

Giai-tich-1 de-thi-giai-tich-1-giua-hoc-ky-181 dt - [cuuduongthancong

Giải tích I (Trường Đại học Bách khoa Hà Nội)

Scan to open on Studocu

ĐAI HOC BÁCH KHOA TPHCM Khoa Khoa học ứng dụng-BM Toán ứng dụng

ĐÊ CHÍNH THỨC

(Đề gồm có 20 câu/2 trang)

ĐỀ THI GIỮA KÌ HK181 - DỰ THÍNH Môn: Giải tích 1. Ngày thi: 28/10/2018

Mã đề thi 209

Thời gian làm bài: 45 phút, không kể thời gian phát đề

Câu 1. Khai triển Maclaurin hàm số $f(x) = \frac{x}{1 + \tan x}$ đến cấp 4 là:

A.
$$x + x^2 + x^3 + \frac{4}{3}x^4 + o(x^4)$$

C.
$$x-x^2+\frac{x^3}{2}-\frac{3}{2}x^4+o(x^4)$$

B.
$$x - x^2 + x^3 - \frac{4}{3}x^4 + o(x^4)$$

D.
$$x + x^2 + \frac{x^3}{2} + \frac{2}{3}x^4 + o(x^4)$$

Câu 2. Đồ thị hàm số $y = \sqrt{x} \ln x$ có số tiệm cận là:

Câu 3. Cho hàm số $f(x) = e^{x^3-1}$. Tìm hàm ngược f^{-1} :

A.
$$e^{\sqrt[3]{x}} + 1$$

B.
$$\sqrt[3]{\ln x + 1}$$

C.
$$\sqrt[3]{e^x + 1}$$

D.
$$\ln(\sqrt[3]{x} + 1)$$

Câu 4. Cho $y = x.f(\ln x)$. Tính y''.

$$\int f'(\ln x) + f''(\ln x)$$

A.
$$\frac{f'(\ln x) + f''(\ln x)}{x^2}$$

C. $\frac{f'(\ln x) + f''(\ln x)}{x}$

$$\mathbf{R} \quad \frac{f'(\ln x) + f''(\ln x)}{h'(\ln x)}$$

B.
$$\frac{f'(\ln x) + f''(\ln x)}{x \cdot \ln x}$$
D.
$$\frac{(1 + \ln x)f'(\ln x) + f''(\ln x)}{x \cdot \ln x}$$

Câu 5. Tìm MGT của hàm số $y = \cos\left(\frac{2x}{1+x^2}\right)$

A.
$$[-1, \cos(1)]$$

B.
$$[0,\pi]$$

C.
$$[-1, 1]$$

D.
$$[\cos(1), 1]$$

Câu 6. Cho hàm số $f(x) = \sin(2x) + x + 1$. Tìm $(f^{-1})'(1)$ A. $\frac{1}{2}$ B. $\frac{1}{2}$

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{2}$$

Câu 7. Tìm TXĐ của hàm số $y = \arccos(\ln x)$

A.
$$[-1,1]$$

B.
$$[0, \pi]$$

C.
$$[\arccos(-1), \arccos(1)]$$

D.
$$[e^{-1}, e]$$

Câu 8. Tìm m để hàm số $y=\frac{1}{x^2+mx}$ đạt cực đại tại x=-4 A. m=8 B. m=2

A.
$$m = 8$$

$$\mathbf{B}$$
, $m=2$

$$C. m = 6$$

D.
$$m = -4$$

Câu 9. Tính giới hạn của hàm số $\lim_{x\to 0^+} (2018x)^{\frac{2}{\ln(\arctan(2x))}}$

A.
$$e^2$$

$$\mathbb{C}$$
. $+\infty$

Câu 10. Cho y=y(x) : $\left\{ \begin{array}{l} x=3t-\sin t \\ y=3-\cos t \end{array} \right.$. Tính $d^2y(x=0)$

B.
$$\frac{1}{4}dx^2$$

D.
$$\frac{1}{2}dx^2$$

Câu 11. Tiệm cận ngang của đường cong $y = \arctan \frac{1+x}{1-x}$ là:

A.
$$y = -\frac{\pi}{4}$$

B.
$$y = \frac{\pi}{4}$$

C.
$$y = -1$$

D.
$$y = -\frac{\pi}{2}$$

Câu 12. Hàm số $y=f\left(x\right)=x\sqrt{1-x^2}$ đạt cực tiểu tại $x=x_0,y_{CT}=y_0.$ A. $x_0=\frac{1}{\sqrt{2}},y_0=\frac{1}{2}$ B. $x_0=-1,y_0=0$ C. $x_0=-\frac{1}{\sqrt{2}},y_0=-\frac{1}{2}$ D. $x_0=1,y_0=0$

