Nr.	Quinten	Crum	1-10	omework	#3	MATH	Verantwortlich 450
	Problem # 12						
A.		1/3 1/4	16	1.	0000	W = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	?]
k=I	$U_{11} = \alpha_{11} = 1$ $ U_{21} = \frac{\alpha_{21}}{\alpha_{11}} = \frac{1}{2}$						
	L= \[\begin{align*} 1 & 0 & 0 \\ \langle \lan	0	0		4		
k=2	d Udd = 01d - = 13 - = 11d	4.4	3 4	4 - 1	1, 13		
	U24 = N24 - = 1/5 - = 3/40	5.年	=		32 - 131		
	Lux = Ux [Mud = 12 [1/5 = 12 [3/10]	- 4.67					

Problem 13

import numpy as np

A)

In []:

```
import math
         import matplotlib.pyplot as plt
In [ ]: def create_L_matrix(n):
             L = np.identity(n=n)
             return L
         def create_U_matrix(n):
             U = np.zeros((n,n))
             return U
         def hilbert(n):
             x = np.arange(1, n+1) + np.arange(0, n)[:, np.newaxis]
             return 1.0/x
         def lu_decomp(A):
             n = len(A)
             L = create_L_matrix(n)
             U = create_U_matrix(n)
             for k in range(0,n):
                 # Ukk
                 temp_sum_ukk = 0
                 for s in range(0,k):
                     temp_sum_ukk += L[k,s]*U[s,k]
                 U[k,k] = A[k,k] - temp_sum_ukk
                 #Ukj
                 for j in range(k+1,n):
                     temp_sum_ukj = 0
                     for s in range(0,k):
                         temp_sum_ukj += L[k,s]*U[s,j]
                     U[k,j] = A[k,j] - temp sum ukj
                 #Lik
                 for i in range(k+1,n):
                     temp sum lik = 0
                     for s in range(0,k):
                         temp_sum_lik += L[i,s]*U[s,k]
                     L[i,k] = (1/U[k,k])*(A[i,k] - temp sum lik)
             return L,U
```

```
In [ ]: A = hilbert(4)
    results = lu_decomp(A)
```

```
print("L: ")
print(results[0])
print()
print()
print('U:')
print(results[1])
np.set_printoptions(precision=55)
```

```
L:
                0.
                               0.
[[1.
 0.
[0.5
                1.
                               0.
 0.
               ]
0.
               ]
[0.25
                0.9000000000000004 1.499999999999951
 1.
               ]]
U:
[[1.000000000000000e+00 5.0000000000000e-01 3.333333333333333e-01
 2.500000000000000e-01]
[0.00000000000000e+00 8.3333333333331e-02 8.333333333333334e-02
 7.50000000000001e-02]
[0.00000000000000e+00 0.0000000000000e+00 5.555555555555536e-03
 8.33333333333276e-031
3.571428571429447e-04]]
```

B)

```
from audioop import reverse
In [ ]:
         def forwardSub(L,b):
             L_inv = np.linalg.inv(L)
             y = np.matmul(L inv,b)
             return y
         def backwardsSub(U,y):
             \#x = np.zeros((len(U),1))
             #print(x)
             #for i in reversed(range(0,len(U))):
                 \#temp\ sum\ =\ 0
                 #for j in range(i+1,len(U)):
                     #print('i: '+str(i)+' j: '+str(j))
                     \#temp\_sum += x[j]/U[i,j]
                 \#x[i][0] = (y[i]-temp_sum)/U[i,i]
             U_inv = np.linalg.inv(U)
             x = np.matmul(U_inv,y)
             return x
```

```
In [ ]: A = hilbert(4)
b = np.matrix([[1],[2],[3],[4]])
results = lu_decomp(A)
```

```
y = forwardSub(results[0],b)
 print('Forward substitution results y: ')
 print(y)
 print()
 x = backwardsSub(results[1],y)
 print('Backwards substitution results x: ')
 print(x)
Forward substitution results
[[1.
 [1.5
 [0.6500000000000048]]
Backwards substitution results x:
[[ -63.9999999977085]
 [ 899.99999997318 ]
 [-2519.99999999342
 [ 1819.99999995673 ]]
C)
 checking = np.matmul(A,x)
 print('Ab = x where x equals:')
```

```
In [ ]: | A = hilbert(4)
           print(checking)
          Ab = x \text{ where } x \text{ equals:}
```

```
[[1.000000000001137]
[2.
[3.99999999999943]]
```

As we can see the outcome of the matrix multiplication of matrix A with the solution vector x gives us with in a reasonable range for the true value of b.

