Содержание

Определение 1. Пусть $E \subset \mathbb{R}^n$ $f \colon E \to [0; +\infty]$. Подграфиком f называется множество

$$Q_f = \{(x; y) \in \mathbb{R}^{n+1} \mid x \in E, 0 \le y \le f(x)\}$$

Определение 2. Пусть $E \subset \mathbb{R}^n$ $f \colon E \to \overline{\mathbb{R}}$. Графиком f называется множество

$$\Gamma_f = \{ (x; f(x)) \in \mathbb{R}^{n+1} \mid x \in E \}$$

Замечание. Отличается от общего определения тем, что $\Gamma_f \subset \mathbb{R}^{n+1}$

Теорема 1 (О мере графика). Пусть $E \in \mathbb{A}_n$, $f \in S(E)$. Тогда $\Gamma_f \in \mathbb{A}_{n+1}$ и $\mu_{n+1}\Gamma_f = 0$.

Доказательство. • Сначала разберём случай, когда $\mu E < +\infty$. Заключим Γ_f в множество сколь угодно малой меры. Зафиксируем $\varepsilon > 0$. Пусть

$$e_k = E(k\varepsilon < f(k+1)\varepsilon)$$

Тогда

$$E = E(|f| = +\infty) \cup \bigcup_{k \in \mathbb{Z}} e_k$$

Тогда

$$\Gamma_f = \bigcup_{k \in \mathbb{Z}} \Gamma_f \Big|_{e_k} \subset \bigcup_{k \in \mathbb{Z}} e_k \times [k\varepsilon; (k+1)\varepsilon) = H_\varepsilon$$

Заметим, что

$$\mu_{n+1}H_{\varepsilon} = \sum_{k \in \mathbb{Z}} \mu_n e_k \cdot \varepsilon \leqslant \mu_n E \varepsilon$$

По критерию измеримости утверждение теоремы верно.

• Теперь пусть $\mu E = +\infty$. По σ -конечности μ_n

$$E = \bigcup_{j=1}^{\infty} E_j \qquad \mu_n E_j < +\infty$$

А значит $f\Big|_{E_j}$ имеет измеримый график нулевой меры, а поскольку

$$\Gamma_f = \bigcup_{j=1}^{\infty} \Gamma_f \big|_{E_j}$$

Верно требуемое.

Теорема 2. Пусть $E \in \mathbb{A}_n$, $f \colon E \to [0; +\infty]$. Тогда измеримость f и её подграфика равносильны и в случае измеримости имеет место равенство

$$\mu_{n+1}Q_f = \int_E f \, \mathrm{d}\mu_n$$

Доказательство. Пусть нам известна измеримость подграфика. Тогда искомая формула следует из принципа Кавальери:

$$Q_f(x) = \begin{cases} \varnothing & x \notin E \\ [0; f(x)) & x \in E \end{cases}$$

Иванов Тимофей

Отсюда

$$\mu_1 Q_f(x) = \begin{cases} 0 & x \notin E \\ f(x) & x \in E \end{cases}$$

Отсюда если Q_f измеримо, то формула следует из принципа Кавальери. А также в принципе Кавальери в качестве следствия был факт, что функция $x \mapsto \mu_1 Q_f(x)$ измерима, а значит и f измерима как сужение $x \mapsto \mu_1 Q_f(x)$ на E.

Осталось доказать, что если f измерима, то её подграфик измерим. Рассмотрим случаи:

1. f простая.

$$f = \sum_{k=1}^{N} c_k \chi_{A_k}$$
 $A_k \in \mathbb{A}_n, c_k \in [0; +\infty)$

Можно считать, что A_k дизъюнктны. И ещё можно считать, что $A_k \subset E$ и в объединении дают E. Тогда

$$Q_f = \bigsqcup_{k=1}^{N} A_k \times [0; c_k]$$

Отсюда следует измеримость.

