The Canonical Embedding
· X hyperell. or X = 1P° by K
Genus 2 * X hyperell. $M_2 \cong U/PGL_2$ PSym(x,y)
Genus 3 · X hyperell or
X C P as a plane quartic
$M_3 = \frac{U/\rho_{GL_3}}{\rho_{GL_3}} \frac{U}{V_2} \frac{V_2}{\rho_{GL_2}}$ $U_1 \subset \frac{P_{Sym}^4 \langle x_1 y_1 z \rangle}{U_2} \qquad \frac{V_2}{V_2} \subset \frac{P_{Sym}^8 \langle x_1 y_2 \rangle}{P_1^8}$ $= \frac{P_1^8}{6 \dim U} \qquad \frac{1}{5 \dim U}$
U_1 c $PSym^4\langle X_1Y_1Z\rangle$ V_2 c $PSym^2\langle X_1Y_1\rangle$
1P 14 P 8
= 6 dim U 5 dim.
Genus 4: X hyperell or X C 1P3
n $sym(4)$ $h^0(K_x^n)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$3 \mid 20 \mid 15 \Rightarrow 5 \text{ cubics}$
1 new.
$X \hookrightarrow Q_2 \cap Q_3.$
Turns out X ~ Q2 1 Q3.
and $Q_2 \cap Q_3$ is smooth.
1 -

(Possible digression - Complete intersections). and conversely, and smooth Q2nQ3 is a

canonically embedded curve of genus 4. SO $M_4 = \{(Q_2, Q_3 \mod Q_2)\} / PG_{14}$ { Q10 } / PGL2 Q2 4 9 dim $Q_3 \mod Q_2 \leftarrow 20-4-1 = 15 \dim.$ $24 \, dim - 15 = 9 \, dim.$ Genus 5: X hyperell. OR $\frac{M5}{X} \stackrel{\text{P}}{=} \frac{1}{5} \frac{1}{5} \frac{1}{12} \stackrel{\text{Sym}}{=} \frac{1}{15} \frac{1}{12} \stackrel{\text{Sym}}{=} \frac{1}{15} \frac{1}{12} \stackrel{\text{Sym}}{=} \frac{1}{15} \frac{1}{15} \frac{1}{15} = \frac{1}{1$ Thm: A canonical curve of genus 5 in P is cut out by 3 quadrics unless X admits a day 3 map to TP' or a degree 5 map to P2 Terminology: 9d = linear system of degree d and dim (7+1).

More generally a canonical X CIP is cut out by quadratic eg's unless X has a 9½ or a 9½.

(Ennique-Babbage-Petri) 1920's

93 or 95 Cut by Quadrics. Not and by quadrics Green's Conjecture (1984) "Algebra" of humog egns of canonical X Existence of "special" linear series on X. One half - What dues a 93 or 95 have to do with this? Geometric Riemann Roch. h'(D) = d-g+1 + h'(K-D).D effective. $H^{0}(K-D) \cong \{ \sigma \in H^{0}(K) \mid (\sigma) \geq D \}$ i.e. o vanishing on D. $X \longrightarrow P$ Then $H^0(X, K) = H^0(P^3, Ob)$

Then $H^0(X,K) = H^0(P^3,00)$ = Linear homy, pol. $H^0(X,K-D) = Linear homy, pol. vanishing on D$ Hyperplanes containing D.

 $Span(D) = linear span of D = P^k$

Then Lin Poly vanishing on D

Lin poly vanishing on PR.

() dim (9-K-1)

h'(X,D) = d+1-g + g-K-1= d-K.

 $h^0(X,D)_{\cdot} = deg D - dim Span(D)_{\cdot}$

Suppose $d \leq g$.

Expect K= d-1

h'(X,D) = 1

More linear coincidences \Rightarrow higher $h^0(X_1D)$.

Any quadric containing X contains this line.

I anit be cut out by avadrics!

I Conic through D. Any Quabric containing X must contain this conic.

=) X carit be cut not by quedrics! So we proved the easy holf of B.E.P. thm.