Системы типизации лямбда-исчисления

Лекция 8. Полиморфная система: связь с логикой и кодирование

Денис Москвин

27.03.2011

CS Club при ПОМИ РАН

Интуиционистская пропозициональная логика второго порядка PROP2

Существует изоморфизм между $\lambda 2$ и логической системой PROP2.

Типы в $\lambda 2$ — формулы в PROP2.

Термы в $\lambda 2$ — доказательства в PROP2.

PROP2 — конструктивная система; в ней, например, закон Пирса

$$\forall \alpha \beta . ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$$

невыводим.

PROP2: →

Импликация унаследована от PROP:

	Правило удаления $ ightarrow$	Правило введения $ ightarrow$	
PROP2	$rac{\sigma\! o\! au}{ au}$	$ \begin{array}{c} [\sigma] \\ \vdots \\ \tau \\ \hline \sigma {\longrightarrow} \tau \end{array} $	
λ2	$\frac{\Gamma \vdash M : \sigma \rightarrow \tau \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$	$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x^{\sigma}. M : \sigma \rightarrow \tau}$	

PROP2: ∀

Правила введения и удаления квантора \forall соответствуют универсальным Λ -абстракции и применению:

	Правило удаления ∀	Правило введения ∀	
PROP2	$rac{orall lpha.\ \sigma}{\sigma[lpha:= au]}$	$\begin{array}{c} \tau_1 \dots \tau_n \\ \vdots \\ \hline \sigma \\ \hline \forall \alpha. \ \sigma \end{array}, \alpha \not\in FV(\tau_1, \dots, \tau_n) \end{array}$	
λ2	$\frac{\Gamma \vdash M : \forall \alpha. \sigma \Gamma \vdash \tau : *}{\Gamma \vdash M \tau : \sigma[\alpha := \tau]}$	$\frac{\Gamma, \alpha : * \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha. M : \forall \alpha. \sigma}$	

Стандартные логические связки

Система λ2 позволяет определить стандартные логические связки:

$$\bot \equiv \forall \alpha . \alpha$$

$$\neg \sigma \equiv \sigma \rightarrow \bot$$

$$\sigma \land \tau \equiv \forall \alpha . (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha$$

$$\sigma \lor \tau \equiv \forall \alpha . (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha$$

$$\exists \alpha . \sigma \equiv \forall \beta . (\forall \alpha . \sigma \rightarrow \beta) \rightarrow \beta$$

При этом оказываются возможными все стандартные (конструктивные) выводы.

Свойства 丄

Напомним, что $\bot \equiv \forall \alpha$. α .

Терм этого типа позволяет породить терм любого типа

$$\sigma:*, x:\bot \vdash (x \sigma): \sigma$$

$$\sigma:* \vdash \lambda x^{\bot}. (x \sigma): \bot \rightarrow \sigma$$

Однако тип \bot не населён в $\lambda 2$ — не существует *замкнутого* терма с таким типом.

С логической точки зрения \bot — это абсурд, заведомо ложное утверждение.

Связка - (отрицание)

В $\lambda 2$ связка \neg может быть определена так:

$$\neg \sigma \equiv \sigma \rightarrow \bot$$

Правило удаления ¬	Правило введения ¬	
	[σ] [σ] : :	
σ $\neg \sigma$	au $ extstyle au$	
τ	$\overline{}\sigma$	

Покажем, что они выразимы в $\lambda 2$.

Связка ¬ **(2)**

Удаление ¬. Тип

$$\sigma \rightarrow \neg \sigma \rightarrow \tau \equiv \sigma \rightarrow (\sigma \rightarrow \bot) \rightarrow \tau \equiv \sigma \rightarrow (\sigma \rightarrow \forall \alpha. \ \alpha) \rightarrow \tau$$

Терм этого типа (в контексте $\Gamma = \sigma:*, \tau:*$)

$$\lambda x^{\sigma}$$
. $\lambda f^{\sigma \to \perp}$. $f x \tau$

Из противоречия следует все что угодно.

Введение -. Тип

$$(\sigma \rightarrow \tau) \rightarrow (\sigma \rightarrow \neg \tau) \rightarrow \neg \sigma \equiv (\sigma \rightarrow \tau) \rightarrow (\sigma \rightarrow \tau \rightarrow \bot) \rightarrow \sigma \rightarrow \bot$$

Терм этого типа

$$\lambda f^{\sigma \to \tau}$$
. $\lambda g^{\sigma \to \tau \to \perp}$. λx^{σ} . $g x (f x)$

Доказательство приведением к нелепости — reductio ad absurdum.

Связка ∧ (конъюнкция)

В $\lambda 2$ связка \wedge может быть определена так:

$$\sigma \wedge \tau \equiv \forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha$$

 $\alpha \notin FV(\sigma)$, $\alpha \notin FV(\tau)$.

Правила удаления 🛆	Правило введения 🛆
$\frac{\sigma \wedge \tau}{\sigma}$ $\frac{\sigma \wedge \tau}{\tau}$	$\frac{\sigma \qquad \tau}{\sigma \wedge \tau}$

Покажем, что они выразимы в $\lambda 2$.

