Versuchsprotokoll 100

Florian Hirche

17. Dezember 2024

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	2
3	Voraufgaben Aufgabe 100.A Aufgabe 100.B	2 2 2
4	Durchführung	2
5	Messungen	2
6	Auswertung	3
7	Fazit	3

1 Einleitung

In diesem Versuch wird die Brennweite einer Linse nach dem Bessel-Verfahren bestimmt. Dazu wichtig ist die Abbildungsgleichung:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

und die Definition des Abbildungsmaßstabes:

$$\gamma := \frac{b}{q} = \frac{B}{G}$$

2 Theorie

Erkläre die theoretischen Grundlagen des Experiments. Nutze ggf. Formeln und Verweise.

3 Voraufgaben

Aufgabe 100.A

Beweisen Sie, dass es für a>4f genau 2 Linsenstellungen mit scharfer Abbildung gibt. Welchen Abbildungsmaßstab hat man bei a=4f?

Es gilt

Aufgabe 100.B

Leiten Sie mit dem Abstand der Linsenpositionen e (siehe Abb. 100.1) die folgende Gleichung her:

$$4f = a - \frac{e^2}{a}$$

4 Durchführung

Beschreibe, wie der Versuch durchgeführt wurde. Füge ggf. Diagramme oder Fotos ein:

5 Messungen

Führe hier alle Messdaten und Tabellen auf. Beispiel:

Messwert 1	Messwert 2	Messwert 3
1.0	2.0	3.0
4.0	5.0	6.0

Tabelle 1: Messwerte

6 Auswertung

Analysiere die Messdaten 1 und interpretiere die Ergebnisse. Dazu berechnen wir:

$$f(x) = (a+b)^c (123)$$

mit Fehler

$$\sigma_f = \sqrt{\frac{\sigma_a^2 c^2 (a+b)^{2c}}{(a+b)^2} + \sigma_c^2 (a+b)^{2c} \log (a+b)^2}$$
 (1)

As seen in equation (123) this stuff is cool

7 Fazit

Die angegebene Brennweiter der benutzen Linses war laut Aufschrift 10 cm. Unser Ergebnis von 10.05(5) cm liegt im $1-\sigma$ Bereich.