ΑΡΧΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Ανάκλαση επίπεδων κυμάτων

Εξισώσεις Maxwell

Οι εξισώσεις Maxwell στην τυπική τους μορφή όπου τα διανύσματα του ηλεκτρικού και του μαγνητικού πεδίου μπορούν να πάρουν οποιαδήποτε μορφή.

Φασιθέτες (Phasors)

Έστω ότι το ηλεκτρικό πεδίο του κύματος μπορεί να αναπαρασταθεί ως:

$$\vec{E} = \vec{E}_o \cos(kx - \omega t)$$

Για να αναπαραστήσουμε αυτό το κύμα ως φάση, μπορούμε να χρησιμοποιήσουμε τη μιγαδική εκθετική μορφή:

$$\vec{E} = \vec{E}_o e^{j(kx - \omega t)} = \vec{E}_o e^{j\varphi}$$
 όπου j είναι η φανταστική μονάδα.

Το E_o, αντιπροσωπεύει το πλάτος του κύματος και το φ αντιπροσωπεύει τη φάση του κύματος. Η συχνότητα του κύματος σχετίζεται με το ρυθμό μεταβολής της γωνίας φάσης με την πάροδο του χρόνου.

Η χρήση φασόρων για την αναπαράσταση ηλεκτρομαγνητικών κυμάτων μας επιτρέπει να απλοποιήσουμε τους υπολογισμούς που αφορούν τα κύματα, όπως τον υπολογισμό της παρεμβολής μεταξύ δύο κυμάτων ή την απόκριση ενός κυκλώματος σε ένα σήμα εισόδου ΑC.

Εξισώσεις Maxwell με φασιθέτες

Οι εξισώσεις Maxwell όπου τα διανύσματα του ηλεκτρικού και του μαγνητικού πεδίου γράφονται με τη μορφή φασιθέτη.

κλασική

$$\vec{\nabla} \cdot \vec{D} = \rho$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{\mathbf{H}} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

με φασιθέτες

$$\vec{\nabla} \cdot \dot{\vec{D}} = \rho$$

$$\vec{\nabla} \cdot \dot{\vec{B}} = 0$$

$$\vec{\nabla} \times \dot{\vec{E}} = -i\omega \dot{\vec{B}}$$

$$\vec{\nabla} \times \dot{\vec{H}} = \vec{J} + i\omega \dot{\vec{D}}$$

Αυτό το σύμβολο με την τελεία από πάνω αντιστοιχεί στον φασιθέτη

Πλάγια διάδοση

Αντί για τις συντεταγμένες xyz μας εξυπηρετεί να θεωρήσουμε τα διανυσματικά μας μεγέθη ως προς τον κυματαριθμό τον οποίο γράφουμε:

$$\vec{k} = k\hat{n}$$

άρα η διεύθυνση διάδοσης είναι κατά το μοναδιαίο διάνυσμα \hat{n} και τα πεδία \vec{E} και \vec{H} (\vec{H} = \vec{B} / μ_o) δίνονται από:

$$\begin{split} \dot{\vec{\mathbf{E}}} &= \vec{E}_o e^{-j\vec{k}\vec{r}} = \vec{E}_o e^{-jkr\hat{n}} \\ \dot{\vec{\mathbf{H}}} &= \vec{H}_o e^{-j\vec{k}\vec{r}} = \vec{H}_o e^{-jkr\hat{n}} = \frac{\hat{n}\times\dot{\vec{\mathbf{E}}}}{\eta'} = \frac{\hat{n}\times\vec{E}_o e^{-jkr\hat{n}}}{\eta'} &= \frac{\hat{n}\times\vec{E}_o e^{-jkr\hat{n}}}{\eta'} &= \frac{\hat{n}\times\vec{E}_o e^{-jkr\hat{n}}}{\eta'} \end{split}$$

Οι νόμοι της ανάκλασης και διάθλασης

- Ομοιόμορφο κύμα που διαδίδεται σε μέσο (1) και προσπίπτει σε διαχωριστική επιφάνεια θα ανακλαστεί εν μέρει και εν μέρει θα διαδοθεί σε μέσο (2)
 - Οι χώροι (1), (2) έχουν ιδιότητες $\varepsilon_{1,2}$, $\mu_{1,2}$, $\sigma_{1,2}$ αλλά για ευκολία εδώ θα θεωρήσουμε ότι $\underline{\sigma}_{1,2} = \underline{0}$
 - Για να λυθεί τέτοιο πρόβλημα μελετώνται οι οριακές συνθήκες στη διαχωριστική επιφάνεια.

