Chapter 4

DC-DC Converters (DC Choppers)

DC choppers = **DC**-to-**DC** converters

A chopper can be considered as a DC equivalent to an AC transformer with a continuously variable turns ratio. Like a transformer, it can be used to step-down or step-up a DC voltage source.

A DC-DC Converter System

Basic Principle

$$V_{o} = \frac{1}{T_{s}} \int_{0}^{t_{on}} v_{0} dt = \frac{t_{on}}{T_{s}} V_{d} = f_{s} t_{on} V_{d} = D V_{d}$$

D – duty ratio

2 methods to control the output voltage:

- 1) frequency fixed, on-duration adjusted -- PWM
- 2) Both frequency and on-duration adjusted.

PWM circuit

Modulation of DC-DC converters by PWM

Basic topologies of DC-DC Converters:

- 1 Buck regulators (step-down)
- 2 Boost regulators (step-up)
- 3 Buck-Boost regulators
- 4 Cuk regulators
- 5 Full-bridge regulators

a key term: PWM (pulse-width modulation)

 $2f_s$

Focus on steady state

Continuous-conduction

inductor current positively continuous

C1: Capacitor voltage can be seen as constant unless the purpose is for voltage ripple calculation (capacitor large enough)

C2:
$$I_C = 0$$
 ($I_L = I_0$), $V_L = 0$ in a cycle

Assuming i_L rises linearly by ΔI_L in time t_{on} Assuming i_L drops linearly by ΔI_L in time t_{off}

$$V_{d} - V_{o} = L \frac{\Delta I_{L}}{t_{on}}$$

$$\overline{V_o = DV_d}$$

$$V_d * I_d = V_o * I_o$$

$$-V_o = -L \frac{\Delta I_L}{t_{off}}$$

equal to that before LC

$$I_d = DI_o$$

$$\Delta I_L = \frac{V_d D (1 - D)}{f_s L}$$

Output Voltage Ripple

$$\Delta V_o = \frac{V_d D (1 - D)}{8LC f_s^2}$$

Discontinuous-conduction

inductor current is discontinuous

Boundary between continuous and discontinuous

 i_L , peak i_L v_d v_d

In steady state, the average inductor voltage must be zero.

$$\frac{V_o}{V_d} = \frac{D}{D + \Delta_1}$$

$$\Delta_1 = \frac{2f_s L}{V_d D} I_o$$

Characteristics of Buck circuits:

- 1. step-down;
- 2. simple, requiring only one *device*;
- 3. high efficient (>90%);
- 4. the input current discontinuous and a smoothing input filter normally required;
- 5. providing only positive output voltage and unidirectional output current.

DC-DC Choppers

Continuous-conduction

C1 and C2 are still feasible

Assuming i_L rises linearly by ΔI_L in time $t_{\rm on}$ Assuming i_L drops linearly by ΔI_L in time $t_{\rm off}$

$$V_d = L \frac{\Delta I_L}{t_{on}}$$

$$V_{d} - V_{o} = -L \frac{\Delta I_{L}}{t_{off}}$$

$$V_o = \frac{V_d}{1 - D}$$

$$V_d * I_d = V_o * I_o$$

$$I_d = \frac{I_o}{1 - D}$$

$$\Delta I_L = \frac{V_d D}{f_s L}$$

Output Voltage Ripple

Discontinuous-conduction

$\begin{array}{c|c} i_{L} \\ \downarrow \\ V_{d} \\ \hline \\ - \\ \hline \end{array}$

Boundary between continuous and discontinuous

$$I_{\rm LB} = 0.5\Delta I_{\rm L}$$
 $I_{\rm oB} = I_{\rm LB}$

$$\Delta I_L = \frac{V_d D}{f_s L}$$

In steady state, the average inductor voltage must be zero.

$$\frac{V_o}{V_d} = \frac{\Delta_1 + D}{\Delta_1}$$

$$\Delta_1 = \frac{2f_s L}{V_d D} I_o$$

Characteristics of Boost circuits:

- 1. step-up;
- 2. simple, requiring only one device;
- 3. high efficient;
- 4. input current continuous;
- 5. output voltage very sensitive to changes in duty cycle k, making it difficult to stabilize the regulator;
- 6. average output current less than the average inductor current by a factor of (1-D) and a much higher rms current flowing through the filter capacitor, resulting in the use of a larger filter capacitor than those of a Buck regulator.

