27 5	3, 2					2.3	2.9	03	260	4.0						
04	275	3.0					1.8	2.9	04	260	3.8						
05	270	2.7					1.8	3.0	05	260	3.6						
06	265	2.6						3.0	06	250	3.8						
07	255	3.6				E	2.2	3.2	07	230	6.5						
08	225	5.9			120	1.7	2.9	3.6	08	230	8.7						
09	225	7.7			110	2.5	2.8	3.5	09	230	9.2						
10	225	8.6			110	2.8	3.4	3.5	10	250	10.0						
11	230	9.4			110	3.0	3.5	3.4	11	250	10.6						
12	230	9.4			110	3.1	3.5	3.3	12	250	10.7						
13	235	9.2			110	3.1	3.8	3.3	13	250	10.2						
14	230	9.4			110	3.0	3.4	<3.5	14	240	9.4						
15	235	9.2			110	2.8	3.3	3.4	15	240	9.4						
16	230	8.8			115	2.5	2.8	3.5	16	230	8.4						
17	220	8.4			120	2.0	2.6	3.5	17	220	7.4						
18	215	7, 1				E	2.4	3.4	18	220	6.0						
19	220	6.1					2.4	3.45	19	230	5.2						
20	230	4.5					2.4	3.4	20	250	4.9						
21	260	3.6					1.9	3.1	21	280	4.4						
22	280	3.4						3.0	22	310	4.3						
23	300	3.5						2.9	23	310	4.4						

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 4 minutes.

Time: 135.0° E. Sweep: 1.0 Mc to 22.0 Mc in 1 minute.

				Table 3	<u> </u>								Table 3				
Akita,	Japan (39	.7°N, 14	0.1°E)				Fe	bruary 1956	5an Fra	incisco, C	aliforni	B (37.4°	N, 122.2	oM)		Fe	bruary 1956
Time	h'F2	foF2	h*Fl	foFl	h'E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	350	4.4					2.4		00	(265)	3.4					(2.8)	2.80
01	330	4.4					2.5		01	(265)	3.6					2.2	2.90
02	300	4,2					2.5		02	260	3.6					(2,6)	3,00
03	300	4.0					2.5		03	250	(3.5)						(2,90)
04	280	3.7					2.5		04	<260	3.4					(2.4)	2.90
05	310	3.5					2.1		05	265	3.3						2.75
06	290	3.7							06	<280	(3,3)					(2.2)	(2.80)
07	2~0	6.6					2.2		07	245	(4.9)						(3, 10)
08	250	8.1							08	230	7.4	235		(115)	(2.5)		3.30
09	260	9.7							09	235	8.6	225	(3.5)	(111)	(3.0)		3,25
10	270	10.3							10	245	9.4	215	(4.5)	(111)	(3, 1)		3.10
11	280	10.9							11	255	10.2	210	(4.7)	(111)	(3.3)		3.10
12	290	11.3							12	270	(11.0)	220	(4.8)	(115)	(3.4)		(3.05)
13	280	10.4							13	250	10.8	215	(4.8)	(114)	(3.6)		3.10
14	270	10.2							14	260	10.4	215	(4.4)	(111)	(3.4)	• •	3.00
15	260	9.6							15	250	10.2	220	(4.2)	(113)	(3,2)	3.6	3.05
16	250	8.6							16	235	10.0	230		(115)	(2.8)		3.10 3.20
17	250	8.0							17	225	9.2			(117)	(2.1)	2.2	
18	250	6.5					2.6		18	220	8.0					3.2	3.20
19	260	5.5					2.1		19	215	6.2					3.1	3.15 3. 25
20	260	5.0					2.2		20	<230	4.3					4.4 2.6	3.05
21	300	4.7					2.1		21	235	3,5					(2.3)	2.95
22	330	4.5					2.0		22	250	3.3					(2.3)	2.85
23	350	4.5					2.4		23	265	3, 4					(2,9)	2.03

Time: 135.0°E. 5weep: 0.85 Mc to 22.0 Mc in 2 minutes.

Time: 120.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Tokyo,	Tokyo, Japan (35.7°N, 139.5°E)						Fe	February 1956 Yamagawa, Japan (31.2°N, 130.6°E) February 1956									
Time	h°F2	foF2	h*F1	foF1	h º E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2
71me 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	8 1 1 2 2 3 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.5 4.6 4.0 4.2 3.5 3.2 3.4 7.0 8.1 10.3 10.7 11.0 10.6 10.0 9.2 8.6 9.5 6.9	230 230 230 230 230 230 230 230 230 230	4.3 4.7 4.8 4.8 4.8 4.5 4.1	130 110 110 110 110 110 110 110 120 130	1.9 2.6 3.2 3.4 3.6 3.5 3.3 3.0 2.7	1.8 2.1 3.0 3.6 3.7 4.0 3.7 3.6	2.8 2.9 3.0 3.1 3.0 2.8 3.0 3.4 3.3 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	h*F2 290 290 250 260 250 240 260 250 250 250 250 250 250 250 250 250 270 260 220 240 220 240 220 240	foF2 4.8 4.4 4.4 4.0 3.2 5.0 7.8 9.6 10.5 11.3 12.0 12.5 12.6 12.1 11.0 9.5 7.3 6.5 6.4	h*F1	foF1	h*E	foE	2.3 2.3 2.3 2.2 2.3 2.3	(M3000)F2

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Time: 135.0°E. 5weep: 1.0 Mc to 22.0 Mc in 1 minute.

<u>Table 35</u> Nairobi, Kenya (1.3°S, 36.8°E) February 1956								Ahmun mu 1054	Table 36 Johannesburg, Union of S. Africa (26,2°S, 28,1°E) February 1956								
Time	h*F2	foF2	h'F1	foFl	h*E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2
111110	11 17 2	1012	пгі	1011	пС	100	1 43	(11000071 2	Time	11 1 2	101.2	пп	1011	n c	100		(110000712
00	200	(13.3)						(3.4)	00	<280	5.2					1.9	2.8
01	210	9.2						2.8	01	260	5.1					2.1	2.9
02	240	9.2						2.9	02	240	4.7						2.9
03	230	9.2						3.0	03	240	4.2						2.9
04	220	8.4						3.1	04	<250	3.8						2.8
05	220	6.0						3,2	0 5	250	3.7						2.85
06	230	4.6					1.9	3.2	06	250	5.0			120	1.9		3,1
07	260	6.7			130	2.1	2.8	3.1	07	250	7.1	230	3.9	120	2.6	3.1	3, 2
08	260	9.0	240	4.3	100	3.0	3.7	3.05	08	270	7.9	220	4.6	110	3.1	3.2	3.0
09	270	10.0	230	4.9	100	3.5		2.8	09	290	9.0	220	5.0	110	3.5	4.0	2.9
10	300	11.3	210	(5.3)	100	4.0		2.6	10	320	10.1	210	5.1	110	3.7	3.9	2.8
11	300	12.2	210	5.5	100	4.0		2.6	11	330	10.8	210	5.4	110	3.9		2.75
12	320	12.7	210	5.5	100			2.5	12	320	11.1	210	5.4	110	3.9		2.8
13	(340)	13.0			(100)			(2.5)	13	330	11.2	210	5.4	110	3.9		2.8
14	360	13,6		5.4	100			2.5	14	320	11.2	210	5.3	110	3.9		2.8
15	340	13.9	220	5.5	100	4.0		2.5	15	310	11.1	220	5.1	110	3.7	4.1	2.8
16	(330)	13.8	220	5.1	110	3.7		2.55	16	300	11.1	220	4.8	110	3.4	4.0	2.9
17	(320)	13.7	240		110	3.2		2.5	17	280	10.7	230	4.2	110	3.0	3.8	2.9
18	(290)	>12.6	250		110	2.6		(2,5)	18	250	10.6	250	3,3	110	2.4	3.1	3.0
'19	290	>12.0							19	230	9.6					2.0	3.0
20	350	(12.6)						(2.5)	20	230	8.1					2.4	3.0
21	300								21	240	7.2					2.1	3.0
22	260	>13.8							22	<250	6.2					2.2	2.9
23	220	(15.8)							23	260	5.2					2.2	2.8

