Note per riduzione dualità Kutasov-Schwimmer 4d ightarrow 3d

Carlo Sana

Indice

1	Teo	Teoria Elettrica					
	1.1	Calcolo indice superconforme					
		1.1.1	Contributo dalla parte vettoriale	5			
		1.1.2	Contributo della materia nell'aggiunta	6			
		1.1.3	Contributo materia nella fondamentale	8			
	1.2	Form	ıla per Indice superconforme Kutasov-Schwimmer 4d	8			
	1.3	Riduz	ione dell'indice alla funzione di partizione	9			
		1.3.1	Contributo divergente	10			
	1.4	Funzi	one di partizione	11			
		1.4.1	Masse reali e flow senza η	11			
		1.4.2	Limite per $m \to \infty$	13			
	1.5	Funzi	one di partizione finale	14			
2	Tec	oria M	lagnetica	15			
	2.1	Calco	lo dell'indice superconforme	15			
		2.1.1	Contributo dei campi chirali	15			
		2.1.2	Contributo dei mesoni	16			
	2.2	Indice	e e funzione di partizione	17			
		2.2.1	Espressione dell'indice	17			
		2.2.2	Funzione di partizione	18			
	2.3	Contr	ibuti divergenti	20			
	2.4						
	2.5	Vuoti	e rotture di simmetria per il limite a massa infinita	22			
	2.6	Calco	li per limite a massa divergente	24			
		2.6.1	Mesoni	24			
		2.6.2	Chirali	26			
		2.6.3	Contributo della materia nell'aggiunta e campo vettoriale	28			
		2.6.4	Somma dei contributi	29			
		2.6.5	Contributi proporzionali a m	30			
		2.6.6	Contribui proporzionali a m_B	31			
		2.6.7	Contributi con σ e ρ	32			
	2.7	Funzi	one di partizione nel limite (riassumendo)	32			
3	Ana	Analisi dualità					
	3.1	Mirro	r symmetry del settore $U(k)$	34			
		3.1.1	Primo caso	36			
		3.1.2	Secondo caso	37			
	3.2	Conta	act terms e k_{IJ}	38			

3.2.1	k_{BA}	39
3.2.2	k_{BR}	39
3.2.3	k_{BJ}	39

KS duality: rappresentazioni e cariche

Teoria in quattro dimensioni.

Teoria Elettrica

	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$U(1)_R$
Q	N_F	1	1	$1 - \frac{2}{k+1} \frac{N_c}{N_f}$
$ ilde{Q}$	1	$\overline{N_F}$	-1	$1 - \frac{2}{k+1} \frac{N_c}{N_f}$
X	1	1	0	$\frac{2}{k+1}$

Tabella 1. Tabella delle cariche per teoria elettrica

La materia nell'aggiunta ha un superpotenziale dato da $W={\rm tr} Y^{k+1}$ che ne fissa la R-Carica.

Le R-cariche sono fissate in modo che la R-simmetria sia non anomala (queste vale solo in 4D). Il contributo dai diagrammi triangolare è dato da:

$$R_{gaugino}T(\mathrm{Ad}) + \sum_{ReprR} (R_{ferm} - 1)T(R) \dim(\mathrm{global}) = 0$$

$$N_c + (R_Q - 1)\frac{1}{2}2N_f + (R_X - 1)N_c = 0 \quad \rightarrow \quad (R_Q - 1)N_f = -R_XN_c \rightarrow R_Q = 1 - R_X\frac{N_c}{N_f}$$

È stato usato il fatto che il gaugino ha R carica 1.

Questa condizione non è presente in 3D. (Il grafico non è anomalo)

Teoria Magnetica

	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$U(1)_R$
\overline{q}	$\overline{N_F}$	1	$\frac{N_c}{kN_f - N_c}$	$1 - \frac{2}{k+1} \frac{kN_f - N_c}{N_f}$
$ ilde{q}$	1	N_F	$-\frac{N_c}{kN_f-N_c}$	$1 - \frac{2}{k+1} \frac{kN_f - N_c}{N_f}$
Y	1	1	Ö	$\frac{2}{k+1}$
M_{j}	N_f	$\overline{N_f}$	0	$2 - \frac{4}{k+1} \frac{N_c}{N_f} + j \frac{2}{k+1}$

Tabella 2. Tabella delle cariche per teoria magnetica

Il superpotenziale per questa teoria è dato da

$$W = \operatorname{tr} X^{k+1} + \sum_{j=0}^{k-1} M_j q Y^{k-j-1} \tilde{q} \quad \text{dove } M_j = Q Y^j \tilde{Q}$$

I mesoni sono costruiti dai quark ELETTRICI.

Questo superpotenziale oltre a fissare $R_X = R_Y$ fissa le R-cariche di mesoni e quark duali.

$$2 = R(M_j q Y^{k-j-1} \tilde{q}) = 2R_Q + jR_Y + 2R_q + (k-j-1)R_Y =$$

$$2 = 2R_Q + jR_Y + 2R_q + (k+1)R_X - 2R_X$$

$$2 = 2R_Q + jR_Y + 2R_q + 2 - 2R_X \rightarrow R_q = R_X - R_Q$$

1 Teoria Elettrica

Si seguiranno le convenzioni di [1].

1.1 Calcolo indice superconforme

L'indice superconforme della teoria elettrica di Kutasov-Schwimmer ($SU(N_C) \times SU(N_f)_L \times SU(N_f)_R \times U(1)_B$) è dato da (vedi [2])

$$i_{E}(p,q,v,y,\tilde{y},z) = -\left(\frac{p}{1-p} + \frac{q}{1-q} - \frac{1}{(1-p)(1-q)} ((pq)^{s} - (pq)^{1-s})\right) (p_{N_{c}}(z) p_{N_{c}}(z^{-1}) - 1) + \frac{1}{(1-p)(1-q)} \left((pq)^{\frac{1}{2}r} v p_{N_{f}}(y) p_{N_{c}}(z) - (pq)^{1-\frac{1}{2}r} \frac{1}{v} p_{N_{f}}(y^{-1}) p_{N_{c}}(z^{-1}) + (pq)^{\frac{1}{2}r} \frac{1}{v} p_{N_{f}}(\tilde{y}) p_{N_{c}}(z^{-1}) - (pq)^{1-\frac{1}{2}r} v p_{N_{f}}(\tilde{y}^{-1}) p_{N_{c}}(z) \right)$$

$$(1.1)$$

I polinomi sono definiti come

$$p_{N_c}(x) = \sum_{i=1}^{N_c} x_i$$
 $p_{N_c}(x^{-1}) = \sum_{i=1}^{N_c} \frac{1}{x_i}$

Esplicitando i polinomi si ottiene

$$\begin{split} i_{E}(p,q,v,y,\tilde{y},z) &= \\ &- \left(\frac{p}{1-p} + \frac{q}{1-q} - \frac{1}{(1-p)(1-q)} \left((p\,q)^{s} - (p\,q)^{1-s} \right) \right) \left(\sum_{1 \leq i,j \leq N_{c}} \frac{z_{i}}{z_{j}} - 1 \right) \\ &+ \frac{1}{(1-p)(1-q)} \sum_{i=1}^{N_{f}} \sum_{j=1}^{N_{c}} \left((p\,q)^{\frac{1}{2}r} \, v \, y_{i} \, z_{j} - (p\,q)^{1-\frac{1}{2}r} \, \frac{1}{v} \, y_{i}^{-1} \, z_{j}^{-1} \right) \\ &+ (p\,q)^{\frac{1}{2}r} \, \frac{1}{v} \, \tilde{y}_{i} \, z_{j}^{-1} - (p\,q)^{1-\frac{1}{2}r} \, v \, \tilde{y}_{i}^{-1} \, z_{j} \right) \end{split}$$

riscalando $(pq)^{\frac{1}{2}r}vy \to y$ e $(pq)^{-\frac{1}{2}r}v\tilde{y} \to \tilde{y}$:

$$i_{E}(p,q,y,\tilde{y},y) = -\left(\frac{p}{1-p} + \frac{q}{1-q} - \frac{1}{(1-p)(1-q)} \left((pq)^{s} - (pq)^{1-s}\right) \left(\sum_{1 \leq i,j \leq N_{c}} z_{i}/z_{j} - 1\right) + \frac{1}{(1-p)(1-q)} \sum_{i=1}^{N_{f}} \sum_{j=1}^{N_{c}} \left((y_{i} - pq\tilde{y}_{i})z_{j} + (\tilde{y}_{i}^{-1} - pqy_{i}^{-1})z_{j}^{-1}\right)$$

$$(1.2)$$

dove R_q e R_X sono le R-cariche della materia (nella fondamentale e nell'aggiunta).

$$R_Q = 1 - \frac{2}{k+1} \frac{N_c}{N_f}, \qquad s = \frac{1}{k+1} = \frac{1}{2} R_X$$
 (1.3)

Si nota che questa scelta di R-Carica è stata fatta imponendo che la R-simmetria sia non anomala in 4D. In 3D la R-simmetria si può mixare con le altre simmetrie e le cariche non sono più vincolate in questo modo (ok?).

L'indice superconforme è definito come:

$$I_E(p, q, v, y, \tilde{y}) = \int_{SU(N_c)} d\mu(z) \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} i_E(p^n, q^n, v^n, y^n, \tilde{y}^n, z^n)\right)$$

L'integral sul gruppo $SU(N_c)$ può essere scritto come integrale sulla Cartan del gruppo attraverso:

$$\int_{SU(N_c)} d\mu(z) f(z) = \frac{1}{N_c!} \int_{T^{N_c-1}} \prod_{i=1}^{N_c} \frac{dz_i}{2\pi i z_i} \Delta(z) \Delta(z^{-1}) f(z) \bigg|_{\prod_{i=1}^{N_c} z_i = 1}$$
(1.4)

e dove $\Delta(z)$ è il determinante di Vandermonde:

$$\Delta(z) = \prod_{\substack{1 \le i, j < \le N_c \\ i \ne j}}^{N_c} (z_i - z_j) = \prod_{\substack{1 \le i, j < \le N_c \\ i \ne j}}^{N_c} \left(1 - \frac{z_i}{z_j} \right) z_j = \prod_{\substack{1 \le i, j < \le N_c \\ i \ne j}}^{N_c} \left(1 - \frac{z_i}{z_j} \right)$$

L'ultima equivalenza è dovuta al vincolo $\prod_{i=1}^{N_c} z_i = 1$.

Ogni termine dell'indice superconforme a singola particella i_E si fattorizza nell'indice "completo" I_E essendo all'interno di un esponenziale.

S

1.1.1 Contributo dalla parte vettoriale

Abbiamo per la parte vettoriale (nell'aggiunta):

$$\exp\left(\sum_{n=1}^{\infty} \frac{1}{n} i_{E}^{Vett}(p^{n}, q^{n}, z^{n})\right) \stackrel{def}{=}$$

$$\exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^{n}}{1-p^{n}} + \frac{q^{n}}{1-q^{n}}\right) \left(\left(\sum_{1 \leq i, j \leq N_{c}} \frac{z_{i}^{n}}{z_{j}^{n}}\right) - 1\right)\right) =$$

$$= \exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^{n}}{1-p^{n}} + \frac{q^{n}}{1-q^{n}}\right) \left(\left(\sum_{1 \leq i, j \leq N_{c}} \frac{z_{i}^{n}}{z_{j}^{n}}\right) + \left(\sum_{i=1}^{N_{c}} 1\right) - 1\right)\right) =$$

$$= \exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^{n}}{1-p^{n}} + \frac{q^{n}}{1-q^{n}}\right) \left(\left(\sum_{1 \leq i, j \leq N_{c} \\ i \neq j} \frac{z_{i}^{n}}{z_{j}^{n}}\right) + \left(N_{c}\right) - 1\right)\right) =$$

$$\begin{split} &= \left[\exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^n}{1-p^n} + \frac{q^n}{1-q^n} \right) \left(\left(\sum_{\substack{1 \leq i,j \leq N_c \\ i \neq j}} \frac{z_i^n}{z_j^n} \right) \right) \right] \\ &\exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^n}{1-p^n} + \frac{q^n}{1-q^n} \right) \left(N_c - 1 \right) \right) = \\ &= \left[\prod_{\substack{1 \leq i,j \leq N_c \\ i \neq j}} \exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^n}{1-p^n} + \frac{q^n}{1-q^n} \right) \frac{z_i^n}{z_j^n} \right) \right] \left[\exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^n}{1-p^n} + \frac{q^n}{1-q^n} \right) \right) \right]^{N_c - 1} \\ &\left[\prod_{1 \leq i,j \leq N_c} \exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} i_E^V(p^n, q^n) \frac{z_i^n}{z_j^n} \right) \right] \left[\exp\left(\sum_{n=1}^{\infty} -\frac{1}{n} i_E^V(p^n, q^n) \right) \right]^{N_c - 1} \end{split}$$
(1.5)

Da questi termini si ottengono le funzioni Γ_e attraverso le seguenti identità non banali:

$$\exp\left(\sum_{n=1}^{\infty} \frac{1}{n} i_{E}^{V}(p^{n}, q^{n})\right) \left(z^{n} + z^{-n}\right) = \frac{\theta(z; p)\theta(z; q)}{1 - z^{2}}$$

$$= \frac{1}{(1 - z)(1 - z^{-1})\Gamma_{e}(z; p, q)\Gamma_{e}(z^{-1}; p, q)}$$
(1.6)

$$\exp\left(\sum_{n=1}^{\infty} \frac{1}{n} i_E^V(p^n, q^n)\right) = (p; p)(q; q) \tag{1.8}$$

dove
$$i_E^V(p^n, q^n) = -\left(\frac{p^n}{1 - p^n} + \frac{q^n}{1 - q^n}\right)$$
 (1.9)

Le funzioni ipergeometriche sono definite attraverso:

$$\Gamma_e(y; p, q) = \prod_{j,k \ge 0} \frac{1 - y^{-1} p^{j+1} q^{k+1}}{1 - y p^j q^k}$$

$$\theta(z; p) = \prod_{j \ge 0} (1 - z p^j) (1 - z^{-1} p^{j+1})$$

$$(x; p) = \prod_{j \ge 0} (1 - x p^j)$$

L'identità 1.8 si utilizza per l'ultimo termine dell'indice e applicandola direttamente si trova:

$$(p;p)^{N_c-1}(q;q)^{N_c-1}$$

Prima di utilizzare l'identità 1.7 è necessario considerare che:

$$\prod_{\substack{1 \leq i,j \leq N_c \\ i \neq j}} \frac{z_i^n}{z_j^n} = \prod_{1 \leq i < j \leq N_c} \left(\frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n} \right)$$

A questo punto identificando $\frac{z_i}{z_j}=z$ si applica l'identità 1.7 per ogni termine della produttoria e si ottiene:

$$\begin{split} \prod_{1 \leq i < j \leq N_c} \exp\bigg(\sum_{n=1}^{\infty} -\frac{1}{n} \left(\frac{p^n}{1-p^n} + \frac{q^n}{1-q^n}\right) \left(\frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n}\right)\bigg) &= \\ \prod_{1 \leq i < j \leq N_c} \exp\bigg(\sum_{n=1}^{\infty} -\frac{1}{n} i_E^V(p^n, q^n) \left(\frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n}\right)\bigg) \\ \prod_{1 \leq i < j \leq N_c} \frac{1}{\left(1 - \frac{z_i}{z_j}\right) \left(1 - \frac{z_j}{z_i}\right) \Gamma_e(\frac{z_i}{z_j}; p, q) \Gamma_e(\frac{z_j}{z_i}; p, q)} \end{split}$$

Mettendo insieme i contributi per la parte vettoriali otteniamo:

$$(p;p)^{N_{c}-1}(q;q)^{N_{c}-1} \prod_{1 \leq i < j \leq N_{c}} \frac{1}{\left(1 - \frac{z_{i}}{z_{j}}\right)\left(1 - \frac{z_{j}}{z_{i}}\right)\Gamma_{e}(\frac{z_{i}}{z_{j}};p,q)\Gamma_{e}(\frac{z_{j}}{z_{i}};p,q)}$$
$$(p;p)^{N_{c}-1}(q;q)^{N_{c}-1} \frac{1}{\Delta(z)\Delta(z^{-1})} \prod_{1 \leq i < j \leq N_{c}} \frac{1}{\Gamma_{e}(\frac{z_{i}}{z_{j}};p,q)\Gamma_{e}(\frac{z_{j}}{z_{i}};p,q)}$$

1.1.2 Contributo della materia nell'aggiunta

Per il calcolo del contributo dato dalla materia nella rappresentazione aggiunta è necessario utilizzare l'identità matematica:

$$\Gamma_e(z; p, q) = \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} \frac{z^n - \left(\frac{pq}{z}\right)^n}{(1 - p^n)(1 - q^n)}\right)$$

L'indice a singola particella dato da questo campo è dato da:

$$\mathbf{1}_{E}^{Adj}(p,q,z) = \frac{1}{(1-p)(1-q)} \left((p\,q)^s - (p\,q)^{1-s} \right) \left(\left(\sum_{1 \le i,j \le N_c} \frac{z_i}{z_j} \right) - 1 \right)$$

L'espressione da calcolare è

$$I_E^{Adj}(p,q,z) = \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} I_E^{Adj}(p^n, q^n, z^n)\right)$$
 (1.10)

Come è stato fatto per la parte vettoriale, si spezza la serie, sommando solo sulle coppie:

$$\left(\sum_{1 \le i, j \le N_c} \frac{z_i^n}{z_j^n}\right) - 1 = \left(\sum_{1 \le i \le j \le N_c} \frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n}\right) + N_c - 1$$

Si arriva quindi a

$$I_E^{Adj}(p,q,z) = \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{(1-p^n)(1-q^n)} \left((pq)^{sn} - (pq)^{(1-s)n} \right) \left(\left(\sum_{\substack{1 \le i,j \le N_c \\ i \ne j}} \frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n} \right) + N_c - 1 \right) \right]$$

Come fatto precedentemente, si calcolano separatamente i termini che dipendono da z da quelli che non ne dipendono.

