MI-PB-8

Diskrétní logaritmus – Diffie-Hellman, ElGamal, algoritmy Babystep-giantstep, Pollardova rho metoda, Pohlig-Hellman, Index calculus.

Diskrétní logaritmus:

G grupa, $g,h\in G$. Pokud existuje $x\in \mathbb{Z}$ t.ž. $g^x=h$, pak x je logaritmus h o základu g: $x=\log_q h$.

Problém diskrétního logaritmu: problém hledání x t.ž. $g^x=h$.

Útok hrubou silou: G grupa, $g,h\in G$, $\operatorname{ord}(g)=N$. Pokud existuje diskrétní logaritmus $\log_g h$, lze jej nelézt v O(N) krocích.

Obtížnost řešení $x = \log_q h$:

- nezávisí na g
- závisí za G:
 - $p \circ g, h \in \mathbb{Z}_{p-1}^+ \Rightarrow x \cdot g \equiv h \pmod{p-1} \Rightarrow \mathsf{Euklid\mathring{u}v}$ algoritmus
 - $\circ \ g,h \in \mathbb{Z}_p^ imes \Rightarrow g^x \equiv h \pmod p \Rightarrow$ nutná hrubá síla

Diffieho-Hellmanova výměna klíčů

1 z 8

MI-PB-8-diskretni-logaritmus

$$A' = B' = B^a$$

$$B' = A' = A^b$$

 $c_1 = g^k, c_2 = mA^k$

Útočník může odposlechnout $g \in G, g^a, g^b$

Diffieho-Hellmanův problém: Problém hledání g^{ab} při znalosti g^a a g^b , kde G grupa, $g \in G$, $a,b \in$ \mathbb{Z} .

Útočník může řešit PDL a najít tak $\log_g g^a = a$: Umí PDL \Rightarrow umí DHP v dalších $O(\log N)$ krocích (násobení).

Pokud umí DHP, neví se, jestli umí i PDL ⇒ předpokládá se, že PDL je těžší než DHP.

Šifrovací systém ElGamal

G grupa, $g \in G$ Bedřich Alena Zvolí $a \in \mathbb{Z}$ Posílá zprávu $m \in G$ Zveřejní $G, g, A = g^a$ A, G, gZvolí náhodně $k \in \mathbb{Z}$ Spočte $x = c_1^a, m = c_2 x^{-1}$ (c_1, c_2) Spočte

Klíč $k \in \mathbb{Z}$ je **efemerní** -- slouží k odeslání pouze 1 zprávy.

Pokud zprávy $m,m'\in G$ odeslány se stejným klíčem k=k':

- $c_1 = c'_1$
- $ullet c_2 = mA^k \Rightarrow m^{-1}c_2 = A^k$ $c_2'=m'A^k\Rightarrow m'^{-1}c_2'=A^k$
- $\bullet \ m^{-1}c_2 = m'^{-1}c_2'$ $c_2 c_2^{\prime -1} = m m^{\prime -1}$ $c_2 c_2'^{-1} m' = m$
- ullet \Rightarrow pokud znám obsah jedné zprávy, odhalím i druhou

Bezpečnost: Založena na DHP: potřeba prolomit g^{ak} z $c_1=g^k, A=g^a$

2z819.05.2020 12:40

Babystep-giantstep

G grupa, $g,h\in G$, $\operatorname{ord}(g)=N$. Pokud $\log_g h$ existuje, BSGS ho řeší v $O(\sqrt{N})$ krocích.

Algoritmus:

- $n = \lceil \sqrt{N} \rceil$
- Napočítat seznam $e,g,g^2,g^3,...,g^{n-1}$
- Napočítat seznam $h, h \cdot g^{-n}, h \cdot g^{-2n}, ..., h \cdot g^{-(n-1)n}$
- ullet Najít společný prvek obou seznamů: $g^i=h\cdot g^{-jn}$, kde $i,j\in\{0,...,n-1\}$
- $\Rightarrow \log_a h = i + jn$

