Định luật Ôm cho đoạn mạch nối tiếp và song song

A. Phương pháp & Ví dụ

$$I = \frac{U}{R}$$

Đinh luật ôm cho toàn mạch:

Mạch điện mắc nối tiếp các điện trở:

$$\begin{cases} R = R_{1} + R_{2} + ... + R_{n} \\ I = I_{1} = I_{2} = ... = I_{n} \\ U = U_{1} + U_{2} + ... + U_{n} \end{cases}$$

Mạch điện mắc song song các điện trở:

$$\begin{cases} \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} \\ \begin{cases} I = I_1 + I_2 + \dots + I_n \\ U = U_1 = U_2 = \dots = U_n \end{cases} \end{cases}$$

Ví dụ 1: Hai điện trở R_1 , R_2 mắc vào hiệu điện thế U = 12V. Lần đầu R_1 , R_2 mắc song song, dòng điện mạch chính Is = 10A. Lần sau R_1 , R_2 mắc nối tiếp, dòng điện trong mạch I_n = 2,4A. Tìm R_1 , R_2 .

Hướng dẫn:

Điện trở tương đương của đoạn mạch khi:

+ $[R_1 // R_2]$:

$$R_s = \frac{R_1 R_2}{R_1 + R_2} = \frac{U}{I_s} \implies \frac{R_1 R_2}{R_1 + R_2} = \frac{12}{10} = 1,2$$
 (1)

+ [R₁ nt R₂]:

$$R_n = R_1 + R_2 = \frac{U}{I_n}$$
 $\Rightarrow R_1 + R_2 = \frac{12}{2,4} = 5$ (2)

$$\begin{cases} R_1 + R_2 = 5 \\ R_1 R_2 = 6 \end{cases} \implies$$

Từ (1) và (2) ta có hệ:

R₁ và R₂ là nghiệm của phương trình:

$$\Rightarrow \begin{cases} R_1 = 3\Omega \\ R_2 = 2\Omega \end{cases} \text{ hoặc } \begin{cases} R_1 = 2\Omega \\ R_2 = 3\Omega \end{cases}$$

Ví dụ 2: Cho mạch điện như hình vẽ: $R_1 = 12\Omega$, $R_2 = 15\Omega$, $R_3 = 5\Omega$, cường độ qua mạch chính I = 2A. Tìm cường độ dòng điện qua từng điện trở.

$$A$$
 R_1
 B
 R_2
 R_3

Ta có: $R_{23} = R_2 + R_3 = 15 + 5 = 20\Omega$

$$\Rightarrow$$
 R_{AB} = $\frac{R_1 R_{23}}{R_1 + R_{23}} = \frac{12.20}{12 + 20} = 7,5\Omega$

 $U_{AB} = I.R_{AB} = 2.7,5 = 15V.$

Cường độ dòng điện qua điện trở R₁:

$$I_1 = \frac{U_{AB}}{R_1} = \frac{15}{12} = 1,25A$$

Cường độ dòng điện qua điện trở R_2 , R_3 :

$$I_2 = I_3 = \frac{U_{AB}}{R_{23}} = \frac{15}{20} = 0,75A$$

Ví dụ 3: Cho mạch điện như hình vẽ. Biết U_{MN} = 18V, cường độ dòng điện qua R_2 là I_2 = 2A. Tìm:

- a) R_1 nếu R_2 = 6Ω , R_3 = 3Ω .
- b) R_3 nếu R_1 = 3Ω , R_2 = 1Ω .

Hướng dẫn:

a) Hiệu điện thế giữa hai đầu R_2 : $U_2 = I_2$. $R_2 = 2.6 = 12V$.

$$I_3 = \frac{U_2}{R_3} = \frac{12}{3} = 4A$$

Cường độ dòng điện qua R₃:

Cường độ dòng điện qua R_1 : $I_1 = I_2 + I_3 = 2 + 4 = 6A$.