Time: 45.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

January 1956

(M3000)F2

Capetow	n, Union	of S. Af	rica (34	1.2°S, 18			Fe	bruary 1956		Buenos	Aires, A	rgentina	(34.5°S.	58.5°W)			Fe	ebruary 1956
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2		Time	h°F2	foF2	h'Fl	foF1	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	h*F2 270 <290 <280 260 260 260 270 290 320 320 320 320 320 320 320 320 320 32	foF2 4.5 4.3 4.3 4.2 4.0 3.9 4.1 5.8 7.4 8.6 9.2 10.2 10.5 10.6 10.8 10.9 10.5	240 240 230 220 210 220 220 230 230	foF1 4.1 4.7 5.0 5.1 5.3 5.2 5.2 5.2 4.9	120 120 110 110 110 110 110 110	 2.2 2.8 3.2 3.5 3.7 3.8 3.9 3.8 3.8	1.7 1.7 1.4	(M3000)F2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2		Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	h*F2 300 290 280 280 240 240 240 300 310 330 330 320 300 300 290	9.6 9.8 8.7 8.3 7.6 6.7 7.7 9.0 8.8 9.8 10.8 11.7 13.3 13.9 13.2	220 220 230 220 220 220 220 220 220	foF1	h*E		2.1 2.8 3.4 3.9 4.2 4.6 3.6 4.0 3.9	2.8 2.9 2.8 2.75 2.75 2.7 3.0 3.1 3.0 2.7 2.7 2.7 2.8 2.8 2.95
17 18 19 20 21 22 23	300 270 250 230 230 240 260	10.2 9.9 9.4 8.4 7.0 6.0 5.0	230 240 240	4.6 4.0 3.0	110 110 110 120	3.3 2.8 2.2	3.3 3.0 2.5 2.5 2.0	2.9 2.9 3.0 3.05 3.05 2.9 2.9	_	17 18 19 20 21 22 23	270 270 270 280 280 290 300 300	13.8 13.4 (13.8) >11.5 (10.8) (10.1) 10.4 (10.3)	(230)				4.4 3.8 3.2 3.6 5.2 2.9	2.95 3.0 (3.0) (3.1) (3.0) (2.85) (2.7) (2.8)

Time: 30.0°E, Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 27 seconds.

				Table 3	39						Table
Oecepc i	on I. (63	.0°S, 60	.7°W)				Fe	bruary 1956	Point Ba	arrow, Alaska (71	
Time	h'F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2 foF2	h'Fl foFl
00	300	7.8						3.1	00		
01	320	7.5					2.0	3.0	01		
02	330	7.3					3.0	3.0	02		
03	340	7.3					3.0	3.0	03		
04	320	6.9					3.0	3.1	04		
05	340	7.0					3.0	3.1	05		
06	320	7.0					3,1	3.2	06		
07	300	7.4					3,3	3.3	07		
08	300	7.2					3.6	3.4	08		
09	300	7.6					3.5	3.4	09	(3.8)	
10	300	7.6					4.1	3.4	10	(3,7)	
11	300	7.6					4.2	3.4	11	4.7	
12	300	7.6					4.2	3.5	12	(5, 3)	
13	300	7.6					3.8	3.5	13	(5,9)	
14	300	7.3					3.9	3.4	14	6.0	
15	300	7.2					4.0	3.5	15	(5.9)	
16	300	7.3					3.6	3.5	16	(6, 1)	
17	300	7.7					3.8	3.5	17	(4.8)	
18	300	7.9					3.6	3.5	18	(3,2)	
19	300	8.3					3,4	3.5	19	(3, 3)	
20	300	8.0					3.0	3.5	20	(3,4)	
21	300	8.3					3.0	3.4	21	(3.6)	
22	300	8.2					2.8	3.3	22		
22 23	300	8.4						3.2	23		

Time: $60.0^{\rm o}{\rm W}$. Sweep: 1.5 Mc to 16.0 Mc in 15 minutes, manual operation.

01		5.8	
02		5.6	
03		4.5	
04		4.3	
05		4.3	
06		4.3	
07		4.3	
08		4.6	
09	(3.8)	4.4	(2.85)
10	(3.7)	3.7	(2.90)
11	4.7	3.5	3.00
12	(5.3)	2.3	(3,10)
13	(5,9)		3.15
14	6.0		3.10
15	(5.9)		3.05
16	(6.1)		(3.05)
17	(4.8)		(3,00)
18	(3.2)	3.0	(3.00)
19	(3,3)	3.0	(2.85)
20	(3.4)	4.3	(2.90)
21	(3.6)	4.2	
22		4.8	
23		5.0	

Table 40

h'E

foE

f Es

7.0

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 4	<u>u</u>			
Point	Barrow, Al	aska (71	.3°N, 15	6.8°W)			0	ecember 1955
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	270						5,6	
01	(280)						5.0	
02	(280)						4.6	
03	(260)						4.7	
04							4.2	
05	(320)						4.0	
06	(300)						3.7	
07	<320	(4,1)					4.2	
08	310	(3.6)					4.5	
09	300	(3.0)					4.4	
10	280	(3.7)					3.9	(2.10)
ii	240	(4.4)					3.0	(3, 10)
12	240	(5,6)					2.9	(3.20)
13	240	6.0					< 2. 9	(3.10)
14	230	(6.3)						3.20
15	230	(5.9)					<2.5 <2.4	(3.30)
16	240	(4.8)						(3.20)
17	240	(4.2)					<2.6	(3.15)
18	250	(2.9)					<2.6	
19	260	(2.4)					2.8	
20	(310)	(2.4)					3.5	
21	310						3.3	
21	(300)						4.2	

Point B	arrow, Ala	aska_(71	.3°N, 15	6.8°W)			0	ecember 1955	
Time	h'F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2	_
00	270						5,6		_
01	(280)						5.0		
02	(280)						4.6		
03	(260)						4.7		
04							4.2		
05	(320)						4.0		
06	(300)						3.7		
07	<320	(4.1)					4.2		
08	310	(3.6)					4.5		
09	300	(3.0)					4.4		
10	280	(3.7)					3.9	(3, 10)	
11	240	(4.4)					3.0	(3, 20)	
12	240	(5.6)					2.9		
13	240	6.0					<2.8	(3, 10)	
14	230	(6.3)						3.20	
15	230	(5.9)					<2.5	(3.30)	
16	240	(4.8)					<2.4	(3.20)	
17	240						<2.6	(3.15)	
17		(4.2)					<2.6		
18	250	(2.9)					2.8		
19	260	(2,4)					3.5		
20	(310)						3.3		
21	310						4.2		
22	(300)						4.0		
23	(280)						c -		

