

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandria, Virginia 22313-1450 www.wopto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/533,149	04/27/2005	Paul J. Rubas	2002.002	5371
34477 7590 09/14/2009 Exxon Mobil Upstream			EXAM	IINER
Research Company			ORLANDO, AMBER ROSE	
P.O. Box 2189 (CORP-URC-			ART UNIT	PAPER NUMBER
Houston, TX 77252-2189			1797	
			MAIL DATE	DELIVERY MODE
			09/14/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/533,149 RUBAS, PAUL J. Office Action Summary Examiner Art Unit AMBER ORLANDO 1797 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 28 August 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-17 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-17 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on 27 April 2005 is/are: a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

Attucinient(s)		
Notice of References Cited (PTO-892) Notice of Draftsperson's Patent Drawing Review (P' Information Disclosure Statement(s) (PTO/06/08) Paper No(s)/Mail Date	ГО-948)	4)
S. Patent and Trademark Office		

Art Unit: 1797

DETAILED ACTION

This action is in response to the communication filed 08/28/2009.

Claims 1-17 are rejected.

Claims 1 and 17 have been amended.

Claims 1-17 have been examined and are pending.

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 08/28/2009 has been entered.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148
 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

Application/Control Number: 10/533,149

Art Unit: 1797

- 1. Determining the scope and contents of the prior art.
- Ascertaining the differences between the prior art and the claims at issue.
- Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.
- Claims 1-4, 7, 8, 13-15 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Dannström et al. WO 01/66231 in view of Agranat US 3,722,694, Morris US 3.027.715. Buchi US 2.678.529. and Carington US 2.358.626.
- 4. Regarding claims 1 and 14, the Dannström et al. reference discloses a module for separating a multi-component fluid comprising; a hollow shell having a hermetic enclosure (figure 3, object 4); a separation assembly disposed in the shell; each separation assembly comprising a plurality of elongated membrane elements (figure 2a object 1a), at least a portion of each membrane element comprising a semi permeable surface to permit selective permeation of one or more components of the multicomponent fluid into the membrane element (page 10, lines 1-14); the shell having at least one inlet and at least one exit conduit; (page 12, lines 8-17). The inlet conduit used to introduce the multi-component fluid into the shell for treatment at a first pressure, and the outlet conduit used for the passage of treated multi-component fluid out of the shell and for passage of permeate at a second pressure being lower than the first pressure from one of the manifolds out of the shell are the intended use of the structure. The prior art structure is capable of performing the intended use and the intended use does not result in a structural difference between the claimed and prior art apparatus. The reference does not disclose a plurality of separation assemblies in side by side relationship, one end of the membrane elements in a separation assembly being attached to and hermetically sealed to an inlet manifold and the opposing end being

Art Unit: 1797

attached to and hermetically sealed to an outlet manifold, at least one of the manifolds being unrestrained, thereby permitting axial movement of each membrane element in response to temperature changes, at least one manifold from each separation assembly being in fluid communication with a manifold from one other separation assembly, the plurality of separation assemblies being in fluid communication with each other, at least one elbow conduit configured to provide the fluid communication between the at least one manifold and the manifold from on other separation assembly, and the elbow conduits are further configured to proved a spring-like overall structure sufficient to withstand strain due to thermal expansion.

5. The Agranat reference discloses a plurality of separation assemblies in side by side relationship (figure 1 object 26) one end of the membrane elements in a separation assembly being attached to and hermetically sealed to an inlet manifold (column 3, lines 25-30) and the opposing end being attached to and hermetically sealed to an outlet manifold (column 3, lines 47-61), at least one manifold from each separation assembly being in fluid communication with a manifold from one other separation assembly, the plurality of separation assemblies being in fluid communication with each other (column 6, lines 23-35), and providing fluid communication between the at least one manifold and the manifold from one other separation assembly (column 6, lines 23-35). The reference does not state the communication between the manifolds being provided by at least one elbow conduit. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have the communication between the manifolds being provided by at least one elbow conduit since the examiner takes Official

Application/Control Number: 10/533,149

Art Unit: 1797

Notice of the equivalence of providing fluid communication between the at least one manifold and the manifold from one other separation assembly (column 6, lines 23-35) and to the communication between the manifolds being provided by at least one elbow conduit for their use in the fluid communication art and the selection of any of these known equivalents to transfer fluid from one point to another would be within the level of ordinary skill in the art.

