【HCIP 实验 06】OSPF-1 邻居状态机和 DR 选举

一、 实验拓扑

二、 实验需求及解法

通过本次实验,验证 OSPF 邻居状态机变化过程,以及 DR 选举过程。

1.如图所示, 配置设备 IP 地址。

解法略

2.配置 OSPF

2.1 手动设置各设备 RID, 如下表:

R1:1.1.1.1

R2:2.2.2.2

R3:3.3.3.3

R4:4.4.4.4

- 2.2 所有通配符都使用 0.0.0.0 精确通告。
- 2.3 所有接口都划入区域 0

R1:

ospf 1 router-id 1.1.1.1

area 0.0.0.0

network 12.1.1.1 0.0.0.0

#

R2:

ospf 1 router-id 2.2.2.2

area 0.0.0.0

network 12.1.1.2 0.0.0.0

```
network 23.1.1.2 0.0.0.0
#
R3:
ospf 1 router-id 3.3.3.3
area 0.0.0.0
 network 23.1.1.3 0.0.0.0
 network 34.1.1.3 0.0.0.0
#
R4:
ospf 1 router-id 4.4.4.4
 area 0.0.0.0
 network 4.4.4.4 0.0.0.0
 network 34.1.1.4 0.0.0.0
2.4 R1 与 R2 之间配置 R2 的 DR 优先级为 0, 强制选择 R1 为 DR。
R2:
interface GigabitEthernet0/0/0
ospf dr-priority 0
2.5 R2 的 G0/0/1 接口的 cost 修改为 100, R3 的 G0/0/0 接口的 cost 修改为 200。
观察 R3 和 R2 收到 4.4.4.4/32 路由的 cost。
R2:
interface GigabitEthernet0/0/1
ospf cost 100
R3:
interface GigabitEthernet0/0/0
ospf cost 200
#
[R3]dis ip routing-table
Destination/Mask
                                                         Flags NextHop
                          Proto
                                     Pre
                                            Cost
          4.4.4.4/32
                                     10
                          OSPF
                                                                 34.1.1.4
[R2]dis ip routing-table
Destination/Mask
                         Proto
                                    Pre
                                          Cost
                                                       Flags NextHop
          4.4.4.4/32 OSPF
                                          148
                                                              23.1.1.3
R3 看到 cost 为 48, R2 看到 cost 为 148。
说明 ospf 累加 cost 只计算去往该目标流量的出接口 cost。
```

2.6 R3 与 R4 之间修改 hello 时间为 5s。

R3: interface Serial1/0/0 ospf timer hello 5 # R4: interface Serial1/0/0 ospf timer hello 5

2.7 修改 R4 的 Loopback0 网络类型为 broadcast, 在 R1/2/3 观察收到路由条目的变化情况。

R4:

interface LoopBack0 ip address 4.4.4.4 255.255.255.0 ospf network-type broadcast #

[R2]dis ip routing-table

R2 收到的路由变成了与实际接口配置相同的 24 位。 (默认情况下, 环回口生成的路由都是 32 位。)

- 3. 按照以下步骤观察 R1 与 R2 的邻居关系建立过程
- 3.1 R1 上使用命令 debugging ospf packet
- 3.2 在 R1 与 R2 之间开启抓包。
- 3.3 R1 重启 ospf 进程, reset ospf process。

