

Formal verification Verification of a linear display

CERN training - July 2025

Module to verify

We want to test a system that allows the linear display of a value. The display will be controlled to indicate where this value is in relation to two limits, Min and Max.

The example below shows the output for the following values:

- -- Max_i = 12 -- Min_i = 3 -- Val_i = 8
- d15
 d14
 d13
 d12
 d11
 d10
 d9
 d8
 d7
 d6
 d5
 d4
 d3
 d2

 Output off

 Output on, low intensity

 Output on, high intensity

Input/output

The input/outputs are:

Name	Size	Dir.	Description
Com_i	2	in	Mode of operation, on 2 bits
Val_i	4	in	Input value to be displayed on the linear display
Min_i	4	in	Lower bound
Max_i	4	in	Higher bound
Osc_i	1	in	Oscillatory signal for obtaining a low intensity
Leds_o	16	out	Linear display to be connected to 16 leds

Behavior

A LED at high intensity corresponds to constant activation of its corresponding output. A LED at low intensity is achieved by alternating 1-0 activation of the LED with the Osci_i signal.

Thus, the emitted power is lower. Therefore, in the case of low intensity, the activation is combined with the Osci_i signal thanks to an and gate.

The following table presents the mode of operation:

Command	Function	Description
00	Normal mode	If Val_i is in the interval [Min_i, Max_i] — LEDs from Min_i to Val_i are on at high intensity — LEDs from (Val_i+1) to Max_i are on at low intensity — All other LEDs are off If Val_i is out of [Min_i, Max_i], then all LEDs are off
01	Linear mode	Display of Val_i as a linear value, LEDs from 0 to Val_i are on with high intensity.
10	All off mode	All LEDs are off ('0')
11	All on mode	All LEDs are on at high intensity ('1')

⚠ When in normal mode, Max shall be greater than Min. If this is not the case, the output is undefined!

A generic parameter ERRNO allows to inject errors in the design. Its behavior is the following:

- 1. When in the [0, 15] interval the result is valid;
- 2. When in the [16, 21] interval, the result is invalid.

This generic parameter allows to test your assertions by trying various ERRNO values thanks to modifications to the .sby file.