

Remarks on specific sliding and Hertzian contact

Paulo Araújo da Cunha Sousa Paulo M. S. Tavares de Castro Faculdade de Engenharia da Universidade do Porto, 12 de Fevereiro de 2020

Why gears?

For power transmission:

$$Power = \omega \times T$$

- Transmission ratio 8:1;
- Input velocity:1500 rpm
- Output velocity: 1500/8 rpm

Figure 1: Technical drawing of a speed reducer Source: 'Aplicaciones prácticas de rodamientos', FAG Kugelfischer Georg Schäfer & Co Schweinfurt.

Energy

Why gears?

Animation 1: Animation obtained using https://geargenerator.com

Spur gears - Specific sliding -Introduction

- Specific sliding is directly linked to the lifetime of gears.
- It needs to be minimized.

And it's defined as:

$$gs_1B = \left| 1 - \frac{\sqrt{ra_2^2 - rb_2^2}}{a \times \sin \alpha - \sqrt{ra_2^2 - rb_2^2}} \times \frac{Z_1}{Z_2} \right|$$

$$gs_1B = \left| 1 - \frac{\sqrt{ra_2^2 - rb_2^2}}{a \times \sin \alpha - \sqrt{ra_2^2 - rb_2^2}} \times \frac{Z_1}{Z_2} \right| \qquad gs_2A = \left| \frac{\sqrt{ra_1^2 - rb_1^2}}{a \times \sin \alpha - \sqrt{ra_1^2 - rb_1^2}} \times \frac{Z_2}{Z_1} - 1 \right|$$

Spur gears - Specific sliding - Introduction

To minimize the specific sliding we apply a profile shift $(x_1 \text{ for the pinion and } x_2 \text{ for the wheel})$:

$$gs_{1}B = \left[1 - \frac{\sqrt{\left(\frac{Z_{2}m}{2} + m + x_{2} \times m\right)^{2} - \left(\frac{Z_{2}m}{2}\cos\alpha\right)^{2}}}{a \times \sin\alpha - \sqrt{\left(\frac{Z_{2}m}{2} + m + x_{2} \times m\right)^{2} - \left(\frac{Z_{2}m}{2}\cos\alpha\right)^{2}}} \times \frac{Z_{1}}{Z_{2}}\right] \qquad gs_{2}A = \left[\frac{\sqrt{\left(\frac{Z_{1}m}{2} + m + x_{1} \times m\right)^{2} - \left(\frac{Z_{1}m}{2}\cos\alpha\right)^{2}}}{a \times \sin\alpha - \sqrt{\left(\frac{Z_{1}m}{2} + m + x_{1} \times m\right)^{2} - \left(\frac{Z_{1}m}{2}\cos\alpha\right)^{2}}} \times \frac{Z_{2}}{Z_{1}} - 1\right]$$

 \blacksquare and equalize gs_1B and gs_2A :

$$\left|1 - \frac{\sqrt{\left(\frac{Z_2m}{2} + m + x_2 \times m\right)^2 - \left(\frac{Z_2m}{2}\cos\alpha\right)^2}}{a \times \sin\alpha - \sqrt{\left(\frac{Z_2m}{2} + m + x_2 \times m\right)^2 - \left(\frac{Z_2m}{2}\cos\alpha\right)^2}} \times \frac{Z_1}{Z_2}\right| = \frac{\sqrt{\left(\frac{Z_1m}{2} + m + x_1 \times m\right)^2 - \left(\frac{Z_1m}{2}\cos\alpha\right)^2}}{a \times \sin\alpha - \sqrt{\left(\frac{Z_1m}{2} + m + x_2 \times m\right)^2 - \left(\frac{Z_1m}{2}\cos\alpha\right)^2}} \times \frac{Z_2}{Z_1} - 1$$

Spur gears - Specific sliding - Introduction

- $(z_1+z_2)\geq 60$:
 - Symmetrical profile shift $(x_1 = -x_2)$
 - Equation solved nummerically.
- $(z_1+z_2)<60$:
 - Henriot's procedure
 - 4 equations and 4 unknowns
 - The center distance (a) will change

Spur gears - Specific sliding - Discussion

Figure 2 – Specific sliding representation for multiple gearings

Spur gears - Specific sliding - Discussion

Figure 3 - Relation between specific sliding values obtained by each method (for the i=1.5 case)

- Maximum specific sliding obtained by the Henriot's procedure (gsH)
- Maximum specific sliding obtained using the symmetrial profile shift (gsS)

Hertzian contact pressure - Introduction

Figure 5 – Gearing squematic representation

 $\rho_1 + \rho_2 = \overline{T_1 T_2}$ $\overline{T_1 T_2} = a \times \sin \alpha$

Figure 4 – Contact of two cylinders under load Source: D. Jelaska, Gears and gear drives, John Wiley & Sons, 2012

Figure 5 – Gearing squematic representation Adapted from: D. Jelaska, Gears and gear drives, John Wiley & Sons, 2012

Hertzian contact pressure - Introduction

The general mathematical formulation:

$$\sigma_{H} = \sqrt{\frac{F_{nu}}{\pi} \times \frac{\frac{1}{\rho_{1}} + \frac{1}{\rho_{2}}}{\frac{(1 - \nu_{1})^{2}}{E_{1}} + \frac{(1 - \nu_{2})^{2}}{E_{2}}}}$$

For the same material for both the pinion and the wheel (with E=210 GPa and $\nu=0.3$):

$$\sigma_H = 192 \sqrt{F_{nu} \times \frac{1}{\frac{1}{\rho_1} + \frac{1}{\rho_2}}}$$

Hertzian contact pressure – Discussion

Figure 6 – General representation of the contact pressure along the gearing line

Animation 2: By Henrique Duarte, José Rafael Andrade and Rafael Tavares, in Orgãos de Máquinas, FEUP, 2012/2013

Hertzian contact pressure – Discussion

Figure 7 – Difference between $\sigma_H[{\rm I}]$ (standard ISO 6332-2) and $\sigma_H[{\rm W}]$

Difference= $\frac{\sigma_H[I] - \sigma_H[W]}{\sigma_H[W]}$

12/02/2020

Hertzian contact pressure – Discussion

Figure 8 - Difference between $\sigma_H[I]$ (standard ISO 6332-2) and $\sigma_H[W]$

Difference=
$$\frac{\sigma_H[I] - \sigma_H[W]}{\sigma_H[W]}$$

12/02/2020

To sum up

Specific sliding:

max. specific sliding values obtained using symmetrial profile shift (gsS), and the Henriot's procedure (gsH), were systematically compared over a wide range of situations. The resulting plot allows to quickly identify the penalty involved in the use $x_1=-x_2$ for low values of z_1+z_2 .

Hertzian contact pressure:

Difference between σ_H [I] (as specified in ISO 6332-2 standard) and σ_H [W]

- was calculated over an wide range of z₁ and i values and
- is presented in graphical form enabling to quickly identify the approximations involved in the use of $\sigma_H[I]$

Thank you for your attention