Formelsammlung HSR

Thomas Küng Urs Winiger Adrian Freihofer

Version 1.02 17. November 2024

Vorwort

Die vorliegende Formelsammlung wurde während unserem Studium für Elektrotechnik (2000 — 2003) an der Fachhochschule in Rapperswil mit LATEX erstelltgeschrieben. Ziel war es, den Inhalt an den Prüffungsstoff anzupassen, aber auch ein Werk zu schreiben, das wir später im Berufsleben verwenden können. Obwohl wir den Inhalt sorgfälltig zusammengestellt haben, sind Fehler nicht ausschliessbar. Als wir von einer Studentin im Jahr 2024 darauf angesprochen wurden, haben wir uns dazu entschlossen diese Formelsammlung als GitHub Repository unter https://www.github.com/tmkueng/Formelsammlung unter Einhaltung der GNU Public Licence zur allgemeinen Verfügung zu stellen. Wir sind natürlich sehr stolz, dass die Formelsammlung nach über 20 Jahren immer noch sehr gefragt ist und hoffen auf viele neue Inhalte welche durch die Gemeinschaft kreiert werden.

In der Formelsammlung sind die folgenden Fächer enthalten:

- Physik
- Elektrizitätslehre
- Energie und Antriebstechnik
- Elektronik
- Digitale Signalverarbeitung
- Mathematik

Vo	rwor	't	11
I.	Ph	ysik	1
1.	Geo	ometrische Optik	2
	1.1.	Sichtbares Licht	2
	1.2.	Reflexionsgesetz	2
	1.3.	Brechung	2
	1.4.	Totalreflexion	3
		1.4.1. Prisma	3
		1.4.2. Lichtwellenleiter	4
	1.5.	Abbildungen	4
		1.5.1. Allgemein	4
		1.5.2. Spiegel	5
		1.5.3. Abbildungen durch Spiegel	5
		1.5.4. Linsen	6
		1.5.5. Abbildungen durch Linsen	7
		1.5.6. Optische Geräte	8
2.	Stati	ik	12
	2.1.	Starre Körper im Gleichgewicht	12
		2.1.1. Gleichgewichtsbedingung starrer Körper	12
		2.1.2. Haftreibung	12
		2.1.3. Reaktionsprinzip	12
		2.1.4. Drehmoment	13
	2.2.	Schwerpunkt	13
	2.3.	Deformierung	14
		2.3.1. Spannung	14
		2.3.2. Dehnung	14
		2.3.3. Querkontraktion	14
		2.3.4. Kompression	15
		2.3.5. Schubbeanspruchung	15
		2.3.6. Schraubenfeder	15
		2.3.7. Biegung eines Balkens	16
	2.4.	Vorgehen beim Lösen von Statikaufgaben	16
3.	Kine	ematik	17
	3.1.	Gleichförmige Bewegung	17
		Gleichförmig beschleunigte Bewegung	17

	3.3.	Drehbewegi	ung 1	18
		3.3.1. Gleic	chförmige Kreisbewegung	18
			chförmig beschleunigte Kreisbewegung	18
				19
	3.4.			19
				19
				19
				20
				20
4.	Dyn	amik	2	21
	4.1.	Newtonsche	e Gesetze	21
		4.1.1. Erste	s Newtonsches Gesetz (Trägheitsgesetz)	21
				21
				21
			,	21
	4.2.		0 01	22
				22
	4.3.			22
	1.0.			23
				<u>-</u> 23
			1 0	<u>-</u> 2
				2 3
			0	<u>-</u> 24
			O .	 24
				 24
	4.4.		, 0 0	24 24
				25 25
				25 25
	4.6.		O	
				25
				26
				26
	4 7	4.6.4. Elast		26
	4.7.	_		27
	4.8.			28
			` 0 0	28
			O	28
			O	29
				29
				29
	4.9.		0	30
			O	30
		4.9.2. Mass	senträgheitsmomente oft verwendeter Körper	31
_			1 1 700	
5.			1	32
	5.1.			32
				32
	5.2.	Kompression	n	32

	5.3.	Hydrostatik
		5.3.1. Schweredruck
		5.3.2. Statischer Auftrieb
		5.3.3. Druckwandler
		5.3.4. Kraftwandler
		5.3.5. Druckmessung
		5.3.6. Grenzflächeneffekte
	5.4.	Hydrodynamik
		5.4.1. Kontinuitätsgleichung
		5.4.2. Bernoulli Gleichung (Energieerhaltung)
	5.5.	Reale Strömung
		5.5.1. Zirkulation
		5.5.2. Vortizität
		5.5.3. Newtonsches Reibungsgesetz
	5.6.	Strömungsformen
		5.6.1. Raynolds-Zahl
		5.6.2. Laminare Strömung (Re < 2320)
		5.6.3. Volumenstrom
		5.6.4. Turbulente Strömung (Re > 2320)
	5.7.	Dynamischer Auftrieb
		5.7.1. Tragflügel
6.	Wär	melehre 42
	6.1.	Temperatur
	6.2.	Ausdehnung von Materialien
	6.3.	Ideale Gase
	6.4.	Gemische idealer Gase
	6.5.	Reale Gase
	6.6.	Wärme
		6.6.1. Molare Wärme kristalliner Festkörper
		6.6.2. Austausch von Wärmemengen
	6.7.	Phasen und Phasenübergänge
		6.7.1. Schmelz- und Verdampfungsenergien
	6.8.	Luftfeuchtigkeit
	6.9.	Kinetische Gastheorie
		6.9.1. Mittlere freie Weglänge, Wärmeleitung, Diffusion und Viskosität 48
		6.9.2. Maxwellsche Geschwindigkeitsverteilung 48
	6.10.	Temperaturstrahlung, Strahlungsgesetze
		6.10.1. Strahlungsaustausch
	6.11.	Wärmetransport
	6.12.	Zustandänderungen
		6.12.1. Isobare Zustandsänderung
		6.12.2. Isochore Zustandsänderungen
		6.12.3. Isotherme Zustandsänderungen
		(10 4 A 1: 1 .: 1
		6.12.4. Adiabatische Zustandsänderungen
		6.12.4. Adiabatische Zustandsanderungen

	6.13.	Kreisprozesse	54
			55
	6.14.	<u>-</u>	56
7.	Schy	wingungen 5	57
		8 8	57
	7.1.	0 0	57
			58
			58
		1	59
		1	59
		7.1.6. Mathematisches Pendel	60
		7.1.7. Physikalisches Pendel	60
			61
			61
			52
			52
		7.1.11. Elektrischer Schwingkreis)∠
8	Well	lenlehre 6	53
•			53
	0.1.	σ	54
	0.2	U	
	8.2.	0 0	54
	8.3.		54
	8.4.		55
	8.5.		55
	8.6.	Doppler-Effekt	66
		8.6.1. Akustischer Doppler-Effekt	66
			66
			57
	8.7.	Überlagerung von Wellen gleicher Frequenz	57
	Q.7.		58
			58
	8.10.	0 0	59
			59
			59
		8.10.3. Rechteckige Membrane	70
	8.11.		70
			70
			70
			71
		o.11.5. Beagaing and Ottler	1
II.	Ele	ektrizitätslehre 7	2
9	Crin	ndlagen	73
٠.		0	73
			75
	9.∠.		75 75
		M / L N TCOOTTSCOP U-PSPT7TP	'n

	9.3.	Reale (Quellen													75
		9.3.1.	Reale Spannungsquelle													75
		9.3.2.	Reale Stromquelle													76
	9.4.	Netzw	erkanalyse													76
		9.4.1.	Netzwerkumwandlung													76
		9.4.2.	Wirkungsgrad und Leistungsanpassung .													78
		9.4.3.	Systematische Analyse linearer Netzwerke													78
		9.4.4.	Quellenverschiebung													79
		9.4.5.	Netzwerke mit gesteuerten Quellen	•	•		•	• •	•	•	•	•	•	•	•	80
		7.4.0.	ivetzwerke fint gestederten Quenen	•	•		•	• •	•	•	•	• •	•	•	•	00
10.	Das	elektris	sche Strömungsfeld													81
			nein													81
			lle Felder													81
	10.2.		Räumliches Zentralfeld (Kugelanordnung)													81
			Zylindrisches Zentralfeld													82
			Leistung und räumliche Leistungsdichte													82
		10.2.3.	Leistung und rauminche Leistungsdichte .	•	•	• •	•	• •	•	•	• •		•	•	•	02
11.	Elek	trostati	k													83
			oulobsche Gesetz													83
			ektrostatsiche Feld (Allgemein)													83
			lle Felder													84
	11.0.		Räumliches Zentralfeld (Kugelanordnung)													84
																85
		11.3.2.	Zylindrisches Zentralfeld	•	•		•	• •	•	•	•		•	•	•	85
			Homogenes Feld (Plattenkondesator)													
	11 1		Paralleldrahtleitung													86
	11.4.	Energi	e im elektrischen Feld	•	•		•		•	•	•		•	•	•	86
	11.5.		im elektrischen Feld													86
			Allgemein													86
			Verschiebung													87
		11.5.3.	Anziehung								• •					87
10	3.6	.•														00
12.	_	netism														88
		Feldstä														88
			abilität													88
			etische Flussdichte													89
	12.4.		im Magnetischen Feld													89
			Kräfte auf Ladungen													89
			Kraft auf Leiter im <i>B</i> -Feld													90
			Kräfte auf paralle Leiter													90
		12.4.4.	Kräfte auf Randflächen eines Feldes													90
	12.5.	Durch	flutung													91
			etischer Fluss													91
			ches Gesetz des magnetischen Kreises													92
			ıfluss													92
	12.9.	Indukt	ivität													92
			induktivität und induktive Kopplung													93
			ing magnetischer Feldlinien													93
			iche Energiedichte													94
				•			•	- •	•	•			•	•	•	- 1

12.13Energie im magnetischen Feld	94
12.14Induktionsgesetz	
12.15Selbstinduktion	
12.16Serie- und Parallelschaltung von Induktivitäten	
12.17.Trafogleichungen	
12.18Nichtlinearität	
12.18.1. $B(H)$ -Kurve in $\Phi(\Theta)$ -Kurve umrechnen	
, $,$ $,$	
12.18.2.Luftspaltkennwert α	-
12.19Spezielle Anordnungen	
12.19.1.Langer gerader Leiter $l\gg d$	98
12.19.2.Kurzer, gerader Leiter	
12.19.3.Kreisförmige Drahtschleife	
12.19.4.Voller Leiter	
12.19.5.Koaxialkabel	
12.19.6.Paralleldrahtleitung	100
12.19.7.Zylinderspule	
12.19.8.Ringspule (Toroid)	
12.19.9.Kreisrahmenspule	
1	
13. Wechselstromlehre	103
13.1. Mittel- und Kennwerte	103
13.1.1. Linearer Mittelwert	
13.1.2. Betragsmittelwert	
13.1.3. Halbwellenmittelwert	
13.1.4. Quadratischer Mittelwert (Effektivwert, RMS)	
13.1.5. Scheitelfaktor (Crestfaktor)	
13.1.6. Formfaktor	
13.1.7. Effektivwert eines zusammengesetzten, mehrfrequenten Signals	
13.2. Leistung	
13.2.1. Leistung und Leistungsanpassung bei Quellen	
13.2.2. Effektivwert und Leistung	105
13.3. Energie	
13.4. Komplexe Darstellung sinusförmiger Vorgänge	106
13.5. Komplexe Darstellung von Impedanz und Admittanz	107
13.6. Klemmgrössen von Schaltelementen	
13.6.1. Allgemein	
13.6.2. Ohm'sche Widerstände	
13.6.3. Kapazitäten	
13.6.4. Induktivitäten	
13.7. Zeigerdarstellung Komplexer Klemmgrössen	
13.7.1. Impedanztransformation	
13.7.2. Transformation von Z-Ebene zu Y-Ebene	
13.8. Netzwerkanalyse	
13.8.1. Maschenmethode / Kreisstrommethode	
13.8.2. Trennbündelmethode / Knotenspannungsmethode	
13.9. Darstellungsformen	
13.9.1. Beispiel: Nyquistdiagramm, Ortskurve	113
13.9.2. Bodediagramm	113

	118
13.9.3. Pol- Nullstellendiagramm	118
13.11Eigenschaften des PT ₂ -Glied	119
13.12.Verküpfung von Blockdiagrammen	119
III. Energie und Antriebstechnik	120
14. Dreiphasensysteme	121
14.1. Sternschaltung	121
14.2. Dreieckschaltung	122
14.2.1. Leistungen bei Stern- und Dreieckschaltung	122
15. Elektromotoren und Generatoren	123
15.1. Allgemein	123
15.2. Gleichstrommaschine	124
15.2.1. Fremderregte Gleichstrommaschine (GNSM)	124
15.2.2. Nutzbremsung mit fremderregter Gleichstrommaschine	125
15.3. Gleichstrom Nebenschlussmaschine (GNSM)	125
15.4. Gleichstrom Reihenschlussmaschine (GRSM)	126
15.5. Drehstrom Synchrongenerator (DSG)	127
15.6. DSG im Inselbetrieb	127
15.7. Belastung des DSG am starren Netz	128
15.8. Drehmoment und Stabilität des DSG am starren Netz	128
IV. Elektronik	129
16. Diode	130
16.1. Ideale Diode	130
16.2. Konstantspannungsmodel	130
16.3. Arbeitspunktberechnung	
	130
16.4. Kenniinie	130 131
16.4. Kennlinie	
16.4.1. Differentieller Widerstand	131
16.4.1. Differentieller Widerstand	131 131
16.4.1. Differentieller Widerstand	131 131 132
16.4.1. Differentieller Widerstand	131 131 132 132
16.4.1. Differentieller Widerstand	131 131 132 132 132
16.4.1. Differentieller Widerstand	131 132 132 132 132
16.4.1. Differentieller Widerstand	131 131 132 132 132 133
16.4.1. Differentieller Widerstand	131 131 132 132 132 132 133 133
16.4.1. Differentieller Widerstand	131 132 132 132 132 133 133
16.4.1. Differentieller Widerstand	131 132 132 132 132 133 133 134
16.4.1. Differentieller Widerstand 16.5. DC- und AC-Analyse von Diodenschaltungen 16.5.1. Vorgehen 16.5.2. Kleinsignalanalyse 16.5.3. Grosssignalanalyse 16.6. Z-Dioden 16.6.1. Z-Dioden zur Spannungsstabilisierung 17.1. NPN- und PNP-Transistor 17.2. Der ideale Transistor bei Gleichspannung 17.2.1. DC-Ersatzschaltung	131 132 132 132 132 133 133 134 134 135
16.4.1. Differentieller Widerstand	131 132 132 132 132 133 133 134 134 135 135

	17.3.3. Basisschaltung	137
	17.3.4. Kollektorschaltung (Emitterfolger)	137
18.	Feldeffekt Transistor	138
	18.1. Verschiedene Typen	138
	18.2. Der ideale MOSFET (Handrechnung)	139
	18.3. Der reale MOSFET	140
	18.4. Kleinsignal Ersatzschaltbild für tiefe Frequenzen	141
	18.5. DC-Berechnung mit idealen MOSFET Gleichungen	142
	18.6. Der FET als Schalter	143
		143 144
	18.7. Des FET als AC-Verstärker	144
	18.7.1. Sourceschaltung	
	18.7.2. Gateschaltung	145
	18.7.3. Drainschaltung	145
	18.8. Dynamische Innenwiderstände des MOS-Transistors	146
	18.9. Der FET als Spannungsgesteuerter Widerstand	146
	18.10MOS-Diode	147
	18.11Stromquellen	148
	18.11.1.Einfache Stromquelle	148
	18.11.2.Stromquelle mit Kaskode-Schaltung	148
	18.11.3.Stromquelle mit geregelter Kaskode-Schaltung	149
	18.12Stromspiegel	149
	18.12.1.Widlar Stromspiegel	149
	1 0	
19.	Operationsverstärker	150
	19.1. Verstärkung	150
	19.2. Idealer OP	150
	19.2.1. Invertierender Verstärker	151
	19.2.2. Nichtinvertierender Verstärker	151
	19.2.3. Addierer	151
	19.2.4. Subtrahierer	152
	19.2.5. Mehrfach Addierer und Subtrahierer	152
	19.2.6. Instrumentationsverstärker	152
	19.2.7. Stromquelle	153
	19.2.8. Stromspiegel	153
	19.2.9. Differentieller UI-Wandler	154
	19.2.10.Schmitt-Trigger	154
	19.2.11.Wien-Robinson Oszillator	155
		156
	19.2.12.Beschaltung des OPs mit Zweitoren	150
	19.3. Realer Operationsverstärker	
	19.3.1. Ein- und Ausgangsspannungsbereich	157
	19.3.2. Übertragungskennlinie	157
	19.3.3. Gleichtaktfehler (Common Mode Error)	157
	19.3.4. Effektive, geschlossene Verstärkung	158
	19.3.5. Offsetfehler	158
	19.3.6. Versorgungsspannungsfehler (Power supply error)	158
	19.3.7. Eingangsströme (Bias- und Offsetstrom)	159
	19.3.8. Kombination der statischen Fehler	159

	19.3.9. Dynamischer Eingangswiderstand	159 160
20.	Gegengekoppelte Verstärker	161
	20.1. Mit- und Gegenkopplung	161
	20.1.1. Gegenkopplung beim OP	161
	20.2. Gegenkopplungsarten	162
	20.2.1. Bestimmung der Gegenkopplungsart	163
	20.2.2. Eingangsschaltungen	163
	20.2.3. Ausgangsschaltungen	163
	20.3. Schleifenverstärkung	164
	20.4. Wirkung der GK auf die Sensivität der Verstärkung	164
	20.5. Das Verstärkungs-Bandbreiten-Produkt	165
V.	Digitale Signalverarbeitung	166
21.	Stochastische Signale	167
	21.1. Allgemein	167
22.	Abtastung	168
	22.1. Ideale Abtastung	168
	22.2. Flat Top Sampling	168
	22.3. Sample and Hold	169
	22.4. Abtasttheorem	169
	22.5. Rekonstruktion	169
	22.5.1. Interpolation	170
	22.6. Energie und Leistung bandbegrenzter Signale	170
VI	I. Mathematik	171
23.	Grundlagen	172
	23.1. Allgemeines	172
	23.1.1. Binome	172
	23.1.2. Faktorzerlegungen	172
	23.1.3. Quadratische Gleichung	173
	23.1.4. Arithmetische Folge	173
	23.1.5. Geometrische Folge	173
	23.1.6. Partialbruchzerlegung	173
	23.2. Matrizen und Determinanten	173
	23.2.1. 2 × 2 Matrizen	173
	23.2.2. 3 × 3 Matrizen	174
	23.2.3. Transponierte einer Matrix	174
	23.3. Vektorrechnung	174
	23.3.1. Grundlagen	174
	23.3.2. Lineare Abbildungen	175

23.4.	Trigonometrie	5
	23.4.1. Komplementwinkel	'5
	23.4.2. Sinussatz	'6
	23.4.3. Cosinussatz	'6
23.5.	Goniometerie	'6
	23.5.1. Serien (Lösungsmengen)	'6
	23.5.2. Potenzen	'6
	23.5.3. Additionstheoreme	
	23.5.4. Doppelwinkel	
	23.5.5. Dreifachwinkel	
	23.5.6. Halbwinkel	
	23.5.7. Summen und Produkte	
	23.5.8. Genaue Funktionswerte	
23.6	Logarithmen	_
	Komplexe Zahlen	
29.7.	23.7.1. Allgemeines	
	O	
	23.7.2. Rechenregeln	-
22.0		
23.8.		
22.0	0	-
23.9.	Integrieren	
	23.9.1. Rechenregeln	
	23.9.2. Substitution	
	23.9.3. Sätze	
	23.9.4. Integration rationaler Funktionen	
	23.9.5. Rationalisierungsformeln	
	23.9.6. Spezielle Integrale	3
24 F	. '1	
	rierreihen 18	
	Bezeichungen	
24.2.	Skalarprodukt	
	24.2.1. Eigenschaften	
	24.2.2. Definitionen in \mathbb{P} und \mathbb{E}	
	24.2.3. Für orthonormierte Basis	
	Norm in \mathbb{P} und \mathbb{E}	
	Cauchy-Schwarzsche Ungleichung	
	Abstand	
24.6.	Fourierreihe reell	
	24.6.1. Fourierkoeffizienten	
	24.6.2. Fourierreihe der Funktion $f \in \mathbb{P}$	8
24.7.	Fourierreihe komplex	
	24.7.1. Fourierkoeffizienten	8
	24.7.2. Fourierreihe der Funktion $f \in \mathbb{E}$	8
24.8.	Parsevalsches Theorem	8
24.9.	Durchgang durch LTI-System	8
	Fourierkoeffizienten wichtiger periodischer Signale	9

25.	. Fouriertransformation	191
	25.1. Fouriertransformation	191
	25.2. Fourier-Cosinustransformation	191
	25.3. Fourier-Sinustransformation	192
	25.4. Faltung	192
	25.4.1. Fallunterscheidung bei Definitionsbereichen	192
	25.5. Eigenschaften	193
	25.6. Fouriertransformationen mit Diracdelta	193
	25.7. Fouriertransformationen wichtiger Impulse	194
26.	. Laplace	195
	26.1. Laplacetransformation	195
	26.2. Rechenregeln	196
	26.3. Spezielle Laplacetransformationen	196
	26.4. Faltung	197
	26.5. Periodische Funktionen	197
. =	D''' (1111	400
27.	. Differentialgleichungen	198
	27.1. 1. Ordnung	198
	27.1.1. Homogene	198
	27.1.2. Partikuläre	198
	27.1.3. Lösung	199
	27.2. Höhere Ordnung	199
	27.2.1. Homogen, linear mit konstanten Koeffizienten	199
	27.2.2. Partikuläre	199
	27.3. Laplace	200
	27.3.1. Lineare Übertragung	200
	27.3.2. Nichtlineare Übertragung	201
	27.4. Übersicht Laplace und Fourier	202
28	. Funktionsdiskussion	203
20.	28.1. Funktionen mit einer Variablen	203
	28.1.1. Zu beantwortende Fragen	203
	28.1.2. Gerade (2-Punkte-Form)	203
	28.1.3. Abstand eines Punktes von einer Geraden	204
	28.2. Funktionen mit mehreren Variablen	204
		204
	28.2.1. Bezeichnungen	
	28.3. Kegelschnitte	205
	28.3.1. Kreis	205
	28.3.2. Ellipse	205
	28.3.3. Hyperbel	205
	28.3.4. Parabel	205

Teil I. Physik

1. Geometrische Optik

1.1. Sichtbares Licht

Wellenbereich λ/nm	Farbe
380 - 435	violett
435 - 465	blau
465 - 485	blaugrün
485 - 565	grün
565 - 590	gelb
590 - 630	orange
630 - 780	rot

1.2. Reflexionsgesetz

1.3. Brechung

1.4. Totalreflexion

1.4.1. Prisma

1. GEOMETRISCHE OPTIK

1.4.2. Lichtwellenleiter

falls
$$n_1 > n_2$$
:

$$\alpha_{1max} = \arcsin \frac{n_1 \cos \left[\arcsin \left(\frac{n_2}{n_1}\right)\right]}{n_0}$$

$$n_0 \sin \alpha_1 = n_1 \sqrt{1 - \cos^2 \alpha_2}$$

$$n_0 \sin \alpha_1 = n_1 \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2}$$

$$n_0\sin\alpha_1=\sqrt{n_1^2-n_2^2}$$

$$\alpha_1$$
 Einfallswin- $[rad]$ kel

$$\alpha_{1max}$$
 max Einfalls- [rad] winkel

$$n_0$$
 n-Medium [1]

$$n_1$$
 n-Kern [1]

$$n_2$$
 n-Mantel [1]

1.5. Abbildungen

1.5.1. Allgemein

Vorzeichen:

- Für sammelde optische Bauelemente ist f > 0.
- Für zerstreuende optische Bauelemente f < 0.
- Für virtuelle Bilder ist b < 0 und B < 0.
- Für vortuelle Gegenstände ist *g* < 0 und *G* < 0.

$$g = \overline{H_1G}$$

$$b = \overline{H_2B}$$

$$f = \overline{H_1F_1}$$

$$f = \overline{H_2 F_2}$$

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

$$\frac{B}{G} = \frac{b}{g}$$

$$\beta = \frac{B}{G}$$

- g Gegenstands- [m]
 - weite Bildweite
- b Bildweite [m] f Brennweite [m]
- H_1 vorderer
 - Hauptpunkt
- H_2 hinterer
 - Hauptpunkt
- *F*₁ vorderer Brennpunkt
- F₂ hinterer Brennpunkt
- G Gegenstands- [m]
- grösse B Bildgrösse
- B Bildgrösse [m] β Abbildungs- [1] verhältnis

1.5.2. Spiegel

Parabolspiegel

Bei Parabolspiegeln treffen sich alle paralell einfallenden Strahlen in einem Punkt (Brennpunkt) auf der optische Achse.

Elliptische Spiegel

Alle Strahlen die vom einen Brennpunkt ausgesendet werden, treffen auf den zweiten Brennpunkt. (Ellipse ist der geometrische Ort aller Punkte einer Ebene, für die die Summe ihrer Abstände von zwei festen Punkten F_1 und F_2 konstant ist.)

Hyperbolische Spiegel

Alle Strahlen, die von einem Brennpunkt ausgesendet werden, verlaufen nach der Reflexion so, als wären sie vom anderen der beiden Brennpunkte ausgesendet worden. (Hyperbel ist der geometrische Ort aller Punkte einer Ebene, für die die Differenz ihrer Abstände von zwei festen Punkten F_1 und F_2 konstant ist.)

Sphärische Spiegel

Die Spiegelnde Fläche ist ein Teil einer Kugel. Wenn nur ein kleiner Ausschnit der Kugelfläche verwendet wird, gehen parallel einfallende Strahlen näherungsweise durch einen Brennpunkt: f = r/2.

1.5.3. Abbildungen durch Spiegel

Konkavspiegel

1. GEOMETRISCHE OPTIK

Konvexspiegel

G B	Konvexspiegel haben stets virtuelle Bilder bei reellen Gegenständen.	G B F	Gegenstand Bild Brennpunkt	[<i>m</i>]
-----	--	-------------	----------------------------------	--------------

Planspiegel

1.5.4. Linsen

Linsentypen

Linsensysteme

Zwei Linsen mit Brennweiten f_1 , f_2 auf einer Achse ergeben eine Linse mit Brennweite f, falls ihr Abstand d kleiner f_1 ist.

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$D = D_1 + D_2 - dD_1D_2$$

 $f_{1,2}$ Brennweiten [m] D Brechkraft [dpt] d Linsenabstand [m]

1.5.5. Abbildungen durch Linsen

Sammellinse

Der Gegenstand ist innerhalb der Brennweite \Rightarrow reelles Bild.

Der Gegenstand ist ausserhalb der Brennweite \Rightarrow virtuelles Bild.

G Gegenstand [m] B Bild [m]

F Brennpunkt $f_{1,2}$ Brennweiten [m]

Zerstreuungslinse

Bei Zerstreungslinsen haben reelle Gegenstände stets virtuelle Bilder, unabhängig von ihrer Position. G Gegenstand [m] B Bild [m]

F Brennpunkt

 $f_{1,2}$ Brennweiten [m]

1. GEOMETRISCHE OPTIK

1.5.6. Optische Geräte

Film

Fotoapparat

Verschluss .

Objektiv

$$B = \frac{f}{g - f}G$$

$$I \approx d^2$$

$$H \approx \frac{1}{B^2} \approx \frac{d^2}{f^2}$$

$$E = Ht$$

$$q = \frac{d}{f}$$
 $Z = \frac{1}{q}$

$$E \approx q^2 t$$

$$\frac{u}{d} = \frac{b - b_0}{b}$$

$$\frac{1}{g} = \frac{1}{g_0} \pm \frac{u}{qf^2}$$

$$g > g_0 \Rightarrow - \quad g < g_0 \Rightarrow +$$

$$g_0$$
 Schärfentie- $[m]$ fenbereich

$$b$$
 Bild $[m]$

$$f$$
 Brennweite $[m]$ I Lichtstrom $[W]$

$$H$$
 Helligkeit $\left[\frac{W}{m^2}\right]$

hältnis
$$Z$$
 Brendenein- $[1]$

Projektor

Das Dia wird im Objektiv abgebidet $\Rightarrow g_2 = b_1$

Das Bild der Lampe muss im Objektiv sein.

g-Objektiv [m]82 b-Kondensa b_1 [m]tor

Lupe

Sammellinse zur Vergrösserung des Sehwinkels (Bild im Unendlichen)

Gegenstand in Brennweite ⇒ Sehwinkel ϵ ist unabhängig von der Augenposition

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$V = \frac{s}{g} > V_{normal}$$

$$\tan \epsilon' = \frac{G}{f}$$

$$\tan \epsilon_0 = \frac{G}{s}$$

$$V = \frac{s}{f}$$

GGegenstand [m]Gegenstands-[m]

weite

g

В **Bildweite** [m]

bBild [m]

f **Brennweite** [m]Sehwinkel ϵ [rad]

durch Lupe Sehwinkel [rad] ϵ_0

ohne Lupe S

deutliche Seh- [m] weite

V Vergrösserung [1] (max. ca. 25)

Mikroprojektor

Das reelle Bild einer Sammellinse wird verwendet und auf einer Mattscheibe abgebildet

Bild aus deutlicher Sehweite betrach-

$$V = \frac{B}{G} = \frac{b}{g}$$

Stahlengang siehe Projektor

G Gegenstand [m]

Gegenstands-[m]g weite

В Bildweite [m]

b Bild [m]

VVergrösserung [1]

1. GEOMETRISCHE OPTIK

Mikroskop

Das Objektiv verhält sich wie ein Mikroprojektor. Sein Bild wird durch das Okular, welches sich wie eine Lupe verhält, betrachtet.

$$V = V_1 V_2$$

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$V = \frac{B}{G} \frac{f}{f_2}$$

$$V = \frac{\Delta}{f_1} \frac{s}{f_2}$$

$$V_1 = \frac{\Delta}{f_1}$$

$$V_2 = \frac{s}{f_2}$$

$$\Delta = b_1 - f_1$$

- G Gegenstand [m]
- *g*₁ Gegenstands- [*m*] weite
- B Bild [m]
- b_1 Bildweite [m]
- *F*₁ Brennpunkt Objektiv
- F₂ Brennpunkt Okular
- f_1 Brennweite [m] Objektiv
- f_2 Brennweite [m]
- Okular Δ Tubuslänge [m]
- ϵ Sehwinkel [rad]
- s deutliche Seh- [m] weite
- V Vergrösserung [1] total
- V_1 V-Objektiv [1]
- V_2 V-Okular [1]

Fernrohre

Ein Fernglas mit den Daten 10×50 hat eine Vergrösserung von 10 und einen Objektivdurchmesser von 50 mm.

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$\epsilon = V\epsilon'$$

$$V = \frac{f_1}{f_2}$$

$$\frac{1}{f_1 + f_2} + \frac{1}{a} = \frac{1}{f_2}$$

$$\frac{D}{d} = \frac{f_1 + f_2}{a} = V$$

$$a = \frac{l}{V} \qquad d = \frac{D}{V}$$

$$L = d^2$$

$$L = \left(\frac{D}{V}\right)^2$$

$$l = f_1 + f_2$$

B Bildweite [m]

 f_1 Brennweite [m] Objektiv

 f_2 Brennweite [m] Okular

l Fernrohrlänge [*m*]

 ϵ Ausfallswinkel [rad]

 ϵ' Einfallswinkel [rad] s deutliche Seh- [m]

s deutliche Seh- [1 weite

V Vergrösserung [1] total

L Lichtstärke [1]

D Durchm. Ob- [m] jektiv

d Durchm. Aus- [mm] trittspupille

a Abstand Oku- [m] lar Astrittspupille

2. Statik

2.1. Starre Körper im Gleichgewicht

2.1.1. Gleichgewichtsbedingung starrer Körper

Ein Körper ist dann Gleichgewicht, wenn keine resultierende Kraft auf ihn wirkt, d.h. die Summe der ihn angreifenden Kräfte ist null.

Allgemein:

$$\sum_{i=1}^{n} \vec{F}_{i} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{i} = 0$$

In Komponenten:

$$\sum_{i=1}^{n} \vec{F}_{ix} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{ix} = 0$$

$$\sum_{i=1}^{n} \vec{F}_{iy} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{iy} = 0$$

$$\sum_{i=1}^{n} \vec{F}_{iy} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{iy} = 0$$

$$\sum_{i=1}^{n} \vec{F}_{iz} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{iz} = 0$$

F Kraft [N]M Drahmoment [Nm]

2.1.2. Haftreibung

$$\vec{F_N} = \vec{F_G} \qquad \vec{F_R} = \vec{P}$$

$$\vec{F_R} \leq \vec{F_{Rmax}} \leq \mu_H F_N$$

$$\vec{F_N} = \vec{F_G}$$
 $\vec{F_R} = \vec{F}$
 $\vec{F_R} \le \vec{F_{Rmax}} \le \mu_H F_N$

$$F$$
 Kraft $[N]$

$$F_G$$
 Gewichtskraft $[N]$
 F_N Normalkraft $[N]$

$$F_R$$
 Reibkraft $[N]$
 μ_H Haftreibungs- $[1]$
koeffizient

2.1.3. Reaktionsprinzip

Das Reaktionsprinzip gilt, wenn zwei Körper Kräfte auf einander ausüben.

$$\vec{F_{BA}} = -\vec{F_{AB}}$$

Kraft F_{AB} von [N]Körper A

 F_{BA} Kraft von [N]Körper B

2.1.4. Drehmoment

Drehmoment eines Kräftepaars

$$M = aF$$

$$\vec{M} \perp$$
 auf Ebene \vec{r} , \vec{F} :

$$M = Fr \sin(\alpha)$$

Drehmomente nicht in einer Ebene:

$$\vec{M} = \vec{r} \times \vec{F}$$

Drehsinn im Gegenuhrzeigersinn: +

$$M$$
 Drehmoment $[Nm]$ a Abstand $[m]$

$$a$$
 Abstand $[m]$ F Kraft $[N]$

Radius
$$[m]$$

Drehmoment einer Einzelkraft

$$M = aF$$

$$\vec{M} = \vec{r} \times \vec{F}$$

Drehmoment M [Nm][m]

Abstand а F Kraft

Radius

[N][m]

2.2. Schwerpunkt

$$x_s = \frac{\sum_i x_i m_i}{\sum_i m_i}$$

$$y_s = \frac{\sum_i y_i m_i}{\sum_i m_i}$$

$$z_s = \frac{\sum_i z_i m_i}{\sum_i m_i}$$

Schwerpunkt eines Halbkreises:

$$x = 0 \qquad y = \frac{4r}{3\pi}$$

Koordinaten [m] χ_{S} ,

 y_s, z_s des Gesamtschwerpunktes

Schwer x_i

[m]

 y_i, z_i punktskoordinaten Teilkörper i

Radius [m]r

2.3. Deformierung

2.3.1. Spannung

σ	Zugspannung	$\left[\frac{N}{m^2}\right]$
au	Schubspan-	$\left[\frac{N}{m^2}\right]$
	nung	
p	Druck	$\left[\frac{N}{m^2}\right]$ $[m^2]$
A	Fläche	$[m^2]$
F	Kraft	[N]

2.3.2. Dehnung

2.3.3. Querkontraktion

Dünnenrwerden ei-	a — ua	ϵ_q μ d	Querkontrak- [1] tion Poissonzahl [1] Dicke Materi- [m] al Länge [m]
		l	Länge [m]

2.3.4. Kompression

Wird ein Körper einem Druck ausge- setzt, spricht man von Kompression	$\frac{\Delta V}{V} = -\kappa \Delta p$ $\kappa = \frac{3(1 - 2\mu)}{E}$	V р к ц Е	Volumen Druck Kompressibi- lität Poissonzahl E-Modul	$\begin{bmatrix} m^3 \\ \frac{N}{m^2} \end{bmatrix}$ $\begin{bmatrix} \frac{m^2}{N} \end{bmatrix}$ $\begin{bmatrix} 1 \\ \frac{N}{m^2} \end{bmatrix}$
--	--	-----------------------	---	---

2.3.5. Schubbeanspruchung

$\frac{\Delta y}{b} = \frac{1}{G} \frac{F}{A} = \frac{1}{G} \tau$ $G = \frac{E}{2(1+\mu)}$	F Kraft $[N]$ A Fläche $[m]$ y Spaltbreite $[m]$ γ Winkel $[ra]$ b Körperbreite $[m]$ G Schubmodul $[\frac{N}{m}]$ τ Schubspan. $[\frac{m}{m}]$ μ Poissonzahl $[1]$ E E-Modul $[\frac{N}{m}]$	$ \begin{bmatrix} i^{\frac{1}{2}} \\ i \end{bmatrix} $ $ \begin{bmatrix} i \\ i \end{bmatrix} $ $ \begin{bmatrix} \frac{N}{12} \\ i^{\frac{1}{2}} \end{bmatrix} $
--	---	---

2.3.6. Schraubenfeder

2.3.7. Biegung eines Balkens

2.4. Vorgehen beim Lösen von Statikaufgaben

- 1. Skizze mit allen Kräften aufzeichnen
- 2. Koordinatensystem einführen
- 3. Falls notwendig einen Drehpunkt einführen
- 4. Gleichgewichtsbedingungs Gleichungssystem aufstellen
- 5. Gleichungssystem auflösen

3. Kinematik

3.1. Gleichförmige Bewegung

3.2. Gleichförmig beschleunigte Bewegung

3.3. Drehbewegung

3.3.1. Gleichförmige Kreisbewegung

3.3.2. Gleichförmig beschleunigte Kreisbewegung

3.3.3. Zentripetalbeschleunigung

 $F_z = m\omega^2 r$

3.4. Wurfbahnen

3.4.1. Freier Fall

3.4.2. Senkrechter Wurf

3. KINEMATIK

3.4.3. Horizontaler Wurf

$$a_x = 0 \to v_x = v_0$$

$$s_x = v_0 t$$

$$s_x = \sqrt{\frac{2v_0^2y}{g}}$$

$$a_y = -g \rightarrow v_y = -gt$$

$$s_y = -\frac{g}{2}t^2$$

$$a_y = -g \rightarrow v_y = -gt$$

$$s_y = -\frac{g}{2}t^2$$

$$s_y = -\frac{g}{2v_0^2}s_x^2$$

a Beschl.
$$\left[\frac{m}{s^2}\right]$$

s Strecke
$$[m]$$

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$ v_0 Start-Geschw. $\left[\frac{m}{s}\right]$

$$t$$
 Zeit $\begin{bmatrix} s \end{bmatrix}$

g Erdbeschl. =
$$\left[\frac{\dot{m}}{s^2}\right]$$
 9.81

3.4.4. Schiefer Wurf

$$a_y = -g$$
 $a_x = 0$

$$d = \frac{v_0^2}{g}\sin(2\varphi)$$

$$h = \frac{v_0^2}{2g}\sin^2(\varphi)$$

$$t = \frac{2v_0 \sin(\varphi)}{g}$$

$$\Delta y = v_0 \sin(\varphi) t - \frac{gt^2}{2}$$

$$\Delta x = v_0 \cos(\varphi)t$$

Parabelgleichung:

$$y = \tan(\varphi)s_x - \frac{gs_x^2}{2v_0^2\cos^2(\varphi)}$$

a Beschl.
$$\left[\frac{m}{s^2}\right]$$
 d Wurfdistanz $[m]$

$$s$$
 Strecke $[m]$

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

$$t$$
 Zeit $[s]$

$$\varphi$$
 Abschuss- $[rad]$ winkel

g Erdbeschl. =
$$\left[\frac{m}{s^2}\right]$$
 9.81

4. Dynamik

4.1. Newtonsche Gesetze

4.1.1. Erstes Newtonsches Gesetz (Trägheitsgesetz)

Ein Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, wenn er nicht durch einwirkende Kräfte gezwungen wird, seinen Zustand zu ändern. Die Gesamtsumme der Kräfte in einem abgeschlossenen System ist unveränderlich:

$$F = \sum_{i} F_i = 0$$

4.1.2. Zweites Newtonsches Gesetz (Aktionsgesetz)

Die Beschleunigung eines Körpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur Kraft, die auf ihn wirkt.

