PARALLELIZING MCMC WITH RANDOM PARTITION TREES

APPLICATION TO
BOOK CROSSING DATASET

Ilaria Raciti Paola Riva

 11^{th} August 2017

Contents

1	Introduction	3
2	PART algorithm 2.1 Space Partitioning	5 5 6 7
3	Implementation 3.1 PART	9 9 16 16 18 24
4	Compile and Run 4.1 PART	31 31 32
5	Synthetic Tests 5.1 Accuracy and Times	34 35 37 38
6	Application 6.1 Reference Model 6.2 6.2 Book Crossing Dataset 6.2.1 Data 6.2.2 Model 6.2.3 Analysis 6.2.4 Results 6.2.4 Results	41 42 42 50 51 53
\mathbf{A}	Default Parameters	58
В	Tests - Detailed Results	60
\mathbf{C}	CmdStan	7 6
D	Google Books API	79
Е	Features of the <i>Book Crossing</i> dataset	80

1 Introduction

In Bayesian Statistics, a conventional way to sample from posterior distributions is to use Markov Chain Monte Carlo (MCMC) algorithms. However these methods can be computationally very expensive, especially if applied to big data. Indeed, not only the time per iteration and the time to reach convergence increase with the number of data, but it is usually impossible to process all data on a single machine. Moreover, even if data can be divided among machines, the communication costs during sampling are too high, regardless of the messages being passed (see Scott et al. [2016]).

To overcome these problems, an intuitive but promising approach to Bayesian Inference on Big Data consists in partitioning data into multiple subsets, called *shards*, store each of them on different machines and sample **independently** on each machine using only the corresponding shard.

The class of MCMC algorithms based on this logic is called *Embarrassingly Parallel* MCMC (EP-MCMC).

One of the main advantages of using EP-MCMC algorithms is the absence of communication among machines during the sampling phase: each machine draws MCMC samples using only its subset of data and, only afterwards, the result of sampling on each machine is combined to determine an estimate of the posterior distribution based on the entire dataset.

Existing EP-MCMC algorithms can be roughly divided into three types:

- algorithms based on asymptotic normality of posterior distribution, such as the well-known Consensus Monte Carlo algorithm by Scott et al. [2016];
- methods that recombine samples from subset posterior distribution by computing appropriate estimated summaries of the posterior; an example is proposed by Srivastava et al. [2015], which calculates the barycenter with respect to a Wasserstein distance between samples;
- algorithms relying on the so-called *product density equation* (PDE), that is a factorization of the posterior distribution.

These methods present some drawbacks.

The approach proposed in the CONSENSUS MONTE CARLO algorithm is effective when the posterior distributions are close to Gaussian, but could suffer from huge bias when skewness and multi-modes are present. In fact, bias effects that vanish in the full data, may be present in each shard and information asymmetry among machines may dramatically influence each subset's posterior.

The second and third category of EP-MCMC algorithms instead suffer respectively from lack of accuracy and inefficiency in re-sampling from the combined posterior.

We underline that *information asymmetry* is a common problem for these methods: if some of the *shards* do not contain information on the phenomenon that need to be studied, the estimates deriving from these shards could be far from the true distribution, leading to inaccurate posterior proxies.

Wang et al. [2015] proposed an EP-MCMC algorithm, termed PARALLEL AGGREGATION RANDOM TREES (PART), which aims to accomplish the solutions of the aforementioned problems.

Since PART algorithm belongs to the category of EP-MCMC algorithms based on PDE, we will now describe the assumptions of this class of methods.

Let us consider a dataset $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of n Q-dimensional points and a d-dimensional parameter $\boldsymbol{\theta}$ of interest.

• there exists a partition $X^{(1)}, X^{(2)}, \ldots, X^{(M)}$ of X into M subsets such that $X^{(1)}, X^{(2)}, \ldots, X^{(M)}$ are conditionally independent on $\boldsymbol{\theta}$

$$p(X^{(1)}, X^{(2)}, \dots, X^{(M)} | \boldsymbol{\theta}) = \prod_{m=1}^{M} f^{(m)}(X^{(m)} | \boldsymbol{\theta})$$

• the prior of θ on the full data can be factorized as $\pi(\theta) = \prod_{m=1}^{M} \pi^{(m)}(\theta)$

then the product density equation (PDE) holds:

$$p(\boldsymbol{\theta}|X) \propto \pi(\boldsymbol{\theta})p(X|\boldsymbol{\theta}) \propto p(\boldsymbol{\theta}|X^{(1)})p(\boldsymbol{\theta}|X^{(2)}) \dots p(\boldsymbol{\theta}|X^{(M)})$$

where

- $p(\boldsymbol{\theta}|X)$, termed full-posterior, is the posterior distribution based on the entire dataset X
- $p(\boldsymbol{\theta}|X^{(m)})$ is the m^{th} sub-posterior representing the posterior distribution of $\boldsymbol{\theta}$ based on subset $X^{(m)}$, that can be written as

$$p(\boldsymbol{\theta}|X^{(m)}) \propto \pi^{(m)}(\boldsymbol{\theta}) f^{(m)}(X^{(m)}|\boldsymbol{\theta}).$$

If the above conditions hold, it is possible to sample **independently** from each sub-posterior $p(\boldsymbol{\theta}|X^{(m)})$, avoiding communication between different subsets. An estimate of the full-posterior distribution is obtained through an appropriate combination of samples drawn from each sub-posterior.

We underline again that the sampling steps are communication-free and only the combination phase requires communication between machines.

2 PART algorithm

The proposed algorithm, called Parallel Aggregation Random Trees (PART), is an EP-MCMC algorithm and, as such, its main goal is to give an estimate of the full-posterior as an aggregation of sub-posteriors.

The algorithm consists of two main steps, of which we will discuss the details in the following subsections:

- 1. space partitioning: partition the d-dimensional domain Θ of parameter θ ,
- 2. density aggregation: aggregate the sub-posteriors' estimates to approximate the full-posterior.

2.1 Space Partitioning

The space partitioning phase of PART algorithm takes advantage of random partition trees, also referred to as multi-scale histograms. Let us define a rectangular block

$$A_k := (l_{k,1}, r_{k,1}] \times (l_{k,2}, r_{k,2}] \times \cdots \times (l_{k,d}, r_{k,d}] \subseteq \mathbb{R}^d$$

and let \mathcal{F}_K be the collection of all \mathbb{R}^d -partitions formed by K disjoint rectangular blocks

The algorithm approximates each sub-posterior $p(\boldsymbol{\theta}|X^{(m)})$ using K-block histograms:

$$\hat{p}(\boldsymbol{\theta}|X^{(m)}) = \sum_{k=1}^{K} \frac{n_k^{(m)}}{N_m |A_k|} 1_{\boldsymbol{\theta} \in A_k}$$

where

- $n_k^{(m)}$ is the number of $\boldsymbol{\theta}$ samples drawn from machine m and falling into partition block A_k ;
- N_m is the number of θ samples drawn on machine m;
- K is the number of blocks that partition the domain Θ ;
- $|A_k|$ indicates the area of the block A_k .

The first aim of PART algorithm is to determine a partition $\{A_1, ..., A_K\}$ of the domain Θ , where $A_1, ..., A_K$ and K are unknown and depend on the particular problem.

The partition is determined by recursively splitting each partition's block along a randomly selected dimension in $\{1, ..., d\}$, according to a predefined rule ϕ , according to the the following procedure.

Let us consider a rectangular block $A := (l_1, r_1] \times (l_2, r_2] \times \cdots \times (l_d, r_d] \subseteq \mathbb{R}^d$ and suppose we want to split it along the randomly chosen but fixed dimension $p \in \{1, ..., d\}$. Denoting with $\{\theta_j^{(m)}\}_{j \in A}$ those θ -samples drawn from the m^{th} sub-posterior and falling into partition's block A, the cutting point θ_p^* along dimension p is determined through rule ϕ as follows:

$$\boldsymbol{\theta}_{p}^{*} = \phi(\{\boldsymbol{\theta}_{j,p}^{(1)}\}_{j \in A}, \{\boldsymbol{\theta}_{j,p}^{(2)}\}_{j \in A}, \dots, \{\boldsymbol{\theta}_{j,p}^{(M)}\}_{j \in A})$$

where $\boldsymbol{\theta}_{j,p}^{(m)}$ is the p^{th} component of the j^{th} sample drawn on machine m that fall into partition's block A.

The resulting partition of block A along dimension p is given by:

$$A_p^- := [l_p, \theta_p^*)$$

$$A_p^+ := [\theta_p^*, r_p)$$

The bisection procedure is repeated on each of the resulting blocks $A^-, A^+ \subseteq \mathbb{R}^d$ until the block A_k satisfies one of the following stopping criteria:

- $\sum_{m=1}^{M} n_k^{(m)}/N_m < \delta_{\rho}$, which imposes a condition on the minimum number of samples falling into partition's block A_k ;
- $|A_k| < \delta_a$, which guarantees a sufficiently wide area of the resulting partition's block A_k .

The partition rule ϕ defines how to perform the splitting along a fixed dimension p and can be chosen among one of the following two types:

- KD/median: the cutting point is the empirical median of samples falling into current block along dimension *p*;
- Maximum Likelihood: the cutting point corresponds to the maximizer of the empirical log-likelihood based on the projection along dimension p of samples falling into current partition block

$$\phi(\{\boldsymbol{\theta}_{j,p}^{(1)}\}_{j\in A}, \{\boldsymbol{\theta}_{j,p}^{(2)}\}_{j\in A}, \dots, \{\boldsymbol{\theta}_{j,p}^{(M)}\}_{j\in A}) =$$

$$= \underset{n_- + n_+ = n, A^- \cup A^+ = A}{\operatorname{argmax}} \sum_{m=1}^{M} \left\{ n_-^{(m)} (\log n_-^{(m)} - \log |A^-|) + n_+^{(m)} (\log n_+^{(m)} - \log |A^+|) \right\}$$

where $n_- := \sum_{m=1}^M n_-^{(m)}$ and $n_+ := \sum_{m=1}^M n_+^{(m)}$ represent respectively the number of samples belonging to left A^- and right A^+ partition's block.

Since the computation cost of KD-rule is $\mathcal{O}(n)$ while ML-rule takes $\mathcal{O}(nlog(n))$, KD-Tree Partition is faster than ML one, especially when the number of posterior draws n in current block is large.

The bisecting procedure creates a random partition tree of the sampling domain: starting from a root node storing the entire domain Θ , at each node a dimension where to cut is randomly chosen and two children blocks are generated; the process is repeated until no further splitting is possible (i.e. one of stopping criteria has been met); in such a case the resulting node is a leaf of the tree; the set of leaves obtained represents a partition of the original domain Θ .

2.2 Density Aggregation

Once an estimate of each subset's posterior has been determined through *space* partitioning, PART algorithm combines all the sub-posteriors to determine an approximation of the full-posterior.

Each of the $m \in \{1, ..., M\}$ sub-posterior estimate has the following form:

$$\hat{p}(\boldsymbol{\theta}|X^{(m)}) = \sum_{k=1}^{K} \frac{n_k^{(m)}}{N_m |A_k|} 1_{\boldsymbol{\theta} \in A_k}$$

where $\{A_k\}_{k=1}^K$ is a rectangular partition of Θ composed of K blocks. Imposing the partition $\{A_k\}_{k=1}^K$ to be the **same** across all subsets, the estimated full-posterior is determined through the product density equation (PDE):

$$\begin{split} \hat{p}(\boldsymbol{\theta}|X) &= \frac{1}{Z} \prod_{m=1}^{M} \hat{p}(\boldsymbol{\theta}|X^{(m)}) = \\ &= \frac{1}{Z} \sum_{k=1}^{K} \left(\frac{1}{|A_k|^M} \prod_{m=1}^{M} \frac{n_k^{(m)}}{N_m} \right) \mathbf{1}_{\boldsymbol{\theta} \in A_k} \end{split}$$

where Z is the normalizing constant given by

$$Z = \sum_{k=1}^K \left(\frac{1}{|A_k|^{M-1}} \prod_{m=1}^M \frac{n_k^{(m)}}{N_m} \right).$$

Based on this result, new MCMC samples will be drawn from the estimated full-posterior density.

2.3 Improvements

We will now relax some of the previously introduced assumptions.

The first strong assumption to be relaxed concerns the shape of the full-posterior density, which, in general, can be written as a mixture of local generic densities as follows:

$$\hat{p}(\boldsymbol{\theta}|X) = \sum_{k=1}^{K} w_k g_k(\boldsymbol{\theta})$$

where w_k is the k^{th} mixture component's weight and $g_k(\boldsymbol{\theta})$ is a block-wise distribution.

The algorithm currently offers the following local kernels:

- uniform distribution: $g_k(\boldsymbol{\theta}) = Unif(\boldsymbol{\theta}; A_k)$ i.e. each sub-posterior is represented through multi-scale histograms;
- Gaussian distribution: $g_k(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}; \mu_k, \Sigma_k)$, with μ_k and Σ_k estimates of the mean and covariance of samples in current partition's block A_k .

The use of local Gaussian kernels could help increasing the smoothness of the estimate.

Also notice that the assumption of a random partition of the space Θ that is **common** to all subsets is extremely restrictive, especially when the number of subsets M is large.

To overcome this issue, pairwise aggregation logic can be chosen: instead of considering all subsets together, space partitioning and density aggregation are

performed on each pair of subsets, until one final estimate of the full-posterior is obtained.

Finally, to achieve better approximation accuracy, the algorithm builds a random forest of n_{tree} independent random partition trees, each of which represents a possible partition of the domain Θ . The full-posterior estimate is then obtained as an average of the aggregated posteriors resulting from each random tree in the forest.

3 Implementation

We developed a C++11 version of PART algorithm (available at https://github.com/paolariva2/PART_BayesPACS) taking as reference the original MATLAB code by Wang et al. (available at

https://github.com/richardkwo/random-tree-parallel-MCMC).

3.1 PART

In the following sub-sections we will describe the implementation's details for each of the two main goals of PART algorithm:

1. space partitioning

Determine a partition of K elements $\{A_1,...A_K\}$ of the domain Θ , to approximate each sub-posterior $p(\boldsymbol{\theta}|X^{(m)})$ using a K-block histograms:

$$\hat{p}(\boldsymbol{\theta}|X^{(m)}) = \sum_{k=1}^{K} \frac{n_k^{(m)}}{N_m |A_k|} 1(\boldsymbol{\theta} \in A_k)$$

where

- $n_k^{(m)}$ is the number of $\boldsymbol{\theta}$ samples drawn from machine m and falling into partition block A_k ;
- N_m is the number of θ samples drawn on machine m;
- K is the number of blocks that partition the domain Θ ;
- $|A_k|$ indicates the area of the block A_k .
- 2. density aggregation

Draw **new** samples from the estimated full-posterior, derived as aggregation of the estimated sub-posteriors $\{\hat{p}(\boldsymbol{\theta}|X^{(m)})|m\in\{1,\ldots,M\}\}$ through posterior density equation (PDE):

$$\hat{p}(\boldsymbol{\theta}|X) \propto \prod_{m=1}^{M} \hat{p}(\boldsymbol{\theta}|X^{(m)})$$

3.1.1 Space Partitioning

As already explained, space partitioning consists in generating a random tree that partitions the domain Θ : starting from a root node storing the entire domain Θ , at each node a dimension where to cut is randomly chosen and two children blocks are generated; the process is repeated until no further splitting is possible (i.e. one of stopping criteria has been reached); in such a case the resulting node is a leaf of the tree; the set of leaves obtained represents a partition of the original domain Θ .

There are three main structures to be considered to grow a random partition tree:

• RawMCMC: reference class to store information on input subchains (see Listing 1).

Beside storing the number of subsets from which MCMC samples have been drawn (private attribute m_M) and the sampling area (private attribute m_area), an object of class RawMCMC concatenates all MCMC samples in a single matrix (private attribute m_samples) keeping track of the index of subset from which each of them have been drawn (private attribute m_mark).

Listing 1: include/RawMCMC.hpp

• MCestimate: stores information on statistics, such as mean, covariance, sampling area and density estimate in logarithmic form associated to MCMC samples (see Listing 2).

This class will be particularly important in re-sampling phase (see Section 3.1.2.1).

Listing 2: include/MCestimate.hpp

• Tree: class to grow the random partition tree (see Listing 3).

Its private attributes define how the tree should be grown:

 kd_cut: if set to true, the cutting point at each partitioning phase will be determined through KD-method; otherwise, it will be computed as Maximum Likelihood (ML-method),

- min_num_points_block: minimum number of samples falling into each leaf node,
- min_cut_length: minimum length of sampling area along each dimension.

Listing 3: include/Tree.hpp

```
class Tree{
    public:
        . . .
    private:
        bool kd_cut;
        uword min_num_points_block;
        double min_cut_length;
        struct Node{
             . . .
        void findCut(const RawMCMC & rawMCMC,
                      const Node & node,
                      double & cut,
                      uword & dim,
                      vec & samples_dim,
                      bool & valid_cut);
        bool checkCut(const double cut,
                       const vec & samples_dim,
                       const double 1,
                       const double r);
        void build(const RawMCMC & rawMCMC,
                    Node & node,
                    const bool verbose,
                    std::vector<MCestimate> & leaves);
             . . .
};
```

The tree is recursively grown calling the private method build on each node Node of the tree, until all leaves (represented through std::vector<MCestimate>leaves) have been determined.

Each node in the tree is represented through a private structure Node, storing relevant information to define the partition of sampling area (see Listing 4).

Listing 4: include/Tree.hpp

```
struct Node{
   Node * parent;
   Node * childLeft;
    Node * childRight;
    uvec indices; // indices of samples falling in node.
    mat area; // Sampling area.
    uvec dim_cut; // Candidate dimensions for cut.
    //! Constructor of root node
    Node();
    // Define attributes of child node and link it to parent
    void generateChild(const uword dim,
                       const double cut,
                       const double min_cut_length,
                       const bool is_left,
                       const uvec & idx,
                       Node & node);
};
```

The method Tree::build (see Listing 5) is responsible for assessing whether the considered Node node has to be a leaf ($valid_cut == false$) or not. In the latter case a further partitioning will be applied to each of children nodes.

First of all the search of valid cutting point is performed among MCMC samples falling into current node through Tree::findCut.

If the selected cutting point is indeed valid (valid_cut == true) the samples falling into current node need to be split (through Node::generateChild). Each child will then be submitted to Tree::build method as well.

Otherwise, if no valid cutting point have been found, the current node is indeed a leaf, representing one element of the space partitioning tree. In such a case, the statistics on samples falling into this leaf are stored in an object of class MCestimate and these information are added to the partition tree (represented through std::vector<MCestimate>).

```
Listing 5: src/Tree.cpp
```

```
if (nMCsamples>min_num_points_block
       && node.dim_cut.n_rows>0){
        findCut(rawMCMC,node,cut,dim,samples_dim,valid_cut);
    if(valid_cut){ // Valid partition has been found
        // define the partition into children nodes
        // create children of current node
        Node nodeLeft, nodeRight;
        node.generateChild(dim,cut,min_cut_length,true,
                            left_idx,nodeLeft);
        node.generateChild(dim,cut,min_cut_length,false,
                            right_idx, nodeRight);
        // proceed search on left child
        build(rawMCMC, nodeLeft, verbose, leaves);
        // proceed search on right child
        build(rawMCMC, nodeRight, verbose, leaves);
    }else{ // No valid partition has been found
        // this node is one element of the partition!!
        leaves.emplace_back(rawMCMC, node.indices, area);
    }
};
```

To determine a valid cutting point, the private method Tree::findCut is called at the beginning of each call of Tree::build.

As shown in Listing 6, among all possible dimensions along which current area can be split (node.dim_cut), we randomly select only one of them (dim) and determine the cutting point through KD- or ML-method (according to Tree.kd_cut.

Once the candidate cutting point has been determined, the method checkCut defines if this cutting point indeed generates a valid partition, checking whether each candidate block is not too small and contains a sufficiently high number of samples.

If the candidate cut is valid $(valid_cut == true)$, the search stops in a leaf node.

Otherwise, the candidate dimension along which the invalid cutting point have been found is removed from the candidate dimensions along which the cut need to be searched and a new dimension is analyzed.

The call of findCut method terminates either with a valid cutting point along one dimension of sampling area or, after analyzing all available dimensions, with no valid cutting point.

Listing 6: src/Tree.cpp

```
void Tree::findCut(const RawMCMC & rawMCMC,
                   const Node & node, double & cut,
                   uword & dim, vec & samples_dim,
                   bool & valid_cut){
    valid_cut = false;
    // select candidate dimensions
    std::vector<uword> candidate_dims(
        conv_to < std::vector < uword > >::from(node.dim_cut) );
    while( (candidate_dims.size()>0) && (!valid_cut) ){
        // randomly select one dimension
        std::uniform_int_distribution<>
                        dis(0, candidate_dims.size()-1);
        const uword id_dim = dis(gen);
        dim = candidate_dims[id_dim];
        // select only samples of interest
        samples_dim = samples.col(dim);
        // select candidate cutting point according to KD or ML
        // check validity of cutting point
        valid_cut = checkCut(cut,samples_dim,
                              node.area(0,dim),
                              node.area(1,dim));
        candidate_dims.erase(
            candidate_dims.begin()+static_cast<int>(id_dim));
    }
    . . .
};
```

We recall that, to relax the assumption of a common space partition among all subset's posterior, it is possible to grow a *random forest* instead of only one random tree. This means that it is possible to generate ntree trees to define the space partitioning (see Listing 7).