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 42*

Inverne	ss, Scotl	and (57.	4°N, 4.2	°₩)			0€	cember 1955
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2
00	360	(1.9)	_					
01	340	(1.9)						(2.5)
02	330	(1.9)						(2.5)
03	315	1.9						(2.6)
04	305	1.9						(2,6)
05	285	2.0						(2.6)
06	275	2.0						
07	280	(2.0)						
08	255	(2.9)			(155)	(1.2)		
09	225	5.6			125	1.7	2.7	
10	220	6.8			115	2.0	2.8	3.4
11	225	7.7			120	2.2	2.8	3.4
12	230	8.2	(230)		120	2.3	2.7	3.4
13	230	8.0			130	2.2	2.7	3.3
14	230	8.1			130	2.1	2.8	3.3
15	220	7.4			140	1.8	2.0	(3.4)
16	220	6.6						(3,3)
17	230	5.7						(3,2)
18	235	4.2						3.1
19	255	3.0						(3.0)
20	280	2.3						
21	290	(2.0)						
22	340	(1.9)						
23	340	(1,9)					2.3	

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Table 43** 51ough, England (51.5°N, 0.6°W) December 1955												Table 4	4				
5 lough,	England	(51.5°N,	0.6°W)				De	cember 1955	5 ingapo	re, Briti	sh Malay	a (1.3°N	, 103.8°	E)		De	cember 1955
Time	h'F2	foF2	h*F1	foFl	h'E	foE	f Es	(M3000)F2	Time	h¹F2	foF2	h°F1	foF1	h º E	foE	f Es	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	15 315 310 300 285 275 270 265 225 225 225 220 230 245 265 310 325 325 325	3.1 3.1 3.1 2.9 2.7 2.6 2.4 4.9 7.2 8.8 8.5 8.6 8.7 8.6 9.9 5.8 8.7 2.6 8.9	(225) (220) (225)	(3.7) (3.6) (3.7)	145 130 125 125 130 125 130 150	1.6 2.0 2.4 2.6 2.7 2.6 2.7	2.5 2.6 2.6 2.7 2.5 2.4 3.2 3.2 4.3 4.2 4.3 4.2 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	2.6 2.6 2.65 2.7 2.8 2.95 2.8 3.25 3.3 3.3 3.3 3.25 3.25 3.25 3.25 3.	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	1 1 2 2 4 0 2 7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	7.3 7.2 6.9 6.5 5.3 4.6 5.2 7.3 8.3 9.1 9.5 10.0 10.2 10.6 10.9 10.9 10.7 10.0 9.5 9.8	230 220 210 205 205 205 205 215 230 245	(5,1) (5,1)	130 120 115 110 110 110 110 110 110 110 125	1.4 2.5 3.1 3.4 3.8 3.8 3.8 3.6 3.4	4.5 4.6 4.2 4.3 4.0 3.9 3.7 3.7 3.0 2.9 2.3	2.8 2.7 2.8 3.0 3.1 3.1 2.9 3.0 2.6 2.2 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.3 2.5 2.8

Tima: 0.0°.

Sweap: 0.55 Mc to 16.5 Mc in 5 minutes.
*Average values except foF2 and fEs, which are median values.

Table 45 Point Barrow, Alaska (71.3°N, 156.8°W) November 1955 (M3000)F2 Time h'F2 foF2 h'F1 foF1 h¹E foE f Es (250) 7.0 ---01 6.7 5.9 5.1 (260)02 260 300 ----03 04 05 06 07 08 09 10 11 320 <330 4.2 350 (3,3) ----(330) (3.8) (3.3) (4.0) 4.3 (2.90) 280 260 250 (3, 10)(4.5) (5.2) 3.6 3.0 3.0 <2.6 <2.5 <2.4 2.3 <2.1 3.00 (3, 10) ---12 13 250 240 230 3.20 3.20 3.10 (5.8)6.1 (6.4) 14 15 16 230 230 230 (6.0)3.10 3,20 (5,5)(4,1) (3.10) 18 19 250 (3,2) (2,6) <2.8 2.8 (3.25)<280 20 21 22 <300 (2,6) (3,00) (310) (290) 4.2 ---23

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 47* Port Lockroy (64.8°S, 63.5°W) October 1955 h'F2 foF2 h'F1 foFl h'E foE (M3000)F2 Time f Es >6.0 5.7 5.6 00 295 (2.6)01 02 03 (285) (2.6) 290 (285) (2.6) (2.6) 5.4 5.3 5.4 >5.8 (280) (255) 04 05 06 07 08 09 (2.7)(2.8)(280) (2.6) (250) (245) >6.0 ---(110) (2.6)>6.4 (255) >6.0 10 11 12 (260) (270) (3, 1)---(260) >6.3 --->6.7 13 (255)(240) 14 15 (250) (245) (6.5) (3,0) (3.3)(2,8) (2,8) 16 17 >6.4 6.2 (3.2)(260) (3.3) 18 (250) >6.5 (245) (2.9)(2.1) 19 (265)(260) >6.5 20 21 (255) (265) >6.4 22 >6.6

Time: 60.0°W. 5waep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Time: 105.0°E.

Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

Table 46° Falkland Is. (51.7°5, 57.8°W) November 1955												
Time	h¹F2	foF2	h°F1	foFl	h¹E	foE	f Es	(M3000)F2				
00	280	8.3					1.9	2.6				
01	300	7.9						2.6				
02	300	7.8						2.6				
03	295	7.5						2.6				
04	280	7.5	(295)		(130)	1.6		2.6				
05	280	8.1	235		125	1.9	2.8	2.6				
06	290	8.2	240	(4.2)	115	2.4	3.3	2.6				
07	335	8.6	235	(4.6)	110	2.8	4.7	2.7				
08	335	8.7	230	4.8	105	3.1	4.9	2.8				
09	310	8.6	(225)	5.0	105	3.3	5.4	2.8				
10	325	9.0	(215)	5.1	105	3.5	5.4	2.8				
11	310	8.8	220	5.1	105	3.6	5.0	2.8				
12	320	9.2	225	5.1	100	3.6	4.8	2.9				
13	310	8.8	220	5.0	105	3,5	4.8	2.8				
14	310	8.6	230	5.0	105	3.5	4.8	2.9				
15	305	8.5	235	4.8	105	3.3	4.8	2.9				
16	290	8.5	(235)	4.6	110	3.0	5.0	3.0				
17	285	8.4	(235)	4.3	110	2.7	4.8	3.0				
18	260	8.2	(245)	(3.9)	120	2.3	4.0	3.1				
19	260	7.9			(135)	1.8	3.5	2.9				
20	275	7.9					3.1	2.8				
21	295	8.0					3.8	2.6				
22	295	8.2					>3.1	2.6				
23	300	8.2					3.6	2.7				

60.0°W. Time:

*Average values except foF2 and fEs, which are median values.