Supplement 4-1 Buck-Boost: Cascade of Buck and Boost

DC-DC Choppers

5-3. Buck-Boost Regulators

Mode 2 - off

Continuous-conduction

Assuming i_L rises linearly by ΔI_L in time $t_{\rm on}$ Assuming i_L drops linearly by ΔI_L in time $t_{\rm off}$

$$V_d = L \frac{\Delta I_L}{t_{on}}$$

$$V_o = L \frac{\Delta I_L}{t_{off}}$$

$$V_o = \frac{V_d D}{1 - D}$$

$$V_d * I_d = V_o * I_o$$

$$I_d = \frac{I_o D}{1 - D}$$

$$\Delta I_L = \frac{V_d D}{f_s L}$$

DC-DC Choppers

Output Voltage Ripple

Mode 2 - off

Discontinuous-conduction

Boundary between continuous and discontinuous

$$I_{\rm LB} = 0.5 \Delta I_{\rm L}$$

$$I_{\text{oB}} = I_{\text{LB}}(1-D)$$

$$\Delta I_L = \frac{V_d D}{f_s L}$$

In steady state, the average inductor voltage must be zero.

$$\frac{\overline{V_o}}{V_d} = \frac{D}{\Delta_1}$$

$$\Delta_1 = \frac{2f_s L}{V_d D} I_o$$

Characteristics of Buck-Boost circuits:

- 1. step-down or –up;
- 2. simple, requiring only one device;
- 3. high efficient;
- 4. polarity of output voltage reversed;
- 5. the input current discontinuous and a high peak current flowing through the device.

Supplement 4-2 Cuk: Cascade of Boost and Buck

5-4. Cuk Regulators

Continuous-conduction

$$V_{d} - V_{c1} = -L_{1} \frac{\Delta I_{L1}}{t_{o\!f\!f}} \label{eq:Vd}$$

$$V_d = L_1 \frac{\Delta I_{L1}}{t_{on}}$$

$$V_o = L_2 \frac{\Delta I_{L2}}{t_{o\!f\!f}}$$

$$V_{c1} - V_o = L_2 \frac{\Delta I_{L2}}{t_{on}}$$

$$V_{c1} = \frac{V_d}{1 - D}$$

$$V_{c1} = \frac{V_o}{D}$$

$$V_o = \frac{DV_d}{1 - D}$$

$$I_d = \frac{DI_o}{1 - D}$$

$$\Delta I_{L1} = \frac{DV_d}{f_s L_1}$$

$$\Delta I_{L2} = \frac{DV_d}{f_s L_2}$$

$$\Delta V_{c1} = \frac{I_d(1-D)}{f_s C_1}$$

$$\Delta V_{c2} = \frac{DV_d}{8C_2 L_2 f_s^2}$$

Characteristics of Cuk circuits:

- 1. step-down or –up;
- 2. requiring only one device;
- 3. high efficient;
- 4. input current continuous;
- 5. ripple current of C₁ high;
- 6. additional capacitor and inductor.

Summary:

- Buck (step-down), Boost (step-up), Buck-Boost (step-up & -down),
 Cuk (Boost-Buck, step-up & -down)
- Topologies of these DC choppers and circuits in different modes
- Key waveforms and calculations based on two rules

DC components of input/output voltage/current

DC components of capacitor voltage and inductor current

Ripples of capacitor voltage and inductor current

- Design of DC choppers
- Difference between continuous- and discontinuous-conduction

5-5. Full-bridge Regulators

Four quadrant operation is possible.