$$\vec{F} = m\vec{a}$$

4.1.3. Drittes Newtonsches Gesetz (Actio = Reactio)

Wirkt ein Körper A auf einen Körper B mit der Kraft $\vec{F_{AB}}$, so wirkt der Körper B mit der entgegengesetzt gerichteten, gleich grossen Kraft $\vec{F_{BA}}$.

$$\sum_{i=1}^{n} F_{ix} = ma_x \vec{a} \qquad \sum_{i=1}^{n} F_{iy} = ma_y \vec{a} \qquad \sum_{i=1}^{n} F_{iz} = ma_z \vec{a}$$

4.1.4. Allgemeines Vorgehen beim lösen von Bewegungsproblemen

- 1. Zeichnung anfertigen
- Für jeden Körper, der untersucht werden soll, wird ein Kräftediagramm eingezeichnet
- 3. Ein geeignetes Koordinatensystem einführen
- 4. Das entstandene Gleichungssystem auflösen
- 5. Ergebnisse mit gesundem Menschenverstand auflösen

4.2. Masse und Gewicht

4.2.1. Spezielle Kräfte, Masse, Dichte und Reibung

4.3. Arbeit und Energie, Energieerhaltung

Energie ist die Fähigkeit Arbeit zu leisten. Arbeit = überwinden eines Widerstandes $W = \vec{F} \cdot \vec{ds}$ $W = Pt$ Energieerhaltung im schlossenen System: $\sum_i E_i = const.$	abge-	W E F s t	Arbeit Energie Kraft Weg Zeit	[J] [J] [N] [m] [s]
---	-------	-----------------------	---	---------------------------------

4.3.1. Hubarbeit, Potentielle Energie

$h_{\mathfrak{M}}E_{pot2}$	$E_{pot} = mgh$	E_{pot}	potentielle Energie	[J]
mEpot1	$W_H ec{F} \cdot ec{h}$ $E_{pot} = W_H$	W _H m	Hubarbeit Masse Fallbeschleunigung	$\begin{bmatrix} J \\ [kg] \\ [\frac{m}{s^2}] \end{bmatrix}$
		h	Höhe	[m]

4.3.2. Spannarbeit, Spannenergie

4.3.3. Beschleunigungsarbeit, Kinetische Energie

4.3.4. Rotationsenergie

4.3.5. Reibungsarbeit

	$W_R = F_R s$	W_R F_R	Reibarbeit Reibkraft	[<i>J</i>]
F _R		S	Strecke	[m]

4.3.6. Verformungsarbeit

4.3.7. Einstein, Kernbindungsenergie

$E = mc^{2}$ $E = mc^{2}$ $E = mc^{2}$ $E = mergie$ $E = Masse$ $C = V_{Licht}$ $E = 299'792'458$ $(Vakuum)$
--

4.4. Leistung

$P = \frac{dW}{dt}$ $P = \frac{Fds}{dt} = \vec{F}\vec{s}$	P W t F	Leistung Energie Zeit Kraft	[W] [J] [s] [N]
$P = \frac{uvv}{1}$			
dt	l W	_	[J]
Γ1.	t	Zeit	[s]
$P = \frac{Fas}{I} = \vec{F}\vec{s}$	F		[N]
dt	S	Strecke	[m]
$P = M\omega$	M	Drehmoment	[Nm]
	w	Winkelge-	$\left[\frac{rad}{s}\right]$
		schwindig-	
		keit	

4.5. Wirkungsgrad

$\eta = rac{W_{ab}}{W_{zu}} = rac{p_{ab}}{P_{zu}}$ $\eta_{tot} = \eta_1 \cdot \eta_2 \cdot$	η Wirkungsgrad [1] P_{ab} P-Abgeg. [W] P_{zu} P-Aufge. [W] W_{ab} W-Abgeg. [J] W_{zu} W-Aufge. [J]
---	---

4.6. Impuls, Impulserhaltung

Impulserhaltungssatz: Im abgeschlossenen System bleibt der Impuls konstant	,	p m v F ∆t	Impuls Masse Geschw. Kraft Wirkungs- dauer	$\begin{bmatrix} \frac{kgm}{s} \\ [kg] \\ [\frac{m}{s}] \\ [N] \\ [s] \end{bmatrix}$
---	---	------------------------	---	--

4.6.1. Drehimpuls

4.6.2. Raketenantrieb

4.6.3. Inelastischer Stoss

$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	v'	Geschw. nach Stoss	$\left[\frac{m}{s}\right]$
		v vor Stoss Massen	$\left[\frac{m}{s}\right]$ $\left[kg\right]$

4.6.4. Elastischer Stoss

$v_1 - v_2 = -(v_1' - v_2')$ $v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$	$v'_{1,2}$ $v_{1,2}$ $m_{1,2}$	Geschw. nach $\left[\frac{m}{s}\right]$ Stoss v vor Stoss $\left[\frac{m}{s}\right]$ Massen $\left[kg\right]$
$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_2}{m_1 + m_2}$ $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$		

4.7. Analogie Translation und Rotation

Translation			Rotation			
Symb	Grösse	Beziehung	Symb	Grösse	Beziehung	
S	Weg		φ	Winkel		
v	Geschwindigkeit	$v = \frac{ds}{dt}$	w	Winkelgeschwin- digkeit	$\omega = \frac{d\varphi}{dt}$	
а	Beschleunigung	$a = \frac{dv}{dt}$	α	Winkelbeschleuni- gung	$\alpha = \frac{d\omega}{dt}$	
m	Masse		J	Trägheitsmoment	$J=\int r^2dm$	
p	Impuls	p = mv	L	Drehimpuls	$L = J\omega$	
F	Kraft	$F = \frac{dp}{dt}$	M	Drehmoment	$M = \frac{dL}{dt}$	
dW	Arbeit	$dW = \vec{F}\vec{ds}$	dW	Arbeit	$dW = Md\varphi$	
P	Leistung	$P = \vec{F}\vec{v}$	P	Leistung	$P = M\omega$	
E _{trans}	Translationsener- gie	$E_{trans} = \frac{mv^2}{2}$	E_{rot}	Rotationsenergie	$E_{rot} = J\omega^2 2$	

4.8. Gravitation und Masse

4.8.1. Keplersche Gesetze (→ Bewegung der Planeten)

1. Keplergesetz	Die Planeten bewegen sich auf Elypsen, in deren einem Brenn- punkt die Sonne steht. (Bahn ist eben)	$v_{P,A} \ r_{P,A} \ T$	Bahngeschw. Elypsen- Radien Umlaufdauer	$\left[\frac{m}{s}\right]$ $[m]$
2. Keplergesetz Planet Plane	Der Fahrstrahl des Planeten überstreicht in gleichen Zeiten gleiche Flächen. $v_P r_P = v_A r_A$ $A_P = A_A$	C r v _K	Planet Konstante mitlerer Abstand Kreisbahnge- schwindig- keit	$\begin{bmatrix} 1 \\ m \end{bmatrix}$
3. Keplergesetz	Das Quadrat der Umlaufdauer eines Planeten ist proportional zur dritten Potenz seiner mittleren Entfernung zur Sonne. $T^2 = Cr^3$ $t = \frac{4\pi}{GM_{Sonne}}r^3$ Planetengeschwindigkeit: $v_K = \frac{2\pi r}{T}$ $v_K = \sqrt{\frac{gM_{Sonne}}{r}}$	G	Gravitations- konstante = $6.673 \cdot 10^{-11}$	$\left[\frac{m^3}{kgs^2}\right]$

4.8.2. Newtonsches Gravitationsgesetz

4.8.3. Potentielle Energie im Gravitationsfeld einer Zentralmasse

$E_{pot} = -G \frac{m_Z m}{r}$	m_Z	m- $[kg]$ Zentralmasse
$Gm_{\mathbb{Z}}$	m	Körpermasse $[kg]$
$\varphi = -\frac{Gm_Z}{r}$	φ	Körpermasse $[kg]$ Gravitations- $[\frac{m^2}{s^2}]$ potential
	G	Gravitations- $\left[\frac{m^3}{kgs^2}\right]$ konstante = $6.673 \cdot 10^{-11}$

4.8.4. Fluchtgeschwindigkeit

Die Bahn ist eine Para- bel	$v_F = \sqrt{2 \frac{Gm_Z}{r_0}}$	$v_F \ v_K$	Fluchtgeschw. $\left[\frac{m}{s^2}\right]$ Kreisbahnge- $\left[\frac{m}{s^2}\right]$ schwindig-	
	$v_F = \sqrt{2}v_K$	m_Z	keit m- [kg]	
		r_0	Zentralmasse Abstand $[m]$	
		G	Gravitations- konstante = $6.673 \cdot 10^{-11}$ $\frac{m^3}{kgs^2}$.]

4.8.5. Geostationäre Bahn

Ein geostationärer Satellit scheint von der Erde aus gesehen still zu stehen.	$r=\sqrt[3]{rac{Gm_Pt^2}{4\pi^2}}$	r m _P t G	m-Planet [k] Umlaufzeit [s	m] kg] s] $\frac{m^3}{kgs^2}$]
---	-------------------------------------	-------------------------------	-------------------------------	--

4.9. Rotation und Massenträgheitsmoment

4.9.1. Massenträgheitsmoment bei Getriebe

$ \begin{array}{c c} I_1 & \hline & J_2 \\ \hline & n_1 & \hline \end{array} $ Getriebe $ \begin{array}{c c} I_2 & \\ \hline & n_2 & \\ \end{array} $	$J_1 = \frac{J_2}{\eta_G} \left(\frac{\omega_2}{\omega_1}\right)^2 = \frac{J_2}{\eta_G} \left(\frac{n_2}{n_1}\right)^2$ $J_1 = \frac{J_2}{\eta_G i^2}$	J Massenträgheit[kgn ω Winkelgeschw. [$\frac{rad}{s}$ n Drehzahl [1] i Übersetzung [1]	
--	--	---	--

4.9.2. Massenträgheitsmomente oft verwendeter Körper

	Allgemein: $J = \int r^2 dm$	Ј т - r	Massenträg- heitsmoment Masse Radius	[kgm ²] [kg] [m]
Achse	Vollzylinder: $J = \frac{mr^2}{2}$	a,b l	Seite Länge	[<i>m</i>] [<i>m</i>]
r_a Achse	Hohlzylinder: $J = \frac{m(r_a^2 + r_i^2)}{2}$			
<u>r</u>	Kugel: $J = \frac{2}{5}mr^2$			
Achse Achse	Quader: Stange: $J = \frac{m(a^2 + b^2)}{12} \qquad J = \frac{ml^2}{12}$			
Achse	Kreisscheibe: $J = \frac{mr^2}{4} = \frac{md^2}{16}$			

5. Mechanik deformierbarer Körper

5.1. Druck

p	Druck	[Pa]
F	Kraft	[N]
A	Fläche	$[m^2]$
au	Schubspan-	[Pa]
	nung	

5.1.1. Absoluter Druck Überdruck

5.2. Kompression

5.3. Hydrostatik

5.3.1. Schweredruck

$$dp = -\rho \cdot g \cdot dh$$
 (h positiv nach oben)

Bei Flüssigkeiten:

$$p=
ho gh+p_0$$
 (h positiv nach unten)

$$\frac{p_0}{\rho_0} = \frac{p(h)}{\rho(h)}$$

Bei Gasen:

$$p = p_0 e^{-\frac{\rho_0}{p_0}gh}$$

$$p$$
 Druck $[Pa]$ p_0 Druck bei $h = [Pa]$

0

$$\rho$$
 Dichte $\left[\frac{kg}{m^3}\right]$

$$ho$$
 Dichte $\left[\frac{kg}{m^3}\right]$
 ho_0 Dichte bei $h = \left[\frac{kg}{m^3}\right]$

h Höhe

Erdbeschleug nigung = 9.81

5.3.2. Statischer Auftrieb

$$F_A = \rho_{Fl} V_K g - \rho_K V_K g$$

$$F_A = m_{Fl}g - m_K g$$

$$F_A = A \rho_{Fl} g \Delta h$$

 F_A Auftriebskraft [*N*]

Dichte Fluid ho_{Fl}

Dichte Körper ρ_K Masse Fluid

 m_{Fl} Masse Körper m_K

Fläche Körper $[m^2]$ Α Erdbeschleu-

g nigung = 9.81

5.3.3. Druckwandler

$$\frac{p_1}{p_2} = \frac{A_2}{A_1}$$

5.3.4. Kraftwandler

$$\frac{F_1}{F_2} = \frac{A_1}{A_2}$$

$$\lfloor N \rfloor$$
 $\lfloor m^2 \rfloor$

5.3.5. Druckmessung

Manometer

p_2 $\uparrow \Delta h$ ρ	$\Delta p = p_1 - p_2$ $\Delta p = \rho g \Delta h$	p h ρ	Druck Höhe Dichte	$[Pa] \\ [m] \\ [\frac{kg}{m^3}]$
----------------------------------	---	-------------	-------------------------	-----------------------------------

Absoluter Druck

Statischer Druck (Druck auf Rohrwand)

Dynamischer Druck

Gesamtdruck

$$p_{dyn} = \rho g \Delta h$$

Strömgeschwindigkeit:

$$v = \sqrt{\frac{2p_{dyn}}{\rho}}$$

h

Druck
$$[Pa]$$
 Höhe $[m]$

$$\rho$$
 Dichte $\left[\frac{kg}{m^3}\right]$

g Erdbeschl. =
$$\left[\frac{m}{s^2}\right]$$
 9.81

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

Druckdifferenzen

$$\Delta p = p_1 - p_2$$

$$\Delta p = \rho g \Delta h$$

Strömgeschwindigkeit:

$$v_1 = \sqrt{\frac{2\Delta p}{\left[\left(\frac{A_1}{A_2}\right)^2 - 1\right]\rho}}$$

$$h$$
 Höhe $[m]$

A Fläche
$$\begin{bmatrix} m^2 \end{bmatrix}$$

$$\rho$$
 Dichte $\left[\frac{kg}{m^3}\right]$ g Erdbeschl. $=\left[\frac{m}{c^2}\right]$

Erdbeschl. =
$$\left| \frac{m}{s^2} \right|$$
 9.81

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

5.3.6. Grenzflächeneffekte

Oberflächenspannung

$$\sigma = \frac{F}{l}$$

$$\sigma = \frac{\Delta W}{\Delta A}$$

Kraft um Draht zu heben:

$$F = 2\sigma l + m_{Drath}g$$

$$\sigma$$
 Oberflächen- $\left[\frac{N}{m}\right]$

$$F$$
 Kraft $[N]$
 l Länge $[m]$
 A Kontaktfläche $[m^2]$

$$W$$
 Arbeit $[J]$ g Erdbeschl. $=$ $[\frac{m}{c^2}]$

g Erdbeschl. =
$$\left|\frac{m}{s^2}\right|$$
 9.81

5. MECHANIK DEFORMIERBARER KÖRPER

Grenzflächenspannung

Flüssigkeit auf Festkörper Benetzung:

nicht Benetzung:

Flüssigkeit auf Flüssigkeit

Benetzung: $\varphi < 90^{\circ}$

Nicht Benetzung: $\varphi > 90^{\circ}$ Flüssigkeit auf Festkörper

$$\cos(arphi) = rac{\sigma_{sg} - \sigma_{sl}}{\sigma_{lg}}$$

Flüssigkeit auf Flüssigkeit

$$\cos(\varphi) = \frac{\sigma_{2g}^2 - \sigma_{lg}^2 - \sigma_{-2}}{2\sigma_{lg}\sigma_{l2}}$$

 φ Kontaktwinkel [rad]

 σ Zugspannung $\left[\frac{N}{m}\right]$ σ_{sl} σ fest, flüssig $\left[\frac{N}{m}\right]$

 σ_{sl} σ fest, flüssig σ σ fest, Gas

 σ σ test, Gas $\left[\frac{N}{n}\right]$ σ σ flüssig, Gas $\left[\frac{N}{n}\right]$

Kapillarität

Benetzung: Nicht Benetzung:
$$\sigma_{sg}$$
 σ_{sg} σ_{sg} σ_{sg} σ_{sg} σ_{sg} σ_{sl} Röhrchen:

2r

$$h = \frac{2\sigma}{\rho gr}$$

 σ Zugspannung $\left[\frac{N}{m}\right]$ h Höhe $\left[m\right]$ r Radius $\left[m\right]$ ρ Dichte $\left[\frac{kg}{m^3}\right]$ g Erdbeschl. $=\left[\frac{m}{s^2}\right]$ 9.81

5.4. Hydrodynamik

5.4.1. Kontinuitätsgleichung

5.4.2. Bernoulli Gleichung (Energieerhaltung)

5.5. Reale Strömung

5.5.1. Zirkulation

v Geschw. $\left[\frac{m}{s}\right]$ s Strecke $\left[m\right]$

5.5.2. Vortizität

$ec{\omega}=rotec{v}$	w	Vortizität	$\begin{bmatrix} \frac{1}{s} \\ \frac{m}{s} \end{bmatrix}$
Rotation der Geschwindigkeit	v	Geschw.	

5.5.3. Newtonsches Reibungsgesetz

5.6. Strömungsformen

5.6.1. Raynolds-Zahl

Re	$=rac{ ho vL}{\eta}=rac{vL}{ ho}$	Re	Raynolds- Zahl	[1]
Re	Rohr: $= \frac{\rho v d}{\eta} = \frac{v d}{\nu}$ $kritisch = 2320$	ρ υ L d η	Dichte Geschw. Linearabm. Rohr-Ø Dyn.Visk. Kin. Visk.	$\begin{bmatrix} \frac{kg}{m^3} \\ \frac{m}{s} \end{bmatrix}$ $\begin{bmatrix} m \\ s \end{bmatrix}$ $[m]$ $[Pas]$ $\begin{bmatrix} \frac{m^2}{s} \end{bmatrix}$

5.6.2. Laminare Strömung (Re < 2320)

Die Strömung ist laminar, wenn die Raynolds-Zahl Re < 2320 ist.

Umströmte Kugel:

$$F_R = 6\pi \eta R v$$

Kugelgeschwindigkeit:

$$v_{Kugel} = \frac{2R^2g(\rho_K - \rho_{Fl})}{9\eta}$$

Fluidzylinder in Fluid:

$$v_{Zylinder} = \frac{p_1 - p_2}{4l\eta}(R^2 - r^2)$$

Durchflussmenge:

$$\dot{V} = \frac{\pi \Delta p R^4}{8nl}$$

$$\Delta p = p_1 - p_2$$

Volumenfluss:

$$V = \frac{\pi \Delta p R^4}{8\eta l} t$$

Druckabfall im glatten Rohr:

$$\Delta p = \lambda_l \frac{l}{d} \frac{\rho v^2}{2}, \qquad \lambda_l = \frac{64}{Re}$$

Reibungskraft auf Rohr:

$$F_R = \Delta p R^2 \pi = 8\pi \eta l v$$

 F_R Reibungskraft [N]

v Geschw. $\left[\frac{m}{s}\right]$

r Radius Zylin- [m]

der

R Radius Kugel, [m]

Rohr

 η Dynamische [Pas]

Viskosität

 ρ Dichte $\left[\frac{\kappa g}{m^3}\right]$

Re Raynolds- $\begin{bmatrix} 1 \end{bmatrix}$

Zahl

 ρ Dichte $\left[\frac{kg}{m^3}\right]$

l Rohrlänge [m]

V Volumen $[m]^3$

d Rohr- \emptyset [m]

 λ Widerstands- [1]

zahl

p Druck [Pa]

g Erdbeschl. = $\left[\frac{m}{s^2}\right]$

9.81

5.6.3. Volumenstrom

 $A_1 \gg A_2$

 $v_1 \approx 0$

 $v_2 = \sqrt{2gh}$

Volumenstrom:

 $\dot{V} = a_2 v_2$

h Höhe $\begin{bmatrix} n \\ v \end{bmatrix}$ Geschw. $\begin{bmatrix} \frac{n}{2} \end{bmatrix}$

V Volumen $\begin{bmatrix} m^3 \end{bmatrix}$ A Fläche $\begin{bmatrix} m^2 \end{bmatrix}$

t Zeit $\begin{bmatrix} s \end{bmatrix}$

g Erdbeschl. = $\left[\frac{\dot{m}}{s^2}\right]$ 9.81

5.6.4. Turbulente Strömung (Re > 2320)

Die Strömung ist turbulent, wenn die Raynolds-Zahl Re > 2320 ist.

Druckwiderstand:

$$F_D = \frac{c_W \rho v^2}{2} A$$

Druckabfall im glatten Rohr:

$$\Delta p = \lambda_t \frac{l}{d} \frac{\rho v^2}{2}, \qquad \lambda_t = \frac{0.316}{\sqrt[4]{Re}}$$

F_D	Druckwiderst.	[N]
v	Geschw.	$\left[\frac{m}{s}\right]$
A	Angriffsfläche	
c_W	Widerstands-	[1]
	koeffizient	
ρ	Dichte	$\left[\frac{kg}{m^3}\right]$
Re	Raynolds-	$\begin{bmatrix} 1 \end{bmatrix}$
	Zaĥl	
ρ	Dichte	$\left[\frac{kg}{m^3}\right]$
1	Rohrlänge	[m]
d	Rohr-Ø	[m]
λ	Widerstands-	[1]
	zahl	
p	Druck	[Pa]
g	Erdbeschl. =	$\left[\frac{m}{s^2}\right]$
Č	9.81	- 5- 3

5.7. Dynamischer Auftrieb

Bei Zylinderform:

$$F_A = \rho l v \Gamma$$

$$\Gamma = 4\pi^2 r^2 f$$

 F_A Auftriebskraft [N]

l Zylinderlänge [m] r Radius [m]

v Fluidgeschw. $\left[\frac{m}{s}\right]$ f Drehfrequenz $\left[\frac{1}{s}\right]$

f Drehfrequenz [] S

 ρ Dichte $\left[\frac{kg}{m^3}\right]$ Γ Zirkulaion $\left[\frac{m^2}{a}\right]$

5.7.1. Tragflügel

Auftrieb:

$$F_A = c_A \frac{\rho v^2}{2} A_T$$

Induzierter Widerstand:

$$F_W = c_W \frac{\rho v^2}{2} A_T$$

$$F_R = F_{GH} = F_G \sin(\alpha)$$

$$F_A = F_{GN} = F_G \cos(\alpha)$$

$$\frac{c_W}{c_A} = \frac{H\ddot{o}henverlust}{MeterFlug}$$

Auftriebskaft F_A [N]

 F_W Widerstandskraft

Auftriebskoef- [1] c_A fizient

Widerstands- [1] c_W koeffizient

Geschw. v

 $aus \left[\frac{m}{s}\right]$ A_T Fläche Anströmrichtung gesehen

Dichte Fluid ρ

Gleitwinkel [rad] α

6. Wärmelehre

6.1. Temperatur

+	Absolute Temperatur:	T	Temperatur	[K]
	$T = \frac{2}{3k}\bar{E}_{kin}$	k	Bolzmann-konst. $1.381E^{-23}$	$\left[\frac{J}{K}\right]$
	$ar{E}_{kin}=rac{1}{2}mar{v}^2$ Umrechnungen:	m E _{kin}	Masse kinetische Energie der Gasatome	[<i>kg</i>] [<i>J</i>]
	$T(K) = T(C) + 273.15$ $T(F) = \frac{9}{5}T(C) + 32$ $T(C) = \frac{5}{9}(T(F) - 32)$	v	Geschwindig- keit Kelvin	$\left[\frac{m}{s}\right]$ $\left[K\right]$
			Celcius Farenheit	[°C] [F]

6.2. Ausdehnung von Materialien

6.3. Ideale Gase

$egin{pmatrix} p & T \ V \end{matrix}$	$pV = konst.$ $\frac{V}{T} = konst.$	p V T	1	$\begin{bmatrix} \frac{N}{m^2} \\ m^3 \end{bmatrix}$ $[K]$
	$\frac{pV}{T} = konst.$	N n	Anz. Molekü- le Anz. Mol	
	pV = NkT	$m \ M \ ho$	Gasmasse Molmasse Dichte Anz. Atome	$\begin{bmatrix} kg \\ kg \end{bmatrix}$ $\begin{bmatrix} \frac{kg}{m^3} \end{bmatrix}$
	$N = nN_A$ $R = N_A k$	N_A	Anz. Atome pro 12g C = $6,022 \cdot 10^{23}$	$\frac{1}{mol}$
	pV = nRT $m = nM$	k	Bolzmann- konst.= $1,381 \cdot 10^{-23}$	$\left[\frac{J}{K}\right]$
	$\rho = \frac{m}{V} = \frac{pM}{RT}$	R	Univers Gaskonst. = 8,314	$\left[\frac{J}{mol K}\right]$
	Volumen eines idealen Gases: $22.4 \cdot 10^{-3} \frac{m^3}{mol}$ bei			

6.4. Gemische idealer Gase

p = 10133 Pa und T = 273.15 K

6.5. Reale Gase

6.6. Wärme

¹Isochore Proszesse sind Zustandsänderungen bei konstantem Volumen

²Isobare Prozesse sind Zustandsänderungen bei konstantem Druck

6.6.1. Molare Wärme kristalliner Festkörper

 $\begin{array}{c} \text{falls } T > \Theta_D: \\ C_{mv} = 3R \\ \text{falls } T << \Theta_D: \\ C_{mv} = \frac{12\pi^4}{5} R \left(\frac{T}{\Theta_D}\right)^3 \end{array} \qquad \begin{array}{c} C_{mv} \quad C_m\text{, isochor} \quad \left[\frac{J}{molK}\right] \\ T \quad \text{Temperatur} \quad \left[K\right] \\ \Theta_D \quad \text{Debye-Temp.} \quad \left[K\right] \\ R \quad \text{Univers.-} \quad \left[\frac{J}{molK}\right] \\ \text{Gaskonst.} \end{array}$

6.6.2. Austausch von Wärmemengen

6.7. Phasen und Phasenübergänge

fest

6. WÄRMELEHRE

6.7.1. Schmelz- und Verdampfungsenergien

Substanz	$T_{schmelz}[K]$	$Q_s[\frac{kJ}{kg}]$	$T_{verdampf}[K]$	$Q_v[\frac{kJ}{kg}]$
Blei	600	24,7	2023	858
Brom	266	67,4	332	369
Ethanol	159	109	351	879
Gold	1336	62,8	3081	1701
Helium	_	_	4,2	21
Kohlendioxid	_	_	194.6	573
Kupfer	1356	205	2839	4726
Quecksilber	234	11,3	630	296
Sauerstoff	54,4	13,8	90,2	213
Schwefel	388	38,5	717,75	287
Silber	1234	105	2436	2323
Stickstoff	63	25,7	77,35	199
Wasser	273,15	333,5	373,15	2257
Zink	692	102	1184	1768

6.8. Luftfeuchtigkeit

$f = \frac{m_W}{V}$	f	Luftfeuchtig- $\left[\frac{kg}{m^3}\right]$ keit absolut
$f_r = \frac{m_W}{m_s} = \frac{p_D}{p_s} (\cdot 100\%)$	f_r	Luftfeuchtig- [1] keit relativ
$p_s=p_{s0}10^{rac{7.5artheta}{artheta+237}}$, $artheta\geq 0^\circ C$	m_W	Wasser- $[kg]$ dampfmasse
$p_s=p_{s0}10$, $b\geq 0$ C $p_s=p_{s0}10^{rac{9.5artheta}{artheta+265.5}}$, $artheta\leq 0$ °C	m_s	Dampf- $\left[\frac{kg}{m^3}\right]$ masse im
		Sättigungszu- stand
$p_D = p_s(\vartheta_d)$	V	Volumen $[m^3]$
$\vartheta = \frac{237 \log \frac{p_s}{6,107}}{7,5 - \log \frac{p_s}{6,107}}, p_s \ge 610,7P_s$	p_D	Partialdruck [Pa] Wasserdampf
3,20	ρ_s	Sättigungs- [<i>Pa</i>] druck Was-
$ \vartheta = \frac{265,5\log\frac{p_s}{6,107}}{9,5-\log\frac{p_s}{6,107}}, p_s \le 610,7P_s $	a v	serdampf Temperatur $[{}^{\circ}C]$
	p_{s0}	61070 [Pa]

6.9. Kinetische Gastheorie

Einatomige Moleküle haben keine Rotationsenergie, deshalb ist in diesem Fall: $E_{kin} = E_{trans}$ Translationsenergie:

$$\bar{E}_{kin} = N \frac{m\bar{v}^2}{2} = \frac{3}{2}NkT = \frac{3}{2}nRT$$

$$U = N_A \bar{E} = N_A \frac{f}{2} kT = \frac{f}{2} RT$$

$$U = E_{kin} + E_{pot}$$

$$pV = \frac{2}{3}N_A \frac{mv^2}{2}$$

Mittlere Energie pro Molekül:

$$\bar{E} = \frac{f}{2}kT$$

$$\bar{E}_{kin} \approx T_{abs}$$

$$C_{mv} = \frac{f}{2}R$$

f=3 bei einatomigen Molekülen f=5 bei zweiatomigen Molekülen f=6 bei mehratomigen Molekülen Volumen eines idealen Gases: $22.4 \cdot 10^{-3} \frac{m^3}{mol}$ bei

p = 10133 Pa und T = 273.15 K

p Druck [Pa] V Volumen $[m^3]$ N Anz. Molekü- [1]

n Anz. Mol [1] v Molekül $\left[\frac{m}{s}\right]$ Geschwindigkeit

 E_{kin} Kinetische [J] Energie der Moleküle

 E_{pot} Potentielle [J] Energie

U Innere Ener- [J] gie

 T_{abs} Temperatur [K] absolut

T Temperatur [K] f Freiheitsgrad [1] m Masse [kg]

 C_{mv} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität

 N_A Anz. Atome $\frac{1}{mol}$ pro 12g C = 6,022 · 10²³

k Bolzmann- $\begin{bmatrix} \frac{J}{K} \end{bmatrix}$ konst. = 1,381 · 10⁻²³

R Univers.- $\left[\frac{J}{molK}\right]$ Gk.= 8.314

6.9.1. Mittlere freie Weglänge, Wärmeleitung, Diffusion und Viskosität

$$\bar{\lambda} = \frac{1}{\sqrt{2}n\pi d^2}$$

$$N = N_0 e^{-x/\bar{\lambda}}$$

Wahrscheinlichkeit f(x)dx, dass ein Molekül einen freien Weg auf der Strecke dx hat:

$$f(x)dx = n\sigma e^{-x/\bar{\lambda}}dx$$

$$\sigma = \pi d^2$$

$$\lambda_Q = \frac{1}{6} n \bar{v} \bar{\lambda} f k$$

$$D = \frac{1}{3}\bar{v}\bar{\lambda}$$

$$\eta = \frac{1}{3}\bar{v}\bar{\lambda}\rho$$

 $\bar{\lambda}$ Mittlere freie [m] Weglänge

zwischen Molekülzusammenstoss

- Anz. Molekü- [1] le $(\neq Anz. Mole)$ n
- d 0- Molekül [m]
- N Anz. Mole- [1] küle durch Schicht dx
- Ouerschnitt σ
- $[m^2] \atop [\frac{W}{m^2K}]$ $\bar{\lambda_O}$ Wärmeleitungskoeff.
- v Moleküle [m/s]v
- [1] f Freiheitsgrad
- k Bolzmann- $\left[\frac{J}{K}\right]$ konst.
 - $1,381 \cdot 10^{-23}$
- Diffusions-D konst.
- Viskosität η

ρ

Dichte

6.9.2. Maxwellsche Geschwindigkeitsverteilung

Wahrscheinlichkeit, dass ein Molekül eine Geschwindigkeit zwischen v und v + dv aufweist:

$$f(v)dv = \sqrt{\frac{2m^3}{\pi k^3 T^3}} v^2 e^{-\frac{mv^2}{2kT}} dv$$

$$v_0 = \sqrt{\frac{2kT}{m}}$$

$$u = \sqrt{\frac{3kT}{m}} = \sqrt{\bar{v}^2}$$

$$\bar{v} = \sqrt{\frac{8kT}{\pi m}} = 2\sqrt{\frac{2RT}{\pi M}}$$

f(v)Dichtefunktion

m Molekülmasse [kg]v - Moleküle [m/s]v

Tfreie Weglän- [m]

ge

k Bolzmann- $\left[\frac{J}{K}\right]$ konst.

 $1,381 \cdot 10^{-23}$

wahr- $\left[\frac{m}{s}\right]$ v_0 scheinlichst

spez. \bar{v} и

6.10. Temperaturstrahlung, Strahlungsgesetze

$$\Omega = \frac{A}{R^2} \qquad \qquad I = \frac{\Phi}{\Omega}$$

$$E = \frac{\Phi}{A}$$

$$A_{\lambda} = \frac{\Phi_{\lambda a}}{\Phi_{\lambda e}}$$

$$K = \int_{HR} L(\vartheta, \varphi) \cos(\vartheta) d\Omega$$

Diffuse Strahlung:

$$K = L \int_{HR} L \cos(\vartheta) d\Omega = L\pi$$

HR = Halbraum : z > 0

$$\frac{K_{\lambda}(\lambda, T)}{A_{\lambda}(\lambda, T)} = f(\lambda, T)$$

$$K_{\lambda} = \epsilon_{\lambda}(\lambda, T) K_{\lambda s}(\lambda, T)$$

$$\epsilon_{\lambda}(\lambda, T) \equiv A_{\lambda}(\lambda, T)$$

Körper schwarz: $K_s = \sigma T^4$

Körper grau: $K = \epsilon \sigma T^4$, $A = \epsilon$

$$P_e = \epsilon_{\lambda} \sigma A T^4$$

$$P_{eNetto} = \epsilon_{\lambda} \sigma A (T^4 - T_0^4)$$

$$K_{\nu s}(\nu, T)d\nu = \frac{2\pi h \nu^3}{c^2(e^{\frac{h\nu}{kT}} - 1)}d\nu$$

$$K_{\lambda s}(\lambda, T)d\lambda = \frac{2\pi hc^2}{\lambda^5 (e^{\frac{hc}{\lambda kT}} - 1)}d\lambda$$

$$\lambda_{max}T = b$$

$$v = c/\lambda$$

$$E_{Str} = \frac{1.05 \cdot 10^{-34} c_0}{\lambda}$$

- Raumwinkel Ω [sr]
- Flä- $[m^2]$ A Fläche, chenaus
 - schnitt
- R Kugelradius |m|
- Ι Strahlstärke [W]
- Φ Strahlungs-[W]strom
- Bestrahlungs- $\left[\frac{W}{m^2}\right]$ Е stärke
- Emmisionsver- $\left[\frac{W}{m^2}\right]$ K mögen
- Absorbations- $\left[\frac{W}{m^2sr}\right]$ zahl L
- A_{λ} zahl (Schwarzer $K\ddot{o}rper \Rightarrow A_{\lambda} = 1$
- Emissionsver- [1] ϵ_{λ} hältn.
- λ Wellenlänge [m]
- [Hz]Frequenz ν
- Temp. Körper [K]T
- T_0 Umgebungs-[*K*] temp.
- Strahlungslei- [W] P_e stung
- E_{Str} Strahlungs [J]Energie
- $\left[\frac{J}{K}\right]$ k Bolzmannkonst. $1,381 \cdot 10^{-23}$
- Bolzmannσ konst. $5,671 \cdot 10^{-8}$
- h Planksche [Js]Konst. $6,626 \cdot 10^{-34}$
- $2,898 \cdot 10^{-3} = [mK]$ b
- Lichtgeschw. c_0 = 299'792'458(Vakuum)

6. WÄRMELEHRE

6.10.1. Strahlungsaustausch

$$j = C_{12}(T_1^4 - T_2^4) = S_{12} - S_{21}$$
$$j = \frac{A_1 A_2}{A_1 + A_2 - A_1 A_2} \sigma$$

$$C_{12} = \frac{1}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1} \sigma$$

 C_{12} Strahlungsaustauschzahl

- Temperatur T[*K*] S
- Entropie $\left[\frac{J}{m^2}\right]$ Absortionszahl [1] \boldsymbol{A}
- Emissionsver- [K] ϵ hältnis
- Wärmestrom- $\left[\frac{W}{m^2}\right]$ j dichte
- $\left[\frac{W}{mK}\right]$ Bolzmannσ konst. $5,671 \cdot 10^{-8}$

6.11. Wärmetransport

Wärmeübergang	α
Wandflächen	
innen	8
aussen	20
Boden, Decke	
nach oben	8
nach unten	6

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2} = \frac{\lambda}{\rho c} \Delta T$$

$$I = \dot{Q} = \lambda A \frac{dT}{dx} = jA$$

$$\Delta T = IR$$

$$R = \frac{\Delta x}{\lambda A}$$

$$R = R_1 + R_2 + ... + R_n$$

Wandschicht:

$$j = -\lambda \frac{dT}{dx} = \lambda \frac{T_{wi} - T_{wa}}{d}$$

Übergangsschicht innen:

$$j = \alpha_i (T_i - T_{wi})$$

Übergangsschicht aussen:

$$j = \alpha_a (T_{wa} - T_a)$$

$$j = k(T_i - T_a)$$

$$\dot{Q}_w = Aj = Ak\Delta T$$

$$k = \frac{1}{\frac{1}{\alpha_i} + \sum_{s} \frac{d_s}{\lambda_s} + \frac{1}{\alpha_g}} = \frac{j}{\Delta T}$$

Für zylinderförmige Wand:

$$\dot{Q} = 2\pi r l j = 2\pi r_a l k_a \Delta T$$

$$k_a = \frac{1}{r_a} \frac{1}{\frac{1}{r_i \alpha_i} + \sum_s \frac{1}{\lambda_s} ln \frac{r_{sa}}{r_{si}} + \frac{1}{r_a \alpha_a}}$$

Wärmebedarf eines Gebäudes:

$$Q = (\sum_{w} A_{w} k_{w} + \rho c_{p} \dot{V}) G$$

$$G = \int_{Heizsaison} \Delta T dt$$

- I Wärmestrom [W]
- R Wärmewider- $\left[\frac{K}{W}\right]$ stand
- *j* Wärmestrom- $\left[\frac{W}{m^2}\right]$ dichte
- λ Wärmeleitungskoeff. $\left[\frac{W}{mK}\right]$
- T_L Luft- [K] Temperatur
- T_W Wand- [K] Temperatur
- $T_{i,a}$ Innen- / [K]
 AussenTemperatur
- t Zeit [s] ρ Dichte $\begin{bmatrix} \frac{kg}{m^3} \end{bmatrix}$
- d Wandduchm. [m]
- α Wärmeüber- $\left[\frac{W}{m^2K}\right]$
- k k-Wert, Wär- $\left[\frac{W}{m^2K}\right]$ medurch-
- gangszahl Q Wärmebedarf [J]
- A Wandfläche $[m^2]$
- \dot{V} Luftaustausch $\left[\frac{m^3}{s}\right]$ G Heiztage $\left[Kd\right]$
- *r* Zylinderradius [*m*]
- *l* Zylinderlänge [*m*]

6.12. Zustandänderungen

6.12.1. Isobare Zustandsänderung

6.12.2. Isochore Zustandsänderungen

6.12.3. Isotherme Zustandsänderungen

6.12.4. Adiabatische Zustandsänderungen

Adiabatisch:

Q = *konst*. (kein Wärmeaustausch)

$$dU = \delta Q - \delta W$$

 $pV^{\kappa} = konst.$

$$\to p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\kappa}$$

 $TV^{\kappa-1} = konst.$

$$\to T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\kappa - 1}$$

 $T^{\kappa} p^{1-\kappa}$ und $T p^{\frac{1}{\kappa}-1} = konst.$

$$\to T_2 = T_1 \left(\frac{p_1}{p_2}\right)^{\frac{1-\kappa}{\kappa}}$$

$$\kappa = \frac{C_{mp}}{C_{mv}}$$

$$\kappa = \frac{f+2}{f} \qquad C_{mv} = \frac{f}{2}R$$

$$W = nC_{mv}(T_1 - T_2)$$

$$\Delta W = \frac{p_2 V_2 - p_1 V_1}{\kappa - 1}$$

$$\Delta W = C_{mv}(p_1V_1 - p_2V_2)$$

U Innere Ener- [J]

gie

p Druck [Pa]