Tima: 157.5°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Juoe 1954

(M3000)F2 3.42 3,60 3, 28 3, 44 3, 44 3, 33 3, 26

3,65

3.68

3.63

3.50 3.40

3, 42

3, 46 3, 54 3, 62

3.59 3.63 3.20

3.33 3.38

3.40

April 1954

(M3000)F2

3.22

3.37

3.45 3.26

3.05

3.06

3.53

3.42 3.38

3.36

3.44

3.31

3.42

3.51

3.47

3,40

3.18

3,20

3.24

February 1954

(M3000)F2

3.15 3.28

3.24

3.18 3.18

3, 18

3.30

3.19

2.96 2.95 2.96

3.04

3.12

3.16 3.17

3.24

3.17

3.07 3.04

3.04

					Table 4	19						
	Macquar	ie I. (54	.505, 15	9.0°E)				No	vember 1954	Tananaı	ive, Mada	gascar
	Time	h'F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2
	00	283	3.2					3, 2	2,9	00	230	2.5
10	01	290	3.4					3.1	3.0	01	230	2.3
	02	270	3.1					2.6	3, 1	02	250	2.2
	03	270	2.5					1.9	3.1	03	240	2.1
	04	250	3.1						3,2	04	240	1.8
	05	260	3,8	240	3.0	110	2.0		3, 2	05	270	1.9
	06	320	4, 2	240	3,6	100	2.5		3.1	06	260	2.0
и	07	350	4.5	220	3.8	100	2.7		3,05	07	230	4.0
60	08	340	4.8	220	4.0	100	3.0	3.0	3.1	80	250	4.7
	09	360	5.0	200	4.1	100	3.0	3.1	3.05	09	270	5.2
63.	10	330	5.1	200	4.2	100	3.1		3.0	10	270	5.3
	11	320	5.5	200	4.3	100	3.2		3.1	11	285	5.2
80	12	320	5.5	200	4.3	100	3.3		3.0	12	300	5.0
91	13	320	5.4	200	4.3	100	3,3		3.1	13	300	5.1
М	14	340	5.4	200	4.2	100	3.2		3,1	14	275	5.2
	15	330	5.5	210	4.1	100	3.0		3.0	15	270	4.9
861	16	310	5.4	220	3.9	100	2.8		3, 1	16	250	4.6
м	17	290	5.5	220	3.7	100	2.5		3.1	17	230	4.6
	18	260	5.2	240	3.2	100	2.1	2.7	3.15	18	215	4.0
	19	250	5.5	240	2.2	120	1.7	3.0	3, 1	19	210	3, 1
	20	250	4.8					3.0	3.1	20	230	2.5
	21	250	3.8					3.0	2.95	21	240	3.0
	22	270	4.0					3.4	3.0	22	240	2.8
	23	290	3.6					4.3	2.95	23	235	2.9

Time: Local.

Time

00

01

02

03

04

05

06 07 08

09

10

11 12

13 14

15

16 17

18

19

20

21

22

23

Time

00

01

02

23

Tananarive, Madagascar (18.8°S

foF2

3.0 2.9 2.8 2.6 2.2 2.1 2.8

5.3

6.3 7.2

8.0

8.0

6.6

6.1 7.0 7.0

6.1 5.6 4.9 4.2 3.4 3.2

3.4

foF2

4.0 3.9 3.3 2.8 2.6 2.5

3.4

4.7 5.4 5.7

6.2 7.2 7.5 7.6 7.7 7.4 6.8

6.6 6.6 6.2

5.6 5.0

4.5

4.1

h'F2

250

230

240 230

250

260

250

250

260

275

270

260

270

290 280

260

250

250

225

225

230

250

250

235

Tananarive, Madagascar (18.8°S.

h'F2

260

240

240

250

260 250

245 265

305

340 340

340 335 325

315 305

290 290

265

240 235

250

255

265

1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

h'Fl

235

230

225

220 215

210

220 215

230

220

230

Table 50

47.8°E)

foF1

3.90

4.10 4.20 4.20

4.10 4.00

3.90

Table 52

47.8°E)

foFl

4.10

4.30 111

4.40 111

4.40 111

4.40 111 111

4.30

4.10 111

Table 54

47.8°E)

foF1

4.00 4.20

4. 30 4. 40 4. 40 4. 40 4. 30

4.20

3.80

h'E

136

113

111

111

110

111

113

111

113

111

h º E

121

111 111

115 121

h'E

121

115

115

115

115

115

115

114

121

foE

E

2.20 2.70 2.95

3, 20

3.40

3.35

3.10

2, 45

1.80

foE

1.90 2.30 2.70 2.90 3.00

3, 10

3.05

2.95

2.75

2.40

1.80

foE

2.10 2.50 2.90

3.10

3,20

3.30

3.20

3.10 2.90 2.60 2.10

f Es

1.6 1.6 1.6

2.1

3.4

3.3

3.4

3.2 3.2 2.0

2.0

1.8

f Es

1.6 1.7 2.0

1.8

1.8

1.8

3.0

3.1

2.1

2.0

f Es

1.6

1.8

1.8

3.0

3.5

1.8

3.8

3.5

3.0

2 4

2.0

(18.8°5.

h'F1

230

230 220

215 210 210

220 220

220

Time: 157.5°E,

1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 51 May 1954 Tananarive, Madagascar (18.8°S 47.8°E) f Es (M3000)F2 h'F1 foFl h°E foE h'F2 foF2 Time 2.5 2.3 2.4 2.4 00 220 3,20 01 240 02 250 3.48 03 04 05 06 07 08 09 10 230 1.6 2.0 2.1 2.5 1.6 3.15 3.20 230 255 2.0 3,22 255 123 109 1.80 2.50 3.1 3.60 3.61 (240) 5.0 230 ----245 5.9 225 4.00 4.20 4.30 109 109 109 2.80 3,60 250 215 3.5 6.4 255 6.0 210 3.10 11 12 13 210 270 5.8 3,52 3,52 5.8 215 4.30 109 3.20 3.6 270 3. 2 3. 4 3. 5 3. 5 3. 2 3,10 270 5.8 210 4.20 109 14 5.7 5.4 4, 10 109 3.00 3.50 210 260 2.80 2.50 3.56 107 260 16 17 18 245 5.6 220 110 220 1.90 3.63 5.0 220 4.3 3.2 3.53 3.54 3.4 19 20 21 22 23 215 225 3.1 3.28 2.4 3.29 240 3,2 3, 44 230 3.3 220 3.0 3.51

> Time: Local.

1.25 Mc to 20.0 Mc in 10 minutes, automatic operation. 5weep:

h'F1

240

230

230

220 220

220 225

225 220 230

240

240

Time: Local. 1.25 Mc to 20.0 Mc in 10 mioutes, automatic operation. 5weep:

Tananar	ive, Mada	gascar (18.805,	47.8°E)	_			March 1954
Time	h¹F2	foF2	h*F1	foFl	h° E	foE	f Es	(M3000)F2
00	250	3.6					1.7	3,21
01	240	3.4					2.2	3, 27
02	230	3.0					3.1	3.42
03	250	2.6					1.8	3.14
04	270	2.4					1.8	3.05
05	270	2.3					1.8	3.11
06	245	3.2						3.24
07	255	5.2	240		119	2.10		3,46
08	280	6.0	235	4,00	115	2.60		3.31
09	290	6.7	225	4.30	113	3,00		3,25
10	305	7.2	220	4.40	113	3.20		3,16
1,1	310	7.6	220	4.40	115	3.30		3, 12
12	310	7.8	220	4.50	115	3,40		3, 10
13	300	8.1	225	4.50	115	3.35		3, 14
14	290	7.6	225	4.40	115	3.25		3.17
15	290	7.3	230	4.20	113	3, 10		3,25
16	275	7.0	230	4.00	115	2.80		3 . 2 8
17	255	6.8	240		121	2.35	3.2	3, 40
18	240	6.2					2.8	3,39
19	230	5.3					2.5	3,29
20	240	4.7					2.7	3,21
21	250	4.3					2.4	3, 15
22	255	4.0					2.0	3,12
23	260	3.9					1.6	3,14

Table 53

Time: Local.

