This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the "Interactive Theorem Proving Course" by Thomas Tuerk (https://www.thomas-tuerk.de): https://github.com/thtuerk/ITP-course

This document includes additions by:

- Pablo Buiras (https://people.kth.se/~buiras/)
- Karl Palmskog (https://setoid.com)

Interactive Theorem Proving and Program Verification Lecture 2

Pablo Buiras and Karl Palmskog

Academic Year 2019/20, Period 3-4

Based on slides by Thomas Tuerk

Part V

Basic HOL4 Usage

HOL4 Technical Usage Issues

- practical issues are discussed outside of lectures
 - details on installing HOL4
 - which key-combinations to use in hol-mode for Emacs
 - detailed signatures of libraries and theories
 - all parameters and options of certain tools
 - **.** . . .
- mentioned in homeworks sometimes
 - tasks to read some documentation
 - provides examples
 - lists references where to get additional information
- if you have problems, ask lecturers (buiras@kth.se, palmskog@kth.se)
- covered only very briefly in lectures

Installing HOL4

- website: https://hol-theorem-prover.org
- HOL4 supports two SML implementations
 - Moscow ML (http://mosml.org)
 - PolyML (http://www.polyml.org)
- we use only PolyML 5.8 in this course
- please use emacs with
 - ▶ hol-mode
 - sml-mode
 - hol-unicode, if you want to type Unicode
- please install the Kananaskis 13 release
- documentation found on HOL4 website and with sources

General Architecture

- HOL4 is a collection of SML modules
- starting HOL4 starts a SML Read-Eval-Print-Loop (REPL) with
 - some HOL4 modules loaded
 - some default modules opened
 - ▶ an input wrapper to help parsing terms called unquote
- unquote provides special quotes for terms and types
 - implemented as input filter
 - ''my-term'' becomes Parse.Term [QUOTE "my-term"]
 - ' ':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces
 - emacs (used in this course)
 - vim
 - bare shell

Filenames

- *Script.sml HOL4 proof script file
 - script files contain definitions and proof scripts
 - executing them results in HOL4 searching and checking proofs
 - this might take very long
 - resulting theorems are stored in *Theory.{sml|sig} files
- *Theory. {sml|sig} HOL4 theory
 - auto-generated by corresponding script file
 - ▶ load quickly, because they don't search/check proofs
 - do not edit theory files
- *Syntax.{sml|sig} syntax libraries
 - contain syntax related functions
 - i. e. functions to construct and destruct terms and types
- *Lib. {sml|sig} general libraries
- *Simps.{sml|sig} simplifications
- selftest.sml selftest for current directory

HOL4 Project Version Control Repository Guidelines

- ignore *Theory.sml and *Theory.sig
- ignore the directories .HOLMK and .hollogs
- commit all custom *.sml and *.sig files
- don't forget *Script.sml files and Holmakefile

HOL4 Release Directory Structure

- bin HOL4 binaries
- src HOL4 sources
- examples HOL4 examples
 - interesting projects by various people
 - examples owned by their developer
 - coding style and level of maintenance differ a lot
- help sources for reference manual
 - after compilation home of reference HTML page
- Manual HOL4 manuals
 - Tutorial
 - Description
 - Reference (PDF version)
 - Interaction
 - Quick (cheat pages)
 - Style-guide

Unicode

- HOL4 supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
 - easier to read (good fonts provided)
 - no need to learn special ASCII syntax
- disadvantages of Unicode compared to ASCII
 - harder to type (even with hol-unicode.el)
 - less portable between systems
- whether you use Unicode is highly a matter of personal taste
- HOL4's policy
 - no Unicode in HOL4's source directory src
 - Unicode in examples directory examples is fine
- we strongly recommend turning Unicode output off
 - this simplifies learning the ASCII syntax
 - no need for special fonts
 - it is easier to copy and paste terms from HOL4's output

Where to find help?