V Volumen $[m^3]$ κ Adiabatenex- [1]

ponent

 C_{mv} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität

isochor

 C_{mp} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität

isobar

T Temperatur [K]

f Freiheitsgrad [1] n Anz. Mol [1]

W Arbeit [J]

6.12.5. Expansion und Kompression

Expansion:

$$W = \int_{V_1}^{V_2} p dV = A_1$$

Kompression:

$$W = \int_{V_2}^{V_1} p dV = -A_2$$

W Arbeit
v Druck

p DruckV Volumen

[*Pa*] [*m*³]

6. WÄRMELEHRE

6.12.6. Enthalpie

6.13. Kreisprozesse

6.13.1. Carnotprozess

Beispiel Motor:

 $T_1 = T_{Zylinder}$ $T_2 = T_{Abgas}$ I: Isotherme Expansion:

$$W_{ab} = RT_1 \ln \frac{V_2}{V_1} = Q_{zu}$$

$$U = konst.$$

II: Adiabatische Expansion:

$$W_{ab} = C_{mv}(T_1 - T_2)$$

$$Q_{zu}=0$$

III: Isotherme Kompression:

$$W_{zu} = RT_2 \ln \frac{V_3}{V_4} = Q_{ab}$$

$$U = konst.$$

IV: Adiabatische Kompression:

$$W_{zu} = C_{mv}(T_1 - T_2)$$

$$Q_{zu}=0$$

$$\eta_C = \frac{T_1 - T_2}{T_1}$$

Carnot-Wärmepumpe:

$$\epsilon_C = \frac{T_1}{T_1 - T_2}$$

Carnot-Kältemaschine:

$$\epsilon_C = \frac{T_2}{T_1 - T_2}$$

W Arbeit [J] Q Wärme [J] U Innere Ener-[J] gie V Volumen $[m^3]$ C_{mv} Molare Wär- $[\frac{J}{molK}]$ mekapazität isochor

R Univers.- $\left[\frac{\int}{mol K}\right]$ Gaskonst. η_C Cornot- $\left[1\right]$

 η_C Cornot- [1] Wirkungsgrad (bei Wärmekraftmaschine)

 ϵ_C Carnot- [1] Leistungszahl (bei Wärmepunpe)

6.14. Entropie

abgeschlossenen Im System gilt:

- S kann niemals abnehmen.
- Bei allen Vorgängen nimmt S zu oder bleibt gleich.
- Der Zustand wo S maximal ist, ist der stabile Zustand.

$$S = S_0 + \int_0^P \frac{\delta Q_r}{T}$$

$$dS = \frac{\delta Q_r}{T}$$

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{\delta Q_r}{T}$$

$$S = k \cdot \ln(W)$$

- S Entropie
- $\begin{bmatrix} \frac{J}{K} \\ 1 \end{bmatrix}$ P Punkt P Q_r Wärme TTemperatur
- [K]Wahrschein-W [1] lichkeit

7. Schwingungen

7.1. Freie Schwingungen

7.1.1. Ungedämpfte, harmonische Schwingung

Zeigerbild:

Phasenkurve:

Funktion:

$$y = A\sin(\omega t + \varphi)$$

$$T = \frac{2\pi}{\omega}$$

$$f = \frac{1}{T}$$

$$\omega = 2\pi f$$

$$\ddot{y} + \omega^2 y = 0$$

Bei einer harmonischen Schwingung ist die Beschleunigung proportional zur Auslenkung:

$$a(t) = \ddot{y} = -A\omega_0^2 \sin(\omega_0 t)$$

$$v(t) = \dot{y} = A\omega_0 \cos(\omega_0 t)$$

Energie bleibt konstant:

$$E_{ges} = \frac{1}{2}cA^2 = E_{pot} + E_{kin}$$

$$E_{pot} = \frac{1}{2}cA^2\cos^2(\omega t + \varphi)$$

$$E_{kin} = \frac{1}{2}cA^2\sin^2(\omega t + \varphi)$$

$$y$$
 schwingende $[m]^1$

\boldsymbol{A}	Amplitude	[1]
ω	Kreisfrequenz	$\left[\frac{1}{e}\right]$

Grösse

$$\varphi$$
 Nullphasen- $[rad]$

$$t$$
 winkel t Zeit s

$$f$$
 Frequenz $\left[\frac{1}{s}\right]$ a Beschleuni- $\left[\frac{m}{s^2}\right]$

gung
$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

E Energie
$$\begin{bmatrix} J \end{bmatrix}$$

C Konstante $\begin{bmatrix} \frac{N}{n} \end{bmatrix}$

 $^{^{1}}$ m gilt nur bei mechanischen Schwingungen

7. SCHWINGUNGEN

7.1.2. Ungedämpfte, periodische Schwingung

7.1.3. Ungedämpfte, nicht periodische Schwingung

Fourierreihe: $y = \int_{\infty}^{\infty} A(\omega)e^{j\omega t}d\omega$	y A w t	schwingende $[m]$ Grösse Amplitude $[1]$ Kreisfrequenz $[\frac{1}{s}]$ Zeit $[s]$
--	---------	---

7.1.4. Federpendel

	Federmasse vernachlässigt:	у
	$m\ddot{y} + cy = 0$	A
d y	$y = A\sin(\omega_0 t + \varphi)$	ω φ
	$\omega_0 = \sqrt{\frac{c}{m}}$	t T
	$T=2\pi\sqrt{rac{m}{c}}$	f m
	$a(t) = -\left(\frac{c}{m}\right)y(t)$	m_F
	Energiesatz:	С
	$\frac{1}{2}cA^{2} = \frac{1}{2}cy^{2}(t) + \frac{1}{2}mv^{2}(t)$	а

Mit Federmasse:

		r 1
y	schwingende	$\lfloor m \rfloor$
	Grösse	
A	Amplitude	[1]
ω	Kreisfrequenz	$\left[\frac{1}{\epsilon}\right]$
φ	Nullphasen-	[rad]
	winkel	
t	Zeit	[s]
T	Periode	[s]
f	Frequenz	$\left[\frac{1}{\epsilon}\right]$
m	Bewegte Mas-	[kg]
	se	
m_F	Masse der Fe-	[kg]
	der	. 0.
С	Federkon-	$\left[\frac{N}{m}\right]$
	stante (siehe	- 111 -
	S. 15)	
а	Beschleuni-	$\left[\frac{m}{s^2}\right]$
	gung	1821
	0 0	

7.1.5. Drehpendel

7.1.6. Mathematisches Pendel

7.1.7. Physikalisches Pendel

7.1.8. Gedämpfte Schwingung mit konstanter Reibung

$$\Delta A = 4 \frac{F_R}{c}$$

$$m\ddot{y} + cy + F_R = 0$$

$$m\ddot{y} + cy + F_R = 0$$

 ΔA Δ Amplitude [m]

pro Periode

 F_R Reibkraft

Federkon-

stante

 \mathcal{C}

7.1.9. Schwingung mit geschwindigkeitsproportionaler Dämpfung (D < 1)

$$m\ddot{y} + b\dot{y} + cy = 0$$

$$y = Ae^{-\delta t}\sin(\omega_d t + \phi_0)$$

$$\delta = \frac{b}{2m} \qquad F_R = -b\dot{y}$$

$$\omega_d = \sqrt{\omega_0^2 - \delta^2}$$

$$\omega_0 = \sqrt{\frac{c}{m}}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{\frac{\Lambda}{2\pi}}{\sqrt{1 + \left(\frac{\Lambda}{2\pi}\right)^2}}$$

$$\omega_d = \omega_0 \sqrt{1 - D^2}$$

$$\Lambda = \frac{2\pi D}{\sqrt{1 - D^2}}$$

$$\Lambda = \delta T$$

$$\Lambda = \ln \frac{A_n}{A_{n+1}}$$
 $\frac{A_n}{A_{n+1}} = e^{\delta T}$

$$\frac{E_1}{E_2} = \frac{A_1^2}{A_2^2}$$

schwingende [m]y

Grösse

Kreisfrequenz $\left[\frac{1}{s}\right]$ w

Winkel [rad] φ

T Periode [s][1] δ Abkling-

konst.

b Dämpfungskonst.

Masse m [*kg*]

Federkonst. С

D Dämpfungsgrad

Λ log. Dekre- [1]

ment

Α Amplitude [1] Е

Energie [J]

7. SCHWINGUNGEN

7.1.10. Aperiodeische Lösung (D>1)

$$y = b_1 e^{\lambda_1 t} + b_2 e^{\lambda_2 t}$$

$$\lambda_1 = -\omega_0(D + \sqrt{D^2 - 1})$$

$$\lambda_2 = -\omega_0(D - \sqrt{D^2 - 1})$$

Grenzfall D = 1

$$\frac{c}{m} = \frac{b^2}{4m^2}$$

$$y = (b_1 + b_2 t)e^{-\delta t}$$

- schwingende [m]y
 - Grösse

b

- Kreisfrequenz $\left[\frac{1}{s}\right]$ ω
- δ Abkling-[1] konst.
 - $\left[\frac{kg}{s}\right]$ Dämpfungs-
- konst. D Dämpfungs-[1]
- grad Masse m
- Federkonstante $\left[\frac{N}{m}\right]$ С

7.1.11. Elektrischer Schwingkreis

$$\begin{bmatrix} R \\ L \end{bmatrix}$$

$$I = I_0 e^{-\delta t} \sin(\omega_d t + \phi_0)$$

$$\delta = \frac{R}{2L}$$

$$\omega_d = \omega_0 \sqrt{1 - D^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$D = \frac{R}{2} \sqrt{\frac{C}{L}}$$

$$\omega_d = \frac{1}{\sqrt{LC}} \sqrt{1 - \frac{R^2C}{4L}}$$

- Ι Strom
- [A]R Widerstand $[\Omega]$
- L Induktivität [H]
- Kreisfrequenz $\left[\frac{1}{s}\right]$ ω
- δ Abkling-[1] konst.
- Zeit t
- [s]
- Dämpfungs-D [1] grad

8. Wellenlehre

8.1. Wellengeschwindigkeiten

Elastische Longitudi-	\overline{E}	и	Wellengeschw. $\left[\frac{m}{s}\right]$	
nalwellen	$u_L = \sqrt{\frac{E}{\rho}}$	A	Fläche [<i>m</i>	i^2
	V P	Е	Elastizitäts- $\left[\frac{N}{m^2}\right]$	$\left[\frac{\sqrt{2}}{2}\right]$
Elastische Transver-	\sqrt{G}	F	Spannkraft [N	
salwellen	$u_T = \sqrt{\frac{G}{\rho}}$	G	Schubmodul $\left[\frac{N}{m^2}\right]$	$\left[\frac{\sqrt{12}}{\sqrt{12}}\right]$
	V P	h	Wassertiefe [m]	1
		M	Molmasse $\left[\frac{kg}{ma}\right]$	$\begin{bmatrix} \frac{cg}{tol} \end{bmatrix}$
Transversalwellen auf	\overline{F}	p	Druck [Pi	[a]
einem Seil oder einer	$u_T = \sqrt{\frac{F}{\rho A}}$	T	abs. Temp. $[K]$	
Saite	,	κ	Kompressibi- $\left[\frac{m^2}{N}\right]$	$\left(\frac{l^2}{\sqrt{l}}\right)$
			lität	•
Schwerewellen in tie-	$u_S = \sqrt{\frac{g\lambda}{2\pi}}$	\varkappa	Adiabatenex- [1]]
fem Wasser	$\int_{0}^{\pi} dS = \int_{0}^{\pi} 2\pi$		ponent	
		λ	Wellenlänge [m	
Schwerewellen in fla-	$u_S = \sqrt{gh}$	ρ	Dichte $\left[\frac{kg}{m^2}\right]$ Oberflächen- $\left[\frac{N}{m}\right]$	$\frac{g}{1^3}$
chem Wasser	5 V 8	σ	Oberflächen- $\left[\frac{\ddot{N}}{m}\right]$	$\left[\frac{1}{i}\right]$
V !11 11			spannung	
Kapillarwellen	$u_K = \sqrt{\frac{2\pi\sigma}{\rho\lambda}}$	8	Erdbeschl. = $\left[\frac{m}{s^2}\right]$	$\left[\frac{1}{2}\right]$
	$u_K = \sqrt{\frac{\rho\lambda}{\rho\lambda}}$		9.81	T
	'	R		[mol]
Schallwellen in Flui-			Gas-Konst.	
den	$u = \sqrt{\frac{1}{\rho\kappa}}$		= 8.3145	
den	$\int u = \sqrt{\rho \kappa}$			
	·			
Schallwellen in Gasen	$\sqrt{\nu n}$			
Schairweitert in Gasert	$u_{\rm G} = \sqrt{\frac{\varkappa p}{\rho}}$			
	V P			
	$\sqrt{\varkappa RT}$			
	$u_G = \sqrt{\frac{\varkappa RT}{M}}$			
	, 272			

8.1.1. Zusammenhänge der verschiedenen Wellen

Gilt nur bei einem Stab $u_T = \sqrt{\frac{1}{2(1+\mu)}} u_L \qquad \qquad \begin{array}{c} u & \text{Wellengeschw. } \left[\frac{m}{s}\right] \\ u_T & \text{u longitudi- } \left[\frac{m}{s^2}\right] \\ & \text{nal} \\ u_L & \text{u transversal } \left[\frac{m}{s^2}\right] \end{array}$

8.2. Wellengleichung

Bei Wellengleichungen (lineare Dgl) gilt das Superpositionsprinzip, d.h. die Summe zweier Lösungen ist wieder eine Lösung.

Eindimensional:

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

Zweidimensional:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

Dreidimesnional:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

oder:
$$\Delta \xi = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

wobei :
$$\Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

u Wellengeschw. $\left[\frac{m}{s}\right]$

Poissonzahl

μ

[1]

 ξ Störung [...

t Zeit [s]

 Δ Laplace-OP []

8.3. Intensität

$I = \frac{1}{2}\rho u\omega^2 \xi_0^2$	IIntensität $[\frac{W}{m^2}]$ u Wellengeschw. $[\frac{m}{s}]$ ξ Störung $[]$ ρ Dichte $[\frac{kg}{m^3}]$ ω Winkelgeschw. $[\frac{1}{s}]$	[]
---	--	-------------

8.4. Harmonische Wellen

$$\xi = f(x - ut) \rightarrow$$

Ausbreitung pos. $x - Koord$.

 $\xi = f(x + ut) \rightarrow$

Ausbreitung neg. $x - Koord$.

Bei EM - Wellen:

 $u = c = 299'792'458 \frac{m}{s}$

$$\omega = 2\pi f = \frac{2\pi}{T} = ku$$

$$k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$$

$$\xi(x,t) = \xi_0 \sin(kx - \omega t + \varphi)$$

$$\xi(x,t) = \xi_0 \sin(\omega t - kx)$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{u}{\lambda}$$

$$\lambda = \frac{2\pi}{k} = \frac{u}{f}$$

$$u = \frac{\omega}{k} = \lambda f$$

u Wellengeschw.
$$\left[\frac{m}{s}\right]$$

$$\xi$$
 Störung [... t Zeit [s]

$$\omega$$
 Kreisfrequenz $\left[\frac{1}{s}\right]$ T Periode $\left[s\right]$

$$\lambda$$
 Wellenlänge $[m]$

$$\alpha$$
 Wellenlange φ Phase

$$\varphi$$
 Phase $[rad]$ k Wellenzahl $[\frac{1}{m}]$

k Wellenzahl
$$\left\lfloor \frac{1}{m} \right\rfloor$$

f Frequenz $[Hz]$

8.5. Räumliche Ausbreitung von Wellen

Ebene Welle:

$$\xi(x,y,z,t) = \xi_0 e^{i(\omega t - \vec{k}\vec{r})}$$

$$\vec{k}\vec{r} = konst.$$

Kugel Welle:

$$\xi(r,t) = \frac{A}{r}e^{i(\omega t - kr)}$$

$$\xi$$
 Störung [...]

t Zeit
$$[s]$$
 ω Kreisfrequenz $[\frac{1}{s}]$

$$\omega$$
 Kreisfrequenz $\left[\frac{1}{s}\right]$ k Wellenzahl $\left[\frac{1}{m}\right]$ r Radius $\left[m\right]$

8.6. Doppler-Effekt

8.6.1. Akustischer Doppler-Effekt

ruhende und bewegte Punktquelle

bewegte Punktquelle

bewegter Beobachter und bewegte Punktquelle bewegte Quelle, ruhender Beobachter:

$$f'=rac{1}{1\mprac{v_Q}{T}}f$$
 — auf Hörer zu

$$f' = \frac{1}{1 - \frac{v_Q}{u}\cos(\theta_Q)}f$$

ruhende Quelle, bewegter Beobachter:

$$f' = (1 \pm rac{v_B}{u})f$$
 + auf Quelle zu

$$f' = (1 + \frac{v_B}{u}\cos(\theta_B)f$$

Allgemein:

$$f_B = \frac{u + v_B \cos(\theta_B)}{u - v_Q \cos(\theta_Q)} f_Q$$

u Wellengeschw.
$$\left[\frac{m}{s}\right]$$
 f Frequenz [*Hz*

$$egin{array}{ll} f & ext{Frequenz} & [Hz] \ f' & ext{gehörte} & ext{Fre-} & [Hz] \end{array}$$

 $\begin{array}{ccc} & \text{quenz} \\ v_Q & \text{Geschw.} & \left[\frac{m}{s}\right] \end{array}$

$$\begin{array}{ccc} & \text{Quelle} \\ v_B & \text{Geschw.} & \left[\frac{m}{s}\right] \\ & \text{Beobachter} \end{array}$$

$$\vartheta$$
 Winkel $[rad]$

8.6.2. Optischer Doppler-Effekt

bewegter Beobachter und bewegte Punktquelle

$$f' = \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos(\vartheta)} f$$

$$\beta = \frac{v}{c}$$

falls $f \gg c$:

$$\frac{f-f'}{f} = \frac{\Delta f}{f} = \frac{v}{c}$$

falls $\vartheta = 0^{\circ}$ oder $\vartheta = 180^{\circ}$:

$$\frac{\Delta\lambda}{\lambda} = -\frac{v}{c}$$

f Frequenz [Hz] f' gesehene Fre- [Hz] quenz

v Geschw. $\left[\frac{m}{s}\right]$ relativ Beobachter

Quelle ϑ Winkel [rad]

c Lichtge- $\left[\frac{m}{s}\right]$ schwin- digkeit = 299'792'458

8.6.3. Machscher Kegel

Falls v > u entsteht ein Machscher Kegel

$$\sin(\vartheta) = \frac{u}{v}$$

$$M=\frac{v}{u}$$

- Wellengeschw. $\left[\frac{m}{s}\right]$ Geschw. Flug- $\left[\frac{m}{s}\right]$ и
- vzeug
- des [rad] θ Winkel Kegels
- Machzahl M [1]

8.7. Überlagerung von Wellen gleicher Frequenz

l = nr

In 1s geht Energie S durch $1m^2$:

$$S = \frac{\delta \xi^2 \omega^2}{2} u$$

Prinzip von Huygens:

Jedes Flächenelement auf einer Welle kann als Zentrum einer Kugelwelle betrachtet weden. Die Wellenfläche zu einem späteren Zeitpunkt ist die Einhüllende all dieser Elementarwellen.

Medium Medium 2 Medium 3

Bei der Reflexion an einem optisch dichteren Medium findet ein Phasensprung von π statt.

Beispiel: Falls Medium 1 dichter Medium 2 dichter Medium 3: Phasensprung in P und Q.

$$\Rightarrow +\frac{\lambda}{2}$$

 \rightarrow Auslöschung bei $m\frac{\lambda}{2}$, m= $\{1,3,5,...\}$

- Wellengeschw. $\left[\frac{m}{s}\right]$ и l Optische [m]
 - Weglänge
- Brechungsinп dex
- S Energie ξ Störung
- Kreisfrequenz $\left[\frac{1}{c}\right]$ w

8.8. Optische Länge

Durchqueren Wellen Me-	$s \rightarrow ns$	n	Brech-Index	[1]
dien muss mit optischen Längen gerechnet werden	$\lambda o rac{\lambda}{n}$	$\frac{s}{\lambda}$	Strecke Wellenlänge	[<i>m</i>]

8.9. Stehende Wellen

Einfallende Welle wird von Grenzfläche reflektiert 1. Fall: Phasensprung π bei Reflexion

$$\xi_0 \sin(k_x - \omega t) + \xi_0 \sin(k_x + \omega t) =$$

 $2\xi \sin(k_x)\cos(\omega t)$

Knoten bei $k_x=0,\,\pi,\,2\pi$... Bäuche bei: $k_x=\frac{1}{2}\pi,\frac{3}{2}\pi$...

2. Fall: Kein Phasensprung

$$\xi_0 \sin(k_x - \omega t) - \xi_0 \sin(k_x + \omega t) =$$

 $-2\xi\cos(k_x)\sin(\omega t)$

Knoten bei $k_x = \frac{1}{2}\pi, \frac{3}{2}\pi$... Bäuche bei: $k_x = 0, \pi, 2\pi$... ξ Störung [...] ω Kreisfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ t Zeit $\begin{bmatrix} s \end{bmatrix}$ k Wellenzahl $\begin{bmatrix} \frac{1}{m} \end{bmatrix}$

8.10. Eigenschwingungen

8.10.1. Saite

Die Saite ist zweiseitig fixiert

$$\lambda_n = \frac{2l}{n}$$

$$f_n = \frac{u}{\lambda_n} = \frac{u}{2l}n = nf_1$$

$$f_1 = \frac{1}{2l} \sqrt{\frac{F}{\rho A}}$$

$$u = \sqrt{\frac{F}{\rho A}}$$

$$F = \frac{4l^2}{n^2} \rho A f^2$$

Bei Temperatur Änderung:

$$\Delta f = \left(\frac{E_{Sa}(\alpha_{Trag} - \alpha_{Sa})}{8\rho_{Sa}l^2f^2} - \alpha_{Trag}\right)\Delta Tf$$

u Wellengeschw.
$$\left[\frac{m}{s}\right]$$
 A Fläche $\left[m^2\right]$

F Spannkraft
$$[N]$$
 λ Wellenlänge $[m]$

$$\rho$$
 Dichte Saite $\left[\frac{kg}{m^3}\right]$

$$\xi$$
 Störung [...] ω Kreisfrequenz $\left[\frac{1}{s}\right]$

$$f$$
 Frequenz $[Hz]$

$$f_1$$
 Grundfrequenz $[Hz]$ l Saitenlänge $[m]$

n n-te Harmo-
$$[1]$$

nische
$$\alpha$$
 Längenausd. $\begin{bmatrix} \frac{1}{k} \end{bmatrix}$

$$ho$$
 Dichte $\left[\frac{\kappa g}{m^3}\right]$ E Elastizitäts- $\left[\frac{N}{m^2}\right]$ modul

8.10.2. Pfeife

offene Pfeife:

$$f_1 = \frac{1}{2l} \sqrt{\frac{\varkappa RT}{M}} = \frac{u}{2l}$$

$$f_n = nf_1$$

$$\lambda_n = \frac{4l}{n}$$
 $n = 1, 3, 5, ...$

gedackte Pfeife:

$$f_1 = \frac{1}{4l} \sqrt{\frac{\kappa RT}{M}} = \frac{u}{4l}$$

$$f_n = nf_1$$

$$\lambda_n = \frac{4l}{n} \quad n = 2, 4, 6, \dots$$

$$f$$
 Frequenz $[Hz]$ f_1 Grundfrequenz $[Hz]$

$$M$$
 Molmasse $\begin{bmatrix} \frac{kg}{mol} \end{bmatrix}$ Abs. Temp. $\begin{bmatrix} Kg \end{bmatrix}$

$$R$$
 univers. $\left[\frac{J}{Kmol}\right]$ Gas-Konst.

$$= 8.3145$$
l Saitenlänge $[m]$

$$\lambda$$
 Wellenlänge $[m]$

8.10.3. Rechteckige Membrane

f_{mn}	Eigenfre	equenz	[Hz]
F	Spannk	raft	[N]
μ	Masse	pro	$\left[\frac{kg}{m^2}\right]$
	Fläche		-111
ξ	Störung	. !	[]
<i>x</i> , <i>y</i>	Richtun	g x,y	[]
а	Länge		[m]
b	Breite		[m]
m, n	Anz.	Ober-	[1]
	wellen		

8.11. Beugung

8.11.1. Beugung am Spalt

8.11.2. Beugung an Kreisförmiger Öffnung

$\sin(\varphi_1) = 1.22 \frac{\lambda}{D}$	D	Öffnungs- [<i>m</i>] durchmesser
$a = 1.22 f \frac{\lambda}{D}$	φ	Betrachtungs- [rad] winkel
" = D	λ	Wellenlänge [m]
	a	Radius erster [m]
		dunkler Ring

8.11.3. Beugung am Gitter

$$I_g \sim \frac{A^2}{r^2} A_s^2 B^2$$

$$B = \frac{\sin\left(\frac{kd\sin(\varphi)}{2}Z\right)}{\sin\left(\frac{kd\sin(\varphi)}{2}\right)}$$

Hauptmaximum n-ter Ordnung:

$$\sin(\varphi_n) = n\frac{\lambda}{d}$$
$$\frac{\lambda}{\Delta\lambda} = nZ$$

$$\frac{\lambda}{\Delta\lambda} = nZ$$

Α	Amplitude	Γ
21	mpmaac	[

$$A_s$$
 Formfaktor [1] s Spaltbreite [m]

$$r$$
 Abstand $[m]$

$$t$$
 Zeit s Störung s s

$$d$$
 Gitterkonst. $[m]$

$$\varphi$$
 Betrachtungs- $[rad]$ winkel

$$I_s$$
 Intensität $\left[\frac{W}{m^2}\right]$

$$\lambda$$
 Wellenlänge $[m]$

Teil II. Elektrizitätslehre

9. Grundlagen

9.1. Grundgrössen

Ladung Q	$\Delta Q = I(t) \cdot \Delta t = \int I(t)$	Q	Ladung	[C], [As]
	$\Delta Q = \frac{\Delta W(t)}{\Delta U(t)}$	I J E v	Strom Stromdichte el. Feldstärke DriftGe- schwindig-	$ \begin{bmatrix} A \\ A \end{bmatrix} \\ \begin{bmatrix} \frac{A}{m^2} \end{bmatrix} \\ \begin{bmatrix} \frac{w}{m} \end{bmatrix} \\ \begin{bmatrix} \frac{m}{s} \end{bmatrix} $
Strom I	$I = \frac{\Delta Q}{\Delta t}$ $I = \frac{U}{R} = \frac{P}{U}$	U W P R	keit Spannung Arbeit Leistung Widerstand	$\begin{bmatrix} V \end{bmatrix} \ \begin{bmatrix} Ws \end{bmatrix}, \ \begin{bmatrix} J \end{bmatrix} \ \begin{bmatrix} \Omega \end{bmatrix} \ \begin{bmatrix} \Omega \end{bmatrix}$
Driftgeschwindigkeit v	$v = \frac{I}{neA}$	ρ G κ t	Spez. Widerstand Leitwert spez. Leitwert Zeit	
Spannung U	$U = RI$ $U(t) = \frac{\Delta W(t)}{\Delta Q}$ $U = \frac{P}{I} = \sqrt{PR}$ $\Delta U = E\Delta x$	A F m 8 l \alpha \theta	Fläche Kraft Masse Erdberschleunigung Länge Temp. Koeff. Temperatur Elekronendichte	$ \begin{bmatrix} m^2 \\ N \end{bmatrix} $ $ \begin{bmatrix} kg \\ \frac{m}{s^2} \end{bmatrix} $ $ \begin{bmatrix} m \\ \frac{1}{\circ C} \end{bmatrix} $ $ \begin{bmatrix} \circ C \\ \frac{1}{m^3} \end{bmatrix} $
Energie W	W = Fh = mgh $\Delta W(t) = U(t)I(t)\Delta t$	е	Elementarla- dung 1.602 · 10 ¹⁹ C	[C]

9. GRUNDLAGEN

Leistung P	$P(t) = \frac{\Delta W(t)}{\Delta t}$	Q	Ladung	[C],
	Δt $P(t) = U(t)I(t)$ $P(t) = I^{2}(t)R = \frac{U^{2}(t)}{R}$	I J E v	Strom Stromdichte el. Feldstärke DriftGe- schwindig- keit	$ \begin{bmatrix} As \\ A \end{bmatrix} \\ \begin{bmatrix} A \\ m^2 \end{bmatrix} \\ \begin{bmatrix} \frac{V}{m} \\ s \end{bmatrix} $
Widerstand R	$R = \frac{U}{R} = \frac{U^2}{P} = \frac{P}{I^2}$ $R = \frac{\rho l}{A} = \frac{l}{\kappa A}$	U W P R p	Spannung Arbeit Leistung Widerstand Spez. Widerstand	- ///
Spez. Widerstand $ ho$	$ ho = rac{1}{\kappa A}$ $ ho = ho_{20}(1 + lpha_{20})\Delta artheta$	G к t A F т	Leitwert spez. Leitwert Zeit Fläche Kraft Masse Erdberschleu-	$ \begin{bmatrix} t \\ m^2 \end{bmatrix} \\ [N] \\ [kg] $
Leitwert G	$G = \frac{\kappa A}{l} = \frac{1}{R}$	$\begin{array}{c c} & \delta \\ & l \\ & \alpha \\ & \vartheta \end{array}$	nigung Länge Temp. Koeff. Temperatur	$\begin{bmatrix} m \\ \frac{1}{\circ C} \end{bmatrix}$ $\begin{bmatrix} \circ C \end{bmatrix}$
Spez. Leitwert κ	$\kappa = \frac{1}{\rho}$	n e	Elekronen- dichte Elementarla- dung	$\left[\frac{1}{m^3}\right]$ $[C]$
Stromdichte J	$J(t) = \frac{I(t)}{A} = \frac{\Delta I(x, y)}{\Delta A}$ $\vec{J} = \kappa \vec{E}$		$1.602 \cdot 10^{19}C$	
Feldstärke E	$E(x) = \frac{\Delta U}{\Delta x}$ $E = \frac{F}{Q}$ $\vec{E} = \rho \vec{J}$			

9.2. Netzwerke bei Gleichstrom

9.2.1. Kirchoffsche Gesetzte

Stromgesetz

Spannungsgesetz

9.3. Reale Quellen

9.3.1. Reale Spannungsquelle

9.3.2. Reale Stromquelle

9.4. Netzwerkanalyse

9.4.1. Netzwerkumwandlung

Widerstandsschaltungen

Mehrere Quellen

Quellenumwandlung

U-Quelle \rightarrow I-Quelle:

$$R_i = R_i$$
 $I_C = \frac{U_0}{R_i}$

I-Quelle \rightarrow U-Quelle:

$$R_i = R_i \qquad U_0 = I_C R_i$$

 $egin{array}{lll} U & {
m Spannung} & [V] \\ I & {
m Strom} & [I] \\ R & {
m Widerstand} & [\Omega] \\ \end{array}$

Stern - Dreieck Umwandlung

 $Dreieck \rightarrow Stern:$

$$R_a = \frac{R_1 R_2}{R_0}$$

$$R_b = \frac{R_2 R_3}{R_0}$$

$$R_c = \frac{R_1 R_3}{R_0}$$

$$R_0 = R_1 + R_2 + R_3$$

Stern \rightarrow Dreieck:

$$R_1 = R_a R_b B_0 \qquad G_1 = \frac{G_a G_b}{G_0}$$

$$R_2 = R_b R_c B_0 \qquad G_1 = \frac{G_b G_c}{G_0}$$

$$R_3 = R_a R_c B_0 \qquad G_1 = \frac{G_a G_c}{G_0}$$

$$G_0 = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

 $egin{array}{lll} U & {\sf Spannung} & & [V] \ I & {\sf Strom} & & & [I] \ \end{array}$

R Widerstand $[\Omega]$ G Leitwert [S]

G Leitwert [S]

Überlagerungsprinzip (Superposition)

Die Wirkungen der entsprechenden Ursachen werden einzeln betrachtet. In einer Schaltung mit mehreren Quellen wird jede Quelle einzeln betrachtet. Die übrigen Spannungsquellen werden durch einen Kurzschluss und die restlichen Stromquellen durch einen Unterbruch ersetzt. Sie Summen der einzelnen Teilwirkungen ergibt die gesamte Wirkung.

9. GRUNDLAGEN

(Voraussetzung: lineares System)

Nichtlinearer Verbraucher an linearer Schaltung (Thévenin)

Die gesammte Schaltung muss in eine Ersatzquelle umgeformt werden. Das Ersatzschema gilt für U und I. (Achtung: z.B. $P_{Quellen} \neq U_0 I$)

9.4.2. Wirkungsgrad und Leistungsanpassung

9.4.3. Systematische Analyse linearer Netzwerke

Kreisströme als Variablen (Kreisstrom-Methode)

 α = Anzahl Knoten β = Anzahl Zweige

 $\beta - \alpha + 1$ unabhängige Gleichungen

$$\begin{array}{rclcrcl}
 j_1(R_1 + R_2 + R_4) & + & j_2R_4 & = & U_1 \\
 j_1R_4 & + & j_2(R_3 + R_4) & = & U_2
 \end{array}$$

$$\begin{bmatrix} R_1 + R_2 + R_4 & R_4 \\ R_4 & R_3 + R_4 \end{bmatrix} \begin{bmatrix} j_1 \\ j_2 \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

Trennspannungen als Variable (Knotenspannungsmethode)

 $\alpha = \text{Anzahl Knoten}$ $\alpha - 1$ unabhängige Gleichungen

$$\begin{array}{rclcrcl} e_A(G_1+G_3+G_4) & - & e_BG_1 & = & -I_1-I_2 \\ e_AG_1 & + & e_B(G_1+G_2) & = & I_1 \end{array}$$

$$\left[\begin{array}{cc} G_1+G_3+G_4 & -G_1 \\ G_1 & G_1+G_2 \end{array}\right] \left[\begin{array}{c} e_A \\ e_B \end{array}\right] = \left[\begin{array}{c} -I_1-I_2 \\ I_1 \end{array}\right]$$

9.4.4. Quellenverschiebung

Es werden gleiche Quellen so in die Schaltung eingefügt, dass die Wirkung der ursprünglichen Quelle aufgehoben wird.

