QUÈ HEM FET FINS ARA?

El darrer que hem treballat és el mètode d'inducció i exemples.

Fem un exemple de demostració per inducció en primer lloc. Veiem en aquest exemple perquè es necessita mirar més d'un cas base:

EX.: Demostreu que $5^n < 27n!$ per a tot $n \ge 0$.

Primer hem fet el cas base per n=0 però al fer el pas inductiu hem vist que necessitàvem mirar també els cassos n=1,2,3,4 i ho hem corregit. És a dir, primer hem fet el que no està en cursiva fins a **"Com que"** i a on diu **"Sigui un** n>4," hem posat "Sigui un n>0," quan finalment hem arribat a que necessitàvem $n\geq 5$ hem tornat enrera i hem fet els casos n=1, n=2, n=3, n=4 i hem posat el **"Sigui un** n>4,". Per tant aquesta resolució l'heu de pensar feta així.

CAS BASE Cal que justifiquem que $5^0 < ???? 27 \cdot 0!$, $5^1 < ???? 27 \cdot 1!$, $5^2 < ???? 27 \cdot 2!$, $5^3 < ???? 27 \cdot 3!$, $5^4 < ???? 27 \cdot 4!$,

- El primer cas és cert perquè $5^0 = 1$ i $27 \cdot 0! = 27 \cdot 1 = 27$ i 1 < 27.
- El segon cas és cert perquè $5^1 = 5 i 27 \cdot 1! = 27 \cdot 1 = 27 i 5 < 27$.
- El tercer cas és cert perquè $5^2 = 25 i 27 \cdot 2! = 27 \cdot 2 = 54 i 25 < 54$.
- El quart cas és cert perquè $5^3 = 125 i 27 \cdot 3! = 27 \cdot 6 = 162 i 125 < 162$.
- El cinquè cas és cert perquè $5^4 = 625 i 27 \cdot 4! = 27 \cdot 24 = 648 i 625 < 648$.

CAS n-1 **IMPLICA CAS** n **Sigui un** n>4, suposem que $5^{n-1}<27(n-1)!$ i hem de demostrar que $5^n<^{???}$ 27n!. Calculem els dos membres de la desigualtat per separat:

- $5^n = 5^{n-1} \cdot 5 < 27(n-1)! \cdot 5 = (n-1)! \cdot 27 \cdot 5$
- $27n! = (n-1)! \cdot 27 \cdot n$

Com que n > 4 llavors $5 \le n$ i d'aquí surt que

 $5^n < (n-1)! \cdot 27 \cdot 5 \le (n-1)! \cdot 27 \cdot n = 27n!$, o sigui que $5^n < 27n!$.

CLASSE D'AVUI 23/10/2020

Seguim amb el tema de teoria de conjunts:

DEF.: Direm per dos conjunts A, B que B està inclòs dins A (i ho escriurem així:

 $B \subseteq A$) quan:

$$B \subseteq A \Leftrightarrow \forall x(x \in B \Rightarrow x \in A)$$

Es diu que B és un subconjunt d'A o de vegades es diu que és B és una part de A.

EX.: Siguin $A = \{a, b\}$, $B = \{a, b, c\}$, $C = \{a\}$. Raoneu si són certes les afirmacions següents:

- **1**. $a \in A$
- **2**. $c \in A$
- **3**. $A \subseteq B$
- **4.** $B \subseteq A$
- **5**. $A \subseteq C$
- **6**. $A \subseteq \{a, b, \{a\}\}$
- 7. $\{a\} \in \{a,b,\{a\}\}$
- **8**. $\{b\} \in \{a, b, \{a\}\}$
- **1**. $a \in A$ cert perquè a està a la llista que defineix A.
- **2**. $c \in A$ falsa perquè c no està a la llista que defineix A.
- **3**. $A \subseteq B$ cert perquè cada element del conjunt A (l'a i el b) pertanyen al conjunt B.
- **4**. $B \subseteq A$ fals ja que $c \in B$ però $c \notin A$ (és un contraexemple del per a tot que defineix la inclusió).
 - **5**. $A \subseteq C$ fals ja que $b \in A$ però $b \notin C$ (és un contraexemple).
- **6**. $A \subseteq \{a,b,\{a\}\}$ cert perquè tots els elements de A (l'a i el b) pertanyen al conjunt $\{a,b,\{a\}\}$.
 - **7**. $\{a\} \in \{a,b,\{a\}\}$ cert perquè $\{a\}$ és un element del conjunt $\{a,b,\{a\}\}$.
- **8**. $\{b\} \in \{a,b,\{a\}\}$ fals ja que $\{b\}$ no és un element del conjunt $\{a,b,\{a\}\}$; cal tenir clar que no és el mateix $\{b\}$ que b.

9

S'observa que pel principi d'extensionalitat podem afirmar que:

PROP.: Siguin A,B conjunts. Aleshores $A=B \Leftrightarrow A \subseteq B, B \subseteq A$.

DEM.: OK.

