Projeto de Sistemas de Informação

2014/2015

Relatório da Etapa 2

Grupo 004

Autores

Ana Ribeiro nº 42528 Henrique Mendes nº 44223 Paulo Antunes nº 41935 Ricardo Costa nº 43273

Índice

Introdução	2
Fase I - Análise de Requisitos e Desenho	3
1. Requisitos Funcionais e Não Funcionais	3
2. Modelo de Casos de Uso	7
3. Esboços das Interfaces com o Utilizador	8
4. Modelo de Dados e Modelo Relacional	19
Fase I - Planeamento	22
1. Recursos	22
2. Estimação	
2.1. Esforço Disponível	26
2.2. Linhas de Código	26
2.3. Modelo Empírico COCOMO	26
2.4. Análise Crítica	27
3. Planeamento do Projeto	28
Bibliografia	

Introdução

Este projecto visa levar a cabo o desenvolvimento de uma plataforma que permita que haja interacção entre alunos e empresas no que toca à oferta e pesquisa por propostas de emprego. Para este fim cada uma das partes deve construir o seu perfil indicativo das suas qualidades, querendo cada parte expôr evidentemente o que procura e as suas áreas de interesse, facilitando assim um reconhecimento inicial de perfil quer da empresa quer do aluno interessado ou contactado.

Neste relatório o grupo dedicou-se ao estudo de vários factores que deverão ser levados em conta na realização deste projecto, estando incluidos então os Requisitos Funcionais e Não Funcionais, um Modelo de Casos de Uso, alguns Esboços da Interface e também o Modelo de Relacional e de Dados.

De notar que se trata de uma fase inicial do projecto sendo que futuramente poderão ser feitas alterações desde que estas sejam unica e exclusivamente dedicadas ao benificio do projecto como um todo.

O projecto deverá então destacar-se por facilitar o processo de contratação e pesquisa de emprego, sendo que passará a ser feito de uma forma rápida e intuitiva dado á simplicidade e objectividade da apresentação dos perfis e pela facilidade que existe em establecer um contacto incial.

Fase I - Análise de Requisitos e Desenho

1. Requisitos Funcionais e Não Funcionais

F: REQUISITOS FUNCIONAIS

1. Geral

A aplicação deve constituir uma plataforma de partilha de oportunidades de trabalho entre alunos e start-ups.

2. Aluno

- 2.1. O aluno deverá registar-se na plataforma para poder:
- 2.2. Visualizar uma série de propostas de trabalho (sugestões) adequadas ao seu perfil.
- 2.3. Consultar oportunidades de trabalho disponibilizadas pelas start-ups presentes na plataforma.
- 2.4. Divulgar o seu currículo académico, bem como outros conhecimentos e capacidades que 2.4.1. considere relevantes.
- 2.5. Procurar uma empresa e vice-versa.
- 2.6. Poder concorrer a uma oportunidade de emprego.
- 2.7. Para além disso:
- 2.8. Somente o aluno deve poder editar o seu perfil.

3. Empresa

A empresa deverá registar-se na plataforma para poder:

- 3.1. Visualizar um conjunto de alunos cujo perfil corresponda a cada uma das oportunidades de emprego activas.
- 3.2. Divulgar uma breve descrição da empresa, com contacto e-mail e website.
- 3.3. Divulgar oportunidades de emprego, com os requisitos pretendidos para cada oportunidade.

Para além disso:

- 3.4. Somente a empresa deve poder editar o seu perfil.
- 3.5. A empresa deve indicar uma breve descrição da mesma e das oportunidades activas no seu
- 3.6. perfil.

NF: REQUISITOS NÃO-FUNCIONAIS

1. Geral

A implementação da plataforma deve basear-se num sistema de camadas. As camadas são: camada de apresentação, camada lógica de negócio, camada de dados. Seguem-se os detalhes sobre as mesmas.

2. Camada de apresentação

- 2.1. Os clientes devem ser browsers web.
- 2.2. Tecnologia: php, html/css.
- 2.3. Na camada de apresentação podemos considerar várias páginas correspondentes a vários aspectos.

Por forma a garantir coerência em toda a plataforma, qualquer página deverá sempre uma secção superior de controlo, onde se encontra o botão home, campo de pesquisa, settings de perfil do user, etc.

2.3.1. <u>Página Inicial</u> - sugerimos que aqui seja possibilitado fazer o registo ou o login.

2.3.1.1. Registo:

- Deverá ter 1 campo para indicar se o user é aluno ou empresa.
- Se o user for aluno deverá ter adicionalmente 3 campos (nome, e-mail, e password).
 - Se o user for empresa deverá ter adicionalmente 4 campos (nome da empresa, nome do contacto na empresa, e-mail e website).
- Um botão de Enter para envio dos dados, com gravação do user ao nível da camada de dados.

