CH3 HOMEWORK

庞骏翔 ZY2417209

一. 2 群的性质

- 1、 Z 对于加法封闭, 且都符合群的性质
- 2、№ 对于加法封闭,但其不符合群的性质中逆元的性质

二. 3 验证向量叉乘的李代数性质

略

封闭性:设三维向量,按照叉乘的定义进行运算得到结果仍属于 №3 即可

双线性:设向量a、b、c,将李括号替换为叉乘进行运算即可

自反性: 按照叉乘计算自己叉乘自己即可

雅可比等价:设向量 $a \times b \times c$,将李括号替换为叉乘进行运算即可

三. 4 推导 SE(3) 的指数映射

利用反对称矩阵乘幂的性质,将高次幂转为低次幂,注意 $\phi = \theta a$, θ 为常数,a 为单位向量,利用 $\phi^{\wedge} = \theta a^{\wedge}$,展开即可

四. 5 伴随

设
$$\boldsymbol{a} = (a_x, a_y, a_z)^T \in \mathbb{R}^3$$
, $\boldsymbol{R} \in SO(3)$, $\boldsymbol{a}^{\wedge} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$ 是 \boldsymbol{a} 对应的反对称矩

阵。

对于任意向量 $v \in \mathbb{R}^3$,有:

$$\mathbf{R}\mathbf{a}^{\wedge}\mathbf{R}^{T}\mathbf{v} = \mathbf{R}(\mathbf{a}^{\wedge}(\mathbf{R}^{T}\mathbf{v})) \tag{1}$$

$$= \mathbf{R}(\mathbf{a} \times (\mathbf{R}^T \mathbf{v})) \tag{2}$$

根据向量叉乘的性质 $u \times w = -w \times u$ 和旋转矩阵 R 的性质(保持向量叉乘关系), $R(a \times b) = (Ra) \times (Rb)$,则:

$$R(a \times (R^T v)) = (Ra) \times (RR^T v)$$
(3)

$$= (\mathbf{R}\mathbf{a}) \times \mathbf{v} \tag{4}$$

$$= (\mathbf{R}\mathbf{a})^{\wedge}\mathbf{v} \tag{5}$$

因为对于任意 $v \in \mathbb{R}^3$ 都成立,所以 $Ra^{\wedge}R^T = (Ra)^{\wedge}$ 。

五. 6 轨迹的描绘

见 GenetaSLAM Project homework ch3