(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 18 March 2004 (18.03.2004)

PCT

(10) International Publication Number WO 2004/021978 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/025833

- (22) International Filing Date: 19 August 2003 (19.08.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/404,495

19 August 2002 (19.08.2002)

- (71) Applicant (for all designated States except US): PHAR-MACIA CORPORATION [US/US]; Corporate Patent Department, P.O. Box 1027, St. Louis, MO 63006 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WEINSTEIN, Edward, J. [US/US]; 15449 Highcroft Drive, Chesterfield, MO 63017 (US). GRIGGS, David, W. [US/US]; 1237 Oak Borough Drive, Ballwin, MO 63021 (US).
- (74) Agents: BAUER, Christopher, S. et al.; Pharmacia Corporation, Corporate Patent Department, P.O. Box 1027, St. Louis, MO 63006 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3/prts

WO 2004/021978

10/525104

PC1/US2003/025833

ANTISENSE MODULATION OF ENDOTHELIAL SPECIFIC 1 8 FEB 2003 MOLECULE 1 EXPRESSION

The present application claims priority under Title 35, United States Code, §119 to United States Provisional application Serial No. 60/404,495, filed August 19, 2002, which is incorporated by reference in its entirety as if written herein.

FIELD OF THE INVENTION

10

15

5

[001] The present invention provides compositions and methods for modulating the expression of Endothelial Specific Molecule-1 (ESM-1). In particular, this invention relates to antisense compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding Endothelial Specific Molecule-1. Such oligonucleotides have been shown to modulate the expression of Endothelial Specific Molecule-1.

BACKGROUND OF THE INVENTION

20

25

30

[002] Angiogenesis is the growth of new capillary blood vessels from preexisting vessels and capillaries and is crucial in a large number of processes, such as wound repair, embryonic development, and the growth of solid tumors. In neovascularization, endothelial cells will undergo migration, elongation, proliferation, and orientation leading to lumen formation, re-establishment of a basement membrane and eventual anastomosis with other vessels (Patan S. et al., (2000), *J. Neurooncol.* 50: 1-15).

[003] Endothelial cell-specific molecule1 (ESM-1) was originally isolated in an immunoscreening of a HUVEC cDNA library in order to identify the gene encoding a 55-kDa autoantigen that may have a role in asthma (Lassalle, P., et al.,). The full length ESM-1 cDNA was cloned in a library constructed in pCDM8 but was found to be inserted in the reverse orientation (Lassalle, P., et al.,).

[004] Northern blots have shown ESM-1 to probes to hybridize to RNA from HUVEC cells, SV40-transfected HUVECs, human lung, and human kidney. Little or none was detected in human heart, pancreas, placenta, muscle, brain or liver (Lassalle et al., 1996). Antibodies raised to ESM-1 show protein expression in human lung, colon, and kidney (Bechard, D., et al., (2000). *J. Vasc. Res.* 37, 417-425; WO9945028). In the lung, ESM-1 is expressed in venules, arterioles, and alveolar capillaries as well as by epithelial cells of the bronchi and submucosal glands. In the kidney, expression is predominantly in renal tubular epithelial cells. Capillaries and venules of the lamina propria of the colon also display ESM-1 expression. A splice variant of ESM-1 has been identified which lacks 150 base pairs but maintains the open reading frame (Aitkenhead, M., et al., (2002) *Microvasc. Res.* 63, 159-171).

5

10

- [005] ESM-1 expression appears to be both constitutive and under the control of a variety of cytokines. HUVEC cells treated with TNFα or IL-1βdisplay an up-regulation of the gene. No change in ESM-1 levels was seen upon treatment with IL-4 or IFNγ. While coadministration of TNFα and IFNγ lead to a synergistic induction of proinflammatory factors such as IL-6, IL-8,
 RANTES and ICAM-1, the combination of these two cytokines inhibit the TNFα induced ESM-1 up-regulation (Lassale et al., 1996).
- [006] ESM-1 has been found to be differentially expressed in endothelial cells forming tubes in a 3-dimensional collagen gel when compared to cells growing in two dimensions (Aitkenhead et al., 2002). Microarray analysis indicates a higher level of ESM-1 expression in HMVEC cells growing on collagen relative to those growing on osteopontin. We followed up on this observation by investigating the expression level of ESM-1 in colon tumor samples compared to a pool of normal colon tissue. Nine of ten tumors showed expression at levels of threefold or higher at the RNA level, as determined by real-time quantitative reverse transcription polymerase chain reaction experiments.

[007] We have amplified ESM-1 from HDMECs and cloned it into an expression vector. A pool of transfected NIH3T3 cells were then selected and assayed for ESM-1 expression. After confirming significant gene over-expression at the RNA level, cells were injected subcutaneously into a nu/nu female mouse. While vector transfected NIH3T3 fibroblasts failed to grow in these mice, those cells transfected with ESM-1 formed solid tumors within three weeks. This data shows that ESM-1 contains the potential to augment growth *in vivo* to a cell line that is usually not capable of forming tumors.

10

15

20

25

30

5

[008] Previous work on ESM-1 has found that levels of expression of this gene change in cells under varying conditions. We have extended those findings to show that ESM-1 is up regulated in colon carcinomas when compared to normal colon tissue. Additionally, we have shown that forced over-expression of ESM-1 leads to an escalation of growth of NIH3T3 fibroblasts *in vivo*.

[009] Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of ESM-1 expression.

SUMMARY OF THE INVENTION

[0010] The present invention is directed to antisense compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding ESM-1, and which modulate the expression of ESM-1. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the expression of ESM-1 in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with

expression of ESM-1 by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

BRIEF DESCRIPTION OF THE FIGURES

5

[0011] Figure 1 shows the cDNA sequence and the ESM-1 protein sequence encoded therefrom.

10 [0012] Figure 2 shows the ESM-1 expression levels in ten tumors as determined by Real-Time Quantitative PCR.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric antisense 15 [0013] compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding ESM-1, ultimately modulating the amount of ESM-1 produced. This is accomplished by providing antisense compounds, which specifically hybridize with one or more nucleic acids encoding ESM-1. As used herein, the terms "target 20 nucleic acid" and "nucleic acid encoding ESM-1" encompass DNA encoding ESM-1, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation 25 of function of a target nucleic acid by compounds, which specifically hybridize to it, is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein 30 translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such

interference with target nucleic acid function is modulation of the expression of ESM-1. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation, of gene expression and mRNA is a preferred target.

5

10

15

20

25

30

[0014] It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding ESM-1. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation

initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding ESM-1, regardless of the sequence(s) of such codons.

5

10

15

20

25

30

[0015] It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e. 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon

region" and "translation initiation codon region "refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region "refer to a portion of such an

mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

[0016] The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon

5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5'

and 3' end of an mRNA or corresponding nucleotides on the gene. The

cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

[0017] Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-

15 mRNA.

5

10

[0018] Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

- 20 [0019] In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen, or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases, which pair through the formation of hydrogen bonds.
- 25 "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be
 30 complementary to each other at that position. The oligonucleotide and
 - the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus,

"specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

5

10

15

20

[0020] Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

[0021] The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans. In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer

of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

- 10 [0022] ESM-1 antisense oligonucleotides that have activity in the cardiovascular, angiogenic, and endothelial assays described herein, and/or whose gene product has been found to be localized to the cardiovascular system, is likely to have therapeutic uses in a variety of cardiovascular, endothelial, and angiogenic disorders, including systemic disorders that affect 15 vessels, such as diabetes mellitus. Its therapeutic utility could include diseases of the arteries, capillaries, veins, and/or lymphatics. Examples of treatments hereunder include treating muscle wasting disease, treating osteoporosis, aiding in implant fixation to stimulate the growth of cells around the implant and therefore facilitate its attachment to its intended site, increasing IGF stability in 20 tissues or in serum, if applicable, and increasing binding to the IGF receptor (since IGF has been shown in vitro to enhance human marrow erythroid and granulocytic progenitor cell growth).
 - [0023] ESM-1 antisense oligonucleotides can be used to inhibit the production of excess connective tissue during wound healing or pulmonary fibrosis if ESM-1 promotes such production. This would include treatment of acute myocardial infarction and heart failure.

25

- [0024] Moreover, the present invention provides the treatment of cardiac hypertrophy, regardless of the underlying cause, by administering a therapeutically effective dose of ESM-1 antisense oligonucleotides.
- 30 **[0025]** The treatment for cardiac hypertrophy can be performed at any of its various stages, which may result from a variety of diverse pathologic conditions, including myocardial infarction, hypertension, hypertrophic cardiomyopathy, and valvular regurgitation. The treatment extends to all stages

of the progression of cardiac hypertrophy, with or without structural damage of the heart muscle, regardless of the underlying cardiac disorder.

[0026] ESM-1 antisense oligonucleotides would be useful for treatment of disorders where it is desired to limit or prevent angiogenesis. Examples of such disorders include vascular tumors such as hemangioma, tumor angiogenesis, neovascularization in the retina, choroid, or cornea, associated with diabetic retinopathy or premature infant retinopathy or macular degeneration and proliferative vitreoretinopathy, rheumatoid arthritis, Crohn's disease, atherosclerosis, ovarian hyperstimulation, psoriasis, endometriosis associated with neovascularization, restenosis subsequent to balloon angioplasty, sear tissue overproduction, for example, that seen in a keloid that forms after surgery, fibrosis after myocardial infarction, or fibrotic lesions associated with pulmonary fibrosis.

5

10

15

30

[0027] Specific types of diseases are described below, where ESM-1 antisense oligonucleotides may serve as useful for vascular- related drug targeting or as therapeutic targets for the treatment or prevention of the disorders.

[0028] Atherosclerosis is a disease characterized by accumulation of plaques of intimal thickening in arteries, due to accumulation of lipids,
20 proliferation of smooth muscle cells, and formation of fibrous tissue within the arterial wall. The disease can affect large, medium, and small arteries in any organ. Changes in endothelial and vascular smooth muscle cell function are known to play an important role in modulating the accumulation and regression of these plaques.

25 [0029] Hypertension is characterized by raised vascular pressure in the systemic arterial, pulmonary arterial, or portal venous systems. Elevated pressure may result from or result in impaired endothelial function and/or vascular disease.

[0030] Inflammatory vasculitides include giant cell arteritis, Takayasu's arteritis, polyarteritis nodosa (including the microangiopathic form), Kawasaki's disease, microscopic polyarightis, Wegener's granulomatosis, and a variety 101 of infectious-related vascular disorders (including Henoch-Schonlein Prupura). Altered endothelial cell function has been shown to be important in these

diseases. Reynaud's disease and Reynaud's phenomenon are characterized by intermittent abnormal impairment of the circulation through the extremities on exposure to cold. Altered endothelial cell function has been shown to be important in this disease.

5 [0031] Aneurysms are saccular or fusiform dilatations of the arterial or venous tree that are associated with altered endothelial cell and/or vascular smooth muscle cells.

10

30

- [0032] Arterial restenosis (restenosis of the arterial wall) may occur following angioplasty as a result of alteration in the function and proliferation of endothelial and vascular smooth muscle cells.
- [0033] Thrombophlebitis and lymphangitis are inflammatory disorders of veins and lymphatics, respectively, that may result from, and/or in, altered endothelial cell function. Similarly, lymphedema is a condition involving impaired lymphatic vessels resulting from endothelial cell function.
- 15 [0034] The family of benign and malignant vascular tumors is characterized by abnormal proliferation and growth of cellular elements of the vascular system. For example, lymphangiomas are benign tumors of the lymphatic system that are congenital, often cystic, malformations of the lymphatics that usually occur in newborns.
- 20 [0035] Cystic tumors tend to grow into the adjacent tissue. Cystic tumors usually occur in the cervical and axillary region. They can also occur in the soft tissue of the extremities. The main symptoms are dilated, sometimes reticular, structured lymphatics and lymphocysts surrounded by connective tissue.
- [0036] Lymphangiomas are assumed to be caused by improperly connected embryonic lymphatics or their deficiency. The result is impaired local lymph drainage.
 - [0037] Another use for ESM-1 antisense antagonists is in the prevention of tumor angiogenesis, which involves vascularization of a tumor to enable it to growth and/or metastasize. This process is dependent on the growth of new blood vessels. Examples of neoplasms and related conditions that involve tumor angiogenesis include breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, thecomas, arrhenoblastomas, cervical carcinomas, endometrial

carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendrogliorna, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.

[0038] Healing of trauma such as wound healing and tissue repair is also a targeted use for ESM-1 antisense oligonucleotides. Formation and regression of new blood vessels is essential for tissue healing and repair. This category includes bone, cartilage, tendon, ligament, and/or nerve tissue growth or regeneration, as well as wound healing and tissue repair and replacement, and in the treatment of bums, incisions, and ulcers.

15

20

25

30

[0039] ESM-1 antisense oligonucleotides that induce cartilage and/or bone growth in circumstances where bone is not normally formed have application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing ESM-1 antisense oligonucleotides may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic, resection-induced craniofacial defects, and also is useful in cosmetic plastic surgery.

[0040] It is expected that ESM-1 antisense oligonucleotides may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, or endothelium), muscle (smooth, skeletal, or cardiac), and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate.

[0041] ESM-1 antisense oligonucleotides may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage. Also, ESM-1 antisense oligonucleotides may be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells, or for inhibiting the growth of tissues described above.

5

10

15

20

25

30

[0042] ESM-1 antisense oligonucleotides may also be used in the treatment of periodontal diseases and in other tooth-repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells, or induce differentiation of progenitors of bone-forming cells ESM-1 antisense oligonucleotides may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes, since blood vessels play an important role in the regulation of bone turnover and growth.

Another category of tissue regeneration activity that may be attributable to ESM-1 antisense oligonucleotides is tendon/ligament formation. A protein that induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed has application in the healing of tendon or ligament tears, deformities, and other tendon or ligament defects in humans and other animals. Such a preparation may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of ESM-1 antisense oligonucleotides contributes to the repair of congenital, trauma-induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions herein may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue

repair. The compositions herein may also be useful in the treatment of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5 [0044] ESM-1 antisense oligonucleotides may also be administered prophylactically to patients with cardiac hypertrophy, to prevent the progression of the condition, and avoid sudden death, including death of asymptomatic patients. Such preventative therapy is particularly warranted in the case of patients diagnosed with massive left ventricular cardiac hypertrophy (a maximal wall thickness of 35 mm. or more in adults, or a comparable value in children), or in instances when the hemodynamic burden on the heart is particularly strong.

[0045] ESM-1 antisense oligonucleotides may also be useful in the management of atrial fibrillation, which develops in a substantial portion of patients diagnosed with hypertrophic cardiomyopathy. Further indications include angina, myocardial infarctions such as acute myocardial infarctions, and heart failure such as congestive heart failure. Additional non-neoplastic conditions include psoriasis, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, nephrotic syndrome, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion.

[0046] In view of the above, ESM-1 antisense oligonucleotides,
which are shown to alter or impact endothelial cell function,
proliferation, and/or form, are likely to play an important role in the
etiology and pathogenesis of many or all of the disorders noted above,
and as such can serve as therapeutic targets to augment or inhibit these
processes or for vascular-related drug targeting in these disorders.

30

15

20

Combination Therapies

[0047] The effectiveness of ESM-1 antisense oligonucleotides in preventing or treating the disorder in question may be improved by administering the active agent serially or in combination with another agent that is effective for those purposes, either in the same composition or as separate compositions. For example, for treatment of cardiac hypertrophy, ESM-1 antisense therapy can be 5 combined with the administration of inhibitors of known cardiac myocyte hypertrophy factors, e.g., inhibitors of cc-adrenergic agonists such as phenylephrine; endothelin-1 inhibitors such as BOSENTAN™ and MOXONODINTM; inhibitors to CT- I (US Pat. No. 5,679,545); inhibitors to 10 LIF; ACE inhibitors; des- aspartate-angiotensin I inhibitors (U.S. Pat. No. 5,773,415), and angiotensin II inhibitors. For treatment of cardiac hypertrophy associated with hypertension, [0048] ESM-1 antisense oligonucleotides can be administered in combination with Padrenergic receptor blocking agents, e.g., propranolol, timolol, tertalolol, 15 carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or carvedilol; ACE inhibitors, e.g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril; diuretics, e.g., chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or calcium channel 20

blockers, e.g., diltiazem, nifedipine, verapamil, or nicardipine. Pharmaceutical compositions comprising the therapeutic agents identified herein by their generic names are commercially available, and are to be administered following the manufacturers' instructions for dosage, administration, adverse effects, contraindications, etc. 119 See, e.z., Physicians' Desk Reference (Medical

25

30

Economics Data Production Co.: Montvale, N.J., 1997), 51 st Edition. Preferred candidates for combination therapy in the treatment of hypertrophic cardiormyopathy are P-adrenergic-blocking drugs (e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutolol, acetobutolol, atenolol, metoprolol, or carvedilol), verapamil, difedipine, or diltiazem. Treatment of hypertrophy associated with high blood pressure may require the use of antihypertensive drug therapy, using calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, or nicardipine; P-adrenergic blocking agents; diuretics,

e.g., chlorothiazide, hydrochlorothiazide, hydroflumethiazide,

methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, or indapamide; and/or ACE-inhibitors, e. g., quinapril, captopril, enalapril, ramipril, benazepril, fosinopril, or lisinopril.

[0049] For other indications, ESM-1 antisense oligonucleotides may be
 combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as EGF, PDGF, TGF- or TGF-, IGF, FGF, and CTGF.
 [0050] In addition, ESM-1 antisense oligonucleotides used to treat cancer may be combined with cytotoxic, chemotherapeutic, or growth-inhibitory agents
 as identified above. Also, for cancer treatment, ESM-1 antisense oligonucleotides are suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances.

[0051] The effective amounts of the therapeutic agents administered in combination with ESM-1 antisense oligonucleotides thereof will be at the physician's, or veterinarian's discretion. Dosage administration and adjustment is done to achieve maximal management of the conditions to be treated. For example, for treating hypertension, these amounts ideally take into account use of diuretics or digitalis, and conditions such as hyper- or hypotension, renal impairment, etc. The dose will additionally depend on such factors as the type of the therapeutic agent to be used and the specific patient being treated.

Typically, the amount employed will be the same dose as that used, if the given therapeutic agent is administered without ESM-1 antisense oligonucleotides.

[0052] For treatment of breast carcinoma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, Trastuzumab

15

20

25

can be administered in combination with, but not limited to, Trastuzumab (Herceptin) with chemotherapy, paclitaxel, docetaxel, epirubicin, mitoxantrone, topotecan, capecitabine, vinorelbine, thiotepa, vincristine, vinblastine, carboplatin or cisplatin, plicamycin, anastrozole, letrozole, exemestane, toremifine, or progestins.

30 [0053] For treatment of acute lymphocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, doxorubicin, cytarabine, cyclophosphamide, etoposide, teniposide, allopurinol, or autologous bone marrow transplantation.

[0054] For treatment of acute myelocytic and myelomonocytic leukemia, ESM-1, antisense oligonucleotides can be administered in combination with, but not limited to, gemtuzumab ozogamicin (Mylotarg), mitoxantrone,

- idarubicin, etoposide, mercaptopurine, thioguanine, azacitidine, amsacrine, methotrexate, doxorubicin, tretinoin, allopurinol, leukapheresis, prednisone, or arsenic trioxide for acute promyelocytic leukemia.
 - [0055] For treatment of chronic myelocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, busulfan, mercaptopurine, thioguanine, cytarabine, plicamycin, melphalan, autologous bone marrow transplantation, or allopurinol.

10

20

- [0056] For treatment of chronic lymphocytic leukemia, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, vincristine, cyclophosphamide, doxorubicin, cladribine (2-
- chlorodeoxyadenosine; CdA), allogeneic bone marrow transplant, androgens, or allopurinol.
 - [0057] For treatment of multiple myeloma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, etoposide, cytarabine, alpha interferon, dexamethasone, or autologous bone marrow transplantation.
 - [0058] For treatment of carcinoma of the lung (small cell and non-small cell), ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, cyclophosphamide, doxorubicin, vincristine, etoposide, mitomycin, ifosfamide, paclitaxel, irinotecan, or radiation therapy.
- 25 [0059] For treatment of carcinoma of the colon and rectum, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, capecitabine, methotrexate, mitomycin, carmustine, cisplatin, irinotecan, or floxuridine.
- [0060] For treatment of carcinoma of the kidney, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, alpha interferon, progestins, infusional FUDR, or fluorouracil.
 - [0061] For treatment of carcinoma of the prostate, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to,

ketoconazole, doxorubicin, aminoglutethimide, progestins, cyclophosphamide, cisplatin, vinblastine, etoposide, suramin, PC-SPES, or estramustine phosphate.

[0062] For treatment of melanoma, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, carmustine, lomustine, melphalan, thiotepa, cisplatin, paclitaxel, tamoxifen, or vincristine.

5

[0063] For treatment of carcinoma of the ovary, ESM-1 antisense oligonucleotides can be administered in combination with, but not limited to, docetaxel, doxorubicin, topotecan, cyclophosphamide, doxorubicin, etoposide, or liposomal doxorubicin.

10 [0064] While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 30 nucleobases (i.e. from about 8 to about 30 linked 15 nucleo sides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 25 nucleobases. As is known in the art, a nucleoside is a basesugar combination. The base portion of the nucleoside is normally a 20 heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 25 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly 30

the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal I linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

[0065] Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those

- that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
- 10 [0066] Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-
- amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to
- 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.
 - [0067] Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243;
- 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.
- 30 [0068] Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or

more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones;

- 5 methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.
- [0069] Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.
 - and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. 5.539.082: 5.714.331; and 5.719.262, each of which is herein.

20

25

5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., *Science*, 1991, 254, 1497-1500.

[0071] Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N (CH₃) -O-CH₂- [known as a methylene (methylimino) or MMI

- backbone], CH₂-O-N (CH₃) -CH₂-, -CH₂N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino
- backbone structures of the above-referenced U.S. patent 5,034,506.
 [0072] Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl,
- alkenyl and alkynyl may be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, O(CH₂)_n,OCH₃, O(CH₂)_nNH₂, O(CH₂)_nCH₃, O(CH₂)_nONH₂, and O(CH₂nON[(CH₂)_nCH₃)]₂ where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the
- following at the 2' position: C₁ to C₁₀, (lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter
- group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv, Chim. Acta, 1995, 78)
 - (2-methoxyethyl) or 2'-MOE) (Martin et al., *Helv. Chim. Acta*, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples herein below, and

2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH₂-O-CH₂-N (CH₂)₂, also described in examples herein below.

[0073] Other preferred modifications include 2'-methoxy (2'-O

- 5 CH₃), 2'-aminopropoxy (2'-O CH₂ CH₂ CH₂ CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have
- sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427;
- 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference in its entirety.
- [0074] Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and
 - other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-
- 30 hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylquanine and 7-methyladenine, 8-azaguanine and 8-azaguanine, 7-deazaguanine and 7-deazaguanine and 3-deazaguanine

and 3-deazaadenine. Further nucleobases include those disclosed in United States Patent No. 3,687,808, those disclosed in *The Concise Encyclopedia Of Polymer Science And Engineering*, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by

- Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B. ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds
- of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu,
- B., eds, Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.
- [0075] Representative United States patents that teach the
 preparation of certain of the above noted modified nucleobases as well
 as other modified nucleobases include, but are not limited to, the above
 noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066;
 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908;
 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091;
- 25 5,614,617; 5,750,692, and 5,681,941, each of which is herein incorporated by reference.

30

[0076] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., *Proc. Natl. Acad. Sci. USA*, 1989, 86, 6553-6556), cholic acid (Manoharan et al., *Bioorg. Med. Chem. Let.*, 1994, 4, 1053-1060), a

thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or

- 5 undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-racglycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-Hphosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654;
- Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Mancharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Mancharan et al., Tetrahedron Lett., 1995, 36, 365'-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine
- or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., *J. Pharmacol. Exp. Ther.*, 1996, 277, 923-937).
 - [0077] Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313;
- 20 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136;
- 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference.
- 30 [0078] It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also

includes antisense compounds, which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at

- 5 least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target 10 nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease, which cleaves the RNA strand of RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly
- enhancing the efficiency of oligonucleotide inhibition of gene 15 expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxy oligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely
- 20 detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.
- [0079] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred 25 to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant 30
 - application, and each of which is herein incorporated by reference in its entirety.

[0080] The antisense compounds used in accordance with this invention may be conveniently, and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems
5 (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in 10 vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules. The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for 15 example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 20 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein 25 incorporated by reference.

[0082] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

30

[0083] The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 to Imbach et al.

5

[0084] The term "pharmaceutically acceptable salts" refers to
physiologically and pharmaceutically acceptable salts of the compounds
of the invention: i.e., salts that retain the desired biological activity of
the parent compound and do not impart undesired toxicological effects
thereto.

[0085] Pharmaceutically acceptable base addition salts are formed 15 with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-20 methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 119). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be 25 regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically 30 acceptable salt of an acid form of one of the components of the

acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates,

salicylates, nitrates, and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic acid, naphthalene-2sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

5

10

15

20

25

30

[0086] For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid,

oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid,

- 5 naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.
- [0087] The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis, as research reagents, and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder, which can be treated by modulating the expression of ESM-1, is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation, or tumor formation, for example.
- 20 [0088] The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding ESM-1, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding ESM-1 can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of ESM-1 in a sample may also be prepared.
- 30 [0089] The present invention also includes pharmaceutical compositions and formulations, which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon

whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

5

10

15

20

25

30

[0090] Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves, and the like may also be useful.

[0091] Compositions and formulations for oral administration include powders or granules, suspensions, or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids, or binders may be desirable.

[0092] Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions, which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

[0093] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

[0094] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be

prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

5

30

[0095] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, 10 tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances, which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol, and/or dextran. The suspension may

15 also contain stabilizers.

[0096] In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies, and liposomes. While 20 basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention. Emulsions 25 The compositions of the present invention may be prepared

systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 µm in diameter. (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in

and formulated as emulsions. Emulsions are typically heterogenous

Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). Emulsions are often biphasic systems 5 comprising of two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be either water-inoil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. 10 Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug. which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as 15 emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-inwater (w/o/w) emulsions. Such complex formulations often provide 20 certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily 25 continuous provides an o/w/o emulsion.

[0098] Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may

30

broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in *Pharmaceutical Dosaqe Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

5

25

30

[0099] Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker,

Inc., New York, N.Y., volume 1, p. 285; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has

been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic, and amphoteric (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman,

20 Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

[00100] Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin, and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, non-swelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

[00101] A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and
antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

- 10 [00102] Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed phase droplets and by increasing the viscosity of the external phase.
- [00103] Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols, and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary
 ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents

such as ascorbic acid and sodium metabisulfite, and antioxidant

synergists such as citric acid, tartaric acid, and lecithin.

30

[00104] The application of emulsion formulations via dermatological, oral, and parenteral routes and methods for their manufacture have been

reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation,

- efficacy from an absorption and bioavailability standpoint. (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).
- Mineral-oil base laxatives, oil-soluble vitamins, and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.
- [00105] In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as
 microemulsions. A microemulsion may be defined as a system of water, oil, and amphiphile, which is a single optically isotropic, and thermodynamically stable liquid solution (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically
- 20 microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of
- two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH
 Publishers, New York, pages 1852-5). Microemulsions commonly are prepared via a combination of three to five components that include oil,
 water, surfactant, cosurfactant, and electrolyte. Whether the
 - water, surfactant, cosurfactant, and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails

of the surfactant molecules (Schott, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, PA, 1985, p. 271).

5

[00106] The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.),

10 Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.
[00107] Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants,

1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335).

- Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate
- 20 (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.
- Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and triglycerides, polyoxyethylated glyceryl fatty

acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

[00108] Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs.

- Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., *Pharmaceutical Research*, 1994, 11, 1385-1390; Ritschel, *Meth. Find. Exp. Clin. Pharmacol.*, 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization,
- protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., *Pharmaceutical Research*, 1994, 11,
- 15 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides, or oligonucleotides. Microemulsions have also been effective in the
- transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular
- 25 uptake of oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.
- [00109] Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories surfactants, fatty acids, bile

salts, chelating agents, and non-chelating non-surfactants (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p. 92). Each of these classes has been discussed above.

[00110] Liposomes

15

20

5 [00111] There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers, and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

[00112] Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Noncationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

[00113] In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome, which is highly deformable and able to pass through such fine pores.

[00114] Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, P. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size, and the aqueous volume of the liposomes.

[00115] Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

5

10

15

20

25

30

[00118]

[00116] Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

[00117] Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones, and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes

are positively charged liposomes, which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., *Biochem. Biophys. Res. Commun.*, 1987, 147, 980 - 985)

[00119] Liposomes, which are pH-sensitive or negatively charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to

deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., *Journal of Controlled Release*, 1992, 19, 269-274).

[00120] One major type of liposomal composition includes

- phospholipids other than naturally derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are
- 10 formed primarily from dioleoyl phosphatidylethanolamine (DOPE).

 Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.
- 15 [00121] Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) was ineffective (Weiner et al., Journal of
- 20 Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).
- 25 [00122] Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome ™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™
- 30 II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin.
 Results indicated that such non-ionic liposomal systems were effective

in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P.Pharma. Sci., 1994, 4, 6, 466).

[00123] Liposomes also include "sterically stabilized" liposomes, a term, which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such, specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_{M1} , or (B) is derivatized with one or more hydrophilic polymers, such as a

5

10

15

polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., *FEBS Letters*, 1987, 223,

[00124] Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987,

507, 64) reported the ability of monosialoganglioside G_{M1}, galactocerebroside sulfate, and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 1988, 85, 6949). U.S. Patent No. 4,837,028 and WO 88/04924, both to Allen et al., disclose

42; Wu et al., Cancer Research, 1993, 53, 3765).

liposomes comprising (1) sphingomyelin and (2) the ganglioside Gjor a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al.).

30 [00125] Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (*Bull. Chem. Soc. Jpn.*, 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C₁₂15G,

which contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of 5 polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. 10 (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 15 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European Patent No. EP 0 496 813 Bl). Liposomes comprising a number of other 20 lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes 25 that can be further derivatized with functional moieties on their surfaces. A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa et al. discloses protein-bonded 30 liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al. describes

certain methods of encapsulating oligodeoxynucleotides in liposomes.

WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

5

10

15

20

25

30

highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets, which are so highly deformable that they are easily able to penetrate through pores that are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

[00128] Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285)

[00129] If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty

alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

- 5 [00130] If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene
 10 sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class
- phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.
 - [00131] If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic.
- 15 Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.
 - [00132] If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric.
- Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines, and phosphatides.
 - [00133] The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285). Penetration
- 25 Enhancers

30

- [00134] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However,
- usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-

lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

[00135] Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating nonsurfactants (Lee et al., *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

5

[00136] Surfactants: In connection with the present invention,
surfactants (or "surface-active agents") are chemical entities which,
when dissolved in an aqueous solution, reduce the surface tension of the
solution or the interfacial tension between the aqueous solution and
another liquid, with the result that absorption of oligonucleotides
through the mucosa is enhanced. In addition to bile salts and fatty acids,
these penetration enhancers include, for example, sodium lauryl sulfate,
polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether)
(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991,
p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al.,
J. Pharm. Pharmacol., 1988, 40, 252).

[00137] Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-.rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical
Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri

[00138] Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble

et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

vitamins (Brunton, Chapter 38 in: Goodman & Gilman's *The Pharmacological Basis of Therapeutics*, 9th Ed., Hardman et al. Eds. McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the

- 5 term "bile salts" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic
- acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-
- 24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate'and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, pages 782-783; Muranishi,
- 20 Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33;
 Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al.,
 J. Pharm. Sci., 1990, 79, 579-583).
- [00139] Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, *J. Chromatogr.*, 1993, 618, 315-339). Chelating agents of the invention include but are not limited to

disodium. ethylenediaminetetraacetate (EDTA), citric acid, salicylates

(e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9, and N-amino acyl derivatives of beta-diketones (enamines)(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in

- 5 Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).
 - [00140] Non-chelating non-surfactants: As used herein, nonchelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or
- as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33). This class of penetration enhancers includes, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., *Critical*
- 15 Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and nonsteroidal anti-inflammatory agents such as diclofenac sodium, indomethacin, and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).
- [00141] Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.
 - [00142] Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.
- 30 Carriers
 - [00143] Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog

thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-41sothiocyano-stilbene-2,2'disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183). **Excipients**

5

10

15

20

25

30

In contrast to a carrier compound, a "pharmaceutical carrier" [00144] or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

[00145] Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration, which does not deleteriously react with nucleic acids, can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers
5 include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

[00146] Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents, and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration, which do not deleteriously react with nucleic acids, can be used.

10

15

20

25

30

[00147] Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like. Other Components

[00148] The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized

and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

[00149] Aqueous suspensions may contain substances, which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol, and/or dextran. The suspension may also contain stabilizers.

5

30

- Certain embodiments of the invention provide 10 [00150] pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs 15 such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and 20 diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 1206-1228). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and 25 ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds
 - [00151] In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more

may be used together or sequentially.

additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially. [00152] The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC₅₀s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 µg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 µg to 100 g per kg of body weight, once or more daily, to once every 20 years. [00153] While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

30

5

10

15

20

25

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

[00154] 2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites are available from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in

- 5 U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides is utilized, except the wait step after pulse delivery of tetrazole and base is increased to 360 seconds.
 [00155] Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-
- 10 Me-C) nucleotides are synthesized according to published methods [Sanghvi, et. al., *Nucleic Acids Research*, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

15 2'-Fluorodeoxyadenosine amidites

- [00156] 2'-fluoro oligonucleotides are synthesized as described previously [Kawasaki, et. al., *J. Med. Chem.*, 1993, 36, 831-841] and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-
- 20 fluoroadenosine is synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine is selectively protected in moderate yield as
- the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups is accomplished using standard methodologies and standard methods are used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

 2'-Fluorodeoxyguanosine
- 30 [00157] The synthesis of 2'-deoxy-2'-fluoroguanosine is accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyrylarabinofuranosylguanosine. Deprotection of the

TPDS group is followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine.

Selective O-deacylation and triflation is followed by treatment of the crude product with fluoride, then deprotection of the THP groups.

5 Standard methodologies are used to obtain the 5'-DMT- and 5'-DMT- 3'-phosphoramidites.

2'-Fluorouridine

10

20

25

30

[00158] Synthesis of 2'-deoxy-2'-fluorouridine is accomplished by the modification of a literature procedure in which 2,2'anhydro-1-beta-

D-arabinofuranosyluracil is treated with 70% hydrogen fluoridepyridine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'-phosphoramidites.

2'-Fluorodeoxycytidine

[00159] 2'-deoxy-2'-fluorocytidine is synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

[00160] 2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., *Helvetica Chimica Acta*, 1995, 78, 486-504.

2,2'-Anhydro[l-(beta-D-arabinofuranosyl)-5-methyluridinel

[00161] 5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) are added to DMF (300 mL). The mixture is heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution is concentrated under reduced pressure. The resulting syrup is poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether is decanted and the residue is dissolved in a minimum amount of methanol (ca. 400 mL). The solution is poured into fresh ether (2.5 L) to yield a stiff gum. The

ether is decanted and the gum is dried in a vacuum oven (60°C at 1 mm

Hg for 24 h) to give a solid that is crushed to a light tan powder. The material is used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid.

5 2'-O-Methoxyethyl-5-methyluridine

10

15

25

30

[00162] 2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) are added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel is opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue is suspended in hot acetone (1 L). The insoluble salts are filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) is dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) is packed in CH₂Cl₂ /acetone /MeOH (20:5:3) containing 0.5% Et₃NH. The residue is dissolved in

CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product is eluted with the packing solvent to give the title product. Additional material can be obtained by reworking impure fractions.

20 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) is added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) is added and the reaction stirred for an additional one hour. Methanol (170 mL) is then added to stop the reaction. The solvent is evaporated and triturated with CH₃CN (200 mL) The residue is dissolved in CHCl (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase is dried over Na₂SO₄, filtered, and evaporated. The residue is purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/ acetone (5:5:1) containing 0-5% Et₃NH. The pure fractions are evaporated to give the title product.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine [00164] (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride 5 (24.38 mL, 0.258 M) are combined and stirred at room temperature for 24 hours. The reaction is monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) is added and the mixture evaporated at 35°C. The residue is dissolved in CHC1₃ (800 mL) and extracted with 10 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers are back extracted with 200 mL of CHCl₃. The combined organics are dried with sodium sulfate and evaporated to a residue. The residue is purified on a 3.5 kg silica gel column and eluted 15 using EtOAc/hexane(4:1). Pure product fractions are evaporated to yield the title compounds.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

20

25

30

[00165] A first solution is prepared by dissolving 3'-O-acetyl-2'-Omethoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) is added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. POC1₃ is added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution is added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture is stored overnight in a cold room. Salts are filtered from the reaction mixture and the solution is evaporated. The residue is dissolved in EtOAc (1 L) and the insoluble solids are removed by filtration. The filtrate is washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue is triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

[00166] A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) is stirred at room temperature for 2

bours. The dioxane solution is evaporated and the residue azeotroped with MeOH (2x200 mL). The residue is dissolved in MeOH (300 mL) and transferred to a 2-liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas is added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents are evaporated to dryness and the residue is dissolved in EtOAc (500 mL)

evaporated to dryness and the residue is dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics are dried over sodium sulfate and the solvent is evaporated to give the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-

15 methylcytidine

20

30

[00167] 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) is dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) is added with stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent is evaporated and the residue azeotroped with MeOH (200 mL). The residue is dissolved in CHCl $_3$ (700 mL) and extracted with saturated NaHCO, (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO $_4$ and evaporated to give a residue. The residue is

chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1)

containing 0-5% Et₃NH as the eluting solvent. The pure product fractions are evaporated to give the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite

[00168] N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) is dissolved in CH₂Cl₂ (1 L) Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra(isopropyl)phosphite (40.5 mL, 0.123 M) are added with stirring, under a nitrogen atmosphere. The resulting mixture is stirred for 20 hours at room

temperature (TLC showed the reaction to be 95% complete). The reaction mixture is extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes are back-extracted with CH₂Cl₂ (300 mL), and the extracts are combined, dried over

- MgSO₄, and concentrated. The residue obtained is chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give the title compound.
 - 2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites
- 10 2'-(Dimethylaminooxyethoxy) nucleoside amidites

15

20

[00169] 2'-(Dimethylaminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

- 5'-O-tert-Butyldiphenylsilyl -O² -2'-anhydro-5-methyluridine [00170] O² -2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, Italy, 100.0g, 0.4'6 mmol), dimethylaminopyridine (0.66g, 0.013eq, 0.0054mmol) are dissolved in dry pyridine (500 ml) at ambient
- 0.0054mmol) are dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8g, 119.0mL, 1.1eq, 0.458mmol) is added in one portion. The reaction is stirred for 16 h at ambient
- temperature. TLC (Rf 0.22, ethyl acetate) indicated a complete reaction. The solution is concentrated under reduced pressure to a thick oil. This is partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2xl L) and brine (1 L). The organic layer is dried over sodium sulfate and concentrated under reduced pressure to a thick oil.
- The oil is dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600mL) and the solution is cooled to -10°C. The resulting crystalline product is collected by filtration, washed with ethyl ether (3x200 mL), and dried (40°C, 1mm Hg, 24 h) to a white solid

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

[00171] In a 2 L stainless steel, unstirred pressure reactor is added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). In the fume hood and with manual stirring, ethylene glycol (350 mL, excess) is added

- cautiously at first until the evolution of hydrogen gas subsides. 5'-O-tert-Butyldiphenylsilyl-O²-2'anhydro-5-methyluridine (149 g, 0.3'1 mol) and sodium bicarbonate (0.074 g, 0.003 eq) are added with manual stirring. The reactor is sealed and heated in an oil bath until an internal temperature of 160°C is reached and then maintained for 16 h (pressure
- < 100 psig). The reaction vessel is cooled to ambient and opened. TLC (Rf 0.67 for desired product and Rf 0.82 for ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction is stopped, concentrated under reduced pressure (10 to 1mm, Hg) in a warm water bath (40-</p>
- 15 100°C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. The product will be in the organic phase.] The residue is purified by column chromatography (2kg silica gel, ethyl acetate-hexanes gradient
- 20 1:1 to 4:1). The appropriate fractions are combined, stripped, and dried to product as a white crisp foam, contaminated starting material, and pure reusable starting material.
 - 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine
- [00172] 5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine (20g, 36.98mmol) is mixed with triphenylphosphine (11.63g, 44.36mmol) and N-hydroxyphthalimide (7.24g, 44.36mmol). It is then dried over P₂O₅ under high vacuum for two days at 40°C. The reaction mixture is flushed with argon and dry THF (369.8mL, Aldrich, sure seal bottle) is added to get a clear solution. Diethylazodicarboxylate (6.98mL, 44.36mmol) is added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After

the addition is complete, the reaction is stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent is evaporated in vacuum. Residue obtained is placed on a flash column and eluted with ethyl acetate:hexane (60:40), to get 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine

5

as white foam.

[00173] 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5methyluridine (3.1g, 4.5mmol) is dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) is added dropwise at -10°C to 0°C. After 1 h the mixture is filtered, the filtrate is washed with ice cold CH₂Cl₂ and the combined organic phase is washed with water, brine and dried over anhydrous Na₂SO₄. The solution is concentrated to get 2'-

O(aminooxyethyl) thymidine, which is then dissolved in MeOH (67.5mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) is added and the resulting mixture is stirred for 1 h. Solvent is removed under vacuum; residue chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam.

5'-O-tert-Butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine

[00174] 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) is
25 dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6mL). Sodium cyanoborohydride (0.39g, 6.13mmol) is added to this solution at 10°C under inert atmosphere. The reaction mixture is stirred for 10 minutes at 10°C. After that the reaction vessel is removed from the ice bath and stirred at room temperature for 2 h, the
30 reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10mL) is added and extracted with ethyl acetate (2x20mL). Ethyl acetate phase is dried over anhydrous Na₂SO₄, evaporated to dryness. Residue is dissolved in a solution of 1M PPTS in

MeOH (30.6mL). Formaldehyde (20% w/w, 30mL, 3.37mmol) is added and the reaction mixture is stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39g, 6.13mmol) is added, and reaction mixture 5 stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture is removed from the ice bath and stirred at room temperature for 2 hrs. To the reaction mixture 5% NaHCO₃ (25mL) solution is added and extracted with ethyl acetate (2x25mL). Ethyl acetate layer is dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue obtained is purified by flash column chromatography and eluted with 5% MeOH in 10 CH₂Cl₂ to get 5'-O-tertbutyldiphenylsilyl-2'-O-[N,Ndimethylaminooxyethyll-5- methyluridine as a white foam. 2'-O-(dimethylaminooxyethyl)-5-methyluridine Triethylamine trihydrofluoride (3.91mL, 24.0mmol) is [00175] dissolved in dry THF and triethylamine (1.67mL, 12mmol, dry, kept 15 over KOH). This mixture of triethylamine-2HF is then added to 5'-Otert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5methyluridine (1.40g, 2.4mmol) and stirred at room temperature for 24 hrs. Reaction is monitored by TLC (5% MeOH in CH₂Cl₂). Solvent is 20 removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH2Cl2 to get 2'-O-(dimethylaminooxyethyl)-5-methyluridine. 5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine [00176] 2'-O-(dimethylaminooxyethyl)-5-methyluridine (750mg, 25 2.17mmol) is dried over P₂O₅ under high vacuum overnight at 40°C. It is then co-evaporated with anhydrous pyridine (20mL). The residue obtained is dissolved in pyridine (11mL) under argon atmosphere. 4dimethylaminopyridine (26.5mg, 2.60mmol), 4,4'-dimethoxytrityl chloride (880mg, 2.60mmol) is added to the mixture and the reaction mixture is stirred at room temperature until all of the starting material 30

disappeared. Pyridine is removed under vacuum and the residue

chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a

few drops of pyridine) to get 5'-O-DMT-2'-0(dimethylamino-oxyethyl)-5-methyluridine.

- 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]
- 5 [00177] 5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08g, 1.67mmol) is co-evaporated with toluene (20mL). To the residue N,N-diisopropylamine tetrazonide (0.29g, 1.67mmol) is added and dried over P20, under high vacuum overnight at 40°C. Then the reaction mixture is dissolved in anhydrous acetonitrile (8.4mL) and 2-
- cyanoethyl-N,N,N¹,N¹-tetraisopropylphosphoramidite (2.12mL, 6.08mmol) is added. The reaction mixture is stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction is monitored by TLC (hexane:ethyl acetate 1:1). The solvent is evaporated, then the residue is dissolved in ethyl acetate (70mL) and
- washed with 5% aqueous NaHCO₃ (40mL). Ethyl acetate layer is dried over anhydrous Na₂SO₄ and concentrated. Residue obtained is chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam.
- 20 2'-(Aminooxyethoxy) nucleoside amidites

30

- [00178] 2'-(Aminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(aminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.
- 25 N2-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]
 - [00179] The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-O-

(2ethylacetyl)guanosine by treatment with adenosine deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 Al 940203.) Standard protection procedures should afford 2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine and 2-N-isobutyryl-6-

- O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine which may be reduced to provide 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may phosphitylated as usual to yield 2-N-
- protected nucleoside may phosphitylated as usual to yield 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramiditel.

2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

- 15 [00180] 2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.
 - 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine
- 20 [00181] 2[2-(Dimethylamino)ethoxylethanol (Aldrich, 6.66 g, 50 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL bomb. Hydrogen gas evolves as the solid dissolves. O²-, 2' anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) are added and the bomb is
- sealed, placed in an oil bath, and heated to 155°C for 26 hours. The bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the

30

combined organic layers are washed once with water, dried over anhydrous sodium sulfate, and concentrated. The residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethylamine) as the eluent. As the column fractions are concentrated a

colorless solid forms which is collected to give the title compound as a white solid.

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

- 5 [00182] To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)1-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH: CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.
- 5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

[00183] Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxyN,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

Oligonucleotide synthesis

[00184] Unsubstituted and substituted phosphodiester (P=O)

30 oligonucleotides are synthesized on an automated DNA synthesizer

(Applied Biosystems model 380B) using standard phosphoramidite
chemistry with oxidation by iodine.

[00185] Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle is replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The

- thiation wait step is increased to 68 sec and is followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides are purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as
- described in U.S. Patent 5,508,270, herein incorporated by reference.

[00186] Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

[00187] 3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

[00188] Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

[00189] Alkylphosphonothioate oligonucleotides are prepared as described in WO 94/17093 and WO 94/02499 herein incorporated by reference.

[00190] 3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

25 [00191] Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

[00192] Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

30

15

Example 3

Oligonucleoside Synthesis

[00193] Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides,

- also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825; 5,386,023; 5,489,677;
- 5,602,240; and 5,610,289, all of which are herein incorporated by reference.
 - [00194] Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.
- 15 **[00195]** Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

- 20 [00196] Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 523. They may also be prepared in accordance with U.S. Patents 5,539,082; 5,700,922; and 5,719,262,
- 25 herein incorporated by reference.

Example 5

30

Synthesis of Chimeric Oligonucleotides

[00197] Chimeric oligonucleotides, oligonucleosides, or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap"

segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

5 2'-O-Me]--[2'-deoxy]--[2'-O-Me] Chimeric Phosphorothioate Oligonucleotides

10

15

20

25

[00198] Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-Ophosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-Omethyl-3'-O-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-O-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample is again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then guenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[00199] [2'-O-(2-Methoxyethyl)]—[2'-deoxy]—[2'-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides [00200] [2'-O-(2-methoxyethyl)]—[2'-deoxy]—[-2'-O-

30 (methoxyethyl)] chimeric phosphorothioate oligonucleotides are prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of phorothioate oligonucleotides

are prepared as per the procedure above for 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-O-(2-Methoxyethyl)Phosphodiester]--[2'-deoxy Phosphorothioate]--[2'-O-(2-Methoxyethyl)] Phosphodiester]

5 Chimeric Oligonucleotides

[00201] [2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methcixyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-

- (methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.
- 15 [00202] Other chimeric oligonucleotides, chimeric oligonucleosides, and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

20 Example 6

Oligonucleotide Isolation

[00203] After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides are analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full-length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis are periodically checked by "P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides are purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171.

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

[00204] Oligonucleotides are synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of

5 assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages are afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages are generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites can be purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected betacyanoethyldiisopropyl phosphoramidites.

15 [00205] Oligonucleotides are cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product is then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic
20 pipettors.

Example 8

Oligonucleotide Analysis - 96 Well Plate Format

[00206] The concentration of oligonucleotide in each well is assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products is evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition is confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates are diluted from the master plate using single and multi-channel robotic pipettors. Plates

are judged to be acceptable if at least 85% of the compounds on the plate are at least 85% full length.

Example 9

5 Cell culture and oligonucleotide treatment

[00207] The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis.

The following 6 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

15 T-24 cells:

[00208] The human transitional cell bladder carcinoma cell line T-24 is obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells are routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies, Gaithersburg, MD)

- supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD).
 Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-
- 25 Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[00209] For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

30 A549 cells:

[00210] The human lung carcinoma cell line A549 can be obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells are routinely cultured in DMEM basal media (Gibco/Life

Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

5

[00211] Human neonatal dermal fibroblast (NHDF) can be obtained from the Clonetics Corporation (Walkersville MD). NHDFs are routinely maintained in Fibroblast Growth Medium (Clonetics

10 Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells are maintained for up to 10 passages as recommended by the supplier.

HEK cells:

[00212] Human embryonic keratinocytes (HEK) can be obtained from the Clonetics Corporation (Walkersville MD). HEKs are routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville MD) formulated as recommended by the supplier. Cells are routinely maintained for up to 10 passages as recommended by the supplier.

20 MCF-7 cells:

25

30

[00213] The human breast carcinoma cell line MCF-7 is obtained from the American Type Colure Collection (Manassas, VA). MCF-7 cells are routinely cultured in DMEM low glucose (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[00214] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly,

using appropriate volumes of medium and oligonucleotide.

LA4 cells:

[00215] The mouse lung epithelial cell line LA4 is obtained from the American Type Colure Collection (Manassas, VA). LA4 cells are routinely cultured in F12K medium (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 15% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 3000-6000 cells/ well for use in RT-PCR analysis.

[00216] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

[00217] When cells reached 80% confluence, they are treated with oligonucleotide. For cells grown in 96-well plates, wells are washed once with 200 μL OPTI-MEMTM-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16-24 hours after oligonucleotide treatment.

[00218] The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations.

25

30

5

10

15

20

Example 10

Analysis of oligonucleotide inhibition of ESM-1 expression

[00219] Antisense modulation of ESM-1 expression can be assayed in a variety of ways known in the art. For example, ESM-1 mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA

isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3. John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley 5 & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Prior to quantitative PCR analysis, primer-probe sets specific to the target 10 gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-15 probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope 20 and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed as multiplexable. Other methods of PCR are also known in the art. Protein levels of ESM-1 can be quantitated in a variety of 25 [00220]

ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to ESM-1 can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John

Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.4.1-11.11.5, John Wiley Sons, Inc., 1997.

[00221] Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.110.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

15

Example 11

Poly(A)+ mRNA isolation

Poly(A)+ mRNA is isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA 20 isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium is removed from the cells and each well is washed with 200 µL cold PBS. 60µL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 25 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) is added to each well, the plate is gently agitated and then incubated at room temperature for five minutes. 55 µL of lysate is transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates are incubated for 60 minutes at room temperature, washed 3 times with 200 30 μL of wash buffer (10 mM Tris-HC1 pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate is blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 pL of

elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C is added to

each well, the plate is incubated on a 90°C hot plate for 5 minutes, and the eluate is then transferred to a fresh 96-well plate.

[00223] Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

5

10

15

20

25

30

Example 12

Total RNA Isolation

Total mRNA is isolated using an RNEASY 96[™] kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96well plates, growth medium is removed from the cells and each well is washed with 200 μL cold PBS. 100 μL Buffer RLT is added to each well and the plate vigorously agitated for 20 seconds. 100 μL of 70% ethanol is then added to each well and the contents mixed by pipetting three times up and down. The samples are then transferred to the RNEASY 96[™] well plate attached to a QIAVAC[™] manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum is applied for 15 seconds. 1 mL of Buffer RW1 is added to each well of the RNEASY 96[™] plate and the vacuum again applied for 15 seconds, 1 mL of Buffer RPE is then added to each well of the RNEASY 96[™] plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash is then repeated and the vacuum is applied for an additional 10 minutes. The plate is then removed from the QIAVAC[™] manifold and blotted dry on paper towels. The plate is then re-attached to the QIAVAC[™] manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA is then eluted by pipetting 60 µL water into each well, incubating one minute, and then applying the vacuum for 30 seconds. The elution step is repeated with an additional 60µL water. The repetitive pipetting and elution steps may be automated [00225] using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

Real-time Quantitative PCR Analysis of ESM-1 mRNA Levels [00226] Real-time quantitative reverse transcription polymerase chain 5 reaction experiments show ESM-1 mRNA expression at levels of threefold or higher at the mRNA level in nine out of ten tumors when compared to the normal tissue (Figure 2). Quantitation of ESM-1 mRNA levels were determined by real-time quantitative PCR using the ABI $PRISM^{TM}$ 7700 Sequence Detection System (PE-Applied Biosystems, 10 Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed. 15 products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAMTM, or VIC, obtained from either Operon Technologies 20 Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is 25 quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific 30 fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence

intensity is monitored at regular intervals by laser optics built into the

ABI PRISM[™] 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

5

10

15

20

30

[00227] PCR reagents were obtained from PE-Applied Biosystems. Foster City, CA. RT-PCR reactions were carried out by adding 25µL PCR cocktail (1x TAQMAN[™] buffer A, 5.5 MM MgCl₂, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD[™], and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 µL poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLD[™], 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension). [00228] Probes and primers to human ESM-1 were designed to hybridize to a human ESM-1 sequence, using published sequence, information (GenBank accession number NM 007036, incorporated herein as Figure 1. For human ESM-1 the PCR primers were: forward primer: CTGCTTCCCACCAGCAAAG SEQ ID NO:2001 reverse primer: GCAAGACGCTCTTCATGTTTCC SEQ ID NO: 2002 and the PCR probe is: FAMTM- CGACTGGAGAGCCGAGCCGGA SEQ ID

25 City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For human cyclophilin the PCR primers were: forward primer: CCCACCGTGTTCTTCGACAT SEQ ID NO: 2004

NO;2003 -TAMRA where FAMTM (PE-Applied Biosystems, Foster

reverse primer: TTTCTGCTGTCTTTGGGACCTT SEQ ID NO: 2004

and the PCR probe is: 5' JOE- CGCGTCTCCTTTGAGCTGTTTGCA SEQ

ID NO: 2006 - TAMRA 3' where JOE (PE-Applied Biosystems,

Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Example 14

5 Antisense inhibition of human ESM-1 expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

[00229]In accordance with the present invention, a series of oligonucleotides are designed to target different regions of the human 10 ESM-1 RNA, using published sequences (NM_007036, incorporated herein as Figure 1. The oligonucleotides are shown in Table 1. "Position" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. The indicated parameters for each oligo were predicted using RNAstructure 15 3.7 by David H. Mathews, Michael Zuker, and Douglas H. Turner. The parameters are described either as free energy (The energy that is released when a reaction occurs. The more negative the number, the more likely the reaction will occur. All free energy units are in kcal/mol.) or melting temperature (temperature at which two anneal 20 strands of polynucleic acid separate). The higher the temperature, the greater the affinity between the two strands. When designing an antisense oligonucleotide that will bind with high affinity, it is desirable to consider the structure of the target RNA strand and the antisense oligomer. Specifically, for an oligomer to bind tightly (in the table described as 'duplex formation'), it should be complementary to a 25 stretch of target RNA that has little self-structure (in the table the free energy of which is described as 'target structure'). Also, the oligomer should have little self-structure, either intramolecular (in the table the free energy of which is described as 'intramolecular oligo') or 30 bimolecular (in the table the free energy of which is described as 'intermolecular oligo'). Breaking up any self-structure amounts to a binding penalty. All compounds in Table 1 are chimeric

oligonucleotides ("gapmers") 20 nucleotides in length, composed of a

central "gap" region consisting of ten 2'deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S)

5 throughout the oligonucleotide. Cytidine residues in the 2'-MOE wings are 5-methylcytidines. All cytidine residues are 5-methylcytidines.

TABLE 1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
31	GCTCGGCTCTCCAGTCGTGG SEQ ID NO;1	-25.9	-31	85.7	-3.4	-1.7	-7.1
32	GGCTCGGCTCTCCAGTCGTG SEQ ID NO; 2	-25.9	-31	85.7	-3.4	-1.7	-9.6
28	CGGCTCTCCAGTCGTGGTCT SEQ ID NO; 3	-25.7	-30.4	84.9	-3.4	-1.2	-6.1
30	CTCGGCTCTCCAGTCGTGGT SEQ ID NO; 4	-25.3	-30.4	84.9	-3.4	-1.7	-6.1
923	GCCTAGCTCCCTCTTTGGTT SEQ ID NO; 5	-25.3	-30.4	85.5	-5.1	0	-6.2
33	CGGCTCGGCTCTCCAGTCGT SEQ ID NO; 6	-25.1	-31.8	85.2	-4.7	-2	-9.6
27	GGCTCTCCAGTCGTGGTCTT SEQ ID NO; 7	-25 .	-29.7	86.1	-3.4	-1.2	-6.1
928	GCTTTGCCTAGCTCCCTCTT SEQ ID NO; 8	-24.9	-30.7	85.6	-5.1	-0.4	-6.2
29	TCGGCTCTCCAGTCGTGGTC SEQ ID NO; 9	-24.8	-29.9	84.8	-3.4	-1.7	-6.1
924	TGCCTAGCTCCCTCTTTGGT SEQ ID NO;10	-24.6	-30.3	84.8	-5.1	-0.3	-4.6
26	GCTCTCCAGTCGTGGTCTTT SEQ ID NO;11	-24.4	-28.6	83.7	-3.4	-0.6	-5.2
929	AGCTTTGCCTAGCTCCCTCT SEQ ID NO;12	-24.2	-30.6	85.6	-5.1	-1.2	-7.7
930	CAGCTTTGCCTAGCTCCCTC SEQ ID NO;13	-23.9	-30.4	84.6	-5.1	-1.3	-7.8
931	TCAGCTTTGCCTAGCTCCCT SEQ ID NO;14	-23.9 '	-30.4	84.6	-5.1	-1.3	-7.8
1265	ACCGTCCTTCAGATACAGGT SEQ ID NO;15	-23.9	-26.3	74.5	-1.9	-0.1	-4.5
240	GTTTCTCCCCGCCCTGCAGC SEQ ID NO;16	-23.6	-34.9	90.4	-10.6	-0.4	-8.1

		kcal/	kcal/		kcal/		
		mo1	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
925	TTGCCTAGCTCCCTCTTTGG SEQ ID NO;17	-23.5	-29.2	81.5	-5.1	-0.3	-4.8
1264	CCGTCCTTCAGATACAGGTA SEQ ID NO;18	-23.4	-25.8	73.4	-1.9	-0.1	-3.9
927	SEQ ID NO; 19	-23.3	-29	81.5	-5.1	-0.3	-4.8
932	TTCAGCTTTGCCTAGCTCCC SEQ ID NO; 20	-23.1	-29.6	83	-5.1	-1.3	-7.8
241	AGTTTCTCCCCGCCCTGCAG SEQ ID NO; 21	-23	-33.1	86.5	-9.4	-0.4	-7.8
243	CAAGTTTCTCCCCGCCCTGC SEQ ID NO; 22	-23	-32.4	83.6	-9.4	0	-2.8
244	GCAAGTTTCTCCCCGCCTG SEQ ID NO;23	-23	-32.4	83.6	-9.4	0	-3.4
245	AGCAAGTTTCTCCCCGCCCT SEQ ID NO;24	-23	-32.4	84.1	-9.4	0 .	-4.1
926	TTTGCCTAGCTCCCTCTTTG SEQ ID NO; 25	-22.4	-28.1	79.3	-5.1	-0.3	-4.8
242	AAGTTTCTCCCCGCCCTGCA SEQ ID NO; 26	-22.3	-32.4	83.6	-9.4	-0.4	-4.7
20	CAGTCGTGGTCTTTGCTGGT SEQ ID NO; 27	-22	-27.3	80	-5.3	0	-3.6
246	TAGCAAGTTTCTCCCCGCCC SEQ ID NO; 28	-21.8	-31.2	81.8	-9.4	0	-4.1
21	CCAGTCGTGGTCTTTGCTGG SEQ ID NO; 29	-21.7	-28.1	80	-5.3	-1	-5.3
23	CTCCAGTCGTGGTCTTTGCT SEQ ID NO; 30	-21.6	-28.2	81.4	-5.3	-1.2	-6
34	CCGGCTCGGCTCTCCAGTCG SEQ ID NO;31	-21.5	-32.6	84.9	-8.9	-2.2	-8.5
19	AGTCGTGGTCTTTGCTGGTG SEQ ID NO; 32	-21.3	-26.6	78.7	-5.3	0	-3.6
199	GTCGTCGAGCACTGTCCTCT SEQ ID NO;33	-21.2	-28.8	81.5	-7	-0.3	-4.9
24	TCTCCAGTCGTGGTCTTTGC SEQ ID NO; 34	-21.1	-27.7	81.3	-5.3	-1.2	-5
247	GTAGCAAGTTTCTCCCCGCC SEQ ID NO; 35	-21	-30.4	81.9	-9.4	0	-4.1
1024	CCTCCCATCTTCTCCTGCT SEQ ID NO; 36	-21	~32.7	87.6	-11.7	0	~3.6
200	AGTCGTCGAGCACTGTCCTC SEQ ID NO; 37	-20.9	-27.9	79.9	-7	0	-5.3
191	GCACTGTCCTCTTGCAGCGC SEQ ID NO;38	-20.8	-30.4	84.4	-8.7	-0.8	-8
22	TCCAGTCGTGGTCTTTGCTG SEQ ID NO;39	-20.7	-27.3	79.1	-5.3	-1.2	-6
196	GTCGAGCACTGTCCTCTTGC SEQ ID NO; 40	-20.7	-28.3	81.2	-7	-0.3	-5.7
198	TCGTCGAGCACTGTCCTCTT SEQ ID NO;41	-20.7	-27.7	78.3	-7	0.2	-4.9
922	CCTAGCTCCCTCTTTGGTTG SEQ ID NO; 42	-20.7	-28.6	80.6	-7.9	0	-6.2
1263	CGTCCTTCAGATACAGGTAA SEQ ID NO;43	-20.7	-23.1	67.4	-1.9	-0.1	-3.9
35	TCCGGCTCGGCTCTCCAGTC SEQ ID NO; 44	-20.6	-32.2	87.6	-10.1	-1.4	-8.5
1023	CTCCCCATCTTCTCCTGCTC SEQ ID NO; 45	-20.5	-31.1	86.1	-10.6	0	-3.6
201	CAGTCGTCGAGCACTGTCCT SEQ ID NO;46	-20.4	-28.2	79.1	-7	-0.5	-8.4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
36	CTCCGGCTCGGCTCTCCAGT SEQ ID NO; 47	-20.1	-32.7	87.6	-11.1	-1.4	-8.5
327	CCAAAAGGATCCTCCCCATT SEQ ID NO;48	-20	-26.9	70.9	-5.8	-0.9	-9.4
328	ACCAAAAGGATCCTCCCCAT SEQ ID NO; 49	-20	-27	71	-5.8	-0.9	-9.9
190	CACTGTCCTCTTGCAGCGCG SEQ ID NO;50	-19.8	-29.4	79.5	-8.7	-0.6	-9
919	AGCTCCCTCTTTGGTTGACC SEQ ID NO;51	-19.8	-28.8	81.2	-9	0	-5.7
197	CGTCGAGCACTGTCCTCTTG SEQ ID NO;52	-19.7	-27.3	76.3	-7	-0.3	-4.9
1022	TCCCCATCTTCTCCTGCTCT SEQ ID NO;53	-19.6	-31.1	86.1	-11.5	0	-3.6
239	TTTCTCCCCGCCCTGCAGCG SEQ ID NO;54	-19.2	-34.5	86.2	-13.7	-1,5	-9.4
18	GTCGTGGTCTTTGCTGGTGG SEQ ID NO;55	-19.1	-27.8	81.1	-8.7	0	-3.6
248	GGTAGCAAGTTTCTCCCCGC SEQ ID NO;56	-19	-29.6	81	-10.6	0	-4.1
1266	AACCGTCCTTCAGATACAGG SEQ ID NO;57	-18.8	-24.4	68.9	-5.6	0	-4
1025	CCCTCCCCATCTTCTCCTGC SEQ ID NO;58	-18.7	-33.8	88.9	-15.1	0	-2.6
202	ACAGTCGTCGAGCACTGTCC SEQ ID NO;59	-18.6	-27.5	77.7	-7	-1.8	-11
442	TTTCAGGCATTTTCCCGTCC SEQ ID NO;60	-18.5	-28.1	78	-9.6	0.7	-4
1538	TTATCATGCCTCAGATGTTT SEQ ID NO;61	-18.5	-22.7	68	-4.2	0	-4.4
1539	TTTATCATGCCTCAGATGTT SEQ ID NO; 62	-18.5	-22.7	68	-4.2	0	-3.8
1021	CCCCATCTTCTCCTGCTCTT SEQ ID NO;63	-18.4	-30.8	84.6	-12.4	0	-3.6
1531	GCCTCAGATGTTTGAAAACC SEQ ID NO;64	-18.4	-22.5	64.6	-3.6	-0.1	-5.7
1537	TATCATGCCTCAGATGTTTG SEQ ID NO;65	-18.4	-22.6	67.5	-4.2	0	-4.4
192	AGCACTGTCCTCTTGCAGCG SEQ ID NO; 66	-18.3	-28.6	80.3	-8.7	-1.6	-6.5
585	TTCCTCATTACGGGAGACCC SEQ ID NO; 67	-18.3	-27.1	74.2	-7.4	-1.3	-5.5
936	GGTCTTCAGCTTTGCCTAGC SEQ ID NO; 68	-18.3	-28	82.3	-9	-0.4	-6.2
1352	AGTGGGTAAAATACTTCTTA SEQ ID NO;69	-18.2	-18.4	57.7	0	0.6	-3.7
37	CCTCCGGCTCGGCTCTCCAG SEQ ID NO;70	-18.1	-33.5	87.2	-13.9	-1.4	-8.5
193	GAGCACTGTCCTCTTGCAGC SEQ ID NO;71	-18.1	-28.4	82.2	-8.7	-1.6	-5.5
915	CCCTCTTTGGTTGACCTGTC SEQ ID NO;72	-18.1	-28.2	79.8	-10.1	0	-6.7
1351	GTGGGTAAAATACTTCTTAG SEQ ID NO;73	-17.9	-18.4	57.7	0	-0.2	-3.3
326	CAAAAGGATCCTCCCCATTA SEQ ID NO;74	÷17.8	-24.6	67.1	-5.8	-0.1	-9.9
437	GGCATTTTCCCGTCCCCTG SEQ ID NO;75	-17.7	-33.7	85.7	-16	0	-4
443	ATTTCAGGCATTTTCCCGTC SEQ ID NO;76	-17.7	-26.1	74.4	-7.9	-0.1	-4

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
533	CAATATTGCCATCTCCAGAT SEQ ID NO;77	-17.7	-23.3	66.8	-5.6	0	-6.8
921	CTAGCTCCCTCTTTGGTTGA SEQ ID NO;78	-17.7	-27.2	78.4	-9.5	0	-6.2
1597	GCTCATTTTTTGACATTTTT SEQ ID NO;79	-17.6	-20.2	62.5	-2.1	-0.1	-2.6
238	TTCTCCCCGCCCTGCAGCGC SEQ ID NO;80	-17.5	-36.2	89.8	-17	-1.7	-9.7
1027	CCCCCTCCCCATCTTCTCCT SEQ ID NO;81	-17.5	-36	91.2	-18.5	0	-0.5
1598	TGCTCATTTTTTGACATTTT SEQ ID NO;82	-17.5	-20.1	62.1	-2.1	-0.1	-3.3
329	CACCAAAAGGATCCTCCCCA SEQ ID NO;83	-17.4	-27.7	72.1	-9.1	-0.9	-9.9
1599	TTGCTCATTTTTTGACATTT SEQ ID NO;84	-17.4	-20.1	62.1	-2.1	-0.2	-3.3
534	ACAATATTGCCATCTCCAGA SEQ ID NO;85	-17.3	-23.5	67.4	-5.6	0	-8.5
1349	GGGTAAAATACTTCTTAGAT SEQ ID NO;86	-17.3	-17.8	56.1	0	-0.2	-4.3
1350	TGGGTAAAATACTTCTTAGA SEQ ID NO;87	-17.3	-17.8	56.1	0	-0.2	-4.3
438	AGGCATTTTCCCGTCCCCT SEQ ID NO;88	-17.2	-33.7	86.3	-16	-0.1	-4
194	CGAGCACTGTCCTCTTGCAG SEQ ID NO;89	-17.1	-27.4	77.2	-8.7	-1.6	-6.5
469	GGTTACTGAATATTGGAAGA SEQ ID NO;90	-17.1	-18.7	57.9	-1.6	0	-4.6
678	AAAGTTCCTAAAATGTTGGC SEQ ID NO;91	-17.1	-19.1	57.8	-2	0	-3.1
937	CGGTCTTCAGCTTTGCCTAG SEQ ID NO;92	-17.1	-27	77.1	-9.9	0	-4.5
1032	TCCCACCCCTCCCCATCTT SEQ ID NO;93	-17.1	-36.7	90.2	-19.6	0	-0.5
914	CCTCTTTGGTTGACCTGTCT SEQ ID NO;94	-17	-27.1	78.2	-10.1	0	-6.7
364	GCCGTAGGGACAGTCTTTGC SEQ ID NO;95	-16.8	-27.9	79.2	-9.5	-1.5	-8.4
586	TTTCCTCATTACGGGAGACC SEQ ID NO;96	-16.8	-25.2	71.1	-7.4	-0.9	-5.1
1028	ACCCCCTCCCCATCTTCTCC SEQ ID NO;97	-16.8	-35.3	90	-18.5	0	-0.5
25	CTCTCCAGTCGTGGTCTTTG SEQ ID NO:98	-16.7	-26.8	78.6	-8.8	-1.2	-5
235	TCCCCGCCCTGCAGCGCACA SEQ ID NO:99	-16.7	-36.4	88.2	-18	-1.7	-10
1421	ATGACTTGCACTAACACATT SEQ ID NO:100	-16.7	-20.3	60.8	-3.6	0	-5
444	AATTTCAGGCATTTTCCCGT SEQ ID NO:101	-16.6	-25	70.4	-7.9	-0.1	-4
237	TCTCCCCGCCCTGCAGCGCA SEQ ID NO:102	-16.5	-36.8	90.3	-18.6	-1.7	-10.5
441	TTCAGGCATTTTCCCGTCCC SEQ ID NO:103	-16.5	-30	81.1	-13	-0.1	-3.3
1354	CCAGTGGGTAAAATACTTCT SEQ ID NO:104	-16.5	-21.3	63	-4.3	-0.2	-6.7
1262	GTCCTTCAGATACAGGTAAC SEQ ID NO:105	-16.4	-22.5	67.8	-5.6	-0.1	-3.9
1708	CTGCTGAAAATTGATTCTTC SEQ ID NO:106	-16.4	-18.7	57.7	-2.3	0.4	-3.6

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
539	CTCTCACAATATTGCCATCT SEQ ID NO:107	-16.3	-23.1	67.5	-6.2	0	-8.5
778	GGATGTTATGGATTGTAAGT SEQ ID NO:108	-16.3	-20.1	62.2	-3.8	0	-2.2
938	GCGGTCTTCAGCTTTGCCTA SEQ ID NO:109	-16.3	-28.8	81.3	-12.5	0	-4.5
1419	GACTTGCACTAACACATTTA SEQ ID NO:110	-16.3	-20.1	60.7	-3.8	0	~5
1420	TGACTTGCACTAACACATTT SEQ ID NO:111	-16.3	-20.4	61.1	-4.1	0	-4.7
1272	CCCCAGAACCGTCCTTCAGA SEQ ID NO:112	-16.2	-29.9	77.8	-13.7	0.6	-2.7
1348	GGTAAAATACTTCTTAGATT SEQ ID NO:113	-16.2	-16.7	53.9	0	-0.2	-4.3
189	ACTGTCCTCTTGCAGCGCGG SEQ ID NO:114	-16.1	~29.9	81	-12.9	-0.6	-9
393	CAGGTCTCTCTGCAATCCAT SEQ ID NO:115	-16.1	-25.9	75.1	-9.8	0	-4.9
677	AAGTTCCTAAAATGTTGGCT SEQ ID NO:116	-16.1	-20.7	61.5	-4.6	0	-3.9
769	GGATTGTAAGTATCCTACTT SEQ ID NO:117	-16.1	-21.2	64.5	-3.8	-1.2	-5.5
774	GTTATGGATTGTAAGTATCC SEQ ID NO:118	-16.1	-20.4	63.1	-3.8	-0.1	-4.4
939	TGCGGTCTTCAGCTTTGCCT SEQ ID NO:119	-16.1	-29.1	81.7	-12.3	-0.5	-4.5
940	CTGCGGTCTTCAGCTTTGCC SEQ ID NO:120	-16.1	-29.1	81.7	-12.3	-0.5	-4.5
1353	CAGTGGGTAAAATACTTCTT SEQ ID NO:121	-16.1	-19.4	59.6	-2.8	-0.2	-4.8
934	TCTTCAGCTTTGCCTAGCTC SEQ ID NO:122	-16	-26.9	79.6	-9.7	-1.1	-7.6
1605	CCTCTGTTGCTCATTTTTTG SEQ ID NO:123	-16	-23.8	70.9	-7.8	0	-3.6
17	TCGTGGTCTTTGCTGGTGGG SEQ ID NO:124	-15.9	-27.8	80.1	-11.9	0	-3.6
436	GCATTTTCCCGTCCCCCTGT SEQ ID NO:125	-15.9	-33.7	86.7	-17.8	0	-3.4
679	GAAAGTTCCTAAAATGTTGG SEQ ID NO:126	-15.9	-17.9	55.2	-2	0	-2.9
1267	GAACCGTCCTTCAGATACAG SEQ ID NO:127	-15.9	-23.8	67.7	-7.9	0	-3.1
1596	CTCATTTTTTGACATTTTTT SEQ ID NO:128	-15.9	-18.5	58.6	-2.1	0.1	-2.6
1706	GCTGAAAATTGATTCTTCTT SEQ ID NO:129	-15.9	-18.8	58.1	-2.3	-0.3	-4.9
1903	ATTCACAACTCTGTTGGCCA SEQ ID NO:130	-15.9	-24.8	71.3	-7.8	-0.9	-9.5
, 203	CACAGTCGTCGAGCACTGTC SEQ ID NO:131	-15.8	-26.2	75.2	-8.3	-2	-11.2
1280	TTCCTATGCCCCAGAACCGT SEQ ID NO:132	-15.8	-29.7	77	-13.9	0	-3
1707	TGCTGAAAATTGATTCTTCT SEQ ID NO:133	-15.8	-18.7	57.7	-2.3	-0.3	-4.9
1709	TCTGCTGAAAATTGATTCTT SEQ ID NO:134	-15.8	-18.7	57.7	-2.3	-0.3	-4.7
1710	TTCTGCTGAAAATTGATTCT SEQ ID NO:135	-15.8	-18.7	57.7	-2.3	-0.3	-6.6
770	TGGATTGTAAGTATCCTACT SEQ ID NO:136	-15.7	-21.1	64.1	-3.8	-1.6	-5.2

		kca1/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
912	TCTTTGGTTGACCTGTCTCC SEQ ID NO:137	-15.7	-26.6	78	-10.9	0	-6
917	CTCCCTCTTTGGTTGACCTG SEQ ID NO:138	-15.7	-27.9	78.2	-12.2	0	-6.7
1030	CCACCCCCTCCCCATCTTCT SEQ ID NO:139	-15.7	-35.6	89	-19.9	0	-0.5
1532	TGCCTCAGATGTTTGAAAAC SEQ ID NO:140	-15.7	-20.5	60.9	-4.8	0	-5.3
1026	CCCCTCCCCATCTTCTCCTG SEQ ID NO:141	-15.6	-34	87.8	-18.4	0	-1.4
1033	CTCCCACCCCTCCCCATCT SEQ ID NO:142	-15.6	-37.5	91.6	-21.9	0	-0.5
1606	CCCTCTGTTGCTCATTTTTT SEQ ID NO:143	-15.6	-25.8	74.8	-10.2	0	-3.6
16	CGTGGTCTTTGCTGGTGGGA SEQ ID NO:144	-15.5	-28	79.6	-12.5	0	-3.6
764	GTAAGTATCCTACTTTTTGT SEQ ID NO:145	-15.5	-20.8	64.5	-3.8	-1.4	-5.1
781	TATGGATGTTATGGATTGTA SEQ ID NO:146	-15.5	-19.3	60.2	-3.8	0	-1.3
1029	CACCCCCTCCCCATCTTCTC SEQ ID NO:147	-15.5	-34	87.7	-18.5	0	-0.5
1036	CCACTCCCACCCCTCCCCA SEQ ID NO:148	-15.5	-39.1	92.4	-23.6	0	0
1260	CCTTCAGATACAGGTAACCC SEQ ID NO:149	-15.5	-24.9	70.3	-9.4	0	-4
1781	ACAGTCCTGTTTGTGCTAAG SEQ ID NO:150	-15.5	-23.7	70.7	-8.2	0	-6.1
210	CAGCAGCCACAGTCGTCGAG SEQ ID NO:151	-15.4	-28	77.3	-12.6	0	-4.9
913	CTCTTTGGTTGACCTGTCTC SEQ ID NO:152	-15.4	-25.5	76.2	-10.1	0	-6.7
916	TCCCTCTTTGGTTGACCTGT SEQ ID NO:153	-15.4	-28.2	79.8	-12.8	0	-6.7
1530	CCTCAGATGTTTGAAAACCT SEQ ID NO:154	-15.4	-21.6	62.5	-5.7	-0.1	-5.7
918	GCTCCCTCTTTGGTTGACCT SEQ ID NO:155	-15.3	-29.7	82.9	-14.4	0	-6.7
330	TCACCAAAAGGATCCTCCCC SEQ ID NO:156	-15.2	-27.4	72.5	-11	-0.9	-9.9
538	TCTCACAATATTGCCATCTC SEQ ID NO:157	-15.2	-22.6	67.1	-6.9	0	-7.6
587	ATTTCCTCATTACGGGAGAC SEQ ID NO:158	-15.2	-23.2	67.5	-7.4	-0.3	-4.2
682	CTAGAAAGTTCCTAAAATGT SEQ ID NO:159	-15.2	-17.2	54	-2	0	-3.7
1347	GTAAAATACTTCTTAGATTT SEQ ID NO:160	-15.2	-15.6	51.7	0	0	-3.7
1600	GTTGCTCATTTTTTGACATT SEQ ID NO:161	-15.2	-21.2	65	-5.5	-0.2	-3.3
195	TCGAGCACTGTCCTCTTGCA SEQ ID NO:162	-15.1	-27.8	78.6	-11.1	-1.6	-6.3
319	ATCCTCCCCATTAGAAGGCT SEQ ID NO:163	-15.1	-28	76.5	-12.9	0	-3.7
394	GCAGGTCTCTCTGCAATCCA SEQ ID NO:164	-15.1	-27.7	79.7	-9.8 .	-2.8	-8.2
440	TCAGGCATTTTCCCGTCCCC SEQ ID NO:165	-15.1	-31.9	84	-16.3	-0.1	-4
779	TGGATGTTATGGATTGTAAG SEQ ID NO:166	-15.1	-18.9	58.9	-3.8	0	-2.2