Důkaz:

$$g^ig^{jn}=h\Leftrightarrow g^{i+jn}=h$$
 x se zapíše jako $x=r+qn$, kde $r< n$ a také $q=rac{x-r}{n}<rac{N}{n}< n$ $g^x=h$ lze zapsat jako $g^{r+qn}g=h$ Potom $g^r=h\cdot g^{-qn}$: prvek seznamu 1 = prvek seznamu 2

Pollardova ρ -metoda

S končená mmnožina s N prvky, f:S o S zobrazení. Zvolme $x_0\in S$ počáteční bod posloupnosti definované jako $x_i=(\underbrace{f\circ f\circ ...\circ f})(x_0).$

Potom platí, že pro nějaké $T+L\in\mathbb{N}$ nastave rovnost $x_{2i}=x_i$ pro $1\leq i < T+L$. (T+L -- počet prvků posloupnosti x_i, T -- tail, L -- loop)

Kolize $x_{2i} = x_i$: "dvojskok" na obrázku ($x_{2i} = y_i = (f \circ f)(y_{i-1})$)

ullet Při různých volbách zobrazení f a bodu x_0 je střední hodnota veličiny T+L je E(T+L)pprox $3,545\sqrt{N}$, takže kolizi lze najít v $O(\sqrt{N})$ krocích.

Aplikace v PDL: G grupa, $g^x = h$

- $S = G, x_0 = e$
- ullet $G=S=S_1\cup S_2\cup S_3$, kde $S_i\cap S_j=\emptyset$ pro $i
 eq j,e
 otin S_2$
- ullet Konkrétní volba f:

$$x_{i+1} = egin{cases} g \cdot x_i & x_i \in S_1 \ x_i^2 & x_i \in S_2 \ h \cdot x_i & x_i \in S_3 \end{cases}$$

- $x_i=(\underbrace{f\circ...\circ f}_{i ext{-krát}})(x_0)=g^{lpha_i}h^{eta_i}$ Pro exponenty platí: $lpha_0=eta_0=0$

$$lpha_{i+1} = egin{cases} lpha_i + 1 & x_i \in S_1 \ 2lpha_i & x_i \in S_2 \ lpha_i & x_i \in S_3 \end{cases}$$

$$eta_{i+1} = egin{cases} eta_i & x_i \in S_1 \ 2eta_i & x_i \in S_2 \ eta_i + 1 & x_i \in S_3 \end{cases}$$

- $ullet y_i = x_{2i} = g^{\gamma_i} h^{\delta_i}$
- ullet Kolize: $g^{lpha_i}h^{eta_i}=g^{\gamma_i}h^{\delta_i}$ $g^{lpha_i-\gamma_i}=h^{-eta_i+\delta_i}=(g^x)^{-eta_i+\delta_i}=g^{x(-eta_i+\delta_i)}$
- Potom:

$$x(-eta_i+\delta_i)\equiv (lpha_i-\gamma_i)\pmod N$$

Ekvivalence výše nemusí mít řešení. Lepší je před Pollard-ho pustit Pohlig-Hellmanna a řešit v prvočíselném řádu.

Během výpočtu je v paměti pouze $S_1, S_2, S_3, \underbrace{\alpha_i, \beta_i, \gamma_i, \delta_i}_{\in \mathcal{T}_{\text{AV}}}, \underbrace{x_i, y_i}_{\in G}.$

4z819.05.2020 12:40

Pohlig-Hellmannův algoritmus

Efektivní řešení PDL $g^x=h$ na grupách, jejichž řád je složené číslo, které lze faktorizovat na malá prvočísla.

$$\langle g
angle = G$$
 cyklická grupa, $\#G = N = p \cdot q$ $g^{rac{N}{p}} = g^q \Rightarrow \# \, \langle g^q
angle = p \Rightarrow (g^q)^p = e$

- 1. část algoritmu: Rozdělení problému na několik menších PDL v grupách s řády odpovídajícími prvočíselnému rozkladu N
 - Předpoklady:

$$g, ilde{g},h, ilde{h}\in G, \mathrm{ord}(ilde{g})=q^l.$$
 Známe faktorizaci $\mathrm{ord}(g)=N=q_1^{l_1}q_2^{l_2}...q_k^{l_k}.$

