dK-series:

Systematic Topology Analysis and Generation Using Degree Correlations

Dmitri Krioukov

dima@caida.org

P. Mahadevan, K. Fall, and A. Vahdat

LIAFA, June 23d, 2006

Motivation: topology analysis and generation

- New *routing* and other protocol design, development, testing, etc.
 - Analysis: performance of a routing algorithm strongly depends on topology, the recent progress in routing theory has become topology analysis
 - Generation: empirical estimation of scalability: new routing might offer Xtime smaller routing tables for today but scale Y-time worse, with Y >> X
- **■** Network robustness, resilience under attack, worm spreading, etc.
- **■** Traffic engineering, capacity planning, network management, etc.
- **■** In general: "what if", predictive power, evolution

Network topology research

Important topology metrics

- **#** Spectrum
- **■** Distance distribution
- **■** Betweenness distribution
- **■** Degree distribution
- **#** Assortativity
- **#** Clustering

Problems

- **■** No way to reproduce most of the important metrics
- **■** No guarantee there will not be any other/new metric found important

Our approach

- **■** Look at inter-dependencies among topology characteristics
- See if by reproducing most basic, simple, but not necessarily practically relevant characteristics, we can also reproduce (capture) all other characteristics, including practically important
- **#** Try to find the one(s) defining *all others*

Outline

- **Introduction**
- $\blacksquare dK$ -*:
 - *dK*-distributions
 - *dK*-series
 - *dK*-graphs
 - *dK*-randomness
 - *dK*-explorations
- **#** Construction
- **#** Evaluation
- **#** Conclusion

The main observation ©

Graphs are structures of *connections* between nodes

dK-distributions as a series of graphs' connectivity characteristics

OK

Average degree <*k*>

1K

Degree distribution P(k)

Joint degree distribution $P(k_1, k_2)$

"Joint edge degree" distribution $P(k_1, k_2, k_3)$

3K, more exactly

Definition of dK-distributions

dK-distributions are degree correlations within simple connected graphs of size d

Definition of dK-series P_d

Given some graph G, graph G' is said to have property P_d if G''s dK-distribution is the same as G's

Definition of dK-graphs

dK-graphs are graphs having property P_d

Nice properties of properties P_d

- **\blacksquare Constructability**: we can construct graphs having properties P_d (dK-graphs)
- **Inclusion**: if a graph has property P_d , then it also has all properties P_i , with i < d (dK-graphs are also iK-graphs)
- **# Convergence**: the set of graphs having property P_n consists only of one element, G itself (dK-graphs converge to G)

Convergence...

...guarantees that *all* (even not yet defined!) graph metrics can be captured by sufficiently high *d*

Inclusion and dK-randomness

dK-explorations

- \blacksquare To identify the minimum d, s. t. dK(-random) graphs provide a sufficiently accurate approximation of G:
- **\blacksquare** Find simple (scalar) metrics that are defined by P_{d+1} but not by P_d and construct dK-nonrandom-graphs with extreme (max or min) values of these metrics
- # There are two extreme metrics of this type
 - correlations of degrees of nodes at distance d
 - concentration of *d*-simplices
- \blacksquare If differences between these dK-exotic graphs are small, then d is high enough

2K-exploration example

dK-summary

Tag	Property	dK-	\mathcal{P}_d defines \mathcal{P}_{d-1}	Edge existence probability in	Maximum entropy value of $(d+1)K$ -	
dK	symbol	distribution		stochastic constructions	distribution in dK -random graphs	
0K	\mathcal{P}_0	\bar{k}		$p_{0K} = \bar{k}/n$	$P_{0K}(k) = e^{-\bar{k}}\bar{k}^k/k!$	
1K	\mathcal{P}_1	P(k)	$k = \sum kP(k)$	$p_{1K}(q_1, q_2) = q_1 q_2 / (n\bar{q})$	$P_{1K}(k_1, k_2) = k_1 P(k_1) k_2 P(k_2) / k^2$	
2K	\mathcal{P}_2	$P(k_1, k_2)$	P(k) =	$p_{2K}(q_1, q_2) =$	See [10] for clustering in $2K$ -random	
			$(\bar{k}/k)\sum_{k'}P(k,k')$	$(\bar{q}/n)P(q_1,q_2)/(P(q_1)P(q_2))$	graphs	
3K	\mathcal{P}_3	$P_{\wedge}(k_1,k_2,k_3)$	By counting edges, we get $P(k_1, k_2) \sim \sum_{k} \{P_{\wedge}(k, k_1, k_2) + P_{\triangle}(k, k_1, k_2)\} / (k_1 - 1) \sim$			
		$P_{\triangle}(k_1,k_2,k_3)$	$\sum_{k} \{P_{\wedge}(k_1, k_2, k) + P_{\triangle}(k_1, k_2, k)\}/(k_2-1)$, where we omit normalization coefficients.			
				• • •		
nK	\mathcal{P}_n	G				

