Лекція 6

Дискретні випадкові величини

<u>Поняття дискретної випадкової</u> величини

Перший крок до визначення випадкової величини зробив Пуассон у 1832 році у мемуарах "Про ймовірність середніх результатів спостережень", в якому він розглянув випадкову величину, яка може приймати значення a_1 , a_2 , …, a_n з ймовірностями p_1 , p_2 , …, p_n . Він розглянув також неперервні випадкові величини з їх щільностями розподілу.

Однак це був тільки перший крок. Чітке математичне визначення випадкової величини було введене А.М. Колмогоровим у кінці 20-х років XIX століття. Його підхід, викладений у відомій роботі "Основні поняття теорії ймовірностей", став загальноприйнятим і мав великий вплив на розвиток теорії ймовірностей.

Нехай (Ω, U, P) ймовірносний простір, а $A_1, A_2, ..., A_k, ... \in U$ скінченна або зліченна множина подій таких, що $\bigcup_k A_k = \Omega$, $A_i \cap A_j = \emptyset$, $i \neq j$. Через $\chi_{A_k}(\omega)$ будемо позначати індикатор події A_k :

$$\chi_{A_k}\left(\omega
ight) = egin{cases} 1, & \text{якщо} & \omega \in A_k\,, \\ 0, & \text{якщо} & \omega
otin A_k\,. \end{cases}$$

Дискретною випадковою величиною $\xi(\omega)$ будемо називати лінійну комбінацію індикаторів $\xi(\omega) = \sum_{k=1}^{\infty} x_k \chi_{A_k}(\omega), \quad x_k \in R$. Очевидно, що для $\omega \in A_k$, $\xi(\omega) = x_k$ і множина усіх значень $X = \{x_1, ..., x_k, ...\}$ не більш як зліченна. Отже, випадкова величини є функцією $\xi(\omega) \colon \Omega \to X$, при цьому для кожнлго $x_k \in X = \{x_1, ..., x_k, ...\}$ має місце $\{\omega \colon \xi(\omega) = x_k\} = A_k \in U$.

Приклад. Схема випробувань Бернуллі.

Нехай $\Omega = \{\omega : \omega = (\omega_1, \omega_2, ..., \omega_n), \omega_i = 0 \text{ або } 1, i=1,...,n.\}, U$ — множина усіх підмножин Ω . Задамо два числа $p_0, p_1 > 0, p_0 + p_1 = 1$, які будемо тлумачити як ймовірність невдачі (випадіння 0) і ймовірність успіху (випадіння 1). Покладемо за визначенням

$$P((\omega_1, \omega_2, ..., \omega_n)) \stackrel{def}{=} p_{\omega_1} p_{\omega_2} ... p_{\omega_n}.$$
 (1)

Незалежними випробуваннями Бернуллі будемо називати скінченну ймовірносну схему (Ω, U, P) , у якій ймовірності елементарних подій визначаються формулою (1).

Задамо на (Ω,U,P) випадкову величину $\xi(\omega)$ - число успіхів у n випробуваннях Бернуллі: $\xi(\omega) = \sum_{i=1}^n \omega_i \;. \quad \text{Усі} \quad \text{можливі} \quad \text{значення}$ $\xi(\omega) \in \{0,1,2,...,n\} \;.$

Введемо позначення

$$A_i = \{\omega : \xi(\omega) = i\} = \{\omega : \omega_1 + \omega_2 + ... + \omega_n = i\}, \quad i = 0,1,...,n.$$

Тоді
$$\xi(\omega) = \sum_{i=0}^{n} i \chi_{A_i}(\omega)$$
.

Так як ймовірність кожної елементарної події з A_i дорівнює $p_1^{i} \cdot p_0^{n-i}$, то для того, щоб обчислити ймовірність події A_i , необхідно підрахувати число елементарних подій, які входять у A_i . Це число співпадає з числом ланцюжків довжини n, складених з нулів та одиниць, у яких рівно "i" одиниць. Число таких ланцюжків дорівнює C_n^i . Таким чином

$$P(A_i) = P(\xi(\omega) = i) = C_n^i p_1^i p_0^{n-i}.$$
 (2)

Для зручності перепозначимо $p_1 = p; p_0 = 1 - p = q$. Тоді

$$P(\xi(\omega) = i) = C_n^i p^i q^{n-i}. \tag{3}$$

Закон розподілу дискретної випадкової величини.