Hiệu điện thế giữa hai đầu R_1 : $U_1 = U_{MN} - U_2 = 18 - 12 = 6V$.

$$R_1 = \frac{U_1}{I_1} = \frac{6}{6} = 1\Omega$$

Điện trở của R₁:

b) Hiệu điện thế giữa hai đầu R_2 : $U_2 = I_2$. $R_2 = 2.1 = 2V$.

Hiệu điện thế giữa hai đầu R_1 : $U_1 = U_{MN} - U_2 = 18 - 2 = 16V$.

$$I_1 = \frac{U_1}{R_1} = \frac{16}{3} A$$

Cường độ dòng điện qua R₁:

Cường độ dòng điện qua R₃:

$$I_3 = I_1 - I_2 = \frac{16}{3} - 2 = \frac{10}{3} A$$

$$R_3 = \frac{U_3}{I_3} = \frac{2}{10}.3 = 0,6\Omega$$

Điện trở của R₃:

Ví dụ 4: Cho đoạn mạch như hình vẽ: R_1 = R_3 = 3Ω , R_2 = 2Ω , R_4 = 1Ω , R_5 = 4Ω , cường độ qua mạch chính I = 3A. Tìm:

- a) U_{AB}.
- b) Hiệu điện thế hai đầu mỗi điện trở.
- c) U_{AD}, U_{ED}.
- d) Nối D, E bằng tụ điện C = $2\mu F$. Tìm điện tích của tụ.

Hướng dẫn:

a)
$$R_{13} = R_1 + R_3 = 3 + 3 = 6\Omega$$
;

$$R_{24} = R_2 + R_4 = 2 + 1 = 3\Omega;$$

$$R_{CB} = \frac{R_{13}.R_{24}}{R_{13} + R_{24}} = \frac{6.3}{6+3} = 2\Omega$$

$$R_{AB}$$
 = R_{5} + R_{CB} = 4 + 2 = $6\Omega \rightarrow U_{AB}$ = $I.R_{AB}$ = 3.6 = $18V.$

b)
$$U_5 = I.R_5 = 3.4 = 12V.$$

$$U_{CB} = I.R_{CB} = 3.2 = 6V$$

$$\rightarrow I_1 = I_3 = \frac{U_{CB}}{R_{13}} = \frac{6}{6} = 1A$$

$$\rightarrow$$
 U₁ = I₁R₁ = 1.3 = 3V;

$$U_3 = I_3.R_3 = 1.3 = 3V.$$

$$I_2 = I_4 = \frac{U_{CB}}{R_{24}} = \frac{6}{3} = 2A$$

$$\rightarrow$$
 U₂ = I₂.R₂ = 2.2 = 4V; U₄ = I₄.R₄ = 2.1 = 2V.

c)
$$U_{AD} = U_{AC} + U_{CD} = U_5 + U_1 = 12 + 3 = 15V$$
.

$$U_{ED} = U_{EB} + U_{BD} = U_4 - U_3 = 2 - 3 = -1V.$$

d)
$$Q = CU = 2.10^{-6}.1 = 2.10^{-6} C$$
.

Ví dụ 5: Cho đoạn mạch như hình vẽ: R_1 = 36 Ω , R_2 = 12 Ω , R_3 = 10 Ω , R_4 = 30 Ω , U_{AB} = 54V. Tìm cường độ dòng điện qua từng điện trở.