A.
$$x_0 = \frac{1}{\sqrt{2}}, y_0 = \frac{1}{2}$$

B.
$$x_0 = -1, y_0 = 0$$

C.
$$x_0 = -\frac{1}{\sqrt{2}}, y_0 = -\frac{1}{2}$$

D.
$$x_0 = 1, y_0 = 0$$

 $\begin{array}{lll} \textbf{Câu 13.} & \textbf{Cho } f(x) = (1+2x^2). \tan(x^3). \textbf{Tîm đẳng thức sai:} \\ \textbf{A. } f'''(0) = 3! & \textbf{B. } f^{(9)}(0) = \frac{9!}{3} & \textbf{C. } f^{(7)}(0) = \frac{7!}{2} \\ \end{array} \qquad \qquad \textbf{D. } f^{(5)}(0) = 2.5!$

A.
$$f'''(0) = 3!$$

B.
$$f^{(9)}(0) = \frac{9!}{3!}$$

C.
$$f^{(7)}(0) = \frac{7!}{2}$$

D.
$$f^{(5)}(0) = 2.5!$$

Câu 14. Tiệm cận xiên của $y = \sqrt[3]{x^3 - x^2}$ là:

A.
$$y = x + \frac{1}{3}$$

B.
$$y = x + 1$$

C.
$$y = x - 1$$

C.
$$y = x - 1$$
 D. $y = x - \frac{1}{3}$

Câu 15. Khai triển Taylor hàm số $f(x) = \frac{1}{r^2 - 2}$ đến cấp 3 tại $x_0 = 1$

- A. Đáp án khác
- B. $-1 + 2(x-1) + 5(x-1)^2 + 12(x-1)^3 + o((x-1)^3)$
- C. $1 + 2(x-1) + 5(x-1)^2 + 12(x-1)^3 + o((x-1)^3)$ D. $-1 2(x-1) 5(x-1)^2 12(x-1)^3 + o((x-1)^3)$

 $\text{\textbf{Câu 16.}} \ \, \text{Tìm } a,b \in \mathbb{R} \ \, \text{để hàm số } f(x) = \left\{ \begin{array}{l} x^2 + ax + b, x \geq 0 \\ \arctan x, x < 0 \end{array} \right. \ \, \text{có tiếp tuyến trái và phải tại } x = 0 \text{ trùng nhau.}$

- A. Không tồn tại a,b. B. $a=1, \forall b\in\mathbb{R}$ C. a=0,b=0
- **D.** a = 1, b = 0

 $\begin{array}{ll} \textbf{C\^{a}u 17. T\^{i}m } \ a,b \in \mathbb{R} \ \texttt{d\'{e}'} \ f(x) = e^{-x} - \sqrt{1-2x} \sim ax^b \ \texttt{khi} \ x \to 0 \\ \textbf{A. } \ a = -1,b = 3 \\ \textbf{B. } \ a = \frac{1}{3},b = 3 \\ \textbf{C. } \ a = 1,b = 2 \\ \textbf{D. } \ a = -\frac{1}{2},b = 2 \\ \end{array}$

A.
$$a = -1, b = 3$$

B.
$$a = \frac{1}{3}, b = 3$$

C.
$$a = 1, b = 2$$

D.
$$a = -\frac{1}{2}, b = 2$$

Câu 18. Tìm a để $\lim_{n\to\infty} x_n = \infty$ với $x_n = \frac{\sqrt[3]{8n^3 + n + 1} - \sqrt[5]{n^4 - 3n^2 + n - 2}}{n^{a+2}}$ A. $-\frac{6}{5} < a < -1$ B. a < -1 C. $\forall a$ D. $a < -\frac{6}{5}$

A.
$$-\frac{6}{5} < a < -1$$

B.
$$a < -1$$

D.
$$a < -\frac{6}{5}$$

Câu 19. Tîm a để hàm số $f(x)=\left\{\begin{array}{ll} \frac{\ln(1+2x)}{ax+x^2} &,x\neq 0\\ 3x+2 &,x=0 \end{array}\right.$ liên tục tại $x_0=0$

A.
$$a = 0$$

B.
$$a > 0$$

C.
$$a \neq 1$$

D.
$$a = 1$$

Câu 20. Cho $f(x) = (x+1) \cdot \ln(x+1) \sim (a+b)x + (2a-3b)x^2 \text{ khi } x \to 0$ A. $a = \frac{7}{10}, b = \frac{3}{10}$ B. $a = \frac{3}{10}, b = \frac{7}{10}$ C. $a = 1, b = \frac{1}{10}$ D. Không tìm được

A.
$$a = \frac{7}{10}, b = \frac{3}{10}$$

C. $a = 1, b = \frac{1}{2}$

B.
$$a = \frac{3}{10}, b = \frac{7}{10}$$

C.
$$a = 1, b = \frac{1}{2}$$

$${\bf D}$$
. Không tìm được a,b

Mã đề thi 209	ĐÁP ÁN			
Câu 1. B.	Câu 5. C.	Câu 9. A.	Câu 13. C.	Câu 17. C.
Câu 2. B.	Câu 6. A.	Câu 10. B.	Câu 14. D.	Câu 18. B.
Câu 3. B.	Câu 7. D.	Câu 11. A.	Câu 15. D.	Câu 19. D.
Câu 4. C.	Câu 8. A.	Câu 12. C.	Câu 16. D.	Câu 20. A.

ĐÁP ÁN