Προκύπτουν κάποιοι «κανόνες» που περιγράφονται από τις σχετικές εξισώσεις και αντιπροσωπεύουν τους νόμους διάθλασης και ανάκλασης

Το διάνυσμα **n** εδώ συμβολίζει το κάθετο στη διαχωριστική επιφάνεια

Τα διανύσματα k_i , k_r , k_t

$$\mathbf{k}_{i} = k_{i}\hat{\mathbf{n}}_{i} = \omega_{i}\sqrt{\mu_{1}\varepsilon_{1}}\hat{\mathbf{n}}_{i}$$

$$\mathbf{k}_r = k_r \hat{\mathbf{n}}_r = \omega_r \sqrt{\mu_1 \varepsilon_1} \hat{\mathbf{n}}_r$$

t: transmitted
$$\mathbf{k}_t = k_t \hat{\mathbf{n}}_t = \omega_t \sqrt{\mu_2 \varepsilon_2} \hat{\mathbf{n}}_t$$

$$\dot{\boldsymbol{E}}_{i} = \boldsymbol{E}_{oi} e^{-j\boldsymbol{k}_{i}\boldsymbol{r}}$$

 $\dot{\boldsymbol{E}}_r = \boldsymbol{E}_{or} e^{-j\boldsymbol{k}_r \boldsymbol{r}}$

$$\dot{\boldsymbol{E}}_{t} = \boldsymbol{E}_{ot} e^{-j\boldsymbol{k}_{t}\boldsymbol{r}}$$

$$\mathbf{\dot{H}}_{r} = \mathbf{H}_{or}e^{-j\mathbf{k}_{r}\mathbf{r}} = \frac{\hat{\mathbf{n}}_{r} \times \dot{\mathbf{E}}_{r}}{\eta_{1}} = \frac{\mathbf{k}_{r} \times \dot{\mathbf{E}}_{r}}{\omega_{r}\mu_{1}}$$

 $|\dot{\boldsymbol{H}}_{i} = \boldsymbol{H}_{oi}e^{-j\boldsymbol{k}_{i}\boldsymbol{r}} = \frac{\hat{\boldsymbol{n}}_{i}\times\dot{\boldsymbol{E}}_{i}}{2} = \frac{\boldsymbol{k}_{i}\times\dot{\boldsymbol{E}}_{i}}{2}$

$$\left| \dot{\boldsymbol{H}}_{t} = \boldsymbol{H}_{ot} e^{-j\boldsymbol{k}_{t}\boldsymbol{r}} = \frac{\hat{\boldsymbol{n}}_{t} \times \dot{\boldsymbol{E}}_{t}}{\eta_{2}} = \frac{\boldsymbol{k}_{t} \times \dot{\boldsymbol{E}}_{t}}{\omega_{t} \mu_{2}} \right|$$

Αναλλοίωτο της συχνότητας του κύματος

i: incident *r*: reflected t: transmitted

$$\underline{\mathbf{A}}\mathbf{v} \quad \dot{\mathbf{E}}_1 = \dot{\mathbf{E}}_i + \dot{\mathbf{E}}_r \quad \dot{\mathbf{E}}_2 = \dot{\mathbf{E}}_t$$

S είναι n διαχωριστικ ή επιφάνεια των 2 μέσων

Για να διατηρείται η ηλεκτρική ροή πρέπει στη διαχωριστική επιφάνεια θα ισχύει:

$$|\hat{\boldsymbol{n}} \times (\dot{\boldsymbol{E}}_1 - \dot{\boldsymbol{E}}_2)|_{S} = 0$$

<u>δηλαδή</u>:

$$\left. \hat{\boldsymbol{n}} \times (\dot{\boldsymbol{E}}_{i} + \dot{\boldsymbol{E}}_{r} - \dot{\boldsymbol{E}}_{t}) \right|_{S} = 0 \quad \left. \hat{\boldsymbol{n}} \times (\boldsymbol{E}_{oi} e^{-j\boldsymbol{k}_{i}\boldsymbol{r}} e^{j\omega_{i}t} + \boldsymbol{E}_{or} e^{-j\boldsymbol{k}_{r}\boldsymbol{r}} e^{j\omega_{r}t}) \right|_{S} = \hat{\boldsymbol{n}} \times \boldsymbol{E}_{ot} e^{-j\boldsymbol{k}_{t}\boldsymbol{r}} e^{j\omega_{t}t} \Big|_{S}$$

$$\begin{vmatrix}
Ae^{j\omega_{i}t} + Be^{j\omega_{r}t} = Ce^{j\omega_{t}t} \\
\frac{\partial}{\partial t} \\
\implies j\omega_{i}Ae^{j\omega_{i}t} + j\omega_{r}Be^{j\omega_{r}t} = j\omega_{t}Ce^{j\omega_{t}t}
\end{vmatrix} \Rightarrow A(\omega_{i} - \omega_{t})e^{j\omega_{i}t} = B(\omega_{t} - \omega_{r})e^{j\omega_{r}t} \\
A(\omega_{i} - \omega_{r})e^{j\omega_{i}t} = C(\omega_{t} - \omega_{r})e^{j\omega_{r}t}$$