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
780	ATGGATGTTATGGATTGTAA SEQ ID NO:167	-15.1	-18.9	58.7	-3.8	0	-2.2
1037	CCCACTCCCACCCCTCCCC SEQ ID NO:168	-15.1	-40.4	94.4	-25.3	0	0
1780	CAGTCCTGTTTGTGCTAAGA SEQ ID NO:169	-15.1	-24.1	71.5	-9	0	-3.6
320	GATCCTCCCCATTAGAAGGC SEQ ID NO:170	-15	-27.7	75.9	-12.7	0	-3.5
365	TGCCGTAGGGACAGTCTTTG SEQ ID NO:171	-15	-26.1	74.5	-9.5	-1.5	-8.4
782	ATATGGATGTTATGGATTGT SEQ ID NO:172	-15	-19.6	60.8	-4.6	0	-1.8
249	CGGTAGCAAGTTTCTCCCCG SEQ ID NO:173	-14.9	-28.6	76.5	-13.7	0	-3.8
321	GGATCCTCCCCATTAGAAGG SEQ ID NO:174	-14.9	-27.1	74.2	-11.7	-0.1	-7.7
537	CTCACAATATTGCCATCTCC SEQ ID NO:175	-14.9	-24.2	69.2	-8.7	0	-8.5
1020	CCCATCTTCTCCTGCTCTTA SEQ ID NO:176	-14.9	-28.5	80.5	-13.6	0	-3.6
1261	TCCTTCAGATACAGGTAACC SEQ ID NO:177	-14.9	-23.3	68.2	-7.9	-0.1	-3.8
1279	TCCTATGCCCCAGAACCGTC SEQ ID NO:178	-14.9	-30	78.3	-15.1	0	-3
125	CCGCATAATTATTGCTCCAG SEQ ID NO:179	-14.8	-24	67	-7.9	-1.2	-8.4
768	GATTGTAAGTATCCTACTTT SEQ ID NO:180	-14.8	-20.1	62.2	-3.8	-1.4	-5.1
771	ATGGATTGTAAGTATCCTAC SEQ ID NO:181	-14.8	-20.2	62.1	-3.8	-1.6	-5.2
777	GATGTTATGGATTGTAAGTA SEQ ID NO:182	-14.8	-18.6	58.9	-3.8	0	-2.2
1649	TTGAAAATTCACCGAAGTCA SEQ ID NO:183	-14.8	-19	56.6	-4.2	0	-5.7
468	GTTACTGAATATTGGAAGAA SEQ ID NO:184	-14.7	-16.8	53.5	-2.1	0	-4.6
680	AGAAAGTTCCTAAAATGTTG SEQ ID NO:185	-14.7	-16.7	53	-2	0	-3.7
773	TTATGGATTGTAAGTATCCT SEQ ID NO:186	-14.7	-20.1	61.8	-3.8	-1.6	-5.2
920	TAGCTCCCTCTTTGGTTGAC SEQ ID NO:187	-14.7	-26.5	77	-11.8	0	-6.2
1271	CCCAGAACCGTCCTTCAGAT SEQ ID NO:188	-14.7	-27.9	74.6	-12.7	0.2	-3.4
1281	TTTCCTATGCCCCAGAACCG SEQ ID NO:189	-14.7	-28.6	74.3	-13.9	0	-3
1418	ACTTGCACTAACACATTTAT SEQ ID NO:190	-14.7	-19.5	59.4	-4.8	0	-5
1609	GGTCCCTCTGTTGCTCATTT SEQ ID NO:191	-14.7	-28.3	81.9	-13.6	0	-3.6
481	GTTGGAAGACTTGGTTACTG SEQ ID NO:192	-14.6	-21.5	65.1	-6.9	0	-3.1
767	ATTGTAAGTATCCTACTTTT SEQ ID NO:193	-14.6	-19.6	61.2	-3.8	-1.1	-4.8
775	TGTTATGGATTGTAAGTATC SEQ ID NO:194	-14.6	-18.4	58.9	-3.8	0	-2.5
997	CTTCATTCCATATCCCAACA SEQ ID NO:195	-14.6	-24.3	68.4	-9.7	0	-2
1604	CTCTGTTGCTCATTTTTTGA SEQ ID NO:196	-14.6	-22.4	68.4	-7.8	0	-3.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding		Duplex	ture	oligo	oligo
1610	AGGTCCCTCTGTTGCTCATT SEQ ID NO:197	-14.6	-28.2	81.8	-13.6	0	-4
1642	TTCACCGAAGTCACAGCACT SEQ ID NO:198	-14.6	-24.9	70.3	-10.3	0	-4.1
1904	CATTCACAACTCTGTTGGCC SEQ ID NO:199	-14.6	-24.8	71.3	-8.4	-1.8	-7
2000	GTATCTTGTTCTTTTTTATT SEQ ID NO:200	-14.6	-19.2	62.2	-4.6	0	-0.9
933	CTTCAGCTTTGCCTAGCTCC SEQ ID NO:201	-14.5	-28.5	81.4	-12.6	-1.3	-7.8
1534	CATGCCTCAGATGTTTGAAA SEQ ID NO: 202	-14.5	-21.7	63.6	-7.2	0	-3.3
1711	TTTCTGCTGAAAATTGATTC SEQ ID NO:203	-14.5	-17.9	56.2	-2.3	-1	-8.6
1791	ATCTAGTACAACAGTCCTGT SEQ ID NO: 204	-14.5	-22.7	68.6	-8.2	0	-6.7
681	TAGAAAGTTCCTAAAATGTT SEQ ID NO:205	-14.4	-16.4	52.5	-2	0	-3.7
683	TCTAGAAAGTTCCTAAAATG SEQ ID NO:206	-14.4	-16.4	52.4	-2	0	-5.2
684	ATCTAGAAAGTTCCTAAAAT SEQ ID NO:207	-14.4	-16.4	52.5	-2	0	-6.2
766	TTGTAAGTATCCTACTTTTT SEQ ID NO:208	-14.4	-19.7	61.6	-3.8	-1.4	-5.1
911	CTTTGGTTGACCTGTCTCCA SEQ ID NO:209	-14.4	-26.9	77.2	-12	-0.2	-7.3
1034	ACTCCCACCCCTCCCCATC SEQ ID NO:210	-14.4	-36.8	90.4	-22.4	0	-0.5
1533	ATGCCTCAGATGTTTGAAAA SEQ ID NO:211	-14.4	-20.3	60.4	-5.9	0	-3.6
1535	TCATGCCTCAGATGTTTGAA SEQ ID NO:212	-14.4	-22.8	67.2	-8.4	0	-4.4
1699	ATTGATTCTTCTTTTACAAA SEQ ID NO:213	-14.4	-17	54.8	-2.6	0	-3.5
209	AGCAGCCACAGTCGTCGAGC SEQ ID NO:214	-14.3	-29.1	80.6	-14.8	0	-4.9
445	GAATTTCAGGCATTTTCCCG SEQ ID NO:215	-14.3	-24.4	68.5	-9.6	-0.1	-4.6
470	TGGTTACTGAATATTGGAAG SEQ ID NO:216	-14.3	-18.1	56.5	-3.8	0	-4.6
486	AATCTGTTGGAAGACTTGGT SEQ ID NO:217	-14.3	-21.2	64	-6.9	0	-3.6
529	ATTGCCATCTCCAGATGCCA SEQ ID NO:218	-14.3	-28.1	77.2	-12.9	-0.7	-7.5
532	AATATTGCCATCTCCAGATG SEQ ID NO:219	-14.3	-22.6	65.5	-7.4	-0.8	-7.5
540	TCTCTCACAATATTGCCATC SEQ ID NO: 220	-14.3	-22.6	67.1	-7.7	0	-8.5
765	TGTAAGTATCCTACTTTTTG SEQ ID NO: 221	-14.3	-19.6	61.1	-3.8	-1.4	-5.1
772	TATGGATTGTAAGTATCCTA SEQ ID NO:222	-14.3	-19.7	60.9	-3.8	-1.6	-5.2
941	ACTGCGGTCTTCAGCTTTGC SEQ ID NO: 223	-14.3	-27.3	78.7	-12.3	-0.5	-6
1031	CCCACCCCTCCCATCTTC SEQ ID NO: 224	-14.3	-36.7	90.2	-22.4	0	~0.5
1422	GATGACTTGCACTAACACAT SEQ ID NO:225	-14.3	-20.8	61.7	-6.5	0	-5
1593	ATTTTTGACATTTTTGAA SEQ ID NO:226	-14.3	-16.4	53.3	-2.1	0	-2.4

		kcal/	kca1/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1607	TCCCTCTGTTGCTCATTTTT SEQ ID NO:227	-14.3	-26.1	76.2	-11.8	0	-3.6
211	GCAGCAGCCACAGTCGTCGA SEQ ID NO:228	-14.2	-29.8	81.3	-14.6	-0.9	-5.2
392	AGGTCTCTCTGCAATCCATC SEQ ID NO:229	-14.2	-25.6	75.8	-11.4	0	-4.9
485	ATCTGTTGGAAGACTTGGTT SEQ ID NO:230	-14.2	-22	66.6	-6.9	-0.7	-3.6
776	ATGTTATGGATTGTAAGTAT SEQ ID NO:231	-14.2	-18	57.5	-3.8	0	-1.8
1705	CTGAAAATTGATTCTTCTTT SEQ ID NO:232	-14.2	-17.1	54.5	-2.3	-0.3	-4.9
1785	TACAACAGTCCTGTTTGTGC SEQ ID NO:233	-14.2	-23.7	70.2	-8.4	-1	-8.7
113	TGCTCCAGGCGGCCACCAGG SEQ ID NO:234	-14.1	-33.4	86.2	-17.7	-1.5	-10.2
234	CCCCGCCCTGCAGCGCACAC SEQ ID NO:235	-14.1	-36.2	87.1	-20.4	-1.7	-10.5
472	CTTGGTTACTGAATATTGGA SEQ ID NO:236	-14.1	-19.8	60.5	-5.7	0	-4.6
528	TTGCCATCTCCAGATGCCAT SEQ ID NO:237	-14.1	-28.1	77.2	-12.9	-1	-7.8
685	TATCTAGAAAGTTCCTAAAA SEQ ID NO:238	-14.1	-16.1	51.9	-2	0	-6.2
1650	ATTGAAAATTCACCGAAGTC SEQ ID NO:239	-14.1	-18.3	55.4	-4.2	· 0	-5.7
124	CGCATAATTATTGCTCCAGG SEQ ID NO:240	-14	-23.2	65.9	-7.9	-1.2	-8.4
480	TTGGAAGACTTGGTTACTGA SEQ ID NO:241	-14	-20.9	63.2	-6.9	0	-3.3
690	TGCTATATCTAGAAAGTTCC SEQ ID NO:242	-14	-20	61.5	-6	0	-6.2
871	ATTTTTAGTTCTTCAGTGTT SEQ ID NO:243	-14	-20.4	65.7	-6.4	0	-4.1
1641	TCACCGAAGTCACAGCACTT SEQ ID NO:244	-14	-24.9	70.3	-10.3	-0.3	-4.7
1648	TGAAAATTCACCGAAGTCAC SEQ ID NO:245	-14	-19.1	56.8	-5.1	0	-5.4
378	TCCATCCCGAAGGTGCCGTA SEQ ID NO:246	-13.9	-30.1	77.9	-14.9	-1.2	-6.2
484	TCTGTTGGAAGACTTGGTTA SEQ ID NO:247	-13.9	-21.7	66.1	-6.9	-0.7	-3.4
1268	AGAACCGTCCTTCAGATACA SEQ ID NO:248	-13.9	-23.8	67.7	-9.4	0.2	-3.6
1345	AAAATACTTCTTAGATTTAT SEQ ID NO:249	-13.9	-14.4	48.9	0	-0.2	-3.8
1640	CACCGAAGTCACAGCACTTA SEQ ID NO:250	-13.9	-24.2	68.3	-10.3	0.1	-4.6
1698	TTGATTCTTCTTTTACAAAC SEQ ID NO:251	-13.9	-17.2	55.3	-3.3	0	-3
1713	GTTTTCTGCTGAAAATTGAT SEQ ID NO:252	-13.9	-18.7	57.8	-2.3	-2.5	-11.4
1714	TGTTTTCTGCTGAAAATTGA SEQ ID NO:253	-13.9	-18.7	57.7	-2.3	-2.5	-11.4
1782	AACAGTCCTGTTTGTGCTAA SEQ ID NO:254	-13.9	-23	68.1	-8.2	-0.7	-8.1
676	AGTTCCTAAAATGTTGGCTG SEQ ID NO:255	-13.8	-21.4	63.5	-7.6	0	-3.9
789	TTCAGTCATATGGATGTTAT SEQ ID NO:256	-13.8	-20	62.7	-5.5	-0.4	-6.7

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1010	CCTGCTCTTAAGTCTTCATT SEQ ID NO:257	-13.8	-23.8	71	-10	0	-6
1273	GCCCCAGAACCGTCCTTCAG SEQ ID NO: 258	-13.8	-31.1	80.6	-16.8	-0.2	-3.4
1355	ACCAGTGGGTAAAATACTTC SEQ ID NO:259	-13.8	-20.6	61.6	-5.8	-0.9	-8.2
1536	ATCATGCCTCAGATGTTTGA SEQ ID NO:260	-13.8	-23.5	69.5	-9.7	0	-4.4
1611	AAGGTCCCTCTGTTGCTCAT SEQ ID NO:261	-13.8	-27.4	78.6	-13.6	0	-5.3
154	ACTGCTGTCACAGTGTTGAG SEQ ID NO:262	-13.7	-24.1	72.7	-9.1	-1.2	-6.4
204	CCACAGTCGTCGAGCACTGT SEQ ID NO:263	-13.7	-27.8	77	-12.2	-1.8	-11
236	CTCCCCGCCCTGCAGCGCAC SEQ ID NO:264	-13.7	-36.6	89.1	-21.4	-1.2	-10.5
366	GTGCCGTAGGGACAGTCTTT SEQ ID NO:265	-13.7	-27.3	78.3	-12	-1.5	-8.4
395	TGCAGGTCTCTCTGCAATCC SEQ ID NO:266	-13.7	-27	78.4	-9.8	-3.5	-9.5
482	TGTTGGAAGACTTGGTTACT SEQ ID NO:267	-13.7	-21.5	65.1	-6.9	-0.7	-3.8
483	CTGTTGGAAGACTTGGTTAC SEQ ID NO:268	-13.7	-21.5	65.1	-6.9	-0.7	-3.3
876	ATTGCATTTTTAGTTCTTCA SEQ ID NO:269	-13.7	-20.5	64.3	-6.8	0	-5.1
995	TCATTCCATATCCCAACATT SEQ ID NO:270	-13.7	-23.4	66.6	-9.7	0	-2
996	TTCATTCCATATCCCAACAT SEQ ID NO:271	-13.7	-23.4	66.6	-9.7	0	-2
1417	CTTGCACTAACACATTTATT SEQ ID NO:272	-13.7	-19.4	59.2	-5.7	0	-5
1790	TCTAGTACAACAGTCCTGTT SEQ ID NO:273	-13.7	-22.8	69	-8.2	-0.7	-8.1
1913	TTCCACACACATTCACAACT SEQ ID NO:274	-13.7	-22.4	64.9	-8.7	0	-1
188	CTGTCCTCTTGCAGCGCGGG SEQ ID NO:275	-13.6	-30.9	82 [.] .9	-16.4	-0.6	-9
325	AAAAGGATCCTCCCCATTAG SEQ ID NO:276	-13.6	-23.9	66.3	-9.1	-0.9	-9.9
675	GTTCCTAAAATGTTGGCTGT SEQ ID NO:277	-13.6	-22.6	66.4	-9	0	-3.9
758	ATCCTACTTTTTGTTTTCTG SEQ ID NO:278	-13.6	-21.3	65.7	-7.7	0	-2.2
788	TCAGTCATATGGATGTTATG SEQ ID NO:279	-13.6	-19.9	62.2	-6.3	0.2	-6.7
1275	ATGCCCCAGAACCGTCCTTC SEQ ID NO:280	-13.6	-30.4	79.1	-16.8	0	-3
1346	TAAAATACTTCTTAGATTTA SEQ ID NO:281	-13.6	-14.1	48.4	0	-0.2	-3.8
1647	GAAAATTCACCGAAGTCACA SEQ ID NO:282	-13.6	-19.8	58	-6.2	0	-4.1
1786	GTACAACAGTCCTGTTTGTG SEQ ID NO:283	-13.6	-23.1	69.2	-8.4	-1	-8.7
123	GCATAATTATTGCTCCAGGC SEQ ID NO:284	-13.5	-24.2	69.9	-9.8 .	-0.7	-8.1
379	ATCCATCCCGAAGGTGCCGT SEQ ID NO:285	-13.5	-30.4	78.4	-15.6	-1.2	-6.2
783	CATATGGATGTTATGGATTG SEQ ID NO:286	-13.5	-19.1	58.9	-5.6	0	-5.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1041	ATTTCCCACTCCCACCCCCT SEQ ID NO:287	-13.5	-34.6	86.4	-21.1	0	-0.3
1612	TAAGGTCCCTCTGTTGCTCA SEQ ID NO:288	-13.5	-27.1	78.1	-13.6	. 0	-4.7
1978	ACAATAATAAACATGTCCTT SEQ ID NO:289	-13.5	-17	53.1	-3.5	0	-6.9
471	TTGGTTACTGAATATTGGAA SEQ ID NO:290	-13.4	-18.2	56.7	-4.8	0	-4.6
542	CTTCTCTCACAATATTGCCA SEQ ID NO:291	-13.4	-23.2	67.9	-9.2	0	-8.5
686	ATATCTAGAAAGTTCCTAAA SEQ ID NO:292	-13.4	-16.8	53.7	-3.4	0	-6.2
873	GCATTTTTAGTTCTTCAGTG SEQ ID NO:293	-13.4	-21.6	67.7	-8.2	0	-3.5
907	GGTTGACCTGTCTCCATGTA SEQ ID NO:294	-13.4	-26.7	77.4	-13.3	0	-5.9
1423	AGATGACTTGCACTAACACA SEQ ID NO:295	-13.4	-20.8	62	-7.4	0	-5
1427	GGGAAGATGACTTGCACTAA SEQ ID NO:296	-13.4	-21.3	62.7	-7	-0.7	-5.3
1601	TGTTGCTCATTTTTTGACAT SEQ ID NO:297	-13.4	-21.1	64.5	-7.2	-0.2	-3.6
1704	TGAAAATTGATTCTTCTTTT SEQ ID NO:298	-13.4	-16.3	52.9	-2.3	-0.3	-4.9
1784	ACAACAGTCCTGTTTGTGCT SEQ ID NO:299	-13.4	-24.9	72.8	-10.5	-0.9	-8.4
1902	TTCACAACTCTGTTGGCCAA SEQ ID NO:300	-13.4	-24.1	69	-8.8	-1.8	-10.8
1977	CAATAATAAACATGTCCTTT SEQ ID NO:301	-13.4	-16.9	52.9	-3.5	0	-6.9
792	GTGTTCAGTCATATGGATGT SEQ ID NO:302	-13.3	-22.6	69.8	-8.6	-0.4	-6.1
870	TTTTTAGTTCTTCAGTGTTA SEQ ID NO:303	-13.3	-20.1	65.1	-6.8	0	-4.1
935	GTCTTCAGCTTTGCCTAGCT SEQ ID NO:304	-13.3	-27.7	81.6	-13.1	-1.2	-7.7
1038	TCCCACTCCCACCCCTCCC SEQ ID NO:305	-13.3	-38.8	93.4	-25.5	0	0
1712	TTTTCTGCTGAAAATTGATT SEQ ID NO:306	-13.3	-17.6	55.2	-2.3	-2	-10.6
1715	ATGTTTTCTGCTGAAAATTG SEQ ID NO:307	-13.3	-18.1	56.5	-2.3	-2.5	-11.4
1789	CTAGTACAACAGTCCTGTTT SEQ ID NO:308	-13.3	-22.5	67.8	-8.2	0.9	-8.4
478	GGAAGACTTGGTTACTGAAT SEQ ID NO:309	-13.2	-20.1	60.9	-6.9	0 .	-3.1
479	TGGAAGACTTGGTTACTGAA SEQ ID NO:310	-13.2	-20.1	60.8	-6.9	0	-3.1
531	ATATTGCCATCTCCAGATGC SEQ ID NO:311	-13.2	-25.1	72	-10.8	-1	-7.8
908	TGGTTGACCTGTCTCCATGT SEQ ID NO:312	-13.2	-27	77.8	-13.3	-0.2	-7.2
1792	CATCTAGTACAACAGTCCTG SEQ ID NO:313	-13.2	-22.2	66.5	-9	0	-5.3
126	ACCGCATAATTATTGCTCCA SEQ ID NO:314	-13.1	-24.2	67.3	-9.8	-1.2	-8.4
687	TATATCTAGAAAGTTCCTAA SEQ ID NO:315	-13.1	-17.2	54.9	-4.1	0	-6.2
1497	GTTTTTATTCTAACCATTTT SEQ ID NO:316	-13.1	-18.9	59.2	-5.8	0	-2.3

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1542	AAATTTATCATGCCTCAGAT SEQ ID NO:317	-13.1	-20	60.2	-6.9	0	-4.6
1592	TTTTTTGACATTTTTTGAAA SEQ ID NO:318	-13.1	-15.7	51.6	-2.1	-0.1	-2.5
1779	AGTCCTGTTTGTGCTAAGAT SEQ ID NO:319	-13.1	-23.4	70.3	-10.3	0	-3.6
114	TTGCTCCAGGCGGCCACCAG SEQ ID NO:320	-13	-32.3	84.2	-17.7	-1.4	-10.2
115	ATTGCTCCAGGCGGCCACCA SEQ ID NO:321	-13	-32.3	83.8	-17.7	-1.4	-10.2
324	AAAGGATCCTCCCCATTAGA SEQ ID NO:322	-13	-25.2	69.6	-11	-0.9	-9.9
541	TTCTCTCACAATATTGCCAT SEQ ID NO:323	-13	-22.3	65.9	-8.7	0	-8.5
1019	CCATCTTCTCCTGCTCTTAA SEQ ID NO:324	-13	-25.8	74.3	-12.8	0	-3.6
1342	ATACTTCTTAGATTTATCTC SEQ ID NO:325	-13	-18.2	59.3	-4.3	-0.7	-5.1
1358	ACCACCAGTGGGTAAAATAC SEQ ID NO:326	-13	-22.1	63.4	-7.8	-1.2	-9
111	CTCCAGGCGGCCACCAGGTG SEQ ID NO:327	-12.9	-32.8	85.5	-19	-0.4	-9.4
155	CACTGCTGTCACAGTGTTGA SEQ ID NO:328	-12.9	-24.8	73.6	-9.1	-2.8	-8.5
391	GGTCTCTCTGCAATCCATCC SEQ ID NO:329	-12.9	-27.6	79.2	-14.7	0	-4.9
688	CTATATCTAGAAAGTTCCTA SEQ ID NO:330	-12.9	-18.8	58.8	-5.9	0	-5.7
872	CATTTTTAGTTCTTCAGTGT SEQ ID NO:331	-12.9	-21	66.6	-8.1	0	-4.1
1186	CTCAAATTTCCATAAGCTTC SEQ ID NO:332	-12.9	-20.1	60.7	-7.2	0	-6.8
1276	TATGCCCCAGAACCGTCCTT SEQ ID NO:333	-12.9	-29.7	77	-16.8	0	-3
1282	GTTTCCTATGCCCCAGAACC SEQ ID NO:334	-12.9	-29	77.7	-16.1	0	-3
1540	ATTTATCATGCCTCAGATGT SEQ ID NO:335	-12.9	-22.6	67.6	-9.7	0	-4.4
112	GCTCCAGGCGGCCACCAGGT SEQ ID NO:336	-12.8	-34.6	90	-20.4	-1.1	-10.2
212	GGCAGCAGCCACAGTCGTCG SEQ ID NO:337	-12.8	-30.4	82.5	-14.9	-2.7	-9.6
439	CAGGCATTTTCCCGTCCCCC SEQ ID NO:338	-12.8	-33.5	85.4	-20.2	-0.1	-4
790	GTTCAGTCATATGGATGTTA SEQ ID NO:339	-12.8	-21.2	66.1	-7.7	-0.4	-6.7
795	CAAGTGTTCAGTCATATGGA SEQ ID NO:340	-12.8	-21.4	65.6	-8.6	0	-6.2
994	CATTCCATATCCCAACATTA SEQ ID NO:341	-12.8	-22.7	64.6	-9.9	0	-2
1431	GGTAGGGAAGATGACTTGCA SEQ ID NO:342	-12.8	-23.3	68.4	-9.6	-0.7	-5.9
1543	TAAATTTATCATGCCTCAGA SEQ ID NO:343	-12.8	-19.7	59.7	-6.9	0	-5.5
1590	TTTTGACATTTTTTGAAATC SEQ ID NO:344	-12.8	-15.9	52.1	-2.1	-0.9	-3.8
1976	AATAATAAACATGTCCTTTT SEQ ID NO:345	-12.8	-16.3	52	-3.5	0	-6.9
322	AGGATCCTCCCCATTAGAAG SEQ ID NO:346	-12.7	-25.9	72	-12.1	-0.9	-9.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
738	GATCCACCATGCATCACAAT SEQ ID NO:347	-12.7	-24.4	68.2	-11.7	0	-6.6
785	GTCATATGGATGTTATGGAT SEQ ID NO:348	-12.7	-20.6	63.3	-7.2	-0.4	-6.2
942	CACTGCGGTCTTCAGCTTTG SEQ ID NO:349	-12.7	-26.2	75.3	-12.8	-0.5	-6.2
1187	ACTCAAATTTCCATAAGCTT SEQ ID NO:350	-12.7	-19.9	59.8	-7.2	0	-6.4
1278	CCTATGCCCCAGAACCGTCC SEQ ID NO:351	-12.7	-31.6	79.8	-18.9	0	-2.6
1428	AGGGAAGATGACTTGCACTA SEQ ID NO:352	-12.7	-22	65.1	-8.4	-0.7	-5.3
1979	AACAATAATAAACATGTCCT SEQ ID NO:353	-12.7	-16.2	51.2	-3.5	0	-6.9
735	CCACCATGCATCACAATTTG SEQ ID NO:354	-12.6	-23.6	66.1	-11	0	-6.4
761	AGTATCCTACTTTTTGTTTT SEQ ID NO:355	-12.6	-20.9	65.2	-7.8	-0.2	-2.9
992	TTCCATATCCCAACATTAAT SEQ ID NO:356	-12.6	-21.3	61.5	-8.7	0	-3.8
993	ATTCCATATCCCAACATTAA SEQ ID NO:357	-12.6	-21.3	61.5	-8.7	0	-2.6
1127	TTTTGACTTTTCCCAAAGCC SEQ ID NO:358	-12.6	-23.8	67.4	-9.8	-1.3	-6.3
1277	CTATGCCCCAGAACCGTCCT SEQ ID NO:359	-12.6	-30.5	78.4	-17.9	0	-3
1591	TTTTTGACATTTTTTGAAAT SEQ ID NO:360	-12.6	-15.6	51.3	-2.1	-0.7	-3.1
1594	CATTTTTTGACATTTTTTGA SEQ ID NO:361	-12.6	-17.8	56.5	-5.2	0	-2.4
1778	GTCCTGTTTGTGCTAAGATT SEQ ID NO:362	-12.6	-23.5	70.4	-10.9	0	-3.6
1975	ATAATAAACATGTCCTTTTA SEQ ID NO:363	-12.6	-16.7	53.2	-4.1	0	-6.9
15	GTGGTCTTTGCTGGTGGGAA SEQ ID NO:364	-12.5	-26.5	77.3	-14	0	3.6
331	TTCACCAAAAGGATCCTCCC SEQ ID NO:365	-12.5	-25.5	69.6	-11.8	-0.9	-9.9
473	ACTTGGTTACTGAATATTGG SEQ ID NO:366	-12.5	-19.4	59.8	-6.9	0	-4.6
536	TCACAATATTGCCATCTCCA SEQ ID NO:367	-12.5	-24	68.5	-10.9	0	-8.5
578	TTACGGGAGACCCGGCAGCA SEQ ID NO:368	12.5	-29.6	77.1	-13.4	3.7	-12.1
1341	TACTTCTTAGATTTATCTCT SEQ ID NO:369	-12.5	-19.1	61.4	-5.7	-0.7	-5.1
1528	TCAGATGTTTGAAAACCTTA SEQ ID NO:370	42.5	-18.5	56.9	-5.5	-0.1	-5.7
1696	GATTCTTCTTTTACAAACCT SEQ ID NO:371	12.5	-20	60.8	-7.5	0	-1.9
1697	TGATTCTTCTTTTACAAACC SEQ ID NO:372	12.5	-19.1	58.8	-6.6	0	-2.6
377	CCATCCCGAAGGTGCCGTAG SEQ ID NO:373	20.4	-29.7	76.7	-16.4		-6.2
588	CATTTCCTCATTACGGGAGA SEQ ID NO:374		-23.7	68	-10.7		-4.2
796	ACAAGTGTTCAGTCATATGG SEQ ID NO:375		-21	64.7	-8.6	0	-6.2
875	TTGCATTTTTAGTTCTTCAG SEQ ID NO:376	-12.4	-20.5	64.6	-8.1	0	-5.1

		kcal/	kcal/		kcal/		
		mo1	mol	deg C	mol '	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1426	GGAAGATGACTTGCACTAAC SEQ ID NO:377	-12.4	-20.3	60.8	-7	-0.7	-5.3
1595	TCATTTTTTGACATTTTTTG SEQ ID NO:378	-12.4	-17.6	56.5	-5.2	0	-2.5
1905	ACATTCACAACTCTGTTGGC SEQ ID NO:379	-12.4	-23	68.2	-8.8	-1.8	-7
1980	GAACAATAATAAACATGTCC SEQ ID NO:380	-12.4	-15.9	50.6	-3.5	0	-6.9
760	GTATCCTACTTTTTGTTTTC SEQ ID NO:381	-12.3	-21.3	66.6	-9	0	-2.2
763	TAAGTATCCTACTTTTTGTT SEQ ID NO:382	-12.3	-19.7	61.6	-5.9	-1.4	-5.1
793	AGTGTTCAGTCATATGGATG SEQ ID NO:383	-12.3	-21.4	66.5	-8.6	-0.1	-6.4
1011	TCCTGCTCTTAAGTCTTCAT SEQ ID NO:384	-12.3	-24.1	72.3	-11.8	0	-6
1042	TATTTCCCACTCCCACCCCC SEQ ID NO:385	-12.3	-33.4	84.2	-21.1	0	-0.7
1147	GGGGTTTTCTGGTTGTTTTA SEQ ID NO:386	-12.3	-24.1	73.6	-11.8	0	-1.9
1188	TACTCAAATTTCCATAAGCT SEQ ID NO:387	-12.3	-19.5	59	-7.2	0	-4.8
1269	CAGAACCGTCCTTCAGATAC SEQ ID NO:388	-12.3	-23.8	67.7	-11	-0.2	-3.4
1496	TTTTTATTCTAACCATTTTC SEQ ID NO:389	-12.3	-18.1	57.5	-5.8	0	-1.4
1783	CAACAGTCCTGTTTGTGCTA SEQ ID NO:390	-12.3	-24.4	71.6	-11.1	-0.9	-8.4
229	CCCTGCAGCGCACACTCGGC SEQ ID NO:391	-12.2	-32.7	83.8	-19.6	-0.7	-8.5
323	AAGGATCCTCCCCATTAGAA SEQ ID NO:392	-12.2	-25.2	69.6	-11.8	-0.9	-9.9
633	GAGCCTTCTCTCAGAAATCA SEQ ID NO:393	-12.2	-23.4	69	-10.3	-0.7	-5.1
801	CACATACAAGTGTTCAGTCA SEQ ID NO:394	-12.2	-21.4	65.3	-8.6	-0.3	-4.1
864	GTTCTTCAGTGTTACTATAC SEQ ID NO:395	-12.2	-20.7	66	-8.5	0	-4.1
869	TTTTAGTTCTTCAGTGTTAC SEQ ID NO:396	-12.2	-20.2	65.3	-8	0	-4.1
990	CCATATCCCAACATTAATGT SEQ ID NO:397	-12.2	-22	62.7	-8.7	0	-10.2
1009	CTGCTCTTAAGTCTTCATTC SEQ ID NO:398	-12.2	-22.2	68.8	-10	0	-5.4
1221	TTTTGAAATTGCTCTCAGTT SEQ ID NO:399	-12.2	-20	61.8	-7.8	0	-3.6
1544	ATAAATTTATCATGCCTCAG SEQ ID NO:400	-12.2	-19.1	58.4	-6.9	0	-7.3
1703	GAAAATTGATTCTTCTTTTA SEQ ID NO:401	-12.2	-16	52.4	-3.8	0	-4.1
1906	CACATTCACAACTCTGTTGG SEQ ID NO:402	-12.2	-21.9	65.1	-7.9	-1.8	-7
156	TCACTGCTGTCACAGTGTTG SEQ ID NO:403	-12.1	-24.6	74	-9.1	-3.4	-9.7
689	GCTATATCTAGAAAGTTCCT SEQ ID NO:404	-12.1	-20.9	63.6	-8.8	0	-6.2
794	AAGTGTTCAGTCATATGGAT SEQ ID NO:405	-12.1	-20.7	64.3	-8.6	0	-6.2
868	TTTAGTTCTTCAGTGTTACT SEQ ID NO:406	-12.1	-21	67.1	-8.9	0	-4.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	
position	oligo	binding	ation	Duplex	ture	oligo	oligo
984	CCCAACATTAATGTACATCA SEQ ID NO:407	-12.1	-20.9	60.8	-7.5	-0.2	-10.5
985	TCCCAACATTAATGTACATC SEQ ID NO:408	-12.1	-20.6	61	-7.5	0.3	-10
1133	GTTTTATTTTGACTTTTCCC SEQ ID NO:409	-12.1	-21.9	66.2	-9.8	0	-2
1344	AAATACTTCTTAGATTTATC SEQ ID NO:410	-12.1	-15.5	51.8	-3.4	0	-3.1
1357	CCACCAGTGGGTAAAATACT SEQ ID NO:411	-12.1	-22.8	64.6	-9.5	-1.1	-8.2
1359	AACCACCAGTGGGTAAAATA SEQ ID NO:412	-12.1	-21.2	60.9	-7.8	-1.2	-9
1506	GAGTCATAGGTTTTTATTCT SEQ ID NO:413	-12.1	-20.5	65.2	-8.4	0	-4.1
1526	AGATGTTTGAAAACCTTATA SEQ ID NO:414	-12.1	-17.1	53.9	-4.5	-0.1	-5.7
1608	GTCCCTCTGTTGCTCATTTT SEQ ID NO:415	-12.1	-27.2	79.5	-15.1	0	-3.6
1651	AATTGAAAATTCACCGAAGT SEQ ID NO:416	-12.1	-17.2	52.7	-4.2	-0.7	-5.7
1793	ACATCTAGTACAACAGTCCT SEQ ID NO:417	-12.1	-22.4	67.2	-10.3	0	-5.3
116	TATTGCTCCAGGCGGCCACC SEQ ID NO:418	-12	-31.3	82.3	-17.7	-1.4	-10.2
301	CTGACACCTCAGCCCCGGGC SEQ ID NO:419	-12	-33.4	85.2	-18.8	-1.4	-13.3
535	CACAATATTGCCATCTCCAG SEQ ID NO:420	-12	-23.6	67.2	-11	0	-8.5
691	ATGCTATATCTAGAAAGTTC SEQ ID NO:421	-12	-18	57.6	-6	0	-6.2
762	AAGTATCCTACTTTTTGTTT SEQ ID NO: 422	-12	-20.1	62.5	-6.9	-1.1	-4.7
865	AGTTCTTCAGTGTTACTATA SEQ ID NO:423	-12	-20.5	65.6	-8.5	0	-4.1
866	TAGTTCTTCAGTGTTACTAT SEQ ID NO:424	-12	-20.5	65.6	-8.5	0	-4.1
991	TCCATATCCCAACATTAATG SEQ ID NO: 425	-12	-21.2	61.1	-8.7	0	-8.2
1035	CACTCCCACCCCTCCCCAT SEQ ID NO: 426	-12	-37.1	89.5	-25.1	0	-0.3
1146	GGGTTTTCTGGTTGTTTTAT SEQ ID NO: 427	-12	-22.9	70.6	-10.9	0	-1.5
1218	TGAAATTGCTCTCAGTTCAA SEQ ID NO:428	-12	-20.1	61.3	-7.4	0.4	-4.9
1846	TCTTAAATAAGTTCTTCACT SEQ ID NO:429	-12	-17.6	56.4	-5.6	0	-4.9
153	CTGCTGTCACAGTGTTGAGG SEQ ID NO:430	-11.9	-25.1	74.9	-12.5	-0.4	-6
367	GGTGCCGTAGGGACAGTCTT SEQ ID NO:431	-11.9	-28.4	80.6	-14.9	-1.5	-8.4
475	AGACTTGGTTACTGAATATT SEQ ID NO:432	-11.9	-18.8	58.8	-6.9	0	-4.6
632	AGCCTTCTCTCAGAAATCAC SEQ ID NO:433	-11.9	-23	68.2	-10.3	~0.6	-5.1
909	TTGGTTGACCTGTCTCCATG SEQ ID NO:434	-11.9	-25.9	74.6	-13.3	-0.4	-7.6
1193	TTTGTTACTCAAATTTCCAT SEQ ID NO:435	-11.9	-19.3	59.3	-6.2	-1.1	-4.5
1425	GAAGATGACTTGCACTAACA SEQ ID NO:436	-11.9	-19.8	59.5	-7	-0.7	-5.3

position oligo binding ation Duplex ture oligo 1541 AATTTATCATGCCTCAGATG SEQ ID NO:437 1912 TCCACACACATTCACAACTC SEQ ID NO:438 390 GTCTCTCTGCAATCCATCCC SEQ ID NO:439 467 TTACTGAATATTGGAAGAAG SEQ ID NO:440 579 ATTACGGAGAGCCCGCCAGC SEQ ID NO:441 784 TCATATGGATGTATGGATT SEQ ID NO:442 910 TTTGGTTGACCTGTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCCATCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443	
position oligo binding ation Duplex ture oligo 1541 AATTTATCATGCCTCAGATG SEQ ID NO:437 1912 TCCACACACATTCACAACTC SEQ ID NO:438 390 GTCTCTCTGCAATCCATCCC SEQ ID NO:439 467 TTACTGAATATTGGAAGAAG SEQ ID NO:440 579 ATTACGGAGAGCCCGCCAGC SEQ ID NO:441 784 TCATATGGATGTATGGATT SEQ ID NO:442 910 TTTGGTTGACCTGTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCCATCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443	cal/mol
Desition Digo Dinding Dinding Duplex Eure Oligo	Inter-
1541 AATTTATCATGCCTCAGATG -11.9 -20.7 62.2 -8.8 0 1912 TCCACACACTTCACAACTC -11.9 -22.7 66 -10.8 0 390 GTCTCTCTGCAATCCATCCC SEQ ID NO:439 -11.8 -28.4 80.1 -16.6 0 467 TTACTGAATATTGGAAGAAG -11.8 -15.6 50.9 -3.8 0 579 ATTACGGGAGACCCGGCAGC SEQ ID NO:441 -11.8 -28.9 76.1 -13.4 -3.7 784 TCATATGGATGTATAGGATT SEQ ID NO:442 -11.8 -19.5 60.4 -7 -0.4 910 TTTGGTTGACCTGTCTCCAT SEQ ID NO:443 -11.8 -26 75.2 -13.5 -0.4 TTTGGTTGACCTGTCTCATGGTTCCAT -11.8 -26 75.2 -13.5 -0.4 TTTGGTTGACCTGTCTCATGGTTCCAT -11.8 -26 75.2 -13.5 -0.4 TTTGGTTGACCTGTCTCATGTTCCATGTTCTATGTTCTATGT	olecular
1912 SEQ ID NO:437 -11.9 -20.7 62.2 -6.6 0 1912 TCCACACACATTCACAACTC SEQ ID NO:438 -11.9 -22.7 66 -10.8 0 390 GTCTCTCTGCAATCCATCCC SEQ ID NO:439 -11.8 -28.4 80.1 -16.6 0 467 TTACTGAATATTGGAAGAAG -11.8 -15.6 50.9 -3.8 0 579 ATTACGGAGACCCGGCAGC SEQ ID NO:441 -11.8 -28.9 76.1 -13.4 -3.7 784 TCATATGGATGTTATGGATT SEQ ID NO:442 -11.8 -19.5 60.4 -7 -0.4 910 TTTGGTTGACCTGTCTCAT SEQ ID NO:443 TTTGGTTGACTGTCTCAT SEQ ID NO:443	oligo
390 GTCTCTCTGCAATCCATCCC SEQ ID NO:439 -11.8 -28.4 80.1 -16.6 0 467 TTACTGAATATTGGAAGAAG -11.8 -15.6 50.9 -3.8 0 579 ATTACGGGAGACCCGGCAGC SEQ ID NO:441 -11.8 -28.9 76.1 -13.4 -3.7 784 TCATATGGATGTTATGGATT -11.8 -19.5 60.4 -7 -0.4 910 TTTGGTTGACCTGTCCAT SEQ ID NO:443 TTTGGTTGACCTGTCTCCAT -11.8 -26 75.2 -13.5 -0.4	-4.4
SEQ ID NO:439 467 TTACTGAATATTGGAAGAAG SEQ ID NO:440 579 ATTACGGGAGACCCGGCAGC SEQ ID NO:441 784 TCATATGGATGTTATGGATT SEQ ID NO:442 910 TTTGGTTGACCTGTCCAT SEQ ID NO:443	-1
SEQ ID NO: 440 579 ATTACGGGAGACCCGGCAGC SEQ ID NO: 441 TCATATGGATGTTATGGATT SEQ ID NO: 442 910 TTTGGTTGACCTGTCTCCAT SEQ ID NO: 443 TCATATGGATGTTCATCGATT SEQ ID NO: 443 TTTGGTTGACCTGTCTCCAT SEQ ID NO: 443 TTTGGTTGACCTGTCTCAT SEQ ID NO: 443	-4.9
579 SEQ ID NO:441 -11.8 -28.9 76.1 -13.4 -3.7 784 TCATATGGATGTTATGGATT -11.8 -19.5 60.4 -7 -0.4 910 TTTGGTTGACCTGTCTCCAT -11.8 -26 75.2 -13.5 -0.4	-4.6
910 SEQ ID NO:442 -11.8 -19.5 60.4 -7 -0.4 910 SEQ ID NO:443 -11.8 -26 75.2 -13.5 -0.4	-11
910 TTTGGTTGACCTGTCTCCAT -11.8 -26 75.2 -13.5 -0.4	-6.2
ጥመጥር እ እ አውጥር ርጥር ጥር እርምጥር	-7.6
1220 SEQ ID NO:444 -11.8 -20.3 62.9 -8.5 0	-3.9
1430 GTAGGGAAGATGACTTGCAC -11.8 -22.3 66.3 -9.6 -0.7 SEQ ID NO:445	-5.3
1495 TTTTATTCTAACCATTTTCA -11.8 -18.7 58.4 -6.9 0 SEQ ID NO:446	-1.4
1501 ATAGGTTTTTATTCTAACCA -11.8 -19.5 60.4 -5.5 -2.2 SEQ ID NO:447	-5.9
302 GCTGACACCTCAGCCCCGGG -11.7 -33.4 85.2 -16.7 -3.5 SEQ ID NO:448	-18.2
398 AGTTGCAGGTCTCTCTGCAA -11.7 -25.9 77.3 -9.5 -4.7 SEQ ID NO:449	-12
435 CATTTTCCCGTCCCCCTGTC -11.7 -32.3 84.3 -20.6 0 SEQ ID NO:450	-2.6
477 GAAGACTTGGTTACTGAATA -11.7 -18.6 57.8 -6.9 0 SEQ ID NO:451	-3.1
527 TGCCATCTCCAGATGCCATG -11.7 -28 76.7 -15.2 -1 SEQ ID NO:452	-7.8
543 TCTTCTCTCACAATATTGCC -11.7 -22.9 68.3 -10.6 0 SEQ ID NO:453	-8.5
943 TCACTGCGGTCTTCAGCTTT -11.7 -26.6 77.3 -14.2 -0.4 SEQ ID NO:454	-6.2
1219 TTGAAATTGCTCTCAGTTCA -11.7 -20.9 63.8 -8.5 -0.4 SEQ ID NO:455	-5
1259 CTTCAGATACAGGTAACCCG -11.7 -23.7 66.9 -11 -0.9 SEQ ID NO:456	-4.5
1274 TGCCCCAGAACCGTCCTTCA -11.7 -31.1 80.1 -18.9 -0.2 SEQ ID NO:457	-3.4
1356 CACCAGTGGGTAAAATACTT -11.7 -20.9 61.4 -8 -1.1 SEQ ID NO:458	-8.2
1360 AAACCACCAGTGGGTAAAAT -11.7 -20.8 59.6 -7.8 -1.2 SEQ ID NO:459	-9
1639 ACCGAAGTCACAGCACTTAT -11.7 -23.5 67.1 -11.1 -0.5 SEQ ID NO:460	-4.6
1787 AGTACAACAGTCCTGTTTGT -11.7 -23.1 69.6 -10.5 -0.8 SEQ ID NO:461	-8.3
110 TCCAGGCGGCCACCAGGTGT -11.6 -33.1 87.1 -19.9 -1.4 SEQ ID NO:462	-10.2
160 GCACTCACTGCTGTCACAGT -11.6 -26.9 78.8 -14 -1.2 SEQ ID NO:463	-6.3
187 TGTCCTCTTGCAGCGCGGC -11.6 -31.8 85.4 -19.3 -0.6 SEQ ID NO:464	-9.1
250 GCGGTAGCAAGTTTCTCCCC -11.6 -29.6 81 -17 -0.9 SEQ ID NO:465	-4.5
799 CATACAAGTGTTCAGTCATA -11.6 -20.2 62.8 -8.6 0 SEQ ID NO:466	-3.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	${\tt molecular}$
position	oligo	binding	ation	Duplex	ture	oligo	oligo
800	ACATACAAGTGTTCAGTCAT SEQ ID NO:467	-11.6	-20.7	64	-8.6	-0.1	-3.7
903	GACCTGTCTCCATGTAAGAT SEQ ID NO:468	-11.6	-24.1	70.1	-12.5	0	-5.5
904	TGACCTGTCTCCATGTAAGA SEQ ID NO:469	-11.6	-24.1	70	-12.5	0	-5.3
1012	CTCCTGCTCTTAAGTCTTCA SEQ ID NO:470	-11.6	-25	74.5	-13.4	0	-6
1132	TTTTATTTTGACTTTTCCCA SEQ ID NO:471	-11.6	-21.4	64.2	-9.8	0	-1.7
1204	GTTCAAAGCTGTTTGTTACT SEQ ID NO:472	-11.6	-21.2	65.1	-8.1	-1.4	-6
1500	TAGGTTTTTATTCTAACCAT SEQ ID NO:473	-11.6	-19.5	60.4	-5.7	-2.2	-5.9
1911	CCACACACATTCACAACTCT SEQ ID NO:474	-11.6	-23.2	66.4	-11.6	0	-1
127	CACCGCATAATTATTGCTCC SEQ ID NO:475	-11.5	-24.2	67.3	-11.4	-1.2	-8.4
205	GCCACAGTCGTCGAGCACTG SEQ ID NO:476	-11.5	-28.4	77.9	-15.6	-1.1	-9.6
352	GTCTTTGCAGATACCAAACT SEQ ID NO:477	-11.5	-22.1	64.9	-10	-0.3	-4.9
397	GTTGCAGGTCTCTCTGCAAT SEQ ID NO:478	-11.5	-25.9	76.9	-9.5	-4.9	-12.2
487	AAATCTGTTGGAAGACTTGG SEQ ID NO:479	-11.5	-19.3	58.9	-6.9	-0.7	-3.6
1145	GGTTTTCTGGTTGTTTTATT SEQ ID NO:480	-11.5	-21.8	68.2	-10.3	0	-1.5
1416	TTGCACTAACACATTTATTT SEQ ID NO:481	-11.5	-18.6	57.6	-7.1	0	-5
1429	TAGGGAAGATGACTTGCACT SEQ ID NO:482	-11.5	-22	65.1	-10	-0.1	-5
1529	CTCAGATGTTTGAAAACCTT SEQ ID NO:483	-11.5	-19.7	59.3	-7.7	-0.1	-5.7
228	CCTGCAGCGCACACTCGGCA SEQ ID NO:484	-11.4	-31.4	81.5	-19.1	-0.7	-8.8
233	CCCGCCCTGCAGCGCACACT SEQ ID NO:485	-11.4	-35.1	85.8	-22	-1.7	-10.5
568	CCCGGCAGCATTCTCTTTCA SEQ ID NO:486	-11.4	-29	79.5	-17.6	0	-6.3
577	TACGGGAGACCCGGCAGCAT SEQ ID NO:487	-11.4	-29.5	76.7	-14.4	-3.7	-12.1
877	AATTGCATTTTTAGTTCTTC SEQ ID NO:488	-11.4	-19.1	60.7	-7.7	. 0	-5.1
1039	TTCCCACTCCCACCCCTCC SEQ ID NO:489	-11.4	-36.9	90.9	-25.5	0	0
1202	TCAAAGCTGTTTGTTACTCA SEQ ID NO:490	-11.4	-21	64.2	-8.1	-1.4	-6
1515	AACCTTATAGAGTCATAGGT SEQ ID NO:491	-11.4	-20.9	64	-8.6	-0.8	-6.3
1602	CTGTTGCTCATTTTTTGACA SEQ ID NO:492	-11.4	-22	66.5	-10.1	-0.1	-3.6
266	CCATGCCTGAGACTGTGCGG SEQ ID NO:493	-11.3	-28.7	77	-16.8	-0.3	-4.2
317	CCTCCCCATTAGAAGGCTGA SEQ ID NO:494	-11.3	-28.2	76	-16.9	0	-3.7
530	TATTGCCATCTCCAGATGCC SEQ ID NO:495	-11.3	-27.1	75.6	-14.7	-1	-7.8
692	TATGCTATATCTAGAAAGTT SEQ ID NO:496	-11.3	-17.3	55.6	-6	0	-6.2

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
693	TTATGCTATATCTAGAAAGT SEQ ID NO:497	-11.3	-17.3	55.6	-6	0	-6.2
759	TATCCTACTTTTTGTTTTCT SEQ ID NO:498	-11.3	-21	65.2	-9.7	0	-2.2
787	CAGTCATATGGATGTTATGG SEQ ID NO:499	-11.3	-20.7	63.4	-8.7	-0.4	-6.2
874	TGCATTTTTAGTTCTTCAGT SEQ ID NO:500	-11.3	-21.6	67.7	-10.3	0	-4.7
1413	CACTAACACATTTATTATA SEQ ID NO:501	-11.3	-16.1	52.3	-4.8	0	-1.7
1527	CAGATGTTTGAAAACCTTAT SEQ ID NO:502	-11.3	-18.1	55.6	-6.8	0.6	-5
1589	TTTGACATTTTTTGAAATCC SEQ ID NO:503	-11.3	-17.8	55.6	-5.5	-0.9	-3.8
1907	ACACATTCACAACTCTGTTG SEQ ID NO:504	-11.3	-20.9	63.1	-8.1	-1.4	-6.5
118	ATTATTGCTCCAGGCGGCCA SEQ ID NO:505	-11.2	-29.2	78.7	-16.4	-1.4	-10.2
332	CTTCACCAAAAGGATCCTCC SEQ ID NO:506	-11.2	-24.4	68	-12.1	-0.5	-9.9
489	ACAAATCTGTTGGAAGACTT SEQ ID NO:507	-11.2	-19	58.2	-6.9	-0.8	-4.4
631	GCCTTCTCTCAGAAATCACA SEQ ID NO:508	-11.2	-23.7	69.1	-11.7	-0.6	-4.6
1192	TTGTTACTCAAATTTCCATA SEQ ID NO:509	-11.2	-18.9	58.4	-7.2	-0.1	-4.5
1194	GTTTGTTACTCAAATTTCCA SEQ ID NO:510	-11.2	-20.5	62.4	-7.7	-1.6	-4.6
1343	AATACTTCTTAGATTTATCT SEQ ID NO:511	-11.2	-17.1	55.8	-5.2	-0.5	-4.7
1644	AATTCACCGAAGTCACAGCA SEO ID NO:512	-11.2	-23.1	65.7	-11.9	0	-4.1
1847	TTCTTAAATAAGTTCTTCAC SEQ ID NO:513	-11.2	-16.8	54.8	-5.6	0	-4.9
1908	CACACATTCACAACTCTGTT SEQ ID NO:514	-11.2	-21.6	64.4	-9.9	-0.2	-3.1
267	TCCATGCCTGAGACTGTGCG SEQ ID NO:515	-11.1	-27.9	76.2	-16.8	0.4	-4.2
318	TCCTCCCCATTAGAAGGCTG SEQ ID NO:516	-11.1	-28	76.3	-16.9	0	-3.7
446	GGAATTTCAGGCATTTTCCC SEQ ID NO:517	-11.1	-24.8	71	-13	-0.4	-5
476	AAGACTTGGTTACTGAATAT SEQ ID NO:518	-11.1	-18	56.5	-6.9	0	-3.1
589	CCATTTCCTCATTACGGGAG SEQ ID NO:519	-11.1	-25.1	70.3	-14	0	-4.2
906	GTTGACCTGTCTCCATGTAA SEQ ID NO:520	-11.1	-24.8	72.1	-13.7	0	-5.1
1008	TGCTCTTAAGTCTTCATTCC SEQ ID NO:521	-11.1	-23.3	70.6	-12.2	0	-6
1237	AACTACATCAGCAGCCTTTT SEQ ID NO:522	-11.1	-23.6	68.7	-12.5	0	-4.5
1256	CAGATACAGGTAACCCGGGA SEQ ID NO:523	-11.1	-25.3	69.3	-12.7	-0.9	-10.7
1257	TCAGATACAGGTAACCCGGG SEQ ID NO:524	-11.1	-25.1	69.6	-12.7	-0.9	-10.2
1499	AGGTTTTTATTCTAACCATT SEQ ID NO:525	-11.1	-19.9	61.3	-6.6	-2.2	-5.9
1512	CTTATAGAGTCATAGGTTTT SEQ ID NO:526	-11.1	-19.7	62.7	-8.6	0	-4.8

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1841	AATAAGTTCTTCACTTCAAA SEQ ID NO:527	-11.1	-17	54.4	-4.8	-1	-3.7
488	CAAATCTGTTGGAAGACTTG SEQ ID NO:528	-11	-18.8	57.6	-6.9	-0.7	-3.6
694	CTTATGCTATATCTAGAAAG SEQ ID NO:529	-11	-17	54.6	-6	0	-6.2
1498	GGTTTTTATTCTAACCATTT SEQ ID NO:530	-11	-20	61.5	-7.5	-1.4	-5.2
1545	AATAAATTTATCATGCCTCA SEQ ID NO:531	-11	-18.4	56.4	-6.9	0	-8.1
1693	TCTTCTTTTACAAACCTCCT SEQ ID NO:532	-11	-22.6	66.2	-11.6	0	-1.9
1694	TTCTTCTTTTACAAACCTCC SEQ ID NO:533	-11	-21.8	64.7	-10.8	0	-1.9
1848	ATTCTTAAATAAGTTCTTCA SEQ ID NO:534	-11	-16.6	54.2	~5.6	0	-4.9
232	CCGCCCTGCAGCGCACACTC SEQ ID NO:535	-10.9	-33.5	84.5	-20.9	-1.7	-10.5
399	CAGTTGCAGGTCTCTCTGCA SEQ ID NO:536	-10.9	-27.3	81.3	-12.9	-3.5	-9.9
552	TTCACAACTTCTTCTCTCAC SEQ ID NO:537	-10.9	-21.9	67.2	-11	0	-0.6
734	CACCATGCATCACAATTTGG SEQ ID NO:538	-10.9	-22.8	65.1	-11	-0.7	-6.6
736	TCCACCATGCATCACAATTT SEQ ID NO:539	-10.9	-24	67.7	-13.1	0	-6.6
791	TGTTCAGTCATATGGATGTT SEQ ID NO:540	-10.9	-21.5	66.6	-9.9	-0.4	-6.7
797	TACAAGTGTTCAGTCATATG SEQ ID NO:541	-10.9	-19.5	61.4	-8.6	0	-5.6
798	ATACAAGTGTTCAGTCATAT SEQ ID NO:542	-10.9	-19.5	61.5	-8.6	0	-3.7
1000	AGTCTTCATTCCATATCCCA SEQ ID NO:543	-10.9	-25.7	74.2	-14.8	0	-2
1123	GACTTTTCCCAAAGCCAAAA SEQ ID NO:544	-10.9	-22.1	61.7	-9.8	-1.3	-4.1
1185	TCAAATTTCCATAAGCTTCA SEQ ID NO:545	-10.9	-19.9	60	-9	0	-6.8
1201	CAAAGCTGTTTGTTACTCAA SEQ ID NO:546	-10.9	-19.9	60.6	-8.1	-0.8	-5.5
1646	AAAATTCACCGAAGTCACAG SEQ ID NO:547	-10.9	-19.2	57	-8.3	0	-3.5
70	CAGCAGCAAGACGCTCTTCA SEQ ID NO:548	-10.8	-25.8	72.9	-13.7	· -1.2	-6
108	CAGGCGGCCACCAGGTGTGC SEQ ID NO:549	-10.8	-32.5	86.1	-19.9	-1.4	-11.3
380	AATCCATCCCGAAGGTGCCG SEQ ID NO:550	-10.8	-28.5	73.2	-16.4	-1.2	-6.2
581	TCATTACGGGAGACCCGGCA SEQ ID NO:551	-10.8	-28.2	74.4	-13.7	-3.7	-11
746	GTTTTCTGGATCCACCATGC SEQ ID NO:552	-10.8	-26.4	75.4	-14.2	-1.2	-9.7
905	TTGACCTGTCTCCATGTAAG SEQ ID NO:553	-10.8	-23.6	69.1	-12.8	0	-5.1
1131	TTTATTTTGACTTTTCCCAA SEQ ID NO:554	-10.8	-20.6	61.7	-9.8	0	-2.7
1148	AGGGGTTTTCTGGTTGTTTT SEQ ID NO:555	-10.8	-24.4	74.5	-13.6	0	-2
1203	TTCAAAGCTGTTTGTTACTC SEQ ID NO:556	-10.8	-20.4	63.3	-8.1	-1.4	-6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1270	CCAGAACCGTCCTTCAGATA SEQ ID NO:557	-10.8	-25.6	70.7	-14.3	-0.2	-3.4
1643	ATTCACCGAAGTCACAGCAC SEQ ID NO:558	-10.8	-24	68.4	-13.2	0	-4.1
1645	AAATTCACCGAAGTCACAGC SEQ ID NO:559	-10.8	-21.7	62.6	-10.9	0	-3.5
1656	CCTTAAATTGAAAATTCACC SEQ ID NO:560	-10.8	-17.3	53	-5.6	-0.7	-5.7
1716	CATGTTTTCTGCTGAAAATT SEQ ID NO:561	-10.8	-18.8	57.8	-5.5	-2.5	-11.4
1915	CCTTCCACACACATTCACAA SEQ ID NO:562	-10.8	-24.2	67.9	-13.4	0	-0.9
71	TCAGCAGCAAGACGCTCTTC SEQ ID NO:563	-10.7	-25.5	73.5	-13.7	-1	-6
148	GTCACAGTGTTGAGGGCAGT SEQ ID NO:564	-10.7	-26.4	79.2	-15.7	0	-6
334	CTCTTCACCAAAAGGATCCT SEQ ID NO:565	-10.7	-23.3	66.3	-11.7	0	-9.7
526	GCCATCTCCAGATGCCATGT SEQ ID NO:566	-10.7	-29.2	80.3	-17.4	-1	-7.8
739	GGATCCACCATGCATCACAA SEQ ID NO:567	-10.7	-25.6	70.7	-14.2	-0.4	-8.3
1205	AGTTCAAAGCTGTTTGTTAC SEQ ID NO:568	-10.7	-20.3	63.2	-8.1	-1.4	-6
1513	CCTTATAGAGTCATAGGTTT SEQ ID NO:569	-10.7	-21.6	66.5	-10.9	0	-4.8
1836	GTTCTTCACTTCAAATAAAA SEQ ID NO:570	-10.7	-16.3	52.5	-5.6	0	-1.6
139	TTGAGGGCAGTCCACCGCAT SEQ ID NO:571	-10.6	-29.4	79.4	-17.7	-1	-5.6
353	AGTCTTTGCAGATACCAAAC SEQ ID NO:572	-10.6	-21.2	63.2	-10	-0.3	-5.2
989	CATATCCCAACATTAATGTA SEQ ID NO:573	-10.6	-19.7	58.6	-7.8	-0.2	-10.5
1001	AAGTCTTCATTCCATATCCC SEQ ID NO:574	-10.6	-24.3	70.6	-13.7	0	-2.4
1015	CTTCTCCTGCTCTTAAGTCT SEQ ID NO:575	-10.6	-25.2	75.4	-14.6	0	-6
1046	ATTTTATTTCCCACTCCAC SEQ ID NO:576	-10.6	-25.7	72.1	-15.1	0	-0.5
1128	ATTTTGACTTTTCCCAAAGC SEQ ID NO:577	-10.6	-21.8	63.8	-9.8	-1.3	-6.3
1914	CTTCCACACACATTCACAAC SEQ ID NO:578	-10.0	-22.4	64.9	-11.8	0	-1
186	GTCCTCTTGCAGCGCGGCT SEQ ID NO:579	10.5	-32.7	87.5	-20.7	-1.3	-10
265	CATGCCTGAGACTGTGCGGT SEQ ID NO:580	10.5	-27.9	76.9	-16.8	-0.3	-5.3
745	TTTTCTGGATCCACCATGCA SEQ ID NO:581	-10.5	-25.9	73.1	-14.2	-1	-9.5
863	TTCTTCAGTGTTACTATACA SEQ ID NO:582	-10.5	-20.2	63.8	-9.7	0	-3.5
986	ATCCCAACATTAATGTACAT SEQ ID NO:583	40.5	-20.2	59.7	-8.4	-0.2	-10.5
1217	GAAATTGCTCTCAGTTCAAA SEQ ID NO:584	10.5	-19.4	59.4	-8.9	0	-4.2
1337	TCTTAGATTTATCTCTGAGG SEQ ID NO:585	10.5	-20	63.3	-8.6	-0.7	-6.2
1432	GGGTAGGGAAGATGACTTGC SEQ ID NO:586	-10.5	-23.8	69.8	-12.4	-0.7	-4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mo1	kcal/mol	kcal/mol
			dup1ex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1717	ACATGTTTTCTGCTGAAAAT SEQ ID NO:587	-10.5	-18.9	58	-6.4	-2	-10.9
1974	TAATAAACATGTCCTTTTAA SEQ ID NO:588	-10.5	-16	51.5	-5.5	0	-6.9
44	CCAGCTGCCTCCGGCTCGGC SEQ ID NO:589	-10.4	-35.4	89.9	-22.9	-2.1	-10.8
66	AGCAAGACGCTCTTCATGTT SEQ ID NO:590	-10.4	-23.9	69.6	-12.3	-1.1	-6.8
107	AGGCGGCCACCAGGTGTGCA SEQ ID NO:591	-10.4	-32.5	86.1	-19.9	-2	-11.8
128	CCACCGCATAATTATTGCTC SEQ ID NO:592	-10.4	-24.2	67.3	-12.9	-0.7	-7.9
335	ACTCTTCACCAAAAGGATCC SEQ ID NO:593	-10.4	-22.6	65	-11.7	0	-7.7
1043	TTATTTCCCACTCCCACCCC SEQ ID NO:594	-10.4	-31.5	81.4	-21.1	0	-0.7
1290	GTGTATGTGTTTCCTATGCC SEQ ID NO:595	-10.4	-25.5	75.4	-15.1	0	-3
1516	AAACCTTATAGAGTCATAGG SEQ ID NO:596	-10.4	-19	58.7	-8.6	0	-5
1652	AAATTGAAAATTCACCGAAG SEQ ID NO:597	-10.4	-15.3	48.8	-3.6	-1.2	-5.7
1695	ATTCTTCTTTTACAAACCTC SEQ ID NO:598	-10.4	-19.8	60.9	-9.4	0	-1.9
1981	TGAACAATAATAAACATGTC SEQ ID NO:599	-10.4	-13.9	47	-3.5	0	-6.9
122	CATAATTATTGCTCCAGGCG SEQ ID NO:600	-10.3	-23.2	65.9	-11.4	-1.4	-9.3
867	TTAGTTCTTCAGTGTTACTA SEQ ID NO:601	-10.3	-20.6	66.1	-10.3	0	-4.1
944	CTCACTGCGGTCTTCAGCTT SEQ ID NO:602	-10.3	-27.4	78.9	-16.4	-0.5	-6.2
1511	TTATAGAGTCATAGGTTTTT SEQ ID NO:603	-10.3	-18.9	61	-8.6	0	-4
1588	TTGACATTTTTTGAAATCCA SEQ ID NO:604	-10.3	-18.4	56.6	-7.2	-0.7	-5
1655	CTTAAATTGAAAATTCACCG SEQ ID NO:605	-10.3	-16.1	50.4	-4.5	-1.2	-5.7
138	TGAGGGCAGTCCACCGCATA SEQ ID NO:606	-10.2	-29	78.5	-17.7	-1	-5.6
368	AGGTGCCGTAGGGACAGTCT SEQ ID NO:607	-10.2	-28.3	80.5	-17	-1	-7.9
590	ACCATTTCCTCATTACGGGA SEQ ID NO:608	-10.2	-25.3	70.6	-14.6	0.1	-4
628	TTCTCTCAGAAATCACAGCC SEQ ID NO:609	-10.2	-22.8	67.4	-11.9	-0.4	-4
634	AGAGCCTTCTCTCAGAAATC SEQ ID NO:610	-10.2	-22.7	68.1	-10.9	-1.5	-5.1
635	TAGAGCCTTCTCTCAGAAAT SEQ ID NO:611	-10.2	-22	65.9	-10.1	-1.7	-6.4
744	TTTCTGGATCCACCATGCAT SEQ ID NO:612	-10.2	-25.8	72.7	-14.2	-1.2	-9.7
1195	TGTTTGTTACTCAAATTTCC SEQ ID NO:613	-10.2	-19.8	61	-8	-1.6	-4.6
1238	GAACTACATCAGCAGCCTTT SEQ ID NO:614	-10.2	-24.1	69.6	-13.9	0	-4.5
1253	ATACAGGTAACCCGGGAACT SEQ ID NO:615	-10.2	-24.4	67.1	-12.7	-0.2	-11
1361	CAAACCACCAGTGGGTAAAA SEQ ID NO:616	-10.2	-21.5	60.7	-10	-1.2	-9

		kcal/	kca1/		kcal/		
		mo1	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1492	TATTCTAACCATTTTCAACA SEQ ID NO:617	-10.2	-18.6	57.3	-8.4	0	-1.2
213	CGGCAGCAGCCACAGTCGTC SEQ ID NO:618	-10.1	-30.4	82.5	-17.1	-3.2	-9.8
363	CCGTAGGGACAGTCTTTGCA SEQ ID NO:619	-10.1	-26.8	75.8	-15.8	-0.8	-7.9
434	ATTTTCCCGTCCCCTGTCA SEQ ID NO:620	-10.1	-32.3	84.3	-22.2	0	-2.6
576	ACGGGAGACCCGGCAGCATT SEQ ID NO:621	-10.1	-29.9	77.6	-16.1	-3.7	-12.1
737	ATCCACCATGCATCACAATT SEQ ID NO:622	-10.1	-23.9	67.3	-13.8	0	-6.6
1016	TCTTCTCCTGCTCTTAAGTC SEQ ID NO:623	-10.1	-24.7	75.1	-14.6	0	-6
1134	TGTTTTATTTTGACTTTTCC SEQ ID NO:624	-10.1	-19.9	62.2	-9.8	0	-2 .5
1154	TCCTTCAGGGGTTTTCTGGT SEQ ID NO:625	-10.1	-27.3	80.7	-16.7	-0.2	-5.7
1244	ACCCGGGAACTACATCAGCA SEQ ID NO:626	-10.1	-26.6	71.7	-15.2	0.3	-10.7
1653	TAAATTGAAAATTCACCGAA SEQ ID NO:627	-10.1	-15	48.2	-3.6	-1.2	-5.4
1901	TCACAACTCTGTTGGCCAAC SEQ ID NO:628	-10.1	-24.2	69.2	-11.1	-1.8	-14
1982	TTGAACAATAATAAACATGT SEQ ID NO:629	-10.1	-13.6	46.3	-3.5	0	-6.7
129	TCCACCGCATAATTATTGCT SEQ ID NO:630	-10	-24.2	67.3	-12.9	-1.2	-8.4
157	CTCACTGCTGTCACAGTGTT SEQ ID NO:631	-10	-25.5	76.3	-12.1	-3.4	-9.7
396	TTGCAGGTCTCTCTGCAATC SEQ ID NO:632	-10	-25.1	75	-10.7	-4.4	-11.4
643	CACGAAAATAGAGCCTTCTC SEQ ID NO:633	-10	-21	61.2	-10.1	-0.7	-4.9
1005	TCTTAAGTCTTCATTCCATA SEQ ID NO:634	-10	-21	64.8	-11	0	-6
1040	TTTCCCACTCCCACCCCTC SEQ ID NO:635	-10	-35	88.2	-25	0	0
1546	TAATAAATTTATCATGCCTC SEQ ID NO:636	-10	-17.4	54.6	-6.9	0	-8.1
1999	TATCTTGTTCTTTTTTTTTG SEQ ID NO:637	-10	-18	58.7	-8	0	-0.9
109	CCAGGCGGCCACCAGGTGTG SEQ ID NO:638	-9.9	-32.7	85.1	-21.6	-0.6	-10.2
119	AATTATTGCTCCAGGCGGCC SEQ ID NO:639	-9.9	-27.8	75.3	-16.4	-1.4	-8.9
162	TTGCACTCACTGCTGTCACA SEQ ID NO:640	-9.9	-25.8	75	-14	-1.9	-5.9
755	CTACTTTTTGTTTTCTGGAT SEQ ID NO:641	-9.9	-20.7	64.3	-10.8	0	-2.6
1245	AACCCGGGAACTACATCAGC SEQ ID NO:642	-9.9	-25.2	68.6	-13.9	-0.2	-10.7
1254	GATACAGGTAACCCGGGAAC SEQ ID NO:643	-9.9	-24.1	66.5	-12.7	-0.9	-10.7
1412	ACTAACACATTTATTATAA SEQ ID NO:644	-9.9	-14.7	49.3	-4.8	. 0	-3.7
1415	TGCACTAACACATTTATTTA SEQ ID NO:645	-9.9	-18.2	56.7	-8.3	0	-4.7
1794	AACATCTAGTACAACAGTCC SEQ ID NO:646	-9.9	-20.8	62.9	-10.9	0	-5.3