- reference manual
 - available as HTML pages, single PDF file and in-system help
- description manual
- style guide (still under development)
- HOL4 website (https://hol-theorem-prover.org)
- mailing-list hol-info
- DB.match and DB.find
- *Theory.sig and selftest.sml files
- ask the lecturers (buiras@kth.se, palmskog@kth.se)

Part VI

Forward Proofs

Kernel too detailed

- we already discussed the HOL Logic
- the kernel itself does not even contain basic logic operators
- usually one uses a much higher level of abstraction
 - many operations and datatypes are defined
 - high-level derived inference rules are used
- let's now look at this more common abstraction level

Common Terms and Types

	Unicode	ASCII
type vars	α , β ,	'a, 'b,
type annotated term	term:type	term:type
true	T	T
false	F	F
negation	¬Ъ	~b
conjunction	b1 ∧ b2	b1 /\ b2
disjunction	b1 ∨ b2	b1 \/ b2
implication	$b1 \implies b2$	b1 ==> b2
equivalence	b1 ⇔ b2	b1 <=> b2
inequality	$v1 \neq v2$	v1 <> v2
universal quantification	$\forall x. P x$!x. P x
existential quantification	$\exists x. P x$?x. P x
Hilbert's choice	0x. P x	0x. P x

There are similar restrictions to constant and variable names as in SML. HOL4 specific: don't start variable names with an underscore

Syntax conventions

- common function syntax
 - prefix notation, e.g. SUC x
 - ▶ infix notation, e.g. x + y
 - quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x$. P x)
- infix and quantifier notation can be turned into prefix notation
 Example: (+) x y and \$+ x y are the same as x + y
- quantifiers of the same type don't need to be repeated Example: $\forall x \ y. \ P \ x \ y$ is short for $\forall x. \ \forall y. \ P \ x \ y$
- there is special syntax for some functions
 Example: if c then v1 else v2 is nice syntax for COND c v1 v2
- associative infix operators are usually right-associative
 Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Creating Terms

Term Parser

Use special quotation provided by unquote.

Operator Precedence

It is easy to misjudge the binding strength of certain operators. When in doubt, use parentheses.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

Creating Terms II

Parser

```
":bool"
CTCC
" ~ h " "
· · · · · / · · · · · ·
··· ... ==> ...··
" . . . = . . . "
··· <=> ... ··
```

Syntax Funs

```
mk_type ("bool", []) or bool
mk_const ("T", bool) or T
mk_neg (
    mk_var ("b", bool))
mk_conj (..., ...)
mk_disj (..., ...)
mk_imp (..., ...)
mk_eq (..., ...)
mk_neg (mk_eq (..., ...))
```

type of Booleans term true negation of Boolean var b conjunction disjunction implication equality equivalence negated eq.

Inference Rules for Equality

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = t} \text{ REFL} \qquad \frac{\Gamma \vdash s = t}{\Gamma \vdash t = t}$$

$$\frac{x \text{ not free in } \Gamma}{\Gamma \vdash \lambda x. \text{ } s = \lambda x. t} \text{ ABS} \qquad \frac{\Delta \vdash t = t}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash u = v}$$

$$\frac{t \vdash s = t}{\Delta \vdash u = v}$$

$$\frac{t \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q}{\Gamma \cup \Delta \vdash s}$$

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash t = u}$$

$$\frac{\Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u} \text{ TRANS}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{\Gamma \vdash (\lambda x. \ t)v = t[v/x]}{\Gamma \cup \Delta \vdash q} \text{ BETA_CONV}$$

Inference Rules for free Variables

$$\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1,\ldots,\alpha_n] \vdash p[\alpha_1,\ldots,\alpha_n]}{\Gamma[\gamma_1,\ldots,\gamma_n] \vdash p[\gamma_1,\ldots,\gamma_n]} \text{ INST-TYPE}$$

Inference Rules for Implication

$$\frac{\Gamma \vdash \rho \Longrightarrow q}{\Delta \vdash \rho} \frac{\Delta}{\Gamma \cup \Delta \vdash q} \text{ MP, MATCH_MP} \qquad \frac{\Gamma \vdash \rho}{\Gamma - \{q\} \vdash q \Longrightarrow \rho} \text{ DISCH}$$

$$\frac{\Gamma \vdash \rho = q}{\Gamma \vdash \rho \Longrightarrow q} \text{ EQ_IMP_RULE} \qquad \frac{\Gamma \vdash q \Longrightarrow \rho}{\Gamma \cup \{q\} \vdash \rho} \text{ UNDISCH}$$