- ullet Pro $i\in\{1,...,k\}: \ \circ g_i=g^{N/q_i^{l_i}} \ \circ h_i=h^{N/q_i^{l_i}}$
- ullet Vyřešit menší PDL pro každé y_i , kde $g_i^{y_i}=h_i$
- ullet Pomocí CRT vyřešit soustavu kongruencí $x\equiv y_i\pmod{q_i^{l_i}}$

Složitost 1. kroku: Umíme řešit PDL $ilde g^{ ilde x}= ilde h$ v čase $O(S(q^l))$. Potom PDL $g^x=h$ umíme řešit v čase $O(\sum_{i=1}^k S(q_i^{l_i})+\log N)$

- **2. část algoritmu:** Vezme malé PDL z první části a rozdělí je na ještě menší PDL, které odpovídají prvním mocninám prvočísel v rozkladu N (Pokud rozklad N obsahuje člen p^i , pak první část umožňuje řešit malý PDL v grupě řádu p^i . Druhá část umožňuje řešit i-krát v grupě řádu p.)
 - ullet **Předpoklad:** z první části zbyly pouze podgrupy řádu q^l
 - ullet Zapsat neznámé x jako $x = x_0 + x_1 q + x_2 q^2 + ... + x_{l-1} q^{l-1}$ pro $0 \leq x_i < q$
 - ullet Postupně hledat $x_0,...,x_{l-1}$, kde pro x_i platí

$$(g^{q^{l-1}})^{x_i} = (hg^{-x_0-...-x_{i-1}q^{i-1}})^{q^{l-i-1}}$$

Třetí krok plyne z toho, že např. při hledání x_0 :

$$h^{q^{l-1}} = (g^x)^{q^{l-1}} = g^{(x_0 + x_1 q + x_2 q^2 + ... + x_{l-1} q^{l-1}) \cdot q^{l-1}} = g^{x_0 q^{l-1}} \cdot \underbrace{g^{(x_1 + x_2 q + ... + x_{l-1} q^{l-2}) \cdot q^l}}_{ ext{neutr. prvek (mocnění na násobek řádu grupy)}}$$

Prvek x_0 se získá řešením PDL $x_0 = \log_{q^{q^{l-1}}} h^{q^{l-1}}$

5 z 8 19.05.2020 12:40

MI-PB-8-diskretni-logaritmus

Pro nalezení prvku x_1 platí:

$$h^{q^{l-2}} = (g^x)^{q^{l-2}} = g^{(x_0 + x_1 q + x_2 q^2 + ... + x_{l-1} q^{l-1}) \cdot q^{l-2}} = g^{x_0 q^{l-2}} \cdot g^{x_1 q^{l-1}} \cdot \underbrace{g^{(x_2 + ... x_{l-1} q^{l-3}) \cdot q^l}}_{ ext{neutr. prvek}}$$

Prvek x_1 se získá řešením PDL $(g^{q^{l-1}})^{x_1}=(hg^{-x_0})^{q^{l-2}}$

Složitost 2. kroku: Umíme řešit PDL $ilde{g}^{ ilde{x}}= ilde{h}$, kde $\mathrm{ord}(ilde{g})=q$ v čase O(S(q)). Potom PDL $g^x=h$, kde $\mathrm{ord}(g)=q^l$, umíme řešit v čase $O(l\cdot(S(q)+\log q))$

Důsledek pro volbu grupy:

Při PDL je jedno, na jaké grupě se počítá. Vždy lze použít tento algoritmus, aby se PDL řešil na "hezkých" grupách (grupách, kde všude existují inverze)

Index calculus

Algoritmus řešící PDL, ale pouze na specifických grupách (typicky $G = GF(p^n)^{ imes}$)