Per calcolare l'indice superconforme è necessario calcolare il plethystic exponential come negli altri casi. Per i termini non dipendenti da $\frac{z_i}{z_i}$ è dato da:

$$\exp\left((N_c - 1)\sum_{n=1}^{\infty} \frac{1}{n} \frac{(pq)^{sn} - (pq)^{(1-s)n}}{(1-p^n)(1-q^n)}\right) = \exp\left((N_c - 1)\sum_{n=1}^{\infty} \frac{1}{n} \frac{(y)^n - (\frac{pq}{y})^n}{(1-p^n)(1-q^n)}\right)$$

Avendo posto $(pq)^s = y$

L'identità 1.1.2 si applica immediatamente ai termini indipendenti da z_i e si ottiene un contributo pari a:

$$\Gamma_e((pq)^s; p, q)^{N_c-1}$$

Per i termini dipendenti da z_i consideriamo il numeratore dell'esponente (il denominatore non viene alterato)

$$((pq)^{sn} - (pq)^{(1-s)n}) \left(\frac{z_i^n}{z_j^n} + \frac{z_j^n}{z_i^n}\right)$$

Riarrangiando i 4 termini

$$\left((pq)^{sn} \frac{z_i^n}{z_j^n} - (pq)^{(1-s)n} \frac{z_j^n}{z_i^n} \right) + \left((pq)^{sn} \frac{z_j^n}{z_i^n} - (pq)^{(1-s)n} \frac{z_i^n}{z_j^n} \right)$$

il cambio di variabile da effettuare è

$$y = (pq)^s \frac{z_i}{z_j} \quad y' = (pq)^s \frac{z_j}{z_i}$$

per i termini nella prima e seconda parentesi rispettivamente. A questo punto si applica l'identità 1.1.2 utilizzando le variabili y, y' e il contributo è pari a

$$\prod_{1 \le i \le j \le N_c} \Gamma_e \left((pq)^s \frac{z_i}{z_j} \right) \Gamma_e \left((pq)^s \frac{z_j}{z_i} \right)$$

Riassumento il contributo dato dalla materia nell'aggiunta è:

$$\Gamma_e((pq)^s; p, q)^{N_c - 1} \prod_{1 \le i < j \le N_c} \Gamma_e\left((pq)^s \frac{z_i}{z_j}\right) \Gamma_e\left((pq)^s \frac{z_j}{z_i}\right)$$

1.1.3 Contributo materia nella fondamentale

Per questo campo è necessario calcolare (dopo il riscalamento di $y \in \tilde{y}$):

$$\prod_{\substack{1 \le j \le N_c \\ 1 \le i \le N_f}} \exp \left[\sum_{n=1}^{\infty} -\frac{1}{n} \frac{1}{(1-p^n)(1-q^n)} \left[\left((y_i z_j)^n - \left(\frac{pq}{y_i z_j} \right)^n \right) + \left(\frac{1}{(\tilde{y}_i z_j)^n} - \left(pq \tilde{y}_i z_j \right)^n \right) \right] \right]$$

Identificando $t = y_i z_j$ e $t' = (\tilde{y}_i z_j)^{-1}$ con gli argomenti delle Γ_e nell'identità 1.1.2 si può scrivere il contributo della materia nella fondamentale applicando direttamente l'identità (separatamente per i due termini nelle parentesi) (ricordando il rescaling iniziale):

$$\prod_{\substack{1 \le j \le N_c \\ 1 \le i \le N_f}} \Gamma_e((pq)^{\frac{R_Q}{2}} v y_i z_j) \Gamma_e((pq)^{\frac{R_Q}{2}} v^{-1} \tilde{y}_i^{-1} z_j^{-1})$$

1.2 Formula per Indice superconforme Kutasov-Schwimmer 4d

Mettendo insieme tutti i contributi e aggiungendo anche l'integrazione sul gruppo di gauge si ottiene l'espressione finale per l'indice superconforme

$$\begin{split} I_{El}(p,q,y,\tilde{y},v) &= \\ \frac{1}{N_{c}!}(p;p)^{N_{c}-1}(q;q)^{N_{c}-1} \, \Gamma_{e}((pq)^{s};p,q)^{N_{c}-1} \\ &\int_{T^{N_{c}-1}} \left(\prod_{i=1}^{N_{c}} \frac{dz_{i}}{2\pi i z_{i}} \right) \delta \left(\prod_{i=1}^{N_{c}} z_{i} - 1 \right) \prod_{1 \leq i < j \leq N_{c}} \frac{\Gamma_{e}\left((pq)^{s} \frac{z_{i}}{z_{j}}\right) \Gamma_{e}\left((pq)^{s} \frac{z_{j}}{z_{i}}\right)}{\Gamma_{e}\left(\frac{z_{i}}{z_{j}};p,q\right) \Gamma_{e}\left(\frac{z_{j}}{z_{i}};p,q\right)} \\ &\prod_{1 \leq j \leq N_{c}} \prod_{1 \leq i \leq N_{f}} \Gamma_{e}\left((pq)^{\frac{R_{Q}}{2}} vy_{i}z_{j}\right) \Gamma_{e}\left((pq)^{\frac{R_{Q}}{2}} v^{-1} \tilde{y}_{i}^{-1} z_{j}^{-1}\right) \end{split}$$

Il determinante di Vandermonde dovuto alla riduzione dell'integrazione alla Cartan si è cancellato con il contributo dato dalla parte vettoriale.

1.3 Riduzione dell'indice alla funzione di partizione

Parametrizzando i vari "potenziali chimici" si può calcolare la funzione di partizione, nel limite $r \to 0$.

$$p = e^{2\pi i r \omega_1} \quad q = e^{2\pi i r \omega_2} \quad z_i = e^{2\pi i r \sigma_i}$$
$$y_a = e^{2\pi i r m_a} \quad y_a = e^{2\pi i r \tilde{m}_a} \quad v = e^{2\pi i r m_B}$$

Identità fondamentale per calcolare questo limite è la seguente (cfr [3] pag 30)

$$\lim_{r \to 0^{+}} \Gamma_{e}(e^{2irz}; e^{ir\omega_{1}}, e^{ir\omega_{2}}) e^{\frac{i\pi^{2}}{12r\omega_{1}\omega_{2}}(2z - \omega_{1} - \omega_{2})} = \lim_{r \to 0^{+}} \Gamma_{e}(e^{2irz}; e^{ir\omega_{1}}, e^{ir\omega_{2}}) e^{\frac{i\pi^{2}}{6r\omega_{1}\omega_{2}}(z - \omega)} = \Gamma_{h}(z; \omega_{1}, \omega_{2})$$

con $\omega = \frac{1}{2}(\omega_1 + \omega_2)$. Si possono riscalare le variabili in modo da sistemare il fattore di π all'esponente:

$$z \to \pi z \quad \omega_1 \to \pi \omega_1 \quad \omega_2 \to \pi \omega_2$$

Si ottiene:

$$\lim_{r \to 0^+} \Gamma_e(e^{2i\pi rz}; e^{i\pi r\omega_1}, e^{i\pi r\omega_2}) = e^{\frac{-i\pi^2}{6r(\pi\omega_1)(\pi\omega_2)}((\pi z) - (\pi\omega))} \Gamma_h(\pi z; \pi\omega_1, \pi\omega_2) = e^{\frac{-i\pi}{6r\omega_1\omega_2}(z-\omega)} \Gamma_h(z; \omega_1, \omega_2)$$

Considerando la proprietà di rescaling di Γ_h : la sua definizione infatti è (cfr [3] 2.2.4):

$$\Gamma_h(z;\omega_1,\omega_2) = \exp\left(\pi i \frac{(2z - \omega_1 - \omega_2)^2}{8\omega_1\omega_2} - \pi i \frac{(\omega_1^2 + \omega_2^2)}{24\omega_1\omega_2}\right)$$

$$\frac{(\exp(-2\pi i(z - \omega_2)/\omega_1); \exp(2\pi i\omega_2/\omega_1))_{\infty}}{(\exp(-2\pi z/\omega_2); \exp(-2\pi i\omega_1/\omega_2))_{\infty}}$$

$$= \Gamma_h(\pi z; \pi\omega_1, \pi\omega_2)$$

Intanto scrivo le parti non divergenti date dal limite per $r \to 0$ utilizzando le ridefinizioni delle fugacità in 1.3. Di seguito il calcolo dei vari limiti (ricordare che $s = \frac{\Delta_X}{2}$

$$\Gamma_e((pq)^{\frac{\Delta_X}{2}})^{N_c-1} = \Gamma_e(e^{2\pi i r \frac{\Delta_X}{2}(\omega_1 + \omega_2)})^{N_c-1} = \Gamma_e(e^{2\pi i r \Delta_X \omega})^{N_c-1} =$$

$$= \left[\exp{-\frac{i\pi}{6r\omega_1\omega_2}(\omega\Delta_X - \omega)}\right]^{N_c-1}\Gamma_h(\omega\Delta_X; \omega_1, \omega_2)^{N_c-1}$$

$$\begin{split} &\Gamma_{e}\left((pq)^{\frac{\Delta_{X}}{2}}\left(\frac{z_{i}}{z_{j}}\right)\right)\Gamma_{e}\left((pq)^{\frac{\Delta_{X}}{2}}\left(\frac{z_{j}}{z_{i}}\right)\right) = \\ &= \Gamma_{e}\left(e^{2\pi i r \frac{\Delta_{X}}{2}}(\omega_{1}+\omega_{2})e^{2\pi i r(\sigma_{i}-\sigma_{j})}\right))\Gamma_{e}\left(e^{2\pi i r \frac{\Delta_{X}}{2}}(\omega_{1}+\omega_{2})e^{2\pi i r(\sigma_{j}-\sigma_{i})}\right) = \\ &= \Gamma_{e}\left(e^{2\pi i r (\Delta_{X}\omega+\sigma_{i}-\sigma_{j})}\right)\Gamma_{e}\left(e^{2\pi i r (\Delta_{X}\omega+\sigma_{j}-\sigma_{i})}\right) = \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(2\omega\Delta_{X}+(\sigma_{i}-\sigma_{j})+(\sigma_{j}-\sigma_{i})-2\omega)\right)\Gamma_{h}(\Delta_{X}\omega+\sigma_{i}-\sigma_{j})\Gamma_{h}(\Delta_{X}\omega+\sigma_{j}-\sigma_{i}) \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(2\omega(\Delta_{X}-1)\right)\Gamma_{h}(\Delta_{X}\omega+\sigma_{i}-\sigma_{j})\Gamma_{h}(\Delta_{X}\omega+\sigma_{j}-\sigma_{i}) \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}((\sigma_{j}-\sigma_{i})+(\sigma_{i}-\sigma_{j})-2\omega)\right)\Gamma_{h}(\sigma_{j}-\sigma_{i}) = \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}((\sigma_{j}-\sigma_{i})+(\sigma_{i}-\sigma_{j})-2\omega)\right)\Gamma_{h}(\sigma_{j}-\sigma_{i}) \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(-2\omega)\right),\Gamma_{h}(\sigma_{i}-\sigma_{j})\Gamma_{h}(\sigma_{j}-\sigma_{i}) \\ &= \lim_{r\to 0^{+}}\Gamma_{e}\left((pq)^{\frac{\Delta}{2}by_{i}z_{j}}\right)\Gamma_{e}\left((pq)^{\frac{\Delta}{2}b^{-1}\bar{y}_{i}^{-1}z_{j}^{-1}}\right) = \\ &= \lim_{r\to 0^{+}}\Gamma_{e}\left(e^{2\pi i r \frac{\Delta}{2}(\omega_{1}+\omega_{2})}e^{2\pi i r (m_{i}+m_{B}+\sigma_{j})}\right)\Gamma_{e}\left(e^{2\pi i r \frac{\Delta}{2}(\omega_{1}+\omega_{2})}e^{2\pi i r (-\bar{m}_{i}-m_{B}-\sigma_{j})}\right) \\ &= e^{-\frac{i\pi}{6r\omega_{1}\omega_{2}}\left((\omega\Delta+m_{i}+m_{B}+\sigma_{j}-\omega)+(\omega\Delta-\bar{m}_{i}-m_{B}-\sigma_{j}-\omega)\right)} \\ &\Gamma_{h}(\omega\Delta+m_{i}+m_{B}+\sigma_{j})\Gamma_{h}(\omega\Delta-\bar{m}_{i}-m_{B}-\sigma_{j}) = \\ &= e^{-\frac{i\pi}{6r\omega_{1}\omega_{2}}\left(2\omega(\Delta-1)+m_{i}-\bar{m}_{i}\right)}\Gamma_{h}(\mu_{i}+\sigma_{j})\Gamma_{h}(\nu_{i}-\sigma_{j}) \end{split}$$

Dove abbiamo definito le masse reali come

$$\mu_i = \omega \Delta + m_i + m_B$$
 $\nu_i = \omega \Delta - \tilde{m}_i - m_B$

1.3.1 Contributo divergente

Il contributo divergente degli esponenziali è uguale a (non scrivo $\frac{-i\pi}{6r\omega_1\omega_2}$):

$$\omega(\Delta_X - 1)(N_c - 1) + \frac{N_c(N_c - 1)}{2} 2\omega(\Delta_x - 1) - \frac{N_c(N_c - 1)}{2} (-2\omega) +$$

$$+ (N_c - 1 \text{ (qualcosa)}) + N_c(\sum_{i=1}^{N_f} 2\omega(\Delta - 1) + m_i - \tilde{m}_i) =$$

$$= \omega(\Delta_X - 1)(N_c^2 - 1) + (N_c^2 - 1)\omega + N_c N_f 2\omega(\Delta - 1) + N_c(\sum_{i=1}^{N_f} m_i - \tilde{m}_i)$$

