CAN207 Continuous and Discrete Time Signals and Systems

Lecture-11
Laplace Transform _ Part 2

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content

- 3. Fundamental LT Pairs
 - Commonly seen LT pairs
- 4. Properties of Laplace transform
 - Useful properties (similar to CTFT)
- 5. Inverse Laplace Transform
 - Partial Fraction Expansion
 - ROC determination
- 6. Geometric Evaluation of CTFT based on LT
 - Zero-pole plot
 - Graphical interpretation

• 1. Unit-impulse $x(t) = \delta(t)$

$$X(s) = \int_{-\infty}^{\infty} \delta(t)e^{-st}dt = 1$$

Since it does not depend on the value of *s*, it converges at every point in the s-plane with no exceptions. So the ROC is the entire s-plane.

• 2. Shifted unit-impulse $x(t) = \delta(t - t_0)$

$$X(s) = \int_{-\infty}^{\infty} \delta(t - t_0)e^{-st}dt = e^{-st_0}$$

- If $\tau > 0$:
- If τ < 0:

• 3. Unit-step x(t) = u(t)

$$X(s) = \int_{-\infty}^{\infty} u(t)e^{-st}dt = \int_{0}^{\infty} e^{-st}dt = -\frac{1}{s}e^{-st}\Big|_{0}^{\infty}$$
$$= -\frac{1}{\sigma + j\omega}e^{-(\sigma + j\omega)t}\Big|_{0}^{\infty} = -\frac{1}{\sigma + j\omega}[0 - 1] = \frac{1}{\sigma + j\omega} = \frac{1}{s}$$

for the exponential term $e^{-\sigma t}$ to converge as $t \rightarrow \infty$, we need $\sigma > 0$

- The transform expression is valid only for points on the right half of the s-plane. This region is shown shaded on the right.
 - Note that the transform does not converge at points on the $j\omega$ axis. It converges at any point to the right of the $j\omega$ axis regardless of how close to the axis it might be.

• 4. Causal exponential signal

$$x(t) = e^{-at}u(t)$$

– When a is real:

$$X(s) = \int_0^\infty e^{-(\sigma+a)t} e^{-j\omega t} dt = -\frac{e^{-(\sigma+a)t} e^{-j\omega t}}{j\omega + (\sigma+a)} \bigg|_0^\infty = \frac{1}{j\omega + \sigma + a} = \frac{1}{s+a}$$

where the integration converges when $\Re\{s\} = \sigma > -a$.

– When a is complex, i.e. $a = a_r + ja_i$, then it changes:

$$X(s) = \frac{1}{a_r + ja_i + \sigma + j\omega} e^{-(\sigma + a_r)t} e^{-j(\omega + a_i)t} \Big|_0^{\infty}$$

– To converge, we need $\sigma + a_r > 0$, so the result:

$$X(s) = \frac{1}{s+a}, \Re\{s\} > -\Re\{a\}$$

• 5. Rectangular pulse signal

$$x(t) = \Pi\left(\frac{t - \tau/2}{\tau}\right)$$

• The Laplace transform of the signal x(t) is computed as

$$X(s) = \int_0^{\tau} 1 e^{-st} dt = \frac{e^{-st}}{-s} \Big|_0^{\tau} = \frac{1 - e^{-s\tau}}{s}$$

- At a first glance we may be tempted to think that the transform X(s) might not converge at s = 0 since the denominator of X(s) becomes equal to zero at s = 0.
- We must realize, however, that the numerator of X(s) is also equal to zero at s=0.
- Using L'Hospital's rule, $X(s)|_{s=0} = \frac{\tau e^{-s\tau}}{1}\Big|_{s=0} = \tau$, so X(s) converges at s=0.

- 5. Rectangular pulse signal $x(t) = \Pi\left(\frac{t-\tau/2}{\tau}\right)$
- Zero-pole plot:

• Magnitude of LT and FT:

Quiz 4

• Find the Laplace transform of the signal

1.
$$x(t) = e^{j\omega_0 t}u(t)$$

2.
$$x(t) = \cos(\omega_0 t)u(t)$$

• 1. Linearity

$$\alpha_1 x_1(t) + \alpha_2 x_2(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \alpha_1 X_1(s) + \alpha_2 X_2(s)$$

- ROC: at least the overlap of the two individual ROCs, if such an overlap exists.
 - The ROC may be greater than the overlap of the two regions if the addition of the two transforms results in the cancellation of a pole.

