

1. Redes Recorrentes de Hopfield Aspectos de arquitetura

- Conforme as aulas anteriores, as redes neurais artificiais consideradas recorrentes são aquelas em que as saídas de uma camada neural podem ser realimentadas às suas entradas.
- O melhor exemplo de rede recorrente são aquelas que foram idealizadas por Hopfield (1982), as quais são mais comumente conhecidas como redes de Hopfield.
- Tal arquitetura de rede neural artificial, com realimentação global, possui as seguintes características:
 - > Comportamento tipicamente dinâmico;
 - > Capacidade de memorizar relacionamentos;
 - Possibilidade de armazenamento de informações;
 - Facilidade de implementação em hardware analógico.

2

1. Redes Recorrentes de Hopfield

Contexto histórico

- Os trabalhos desenvolvidos por Hopfield também contribuíram para desencadear na época um interesse renovado, e ainda bem crescente, por redes neurais artificiais.
- Essas investigações colaboraram para o renascimento de importantes pesquisas na área e que estavam, de certo modo, estagnadas desde a publicação do livro Perceptron por Minsky & Papert (1969).
- As propostas de Hopfield formulavam sobre os elos existentes entre as arquiteturas neurais recorrentes frentes aos sistemas dinâmicos e à física estatística.
- Em decorrência, elas impulsionaram a curiosidade de diversas outras áreas do conhecimento.

3

1. Redes Recorrentes de Hopfield

Função de energia da rede

- O grande trunfo de Hopfield foi mostrar que redes recorrentes de uma única camada podiam ser caracterizadas por uma função de energia relacionada aos estados de seu comportamento dinâmico.
- Tais arquiteturas foram também batizadas como modelos "vidro de spin" (Ising model), fazendo-se analogia ao ferromagnetismo.
- A minimização da função de energia {E(x)} levaria a saída da rede para pontos de equilíbrio estáveis, sendo que estes seriam a solução desejada frente a um problema em específico.

2. Princípio de Funcionamento

Aspectos de arquitetura

 A rede de Hopfield é constituída de uma única camada, em que todos os neurônios são completamente interligados, isto é, todas as saídas da rede realimentam todas as suas entradas.

$$\begin{cases} \dot{u}_{j}(t) = -\eta \cdot u_{j}(t) + \sum_{i=1}^{n} W_{ji} \cdot v_{i}(t) + i_{j}^{b} & \textbf{(1)} \\ v_{j}(t) = g(u_{j}(t)) & \textbf{(2)} \end{cases}$$

- $\dot{u}_j(t)$ é o estado interno do *j*-ésimo neurônio, com $\dot{u}(t) = \mathrm{d}u/\mathrm{d}t$;
- $v_j(t)$ é a saída do j-ésimo neurônio;
- W_{ji} é o valor do peso sináptico conectando o *j*-ésimo neurônio ao *j*-ésimo neurônio;
- i_j^b é o limiar (bias) aplicado ao *j*-ésimo neurônio; g(.) é uma função de ativação, monótona
- g(.) e uma função de ativação, monotona crescente, limitando a saída do neurônio;
- $\eta \cdot u_j(t)$ é um termo de decaimento passivo; e
- $x_j(t)$ é a entrada do *j*-ésimo neurônio.

2. Princípio de Funcionamento

Comportamento dinâmico

 Elucidando ainda mais os passos envolvidos com a dinâmica da rede de Hopfield, tem-se também as interpretações seguintes para as expressões que regem o seu comportamento.

$$\begin{cases} \dot{u}_j(t) = -\eta \cdot u_j(t) + \sum_{i=1}^n W_{ji} \cdot v_i(t) + i_j^b \\ v_j(t) = g(u_j(t)) \end{cases}$$

Síntese do comportamento dinâmico:

- Aplicar um conjunto de sinais {x} nas entradas;
- 2. Obter o vetor de saídas { v} da rede;
- 3. Realimentar as entradas com as saídas anteriores {*x* ← *v*}
- 4. Repetir os passos de (i) a (iii) até obter convergência.

