Information Theory and Network Coding

Instructor: Qifu T Sun

qfsun@ustb.edu.cn

Spring Term, 2021-22

Information theory, together with the transistor and optical fiber laid the foundation of the information age and has dramatically changed the daily life of every of us.

Course information (1)

Goal of the course:

- □ (1st part, 2 weeks) Preliminaries on probability theory.
- □ (2nd part, 4.5 weeks) Learn the ingredients of information theory (IT), including information measures, source coding theorem, channel coding theorem.
- □ (3rd part, 0.75 week) Understand the most basic concept and theorems of *network coding*, a major new century breakthrough in IT society.
- □ (4th part, 0.75 week) Project presentation and final exam.

Course information (2)

Textbook: Raymond Yeung, Information theory and network coding, Springer, 2008.

Prof. Yeung is IEEE 2021 Hamming Medal Receipient!

"For fundamental contributions to information theory and pioneering network coding and its applications."

- The *information theory* part in the course partially follows the MOOCs open course video.
- http://www.inc.cuhk.edu.hk/InformationTheory/index.html

Course information (3) — Grading system

- Class participation (40%)
 - □ Attendance & In-class exercise & Quiz
 - Assignment
 - Project Presentation
- Open-book take-home final exam (60%)
 - On Week 8, 13 Apr, (Tentative)

Teaching Format

Tencent meeting for online teaching

Wechat group to disseminate lecture notes/assignments/notification

A glance at information theory and coding theory

The end-to-end data transmission model

The main goal of digital communication is to study how to **reliably** and **efficiently** transmit data as much as possible from one end to the other.

A glance at information theory and coding theory

The end-to-end data transmission model

■ **Information theory:** study the *fundamental limits* on digital signal processing operations such as data compression and reliable data transmission.

Information theory is considered as the root of information science.

■ Coding theory: How to design *practical coding schemes* with performance approaching to the information theoretical limits.

Information theory and coding theory can be regarded as *dual parts*.

A glance at information theory and coding theory

- Corresponding to information theoretical limits on data compression and reliable data communication, there are two most basic aspects in coding theory:
 - Source coding (For data compression, reduce redundancy among data)
 - □ Channel coding (For *error correction*, increase redundancy to combat with transmission error due to channel noise)
- Network coding is a new technique in coding theory, which enhances multicast throughput.

Examples for source coding

Example. $W = \{A, B, C, D\}$. p(A) = 1/2, p(B) = 1/4, p(C) = p(D) = 1/8. How to encode messages in W into binary bits for data transmission?

- Method 1: A \rightarrow 00, B \rightarrow 01, C \rightarrow 10, D \rightarrow 11 \checkmark
- Method 2: A \rightarrow 0, B \rightarrow 1, C \rightarrow 10, D \rightarrow 11 ×
- Method 3: A \rightarrow 0, B \rightarrow 10, C \rightarrow 110, D \rightarrow 111 \checkmark Huffman coding

Method 3 is better than method 1, and is the **best** we can do for **W**.

Examples for source coding

- Source coding (For data compression, reduce redundancy among data)
 - .zip, .rar, .png files (lossless data compression)
 - □ .jpg, .mp3, .mp4 files (*lossy* data compression)

Examples for channel coding

Example. Consider the binary symmetric channel (BSC), p < 1/2.

- Method 1: directly transmit 0 or 1. $P_e = p$.
- Method 2: transmit '000' or '111'.

$$P_e = p\{2 \text{ bit errors}\} + p\{3 \text{ bit errors}\} = 3p^2 - 2p^3 < p$$

Examples for channel coding

- Channel coding (For *error correction*, increase redundancy to combat with transmission error due to channel noise)
 - Reed-Solomon codes (algebraic block codes, used in CD, Blu-ray, DSL, deep-space communication)
 - Fountain codes (capacity-approaching codes, used in WiFi, WiMax, digital video broadcasting)
 - □ LDPC codes, polar codes (adopted in 5G standards)

Summary of encoder components

- The major components in data encoder:
 - Source coding (For data compression, reduce redundancy among data)
 - □ Channel coding (For *error correction*, increase redundancy to combat with transmission error due to channel noise)
- Q: What is the difference between source and channel coding?

Summary of encoder components

- The major components in data encoder:
 - Source coding (For data compression, reduce redundancy among data)
 - □ Channel coding (For *error correction*, increase redundancy to combat with transmission error due to channel noise)
 - **Modulation** (map the encoded data to different signals suitable to different channels)

Summary of decoder components

- The major components in signal decoder:
 - Demodulation
 - Channel decoding
 - Source decoding

Example for network coding

- Classical information theory and coding theory are developed for point-to-point communication systems.
- When we extend our scope to networks, much less is known on the network capacity (theoretical limit of the reliable transmission rate).
 - *Network information theory*
 - □ Network coding theory

Example for network coding

Figure adapted from Scientific American, Chinese 7/2007 edition

Store-and-forward

Figure adapted from Scientific American, Chinese 7/2007 edition

Store-and-forward

Figure adapted from Scientific American, Chinese 7/2007 edition

Network coding (NC)

Figure adapted from *Scientific American*, Chinese 7/2007 edition

Syllubus on Information Theory

Chapter 1 The Science of Information Chapter 2 Information Measures

Chapter 3 The I-Measure

Chapter 4 Zero-Error Data Compression

Chapter 5 Weak Typicality

Chapter 6 Strong Typicality

Chapter 7 Discrete Memoryless Channels

Chapter 8 Rate-Distortion Theory

Chapter 9 The Blahut-Arimoto Algorithms

Chapter 10 Differential Entropy

Chapter 11 Continuous-Valued Channels