2. Общий случай: f произвольная неотрицательная измеримая функция. Приблизим её возрастающей последовательность простых функций φ_n . Проверим, что

$$Q_f = \bigcup Q_{\varphi_n} \cup \Gamma_f$$

Тогда мы докажем искомое.

- \supset ясно т.к. $\varphi_n \leqslant f \Rightarrow Q_{\varphi_n} \subset Q_f$.
- \subset рассмотрим $(x;y)\in Q_f$. То есть $x\in E,\,y\in [0;f(x)]$. Если y=f(x), то понятно. Иначе

$$\exists N \in \mathbb{N} \ y < \varphi_N(x) \Rightarrow \exists N \ (x;y) \in Q_{\varphi_N}$$

Замечание. Условие измеримости E существенно. Если $f\equiv 0$ не неизмеримом множестве, например, то $Q_f\in \mathbb{A}_{n+1}$ и $\mu_{n+1}Q_f=0$.

Теорема 3 (Теорема Тонелли). Пусть $E \subset \mathbb{R}^{n+m}$, $f \in S(E \to [0; +\infty])$. Тогда

- 1. При почти всех $x \in \mathbb{R}^n$ функция $f(x; \bullet) \in S(E(x))$.
- 2. Пусть $I(x) = \int_{E(x)} f(x;y) dy$. Тогда $I(x) \in S(\mathbb{R}^n)$.

3.

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathbb{R}^n} I(x) \, \mathrm{d}x$$

Доказательство. По теореме 2, что $Q_f \in \mathbb{A}_{n+m+1}$ и

$$\mu_{n+m+1}Q_f = \int_E f \, \mathrm{d}\mu_{n+m}$$

Воспользуемся принципом Кавальери:

$$\mu_{n+m+1}Q_f = \int_{\mathbb{R}^n} \mu_{m+1}Q_f(x) \, \mathrm{d}x$$

Заметим, что

$$\begin{split} Q_f(x) &= \left\{ (y;z) \in \mathbb{R}^{m+1} \mid (x;y;z) \in Q_f \right\} = \\ &= \left\{ (y;z) \in \mathbb{R}^{m+1} \mid (x;y) \in E, z \in [0;f(x;y)] \right\} = \\ &= \left\{ (y;z) \in \mathbb{R}^{m+1} \mid y \in E(x), z \in [0;f(x;y)] \right\} \end{split}$$

Да это же подграфик $f(x; \bullet)!$

1. По теореме Кавальери при почти всех $x \in \mathbb{R}^n$ $Q_f(x)$ измеримо, а значит мы доказали первое утверждение по теореме 2.

2.

$$\mu_{m+1}Q_f(x) = \mu_{m+1}Q_{f(x;\bullet)} \stackrel{2}{=} \int_{E(x)} f(x;y) \, dy = I(x)$$

Отсюда I(x) измерима по всё тому же принципу Кавальери.

3. Приравняем два выражения для $\mu_{n+m+1}Q_f$.

Теорема 4 (Теорема Фубини). Пусть $E \subset \mathbb{R}^{n+m}$, $f \in L(E)$. Тогда

- 1. При почти всех $x \in \mathbb{R}^n$ функция $f(x; \bullet) \in L(E(x))$.
- 2. Пусть $I(x) = \int_{E(x)} f(x;y) \, dy$. Тогда $I(x) \in L(\mathbb{R}^n)$.
- 3.

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathbb{R}^n} I(x) \, \mathrm{d}x$$

Доказательство. Применим теорему Тонелли для f_+ и f_- . Пусть $I^\pm = \int_{E(x)} f_\pm(x;y) \; \mathrm{d}y$. По теореме Тонелли

$$\int_{E} f_{\pm} d\mu_{n+m} = \int_{\mathbb{R}^{n}} I^{\pm}(x) dx < +\infty$$

Учитывая $f_{\pm}(x; \bullet) = (f(x; \bullet))_{\pm}$, имеем

$$I^+ - I^- = I \in L(\mathbb{R}^n)$$

При почти всех x $I^{\pm}(x) < +\infty$, а значит при почти всех x $f_{\pm} \in L(E(x))$ отсюда $f \in L(E(x))$.