• 2. Time-shifting

$$x(t-\tau) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s\tau} X(s)$$

- ROC: generally same as the ROC of X(s).
 - If the time shift makes a causal signal non-causal then the points $\sigma = \infty$ would need to be excluded from the ROC.
 - Similarly, if an anti-causal signal loses its anti-causal property as the result of a shift, then the points $\sigma = -\infty$ need to be excluded.

• 3. Shifting in the s-domain

$$x(t) e^{s_0 t} \stackrel{\mathcal{L}}{\longleftrightarrow} X(s - s_0)$$

- ROC: shifted version of the ROC for X(s), shifted horizontally by an amount equal to the real part of the parameter s_0 .

• Example:

$$x(t) = e^{-2t}\cos(3t)u(t)$$

• 4. Scaling in time and s-domain

$$x(at) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right)$$

- ROC: scaled version of the ROC for X(s).

$$\sigma_1 < \operatorname{Re}\{s\} < \sigma_2 \longrightarrow \sigma_1 < \frac{\operatorname{Re}\{s\}}{a} < \sigma_2$$

Depending on the sign of the parameter a, two possibilities
 need to be considered for the ROC:

a. If
$$a > 0$$
: $a \sigma_1 < \text{Re}\{s\} < a \sigma_2$

b. If
$$a < 0$$
: $a \sigma_2 < \text{Re}\{s\} < a \sigma_1$

• Example:

$$x(t) = e^{2t}u(-t)$$

• 5. Differentiation in time domain

$$\frac{dx\left(t\right)}{dt} \iff sX\left(s\right)$$

- ROC: at least equal to the ROC of the original transform.
 - If the original transform X(s) has a single pole at s = 0 that sets the boundary of its ROC, then the cancellation of that pole due to multiplication by s causes the ROC of the new transform sX(s) to be larger.
- 6. Differentiation in the s-domain

$$t x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} -\frac{dX(s)}{ds}$$

- ROC: the same as the ROC of the original transform X(s).
- Example: unit ramp signal

• 7. Convolution property

$$x_1(t) * x_2(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_1(s) X_2(s)$$

- ROC: at least the overlap of the two individual ROCs, if such an overlap exists.
 - The ROC may be greater than the overlap of the two regions if the addition of the two transforms results in the cancellation of a pole.
- Example: a signal x(t) is fed in a system with the impulse response h(t). Determine the output y(t) using the convolution property.

$$h(t) = e^{-t}u(t)$$
$$x(t) = \delta(t) - e^{-2t}u(t)$$

• 8. Integration property

$$\int_{-\infty}^{t} x(\lambda) \ d\lambda \iff \frac{1}{s} X(s)$$

It can be derived that

$$\mathcal{L}\left\{\int_{-\infty}^{t} x(\tau)d\tau\right\} = \mathcal{L}\left\{u(t)\right\}\mathcal{L}\left\{x(t)\right\} = \frac{1}{s}X(s)$$

- the ROC of X(s) is $\sigma_1 < \mathcal{R}e\{s\} < \sigma_2$
- the ROC of u(t) is $\Re e\{s\} > 0$
- the ROC of the integrated x(t) must be at least the overlap of the two ROCs given above.
 - It may be larger than the overlap if X(s) has a zero at s = 0 to counter the pole at s = 0 introduced by the transform of the unit-step function.

Quiz 5

• Using the properties of the Laplace transform, determine X(s) for each of the signals listed below. Also indicate the ROC in each case.

1.
$$x(t) = \delta(t) + 2e^{-t}u(t)$$

2.
$$x(t) = e^{2(t+1)}u(-t-1)$$

3.
$$x(t) = u(t) - 2u(t-1)$$

4. plotted on the right

5.1 Inverse Laplace Transform

• The Inverse Laplace Transform is strictly defined as:

$$x(t) = \mathcal{L}^{-1}\{X(s)\} = \frac{1}{j2\pi} \int_{c-i\infty}^{c+j\infty} X(s)e^{st}ds$$

- Strict computation is complicated and rarely used in engineering
- Practically, the Inverse Laplace Transform of a rational function is calculated using a method of table look-up:
 - based on the LT pairs $\mathcal{L}\{Ae^{-at}u(t)\} = \frac{A}{s+a}$, $\mathcal{R}e\{s\} > -a$ and $\mathcal{L}\{-Ae^{-at}u(-t)\} = \frac{A}{s+a}$, $\mathcal{R}e\{s\} < -a$.
 - a rational function of LT could be expressed as

$$X(s) = \sum_{i=1}^{N} \frac{A_i}{s + a_i}, \ s \in ROC$$

- then its inverse LT is a linear combination of $A_i e^{-a_i t} u(t)$ and $-A_i e^{-a_i t} u(-t)$
- the ROC will suggest the corresponding time-domain function.

