Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no risk of an IRQ occurring between the read and the modify access.

Figure 25 shows the basic structure of a 5 V tolerant I/O port bit. *Table 39* gives the possible port bit configurations.

V_{DD FT} is a potential specific to five-volt tolerant I/Os and different from V_{DD}.

Table 35. Port bit configuration table⁽¹⁾

MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) [B:A]	PUPDR(i) [1:0]		I/O configuration	
01	0	SPEED [B:A]	0	0	GP output	PP
	0		0	1	GP output	PP + PU
	0		1	0	GP output	PP + PD
	0		1	1	Reserved	
	1		0	0	GP output	OD
	1		0	1	GP output	OD + PU
	1		1	0	GP output	OD + PD
	1		1	1	Reserved (GP output OD)	

268/1751 RM0090 Rev 19

MODER(i) [1:0]	OTYPER(i)		EEDR(i) B:A]	PUPDR(i) [1:0]		I/O configuration		
10	0	SPEED [B:A]		0	0	AF	PP	
	0			0	1	AF	PP + PU	
	0			1	0	AF	PP + PD	
	0			1	1	Reserved		
	1			0	0	AF	OD	
	1			0	1	AF	OD + PU	
	1			1	0	AF	OD + PD	
	1			1	1	Reserved		
00	Х	х	Х	0	0	Input	Floating	
	Х	х	Х	0	1	Input	PU	
	Х	х	Х	1	0	Input	PD	
	х	х	х	1	1	Reserved (input floating)		
11	Х	х	Х	0	0	Input/output	Analog	
	Х	х	х	0	1	Reserved		
	Х	х	Х	1	0			
	х	X	х	1	1			

Table 35. Port bit configuration table⁽¹⁾ (continued)

8.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

- PA15: JTDI in pull-up
- PA14: JTCK/SWCLK in pull-down
- PA13: JTMS/SWDAT in pull-up
- PB4: NJTRST in pull-up
- PB3: JTDO in floating state

When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the N-MOS is activated when 0 is output).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1 clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx PUPDR register.

RM0090 Rev 19 269/1751

^{1.} GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function