9.4.5. Netzwerke mit gesteuerten Quellen

$\begin{bmatrix} R_1 & R_2 \\ V_U U_1 \\ \end{bmatrix}$	Spannungsgesteuerte Spannungsquelle $U_{02} = V_U U_1$	I U R G V	Strom Spannung Widerstand Leitwert Verstärkung	$egin{array}{c} [A] \ [V] \ [\Omega] \ [S] \ [1] \ \end{array}$
$\begin{bmatrix} I_1 & R_2 \\ \vdots & \vdots \\ R_1 & \vdots \\ \vdots & \vdots \\ R_{21}I_1 \end{bmatrix}$	Stromgesteuerte Spannungsquelle $U_{02} = R_{12}U_1$			
$\begin{bmatrix} R_1 & R_2 \\ G_{21}U_1 \\ U_1 \end{bmatrix}$	Spannungsgesteuerte Stromquelle $I_{C2} = G_{12}U_1$			
R_1 V_iI_1 U_1	Stromgesteuerte Stromquelle $I_{C2}=V_iU_1$			

10. Das elektrische Strömungsfeld

10.1. Allgemein

10.2. Spezielle Felder

10.2.1. Räumliches Zentralfeld (Kugelanordnung)

10.2.2. Zylindrisches Zentralfeld

$$J(r) = \frac{I}{A_{\text{Kugel}}} = \frac{I}{4\pi r^2}$$

$$J(r) = \frac{I}{2\pi rl}$$

$$J(r) = \kappa E(r)$$
 $E(r) = \rho E(r)$

$$E(r) = \frac{I}{2\pi\kappa rl}$$

$$U_{12} = \frac{I}{2\pi\kappa l} \ln \frac{r_2}{r_1}$$

$$U = \frac{I}{2\pi\kappa l} \ln \frac{R_2}{R_1}$$

$$V(r) = \frac{I}{2\pi\kappa l} \ln \frac{R_2}{r}$$

$$G = \frac{2\pi\kappa l}{\ln\frac{R_2}{R_1}}$$

I Strom [A]

J Stromdichte
$$\left[\frac{A}{w^2}\right]$$

$$egin{array}{lll} U & {
m Spannung} & [\widetilde{V}] \\ V & {
m Potential} & [V] \\ \end{array}$$

$$\rho$$
 Spez. Wider- $\left[\frac{\Omega mm^2}{m}\right]$ stand

$$\kappa$$
 spez. Leitwert $\left[\frac{S}{m}\right]$ G Leitwert $\left[S\right]$

$$G$$
 Leitwert $\begin{bmatrix} S \end{bmatrix}$ R, r Radius $[m]$

A Fläche
$$[m^2]$$

10.2.3. Leistung und räumliche Leistungsdichte

$$p(x, y, z) = \frac{\Delta P}{\Delta I}$$

$$p(x, y, z) = E(x, y, z)J(x, y, z)$$
$$= \kappa(x, y, z)E^{2}(x, y, z)$$
$$= \rho(x, y, z)J^{2}(x, y, z)$$

Gesammtleistung *P* aus *p*:

$$P = \sum \Delta p = \sum_{n} P_{n} \Delta V$$

I Strom [A]
I Stromdichte
$$\left[\frac{A}{a^2}\right]$$

$$E$$
 el. Feldstärke $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$

$$\rho$$
 Spez. Wider- $\left[\frac{\Omega mm^2}{m}\right]$ stand

$$κ$$
 spez. Leitwert $\left[\frac{S}{m}\right]$ G Leitwert $\left[S\right]$ R, r Radius $\left[m\right]$

A Fläche
$$[m]^2$$

11. Elektrostatik

11.1. Das Coulobsche Gesetz

11.2. Das elektrostatsiche Feld (Allgemein)

11.3. Spezielle Felder

11.3.1. Räumliches Zentralfeld (Kugelanordnung)

$$\sigma = \frac{Q}{4\pi R^2} = const$$

für $R_1 < r < R_2$ gilt:

$$E(r) = \frac{Q}{4\pi\epsilon r^2} = \frac{1}{\epsilon}D(r)$$

$$D(r) = \frac{Q}{4\pi r^2} = \frac{QR^2}{4\pi r^2} = \frac{\sigma R^2}{r^2}$$

$$V(r) = \frac{Q}{4\pi\epsilon} \left(\frac{1}{r} - \frac{1}{R_2} \right)$$

Hülle bei *r*:

$$\psi_{el} = D(r)4\pi r^2 = Q$$

Kugelkondensator:

$$U = \frac{Q}{4\pi\epsilon} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$C = \frac{Q}{U} = \frac{\psi_{el}}{U} = 4\pi\epsilon \frac{R_1 R_2}{R_2 - R_1}$$

$$Q$$
 Ladung $[C]$ R, r Radius $[m]$

C Kapazität
$$[F]$$

E el. Feldstärke $\begin{bmatrix} \frac{V}{m} \end{bmatrix}$

$$U$$
 Spannung $[V]$ V Potential $[V]$

$$\sigma$$
 Oberfl. La- $\left[\frac{\Omega mm^2}{m}\right]$ dungsdichte

A Fläche
$$[m^2]$$

$$\psi_{el}$$
 el. Fluss [C]

$$\epsilon$$
 Dielektrizität $\left[\frac{C}{Nm}\right]$

$$\epsilon_r$$
 rel. Dielektrizität

 ϵ_0 Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ konstante

11.3.2. Zylindrisches Zentralfeld

$$\sigma = \frac{Q}{2\pi R_1 l} = const$$

für $R_1 < r < R_2$ gilt:

$$E(r) = \frac{Q}{2\pi\epsilon rl} = \frac{1}{\epsilon}D(r)$$

$$D(r) = \frac{Q}{2\pi rl} = \frac{\sigma R}{r}$$

$$V(r) = \frac{Q}{2\pi\epsilon l} \ln \frac{R_2}{r}$$

Hülle bei *r*:

$$\psi_{el} = D(r)2\pi rl = Q$$

Kondensator:

$$U = \frac{Q}{2\pi\epsilon l} \ln \frac{R_1}{R_2}$$

$$C = \frac{Q}{U} = \frac{\psi_{el}}{U} = \frac{2\pi\epsilon l}{\ln\frac{R_1}{R_1}}$$

$$Q$$
 Ladung $[C]$ R,r Radius $[m]$ C Kapazität $[F]$

$$E$$
 el. Feldstärke $\left[\frac{V}{m}\right]$ U Spannung $\left[V\right]$ V Potential $\left[V\right]$

$$\sigma$$
 Oberfl. La- $\left[\frac{\Omega mm^2}{m}\right]$ dungsdichte

A Fläche
$$[m^2]$$

 ψ_{el} el. Fluss $[C]$

$$\varphi_{el}$$
 el. Pluss $[C]$ ϵ Dielektrizität $[\frac{C}{Nm}]$

$$\epsilon_r$$
 rel. Dielektrizität

$$\epsilon_0$$
 Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ konstante

11.3.3. Homogenes Feld (Plattenkondesator)

$$\sigma = D = \frac{Q}{A}$$

$$E = \frac{\sigma}{\epsilon} = \frac{Q}{A\epsilon}$$

Kondensator:

$$U = \frac{\sigma}{\epsilon}d = \frac{Q}{A\epsilon}d$$

$$C = \frac{Q}{II} = \frac{\epsilon A}{d}$$

Q	Ladung	[<i>C</i>]
Q	Ladung	
d	Abstand	[m]

C Kapazität
$$[F]$$

E el. Feldstärke $\begin{bmatrix} \frac{V}{m} \end{bmatrix}$

$$egin{array}{lll} U & {
m Spannung} & [V] \\ V & {
m Potential} & [V] \\ \end{array}$$

$$\sigma$$
 Oberfl. La- $\left[\frac{\Omega mm^2}{m}\right]$

A Fläche
$$[m^2]$$
 ψ_{el} el. Fluss $[C]$

$$\psi_{el}$$
 el. Fluss [C] ϵ Dielektrizität $\frac{C}{N}$

$$\epsilon_r$$
 rel. Dielektri-

zität
$$\epsilon_0$$
 Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ konstante

11. ELEKTROSTATIK

11.3.4. Paralleldrahtleitung

Es gilt das Superpositionsprin-

$$E_{tot} = E_{Leiter_1} + E_{Leiter_2}$$

Kondensator:

$$C = \frac{Q}{U} = \frac{\pi \epsilon l}{\ln \frac{a - R}{R}}$$

$$C' = \frac{Q}{U} = \frac{\pi \epsilon}{\ln \frac{a - R}{R}}$$

Q Ladung [C]d Abstand [m]

CKapazität [F]Е el. Feldstärke

U Spannung VPotential

Oberfl. La- σ dungsdichte

Fläche $[m^2]$ A[*C*] ψ_{el} el. Fluss

Dielektrizität ϵ

rel. Dielektri- ϵ_r zität

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

11.4. Energie im elektrischen Feld

$$W = \frac{CU^2}{2}$$

$$w = \frac{W}{V}$$

$$w(x, y, z) = \frac{d W(x, y, z)}{d V}$$

W Energie [J]Energiedichte $[I/m^3]$ w

U Spannung [V][F]CKapazität V

Volumen $[m^3]$

11.5. Kräfte im elektrischen Feld

11.5.1. Allgemein

$$\Delta W = F \Delta x \quad \Leftrightarrow \quad F = \frac{\Delta W}{\Delta x} \quad \Leftrightarrow \quad F(x) = \frac{dW(x)}{dx}$$

Prinzip der virtuellen Verschiebung

Man denkt sich den Leiter, auf den die Kraft berchnet werden soll, um Δx in diejenige Richtung verschoben, in welche die Kraft berechnet werden soll: \rightarrow Energiedifferenz ΔW

11.5.2. Verschiebung

Mit eingeschalteter Quelle:

$$F(x) \qquad W(x) = \frac{CU^2}{2} = \frac{\epsilon AU^2}{2d} = \frac{\epsilon axU^2}{2d}$$

$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon a U^2}{2d}$$

Mit ausgeschalteter Quelle:

$$W(x) = \frac{\epsilon A U^2}{2d} = \frac{\epsilon a x_0^2 U^2}{2xd}$$

$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon a x_0^2 U^2}{2x^2 d}$$

O	Ladung	[C]
\sim	Ladang	[ت]
А	Abstand	[111]

$$x$$
 Überlappung $[m]$

C Kapazität
$$[F]$$

E el. Feldstärke $[\frac{V}{m}]$

$$U$$
 Spannung V Potential V

$$\sigma$$
 Oberfl. La- $\left[\frac{\Omega mm^2}{m}\right]$ dungsdichte

A Fläche
$$[m^2]$$

$$\psi_{el}$$
 el. Fluss $\begin{bmatrix} C \end{bmatrix}$ ϵ Dielektrizität $\begin{bmatrix} \frac{C}{N_{tot}} \end{bmatrix}$

$$\epsilon$$
 Dielektrizität [ϵ_r rel. Dielektri-

konstante

$$\begin{array}{cc} & \text{zität} \\ \epsilon_0 & \text{Dielektrizitäts-}\left[\frac{\mathcal{C}}{Nm}\right] \end{array}$$

11.5.3. Anziehung

$$W(x) = \frac{CU^2}{2} = \frac{\epsilon AU^2}{2x}$$

$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon A U^2}{2x^2}$$

Ladung Q Abstand [m] χ

$$C$$
 Kapazität $[F]$

C Kapazität
$$[F]$$

E el. Feldstärke $[\frac{V}{m}]$
U Spannung $[V]$

dungsdichte
$$A$$
 Fläche $[m^2]$

$$\psi_{el}$$
 el. Fluss $\begin{bmatrix} C \end{bmatrix}$ ϵ Dielektrizität $\begin{bmatrix} \frac{C}{N_{tru}} \end{bmatrix}$

$$\epsilon_r$$
 rel. Dielektrizität

$$\epsilon_0$$
 Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ konstante

12. Magnetismus

12.1. Feldstärke

siehe spezielle Anordnungen ab S. 98.

Biot-Savart

$$\vec{H} = \frac{Q}{4\pi r^3} (\vec{v} \times \vec{r})$$

$$H = \frac{Qv}{4\pi r^2} \sin \alpha$$

Leiterbezogen

$$d\vec{H} = \frac{I}{4\pi r^3} (d\vec{s} \times \vec{r})$$

$$dH = \frac{I\,ds}{4\pi r^2}\sin\alpha$$

$$H = \int d\vec{H} = \int \frac{I}{4\pi r^2} \sin \alpha \, ds$$

Н Feldstärke Ι Strom

 $\left[\frac{A}{m}\right]$ $\left[A\right]$ ds infinitdesi-[m]

malkleines

Leiterstück Radius [m]

r $\left[\frac{m}{s}\right]$ Geschwindigvkeit [m]

Winkel [rad] α

12.2. Permeabilität

$\mu = \mu_0 \mu_r$	μ μ_r	Permeabilität $\left[\frac{H}{m}\right]$ Permeabili- $\left[1\right]$ tätszahl	$\left[\frac{I}{i}\right]$
$\mu_0 = \frac{4\pi}{10} \cdot 10^{-6} \frac{Vs}{Am} = 1.257 \cdot 10^{-6} \frac{H}{m}$	μ_0	Permeabilität $\left[\frac{H}{m}\right]$	$\left[\frac{I}{i}\right]$

12.3. Magnetische Flussdichte

siehe spezielle Anordnungen ab S. 98.	$ec{B}=\muec{H}$	Η μ Β	Feldstärke Permeabilität Flussdichte, Induktion	$\begin{bmatrix} \frac{A}{m} \\ \end{bmatrix} \begin{bmatrix} \frac{H}{m} \\ \end{bmatrix} \begin{bmatrix} T \\ \end{bmatrix}, \begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix}$
---------------------------------------	------------------	-------------	--	--

12.4. Kräfte im Magnetischen Feld

12.4.1. Kräfte auf Ladungen

 \vec{v} , \vec{H} , \vec{F} bilden ein Rechtssystem

Für parallele Bahnen

$$F_A = \frac{\mu_0 Q_1 Q_2 v_1 v_2}{4\pi r^2}$$

Allgemein

$$F = Q_2 ec{v_2} imes \left(rac{\mu}{4\pi} rac{Q_1 ec{v_1} imes rac{ec{r}}{r}}{r^2}
ight)$$

$$F = Q(\vec{v} \times \vec{B})$$

$$F = Q(\vec{v} \times \mu \vec{H})$$

$$F = Qv\mu H \sin \alpha$$

Н	Feldstärke	$\left[\frac{A}{m}\right]$
F	Kraft auf La-	
	dung Q_1	

 $Q_{1,2}$ Lanung $\begin{bmatrix} C \end{bmatrix}$ $v_{1,2}$ Geschwindig- $\begin{bmatrix} \frac{m}{s} \end{bmatrix}$ keit $\begin{bmatrix} m \end{bmatrix}$

r Radius [m] μ Permeabilität $[\frac{H}{m}]$

Flussdichte, Induktion

12.4.2. Kraft auf Leiter im B-Feld

$$d\vec{F} = \frac{dQ}{dt}(\vec{ds} \times \vec{B}) = I(d\vec{s} \times \vec{B})$$

$$dF = IBds \sin \alpha$$

für geraden Leiter:

$$F = IBl \sin \alpha$$

В	Flussdichte,	[T],
	Induktion	$\begin{bmatrix} T \end{bmatrix}, \\ \left[\frac{Vs}{m^2} \right]$

F Kraft auf Lei-
$$[N]$$

I Strom
$$[A]$$
 α Winkel $[rad]$

$$\alpha$$
 Winkel [rad] ds infinitdesi- [m]

12.4.3. Kräfte auf paralle Leiter

$$F = \frac{\mu l I_1 I_2}{2\pi a}$$

$$\vec{l}_1 \uparrow \downarrow \vec{l}_2 \Rightarrow \text{Abstossung}$$

 $\vec{l}_1 \uparrow \uparrow \vec{l}_2 \Rightarrow \text{Anziehung}$

$$F_A$$
 Kraft zwisch- $[N]$ en den Lei-

$$L_{1,2}$$
 Leiter $[C]$

$$I_{1,2}$$
 Strom $[A]$

a Abstand
$$[m]$$

Permeabilität μ

12.4.4. Kräfte auf Randflächen eines Feldes

Energie W siehe S. 94

$$F = \frac{dW(s)}{ds}$$

Prinzip der virtuellen Verschiebung: Fläche um ds verschoben (*s*-Richtung = Kraftrichtung)

$$F = \frac{1}{2}BHA$$

Bei Drehbewegung:

$$M_{rot} = \frac{dW(\alpha)}{d\alpha}$$

$$F$$
 Kraft $[N]$ s Weg $[m]$

Flussdichte,
$$T$$
Induktion T

$$H$$
 Feldstärke $\left[\frac{A}{m}\right]$ A Fläche $\left[m^2\right]$

$$A$$
 Fläche M_{rot} Drehmoment

Drehmoment
$$[Nm]$$
 Winkel $[rad]$

12.5. Durchflutung

I_1 $I_2 \wedge \vec{J_1}$ $\vec{J_2}$ I_k $\vec{J_k}$	$\Theta = \oint_{S} \vec{H} ds = I$ $\Theta = \sum_{k=1}^{n} I_{k} + \iint_{A_{s}} \vec{J} dA$	Θ I S H U_{mg} I	Durchflutung Stromdichte Strom Geschlossene Kurve Feldstärke Magnetische Spannung Länge	$ \begin{bmatrix} A \\ \left[\frac{A}{m^2}\right] \\ \left[A \\ m\right] $ $ [m] $ $ \begin{bmatrix} \frac{A}{m} \\ A \end{bmatrix} $ $ [m] $
Nicht geschlossenser Weg $A \rightarrow B$	$U_{mgAB}=\int\limits_{A}^{B}ec{H}dec{s}$			
	z.B Luftspalt: $U_{mgAB} = Hl$			
Feld um Leiter	$\Theta = \oint\limits_{S} \vec{H} ds = I$			
Spule	$\Theta = NI$			

12.6. Magnetischer Fluss

siehe spezielle Anordnungen ab S. 98.	$\Phi = \iint_A \vec{B} dA$ $\Phi = \Lambda \Theta = \frac{\Theta}{R_m}$ Homogenes Feld: $\Phi = BA$	Φ A B Θ Λ	Magnetischer Fluss Fläche Flussdichte, Induktion Durchflutung Magnetischer Leitwert	$ [Vs], \\ [Wb] \\ [m^2] \\ [T], \\ [\frac{Vs}{m^2}] \\ [A] \\ [\frac{Vs}{A}], \\ [\Omega s] $
---------------------------------------	---	-----------------------	--	--

12.7. Ohmsches Gesetz des magnetischen Kreises

$$R_m = \frac{\Theta}{\Phi}$$

$$\Lambda = \frac{1}{R_m}$$

für homogenes Feld:

$$R_{m_n} = \frac{l_n}{\mu_n A_n}$$

Magnetischer $\left[\frac{A}{Vs}\right]$ R_m Widerstand

Φ Magnetischer [Vs], Fluss [Wb]

Durchflutung [A]Θ

 $\left[\frac{Vs}{A}\right]$, Magnetischer Λ Leitwert $[\Omega s]$

l Länge [m] $[m^2]$ Querschnitt Α

Permeabilität μ

12.8. Spulenfluss

Flüsse durch alle Einzelwindungsflächen aufsummiert (verketteter Fluss)

$$\Psi = N\Phi = \Lambda N^2 I$$

$$\Psi = LI$$

Ψ	Spulenfluss	[Vs]
Φ	Magnetischer	[Vs],
	Fluss Einzelw.	[Wb]
L	Induktivität	$\left[\frac{Vs}{A}\right]$
N	Windungszahl	[1]
I	Strom	[A]
Λ	Magnetischer	$\left[\frac{Vs}{\Lambda}\right]$

Leitwert

 $[\Omega s]$

12.9. Induktivität

$$L = \frac{N\Phi}{I} = \frac{\Psi}{I}$$

$$L = \frac{N\Phi}{I} = \frac{\Psi}{I}$$
$$L = N^2 \Lambda = \frac{N^2}{R_m}$$

$$L = \frac{2W}{I^2}$$

$$W$$
 Energie des $[Ws]$, Feldes $[J]$

$$L$$
 Induktivität $[H]$ Φ Magnetischer $[Vs]$, Fluss Einzelw. $[Wb]$

I Strom [A]

$$\Lambda$$
 Magnetischer $\left[\frac{V_s}{A}\right]$

$$Λ$$
 Magnetischer $\left[\frac{Vs}{A}\right]$,
Leitwert $\left[\Omega s\right]$
 R_m Magnetischer $\left[\frac{A}{Vs}\right]$

$$\Psi$$
 Widerstand Ψ Spulenfluss $[Wb]$

12.10. Gegeninduktivität und induktive Kopplung

$$M_{21} = \frac{\Psi_{21}}{I_1} = \frac{N_2 \Phi_{21}}{I_1}$$

$$M_{12} = \frac{\Psi_{12}}{I_2} = \frac{N_1 \Phi_{12}}{I_2}$$

$$M = \sqrt{L_1 L_2}$$
 ohne Streufluss

$$M = k\sqrt{L_1L_2}$$
 mit Streufluss

$$k_{12} = \frac{\Phi_{12}}{\Phi_{22}} \qquad k_{21} = \frac{\Phi_{21}}{\Phi_{11}}$$

$$\sigma = 1 - \frac{M^2}{L_1 L_2} = 1 - k^2$$

$$\Psi$$
 Spulenfluss $[Vs]$ Φ Magnetischer $[Vs]$,

Magnetischer [Vs], Fluss durch [Wb] Windung

 Φ Magnetischer [Vs], Streuluss [Wb]

L Induktivität $\left[\frac{Vs}{A}\right]$

N Windungszahl [1]
I Strom [A]

k Kopplungsfak. [1]

 σ Streukoef. [1]

M Gegeninduk- $\left[\frac{Vs}{A}\right]$ tivität

12.11. Brechung magnetischer Feldlinien

$$B_{n1}=B_{n2}$$

$$\frac{H_{n1}}{H_{n2}} = \frac{\mu_{r2}}{\mu_{r1}}$$

$$H_{t1} = H_{t2}$$

$$\frac{B_{t1}}{B_{t2}} = \frac{\mu_{r1}}{\mu_{r2}}$$

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\mu_{r1}}{\mu_{r2}}$$

H Feldstärke

Flussdichte, [induktion [induktio

 α Winkel $\begin{bmatrix} rad \\ rad \end{bmatrix}$ Permeabilität $\begin{bmatrix} \frac{H}{2\pi} \end{bmatrix}$

12.12. Räumliche Energiedichte

Inhomogenes Feld:	W	Energiedichte $\left[\frac{Ws}{m^3}\right]$
$W_{mg_{(x,y,z)}} = \frac{1}{2}B_{(x,y,z)}H_{(x,y,z)}$ Homogenes Feld: $W_{mg_{(x,y,z)}} = \frac{\mu}{2}H_{(x,y,z)}^2$	Η Β	Feldstärke $\left[\frac{J}{m^3}\right]$ Flussdichte, $\left[T\right]$, Induktion $\left[\frac{Vs}{m^2}\right]$ Permeabilität $\left[\frac{H}{m}\right]$

12.13. Energie im magnetischen Feld

12.14. Induktionsgesetz

$$u_i = \frac{d\Psi}{dt}$$

$$\oint \vec{E} \, d\vec{s} = -\frac{d\Phi}{dt} = -u_i$$

 \vec{E} bildet mit $d\vec{B}$ eine Linksschraube

Ψ	Spulenfluss	[Vs]
ŧ	7.eit	[s]

E Elekrtostati-
$$\left[\frac{V}{m}\right]$$
 sches Feld

$$u_i$$
 Induktions- $[V]$

$$\Phi$$
 spannung Φ Magnetischer $[Vs]$, Fluss $[Wb]$

[T], $\left[\frac{Vs}{m^2}\right]$

[m]

12.15. Selbstinduktion

Für Schleife:

$$u_i = \frac{d\Phi}{dt} = L\frac{di}{dt}$$

Für Spule:

$$u_i = \frac{d\Psi}{dt} = L\frac{di}{dt}$$

 Ψ Spulenfluss [Vs]

t Zeit [s] E Elekrtostati- $[\frac{V}{m}]$ sches Feld

 u_i Induktions- [V] spannung

 Φ Magnetischer [Vs], Fluss [Wb]

L Induktivität $\begin{bmatrix} \frac{Vs}{A} \end{bmatrix}$ i Strom $\begin{bmatrix} A \end{bmatrix}$ B Flussdichte, $\begin{bmatrix} T \end{bmatrix}$,

Flussdichte, [T], Induktion $[\frac{Vs}{m^2}]$

12.16. Serie- und Parallelschaltung von Induktivitäten

Serieschaltung L Induktivität $[\frac{Vs}{A}]$ $L_{Ers.} = L_1 + L_2 + \ldots + L_n$ Parallelschaltung $L_{Ers.} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_n}}$

12.17. Trafogleichungen

12.18. Nichtlinearität

12.18.1. B(H)-Kurve in $\Phi(\Theta)$ -Kurve umrechnen

Leerlauf

$$B_k(0) = B_c = \frac{\mu_0 A_L \Theta_0}{l_L A_{Fe}}$$

Kurzschluss

$$H_0 = \frac{\Theta_0}{l_{Fe}}$$

Umrechung:

$$\Phi_{Fe} = A_{Fe}B_{Fe}$$

$$\Theta_{Fe} = l_{Fe}H_{Fe}$$

$$B_L = \frac{A_{Fe}}{A_L} B_{Fe}$$

В	Flussdichte, Induktion	$\begin{bmatrix} T \end{bmatrix}$, $\begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix}$
Н	Feldstärke	$\left[\frac{A}{m}\right]$
μ	Permeabilität	$\left[\frac{H}{m}\right]$

 Θ Durchflutung [A] l Länge [m]

A Querschnitt $[m^2]$ Φ Magnetischer [Vs], Fluss [Wb]

12.18.2. Luftspaltkennwert α

$$lpha = rac{A_L \, l_{Fe}}{A_{Fe} \, l_L}$$
 $rac{1}{\mu_{reff}} = rac{1}{\mu_{rFe}} + rac{1}{lpha}$ $\mu_{reff} = rac{\mu_{rFe} \, lpha}{\mu_{rFe} + lpha}$

 α Luftspalt- [1] kenngrösse μ Permeabilität $\left[\frac{H}{m}\right]$ l Länge $\left[m\right]$ A Querschnitt $\left[m^2\right]$

12.19. Spezielle Anordnungen

12.19.1. Langer gerader Leiter $l \gg d$

Bezugspunkt ausserhalb des Leiters im Abstand r

$$H = \frac{I}{2\pi r}$$

$$\vec{H} = \frac{I}{2\pi |\vec{r}|^2} (\vec{e}_1 \times \vec{r})$$

H Feldstärke $\left[\frac{A}{m}\right]$ r Abstand vom [m]

Leiter

Ι

Strom [A]

12.19.2. Kurzer, gerader Leiter

$$H = \frac{I}{4\pi r} \int_{\alpha_2}^{\alpha_1} \cos \varphi \, d\varphi$$

$$H = \frac{I}{4\pi r} (\sin \alpha_1 - \sin \alpha_2)$$

H Feldstärke $\left[\frac{A}{m}\right]$ r Abstand vom [m]

Leiter

I Strom [A] α Winkel [rad]

12.19.3. Kreisförmige Drahtschleife

Bezugspunkt: M Teilkreis:

$$H = \frac{I}{4\pi r} \int\limits_0^\alpha d\varphi$$

Vollkreis:

$$H = \frac{I}{2r}$$

Feld auf der Achse:

$$H = \frac{|I|r^2}{2(x^2 + r^2)^{\frac{3}{2}}}$$

$$\Phi = \frac{\mu D}{2} \ln \frac{D}{d} \Theta$$

$$\Lambda = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$R_m = \frac{2}{\mu D \ln \frac{D}{d}}$$

$$L = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$H$$
 Feldstärke $\left[\frac{A}{m}\right]$ M Mittelpunkt

$$I$$
 Strom $[A]$

$$r$$
 Radius $[m]$

$$\mu$$
 Permeabilität $\left[\frac{H}{m}\right]$ d Draht Durch- $[m]$

$$\Lambda$$
 Magnetischer $\left[\frac{Vs}{A}\right]$. Leitwert $\left[\Omega s\right]$

$$R_m$$
 Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

L Induktivität
$$\left[\frac{Vs}{A}\right]$$

Magnetischer $\left[Vs\right]$

$$\Phi$$
 Magnetischer $[\hat{V}s]$, Fluss $[Wb]$

$$\Theta$$
 Durchflutung $[A]$ x senkrechter $[m]$

12.19.4. Voller Leiter

 $D \gg d$

$$H = \frac{Ix}{2\pi r^2}$$

gilt nur für $x \le r$

$$H$$
 Feldstärke $\left[\frac{A}{m}\right]$ r Abstand von $[m]$ der Leiterach-

I Strom [A

se

x Abstand von [m] der Achse

12.19.5. Koaxialkabel

$$H = \frac{I}{2\pi R_1^2} r \quad \text{für } 0 \le r < R_1$$

$$H = rac{I}{2\pi r}$$
 für $R_1 \le r \le R_2$

$$H = \frac{I}{2\pi r} \left(1 - \frac{r - R_2}{d} \right)$$

$$f\ddot{u}r R_2 < r \le R_2 + d$$

$$\Phi = \frac{\mu l}{2\pi} \ln \frac{R_2}{R_1} \Theta$$

$$\Lambda = \mu \frac{l}{2\pi} \ln \frac{R_2}{R_1}$$

$$R_m = \frac{2\pi}{\mu l \ln \frac{R_2}{R_1}}$$

$$L = \mu \frac{l}{2\pi} \ln \frac{R_2}{R_1}$$

$$L' = \frac{\mu}{2\pi} \ln \frac{R_2}{R_1}$$

$$H$$
 Feldstärke $\left[\frac{A}{m}\right]$ r Abstand von $[m]$ der Leiterach-

se

$$I$$
 Strom $[A]$ R Radius $[m]$

$$\mu$$
 Permeabilität $\left[\frac{H}{m}\right]$ l Länge $\left[m\right]$

$$\Lambda$$
 Magnetischer $\left[\frac{Ns}{A}\right]$, Leitwert $\left[\Omega s\right]$

$$R_m$$
 Magnetischer $\begin{bmatrix} A \\ \overline{Vs} \end{bmatrix}$ Widerstand

$$L'$$
 Induktivitäts- $\left[\frac{Vs}{Am}\right]$

$$L$$
 Induktivität $\left[\frac{Vs}{A}\right]$ Φ Magnetischer $\left[Vs\right]$,

Fluss
$$[Wb]$$
 Θ Durchflutung $[A]$

12.19.6. Paralleldrahtleitung

$$\Lambda = \mu \frac{l}{\pi} \ln \frac{a - R}{R}$$

$$R_m = \frac{\pi}{\mu l \ln \frac{a-R}{R}}$$

$$L = \mu \frac{l}{\pi} \ln \frac{a - R}{R}$$

$$L' = \frac{\mu}{2\pi} \ln \frac{a - R}{R}$$

$$\mu$$
 Permeabilität $\left[\frac{H}{m}\right]$ l Länge $\left[m\right]$

$$\begin{bmatrix} a & \text{Abstand} & [m] \\ R & \text{Radius} & [m] \end{bmatrix}$$

$$Λ$$
 Magnetischer $\left[\frac{V_s}{A}\right]$,
Leitwert $\left[Ω_s\right]$

$$R_m$$
 Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

$$L'$$
 Induktivitäts- $\left[\frac{Vs}{Am}\right]$ belag

L Induktivität
$$\left[\frac{Vs}{A}\right]$$

12.19.7. Zylinderspule

Bezugspunkt: Mittelpunkt der Achse im Innern

$$H = \frac{IN}{\sqrt{l^2 + d^2}}$$

Bezugspunkt: Mittelpunkt der Stirnflächen

$$H = \frac{IN}{2\sqrt{l^2 + d^2}}$$

Sehr lange Zylinderspule $(l \gg d)$ und Ringspule (mittlerer Umfang l) Bezugspunkt für *H*-Feld: im Inneren der Spule

$$H = \frac{IN}{l}$$

$$\Phi = \frac{\mu A}{l}\Theta = \mu \frac{\pi d^2}{4l}\Theta$$

$$\Lambda = \mu \frac{A}{l} = \mu \frac{\pi d^2}{4l}$$

$$R_m = \frac{l}{\mu A} = \frac{4l}{\mu \pi d^2}$$

$$L = \mu N^2 \frac{A}{l} = \mu N^2 \frac{\pi d^2}{4l}$$

H l	Feldstärke Länge bzw.	$\left[\frac{A}{m}\right]$ $[m]$
	mittl. Umfang	
	der Spule	
d	Durchmesser	[m]
I	Strom	[A]
\boldsymbol{A}	Stirnfläche	$[m^2]$
μ	Permeabilität	$\left[\frac{H}{m}\right]$
N	Windungszahl	$\begin{bmatrix} n \\ 1 \end{bmatrix}$
Λ	Magnetischer	$\left[\frac{Vs}{A}\right]$,
	Leitwert	$[\Omega s]$
R_m	Magnetischer	$\left[\frac{A}{Vs}\right]$
	Widerstand	. , 3.
L	Induktivität	$\left[\frac{Vs}{A}\right]$
Φ	Magnetischer	[Vs],
	Fluss	[Wb]
Θ	Durchflutung	[A]

12. MAGNETISMUS

12.19.8. Ringspule (Toroid)

$$\Lambda = \mu \frac{a}{2\pi} \ln \frac{R+a}{R}$$

$$R_m = \frac{2\pi}{\mu a \ln \frac{R+a}{R}}$$

$$L = \mu N^2 \frac{a}{2\pi} \ln \frac{R+a}{R}$$

$$\Phi = \frac{\mu a}{2\pi} \ln \frac{R_1 + a}{R_1} \Theta$$

$$H = \frac{NI}{R + \frac{a}{2}n}$$

für
$$a \ll R$$
:

$$L = \frac{\mu N^2 A}{2R\pi}$$

$$\Phi pprox rac{\mu A}{l_{mittl.}} \Theta$$

Höhe

R Innenradius [m]

 μ Permeabilität $\left[\frac{H}{m}\right]$ N Windungszahl [1]

Λ Magnetischer $\left[\frac{V_s}{A}\right]$,
Leitwert $\left[Ωs\right]$

 R_m Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

L Induktivität $\left[\frac{Vs}{A}\right]$ Φ Magnetischer $\left[Vs\right]$,

 Φ Magnetischer [Vs], Fluss [Wb]

 Θ Durchflutung [A]

A Fläche $[m^2]$

12.19.9. Kreisrahmenspule

$$\Lambda = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$R_m = \frac{2}{\mu D \ln \frac{D}{d}}$$

$$L = \mu N^2 \frac{D}{2} \ln \frac{D}{d}$$

Höhe

 μ Permeabilität $\left[\frac{H}{m}\right]$

d Draht Durch-[m] messer

D Schleifen [m]

Durchmesser

N Windungszahl [1]

 Λ Magnetischer $\left[\frac{\dot{Vs}}{A}\right]$, Leitwert $\left[\Omega s\right]$

 R_m Magnetischer $\begin{bmatrix} A \\ Vs \end{bmatrix}$ Widerstand

L Induktivität $\left[\frac{Vs}{A}\right]$

13. Wechselstromlehre

13.1. Mittel- und Kennwerte

13.1.1. Linearer Mittelwert

$$A_{\rm m} = \frac{1}{T} \int_{t_1}^{t_1+T} a(t) dt$$

$$A \quad \text{Amplitude} \quad [\dots]$$

$$a(t) \quad \text{Signal funktion} \quad [\dots]$$

$$T \quad \text{Periodendauer} \quad [s]$$

$$t \quad \text{Zeit} \quad \quad [s]$$

13.1.2. Betragsmittelwert

$$A_{|\mathbf{m}|} = \frac{1}{T} \int_{t_1}^{t_1+T} |a(t)| \, dt$$

$$A \quad \text{Amplitude} \quad [\dots]$$

$$a(t) \quad \text{Signal funktion} \quad [\dots]$$

$$T \quad \text{Periodendauer} \quad [s]$$

$$t \quad \text{Zeit} \quad \quad [s]$$

13.1.3. Halbwellenmittelwert

$$A_{2\mathrm{m}} = \frac{2}{T} \int_{t_1}^{t_1+T} a(t) \, dt$$

$$f \ddot{\mathrm{u}} r \ a(t) > 0$$

$$A_{2\mathrm{m}} \quad \text{Halbwellen-} \quad [\ldots]$$

$$a(t) \quad \text{Signalfunktion} \quad [\ldots]$$

$$T \quad \text{Periodendauer} \quad [s]$$

$$t \quad \text{Zeit} \quad \quad [s]$$

13.1.4. Quadratischer Mittelwert (Effektivwert, RMS)

für sinunsförmige Signale:

$$A_{\rm eff} = \frac{A}{\sqrt{2}}$$

Amplitude \boldsymbol{A} $[\ldots]$ Signalfunktion [...] a(t)TPeriodendauer [s] Zeit [s]

13.1.5. Scheitelfaktor (Crestfaktor)

 $k_{\rm s} = \frac{a_{\rm max}}{A_{\rm eff}}$

Effektivwert A_{eff} Spitzenwert Crestfaktor [1]

 $[\ldots]$

13.1.6. Formfaktor

 $k_{\rm f} = \frac{A_{\rm eff}}{A_{\rm |m|}}$

Effektivwert Betragsmittel- [...] $A_{|\mathbf{m}|}$ wert

 $k_{\rm f}$

Formfaktor [1]

13.1.7. Effektivwert eines zusammengesetzten, mehrfrequenten Signals

 $A_{\text{eff}} = \sqrt{\sum_{n=0}^{N} A_{\text{eff}_n}^2}$

 $A_{\rm eff}$ Effektivwert $[\ldots]$

13.2. Leistung

Beispiel mit Induktiver Last

$$\underline{S} = \underline{U}\underline{I}^* = \frac{\underline{U}^2}{\underline{Z}^*}$$

$$\underline{S} = P + jQ$$

$$P = UI\cos(\varphi) = Re(S)$$

$$Q = UI\sin(\varphi) = Im(S)$$

$$\cos(\varphi) = \frac{P}{S} \quad \sin(\varphi) = \frac{Q}{S}$$

- Scheinleistung [VA] S
- Р Wirkleistung [W]
- Q Blindleistung [Var] Ι Strom [A]
- U Spannung
- [V]Phase φ [rad]
- Z Impedanz $[\Omega]$

13.2.1. Leistung und Leistungsanpassung bei Quellen

$$\underline{S} = U_0^2 \frac{Z_a}{|Z_i + Z_a|^2}$$

$$P = U_0^2 \frac{R_a}{(R_a + R_i)^2 + (X_a + X_i)^2}$$

Bei Leistungsanpassung:

$$X_a = -X_i$$
 bzw. $R_a = R_i$

$$\underline{Z}_a = \underline{Z}_i^*$$

$$P_{max} = \frac{U_0^2}{4R_i}$$

$$\underline{Y}_a = \underline{Y}_i^*$$

$$P_{max} = \frac{I_C^2}{4G_i}$$

- Scheinleistung [VA]
- Р Wirkleistung W
- Strom AU Spannung
- [V]**Impedanz** $[\Omega]$
- Υ Admittanz
- [S]X Reaktanz $[\Omega]$
- R Widerstand $[\Omega]$
- G Leitwert [S]

13.2.2. Effektivwert und Leistung

$P = \frac{U_{\text{eff}}^2}{R} = I_{eff}^2 R$
--

Р Leistung [W]R $[\Omega]$ Widerstand U Spannung [V]

13.3. Energie

	$W(t) = \int_0^t P(\tau)d\tau$	W P t	Energie Leistung Zeit	[<i>J</i>] [<i>W</i>] [<i>s</i>]
--	--------------------------------	-------------	-----------------------------	--

13.4. Komplexe Darstellung sinusförmiger Vorgänge

Hintransformation:

$$a(t) = A\cos(\omega t + \phi)$$

$$\underline{a}(t) = A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

$$\underline{a}(t) = Ae^{j(\omega t + \phi)} = Ae^{j\phi}e^{j\omega t} = \underline{A}e^{j\omega t}$$

$$\underline{A} = Ae^{j\phi}$$

Rücktransformation:

$$\underline{B}=Be^{j\beta}$$

$$\underline{b}(t) = \underline{B}e^{j\omega t} = Be^{j\beta}e^{j\omega t} = \underline{A}e^{j\omega t}$$

$$\underline{b}(t) = B\cos(\omega t + \beta) + jB\sin(\omega t + \beta)$$

$$b(t) = \operatorname{Re}\{\underline{b}(t)\} = B\cos(\omega t + \beta)$$

A, B Amplitude [V]

[V] a, b Signal [V] ϕ , β Phase [rad]

 ω Winkelge- $\left[\frac{1}{s}\right]$ schwin-

 $\begin{array}{cc} & \text{digkeit} \\ t & \text{Zeit} & [s] \end{array}$

13.5. Komplexe Darstellung von Impedanz und Admittanz

Impedanz-Ebene:

$$jX$$
 RL-Glied Z R RC-Glied

Admittanz-Ebene:

$$jB$$
 RC-Glied $\underline{\underline{Y}}$ \underline{G} RL-Glied

 $\underline{Z} = \frac{\underline{u}(t)}{i(t)} = \frac{\underline{U}}{I} = \frac{\underline{U}_{\text{eff}}}{I_{\text{eff}}} = R + jX$

$$\underline{Y} = \frac{1}{\underline{Z}} = G + jB$$

$$\underline{U} = \underline{Z}\underline{I}$$
 bzw. $\underline{I} = \underline{Y}\underline{U}$

$$\sum_{ ext{Kreis}} \underline{U}_i = 0$$
 $\sum_{ ext{Trennbündel}} \underline{I}_i = 0$

Serieschaltung: $\underline{Z}_s = \sum_{i=1}^N \underline{Z}_i$

Parallelschaltung: $\underline{Y}_p = \sum_{i}^{N} \underline{Y}_i$

U, u Spannung [V] I, i Strom [I]

R Widerstand $[\Omega]$

G Leitwert [S]

Z Impedanz $[\Omega]$ Y Admitanz [S]

Y Admitanz [S] X Reaktanz $[\Omega]$

B Suszeptanz [S]

13.6. Klemmgrössen von Schaltelementen

13.6.1. Allgemein

q(t) =	$\int_{t_a}^t i(\tau) d\tau$
	t_a

$$i(t) = \frac{dq(t)}{dt}$$

$$p(t) = \frac{dW}{dt}$$

$$P_{at} = \frac{1}{t - t_a} \int_{t_a}^{t} p(\tau) d\tau$$

$$w_{at} = \int_{t_a}^t p(\tau) \, d\tau$$

i Strom [A] u Spannung [V] q Ladung [C] p Leistung [W] w Gespeicherte [J]Energie

 t, τ Zeit [s]

13.6.2. Ohm'sche Widerstände

$u(t) = Ri(t)$ $i(t) = Gu(t)$ $p(t) = u(t)i(t)$ $\underline{Z}_R = R$ $\underline{Y}_R = \frac{1}{R} = G$	i Strom $[A]$ u Spannung $[V]$ R Widerstand $[\Omega]$ G Leitwert $[S]$ p Leistung $[W]$ Z Impedanz $[\Omega]$ t, τ Zeit $[s]$	
---	---	--

13.6.3. Kapazitäten

13.6.4. Induktivitäten

Zeitbereich:

$$\Psi(t) = Li(t)$$

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{t_a}^t u(\tau) d\tau + i(t_a)$$

$$p(t) = u(t)i(t)$$

$$w(t) = \frac{1}{2}Li^2(t)$$

Frequenzbereich:

$$\underline{Z}_L = j\omega L = sL$$

$$\underline{Y}_L = \frac{1}{j\omega L} = \frac{1}{sL} = -j\frac{1}{\omega L}$$

Gegeninduktion:

$$u_{12}(t) = \pm M \frac{di_2(t)}{dt}$$

$$\underline{Z}_M = j\omega M$$

$$\underline{Y}_{M} = \frac{1}{j\omega M} = -j\frac{1}{\omega M}$$

induktive Kopplung:

$$u_1(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt}$$

i	Strom	[A]
и	Spannung	[V]
q	Ladung	[<i>C</i>]

$$\begin{bmatrix} Z & \text{Impedanz} & [\Omega] \\ Y & \text{Admitanz} & [S] \end{bmatrix}$$

$$Y$$
 Admitanz S w Kreisfrequenz S Laplaceope- S

$$M$$
 Gegeninduk- $\left[\frac{Vs}{A}\right]$ tivität

$$L$$
 Induktivität $\left[\frac{Vs}{A}\right]$ Ψ Spulenfluss $\left[Vs\right]$

$$p$$
 Leistung $[W]$ w Gespeicherte $[J]$

$$t, \tau$$
 Zeit $[s]$

Energie

13.7. Zeigerdarstellung Komplexer Klemmgrössen

Alle Spannungen und Ströme am folgenden Netzwerk sind graphisch mittels Zeigerdiagramm darzustellen.

- 1. Impedanzen \underline{Z} aller Elemente berechen.
- 2. Strom \underline{I}_{RC} auf reeller Achse Re' wählen.

- 3. Spannungen an \underline{R} und \underline{C} aus \underline{I}_{RC} und \underline{Z} berechnen und einzeichnen.
- 4. Spannung \underline{U}_L entspricht der Summe von \underline{U}_R und \underline{U}_C .

Korrekturfaktor:
$$k = \frac{\underline{U}_{Nenn}}{\underline{U}_{gemessen}}$$

- 5. Strom \underline{I}_L aus \underline{U}_L und \underline{Z}_L berechnen und einzeichnen.
- 6. Strom \underline{I} entspricht der Summe von \underline{I}_{RC} und \underline{I}_{L} .
- 7. Achsen neu bestimmen: Re in Richtung \underline{U}_L .