Interpretação das equações dinâmicas:

- $ightharpoonup \text{Em } t = t_0 \Rightarrow \text{entrada } \mathbf{x}(t_0) \text{ gera saída } \mathbf{v}(t_0);$
- $ightharpoonup \text{Em } t_1 \Rightarrow \text{entrada } \mathbf{x}(t_1) = \mathbf{v}(t_0) \text{ gera saída } \mathbf{v}(t_1);$
- $ightharpoonup \text{Em } t = t_2 \Rightarrow \text{entrada } \mathbf{x}(t_2) = \mathbf{v}(t_1) \text{ gera saída } \mathbf{v}(t_2);$
- Em $t = t_m \Rightarrow \mathbf{v}(t_m) = \mathbf{v}(t_{m-1})$, condição de rede estabilizada.

2. Princípio de Funcionamento

Versão em tempo discreto

Na maioria das aplicações práticas, em que se implementaram as redes de Hopfield por meio de algoritmos computacionais iterativos. utiliza-se a sua versão em tempo discreto, ou seja:

$$\begin{cases} u_j(k) = \sum_{i=1}^n W_{ji} \cdot v_i(k-1) + i_j^b, & \text{com } j = 1, ..., n \\ v_j(k) = g(u_j(k)) \end{cases}$$
 (4)

- Assim como no caso contínuo, dado qualquer conjunto de condições iniciais $x^{(0)}$, deve-se impor **restrições apropriadas** sobre a matriz de pesos **W**, a fim de se garantir estabilidade (convergência para pontos de equilíbrio estáveis).
- Essas seqüências de iterações sucessivas produzem mudanças (cada vez menores) nas saídas da rede, até que os seus valores se tornem constantes (estáveis).
- A versão em tempo discreto também sempre convergirá para aqueles pontos que correspondem à solução do problema.

3. Estabilidade da Rede de Hopfield

Aspectos introdutórios

- Dependendo de como os parâmetros da rede são escolhidos, esta deve funcionar como um sistema estável, ou então como um oscilador, ou ainda como um sistema totalmente caótico.
- A maioria das aplicações que envolvem o uso da rede de Hopfield requer que a mesma se comporte como um sistema estável, com múltiplos pontos de equilíbrio também estáveis.
- Para analisar a estabilidade e evolução da rede de Hopfield, há a necessidade de definir uma Função de Energia ou Função de Lyapunov que está associada com sua dinâmica.
- Em outras palavras, tem-se que provar que o sistema dissipa energia com o passar do tempo, em consideração às certas condições que lhe são impostas, até alcançar um estágio de mínima energia livre.
- Para isso, deve-se mostrar que suas derivadas temporais são sempre menores ou iguais que zero, conforme o "Segundo Método de Lyapunov", também conhecido como "Método Direto".

3. Estabilidade da Rede de Hopfield

Condições para garantia de estabilidade (I)

 Uma função de Lyapunov para a rede de Hopfield, cujos neurônios são alterados de forma assíncrona (um por vez), é definida por:

$$E(t) = -\frac{1}{2} \mathbf{v}(t)^T \cdot \mathbf{W} \cdot \mathbf{v}(t) - \mathbf{v}(t)^T \cdot \mathbf{i}^b$$
 (5)

• A partir de (5), obtém-se a expressão para suas derivadas temporais, i.e.:

$$\dot{E}(t) = \frac{dE(t)}{dt} = (\nabla_{\mathbf{v}} E(t))^T \cdot \mathbf{v}(t)$$
 (6)

Impondo a primeira condição, de que a matriz de pesos seja simétrica { W = W T}, obtém-se a seguinte relação de (6) com (5):

$$\nabla_{\mathbf{V}} E(t) = -\mathbf{W} \cdot \mathbf{v}(t) - \mathbf{i}^{b} \tag{7}$$