5weep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Tanan	arive, Mada	agascar (18.805,	47.8°E)				March 1954
Time	h°F2	foF2	h°F1	foF1	h° E	foE	f Es	(M3000)F2
00	250	3.6					1.7	3, 21
01	240	3.4					2.2	3, 27
02	230	3.0					3,1	3.42
03	250	2.6					1.8	3, 14
04	270	2.4					1.8	3.05
05	270	2.3					1.8	3.11
06	245	3, 2						3.24
07	255	5.2	240		119	2.10		3.46
08	280	6.0	235	4.00	115	2.60		3,31
09	290	6.7	225	4.30	113	3,00		3, 25
10	305	7.2	220	4, 40	113	3, 20		3, 16
11	310	7.6	220	4. 40	115	3.30		3, 12
12	310	7.8	220	4,50	115	3, 40		3, 10
13	300	8.1	225	4,50	115	3, 35		3, 14
14	290	7.6	225	4.40	115	3.25		3.17
15	290	7.3	230	4,20	113	3, 10		3, 25
16	275	7.0	230	4.00	115	2.80		3, 28
17	255	6.8	240		121	2,35	3.2	3.40
18	240	6.2					2.8	3,39
19	230	5.3					2,5	3,29
20	240	4.7					2.7	3,21
21	250	4.3					2.4	3.15
22	255	4.0					2.0	3.12
20	260	2.0					1.6	3 14

Time: Local. 5weep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Table 5	55								Table :	56*			
Tananar	ive, Mada	gascar (18.8°5,	47.8°E)				January 1954	Campbe l	1 I. (52.	5°S, 169	. 2º E)					May 1951
Time	h*F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00	255	4.2					2.8	3,19	00								
01	240	3.7					2.9	3.24	01								
02	250	3,0					2.8	3.13	02	l							
03	255	2.9					2.1	3,23	03	l							
04	250	2.8					3.0	3.13	04	i							
05	270	2.6					2.5	3.11	05	290	2.8						2.85
06		3.8	240		132	1.85	3.0	3, 31	06								
07	290	5.0	230		121	2,50	3.6	3.26	07	240	4.4				1.9	1.9	3,15
08	335	5.4	220	4.10	115	2.85	3.8	3,08	08	230	4.8			130	2.0	2.0	3.3
09	350	6.0	220	4.30	115	3,20	3.6	2.95	09	220	5.6			120	2.4		3.3
10	340	6.8	210	4,40	115	3.30	4.2	2.94	10	240	6.6	220	3.8	120	2.6		3.3
11	345	7.2	215	4,50	115	3.50	3.8	2.92	11	240	7.0	220	3.8	120	2.7		3,3
12	350	7.7		4.60	116	3.55	3.9	2.86	12	240	7.5	230	4.1	120	2.8		3,3
13	350	7.6		4.50	115	3,50	3.5	2.84	13	240	7.3	230	4.0	120	2.7		3,3
14	335	8.4	220	4.40	115	3,40	3.7	2.94	14	240	7.8	230	3.8	120	2.6		3.3
15	305	9.3	220	4.30	115	3.20	4.0	3.03	15	230	7.5	230	-	120	2,2		3.3
16	285	8.6	220	4.10	115	3,00	3.5	3.17	16	230	6.9				1.6		3.25
17	270	7.4	230	3.80	119	2,60	3.5	3.26	17	220	6.2				Ε		3.2
18	255	5.7	240			2,00	3.4	3.26	18	230	5.4						3,1
19	235	5.3					2.4	3,17	19	240	4.5						2.9
20	240	5.2					2.5	3.10	20	1							
21	250	5.0					2.4	3.15	21	260	4.4						2.9
22	270	4.4					3.0	3.05	22								
23	260	4.2					2.5	3.08	23	290	4.2					2.1	2.7

Time: Local. 5weep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Time: 165.0°E.

Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

				Table 5	7*			
Campbel	1 I. (52.5	5°S, 169.	. 2°E)					April 1951
Time	h*F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00								
01								
02								
03	1							
04	1							
05								
06								
07	240	5.0				2.2		(3.2)
08	(240)	5.9	240		120	2.4		3,2
09	(320)	6.8	240		130	2.8		3.2
10	270	7.5	220	4.1	120	3.0		3,2
11	270	7.1	230	4.2	110	3.1		3,25
12	270	7.2	220	4.1	120	3.0		3.1
13	260	7.6	220	4.4	120	3.0		3.1
14	260	7.8	230	4.0	120	2.8		3.15
15	250	7.9	230			2.5		3.15
16	260	7.5				2.2		3.15
17	(220)	(7.6)						(3.25)
18	250	(7.2)						(3.1)
19	240	(6.0)						(3.0)
20	/=							
21	(310)	(5.0)						
22	(050)	_						
23	(350)	E						

Time: 165,0°E, 5weep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

Campbel	1 I. (52.	5°S, 169	. 2°E)					March 195.
Time	h*F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F
00								
01	l							
02	ļ							
03	i							
04	i							
05	300							98 00 CH
06	l							
07	250	4.8	250		120	2.4		3.1
08	300	5.3	240	4.1	120	2.8		3.1
09	310	5.7	230	4.4	120	3.0		3.05
10	320	6.2	220	4.5	120	3,2		3.1
11	330	6.2	220	4.5	110	3.3		3.0
12	320	6.4	220	4.5	110	3.4		3.0
13	320	6.5	230	4.6	110	3.4		3.05
14	320	6.3	240	4.4	110	3, 2		3.0
15	300	6.5	240	4.2	120	3.0		3.0
16	290	6.6	240		120	2.7		3.0
17	260	6.8	250		120	2.3		3.0
18	260	7.2				2.0		3.0
19	260	7.1						2.95
20								
21	300	(5.7)						
22							• •	
23	350	Ε					2.8	

Table 58*

March 1051

Time: 165.0°E.

5weep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation.

*Observations taken on a 16-hour working schedule.

Camphe	11 I. (52.	.5°5 . 169	9.2°E)	Table 5	94			- May 1950
Time	h'F2	foF2	h'F1	foFl	h*E	foE	f Es	(M3000)F2
00								
01								
02								
03								
04								
05	280							
06	1 200							
07	270	4.3			120	2.1		2.8
08	250	6.2	240		120	2.1		3.1
09	250	7.6	240	3.7	110	2.3		3.1
10	250	8.3	240	4.0	120	2,6		3.05
11	250	9.0	240	4.0	110	2.6		3.0
12	250	9.4	240	4.0	110	2.7		3.0
13	250	9.8	240	3.6	110	2.6		3.0
14	250	9.7	240	3.8	110	2.5		3.0
15	240	9.6	250	4.0	110	2, 1		3.0
16	240	9.1	240	4.0	120	2.0		3.05
17	240	8.0			110			3.2
18	250	6.8						3.2
19	250	5.5						3.1
20	1							
21	280							
22								
23	300						2.2	