5.2 Partial Fraction Expansion

- Recall the PFE introduced in Lect. 2 (sec. 6)
 - Simpler version:
- Step 1: Factor the bottom (denominator)

$$\frac{5x-4}{x^2-x-2} = \frac{5x-4}{(x-2)(x+1)}$$

• Step 2: Write one partial fraction for each of those factors

$$\frac{5x-4}{(x-2)(x+1)} = \frac{A_1}{x-2} + \frac{A_2}{x+1}$$

• Step 3: Reduce the fractions to a common denominator

$$5x-4 = A_1(x+1) + A_2(x-2)$$

Step 4: Solve for A₁ and A₂

Root for (x+l) is x = -l
$$5(-1) - 4 = A_{1}(-1+1) + A_{2}(-1-2)$$

$$-9 = 0 + A_{2}(-3)$$

$$A_{2} = 3$$

Root for (x-2) is x = 2
$$5(2) - 4 = A_{1}(2+1) + A_{2}(2-2)$$

$$6 = A_{1}(3) + 0$$

$$A_{1} = 2$$

Xl'an Jiaotong-Liverpool University

和文を対象語本學
$$\frac{5x-4}{x^{2}-x-2} = \frac{2}{x-2} + \frac{3}{x+1}$$
21

- 1. It has to be **proper** rational expressions;
- 2. Single poles, i.e. no higher order of roots on the denominator.

5.2 Partial Fraction Expansion

- Complete version of PFE
- Consider a rational transform in the form

$$X(s) = \frac{B(s)}{(s-p_1)(s-p_2)\dots(s-p_N)}$$

- where the poles $p_1, p_2,...,p_N$ are distinct.
- the order of the numerator polynomial B(s) is less than the order of the denominator polynomial.
- The transform X(s) can be expanded into partial fractions in the form

$$X(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \dots + \frac{k_N}{s - p_N}$$

- the coefficients k_1 , k_2 ,..., k_N are called the residues of the partial fraction expansion. They can be computed by

$$k_i = (s - p_i) X(s) \Big|_{s=p_i}, \qquad i = 1, 2, \dots, N$$

5.2 Partial Fraction Expansion

• Example 1: A causal signal x(t) has the Laplace transform as follows. Determine x(t) using PFE.

$$X(s) = \frac{s+1}{s(s+2)}$$

• Example 2: A signal x(t) has the Laplace transform as follows. Determine x(t) using PFE.

$$X(s) = \frac{s+1}{s(s^2+9)}, \Re e\{s\} > 0$$

5.3 ROCs' influence

- The ROC of X(s) is the overlapping region of all partial fraction expanded sections.
- Consider an example $X(s) = X_1(s) + X_2(s) = \frac{1}{s+1} \frac{1}{s+2}$
- the possible ROCs for them are:

• Given the ROC of X(s), we need to select corresponding ROC₁ and ROC₂ such that ROC = ROC₁ \cap ROC₂

5.3 ROCs' influence

$$X(s) = \frac{1}{s+1} - \frac{1}{s+2}$$

• For example, if the ROC of X(s) is the following

• then we know ROC1 is

• such that $x(t) = -e^{-t}u(-t) - e^{-2t}u(t)$

Quiz 6

• The Laplace transform of a signal x(t) is

$$X(s) = \frac{5(s-1)}{(s+1)(s+2)(s-2)(s-3)}$$

with the ROC specified as

$$-1 < \mathcal{R}e\{s\} < 2$$

Determine x(t).