Tenim també aquestes propietats bàsiques:

PROP.: Siguin A, B, C conjunts. Aleshores

- **1**. $\emptyset \subseteq A$
- **2**. $A \subseteq A$
- **3**. $A \subseteq B$ i $B \subseteq C$ implies $A \subseteq C$

DEM.:Demostrem la propietat 3: suposant que és cert $A \subseteq B$ i $B \subseteq C$ volem demostrar que és cert $A \subseteq C$; per justificar la inclusió sigui un $x \in A$ i volem veure que $x \in C$; però això és molt fàcil utilitzant les hipòtesis: $x \in A \Rightarrow x \in B \Rightarrow x \in C$ com es volia demostrar.

EX.: La Delegació d'Estudiants de la FIB (DEFIB) ha organitzat un concurs per fer la seva nova pàgina web i algunes altres webs que porten ells mateixos. Hi ha dues modalitats de participació: a títol individual i en equip. La quantia del premis és diferent per les dues modalitats i el que es demana a la pàgina web també és diferent. Podeu consultar tots els detalls a les bases del concurs. Finalment ahir va acabar el termini per presentar propostes i s'han presentat: a títol individual els estudiants Jeremy (J), Walter (W), Gemma (G) i Marc (M); en la modalitat d'equips s'han presentat J i W formant un grup, M formant ell sol un altre grup (recordeu que per grups no es demana el mateix ni tampoc el premi és el mateix) i Roger (R) formant ell sol un altre grup.

a)Anomenem A al conjunt format per les propostes (té 7 propostes entre individuals i en equip; les individuals les entendrem com un element d'aquest conjunt A; les d'equip les entendrem com un conjunt format pels membres que formen l'equip).

b)Digues si són certes les afirmacions següents: $J \in A$ (*), $W \in A$, $\{W\} \in A$, $M \in A$, $\{M\} \in A$, $\{W\} \subseteq A$ (*), $\{M\} \subseteq A$, $\{J,W\} \in A$ (*), $\{J,W\} \subseteq A$ (*), $\{J,W,G\} \in A$, $\{J,W,G\} \subseteq A$, $J \in J$, $J \in A$,

```
a)A = \{J, W, G, M, \{J, W\}, \{M\}, \{R\}\}\
```

b) Veiem cadascuna de les afirmacions:

- $J \in A$ cert ja que J està a la llista d'elements amb la qual queda definit A
- $W \in A$ cert
- $\{W\} \in A$ fals
- $M \in A$ cert
- $\{M\} \in A$ cert
- $\{W\}\subseteq A$ cert perquè l'únic element de $\{W\}$ és W i per justificar la inclusió s'ha de veure que pertany a A i és cert que $W\in A$ perquè està a la llista de definició de A
- $\{M\} \subseteq A$ cert
- $\{J,W\} \in A$ cert ja que $\{J,W\}$ està a la llista d'elements amb la qual queda definit A; per tant en aquest cas podem dir que $\{J,W\}$ és un conjunt i un element a la vegada
- $\{J,W\}\subseteq A$ cert perquè el conjunt $\{J,W\}$ té dos elements, J i W, i per demostrar la inclusió ens hem de preguntar si J pertany a A i que W pertany a A; i això és cert: $J\in A$ i $W\in A$ (estan a la llista de definició de A) per tant

queda justificat que $\{J, W\} \subseteq A$

- $\{J, W, G\} \in A$ fals
- $\{J, W, G\} \subseteq A$ cert
- $J \in J$ o no te sentit en el nostre problema o és fals
- $P \subseteq A$ o no te sentit en el nostre problema o és fals
- $P \in A$ fals
- $R \subseteq A$ o no te sentit en el nostre problema o és fals
- $R \in A$ fals

EX.: (1) Siguin $X = \{1,2,3,4\}$, $Y = \{\{1,2\},\{3,4\}\}$, $Z = \{\{1\},\{2,3\},\{4\}\}$. Dieu quines afirmacions són certes i quines són falses:

- **a)** $1 \in X$, $1 \in Y$, $1 \in Z$.
- **b)** $\{1\} \in X$, $\{1\} \in Y$, $\{1\} \in Z$, $\{1\} \subseteq X$, $\{1\} \subseteq Y$, $\{1\} \subseteq Z$, $\{3,4\} \in X$
- a) $1 \in X$ és certa, $1 \in Y$ és falsa, $1 \in Z$ és falsa; seria cert el següent: $\{1\} \in Z$.
- **b)** $\{1\} \in X$ és falsa, $\{1\} \in Y$ és falsa, $\{1\} \in Z$ és certa, $\{1\} \subseteq X$ és certa, $\{1\} \subseteq Y$ és falsa, $\{1\} \subseteq Z$ és falsa perquè s'ha de mirar si tot element de $\{1\}$ és element de Z; mirem el primer (i únic) element de $\{1\}$ que és 1 i ens preguntem si pertany a Z, és a dir, si $1 \in Z$ però això no és cert, per tant no és certa la inclusió; sí que és cert el següent: $\{\{1\}\} \subseteq Z$; $\{3,4\} \in X$ és falsa.