Замечание. В теореме Тонелли все условия можно ослабить:

- 1. Если $f \in S(E)$ (не важен знак), то при почти всех $x \in \mathbb{R}^n$ $f(x; \bullet) \in S(E(x))$.
- 2. Если I(x) существует почти во всех $x \in \mathbb{R}^n$, то $I \in S(\mathbb{R}^n)$
- 3. Если существует $\int_E f \ \mathrm{d}\mu_{n+m} \in \overline{\mathbb{R}},$ то верно условие пункта 2 и

$$\int_{E} f \, \mathrm{d}\mu_{n+m} \in \overline{\mathbb{R}} = \int_{\mathbb{R}^n} I(x) \, \, \mathrm{d}x$$

Доказывается всё это как в теореме Фубини.

Замечание.

$$\begin{cases} \forall x \in \mathbb{R}^n \ f(x; \bullet) \in S(E(x)) \\ \forall y \in \mathbb{R}^m \ f(\bullet; m) \in S(E(y)) \end{cases} \not\Rightarrow f \in S(E)$$

Серпинский построил пример такого неизмеримого $E \subset \mathbb{R}^2$, что E пересекается с любой прямой не более чем в двух точках. Мы говорить о нём не будем, т.к. он довольно сложен.

Определение 3. Пусть $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$, $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$. Тогда

$$f \otimes g : \underset{(x;y) \mapsto f(x)g(y)}{\overset{X \times Y \to \mathbb{R}}{f(x)g(y)}}$$

Лемма 1. Если $f \in S(X)$, $g \in S(Y)$, mo $f \otimes g \in S(X \times Y)$.

Доказательство. Пусть

$$\tilde{f}(x;y) = f(x)$$
 $\tilde{g}(x;y) = g(y)$

Докажем, что \tilde{f} и \tilde{g} измеримы, тогда $f \otimes g$ будет измеримо как произведение измеримых.

$$(X \times Y)(\tilde{f} > a) = X(\tilde{f} > 0) \times Y$$

Левое измеримо по измеримости f, правое — потому что, а произведение измеримы измеримо. \square

Следствие 1.1. Пусть $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$. Если

$$\begin{cases} f \in S(X \to [0; +\infty]) \land g \in S(Y \to [0; +\infty]) \\ f \in L(X) \land g \in L(Y) \end{cases}$$

To

$$\int_{X\times Y} f \otimes g \, d\mu_{n+m} = \int_X f \, d\mu_n \int_Y g \, d\mu_m$$

Доказательство. В первом случае нет сомнений в существовании интегралов. Пусть $E = X \times Y$. Тогда

$$\int_{E} f \otimes g \, d\mu_{n+m} = \int_{X} \left(\int_{Y} f(x)g(y) \, dy \right) \, dx$$

так как $E(x) = \begin{cases} \varnothing & x \notin X \\ Y & x \in X \end{cases}$

А почему то же самое верны для произвольного знака, если интегралы от них конечны? Ну, чтобы применить теорему Фубини, надо проверить суммируемость $f \otimes g$. Ну, смотрите. По доказанному

$$\int_{X\times Y} |f\otimes g| \, d\mu_{n+m} = \int_X |f| \, d\mu_n \int_Y |g| \, d\mu_m$$

По условию оба этих интеграла конечны, значит $|f \otimes g|$ суммируема, а суммируемость функции равносильна суммируемости её модуля.

Замечание. Мы знаем, что в условиях теорем Тонелли и Фубини верно

$$\int_{E} f \, d\mu_{n+m} = \int_{\mathbb{R}^{n}} \left(\int_{E(x)} f(x; y) \, dy \right) \, dx$$

Тривиально, то же можно записать, поменяв x и y ролями.

$$\int_{E} f \, d\mu_{n+m} = \int_{\mathbb{R}^{n}} \left(\int_{E(y)} f(x; y) \, dx \right) \, dy$$

А значит два повторных интеграла равны.