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mol	kcal/mol	kca1/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	mo1ecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1896	ACTCTGTTGGCCAACTTCAA SEQ ID NO:647	-9.9	-24.3	69.8	-11.3	0.2	-14.3
38	GCCTCCGGCTCGGCTCTCCA SEQ ID NO:648	-9.8	-35.3	91.1	-23.4	-2.1	-9.2
161	TGCACTCACTGCTGTCACAG SEO ID NO:649	-9.8	-25.7	74.9	-14	-1.9	-6.2
553	TTTCACAACTTCTTCTCA SEQ ID NO:650	-9.8	-21.8	67	-12	0	-0.7
627	TCTCTCAGAAATCACAGCCG SEQ ID NO:651	-9.8	-23.5	67.3	-13.7	0	-3.2
640	GAAAATAGAGCCTTCTCTCA SEQ ID NO:652	-9.8	-21.3	63.5	-9.8	-1.7	-5.1
644	TCACGAAAATAGAGCCTTCT SEQ ID NO:653	-9.8	-21	61.2	-11.2	0	-3.5
695	ACTTATGCTATATCTAGAAA SEO ID NO:654	-9.8	-17.2	55	-7.4	0	-6.2
1047	TATTTTATTTCCCACTCCCA SEQ ID NO:655	-9.8	-25.2	71	-15.4	0	-0.7
1491	ATTCTAACCATTTTCAACAA SEQ ID NO:656	-9.8	-18.2	56	-8.4	0	-1.2
1502	CATAGGTTTTTATTCTAACC SEQ ID NO:657	-9.8	-19.5	60.4	-8.5	-1.1	-4.6
1840	ATAAGTTCTTCACTTCAAAT SEQ ID NO:658	-9.8	-17.7	56.3	-6.8	-1	-3.6
1916	GCCTTCCACACACATTCACA SEQ ID NO:659	-9.8	-26.7	74.2	-16.9	0	-2
333	TCTTCACCAAAAGGATCCTC SEQ ID NO:660	-9.7	-22.8	65.9	-12.1	0	-9.9
400	GCAGTTGCAGGTCTCTCTGC SEQ ID NO:661	-9.7	-28.4	85.2	-16.3	-2.4	-8.2
490	AACAAATCTGTTGGAAGACT SEQ ID NO:662	-9.7	-18.2	56	-6.9	-1.6	-5
641	CGAAAATAGAGCCTTCTCTC SEQ ID NO:663	-9.7	-21.4	62.7	-10	-1.7	-5.4
1255	AGATACAGGTAACCCGGGAA SEQ ID NO:664	-9.7	-23.9	66.2	-12.7	-0.9	-10.7
1424	AAGATGACTTGCACTAACAC SEQ ID NO:665	-9.7	-19.4	58.8	-9.2	-0.1	-5
1654	TTAAATTGAAAATTCACCGA SEQ ID NO:666	-9.7	-15.8	49.9	-4.8	-1.2	-5.7
1701	AAATTGATTCTTCTTTACA SEQ ID NO:667	-9.7	-17	54.8	-7.3	0	-3.2
164	TTTTGCACTCACTGCTGTCA SEQ ID NO:668	-9.6	-25.1	74	-13.6	1.9	-5
389	TCTCTCTGCAATCCATCCCG SEQ ID NO:669	-9.6	-28	76.3	-18.4	0	-4.9
466	TACTGAATATTGGAAGAAGG SEQ ID NO:670	-9.6	-16.7	53	-7.1	0	-4
1004	CTTAAGTCTTCATTCCATAT SEQ ID NO:671	-9.6	-20.6	63.2	-11	0	-4.8
1048	ATATTTTATTTCCCACTCCC SEQ ID NO:672	-9.6	-24.5	69.8	-14.9	0	-1.8
1122	ACTITICCCAAAGCCAAAAA SEQ ID NO:673	-9.6	-20.8	58.9	-9.8	-1.3	-4.2
1222	CTTTTGAAATTGCTCTCAGT SEQ ID NO:674	-9.6	-20.8	63.4	-11.2	0	-3.6
1340	ACTTCTTAGATTTATCTCTG SEQ ID NO:675	-9.6	-19.4	61.9	-8.9	-0.7	-5.1
1547	ATAATAAATTTATCATGCCT SEQ ID NO:676	-9.6	-17	53.4	-6.9	0	-8.1

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mo1	kcal/mo1	kca1/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1998	ATCTTGTTCTTTTTTTTGA SEQ ID NO:677	-9.6	-18.9	60.7	-9.3	0	-2.3
137	GAGGGCAGTCCACCGCATAA SEQ ID NO:678	-9.5	-28.3	76.3	-17.7	-1	-5.6
149	TGTCACAGTGTTGAGGGCAG SEQ ID NO:679	-9.5	-25.2	75.2	-15.7	0	-6
310	ATTAGAAGGCTGACACCTCA SEQ ID NO:680	-9.5	-23.3	67.7	-13	-0.6	-4.3
316	CTCCCCATTAGAAGGCTGAC SEQ ID NO:681	-9.5	-26.4	73.1	-16.9	0	-3.7
474	GACTTGGTTACTGAATATTG SEQ ID NO:682	-9.5	-18.8	58.5	-9.3	0	-4.6
729	TGCATCACAATTTGGATCTT SEQ ID NO:683	-9.5	-21.2	63.5	-11.7	0	-5.4
740	TGGATCCACCATGCATCACA SEQ ID NO:684	-9.5	-26.3	72.8	-15.5	-1.1	-9.6
1236	ACTACATCAGCAGCCTTTTG SEQ ID NO:685	-9.5	-24.3	70.9	-14.8	0	-4.5
1494	TTTATTCTAACCATTTTCAA SEQ ID NO:686	-9.5	-17.9	56.2	-8.4	0	-1.4
1520	TTGAAAACCTTATAGAGTCA SEQ ID NO:687	-9.5	-18.1	56.2	-8.6	0	-4.8
1585	ACATTTTTTGAAATCCAGAG SEQ ID NO:688	-9.5	-18.3	56.6	-7.8	-0.9	-4.3
1788	TAGTACAACAGTCCTGTTTG SEQ ID NO:689	-9.5	-21.6	65.6	-11.1	-0.9	-8.4
151	GCTGTCACAGTGTTGAGGGC SEQ ID NO:690	-9.4	-27.2	80.6	-17.1	-0.4	-7.4
636	ATAGAGCCTTCTCTCAGAAA SEQ ID NO:691	-9.4	-22	65.9	-10.9	-1.7	-6.4
674	TTCCTAAAATGTTGGCTGTG SEQ ID NO:692	-9.4	-21.4	63.2	-12	0	-3.9
730	ATGCATCACAATTTGGATCT SEQ ID NO:693	~9.4	-21.1	63.1	-11.7	0	-6.4
1130	TTATTTTGACTTTTCCCAAA SEQ ID NO:694	-9.4	-19.8	59.5	-9.8	-0.3	-3.7
1153	CCTTCAGGGGTTTTCTGGTT SEQ ID NO:695	-9.4	-27	79.2	-16.7	-0.7	-4.2
1191	TGTTACTCAAATTTCCATAA SEQ ID NO:696	-9.4	-18.1	56.2	-8.7	0	-4.5
1519	TGAAAACCTTATAGAGTCAT SEQ ID NO:697	-9.4	-18	55.9	-8.6	0	-4.8
1603	TCTGTTGCTCATTTTTTGAC SEQ ID NO:698	-9.4	-21.7	66.9	-11.8	-0.1	-3.3
1775	CTGTTTGTGCTAAGATTCTT SEQ ID NO:699	-9.4	-21.3	65.5	-11.9	0	-5.4
1895	CTCTGTTGGCCAACTTCAAG SEQ ID NO:700	-9.4	-24.1	69.5	-11.3	-0.5	-15
41	GCTGCCTCCGGCTCGGCTCT SEQ ID NO:701	-9.3	-34.9	91.1	-23.5	-2.1	-10
121	ATAATTATTGCTCCAGGCGG SEQ ID NO:702	-9.3	-23.7	67.2	-12.9	-1.4	-9.3
163	TTTGCACTCACTGCTGTCAC SEQ ID NO:703	-9.3	-25.2	74.3	-14	-1.9	-5
572	GAGACCCGGCAGCATTCTCT SEQ ID NO:704	-9.3	-29.1	79.5	-19.1	-0.5	-5.8
580	CATTACGGGAGACCCGGCAG SEQ ID NO:705	-9.3	-27.8	73.2	-15.7	-2.8	-10.1
956	GAACTAATTTGACTCACTGC SEQ ID NO:706	-9.3	-19.9	60.4	-10.6	0	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
999	GTCTTCATTCCATATCCCAA SEQ ID NO:707	-9.3	-25	71.5	-15.7	0	-2
1045	TTTTATTTCCCACTCCCACC SEQ ID NO:708	-9.3	-27.7	75.6	-18.4	0	-0.7
1638	CCGAAGTCACAGCACTTATG SEQ ID NO:709	-9.3	-23.3	66.5	-13.3	-0.5	-4.6
117	TTATTGCTCCAGGCGGCCAC SEQ ID NO:710	-9.2	-29.4	79.4	-19	-0.7	-10.2
215	CTCGGCAGCAGCCACAGTCG SEQ ID NO:711	-9.2	-30.1	80.9	-17.7	-3.2	-9.8
303	GGCTGACACCTCAGCCCCGG SEQ ID NO:712	-9.2	-33.4	85.2	-18.8	-5.3	-18.2
630	CCTTCTCTCAGAAATCACAG SEQ ID NO:713	-9.2	-21.9	65.2	-11.9	-0.6	-4.3
731	CATGCATCACAATTTGGATC SEQ ID NO:714	-9.2	-20.9	62.4	-11.7	0	-6.6
754	TACTTTTTGTTTTCTGGATC SEQ ID NO:715	-9.2	-20.2	63.8	-11	0	-4.1
756	CCTACTTTTTGTTTTCTGGA SEQ ID NO:716	-9.2	-22.7	68.2	-13.5	0	-2.7
1066	CTACCAAGGAAGGGCTAAAT SEQ ID NO:717	-9.2	-21.3	61.3	-12.1	0	-3.8
1149	CAGGGGTTTTCTGGTTGTTT SEQ ID NO:718	-9.2	-25	75.3	-15.3	-0.1	-3.6
1365	CACACAAACCACCAGTGGGT SEQ ID NO:719	-9.2	-25.7	70.3	-15.2	-1.2	-9
1909	ACACACATTCACAACTCTGT SEQ ID NO:720	-9.2	-21.7	64.6	-12.5	0	-2.5
39	TGCCTCCGGCTCGGCTCTCC SEQ ID NO:721	-9.1	-34.6	90	-23.4	-2.1	-10
582	CTCATTACGGGAGACCCGGC SEQ ID NO:722	-9.1	-28.4	75.2	-15.6	-3.7	-11
584	TCCTCATTACGGGAGACCCG SEQ ID NO:723	-9.1	-27.8	73.7	-15.4	-3.3	-10.5
673	TCCTAAAATGTTGGCTGTGT SEQ ID NO:724	-9.1	-22.5	65.9	-13.4	0	-3.9
987	TATCCCAACATTAATGTACA SEQ ID NO:725	-9.1	-19.9	59.1	-9.5	-0.2	-10.5
1184	CAAATTTCCATAAGCTTCAA SEQ ID NO:726	-9.1	-18.8	56.8	-9.7	0	-6.8
1212	TGCTCTCAGTTCAAAGCTGT SEQ ID NO:727	-9.1	-24	71.8	-13.5	-1.3	-6.2
1490	TTCTAACCATTTTCAACAAA SEQ ID NO:728	-9.1	-17.5	54.2	-8.4	. 0	-1.9
1518	GAAAACCTTATAGAGTCATA SEQ ID NO:729	-9.1	-17.7	55.4	-8.6	0	-4.8
1584	CATTTTTTGAAATCCAGAGT SEQ ID NO:730	-9.1	-19.3	59	-9.2	-0.9	-4.3
1842	AAATAAGTTCTTCACTTCAA SEQ ID NO:731	-9.1	-17	54.4	-6.8	-1	-4.2
1894	TCTGTTGGCCAACTTCAAGA SEQ ID NO:732	-9.1	-23.8	68.9	-11.3	-0.5	-15
43	CAGCTGCCTCCGGCTCGGCT SEQ ID NO:733	-9	-34.3	88.6	-22.9	-2.4	-9.9
135	GGGCAGTCCACCGCATAATT SEQ ID NO:734	-9	-27.8	75	-17.7	-1	-4.9
140	GTTGAGGGCAGTCCACCGCA SEQ ID NO:735	-9	-30.6	83	-20.5	-1	-4.8
150	CTGTCACAGTGTTGAGGGCA SEQ ID NO:736	-9	-26.1	76.9	-17.1	0	-6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mo1	kcal/mo1	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
629	CTTCTCTCAGAAATCACAGC SEQ ID NO:737	-9	-21.7	65.6	-11.9	-0.6	-3.9
747	TGTTTTCTGGATCCACCATG SEQ ID NO:738	-9	-24.6	70.9	-14.2	-1.2	-9.7
757	TCCTACTTTTTTTTTTTCTGG SEQ ID NO:739	-9	-22.5	68.5	-13.5	0	-2.9
949	TTTGACTCACTGCGGTCTTC SEQ ID NO:740	-9	-24.9	73.1	-14.9	-0.9	-6.2
1225	AGCCTTTTGAAATTGCTCTC SEQ ID NO:741	-9	-22.7	67	-13.7	0	-5.4
1252	TACAGGTAACCCGGGAACTA SEQ ID NO:742	-9	-24.1	66.6	-13.7	-1.1	-10.2
1366	ACACACAAACCACCAGTGGG SEQ ID NO:743	-9	-24.7	67.8	-14.4	-1.2	-9
1489	TCTAACCATTTTCAACAAAT SEQ ID NO:744	-9	-17.4	53.9	-8.4	0	-2.5
1507	AGAGTCATAGGTTTTTATTC SEQ ID NO:745	-9	-19.6	63.2	-10.6	0	-4.8
1623	TTATGTTTAAATAAGGTCCC SEQ ID NO:746	-9	-19.3	58.8	-10.3	0	-4.3
136	AGGGCAGTCCACCGCATAAT SEQ ID NO:747	-8.9	-27.7	75	-17.7	-1	-5.6
347	TGCAGATACCAAACTCTTCA SEQ ID NO:748	-8.9	-21.9	64.1	-13	0	-4.7
983	CCAACATTAATGTACATCAA SEQ ID NO:749	-8.9	-18.2	55.4	-8	-0.2	-10.5
1017	ATCTTCTCCTGCTCTTAAGT SEQ ID NO:750	-8.9	-24.3	73.2	-15.4	0	-6
1213	TTGCTCTCAGTTCAAAGCTG SEQ ID NO:751	-8.9	-22.9	68.7	-12.8	-1.1	-5.6
1525	GATGTTTGAAAACCTTATAG SEQ ID NO:752	-8.9	-17.1	53.9	-7.7	-0.1	-5.7
1702	AAAATTGATTCTTCTTTAC SEQ ID NO:753	-8.9	-15.6	51.6	-6.7	0	-3.2
1973	AATAAACATGTCCTTTTAAA SEQ ID NO:754	-8.9	-15.6	50.4	-6.7	0	-6.4
1983	ATTGAACAATAATAAACATG SEQ ID NO:755	-8.9	-12.4	43.9	-3.5	0	-5.3
106	GGCGGCCACCAGGTGTGCAG SEQ ID NO:756	-8.8	-32.5	86.1	-21.1	-2.5	-12.5
270	CCATCCATGCCTGAGACTGT SEQ ID NO:757	-8.8	-28	76.9	-19.2	0	-3.8
544	TTCTTCTCTCACAATATTGC SEQ ID NO:758	-8.8	-21	64.8	-11.6	0	-8.5
749	TTTGTTTTCTGGATCCACCA SEQ ID NO:759	-8.8	-24.8	71.8	-14.7	-1.1	-9.7
1013	TCTCCTGCTCTTAAGTCTTC SEQ ID NO:760	-8.8	-24.7	75.1	-15.9	0	-6
1018	CATCTTCTCCTGCTCTTAAG SEQ ID NO:761	-8.8	-23.8	70.9	-15	0	-5.4
1143	TTTTCTGGTTGTTTTATTTT SEQ ID NO:762	-8.8	-19.6	62.6	-10.8	0	-1.5
1211	GCTCTCAGTTCAAAGCTGTT SEQ ID NO:763	-8.8	-24.1	72.4	-14.4	-0.7	~5.4
1226	CAGCCTTTTGAAATTGCTCT SEQ ID NO:764	-8.8	-23	66.7	-13.7	0.1	~5.5
1243	CCCGGGAACTACATCAGCAG SEQ ID NO:765	-8.8	-26.4	71.5	-16.8	-0.2	-9.2
1283	TGTTTCCTATGCCCCAGAAC SEQ ID NO:766	-8.8	-27	74.1	-18.2	0	-3

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1755	TCAAATATACTCCTAATTCC SEQ ID NO:767	-8.8	-19	57.8	-10.2	0	-2.9
72	GTCAGCAGCAGACGCTCTT SEQ ID NO:768	-8.7	-26.3	75.2	-16.3	-1.2	-7.9
666	ATGTTGGCTGTGTGTTGAAC SEQ ID NO:769	-8.7	-23	69.1	-14.3	0	-4
696	TACTTATGCTATATCTAGAA SEQ ID NO:770	-8.7	-17.6	56.3	-8.9	0	-6.2
886	GATTACCTAAATTGCATTTT SEQ ID NO:771	-8.7	-18.7	57.2	-10	0	-6
1129	TATTTTGACTTTTCCCAAAG SEQ ID NO:772	-8.7	-19.7	59.3	-9.8	-1.1	-5
1258	TTCAGATACAGGTAACCCGG SEQ ID NO:773	-8.7	-24	67.5	-14.3	-0.9	-5.8
1777	TCCTGTTTGTGCTAAGATTC SEQ ID NO:774	-8.7	-22.7	68.6	-14	0	-3.6
1965	TGTCCTTTTAAAACAAAACC SEQ ID NO:775	-8.7	-17.4	53.3	-8.2	-0.1	-6
158	ACTCACTGCTGTCACAGTGT SEQ ID NO:776	-8.6	-25.6	76.5	-13.6	-3.4	-9.7
750	TTTTGTTTTCTGGATCCACC SEQ ID NO:777	-8.6	-24.2	71	-14.7	0	-9.7
878	AAATTGCATTTTTAGTTCTT SEQ ID NO:778	-8.6	-18	57.2	-9.4	0	-5.8
887	AGATTACCTAAATTGCATTT SEQ ID NO:779	-8.6	-18.6	57.1	-10	0	-5.3
900	CTGTCTCCATGTAAGATTAC SEQ ID NO:780	-8.6	-21.3	64.8	-12.7	0	-5.5
950	ATTTGACTCACTGCGGTCTT SEQ ID NO:781	-8.6	-24.5	71.4	-14.9	-0.9	-6.2
1144	GTTTTCTGGTTGTTTTATTT SEQ ID NO:782	-8.6	-20.7	65.7	-12.1	0	-1.5
1289	TGTATGTGTTTCCTATGCCC SEQ ID NO:783	-8.6	-26.3	75.5	-17.7	0	-3
1414	GCACTAACACATTTATTAT SEQ ID NO:784	-8.6	-18.2	56.8	-9.6	0	-3.4
1774	TGTTTGTGCTAAGATTCTTT SEQ ID NO:785	-8.6	-20.5	63.8	-11.9	0	-5.6
1984	TATTGAACAATAATAAACAT SEQ ID NO:786	-8.6	-12.1	43.4	-3.5	0	-6.5
268	ATCCATGCCTGAGACTGTGC SEQ ID NO:787	-8.5	-27.1	76.4	-18.6	0	-4.2
492	GAAACAAATCTGTTGGAAGA SEQ ID NO:788	-8.5	-17	53.2	-6.9	-1.5	-5
494	GAGAAACAAATCTGTTGGAA SEQ ID NO:789	-8.5	-17	53.2	-6.9	-1.5	-5
571	AGACCCGGCAGCATTCTCTT SEQ ID NO:790	-8.5	-28.6	78.6	-20.1	0	-6.3
595	ATTTAACCATTTCCTCATTA SEQ ID NO:791	-8.5	-20.5	61.5	-12	0	-2.4
882	ACCTAAATTGCATTTTTAGT SEQ ID NO:792	-8.5	-19.3	59	-9.6	-0.9	-9.6
1155	TTCCTTCAGGGGTTTTCTGG SEQ ID NO:793	-8.5	-26.2	77.3	-16.8	-0.7	-5.7
1196	CTGTTTGTTACTCAAATTTC SEQ ID NO:794	-8.5	-18.7	59.1	-8.6	~1.6	-4.6
1339	CTTCTTAGATTTATCTCTGA SEQ ID NO:795	-8.5	-19.8	62.8	-10.4	-0.7	-5.1
1517	AAAACCTTATAGAGTCATAG SEQ ID NO:796	-8.5	-17.1	54.3	-8.6	0	-4.8

		kcal/	kcal/		kcal/		
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1615	AAATAAGGTCCCTCTGTTGC SEQ ID NO:797	-8.5	-23.7	68.4	-15.2	0	-4.2
1843	TAAATAAGTTCTTCACTTCA SEQ ID NO:798	-8.5	-17.4	55.8	-8	-0.7	-4.2
269	CATCCATGCCTGAGACTGTG SEQ ID NO:799	-8.4	-26	73.2	-17.6	0	-4.2
361	GTAGGGACAGTCTTTGCAGA SEQ ID NO:800	-8.4	-24.6	74	-16.2	0	-5.9
402	TGGCAGTTGCAGGTCTCTCT SEQ ID NO:801	-8.4	-27.8	83.1	-18.5	-0.7	-6.6
667	AATGTTGGCTGTGTGTAA SEQ ID NO:802	-8.4	-22.1	66.1	-13.7	Ο ,	-3.7
733	ACCATGCATCACAATTTGGA SEQ ID NO:803	-8.4	-22.7	65.2	-13.1	-1.1	-6.6
786	AGTCATATGGATGTTATGGA SEQ ID NO:804	-8.4	-20.6	63.5	-11.5	-0.4	-6.2
1064	ACCAAGGAAGGGCTAAATAT SEQ ID NO:805	-8.4	-20.4	59.5	-12	0	-3.8
1209	TCTCAGTTCAAAGCTGTTTG SEQ ID NO:806	-8.4	-21.5	66	-11.7	-1.3	-6.8
227	CTGCAGCGCACACTCGGCAG SEQ ID NO:807	-8.3	-29.4	78.6	-19.6	-1.4	-8.1
264	ATGCCTGAGACTGTGCGGTA SEQ ID NO:808	-8.3	-26.9	75.3	-18	-0.3	~5.4
348	TTGCAGATACCAAACTCTTC SEQ ID NO:809	-8.3	-21.3	63.3	-13	0	-5.2
575	CGGGAGACCCGGCAGCATTC SEQ ID NO:810	-8.3	-30.1	78.7	-19	-2.8	-11
884	TTACCTAAATTGCATTTTTA SEQ ID NO:811	-8.3	-17.9	55.7	-9.6	0	-6.2
951	AATTTGACTCACTGCGGTCT SEQ ID NO:812	-8.3	-23.7	68.7	-14.9	-0.2	-6.2
998	TCTTCATTCCATATCCCAAC SEQ ID NO:813	-8.3	-24	68.8	-15.7	0	-2
1063	CCAAGGAAGGGCTAAATATT SEQ ID NO:814	-8.3	-20.3	59.4	-12	0	-4.4
1206	CAGTTCAAAGCTGTTTGTTA SEQ ID NO:815	-8.3	-20.8	63.9	-11.6	-0.8	-6.2
1505	AGTCATAGGTTTTTATTCTA SEQ ID NO:816	-8.3	-19.6	63	-11.3	0	-2.4
1700	AATTGATTCTTCTTTTACAA SEQ ID NO:817	-8.3	-17	54.8	-8.7	0	-3.3
1839	TAAGTTCTTCACTTCAAATA SEQ ID NO:818	-8.3	-17.4	55.8	-8	-1	-3.6
272	TGCCATCCATGCCTGAGACT SEQ ID NO:819	-8.2	-28.6	77.7	-20.4	0	-4.2
295	CCTCAGCCCCGGGCCACACT SEQ ID NO:820	-8.2	-35.5	88.1	-25.9	-1	-10.4
433	TTTTCCCGTCCCCTGTCAC SEQ ID NO:821	-8.2	-32.5	85	-24.3	0	-2.6
732	CCATGCATCACAATTTGGAT SEQ ID NO:822	-8.2	-22.5	64.6	-13.8	-0.2	-6.6
741	CTGGATCCACCATGCATCAC SEQ ID NO:823	-8.2	-26.5	73.6	-16.9	-1.2	-9.7
945	ACTCACTGCGGTCTTCAGCT SEQ ID NO:824	-8.2	-27.5	79.1	-18.6	-0.5	-6.2
1126	TTTGACTTTTCCCAAAGCCA SEQ ID NO:825	-8.2	-24.4	68.1	-15.5	-0.4	-6
1135	TTGTTTTATTTTGACTTTTC SEQ ID NO:826	-8.2	-18	58.5	-9.8	0	-2.5

		kcal/	kcal/		kcal/		•
		mol	mo1	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1972	ATAAACATGTCCTTTTAAAA SEQ ID NO:827	-8.2	-15.6	50.4	-7.4	0	-6.9
51	ATGTTTCCCAGCTGCCTCCG SEQ ID NO:828	-8.1	-31.1	82.6	-22.5	0	-8.1
271	GCCATCCATGCCTGAGACTG SEQ ID NO:829	-8.1	-28.6	77.7	-20.5	0	-4.2
491	AAACAAATCTGTTGGAAGAC SEQ ID NO:830	-8.1	-16.6	52.5	-6.9	-1.5	- 5
574	GGGAGACCCGGCAGCATTCT SEQ ID NO:831	-8.1	-30.2	80.9	-20.7	-1.3	-8.1
895	TCCATGTAAGATTACCTAAA SEQ ID NO:832	-8.1	-19.1	57.6	-11	0	-4.3
1065	TACCAAGGAAGGGCTAAATA SEQ ID NO:833	-8.1	-20.1	59	-12	0	-3.8
1411	CTAACACATTTATTATAAA SEQ ID NO:834	-8.1	-13.8	47.2	-4.8	-0.7	-6.1
1665	ATTTTCATACCTTAAATTGA SEQ ID NO:835	-8.1	-17.3	54.6	-9.2	0	-3.2
1900	CACAACTCTGTTGGCCAACT SEQ ID NO:836	-8.1	-24.7	69.6	-13.2	-1.8	-15
1989	TTTTTTATTGAACAATAATA SEQ ID NO:837	-8.1	-13.1	45.9	-4.1	-0.6	-9
1990	CTTTTTTTTTGAACAATAAT SEQ ID NO:838	-8.1	-14.3	48.3	-5.5	-0.3	-8.7
1992	TTCTTTTTTTTTGAACAATA SEQ ID NO:839	-8.1	-15.5	51.4	-7.4	0	-6.7
52	CATGTTTCCCAGCTGCCTCC SEQ ID NO:840	-8	-31	84.2	-22.5	0	-8.1
315	TCCCCATTAGAAGGCTGACA SEQ ID NO:841	-8	-26.2	72.3	-18.2	0	-3.7
362	CGTAGGGACAGTCTTTGCAG SEQ ID NO:842	-8	-24.8	72.4	-16.3	-0.1	-6
546	ACTTCTTCTCTCACAATATT SEQ ID NO:843	-8	-20.3	63.1	-12.3	0	-3.8
591	AACCATTTCCTCATTACGGG SEQ ID NO:844	-8	-24	67.2	-16	0	-3.6
596	GATTTAACCATTTCCTCATT SEQ ID NO:845	-8	-21.4	63.4	-13.4	0	-2.4
1548	GATAATAAATTTATCATGCC SEQ ID NO:846	-8	-16.7	52.8	-6.9	-1.8	-8.1
1718	GACATGTTTTCTGCTGAAAA SEQ ID NO:847	-8	-19.5	59.2	-9.2	-2.3	-11.2
1985	TTATTGAACAATAATAAACA SEQ ID NO:848	-8	-12.2	43.7	-3.5	0.3	-8.5
14	TGGTCTTTGCTGGTGGGAAG SEQ ID NO:849	-7.9	-25.3	74	-17.4	0	-3.6
58	GCTCTTCATGTTTCCCAGCT SEQ ID NO:850	-7.9	-28.4	81.7	-20.5	0	-4.7
61	GACGCTCTTCATGTTTCCCA SEQ ID NO:851	-7.9	-27.3	76.4	-19.4	0	-4.7
165	CTTTTGCACTCACTGCTGTC SEQ ID NO:852	-7.9	-25.3	74.9	-16.1	-1.2	-5
216	ACTCGGCAGCAGCCACAGTC SEQ ID NO:853	-7.9	-29.5	82	-18.4	-3.2	-9.8
351	TCTTTGCAGATACCAAACTC SEQ ID NO:854	-7.9	-21.3	63.3	-12.8	-0.3	-5.2
493	AGAAACAAATCTGTTGGAAG SEQ ID NO:855	-7.9	-16.4	52.1	-6.9	-1.5	~5
495	AGAGAAACAAATCTGTTGGA SEQ ID NO:856	-7.9	-17.7	55.1	-8.7	-1	-4.4

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
548	CAACTTCTTCTCTCACAATA SEQ ID NO:857	-7.9	-20.2	61.9	-12.3	0	-1.2
554	CTTTCACAACTTCTTCTCTC SEQ ID NO:858	-7.9	-22	67.8	-14.1	0	-0.7
1493	TTATTCTAACCATTTTCAAC SEQ ID NO:859	-7.9	-18	56.4	-10.1	0	-1.2
1514	ACCTTATAGAGTCATAGGTT SEQ ID NO:860	-7.9	-21.7	66.7	-13.1	-0.5	-5.7
1988	TTTTTATTGAACAATAATAA SEQ ID NO:861	-7.9	-12.3	44.2	-3.5	-0.6	-9
62	AGACGCTCTTCATGTTTCCC SEQ ID NO:862	-7.8	-26.6	75. 7	-18.8	0	-6
668	AAATGTTGGCTGTGTGTGA SEQ ID NO:863	-7.8	-22.1	66.1	-14.3	0	-3.7
748	TTGTTTTCTGGATCCACCAT SEQ ID NO:864	-7.8	-24.7	71.4	-15.5	-1.2	-9.7
885	ATTACCTAAATTGCATTTTT SEQ ID NO:865	-7.8	-18.2	56.3	-10.4	0	-6.2
888	AAGATTACCTAAATTGCATT SEQ ID NO:866	-7.8	-17.8	54.9	-10	0	-5.3
1044	TTTATTTCCCACTCCCACCC SEQ ID NO:867	-7.8	-29.6	78.6	-21.8	0	-0.7
1246	TAACCCGGGAACTACATCAG SEQ ID NO:868	-7.8	-23.1	64.3	-13.9	-0.2	-10.7
1369	TACACACACAAACCACCAGT SEQ ID NO:869	-7.8	-22.9	64.3	-15.1	0	-2.6
1504	GTCATAGGTTTTTATTCTAA SEQ ID NO:870	-7.8	-18.9	60.5	-11.1	0	-2.6
1817	ATACTTCTGAGATATTTCCT SEQ ID NO:871	-7.8	-20.6	63.4	-12.8	0	-3.8
134	GGCAGTCCACCGCATAATTA SEQ ID NO:872	-7.7	-26.3	72.1	-17.7	-0.7	-5
465	ACTGAATATTGGAAGAAGGG SEQ ID NO:873	-7.7	-18.2	56	-10.5	0	-4.6
663	TTGGCTGTGTGTTGAACAAT SEQ ID NO:874	-7.7	-21.8	64.8	-13.2	-0.7	-7.8
879	TAAATTGCATTTTTAGTTCT SEQ ID NO:875	-7.7	-17.6	56.3	-9.9	0	-6.2
894	CCATGTAAGATTACCTAAAT SEQ ID NO:876	-7.7	-18.7	56.4	-11	0	-4.9
1125	TTGACTTTTCCCAAAGCCAA SEQ ID NO:877	-7.7	-23.6	65.8	-14.5	-1.3	-6.1
1227	GCAGCCTTTTGAAATTGCTC SEQ ID NO:878	-7.7	-23.9	68.9	-15.5	-0.4	-5.5
1229	CAGCAGCCTTTTGAAATTGC SEQ ID NO:879	-7.7	-23.3	66.9	-14.9	-0.4	-4.9
1630	ACAGCACTTATGTTTAAATA SEQ ID NO:880	-7.7	-17.7	55.8	-10	0	-5.4
1838	AAGTTCTTCACTTCAAATAA SEQ ID NO:881	-7.7	-17	54.4	-8.4	-0.7	-3.3
1943	ACAGCTTATGCAGCTTTACA SEQ ID NO:882	-7.7	-23.4	69.3	-13.7	-2	-6.9
120	TAATTATTGCTCCAGGCGGC SEQ ID NO:883	-7.6	-25.5	71.3	-16.4	-1.4	-7.2
152	TGCTGTCACAGTGTTGAGGG SEQ ID NO:884	-7.6	-25.4	75.6	-17.1	-0.4	-5.7
214	TCGGCAGCAGCCACAGTCGT SEQ ID NO:885	-7.6	-30.4	82.5	-19.6	-3.2	-9.8
344	AGATACCAAACTCTTCACCA SEQ ID NO:886	-7.6	-22.3	64.4	-14.7	0	-2.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
345	CAGATACCAAACTCTTCACC SEQ ID NO:887	-7.6	-22.3	64.4	-14.7	0	-2.6
645	ATCACGAAAATAGAGCCTTC SEQ ID NO:888	-7.6	-20.1	59.4	-12.5	0	-3.5
828	TCTACATGCATTCGAATATT SEQ ID NO:889	-7.6	-19.4	58.8	-11.2	0	-8.4
1754	CAAATATACTCCTAATTCCA SEQ ID NO:890	-7.6	-19.3	57.7	-11.7	0	-2.9
1849	AATTCTTAAATAAGTTCTTC SEQ ID NO:891	-7.6	-15.2	51.1	-7.6	0	-4.9
299	GACACCTCAGCCCCGGGCCA SEQ ID NO:892	-7.5	-35.2	87.6	-25.8	-1.8	-11.2
549	ACAACTTCTTCTCTCACAAT SEQ ID NO:893	-7.5	-20.7	63	-13.2	0	-0.9
665	TGTTGGCTGTGTGTAACA SEQ ID NO:894	-7.5	-23.7	70.3	-15.5	-0.5	-5.8
703	TTACATGTACTTATGCTATA SEQ ID NO:895	-7.5	-18.6	58.7	-10.6	0	-7.7
829	ATCTACATGCATTCGAATAT SEQ ID NO:896	-7.5	-19.3	58.5	-11.2	0	-8.4
1284	GTGTTTCCTATGCCCCAGAA SEQ ID NO:897	-7.5	-28 :	76.8	-20.5	0	-3
1524	ATGTTTGAAAACCTTATAGA SEQ ID NO:898	-7.5	-17.1	53.9	-9.1	-0.1	-5.7
1835	TTCTTCACTTCAAATAAAAT SEQ ID NO:899	-7.5	-15.1	49.8	-7.6	0	-1.2
1942	CAGCTTATGCAGCTTTACAT SEQ ID NO:900	-7.5	-23.2	68.6	-13.7	-2	-6.9
40	CTGCCTCCGGCTCGGCTCTC SEQ ID NO:901	-7.4	-33.5	88.7	-24	-2.1	-10
130	GTCCACCGCATAATTATTGC SEQ ID NO:902	-7.4	-24.5	68.5	-16.4	-0.4	-7.5
251	TGCGGTAGCAAGTTTCTCCC SEQ ID NO:903	-7.4	-27.6	77.3	-18.6	-1.6	-5.1
350	CTTTGCAGATACCAAACTCT SEO ID NO:904	-7.4	-21.8	63.7	-13.8	-0.3	-5.2
388	CTCTCTGCAATCCATCCCGA SEQ ID NO:905	-7.4	-28.2	75.9	-20.8	0	-4.7
432	TTTCCCGTCCCCCTGTCACA SEQ ID NO:906	-7.4	-33.1	85.5	-25.7	0	-2.5
642	ACGAAAATAGAGCCTTCTCT SEQ ID NO:907	-7.4	-21.2	61.9	-12.2	-1.5	-6.5
728	GCATCACAATTTGGATCTTC SEQ ID NO:908	-7.4	-21.6	65.1	-14.2	۰ 0	-5.4
752	CTTTTTGTTTTCTGGATCCA SEQ ID NO:909	-7.4	-23	69	-14.7	0	-9.6
881	CCTAAATTGCATTTTAGTT SEQ ID NO:910	-7.4	-19.2	58.8	-10.6	-0.9	-9.6
889	TAAGATTACCTAAATTGCAT SEQ ID NO:911	-7.4	-17.4	54.1	-10	0	-5.3
899	TGTCTCCATGTAAGATTACC SEQ ID NO:912	-7.4	-22.4	66.6	-15	0	-5.5
1002	TAAGTCTTCATTCCATATCC SEQ ID NO:913	-7.4	-22	66.3	-14.6	0	-2.7
1121	CTTTTCCCAAAGCCAAAAAA SEQ ID NO:914	-7.4	-19.9	56.8	-11.8	-0.4	-3.4
1235	CTACATCAGCAGCCTTTTGA SEQ ID NO:915	-7.4	-24.7	71.6	-17.3	0	-4.5
1364	ACACAAACCACCAGTGGGTA SEQ ID NO:916	-7.4	-24.7	68.7	-16	-1.2	-9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1367	CACACACAAACCACCAGTGG SEQ ID NO:917	-7.4	-24.2	66.6	-15.8	-0.9	-8.5
1614	AATAAGGTCCCTCTGTTGCT SEQ ID NO:918	-7.4	-25.3	72.6	-17.9	0	-4.7
1622	TATGTTTAAATAAGGTCCCT SEQ ID NO:919	-7.4	-20.1	60.3	-12.7	0	-5.1
1636	GAAGTCACAGCACTTATGTT SEQ ID NO:920	-7.4	-21.8	66.1	-13.7	-0.5	-4.6
1723	AAGTTGACATGTTTTCTGCT SEQ ID NO:921	-7.4	-21.6	65.9	-14.2	0	-7.1
1960	TTTTAAAACAAAACCTAACA SEQ ID NO:922	-7.4	-13.7	46.1	-5.8	-0.1	-6
42	AGCTGCCTCCGGCTCGGCTC SEQ ID NO:923	-7.3	-34	89.6	-24.3	-2.4	-10
358	GGGACAGTCTTTGCAGATAC SEQ ID NO:924	-7.3	-23.6	70.6	-15.8	-0.2	-6
550	CACAACTTCTTCTCTCACAA SEO ID NO:925	-7.3	-21.4	64.3	-14.1	0	-0.6
570	GACCCGGCAGCATTCTCTTT SEQ ID NO:926	-7.3	-28.7	78.6	-21.4	0	-6.3
626	CTCTCAGAAATCACAGCCGG SEQ ID NO:927	-7.3	-24.3	68.2	-17	0	-6.2
883	TACCTAAATTGCATTTTTAG SEQ ID NO:928	-7.3	-17.8	55.6	-9.6	-0.6	-9.2
901	CCTGTCTCCATGTAAGATTA SEQ ID NO:929	-7.3	-23.1	68	-15.8	0	-5.5
1228	AGCAGCCTTTTGAAATTGCT SEQ ID NO:930	-7.3	-23.5	67.6	-14.9	-1.2	-6.2
1336	CTTAGATTTATCTCTGAGGT SEQ ID NO:931	-7.3	-20.8	65.2	-12.6	-0.7	-6.2
1503	TCATAGGTTTTTATTCTAAC SEQ ID NO:932	-7.3	-17.9	57.8	-10.6	0	-2.7
1761	ATTCTTTCAAATATACTCCT SEQ ID NO:933	-7.3	-19.1	59.1	-11.8	0	-2.7
1776	CCTGTTTGTGCTAAGATTCT SEQ ID NO:934	-7.3	-23.2	69	-15.9	0	-3.8
1816	TACTTCTGAGATATTTCCTA SEQ ID NO:935	-7.3	-20.3	62.8	-13	0	-3.8
1844	TTAAATAAGTTCTTCACTTC SEQ ID NO:936	-7.3	-16.8	54.8	-8.4	-1	-4.2
1910	CACACACATTCACAACTCTG SEQ ID NO:937	-7.3	-21.2	62.7	-13.9	0	-1.8
336	AACTCTTCACCAAAAGGATC SEQ ID NO:938	-7.2	-19.9	59.5	-12.7	. 0	-4.1
547	AACTTCTTCTCTCACAATAT SEQ ID NO:939	-7.2	-19.5	60.6	-12.3	0	-2.4
583	CCTCATTACGGGAGACCCGG SEQ ID NO:940	-7.2	-28.6	74.5	-17.7	-3.7	-11
742	TCTGGATCCACCATGCATCA SEQ ID NO:941	-7.2	-26.7	74.7	-18.1	-1.2	-9.7
880	CTAAATTGCATTTTTAGTTC SEQ ID NO:942	-7.2	-17.6	56.3	-9.6	-0.4	-8.8
902	ACCTGTCTCCATGTAAGATT SEQ ID NO:943	-7.2	-23.6	69.2	-16.4	0	-5
1080	TCTAGAGAAGCTACCTACCA SEQ ID NO:944	-/.2	-23.6	68.5	-16.4	. 0	-5.2
1326	TCTCTGAGGTGGCATACGTT SEQ ID NO:945	-7.2	-25.3	73.8	-17.5	-0.3	-6.5
1587	TGACATTTTTTGAAATCCAG SEQ ID NO:946	-7.2	-18.3	56.4	-10.1	-0.9	-4.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mo1	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	21:00	binding	ation	Duplex	ture	oligo	oligo
1991	oligo TCTTTTTTATTGAACAATAA SEO ID NO:947	-7.2	-14.7	49.4	-6.7	-0.4	-8.7
283	GCCACACTTCATGCCATCCA SEQ ID NO:948	-7.1	-29.3	79.1	-22.2	0	-4.4
314	CCCCATTAGAAGGCTGACAC SEQ ID NO:949	-7.1	-26	71.3	-18.9	0	-3.7
359	AGGGACAGTCTTTGCAGATA SEQ ID NO:950	-7.1	-23.4	70.3	-15.8	-0.2	-6
360	TAGGGACAGTCTTTGCAGAT SEQ ID NO:951	-7.1	-23.4	70.3	-15.8	-0.2	-6
369	AAGGTGCCGTAGGGACAGTC SEQ ID NO:952	-7.1	-26.7	75.9	-18	-1.5	-7.9
524	CATCTCCAGATGCCATGTCA SEQ ID NO:953	-7.1	-26.5	75.2	-18.7	-0.5	-6.9
753	ACTTTTTGTTTTCTGGATCC SEQ ID NO:954	-7.1	-22.5	68.4	-14.9	0	-7.5
862	TCTTCAGTGTTACTATACAC SEQ ID NO:955	-7.1	-20.3	64	-11.9	-1.2	-5.2
952	TAATTTGACTCACTGCGGTC SEQ ID NO:956	-7.1	-22.5	66.2	-14.9	-0.1	-6.2
1014	TTCTCCTGCTCTTAAGTCTT SEQ ID NO:957	-7.1	-24.4	73.7	-17.3	0	-6
1327	ATCTCTGAGGTGGCATACGT SEQ ID NO:958	-7.1	-25.2	73.4	-17.5	-0.3	-6.5
1721	GTTGACATGTTTTCTGCTGA SEQ ID NO:959	-7.1	-22.9	69.3	-15.8	0	-7.1
1837	AGTTCTTCACTTCAAATAAA SEQ ID NO:960	-7.1	-17	54.4	-9.9	0	-2.3
59	CGCTCTTCATGTTTCCCAGC SEQ ID NO:961	-7	-28.3	79.2	-21.3	0	-4.7
132	CAGTCCACCGCATAATTATT SEQ ID NO:962	-7	-23.4	66	-16.4	0	-5.6
231	CGCCCTGCAGCGCACACTCG SEQ ID NO:963	-7	-32.3	80.9	-23.9	-1.2	-10.1
702	TACATGTACTTATGCTATAT SEQ ID NO:964	-7	-18.5	58.3	-11.5	0	-7.3
810	TTTAACAAACACATACAAGT SEQ ID NO:965	-7	-15.6	50.4	-8.6	0	-2.8
1197	GCTGTTTGTTACTCAAATTT SEQ ID NO:966	-7	-20.1	61.9	-11.5	-1.6	-6.5
1223	CCTTTTGAAATTGCTCTCAG SEQ ID NO:967	-,	-21.6	64	-14.6	0	-3.6
1408	ACACATTTATTATAAAAAT SEQ ID NO:968	•	-12.5	44.4	-4.8	-0.4	
1508	TAGAGTCATAGGTTTTTATT SEQ ID NO:969	•	-18.9	61	-11.9		-4.8
1613	ATAAGGTCCCTCTGTTGCTC SEQ ID NO:970	•	-26.4	76.9	-19.4		-4.7
1624	CTTATGTTTAAATAAGGTCC SEQ ID NO:971	•	-18.2	56.9	-10.4		-5.6
1762	GATTCTTTCAAATATACTCC SEQ ID NO:972	•	-18.8	58.4	-11.8		-2.7
1772	TTTGTGCTAAGATTCTTTCA SEQ ID NO:973	•	-20.4	63.4	-12.9		-5.6
1941	AGCTTATGCAGCTTTACATT SEQ ID NO:974	•	-22.6		-13.7		-6.9
273	ATGCCATCCATGCCTGAGAC SEQ ID NO:975	0.5	-27.7	75.8	-20.8		-4.2
354	CAGTCTTTGCAGATACCAAA SEQ ID NO:976	-6.9	-21.7	63.9	-14.3	-0.2	-5.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex	-	target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	alian	binding	ation	Duplex	ture	oligo	oligo
355	oligo ACAGTCTTTGCAGATACCAA SEQ ID NO:977	-6.9	-22.6	66.6	-15.2	-0.2	-5.2
551	TCACAACTTCTTCTCTCACA SEQ ID NO:978	-6.9	-22.5	68.1	-15.6	0	-0.6
639	AAAATAGAGCCTTCTCTCAG SEQ ID NO:979	-6.9	-20.7	62.4	-12.3	-1.4	-5.1
662	TGGCTGTGTGTTGAACAATC SEQ ID NO:980	-6.9	-22.1	66	-14.3	-0.7	-7.8
704	ATTACATGTACTTATGCTAT SEO ID NO:981	-6.9	-18.9	59.3	-11.5	0	-7.7
1616	TAAATAAGGTCCCTCTGTTG SEQ ID NO:982	-6.9	-21.6	63.7	-14.7	0	-4.7
1632	TCACAGCACTTATGTTTAAA SEQ ID NO:983	-6.9	-19.1	58.9	-12.2	0	-5.2
1664	TTTTCATACCTTAAATTGAA SEQ ID NO:984	-6.9	-16.6	52.8	-9.2	-0.1	-3.6
1800	CCTAAGAACATCTAGTACAA SEQ ID NO:985	-6.9	-18.8	57. 5	-11.9	0	-5.7
447	GGGAATTTCAGGCATTTTCC SEQ ID NO:986	-6.8	-24	69.9	-16.3	-0.8	-5
449	AGGGGAATTTCAGGCATTTT SEQ ID NO:987	-6.8	-22.8	67.5	-16	0	-5
525	CCATCTCCAGATGCCATGTC SEQ ID NO:988	-6.8	-27.8	77. 7	-19.9	-1	-7.8
830	AATCTACATGCATTCGAATA SEQ ID NO:989	-6.8	-18.6	56.7	-11.2	0	-8.4
835	TAACAAATCTACATGCATTC SEQ ID NO:990	-6.8	-17.4	54.6	-10.6	0	-6.7
988	ATATCCCAACATTAATGTAC SEQ ID NO:991	-6.8	-19.2	57.9	-11.1	-0.2	-10.5
1629	CAGCACTTATGTTTAAATAA SEQ ID NO:992	-6.8	-16.8	53.5	-10	0	-5.4
1722	AGTTGACATGTTTTCTGCTG SEQ ID NO:993	-6.8	-22.3	68.1	-15.5	0	-6.5
263	TGCCTGAGACTGTGCGGTAG SEQ ID NO:994	-6.7	-26.9	75.7	-19.6	-0.3	-5.4
298	ACACCTCAGCCCCGGGCCAC SEQ ID NO:995	-6.7	-34.8	87	-26.2	-1.8	-11.2
300	TGACACCTCAGCCCCGGGCC SEQ ID NO:996	-6.7	-34.5	86.5	-25.9	-1.8	-11.3
401	GGCAGTTGCAGGTCTCTCTG SEQ ID NO:997	-6.7	-27.8	83.1	-20.2	-0.7	-6.6
751	TTTTTGTTTTCTGGATCCAC SEQ ID NO:998	-6.7	-22.3	67.6	-14.7	0	-9.7
817	TCGAATATTTAACAAACACA SEQ ID NO:999	-6.7	-15.3	49.3	-8.6	0	-4.8
1666	TATTTTCATACCTTAAATTG SEQ ID NO:1000	-6.7	-16.4	52.8	-9.7	0	-3.2
1756	TTCAAATATACTCCTAATTC SEQ ID NO:1001	-6.7	-17.1	5 4.4	-10.4		-2.9
1986	TTTATTGAACAATAATAAAC SEQ ID NO:1002	-0.7	-11.6	42.7	-3.5		-9
183	CTCTTGCAGCGCGGGCTGCT SEQ ID NO:1003	-6.6	-31.8	84.7	-19.7	~5.5	15.6
294	CTCAGCCCCGGGCCACACTT SEQ ID NO:1004	-0.0	-33.6	85.4	-25.1	1.8	-11.2
523	ATCTCCAGATGCCATGTCAT SEQ ID NO:1005	-0.0	-25.8	74	-18.7		-4.3
1150	TCAGGGGTTTTCTGGTTGTT SEQ ID NO:1006	-6.6	-25.3	76.8	-17.8	-0.7	-4.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1233	ACATCAGCAGCCTTTTGAAA SEO ID NO:1007	-6.6	-22.7	65.7	-16.1	0	-4.5
1291	AGTGTATGTGTTTCCTATGC SEQ ID NO:1008	-6.6	-23.5	71.8	-16.9	0	-2.6
1318	GTGGCATACGTTAAAGCTAT SEQ ID NO:1009	-6.6	-21.6	63.4	-14.3	-0.4	-5.1
1370	ATACACACACAAACCACCAG SEQ ID NO:1010	-6.6	-21.7	61.5	-15.1	0	-0.9
1488	CTAACCATTTTCAACAAATA SEQ ID NO:1011	-6.6	-16.7	52.3	-9.6	-0.1	-2.7
1726	TTAAAGTTGACATGTTTTCT SEO ID NO:1012	-6.6	-18	57.3	-11.4	0	-7.1
1966	ATGTCCTTTTAAAACAAAAC SEQ ID NO:1013	-6.6	-15.4	49.8	-8.2	-0.3	-6.2
217	CACTCGGCAGCAGCCACAGT SEQ ID NO:1014	-6.5	-29.8	81.2	-20.6	-2.7	-9.3
451	GAAGGGGAATTTCAGGCATT SEQ ID NO:1015	-6.5	-22.5	65.8	-16	0	-5
638	AAATAGAGCCTTCTCTCAGA SEQ ID NO:1016	-6.5	-22	65.9	-13.8	-1.7	-5.1
827	CTACATGCATTCGAATATTT SEQ ID NO:1017	-6.5	-19.1	57.9	-12	0	-8.4
836	TTAACAAATCTACATGCATT SEQ ID NO:1018	-6.5	-17.1	53.7	-10.6	. О	-6.7
837	TTTAACAAATCTACATGCAT SEQ ID NO:1019	-6.5	-17.1	53.7	-10.6	0	-6.4
1216	AAATTGCTCTCAGTTCAAAG SEQ ID NO:1020	-6.5	-18.8	58.3	-12.3	0	-3.2
1325	CTCTGAGGTGGCATACGTTA SEQ ID NO:1021	-6.5	-24.6	71.5	-17.5	-0.3	-5.2
1363	CACAAACCACCAGTGGGTAA SEQ ID NO:1022	-6.5	-23.8	66.1	-16	-1.2	-9
1757	TTTCAAATATACTCCTAATT SEQ ID NO:1023	-6.5	-16.8	53.5	-10.3	0	-2.7
1845	CTTAAATAAGTTCTTCACTT SEQ ID NO:1024	-6.5	-17.3	55.4	-9.9	-0.8	-4.2
1899	ACAACTCTGTTGGCCAACTT SEQ ID NO:1025	-6.5	-24.1	68.8	-14.2	-1.8	-15
1987	TTTTATTGAACAATAATAAA SEQ ID NO:1026	-6.5	-11.5	42.5	-3.5	-1.4	-9
73	GGTCAGCAGCAAGACGCTCT SEQ ID NO:1027	-6.4	-27.4	77.5	-19.5	-1.4	-8.5
430	TCCCGTCCCCCTGTCACAGA SEQ ID NO:1028	-6.4	-33.5	86.4	-26.5	0.3	-5.2
459	TATTGGAAGAAGGGGAATTT SEQ ID NO:1029	-6.4	-18.5	56.7	-12.1	0	-3.3
808	TAACAAACACATACAAGTGT SEQ ID NO:1030	-6.4	-16.6	52.4	-8.6	-1.6	-6
890	GTAAGATTACCTAAATTGCA SEQ ID NO:1031	-6.4	-18.6	56.9	-12.2	0	-5.3
1056	AGGGCTAAATATTTTATTTC SEQ ID NO:1032	-6.4	-17.7	56.3	-10.5	-0.6	-8.2
1062	CAAGGAAGGCTAAATATTT SEQ ID NO:1033	-6.4	-18.4	56.1	-12	0	-6.4
1142	TTTCTGGTTGTTTTATTTTG SEQ ID NO:1034	-0.4	-19.5	62.1	-13.1	0	-1.5
1410	TAACACATTTATTATAAAA SEQ ID NO:1035	-6.4	-12.2	43.9	-4.8	-0.9	-6.5
1549	GGATAATAAATTTATCATGC SEQ ID NO:1036	-6.4	-15.9	51.5	-6.9	-2.6	-7.6

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1634	AGTCACAGCACTTATGTTTA SEQ ID NO:1037	-6.4	-21.7	66.8	-15.3	0	-4.1
1688	TTTTACAAACCTCCTAAAAA SEQ ID NO:1038	-6.4	-16.8	52	-10.4	0	-3.2
1917	GGCCTTCCACACACATTCAC SEQ ID NO:1039	-6.4	-27.2	75.7	-20.3	-0.2	-6.4
131	AGTCCACCGCATAATTATTG SEQ ID NO:1040	-6.3	-22.7	64.8	-16.4	0	-5.6
460	ATATTGGAAGAAGGGGAATT SEQ ID NO:1041	-6.3	-18.4	56.4	-12.1	0	-3.1
637	AATAGAGCCTTCTCTCAGAA SEQ ID NO:1042	-6.3	-22	65.9	-14	-1.7	-6.3
816	CGAATATTTAACAAACACAT SEQ ID NO:1043	-6.3	-14.9	48.3	-8.6	0	-4.8
1081	TTCTAGAGAAGCTACCTACC SEQ ID NO:1044	-6.3	-23	67.7	-16.7	0	-5.8
1198	AGCTGTTTGTTACTCAAATT SEQ ID NO:1045	-6.3	-20	61.8	-12.5	-1.1	-9.3
1379	TTTACCTTCATACACACACA SEQ ID NO:1046	-6.3	-21.5	63.6	-15.2	0	-0.9
1434	ATGGGTAGGGAAGATGACTT SEQ ID NO:1047	-6.3	-22	65.5	-15	-0.5	-3.2
1435	TATGGGTAGGGAAGATGACT SEQ ID NO:1048	-6.3	-21.6	64.6	-15.3	0	-2.1
1635	AAGTCACAGCACTTATGTTT SEQ ID NO:1049	-6.3	-21.3	65	-15	0	-4.3
1637	CGAAGTCACAGCACTTATGT SEQ ID NO:1050	-6.3	-22.5	66	-15.5	-0.5	-4.6
1689	CTTTTACAAACCTCCTAAAA SEQ ID NO:1051	-6.3	-18.4	55.3	-12.1	0	-3.2
1944	AACAGCTTATGCAGCTTTAC SEQ ID NO:1052	-6.3	-22	65.7	-13.7	-2	-6.9
60	ACGCTCTTCATGTTTCCCAG SEQ ID NO:1053	-6.2	-26.7	75.4	-20.5	0	-4.7
97	CAGGTGTGCAGGCACGAGGA SEQ ID NO:1054	-6.2	-27.9	77.9	-19.2	-2.5	-10
384	CTGCAATCCATCCCGAAGGT SEQ ID NO:1055	-6.2	-27.3	72.8	-19.8	-1.2	-7.1
566	CGGCAGCATTCTCTTTCACA SEQ ID NO:1056	-6.2	-25.9	74.1	-19.7	0	-5.3
813	ATATTTAACAAACACATACA SEQ ID NO:1057	-6.2	-14.8	48.8	-8.6	0	-2.4
1208	CTCAGTTCAAAGCTGTTTGT SEQ ID NO:1058	-6.2	-22.3	67.8	-14.6	-1.4	-6.8
1251	ACAGGTAACCCGGGAACTAC SEQ ID NO:1059	-6.2	-24.6	67.6	-16.8	-1.1	-11
45	CCCAGCTGCCTCCGGCTCGG SEQ ID NO:1060	-6.1	-35.6	88.8	-27.1	-2.4	-10.5
46	TCCCAGCTGCCTCCGGCTCG SEQ ID NO:1061	-6.1	-34.8	88.3	-26.6	-2.1	-8.2
69	AGCAGCAAGACGCTCTTCAT SEQ ID NO:1062	-6.1	-25.1	71.8	-17.7	-1.2	-6
133	GCAGTCCACCGCATAATTAT SEQ ID NO:1063	-6.1	-25.1	69.6	-19	0	-5.6
284	GGCCACACTTCATGCCATCC SEQ ID NO:1064	-6.1	-29.8	80.6	-22.2	-1.4	-7.6
403	CTGGCAGTTGCAGGTCTCTC SEQ ID NO:1065	-6.1	-27.8	83.1	-20.8	-0.7	-6.6
462	GAATATTGGAAGAGGGGAA SEQ ID NO:1066	-6.1	-18.2	55.6	-12.1	0	-4.6

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mo1
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
565	GGCAGCATTCTCTTTCACAA SEQ ID NO:1067	-6.1	-24.4	71.7	-18.3	0	-5.3
809	TTAACAAACACATACAAGTG SEQ ID NO:1068	-6.1	-15.5	50.1	-8.6	-0.6	-4.7
818	TTCGAATATTTAACAAACAC SEQ ID NO:1069	-6.1	-14.7	48.4	-8.6	0	-6.2
1055	GGGCTAAATATTTTATTTCC SEQ ID NO:1070	-6.1	-19.7	60	-12.9	-0.4	-8.2
1285	TGTGTTTCCTATGCCCCAGA SEQ ID NO:1071	-6.1	-28.7	79.2	-22.6	0	-3
1332	GATTTATCTCTGAGGTGGCA SEQ ID NO:1072	-6.1	-23.8	71.5	-17.7	0	-6.2
1362	ACAAACCACCAGTGGGTAAA SEQ ID NO:1073	-6.1	-22.4	63.1	-15.1	-1.1	-8.2
1407	CACATTTATTTATAAAAATA SEQ ID NO:1074	-6.1	-12	43.5	-4.8	-1	-6.5
1586	GACATTTTTTGAAATCCAGA SEQ ID NO:1075	-6.1	-18.9	57.7	-11.8	-0.9	-4.3
1773	GTTTGTGCTAAGATTCTTTC SEQ ID NO:1076	-6.1	-20.9	65.5	-14.8	0	-5.6
1922	TCAAAGGCCTTCCACACACA SEQ ID NO:1077	-6.1	-25.5	70.4	-18.1	-0.2	-10.6
13	GGTCTTTGCTGGTGGGAAGC SEQ ID NO:1078	-6	-27.1	78.8	-20.3	-0.6	-5.1
63	AAGACGCTCTTCATGTTTCC SEQ ID NO:1079	-6	-23.9	69.6	-17.2	-0.4	-6.8
429	CCCGTCCCCCTGTCACAGAT SEQ ID NO:1080	-6	-33.1	84.5	-26.5	-0.3	-5.2
450	AAGGGGAATTTCAGGCATTT SEQ ID NO:1081	-6	-22	64.9	-16	0	-4.2
569	ACCCGGCAGCATTCTCTTTC SEQ ID NO:1082	-6	-28.5	79.1	-22.5	0	-6.3
648	ACAATCACGAAAATAGAGCC SEQ ID NO:1083	-6	-18.9	56	-12.9	0	-3.5
1049	AATATTTTATTTCCCACTCC SEQ ID NO:1084	-6	-21.8	64	-15.8	0	-3.8
1190	GTTACTCAAATTTCCATAAG SEQ ID NO:1085	-6	-18.1	56.4	-12.1	0	-4.5
1249	AGGTAACCCGGGAACTACAT SEQ ID NO:1086	-6	-24.4	67.1	-16.8	-1.1	-11
1409	AACACATTTATTATAAAAA SEQ ID NO:1087	-6	-11.8	43	-4.8	-0.9	-6.5
1657	ACCTTAAATTGAAAATTCAC SEQ ID NO:1088	-6	-15.5	50	-8.2	-1.2	-5.7
1758	CTTTCAAATATACTCCTAAT SEQ ID NO:1089	-6	-17.6	55	-11.6	0	-2.7
337	AAACTCTTCACCAAAAGGAT SEQ ID NO:1090	-5.9	-18.8	56.4	-12.9	0	-3.7
342	ATACCAAACTCTTCACCAAA SEQ ID NO:1091	-5.9	-20.3	59.1	-14.4	0	-0.9
545	CTTCTTCTCTCACAATATTG SEQ ID NO:1092	-5.9	-20.1	62.5	-13.7	0	-8.2
972	GTACATCAAAGTCAAAGAAC SEQ ID NO:1093	-5.9	-16.5	52.8	-10.6	0	-4.6
974	ATGTACATCAAAGTCAAAGA SEQ ID NO:1094	-5.9	-17	54	-10.6	0	-7.6
1120	TTTTCCCAAAGCCAAAAAA SEQ ID NO:1095	-5.5	-18.3	53.6	-12.4	0	-3.2
1124	TGACTTTTCCCAAAGCCAAA SEQ ID NO:1096	-5.9	-22.8	63.5	-15.5	-1.3	-5.3

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1224	GCCTTTTGAAATTGCTCTCA SEQ ID NO:1097	-5.9	-23.4	67.9	-17.5	0	-3.9
1371	CATACACACACAAACCACCA SEQ ID NO:1098	-5.9	-22.4	62.4	-16.5	0	-0.9
1617	TTAAATAAGGTCCCTCTGTT SEQ ID NO:1099	-5.9	-21.7	64.2	-15.8	0	-4.7
1809	GAGATATTTCCTAAGAACAT SEO ID NO:1100	-5.9	-18.2	56.5	-11.8	-0.2	-4
1810	TGAGATATTTCCTAAGAACA SEQ ID NO:1101	-5.9	-18.2	56.5	-11.8	-0.2	-4.6
1889	TGGCCAACTTCAAGAATAAA SEO ID NO:1102	-5.9	-18.8	56.1	-12.4	0	-8.3
293	TCAGCCCCGGGCCACACTTC SEQ ID NO:1103	-5.8	-33.1	85.4	-25.4	-1.8	-11.2
297	CACCTCAGCCCCGGGCCACA	-5.8	-35.3	87.2	-27.6	-1.8	-11.2
811	SEQ ID NO:1104 ATTTAACAAACACATACAAG	-5.8	-14.4	47.9	-8.6	0	-2.4
893	SEQ ID NO:1105 CATGTAAGATTACCTAAATT	-5.8	-16.8	53.1	-11	0	-4.9
1061	SEQ ID NO:1106 AAGGAAGGGCTAAATATTTT	-5.8	-17.8	55.2	-12	0	-6.6
1207	SEQ ID NO:1107 TCAGTTCAAAGCTGTTTGTT	-5.8	-21.5	66.1	-14.2	-1.4	-6.8
1230	SEQ ID NO:1108 TCAGCAGCCTTTTGAAATTG	-5.8	-21.9	64.3	-16.1	0	-4.5
1463	SEQ ID NO:1109 AGATTTCTTTCCTCAAGAGG	-5.8	-21.8	66.2	-15.2	-0.6	-7.9
1662	SEQ ID NO:1110 TTCATACCTTAAATTGAAAA	-5.8	-15	49	-9.2	0	-3.5
	SEQ ID NO:1111 CTCCTAATTCCACCTATATT	-5.8	-23	66.2	-17.2	0	-2.6
1746	SEQ ID NO:1112 ACTTCAAATAAAATACTTCT	-5.8	-14.7	49	-8.9	0	-1.2
1829	SEQ ID NO:1113 TAACAGCTTATGCAGCTTTA	-5.8	-21.5	64.6	-13.7	-2	-6.9
1945	SEQ ID NO:1114 CCTTTTAAAACAAAACCTAA				-9.3	-0.3	-6.2
1962	SEQ ID NO:1115 TCCTTTTAAAACAAAACCTA	-5.8	-15.7	49.5		-0.3	-6.2
1963	SEQ ID NO:1116	-5.8	-16.8	52	-10.4		-6.9
1	TGGGAAGCAGCCGTGACCCA SEQ ID NO:1117	-5.7	-30.1	78.4	-22.5	-1.9	
385	TCTGCAATCCATCCCGAAGG SEQ ID NO:1118	-3.7	-26.5	71.2	-19.8		-6.7
452	AGAAGGGGAATTTCAGGCAT SEQ ID NO:1119	-5.7	-22.4	65.7	-16	-0.5	-5
646	AATCACGAAAATAGAGCCTT SEQ ID NO:1120	-5.7	-19	56.4	-13.3	0	-3.2
664	GTTGGCTGTGTGTTGAACAA SEQ ID NO:1121	-5.7	-23	68.1	-16.4	-0.7	-7.8
743	TTCTGGATCCACCATGCATC SEQ ID NO:1122	-5.7	-26.1	73.9	-19	-1.2	-9.7
973	TGTACATCAAAGTCAAAGAA SEQ ID NO:1123	-5.7	-16.3	52.2	-10.6	0	-5.9
1136	GTTGTTTTATTTTGACTTTT SEQ ID NO:1124	-5.7	-18.8	60.3	-13.1	. 0	-2.5
1210	CTCTCAGTTCAAAGCTGTTT SEQ ID NO:1125	-5.7	-22.4	68.2	-15.3	-1.3	-5.1
1317	TGGCATACGTTAAAGCTATT SEQ ID NO:1126	-5.7	-20.5	60.8	-14.1	-0.4	-5.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1509	ATAGAGTCATAGGTTTTTAT SEQ ID NO:1127	-5.7	-18.8	60.6	-13.1	0	-4.8
1621	ATGTTTAAATAAGGTCCCTC SEQ ID NO:1128	-5.7	-20.8	62.2	-15.1	0	-5.1
1633	GTCACAGCACTTATGTTTAA SEQ ID NO:1129	-5.7	-21	64.2	-15.3	0	-5.8
1661	TCATACCTTAAATTGAAAAT SEQ ID NO:1130	-5.7	-14.9	48.8	-9.2	0	-3.2
1663	TTTCATACCTTAAATTGAAA SEQ ID NO:1131	-5.7	-15.8	50.9	-9.2	-0.8	-4.3
1767	GCTAAGATTCTTTCAAATAT SEQ ID NO:1132	-5.7	-17.3	55	-11.6	0.6	-5.6
67	CAGCAAGACGCTCTTCATGT SEQ ID NO:1133	-5.6	-24.5	70.4	-17.6	-1.2	-6.9
206	AGCCACAGTCGTCGAGCACT SEQ ID NO:1134	-5.6	-28.4	78.4	-22.2	-0.3	-5.3
275	TCATGCCATCCATGCCTGAG SEQ ID NO:1135	-5.6	-28	76.7	-20.6	-1.8	-5
292	CAGCCCCGGGCCACACTTCA SEQ ID NO:1136	-5.6	-33.4	84.6	-25.9	-1.8	-11.2
669	AAAATGTTGGCTGTGTTTG SEQ ID NO:1137	-5.6	-20.8	62.6	-15.2	0	-3.7
970	ACATCAAAGTCAAAGAACTA SEQ ID NO:1138	-5.6	-16.2	51.9	-10.6	0	-3
971	TACATCAAAGTCAAAGAACT SEQ ID NO:1139	-5.6	-16.2	51.9	-10.6	0	-2.9
1006	CTCTTAAGTCTTCATTCCAT SEQ ID NO:1140	-5.6	-22.2	67.5	-16.6	0	-6
1007	GCTCTTAAGTCTTCATTCCA SEQ ID NO:1141	-5.6	-24	72	-18.4	0	-6
1328	TATCTCTGAGGTGGCATACG SEQ ID NO:1142	-5.6	-23.7	69.4	-17.5	-0.3	-6.5
1690	TCTTTTACAAACCTCCTAAA SEQ ID NO:1143	-5.6	-19.5	58.2	-13.9	0	-2.3
1806	ATATTTCCTAAGAACATCTA SEQ ID NO:1144	-5.6	-18	56.4	-11.9	-0.2	-3.1
1830	CACTTCAAATAAAATACTTC SEQ ID NO:1145	-5.6	-14.5	48.4	-8.9	0	-1.2
1971	TAAACATGTCCTTTTAAAAC SEQ ID NO:1146	-5.6	-15.8	50.8	-10.2	0	-6.9
50	TGTTTCCCAGCTGCCTCCGG SEQ ID NO:1147	-5.5	-32.3	85.2	-26.3	0	-8.1
147	TCACAGTGTTGAGGGCAGTC SEQ ID NO:1148	-5.5	-25.6	77.3	-20.1	٠ 0	-6.5
458	ATTGGAAGAAGGGGAATTTC SEQ ID NO:1149	-5.5	-19.2	58.6	-13.7	0	-3.8
461	AATATTGGAAGAAGGGGAAT SEQ ID NO:1150	-5.5	-17.6	54.4	-12.1	0	-3.8
619	AAATCACAGCCGGGATCAGC SEQ ID NO:1151	-5.5	-25.1	69.5	-19.6	0	-6.9
812	TATTTAACAAACACATACAA SEQ ID NO:1152	-5.5	-14.1	47.3	-8.6	0	-2.4
1215	AATTGCTCTCAGTTCAAAGC SEQ ID NO:1153	-5.5	-21.3	64.5	-15.2	-0.3	-3.9
1329	TTATCTCTGAGGTGGCATAC SEQ ID NO:1154	-5.5	-23	69.7	-17.5	0	-6.2
1378	TTACCTTCATACACACACAA SEQ ID NO:1155	-5.5	-20.7	61.2	-15.2	0	-0.9
1406	ACATTTATTTATAAAAATAT SEQ ID NO:1156	-5.5	-11.3	42.2	-4.8	-0.9	-6.5

