Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 2 – (Hoch-)Schulmathematik

Stoffdidaktik Mathematik

Kapitel 2 – (Hoch-)Schulmathematik

- Sie erkennen den Nutzen der Hochschulmathematik bei der Entscheidungsfindung zur Spezifizierung und Strukturierung der Schulmathematik auf der formalen Ebene des Vier-Ebenen-Ansatzes.
- Sie kennen geeignete Quellen zur Beantwortung der Fragen auf der formalen Ebene des Vier-Ebenen-Ansatz

Stoffdidaktische Analyse als Spezifizieren & Strukturieren von Lerngegenständen

Spezifizieren Strukturieren - Welche Begriffe und Sätze sollen - Wie lassen sich die Begriffe, Sätze, erarbeitet werden? Begründungen und Verfahren logisch strukturieren? - Welche Verfahren sollen erarbeitet werden und wie werden sie formal - Welche **Verbindungen** zwischen den Fachinhalte sind entscheidend, begründet? formale Ebene welche weniger bedeutsam? - Wie kann das **Netzwerk** aus Begriffen, Sätzen, Begründungen und Verfahren entwickelt werden?

(Hußmann & Prediger, 2016)

Zentri-Peripheriewinkelsatz

Der Zentriwinkel über der Sehne eines Kreises ist stets doppelt so groß wie ein Peripheriewinkel auf derselben Seite derselben Sehne.

Peripheriewinkelsatz

Alle Peripheriewinkel auf derselben Seite über derselben Sehne sind gleich groß.

Satz des Thales

Alle **Peripheriewinkel** über dem **Durchmesser** eines Kreises haben eine Größe von 90°.

und seine Umkehrung

Der Mittelpunkt der Hypothenuse eines rechtwinkligen Dreiecks ist Mittelpunkt eines Kreises durch alle drei Ecken des Dreiecks.

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe,
 Sätze, Begründungen und
 Verfahren logisch
 strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das **Netzwerk**aus Begriffen, Sätzen,
 Begründungen und
 Verfahren entwickelt
 werden?

Axiome der Elementargeometrie

Wechselwinkelsatz

Seite-Winkel-Beziehung

Basiswinkelsatz

Innenwinkelsatz

Zentri-Peripheriewinkelsatz

Peripheriewinkelsatz

Satz des Thales

und seine Umkehrung

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe,
 Sätze, Begründungen und
 Verfahren logisch
 strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das **Netzwerk** aus Begriffen, Sätzen, Begründungen und Verfahren entwickelt werden?

Axiome der Elementargeometrie empirische Erarbeitung

Wechselwinkelsatz

Seite-Winkel-Beziehung

Basiswinkelsatz

Innenwinkelsatz

Zentri-Peripheriewinkelsatz

Peripheriewinkelsatz

Satz des Thales und seine Umkehrung

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
 - Wie lassen sich die Begriffe, Sätze, Begründungen und Verfahren logisch strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das **Netzwerk**aus Begriffen, Sätzen,
 Begründungen und
 Verfahren entwickelt
 werden?

Wechselwinkelsatz

Basiswinkelsatz Innenwinkelsatz

Satz des Thales und seine Umkehrung

Analyse auf der formalen Ebene

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe,
 Sätze, Begründungen und
 Verfahren logisch
 strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das Netzwerk aus Begriffen, Sätzen, Begründungen und Verfahren entwickelt werden?

Welche Quellen helfen, diese Fragen zu beantworten?

- fachmathematische Literatur
- Literatur über »Schulmathematik vom höheren Standpunkt«
- fachdidaktische Literatur (v. a. Bücher zur »Didaktik der ...«)
- Schulbücher
- Bildungsstandards, Rahmenlehrplan, schulinterne Curricula

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe, Sätze, Begründungen und Verfahren logisch strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das Netzwerk aus Begriffen, Sätzen, Begründungen und Verfahren entwickelt werden?