Пример. Повторные интегралы могут быть не равны

$$f(x;y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 $E = [-1; 1]^2$

Тогда

$$\int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy = \frac{y}{x^2 + y^2} \Big|_{y = -1}^{1} = \frac{2}{x^2 + 1}$$

$$\int_{-1}^{1} \int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx = \int_{-1}^{1} \frac{2}{x^2 + 1} \, dx = 4 \tan^{-1} x \Big|_{0}^{1} = \pi$$

Другой повторный интеграл будет равен $-\pi$, как несложно заметить.

Пример. Неверно, что если повторные интегралы равны, то двойной существует.

$$g(x;y) = \frac{2xy}{(x^2 + y^2)^2}$$
 $E = [-1;1]^2$

Поскольку функция g нечётна по каждой переменной, оба повторных интеграла равны нулю. Отсюда если двойной интеграл существует, то равен нулю.

Докажем, что он не существует. Для этого докажем, что g не суммируема. Попробуем проинтегрировать |q|:

$$\int_{-1}^{1} \int_{-1}^{1} \frac{|2xy|}{(x^2+y^2)^2} \, dy \, dx = 4 \int_{0}^{1} \int_{0}^{1} \frac{|2xy|}{(x^2+y^2)^2} \, dy \, dx = 4 \int_{0}^{1} \frac{-x}{x^2+y^2} \Big|_{y=0}^{1} \, dx = 4 \int_{0}^{1} \frac{-x}{x^2+1} + \frac{1}{x} \, dx = +\infty$$

Отсюда g не суммируема. А значит нулю е \ddot{e} интеграл не равен, то есть он не существует.

Определение 4. Пусть $E \subset \mathbb{R}^{n+m}$ **Проекцией** E на первое координатное пространство называется

$$\Pr_1 E = \{ x \in \mathbb{R}^n \mid E(x) \neq \emptyset \}$$

Замечание. Проекция измеримого множества может быть быть неизмеримой (достаточно добавить к измеримому двумерному множеству неизмеримое одномерное).

Определение 5. Множество

$$\Pr_1^* E = \{ x \in \mathbb{R}^n \mid \mu_m E(x) > 0 \}$$

называется **существенной проекцией** множества E.

Свойство 5.1. Существенная проекция измерима. (Как Лебегово множество функции $\mu_m E(\bullet)$).

Свойство 5.2. При f подходящем под теоремы Тонелли и Фубини верно

$$\int_{E} f \, \mathrm{d}\mu_{n+m} = \int_{\mathrm{Pr}_{1}^{*}} I(x) \, \, \mathrm{d}x$$

Замечание. Теоремы Тонелли и Фубини можно применять несколько раз.

Определение 6. Пусть $(X; \mathbb{A}; \mu)$ и $(Y; \mathbb{B}; \nu)$ — пространства с мерами. Пусть

$$\mathbb{A} \odot \mathbb{B} = \{ A \times B \mid A \in \mathbb{A}, B \in \mathbb{B} \}$$

Тогда $\mathbb{A} \odot \mathbb{B}$ является полукольцом, а

$$\pi_0: A \times B \to \mu A \nu B$$

является мерой на $\mathbb{A} \oplus \mathbb{B}$. Тогда π — стандартное распространение π_0 на σ -алгебру \mathbb{C} называется произведением мер μ и ν .

Обозначения:

$$\mathbb{C} = \mathbb{A} \otimes \mathbb{B} \qquad \pi = \mu \times \nu$$

Замечание. Доказывать корректность определения мы не будем.

Свойство 6.1.

$$\mu_{n+m} = \mu_n \times \mu_m$$

Свойство 6.2. Если μ и ν являются σ -конечными, то $\mu \times \nu$ — тоже.

Свойство 6.3. Произведение мер ассоциативно.