$$\frac{\Gamma \vdash \rho \Longrightarrow q}{\Delta \vdash q \Longrightarrow \rho} \frac{\Delta \vdash q \Longrightarrow \rho}{\Gamma \cup \Delta \vdash \rho = q} \text{ IMP_ANTISYM_RULE}$$

$$\frac{\Gamma \vdash p \Longrightarrow F}{\Gamma \vdash \sim \rho} \text{ NOT_INTRO}$$

$$\frac{\Gamma \vdash \rho \Longrightarrow q}{\Gamma \vdash \rho \Longrightarrow \Gamma} \frac{\Gamma \vdash \sim \rho}{\Gamma \vdash \rho \Longrightarrow \Gamma} \text{ NOT_ELIM}$$

$$\frac{\Delta \vdash q \Longrightarrow r}{\Gamma \cup \Delta \vdash \rho \Longrightarrow r} \text{ IMP_TRANS}$$

Inference Rules for Conjunction / Disjunction

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \land q} \text{ CONJ} \qquad \frac{\Gamma \vdash p}{\Gamma \vdash p \lor q} \text{ DISJ1}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash p} \text{ CONJUNCT1} \qquad \frac{\Gamma \vdash p}{\Gamma \vdash p \lor q} \text{ DISJ2}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash p \land q} \text{ CONJUNCT2} \qquad \frac{\Gamma \vdash p \lor q}{\Delta_1 \cup \{p\} \vdash r}$$

$$\frac{\Delta_2 \cup \{q\} \vdash r}{\Gamma \cup \Delta_1 \cup \Delta_2 \vdash r} \text{ DISJ_CASES}$$

Inference Rules for Quantifiers

$$\frac{\Gamma \vdash p \quad x \text{ not free in } \Gamma}{\Gamma \vdash \forall x. \ p} \text{ GEN} \qquad \frac{\frac{\Gamma \vdash p[u/x]}{\Gamma \vdash \exists x. \ p}}{\Gamma \vdash \exists x. \ p} \text{ EXISTS}$$

$$\frac{\Gamma \vdash \forall x. \ p}{\Gamma \vdash p[u/x]} \text{ SPEC} \qquad \frac{\Delta \cup \{p[u/x]\} \vdash r}{u \text{ not free in } \Gamma, \Delta, p \text{ and } r}}{\Gamma \cup \Delta \vdash r} \text{ CHOOS}$$

Forward Proofs

- axioms and inference rules are used to derive theorems
- this method is called forward proof
 - one starts with basic building blocks
 - one moves step by step forward
 - finally the theorem one is interested in is derived
- one can also implement custom proof tools

Forward Proofs — Example I

Let's prove $\forall p. \ p \Longrightarrow p$.

```
val IMP_REFL_THM = let
  val tm1 = ''p:bool'';
                              > val tm1 = ''p'': term
  val thm1 = ASSUME tm1:
                              > val thm1 = [p] |- p: thm
 val thm2 = DISCH tm1 thm1;
                             > val thm2 = |- p ==> p: thm
in
  GEN tm1 thm2
                              > val IMP_REFL_THM =
                                   |-!p.p ==> p: thm
end
fun IMP_REFL t =
                              > val IMP_REFL =
  SPEC t IMP_REFL_THM;
                                  fn: term -> thm
```

Forward Proofs — Example II

Let's prove $\forall P \ v. \ (\exists x. \ (x = v) \land P \ x) \Longleftrightarrow P \ v.$

```
val tm_v = ''v:'a'';
val tm P = ''P:'a -> bool'';
val tm lhs = "?x. (x = v) /\ P x"
val tm_rhs = mk_comb (tm_P, tm_v);
val thm1 = let
                                          > val thm1a = [P v] |- P v: thm
  val thm1a = ASSUME tm_rhs;
                                          > val thm1b =
  val thm1b =
                                               [P v] | - (v = v) / V v : thm
    CONJ (REFL tm_v) thm1a;
                                          > val thm1c =
  val thm1c =
                                               [P v] [-?x. (x = v) / P x]
    EXISTS (tm_lhs, tm_v) thm1b
in
 DISCH tm rhs thm1c
                                          > val thm1 = [] |-
                                               P v \Longrightarrow ?x. (x = v) / P x: thm
end
```