Listing 7: src/oneStageResampling.cpp

```
const uword min_num_points_block,
                         mat & y){
    const RawMCMC rawMCMC(subchains);
    const uword nMCsamples = rawMCMC.get_samples().n_rows;
    const uvec dim_cut = find(
        rawMCMC.get_area().row(1)-rawMCMC.get_area().row(0)>
        par.min_cut_length
        );
    std::vector<std::vector<MCestimate> > forest(par.ntree);
    for(uword n=0; n<par.ntree; n++){</pre>
        // grow n^th random partition tree
        Tree tree(par.kd_cut,
                  min_num_points_block,
                   par.min_cut_length);
        tree.grow(rawMCMC,dim_cut, par.verbose, forest[n]);
    }
    posteriorResampling(forest,
                         par.n_samples,
                         par.gaussian_smooth,
                         par.verbose,
                         y);
};
```

Since the cutting criteria KD and ML are deterministic and all trees in forest receive the same samples (rawMCMC) and the same dimensions along which the cutting point should be searched (dim_cut), if there is only one dimension along which the cutting point should be searched, the previously described procedure generates ntree identical trees.

To introduce randomness in growing trees, we perform an additional search step in findCut method: in such a case and only if a valid cutting point has been determined through previously described search, a new candidate cutting point is randomly selected among available samples; as before, the search continues until a valid cutting point is determined through checkCut (see Listing 8).

```
Listing 8: src/Tree.cpp
```

```
if(nullptr==node.parent && 1==node.dim_cut.n_rows
    && valid_cut){

    dim=0;
    samples_dim = samples.col(dim);
```

```
const double 1 = node.area(0,dim), r = node.area(1,dim);
std::uniform_int_distribution<> dis(0,nMCsamples-1);
valid_cut = false;
while(!valid_cut){
    cut=samples_dim(dis(gen));
    valid_cut = checkCut(cut,samples_dim,l,r);
}
```

The result of the overall procedure is hence a std::vector<MCestimate> representing a rectangular partition $\{A_1, ... A_K\}$ of the domain Θ .

3.1.2 Density Aggregation

}

Once a partition of K elements $\{A_1, ... A_K\}$ of the domain Θ has been determined, it is necessary to define a way to aggregate the sub-posteriors to obtain the full-posterior estimate.

There are two logic to aggregate the estimated sub-posteriors:

- one-stage aggregation: given MCMC samples from all subsets, determine an estimate of the full-posterior aggregating all samples in one single step.
- pairwise aggregation: given MCMC samples from all subsets, determine an estimated posterior for each pair of sub-posteriors. Continue the aggregation procedure until a final estimate is obtained. The resulting estimated posterior is an approximation of the full-posterior.

As already said, the *pairwise aggregation* fashion is particularly useful to increase the accuracy of the full-posterior estimate.

Since the process of generating samples from the aggregated posterior does not depend on the choice of the aforementioned density aggregation logic, we first describe how to generate samples from an aggregated density and then discuss the details of the pairwise logic.

3.1.2.1 Posterior Resampling

To generate **new** samples from the *aggregated posterior*, the function **posteriorResampling** is called (see Listing 9).

First of all the indices of trees are randomly sampled for ntree times and the occurrences of each of them are stored in tree_counted.

Then, for each tree in forest, the leaves are sampled tree_counted(ctree)-times according to the probability associated to samples falling into the corresponding leaf (prob). In this way, sampled_nodes takes into account the relevance of both the selected tree and of its leaves.

Afterwards, for each unique value of previously sampled nodes, a leaf node is selected (leaf) and resampling is performed based on statistics stored in leaf. The number of samples drawn from leaf is proportional to the frequency of sampling leaf among leaves in current tree and the distribution from which the samples are drawn depends on the user's choice (i.e. $gaussian_smooth == true$

use local Gaussian; $gaussian_smooth == false$ use uniforms).

We underline that, in order to actually draw samples from a local Gaussian distribution, it is not sufficient to set $gaussian_smooth == true$. Indeed, if the covariance matrix of samples falling into current leaf is not invertible or not positive definite, a uniform kernel based on leaf.sampling_area is used instead.

Listing 9: src/posteriorResampling.cpp

```
void posteriorResampling(
        const std::vector<std::vector<MCestimate> > & forest,
        const uword n_samples,
        const bool gaussian_smooth,
        const bool verbose,
        mat & y){
    // number of MCMC samples drawn
    uword num_sampled = 0;
    for(unsigned int ctree=0;
        ctree < static_cast < unsigned int > (ntree);
        ctree++){
        // current tree
        const std::vector<MCestimate> tree(forest[ctree]);
        // weights of mixture components
        std::vector<double> prob(tree.size());
        unsigned int pos=0;
        for(auto const & i: tree){
            prob[pos] = std::exp(i.log_prob);
            pos++;
        }
        // how many times the current tree had been sampled (among ntree)
        const uword freq_tree = tree_counted(ctree);
        // Sample (with replacement) leaf nodes according to prob
        uvec sampled_nodes(freq_tree);
        std::random_device rd;
        std::mt19937 gen(rd());
        std::discrete_distribution<> discr(prob.begin(), prob.end());
        for(uword n=0; n<freq_tree; n++){</pre>
            sampled_nodes(n) = static_cast < uword > (discr(gen));
        }
        . . .
```

```
for(uword node_index = 0; node_index < n_unique; node_index ++) {</pre>
            // select leaf
            const unsigned int id =
                static_cast < unsigned int > (unique_nodes (node_index));
            const MCestimate leaf = tree[id];
            // how many times current node had been sampled (in tree)
            const uword freq_node = nodes_count(node_index);
            // eigenvalue decomposition of leaf.Cov
            vec eigval;
            mat eigvec;
            if(gaussian_smooth && (leaf.Cov).is_finite()
               && eig_sym(eigval, eigvec, leaf.Cov)
               && eigval.is_finite() && eigvec.is_finite()
               && all(eigval > 0.0) ){
                eigval = pow(eigval, 0.5);
                y.rows(num_sampled,num_sampled+freq_node-1) =
                     randn < mat > (freq_node, d) * diagmat(eigval) * (eigvec.t())
                     + repmat(leaf.mean,freq_node,1);
            }else{ // use uniform kernel
                 const rowvec L = leaf.sampling_area.row(0);
                const rowvec R = leaf.sampling_area.row(1);
                y.rows(num_sampled,num_sampled+freq_node-1) =
                     repmat(R-L, freq_node, 1) %randu <mat > (freq_node, d)
                     + repmat(L,freq_node,1);
            }
            // number of samples drawn till now
            num_sampled += freq_node;
        } // end unique nodes for
    } // end tree for
};
```

// for each unique value of sampled_nodes

3.1.2.2 Pairwise Aggregation

If the pairwise aggregation method is chosen for density aggregation, the func-

tion pairwiseAggregation is called (see Listing 10).

First of all the function defines an unordered_map to store MCMC samples from different subsets.

Then, until the unordered_map contains only one matrix, the following procedure is repeated:

- matching: define a way to create groups of subsets' indices.
 - The idea is to associate pair of indices and to store each of them in match. To consider also the case of odd number of subsets, the last group of indices could contain three indices instead of a pair.
 - The matching procedure is performed by matchSubsets, unless the number of samples' matrices is already three or less.
 - The result of this procedure is std::vector < std::vector < word> > match, whose g^{th} element stores the indices of subsets belonging to the g^{th} group.
- group-posterior resampling: for each group of matched indices, the corresponding samples are stored in inner_subchains to be elaborated by oneStageResampling.
 - This function performs space partitioning on inner_subchains and then draws **new** samples from the corresponding aggregated posterior.
 - The result of this *group-posterior resampling* procedure is a matrix storing MCMC samples drawn from the estimated posterior corresponding to the group of matched matrices.
 - Since this matrix captures the properties of samples associated to g^{th} group, it will be used as input for the next stage of pairwise aggregation, while the previously used matrices associated to this group can be removed from MCdraws. Once the posterior resampling has been performed on all groups of indices in match, the object MCdraws has halved size and stores the posterior resampling result for each group.
 - These matrices will be used to define the matching at next stage.
 - After $\lfloor \log M/\log 2 \rfloor$ stages, where M is the number of input subsets, the object MCdraws contains only one matrix that corresponds to the desired full-posterior estimate.

Listing 10: src/pairwiseAggregation.cpp

```
// matching phase
    std::vector<std::vector<uword> > match;
    if (MCdraws.size()>3){
        matchSubsets(par.improve_matching, MCdraws,
                     par.verbose, match);
    }else{ // all subsets grouped together
        match.resize(1);
        for(auto const & i: MCdraws){
            match.front().push_back(i.first);
    }
    // space partitioning and density aggregation on each group
    for(auto const & g: match){ // for each group in match
        const unsigned int n_matched = g.size();
        // store matrix associated to each matched subset
        std::vector<const mat*> inner_subchains(n_matched,nullptr);
        unsigned int pos=0;
        for(const uword i: g){
            auto const it = MCdraws.find(i);
            inner_subchains[pos] = &(it->second);
            pos++;
        }
        // group-posterior resampling result
        mat post_samples;
        oneStageResampling(inner_subchains,
                            par,
                            min_num_points_block,
                            post_samples);
        // update map content
        MCdraws.find(g[0])->second = std::move(post_samples);
        for(uword i=1; i<n_matched; i++){</pre>
            auto const it = MCdraws.erase(g[i]);
        }
    } // end resampling on each group
    . . .
} // only one matrix left
```

```
// store estimate of full-posterior
aggr_post_samples = MCdraws.begin()->second;
};
```

We said above that, if the number of matrices stored in MCdraws is more than three, the *matching* phase is performed calling the function matchSubsets. We will now describe more in detail how this function behaves.

There are two ways to perform the *matching* phase, according to the value of user-defined parameter improve_matching (see Listing 11).

The simplest case is $improve_matching == false$, in which indices of subsets are paired without specific order. As previously said, if the number of input subsets is odd, the last index left out from matching will be stored in last group, which will contain three elements.

Observe that, by assumption, all *sub-chains* are independently generated and none of them is more relevant than the others. That is why, at the beginning of matchSubsets, we decided to randomly shuffle the indices of subsets: in such a way, at each execution of our code, the order of input subsets' indices collected from MCdraws changes.

If $improve_matching == true$, pairs of subset indices will be formed according to the following metric:

subset's index keyS is associated to keyF if and only if it corresponds to the index of the median of squared distances between mean of samples. More specifically, if we call S_i and S_{keyF} the matrices of samples corresponding to i^{th} and $keyF^{th}$ indices respectively, keyS is such that

$$sum_dis_sq(keyS) = median(sum_dis_sq)$$

where the i^{th} component of sum_dis_sq is defined as

$$sum_dis_sq(i) = \sum_{p=1}^{d} (\frac{1}{N_i} \sum_{n=1}^{N_i} S_i(n,:) - \frac{1}{N_{keyF}} \sum_{n=1}^{N_{keyF}} S_{keyF}(n,:))^2$$

with S(n,:) indicating the n^{th} row of matrix S.

To implement this, we decided to use a list, named subs_left_set, into which we store the shuffled indices of subsets id_sub. Until the number of indices not yet matched is at most three, the following procedure is repeated:

- 1. select the first index of subset that has not yet been matched (keyF) and store the mean of the corresponding matrix in meanF;
- for each element in subs_left_set, compute the sum of squared distances of samples' mean with respect to the selected subset and store the result in sum_dis_sq vector;

- 3. select the index of subset that corresponds to the median of sum_dis_sq , that is the $\lfloor subs_left_set.size()/2 \rfloor^{th}$ element of sorted indices of sum_dis_sq vector;
- 4. since the pair of indices has been determined, it is sufficient to store the indices in match and remove them from the set of indices that still need to be matched.

The procedure ends when there are at most three subsets left, that will be grouped together.

Listing 11: src/matchSubsets.cpp

```
void matchSubsets(const bool improve_matching,
                  const std::unordered_map<uword,mat> & MCdraws,
                  const bool verbose,
                  std::vector<std::vector<uword> > & match){
    // Number of subsets to be matched
    const uword subs_left = MCdraws.size();
    // Number of groups to be created
    const uword G = static_cast < uword > (std::floor(subs_left/2.0));
   match.resize(G, std::vector<uword>(2));
    // Randomness in matching
    uvec id_sub(subs_left);
    uword pos=0;
    for(auto const & it: MCdraws){
        id_sub(pos)=it.first;
        pos++;
    }
    id_sub = shuffle(id_sub);
    if (improve_matching){
        // indices of subsets to be matched
        std::list<uword> subs_left_set;
        for(const uword s: id_sub){
            subs_left_set.emplace_back(s);
        uword n_{groups} = 0;
        // until no more than three subsets left out
        while(subs_left_set.size()>3){
            // first index of pair
```

```
auto const itF = MCdraws.find(keyF);
        // mean of matrix associated to keyF
        const rowvec meanF = mean(itF->second,0);
        // store sum distances squared
        vec sum_dis_sq(subs_left_set.size());
        uword pos=0;
        for(const uword s: subs_left_set){
            auto const it = MCdraws.find(s);
            // mean distance w.r.t. keyF
            const rowvec dis(mean(it->second,0)-meanF);
            sum_dis_sq(pos) = accu(dis%dis);
            pos++;
        }
        const uvec id_sorted = sort_index(sum_dis_sq);
        const uword id_median = static_cast<uword>(
                        std::floor(subs_left_set.size()/2.0)));
        auto itS = subs_left_set.begin();
        // iterator to second index in current group
        std::advance(itS,
                     static_cast < int > (id_sorted(id_median)));
        // insert pair into match vector
        match[n_groups][0] = keyF;
        match[n_groups][1] = *itS;
        n_groups++;
        // remove form subs_left_set
        subs_left_set.erase(itS);
        subs_left_set.erase(subs_left_set.begin());
    // subs_left_set.size() is at most three
    match[n_groups].resize(subs_left_set.size());
    std::copy(subs_left_set.begin(), subs_left_set.end(),
              match[n_groups].begin());
}else{ // match subsets without specific ordering
```

const uword keyF = *subs_left_set.begin();

```
// match pairs of indices
for(uword g=0; g<G; g++){
    match[g][0]=id_sub(2*g);
    match[g][1]=id_sub(2*g+1);
}

// if odd number of subsets
if(subs_left>2*G){
    match.back().push_back(id_sub(subs_left-1));
}

};
```

3.2 Interface

Since PART requires as input M independent subchains, we wrote an interface to generate them directly from data.

The abstract and virtual class MCMC and the associated struct MCMCParams allow the user to choose the desidered MCMC generator (see Listing 12).

The class MCMC is structured as follows:

- m_subchains: object into which the resulting subchains will be stored; this will be the input for PART algorithm.
- ullet generateSubchain: method to generate the indexChainth subchain that will be stored in m_subchains, according to the Monte Carlo generator choosen by the user.
- createInputSubchains: method to split input data (saved in pathInputData) into M subsets and to generate corresponding subchains (calling generateSubchain).
- \bullet get_subchains: getter of protected attribute m_subchains.

Listing 12: interface/include/MCMC.hpp

```
//! Empty base struct for parameters of MCMC method
struct MCMCParams{
    virtual void f(){};
};

//! Base class for MCMC generation
class MCMC{
    protected:
    std::vector<mat> m_subchains;
```

Based on the above structures, the user can define a derived class to generate MCMC samples using the desired Monte Carlo generator. Since we decided to use CmdStan to generate each subchain, we defined the

derived class StanMC and the corresponding structure StanParams.

The struct StanParams, derived from MCMCParams, is responsible for storing all parameters required to generate MCMC samples using CmdStan. Since CmdStan requires input data with extension .data.R, we also need to call R to transform each subdata in such format.

The attributes of StanParams hence take into account of parameters for R and CmdStan usage (see Listing 13):

- m_samplingIter: number of sampling iterations to be performed for each subchain;
- m_burnin: number of warmup iterations;
- m_thin: thinning parameter;
- m_pathR: path into which all R files will be found, namely R working directory path;
- m_pathExeStan: path of executable *Stan* model;
- m_useInit: true if initializations of sampler defined in external file.

These parameters are set from .txt file by the constructor of the structure (see Appendix A for default values)

Listing 13: interface/include/StanMC.hpp

```
struct StanParams: public MCMCParams{
    uword m_samplingIter;
    uword m_burnin;
```

```
uword m_thin;
    std::string m_pathR;
    std::string m_pathExeStan;
    bool m_useInit;
    public:
      StanParams(){};
      StanParams(const std::string & fileMC);
      inline const uword get_samplingIter() const {
        return m_samplingIter;
      inline const uword get_burnin() const {
        return m_burnin;
      inline const uword get_thin() const {
        return m_thin;
      inline const std::string & get_pathR() const {
        return m_pathR;
      inline const std::string & get_pathExeStan() const {
        return m_pathExeStan;
      inline const bool get_useInit() const {
        return m_useInit;
};
```

An object of class StanMC, derived from MCMC class, is instead responsible for subchains' generation through CmdStan.

In particular, in addition to attributes and methods of base class MCMC, it also stores as private attribute a structure StanParams to easily access all MCMC parameters (see Listing 14)

Listing 14: interface/include/StanMC.hpp

```
class StanMC: public MCMC{
    StanParams m_parStan;
```

We will now describe the details of the method to split data (StanMC::createInputSubchains) and the one to generate MCMC samples based on a given subset of data (StanMC::generateSubchain).

Stan::createInputSubchains

Since this method receives as input a pointer to MCMCParams, whereas we need to work on StanParams, we first perform a dynamic cast of the input pointer and then store the pointed value into private attribute m_parStan (see Listing 15). In such a way, we can easily access all parameters for MC generation.

Then the whole dataset, read from file pathInputData, is divided by rows into M subsets: each subset has nRowsSubsets rows, except the last one that contains all the remaining rows. This is the reason why the last subset is separately processed with respect to the first M-1.

Each subdata is then submitted to $\mathtt{Stan}: \mathtt{generateSubchain}$ that fills $\mathtt{m}_\mathtt{suchains}$ with the corresponding generated subchain.

Listing 15: interface/src/StanMC.cpp

```
throw std::logic_error ("Unable_to_read_data_file!!");
    }
    const uword n_data = data.n_rows;
    . . .
    const uword nRowsSubset = static_cast < uword > (
                             std::floor(n_data/static_cast < double > (M)) );
    m_subchains.reserve(M);
    // split data
    for(unsigned int m=0; m<M-1; m++){</pre>
        mat subdata(data.rows(0+m*nRowsSubset,(m+1)*nRowsSubset-1));
        generateSubchain(subdata,m);
    }
    // process all remaining rows
    mat subdata(data.rows((M-1)*nRowsSubset,data.n_rows-1));
    generateSubchain(subdata, M-1);
};
```

Stan::generateSubchain

This method, as shown in Listing 16, has two input parameters:

- subdata: matrix storing data onto which MCMC samples need to be drawn;
- indexChain: index of subchain to be generated.

As said above, CmdStan requires data to have particular extensions (.data.R) to the MC generation.

To transform data, we need to call the R function $stan_rdump$. We hence call an R script $(m_pathR/dataDump.R)$ that transforms the content of .csv file storing subdata into .data.R format.

In a similar way, we proceed if the user decides to initialize the MC variables with custom values. In such a case, we generate a file with extension .init.R from $m_pathR/initDump.R$.

Once the subset of data and, eventually, the initialization have been written in compatible format with respect to *CmdStan*, we can call the MC generator with parameters defined in m_parStan attribute.

Since the output file generated through CmdStan contains headers and comments that Armadillo cannot process, we remove them and save only MCMC

samples in .csv format.

Now we can remove all unused files and easily read the result of CmdStan call, storing the generated chain in indexChainth position of m_subchain.