Constructability

- **Introduction**
- $\blacksquare dK$ -*
- **Construction**
 - Stochastic
 - Pseudograph
 - Matching
 - Rewiring
 - *dK*-randomizing
 - *dK*-targeting
- **#** Evaluation
- **#** Conclusion

Stochastic approach

- **♯** Classical (Erdos-Renyi) random graphs are *0K*-random graph in the stochastic approach
- \blacksquare Easily generalizable for any d:
 - Reproduce the expected value of the dKdistributions by connecting random d-plets of
 nodes with (conditional) probabilities extracted
 from G
- **♯** Best for theory
- **■** Worst in practice

Pseudograph approach

- \blacksquare Reproduces dK-distributions exactly
- **#** Constructs not necessarily connected pseudographs
- \blacksquare Extended for d = 2
- # Failed to generalize for d > 2: d-sized subgraphs start overlap over edges at d = 3

Pseudograph details

1K

- 1. dissolve graph into a random soup of nodes
- 2. crystallize it back

2K

- 1. dissolve graph into a random soup of edges
- 2. crystallize it back

3K-pseudograph failure

- 1. dissolve graph into a random soup of d-plets
- 2. cannot crystallize it back

Matching approach

- ■ Pseudograph + badness (loop) avoidance
- \blacksquare Extended for d = 2, but loop avoidance is difficult
- \blacksquare Failed to generalize for d > 2

Rewiring

- \blacksquare Generalizable for any d
- **■** Works in practice

dK-randomizing rewiring

dK-preserving random rewiring

dK-targeting rewiring

- \blacksquare d'K-preserving rewiring (d' < d) moving graph closer to dK
- $\blacksquare dK$ -distance D_d can be any non-negative scalar metric measuring the difference between the current and target values of the dK-distribution (e.g., the sum of squares of differences in numbers of d-sized subgraphs)
- \blacksquare Normally, accept a rewiring only if $\Delta D_d \leq 0$
- **♯** To check ergodicity:
 - accept a rewiring even if $\Delta D_d > 0$ with probability $\exp(-\Delta D_d/T)$
 - $T \rightarrow \infty$: d'K-randomizing rewiring
 - $T \rightarrow 0$: dK-targeting rewiring
 - start with a high temperature and gradually cool down the system

Outline

- # Introduction
- $\blacksquare dK$ -*
- **#** Construction
- **E**valuation
 - Algorithms
 - Topologies
 - skitter
 - HOT
- **#** Conclusion

Algorithms

- \blacksquare All algorithms deliver consistent results for d = 0
- \blacksquare All algorithms, except stochastic(!), deliver consistent results for d=1 and d=2
- \blacksquare Both rewiring algorithms deliver consistent results for d = 3

skitter scalar metrics

Metric	0K	1K	2K	3K	skitter
< <i>k</i> >	6.31	6.34	6.29	6.29	6.29
r	0	-0.24	-0.24	-0.24	-0.24
< <i>C</i> >	0.001	0.25	0.29	0.46	0.46
d	5.17	3.11	3.08	3.09	3.12
$\sigma_{\!d}$	0.27	0.4	0.35	0.35	0.37
λ_1	0.2	0.03	0.15	0.1	0.1
λ_{n-1}	1.8	1.97	1.85	1.9	1.9

skitter distance distribution

skitter clustering

HOT scalar metrics

Metric	0K	1K	2K	3K	HOT
< <i>k</i> >	2.47	2.59	2.18	2.10	2.10
r	-0.05	-0.14	-0.23	-0.22	-0.22
< <i>C</i> >	0.002	0.009	0.001	0	0
d	8.48	4.41	6.32	6.55	6.81
$\sigma_{\!d}$	1.23	0.72	0.71	0.84	0.57
λ_{I}	0.01	0.034	0.005	0.004	0.004
λ_{n-1}	1.989	1.967	1.996	1.997	1.997

HOT distance distribution

HOT betweenness distribution

HOT dK-porn

Outline

- **#** Introduction
- $\blacksquare dK$ -*
- **T** Construction
- **#** Evaluation
- **#** Conclusion

Conclusions

- **Analysis**: inter-dependencies among topology metrics and connections between
 - local and global structure
 - continuous and discrete worlds
 - equilibrium and non-equilibrium models
 (if a topology is dK-random, its evolution models need to explain just the dK-distribution)
- **# Generation**: topology generator with arbitrary level of accuracy