6.1 Zero-pole plot

• Recall: a rational function H(s) can be expressed in zero-pole form as: $H(s) = K \frac{(s-z_1) (s-z_2) \dots (s-z_M)}{(s-p_1) (s-p_2) \dots (s-p_N)}$

- The roots $z_1,...,z_M$ of the numerator polynomial are referred to as the *zeros* of the system function;
- The roots $p_1,...,p_N$ of the denominator polynomial are the *poles* of the system function.
- A pole-zero plot for a system function is obtained by marking the poles and the zeros of the system function on the s-plane.
 - o for zeros;
 - x for poles.

6.1 Zero-pole plot

• Example: Construct a pole-zero plot for a LTIC system with system function (with a pole at -1)

$$H(s) = \frac{s^2 + 1}{s^3 + 5s^2 + 17s + 13}$$

- If this system is **causal**, indicate its ROC on the zero-pole plot.
- What if this system is **stable**?

- Suppose $H(s) = \frac{1}{s+0.5}$, $-0.5 < \Re\{s\}$;
 - The *jω*-axis is included in the ROC, so its FT exists as $H(\omega) = \frac{1}{j\omega + 0.5}$;
- In the s-plane, $H(\omega)$ can be represented by the vector pointing from the pole at (-0.5, 0) to a moving point $(0, j\omega)$ on the $j\omega$ -axis as ω varies.
- For the magnitude spectrum $|H(\omega)|$:
 - the length of the vector $(0.5, j\omega)$ is $\sqrt{0.5^2 + \omega^2}$;
 - so the magnitude spectrum is the reciprocal of the length of the vector:

$$|H(\omega)| = \frac{1}{\sqrt{0.5^2 + \omega^2}}$$

- For the phase spectrum $\angle H(\omega)$:
 - the phase angle of the vector $(0.5, j\omega)$ is $tan^{-1}(\omega/0.5)$;
 - so the phase spectrum is:

$$\angle H(\omega) = -\tan^{-1}(2\omega)$$

• Assuming the system is stable, the Fourier transform-based system function $H(\omega)$ exists, and can be found by evaluating H(s) for $s = j\omega$:

$$H(\omega) = H(s)\Big|_{s=j\omega} = K \frac{(j\omega - z_1) (j\omega - z_2) \dots (j\omega - z_M)}{(j\omega - p_1) (j\omega - p_2) \dots (j\omega - p_N)}$$

- ω is a point on the imaginary axis in the s-plane. When ω changes, this point is moving along the $j\omega$ -axis from $-\infty$ to ∞ ;
- The numerator is represented as M vectors pointing from $(z_i, 0)$ to $(0, j\omega)$, so the vector is $(z_i, j\omega)$;
- Similarly, the denominator is represented as N vectors $(p_i, j\omega)$;
- The magnitude of the frequency response at $\omega = \omega_0$ is found by

$$|H(\omega_0)| = K \frac{|B_1(\omega_0)| . |B_2(\omega_0)| ... |B_M(\omega_0)|}{|A_1(\omega_0)| . |A_2(\omega_0)| ... |A_N(\omega_0)|}$$

• The phase of the frequency response at $\omega = \omega_0$ is found by

$$\angle H\left(\omega_{0}\right) = \angle B_{1}\left(\omega_{0}\right) + \angle B_{2}\left(\omega_{0}\right) + \ldots + \angle B_{M}\left(\omega_{0}\right) - \angle A_{1}\left(\omega_{0}\right) - \angle A_{2}\left(\omega_{0}\right) - \ldots - \angle A_{N}\left(\omega_{0}\right)$$

- (a) Moving the tip of the vector for $B_i(\omega)$ on the jw-axis;
- (b) contribution of the zero at $s = z_i$ to the magnitude of the frequency response;
- (c) contribution of the zero at $s = z_i$ to the phase of the frequency response.

- (a) Moving the tip of the vector for $B_i(\omega)$ on the jw-axis;
- (b) contribution of the poles at $s = p_i$ to the magnitude of the frequency response;
- (c) contribution of the poles at $s = p_i$ to the phase of the frequency response.

Quiz 7

• A LTI system is described by the system function

$$H(s) = \frac{s^2 + s - 2}{s^2 + 2s + 5}$$

- Construct a pole-zero plot;
- Use it to determine the magnitude and the phase of the frequency response of the system at the frequency $\omega_0 = 2 \text{ rad/s}$;
- Sketch the magnitude and phase characteristics for all frequencies.

Next ...

- No NEW content in week 7
- A revision class on Wednesday