Свойство 6.4. Все теоремы этого параграфа с доказательствами верны для полных σ -конечных мер.

Теорема 5 (Теорема Тонелли для абстрактных пространств с мерой). Пусть $E \subset X \times Y$, $f \in S_{\mathbb{A} \otimes \mathbb{B}}(E \to [0; +\infty])$. Тогда

1. При почти всех $x \in x$ функция $f(x; \bullet) \in S_{\mathbb{R}}(E(x))$.

2. Пусть $I(x) = \int_{E(x)} f(x; \bullet) d\nu$. Тогда $I(x) \in S_{\mathbb{A}}(X)$.

3.

$$\int_{E} f \ d(\mu \times \nu) = \int_{X} I(x) \ d\mu$$

Замена переменной в интеграле.

Теорема 6 (Общая схема замены переменной в интеграле). Пусть $(X; \mathbb{A}; \mu), (Y; \mathbb{B}; \nu)$ — пространства c мерами. Пусть $h \in S_{\mathbb{A}}(X \to [0; +\infty]), \Phi \colon X \to Y$ u

$$\forall B \in \mathbb{B} \ \Phi^{-1}(B) \in \mathbb{A} \qquad \forall B \in \mathbb{B} \ \nu B = \int_{\Phi^{-1}(B)} h \ d\mu$$

Пусть $f \in S_{\mathbb{B}}(Y)$. Тогда

1. $f \circ \Phi \in S_{\mathbb{A}}(X)$.

2.

$$\int_{Y} f \, d\nu = \int_{X} (f \circ \Phi) h \, d\mu$$

(Трактовка стандартная: интегралы существуют или нет одновременно, если существуют, то равны.)

Доказательство. 1. Рассмотрим Лебегово множество

$$X(f \circ \Phi > a) = \{x \in X \mid f(\Phi(x)) > a\} = \{x \in X \mid \Phi(x) \in Y(f > a)\} = \Phi^{-1}(Y(f > a))$$

По условию $Y(f > a) \in \mathbb{B}$, а значит $\Phi^{-1} \in \mathbb{A}$.

- 2. Разберём случаи
 - а. $f = \chi_B \mid B \in \mathbb{B}$. Тогда

$$(\chi_B \circ \Phi)(x) = \begin{cases} 1 & x \in \Phi^{-1}(B) \\ 0 & x \notin \Phi^{-1}(B) \end{cases} = \chi_{\Phi^{-1}(B)}(x)$$

Тогда

$$\int_{Y} \chi_{B} d\nu = \nu B = \int_{\Phi^{-1}(B)} h d\nu = \int_{X} \underbrace{\chi_{\Phi^{-1}(B)}}_{f \circ \Phi} h d\nu$$

- По линейности равенство верно для простых функций.
- с. Для положительных измеримых функций рассмотрим последовательность φ_n , возрастающую к f и перейдём к пределу в равенстве

$$\int_{Y} \varphi_n \, d\nu = \int_{X} (\varphi_n \circ \Phi) h \, d\mu$$

по теореме Леви.

d. Для произвольных измеримых функций рассмотрим f_{\pm}

$$\int_{Y} f_{\pm} d\nu = \int_{X} (\varphi_n \circ \Phi)_{\pm} h d\mu = \int_{X} (\varphi_n \circ \Phi h)_{\pm} d\mu$$

Замечание. В условиях теоремы 6 суммируемость f по ν равносильная суммируемости $(f \circ \Phi)h$ по μ

Следствие 1.1. В условиях теоремы 6 если $B \in \mathbb{B}$, $f \in S_{\mathbb{B}}(B)$, то

$$\int_{B} f \, d\nu = \int_{\Phi^{-1}(B)} (f \circ \Phi) h \, d\mu$$

Доказательство. Продолжим f нулём на $Y \setminus B$.

Определение 7. В условии теоремы 6 ν называется h-взвешенным Φ -образом меры μ .