Schulmathematik vom höheren Standpunkt

fachliche und verstehensorientierte Durchdringung der Schulmathematik, »ohne im vollen Umfang auf das Instrumentarium der kanonischen [...] [Hochschulmathematik] zurückgreifen zu müssen«

(Danckwerts, 2013, S. 87)

Schulmathematik —— Hochschulmathematik —— Schulmathematik

»doppelte Diskontinuität«

(Klein, 1967, S. 1; Erstausgabe 1908)

Schulmathematik vom höheren Standpunkt

Weiterführende Literatur

Felix Klein

Elementarmathematik vom höheren Standpunkte aus

(Klein, 1925, 1955, 1967)

Hans Freudenthal

Mathematik als pädagogische Aufgabe

(Freudenthal, 1973b, 1973c, auch auf Englisch: Freudenthal, 1973a)

Mathematik Neu Denken

(Beutelspacher et al., 2012)

Zur doppelten Diskontinuität in der Gymnasiallehrerbildung

(Ableitinger et al., 2013)

\mathbb{Z} oder \mathbb{Q}_+ ? Erst mal \mathbb{N} ...

Peano-Axiome

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl *n* hat eine natürliche Zahl *n'* als Nachfolger.
- 3. 0 ist kein Nachfolger einer natürlichen Zahl.

- 4. Natürliche Zahlen mit gleichem Nachfolger sind gleich.
- 5. Enthält die Menge X die 0 und mit jeder natürlichen Zahl n auch deren Nachfolger n', so bilden die natürlichen Zahlen eine Teilmenge von X.

0	0'	0′′	0′′′	• • •							
null	eins	zwei	drei	vier	fünf	sechs	sieben	acht	neun	zehn	elf
0	1	2	3	4	5	6	7	8	9		

Addition

n + k ist der k-fache Nachfolger von n

formal:

n + 0 = n

$$n + k' = (n + k)'$$

Ordnungsrelation

$$n < m \iff \exists k : m = n + k$$

Subtraktion

$$m - n = k \iff n + k = m$$

Multiplikation

$$n \cdot 1 = n$$
$$n \cdot k' = n \cdot k + n$$

(Wikipedia, 2021)

\mathbb{Z} oder \mathbb{Q}_+ ? Erst mal \mathbb{N} ...

Mächtigkeit von Mengen über Bijektionen

Gleichmächtigkeit als Äquivalenzrelation

$$A \sim B \Leftrightarrow \sharp A = \sharp B$$

$$A \sim A$$

$$A \sim B \Rightarrow B \sim A$$

$$A \sim B \wedge B \sim C \Rightarrow A \sim C$$

Addition

$$[N] + [K] = [N \cup K]$$

$$4 + 3 = 7$$

Zoder Q₊?

Geordnete Paare natürlicher Zahlen: (m, n)

Aquivalenzklasse [(5,0)]	Aquivalenzklasse [(0,2)]			
5	- 2			
(7, 2)	(3, 5)			
(6, 1)	(0, 2)			
(5, 0)	(7, 9)			

Äquivalenzklasse [(1,2)]
$$\frac{1}{2}$$
 $\frac{2}{3}$ (1, 2) (2, 3) (2, 4) (4, 6) (3, 6) (40, 60)

"Differenzengleichheit" als Äquivalenzrelation

$$(k, l) \sim (m, n) \Leftrightarrow k + n = l + m$$

"Quotientengleich" als Äquivalenzrelation

$$(k,l) \sim (m,n) \Leftrightarrow k \cdot n = l \cdot m \quad l,n \neq 0$$

Ganze Zahlen Z

"Differenzengleichheit" als Äquivalenzrelation

$$(k, l) \sim (m, n) \Leftrightarrow k + n = l + m$$

$$[(5,0)]$$
 $[(0,2)]$

$$(7, 2)$$
 $(3, 5)$

$$(6, 1)$$
 $(0, 2)$

$$(5,0)$$
 $(7,9)$

Addition

$$(k, l) + (m, n) := (k + l, m + n)$$

 $4 + (-7) \stackrel{\triangle}{=} (4, 0) + (0, 7) = (4, 7)$
 $\equiv (0, 3) \stackrel{\triangle}{=} -3$