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1436	ATATGGGTAGGGAAGATGAC SEQ ID NO:1157	-5.5	-20.7	62.6	-15.2	0	-2
1744	CCTAATTCCACCTATATTTT SEQ ID NO:1158	-5.5	-21.9	63.6	-16.4	0	-2.9
1834	TCTTCACTTCAAATAAAATA SEQ ID NO:1159	-5.5	-14.7	49	-9.2	0	-1.2
1890	TTGGCCAACTTCAAGAATAA SEQ ID NO:1160	-5.5	-19.6	58.1	-13	0	-10.2
1921	CAAAGGCCTTCCACACACAT SEQ ID NO:1161	-5.5	-25.1	68.9	-18.1	-1	-10.6
47	TTCCCAGCTGCCTCCGGCTC SEQ ID NO:1162	-5.4	-34.1	89.5	-26.6	-2.1	-8.3
226	TGCAGCGCACACTCGGCAGC SEQ ID NO:1163	-5.4	-30.3	80.9	-23.6	-1.2	-8.5
622	CAGAAATCACAGCCGGGATC SEQ ID NO:1164	-5.4	-23.9	66.8	-18.5	0	-6.9
954	ACTAATTTGACTCACTGCGG SEQ ID NO:1165	-5.4	-22	64.1	-16.6	0	-4.7
955	AACTAATTTGACTCACTGCG SEQ ID NO:1166	-5.4	-20.1	59.7	-14.7	0	-4
1141	TTCTGGTTGTTTTATTTTGA SEQ ID NO:1167	-5.4	-20	63.2	-14.6	0	-2.1
1181	ATTTCCATAAGCTTCAAACA SEQ ID NO:1168	-5.4	-19.7	59.2	-14.3	0	-6.8
1234	TACATCAGCAGCCTTTTGAA SEQ ID NO:1169	-5.4	-23.1	67.4	-17.7	0	-4.5
1330	TTTATCTCTGAGGTGGCATA SEQ ID NO:1170	-5.4	-22.9	69.5	-17.5	0	-5.6
1553	TTATGGATAATAAATTTATC SEQ ID NO:1171	-5.4	-13.2	46.2	-6.9	-0.7	-8.1
1554	ATTATGGATAATAAATTTAT SEQ ID NO:1172	-5.4	-12.8	45.2	-6.8	-0.3	-7.9
1795	GAACATCTAGTACAACAGTC SEQ ID NO:1173	-5.4	-19.4	60.4	-14	0	-5.3
1898	CAACTCTGTTGGCCAACTTC SEQ ID NO:1174	-5.4	-24.3	69.8	-15.5	-0.9	-15
254	CTGTGCGGTAGCAAGTTTCT SEQ ID NO:1175	-5.3	-25.3	73.6	-18	-2	-5.6
282	CCACACTTCATGCCATCCAT SEQ ID NO:1176	-5.3	-27.5	74.9	-22.2	0	-4.4
521	CTCCAGATGCCATGTCATGC SEQ ID NO:1177	-5.3	-27.2	76.6	-21.9	0.3	-4.5
597	GGATTTAACCATTTCCTCAT SEQ ID NO:1178	-5.3	-22.5	65.6	-17.2	0	-3.4
660	GCTGTGTGTTGAACAATCAC SEQ ID NO:1179	-5.3	-21.8	65.2	-15.6	-0.8	-6.6
705	AATTACATGTACTTATGCTA SEQ ID NO:1180	-5.3	-18.2	57.2	-12.4	0	-7.7
831	AAATCTACATGCATTCGAAT SEQ ID NO:1181	-5.3	-18.2	55.4	-12.4	0	-8
1433	TGGGTAGGGAAGATGACTTG SEQ ID NO:1182	-5.3	-22	65.4	-15.8	-0.7	-3.1
1582	TTTTTTGAAATCCAGAGTGA SEQ ID NO:1183	-5.3	-19.2	59	-13.9	0	-3.3
1583	ATTTTTGAAATCCAGAGTG SEQ ID NO:1184	-5.3	-18.6	57.7	-12.4	0.7	-4.3
1667	TTATTTTCATACCTTAAATT SEQ ID NO:1185	-5.3	-16.5	53.1	-11.2	0	-2.9
1753	AAATATACTCCTAATTCCAC SEQ ID NO:1186	-5.3	-18.8	57.1	-13.5	0	-2.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1771	TTGTGCTAAGATTCTTTCAA SEQ ID NO:1187	-5.3	-19.6	60.8	-13.8	-0.1	-5.6
1804	ATTTCCTAAGAACATCTAGT SEQ ID NO:1188	-5.3	-19.5	60.2	-13.7	-0.2	-4.2
1850	TAATTCTTAAATAAGTTCTT SEQ ID NO:1189	-5.3	-14.5	49.3	-9.2	0	-4.3
1961	CTTTTAAAACAAAACCTAAC SEQ ID NO:1190	-5.3	-13.9	46.6	-8	-0.3	-6.2
1993	GTTCTTTTTTTTTGAACAAT SEQ ID NO:1191	-5.3	-17	54.8	-10.2	-1.4	-5.5
304	AGGCTGACACCTCAGCCCCG SEQ ID NO:1192	-5.2	-32.2	83.1	-20.9	-6.1	-14
381	CAATCCATCCCGAAGGTGCC SEQ ID NO:1193	-5.2	-28.4	74.3	-21.9	-1.2	-6
617	ATCACAGCCGGGATCAGCGT SEQ ID NO:1194	-5.2	-28.5	77.2	-22.4	-0.7	-6.9
815	GAATATTTAACAAACACATA SEQ ID NO:1195	-5.2	-13.8	46.8	-8.6	0	-4.8
838	ATTTAACAAATCTACATGCA SEQ ID NO:1196	-5.2	-17.1	53.7	-11.9	0	-5.2
1151	TTCAGGGGTTTTCTGGTTGT SEQ ID NO:1197	-5.2	-25.3	76.8	-19.2	-0.7	-4.2
1670	AACTTATTTTCATACCTTAA SEQ ID NO:1198	-5.2	-17.5	55.2	-12.3	0	-2
1797	AAGAACATCTAGTACAACAG SEQ ID NO:1199	-5.2	-17.1	54.3	-11.9	0	-5.7
1929	TTTACATTCAAAGGCCTTCC SEQ ID NO:1200	-5.2	-23	66.5	-16.5	0	-10.6
48	TTTCCCAGCTGCCTCCGGCT SEQ ID NO:1201	-5.1	-33.8	88	-26.6	-2.1	-8.3
182	TCTTGCAGCGCGGGCTGCTT SEQ ID NO:1202	-5.1	-31	83.2	-19.7	-6.2	-16.3
573	GGAGACCCGGCAGCATTCTC SEQ ID NO:1203	-5.1	-29.4	80.1	-23.6	-0.5	-6.3
661	GGCTGTGTGTTGAACAATCA SEQ ID NO:1204	-5.1	-22.8	67.3	-17	-0.4	-4.9
1214	ATTGCTCTCAGTTCAAAGCT SEQ ID NO:1205	-5.1	-22.9	68.8	-16.6	-1.1	-4.8
1335	TTAGATTTATCTCTGAGGTG SEQ ID NO:1206	-5.1	-19.9	62.9	-13.9	-0.7	-6.2
159	CACTCACTGCTGTCACAGTG SEQ ID NO:1207	-5	-25.1	74	-17	-3.1	-9.1
208	GCAGCCACAGTCGTCGAGCA SEQ ID NO:1208	-5	-29.8	81.3	-24.2	0.3	-4.9
230	GCCCTGCAGCGCACACTCGG SEQ ID NO:1209	-5	-32.7	83.8	-26.8	-0.7	-9.2
349	TTTGCAGATACCAAACTCTT SEQ ID NO:1210	-5	-21	62.2	-15.5	-0.1	-5.2
425	TCCCCCTGTCACAGATGCCT SEQ ID NO:1211	-5	-31.8	84.3	-26.8	0.2	-4.7
453	AAGAAGGGGAATTTCAGGCA SEQ ID NO:1212	-5	-21.7	63.6	-16	-0.5	-5
727	CATCACAATTTGGATCTTCA SEQ ID NO:1213	-5	-20.5	62.1	-15.5	0	-5.4
958	AAGAACTAATTTGACTCACT SEQ ID NO:1214	-5	-17.4	54.8	-12.4	0	-2.7
1333	AGATTTATCTCTGAGGTGGC SEQ ID NO:1215	-5	-23.1	70.6	-17.4	-0.5	-6.2
1692	CTTCTTTTACAAACCTCCTA SEQ ID NO:1216	-5	-21.9	64.2	-16.9	0	-1.7

		kca1/	kcal/		kcal/		•
		mo1	mol	deg C	mol	kca1/mo1	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	o1igo
1818	AATACTTCTGAGATATTTCC SEQ ID NO:1217	-5	-19	59.3	-14	0	-3.8
54	TTCATGTTTCCCAGCTGCCT SEQ ID NO:1218	-4.9	-29.1	81.2	-23.7	0	-8.1
142	GTGTTGAGGGCAGTCCACCG SEQ ID NO:1219	-4.9	-29.3	80.9	-23.3	-1	-5.6
146	CACAGTGTTGAGGGCAGTCC SEQ ID NO:1220	-4.9	-27.2	79.2	-22.3	0	-5.8
370	GAAGGTGCCGTAGGGACAGT SEQ ID NO:1221	-4.9	-26.9	75.5	-20.4	-1.5	-6.7
454	GAAGAAGGGGAATTTCAGGC SEQ ID NO:1222	-4.9	-21.6	63.7	-16	-0.5	-5
647	CAATCACGAAAATAGAGCCT SEQ ID NO:1223	-4.9	-19.6	57.2	-14.7	0	-3.5
805	CAAACACATACAAGTGTTCA SEQ ID NO:1224	-4.9	-18.6	57	-10.9	-2.8	-8.2
959	AAAGAACTAATTTGACTCAC SEQ ID NO:1225	-4.9	-15.8	51.2	-10.9	0	-2.7
1631	CACAGCACTTATGTTTAAAT SEQ ID NO:1226	-4.9	-18.7	57.6	-13.8	0	-5.4
1798	TAAGAACATCTAGTACAACA SEQ ID NO:1227	-4.9	-16.8	53.6	-11.9	0	-5.7
1920	AAAGGCCTTCCACACACATT SEQ ID NO:1228	-4.9	-24.5	68.2	-18.1	-1	-10.6
1928	TTACATTCAAAGGCCTTCCA SEQ ID NO:1229	-4.9	-23.6	67.3	-17.2	-1	-10.6
1933	CAGCTTTACATTCAAAGGCC SEQ ID NO:1230	-4.9	-23	66.5	-17.3	-0.6	-6.4
55	CTTCATGTTTCCCAGCTGCC SEQ ID NO:1231	-4.8	-29.1	81.2	-23.8	0	-8.1
166	GCTTTTGCACTCACTGCTGT SEQ ID NO:1232	-4.8	-26.7	777	-20	-1.9	-7.4
181	CTTGCAGCGCGGGCTGCTTT SEQ ID NO:1233	-4.8	-30.7	81.8	-19.7	-6.2	-16.3
253	TGTGCGGTAGCAAGTTTCTC SEQ ID NO:1234	-4.8	-24.8	73.3	-18	-2	-5.6
464	CTGAATATTGGAAGAAGGGG SEQ ID NO:1235	-4.8	-19.2	57.9	-14.4	0	-4.6
522	TCTCCAGATGCCATGTCATG SEQ ID NO:1236	-4.8	-25.8	73.9	-20.5	-0.1	-4.3
802	ACACATACAAGTGTTCAGTC SEQ ID NO:1237	-4.8	-20.9	64.6	-14.7	-1.3	-5.4
814	AATATTTAACAAACACATAC SEQ ID NO:1238	-4.8	-13.4	46.1	-8.6	0	-3.8
960	CAAAGAACTAATTTGACTCA SEQ ID NO:1239	-4.8	-16.3	52	-10.9	-0.3	-3.6
1003	TTAAGTCTTCATTCCATATC SEQ ID NO:1240	-4.8	-20.1	62.7	-15.3	0	-2.7
1231	ATCAGCAGCCTTTTGAAATT SEQ ID NO:1241	-4.8	-21.9	64.4	-17.1	0	-4.5
1316	GGCATACGTTAAAGCTATTT SEQ ID NO:1242	-4.8	-20.6	61.2	-15.1	-0.4	-5.1
1319	GGTGGCATACGTTAAAGCTA SEQ ID NO:1243	-4.8	-22.8	66	-17.3	-0.4	-5.4
1720	TTGACATGTTTTCTGCTGAA SEQ ID NO:1244	-4.8	-21	63.6	-14.6 .	-0.1	-11.4
1727	TTTAAAGTTGACATGTTTTC SEQ ID NO:1245	-4.8	-17.2	55.6	-12.4	0	-7.1
1803	TTTCCTAAGAACATCTAGTA SEQ ID NO:1246	-4.8	-19.2	59.6	-13.9	-0.2	-4.2

		kca1/	kca1/		kca1/		
		mol	mol	deg C	mol	kcal/mo1	
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1888	GGCCAACTTCAAGAATAAAA SEQ ID NO:1247	-4.8	-18.1	54.5	-13.3	0	-7
96	AGGTGTGCAGGCACGAGGAG SEQ ID NO:1248	-4.7	-27.2	77.1	-20	-2.5	-10.7
309	TTAGAAGGCTGACACCTCAG SEQ ID NO:1249	-4.7	-23.3	67.9	-17	-1.6	-5.1
832	CAAATCTACATGCATTCGAA SEQ ID NO:1250	-4.7	-18.9	56.6	-14.2	0	-6.8
953	CTAATTTGACTCACTGCGGT SEQ ID NO:1251	-4.7	-23	66.6	-18.3	0	-6
982	CAACATTAATGTACATCAAA SEQ ID NO:1252	-4.7	-15.5	50.2	-9.5	-0.2	-10.5
1079	CTAGAGAAGCTACCTACCAA SEQ ID NO:1253	-4.7	-22.5	64.8	-17.8	0	-5.1
1380	ATTTACCTTCATACACACAC SEQ ID NO:1254	-4.7	-20.8	62.4	-16.1	0	-0.9
1462	GATTTCTTTCCTCAAGAGGA SEQ ID NO:1255	-4.7	-22.4	67.3	-16.2	-1.3	-9.9
1487	TAACCATTTTCAACAAATAA SEQ ID NO:1256	-4.7	-15.1	49	-10.4	0.1	-2.7
1573	ATCCAGAGTGACTCCTATAA SEQ ID NO:1257	-4.7	-22.6	66.7	-17.9	0.4	-4.7
1743	CTAATTCCACCTATATTTTA SEQ ID NO:1258	-4.7	-19.6	59.4	-14.9	0	-2.9
1970	AAACATGTCCTTTTAAAACA SEQ ID NO:1259	-4.7	-16.8	52.6	-12.1	0	-6.9
285	GGGCCACACTTCATGCCATC SEQ ID NO:1260	-4.6	-29	79.7	-22.2	-2.2	-7.6
376	CATCCCGAAGGTGCCGTAGG SEQ ID NO:1261	-4.6	-28.9	75.8	-22	-2.3	-6.7
496	GAGAGAAACAAATCTGTTGG SEQ ID NO:1262	-4.6	-17.7	55.1	-11.5	-1.5	-4.5
1250	CAGGTAACCCGGGAACTACA SEQ ID NO:1263	-4.6	-25.1	68.1	-18.9	-1.1	-11
1368	ACACACACAAACCACCAGTG SEQ ID NO:1264	-4.6	-23.2	64.7	-18	-0.3	-5:2
1437	AATATGGGTAGGGAAGATGA SEQ ID NO:1265	-4.6	-19.8	60	-15.2	0	-2.7
1550	TGGATAATAAATTTATCATG SEQ ID NO:1266	-4.6	-14.1	47.8	-6.9	-2.6	-8.1
1551	ATGGATAATAAATTTATCAT SEQ ID NO:1267	-4.6	-14.1	47.8	-6.9	-2.6	-8.1
1565	TGACTCCTATAATTATGGAT SEQ ID NO:1268	-4.6	-19.3	59	-14	0.1	-9
1719	TGACATGTTTTCTGCTGAAA SEQ ID NO:1269	-4.6	-20.2	61.1	-14.1	-1.1	-10.4
1930	CTTTACATTCAAAGGCCTTC SEQ ID NO:1270	-4.6	-21.	9 64.7	-16	0	-10.6
1964	GTCCTTTTAAAACAAAACCT SEQ ID NO:1271	-4.6	-18.	3 . 55	-13.1	-0.3	-6.2
975	AATGTACATCAAAGTCAAAG SEQ ID NO:1272	³ -4.5	-15.	7 51	-10.0	5 0	-8.4
1248	GGTAACCCGGGAACTACAT SEQ ID NO:1273	C -4.5	-24.	8 68.	2 -18.	-0.2	
1338	TTCTTAGATTTATCTCTGA SEQ ID NO:1274	G -4.5	-18.	9 60.	9 –13.	7 -0.4	
1523	TGTTTGAAAACCTTATAGA SEQ ID NO:1275	G -4.5	-17.	1 54	-12.	1 -0.1	
1620	TGTTTAAATAAGGTCCCTC SEQ ID NO:1276	T -4.5	-21.	7 64.	2 -17.	2 0	-5.2

		kcal/	kcal/		kca1/		
		mol	mol	deg C	mol	kcal/mol	kca1/mol
			dup1ex		target	Intra-	Inter-
		total	form-	Tm of	struc-	mo1ecular	molecu1ar
position	oligo	binding	ation	Dup1ex	ture	oligo	oligo
1668	CTTATTTTCATACCTTAAAT SEQ ID NO:1277	-4.5	-17.3	54.7	-12.8	0	-2.7
262	GCCTGAGACTGTGCGGTAGC SEQ ID NO:1278	-4.4	-28.7	80.3	-23.6	-0.5	-5.4
823	ATGCATTCGAATATTTAACA SEQ ID NO:1279	-4.4	-17.5	54.2	-12.5	0	-8.4
1247	GTAACCCGGGAACTACATCA SEQ ID NO:1280	-4.4	-24.3	67	-18.5	-0.2	-10.7
1464	TAGATTTCTTTCCTCAAGAG SEQ ID NO:1281	-4.4	-20.3	62.9	-14.9	-0.9	-6.8
1522	GTTTGAAAACCTTATAGAGT SEQ ID NO:1282	-4.4	-18.3	56.9	-13.9	0	-4.7
1566	GTGACTCCTATAATTATGGA SEQ ID NO:1283	-4.4	-20.5	62	-15.5	0	-8.5
1618	TTTAAATAAGGTCCCTCTGT SEQ ID NO:1284	-4.4	-21.7	64.2	-17.3	0	-4.7
1658	TACCTTAAATTGAAAATTCA SEQ ID NO:1285	-4.4	-15	49	-9.3	-1.2	-5.5
1684	ACAAACCTCCTAAAAACTTA SEQ ID NO:1286	-4.4	-17.7	53.6	-13.3	0	-1.2
1685	TACAAACCTCCTAAAAACTT SEQ ID NO:1287	-4.4	-17.7	53.6	-13.3	0	-0.9
1724	AAAGTTGACATGTTTTCTGC SEQ ID NO:1288	-4.4	-20	61.6	-15.6	0	-7.1
1969	AACATGTCCTTTTAAAACAA SEQ ID NO:1289	-4.4	-16.8	52.6	-12.4	0	-6.9
95	GGTGTGCAGGCACGAGGAGC SEQ ID NO:1290	-4.3	-29	81.3	-22.2	-2.5	-10.7
255	ACTGTGCGGTAGCAAGTTTC SEQ ID NO:1291	-4.3	-24.6	72.2	-18	-2.3	-6.4
274	CATGCCATCCATGCCTGAGA SEQ ID NO:1292	-4.3	-28.2	76.3	-22.6	-1.2	-5.7
343	GATACCAAACTCTTCACCAA SEQ ID NO:1293	-4.3	-21.6	62.2	-17.3	0	-1.9
387	TCTCTGCAATCCATCCCGAA SEQ ID NO:1294	-4.3	-26.6	71.9	-22.3	0	-4.9
426	GTCCCCCTGTCACAGATGCC SEQ ID NO:1295	-4.3	-32.1	86	-27.2	-0.3	-5.2
455	GGAAGAAGGGGAATTTCAGG SEQ ID NO:1296	-4.3	-21	62.2	-16	-0.5	-5
826	TACATGCATTCGAATATTTA SEQ ID NO:1297	-4.3	-17.9	55.5	-13	0	-8.4
1331	ATTTATCTCTGAGGTGGCAT SEQ ID NO:1298	-4.3	-23.2	70	-18.9	0	-6.2
1552	TATGGATAATAATTTATCA SEQ ID NO:1299	-4.3	-13.8	47.3	-6.9	-2.6	-8.1
1660	CATACCTTAAATTGAAAATT SEQ ID NO:1300	-4.3	-14.6	48	-9.2	-1	-3.5
1671	AAACTTATTTTCATACCTTA SEQ ID NO:1301	-4.3	-17.5	55.2	-13.2	0	-1.9
1745	TCCTAATTCCACCTATATTT SEQ ID NO:1302	-4.3	-22.2	64.7	-17.9	0	-2.9
1801	TCCTAAGAACATCTAGTACA SEQ ID NO:1303	-4.3	-19.9	60.7	-15.6	0	-5.7
1897	AACTCTGTTGGCCAACTTCA SEQ ID NO:1304	-4.3	-24.3	69.8	-16.6	0.5	-15
431	TTCCCGTCCCCTGTCACAG SEQ ID NO:1305	-4.2	-33	85.5	-28.8	0	-4.6
615	CACAGCCGGGATCAGCGTGG SEQ ID NO:1306	-4.2	-29.3	77.8	-23.6	-1.4	-7.7

		kca1/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
804	AAACACATACAAGTGTTCAG SEQ ID NO:1307	-4.2	-17.9	55.9	-10.9	-2.8	-8.2
821	GCATTCGAATATTTAACAAA SEQ ID NO:1308	-4.2	-16.1	51	-11.2	0	-8.7
976	TAATGTACATCAAAGTCAAA SEQ ID NO:1309	-4.2	-15.4	50.3	-10.6	0	-8.4
1051	TAAATATTTTATTTCCCACT SEQ ID NO:1310	-4.2	-18.4	56.6	-13.4	-0.6	-6.2
1199	AAGCTGTTTGTTACTCAAAT SEQ ID NO:1311	-4.2	-19.2	59.3	-13.4	-1.6	-9.4
1807	GATATTTCCTAAGAACATCT SEQ ID NO:1312	-4.2	-18.9	58.3	-14	-0.5	-4
1858	TACTGAAATAATTCTTAAAT SEQ ID NO:1313	-4.2	-12.8	45.1	-7.4	-1.1	-4.2
185	TCCTCTTGCAGCGCGGCTG SEQ ID NO:1314	-4.1	-31.5	83.7	-24.2	-3.2	-10.9
567	CCGGCAGCATTCTCTTTCAC SEQ ID NO:1315	-4.1	-27.2	76.6	-23.1	0	-5.3
593	TTAACCATTTCCTCATTACG SEQ ID NO:1316	-4.1	-21.4	62.2	-17.3	0	-3
854	GTTACTATACACACACATTT SEQ ID NO:1317	-4.1	-19.3	59.7	-15.2	0	-2
1377	TACCTTCATACACACACAAA SEQ ID NO:1318	-4.1	-19.9	59	-15.8	0	-0.9
1389	TATATAAATATTTACCTTCA SEQ ID NO:1319	-4.1	-15.6	51.1	-11	0	-7.9
1578	TTGAAATCCAGAGTGACTCC SEQ ID NO:1320	-4.1	-22.3	65.2	-17.5	-0.4	-5.5
1833	CTTCACTTCAAATAAAATAC SEQ ID NO:1321	-4.1	-14.5	48.4	-10.4	0	-1.2
180	TTGCAGCGCGGGCTGCTTTT SEQ ID NO:1322	-4	-29.9	80.4	-19.7	-6.2	-16.3
312	CCATTAGAAGGCTGACACCT SEQ ID NO:1323	-4	-24.9	69.7	-20.2	-0.4	-4
457	TTGGAAGAAGGGGAATTTCA SEQ ID NO:1324	-4	-19.9	59.8	-15.2	-0.5	-5
621	AGAAATCACAGCCGGGATCA SEQ ID NO:1325	-4	-23.9	66.8	-19.9	0	-6.9
803	AACACATACAAGTGTTCAGT SEQ ID NO:1326	-4	-19.8	60.9	-13.5	-2.3	-7.4
1137	GGTTGTTTTTTTTTGACTTT SEQ ID NO:1327	-4	-19.9	62.7	-15.9	0	-2.8
1510	TATAGAGTCATAGGTTTTTA SEQ ID NO:1328	-4	-18.5	60	-14.5	. 0	-4.8
1572	TCCAGAGTGACTCCTATAAT SEQ ID NO:1329	-4	-22.6	66.7	-17.9	-0.4	-5.5
1759	TCTTTCAAATATACTCCTAA SEQ ID NO:1330		-18	56.3	-14	0	-2.7
1851	ATAATTCTTAAATAAGTTCT SEQ ID NO:1331		-14.4	49	-10.4	0	-4.9
68	GCAGCAAGACGCTCTTCATG SEQ ID NO:1332	-3.5	-25.1	71.3	-19.9	-1.2	-6.4
74	TGGTCAGCAGCAAGACGCTC SEQ ID NO:1333	-3.5	-26.5	75.3	-21.1	-1.4	-8.5
341	TACCAAACTCTTCACCAAAA SEQ ID NO:1334	-3.9	-19.6	57.4	-15.7	0	-1
520	TCCAGATGCCATGTCATGCT SEQ ID NO:1335	-3.3	-27.2	76.6	-22.8	-0.2	-4.6
670	TAAAATGTTGGCTGTGTTT SEQ ID NO:1336	-3.9	-20.5	62.2	-16.6	0	-3.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1054	GGCTAAATATTTTATTTCCC SEQ ID NO:1337	-3.9	-20.5	61.2	-15.8	-0.6	-8.2
1334	TAGATTTATCTCTGAGGTGG SEQ ID NO:1338	-3.9	-21	65.4	-16.2	-0.7	-6.2
1390	ATATATAAATATTTACCTTC SEQ ID NO:1339	-3.9	-14.9	49.8	-11	0	-7.4
1687	TTTACAAACCTCCTAAAAAC SEQ ID NO:1340	-3.9	-16.9	52.2	-13	0	-2.2
141	TGTTGAGGGCAGTCCACCGC SEQ ID NO:1341	-3.8	-29.9	81.8	-25	-1	-5.6
143	AGTGTTGAGGGCAGTCCACC SEQ ID NO:1342	-3.8	-28.5	81.8	-23.6	-1	-5.6
278	ACTTCATGCCATCCATGCCT SEQ ID NO:1343	-3.8	-28.6	78.1	-23	-1.8	-5
373	CCCGAAGGTGCCGTAGGGAC SEQ ID NO:1344	-3.8	-29.8	77.4	-23.3	-2.7	-7.9
618	AATCACAGCCGGGATCAGCG SEQ ID NO:1345	-3.8	-26.6	71.7	-21.9	-0.7	-6.9
822	TGCATTCGAATATTTAACAA SEO ID NO:1346	-3.8	-16.8	52.6	-12.4	0	-8.4
967	TCAAAGTCAAAGAACTAATT SEO ID NO:1347	-3.8	-14.7	48.8	-10.9	0	-3
1180	TTTCCATAAGCTTCAAACAT SEQ ID NO:1348	-3.8	-19.7	59.2	-15.9	0	-6.8
1760	TTCTTTCAAATATACTCCTA SEQ ID NO:1349	-3.8	-18.8	58.5	-15	0	-2.7
1811	CTGAGATATTTCCTAAGAAC SEQ ID NO:1350	-3.8	-18.4	57.1	-14.1	-0.2	-4.6
1859	ATACTGAAATAATTCTTAAA SEQ ID NO:1351	-3.8	-12.8	45.1	-8.3	-0.4	-3.5
1891	GTTGGCCAACTTCAAGAATA SEQ ID NO:1352	-3.8	-21.5	62.9	-14.7	0	-14.2
82	GAGGAGCGTGGTCAGCAGCA SEQ ID NO:1353	-3.7	-28.7	81.5	-24.1	-0.7	-5.9
1119	TTTCCCAAAGCCAAAAAAA SEQ ID NO:1354	-3.7	-17.5	51.9	-13.8	0	-3.2
1189	TTACTCAAATTTCCATAAGC SEQ ID NO:1355	-3.7	-18.7	57.4	-15	0	-4.5
1314	CATACGTTAAAGCTATTTAT SEQ ID NO:1356	-3.7	-17.3	54.3	-13	-0.3	-5.7
1482	ATTTTCAACAAATAATACTA SEQ ID NO:1357	-3.7	-13.7	46.9	-10	0	-2.5
1571	CCAGAGTGACTCCTATAATT SEQ ID NO:1358	-3.7	-22.3	65.5	-17.9	-0.4	-5.5
1802	TTCCTAAGAACATCTAGTAC SEQ ID NO:1359	-3.7	-19.3	59.8	-15.6	0	-4
1927	TACATTCAAAGGCCTTCCAC SEQ ID NO:1360	-3.7	-23.7	67.5	-18.5	-1	-10.6
277	CTTCATGCCATCCATGCCTG SEQ ID NO:1361	-3.6	-28.4	77.3	-23	-1.8	-5
404	ACTGGCAGTTGCAGGTCTCT SEQ ID NO:1362	-3.6	-27.6	81.7	-23	-0.9	-6.6
961	TCAAAGAACTAATTTGACTC SEQ ID NO:1363	-3.6	-16	51.9	-10.9	-1.4	~5. 4
1057	AAGGGCTAAATATTTTATTT SEQ ID NO:1364	-3.6	-16.6	53.2	-12.3	-0.4	-8.2
1472	AATAATACTAGATTTCTTTC SEQ ID NO:1365	-3.6	-15.5	51.8	-11.9	. 0	-4.5
1559	CTATAATTATGGATAATAAA SEQ ID NO:1366	-3.6	-12.5	44.5	-8.3	-0.3	-5.9

		kca1/	kcal/		kcal/		
		mol	mo1	đeg C	mol	kcal/mol	kcal/mol
			dup1ex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Dup1ex	ture	oligo	oligo
1577	TGAAATCCAGAGTGACTCCT SEQ ID NO:1367	-3.6	-23.1	66.8	-18.8	-0.4	-5.5
1728	TTTTAAAGTTGACATGTTTT SEQ ID NO:1368	-3.6	-16.9	54.6	-13.3	0	-7.1
1763	AGATTCTTTCAAATATACTC SEQ ID NO:1369	-3.6	-16.8	54.7	-12.7	-0.1	-3.3
1832	TTCACTTCAAATAAAATACT SEQ ID NO:1370	-3.6	-14.5	48.4	-10.9	0	-1.2
1926	ACATTCAAAGGCCTTCCACA SEQ ID NO:1371	-3.6	-24.7	69.1	-19.6	-1	-10.6
1959	TTTAAAACAAAACCTAACAG SEQ ID NO:1372	-3.6	-13.6	45.9	-10	0	-4
105	GCGGCCACCAGGTGTGCAGG SEQ ID NO:1373	-3.5	-32.5	86.1	-26.4	-2.5	-12.5
286	CGGGCCACACTTCATGCCAT SEO ID NO:1374	-3.5	-29.4	77,6	-23.7	-2.2	-7.6
291	AGCCCGGGCCACACTTCAT SEO ID NO:1375	-3.5	-32.7	83.6	-27.3	-1.8	-11.2
346	GCAGATACCAAACTCTTCAC SEO ID NO:1376	-3.5	-22.1	64.8	-18.6	0	-3.4
966	CAAAGTCAAAGAACTAATTT SEQ ID NO:1377	-3.5	-14.4	48.1	-10.9	0	-3
1918	AGGCCTTCCACACACATTCA SEQ ID NO:1378	-3.5	-27	75.4	-22.4	-1	-7.9
207	CAGCCACAGTCGTCGAGCAC SEQ ID NO:1379	-3.4	-28.2	77.5	-24.2	-0.3	-4.9
252	GTGCGGTAGCAAGTTTCTCC SEQ ID NO:1380	-3.4	-26.8	77.3	-21.4	-2	-5.5
356	GACAGTCTTTGCAGATACCA SEQ ID NO:1381	-3.4	-23.9	70.3	-20.5	0.3	-5.2
1082	ATTCTAGAGAAGCTACCTAC SEQ ID NO:1382	-3.4	-21	63.8	-17.6	0	-5.8
1182	AATTTCCATAAGCTTCAAAC SEQ ID NO:1383	-3.4	-18.3	56.1	-14.9	0	-6.8
1486	AACCATTTTCAACAAATAAT SEQ ID NO:1384	-3.4	-15.4	49.5	-11.5	-0.1	-2.7
1555	AATTATGGATAATAAATTTA SEQ ID NO:1385	-3.4	-12.1	43.7	-8.1	-0.3	-6.1
12	GTCTTTGCTGGTGGGAAGCA SEQ ID NO:1386	-3.3	-26.6	77.2	-21.8	-1.4	-5.7
175	GCGCGGGCTGCTTTTGCACT SEQ ID NO:1387	-3.3	-30.9	82.1	-25.1	-2.5	-11.8
290	GCCCCGGGCCACACTTCATG SEQ ID NO:1388	-3.3	-32.7	83.1	-28.1	-1	-10
308	TAGAAGGCTGACACCTCAGC SEQ ID NO:1389	-3.3	-25	71.8	-17.8	-3.9	-9.4
383	TGCAATCCATCCCGAAGGTG SEO ID NO:1390	-3.3	-26.4	70.9	-21.8	-1.2	-6.9
649	AACAATCACGAAAATAGAGC SEQ ID NO:1391	-3.3	-16.2	50.9	-12.9	0	-3.5
833	ACAAATCTACATGCATTCGA SEQ ID NO:1392	-3.3	-19.8	58.9	-16.5	0	-6.7
1160	CTTACTTCCTTCAGGGGTTT SEQ ID NO:1393	-3.3	-25.4	75	-21.6	-0.2	-4.7
1183	AAATTTCCATAAGCTTCAAA SEQ ID NO:1394	-3.3	-17.4	53.9	-14.1	0	-6.8
1438	AAATATGGGTAGGGAAGATG SEQ ID NO:1395	-3.3	-18.5	56.8	-15.2	0	-2.7
1473	AAATAATACTAGATTTCTTT SEQ ID NO:1396	-3.3	-14.4	48.9	-11.1	0	-4.5

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1558	TATAATTATGGATAATAAAT SEQ ID NO:1397	-3.3	-11.6	42.7	-8.3	0.2	-5.9
1625	ACTTATGTTTAAATAAGGTC SEQ ID NO:1398	-3.3	-16.4	53.5	-11.5	-1.5	-7.1
1995	TTGTTCTTTTTTTTTGAACA SEQ ID NO:1399	-3.3	-17.8	57	-12.4	-2.1	-6.7
174	CGCGGGCTGCTTTTGCACTC SEQ ID NO:1400	-3.2	-29.5	79.6	-24.2	-2.1	-11.3
623	TCAGAAATCACAGCCGGGAT SEQ ID NO:1401	-3.2	-23.9	66.8	-20.7	0	-6.9
897	TCTCCATGTAAGATTACCTA SEQ ID NO:1402	-3.2	-21.8	64.9	-18.6	0	-4.9
1152	CTTCAGGGGTTTTCTGGTTG SEQ ID NO:1403	-3.2	-25	75.1	-20.9	-0.7	-4.2
1232	CATCAGCAGCCTTTTGAAAT SEQ ID NO:1404	-3.2	-22.5	65.2	-19.3	0	-4.1
1372	TCATACACACACAAACCACC SEQ ID NO:1405	-3.2	-22.1	62.6	-18.9	0	-0.9
1403	TTTATTTATAAAAATATATA SEQ ID NO:1406	-3.2	-9.8	39.4	-5.3	-1.2	-6.5
1560	CCTATAATTATGGATAATAA SEQ ID NO:1407	-3.2	-15.2	49.6	-11.5	-0.1	-6.5
463	TGAATATTGGAAGAAGGGGA SEQ ID NO:1408	-3.1	-18.9	57.3	-15.8	Ó	-4.6
856	GTGTTACTATACACACACAT SEQ ID NO:1409	-3.1	-20.3	62	-15.6	-1.5	-6.3
948	TTGACTCACTGCGGTCTTCA SEQ ID NO:1410	-3.1	-25.5	73.9	-21.4	-0.9	-6.2
1766	CTAAGATTCTTTCAAATATA SEQ ID NO:1411	-3.1	-15.2	50.6	-11.6	-0.1	-5.6
1796	AGAACATCTAGTACAACAGT SEQ ID NO:1412	-3.1	-19	59.2	-15.9	0	-5.7
56	TCTTCATGTTTCCCAGCTGC SEQ ID NO:1413	-3	-27.5	79.4	-24	0	-8.1
83	CGAGGAGCGTGGTCAGCAGC SEQ ID NO:1414	-3	-28.8	80	-24.8	-0.9	-5.9
225	GCAGCGCACACTCGGCAGCA SEQ ID NO:1415	-3	-31	82.1	-25.7	-2.3	-8.5
371	CGAAGGTGCCGTAGGGACAG SEQ ID NO:1416	-3	-26.5	72.1	-21.9	-1.5	-6.7
448	GGGGAATTTCAGGCATTTTC SEQ ID NO:1417	-3	-23.2	68.8	-20.2	0	-5
509	TGTCATGCTCCGTGAGAGAA SEQ ID NO:1418	-3	-24.5	70.3	-20.4	-1	-6.1
896	CTCCATGTAAGATTACCTAA SEQ ID NO:1419	-3	-20.7	61.4	-17.7	0	-4.9
1140	TCTGGTTGTTTTTTTTGAC SEQ ID NO:1420	-3	-20.1	63.4	-17.1	0	-2
1320	AGGTGGCATACGTTAAAGCT SEQ ID NO:1421	-3	-23.1	66.7	-19.5	-0.3	-5.1
1376	ACCTTCATACACACACAAAC SEQ ID NO:1422	-3	-20.4	60	-17.4	0	-0.9
1388	ATATAAATATTTACCTTCAT SEQ ID NO:1423	-3	-15.9	51.7	-12.4	0	-7.9
1831	TCACTTCAAATAAAATACTT SEQ ID NO:1424	-3	-14.5	48.4	-11.5	0	-1.2
1857	ACTGAAATAATTCTTAAATA SEQ ID NO:1425	-3	-12.8	45.1	-8.6	-1.1	-4.2
1925	CATTCAAAGGCCTTCCACAC SEQ ID NO:1426	-3	-24.7	69.1	-20.2	-1	-10.6

		kcal/	kcal/		kcal/		
	•	mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1957	TAAAACAAAACCTAACAGCT SEQ ID NO:1427	-3	-16.1	50.3	-13.1	0	-4.3
1958	TTAAAACAAAACCTAACAGC SEQ ID NO:1428	-3	-15.3	49	-12.3	0	-2.8
594	TTTAACCATTTCCTCATTAC SEQ ID NO:1429	-2.9	-20.7	62.1	-17.8	0	-2.4
957	AGAACTAATTTGACTCACTG SEQ ID NO:1430	-2.9	-18.1	56.6	-15.2	0	-2.7
1461	ATTTCTTTCCTCAAGAGGAT SEQ ID NO:1431	-2.9	-21.8	65.9	-17.3	-1.5	-10.2
1567	AGTGACTCCTATAATTATGG SEQ ID NO:1432	-2.9	-19.9	60.9	-17	0	-6.9
1579	TTTGAAATCCAGAGTGACTC SEQ ID NO:1433	-2.9	-20.4	61.9	-17.5	0	-5.1
1691	TTCTTTTACAAACCTCCTAA SEQ ID NO:1434	-2.9	-20.3	60.4	-17.4	0	-1.9
1808	AGATATTTCCTAAGAACATC SEQ ID NO:1435	-2.9	-18	56.5	-14.4	-0.5	-4
1968	ACATGTCCTTTTAAAACAAA SEQ ID NO:1436	-2.9	-16.8	52.6	-13.9	0	-6.2
57	CTCTTCATGTTTCCCAGCTG SEO ID NO:1437	-2.8	-26.6	76.9	-23.3	0	-7.8
94	GTGTGCAGGCACGAGGAGCG SEQ ID NO:1438	-2.8	-28.6	78.3	-24	-1.7	-10.7
102	GCCACCAGGTGTGCAGGCAC SEQ ID NO:1439	-2.8	-31.4	85.9	-25.8	-2.1	-13.5
218	ACACTCGGCAGCAGCCACAG SEQ ID NO:1440	-2.8	-28.8	78.4	-22.8	-3.2	-9.8
222	GCGCACACTCGGCAGCAGCC SEQ ID NO:1441	-2.8	-32.3	84.4	-27.2	-2.1	-12
305	AAGGCTGACACCTCAGCCCC SEQ ID NO:1442	-2.8	-30.7	81.2	-21.8	-6.1	-13.4
372	CCGAAGGTGCCGTAGGGACA SEQ ID NO:1443	-2.8	-28.5	75.1	-23.5	-2.2	-8.6
624	CTCAGAAATCACAGCCGGGA SEQ ID NO:1444	-2.8	-24.8	68.6	-22	0	-6.9
898	GTCTCCATGTAAGATTACCT SEQ ID NO:1445	-2.8	-23.3	68.7	-20.5	0	-5.5
965	AAAGTCAAAGAACTAATTTG SEQ ID NO:1446	-2.8	-13.7	46.8	-10.9	0.1	-3.8
1091	CACAATTAAATTCTAGAGAA SEQ ID NO:1447	-2.8	-14.9	49.3	-12.1	0	-5.8
1239	GGAACTACATCAGCAGCCTT SEQ ID NO:1448	-2.8	-25.2	71.8	-22.4	. 0	-4.5
1381	TATTTACCTTCATACACACA SEQ ID NO:1449	-2.8	-20.3	61.3	-17.5	0	-1.1
1994	TGTTCTTTTTTTTTGAACAA SEQ ID NO:1450	-2.8	-17	54.8	-12.1	-2.1	-6.6
81	AGGAGCGTGGTCAGCAGCAA SEQ ID NO:1451	-2.7	-27.4	77.4	-23.1	-1.5	-5.9
84	ACGAGGAGCGTGGTCAGCAG SEQ ID NO:1452	-2.7	-27.2	76.2	-23.3	-1.1	-6.3
296	ACCTCAGCCCCGGGCCACAC SEQ ID NO:1453	-2.7	-34.8	87	-30.2	-1.8	-11.2
697	GTACTTATGCTATATCTAGA SEQ ID NO:1454	-2.7	-19.5	61.6	-16.8	0	-5.8
1561	TCCTATAATTATGGATAATA SEQ ID NO:1455	-2.7	-16.3	52.4	-12.9	0	-8.7
1619	GTTTAAATAAGGTCCCTCTG SEQ ID NO:1456	-2.7	-21.7	64.2	-19	0	-4.8

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1679	CCTCCTAAAAACTTATTTC SEQ ID NO:1457	-2.7	-18.7	56.8	-15	-0.9	-3.3
1815	ACTTCTGAGATATTTCCTAA SEQ ID NO:1458	-2.7	-19.9	61.2	-17.2	0	-3.8
98	CCAGGTGTGCAGGCACGAGG SEQ ID NO:1459	-2.6	-29.3	80.1	-24.2	-2.5	-10.7
172	CGGGCTGCTTTTGCACTCAC SEQ ID NO:1460	-2.6	-27.8	77.3	-23.2	-2	-8.4
338	CAAACTCTTCACCAAAAGGA SEQ ID NO:1461	-2.6	-19.5	57.6	-16.9	0	-3.7
671	CTAAAATGTTGGCTGTGTGT SEQ ID NO:1462	-2.6	-21.3	63.8	-18.7	0	-3.9
700	CATGTACTTATGCTATATCT SEQ ID NO:1463	-2.6	-19.9	61.8	-17.3	0	-4.8
946	GACTCACTGCGGTCTTCAGC SEQ ID NO:1464	-2.6	-27.2	78.5	-23.9	-0.4	 6
1581	TTTTTGAAATCCAGAGTGAC SEQ ID NO:1465	-2.6	-19.3	59.2	-16.7	0	-3
1659	ATACCTTAAATTGAAAATTC SEQ ID NO:1466	-2.6	-14.3	47.8	-10.4	-1.2	-3.7
1680	ACCTCCTAAAAACTTATTTT SEQ ID NO:1467	-2.6	-18.5	56.1	-15	-0.7	-3.2
1686	TTACAAACCTCCTAAAAACT SEQ ID NO:1468	-2.6	-17.7	53.6	-15.1	0	-1.2
1805	TATTTCCTAAGAACATCTAG SEQ ID NO:1469	-2.6	-18	56.6	-14.9	-0.2	-3.6
1854	GAAATAATTCTTAAATAAGT SEQ ID NO:1470	-2.6	-12.2	44	-8.9	-0.4	-4.9
1952	CAAAACCTAACAGCTTATGC SEQ ID NO:1471	-2.6	-19.9	58.5	-16.6	-0.5	-4.5
64	CAAGACGCTCTTCATGTTTC SEQ ID NO:1472	-2.5	-22.6	67	-19.3	-0.6	-6.1
276	TTCATGCCATCCATGCCTGA SEQ ID NO:1473	-2.5	-28.1	76.7	-23.8	-1.8	-5
406	TGACTGGCAGTTGCAGGTCT SEQ ID NO:1474	-2.5	-26.9	78.8	-24.4	1.7	-6.1
510	ATGTCATGCTCCGTGAGAGA SEQ ID NO:1475	-2.5	-25.2	72.7	-21.6	-1	-6.1
592	TAACCATTTCCTCATTACGG SEQ ID NO:1476	-2.5	-22.5	64.3	-20	0	-3.5
699	ATGTACTTATGCTATATCTA SEQ ID NO:1477	-2.5	-18.9	59.9	-16.4	0	-4.8
1200	AAAGCTGTTTGTTACTCAAA SEQ ID NO:1478	-2.5	-18.5	57.4	-14.5	-1.4	-7.8
1471	ATAATACTAGATTTCTTTCC SEQ ID NO:1479	-2.5	-18.2	57.8	-15.7	0	-4.5
1931	GCTTTACATTCAAAGGCCTT SEQ ID NO:1480	-2,.5	-23.3	67.4	-19.5	-0.6	-10.4
173	GCGGGCTGCTTTTGCACTCA SEQ ID NO:1481	-2.4	-29.4	81.1	-24.9	-2.1	-8.4
279	CACTTCATGCCATCCATGCC SEQ ID NO:1482	-2.4	-28.4	77.2	-24.7	-1.2	-4.4
382	GCAATCCATCCCGAAGGTGC SEQ ID NO:1483	-2.4	-28.2	74.9	-24.5	-1.2	-5.6
456	TGGAAGAAGGGGAATTTCAG SEQ ID NO:1484	-2.4	-19.8	59.6	-16.8	-0.3	- 5
824	CATGCATTCGAATATTTAAC SEQ ID NO:1485	-2.4	-17.5	54.2	-14.6	0	-8.2
857	AGTGTTACTATACACACACA SEQ ID NO:1486	-2.4	-20.3	62.3	-15.6	-2.3	-7.1

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
	,		duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
964	AAGTCAAAGAACTAATTTGA SEQ ID NO:1487	-2.4	-15	49.6	-10.9	-1.7	-6
1052	CTAAATATTTTATTTCCCAC SEQ ID NO:1488	-2.4	-18.4	56.6	-15.2	-0.6	-6.2
1402	TTATTTATAAAAATATATAA SEQ ID NO:1489	-2.4	-9	37.9	-5.3	-1.2	-6.5
1439	TAAATATGGGTAGGGAAGAT SEQ ID NO:1490	-2.4	-18.2	56.3	-15.8	0	-2.7
1444	GATGATAAATATGGGTAGGG SEQ ID NO:1491	-2.4	-18.9	57.9	-16.5	0	-2.7
1887	GCCAACTTCAAGAATAAAAT SEQ ID NO:1492	-2.4	-16.9	52.2	-14.5	0	-3.5
53	TCATGTTTCCCAGCTGCCTC SEQ ID NO:1493	-2.3	-29.4	82.6	-26.6	0	-8.1
99	ACCAGGTGTGCAGGCACGAG SEQ ID NO:1494	-2.3	-28.3	78.1	-24.2	-1.7	-10.7
100	CACCAGGTGTGCAGGCACGA SEQ ID NO:1495	-2.3	-29	78.8	-24.2	-2.5	-10.7
340	ACCAAACTCTTCACCAAAAG SEQ ID NO:1496	-2.3	-19.9	58	-17.6	0	-2.6
386	CTCTGCAATCCATCCCGAAG SEQ ID NO:1497	-2.3	-26.2	70.7	-23.9	0	-4.9
508	GTCATGCTCCGTGAGAGAAA SEQ ID NO:1498	-2.3	-23.8	68.2	-20.4	-1	-6.1
598	TGGATTTAACCATTTCCTCA SEQ ID NO:1499	-2.3	-22.5	65.5	-19.4	-0.6	-4.3
820	CATTCGAATATTTAACAAAC SEQ ID NO:1500	-2.3	-14.5	47.9	-11.4	0	-9.3
853	TTACTATACACACACATTTA SEQ ID NO:1501	-2.3	-17.8	56.1	-15.5	0	-1.7
947	TGACTCACTGCGGTCTTCAG SEQ ID NO:1502	-2.3	-25.4	73.8	-22.1	-0.9	-6.2
1118	TTCCCAAAGCCAAAAAAAA SEQ ID NO:1503	-2.3	-16.7	50.3	-14.4	0	-3.2
1242	CCGGGAACTACATCAGCAGC SEQ ID NO:1504	-2.3	-26.2	72.1	-23.4	-0.2	-5.6
1398	TTATAAAAATATATAAATAT SEQ ID NO:1505	-2.3	-8.1	36.2	-5.3	-0.1	-4.2
1669	ACTTATTTTCATACCTTAAA SEQ ID NO:1506	-2.3	-17.5	55.2	-15.2	0	-2.3
1672	AAAACTTATTTTCATACCTT SEQ ID NO:1507	-2.3	-17.1	53.9	-14.1	-0.4	-2.9
1729	ATTTTAAAGTTGACATGTTT SEQ ID NO:1508	-2.3	-16.8	54.3	-14.5	. 0	-7.1
1860	AATACTGAAATAATTCTTAA SEQ ID NO:1509	-2.3	-12.8	45.1	-9.3	-1.1	-4.2
1939	CTTATGCAGCTTTACATTCA SEQ ID NO:1510	-2.3	-21.9	66	-19.6	0	-5.5
49	GTTTCCCAGCTGCCTCCGGC SEQ ID NO:1511	-2.2	-34.1	89.7	-30.5	-1.3	-8.1
287	CCGGGCCACACTTCATGCCA SEQ ID NO:1512	-2.2	-31.4	80.9	-27	-2.2	-7.6
501	TCCGTGAGAGAAACAAATCT SEQ ID NO:1513	-2.2	-19.6	58	-17.4	0	-2.9
599	GTGGATTTAACCATTTCCTC SEQ ID NO:1514	-2.2	-23	67.5	-19.9	-0.8	-4.8
726	ATCACAATTTGGATCTTCAA SEQ ID NO:1515	-2.2	-19.1	58.8	-16.9	0	-5.2
855	TGTTACTATACACACACATT SEQ ID NO:1516	-2.2	-19.2	59.3	-17	0	-2.6

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
968	ATCAAAGTCAAAGAACTAAT SEQ ID NO:1517	-2.2	-14.6	48.5	-12.4	0	-3
1309	GTTAAAGCTATTTATGGAAG SEQ ID NO:1518	-2.2	-17	54.3	-14.2	-0.3	-4.6
1315	GCATACGTTAAAGCTATTTA SEQ ID NO:1519	-2.2	-19.1	58.2	-16.4	-0.1	-5.7
1445	GGATGATAAATATGGGTAGG SEQ ID NO:1520	-2.2	-18.9	57.9	-16.7	0	-2.7
1556	TAATTATGGATAATAAATTT SEQ ID NO:1521	-2.2	-12.1	43.7	-9.3	-0.3	-5.2
1799	CTAAGAACATCTAGTACAAC SEQ ID NO:1522	-2.2	-17	54.2	-14.8	0	-5.7
80	GGAGCGTGGTCAGCAGCAAG SEQ ID NO:1523	-2.1	-27.4	77.4	-23.7	-1.5	-5.9
104	CGGCCACCAGGTGTGCAGGC SEO ID NO:1524	-2.1	-32.5	86.1	-27.8	-2.5	-12.5
650	GAACAATCACGAAAATAGAG SEQ ID NO:1525	-2.1	-15	48.6	-12.9	0	-3.5
1078	TAGAGAAGCTACCTACCAAG SEQ ID NO:1526	-2.1	-21.6	63.2	-19.5	0	-5.1
1924	ATTCAAAGGCCTTCCACACA SEQ ID NO:1527	-2.1	-24.7	69.1	-21.3	-1	-10.1
145	ACAGTGTTGAGGGCAGTCCA SEQ ID NO:1528	-2	-27.2	79.2	-24.1	-1.	-6.6
171	GGGCTGCTTTTGCACTCACT SEQ ID NO:1529	-2	-27.9	79.7	-23.8	-2.1	-8.4
258	GAGACTGTGCGGTAGCAAGT SEQ ID NO:1530	-2	-25.2	72.8	-20.5	-2.7	-7
514	TGCCATGTCATGCTCCGTGA SEQ ID NO:1531	-2	~28.5	78.2	-25.6	-0.7	-5.7
625	TCTCAGAAATCACAGCCGGG SEQ ID NO:1532	-2	-24.6	68.8	-22.6	0	-6.9
1311	ACGTTAAAGCTATTTATGGA SEQ ID NO:1533	-2	-18.7	57.3	-16.1	-0.3	-5.7
1382	ATATTTACCTTCATACACAC SEQ ID NO:1534	-2	-19.6	60	-17.6	0	-1.8
1399	TTTATAAAAATATATAAATA SEQ ID NO:1535	-2	-8.2	36.4	-5.3	-0.8	-5.5
1404	ATTTATTTATAAAAATATAT SEQ ID NO:1536	-2	-10.1	39.9	-6.8	-1.2	-6
1480	TTTCAACAAATAATACTAGA SEQ ID NO:1537	-2	-14.2	47.9	-12.2	0	-4.5
1956	AAAACAAAACCTAACAGCTT SEQ ID NO:1538	-2	-16.5	51.1	-14.5	0	-4.5
497	TGAGAGAAACAAATCTGTTG SEQ ID NO:1539	-1.9	-16.5	52.6	-13	-1.5	-4.5
513	GCCATGTCATGCTCCGTGAG SEQ ID NO:1540	-1.9	-28.5	78. 7	-25.6	-0.9	-6.6
614	ACAGCCGGGATCAGCGTGGA SEQ ID NO:1541	-1.9	-29.2	78.1	-26.4	-0.7	-6.9
672	CCTAAAATGTTGGCTGTGTG SEQ ID NO:1542	-1.9	-22.1	64.3	-20.2	0	-3.9
981	AACATTAATGTACATCAAAG SEQ ID NO:1543	-1.9	~14.8	49	-11.6	-0.2	-10.5
1852	AATAATTCTTAAATAAGTTC SEQ ID NO:1544	-1.9	-12.8	45.5	-10.9.	0	-4.9
1893	CTGTTGGCCAACTTCAAGAA SEQ ID NO:1545	-1.9	-22.7	65.2	-17.4	-0.5	-15
1951	AAAACCTAACAGCTTATGCA SEQ ID NO:1546	-1.9	-19.9	58.5	-16.4	-1.6	-5.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex	•	target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
219	CACACTCGGCAGCAGCCACA SEQ ID NO:1547	-1.8	-29.5	79	-24.5	-3.2	-9.8
428	CCGTCCCCCTGTCACAGATG SEQ ID NO:1548	-1.8	-31.1	81.2	-28.7	-0.3	~5.2
616	TCACAGCCGGGATCAGCGTG SEQ ID NO:1549	-1.8	-28.5	77	~25.1	-1.6	-8.1
806	ACAAACACATACAAGTGTTC SEQ ID NO:1550	-1.8	-18.1	56.3	-13.5	-2.8	-8.2
819	ATTCGAATATTTAACAAACA SEQ ID NO:1551	-1.8	-14.5	47.9	-12	0	-9.1
1050	AAATATTTTATTTCCCACTC SEQ ID NO:1552	-1.8	-19.1	58.4	-16.7	-0.3	-5.8
1310	CGTTAAAGCTATTTATGGAA SEQ ID NO:1553	-1.8	-17.8	54.9	-15.4	-0.3	-5.1
1953	ACAAAACCTAACAGCTTATG SEQ ID NO:1554	-1.8	-18.3	55.4	-16.5	0	-4.5
85	CACGAGGAGCGTGGTCAGCA SEQ ID NO:1555	-1.7	-27.9	76.9	-23.4	-2.8	-9.7
101	CCACCAGGTGTGCAGGCACG SEQ ID NO:1556	-1.7	-30.4	80.9	-26.2	-2.5	-11.6
311	CATTAGAAGGCTGACACCTC SEQ ID NO:1557	-1.7	-23.3	67.7	-20.8	-0.6	-4.3
375	ATCCCGAAGGTGCCGTAGGG SEQ ID NO:1558	-1.7	-29.4	77.2	-25	-2.7	-7.9
1156	CTTCCTTCAGGGGTTTTCTG SEQ ID NO:1559	-1.7	-25.9	76.6	-23.6	-0.3	-5.7
1159	TTACTTCCTTCAGGGGTTTT SEQ ID NO:1560	-1.7	-24.6	73.3	-22.4	-0.2	-4.7
1287	TATGTGTTTCCTATGCCCCA SEQ ID NO:1561	-1.7	-27.8	76.9	-26.1	0	-3
1401	TATTTATAAAAATATATAAA SEQ ID NO:1562	-1.7	-8.2	36.4	-5.3	-1.1	-6.5
1474	CAAATAATACTAGATTTCTT SEQ ID NO:1563	-1.7	-15	49.9	-13.3	0	-4.5
1568	GAGTGACTCCTATAATTATG SEQ ID NO:1564	-1.7	-19.3	59.6	-17.6	0	-5.9
1874	ATAAAATACAGGTAAATACT SEQ ID NO:1565	-1.7	-13.7	46.7	-12	0	-3.8
427	CGTCCCCCTGTCACAGATGC SEQ ID NO:1566	-1.6	-30.9	82.1	-28.7	-0.3	-5.2
1072	AGCTACCTACCAAGGAAGGG SEQ ID NO:1567	-1.6	-24.9	69.6	-22.4	-0.7	-8.8
1083	AATTCTAGAGAAGCTACCTA SEQ ID NO:1568	-1.6	-20.1	61.2	-18.5	. 0	-5.8
1299	TTTATGGAAGTGTATGTGTT SEQ ID NO:1569	-1.6	-19.6	61.6	-18	0	-1.3
1383	AATATTTACCTTCATACACA SEQ ID NO:1570	-1.6	-18.7	57.5	-17.1	0	-3.8
1397	TATAAAAATATATAAATATT SEQ ID NO:1571	-1.6	-8.1	36.2	-5.3	-1.1	-4.4
1580	TTTTGAAATCCAGAGTGACT SEQ ID NO:1572	-1.6	-20.1	60.8	-18.5	0	-4.2
1742	TAATTCCACCTATATTTTAA SEQ ID NO:1573	-1.6	-18	55.7	-16.4	0	-2.9
256	GACTGTGCGGTAGCAAGTTT SEQ ID NO:1574	-1.5	-24.8	71.9	-20.4	-2.9	-7.2
259	TGAGACTGTGCGGTAGCAAG SEQ ID NO:1575	-1.5	-24	69.3	-20.5	-2	-7
407	CTGACTGGCAGTTGCAGGTC SEQ ID NO:1576	-1.5	-26.9	78.8	-24.4	-0.9	-7.6

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mo1
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	
position	oligo	binding	ation	Duplex	ture	oligo	oligo
519	CCAGATGCCATGTCATGCTC SEQ ID NO:1577	-1.5	-27.2	76.6	-25.2	-0.2	-4.6
620	GAAATCACAGCCGGGATCAG SEQ ID NO:1578	-1.5	-23.9	66.8	-22.4	0	-6.9
659	CTGTGTGTTGAACAATCACG SEQ ID NO:1579	~1.5	-20.8	61.5	-17.4	-1.9	-8.7
1058	GAAGGGCTAAATATTTTATT SEQ ID NO:1580	-1.5	-17.1	54.2	-15.6	0	-6.2
1158	TACTTCCTTCAGGGGTTTTC SEQ ID NO:1581	-1.5	-24.9	74.8	-23.4	0.4	-4.1
1295	TGGAAGTGTATGTGTTTCCT SEQ ID NO:1582	-1.5	-23.1	69.5	-19.9	-1.7	-5.4
1300	ATTTATGGAAGTGTATGTGT SEQ ID NO:1583	-1.5	-19.5	61.2	-18	0	-1.8
1313	ATACGTTAAAGCTATTTATG SEQ ID NO:1584	-1.5	-16.6	53	-14.5	-0.3	-5.7
1681	AACCTCCTAAAAACTTATTT SEQ ID NO:1585	-1.5	-17.7	54.1	-16.2	0 .	-2.2
1814	CTTCTGAGATATTTCCTAAG SEQ ID NO:1586	-1.5	-19.7	60.9	-18.2	0	-3.3
1947	CCTAACAGCTTATGCAGCTT SEQ ID NO:1587	-1.5	-24.6	70.5	-21.1	-2	-6.9
1948	ACCTAACAGCTTATGCAGCT SEQ ID NO:1588	-1.5	-24.7	70.7	-21.3	-1.9	-6.9
698	TGTACTTATGCTATATCTAG SEQ ID NO:1589	-1.4	-18.9	60.1	-17.5	0	-4.8
978	ATTAATGTACATCAAAGTCA SEQ ID NO:1590	-1.4	-16.9	54.1	-14.9	0	-8.4
1073	AAGCTACCTACCAAGGAAGG SEQ ID NO:1591	-1.4	-23	65.1	-20	-1.6	-9,2
1288	GTATGTGTTTCCTATGCCCC SEQ ID NO:1592	-1.4	-28.3	79.3	-26.9	0	-3
1384	AAATATTTACCTTCATACAC SEQ ID NO:1593	-1.4	-17.3	54.5	-15.9	0	-5.8
1570	CAGAGTGACTCCTATAATTA SEQ ID NO:1594	-1.4	-20	61.2	-17.9	-0.4	-5.5
1749	ATACTCCTAATTCCACCTAT SEQ ID NO:1595	-1.4	-23.1	66.4	-21.7	0	-2.9
1751	ATATACTCCTAATTCCACCT SEQ ID NO:1596	-1.4	-23.1	66.4	-21.7	0	-2.9
1825	CAAATAAAATACTTCTGAGA SEQ ID NO:1597	-1.4	-14.3	47.9	-12.9	0	-2.8
1861	AAATACTGAAATAATTCTTA SEQ ID NO:1598	-1.4	-12.8	45.1	-10.2	-1.1	-4.2
1892	TGTTGGCCAACTTCAAGAAT SEQ ID NO:1599	-1.4	-21.8	63.4	-17	-0.5	-15
1938	TTATGCAGCTTTACATTCAA SEQ ID NO:1600	-1.4	-20.3	61.8	-18.9	0	-5.5
86	GCACGAGGAGCGTGGTCAGC SEQ ID NO:1601	-1.3	-29	80.2	-24.2	-3.5	-9.7
167	TGCTTTTGCACTCACTGCTG SEQ ID NO:1602	-1.3	-25.5	73.9	-22.2	-2	-7.5
1456	TTTCCTCAAGAGGATGATAA SEQ ID NO:1603	-1.3	-19.9	60.3	-17	-1.5	-10.2
1460	TTTCTTTCCTCAAGAGGATG SEQ ID NO:1604	-1.3	-21.8	65.8	-18.9	-1.5	-10.2
1470	TAATACTAGATTTCTTTCCT SEQ ID NO:1605	-1.3	-19.1	59.8	-17.8	0	-4
1725	TAAAGTTGACATGTTTTCTG SEQ ID NO:1606	-1.3	-17.9	56.9	-16.6	0	-7.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
499	CGTGAGAGAAACAAATCTGT SEQ ID NO:1607	-1.2	-18.4	55.9	-16.6	-0.3	-3.3
834	AACAAATCTACATGCATTCG SEQ ID NO:1608	-1.2	-18.5	55.9	-17.3	0	-6.7
1067	CCTACCAAGGAAGGGCTAAA SEQ ID NO:1609	-1.2	-23.3	64.7	-21.2	-0.7	-5.1
1071	GCTACCTACCAAGGAAGGGC SEQ ID NO:1610	-1.2	-26.7	73.4	-23.9	-1.6	-6.1
1085	TAAATTCTAGAGAAGCTACC SEQ ID NO:1611	-1.2	-18.5	57.3	-17.3	0	-5.6
1157	ACTTCCTTCAGGGGTTTTCT SEQ ID NO:1612	-1.2	-26.1	77.5	-24.4	-0.2	-5.7
1161	TCTTACTTCCTTCAGGGGTT SEQ ID NO:1613	-1.2	-25.7	76.5	-24	-0.2	-4.7
1178	TCCATAAGCTTCAAACATCT SEQ ID NO:1614	-1.2	-20.8	61.7	-19.6	0	-6.5
1179	TTCCATAAGCTTCAAACATC SEQ ID NO:1615	-1.2	-20	60.2	-18.8	0	-6.8
1308	TTAAAGCTATTTATGGAAGT SEO ID NO:1616	-1.2	-17	54.3	-15.2	-0.3	-5.1
1312	TACGTTAAAGCTATTTATGG SEO ID NO:1617	-1.2	-17.8	55.5	-16.6	0	-5.7
1387	TATAAATATTTACCTTCATA SEQ ID NO:1618	-1.2	-15.6	51.1	-13.9	0	-7.9
1856	CTGAAATAATTCTTAAATAA SEQ ID NO:1619	-1.2	-11.9	43.3	-9.5	-1.1	-4.2
1940	GCTTATGCAGCTTTACATTC SEQ ID NO:1620	-1.2	-23	69.2	-20.6	-1.1	-6.1
498	GTGAGAGAAACAAATCTGTT SEQ ID NO:1621	-1.1	-17.7	. 55.5	-15.2	-1.3	-4.3
654	TGTTGAACAATCACGAAAAT SEO ID NO:1622	-1.1	-16	50.4	-14.1	-0.6	-4.4
1241	CGGGAACTACATCAGCAGCC SEQ ID NO:1623	-1.1	-26.2	72.1	-24.6	-0.2	-4.7
1396	ATAAAAATATATAAATATTT SEQ,ID NO:1624	-1.1	-8.5	36.9	-5.3	-2.1	-6
1674	TAAAAACTTATTTCATACC SEO ID NO:1625	-1.1	-15.1	49.6	-13	-0.9	-3.3
1937	TATGCAGCTTTACATTCAAA SEQ ID NO:1626	-1.1	-19.5	59.4	-18.4	0	-5.5
103	GGCCACCAGGTGTGCAGGCA SEQ ID NO:1627	-1	-32.4	87.9	-28.5	-2.9	-12.5
179	TGCAGCGCGGGCTGCTTTTG SEQ ID NO:1628	-1	-29.8	79.8	-22.6	6.2	-16.3
339	CCAAACTCTTCACCAAAAGG SEQ ID NO:1629	-1	-20.9	59.8	-19.9	0	-3.6
511	CATGTCATGCTCCGTGAGAG SEQ ID NO:1630	-1	-25.3	72.4	-23.3	-0.9	-6.5
711	TTCAAAAATTACATGTACTT SEQ ID NO:1631	-1	-15.2	50	-13.7	0	-7.7
852	TACTATACACACACATTTAA SEQ ID NO:1632	-1	-17	53.9	-16	0	-2.2
1752	AATATACTCCTAATTCCACC SEQ ID NO:1633	-1	-21.5	62.5	-20.5	0	-2.9
313	CCCATTAGAAGGCTGACACC SEQ ID NO:1634	-0.9	-26	71.3	-25.1	0	-3.7
653	GTTGAACAATCACGAAAATA SEQ ID NO:1635	-0.5	-15.7	49.9	-14	-0.6	-4.4
979	CATTAATGTACATCAAAGTC SEQ ID NO:1636	-0.9	-16.9	54.1	-15.5	0	-7.9

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1096	AAAAGCACAATTAAATTCTA SEQ ID NO:1637	-0.9	-14.1	47.3	-13.2	0	-4.1
1286	ATGTGTTTCCTATGCCCCAG SEQ ID NO:1638	-0.9	-28.1	77.8	-27.2	0	-3
1293	GAAGTGTATGTGTTTCCTAT SEQ ID NO:1639	-0.9	-21.6	66.3	-20.7	0	-2.2
1748	TACTCCTAATTCCACCTATA SEQ ID NO:1640	-0.9	-22.8	65.9	-21.9	0	-2.9
1750	TATACTCCTAATTCCACCTA SEQ ID NO:1641	-0.9	-22.8	65.9	-21.9	0	-2.9
1919	AAGGCCTTCCACACACATTC SEQ ID NO:1642	-0.9	-25.6	71.9	-23.4	-1	-9.8
374	TCCCGAAGGTGCCGTAGGGA SEQ ID NO:1643	-0.8	-30	78.4	-26.5	-2.7	-9.3
405	GACTGGCAGTTGCAGGTCTC SEQ ID NO:1644	-0.8	-27.3	81	-25.5	-0.9	-7.7
1521	TTTGAAAACCTTATAGAGTC SEQ ID NO:1645	-0.8	-17.5	55.3	-16.7	0	-3.5
1997	TCTTGTTCTTTTTTTTTGAA SEQ ID NO:1646	-0.8	-18.2	58.6	-17.4	0	-3.3
357	GGACAGTCTTTGCAGATACC SEQ ID NO:1647	-0.7	-24.4	71.8	-23.2	-0.2	-6
1294	GGAAGTGTATGTGTTTCCTA SEQ ID NO:1648	-0.7	-22.8	69.1	-21	-1	-4.6
1457	CTTTCCTCAAGAGGATGATA SEQ ID NO:1649	-0.7	-21.5	64.3	-19.2	-1.5	-10.2
1557	ATAATTATGGATAATAAATT SEQ ID NO:1650	-0.7	-12	43.5	-10.7	-0.3	-5.3
1569	AGAGTGACTCCTATAATTAT SEQ ID NO:1651	-0.7	-19.3	59.9	-17.9	-0.4	-5.9
288	CCCGGGCCACACTTCATGCC SEQ ID NO:1652	-0.6	-32.7	83.1	-30.9	-1.1	-9.2
559	ATTCTCTTTCACAACTTCTT SEQ ID NO:1653	-0.6	-20.8	64.5	-20.2	0	-1
710	TCAAAAATTACATGTACTTA SEQ ID NO:1654	-0.6	-14.8	49.2	-13.7	0	-7.7
1097	AAAAAGCACAATTAAATTCT SEQ ID NO:1655	-0.6	-13.7	46.4	-13.1	0	-3.3
1323	CTGAGGTGGCATACGTTAAA SEQ ID NO:1656	-0.6	-21.9	63.6	-21.3	0.5	-4.8
1385	TAAATATTTACCTTCATACA SEQ ID NO:1657	-0.6	-16.8	53.4	-16.2	0	-7
1730	TATTTTAAAGTTGACATGTT SEQ ID NO:1658	-0.6	-16.4	53.4	-15.8	0	-7.1
1747	ACTCCTAATTCCACCTATAT SEQ ID NO:1659	-0.6	-23.1	66.4	-22.5	0	-2.9
1770	TGTGCTAAGATTCTTTCAAA SEQ ID NO:1660	-0.6	-18.8	58.4	-17.7	-0.1	-5.6
1819	AAATACTTCTGAGATATTTC SEQ ID NO:1661	-0.0	-16.3	53.4	-14.8	-0.7	-4.6
1826	TCAAATAAAATACTTCTGAG SEQ ID NO:1662	-0.6	-14.1	47.7	-13.5	0	-2.8
1828	CTTCAAATAAAATACTTCTG SEQ ID NO:1663	-0.0	-14.5	48.5	-13.9		-1.5
1936	ATGCAGCTTTACATTCAAAG SEQ ID NO:1664	-0.0	-19.8	60.2	-18.7		-5.8
168	CTGCTTTTGCACTCACTGCT SEQ ID NO:1665	-0.5	-26.4	76.1	-23.8	-2.1	-7.6
184	CCTCTTGCAGCGCGGGCTGC SEQ ID NO:1666	-0.5	-32.9	86.1	-27	-5.4	-15.3

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
307	AGAAGGCTGACACCTCAGCC SEQ ID NO:1667	-0.5	-27.3	76	-21.1	-5.7	-13
408	CCTGACTGGCAGTTGCAGGT SEQ ID NO:1668	-0.5	-28.5	80.6	-26.1	-1.9	-9
613	CAGCCGGGATCAGCGTGGAT SEQ ID NO:1669	-0.5	-29	77.5	-27.6	-0.7	-6.9
980	ACATTAATGTACATCAAAGT SEQ ID NO:1670	-0.5	-16.7	53.4	-15.3	0	-9.6
1070	CTACCTACCAAGGAAGGGCT SEQ ID NO:1671	-0.5	-25.8	71.2	-23.7	-1.6	-6.6
1090	ACAATTAAATTCTAGAGAAG SEQ ID NO:1672	-0.5	-14.2	48.1	-13.7	0	-5.8
1240	GGGAACTACATCAGCAGCCT SEQ ID NO:1673	-0.5	-26.3	74	-25.3	-0.2	-4.7
1296	ATGGAAGTGTATGTGTTTCC SEQ ID NO:1674	-0.5	-22.2	67.4	-20.7	-0.9	-4.4
1876	GAATAAAATACAGGTAAATA SEQ ID NO:1675	-0.5	-12.5	44.3	-12	0	-3.6
93	TGTGCAGGCACGAGGAGCGT SEQ ID NO:1676	-0.4	-28.6	78.3	-26.6	-1.3	-10.7
846	ACACACACATTTAACAAATC SEQ ID NO:1677	-0.4	-16.7	52.7	-16.3	0	-2.7
1768	TGCTAAGATTCTTTCAAATA SEQ ID NO:1678	-0.4	-17.3	55	-16.4	-0.1	-5.6
1932	AGCTTTACATTCAAAGGCCT SEQ ID NO:1679	-0.4	-23.2	67.3	-22	-0.6	-8.4
1946	CTAACAGCTTATGCAGCTTT SEQ ID NO:1680	-0.4	-22.7	67.1	-20.5	-1.8	-6.9
1949	AACCTAACAGCTTATGCAGC SEQ ID NO:1681	-0.4	-23.1	66.5	-21.1	-1.6	-5.7
65	GCAAGACGCTCTTCATGTTT SEQ ID NO:1682	-0.3	-24	69.7	-22.9	-0.6	-6.1
558	TTCTCTTTCACAACTTCTTC SEQ ID NO:1683	-0.3	-21.2	66.1	-20.9	0	-0.7
610	CCGGGATCAGCGTGGATTTA SEQ ID NO:1684	-0.3	-26.4	72.3	-26.1	0	-7 ⋅
712	CTTCAAAAATTACATGTACT SEQ ID NO:1685	-0.3	-16	51.6	-15.2	0	-7.7
723	ACAATTTGGATCTTCAAAAA SEQ ID NO:1686	-0.3	-15.9	51	-14.2	-1.3	-6.3
506	CATGCTCCGTGAGAGAAACA SEQ ID NO:1687	-0.2	-23.1	65.3	-21.8	-1	-6.1
701	ACATGTACTTATGCTATATC SEQ ID NO:1688	-0.2	-19.2	60.3	-19	. 0	-6.1
825	ACATGCATTCGAATATTTAA SEQ ID NO:1689	-0.2	-17.5	54.2	-16.7	0	-8.4
845	CACACACATTTAACAAATCT SEQ ID NO:1690	-0.2	-17.4	54	-17.2	0	-2.7
1459	TTCTTTCCTCAAGAGGATGA SEQ ID NO:1691	-0.2	-22.3	66.8	-20.7	-1.2	-9.9
1467	TACTAGATTTCTTTCCTCAA SEQ ID NO:1692	-0.2	-20.5	63.1	-20.3	0	-4.5
1673	AAAAACTTATTTCATACCT SEQ ID NO:1693	-0.2	-16.3	52	-15.1		-3.3
1769	GTGCTAAGATTCTTTCAAAT SEQ ID NO:1694	-0.2	-18.8	58.5	-18.1		-5.5
1853	AAATAATTCTTAAATAAGTT SEQ ID NO:1695	-0.2	-11.7	43.1	-11.5		-4.9
655	GTGTTGAACAATCACGAAAA SEQ ID NO:1696	-0.1	-17.2	52.9	-16.3	-0.6	-8.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
722	CAATTTGGATCTTCAAAAAT SEQ ID NO:1697	-0.1	-15.7	50.6	-14.2	-1.3	-6.3
962	GTCAAAGAACTAATTTGACT SEQ ID NO:1698	-0.1	-16.8	53.4	-13.3	-3.4	-9.4
969	CATCAAAGTCAAAGAACTAA SEQ ID NO:1699	-0.1	-15.3	49.8	-15.2	0	-3
1117	TCCCAAAGCCAAAAAAAAAA SEQ ID NO:1700	-0.1	-15.9	48.7	-15.8	0	-3.2
1324	TCTGAGGTGGCATACGTTAA SEQ ID NO:1701	-0.1	-23	67.2	-22.3	-0.3	-4.8
1875	AATAAAATACAGGTAAATAC SEQ ID NO:1702	-0.1	-12.1	43.5	-12	0	-3.6
1935	TGCAGCTTTACATTCAAAGG SEQ ID NO:1703	-0.1	-21	62.7	-20.9	0.1	-7.6
1292	AAGTGTATGTGTTTCCTATG SEQ ID NO:1704	0	-21	64.7	-21	0	-1.7
1682	AAACCTCCTAAAAACTTATT SEQ ID NO:1705	0	-16.9	52.2	-16.9	0	-1.3
1827	TTCAAATAAAATACTTCTGA SEQ ID NO:1706	0	-14.2	47.9	-14.2	0	-2.5
512	CCATGTCATGCTCCGTGAGA SEQ ID NO:1707	0.1	-27.3	75.7	-26.7	-0.4	-6.6
1094	AAGCACAATTAAATTCTAGA SEQ ID NO:1708	0.1	-16.1	51.8	-16.2	0	~5.4
1162	ATCTTACTTCCTTCAGGGGT SEQ ID NO:1709	0.1	-25.6	76	-25.2	-0.2	-4.7
1307	TAAAGCTATTTATGGAAGTG SEQ ID NO:1710	0.1	-16.9	54	-17	0	-5.1
1481	TTTTCAACAAATAATACTAG SEQ ID NO:1711	0.1	-13.7	47	-13.8	0	-4
1923	TTCAAAGGCCTTCCACACAC SEQ ID NO:1712	0.1	-24.9	69.7	-23.5	-1	-10.6
1967	CATGTCCTTTTAAAACAAAA SEQ ID NO:1713	0.1	-15.9	50.5	-15.5	-0.1	-6.2
89	CAGGCACGAGGAGCGTGGTC SEQ ID NO:1714	0.2	-28.4	78.4	-25.1	-3.5	-9
257	AGACTGTGCGGTAGCAAGTT SEQ ID NO:1715	0.2	-24.7	71.8	-22	-2.9	-7.2
652	TTGAACAATCACGAAAATAG SEQ ID NO:1716	0.2	-14.5	47.6	-13.9	-0.6	-4.4
1068	ACCTACCAAGGAAGGGCTAA SEQ ID NO:1717	0.2	-24.2	67.3	-22.8	-1.6	-6.6
1084	AAATTCTAGAGAAGCTACCT SEQ ID NO:1718	0.2	-19.7	59.7	-19.9	0	-5.8
1169	TTCAAACATCTTACTTCCTT SEQ ID NO:1719	0.2	-20.4	61.8	-20.6	0	-1
1177	CCATAAGCTTCAAACATCTT SEQ ID NO:1720	0.2	-20.5	60.7	-20.7	0	-6.8
1392	AAATATATAAATATTTACCT SEQ ID NO:1721	0.2	-13	45.4	-11.4	-1.8	-7.9
1476	AACAAATAATACTAGATTTC SEQ ID NO:1722	0.2	-13.5	46.7	-13.7	, 0	-4.5
1741	AATTCCACCTATATTTTAAA SEQ ID NO:1723	0.2	-17.6	54.5	-17.8	0	-4.2
1877	AGAATAAAATACAGGTAAAT SEQ ID NO:1724	0.2	-12.8	44.8	~13	. 0	-3.6
807	AACAAACACATACAAGTGTT SEQ ID NO:1725	0.3	-17	53.3	-14.7	-2.6	~8
1053	GCTAAATATTTTATTTCCCA SEQ ID NO:1726	0.3	-20	59.9	-19.5	-0.6	-6.2

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1059	GGAAGGGCTAAATATTTTAT SEQ ID NO:1727	0.3	-18.2	56.3	-18.5	0	-6.6
1074	GAAGCTACCTACCAAGGAAG SEQ ID NO:1728	0.3	-22.4	63.9	-21.1	-1.6	-9.2
1391	AATATATAAATATTTACCTT SEQ ID NO:1729	0.3	-13.8	47.1	-13.2	-0.8	-7.9
1455	TTCCTCAAGAGGATGATAAA SEQ ID NO:1730	0.3	-19.1	58.1	-17.8	-1.5	-10.2
1468	ATACTAGATTTCTTTCCTCA SEQ ID NO:1731	0.3	-21.2	65.3	-21.5	0	-4.5
88	AGGCACGAGGAGCGTGGTCA SEQ ID NO:1732	0.4	-28.4	78.4	-25.3	-3.5	-9.2
221	CGCACACTCGGCAGCAGCCA SEQ ID NO:1733	0.4	-31.2	81.2	-28.4	-3.2	-9.8
224	CAGCGCACACTCGGCAGCAG SEQ ID NO:1734	0.4	-29.2	78.2	-27.3	-2.3	-8.5
861	CTTCAGTGTTACTATACACA SEQ ID NO:1735	0.4	-20.6	63.8	-19.4	-1.5	-5.7
977	TTAATGTACATCAAAGTCAA SEQ ID NO:1736	0.4	-16.2	52.3	-16	0	-8.4
1069	TACCTACCAAGGAAGGCTA SEQ ID NO:1737	0.4	-24.6	68.8	-23.4	-1.6	-6.6
1173	AAGCTTCAAACATCTTACTT SEQ ID NO:1738	0.4	-19	58.5	-19.4	0	-6.2
1322	TGAGGTGGCATACGTTAAAG SEQ ID NO:1739	0.4	-21	62	-20.8	-0.3	-4.8
1475	ACAAATAATACTAGATTTCT SEQ ID NO:1740	0.4	-15.1	50.1	-15.5	0	-4.5
1813	TTCTGAGATATTTCCTAAGA SEQ ID NO:1741	0.4	-19.4	60.3	-19.8	0	-4.6
176	AGCGCGGGCTGCTTTTGCAC SEQ ID NO:1742	0.5	-30	80.6	-27.2	-3.3	-12.5
178	GCAGCGCGGGCTGCTTTTGC SEQ ID NO:1743	0.5	-31.6	84.2	-26.6	-5.5	-15.5
418	GTCACAGATGCCTGACTGGC SEQ ID NO:1744	0.5	-27.2	77.4	-25.6	-2.1	-8.7
505	ATGCTCCGTGAGAGAAACAA SEQ ID NO:1745	0.5	-21.7	62.2	-21.1	-1	-6.1
507	TCATGCTCCGTGAGAGAAAC SEQ ID NO:1746	0.5	-22.8	65.6	-22.6	-0.4	-5.9
891	TGTAAGATTACCTAAATTGC SEQ ID NO:1747	0.5	-17.9	55.6	-18.4	0	-4.9
892	ATGTAAGATTACCTAAATTG SEQ ID NO:1748	0.5	-16.1	51.8	-16.6	. 0	-4.9
1405	CATTTATTTATAAAAATATA SEQ ID NO:1749	0.5	-10.8	41.3	-10	-1.2	-6.5
1447	GAGGATGATAAATATGGGTA SEQ ID NO:1750	0.5	-18.3	56.7	-18.8	0	-2.7
1469	AATACTAGATTTCTTTCCTC SEQ ID NO:1751	0.5	-19.8	61.8	-20.3	0	-4.5
1824	AAATAAAATACTTCTGAGAT SEQ ID NO:1752	0.5	-13.6	46.6	-14.1	0	-2.8
7	TGCTGGTGGGAAGCAGCCGT SEQ ID NO:1753	0.6	-29.7	80.5	-27.4	-2.9	-8.4
220	GCACACTCGGCAGCAGCCAC SEQ ID NO:1754	0.6	-30.6	82.3	-28	-3.2	-9.8
281	CACACTTCATGCCATCCATG SEQ ID NO:1755	0.6	-25.5	71.3	-24.5	-1.6	-4.7
500	CCGTGAGAGAAACAAATCTG SEQ ID NO:1756	0.6	-19.2	56.7	-19.8	0	-3.1