Listing 16: interface/src/StanMC.cpp

```
void StanMC::generateSubchain(const mat & subdata,
                              const unsigned int indexChain){
 const std::string pathR = m_parStan.get_pathR();
 const std::string nameSubdata(pathR + "/subdata.csv");
 if(!subdata.save(nameSubdata, csv_ascii)){
    throw std::logic_error ("!!!uERRORusavingusubdatau!!!!u");
 }
 const std::string cmdR_string ("Rscriptu"+ pathR + "/dataDump.R");
 const char * cmdR = cmdR_string.c_str();
 if (std::system(cmdR)!=0){
    throw std::logic_error ("!!!uERRORuexecutinguRusession!!!u");
 std::string cmdStan_string(m_parStan.get_pathExeStan() +
                             "_sample_num_samples=" +
                             std::to_string(m_parStan.get_samplingIter())
                             + "unum_warmup=" +
                             std::to_string(m_parStan.get_burnin()) +
                             ",,thin=" +
                             std::to_string(m_parStan.get_thin()) +
                             "udataufile=" + pathR + "/subdata.data.R");
 if (m_parStan.get_useInit()){
    const std::string cmdRInit_string ("Rscriptu"+ pathR + "/initDump.R");
    const char * cmdRInit = cmdRInit_string.c_str();
    if (std::system(cmdRInit)!=0){
     throw std::logic_error ("!!!uERRORuexecutinguRusession!!!u");
    cmdStan_string = cmdStan_string + "_init=" + pathR + "/inits.init.R";
 }
 const std::string nameDefaultChain (pathR + "/output.csv");
 cmdStan = cmdStan + "uoutputu" + nameDefaultChain;
 const char * cmdStan = cmdStan_string.c_str();
 if (std::system(cmdStan)!=0){
    throw std::logic_error ("!!!uERRORuexecutinguCmdStanusession!!!u");
 const std::string nameSubchain (pathR + "/subchain" +
                                  std::to_string(indexChain) + ".csv");
 const std::string cmdGrep_string("grepu\"#\"u-vu"+ nameDefaultChain +
```

```
"_{\sqcup}|_{\sqcup}grep_{\sqcup}-v_{\sqcup}|_{p_{-}}|_{>}" + nameSubchain);
  const char * cmdGrep = cmdGrep_string.c_str();
  if(std::system(cmdGrep)!=0){
    throw std::logic_error ("!!!uERRORuremovingucommentsuanduheader!!!u");
  const std::string cmdRemove_string("rmu" + nameSubdata + "u" +
                                        pathR + "/subdata.data.Ru" +
                                        pathR + "/inits.init.R_{\sqcup}" +
                                        nameDefaultChain);
  const char * cmdRemove = cmdRemove_string.c_str();
  if (std::system(cmdRemove)!=0){
    throw std::logic_error ("!!!uERRORuremovingutemporaryufiles!!!u");
  mat chain;
  if(!chain.load(nameSubchain)){
    throw std::logic_error ("!!!uERRORuloadingusubchainu!!!u");
  m_subchains.push_back(chain);
};
```

4 Compile and Run

4.1 PART

The source code of our project is available for download at https://github.com/paolariva2/PART_BayesPACS.

To make use of our code, please install *Armadillo* library (see http://arma.sourceforge.net/). We used version 7.800.2.

Before compiling our code, please modify according to your system the required environment variables in setEnv.sh file.

The following options are available in our Makefile:

```
compile in optimization mode (-02 flag)
> make
compile in debug mode (-g -00 flags)
> make debug
profile using gprof (-pg flag)
> make prof
generate documentation using doxygen
> make doxy
remove objects and executable
> make clean
restore original folder
> make distclean
```

Our program requires at least two input arguments to run, an could use an optional additional input:

- 1. Path of .txt file into which the paths of files storing subchains have been defined. Each subchain's file should have a compatible extension with respect to Armadillo (see http://arma.sourceforge.net/docs.html#save_load_mat).
- 2. Path of output file (.csv, no headers; see csv_ascii at http://arma.sourceforge.net/docs.html#save_load_mat), storing MCMC samples drawn from the aggregated posterior obtained through PART algorithm.
- 3. (OPTIONAL) Path of PART parameters file, defining parameters to be used in PART algorithm. This is a .par file for compatibility with SigPack (see http://sigpack.sourceforge.net/ for additional details). In case this file is not given as input to the program, default parameters will be used, as defined in Appendix A. Recall that all parameters defined in this file must be coherent with the input subchains in order for the program to properly run.

To compile and run a simple example, proceed as follows:

> cd PART

- > make
- > ./main ../examples/data/d1/chains/M10/input_M10_N5.txt
- ../examples/data/d1/outPART_M10_N5_kdPairSmooth.csv
- ../examples/parameters/PART/M10/kdPairSmooth.par

For additional details on input files and how to run simple examples, please refer to README.txt and code documentation (doc/DocumentationPART_Raciti_Riva.pdf).

4.2 Interface

To make use of PART program interfaced with CmdStan and R, it is necessary to install R (https://cran.r-project.org/) and RStan (https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-Mac-or-Linux). As MCMC generator, we used CmdStan (release v2.16.0), that is already available in Interface/cmdstan-2.16.0 directory. For additional details on installation and usage of CmdStan, please refer to Appendix C.

To compile our program using interface, the user will find in Interface directory a *Makefile* that is similar to the one for PART program only. As for compiling PART program, the user should *source* the file setEnv.sh, after appropriate setting of environmental variables, and then could use the same *make* options of PART (see Section 4.1).

PART program, interfaced with *CmdStan*, requires at least three inputs to run, and could use an optional additional input:

- path of data file into which the entire dataset is stored.
 To read input data we use Armadillo, in particular load method of Mat class, that should automatically recognize file extensions (see http://arma.sourceforge.net/docs.html#save_load_mat).
- 2. path of PART output, storing MCMC samples from aggregated posterior in .csv extension (see csv_ascii at http://arma.sourceforge.net/docs.html#save_load_mat).
- 3. Path of .txt file storing information on MCMC parameters.
 In our case, this file must contain all information to run CmdStan and R, hence the following ordered inputs:
 - (a) samplingIter: number of sampling iterations of MCMC algorithm;
 - (b) burnin: number of burnin (warmup) iterations of MCMC algorithm;
 - (c) thin: thinning parameter for MCMC algorithm;
 - (d) pathR: path into which R scripts are located with respect to Interface directory. This path must be coherent with the working directory defined inside R scripts;
 - (e) pathExeStan: path into which the executable of *Stan* model is located with respect to Interface directory (i.e. the one obtained compiling *.stan* model using *CmdStan*; see Appendix C);

(f) useInit: flag to establish if input file for initialization of parameters for MCMC sampling should be used; if set to true, the file pathR/inits.init.R will be used.

An example of the described file storing default values for *CmdStan* interface is available at Appendix C.

4. (OPTIONAL) Path of PART parameters file, defining parameters to be used in PART algorithm. This is a .par file for compatibility with SigPack (see http://sigpack.sourceforge.net/ for additional details). In case this file is not given as input to the program, the default parameters file will be used (see Appendix A for default parameter's file). Recall that all parameters defined in this file must be coherent with the input subchains in order for the program to properly run.

To compile and run a simple example, proceed as follows:

- > cd Interface
- > make clean
- > make
- > ./main ../examples/data/d1/data.csv
- ../examples/data/d1/outPART_M10_N5_kdPairSmooth.csv
- ../examples/parameters/MCMC/paramsMCMC_N5.txt
- ../examples/parameters/PART/M10/kdPairSmooth.par

For additional details on input files and how to run simple examples, please refer to README.txt and code documentation (doc/DocumentationInterfacePART_Raciti_Riva.pdf).

5 Synthetic Tests

Using R and CmdStan (see Appendix C), we generated a synthetic dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ to test our implementation of PART algorithm.

We simulated n = 2000 observations according to the following model:

$$Y_i \mid (\mathbf{x}_i, \beta_0, \boldsymbol{\beta}) \sim Be(q_i) \qquad i = 1, \dots, n$$

$$logit(q_i) = \beta_0 + \boldsymbol{\beta} \mathbf{x}_i^T \qquad i = 1, \dots, n$$

$$\mathbf{X}_i \sim \mathcal{N}_d(\mathbf{0}, \boldsymbol{\Sigma}) \qquad i = 1, \dots, n$$

$$\Sigma_{k,l} = 0.9^{|k-l|} \qquad k, l = 1, \dots, d$$

$$\beta_0 = -3 , \qquad \beta_1, \dots, \beta_d \overset{i.i.d.}{\sim} \mathcal{N}(0, 25)$$

Then we randomly split the above dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ into M equally sized subsets and we used each of them to independently generate N MCMC draws for each subset.

We performed a variety of tests considering different combinations of the following parameters:

- dimension d of the parameter vector $\boldsymbol{\beta}$ ($d \in \{1, 9, 29\}$);
- number N of MCMC samples stored $(N \in \{5000, 10000, 25000\})$. These samples were all generated setting burnin = 1000 and thin = 4;
- number of subsets M into which original dataset need to be partitioned $(M \in \{10, 20, 40\});$
- parameters of PART algorithm:
 - pairwise_aggregation: true if *pairwise* aggregation is used to perform density aggregation, false if *one-stage* choosen;
 - improve_matching: true if matching performed according to MCMC samples, false if no specific association order required;
 - halve: true if minimum fraction of samples in each leaf need to be halved at each stage of *pairwise* aggregation, false if same value used at each stage;
 - ntree: number of random partition trees to be grown;
 - kd_cut: true if KD cutting type need to be used, false if ML cut type choosen;
 - min_frac_points_block: minimum fraction of samples in each leaf node,
 - min_cut_length: minimum length of partition's block along one dimension,

- resample_N: number of samples to be drawn from aggregated posterior.
- gaussian_smooth: true if aggregated posterior is a mixture of local Gaussian, false if mixture of local uniforms.

To test the accuracy of PART algorithm we considered:

 $\boldsymbol{\beta}^{true}$ vector of parameters that we used to generate the synthetic dataset,

 $\{\hat{\beta}^{(g)}\}_{g=1}^{N}$ samples deriving from the full-posterior, that is the one based on the whole data,

 $\{\beta^{*(g)}\}_{g=1}^N$ samples deriving from aggregated posterior estimate obtained through PART.

We choose the following metrics to test the accuracy of PART estimates:

• Root-Mean-Square Error (RMSE) of PART estimates w.r.t. samples from the full-posterior:

$$rmse(\{\pmb{\beta}^{*\,(g)}\}_{g=1}^{N}) = ||\frac{1}{dN}\sum_{q=1}^{N}(\pmb{\beta}^{*\,(g)} - \hat{\pmb{\beta}}^{(g)})||$$

This quantity measures the accuracy of PART in approximating the full-posterior density.

• Posterior Concentration Ratio (r):

$$r^2 = \frac{\sum_{g=1}^N ||\boldsymbol{\beta}^{*(g)} - \boldsymbol{\beta}^{true}||^2}{\sum_{g=1}^N ||\hat{\boldsymbol{\beta}}^{(g)} - \boldsymbol{\beta}^{true}||^2}$$

The closer the posterior concentration ratio is to the unit value, the closer the estimates of PART are with respect to the full-posterior's one. If this value is close to one from below, PART's estimate is even better than the full-posterior in approximating the true distribution of parameters vector $\boldsymbol{\beta}$.

In this section we first describe the performances of our implementation of PART, considering default values of its parameters (see Appendix A).

Later on, we will discuss in detail the effects of varying these parameters in both space partitioning and density aggregation steps. These tests are particularly useful to evaluate the consequences of choosing inappropriate values of PART parameters.

5.1 Accuracy and Times

The first analysis focuses on the accuracy and execution time of PART algorithm with default PART parameters, as described in Appendix A.

We considered different scenarios:

• dimension d of the parameter vector $\boldsymbol{\beta}$ ($d \in \{1, 9, 29\}$);

- number N of MCMC samples stored ($N \in \{5000, 10000, 25000\}$). These samples were all generated setting burnin = 1000 and thin = 4;
- number of subsets M into which original dataset need to be partitioned $(M \in \{10, 20, 40\});$

A detailed list of results for each of these combinations is available at Appendix B (Tables 5 - 16, Figures 10 - 12).

First of all we observed that, for any fixed dimension d of β , the range of RMSE and posterior concentration ratio values is quite small, indicating that all PART's configurations behave similarly to each other.

Since the *RMSE* values are small and the *posterior concentration ratio* values are close to the unit value, we conclude that PART is able to give accurate estimates not only of the full-posterior density but also of the true distribution of β parameters.

Moreover we noticed that the PART's configurations usually achieving better results correspond to *pairwise aggregation* and *gaussian smoothing*, coherently with the Gaussian priors of the considered model.

Also observe that the choice of Maximum Likelihood (ML) cutting rule for partitioning could lead to better proxies.

We also underline that, in general, increasing the number of subsets M does not guarantee better results. This is a consequence of the *information asymmetry* problem from which all methods based on PDE suffer (see Section 1).

Looking at the execution times, we noticed that, for fixed dimension d and number of subsets M, the most expensive case is always associated to the *one-stage aggregation* logic. Indeed this aggregation type combines all the matrices of MCMC samples together before partitioning, resulting in huge memory requirements and high computational costs.

Observe also that Maximum Likelihood (ML) always takes more time than KD-median cutting rule, coherently with the small computational costs of KD at each node of partition tree, as described in Section 2.1.

We can also see that, for a fixed dimension d of the problem, the execution time of ML configurations has non-linear growth in the number of subsets M, while this increase is not so marked in KD cases.

From these results, we conclude that our implementation of PART is able to achieve good results in short times.

The above tests also suggest to:

- properly choose the number of subsets M into which data should be divided, to reduce the effect of $information \ asymmetry$;
- prefer *pairwise* to *one-stage* aggregation, since the latter always requires higher memory consumption and computational costs without significant improvements in terms of accuracy of results;

- consider using Gaussian kernels, according to the form of prior distributions.

We will now focus our attention on the scenario with d=9 components of β vector and N=5000 MCMC samples stored on each subset, discussing the details of tests performed on each of the two main steps of PART algorithm: space partitioning and density aggregation.

5.2 Space Partitioning

First of all observe that PART usually achieves better results with M=10 subsets, coherently with the dimensions of our dataset and with the *information asymmetry* problem, discussed in Section 1.

In the following tests, we decided to monitor not only the overall execution time of our program, but also the partial time spent on *space partition*, hence noticing that the most of execution time is indeed spent growing the random partition forest (see also profiling, Appendix B).

We will now show the influence of the following parameters on *space partitioning*:

- min_frac_points_block: minimum fraction of samples falling into each partition's block w.r.t. the original number of samples,
- min_cut_length: minimum partition's block area along each direction,
- ntree: number of random partition trees to be grown.

We simply recall that the first two parameters are related to the stopping criteria for growing a tree (Section 2.1).

min_frac_points_block (Appendix B: Tables 17 - 19)

In the considered scenario, if we choose $min_frac_points_block = 0.001$, the search of a valid cutting point could continue until there are just 5 samples in each partition's block. Because of this, we obtain a large number of leaves - around 1800 - and inaccurate estimates of the posterior density - quite high RMSE and posterior concentration ratio values.

On the other hand, with $min_frac_points_block = 0.1$, the minimum number of samples in each partition's block is restricted to be no less than 500. This generates in very short time a pruned random partition tree with very few leaves - around 15 - corresponding to wide partition's block and leading to bad proxies.

Choosing instead an intermediate value for the above parameter $(min_frac_points_block = 0.01)$, we obtain more balanced results: since the minimum number of points in each partition's block is 50, the estimated posterior is quite close to the full-posterior (small RMSE values) and closer to the true density (r values close to 1 from below).

min_cut_length (Appendix B: Tables 20 - 22)

We noticed that, usually, the more this parameter increases, the worse the accuracy of estimates becomes.

Indeed, in general, imposing large values of min_cut_length , is equivalent to decide a priori how wide the partition's block will be.

By default, we choose to keep this parameter low, to avoid imposing too wide areas. In such a way, the more relevant stopping criterion in growing the random partition tree will be the one based on the number of samples in each block, that is a data-driven condition.

We hence suggest the user to properly set the value of this parameter, according to the specific model.

```
ntree (Appendix B: Tables 23 - 25)
```

Finally we analyzed the effect of growing a forest of different dimensions.

As expected, the accuracy of results decreases with the number of random partition trees in the forest (see Section 2.2). Since with 16 trees we already achieve good estimates in low times and the accuracy improvement using 32 trees is not significant, we choose ntree = 16 as reference value.

We underline here that the growth of the random forest is one of the *embarassingly parallelizable* phases of PART algorithm, and so, introducing a simple parallelization, it would be possible to significantly reduce the overall execution time.

5.3 Density Aggregation

We focus now on the analysis of *density aggregation* performed with *pairwise* logic, discussing the role of the following parameters:

- improve_matching: whether to match subsets according to properties of stored samples or to randomly associate them without a specific criterion,
- halve: whether to halve the fraction of samples that could fall into each partition's block at each stage of pairwise aggregation,
- resample_N: number of samples drawn from the aggregated posterior.

improve_matching (Appendix B: Table 26)

As described in Section 3.1.2.2, if this parameter is set to **true**, at each stage of *pairwise aggregation* the matching among samples is based on the following metric: subset's index keyS is associated to index keyF if and only if the latter corresponds to the median of squared distances between mean of samples.

More specifically, if we call S_i and S_{keyF} the matrices of samples corresponding to i^{th} and $keyF^{th}$ indices respectively, keyS is such that

$$sum_dis_sq(keyS) = median(sum_dis_sq)$$

where the i^{th} component of sum_dis_sq is defined as

$$sum_dis_sq(i) = \sum_{p=1}^{d} \left(\frac{1}{N_i} \sum_{n=1}^{N_i} S_i(n,:) - \frac{1}{N_{keyF}} \sum_{n=1}^{N_{keyF}} S_{keyF}(n,:)\right)^2$$

with S(n,:) indicating the n^{th} row of matrix S.

We observed that, imposing $improve_matching == true$, the accuracy of PART estimates actually improves: this configuration achieves lower RMSE and values of posterior concentration ratio that are closer to the unit value from below than the one with $improve_matching == false$. This improvement is however paid in terms of execution time: even if low, the execution time is almost doubled with respect to $improve_matching == false$ case.

halve (Appendix B: Tables 27, 28)

When halve == true, pairwise aggregation has an additional feature, according to which the minimum fraction of samples falling into each partition's block is halved at each stage. To keep as minimum the input value of $min_frac_points_block$, the initial value of this parameter is set to $min_frac_points_block*2^{\lfloor \log M/\log 2 \rfloor}$, so that the value at last stage is indeed $min_frac_points_block$.

We studied the performances of PART algorithm with pairwise aggregation comparing the case of minimum fraction of samples halved at each stage and the one in which $min_frac_points_block$ always assumes the same value.

Imposing as input a small value of $min_frac_points_block$ (0.001), we achieve better results choosing halve == true.

This is coherent with results on the influence of $min_frac_points_block$: choosing the halving condition, at first stage we obtain a minimum fraction of samples that is $min_frac_points_block = 0.001 * 2^{\lfloor \log M/\log 2 \rfloor}$. Halving it at each stage, the last aggregation step will have $min_frac_points_block = 0.001$.

In such a way, the constraint on minimum number of samples at first stage is not too restrictive - 40 in the considered case - but it is further halved at each stage.

Instead observe that the halving condition is not helpful if the input minimum fraction of points is already sufficiently high: choosing the default value of $min_frac_points_block$ (0.01), there is no advantage in halving this parameter at each stage. This is why, by default, we choose the combination halve = false, $min_frac_points_block = 0.01$.

resample_N (Appendix B: Table 29)

This parameter represents the number of samples drawn from each aggregated posterior.

We studied the behaviour of the accuracy of estimates varying $resample_N$ between 1500 and 15000.

Even if the accuracy values are here quite close to each other, we cannot assess the existence of a specific relationship between accuracy measures (either RMSE or $posterior\ concentration\ ratio)$ and the number of posterior samples.

Observe, however, that KD already achieves good results with almost 5000 posterior samples, while ML reaches the best level of accuracy around 10000 samples.

According to these results, we decided to set 10000 as default value for the number of posterior samples.

6 Application

We decide to apply the PART algorithm to a recommender system problem. Recommender systems are information filtering techniques that seek to predict the preferences of users: retailers use this kind of technologies to recommend new items to their customers, based on what they have bought in the past, and, as a consequence, to increase their satisfaction.

There exist mainly two types of recommender systems:

- content-based filters that recommend to each user items that are similar to those that he has liked in the past;
- collaborative filters that identify users with similar tastes and recommend them items that they liked.

Content-based filtering approach can be applied when information about the items is available, whereas collaborative filtering usually needs users' features.

6.1 Reference Model

Condliff et al. [1999] proposed a Bayesian model for recommender systems that incorporates all the available information: user ratings, user features and item features.

Let us go into the details of this model.

Suppose to have N users, each having a feature vector of length Q, and M items, each described by a feature vector of length K.

Both user covariates vectors $\{\mathbf{x}_i\}_{i=1:N}$ and item features vectors $\{\mathbf{f}_j\}_{j=1:M}$ are binary vectors whose elements are 1 if the feature is present and 0 if not:

$$x_{is} = \begin{cases} 1 & \text{if user } i \text{ has covariate } s \\ 0 & \text{otherwise} \end{cases}$$

$$f_{jt} = \begin{cases} 1 & \text{if item } j \text{ has feature } t \\ 0 & \text{otherwise} \end{cases}$$

Each user rated each item. A $N \times M$ binary matrix L collects those ratings: each element L_{ij} is the rating that user i gave to the item j, that is 1 if he likes the item and 0 if he does not like it.

Appealing to the idea that when we are looking for suggestions we seek the advice of friends with similar tastes, the model allows users to borrow strength from each other. Moreover, the model goes deeper, since it also takes advantage of the knowledge of the features of all the items.