Page 5

- 6. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include a plurality of separation assemblies in side by side relationship (Agranat figure 1 object 26), one end of the membrane elements in a separation assembly being attached to and hermetically sealed to an inlet manifold (Agranat column 3, lines 25-30) and the opposing end being attached to and hermetically sealed to an outlet manifold (Agranat column 3, lines 47-61), at least one manifold from each separation assembly being in fluid communication with a manifold from one other separation assembly, the plurality of separation assemblies being in fluid communication with each other, and at least one elbow conduit configured to provide the fluid communication between the at least one manifold and the manifold from on other separation assembly (Agranat column 6, lines 23-35) because this provides further filtration means and continuous communication between the membranes and a outlet for the permeate.
- The Carington reference discloses conduits being configured to provide a springlike overall structure sufficient to withstand strain due to thermal expansion (page 2 column 1, lines 16-20).

Art Unit: 1797

8. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include the conduits being configured to provide a spring-like overall structure sufficient to withstand strain due to thermal expansion (Carington page 2 column 1, lines 16-20) because this allows the conduits to freely move, and not damage the apparatus.

- 9. The Morris and Buchi references disclose at least one of the manifolds being unrestrained, thereby permitting axial movement of each membrane element in response to temperature changes (Morris column 1, lines 16-22 and Buchi column 4, lines 41-47). It is well known in the art that materials expand when heated. Since these references as well as the applicants' invention deal with an increase of temperature within a system and therefore materials are being heated and are expanding, they can be considered analogous art.
- 10. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include at least one at least one of the manifolds being unrestrained, thereby permitting axial movement of each membrane element in response to temperature changes (Morris column 1, lines 16-22 and Buchi column 4, lines 41-47) because this allows for thermal expansion of the parts and eliminates some of the mechanical stresses on the apparatus.
- For claim 2, the Dannström et al. reference discloses the shell is generally cylindrical having an axial length (figure 3, object 4).

Art Unit: 1797

12. For claim 3, the Dannström et al. reference discloses the plurality of membrane

elements are membrane tubes that are substantially parallel to the axial length of the

shell (figure 2a object 1).

13. For claim 4, the Dannström et al, reference discloses an additional conduit for the

passage of an additional fluid (sweep gas), from outside the shell into the apparatus

(figure 5, object 9a). The reference does not disclose the passage of the gas into the

manifold.

14. The Agranat reference discloses the passage of the gas into the manifold

(column 6, lines 23-25).

5. It would have been obvious to one having ordinary skill in the art at the time the

invention was made to have modified the Dannström et al. reference to include the

passage of the gas into the manifold (Agranat column 6, lines 23-25) because this

provides communication between each of the membranes in order to remove the

permeate fluid.

16. For claim 7, the Dannström et al. reference discloses a sealing material that is

substantially leak proof to the multi-component fluid at least partly occupies the space

between the exit conduit of the permeate and the shell (page 15, lines 24-33).

17. For claim 8, the Dannström et al. reference discloses spacer members between

and spacing each adjacent separation assembly (figure 2a object 1c).

18. For claim 13, the Dannström et al. reference discloses cylindrical shell has oblate

ends (figure 3, object 4).

Art Unit: 1797

19. For claim 15, the Dannström et al. reference discloses at least a portion of the shell is made of a first material and at least a portion of each membrane element is made of a second material the first and second materials having different coefficients of thermal expansion (page 2, lines 31-32 and page 5, line 2 (Witzko et al. column 2, lines 53-55)).

20. For claim 17, the Dannström et al. reference discloses a module for separating a multi-component fluid comprising: a chamber-defining, cylindrical shell having oblate end sections formed integrally with the cylindrical portion (figure 3, object 4), at least a portion of the shell being formed of a first material (page 2, lines 31-32); a stacked separation assembly disposed in the shell; each separation assembly comprising a plurality of elongated, substantially parallel, membrane elements (figure 2a object 1a), at least a portion of each membrane element comprising a wall being adapted to separate the multi-component fluid into permeate and retentate streams (page 10, lines 1-14), at least a portion of the membrane being formed of a second material (page 5. line 2 (Witzko et al. column 2, lines 53-55)), said first and second materials having different coefficients of thermal expansion, the shell having a first inlet conduit and a first exit conduit (page 12, lines 8-17); and the shell having a second inlet conduit for introducing a sweep gas into the second manifold and a second outlet for passage of permeate from the first manifold out of the shell (figure 5, object 9a). The inlet conduit used to introduce the multi-component fluid into the shell for treatment at a first pressure, and the outlet conduit used for the passage of treated multi-component fluid out of the shell and for passage of permeate at a second pressure being lower than the

