Nearest Neighbors

1. (8 points) Consider the following 2D dataset:

x	y
(1,-1)	+1
(1, 1)	+1
(1, 2.5)	+1
(2, -2)	-1
(2,1)	+1
(2, 3)	+1
(5, -1)	-1
(5, -2)	-1

The dataset is plotted below, with positively labeled points as solid points (\bullet) and negatively labeled points as X marks (\times):

Break ties in distance by choosing the point with smaller x_1 coordinate, and if still tied, by smaller x_2 coordinate.

(a) Compute the leave-one-out cross validation accuracy (i.e., average 8-fold cross validation accuracy) of the 1-nearest-neighbor learning algorithm on this dataset.

Name:			
(b)	Compute the leave-one-out cross validation accuracy of the 3-nearest-neighbor learning algorithm on this dataset.		
(c)	In the case of the 1-nearest-neighbor learning algorithm, is it possible to strictly increase the leave-one-out cross validation accuracy on this dataset by changing the label of a single point in the original dataset? If so, give such a point.		
(d)	How about in the case of the 3-nearest neighbor algorithm? If so, give such a point.		