Inoltre c'è da considerare anche la misura e la delta function nelle nuove coordinate $z_i = e^{2\pi i r \sigma_i}$:

$$\prod_{i=1}^{N_c} \frac{dz_i}{2\pi i z_i} \, \delta \big(\prod_{i=1}^{N_c} z_i - 1 \big)$$

Il determinante della trasformazione è

$$\det\left(\frac{\partial z_i}{\partial \sigma_j}\right) = (2\pi i r)^{N_c} \prod_{i=1}^{N_c} z_i \longrightarrow \prod_{i=1}^{N_c} \frac{dz_i}{2\pi i} = r^{N_c} \prod_{i=1}^{N_c} d\sigma_i$$

La delta function diventa:

$$\delta\left(\prod_{i=1}^{N_c} z_i - 1\right) = \delta\left(e^{2\pi i r \sum \sigma_i} - 1\right) \longrightarrow \left(\frac{1}{((2\pi i r)e^{2\pi i r (\sum \sigma_i)}}\right)^{N_c} \delta\left(\sum \sigma_i\right) \quad (1.11)$$

1.4 Funzione di partizione

Considerando le parti finite, la funzione di partizione diventa (Manca il limite dei pochhammer, vedi [4])

$$Z_{el}(\mu_i, \nu_i) = \frac{1}{(2 \pi i)^{N_c}} \frac{1}{N_c!} \Gamma_h(\Delta_X \omega; \omega_1, \omega_2)^{N_c - 1} \int_{T^{N_c - 1}} \prod_{i=1}^{N_c} d\sigma_i \, \delta(\sum_i \sigma_i)$$

$$\prod_{1 \le i < j \le N_c} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm (\sigma_i - \sigma_j))} \prod_{a,b=1}^{N_f} \prod_{j=1}^{N_c} \Gamma_h(\mu_a + \sigma_j) \Gamma_h(\nu_b - \sigma_j)$$

usando la convenzione $\Gamma_h(\pm x) = \Gamma_h(x)\Gamma_h(-x)$

Avendo compattificato una direzione, il superpotenziale η impone la seguente condizione sulle masse reali (in 4D, viene portata anche in 3D):

$$\frac{1}{2} \sum_{a} \mu_a + \nu_a = \omega(-N_c \Delta_X + (N_f + 1))$$
 (1.12)

1.4.1 Masse reali e flow senza η

Assegnano le masse reali come segue si ottiene una rottura di $SU(N_f+1)^2 \times U(1)_B \rightarrow SU(N_f)^2 \times U(1)_A \times U(1)_B$. Vediamo come si implementa tale rottura per il gruppo $SU(N_f+1) \times U(1)_B$

$$\mu = \operatorname{diag}(m_a + m_B, \dots, m_B - \sum_a m_a) \quad \text{compatibile con } SU(N_f + 1) \times U(1)_B$$

$$\mu = \operatorname{diag}(m_a + m_B + m_A, \dots, m_B - N_f m_A - \sum_a m_a) \quad \text{shift di } m_a \to m_a + m_A$$

$$\mu = \operatorname{diag}(m_a + m_B + m_A, \dots, m_B - N_f m_A) \quad \text{imponendo } \sum_a m_a = 0 : SU(N_f + 1) \to SU(N_f)$$

A questo punto si può aggiungere una massa \hat{m} che sarà poi quella che manderemo ad infinito mischiando $SU(N) \times U(1)_B$:

$$\operatorname{diag}(0,\ldots,m)=\operatorname{diag}(m_B-M,\ldots,m_B+N_fM)$$
 con $M=m_B$ e dove M sta in $SU(N_f+1)$

Abbiamo quindi $m = (N_f + 1)M$. NOTA BENE m_B non è tutta la massa barionica, ma un altro shift..

A questo punto mettendo tutto insieme otteniamo:

$$\mu = \begin{pmatrix} m_a + m_A & 0 & \cdots & \cdots & 0 \\ 0 & m_a + m_A & 0 & \cdots & \vdots \\ \vdots & 0 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & m_a + m_A & 0 \\ \hline 0 & \cdots & \cdots & 0 & m - m_A N_f \end{pmatrix}$$

$$+ \begin{pmatrix} m_B + \omega \Delta & 0 & \cdots & \cdots & 0 \\ 0 & m_B + \omega \Delta & 0 & \cdots & \vdots \\ \vdots & 0 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & m_B + \omega \Delta & 0 \\ \hline 0 & \cdots & \cdots & 0 & m_B + \omega \Delta_m \end{pmatrix}$$

dove valgono le condizioni:

$$\sum_{a}^{N_f} m_a = 0 \qquad m = m_B' + N_f M$$

La stessa cosa si fa per $SU(N_f)_R$

$$\nu = \begin{pmatrix} \tilde{m}_a + m_A & 0 & \cdots & \cdots & 0 \\ 0 & \tilde{m}_a + m_A & 0 & \cdots & \vdots \\ \vdots & 0 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & \tilde{m}_a + m_A & 0 \\ \hline 0 & \cdots & \cdots & 0 & -m - m_A N_f \end{pmatrix}$$

$$+ \begin{pmatrix} -m_B + \omega \Delta & 0 & \cdots & \cdots & 0 \\ 0 & -m_B + \omega \Delta & 0 & \cdots & \vdots \\ \vdots & \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & 0 & -m_B + \omega \Delta & 0 \\ \hline 0 & \cdots & \cdots & 0 & -m_B + \omega \Delta_m \end{pmatrix}$$

le stesse condizioni valgono in questo caso (tildate).

Il valore di m_A è uguale sia per particelle *left* e *right*, e genera per questo motivo un U(1) "diagonale".

NB: $U(1)_A$ mixa con la R-Symmetry e quindi le R-Cariche vanno modificate e sono diverse fra i primi N_f sapori e l'ultimo ($\Delta \in \Delta_m$).

NB: da [5] (5.28): Date masse m_a e \tilde{m}_a per Q e \tilde{Q} , abbiamo:

$$m_V = \frac{1}{2}(m_a - m_a)$$
 $m_A = \frac{1}{2}(m_a + m_a)$

1.4.2 Limite per $m \to \infty$

Per fare il limite $m \to \infty$ utilizziamo la seguente identità [5] (formula 5.25 pag 53 vedi def. 5.14)

$$\lim_{m \to \infty} \Gamma_h(\omega \Delta + \sigma_i + M + m) = \exp\left(\operatorname{sign}(m) \frac{\pi i}{2\omega_1 \omega_2} \left([\omega(\Delta - 1) + \sigma_i + (m + M)]^2 - \frac{\omega_1^2 + \omega_2^2}{12} \right) \right)$$

Applicandola ai due termini che hanno il termine di massa che andrà all'infinito otteniamo:

$$\Gamma_{h}(\sigma_{i} + \mu_{N_{f}+1}(m)) = \exp\left(\operatorname{sign}(m)\frac{\pi i}{2\omega_{1}\omega_{2}}\left[\left[\omega(\Delta_{M} - 1) + \sigma_{i} + (m + m_{B} - N_{f}m_{A})\right]^{2} - \frac{\omega_{1}^{2} + \omega_{2}^{2}}{12}\right]\right)$$

$$\Gamma_{h}(-\sigma_{i} + \nu_{N_{f}+1}(m)) = \exp\left(\operatorname{sign}(-m)\frac{\pi i}{2\omega_{1}\omega_{2}}\left[\left[\omega(\Delta_{M} - 1) - \sigma_{i} + (-m - m_{B} - N_{f}m_{A})\right]^{2} - \frac{\omega_{1}^{2} + \omega_{2}^{2}}{12}\right]\right)$$

Per via del fattore $sign(\pm m)$ i quadrati dei vari termini si cancellano (termini che darebbero vita a termini *Chern-Simons*) [Se si integrasse un numero diverso di fermioni L o R, avremmo per l'appunto questi termini]. Rimangono solo *alcuni* doppi prodotti. I termini rimanenti sono:

$$\exp\left[\frac{\pi i}{2\omega_1\omega_2}\left[4\omega(\Delta_M - 1)(m + \sigma_i + m_B) - 4(m_A N_f)(\sigma_i + m + m_B)\right]\right] =$$

$$= \exp\left[\frac{\pi i}{2\omega_1\omega_2}\left[4(m + m_B)(\omega(\Delta_M - 1) - m_A N_f) + 4\sigma_i(\omega(\Delta_M - 1) - m_A N_f)\right]\right]$$

Inserendoli all'interno della funzione di partizione si ottiene:

$$\prod_{i=1}^{N_c} \exp\left[\frac{\pi i}{2\omega_1 \omega_2} \left[4(m+m_B)(\omega(\Delta_M - 1) - m_A N_f) + 4\sigma_i(\omega(\Delta_M - 1) - m_A N_f) \right] \right] = \exp\left[\frac{\pi i}{2\omega_1 \omega_2} \left[4N_c(m+m_B)(\omega(\Delta_M - 1) - m_A N_f) + 4\left(\sum_{i=1}^{N_c} \sigma_i\right) \left(\omega(\Delta_M - 1) - m_A N_f\right) \right] \right]$$

Il primo e l'ultimo termine possono esser portati fuori dall'integrale, mentre il termine proporzionale a $\sum_{i=1}^{N_c} \sigma_i$ può essere inglobato nella $\delta(\sum \sigma_i)$.

Definendo la funzione $c(x) = e^{\frac{i\pi x}{2\omega_1\omega_2}}$ i contributi diventano:

$$c(4N_c(m+m_B)(\omega(\Delta_M-1)-m_AN_f)c(4(\sum_{i=1}^{N_c}\sigma_i)(\omega(\Delta_M-1)-m_AN_f)$$

Utilizziamo la condizione 1.12 utilizzando questa assegnazione delle masse, ossia:

$$\frac{1}{2} \sum_{a} \mu_{a} + \nu_{a} = \omega(-N_{c}\Delta_{X} + N_{f} + 1) = \omega(N_{f}\Delta + \Delta_{M})$$
 (1.13)

Utilizziamo questa relazione nell'esponenziale precedente (in modo da non avere termini che dipendono dal campo che ha massa che tende a infinito):

$$c\left(4N_c(m+m_B)(\omega(N_f(1-\Delta)-N_c\Delta_X)-m_AN_f)\right)$$
$$c\left(4\left(\sum_{i=1}^{N_c}\sigma_i\right)\left(\omega(N_f(1-\Delta)-N_c\Delta_X)-m_AN_f)\right)\right)$$

1.5 Funzione di partizione finale

La funzione di partizione finale è data da:

$$\begin{split} Z_{el}(\mu_i,\nu_i) = & \frac{1}{(2 \pi i)^{N_c}} \frac{1}{N_c!} \Gamma_h(\Delta_X \omega; \omega_1, \omega_2)^{N_c - 1} \\ & c \left(4N_c(m + m_B)(-m_A N_f + \omega(N_f(1 - \Delta) - N_c \Delta_X)) \right) \\ & \int_{T^{N_c - 1}} \prod_{i = 1}^{N_c} d\sigma_i \, \delta(\sum_i \sigma_i) \, c \left(4 \Big(\sum_{i = 1}^{N_c} \sigma_i \Big) \Big(\omega(N_f(1 - \Delta) - N_c \Delta_X) - m_A N_f \Big) \right) \\ & \prod_{a,b = 1}^{N_f} \prod_{j = 1}^{N_c} \Gamma_h(m_a + m_B + m_A + \sigma_j) \Gamma_h(-\tilde{m}_a - m_B + m_A - \sigma_j) \\ & \prod_{1 \le i < j \le N_c} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm(\sigma_i - \sigma_j))} \end{split}$$

Ricapitoliamo infine la tabella delle cariche:

Fields	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$U(1)_A$	$U(1)_J$	$U(1)_R$
Q	N_f	0	N_c	1	0	Δ_Q
\tilde{Q}	0	$\overline{N_f}$	$-N_c$	1	0	Δ_Q
X	0	0	0	0	0	Δ_X

2 Teoria Magnetica

2.1 Calcolo dell'indice superconforme

L'indice superconforme a singolo stato per la teoria magnetica è dato dalla seguente espressione ($\tilde{N}_c = kN_f - N_c$) (NB: Corretto rispetto a [2]):

$$\begin{split} i_{M}(p,q,\tilde{v},y,\tilde{y},\tilde{z}) &= \\ &- \left(\frac{p}{1-p} + \frac{q}{1-q} - \frac{1}{(1-p)(1-q)} \left((p\,q)^{s} - (p\,q)^{1-s} \right) \right) \left(p_{\tilde{N}_{c}}(\tilde{z}) \, p_{\tilde{N}_{c}}(\tilde{z}^{-1}) - 1 \right) + \\ &+ \frac{1}{(1-p)(1-q)} \left((p\,q)^{\frac{1}{2}r} \, \tilde{v} \, p_{N_{f}}(y^{-1}) \, p_{\tilde{N}_{c}}(\tilde{z}) - (p\,q)^{1-\frac{1}{2}r} \, \frac{1}{\tilde{v}} \, p_{N_{f}}(y) \, p_{\tilde{N}_{c}}(\tilde{z}^{-1}) + \\ &+ (p\,q)^{\frac{1}{2}r} \, \frac{1}{\tilde{v}} \, p_{N_{f}}(\tilde{y}) \, p_{\tilde{N}_{c}}(\tilde{z}^{-1}) - (p\,q)^{1-\frac{1}{2}r} \, \tilde{v} \, p_{N_{f}}(\tilde{y}^{-1}) \, p_{\tilde{N}_{c}}(\tilde{z}) \right) + \\ &\sum_{l=0}^{k-1} \left((pq)^{\frac{1}{2}2(r+ls)} p_{N_{f}}(y) p_{N_{f}}(\tilde{y}^{-1}) - (pq)^{1-\frac{1}{2}2(r+sl)} p_{N_{f}}(y^{-1}p_{N_{f}}\tilde{y}) \right) \end{split}$$

Esplicitando i polinomi otteniamo:

$$\begin{split} i_{M}(p,q,\tilde{v},y,\tilde{y},\tilde{z}) &= \\ &- \left(\frac{p}{1-p} + \frac{q}{1-q} - \frac{1}{(1-p)(1-q)} \left((p\,q)^{s} - (p\,q)^{1-s} \right) \right) \left(\sum_{i,j}^{\tilde{N}_{c}} \tilde{z}_{i} \tilde{z}_{j}^{-1} - 1 \right) + \\ &+ \frac{1}{(1-p)(1-q)} \left[\sum_{i}^{N_{f}} \sum_{j}^{\tilde{N}_{c}} \left((p\,q)^{\frac{1}{2}r} \, \tilde{v} \, y_{i}^{-1} \, \tilde{z}_{j} - (p\,q)^{1-\frac{1}{2}r} \, \frac{1}{\tilde{v}} \, y_{i} \, \tilde{z}_{j}^{-1} + \\ &+ (p\,q)^{\frac{1}{2}r} \, \frac{1}{\tilde{v}} \left(\tilde{y}_{i} \right) \left(\tilde{z}_{j}^{-1} \right) - (p\,q)^{1-\frac{1}{2}r} \, \tilde{v} \, \tilde{y}_{i}^{-1} \, \tilde{z}_{j} \right) + \\ &\sum_{i}^{N_{f}} \sum_{j=0}^{N_{f}} \sum_{l=0}^{k-1} \left((pq)^{r+sl} y_{i} \tilde{y}_{j}^{-1} - (pq)^{1-(r+sl)} y_{i}^{-1} \tilde{y}_{i} \right) \right] \end{split}$$

La prima riga è identica alla teoria elettrica (eccetto per il numero di colori). Il contributo dai cambi chirali è diverso, essendo le cariche nella nuova teoria diverse. L'ultima riga come è diversa come struttura dalla teoria elettrica, infatti è il contributo all'indice dai mesoni (solo flavour nessun colore).