Time: 165.0°E. 5weep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

		5°S, 169.	,					April 195
Time	h°F2	foF2	h°F1	foFl	h°E_	foE	f Es	(M3000)F
00	1							
01	1							
02	1							
03	l .							
04	ĺ							
05	2 7 0							
06								
07	250	6.4			120	2.0		3.0
08	240	7.3			120	2.4		3.1
09	240	8.0	230	4.3	110	2.7		3.0
10	250	9.1	220	4.3	110	2.9		2.95
11	250	9.6	230	4.4	110	3.0		2.9
12	250	9.7	230	4.5	110	3.1		2.9
13	250	10.0	240	4.3	110	3.0		2.9
14	250	10.1	240	4.1	110	2.8		2.9
15	250	10.0	250	4.1	110	2.6		2.9
16	250	10.0			120	2.2		2.9
17	250	9.8			140	1.9		2.9
18	250	8.2						2.9
19	26 0	7.5						2.8
20	0							
21	260	6.8						
22	000							
23	280						3.5	

Time: 165.0°E. Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

TABLE 61
IONOSPHERIC DATA

TABLE 62
IONOSPHERIC DATA

 foF2,0:IMc, June 1956
 75°W
 Mean Time

 Station: Woshington, D.C. Lot. 38.7°N Long. 77.1°W
 Sweep 1.0
 Mc to 25.0
 Mc in 13.5
 sec.
 Manual □ Automatic ☑

0030 0130 0230 0330 0430 0530 0630 0730 0830 0930 1030 1130 1230 1330 1430 1530 1630 1730 1830 1930 2030 2130 2230 2300																					_				
	0030	0130	0230	0330	0430	0530	0630	0730	_	0930	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	2130	2230	2300	
01	68 U P	56	50	48	44	43	46	47	50	55	57	61	63	60	61	63	64	66	6 6	67	67	6 9	64	57	
02	55	54	51	48	49	49	54	59	67	64	70	7 2	82	70	82	72	72	75	76	80	78	71	70	68	
03	68	61	55	50	44	54	67	66	70	73	70	6 8	69	70	70	71	72	76	76	77	69	64	60	58	
04	58	53	50	43	40	52	62	А	_ A	68	69	68	70	72	73	76	76	76	80	80	73	72	67	68	
05	64	58	55	52	50	48	61	60	61	57	61	59	59	65	70	I A 70	70	69	74	72	70	68	60	62	
06	59	57	57	54	51	57	66	64	58	63	63	64	64	65	65	67	70	70	69	70	74	70	62	57	
07	54	55	50	47	43	54	65	60	58	57	59	60	63	63	56	69	70	7 2	72	73	ช S 70	71	_68	66	
08	63	56	56	U F 47	42	44	50	54	58	60	68	66	68	70	70	70	72	74	74	76	80	73	68	66	_
09	60	52	43	36	37	45	52	57	57	56	58	57	62	67	64	66	70	64	65	69	72	70	68	U F 59	
10	60	U J 54	41	U F 40	7 37	49	61	59	59	65	62	58	60	60	66	67	70	72	72	72	69	70	69	64	_
11	62	58	48	45	38	45	53	56	56	56	57	60	61	64	64	65	64	70	6 8	71	76	72	70	62	_
12	59	54	49	49	47	49	53	56	63	66	73	72	76	74	76	78	80	84	88	88	82	74	75	70	<u> </u>
13	61	60	54	47	42	50	54	55	58	58	60	60	61	62	62	_68	_70	76	86	80	71	70	64	62	
14	58	53	50	45	41	42	49	55	63	65	70	70	66	66	67	70	79	78	82	75	74	7 2	70	69	
15	64	66	56	50	41	48	52	55	56	63	6 2	63	66	63	66	66	71	72	75	82	80	84	78	J 77	
16	67	65	56	I A 49	44	47	55	61	63	67	68	69	68	71	7 2	78	75	78	76	76	74	72	72	66	
17	62	59	56	47	43	50	58	63	62	63	60	62	64	64	6 8	70	70	76	78	77	72	68	69	67	L
18	62	60	52	50	47	53	61	60	I A 62	63	60	61	64	64	64	65	66	72	76	68	73	72	68	70	L
19	67	55	52	44	43	55	60	60	63	61	66	67	69	67	68	65	69	69	68	69	72	68	66	62	
20	58	57	56	53	50	59	68	67	65	65	66	69	70	70	68	70	7 2	76	80	85	82	71	76	70	_
21	70	66	56	54	49	54	58	64	68	72	7 5	72	70	74	76	78	74	76	80	U J 78	74	69	70	U F 72	
22	71	60	54	48	43	48	54	57	58	60	61	58	62	66	65	66	68	68	6 8	66	6 8	70	63	61	L
23	55	54	50	48	45	49	53	58	63	69	66	64	61	67	68	84	85	93	99	79	_74	73	62	60	L
24	59	49	45	43	37	42	47	50	55	51	52	55	55	57	56	54	55	66	69	67	78	70	68	F 54	
25	40 F	25 25	F 23	21	F 29	U F 36	42	E G 41	E G 44	E G 46	E G	E G 48	E G 49	52	E G 50	53	50	52	53	53	54	53	56	54	_
26	44	38 -	36	31	36	3 7	43	46	E G 44	E G 46	53	E G 48	55	57	U J 57	60	61	64	66	62	6 8	68	61	53	
27	50	50	45	39	38	39	43	50	48	52	50	E G 48	53	U S 52	55	_ A	А	58	54	56	60	58	54	54	
28	51	48	45	38	35	44	55	55	56	53	58	52	E G 49	57	56	58	59	60	62	U F 61	66	U F	U F	58	
29	55	52	47	40 40	35	45	E G 39	E G 41	49	54	53	58	56	56	58	65	61	Α	Α	65	70	U F	62	62	
30	U F 59	52	52	47	45	44	53	55	57	62	64	58	I A 57	56	58	94	63	62	6 8	68	63	52	60	58_	
MED	60	55	50	47	43	48	54	57	58	62	62	61	63	64	66	6 8	70	72	74	72	72	70	68	62	
NO	30	30	30	30	30	30	30	29	29	30	30 CENT	RAL R	30 ADIO P	30 ROPAG	30 ATION	29 LABOR	29 RATORY	, NATIO	29 ONAL 6	30 BUREAU	30 J OF S	30 TANDA	30 RDS, B	30 OULDER,	COL