Entre conjunts podem definir tres primeres operacions importants: reunió, intersecció i diferència. La primera és la reunió (o unió) de dos conjunts (que correspon intuïtivament a ficar en un mateix sac els elements dels dos conjunts):

DEF.: Donats dos conjunts A,B anomenem reunió (o unió) al conjunt $A \cup B = \{x | x \in A \lor x \in B\}$

EX.: Siguin $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 5, 6\}$, $C = \{\{1\}, 2, 3\}$, $D = \{\{1\}, \{2, 3\}, 5, 6\}$. Calculeu $A \cup B$, $A \cup C$, $A \cup D$, $B \cup D$, $B \cup \emptyset$.

Tenim molt fàcilment:
$$A \cup B = \{1, 2, 3, 4, 5, 6\}, A \cup C = \{1, 2, 3, 4, \{1\}\}, A \cup D = \{1, 2, 3, 4, \{1\}, \{2, 3\}, 5, 6\}, B \cup D = \{1, 2, 5, 6, \{1\}, \{2, 3\}\}, B \cup \emptyset = B = \{1, 2, 5, 6\}.$$

Moltes propietats que té la reunió s'hereden de les propietats de la ∨. Les principals propietats que satisfà aquesta operació són:

PROP.: Siguin A, B, C conjunts. Aleshores

- **1**. $A \cup A = A$
- **2**. $A \cup \emptyset = A$
- **3.** $A \cup B = B \cup A$
- **4.** $A \cup (B \cup C) = (A \cup B) \cup C$
- **5**. $A \subseteq A \cup B, B \subseteq A \cup B$
- **6**. $A \subseteq B \Leftrightarrow A \cup B = B$
- **7**. $A \cup B \subseteq C \Leftrightarrow A \subseteq C \mid B \subseteq C$

DEM.: La propietat 1 és certa per la propietat que diu que $p \lor p \equiv p$, perquè simplement cal demostrar que $a \in A \lor a \in A$. La propietat 3 es dedueix de la mateixa manera de l'associativitat de la \lor . La propietat 5 surt de la tautologia $p \to p \lor q$ simplement fixant-se que si agafem un $a \in A$ llavors podem afirmar que $a \in A$ o $a \in B$, o sigui $a \in A \cup B$.

La segona operació és la intersecció:

DEF.: Donats dos conjunts A,B anomenem intersecció al conjunt

$$A \cap B = \{x | x \in A \land x \in B\}$$

EX.: Siguin $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 5, 6\}$, $C = \{\{1\}, 2, 3\}$, $D = \{\{1\}, \{2, 3\}, 5, 6\}$. Calculeu $A \cap B$, $A \cap C$, $C \cap D$, $B \cap D$, $B \cap \emptyset$.

Els càlculs donen: $A \cap B = \{1,2\}$, $A \cap C = \{2,3\}$, $C \cap D = \{\{1\}\}$, $B \cap D = \{5,6\}$, $B \cap \emptyset = \emptyset$.

Moltes propietats que té la intersecció s'hereden de les propietats de la \wedge . Les principals propietats que satisfà aquesta operació són:

PROP.: Siguin A, B, C conjunts. Aleshores

- **1**. $A \cap A = A$
- **2.** $A \cap \emptyset = \emptyset$
- **3**. $A \cap B = B \cap A$
- **4.** $A \cap (B \cap C) = (A \cap B) \cap C$
- **5**. $A \cap B \subseteq A, A \cap B \subseteq B$
- **6**. $A \subseteq B \Leftrightarrow A \cap B = A$
- **7**. $C \subseteq A \cap B \Leftrightarrow C \subseteq A \mid C \subseteq B$

DEM.: La propietat 4 es dedueix de l'associativitat de la \wedge . La propietat 5 es dedueix del fet que és una tautologia $p \wedge q \rightarrow p$ simplement fixant-se que si agafem un $a \in A \cap B$ llavors podem afirmar que $a \in A$ i $a \in B$, o sigui que podem deduir $a \in A$.

Quan la intersecció de dos conjunts és buida es diu que són disjunts:

DEF.: Dos conjunts A, B són disjunts si i només si $A \cap B = \emptyset$.

EX.: (10) Expresseu mitjançant quantificadors $i \in el$ fet següent: $A = \emptyset$. La primera possibilitat és dir per la definició del conjunt buit que és "per a tot x:

 $x \notin A$ " o també "per a tot $x \in A$: $x \neq x$ ". La manera més formal és aquesta darrera o si es prefereix "per a tot $x \in A$ si $x \in A$ aleshores $x \neq x$ " ja que és aplicar directament la definició del conjunt buit $\emptyset = \{x | x \neq x\}$.

EX.: (11) Idem $\neg (A \subseteq B)$.

 $\neg (A \subseteq B)$ és el mateix que dir " \neg (per a tot x si $x \in A \Rightarrow x \in B$)" o sigui "existeix un x

tal que $x \in A$ i $x \notin B$ ".