2.3.1.2. Login:

- Deverá ter 2 campos (e-mail do user, password).
- Um botão de Enter para fazer autenticação e entrar no site. Liga à página do perfil do user vista pelo próprio.

2.3.2. Aluno

- 2.3.2.1. A página do aluno quando visitada pelo próprio permite a edição dos dados presentes.
- 2.3.2.2. A página do aluno quando visitada poderá ter 4 secções distintas:
 - 1 secção de controlo.
 - 1 secção com principais dados do aluno (nome, data de nascimento, morada) e botão grande para envio de oportunidades de emprego ao aluno. O facto do botão ser grande e bem vísivel logo na primeira parte do perfil faz com que qualquer empresa interessada no candidato o possa contactar de forma fácil e eficaz. Isto contribui para a usabilidade da plataforma. É importante que as funções mais essenciais da plataforma sejam fáceis e intuitivas de usar.
 - 1 secção onde se podem ver as coisas que o aluno pretende destacar sobre si. Pode ser por exemplo: percurso académico, Experiência, Outras capacidades e conhecimentos, Tipo de Oportunidade Preferida (implementa F2.3).
 - 1 secção com dados adicionais, como Carta de Condução, disponibilidade para trabalhar no estrangeiro, etc...

2.3.3. Empresa

- 2.3.3.1. A página da empresa quando visitada pelo própria: permite a edição dos dados presentes.
- 2.3.3.2. A página da empresa quando visitada poderá ter 5 secções distintas:
 - 1 secção de controlo.
 - 1 secção com dados principais da empresa (nome, data de formação, localização da sede) e botão grande para envio de CV. Este botão é grande e está aqui para aumentar a usabilidade, pois torna-se fácil a um aluno que visite o perfil da empresa enviar candidatura espontânea.
 - 1 secção sectores principais aos quais a empresa se dedica.
 - 1 secção com a lista das oportunidades activas (implementa F3.5).
 - 1 secção com mais informação sobre a empresa (implementa F3.2).

3. Camada lógica de negócio

- 3.1. Tecnologia: php
- 3.2. A plataforma deverá seguir a seguinte lógica:
 - 3.2.1. User acede ao site.
 - 3.2.2. Se user é não é registado, regista-se. Se user é registado, faz login.
 - 3.2.3. Para que a plataforma funcione é necessário ter pelo menos 1 aluno e 1 empresa registados.
 - 3.2.4. Após o registo, o user edita o seu perfil. A edição de perfil está restrita ao próprio user.
 - 3.2.5. Se user for aluno, prepara cv para enviar E/OU pesquisa oportunidade de trabalho. Se user for empresa, cria oportunidade de trabalho E/OU pesquisa alunos E/OU envia oportunidade de trabalho.

4. Camada de dados

- 4.1. Tecnologia: MySQL/Oracle
- 4.2. A base de dados poderá:
 - 4.2.1. Ter 4 tabelas (Perfil, Aluno, Empresa, Oportunidade_Emprego).
 - 4.2.2. A tabela Perfil deve incluir os atributos exigidos para o registo: nome, e-mail e password, bem como a distinção entre entidade-aluno ou entidade-empresa. É importante que também a empresa tenha uma password como forma de garantir a funcionalidade F3.4.
 - 4.2.3. A tabela Aluno pode garantir F2.3. se tiver como atributos por exemplo: Percurso_Académico, Conhecimentos_E_Capacidades.
 - 4.2.4. A tabela Empresa pode garantir F3.2. através de atributos como: contacto (com email), website, descrição (pequena descrição da empresa de forma a torná-la interessante para os candidatos).
 - 4.2.5. A tabela Oportunidade_Emprego deve ser acedida pela Empresa (implementa F3.3.) e pela Aluno (implementa F2.5). Na tabela Oportunidade_Emprego deve estar o cargo (a função procurada), bem como os requisitos para essa função. Sugerimos que, por razões de eficiência, se adicione um atributo ID, que servirá para identificar de forma inequívoca a que oportunidade empresas e alunos se referem aquando da troca de mensagens entre ambas.

2. Modelo de Casos de Uso

Identificação e descrição dos atores. Diagramas de casos de uso na notação UML. Descrição textual dos casos de uso. Aconselha-se a inclusão de um diagrama global com todos os casos de uso, os atores e as relações entre eles, mesmo que adicionalmente sejam apresentados diagramas parciais.