TABLE 63
IONOSPHERIC DATA

foFI, O.I Mc, June 1956

75°W Mean Time

	00	01	02	03	04	05	06	07	08	09	10	н	12	13	14	15	16	17	18	19	20	21	22	23	Т
	- 00	-	02	05	04	L					Н					Н			UL	-	-20				r
1						Q	390 L				Н		500 H					470 L	380 L						┝
2_							A				Н	IA		IA	Н		Н	Н	A						H
3						L	L	430 A	480 A	500 A	510 A	520 A	520 A	540	550	520	500	440	L	Q					╀
4						L	L				н	Н	н	500 I A	520	510 I A	500	490	A	Δ					ļ
5						_	L	430	480 H	480			540 H		530		490	440 A	A						ļ
6								430		480	490	500	520												ļ
7						L	360		U A 470	500	500	500	520	Α	В	510	470	460							L
8							390	U A 430	460	500	490	540	520	540	5 0 0	U L 500	490	460	L	Q					
9						290	U L 380	440	460	480	500	520	510	510	500	500	490	U L 440	420	٦					Ι
c						Q							I A 500	Н	H	Н		Н	UL	L					T
1						L			H	Н	Н	Н	H 500	Н		Н	Н	Н	UL	Q					T
							L					Н	550	Н	Н			Н	L	L					t
2						Q	U L	F	Н	F				н			H	н	L	L					t
3						Q	F	F					50 0	н	Н			H	L	L					t
4						L	380 L	Н				Н	530	Н		Н		IA		L					ł
5	-						_	460 H	470 H	490 H	500 H	520 H	530	540 H	530 H		500	480 U L	460 L	L					ł
6			_				UL						540 I A		560	500	500 H						-		ļ
7									480				520	510	530	520		470							ļ
8							·	440	490	I A 490	490	520	520					A	Α	Α					L
9							_	L		500	50 0	520	550	530	Н 530	Н 530	490		L	Ŀ					
0						G	L	A	Α	520	530	540	530	560	540	I B	520	480	340	Ĺ					
1							L	U L 470	500	UL		H	Н 52 0			H			L	L					Γ
2							L	UH					500		Н	Н	Н		410	Α					T
				<u> </u>		L	430		Н		I	Н		Н		Н				Q					t
3							420 A		I B	Н	Н				Н		F		400 L	L	_				t
4			-				F	F			Н	Н		F	I A					L	-				t
5			-				Н		F				490 H			Н			410 A	L	_		-		t
6	<u> </u>		_			280 Q	390	410	430	450	460	480 H	480	490	490	480 H									╀
7	ļ					Q	360	400 H	430	450	460	470	480	480	470				400						╀
8							380	430	460	480	490	490	490	500	480	470					_			ļ	ļ
9						320		430	430	450	470	470	H 490	490			I A 480	470	Α						ļ
0									440		490	480	490	I A 490			450	450	380						-
-							-		_																t
ED							380	430	470	490	500	500	520	510	500	500	490	460	410						
۷0						3	16	27	28	29			29		29			26	11					OULDER	

TABLE 64
IONOSPHERIC DATA

TABLE 65
IONOSPHERIC DATA

fEs, O.1 Mc, June 1956

75°W Mean Time

Station:Washington, D.C. Lot. 38.7°N Long. 77.1°W Sweep I.O Mc to 25.0 Mc in I3.5 sec. Manual □ Automatic № 00 01 02 03 04 05 06 07 08 09 10 II 12 13 14 15 16 17 18 19 20 21 22 23 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														E											
	00	10	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
01	5	5	5	S	5	G	24	29	70	43	46	46	50	56	45	70	74	33	37	37	5	S	33	72	
02	S	2.8	5	5	25	27	33	72	4 9	80	110	46	50	39 H	49	50	74	44	52	40	S	31	S	S	
03		26	39	56	80	60	55	35	47	44	78	94	66	120	7 2	38	63	35	60	58	70	37	42	46	
04	5	32	26	48	50	41	38	_68	90	120	72	125	74	56	39	110	74	38	36	94	55	43	24	23	
05	26	5	22	28	40 5	17	35	35	72	50	80	74 H	64	68	58	158	70	G	66	98	60	29	3	32	
06	33	24	22	23		19	37	86	115	56	70	76	45	49	106	84	53 G	54	5 8	103	78	31	29	46	
07	39	37	22	28	28	31	_35	43	96	49	70	50	48	68	49	47	-	39 Y	39	41	76	47 F	120	70	
08	S	S	48	70	27	29	37	80	70	64	54	45	100	47	7 54 H	41 H	52	64	27	_23	5		s	24 S	
09	5	21 E	24 E	32 5	E	64	33	84	82	46	53	50	40	68	70	53	41	40 G	27	34	- S	24 S	5		
10	5		E		E	70	30	70	34	72	102	54	80	54	50	48	50 G	G		_20	-3	5		35 S	
11		E	_	E		74	31	50	43	88	84	54	72	54	48 G	43	-	G	33	34	31	5	S	5	
12	5	S	29	S S	28	38	72	68	65	6 2	72	50	72	40		G	44		29	21	3	S	23	5	
13	37	39	35		80	42	33	62	94	76	68	50	42	42	41	٥	70	33	33	34	13	3	S		
14	S	5	S	5	5	18	4.2	120	78	188	98	47	76	42	40	41	37	32	40	31	43	35	5	19	
15	42	S	S	5	42	6	74	98	48	44	80	42	52	39	57	43	90	57	44	21	30	5	S	29	
16	2.8	49	50	70	90	40	38	45	42	45	47	43	53	74	46	50	54	44	37	37	14	5	S	30 S	
17	27	33	37	14	39	44	72	59	63	64	55	70	72	90	G	54	G	43	42	21	3	S	S		
18	S	31	60	35	5	41	41	57		105	50	47	39	76	110	43	62	63	115	76	90	80	50	31	
19	35	98	64	48	45	48	80	108	80	92	120	53	64	53	G	100	36	49	39	20	40	31	60	66	
20	29	41	40	39	35	34	44	58	66	75	48	49	45	40	47	8	G	G	G	31	31	34	21	S	
21	S	S	E	5	E	18	40	72	46	46	52	51	54	72	47	105	49	38	31	47	37	29	S	S	
22	5	5	5	E	5	18	35	56	60	114	72	46	42	6.6	48	48	6	35	30	39	44	43	80	21	
23	S	S	31	5	S	17	48	39	47	49	47	46	50	50	47	45	G	G	G	2.0	S	5	28	S	
24	5	S	5 38	37	39	36	37	38	8	40	40	47	49	G	39	41	45	.33	28	5	5	5	s	5	
25	5	5	S	S	S	19	H 46	G	70	45	68	45	52	80	60	39	46	34	30	29	68	76	64	39	
26	36	47	-36	_37	5	17	40	35	67	39	58	47	60	42	64	37	46	G	43	22	S	S	5	5	
27	S	5	5	5	5	17	68	34	41	49	46	71	47	62	69	50	180		158	34	27	S	48	.80	
28	52	46	35	44	18	28	44	110	42	40	38	38	39	50	47	36	G	G	43	52	50	39	55	5	
29	29	S	S	54		17	44	49	42	47	35	35	36	47	H 78	40	64	7.0	66	76	45	80	56	40	
30	74	33	S	38	42	40	46	70	45	45	74	72	78	88	70	74	5 6	45	42	34	34	80	90	42	
MED NO	35	33	35	37	39	30	40	58		50	68	50		54	48	46	50	36	38		44	36	49	37	
110	13	17	21	19	20	30	30	30	30	30		RAL R		ROPAG	30 ATION	LABOR	30	30 , NATIO	NAL 6		20 0F S	18 TANDA	16 RDS, BC	18 DULDER,	COLO.