13.7.1. Impedanztransformation

R seriel zu \vec{Z}_{ist} : $ \begin{array}{c} \vec{Z}_{ist} \\ \vec{R} \end{array} $	$ec{Z}_{soll}$ bewegt sich auf einer Geraden parallel zur R-Achse nach rechts.	Z_{ist} Z_{soll}	Impedanz, die transfor- miert werden soll Impedanz,	$[\Omega]$
L seriel zu \vec{Z}_{ist} : $ \begin{array}{c c} \vec{Z}_{ist} & & \\ \vec{Z}_{ist} & & \\ \vec{L} & & \vec{Z}_{ist} \end{array} $	$ec{Z}_{soll}$ bewegt sich auf einer Geraden parallel zur X-Achse nach oben.	X R L	nach Trans- formation Blindwider- stand Widerstand Induktivität	$[\Omega]$ $[\Omega]$ $[H]$
C seriel zu \overline{Z}_{ist} : $ \begin{array}{c c} Z_{ist} & Z_{ist} \\ \overline{Z}_{soll} & \overline{R} \end{array} $	$ec{Z}_{soll}$ bewegt sich auf einer Geraden parallel zur X-Achse nach unten.	C	Kapazität	[F]
R parallel zu \vec{Z}_{ist} : $ \begin{array}{c c} & jX & Z_{ist} \\ \hline & Z_{ist} & /R \\ \hline & R & Z_{soll} \\ \hline & R \end{array} $	$ec{Z}_{soll}$ bewegt sich auf einem Halbkreis, welcher auf der X-Achse beginnt, durch den Endpunkt des $ec{Z}_{ist}$ -Vektors geht um im Nullpunkt endet. Falls $R=0 ightarrow ec{Z}_{soll}= ec{0}$. Falls $R=\infty ightarrow ec{Z}_{soll}= ec{Z}_{ist}$.			
L parallel zu \vec{Z}_{ist} : $ \begin{array}{c c} Z_{ist} & X_L \\ \hline Z_{soll} & Z_{ist} \\ \hline M & R \end{array} $	$ec{Z}_{soll}$ bewegt sich auf einem Kreis mit Mittelpunkt M, welcher durch den Nullpunkt sowie durch den Endpunkt des $ec{Z}_{ist}$ - Vektors geht. Für $L \longrightarrow 0 \rightarrow ec{Z}_{soll} \longrightarrow 0$			
C parallel zu \vec{Z}_{ist} : $jX \qquad \qquad X_{C}$ $Z_{ist} \qquad Z_{soll}$ $C \qquad M \qquad R$	$ec{Z}_{soll}$ bewegt sich auf einem Kreis mit Mittelpunkt M, welcher durch den Nullpunkt und den Endpunkt des $ec{Z}_{ist}$ - Vektors geht. Für $C \longrightarrow \infty \to ec{Z}_{soll} \longrightarrow 0$			

13.7.2. Transformation von Z-Ebene zu Y-Ebene

Im Bild ist zu sehen wie gewisse Punktmengen von der Z-Ebene auf die Y-Ebene abgebildet werden.

13.8. Netzwerkanalyse

13.8.1. Maschenmethode / Kreisstrommethode

Es dürfen nur Spannungsquellen vorkommen, vorhandene Stromquellen sind zuerst umzuwandeln.

13.8.2. Trennbündelmethode / Knotenspannungsmethode

Es dürfen nur Stromquellen vorkommen, vorhandene Spannungsquellen sind zuerst umzuwandeln.

13.9. Darstellungsformen

13.9.1. Beispiel: Nyquistdiagramm, Ortskurve

$$C = \frac{U_{out}}{U_{in}}$$

$$R = 2k\Omega, L = 10mH, C = 10mF$$

$$C = \frac{G}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{1 - \omega^2 LC + j\omega \frac{L}{R}}$$

$$C = \frac{1}{$$

13.9.2. Bodediagramm

Vorgehen beim Erstellen eines Bodediagramms:

Netzwerkfunktion aufstellen
$$F(\omega) = \frac{a_0 + a_1 j\omega + a_2 (j\omega)^2 + \ldots + a_n (j\omega)^n}{b_0 + b_1 j\omega + b_2 (j\omega)^2 + \ldots + b_n (j\omega)^n}$$

In Produktform
$$F(\omega) = K_1 \prod_{i=1}^r \text{Standard terme}, K_1 = \frac{a_0}{b_0}$$

Standardterme
$$\begin{cases} (j\omega T)^n \\ (1+j\omega T)^n \\ \left[1+2\xi j\omega T+(j\omega)^2 T^2\right]^n \end{cases} \qquad n\pm 1,\pm 2...$$

$$1 + 2\xi j\omega T + (j\omega)^2 T^2 = \begin{cases} (1 + j\omega T_1)(1 + j\omega T_2) & \text{für } \xi > 1\\ (1 + j\omega T)^2 & \text{für } \xi = 1\\ \text{nicht aufspaltbar} & \text{für } \xi < 1 \end{cases}$$

Normierung

• Frequenz: Bezugsfrequenz $\omega_0 = \frac{1}{T_0} \Longrightarrow$ normierte Frequenz $\Omega = \frac{\omega}{\omega_0} = \omega T_0$ Beispiele: $\omega_0 = \frac{1}{T} \Longrightarrow \Omega = \omega T$ oder $\omega_0 = 1\frac{1}{s} \Longrightarrow \Omega = \omega 1s$

• Wert: Betzugswert
$$K_0 \Longrightarrow$$
 normierte Konstante $K = \frac{K_1}{K_0}$
Beispiel: $K_0 = K_1 \Longrightarrow K = 1$

13. WECHSELSTROMLEHRE

Normierte Netzwerkfunktion $F(\omega) \Longrightarrow F_n(\Omega) = F_n(\omega T_0) = F_n(\frac{\omega}{\omega_0})$ Normierte Standardterme

$$(j\omega T)^{n} \implies (j\Omega \frac{T}{T_{0}})^{n}$$

$$(1+j\omega T)^{n} \implies (1+j\Omega \frac{T}{T_{0}})^{n}$$

$$\left[1+2\xi j\omega T+(j\omega)^{2}T^{2}\right]^{n} \implies \left[1+2\xi j\Omega \frac{T}{T_{0}}+(j\Omega)^{2}\left(\frac{T}{T_{0}}\right)^{2}\right]^{n}$$

Bodediagramm

- Betrag, Amplitudengang: $|G|/dB = \sum_{i=1}^r 20 \log_{10}\{|norm.Standardterme|\} + 20 \log_{10} K$ Argument, Phasengang: $\varphi = \sum_{i=1}^r arg\{norm.Standardterme\}$

P-Glied: Standardterm *K*

I-Glied: Standardterm $(j\omega T)^n$

Form:

 $(j\omega T)^n$

Normalisiert:

 $(j\omega \frac{T}{T_0})^n$

Amplitude: $|G| = \omega^n T^n$

 $|G| \Rightarrow Gerade$

Steigung: $n \cdot 20 \frac{dB}{DK}$

Falls $\Omega = \frac{T_0}{T} \Rightarrow |G| = 0$

Phase φ :

 $\varphi = n \cdot 90^{\circ}$

Siehe auch S.165

 $\frac{G_a}{G_b} = \frac{\omega_a^n}{\omega_b^n},$ $n=\pm 1$

- K Konstante
- [1] G Verstärkung [dB]Phase φ
- [1] Exponent n
- Τ Periode
- T_0 Periode $\left[\frac{1}{s}\right]$ Kreisfrequenz w
- Ω Normierte [1] Frequenz

PT₁-Glied: Standardterm $(1 + j\omega T)^n$

Form:

 $(1+j\omega T)^n$

Normalisiert:

$$\left(1+j\Omega\frac{T}{T_0}\right)^n$$

Amplitude: $|G| = \sqrt{1 + \omega^2 T^2}$ Für $\Omega \ll \frac{T_0}{T}$: $|G| \approx 0 \frac{dB}{DK}$ Für $\Omega \gg \frac{T_0}{T}$: $|G| \approx n \cdot 20 \frac{dB}{DK}$

Knick:

Bei $\Omega = \frac{T_0}{T} : |G| = n \cdot 3dB$

Phase: $\varphi = \arctan(\omega T)$

Für $\Omega \ll \frac{T_0}{T} : \varphi \approx 0^\circ$ Für $\Omega \gg \frac{T_0}{T} : \varphi \approx n \cdot 90^\circ$ Für $\Omega = \frac{T_0}{T} : \varphi = n \cdot 45^\circ$

K Konstante [1] [dB]G Verstärkung

Phase φ

T Periode [s] T_0 Periode [s]

Kreisfrequenz ω [1]Normierte Ω

Frequenz

13. WECHSELSTROMLEHRE

PT₂-Glied: Standardterm $\frac{1}{1+2\xi j\omega T+(j\omega T)^2}$

Je kleiner ξ ist, desto schneller springt die Phase Form:

$$\frac{1}{1+2\xi j\omega T+(j\omega)^2T^2}$$

Normalisiert:

$$\frac{1}{1+2\xi j\Omega\frac{T}{T_0}+(j\Omega)^2\left(\frac{T}{T_0}\right)^2}$$

Amplitude:

$$|G| = \sqrt{(1 - \omega^2 T^2)^2 + (\omega 2\xi T)^2}$$

Für $\Omega \ll \frac{T_0}{T} : |G| \approx 0 \frac{dB}{DK}$
Für $\Omega \gg \frac{T_0}{T} : |G| \approx -40 \frac{dB}{DK}$
Überschwingen, Knick:

 $\Omega = \frac{T_0}{T} : |G| = -20 \log_{10}(2\xi)$

Phase:
$$\varphi = \arctan(\frac{\omega 2\xi T}{1 - \omega^2 T^2})$$

Für
$$\Omega \ll \frac{T_0}{T} : \varphi \approx 0^\circ$$

Für $\Omega \gg \frac{T_0}{T} : \varphi \approx -180^\circ$
Für $\Omega = \frac{T_0}{T} : \varphi = -90^\circ$

Für
$$\Omega = \frac{T_0^1}{T} : \varphi = -90^\circ$$

K Konstante [1] GVerstärkung [dB]

φ Phase T[s]Periode

 $\frac{1}{T}$ $\left[\frac{1}{s}\right]$ Resonanzfrequenz

 T_0 Periode [s]

ξ Dämpfung [1] ω

Kreisfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ Normierte $\begin{bmatrix} 1 \end{bmatrix}$ Ω Frequenz

Totzeitglied: Standardterm $e^{-j\omega T_t}$

Form:

$$e^{-j\omega T_t}$$

Steigung: $0 \frac{dB}{DK}$

$$|G| = 1$$

$$\varphi = -\omega T_t$$

Totzeit T_t GVerstärkung

Phase

[dB]

[s]

Irregulärer Aufwärtsknick 1. Ordnung: Standardterm $(1 - i\omega T)^n$

Form:

$$(1-j\omega T)^n$$

Normalisiert:

$$\left(1-j\Omega\frac{T}{T_0}\right)^n$$

Amplitude:
$$|G| = \sqrt{1 + \omega^2 T^2}$$

Für $\Omega \ll \frac{T_0}{T}$: $|G| \approx 0 \frac{dB}{DK}$
Für $\Omega \gg \frac{T_0}{T}$: $|G| \approx n \cdot 20 \frac{dB}{DK}$

Für
$$\Omega \gg \frac{I_0}{T}$$
: $|G| \approx n \cdot 20 \frac{dB}{DK}$
Knick:

Bei $\Omega = \frac{T_0}{T} : |G| = n \cdot 3dB$

Phase: $\varphi = -\arctan(\omega T)$

Für $\Omega \ll \frac{T_0}{T} : \varphi \approx 0^\circ$ Für $\Omega \gg \frac{T_0}{T} : \varphi \approx n \cdot 90^\circ$

Für
$$\Omega = \frac{T_0}{T} : \varphi = n \cdot 45^\circ$$

K Konstante

[1] G Verstärkung [dB]

Phase φ TPeriode

[s][s] T_0 Periode Kreisfrequenz w

 $\left[\frac{1}{s}\right]$ Normierte Ω

Frequenz

Irregulärer Aufwärtsknick 2. Ordnung: Standardterm $1 - 2\xi j\omega T + (j\omega T)^2$

Je kleiner ξ ist, desto schneller springt die Phase Form:

$$1 - 2\xi j\omega T + (j\omega)^2 T^2$$

Normalisiert:

$$1 - 2\xi j\Omega \frac{T}{T_0} + (j\Omega)^2 \left(\frac{T}{T_0}\right)^2$$

Amplitude

$$\begin{aligned} |G| &= \sqrt{(1 - \omega^2 T^2)^2 + (\omega 2\xi T)^2} \\ \text{Für } \Omega &\ll \frac{T_0}{T} : |G| \approx 0 \frac{dB}{DK} \\ \text{Für } \Omega \gg \frac{T_0}{T} : |G| \approx +40 \frac{dB}{DK} \end{aligned}$$

Für
$$\Omega \gg \frac{T_0}{T}$$
: $|G| \approx +40 \frac{dB}{DK}$
Überschwingen, Knick:

 $\Omega = \frac{T_0}{T} : |G| = -20 \log_{10}(2\xi)$

Phase:
$$\varphi = -\arctan(\frac{\omega 2\xi T}{1-\omega^2 T^2})$$

Für
$$\Omega \ll \frac{T_0}{T} : \varphi \approx 0^\circ$$
Für $\Omega \gg \frac{T_0}{T} : \varphi \approx -180^\circ$
Für $\Omega = \frac{T_0}{T} : \varphi = -90^\circ$

K Konstante [1] [dB]G Verstärkung

Phase φ TPeriode [s]

Resonanzfre-

quenz T_0 Periode [s]

[1] ξ Dämpfung $\left[\frac{1}{s}\right]$ Kreisfrequenz w

Normierte [1] Ω Frequenz

13.9.3. Pol-Nullstellendiagramm

Ausser *K* ist die gesamte Netzwerkfuntion aus dem Pol- Nullstellendiagramm ersichtlich.

 $s = \sigma + jw$ (Frequenzgang: $\sigma = 0$)

Netzwerkfunktion:

$$F(s) = K \frac{(s - p_1)(s - p_2) \dots (s - p_n)}{(s - q_1)(s - q_2) \dots (s - q_n)}$$

Nullstellen $\Rightarrow \times$ in Diagramm Polstellen $\Rightarrow \bigcirc$ in Diagramm

Pol nahe an $j\omega$ -Achse \Rightarrow Überhöhung im Amplitudengang

- K Konstante [1] s komplexe [1] Frequenz
- σ (Laplace) Re(s) [1]
- ω Kreisfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ p von Polynom $\begin{bmatrix} 1 \end{bmatrix}$ q von Polynom $\begin{bmatrix} 1 \end{bmatrix}$

13.10. Eigenschaften des PT₁-Glied

Beispielschaltung

 $G = \frac{1}{1 + j\omega T}$

Beispiel:

$$T = RC$$

Sprungantwort:

$$u_o = k \left[1 - e^{-\frac{t}{T}} \right]$$

$$T\dot{u}_o + u_o = ku_{in}$$

G	Verstärkung	[dB]
T	Periode	[s]
ω	Kreisfrequenz	$\left[\frac{1}{s}\right]$
R	Widerstand	$[\Omega]$
C	Kapazität	[F]
u_o	u-Āusgang	[V]
u_{in}	u-Eingang	[V]
t	Zeit	[s]

Faktor

k

[1]

13.11. Eigenschaften des PT₂-Glied

Beispielschaltung

Sprungantwort:

$$R = 100\Omega$$

$$R = 30\Omega \cdot \cdot \cdot \cdot$$

$$R = 0\Omega$$

2
1.6
1.2
0.8
0.4

0.25

Zeit $t/\cdot 10^{-3}s$

0.5

$$G = \frac{1}{1 + 2\xi j\omega T + (j\omega)^2 T^2}$$

Beispiel:

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}} \qquad T = \sqrt{LC}$$

Je kleiner ξ desto mehr schwingt die Schaltung. Bei aktiven Schaltungen kann $\xi < 0$ werden.

$$\omega_e = \omega_0 \sqrt{1 - D^2}, \quad 0 < D < 1$$

$$\omega_0 = \frac{1}{T}$$

$$\omega_r = \omega_0 \sqrt{1 - 2D^2}, \quad D < 0.707$$

Sprungantwort:

$$u_o = k \left[1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} x \right]$$

$$x = \sin\left\{\sqrt{1 - \xi^2}\omega_0 t + \arccos(\xi)\right\}$$

$$T^2\ddot{u}_o + 2\xi T\dot{u}_o + u_o = ku_{in}$$

- G Verstärkung [dB]Phase [rad] φ
- TPeriode [s]
- ξ Dämpfung [1]
- Kreisfrequenz ω Eigenfrequenz $\left[\frac{1}{s}\right]$ ω_e
- Knickfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ Resonanzfre- $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ ω_0
- ω_r quenz
- R Widerstand $[\Omega]$
- L Inuktivität [H]
- Kapazität C[F][V]u-Ausgang u_o

Faktor

k

[V]u-Eingang u_{in} Zeit [s]t

[1]

 $x = \sin\left\{\sqrt{1 - \xi^2}\omega_0 t + \arccos(\xi)\right\}$

13.12. Verküpfung von Blockdiagrammen

$\rightarrow G_1 \rightarrow G_2 \rightarrow C \rightarrow G \rightarrow$	$G = G_1 \cdot G_2$	G	Übertra- gungsfunkti-	[1]
$\begin{array}{c c} & \xrightarrow{G_1} & \xrightarrow{\pm} & \updownarrow & \xrightarrow{G} \end{array}$	$G = G_1 \pm G_2$		on	
$\downarrow G_V \qquad \Box G \qquad \Box$	$G = \frac{G_V}{1 + G_V G_R}$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$G = \frac{1}{G_R} \frac{G_V G_R}{1 + G_V G_R}$			

Teil III. Energie und Antriebstechnik

14. Dreiphasensysteme

Maschensatz:

$$\underline{U}_1 + \underline{U}_2 + \underline{U}_3 = 0$$

$$\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$$

[V]<u>U</u> Spannung (komplex)

Strom (kom- [A]<u>I</u> plex)

14.1. Sternschaltung

Strang-Sternspannungen:

$$\underline{U}_{Str1} = \underline{U}_1 = \underline{U}_1 - \underline{U}_2
\underline{U}_{Str2} = \underline{U}_2 = \underline{V}_1 - \underline{V}_2$$

$$\underline{\underline{U}_{Str3}} = \underline{\underline{U}_2} - \underline{\underline{V}_1} - \underline{\underline{V}_2}$$

$$\underline{\underline{U}_{Str3}} = \underline{\underline{U}_3} = \underline{\underline{W}_1} - \underline{\underline{W}_2}$$

Aussenleiterspannungen:

$$\underline{U}_{12} = \underline{U}_1 - \underline{U}_2 \quad \angle(\underline{U}_1, \underline{U}_2) = 120^{\circ}
\underline{U}_{23} = \underline{U}_2 - \underline{U}_3$$

$$\underline{U}_{23} = \underline{U}_2 - \underline{U}_3$$
$$\underline{U}_{31} = \underline{U}_3 - \underline{U}_1$$

$$U = U_{Str}\sqrt{3}$$

$$I = I_{Str}$$

U Spannung Strangspan-

$$\begin{array}{cc} & \text{nung} \\ \underline{I} & \text{Strom} \end{array} \hspace{0.5cm} [A]$$

14.2. Dreieckschaltung

Strang-Sternspannungen:

$$U_{Str1} = \underline{U}_1 = \underline{U}_1 - \underline{U}_2$$

$$U_{Str2} = \underline{U}_2 = \underline{V}_1 - \underline{V}_2$$

$$U_{Str3} = \underline{U}_3 = \underline{W}_1 - \underline{W}_2$$

Aussenleiterspannungen:

$$\begin{array}{ll} \underline{U}_{12} = \underline{U}_1 & \angle(\underline{U}_1, \underline{U}_2) = 120^{\circ} \\ \underline{U}_{23} = \underline{U}_2 \end{array}$$

$$\underline{\underline{U}_{23}} = \underline{\underline{U}_2}$$
$$\underline{\underline{U}_{31}} = \underline{\underline{U}_3}$$

$$U = U_{Str}$$

$$I = 2I_{Str}\cos(30^\circ) = I_{Str}\sqrt{3}$$

 $\begin{array}{ccc} \underline{U} & \text{Spannung} & [V] \\ \overline{U}_{Str} & \text{Strangspan-} & [V] \\ & \text{nung} \end{array}$

 \underline{I} Strom [A]

14.2.1. Leistungen bei Stern- und Dreieckschaltung

 $S_{Str} = U_{Str}I_{Str}$

$$S = 3S_{Str} = \sqrt{3}UI$$

$$P = S\cos(\varphi) = \sqrt{3}UI\cos(\varphi)$$

$$Q = S\sin(\varphi) = \sqrt{3}UI\sin(\varphi)$$

$$W = Pt = \sqrt{3}UI\cos(\varphi)t$$

$$W_b = Qt = \sqrt{3}UI\sin(\varphi)t$$

 $egin{array}{ll} U & {
m Spannung} & [V] \\ I & {
m Strom} & [A] \\ \end{array}$

S Scheinleitung [VA]

Wirkleistung [W]

P Wirkleistung [W]Q Blindleistung [Var]W Wirkarbeit [Ws]

W Wirkarbeit [Ws] W_b Blindarbeit [Vars] t Zeit [s]

15. Elektromotoren und Generatoren

15.1. Allgemein

15.2. Gleichstrommaschine

Ersatzschaltbild Ankerkreis Falls $U > U_i \rightarrow \text{Motorbetrieb}$, sonst Genratorbetrieb

$$U_i = k_1 \Phi n$$

$$U = U_i + R_A I L_a \frac{dI}{dt}$$

$$I = \frac{U - U_i}{R_A} (\text{stationär})$$

$$n_0 = \frac{U}{k_1 \Phi}$$

$$P_{el} = U_i I \pm_{Gen}^{Mot} (I^2 R_A)$$

$$M = \frac{k_1}{2\pi} \Phi I = \frac{P_{mech}}{2\pi n}$$

$$M = k_2 \Phi I$$

$$n = \underbrace{\frac{U}{k_1 \Phi}}_{Leerlaufterm} - \underbrace{\frac{R_A M}{k_1 k_2 \Phi^2}}_{Lastterm}$$

$$M_A = \frac{k_2 \Phi U}{R_A}$$

 U_i Ankerspan- [V] nung induziert

U Ankerspan- [V] nung

I Strom [A]

n Drehzahl [1] n_0 n-Leerlauf [1]

P Leistung [W]

 R_A R-Anker $[\Omega]$ L_a L-Anker $[\Omega]$

 Φ magn. Fluss [Wb]

M Drehmoment [Nm] M_A M-Anlauf [Nm]

 k_1 Maschinen- [1] konst.

 k_2 Maschinen- [1] konst.

15.2.1. Fremderregte Gleichstrommaschine (GNSM)

 $M = \frac{k_2 \Phi U}{R_A} - \frac{k_1 k_2 \Phi^2 n}{R_A}$

Drehzahlsteuerung:

1. Änderung des Erregerfeldes

2. Änderung der Ankerspannung

3. Vergrösserung des Ankerwiderstandes

U Ankerspan- [V] nung

 $egin{array}{lll} R_A & ext{R-Anker} & [\Omega] \\ M & ext{Drehmoment} & [Nm] \\ \Phi & ext{magn. Fluss} & [Wb] \\ \end{array}$

 k_1 Maschinen- [1] konst.

 k_2 Maschinen- [1] konst.

15.2.2. Nutzbremsung mit fremderregter Gleichstrommaschine

15.3. Gleichstrom Nebenschlussmaschine (GNSM)

15.4. Gleichstrom Reihenschlussmaschine (GRSM)

$$\sum R_A = R_A + R_B + R_D$$

$$U_i = k_1 c * In = k_3 In$$

$$M = I^2 \frac{k_3}{2\pi} = I^2 k_4$$

$$n = \frac{U}{\sqrt{2\pi k_3 M}} - \frac{\sum R_A}{k_3}$$

$$M = \frac{k_3}{2\pi} \left(\frac{U}{k_3 n + \sum R_A} \right)^2$$

$$M_A = \frac{k_3}{2\pi} \left(\frac{U}{\sum R_A}\right)^2$$

Die änderung der Drehzahl ist wie bei GNSM

n Drehzahl [1]

 $egin{array}{ll} R_A & ext{R-Anker} & [\Omega] \ R_B & ext{R-Wendepol-} & [\Omega] \ & ext{wicklung} \end{array}$

 R_D R-Reihen- $[\Omega]$ schlusswick-

 $\begin{array}{ccc} & \text{lung} \\ U_i & \text{Ankerspan-} & [V] \\ & \text{nung} & \text{indu-} \end{array}$

M Drehmoment [Nm] M_A M-Anlauf [Nm]

k Maschinen- [1] konst.

15.5. Drehstrom Synchrongenerator (DSG)

$$+j \ \underline{I} \qquad \qquad \begin{array}{c} \downarrow \\ \underline{II} \qquad \underline{II} \\ \underline{IV} \qquad \qquad \underline{IV} \\ \underline{II} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \\ \underline{II} \qquad \qquad \underline{IV} \\ \underline{II} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \\ \underline{II} \qquad \qquad \underline{IV} \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \underline{IV} \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \underline{IV} \qquad \qquad \underline{IV} \qquad \underline$$

I, IV: Motorbetrieb

II,III: Generatorbetrieb

I,II: Abgabe induktive Blindleis $tung = \ddot{U}bererregt$

III, IV: Aufnahme kapazitive Blindleistung = Untererregt

$$n_{syn} = \frac{60f}{p}$$

$$U_i = z \frac{d\Phi}{dt}$$

$$|U_i| = Blv_R z$$

$$I_w = I\cos(\varphi)$$
 $I_b = I\sin(\varphi)$
 $I^2 = I_w^2 + I_b^2$

$$I^2 = I_{vv}^2 + I_{v}^2$$

$$\underline{I} = I_w + jI_b = \frac{j}{X_d}(\underline{U}_p - \underline{U}_{Kl})$$

$$\underline{U}_{Kl} = \underline{U}_p + jX_d\underline{I}$$

$$X_d = X_H + X_\sigma$$

Leerlauf:

$$\frac{I_E}{I_{E0N}} = \frac{U_p \sqrt{3}}{U_N}$$

Kurzsschluss:

$$X_d = \frac{U_p}{I_{K0}}$$

$$x_d = X_d \frac{I_N \sqrt{3}}{U_N} = X_d \frac{I_N}{U_{Kl}} = \frac{1}{k_0}$$

Drehzahl n_{syn} Fre- [Hz](Netz-) quenz

Polpaarzahl U_i indu- [V]Span. ziert

 U_{KI} Span. Klem- [V]men

1 Leiterlänge Anz. Windun- [1] gen

Luftspaltgesch $\sqrt[m]{\frac{w}{s}}$ Induktion $\left[\frac{Vs}{m^2}\right]$ v_R В

Φ magn. Fluss [Wb]

Wirkstrom I_w A I_b Blindstrom [A]

 X_d synch.Reakt $[\Omega]$ relative $[\Omega]$ x_d

synch.Reakt Erregerstrom I_{E}

[A]**U-Nenn** [V]verkettet

 k_0 Leerlauf-[1] Kurzschluss Verhältnis

15.6. DSG im Inselbetrieb

X_d synch.Reakt $[\Omega]$

15.7. Belastung des DSG am starren Netz

$$U_p = \sqrt{\frac{U_{Netz}^2}{3} + X_d^2 I^2 + 2\frac{U_{Netz}}{\sqrt{3}} X_d I \sin(\varphi)}$$

$$falls \ U_N = U_{Netz}:$$

$$\frac{U_p \sqrt{3}}{U_N} = \sqrt{1 + x_d^2 \left(\frac{I}{I_N}\right)^2 + 2x_d \frac{I}{I_N} \sin(\varphi)}$$

$$U_N \quad U-Nenn \quad [V]$$

$$verkettet$$

$$X_d \quad synch.Reakt \quad [\Omega]$$

$$x_d \quad rel. \quad [\Omega]$$

$$synch.Reakt$$

$$I \quad Laststrom \quad [A]$$

$$\varphi \quad Phase \quad [rad]$$

15.8. Drehmoment und Stabilität des DSG am starren Netz

$P_{el} = \sqrt{3}U_{Netz}I\cos(\varphi)$ $P_{el} = 3U_{Str}I_{Str}\cos(\varphi)$ $U_{p}\sin(\vartheta) = IX_{d}\cos(\varphi)$ $P_{el} = \sqrt{3}U_{Netz}\frac{U_{p}}{X_{d}}\sin(\vartheta)$ $M_{mech} = \frac{P_{mech}}{2\pi n}$ $M_{el} = \frac{Q_{el}}{2\pi n}U_{Netz}\frac{U_{p}}{X_{d}}\sin(\vartheta)$ $M = c_{i}xl$ $c_{i} = \frac{3}{X_{d}2\pi n}$ $x = IX_{d}$ $C_{i} = U_{Netz}\cos(\varphi)$	U_{Netz} U_{Str} U_p P_{el} M_{el} n X_d I φ ϑ	Netzspannung Strangspan. Span. Polrad El- Wirkleistung Generatormo- ment Drehzahl synch.Reakt Laststrom Phase Lastwinkel	$egin{array}{c} [V] \ [V] \ [V] \ [W] \ [Mm] \ [rac{1}{min}] \ [\Omega] \ [A] \ [rad] \ $
$I = \frac{U_{Netz}}{\sqrt{3}}\cos(\varphi)$			

Teil IV. Elektronik

16. Diode

16.1. Ideale Diode

16.2. Konstantspannungsmodel

16.3. Arbeitspunktberechnung

16.4. Kennlinie

- Übergangsbereich П
- Ш Sperrbereich
- Durchbruchbereich

$$i_D = I_S(e^{\frac{u_D}{U_T}} - 1)$$

$$i_D = I_S(e^{\frac{u_D - r_b i_D}{mU_T}} - 1)$$

$$U_T = \frac{kT}{e} = 8.6 \cdot 10^{-5} \cdot T$$

 $U_T(300K) = 26mV$, $U_T(348K) = 30mV$, $U_T(393K) = 34mV$ Für normale Si-Diode gilt: $I_S = 10^{-12} A$, $r_b = 0.1 \Omega$, m = 1

Die vier Bereiche der Kennlinie:

- $-0.1V < u_D < 0.1V$
 - \Rightarrow Diodengleichung exakt verwenden

 \Rightarrow Diodengleichung wird: $i_D = |I_S|e^{\frac{it_D}{U_T}}$ Verhältnis zweier Spannungen:

$$\frac{I_{D2}}{I_{D1}} = e^{\frac{U_{D2}-U_{D1}}{U_T}} \rightarrow U_{D2} - U_{D1} = U_T \ln \frac{I_{D2}}{I_{D1}}$$
 III: $u_D < -0.1V$

 $i_D = -I_S$ oder $i_D = |I_S|$ IV: Siehe Zehner-Diode

- durch [A]Strom i_D
 - Diode
- Spannung [V] u_D über Diode
- U_T Temperatur-[V]
- spannung T**Temperatur** [K]
- Sättigungs-[A] I_{S} strom
- I_R Sperrstrom [A]
- Bahnwider- $[\Omega]$ r_b stand
- Korrekturfakt. [1] m
- k Bolzmannkonst.
 - $=1.38\cdot 10^{-23}$
- Elementarе [As]ladung $1.602 \cdot 10^{-19}$

16.4.1. Differentieller Widerstand

Für kleine Signale wird die Kennlinie der Diode durch eine Tangente (= r_d) approximiert.

$$r_d = \frac{du_D}{di_D} = \frac{1}{g_d} \approx \frac{U_T}{I_{D0}}$$

Falls m = 1 und $r_b = 0$ gilt:

$$g_d = \frac{di_D}{du_D} = I_S e^{\frac{u_D}{U_T}} \frac{1}{U_T} = \frac{i_D}{U_T}$$

- Differentieller $[\Omega]$ r_d Widerstand
- Differentieller [S] d_d Leitwert
- Strom durch [A] i_D Diode
- u_D Spannung [V]über Diode
- U_T Temperatur-[V]spannung
- Korrekturfakt. [1] m
- DC-Strom im [A] I_{D0} Arbeitspunkt

16.5. DC- und AC-Analyse von Diodenschaltungen

16.5.1. Vorgehen

- 1. Schaltung aufteilen in AC- und DC-Ersatzschltbild
- 2. In DC-Ersatzschaltung den Arbeitspunkt bestimmen (Konstantspannungsmodell)
- 3. Berechnen der dynamischen Widerstände im Arbeitspunkt (approximieren der Diodenkennlinie)
- 4. Kleinsignalanalyse (Lineare Netzwerktheorie)
- 5. Gesamtlösung setzt sich aus Arbeitspunkt und Wechselstromlösung zusammen

16.5.2. Kleinsignalanalyse

Arbeitspunktbestimmung

DC-Ersatzschaltung: Konstantspannungsmodell (siehe S. 130)

AC-Ersatzschaltung: Differentieller Widerstand (siehe S. 131)

Resultierendes Gleichungssystem:

$$\begin{vmatrix} i_D = \frac{U_{Q0} - u_D}{R_V} \\ i_D = I_S e \frac{u_D}{U_T} \end{vmatrix}$$

$$\begin{vmatrix} i_D = \frac{U_{Q0} - u_D}{R_V} \\ i_D = I_S e \frac{u_D}{U_T} \end{vmatrix}$$

$$i_D = 0 \qquad u_D <= U_E$$

$$i_D = \frac{1}{r_D(u_D - U_E)} \quad u_D => U_E$$

$$U_E = U_{D0} - I_{D0}rd$$

 U_F Flussspan. [V]

 R_V Vorwiderstand $[\Omega]$ U_{Q0} [V]Quellspan.

Arbeitsstrom I_{D0} [A]

[V] U_{D0} Arbeitspan.

 U_T Temperatur-[V]

spannung

Spannung [V] u_D über Diode

Strom durch [A] i_D Diode

 $I_{\mathcal{S}}$ Sättigungs-[A]strom

 U_E [V]Gleichspan.

16.5.3. Grosssignalanalyse

Grosssignalanalyse wird die Kennlinie durch eine Gerade durch die Punkte $0.1i_{Dmax}$ $0.9i_{Dmax}$ approximiert.

$$U_E = u_D(0.1I_{Dmax}) - 0.1I_{Dmax}r_F$$

$$r_F = \frac{\Delta u_D}{0.8 I_{Dmax}}$$

[V]Spannung u_D über Diode

Strom durch [A] i_D Diode

Diodenwider- $[\Omega]$ r_F stand

16.6. Z-Dioden

$$r_Z = \frac{du_Z}{di_Z}$$

Teperaturkoeffizient:

$$\alpha = \frac{\frac{dU_Z}{dT}}{U_Z}$$

 $\alpha < 0$ bei $U_Z < 5.6 V$

 $\alpha \approx 0$ bei $U_Z \approx 5.6V$

 $\alpha > 0$ bei $U_Z > 5.6V$

Temperaturkompensation durch Serieschaltung: $\alpha_1 U_{Z1} = -\alpha_2 U_{Z2}$

 r_Z Z-Widerstand $[\Omega]$

 r_d Differentieller $[\Omega]$

Widerstand

 U_Z Zehnersp. [V]

 U_F Flusssp. [V]

T Temperatur [K]

16.6.1. Z-Dioden zur Spannungsstabilisierung

$$I_{totmin} = \frac{U_{Smin} - U_{outmin}}{R}$$

$$I_{totmax} = \frac{U_{Smax} - U_{outmin}}{R}$$

$$I_{outmin} = I_{totmin} - I_{Lmax}$$

$$I_{outmax} = I_{totmax} - I_{Lmin}$$

$$P_{Zmax} = U_{outnom}I_{outmax}$$

Rippelunterdrückung:

$$u_{out} = u_S \frac{r_Z || R_L}{R + (r_Z || R_L)}$$

 I_{tot} I-Eingang [A]

 U_S Speisesp. [V] I_L Laststrom [A]

 U_{out} Ausgangssp. [V]

R Vorwiderstand $[\Omega]$

 R_L Lastwiderstand[Ω] P_7 P-Verslust [W]

 P_Z P-Verslust [W] r_Z Differentieller $[\Omega]$

Widerstand

 u_S Rippel am [V] Eingang

 u_{out} Rippel am [V] Ausgang

17. Bipolar Transistor

17.1. NPN- und PNP-Transistor

PNP:

$$i_E = i_C + i_B$$

$$i_C = Ai_F$$

$$B = \frac{A}{1 - A} = \frac{i_C}{i_B}$$

DC-Ersatzschaltung:

$$i_B = I_{SB}e^{\frac{u_{BE}}{U_T}}$$

$$i_B = I_{SB}e^{\frac{u_{BE}}{U_T}}$$
$$i_C = BI_{SB}e^{\frac{u_{BE}}{U_T}}$$

Α Stromver-[1] stärkung in B-Schaltung

= 0.9...0.998В Stromverstär- [1]

kung Basisstrom

 i_B [A]Kollektorstrom[*A*] i_C

Emitterstrom [A] i_E

Span. $B \rightarrow E$ [V] u_{BE}

Temp.-Span. [V] u_T Diode $B \rightarrow E$ ≈ 0.026

Stromquelle [A] i_{SB} zw. $C \rightarrow B$

17.2. Der ideale Transistor bei Gleichspannung

17.2.1. DC-Ersatzschaltung

17.3. Verstärkerschaltungen

17.3.1. Dynamische Innenwiderstände des Transistors

17.3.2. Emitterschaltug

$$A = \frac{u_{out}}{u_{in}} = -\frac{R_C}{R_E + r_E' + \frac{R_C}{u}}$$

$$A \approx -\frac{R_C}{R_E + r_E'}$$

Falls
$$R_E = 0$$
: $A = \frac{R_C || r_{CE}|}{r_E'}$

$$\mu = \frac{r_{CE}}{r_E'} \approx \frac{U_{Early}}{U_{temp}}$$

$$r_E = rac{U_{temp}}{I_E} = rac{r_{B'E}}{eta + 1}$$

$$r_E' = r_E + \frac{r_{BB'} + R_B}{\beta + 1}$$

$$r_{CE} = \frac{U_{Early} + U_{CE}}{I_C} \approx \frac{U_{Early}}{I_C}$$

$$r_{0C} \approx R_C$$
 $r_{0E} = r_{iE} || R_E$ $r_{0B} = r_{iB} || R_1 || R_2$

$$\mu$$
 max. theore- [1] tisch A

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter Ω

$$R_B$$
 R-Basis $[\Omega]$

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$ derstand

$$r_E$$
 innerer r- $[\Omega]$

$$I_{C}$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$

$$U_{Early}$$
 Early-Span. = $[V]$
20...400, typ .100

$$U_{temp}$$
 Temp-Span. [V] ≈ 0.026

Arbeitspunktberechnung

$$U_{0_{Ersatz-Quelle}} = U_0 = \frac{U^+}{R_1 + R_2} R_2$$

$$R_{i_{Frsatz-Ouelle}} = R_1 || R_2$$

$$U_{R_E} = \frac{(U_0 - U_{BE})(\beta + 1)R_E}{(R_1 || R_2) + (\beta + 1)R_E}$$

Falls
$$I_B = 0$$
: $U_{RE} = U_0 - U_{BE}$

$$I_B = \frac{(U_0 - U_{BE} - U_{R_E})}{R_1 || R_2}$$

$$I_C = I_E - I_B$$

$$U_{R_E} = I_C R_C \to U_C$$

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter $[\Omega]$

$$I_{C}$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$ U^+ Speise-Span. $[V]$

$$U_{BE}$$
 B-E-Span. $[V]$

$$\approx 0.6$$
 U_0 Span.der $[V]$

gedachten Quelle des Basisspan-

$$R_i$$
 R-Innen $[\Omega]$

17.3.3. Basisschaltung

$$A = \frac{u_{out}}{u_{in}} = \frac{R_C}{R_E + r_E' + \frac{R_C}{\mu}}$$

$$A \approx \frac{R_C}{R_E + r_E'}$$

Falls
$$R_E = 0$$

$$A = \frac{R_C \| r_{CE}}{r_E'}$$

$$\mu = rac{r_{CE}}{r_E'} pprox rac{U_{Early}}{U_{temp}}$$

$$r_E = rac{U_{temp}}{I_E} = rac{r_{B'E}}{eta + 1}$$

$$r_E' = r_E + \frac{r_{BB'} + R_B}{\beta + 1}$$

$$r_{CE} = \frac{U_{Early} + U_{CE}}{I_C} \approx \frac{U_{Early}}{I_C}$$

$$r_{0C} \approx R_C$$
 $r_{0E} = r_{iE} || R_E$ $r_{0B} = r_{iB} || R_1 || R_2$

$$\mu$$
 max. theore- [1] tisch A

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter $[\Omega]$

$$R_B$$
 R-Basis Ω

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$ derstand

$$r_E$$
 innerer r- $[\Omega]$ Emitter

$$I_C$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$

$$U_{Early}$$
 Early-Span. = $[V]$
20...400, typ .100

$$U_{temp}$$
 Temp-Span. [V] ≈ 0.026

17.3.4. Kollektorschaltung (Emitterfolger)

nicht invertierend:

$$A = \frac{u_{out}}{u_{in}} = \frac{R_E}{R_E + r_E'}$$

Falls
$$R_E \gg r_E'$$
 gilt :

$$A \approx 1$$

$$r_E' = r_E + \frac{r_{BB'} + R_B}{\beta + 1}$$

$$R_E$$
 R-Emitter $[\Omega]$

$$egin{array}{lll} R_B & ext{R-Basis} & [\Omega] \\ r_E & ext{innerer} & ext{r-} [\Omega] \\ \end{array}$$

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$ derstand

$$\beta$$
 AC-Stromver- [1] stärkung

18. Feldeffekt Transistor

18.1. Verschiedene Typen

JFET: Die Isoltion zwischen Kanal und Gate besteht aus einer pn-Sperrschicht (Diode).