PWM

with Bipolar Voltage Switching

$v_{control} > v_{tri}$

$$T_{A+}, T_{B-}$$
 on: $v_{AN} = V_d, v_{BN} = 0;$

$$(T_{A-}, T_{B+} \text{ off})$$
 $v_o = V_d$

$$i_o > 0$$
 T_{A+} , T_{B-} conduct; $i_d = i_o$

$$i_o < 0$$
 D_{A+} , D_{B-} conduct; $i_d = i_o$

$v_{control} < v_{tri}$

$$T_{A-}$$
, T_{B+} on: $v_{AN} = 0$, $v_{BN} = V_d$;

$$(T_{A+}, T_{B-} \text{ off})$$
 $v_o = -V_d$

$$i_o < 0$$
 $T_{A-}, T_{B+} \text{ conduct}; \quad i_d = -i_o$

$$i_o > 0$$
 D_{A-}, D_{B+} conduct; $i_d = -i_o$

PWM

with Unipolar Voltage Switching

Leg A:

$$\begin{aligned} & v_{control} > v_{tri} & T_{A+} \text{ on } (T_{A-} \text{ off}) & v_{AN} = V_d; \\ & v_{control} < v_{tri} & T_{A-} \text{ on } (T_{A+} \text{ off}) & v_{AN} = 0; \end{aligned}$$

Leg B:

$$\begin{aligned} &-v_{control} > v_{tri} & \text{T}_{\text{B+}} \text{ on } (\text{T}_{\text{B-}} \text{ off}) & v_{BN} = V_d; \\ &-v_{control} < v_{tri} & \text{T}_{\text{B-}} \text{ on } (\text{T}_{\text{B+}} \text{ off}) & v_{BN} = 0; \end{aligned}$$

$$v_o = v_{AN} - v_{BN}$$

"effectively" doubling f_s

PWM

with Unipolar Voltage Switching

Leg A:

 T_{A+} on $i_o > 0$ T_{A+} conducts; $i_{dI} = i_o$ $i_o < 0$ D_{A+} conducts; $i_{dI} = i_o$ T_{A-} on $i_o < 0$ T_{A-} conducts; $i_{dI} = -i_o$ $i_o > 0$ D_{A-} conducts; $i_{dI} = -i_o$

Leg B:

 T_{B+} on $i_o < 0$ T_{B+} conducts; $i_{d2} = -i_o$ $i_o > 0$ D_{B+} conducts; $i_{d2} = -i_o$ T_{B-} on $i_o > 0$ T_{B-} conducts; $i_{d2} = i_o$ $i_o < 0$ D_{B-} conducts; $i_{d2} = i_o$

$$\boldsymbol{i_d} = \boldsymbol{i_{d1}} + \boldsymbol{i_{d2}}$$

Output Ripple of Full-bridge Regulators

using PWM with (a) bipolar and (b) unipolar voltage switching

Supplement 4-3 Simulation of the Cuk by Matlab

The working procedure of the Cuk regulators can be represented by two modes:

• Mode 1

$$\begin{cases} \frac{di_{L_1}}{dt} = \frac{V_s}{L_1} \\ \frac{di_{L_2}}{dt} = \frac{1}{L_2} (v_{c1} - v_{c2}) \\ \frac{dv_{c1}}{dt} = -\frac{i_{L_2}}{C_1} \\ \frac{dv_{c2}}{dt} = \frac{1}{C_2} (\frac{v_{c2}}{R} - i_{L_2}) \end{cases}$$

• Mode 2

$$\begin{cases} \frac{di_{L_1}}{dt} = \frac{1}{L_1} (V_s - V_{c1}) \\ \frac{di_{L_2}}{dt} = \frac{V_{c2}}{L_2} \\ \frac{dV_{c1}}{dt} = \frac{i_{L_1}}{C_1} \\ \frac{dV_{c2}}{dt} = \frac{1}{C_2} (\frac{V_{c2}}{R} - i_{L_2}) \end{cases}$$

The load is assumed as a pure resistor R.

Simulation Parameters:

$$V_s = 5V$$
, $C_1 = C_2 = 100uF$, $L_1 = L_2 = 0.5mH$;

$$R_{load} = 5\Omega;$$

$$f_s=10kHz$$
, D=0.8 $_{\circ}$

The functions used to solve the state equations in Matlab: ode23, ode45

The first five cycles

Five cycles in steady state

The End

