

Design of PLS based software sensor for a CSTR process

Guide Details

Mr. Ramakrishna K Kini

Assistant Professor

Student Details

Ayushi Dutta (130921466)

Siddharth Biswas(130921302)

Department of Instrumentation and Control Engineering

Manipal Institute of Technology

Manipal – 576104

April 2017

Fig: Schematic Representation of a Control Loop using Soft Sensor

Fig : Diagrammatic representation of a CSTR

In the above figure:

Manipulated inputs : F_i , F_c

Measured Output : T, c_A

Disturbances: T_i, c_{Ai}, T_{ci}

Governing Equations of a CSTR:

$$\frac{dCa}{dt} = \frac{F_i}{V} (c_{Ai} - c_A) - k_o \exp\left(-\frac{E}{RT}\right) C_A$$

$$\frac{dT}{dt} = \frac{F_i}{V} (T_i - T) - \left(-\frac{H_r}{\rho C_p}\right) k_o \exp\left(-\frac{E}{RT}\right) C_A - Q/V\rho \quad C_p$$

$$Q = \frac{aF_c^{b+1}}{(F_C + (\frac{aF_c^b}{2\rho C_{pc}})} (T - T_{ci})$$

V = Volume of CSTR

 k_o = First order reaction rate constant

 H_r = Heat of Reaction

 ρ = Density of Reactant

 ρ_c = Density of coolant

Fig: Flowchart for determining a PLS Based Model

set to PREDICT dependent

variable from the independent

variable

Build the Final PLS

based Model

Algorithm to determine

the Score Vectors T & U,

from the first half of the

data set

NIPALS based PLS Algorithm:

A PLS Algorithm Consists of 2 relations:

1.) Outer Relation:

$$X = X' + J = \sum_{k=1}^{l} t_{kp^{T_{k}} + J} = T_{P^{T}} + J$$

$$Y = Y' + H = \sum_{k=1}^{l} u_{kq_{k}^{T} + H} = UQ_{+H}^{T}$$

Where,

X = Input MatrixU = Output Latent VariablesY = Output MatrixP = Input Loading VectorsX' = Estimated Input MatrixQ = Output Loading VectorsY' = Estimated Output MatrixJ = Residual Input MatrixT = Input Latent VariablesH = Residual Output Matrix

2.) Inner Relation:

$$U = TB + L$$

Where,

B =Regression Matrix

L =Residual Matrix

Diagrammatic representation of NIPALS based PLS Algorithm:

Where,

Error $J1 = X - (t1 \times p1)$

& Error $H1 = Y - (t1 \times b1 \times q1)$

Fig: Coolant Inflow & Reactant Inflow

Fig: Disturbance Variables

Fig: Resultant Concentration & Temperature

For Prediction of data:

- Consider T, F_c , F_i , T_{ci}
- Output : Reactor Concentration (Predicted)

Use the loadings, weights and scores matrices to predict output from testing samples

YES

Divide the data into 2 equal halves

Use training samples to obtain initial values of loadings, weights and scores matrices

Use the obtained values of loadings, weights and scores matrices to estimate the predicted output

Check if error approx. equals zero or becomes constant

Update the values of loadings, weights and scores matrices using training samples

NO

Fig: Predicted Reactor Concentration

Some more outputs for Prediction of Concentration:

Fig: Predicted Reactor Concentration

Fig: Predicted Reactor Concentration

Prediction outputs using Dynamic PLS:

Fig: Predicted Reactor Concentration

Some more outputs for Prediction of Concentration (Using Dynamic PLS):

Fig: Predicted Reactor Concentration

Fig: Predicted Reactor Concentration

THANK YOU