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1092	GCACAATTAAATTCTAGAGA SEQ ID NO:1757	0.6	-17.4	54.8	-18	0	-5.8
1095	AAAGCACAATTAAATTCTAG SEQ ID NO:1758	0.6	-14.8	49	-15.4	0	-4.1
1301	TATTTATGGAAGTGTATGTG SEQ ID NO:1759	0.6	-18	57.4	-18.6	0	-1.8
1466	ACTAGATTTCTTTCCTCAAG SEQ ID NO:1760	0.6	-20.8	63.9	-21.4	0	-4.5
1764	AAGATTCTTTCAAATATACT SEQ ID NO:1761	0.6	-15.7	51.6	-15.8	-0.1	-5.2
1089	CAATTAAATTCTAGAGAAGC SEQ ID NO:1762	0.7	-15.8	51.4	-16.5	0	-5.8
1934	GCAGCTTTACATTCAAAGGC SEQ ID NO:1763	0.7	-22.8	67	-22.7	-0.6	-4.5
1950	AAACCTAACAGCTTATGCAG SEO ID NO:1764	0.7	-20.6	60.6	-19.7	-1.6	-5.7
504	TGCTCCGTGAGAGAAACAAA SEQ ID NO:1765	0.8	-21	60.4	-20.7	-1	-6.1
963	AGTCAAAGAACTAATTTGAC SEO ID NO:1766	0.8	-15.9	51.7	-13.3	-3.4	-9.4
1168	TCAAACATCTTACTTCCTTC SEQ ID NO:1767	0.8	-20.7	62.9	-21.5	0	-1
1298	TTATGGAAGTGTATGTGTTT SEQ ID NO:1768	0.8	-19.6	61.6	-20.4	0	-1.3
1306	AAAGCTATTTATGGAAGTGT SEQ ID NO:1769	0.8	-18.4	57.4	-19.2	0	-5.1
79	GAGCGTGGTCAGCAGCAAGA SEQ ID NO:1770	0.9	-26.8	76.2	-26.1	-1.5	-5.4
90	GCAGGCACGAGGAGCGTGGT SEQ ID NO:1771	0.9	-29.8	81	-27.9	-2.8	-10.3
651	TGAACAATCACGAAAATAGA SEQ ID NO:1772	0.9	-15	48.5	-15.2	-0.4	-4.4
725	TCACAATTTGGATCTTCAAA SEQ ID NO:1773	0.9	-18.4	56.9	-18.1	-1.1	-5.9
847	TACACACACATTTAACAAAT SEO ID NO:1774	0.9	-16	51	-16.9	0	-2.5
1395	TAAAAATATATAAATATTTA SEQ ID NO:1775	0.9	-8.2	36.4	-6.8	-2.3	-7.6
409	GCCTGACTGGCAGTTGCAGG SEQ ID NO:1776	1	-29.1	81.5	-27.6	-2.5	-10.2
612	AGCCGGGATCAGCGTGGATT SEQ ID NO:1777	1	-28.4	76.8	-28.5	-0.7	-7.6
709	CAAAAATTACATGTACTTAT SEQ ID NO:1778	1	-14.4	48.2	-14.9	0	-7.7
1458	TCTTTCCTCAAGAGGATGAT SEQ ID NO:1779	1	-22.2	66.4	-21.6	-1.5	-10.2
1465	CTAGATTTCTTTCCTCAAGA SEQ ID NO:1780	1	-21.2	64.7	-21.3	-0.7	-6.8
1731	ATATTTTAAAGTTGACATGT SEQ ID NO:1781	-	-16.3	53.1	-17.3	0	-6.9
555	TCTTTCACAACTTCTCTCT SEQ ID NO:1782	1.1	-22	67.8	-23.1	0	-0.7
851	ACTATACACACACATTTAAC SEQ ID NO:1783	1.1	-17.5	55	-18.6	0	-2.4
1812	TCTGAGATATTTCCTAAGAA SEQ ID NO:1784	1.1	-18.6	57.9	-19.7	0	-4.6
658	TGTGTGTTGAACAATCACGA SEQ ID NO:1785	1.2	-20.5	60.9	-19.8	-1.9	-8.7
1093	AGCACAATTAAATTCTAGAG SEQ ID NO:1786	1.2	-16.8	53.7	-18	0	-5.8

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1394	AAAAATATATAAATATTTAC SEQ ID NO:1787	1.2	-8.7	37.3	-7.6	-2.3	-7.9
1477	CAACAAATAATACTAGATTT SEQ ID NO:1788	1.2	-13.8	46.9	-15	0	-4.5
1478	TCAACAAATAATACTAGATT SEQ ID NO:1789	1.2	-14.1	47.7	-15.3	0	-4.5
1479	TTCAACAAATAATACTAGAT SEQ ID NO:1790	1.2	-14.1	47.7	-15.3	0	-4.5
1740	ATTCCACCTATATTTTAAAG SEQ ID NO:1791	1.2	-18.3	56.4	-19.5	0	-4.6
306	GAAGGCTGACACCTCAGCCC SEQ ID NO:1792	1.3	-29.3	79.1	-24.5	-6.1	-13.4
604	TCAGCGTGGATTTAACCATT SEQ ID NO:1793	1.3	-22.9	65.8	-23.3	-0.8	-5.5
605	ATCAGCGTGGATTTAACCAT SEQ ID NO:1794	1.3	-22.8	65.5	-23.2	-0.8	-5.5
1454	TCCTCAAGAGGATGATAAAT SEQ ID NO:1795	1.3	-19	57.7	-18.9	-1.2	-9.7
611	GCCGGGATCAGCGTGGATTT SEQ ID NO:1796	1.4	-28.5	76.9	-29.4	0	-7.6
1393	AAAATATATAAATATTTACC SEQ ID NO:1797	1.4	-11.4	42.2	-10.5	-2.3	-7.9
1823	AATAAAATACTTCTGAGATA SEQ ID NO:1798	1.4	-14	47.7	-15.4	0	-2.8
1873	TAAAATACAGGTAAATACTG SEQ ID NO:1799	1.4	-13.7	46.7	-14.4	-0.5	-4
170	GGCTGCTTTTGCACTCACTG SEQ ID NO:1800	1.5	-26.7	76.8	-26.1	-2.1	-8.4
177	CAGCGCGGGCTGCTTTTGCA SEQ ID NO:1801	1.5	-30.5	81	-28.7	-3.3	-12.4
1077	AGAGAAGCTACCTACCAAGG SEQ ID NO:1802	1.5	-23.1	66.2	-23.3	-1.2	-6.9
1765	TAAGATTCTTTCAAATATAC SEQ ID NO:1803	1.5	-14.5	49.2	-15.5	-0.1	-5.6
144	CAGTGTTGAGGGCAGTCCAC SEQ ID NO:1804	1.6	-27.2	79.2	-27.7	-1	-5.6
261	CCTGAGACTGTGCGGTAGCA SEQ ID NO:1805	1.6	-27.6	76.9	-27.4	-1.8	-6.3
560	CATTCTCTTTCACAACTTCT SEQ ID NO:1806	1.6	-21.4	65.4	-23	. 0	-1
603	CAGCGTGGATTTAACCATTT SEO ID NO:1807	1.6	-22.6	64.7	-23.6	-0.3	-5.5
1060	AGGAAGGGCTAAATATTTTA SEQ ID NO:1808	1.6	-18.2	56.5	-19.8	. 0	-6.6
1088	AATTAAATTCTAGAGAAGCT SEQ ID NO:1809	1.6	-16	52	-17.6	0	-5.8
1098	AAAAAAGCACAATTAAATTC SEQ ID NO:1810	1.6	-12.1	43.3	-13.7	0	-4.1
1446	AGGATGATAAATATGGGTAG SEQ ID NO:1811	1.6	-17.7	55.6	-19.3	0	-2.7
2	GTGGGAAGCAGCCGTGACCC SEQ ID NO:1812	1.7	-30.6	80.7	-31.4	-0.8	-5.4
8	TTGCTGGTGGGAAGCAGCCG SEQ ID NO:1813	1.7	-28.6	77.5	-27.4	-2.9	-8.4
11	TCTTTGCTGGTGGGAAGCAG SEQ ID NO:1814	1.7	-25.4	73.9	-25.2	-1.9	-6.4
1386	ATAAATATTTACCTTCATAC SEQ ID NO:1815	1.7	-16.1	52.2	-17.3	0	-7.9
1485	ACCATTTTCAACAAATAATA SEQ ID NO:1816	1.7	-15.8	50.6	-17	-0.1	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1628	AGCACTTATGTTTAAATAAG SEQ ID NO:1817	1.7	-16.1	52.3	-16.6	-1.1	-6.6
1683	CAAACCTCCTAAAAACTTAT SEQ ID NO:1818	1.7	-17.5	53.1	-19.2	0	-1.3
1820	AAAATACTTCTGAGATATTT SEQ ID NO:1819	1.7	-15.2	50.4	-15.8	-1	-4.6
1863	GTAAATACTGAAATAATTCT SEQ ID NO:1820	1.7	-13.9	47.4	-14.4	-1.1	-4.8
421	CCTGTCACAGATGCCTGACT SEQ ID NO:1821	1.8	-27.1	75.9	-27.2	-1.7	-6.3
1305	AAGCTATTTATGGAAGTGTA SEQ ID NO:1822	1.8	-18.8	58.8	-20.6	0	-5.1
1375	CCTTCATACACACACAAACC SEQ ID NO:1823	1.8	-22.2	63	-24	0	-0.9
1116	CCCAAAGCCAAAAAAAAAAA SEQ ID NO:1824	1.9	-14.8	46.6	-16.7	Ō	-3.2
1167	CAAACATCTTACTTCCTTCA SEQ ID NO:1825	1.9	-21	62.6	-22.9	0	-1
1170	CTTCAAACATCTTACTTCCT SEQ ID NO:1826	1.9	-21.2	63.4	-23.1	0	-1
1174	TAAGCTTCAAACATCTTACT SEQ ID NO:1827	1.9	-18.6	57 <i>.</i> 7	-20.5	0	-6.8
1626	CACTTATGTTTAAATAAGGT SEQ ID NO:1828	1.9	-16.7	53.6	-17	-1.5	-7.1
1822	ATAAAATACTTCTGAGATAT SEQ ID NO:1829	1.9	-14.7	49.3	-16.6	0	-2.8 -4.3
1855	TGAAATAATTCTTAAATAAG SEQ ID NO:1830	1.9	-11	41.6	-11.7	-1.1	-4.3 -3.6
1878	AAGAATAAAATACAGGTAAA SEQ ID NO:1831 CTTGTTCTTTTTTATTGAAC	1.9	-12.1	43.4	-14	0 -1	-3.6 -4.9
1996	SEQ ID NO:1832 GCTCCGTGAGAGAAACAAAT	1.9	-18	57.7	-18.8	-1 -1	-6.1
503	SEQ ID NO:1833 AGCTTCAAACATCTTACTTC	2	-21	60.4	-21.9	- <u>-</u> 1	-4.3
1172	SEQ ID NO:1834 TAAATACTGAAATAATTCTT	2	-20.1	62	-22.1	-1.1	-4.2
1862	SEQ ID NO:1835	2	-12.8	45.1	-13.6	-1.1	
87	GGCACGAGGAGCGTGGTCAG SEQ ID NO:1836	2.1	-28.4	78.4	-27	-3.5	-9.3
169	GCTGCTTTTGCACTCACTGC SEQ ID NO:1837	2.1	-27.3	78.7	-27.3	-2.1	-7.4
424	CCCCTGTCACAGATGCCTG SEQ ID NO:1838	2.1	-31.4	82.3	-32.4	-1	-5.3
844	ACACACATTTAACAAATCTA SEQ ID NO:1839	2.1	-16.4	52.2	-18.5	0	-2.7
1139	CTGGTTGTTTTATTTTGACT SEQ ID NO:1840	2.1	-20.6	63.9	-22.7	0	-2.8
420	CTGTCACAGATGCCTGACTG SEQ ID NO:1841	2.2	-25.1	72.2	-25.6	-1.7	-7
1138	TGGTTGTTTTATTTTGACTT SEQ ID NO:1842	4.4	-19.8	62.2	-22	0	-2.8
1443	ATGATAAATATGGGTAGGGA SEQ ID NO:1843	2.2	-18.9		-21.1		-2.7
1739	TTCCACCTATATTTTAAAGT	2.2	-19.5		-21.7	_	-4.6
280	ACACTTCATGCCATCCATGC	2.3	-26.6				-5
417	TCACAGATGCCTGACTGGCF SEQ ID NO:1846	2.3	-26.7	75	-25.6	3.4	-9.2

		kcal/	kcal/		kcal/		
		mol	mol	đeg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
848	ATACACACACATTTAACAAA SEQ ID NO:1847	2.3	-16	51	-18.3	0	-2.4
850	CTATACACACACATTTAACA SEQ ID NO:1848	2.3	-18	55.7	-20.3	0	-2.4
1163	CATCTTACTTCCTTCAGGGG SEQ ID NO:1849	2.3	-25.1	73.5	-26.9	-0.2	-4.7
1678	CTCCTAAAAACTTATTTCA SEQ ID NO:1850	2.3	-17.4	54.4	-18.7	-0.9	-3.3
1373	TTCATACACACACAAACCAC SEQ ID NO:1851	2.4	-20.2	59.4	-22.6	0	-0.9
1483	CATTTTCAACAAATAATACT SEQ ID NO:1852	2.4	-14.7	48.7	-16.6	-0.1	-2.7
1575	AAATCCAGAGTGACTCCTAT SEQ ID NO:1853	2.4	-22.2	65	-23.9	-0.4	~5.5
78	AGCGTGGTCAGCAGCAAGAC SEO ID NO:1854	2.5	-26.4	75.4	-27.3	-1.5	-7.3
260	CTGAGACTGTGCGGTAGCAA SEQ ID NO:1855	2.5	-24.9	70.9	-25.4	-2	-7
1171	GCTTCAAACATCTTACTTCC SEO ID NO:1856	2.5	-22.1	65.6	-24.6	0	-2.8
1321	GAGGTGGCATACGTTAAAGC SEQ ID NO:1857	2.5	-22.8	66.1	-24.7	-0.3	-4.8
1453	CCTCAAGAGGATGATAAATA SEQ ID NO:1858	2.5	-18.3	56	-20.3	-0.1	-7.5
1562	CTCCTATAATTATGGATAAT SEO ID NO:1859	2.5	-17.5	54.8	-19.3	-0.1	-9
1574	AATCCAGAGTGACTCCTATA SEQ ID NO:1860	2.5	-22.6	66.7	-24.4	-0.4	-5.5
422	CCCTGTCACAGATGCCTGAC SEO ID NO:1861	2.6	-28.2	77.5	-29.3	-1.4	-5.9
561	GCATTCTCTTTCACAACTTC SEQ ID NO:1862	2.6	-22.3	67.8	-24.9	0	-3.4
721	AATTTGGATCTTCAAAAATT SEQ ID NO:1863	2.6	-15.1	49.6	-16.3	-1.3	-6.3
724	CACAATTTGGATCTTCAAAA SEQ ID NO:1864	2.6	-17.3	53.9	-19	-0.8	-5.8
706	AAATTACATGTACTTATGCT SEQ ID NO:1865	2.7	-17.8	55.9	-20	0	-7.7
713	TCTTCAAAAATTACATGTAC SEQ ID NO:1866	2.7	-15.5	50.9	-17.7	0	-7.7
1677	TCCTAAAAACTTATTTCAT SEQ ID NO:1867	2.7	-16.5	52.6	-18.3	-0.7	-3.2
1821	TAAAATACTTCTGAGATATT SEQ ID NO:1868	2.7	-14.8	49.6	-17.5	. 0	-3.9
223	AGCGCACACTCGGCAGCAGC SEQ ID NO:1869	2.8	-30.3	81.5	-30.8	-2.3	-9.7
1297	TATGGAAGTGTATGTGTTTC SEQ ID NO:1870	2.8	-19.9	62.8	-22.7	0	-2.6
1627	GCACTTATGTTTAAATAAGG SEQ ID NO:1871	2.8	-17.3	54.7	-18.5	~1.5	-7.1
92	GTGCAGGCACGAGGAGCGTG SEQ ID NO:1872	2.9	-28.6	78.3	-28.4	-3.1	-11.5
289	CCCCGGGCCACACTTCATGC SEQ ID NO:1873	2.9	-32.7	83.1	-34.7	0	-9.7
410	TGCCTGACTGGCAGTTGCAG SEQ ID NO:1874	2.9	-27.9	78.6	-27.6	-3.2	-11.5
556	CTCTTTCACAACTTCTTCTC SEQ ID NO:1875	2.9	-22	67.8	-24.9	0	-0.7
839	CATTTAACAAATCTACATGC SEQ ID NO:1876	2.9	-17.1	53.7	-20	0	-5

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1075	AGAAGCTACCTACCAAGGAA SEQ ID NO:1877	2.9	-22.4	63.9	-23.7	-1.6	-9.2
1440	ATAAATATGGGTAGGGAAGA SEQ ID NO:1878	2.9	-18.2	56.3	-21.1	0	-2.7
720	ATTTGGATCTTCAAAAATTA SEQ ID NO:1879	3	-15.5	50.7	-17.1	-1.3	-6.3
849	TATACACACACATTTAACAA SEQ ID NO:1880	3	-16.4	52.2	-19.4	0	-2.4
1087	ATTAAATTCTAGAGAAGCTA SEQ ID NO:1881	3.1	-16.4	53.2	-19.5	0	-5.8
1374	CTTCATACACACACAAACCA SEQ ID NO:1882	3.1	-20.9	60.7	-24	0	-0.9
1448	AGAGGATGATAAATATGGGT SEQ ID NO:1883	3.1	-18.6	57.5	-21.7	0	-2.7
1564	GACTCCTATAATTATGGATA SEQ ID NO:1884	3.1	-19	58.5	-21.4	-0. <u>1</u>	-9
1576	GAAATCCAGAGTGACTCCTA SEQ ID NO:1885	3.1	-22.8	66.4	-25.2	-0.4	-5.5
557	TCTCTTTCACAACTTCTTCT SEQ ID NO:1886	3.2	-22	67.8	-25.2	0	-0.7
1484	CCATTTTCAACAAATAATAC SEQ ID NO:1887	3.2	-15.8	50.6	-18.5	-0.1	-2.7
563	CAGCATTCTCTTTCACAACT SEQ ID NO:1888	3.3	-22.5	67.3	-25.8	0	-4.1
860	TTCAGTGTTACTATACACAC SEQ ID NO:1889	3.3	-19.9	62.3	-20.9	-2.3	-6.5
1864	GGTAAATACTGAAATAATTC SEQ ID NO:1890	3.3	-14.2	47.9	-16.9	-0.3	-7.3
1871	AAATACAGGTAAATACTGAA SEQ ID NO:1891	3.3	-14.6	48.4	-17.9	0	-4.1
1872	AAAATACAGGTAAATACTGA SEQ ID NO:1892	3.3	-14.6	48.4	-16.9	-0.9	-4.1
516	GATGCCATGTCATGCTCCGT SEQ ID NO:1893	3.4	-28.5	78.3	-31.4	-0.2	-4.6
562	AGCATTCTCTTTCACAACTT SEQ ID NO:1894	3.4	-21.9	66.4	-25.3	0	-4.1
841	CACATTTAACAAATCTACAT SEQ ID NO:1895	3.4	-16.2	51.7	-19.6	0	-2.7
1400	ATTTATAAAAATATATAAAT SEQ ID NO:1896	3.4	-8.5	36.9	-10.3	-1.5	-6.5
1442	TGATAAATATGGGTAGGAA SEQ ID NO:1897	3.5	-18.2	56.1	-21.7	0	-2.7
1732	TATATTTTAAAGTTGACATG SEQ ID NO:1898	3.5	-14.8	49.7	-18.3	0	-4.7
419	TGTCACAGATGCCTGACTGG SEQ ID NO:1899	3.6	-25.4	72.8	-27.3	-1.7	-7.1
859	TCAGTGTTACTATACACACA SEQ ID NO:1900	3.6	-20.5	63.2	-21.8	-2.3	-6.5
1738	TCCACCTATATTTTAAAGTT SEQ ID NO:1901	3.6	-19.5	59.3	-23.1	0	-4.6
502	CTCCGTGAGAGAAACAAATC SEQ ID NO:1902	3.7	-19.6	58	-22.7	-0.3	-5
5	CTGGTGGGAAGCAGCCGTGA SEQ ID NO:1903	3.8	-28.5	77.6	-31.1	-1.1	-5.4
9	TTTGCTGGTGGGAAGCAGCC SEQ ID NO:1904	3.8	-27.9	78.2	-28.8	2.9	-7.8
10	CTTTGCTGGTGGGAAGCAGC SEQ ID NO:1905	3.8	-26.8	76.6	-28.1	-2.5	-7.4
515	ATGCCATGTCATGCTCCGTG SEQ ID NO:1906	3.8	-27.9	76.8	-31.2	-0.2	-4.6

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
606	GATCAGCGTGGATTTAACCA SEQ ID NO:1907	3.9	-23.4	66.7	-26.5	-0.6	-5.9
1303	GCTATTTATGGAAGTGTATG SEQ ID NO:1908	3.9	-19.5	60.6	-23.4	0	-2.8
1563	ACTCCTATAATTATGGATAA SEQ ID NO:1909	3.9	-17.7	55.3	-20.9	-0.1	-9
714	ATCTTCAAAAATTACATGTA SEQ ID NO:1910	4	-15.3	50.4	-18.8	0	-7.5
1449	AAGAGGATGATAAATATGGG SEQ ID NO:1911	4	-16.7	52.8	-20.7	0	-2.7
1866	CAGGTAAATACTGAAATAAT SEQ ID NO:1912	4	-14.4	48	-18.4	0	-3.8
6	GCTGGTGGGAAGCAGCCGTG SEQ ID NO:1913	4.1	-29.7	80.5	-31.6	-2.2	-8.4
518	CAGATGCCATGTCATGCTCC SEO TD NO:1914	4.1	-27.2	76.6	-30.8	-0.1	-4.4
1099	AAAAAAAGCACAATTAAATT SEQ ID NO:1915	4.1	-11	41.2	-15.1	0	-4.1
1865	AGGTAAATACTGAAATAATT SEQ ID NO:1916	4.1	-13.8	47	-17.9	0	-3.8
600	CGTGGATTTAACCATTTCCT SEQ ID NO:1917	4.2	-23.4	66.2	-26.7	-0.8	-4.8
609	CGGGATCAGCGTGGATTTAA SEQ ID NO:1918	4.2	-23.7	66.7	-27.9	0	-5.7
1733	CTATATTTTAAAGTTGACAT SEQ ID NO:1919	4.2	-15.7	51.6	-19.9	0	-4.6
719	TTTGGATCTTCAAAAATTAC SEQ ID NO:1920	4.3	-15.7	51.2	-19.1	-0.8	-5.6
1304	AGCTATTTATGGAAGTGTAT SEQ ID NO:1921	4.3	-19.5	60.9	-23.8	0	-4.3
1441	GATAAATATGGGTAGGGAAG SEQ ID NO:1922	4.3	-18.2	56.3	-22.5	0	-2.2
843	CACACATTTAACAAATCTAC SEQ ID NO:1923	4.4	-16.4	52.2	-20.8	0	-2.5
3	GGTGGGAAGCAGCCGTGACC SEQ ID NO:1924	4.5	-29.8	79.9	-33.6	-0.4	-5.4
517	AGATGCCATGTCATGCTCCG SEQ ID NO:1925	4.5	-27.3	75.3	-31.3	-0.2	-4.6
707	AAAATTACATGTACTTATGC SEQ ID NO:1926	4.6	-16.2	52.2	-20.3	0	-7.5
840	ACATTTAACAAATCTACATG SEO ID NO:1927	4.6	-15.5	50.5	-20.1	0	-4.7
1103	AAAAAAAAAAGCACAATTA SEQ ID NO:1928	4.6	-9.5	38.6	-14.1	. 0	-4.1
1176	CATAAGCTTCAAACATCTTA SEQ ID NO:1929	4.6	-18.2	56.5	-22.8	0	-6.8
1302	CTATTTATGGAAGTGTATGT SEQ ID NO:1930	4.6	-18.9	59.5	-23.5	0	-1.8
1676	CCTAAAAACTTATTTCATA SEQ ID NO:1931	4.7	-15.8	51	-19.5	-0.9	-3.3
564	GCAGCATTCTCTTTCACAAC SEQ ID NO:1932	4.8	-23.4	69.6	-28.2	0	-4.7
842	ACACATTTAACAAATCTACA SEQ ID NO:1933	4.8	-16.4	52.2	-21.2	0	-2.7
718	TTGGATCTTCAAAAATTACA SEQ ID NO:1934	4.9	-16.3	52.1	-21.2	0	-5
1104	AAAAAAAAAAAAGCACAATT SEQ ID NO:1935	4.9	-9.1	38	-14	0	-4.1
1450	CAAGAGGATGATAAATATGG SEQ ID NO:1936	4.9	-16.2	51.7	-21.1	0	-2.7

		kcal/	kcal/		kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
75	GTGGTCAGCAGCAAGACGCT SEQ ID NO:1937	5	-27.3	77.1	-30.8	-1.4	-8.5
91	TGCAGGCACGAGGAGCGTGG SEQ ID NO:1938	5	-28.6	77.4	-30.1	-3.5	-11.6
1954	AACAAAACCTAACAGCTTAT SEQ ID NO:1939	5	-17.6	53.7	-22.6	0	-4.5
1115	CCAAAGCCAAAAAAAAAAA SEQ ID NO:1940	5.2	-12.1	42.5	-17.3	0	-2.4
1870	AATACAGGTAAATACTGAAA SEQ ID NO:1941	5.2	-14.6	48.4	-18.8	-0.9	-4.1
77	GCGTGGTCAGCAGCAAGACG SEQ ID NO:1942	5.3	-27.2	74.9	-31.6	-0.7	-7.7
414	CAGATGCCTGACTGGCAGTT SEQ ID NO:1943	5.4	-26.7	75.7	-28.5	-3.6	-8.6
423	CCCCTGTCACAGATGCCTGA SEQ ID NO:1944	5.4	-30	80.3	-33.9	-1.4	-5.7
602	AGCGTGGATTTAACCATTTC SEQ ID NO:1945	5.5	-22.3	65	-26.9	-0.8	-5.5
708	AAAAATTACATGTACTTATG SEQ ID NO:1946	5.5	-13.7	46.9	-18.7	0	-7.7
1100	AAAAAAAAGCACAATTAAAT SEQ ID NO:1947	5.5	-10.2	39.8	-15.7	0	-4.1
1955	AAACAAAACCTAACAGCTTA SEQ ID NO:1948	5.5	-16.9	52.1	-22.4	0	-4.5
413	AGATGCCTGACTGGCAGTTG SEQ ID NO:1949	5.6	-26	74.4	-28	-3.6	-8.6
76	CGTGGTCAGCAGCAAGACGC SEQ ID NO:1950	5.7	-27.2	74.9	-31.4	-1.4	-8.5
858	CAGTGTTACTATACACACAC SEQ ID NO:1951	5.7	-20.3	62.3	-23.7	-2.3	-6.5
1105	AAAAAAAAAAAAAGCACAAT SEQ ID NO:1952	5.8	-8.3	36.7	-14.1	0	-4.1
601	GCGTGGATTTAACCATTTCC SEQ ID NO:1953	5.9	-24.3	68.3	-29.3	-0.8	-6.2
1867	ACAGGTAAATACTGAAATAA SEQ ID NO:1954	5.9	-14.6	48.4	-19.5	-0.9	-4.1
411	ATGCCTGACTGGCAGTTGCA SEQ ID NO:1955	6	-27.9	78.3	-30.3	-3.6	-11.9
607	GGATCAGCGTGGATTTAACC SEQ ID NO:1956	6	-23.9	68.1	-29.9	0	-5.7
415	ACAGATGCCTGACTGGCAGT SEQ ID NO:1957	6.1	-26.8	75.9	-29.8	-3.1	-9.8
1102	AAAAAAAAAAGCACAATTAA SEQ ID NO:1958	6.1	-9.5	38.6	-15.6	0	-4.1
1734	CCTATATTTTAAAGTTGACA SEQ ID NO:1959	6.1	-17.7	55.5	-23.8	0	-4.6
1086	TTAAATTCTAGAGAAGCTAC SEQ ID NO:1960	6.2	-16.6	53.8	-22.8	0	-5.8
1166	AAACATCTTACTTCCTTCAG SEQ ID NO:1961	6.3	-20.3	61.6	-26.6	0	-1.6
412	GATGCCTGACTGGCAGTTGC SEQ ID NO:1962	6.4	-27.8	78.6	-30.6	-3.6	-9.7
717	TGGATCTTCAAAAATTACAT SEQ ID NO:1963	6.6	-16.2	51.9	-22.8	0	-5
1675	CTAAAAACTTATTTCATAC SEQ ID NO:1964	6.7	-14	47.7	-19.7 .	-0.9	-3.3
1076	GAGAAGCTACCTACCAAGGA SEQ ID NO:1965	6.8	-23.7	67.2	-28.9	-1.6	-9.2
657	GTGTGTTGAACAATCACGAA SEQ ID NO:1966	6.9	-19.8	59.1	-25.3	-1.3	-8.7

					kcal/		
		mol	mol	deg C	mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-		_
position	oligo	binding	ation	Duplex	ture	oligo	oligo
715	GATCTTCAAAAATTACATGT SEQ ID NO:1967	6.9	-16.2	52.1	-23.1	0	-6.3
1868	TACAGGTAAATACTGAAATA SEQ ID NO:1968	6.9	-15	49.5	-20.9	-0.9	-4.1
1880	TCAAGAATAAAATACAGGTA SEQ ID NO:1969	7.1	-14.6	48.6	-21.7	0	-3.4
656	TGTGTTGAACAATCACGAAA SEQ ID NO:1970	7.3	-17.9	54.5	-23.8	-1.3	-8.7
1104	ACATCTTACTTCCTTCAGGG SEQ ID NO:1971	7.4	-24.1	71.4	-31.5	0	-4.7
1886	CCAACTTCAAGAATAAAATA SEQ ID NO:1972	7.4	-14.8	48.3	-22.2	0	-3.5
1106	AAAAAAAAAAAAGCACAA SEQ ID NO:1973	7.5	-7.6	35.7	-15.1	. 0	-4.1
1101	AAAAAAAAAGCACAATTAAA SEQ ID NO:1974	7.6	-9.5	38.6	-17.1	0	-4 .1
1881	TTCAAGAATAAAATACAGGT SEQ ID NO:1975	7.6	-15	49.4	-22.6	0	-2.9
1884	AACTTCAAGAATAAAATACA SEQ ID NO:1976	7.6	-13	45.2	-20.6	0	-3.5
416	CACAGATGCCTGACTGGCAG SEQ ID NO:1977	7.7	-26.3	73.6	-30.4	-3.6	-9.8
608	GGGATCAGCGTGGATTTAAC SEQ ID NO:1978	8.2	-23.1	67	-31.3	0	-5.3
1107	AAAAAAAAAAAAAAGCACA SEQ ID NO:1979	8.3	-7.6	35.7	-15.9	0	-4.1
1885 '	CAACTTCAAGAATAAAATAC SEQ ID NO:1980	8.4	-13	45.2	-21.4	0	-3.5
716	GGATCTTCAAAAATTACATG SEQ ID NO:1981	8.5	-16.2	51.9	-24.7	0	-5
1451	TCAAGAGGATGATAAATATG SEQ ID NO:1982	8.6	-15.4	50.4	-24	0	-2.7
1879	CAAGAATAAAATACAGGTAA SEQ ID NO:1983	8.6	-13.5	46.1	-22.1	0	-3.6
1/35	ACCTATATTTTAAAGTTGAC SEQ ID NO:1984	8.8	-17.2	54.7	-26	0	-4.6
1883	ACTTCAAGAATAAAATACAG SEQ ID NO:1985	8.8	-13.7	46.7	-22.5	0	-3.5
1452	CTCAAGAGGATGATAAATAT SEQ ID NO:1986	8.9	-16.3	52.3	-25.2	0	-3.9
4	TGGTGGGAAGCAGCCGTGAC SEQ ID NO:1987	9.2	-27.8	76.3	-35.8	-1.1	-4.6
1114	CAAAGCCAAAAAAAAAAAA SEQ ID NO:1988	9.3	-9.4	38.4	-18.7	. 0	-3.2
1165	AACATCTTACTTCCTTCAGG SEQ ID NO:1989	9.3	-22.2	66.4	-31.5	0	-4.1
1882	CTTCAAGAATAAAATACAGG SEQ ID NO:1990	9.8	-14.7	48.6	-24.5	0	-3.5
1109	CCAAAAAAAAAAAAAAGCA SEQ ID NO:1991	10.3	-9.4	38.4	-19.7	0	-4.1
1108	CAAAAAAAAAAAAAAGCAC SEQ ID NO:1992	10.5	-7.6	35.7	-18.1	0	-4.1
1869	ATACAGGTAAATACTGAAAT SEQ ID NO:1993	10.9	-15.3	50	-25.2	-0.9	-4.1
1113	AAAGCCAAAAAAAAAAAAA SEQ ID NO:1994	11.6	-8	36.3	-19.6	0	-3.2
1110	GCCAAAAAAAAAAAAAAAGC SEQ ID NO:1995	11.7	-10.5	40.1	-22.2	0	-2.8
1175	ATAAGCTTCAAACATCTTAC SEQ ID NO:1996	12.4	-17.7	55.8	-30.1	0	-6.8

		kcal/ mol	kcal/ mol	deg C	kca1/ mol	kcal/mol	kcal/mol
			duplex		target	Intra-	Inter-
		total	form-	Tm of	struc-	molecular	molecular
position	oligo	binding	ation	Duplex	ture	oligo	oligo
1737	CCACCTATATTTTAAAGTTG SEQ ID NO:1997	13	-19.1	57.9	-32.1	0	-4.6
1736	CACCTATATTTTAAAGTTGA SEQ ID NO:1998	14.9	-17.7	55.5	-32.6	0	-4.6
1112	AAGCCAAAAAAAAAAAAAA SEQ ID NO:1999	16.6	-8	36.3	-24.6	0	-3.2
1111	AGCCAAAAAAAAAAAAAAG SEQ ID NO:2000	17.1	-8.7	37.4	-25.8	0	-3.2

Example 15

Western blot analysis of ESM-1 protein levels

[00230] Western blot analysis (immunoblot analysis) is carried out
using standard methods. Cells are harvested 16-20 h after
oligonucleotide treatment, washed once with PBS, suspended in
Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16%
SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to
membrane for western blotting. Appropriate primary antibody directed
to ESM-1 is used, with a radiolabeled or fluorescently labeled secondary
antibody directed against the primary antibody species. Bands are
visualized using a PHOSPHORIMAGERTM (Molecular Dynamics,
Sunnyvale CA).

WHAT IS CLAIMED IS:

5

10

20

1. An antisense compound 8 to 30 nucleobases in length targeted to a nucleic acid molecule encoding ESM-1, wherein said antisense compound specifically hybridizes with and inhibits the expression of ESM-1.

- 2. The antisense compound of claim 1 which is an antisense oligonucleotide.
- 3. The antisense oligonucleotide of claim 2 comprising a nucleic acid sequence selected from the group consisting of at least eight contiguous bases of SEQ ID NO:1 SEQ ID NO:2000.
 - 4. The antisense oligonucleotide of claim 2 comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:1 SEQ ID NO:2000.
- 5. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
 - 6. The antisense compound of claim 5 wherein the modified internucleoside linkage is a phosphorothioate linkage.
 - 7. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
 - 8. The antisense compound of claim 7 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
 - 9. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 25 10. The antisense compound of claim 9 wherein the modified nucleobase is a 5-methylcytosine.

11. The antisense compound of claim 2, 3, or 4 wherein the antisense oligonucleotide is a chimeric oligonucleotide.

- 12. A composition comprising the antisense compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 5 13. The composition of claim 12 further comprising a colloidal dispersion system.
 - 14. The composition of claim 13 wherein the antisense compound is an antisense oligonucleotide.
- 15. A method of inhibiting the expression of ESM-1 in cells or tissues comprising contacting said cells or tissues with the antisense compound of claim 1 so that expression of ESM-1 is inhibited.
 - 16. A method of treating a human having a disease or condition associated with ESM-1 comprising administering to said animal a therapeutically or prophylactically effective amount of the antisense compound of claim 1 so that expression of ESM-1 is inhibited.
 - 17. The method of claim 16 wherein the disease or condition is diabetes.
- 20 18. The method of claim 16 wherein the disease or condition is an immunological disorder.

15

25

- 19. The method of claim 16 wherein the disease or condition is a cardiovascular disorder.
- 20. The method of claim 16 wherein the disease or condition is a neurologic disorder.
- 21. The method of claim 16 wherein the disease or condition is ischemia/reperfusion injury.
- 22. The method of claim 16 wherein the disease or condition is any form of cancer.
- The method of claim 16 wherein the disease or condition is an angiogenic disorder.

Figure 1

3	9 9	tca	cgg	ctg	ctt	CCC	acca	agc	aaag	gaco	cac	gac	tgg	aga	gcc	gag	ccg	gag	gcag	gctg	62
			M	ĸ	s	v	L	L	L	T	T	L	L	v	P	A	H	L	v	A	
63	gg.	aaa	cat	gaa	gag	cgt	ctt	gct	gct	gac	cac	gct	cct	cgt	gcc	tgc	aca	cct	ggt	ggcc	122
	A	W	s	N	N	Y	A	v	D	С	P	Q	H	С	D	s	s	E	С	K	
123	gc	ctg	gag	caa	taa	tta	tgc	ggt	gga	ctg	ccc	tca	aca	ctg	tga	cag	cag	tga	gtg	caaa	182
	s	s	Þ	R	С	ĸ	R	T	v	L	D	D	С	G	С	С	R	v	С	A	
183	ag	cag	ccc	gcg	ctg	caa	gag	gac	agt	gct	cga	cga	ctg	tgg	ctg	ctg	ccg	agt	gtg	cgct	242
	A	G	R	G	E	T	С	Y	R	T	v	s	G	M	D	G	M	ĸ	C	G	
243	gc	agg	gcg	999	aga	aac	ttg	cta	ccg	cac	agt	ctc	agg	cat	gga	tgg	cat	gaa	gtg	tggc	302
	P	G	L	R	С	Q	P	s	N	G	E	D	P	F	G	E	E	F	G	I	
303	cc	ggg	gct	gag	gtg	tca	gcc	ttc	taa	tgg	gga	gga	tcc	ttt	tgg	tga	aga	gtt	tgg	tatc	362
	С	K	D	C	P	Y	G	T	F	G	M	D	С	R	E	T	С	N	С	Q	
363	tg	caa	aga	ctg	tcc	cta	cgg	cac	ctt	cgg	gat	gga	ttg	cag	aga	gac	ctg	caa	ctg	ccag	422
	s	G	I	C	D	R	G	T	G	K	С	L	K	F	P	F	F	Q	Y	s	
423	tc	agg	cat	ctg	tga	cag	ggg	gac	ggg	aaa	atg	cct	gaa	att	ccc	ctt	ctt	cca	ata	ttca	482
	v	Т	ĸ	s	s	N	R	F	V	s	L	T	E	Н	D	M	A	s	G	D	
483	gt	aac	caa	gto	ttc	caa	cag	att	tgt	ttc	tct	cac	gga	gca	tga	cat	ggc	atc	tgg	agat	542
	G	N	I	v	R	E	E	v	V	K	E	N	A	A	G	s	P	V	M	R	
543	99	caa	tat	tgt	gag	aga	aga	agt	tgt	gaa	aga	gaa	tgc	tgc	cgg	gtc	tcc	cgt	aat	gagg	602
	K	W	L	N	P	R	*	SE	ÌΩ	D N	0:2	007									
603	aa	atg	gtt	aaa	tcc	acg	ctg	atc	ccg	gct	gtg	att	tct	gag	aga	agg	ctc	tat	ttt	cgtg	662
663	at	tgt	tca	aca	cac	ago	caa	cat	ttt	agg	aac	ttt	cta	gat	ata	gca	taa.	gta	cat	gtaa	722
723	tt	ttt	gaa	gat	cca	.aat	tgt	gat	gca	tgg	tgg	ato	cag	aaa	aca	aaa	agt	agg	ata	ctta	782
783	ca	ato	cat	aac	atc	cat	atg	act	gaa	cac	ttg	tat	.gtg	ttt	gtt	aaa	tat	tcg	aat	gcat	842
843	gt	aga	ttt	gtt	aaa	tgt	gtg	ıtgt	ata	gta	aca	ctg	aag	gaac	taa	aaa	tgc	aat	tta	.ggta	902
903	at	ctt	aca	ıtgg	gaga	cag	gto	aac	caa	aga	999	ago	tag	igca	aag	ctg	gaag	jacc	:gca	gtga	962
963	at	caa	att	aat	tet	ttc	ract	ttc	rato	tac	att	aat	att	ago	rata	itgg	jaat	gaa	gac	ttaa	1022

Figure 1 cont.

1.023	gagcaggagaagatggggaggggggggggggaaataaaatatttagcccttcctt	1082
1083	taggtagcttctctagaatttaattgtgctttttttttt	1142
1143	aaaataaaacaaccagaaaacccctgaaggaagtaagatgtttgaagcttatggaaattt	1202
1203	gagtaacaaacagctttgaactgagagcaatttcaaaaaggctgctgatgtagttcccggg	1262
1263	ttacctgtatctgaaggacggttctggggcataggaaacacatacacttccataaatagc	1322
1323	tttaacgtatgccacctcagagataaatctaagaagtattttacccactggtggtttgtg	1382
1383	tgtgtatgaaggtaaatatttatatattttataaataaa	1442
1443	tccctacccatatttatcatcctcttgaggaaagaaatctagtattatttgttgaaaatg	1502
1503	gttagaataaaaacctatgactctataaggttttcaaacatctgaggcatgataaattta	1562
1563	ttatccataattataggagtcactctggatttcaaaaaatgtcaaaaaatgagcaacaga	1622
1623	gggaccttatttaaacataagtgctgtgacttcggtgaattttcaatttaaggtatgaaa	1682
1683	ataagtttttaggaggtttgtaaaagaagaatcaattttcagcagaaaacatgtcaactt	1742
1743	taaaatataggtggaattaggagtatatttgaaagaatcttagcacaaacaggactgttg	1802
1803	tactagatgttcttaggaaatatctcagaagtattttatttgaagtgaagaacttattta	1862
1863	agaattatttcagtatttacctgtattttattcttgaagttggccaacagagttgtgaat	1922
1923	gtgtgtggaaggcctttgaatgtaaagctgcataagctgttaggttttgttttaaaagga	1982
1983	catgtttattattgttcaataaaaagaacaagatac SEQ ID NO:2008	2019

Figure 2

Relative Expression of ESM-1 in Colon Tumors

WO 2004/021978

PCT/US2003/025833

ETTI Rec'd PCT/PTC 1 8 FEB 2005

SEQUENCE LISTING

<110>	Pharmacia Corporation Weinstein, Edward J	
<120> EXPRES		
<130>	01189/1/PCT	
	60/404,495 2002-08-19	
<160>	2008	
<170>	PatentIn version 3.2	
<210>	1	
<21,1,>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1	
gctcgg	ctct ccagtcgtgg	20
<210>	2	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
	z gete tecagtegtg	20
ggeteg	gete teeagtegtg	20
	_	
<210>		
<211>		
<212>	artificial	
<213>	arcificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	3	
	toca gtogtggtot	20
	- 	
<210>	4	
<211>		
<212>	·	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> ctcggct	4 ctc cagtcgtggt	20
<210>	5	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	5	
gcctago	etec etetttggtt	20
<210>	6	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	6	
cggctc	gget etecagtegt	20
<210>	7	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	7	20
ggctct	ccag tcgtggtctt	20
<210>	8	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
gctttg	ccta gctccctctt	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> tcggctc	9 tcc agtcgtggtc	20
<210>	10	
<211>	20 _	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
.400-		
<400>		20
tgcctag	gete eetetttggt	20
<210>	11	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	11	
gctctcc	eagt cgtggtcttt	20
<210>	12	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	12	
agcttt	geet ageteeetet	20
<210>	13	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cagett	tgcc tagctccctc	20
<210>	14	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833

<400>		•
tcagct	ttgc ctagctccct	20
_		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	15	
accato	cttc agatacaggt	20
<210>	16	
<211>		
<212>		
	artificial	
.213/	altitual	
<220>		
<223>	human ESM-1 antisense	
<400>		00
gtttct	cccc gccctgcagc	20
		·
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	17	
ttgcct	aget ecetetttgg	20
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		·
<223>	human ESM-1 antisense	
<400>		
ccgtcc	ettca gatacaggta	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antigense	

	D.CIT. (100000 100000
WO 2004/021978	PCT/US2003/025833

<400> ctttgc	19 Ptag ctccctcttt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttcagct	20 tttg cctagctccc	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> agtttc	21 tecc cgccctgcag	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> caagtt	22 tete eeegeeetge	20
<220> <223>	human ESM-1 antisense	
<400> gcaagt	23 ttct ccccgccctg	20
<210><211><211><212><213>	20	
<220>	human ESM-1 antigense	

