CS540 - 1: Homework 1

Questions 1 through 3

Matthew Klebenow 9/26/2012

Contents

Question 1: Warm Up Math Questions	3
Part A:	3
Part B:	3
First term:	4
Second Term:	4
Combine Terms:	4
Part C:	4
Question 2: Hierarchical Clustering	5
Part A:	5
First iteration:	5
Second iteration:	5
Third iteration:	6
Fourth iteration:	6
Part B:	6
First iteration:	7
Second iteration:	7
Third iteration:	8
Question 3: kNN Classification	8
Part A: k=5	8
Answer:	8
Part B: k=4	8
Answer:	9
Part C: k=3	9
Answer:	9
Part D: k=2	9
Answer:	9
Part E: k=1	9
Answer:	9
Part F: Should we choose the k with the smallest training set error? Why?	10

Question 1: Warm Up Math Questions

Part A:

There are 8 tokens in a bag. 5 are red, 2 are blue, and 1 is green. Without watching, you randomly grab 3 tokens from the bag. What is the chance that you end up with at least 1 red token and at least 1 blue token?

Essentially we have three attempts to satisfy two conditions. As such, the "negative" attempt will not satisfy any remaining criteria for a successful grab. The "negative" can occur as either the first, second, or third grab, and creates six possible scenarios for success. Scenarios 1 & 2 will depict the negative grab third, 3 & 4 will depict the negative grab first, and 5 & 6 will depict the negative grab as second.

Scenario	First Grab	Second Grab	Third Grab	Total Probability	NEGATIVE here is:
RED/BLUE/NEGATIVE	5 -	$\frac{2}{7}$	6	$\frac{5}{6} * \frac{2}{7} * \frac{6}{6} = \frac{5}{30}$	Any color
	8	/	6	8 7 6 28	
BLUE/RED/NEGATIVE	2	<u>5</u>	<u>6</u>	$\frac{2}{-} \times \frac{5}{-} \times \frac{6}{-} = \frac{5}{-}$	Any color
	8	7	6	8 7 6 28	7 y 66.61
NECATIVE/DED/DILLE	1	5	2	1 5 2 5	Noithar rad nor blue
NEGATIVE/RED/BLUE	8	$\frac{\overline{7}}{7}$	$\frac{\overline{6}}{6}$	$\frac{7}{8} + \frac{7}{7} + \frac{7}{6} = \frac{168}{168}$	Neither red nor blue
NEGATIVE/BLUE/RED	1	2	5	1 2 5 5	Neither red nor blue
NEGATIVE/BLUE/RED	8	$\overline{7}$	6	$\frac{7}{8} + \frac{7}{7} + \frac{7}{6} = \frac{168}{168}$	Neither red nor blue
RED/NEGATIVE/BLUE	5	5	2	5 5 2 25	Not blue
RED/NEGATIVE/BLUE	8	7	6	$\frac{7}{8} \times \frac{7}{7} \times \frac{7}{6} = \frac{168}{168}$	Not blue
BLUE/NEGATIVE/RED	2	2	5	2 2 5 5	Not rad
BLUE/NEGATIVE/RED	8	7	- 6	$\frac{-}{8} * \frac{-}{7} * \frac{-}{6} = \frac{-}{84}$	Not red

The total possibility of success is the intersection of all six scenarios. Thus, we add their individual respective probabilities.

$$\sum_{i=1}^{6} Scenario_i = \frac{5}{28} + \frac{5}{28} + \frac{5}{168} + \frac{5}{168} + \frac{25}{168} + \frac{5}{84} = \frac{5}{8}$$

ANSWER:

The probability is
$$\frac{5}{8}$$

Part B:

Take the derivative with respect to x: $(e^x + \sin(x))^3 + x^*\ln(x)$

Take the derivative with respect to *x*:

$$\frac{d}{dx}((e^x + \sin(x))^3 + x * \ln(x))$$

We will take the derivative of each term individually.

First term:

$$\frac{d}{dx}(e^x + \sin(x))^3$$

$$let u = e^x + \sin(x)$$

$$\frac{d}{du}u^3 * \frac{du}{dx}$$

$$3u^2 * \frac{d}{dx}(e^x + \sin(x))$$

$$3(e^x + \sin(x))^2 * \left(\frac{d}{dx}(e^x) + \frac{d}{dx}(\sin(x))\right)$$

$$3(e^x + \sin(x))^2 * (e^x + \cos(x))$$

Second Term:

$$\frac{d}{dx}(x * \ln(x))$$

$$x * \frac{d}{dx}(\ln(x)) + \ln(x) * \frac{d}{dx}(x)$$

$$x * \frac{1}{x} + \ln(x) * 1$$

$$1 + \ln(x)$$

Combine Terms:

ANSWER:

$$3(e^x + \sin(x))^2 * (e^x + \cos(x)) + \ln(x) + 1$$

Part C:

Compute
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

A direct approach of substituting x=1 into the equation yields an indeterminate solution $\left(\frac{0}{0}\right)$. Thus, we must apply L'Hospital's rule.

$$\lim_{x \to 1} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} (x - 1)}$$

$$\lim_{x \to 1} \frac{1}{x}$$

ANSWER:

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$$

Question 2: Hierarchical Clustering

Part A:

Given the dataset with five points (0,0),(2,0),(5,0),(0,4),(4,4), run complete-linkage hierarchical clustering by hand. Use L1 distance. For each iteration, show the cluster membership of each point.

