Lecture 15: L_p Spaces and Inequalities

L_p Spaces

Definition 1 (L_p Space). Let $p \ge 1$. The L_p space is defined as:

$$L_p = \{X : \Omega \to \mathbb{R} : E[|X|^p] < \infty\}$$

 L_p is a linear space / vector space.

If $X_n \in L_p$, then we say $X_n \xrightarrow{L_p} X$, where $X \in L_p$, if $E[|X_n - X|^p] \to 0$ as $n \to \infty$.

The L_p Norm

We define a 'norm' $||\cdot||_p:L_p\to [0,\infty)$

$$X \mapsto ||X||_p = (E[|X|^p])^{\frac{1}{p}}$$

Properties:

- 1. $||X||_p \ge 0$
- 2. $||c \cdot X||_p = |c| \cdot ||X||_p$
- 3. $||X||_p = 0 \iff X = 0$ a.s. [Warning : It is not X=0]

Triangle Inequality

Is the following true?

$$||X + Y||_p \le ||X||_p + ||Y||_p$$

Inequalities

① Holder's Inequality

Let $p \ge 1$ and $q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$

Holder	(p,q)	Note:
pair (p,q)		$p=2 \to L_2$
conjugate		q=2 unique
$q = \frac{p}{p-1}$		s.t. when $p = q$.

Then, $E[|X \cdot Y|] \le ||X||_p \cdot ||Y||_q$

Proof take p = q = 2.

corr.
$$|E[X \cdot Y]| \le s.E(X) \cdot s.E(Y)$$

 $|E[X \cdot Y]| \le \sqrt{E[X^2]E[Y^2]}$

Cauchy Schwarz Inequality

Inequality 1 (Minkowski's Inequality). Let $p \geq 1$, then

$$||X + Y||_p \le ||X||_p + ||Y||_p$$

Corollary 1. The triangle inequality for $L_p(||\cdot||_p)$ holds whenever $p \geq 1$.

Proof of Minkowski's Inequality

Step 1: There is nothing to prove if $||X||_p = \infty$ or $||Y||_p = \infty$.

Step 2: It is enough to prove the case when $||X||_p < \infty$ and $||Y||_p < \infty$. Note that if $X, Y \in L_p$, then $||X + Y||_p < \infty$.

Furthermore, without loss we can assume $X, Y \ge 0$. Why? Because $||X + Y||_p = (E[|X + Y|^p])^{\frac{1}{p}}$, and we know $||X||_p$ are dealt with absolute values. If we can prove the inequality for the non-negative random variables, consider |X| and |Y| etc:

$$|| |X| + |Y| || \le || |X| || + || |Y| ||$$

so we have to just show:

$$(E[(|X|+|Y|)^p])^{\frac{1}{p}} \le (E[|X|^p])^{\frac{1}{p}} + (E[|Y|^p])^{\frac{1}{p}}$$

Then, since $E[|X+Y|^p] \leq E[(|X|+|Y|)^p]$, the result follows.

So, let's assume $X, Y \ge 0$ and prove:

$$(E[(X+Y)^p])^{\frac{1}{p}} \le (E[X^p])^{\frac{1}{p}} + (E[Y^p])^{\frac{1}{p}}$$

Consider $E[(X+Y)^p]$:

$$E[(X+Y)^p] = E[(X+Y)(X+Y)^{p-1}]$$

$$= E[X(X+Y)^{p-1} + Y(X+Y)^{p-1}]$$

$$= E[X(X+Y)^{p-1}] + E[Y(X+Y)^{p-1}]$$

Apply Hölder's Inequality to each term. Let $V=(X+Y)^{p-1}$. We need the conjugate exponent q for p: $\frac{1}{p}+\frac{1}{q}=1 \implies q=\frac{p}{p-1}$. Note that (p-1)q=p.

$$E[X \cdot V] \le ||X||_p \cdot ||V||_q$$

 $E[Y \cdot V] \le ||Y||_p \cdot ||V||_q$

Summing them:

$$E[(X+Y)^p] \le ||X||_p \cdot ||V||_q + ||Y||_p \cdot ||V||_q$$
$$E[(X+Y)^p] \le (||X||_p + ||Y||_p) \cdot ||V||_q$$

Now, let's substitute $||V||_a$:

$$||V||_q = (E[|V|^q])^{\frac{1}{q}} = \left(E[((X+Y)^{p-1})^q]\right)^{\frac{1}{q}} = \left(E[(X+Y)^p]\right)^{\frac{1}{q}}$$

So,

$$E[(X+Y)^p] \le (||X||_p + ||Y||_p) (E[(X+Y)^p])^{\frac{1}{q}}$$

Since $\frac{1}{q} = 1 - \frac{1}{p}$:

$$E[(X+Y)^p] \le (||X||_p + ||Y||_p) (E[(X+Y)^p])^{1-\frac{1}{p}}$$

If $E[(X+Y)^p]=0$, the inequality holds. If not, we can divide:

$$\frac{E[(X+Y)^p]}{(E[(X+Y)^p])^{1-\frac{1}{p}}} \le ||X||_p + ||Y||_p$$

$$(E[(X+Y)^p])^{1-(1-\frac{1}{p})} \le ||X||_p + ||Y||_p$$

$$(E[(X+Y)^p])^{\frac{1}{p}} \le ||X||_p + ||Y||_p$$

$$||X+Y||_p \le ||X||_p + ||Y||_p \quad \square$$

Proof of Hölder's Inequality

To show: Take $p \ge 1$,

 $E[|XY|] \leq ||X||_p \cdot ||Y||_q \text{ where } \frac{1}{p} + \frac{1}{q} = 1.$ Let $A = ||X||_p$ and $B = ||Y||_q$. Claim: WLOG, we can assume $0 < A, B < \infty$. Why?

- If A = 0, then X = 0 a.s., so XY = 0 a.s., and similarly B is also trivial.
- If $A = \infty$ or $B = \infty$, the RHS is ∞ , and the inequality holds trivially.

Without loss we can assume $X,Y \ge 0$, why?

We can just use |X|,|Y| otherwise. Note |XY|=|X|,|Y|

To show $E[X \cdot Y] \leq (E[X^p])^{\frac{1}{p}} \cdot (E[Y^q])^{\frac{1}{q}}$ when $p \geq 1$, & $\frac{1}{p} + \frac{1}{q} = 1$.

& furthermore $0 < E[X^p], E[Y^q] < \infty$

Lemma 1 (From Analysis). $p \ge 1$ $a, b \ge 0$

(Digression: Convex Function) A function $f: \mathbb{R} \to \mathbb{R}$ is called **CONVEX** if $\forall x_1, x_2 \text{ and } \alpha \in [0, 1]$, $\forall x_2 \geq x_1$:

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$