MOSFET: Die Isoltion zwischen Kanal und Gate besteht aus einer SiO_2 -Schicht.

Der selbstsperrende MOSFET sowie der JFET werden mit der Gatespannung gesperrt.

Bulk ist meistens mit Source verbunden.

- G Gate
- D Drain
- B Bulk oder Substrat
- S Source

18.2. Der ideale MOSFET (Handrechnung)

gesättigten Bereich verhält sich ein FET annähernd wie eine Stromquelle, im ungesättigten Bereich stellt er einen Widerstand dar. Die Steuergrösse ist u_{GS} .

- Drainstrom fliesst nur falls $|u_{GS}| > |U_T|$.
- Gatestrom ist 0.

$$U_{DSsat} = U_{GS} - U_{T}$$
 $I_{Dsat} = K \frac{U_{DS}^{2}}{2}$
 $I_{D} = I_{D}^{\prime} \frac{W}{L}$
 $K = \frac{2I_{DSS}^{*}}{U_{T}^{2}}$

$$K = K' \frac{W}{L}$$
 $K' = \mu C_{ox}$ $k' \approx K'$ $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$

$$U_A \approx aL$$

Im ohmschen Bereich gilt:

$$U_{DS} < U_{DSsat}$$

$$I_D = K \left[(U_{GS} - U_T) U_{DS} - \frac{U_{DS}^2}{2} \right]$$

$$r_{DS} = \frac{dV_{DS}}{dI_D} = \frac{|U_A| + U_{DS}}{I_D}$$

Im gesättigten Bereich gilt:

$$U_{DS} > U_{DSsat}$$

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2$$

Nur bei n-Kanal:

$$U_T > 0$$

$$U_{GS} > U_T \Rightarrow I_D > 0$$

Nur bei p-Kanal:

$$U_T < 0$$

$$U_{GS} < U_T \Rightarrow I_D > 0$$

$$I_D$$
 Drainstrom [A] U_T Schwellspan- [V] nung (0.6...8) K Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparame-

ter
$$k'$$
 spez. $k \left[\frac{A}{V^2} \right]$ $(k'_N \approx 44 \cdot$

spez.
$$k \left[\frac{2}{V^2}\right]$$
 $(k'_N \approx 44 \cdot 10^{-6}, k'_P \approx 17 \cdot 10^{-6})$

$$k$$
 wie K jedoch $\left[\frac{A}{V^2}\right]$ gesättigt

$$U_{DS}$$
 DS-Spannung $[V]$ U_{GS} GS-Spannung $[V]$ I_{DSS}^* ev. anstel- $[A]$ le von K gegeben

$$W$$
 Kanalbreite $[m]$ L Kanallänge $[m]$ C_{ox} spez. Kapa- $[\frac{F}{m^2}]$ zität Kanal- Gate

[m]

W

$$\epsilon_{ox}$$
 Dielektrizitätskonst. $(SiO_2 = 3.9 \cdot 8.86 \cdot 10^{-3})$

$$t_{ox}$$
 Dicke Isola- $[m]$ tion Kanal-Gate

$$\mu$$
 Beweglichkeit $\left[\frac{cm^2}{sV}\right]$
Ladungs-
träger im
Kanal (Für *Si*:
 $\mu_p = 580$,
 $\mu_n = 230$)

$$r_{DS}$$
 dyn. Drain- $[\Omega]$
Source Wider-
stand

$$U_A$$
 Earlyspan- $[V]$ nung

L Gatelänge
$$[m]$$
a Early Faktor $[\frac{V}{\mu m}]$
 ≈ 6

18.3. Der reale MOSFET

Im Exp-Bereich, bei schwacher Inversion:

 $0 < U_{GS} < (U_T - 60mV)$ Im Quad-Bereich, bei starker Inversion:

 $U_{GS} > (U_T - 60mV)$

Dazwischen: Moderate Inversion

Im Leckstrombereich, im Schwellenbereich und im linearen Bereich existieren keine handlichen Formeln.

Im EXP-Bereich gilt:

 $U_{DSsat} \approx 5U_{temp} \approx 130mV$

ungesättigt: $U_{DS} \leq U_{DSsat}$

$$I_D = I_M e^{rac{U_{GS} - U_M}{nU_{temp}}} \left(1 - e^{rac{-U_{DS}}{U_{temp}}}
ight) (1 + \lambda U_{DS})$$

gesättigt: $U_{DS} \ge U_{DSsat}$

$$I_D = I_M e^{\frac{U_{GS} - U_M}{nU_{temp}}} (1 + \lambda U_{DS})$$

Im Quadratischen Bereich gilt:

$$U_{DSsat} = U_{GS} - U_T = \sqrt{2 \frac{I_D}{k}}$$

ungesättigt: $U_{DS} \le U_{DSsat}$

$$I_D = K \left[(U_{GS} - U_T)U_{DS} - \frac{U_{DS}^2}{2} \right] (1 + \lambda_{U_{DS}})$$

gesättigt: $U_{DS} \ge U_{DSsat}$

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2(1 + \lambda_{U_{DS}})$$

$$\lambda = \frac{1}{U_A}$$

$$U_T = T_{T0} \pm \Delta U_T \qquad N \rightarrow +$$

$$\Delta U_T = \gamma (\sqrt{U_{SB} \pm \Phi_0} \sqrt{\Phi_0})$$

$$U_{temp} = \frac{kT}{e} = 86 \frac{\mu U}{K} T$$

$$I_M = I_M' \frac{W}{L}$$

$$n = 1 + \frac{\gamma}{2\sqrt{U_{SB} + \Phi_0}}$$

$$K = K' \frac{W}{L} = \mu C_{oc} \frac{W}{L}$$

$$k = k' \frac{W}{L} = \mu C_{ox} \frac{W}{L}, \qquad \alpha = \frac{K'}{k'}$$

 I_D Drainstrom [A] I_M Drainstrom- [A]

grenze

 U_{GS} U Gate Source [V]

 U_{DS} Drain-Source [V]

 U_T Schwellsp. V

 U_{T0} $U_{T0N} \approx 0.6 [V]$ $U_{T0P} \approx 0.65$

 U_{SB} U Source Bulk [V]

 U_{temp} U-Temp. [V] $\approx 26 \cdot 10^{-3}$

 U_A Early-Span. [V]

 Φ_0 Fermi-Pot.= $\begin{bmatrix} V \end{bmatrix}$ $2\Phi_F = 0.6$

k Transkond. $\left[\frac{A}{V^2}\right]$

K k ungesättigt $\left[\frac{A}{V^2}\right]$

K', k' bei quadrati- $\left[\frac{A}{V^2}\right]$ schem Kanal typisch: $k_N =$

typisch: $k_N = 44 \cdot 10^{-6}$, $k_P = 17 \cdot 10^{-6}$

 α Transkond. [1] Verhältnis

 ≈ 1

n Subthreshold [1] Slope Faktor ≈ 1.5

 $\gamma \qquad \gamma \approx 0.6 \qquad [\sqrt{V}]$

 λ Mod-fakt. $\left[\frac{1}{V}\right]$ (0.01...0.05)

W Kanal-Länge [m]

L Kanal-Breite [m] T Temperatur [K]

 μ Beweglichkeit $\left[\frac{cm^2}{sV}\right]$

Ladungsträger

träger im Kanal (Für *Si*:

 $\mu_p = 580 ,$ $\mu_n = 230)$

18.4. Kleinsignal Ersatzschaltbild für tiefe Frequenzen

π -Ersatzschaltbild:

T-Ersatzschaltbild:

Die Kleinsignal-Ersatzschaltbilder gelten für nund p-Kanal FETs

Steilheit im Stromquellenbetrieb bei starker Inversion:

$$g_m = \frac{dI_D}{dU_{GS}} \approx K(U_{GS} - U_T)$$

$$g_m = K(U_{GS} - U_T)(1 + \lambda U_{DS})$$

$$g_m = \sqrt{2kI_D(1 + \lambda U_{DS})}$$

$$g_m \approx \sqrt{2kI_D}$$

$$\frac{g_{m1}}{g_{m2}} = \sqrt{\frac{I_{D1}}{I_{D2}}}$$

$$r_S = \frac{1}{g_m}$$

Ausgangswiderstand:

$$r_{DS} = \frac{U_A + |U_{DS}|}{|I_D|} \approx \frac{|U_A|}{|I_D|}$$

Steilheit im Stromquellenbetrieb bei schwacher Inversion:

$$g_m = \frac{dI_D}{dU_{GS}} = \frac{I_D}{nU_{temp}}$$

$$r_S = \frac{1}{g_m} = \frac{nU_{temp}}{I_D}$$

Body Steilheit im Stromquellenbetrieb bei starker Inversion:

$$g_{mB} = \frac{dI_D}{dU_{SB}}$$

$$g_{mB} = -g_m \frac{\gamma}{2\sqrt{U_{SB} + \Phi_0}}$$

$$g_{mB} = -g_{mB}(n-1)$$

 \Rightarrow Back-Gate hat die halbe Wirkung des Gate bei $U_{SB}=0$

- g_m Steilheit [1] Übertragungskennlinie
- g_{mB} Body Steil- [1] heit
- r_S int. Source $[\Omega]$ Widerstand
- I_D Drainstrom [A]
- U_T Schwellspan- V nung (0.6...8)
- U_A Early-Span. [V] U_{temp} U-Temp. [V] $\approx 26 \cdot 10^{-3}$
- U_{DS} Drain-Source- [V] Spannung
- U_{GS} Gate-Source- [V] Spannung
- U_{SG} Source-Gate- [V] Spannung
- U_{SB} Source-Bulk- [V] Spannung
- K Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparameter
- *n* Subthreshold [1] Slope Faktor ≈ 1.5
- λ Mod-fakt. $\left[\frac{1}{V}\right]$ (0.01...0.05)
- Φ_0 Fermi-Pot.= [V] $2\Phi_F = 0.6$
- $\gamma \qquad \gamma \approx 0.6 \qquad [\sqrt{V}]$

18.5. DC-Berechnung mit idealen MOSFET Gleichungen

		I		
	Bei Verstärkern muss der Arbeitspunkt im Sättigungsbereich liegen! \Rightarrow prüfen ob $u_{DS} > u_{GS} - U_T$	$egin{bmatrix} i_D \ U^+ \end{bmatrix}$	Drainstrom Speisespan- nung	$[A] \\ [V]$
n-Kanal:	$i_D = \frac{k}{2}(u_{GS} - U_T)^2$	U_T	Schwellspan- nung (0.68)	[V]
U^{+} R_{D}	$I: U_G - i_D R_S - u_{GS} = 0$	U_G	Gate- Spannung	[V]
$R_G i_G \downarrow U_{DS}$	$u_{GS} = \left(U_T - \frac{1}{kR_C}\right) +$	u_{DS}	Drain-Source- Spannung	[V]
$U_{G} \bigoplus R_{S} \sqcup U_{S}$	$u_{GS} = \left(u_T - \frac{1}{kR_S}\right) + \frac{1}{kR_S}$	u_{GS}	Gate-Source- Spannung	[V]
	$\sqrt{\frac{2}{kR_S}(U_G - U_T) + \frac{1}{(kR_S)^2}}$	u_{SG}	Source-Gate- Spannung	[V]
	y kits (kits)	R_G R_D	R-Gate R-Drain	$egin{array}{c} [\Omega] \ [\Omega] \end{array}$
p-Kanal:	$i_D = \frac{k}{2}(u_{GS} - U_T)^2$	R_S	R-Source Transkonduk-	$[\Omega]$
$U^+ - U_G \downarrow \stackrel{\uparrow}{\bigoplus} \stackrel{\downarrow}{\bigcup} \stackrel{\downarrow}{\bigcup} \stackrel{\downarrow}{\bigcup} \stackrel{\downarrow}{R_S}$	$I: U_G - i_D R_S - u_{GS} = 0$, K	tanzparame- ter	$\left[\frac{A}{V^2}\right]$
$U_{G} \stackrel{?}{\downarrow} R_{D} \stackrel{?}{\downarrow} U_{DS} $	$I: U_G - i_D R_S - u_{GS} = 0$ $u_{SG} = \left(U_T - \frac{1}{kR_S} \right) +$			
	$\sqrt{\frac{2}{kR_S}(U_{GP} - U_T) + \frac{1}{(kR_S)^2}}$			
	$U_{GP} = U^+ - U_G$			
Arbeitspunkt:	$u_{DS} = U^+ - i_D(R_S + R_D)$			

18.6. Der FET als Schalter

meistens: $R_S = 0$

Der Fet muss im ohmschen Bereich betrieben werden Schalter offen wenn $|u_{GS}| < |U_T|$ Schalter geschlossen wenn $|u_{GS}| \gg |U_T|$

Aus I und II:

$$\left| \begin{array}{lll} u_G - i_D R_S - u_{GS} & = & 0 \\ U^+ - i_D (R_S + R_D) - u_{DS} & = & 0 \end{array} \right|$$

$$\frac{di_D}{du_{DS}} = \frac{1}{r_{DS}}$$

$$\frac{di_D}{du_{DS}} = K(u_{GS} - U_T) - Ku_{DS}$$

$$r_{DS0} = \frac{1}{K(u_{GS} - U_T)}$$

eingeschaltet und $R_S = 0$:

$$i_D = \frac{U^+}{R_D + r_{DS0}}$$

eingeschaltet und $R_S \neq 0$:

$$u_G - \frac{R_S U^+}{R_S + R_D + r_{DS0}} - u_{GS} = 0$$

 $r_{DS0} = \frac{1}{K(U_{GS} - U_T)} = 0$

 U^+ Speisespan- [V] nung

 R_S R an Source $[\Omega]$ R_D R an Drain $[\Omega]$

 u_{GS} Gate-Source- [V] Spannung

 u_{DS} Drain-Source- [V] Spannung

 u_G Gate-Span. [V]

 r_{DS} dyn.Source $[\Omega]$ Widerstand

 r_{DS0} Einschalt- $[\Omega]$ widerstand $u_{DS} = 0$

 i_D Drainstrom [A] U_T Schwellspan- [V] nung (0.6...8)

K Transkond. $\left[\frac{A}{V^2}\right]$

18.7. Des FET als AC-Verstärker

18.7.1. Sourceschaltung

- invertierend
- Für tiefe bis mittlere Frequenzen
- r_{in} gross
- rout gross

$$A = \frac{u_{out}}{u_{in}}$$

$$A = -\frac{R_D}{R_S + r_S + \frac{R_S + R_D}{\mu}}$$

$$\mu = \frac{r_{DS}}{r_S} = A_{max}$$

Für grosses μ :

$$A \approx -\frac{R_D}{R_S + r_S}$$

Bei $R_S = 0$ gilt:

$$A = -\frac{R_D \| r_{DS}}{r_S}$$

Bei $R_S = 0$ und $R_D = \infty$ gilt:

$$|A| = \left| \frac{r_{DS}}{r_S} \right| = \mu$$

$$r_S = \frac{1}{g_m}$$

$$r_{DS} = \frac{U_{Early} + U_{DS}}{I_D} \approx \frac{U_{Early}}{I_D}$$

 U^+ Speisespan- [V] nung

 u_{in} Eingangssp. [V] u_{out} Ausgangssp. [V]

A Verstärkung [1] R_G R-Gate $[\Omega]$

 R_D R-Drain $[\Omega]$

 R_S R-Source $[\Omega]$

 r_S dyn.Source Ω Widerstand

 μ Max A bei [1] Sourceschal-

 g_m Steilheit [1] Kennlinie

 U_{Early} Early 5...100 [V] U_{DS} Drain-Source- [V] Spannnung

 I_D Drainstrom [A]

18.7.2. Gateschaltung

- nicht invertierend
- Für hohe Frequenzen
- r_{in} klein
- rout gross

$A = \frac{u_{out}}{u_{out}}$	U^+ Speisespan- $[V]$
u_{in}	nung
(1)	u_{in} Eingangssp. $[V]$
$A = \frac{R_D \left(1 + \frac{1}{\mu}\right)}{r_S + R_S + \frac{R_D + R_S}{\mu}} = \frac{R_D}{R_S + r_S}$	u_{out} Ausgangssp. $[V]$
$A = \frac{1}{R_{D} + R_{D} + R_{S}} = \frac{D}{R_{C} + r_{C}}$	A Verstärkung [1]
$r_S + R_S + \frac{\sigma}{\mu}$ $R_S + r_S$	R_D R-Drain Ω
1	R_S R-Source Ω
$r_S = \frac{1}{g_m}$	r_S dyn.Source Ω
g_m	Widerstand
11, +11, 11,	g_m Steilheit [1]
$r_{DS} = rac{U_{Early} + U_{DS}}{I_D} pprox rac{U_{Early}}{I_D}$	Kennlinie
I_D I_D	U_{Early} Early 5100 [V]
	U_{DS} Drain-Source $[V]$
	I_D Drainstrom A

μ

18.7.3. Drainschaltung

- nicht invertierend
- Spannungsfolger

 (A = 1), Impedanzwandler,
 Leistungstreiber
- r_{in} gross
- r_{out} klein

$A = \frac{u_{out}}{u_{in}}$
$A = -\frac{R_S}{R_S + r_S \left(1 + \frac{R_S}{r_{ds}}\right)}$
$r_S = \frac{1}{g_m}$
$r_{DS} = \frac{U_{Early} + U_{DS}}{I_D} \approx \frac{U_{Early}}{I_D}$

U^+	Speisespan-	[V]
	nung	
u_{in}	Eingangssp.	[V]
u_{out}	Ausgangssp.	[V]
\boldsymbol{A}	Verstärkung	[1]
R_S	R-Source	$[\Omega]$
r_S	dyn.Source	$[\Omega]$
	Widerstand	
g_m	Steilheit	[1]
	Kennlinie	
U_{Early}	Early 5100	[V]
U_{DS}	Drain-Source	[V]
I_D	Drainstrom	[A]
μ	Max A bei	[1]
	Sourceschal-	-
	tung	

Max A bei [1]

Sourceschal-

tung

18.8. Dynamische Innenwiderstände des MOS-Transistors

18.9. Der FET als Spannungsgesteuerter Widerstand

18.10. MOS-Diode

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2$$

$$r_{MD} = r_S || r_{DS}$$

$$r_{MD} = \frac{u_{DS}}{i_D}$$

$$r_{DS} = \frac{U_A + U_{DS}}{I_D}$$

$$r_S = \frac{1}{g_m} = \frac{1}{\sqrt{2I_D k}}$$

$$U_{GS} = U_T + \sqrt{\frac{2I_D}{k(1 + \lambda U_{DS})}}$$

$$U_{GS} \approx U_T + \sqrt{\frac{2I_D}{k}}$$

Wichtig, alle Substrate auf gleichem Potential!

Spannungsteiler

$$\frac{U_{GS1} - U_{T1}}{U_{GS2} - U_{T2}} = \sqrt{\frac{\frac{W_2}{L_2}}{\frac{W_1}{L_1}}}$$

 I_D Drainstrom [A] U_T Schwellspan- [V] nung (0.6...8)

k Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparameter

 U_{GS} Gate-Source- [V] Spannung

 U_{DS} Drain-Source- [V] Spannung

 r_{MD} Dynamischer $[\Omega]$ Widerstand

 g_m Steilheit [1] Übertragungskennli-

nie int. Source $[\Omega]$ Widerstand

 r_S

 U_A Early-Span. [V] W Gate-Breite [m] L Gate-Länge [m]

18.11. Stromquellen

18.11.1. Einfache Stromquelle

Schaltung ist für extrem kleine Betriebssungeeignet, pannungen da über R_S eine Spannung abfallen muss. Für diesen Einsatzbereich eignet sich Kaskodeschaltung, bei der R_S durch einen Transistor ersetzt wird.

Der Fet muss im gesättigten Bereich (siehe Kapitel 18.3) betrieben werden.

Für $R_S = 0$:

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2(1 + \lambda U_{DS})$$

$$V_{ID} = r_{DS} = \frac{U_A + U_{DS}}{I_D} \approx \frac{U_A}{I_D}$$

$$r_{iD} = r_{DS} = \frac{U_A + U_{DS}}{I_D} \approx \frac{U_A}{I_D}$$

$$U_o \geq U_{DSsa}$$

Für $R_S \neq 0$:

$$I_D = \frac{U_G - U_{GS} - U_{SS}}{R_S}$$

$$r_{iD} = r_{DS} \left(1 + \frac{R_S}{r_S} + \frac{R_S}{r_{DS}} \right)$$

$$r_S = \frac{1}{g_m} = \frac{1}{\sqrt{2I_Dk}}, \ r_{DS} \approx \frac{U_A}{I_D}$$

$$U_o > R_S I_D + U_{DSsat}$$

R_S dient als Gegenkopplung

$$I_D$$
 Drainstrom $[A]$

Innenwider- $[\Omega]$ r_{iD} stand

 U_o [V]Ausgangsspannung

 U_A Early-Span. [V]

 U_{DS} U-Drain-[V]Source

Uss [V]Negative Speisespan-

nung U_T Schwellspan-[V]nung (0.6...8)

R Widerstand $[\Omega]$

k Transkond.

λ Mod-fakt.

18.11.2. Stromquelle mit Kaskode-Schaltung

$$r_{o2} = r_{DS2} \left(1 + \frac{r_{DS1}}{r_{S2}} + \frac{r_{DS1}}{r_{DS2}} \right)$$

$$r_{o2} \approx \frac{r_{DS}^2}{r_{D2}} = \mu r_{DS}$$

$$U_o \ge U_{G2} - U_{GS2} + U_{DSsat2}$$

$$r_{iD}$$
 Innenwider- $[\Omega]$

stand U_o Ausgangs-[V]spannung

R Widerstand $[\Omega]$

Max Verstär- [1] μ kung Source Schlautng

18.11.3. Stromquelle mit geregelter Kaskode-Schaltung

Die Schaltung kann auch als Supertransistor interpretiert werden.

$$r_0 = r_{DS1} r_{DS2} g_{m1} g_{m3} (r_{DS3} || r_{iQ})$$

 $U_o \geq 2U_{DSsat}$

Strom kann wie in vorhergehender Schaltung berechnet werden.

$$r_0$$
 Innenwider- $[\Omega]$

stand

 U_{o} Ausgangs-[V]spannung

 U_{DS} U-Drain-[V]Source

R Widerstand $[\Omega]$

Gate-Steilheit [1] g

18.12. Stromspiegel

18.12.1. Widlar Stromspiegel

Ein Stromspiegel kann auch mehrere Ausgänge haben.

Der Eingangstransistor ist als MOS-Diode geschaltet.

der Die Genauigkeit Schaltung hängt sehr von den Exemplaren der Transistoren ab.

$$U_{omin} = U_{DSsat} = U_{GS2} - U_{T2}$$

$$U_{omin} = \sqrt{\frac{2I_{D2}}{k}}$$

$$n = \frac{I_o}{I_i} \approx i_o i$$

$$n = \frac{\frac{W_2}{L_2}}{\frac{W_1}{L_1}} \cdot \frac{1 + \lambda_2 U_{DS2}}{1 + \lambda U_{DS1}}$$

$$r_o = r_{DS2} = \frac{U_{A2} + U_{DS2}}{I_{D2}}$$

$$r_o \approx \frac{U_{A1}}{I_D} = \frac{1}{\lambda I_D}$$

$$r_i = r_{S1} \| r_{DS1} \approx r_{S1} = \frac{1}{g_{m1}}$$

$$r_i = \frac{1}{\sqrt{2I_Dk}}$$

$$U_i = U_{GS1} = \sqrt{\frac{2I_D}{k}} + U_{T1}$$

$$r_0$$
 Innenwider- $[\Omega]$

stand Ausgangswi- $[\Omega]$ derstand

 r_i

r-Source $[\Omega]$ r_{DS}

r-Drain- $[\Omega]$ r_S Source

[V] U_o Ausgangsspannung

 U_{DS} U-Drain-[V]Source

U-Gate-[V] U_{GS} Source

 U_T Schwellspan-[V]nung (0.6...8)

[V] U_A Early-Span.

 I_D Drain-Strom [A] $[\Omega]$

R Widerstand Gate-Steilheit [1] g

k Transkond.

λ Mod-fakt.

W Gate-Breite [m]Gate-Länge L |m|

19. Operationsverstärker

19.1. Verstärkung

19.2. Idealer OP

19.2.1. Invertierender Verstärker

19.2.2. Nichtinvertierender Verstärker

19.2.3. Addierer

19.2.4. Subtrahierer

19.2.5. Mehrfach Addierer und Subtrahierer

19.2.6. Instrumentationsverstärker

19.2.7. Stromquelle

R_L u_{ref} u_{ref} R_L i_L i_L i_L R_L i_L	Variante 1 und 2: $i_L = \frac{u_{ref}}{R_1}$	u _{ref} i _L R _L	Referenz- $[V]$ spannung Strom durch $[A]$ R_L Lastwider- $[\Omega]$ stand Widerstand $[\Omega]$
$ \begin{array}{c c} R_2 \\ i_b \\ u_{ref} \\ \downarrow \\ R_3 \end{array} $	Variante 3: $i_L = -\frac{u_{ref}}{R_1} \cdot \frac{R_2 + R_3}{R_3}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variante 4: falls $R_{2a}=R_{2b}=R_{2c}=R_{2d}$: $i_L=\frac{u_{ref}}{R_1}$		

19.2.8. Stromspiegel

19.2.9. Differentieller UI-Wandler

19.2.10. Schmitt-Trigger

Nicht invertierend:

Invertierend:

Nicht invertierend:

$$u_{T}^{+} = u_{ref} + \frac{R_{1}}{R_{F}}(u_{ref} - u_{outmin})$$
 $u_{T}^{-} = u_{ref} - \frac{R_{1}}{R_{F}}(u_{outmax} - u_{ref})$
 $u_{H} = u_{T}^{+} - u_{T}^{-}$
 $u_{H} = (u_{outmax} - u_{outmin})\frac{R_{1}}{R_{F}}$
Invertierend:

$$u_T^+ = u_{ref} + \frac{R_1(u_{outmax} - u_{ref})}{R_1 + R_F}$$

$$u_T^- = u_{ref} - \frac{R_1(u_{ref} - u_{outmin})}{R_1 + R_F}$$

$$u_H = \frac{R_1(u_{outmax} - u_{outmin})}{R_1 + R_F}$$

 u_T^+ Sprungspan- [V] nung \nearrow

 u_T^- Sprungspan- [V] nung \searrow

 u_H Hysterese- [V] spannung

 u_{ref} Referenz- [V] spannung

 $u_{outmax} \rightarrow + \text{Speisung} \quad [V]$ $u_{outmin} \rightarrow - \text{Speisung} \quad [V]$ $R_F \quad \text{Rückkopp-} \quad [\Omega]$

R_F Rückkopplungs-Widerstand

 R_1 Widerstand $[\Omega]$

19.2.11. Wien-Robinson Oszillator

19.2.12. Beschaltung des OPs mit Zweitoren

Häufig verwendete Zweitore

$\begin{array}{c c} R & C \\ \hline \\ R & C \\ \hline \end{array}$	$\frac{R}{1+sRC}$ $\frac{1}{sC}(1+sRC)$	R C Z	Kapazität $[F]$ Widerstand $[\Omega]$ Impedanz $[\Omega]$ Laplace Ope- $[1]$ rator
R R C	$(R_1 + R_2) \frac{1 + s \frac{R_1 R_2 C}{R_1 + R_2}}{1 + s R_2 C}$		
R R C C	R(2+sRC)		
$ \begin{array}{c c} C & C \\ \hline & R \\ \hline \end{array} $	$\frac{1}{sC} \frac{1 + s2RC}{sRC}$		
R_2 C_1 R_1 R_2	$R_2 \frac{1 + s2R_1C_1}{1 + s2R_1C_1 + s^2R_1R_2C_1^2}$		
C_1 R_2 C_1 R_1	$\frac{R_2(1+s2R_1C_1)}{1+s(2R_1C_2+R_2C_2)+s^2R_1R_2C_1(C_1+2C_2)}$		

19.3. Realer Operationsverstärker

19.3.1. Ein- und Ausgangsspannungsbereich

19.3.2. Übertragungskennlinie

19.3.3. Gleichtaktfehler (Common Mode Error)

19. OPERATIONSVERSTÄRKER

19.3.4. Effektive, geschlossene Verstärkung

19.3.5. Offsetfehler

19.3.6. Versorgungsspannungsfehler (Power supply error)

19.3.7. Eingangsströme (Bias- und Offsetstrom)

Unterdrückungsmassnahmen

$$I_{OS} = |I_P - I_N|$$

$$I_B = \frac{I_P + I_N}{2}$$

$$U_{OE} = |-I_P R_2 A_{pos} + I_N R_F|$$

Bester Fall (Einfluss $I_B = 0$):

$$R_2 = R_F || R_1$$

 \Downarrow

$$U_{OE} = |-I_{OS}R_F|$$

$$I_{OS}$$
 Offsetstrom $[A]$

$$I_{P,N}$$
 Strom am pos, $[A]$ neg Eingang

$$I_B$$
 Biasstrom $[A]$

$$U_{OE}$$
 Offset-Fehler- V Spannung

$$A_{pos}$$
 pos. Verstär- [1] kung

$$R_{1,2}$$
 Widerstand $[\Omega]$ nach GND

19.3.8. Kombination der statischen Fehler

$$U_{OE} = A_{pos}(| \text{Offsetfehler}| + | \text{Versorgungs-spannungsfehler}| + | \text{Gleichtaktfehler}|) + \text{Eingangsstromfehler}$$

$$U_{OE} = A_{pos} \left[|U_{OS}| + \left| \frac{\Delta U_S}{PSRR} \right| + \left| \frac{\Delta U_{CM}}{CMRR} \right| \right] + *$$

Worst-Case:

$$* = \left(I_N R_F - I_P R_2 \frac{R_F + R_1}{R_1}\right)$$

Bei unterdrücktem Biasstrom - Fehler:

$$* = |I_{OS}|R_F$$

 I_{OS} Offsetstrom [A]

 $I_{P,N}$ Strom am pos, [A] neg Eingang

 I_B Biasstrom [A]

 U_{OE} Offset-Fehler- [V] Spannung

 A_{pos} pos. Verstär- [1] kung

19.3.9. Dynamischer Eingangswiderstand

Messung bei verbundenen Eingängen:

$$r_{cm}=2r_{cm}\|2r_{cm}$$

 r_d Dynamischer $[\Omega]$ Widerstand

 r_{cm} Common Mo- $[\Omega]$ de Resistance

19. OPERATIONSVERSTÄRKER

19.3.10. Frequenzgang

Knick:

$$f_0: A_{OL} = A_{DC} - 3dB$$

(ca. 100 Hz in Grafik)

$$f_T : A_{OL} = 0dB = 1$$

(ca. 10⁷ Hz in Grafik)

$$f_0 = \frac{f_T}{A_0}$$

Der Verstärkungsabfall beträgt - 20 $\frac{dB}{Dec}$

$$A_{CLreal}(s) = \frac{A_{CLDC}}{1 + sT_{neu}}$$

$$A_{CLDC} = \frac{A_{OLDC}}{1 + k(s)A_{OLDC}}$$

$$T_{neu} = \frac{T_0}{1 + k(s)A_{OLDC}}$$

$$\omega_{neu} = \omega_0 [1 + k(s) A_{OLDC}]$$

Nichtinvertierneder Verstärker:

$$k(s) = \frac{R_1 + R_F}{R_1}$$

$$f_{neu} = f_0(1 + kA_{OLDC})$$

$$f_{neu}A_{CL}^+ = GBP(=f_T)$$

$$f_{neu} = f_0 A_{OLDC}$$

Invertierneden Verstärker:

$$f_{neu} = k \cdot BGP = \frac{GBP}{A_{CL}^{-} + 1}$$

$$f_{neu}(A_{CL}^- + 1) = GBP(= f_T)$$

$$f_{neu} = \frac{1}{2} f_0 A_{OLDC}$$

- f_0 Kleinsignal [Hz] Bandbreite
- f_T Transitfrequnz, [Hz] Verstärkungs-Bandbreiten-Produkt
- A_{OL} Open Loop [1] Gain
- A_{CL} Closed Loop [1] Gain
- A_{CL}^+ A_{CL} nichtin- [1] vertiereder Verstärker
- s Laplace Ope- [1] rator
- T_{neu} Closed Loop [s] Zeitkonst.
- k Faktor des [1] Spannungsteilers
- ω Knickfrequenz [Hz] f_{neu} Knickfrequenz [Hz]
- GBP Verstärkungs [1]
 Bandbreitenprodukt

20. Gegengekoppelte Verstärker

20.1. Mit- und Gegenkopplung

Gegenkopplung:

$$A_{CL} = \frac{U_{out}}{U_{in}} = \frac{A_o}{1 + kA_o}$$

Mitkopplung:

$$A_{CL} = \frac{U_{out}}{U_{in}} = \frac{A_o}{1 - kA_o}$$

 A_{CL} Closed Loop [1]

Verstärkung A_o Open Loop [1]

U Verstärkung U Spannung V

k Faktor [1]

20.1.1. Gegenkopplung beim OP

Bodeplot:

Ideal:

$$A_{CL} = \frac{nA_o}{1 + kA_o}$$

Nicht invertierend:

$$n = 1$$

$$|A_{CLideal}| = \frac{R_F + R_1}{R_1} = \frac{1}{k}$$

Inveriterend:

$$n = \frac{R_F}{R_1 + R_F}$$
 $k = \frac{R_1}{R_1 + R_F}$

$$|A_{CLideal}| = \frac{R_F}{R_1}$$

Real:

$$A_{CLreal} = nA_o ||A_{CLideal}|$$

 A_{CL} Closed Loop [1] Verstärkung

 A_o Open Loop [1] Verstärkung

k GK-Faktor [1]

n Faktor [1]

R Widerstand $[\Omega]$

20.2. Gegenkopplungsarten

Serie-Parallel $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eingang: Seriell Ausgang: Parallel $r_{iCL} o \infty \qquad r_{oCL} o 0$ $r_{iCL} = r_i(1 + kA_o)$ $r_{oCL} = \frac{u_{out}}{i_{out}} = \frac{r_o}{1 + kA_o}$	A_o k r_i r_o r_{iCL}	Open Loop [1] Verstärkung Faktor [1] Open Loop r- $[\Omega]$ Eingang Open Loop r- $[\Omega]$ Ausgang Closed Loop $[\Omega]$ r-Eingang
Parallel-Parallel $r_{iCL} \rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eingang: Parallel Ausgang: Parallel $r_{iCL} o 0 \qquad r_{oCL} o 0$ $r_{iCL} = rac{r_i}{1+kA_o}$ $r_{oCL} = rac{u_{out}}{i_{out}} = rac{r_o}{1+kA_o}$	r _{oCL} u _{out} i _{out} R _S	Closed Loop $[\Omega]$ r-Ausgang $[V]$ i-Ausgang $[A]$ Quell- $[\Omega]$ Widerst. Last-Widerst. $[\Omega]$
Parallel-Serie $i_{in} \downarrow \qquad \qquad$	Eingang: Parallel Ausgang: Seriell $r_{iCL} ightarrow 0 \qquad r_{oCL} ightarrow \infty \ r_{iCL} = rac{r_i}{1+kA_o} \ r_{oCL} = rac{u_{out}}{i_{out}} = r_o(1+kA_o)$		
Serie-Serie $R_{S} \longrightarrow A_{o} \longrightarrow R_{L}$ $u_{in} \longrightarrow A_{o} \longrightarrow R_{L}$	Eingang: Seriell Ausgang: Seriell $r_{iCL} ightarrow \infty \qquad r_{oCL} ightarrow \infty$ $r_{iCL} = r_i(1 + kA_o)$ $r_{oCL} = \frac{u_{out}}{i_{out}} = r_o(1 + kA_o)$		

20.2.1. Bestimmung der Gegenkopplungsart

- 1. Forwärtspfad, Rückwärtspfad und Gegenkopplugsschleife einzeichnen.
- 2. Anzahl Inversionen im Vorwärtspfad (⇒ Invertierend oder nicht invertierend) bzw. in der Schleife bestimmen (⇒ Gegenkopplung bei ungerade Anzahl bzw. Mittkopplung bei gerader Anzahl).
- 3. Knoten (out, in+ und in−) der Äquivalenten OP-Schaltung bestimmen.
- 4. Äquivalenten OP-Schaltung zeichnen.