TABLE 66
IONOSPHERIC DATA

fmin, O.I Mc, June 1956

75° W Mean Time

Manual □ Automatic 🗷 Station: Washington, D.C. Lat. 38.7°N Lang. 77.1° W Sweep 1.0 Mc ta 25.0 Mc in 13.5 sec. 00 01 02 03 04 05 06 07 80 09 10 11 12 | 13 14 15 16 17 18 19 20 21 22 23 ESES E S E S ESESESES ESES F S E S ESES E S EESESES E S E S E S E S S E S ESIES S 17 | 16 | E S Ε S SE SES Ε S E S ESESES ESES ESESES Ε ESESES 03 E S S S E S ESESE ESES ESES E S E SESES 16 04 16 16 16 16 16 16 ESESES Ε s s ESES E S E S ESES ESES s E S E S ESESES 17 16 05 ESES E S E S ESESESES Ë S ESESES E S ESES E S ESES E S E S E S E S E S 16 16 17 17 06 16 16 14 16 17 17 16 Ε ESESES E S E E S EESESES E S E S E S E S E S E S E S Ε 19 2.3 47 21 07 26 16 16 16 16 16 E S E S Ē ESES E E S ESESES E S ESES E S ESESES E S ESES 20 80 16 20 20 16 16 ESES Ε ESES E E S E S Ε S S ESESES ESES ESESE S E S ESESES 18 17 16 09 13 15 13 12 11 16 16 16 16 16 E E S ESES E Ē S E S Ε Ε E S E S ESES 10 20 E S Ē E Ε E S ESES ESES E S E S E S E S ESES E S E 17 18 11 16 16 16 ESES ESESESES E S E S E S E S ESES E S E S 18 12 16 E S E S ESESES ESES E S E E S E S E S F-S F S E S E S Ε 21 20 17 ESESES E S E S E S ESES ESES ESESES 19 23 ESESES E S E S E S ESES ESESESES ESESESES E S ESES 15 Ε SES E S E S SE 21 20 16 16 16 16 E S Ε E S E S Ε E E S E S E S ESESESES ESES Ε Ε s ESES E S S 17 17 16 16 13 16 16 16 ESESESES ESES Ε Ε ESESES E S E S ESESES ESESES E S 18 16 16 16 17 17 17 20 16 16 E S Ε E S EESESES ESES E S E S E S E S ESES E S Ε Ε E E S Ε S 20 E S ESES E S ESES E S E E S ESES EESE S E S 20 26 25 60 ESES EES E E S E S ESES ESES ESESES 16 20 ESESES E S E S ESES E S E S E S E S E S ESES E S E S 28 21 21 22 16 24 E S E S E S S E S E S S S S E S 23 20 18 16 16 E S E S E S 13 12 13 ESES E S E S E S E S E S ESES 22 20 20 25 24 ESESESES E S ESESES ESESES ESES ESES E S E ESESESES ESESES ESES E S E S ESES E S E SES E S ESESESES ESES E S E S E S E S E S ESESE ESESES 27 Ε E E S E S E S E S E S E S Ε S E S Ε S E S 28 22 16 ESESESES SES E S E S E S E S E S S E S Ε E S E S Ε 16 16 29 13 16 16 18 19 20 16 16 16 16 16 18 22 _16 ESESESES ESESES Ε E \$ E S E \$ ESES E S E S ESESES 30 13 17 20 16 MED ,NO

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO

TABLE 67 IONOSPHERIC DATA

MED NO

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO

TABLE 68
IONOSPHERIC DATA

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 69
IONOSPHERIC DATA

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

MED

30 30 30 30 30 30 30 28

TABLE 70
IONOSPHERIC DATA

CENTRAL RACIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO

28 30

TABLE 71
IONOSPHERIC DATA

26 28

25

24

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

MED NO

16 25 26 28 29 28

U. S GOVERNMENT PRINTING SPECT SIZETY

71.3°N, 156.8°W

JANUARY 1956

Fig. 82. POINT BARROW, ALASKA DECEMBER 1955

1.3°N, 103.8°E DECEMBER 1955

JANUARY 1954

≥ 400

HEIGHT 000

VIRTUAL

TOTAL TIME S FREQUENCY

> PERCENTAGE FOR fes>LIMIT

100

LOCAL TIME

Index of Tables and Graphs of Ionospheric Data

in CRPL-F143 (Part A)

	Table page	Figure page
Adak, Alaska		
May 1956	. 9	31
Akita, Japan		
February 1956	. 14	45
Anchorage, Alaska		
April 1956	. 10	34
Baguio, P. I.		0.0
March 1956	. 12	39
Baker Lake, Canada	1.1	38
March 1956	. 11	30
February 1956	. 15	48
Campbell I.	. 15	40
May 1951	. 18	57
April 1951	. 18	58
March 1951	. 18	58
May 1950		59
April 1950	. 18	59
Capetown, Union of S. Africa		
March 1956	. 13	43
February 1956	. 15	48
Decepcion I.		
February 1956	. 15	49
Elisabethville, Belgian Congo		
March 1956	. 12	41
Fairbanks, Alaska		
April 1956	. 10	34
Falkland Is.		
November 1955	. 16	52
Formosa, China	10	20
May 1956	. 10	33
Ft. Monmouth, New Jersey	. 9	32
May 1956	• 7	J <i>E</i>
May 1956	. 9	31
Guam I.	• 7	O.
April 1956	. 11	36
Huancayo, Peru		
April 1956	. 11	37
March 1956	. 12	41
Inverness, Scotland		
December 1955	. 15	50

Index (CRPL-F143 (Part A), continued)

	Table page	Figure page
Johannesburg, Union of S. Africa		(
March 1956	. 13	42
March 1956	. 14	47
Leopoldville, Belgian Congo	•	-,
March 1956	. 12	40
Lindau/Harz Germany		10
	. 11	38
March 1956	-	44
	. 15	44
Macquarie I.	14	5 2
December 1954		53
November 1954	. 17	54
Maui, Hawaii		0.5
April 1956	. 10	35
Nairobi, Kenya		
February 1956	. 14	47
Narsarssuak, Greenland		
April 1956	. 10	35
Okinawa I.		
May 1956	. 9	32
Point Barrow, Alaska	•	
January 1956	. 15	49
December 1955	. 15	50
November 1955	. 16	5 2
Port Lockroy	. 10	04
October 1955	. 16	53
Puerto Rico, W. I.	. 10	33
Annil 1054	. 11	36
April 1956	. 11	30
February 1054	12	40
February 1956	. 13	43
San Francisco, California		45
February 1956	. 14	45
Schwarzenburg, Switzerland		
March 1956	. 12	39
Singapore, British Malaya		
December 1955	. 16	51
Slough, England		
December 1955	. 16	51
Talara, Peru		
April 1956	. 11	37
March 1956	. 12	40
Tananarive, Madagascar		
June 1954	. 17	54
May 1954	-	55
April 1954	. 17	55
March 1954	. 17	56
February 1954	. 17	56
January 1954.	. 18	57
	. 10	0 1

Index (CRPL-F143 (Part A), concluded)

	Table page	Figure page
Tokyo, Japan February 1956	. 14	46
April 1956	. 10	33
Upsala, Sweden May 1956	. 9	30
Wakkanai, Japan February 1956	. 13	44
Washington, D. C. June 1956	. 9	30
Watheroo, W. Australia March 1956		42
Yamagawa, Japan		
February 1956	. 14	46

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports,

Monthly:

Basic Radio Propagation Predictions-Three months in advance. (Dept. of the Army, TB 11-CRPL-D. 499—, monthly supplements to TM 11—499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 31-3-28 series). On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address cognizant military office.

CRPL-F. Ionospheric Data. (Part A).

(Part B). Solar-Geophysical Data.

Limited distribution. These publications are in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics, and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. NBS Circular 465. Ionospheric Radio Propagation.

Instructions for the Use of Basic Radio Propagation Predictions.

NBS Circular 557. Worldwide Radio Noise Levels Expected in the Frequency Band 10 Kilocycles to 100 Mega-

> These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publication listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