Examinando a expressão (1), assumindo que o termo de decaimento passivo seja nulo, conclui-se que:

$$\nabla_{\mathbf{V}} E(t) = -\mathbf{u}(t)$$
 (8) $u_j(t) = -\eta \cdot u_j(t) + \sum_{i=1}^{n} W_i(t)$

• Logo, substituindo (8) em (6), tem-se:

$$= -\mathbf{u}(t)' \cdot \mathbf{v}(t)$$

$$= -\sum_{j=1}^{n} \dot{u}_{j}(t) \cdot \dot{v}_{j}(t) = -\sum_{j=1}^{n} \dot{u}_{j}(t) \cdot \frac{\partial v_{i}}{\partial u_{i}} \cdot \frac{\partial u_{i}}{\partial t}$$

$$= -\sum_{j=1}^{n} \underbrace{\left(\dot{u}_{j}(t)\right)^{2}}_{\text{parcela (ii)}} \cdot \underbrace{\frac{\partial v_{j}(t)}{\partial u_{j}(t)}}_{\text{parcela (iii)}}$$

3. Estabilidade da Rede de Hopfield

Condições para garantia de estabilidade (II)

 Para concluir a demonstração, basta-se então mostrar que as derivadas temporais da expressão (9) são sempre menores ou iguais que zero.

$$\dot{E}(t) = -\sum_{j=1}^{n} \frac{(\dot{u}_{j}(t))^{2}}{\text{parcela (i)}} \cdot \underbrace{\frac{\partial v_{j}(t)}{\partial u_{j}(t)}}_{\text{parcela (ii)}}$$

- Como o sinal da referida expressão já é negativo, resta-se então mostrar que tanto a parcela (i) como a parcela (ii) produzirá sinais sempre positivos.
 - A parcela (i) sempre fornece resultado positivo, independentemente do valor de seu argumento, pois está elevada ao quadrado.
 - A parcela (ii) será também sempre positivo, desde que se utilize funções de ativação monótonas crescentes, tais como a função logística e a tangente hiperbólica.

3. Estabilidade da Rede de Hopfield Condições para garantia de estabilidade (III) Portanto, têm-se assim as duas condições essenciais para que o comportamento dinâmico da rede de Hopfield seja estável, isto é: 1) A matriz de pesos { W} deve ser simétrica; 2) A função de ativação {g(.)} deve ser monótona crescente. • Em suma, desde que as duas condições acima sejam satisfeitas, dado então qualquer conjunto de condições iniciais x(0), a rede sempre convergirá para um ponto de equilíbrio estável. A figura ao lado mostra um conjunto de pontos de equilibro e seus recíprocos campos de atração. Assume-se aqui que a rede é constituída de dois neurônios, cujas saídas são dadas por v_1 e v_2 . Os 5 pontos de equilíbrio (atratores) representados seriam então aqueles que produziriam os menores valores para a função de energia, ou seja, são os estados que minimizam a função de energia da rede.

4. Memórias Associativas Conceitos introdutórios Uma das aplicações mais difundidas das redes de Hopfield diz respeito às memórias associativas binárias, também denominadas de memórias endereçáveis pelo conteúdo. A finalidade embutida por trás de uma memória associativa está em recuperar (restaurar) corretamente um padrão que foi previamente armazenado em sua estrutura, a partir de uma amostra parcial (incompleta) ou ruidosa (distorcida) do mesmo. Para tal propósito, pode-se também utilizar aqui uma rede de Hopfield.

4. Memórias Associativas

Método do produto externo

- Para as memórias associativas, assim como em outras aplicações de Hopfield, o desafio está em definir apropriadamente os seus parâmetros livres (W e ib) a fim de minimizar a função de energia correspondente.
- Para tanto, dois métodos clássicos têm sido adotados com freqüência, i.e., o método do produto externo e o método da matriz pseudo-inversa.

