

Deep Learning from Scratch

Session #1: Introduction

by: Ali Tourani – Summer 2021

Agenda

- What is Deep Learning?
- ► Fundamental Concepts
- Neural Networks
- Training the Network
- Use cases of ANNs
- Assignments

How to enable computers to mimic advanced human capabilities?

Learning AI rules by analyzing collections of known examples

A type of machine learning needs to be told about the essential features

Machine Learning (ML)

- Using parameters from known and important features of data
- Predict the outcomes on similar data
- ► Final output: a **Model**

Deep Learning (DL)

- Using Artificial Neural Networks (ANNs)
- Learning tasks directly from raw data
- Needs better hardware and data

How to learn data?

- Using the features existing in data (e.g., images, sounds, etc.)
- Trying to find the rules and patterns
- Decomposing existing features

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

What are the requirements of Deep Learning?

- Bigger Datasets
 - ▶ To extract the features, we need to have all variations of data
 - ► Large datasets with thousands and millions of samples

Better Hardware

- ► Highly parallelizable hardware is needed to process big data
- ► Graphics Processing Units (GPUs) are the best option

▶ Efficient Software and Smart Algorithms

Different toolboxes and platforms that enable us to process big data using GPUs

What are the requirements of Deep Learning?

Big Data + Powerful Hardware + Efficient Software

What are the requirements of Deep Learning?

Big Data + Powerful Hardware + Efficient Software

What are the requirements of Deep Learning?

Big Data + Powerful Hardware + Efficient Software

Artificial Neural Networks (ANNs, or simply, NNs)

- Inspired from neurons in the human brain
- Contains at least one Artificial Neuron (AN)
 - ▶ Receives an input signal, processes it, and generates an output signal

- Connecting several ANs?
 - The output of neuron A will be the input of neuron B
 - They will shape an ANN that is organized into multiple layers

The Perceptron

- The most straightforward architecture of an ANN
 - At least one input signal X with a corresponding weight W
 - ▶ The weight shows the importance/priority of the input signal
 - Calculating the summation of each input signal multiplied by its weight
 - The output will be a single number
 - ▶ Passing the sum value to a non-linear function, called Activation Function (AF)
 - Now, the final output signal Y is ready!

The Perceptron

The Perceptron

- But how to make the AF independent from the input signals?
 - ► **Solution:** by adding a Bias node

What is a Bias?

- A weighted input signal with the value of 1
- Using this, and by providing proper weight, we can shift our AFs to the left and right

The Perceptron

Now, we can mathematically define the output as:

$$y = g(w_b + X^T W)$$

Where X and W are the vector of inputs and weights, respectively

Activation Functions

- Why do we need AFs?
 - ► To provide **non linearity** and ...

 $y = g(w_b + X^T W)$ But Why?

Activation Functions

$$y = g(w_b + X^T W)$$

- Why do we need AFs?
 - ► To provide **nonlinearity** for using ANNs in real-world scenarios
 - ► To define how the weighted sum is transformed into an output
 - ► To get access to much richer hypothesis space (especially deep ones)

Notes:

- We need to choose them carefully in our ANNs!
 - ▶ There are many of them!
- Technically, the same for all nodes in a layer of an ANN

Some if the popular Activation Functions

- Linear
- Unit step
- Sign (signum)
- ReLU (Rectified Linear Activation)
- Hyperbolic Tangent (Tanh)
- Sigmoid/Logistic (maps real numbers to [0, 1])
- Gaussian

$$f(x) = \frac{e^x}{e^x} - \frac{e^{-x}}{e^{-x}}$$

$$f(x) = \frac{e^x}{e^x} - \frac{e^{-x}}{e^{-x}}$$

$$f(x) = \frac{e^x}{e^x} + \frac{e^{-x}}{e^{-x}}$$

$$e^{x}$$

$$1 = 1 + e^{-x}$$

 $f(x) = \max(0, z)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\delta^2}}$$