The goal is to compute for each item j described by the feature vector \mathbf{f}_j the probability that a user i will like it, and then to recommend to the user those items with the highest probabilities. Thanks to the Bayes Theorem, we can compute it as:

$$P(L_{ij} = 1|\mathbf{f}_j) = P(L_{ij} = 1) \frac{P(\mathbf{f}_j|L_{ij} = 1)}{P(\mathbf{f}_j)}.$$

The odds ratio of this probability is

$$odds_{ij} = \frac{P(L_{ij} = 1 | \mathbf{f}_j)}{P(L_{ij} = 0 | \mathbf{f}_j)} = \frac{P(L_{ij} = 1)}{P(L_{ij} = 0)} \frac{P(\mathbf{f}_j | L_{ij} = 1)}{P(\mathbf{f}_j | L_{ij} = 0)}.$$

Take the logarithm:

$$\log(odds_{ij}) = \log\left(\frac{P(L_{ij}=1)}{P(L_{ij}=0)}\right) + \log\left(\frac{P(\mathbf{f}_j|L_{ij}=1)}{P(\mathbf{f}_j|L_{ij}=0)}\right).$$

Then, assuming for each user that item features are conditionally independent given the user's rating:

$$\log(odds_{ij}) = \log\left(\frac{P(L_{ij} = 1)}{P(L_{ij} = 0)}\right) + \sum_{k=1}^{K} \log\left(\frac{P(f_{jk} = 1|L_{ij} = 1)}{P(f_{jk} = 1|L_{ij} = 0)}\right).$$

Now, assume that the logit of the probability that item j, which user i likes, has feature k is

$$logit(P(f_{jk} = 1|L_{ij} = 1)) = \mu_{ik} + \psi_{ik} + \delta_{ik}$$

$$\tag{1}$$

and the logit of the probability that item j, which user i does not like, has feature k

$$logit(P(f_{ik} = 1|L_{ij} = 0)) = \mu_{ik} + \psi_{ik}$$
 (2)

where

 μ_{ik} is the feature-level random effect,

 δ_{ik} is the incremental effect of liking the item,

 ψ_{ik} is the effect of the user characteristics.

The priors assigned are:

$$\mu_{ik} \sim \mathcal{N}(0, 100000)$$

$$\beta_{sk} \sim \mathcal{N}(0, 100000)$$

$$\delta_{ik} \sim \mathcal{N}(d_{ik}, \frac{1}{\tau_{ik}})$$

$$d_{ik} \sim \mathcal{N}(0, 100000)$$

$$\tau_{ik} \sim \Gamma(0.001, 0.001).$$

Moreover, the distribution of $\{P(L_{ij})\}_{i=1:N,j=1:M}$ is assumed to be a beta.

6.2 Book Crossing Dataset

6.2.1 Data

The dataset, which we want to apply a recommender system to, is the Book Crossing dataset.

This dataset was collected by Ziegler et al. [2005], in September 2004, from the Book-Crossing community. The Book-crossing community is an online book

club: each member leaves a book in a public place to be picked up and read by other members, who then do likewise. When a book enters in the system, the original owner describes it by assigning some labels, and then the book is tracked during its travel around the world: every time a member finds and reads a book, he gives a rating to it.

The dataset contains 278858 users providing 1149780 ratings about 271379 books.

In particular, it comprises three tables:

- users' details: each user is anonymized and mapped to an ID, but he provides information about its age and the city, region and country where he lives;
- books' details: each book comes with the information about the title, the author, the year of publication and the publisher.
- ratings' details: each rating is associated to a unique user and a unique book.

The ratings ranges between 0 and 10, where 0 means completely disliked and 10 very appreciated. Notice that not all users rated all books: if a user has not read a book, then his rating for that book is missing.

Many demographic and age information is missing in the dataset: we decide to deal only with complete data and to remove those users that did not provide their details. Moreover, we notice the presence of meaningless data referred to the age of users: we delete those users who said to be 0 years old or more than 100 years old.

Furthermore, we realize that the year-of-publication label associated to books is not related to the first edition of the book, but to each particular copy. Thus, this variable seems not very informative and characterizing.

A much more useful information to portrait a book would be its genre. In order to retrieve the genre of each book, we accessed an API: an API is an interface to access resources through a web browser. In particular, we use Google Books repository to integrate our data: thanks to Google Books API, it is possible to perform searches based on the identification code of a book and retrieve many information about it.

The identification code used in the *Book Crossing* dataset is the ISBN-10, which is a 10 digits identifier, whereas books in Google Books repository are associated to the ISBN-13, which is a 13 digits identifier; thus we convert all the ISBN-10 into ISBN-13.

For each book in the *Book Crossing* dataset, we make a query and retrieve its genre and the number of pages. In Appendix D the code to get these information is reported. Then, we merge the original book's details with the result from Google Books. As a result, only a subset of books actually get a match and are associated to a genre.

We transform and store the users' details and books' details the following form: X is a $N \times Q$ matrix whose rows are the user covariates binary vectors

and F is a $M \times K$ matrix whose rows are the book features binary vectors.

$$X = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{bmatrix}, \quad \mathbf{x}_i = \begin{bmatrix} x_{i1} & \dots & x_{iQ} \end{bmatrix}, \quad x_{iq} = \begin{cases} 1 & \text{if user } i \text{ has covariate } q \\ 0 & \text{otherwise} \end{cases}$$

$$F = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \dots \\ \mathbf{f}_M \end{bmatrix}, \quad \mathbf{f}_j = \begin{bmatrix} f_{j1} & \dots & f_{jK} \end{bmatrix} \quad f_{jk} = \begin{cases} 1 & \text{if book } j \text{ has feature } k \\ 0 & \text{otherwise} \end{cases}.$$

The ratings are transformed as a $N \times M$ matrix R whose elements r_{ij} represents the rating that user i gave to book j, it this rating exists, otherwise it is a null value, indicating that user i did not read book j.

In order to have the binary Like variable, we also dichotomize the ratings and create a $n \times M$ matrix L whose elements are

$$L_{ij} = \begin{cases} 1 & \text{if } r_{ij} \ge 6\\ 0 & \text{if } r_{ij} < 6. \end{cases}$$

The rating matrix R is highly sparse. In order to avoid the risk of having a too non-informative scenario, we decide to retain only those users who rated at least 3 books and those books who have been rated by at least 3 people.

Since the world-wide publishers considered in the *Book Crossing* dataset are 16785 and we do not know most of them, we decide to keep the *publisher* label only for books rated by Italian users. In this way, we can better interpret the results.

In particular, we consider two different set of data, which we will refer to as World-wide Book Crossing dataset and Italian Book Crossing dataset.

$World ext{-}wide\ Book\ Crossing\ dataset$

The dataset consists of:

- 1860 users,
- 574 books,
- 14629 ratings.

The users' covariates that we use are the age and the continent (see Figure 1). The book's features, reported in Figure 2, are the information we integrated thanks to Google Books APIs: the genre and the number of pages.

We code the users's covariates and books's features as the indicators reported in Appendix E.

Users Age

Users Continent

Figure 1: Bar-plot of world-wide users covariates.

Figure 2: Bar-plot describing the features of books rated by world-wide users.

Italian Book Crossing dataset We filter users according to their nationality, and we keep only Italian users and books rated by them. The resulting dataset consists of:

- 238 users,
- 143 books,
- 628 ratings.

The users' covariates that we use are the age, the position in Italy of the residence, the information about the city of residence, if it an administrative center or not. In Figure 4 we report the bar-plots representing the Italian users' covariates.

The book's features we consider are the genre and the publisher.

The indicators coding the users's covariates and books' features are reported in Appendix E.

Italian Users Age

Italian Users Position

Italian Users Administrative City

Figure 3: Bar-plot of Italian users covariates.

Figure 4: Bar-plot describing the features of books rated by Italian users.

6.2.2 Model

Let us now enter into the details of the model we used for this data. As previously explained, the objective of the recommender system is to recommend to a user i the item j that he would like with the highest probability. Thus

$$j^* = arg \max_{j \in \{1, 2, \dots, M\}} P(L_{ij} = 1 | \mathbf{f}_j).$$

This probability is computed as

$$\log(odds_{ij}) = \log\left(\frac{P(L_{ij} = 1)}{P(L_{ij} = 0)}\right) + \sum_{k=1}^{K} \log\left(\frac{P(f_{jk} = 1|L_{ij} = 1)}{P(f_{jk} = 1|L_{ij} = 0)}\right).$$

Notice that the original ratings r_{ij} in the *Book Crossing* dataset are not binary, as in the model proposed before, but ranged between 0 and 10; thus we have to change it and to opportunely adapt it to our problem, in order to include also this information.

The probability that book j, which user i gave rating \bar{r} , has feature k cannot be computed as in Equation 1, but we propose:

$$logit(P(f_{ik} = 1|L_{ij} = 1)) = \mu_k^1 + \psi_{ik}^1 + \chi_{ik}^1$$
(3)

and

$$logit(P(f_{jk} = 1|L_{ij} = 0)) = \mu_k^0 + \psi_{ik}^0 + \chi_{ik}^0$$
(4)

where

 μ_k^1, μ_k^0 is the feature-level random effect,

 ψ_{ik}^1, ψ_{ik}^0 is the effect of the user demographics,

 χ^1_{ik} is the effect of liking the items that have feature k

 χ_{ik}^0 is the effect of disliking the items that have feature k.

Precisely, the component that includes the demographic information of the user is

$$\psi_{ik}^1 = \beta_{0k}^1 + \beta_{1k}^1 x_{i1} + \dots + \beta_{Qk}^1 x_{iQ},$$

$$\psi_{ik}^0 = \beta_{0k}^0 + \beta_{1k}^0 x_{i1} + \dots + \beta_{Qk}^0 x_{iQ}.$$

On the other hand, the relationship between the tastes of the user and the characteristics of the book is kept in χ . In particular,

$$\chi_{ik}^1 = \alpha_k w_{ik}^1,$$

where

$$w_{ik}^{1} = \frac{1}{\sum_{j=1}^{M} r_{ij} \big|_{r_{ij} \ge 6}} \mathbf{r}_{i} \big|_{r_{ij} \ge 6} (F^{T})_{k},$$

and

$$\chi_{ik}^0 = \alpha_k w_{ik}^0,$$

where

$$w_{ik}^{0} = \frac{1}{\sum_{j=1}^{M} r_{ij}|_{r_{ij} < 6}} \mathbf{r}_{i}|_{r_{ij} < 6} (F^{T})_{k}.$$

Notice that w_{ik}^1/w_{ik}^0 are the sum of the positive/ negative ratings that user i gave to books with feature k, normalized by the sum of all the positive/negative ratings of user i: this is an index of the influence of feature k in the tastes of user i.

The priors that we assign are:

$$\mu_k^1 \sim \mathcal{N}(0, 100000)$$

$$\mu_k^0 \sim \mathcal{N}(0, 100000)$$

$$\beta_{qk}^1 \sim \mathcal{N}(0, \frac{1}{\tau_{qk}})$$

$$\beta_{qk}^0 \sim \mathcal{N}(0, \frac{1}{\tau_{qk}})$$

$$\alpha_k^1 \sim \mathcal{N}(0, \frac{1}{\eta_k})$$

$$\alpha_k^0 \sim \mathcal{N}(0, \frac{1}{\eta_k})$$

$$\tau_{sk} \sim \Gamma(0.001, 0.001)$$

$$\eta_k \sim \Gamma(0.001, 0.001).$$

Moreover, we assign to the probability that user i likes book j a Beta prior:

$$L_{ij}|p \sim \mathcal{B}\rceil(p), \quad p \sim Beta(a,b)$$
 with a,b s.t. $\frac{a}{a+b} = \text{empirical mean}.$

6.2.3 Analysis

We pre-process data in R (version 3.1.3): the *Book Crossing* dataset, as we downloaded it from http://www2.informatik.uni-freiburg.de/~cziegler/BX/, is highly noisy and dirty. We remove samples with missing values, clean the incoherence, merge the information obtained through Google Books API, and transform data in the format we described before.

We divide the data into a training set and a testing set: the numbers of users of these datasets is reported in Table 1.

Training data is partitioned into M subsets, transformed in the correct data format calling $rstan_dump$ and finally the Markovian subchains from each subset of data is generated thanks to cmdstan.

In particular, the World-wide Book Crossing dataset is divided into M=10 subsets of 180 users each, and the Italian Book Crossing dataset into M=3 subsets of 66 users each.

The sampling of Markovian subchains is done with:

Table 1: Cardinality of training and testing sets.

	Training	Testing
World-wide Book Crossing dataset	1800	60
Italian Book Crossing dataset	198	40

total number of iterations = 25000,

burnin = 5000

thinning = 4,

thus we effectively saved 5000 samples for each chain.

We made diagnostic tests in R, in order to check the convergence of the chains: we plotted the trace-plots and the estimated distribution for each parameter.

For each subset m of data, we have a subchain for the parameters associated to each books' feature:

$$\{\beta_k^{m1}\}_{k=1:K}, \{\alpha_k^{m1}\}_{k=1:K}, \{\mu_k^{m1}\}_{k=1:K}, m=1:M \text{ and } \{\beta_k^{m0}\}_{k=1:K}, \{\alpha_k^{m0}\}_{k=1:K}, \{\mu_k^{m0}\}_{k=1:K}, m=1:M.$$

Given those Stan chains, the PART algorithm returns a unique aggregated chain for each parameter: we will refer to these PART chains as $\beta_k^{1*}, \alpha_k^{1*}, \mu_k^{1*}$ and $\beta_k^{0*}, \alpha_k^{0*}, \mu_k^{0*}$.

In particular, we run the PART algorithm with all the combination of settings: OneStage, Pair-wise aggregation, KD-Median, ML Estimation, Smoothing, Non-Smoothing. Notice that we cannot use the Pair-wise setting for the *Italian Book Crossing* dataset, because we have only 3 subgroups of data and the Pair-wise Aggregation requires at least 4 machines.

We will specify at each time the setting we are talking about.

In order to measure the performance of the recommender system we built, and to predict if a book with certain features could be liked by a user, we compute the following prediction.

Thanks to the ergodic theorem, we can approximate

$$P(f_{jk} = 1 | L_{i_{new}j} = 1) = \frac{1}{G} \sum_{g=1}^{G} \frac{exp\{\mu_{k_g}^{1*} + \beta_{k_g}^{1*} \mathbf{x}_{i_{new}} + \alpha_{k_g}^{1*} \mathbf{w}_{i_{new}k}^{1}\}}{1 + exp\{\mu_{k_g}^{1*} + \beta_{k_g}^{1*} \mathbf{x}_{i_{new}} + \alpha_{k_g}^{1*} \mathbf{w}_{i_{new}k}^{1}\}}$$

$$P(f_{jk} = 1 | L_{i_{new}j} = 0) = \frac{1}{G} \sum_{g=1}^{G} \frac{exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{new}} + \alpha_{k_g}^{0*} w_{i_{new}k}^{0}\}}{1 + exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{new}} + \alpha_{k_g}^{0*} w_{i_{new}k}^{0}\}},$$

where $\mathbf{w}^1_{i_{new}}, \mathbf{w}^0_{i_{new}}$ are computed excluding all the information about book j.

Then we can compute

$$P(L_{i_{new}j} = 1 | \mathbf{f}_j) = \log \left(\frac{P(L_{i_{new}j} = 1)}{P(L_{i_{new}j} = 0)} \right) + \sum_{k=1}^K \log \left(\frac{P(f_{jk} = 1 | L_{i_{new}j} = 1)}{P(f_{jk} = 1 | L_{i_{new}j} = 0)} \right).$$
(5)

6.2.4 Results

Convergence Diagnostics

We first check the convergence of the chains obtained with cmdstan. Some of the Monte Carlo chains show a very good behaviour in terms of convergence and precision: for instance, we see the trace-plot and the autocorrelation-plot of the parameter $\alpha_{k_1}^{m_1}$ of $Italian\ Book\ Crossing\ dataset$ in Figures 5a and 5b, and of parameter $\beta_{2_{k_7}}^{m_{10}}$ of $World\text{-}wide\ Book\ Crossing\ dataset$ in Figures 5a and 5a: the trace-plots are highly dense and autocorrelation is very close to zero, meaning a high mixing and a good convergence.

(a) Trace-plot of $\alpha_{k_1}^{m_1}$ of *Italian Book Crossing* dataset.

(b) Autocorrelation-plot of $\alpha_{k_1}^{m_1}$ of Italian Book Crossing dataset

(a) Trace-plot of $\beta_{2_{k_7}}^{m_{10}^1}$ of World-wide $Book\ Crossing\ dataset.$

(b) Autocorrelation-plot of $\beta_{2_{k_7}}^{m_{10}^1}$ of World-wide Book Crossing dataset

However, since the original full data is partitioned into M subsets, we often see an **information asymmetry** among subgroups: some books' features and users' covariates are rare, then it is highly likely that the information about these features will be poor in some groups.

This asymmetry directly influences the precision of the corresponding Monte Carlo chains. As an example, in Figure 5, 6 and 7, we see the trace-plots of parameter $\beta_{k\,12}^{\,\,m_2^1}$ of the *Italian Book Crossing* dataset in the 3 machines. Feature 12 indicates books about history and the information about them is divided as follows:in subgroup 1 5 users rated books with this feature, in subgroup 2 there

are 2 ratings for history books and in subgroup 3 there are no ratings for books with this feature. This complete lack of information is evident in the traceplot of machine 3.

Figure 5: Trace-plot of $\beta_{k}^{m_1^1}_{12}$

Figure 6: Trace-plot of $\beta_{k_{12}}^{m_2^1}$

Figure 7: Trace-plot of $\beta_{k_{12}}^{m_3^1}$

In order to see what the PART algorithm did, in Figure 9 we can look at the marginal density distribution of the parameters discussed before: we see that the aggregated chains computed by PART seems to be a combination of the single sub-chains.

Figure 8: Marginal density distribution of $\alpha_{k1}^{m_1^1}$ of *Italian Book Crossing* dataset.

Figure 9: Marginal density distribution of $\beta_{2_{k_7}}^{m_{10}^1}$ of World-wide Book Crossing dataset.

Accuracy

Given the chains of the PART algorithm, We measure the goodness of the model by computing the classification accuracy of the system on the testing datasets. The classification accuracy is the percentage of correctly recommended books. For each user i_{new} in the testing set, we check the set of books he rated, and for each j of these books, if the estimated probability $P(L_{i_{new}j} = 1|\mathbf{f}_j)$ is greater or equal to 0.5, we recommend the book. Then we compare the recommendations and the true ratings:

$$\text{accuracy} = \frac{\sum_{i=1}^{N_{test}} 1_{\{\text{recommend}_{ij} = \text{true rating}_{ij}\}}}{\# \text{ratings}}.$$

Let us go into the details of each dataset.

Italian Book Crossing dataset

We consider all the 40 users we kept for testing as people already belonging to the Book Crossing community, thus we have both users' information and some previously rated books. We want to test how good the system we built is by analysing the percentage of right recommendation it is able to predict.

We compute the probability in 6.2.4 in the four parameters setting of the PART algorithm and we recommend the book if this probability is greater or equal than 0.5. The resulting accuracy are reported in Table 2.

Table 2: Italian Book Crossing accuracy

	KD	KD	ML	ML
setting	OneStage	OneStage	OneStage	OneStage
	NonSmooth	Smooth	NonSmooth	Smooth
accuracy	28.9%	59.4%	375%	71.9%

As the analysis of synthetic dataset disclosured, the PART algorithm is more accurate and its estimate more precise when it uses the Maximum Likelihood estimated as cutting point strategy. Moreover, we can say that the smoothing highly influences the result.

World-wide Book Crossing dataset

The World-wide Book Crossing testing set is split into two different groups: a set of new users, which has just subscribed the community, and a set of loyal users, which already rated some books. Thus we compute the predictive in two different ways.

For a loyal user i_{loyal} , the probability that he would like a book j that he did not read yet is, as in Equation :

$$P(L_{i_{loyal}j} = 1 | \mathbf{f}_{j}) = \log \left(\frac{P(L_{i_{loyal}j} = 1)}{P(L_{i_{loyal}j} = 0)} \right) + \sum_{k=1}^{K} \log \left(\frac{P(f_{jk} = 1 | L_{i_{loyal}j} = 1)}{P(f_{jk} = 1 | L_{i_{loyal}j} = 0)} \right)$$

with

$$P(f_{jk} = 1 | L_{i_{loyal}j} = 1) = \frac{1}{G} \sum_{g=1}^{G} \frac{exp\{\mu_{kg}^{1*} + \beta_{kg}^{1*} \mathbf{x}_{i_{loyal}} + \alpha_{kg}^{1*} \mathbf{w}_{i_{loyal}k}^{1}\}}{1 + exp\{\mu_{kg}^{1*} + \beta_{kg}^{1*} \mathbf{x}_{i_{loyal}} + \alpha_{kg}^{1*} \mathbf{w}_{i_{loyal}k}^{1}\}}$$

$$P(f_{jk} = 1 | L_{i_{loyal}j} = 0) = \frac{1}{G} \sum_{g=1}^{G} \frac{exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{loyal}} + \alpha_{k_g}^{0*} \mathbf{w}_{i_{loyal}k}^{0}\}}{1 + exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{loyal}} + \alpha_{k_g}^{0*} \mathbf{w}_{i_{loyal}k}^{0}\}},$$

where $\mathbf{w}^1_{i_{loyal}}$, $\mathbf{w}^0_{i_{loyal}}$ are computed excluding all the information about book j and retaining the information about the other books that user i_{loyal} rated.