Hướng dẫn:

Mạch điện được vẽ lại như sau:

$$I_1 = \frac{U_{AB}}{R_1} = \frac{54}{36} = 1,5A$$

Cường độ dòng điện qua R₁:

$$R_{34} = \frac{R_3 R_4}{R_3 + R_4} = \frac{20.30}{20 + 30} = 12\Omega$$

Cường độ dòng điện qua R₂:

$$I_2 = \frac{U_{AB}}{R_{234}} = \frac{U_{AB}}{R_2 + R_{34}} = \frac{54}{12 + 12} = 2,25A$$

Hiệu điện thế giữa hai đầu điện trở R_3 và R_4 : $U_{34} = U_3 = U_4 = I_2$. $R_{34} = 2,25.12 = 27V$.

$$I_3 = \frac{U_3}{R_3} = \frac{27}{20} = 1,35A$$

Cường độ dòng điện qua R₃:

$$I_4 = \frac{U_4}{R_4} = \frac{27}{30} = 0.9A$$

Cường độ dòng điện qua R₄:

Ví dụ 6:Cho mạch điện như hình vẽ: $R_1 = R_3 = 45\Omega$, $R_2 = 90\Omega$, $U_{AB} = 90V$. Khi K mở hoặc đóng, cường độ dòng điện qua R_4 là như nhau. Tính R_4 và hiệu điện thế hai đầu R_4 .

Hướng dẫn:

- Khi K đóng, mạch điện được vẽ như hình a; khi K mở, mạch điện được vẽ như hình b:

- Khi K đóng, ta có:

$$I_2 = \frac{U_{AB}}{R_2 + R_{34}}$$
; $U_{34} = I_2 R_{34}$

$$I_4 = \frac{U_{34}}{R_4} = \frac{I_2 R_{34}}{R_4} = \frac{U_{AB}.R_{34}}{(R_2 + R_{34})R_4}$$

$$\rightarrow I_4 = \frac{90.\frac{45R_4}{45 + R_4}}{R_4(90 + \frac{45R_4}{45 + R_4})} = \frac{90}{3R_4 + 90} = \frac{30}{R_4 + 30} (1)$$

$$I_3 = \frac{U_{AB}}{R_3 + R_{124}}$$
; $U_{AD} = I_3 R_{124}$

– Khi K mở, ta có:

$$I_4 = \frac{U_{AD}}{R_{14}} = \frac{I_3 R_{124}}{R_{14}} = \frac{U_{AB}.R_{124}}{R_{14}(R_3 + R_{124})}$$

- Từ (1) và (2), ta có:

 $\Leftrightarrow 902R_4 + 243000 = 4050R_4 + 303750 \Leftrightarrow 4050R_4 = 60750 \Rightarrow R_4 = 15\Omega.$

$$\rightarrow I_4 = \frac{30}{15 + 30} = \frac{2}{3}A$$

$$\rightarrow$$
 U₄ = I₄R₄ = $\frac{2}{3}$.15 = 10V.

B. Bài tâp

Bài 1: Cho mạch điện như hình vẽ. Trong đó $R_1 = R_2 = 4 \Omega$; $R_3 = 6 \Omega$; $R_4 = 3 \Omega$; $R_5 = 10 \Omega$; $U_{AB} = 24 \text{ V}$. Tính điện trở tương đương của đoạn mạch AB và cường độ dòng điện qua từng điện trở.

Lời giải:

- Phân tích đoạn mạch: R_1 nt ((R_2 nt R_3) // R_5) nt R_4 .

$$R_{23} = R_2 + R_3 = 10 \Omega$$

$$R_{235} = \frac{R_{23}R_5}{R_{23} + R_5} = 5 \Omega$$

$$\rightarrow$$
 R = R₁ + R₂₃₅ + R₄ = 12 Ω

$$\rightarrow$$
 I = I₁ = I₂₃₅ = I₄ = $\frac{U_{AB}}{R}$ = 2 A

Với: $U_{235} = U_{23} = U_{5} = I_{235}$. $R_{235} = 10$ V nên:

$$I_5 = \frac{U_5}{R_5} = 1 A$$
; $I_{23} = I_2 = I_3 = \frac{U_{23}}{R_{23}} = 1 A$.

Bài 2: Cho mạch điện như hình vẽ. Trong đó R_1 = 2,4 Ω ; R_3 = 4 Ω ; R_2 = 14 Ω ; R_4 = R_5 = 6 Ω ; I_3 = 2 A. Tính điện trở tương đương của đoạn mạch AB và hiệu điện thế giữa hai đầu các điện trở.