2.1.1 Contributo dei campi chirali

Definiamo i seguenti cambi di variabile per calcolare più facilmente l'indice.

$$\alpha = \frac{1}{2}r$$

L'indice superconforme può essere così riscritto come:

$$i_{M}^{Chiral}(p,q,\tilde{v},y,\tilde{y},\tilde{z}) = +\frac{1}{(1-p)(1-q)} \sum_{i}^{N_{f}} \sum_{j}^{\tilde{N}_{c}} \left((p\,q)^{\alpha} \,\tilde{v} \, y_{i} \,\tilde{z}_{j} - (p\,q)^{1-\alpha} \,\frac{1}{\tilde{v}} \, y_{i}^{-1} \,\tilde{z}_{j}^{-1} + \right. \\ \left. + (p\,q)^{\alpha} \,\frac{1}{\tilde{v}} \, (\tilde{y}_{i}) \, (\tilde{z}_{j}^{-1}) - (p\,q)^{1-\alpha} \,\tilde{v} \, \tilde{y}_{i}^{-1} \,\tilde{z}_{j} \right) +$$

Esponenziamo separatemente i primi due termini dagli ultimi due:

$$\begin{split} & \exp\bigg(\sum_{n}^{\infty} \frac{1}{n} i_{M}^{Chiral}(p^{n}, q^{n}, \tilde{v}^{n}, y^{n}, \tilde{y}^{n}, \tilde{z}^{n})\bigg) = \\ & \exp\bigg(\sum_{n}^{\infty} \sum_{i}^{N_{f}} \sum_{j}^{\tilde{N}_{c}} \frac{1}{n} \frac{1}{(1 - p^{n})(1 - q^{n})} \big((p \, q)^{\alpha n} \, \tilde{v}^{n} \, y_{i}^{n} \, \tilde{z}_{j}^{n} - (p \, q)^{(1 - \alpha)n} \, \tilde{v}^{-n} \, y_{i}^{-n} \, \tilde{z}_{j}^{-n}\big)\bigg) \end{split}$$

facciamo il cambio di variabile $(pq)^{\alpha} \tilde{v} y_i^{-1} \tilde{z}_j = t$

$$= \prod_{i=1}^{N_f} \prod_{j=1}^{\tilde{N}_c} \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{(1-p^n)(1-q^n)} \left(t^n - \left(\frac{pq}{t}\right)^n\right)\right)\right)$$

A questo punto si utilizza l'identità 1.1.2 e otteniamo così:

$$\prod_{i}^{N_f} \prod_{j}^{\tilde{N}_c} \Gamma_e(t; p, q) = \prod_{i}^{N_f} \prod_{j}^{\tilde{N}_c} \Gamma_e((pq)^{\alpha} \tilde{v} y_i^{-1} \tilde{z}_j; p, q)$$
(2.1)

Gli altri due termini si ottengono nello stesso modo, ma facendo il cambio di variabile:

$$\frac{1}{\tilde{v}}\tilde{y}_i z_j^{-1} (pq)^\alpha = t'$$

Ottenendo così il contributo completo dei campi chirali (ripristinando le R-cariche al posto di α):

$$\prod_{i}^{N_{f}} \prod_{j}^{\tilde{N}_{c}} \Gamma_{e}((pq)^{\frac{1}{2}r} \tilde{v} y_{i}^{-1} \tilde{z}_{j}; p, q) \Gamma_{e}((pq)^{\frac{1}{2}r} \tilde{v}^{-1} \tilde{y}_{i} \tilde{z}_{j}^{-1}; p, q)$$
(2.2)

2.1.2 Contributo dei mesoni

L'indice di singolo stato dei mesoni è calcolto come i campi chirali, tenendo conto che la loro R-carica è $R_M = 2R_Q + R_X j$ dove j indica l'esponente dell'aggiunta nel mesone. R_Q è la carica del quark della teoria *ELETTRICA*. Utilizzo $m_{ij} = y_i \tilde{y}_j$

(Seconda formula è da [2], inutilmente complicata, equivale alla mia (la prima))

$$i_{M}^{Mesons}(p,q,\tilde{v},y,\tilde{y},\tilde{z}) = \frac{1}{(1-p)(1-q)} \sum_{i}^{N_{f}} \sum_{j=0}^{N_{f}} \left((pq)^{(r+ls)} m_{ij} - (pq)^{1-(r+ls)} m_{ij}^{-1} \right) =$$

$$= \frac{1}{(1-p)(1-q)} \frac{1 - (pq)^{1-s}}{1 - (pq)^{s}} \sum_{i}^{N_{f}} \sum_{j=0}^{N_{f}} \left((pq)^{r} m_{ij} - (pq)^{2s-r} m_{ij}^{-1} \right)$$

L'esponenziale da calcolare è:

$$\begin{split} & \exp\bigg(\sum_{n}^{\infty} \frac{1}{n} i_{M}^{Meson}(p^{n}, q^{n}, \tilde{v}^{n}, y^{n}, \tilde{y}^{n})\bigg) = \\ & \prod_{i}^{N_{f}} \prod_{l=0}^{N_{f}} \sum_{n}^{k-1} \exp\sum_{n}^{\infty} \bigg(\frac{1}{n} \frac{1}{(1-p^{n})(1-q^{n})} \bigg((pq)^{(r+ls)n} m_{ij}^{n} - (pq)^{(1-(r+ls)n} m_{ij}^{-n} \bigg) \bigg) \end{split}$$

Ponendo ora $(pq)^{r+sl}m_{ij} = y$:

$$\begin{split} &\exp\left(\sum_{n}^{\infty}\frac{1}{n}i_{M}^{Meson}(p^{n},q^{n},\tilde{v}^{n},y^{n},\tilde{y}^{n})\right) = \\ &\prod_{i}^{N_{f}}\prod_{j}^{N_{f}}\prod_{l=0}^{k-1}\exp\sum_{n}^{\infty}\left(\frac{1}{n}\frac{1}{(1-p^{n})(1-q^{n})}\bigg(y^{n}m_{ij}^{n}-(pq/y)^{n}m_{ij}^{-n}\bigg)\right) \\ &=\prod_{i}^{N_{f}}\prod_{j}^{N_{f}}\prod_{l=0}^{k-1}\Gamma_{e}((pq)^{r+ls};p,q) \end{split}$$

2.2 Indice e funzione di partizione

2.2.1 Espressione dell'indice

 $I_{Mag}(p,q,y,\tilde{y},\tilde{v}) =$

L'indice superconforme per la teoria magnetica è dato da ($\tilde{N}_c = kN_f - N_c$):

$$\frac{1}{\tilde{N_c}!}(p;p)^{\tilde{N_c}-1}(q;q)^{\tilde{N_c}-1} \Gamma_e((pq)^s;p,q)^{\tilde{N_c}-1} \left(\prod_{i}^{N_f} \prod_{j=0}^{N_f} \Gamma_e((pq)^{r+ls} y_i \tilde{y_j}^{-1};p,q) \right) \\ \int_{T^{\tilde{N_c}-1}} \left(\prod_{i=1}^{\tilde{N_c}} \frac{dz_i}{2\pi i z_i} \right) \delta \left(\prod_{i=1}^{\tilde{N_c}} z_i - 1 \right) \prod_{1 \leq i < j \leq \tilde{N_c}} \frac{\Gamma_e\left((pq)^s \frac{z_i}{z_j}\right) \Gamma_e\left((pq)^s \frac{z_j}{z_i}\right)}{\Gamma_e\left(\frac{z_i}{z_j};p,q\right) \Gamma_e\left(\frac{z_j}{z_i};p,q\right)}$$

$$\int_{T^{N_c-1}} \prod_{i=1}^{\mathbf{II}} 2\pi i z_i \int_{i=1}^{\mathbf{II}} \int_{1 \le i < j \le \tilde{N}_c} \Gamma_e(\frac{z_i}{z_j}; p, q) \Gamma_e(\frac{z_j}{z_i}; p, q) \Gamma_e(\frac{z_j}{z_i}; p, q) \Gamma_e(\frac{z_j}{z_i}; p, q) \Gamma_e(pq)^{\frac{1}{2}\Delta'} \tilde{v}^{-1} \tilde{y}_i \tilde{z}_j^{-1}; p, q)$$

$$\prod_{1 \le j \le \tilde{N}_c} \prod_{1 \le i \le N_f} \Gamma_e((pq)^{\frac{1}{2}\Delta'} \tilde{v} y_i^{-1} \tilde{z}_j; p, q) \Gamma_e((pq)^{\frac{1}{2}\Delta'} \tilde{v}^{-1} \tilde{y}_i \tilde{z}_j^{-1}; p, q)$$

dove r è la R-Carica del quark NON duale , Δ' la R-Carica del quark DUALE e $s=\frac{1}{k+1}=\frac{1}{2}\Delta_X$. La presenza delle cariche dei quark NON duali è dovuto al fatto che i mesoni nella teoria magnetica sono i mesono costruibili nella teoria elettrica.

2.2.2 Funzione di partizione

Come fatto per la teoria elettrica si riduce l'indice superconforme alla funzione di partizione della teoria. I contributi del campo vettoriale e del campo chirale nell'aggiunta sono espressioni identiche (in funzione del nuovo numero di colori (\tilde{N}_c) .

Mesoni

Il contributo dei mesoni è dato da:

$$\begin{split} &\prod_{i}^{N_f} \prod_{j}^{N_f} \prod_{l=0}^{k-1} \Gamma_e((pq)^{r+ls} y_i \tilde{y_j}^{-1}; p, q) = \\ &\prod_{i}^{N_f} \prod_{j}^{N_f} \prod_{l=0}^{k-1} \Gamma_e\left(\exp(2\pi i r[(2\omega)(r+ls)+(m_i-\tilde{m_j})]); p, q\right) = \\ &r \stackrel{\rightarrow 0}{\sim} \prod_{i}^{N_f} \prod_{j}^{N_f} \prod_{l=0}^{k-1} \exp\left(\frac{-i\pi}{6r\omega_1\omega_2} \left(2\omega(r+ls)+m_i-\tilde{m_j}-\omega\right)\right) \Gamma_h\left(\omega(2\Delta_Q+l\Delta_X)+m_i-\tilde{m_j}\right) = \\ &= \exp\left(\frac{-i\pi}{6r\omega_1\omega_2} \left(N_f^2 \left(\sum_{l=0}^{k-1} 2\omega(r+ls-\frac{1}{2})\right)+N_f \left(\sum_{l=0}^{k-1} \sum_{i}^{N_f} m_i-\tilde{m_i}\right)\right)\right) \\ &\prod_{i}^{N_f} \prod_{j}^{N_f} \prod_{l=0}^{k-1} \Gamma_h\left(\omega(2\Delta_Q+l\Delta_X)+m_i-\tilde{m_j}\right) \\ &= \exp\left(\frac{-i\pi}{6r\omega_1\omega_2} \left(N_f^2 \left(\sum_{l=0}^{k-1} 2\omega(\Delta_Q-\frac{1}{2})+\omega l\Delta_X\right)\right)+N_f \left(\sum_{l=0}^{k-1} \sum_{i}^{N_f} m_i-\tilde{m_i}\right)\right)\right) \\ &\prod_{i}^{N_f} \prod_{j}^{N_f} \prod_{l=0}^{k-1} \Gamma_h\left(\omega(2\Delta_Q+l\Delta_X)+m_i-\tilde{m_j}\right) \\ &= \prod_{i}^{N_f} \prod_{l=0}^{N_f} \Gamma_h\left(\omega(2\Delta_Q+l\Delta_X)+m_i-\tilde{m_j}\right) \end{split}$$

Chirali fondamentali

Per i chirali nella fondamentale abbiamo ($r = \Delta'$):

$$\begin{split} \prod_{1 \leq j \leq \tilde{N}_e} \prod_{1 \leq i \leq N_f} \Gamma_e((pq)^{\frac{1}{2}\Delta'} \tilde{v} y_i^{-1} \tilde{z}_j; p, q) \Gamma_e((pq)^{\frac{1}{2}\Delta'} \tilde{v}^{-1} \tilde{y}_i \tilde{z}_j^{-1}; p, q) = \\ = \prod_{1 \leq j \leq \tilde{N}_e} \prod_{1 \leq i \leq N_f} \Gamma_e(\exp\left(2\omega(\frac{1}{2}\Delta') + \tilde{m}_B - m_i + \tilde{\sigma}_j\right); p, q) \\ \Gamma_e(\exp\left(2\omega(\frac{1}{2}\Delta') - \tilde{m}_B + \tilde{m}_i - \tilde{\sigma}_j\right); p, q) = \\ \stackrel{r \to 0}{\sim} \prod_{1 \leq j \leq \tilde{N}_e} \prod_{1 \leq i \leq N_f} \exp\left(\frac{-i\pi}{6r\omega_1\omega_2} \left((\omega(\Delta' - 1) + \tilde{m}_B - m_i + \tilde{\sigma}_j) + (\omega(\Delta' - 1) - \tilde{m}_B + \tilde{m}_i - \tilde{\sigma}_j)\right) \right) \\ \Gamma_h(\omega\Delta' + \tilde{m}_B - m_i + \tilde{\sigma}_j) \Gamma_h(\omega\Delta' - \tilde{m}_B + \tilde{m}_i - \tilde{\sigma}_j) = \\ = \exp\left(\frac{-i\pi}{6r\omega_1\omega_2} \left(2N_f\tilde{N}_c\omega(\Delta' - 1) + \tilde{N}_c\left(\sum_{i=1}^{N_f} -m_i + \tilde{m}_i\right)\right)\right) \Gamma_h(\mu_i + \tilde{\sigma}_j) \Gamma_h(\nu_i - \tilde{\sigma}_j) \end{split}$$

Dove abbiamo definito le masse reali

$$\mu_i = \omega \Delta' + \tilde{m_B} - m_i$$
 $\nu_i = \omega \Delta' - \tilde{m_B} + \tilde{m}_i$

Campo di gauge e materia nell'aggiunta

Come detto precedentemente i contributi sono come nel caso elettrico:

$$\Gamma_e((pq)^{\frac{\Delta_X}{2}})^{N_c-1} = \Gamma_e(e^{2\pi i r \frac{\Delta_X}{2}(\omega_1 + \omega_2)})^{\tilde{N}_c-1} = \Gamma_e(e^{2\pi i r \Delta_X \omega})^{\tilde{N}_c-1} =$$

$$= \left[\exp{-\frac{i\pi}{6r\omega_1\omega_2}(\omega\Delta_X - \omega)}\right]^{N_c-1}\Gamma_h(\omega\Delta_X; \omega_1, \omega_2)^{\tilde{N}_c-1}$$

$$\begin{split} &\Gamma_{e}\left((pq)^{\frac{\Delta_{X}}{2}}\left(\frac{z_{i}}{z_{j}}\right)\right)\Gamma_{e}\left((pq)^{\frac{\Delta_{X}}{2}}\left(\frac{z_{j}}{z_{i}}\right)\right) = \\ &= \Gamma_{e}\left(e^{2\pi i r \frac{\Delta_{X}}{2}(\omega_{1}+\omega_{2})}e^{2\pi i r(\sigma_{i}-\sigma_{j})}\right)\Gamma_{e}\left(e^{2\pi i r \frac{\Delta_{X}}{2}(\omega_{1}+\omega_{2})}e^{2\pi i r(\sigma_{j}-\sigma_{i})}\right) = \\ &= \Gamma_{e}\left(e^{2\pi i r (\Delta_{X}\omega+\sigma_{i}-\sigma_{j})}\right)\Gamma_{e}\left(e^{2\pi i r (\Delta_{X}\omega+\sigma_{j}-\sigma_{i})}\right) = \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(2\omega\Delta_{X}+(\sigma_{i}-\sigma_{j})+(\sigma_{j}-\sigma_{i})-2\omega)\right)\Gamma_{h}(\Delta_{X}\omega+\sigma_{i}-\sigma_{j})\Gamma_{h}(\Delta_{X}\omega+\sigma_{j}-\sigma_{i}) \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(2\omega(\Delta_{X}-1)\right)\Gamma_{h}(\Delta_{X}\omega+\sigma_{i}-\sigma_{j})\Gamma_{h}(\Delta_{X}\omega+\sigma_{j}-\sigma_{i}) \\ &= \exp\left(-\frac{i\pi}{6r\omega_{1}\omega_{2}}(2\omega(\Delta_{X}-1)\right)\Gamma_{h}(\Delta_{X}\omega+\sigma_{i}-\sigma_{j})\Gamma_{h}(\Delta_{X}\omega+\sigma_{j}-\sigma_{i}) \\ &= \Gamma_{e}\left(\frac{z_{i}}{z_{j}}\right)\Gamma_{e}\left(\frac{z_{j}}{z_{i}}\right) = e^{-\frac{i\pi}{6r\omega_{1}\omega_{2}}((\sigma_{j}-\sigma_{i})+(\sigma_{i}-\sigma_{j})-2\omega)}\Gamma_{h}(\sigma_{i}-\sigma_{j})\Gamma_{h}(\sigma_{j}-\sigma_{i}) = \end{split}$$

 $= \exp\left(-\frac{i\pi}{6r\omega_1\omega_2}(-2\omega)\right), \, \Gamma_h(\sigma_i - \sigma_j)\Gamma_h(\sigma_j - \sigma_i)$

Attenzione che l'ultimo termine entra nella funzione di partizione al denominatore.