The accuracy of the prediction for loyal users is reported in Table 3.

Table 3: World-wide Book Crossing accuracy for loyal users.

	KD	KD	ML	ML
setting	Pariwise	Pairwise	Pairwise	Pairwise
	NonSmooth	Smooth	NonSmooth	Smooth
accuracy	63.0%	18.26%	68.0%	86.3%

For a new user i_{new} , we suppose to have only the information he gives at subscription time: its age and its residency. Thus, the probability that he would like a book j takes into account only the user covariates:

$$P(L_{i_{new}j} = 1 | \mathbf{f}_j) = \log \left(\frac{P(L_{i_{new}j} = 1)}{P(L_{i_{new}j} = 0)} \right) + \sum_{k=1}^{K} \log \left(\frac{P(f_{jk} = 1 | L_{i_{new}j} = 1)}{P(f_{jk} = 1 | L_{i_{new}j} = 0)} \right)$$

with

$$P(f_{jk} = 1 | L_{i_{new}j} = 1) = \frac{1}{G} \sum_{a=1}^{G} \frac{exp\{\mu_{k_a}^{1*} + \beta_{k_a}^{1*} \mathbf{x}_{i_{new}}\}}{1 + exp\{\mu_{k_a}^{1*} + \beta_{k_a}^{1*} \mathbf{x}_{i_{new}}\}}$$

$$P(f_{jk} = 1 | L_{i_{new}j} = 0) = \frac{1}{G} \sum_{g=1}^{G} \frac{exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{new}}\}}{1 + exp\{\mu_{k_g}^{0*} + \beta_{k_g}^{0*} \mathbf{x}_{i_{new}}\}}.$$

The accuracy of the prediction for new users is reported in Table 4.

We see that on average the prediction accuracy computed on loyal users is higher that the one computed on new users: it suggests us that the contribution of the previous ratings on books with the same characteristics has effectively an impact on the final recommendation.

Table 4: World-wide Book Crossing accuracy for new users.

	KD	KD	ML	ML
setting	Pariwise	Pairwise	Pairwise	Pairwise
	NonSmooth	Smooth	NonSmooth	Smooth
accuracy	68.8%	15.1%	66.0%	71.4%

A Default Parameters

File of default parameters for PART algorithm.

Listing 17: examples/parameters/PART/defaultParamsPART.par

```
% Number of subsets
M = 4
\% Pairwise Aggregation
pairwise_aggregation = 1
% Improve Matching
improve_matching = 1
% Halve
halve = 0
% Number of Trees
ntree = 16
% KD
kd_cut = 1
% Minimum fraction of points per block
min_frac_points_block = 0.01
% min_cut_length
min_cut_length = 0.001
% number of samples to resample
resample_N = 10000
% Gaussian Smooth
gaussian\_smooth = 1
% Verbose
verbose = 0
```

File of default parameters for MCMC generation with $\mathit{CmdStan}$ (see Listing 18)

Each line represent the following parameters:

- samplingIter: number of sampling iterations to be performed for each subchain;
- burnin: number of warmup iterations;
- thin: thinning parameter;
- pathR: path into which all R files will be found with respect to Interface directory (must be coherent with R working directory);
- pathExeStan: path of executable *Stan* model with respect to Interface directory;
- useInit: true if initialization of sampler defined in external file.

Listing 18: examples/parameters/MCMC/defaultParamsMCMC.txt

2000 1000

```
1
Rdir
Rdir/logistic_model
0
```

B Tests - Detailed Results

Table 5: Accuracy (d=9, N=5000)

	M=	=10	M=	=20	M=	M=40	
	RMSE	r	RMSE	r	RMSE	r	
ML One-stage No Smoothing	0.1370	1.0165	0.3527	1.0089	0.2990	0.9844	
ML One-stage Smoothing	0.0725	1.0034	0.0828	0.9989	0.1843	0.9984	
ML Pairwise No Smoothing	0.1921	1.0191	0.1712	1.0401	0.3121	1.0365	
ML Pairwise Smoothing	0.0634	0.9945	0.1583	0.9867	0.1136	0.9886	
KD One-stage No Smoothing	0.2591	1.0084	0.2821	1.0583	0.4493	1.1195	
KD One-stage Smoothing	0.0649	1.0043	0.1460	0.9914	0.2618	0.9950	
KD Pairwise No Smoothing	0.1654	1.0319	0.1915	1.0891	0.2140	1.2292	
KD Pairwise Smoothing	0.0731	0.9961	0.0880	0.9944	0.1786	0.9886	

Table 6: Accuracy (d = 9, N = 10000)

	M=	=10	M=	=20	M=40		
	RMSE	-10 r	RMSE	-20 r	RMSE	r	
ML One-stage	0.1577	1.0101	0.2159	1.0122	0.2524	1.0047	
ML One-stage Smoothing	0.1429	0.9925	0.1180	0.9945	0.1468	0.9978	
ML Pairwise No Smoothing	0.2494	1.0098	0.3549	1.0447	0.7342	1.0757	
ML Pairwise Smoothing	0.0321	0.9986	0.1303	0.9949	0.1312	0.9956	
KD One-stage No Smoothing	0.1559	1.0305	0.3593	1.0586	0.3781	1.1427	
KD One-stage Smoothing	0.1392	0.9887	0.1400	0.9993	0.2537	0.9813	
KD Pairwise No Smoothing	0.1578	1.0392	0.2242	1.0930	0.1639	1.2464	
KD Pairwise Smoothing	0.0588	0.9972	0.0831	0.9940	0.1270	0.9908	

Table 7: Accuracy (d = 9, N = 25000)

	M=	=10	M=	=20	M=40	
	RMSE	r	RMSE	r	RMSE	r
ML						
One-stage	0.1477	1.0169	0.1736	1.0150	0.2008	1.0063
No Smoothing						
ML						
One-stage	0.0495	0.9998	0.1295	0.9936	0.2341	0.9951
Smoothing						
ML						
Pairwise	0.4828	1.0073	0.2451	1.0300	0.2868	1.0701
No Smoothing						
ML						
Pairwise	0.0868	0.9923	0.1235	0.9989	0.1795	0.9858
Smoothing						
KD						
One-stage	0.2373	1.0202	0.3310	1.0405	0.4201	1.1572
No Smoothing						
KD						
One-stage	0.0984	0.9935	0.2537	0.9871	0.2216	0.9946
Smoothing						
KD						
Pairwise	0.1531	1.0475	0.2126	1.1039	0.2200	1.2722
No Smoothing						
KD						
Pairwise	0.0514	0.9956	0.0947	0.9937	0.1082	0.9918
Smoothing						

Table 8: Execution Times (d = 9)

[min]		N=5000			N=10000			N=25000		
[IIIII]	M=10	M=20	M = 40	M=10	M=20	M=40	M=10	M=20	M=40	
ML										
One-stage	0.54	2.15	8.73	1.12	4.54	21.38	1.12	14.34	59.42	
No Smoothing										
ML										
One-stage	0.53	2.13	8.98	1.13	4.50	21.31	1.13	14.32	58.31	
Smoothing										
ML										
Pairwise	0.35	0.76	1.59	0.49	1.10	2.14	0.49	2.72	5.40	
No Smoothing										
ML										
Pairwise	0.37	0.77	1.65	0.50	1.10	2.20	0.50	2.70	5.62	
Smoothing										
KD										
One-stage	0.02	0.05	0.12	0.04	0.11	0.27	0.04	0.27	0.67	
No Smoothing										
KD			0.40						0.00	
One-stage	0.02	0.05	0.13	0.04	0.11	0.26	0.04	0.29	0.66	
Smoothing										
KD			0.04			0.00			0.00	
Pairwise	0.05	0.11	0.24	0.07	0.14	0.28	0.07	0.31	0.63	
No Smoothing										
KD	0.05	0.10	0.07	0.07	0.15	0.91	0.07	0.00	0.65	
Pairwise	0.05	0.12	0.27	0.07	0.15	0.31	0.07	0.33	0.65	
Smoothing										

Table 9: Accuracy (d = 1, N = 5000)

	M=	=10	M=	=20	M=40		
	RMSE	r	RMSE	r	RMSE	r	
ML							
One-stage	0.0018	1.0005	0.0168	0.9956	0.0042	1.0011	
No Smoothing							
ML							
One-stage	0.0010	1.0003	0.0134	0.9965	0.0035	1.0008	
Smoothing							
ML							
Pairwise	0.0001	1.0001	0.0257	0.9932	0.0223	1.0416	
No Smoothing							
ML							
Pairwise	0.0041	1.0010	0.0967	1.0264	0.0464	1.0121	
Smoothing							
KD							
One-stage	0.0093	1.0025	0.0054	0.9985	0.0016	0.9997	
No Smoothing							
KD		4 0000					
One-stage	0.0106	1.0029	0.0034	0.9991	0.0114	0.9969	
Smoothing							
KD	0.0041	1 0011	0.000=	0.00==	0.01.41	1 0000	
Pairwise	0.0041	1.0011	0.0087	0.9977	0.0141	1.0038	
No Smoothing							
KD Deisseries	0.0017	0.0000	0.0045	0.0000	0.0005	1.0009	
Pairwise	0.0017	0.9996	0.0045	0.9989	0.0235	1.0063	
Smoothing							

Table 10: Accuracy (d=1, N=10000)

	M=	=10	M=	=20	M=	M=40		
	RMSE	r	RMSE	r	RMSE	r		
ML								
One-stage	0.0006	1.0002	0.0021	1.0006	0.0156	1.0043		
No Smoothing								
ML								
One-stage	0.0022	1.0006	0.0018	1.0005	0.0168	1.0046		
Smoothing								
ML								
Pairwise	0.0041	1.0011	0.0070	0.9982	0.0187	1.0053		
No Smoothing								
ML								
Pairwise	0.0213	1.0057	0.0159	0.9958	0.0169	0.9956		
Smoothing								
KD								
One-stage	0.0022	1.0006	0.0035	1.0010	0.0302	1.0083		
No Smoothing								
KD								
One-stage	0.0034	1.0009	0.0044	1.0012	0.0198	1.0055		
Smoothing								
KD								
Pairwise	0.0004	1.0001	0.0008	0.9998	0.0126	1.0035		
No Smoothing								
KD								
Pairwise	0.0056	1.0015	0.0057	1.0016	0.0369	1.0099		
Smoothing								

Table 11: Accuracy (d = 1, N = 25000)

	M=	=10	M=	=20	M=40		
	RMSE	r	RMSE	r	RMSE	r	
ML							
One-stage	0.0012	1.0003	0.0031	1.0009	0.0085	1.0023	
No Smoothing							
ML							
One-stage	0.0006	1.0001	0.0022	1.0006	0.0100	1.0027	
Smoothing							
ML							
Pairwise	0.0032	1.0009	0.0046	1.0013	0.0994	1.0389	
No Smoothing							
ML							
Pairwise	0.0200	0.9946	0.0217	1.0059	0.0598	1.0156	
Smoothing							
KD							
One-stage	0.0010	1.0003	0.0035	1.0010	0.0010	1.0003	
No Smoothing							
KD							
One-stage	0.0031	1.0008	0.0030	1.0008	0.0046	1.0012	
Smoothing							
KD						4 0000	
Pairwise	0.0001	1.0001	0.0027	1.0008	0.0135	1.0036	
No Smoothing							
KD	0.000	1 0000	0.0010	0.000	0.01.40	1 000	
Pairwise	0.0035	1.0009	0.0010	0.9998	0.0140	1.0037	
Smoothing							

Table 12: Execution Times (d = 1)

[min]		N=5000			N=10000)		N=25000		
[mm]	M=10	M=20	M = 40	M=10	M=20	M=40	M=10	M=20	M = 40	
ML										
One-stage	0.46	1.88	8.76	0.90	3.59	16.12	0.90	9.63	40.00	
No Smoothing										
ML										
One-stage	0.47	1.95	9.11	0.90	3.57	16.17	0.90	9.67	40.80	
Smoothing										
ML										
Pairwise	0.22	0.50	0.97	0.31	0.66	1.25	0.31	1.73	3.24	
No Smoothing										
ML										
Pairwise	0.10	0.20	0.42	0.15	0.29	0.55	0.15	0.75	1.42	
Smoothing										
KD										
One-stage	0.01	0.02	0.05	0.02	0.04	0.08	0.02	0.09	0.20	
No Smoothing										
KD										
One-stage	0.01	0.02	0.05	0.02	0.04	0.08	0.02	0.09	0.20	
Smoothing										
KD										
Pairwise	0.02	0.04	0.08	0.02	0.05	0.10	0.02	0.09	0.18	
No Smoothing										
KD										
Pairwise	0.02	0.04	0.08	0.02	0.05	0.10	0.02	0.09	0.18	
Smoothing										

Table 13: Accuracy (d = 29, N = 5000)

	M=	=10	M=	M=20		M=40	
	RMSE	r	RMSE	r	RMSE	r	
ML							
One-stage	0.3847	1.0580	0.5702	1.1253	1.1111	1.4011	
No Smoothing							
ML							
One-stage	0.1627	1.0056	0.2594	1.0088	0.3462	1.0160	
Smoothing							
ML							
Pairwise	0.2358	1.0765	0.5140	1.2208	0.9102	1.7966	
No Smoothing							
ML							
Pairwise	0.2024	1.0017	0.3415	1.0008	0.5974	1.0460	
Smoothing							
KD							
One-stage	0.3062	1.0733	0.5535	1.2253	1.2981	1.8259	
No Smoothing							
KD		4.00=4				4 000=	
One-stage	0.1677	1.0074	0.2265	1.0113	0.3824	1.0227	
Smoothing							
KD	0.0000	1 0000	0.5000	1.0045	1 0075	1 0010	
Pairwise	0.3023	1.0892	0.5660	1.2645	1.2275	1.9219	
No Smoothing							
KD Deissenier	0.0050	1 0000	0.1704	1 0000	0.1504	1 0000	
Pairwise	0.0953	1.0028	0.1784	1.0009	0.1504	1.0033	
Smoothing							

Table 14: Accuracy (d = 29, N = 10000)

	М-	=10	M-	=20	M=	-40
	RMSE	-10 r	RMSE	-20 r	RMSE	-40 r
ML	TOVIOL	1	TUVIOL	1	TOVIOL	-
One-stage	0.2974	1.0562	0.5978	1.1239	1.0992	1.4249
No Smoothing	0.2011	1.0002	0.0010	1.1200	1.0002	1.1210
ML						
One-stage	0.1513	1.0048	0.2414	1.0088	0.4266	1.0038
Smoothing	0,1310	1.0010	0.2111	1.0000	0.1200	1.0000
ML						
Pairwise	0.2096	1.0862	0.4247	1.2486	1.0555	1.7845
No Smoothing						
ML						
Pairwise	0.1756	1.0010	0.3742	1.0082	0.6641	1.0324
Smoothing						
KD						
One-stage	0.2936	1.0886	0.6135	1.2399	1.1043	1.8605
No Smoothing						
KD						
One-stage	0.1425	1.0041	0.2528	1.0037	0.3735	1.0276
Smoothing						
KD						
Pairwise	0.3030	1.0949	0.6169	1.2701	1.2320	1.9608
No Smoothing						
KD						
Pairwise	0.0920	1.0035	0.1236	1.0024	0.1311	1.0066
Smoothing						

Table 15: Accuracy (d=29, N=25000)

	M=	=10	M=	M=20		M=40	
	RMSE	r	RMSE	r	RMSE	r	
ML							
One-stage	0.2988	1.0523	0.6551	1.1501	1.2532	1.4758	
No Smoothing							
ML							
One-stage	0.1683	1.0047	0.2648	1.0037	0.2839	1.0142	
Smoothing							
ML							
Pairwise	0.2798	1.1000	0.4756	1.2563	1.0672	1.8467	
No Smoothing							
ML							
Pairwise	0.0935	1.0004	0.2886	1.0176	0.2170	1.0015	
Smoothing							
KD							
One-stage	0.2829	1.0997	0.6211	1.2772	1.2849	1.9106	
No Smoothing							
KD							
One-stage	0.1754	1.0011	0.2498	1.2945	0.2993	1.0266	
Smoothing							
KD							
Pairwise	0.2663	1.1031	0.6808	1.0054	1.2147	2.0074	
No Smoothing							
KD							
Pairwise	0.0886	1.0008	0.1013	0.9991	0.1344	1.0030	
Smoothing							

Table 16: Execution Times (d = 29)

[main]		N=5000			N=10000			N=25000		
[min]	M=10	M=20	M=40	M=10	M=20	M=40	M=10	M=20	M=40	
ML										
One-stage	1.12	3.76	14.61	2.44	8.54	43.39	2.44	32.10	134.68	
No Smoothing										
ML										
One-stage	1.11	3.79	14.85	2.37	8.53	42.74	2.37	32.04	133.41	
Smoothing										
ML										
Pairwise	0.79	1.71	3.53	1.16	2.48	4.91	1.16	6.38	12.34	
No Smoothing										
ML										
Pairwise	0.83	1.82	3.58	1.22	2.58	5.07	1.22	6.46	13.64	
Smoothing										
KD										
One-stage	0.07	0.16	0.34	0.13	0.29	0.69	0.13	0.76	3.09	
No Smoothing										
KD										
One-stage	0.07	0.15	0.34	0.13	0.30	0.72	0.13	0.80	2.53	
Smoothing										
KD										
Pairwise	0.16	0.36	0.81	0.22	0.52	1.05	0.22	1.14	2.23	
No Smoothing										
KD										
Pairwise	0.20	0.43	0.92	0.26	0.59	1.18	0.26	1.20	2.44	
Smoothing										

Table 17: $min_frac_points_block = 0.001$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.3938	0.5249	0.7358	0.5608
3.6 10	r	1.0210	1.0298	1.0638	1.0394
M=10	Space				
	Partition	4745	2706	297	422
	[ms]				
	Execution				
	Time	5061	3137	677	1043
	[ms]				
	RMSE	0.7611	0.9715	1.3992	0.1785
M=20	r	0.9690	1.0489	0.9915	0.9979
W1-20	Space				
	Partition	19788	5639	628	1110
	[ms]				
	Execution				
	Time	20280	6500	1110	2192
	[ms]				
	RMSE	0.5265	1.1539	1.3615	1.1558
M=40	r	0.9838	0.8970	1.0925	0.9947
111-40	Space				
	Partition	84791	11685	1401	1727
	[ms]				
	Execution				
	Time	85763	13432	2312	4253
	[ms]				

Table 18: $min_frac_points_block = 0.01$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.4682	0.1445	0.2139	0.0976
M=10	r	0.9942	1.0001	0.9948	0.9963
WI-10	Space				
	Partition	2288	1383	69	171
	[ms]				
	Execution				
	Time	2586	1731	334	594
	[ms]				
	RMSE	0.4862	0.2630	0.5037	0.1508
M=20	r	1.0112	0.9965	0.9794	0.9953
111-20	Space				
	Partition	8423	2790	164	354
	[ms]				
	Execution				
	Time	8923	3439	632	1076
	[ms]				
	RMSE	0.4482	0.4235	0.5657	0.1201
M=40	r	0.9775	0.9661	1.0286	0.9971
111 10	Space				
	Partition	33312	5907	418	721
	[ms]				
	Execution				
	Time	34181	7238	1306	2162
	[ms]				

Table 19: Space Partition: $min_frac_points_block = 0.1, ntree = 1$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.2318	0.0747	0.2676	0.0661
M=10	r	0.9844	0.9953	1.0086	1.0023
WI-10	Space				
	Partition	1668	880	43	74
	[ms]				
	Execution				
	Time	1938	1211	310	443
	[ms]				
	RMSE	0.1900	0.0930	0.4818	0.1272
M=20	r	1.0026	0.9910	0.9669	0.9948
111-20	Space				
	Partition	8256	1919	103	171
	[ms]				
	Execution				
	Time	8767	2528	570	851
	[ms]				
	RMSE	0.5045	0.1379	0.6825	0.2322
M=40	r	1.0370	0.9872	0.9528	0.9822
111-10	Space				
	Partition	31248	3912	264	362
	[ms]				
	Execution				
	Time	32177	5139	1135	1618
	[ms]				

Table 20: $min_cut_length = 0.001$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.4682	0.1445	0.2139	0.0976
M=10	r	0.9942	1.0001	0.9948	0.9963
WI-10	Space				
	Partition	2288	1383	69	171
	[ms]				
	Execution				
	Time	2586	1731	334	594
	[ms]				
	RMSE	0.4862	0.2630	0.5037	0.1508
M=20	r	1.0112	0.9965	0.9794	0.9953
111-20	Space				
	Partition	8423	2790	164	354
	[ms]				
	Execution				
	Time	8923	3439	632	1076
	[ms]				
	RMSE	0.4482	0.4235	0.5657	0.1201
M=40	r	0.9775	0.9661	1.0286	0.9971
111 10	Space				
	Partition	33312	5907	418	721
	[ms]				
	Execution				
	Time	34181	7238	1306	2162
	[ms]				