Método do Produto Externo

- A inspiração deste método, proposto pelo próprio Hopfield, advém da aplicação do método de aprendizagem de Hebb.
- Assim, dada uma quantidade p de padrões $\{z\}$ a serem armazenados na memória, constituídos por n elementos cada um, os parâmetros livres da rede de Hopfield são definidos por:

$$W = \frac{1}{n} \sum_{k=1}^{p} \mathbf{z}^{(k)} \cdot (\mathbf{z}^{(k)})^{T} \quad (10) \quad ; \quad i^{D} = 0 \quad (11)$$

No caso das memórias associativas, a diagonal da matriz de pesos W deve ter valores nulos (indicação de ausência de auto-realimentação). Para tanto, reescrevendo a expressão (10), tem-se:

$$W = \frac{1}{n} \sum_{k=1}^{p} \mathbf{z}^{(k)} \cdot (\mathbf{z}^{(k)})^{T} - \frac{p}{n} \cdot \mathbf{I}$$
(ii)

• A parcela (i) realiza o produto externo entrelementos de cada um dos padrões a ser armazenados.

• A parcela (ii) simplesmente neutraliza os elementos da diagonal principal (W = 0).

- A parcela (i) realiza o produto externo entre os
- A parcela (ii) simplesmente neutraliza os elementos da diagonal principal ($W_{kk} = 0$).

4. Memórias Associativas

Exemplo ilustrativo

Como exemplo do processo de montagem da matriz W, considera-se dois padrões a serem introduzidos numa memória associativa, i.e.:

Primeiro padrão // z(1)

Segundo padrão // z(2)

- As imagens a ser armazenadas são definidas em grids de dimensão 3x3.
- As quadrículas (pixels) escuras são representadas pelo valor 1, ao passo que quadrículas brancas pelo valor -1.
- Tais atribuições correspondem aos valores de saída da função de ativação sinal.

2ª linha

3^a linha

- Nesta condição, os vetores $\mathbf{z}^{(1)}$ e **z**⁽²⁾ são constituídos pela concatenação das linhas que compõem cada um de seus grids.
- Aplicando-se a expressão abaixo, com p = 2 e n = 9, obtém-se a referida matriz de pesos da rede de Hopfield, i.e.

$$\boldsymbol{W} = \frac{1}{n} \sum_{k=1}^{p} \underline{\boldsymbol{z}^{(k)} \cdot (\boldsymbol{z}^{(k)})^{T}} - \underbrace{\frac{p}{n} \cdot \boldsymbol{I}}_{(ii)}$$

 $\mathbf{z}^{(1)} = \begin{bmatrix} -1 & +1 & -1 \\ & +1 & +1 & +1 \end{bmatrix} - \begin{bmatrix} 1 & +1 & -1 \end{bmatrix}^T$

 $\mathbf{z}^{(2)} = [\underbrace{+1 \quad -1 \quad +1}_{} \quad \underbrace{-1 \quad +1 \quad -1}_{} \quad \underbrace{+1 \quad -1 \quad +1}_{}]^T$

4. Memórias Associativas

Capacidade de armazenamento

 Baseado em inúmeros experimentos, Hopfield descreveu que a capacidade de armazenamento {C^{Hopf}} de padrões das memórias associativas, objetivando uma recuperação de padrões relativamente com poucos erros, é dada por:

$$\begin{cases} C^{Hopf} = 0.15 \cdot n \end{cases}$$

 Alguns resultados mais precisos (análises de probabilidade) revelam que a capacidade máxima de armazenamento {C^{Max}}, considerando uma recuperação quase sem erros, seria definida por:

$$\begin{cases} C^{Max} = \frac{n}{2 \cdot \ln(n)} \end{cases}$$

 Para a recuperação com 100% de acertos, a capacidade de armazenamento {C^{100%}} é especificada por:

$$\begin{cases} C^{100\%} = \frac{n}{4 \cdot \ln(n)} \end{cases}$$

 Para efeitos comparativos, a tabela abaixo mostra as capacidades de armazenamento da rede de Hopfield para diversos valores de n.

