

READING IN OUR DATA

UNIT 3: RECONSTRUCTING CORAL CORE DATA

MARCH 17TH 2020

HOUSEKEEPING

- Zoom guidelines:
 - Sharing errors on Slack
 - Short description of error and what you tried out already
 - Error message
 - Section of code/ terminal
 - Break-out rooms
 - Separate chat/ video rooms to work as a group

PLAN FOR TODAY

- ☐ Finish reading in the coral data files (from our Dropbox folder)
- □ Introduce linear regression which we will use to convert our Sr/Ca data to SST
- ☐ Update your lab notes
- ☐ Exit survey

BREAK-OUT ROOMS

- In your lab notes,
 - Use pseudo-code, to outline the steps you will need to take to read in data

Hint: A quick summary of some useful functions are in the next slide

- Check if there are any shared errors
 - If you fixed it together, save a copy of the error and code in your lab notes with a short description of how you fixed it
 - Otherwise, post a screenshot of your code (just what is relevant!) and the error message on Slack.

USEFUL FUNCTIONS

Read in delimited text files:

pandas.**read_table**(filepath, sep, header, skiprows, skipfooter)

- filepath: path of file as string
- **sep**: separates the files in a delimited text file. Ex: period, comma, colon, etc.
- header: index of row which corresponds to the name of the columns
- skiprows: numbers of lines to skip at the start of the file
- skipfooter: number of lines at bottom of file to skip

Drop rows or columns:

pandas_dataframe.drop(labels, axis)

- labels: "column name" or if you have multiple ["col_name1", "col_name2", "col_name3"]
- **axis**: axis = 0 for rows, axis = 1 for columns

For example:

df.drop(labels = ['Date', 'Topic'], axis = 1)

OUR DATA

Sr/Ca → coral data

SST → SODA SST

What is the relationship between Sr/Ca and SST?

IS THIS LINEAR OR NON-LINEAR?

OUR DATA SEEMS PRETTY LINEAR!

Linear equation:

$$y = m \times + C$$

m: slope of the line

C: y-intercept

But which line describes the data best?

QUICK REFRESHER

$$m = \frac{1-5}{2-0} = -2$$

$$C = 5$$

$$y = -2 \times + 5$$

LINEAR REGRESSION ACTIVITY

Go to https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html

■ Select a dataset from the dropdown menu →

Select "My Line" and try to fit your data by changing a and b

How do we decide which line is a better fit?

ONE WAY IS TO MINIMIZE RESIDUALS!

Residual = distance of point from its predicted value on the line

Check your understanding:

https://www.khanacademy.org/math/statisticsprobability/describing-relationships-quantitativedata/regression-library/e/calculating-interpretingresiduals

UPDATE LAB NOTES

EXIT SURVEY