$$\Rightarrow \frac{A(\omega_{i} - \omega_{t})e^{j\omega_{i}t}}{A(\omega_{i} - \omega_{r})e^{j\omega_{i}t}} = B(\omega_{t} - \omega_{r})e^{j\omega_{r}t}$$

$$\Rightarrow \frac{A(\omega_{i} - \omega_{r})e^{j\omega_{i}t}}{A(\omega_{i} - \omega_{r})e^{j\omega_{i}t}} = C(\omega_{t} - \omega_{r})e^{j\omega_{t}t}$$

Άρα η συχνότητα όλων των κυμάτων παραμένει η ίδια με την αρχική

$$\Rightarrow e^{j\omega_i t} = e^{j\omega_r t} = e^{j\omega_t t}$$

$$\Rightarrow |\omega_i = \omega_r = \omega_t = \omega|$$

Κοινά επίπεδα πρόσπτωσης, ανάκλασης και διάθλασης

i: incident *r*: reflected *t*: transmitted

$$\left.\hat{\boldsymbol{n}}\times(\dot{\boldsymbol{E}}_{i}+\dot{\boldsymbol{E}}_{r}-\dot{\boldsymbol{E}}_{t})\right|_{S}=0$$

$$|\hat{\boldsymbol{n}} \times (\boldsymbol{E}_{oi} e^{-j\boldsymbol{k}_i \boldsymbol{r}} + \boldsymbol{E}_{or} e^{-j\boldsymbol{k}_r \boldsymbol{r}})|_{S} = \hat{\boldsymbol{n}} \times \boldsymbol{E}_{ot} e^{-j\boldsymbol{k}_t \boldsymbol{r}}|_{S}$$

<u>Θεωρώντας ότι η αρχή των αξόνων (αρχή του r)</u> βρίσκεται πάνω στη διαχωριστική επιφάνεια (χωρίς περιορισμό της γενικότητας):

$$\alpha e^{-j\mathbf{k}_{is}\mathbf{r}} + be^{-j\mathbf{k}_{rs}\mathbf{r}} = ce^{-j\mathbf{k}_{ts}\mathbf{r}}$$

$$\Rightarrow -j\mathbf{k}_{is}\alpha e^{-j\mathbf{k}_{is}\mathbf{r}} - j\mathbf{k}_{rs}be^{-j\mathbf{k}_{rs}\mathbf{r}} = -j\mathbf{k}_{ts}ce^{-j\mathbf{k}_{ts}\mathbf{r}}$$

$$\Rightarrow \begin{cases} \alpha(\mathbf{k}_{is} - \mathbf{k}_{ts})e^{-j\mathbf{k}_{i}\mathbf{r}} = b(\mathbf{k}_{ts} - \mathbf{k}_{rs})e^{-j\mathbf{k}_{rs}\mathbf{r}} \\ \alpha(\mathbf{k}_{is} - \mathbf{k}_{rs})e^{-j\mathbf{k}_{i}\mathbf{r}} = c(\mathbf{k}_{ts} - \mathbf{k}_{rs})e^{-j\mathbf{k}_{ts}\mathbf{r}} \end{cases}$$

$$\Rightarrow e^{-j\mathbf{k}_{is}\mathbf{r}} = e^{-j\mathbf{k}_{rs}\mathbf{r}} = e^{-j\mathbf{k}_{ts}\mathbf{r}}$$

$$\Rightarrow \mathbf{k}_{i}\mathbf{r} = \mathbf{k}_{r}\mathbf{r} = \mathbf{k}_{t}\mathbf{r}$$

$$\begin{pmatrix} \boldsymbol{k}_{i} = \boldsymbol{k}_{is} + k_{in} \hat{\boldsymbol{n}} \\ \boldsymbol{k}_{r} = \boldsymbol{k}_{rs} + k_{rn} \hat{\boldsymbol{n}} \\ \boldsymbol{k}_{t} = \boldsymbol{k}_{ts} + k_{tn} \hat{\boldsymbol{n}} \end{pmatrix}$$

<u>Όλα τα κύματα παραμένουν</u> στο ίδιο επίπεδο

Κοινά επίπεδα πρόσπτωσης, ανάκλασης και διάθλασης

i: incident *r*: reflected *t*: transmitted

Θεωρώντας ότι η αρχή των αξόνων (αρχή του r) βρίσκεται πάνω στη διαχωριστική επιφάνεια (χωρίς βλάβη της γενικότητας):