Законом розподілу випадкової величини ξ будемо називати ймовірність $P\{\xi \in B\}$, що розглядається як функція числової множини B. Закон розподілу визначається значеннями $x_1, x_2, ..., x_k, ...$, які приймає ξ , і ймовірностями $P\{\xi = x_k\}$ цих значень. Позначимо $P\{\xi = x_k\} = p_k$. Тоді закон розподілу $P\{\xi \in B\}$ можна визначити за допомогою таблиці

Очевидно, що $p_k \ge 0$ і $\sum_{k=1}^{\infty} p_k = 1$. Те, що таблиця (4) визначає закон розподілу, підтверджує рівність

$$P\{\xi \in B\} = \sum_{i:x_i \in B} p_i.$$

Іноді законом розподілу називають саму таблицю (4).

Наведемо приклади законів розподілу.

1) Біноміальний закон розподілу:

$$p_m = C_n^m p^m (1-p)^{n-m}, m = 0,1,...,n.$$

Дійсне число $p \in (0,1)$ і натуральне число $n \in$ параметрами цього закону. Випадкова величина ξ , якій відповідає цей закон розподілу, представляє собою число успіхів у n незалежних випробуваннях Бернуллі з імовірністю успіху p і невдачі q = 1 - p.

2) Гіпергеометричний закон розподілу:

$$p_m = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, \quad m = m_0, m_0 + 1, ..., m_1,$$

де $m_0 = \max \left(0, n - (N - M)\right), \quad m_1 = \min(M, n), \quad N, \ M, \ n -$ деякі натуральні числа такі, що $M, \ n < N.$

Випадкова величина ξ , якій відповідає цей закон розподілу, дорівнює числу білих куль у виборці об'єму n з урни, яка містить M — білих і N-M чорних куль.

3) Пуассонівський закон розподілу:

$$p_m = \frac{\lambda^m}{m!} e^{-\lambda}, \quad m = 0,1,\dots.$$

Дійсне число $\lambda \ge 0$ є параметром пуассонівського закону розподілу.

Випадкова величина ξ , що має пуассонівський розподіл, може описувати число позовів від клієнтів страхової компанії, поданих на фіксованому проміжку часу.

4) Геометричний закон розподілу:

$$p_m = p^m q$$
, $m = 0,1,...$, $q = 1 - p$.

Число $p \in (0,1)$ є параметром геометричного закону розподілу.

Випадкова величина ξ , що має геометричний розподіл, описує довжину серії успіхів у схемі Бернуллі при необмеженому числі випробувань.

В теорії ймовірностей часто говорять про випадкову величину ξ із законом розподілу певного виду, не вказуючи при цьому ні ймовірносний простір (Ω, U, P) , ні функцію $\xi(\omega)$, що задає цю випадкову величину.

У зв'язку з цим розглянемо модель вибіркового ймовірносного простору. В цій моделі за законом розподілу стандартним чином будується ймовірносний простір і випадкова величина, закон розподілу якої співпадає із заданим законом.

Нехай закон розподілу задається множиною значень $X = \{x_1, x_2, ..., x_i, ...\}$ і ймовірностями p_i , i = 1, 2, ... Тоді покладемо $\Omega = X = \{x_1, x_2, ...\}$; $U = 2^X$ - множина усіх підмножин X, і для будь-якого $A \subset X$ $P(A) \stackrel{def}{=} \sum_{i: x_i \in A} p_i$. Трійка $(X, 2^X, P)$ називається вибірковим ймовірносним простором.

Для $x \in X$ задамо випадкову величину ξ як тотожне перетворення: $\xi(x) = x$. Очевидно, що $\xi(x)$ має закон розподілу, який співпадає з початковим.

За законом розподілу випадкова величина відновлюється неоднозначно. Можуть бути декілька випадкових величин, які мають один і

той же закон розподілу. Таким чином з точки зору теорії ймовірностей вони однакові.