wo	2004/021978	PCT/US2003/025833
<400>	24	
agcaa	gttte teeegeeet	20
<210>	. 25	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	25	
	ctage teectettg	20
<210>	. 26	
<211>		
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	•	
<400>		
aagtt	tctcc ccgccctgca	20
<210>	27	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	27	
	gtggt ctttgctggt	20
5	5-550	20
.0	00	
<210><211>		
<211>	— -	
<213>		
		,
<220>		
<223>	human ESM-1 antisense	
<400>	28	
tagca	agttt ctccccgccc	20
<210>	29	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
~~~0>		

WO 2004/021978	PCT/US2003/025833

<400>	29	
ccagtcg	gtgg tetttgetgg	20
	•	
<210>	30	
<211>	20	
<212>		
<213>	artificial	
-200		
<220>	human TON 1 ambigance	
<223>	human ESM-1 antisense	
<400>	30	
	cegt ggtetttget	20
occoug.	, , , , , , , , , , , , , , , , , , , ,	
<210>	31	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	31	
ccggct	egge tetecagteg	20
-010:	20	
<210><211>	32	
<211>		
	artificial	
<b>&lt;213</b> >	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	32	
agtcgtg	ggtc tttgctggtg	20
<210>	33	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220>	human DOM 1 anti-range	
<223>	human ESM-1 antisense	
<400>	33	
	gage actgteetet	20
333	,-gg	
<210>	34	
<211>		
<212>	DNA	
	artificial	
<220>		
<2233×	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
<400> 34 tetecagteg tggtetttge	20
<210> 35 <211> 20	

<212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 35
gtagcaagtt tctccccgcc 20

<210> 36
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 36
cctccccatc ttctcctgct 20

<210> 37
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense
<400> 37

agtcgtcgag cactgtcctc 20

<210> 38
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense
<400> 38
quactificial

gcactgtcct cttgcagcgc 20

<210> 39 <211> 20 <212> DNA <213> artificial <220>

WO 20	004/021978	PCT/US2003/025833
<400>	39	
tccagt	cgtg gtctttgctg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	40	
gtcgag	cact gtcctcttgc	20
010		
<210> <211>		
<211>		
	artificial	
1-101		
<220>		
<223>	human ESM-1 antisense	
<400>	41	
tcgtcg	agca ctgtcctctt	20
<210>	42	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	42	
cctagct	tece tetttggttg	20
<210>	43	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	43	
	tcag atacaggtaa	20
<210>	44	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	44	
teegget	tegg etetecagte	20
<210>	45	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	45	
ctcccc	atct tctcctgctc	20
<210>	46	
<210>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
400	46	
	46 toga goactgtoot	20
cagceg		
<210> <211>		
<211>		
	artificial	
.220		
<220> <223>	human ESM-1 antisense	
1000		
<400>	47	20
creegg	ctcg gctctccagt	20
	40	
<210> <211>	48	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
.400.	49	
<400>	ggat cctccccatt	20
Journa	33	
<210>	49	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•

WO 2004/021978	PCT/US2003/025833
N CJ 2004/0213/0	1 C 1/ USZUUS/UZSUS.

<400> accaaaa	49 agga tootoocat	20
<210>	50	
<211>		
<212>		
	artificial	
<b>\Z</b> 137	altilitial	
<220>		
	human ESM-1 antisense	
<400>	50	
cactgte	cctc ttgcagcgcg	20
	51	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223)	naman bon i ancibono	
<400>	51	
	etct ttggttgacc	20
•		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
(223)	initial EDM-1 difficience	
<400>	52	
	gcac tgtcctcttg	20
<210>	53	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	Italian Don I and Done	
<400>	53	
tcccca	tett etectgetet	20
<210>		
<211>		
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<443>	Imment Poli-T engreense	

WO 20	004/021978	PCT/US2003/025833
<400>	54	
tttctcc	cccg ccctgcagcg	20
<210>	55	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	55	•
	gtet ttgetggtgg	20
<210>	56	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	56	
ggtagc	aagt ttctccccgc	20
<210>	57	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	57	
	cctt cagatacagg	20
_		
<210>	58	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	58	
ccctcc	ecat etteteetge	20
<210>	59	
<211>	20	
<212>		
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	59	
	gtcg agcactgtcc	20
_		
<210>	60	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	60	
	gcat tttcccgtcc	20
<210>	61	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	61	
	tgcc tcagatgttt	20
<210>	62	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
	62 atgc ctcagatgtt	20
cccacc	auge cecagatytt	20
<210> <211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
(223)	numan BBM-1 and Bense	
<400>		
ccccat	cttc tcctgctctt	20
<210>		
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> gcctcag	64 gatg tttgaaaacc	20
	65	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	65	20
tatcat	geet cagatgtttg .	20
<210>	66	
<211>	20	
<212>		
	artificial	
	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	66	
agcact	gtcc tcttgcagcg	20
J		
<210>	67	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	67	
		20
tteete	atta cgggagaccc	
<210>	68	
<211>		
<212>		
<213>	artificial	
<220>	The state of the same of the s	
<223>	human ESM-1 antisense	
<400>	68	
	cage tttgectage	20
555		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

	69 aaa atacttctta	20
-210-	70	
	20 .	
	DNA	
	artificial	
12207	W	
<220>		
<223>	human ESM-1 antisense	
<400>	70	20
cctccgg	rete ggeteteeag	20
<210>	71	
	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	71	20
gageaei	cgtc ctcttgcagc	
<210>	72	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Number FOW 1 ontigongo	
<223>	human ESM-1 antisense	
<400>	72	
	ttgg ttgacctgtc	20
000000		
<210>	73	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gtgggt	aaaa tacttcttag	20
<210>	74	
<211> <212>		
	artificial	
<2137	W4 V4 4 V 4 W #	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	74	
	gate etececatta	20
<210>	75	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	75	
ggcatt	ttcc cgtcccctg	20
<210>	76	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	76	
atttca	ggca ttttcccgtc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	77	20
caatat	tgcc atctccagat	20
.01.0	70	
<210> <211>	78 20	
<211>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	78	
ctagct	ccct ctttggttga	20
<210>	79	
<211>	20	
<212>	DNA	
<213>	artificial	

<220>

WO 20	04/021978	PCT/US2003/025833
<400>	79	
gctcatt	ttt tgacattttt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	80	
ttctcc	eege eetgeagege	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	81	
cccct	ccc atcttctcct	20
<210>	82	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	82	
	ttt ttgacatttt	20
- J		
<210>	83	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	83	
	aagg atcctccca	20
<210>	84 \	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
<400> 84	

ttgctca	attt tttgacattt	20
<210>	85	
<211>		
<212>		
	artificial	
<b>\Z13</b> /	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	85	
acaata	ttgc catctccaga	20
<210>	86	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	86	
gggtaa	aata cttcttagat	20
<210>	87	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	87	
	aaat acttcttaga	20
333	-	
<210>	88	
<211>		
<212>	·	
<213>		
<220>	) more of authorization	
<223>	human ESM-1 antisense	
<400>	88	
aggcat	tttc ccgtcccct	20
<210>	89	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
100> 89	
ragea atat aatattagaa	20

<400>	89	
cgagcad	etgt cetettgeag	20
<210>	90	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	90	~ ~
ggttact	tgaa tattggaaga	20
<210>	91	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	91	20
aaagtt	ccta aaatgttggc	20
010	00	
<210>	92	
<211>		
<212>		
<213>	artificial	
<220>		
	human EGM 1 antigongo	
<223>	human ESM-1 antisense	
<400>	92	
		20
eggtet	tcag ctttgcctag	-•
<210>	93	
<211>		
<211>		
	artificial	
<b>~</b> Z.1.3.2	ar ciriotar	
<220>		
<223>	human ESM-1 antisense	
<b><i><u>4437</u></i></b>	Iduati Por T and Posto	
<400>	93	
	ccc tccccatctt	20
cocac		

<210> 94 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400>	94	
cctcttt	ggt tgacctgtct	20
.010-	05	
<210> <211>	95	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	25	
<400>	95 ggga cagtetttge	20
gccgcas	agga cagucuugu	
	·	
<210>		
<211>		
<212>	artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	96	20
tttcct	catt acgggagacc	20
<210>	97	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	97	22
accccc	tece catettetee	20
•		
<210>	98	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220> <223>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	98	
ctctcc	agtc gtggtctttg	20
-210	0.0	
<210> <211>	99 20	
<211>		
<213>	artificial	
<220>		

WO 20	004/021978	PCT/US2003/025833
<400>	99	
	ccct gcagcgcaca	20
3	3 3 3	
<210>	100	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	. 100	
atgacti	tgca ctaacacatt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	101	
aatttc	aggc attttcccgt	20
<210>	102	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	102	
tetece	cgcc ctgcagcgca	20
<210>	103	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	103	
ttcagg	catt ttcccgtccc	20
<210>	104	
<211> "		
<212>	DNA	•
<213>	artificial	

<220>

<223> human ESM-1 antisense

17

WO 20	004/021978	PCT/US2003/025833
<400>	104	
ccagtg	ggta aaatacttct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	105	
gtcctt	caga tacaggtaac	20
<210>	106	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	106	
	aaaa ttgattcttc	20
	•	
<210>	107	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	107	
	eaat attgccatct	20
<210>	108	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	108	
	atg gattgtaagt	20
JJ===J=		
<210>	109	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 200	04/021978	PCT/US2003/025833
<400> 3	109 tca gctttgccta	20
<211> 2 <212> 1		
<220> <223>	human ESM-1 antisense	
	110 act aacacattta	20

<210> 111
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 111
tgacttgcac taacacattt 20

<210> 112 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 112

ccccagaacc gtccttcaga 20

<210> 113
<211> 20
<212> DNA
<213> artificial

<220>
<223> human ESM-1 antisense
<400> 113

<400> 113
ggtaaaatac ttcttagatt 20

<210> 114 <211> 20 <212> DNA <213> artificial <220>

WO 20	004/021978	PCT/US2003/025833
<400> actgtc	114 ctct tgcagcgcgg	20
<210><211><211><212><213>	20	i
<220> <223>	human ESM-1 antisense	
	115 tctc tgcaatccat	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> aagtto	116 octaa aatgttggot	20
<210><211><211><212><213>	20	· .
<220> <223>	human ESM-1 antisense	
<400> ggattg	117  taag tatcctactt	20
<210><211><211><212><213>	118 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> gttate	118 ggatt gtaagtatcc	20

<210> 119 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

***	DOTEMICA 0.02 (0.450.02)
VO 2004/021978	PCT/US2003/02583

<400> tgcggto	119 ettc agctttgcct	20
<210>	120	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	120	
ctgcggt	cett cagetttgee	20
<210>	121	
<211>		
<212>		
	artificial	
<213>	arciriciar	
<220>		
<223>	human ESM-1 antisense	
<400>	121	
cagtggg	gtaa aatacttctt	20
<210>	122	
<211>		
<212>		
	artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	122	~~
tcttcag	gett tgeetagete	20
<210>	123	
<211>	20	
<212>	DNA	
	artificial	
12237	~	
<220>		
<223>	human ESM-1 antisense	
<400>	123	
cctctgt	ttgc tcattttttg .	20
-210-	124	
<210>		
<212>		
<513>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	124	
	ctt tgctggtggg	20
-3-33	3 33 333	
<210>	125	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	125	
gcatttt	cac gtacactgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	126	
gaaagtt	cct aaaatgttgg	20
<210>	127	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	127	
gaaccgt	toot toagatacag	20
<210>	128	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		
ctcatti	tttt gacatttttt	20
<210>	129	
<211>	20	
<212>		
<213>	artificial	
<220>		

WO 2004/021978		PCT/US2003/025833
<400>	129	
gctgaa	aaatt gattettett	20
010	100	
<210>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
attcac	aact ctgttggcca	20
<210>	131	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	101	
	131 cgtc gagcactgtc	
cacage	egee gageactgte	20
<210>	132	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZJ/	numan ESM-1 ancisense	
<400>	132	
ttccta	tgcc ccagaaccgt	20
	•	20
<210>	133	
<211> <212>	20	
<212> <213>	DNA artificial	
(213)	arcificial	
<220>		
	human ESM-1 antisense	
<400>		
tgctgaa	aaat tgattettet	20
<b>-210</b> :	124	
<210> <211>	134	
<212>		
	artificial	
	<del></del>	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	134	
	gaaa attgattett	20
	-	
<210>	135	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	135	
ttctgc	tgaa aattgattct	20
<210>	136	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	136	
tggatt	gtaa gtatcctact	20
<210>	137	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	137	
	gttg acctgtctcc	20
	-	
<210>	138	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	138	
	cttt ggttgacctg	20
_	<b>-</b>	
<210>	139	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

	139	20
ccacccc	ecte cecatettet	20
<210>	140	
<211>	20	
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	140	20
tgcctca	agat gtttgaaaac	20
-		
<210>	141	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	141	0.0
ccctc	ccca tcttctcctg	20
<210>	142	
<211>		
<211>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	142	20
ctccca	cccc ctccccatct	2.0
<210>	143	
<211>		
<212>		
<213>		
<213>	altilitat	
000		
<220>		
<223>	human ESM-1 antisense	
<400>		20
ccctct	gttg ctcattttt	20
<210>	144	
<211>		
<211>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
<400> 144 cgtggtcttt gctggtggga	20
<210> 145	
<211> 20	
<212> DNA	

<213> artificial

<400> 145
gtaagtatcc tactttttgt 20

<210> 146 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 146
tatggatgtt atggattgta 20

<210 > 147 <211 > 20 <212 > DNA <213 > artificial <220 > <223 > human ESM-1 antisense

<400> 147
cacccctcc ccatcttctc 20

<210> 148 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 148
ccactcccac ccctcccca 20

<210> 149 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

## WO 2004/021978 PCT/US2003/025833

	149 ata caggtaaccc	20
<210>	150	
<211>	20	
<212>		
	artificial	
(21)		
<220>		
	human ESM-1 antisense	
<400>	150	
acagtco	etgt ttgtgctaag	20
<210>	151	
<211>		
<212>		
<213>	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
<2237	Italian Bor I and Bond	
<400>	151	
	cac agtcgtcgag	20
5		
<210>	152	
<211>	20	
<212>		
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	152	
	ggtt gacctgtctc	20
	9900 900009000	
<210>	153	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400-	152	
<400>		20
LUGULO	tttg gttgacctgt	
<210>	154	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	154	
	atgt ttgaaaacct	20
cccago	· ·	
<210>	155	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	155	
gctccct	ctt tggttgacct	20
_		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	156	
tcaccaa	aaag gatcctcccc	20
<210>	157	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
<400>	157	
	aata ttgccatctc	20
cccac		
<210>	158	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	158	
	tcat tacgggagac	20
<210>	159	
<211>	20	
<212>		
<213>	artificial	
<220>		

WO 20	004/021978	PCT/US2003/025833
<400>	159	
	agtt cctaaaatgt	20
	3	
<210>	160	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	160	
	act tcttagattt	20
	_	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	161	
	eatt ttttgacatt	20
9009000		
<210>	162	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	162	
tcgagca	actg tcctcttgca	20
	163	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atcctco	cca ttagaaggct	20
<210>	164	
<210>		
<211>		
	artificial	
	<del></del>	
<220>		

WO 20	004/021978	PCT/US2003/025833
	164 ctct ctgcaatcca	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tcaggc	165 attt teeegteeee	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tggatg	166 ttat ggattgtaag	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atggat	167 gtta tggattgtaa	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	human ESM-1 antisense	
<400> cccact	168 ceca eccetecee	20
<210><211><211><212><213>	DNA	

WO 20	04/021978	PCT/US2003/025833
<400>	169	
	gtt tgtgctaaga	20
	gg-gungu	
<210>	170	
<211>	20	
<212>		
	artificial	
.220		
<220>	Lucian TOV 1 and lucian	
<223>	human ESM-1 antisense	
<400>	170	
	ccc attagaaggc	20
<210>	171	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
,,		
<400>	171	
tgccgta	ggg acagtctttg	20
<210>	172	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
1220		
<400>	172	
atatgga	ltgt tatggattgt	20
<210>	173	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ <b>ZZZZ</b>	indinati bbit i diferbelibe	
<400>	173	
cggtage	aag tttctccccg	20
-		
<210>	174	
<211>		
<212>		
<413>	artificial	
<220>		

WO 20	004/021978	PCT/US2003/025833
.4005	174	
	ccc cattagaagg	20
ggaccc	ccc caccagaagg	
<210>	175	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	175	20
ctcacaa	tat tgccatctcc	20
<210>		
<211>		
<212>	artificial	
<b>&lt;213</b> >	arciirorar	
<220>		
<223>	human ESM-1 antisense	
<400>	176	
cccatct	tct cctgctctta	20
<210>	177	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	177	
teette	agat acaggtaacc	20
<210>	178	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		
tcctat	gece cagaacegte	20
<210>	179	
<211>		
<212>	DNA	
<213>	artificial	

179	
	20
400 400500000	
180	
20	
DNA	
artificial	
human ESM-1 antisense	
agt atcctacttt	20
artificial	
1 PON 1 ambigance	
numan ESM-1 antisense	
101	
	20
gta agracectae	
182	
WE 02220-W-	
human ESM-1 antisense	
182	
atgg attgtaagta	20
183	
20	
artificial	
homes DOM 1 ambiguage	
numan ESM-1 antisense	
102	
	20
acco accyaaycca	
184	
artificial	
	182 atgg attgtaagta  183 20 DNA artificial  human ESM-1 antisense  183 attc accgaagtca  184 20 DNA

WO 2004/021978

PCT/US2003/025833

WO 20	04/021978	PCT/US2003/025833
	184 aat attggaagaa	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> agaaagt	185 tcc taaaatgttg	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	186 attg taagtatoot	20
<210><211><212><213>	20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tagete	187 cete tttggttgae	20
<210> <211> <212> <213>	188 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> cccaga	188 accg teetteagat	20
<210><211><211><212><213>		

WO 2004/021978	PCT/US2003/025833

<400>	189	
	atgc cccagaaccg	20
<210>	190	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	190	
acttgca	acta acacatttat	20
<210>	191	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
(223)	Mullah BBM-1 ancibense	
<400>	191	
		20
ggteee	cctg ttgctcattt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	192	
gttggaa	agac ttggttactg	20
-		
<210>	193	
<211>	20	
<212>	DNA	
	artificial	
12207	4101111	
<220>		
	human ESM-1 antisense	
(223)	numan Bbi I uncipende	
<400>	103	
		20
attgta	agta tcctactttt	20
	194	
<211>		
<212>		
<213>	artificial	
<220>		
-223	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	194	•
tgttatg	gat tgtaagtatc	20
<210>	105	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	195	
	toca tatoccaaca	20
<210>		
<211> <212>		
-213×	artificial	
(213)	4101210-4-	
<220>		
<223>	human ESM-1 antisense	
400	100	
<400>	tget cattttttga	20
etetgt	tget cattetega	
<210>	197	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aggtcc	ctct gttgctcatt	
<210>	198	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	•
		•
<400>	198	20
ttcaco	gaag tcacagcact	20
<210>	199	
<211>		
<212>		
<213>	artificial	
<220>		

## WO 2004/021978 PCT/US2003/025833

<400>	199	20
cattcac	caac tetgttggce	20
<210>	200	
<211>	20	
<212>		
<213>	artificial	
.000-		
<220>	human FGM 1 anti-gange	
<223>	human ESM-1 antisense	
400	000	
<400>		20
gtatett	gtt ctttttatt	20
	201	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	201	
cttcago	ettt geetagetee	20
	202	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	202	
catgcct	ccag atgtttgaaa	20
<210>	203	
<211>	2'0	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tttctg	ctga aaattgattc	20
<210>	204	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400> atctagt	204 caca acagtcctgt	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> tagaaag	205 gttc ctaaaatgtt	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tctagaa	206 aagt teetaaaatg	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atctag	207 aaag ttcctaaaat	20
<210><211><211><212><213>	208 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ttgtaa	208 gtat cctacttttt	20

<210> 209
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

-WO 20	004/021978	PCT/US2003/025833
	209 tga cctgtctcca	20
010	01.0	
<210>		
<211><212>		
	artificial	
(213)	arciticiai	
<220>		
<223>	human ESM-1 antisense	
<400>	210	
	ccc cctccccatc	20
<210>	211	
<211>		
<212>		
	artificial	
•		
<220>		
<223>	human ESM-1 antisense	
<400>	211	
	aga tgtttgaaaa	20
<210>		
<211>		
<212>	artificial	
<213>	altilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	212	20
tcatge	tca gatgtttgaa	
<210>	213	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
72237		
<400>		
attgati	cctt cttttacaaa	20
<210>	214	
<211>		
<212>		
<213>		
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	214	20
agcagc	caca gtcgtcgagc	20
<210>	215	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	215	20
gaattt	cagg cattttcccg	
<210>	216	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	216 ctga atattggaag	20
cggcca	cega acaceggaag	
<210>		
<211> <212>		
	artificial	
	u101110141	
<220> <223>	human ESM-1 antisense	
<400>	217	
	ttgg aagacttggt	20
010	010	
<210> <211>	218 20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
attgcc	atct ccagatgcca	20
<210>	219	
<211>	20	
<212>		
<213>	artificial	

WO 20	004/021978			 	PC	T/I	JS20	003/	/025	583	3
<400> aatatt	219 gcca tctccagatg									20	)
<210> <211>											
<212>	DNA										
<213>	artificial										
<220>											
<223>	human ESM-1 antisense										
<400>											
tatata	acaa tattgccatc									20	)
<210> <211>											
<212>	DNA										
<213>	artificial										
<220>											
<223>	human ESM-1 antisense										
<400>											
tgtaag	tatc ctactttttg									20	)
<210> <211>											
<212>							'				
<213>	artificial										
<220>											
<223>	human ESM-1 antisense										
<400>										20	
tatgga	ttgt aagtatccta									20	,
<210>	223										
<211>	20										
<212>	DNA										
<213>	artificial										
<220>											
<223>	human ESM-1 antisense										
<400>											_
actgcg	gtet teagetttge									20	,
<210>	224										
<210> <211>											
<212>	DNA										
<213>	artificial										
<220>											
<223>	human ESM-1 antisense										

WO 20	004/021978	PCT/US2003/025833
<400>	224	
	cct cccatcttc	20
<210>	225	
<211>		
<212>		
	artificial	
-220		
<220>	human ESM-1 antisense	
\2237	indican BBM-1 and Bense	
<400>	225	
gatgaci	ttgc actaacacat	20
<210>	226	
<211>		
<212>		,
<213>	artificial	
.000.		
<220>	human ESM-1 antisense	
\2237	Italian Bor I and Believ	
<400>	226	
attttt	tgac attttttgaa	20
<210>	227	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	·	
tecetet	cgtt gctcattttt	20
<210>	228	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	228	
gcagcag	gcca cagtcgtcga	20
<210>	229	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	229	
aggtct	ctct gcaatccatc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	230	
atctgt	tgga agacttggtt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	231	
atgtta	tgga ttgtaagtat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	232	20
ctgaaa	attg attcttcttt	20
<210>	233	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	233	
	agtc ctgtttgtgc	20
<210>	234	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	234	
tgctcca	ggc ggccaccagg	20
<210>		
<211>		•
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cccgc	ctg cagcgcacac	20
<210>		
<211> <212>		
	artificial	
(213)	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cttggt	tact gaatattgga	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	237	20
ttgcca	tctc cagatgccat	20
	238	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	•
<400>	238	20
	gaaa gttcctaaaa	20
<210>	239	
<211>		
<212>		
<213>	artificial	
<220>		

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	239	
	239 aatt caccgaagtc	20
		20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	240	
	atta ttgctccagg	20
	3 33	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	241	
	gact tggttactga	20
35	5.00	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	242	
	atct agaaagttcc	20
-5		
<210>		
<211> <212>	DNA	
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	242	
	243 agtt cttcagtgtt	20
20000		20
<210>		
<211>		
<212>	DNA artificial	
~2137	arciticial	
<220>		
	human ESM-1 antisense	

WO 2004/021978	PCT/US2003/025833
VV O 2004/021378	1 € 17 € 52 00 57 02 50 55

<400>	244 lagt cacagcactt	20
ccaccya	tage cacageace	
<210>	245	
<211>		
<211>		
	artificial	
(213)	arctriciar	
<220>		
	human ESM-1 antisense	
(2237	Human Edw-1 aretsand	
<400>	245	
	tca ccgaagtcac	20
cyaaaai	cea ecgaageeae	
<210>	246	
<211>		
<212>		
	artificial	
(213)	altitital	
<220>		
	human ESM-1 antisense	
(443)	Indian Bay-1 and Sense	
<400>	246	
	cga aggtgccgta	20
LCCatc	aggegeegea	
<210>	247	
<211>		
<211>		
	artificial	
<213>	altilital	
<220>		
	human ESM-1 antisense	
<b>\223</b> /	Indian Est I dictodisc	
<400>	247	
	ggaa gacttggtta	20
cccgcc	gaa gacceggeea	
<210>	248	
<211>		
<212>	DNA	
<213>	artificial	
12107	,	
<220>		
	human ESM-1 antisense	
(225)	Trainer Libra 1 directions	
<400>	248	
	gtcc ttcagataca	20
agaace	geod ceeagacaca	
<210>	249	
	20	
<212>		
<213>		
~~137	WI 011101WI	
<220>		
<223>	human ESM-1 antisense	
<b>~~~~</b>	mandi man a difference	

WO 2004/0	21978	PCT/US2003/025833
<400> 249 aaaatacttc	ttagatttat	20

<210> 250 <211> 20 <212> DNA <213> artificial

<220> <223> human ESM-1 antisense

<400> 250 20 caccgaagtc acagcactta

<210> 251 <211> 20 <212> DNA <213> artificial <220>

<223> human ESM-1 antisense <400> 251 20

<210> 252 <211> 20

<212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 252 20 gttttctgct gaaaattgat

<210> 253 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

<400> 253 20 tgttttctgc tgaaaattga

<210> 254 <211> 20

<212> DNA <213> artificial <220>

<223> human ESM-1 antisense

ttgattcttc ttttacaaac

WO 20	004/021978	PCT/US2003/025833
<400>	254	•
aacagto	ectg tttgtgctaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	255	
agttcct	caaa atgttggctg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	256	
ttcagt	cata tggatgttat	20
<210>	257	•
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	257	
	257 ctta agtcttcatt	20
cctgct	agected agent agen	
<210>	258	
<211>		
<212>		
	artificial	
<220>	Name TOW 1 ambd same	
<223>	human ESM-1 antisense	
<400>		
gcccca	gaac cgtccttcag	20
<210>	259	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

## WO 2004/021978 PCT/US2003/025833

	259 ggt aaaatacttc	20
<210> <211>		
<211>		
	artificial	
(213)	attititat	
<220>		
	human ESM-1 antisense	
12207		
<400>	260	
	cctc agatgtttga	20
_		
<210>	261	
<211>		
<212>		
<213>	artificial	
<220>	luman ROM 1 ambigongo	
<223>	human ESM-1 antisense	
<400>	261	
	zote tgttgeteat	20
aaggco		
<210>	262	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	262	
	gtca cagtgttgag	20
accycc	9000 00905005	
<210>	263	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	luman EGM 1 ambigange	
<223>	human ESM-1 antisense	
<400>	263	
	tcgt cgagcactgt	20
<210>	264	
<211>		
<212>		
<213>	artificial	
000		
<220>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
	264 gccc tgcagcgcac	20
<210>	265	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gtgccgt	tagg gacagtettt	20
<210>	266	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tgcaggi	tctc tctgcaatcc	20
.010	268	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tgttgg	aaga cttggttact	20
	0.50	
<210>		
<211> <212>		
<213>		
<220> <223>	human ESM-1 antisense	
<400>		20
ctgttg	gaag acttggttac	20
<b>-210</b> -	260	
<210> <211>	269 20	
<211>		••
	artificial	

WO 2	004/021978	PCT/US2003/025833
<400>	269	
	tttt tagttcttca	20
<210>	270	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	270	
	cata tcccaacatt	20
<210>	271	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	271	
	ccat atcccaacat	20
<210>	272	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	272	
	ctaa cacatttatt	. 20
<210>	273	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	273	
	acaa cagtcctgtt	20
3.		_ •
<210>	274	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	274	
ttccaca	deac atteacaact	20
<210>	275	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ctgtcct	cett geagegeggg	20
.010	one	
<210> <211>		
<211>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	276	
aaaagga	atcc tccccattag	20
33	_	,
<210>	277	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	277	
	aaaa tgttggctgt	20
gccccc	adda egeeggeege	
<210>	278	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
(2237	Italian Bow-1 and Source	
	278	22
atccta	cttt ttgttttctg	20
-010:	270	
<210>	279	
<211>		
<212>	artificial	
<413>	ar Citional	
<220>		

WO 20	04/021978	PCT/US2003/025833
<400>	279	
	tat ggatgttatg	20
<210>	280	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	280	
	aga accgtccttc	20
<210>	281	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
12257	Italian ED. I allegond	
<400>		
taaaata	actt cttagattta	20
<210>	282	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	282	
gaaaatt	cac cgaagtcaca	20
<210>	283	
<211>		
<212>	DNA	
<213>	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
(2237	Indian BBM-1 ancibembe	
<400>	283	
gtacaa	cagt cctgtttgtg	20
<210>	284	
<211>		
<212>	DNA	
	artificial	
<220>		

## WO 2004/021978 PCT/US2003/025833

<400>	284	
gcataat	tat tgctccaggc	20
_		
<210>	285	
<211>	20	
<212>		
	artificial	
72102	4101210141	
<220>		
	human ESM-1 antisense	
(2237	Indian ESA-1 and Isomo	
.400:	225	
<400>	285	20
atccato	cccg aaggtgccgt	
<210>	286	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	286	
	gatg ttatggattg	20
J.		
<210>	287	
<211>		
<211>		
	artificial	
<213>	artificial	
<220>	have BOM 1 anti-congo	
<223>	human ESM-1 antisense	
<400>	287	20
atttcc	cact cccacccct	20
<210>	288	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	288	
taaggt	ccct ctgttgctca	20
- 555+		
<210>	289	
<211>		
<211>		
<413>	artificial	
00-		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	289	
	ataa acatgteett	20
		24
-010-		
<210> <211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	290	
	actg aatattggaa	20
999900	uoug uuouougguu	20
-010-	001	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	291	
	tcac aatattgcca	20
	•	
.210.	202	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	292	
atatct	agaa agttcctaaa	20
<210>	293	
<211>		
<212>	DNA	
<213>	artificial	
<220>	homen EGM 1 and annua	
<223>	human ESM-1 antisense	
<400>	293	
gcattt	ttag ttcttcagtg	20
<210>	294	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	294	
	cctg tctccatgta	20
<210>	295	,
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	295	
	295 cttg cactaacaca	20
3 3		20
<210><211>	296 20	
<212>		
	artificial	
<220> <223>	human ESM-1 antisense	
<b>\223</b> >	numan bom-1 ancibense	
<400>	296	
gggaaga	atga cttgcactaa	20
<210>	297	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
.400-	0.07	
<400>	zeat tttttgacat	20
cgccgc.		20
<210><211>	298	
<212>	DNA	
<213>	artificial	
<220>	human DOM 1 anti-name	
<223>	human ESM-1 antisense	
<400>	298	
tgaaaat	tga ttcttctttt	20
<210>	299	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	299	
	tcc tgtttgtgct	20
<210>		
<211> <212>		
	artificial	
~213/	arorrigan	
<220>		
<223>	human ESM-1 antisense	
400	1	
<400>	300 uctc tgttggccaa	20
LLCacac	tete tyttygeeaa	20
<210>	301	
<211>	•	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	301	
caataat	aaa catgtccttt	20
<210>	302	
<211>		
<212>		
<213>	artificial	
<220>	1 Post 4 and decomp	
<223>	human ESM-1 antisense	
<400>	302	
	agtc atatggatgt	20
•		
<210>		
<211> <212>		
	artificial	
10		
<220>		
<223>	human ESM-1 antisense	
<400>	303 gttc ttcagtgtta	20
LLLLLA	Jeeg coodycyco	20
<210>	· ·	
<211>		
<212>		
<213>	artificial	
<220>		

WO 20	004/021978	PCT/US2003/025833
	304 gct ttgcctagct	20
<210> <211> <212> <213>	20	
<220>	human ESM-1 antisense	
<400>	305 acc accectece	20
<210> <211> <212>	20 DNA	
<220>	artificial human ESM-1 antisense	
<400> ttttctc	306 gctg aaaattgatt	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atgttti	307 tctg ctgaaaattg	20
<210><211><212><212><213>	308 20 DNA artificial	•
<220> <223>	human ESM-1 antisense	
<400> ctagta	308 caac agtcctgttt	20
<210><211><211><212><213>		

WO 2	004/021978	PCT/US2003/025833
<400>	309	
	cttg gttactgaat	20
-		
-210-	210	
<210> <211>		
<212>		
	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>	310	20
tggaag	actt ggttactgaa	20
<210>	311	
<211>		
<212>	DNA	
<213>	artificial	
<220>	1 POW A continuous	
<223>	human ESM-1 antisense	
<400>	311	
	ccat ctccagatgc	20
	3 3	
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	312	
tggttg	acct gtctccatgt	20
<210>	313	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	717	
<400>	313 gtac aacagteetg	20
caccia	goad aacageceeg	20
<210>	314	
<211>	20	
<212>		•
<213>	artificial	
-222		
<220> <223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833	
<400>	314		
accgcat	aat tattgctcca	20	
<210>	315		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	315		
	aga aagtteetaa	20	
<210>	316		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	316		
gttttta	attc taaccatttt	20	
<210>	317		
<211>			
<212>			
	artificial		
<220>	·		
	human ESM-1 antisense		
12007	Indinate Date 1 discussion		
<400>	317		
aaattta	atca tgcctcagat	20	
<210>	318		
<211>			
<212>	DNA		
<213>	artificial	•	
<220>	human ECM.1 antigongo		
<223>	human ESM-1 antisense		
<400>	318		
tttttt	gaca tttttgaaa	20	
<210>	319		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	319	
	gttt gtgctaagat	20
<210>	320	
<211>		
<212>		
	artificial	
72107	4152115141	
<220>		
<223>	human ESM-1 antisense	
<400>	320	
ttgctc	cagg cggccaccag	20
<210>	321	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	321	
attgct	ccag gcggccacca	20
<210>	322	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	200	
	322	20
aaagga	tcct ccccattaga	20
<210>	323	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	homes FOV 1 and learne	
<223>	human ESM-1 antisense	
<400>	323	
	caca atattgccat	20
<210>	324	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	· <del></del>	

WO 20	04/021978	PCT/US2003/025833
<400>	324 ctc ctgctcttaa	20
<210>	325	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	325	
atactto	etta gatttatete	20
<210>		
<211>		
<212>	artificial	
(213)	altilitiai	
<220>		
<223>	human ESM-1 antisense	
<400>	326	
accacca	agtg ggtaaaatac	20
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	327	
ctccag	gegg ccaccaggtg	20
		·
<210>	328	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	328	
	gtc acagtgttga	20
-	· · · · · · · · · · · · · · · · · · ·	
<210>	329	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	329	
ggtctc	cctg caatccatcc	20
<210>		
<211>		
<212>	artificial	
(213)	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
Clatati	ctag aaagtteeta	20
<210>	331	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
catttt	agt tetteagtgt	20
<210>	332	
<211>		
<212>		
	artificial	
<220>	human EGW 1 ambi-amag	
<223>	human ESM-1 antisense	
<400>	332	
	ttc cataagcttc	20
	•	
<210>		
<211> <212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
400.	222	
<400>	cag aaccgtcctt	20
Lacyco	acceptable	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	334	
gtttc	tatg ccccagaacc	20
<210>		
<211>	·	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	335	
atttat	catg cctcagatgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	336	
gctcca	ggcg gccaccaggt	20
<210>	337	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	337	
	agcc acagtcgtcg	20
		20
<210>	338	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	338	
	ttt cccgtcccc	20
	-	
<210>	339	
211>	20	
:212>		
213>	artificial	
:220>		
2235	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	339	
gttcag	cat atggatgtta	20
<210>	340	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	340	
caagtg	tca gtcatatgga	. 20
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	341	
cattcc	atat cccaacatta	20
<210>	2.4.2	•
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237		
	342	
ggtagg	gaag atgacttgca	20
<210>	343	
<211>		
<212>	DNA	
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
12207		
<400>		
taaatt	catc atgcctcaga	20
<210>	344	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<220> <223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	344	
	acatt ttttgaaatc	20
<210>	345	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	345	
aataat	aaac atgtcctttt	20
<210>	346	
<211>		
<212>		
	artificial	
	,	
<220>		,
<223>	human ESM-1 antisense	
<400>	346	
aggatc	ctcc ccattagaag	20
<210>	347	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	harries was a sould	
<223>	human ESM-1 antisense	
<400>	347	
	ccat gcatcacaat	20
-		
<210>	348	
<211>	20	•
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	348	
gtcata	tgga tgttatggat	20
<210>	340	
<210><211>	349 20	
<212>	DNA	
<213>	artificial	
<220>		
-2235	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	349	
	ggtc ttcagctttg	20
<210>	350	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	350	
actcaa	attt ccataagctt	20
<210>	351	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12257	name por 1 and beine	
<400>	351	
cctatg	cccc agaaccgtcc	20
<210>	352	
<211>		
<212>	DNA	
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
12207	Manuar Bow I and Iberibe	
<400>	352	
agggaag	gatg acttgcacta	20
<210>	353	
<211>	20	
<212>	DNA	
<213>	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
2237	numan ESM-1 antisense	
<400>	353	
acaata	ata aacatgtcct	20
<210>	354	
<211>	20	
	DNA	
	artificial	
<220>	human BCM_1 antigongo	
// 13	TURBER MEM-1 SEELOOPOO	

WO 2	004/021978	PCT/US2003/025833
<400>	354	
	tgca tcacaatttg	20
	<b>5</b>	20
<210>	355	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	355	
agtatc	ctac tttttgtttt	20
<210>	356	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	356	
ttccata	atcc caacattaat	20
<210>	357	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	357	
attccat	atc ccaacattaa	20
<210>	358	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	358	
ttttgad	ttt tcccaaagcc	20
<210>	359	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	359	
ctatgo	ccca gaaccgtcct	20
<210>		
<211>		
<212>	artificial	
12207	az ozzzozaz	
<220>		
<223>	human ESM-1 antisense	
<400>	360	
tttttg	acat tttttgaaat	20
<210>	361	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	361	
	ttga cattttttga	20
		20
<210>	362	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
.400	260	
<400>	362 tttg tgctaagatt	20
50005	oods tscaagace	20
-010-	262	
<210>	363 20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	363 aaca tgtcctttta	
ucuaca	auca egececeta	20
010		
<210> <211>	364 20	
<212>		
<213>		
-220·		
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02583
<400>	364	
	ctttg ctggtgggaa	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2237	numan ESM-1 and Isense	
<400>	365	
ttcaco	aaaa ggateeteee	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2257	ndman ESM-1 ancisense	
<400>	366	
	ttac tgaatattgg	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	Manage Bon I discipline	
<400>	367	
tcacaa	tatt gccatctcca	20
<210>		
<211><212>	20	
<213>	DNA artificial	
(213)	arcificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	368	
ttacgg	gaga cccggcagca	20
.010	2.50	
<210>	369	
<211>		
<212> <213>		
<b>~</b> 213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo a	2004/021978	PCT/US2003/02583
<400>	369 Ettag atttatetet	20
		20
<210>	370	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	370	
	gttt gaaaacctta	20
<210>	371	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	371	·
gattct	tctt ttacaaacct	20
<210>	372	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	372	
	ttct tttacaaacc	20
<210>	373	
<211>	2.0	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	373	
ccatcco	gaa ggtgccgtag	20
	374	
<211>	20	
	DNA	
<213>	artificial	
<220>		
-222	human FCM-1 antigence	

WO 2	004/021978	PCT/US2003/025833
<400>	374	
	ctca ttacgggaga	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
acaagt	gttc agtcatatgg	20
<210>	376	
<211>		
<212>	DNA	
<213>	artificial	
<220>	Towns Town of the Control of the Con	
<223>	human ESM-1 antisense	
<400>	376	
	ttt agttetteag	20
<b>J</b>		20
	377	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	377	
ggaagat	gac ttgcactaac	20
<210>	378	
	20	
<212>		
	artificial	
		•
<220>		
:223>	human ESM-1 antisense	
. 4 0 0	-	
	378	
.cattt	ttg acattttttg	20
:210>	379	
	20	
:212>		
:213>	artificial	
:220>		
	human RCM-1 anticence	

WO 2	004/021978	PCT/US2003/025833
<400>	379	·
acatto	acaa ctctgttggc	20
<210>	380	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	200	
<400>	taat aaacatgtcc	
gaacaa	seace addedgege	20
<210>	381	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	381	
gtatcc	tact ttttgttttc	20
<210>	382	
<211>		
<212>		
<213>	artificial	
<220>	Name	
<223>	human ESM-1 antisense	
<400>	382	
	tcct actttttgtt	20
_	<b>3</b>	20
<210>	383	
<211> <212>	20	
	artificial	
	~	
<220>		
<223>	human ESM-1 antisense	
	383	
agugutt	eagt catatggatg	20
<210>	384	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	384	
tcctg	etctt aagtottoat	20
-010-	205	
<210><211>		
<211>		
	artificial	
10-07	41414141	
<220>		
<223>	human ESM-1 antisense	
<400>		
tatttc	ccac teccaeeece	20
<210>	306	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	386	
ggggtt	ttct ggttgtttta	20
<210>	387	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	387	
tactca	aatt tccataagct	20
<210>	388	
<211>	20	
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
.400	200	
<400>	388	
ayaacc	gtc cttcagatac	20
<210>	389	
	20	
	DNA	
:213>	artificial	
:220>		
・ソワコ〜	human PCM-1 antigones	

wo:	2004/021978	PCT/US2003/025833
<400> ttttt	389 attct aaccattttc	20
<210>	390	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
·<400>		
caacag	steet gtttgtgeta	20
•		
<210>	391	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	391	
ccctgc	agcg cacactcggc	20
<210>	392	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
aaggat	cctc cccattagaa	20
<210>		
<211>		
<212>	artificial	
<b>\Z13</b> /	arciriciai	
<220>		
<223>	human ESM-1 antisense	
<400>	393	
	tctc tcagaaatca	20
- <del>-</del>	_	20
<210>	394	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	<del></del>	

wo	2004/021978	PCT/US2003/025833
<400>		
cacat	acaag tgttcagtca	20
		_ •
<210>	305	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	205	
	cagt gttactatac	
90000	seage gecaceaeae	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	396	
ttttag	ttct tcagtgttac	20
<210>	207	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	207	
	ccca acattaatgt	
		20
<210>	398	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	398	
ctgctc	ttaa gtcttcattc	20
<210>	399	
<211>	20	
<212>	DNA	
<213>	artificial	
	•	
<220>	human Tay a	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	399 aatt gctctcagtt	20
	gget	20
.010	400	
<210><211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		
acaaal	ttat catgcctcag	20
-010:	401	
<210> <211>		
<212>		
	artificial	
·		
<220>		
<223>	human ESM-1 antisense	
<400>	401	
gaaaat	gat tottottta	20
<210>	402	
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
12207		
	402	
cacatt	caca actctgttgg	20
<210>	403	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	403	
.cactgo	tgt cacagtgttg	20
.010	404	
(210> (211>	404 20	
	DNA	
	artificial	
220>	human ESM-1 anticence	
~/.15	HUMAN KSM-1 ANTICANCA	

wo:	2004/021978	PCT/US2003/025833
<400>	404	
	atcta gaaagttcct	20
_		20
<210>	405	
<211>		
<212>	DNA artificial	
<b>&lt;213</b> >	artificial	
<220>		
	human ESM-1 antisense	
<400>	405	
aagtgt	tcag tcatatggat	20
<210>		
<211> <212>		
	artificial	
12137	altilitial	
<220>		
	human ESM-1 antisense	
	406	
tttagt	tctt cagtgttact	20
-210-	407	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	407	
cccaac	atta atgtacatca	20
<210>	408	
<211>	20	
<212>	DNA	
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
.400		
<400>	408	
Juliaac	att aatgtacatc	20
<210>	409	
	20	
	DNA	
213>	artificial	
:220>		
・ノフィー	human PCM-1 antigonge	

wo	2004/021978	PCT/US2003/025833
<400>	409	
gtttt	atttt gacttttccc	20
<210>	410	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	410	
	ttct tagatttatc	
		20
.010-	411	•
<210> <211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
<b>\223</b> /	ndman ESM-1 antisense	
<400>	411	
ccacca	gtgg gtaaaatact	20
<210>	•	
<211>		
<212>	DNA artificial	
(213)	arciriciai	
<220>		
<223>	human ESM-1 antisense	
<400>	412	
	cagt gggtaaaata	0.0
	3 333	20
-010	44.0	
<210>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	The state of the s	
<400>	413	
gagtca	cagg tttttattct	20
	414	
<211>	20	
<212> <213>		
~~13>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02583
<400>	414	
agatg	tttga aaaccttata '	20
	•	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	44.5	
<400>		
grecei	tetgt tgeteatttt	20
<210>	416	
<211>		
<212>		
	artificial	
10207	wa waaauaga	
<220>		
	human ESM-1 antisense	
<400>	416	
aattga	aaat tcaccgaagt	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	417	
	agta caacagteet	
acaccc	agta caacageeee	20
<210>	418	
<211>	20	
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	418	
tattgc	tcca ggcggccacc	20
	419	
<211>		
<212>		
<213>	artificial	
-000		
<220>	homes more a surely many	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	419	
ctgaca	cctc agccccgggc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	420	
cacaat	attg ccatctccag	20
-010-	401	
<210><211>		
<211>		
	artificial	
~213/	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atgcta	tatc tagaaagttc	20
<210>	422	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aagtat	cta cttttgttt	20
<210>	423	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	400	
	423	
agctett	cag tgttactata	20
<210>	424	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220>	human ESM-1 antisense	
E // / .3 3	100000	

WO 2	004/021978	PC1/US2003/02583
<400>	424	
tagtto	ttca gtgttactat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	I all the second	
<400>	425	
tccata	tccc aacattaatg	20
	-	
<210>		
<211>		
<212>		
<213>	artificial	
<220>	·	
	human ESM-1 antisense	
12207	Tamaii Bbii I diicibelibe	
<400>	426	
cactcc	cacc ccctccccat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12257	namen BBM-1 dicisense	
<400>	427	
	ctg gttgttttat	20
	428	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	428	
tgaaatt	gct ctcagttcaa	20
0.1.5		
	429	
<211>	20	
<212> <213>	DNA artificial	
~~13>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	429	
tcttaa	ataa gttcttcact	20
<210>	430	
<211>		
<212>		
<213>	artificial	
<220>	Name of the state	
<223>	human ESM-1 antisense	
<400>	430	
	tcac agtgttgagg	20
	404	
<210> <211>		
<212>		
	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	431	
_	gtag ggacagtett	20
	400	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	432	
	ggtt actgaatatt	20
-01.0	422	
<210> <211>	433 20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	433	
	etct cagaaatcac	20
=		_ <b>~</b>
-010:	424	
<210> <211>		
<211>		
	artificial	
<220>	1	
<b>~2233</b> ~	human ESM-1 antisense	

	434 acc tgtctccatg	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	435	20
tttgtta	actc aaatttccat	
<210>	436	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	436	20
gaagat	gact tgcactaaca	
<210>	437	
<211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	437	20
aattta	tcat gcctcagatg	20
	420	
<210> <211>	438 20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	438	20
tccaca	acaca ttcacaactc	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	numan Bort and Borto	

<400> gtctctc	439 etgc aatccatccc	20
<210>	440	
	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and ESCASO	
<400>	440	20
ttactg	aata ttggaagaag	
	,	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	441	20
attaco	ggag acccggcagc	
<210>	442	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 and better	
<400>		20
tcata	tggat gttatggatt	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400>	443	00
tttac	sttgac ctgtctccat	20
00035	,u	
-210	· 444	
<211:		
	> DNA	
<213	artificial	
<220		
<223	· · · · · · · · · · · · · · · · · · ·	
~ ~ ~ ~ ~		

<400> tttgaaa	444 ttg ctctcagttc	20
<210> <211>	445	
<211> <212>		
<212>	artificial	
<213>	altiticiai	
<220>		
-2235	human ESM-1 antisense	
(223)	Mariana mary mariant	
<400>	445	20
ataggg	aga tgacttgcac	20
5 555		
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<220>	human ESM-1 antisense	
<b>44437</b>	Italian 25. C disease and a second se	
<400>	446	20
ttttat	tcta accattttca	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	447	20
ataggt	tttt attctaacca	
<210>	448	
<211>	20	
<212>	DNA -	
<213>	artificial	
<b>1</b>		
<220>		
<223>	human ESM-1 antisense	
<400>		20
gctga	cacct cagccccggg	
<210>	449	
<211>		
<212>	DNA	
<213>	artificial	
<220>	· ·	
<223>	inman pari-1 anciacuse	

<400> agttgca	449 lggt ctctctgcaa	20
<210>	450	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	450	20
catttt	cccg tccccctgtc	20
<210>	451	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	451	20
gaagad	ttgg ttactgaata	20
<210>	452	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	452	20
tgcca	tctcc agatgccatg	20
<210>	453	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	453	20
tcttc	tctca caatattgcc	
<210:	<b>454</b>	
<211:	s 20 .	
<212	DNA	
<213	artificial	
<220	>	
<223		

WO 2004/021978	PCT/US2003/025833

	454 ggt cttcagcttt	20
<210><211><212><212><213>	20	
<220>	human ESM-1 antisense	
<400> ttgaaa	455 ttgc tctcagttca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cttcag	456 ratac aggtaacccg	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
<400> tgccc	457 cagaa ccgtccttca	20
<210><211><211><212><213>	20	
<220> <223>		
<400> cacca	458 gtggg taaaatactt	20
<211> <212> <213>	DNA artificial	
<220: <223:		

	459 cag tgggtaaaat			20
<211><212>	460 20 DNA artificial			
<220> <223>				
<400> accgaa	460 gtca cagcacttat			20
<210><211><211><212><213>	20			
<220> <223>	human ESM-1 antisense	•		
<400> agtaca	461 Lacag teetgtttgt			20
<210><211><212><213>	20			
<220> <223>	human ESM-1 antisense			
<400> tccag	462 gegge caceaggtgt			20
<210> <211> <212> <213>	20			
<220> <223>	human ESM-1 antisense			
<400> gcact	. 463 cactg ctgtcacagt			20
<211: <212: <213:	20 DNA artificial		·	
<220:	> > human ESM-1 antisense			

<400> 464 tgtcctcttg cago	legeggge	20
<210> 465		
<211> 20		
<212> DNA		
<213> artific	ial	
<220>		
<223> human E	ESM-1 antisense	
<400> 465		20
gcggtagcaa gtt	Etetecec	
<210> 466		
<211> 20		
<212> DNA		
<213> artific	cial	
<220>	Tall 1 - This comes	
<223> human E	ESM-1 antisense	
<400> 466		. 20
catacaagtg tto	cagtcata	
<210> 467		
<210> 467 <211> 20		
<211> 20 <212> DNA		
<213> artific	icial	
<220>	ESM-1 antisense	
<223> human l	F2M-1 difference	
<400> 467		20
acatacaagt gt	ttcagtcat	
<210> 468		
<211> 20		
<211> 20 <212> DNA		<i>(</i>
<213> artifi	icial	•
<220> <223> human	ESM-1 antisense	
<400> 468	natataaaat	20
gacctgtctc ca	acycaayac	
<210> 469		
<211> 20		
<212> DNA		
<213> artif:	ficial	
<220>		
<223> human	n ESM-1 antisense	

	469 tct ccatgtaaga	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	1 TOW 1 ontigons	
<223>	human ESM-1 antisense	
<400>		20
ctcctg	etct taagtettea	
<210>	471	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	471	20
ttttat	tttg acttttccca	20
<210>	472	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gttcaa	agct gtttgttact	
<210>	473	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
taggt	tttta ttctaaccat	20
010	474	
<210>		
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	

	474 cat tcacaactct	20
<210>	475	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	475	20
caccgca	taa ttattgctcc	
<210>	476	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gccaca	gtcg tcgagcactg	
<210>	477	
<211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	477	20
gtcttt	gcag ataccaaact	
<210>	478	
<210>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	478	20
gttgc	aggtc tctctgcaat	20
	470	
<210>		
<211>	ZU DNA	
<212>	DNA artificial	
<220>		
<223>	human ESM-1 antisense	

	479 ttg gaagacttgg	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and Sense	
	480	20
ggtttt	etgg ttgttttatt	
<210>	481	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttgcac	taac acatttattt	
<210>	482	
<211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	482	20
taggg	aagat gacttgcact	
010.		
<210> <211>		
<211>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	483	20
ctcag	atgtt tgaaaacctt	
	404	
	5 484 20	
<211:	DNA	
<213	artificial	
<220:	>	
<223		

<400> 484 cctgcagcgc acac	etcggca	20
<210> 485 <211> 20 <212> DNA <213> artifici	ial	
<220> <223> human ES	SM-1 antisense	
<400> 485 cccgccctgc agcg	gcacact	20
<210> 486 <211> 20 <212> DNA <213> artific:	rial	
<220> <223> human E	ESM-1 antisense	
<400> 486 cccggcagca ttc	tctttca	20
<210> 487 <211> 20 <212> DNA <213> artific	cial	
<220> <223> human E	ESM-1 antisense	
<400> 487 tacgggagac ccg	ggcagcat	20
<210> 488 <211> 20 <212> DNA <213> artific	cial	
<220> <223> human 1	ESM-1 antisense	
<400> 488 aattgcattt tt	agttette	20
<210> 489 <211> 20 <212> DNA <213> artifi		
<223> human	ESM-1 antisense	

<400> ttcccac	489 tcc cacccctcc	20
<211> <212>		
<220>	human ESM-1 antisense	
<223>	Human Est-1 and 15 and	
<400> tcaaag	490 etgt ttgttactca	20
<210>		
<211>		
<212>	artificial	
<213>	dicilicial	
<220>	1 RCM 1 ontigence	
<223>	human ESM-1 antisense	
<400>		20
aacctt	atag agtcataggt	
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	492	20
	gctca ttttttgaca	20
<210>	493	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>		
-400>	493	
ccato	cctga gactgtgcgg	20
-210	. 494	
<2113		
<212:	DNA	
<213	artificial	
-000		
<220: <223:		

<400> 494 cctcccatt agaaggctga	20
<210> 495	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 495	20
tattgccatc tccagatgcc	
405	
<210> 496	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 496	20
tatgctatat ctagaaagtt	
<210> 497	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 497	20
ttatgctata tctagaaagt	
<210> 498	
<211> 20 <212> DNA	
<213> artificial	
<2139 diciricual	
<220>	
<223> human ESM-1 antisense	
<400> 498	20
tatcctactt tttgttttct	
<210> 499	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	

	499	20
cagtcat	atg gatgttatgg	20
	500	
<211>		
<212>		
<213>	artificial	
<220>	Name of the second	
<223>	human ESM-1 antisense	
100	500	
	500	20
tgcatt	tta gttcttcagt	20
	501	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cactaa	caca tttatttata	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400> 502 cagatottta assacottat 20		
cagatgtttg aaaaccttat 20		
<210>		
<211>		
<212>		
<213>	artificial	
<220>	1 Total authorized	
<223>	human ESM-1 antisense	
400	<b>FAD</b>	
<400>		20
tttgacattt tttgaaatcc 20		
.0	504	
<210>		
<211>		
<212>		
<213>	artificial	
<220>	1 Tour a cut di gongo	
<2223>	human ESM-1 antisense	

<400>	504	
	cac aactctgttg	20
acacaci	account of the contract of the	
<210>	EOF	
<210 <i>&gt;</i>		
<212>		
<213>	artificial	
.000		
<220>	· · · · · · · · · · · · · · · · · · ·	
<223>	human ESM-1 antisense	
<400>	505	20
attatt	gete caggeggeea	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	506	~ ~
cttcac	caaa aggatcctcc	20
	•	
<210>	507	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	507	
acaaat	stgt tggaagactt	20
<210>	508	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	508	
gccttc	tctc agaaatcaca	20
-		
<210>	509	
<211>	20	
<212>	DNA	
	artificial	
<220>		

WO 2004/021978

PCT/US2003/025833

<400>	509	
ttattac	tca aatttccata	20
<210>	510	
<211>		
<211>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	510	
gtttgtt	act caaatttcca	20
_		
<210>	511	
<211>		
<212>		
	artificial	
<213>	artirigiar	
<220>		
<223>	human ESM-1 antisense	
<400>	511	
aatactt	cett agatttatet	20
<210>	512	
<211>	20	
<212>		
	artificial	
7222	410110141	
<220>		
	human ESM-1 antisense	
<b>&lt;223</b> 7	numan ABM-1 ancibense	
	510	
<400>	512	20
aattca	ccga agtcacagca	20
<210>	513	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
(220)		
<400>	513	
		20
LLULLa	aata agttcttcac	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	514	
cacacat	tca caactctgtt	20
<210>	515	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	515	
tccatgo	ectg agactgtgcg	20
<210>	516	
<211>		
<212>		
_	artificial	
<220>	human DCM 1 antigongo	
<223>	human ESM-1 antisense	
	516	0.0
tcctccc	cat tagaaggctg	20
<210>	517	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	517	20
ggaatti	cag gcattttccc	20
<210>	518	
<211>	20	
<212>	DNA	
<213>	artificial ,	
<220>		
<223>	human ESM-1 antisense	
<400>	518	
	eggt tactgaatat	20
. 3		
<210>	519	
<211>	20	
<212>	DNA	
<213>	artificial	

<220>

<400> ccattto	519 cctc attacgggag	20
<210>	E20	
<211>		
<212>		
	artificial	
72137	410444444	
<220>		
	human ESM-1 antisense	
<400>	520	
gttgaco	etgt ctccatgtaa	20
	521	
<211>		
<212>		
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
<443>	numan ESM-I ancisense	
<400>	521	
	cag tetteattee	20
050000		
<210>	522	
<211>	20	
<212>		
<213>	artificial	
<220>	human TICM 1 ambigange	
<223>	human ESM-1 antisense	
<400>	522	
	atca gcagcctttt	20
aaccac		
<210>	523	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	E02	
<400>		20
cayacat	cagg taacccggga	20
<210>	524	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
-222	human ECM 1 antigence	

wo	2004/021978	PCT/US2003/02583
<400>	524	
tcagat	acag gtaacccggg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	525	
	ttat tctaaccatt	20
<210>	526	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<2237	numan ESM-1 ancisense	
<400>	526	
cttata	gagt cataggtttt	20
<210>	527	
<211>		
<212>	DNA	
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
12007	· ·	
<400>	527	
aataag	sttct tcacttcaaa	20
<210>	528	
<211>		
<212>	DNA	
<213>	artificial	•
-220-		
<220>	human ESM-1 antisense	
10007		
<400>	528	
caaato	tgtt ggaagacttg	20
<210>	529	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

PCT/US2003/025833

WO 2004/021978		PCT/US2003/025833
00>	529	

	500	
<400>		
cttatg	ctat atctagaaag	20
<210>	530	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
\2257	naman Bb/ 1 and Bellet	
<400>	530	
ggtttt	tatt ctaaccattt	20
<210>	531	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2257	Indiana Esta I directioned	
	504	
<400>		~ ~
aataaa	ttta tcatgcctca	20
<210>	532	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	532	
	ttta caaacctcct	20
tettet	ttta daaaddteet	20
	·	
<210>	533	
<211>	20	
<212>	DNA	
	artificial	
~217/		
000		
<220>		
<223>	human ESM-1 antisense	
<400>	533	
		20

ttcttctttt acaaacctcc

<210> 534
<211> 20
<212> DNA
<213> artificial

<220> <223> human ESM-1 antisense

<400>	534	
	aat aagttettea	20
	and any source	
	•	
<210>	535	
<211>		
<212>		
	artificial	
72107	4101110141	
<220>		
	human ESM-1 antisense	
12207		
<400>	535	
	gca gcgcacactc	20
cegeeee		
	÷	
<210>	536	
<211>		
<212>		
	artificial	
\Z13/	altilitat	
<220>		
	human ESM-1 antisense	
(443)	Indian Esta-1 dictionse	
<400>	536	
	eagg tetetetgea	20
cagicge	agg teretegea	
<210>	537	
<211>		
<211>		
	artificial	
~213/	arctificial	
<220>		
	human ESM-1 antisense	
12237	Tuliar 2011 Care Series	
<400>	537	
		20
cccacae		
<210>	538	
<211>	20	
<212>	DNA	
	artificial	
(213)	alciliciai ,	
<220>		
<223>	human ESM-1 antisense	
<b>42237</b>	itulian ESM-1 ancisense	
<400>	538	
	gcat cacaatttgg	20
cuccat	jour cacaaccagg	_,
<210>	539	
<211>	20	
<212>		
	artificial	
	~* ^******	
<220>		

PCT/US2003/025833

WO 2004/021978

<223> human ESM-1 antisense

C

wo	2004/021978	PCT/US2003/025833
	539 catgc atcacaattt	
		20
	540	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	540	
tgttc	agtca tatggatgtt	20
		20
<210>	541	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	541	
tacaag	stgtt cagtcatatg	20
	-	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	- ·· <del>-</del>	
atacaa	gtgt tcagtcatat	20
<210>		
<211>	20	
<212> <213>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	543	
agtctt	catt ccatatccca	20
		20
<210>	544	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	544	
	ccc aaagccaaaa	20
gacccc	coo uuugooguuu	
<210>	545	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	E45	
<400>		20
tcaaati	ttcc ataagcttca	20
<210>	546	
<211>		
<212>		
	artificial	
	<del></del>	
<220>		
<223>	human ESM-1 antisense	
	546	
caaagct	gtt tgttactcaa	20
<210>		
<211> <212>		
	artificial	
(213)	alcilicial	
<220>		
	human ESM-1 antisense	
<400>	547	
aaaatto	cacc gaagtcacag	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
~223/		
<400>	548	
	caag acgctcttca	20
- J		
<210>	549	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2004/021978

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	549	
caggcgg	cca ccaggtgtgc	20
<210>	550	
<211>		
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<b>\223</b> /	Indical Box 2 delegation	
<400>	550	20
aatccat	ccc gaaggtgccg	20
<210>	551	
	20	
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<223>	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
<400>	551	
tcatta	eggg agacccggca	. 20
<210>	552	
<211>		
<212>	DNA	
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
(223)	Indiana Edward and Edward	
	552	20
gttttc	tgga tccaccatgc	20
<210>	553	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
(2237	Tundi 25. 2 days a second	
<400>	553	22
ttgacc	tgtc tccatgtaag	20
<210>	554	
<211>		
<212>	DNA	
<213>		
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	554 ttga cttttcccaa	20
	0034 000000044	20
<210>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	555	
aggggt	tttc tggttgtttt	20
<210>		
<211><212>		
	artificial	
.000		
<220>	human ESM-1 antisense	
10.00		
	556	
ttcaaa	gctg tttgttactc	20
<210>		
<211> <212>		
	artificial	
000		
<220> <223>	human ESM-1 antisense	
10007	Indian Lor I and to choose	
<400>		
ccagaa	ccgt ccttcagata	20
	558	
<211><212>	20 DNA	
<213>	artificial	
	·	
<220> <223>	human ESM-1 antisense	
1000	· · · · · · · · · · · · · · · · · · ·	
<400>	558	
attcaco	gaa gtcacagcac	20
<210>	559	
<211> <212>	20 DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	559	
	caccg aagtcacagc	20
<210>	560	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	560	
	aattg aaaattcacc	
	autog uddatteace	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	561	
	ttct gctgaaaatt	20
		20
<210>	562	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	562	
ccttcc	acac acattcacaa .	20
<210>	563	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	<del>-</del>	
coagea	gcaa gacgetette	20
	•	
<210>		
<211>		
<212>	artificial	
	arotricial	
<220>		
<223>	human ESM-1 antisense	

<400> gtcacag	564 gtgt tgagggcagt	20
<210>	565	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	565	
ctcttca	acca aaaggatcct	20
<210>	566	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	566	
gccatct	cca gatgccatgt	20
<210>	567	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	567	
ggatcca	acca tgcatcacaa	20
	•	
<210>	568	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	568	
agttcaa	age tgtttgttae	20
-		
<210>	569	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ECM 1 anticonce	

WO 2	004/021978	PCT/US2003/025833
<400> ccttat	569 agag tcataggttt	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	570 cact tcaaataaaa '	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttgagg	571 gcag tccaccgcat	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	572 cgca gataccaaac	20
<210> <211> <212> <213>	573 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> catate	573 ccaa cattaatgta	20
<210><211><211><212><213>	574 20 DNA artificial	
<220>		

	574 cat tccatatccc	20
.010		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	575	
cttctcc	tgc tcttaagtct	20
<210>	576	
<211>	20	
<212>		
	artificial	
72152	420244	
<220>		
<223>	human ESM-1 antisense	
<400>	576	
attttat	ttc ccactcccac	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223)	Indian Bon I and I can be a second of the se	
<400>	577	
attttga	actt ttcccaaagc	20
<210>	578	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223)	Indical Edw-1 arciberde	
<400>	578	
cttccad	caca cattcacaac	20
	•	
<210>	579	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human RCM-1 antigenge	

WO 2	004/021978	PCT/US2003/025833
<400>	579	
	ttgc agcgcgggct	20
_		
.010.	500	
<210><211>	580 20	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400	500	
	580	
catget	tgag actgtgcggt	20
<210>	581	
<211>	20	
<212>	<del></del>	
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000	Tallett Dirit i allettelibe	
<400>	581	
ttttct	ggat ccaccatgca	20
-010-	E00	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	582	
	agtg ttactataca	20
		20
<210>	583	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	583	
atccca	acat taatgtacat	20
<210>	584	
<211>	20	
<212>		•
<213>	artificial	
<220>	homes TOM 1 ambiguages	_
<223>	human ESM-1 antisense	•

<400> 584 gaaattgctc tcagttcaaa <210> 585 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 585 tcttagattt atctctgagg 20 <210> 586 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 586 gggtagggaa gatgacttgc 20 <210> 587 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 587 acatgttttc tgctgaaaat 20 <210> 588 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 588 taataaacat gtccttttaa 20

<210> 589 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense

wo	2004/021978		PCT/US2003/02583
<400>	500		
	geet eeggetegge		20
ccagocs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<210>	590		
<211>			
<212>			
<213>	artificial		
<220>	l a POW 1 autinoma		
<223>	human ESM-1 antisense		
<400>	590		0.0
agcaag	acgc tcttcatgtt		20
<210>	501		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	591		
	ccac caggtgtgca		20
-010-	502		
<210>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	592		•
ccaccg	cata attattgctc		20
<210>	593		
<211>			
<212>			
<213>	artificial		
<220>	human ESM-1 antisense		
<223>	numan Esm-1 ancisense		
<400>	593		
	cacc aaaaggatcc		20
<210>	594		
<211>			
<212>	DNA	•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

PCT/US2003/025833

<400> ttatttc	594 ccca ctcccaccc	20
	595	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	595	
	gtgt ttcctatgcc	20
gogodo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<b>-210</b> -	FOG	
<210> <211>	596	
<212>		
	artificial	
(213)	altilital	
<220>		
<223>	human ESM-1 antisense	
<400>	596	
	tata gagtcatagg	20
uuuccc.	3430040433	
.010.	F07	
<210>		
<211>		
<212>	artificial	
<213>	artilitial	
<220>		
<223>	human ESM-1 antisense	
<400>	597	
	aaaa ttcaccgaag	20
<210>	598	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
	ttt tacaaacctc	20
400000		
.0.1.0	500	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human FSM-1 antisense	

## WO 2004/021978 PCT/US2003/025833 <400> 599

tgaacaa	taa taaacatgtc	20
<210>	600	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	600	
cataatt	att gctccaggcg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	601	
ttagtt	ettc agtgttacta	20
<210>	602	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	602	
ctcact	gegg tetteagett	20
<210>	603	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttatag	agtc ataggttttt	20
<210>	604	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	604	
	ttt ttgaaatcca	20
<b>5</b>		
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	605	
cttaaai	ttga aaattcaccg	20
010		
<210>		
<211> <212>		
	artificial	
\2137	ar critical and a second a second and a second a second and a second a second and a	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tgaggg	cagt ccaccgcata	20
<210>	607	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	609	
	607 cgta gggacagtct	20
aggige	cyca yygacaycoc	
<210>	608	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	608	
	teet cattaeggga	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
~~~~		

WO 2004/021978

PCT/US2003/025833

wo a	2004/021978	PCT/US2003/02	5833
<400>	609		
	caga aatcacagcc		20
<210>	610		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
	Tamaii BBI I dicibaliba		
<400>			
agagcc	ttct ctcagaaatc		20
<210>	611		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
	Trainer and I deleted to		
<400>			
tagage	cttc tctcagaaat	;	20
<210>	612		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>			
tttctg	gatc caccatgcat	:	20
<210>	613		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	613		
tgtttgt	tac tcaaatttcc	:	20
<210>	614		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	614	
gaactac	atc agcagccttt	20
<210>	615	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	C15	
<400>	615 gtaa cccgggaact	20
acacagg	geau cocgggauce	
<210> <211>		
<212>		
<213>	artificial	
-000-		
<220>	human ESM-1 antisense	
<400>	616	20
caaacca	acca gtgggtaaaa	24
<210>		
<211> <212>		
	artificial	
<220>	1 work to analytication	
<223>	human ESM-1 antisense	
	617	
tattct	aacc attttcaaca	20
<210>	618	
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	618	
	cagc cacagtcgtc	20
<210>	619	
<211>		
<212>	DNA	
<213>	artificial	

<220>

WO 2	2004/021978	PCT/US2003/02583
<400>	619	
	ggac agtctttgca	20
-		
<210>	620	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	620	
	ccgt cccctgtca	20
<210>	621	
<211>		
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	621	20
acggga	gacc cggcagcatt	20
<210>	622	
<211>	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	622	
	catg catcacaatt	20
40004		
<210>	622	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	623	
	cctg ctcttaagtc	20
	_	
<210>	624	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
<400>	624	20
tgtttt	attt tgacttttcc	20
<210>		
<211>		•
<212>	artificial	
(213)	altilitai	
<220>		
<223>	human ESM-1 antisense	
<400>	625	
tccttca	aggg gttttctggt	20
<210>	626	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	626	
acccgg	gaac tacatcagca	20
<210>	627	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	627	20
taaatt	gaaa attcaccgaa	20
<210>	628	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	628	
	ctct gttggccaac	20
<210>	629	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		

<400>	629	
ttgaad	caata ataaacatgt	20
J		20
.010.		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
\ 2 237	naman BBM-1 ancibense	
-400		
<400>		
tccacc	gcat aattattgct	20
<210>	631	
<211>	20	
<212>		
	artificial	
~2137	WI CITICIAI	
<220>		
<223>	human ESM-1 antisense	
<400>	631	
ctcact	gctg tcacagtgtt	20
		20
<210>	632	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	632	
	gtct ctctgcaatc	~~
cogoag	geet eccegeaace	20
	,	
.010		
<210>	633	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	622	
Cacgaa	aata gagccttctc	20
<210>	634	
<211>	20	
<212>		
	artificial	
/	wrothford.	
-222		
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400> tcttaag	634 gtct tcattccata	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tttccca	635 acte ceaccecte	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> taataa	636 attt atcatgcctc •	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> tatctt	637 gttc ttttttattg	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ccaggc	638 ggcc accaggtgtg	20
<210><211><211><212><213>	20	

<220>

WO 2	004/021978	PCT/US2003/025833
<400> aattat	639 tgct ccaggeggee	. 20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ttgcac	640 tcac tgctgtcaca	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> ctactt	641 tttg ttttctggat	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> aacccg	642 ggaa ctacatcagc	20
<210><211><211><212><213>	643 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> gataca	643 ggta acccgggaac	20
<210><211><211><212><213>	644 20 DNA artificial	
<220> <223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
-100-	644	
<400>	out ttattataa	20
-210.	CAE	
<210><211>		
<211>		
	artificial	
12137	arctarctur.	
<220>		
<223>	human ESM-1 antisense	
<400>	645	
	aca catttattta	20
cgcacce	aca caccacca	20
<210> <211>		
<211>		
	artificial	
12137	arctrotar	
<220>		
<223>	human ESM-1 antisense	
<400>	646	
aacatc	agt acaacagtcc	20
<210>	647	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	647	
actctg	tgg ccaacttcaa	20
<210>	648	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
	human ESM-1 antisense	
1000		
<400>		: -
gcctcc	ggct cggctctcca	20
<210>	649	
<211>	20	
<212>		
<213>	artificial	

130

<223> human ESM-1 antisense

<220>

wo :	2004/021978	PCT/US2003/025833
<400>	649	
	cact gctgtcacag	20
<210>	650	
	20	
<212>	•	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	650	
	aact tcttctctca	20
-210-	651	
<210> <211>	651 20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	651	
	agaa atcacagccg	20
.010.	650	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	652	
	agag ccttctctca	20
-		
	650	
<210> <211>	653 20	
<211>		
<213>	artificial	
	~ - ~	
<220>		
<223>	human ESM-1 antisense	
<400>	653	
	aaat agagcettet	20
-		
<210>		
<211> <212>	20 DNA	
	artificial	
<220>		

wo 2	2004/021978	PCT/US2003/025833
	654 octa tatctagaaa	. 20
<210><211><212>	20 DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
	655 Lttt cccactccca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	,
	656 Icca ttttcaacaa	. 20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> cataggt	657 Ett tattctaacc	20
<210><211><211><212><213>	658 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ataagti	658 cctt cacttcaaat	20
<210><211><212><212><213>	659 20 DNA artificial	

<220>

	659 caca cacattcaca	20
geerree	caca cacaccaca	
<210>	660	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	660	20
tcttca	ccaa aaggatcctc	20
	661	
<211><212>		
	artificial	
(213)	altilitial	
<220>		
	human ESM-1 antisense	
\2257	14411011 2011 2 11110 2 1 1 1 1 1 1 1 1 1 1	
<400>	661	
	gcag gtctctctgc	20
•		
<210>	662	
	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan bsm-1 ancibense	
<400>	662	
	tctg ttggaagact	20
aacaaa		
<210>	663	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
cgaaaa	ataga gccttctctc	
<210>	664	
<211>		
<212>		
<213>		
<220>		
<223>		

	664 aggt aacccgggaa	20
J		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\22J/	Idillati Boy. I difetociae	
<400>	665	
	actt gcactaacac	20
	•	
<210>	666	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	666	
	tgaa aattcaccga	20
	-544 444444	
<210>	667	
<211>	20	
<212>		
<213>	artificial	
<220>	human EGM 1 anti-gango	
<223>	human ESM-1 antisense	
<400>	667	
	attc ttcttttaca	20
uuuoog.		
<210>	668	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	Indinan Esm-I ancisense	
<400>	668	
	actc actgctgtca	20
<210>	669	
<211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antigence	

<400>		
tctctc	tgca atccatcccg	20
	670	
<211>	20	
<212>	DNA	
<213>	artificial	
.000		
<220>	human Bost 4 and the	
<223>	human ESM-1 antisense	
<400>	670	
	atat tggaagaagg	
caccya	acac cyyaayaayy	20
<210>	671	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	671	
cttaag	tctt cattccatat	20
<210>		
<211>		
<212>		
<213>	artificial	
-000-		
<220> <223>	human EGM 1 and days	
4223	human ESM-1 antisense	
<400>	672	
		20 -
		20
<210>	673	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	673	
actttt	cca aagccaaaaa	20
-210-	674	
<210> <211>	674	
<211> <212>		
	artificial	
~6137	arcitician	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	674	
	aaat tgctctcagt	. 20
couccy	add tgottodgt	20
<210>	675	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	675	
acttct	taga tttatctctg	20
010		
<210>		
<211><212>		
	artificial	
(213)	arctrictar	
<220>		
<223>	human ESM-1 antisense	
<400>	676	
ataata	aatt tatcatgcct	20
<210>		
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	677	
atcttg	ctct tttttattga	20
<210>	678	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	678	
gagggc	agtc caccgcataa	20
	679	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833	
<400>	679		
tgtcaca	gtg ttgagggcag	20	
<210>	680		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	680		
attagaa	aggc tgacacctca	20	
<210>	681		
<211>			
<212>			
	artificial		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	681		
ctcccc	atta gaaggctgac	20	
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	682		
gacttg	gtta ctgaatattg	20	
<210>	683		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	683		
	acaa tttggatctt	20	
233400			
<210>			
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

-400-	684	
<400>		20
rggarec	cacc atgcatcaca	
.010-	cor	
<210>	685	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	685	
actacat	ccag cagccttttg	20
<210>	686	
<211>	20	
<212>		
	artificial	
12207	410141	
<220>		
	human ESM-1 antisense	
\ZZJ/	Italian Bir I are Ison	
<400>	686	
	ctaa ccattttcaa	20
LLLatt	gtaa ccattttcaa	
010	608	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	687	~ ~
ttgaaa	acct tatagagtca	20
<210>	688	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	688	
	tttg aaatccagag	20
404000		
<210>	689	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
<223>	human ESM-1 antisense	

WO 2004/021978

wo 2	2004/021978	PCT/US2003/025833
<400> tagtaca	689 aaca gtcctgtttg	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> gctgtca	690 acag tgttgagggc	20
<210><211><212><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atagago	691 cett eteteagaaa	20
	20	
<220> <223>	human ESM-1 antisense	
	692 aaat gttggctgtg	. 20
<210><211><212><213>		
<220> <223>	human ESM-1 antisense	
<400> atgcate	693 caca atttggatct	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	

<400>	694	
	tgac ttttcccaaa	20
	695	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ccttca	gggg ttttctggtt	20
<210>	606	
<211>		
<212>		
	artificial	
	0202202	
<220>		
	human ESM-1 antisense	
<400>	696	
tgttac	tcaa atttccataa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ 2237	Inditian Bow-1 and Bonse	
<400>	697	
	cctt atagagtcat	20
- 5		
<210>	698	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400	600	
	698	20
ccigtt	gctc atttttgac	20
<210>	699	
<211>		
<212>		
	artificial	
<220>		

WO 2004/021978

PCT/US2003/025833

<223> human ESM-1 antisense

wo:	2004/021978	PCT/US2003/025833
	699 gtgc taagattett	20
<211> <212>		
<220> <223>		
<400> ctctgtt	700 Eggc caacttcaag	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	701 ccg gctcggctct	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
	702 attg ctccaggcgg	20
<210><211><212><213>	703 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tttgca	703 ctca ctgctgtcac	20

141

<223> human ESM-1 antisense

<210> 704 <211> 20 <212> DNA <213> artificial

<220>

<400>	704	
	ggc agcattctct	20
J - J		
	705	
	20	
<212>		
<213>	artificial	
-000-		
<220> <223>	human ESM-1 antisense	
<223>	Human Esm-1 and sense	
<400>	705	
	rgga gacccggcag	20
oucouc	330 300033003	
<210>	706	
<211>	20	
<212>		
<213>	artificial	
<220>	new a subdenies	
<223>	human ESM-1 antisense	
400.	TOC.	
<400>	706 attt gactcactgc	20
gaacta	acco gaccoaccyc	
<210>	707	
<211>		
<212>		
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
	305	
<400>	707	20
gtette	attc catatcccaa	
<210>	708	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	,	
<223>	human ESM-1 antisense	
-400-	708	
<400>	ttcc cactcccacc	20
LLLAL		
<210>	709	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

wo:	2004/021978	PCT/US2003/025833
<400>	709	
	tcac agcacttatg	20
<210>	710	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	710	
ttattg	ctcc aggcggccac	20
<210>	711	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	711	
	agca gccacagtcg	20
33		•
<210>	71.2	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	712 cacc tcagccccgg	20
990094	3000 00033000033	
	74.0	
<210> <211>	713 20	
<212>		
	artificial	
<220> <223>	human ESM-1 antisense	
<2237	numan bsm-1 ancisense	
<400>		
ccttct	ctca gaaatcacag	20
<210>	714	
	20	
<212>		
<213>	arciticiat	
<220>		`
<223>	human ESM-1 antisense	

WO 2004/021978 PCT/US2003/025833

	714 ccac aatttggatc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	n.c	
<400>		~ ~
tacttt	ttgt tttctggatc	20
010	R1.6	
	716	
<211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	716	
cctactt	ttt gttttctgga	20
	5	
<210>	717	
<211>	•	
<212>		
	artificial	
\Z13/	arctrictar	
<220>		
<223>	human ESM-1 antisense	
<400>	717	
ctaccaa	agga agggctaaat	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
<400>	71.8	
		20
caggggt	ttt ctggttgttt	20
-010	710	
	719	
	20	
<212>		
<213>	artificial	
<220>		
-223-	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	719	
cacaca	aacc accagtgggt	20
<210>	720	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	720	
	attc acaactctgt	20
<210>	721	
<211>		
<212>		
	artificial '	
<220>		
<223>	human ESM-1 antisense	
<400>	721	
	cggc tcggctctcc	20
_		
<210>	722	
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
\223 2	numan Bom I and I sense	
<400>	722	
ctcatt	acgg gagacccggc	20
<210>	723	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223)	naman biri i andibenbe	
<400>	723	
tcctca	ttac gggagacccg	20
<210>	724	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	724	
	natg ttggctgtgt	20
<210>	725	
<211>		
<211>		
	artificial	
<213>	artificial	
.000		
<220>	homes Boy 1 and I am	
<223>	human ESM-1 antisense	
<400>	725	20
tatccca	aaca ttaatgtaca	20
	726	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	726	
caaatt	tcca taagcttcaa	20
<210>	727	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
10007		
<400>	727	
	cagt tcaaagctgt	20
cgcccc	cage codadoogu	
<210>	728	
<211>	20	
<211>	DNA	
-212>	artificial	
<213>	arctificat ,	
<220>		
	.human ESM-1 antisense	
<223>	. numan ESM-1 antisense	
400	700	
<400>		20
ttctaa	ccat tttcaacaaa	20
	800	
<210>		
<211>		
<212>		
<213>	artificial	
<220>	A Company of the Comp	
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2004/021978		PCT/US2003/025833	
<400>	729		
gaaaac	ctta tagagtcata	20	
<210>	730		
<211>			
<212>			
	artificial		
10257	4101210141		
<220>			
<223>	human ESM-1 antisense		
	730		
catttt	ttga aatccagagt	20	
<210>	731		
<211>			
<212>			
	artificial		
	4101110141		
<220>			
<223>	human ESM-1 antisense		
	731		
aaataa	gttc ttcacttcaa	20	
<210>	732		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
	732		
tctgtt	ggcc aacttcaaga	20	
<210>	733		
<211>			
<212>	DNA		
<213>			
•			
<220>			
<223>	human ESM-1 antisense		
<400>	733	20	
cagetge	cctc cggctcggct	20	
<210>	734		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		

wo	2004/021978	PCT/US2003/0258
<400>	734	
gggcag	tcca ccgcataatt	20
<210>	725	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	735	
gttgag	ggca gtccaccgca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	736	
ctgtca	cagt gttgagggca	20
<210>	737	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	737	
	tcag aaatcacagc	20
<210>	738	
<211>		
<212>	DNA	
<213>	artificial	
(2232		•
<220>		
<223>	human ESM-1 antisense	
<400>	738	
tgtttt	ctgg atccaccatg	20
<210>	739	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 739	
	actttt tgttttctgg	
	.3	20
	> 740	
	> 20	
<212:	DNA	
<213;	artificial	
<220:	•	
	human ESM-1 antisense	
<400>	· - •	
tttga	ctcac tgcggtcttc	20
		20
-210>	741	
<211>		
	DNA	
	artific <u>ial</u>	
	····	
<220>		
<223>	human ESM-1 antisense	
400		
<400>		
ageet	tttga aattgctctc	20
<210>	742	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12257	numan ESM-1 antisense	
<400>	742	
tacago	gtaac ccgggaacta	20
		20
<210>		
<211> <212>	20	
<213>		
12137	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
acacac	aaac caccagtggg	20
<210>	744	
<211>		
<212>		
	artificial	•
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	744	
tctaac	catt ttcaacaaat	20
<210>	745	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	745	
	atag gtttttattc	20
<210>	746	
<211>		•
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	846	
	746	20
ccacge	taa ataaggtooc `	20
<210>		
<211><212>		
	artificial	
<220>	Name of the state	
<223>	human ESM-1 antisense	
<400>	747	
agggca	gtcc accgcataat	20
<210>	748	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	740	
<400>	748 cacc aaactettea	20
cycaya		20
.010	740	
<210> <211>	20	
	DNA	
	artificial	
.000		
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	749	
	ttaa tgtacatcaa	20
<210>	750	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	750	
	750 tect getettaagt	20
	good gooddage	20
<210>	751 20	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	751	
ttgctc	cag ttcaaagctg	20
<210>	752	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	752 ,	
gatgtti	gaa aaccttatag	20
<210>	753	
<211>	20	
<212> <213>	DNA artificial	
<213>	artificiai	
<220>		
<223>	human ESM-1 antisense	
-100-	752	
<400>	753 gatt cttcttttac	20
	,	20
.010	754	
<210><211>	20	
<212>		
	artificial	
<220> <223>	human ESM-1 antisense	
\4437	TURRAL BUILT WITCIDGIES	

WO 2004/021978	PCT/US2003/025833
<400> 754 aataaacatg toottttaaa	20
<210> 755	

<210> 755
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 755
attgaacaat aataaacatg 20

<210> 756
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 756
ggcggccacc aggtgtgcag 20

<210> 757
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 757
ccatccatgc ctgagactgt 20

<210> 758
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 758 ttcttctctc acaatattgc 20

<210> 759
<211> 20
<212> DNA
<213> artificial
<220>

<223> human ESM-1 antisense

wo :	2004/021978	PCT/US2003/025833
<400>	759	
	ttct ggatccacca	20
<210>	760	
<211>		
<212>		
	artificial	
-220-		
<220>	human ESM-1 antisense	
\ 2237	ituman Bom-1 antibense	
<400>	760	
tctcct	gctc ttaagtcttc	20
<210>	761	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ECM 1 ambigange	
<223>	human ESM-1 antisense	
<400>	761	
catctt	ctcc tgctcttaag	20
	-	
-210-	762	
<210> <211>		
<212>		
	artificial	
12257		
<220>		
<223>	human ESM-1 antisense	
-100-	762	
<400>	762 ggtt gttttattt	20
	gger gereratie	20
<210>	763	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	
<400>	763	0.0
getete	agtt caaagctgtt	20
<210>	764	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	···	

WO 2	004/021978	PCT/US2003/025833
<400>	764	
	ttg aaattgctct	20
<210>		
<211>		•
<212>	artificial	
(213)	altificial	
<220>		
<223>	human ESM-1 antisense	
	765	20
cccggga	act acatcagcag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237	ndman BbM-1 ancibense	
<400>	766	
tgtttcc	tat gccccagaac	20
_		
010	n.cn	
<210>		
<211> <212>		
	artificial	
1220	41 01 11 01 41	
<220>		
<223>	human ESM-1 antisense	
	767	
tcaaata	tac tcctaattcc	20
<210>	768	
	20	
<212>		
<213>	artificial	
<220>	No. 100 TON 1	
<223>	human ESM-1 antisense	•
<400>	768	
	igca agacgctctt	20
J	J. 13	
	769	
<211>		
<212>	DNA artificial	
<213>	arciriciat	
<220>		
	human ESM-1 antisense	

20 <210> 770 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 770 tacttatgct atatctagaa 20 <210> 771 <211> 20 <212> DNA <213> artificial <220> <210> 771 <211> 20 <212> DNA <213> artificial <221> 20 <212> DNA <213> artificial <221> 20 <212> DNA <213> artificial <220> <221> artificial <222> buman ESM-1 antisense	wo	2004/021978	PCT/US2003/02583
<pre><210> 770 <211> 20 <2112</pre>	<400>	769	
<pre><211> 20 <212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 770</pre>	atgttg	gctg tgtgttgaac	20
<pre><211> 20 <212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 770</pre>	~210×	770	
<pre><212> DNA <2213> artificial <220> <2223> human ESM-1 antisense <400> 770 tacttatgct atatctagaa</pre>			
<pre><213> artificial <220> <2213> human ESM-1 antisense <4000 770 tacttatgct atatctagaa</pre>			
<pre><223> human ESM-1 antisense <400> 770 tacttatgct atatctagaa</pre>			
<pre><400> 770 tacttatgct atatctagaa</pre>	<220>		
20	<223>	human ESM-1 antisense	
<pre> <210> 771 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 771 gattacctaa attgcatttt 20 <211> 20 <211> 20 <212> DNA <213> artificial <220> <211> 20 <212> DNA <213> artificial <220> <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <210> 773 <211> 20 <212> DNA <213> artificial <220> <221> TNA <213> artificial <220> <221> TNA <211> 20 <222> DNA <213> artificial <220> <221> TNA <211> 20 <221> DNA <213> artificial <220> <221> TNA <211> 20 <212> DNA <213> artificial <220> <210> 774 <211> 20 <212> DNA <213> artificial <220> <210> 774 <211> 20 <212> DNA <213> artificial <220> <221> DNA <213> artificial <220> <220> <221> DNA <213> artificial <220> <220> <221> DNA <213> artificial <220> </pre>			20
<pre><211> 20 <212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 771 gattacctaa attgcatttt</pre>	tactta	tgct atatctagaa	20
<pre><211> 20 <212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 771 gattacctaa attgcatttt</pre>	<210>	771	
<pre><212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 771 gattacctaa attgcatttt</pre>			
<pre><213> artificial <220> <223> human ESM-1 antisense <400> 771 gattacctaa attgcatttt 20 <210> 772 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <2210> 773 tattttgact tttcccaaag 20 <210> 773 tattttgact artificial <220> 210> 773 <211> 20 <212> DNA <213> artificial <220> <221> DNA <213> artificial <220> <221> TATTACTACTACTACTACTACTACTACTACTACTACTACT</pre>			
<pre><220> <223> human ESM-1 antisense <400> 771 gattacctaa attgcatttt 20 <210> 772 <211> 20 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <210> 773 tcasa artificial <220> <210> 773 <211> 20 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 73 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <210> 774 <211> 20 <212> DNA <213> artificial <220> <213> artificial <221> Antisense <400> 73</pre>			
<pre><223> human ESM-1 antisense <4400> 771 gattacctaa attgcatttt 20 <210> 772 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <4400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <211> 20 <212> DNA <213> artificial <20 <220> 773 <211> 20 <212> DNA <213> artificial <222> <223> human ESM-1 antisense <400> 773 tcagataca ggtaacccgg 20 <210> 773 tcagataca ggtaacccgg 20 <210> 774 <211> 20 <211> 20 <212> DNA <213> artificial <220> <213> artificial <221> DNA <213> artificial <213 artificial <213 artificial <213 artificial <213 artificial <213 artificial <213 artificial <220></pre>	<213 <i>></i>	altilitat	
<pre><400> 771 gattacctaa attgcatttt 20 <210> 772 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <221> dattttgact artificial <221> DNA <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220> <213> artificial <221> 20</pre>	<220>		
<pre>gattacctaa attgcatttt 20 <210> 772 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <213> human ESM-1 antisense 20 <210> 773 tcagataca ggtaacccgg 20 <210> 773 tcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220> <213> human ESM-1 antisense 20 <210> 774 <211> 20 <212> DNA <213> artificial <213 artificial <221> Augusta 20 <210> 774 <211> 20 <212> DNA <213> artificial <221> Augusta 20 <2210> 774 <211> 20 <212> DNA <213> artificial <220></pre>	<223>	human ESM-1 antisense	
<pre> <210> 772 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <215 DNA <213 artificial <220> <220> <221> DNA <213 artificial <220> <220> <221> DNA <213 artificial <220> <221> DNA <213 artificial <220> <221> DNA <213 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <221 artificial <220> <221 artificial <220> <220> <220> <221 artificial <220> <220> <220> <220> <220> <220> <220> <220> <220> <221 artificial <220> <220 artificial <220> <220> <220 artificial <220> <220> <220 artificial <220> <220 artificial <220 a</pre>	<400>	771	
<pre><210> 772 <211> 20 <212> DNA <213> artificial </pre> <pre><220> <223> human ESM-1 antisense </pre> <pre><400> 772 tattttgact tttcccaaag</pre>	gattac	ctaa attgcatttt	20
<pre><211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag</pre>	J		
<pre><212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 tcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense</pre>			
<pre><213> artificial <220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>			
<pre><220> <223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag</pre>			
<pre><223> human ESM-1 antisense <400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial</pre>	<213>	artificial	
<pre><400> 772 tattttgact tttcccaaag 20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>	<220>		
<pre>20 <210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>	<223>	human ESM-1 antisense	
<pre><210> 773 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial</pre>		· ·	20
<pre><211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <<220></pre>	tatttt	gact tttcccaaag	20
<pre><211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <<220></pre>	<210>	773	
<pre><212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>			
<pre><213> artificial <220> <223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>			
<223> human ESM-1 antisense <400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220>			•
<pre><400> 773 ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220></pre>			
ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220>	<223>	human ESM-1 antisense	
ttcagataca ggtaacccgg 20 <210> 774 <211> 20 <212> DNA <213> artificial <220>	<400>	773	
<211> 20 <212> DNA <213> artificial <220>	ttcaga	taca ggtaacccgg	20
<211> 20 <212> DNA <213> artificial <220>	4		
<212> DNA <213> artificial <220>			•
<213> artificial <220>			
<220>			
<220> <223> human ESM-1 antisense	<213>	artificial	
	<220>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
-400-	77.4	
<400>	774 :tgt gctaagattc	20
cccgc		
<210>		
<211>		
<212>	artificial	
<213>	alcilicial	
<220>		
	human ESM-1 antisense	
<400>		
tgtccti	ctta aaacaaaacc	20
<210>	776	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human EGM 1 anti-sanga	
<223>	human ESM-1 antisense	
<400>	776	
	tgct gtcacagtgt	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>	tttc tggatccacc	20
LLLLGL	cete eggaeeeaee	
<210>	778	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
aaattg	catt tttagttctt	20
<210>	779	
<211>		
<212>	DNA	
<213>	artificial	
<220>	Name Tay 1 ambigango	
<223>	human ESM-1 antisense	

<400>	779	
		20
agattac	cta aattgcattt	
<210>	780	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
~2237	Hallian BB. I allege	
-400-	700	
<400>	780	20
ctgtctc	ccat gtaagattac	20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
~2257		
<400>	781	
		20
atttgad	ctca ctgcggtctt	
<210>	782	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	782	
	tggt tgttttattt	20
gccccc	2330 2300000	
010	800	
<210>	783	
<211>	20	
<212>	DNA	
<213>	artificial ,	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>	783	
	tgtt tcctatgccc	20
	-U	
	•	
-210.	704	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

wo :	2004/021978	PCT/US2003/025833
<400>	784	
	acac atttatttat	20
<210>	785	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	785	•
tgtttg	tgct aagattcttt	20
<210>	786	
	20	
<212>		
<213>	artificial	
<220>		·
<223>	human ESM-1 antisense	
<400>	786	
	acaa taataaacat	20
cacega		
.010.	707	
<210>		
<211> <212>		
	artificial	
12207	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>	787	
atccat	gcct gagactgtgc	20
<210>	788	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	788	0.0
gaaaca	aatc tgttggaaga	20
<210>		
<211>	20 DNA	
<212>	DNA artificial	
<213>	at official	
<220>		
-2233	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	789	
	caaa tctgttggaa	20
<210>	790	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	790	20
agaccc	ggca gcattctctt	20
<210>	791	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400	701	
	791 ccat ttcctcatta	20
acceaa	coat teceecatea	
<210>	792	
<211>	20	
<212>		
<213>	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
\223 /	Idual Bon-I diciscus	
<400>	792	
	attg catttttagt	20
<210>	793	
<211>	20	
<212> <213>	DNA artificial	
<213>	altilitial	•
<220>		
	human ESM-1 antisense	
<400>	793	•
ttcctt	cagg ggttttctgg	20
-010-	704	
<210> <211>	794 20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 794	
ctgti	tgtta ctcaaatttc	
		20
	795	
<211:		
	DNA	
<213	artificial	
<220>		
	human ESM-1 antisense	
<400>	795	
cttct	tagat ttatctctga	
	<u>-</u>	20
<210>		
<211>		
<212>	artificial	
~213>	arcificial	
<220>		
	human ESM-1 antisense	
	- Land -	
<400>	796	
aaaac	cttat agagtcatag	20
		20
<210> <211>		
<211>		
	artificial	
12137	arciricial	
<220>		
<223>	human ESM-1 antisense	
_		
<400>		
aaataa	ggtc cctctgttgc	20
		20
<210>	700	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	798	
taaata	agtt cttcacttca	20
		-•
<210>	799	
<211>	20	
_	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	799	
catcca	tgcc tgagactgtg	20
<210>	900	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400		
<400>	800	
g caggg	acag tctttgcaga	20
<210>	801	
<211>	20	
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
(223)	numan ESM-1 ancisense	
<400>	801	
tggcagt	tgc aggtctctct	20
_		
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400		•
	802 gct gtgtgttgaa	
aacyccs	get gegegeegaa	20
		,
<210>	803	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	803	
accatgo	atc acaatttgga	20
<210>	80 4	
	20	
	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	

ŧ

WO 2	004/021978	PCT/US2003/025833
<400>	804	
	tgg atgttatgga	20
-	,	
<210>	805	
<211>	20	
<212>		
<213>	artificial	
<220>	The same of the sa	
<223>	human ESM-1 antisense	
<400>	805	
	gaag ggctaaatat	20
<210><211>	806	
<211>	20 DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	806	•
<400>	tca aagctgtttg	20
000005		
	807	
<211><212>		
	artificial	
12237	410110141	
<220>		
<223>	human ESM-1 antisense	
-400-	9.07	
<400>	807 gca cacteggeag	20
ouguage	300 000055005	
<210>	808	
<211>	20	
<212> <213>	DNA artificial	
12107	420223044	
<220>		
<223>	human ESM-1 antisense	
. 4 0 0 .	222	
<400>	808 yaga ctgtgcggta	20
acgeece	gaga ocgogoggea	20
<210>		
<211>	20	
<212> <213>	DNA artificial	
~6137	ar Citiciai	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400> ttgcaga	809 Lac caaactcttc	20
<210> <211> <212> <213>	20	
<220> <223>	human ESM-1 antisense	
	810 accc ggcagcattc	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	811 aaat tgcattttta	20
<210><211><212><212><213>	20	
<220>	human ESM-1 antisense	
<400> aatttg	812 gactc actgeggtet	20
<210><211><211><212><213>	813 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tcttca	813 attcc atatcccaac	• 20
	20 DNA artificial	
<220> <223>		

WO 2	004/021978	PCT/US2003/025833
<400>	814	
ccaagga	agg gctaaatatt	20
<210>	815	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	015	
	815 aaag ctgtttgtta	20
cagece	ady etgetegeta	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	816	
agtcata	aggt ttttattcta	20
<210>	817	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	817	20
aattga	ctct tcttttacaa	20
<210>	818	
<211>	20	
<212> <213>	DNA artificial	
(213/	420220443	
<220>		
<223>	human ESM-1 antisense	
<400>	818	
	cttc acttcaaata	20
_		
<210>	819	
<210>	20	
<212>	DNA	
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
-		

WO 20	04/021978	PCT/US2003/025833
<400> tgccato	819 cat gcctgagact	20
<210>	820	
<211>		
<212>		
<213>	artificial	
<220>	No. 10 Tarking and 1	
<223>	human ESM-1 antisense	
	820	20
cctcag	ecc gggccacact	20
<210>	821	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	821	
	egte cecetgteac	20
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	822	
ccatgo	atca caatttggat	20
010	202	
<210>	823	
<211>	20 DNA	
<212>		
<213>	artificial	•
<220>	1 TOW 1 ambiguous	
<223>	human ESM-1 antisense	
	823	20
ctggat	ccac catgcatcac	20
<210>	824	
<211>		
<212>	DNA	
	artificial	
<220>		
	human RSM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	824	
	tgcg gtcttcagct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	825	
tttgac	tttt cccaaagcca	20
.010.	226	
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ttgttt	tatt ttgacttttc	20
<210>	927	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ataaac	atgt ccttttaaaa	20
<210>	828	
<211>		
<212>	DNA	
<213>	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>	929	
		20
acycell	ccca gctgcctccg	20
<210>		
<211>		
<212>		
<213>	artificial	
-000		
<220>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	829	
	catg cctgagactg	20
<210>	830	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	830	
aaacaa	atct gttggaagac	20
<210>	821	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	831	22
gggaga	cccg gcagcattct	20
<210>	832	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	832	
	taag attacctaaa	20
cccacg	taay accacctaaa	20
<210>	833	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	house Boy a subjection	
<223>	human ESM-1 antisense	
<400>	833	
	ggaa gggctaaata	20
uu		20
		•
<210>	834	
<211>	20	
<212>		
<213>	artificial	
-22A		
<220> <223>	human ESM-1 antisense	
~~~>	IIIIIII POM-I diictociioe	

WO 2	004/021978	PCT/US2003/025833
<400>	834	
ctaacac	att tatttataaa	20
	005	
	835	
	20 .	
	DNA artificial	
(213)	altilicial	
<220>		
<223>	human ESM-1 antisense	
	835	20
attttca	tac cttaaattga	
<210>	836	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1 TOW 1	
<223>	human ESM-1 antisense	
<400>	836	
	ctg ttggccaact	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	837	0.0
ttttt	attg aacaataata	20
<210>	838	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	020	
<400>	838	20
Ctttt	tatt gaacaataat	
<210>	839	
<211>	20	
<212>		
<213>	artificial	
000		
<220> <223>	human ESM-1 antisense	
~~~>	HUHAH DUT I CHOLDONDO	

WO 2	004/021978	PC1/US2003/025833
<400>	839	
	tta ttgaacaata	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
\2237	Iddian Bon I dictacise	
<400>	840	
catgtti	ccc agctgcctcc	20
	841	
	20	
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
\ 2237	numan ESM-1 ancisense	
<400>	841	
	tag aaggotgaca	20
	3 33 4	
	842	
	20	
<212>		
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
(2237	numan bam-1 ancisense	
<400>	842	
cqtaqqq	aca gtctttgcag	20
	843	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	843	
acttcti	ctc tcacaatatt	20
<210>		
	20	
<212>		•
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	844	
aaccat	ttcc tcattacggg	20
<210>	845	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	845	20
gattta	acca tttcctcatt	20
<210>	846	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	846	
gataat	aaat ttatcatgcc	20
<210>	847	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207		
<400>	847	
gacatg	tttt ctgctgaaaa	20
<210>	848	
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
(4237	Iddian Bon I diciberate	
<400>	848	
ttattg	aaca ataataaaca	20
<210>	849	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<443>	HAMINIT POLIT ATTEMPE	

wo	2004/021978	PCT/US2003/02583
<400>	849	•
tggtctt	tgc tggtgggaag	20
<210>	850	
<211>	20	
<212>		
<213>	artificial	
<220>	No. of the second	
<223>	human ESM-1 antisense	
<400>		
gctctto	atg tttcccagct	20
<210>	851	
<211>		
<212>		
<213>	artificial	
<220>	November 1 and 1 and 1	
<223>	human ESM-1 antisense	
<400>		
gacgcto	ttc atgtttccca	20
010	0.50	
<210><211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	852	20
cttttg	eact cactgctgtc	20
<210>	853	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
actcgg	cage agecacagte	20
<210>	854	
<211>		
<212>	DNA	
<213>	artificial	
<220>		

<223> human ESM-1 antisense

wo a	004/021978	PCT/US2003/025833
<400>	854	
	caga taccaaactc	20
<210>	955	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	855	
	aaat ctgttggaag	20
aguaac	add degdeggadg	
<210>	856	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2257	Indian abi I dicibolibe	
<400>	856	
agagaa	acaa atctgttgga	20
	0.5.0	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	0.57	
<400>	857 otto totoacaata	20
Caacco	cete eccacaca	20
<210>	858	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12201		
<400>	858	
ctttca	caac ttcttctctc	20
-010 -	950	
<210> <211>		
<211>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	859	
	aac cattttcaac	20
<210>	860	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	860	20
accttat	aga gtcataggtt	20
<210>	861	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	861	20
tttttat	tga acaataataa	20
<210>	862	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	862	20
agacgct	ctt catgtttccc	20
<210>	863	
<211>	20	
<212>	DNA	
<213>	artificial ,	
<220>		
<223>	human ESM-1 antisense	
<400>	863	20
aaatgtt	ggc tgtgtgttga	20
<210>	864	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	864	
ttgttt	tctg gatccaccat	20
<210>	865	
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	0.05	
	865 taaa ttgcattttt	20
.210.	0.00	
<210>		•
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
aagatt	acct aaattgcatt	20
<210>		
<211>		
<212>	artificial	
12207	4-7	
<220>		
<223>	human ESM-1 antisense	
<400>	867	
tttatt	tccc actcccaccc	20
<210>	868	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
400	0.00	
	868 ggga actacatcag	20
June	232	20
.010	960	
<210> <211>	20	
<212>		
	artificial	
000		
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	869	
	acaca aaccaccagt	20
		20
<210>		
<211> <212>		
	artificial	
12207	42 627 CT 41	
<220>		
<223>	human ESM-1 antisense	
<400>		
gtcata	aggtt tttattctaa	20
<210>	871	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	071	
	ctga gatatttcct	
404000	acatetee	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	872	
ggcagt	ccac cgcataatta	20
<210>	0.72	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	0.00	
<400>	873	
accyaa	tatt ggaagaaggg	20
<210>	874	
<211>	20	
<212>	DNA	
<213>	artificial	
4220-		•
<220> <223>	human ESM-1 antisense	
-2232	HOWENT POLL T CHICTOCHISE	

wo	2004/021978	PCT/US2003/02583
<400>	874	
ttggct	gtgt gttgaacaat	20
<210>	875	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	875	
taaatt	gcat ttttagttct	20
<210>	876	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	876	20
ccatgt	aaga ttacctaaat	20
<210>	877	
<211>		
<212>		
<213>		
<220>		
	human ESM-1 antisense	
<400>	877	20
_	tttc ccaaagccaa	20
<210>	878	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	878	
gcagco	ctttt gaaattgctc	20
<210>	879	
<210>		
<212>		•
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	879	
cagcag	cctt ttgaaattgc	20
<210>	880	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
12207		
<400>	880	
acagca	ctta tgtttaaata	20
<210>	881	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	station loss a discussion	
	881	
aagttc	ctca cttcaaataa	20
<210>	882	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	**-	
acagcti	catg cagctttaca	20
<210>	883	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
	· · · · · · · · · · · · · · · · · · ·	
<400>	883	
taattai	tgc tccaggcggc	20
<210>	884	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	884	
tgctgt	caca gtgttgaggg	20
<210> <211>		
<211> <212>	-	
	artificial	
72137	arcricial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcggca	gcag ccacagtcgt	20
<210>	886	
<211>		
<212>		
	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>		
agatac	caaa ctcttcacca	20
<210>	887	
<211>		
<212>	DNA	
<213>	artificial	
<220>	There is the second of the sec	
<223>	human ESM-1 antisense	
<400>	887	
	ccaa actcttcacc	20
J		20
<210>	888	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	888	
atcacga	aaaa tagagccttc	20
.010	000	
<210> <211>	889 20	
<211>	DNA .	
<213>	artificial	
/		
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> tctaca	889 tgca ttcgaatatt	20
<210><211><211><212><213>	20	
<220>	human ESM-1 antisense	
<400> caaata	890 tact cctaattcca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	891 taaa taagttotto	20
<210><211><211><212><212><213>	20	
<220>	human ESM-1 antisense	
<400> gacacc	892 tcag ccccgggcca	20
<210><211><212><212><213>	893 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
	893 tott ototoacaat	20
<210><211><211><212><213>	894 20 DNA artificial	
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02583
<400>	894	
	ctgt gtgttgaaca	20
<210>	905	
<210>		
<211>		
	artificial	
~213/	WI CITIOIMI	
<220>		
<223>	human ESM-1 antisense	
400	225	
<400>	895	20
ttacat	gtac ttatgctata	
<210>	896	
<211>	20	
<212>		
<213>	artificial	
		•
<220>) may a subdusing	
<223>	human ESM-1 antisense	
<400>	896	
	atgc attcgaatat	20
<210>		
<211>		
<212>	artificial	
\213/	arcificat	
<220>		
<223>	human ESM-1 antisense	
	897	20
gtgttt	ccta tgccccagaa	20
<210>	898	
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<223>	mullan ESM-1 ancisense	
<400>	898	
	gaaa accttataga	20
_	-	
	000	
	899	
<211> <212>	20 DNA	
<212>		
-240/		
<220>		
-222-	human ESM-1 antisense	

wo	2004/021978	PC1/US2003/02583
<400>	899	
	actt caaataaaat	20
		20
<210>	900	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
cagctt	atgc agctttacat	20
<210>		
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human EGM 1 and 1	
<423>	human ESM-1 antisense	
<400>	901	
cegeet	ccgg ctcggctctc	20
<210>	902	
<211>		
<212>		
	artificial	
	~ 0 0 1 L L 0 1 M L	
<220>		
<223>	human ESM-1 antisense	
<400>	902	
gtccaco	gca taattattgc	20
-		20
<210>	903	
<211>	20	
<212>	DNA	
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>		
gcggta	gca agtttctccc	20
		3.4
	904	
	20	
	DNA	
213>	artificial	
220>		
ソソコー	human FCM_1 antigengo	