2.3 Contributi divergenti

Cerchiamo ora di mettere insieme tutti i contributi divergenti ottenuti dal limite per $r \to 0$. Essendo le 't Hooft anomalies per anomalie gravitazionali, devono matchare con il corrispettivo elettrico.

Scriviamo solo l'esponente (a meno di $\frac{-i\pi}{6r\omega_1\omega_2})$:

C'E' DA FARE ANCORA IL CONTRIBUTO DEI POCHHAMMER!!

$$\underbrace{(\tilde{N}_{c}-1)\text{Q-pochhammer} + (2\omega)\frac{\tilde{N}_{c}(\tilde{N}_{c}-1)}{2} + (\omega(\Delta_{x}-1)(\tilde{N}_{c}-1) + (2\omega(\Delta_{x}-1)\frac{\tilde{N}_{c}(\tilde{N}_{c}-1)}{2}) + (\omega(\Delta_{x}-1)(\tilde{N}_{c}-1) + (2\omega(\Delta_{x}-1)\frac{\tilde{N}_{c}(\tilde{N}_{c}-1)}{2}) + \underbrace{N_{f}(\tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}(\sum_{i=1}^{N_{f}} -m_{i} + \tilde{m}_{i}) + N_{f}^{2}(\sum_{l=0}^{k-1} 2\omega(\Delta_{Q} + l\frac{\Delta_{X}}{2} - \frac{1}{2})) + N_{f}(\sum_{l=0}^{k-1} \sum_{i}^{N_{f}} m_{i} - \tilde{m}_{i}) = \underbrace{N_{f}(\tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}(\sum_{i=1}^{k-1} -m_{i} + \tilde{m}_{i}) + N_{f}^{2}(\sum_{l=0}^{k-1} 2\omega(\Delta_{Q} + l\frac{\Delta_{X}}{2} - \frac{1}{2})) + N_{f}(\sum_{l=0}^{k-1} \sum_{i}^{N_{f}} m_{i} - \tilde{m}_{i})} = \underbrace{N_{f}(\tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}(\tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}(\tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}\omega(\Delta'-1) + \tilde{N}_{c}\omega($$

Per calcolare il contributo dato dai mesoni è sufficiente notare che:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \longrightarrow \sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$$

Nel caso del mesone, la somma va fino a k-1:

$$N_f^2\omega(2\Delta_Q-1)k + \omega\Delta_X\frac{(k-1)k}{2} + kN_f\left(\sum_i^{N_f}m_i - \tilde{m}_i\right)$$

$$= \underbrace{(\tilde{N}_c - 1)Q + \omega \tilde{N}_c(\tilde{N}_c - 1)}_{Adj \text{ Chiral}} + \underbrace{(\omega(\Delta_X - 1)(\tilde{N}_c^2 - 1) + 2N_f \tilde{N}_c \omega(\Delta' - 1) + \tilde{N}_c \left(\sum_{i=1}^{N_f} -m_i + \tilde{m}_i\right)}_{Mesons} + \underbrace{N_f^2 \left(\omega(2\Delta_Q - 1)k + \omega \Delta_X \frac{(k-1)k}{2}\right) + kN_f \left(\sum_i^{N_f} m_i - \tilde{m}_i\right)}_{Adj \text{ Chiral}} = \underbrace{(kN_f - N_c - 1)Q + \omega(kN_f - N_c)(kN_f - N_c - 1) + \left(\omega(\Delta_X - 1)((kN_f - N_c)^2 - 1) + \frac{KN_f \left(\sum_i^{N_f} m_i - \tilde{m}_i\right)}{2N_f (kN_f - N_c)\omega(\Delta' - 1) + (\underline{kN_f} - N_c)\left(\sum_{i=1}^{N_f} -m_i + \tilde{m}_i\right)} + \underbrace{N_f^2 \left(\omega(2\Delta_Q - 1)k + \omega \Delta_X \frac{(k-1)k}{2}\right) + \underline{kN_f \left(\sum_i^{N_f} m_i - \tilde{m}_i\right)}}_{Mesons}$$

I termini in blu si cancellano grazie al fatto che <u>quark e mesoni sono in rappresentazioni</u> "opposte" di flavour.

Ora poniamo Q=1 DA VERIFICARE , MA DOVREBBE ESSERE OK! (LO ERA NEL CASO ELETTRICO).

$$= \underbrace{\frac{\text{Adj Vector}}{(k^2N_f^2 + N_c^2 - 2kN_fN_c - 1)\omega} + \underbrace{\frac{(k^2N_f^2 + N_c^2 - 2kN_fN_c - 1)\omega(\Delta_X \underline{-1})}{\text{Fond Chirals}}}_{\text{Fond Chirals}} + \underbrace{\frac{(2kN_f^2 - 2N_fN_c)\omega(\Delta' - 1) + N_c\left(\sum_i^{N_f} m_i - \tilde{m}_i\right)}{\text{Mesons}}}_{+N_f^2\left(\omega(2\Delta_Q - 1)k + \omega\Delta_X\frac{(k-1)k}{2}\right)}$$

Il termine sottolineato in verde matcha già con la teoria elettrica con il segno corretto. D'ora in poi verrà tralasciato e inserito solo alla fine.

A questo punto è necessario esplicitare la R-Carica del quark duale per poter confrontare il risultato con la teoria elettrica.

Ricordare che la carica dei mesoni è data dai quark *ELETTRICI* e l'aggiunta. Abbiamo da ?? che

$$\Delta' = \Delta_X - \Delta_Q$$

Utilizziamo questa relazione per andare avanti:

$$\begin{split} &= (k^2N_f^2 + N_c^2 - 2kN_fN_c - 1)\omega\Delta_X + (2kN_f^2 - 2N_fN_c)\omega(\Delta_X - \Delta_Q - 1) + \\ &+ N_f^2 \bigg(k\omega(2\Delta_Q - 1) + \omega\Delta_X \frac{(k-1)k}{2}\bigg) = \\ &= \omega\Delta_X \Big(k^2N_f^2 - 2kN_fN_c + 2kN_f^2 - 2N_fN_c + N_f^2 \frac{k(k-1)}{2} + N_c^2 - 1\Big) + \\ &+ \omega\Delta_Q \Big(\underline{-2kN_f^2} + 2N_fN_c + \underline{2kN_f^2}\Big) + \omega\Big(-2kN_f^2 + 2N_fN_c - kN_f^2\Big) \end{split}$$

Ora manipoliamo separatamente i termini a seconda della R-Carica. Sarà necessario utilizzare il valore esplicito di $\Delta_X = \frac{2}{k+1}$ per matchare le anomalie tra i due modelli.

$$\begin{split} &\omega \frac{2}{k+1} \bigg(-2N_f N_c(k+1) + kN_f^2(k+1) + kN_f^2 + kN_f^2 \frac{k(k+1-2)}{2} + N_c^2 - 1 \bigg) = \\ &= \omega \Big(-4N_f N_c + 2kN_f^2 + \underline{kN_f^2} + 2N_f^2 \frac{k}{2} \underline{-kN_f^2} \Big) + \omega \Delta_x (N_c^2 - 1) \end{split}$$

A questo punto abbiamo ottenuto dei termini spogli di R-cariche che possiamo combinare con l'altro termine senza R-cariche :

termini da
$$\omega \Delta_X$$
 termini da ω

$$\longrightarrow \omega \left(-4N_f N_c + 2kN_f^2 + kN_f^2 - 2kN_f^2 + 2N_f N_c - 2kN_f^2 \right) =$$

$$= \omega \left(-2N_f N_c \right)$$

A questo punto possiamo mettere insieme tutti i "pezzi" che abbiamo calcolato separatamente:

$$\omega \Delta_x (N_c^2 - 1) + \omega (-2N_f N_c) + \omega \Delta_Q (2N_f N_c) + N_c \Big(\sum_i^{N_f} m_i - \tilde{m}_i \Big) =$$

$$= \omega \Delta_x (N_c^2 - 1) + (+\omega - \omega)(N_c^2 - 1) + 2N_f N_c \omega (\Delta_Q - 1) + N_c \Big(\sum_i^{N_f} m_i - \tilde{m}_i \Big) =$$

$$= \omega (N_c^2 - 1) + (N_c^2 - 1)\omega (\Delta_x - 1) + 2N_f N_c \omega (\Delta_Q - 1) + N_c \Big(\sum_i^{N_f} m_i - \tilde{m}_i \Big)$$

Come si può vedere combacia con il contributo divergente della teoria elettrica.

2.4 Formula per la funzione di partizione

Dopo aver controllato le anomalie gravitazionali, possiamo scrivere la la funzione di partizione.

MANCANO I POCHHAMMERRRRR

$$Z_{mag}(\mu_{a}, \nu_{b}, \tilde{\mu_{a}}, \tilde{\nu_{b}}) = \frac{1}{\tilde{N_{c}}!(2\pi i)^{\tilde{N_{c}}}} \Gamma_{h}(\Delta_{X}\omega; \omega_{1}, \omega_{2})^{\tilde{N_{c}}-1} \left(\prod_{a,b=1}^{N_{f}} \prod_{l=0}^{k-1} \Gamma_{h}(\mu_{a} + \nu_{b} + l\omega\Delta_{X}) \right)$$

$$\int_{T^{\tilde{N_{c}}-1}} \prod_{i=1}^{kN_{f}-N_{c}} d\sigma_{i} \, \delta(\sum_{i} \sigma_{i}) \prod_{1 \leq i < j \leq kN_{f}-N_{c}} \frac{\Gamma_{h}(\Delta_{X}\omega \pm (\sigma_{i} - \sigma_{j}))}{\Gamma_{h}(\pm(\sigma_{i} - \sigma_{j}))}$$

$$\prod_{a,b=1}^{N_{f}} \prod_{j=1}^{kN_{f}-N_{c}} \Gamma_{h}(\tilde{\mu}_{a} + \tilde{\sigma_{j}}) \Gamma_{h}(\tilde{\nu}_{b} - \tilde{\sigma_{j}})$$

dove abbiamo utilizzato le definizioni:

$$\mu_i = \omega \Delta_Q + m_i \qquad \nu_i = \omega \Delta_Q - \tilde{m}_i$$

$$\tilde{\mu}_i = \omega(\Delta_X - \Delta_Q) + \tilde{m}_B - m_i \qquad \tilde{\nu}_i = \omega(\Delta_X - \Delta_Q) - \tilde{m}_B + \tilde{m}_i$$

2.5 Vuoti e rotture di simmetria per il limite a massa infinita

Come prima cosa è necessario mappare le masse reali fra le due teorie. Sappiamo che i barioni costruiti con i quark nelle due teorie "coincidono". Ciò mappa le masse

reali barioniche delle due teorie.: $B = Q^{N_c} = q^{kN_f - N_c}$. ciò fissa le cariche barioniche in 1 e 2:

$$\tilde{m}_B = \frac{N_C}{kN_f - N_C} m_B$$

Le cariche di flavour rimangono invariate a meno di un segno (sono infatti opposte), non essendo legate al gruppo di gauge (come la simmetria barionica). Possiamo scrivere quindi:

$$\tilde{\mu}_a = \omega(\Delta_x - \Delta_Q) + \tilde{m}_B - m_a$$

$$\tilde{\nu}_a = \omega(\Delta_x - \Delta_Q) - \tilde{m}_B + \tilde{m}_a$$

dove m_a e $\tilde{m_a}$ sono le masse reali di flavour elettriche.

A questo punto è necessario rompere la simmetria in modo consistente con quanto fatto nella teoria elettrica. Considero per il gruppo $SU(N_f+1)L \times U(1)_B$ per il contributo divergente nella teoria elettrica. Gli altri contributi vengono mappati in maniera "banale".

Teoria elettrica:
$$\mu = \operatorname{diag}(m_b - M, \dots, m_B + N_f M)$$
 con $m_B = M$
 $\longrightarrow \mu = \operatorname{diag}(0, \dots, \hat{m})$ con $M(N_f + 1) = \hat{m}$

È importante ricordare che le cariche barioniche e di sapore nella dualità si mappano in modo diverso, cfr 1 con 2. Per questo motivo le masse nella teoria magnetica non sono mappate "banalmente" ed è per questo motivo che tutti i quark ricevono un contributo nella teoria magnetica.

Ricordiamo innanzitutto la mappa:

$$m_B \longrightarrow \tilde{m}_B = \frac{N_c}{k(N_f + 1) - N_c} m_B$$

$$M \longrightarrow \tilde{M} = -M$$

A questo punto le masse reali saranno della forma $\tilde{\mu} = \text{diag}(m_1, \dots, m_2)$. Calcoliamo ora questi due valori.

$$\begin{split} m_1 &= \tilde{m}_B - \tilde{M} = \frac{N_c}{k(N_f+1) - N_c} m_B + M = \frac{N_c + k(N_f+1) - N_c}{k(N_f+1) - N_c} M \\ &= \frac{k(N_f+1)}{k(N_f+1) - N_c} M = \frac{k}{k(N_f+1) - N_c} \hat{m} \\ m_2 &= \tilde{m}_B + N_f \tilde{M} = \frac{N_c}{k(N_f+1) - N_c} m_B - N_f M = \frac{N_c - N_f(k(N_f+1) - N_c)}{k(N_f+1) - N_c} m_B = \\ &= \frac{N_c(N_f+1) - N_f k(N_f+1)}{k(N_f+1) - N_c} m_B = \frac{N_c - kN_f}{k(N_f+1) - N_c} \hat{m} \end{split}$$

Il resto delle masse viene mappato in maniera banale, seguendo la tabella delle cariche della teoria magnetica.

