ABSTRACT

The present invention relates to a method of depositing a crystalline α -Al₂O₃-layer onto a cutting tool insert by Chemical Vapor Deposition at a temperature of from about 625 to about 800 °C. The method comprises the following steps:

depositing a from about 0.1 to about 1.5 μ m layer of TiC_XN_yO_Z where x+y+z>=1 and z>0, preferably z>0.2;

treating said layer at 625-1000 °C in a gas mixture containing from about 0.5 to about 3 vol-% O_2 , preferably as $CO_2 + H_2$ or $O_2 + H_2$, for a short period of time from about 0.5 to about 4 min, optionally in the presence of from about 0.5 to about 6 vol-% HCl; and

depositing said Al₂O₃-layer by bringing said treated layer into contact with a gas mixture containing from about 2 to about 10 vol-% of AlCl₃, from about 16 to about 40 vol-% of CO₂, in H₂ and 0.8-2 vol-% of a sulphur-containing agent, preferably H₂S, at a process pressure of from about 40 to about 300 mbar. The invention also includes a cutting tool insert with a coating including at least one α -Al₂O₃-layer according to the invention.