Radio Cosmology Lab

Exploring the Epoch of Reionization

Joshua Kerrigan, Adam Lanman, Wenyang Li

Brown University Physics

Abstrac

Following the recombination of hydrogen and release of the cosmic microwave background radiation at redshift $z \sim 1100$, the baryonic matter of the universe consisted mostly of neutral hydrogen and helium. Gradually, small inhomogeneities collapsed and ignited the first luminous structures. Energetic photons emitted from the first stars and quasars reionized the surrounding medium, producing ionized bubbles which grew and merged into the fully ionized intergalactic medium we see today. This *Epoch of Reionization* (EoR) remains a poorly-understood period of the universe's history which offers a wealth of cosmological and astrophysical information.

The Pober lab is part of an international effort to build instruments capable of studying the EoR. The neutral hydrogen (HI) of the EoR emits faintly at a wavelength of 21cm, due to the hyperfine transition. This emission is unique to neutral hydrogen, and is anti-correlated with the ionized (HII) regions that fill the universe through the EoR. CMB constraints and quasar absorption spectra put the EoR as occurring within the redshift range 6 < z < 12, which means 21cm emissions will redshift to meter scale wavelengths. This is accessible to modern radio interferometers, including the *Donald C. Backer Precision Array for Probing the Epoch of Reionization* (PAPER), the *Murchison Widefield Array* (MWA), and the recently-funded *Hydrogen Epoch of Reionization Array* (HERA).

Introduction

[The spin-flip transition and global history of the signal. Good place for pictures of bubble simulations]

Figure 1: The global differential brightness temperature, δT_b , evolution over redshift 6 < z < 160. δT_b becomes observable when the spin temperature T_S decouples from the CMB temperature, T_{CMB} through the Wouthyusen-Field effect, this can be seen in Eqn. 1

Differential Brightness Temperature

$$\delta T_{b} = 28 \text{mK} (1 + \delta) x_{HI} \left(1 - \frac{T_{CMB}}{T_{spin}} \right) \left(\frac{\sigma_{b} h^{2}}{0.0223} \right) \sqrt{\left(\frac{1+z}{10} \right) \left(\frac{0.24}{\sigma_{m}} \right)} \left[\frac{H(z)/(1+z)}{d\nu_{\parallel}/dr_{\parallel}} \right]$$
(1)

The differential brightness temperature describes the complex nature of the neutral hydrogen spin temperature, T_S decoupling from the CMB background temperature T_{CMB} , the neutral fraction of Hydrogen, x_{HI} , and the mass density contrast, δ . δT_b also describes an important relationship between cosmological and astrophysical parameters, showing that measuring what is seen as a cosmological epoch has astrophysical relevance.

The Foreground Problem

Galactic and extragalactic foregrounds pose a difficult problem when trying to measure the 21cm EoR signal. Relative to galactic foregrounds, the EoR signal is ~ 5 orders of magnitude smaller than the galactic emissions that exist between our observing radio telescope arrays and the highly redshifted 21cm signal. The overlapping sources of power in our observations can be seen in Fig. $\ref{eq:total_continuous_co$

Figure 2: The various cosmological and galactic sources that contribute to the measured sky temperature, and their relative strengths. Source: Saleem Zaroubi, https://ned.ipac.caltech.edu/level5/March14/Zaroubi/Zaroubi5.html

The issue of foreground emission dominance in our power spectrum can be overcome through the mixed use of the following traditional and novel foreground mitigation techniques.

Foreground Subtraction

Baseline visibilities are gridded to form an image which are calibrated to a catalog model. The catalog model contains point sources from surveys which contain the sources' right ascension, declination, and flux in stokes I. The model built from the catalog of sources is additionally convolved with the telescope arrays synthesized beam model. The resulting model which has been built can then be subtracted from the observation leaving behind the EoR signal and diffuse emissions.

Foreground Avoidance

$$V_{b}(\tau) = \int dldmdv A(l, m, v) I(l, m, v) e^{-2\pi i v(\tau_{g} - \tau)}$$
 (2)

Taking the Fourier transform of a baseline visibility over frequency with the geometric group delay offset (eqn. 2) results in smooth spectrum foregrounds bunching up nearest to the delay of $\tau=0$. This is because foreground sources have a maximal geometric delay associated with a baseline length, $|\vec{\mathbf{b}}|$, which is also known as the horizon limit. The EoR signal is unsmooth spectrally, distinguishing it from foreground sources, and pushing it beyond the horizon limit imposed by the baseline length. Using this information, delays below the horizon limit can be filtered giving significant foreground power removal.

Figure 3: Delay transform visibilities of two different baseline types. Smooth spectral sources moving between delays over time can be seen to remain within the horizon limit (dotted), while unsmooth spectral sources (light blue) extend beyond the horizon limit. Source: Aaron Parsons, A Per Baseline Delay-Spectrum Technique for Accessing the 21cm Cosmic Reionization Signature, Apj. 2012

Inverse Covariance Weighting

Simulation

[Diagram of the analysis pipeline, and power spectra from simulations. Emphasize the necessity of end to end simulation]

Calibration

[Calibration on sky sources and by redundancy. Wenyang's Figures of the calibrated visibilities would go well here.]

Radio Telescope Arrays

[Should probably move this section earlier. Description and pictures of the MWA Phase II, PAPER-64, and HERA-19. Good place to explain redundancy in the configurations]

Forthcoming Research

[Picture of HERA-331?]

Vivamus molestie, risus tempor vehicula mattis, libero arcu volutpat purus, sed blandit sem nibh eget turpis. Maecenas rutrum dui blandit lorem vulputate gravida. Praesent venenatis mi vel lorem tempor at varius diam sagittis. Nam eu leo id turpis interdum luctus a sed augue. Nam tellus.

Acknowledgements

Etiam fermentum, arcu ut gravida fringilla, dolor arcu laoreet justo, ut imperdiet urna arcu a arcu. Donec nec ante a dui tempus consectetur. Cras nisi turpis, dapibus sit amet mattis sed, laoreet.