Per il gruppo $SU(N_f + 1)_R$ avviene in maniera identica, ma le cariche hanno segno opposto (sia quelle barioniche che di flavour), quindi c'è un segno overall e i calcoli sono identici.

$$\tilde{\mu}_{a} = \begin{cases} \tilde{\mu}_{a} = \omega(\Delta_{X} - \Delta_{Q}) + m_{B} \frac{N_{c}}{k(N_{f}+1)-N_{c}} - m_{a} - m_{A} + m_{1} & a = 1 \dots N_{f} \\ \tilde{\mu}_{N_{f}+1} = \omega(\Delta_{X} - \Delta_{M}) + m_{B} \frac{N_{c}}{k(N_{f}+1)-N_{c}} + m_{A}N_{f} + m_{2} \end{cases}$$

$$\tilde{\nu}_{a} = \begin{cases} \tilde{\nu}_{a} = \omega(\Delta_{X} - \Delta_{Q}) - m_{B} \frac{N_{c}}{k(N_{f}+1)-N_{c}} + \tilde{m}_{a} - m_{A} - m_{1} & a = 1 \dots N_{f} \\ \tilde{\nu}_{N_{f}+1} = \omega(\Delta_{X} - \Delta_{M}) - m_{B} \frac{N_{c}}{k(N_{f}+1)-N_{c}} + m_{A}N_{f} - m_{2} \end{cases}$$

dove (\hat{m} è quella che viene mandata a ∞ nella teoria elettrica)

$$m_1 = \frac{k}{k(N_f + 1) - N_c} \hat{m}$$
 $m_2 = -\frac{kN_f - N_c}{k(N_f + 1) - N_c} \hat{m}$

Per ottenere la teoria duale con N_f sapori è necessario anche rompere la simmetria di gauge: $SU(k(N_f+1)-N_c) \to U(kN_F-N_C) \times (qualcosa)$. Inoltre bisogna fare in modo che i primi N_f flavour rimangano leggeri nel limite a massa infinita. Come si vede dalle masse reali, è necessario bilanciare i fattori pari a m_1 ed m_2 (che sono proporzionali a m) dando un contributo opposto con la massa reale data da $\tilde{\sigma}^1$

$$\sigma = \begin{pmatrix} -m_1 \mathbf{1}_{kN_f - N_c} & 0\\ 0 & -m_2 \mathbf{1}_k \end{pmatrix} \tag{2.3}$$

Si può vedere che questa scelta per il vev rispetta la condizione tr $\tilde{\sigma} = 0$. Con questa scelta l'ultimo quark rimane leggero e carico sotto U(k) (dovrebbe esser giusto) Nota che non riesco a trovare $SU(kN_f - N_c)$ perchè dovendo andare all'infinito è dura soddisfare il constraint tr $\sigma = 0$ (avendo anche l'ultimo flavour leggero) ..

2.6 Calcoli per limite a massa divergente

A differenza del caso elettrico, tutte le masse reali e tutte le componenti di $\tilde{\sigma}$ divergono. Utilizziamo anche in questo caso la formula

$$\lim_{m \to \infty} \Gamma_h(a+m) = \tag{2.4}$$

$$\exp\left(\operatorname{sign}(m)\frac{\pi i}{2\omega_1\omega_2}\left((a-\omega+m)^2-\frac{\omega_1^2+\omega_2^2}{12}\right)\right) \tag{2.5}$$

2.6.1 Mesoni

Dobbiamo calcolare il contributo dei mesoni. Notare che siccome la simmetria di sapore è rotta solo parzialmente, solo i contributi con il flavour $N_f + 1$ -esimo divergeranno. Inoltre ricordiamo che le masse reali per i mesoni non sono uguali a quelle dei

¹La corretta normalizzazione della carica barionica verrà effettuata in seguito, tanto è uno shift finito e farlo ora complica solo i calcoli.

quark che sono scritte sopra, differiscono per R-Carica e per il fatto che sono scarichi sotto $l'U(1)_B$. Inoltre sono in rappresentazioni di flavour opposte rispetto ai quark.

$$\mu_a = \begin{cases} m_a + m_A - M + \omega \Delta \\ MN_f - m_A N_f + \omega \Delta_M \end{cases}$$

$$\nu_a = \begin{cases} -\tilde{m}_a + m_A + M + \omega \Delta \\ -MN_f - m_A N_f + \omega \Delta_M \end{cases}$$

NOTA BENE: non ci sono m_1 e m_2 come per i quark dato che esse sono costruite anche da una parte barionica divergente. M è lo stesso della teoria elettrica (ricordo che $\hat{m} = (N_f + 1)M$).

$$\begin{split} &\prod_{i} \prod_{j} \prod_{l=0}^{N_f+1} \Gamma_h \left(\mu_i + \nu_i + l\omega \Delta_X \right) \right) = \\ &\left(\prod_{a} \prod_{b} \prod_{l=0}^{N_f} \Gamma_h \left(\mu_a + \nu_b + l\omega \Delta_X \right) \right) \left(\prod_{l=0}^{k-1} \Gamma_h (\mu_{N_f+1} \nu_{N_f+1} l\Delta_X) \right) \\ &\left(\prod_{l=0}^{k-1} \prod_{a} \prod_{b} \Gamma_h (\mu_a + \nu_{N_f+1} + \omega l\Delta_X) \Gamma_h (\mu_{N_f+1} + \nu_a + \omega l\Delta_X) \right) \end{split}$$

I primi due termini non dipendono da m e quindi non danno luogo ad una fase. Si può riscrivere il risultato come:

$$\begin{split} &\prod_{i}^{N_{f}+1}\prod_{j}^{N_{f}+1}\prod_{l=0}^{k-1}\Gamma_{h}\left(\mu_{i}+\nu_{i}+l\omega\Delta_{X}\right)\right) = \\ &\left(\prod_{l=0}^{k-1}\left(\prod_{a}^{N_{f}}\prod_{b}^{N_{f}}\Gamma_{h}\left(\mu_{a}+\nu_{b}+l\omega\Delta_{X}\right)\right)\right)\Gamma_{h}(-2m_{A}N_{f}+\omega(2\Delta_{M}+l\Delta_{X})\right) \\ &\left(\prod_{l=0}^{k-1}\prod_{a}^{N_{f}}\Gamma_{h}(m_{a}-m_{A}(N_{f}-1)-\underbrace{M(N_{f}+1)}_{m}+\omega(\Delta_{Q}+\Delta_{M}+l\Delta_{X})\right) \\ &\Gamma_{h}(-\tilde{m}_{a}+\underbrace{M(N_{f}+1)}_{m}-m_{A}(N_{f}-1)+\omega(\Delta_{Q}+\Delta_{M}+l\Delta_{X}))\right) \end{split}$$

Utilizziamo ora 2.5 per le Γ_h divergenti.

Ottengo (strippo i fattori banali e quello che si cancella e con un po' di occhio sulla parità dei termini):

$$\sum_{l=0}^{k-1} \sum_{a}^{N_f} -m_a^2 + \tilde{m}_a^2 - m_a(\dots) + \tilde{m}_a(\dots) + 4m(m_A(N_f - 1) + \omega(\Delta_Q + \Delta_M + l\Delta_X - 1))$$
(2.6)

2.6.2 Chirali

Per i campi chirali bisogna sviluppare questi termini. Ricordiamo che μ_i e σ_j hanno vev tali che le prime N_f componenti e il singoletto rimangono leggere, solo i termini "misti" saranno da sviluppare.

$$\prod_{i=1}^{N_f} \prod_{j=1}^{(k+1)N_f - N_c} \Gamma_h(\tilde{\mu}_i + \tilde{\sigma}_j) \Gamma_h(\tilde{\nu}_i - \tilde{\sigma}_j)$$
(2.7)

D'ora in poi chiameremo ρ_j con $j=1\ldots k$ le componenti di σ_j per $j=kN_f-N_c+1\ldots k(N_f+1)-N_c$:

$$\left(\prod_{i=1}^{N_f}\prod_{j=1}^{kN_f-N_c}\Gamma_h(\tilde{\mu}_i+\tilde{\sigma}_j)\Gamma_h(\tilde{\nu}_i-\tilde{\sigma}_j)\right)\left(\prod_{j=1}^{k}\Gamma_h(\tilde{\mu}_{N_f+1}+\rho_j)\Gamma_h(\tilde{\nu}_{N_f+1}-\rho_j)\right)
\left(\prod_{j=1}^{kN_f-N_c}\Gamma_h(\tilde{\mu}_{N_f+1}+\tilde{\sigma}_j)\Gamma_h(\tilde{\nu}_{N_f+1}-\tilde{\sigma}_j)\right)\left(\prod_{i=1}^{N_f}\prod_{j=1}^{k}\Gamma_h(\tilde{\mu}_i+\rho_j)\Gamma_h(\tilde{\nu}_i-\rho_j)\right)$$

I termini della prima riga non hanno divergenze, mentre quelli nella seconda riga sono da "sistemare".

Primo termine:

$$\lim_{m \to \infty} \prod_{j=1}^{kN_f - N_c} \Gamma_h (\tilde{\mu}_{N_f + 1} + \tilde{\sigma_j}) \Gamma_h (\tilde{\nu}_{N_f + 1} - \tilde{\sigma_j}) =$$

$$\lim_{m \to \infty} \prod_{j=1}^{kN_f - N_c} \Gamma_h (m_B \frac{N_c}{k(N_f + 1) - N_c} + m_A N_f + m_2 + \omega(\Delta_X - \Delta_M) +$$

$$- m_1 + \sigma_j')$$

$$\Gamma_h (-m_B \frac{N_c}{k(N_f + 1) - N_c} + m_A N_f - m_2 + \omega(\Delta_X - \Delta_M) +$$

$$+ m_1 - \sigma_j')$$

dove σ' è l'espansione di $\tilde{\sigma}$ intorno al suo vev. Come prima $m_1 - m_2 = m$ Ora utilizziamo la formula per il limite della Γ_h . I due termini si beccano un segno opposto davanti che contribuisce a cancellare i termini che non cambiano segno dopo aver fatto i quadrati. Nessun quadrato sopravvive e solo alcuni termini misti. Semplificando i prefattori e il secondo termine della formula (che si cancella per via della differenza di segno) ottengo dopo aver posto

$$A = \frac{N_c}{k(N_f + 1) - N_c}$$

$$\sum_{j}^{kN_{f}-N_{c}} - \left(m_{B}A + m_{A}N_{f} + \underbrace{(m_{2} - m_{1})}_{-m} + \omega(\Delta_{X} - \Delta_{M} - 1) + \sigma'_{j}\right)^{2} + \underbrace{\left(-m_{B}A + m_{A}N_{f} \underbrace{-(m_{2} - m_{1})}_{m} + \omega(\Delta_{X} - \Delta_{M} - 1) - \sigma'_{j}\right)^{2}}_{m} = \underbrace{\sum_{j}^{kN_{f}-N_{c}}}_{kN_{f}-N_{c}} 4 \left[m_{B}A\left(-m_{A}N_{f} - \omega(\Delta_{X} - \Delta_{M} - 1)\right) + m_{A}N_{f}(m - \sigma'_{j}) + m_{A}N_{f}(m - \sigma'_{j})\right]$$

Isoliamo ora i termini che dipendono da j (che dovranno comunque rimanere sotto il segno di integrale):

$$\sum_{j}^{kN_f-N_c} 4\sigma_j' \left(-m_A N_f - \omega(\Delta_X - \Delta_M - 1) \right)$$

Per gli altri termini invece avremo:

$$4(kN_f - N_c)(m_B A(-m_A N_f - \omega(\Delta_X - \Delta_M - 1)) + m(m_A N_f + \omega(\Delta_X - \Delta_M - 1))$$

Secondo termine:

$$\lim_{m \to \infty} \prod_{i=1}^{N_f} \prod_{j=1}^k \Gamma_h \Big(-m_a + m_B \frac{N_c}{k(N_f + 1) - N_c} - m_A + m_1 + \omega(\Delta_X - \Delta_Q) + \\ - m_2 + \rho_j' \Big)$$

$$\Gamma_h \Big(\tilde{m}_a - m_B \frac{N_c}{k(N_f + 1) - N_c} - m_A - m_1 + \omega(\Delta_X - \Delta_Q) + \\ + m_2 - \rho_j' \Big)$$

Usando le stesse convenzioni di prima abbiamo abbiamo:

$$\sum_{a}^{N_f} \sum_{j}^{k} \left(-m_a + m_B A - m_A + (\underbrace{m_1 - m_2}_{m}) + \omega(\Delta_X - \Delta_Q - 1) + \rho_j' \right)^2 + \left(+\tilde{m}_a - m_B A - m_A - (\underbrace{m_1 - m_2}_{m}) + \omega(\Delta_X - \Delta_Q - 1) - \rho_j' \right)^2 = 0$$

Notiamo che rispetto al caso precedente qui abbiamo le masse reali, che sono diverse fra *left* e *right*, quindi sopravvivono i loro termini.

$$\sum_{a}^{N_f} \sum_{j}^{k} \left[m_a^2 - \tilde{m}_a^2 + 2m_a(\dots) - 2\tilde{m}_a(\dots) + 4(m_B A(-m_A + \omega(\Delta_X - \Delta_Q - 1)) - m_A(m + \rho_j') + m\omega(\Delta_X - \Delta_Q - 1) + \omega(\Delta_X - \Delta_Q - 1)(\rho_j') \right]$$

Come fatto prima, esplicitiamo i termini con ρ'_j (i termini lineari in m_a e \tilde{m}_a non li considero perchè vanno a zero per la condizione tr m=0)

$$4N_f \sum_{j=1}^k \rho'_j(-m_A + \omega(\Delta_X - \Delta_Q - 1))$$

Gli altri termini invece sono dati da:

$$4kN_f (m_B A(-m_A + \omega(\Delta_X - \Delta_Q - 1)) + m(-m_A + \omega(\Delta_X - \Delta_Q - 1)) + k\sum_{a=1}^{N_f} m_a^2 - \tilde{m}_a^2$$

2.6.3 Contributo della materia nell'aggiunta e campo vettoriale

Per la materia nell'aggiunta abbiamo:

$$\prod_{1 \leq i < j \leq k(N_f+1) - N_c} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm(\sigma_i - \sigma_j))} = \prod_{1 \leq i < j \leq k(N_f - N_c)} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm(\sigma_i - \sigma_j))} \prod_{1 \leq i < j \leq k} \frac{\Gamma_h(\Delta_X \omega \pm (\rho_i - \rho_j))}{\Gamma_h(\pm(\rho_i - \rho_j))} \prod_{1 \leq i \leq k(N_f - N_c)} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \rho_j))}{\Gamma_h(\pm(\sigma_i - \rho_j))} \prod_{1 \leq i \leq k(N_f - N_c)} \frac{\Gamma_h(\Delta_X \omega \pm (\sigma_i - \rho_j))}{\Gamma_h(\pm(\sigma_i - \rho_j))}$$

I primi due termini rimangono così come sono perchè le parti divergenti si cancellano a vicenda. L'esponente dell'ultimo sarà dato da (a meno dei soliti prefattori..):

$$\sum_{1 \leq i \leq kN_f - N_c} \sum_{1 \leq j \leq k} \left(-\left(\omega(\Delta_X - 1) + (-m_1 + m_2) + \sigma_i' - \rho_j'\right)^2 + \left(\omega(\Delta_X - 1) + (m_1 - m_2) - \sigma_i' + \rho_j'\right)^2 + \left(-\omega - m_1 + m_2 + \sigma_i' - \rho_j'\right)^2 + \left(-\omega + m_1 - m_2 - \sigma_i' + \rho_j'\right)^2 \right)$$

dove vale $m_1 - m_2 = m$.

Le ultime due righe hanno segno opposto perchè sono a denominatore nella formula.