Clusters will be represented by placing points within curly braces { }.

Initially, all points are in their own separate clusters.

Depiction of initial state:

D		Е	
Α	В		С

First iteration:

Cluster	{(0,0)}	{(2,0)}	{(5,0)}	{(0,4)}	{(4,4)}
Min. Distance	2 to {(2,0)}	2, no update	3, no update	4, no update	4, no update

Update Clusters

Cluster	{(0,0), (2,0)}	{(5,0)}	{(0,4)}	{(4,4)}

Depiction

D		Ε	
Α	Α		C

Second iteration:

Cluster	{(0,0), (2,0)}	{(5,0)}	{(0,4)}	{(4,4)}
Min. Distance	5 to {(5,0)}	5, no update	4 to {(4,4)}, update	4, no update

Update Clusters

Cluster	{(0,0),(2,0)}	{(5,0)}	{(0,4), (4,4)}

Depiction

D		D	
Α	Α		С

Third iteration:

Cluster	{(0,0), (2,0)}	{(5,0)}	{(0,4), (4,4)}
Min. Distance	5 to {(5,0)}	5, no update	8, no update

Update Clusters

Cluster	{(0,0), (2,0), (5,0)}	{(0,4), (4,4)}

Depiction

D		D	
Α	Α		Α

Fourth iteration:

Only two clusters remain, therefore they will be the closest pair.

Update Clusters

Cluster {(0,0), (2,0), (5,0), (0,4), (4,4)}

Since there is only one cluster, the HAC algorithm has completed.

Part B:

Repeat part (a) with the constraint that (2,0) and (5,0) must never be in the same cluster.

Initially, all points are in their own separate clusters.

Depiction of initial state:

D		Ε	
Α	В		С

First iteration:

Cluster	{(0,0)}	{(2,0)}	{(5,0)}	{(0,4)}	{(4,4)}
Min. Distance	2 to {(2,0)}	2, no update	3, no update	4, no update	4, no update

Update Clusters

Cluster	{(0.0), (2.0)}	{(5.0)}	{(0.4)}	{(4.4)}
	((-/-// (-/-/)	((-/-/)	((-/-/)	(('/ '/)

Depiction

D		Ε	
Α	Α		С

Second iteration:

Cluster	{(0,0), (2,0)}	{(5,0)}	{(0,4)}	{(4,4)}
Min. Distance	5 to {(5,0)} – ignored 6 to {(0,4)}	5 to {(0,0), (2,0)} – ignored 5 to {(4,4)}, update	4 to {(4,4)}, update	4, no update

Update Clusters

Cluster	{(0,0),(2,0)}	{(5,0)}	{(0,4), (4,4)}

Depiction

D		D	
Α	Α		С

Third iteration:

Cluster {(0,0), (2,0)}		{(5,0)}	{(0,4), (4,4)}
Min. Distance	5 to {(5,0)} – ignored	5 to {(0,0), (2,0)} – ignored	8, no update
	8 to {(0,4), (4,4)}	9 to {(0,4), (4,4)}, no update	o, no apaate

Update Clusters

Cluster	{(0,0), (2,0), (0,4), (4,4)}	{(5,0)}

Depiction

D		D	
Α	Α		Α

All allowed clusters have been formed. Due to the constraint, this iteration is as far as the HAC is allowed to proceed.

Question 3: kNN Classification

Given a dataset with binary labels $(x, y) = \{(2, +), (3, +), (5, -), (7, +), (11, -)\}$, compute the kNN training set error using 0-1 loss and Euclidean distance. If there is a tie, always favor the positive class.

Part A: k=5

- (2,+)
- (3, +)
- (5, +) Fail
- (7,+)
- (11, +) Fail
- Fail: $\frac{2}{5}$

Answer:

Error Rate
$$=\frac{2}{5}=0.4$$

Part B: k=4

- (2,+)
- (3,+)
- (5, +) Fail

- (7,+)
- (11, +) Fail
- Fail: $\frac{2}{5}$

Answer:

Error Rate
$$=\frac{2}{5}=0.4$$

Part C: k=3

- (2,+)
- (3,+)
- (5, +) Fail
- (7,+)
- (11, –) Fail
- Fail: $\frac{1}{5}$

Answer:

Error Rate
$$=\frac{1}{5}=0.2$$

Part D: k=2

- (2,+)
- (3,+)
- (5,+) Fail
- (7,+)
- (11, +) Fail
- Fail: $\frac{2}{5}$

Answer:

Error Rate
$$=\frac{2}{5}=0.4$$

Part E: k=1

- **●** (2,+)
- (3,+)
- **●** (5, −)
- (7,+)
- (11, -)
- Fail: $\frac{0}{5}$

Answer:

Error Rate = 0

Part F: Should we choose the k with the smallest training set error? Why?

No, we should not choose the k with the smallest training set error. Here, we see that k=1 leads to the smallest training set error. This result will be consistent for every training set error calculated with k=1 nearest neighbors simply because the only "neighbor" calculated is the point itself within the training set. In a way, we could define the training set error to be zero for k=1. So, using k=1 for future test instances is by no means guaranteed to be as accurate as the training set error has led us to believe.