Замечание. Пусть

$$\mathbb{A}^* = \{ \Phi^{-1}(B) \mid B \in \mathbb{B} \}$$

Нетрудно заметить, что это σ -алгебра.

В условиях теоремы $6 \mathbb{A}^* \subset \mathbb{A}$.

Пусть

$$\mathbb{B}^* = \{ B \subset Y \mid \Phi^{-1} \in \mathbb{A} \}$$

тогда условиях теоремы $6 \mathbb{B} \subset \mathbb{B}^*$.

Утверждение. Если

$$\nu B = \int_{\Phi^{-1}(B)} h \, \mathrm{d}\mu$$

То ν — мера на \mathbb{B} .

Доказательство. Остаётся как несложное упражнение читателю.

 $\Pi puмер. \ h \equiv 1$ — невзвешенный образ меры.

$$\nu B = \mu \Phi^{-1}(B) \Rightarrow \int_{Y} f \, d\nu = \int_{X} f \circ \Phi \, d\mu$$

Пример. X = Y, $\mathbb{A} = \mathbb{B}$, $\Phi = id$.

$$\nu A = \int_A h \, d\mu \Rightarrow \int_X f \, d\nu = \int_X f h \, d\mu$$

Тогда пишут $d\nu = h d\mu$.

Определение 8. Если

$$\nu A = \int_A h \, \mathrm{d}\mu$$

то h называется **плотностью** меры ν относительны меры μ .

Свойство 8.1. Если $h = \tilde{h}$ μ -почти везде, то $\nu = \tilde{\nu}$. Для σ -конечных мер верно и обратное. Без доказательства.

Теорема 7 (Критерий плотности). Пусть даны X, \mathbb{A} u μ u ν — меры на \mathbb{A} , h: $S(X \to [0; +\infty])$. Тогда следующие утверждения равносильны:

1. h — плотность ν относительны μ .

2.

$$\forall A \in \mathbb{A} \ \mu A \inf_A h \leqslant \nu A \leqslant \mu A \sup_A h$$

Доказательство. • Из первого во второе ясно из оценки интеграла.

• Рассмотрим

$$A = A(h = 0) \cup A(0 < h < +\infty) \cup A(h = +\infty)$$

Равенство есть для первой части:

$$\nu A(h=0) = \int_{A(h=0)} h \, d\mu$$

так как левое равно нулю по условию второго утверждения, а правое — потому что функция тождественный ноль.

также очевидно равенство есть для третьей части:

$$\nu A(h = +\infty) = \begin{cases} +\infty & \mu A > 0 \\ 0 & \mu A \equiv 0 \end{cases} = \int_{A(h = +\infty)} h \, d\mu$$

Далее можно считать $0 < h < +\infty$ на A.

Рассмотрим $q \in (0;1)$. Пусть

$$A_j = A(q^j \leqslant h < q^{j-1})$$

Очевидно, $A_j \in \mathbb{A}$ и $\bigsqcup_{j \in \mathbb{Z}} A_j = A$. Нам известно, что

$$q^j \mu A_j \leqslant \nu A_j \leqslant q^{j-1} \mu A_j$$

А ещё из оценки интеграла

$$q^j \mu A_j \leqslant \int_{A_j} h \, \mathrm{d}\mu \leqslant q^{j-1} \mu A_j$$

Отсюда

$$q \int_{A} h \, d\mu = q \sum_{j} \int_{A_{j}} h \, d\mu \leqslant$$

$$\leqslant \sum_{j} q^{j} \mu A_{j} \leqslant \sum_{j} \nu A_{j} =$$

$$= \boxed{\nu A} \leqslant \sum_{j} q^{j-1} \mu A_{j} \leqslant$$

$$\leqslant \frac{1}{q} \sum_{j} \int_{A_{j}} h \, d\mu =$$

$$= \frac{1}{q} \int_{A} h \, d\mu$$

Если взять начало, конец и то, что в квадратике, после чего устремить q к единицу, то получим искомое.