EE 382C: Multicore Computing

Parallel GPU based Algorithms for Image Processing

Wenbo Xu, Wenwen Zhang, Yichi Zhang

I. ABSTRACT

II. INTRODUCTION

Recently, the requirement for GPU (graphics processing unit) performance is increasing rapidly as well as the computation speed. As comparison, GPU computation speed can be several times faster than traditional CPU. Moreover, as the programmability and parallel processing emerge[1], GPU begins being used in some non-graphics applications, which is general-purpose computing on the GPU (GPGPU). To be more user-friendly, CUDA brings the C-like development environment and some CUDA extended libraries to programmers, which is based on industry-standard C/C++ and has straightforward APIs to manage devices, memory etc.

As an general use of GPU, Image processing algorithms are always computationally expensive, however, parallelize image processing algorithms can enhance the speed to a great extent, especially for large-scale images.

In this paper, we?

III. GAUSSIAN BLUR

A. Definition and Usage

In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise and reduce detail. It is also used as a pre-processing stage to enhance image structures at different scales.

Mathematically, the Gaussian blur is a type of image-blurring filter that uses a Gaussian function for calculating the transformation to apply to each pixel in the image. The equation of

a Gaussian function in one dimension is

$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

For our implementation, we use a two-dimensions gaussian blur to filter each image pixel. The related two-dimensions gaussian function is the product of two such one-dimension function above, on in each dimention.

$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Variable x is the distance from the origin in the horizontal axis, y is the distance from the origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution. A convolution matrix is built with values generated by this distribution. To have a better view of the powerfulness of parallel computing, we did a comparison experiment, which is comprised with two implementations of Gaussian blur. One is serialization implementation and the other is parallel implementation. Concerning image, we defined an Image class, which has three members, rows, cols, and pixels. Pixels is a Rgb class pointer. Rgb is a struct with three members, r, g and b.

B. Serialization Implementation

There are four steps of the serialization implementation. The first step is preprocess, which is responsible for reading image file and store it as Image class. The second step is to generate a gaussian filter, a matrix, based on parameters passed from users. The next step is to traverse each pixel in the image object and compute the values of a given pixel in the output image by multiplying each kernel value by the corresponding input image pixel values. This can be described algorithmically with the Fig. 1.

The final step is to generate an image file from those new pixel values.

C. Parallel Implementation

IV. OPTIMIZATION

A. Pageable vs. Pinned Memory

Host data allocations are pageable by default, which means can be paged in/out between RAM and disk. However, GPU cannot access data directly from pageable memory, but from pinned

```
for each imagerow in inputimage:
    for each pixel in imagerow:
        set accumulator to zero
        for each filterrow in filter:
        for each element in filterrow:
            if element position corresponding to pixel position then
            multiply element value corresponding to pixel val
            add result to accumulator
        endif

set output image pixel to accumulator
```

Fig. 1: Pseudo-code for Gaussian blur

memory, which means page-locked. Hence, whenever a data transfer is invoked on pageable memory, the CUDA driver has to allocate a temporary pinned memory array to copy host data and then transfer it to the device.

We can avoid the cost of this overhead by using pinned memory for host instead of pageable memory. In this case, we use *cudaMallocHost()* and *cudaFreeHost()*. Compare to the *malloc()* and *free()*, *cudaMallocHost()* and *cudaFreeHost()* are more expensive with additional overheads. Then, the question has been raised about how should we made the tradeoff. According to figure below, pinned memory is faster when the size of data to be transferred is larger than 16MB. [3]

This doesn't mean we should never use pinned memory when the amount of data to be transfered is less than 16MB. One example is the asynchronous memory copy, *cudaMemcpyAsync()* can be used only with pinned memory. The details of how asynchronous memory copy would be used to improve the efficiency will be discussed in next section.

Pageable Data Transfer

Pinned Data Transfer

Fig. 2: CUDA data transfer.[2]

B. Streams

A stream is defined as a sequence of operations in that execute in issue-order on the GPU. CUDA operations, which are kernal operations and memory operations, in same streams are ordered and in different streams can overlap. By default, all operations are in default stream. The following code is used to specify which stream the operation is in.

The figure below illustrate the execution time line for three different scenarios. The top time line shows time line without use of streams, which all operations executes in sequential order. The time line in the middle shows the use of streams on hardware has only one copy engine. The performance improvement is significant. The bottom time line shows the time line for hardware has two copy engines. With two copy engines, the HD (Host to Device memory transfer) and the DH (Device to Host memory transfer) can execute concurrently without arbitrating for the same hardware.

For memory copies, *cudaMemcpyAsync()* is used. As described in last section, we have to allocate pinned memory using *cudaMallocHost()*. This method place transfer into the stream and returns immediately. It is upto device to schedule streams when the corresponding resources are free. It allows us to put memory transfer operations and kernel operations into the stream the same time and allow them to run concurrently.[4]

Fig. 3: Time required to allocate, transfer to the GPU, transfer back to the CPU, and deallocate pinned and non-pinned memory.[3]

V. RESULTS

Both CPU and GPU implementations was running on the TACC Stampede Supercomputer. The CPU is Intel Xeon E5-2680 2.7GHz Processors. And the GPU is NVIDIA K20 with 5120 MB GDDR5 memory and 2 copy engines.

The command line tool, nvprof, and the Nvidia Visual Profiler are used to profile the performance of our implementation. And the results are shown in the table below.

VI. CONCLUSION

REFERENCES

- [1] WU En Hua, ?State of the Art and Future Challenge on General Purpose Computation by Graphics Processing Unit?, Journal of Software, vol. 15, no. 10, 2004,pp.1493 1504.
- [2] Harries, M. (2012, December). How to Optimize Data Transfers in CUDA C/C++. Retrieved from https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
- [3] Boyer, M. Choosing Between Pinned and Non-Pinned Memory. Retrieved from https://www.cs.virginia.edu/ mwb7w/cuda'support/pinned'tradeoff.html
- [4] Harries, M. (2012, December). How to Overlap Data Transfers in CUDA C/C++. Retrieved from https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

Fig. 4: Top: all operation in default stream. Mid: concurrent streams with one copy engine. Bottom: concurrent streams with two copy engine.