Table 21: $min_cut_length = 0.01$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.2564	0.3951	0.2569	0.2034
M=10	r	0.9801	0.9793	0.9895	0.9813
W1—10	Space				
	Partition	2178	1237	68	154
	[ms]				
	Execution				
	Time	2455	1593	337	554
	[ms]				
	RMSE	0.3092	0.2839	0.6623	0.2836
M=20	r	1.0166	0.9968	1.0438	0.9744
W1-20	Space				
	Partition	8985	2946	170	348
	[ms]				
	Execution				
	Time	9498	3621	637	1127
	[ms]				
	RMSE	0.8307	0.2758	0.6581	0.1957
M=40	r	1.0578	0.9936	0.9688	0.9935
141—40	Space				
	Partition	36331	5914	432	751
	[ms]				
	Execution				
	Time	37228	7243	1369	2199
	[ms]				

Table 22: $min_cut_length = 0.1$

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.1831	0.3362	0.3083	0.0514
M=10	r	0.9984	0.9731	0.9936	1.0048
WI-10	Space				
	Partition	2291	1260	68	177
	[ms]				
	Execution				
	Time	2564	1629	332	582
	[ms]				
	RMSE	0.6319	0.1987	0.5475	0.1347
M=20	r	1.0177	0.9807	1.0080	0.9882
111-20	Space				
	Partition	8727	2817	164	373
	[ms]				
	Execution				
	Time	9239	3518	625	1138
	[ms]				
	RMSE	0.4784	0.3998	0.5835	0.2499
M=40	r	0.9873	0.9703	1.0070	1.0004
111-10	Space				
	Partition	38038	5835	423	746
	[ms]				
	Execution				
	Time	38924	7125	1308	2165
	[ms]				

Table 23: ntree = 1

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.4682	0.1445	0.2139	0.0976
M=10	r	0.9942	1.0001	0.9948	0.9963
WI-10	Space				
	Partition	2288	1383	69	171
	[ms]				
	Execution				
	Time	2586	1731	334	594
	[ms]				
	RMSE	0.4862	0.2630	0.5037	0.1508
M=20	r	1.0112	0.9965	0.9794	0.9953
111-20	Space				
	Partition	8423	2790	164	354
	[ms]				
	Execution				
	Time	8923	3439	632	1076
	[ms]				
	RMSE	0.4482	0.4235	0.5657	0.1201
M=40	r	0.9775	0.9661	1.0286	0.9971
111-10	Space				
	Partition	33312	5907	418	721
	[ms]				
	Execution				
	Time	34181	7238	1306	2162
	[ms]				

Table 24: ntree = 16

		ML	ML	KD	KD
			1,112		
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.0503	0.0812	0.1463	0.0492
M=10	r	0.9993	0.9935	0.9900	0.9996
M1—10	Space				
	Partition	31785	21491	1097	2543
	[ms]				
	Execution				
	Time	32062	22033	1372	3270
	[ms]				
	RMSE	0.1629	0.1189	0.0959	0.0783
M=20	r	0.9968	0.9893	1.0048	0.9944
M=20	Space				
	Partition	123908	44669	2618	5632
	[ms]				
	Execution				
	Time	124458	45817	3092	7137
	[ms]				
	RMSE	0.2060	0.2142	0.2215	0.0969
M=40	r	0.9941	0.9784	0.9909	0.9935
M-40	Space				
	Partition	485227	95008	6769	12067
	[ms]				
	Execution				
	Time	486173	97532	7668	15274
	[ms]				

Table 25: ntree = 32

		ML	ML	KD	KD
		One-stage	Pairwise	One-stage	Pairwise
		Smoothing	Smoothing	Smoothing	Smoothing
	RMSE	0.0504	0.0575	0.0381	0.0623
M=10	r	1.0010	0.9954	0.9986	0.9978
WI-10	Space				
	Partition	61636	42550	2140	5133
	[ms]				
	Execution				
	Time	61936	43288	2420	6134
	[ms]				
	RMSE	0.1134	0.1902	0.1013	0.0873
M=20	r	0.9972	0.9858	0.9978	0.9925
111-20	Space				
	Partition	240438	89246	5255	11342
	[ms]				
	Execution				
	Time	241018	90805	5741	13445
	[ms]				
	RMSE	0.1048	0.1960	0.2279	0.1158
M=40	r	0.9936	0.9803	0.9928	0.9911
111-10	Space				
	Partition	974242	188902	13342	24982
	[ms]				
	Execution				
	Time	975249	192038	14257	29459
	[ms]				

Table 26: Improved vs not-improved matching

			ML		KD
		Pa	airwise	Pa	airwise
		Sm	oothing	Sm	oothing
		Improved	Not Improved	Improved	Not Improved
	RMSE	0.0634	0.1567	0.0731	0.0747
M=10	r	0.9945	0.9929	0.9961	0.9965
	Execution				
	Time	49719	20724	11884	3126
	[ms]				
	RMSE	0.1583	0.2226	0.0880	0.8000
M=20	r	0.9867	0.9819	0.9944	0.9965
	Execution				
	Time	109126	45782	25708	7032
	[ms]				
	RMSE	0.1136	0.2167	0.1786	0.1502
M=40	r	0.9886	0.9847	0.9866	0.9876
	Execution				
	Time	215010	96052	55083	14802
	[ms]				

Table 27: Halving vs not-halving $(min_frac_points_block = 0.001)$

			ML		KD
		Pa	irwise	Pa	airwise
		Sme	oothing	Sm	oothing
		Halved	Not Halved	Halved	Not Halved
	RMSE	0.1747	0.4486	0.0655	0.0735
M=10	r	0.9885	0.9616	0.9956	1.0007
	Execution				
	Time	32743	45224	4980	7928
	[ms]				
	RMSE	0.2018	0.3933	0.0448	0.0808
M=20	r	0.9907	1.0174	0.9989	1.0040
	Execution				
	Time	59714	94362	9228	16974
	[ms]				
	RMSE	0.2357	0.8876	0.0928	0.2181
M=40	r	0.9769	1.0372	0.9942	0.9904
	Execution				
	Time	106862	197417	15421	34608
	[ms]				

Table 28: Halving vs not-halving $(min_frac_points_block = 0.01)$

			ML		KD
		Pa	airwise	Pa	airwise
		Sm	oothing	Sm	oothing
		Halved	Not Halved	Halved	Not Halved
	RMSE	0.1008	0.0812	0.0534	0.0492
M=10	r	0.9899	0.9935	0.9984	0.9996
	Execution				
	Time	19624	22033	2274	3270
	[ms]				
	RMSE	0.1342	0.1189	0.0736	0.0783
M = 20	r	0.9961	0.9893	0.9949	0.9944
	Execution				
	Time	40043	45817	4156	7137
	[ms]				
	RMSE	0.1191	0.2142	0.1231	0.0969
M = 40	r	0.9906	0.9784	0.9928	0.9935
	Execution				
	Time	69710	97532	7400	15274
	[ms]				

Table 29: Number of samples from aggregated posterior

		ML			KD	
		Pairwise	е		Pairwise	e
		Smoothin	ng		Smoothin	ng
	RMSE	r	Execution	RMSE	r	Execution
	TUNDE	1	Time [ms]	TUNIOE	1	Time [ms]
1500	0.0532	0.9974	14739	0.0357	0.9999	2584
3000	0.0913	1.0007	14519	0.0482	0.9991	2551
4500	0.0993	0.9924	14576	0.0275	1.0003	2508
6000	0.0855	0.9950	15682	0.0582	0.9969	2637
7500	0.0598	0.9950	18205	0.0379	1.0008	2840
9000	0.1004	0.9910	19998	0.0463	0.9989	2987
10500	0.0454	0.9994	22462	0.0322	1.0007	3171
12000	0.0814	0.9916	24225	0.0472	0.9987	3405
13500	0.0868	1.0008	27082	0.0661	0.9958	3745
15000	0.0694	0.9956	28939	0.0586	0.9966	3753

Figure 10: gprof: KD one-stage with smoothing (d = 29, N = 5000, M = 10)

Each sa	ample	counts	s as 0.01	seconds.			
	cumula		self		self	total	
time	seco	nds	seconds	calls	ms/call	ms/call	
56.05		1.53	1.53	16368	0.09	0.14	Tree::findCut(RawMCMC const&, Tree::Node const&, double&, unsigned lon
17.95		2.02	0.49	245744	0.00	0.00	
9.52		2.28	0.26	245744	0.00		Tree::checkCut(double, arma::Col <double> const&, double, double)</double>
4.76		2.41	0.13	8192	0.02	0.04	
3.30		2.50	0.09	8192	0.01	0.01	
2.56		2.57	0.07	16	4.38	23.27	
1.83		2.62	0.05	8192	0.01	0.02	computeMeanCov(arma::Mat <double> const&, arma::Col<unsigned long=""></unsigned></double>
1.47		2.66	0.04	292096	0.00	0.00	
0.37		2.67	0.01	255744	0.00		int std::uniform_int_distribution <int>::operator()<std::mersenne_twist< td=""></std::mersenne_twist<></int>
0.37		2.68	0.01	81920	0.00		<pre>void std::vector<arma::mat<double>, std::allocator<arma::mat<double> ></arma::mat<double></arma::mat<double></pre>
0.37		2.69	0.01	16352	0.00		Tree::Node::generateChild(unsigned long long, double, double, bool, ar
0.37		2.70	0.01	8254	0.00	0.00	MCestimate::MCestimate(MCestimate const&)
0.37		2.71	0.01	8192	0.00	0.00	void arma::op_mean::apply <arma::mat<double> >(arma::Mat<arma::mat<doub< td=""></arma::mat<doub<></arma::mat<double>
0.37		2.72	0.01	1	10.00	10.00	RawMCMC::createDefaultArea()
0.37		2.73	0.01				bool arma::diskio::load_csv_ascii <double>(arma::Mat<double>&, std::ist</double></double>
0.00		2.73	0.00	626752	0.00	0.00	arma::Mat <unsigned long="">::init_warm(unsigned long long, unsigned</unsigned>
0.00		2.73	0.00	524192	0.00	0.00	arma::Mat <unsigned long="">::steal_mem_col(arma::Mat<unsigned l<="" long="" td=""></unsigned></unsigned>
0.00		2.73	0.00	73837	0.00	0.00	arma::Mat <double>::init_warm(unsigned long long, unsigned long long)</double>
granula	rity:	each s	sample hit	covers 2	byte(s)	for 0.37%	of 2.73 seconds
index %	time	se]	lf childr		lled r	name	
	85.1	1.5	53 0.79	16368 16368			build(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::alloc<="" td=""></mcestimate,>
[1]	05.1	0.4		245744/			Cut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: td:: introselect< gnu cxx:: normal iterator <double*, std::vector<double,<="" td=""></double*,>
		0.2		245744/			checkCut(double, arma::Col <double> const&, double, double) [6]</double>
		0.0		245744/			d::uniform int distribution <int>::operator()<std::mersenne engine<v<="" td="" twister=""></std::mersenne></int>
		0.0					C::get samples() const [32]
		0.0					Mat <double>::init warm(unsigned long long, unsigned long long) [31]</double>
				16368			atedResampling(Parameters const&, std::vector <arma::mat<double>, std::alloc</arma::mat<double>
						-	
		0.4		245744/			findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, ar
[3]	17.9	0.4		245744			introselect <gnu_cxx::normal_iterator<double*, std::vector<double,="" std<="" td=""></gnu_cxx::normal_iterator<double*,>
		0.0			192		td::adjust_heap <gnu_cxx::normal_iterator<double*, std::vector<double,<="" td=""></gnu_cxx::normal_iterator<double*,>
				16352		Tree::	build(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::alloc<="" td=""></mcestimate,>
				16			grow(RawMCMC const&, arma::Col <unsigned long=""> const&, bool, std::vectc</unsigned>
[4]	13.6	0.0	0.30	16+	16352 1	Tree::buil	d(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::allocator<="" td=""></mcestimate,>
		0.1	13 0.16	8032/	8192	MCestin	mate::MCestimate(RawMCMC const&, arma::Col <unsigned long=""> const&, arma</unsigned>
		0.0	0.00	16352/	16352	Tree::	Node::generateChild(unsigned long long, double, double, bool, arma::Col <uns< td=""></uns<>
		0.0	0.01	160/	160	void s	td::vector <mcestimate, std::allocator<mcestimate=""> >::_M_emplace_back_aux<ra< td=""></ra<></mcestimate,>
		0.0	0.00	16352/	292096		ersenne_twister_engine <unsigned 2567483615u<="" 31ul,="" 32ul,="" 397ul,="" 624ul,="" long,="" td=""></unsigned>
		0.0			524192		Mat <unsigned long="">::steal_mem_col(arma::Mat<unsigned long="">&, unsi</unsigned></unsigned>
		0.0	0.00		626752		Mat <unsigned long="">::init_warm(unsigned long long, unsigned long long)</unsigned>
				16368			findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, ar
				8176			atedResampling(Parameters const&, std::vector <arma::mat<double>, std::alloc</arma::mat<double>
				16352		Tree::	build(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::alloc<="" td=""></mcestimate,>
		0.0	0.00	160/	/8192	void s	td::vector <mcestimate, std::allocator<mcestimate=""> >:: M emplace back aux<ra< td=""></ra<></mcestimate,>
		0.1					build(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::alloc<="" td=""></mcestimate,>
[5]	10.6	0.1	13 0.16				::MCestimate(RawMCMC const&, arma::Col <unsigned long=""> const&, arma::Ma</unsigned>
7.		0.0					eMeanCov(arma::Mat <double> const&, arma::Col<unsigned long=""> const&, un</unsigned></double>
		0.0	0.00	16384/	73837	arma::	Mat <double>::init_warm(unsigned long long, unsigned long long) [31]</double>
		0.0	0.00	8192/	/8208	RawMCM	C::get n subsets() const [34]

Figure 11: gprof: ML one-stage with smoothing (d=29, N=5000, M=10)