Imagem 1 - Diagrama de casos de uso

3. Esboços das Interfaces com o Utilizador

Esboços das interfaces com o utilizador relativas aos casos de uso.

Corporats Account
l-mail
Company Name
Rubrite
Foundation Date
19999
HQ Alhen
Contest
Country
Solat One
Zip Col/Retal Col
Percurd
Curfirm Rencuard
- contained
I I love not and alleged The terms and Contions

Imagem 2 - Criar Conta - Conta de Empresa

Imagem 3 - Criar Conta- Tipo de Conta

Imagem 4 - Estudo para Envio de curriculo

Imagem 5 - Estudo para Envio de proposta

Imagem 6 - Estudos Toolbar-1

Imagem 7 - Estudos Toolbar-2

		TART	V /	
		Registe he	occount?	
Oslicas	Sto Pa	cho Zarg		
1 / 1				

Imagem 8 - Login Screen

Imagem 9 - Perfil Aluno

Imagem 10 - Perfil Aluno(Alpha)

Imagem 11 - Perfil Enpresa

Imagem 12 - Perfil Empresa(Alpha)

4. Modelo de Dados e Modelo Relacional

O modelo conceptual de dados deve ser apresentado através de um diagrama de classes UML ou diagrama entidade-associação, com indicação das restrições de integridade (RI) adicionais em forma de texto. Deve estar bem patente a ligação entre a especificação de requisitos e os elementos do diagrama e das RIs.

RI2:Um aluno pode concorrer a varias Oportunidade_emprego

Imagem 13 - Diagrama EA do modelo de dados

Comandos SQL para criação de tabelas:

```
DROP TABLE perfil;
CREATE TABLE perfil(
  -- A alterar valores se necessario
  e-mail VARCHAR2(20),
  nome VARCHAR2(20) CONSTRAINT nn_perfil_nome NOT NULL,
  passwd VARCHAR2(15) CONSTRAINT nn_perfil_passwd NOT NULL,
  morada VARCHAR2(30) CONSTRAINT nn_perfil_morada NOT NULL,
  CONSTRAINT pk_perfil
         PRIMARY KEY (e-mail)
);
```

```
-- A alterar valores se necessario
  e-mail VARCHAR2(20),
  dataNascimento DATE CONSTRAINT nn_aluno_dataNascimento NOT NULL,
  percursoProfissional VARCHAR2(500) CONSTRAINT nn_aluno_percursoProfissional NOT NULL,
  dadosAdicionais VARCHAR2(500) CONSTRAINT nn aluno dadosAdicionais NOT NULL,
  oportunidadePreferida VARCHAR2(500) CONSTRAINT nn_aluno_oportunidadePreferida NOT
NULL.
  percursoAcademico VARCHAR2(500) CONSTRAINT nn_aluno_percursoAcademico NOT NULL,
  conhecimentosEcapacidades
                                           VARCHAR2(500)
                                                                          CONSTRAINT
nn_aluno_conhecimentosEcapacidades NOT NULL,
  CONSTRAINT pk aluno
         PRIMARY KEY (e-mail),
  CONSTRAINT fk_aluno
         FOREIGN KEY (e-mail) REFERENCES perfil
                DELETE ON CASCADE
);
CREATE TABLE empresa(
  -- A alterar valores se necessario
  e-mail VARCHAR2(20),
  dataFormacao DATE CONSTRAINT nn_empresa_dataFormacao NOT NULL,
  Setores VARCHAR2(500) CONSTRAINT nn_empresa_Setores NOT NULL,
  dadosAdicionais VARCHAR2(500) CONSTRAINT nn_empresa_dadosAdicionais NOT NULL,
  website VARCHAR2(25) CONSTRAINT nn empresa website NOT NULL,
  contacto NUMBER(9) CONSTRAINT nn empresa contacto NOT NULL,
  descricao VARCHAR2(500),
  CONSTRAINT pk_empresa
         PRIMARY KEY (e-mail),
  CONSTRAINT un empresa
         UNIQUE (website),
  CONSTRAINT un_empresa
         UNIQUE (contacto),
  CONSTRAINT ck empresa contacto
         CHECK (contacto>9999999) -- Para garantir que fica um numero com 9 digitos
  CONSTRAINT fk_empresa
         FOREIGN KEY (e-mail) REFERENCES perfil
                DELETE ON CASCADE
);
CREATE TABLE oportunidade(
  cargo VARCHAR2(20),
```

CREATE TABLE aluno(

(Foi estudada uma forma alternativa de criar as tabelas)

Sendo que os perfis de estudante e empresa têm bastante semelhança, foi decidido agrupá-los de forma a ainda poderem ser distinguidos e a terem alguns atributos próprios de cada um, usando para esse efeito uma hierarquia.