Art Unit: 1797

first pressure from one of the manifolds out of the shell are the intended use of the structure. The prior art structure is capable of performing the intended use and the intended use does not result in a structural difference between the claimed and prior art apparatus. The reference does not disclose a plurality of separation assemblies, one end of each membrane element being attached to and hermetically sealed to a first manifold and the opposing end of each membrane element being attached to and hermetically sealed to a second manifold, one or both the first and second manifolds being unrestrained in the axial direction of the shell; the first manifold of one separation assembly being in fluid communication with the first manifold of an adjacent separation assembly and the second manifold of one separation assembly being in fluid communication with the second manifold of an adjacent separation assembly, whereby the plurality of separation assemblies are in fluid communication with each other; and a first elbow conduit configured to provide the fluid communication between the first manifold of one separation assembly and the first manifold of an adjacent separation assembly, and a second elbow conduit configured to provide the fluid communication between the second manifold of one separation assembly, the second manifold of an adjacent separation assembly and the first and second elbow conduits are further configured to proved a spring-like overall structure sufficient to withstand strain due to thermal expansion.

21. The Agranat reference discloses, a plurality of separation assemblies in side by side relationship (figure 1 object 26) one end of the membrane elements attached to and hermetically sealed to a first manifold (column 3, lines 25-30) and the opposing end

Art Unit: 1797

of each membrane element being attached to and hermetically sealed to a second manifold (column 3, lines 47-61), the first manifold of one separation assembly being in fluid communication with the first manifold of an adjacent separation assembly and the second manifold of one separation assembly being in fluid communication with the second manifold of an adjacent separation assembly, whereby the plurality of separation assemblies are in fluid communication with each other, and providing a first fluid communication between the first manifold of one separation assembly and the first manifold of an adjacent separation assembly, and also providing a second fluid communication between the second manifold of one separation assembly and the second manifold of an adjacent separation assembly (column 6, lines 23-35). The reference does not state the first and second fluid communications being elbow conduits. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have the first and second fluid communications being elbow conduits since the examiner takes Official Notice of the first and second fluid communications (column 6, lines 23-35) and to the elbow conduits for their use in the fluid communication art and the selection of any of these known equivalents to transfer fluid from one point to another would be within the level of ordinary skill in the art.

22. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include a plurality of separation assemblies in side by side relationship (Agranat figure 1 object 26) one end of the membrane elements attached to and hermetically sealed to a first manifold (Agranat column 3, lines 25-30) and the opposing end of each membrane

Application/Control Number: 10/533,149

Art Unit: 1797

element being attached to and hermetically sealed to a second manifold (Agranat column 3, lines 47-61), and the first manifold of one separation assembly being in fluid communication with the first manifold of an adjacent separation assembly and the second manifold of one separation assembly being in fluid communication with the second manifold of an adjacent separation assembly, whereby the plurality of separation assemblies are in fluid communication with each other; and a first elbow conduit configured to provide the fluid communication between the first manifold of one separation assembly and the first manifold of an adjacent separation assembly, and a second elbow conduit configured to provide the fluid communication between the second manifold of one separation assembly and the second manifold of an adjacent separation assembly (Agranat column 6, lines 23-35) because this provides further filtration and continuous communication between the membranes and a outlet for the permeate.

Page 11

- 23. The Carington reference discloses conduits being configured to provide a spring-like overall structure sufficient to withstand strain due to thermal expansion (page 2 column 1, lines 16-20).
- 24. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include the conduits being configured to provide a spring-like overall structure sufficient to withstand strain due to thermal expansion (Carington page 2 column 1, lines 16-20) because this allows the conduits to freely move, and not damage the apparatus.

Art Unit: 1797

25. The Morris and Buchi references disclose one or both the first and second

manifolds being unrestrained (Morris column 1, lines 16-22 and Buchi column 4, lines

41-47).

26. It would have been obvious to one having ordinary skill in the art at the time the

invention was made to have modified the Dannström et al. reference to include one or

both the first and second manifolds being unrestrained in the axial direction of the shell

(Morris column 1, lines 16-22 and Buchi column 4, lines 41-47) because this allows for

thermal expansion of the parts and eliminates some of the mechanical stresses on the

apparatus.