Activation Functions - Sigmoid

- Input: a real number
- Output: a number in the range of 0 to 1
 - ► Larger input → closer to 1
- A common use case: probabilities

```
# Applying the sigmoid function and
# storing the result in 'b'
b = tf.nn.sigmoid(a, name ='sigmoid')
```

$$g(x) = \frac{1}{1 + e^{-x}}$$

An example of Perceptron with Sigmoid AF

- Suppose we have this AN:
 - ► The weights vector:

$$W_0 = 1, \qquad W^T = [5 \quad -3]$$

► The summation function provides:

$$y = g(w_b + X^T W)$$
$$= g(1 + 5x_1 - 3x_2)$$

An example of Perceptron with Sigmoid AF

Thus, we will have:

$$y = g(1 + 5x_1 - 3x_2)$$

Some points:

$$x = \begin{bmatrix} -2\\2 \end{bmatrix} \Rightarrow y = g(-15) = 0.03$$

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow y = g(0) = 0.5$$

$$x = {2 \brack 2} \Rightarrow y = g(5) = 0.99$$

An example of Perceptron with Sigmoid AF

Generally, we can conclude that:

Let's simplify the diagram:

$$y = g(z)$$

- What if the Perceptron provides multiple outputs?
 - ► Can we connect two Perceptron networks to have two different results?

We can extend it to Multi-Output Perceptron (MOP):

$$z_{j} = w_{b,j} + \sum_{i=1}^{m} x_{i} w_{i,j}$$

$$y_i = g(z_i)$$

Dense Layers

▶ All inputs are connected to all outputs

Let's connect several single nodes (Perceptron) together:

Let's connect several single nodes (Perceptron) together:

Useful Notes

- If there is only one layer in HL, it is called a **Single Layer NN**.
- If the number of layers in HL is more than five, (usually) it is called it a **Deep NN**.

We can always find sequential dense layers in NNs, like the image above with 3x4, 4x4, and 4x2 dense layers

Sample#1: passing a driving test

Assume we want to pass both <u>theory</u> and <u>practical</u> tests.

 $x_2 = \{hours \ spent \ in \ practical \ tests\}$

- ► The distribution of people who have passed or failed the test
- ► The chart is *2D*, as there are two features

Sample#1: passing a driving test

- Question: will a given node M pass the test?
- Assume M = [10, 12], meaning that
 - ▶ 10: number of achieved topics
 - ▶ 12: hours spent training
- Answer: we need to **train** the ANN first
 - ► Training = adjusting the weights

Sample#2: Classification of objects into predefined classes

- ▶ Inputs: Rectangle, Circle, Triangle
- ► Goal: Correct classification

Sample#2: Classification of objects into predefined classes

Each pixel is mapped to a single neuron from the input layer

Calculations take place in the **hidden layers** ...

Deep Learning from Scratch - Ali Tourani - Summer 2021

The impact of **Activation Functions** (Active nodes with **green** backgrounds) ...

Forward pass

- The main flow of calculations, where each layer:
 - ► Takes inputs from the previous layer
 - Processes them (Summation + AF)
 - Generates outputs
 - Passes them to the next layer
- Do while generating the F.O

Forward pass

Forward pass

Wrong prediction! (The highest probability is circle with confidence score 0.6)

How to know? By comparing the results with the Actual (expected) Outputs

How to resolve? Backpropagation

Actual	Error
0	-0.6
1	0.7
0	-0.1

Backpropagation (the backward pass)

- Why do we need this?
 - ► To discover the optimal weights for neurons
 - ► To minimize the Loss Function (*)
 - ▶ To generate the best possible prediction
- ► How?
 - ► Gradient Descent Algorithm (*)

^{*} We'll talk about them soon!

- In a **supervised** training process, data is fed to the neural network, and only then the network learns how to adjust the weights based on it
 - We already know the Correct Answers (Actual)
- By comparing the Actual and Predicted results, we tell the network:
 - Correct results? No need to change the weights!
 - ▶ Incorrect results? Change the weights and get closer to the correct answer!

Loss is defined as:

► The cost of incurred from incorrect predictions

Empirical Loss (Empirical Risk Minimization)

- ► The average of all individual losses
 - ► Comparing the predicted and actual values
- ► Total loss applies over the whole dataset samples

$$J(w) = 1/n \sum_{i=1}^{n} Loss(h(x_i), y_i)$$

Binary Cross-Entropy Loss (Log Loss for Binary Classification)

- ▶ Where the predicted values are probability rates, ranging between 0 and 1
- The final goal is to solve a binary problem (pass or fail)
- Comparing the real and estimated distributions

$$J(w) = 1/n \sum_{i=1}^{n} (y_i \cdot \log(h(x_i)) + (1 - y_i) \cdot \log(1 - h(x_i))$$

Mean Squared Error Loss

- Used in Regression models (i.e., continuous real numbers outputs)
 - ► E.g., what will be someone's final grade? (non-binary)
- Subtracting the actual and predicted values

$$J(w) = 1/n \sum_{i=1}^{n} (h(x_i) - y_i)^2$$

Finally, calculating the average of its squared errors

So, we can use different types of **Loss functions** for different problems. Using these quantified errors, we can train our ANN to **find optimal weights**.