Lời giải:

 R_1 nt $(R_2 // R_4)$ nt $(R_3 // R_5)$.

Ta có:

$$R_{24} = \frac{R_2 R_4}{R_2 + R_4} = 4.2 \Omega;$$

$$R_{35} = \frac{R_3 R_5}{R_3 + R_5} = 2,4 \Omega$$

$$\rightarrow$$
 R = R₁ + R₂₄ + R₃₅ = 9 Ω \rightarrow U₅ = U₃ = U₃₅ = I₃.R₃ = 8 V

$$I_{35} = I_{24} = I_1 = I = \frac{U_{35}}{R_{35}} = \frac{10}{3} A$$

- Với

nên: $U_{24} = U_2 = U_4 = I_{24}$. $R_{24} = 14 \text{ V}$, $U_1 = I_1$. $R_1 = 8 \text{ V}$.

Bài 3: Cho mạch điện như hình vẽ. Trong đó $R_1 = R_3 = R_5 = 3 \Omega$; $R_2 = 8 \Omega$; $R_4 = 6 \Omega$; $U_5 = 6 V$. Tính điện trở tương đương của đoạn mạch AB và cường độ dòng điện chạy qua từng điện trở.

Lời giải:

 $(R_1 \text{ nt } (R_3 // R_4) \text{ nt } R_5) // R_2$

$$R_{1345} = R_1 + R_{34} + R_5 = 8 \Omega$$

$$\rightarrow R = \frac{R_2 R_{1345}}{R_2 + R_{1345}} = 4 \Omega$$

$$I_5 = I_{34} = I_1 = I_{1345} = \frac{U_5}{R_5} = 2 A$$

Mặt khác: $U_{34} = U_3 = U_4 = I_{34}$. $R_{34} = 4$ V; $U_{1345} = U_2 = U_{AB} = I_{1345}$. $R_{1345} = 16$ V Nên:

$$I_3 = \frac{U_3}{R_3} = \frac{4}{3} A$$
; $I_4 = \frac{U_4}{R_4} = \frac{2}{3} A$; $I_2 = \frac{U_2}{R_2} = 2 A$.

Bài 4: Hai điện trở $R_1 = 6\Omega$, $R_2 = 4\Omega$ chịu được cường độ dòng điện tối đa là 1A và 1,2A. Hỏi bộ hai điện trở chịu được cường độ tối đa là bao nhiêu nếu chúng mắc:

- a) Nối tiếp.
- b) Song song.

Lời giải:

a) Hai điện trở mắc nối tiếp

Vậy: Bộ hai điện trở mắc nối tiếp chịu được cường độ dòng điện tối đa là I_{max} = 1A.

b) Hai điện trở mắc song song

$$I = I_1 + I_2 = I_1 + \frac{R_1 I_1}{R_2} = \frac{R_1 + R_2}{R_2} I_1$$

- Khi R₁ mắc song song với R₂:

$$\Rightarrow I_1 = \frac{R_2}{R_1 + R_2} I = \frac{4}{6 + 4} I = 0.4 I \le 1 (1)$$

 $val_2 = I - I_1 = 0.6I(2)$

$$\begin{cases} I \leq 2,5A \\ I \leq 2A \end{cases}$$

- Từ (1) và (2) suy ra:

Vậy: Bộ hai điện trở mắc song song chịu được cường độ dòng điện tối đa là I_{max} = 2A. **Bài 5:** Cho mạch điện như hình vẽ: U = 12V, R_2 = 3 Ω , R_3 = 5 Ω .

- a) Khi K mở, hiệu điện thế giữa C, D là 2V. Tìm R₁.
- b) Khi K đóng, hiệu điện thế giữa C, D là 1V. Tìm $R_{\scriptscriptstyle 4}$.