Fase I - Planeamento

1. Recursos

Somos uma equipa composta por 4 colaboradores: Ana, Henrique, Paulo e Ricardo.

A Ana destaca-se pelo raciocínio lógico, por ser metódica, organizada e gostar de fazer coisas diferentes.

O Henrique destaca-se também pelo raciocínio lógico, é curioso e tem uma excelente capacidade de encontrar soluções onde não parecem existir.

O Paulo considera-se teimoso, mas é sobretudo dedicado, colaborativo e disponível nos projectos que abraça. É o criativo da equipa.

O Ricardo também se considera teimoso, mas destaca-se sobretudo por ser dedicado e trabalhador.

Considerando uma jornada de 8 horas, cada um dos nossos colaboradores apresenta uma disponibilidade para o projecto de:

18,75% - Ana

37,5% - Henrique

37,5% - Paulo

18,75% - Ricardo

Tabela de Competências:

	Competências Técnicas						Outras Competências
	Progra	Programação Base de Dados Sistemas Operativos		as Operativos			
,	Qual	Nível	Qual	Nível	Qual	Nível	
Ana	C Pro-C C++ Sql java Html + css	Avançado Médio Médio Médio Básico	Sybase Oracle	Médio Médio	Unix Linux shell MacOsX Windows Android		Modelação 3D
Henrique	Javascript Haskell Prolog	Básico Básico Básico					
	Java C C++ Haskell Prolog Sql Html + css Javascript OOP php	Alto Médio Básico Médio Alto Básico Médio Médio Básico	Oracle	Básico	Unix Linux shell MacOsX Windows Android	Médio Médio Médio N/A Avançado Médio	Auto-didactismo Gestão de equipa Modelação 3D Google
Paulo	Java Html + css Javascript php C Haskell Prolog PI-sql Pascal	Médio-Alto Médio Médio Básico Básico Médio Básico Médio Básico	Oracle	Médio	Unix Linux shell MacOsX Windows Android	Médio Médio Médio Médio Médio Médio	Modelação 3D
Ricardo	Java Html + css Javascript php C Haskell Prolog PI-sql Python	Médio-Alto Médio Médio Básico Médio Médio Básico Médio Médio	Oracle	Médio	Unix Linux shell MacOsX Windows Android	Médio Médio Básico Básico Médio Médio	Modelação 3D

Atribuição principal de papéis na nossa equipa:

Ana:

- Organização geral
- Programadora
- Base de Dados (back-up)

Henrique:

- Entrega no Moodle
- Programador
- Researcher

Paulo:

- Arquitecto de Interfaces
- Programador
- Entrega no Moodle (back-up)

Ricardo:

- Base de Dados
- Programador

Consolidado numa Matriz Pessoas/Papéis:

	Product Owner	ScrumMaster	Analista	Developer	DB Architect	Delivery	Researcher	Interface Architec	Organização Geral
Ana									
Henrique									
Paulo									
Ricardo									

Legenda:
- Responsável
- BackUp
- Disponivel caso seja necessário

Recursos Físicos:

Hardware:

- 2 laptop

Software:

- CodeIgniter
- Bootstrap
- Eclipse+Plugins Bluefish
- gedit
- Pixel Perfect
- Firebug
- sql developer
- Browsers: chromium/chrome, firefox

2. Estimação

Dados históricos. Conversão em linhas de código. Estimação empírica com o modelo COCOMO. Esta secção deve incluir as subsecções indicadas a seguir.

2.1. Esforço Disponível

Pessoas (tendo em conta a disponibilidade apresentada no ponto 1) =

$$= 0.1875 + 0.375 + 0.375 + 0.1875 = 1.125$$

Duração real: ca 3 meses

Esforço Disponível (Real) = 3 meses * 1.125 = 3.375 p.m

2.2. Linhas de Código

Componente	Estimativa optimista	Estimativa provável	Estimativa pessimista	Valor esperado	Etapas(Sprints)
Registo, edição, e visualização dos perfis de alunos	900	1200	1450	1191.666667	1191.666667
Registo, edição, e visualização dos perfis de empresas	600	800	1200	833.3333333	
Criação e visualização de oportunidades de emprego	1100	1500	2100	1533.333333	2366.666667
Emparelhamento de perfis de alunos com oportunidades de emprego	900	1200	1600	1216.666667	
Visualização das oportunidades/perfis emparelhados nos perfis de aluno e empresa	1000	1400	1900	1416.666667	2633.333333
				6191.666667	

2.3. Modelo Empírico COCOMO

- Tabela com valores a aplicar no COCOMO:

Tipo Projeto	а	b	С	d
Orgânico	2.4	1.05	2.5	0.38
Semi-ind.	3	1.12	2.5	0.35
Embebido	3.6	1.2	2.5	0.32

- Fórmulas que vamos aplicar no COCOMO:

Esforço = $a* KLOC^b$

Duração = c* Esforço^d

- Pelo nr de LOC e pela dimensão da equipa, consideramos o nosso projecto orgânico.