How to deal with loss/error functions?

► They are useful, as they show <u>how far</u> the actual (expected) output is from the current (predicted) outputs of ANN

Our goals are

- ► To minimize the loss function (as much as possible!)
- ▶ To bring outputs as close as possible to the actual values

Loss Optimization

- ► The goal is to minimize the loss to achieve the optimal weights
 - Actually, the lowest possible error
 - Local Minima and Global Minima
- If W^* holds the optimal values of weights vector W:

- ▶ It gets more complicated when the number of weights increases
- **▶** How? Gradient Descent Algorithm

Gradient Descent Algorithm

- An iterative optimization algorithm for finding a local minimum
 - ▶ By iteratively moving in the direction of the steepest descent
- Just like moving from a mountain towards the sea
 - ► A step-to-step downhill in the direction with a **negative gradient**
- ► **Learning Rate:** the size of steps
 - ► High LR → We may miss the optimal point
 - ► Low LR → We may be too slow

Gradient Descent Algorithm

How to find proper LR? 1) trail and error, 2) Adaptive LR

Gradient Descent Algorithm

- Pick any random point in the landscape
- Compute gradient using $\frac{\partial J(W)}{\partial W}$
- Take a small step towards the lower stages (steep)
- Repeat this process until reaching a Local Minimum

Gradient Descent Algorithm

- It is not always that simple!
 - ▶ In real-world scenarios, the algorithm may stuck!

Gradient Descent Algorithm

How to update weights?

$$w_i(t) = w_i(t-1) + \Delta w_i(t)$$

$$\Delta w_i(t) = \mu(-\frac{\delta J(W)}{\delta w})$$
Learning rate

Gradient Descent Algorithm

- How do weight changes spread in the network?
 - ▶ Remember: the main goal is to decrease the final loss
 - ▶ **Recall**: we need to use the Backpropagation algorithm (Slide#48)
 - According to GDA:

$$w_1$$
 w_2 w_3 y $J(W)$

$$\frac{\delta J(W)}{\delta w_1} = \frac{\delta J(W)}{\delta y} * \frac{\delta y}{\delta b} * \frac{\delta b}{\delta a} * \frac{\delta a}{\delta w_1}$$

Gradient Descent Algorithm

How do weight changes spread in the network?

- ▶ This way, we can calculate all the weights from output to input
- ▶ Good news: we do not need to do this practically in our applications!
 - ▶ Backpropagation is implemented in different DL frameworks

Adaptive Learning Rates

- In contrast with fixed LR, the value of LR may vary over time
 - ▶ It may become larger or smaller
- Factors affecting the value of LR
 - Learning speed (algorithm)
 - Size of weights
 - ► The value of gradient
- Algorithms (optimization)
 - Adam, AdaDelta, etc.

Google online translation tool

Stock market prediction

Image completion

Suggested Projects – General ideas

Image Classification

▶ Identify the class of a given image

Beginner Visual Tracking

Locate moving objects for surveillance

Face Detection

Track and visualize human faces

Image Caption Generation

Analyze the context of an image to make captions

Suggested Projects – General ideas

Generate images from given texts

Intermediate Gender/Age Detection

Estimate human age using facial features

Human Face Generation

Generate unseen human faces

Colorize Black & White Images

► Make B&W images colorful using a deep model

Suggested Projects – Intelligent Transportation Systems Lab

Vehicles

- Vehicle detection and tracking
- Vehicle type classification
- Vehicle pose estimation

Drivers

- ► Face pose detection
- Driver actions detection
- Driver drowsiness detection

Assignments

Find your Field of Interest!

- Choose a field of interest
- Find issues that can be resolved using Deep Learning
- Collect some academic publications about it
- Share your titles to discuss

References

- http://www.IntroToDeepLearning.com
- https://www.towardsdatascience.com
- https://data-flair.training/blogs/deep-learning-project-ideas/
- https://www.deeplearning.ai/
- https://blog.paperspace.com/a-practical-guide-to-deep-learning-in-6-months/
- https://wiki.pathmind.com/neural-network

Questions?