Hlavní myšlenka: Převést PDL na soustavu lineárních rovnic

Předvýpočet: závisí pouze na grupě G, ne na konkrétním problému

- ullet Zvolit faktorovou bázi $S=\{p_1,...,p_t\}\subset G$
- ullet Náhodně vybrat $l\in \mathbb{N}, l< \#G$
- ullet Spočítat g^l
- ullet Otestovat, zda $g^l=\prod_{i=1}^t p_i^{c_i}$ (test, jestli g^l jde rozložit na prvky zvolené báze)
 - \circ Pokud ano, $l\equiv\sum_{i=1}^{t}c_i\log_g p_i\pmod{\#G}$ (soustava rovnic, je jich potřeba najít t lin. nezávislých)
- ullet Řešit $l_j \equiv \sum_{i=1}^t c_{ij} \log_q p_i \pmod{\#G}$ pro neznámé $\log_q p_i$

Řešení PDL:

- ullet Náhodně vybrat $k \in N, k < \#G$
- ullet Otestovat, zda $hg^{-k} = \prod_{i=1}^t p_i^{d_i}$
 - \circ Pokud ano, vztah zlogaritmovat na $\log_g h k = \sum_{i=1}^t d_i \log_q p_i \pmod{\#G}$

• Potom:

6 z 8 19.05.2020 12:40

$$\log_g h \equiv \sum_{i=1}^t d_i \log_g p_i + k \pmod{\#G}$$

Kde se dosadí $\log_q p_i$ získané z předvýpočtu.

Volba báze:

- ullet Pro $G = \mathbb{Z}_p^ imes$ je $S = \{p: p ext{ je prvočíslo}, p < B\}$
- ullet Pro $G = GF(p^n)$ je $S = \{f: f ext{ je ireducibiln} ext{i}, \deg(f) < B\}$

B-hladká čísla: čísla, která nemají v prvočíselném rozkladu faktor větší než B

B-hladký polynom: v rozkladu na ireducibilní polynomy nemá žádný faktor stupně vyššího než B

Funkce $L_q[lpha,c]$: funkce definovaná jako $L_q[lpha,c]=\exp(c(\ln q)^lpha(\ln \ln q)^{1-lpha})$, kde c>0,0<lpha<1

- ullet běžně používaná pro odhad složitosti subexponenciálních algoritmů (algoritmů $O(e^{f(k)})$, kde f(k)=o(k) -- hodně malý exponent)
- ullet lpha uvádá "míru exponenciality"
 - $\circ~O(L_q[1,c]) = O(e^{c \ln q}) = O(q^c)$ -- plně expoenciální v délce vstupu $\ln q$
 - $\circ \ O(L_q[0,c]) = O(e^{c \ln \ln q}) = O((\ln q)^c)$ -- polynomiální v délce vstupu $\ln q$

Odhad složitosti Index calculu:

 $ee GF(2^n)^ imes$

- ullet Počet ireducibilních polynomů stupně k nad \mathbb{Z}_p : $pprox rac{2^k}{k}$
- ullet Velikost faktorové báze S (ireducibilní polynomy stupně 0 až m nad \mathbb{Z}_2): $|S|pprox rac{2^{m+1}}{m}$
- ullet Šance na úspěšnou faktorizaci g^l : $P_{fakt}=rac{1}{2^n}\sum_{k=0}^{m-1}N(k,m)pprox \left(rac{m}{n}
 ight)^{1+O(1)rac{n}{m}}$, kde N(k,m) je počet m-hladkých polynomů stupně k
- ullet Střední doba trvání nalezení faktorizace: $rac{1}{P_{fakt}} = \left(rac{n}{m}^{1+O(1)rac{n}{m}}
 ight)$
- ullet Nutno nalézt o něco víc než |S| kongruencí tvaru $l_j \equiv \sum_{i=1}^t c_{ij} \log_q p_i \pmod{\#G}$
- ullet Soustavu kongruencí lze řešit v $O(|S|^3)$
- Celková složitost:

$$|S| rac{1}{P_{fakt}} + |S|^3 pprox rac{2^{m+1}}{m} \left(rac{n}{m}
ight)^{1+O(1)rac{n}{m}} + rac{2^{3m+3}}{m}$$

• Výraz je minimální pro $m=c\sqrt{n\ln n}$, asymptotická složitost je potom

$$O(\exp((c+o(1))\sqrt{n\ln n}))$$

Což odpovídá

$$L_{2^n}[\frac{1}{2},c]$$

8 z 8