Problem # 14	Тур	Termin	Verantworllich
A. $ X_1 _{\lambda} = (3^{3} + (-4)^{3} + 0^{4} + 1.5^{3})^{1/3}$			
$= (27.25)^{1/2}$			
≈ 5.22			
$ X_i _{\infty} = \max_{1 \leq i \leq n} X_i = 4$			
$ X_{\lambda} _{\lambda} = (\lambda^{2} + 1^{3} + (-3)^{2} + 4^{3})^{1/2}$			
= (30) 1/2			
≈5.477			
11Xx 11 00 = max 1X:1 = 14			
	27/		
11 X3 11 2 = (Sin2 K + Cos2 K + (2K)			
= (1 + 4 k ^d) ¹ 2			
$ X_3 _{\infty} = \max_{1 \leq i \leq n} X_i = \sum_{i = j \leq n} X_i $		J	(E N
$ X_4 _2 = (\frac{16}{(h+1)^2} + \frac{4}{k^4} + k^4 e^{-\lambda k})^{\frac{n}{2}}$			
11 ×4112 = ((kfl)			
$= \left(\frac{16}{k^3 + 2h + 1} + \frac{1}{k^4} + \frac{k^4}{e^{+3k}}\right)^2$			
$ X_{ij} _{\infty} = \max_{1 \leq i \leq n} X_{i} = \int \frac{H}{k+1}$	- 0	ZKK	
12:20	- 1	5 = K =	-0.5
	- !	3 K <	
3/12	-0	5 5 K	١١ ك
	-	-	
k*/ek -	-) 5	1 K	< -1.5

A - Action / Aktion P - Plan R = Resolut

B.
$$||A||_{\infty} = \max_{1 \le i \le m} \left(\sum_{j=1}^{e} ||n_{ij}| \right)$$

$$= \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= 25$$

$$||B||_{\infty} = \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= 16$$

$$||C||_{\infty} = \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= 10$$

$$||D||_{\infty} = \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= 10$$

$$||D||_{\infty} = \max_{1 \le i \le m} \left(||n_{ij}|| \right)$$

$$= 10$$

Publin #15 Verantwortlich let a = mex | v; | = ||v||_00 $\text{Mix}(||v||_1)^2 = \frac{1}{\xi} |v_1|^2 = \frac{1}{\xi} v_1^2 \leq \frac{1}{\xi} a^2$ $\leq n \alpha^{2}$ ≤n(||v||∞)a € JT 11111 0 C=Jn ° ×; ≥ \$ 62 Z AI.c = 1. (||v||) c=1 B. The roult of part a)

let $V_1 = \begin{pmatrix} 0 \\ -8 \end{pmatrix}$ and $V_2 = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ does not incly that: $||V_{i}||_{i} = 8 \leq ||V_{a}||_{i} = 9$ this holds, however, Does not hold tre! 11 vill = 8 = 11 vall = 7

Problem 16

A)

```
import numpy as np
In [ ]:
         import math
         import matplotlib.pyplot as plt
In [ ]: def create_A_b(n):
             A = np.zeros((n,n))
             b = np.empty((n,1))
             for i in range(len(A)):
                 A[i,i] = 2.01  # i=j
                 for j in range(len(A)):
                     if(i == j+1):
                         A[i,j] = -1
                     if(i == j-1):
                         A[i,j] = -1
             # b creation
                 b[i][0] = (1/100)*(math.sin(2*i*math.pi/50))
             return A,b
         def jacobi randomXnot(A,b,stepNumber):
             x = np.random.rand(len(b), 1)
             u = np.zeros((len(b),1))
             A_nodaig = np.copy(A)
             temp = np.arange(0,len(A))
             A nodaig[temp, temp] = 0
             for k in range(0,stepNumber):
                 for i in range(len(A)):
                     u[i,0] = (1/A[i,i])*(b[i,0] - np.sum(np.matmul(A nodaig[i],x))) #(1/a)
                 x = np.copy(u)
             return x
In [ ]: | Ab = create A b(5)
         jacobi randomXnot(Ab[0],Ab[1],15)
Out[ ]: array([[0.03560611],
               [0.08552933],
               [0.07401939],
               [0.08872267],
               [0.03957281]])
       B)
In [ ]: | from cProfile import label
         from turtle import color
         def jacobi plot(A,b,stepNumber):
```

```
plotMe = np.array([0,2,5,10,20,50,100,200])
colorMe = np.array(['blue','green','red','yellow','black','orange','pink','p
x = np.random.rand(len(b),1)
u = np.zeros((len(b),1))
A_nodaig = np.copy(A)
temp = np.arange(0,len(A))
A_nodaig[temp, temp] = 0
fig, ax = plt.subplots(1,1)
for k in range(0,stepNumber):
    for i in range(len(A)):
        u[i,0] = (1/A[i,i])*(b[i,0] - np.sum(np.matmul(A_nodaig[i],x))) #(1/a)
        if(len(np.where(plotMe == k)[0]) > 0):
            #plt.plot(i,u[i,0],'o',c=colorMe[np.where(plotMe == k)[0][0]],la
            ax.scatter(i,u[i,0],color = colorMe[np.where(plotMe == k)[0][0]]
    x = np.copy(u)
plt.xlabel('i')
plt.ylabel('(x^(k))i')
plt.title('xki\'s against i\'s for k=[0,2,5,10,20,50,100,200] \n with corres
plt.show()
```

```
In [ ]: Ab = create_A_b(5)
    jacobi_plot(Ab[0],Ab[1],200)
```

xki's against i's for k=[0,2,5,10,20,50,100,200] with corresponding colors ['blue','green','red','yellow','black','orange','pink','purple']

From the plot above we can observe the values of $(x^{(k)})_i$ gets closer and closer to zero as the number of iterations increases for all the is. This even occurs fairly evenly when the starting values are different. In other words the $(x^{(k)})_i$ s for some value k seem to get closer and closer to equal as k increases.