WO 20	004/021978	PCT/US2003/025833
<400>	904	
	agat accaaactct	20
-		
<210>		
<211>		
<212>	artificial	
(213/	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	905	
ctctctc	gcaa tecateeega	20
.010-	006	
<210> <211>		
<212>		
	artificial	
12-07		
<220>		
<223>	human ESM-1 antisense	
<400>		
tttcccc	rtcc ccctgtcaca	20
<210>	907	
<211>		
<212>		-
	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	0.07	
	907	20
acyaaaa	tag agcettetet	20
<210>	908	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	There are a second to the second	
<223>	human ESM-1 antisense	
<400>	908	
	aat ttggatcttc	20
		20
<210>	909	
	20	
	DNA .	
<213>	artificial	
<220>		
	human FCM-1 anticence	

WO 2	004/021978	PCT/US2003/025833
<400>	909	
ctttttg	ttt tctggatcca	20
<210>		
<211> <212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	910	
cctaaat	tgc atttttagtt	20
<210>		
<211> <212>		
	artificial	
<220>	human ESM-1 antisense	
\D DD		
	911	20
taagati	tacc taaattgcat	
<210> <211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
100-	012	
<400>	912 catg taagattacc	20
•		
<210>	913	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		
taagto	ttca ttccatatcc	20
<210>		
<211>	20 DNA	
<212> <213>		
<220> <223>	human ESM-1 antisense	

<400>	914	
	caa agccaaaaaa	20
	ageodadaa	
010-	015	
	915	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	915	
	cage ageettttga	20
<210>	016	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	916	20
acacaa	acca ccagtgggta	20
<210>	917	
<211>		
<212>		
-212>	artificial	
<213>	altilitat	
000		
<220>	human ESM-1 antisense	
<223>	numan ESM-I antisense	
<400>	917	20
cacaca	caaa ccaccagtgg	
<210>	918	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
(2237	Hamar 25. 2 date 2 date	
<400>	01.9	
<400>	918	20
aataaç	ggtcc ctctgttgct	
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	- -	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	919	
	taaa taaggteeet	20
_		
<210>		
<211>	20	
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	920	
gaagte	acag cacttatgtt	20
<210>	021	
<211>		
<212>		
	artificial	
12237	ar orrespondent	
<220>		
<223>	human ESM-1 antisense	
<400>	921	
aagttga	acat gttttctgct	20
		,
-210-	. 000	
<210><211>	922	
<211>		
	artificial	
12107	WI CITIOTAL	
<220>		
<223>	human ESM-1 antisense	
<400>	922	
ttttaaa	aca aaacctaaca	20
<210>	923	
<211>		
<212>	DNA	
<213>	artificial	1
70.07	,	
<220>		
<223>	human ESM-1 antisense	
<400>	923	
agctgc	etec ggeteggete	20
<210>	924	
<211>	20	
<212>		
	artificial	
<220>		
-222	human ECM-1 anticonce	

wo:	2004/021978	PCT/US2003/025833
<400> gggaca	924 gtct ttgcagatac	20
<210>	925	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	925	
cacaac	ttct tctctcacaa	20
<210>	926	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	926	
	gcag cattetett	20
540005	goag caccoccc	20
<210>	927	
<211>		
<212>	DNA	
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
\ZZ3/	numan ESM-1 ancisense	
<400>	927	
ctctca	gaaa tcacagccgg	20
<210>		
<211><212>	20	
	artificial	
72137	AL CILICIAI	
<220>		
<223>	human ESM-1 antisense	
<400>		
taccta	aatt gcatttttag	20
<210>	929	
<211>		
<212>		
	artificial	•
		•
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 929	
	tctcca tgtaagatta	
	•	20
	> 930	
	> 20	
<212	> DNA	
<213	> artificial	
.000		
<220:		
<223	> human ESM-1 antisense	
<400	> 930	•
	geettt tgaaattget	
300:	Joette tyakattytt	20
<210>	931	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400		
	931	
cccag	attta tctctgaggt	20
<210>	932	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tcatag	ggttt ttattctaac	20
		20
<210>	022	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	933	
attctt	tcaa atatactcct	20
		20
-21 A.	004	
<210>	934	
<211><212>	20	
<212>	DNA artificial	
~213>	artificial	
<220>		
<223>	human ESM-1 antisense	
,		

WO 2	004/021978	PCT/US2003/025833
<400>	934	
	gtg ctaagattct	20
	-5-5-0-0-0-5-0-0-0-0-0-0-0-0-0-0-0-0-0-	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(2237	Iddian Bor-I ancisense	
<400>	935	
tacttct	gag atatttccta	20
<210>		
<211>		
<212>		
<213>	artificial /	
000		
<220>	home now a subdenies	
<223>	human ESM-1 antisense	
<400>	936	
	aagt tetteactte	20
<210>	937	
<211>	20	
<212>		
<213>	artificial	
000		
<220>	homes TOW 1 and decrees	
<223>	human ESM-1 antisense	
<400>	937	
	catt cacaactctg	20
<210>	938	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
(223)	numan Bon-1 ancisense	
<400>	938	
	cac caaaaggatc	20
<210>	939	
<211>		
<212>		
<213>	artificial	
-222		
<220>	human ESM-1 antisense	
<223>	naman Pon-I andreame	

WO 2	2004/021978	PCT/US2003/025833
<400>	939	
aacttc	ttct ctcacaatat	20
<210>	940	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	940	
cctcatt	tacg ggagacccgg	20
<210>	941	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	1.0.0.0.1	
<400>	941	
tctggai	tcca ccatgcatca	20
<210>	942	
<211>		
<212>	DNA	•
<213>	artificial	
.000-		
<220>	human ESM-1 antisense	•
(2237	numan Bow-1 ancibense	
<400>	942	
ctaaatt	tgca tttttagttc	20
010.	042	
<210> <211>	943	
<212>	DNA	
<213>	artificial	
	•	·
<220>		
<223>	human ESM-1 antisense	
<400>	943	
	ctcc atgtaagatt	20
	•••	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	944	
	gaag ctacctacca	20
010	0.45	
<210> <211>		
<211> <212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
400	•	
<400>		
tetetg	aggt ggcatacgtt	20
<210>	946	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human EGM 1 and days a	
<223>	human ESM-1 antisense	
<400>	946	
	tttt tgaaatccag	20
-		20
<210>		
<211>		
<212>	artificial	
<213>	arciticiai	
<220>		
	human ESM-1 antisense	
<400>		
tctttt	tat tgaacaataa	20
	·	
<210>	948	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	948	
	ttc atgccatcca	20
Journa		20
<210>	949	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	949	
	aga aggctgacac	20
<210>	950	
<211>	•	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
. 4 0 0 -	050	
	950 agto tttgcagata	20
agggace	1900 0009009000	
	051	
<210> <211>		
<211>		
	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
<400>	951	
	cagt ctttgcagat	20
0355		
	952	
<211>		
<212>		
<213>	arciliciai	
<220>		
	human ESM-1 antisense	
<400>	952	20
aaggtg	ccgt agggacagtc	
<210>	953	
<211>		
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>		20
catcto	caga tgccatgtca	20
<210>	954	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
~~~U>		

<223> human ESM-1 antisense

wo 2	2004/021978	PCT/US2003/025833
<400>	954	
	tgtt ttctggatcc	20
<210>		
<211>		
<212>	artificial	
\Z13/	altilitai	
<220>		
	human ESM-1 antisense	
<400>	955	
tcttca	gtgt tactatacac	20
<210>		
<211>		
	artificial	•
12201	W-0	
<220>		
<223>	human ESM-1 antisense	
	956	•
taattt	gact cactgcggtc	20
<210>	957	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	0.5	
	957	20
ttetee	tgct cttaagtctt	20
<210>	958	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	Normal and the second	
<223>	human ESM-1 antisense	
<400>	958	
	gagg tggcatacgt	20
	2-22 - 23244442	20
<210>	959	
<211>	20	
<212>		
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	959	
	atgt tttctgctga	20
		·
<210>	960	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	960	
<400>	tcac ttcaaataaa	20
agecee		
<210>	961	•
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\223 /	Italian Lot. 2 and 2001-00	
<400>	961	
cgctct	tcat gtttcccagc	20
<210>		
<211> <212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
400	000	
<400>	962 accg cataattatt	20
cagicc	accy cacauccucc	
<210>	963	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
12237		
<400>	963	
cgccct	:gcag_cgcacactcg	20
	0.64	
<210>	96 4 20	
<211><212>	DNA	
<213>	1	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>		20
tacatg	tact tatgctatat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tttaac	aaac acatacaagt	20
<210>	966	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
getgtt	tgtt actcaaattt	20
<210>	967	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	967	
cctttt	gaaa ttgctctcag	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	968	
	ttat ttataaaaat	20
acacac		20
<210>	969	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	969	
	eata ggtttttatt	20
ougugo.	3300000	
<210>	970	
<211>		
<212>		
	artificial	
\Z13 /	altilitat	
<220>		
	human ESM-1 antisense	
\ZZ3 /	Human Bon-1 and Sense	
<400>	970	
	ccc tctgttgctc	20
acaagg		
<210>	971	
<211>		
<212>		
	artificial	
(213)	altilitat	
<220>		
	human ESM-1 antisense	
42237	Human ESM-1 and Sense	
<400>	971	
	tta aataaggtcc	20
cctatg	actaaggeee	
<210>	972	
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
<223>	Itulian Poli-1 and Sense	
<400>	972	
	ttca aatatactcc	20
gattet	tica aatataceee	
<210>	973	
<211>	20	
<211>	DNA	
	autificial	
<213>	dictiticia: ,	
<220>		
<223>	human ESM-1 antisense	
(223)	numan Bam-1 and bende	
<400>	973	
	ctaa gattctttca	20
curging	claa yacceeca	
<210>	974	
<211>		
<212>		
<213>	artificial	
000		
<220>	homes FOW 1 antigongo	
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	974	
	gca gctttacatt	20
_		
07.0	0.75	
	975 20	
	20 DNA	
	artificial	
4213 2	ar ctrrozwa	
<220>		
<223>	human ESM-1 antisense	
.4005	0.7.5	
	975 cca tgcctgagac	20
acyccac		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	976	
	tgc agataccaaa	20
cagter	tege agacaccau	
<210>	977	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	977	20
acagtc	tttg cagataccaa	
<210>	978	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
10007		
<400>		20
tcacaa	cttc ttctctcaca	20
<210>	979	
<211>		
<212>	•	
	artificial	
<220>		

<223> human ESM-1 antisense

WO 2	2004/021978	PCT/US2003/025833
<400>	979	
aaaatag	agc cttctctcag	20
<210>	980	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	ı	
<223>	human ESM-1 antisense	•
<400>	980	
	gtg ttgaacaatc	20
- 33 3 -	,	
<210>		
<210> <211>		
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 and some	
<400>	981	20
attaca	tgta cttatgctat	20
<210>	982	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	982	20
taaata	aggt ccctctgttg	
<210>	983	
<211>		
<212>		,
(213)	arcificad	
<220>		
<223>	human ESM-1 antisense	
<400>	983	
	gcact tatgtttaaa	20
	y	
.010	004	
<210> <211>		
<211>		
	artificial	
<220>	haman DOM 1 ontigence	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583	3
<400>	984		
ttttcat	acc ttaaattgaa	20	
<210>	985		
<211>	20		
	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	985	20	
cctaaga	aca tctagtacaa		
<210>	986		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	986 ttca ggcattttcc	20)
gggaat	cea ggeaceece		
<210>			
<211>			
<212>	DNA artificial		
<2137	arcificat		
<220>			
<223>	human ESM-1 antisense		
400-	987		
<400>	attt caggcatttt	20)
agggga	acce daggedeses		
	988		
<211>	20 DNA		
<212> <213>	DNA artificial		
\2±0>	41 011 101 41 1		
<220>			
<223>	human ESM-1 antisense		
<400>	988		
	ccag atgccatgtc	2	0
55550			
<210> <211>	989		
<211>	20 DNA		
<213>			
<220>	1 -av 1		
<223>	human ESM-1 antisense		

wo 2	2004/021978	PCT/US2003/025833
<400>	989	
	atg cattcgaata	20
<210>	990	
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	990	
	atct acatgcattc	20
<210>	991	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
-400-	991	
	caac attaatgtac	20
<210>	002	
<211>		
<212>		
	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
<400>		20
cagcac	ttat gtttaaataa	
	993	
<211> <212>	20 DNA	
<213>		•
<220>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	993	20
agttga	acatg ttttctgctg	20
<210>	994	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	and the second s	

WO 2004/021978		PCT/US2003/025833
<400> tgcctga	994 agac tgtgcggtag	20
<210>	995	
	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	995	
	cagc cccgggccac	20
	005	•
	996	
<211> <212>		
	artificial	
\Z13/	arcircaar	
<220>		
<223>	human ESM-1 antisense	
<400>	996	
	ctca gccccgggcc	20
cgucuo	500m	
<210>		
<211> <212>		
	artificial	
\Z13 /	ar criticiar	
<220>		
<223>	human ESM-1 antisense	
<400>	997	
	tgca ggtctctctg	20
ggcagc	egea ggeeceeeg	
<210>	998	
<211>	20	
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	000	
<400>		20
ccctcg	tttt ctggatccac	20
<210>		
<211>		
<212>	DNA artificial	
<213>	arciticiar	
<220>		
-222	human ESM-1 antisense	

wo a	2004/021978	PCT/US2003/025833
<400>	999	
	attt aacaaacaca	20
J		
.010-	1000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1000	
	cata ccttaaattg	20
010	1001	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1001	
ttcaaai	tata ctcctaattc	20
-210-	1000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1002	
tttatt	gaac aataataaac	20
	•	
<210>	1002	
<211>	1003	•
<211>	20	
<213>	DNA artificial	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1003	
ctcttg	cagc gcgggctgct	20
<210>	1004	
<211>	20	
<212>	DNA	
<213>	artificial	
.225/		
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	1004	
ctcago	cccg ggccacactt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12-07	idmai Dii i ancibondo	
<400>	1005	
atctcc	agat gccatgtcat	20
.010		
<210>		
<211>		
<212>	artificial	
\213 >	altilitiai .	
<220>		
<223>	human ESM-1 antisense	
<400>	1006	
tcaggg	gttt tctggttgtt	20
<210>	1007	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1007	
	1007	
acatca	gcag ccttttgaaa	20
<210>	1008	
<211>	20	
<212>		
<213>	artificial	
000		
<220>	homes Figure 1 and 1 and 1	
<223>	human ESM-1 antisense	
<400>	1008	
	tttcctatgc	20
	-	20
<210>	1009	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	TOWN TOTAL T CHICADOMISC	

wo	2004/021978	PCT/US2003/025833
<400>	1009	
	atacg ttaaagctat	20
	<u> </u>	20
010		
<210> <211>	1010	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400.	1010	
<400>		
acacac	cacac aaaccaccag	20
<210>	1011	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207	namen por i ancidense	
<400>		
ctaacc	attt tcaacaaata	20
<210>	1012	
<211>		
<212>		
<213>	artificial	
<220>	No.	
<223>	human ESM-1 antisense	
<400>	1012	
	ttga catgttttct	20
	· •	20
<210> <211>		
<212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	•
<400>	1013	
	tttt aaaacaaaac	
		20
<210>	1014	
<211>	20	
<212> <213>		•
<413>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978	PC1/US2003/025833
<400> 1014	
cactoggoag cagooacagt	20
2210. 1015	
<210> 1015 <211> 20	
<211> 20 <212> DNA	
<212> DNA <213> artificial	
(213) artificial	
<220>	
<223> human ESM-1 antisense	
<400> 1015	
gaaggggaat ttcaggcatt	0.0
	20
<210> 1016	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 1016	
aaatagagcc ttctctcaga	
	20
<210> 1017	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 1017	
ctacatgcat tcgaatattt	
	20
<210> 1018	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	
<400> 1018	
ttaacaaatc tacatgcatt	20
	23
<210> 1019	
<211> 20	
<212> DNA	
<213> artificial	
<220>	
<223> human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1019	
tttaa	caaat ctacatgcat	20
	_	20
	1020	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	1020	
aaatt	gctct cagttcaaag	20
	·	
<210>	1021	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1021	
ctctga	aggtg gcatacgtta	20
	· · · · · ·	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	homes was a	
<223>	human ESM-1 antisense	
<400>	1022	
	ccac cagtgggtaa	
Cucuu	couc cagogggaa	20
<210>	1023	
<211>	-	
<212>		
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1023	
tttcaa	atat actcctaatt	20
<210>	1024	
<211>	20	
<212>		
<213>	artificial	
<220>		
<220> <223>	human ESM-1 antisense	
<i>></i>		

WO 2	004/021978	PCT/US2003/025833
<400> cttaaa	1024 caag ttcttcactt	20
	1025	
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1025	
acaacto	ctgt tggccaactt	20
<210>		
<211>		
<212>	artificial	
~213/	ar or restar	
<220>		
<223>	human ESM-1 antisense	
<400>	1026	
ttttati	gaa caataataaa	20
<210>	1027	
<211>		
<212>	DNA artificial	
\Z13 /	arcificiai	
<220>		
<223>	human ESM-1 antisense	
<400>		
ggtcag	cage aagaegetet	20
<210>	1028	
<211>	20	
<212> <213>	DNA artificial	
\Z13/	arciriotar	
<220>		
<223>	human ESM-1 antisense	
<400>	1028	
tecegte	ccc ctgtcacaga	20
<210>	1029	
<211>		
<212>	DNA artificial	
~213>	arciriciar	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02	5833
<400>	1029		
	aaga aggggaattt	2	0
<210>	1030		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
	1030	2	0
taacaa	acac atacaagtgt	2	. 0
<210>	1031		
<211>			
<212>	DNA artificial		
(213)	al Ciliciai		
<220>			
<223>	human ESM-1 antisense		
<400>	1031		
	ttac ctaaattgca	2	0 20
5 . 5	•		
<210>	1032		
<211>			
	artificial		
<220> <223>	human ESM-1 antisense		
(223)	Indian Edit-1 difference		
<400>	1032	_	
agggct	aaat attttatttc	2	20
<210>	1033		
<211>	20		
<212>			
<213>	artificial .		
<220>			
	human ESM-1 antisense		
<400>	1033 aggg ctaaatattt	:	20
caayya	ayyy ccaaacaccc	•	
<210>			
<211> <212>			
	artificial		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
<220>			
<223>	human ESM-1 antisense		

wo 2	2004/021978	PCT/US2003/025833
<400>	1034	
	gttg ttttattttg	20
-010-	1025	
<210> <211>		
<212>		
	artificial	
~2132	arcii ci i	
<220>		
<223>	human ESM-1 antisense	
<400>	1035	
taacaca	attt atttataaaa	20
.010.	1026	
<210>		
<211> <212>		
	artificial	
(213)	alciliciai	
<220>		
	human ESM-1 antisense	
<400>	1036	
ggataat	taaa tttatcatgc	20
.010-	1027	
<210> <211>		
<211>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	1037	
agtcaca	agca cttatgttta	20
<210>	1038	
<211>	20	
<212>	DNA	
<213>	artificial	
72237	41-011-014-0	
<220>		
<223>	human ESM-1 antisense	
<400>	1038	
ttttaca	aaac ctcctaaaaa	20
<210>	1039	
<211>	20	
<212>	DNA	·
<213>	artificial	
	- <b>/</b>	
<220>	•	
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/02583	
<400>	1039		
	ccac acacattcac	20	
<210>	1040		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1040		
agtcca	ccgc ataattattg	. 20	
<210>	1041		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1041		
	gaag aaggggaatt	20	
<210>	1042		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
400	1040		
<400>	1042 gcct tctctcagaa	20	
aacaya	geet teteteagua		
010	1043		
<210> <211>	1043 20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	1043		
cgaata	ttta acaaacacat	20	
<210>	1044		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
	1044 agaa gctacctacc	20
<210><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> agctgt	1045 ttgt tactcaaatt	20
<210> <211> <212> <213>	20	
<223> <400>	human ESM-1 antisense	
tttacc	ttca tacacacaca	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
	1047 aggg aagatgactt	20
<211> <212>	1048 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tatggg	1048 tagg gaagatgact	20
	20	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1049	
aagtcad	cagc acttatgttt	20
<210>	1050	
<211>		1
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1050	
cgaagto	caca gcacttatgt	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237		
<400>	1051	
cttttac	caaa cctcctaaaa	20
	1052	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1052 ·	
aacagct	ttat gcagctttac	20
<210>	1053	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
\223/	Hallett Hort I alletoelibe	
<400>	1053	
acgetet	ttca tgtttcccag	20
_		
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1054	
	rtgca ggcacgagga	20
<210>	1055	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1055	
ctgcaa	tcca tcccgaaggt	20
<210>	1056	
<211>		
<212>	DNA	
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
<400>	1056	
cggcag	catt ctctttcaca	20
<210>		
<211>		
<212>	DNA artificial	
~213/	diciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1057	
atattt	aaca aacacataca	20
<210>	1058	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
400		
<400>	1058 tcaa agctgtttgt	20
ccagt	ccaa agoogoogo	20
	****	
<210>		
<211> <212>		
	artificial	
<220>	human TOM 1 ambigones	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1059	
	acc cgggaactac	20
uouggoo		20
<210>		
<211>		
<212>		
<213>	artificial	
000		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1060	
	gee teeggetegg	20
	3 33 32	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1061	
tcccago	etge eteeggeteg	20
<210>	1062	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	<u>-</u>	20
agcagca	aaga cgctcttcat	20
<210>	1063	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>	have were the section of	
<223>	human ESM-1 antisense	•
<400>	1063	
	cacc gcataattat	20
<u> </u>	<u>-</u>	
<210>	1064	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1064	
ggccaca	ctt catgccatcc	20
	`	
<210>	1065	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1065	
ctggcag	sttg caggtctctc	20
		•
<210>	1066	
<211>	20	
<212>	DNA	
<213>	artificial	
-000-		
<220>	human ESM-1 antisense	
\2237	italian bon i anoromo	
<400>	1066	
gaatatt	gga agaaggggaa	20
<210>	1067	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000		
<400>	1067	•
ggcagca	attc tctttcacaa	20
<210>	1068	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1068	
ttaacaa	aaca catacaagtg	20
<210>	1069	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1069	
ttcgaa	tatt taacaaacac	20
<210>	1070	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1070	20
gggcta	aata ttttatttcc	20
<210>	1071	
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
(2237	numan Bbr I and I bened	
<400>	1071	
tgtgtt	tcct atgccccaga	20
<210>	1072	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1072	
	tete tgaggtggea	20
J		
<210>	1073	
<211><212>	20	
<212>	DNA artificial	
\Z13/	42 002 004 0	•
<220>		
<223>	human ESM-1 antisense	
	1000	
<400>	1073	20
acaaac	cacc agtgggtaaa	20
<210>	1074	
<211>	20	
<212>	DNA artificial	
<213>	ar caractar	
<220>		
	human ESM-1 antigence	

WO 20	04/021978	PCT/US2003/025833
<400>	1074 att tataaaaata	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400>	1075	
gacattt	ttt gaaatccaga	20
<211> <212>		
<220>		
	human ESM-1 antisense	
<400>	1076	20
guugu	geta agattette	20
<210>		
<211> <212>		
	artificial	
(213)	altiticial	
<220>		
<223>	human ESM-1 antisense	
<400>	1077	
	geet tecacacaca	20
<210>	1078	
<211>	20	
<212>	DNA	•
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
\2237	Italian 1911 1 and 199190	
<400>		
ggtctt	tgct ggtgggaagc	20
<210>	1079	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/025833
<400>	1079	
	ctct tcatgtttcc	20
J J	•	
<210>	1080	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
~2237	namar ibri i arciberbe	
	1080	
cccgtc	cccc tgtcacagat	20
<210>	1081	
<211>		
<211> <212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1081	
aagggg	aatt tcaggcattt	20
<210>	1082	
<211>		
<212>		
	artificial	
12202		
<220>		
<223>	human ESM-1 antisense	
<400>	1082	20
accegg	cage attetette	20
<210>		
<211>	20	<b>)</b>
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<b>42237</b>	Iluman EDM-1 and Edense	
<400>	1083	
acaato	acga aaatagagcc	20
.010	1004	
<210>	1084	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 1084	
aata	ttttat ttcccactcc	
		20
<210:	> 1085	
	> 20	
	> DNA	
<213:	> artificial	
<220>		
<223	human ESM-1 antisense	
	1085	
gttac	tcaaa tttccataag	20
		20
-210-	1086	
<211>		
	DNA	
	artificial	
1213/	alcilicial	
<220>		
	human ESM-1 antisense	
	namen Bon-1 and sense	
<400>	1086	
	acceg ggaactacat	
33	(	20
	1087	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aacaca	attta tttataaaaa	20
-		
<210>	1000	
<211>		
<212>	DNA	
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	1088	
acctta	aatt gaaaattcac	
	-	20
<210>	1089	
<211>	20	
<212>		
<213>	artificial	
<220>		
<220> <223>	human Box 4	
<223>	human ESM-1 antisense	

wo:	2004/021978	 PCT/US2003/025833
<400>	1089	
ctttca	aata tactcctaat	20
<210>		
	20	
<212>	artificial	
\Z13/	arcificat	
<220>		•
<223>	human ESM-1 antisense	
	1000	
	1090 ttca ccaaaaggat	20
uauccc	cca ccaaaggac	
	1091	
<211>		
<212>	artificial	
(213)	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	1003	
	aact cttcaccaaa	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1092	
	ctct cacaatattg	20
	-	
	1000	
<210> <211>	1093	
<212>	DNA	
<213>		,
<220>	human ROM 1 anti-tames	
<223>	human ESM-1 antisense	
<400>	1093	
gtacat	caaa gtcaaagaac	20
<210>	1094	
<211>		
<212>		
<213>	artificial	
-000		
<220> <223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
	1094 atca aagtcaaaga	20
<210> <211>	20	
<212> <213>	artificial	
<220> <223>	human ESM-1 antisense	
<400>	1095 caaa gccaaaaaa	20
<210>		
<211>		
<212>	artificial	
(213/	arcificat	·
<220>		
<223>	human ESM-1 antisense	
<400>	1096	
tgactt	ttcc caaagccaaa	20
		•
<210>	1097	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1097	20
gcccc	tgaa attgctctca	20
<210>		
<211><212>	DNA	
<213>		
<220>	human ESM-1 antisense	
<423>	numan ESM-1 antibense	
<400>	1098	
cataca	caca caaaccacca	20
<210>		
<211>		
<212>	DNA artificial	•
<213>	ar crrictar	
<220>		
-222	human ESM-1 antigence	

M	O 2004/021978	PC 1/U52UU3/U25833
<40	0> 1099	
	aataagg tccctctgtt	20
CCa	aacaagg cooccogos	
	. 1100	
	0> 1100	
	1> 20	
	2> DNA ,	
<21	3> artificial	
<22	0>	
<22	3> human ESM-1 antisense	
<40	0> 1100	
qaq	atatttc ctaagaacat	20
55	<b>.</b>	
<21	0> 1101	
	1> 20	
	2> DNA	
	3> artificial	
<21	3> alciliciai	
0.0	•	
<22		
<22	3> human ESM-1 antisense	
	0> 1101	20
tga	gatattt cctaagaaca	20
	0> 1102	
<21	1> 20	
	2> DNA	
<21	3> artificial	
<22	0>	
<22	3> human ESM-1 antisense	
<40	0> 1102	
tqc	ccaactt caagaataaa	20
.52	•	
<21	0> 1103	
	1> 20	•
	2> DNA	
	3> artificial	
<b>\Z</b> 1	3) ditilities	•
<22	105	
	3> human ESM-1 antisense	
<22	3> numan Bar-1 and sense	
	0 1102	
	00> 1103	20
tca	gccccgg gccacacttc	20
_		
	.0> 1104	
	.1> 20	
<2:	l2> DNA	
<23	3> artificial	
<22	20>	
<22	23> human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1104	
	gee eegggeeaca	20
<210>	1105	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1105	
<400>	1105 caaa cacatacaag	20
acceaac	ada cacacacaa	
<210>	1106	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
1000		
	1106	22
catgta	agat tacctaaatt	20
<210>	1107	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1107	
	gggc taaatatttt	20
uugguu	5550 cmmonvers	
		•
<210>	1108	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
1000		
<400>	1108	20
tcagtt	caaa gctgtttgtt	20
<210>	1109	
<211>		
<212>		•
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833	
<400>	1109		
	gcct tttgaaattg	20	
<210>	1110		
<211>			
<212>			
<213>	artificial		
222			
<220>			
<223>	human ESM-1 antisense		
<400>	1110		
	Ettt cctcaagagg	0.0	
agaccc	seec ceecaayayy	20	
<210>	1111		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
	1111		
ttcata	cctt aaattgaaaa	20	
<210>	1110		
<211>			
<212>			
	artificial		
12207	WI 011101WI		
<220>			
<223>	human ESM-1 antisense		
	1112		
ctcctaa	ttc cacctatatt	20	
<210>			
<211>	20		
<212>			
<213>	artificial	•	
<220>			
	human ESM-1 antisense		
\2237	Indian Born I difficuse		
<400>	1113		
	ata aaatacttct	20	
<210>			
<211>			
<212>			
<213>	artificial .		
-220-			
<220>	human FCM_1 antigence		

WO 2004/021978		PCT/US2003/025833	
<400>	1114		
	ctta tgcagcttta	20	
_	• •		
<210>			
<211>	•		
<212>	artificial		
(2137	alciliciai		
<220>			
	human ESM-1 antisense		
<400>	1115	•	
cctttt	aaaa caaaacctaa	20	
<210>	1116		
<211>			
<212>			
	artificial		
	•		
<220>			
<223>	human ESM-1 antisense		
	1116		
teettt	taaa acaaaaccta	20	
<210>	1117		
<211>	20		
<212>			
<213>	artificial		
.000			
<220>	human ESM-1 antisense		
<b>42237</b>	numan ESM-1 and sense		
<400>	1117		
	gcag ccgtgaccca	20	
<210>	1118		
<211><212>	20		
<213>	DNA artificial		
\213/	altilitial		
<220>			
<223>	human ESM-1 antisense		
<400>	1118		
tctgca	atcc atcccgaagg	20	
<210>	1119		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 2004/021978		PCT/US2003/025833
<400>	1119	
agaaggg	ggaa tttcaggcat	20
		•
<210>	1120	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1120	
aatcac	gaaa atagagcctt	20
<210>	1121	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	<del></del>	
gttggct	gtg tgttgaacaa	20
<210>	1122	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttetgga	atec accatgeate	20
<210>	1123	
<211>	20	
<212> <213>	DNA artificial	
<213>	alciliciai .	
<220>		
<223>	human ESM-1 antisense	
400	1100	
<400>	1123 :caa agtcaaagaa	20
tgtaca	codu agecadagaa	20
<210>	1124	
<211> <212>	20 DNA	
<212><213>		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/025833
<400>	1124	
gttgtt	ttat tttgactttt	20
<210>		
<211>		
<212>		
<213>	artificial	
000		
<220>	homes TOM 1 and decree	
<223>	human ESM-1 antisense	
<400>	1125	
	gttc aaagctgttt	20
CCCCC	gece adagecycec	20
<210>	1126	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1126	
tggcat	acgt taaagctatt	20
<210>	1127	
<211>		
<212>		
	artificial	
1213/	WI CILIVEME	
<220>		
<223>	human ESM-1 antisense	
<400>	1127	
atagag	tcat aggtttttat	20
010	1100	
<210>		
<211><212>	20 DNA	
	artificial	
\215/	arcificial	
<220>		
	human ESM-1 antisense	
<400>	1128	
atgttt	aaat aaggtccctc	20
<210>	1129	
<211>	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
~~~>		

WO 20	004/021978	PCT/US2003/025833
<400>	1129	
gtcacag	gcac ttatgtttaa	20
-	·	
	1130	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\ZZ3/	Human Bon-1 and Bense	
<400>	1130	
	tta aattgaaaat	20
	J	
<210>	1131	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1131	20
tttcata	acct taaattgaaa	20
<210>	1132	
<211>		
<212>		
	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1132	•
gctaaga	attc tttcaaatat	20
	•	
<210>	1133	
<211>	20	
<212>	DNA	
<213>	artificial	
12207		•
<220>		
<223>	human ESM-1 antisense	
<400>	1133	
cagcaag	gacg ctcttcatgt	20
-210-	1124	
<210> <211>	1134	
<211>	20 DNA	
<212> <213>	artificial	
~ &13>	UT (1110000	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1134	
	agtc gtcgagcact	20
<210>	1135	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tcatgc	catc catgeetgag	20
<210>	1126	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		
cagccc	cggg ccacacttca	20
<210>	1137	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aaaatg	rttgg ctgtgtgttg	20
<210>	1138	
<211>		
<212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>		20
acatca	aagt caaagaacta	20
<210>	1139	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/025833	
<400>	1139		
tacato	caaag tcaaagaact	20	
010	1140		
<210>			
<211> <212>			
	artificial		
12201	42 02220242		
<220>		·	
<223>	human ESM-1 antisense		
<400>			
ctctta	agtc ttcattccat	20	
<210>	1141		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
.400.	1141		
<400>	aagt cttcattcca	•	
getet	aage eeccaceca	20	
<210>	1142		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
\223/	numan ESM-1 andisense		
<400>	1142		
tatctc	tgag gtggcatacg	20	
010	****		
<210> <211>			
<212>	DNA	•	
<213>	artificial		
1	,		
<220>			
<223>	human ESM-1 antisense		
<400>	1143		
cotttt	acaa acctcctaaa	20	
<210>	1144		
<211>	20		
<212>			
<213>	artificial		
<220>	human EGW 1 antiganes		
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400	1144	
atati	tccta agaacatcta	22
		20
.01.0		
<210; <211;	1145	
	DNA	
	artificial	
	WI GITT CIUI	
<220>		
<223>	human ESM-1 antisense	
	1145	
cactt	caaat aaaatacttc	20
<210>	1146	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1146	
	atgtc cttttaaaac	
	- Occedand	20
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tgtttc	ccag ctgcctccgg	20
<210>	1148	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1	
<223>	human ESM-1 antisense	
<400>	1148	
	Egtt gagggcagtc	
- 3	0 · · · D.:20200200	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	1149	
attggaa	agaa ggggaatttc	20
<210>	1150	
<211>	20	
	DNA	
	artificial	
<220>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	1150	
	ggaa gaaggggaat	20
	1151	
<210> <211>		
<211>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1151	
	cagc cgggatcagc	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1152	
	acaa acacatacaa	20
<210>	1153	
<211> <212>	20 DNA	
<213>	artificial	•
	·	
<220>		
<223>	human ESM-1 antisense	
<400>	1153	
	etctc agttcaaagc	20
<210>	1154	
<211><212>	20 DNA	•
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>		20
ttatet	ctga ggtggcatac	
<210>	1155	
<210> <211>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
(223)	Italian Bot. I discussion	
<400>		20
ttacct	tcat acacacaa	
<210> <211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
acattt	attt ataaaaatat	20
		•
<210>		
<211>		
<212>	DNA artificial	
<213>	artiliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1157	
atatgg	gtag ggaagatgac	20
<210>	1158	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1150	
	tcca cctatatttt	20
Jocaan		
<210>	1159	
<211>		
<212>		
	artificial	
-220-		
<220>	human EGM_1 antigense	

WO 2	004/021978	PCT/US2003/025833
<400>	1159	
	ttc aaataaaata	20
		•
<210>	1160	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1160	••
ttggcca	act tcaagaataa	20
<210>	1161	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1161	
	cctt ccacacacat	20
<210>	1162	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1162	
	getg ceteeggete	20
cccca	goog	
-010-	1163	
<210>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
(220)		
<400>		20
tgcago	gcac actoggoago	20
<210>	1164	
<211>	20	
<212>	DNA	
<213>	artificial	
-220-		

<223> human ESM-1 antisense

wo	2004/021978	PCT/US2003/025833
<400>	1164	
cagaaa	tcac agccgggatc	20
<210>	1165	
<211>		
<212>		
<213>	artificial	
<220>	homes was a sub-linear	
<223>	human ESM-1 antisense	
<400>	1165	
	ttga ctcactgcgg	20
<210>		
<211>		
<212>	artificial	
\213 /	altilitai	
<220>	•	
<223>	human ESM-1 antisense	
<400>		
aactaa	tttg actcactgcg	20
<210>	1167	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
10207		
<400>	1167	
ttctgg	ttgt tttattttga	20
401 Os		
<210> <211>	1168 20	
<212>		
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	•
<400>	1160	
	ataa gcttcaaaca	20
20000		20
<210>	1169	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1169	
tacatca	agca gccttttgaa	20
.010-	1170	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1170	20
tttate	cctg aggtggcata	20
<210>	1171	
<211>		
<212>	DNA	
<213>	artificial	
<220>	Inches Tay 4 and because	
<223>	human ESM-1 antisense	
<400>	1171	
	ataa taaatttatc	20
	,	
<210>	1172	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1172	
attatgg	gata ataaatttat	20
.010.	1172	
<210> <211>	1173	
<212>	DNA	
<213>	artificial	
	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1173	0.0
gaacat	ctag tacaacagtc	20
<210>	1174	
<211>	20	
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
\443 2	HORIGHT POLI-T CHICTDENIDE	

WO 2	004/021978	PCT/US2003/025833
<400>	1174	
caactct	gtt ggccaacttc	20
<210>	1175	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	.155	
<400>	1175 ggta gcaagtttct	20
cegeges	,50u 50uu5v0vv	
<210>		
<211> <212>		
	artificial	
		•
<220>	Tou 1	
<223>	human ESM-1 antisense	
<400>	1176	
ccacac	ttca tgccatccat	20
<210>	1177	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1177 atgc catgtcatgc	20
cccag	acge caegeoasge	
	1178	
<211> <212>	20 DNA	
<213>		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and Sense	
<400>	1178	20
ggattt	aacc atttcctcat	20
<210>	1179	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1179	
gctgtgt	cgtt gaacaatcac	20
<210>	1180	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1180	20
aattac	atgt acttatgcta	20
<210>	1181	
<211>		
<212>		
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
~2257	Italian Dil I allocation	
<400>	1181	
aaatct	acat gcattcgaat	20
<210>	1182	
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	Ilulian Esm-1 ancibense	
<400>	1182	
tgggta	ggga agatgacttg	20
.010-	1102	
<210><211>	1183 20	
<212>	DNA	
<213>	artificial	•
<220>	. = = = = = = = = = = = = = = = = = = =	
<223>	human ESM-1 antisense	
<400>	1183	
	gaaa tccagagtga	20
<210>	1184	
<211><212>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1184	
atttt	tgaa atccagagtg .	20
		20
<210>	1185	
<211>		
<212>		
<213>	artificial	
<220>	Annual management of the second secon	
<223>	human ESM-1 antisense	•
<400>	1185	
	tcat accttaaatt	
Couce	coat accetaaate	20
<210>	1186	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aaatat	actc ctaattccac	20
<210>	1187	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1187	
ttgtgc	taag attettteaa	20
<210>	1188	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1188	
atttcci	aag aacatctagt	20
-210-	1100	
<210> <211>	1189	
<211>	20 DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	the state of the s	

WO 20	004/021978	PCT/US2003/025833
<400>	1189	
	ttaa ataagttott	20
<210>	1190	
<211>		
<212>		
<213>	artificial	
.000		
<220> <223>	human ESM-1 antisense	
<223>	numan Esm-1 ancisense	
<400>	1190	
ctttta	aaac aaaacctaac	20
<210>	1191	
<211>		
<212>		
<213>	artificial	
<220>	human EGM 1 anti-congo	
<223>	human ESM-1 antisense	
<400>	1191	
	tttt attgaacaat	20
	1100	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1192	
	acac ctcagccccg	20
~55~~5		
<210>	1193	
<211>	20	
<212><213>	DNA artificial	
(213)	WE CIEIOIWI	•
<220>		
<223>	human ESM-1 antisense	

<400>	1193	20
CaatCC	atcc cgaaggtgcc	20
<210>	1194	
<211>	20	
<212>	DNA artificial	
<213>	q1C111C1q1	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1194	20
atcacag	ccg ggatcagcgt	20
<210>	1195	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1195 :taa caaacacata	20
gaacac	caa caaacacaca	
<210>		
<211>		
<212>	artificial	
~2.437	<u> </u>	
<220>		•
<223>	human ESM-1 antisense	
<400>	1196	
	caaa totacatgca	20
<210>		
<211> <212>		
	artificial	
<220>	. Toy 1 auditions	
<223>	human ESM-1 antisense	
<400>	1197	
ttcagg	ggtt ttctggttgt	20
<210>	1198	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>	human ESM-1 antisense	
\227/	Tundi Dor. 2 discourse	
<400>		20
aactta	tttt cataccttaa	20
<210>	1199	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1199 catct agtacaacag	20
J		20
<210>	1200	
	20 ·	
<212>		
	artificial	
<220>	homen TOW to make a many	
<223>	human ESM-1 antisense	
<400>	1200	
tttaca	ttca aaggccttcc	20
<210>	1201	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tttccc	aget geeteegget	20
<210>	1202	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	•	
<400>		
courge	ageg egggetgett	20
<210>	-	
<211>		
<212>	artificial	
\215/	arcilletar ,	
<220>		
<223>	human ESM-1 antisense	
<400>	1203	
	ccgg cagcattctc	20
3330	555	20
-010	1004	
<210> <211>	1204	
<211> <212>		
	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
400>	1204	_
ggctgt	gtgt tgaacaatca	20
<210>	1205	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1205	
	ctca gttcaaagct	20
	gereamy.	
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1206	
ttagat	ttat ctctgaggtg	20
<210>	1207	
<211>		
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1207	20
cactca	ctgc tgtcacagtg	20
<210>	1208	
<211>	20	
<212><213>	DNA artificial	
<213>	arciliciai	
<220>		
<223>	human ESM-1 antisense	
.400-	1208	•
<400>	acag tegtegagea	20
5-49-6		
<210><211>		
<211>		-
	artificial	
<220>	harrier DOM 1 anti-conco	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833	
<400>	1209		
gccctg	cage geacactegg	20	
<210>	1210		
<211>			
<212>	DNA artificial		
<213>	arciliciai		
<220>			
<223>	human ESM-1 antisense		
<400>	1210		
	gata ccaaactctt	20	
<210>	1211		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1211		
	tgtc acagatgcct	20	
<210>	1212		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1212		
	ggga atttcaggca	20	
<210>	1213		
<211>	20		
<212>			
<213>	artificial	•	
<220>			
<223>	human ESM-1 antisense		
<400>	1213		
	caatt tggatcttca	20	
	,		
-210>	1214		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		

WO 2004/021978		PCT/US2003/025833	
<400>	1214		
aagaact	taat ttgactcact	20	
<210>	1215		
<211>			
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1215	20	
agattt	atct ctgaggtggc	20	
<210>	1216		
<211>			
<212>			
	artificial		
<220>	_		
<223>	human ESM-1 antisense		

	1216 ttac aaacctccta	20	
CLLCLL	ctac adacetecta	,-*	
<210>	1217		
<211>			
<212>	DNA		
<213>	artificial		
<220>	Name of Tax 1 and 1 and 1		
<223>	human ESM-1 antisense		
<400>	1217		
	tctg agatatttcc	20	
<210>	1218		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
\2257	Trained Don't and Total Control		
<400>	1218		
ttcatg	tttc ccagctgcct	20	
_	-		
<210>	1219		
<211>	20		
<212><213>	DNA artificial		
~ 4132	arciliciar		
<220>	•		
<223>	human ESM-1 antisense		

PCT/US2003/025833

WO 2	004/021978	PCT/US2003/025833
<400>	1219	
	iggg cagtccaccg	20
		•
<210>	1220	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1220	20
cacagu	gttg agggcagtcc	
<210>	1221	
<211>		
<212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	
42237	indical Box 1 difeasembe	
<400>	1221	
gaaggt	gccg tagggacagt	20
010	1000	
<210> <211>		
<211>	20	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1222	
	gggg aatttcaggc	20
gaagaa	9999	
<210>	1223	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1223	20
caatca	cgaa aatagagcct	20
<210>	1224	
<211>	20	
<212>	DNA	
<213>	artificial	
<220> <223>	human ESM-1 antisense	
<4437	Transti tibii-T attractibe	

WO 20	004/021978	PCT/US2003/025833
<400>	1224	•
	ata caagtgttca	20
<210>	1225	
<211>		
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1225	
aaagaad	ctaa tttgactcac	20
<210>	1226	
<211>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1226	
cacago	actt atgtttaaat	20
J	•	
<210>	1227	
<211>		
<212>		
	artificial	
72237		
<220>		
<223>	human ESM-1 antisense	
<400>	1227	
	catc tagtacaaca	20
caagaa	caco cagcacaaca	
<210>	1228	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1000	
<400>		20
aaaggc	cttc cacacacatt	20
<210>		
<211>	— -	
<212>	=	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 200	04/021978	PCT/US2003/025833
<400>	1229	
	tcaa aggcetteca	
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237	numan ESM-1 ancisense	
<400>	1230	
	aca ttcaaaggcc	
-	. 33 - 4	20
<210>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12257	nomen Bon-1 and sense	
<400>	1231	
	ttt cccagetgee	
_		20
<210>		
<211>		-
<212> 1		
<213>	artificial	
<220>	·	
<223>]	human ESM-1 antisense	
<400>		
gcttttg	cac tcactgctgt	20
		20
<210> 1	222	
	20	
<212> [
<213> a	ertificial	
	91110141	•
<220>		
<223> h	uman ESM-1 antisense	
	233	
cttgcago	gc gggctgcttt	20
<210> 1	234	
<211> 2		
<212> D		
	rtificial	
<220>		
<223> h	uman ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1234	
	gtag caagtttctc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1235	
ctgaata	attg gaagaagggg	20
<210>	1226	
<211>	•	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tctccag	gatg ccatgtcatg	20
<210>	1237	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1237	
	caa gtgttcagtc	20
ucucuc	and graceougee	20
<210>	1238	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	Tallett Bott I wild botto	
<400>	1238	
aatattt	aac aaacacatac	20
	•	
-21A-	1020	
<210>	1239	
	20 DNA	
<212>	artificial	
	~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1239	
caaaga	acta atttgactca	20
.010.	7040	
<210><211>		
<211>		
	artificial	
(213)	al ciliciai	
<220>		
<223>	human ESM-1 antisense	
<400>		
ttaagt	cttc attccatatc	20
<210>	1241	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
accage	agcc ttttgaaatt	20
<210>	1242	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1 man a colling	
<223>	human ESM-1 antisense	
<400>	1242	
	cgtt aaagctattt	20
33	- J J	
	1243	
<211>	20	
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>		
ggtggc	atac gttaaagcta	20
-010:	1244	
<210><211>	1244 20	
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1244	
ttgaca	tgtt ttctgctgaa	20
<210>	1245	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1245	
	gttg acatgttttc	20
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	1246	
<211>		
<212>		
<213>	arțificial	
<220>		
	human ESM-1 antisense	
1000		
<400>	1246	
tttcct	aaga acatctagta	20
-2105	1247	
<210><211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	7047	
	1247	20
ggccaa	cttc aagaataaaa	20
<210>	1248	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\L_L_J_	Hamar DDM I amorpoine	
<400>	1248	
aggtgt	gcag gcacgaggag	20
010	1040	
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1249	
ttagaa	ggct gacacctcag	20
.010-	1050	
<210>		
<211> <212>		
	artificial	
(213)	altilitial	
<220>		
<223>	human ESM-1 antisense	
. 4 0 0 .	1050	
<400>	taca tgcattcgaa	20
Caaacc	taca tycattegaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207		
<400>	1251	
ctaatt	tgac tcactgcggt	20
<210>	1252	
<211>		
<212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	1252	20
caacat	taat gtacatcaaa	20
<210>	1253	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>	1 max 1 ambinoma	
<223>	human ESM-1 antisense	
<400>	1253	
	aagc tacctaccaa	20
-55		
0.7.0	1054	
<210>		
<211> <212>		
<413>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400:	1254	
	accttc atacacacac	
	•	20
<210:	1255	
<211:		
	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
	2011 I difficiate	
<400>	1255	
	ctttc ctcaagagga	
5	occoo cccaagagga	20
<210>	1256	
<211>		
<212>		
	artificial	•
\21J/	arctricial	
<220>		
(223)	human ESM-1 antisense	
-100-	1256	
Laacc	atttt caacaaataa	20
.210.	1058	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400		
<400>		
atccag	agtg actcctataa	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1258	
ctaatt	ccac ctatatttta	30
		20
<210>	1259	
	20	
<212>	DNA .	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400:	> 1259	
aaaca	atgtcc ttttaaaaca	20
		20
	> 1260	
	20	
	DNA	
<213>	artificial	
-000		
<220>		
<223>	human ESM-1 antisense	
~400 >	1260	
	acact tcatgccatc	
99900	acact teatgecate	20
<210>	1261	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1261	
catco	cgaag gtgccgtagg	20
		-•
-210 -	1262	
<210>		
<211>		
	artificial	
\W.13/	arcificial	
<220>		
	human ESM-1 antisense	
	- Lancische	
<400>	1262	
gagaga	aaca aatctgttgg	20
		20
<210>		
<211>		
<212>		
<213>	artificial	•
-000		·
<220>	homes TOM a	
<223>	human ESM-1 antisense	
<400>	1263	
	accc gggaactaca	
<u>-</u> 55-0		20
<210>	1264	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PC1/US2003/025833
<400>	1264	
	acaa accaccagtg	20
<210>	1265	
<211>		
<212>		
	artificial	
\Z137	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1265	
	ggta gggaagatga	20
	55-u 55 5u u5ue5u	
<210>	1266	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1266	
tggata	ataa atttatcatg	20
	-	
<210>	1267	
<211>		
<212>		
	artificial	
<213>	artificiar	
<220>		,
<223>	human ESM-1 antisense	
-100>	1267	
		20
atygat	aata aatttatcat	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1268	
	ctat aattatggat	20
tgacto	ctat aactatyyat	20
0.1.0	1000	
	1269	
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1269 gttt tctgctgaaa	20
-		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1270	20
ctttac	attc aaaggccttc	20
<210>	1271	
<211>		
<212>		
	artificial	
	artiritar .	,
<220>		
<223>	human ESM-1 antisense	
<400>	1271	
gtcctt	ttaa aacaaaacct	20
•		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1272	
	catc aaagtcaaag	20
<210>	1273	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1273	
ggtaac	ccgg gaactacatc	20
<210>	1274	
<211>	20 .	
<211>	DNA	
<212><213>	artificial	
	artaratar	
<220>	human ESM-1 anticence	
ンツツマ	DUNNEL PRICE STELLING	

WO 20	04/021978	PCT/US2003/025833
<400>	1274	
	gatt tatctctgag	20
	,	
<210>	1275	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1275	
	naaa ccttatagag	20
-55-		
-210-	1076	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1276	
	aata aggtccctct	20
	33	
010	1055	
<210>		
<211><212>		
	artificial	
1020		
<220>		
<223>	human ESM-1 antisense	
<400>	1277	
	tca taccttaaat	. 20
<210>	1278	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	No. of the second	
<223>	human ESM-1 antisense	
<400>	1278	
	gact gtgcggtagc	20
_		
<210>	1270	
<211>	1279 20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1279	
	tcga atatttaaca	20
	_	
<210>	1200	
<210> <211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1280	
	cggg aactacatca	20
James	-555	
<210>	1281	
<211>		
<211>		
	artificial ·	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1281	
	tctt tcctcaagag	20
J	3 3	
<210>	1282	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1282	
gtttga	aaac cttatagagt	20
<210>	1283	•
<211>	20	
<212>	DNA	
<213>	artificial	
12257	ar or real artists and real artists are	
<220>		
<223>	human ESM-1 antisense	
<400>	1283	
gtgact	ccta taattatgga	20
	33	
<210>	1284	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1284	
	aag gtccctctgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	1 EGW 1 ambigongo	
<223>	human ESM-1 antisense	
<400>	1285	
	aat tgaaaattca	20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
42437	Indian Bon 1 discission	
<400>	1286	20
acaaac	ctcc taaaaactta	20
.010-	1207	
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	•	
<400>	1287	20
tacaaa	cctc ctaaaaactt	
<210>	1288	
<211>		
<212>	DNA	
<213>	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>		. 20
aaagtt	gaca tgttttctgc	
<210>	1289	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1289	
aacatg	tcct tttaaaacaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1290	
ggtgtg	cagg cacgaggagc	20
421As	1001	
<210> <211>		
<211>		
	artificial	
12137	arcificial	
<220>	·	
<223>	human ESM-1 antisense	
<400>		
actgtg	eggt ageaagttte	20
<210>	1292	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
. 4 0 0 -	1000	
<400>	1292 atcc atgcctgaga	20
catgee	acec acgeergaga	20
<210>	1293	
<211>	20	
<212>	DNA	
<213>	artificial	,
<220>		
<223>	human ESM-1 antisense	
<400>	1293	
	aaac tetteaceaa	20
J==400		20
<210>	1294	
<211>	20	
<212>		
<213>	artificial	
000		
<220>	human FGW 1 antigongo	
~443>	human ESM-1 antisense	

<400>	1294	
		20
tetetge	aat ccatcccgaa	
<210>	1295	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1295	
	etgt cacagatgcc	20
gecee	5050 000050050	
<210>	1296	
<211>,		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1296	
ggaaga	aggg gaatttcagg	20
<210>	1297	
<211>		
<212>		
-212>	artificial	
<213>	artificial	
.000.		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
<400>	1297	20
tacatg	catt cgaatattta	
<210>	1298	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
1		
<400>	1298	
	ctct gaggtggcat	20
accidi		
	1000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

PCT/US2003/025833

WO 2	004/021978	PC1/US2003/025833
<400>	1299	
	taat aaatttatca	20
		20
<210>	1300	
<211>		
<212>		
	artificial	
12207	410110141	
<220>		
	human ESM-1 antisense	
1227	Homan Pol-1 and Peube	
<400>	1300	
	ttaa attgaaaatt	20
	oou aooguaace	20
<210>	1301	
<211>		
<212>		
	artificial	
72207		
<220>		
	human ESM-1 antisense	
\ZZJ/	numan BBM-1 ancisense	•
<400>	1301	
	attt tcatacctta	20
uuuccc	· · · · · · · · · · · · · · · · · · ·	20
<210>	1302	
<211>		
	DNA	
	artificial .	
~213/	alciliciai .	
<220>		
	human ESM-1 antisense	
	TOTAL BOTT I CITCLEGIBE	
<400>	1302	
	ttcc acctatattt	20
		20
<210>	1303	
<211>	20	
<212>		
	artificial	
	ar crarcat	•
<220>		
<223>	human ESM-1 antisense	
2237	italian bon i ancibense .	
<400>	1303	
	gaac atctagtaca	20
coccaa	juud utotugtutu	20
<210>	1304	
<211>	20	
	DNA	
	artificial	
~~13>	GT CTTTCTGT	
<220>		
	human ESM-1 antigence	

WO 2	004/021978	PCT/US2003/02583	3
<400>	1304		
aactct	gttg gccaacttca	20)
<210>	1305		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	1305		
ttcccg	tccc cctgtcacag	20	ı
<210>	1306		
<211>			
<212>	DNA		
<213>	artificial		
-220-			
<220>	human ESM-1 antisense		
~2237	naman bon-1 ancidense		
<400>	1306		
cacago	eggg atcagegtgg	20	
<210>	1307		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>	1307		
aaacaca	itac aagtgttcag	20	
<210>	1308		
<211>	20		
<212>	DNA	•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1308		
gcattc	gaat atttaacaaa	20	
<210>	1309		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 anticence		

wo:	2004/021978		PCT/US2003/025833
<400>	1309		
	cat caaagtcaaa		20
caacgoo			
<210>	1310		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1310		
taaata	ttt atttcccact		20
<210>			•
<211>			
<212>	DNA		
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
	1311		20
aagctg	tttg ttactcaaat		
<210>	1312		
<211>			
<212>	DNA		
	artificial		
<220>	. more a sublemen		
<223>	human ESM-1 antisense		·
<400>	1312		20
gatatt	tcct aagaacatct		20
<210>	1313		
<211>	20	•	
<212>	DNA		
<213>	artificial		1
12207			
<220>			
<223>	human ESM-1 antisense		
<400>	1313		
	aaata attottaaat		20
caccy			
<210>	1314		
<211>			
<212>	DNA		
<213>			
<220>			
<223>			

<400>				
tectett	gca gcgcgggctg			20
<210>	1216			
<211>				
<212>				
<213>	artificíal			
<220>				
<223>	human ESM-1 antisense			
	1315			20
ccggcag	cat tetetteae			20
<210>				
<211>				
<212>				
<213>	artificial			
<220>				
<223>	human ESM-1 antisense			
		, e.,.		
	1316	•		~ ~
ttaacca	ittt cctcattacg			20
		: .		
<210>			•	
<211>				
<212>				
<213>	artificial			
			:	
<220>	_			
<223>	human ESM-1 antisense			
	1317			20
gttacta	atac acacacttt			20
			. •	
<210>				
<211>	20		•	
<212>	DNA			
<213>	artificial			
<220>				
<223>	human ESM-1 antisense			
<400>				20
tacctt	cata cacacaaa		•	20
-010	1210			
<210>				
<211>				
<212>		,		
<213>	artificial			
00-				
<220>			•	
<223>	human ESM-1 antisense			

WO 2004/021978

PCT/US2003/025833

Wo	2004/021978	PCT/US2003/025833
<400>	1319	
tatata	aata tttaccttca	20
<210>	1320	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
1000		
<400>	1320	
ttgaaai	tcca gagtgactcc	20
<210>		
<211>	20	
<212>		
<213>	artificial	
-220 -		
<220>	human ECM 1 antigongs	
<423>	human ESM-1 antisense	
<400>	1321	
cttcact	ttca aataaaatac	20
0.1.0	1000	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1322	
ttgcag	egeg ggetgetttt	20
<210>	1323	
<211>	20	
<212>	DNA	
<213>	artificial	
\Z13/	ar careorar	•
<220>		
<223>	human ESM-1 antisense	
<400>	1323	
ccattag	gaag gctgacacct	20
<210>	1324	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
	1324 Jaag gggaatttca	20
<210><211><211><212><213>	20	
<220>		
<223>	human ESM-1 antisense	
<400>	1325	
agaaat	caca gccgggatca	20
<210>	1326	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1206	•
	1326 :aca agtgttcagt	20
uucucu	aca agegeeeage	20
<210> <211>		
<211>		
	artificial	
<220> <223>	human ESM-1 antisense	
\223 >	numan ESM-I ancisense	
	1327	
ggttgtt	tta ttttgacttt	20
<210>	1328	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-4005	1220	
<400>	itca taggttttta	20
20.20303	,	20
	1000	
<210>	1329 20	
<211> <212>		
<213>	artificial	
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1329	
tccaga	agtga ctcctataat	20
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tctttc	aaat atactcctaa	20
<210>		
<211><212>		
	artificial	
.000		
<220> <223>	human ESM-1 antisense	
1201		
<400>		
acaacc	ctta aataagttct	20
.010.	1220	
<210> <211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1332	
gcagca	agac gctcttcatg	20
<210>	1333	
<211>	_*	
<212> <213>	DNA artificial	
(213)	arciiiciai ,	
<220>		
<223>	human ESM-1 antisense	
<400>		
tggtca	gcag caagacgctc	20
<210>		
<211><212>		
	artificial	
.000		
<220> <223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1334	
	aactc ttcaccaaaa	
		20
~210×	1335	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>		
<400>	1335	
	atgcc atgtcatgct	
_		20
<210>	1336	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1336	
	gttg gctgtgtgtt	20
		20
<210>	1337	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1337	
	atat tttatttccc	20
		20
<210>	1338	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1338	
	tato totgaggtgg	
	/ /	20
<210>	1220	
<211>	1339 20	
<212>	DNA .	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1339	22
atatata	aat atttaccttc	20
<210>		
<211>		•
<212>	artificial	
	artiliciai	
<220>		
<223>	human ESM-1 antisense	
	1340	
tttacaa	acc tcctaaaaac	20
<210>	1341	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1341	
tgttgag	ggc agtccaccgc	20
<210>	1342	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1342	20
agtgtt	gagg gcagtccacc	20
<210>	1343	
<211>		
<212>		
<213>	artificial ,	
<220>		
	human ESM-1 antisense	
<400>		00
acttca	egec atccatgect	20
<210>		
<211>		
<212>	artificial	
~217	4201110141	
<220>		

<223> human ESM-1 antisense

WO 20	04/021978	PCT/US2003/025833
<400>	1344	
cccgaag	gtg ccgtagggac	20
<210>	1345	
<211>	20 .	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1345	
aatcaca	gcc gggatcagcg	20
<210>	1346	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	•
<400>		
tgcatt	gaa tatttaacaa	20
<210>	1347	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1347	
tcaaag	ccaa agaactaatt	20
<210>	1348	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1348	
	taag cttcaaacat	20
<210>	1349	
<211>	20	
<212>	DNA .	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	-

WU Z	004/021978	FC1/U52003/025853
<400>	1349 caaa tatactccta	20
<210>	1350	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1350	
	tatt tcctaagaac	20
5-5-	j	
<210>	1351	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atactg	aaat aattottaaa	20
-210-	1250	
<210> <211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1352	
gttggc	caac ttcaagaata	20
<210>	1353	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1353	
gaqqaq	cgtg gtcagcagca	20
J JJ-3		
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
-222	human ESM-1 antisense	

	•
<400>	1354
	aaag ccaaaaaaaa
LLLCCC	aag ccaaaaaaa
	1255
<210>	
<211>	
<212>	
<213>	artificial
<220>	
	human ESM-1 antisense
<400>	1355
	aaat ttccataagc
401 As	1256
<210>	
<211>	
<212>	
<213>	artificial
<220>	
<223>	human ESM-1 antisense
<400>	1356
	ttaa agctatttat
<210>	1357
<211>	
<212>	
<213>	artificial
<220>	
<223>	human ESM-1 antisense
<400>	1357
	aaca aataatacta
<210>	1358
	20
<212>	DNA
<213>	artificial
_	
<220>	_
<223>	human ESM-1 antisense
<400>	1358
	tgac tcctataatt
- 3-3	
<210>	1359
<211>	
<212>	
<213>	artificial
<220>	
	human ESM-1 antisense

PCT/US2003/025833

WO 2004/021978

WO 2	2004/021978	PCT/US2003/025833.
<400> ttcctaa	1359 agaa catctagtac	20
	1360	
<211>		
<212>	artificial	
\Z13 >	altilitial	
<220>		
<223>	human ESM-1 antisense	
.400.	1360	
<400>	1360 caaa ggccttccac	20
cacacc	caaa ggooccac	20
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1361	
	gcca tccatgcctg	20
	,	
<210>		
<211><212>		
	artificial	
7		
<220>		
<223>	human ESM-1 antisense	
<400>	1362	
	agtt gcaggtctct	20
<210>	1363	
<211><212>	DNA	
<213>	artificial	
12237	4101110141	•
<220>		
<223>	human ESM-1 antisense	
-4005	1363	
<400>	aact aatttgactc	20
ccaaag		20
<210>	1364	
<211>	20	
<212> <213>	DNA artificial	
~4137	WI 011101U1	
<220>		

<223> human ESM-1 antisense

WO 20	004/021978	PCT/US2003/025833
<400>	1364	22
aagggct	caaa tattttattt	20
<210>	1365	
<211>		
<212>		
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	
<400>	1365	
aataata	acta gatttctttc	20
.010.	1266	
<210>		
<211> <212>		
	artificial	
(213)	altilitat	
<220>		
<223>	human ESM-1 antisense	
<400>	1366	
ctataa	ttat ggataataaa	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1367	
tgaaat	ccag agtgactcct	- 20
<210>	1368	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1368	
	agtt gacatgtttt	20
CCCCWA		
<210>	1369	
<211>	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1369	
	ttc aaatatactc	20
		•
<210>	1370	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1370	20
ttcacti	ccaa ataaaatact	
<210>	1371	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1371	
	aaag gccttccaca	20
aoaooo		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1		
<400>	1372	20
tttaaa	acaa aacctaacag	20
.010-	1272	
<210> <211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1202	
<400>	1373 acca ggtgtgcagg	20
geggee	acca ggcgcgcagg	
<210>	1374	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	IIIIIIIII BON - CIICESCIISC	

WO 20	004/021978	PCT/US2003/025833
<400>	1374	
	acac ttcatgccat	20
<210>	1375	
<211>		
<212>	·	
	artificial	
(21)/	altilitai	
<220>		
<223>	human ESM-1 antisense	
<400>	1375	
agcccc	gggc cacacttcat	20
<210>	1276	
<211><212>		
	artificial	
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
12237		
<400>	1376	
gcagat	acca aactcttcac	20
.010.	1288	
<210>		•
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1377	
caaagt	caaa gaactaattt	20
010	1280	
<210>	1378	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1378	
aggcct	tcca cacacattca	20
<210>	1379	
<211>	20	
<211>		
_	artificial	
<513>	arciticiai	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1379	
cagcca	cagt cgtcgagcac	20
<210>	1380	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1380	
	tage aagtttetee	20
3-3-33		
-010-	1201	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1381	
	cttt gcagatacca	20
<210>	1202	
<210> <211>		
<212>		
	artificial	
<220>	homes DOM 1 ambdesons	
<223>	human ESM-1 antisense	
<400>	1382	
attcta	gaga agctacctac	20
<210>	1383	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
		v
<400>	1383	
aatttc	cata agcttcaaac	20
<210>		
<211>		
<212>	DNA artificial	
~~~~	arcirciat	
<220>		
-223-	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1384	
	ttttc aacaaataat	20
		20
.010	100-	
	1385	
<211>	DNA	
	artificial	
<b>\213</b> /	arcificial	
<220>		
<223>	human ESM-1 antisense	
400		
	1385	
aatta	tggat aataaattta	20
<210>	1386	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400×	1386	
	gctg gtgggaagca	
3	-30-3 3033344304	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
12207	Epi-I alicipelise	
<400>	1387	
gcgcgg	gctg cttttgcact	20
<210>	1200	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
geeeeg	ggcc acacttcatg	20
<210>	1389	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human Bou a	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1389	
	gctg acacctcagc	20
<210>	1390	
<211>		
<212>		
	artificial	
12257	41-011-1-014-1	
<220>		
<223>	human ESM-1 antisense	
<400>	1390	
tgcaat	ccat cccgaaggtg	20
<210>	1391	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
-400-	1391	
<400>	cacg aaaatagagc	20
aacaac	cacy addacagage	20
<210>	1392	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\223/	Italian Bori I are Ibelibe	
<400>	1392	
acaaat	ctac atgcattcga	20
	·	
010	1202	
<210>	1393	
<211>	20	
<212> <213>		
<b>(213</b> )	arcificiar	•
<220>		
	human ESM-1 antisense	
<400>	1393	
cttact	tcct tcaggggttt	20
<210>	1394	
<211>		
<212>		
	artificial	
<220>		
~223·	human ESM-1 anticence	

WO 20	004/021978	PCT/US2003/025833
<400>	1394	
aaattt	ccat aagcttcaaa	20
<210>	1395	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1395	20
aaatat	gggt agggaagatg	20
<210>	1396	
<211>		
<212>	DNA artificial	
<513>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
	1396 tact agatttcttt	20
aaataa	tact agatttett	20
<210>		
<211>		
<212>	artificial	
72137	,	
<220>		
<223>	human ESM-1 antisense	
<400>	1397	
	tatg gataataaat	20
<210>	1398	
<211><212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1398	
	gttt aaataaggtc	20
<b>-210</b> -	1200	
<210><211>	20	
<212>		
	artificial	
<220> <223>	human ESM-1 antisense	
-2237	TOURS TOTAL TO CARCADOTADO	

WO 2	004/021978	PCT/US2003/025833
<400>	1399	
	tttt ttattgaaca	20
-		
<210>	1400	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1400	
cgcggg	ctgc ttttgcactc	20
<210>	1401	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1401	20
tcagaa	atca cagccgggat	20
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1402	
	tgta agattaccta	20
<210>	1403	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1403	20
cttcag	gggt tttctggttg	20
0.1.0		
<210>	1404	
<211> <212>	20 DNA	
<213>	artificial	
·		
<220>		
<223>	human ESM-1 antisense	

WO 2	304/021978	FC1/U52003/025653
<400>	1404	
	cagc cttttgaaat	20
	. 3	
<210>	1405	
<211>		
<212>		
	artificial	
72107	4101110141	
<220>		
	human ESM-1 antisense	
~2237		
<400>	1405	
	acac acaaaccacc	20
ccacac	acac acaaccacc	
		•
<210>	1406	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 and Isense	
<400>	1406	
	tata aaaatatata	20
LLLALL	tata aaaatatata	20
<210>	1407	
<211>		
<212>		
	artificial	
<213>	arciliciai	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 and Iselise	
<400>	1407	
	atta tggataataa	20
cccaca	acca eggacaacaa	20
<210>	1408	
<211>	20	
-2125	מאכו	
<213>	artificial	
<213>	arcirciar	
<220>		
<223>	human ESM-1 antisense	
<2237	numan BSM-1 and Isense	
<400>	1408	
	ttgg aagaagggga	20
Lyuaca		
<210>	1409	
<211>	20	
<212>		
<213>	artificial	
~~~~	~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
<220>		
	human FCM-1 anticonco	

WO 2	004/021978	PCT/US2003/025833
	1409	
gtgtt	actat acacacat	20
<210×	1410	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1410	
ttgact	cact gcggtcttca	20
<210>	1411	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1411	
ctaaga	ittct ttcaaatata	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1412	
agaaca	tcta gtacaacagt	20
<210>	1413	
<211>	- •	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1413	
tcttca	tgtt teccagetge	20
		20
<210>	1414	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1414	
cgagga	gegt ggteageage	20
<210>	1415	•
<211>		
<212>		
<213>	artificial	·
<220>		
<223>	human ESM-1 antisense	
<400>	1415	
gcagcg	caca ctcggcagca	. 20
<210>	1416	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1416	00
cgaagg	tgcc gtagggacag	20
<210>	1417	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1417	20
ggggaa	tttc aggcattttc	20
<210>	1418	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1418	
	gctc cgtgagagaa	20
- 5		
<210>	1419	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1419	
	gtaa gattacctaa	20
<210>	1420	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1420	
tctggt	tgtt ttattttgac	20
<210>	1421	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1421	
aggtgg	cata cgttaaagct	20
<210>	1422	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1422	
	atac acacacaac	20
accec		
<210>	1423	
<211>		
<212>	DNA	
<213>	artificial	,
<220>		
	human ESM-1 antisense	
-400-	1422	
<400>	1423 atat ttaccttcat	20
atatad		
<210>	1424	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1424	
tcactt	caaa taaaatactt	20
<210>	1425	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1425	
actgaa	ataa ttcttaaata	20
<210>	1426	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
400	1406	
<400>		20
cattca	aagg ccttccacac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1427	
	aaaa cctaacagct	20
caaaa		
<210>	1428	
<211>	20	
<212>	DNA	
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
(22)/	Italian Est-1 arcibolisc	
<400>	1428	20
ttaaaa	caaa acctaacagc	20
<210>	1429	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1429	
	att tcctcattac	20
<210>	1430	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
agaacta	att tgactcactg	20
<210>	1/21	
<211>		
<212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>		
atttctt	tcc tcaagaggat	20
<210>	1432	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1432	20
agtgact	cct ataattatgg	20
<210>	1433	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1433	20
tttgaaa	atcc agagtgactc	20
<210>	1434	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1434	
	taca aacctcctaa	20
<210>	1435	
	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1435	
agatat	ttcc taagaacatc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
acatgt	cctt ttaaaacaaa	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1437	
ctcttc	atgt ttcccagctg	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1438	
	aggc acgaggagcg	20
J - J - J -		
<210>	1439	
<211>		
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PCT/US2003/025833
<400>	1439	
	caggt gtgcaggcac	20
-210-	1440	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1440	
acact	cggca gcagccacag	20
<210>	1441	
<211>		
<212>	DNA .	
<213>	artific <u>ial</u>	
<220>		
<223>	human ESM-1 antisense	
<400>	1441	
	zactc ggcagcagcc	20
3-3-4-1	390490490	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
,,	Tandi 251. 2 dicipolipo	
<400>	1442	
aaggct	gaca cctcagccc	20
010	***	
<210><211>		
	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1443	
ccgaag	gtgc cgtagggaca	20
<210>	1444	
<211>		
<212>	DNA	
<213>	artificial	
<220>	Name of POW 1 and I am	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1444	
	aatc acagccggga	20
3		20
<210>	1445	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1445	
gtctcc	atgt aagattacct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1446	
aaagtc	aag aactaatttg	20
_		
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1447	
cacaati	aaa ttctagagaa	20
<210>	1448	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1448	
	cat cagcagcett	20
<210>	1449	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1449	
	CCtt catacacaca	20
		20
<210>	1450	
<211>	20	
<212>		1
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1450	
	tttt tattgaacaa	20
<210>	1451	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1451	
aggagc	gtgg tcagcagcaa	20
<210>	1452	
<211>		•
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1452	
	agcg tggtcagcag	20
5 55		
<210>	1453	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1453	
	gccc cgggccacac	20
·		
<210>	1454	
<211>	20	
<212>	DNA	
<213>	artificial	
· <220>		
<223>	human ESM-1 antisense	

WO 2004/021978 PCT/US2003/025833 . <400> 1454 gtacttatgc tatatctaga 20

<210> 1455 <211> 20 <212> DNA <213> artificial

<220>

<220>

tcctataatt atggataata

<223> human ESM-1 antisense
<400> 1455

20

<210> 1456 <211> 20 <212> DNA <213> artificial

<223> human ESM-1 antisense
<400> 1456

gtttaaataa ggtccctctg 20

<210> 1457
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 1457
cctcctaaaa acttatttc 20