27. Claims 5 and 6 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Dannström et al. WO 01/66231, Agranat US 3,722,694, Carington US 2,358,626, Morris

US 3,027,715 and Buchi US 2,678,529 as applied to claim 1 above, and further in view

of Jitariouk WO 1999/26717 (Translation provided by Jitariouk US 6,613,231).

28. For claim 5, the Dannström et al. reference does not disclose the separation

assemblies are stacked in a disk-like configuration.

29. The Jitariouk reference discloses the separation assemblies are stacked in a

disk-like configuration (figure 1, object 11).

30. It would have been obvious to one having ordinary skill in the art at the time the

invention was made to have modified the Dannström et al. reference to include the

separation assemblies are stacked in a disk-like configuration (Jitariouk figure 1, object

11) because the disk is an obvious design choice and allows the user to change the

shape of the apparatus.

Art Unit: 1797

31. For claim 6, the Dannström et al. reference discloses an additional conduit for

passage of sweep gas from the outside the shell into one of the manifolds (figure 5,

object 9a).

32. Claims 9-11 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Dannström et al. WO 01/66231, Agranat US 3,722,694, Carington US 2,358,626, Morris

US 3,027,715 and Buchi US 2,678,529 as applied to claim 1 above, and further in view

of Abe et al. US 4,689,150.

33. For claims 9-11, the Dannström et al. reference does not disclose the membrane

element comprises a semi-permeable membrane layer formed on a microporous

support tube, the membrane layer is formed from a porous silica and the membrane

layer has a pore size ranging from about 0.1 Å to about 10 Å.

34. The Abe et al. reference discloses the membrane element comprises a semi-

permeable membrane layer formed on a microporous support tube, the membrane layer

is formed from a porous silica and the membrane layer has a pore size ranging from $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

about 0.1 Å to about 10 Å (column 2, lines 5-22).

35. It would have been obvious to one having ordinary skill in the art at the time the

invention was made to have modified the Dannström et al. reference to include the

membrane element comprises a semi-permeable membrane layer formed on a

microporous support tube, the membrane layer is formed from a porous silica and the

membrane layer has a pore size ranging from about 0.1 Å to about 10 Å (Abe et al.

column 2, lines 5-22) because this provides greater separation of selected fluids.

Art Unit: 1797

36. Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Dannström et al. WO 01/66231, Agranat US 3,722,694, Carington US 2,358,626, Morris

US 3,027,715 and Buchi US 2,678,529 as applied to claim 1 above, and further in view $\,$

of Prasad et al. US 5,352,361.

37. For claim 12, the Dannström et al. reference does not disclose a plurality of

baffles are disposed substantially perpendicular to at least one of the membrane

elements and are effective to distribute multi-component fluid across the outer surface

of the membrane elements.

38. The Prasad et al. reference discloses a plurality of baffles are disposed

substantially perpendicular to at least one of the membrane elements and are effective

to distribute multi-component fluid across the outer surface of the membrane elements

(figure 3, objects 3a, 3b and 10).

39. It would have been obvious to one having ordinary skill in the art at the time the

invention was made to have modified the Dannström et al. reference to include a

plurality of baffles that are disposed substantially perpendicular to at least one of the

membrane elements and are effective to distribute multi-component fluid across the

outer surface of the membrane elements (Prasad et al. figure 3, objects 3a, 3b and 10)

because this ensures that the fluid comes into contact with the membranes.

40. Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Dannström et al. WO 01/66231, Agranat US 3,722,694, Carington US 2,358,626, Morris

US 3,027,715, Buchi US 2,678,529, Abe et al. US 4,689,150 as applied to claim 9

above, and further in view of Yoshikawa et al. US 6,503,294.

Art Unit: 1797

41. For claim 16, the Dannström et al. reference does not disclose the membrane layer is formed from a zeolite.

- The Yoshikawa et al. reference discloses the membrane layer is formed from a zeolite (column 12. lines 6-9).
- 43. It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the Dannström et al. reference to include the membrane layer formed from a zeolite (column 12, lines 6-9) to improve the separation of gases from a fluid stream.

Response to Arguments

44. Applicant's arguments with respect to claims 1 and 17 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to AMBER ORLANDO whose telephone number is (571)270-3149. The examiner can normally be reached on Mon.-Thurs. (6:30-5:00).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Walter Griffin can be reached on (571) 272-1447. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 1797

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

AO

/Walter D. Griffin/ Supervisory Patent Examiner, Art Unit 1797