1 Introduction

We consider the solution of the Fokker-Planck equation for bivariate Brownian motion with absorbing boundaries and correlated increments. In particular, we find the transition density function for the system

$$X_i(t) = x_i + \mu_i + \sigma_i W_i(t),$$
 $i = 1, 2,$ $0 < t \le T,$ (1)

$$a_i \le X_i(t) \le b_i,$$
 (2)

where W_i are standard Brownian motions with $Cov(W_1(t), W_2(t)) = \rho t$. Our solution is obtained by combining an analytic small-time solution with an approximate finite element method.

Closed-form solutions to $(\ref{eq:condition})$ - $(\ref{eq:condition})$ are available for different parameter regimes. For example, when $\rho=0$, the transition density of the process can be obtained with a Fourier expansion. When $a_1=-\infty$ and $b_1=\infty$, the method of images can be used to enforce the remaining boundaries. For either $a_1,a_2=-\infty$ or $b_1,b_2=\infty$, an analytic solution exists for a set of countably many values for ρ . However, to the best of our knowledge, there is no closed-form solution to the general problem in $(\ref{eq:condition})$ - $(\ref{eq:condition})$? The transition density for this problem is of interest particularly in problems dealing with first passage times $(\ref{eq:condition})$, structural models in credit risk and default correlations $(\ref{eq:condition})$, and pricing of double lookback options $(\ref{eq:condition})$.