	mple count		seconds.			
	umulative			self	total	
time	seconds	seconds			ms/call	
41.68	4.83	4.83	331816	0.01		Tree::ml_cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long)
25.45	7.78	2.95	19043	0.15		Tree::findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long
14.06	9.41		331816	0.00		void std::_introsort_loop <gnu_cxx::normal_iterator<arma::arma_sort_inde< td=""></gnu_cxx::normal_iterator<arma::arma_sort_inde<>
6.04	10.11		331816	0.00		bool arma::arma_sort_index_helper <arma::mat<double>, false>(arma::Mat<unsign< td=""></unsign<></arma::mat<double>
2.93	10.45	0.34	9596	0.04	0.06	MCestimate::MCestimate(RawMCMC const&, arma::Col <unsigned long=""> const&,</unsigned>
2.16	10.70	0.25	663632	0.00	0.00	arma::subview_elem1 <unsigned arma::mat<unsigned="" long="" long,=""> >::ext</unsigned>
1.64	10.89	0.19	331816	0.00	0.00	Tree::checkCut(double, arma::Col <double> const&, double, double)</double>
0.86	10.99	0.10	7188002	0.00	0.00	arma::Mat <unsigned long="">::init warm(unsigned long long, unsigned long l</unsigned>
0.86	11.09	0.10	16	6.25	42.82	Tree::build(RawMCMC const&, Tree::Node&, bool, std::vector <mcestimate, std::<="" td=""></mcestimate,>
0.86	11.19	0.10	9596	0.01		void arma::op cov::direct cov <double>(arma::Mat<double>&, arma::Mat<double></double></double></double>
0.69	11.27	0.08	9596	0.01		computeMeanCov(arma::Mat <double> const&, arma::Col<unsigned long=""> const</unsigned></double>
0.52	11.33	0.06	663648	0.00		Tree::normalize(std::vector <mcestimate, std::allocator<mcestimate=""> >&)</mcestimate,>
0.43	11.38		4681786	0.00		arma::Mat <unsigned long="">::steal mem col(arma::Mat<unsigned long="">&,</unsigned></unsigned>
0.43	11.43		380976	0.00		std::mersenne twister engine <unsigned 256748<="" 31ul,="" 32ul,="" 397ul,="" 624ul,="" long,="" td=""></unsigned>
0.35	11.47	0.04	19160	0.00		Tree::Node::generateChild(unsigned long long, double, double, bool, arma::Co
0.26	11.50	0.03	331816	0.00		void std:: insertion sort< gnu cxx:: normal iterator <arma::arma inde<="" sort="" td=""></arma::arma>
0.17	11.50	0.03	331016	0.00	0.00	
			05050			bool arma::diskio::load_csv_ascii <double>(arma::Mat<double>&, std::istream&,</double></double>
0.09	11.53	0.01	95960	0.00		void std::vector <arma::mat<double>, std::allocator<arma::mat<double> > >::_M</arma::mat<double></arma::mat<double>
0.09	11.54	0.01	9596	0.00		void arma::op_mean::apply <arma::mat<double> >(arma::Mat<arma::mat<double>::e</arma::mat<double></arma::mat<double>
0.09	11.55	0.01	17	0.59		posteriorResampling(std::vector <std::vector<mcestimate, std::allocator<mcest<="" td=""></std::vector<mcestimate,>
0.09	11.56	0.01	1	10.00		RawMCMC::createDefaultArea()
0.09	11.57	0.01	1	10.00	20.00	RawMCMC::RawMCMC(std::vector <arma::mat<double> const*, std::allocator<arma::< td=""></arma::<></arma::mat<double>
0.09	11.58	0.01				arma::unwrap_check_mixed <arma::mat<double> >::~unwrap_check_mixed()</arma::mat<double>
0.09	11.59	0.01				arma::subview <unsigned long="">::extract(arma::Mat<unsigned long="">&, a</unsigned></unsigned>
0.00	11.59	0.00	1745472	0.00	0.00	arma::Mat <double>::init warm(unsigned long long, unsigned long long)</double>
0.00	11.59	0.00	360472	0.00	0.00	RawMCMC::get samples() const
0.00	11.59	0.00	341816	0.00		int std::uniform int distribution <int>::operator()<std::mersenne eng<="" td="" twister=""></std::mersenne></int>
0.00	11.59	0.00	341428	0.00		RawMCMC::get n subsets() const
0.00	11.59		341412	0.00		
0.00 0.00 granula:		0.00			0.00	RamMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds</double></double>
0.00 granula index %	11.59 rity: each time se	0.00 0.00 sample hit	331816 covers ren ca 19043	0.00 2 byte(s) lled	0.00 0.00 for 0.09 name Tree:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const6) 6 of 11.59 seconds :build(RawMCMC const6, Tree::Node6, bool, std::vector<mcestimate, std::allocator<="" td=""></mcestimate,></double></double>
0.00 granula:	11.59 rity: each time se	0.00 0.00 sample hit	331816 covers ren ca 19043 3 19043	0.00 2 byte(s) 11ed	0.00 0.00 for 0.09 name Tree::find	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, std::allocator<br="">3Cut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma::Col</mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se	0.00 0.00 sample hit elf childs 95 7.88	331816 c covers ren ca 19043 3 19043 0 331816	0.00 2 byte(s) lled /331816	0.00 0.00 for 0.099 name Tree::find Tree:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (3)<="" (rawmcmc="" :ml_cutting_rule(rawmcmc="" acut="" arma::cole="" const&,="" double&,="" long="" long&,="" std::allocator="" td="" tree::node="" unsigned=""></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se	0.00 0.00 sample hit elf childs 95 7.88 83 2.86	331816 c covers ren ca 19043 3 19043 0 331816 2 331816	0.00 2 byte(s) lled /331816 /331816	0.00 0.00 for 0.099 name Tree::find Tree:: Tree:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" :ml_cutting_rule(rawmcmc="" [3]="" acut="" arma::col<="" arma::col<double="" const&,="" double&,="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9]</mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se 93.5 2	0.00 0.00 sample hit elf childs 95 7.88 83 2.86 19 0.00	331816 covers ren ca 19043 3 19043 0 331816 2 331816 4 331816	0.00 2 byte(s) lled /331816 /331816 /341816	0.00 0.00 for 0.09 name Tree::find Tree:: Iree::int st	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, :checkcut(double,="" [3]="" arma::col<="" arma::col<double="" const&,="" dcut(rawmcmc="" double&,="" iml_cutting_rule(rawmcmc="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dd::uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsigned< td=""></std::mersenne_twister_engine<unsigned<></int></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se 93.5 2. 4. 0.	0.00 0.00 sample him elf childs 95 7.88 83 2.80 19 0.00 00 0.00	331816 covers ren ca 19043 3 19043 0 331816 2 331816 4 331816 0 19043	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472	0.00 0.00 for 0.09 name Tree::find Tree:: Tree::int st RawMCD	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" :cut="" :ml_cutting_rule(rawmcmc="" [3]="" arma::col<="" arma::col<double="" const&,="" double&,="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] :dd::uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsigned :c::get_samples()="" [39]<="" const="" td=""></std::mersenne_twister_engine<unsigned></int></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se 93.5 2. 4. 0.	0.00 0.00 sample hit elf childs 95 7.88 83 2.86 19 0.00	331816 c covers ren ca 19043 3 19043 331816 2 331816 4 331816 0 19043	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472	0.00 0.00 for 0.09 name Tree::find Tree:: Tree: int st RawMCC arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, :checkcut(double,="" [3]="" arma::col<="" arma::col<double="" const&,="" dcut(rawmcmc="" double&,="" iml_cutting_rule(rawmcmc="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] cd::uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsign :mat<double="" [39]="" const="" dc::get_samples()="">::init_warm(unsigned long long, unsigned long long) [38]</std::mersenne_twister_engine<unsign></int></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se 93.5 2. 4. 0.	0.00 0.00 sample him elf childs 95 7.88 83 2.80 19 0.00 00 0.00	331816 covers ren ca 19043 3 19043 0 331816 2 331816 4 331816 0 19043	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472	0.00 0.00 for 0.09 name Tree::find Tree:: Tree: int st RawMCC arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, :checkcut(double,="" [3]="" arma::cole="" arma::coledouble="" const&,="" dcut(rawmcmc="" double&,="" iml_cutting_rule(rawmcmc="" long="" long&,="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] cd::uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsign :mat<double="" [39]="" const="" dc::get_samples()="">::init_warm(unsigned long long, unsigned long long) [38]</std::mersenne_twister_engine<unsign></int></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se 93.5 2 4. 0. 0. 0. 0.	0.00 0.00 sample hit elf childs 95 7.88 83 2.86 19 0.00 00 0.00 00 0.00	331816 c covers ren ca 19043 3 19043 331816 2 331816 4 331816 0 19043	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472	0.00 0.00 for 0.09 name Tree::finn Tree:: int st RawMCC arma:: aggree	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col<="" arma::col<double="" const&,="" cutting="" double&,="" ind="" long="" long&)="" long&,="" rule="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dd::uniform int distribution(int>::operator()<std::mersenne_twister_engine<unsign !mat<double="" [39]="" const="" dd::get_samples()="">::init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator</arma::mat<double></std::mersenne_twister_engine<unsign></mcestimate,></double></double>
0.00 granula index %	11.59 rity: each time se	0.00 0.00 sample hit elf childs 95 7.88 83 2.8 19 0.00 00 0.00 00 0.00	331816 c covers ren ca 19043 3 19043 0 331816 2 331816 4 331816 19043 19043	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472 /	0.00 0.00 for 0.09 name Tree::finc Tree:: int st RawMCC arma:: aggree	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col<="" arma::col<double="" const&,="" cutting="" double&,="" ind="" long="" long&)="" long&,="" rule="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dd::uniform int distribution(int>::operator()<std::mersenne_twister_engine<unsign !mat<double="" [39]="" const="" dc::get_samples()="">::init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator</arma::mat<double></std::mersenne_twister_engine<unsign></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2.	0.00 0.00 sample hit elf childs 95 7.88 83 2.8 19 0.00 00 0.00 00 0.00 00 0.00	331816 c covers ren ca 19043 3 19043 0 331816 2 331816 4 331816 0 19043 19043 0 331816	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472 /331816	0.00 0.00 for 0.09 name Tree::finc Tree:: int st RawMCD arma:: aggree Tree::ml_	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" :gut="" :ml_cutting_rule(rawmcmc="" [3]="" arma::cole="" arma::coledouble="" const&,="" double&,="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] :dd::uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsigned [38]="" const&,="" long="" long)="" std::vector<arma::mat<double="" ystedresampling(parameters="">, std::allocator :findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: :cutting_rule(RawMCMC const&, Tree::Node const&, double&, unsigned long long) [3]</std::mersenne_twister_engine<unsigned></int></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2 4.00 0.00 0.00 1.65.8 4.00	0.00 0.00 0.00 sample him elf childs 95 7.88 83 2.86 19 0.00 00 0.00 00 0.00 00 0.00 83 2.86 83 2.88 83 2.88 83 2.86 83 2.86 83 2.86	331816 covers ren ca 19043 3 19043 0 331816 4 331816 0 19043 19043 19043 0 331816 0 331816	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472 /331816 /331816	0.00 0.00 for 0.099 name Tree::fine Tree::fint si RawMCD arma: aggrec Tree::ml Tree::ml bool a	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" [3]="" acut="" arma::col<="" cd::uniform="" cicketctuting_rule(rawmcmc="" const&,="" distribution(int="" double&,="" int="" long="" long&)="" long&,="" std::allocator="" tree::node="" unsigned="">::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int>::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int>::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int>::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int>::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int>::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int): cicketorun<="" cicketoruniform_int,="" cicketoruniform_int_distribution(int)::operator()<std::mersenne_twister_engine<unsigned:uniform_int,="" cicketoruniform_int_distribution(int)::operator()<std::mersenne_twister_engine<unsigned:uniform_int_distribution(int):="" td=""></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int):></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int></std::mersenne_twister_engine<unsigned:uniform_int_distribution(int></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2. 4. 0. 0. 0. 0. 4. 65.8 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.00 0.00 sample hit elf childi 95 7.88 83 2.8 19 0.0 00 0.0 00 0.0 00 0.0 00 0.0 83 2.8 19 0.0 19 0.0 19 0.0 19 0.0 19 0.0 10 0.0 1	331816 c covers ren ca 19043 3 19043 0 331816 2 331816 4 331816 19043 19043 19043 19043 331816 0 331816 331816	0.00 2 byte(s) 1led /331816 /331816 /341816 /360472 /1745472 /331816 /331816	0.00 0.00 for 0.09 name Tree::finc Tree::int st RawMCD arma: aggrec Tree::ml boola arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::cole="" arma::coledouble="" const&,="" cutting="" double&,="" double,="" ind="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] cd::uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::mit< p=""> ####################################</std::mersenne_twister_engine<unsigned::mit<></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2. 93.5 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.00 0.00 sample hit elf childs 95 7.88 83 2.88 19 0.00 00 0.00 00 0.00 00 0.00 83 2.88 83 2.88 70 1.66 25 0.00 04 0.00	331816 5 covers ren ca 19043 1904	0.00 2 byte(s) 11ed /331816 /341816 /360472 /331816 /663632 /4681786	0.00 for 0.094 name Tree::fince::fince::int st RawMCC arma::aggre- Tree::Tree::ml_bool arma::arm	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::cole="" arma::coledouble="" const&,="" cutting="" double&,="" double,="" ind="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] cd::uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::mit< p=""> ####################################</std::mersenne_twister_engine<unsigned::mit<></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5	0.00 0.00 sample hin alf child: 95 7.8(8) 19 0.00	331816 c covers ren ca 19043 1904	0.00 2 byte(s) lled /331816 /331816 /341816 /360472 /1745472 /331816 /363632 /4681786 /663648	0.00 0.00 for 0.09 name Tree::finc Tree::int st RawMCI arma::aggre Tree::m_ bool a arma: arma: arma: Tree::Tree::Tree::m	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) to did(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, [3]="" arma::cole="" ccheckcut(double,="" const&,="" dcuble="" dcut(rawmcmc="" double&,="" iml_cutting="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dci:uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::mat<double>:init_warm(unsigned long long, unsigned long long) [38] patedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator :findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: untring_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma::arma sort index helper<arma::mat<double>, false>(arma::Matcunsigned long long&, unsigned: :subview_elemi<unsigned arma::mat<unsigned="" long="" long,="">::extract(arma: :Mat<unsigned long="">::extract(arma: :Mat<unsigned long="">::extract(arma: :Mat<unsigned long="">, unsigned: :normalize(std::vector<mcestimate, std::allocator<mcestimate="">>> [1] :mormalize(std::vector<mcestimate, p="" std::allocator<=""></mcestimate,></mcestimate,></unsigned></unsigned></unsigned></unsigned></arma::mat<double></arma::mat<double></std::mersenne_twister_engine<unsigned::mat<double></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time	0.00 0.00 sample hit elf childs 95 7.81 83 2.81 19 0.00 00 00 0.00 00 0.00	331816 c covers ren ca 19043 3 19043 0 331816 0 19043 1 19043	0.00 2 byte(s) lled //331816 //341816 //341816 //350472 //745472 //331816 //663632 //681786 //663648 //188002	0.00 0.00 for 0.094 name Tree::fince: Tree: int si RawMCM arma: aggre Tree::ml bool arma: arma: arma: Tree: arma: arma: arma: arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const6) to f11.59 seconds :build(RawMCMC const6, Tree::Node6, bool, std::vector<mcestimate, :checkcut(double,="" :gut(rawmcmc="" :mul_cutting_rule(rawmcmc="" [3]="" arma::cole="" arma::coledouble="" const6,="" double6,="" long="" long6,="" long9)="" std::allocator="" tree::node="" unsigned=""> const6, double, double) [9] :di:uniform_int_distribution<int>::operator()<std::mersenne_twister_engine<unsigned* :mat<double="">::init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const6, std::vector<arma::mat<double>, std::allocator :findCut(RawMCMC const6, Tree::Node const6, double6, unsigned long long6, arma:: :uutting_rule(RawMCMC const6, Tree::Node const6, unsigned long long6) [3] arma::arma sort_index_helper<arma::mat<arma::mat<arma::mat<arma:mat<arma:mat<arma::mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<< td=""></arma::mat<arma::mat<arma::mat<arma:mat<arma:mat<arma::mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<arma:mat<<></arma::mat<double></std::mersenne_twister_engine<unsigned*></int></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 sample hin elf child: 	331816 5 covers ren ca 19043 3 19043 3 331816 2 331816 1 331816 0 19043 1 19043 1 19043 1 19043 1 2 19043 1 2 19043 1 2 19043 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 2 byte(s) 1led /331816 /331816 /341816 /341816 /360472 /1745472 /331816 /331816 /663632 /4681786 /663648 /7188002 /1745472	0.00 0.00 for 0.09 name Tree::find Tree:: free: int si RawMCM arma: aggre Tree::mc arma: arma:: Tree::mc arma: arma: arma: arma: arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" acut="" arma::col<="" arma::col<double="" const&,="" cutting="" double&,="" icheckcut(double,="" ind="" long="" long&,="" rule="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dd::uniform int distribution(int>::operator()<std::mersenne_twister_engine<unsigned.ing lo<="" long="" td=""></std::mersenne_twister_engine<unsigned.ing></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5	0.00 0.00 sample hit lif child: 19 7.8! 83 2.8! 19 0.00 00 00 0.00 00 0.00	331816 c covers ren ca 19043 19043 31816 64 331816 64 331816 64 331816 65 66 65 65 65 65 65	0.00 2 byte(s) lled // 331816 // 331816 // 341816 // 341816 // 331816 // 331816 // 331816 // 663632 // 4681786 // 5683648 // 188002 // 1745472 // 341428	0.00 0.00 for 0.09 name Tree::fince:: free::int si RawMCI arma: aggre- Tree::ml_ bool: arma: arma: arma: arma: arma: arma: arma: RawMCI	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col<double="" arma::cole="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] doi:uniform int distribution(int)::operator()<std::mersenne_twister_engine<unsigned::uniform :mat<double="" [39]="" const="" distribution(int)::operator()<std::mersenne_twister_engine<unsigned::get_samples()="" int="">::init warm(unsigned long long, unsigned long long) [38] yatedResampling(Parameters const&, std::vector<arma::matdouble>, std::allocator :findCut (RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma_sort_index_helper<arma::matdouble>, false>(arma::Matdouble>, isubview_elemi<unsigned arma::matdouble="" long="" long,="">, false>(arma::Matdouble>, isubview_elemi<unsigned arma::matdouble="" long="" long,="">, false>(arma::Matdouble>, isubview_elemi<unsigned insigned:ind::matdouble="" long="" long,="">, insigned long long>, unsigned:ind::Matdouble>:init warm(unsigned long long, unsigned long long) [12] :Mat<double>::init warm(unsigned long, unsigned long long) [38] **C::get_n_subsets() const [40]</double></unsigned></unsigned></unsigned></arma::matdouble></arma::matdouble></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time sellent	0.00 0.00 sample hild elf childs 95 7.81 83 2.81 19 0.00 0.00 0.00	331816 c covers ren ca 19043 1904	0.00 2 byte(s) lled /331816 /331816 /341816 /360472 /1745472 /331816 /663632 /1745472 /341428 /341428 /360472	0.00 0.00 for 0.09 name Tree::fint Tree::int st RawMCL arma: aggre bool arma: arma: arma: arma: arma: arma: arma: RawMCL RawMCL	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col-="" arma::col<double="" cicut="" const&,="" double&,="" long="" long&,="" long)="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] cd::uniform int distribution(int>::operator()<std::mersenne_twister_engine<unsigned::get_samples() :mat<double="" [39]="" const="">::init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator :findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: utting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma sort_index_helper<arma::mat<double>, false>(arma::Mat<unsigned ::settract(arma::mat<unsigned="" long="" long)="" long)::sitract(a<="" long)::sitract(arma::mat<unsigned="" td=""></unsigned></arma::mat<double></arma::mat<double></std::mersenne_twister_engine<unsigned::get_samples()></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5	0.00 0.00 sample hir sif child: 95 7.88 83 2.88 19 0.00 00 0.00	331816 c covers ren ca 19043 19043 31816 64 331816 64 331816 64 331816 65 66 65 65 65 65 65	0.00 2 byte(s) 11ed /331816 /341816 /341816 /360472 /1745472 /331816 /663632 /4681786 /663648 /7188002 /1745472 /341428 /360472 /331816	0.00 0.00 for 0.09 name Tree::fine Tree:: int si RawMCd arma:: aggre- tree::arma: arma:: arma:: arma:: arma: RawMCC RawMCC RawMCC RawMCC RawMCC RawMCC	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col<double="" arma::cole="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] doi:uniform int distribution(int)::operator()<std::mersenne_twister_engine<unsigned::uniform :mat<double="" [39]="" const="" distribution(int)::operator()<std::mersenne_twister_engine<unsigned::get_samples()="" int="">::init warm(unsigned long long, unsigned long long) [38] yatedResampling(Parameters const&, std::vector<arma::matdouble>, std::allocator :findCut (RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma_sort_index_helper<arma::matdouble>, false>(arma::Matdouble>, isubview_elemi<unsigned arma::matdouble="" long="" long,="">, false>(arma::Matdouble>, isubview_elemi<unsigned arma::matdouble="" long="" long,="">, false>(arma::Matdouble>, isubview_elemi<unsigned insigned:ind::matdouble="" long="" long,="">, insigned long long>, unsigned:ind::Matdouble>:init warm(unsigned long long, unsigned long long) [12] :Mat<double>::init warm(unsigned long, unsigned long long) [38] **C::get_n_subsets() const [40]</double></unsigned></unsigned></unsigned></arma::matdouble></arma::matdouble></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 sample hin elf childs 95 7.81 83 2.81 19 0.00 000	331816 covers ren ca 19043 3 19043 3 31816 2 331816 4 331816 4 331816 5 331816 5 331816 5 331816 5 331816 5 331816 5 331816 6 331816 6 331816 6 331816 6 331816 6 331816 6 331816 6 331816 6 331816	0.00 2 byte(s) 1led /331816 /341816 /341816 /360472 /745472 /331816 /663632 /4681786 /663648 /7188002 /1745472 /341428 /350472 /331816 /341412	0.00 0.00 for 0.09 name Tree:: fine Tree:: fire: int si RawMCl arma:: aggre(RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) % of 11.59 seconds sbuild (RawMCMC const&, Tree::Node &, bool, std::vector<mcestimate, [3]="" arma::cole="" arma::coledouble="" const&,="" dcut(rawmcmc="" double&,="" iml_cutting="" long="" long&,="" long)="" rule(rawmcmc="" scheckcut(double,="" std::allocators="" tree::node="" unsigned=""> const&, double, double) [9] dci:uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned< td=""> //ree::Node::node long long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator :ifindCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: untring_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma::arma sort index helper<arma::mat<double>, false>(arma::Mat<unsigned ::stdraums:imat<="" armained="" long="" long)="">::extract(arma::Mat<unsigned long="">::extract(arma::mat<unsigned long="">::extract(arma::mat<unsigned long="">::init_warm(unsigned long long, unsigned long long) [12] :Mat<unsigned [38]="" [40]="" [41]<="" const="" long="" long)="" long,="" long::init_warm(unsigned="" mc::get_mark()="" mc::get_subsets()="" td="" unsigned=""></unsigned></unsigned></unsigned></unsigned></unsigned></arma::mat<double></arma::mat<double></std::mersenne_twister_engine<unsigned<></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time set 93.5 2 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.00 0.00 sample hit lif child: 95 7.8! 83 2.8! 19 0.00 00 00 0.00 00 0.00	331816 C covers ren ca 19043 3 19043 3 31816 2 331816 2 331816 3 331816 6 331816 6 331816 6 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled /331816 /331816 /341816 /341816 /351816 /331816 /331816 /331816 /34142 /331816 /341412 /331816 /331816 /341412	0.00 0.00 for 0.09 name Tree::fince: free::int si RawMCI arma: aggre- tree::ml_ bool arma:	RawMCMC::get_mark() const arms::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkcut(double,="" [3]="" acut="" arma::col<double="" arma::cole="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] doi:uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">::operator()<std::mersenne_twister_engine< td=""> //rec::double>::init_warm(unsigned long long, unsigned long long) [38] :Mat<double>::init_warm(unsigned long long, unsigned long long) [3] arma::armasping(Parameters const&, std::vector<arma::mat<double>, std::allocator :findCut (RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma sort_index_helper<arma::mat<double>, false>(arma::Mat<unsigned [3]="" arma::abuview="elmal<unsigned" arma::mat<unsigned="" long="" long)="" long,="">::extact(arma::Mat<unsigned long="">::extact(arma::Mat<unsigned long="">::intmat(arma::Mat<unsigned long="">::intmat(arma::Mat<unsigned :mat<double="" [12]="" long="" long)="">::init_warm(unsigned long long, unsigned long long) [3] MC::get_nsubsets() const [40] MC::get_nsubsets() const [41] :md_cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3]</unsigned></unsigned></unsigned></unsigned></unsigned></arma::mat<double></arma::mat<double></double></std::mersenne_twister_engine<></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index %	11.59 rity: each time se 93.5 2 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 sample hild 11 childs 12 childs 13 childs 14 childs 15 childs 16 childs 17 childs 18 childs 19 0.00	331816 c covers ren ca 19043 3 19043 3 19043 3 19043 0 19043 0 19043 0 19043 0 19043 0 2966362 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled // 331816 // 331816 // 341816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816	0.00 0.00 for 0.09 name Tree::fint Tree::int st RawMCM arma::aggreg - Tree::ml tree:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" [3]="" arma::col-="" arma::col<double="" checkcut(double,="" const&,="" cutting="" double&,="" icut="" imil="" long="" long&)="" long&,="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] td::uniform int distribution<int>::operator()<std::mersenne_twister_engine<unsigned.const(); arma::col-="" arma::mat<double="" const&);="" cutting="" imil="" rule(rawmcmc="">::init warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator :cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma sort index helper<arma::mat<double>, false>(arma::Mat<unsigned ::subview_elemi<unsigned="" arma::mat<unsigned="" long="" long)="" long,=""> ::extract(arma :Mat<unsigned long="">::steal_mem_col(arma::Mat<unsigned long=""> :.) ::mat=arma long long>::int=arma long long, unsigned long long long) [12] ::mat<double>::int=arma long::int=arma::mat=arma long long) [38] MC::get_samples() const [40] MC::get_samples() const [41] ::ml_cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] ::arma_sort_index_helper<arma::subview<double> const&, unsigned long long) [3] ::arma_sort_index_helper<arma::mat<double>, false>(arma::Mat<unsigned ::arma_sort_index_helper<arma::mat<double="" [3]="" long)="">, false>(arma::Mat<unsigned ::arma_sort_ind<="" ::arma_sort_index_helper<arma::mat<unsigned="" [3]="" long="" long)="" td=""></unsigned></unsigned></unsigned></unsigned></unsigned></unsigned></arma::mat<double></arma::subview<double></double></unsigned></unsigned></unsigned></arma::mat<double></arma::mat<double></std::mersenne_twister_engine<unsigned.const();></int></mcestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time selection sele	0.00 0.00 sample hit hif child: 19 7.8!83 83 2.8!619 0.00 0	331816 c covers ren ca 19043 3 19043 3 19043 0 33181.6 4 33181.6 4 33181.6 5 33181.6 5 33181.6 5 33181.6 5 33181.6 0 663632 2 386139 0 1659080 0 33181.6 0 33181.6 0 33181.6 0 33181.6 0 33181.6 0 33181.6 0 33181.6 0 33181.6	0.00 2 byte(s) 11ed // 331816 // 331816 // 341816 // 341816 // 341816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816 // 331816	0.00 0.00 for 0.09 name Tree::fine Tree:: free::int si RawMCd arma:: aggre- Tree::ml_6 bool a arma: arma:: arma:: arma:: RawMCC RawMCC arma: RawMCC arma: Cobool arma: RawMCC arma: Cobool arma: RawMCC arma: Cobool	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) to f11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkout(double,="" [3]="" acut="" arma::cole="" arma::coledouble="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dc::uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::mat<duoble>:int_warm(unsigned long long, unsigned long long) [3] armac:armalsort_index_helper<arma::mat<duoble>, false>(arma::Mat<armaint :mat<arma_index_helper<arma(unsigned="" :mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma<="" :mat<arma_sort_index_helper<arma(unsigned="" :mat<arma_sort_index_helper<armaint="" :subview="" arma::mat<armaint="" elemi<unsigned="" int)="" long="" long)="" long,="" td="" unsigned=""></armaint></arma::mat<duoble></std::mersenne_twister_engine<unsigned::mat<duoble></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time selection sele	0.00 0.00 sample hir elf child: 95 7.8! 83 2.8! 19 0.00 00 00 0.00 00 0.00	331816 C covers ren ca 1 19043 3 19143 3 19143 3 19143 3 19143 0 19043 1 19043 1 19043 1 19043 2 236139 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled /331816 /331816 /341816 /341816 /331816 /331816 /663632 /1745472 /1745472 /1745472 /331816 /331816 /331816 /331816 /331816 /331816 /331816	0.00 0.00 for 0.09 name Tree::fince: Tree::int si RawMCC arma: aggre- Tree::ml_ bool arma:	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) to f11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, (rawmcmc="" :checkout(double,="" [3]="" acut="" arma::cole="" arma::coledouble="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dc::uniform int distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::mat<duoble>:int_warm(unsigned long long, unsigned long long) [3] armac:armalsort_index_helper<arma::mat<duoble>, false>(arma::Mat<armaint :mat<arma_index_helper<arma(unsigned="" :mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma_index_helper<arma::mat<arma<="" :mat<arma_sort_index_helper<arma(unsigned="" :mat<arma_sort_index_helper<armaint="" :subview="" arma::mat<armaint="" elemi<unsigned="" int)="" long="" long)="" long,="" td="" unsigned=""></armaint></arma::mat<duoble></std::mersenne_twister_engine<unsigned::mat<duoble></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time selection sele	0.00 0.00 sample hir elf child: 95 7.8! 83 2.8! 19 0.00 00 00 0.00 00 0.00	331816 C covers ren ca 1 19043 3 19143 3 19143 3 19143 3 19143 0 19043 1 19043 1 19043 1 19043 2 236139 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled //331816 //331816 //341816 //360472 //745472 //331816 //63682 //4681786 //663648 //7180002 //715472 //331816 //341412 //331816 //331816 //331816 //331816 //331816	0.00 0.00 for 0.09 name Tree::fine Tree:: int si RawMCl arma: aggre- bool. arma: arma: arma: arma: RawMCl arma: RawMCl arma: conditions ree:: conditions c	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds build(RawMCMC const&, Tree::Node&, bool, std::vector<mcgestimate, arma::cole="" const&,="" dcut(rawmcmc="" double&,="" iml_cutting="" long="" long&,="" rule(rawmcmc="" std::allocator="" std::vector<arma::mat<double="" tree::node="" unsigned="">[3] dci::uniform int distribution(int)>:ioperator()<std::mersenne_twister_engine<unsigned::uniform distribution(int)="" int="">:ioperator()<std::mersenne_twister_engine<unsigned::init_warm(unsigned [38]="" [3]="" arma::="" const&,="" double&,="" gatedresamplies()="" helper<arma::mat<double="" index="" long="" long&,="" long)="" long,="" rule(rawmcmc="" simina::arma="" sort="" tree::node="" unsigned="" unting="">, false>(arma::Mat<unsigned long="">::extract(arma: Mat<unsigned long="">::extract(arma: Mat<unsigned long="">::init_warm(unsigned long long, unsigned long long) [2] Mat<double>:init_warm(unsigned long long, unsigned long long) [3] Mc::get_n subsets() const [40] Mc::get_n subsets() const [40] Mc::get_n subsets() const [41] mc::get_mark() const [41] mc::get_mark() const [41] md_cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] std::_intosort_loop<_gnu_cxx::_normal_iterator<arma::mat<unsigned long=""> std::_introsort_loop<_gnu_cxx::_normal_iterator<arma::arma_sort_index_packets std::_insertion_sort<_gnu_cxx::_normal_iterator<arma::arma_sort_index_packets="" std::_insertion_sort_loo<="" std::_insertion_sort_loop<_gnu_cxx::_normal_iterator<arma::arma_sort_index_packets="" td=""></arma::arma_sort_index_packets></arma::mat<unsigned></double></unsigned></unsigned></unsigned></std::mersenne_twister_engine<unsigned::init_warm(unsigned></std::mersenne_twister_engine<unsigned::uniform></mcgestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time	0.00 0.00 sample hit lif child: 95 7.8! 83 2.8! 19 0.00 00 00 0.00 00 0.00	331816 covers ren ca 19043 3 19043 3 19043 3 19043 0 231816 4 331816 6 331816 6 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled /331816 /331816 /341816 /341816 /350472 /3745472 /331816 /663632 /1745472 /34142 /331816 /331816 /331816 /331816 /331816 /331816	0.00 0.00 for 0.09 name Tree::finct Tree::int si RawMCI arma: aggre- Tree::ml_ bool arma: arma: arma: arma: arma: arma: carma: arma: carma: ca	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, :checkcut(double,="" [3]="" acut(rawmcmc="" arma::col<="" arma::col<double="" const&,="" cutting="" double&,="" ind]="" long="" long&,="" long)="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] doi:uniform int_distribution(int)>::operator()<std::mersenne_twister_engine<unsigned::uniform int_distribution(int)="">::operator()<std::mersenne_twister_engine< td=""> //rec::Mat double>::init_warm(unsigned long long, unsigned long long) [38] :Mat<double>::init_warm(unsigned long long, unsigned long long) [3] arma::arma_sort_index_helper<arma::mat<double>, false>(arma::Mat<double>, std::allocator :findCut(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma_sort_index_helper<arma::mat<double>, false>(arma::Mat<unsigned [3]="" arma::abuview="_elmal<unsigned" arma::mat<unsigned="" long="" long)="" long,="">>::extract(arma :Mat<unsigned long="">::steal mem_col(arma::Mat<unsigned long="">>::stract(arma :Mat<unsigned long="">::init_warm(unsigned long long, unsigned long long) [12] :Mat<double>::init_warm(unsigned long long, unsigned long long) [3] **C::get_nusbests() const [4] **Mat<double>::operator=(arma::subview<double> const&, unsigned long long) [3] **C::get_mark() const [41] **Mat<double>::operator=(arma::subview<double> const&, unsigned long long) [3] **C::get_mark() const [41] **Mat_double>::operator=(arma::Mat<double>, false>(arma::Mat<unsigned **std::_introsort_loop<_gnu_cxx::_normal_iterator<arma::arma_sort_index_packet<="" a="" long="" long)=""> **Std::_introsort_loop<_gnu_cxx::_normal_iterator<arma::arma_sort_index_packet< a=""></arma::arma_sort_index_packet<></unsigned></double></double></double></double></double></double></unsigned></unsigned></unsigned></unsigned></arma::mat<double></double></arma::mat<double></double></std::mersenne_twister_engine<></std::mersenne_twister_engine<unsigned::uniform></mcestimate,></double></double>
0.00 pranula: index % [1]	11.59 rity: each time se 93.5 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 sample hit elf child: 95 7.8! 83 2.8! 19 0.00 00	331816 covers ren ca 19043 3 19043 3 19043 3 19043 0 19043 0 19043 0 19043 0 231816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled /331816 /331816 /341816 /341816 /331816 /663682 /1745472 /1745472 /1745472 /1745472 /1745472 /331816 /331816 /331816 /331816 /331816 /331816 /331816 /331816	0.00 0.00 for 0.09 name Tree::free::int si RawMCl arma:: aggre; Tree::ml_ bool : arma:: arma:: arma:: arma:: arma:: carma::	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, [9]="" arma::col<="" arma::col<double="" const&,="" dcut(rawmcmc="" double&,="" double)="" double,="" icheckcut(double,="" iml_cutting_rule(rawmcmc="" long="" long&,="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dc::uniform int_distribution(int)::operator()<std::misrame_twister_engine<unsigned imat<double="">:init_warm(unsigned long long, unsigned long long) [38] gatedResamples() const [39] Mat<double>:init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Farameters const&, std::vector<arma::mat<double>, std::allocator :findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma::utting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma_sort_index_helper<arma::mat<cusigned :subview_elem1<unsigned="" [3]="" arma::mat<unsigned="" long="" long)="" long,="">::extract(arma :Mat<unsigned long="">::steal_mem_col(arma::Mat<unsigned long="">&, unsigned :normalize(std::vector<&Cestimate, std::allocator<&Mcestimate>>> [16] :Mat<unsigned long="">::init_warm(unsigned long long, unsigned long long) [3] :Mat<double>::init_warm(unsigned long long, unsigned long long) [3] :Mat<double>::init_marm(unsigned long long, unsigned long long) [3] :Mat<double>::init_marm(unsigned long long, unsigned long long) [3] :Mat<double>::init_marm(unsigned long, unsigned long long)</double></double></double></double></double></double></double></double></double></double></double></double></unsigned></unsigned></unsigned></arma::mat<cusigned></arma::mat<double></double></std::misrame_twister_engine<unsigned></mcestimate,></double></double>
0.00 granula: index % [1]	11.59 rity: each time selection sele	0.00 0.00 sample hit elf child: 95 7.8! 83 2.8! 19 0.00 00	331816 c covers ren ca 19043 3 19043 3 19043 0 331816 4 331816 6 331816 0 663632 5 331816 0 663632 5 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816 0 331816	0.00 2 byte(s) lled /331816 /331816 /341816 /341816 /331816 /663682 /1745472 /1745472 /1745472 /1745472 /1745472 /331816 /331816 /331816 /331816 /331816 /331816 /331816 /331816	0.00 0.00 for 0.09 name Tree::finc Tree:: int si RawMCO arma: aggre- tree::ml_ bool: arma: arma: arma: arma: carma: carma	RawMCMC::get_mark() const arma::Mat <double>::operator=(arma::subview<double> const&) & of 11.59 seconds :build(RawMCMC const&, Tree::Node&, bool, std::vector<mcestimate, [9]="" arma::col<="" arma::col<double="" ccheckcut(double,="" const&,="" dcut(rawmcmc="" double&,="" double)="" double,="" iml_cutting="" long="" long&,="" rule(rawmcmc="" std::allocator="" tree::node="" unsigned=""> const&, double, double) [9] dc::uniform int distribution(int)::operator()<std::mersenne_twister_engine<unsig [39]="" const="" mc::get_samples()="" wmat<double="">:init_warm(unsigned long long, unsigned long long) [38] gatedResampling(Parameters const&, std::vector<arma::mat<double>, std::allocator :findCut(RawMCMC const&, Tree::Node const&, double&, unsigned long long&, arma:: cutting_rule(RawMCMC const&, Tree::Node const&, unsigned long long) [3] arma::arma::arma sort_index helper<arma::mat<double>, false>(arma::Mat<unsigned long="" long<="" td=""></unsigned></arma::mat<double></arma::mat<double></std::mersenne_twister_engine<unsig></mcestimate,></double></double>