Subtraktion

$$(k, l) - (m, n) := (k, l) + (n, m)$$

Ganze Zahlen (mit Addition) als abelsche Gruppe

 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, Assoziativität, Kommutativität, neutrales Element: $\exists 0 \in \mathbb{Z}: \forall a \in \mathbb{Z}: a+0=a$, inverses Element: $\forall a \in \mathbb{Z}: \exists \tilde{a} \in \mathbb{Z}: a+\tilde{a}=0$ dann noch Einbettung der natürlichen Zahlen und Ordnungsrelation nötig

- Ganze Zahlen können über Zahlenpaare aus den natürlichen Zahlen oder als »Gegenzahlen« der natürlichen Zahlen entwickelt werden.
- Natürliche Zahlen sind als Teilmenge in ganze Zahlen eingebettet.
- Subtraktion natürlicher Zahlen n m mit m > n ist nun lösbar.
- Rechenregeln werden erweitert, wobei die bekannten weiter gelten.

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe,
 Sätze, Begründungen und
 Verfahren logisch
 strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das **Netzwerk**aus Begriffen, Sätzen,
 Begründungen und
 Verfahren entwickelt
 werden?

»Minus mal Minus ist Plus«

$$(-3) \cdot (-5) = 15$$

Permanenzprinzip:

Beim Aufbau einer komplexen mathematischen Theorie sollen die Strukturen der zugrundeliegenden Theorie so weit wie möglich erhalten bleiben.

 $-3 \cdot (-5) = 15$

»plus mal plus«

»minus mal minus«

- Welche Begriffe und Sätze sollen erarbeitet werden?
- Welche Verfahren sollen erarbeitet werden und wie werden sie formal begründet?
- Wie lassen sich die Begriffe,
 Sätze, Begründungen und
 Verfahren logisch
 strukturieren?
- Welche Verbindungen zwischen den Fachinhalte sind entscheidend, welche weniger bedeutsam?
- Wie kann das Netzwerk
 aus Begriffen, Sätzen,
 Begründungen und
 Verfahren entwickelt
 werden?

Literatur

- Ableitinger, C., Kramer, J., & Prediger, S. (Hrsg.). (2013). Zur doppelten Diskontinuität in der Gymnasiallehrerbildung: Ansätze zu Verknüpfungen der fachinhaltlichen Ausbildung mit schulischen Vorerfahrungen und Erfordernissen. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-01360-8
- Beutelspacher, A., Danckwerts, R., Nickel, G., Spies, S., & Wickel, G. (2012). *Mathematik Neu Denken*. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-8348-8250-9
- Danckwerts, R. (2013). Angehende Gymnasiallehrer(innen) brauchen eine "Schulmathematik vom höheren Standpunkt"! In C. Ableitinger, J. Kramer, & S. Prediger (Hrsg.), *Zur doppelten Diskontinuität in der Gymnasiallehrerbildung* (S. 77–94). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-01360-8_5
- Freudenthal, H. (1973a). Mathematics as an Educational Task. Springer Netherlands. https://doi.org/10.1007/978-94-010-2903-2
- Freudenthal, H. (1973b). Mathematik als pädagogische Aufgabe (Bd. 1). Klett.
- Freudenthal, H. (1973c). Mathematik als pädagogische Aufgabe (Bd. 2). Klett.
- Hußmann, S., & Prediger, S. (2016). Specifying and Structuring Mathematical Topics: A Four-Level Approach for Combining Formal, Semantic, Concrete, and Empirical Levels Exemplified for Exponential Growth. *Journal für Mathematik-Didaktik*, 37(S1), 33-67. https://doi.org/10.1007/s13138-016-0102-8

Literatur

2/2

- Klein, F. (1925). Elementarmathematik vom Höheren Standpunkte aus II. Geometrie. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-90852-1
- Klein, F. (1955). Elementarmathematik vom Höheren Standpunkte aus III. Präzisions- und Approximationsmathematik (C. H. Müller, Hrsg.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-00246-9
- Klein, F. (1967). Elementarmathematik vom Höheren Standpunkte aus I. Arithmetik, Algebra, Analysis. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-11652-4
- Wikipedia. (2021). *Peano-Axiome Wikipedia, die freie Enzyklopädie*. https://de.wikipedia.org/w/index.php?title=Peano-Axiome&oldid=216675163