20.2.2. Eingangsschaltungen

Eingangsschaltungen bei Serieschaltung (Spannungsaddition)

Eingangsschaltungen bei Parallelschaltung von Verstärkereingnag und Ausgang (Stromaddition)

20.2.3. Ausgangsschaltungen

Ausgangsschaltungen bei Parallelschaltung von Last und Eingang (Spannungsabnahme am Ausgang)

Ausgangsschaltungen bei Serieschaltung von Last und Eingang (Stromabnahme am Ausgang)

20.3. Schleifenverstärkung

$$A_L = kA_o = \frac{u_{xout}}{u_{xin}}$$

Gegenkopplungsgrad:

$$1 + A_L = 1 + kA_L$$

 U_{Bias} legt den Arbeitspunkt fest. Es soll eine Trennstelle gewählt werden bei der $r_{loopout} \gg r_{loopin}$ gilt \Rightarrow Belastung des Schleifenausganges kann vernachlässigt werden.

$$A_L$$
 Schliefen- [1] Verstärkung

$$A_o$$
 Open Loop [1] Verstärkung

$$U$$
 Spannung $[V]$ k Faktor $[1]$

R Widerstand
$$[\Omega]$$

20.4. Wirkung der GK auf die Sensivität der Verstärkung

Die Sensitivität S_x^N ist ein Mass für die Empfindlichkeit einer Schaltungseigenschaft N gegenüber Schwankungen eines Parameters x.

$$S_x^N = \frac{\frac{dN}{N}}{\frac{dx}{x}}$$

$$S_{A_o}^{A_{CL}} = \frac{\frac{dA_{CL}}{A_{CL}}}{\frac{dA_o}{A_o}} = \frac{A_o}{A_{CL}} \frac{dA_{CL}}{dA_o}$$

$$S_{A_o}^{A_{CL}} = \frac{1}{1 + kA_o}$$

S Sensitivität [1]

 A_L Schliefen- [1] Verstärkung

 A_o Open Loop [1] Verstärkung

k Faktor [1]

x veränderter [...]
Parameter

N Beeinflusste [...] Grösse

20.5. Das Verstärkungs-Bandbreiten-Produkt

Für alle Punkte die auf einer Amplitudengeraden mit einer Neignung von $\pm 20 \frac{dB}{Dek}$ liegen gilt das Gesetz vom konstanten Verstärkungs-Bandbreiten-Produkt. Siehe auch S. 115

$Af = f_T = GBP$ $A_1f_1 = A_2f_2$ $A_{oDC} = f_o = GBP$	f_T Transitfrequenz $\left[\frac{1}{s}\right]$ = Amplitude \cap 0dB-Achse f Frequenz $\left[\frac{1}{s}\right]$ A Verstärkung $\left[1\right]$ A _{oDC} Open-Loop $\left[1\right]$ DC-Gain

Teil V. Digitale Signalverarbeitung

21. Stochastische Signale

21.1. Allgemein

hallo $M = Fr$	r	Radius	[<i>m</i>]
----------------	---	--------	--------------

22. Abtastung

22.1. Ideale Abtastung

$$S_{p}(t)$$

$$S(\omega) S_{p}(\omega)$$

$$S_{a}(\omega)$$

$$S_{a}(\omega)$$

$$S_{a}(\omega)$$

$$S_{a}(\omega)$$

$$S_{a}(\omega)$$

$$S_{a}(\omega)$$

$$s_a(t) = s(t)T\delta_p(t)$$

$$s_a(t) = Ts(t) \sum_{m=-\infty}^{\infty} \delta(t - mT)$$

$$s_a(t) = T \sum_{m=-\infty}^{\infty} s(mT)\delta(t - mT)$$

$$S_a(\omega) = S(\omega) * \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_c)$$

$$S_a(\omega)$$
 $S_a(\omega) = \sum_{k=-\infty}^{\infty} S(\omega - k\omega_c)$ $\omega_c = \frac{2\pi}{T}$

$$\omega_c = \frac{2\pi}{T}$$

$$s_a$$
 s abgetastet [...]

$$t$$
 Zeit $[s]$ T Periode $[s]$

$$T$$
 Periode $[s]$ m m-te Periode $[1]$

$$\omega$$
 Kreisfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$

$$\omega_c$$
 Abtastfrequenz $\left[\frac{1}{s}\right]$

22.2. Flat Top Sampling

Signal wird verzerrt durch $G_{\tau}(\omega)$

$$s_a(t) = \sum_{m=-\infty}^{\infty} s(mT) r_{\tau}(t - mT)$$

$$S_a(\omega) = G_{\tau}(\omega) \sum_{k=-\infty}^{\infty} S(\omega - k\omega_c)$$

$$G_{\tau}(\omega) = \frac{1}{T}R_{\tau}(\omega) = \frac{\tau}{T}\frac{\sin\left(\frac{\tau}{2}\omega\right)}{\frac{\tau}{2}\omega}$$

Je kürzer die Abtast-Pulse desto breiter die $\frac{\sin(x)}{x}$ Kurve.

- Signal s abgetastet
- Spektrum von [...]

- Zeit
- [s][s]Periode
- Rechteckbreite [s] m-te Periode
- Kreisfrequenz $\left[\frac{1}{c}\right]$

22.3. Sample and Hold

Entspricht Flat Top Sampling (S. 168) bei $\tau = T$ Die $\frac{\sin(x)}{x}$ Kurve hat die Nulldurgänge bei $k^{2\pi}_{T}$, $k = \{1, 2, ...\}$

T Periode [s] τ Rechteckbreite [s]

22.4. Abtasttheorem

Problem:
$$S_a$$
 $-\omega_c$ 0 ω_c

⇒ Rekonstruktion ist nicht möglich.

 $\omega_c > 2\omega_{max}$

⇒ Praktisch muss immer ein analoger Tiefpass vorgeschaltet werden. ω_c Abtastfrequenz $\left[\frac{1}{s}\right]$ ω_{max} max Frequenz $\left[\frac{1}{s}\right]$ in s(t)

22.5. Rekonstruktion

Ist das Abtasttheorem erfüllt, so ist das ursprüngliche Signal exakt reproduzierbar.

$$s_r(t) = T \sum_{m=-\infty}^{\infty} s(mT)h_r(t - mT)$$

$$s_r(t) = T \sum_{m=-\infty}^{\infty} s(mT)\delta(t - mT) * h_r(t)$$

$$h_r(t) = \frac{\omega_c}{2\pi} \frac{\sin\left(\frac{\omega_c}{2}t\right)}{\frac{\omega_c}{2}t}$$

 s_r Signal re- [...] konst.

 h_r Stossantw. [... Rekonstruktions-Tiefpass

t Zeit [s] T Periode [s] m m-te Periode [1] ω_c Abtastfrequenz $[\frac{1}{s}]$

22.5.1. Interpolation

$$s_{i}(t) = \sum_{m=-\infty}^{\infty} s(mT)h_{i}(t - mT)$$

$$S_{i}(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} S(\omega - k\omega_{c})H_{i}(\omega)$$

$$0 \quad T \quad 2T \qquad \qquad t$$

$$s_i(t)$$
 0
 T
 $2T$

Halteglied nullter Ordnung

$$h_i(t) = \text{Rechteck}, h = 1, \tau = T$$

$$H_i(\omega) = T \frac{\sin\left(\frac{T}{2}\omega\right)}{\frac{T}{2}\omega} e^{-j\frac{T}{2}\omega}$$

Lineare Interpolation

$$h_i(t) = \text{Dreieck}, h = 1, \tau = 2T$$

$$H_i(\omega) = T \left(\frac{\sin\left(\frac{T}{2}\omega\right)}{\frac{T}{2}\omega} \right)^2 e^{-jT\omega}$$

- Signal inter- [...] poliert
- h_i Interpolatios-[1] funktion
- t Zeit [s]
- TPeriode [s]Pulsbreite [s]τ
- m, km,k-te Peri- [1] ode
- Kreisfrequenz $\left[\frac{1}{s}\right]$ ω
- Abtastfrequenz $\left[\frac{1}{\epsilon}\right]$ ω_c

22.6. Energie und Leistung bandbegrenzter Signale

Falls das Abtasttheorem, $T < \frac{1}{2} f_{max}$ eingehalten wird, hat das abgetastete Signal die selbe Energie bzw. Leistung wie das Original. Siehe Parsevalsches Theorem S. 188

$$W = \int_{-\infty}^{\infty} s^2(t)dt$$

$$W = T \sum_{m = -\infty}^{\infty} s^2(mT)$$

$$P = \frac{1}{T_{per}} \int_0^{T_{per}} s^2(t) dt$$

$$P = \frac{1}{N} \sum_{m=0}^{N-1} s^2(mT)$$

$$N = \frac{T_{per}}{T}$$

Energie W [Ws]

P Leistung [W]Signal S

t Zeit [s]TPeriode [s]

Periodenin- T_{per} tervall

m-te Periode m [1]

Abtastfrequenz $\left[\frac{1}{c}\right]$ ω_c

Abtastwerte-Ν

zahl

Teil VI. Mathematik

23. Grundlagen

23.1. Allgemeines

23.1.1. Binome

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$(a-b)^n = \sum_{k=0}^n (-1)^k \binom{n}{k} a^{n-k} b^k$$

$$\binom{a^2 - b^2}{n} = (a-b) (a+b)$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^2 \mp ab + b^2}{n}$$

$$\binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^3 \pm b^3}{n} = (a \pm b) \binom{a^$$

23.1.2. Faktorzerlegungen

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{n} - b^{n} = (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

für n gerade:

$$a^{n} - b^{n} = (a+b)(a^{n-1} - a^{n-2}b + \dots + ab^{n-2} - b^{n-1})$$

für n ungerade:

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + \dots - ab^{n-2} + b^{n-1})$$

$$s^{2} + 1 = (s-j)(s+j)$$

23.1.3. Quadratische Gleichung

$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

23.1.4. Arithmetische Folge

$$a_{n+1} - a_n = d$$
, $d \text{ const.}$
 $a_n = a_1 + (n-1) d$
 $s_n = n \frac{a_1 + a_n}{2} = a_1 n + \frac{n(n-1)}{2} d$

23.1.5. Geometrische Folge

$$a_{n+1}/a_n = q$$
, $q \text{ const.}$
 $a_n = a_1 q^{n-1}$
 $s_n = a_1 \frac{1-q^n}{1-q}$
 $s = \lim_{n \to \infty} s_n = \frac{a_1}{1-q}$, $falls |q| < 1$

23.1.6. Partialbruchzerlegung

$$r(z) = \frac{r_1(z)}{(z-a)(z-b)^3 ((z-c)^2 + d^2)^3}$$

$$r(z) = \frac{\alpha}{z-a} + \frac{\beta_1}{z-b} + \frac{\beta_2}{(z-b)^2} + \frac{\beta_3}{(z-b)^3} + \frac{\gamma_1 z + \delta_1}{(z-c)^2 + d^2} + \frac{\gamma_2 z + \delta_2}{((z-c)^2 + d^2)^2} + \frac{\gamma_3 z + \delta_3}{((z-c)^2 + d^2)^3}$$

23.2. Matrizen und Determinanten

23.2.1. 2×2 Matrizen

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\ a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \end{bmatrix}$$
Achtung: $AB \neq BA$!

Inverse: (falls $a_{11}a_{22} - a_{12}a_{21} \neq 0$)

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

23.2.2. 3×3 Matrizen

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} =$$

$$= a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

23.2.3. Transponierte einer Matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \end{bmatrix}$$
$$(A \cdot B)^T = B^T \cdot A^T$$
$$(A \cdot B \cdot C)^T = C^T \cdot B^T \cdot A^T$$

23.3. Vektorrechnung

23.3.1. Grundlagen

Skalarprodukt

 $(A^T)^{-1} = (A^{-1})^T$

$$\vec{x} \cdot \vec{y} = xy \cos \alpha$$
$$\vec{x} \perp \vec{y} \Leftrightarrow \vec{x} \cdot \vec{y} = 0$$

Skalare Projektion von \vec{b} auf \vec{a}

$$b_a = \vec{b}\,\vec{e}_a$$

Vektorielle Projektion von \vec{b} auf \vec{a}

$$\vec{b}_a = b_a \, \vec{e}_a = (\vec{b} \, \vec{e}_a) \vec{e}_a$$

Vektorprodukt

$$|\vec{a} \times \vec{b}| = a b \sin \alpha$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \times \begin{bmatrix} b_1, b_2, b_3 \end{bmatrix} = \begin{bmatrix} \det \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix}, -\det \begin{bmatrix} a_3 & a_1 \\ b_3 & b_1 \end{bmatrix}, \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \end{bmatrix}$$

$$\vec{a} = \lambda \cdot \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = 0$$

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

Steigung eines Vektors

$$\vec{x} = (x_1, x_2, x_3)$$

$$\tan \alpha = \frac{x_3}{\sqrt{x_1^2 + x_2^2}}$$

23.3.2. Lineare Abbildungen

Drehung der XY-Ebene um den Ursprung mit Drehwinkel φ

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Spiegelung der XY-Ebene an der Geraden g
 durch den Ursprung mit den Steigungswinkel φ

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} \cos 2\varphi & \sin 2\varphi \\ \sin 2\varphi & -\cos 2\varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Drehung des Raumes um die X-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Drehung des Raumes um die Y-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Drehung des Raumes um die Z-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

23.4. Trigonometrie

23.4.1. Komplementwinkel

$$\sin \alpha = \cos(\frac{\pi}{2} - \alpha)$$
 $\cos \alpha = \sin(\frac{\pi}{2} - \alpha)$

$$\tan \alpha = \cot(\frac{\pi}{2} - \alpha)$$
 $\cot \alpha = \tan(\frac{\pi}{2} - \alpha)$

23.4.2. Sinussatz

$$\sin \alpha = \sin(\pi - \alpha)$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$

wobei r = Umkreisradius

23.4.3. Cosinussatz

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

23.5. Goniometerie

23.5.1. Serien (Lösungsmengen)

$$\alpha_1 = \arcsin x$$
, $\alpha_2 = \pi - \alpha_1$

$$\alpha_{1n} = \alpha_1 + n2\pi$$
, $\alpha_{2n} = \alpha_2 + n2\pi$

$$\pm \alpha = \arccos x$$
, $\alpha_n = \pm \alpha + n2\pi$

$$\alpha_0 = \arctan x$$
, $\alpha_n = \alpha_0 + n\pi$, $n \in \mathbb{Z}$

23.5.2. Potenzen

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\sin^3\alpha = \frac{1}{4} \left(3\sin\alpha - \sin 3\alpha \right)$$

$$\cos^3 \alpha = \frac{1}{4} \left(3\cos \alpha + \cos 3\alpha \right)$$

$$\sin^4 \alpha = \frac{1}{8} \left(\cos 4\alpha - 4\cos 2\alpha + 3 \right)$$

$$\cos^4 \alpha = \frac{1}{8} \left(\cos 4\alpha + 4 \cos 2\alpha + 3 \right)$$

23.5.3. Additionstheoreme

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
$$\cos(a \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

23.5.4. Doppelwinkel

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2(\alpha) - 1 = 1 - \sin^2(\alpha)$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

23.5.5. Dreifachwinkel

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha + 3\cos \alpha$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

23.5.6. Halbwinkel

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$
$$\tan^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

23.5.7. Summen und Produkte

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

23.5.8. Genaue Funktionswerte

α	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

23.6. Logarithmen

$$\log\left(u\cdot v\right) = \log u + \log v$$

$$\log\left(\frac{u}{v}\right) = \log u - \log v$$

$$\log\left(u^k\right) = k\log u$$

$$\log \sqrt[k]{u} = \frac{1}{k} \log u$$

$$\log_b r = \frac{\log_a r}{\log_a b}$$

23.7. Komplexe Zahlen

23.7.1. Allgemeines

$$j^2 = -1$$
, $\frac{1}{j} = -j$, $(-1)^j = (e^{j\pi})^j = e^{-\pi}$

 $\underline{z} \in \mathbb{C}$, $\underline{\overline{z}}$: konjugiertkomplex

$$karthesisch : \underline{z} = a + jb, \quad \overline{\underline{z}} = a - jb$$

$$polar : \underline{z} = r \cdot e^{j\varphi}, \ \overline{\underline{z}} = r \cdot e^{-j\varphi}$$

$$\underline{z} = r(\cos\varphi + j\sin\varphi) = r \cdot e^{j\varphi} = a + jb$$

$$a = r \cos \varphi, \quad b = r \sin \varphi$$

$$r=|\underline{z}|=\sqrt{a^2+b^2}, \;\; \varphi=\left\{egin{array}{ll} I. & {
m Quadrant } & {
m arctan}\,rac{b}{a}\ II. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+\pi\ III. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+\pi\ IV. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+2\pi\ \end{array}
ight.$$

23.7.2. Rechenregeln

$$(a_{1} + jb_{1}) \pm (a_{2} + jb_{2}) = a_{1} \pm a_{2} + j (b_{1} \pm b_{2})$$

$$(a_{1} + jb_{1}) (a_{2} + jb_{2}) = (a_{1}a_{2} - b_{1}b_{2}) + j (a_{1}b_{2} + b_{1}a_{2})$$

$$\underline{z}_{1} \cdot \underline{z}_{2} = r_{1}r_{2} \cdot e^{j(\varphi_{1} + \varphi_{2})}$$

$$\frac{(a_{1} + jb_{1})}{(a_{2} + jb_{2})} = \frac{(a_{1} + jb_{1}) (a_{2} - jb_{2})}{(a_{2}^{2} + b_{2}^{2})}$$

$$\underline{\frac{z}_{1}}{\underline{z}_{2}} = \frac{r_{1}}{r_{2}} \cdot e^{j(\varphi_{1} - \varphi_{2})}$$

$$\frac{\sqrt{z}}{\underline{z}} = \sqrt[n]{r} \left(\cos\frac{\varphi}{n} + j\sin\frac{\varphi}{n}\right)$$

 $\sqrt[n]{\underline{z}} = e^{\frac{1}{n}\ln\underline{z}} + (n-1)$ weitere Lösungen gleichmässig verteilt auf einem Kreis mit Radius $\sqrt[n]{r}$

23.7.3. Euler

$$e^{\pm jkt} = \cos kt \pm j \sin kt$$

$$e^{\pm jk\pi} = (-1)^k, \quad e^{t+j2\pi} = e^t$$

$$\cos kt = \frac{1}{2} \left(e^{jkt} + e^{-jkt} \right)$$

$$\sin kt = \frac{1}{2j} \left(e^{jkt} - e^{-jkt} \right)$$

$$\cosh kt = \frac{1}{2} \left(e^{kt} + e^{-kt} \right)$$

$$\sinh kt = \frac{1}{2} \left(e^{kt} - e^{-kt} \right)$$

23.8. Ableiten

23.8.1. Rechenregeln

$$(\lambda f)' = \lambda f'$$

$$(f \pm g)' = f' \pm g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$

$$f'^{-1} = \frac{1}{f' \circ f^{-1}}$$

$$(f \circ g)' = (f' \circ g) \cdot g'$$

23. GRUNDLAGEN

Elementare Funktionen

$$pot'_k x = k pot_{k-1} x$$

$$\sin' kx = k\cos kx$$

$$\cos' kx = -k\sin kx$$

$$\exp' kx = k \exp kx$$

$$\log' x = \frac{1}{x}$$

$$\ln'|f| = \frac{f'}{f}$$

$$\left(a^{kx}\right)' = (k\ln a)\,a^{kx}$$

$$\tan' x = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$\cot' x = -\frac{1}{\sin^2 x} = -1 - \cot^2 x$$

$$\sqrt{x}' = \frac{1}{2\sqrt{x}}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arccos' x = -\frac{1}{\sqrt{1-x^2}}$$

$$\arctan' x = \frac{1}{1 + x^2}$$

$$arccot' x = -\frac{1}{1+x^2}$$

$$\cosh' x = \sinh x = \frac{e^z - e^{-z}}{2}$$

$$\sinh' x = \cosh x = \frac{e^z + e^{-z}}{2}$$

$$\operatorname{arcosh}' x = \frac{1}{\sqrt{1+x^2}}$$

$$arsinh' x = \frac{1}{\sqrt{x^2 - 1}}$$

Satz von Bernoulli und de l'Hospital

$$\lim_{t \to t_0} \frac{f(x)}{g(x)} = \lim_{t \to t_0} \frac{f'(x)}{g'(x)}$$

Beispiel:

$$\lim_{t \to \infty} \frac{t}{e^t} = \lim_{t \to \infty} \frac{1}{e^t} = 0$$

23.9. Integrieren

23.9.1. Rechenregeln

$$\int \lambda f = \lambda \int f$$

$$\int (f \pm g) = \int f \pm \int g$$

$$\int f \cdot g' = f \cdot g - \int f' \cdot g$$

23.9.2. Substitution

$$\int f(x) \, dx$$

Aufstellen der Substitutionsgleichung:

$$u = g(x), \ \frac{du}{dx} = g'(x), \ dx = \frac{du}{g'(x)}$$
 bzw. $x = h(u), \ \frac{dx}{du} = h'(u), \ dx = \frac{h'(u)}{du}$

(u = g(x) bzw. x = h(u) müssen monotone Funktionen sein)

Substitution:

$$\int f(x) \, dx = \int \varphi(d) \, du$$

Integration:

$$\int \varphi(u) \, du = \Phi(u)$$

Rücksubstitutuion:

$$\int f(x) dx = \int \varphi(u) du = \Phi(u) = \Phi(g(x)) = F(x)$$

Beispiel:

$$\int_0^2 x \sqrt{3x^2 + 4} \, dx$$

Subst:
$$u = 3x^2 + 4 \Leftrightarrow u' = \frac{du}{dx} = 6x$$

23. GRUNDLAGEN

Die neuen Grenzen erhalten wir durch Einsetzten der ursprünglichen Grenzen in die Substitutionsgleichung, die Rücksubstition entfällt:

$$\begin{array}{ccc} 2 & \mapsto & 16 \\ 0 & \mapsto & 4 \end{array}$$

$$\Rightarrow \int_4^{16} \sqrt{u} \, du$$

23.9.3. Sätze

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

$$\int_{a}^{b} f(t) dt = -\int_{-a}^{-b} f(-t) dt$$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

$$\int_{a}^{b} f(t) = \int_{a+c}^{b+c} f(t-c)$$

$$f \text{ stetig} \Rightarrow \int_{a}^{b} f = \int f(b) - \int f(a) = F(b) - F(a)$$

$$f \text{ stetig in } [a,b] \Rightarrow \exists \ \xi \in [a,b] \text{ mit } \int_{a}^{b} f = (b-a) f(\xi)$$

23.9.4. Integration rationaler Funktionen

Rationale Funktionen können integriert werden, indem man Division der Polynome durchführt

Beispiel:
$$\int \frac{x^2}{x^2+1}$$

$$x^2: (x^2+1) = 1 + \frac{1}{x^2+1}$$

$$\int 1 + \frac{1}{x^2 + 1} \, dx = x + \arctan x$$

23.9.5. Rationalisierungsformeln

Für Rationale Funktionen von $\sin x$ und $\cos x$

• Beispiel

$$\int \frac{1+\cos x}{\sin x} \, dx$$

Substitution

$$u = \tan x/2$$

$$\Rightarrow dx = \frac{2}{1+u^2} du \quad \sin x = \frac{2u}{1+u^2} \quad \cos x \frac{1-u^2}{1+u^2}$$

Weitere Rationalisierungsformeln siehe Papula Seite 148

23.9.6. Spezielle Integrale

$$\int \operatorname{pot}_{k} = \frac{1}{k+1} \operatorname{pot}_{k+1}$$

$$\int \exp kx \, dx = \frac{1}{k} \exp kx$$

$$\int a^{cx} \, dx = \frac{1}{c \ln a} a^{cx}$$

$$\int \frac{1}{x} \, dx = \ln x$$

$$\int \ln |x| \, dx = x \left(\ln |x| - 1 \right)$$

$$\int \frac{1}{x \ln x} \, dx = \ln |\ln |x||$$

$$\int \log_{a} |x| \, dx = x \left(\log_{a} |x| - \log_{a} e \right)$$

$$\int x^{k} \ln x \, dx = \frac{x^{k+1}}{k+1} \left(\ln x - \frac{1}{k+1} \right), \quad k \neq -1, \quad x > 0$$

$$\int \frac{\ln x}{x} \, dx = \frac{1}{2} (\ln x)^{2}$$

$$\int \sin (ax + b) \, dx = -\frac{1}{a} \cos (ax + b)$$

$$\int \cos (ax + b) \, dx = \frac{1}{a} \sin (ax + b)$$

23. GRUNDLAGEN

$$\int \cot x \, dx = \ln|\cos x|$$

$$\int \cot x \, dx = \ln|\sin x|$$

$$\int \frac{1}{\sin x} \, dx = \ln|\tan \frac{x}{2}|$$

$$\int \frac{1}{\cos x} \, dx = \ln|\tan \left(\frac{x}{2} + \frac{\pi}{4}\right)|$$

$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x)$$

$$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x)$$

$$\int \tan^2 x \, dx = \tan x - x$$

$$\int \cot^2 x \, dx = -\cot x - x$$

$$\int \frac{1}{x^2} \sin \frac{1}{x} \, dx = \cos \frac{1}{x}$$

$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2}$$

$$\int \arccos x \, dx = x \arccos x - \sqrt{1 - x^2}$$

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln \left(1 + x^2\right)$$

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln \left(1 + x^2\right)$$

$$\int (ax + b)^k \, dx = \frac{(ax + b)^{k+1}}{a(k+1)}, \quad k \neq 1$$

$$\int (ax^p + b)^k x^{p-1} \, dx = \frac{(ax^p + b)^{k+1}}{ap(k+1)}, \quad k \neq 1, \quad ap \neq 0$$

$$\int \frac{1}{ax + b} \, dx = \frac{1}{a} \ln|ax + b|$$

$$\int \frac{ax + b}{cx + d} \, dx = \frac{ax + b}{c} - \frac{ad - bc}{c^2} \ln|cx + d|$$

$$\int \frac{x^{p-1}}{ax^p + b} \, dx = \frac{1}{av} \ln|ax^p + b|, \quad ap \neq 0$$

$$\int \frac{ax+b}{cx+d} dx = \frac{ax+b}{c} - \frac{ad-bc}{c^2} \ln|cx+d|$$

$$\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctan \frac{x}{a}$$

$$\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right|$$

$$\int \frac{x^2}{x^2+a^2} dx = x - a \arctan \frac{x}{a}$$

$$\int \frac{2x}{1-x^2} dx = -\ln \left| 1-x^2 \right|$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left(x + \sqrt{x^2 \pm a^2} \right)$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left(x + \sqrt{x^2 \pm a^2} \right)$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{|a|}$$

$$\int e^{cx} \sin (ax+b) dx = \frac{e^{cx}}{a^2+c^2} (c\sin (ax+b) - a\cos (ax+b))$$

$$\int e^{cx} \cos (ax+b) dx = \frac{e^{cx}}{a^2+c^2} (c\cos (ax+b) + a\sin (ax+b))$$

$$\int \exp_k \sin_l dx = \frac{\exp_k}{l^2-k^2} (jk\sin_l - l\cos_l)$$

$$\int \exp_k \cos_l dx = \frac{\exp_k}{l^2-k^2} (jk\cos_l - l\sin_l)$$

$$\int x^n \sin kx dx = -\frac{x^n}{k} \cos kx + \frac{n}{k} \int x^{n-1} \cos kx dx \quad n \in \mathbb{N}$$

$$\int x^n \cos kx dx = +\frac{x^n}{k} \sin kx - \frac{n}{k} \int x^{n-1} \sin kx dx \quad n \in \mathbb{N}$$

24. Fourierreihen

24.1. Bezeichungen

Vektorraum der trigonometrischen Polynome: $\mathbb{P} \subset \mathbb{V}$

$$\mathbb{P} = \{a_0 \cos_0 + \sum_{k=1}^n a_k \cos_k + b_k \sin_k | n \in N^* \}$$

Vektorraum der Exponentialpolynome: $\mathbb{E} \subset \mathbb{V}$

$$\mathbb{E} = \{ \sum_{k=-n}^{m} c_k \exp_k | c_k \in \mathbb{C} \}$$

 $\sin_k = \sin kt$

$$\cos_k = \cos kt$$

$$\exp_k = e^{jkt}$$

24.2. Skalarprodukt

24.2.1. Eigenschaften

$$[a,b] = [b,a]$$

$$[a + b, c] = [a, c] + [b, c]$$

$$[\lambda a, b] = \lambda [a, b]$$

$$[a,a] \ge 0$$
 $[a,a] = 0 \Leftrightarrow a = 0$

24.2.2. Definitionen in $\mathbb P$ und $\mathbb E$

$$[f,g] = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cdot g$$
 $f,g \in \mathbb{P} \text{ und STF}$

$$[f,g] = \frac{1}{2\pi} \int_{0}^{2\pi} f \cdot \overline{g} \qquad f,g \in \mathbb{E}$$

$$[f,g] = \overline{[g,f]}$$
 $f,g \in \mathbb{E}$

24.2.3. Für orthonormierte Basis

$$\begin{aligned} [\cos_k, \sin_l] &= 0 & k \in \mathbb{N}_0, \ l \in \mathbb{N} \\ [\cos_k, \cos_l] &= \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases} & k, l \in \mathbb{N}_0 \\ [\sin_k, \sin_l] &= \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases} & k, l \in \mathbb{N} \\ [\exp_k, \exp_l] &= \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases} & k, l \in \mathbb{Z} \end{aligned}$$

24.3. Norm in \mathbb{P} und \mathbb{E}

$$||p|| = \sqrt{[p,p]}$$
 $p \in \mathbb{P} \text{ und } STF$
 $||p||^2 = [p,p] = a_0^2 + \sum_{k=1}^n a_k^2 + b_k^2$
 $||e|| = \sqrt{[e,e]}$ $e \in \mathbb{E}$
 $||e||^2 = [e,e] = \sum_{k=-n}^n |c_k|^2$

24.4. Cauchy-Schwarzsche Ungleichung

$$[f,g]^2 \le [f,f] \cdot [g,g]$$

24.5. Abstand

$$d(f,g) = ||f - g||$$

24.6. Fourierreihe reell

24.6.1. Fourierkoeffizienten

$$a_k = [f, \cos_k] = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \quad f \in STF$$

$$b_k = [f, \sin_k] = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt \quad b_0 = 0$$

gerade Funktion:

$$g(-t) = g(t) \Rightarrow b_k = 0$$

ungerade Funktion:
 $u(-t) = -u(t) \Rightarrow a_k = 0$

24.6.2. Fourierreihe der Funktion $f \in \mathbb{P}$

$$f = \sum_{k=0}^{\infty} (a_k \cos_k + b_k \sin_k)$$
$$\cos_0 = \frac{1}{\sqrt{2}} \qquad a_0 = [f, \cos_0] \qquad b_0 = 0$$

24.7. Fourierreihe komplex

24.7.1. Fourierkoeffizienten

$$c_{0} = \frac{a_{0}}{\sqrt{2}} \qquad c_{-k} = \overline{c_{k}}$$

$$c_{k} = \frac{1}{2} (a_{k} - jb_{k}) \qquad a_{k} = 2 \operatorname{Re}(c_{k}) = c_{k} + c_{-k}$$

$$c_{-k} = \frac{1}{2} (a_{k} + jb_{k}) \qquad b_{k} = -2 \operatorname{Im}(c_{k}) = j (c_{k} - c_{-k})$$

$$c_{k} = [f, \exp_{k}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} f \exp_{-k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-jkt} dt$$

24.7.2. Fourierreihe der Funktion $f \in \mathbb{E}$

$$f = \sum_{k=-\infty}^{\infty} c_k \exp_k = c_0 + \sum_{k=1}^{\infty} (c_k \exp_k + c_{-k} \exp_{-k})$$

24.8. Parsevalsches Theorem

$$\left\| f - \sum_{k=0}^{n} \left(a_k \cos_k + b_k \sin_k \right) \right\|^2 = \|f\|^2 - \sum_{k=0}^{n} \left(a_k^2 + b_k^2 \right) = \|f\|^2 - \sum_{k=-n}^{n} |c_k|^2$$

Leistung periodischer Signale:

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$

24.9. Durchgang durch LTI-System

gegeben:
$$f(t) = c_k e^{jkt} + c_{-k} e^{-jkt} = a_k \cos_k + b_k \sin_k$$
; $H(\omega)$ gesucht: $T(f(t)) = \tilde{f}$
$$\tilde{f} = \sum_{-\infty}^{\infty} c_k e^{jkt} H(k)$$

$$\tilde{a}_k = \operatorname{Re}(H(k)(a_k - jb_k))$$

$$\tilde{b}_k = -\mathrm{Im}(H(k)(a_k - jb_k))$$

$$\tilde{f} = \tilde{a}_k \cos_k + \tilde{b}_k \sin_k$$

24.10. Fourierkoeffizienten wichtiger periodischer Signale

Periodische Rechteckfolge

$$c_n = a_n = \frac{\tau}{T} \frac{\sin\left(\frac{n\pi\tau}{T}\right)}{\frac{n\pi\tau}{T}}$$

$$b_n = 0$$

Doppelweggleichgerichtete cos-Schwingung

$$c_n = a_n = \frac{2}{\pi} (-1)^{n+1} \frac{1}{4n^2 - 1}$$

$$b_n = 0$$

Einweggleichgerichtete cos-Schwingung

$$c_n = a_n = \frac{1}{\pi} \frac{\cos\left(\frac{n\pi}{2}\right)}{1 - n^2}$$

$$b_n = 0$$

Folge von Raised-Cosine-Impulsen

$$c_n = a_n = \frac{\tau}{2T} \frac{\sin\left(\frac{n\pi\tau}{T}\right)}{\frac{n\pi\tau}{T}} \frac{1}{1 - \left(\frac{n\tau}{T}\right)^2}$$

$$b_n = 0$$

Dreieckschwingung DC-frei

$$c_n = a_n = \frac{2[1 - (-1)^n]}{(n\pi)^2}, \qquad c_0 = 0$$

$$b_n = 0$$

24. FOURIERREIHEN

$$c_n=-jb_n, \qquad c_0=0$$

$$a_n = 0, \qquad b_n = \frac{(-1)^{n+1}}{n\pi}$$

25. Fouriertransformation

25.1. Fouriertransformation

$$\mathcal{F}(f(t)) = F(\omega), \qquad \mathcal{F}^{-1}(F(\omega)) = f(t)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Wichtig: Sonderfälle beachten! (Division durch 0 in der Lösung separat behandeln)

25.2. Fourier-Cosinustransformation

Für gerade Funktionen

$$\mathcal{F}_c(f(t)) = F_c(\omega), \qquad \mathcal{F}_c^{-1}(F_c(\omega)) = f(t)$$

$$F_c(\omega) = \int_0^\infty f(t) \cos \omega t \, dt$$

$$f(t) = \frac{1}{\pi} \int_{0}^{\infty} F_{c}(\omega) \cos \omega t \, d\omega$$

$$F = 2F_c$$

25.3. Fourier-Sinustransformation

Für ungerade Funktionen

$$\mathcal{F}_s(f(t)) = F_s(\omega), \qquad \mathcal{F}_s^{-1}(F_s(\omega)) = f(t)$$

$$F_s(\omega) = \int_0^\infty f(t) \sin \omega t \, dt$$

$$f(t) = \frac{j}{\pi} \int_{0}^{\infty} F_{s}(\omega) \sin \omega t \, d\omega$$

$$F = -2jF_s$$

25.4. Faltung

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

$$f * g = g * f$$
 $(f * g) * k = f * (g * k)$

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g) = F \cdot G$$

25.4.1. Fallunterscheidung bei Definitionsbereichen

$$p(t) = (f * g)$$

$$D(g(t)) = [a|b]$$

$$D(f(t)) = [c|d]$$

1. Fall:
$$c + b < a + d$$

I	t < a + c:	p(t) = 0
II	$a + c \le t \le b + c$:	$p(t) = \int_{a}^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
III	$b+c \le t \le a+d$:	$p(t) = \int_{a}^{b} f(\tau) \cdot g(t - \tau) d\tau$
IV	$a+d \le t \le b+d$:	$p(t) = \int_{t-d}^{b} f(\tau) \cdot g(t-\tau) d\tau$
V	b+d < t:	p(t) = 0

2. Fall: c + b > a + d

I	t < a + c:	p(t) = 0
		$p(t) = \int_a^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
		$p(t) = \int_{t-d}^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
IV	$b+c \le t \le b+d$:	$p(t) = \int_{t-d}^{b} f(\tau) \cdot g(t-\tau) d\tau$
V	b+d < t:	p(t) = 0

3. Fall:
$$c + b = a + d$$

III
$$| a + d = t = b + c$$
: $p(t) = p(a + d)$

25.5. Eigenschaften

$t \mapsto f(t)$	$\omega \mapsto \overline{F(-\omega)}$
$t \mapsto f(-t)$	$\omega \mapsto F(-\omega)$
$t \mapsto f(at)$	$\omega \mapsto \frac{1}{ a } F(\frac{\omega}{a})$
$t \mapsto f(t - t_0)$	$\omega \mapsto F(\omega)e^{-j\omega t_0}$
$t \mapsto e^{j\omega_0 t} f(t)$	$\omega \mapsto F(\omega - \omega_0)$
$t \mapsto F(t)$	$\omega \mapsto 2\pi f(-\omega)$
$t \mapsto f^{(n)}(t)$	$\omega \mapsto (j\omega)^n F(\omega)$
$t \mapsto (-jt)^n f(t)$	$\omega \mapsto F^{(n)}(\omega)$
$t \mapsto \int\limits_{-\infty}^t f(\tau) d\tau$	$\omega \mapsto \frac{1}{j\omega}F(\omega)$

25.6. Fouriertransformationen mit Diracdelta

Funktion	Fourier — Trans formierte
$t \mapsto \delta(t)$	$\omega\mapsto 1$
$t\mapsto 1$	$\omega\mapsto 2\pi\delta(\omega)$
$t \mapsto \delta(t - t_0)$	$\omega \mapsto e^{-j\omega t_0}$
$t\mapsto e^{j\omega_0t}$	$\omega\mapsto 2\pi\delta(\omega-\omega_0)$
$t\mapsto \sin(\omega_0 t)$	$\omega \mapsto j\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
$t\mapsto\cos(\omega_0t)$	$\omega \mapsto \pi(\delta(\omega + \omega_0) + \delta(\omega - \omega_0))$
$t \mapsto \delta^{(n)}(t)$	$\omega \mapsto (j\omega)^n$
$t \mapsto sign(t)$	$\omega\mapsto \frac{2}{i\omega}$
$t\mapsto \frac{1}{\pi t}$	$\omega \mapsto -j\pi sign(\omega)$
us	$\omega\mapsto rac{1}{j\omega}+\pi\delta(\omega)$

Faltung mit Dirac:

$$(f(t) * \delta(t_0)) = \int_{-\infty}^{\infty} f(t)\delta(t_0 - t)dt = f(t_0)$$

25.7. Fouriertransformationen wichtiger Impulse

Rechteckimpuls

$$S(\omega) = hT \frac{\sin\left(\frac{T\omega}{2}\right)}{\left(\frac{T\omega}{2}\right)}$$

Dreieckimpuls

$$S(\omega) = \frac{hT}{2} \left[\frac{\sin\left(\frac{T\omega}{4}\right)}{\frac{T\omega}{4}} \right]^2$$

Cosinusimpuls

$$S(\omega) = \frac{2hT}{\pi} \frac{\cos\left(\frac{T\omega}{2}\right)}{1 - \left(\frac{T\omega}{\pi}\right)^2}$$

Raised-Cosine-Impuls

$$S(\omega) = \frac{hT}{2} \frac{\sin\left(\frac{T\omega}{2}\right)}{\frac{T\omega}{2} \left[1 - \left(\frac{T\omega}{2\pi}\right)^{2}\right]}$$

Gauss-Impuls

$$S(\omega) = h\tau\sqrt{\pi}e^{\frac{-\omega^2\tau^2}{4}}$$

26. Laplace

$$\begin{array}{ccc}
f & \longrightarrow \tilde{f} = f * g \\
\mathcal{L} & \downarrow & \downarrow \\
F & \longrightarrow \tilde{F} = F \cdot G
\end{array}$$

26.1. Laplacetransformation

$$\mathcal{L}\left(f(t)\right) = F(s), \qquad \mathcal{L}^{-1}\left(F(s)\right) = f(t), \qquad s \in \mathbb{C}$$

$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$

$$f(t) = rac{1}{2\pi j} \int\limits_{x-j\infty}^{x+j\infty} F(s) \, e^{st} \, ds, \quad ext{falls } t \geq 0$$

$$f(t) = 0$$
, falls $t < 0$

26.2. Rechenregeln

$$\begin{array}{lll} t\mapsto f(at) & s\mapsto \frac{1}{a}F\left(\frac{s}{a}\right) & a>0 \\ t\mapsto \frac{1}{a}f\left(\frac{t}{a}\right) & (s\mapsto F(as)) \\ t\mapsto u(t-a)\cdot f(t-a) & s\mapsto e^{-as}F(s) & a>0 \\ t\mapsto f(t+a)) & s\mapsto e^{as}\left(F(s)-\int\limits_0^a f(t)\,e^{-st}\,dt\right) & a>0 \\ t\mapsto e^{-bt}f(t) & s\mapsto F(s+b) & c\in\mathbb{C} \\ t\mapsto f'(t) & s\mapsto sF(s)-f(0) \\ t\mapsto f^{(2)}(t) & s\mapsto s^2F(s)-sf(0)-f'(0) \\ t\mapsto f^{(3)}(t) & s\mapsto s^3F(s)-s^2f(0)-sf'(0)-f^{(2)}(0) \\ t\mapsto f^{(n)}(t) & s\mapsto s^nF(s)-\sum\limits_{k=0}^{n-1}s^{n-1-k}f^{(k)}(0) \\ t\mapsto -tf(t) & s\mapsto F'(s) \\ t\mapsto -t^3f(t) & s\mapsto F^{(3)}(s) \\ t\mapsto (-1)^nt^nf(t) & s\mapsto F^{(n)}(s) \\ t\mapsto \int\limits_0^t f(\tau)\,d\tau & s\mapsto \frac{1}{s}F(s) \end{array}$$

26.3. Spezielle Laplacetransformationen

$$\mathcal{L}\left(\delta(t)\right) = 1$$

$$\mathcal{L}(u(t)) = \frac{1}{s} \operatorname{Re}(s) > 0$$

$$\mathcal{L}\left(e^{at}\right) = \frac{1}{s-a} \quad \operatorname{Re}\left(s\right) > \operatorname{Re}\left(a\right)$$

$$\mathcal{L}\left(t^{n}\right) = \frac{n!}{s^{n+1}}$$

$$\mathcal{L}\left(t^{n}e^{at}\right) = \frac{n!}{\left(s-a\right)^{n+1}}$$

$$\mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$$

$$\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$$

$$\mathcal{L}\left(\frac{1}{d}e^{ct}\sin ct\right) = \frac{1}{\left(s-c\right)^2 + d^2}$$

$$\mathcal{L}\left(e^{ct}\left(\frac{c}{d}\sin dt + \cos dt\right)\right) = \frac{s}{\left(s-c\right)^2 + d^2}$$

26.4. Faltung

$$(f * g)(t) = \int_{0}^{t} f(\tau) \cdot g(t - \tau) d\tau$$

$$f * g = g * f$$
 $f(t) = g(t) = 0$ falls $t < 0$

$$\mathcal{L}(f * g) = \mathcal{L}(f) \cdot \mathcal{L}(g) = F \cdot G$$

Die Fallunterscheidung bei eingeschränkten Definitionsbereichen der Funktionen ist die selbe wie bei der Fourier-Theorie in Abschnitt 25.4.1 auf S. 192

Beispiel:

Geg:
$$g(t) = u(t) - u(t-5)$$
 und $f(t) = u(t-2) - u(t-6)$
Ges: $\tilde{f} = (f * g)(t)$

$$\tilde{f} = \int_{0}^{t} f(\tau) \cdot g(t - \tau) \, d\tau$$

$$g(t-\tau) = 1$$
 falls $0 \le t - \tau \le 5$ \Leftrightarrow $\tau \le t \le 5 + \tau$

26.5. Periodische Funktionen

f auf einer Periode T vorgeben.

$$F(s) = \int_{0}^{T} f(t) e^{-st} dt$$

Periodische Fortsetzung:

$$F_{per}(s) = F(s) \frac{1}{1 - e^{-sT}}$$

27. Differentialgleichungen

27.1. 1. Ordnung

27.1.1. Homogene

Separierbar

Praktisches Vorgehen beim Lösen der separierbaren Differentialgleichungen:

$$y' = \frac{g(x)}{h(y)} \quad \Leftrightarrow \quad \frac{dy}{dx} = \frac{g(x)}{h(y)}$$

$$\Leftrightarrow$$
 $h(y) dy = g(x) dx \Leftrightarrow $\int h(y) dy = \int g(x) dx$$

$$\Leftrightarrow$$
 $H(y) = G(x) + c$

Wenn durch ein Ausdruck, der die unbekannte Funktion enthält zu dividieren ist, so ist zu prüfen ob sein Verschwinden eine Lösung der DGL ergibt.