Dimensão	C^{Hopf}	C ^{Max}	C ^{100%}
n = 20	3,0	3,3	1,7
n = 50	7,5	6,4	3,2
n = 100	15,0	10,9	5,5
n = 500	75,0	40,2	20,1
n = 1000	150,0	72,4	36,2

15

4. Memórias Associativas

Análise da capacidade de armazenamento

Dimensão	C ^{Hopf}	C ^{Max}	C ^{100%}
n = 20	3,0	3,3	1,7
n = 50	7,5	6,4	3,2
n = 100	15,0	10,9	5,5
n = 500	75,0	40,2	20,1
n = 1000	150.0	72.4	36.2

Análise da Tabela

- Quando a precisão requerida durante a recuperação deixar de ser um fator tão imperativo, pode-se então armazenar muito mais padrões na memória associativa, conforme os valores refletidos por C^{Hopf}.
- Quando a precisão da recuperação se torna muito elevada, a quantidade máxima de padrões a serem armazenados {C^{Max}} decai substancialmente com o aumento de suas dimensões.
- Quando se espera 100% de acertos na recuperação, a capacidade de armazenamento {C^{100%}} atinge seus valores mínimos.
- Quando a capacidade de armazenamento despreza as quantidades recomendadas pelas equações anteriores, há então o aparecimento de estados espúrios.
 - Embora sejam pontos de equilíbrio estáveis, tais estados não corresponderão a nenhum dos padrões previamente armazenados.

5. Projeto de Redes de Hopfield

Aspectos de desenvolvimento

- Diferentemente das arquiteturas de RNA apresentadas anteriormente, tem-se que os parâmetros livres (*W* e *i*^b) da rede de Hopfield, são obtidos de maneira explícita em grande parte de suas aplicações.
- Quando W e i^b são obtidos de maneira explicita, implica-se aqui na dispensa de algoritmos de treinamento.
- De fato, a maioria dos problemas tratados pela rede de Hopfield é derivada da especificação de uma função de energia, a qual é representativa de seu comportamento dinâmico.
- Quanto mais conhecimento se tenha da área temática que envolve um problema em específico, mais subsídios estarão então disponíveis para se projetar adequadamente as respectivas funções de energia.
- A função de energia do problema a ser mapeado deve ser sempre escrita na forma dada por:

$$E(t) = -\frac{1}{2} \mathbf{v}(t)^T \cdot \mathbf{W} \cdot \mathbf{v}(t) - \mathbf{v}(t)^T \cdot \mathbf{i}^b$$

4-

5. Projeto de Redes de Hopfield

Algoritmo de convergência

 As instruções (em pseudocódigo) descrevendo a operação da rede de Hopfield discreta, representada pelas expressões (3) e (4), são fornecidas na seqüência.

Início {Algoritmo Hopfield – Operação em Tempo Discreto}

- (<1> Especificar a matriz de pesos W e o vetor de limiares i^b ;
 - <2> Apresentar vetor inicial de entradas { $\mathbf{x}^{(0)}$ };
- $<3> v^{atual} \leftarrow x^{(0)}$:
- <4> Repetir as instruções:

$$\begin{cases}
<4.1 > \mathbf{v}^{anterior} \leftarrow \mathbf{v}^{atual}; \\
<4.2 > \mathbf{u} \leftarrow \mathbf{W} \cdot \mathbf{v}^{anterior} + \mathbf{i}^{b}; \text{ {conforme (3)}} \\
<4.3 > \mathbf{v}^{atual} \leftarrow g(\mathbf{u}); \text{ {conforme (4)}}
\end{cases}$$

Até que: $\mathbf{v}^{atual} \cong \mathbf{v}^{anterior}$

 $\langle 5 \rangle v^{final} \leftarrow v^{atual} \{v^{final} \text{ representa um ponto de equilíbrio} \}$

Fim { Algoritmo Hopfield – Operação em Tempo Discreto}

18

