ЛЕКЦИЯ 13. Модельные допущения и нормальность остатков: на чём держится линейная регрессия

Введение

Вы уже научились многому:

- строить разные типы регрессий,
- использовать регуляризацию,
- сравнивать модели,
- интерпретировать коэффициенты и остатки.

Но всё это работает только при одном условии:

если допущения модели соблюдены.

√ Допущения — это невидимые правила, которые лежат в основе линейной регрессии.

Если они нарушаются — модель может **давать ложные коэффициенты**, **переворачивать выводы**, или выглядеть "красиво" снаружи, но "лженаучно" внутри.

Основные допущения линейной регрессии

Nº	Допущение	Что это значит
1	Линейность	Связь между X и Y — линейная
2	Независимость наблюдений	Данные не зависят друг от друга (например, не повторяются)
3	Постоянная дисперсия (гомоскедастичность)	Остатки равномерны по всей шкале
4	Нормальность остатков	Остатки распределены нормально (≈ колокол)

5	Отсутствие	Переменные не дублируют друг
	мультиколлинеарности	друга

Почему важно?

Если вы нарушаете допущения:

- t- и F-тесты становятся недостоверными
- коэффициенты могут быть переоценены
- доверительные интервалы неверны
- визуально модель "вроде работает", но вы делаете неправильные выводы

У Сегодня сосредоточимся на нормальности остатков

Что значит "нормальность остатков"?

Остатки (e = y $- \hat{y}$) должны:

- быть распределены случайно,
- не иметь смещения,
- образовывать график в форме нормального распределения (колокол).

Это особенно важно для:

- расчёта доверительных интервалов
- корректности t- и F-статистики
- построения прогнозов

Как проверить нормальность остатков

- 1. Графически (гистограмма или QQ-график)
 - Постройте гистограмму остатков
 - Если она похожа на колокол → ок
 - Если есть перекос, "горб", скошенность → проблема
- 2. Статистически (если есть Python / R)

- Тест Шапиро-Уилка
- Jarque-Bera
- Anderson-Darling

Если p-value < 0.05 → остатки не нормальны

Пример визуального анализа остатков

Остатки выглядят как:	Интерпретация
Симметричный колокол	ОК, нормальность соблюдена
Скошены вправо или влево	Нарушена нормальность
Имеют два "пика"	Вероятно, пропущен важный фактор
В виде "ступеней" или "провалов"	Ошибка спецификации

Что делать, если нормальность нарушена?

Проблема	Решение
Остатки скошены	Попробуйте логарифмировать Y (In(y))
Остатки с "двойным пиком"	Проверьте: не пропущен ли категориальный фактор (например, пол?)
Модель "жмёт" часть данных	Постройте полиномиальную модель или разделите данные на группы

Логика проверки

- 1. Постройте модель
- 2. Постройте график остатков
- 3. Проверьте форму распределения
- 4. При необходимости трансформируйте переменные
- 5. Снова проверьте остатки

Использование ИИ

Инструмент

ChatGPT	Объяснит, нарушено ли распределение остатков
Excel Copilot	Построит гистограмму и предложит вывод
Notion Al	Поможет сформулировать анализ ошибки модели

🚫 Запрещено:

- Игнорировать форму остатков
- Интерпретировать модель, если остатки систематически нарушают нормальность
- "Подгонять" график вручную
- Не фиксировать допущения в исследовательском отчёте

Вывод

Модель — это не просто "формула с R2".

Это система, работающая только при соблюдении правил.

Нормальность остатков — один из фундаментальных принципов статистической корректности.

Если вы научились замечать, когда модель **врет в остатках**, вы стали настоящим аналитиком.