Quindi abbiamo:

$$\sum_{1 \le i \le kN_f - N_c} \sum_{1 \le j \le k} \left(-\left(\omega(\Delta_X - 1) - m + \sigma'_i - \rho'_j\right)^2 + \left(\omega(\Delta_X - 1) + m - \sigma'_i + \rho'_j\right)^2 - \left(-m + \sigma'_i - \rho'_j\right)^2 + \left(m - \sigma'_i + \rho'_j\right)^2 \right)$$

Per la prima riga invece abbiamo:

$$\sum_{\substack{1 \le i \le kN_f - N_c \\ 1 < j < k}} 4\omega(\Delta_X - 1)(m - \sigma_i' + \rho_j')$$

Per la seconda riga abbiamo:

$$-4\omega \left(k(kN_f - N_c)(-m) + \sum_{i}^{kN_f - N_c} \sum_{j}^{k} (\sigma_i - \rho_j) \right)$$

Sommando i due contributi otteniamo:

$$4\omega\Delta_X\left(k(kN_f-N_c)(m)+\sum_{i}^{kN_f-N_c}\sum_{k}^{k}(\sigma_i'+\rho_j')\right)$$

2.6.4 Somma dei contributi

I termini quadratici nelle masse reali si cancellano con il contributo dato dai mesoni di 2.6. Ora mettiamo insieme tutti i contributi (lascio stare ρ_i e σ_i :

$$\operatorname{Mesons} \left\{ \sum_{j=0}^{k-1} 4N_f m (-m_A (N_f - 1) + \omega (\Delta_Q + \Delta_M + j\Delta_X - 1)) + \right. \\ \left. \left. \left. \left. \left. \left(kN_f - N_c \right) \left(m_B A (-m_A N_f - \omega (\Delta_X - \Delta_M - 1)) + \right. \right. \right. \right. \\ \left. \left. \left. \left(kN_f - N_c \right) \left(m_B A (-m_A N_f - \omega (\Delta_X - \Delta_M - 1)) + \right. \right. \\ \left. \left. \left. \left(kN_f - N_c \right) \left(- m_A N_f - \omega (\Delta_X - \Delta_M - 1) \right) \right. \right. \right. \\ \left. \left. \left. \left(kN_f - kN$$

2.6.5 Contributi proporzionali a m

I contributi proporzionali ad m sono:

$$m \left(-4kN_f m_A (N_f - 1) - 4N_f N_c m_A + 4kN_f m m_A (N_f - 1) \right) + 4m\omega \left(kN_f (\Delta_Q + \Delta_M - 1) + \frac{(k-1)}{2} \Delta_X \right) + (kN_f - N_c)(\Delta_X - \Delta_M - 1) + kN_f (\Delta_X - \Delta_Q - 1) + \Delta_X k(kN_f - N_C) \right)$$

Ora usiamo la condizione sulle masse reali:

$$\omega(-N_c\Delta_X + N_f + 1) = \omega(N_f\Delta_Q + \Delta_M) \tag{2.8}$$

da cui:

$$\Delta_M = -N_c \Delta_X + N_f (1 - \Delta_Q) + 1 \tag{2.9}$$

Otteniamo usando il valore esplicito di Δ_X e scrivendo $\frac{k-1}{2} = \frac{k+1}{2} - 1$

$$4m\left(-N_{f}N_{c}m_{A}+\omega\left(kN_{f}(\Delta_{Q}-N_{c}\Delta_{X}+N_{f}(1-\Delta_{Q})+1+\overbrace{\frac{k+1}{2}\Delta_{X}-\Delta_{X}-1\right)+(kN_{f}-N_{c})(\Delta_{X}-(-N_{c}\Delta_{X}+N_{f}(1-\Delta_{Q})+1)-1)+kN_{f}(\Delta_{X}-\Delta_{Q}-1)\right)+$$

$$+\Delta_{X}k(kN_{f}-N_{c})\right)$$

Semplificando (utilizzando il valore esplicito di Δ_X primi termini otteniamo:

$$4m\omega N_c \left(-N_f m_A - \Delta_X N_c - (\Delta_Q - 1)N_f\right) +$$

$$+4m\omega (kN_f - N_c) \left((\Delta_X - 2 + k\Delta_X)\right) =$$

$$= 4m\omega N_c \left(-N_f m_A - \Delta_X N_c - (\Delta_Q - 1)N_f\right) +$$

$$+4m\omega (kN_f - N_c) \left(\Delta_X (k+1) - 2\right) =$$

$$= 4m\omega N_c \left(-N_f m_A - \Delta_X N_c - (\Delta_Q - 1)N_f\right) +$$

2.6.6 Contribui proporzionali a m_B

Il contributo proporzionale a m_B invece è:

$$4m_{B} \frac{N_{c}}{k(N_{f}+1) - N_{c}} \left((kN_{f} - N_{c})(-m_{A}N_{f} - \omega(\Delta_{X} - \Delta_{M} - 1) + kN_{f}(-m_{A} + \omega(\Delta_{X} - \Delta_{Q} - 1)) \right) =$$

$$= 4m_{B} \frac{N_{c}}{k(N_{f}+1) - N_{c}} \left(kN_{f}(-m_{A}(N_{f}+1) + \omega(\Delta_{M} - \Delta_{Q})) + -N_{c}(-m_{A}N_{f} - \omega(\Delta_{X} - \Delta_{M} - 1)) \right) =$$

$$= 4m_{B} \frac{N_{c}}{k(N_{f}+1) - N_{c}} \left(kN_{f}(-m_{A}(N_{f}+1) + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q}) + 1 - \Delta_{Q})) + N_{c}(m_{A}N_{f} + \omega(\Delta_{X} - (-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q}) + 1) - 1)) \right) =$$

$$= 4m_{B} \frac{N_{c}}{k(N_{f}+1) - N_{c}} \left(kN_{f}(-m_{A}(N_{f}+1) + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q}) + 1) - 1) \right) + m_{A}N_{f}N_{c} + N_{c}\omega(\Delta_{X}(N_{c}+1) + N_{f}(\Delta_{Q} - 1) - 2) \right)$$

Semplificando le frazioni ove possibile si ottiene:

$$4m_B N_c N_f(-m_A) + 4m_B N_c N_f(-\omega \Delta_Q) + 4m_B N_c^2 \omega \Delta_X \left(-1 + \frac{k+1}{k(N_f + 1) - N_c}\right) + 4m_B N_c N_f - 8m_B N_c^2 \omega \frac{1}{k(N_f + 1) - N_c}\right)$$

A questo punto esplicitando la R-Carica Δ_X otteniamo:

$$4m_B N_C (-m_A N_f + \omega (N_f (1 - \Delta_Q) - N_c \Delta_X)) + 4m_B N_c^2 \omega \frac{1}{k(N_f + 1) - N_c} \left(\underbrace{\frac{\Delta_X}{2}}_{k+1} (k+1) - 2 \right)$$
(2.10)

Come si può vedere matcha esattamente con la fase ottenuta dalla teoria elettrica.

$$4m_B N_C (-m_A N_f + \omega (N_f (1 - \Delta_Q) - N_c \Delta_X)) \tag{2.11}$$

2.6.7 Contributi con σ e ρ

Ho anche contributi proporzionali a ρ e a σ :

$$4 \sum_{j}^{kN_{f}-N_{c}} \sigma'_{j} \left(-m_{A}N_{f} - \omega(\Delta_{X}(1+k) - \Delta_{M} - 1)\right) + 4N_{f} \sum_{j=1}^{k} \rho'_{j} \left(-m_{A} + \omega(\Delta_{X} - \Delta_{Q} - 1)\right) + 4N_{f} \sum_{j=1}^{k} \rho'_{j} \left(-m_{A} + \omega(\Delta_{X} - \Delta_{Q} - 1)\right) + 4N_{f} \sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} - N_{c}\right) \sum_{i} \rho'_{i} \left(-m_{A}N_{f} - \omega(1 - \Delta_{M})\right) + 4\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(\Delta_{X}(N_{f} + (kN_{f} - N_{c})) - N_{f}\Delta_{Q} - N_{f}\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(\Delta_{X}(N_{f} + (kN_{f} - N_{c})) - N_{f}\Delta_{Q} - N_{f}\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(\Delta_{X}N_{f}(k+1) - N_{c}\Delta_{X}) - N_{f}\Delta_{Q} - N_{f}\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(\Delta_{X}N_{f}(k+1) - N_{c}\Delta_{X}) - N_{f}\Delta_{Q} - N_{f}\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q}))\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q}))\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f}(1 - \Delta_{Q})\right) + 2\sum_{j=1}^{k} \rho'_{j} \left(-m_{A}N_{f} + \omega(-N_{c}\Delta_{X} + N_{f$$

2.7 Funzione di partizione nel limite (riassumendo)

Vediamo ora di tirare le somme su quanto trovato dopo aver fatto il limite nella parte magnetica.

$$\begin{split} Z_{mag}(\mu_a,\nu_b,\tilde{\mu_a},\tilde{\nu_b}) &= \frac{1}{(k(N_f+1)-N_c)!(2\pi i)^{k(N_f+1)-N_c}} \Gamma_h(\Delta_X\omega;\omega_1,\omega_2)^{(k(N_f+1)-N_c)-1} \\ &\quad c\left(4N_cm(-m_AN_f+\omega(-N_c\Delta_X+N_f(1-\Delta_Q)))\right) \\ &\left(\prod_{j=0}^{k-1} \left(\prod_a^{N_f} \prod_b^{N_f} \Gamma_h\left(\mu_a+\nu_b+j\omega\Delta_X\right)\right)\right) \Gamma_h\left(-2m_AN_f+\omega(2\underline{\Delta}_M+j\Delta_X)\right) \right) \\ &\int_{T^{\tilde{N}_c}} \prod_{i=1}^{kN_f-N_c} d\sigma_i \prod_{i=1}^k d\rho_i \, d\xi \, e^{2\pi i \xi (\sum \sigma_i + \sum \rho_i)} \\ &\prod_{1 \leq i < j \leq kN_f-N_c} \frac{\Gamma_h(\Delta_X\omega \pm (\sigma_i-\sigma_j))}{\Gamma_h(\pm(\sigma_i-\sigma_j))} \prod_{1 \leq i < j \leq k} \frac{\Gamma_h(\Delta_X\omega \pm (\rho_i-\rho_j))}{\Gamma_h(\pm(\rho_i-\rho_j))} \\ &\left(\prod_{a,b=1}^{N_f} \prod_{j=1}^{kN_f-N_c} \Gamma_h\left(\left(\tilde{\sigma}_j+m_B\frac{N_c}{k(N_f+1)-N_c}\right)-m_a-m_A+\omega(\Delta_X-\Delta_Q)\right) \right. \\ &\left. \Gamma_h\left(-\left(\tilde{\sigma}_j+m_B\frac{N_c}{k(N_f+1)-N_c}\right)+\tilde{m}_b-m_A+\omega(\Delta_X-\Delta_Q)\right) \right. \\ &\left(\prod_{i=1}^k \Gamma_h\left(\pm(\rho_i+m_B\frac{N_c}{k(N_f+1)-N_c}\right)+m_AN_f+\omega(\Delta_X-\Delta_M)\right) \right) \\ &c\left(4(m_BN_c+\sum_i^{kN_f-N_c} \sigma_i+\sum_j^k \rho_j)(-m_AN_f+\omega(-N_c\Delta_X+N_f(1-\Delta_Q))\right) \end{split}$$

Posso fare un ulteriore shift sul vev di σ e ρ , a traccia nulla in modo da rinormalizzare le cariche barioniche a $\frac{N_c}{kN_f-N_c}$ invece di $\frac{N_c}{k(N_f+1)-N_c}$. Questo shift è dato da:

$$\sigma_{i} \longrightarrow \sigma_{i} + \frac{kN_{c}}{(kN_{f} - N_{c})(k(N_{f} + 1) - N_{c})} m_{B}$$

$$\rho_{i} \longrightarrow \rho_{i} - \frac{N_{c}}{(k(N_{f} + 1) - N_{c})} m_{B}$$

Questo shift non crea alcun problema in quanto è traceless e quindi non contribuisce all'esponenziale dell'ultima riga, l'unico effetto che ha è rinormalzizare le cariche barioniche.

Notiamo che oltre a rinormalizzare le cariche dei quark "giusti" elimina la simmetria barionica dai quark della teoria U(k) che sono ora scarichi.

A questo punto la funzione di partizione diventa:

$$\begin{split} Z_{mag}(\mu_a,\nu_b,\tilde{\mu_a},\tilde{\nu_b}) &= \frac{1}{(k(N_f+1)-N_c)!(2\pi i)^{k(N_f+1)-N_c}} \Gamma_h(\Delta_X\omega;\omega_1,\omega_2)^{(k(N_f+1)-N_c)-1} \\ & c \left(4N_cm\left(-m_AN_f+\omega(-N_c\Delta_X+N_f(1-\Delta_Q))\right)\right) \\ &\left(\prod_{j=0}^{k-1} \left(\prod_a^{N_f}\prod_b^{N_f}\Gamma_h(\mu_a+\nu_b+j\omega\Delta_X)\right)\right) \Gamma_h\left(-2m_AN_f+\omega(2\underline{\Delta_M}+j\Delta_X)\right)\right) \\ &\int_{T^{\tilde{N}_c}}\prod_{i=1}^{kN_f-N_c}d\sigma_i\prod_{i=1}^{k}d\rho_i\,d\xi\,e^{2\pi i\xi(\sum\sigma_i+\sum\rho_i)} \\ &\prod_{1\leq i< j\leq kN_f-N_c}\frac{\Gamma_h(\Delta_X\omega\pm(\sigma_i-\sigma_j))}{\Gamma_h(\pm(\sigma_i-\sigma_j))}\prod_{1\leq i< j\leq k}\frac{\Gamma_h(\Delta_X\omega\pm(\rho_i-\rho_j))}{\Gamma_h(\pm(\rho_i-\rho_j))} \\ &\left(\prod_{a,b=1}^{N_f}\prod_{j=1}^{kN_f-N_c}\Gamma_h\left(m_B\frac{N_c}{kN_f-N_c}-m_a-m_A+\omega(\Delta_X-\Delta_Q)+\tilde{\sigma}_j\right)\right) \\ &\Gamma_h\left(-m_B\frac{N_c}{kN_f-N_c}+\tilde{m}_b-m_A+\omega(\Delta_X-\Delta_Q)-\tilde{\sigma}_j\right)\right) \\ &\left(\prod_{i=1}^{k}\Gamma_h\left(\pm\rho_i+m_AN_f+\omega(\Delta_X-\underline{\Delta_M})\right)\right) \\ &c\left(4(m_BN_c+\sum_i^{kN_f-N_c}\sigma_i+\sum_j^k\rho_j)(-m_AN_f+\omega(-N_c\Delta_X+N_f(1-\Delta_Q))\right) \end{split}$$

Inoltre si può fare uno shift finito di ξ in modo da eliminare l'ultima riga (eccetto il termine proporzionale alla massa barionica):

$$\xi \longrightarrow \xi - 4(-m_a N_f + \omega((-N_c \Delta_X + N_f(1 - \Delta_Q))))$$
 (2.12)

3 Analisi dualità

3.1 Mirror symmetry del settore U(k)

A questo punto possiamo capire il rapporto fra le due teorie in questo limite. Utilizziamo la seguente identità integrale.

Definendo prima:

$$W_{N_c,K}(\mu_a,\nu_b,\tau,\lambda) = \frac{\Gamma_h(\tau)^{N_c}}{N_c!} \int \prod_{i=1}^{N_c} d\sigma_i \, e^{\frac{i\pi}{2\omega_1\omega_2} \left(2\lambda \operatorname{tr} \, \sigma - 2K \, \operatorname{tr} \, \sigma^2\right)} \prod_{1 \leq i < \leq N_c} \frac{\Gamma_h(\tau \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm (\sigma_i - \sigma_j))}$$

$$\prod_{i=1}^{N_c} \prod_{a,b=1}^{N_f} \Gamma_h(\mu_a + \sigma_i) \Gamma_h(\nu_b - \sigma_i)$$

Abbiamo (da [3](5.3.15) & [1](3.18)):

$$W_{N_c,0}(\mu_a,\nu_b,\omega\Delta_X,\lambda) = \prod_{j=0}^{k-1} \Gamma_h \left(\omega - j\omega\Delta_X - \frac{\mu + \nu}{2} \pm \frac{\lambda}{2}\right) \Gamma_h \left(\mu + \nu + j\omega\Delta_X\right)$$
(3.1)

Possiamo utilizzare questa identità integrale sul settore U(k) (attenzione al fattore k! da considerare).

Prima di dualizzare il settore faccio uno shift in ξ in modo da cancellare i termini dell'ultima riga (proporizonali a $\sum \sigma + \sum \rho$).

