Geometria / Geometria I - Ano lectivo 2018/2019 Folha 1 - Axiomas de incidência

- 1. Mostre que o seguinte sistema de axiomas é equivalente ao sistema de axiomas de incidência de Hilbert.
 - R.1 Axioma da recta. Por dois pontos passa uma única recta.
 - R.2 Axioma do plano. Por três pontos não colineares passa um único plano.
 - R.3 Axioma da dimensão. Uma recta contém pelo menos dois pontos. Um plano contém pelo menos duas rectas. Existem pelo menos dois planos.
 - R.4 Axioma da intersecção recta-plano. Se dois pontos de uma recta pertencem a um plano, então a recta que os contém está contida no plano.
 - R.5 Axioma da intersecção plano-plano. A intersecção de dois planos não disjuntos é uma recta.
- 2. Mostre que os axiomas de incidência R.1, R.2, R.3, R.4 e R.5 são válidos no "modelo do tetraedro".

3. Investigue se a "geometria dos 7 pontos e 7 rectas" satisfaz os axiomas de incidência de Hilbert do plano (axiomas I.1, I.2, I.3).

- 4. Considere uma geometria onde são válidos todos os axiomas de incidência e demonstre as seguintes afirmações.
 - (a) Uma recta e um plano que não a contém ou são disjuntos ou têm um único ponto em comum.
 - (b) Dada uma recta e um ponto que não lhe pertence, existe um único plano que os contém.
 - (c) Dadas duas rectas concorrentes, existe um único plano que as contém.

- 5. Considere uma geometria onde são válidos todos os axiomas de incidência e diga, justificando, se as seguintes afirmações são verdadeiras ou falsas.
 - (a) Sejam r_1 e r_2 rectas e α um plano. Seja $P = r_1 \cap \alpha$. Se $r_2 \subset \alpha$ e $P \notin r_2$, então $r_1 \cap r_2 = \emptyset$.
 - (b) Se α e β forem planos e contiverem três pontos em comum, então $\alpha = \beta$.
- 6. Seja $\mathcal{A} = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Consideremos uma geometria em \mathcal{A} interpretando os conceitos primitivos da seguinte forma:
 - pontos todos os elementos do conjunto A;
 - ullet rectas todos os subconjuntos de \mathcal{A} com precisamente dois elementos;
 - planos todos os subconjuntos de \mathcal{A} com quatro elementos a, b, c, d, tais que a sua "soma-nim" $a \oplus b \oplus c \oplus d$ é igual a 0.
 - incidir pertencer a.

Mostre que esta geometria satisfaz os axiomas de incidência R.1, R.2, R.3, R.4 e R.5.

Nota 1. A soma-nim de números naturais é o número que corresponde à representação binária da soma da representação desses números na base 2 efectuada coordenada a coordenada. Por exemplo, $1 \oplus 2 \oplus 4 \oplus 5 = 2$. De facto, tem-se

$$\begin{array}{c|cccc}
1 & 0 & 0 & 1 \\
2 & 0 & 1 & 0 \\
4 & 1 & 0 & 0 \\
5 & 1 & 0 & 1 \\
\hline
soma & 0 & 1 & 0
\end{array}$$

Logo, nesta geometria, o conjunto $\{1,2,4,5\}$ não é um plano.

Mas fazendo $4 \oplus 5 \oplus 6 \oplus 7$, obtemos 0, logo, nesta geometria, o conjunto $\{4, 5, 6, 7\}$ é um plano.

Nota 2. Observe-se que, para quaisquer $a, b \in \{0, 1, 2, 3, 4, 5, 6, 7\}$, se tem

$$a \oplus b \in \{0, 1, 2, 3, 4, 5, 6, 7\}$$
 e $a \oplus b = 0$ se e só se $a = b$.