- 12. Sea $A \in \mathbb{R}^{m \times n}$. Supongamos que dim(Nu(A)) = k y sea $B_1 = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ una base del subespacio Nu(A). Además sea $B_2 = \{v_{k+1}, \dots, v_n\} \subseteq \mathbb{R}^n$ una base tal que $B_1 \cup B_2 = \{v_1, \dots, v_n\}$ es una base de \mathbb{R}^n .
 - a) Probar que cualquier vector $y \in Im(A)$ se puede escribir como una combinación lineal de $\{Av_{k+1}, \ldots, Av_n\} \subseteq \mathbb{R}^m$.
 - b) Probar que los vectores del conjunto $\{Av_{k+1}, \dots, Av_n\} \subseteq \mathbb{R}^m$ son linealmente independientes.
 - c) Deducir el Teorema de la dimensión: dim(Nu(A)) + dim(Im(A)) = n.

Sea y e Im(A) e IRM. Y = Ax para algún x e IRM.

QVQ: Y se puede escribir como una combinación lineal de {AVkH, ..., AVn} & IRM.

A es una matriz de mxn, y cada Vi, es un vector de IRⁿ

Entonces Avi e IRM para todo i=1...n (en particular para i=ktl...n).

Partiendo de que y es una CL de $\{AV_{K+1}, \dots, AV_n\}$ veamos que Y = AX para algún X (o sea, $Y \in Im(A)$).

Y = 2KH AVKH + ... + an AVn

= Adriver + ... + Adryn ATL: &FA(V) = FA(QV)

= $A(x_{k+1}V_{k+1} + \cdots + x_nV_n)$ A TL: $F_A(v) + F_A(w) = F_A(v+w)$

 $\therefore \gamma = A \times$

al

con X CL de {VK+1, ..., Vn} con coeficientes dK+1, ..., dn.

Obs: <AVKH, ..., AVn > es un sistema generador del subespació IM(A).