Forward Proofs — Example II cont.

val thm4 = GENL [tm_P, tm_v] thm3


```
val thm2 = let
                                           > val thm2a = \lceil (u = v) / P u \rceil \mid -
  val thm2a =
    ASSUME ((u: a = v) / P u')
                                               (u = v) / P u: thm
                                           > val thm2b = \lceil (u = v) / P u \rceil \mid -
  val thm2b = AP_TERM tm_P
                                               P 11 <=> P v
    (CONJUNCT1 thm2a);
  val thm2c = EQ MP thm2b
                                           > val thm2c = [(u = v) /\ P u] |-
    (CONJUNCT2 thm2a);
                                               Ρv
  val thm2d =
                                           > val thm2d = [?x. (x = v) / Px] | -
    CHOOSE (''u:'a''.
                                               Pν
      ASSUME tm_lhs) thm2c
in
                                           > val thm2 = [] |-
 DISCH tm_lhs thm2d
                                               ?x. (x = y) / P x ==> P y
end
val thm3 = IMP ANTISYM RULE thm2 thm1
                                           > val thm3 = [] |-
                                               ?x. (x = v) / P x \iff P v
```

> val thm4 = [] [- !P v.

?x. $(x = v) / P x \iff P v$

Forward Proofs — Example 3


```
val exp_term = ''!p q r. (p / q ==> r) <=>
                          (p ==> q ==> r)'':
val curry_thm =
                                           > val ab = [p / q ==> r]
    let val ab = ASSUME ''p /\ q ==> r'';
                                                      |- p /\ q ==> r: thm
                                           > val p = [p] |- p: thm
       val p = ASSUME ''p:bool';
                                           > val q = [q] |-q: thm
       val q = ASSUME ''q:bool'';
                                           > val pq = [p, q] |-p/q: thm
       val pq = CONJ p q;
                                           > val r = [p, q, p / q ==> r]
       val r = MP ab pg:
                                                      I- r: thm
    in
    DISCH ''p /\ q ==> r''
                                           > val curry_thm =
    (DISCH ''p:bool''
                                              [] |-(p/q ==> r) ==>
    (DISCH ''q:bool'' r))
                                                   p ==> q ==> r: thm
    end:
```

Forward Proofs — Example 3 cont.


```
val uncurry_thm =
    let val imp = ASSUME ''p ==> q ==> r''; > val imp = [p ==> q ==> r]
       val pq = ASSUME "'p /\ q";
                                                         |-p| => q => r: thm
       val p = CONJUNCT1 pq;
                                            > val pq = [p / q] | - p / q: thm
       val q = CONJUNCT2 pq;
                                            > val p = [p /\ q] |- p: thm
       val r = MP (MP imp p) q;
                                            > val q = [p /\ q] |- q: thm
                                            > val r = [p /\ q, p ==> q ==> r]
    in
    DISCH ''p ==> q ==> r''
                                                       I- r: thm
     (DISCH ''p /\ q'' r)
                                            > val uncurry_thm =
    end:
                                              [] |- (p ==> q ==> r) ==>
val exp_thm =
                                                    p /\ q ==> r: thm
GEN ALL (IMP ANTISYM RULE curry thm
                         uncurry_thm);
```

Forward Proofs — Example 4


```
val noncontr_term = ''!p. ~(p /\ ~p)'';
val noncontr_thm =
                                         > val contr = [p / p] | -p / p: thm
    let val contr = ASSUME ''p /\ ~p'';
                                          > val p = [p /\ ~p] |- p: thm
       val p = CONJUNCT1 contr;
                                          > val np = [p /\ ~p] |- ~p: thm
       val np = CONJUNCT2 contr;
                                          > val np_imp = [p /\ ~p] |- p ==> F: thm
       val np_imp = NOT_ELIM np;
                                          > val f = [p /\ ~p] |- F: thm
       val f = MP np_imp p;
                                          > val contr imp =
       val contr_imp =
                                              [] |- p /\ ~p ==> F: thm
           DISCH ''p /\ ~p'' f;
    in
       GEN ALL (NOT INTRO contr imp)
                                          > val noncontr thm =
                                              [] |- !p. ~(p /\ ~p): thm
    end
```