(见下页)

```
R1>reset ospf process
Warning: The OSPF process will be reset. Continue? [Y/N]:y
Dec 4 2019 16:30:38-08:00 R1 %%010SPF/3/NBR CHG DOWN(1)[0]:Neighbor event:neigh
bor state changed to Down. (ProcessId=256, NeighborAddress=2.2.2.2, NeighborEven
t=KillNbr, NeighborPreviousState=Full, NeighborCurrentState=Down)
Dec 4 2019 16:30:38-08:00 R1 %%010SPF/3/NBR DOWN REASON(1)[1]:Neighbor state le aves full or changed to Down. (ProcessId=256, NeighborRouterId=2.2.2.2, Neighbor
AreaId=0, NeighborInterface=GigabitEthernet0/0/0,NeighborDownImmediate reason=Ne
ighbor Down Due to Kill Neighbor, NeighborDownPrimeReason=OSPF Process Reset Ne
ighborChangeTime=2019-12-04 16:30:38-08:00)
Dec 4 2019 16:30:39-08:00 R1 %%010SPF/4/NBR CHANGE E(1)[2]:Neighbor changes eve
nt: neighbor status changed. (ProcessId=256, NeighborAddress=2.1.1.12, NeighborE vent=HelloReceived, NeighborPreviousState=Down, NeighborCurrentState=Init)
Dec 4 2019 16:30:39-08:00 R1 %%010SPF/4/NBR_CHANGE_E(1)[3]:Neighbor changes eve
nt: neighbor statu<u>s changed. (ProcessId=256, NeighborAddress=2.1.1.12, Ne</u>ighborE
vent=2WayReceived, NeighborPreviousState=Init, NeighborCurrentState=2Way)
Dec 4 2019 16:31:17-08:00 R1 %%01OSPF/4/NBR_CHANGE_E(1)[4]:Neighbor changes eve
nt: neighbor<u>status changed. (ProcessId=256, NeighborAddress=2.1.1.12,</u> NeighborE
vent=AdjOk?, NeighborPreviousState=2Way, NeighborCurrentState=ExStart)
Dec 4 2019 16:31:20-08:00 R1 %%010SPF/4/NBR CHANGE E(1)[5]:Neighbor changes eve
nt: neighbor status changed. (ProcessId=256, NeighborAddress=2.1.1.12, NeighborE
vent=NegotiationDone, NeighborPreviousState=ExStart, NeighborCurrentState=Exchan
Dec 4 2019 16:31:20-08:00 R1 %%010SPF/4/NBR CHANGE E(1)[6]:Neighbor changes eve
nt: neighbor status changed. (ProcessId=256, NeighborAddress=2.1.1.12, NeighborE
vent=ExchangeDone, NeighborPreviousState=Exchange, NeighborCurrentState=Loading)
Dec 4 2019 16:31:20-08:00 R1 %%010SPF/4/NBR CHANGE E(1)[7]:Neighbor changes eve
nt: neighbor status changed. (ProcessId=256, NeighborAddress=2.1.1.12, NeighborE vent=LoadingDone, NeighborPreviousState=Loading, NeighborCurrentState=Full)
<R1>
```

上图显示了 R1 的 ospf 进程重启后,邻接关系的建立过程。

21 63.727000	12.1.1.2	12.1.1.1	OSPF	66 DB Description
22 64.819000	12.1.1.2	224.0.0.5	OSPF	82 Hello Packet
23 67.736000				66 DB Description
24 67.752000	12.1.1.1	224.0.0.5	OSPF	82 Hello Packet
25 68.266000	12.1.1.2	12.1.1.1	OSPF	66 DB Description
26 68.282000	12.1.1.1	12.1.1.2	OSPF	86 DB Description
27 68.298000	12.1.1.2	12.1.1.1	OSPF	186 DB Description
28 68.298000	12.1.1.1	12.1.1.2	OSPF	130 LS Request
29 68.298000	12.1.1.1	12.1.1.2	OSPF	66 DB Description
30 68.298000	12.1.1.2	12.1.1.1	OSPF	330 LS Update
31 68.313000	12.1.1.1	224.0.0.5	OSPF	330 LS Update
32 68.313000	12.1.1.2	224.0.0.6	OSPF	110 LS Update
33 68.313000	12.1.1.1	224.0.0.5	OSPF	110 LS Update
34 68.906000	12.1.1.2	12.1.1.1	OSPF	118 LS Acknowledge
35 68.906000	12.1.1.2	224.0.0.6	OSPF	98 LS Acknowledge
36 74.085000	12.1.1.2	224.0.0.5	OSPF	82 Hello Packet

抓包可以看到 hello DD LSR LSU LSAck 五种报文的交互。