Substitution

Gegeben:

$$y'(x) = (x + y(x))^2$$

Substitution:

$$z = x + y(x) \Rightarrow z' = 1 + y'(x) \Leftrightarrow y'(x) = z' - 1$$

Einsetzten:

$$z'-1=z^2 \quad \Leftrightarrow \quad \frac{dz}{dx}-1=z^2$$

$$\Leftrightarrow \frac{1}{1-z^2} dz = dx \Rightarrow \text{separierbar}$$

27.1.2. Partikuläre

DGL:
$$y' + y = q$$

Ansatz

Ansatz für partikuläre Lösung: «Ähnlich» wie die Störfunktion (q), jedoch nicht in der homogenen Lösung enthalten.

Störfunktion	Ansatz
$\sin t$, $\cos t$	$a\sin t + b\cos t$
e^{-t}	$a e^{-t}$
$t e^{-t}$	$a e^{-t} + bt e^{-t}$
t	at + b

Ansatz in DGL einsetzten und Koeffizientenvergleich durchführen.

Variation der Konstanten

Homogene Lsg: $y_h = c p(x)$ Ansatz: $y_p = g(x) p(x)$ (c wird durch g(x) ersetzt) Ansatz in DGL einsetzten und nach g(x) auflösen

27.1.3. Lösung

Gesamtlösungsmenge: $y = y_h + y_p$

27.2. Höhere Ordnung

27.2.1. Homogen, linear mit konstanten Koeffizienten

DGL:
$$y^{(4)} + 6y^{(3)} + 22y'' + 30y' + 13y = 0$$

 \Rightarrow charakteristisches Polynom: $p(t) = t^4 + 6t^3 + 22t^2 + 30t + 13$
 $\Leftrightarrow p(t) = (t+1)^2(t+2-3j)(t+2+3j)$
 $\mathbb{N}(p) = \{-1; -1; -2+3j; -2-3j\}$

Aus den Nullstellen des charakteristischen Polynoms ergeben sich die Lösungen. Ordnung DGL = Anzahl Lösungen

$$y_1(t) = e^{-t}$$
 $y_2(t) = t e^{-t}$ $y_3(t) = e^{t(-2+3j)}$ $y_4 = e^{t(-2-3j)}$

Linearkombinationen aus Lösungen komplexer Nullstellen ergibt reelle Lösungen:

$$\frac{1}{2}(y_3(t) + y_4(t)) = e^{-2t}\cos 3t$$

$$\frac{1}{2j}(y_3(t) - y_4(t)) = e^{-2t}\sin 3t$$

27.2.2. Partikuläre

Ansatz

 \Rightarrow Siehe 27.1.1 Homogene S. 198

27. DIFFERENTIALGLEICHUNGEN

Variation der Konstanten

Störfunktion: q(x)

Homogene Lsg: $y_1(t)$ $y_2(t)$

Ansatz: $y_p = g_1(t) y_1(t) + g_2(t) y_2(t)$

Gleichungssystem:

$$g'_1(t) y_1(t) + g'_2(t) y_2(t) = 0$$

 $g'_1(t) y'_1(t) + g'_2(t) y'_2(t) = q(x)$

Dieses Gleichungsystem liefert $g_1(t)$ und $g_2(t)$

27.3. Laplace

27.3.1. Lineare Übertragung

Uebertragungsfunktion: $G(s) = \frac{1}{cv(s)}$

Stossantwort: $g(t) = \mathcal{L}^{-1}(G(s)) = \tilde{u}'$

wobei cp = Charakteristisches Polynom und \tilde{u} = Sprungantwort

$$y(0) = 0$$
, $y'(0) = 0$, $y^{(2)}(0) = 0$, ..., $y^{(n)}(0) = 0$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = q$$

 $\Downarrow \mathcal{L}$

$$Y(s) \cdot cp(s) = F(s) \quad \Leftrightarrow \quad Y(s) = \frac{F(s)}{cp(s)} = F(s) \cdot G(s)$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = (f * g)(t)$$

Beispiel:

$$y^{(2)} + 5y' + 6y = u$$
, $y(0) = 0$, $y'(0) = 0$

 $\Downarrow \mathcal{L}$

$$Y(s) \cdot (s^2 + 5s + 6) = Y(s) \cdot (s+2)(s+3) = \frac{1}{s}$$

$$Y(s) = \frac{1}{s(s+2)(s+3)} = \frac{\alpha}{s} + \frac{\beta}{s+2} + \frac{\gamma}{s+3}$$

$$1 = \alpha (s+2) (s+3) + \beta (s+3) s + \gamma (s+2) s$$

$$\begin{array}{lll} s=0: & 1=6\alpha & \Rightarrow & \alpha=\frac{1}{6} \\ s=-2: & 1=-2\beta & \Rightarrow & \beta=-\frac{1}{2} \\ s=-3: & 1=3\gamma & \Rightarrow & \gamma=\frac{1}{3} \end{array}$$

$$s = -2: 1 = -2\beta \implies \beta = -\frac{1}{2}$$

$$Y(s) = \frac{1}{6} \frac{1}{s} - \frac{1}{2} \frac{1}{s+2} + \frac{1}{3} \frac{1}{s+3}$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = \frac{1}{6}u(t) - \frac{1}{2}e^{-2t}u(t) + \frac{1}{3}e^{-3t}u(t)$$

$$y(t) = \left(\frac{1}{6} - \frac{1}{2}e^{-2t} + \frac{1}{3}e^{-3t}\right)u(t)$$

27.3.2. Nichtlineare Übertragung

Beispiel: Geg: $g(t) = 1 - \cos t$

Ges: \tilde{v} auf $v = \sin t$

$$\mathrm{mit}\ \tilde{v}''(0)=1,\quad \tilde{v}'(0)=0,\quad \tilde{v}(0)=0$$

$$g(t) = 1 - \cos t$$

$$\Downarrow \mathcal{L}$$

$$G(s) = \frac{1}{s} - \frac{s}{s^2 + 1} = \frac{1}{s^3 + s} = \frac{1}{cp(s)}$$

$$\Rightarrow$$
 DGL: $y^{(3)} + y' = \sin t$

 $\Downarrow \mathcal{L}$

$$s^{3}Y(s) - 1 + sY(s) = \frac{1}{s^{2} + 1} \Leftrightarrow Y(s)(s^{3} + s) = \frac{1}{s^{2} + 1} + 1$$

$$\Leftrightarrow Y(s) = \frac{1}{s^3 + s} \frac{1}{s^2 + 1} + \frac{1}{s^3 + 1}$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = (g * \sin)(t) + g(t)$$

27.4. Übersicht Laplace und Fourier

28. Funktionsdiskussion

28.1. Funktionen mit einer Variablen

28.1.1. Zu beantwortende Fragen

- 1. Definitiondbereich D(f)
- 2. Bild von f
- 3. Hat der Graph von f, G(f) Symmetrien? Gerade f(-x) = f(x) oder Ungerade f(-x) = -f(x)
- 4. Gibt es Polstellen?
- 5. Gibt es Gebiete der Koordinatenebene wo der Graph keine Punkte hat? (Achtung beim kürzen)
- 6. Gibt es Schranken für die Funktionswerte?
- 7. Welches sind die Nullstellen von *f*?
- 8. Welches sind die Nullstellen der Ableitungen von *f*?
- 9. Wo steigt f , wo fällt f?
- 10. Gibt es Grenzwerte für Argumente gegen $\pm \infty$?
- 11. Gibt es Asymptoten?

$$m = \lim_{|x| \to \infty} \left(\frac{f(x)}{x} \right)$$
 $q = \lim_{|x| \to \infty} (f(x) - mx)$

Asymptote: mx + q

Bei Brüchen mit Polynomen ergibt eine Division mit Rest die Asymptote: Beispiel:

$$(x^{3} - 4x^{2} - 17x + 60) \div (x^{2} - 4) = \underbrace{x - 4}_{Assymptote} + \underbrace{\frac{44 - 13x}{x^{2} - 4}}_{Rest}$$

Die Nullstellen des Zählerpolynoms im Rest ergeben die Schnittpunkte zwischen der Asymptote und der Funktion.

12. Gibt es absolute Maximal- oder Minimalstellen?

28.1.2. Gerade (2-Punkte-Form)

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

28.1.3. Abstand eines Punktes von einer Geraden

Gegeben: Gerade Ax + By + C = 0, Punkt $P = (p_1, p_2)$

$$d = \left| \frac{Ap_1 + Bp_2 + C}{\sqrt{A^2 + B^2}} \right| \quad (A^2 + B^2 \neq 0)$$

28.2. Funktionen mit mehreren Variablen

28.2.1. Bezeichnungen

$$f_1(x,y) = \frac{\partial f}{\partial x}$$

$$f_2(x,y) = \frac{\partial f}{\partial y}$$

Richtungsvektoren an die Parameterlinien

Richtungsvektor an die Abszissenlinie: $(1, 0, f_1(x, y))$ Richtungsvektor an die Ordinatenlinie: $(0, 1, f_2(x, y))$

Tangentialebene

$$\varepsilon: \quad \vec{p} = (p_1, p_2, p_3) = (x, y, f(x, y)) + \alpha(1, 0, f_1(x, y)) + \beta(0, 1, f_2(x, y))$$

$$\vec{n}_{\varepsilon} = (f_1(x, y), f_2(x, y), -1)$$

Gradient

Wir betrachten die Funktion $f:(x_1,x_2)\mapsto f(x_1,x_2)$. Sie ist in einer gewissen Umgebung U von (x_0,y_0) definiert.

Die Richtung des stärksten Anstiegs von f in (x_0, y_0) ist

$$\operatorname{grad} f(x_0, y_0) = (f_1(x_0, y_0), f_2(x_0, y_0)) = \vec{v}$$

(⇒ Richtung der Fallgeraden in der Grundrissebene) Richtungsvektor der Fallgerade der Tangentialebene:

$$(f_1(x_0, y_0), f_2(x_0, y_0), f_1(x_0, y_0)^2 + f_2(x_0, y_0)^2)$$

Richtungsableitung

$$D_{\vec{v}}f(x_0, y_0) = \operatorname{grad} f(x_0, y_0) \cdot \vec{e_v}$$

wobei $\vec{e_v}$ der Einheitsvektor in Richtung \vec{v} ist

Totales Differential

$$df = h \cdot f_1(x, y) + k \cdot f_2(x, y)$$

wobei h und k die Inkremente sind

Kettenregel

Vollständig differenzierbare Funktionen:

$$f:(x_1,x_2)\mapsto f(x_1,x_2)$$

$$u: (y_1, y_2) \mapsto u(y_1, y_2)$$

$$v: (y_1, y_2) \mapsto v(y_1, y_2)$$

$$\tilde{f}: (y_1, y_2) \mapsto f(u(y_1, y_2), v(y_1, y_2))$$

Dann sind

$$\tilde{f}_1(y_1, y_2) = f_1(u(y_1, y_2), v(y_1, y_2)) \cdot u_1(y_1, y_2) + f_2(u(y_1, y_2), v(y_1, y_2)) \cdot v_1(y_1, y_2)$$

$$\tilde{f}_2(y_1, y_2) = f_1(u(y_1, y_2), v(y_1, y_2)) \cdot u_2(y_1, y_2) + f_2(u(y_1, y_2), v(y_1, y_2)) \cdot v_2(y_1, y_2)$$

28.3. Kegelschnitte

28.3.1. Kreis

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

$$M = (x_0, y_0)$$

28.3.2. Ellipse

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

$$M=(x_0,y_0)$$

28.3.3. Hyperbel

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

$$M = (x_0, y_0)$$

28.3.4. Parabel

$$(y - y_0)^2 = 2p(x - x_0)$$

$$S = (x_0, y_0)$$

Überdruck, 32	Aufleiten, 181
···	
Uberlagerungsprinzip, 77 2 × 2 Matrizen	Rechenregeln, 181
Matrizen und Determinanten, 173	Sätze, 182
3×3 Matrizen	Spezielle Integrale, 183
	Austrieb, 33
Matrizen und Determinanten, 174	Ausdehnung
Abbildungen, 4	Längen-, 42 Volumen-, 42
Ableiten, 179	•
Bernoulli, de l'Hospital, 181	Austrittsgeschwindikkeit 30
Elementare Funktionen, 180	Austrittsgeschwindikkeit, 39
Rechenregeln, 179	Basisschaltug, 137
Absoluter Druck, 32	Bernoulli, 181
Abtasttheorem, 169	Beschleunigte Bewegung, 17
Abtastung, 168	Beugung, 70
Abtasttheorem, 169	Am Gitter, 71
Energie, 170	Am Spalt, 70
Flat Top Sampling, 168	kreisförmige Öffnung, 70
Ideale, 168	Bewegung der Planeten, 28
Interpolation, 170	Biasstrom, 159
Leistung, 170	Biegung
Real, 168, 169	Balken, 16
Rechteckpuls, 168, 169	Binom, 172
Rekonstruktion, 169	Biot-Savart, 88
Sample and Hold, 169	Bipolar Tansistor, 137
AC-Verstärker, 144	Blindleistung, 105
Addierer, 151, 152	Bodediagramm, 113
Additionstheoreme, 177	Brechung, 2
adiabatisch, 53	
Admittanz, 107, 111	Carnotprozess, 55
Antriebstechnik, 121	Cauchy-Schwarzsche, 187
Aperiodische Schwingung, 62	Common Mode Error, 157
Arbeit, 22	Cosinuswerte, 178
Beschleunigungs-, 23	Crestfaktor, 104
Expansions-, 53	Du (440
Hub-, 23	Dämpfung, 119
Kompressions-, 53	Dampfdruck, 45
Reibungs-, 24	Debye-Temperetur, 45
Spann-, 23	Deformierbare Körper, 32
Verformungs-, 24	Deformierung, 14

Dehnung, 14	Dreiphasen, 121
Dezibel, 150	Dreiphasensysteme, 121
Dichte, 22	DriftGeschwindigkeit, 73
Differential Gleichungen, 198	Druck, 32
1.Ordnung, 198	Absoluter, 34
Hohere Ordnung, 199	Dampfdruck, 45
Homogen, linear, konst, 199	Differenzen, 35
Homogene, 198	Dynamischer, 34
Partikulare, 198, 199	Gesamt, 35
Differentieller UI-Wandler, 154	Schmelzdruck, 45
Differenzieren, 179	Statischer, 34
Bernoulli, de l'Hospital, 181	Druck auf Rohrwand, 34
Elementare Funktionen, 180	Druckmessung, 34
Rechenregeln, 179	Druckwandler, 33
Digital	DSG, 128
Abtastung, 168	Stabilität, 128
Sampling, 168	Durchflutung, 91
Digitale Signalverarbeitung, 167	Dynamik, 21
Diode, 133, 147	T((1))
übergangsbereich, 131	Effektivwert, 105
AC-Analyse, 132	Eigenschingungen, 69
Arbeitspunktberechnung, 130	Einstein, 24
DC-Analyse, 132	Einzelkraft, 13
Differentieller Widerstand, 131	El. Arbeit, 73
Durchbruchbereich, 131	El. Leistung, 73
Durchlassbereich, 131	Elastischer Stoss, 26
Grosssignalanalyse, 132	Elekronendichte, 73
ideale, 130	Elektrischer Schwingkreis, 62
Kennlinie, 131	Elektrizitätslehre
Kleinsignalanalyse, 132	Überlagerungsprinzip, 77
Konstantspannungsmodell, 130	Arbeit, 73
Spannungsstabilisierung, 133	DriftGeschwindigkeit, 73
Sperrbereich, 131	Elekronendichte, 73
Temperaturkoeffizient, 133	Elementarladung, 73
Z-Diode, 133	Feldstärke, 73
Diracdelta, 193	Gleichstrom, 75
	Kirchoff, 75
Doppelwinkel, 177	Knotensatz, 75
Doppler-Effekt, 66	Knotenspannungsmethode, 78
Akustischer, 66	Kreisströme, 78
Optischer, 66	Kreisstrom-Methode, 78
Drehbewegung, 18	Ladung, 73
Drehimpuls, 25	Leistung, 73
Drehmoment, 13, 128	Leistungsanpassung, 78
Drehstrom, 121	Leitwert, 73
Synchrongenerator, 128	Maschensatz, 75
Dreieckschaltung, 122	Netzwerkanalyse, 76
Dreifachwinkel, 177	Netzwerkumwandlung, 76

Nichtlinear, 78	Strahlung, 49
Quellen, 75	Energietechnik, 121
gesteuerte, 80	Enthalpie, 54
Mehrere, 76	Entropie, 56
Quellenumwandlung, 77	Euler, 179
Quellenverschiebung, 79	Expansion, 53
Spannung, 73	Faktorzerlegungen, 172
Spannungsgesetz, 75	Feder, 15, 23
Spannungsquelle, 75	Feldeffekt Transistor, 149
spez. Leitwert, 73	Feldstärke, 73
Spez. Widerstand, 73	Fernrohre, 11
Stern – Dreieck, 77	Fet
Strom, 73	AC-Verstärker, 144
Stromdichte, 73	DC-Berechnung, 142
Stromgesetz, 75	Diode, 147
Stromquelle, 76	Drainschaltung, 145
Superposition, 77	Fet-Typen, 138
Thévenin, 78	Gateschaltung, 145
Trennspannungen, 78	Gleichstrom, 142
Widerstand, 73	Innenwiderstände, 146
Wirkungsgrad, 78	Kleinsignal Ersatz, 141
Elektromotor, 123	MOS-Diode, 147
Elektronik, 130	MOSFET
Elektrostatik, 83	ideal, 139
Allgemein, 83	real, 140
Das Coulobsche Gesetz, 83	Schalter, 143
Energie, 86	Sourceschaltung, 144
Homogenes Feld, 85	Stromquelle, 148
Kräfte, 86	Geregelte Kaskode, 149
Anziehung, 87	Kaskode, 148
Verschiebung, 87	Kaskode geregelt, 149
Paralleldrahtleitung, 86	Stromspiegel
Räumliches Zentralfeld, 84	Widlar, 149
Zylindrisches Zentralfeld, 85	VCR, 146
Elementarladung, 73	Widerstand, 146
Elliptische Spiegel, 5	Fet-Typen, 138
Emitterfolger, 137	Flüssigkeiten, 32
Emitterschaltug, 136	Fluchtgeschwindigkeit, 29
Energie, 22, 106, 170	Fluide, 32, 35
Expansions-, 53	Überdruck, 32
Kernbindungs-, 24	Absoluter Druck, 32
Kinetische-, 23	Auftrieb, 33
Kompressions-, 53	Druck, 32
Potentielle-, 23	Absoluter, 34
Reibungs-, 24	Differenzen, 35
Rotations-, 23	Dynamischer, 34
Spann-, 23	Gesamt, 35
- F	

Statischer, 34	Koeffizienten komplex, 188
Druckmessung, 34	Norm in $\mathbb P$ und $\mathbb E$, 187
Druckwandler, 33	Orthonormierte Basis, 187
Grenzflächeneffekte, 35	Rechteck-Impuls, 194
Grenzflächenspannung, 36	Rechtecksignal, 189
Hydrodynamik, 37	Reihe komplex, 188
Hydrostatik, 33	Reihe reel, 187
Kapillarität, 36	Reihen, 186
Kompression, 32	Sägezahn Signal, 190
Kontinuitätsgleichung, 37	Skalarprodukt, 186
Kraftwandler, 33	Tranformation, 191
Manometer, 34	trig. Polynome, 186
Schweredruck, 33	Fourierreihe, 186
Strömung	Freier Fall, 19
Dynamischer Auftrieb, 40	Funktionsdiskussion, 203
Formen, 38	Bezeichnungen, 204
Laminare, 39	Funktionen mit einer Variablen, 203
Newtonsches Reibungsgesetz, 38	Funktionen mit mehreren Variablen, 204
Raynolds-Zahl, 38	
Reale, 38	Gase
Tragflügel, 41	Gemische, 43
Turbulent, 40	Ideal, 43
Volumenstrom, 39	Kinetische Gastheorie, 47
Vortizität, 38	Mittlere freie Weglänge, 48
Zirkulation, 38	Reale, 44
Folge	Wärmeleitung, 48
Aritmetische, 173	GBP, 160, 165
Geometrische, 173	Gedämpfte Schwingung, 61
Fotoapparat, 8	Gegeninduktivität, 93
Fourier	Gegenkopplung, 161
Bezeichnungen, 186	Gegenkopplungsarten, 162
Cauchy-Schwarzsche, 187	Gemische idealer Gase, 43
Cosine Folge, 189	Generator, 123, 127
Cosine-Impuls, 194	Inselbetrieb, 127
Cosinus-Impuls, 194	Synchron, 128
Cosinustransformation, 191	Generator am starren Netz, 128
Diracdelta, 193	Generatoren, 123
Doppelweg Gleichgerichtet, 189	Geometrische Optik, 2
Dreieck Folge, 189	Geostationär, 29
Dreieck-Impuls, 194	Geregelte Kaskode, 149
Einweg Gleichgerichtet, 189	Getriebe, 30
Exp. Polynome, 186	Gewichtskraft, 22
	Gleichförmige Bewegung, 17
Faltung, 192	Gleichgewichtsbedingung, 12
Funktion $f \in \mathbb{E}$, 188	Gleichstrommasshina 124
Funktion $f \in \mathbb{P}$, 188	Gleichstrommaschine, 124
Impulse, 194	Fremderregt, 124
Koeffizienten, 187	Nebenschluss, 125, 126

Nutzbremsung, 125	Inselbetrieb, 127
Gleichtaktfehler, 157	Instabilität, 119
Goniometrie, 176	Instrumentationsverstärker, 152
Additionstheoreme, 177	Integrieren, 181
Doppelwinkel, 177	Integration rationaler Funktionen, 182
Dreifachwinkel, 177	Rechenregeln, 181
Genaue Funktionswerte, 178	Sätze, 182
Halbwinkel, 177	Spezielle Integrale, 183
Logarithmen, 178	Substitution, 181
Potenzen, 176	Intensität, 64
Summe und Produkte, 177	Interferenz, 67
Gravitation, 28	Isobar, 44
Gravitationsfeld, 29	isobar, 52
Gravitationsgesetz, 28	Isochor, 44
Grenzflächeneffekte, 35	isochor, 52
Grenzflächenspannung, 36	isotherm, 52
Grundlagen	
Grundgrössen, 73, 80	k-Wert, 51
Vektorrechnung, 174	Kapazitäten, 108
S	Kapillarität, 36
Haftreibung, 12	Kaskode, 148
Halbwinkel, 177	Kaskode geregelt, 149
Harmonische Welle, 65	Kepler-Gesetze, 28
Horizontaler Wurf, 20	Kinematik, 17
Hospital, 181	Beschleunigte Bewegung, 17
Hydrodynamik, 37	Drehbewegung, 18
Hydrostatik, 33	Freier Fall, 19
Hyperbolische Spiegel, 5	Horizontaler Wurf, 20
T (1) 1 445	Kreisbewegung, 18
I-Glied, 115	Schiefer Wurf, 20
ideale Diode, 130	Senkrechter Wurf, 19
Ideale Gase, 43	Winkelbeschleunigung, 18
Idealer OP, 150	Winkelgeschwindigkeit, 18
Impedanz, 107, 111	Wurfbahnen, 19
Impedanztransformation, 111	Zentripetalbeschleunigung, 19
Impuls, 25	Kinetische Gastheorie, 47
Impulse, 194	Mittlere freie Weglänge, 48
Induktionsgesetz, 95	Kirchoff, 75
induktive Kopplung, 93	Knotensatz, 75
Induktivität, 92	Knotenspannungsmethode, 78
Drahtschleife, 99	Kollektorschaltug, 137
Kreisrahmenspule, 102	Komparator, 154
Paralleldrahtleitung, 100	Komplexe Zahlen, 178, 179
Ringspule, Toroid, 102	Euler, 179
Induktivitäten, 109	Kompression, 15, 32
Parallelschaltung, 96	Komression, 53
Serieschaltung, 96	Konkavspiegel, 5
inelastischer Stoss, 26	Kontinuitätsgleichung, 37

Konvexspiegel, 6	Fluss, 91
Kräfte im Magnetfeld, 89	Flussdichte, 89
Kräftepaar, 13	Gegeninduktivität, 93
Kraftwandler, 33	Induktionsgesetz, 95
Kreisbewegung, 18	induktive Kopplung, 93
Kreisprozess, 54	Induktivität, 92
Kreisströme, 78	Kräfte, 89
Kreisstrom-Methode, 78	Nichtlinerarität, 97
Kreisstrommethode, 112	Ohmsches Gesetz, 92
Kurvendiskussion, 203	Permeabilität, 88
	Selbstinduktion, 95
Ladung, 73	Spulenfluss, 92
Laplace, 195	Trafogleichungen, 96
Lineare Übertragung, 200	Widerstand, 92
Nichtlineare Übertragung, 201	Manometer, 34
Laplacetransformation	Maschenmethode, 112
Faltung, 197	Maschensatz, 75
Periodische Funktionen, 197	Masse, 28
Rechenregeln, 196	Massenträgheit, 30
Spezielle, 196	Massenträgheit (tabelle), 31
Leistung, 24, 105, 170	Mathematik, 172
Leistung bei Sternschaltung, 122	Matrix
Leistungsanpassung, 78, 105	Transponierte, 174
Leitwert, 73	Matrizen und Determinanten, 173
Lichtwellenleiter, 4	Maxwellsche Geschwindigkeitsverteilung,
Lineare Abbildungen	48
Vektorrechnung, 175	Membrane, 70
Linsen, 6	Mikroprojektor, 9
Linsensysteme, 7	Mikroskop, 10
Linsentypen, 6	Mischtemperatur, 45
Luftfeuchtigkeit, 46	Mitkopplung, 161
Lupe, 9	Mittel- und Kennwerte, 103
M 1 1 1/2 1/2	MOS-Diode, 147
Machscher Kegel, 67	Motor, 123
Magetismus	Motoren, 123, 167
Energiedichte, 94	Gleichstrom, 124
Magn. Widerstand, 92	
Magnetismus, 73	Nebenschlussmaschine, 125, 126
Brechung, 93	Netzwerkanalyse, 76
Durchflutung, 91	Netzwerkumwandlung, 76
Energie, 94	Newtonsches Reibungsgesetz, 38
Feldstärke, 88	Nichtlinear, 78
Koaxialkabel, 100	Nichtlinerarität, 97
Kreisförmiger Leiter, 99	Norm in \mathbb{P} und \mathbb{E} , 187
Kurzer, gerader Leiter, 98	Nullstelle, 118
Langer gerader Leiter, 98	Nyquistdiagramm, 113
Voller Leiter, 99	0% (11 150
Zylinderspule, 101	Offsetfehler, 158

Ohm, 108	Lichtwellenleiter, 4
Operationsverstärker, 151, 160	Linsen, 6
Übertragungskennlinie, 157	Linsensysteme, 7
Addierer, 151, 152	Linsentypen, 6
Ausgangsspannungsbereich, 157	Lupe, 9
Bandbreite, 160	Mikroprojektor, 9
Beschaltung mit Zweitor, 156	Mikroskop, 10
Biasstrom, 159	Parabolspiegel, 5
Common Mode Error, 157	Planspiegel, 6
Differentieller UI-Wandler, 154	Prisma, 3
Differenzverstärker, 152	Projektor, 8
Dynamischer Eingakgswiderstand, 159	Reflexionsgesetz, 2
Eingangsströme, 159	Sammellinse, 7
Fehler, 157	Sphärische Spiegel, 5
Frequenzgang, 160	Spiegel, 5
GBP, 160	Totalreflexion, 3
Geschlossene Verstärkung, 158	Zerstreuungslinse, 7
Gleichtaktfehler, 157	Optische Weglänge, 68
Idealer-, 150	Orthonormierte Basis, 187
Invertierender Verstärker, 156	Ortskurve, 113
Komparator, 154	Oszillator, 155
Offsetfehler, 158	
Oszillator, 155	P-Glied, 115
Power supply error, 158	Parabolspiegel, 5
Realer, 157	Parsevalsches Theorem, 188
Schmitt-Trigger, 154	Partialbruchzerlegung, 173
Spannungsfolger, 151	Pascal Dreieck, 172
Statische Fehler, 159	Pendel
Stromquelle, 153	Drehpendel, 59
Stromspiegel, 153	Federpendel, 59
	Mathematisches Pendel, 60
Subtrahierer, 152	Physikalisches Pendel, 60
Transitfrequenz, 160	Permeabilität, 88
Versorgungsspannunngsfehler, 158 Verstärker	Pfeife, 69
	Phasenübergänge, 45
Invertierend, 151	Physik, 2
Nicht Invertierend, 151	Planeten-Bewegung, 28
Verstärkungsbandbreitenprodukt, 160	Planspiegel, 6
Wien-Robinson Oszillator, 155	Pol-Nullstellendiagramm, 118
Optik, 2	Polstelle, 118
Abbildungen, 4	Potentielle Energie, 29
Brechung, 2	Prisma, 3
Elliptische Spiegel, 5	Projektor, 8
Fernrohre, 11	Proportionalglied, 114
Fotoapparat, 8	PT ₁ -Glied, 115, 118
Hyperbolische Spiegel, 5	PT ₂ -Glied, 116, 119
Konkavspiegel, 5	
Konvexspiegel, 6	Quadratische Gleichung, 173

Quellen, 75	periodische Schwingung, 58
gesteuerte, 80	Physikalisches Pendel, 60
Mehrere, 76	Ungedämpfte Schwingung, 57
Quellenumwandlung, 77	Selbstinduktion, 95
Quellenverschiebung, 79	Senkrechter Wurf, 19
Querkontraktion, 14	Sensivität, 164
	Sinuswerte, 178
Rückkopplung, 161	Skalare Projektion
Raketenantrieb, 26	Vektorrechnung, 174
Rationalisierungsformeln, 183	Skalarprodukt
Raynolds-Zahl, 38	Vektorrechnung, 174
Reaktionsprinzip, 12	Spannung, 14, 73
Realer OP, 157	an Grenzflächen, 36
Reflexionsgesetz, 2	Spannungsfolger, 151
Reibungsarbeit, 24	Spannungsgesetz, 75
Reibungskraft, 22	Spannungsquelle, 75
Reihen	Spannungsstabilisierung, 133
Fourier, 186	spez. Leitwert, 73
Ringing, 119	Spez. Widerstand, 73
RMS, 104	Sphärische Spiegel, 5
RMS-Wert, 105	Spiegel, 5
Rotation, 27	Spulenfluss, <i>siehe</i> Magnetismus
Caita 60	Standardterm, 114
Saite, 69	Aufwartsknick, 117
Sammellinse, 7	Dämpfung, 119
Sample and Hold, 169	I-Glied, 115
Sampling, 168	Instabilität, 119
Scheinleistung, 105 Schiefer Wurf, 20	P-Glied, 115
·	PT ₁ -Glied, 115, 118
Schleifenverstärkung, 164	PT ₂ -Glied, 116, 119
Schmelzdruck, 45 Schmitt-Trigger, 154	Quadratisch, 116, 117
Schraubenfeder, 15	Ringing, 119
	Schwingen, 119
Schubbeanspruchung, 15 Schweredruck, 33	Totzeitglied, 116
•	Starre Körper im Gleichgewicht, 12
Schwerpunkt, 13 Schwingen, 119	Statik, 12
Schwingen, 117 Schwingung	Statischer Auftrieb, 33
Aperiodische Schwingung, 62	Stehende Welle, 68
Gedämpfte Schwingung, 61	Stern – Dreieck, 77
Schwingungen, 57	Sternschaltung, 121
aperiodische Schwingung, 58	Stochastische Signale, 167
Drehpendel, 59	Stoss
<u> </u>	elastisch, 26
Elektrischer Schwingkreis, 62	inelastisch, 26
Federpendel, 59 freie Schwingung, 57	Strömung
ě ě	Austrittsgeschwindikkeit, 39
Harmonische Schwingung, 57 Mathematisches Pendel, 60	Dynamischer Auftrieb, 40
maniemanscries i ender, ou	Dynamischer Aufuleb, 40

Formen, 38	Trafogleichungen, 96
Laminare, 39	Tragflügel, 41
Newtonsches Reibungsgesetz, 38	Transistor
Raynolds-Zahl, 38	Basisschaltug, 137
Reale, 38	DC-Ersatzschaltung, 135
Tragflügel, 41	Dynamische Innenwiderstände, 135
Turbulent, 40	Emitterfolger, 137
Volumenstrom, 39	Emitterschaltug, 136
Vortizität, 38	Arbeitspunkt, 136
Zirkulation, 38	Feldeffekt, 149
Strömungsfeld	Funktionsweise, 134
Allgemein, 81	Idealer, 135
Leistung, 82	Kollektorschaltug, 137
Leistungsdichte, 82	NPN, 134
Räumliches Zentralfeld, 81	PNP, 134
Zylindrisches Zentralfeld, 82	Unipolar, 149
Strömungsformen, 38	Verstärkerschaltungen, 135
Strahlung	Transitfrequenz, 165
Gesetze-, 49	Translation, 27
Temperatur-, 49	Transponierte, 174
Wärme, 50	Trennbündelmethode, 112
Strahlungsenergie, 49	Trennspannungen, 78
Strom, 73	Trigonometrie, 175
Stromdichte, 73	Cosinussatz, 176
Stromgesetz, 75	Komplementwinkel, 175
Stromquelle, 76, 148, 153	Sinussatz, 176
Geregelte Kaskode, 149	IVOD 444
Kaskode, 148	VCR, 146
Kaskode geregelt, 149	Vektorielle Projektion
Stromspiegel, 153	Vektorrechnung, 174
Widlar, 149	Vektorprodukt
Subtrahierer, 152	Vektorrechnung, 174
Superposition, 77	Vektorrechnung, 174
Symetrischer Eingang, 152	Versorgungsspannungsfehler, 158
Synchrongenerator, 127, 128	Verstärker, 161, 165
T. 170	Ausgangschaltungen, 163
Tangenswerte, 178	Eingangschaltungen, 163
Tansistor	GBP, 165
Bipolar, 137	Gegenkopplung, 161
Temperatur, 42	Invertierend, 151
Celcius, 42	Mitkopplung, 161
Debeye-, 45	Nicht Invertierend, 151
Farenheit, 42	Rückkopplung, 161
Kelvin, 42	Schleifenverstärkung, 164
Temperaturstrahlung, 49, 50	Transitfrequenz, 165
Thévenin, 78	Verstärkung, 150
Totalreflexion, 3	Verstärkungs Bandbreiten Produkt, 165
Totzeitglied, 116	Verstärkungsbandbreitenprodukt, 160

Vierpole, 156	RMS, 104
Vortizität, 38	Welle
Vorwort, i	Überlagerung, 67
	Beugung, 70
Wärme, 44	Am Gitter, 71
Austausch-, 45	Am Spalt, 70
Energie, 44	kreisförmige Öffnung, 70
Molare-, 45	Doppler-Effekt
Wärmeaustausch, 50	Akustischer, 66
Wärmebedarf eines Gebäudes, 51	Optischer, 66
Wärmelehre, 42	Eigenschwingung, 69
Wärmeleitung in Gasen, 48	Harmonische, 65
Wärmetransport, 51	Intensität, 64
Wechelstrom	Interferenz, 67
Betragsmittelwert, 103	Kapillarwelle, 63
Formfaktor, 104	Longitudinalwelle, 63
Halbwellenmittelwert, 103	Machscher Kegel, 67
Linearer Mittelwert, 103	Membrane, 70
Mittel- und Kennwerte, 103	Optische Weglänge, 68
Quadratischer Effektivwert, 104	Phasensprung, 67
zusammeng. Sign., 104	Räumliche Ausbreitung, 65
Quadratischer Mittelwert, 104	Schallwelle, 63
Quadratischer RMS, 104	Schwerewelle, 63
RMS, 104	Seilwelle, 63
Scheitelfaktor, 104	Stehende, 68
Wechselstrom	Transversalwelle, 63
Admittanz, 107	Wellengleichung, 64
Blindleistung, 105	Wellengeschwindigkeiten, 63
Bodediagramm, 113	Wellengleinchung, 64
Standardterm, 114	Wellenlehre, 63
Darstellungsformen, 113	Widerstand, 73, 108
Energie, 106	Widlar, 149
Impedanz, 107	Wien-Robinson Oszillator, 155
Impedanztransformation, 111	Winkelbeschleunigung, 18
Induktivitäten, 109	Winkelgeschwindigkeit, 18
Kapazitäten, 108	Wirkungsgrad, 25, 78
Kreisstrommethode, 112	Carnot, 55
Leistung, 105	Wurfbahnen, 19
Leistungsanpassung, 105	
Maschenmethode, 112	Z-Diode, 133
Nyquistdiagramm, 113	Zeigerdarstellung, 110
Ortskurve, 113	Zentralmasse, 29
Scheinleistung, 105	Zentripetalbeschleunigung, 19
Transformation ZY, 111	Zerstreuungslinse, 7
Trennbündelmethode, 112	zurückgeführte Energie, 56
Widerstand, 108	Zustandsänderungen, 52
Z und Y-Ebene, 111	adiabatisch, 53
Wechslelstrom	isobar, 52

isochor, 52 isotherm, 52 Zweitore, 156