Figure 12: Valgrind: KD pairwise with smoothing (d = 9, N = 25000, M = 40)

```
=5321== Memcheck, a memory error detector
=5321== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
=5321== Using Valgind-3.11.0 and LibVEX; rerun with -h for copyright info
=5321== Command: ./main data/input_M40_NS.txt data/outPART_M40_NS_kdPairSmooth.csv parameters/kdPairSmooth.par
=5321== Parent PID: 5125
=5321== =5321== in use at exit: 72,704 bytes in 1 blocks
=5321== 1 in use at exit: 72,704 bytes in 1 blocks
=5321== 2,704 bytes in 1 blocks are still reachable in loss record 1 of 1
=5321== 1 at 0x4c29BiF: malloc (in /u/sw/pkgs/toolchains/gcc-qlibc/5/base/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
by 0x4A02FFF: GLOBAL_sub_I_eh_alloc.cc (in /u/sw/pkgs/toolchains/gcc-qlibc/5/prefix/lib/ld-2.23.so)
by 0x400F39%: dl_init.part.O (in /u/sw/pkgs/toolchains/gcc-glibc/5/prefix/lib/ld-2.23.so)
by 0x400F39%: dl_init.part.O (in /u/sw/pkgs/toolchains/gcc-glibc/5/prefix/lib/ld-2.23.so)
by 0x400F39%: dl_init.part.O (in /u/sw/pkgs/toolchains/gcc-glibc/5/prefix/lib/ld-2.23.so)
by 0x5FFFFFF131: ???
by 0xFFFFFF131: ???
by 0xFFFFFF131: ???
by 0xFFFFFF151: ???
by 0xFFFFFF151: ???
by 0xFFFFFF151: 0b bytes in 0 blocks
class of the color of detected and suppressed errors, rerun with: -v
=5321==
5321==
5321==
5321==
FROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
```

C CmdStan

CmdStan is the shell interface of Stan.

We used version v2.16.0, already available in Interface/cmdstan-2.16.0.

In order to install *CmdStan*, the user should:

- download CmdStan from http://mc-stan.org/users/interfaces/cmdstan;
- change directories to the *CmdStan* directory;
- build CmdStan, using the -jN option specifies the number N of CPU cores

```
> make build -j4
```

The model used for synthetic analysis, written in *Stan* language, is reported in Figure 13.

Figure 13: /Interface/Rdir/logistic_model.stan

```
data {
  int<lower = 0> n;
                         // number of data
  int<lower = 0> d;
                         // number of coefficients of regression
  int<lower = 0, upper = 1> Y[n]; // response vector
  matrix[d, n] X;
                         // design matrix
 }
parameters {
                    // coefficients of regression
  row_vector[d] beta;
model {
 // Likelihood
  for (s in 1:n)
   Y[s] ~ bernoulli(inv logit(-3 + beta*X[,s]));
  }
  // Prior
  // beta
  for (j in 1:(d))
   beta[j] ~ normal(0, 5);
  }
 }
```

CmdStan requires data and parameters initialization to have extension .data.R and .init.R respectively.

Because of that, we use RStan function $stan_rdump$ to transform necessary files in compatible format:

```
stan_rdump(list, file = "")
```

where list is the vector of the names of the R objects to be dumped, and file is the character string naming the file where to save the output. After transformation, the data format is coded as follows:

```
numbers: Q \leftarrow 8
vectors: Y \leftarrow c(0,0,0,0,1,0,1,0,1,0)
matrices: L \leftarrow structure(c(1,0,0,0,0,0,0,1), .Dim=c(2,4))
```

The code for format transformation is reported in Figure 14 for data input and in Figure 15 for parameters initialization: their outputs are the files *subdata.data.R* and *inits.init.R*, temporarily saved in the Rdir directory.

Once data and initialization have been written in compatible format with CmdStan, it is possible to generate MCMC samples executing the Stan model. In order to do that, it is necessary to:

• compile the model to generate corresponding .hpp and executable.

To compile the model for synthetic data (Interface/Rdir/logistic_model.stan) from CmdStan directory:

```
> make ../Rdir/logistic_model
```

• run the model from directory in which .stan model is located, specifying the parameters for sampling (sample method), which are num_samples (sampling iterations), num_warmup (burnin or warump iterations) and thin (thinning).

To run the model for synthetic tests with *Stan* default parameters, from Interface/Rdir type:

```
> ./logistic_model sample
num_samples=20000 num_warmup=5000 thin=4
data file=subdata.data.R init=inits.init.R
output file=output.csv
```

The output file output.csv is a Stan object that can be easily read in R using the RStan function read_stan_csv.

For more details about CmdStan, the manual is available here https://github.com/stan-dev/cmdstan/releases/download/v2.16.0/cmdstan-guide-2.16.0.pdf.

Figure 14: /Interface/Rdir/dataDump.R

```
##### Modify the following path according to your system!!
setwd('PART_BayesPACS-master/Interface/Rdir')
library (MASS)
library(rstan)
subX <- as.matrix(read.table("subdata.csv", header = F))</pre>
# number of data
n <- dim(subX)[1]
# number of covariates
d <- dim(subX)[2]</pre>
# response vector
b0 <- -3
b <- rnorm(d, 0, 25)
odd <- exp(cbind(b0*rep(1, n),b*subX))
prob <- odd/(odd +1)
Y <- NULL
for (j in seq(n)) {
 Y[j] <- rbinom(1,1,prob[j])
# design matrix
X \leftarrow t(subX)
stan rdump(c('n','d', 'Y','X'), "subdata.data.R")
           Figure 15: /Interface/Rdir/initDump.R
##### Modify the following path according to your system!!
setwd('PART BayesPACS-master/Interface/Rdir')
library (MASS)
library(rstan)
subX <- as.matrix(read.table("subdata.csv", header = F))</pre>
d <- dim(subX)[2]</pre>
beta <- rep(0.1,d)
stan rdump(c('beta'), "inits.init.R")
```

D Google Books API

Here we report the code used to retrieve additional information from Google Books.

In this example we are looking for title, author, genre, number of pages and language of book whose ISBN-13 is 9780971880108.

```
<html>
 <head>
       <title>Books API</title>
 </head>
 <body>
       <div id="content"></div>
       <script>
         function handleResponse(response) {
         for (var i = 0; i < response.items.length; i++) {</pre>
               var item = response.items[i];
               item.volumeInfo.title + ";" +
               item.volumeInfo.authors + ";" +
               item.volumeInfo.mainCategory + ";" +
               item.volumeInfo.pageCount + ";" +
               item.volumeInfo.language;
         }
       }
       </script>
       <script
       src="https://www.googleapis.com/books/v1/
volumes?q=isbn:9780971880108&callback=handleResponse">
       </script>
 </body>
</html>
```

E Features of the *Book Crossing* dataset

World-wide Book Crossing dataset

```
The indicators of world-wide users's covariates are:
```

```
x_{i1} indicates if user i is an adolescent (less than 19 years old)
```

```
x_{i2} indicates if user i is a young adult (19-34 years old)
```

 x_{i3} indicates if user i is an adult (35-45 years old)

 x_{i4} indicates if user i is middle aged (46-60 years old)

 x_{i5} indicates if user i lives in Europe

 x_{i6} indicates if user i lives in North America.

The indicators of the features of books read by world-wide users are:

```
f_{i1} indicates if book j is huge (less than 100 pages)
```

 f_{j2} indicates if book j is normal (101-400 pages)

 f_{i3} indicates if book j is small (401-700 pages)

 f_{j4} indicates if book j is very huge (more than 701 pages)

 f_{i5} indicates if book j is about arts

 f_{j6} indicates if book j is a biography or autobiography

 f_{i7} indicates if book j is a classic

 f_{i8} indicates if book j is a comedy

 f_{j9} indicates if book j is a crime book

 f_{j10} indicates if book j is a drama book

 f_{j11} indicates if book j is a fantasy book

 f_{i12} indicates if book j is a fiction book

 f_{i13} indicates if book j is a history book

 f_{i14} indicates if book j is a another genre

 f_{j15} indicates if book j is a science fiction

 f_{i16} indicates if book j is about social and politics

 f_{j17} indicates if book j is a thriller

 f_{i18} indicates if book j is for women

 f_{j18} indicates if book j is for young people.

Italian Book Crossing dataset

The indicators of Italian users's covariates are:

```
x_{i1} indicates if user i is an adolescent (less than 19 years old)
```

```
x_{i2} indicates if user i is a young adult (19-34 years old)
```

 x_{i3} indicates if user i is an adult (35-45 years old)

 x_{i4} indicates if user i is middle aged (46-60 years old)

 x_{i5} indicates if user i lives in an administrative center

 x_{i6} indicates if user i lives in Sud Italy

 x_{i7} indicates if user i lives in Nord Italy

 x_{i8} indicates if user *i* lives in Middle Italy.

The indicators of the features of books rated by Italian users are:

```
f_{j1} indicates if book j is published by Distribooks
```

 f_{j2} indicates if book j is published by Einaudi

 f_{j3} indicates if book j is published by Feltrinelli

 f_{j4} indicates if book j is published by Mondadori

 f_{j5} indicates if book j is published by others minor editors

 f_{i6} indicates if book j is published by Rizzoli

 f_{i7} indicates if book j is published by Sellerio

 f_{j8} indicates if book j is a crime book

 f_{j9} indicates if book j is an essay

 f_{i10} indicates if book j is a fantasy book

 f_{i11} indicates if book j is a fiction book

 f_{i12} indicates if book j is a history book

 f_{i13} indicates if book j is a another genre

 f_{j14} indicates if book j is a thriller

 f_{j15} indicates if book j is for young people.

 f_{j16} indicates if book j is a biography or autobiography

 f_{j17} indicates if book j is a classic.

References

- Condliff, M. K., Lewis, D. D., Madigan, D., and Posse, C. (1999). Bayesian mixed-effects models for recommender systems.
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes and big data: The consensus monte carlo algorithm. *International Journal of Management Science and Engineering* Management, 11(2):78–88.
- Srivastava, S., Cevher, V., Dinh, Q., and Dunson, D. (2015). Wasp: Scalable bayes via barycenters of subset posteriors. In *Artificial Intelligence and Statistics*, pages 912–920.
- Wang, X., Guo, F., Heller, K. A., and Dunson, D. B. (2015). Parallelizing mcmc with random partition trees. In Advances in Neural Information Processing Systems, pages 451–459.
- Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving recommendation lists through topic diversification. In *Proceedings of the 14th international conference on World Wide Web*, pages 22–32. ACM.