Chapter one

Software Engineering:

Software:

A collection of integrated programs, consisting of organized instructions and code written by developers in various programming languages. It also includes related documentation like requirements, design models, and user manuals.

• Engineering:

The application of scientific and practical knowledge to invent, design, build, maintain, and improve systems and processes.

• Software Engineering:

A branch of engineering focused on the systematic development and evolution of software products, using well-defined principles, techniques, and procedures.

Result:

The goal of software engineering is to produce effective and reliable software products.

Why is Software Engineering Required?

Software Engineering is required due to the following reasons:

- Manage Large Software
- Scalability
- Cost Management
- To Manage the Dynamic Nature of Software
- Better Quality Management
- Huge Programming:

This means that as software grows, a structured approach is needed to handle its complexity.

Adaptability:

In other words, engineering principles make it easier to expand software rather than starting over each time.

Cost:

By following a systematic process, we can keep development affordable and avoid wasteful expenses.

• Dynamic Nature:

This adaptability allows software to stay up-to-date and useful for users as needs change.

• Quality Management:

When we follow structured processes, the end product is more reliable and meets higher standards.

Characteristics of a Good Software Engineer

- Exposure to systematic methods
- Good technical knowledge
- Good programming skills
- Good communication skills
- High motivation
- Sound knowledge of fundamentals of computer science
- Ability to work in a team
- Discipline

Importance of Software Engineering

1. Reduces Complexity

 Breaks down large problems into smaller, manageable tasks, which are solved independently and then combined.

2. Minimizes Software Cost

 Provides a structured approach to estimate budgets accurately and allocate resources efficiently.

Importance of Software Engineering Reduced Complexity Minimize Software cost Importance of Software Engineering Handling Big Project Effectiveness

3. Decreases Time

 Implements processes to ensure timely project completion, reducing scheduling conflicts.

4. Handles Big Projects

 Uses planning, management, and testing to handle long-term, resource-intensive projects smoothly.

5. Ensures Reliable Software

 Uses models to measure and improve software reliability, reducing the likelihood of failures.

6. Increases Effectiveness

 Ensures software meets goals, delivers high quality, and satisfies users by using resources wisely.

Software Engineering vs. Computer Science:

• Computer Science:

Focuses on theoretical concepts and fundamental principles, dealing with both abstract and practical knowledge.

Software Engineering:

Applies engineering methods to design, create, and maintain software systems for various uses.

Software Engineering vs. System Engineering:

• System Engineering:

Focuses on the entire development of computer-based systems, including hardware, software, and processes. It covers system specification, design, integration, and deployment.

Software Engineering:

- A subset of system engineering, dedicated to developing the software components within a system, such as applications, databases, and controls.
- Systems engineering is older than Software Engineering

Employment in Software Engineering "where to work"

• Specialist IT Firms:

Includes IT consultancies, software developers, internet providers, and organizations in sectors like retail, law, education, public services, and more.

Manufacturing Industry:

Includes sectors like automotive, telecommunications, navigation, and construction that rely on software.

Financial Services:

Involves global investment banks, financial institutions, security market specialists, and the pensions sector.

• Public Utilities:

Covers industries like energy and water supply, energy extraction, and transportation, which all depend on software systems.

Software Engineer Job Duties "what you need to work as SWE":

Analyzing User Requirements:

Understand and evaluate what users need from the software.

Testing and Refining Code:

Ensure the code works properly, making necessary changes.

• Researching and Designing Software:

Develop new software programs and solutions.

Developing Existing Programs:

Improve current programs by identifying areas for enhancement.

• Integrating Software:

Make different software products and platforms work together.

Creating Technical Specifications:

Define the technical details and requirements of the software.

Writing Documentation:

Collaborate with technical authors to create operational manuals.

Maintaining Systems:

Monitor and fix software defects to ensure smooth operation.

Collaboration with Staff:

Work with project managers, designers, other developers, and professionals in sales and marketing.

• Consulting Clients:

Advise clients on software maintenance, performance, and updates.

• Investigating New Technologies:

Explore and evaluate new technologies for potential use.

Recent Facts About Software Engineer Job Opportunities "Read only"

• Test and Quality Assurance Engineers:

The most gender-diverse group, with women making up about 30% of the workforce.

• Mobile Engineers:

The second-largest specialty, with a younger workforce; 37% have less than 10 years of experience.

• Front-End Engineers:

The largest talent pool, more than double that of the second-largest specialty.

• Infrastructure and Cloud Computing Engineers:

77% have over 10 years of experience, highlighting the expertise in this field.

• Embedded and Application Engineers:

Focus on IoT, with a smaller but highly experienced and less gender-diverse group.

• Machine Learning and Data Science Engineers:

The smallest specialty but the most in-demand, reflecting current industry trends.

Chapter two

Software Process

- Agenda
 - Historical Aspects
 - Software Engineering
 - Software Product
 - Software Process Phases
 - Improving Software Process

Historical Aspects

- The term "software engineering" was proposed at NATO conferences in 1968 and 1969 to address the "software crisis."
- The software crisis referred to the challenges in developing large, complex systems during the 1960s, leading to:
 - Late deliveries
 - Over-budget projects
 - o Residual faults in the software

Examples of Failures Due to Software

- CareFusion's Alaris Pump (2015): A software error delayed medication delivery, risking patient suffocation.
- 2. **Equifax Data Breach (2017)**: Personal data of 143 million consumers, including Social Security numbers, was stolen.
- 3. **Facebook Outage (2019)**: Users were unable to view or load images from Facebook's newsfeed.

Software Engineering

- Software engineering involves the systematic application of engineering principles, techniques, and procedures to create, maintain, and evolve software products.
- The goal is to produce reliable and effective software.
- Software engineers require a broad range of technical and managerial skills.

Software Product

- Software is a set of integrated items that form a configuration, including:
 - o **Programs**: Performing the desired functions and tasks.
 - o **Data Structures**: Enabling effective data manipulation.
 - Documents: Describing the software's operation and use.

Failure, Error, and Faults

- Error: A human action leading to an incorrect result (also called a mistake).
- Fault: A defect or bug that results from an error in software.
- Failure: A deviation from the software's expected behavior or service.

Relative Cost to Correct Defects

The cost to fix defects increases as the project progresses.

Software Process

- The software process defines the steps taken to produce software.
- It involves predictable stages (a roadmap) to create high-quality software efficiently.
- Software Engineering also includes the methods and tools used throughout the process.
 - Methods: Provide guidelines for building software.
 - Tools: Offer support for automating or assisting the process.

Software Process Phases

- 1. Requirements Analysis Phase (4 steps)
- 2. Specification Phase
- 3. Design Phase
- 4. Implementation Phase
- 5. **Integration Phase** (in parallel with Phase 4)
- 6. Maintenance Phase
- 7. Retirement
- Testing and documentation occur throughout all phases.

Software Process Phases - Requirements Analysis Phase

1. Requirements Gathering (Elicitation):

The team meets with the client to understand and outline detailed requirements.

2. Requirements Capturing:

- Data Requirements: Information to be stored.
- o Functionality Requirements: Tasks like "add customer" and "print invoice."
- Quality Attributes: Includes performance, security, availability, and usability.

3. Validate Requirements (Rapid Prototyping):

A prototype is built to show functionality, allowing the client to test and confirm if it meets their needs.

4. Deliverable:

A **Requirements Document** is created and reviewed by the client, users, and development team