<210> 1458
<211> 20
<212> DNA
<213> artificial
<220>
<223> human ESM-1 antisense

<400> 1458
acttctgaga tatttcctaa 20

<210> 1459
<211> 20
<212> DNA
<213> artificial
<220>

WO 20	004/021978	PCT/US2003/025833
<400>	1459	
	tgc aggcacgagg	20
<210>	1460	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12207		
<400>		20
cgggctg	ctt ttgcactcac	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1461	
	ette accaaaagga	20
<210>	1462	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1462	
ctaaaa	tgtt ggctgtgtgt	20
<210>	1463	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1463	
catota	ctta tgctatatct	20
caugea	<u>-</u>	
0.7.0	1464	
<210>		•
<211> <212>		
<213>	artificial	
-2205		

wo 2	2004/021978	PCT/US2003/02583
<400>	1464	
gactca	ctgc ggtcttcagc	20
	5 55 5	
<210>	1465	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1465	
tttttg	aaat ccagagtgac	20
401 Ox	1466	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atacct	taaa ttgaaaattc	. 20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1467	
acctcc	taaa aacttatttt	20
	1468	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1468	
	acct cctaaaaact	20
<210>	1469	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1469 ctaa gaacatctag	20
	1	
<210>	1470	
<211>	20	
<212>		
	artificial	
(213)	arciiiciai	
-000		
<220>	house TOM 1 ambiguage	
<223>	human ESM-1 antisense	
	1470	~ ~
gaaataa	atto ttaaataagt	20
<210>	1471	
<211>	20	
<212>		
	artificial	
~2137	arouri	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 antisense	
	1471	~ ~
caaaac	ctaa cagcttatgc	20
<210>	1472	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
~2237	Maintain about a taretooned	
<400>	1472	
		20
Caagac	gctc ttcatgtttc	20
	1473	
<211>	20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
12-07		
<400>	1473	
	ccat ccatgcctga	20
LLLaig	coac coacycocya .	
0.7.0		
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
~223 ~	human FSM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> tgactg	1474 gcag ttgcaggtct	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	·
<400> atgtca	1475 tgct ccgtgagaga	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> taacca	1476 tttc ctcattacgg	20
<210><211><211><212><213>	20	
<220> <223>	human ESM-1 antisense	
<400> atgtac	1477 ttat gctatatcta	20
<210><211><211><212><213>	20 DNA	

aaagctgttt gttactcaaa

<210> 1479
<211> 20
<212> DNA
<213> artificial

<220>
<223> human ESM-1 antisense

<223> human ESM-1 antisense

<220>

<400> 1478

20

<400>	1479	
ataatad	ctag atttetttee	20
<210>	1480	
<211>		
<212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1480	
gcttta	catt caaaggcctt	20
3		
-210-	1491	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
1220	:	
<400>	1481	
_	•	20
geggge	tgct tttgcactca	20
<210>	1482	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
	1482	~ ~
cacttc	atgc catccatgcc	20
<210>	1483	
<211>		
<212>		
<213>	artificial	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1483	
gcaatc	catc ccgaaggtgc	20
3	33.3	
<210>	1484	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1484	•
	aagg ggaatttcag	20
<i>33</i> 3	33 33 3	
<210>	1485	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
catgca	ttcg aatatttaac	20
-210-	1496	
<210>		
<211> <212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1486	
	acta tacacacaca	20
<210>		
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1487	
aagtca	aaga actaatttga	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1488	
ctaaat	attt tatttcccac	20
	•	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1489	
ttattta	ataa aaatatataa	20
<210>	1490	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<400>		20
taaata	tggg tagggaagat	20
<210>	1491	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1491	20
gatgat	aaat atgggtaggg	20
<210>	1492	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1492	20
gccaac	ttca agaataaaat	
	1493	
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
tcatgt	ttcc cagctgcctc	20
-010-	1494	
<210>		
<211> <212>		
	artificial	
	42 02220242	
<220>		

<400> accaggt	1494 :gtg caggcacgag	20
<210>	1495	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	and the second s	
<223>	human ESM-1 antisense	
<400>	1495	20
caccago	gtgt gcaggcacga	20
010	1106	
<210>	1496	
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and sense	
<400>	1496	
	ctct tcaccaaaag	20
accaaa	coo coaccaaaag	
<210>	1497	
	20	
<212>		
<213>		
72207		
<220>		
<223>	human ESM-1 antisense	
<400>	1497	
ctctgc	aatc catcccgaag	20
<210>	1498	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1498	20
gtcatg	ctcc gtgagagaaa	20
-210-	1400	
<210>		
<211>	- •	
<212>	— 	
<213>	artificial	
<220>		
	human ESM-1 antisense	

<400>	1499	
		20
tggattt	aac catttcctca	20
<210>	1500	
<211>	20	
<212>	DNA	
	artificial	
\ L	<u> </u>	
<220>		
	The second secon	
<223>	human ESM-1 antisense	
<400>	1500	
cattcga	aata tttaacaaac	20
_		
<210>	1501	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1501	
		20
ttactat	caca cacacattta	2.4
<210>	1502	
<211>	20	
<212>	DNA	
<213>	artificial	
12207		
<220>		
	Name TOW 1 ambiguage	
<223>	human ESM-1 antisense	
<400>	1502	
tgactca	actg cggtcttcag	20
_		
<210>	1503	
<211>	20	
<212>	DNA	
<213>	artificial ,	
<220>		
<223>	human ESM-1 antisense	
<400>	1503	
		20
cccca	aagc caaaaaaaa	
<210>	1504	
<211>	20	
<212>	DNA	
	artificial	
	•	
-2205		

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>		
ccggga	acta catcagcagc	20
<210>	1505	
<211>		
<212>		
<213>	artificial	
· <220>		
	human ESM-1 antisense	
<400>	1505	
	aaat atataaatat	20
<210>	1506	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1506	
	tttc ataccttaaa	20
<210>	1507	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1507	
	tatt ttcatacctt	20
<210>	1508	
<211>		
<212>	DNA	
<213>	artificial	
<220>		•
<223>	human ESM-1 antisense	
<400>	1508	
	agt tgacatgttt	20
	· ·	20
<210>	1509	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1509	
	gaaa taattottaa	20
	•	
<210>	1510	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1510	
cttatg	cago tttacattca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1511	
gtttcc	cage tgeeteegge	20
<210>	1512	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1512	
	caca cttcatgcca	20
333	• • • • • • • • • • • • • • • • • • •	
<210>	1513	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1513	
	agag aaacaaatct	20
2025		
<210>	1514	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	

<400> gtggat	1514 ttaa ccatttcctc	20
<210>	1515	
<211>	20	
<212>		
	artificial	
\Z13 /	arcifical	
<220>		
<223>	human ESM-1 antisense	
<400>	1515	
atcacaa	attt ggatcttcaa	20
<210>	1516	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1516	
-	tata cacacacatt	20
tgttat	tata cacacact	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	•	
	human ESM-1 antisense	
12232		
<400>	1517	
		20
accaaa	gtca aagaactaat	20
<210>	1518	
<211>	20	
<212>	DNA	
<213>	artificial	
	·	
<220>		
	human ESM-1 antisense	
\2257	Itulian Bbi-1 arcibembe	
-400	1510	
<400>		~~
gttaaag	gcta tttatggaag	20
<210>	1519	
<211>	20	
<212>		
	artificial	
~2137	ar C111C1a1	
000		
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1519	
	cgtta aagctattta	20
		20
<210>	1520	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1520	
	ataaa tatgggtagg	20
		20
<210>	1521	
<211>		
<212>	DNA	
<213>	artificial	
.000.		
<220>	human ESM-1 antisense	
~2257	ndman ESM-1 and sense	
<400>		
taatta	tgga taataaattt	20
<210>	1522	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
ctaaga	acat ctagtacaac	20
<210>	1523	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ggagcg	eggt cagcagcaag	20
<210>		
<211>		
	DNA artificial	
<213>	arcilicial	
<220>		
<223>	human ESM-1 antisense	

<400>	1524	
	cag gtgtgcaggc	20
	1525	
<211>		
<212>	artificial	
<213>	artificiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1525	
gaacaat	ccac gaaaatagag	20
	4506	
<210>		
<211>		
<212>	artificial	
<213>	altilitial	
<220>		
	human ESM-1 antisense	
<400>	1526	
tagaga	agct acctaccaag	20
<210>		
<211>		
<212> <213>	artificial	
\213 /	altilitat.	
<220>		
<223>	human ESM-1 antisense	
<400>	1527	20
attcaa	aggc cttccacaca	20
-210-	1528	
<210>	20	
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
acagtg	ttga gggcagtcca	20
<210>	1529	
<211>		
<211>		
<213>	artificial	
~220×		

WO 2004/021978

PCT/US2003/025833

-100-	1529	
<400>	ettt tgcactcact	20
gggctgt	cet egeactoact	
-210-	1530	
<210>		
	20	
<212>		
<213>	artificial	
<220>	No. 17 Park 2 Architecture	
<223>	human ESM-1 antisense	
400	1500	
	1530	20
gagacu	gtgc ggtagcaagt	
<210>	1621	
<210 <i>></i>		
<212>	artificial	
<213>	artificial	
.000.		
<220>	human ESM-1 antisense	
<223>	numan BSM-1 ancisense	
.400.	1531	
_		20
tgecat	gtca tgctccgtga	
<210>	1522	
<211>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<223>	numan BBM-1 and is the issue of	
<400>	1532	
	aaat cacageeggg	20
ccccag	aute sucusions	
<210>	1533	
	20	
<212>		•
<213>	artificial	
\Z.13/	410110110	
<220>		
<223>	human ESM-1 antisense	
\ZZJ/		
<400>	1533	
	laagc tatttatgga	20
<210>	1534	
<211>		
<212>		
2213	artificial	
~2137	W# V# =	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

PCT/US2003/025833

wo	2004/021978	PCT/US2003/025833
-	1534 cacct tcatacacac	20
.010	1505	
<210> <211>	1535 20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1535	
tttata	aaaa tatataaata	20
<210>	1536	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
atttat	ttat aaaaatatat	20
<210> <211>		
<211>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		
tttcaa	caaa taatactaga	20
<210> <211>	1538	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1538	
aaaaca	aaac ctaacagctt	20
<210>		
<211> <212>		
	artificial .	
<220>		
<223>	human ESM-1 antisense	

	1539	20
tgagaga	aac aaatctgttg	20
<210>	1540	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1540	
	tcat gctccgtgag	20
50000		
<210>	1541	
<211>	20	
<212>		
	artificial	
<213>	artificial	
<220>	Name Park 1 and congo	
<223>	human ESM-1 antisense	
<400>	1541	20
acagcc	ggga tcagcgtgga	
<210>	1542	
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1542	
cctaaa	atgt tggctgtgtg	20
<210>	1543	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1543	
aacatt	caatg tacatcaaag	20
	· ·	
<210>	1544	
<211>		
<212>		
	artificial	
~220/		
<220>		
	human RSM-1 antisense	

<400>	1544	
aataatt	ctt aaataagttc	20
<210>	1545	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ctgttgg	gcca acttcaagaa	20
<210>	1546	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1546	
	1546 caac agcttatgca	20
aaaaccı	Laac ageeeacgea	
<210>	1547	
<211>	20	
<212>		
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	illimati ESM-1 ancisense	
<400>	1547	
	egge ageagecaca	20
<210>	1548	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
ccgtcc	ccct gtcacagatg	20
0.1.5	1540	
<210> <211>		
<211> <212>		
	artificial	
		
<220>		

WO 2004/021978

<400> 1549 20 tcacagccgg gatcagcgtg <210> 1550 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1550 20 acaaacacat acaagtgttc <210> 1551 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1551 20 attcgaatat ttaacaaaca <210> 1552 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1552 20 aaatatttta tttcccactc <210> 1553 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense <400> 1553 20 cgttaaagct atttatggaa <210> 1554 <211> 20 <212> DNA <213> artificial <220>

WO 2004/021978

PCT/US2003/025833

WO 2004/021978	PCT/US2003/025833
-	

	cta acagettatg	20
<210>	1555	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1555	20
cacgagg	rage gtggteagea	20
<210>		
<211>		
<212>	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1556	
ccaccag	ggtg tgcaggcacg	20
<210>	1557	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1557	
	aagg ctgacacctc	20
<210>	1558	
<211>	20	
<212>		
<213>	artificial .	
<220>		6
<223>	human ESM-1 antisense	
<400>	1558	0.0
atcccg	aagg tgccgtaggg	20
<210>	1559	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1559	20
cttcctt	cag gggttttctg	20
	1560	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
ttactto	cctt caggggtttt	20
<210>		
<211> <212>		
	artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tatgtg	tttc ctatgcccca	20
<210>	1562	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1562	20
tattta	taaa aatatataaa	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1563	
	atac tagatttctt	20
	-	
<210>	1564	
<211>		
<212>		
<213>	artificial	
<220>		
~==-/		

wo	2004/021978	PCT/US2003/025833
<400>	1564	
gagtga	ctcc tataattatg	20
<210>	1565	
<211>		
<212>		
	artificial	
\Z±J/	altilital	
<220>		
<223>	human ESM-1 antisense	
-400-	1565	
<400>	1565	20
acaaaa	taca ggtaaatact	20
<210>		
<211>		
<212>		
<213>	artificial	
.000		
<220>	homes BOM 1 and learner	
<223>	human ESM-1 antisense	
<400>	1566	
	cctg tcacagatgc	20
J	3 3 3	
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
	human ESM-1 antisense	
10.00		
<400>	1567	•
agctac	ctac caaggaaggg	. 20
<210>	1568	
<211>		
<212>	DNA	
<213>	artificial	
\213/	arcificat	•
<220>		
<223>	human ESM-1 antisense	
	1568	2.2
aattct	agag aagctaccta	20
<210>	1569	
<211>	20	
<212>	DNA	
<213>	artificial	
00-		
<220>	homes DOW 1 antigons	
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/02583
<400>	1569	
	ggaag tgtatgtgtt	20
<210>	1570	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1570	•
aatatt	tacc ttcatacaca	20
<210>	1571	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1571 waata tataaatatt	
Lacada	data tatadatati	20
<210>		
<211>		
<212>	DNA artificial	
\2137	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1572	
	aatc cagagtgact	20
_		20
<210>	1573	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1573	
LaallC	cacc tatattttaa	20
<210>		
<211><212>	20 DNA	
	artificial	·
<220>		
<223>	human ESM-1 antisense	

wo a	2004/021978	PCT/US2003/025833
	1574	
gactgt	gcgg tagcaagttt	20
<210>	1575	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tgagac	tgtg cggtagcaag	20
<210>	1576	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1576	
ctgact	ggca gttgcaggtc	20
<210>	1577 .	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1577	
ccagat	gcca tgtcatgctc	20
<210>	1578	
<211>	20	•
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1578	20
yaaatc	acag ccgggatcag	20
<210>	1579	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		

WO 2	2004/021978	PCT/US2003/025833
<400>	1579	
	gttg aacaatcacg	20
<210>	1580	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1580	
gaaggg	ctaa atattttatt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1581	
	cttc aggggttttc	20
<210>		
<211>	20 -	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1582	
tggaagi	tgta tgtgtttcct	20
<210>	1583	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1583	
	ggaa gtgtatgtgt	20
<210>	1584	
<211>	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1584	
atacgt	taaa gctatttatg	20
<210>	1585	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1585	
	ctaa aaacttattt	20
aaoooo		20
<210>	1586	
<211>		
<212>		•
<213>	artificial	
-220-		
<220>	human ESM-1 antisense	
\223 /	numun Bow-I antibelise	
<400>	1586	
cttctg	agat atttcctaag	20
010	1505	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
-100-	1507	
	1587 aget tatgeagett	20
oocuu.	agot tatgeagett	20
<210>	1588	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1588	
acctaa	cagc ttatgcagct	20
<210>	1589	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	house pay 1 ambigants	
<223>	human ESM-1 antisense	

	1589	20
tgtactt	atg ctatatctag	
<210>	1590	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
10007		
<400>	1590	20
attaat	gtac atcaaagtca	20
<210>	1591	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
aagcta	ccta ccaaggaagg	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1500	
<400>	gttt cctatgcccc	20
gcacge	9000 000009000	
<210>		
<211>		
<212>	artificial	
(213)	altititat	
<220>		
<223>	human ESM-1 antisense	
<400>	1593	
	ttac cttcatacac	20
-010	1504	
<210>	1594	
<211> <212>	20	
	DNA artificial	
~ 2133	0T 0TTT070T	
<220>		
<223>	human ESM-1 antisense	

<400>	1594 gact cctataatta	20
04545-5		
<210>	1595	
<211>	·	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1595	
	ctaa ttccacctat	20
.010	1506	
	1596	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2237	Hammi 25.1 and 150.150	
-100-	1506	
<400>		20
atatacı	cct aattccacct	20
<210>	1597	
<211>	20	
<212>	DNA	
	artificial	
1221		
<220>		
<223>	human ESM-1 antisense	
<223>	udman F2M-1 aucthemse	
<400>	1597	
caaataa	aaat acttctgaga	20
<210>	1598	
<211>	20	
<212>	DNA	
<213>	artificial	
<213>	arctificial ,	
<220>		
<223>	human ESM-1 antisense	
<400>	1598	
aaatac	tgaa ataattotta	20
<210>	1599	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

	1599 caa cttcaagaat	20
<211><212>	1600 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> ttatgca	1600 agct ttacattcaa	20
<211> <212>		
<220> <223>	human ESM-1 antisense	
<400> gcacga	1601 ggag cgtggtcagc	20
<210><211><212><212><213>	DNA	
<220> <223>	human ESM-1 antisense	
<400> tgcttt	1602 tgca ctcactgctg	20
<210><211><211><212><213>	1603 20 DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> tttcct	1603 .caag aggatgataa	20
<210><211><212><212><213>	20 DNA	
<220> <223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1604	
tttctt	teet caagaggatg	20
	1605	
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1605	
taatac	taga tttctttcct	20
<210>		
<211><212>		
	artificial	
.000		
<220> <223>	human ESM-1 antisense	
<400>		20
Ladayı	tgac atgttttctg	20
<210> <211>		
<211>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1607 agaa acaaatctgt	20
090949	agua acadecege	20
<210>	1608	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1608	
aacaaa	tcta catgcattcg	20
<210>	1609	
<211>	20	
<212> <213>	DNA artificial	
/	42 42 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
<220>	haman Park 1 ambimores	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1609	
cctacca	aagg aagggctaaa	20
<210>	1610	
<211>		
	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1610	
gctacct	tacc aaggaaggc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1611	
taaatt	ctag agaagctacc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1612	
acttcc	ttca ggggttttct	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1613	
	ttcc ttcaggggtt	20
<210>		
	20	
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1614	20
tccataa	gct tcaaacatct	20
	4.47	
<210>	1615	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<223>	Human ESM-1 and Isense	
<400>	1615	
	aagc ttcaaacatc	20
cccac		
<210>	1616	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		00
ttaaag	ctat ttatggaagt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>	human EGM 1 antigongo	
<223>	human ESM-1 antisense	
<400>	1617	
	aaag ctatttatgg	20
cacgoo	uuug	
<210>	1618	
<211>		
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
	•	
<400>		20
tataaa	tatt taccttcata	20
J010.	1610	
<210>		
<211>		
<212>	DNA artificial	
<5T3>	arciticiat	
<220>		
	human ECM_1 anticonse	

WO	2004/021978	PC 1/US2003/025833
<400	> 1619	
	aataat tottaaataa	
5	auduut tettaaataa	20
<210:	→ 1620	
	2 0	
	> DNA	
	artificial	
	· · · · · · · · · · · · · · · · · · ·	
<220:	•	
<223:	human ESM-1 antisense	
	···· •	
	1620	
gctta	tgcag ctttacattc	30
		20
	1621	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
_		
4223 >	human ESM-1 antisense	
<400×	1621	
	agaaa caaatctgtt	
50545	aguda caaacccgc	20
<210>	1622	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
rgttga	acaa tcacgaaaat	20
<210>	1622	
<211>		
<212>		
	artificial	
,	ar orrectar	
<220>		
<223>	human ESM-1 antisense	
<400>	1623	
cgggaa	ctac atcagcagcc	0.0
	- -	20
<210>		
<211>		
<212>		
<213>	artificial	
.00-		
<220>	human BOV 1	
<423>	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1624	
ataaaa	atat ataaatattt	20
<210>	1625	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1625	
taaaaa	tta ttttcatacc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1626	
tatgcag	gctt tacattcaaa	20
<210>	1627	
<211>	20	
<212>	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1627	
	cagg tgtgcaggca	20
330000	,	
<210>	1628	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
tgcagc	gegg getgettttg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		

wo	2004/021978	PCT/US2003/02583
<400>	1629	•
ccaaact	ctt caccaaaagg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1630	
catgtca	atgc tccgtgagag	20
<210>	1631	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1631	
ttcaaa	aatt acatgtactt	20
<210>	1632	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1632	20
tactat	acac acacatttaa	20
<210>	1633	
<211>		
<212>	DNA	
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aatata	ctcc taattccacc	20
<210>	1634	
<211>		
<212>		· .
	artificial	
4000		

PCT/US2003/025833

WO 2	2004/021978	PCT/US2003/025833
<400>	1634	
	agaa ggctgacacc	20
ocoacc	agaa ggccgacacc	
<210>	1635	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1635	
gttgaa	caat cacgaaaata	20
-010-	1626	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1636	
cattaa	tgta catcaaagtc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1637	
aaaagc	acaa ttaaattcta	20
<210>	1638	
<211>		
<212>	DNA	
<213>	artificial	
	arctricial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1638	
	ttcc tatgccccag	. 20
		•
	1639	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	1639	
	atg tgtttcctat	20
-010-	1640	
<210> <211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1640	
	aat tccacctata	20
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1641	
	cta attccaccta	20
	k	
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1642	
	ttcc acacacattc	20
<210>	1643	
<211> <212>		
	artificial	
1000		
<220>		
<223>	human ESM-1 antisense	
-100-	1642	
<400>	aggt gccgtaggga	20
Jourga	~33° 3°°3' 373°	
<210>		
<211>		
<212>	DNA artificial	
~213/	ar Citional	
<220>		

<400> 1644 gactggcagt tgcaggtctc <210> 1645	20
<211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 1645 tttgaaaacc ttatagagtc	20
<210> 1646 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 1646 tcttgttctt ttttattgaa	20
<210> 1647 <211> 20 <212> DNA <213> artificial	·
<220> <223> human ESM-1 antisense	
<400> 1647 ggacagtctt tgcagatacc	20
<210> 1648 <211> 20 <212> DNA <213> artificial	
<220> <223> human ESM-1 antisense	
<400> 1648 ggaagtgtat gtgtttccta	20
<210> 1649 <211> 20 <212> DNA <213> artificial <220> <223> human ESM-1 antisense	

<400>		20
CLLLCCI	ccaa gaggatgata	
<210>	1650	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1650	
	atgg ataataaatt	20
<210>	1651	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12232	Indian don't disciplinate	
<400>	1651	
agagtga	actc ctataattat	20
.010.	1.650	
<210> <211>	1652	
<211>		
	artificial	
12237	W1024202W1	
<220>		
<223>	human ESM-1 antisense	
<400>	1652	20
cccggg	ccac acttcatgcc	20
<210>	1653	
<211>	20	
	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1653	
attctc	tttc acaacttctt	20
<210>		
<211>		
<212>	artificial	
~C.L.J.	## CT # T # T # T # T # T # T # T # T #	
<220>		
	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1654	
	atta catgtactta	20
<210>	1655	
<211>		
<212>		
	artificial	
~2137	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1655	
aaaaag	caca attaaattct	20
<210>	1656	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1656	
	tggc atacgttaaa	2.2
ccgagg	egge acacgicada	20
	·	
<210>	1657	
<211>	20	
<212>	DNA	
<213>	artificial	
.000-		
<220> <223>	human DOM 1 ambd acces	
.223>	human ESM-1 antisense	
<400>	1657	•
aaata	tta ccttcataca	20
0.1.0	1.50	
<210>	1658	
<211>	20	
<212> <213>	DNA artificial	
.213>	arctificial	
<220>		
:223>	human ESM-1 antisense	
<400>	1658	
atttta	aag ttgacatgtt	20
:210>	1659	
211>	20	
:212>	DNA	
213>	artificial	
:220>		
:223>	human ESM-1 antisense	

WO 2	004/021978	PC1/US2003/025833
<400>	1659	
	aatt ccacctatat	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1660	
tgtgct	aaga ttctttcaaa	20
<210>	1661	
<211>		
<212>		
	artificial	
72137	arcifical	
<220>		
<223>	human ESM-1 antisense	
<400>	1661	
aaatac	ttct gagatatttc	20
<210>	1662	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1662	
	aaaa tacttctgag	. 20
		20
<210>	1663	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1663	
cttcaaa	ataa aatacttctg	20
<210>	1664	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human FCM_1 antigongo	

WO 20	004/021978	PCT/US2003/025833
<400>	1664	
	ttt acattcaaag	20
•	•	
<210>	1665	
<211>		
<211>		
	artificial	
72137	WI 011101W1	
<220>		
<223>	human ESM-1 antisense	
<400>		20
etgetti	ttgc actcactgct	20
<210>		•
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
4223 2	IIIIIIIII ESM-I diiCiselise	
<400>	1666	
cctcttc	gcag cgcgggctgc	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1667	
agaaggo	ctga cacctcagcc	20
<210>	1668	
<211>		
<212>	DNA	
	artificial	
		·
<220>		
<223>	human ESM-1 antisense	
400	1660	
<400>		20
CCLGact	eggc agttgcaggt	20
<210>	1669	
	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400> cagccg	1669 ggat cagcgtggat	20
<210><211><211>		
	artificial	
<220> <223>	human ESM-1 antisense	
<400>	1670 atgt acatcaaagt	20
4040	4030 4040044430	
<211>		
<212> <213>	artificial	
<220> <223>	human ESM-1 antisense	
<400>	1671 acca aggaagggct	20
ccacoc	uddu ugguugggee	
<210> <211>	20	
<212> <213>	DNA artificial	
<220> <223>	human ESM-1 antisense	
<400>	1672	
acaatt	aaat totagagaag	20
<210><211>	1673 20	
<212> <213>	DNA artificial	
<220> <223>	human ESM-1 antisense	
<400> gggaac	1673 taca tcagcagcct	20
<210>	1674	
<211> <212>	20 DNA	
<212> <213>	artificial	
<220>		

wo a	2004/021978	PCT/US2003/025833
<400>	1674	
	gtgt atgtgtttcc	20
55		
<210>	1675	
<211>	.20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1675	
gaataa	aata caggtaaata	20
<210>	1676	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1676	
tgtgca	ggca cgaggagcgt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1677	
acacac	acat ttaacaaatc	20
	1678	
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1678	
tgctaa	gatt ctttcaaata	20
<210>	1679	
	20	
<212>		
	artificial	
<220>		
~~~U>		

WO 2	004/021978	PCT/US2003/025833
<400>	1679	
agcttta	cat tcaaaggcct	20
<210>	1680	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1680	
	ctt atgcagcttt	20
<210>		
<211>		
<212>	artificial	
<213>	artiriciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1681	
aacctaa	cag cttatgcagc	20
		,
<210>	1682	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1682	
gcaagac	gct cttcatgttt	20
<210>	1683	
<211>	20	
<212>		
	artificial	
<220>	3	
<223>	human ESM-1 antisense	
<400>		
ttctctt	tca caacttcttc	20
<210>	1684	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1684	
ccgggat	cag cgtggattta	20
	·	
<210>	1685	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>	1685	
	aat tacatgtact	20
occount		
<210>	1686	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1686	
	gga tcttcaaaaa	20
<210>		
<211>		
<212>	artificial	
<213>	arciriciai	
.<220>		
	human ESM-1 antisense	
	1687	20
catgct	ccgt gagagaaaca	
<210>	1688	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>		20
acatgt	actt atgctatatc	20
<210>	1689	
<211>		
<212>		
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	1689 attc gaatatttaa	20
		20
<210>		
<211>		
<212>	artificial	
	arciiiciai	
<220>	Towns TOW 4	
<223>	human ESM-1 antisense	
<400>		
cacaca	catt taacaaatct	. 20
	·	
<210>	1691	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	•
<400>	1691	
ttcttt	cctc aagaggatga	20
<210>	1692	
<211>		
<212>	· · · · · · · · · · · · · · · · · · ·	
<213>	artificial	
<220>		
	human ESM-1 antisense	
12201		
<400>		
tactage	attt ctttcctcaa	20
<210>	1693	
<211>		
<212>	DNA	
<213>	artificial	
-000-		
<220> <223>	human ESM-1 antisense	
\ 2 237	Tuman Don't and I believe	
<400>	1693	
aaaaact	tat tttcatacct	20
<210>	1694	
<211>		
<212>	DNA .	
<213>	artificial	
.000		
<220>	human ESM-1 antisense	

<400>	1694 agat totttcaaat	20
3-3	,	
<210>	1695	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1695	
		20
aaataat	tct taaataagtt	20
<210>	1696	
<211>	20	
<212>	DNA	
<213>	artificial	
-2205		
<220>	house Boy 1 and anno	
<223>	human ESM-1 antisense	
<400>	1696	
gtgttga	aaca atcacgaaaa	20
<210>	1697	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1697	
caattto	ggat cttcaaaaat	20
Juaces	5500 000000000	
	1.00	
	1698	
<211>	20	
	DNA	
<213>	artificial .	
<220>		
	human ESM-1 antisense	
\22J/	Indiana Bott & directorable	
<400>	1600	
		20
gtcaaag	gaac taatttgact	20
<210>	1699	
<211>	20	
<212>		
	artificial	
~ 213>	WT (*T T A A W W W	
<220>	and the second s	
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/02583
<400>	1699	
	agtc aaagaactaa	20
<210>	1700	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1700	
	agcc aaaaaaaaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1701	
	gtgg catacgttaa	20
	3-33	
<210>	1702	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1702	
aataaa	atac aggtaaatac	20
<210>	1703	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
tgcagc	ttta cattcaaagg	20
<210>		
<211>		
<212>		•
<213>	artificial	
-2205		

PCT/US2003/025833

<400>	1704	
	tgt gtttcctatg	20
5 5		
<210>	1705	
<211>		
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
<223>	numan Ebm-1 ancibense	
<400>	1705	
	ccta aaaacttatt	20
uuucoo		
<210>	1706	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1806	
<400>	1706 taaa atacttctga	20
LECada	tada atacteetya	
<210>	1707	
<211>		
<212>		
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
	4505	
	1707	20
ccatgt	catg ctccgtgaga	
<210>	1708	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
aagcac	aatt aaattctaga	
<210>	1709	
<211>		
<212>		
	artificial	
<220>		

WO 2004/021978

PCT/US2003/025833

WO 20	004/021978	PCT/US2003/025833
<400>	1709	
	ttc cttcaggggt	20
<210>	1710	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1710	
taaagct	att tatggaagtg	20
<210>	1711	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1711	20
ttttcaa	caa ataatactag	20
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1712	
	ggcc ttccacacac	20
	,	
<210>	1713	
<211>		
<212>	DNA	
<213>	artificial	
.000-		
<220> <223>	human ESM-1 antisense	
1220		
<400>		20
catgtc	cttt taaaacaaaa	20
<210>	1714	
<211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1714	
	acgag gagcgtggtc	20
	3,3,3,3,3,3,0	20
	1715	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	Tantibense	
<400>	1715	
agacto	stgcg gtagcaagtt	20
	•	20
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1716	
ttgaac	aatc acgaaaatag	20
<210>		
<211> <212>		
	artificial	
72137	arcificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1717	
acctac	caag gaagggctaa	20
-210-	1710	
<210> <211>		
<212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1718	
aaattc	taga gaagctacct	20
<210>	1719	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400>	1719	
ttcaaa	catc ttacttcctt	20
<210>	1720	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1720	
	gctt caaacatctt	20
.010	1701	
<210> <211>		
<212>		
	artificial	
\Z13 >	altilitai	
<220>		
<223>	human ESM-1 antisense	
-400	1701	
<400>	1721 ataa atatttacct	20
aaatat	ataa atatttacct	20
<210>	1722	
<211>	20	
<212>	DNA	
<213>	artificial	
-220-		
<220> <223>	human ESM-1 antisense	
\ 2237	numan Bom-1 ancisense	
<400>	1722	
aacaaa	taat actagatttc	20
<210>	1723	
<211>		
<212>	DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1723	
	acct atattttaaa	20
<210>	1724	
<210> <211>		
<211>		
	artificial	
<220×		

WO 20	004/021978	PCT/US2003/025833
<400>	1724	
agaataa	aaat acaggtaaat	20
<210>	1725 ·	
<211>	20	
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1725	
aacaaa	caca tacaagtgtt	20
.010-	1726	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1726	20
gctaaai	tatt ttatttccca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		·
<223>	human ESM-1 antisense	
<400>	1727	
ggaagg	gcta aatattttat	20
<210>	1728	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1728	
gaagct	acct accaaggaag	20
<210>	1729	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		·
<223>	human ESM-1 antisense	

WO 2	004/021978		PCT/US2003/025833
<400>	1729 aaa tatttacctt		20
aatatat	.aaa tatttatta		
<210>	1730		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1730		
ttcctca	aaga ggatgataaa		20
<210>			
<211><212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1731		
atacta	gatt tctttcctca		20
<210>	1732		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
400	1520		
<400>	1732 gagg agcgtggtca		20
aggeae	3433 4303033004		
<210> <211>			
<211>			
<213>			
<220>	human ESM-1 antisense		
<2237	numan BBM-1 ancibense		
<400>			20
cgcaca	ctcg gcagcagcca		20
<210>			
<211>			
<212>		·	
<213>	artificial		
<220>			
	human ESM-1 antisense		

<400>	1734	
	cac teggeageag	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>	human ESM-1 antisense	
<223>	numan ksm-1 andisense	
<400>	1735	
	tgtt actatacaca	20
ccccag		
<210>	1736	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	4-0.0	
<400>		20
ttaatg	taca tcaaagtcaa	
<210>	1737	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1737	20
taccta	.ccaa ggaagggcta	
<210>	1738	
<211>	20	
<212>	DNA	
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	1738	20
aagcti	caaa catcttactt	
4010÷	1739	
<210> <211>	1739	
<211> <212>		
<214>	artificial	
~~137		
<220>		
<223>		

WO 2004/021978

PCT/US2003/025833

WO 2	2004/021978	PCT/US2003/025833
<400>	1739	
tgaggtg	ggca tacgttaaag	20
	1740	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1740	
acaaata	aata ctagatttct	20
<210>	1741	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1741	
ttctgag	gata tttcctaaga	20
	•	
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1742	0.0
agcgcg	gget gettttgeae	. 20
<210>	1743	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
gcageg	eggg ctgcttttgc	20
<210>		
<211>		
<212>	DNA	
<213>	artificial	
<220>		

WO 2	004/021978	PCT/US2003/025833
<400>	1744	
	gatg cctgactggc	20
3		
<210>	1745	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1745	
	cgtg agagaaacaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1746	
tcatgct	ccg tgagagaaac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1747	
tgtaaga	atta cctaaattgc	20
<210>	1748	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1748	
atgtaag	gatt acctaaattg	20
<210>	1749	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		

WO 2	2004/021978	PCT/US2003/025833
<400>	1749	•
cattta	attta taaaaatata	20
<210>	1750	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1850	
<400>	1750	
gaggat	gata aatatgggta	20
<210>	1751	•
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1751	
	agat ttctttcctc	20
	3	20
<210>		
<211>		
<212>	DNA artificial	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1752	
aaataa	aata cttctgagat	20
<210>	1753	·
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1753	
_	tggg aagcagccgt	20
		20
<210>	1754	
<211>		
<212>		•
<413>	artificial	
<220>		
	human PCM-1 anticonce	

wo	2004/021978	PCT/US2003/025833
<400>	1754	
	cgg cagcagccac	20
•		•
<210>	1755	
<211>	20	
<212>		
<213>	artificial	
<220>	home TON 1 and source	
<223>	human ESM-1 antisense	
<400>	1755	
	cat gccatccatg	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
12237	Manager 2011	
<400>	1756	
ccgtgag	gaga aacaaatctg	20
	1050	
<210>		
<211> <212>		
	artificial	
(213)	altilitai	
<220>		
	human ESM-1 antisense	
<400>	1757	0.0
gcacaa	taa attotagaga	20
<210>	1758	
<211>	•	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1850	
<400>	_,	20
aaayca	caat taaattctag	2.
<210>	1759	
<211>		
<212>		
	artificial	

<220>

wo a	2004/021978	PCT/US2003/025833
<400>	1759	
	gga agtgtatgtg	20
<210>	1760	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1760	
actagat	ttc tttcctcaag	20
	1761	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1761	·
aagatto	ettt caaatatact	20
<210>	1762	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1762	
caatta	att ctagagaagc	20
	1763	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
gcagct	ctac attcaaaggc	20
<210>	1764	
<211>	20	
<212>		
<213>	artificial	
<220>		

<400>	1764	
	aca gcttatgcag	20
<210>	1765	
<211>	20	
<212>	DNA .	
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>		20
tgctcc	gtga gagaaacaaa	
010	1866	
<210>		
<211> <212>		
<212>	artificial	
<213>	alciliciai	
<220>		
-223	human ESM-1 antisense	
(2237		
<400>	1766	•
	agaa ctaatttgac	20
-5		
<210>	1767	
<211>	20	
<212>	DNA	
<213>	artificial	
	,	
<220>	·	
<223>	human ESM-1 antisense	
<400>	1767	20
tcaaac	atct tacttccttc	
-210-	1768	
<210><211>	20	
<212>		
	artificial	
(2137		
<220>		
<223>	human ESM-1 antisense	
<400>	1768	
ttatgg	gaagt gtatgtgttt	20
J.		
	1769	
<211>		
<212>	DNA	
<213>	artificial	
<220>	TOW 1 ambiguous	
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833	
<400>	1769		
aaagct	attt atggaagtgt	20	
<210>	1770		
	20		
<212>			
<213>	artificial		
.000			
<220> <223>	human ESM-1 antisense		
\223	numan ESM-1 ancisense		
<400>	1770		
gagcgt	ggtc agcagcaaga	20	
-2105	1771		
<210><211>	1771 20		
<212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1771		
	acga ggagcgtggt	20	
<210> <211>			
<212>			
	artificial		
<220>	landa Bore of the landar		
<223>	human ESM-1 antisense		
<400>	1772		
	atca cgaaaataga	20	
.010	1880		
<210><211>	1773 20		
<212>	DNA		
<213>	artificial		
<220>	No. of the contract of the con		
<223>	human ESM-1 antisense		
<400>	1773		
	ttg gatcttcaaa	20	
.05.0	1004		
<210><211>	1774 20		
<211>			
	artificial		
<220>	• — — — — — — — — — — — — — — — — — — —		
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	1774	
tacaca	caca tttaacaaat	20
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1775	
taaaaa	tata taaatattta	20
<210> <211>		1
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1776	
	ctgg cagttgcagg	20
<210>	1777	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1777	
agccgg	gatc agcgtggatt	20
<210> <211>	1778 20	
<212>	DNA	
<213>	artificial .	
<220>		
<223>	human ESM-1 antisense	
<400>	1778	
caaaaa	tac atgtacttat	20
<210>	1779	
<211>	20	
<212><213>	DNA artificial	
<220> <223>	human ECM 1 antigongo	
~~~ 3>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400> tctttc	1779 ctca agaggatgat	20
<210>	1780	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1780	
ctagat	ttct ttcctcaaga	20
<210> <211>		
<211>		
	artificial	
<220>	human ESM-1 antisense	
\Z237	numan BBM-1 dicisense	
<400>		
atattt	taaa gttgacatgt	20
<210>		
<211>		
<212>	DNA artificial	
\213/	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1782	
tettte	acaa cttcttctct	20
<210>	1783	
<211>		
<212> <213>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1783	•
actata	Caca cacatttaac	20
<210>	1784	
<211>	20	
<212>	DNA	
<213>	artificial	,
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1784	
	atat ttcctaagaa	20
<210>	1785	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1785	0.0
rgrgrg	ttga acaatcacga	20
<210>		
<211> <212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1786	
agcaca	atta aattctagag	20
<210>	1787	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1787 atat aaatatttac	2.2
aaaaac	acat adatateac	20
<210>	1788	
<211><212>	20 DNA	
<213>	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1788	
	ataa tactagattt	20
<210>	1789	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978		PCT/US2003/02583	
<400>	1789		
	aata atactagatt	20	
<210>	1790		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
	1790	20	
LLCaac	aaat aatactagat	20	
<210>			
<211> <212>		•	
	artificial		
1220	W		
<220>			
<223>	human ESM-1 antisense		
<400>	1791		
	ccta tattttaaag	20	
<210>	1702		
<211>			
<212>	DNA		
<213>	artificial		
<220>			
	human ESM-1 antisense		
<400>			
gaaggc	tgac acctcagccc	20	
<210>	1793		
<211>	20		
<212>	DNA		
<213>	artificial		
<220>		•	
	human ESM-1 antisense		
<400>		20	
ccageg	tgga tttaaccatt	20	
<210>			
<211>			
<212> <213>	DNA artificial		
/	~		
<220>			
<223>	human ESM-1 antisense		

WO 2	004/021978	PCT/US2003/025833
<400>	1794	
	gtgg atttaaccat	20
accago	9033 4000	
<210>	1795	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1795	20
tcctca	agag gatgataaat	20
<210>	1796	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		. 20
gccggg	atca gcgtggattt	20
<210>	1797	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1797	20
aaaata	tata aatatttacc	20
<210>	1798	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1798	20
aataaa	aatac ttctgagata	20
<210>		
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

<400>	1799	
taaaata	cag gtaaatactg	20
<210>	1800	
	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1000	
<400>	1800	20
ggctgc	tttt gcactcactg	
<210>	1801	
<211>	20	
<212>	DNA	
<213>	artificial	
\Z13>	,	
<220>		
	human ESM-1 antisense	
12237		
<400>	1801	
	gggc tgcttttgca	20
<210>	1802	
<211>	20	
<212>		
<213>	artificial	
<220>	1 TON 1 AND LONGO	
<223>	human ESM-1 antisense	
.400-	1002	
<400>	1802 gcta cctaccaagg	20
ayayaa	igeta eccaceaagg	
<210>	1803	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		20
taagat	tctt tcaaatatac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220×		

WO 2004/021978

PCT/US2003/025833

<223> human ESM-1 antisense

WO 2	004/021978	PCT/US2003/025833	
<400>	1804		
	gag ggcagtccac	20	
<210>	1805		
<210>			
<212>			
	artificial		
1220			
<220>			
<223>	human ESM-1 antisense		
	1805	20	
cctgag	actg tgcggtagca	20	
<210>	1806		
<211>			
<212>			
	artificial		
<220>	<u>.</u>		
<223>	human ESM-1 antisense	•	
400	1006		
	1806 cttt cacaacttct	20	
cacccc	ceee dadadooo		
<210>	1807		
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
12237			
<400>	1807		
cagcgt	ggat ttaaccattt	20	
	1000		
<210>	1808		
<211><212>	20 DNA		
<213>			
,			
<220>			
<223>	human ESM-1 antisense		
<400>		20	
aggaag	gggct aaatatttta		
<210>	1809		
<211>			
<212>			
<213>	artificial		
<220> <223>	human ESM-1 antisense		
<4437	ALCONOMIA DELLA DE CARCE DELLA CONTRACTO		

WO 20	004/021978	PCT/US2003/025833
<400>	1809	
aattaaa	attc tagagaagct	20
<210>	1810	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1810	<i>6</i>
	gcac aattaaattc	20
<210>	1811	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1811	2.2
aggatga	ataa atatgggtag	20
<210>	1812	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
(223/	italiali doll'a all'abolibo	
<400>	1812	
gtgggaa	agca gccgtgaccc	20
<210>	1813	
<211>	20	
<212>	DNA	
<213>	artificial	
	·	•
<220>	Towns Title 1 1 1 2 and 12	
<223>	human ESM-1 antisense	
<400>	1813	
	gtgg gaagcagccg	20
<210>	1814	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	human FSM-1 antigence	

WO 2	004/021978	- · PCT/	US2003/025833
<400>	1814		
	tgg tgggaagcag		20
_			
<210>	1815		
<211>			
<212>			
<213>	artificial		
<220>			
	human ESM-1 antisense		
(223)	Indiana DDF 1 directions		
	1815		20
ataaata	attt accttcatac		20
<210>	1816	•	
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1816		
	ttca acaaataata		20
<210>			
<211>			
<212>	artificial		
(213/	arcara and a second		
<220>			•
<223>	human ESM-1 antisense		
	1015		
	1817 tatg tttaaataag		20
ageaet	tary tradactady		
<210>	1818		
<211>	20		
<212>	DNA		
<213>	artificial	•	
<220>			
<223>	human ESM-1 antisense		
7000			
<400>			
caaacc	tcct aaaaacttat		20
<210>	1819		
<211>			
<212>	DNA		
<213>	artificial		
<220>	1. man EGM 1 orbidence		
<223>	human ESM-1 antisense		

WO 2004/021978		PCT/US2003/025833	
<400>	1819		
aaaata	ette tgagatattt	20	
		•	
<210>			
<211>			
<212>		•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1820		
	actg aaataattct	20	
<210>	1821		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1821		
	acag atgcctgact	20	
<210>	1822	·	
<211>			
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1822		
	ttta tggaagtgta	20	
<210>	1823		
<211>	20		
<212>			
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1823		
	taca cacacaaacc	20	
<210>	1824		
<211>			
<212>	DNA	•	
<213>	artificial		
<220>			
<223>	human ESM-1 antisense		

WO 20	04/021978	PCT/US2003/025833
<400>	1824	
	cca aaaaaaaaa	20
<210>	1825	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1825 cett acttecttea	20
Caaaca	cet accected	
<210>	1826	
<211>		
<212>	artificial	
4213 2	altificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1026	
	acat cttacttcct	20
<210>		
<211> <212>		
	artificial	
<220>	Name TOW 1 publishings	
<223>	human ESM-1 antisense	
<400>	1827	
	tcaa acatcttact	20
<210>	1929	
<211>		
<212>		
<213>	artificial	•
000		
<220> <223>	human ESM-1 antisense	
\2237		
<400>		20
cactta	tgtt taaataaggt	20
<210>	1829	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	••	PCT/US2003/025833
<400>	1829		•
ataaaa	tact tctgagatat		20
<210>			
<211> <212>			
	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>			
tgaaat	aatt cttaaataag		20
<210>			
<211> <212>			
	artificial		
10207	4101110141		
<220>			
<223>	human ESM-1 antisense		
<400>	1831		
aagaat	aaaa tacaggtaaa		20
<210>			
<211>			
<212>	artificial		
<220>			
<223>	human ESM-1 antisense		
<400>			
cttgtt	cttt tttattgaac		20
<210>	1833		
<211>			
<212><213>	DNA artificial		
12232	arcificial		
<220>			
<223>	human ESM-1 antisense		
<400>	1833		
gctccg	gag agaaacaaat		20
<210>	1834		
<211>	20		
<212><213>	DNA artificial	•	
~2137	arciniciai		
<220>			
<223>	human ESM-1 antisense		

wo	2004/021978	PCT/US2003/025833
<400>	· 1834	
agctt	caaac atcttacttc	20
	· 1835	
<211>		
	DNA	
<213>	artificial	
<220>	,	
<223>	human ESM-1 antisense	•
<400>	. 1835	
	actga aataattctt	20
	•	
<210>	1836	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1836	
ggcac	gagga gcgtggtcag	20
<210>	1837	
<211>)	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
	1837	
gctgc	ttttg cactcactgc	20
<210>		
<211>		
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1838	
ccccc	tgtca cagatgcctg	20
	-	
<210>	1839	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1839	
	attt aacaaatcta	20
<210>	1840	
<211>		·
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
ctggtt	gttt tattttgact	20
<210>	1841	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1841	
ctgtca	caga tgcctgactg	20
_		
<210>	1842	•
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
tggttg	tttt attttgactt	
•		
<210>	1843	
<211>	20	
<212>		
<213>	artificial	
<220>	,	
<223>	human ESM-1 antisense	
<400>	1843	
atgata	aata tgggtaggga	20
<210>	1844	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1844 tat attttaaagt	20
ccccacc	tat accedaage	20
<210>		
<211>		
<212>	artificial	
<213>	artiriciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1845	
	eatg ccatccatgc	20
<210>	1846	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1846	
	itgc ctgactggca	20
		•
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1847	
atacaca	acac atttaacaaa	20
401 Os	1049	
<210><211>		
<212><213>	DNA artificial	
	artificial	,
<220>	·	
<223>	human ESM-1 antisense	
<400>	1848	
	acac acatttaaca	20
<210>		
	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	1849	
catct	tactt ccttcagggg	20
<210>	1850	
<211>	20	
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1850	
ctcct	aaaaa cttattttca	20
<210>	1851	
<211>		
	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	•
<400>	1851	
ttcata	acaca cacaaaccac	20
	1852	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1852	
catttt	caac aaataatact	20
		20
<210>	1853	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1853	
	agag tgactcctat	20
. –	2 2 3	20
<210>	1854	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1854	
	ggtca gcagcaagac	20
		20
	1855	
<211><212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
400		
	1855	
ctgag	actgt gcggtagcaa	20
<210>	1856	
<211>	20	
<212>	DNA	
<213>	artificial	
000		
<220>	human ESM-1 antisense	
\ 2237	numan ESM-1 ancisense	
<400>	1856	
	aaca tcttacttcc	20
		20
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1057	
	gcat acgttaaagc	
349949	gode degreadage	20
<210>	1858	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1858	
cctcaa	gagg atgataaata	20
<210>	1859	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1859	20
ctcctat	aat tatggataat	20
<210>		
<211>		
<212> <213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>		20
aatccag	gagt gactcctata	20
<210>	1861	
<211>		
<212>		
<213>	artificial	
<220>	1 DOM 1binaman	
<223>	human ESM-1 antisense	
<400>	1861	
ccctgt	caca gatgcctgac	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1862	20
gcattc	tett teacaactte	20
	1863	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		
aatttg	gatc ttcaaaaatt	20
<210>		
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
	1864	20
cacaati	ttgg atcttcaaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1865	
	catg tacttatgct	20
<210>	1866	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1866	
	aaaa ttacatgtac	20
<210>		
<211>		
<212>	artificial	
	artificiar	
<220>		
<223>	human ESM-1 antisense	
<400>	1867	
tcctaa	aaac ttattttcat	20
<210>	1000	
<210> <211>		
<211>	20	
<213>	artificial	
	arciiiciai	•
<220>		
<223>	human ESM-1 antisense	
<400>	1868	
taaaat	actt ctgagatatt	20
-01 O-	1960	
<210><211>	1869	
	DNA	
	artificial	
/	•	
<220>		
<223>	human ESM-1 antisense	

WO 20	04/021978	PCT/US2003/025833
<400>	1869	
agcgca	cact cggcagcagc	20
<210>	1870	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1870	
tatggaa	agtg tatgtgtttc	20
<210>	1871	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1871	
gcactt	atgt ttaaataagg	20
	•	
<210>		
<211>		
<212>	artificial	
	arctrictar	
<220>	luman POW 1 auch language	
<223>	human ESM-1 antisense	
<400>	1872	
gtgcag	gcac gaggagcgtg	20
<210>	1873	
<211>	•	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1873	
	gcca cacttcatgc	20
<210>		
	20	
<212>	DNA artificial	
	artriciar	
<220>	Towns Towns 1 and 1 and 1	
<223>	human ESM-1 antisense	

wo	2004/021978	PCT/US2003/025833
<400	> 1874	
	tgactg gcagttgcag	
		20
010		
	> 1875 > 20	
	> DNA	
	> artificial	
	919110191	
<220		
<223	> human ESM-1 antisense	
-100	1055	
	> 1875 :tcaca acttcttctc	
	ceaca accepting	20
<210:	1876	
<211:		
	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
cattt	aacaa atctacatgc	20
		20
<210>	1877	
<211>		
<212>		
<213>	artificial	
.000		
<220>	human ESM-1 antisense	
12237	numan ESM-I antisense	
<400>	1877	
agaago	tacc taccaaggaa	
		20
-010:	1000	
<210> <211>		
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1878	
	atgg gtagggaaga	
	55 5-45554454	20
<210>	1879	
<211>		
<212>	DNA artificial	
-513>	arctricial	
<220>		
	human ESM-1 antisense	
	-	

.400-	1070	
<400>	1879	20
atttgga	atct tcaaaaatta	,
		,
<210>	1880	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
\ 2237	IIdhidai Ebil E daibebbana	
-400-	1880	•
<400>		20
tataca	caca catttaacaa	
<210>		
<211>	20	
<212>		
<213>	artificial	
		,
<220>		
	human ESM-1 antisense	
1227		
<400>	1881	
	ttct agagaagcta	20
allaaa	ttet agagaageta	
	•	
<210>	1882	•
<211>	20	
<212>		
<213>	artificial	
	•	
<220>		
<223>	human ESM-1 antisense	
<400>	1882	
	acac acacaaacca	2
<210>	1883	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>		2
agagga	atgat aaatatgggt	2
<210>	1884	
<211>		
<211>		
<213>	artificial	
_		
<220>		
<223>	human ESM-1 antisense	

WO 2004/021978

WO 2	004/021978	PCT/US2003/025833
<400>	1884	
gactcct	ata attatggata	20
<210>	1885	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1885	
gaaatc	caga gtgactccta	20
<210>	1886	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1886	
	tcac aacttettet	20
<210>	1887	
<211>		
<212>		
	artificial	
<220>		
	human ESM-1 antisense	
	,	
	1887	20
ccattt	tcaa caaataatac	20
<210>	1888	
<211>		
<212>	DNA artificial	
<213>	artificial	,
<220>		
<223>	human ESM-1 antisense	
<400>	1888	
cagcat	tctc tttcacaact	20
	·	
<210>	1889	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1889	
	tta ctatacacac	20
010.	1000	
<210> <211>		
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>		20
ggtaaat	act gaaataattc	20
<210>	1891	
<211>	20	
<212>		
<213>	artificial	
-0005		
<220>	human ESM-1 antisense	
\2257	Italian abit i alcibolibe	
<400>	1891	
aaataca	lggt aaatactgaa	20
.010-	1000	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1000	
<400>	1892 agg taaatactga	20
aaaacac	agg caaacacaga	24
		•
<210>	1893	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		
gatgcca	atgt catgeteegt	20
<210>	1804	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1894	
	tct ttcacaactt	20
<210>	1895	
	20	
	DNA	
	artificial	
<220>		
	human ESM-1 antisense	
(2237	Human Bor. 2 december	
<400>	1895	20
cacattt	aac aaatctacat	20
<210>	1896	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
.400-	1006	
<400>	1896 aaaa atatataaat	20
actiac	add dededddd	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1897	20
tgataa	atat gggtagggaa	20
<210>	1898	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>) Tour to subdiscuss	
<223>	human ESM-1 antisense	
<400>	1898	
	ttaa agttgacatg	20
	ernn ngergmeneg	
<210>	1899	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	 PC1/US2003/025833
<400> tgtcaca	1899 agat geetgaetgg	20
<210>		
<211>		
<212>	artificial	£.
(213)	di cilliciai	
<220>		
<223>	human ESM-1 antisense	
<400>	1900	
	tac tatacacaca	20
.010.	1001	
<210>		
<212>		
	artificial	
<220>	human ESM-1 antisense	
(443)	Human Bon-1 and bease	
<400>	1901	
tccacc	tata ttttaaagtt	20
<210>	1902	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
400	1000	
<400>	1902 gaga gaaacaaatc	20
cccgc	gaga gadacaaacs	
<210>		
<211> <212>		
<213>		
<220>		
<223>	human ESM-1 antisense	
<400>	1903	
	ggaa gcagccgtga	20
<21Õ>	1904	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2 0	04/021978	PCT/US2003/025833
<400>	1904	
LLLGE	ggtg ggaagcagcc	20
	1005	
<210> <211>		
<211>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1905	
	tggt gggaagcagc	
		20
<210>		
<211>		
<212>	DNA artificial	
(213)	artiliciar	
<220>		
<223>	human ESM-1 antisense	
<400>		
atgcca	tgtc atgctccgtg	20
<210>	1907	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1907	
gatcago	gtg gatttaacca	20
<210>	1908	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1908	
gctattt	atg gaagtgtatg	20
<210> ,	1909	
	20	
<212>	DNA	
<213>	artificial	
-000-		
(220>	human PCM-1 anti-cons	

WO 20	004/021978	PCT/US2003/025833
<400>	1909	
actccta	ataa ttatggataa	20
<210>	1910	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1910	
	aaaa attacatgta	20
400000	adda doododogod	
<210>	1911	
<211>		
<212>		
	artificial	
1217	artificat	
<220>		
<223>	human ESM-1 antisense	
<400>	1911	
aagagga	atga taaatatggg	20
		•
<210>	1912	
<211>		
<212>		
	artificial	
-220-		
<220>	human ESM-1 antisense	
<223>	numan ESM-1 ancisense	
<400>	1912	
caggtaa	aata ctgaaataat	20
<210>	1913	
<211>		
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1913	
	ggga agcagccgtg	20
333~:	JJJ33J	
<210>	1914	
<211>	20	
<212>		
	artificial	
~2137	a1011101a1	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1914	
	ccat gtcatgctcc	20
<210>	1915	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1915	
	agca caattaaatt	20
	·	-
	1916	
<211> <212>		
	artificial	
72237		
<220>		
<223>	human ESM-1 antisense	
400		
	1916 atac tgaaataatt	20
ayycaa	acac cyaaacaacc	20
<210>		
<211>		
<212>	artificial	
(213)	arcificiai	
<220>		
<223>	human ESM-1 antisense	
<400>	1917 ttta accatttcct	20
cgcgga	tica accattecet	20
<210>	1918	
<211>	20	
<212>	DNA	
<213>	artificial	. •
<220>		
<223>	human ESM-1 antisense	
<400>	1918	
cgggat	cago gtggatttaa	20
<210>	1919	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

wo 2	2004/021978	PC1/US2003/025833
<400:	> 1919	
	atttta aagttgacat	
		. 20
<210	> 1920	
<211:	> 20	
<212:	> DNA	
<213>	artificial	
<220>		ŕ
<223>	human ESM-1 antisense	
	1920	
tttgg	atctt caaaaattac	20
~210 ~	1921	
<211>		
	DNA	
	artificial	
	~= va 2 2 0 2 0 2	
<220>		
<223>	human ESM-1 antisense	
	1921	
agcta	tttat ggaagtgtat	20
		20
.010.	1000	
<210> <211>	1922	
<211>		•
	artificial	
\Z1J/	arcificat	
<220>		
	human ESM-1 antisense	
<400>		
gataaa	atatg ggtagggaag	20
		20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	namen pon-1 ancisense	
<400>	1923	
cacaca	ttta acaaatctac	•
		20
	1924	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>		
<220> <223>	human ECM-1 onti con-	
	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1924	
ggtggg	aagc agccgtgacc	20
<210>		
<211>		
<212>	artificial	
~213/	42022442	
<220>		
<223>	human ESM-1 antisense	
-400-	1005	
<400>	1925 catg tcatgeteeg	20
u_u_u_		
<210>		
<211> <212>		
	artificial	
72102	42 (42 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
<220>		
<223>	human ESM-1 antisense	
<400>	1926	•
	acat gtacttatgc	20
<210> <211>		
<211>		
	artificial	
<220>	house DOM 1 ambdennes	
<223>	human ESM-1 antisense	
<400>	1927	
acattt	aaca aatctacatg	20
<210>	1928	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
	human ESM-1 antisense	
<400>	1928	20
aaaaaa	aaaa agcacaatta	20
<210>	1929	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1929	
cataag	cttc aaacatctta	20
<210>	1930	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1930	
ctattt	atgg aagtgtatgt	20
<210>	1931	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1931	
cctaaa	aact tattttcata	20
<210>	1932	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1932	
gcagca	ttct ctttcacaac	20
<210>	1933	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1933	
acacat	ttaa caaatctaca	20
<210>	1934	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1934	
ttggat	cttc aaaaattaca	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1935	
aaaaaa	aaaa aagcacaatt	20
<210>	1936	
<211>		
<212>	DNA	
	artificial	
<220>	human ESM-1 antisense	
<223>	numan ESM-1 and Isense	
<400>		
caagag	gatg ataaatatgg	. 20
<210>	1937	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		20
gtggtc	agca gcaagacgct	20
<210>	1938	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1938	
	cacg aggagegtgg	20
-3-433		
-21 O-	1020	
<210> <211>	1939 20	
<212>	DNA	
<213>	artificial	·
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1939	
	aacct aacagcttat	20
	-	20
-010		
<210> <211>	1940	
<211>		
	artificial	
	arcritaciai	
<220>		
<223>	human ESM-1 antisense	
	1940	
ccaaa	Jccaa aaaaaaaaa	20
<210>	1941	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1041	
	1941 Iggta aatactgaaa	
uucace	ayua aacaccyaaa	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\2252	numan ASM-I ancisense	
<400>	1942	
gcgtgg	tcag cagcaagacg	20
		20
.010.	10.0	
<210> <211>		
<212>	DNA	
<213>	artificial	
	4101110101	
<220>		
<223>	human ESM-1 antisense	
<400>	1943	
cagatg	cctg actggcagtt	20
<210>	1944	
<211>	20	
<212>		
<213>	artificial	
.000		
<220>	human BOM 1 ambinus	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1944	
ccctg	tcac agatgcctga	20
<210>	1945	
<211>		
<212>		
<213>	artificial	
<220>	•	
<223>	human ESM-1 antisense	
.400-	1045	
<400>	1945 gatt taaccatttc	20
450505	9400 044004000	
<210>		
<211><212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1946	
	taca tgtacttatg	20
<210>	1947	
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>		••
aaaaaa	aagc acaattaaat	20
<210>	1948	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
400	1040	
	1948 aacc taacagctta	20
Juucua		20
<210>	1949	
<211><212>	20 DNA	•
<213>		
<220>	human DOM 1 anticones	
<223>	human ESM-1 antisense	

WO 20	004/021978	PCT/US2003/025833
<400>	1949	
	ctga ctggcagttg	20
<210>	1950	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	1950	0.0
cgtggt	cagc agcaagacgc	20
<210>	1951	
<211>	20	
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
\223/	Indiana Bor. I directorise	
<400>	1951	
cagtgti	tact atacacacac	20
<210>	1952	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1952	
aaaaaa	aaaa aaagcacaat	20
<210>	1953	
<211>		
<212>		
<213>		
12137	4101110141	
<220>		
<223>	human ESM-1 antisense	
<400>	1953	
	attt aaccatttcc	20
3-2-23		20
010	1054	
<210>		
<211>		
<212>		•
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1954	
acaggta	aat actgaaataa	20
	-	
<210>	1955	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1955	20
atgccts	gact ggcagttgca	20
<210>	1956	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1956	
	gcgt ggatttaacc	20
ggacoa	3-3-33	
<210>	1957	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>	1 POW 1 ambigango	
<223>	human ESM-1 antisense	
-4005	1957	
	geet gaetggeagt	20
acagac	geer gaerggeage	
<210>		
<211>		
<212>	DNA	
<213>	artificial	•
<220>		
<223>		
<400>	1958	20
aaaaaa	aaaaa gcacaattaa	20
~21 N~	1959	
<211>		
<212>		
<217>	artificial	
-223/	 - -	
<220>		
<223>		

WO 2	004/021978	PCT/US2003/025833
<400>	1959	
	ttt aaagttgaca	20
<210>	1960	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1960	0.0
ttaaati	tcta gagaagctac	20
<210>	1961	
<211>		
<212>		
	artificial	
1220		
<220>		
<223>	human ESM-1 antisense	
	1061	
<400>	ctta cttccttcag	20
adacac	ceta ecceptions	
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1962	20
gatgcc	tgac tggcagttgc	
<210>	1963	
<211>		
<212>	— -	•
<213>		
<220>		
<223>	human ESM-1 antisense	
-4005	1963	
tagat	cttca aaaattacat	20
cygac		
	1964	
<211>	20	
<212>	DNA artificial	
<213>	at citizat	
<220>		
<223>		

WO 2	2004/021978	PCT/US2003/025833
<400>	1964	
ctaaaaa	ictt attttcatac	20
<210>	1965	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1965	
	ctac ctaccaagga	20
	,	
<210>	1966	
<211>		
<212>		
	artificial	
72137		
<220>		
<223>	human ESM-1 antisense	
<400>	1966	
gtgtgt	tgaa caatcacgaa	20
5-5 5		
<210>	1967	
<211>		
<212>		
	artificial	
12207		
<220>		
<223>	human ESM-1 antisense	
<400>	1967	0.0
gatctt	caaa aattacatgt	20
J		
<210>	1968	
<211>		
<212>	DNA	
<213>		,
(213)		
<220>		
<223>	human ESM-1 antisense	
<400>	1968	
	gtaaa tactgaaata	20
Jacays	,	
<210>	1969	
<211>		
<211>		
<213>		
<220>		
<223>	human ESM-1 antisense	

WO 26	004/021978	PCT/US2003/025833
<400>	1969	
	ataa aatacaggta	20
<210>	1970	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
	1970	
tgtgtt	gaac aatcacgaaa	20
<210>	1971	
<211>		
<212>		
	artificial	
1225		
<220>		
<223>	human ESM-1 antisense	
<400>	1971	
acatct	tact tccttcaggg	20
<210>	1972	
<211>		
<212>		
	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1972	0.0
ccaact	tcaa gaataaaata	20
<210>	1973	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
	4.000	
<400>	1973	20
aaaaaa	aaaa aaaagcacaa	20
<210>	1974	
<211>	20	
<212>	DNA	•
<213>	artificial	
<220>	human BOW 2 and annua	
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1974 aaag cacaattaaa	20
<210>	1975	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1975	
ttcaag	aata aaatacaggt	20
<210>		
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1976	
aacttc	aaga ataaaataca	20
<210>	1977	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
	1977	
cacaga	tgcc tgactggcag	20
<210>	1978	
<211>	20	
<212>		
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1978	
gggatc	agcg tggatttaac	20
<210>	1979	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	

WO 2	2004/021978	PCT/US2003/025833
<400>	1979	
	aaaaa aaaaagcaca	20
<210>	1980	
<211>		
<212>		
	artificial	
12207	42 022 202	
<220>		
<223>	human ESM-1 antisense	
<400>	1980	
	caag aataaaatac	20
		20
	,	
<210>		
<211>		
<212>		
<213>	artificial	
<220>	·	
<223>	human ESM-1 antisense	
<400>	1981	
	tcaa aaattacatg	20
33		20
	4000	
<210>		
<211>		
<212>	artificial	
(213)	ar cirrorar	
<220>		
<223>	human ESM-1 antisense	
<400>	1982	
	ggat gataaatatg	20
0-0-50	Jan Jacaaaaag	20
<210> <211>		
<211> <212>	20 DNA	
<213>	artificial	
(213)	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1983	
	taaa atacaggtaa	20
		20
-010 -	1004	
<210> <211>		
<211> <212>		
	artificial	•
<220>		
<223>	human ESM-1 antisense	

wo:	2004/021978	PCT/US2003/025833
<400>	1984	
accta	tattt taaagttgac	20
	•	
	1985	
<211>		
<212>	artificial	
<213>	artificiai	
<220>		
	human ESM-1 antisense	
<400>	1985	
acttca	aagaa taaaatacag	20
<210>	1006	
<211>		
<211>		
	artificial	
12137	arcificial	
<220>		
	human ESM-1 antisense	
<400>	1986	
ctcaaç	gagga tgataaatat	20
<210>	1007	
<211>		
<212>		
	artificial	
	4-0-1-0-242	
<220>		
<223>	human ESM-1 antisense	
<400>		
tggtgg	gaag cagccgtgac	20
<210>	1988	
<211>		
<212>		
	artificial	
		•
<220>		
<223>	human ESM-1 antisense	
<400>	1988	
caaago	Caaa aaaaaaaaa	20
<210>	1989	
<211>		
<212>		•
	artificial	
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/025833
<400>	1989	
	ttac ttccttcagg	20
<210>	1990	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1990	
cttcaa	gaat aaaatacagg	20
<210>	1991	
<211>	20	
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1991	
ccaaaa	aaaa aaaaaaagca	20
<210>	1992	
<211>		
<212>		
<213>	artificial	
<220>		
<223>	human ESM-1 antisense	
<400>	1992	
	aaaa aaaaaagcac	20
	-	
<210>	1993	
<211>	20	
<212>	DNA	
<213>	artificial	
<220>		
	human ESM-1 antisense	
<400>	1993	20
atacag	gtaa atactgaaat	20
<210>		
<211><212>		
	DNA artificial	•
<220>		

<223> human ESM-1 antisense

WO 2	004/021978	PCT/US2003/025833 -
<400>	1994	
	aaaa aaaaaaaaa	20
<210>	1995	
<211>		
<212>		
<213>	artificial	
·<220>		
<223>	human ESM-1 antisense	
<400>	1995	
	aaaa aaaaaaaagc	20
	-	
<210>	1006	
<211>		
<212>		
<213>	art <u>ificial</u>	
<220>		
	human ESM-1 antisense	
<400>		
ataago	ttca aacatcttac	20
<210>		
<211>		
<212>	artificial	
72107	ar or record	
<220>		
<223>	human ESM-1 antisense	
<400>	1997	
	atat tttaaagttg	20
		•
<210>	1998	
<211>	20	
<212>	DNA	
<213>	artificial	•
<220>		
<223>	human ESM-1 antisense	
<400>	1998	
Caccta	tatt ttaaagttga	20
<210>	1999	
<211>	20	
<212> <213>	DNA artificial	
/		
<220>		
<223>	human ESM-1 antisense	

WO 2	004/021978	PCT/US2003/02583
<400>	1999	
	aaa aaaaaaaaa	20
<210>	2000	
<210>		
<211>		
	artificial	
(213)	ar crarector	
<220>		
<223>	human ESM-1 antisense	
	0000	
<400>		20
agecaa	aaaa aaaaaaaag	
<210>	2001	
<211>	19	
<212>		
<213>	Artificial	
<220>		
<223>	human ESM-1 PCR fowrd primer	
<400>	2001	
	cca ccagcaaag	19
ctgccc	2004 004344443	
<210>		
<211>		
<212>		
<213>	Artificial	
-220-		
<220>	human ESM PCR reverse primer	
(2237	namar zon zon zon ze	
<400>		22
gcaaga	cgct cttcatgttt cc	22
<210>	2003	
<211>		
<212>	DNA	
<213>	Artificial	
(213)	AL CELE CAME	
<220>		
<223>	human ESM PCR probe	
<400>	2003	21
cgacto	gaga gccgagccgg a	
<210>	2004	
<211>	20	
<212>		•
	Artificial	
<220>		
<223>	cyclophilin PCR forward primer	

PCT/US2003/025833

<400> 2004 cccaccgtgt tcttcgacat 20 <210> 2005 <211> 22 <212> DNA <213> Artificial <220> <223> cyclophilin PCR reverse primer <400> 2005 22 tttctgctgt ctttgggacc tt <210> 2006 <211> 24 <212> DNA <213> Artificial <220> <223> cyclophilin PCR probe <400> 2006 24 cgcgtctcct ttgagctgtt tgca <210> 2007 <211> 184 <212> PRT <213> Homo sapiens <400> 2007 Met Lys Ser Val Leu Leu Leu Thr Thr Leu Leu Val Pro Ala His Leu 10 Val Ala Ala Trp Ser Asn Asn Tyr Ala Val Asp Cys Pro Gln His Cys 20 Asp Ser Ser Glu Cys Lys Ser Ser Pro Arg Cys Lys Arg Thr Val Leu Asp Asp Cys Gly Cys Cys Arg Val Cys Ala Ala Gly Arg Gly Glu Thr Cys Tyr Arg Thr Val Ser Gly Met Asp Gly Met Lys Cys Gly Pro Gly 65 Leu Arg Cys Gln Pro Ser Asn Gly Glu Asp Pro Phe Gly Glu Glu Phe 90 Gly Ile Cys Lys Asp Cys Pro Tyr Gly Thr Phe Gly Met Asp Cys Arg

PCT/US2003/025833

WO 2004/021978

100 105 110

Glu Thr Cys Asn Cys Gln Ser Gly Ile Cys Asp Arg Gly Thr Gly Lys 115 120 125

Cys Leu Lys Phe Pro Phe Phe Gln Tyr Ser Val Thr Lys Ser Ser Asn 130 135 140

Arg Phe Val Ser Leu Thr Glu His Asp Met Ala Ser Gly Asp Gly Asn 145 150 155 160

Ile Val Arg Glu Glu Val Val Lys Glu Asn Ala Ala Gly Ser Pro Val 165 170 175

Met Arg Lys Trp Leu Asn Pro Arg 180

<210> 2008

<211> 2017

<212> DNA

<213> Homo sapiens

<400> 2008

60 ggaaacatga agagegtett getgetgace aegeteeteg tgeetgeaca eetggtggee 120 gcctggagca ataattatgc ggtggactgc cctcaacact gtgacagcag tgagtgcaaa 180 ageageeege getgeaagag gacagtgete gacgaetgtg getgetgeeg agtgtgeget 240 gcagggcggg gagaaacttg ctaccgcaca gtctcaggca tggatggcat gaagtgtggc 300 ccggggctga ggtgtcagcc ttctaatggg gaggatcctt ttggtgaaga gtttggtatc 360 tgcaaagact gtccctacgg caccttcggg atggattgca gagagacctg caactgccag 420 tcaggcatct gtgacagggg gacgggaaaa tgcctgaaat tccccttctt ccaatattca 480 gtaaccaagt cttccaacag atttgtttct ctcacggagc atgacatggc atctggagat 540 ggcaatattg tgagagaaga agttgtgaaa gagaatgctg ccgggtctcc cgtaatgagg 600 aaatggttaa atccacgctg atcccggctg tgatttctga gagaaggctc tattttcgtg 660 attgttcaac acacagccaa cattttagga actttctaga tatagcataa gtacatgtaa 720 tttttgaaga tccaaattgt gatgcatggt ggatccagaa aacaaaaagt aggatactta 780 caatccataa catccatatg actgaacact tgtatgtgtt tgttaaatat tcgaatgcat 840 gtagatttgt taaatgtgtg tgtatagtaa cactgaagaa ctaaaaatgc aatttaggta 900 atcttacatg gagacaggtc aaccaaagag ggagctaggc aaagctgaag accgcagtga 960 WO 2004/021978 PCT/US2003/025833

	gtcaaattag	ttctttgact	ttgatgtaca	ttaatgttgg	gatatggaat	gaagacttaa	1020
	gagcaggaga	, agatggggag	ggggtgggag	tgggaaataa	aatatttagc	ccttccttgg	1080
	taggtagctt	ctctagaatt	taattgtgct	tttttttt	ttttggcttt	gggaaaagtc	1140
	aaaataaaac	aaccagaaaa	cccctgaagg	aagtaagatg	tttgaagctt	atggaaattt	1200
	gagtaacaaa	cagctttgaa	ctgagagcaa	tttcaaaagg	ctgctgatgt	agttcccggg	1260
	ttacctgtat	ctgaaggacg	gttctggggc	ataggaaaca	catacacttc	cataaatagc	1320
	tttaacgtat	gccacctcag	agataaatct	aagaagtatt	ttacccactg	gtggtttgtg	1380
	tgtgtatgaa	ggtaaatatt	tatatatttt	tataaataaa	tgtgttagtg	caagtcatct	1440
	tccctaccca	tatttatcat	cctcttgagg	aaagaaatct	agtattattt	gttgaaaatg	1500
•	gttagaataa	aaacctatga	ctctataagg	ttttcaaaca	tctgaggcat	gataaattta	1560
. •	ttatccataa	ttataggagt	cactctggat	ttcaaaaaat	gtcaaaaaat	gagcaacaga	1620
•	gggaccttat	ttaaacataa	gtgctgtgac	ttcggtgaat	tttcaattta	aggtatgaaa	1680
i	ataagttttt	aggaggtttg	taaaagaaga	atcaattttc	agcagaaaac	atgtcaactt	1740
1	taaaatatag	gtggaattag	gagtatattt	gaaagaatct	tagcacaaac	aggactgttg	1800
1	tactagatgt	tcttaggaaa	tatctcagaa	gtattttatt	tgaagtgaag	aacttattta	1860
ł	agaattattt	cagtatttac	ctgtatttta	ttcttgaagt	tggccaacag	agttgtgaat	1920
ç	gtgtgtggaa	ggcctttgaa	tgtaaagctg	cataagctgt	taggttttgt	tttaaaagga	1980
(catgtttatt	attgttcaat	aaaaaagaac	aagatac			2017