Inoltre bisogna effettuare una dilatazione in ξ in modo da matchare con il termine FI dell'identità (cambia anche la misura). Utilizzando le seguenti cariche otteniamo:

$$\mu_a = m_A N_f + \omega (\Delta_X - \Delta_M)$$

$$\nu_a = m_A N_f + \omega (\Delta_X - \Delta_M)$$

$$\tau = \omega \Delta_X$$

$$\lambda = \xi$$

Ottengo l'espressione:

$$\prod_{j=0}^{k-1} \Gamma_h \left(\omega - j\omega \Delta_X - (m_A N_f + \omega(\Delta_X - \Delta_M)) \pm \frac{\xi}{2} \right) \Gamma_h \left(2m_A N_f + 2\omega(\Delta_X - \Delta_M) + j\omega \Delta_X \right)$$

Il primo termine può essere riscritto come:

$$\begin{split} &\prod_{j=0}^{k-1} \Gamma_h \left(\omega - j\omega \Delta_X - (m_A N_f + \omega((N_c + 1)\Delta_X - N_f (1 - \Delta_Q) - 1) \pm \frac{\xi}{2} \right) = \\ &= \prod_{j=0}^{k-1} \Gamma_h \left(\pm \frac{\xi}{2} + \omega \left(2 + N_f (1 - \Delta_Q) - \Delta_X (N_c + 1 + j) \right) - m_A N_f \right) = \\ &= \prod_{j=0}^{k-1} \Gamma_h \left(\pm \frac{\xi}{2} + \omega \left(2 + N_f (1 - \Delta_Q) - \Delta_X (N_c + 1 + (k - 1 - j)) - m_A N_f \right) \right) \\ &= \prod_{j'=1}^{k} \Gamma_h \left(\pm \frac{\xi}{2} + \omega \left(N_f (1 - \Delta_Q) - \Delta_X (N_c - j - 1) \right) - m_A N_f \right) \end{split}$$

dove nell'ultima riga ho usato il valore esplicito di Δ_X .

Questi termini sono associati a dei singoletti (monopoli elettrici) che hanno le seguenti cariche (j = 0, ..., k - 1): Confrontando con la tabella 6 di [6] (vedi anche [7]) (ricordare che $\Delta_X = \frac{2}{k+1}$).

	$U(kN_f - N_c) \times U(1)_{mirror}$	$U(1)_B$	$U(1)_A$	$U(1)_R$
b_j	1_1	0	$-N_f$	$N_f(1-\Delta_Q) + \Delta_X(j+1-N_c)$
$ ilde{b}_j$	1_{-1}	0	$-N_f$	$N_f(1-\Delta_Q) + \Delta_X(j+1-N_c)$

Posso fare la stessa cosa anche per il secondo termine:

$$\begin{split} & \prod_{j=0}^{k-1} \Gamma_h \left(2m_A N_f + 2\omega (\Delta_X - \Delta_M) + j\omega \Delta_X \right) = \prod_{j=0}^{k-1} \Gamma_h \left(2m_A N_f + \omega (\Delta_X (2+j) - 2\Delta_M) \right) = \\ & = \prod_{j=0}^{k-1} \Gamma_h \left(2m_A N_f + \omega (\Delta_X (2+(k-1-j) - 2\Delta_M)) \right) = \prod_{j=0}^{k-1} \Gamma_h \left(2m_A N_f + \omega (2-j\Delta_X - 2\Delta_M) \right) = 0 \end{split}$$

Utilizzando ora l'identità matematica $\Gamma_h(2\omega - x)\Gamma_h(x) = 1$ otteniamo che questo termine e il singoletto generato dall' $N_f + 1$ -esima componente dei mesoni si cancellano a vicenda.

Ciò deriva dal fatto che dualizzando il settore U(k) viene generata una massa olomorfa per il singoletto.

$$W = mM^{\dagger}M \longrightarrow R(M^{\dagger}) = 2 - R(M) \tag{3.2}$$

3.1.1 Primo caso

A questo punto la funzione di partizione diventa (strippando il fattore divergente):

$$\begin{split} Z_{mag}(\mu_a,\nu_b,\tilde{\mu_a},\tilde{\nu_b}) &= \frac{1}{(2\pi i)^{k(N_f+1)-N_c}} \frac{k!}{(k(N_f+1)-N_c)!} \Gamma_h(\Delta_X\omega;\omega_1,\omega_2)^{kN_f-N_c-1} \\ &\quad c \left(4N_c m_B\right) \left(-m_A N_f + \omega(-N_c \Delta_X + N_f(1-\Delta_Q))\right)\right) \\ &\left(\prod_{j=0}^{k-1} \prod_{a}^{N_f} \prod_{b}^{N_f} \Gamma_h \left(\mu_a + \nu_b + j\omega\Delta_X\right)\right) \right) \\ &\int_{T^{\tilde{N}_c}} \prod_{i=1}^{kN_f-N_c} d\sigma_i \, \frac{d\xi}{2\omega_1\omega_2} \, e^{\frac{\pi i}{2\omega_1\omega_2} 2\xi \sum \sigma_i} \prod_{1 \leq i < j \leq kN_f-N_c} \frac{\Gamma_h(\Delta_X\omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm(\sigma_i - \sigma_j))} \\ &\left(\prod_{a,b=1}^{N_f} \prod_{j=1}^{kN_f-N_c} \Gamma_h \left(m_B \frac{N_c}{kN_f-N_c} - m_a - m_A + \omega(\Delta_X - \Delta_Q) + \tilde{\sigma}_j\right) \right) \\ &\Gamma_h \left(-m_B \frac{N_c}{kN_f-N_c} + \tilde{m}_b - m_A + \omega(\Delta_X - \Delta_Q) - \tilde{\sigma}_j\right) \right) \\ &\prod_{j'=1}^{k} \Gamma_h \left(\pm \frac{\xi}{2} + \omega \left(N_f(1-\Delta_Q) - \Delta_X(N_c - j')\right) - m_A N_f\right) \end{split}$$

Si può effettuare un ulteriore shift in σ :

$$\tilde{\sigma} \longrightarrow \tilde{\sigma} - m_B \frac{N_c}{kN_f - N_c}$$
 (3.3)

Con questo shift i quark si scaricano sotto $U(1)_B$, ma si genera un termine di Chernsimons misto fra $l'U(1)_J$ e $U(1)_B$:

$$e^{\frac{\pi i}{2\omega_1\omega_2}2\xi(-m_BN_c+\sum\tilde{\sigma})}$$
(3.4)

A questo punto le cariche si posson leggere direttamente dalla funzione di partizione e si può vedere che sono identiche alle cariche di [6] (tenere conto che per me $j = 0, \ldots, k-1$, per lui b_i partono da 1 (a caso!))

$j=0,\ldots,k-1$	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$U(1)_A$	$U(1)_J$	$U(1)_R$
Electric Fields						
Q	N_f	0	N_c	1	0	Δ_Q
$ ilde{Q}$	0	$\overline{N_f}$	$-N_c$	1	0	Δ_Q
X	0	0	0	0	0	Δ_X
Magnetic Fields						
q	$\overline{N_f}$	0	$\frac{N_c}{kN_f - N_c}$	-1	0	$\Delta_X - \Delta_Q$
$ ilde{q}$	0	N_f	$-\frac{N_c}{kN_f-N_c}$	-1	0	$\Delta_X - \Delta_Q$ $\Delta_X - \Delta_Q$
X	0	0	Ő	0	0	Δ_X
M_j	N_f	$\overline{N_f}$	0	0	0	$2\Delta_Q + j\Delta_X$
b_j	0	0	0	$-N_f$	$\frac{1}{2}$	$N_f(1-\Delta_Q) + \Delta_X(j+1-N_f)$
\widetilde{b}_{j}	0	0	0	$-N_f$	$-\frac{1}{2}$	$N_f(1-\Delta_Q) + \Delta_X(j+1-N_Q)$

3.1.2 Secondo caso

Possiamo fare lo shift in σ che abbiamo fatto poco sopra prima di dualizzare il settore U(k) invece che dopo. A questo punto si può fare uno shift traceless che coinvolge anche ρ . Così facendo spostiamo la simmetria barionica sul quark del settore duale, scaricando come prima i quark "giusti". Notare che prima di fare ciò il quark U(k) è scarico sotto la simmetria barionica dopo la rinormalizzazione della carica barionica. Lo shift è il seguente:

$$\sigma \longrightarrow \sigma - m_B \frac{N_c}{kN_f - N_c} \qquad \rho \longrightarrow \rho + m_B \frac{N_c}{k}$$
 (3.5)

Notare che tr $(\sigma + \rho) = 0$.

Vediamo come modifica la funzione di partizione (e le cariche) [NOTA BENE, non

ho ancora dualizzato!]:

$$\begin{split} Z_{mag}(\mu_a,\nu_b,\tilde{\mu_a},\tilde{\nu_b}) &= \frac{1}{(k(N_f+1)-N_c)!(2\pi i)^{k(N_f+1)-N_c}} \Gamma_h(\Delta_X\omega;\omega_1,\omega_2)^{(k(N_f+1)-N_c)-1} \\ &\left(\prod_{j=0}^{k-1} \left(\prod_{a}^{N_f} \prod_{b}^{N_f} \Gamma_h \left(\mu_a + \nu_b + j\omega\Delta_X\right)\right)\right) \Gamma_h \left(-2m_A N_f + \omega(2\underline{\Delta}_M + j\Delta_X)\right)\right) \\ &\int_{T^{\tilde{N}_c}} \prod_{i=1}^{kN_f-N_c} d\sigma_i \prod_{i=1}^{k} d\rho_i \, d\xi \, e^{2\pi i \xi (\sum \sigma_i + \sum \rho_i)} \\ &\prod_{1 \leq i < j \leq kN_f-N_c} \frac{\Gamma_h(\Delta_X\omega \pm (\sigma_i - \sigma_j))}{\Gamma_h(\pm(\sigma_i - \sigma_j))} \prod_{1 \leq i < j \leq k} \frac{\Gamma_h(\Delta_X\omega \pm (\rho_i - \rho_j))}{\Gamma_h(\pm(\rho_i - \rho_j))} \\ &\left(\prod_{a,b=1}^{N_f} \prod_{j=1}^{kN_f-N_c} \Gamma_h \left(-m_a - m_A + \omega(\Delta_X - \Delta_Q) + \tilde{\sigma}_j\right) \right) \\ &\Gamma_h \left(\tilde{m}_b - m_A + \omega(\Delta_X - \Delta_Q) - \tilde{\sigma}_j\right) \\ &\left(\prod_{i=1}^{k} \Gamma_h \left(\pm \left(\rho_i + m_B \frac{N_c}{k}\right) + m_A N_f + \omega(\Delta_X - \underline{\Delta}_M)\right)\right) \\ &c\left(4m_B N_c (-m_A N_f + \omega(-N_c\Delta_X + N_f(1 - \Delta_Q))\right) \end{split}$$

A questo punto si può dualizzare il settore U(k) come fatto precedentemente.

Analizzando la formula 3.1 si vede come essa non risenta di termini di segno opposto nelle masse reali: compare sempre $\mu + \nu$ e quindi vediamo che dopo aver dualizzato non rimane alcune segno della simmetria barionica (come è giusto che sia).

La funzione di partizione è ora molto simile a quella del primo caso con già l'ultimo shift in σ effettuato.

La differenza sta però nel fatto che non viene generato alcune fase di tipo k_{BJ} e le cariche coincidono. Se ora shifto σ genero k_{BJ} ma rimetto carichi i quark "giusti".

3.2 Contact terms e k_{IJ}

Posso controllare le fasi presenti nella funzione di partizione calcolando il livello di Chern-Simons misto k_{IJ} di due simmetrie utilizzando la formula:

$$k_{IJ}^{eff} = k + \frac{1}{2} \sum_{fermionsf} q_I^f q_J^f \operatorname{sign}(\mu_f)$$
 (3.6)

Nella somma sui fermioni va considerato la loro "molteplicità", ossia anche la dimensione delle rappresentazioni in cui stanno.

Questa formula vale anche per simmetrie globali gauggiate con background gauging ([8]). Infatti gli stessi diagrammi che generano 3.6 generano anche termini del tipo

 $\int d^4\theta \Sigma_b V$ che non sono altro che FI terms per il supercampo di gauge V (con il valore dello scalare nel multipletto lineare (ricorda che D ha 4 θ)).

3.2.1 k_{BA}

Posso calcolare questo contact terms in entrambi i casi e il risultato è ovviamente uguale in entrambi e matcha con quello elettrico. Il segno di μ_f è quello tale per cui il livello rimane positivo (stessa convenzione di antonio).

Elettrico:

$$k_{BA}^{e} = \frac{1}{2} q_{B}^{f} q_{A}^{f} \operatorname{sign}(\mu_{f}) = \frac{1}{2} N_{f} N_{c} (1 \cdot 1 \operatorname{sign}(\mu) + 1 \cdot (-1) \operatorname{sign}(-\mu))$$

= $N_{f} N_{c}$

Magnetico: primo caso

$$k_{BA}^{m_1} = \frac{1}{2} 2N_f (kN_f - N_c) \frac{N_c}{kN_f - N_c} = N_f N_c$$

Magnetico: secondo caso

$$k_{BA}^{m_2} = \frac{1}{2}(2k) \left(\frac{1}{k}\right) (N_f) = N_f N_c$$

I livelli sono uguali in tutti i casi e infatti le fasi nella funzione di partizione sono identiche in tutti e tre i casi (e dovrei dimostrare che le fasi son generate da questi livelli: c'è un fattore di (-4) di differenza, è dovuto a come entra nell'azione. CONTROLLARE)

3.2.2 k_{BR}

Utilizziamo la stessa formula per calcolare questo livello, che dovrebbe essere identico in tutti e tre i casi (come prima).

Elettrico:

$$k_{BR}^{e} = \frac{1}{2} q_{B}^{f} q_{R}^{f} \operatorname{sign}(\mu_{f}) = \frac{1}{2} N_{f} N_{c} \left(1(\Delta_{Q} - 1) \operatorname{sign}(\mu) + -1(\Delta_{Q} - 1) \operatorname{sign}(-\mu) \right)$$
$$= N_{f} N_{c} (\Delta_{Q} - 1)$$

Magnetico: primo caso

$$k_{BR}^{m_1} = \frac{1}{2} 2N_f (kN_f - N_c) \frac{N_c}{kN_f - N_c} (\Delta_X - \Delta_Q - 1) = N_f N_c (\Delta_X - \Delta_Q - 1)$$

Magnetico: secondo caso

$$k_{BR}^{m_2} = \frac{1}{2} (2k) \left(\frac{1}{k} \right) (\Delta_X - (-N_c \Delta_X + N_f (1 - \Delta_Q))) = N_c (\Delta_X - (-N_c \Delta_X + N_f (1 - \Delta_Q)))$$

3.2.3 k_{BJ}

Non c'è modo di generare k_{BJ} con quella formula, visto che nessun campo è carico sotto $U(1)_B$ e $U(1)_J$ insieme..

Riferimenti bibliografici

- [1] A. Amariti and C. Klare, A journey to 3d: exact relations for adjoint SQCD from dimensional reduction, arXiv:1409.8623.
- [2] F. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N=1 Dual Theories, Nucl. Phys. B818 (2009) 137–178, [arXiv:0801.4947].
- [3] F. van de Bult, Hyperbolic hypergeometric functions, Master thesis (2007).
- [4] V. Spiridonov and G. Vartanov, Elliptic Hypergeometry of Supersymmetric Dualities, Commun.Math.Phys. **304** (2011) 797–874, [arXiv:0910.5944].
- [5] O. Aharony, S. S. Razamat, N. Seiberg, and B. Willett, 3d dualities from 4d dualities, JHEP 1307 (2013) 149, [arXiv:1305.3924].
- [6] K. Nii, 3d duality with adjoint matter from 4d duality, JHEP 1502 (2015) 024, [arXiv:1409.3230].
- [7] H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 1306 (2013) 106, [arXiv:1302.3645].
- [8] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. Strassler, Aspects of N=2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B499 (1997) 67-99, [hep-th/9703110].
- [9] F. Benini, C. Closset, and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 1110 (2011) 075, [arXiv:1108.5373].
- [10] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 1209 (2012) 091, [arXiv:1206.5218].
- [11] A. Amariti and C. Klare, Chern-Simons and RG Flows: Contact with Dualities, JHEP 1408 (2014) 144, [arXiv:1405.2312].