SoPI/2 Herramientas de teledetección cuantitativa.

2 de septiembre al 4 de noviembre 9 - 14 horas, Aula Planta Baja, CONAE

Francisco Nemiña fnemina@conae.gov.ar https://sopi.conae.gov.ar/aulavirtual Av. Paseo Colon 751, 1er piso Horario de consulta: 9 - 17 horas +54 11 4331 0074 int. 5699

si $\Delta S_U \geq 0 \Rightarrow$ este documento puede cambiar.

Descripción del curso: El curso busca brindar conceptos básicos de procesamiento digital de imágenes y extracción de datos cuantitativos a partir de la utilización de una serie de herramientas que incluyen las etapas de preprocesamiento, procesamiento y validación de los datos obtenidos. Durante el curso se trabaja como eje fundamental al concepto de firma espectral desded un punto de vista del espacio espectral.

Requisitos: Haber cursado el curso SoPI I o acreditar conocimientos equivalentes de teledetección. Es deseable además poseer conocimientos elementales sobre físca y matemática al nivel de un graduado en ciencias de la tierra. Conocimientos de programación en Python no excluyentes.

Nota: El curso brindará certificado de aprobación.

Texto: Remote Sensing Digital Image Analysis, 5th Edition Autor: John A. Richards;

Texto: Quantitative remote sensing of land surfaces, Autor: Shunlin Liang;

Objetivos del curso:

Al finalizar el curso, el alumno podrá:

- 1. Familiarizarse con los conceptos de firma espectral.
- 2. Poder comprender a un píxel como un objeto vectorial.
- 3. Conocer las distintas fuentes de distorsión radiométrica.
- 4. Poder realizar operaciones en el espacio espectral.
- 5. Poder relacionar indiciones con variables biofisicas.
- $6.\$ Comprender el concepto de dimensionalidad de un espacio.
- 7. Poder realizar clasificaciones supervisadas y no supervisadas.
- 8. Comprender la necesidad de realizar validaciones sobre los datos obtenidos.
- 9. Conocer como realizar validaciones desde el punto de vista operativo.
- 10. Comprender los fundamentos matemáticos de estos procesos.

Puntajes de la nota:

Actividad	Puntaje
Cuestionarios	5 cada uno
Trabajos práctico	10 cada uno
Trabajo final	40
Respuestas en el foro	1 cada una
Asistencia	2 cada clase

Distribución de notas:

Puntaje	Nota
170 - 166	10
165 - 156	9
155 - 116	8
115 - 105	7
105 - 101	6
100 - 0	No aprobó

Politicas del curso:

General

- Los cuestionarios se completaran de forma online.
- Los trabajos prácticos serán enviados en forma online.
- Los cuestionarios se podrán rendir **una** sola vez.

Cuestionarios y trabajo final

- Los estudiantes deberán trabajar por su cuenta.
- No se aceptaran los cuestionarios completados fuera de fecha.

Cronograma tentativo:

Día	Contenido
4/septiembre	 Teoría: Introducción al curso. Repaso de álgebra lineal. Vectores y matrices. Operaciones con vectores y matrices. Espacios vectoriales. Transformaciones lineales. Resolución de sistemas de sistemas de ecuaciones. Diagonalización. Autovalores y autovectores. Práctica: Operaciones matriciales en python. Sumas y diagonalización. Problema de inversión. Lecturas: Richards - Capítulo 3 y apéndice C.
9/septiembre	 Teoría: Definición de magnitudes físicas. Radiancia. Irradiancia. Reflectancia bidireccional. Construcción de firmas espectrales. Características de un sensor. Firma espectral del agua, suelo y vegetación. Mezcla y desmezcla de firmas espectrales. Práctica: Familiarización con la interfaz de SoPI. Extracción y ploteo de firmas espectrales. Interpretación de firmas espectrales. Desmezcla espectral. Lecturas: Richards - Capítulo 1. Liang - Capítulo 1.
16/septiembre	 Teoría: El sol como fuente de energía. Magnitudes. Radiancia y reflectancia. Magnitudes a tope de la atmósfera. Cálculo de irradiancias solares por banda. Convolución espectral. Corrección por ángulo solar. Ecuación de transferencia radiativa. Soluciones cerradas. Aproximaciones. Dispersión y absorción en la atmosfera terrestre. Bandas de absorción. Dispersión por Rayleigh. Corrección por substracción de pixel obscuro. Errores por omisión de correcciones. Práctica: Corrección de DN a reflectancia a tope de la atmósfera (TOA). Corrección por sustracción de pixel oscuro. Corrección con 6S. Comparación de firmas espectrales de imágenes corregidas y no corregidas. Lecturas: Richards - Capítulo 2. Mahiny, Abdolrassoul S., and Brian J. Turner. A comparison of four common atmospheric correction methods." Photogrammetric Engineering & Remote Sensing 73.4 (2007): 361-368.

23/septiembre	 Teoría: Imágenes como vectores. Dimensionalidad. Selección de bandas en función del problema. Reducción de dimensionalidad. Índices. Construcción de índices a partir de una firma espectral. Relación entre índices y variables biofísicas. Índice de vegetación. Índice de vegetación normalizado. Otros índices de vegetación. Práctica: Cálculo y construcción de imágenes a partir de índices. Construcción de firmas fenológicas a partir del NDVI. Lecturas: Liang - Capítulo 8.
30/septiembre	 Teoría: Transformaciones como rotaciones. Cálculo por componentes principales. Transformada tasseled-cap. Aplicaciones de cálculo de componentes principales a imágenes multibanda y series temporales de imágenes Práctica: Calculo de componentes principales sobre imágenes sobre apilados de imágenes multiespectrales y series temporales de índices. Transformada tasseled-cap. Interpretación de las bandas obtenidas por el análisis de componentes principales. Lecturas: Richards - Capítulo 6.
7/octubre	Clase de consulta.
14/octubre	 Teoría: Métodos de clasificaciones supervisadas. Clasificación por máxima verosimilitud, distancia mínima y paralelepípedos. Ventajas y desventajas de cada algoritmo. Selección de clases iniciales. Unicidad de la clasificación. Efecto Hughes. Técnicas de post-clasificación. Práctica: Clasificación supervisada para la generación de mapas de coberturas. Métodos de selección de clases de entrenamiento. Firmas espectrales para las clases iniciales. Comparación entre métodos supervisados y no supervisados. Máscaras. Lecturas: Richards - Capítulo 8.
21/octubre	 Teoría: Transformación de clases espectrales a clases de información. Extracción de datos cuantitativos. Métodos de clasificaciones no supervisadas, clustering, algoritmo k-means, convergencia y problemas del algoritmo, selección inicial de clases. Costo computacional. Práctica: Clasificación no supervisada para la generación de mapas de coberturas. Clasificación por algoritmo k-means y fusión de clases. Lecturas: Richards - Capítulo 9.

28/octubre	■ Teoría: Precisión de un mapa, toma de puntos en el
	terreno, diseño de muestreos, error en la precisión de
	la determinación de puntos en el terreno, construcción
	de matriz de confusión, precisión total, del productor
	y del usuario, técnicas básicas de análisis, índices.
	 Práctica: Cálculo de matrices de confusión para clasifi-
	caciones supervisadas y no supervisadas. Comparación
	entre las clasificaciones supervisadas y no supervisadas
	a partir de la matriz de confusión. Ventajas y desven-
	tajas de cada método.
	■ Lecturas: Olofsson, Pontus, et al. "Good practices for
	estimating area and assessing accuracy of land change
	emote Sensing of Environment 148 (2014): 42-57.
4/noviembre	Clase de consulta.