Δηλαδή τα διανύσματα \mathbf{k}_{i} , \mathbf{k}_{t} , είναι ομοεπίπεδα

$$\left| oldsymbol{k}_i oldsymbol{r} = oldsymbol{k}_r oldsymbol{r} = oldsymbol{k}_t oldsymbol{r} \right|$$

(Αν $\mathbf{k}_i \mathbf{r} = \mathbf{0}$ αναγκαστικά $\mathbf{k}_i \mathbf{r} = \mathbf{k}_i \mathbf{r} = \mathbf{0}$ για παράδειγμα)

Επειδή επίσης θα είναι $\hat{n}r = 0$ συμπεραίνεται ότι και το κάθετο στη διαχωριστική επιφάνεια διάνυσμα θα βρίσκεται στο ίδιο επίπεδο \hat{n}

Το επίπεδο αυτό ορίζεται ως το επίπεδο πρόσπτωσης

Μελέτη πρόσπτωσης ανάκλασης διάθλασης

Έστω ότι το διάνυσμα *r* έχει φορέα τον άξονα *x*. Ο άξονας *z* επιλέγεται κάθετος στη διαχωριστική επιφάνεια. Ή διαφορετικά το κοινό επίπεδο πρόσπτωσης, ανάκλασης και διάθλασης είναι το επίπεδο *y*=0

Nόμος Snell

<u>Προφανώς</u> θα πρέπει:

$$k_i r \cos a_i = k_r r \cos a_r = k_t r \cos a_t \Rightarrow$$

$$\frac{\omega}{v_1} r \cos a_i = \frac{\omega}{v_1} r \cos a_r = \frac{\omega}{v_2} r \cos a_t \Rightarrow$$

$$\cos a_i = \cos a_r$$
, $\frac{\cos a_i}{v_1} = \frac{\cos a_i}{v_2}$ $\dot{\eta}$ $\sqrt{\mu_1 \varepsilon_1} \cos a_i = \sqrt{\mu_2 \varepsilon_2} \cos a_i$

$$\kappa \alpha i = \frac{\sin \theta}{\sin \theta}$$

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2}$$

Aν:

$$n_1 = \frac{c}{v_1} = \sqrt{\frac{\mu_1 \mathcal{E}_1}{\mu_o \mathcal{E}_o}} = \sqrt{\mu_{r_1} \mathcal{E}_{r_1}}$$

$$n_2 = \frac{c}{v_2} = \sqrt{\frac{\mu_2 \varepsilon_2}{\mu_o \varepsilon_o}} = \sqrt{\mu_{r_2} \varepsilon_{r_2}}$$

$$\left| \frac{n_2}{n_1} = \frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2} = \sqrt{\frac{\mu_2 \varepsilon_2}{\mu_1 \varepsilon_1}} = n_{12}$$

<u>Νόμος Snell</u>

Κρίσιμη γωνία (από νόμο Snell)

$$n_1 < n_2$$
: θα είναι: $\sin \theta_t = \sin \theta_i \frac{n_1}{n_2} < \sin \theta_i \le 1$
και αφού: $0 \le \theta_t \le \frac{\pi}{2}$
προκύπτει: $\theta_t < \theta_i$

και αφού:
$$0 \le \theta_t \le \frac{\pi}{2}$$

προκύπτει:
$$\theta_t < \theta_i$$

$$n_1 > n_2$$
: $\sin \theta_i = \sin \theta_i \frac{n_1}{n_2} > \sin \theta_i \le 1$

προκύπτει: $\theta_t > \theta_i$

Προφανώς για να παίρνει πραγματικές τιμές η γωνία θ_t $(n_1 > n_2)$ πρέπει: $\sin \theta_i \le \frac{n_2}{n_1}$

$$H yωνία sin θ_c = \frac{n_2}{n_1} ονομάζεται κρίσιμη γωνία$$

$$Για (n_1 > n_2) θα είναι (από νόμο Snell) sin θ_t = \frac{\sin θ_i}{\sin θ_c}$$

$$\Gamma_{i}$$
 α $(n_{1}>n_{2})$ θα είναι (από νόμο Snell) $\sin \theta_{t} = \frac{\sin \theta_{i}}{\sin \theta_{i}}$

Επίσης όταν $\theta_i > \theta_c$ έχουμε πλήρη ανάκλαση

Ερωτήσεις

- Ποιο μέγεθος θεωρούμε ότι διατηρείται για να υπολογίσουμε τη συχνότητα του ανακλώμενου και διαθλώμενου κύματος;
- 2. Πώς μεταβάλλεται η συχνότητα του ανακλώμενου και διαθλώμενου κύματος ως προς το προσπίπτον;
- 3. Πώς μεταβάλλεται το επίπεδο του ανακλώμενου και διαθλώμενου κύματος ως προς το προσπίπτον;