Lời giải:

a) Khi K mở:

Ta có:
$$U_{CD} = U_{CA} + U_{AD} = -U_1 + U_2$$

$$\Rightarrow U_1 = IR_1 = \frac{U}{R_1 + R_3}.R_1$$

$$\Leftrightarrow 2 = \frac{12.R_1}{R_1 + 5} \Leftrightarrow 2R_1 + 10 = 12R_1$$

$$\Leftrightarrow 10 \; R_1 = 10 \Rightarrow R_1 = 1\Omega.$$

b) Khi K đóng. Ta có: $U_{CD} = U_{CB} + U_{BD} = U_3 - U_4$

$$U_3 = \frac{U}{R_1 + R_3}.R_3 = \frac{12}{1+5}.5 = 10V;$$

$$U_4 = \frac{U}{R_2 + R_4}.R_4 = \frac{12}{3 + R_4}.R_4.$$

Ta có:

$$+ U_{CD} = 10 - \frac{12}{3 + R_4} R_4 = 1$$

$$12R_4 = 9(R_4 + 3) \Rightarrow R_4 = 9\Omega$$

$$+ U_{CD} = 10 - \frac{12}{3 + R_4} R_4 = -1$$

$$12R_4 = 11.(R_4 + 3) \Rightarrow R_4 = 33\Omega$$

Bài 6: Cho mạch điện như hình vẽ.

$$U_{AB}$$
 = 75V, R_2 = $2R_1$ = 6Ω , R_3 = 9Ω .

- a) Cho R_4 = 2Ω . Tính cường độ qua CD.
- b) Tính R4 khi cường độ qua CD là 0.

Lời giải:

$$R_{AB} = R_{13} + R_{24} = \frac{R_1 R_3}{R_1 + R_3} + \frac{R_2 R_4}{R_2 + R_4}$$
$$= \frac{3.9}{3+9} + \frac{6R_4}{6 + R_4} = 2,25 + \frac{6R_4}{6 + R_4}$$

$$I = \frac{U_{AB}}{R_{AB}} = \frac{75}{2,25 + \frac{6R_4}{6 + R_4}}$$

$$U_{AC}$$
 = $I.R_{13}$ \Rightarrow

$$U_{AC} = \frac{75}{2,25 + \frac{6R_4}{6 + R_4}}.2,25 = \frac{168,75.(6 + R_4)}{13,5 + 8,25R_4}$$

$$I_1 = \frac{U_{AC}}{R_l}$$

$$\Rightarrow I_1 = \frac{168,75.(6 + R_4)}{13,5 + 8,25R_4}.\frac{1}{3} = \frac{56,25.(R_4 + 6)}{13,5 + 8,25R_4}$$

$$U_{CB} = U_{AB} - U_{AC}$$

$$\Rightarrow U_{CB} = 75 - \frac{168,75.(6 + R_4)}{13,5 + 8,25R_4} = \frac{450R_4}{8,25R_4 + 13,5}$$

$$I_2 = \frac{U_{CB}}{R_2} \Rightarrow I_2 = \frac{450R_4}{6.(8,25R_4 + 13,5)} = \frac{75R_4}{8,25R_4 + 13,5}.$$

$$I_1 = \frac{56,25.(2+6)}{8.25.2+13.5} = 15A;$$

$$I_2 = \frac{75.2}{8,25.2 + 13,5} = 10A$$
.

a) Ta có:

$$\Rightarrow R_4 = \frac{R_2 R_3}{R_1} = \frac{6.9}{3} = 18\Omega \; . \label{eq:R4}$$

Tại C: $I_1 = I_2 + I_{CD} \Rightarrow I_{CD} = I_1 - I_2 = 15 - 10 = 5A$.

b) Khi ICD = 0: Lúc đó mạch cầu cân bằng nên: $R_1.R_4$ = $R_2.R_3$

$$I_1 = \frac{U_{AC}}{R_1}$$