

Lecture 21.

Introduction to OWL: Ontology Web Language

Alexandra V. Vitko

KNURE, AI Department, alexandra_vitko@yahoo.com

OWL: what?

- Core of the World Wide Web Consortium's Semantic Web activity
- W3C Recommendation 10 Feb 2004
- In various senses a successor to previous work on "Web-friendly" knowledge modelling languages
 - RDF & RDF Schema
 - DAML-ONT
 - OIL / DAML+OIL

OWL: W3C definition

"language for defining structured Web-based ontology

which enable

richer integration and interoperability of data across application boundaries"

OWL General Goals and Requirements

Goal 1. Shared Ontologies

 Ontologies are publicly available (at least read only (possibly read-write later)) and different data sources can commit to the same ontology for shared meaning.

Goal 2. Ontology Extension

- Ontologies can be extended by other ontologies in order to provide additional definitions
- Possible Approach:
 - Explicit representation of extension

Multiple Schemas in RDF

Goal 3. Ontology Evolution

- Ontologies can be changed over time and data sources can specify which version of the ontology they commit to
- Possible Approach:
 - Revisions are separate documents
 - Explicit links to prior versions
 - Explicit backwardscompatibility

Goal 4. Ontology Interoperability

 Different ontologies may model the same concepts in different ways

- Possible Approach:
 - primitives for mapping

Goal 5. Detect Inconsistency

 Different ontologies or data sources may be contradictory

- Possible Approach:
 - allow language to express inconsistency
 - theory supports efficient detection of inconsistency
 - provide mechanism for reporting inconsistencies

Goal 6. Scalability

- Language can be used with large ontologies and large data sets
- Possible Approach:
 - restrict language for efficient reasoning

Goal 7. Ease of Use

 Language should provide a low learning barrier and have clear concepts and meaning

- Possible Approach:
 - When possible, use concepts and idioms familiar to average software engineers

Goal 8. Compatibility with other standards

- The language should have an XML serialization
- Should correspond to next
 Semantic Web standards (such as XML Schema and RDF, RDFS)

Goal 9. Ontology-based Search

 Search that exploits the meaning of terms instead of just the syntax

- Possible Approach:
 - use background ontologies for:
 - query expansion
 - understanding of term relationships
 - identify parameters and value restrictions

Goal 10. Expressiveness

The language should be as expressive as possible, given a balance with Goal 6. Scalability

Goal 11. Internationalization

- Develop multi-language presentation of ontology in the language of each user
- Requirements
 - Character Model
 - Character set support (from XML unicode)
 - Uniqueness of unicode strings (unicode normal form c solution from w3c internationalization group c cedilla – jeremy provides details)
 - Localized display of an ontology (display ontology in foreign language to viewer)

OWL Use Cases

Semantic Web apps:

- portal Websites & intranets (information architecture)
- multimedia digital libraries (rich metadata)
- agents & Web services (interoperability, automation)
- etc.

OWL Capabilities

- ontology sharing, evolution, interoperability
- inconsistency detection
- expressivity
- scalability
- standards compliance

Architecture of Semantic Web

XML, RDF and OWL

- XML: universal syntax
- XML Schema: defines structure of XML docs
- RDF: datamodel for resource objects
- RDF Schema: basic vocabulary for defining RDF classes & properties, and hierarchies of each
- OWL: extended vocabulary for defining classes and properties, including
 - cardinality (e.g. minCardinality 1)
 - equality (e.g. equivalentClass)
 - relationships between classes (e.g. disjointWith)
 - characteristics of properties (e.g. FunctionalProperty)

OWL Sublanguages

- OWL Lite
 - "RDF-and-a-half"
 - Mainly intended for class hierarchies & simple constraints (cardinality 0 or 1, equality, ...)
- OWL DL
 - Description Logic properties
 - Intended where logical inference, completeness & decidability are an issue
- OWL Full
 - Max expressivity
 - No computational guarantees

OWL Sublanguages as Sets

OWL Sublanguages as Sets

- Every legal OWL Lite ontology is a legal OWL DL ontology
- Every legal OWL DL ontology is a legal OWL Full ontology
- Every valid OWL Lite conclusion is a valid OWL DL conclusion
- Every valid OWL DL conclusion is a valid OWL Full conclusion

The converse in each case does not hold!

OWL Lite: RDF Schema Constructs

By default owl:

- Class
- rdfs:subClassOf
- rdf:Property
- rdfs:subPropertyOf
- rdfs:domain
- rdfs:range
- Individual

OWL Lite: Property Characteristics

- ObjectProperty
- DatatypeProperty
- inverseOf
- TransitiveProperty
- SymmetricProperty
- FunctionalProperty
- InverseFunctionalProperty

OWL Lite: (In) Equality

- equivalentClass
- equivalentProperty
- sameAs
- differentFrom
- AllDifferent
- distinctMembers

OWL Lite: Property Restrictions

- Restriction
- onProperty
- allValuesFrom
- someValuesFrom

OWL Lite: Restricted Cardinality

- minCardinality (only 0 or 1)
- maxCardinality (only 0 or 1)
- cardinality (only 0 or 1)

OWL Lite: Class Intersection

intersectionOf

OWL Lite: Datatypes

XML Schema Datatypes

OWL Lite: Header Information

- Ontology
- imports

OWL Lite: Versioning

- versionInfo
- priorVersion
- backwardCompatibleWith
- incompatibleWith
- DeprecatedClass
- DeprecatedProperty

OWL Lite: Annotation Properties

- rdfs:label
- rdfs:comment
- rdfs:seeAlso
- rdfs:isDefinedBy
- AnnotationProperty
- OntologyProperty

OWL DL and OWL FULL: Class Axioms

- oneOf, dataRange
- disjointWith
- equivalentClass (applied to class expressions)
- rdfs:subClassOf (applied to class expressions)

OWL DL and OWL FULL: Boolean Combinations of

Class Expressions

- unionOf
- complementOf
- intersectionOf

OWL DL and OWL FULL: Arbitrary Cardinality

- minCardinality
- maxCardinality
- cardinality

OWL DL and OWL FULL: Filler Information

hasValue