Valores COCOMO para este projecto:

KLOC = 6191,666667 / 1000 = 6.191666667

Esforço Estimado = 2.4 * (6.191666667^1.05) = 16.27830524 p.m.

Duração Estimada = 2,5 * (16.27830524^0.38) = 7.216913503 meses

Staffing = 16.27830524 / 7.216913503 = 2,55577157

Matriz com COCOMO BÁSICO para o nosso projecto:

	LOC Estimado	KLOC	COCOMO: Esforço Estimado (p.m)	COCOMO: Duração Estimada (meses de desenvolvimento)	COCOMO: Staffing
SPRINT 1	1191.666667	1.191666	2.885185712	3.739435463	0.7715564931
SPRINT 2	2366.666667	2.366666	5.930006788	4.917008749	1.206019165
SPRINT 3	2633.333333	2.633333	6.633494449	5.131001118	1.292826545
TOTAL	6191.666667	6.191666	16.27830524	7.216913501	2.255577157

2.4. Análise Crítica

Observando os resultados obtidos para

Esforço Disponível (Real) = 3 meses * 1.125 = 3.375 p.m

Esforço Estimado = 2.4 * (6.191666667^1.05) = 16.27830524 p.m.

verificamos que estes valores são muito diferentes.

Pelo que nas condições consideradas para o cálculo dos mesmos, o projecto não é viável, dado que temos um esforço estimado muito superior ao real.

Para viabilizar o projecto será necessário:

- contractar mais colaboradores OU
- aumentar a disponibilidade dos colaboradores actuais OU
- alongar o prazo OU
- reduzir as LOC

Como não podemos adicionar novos elementos ao grupo, nem os elementos actuais podem alocar mais horas ao projecto que as definidas, excluimos as primeiras duas hipóteses.

Como o prazo está fixo, não poderemos alongar o prazo.

Resta-nos reduzir as LOC.

Para tal vamos calcular quantas LOC tem um projecto que com a mesma duração e esforço real seja viável.

1º Passo:

Consideremos Esforço Estimado = Esforço Real = 3.375 p.m.

2º Passo:

Partimos da equação de COCOMO para Esforço Estimado para calcularmos o KLOC para o Esforço Estimado pretendido:

```
Sabemos que, 
Esforço Estimado = 2.4 * KLOC^1.05 , ou seja, 3.375 = 2.4 * KLOC^1.05 p.m. 
Então, 
KLOC = ^1.05\sqrt{(3.375/2.4)} = 1.383604413
```

Assim concluimos que, se for implementado com as mesmas ferramentas e com a mesma complexidade de funções do(s) projecto(s) donde foi obtido o histórico, o projecto terá que ser reduzido a um máximo de cerca de 1,383604413 KLOC para que seja viável na duração real com o esforço real.

No entanto, sabemos que o nosso projecto vai ser implementado recorrendo a ferramentas como o CodeIgniter e o Bootstrap que aceleram a implementação e sabemos também que terá funcionalidades menos complexas. Por isso, conseguimos obter uma margem adicional de KLOC. Isto significa que conseguiremos produzir mais KLOC do que previsto no cálculo efectuado para o esforço estimado.

3. Planeamento do Projeto

A calendarização ainda está a ser feita, devido ao atraso da TP4 em ter a aula sobre JIRA, em relação às outras turmas.

Bibliografia

- [1] Leon Shklar, Rich Rosen, Web Application Architecture- Principles, Protocols and Practices, 2009. ISBN: 978-0-470-51860
- [2] UMLet 13.2 http://www.umlet.com/
- [3] SourceTree http://www.sourcetreeapp.com/
- [4] GitHub https://github.com/
- [5] LinkedIn https://www.linkedin.com/
- [6] Raghu Ramakrishnan e Johannes Gehrke, *Database Management Systems, McGraw-Hill*, 3rd Edition, 2003, ISBN 0072465638
- [7] Matthew Miles and Michael Huberman. *Qualitative Data Analysis*, 2nd Edition. Sage, 1994.
- [8] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann, 1998.