Введение /

Введение Л. Тип

$$\sigma \rightarrow \tau \rightarrow (\sigma \land \tau) \equiv \sigma \rightarrow \tau \rightarrow (\forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha)$$

Терм этого типа

$$\lambda x^{\sigma} y^{\tau}$$
. $\Lambda \alpha$. $\lambda f^{\sigma \to \tau \to \alpha}$. $f x y$

В стандартной интерпретации $\lambda 2$, как языка программирования, этот терм описывает пару (двухэлементный кортеж):

$$\sigma:*, \tau:*, x:\sigma, y:\tau \vdash \langle x, y \rangle : \sigma \times \tau$$

Удаление \wedge

Удаление \wedge **(1).** Тип $(\sigma \wedge \tau) \rightarrow \sigma \equiv (\forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha) \rightarrow \sigma$ Терм этого типа

$$\lambda f^{\sigma \wedge \tau}$$
. $f \sigma (\lambda x^{\sigma} y^{\tau}. x)$

$$\sigma:*, \tau:*, f: \sigma \wedge \tau \vdash f \sigma: (\sigma \rightarrow \tau \rightarrow \sigma) \rightarrow \sigma$$

 $\sigma:*, \tau:*, f: \sigma \wedge \tau \vdash f \sigma (\lambda x^{\sigma} y^{\tau}. x) : \sigma$

Удаление \wedge **(2).** Тип $(\sigma \wedge \tau) \rightarrow \tau \equiv (\forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha) \rightarrow \tau$ Терм этого типа

$$\lambda f^{\sigma \wedge \tau}$$
. $f \tau (\lambda x^{\sigma} y^{\tau}. y)$

$$\sigma:*, \tau:*, f: \sigma \wedge \tau \vdash f\tau: (\sigma \rightarrow \tau \rightarrow \tau) \rightarrow \tau$$

 $\sigma:*, \tau:*, f: \sigma \wedge \tau \vdash f\tau (\lambda x^{\sigma} y^{\tau}. y): \tau$

Связка ∨ (дизъюнкция)

В $\lambda 2$ связка \vee может быть определена так:

$$\sigma \lor \tau \equiv \forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha$$

 $\alpha \notin FV(\sigma)$, $\alpha \notin FV(\tau)$.

Правило удаления ∨		Правила в	ведения ∨	
$\sigma \lor \tau$	[σ] :	[τ] :		
	$\frac{ ho}{ ho}$	ρ	$\frac{\sigma}{\sigma \vee \tau}$	$\frac{\tau}{\sigma \vee \tau}$

Покажем, что они выразимы в $\lambda 2$.

Введение ∨

Введение \vee (1). Тип

$$\sigma \rightarrow (\sigma \lor \tau) = \sigma \rightarrow (\forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha)$$

Терм этого типа

$$\lambda x^{\sigma}$$
. $\Lambda \alpha$. $\lambda f^{\sigma \to \alpha} g^{\tau \to \alpha}$. $f x$

Введение \vee (2). Тип

$$\tau \rightarrow (\sigma \lor \tau) = \tau \rightarrow (\forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha)$$

Терм этого типа

$$\lambda y^{\tau}$$
. $\Lambda \alpha$. $\lambda f^{\sigma \to \alpha} g^{\tau \to \alpha}$. $g y$

Удаление \vee

Удаление ∨. Тип

$$(\sigma \lor \tau) \to (\sigma \to \rho) \to (\tau \to \rho) \to \rho$$

$$= (\forall \alpha. (\sigma \to \alpha) \to (\tau \to \alpha) \to \alpha) \to (\sigma \to \rho) \to (\tau \to \rho) \to \rho$$

Терм этого типа

$$\lambda h^{\sigma \vee \tau} f^{\sigma \to \rho} g^{\tau \to \rho}$$
. $h \rho f g$

Построение терма

$$\sigma:*, \tau:*, \rho:*, h: \sigma \vee \tau \vdash h \rho: (\sigma \rightarrow \rho) \rightarrow (\tau \rightarrow \rho) \rightarrow \rho$$

Это правило носит название доказательство разбором случаев.

Экзистенциальные типы

Трактовка $\forall \alpha$. σ :

Функция из типов в термы, которая *любому* типу τ ставит в соответствие терм с типом $\sigma[\alpha := \tau]$.

Для $\sigma = \alpha \rightarrow \alpha$ имеем $\sigma[\alpha := \tau] = \tau \rightarrow \tau$:

Трактовка $\exists \alpha. \sigma$:

Пара из *некоторого* типа τ и терма, имеющего тип $\sigma[\alpha := \tau]$. Для $\sigma = \alpha \to \gamma$ имеем:

$$\langle \gamma, \lambda x^{\gamma}, x \rangle : \exists \alpha. \alpha \rightarrow \gamma$$

поскольку $\sigma[\alpha := \gamma] = \gamma \rightarrow \gamma$ и $\lambda x^{\gamma} \cdot x : \gamma \rightarrow \gamma$.

∃ (квантор существования)

В $\lambda 2$ \exists может быть определён так:

$$\exists \alpha . \sigma \equiv \forall \beta . (\forall \alpha . \sigma \rightarrow \beta) \rightarrow \beta$$

 $\beta \notin FV(\sigma)$.

Правило удаления ∃	Правило введения 🗄
$ \begin{array}{c} [\sigma] \\ \exists \alpha. \ \sigma \qquad \vdots \\ \hline \rho \\ \hline \rho \end{array} $	$rac{\sigma[lpha:= au]}{\exists lpha.\ \sigma}$

Покажем, что они выразимы в $\lambda 2$.

Введение ∃

Введение ∃. Тип

$$\sigma[\alpha := \tau] \rightarrow \exists \alpha. \ \sigma = \sigma[\alpha := \tau] \rightarrow \forall \beta. \ (\forall \alpha. \ \sigma \rightarrow \beta) \rightarrow \beta$$

Терм этого типа (в контексте $\Gamma = \tau : *$)

$$\lambda x^{\sigma[\alpha:=\tau]}$$
. $\Lambda \beta$. $\lambda f^{\forall \alpha. \sigma \to \beta}$. $f \tau x$

Построение терма

$$\tau:*, \sigma:*, \beta:*, f: \forall \alpha. \ \sigma \rightarrow \beta \ \vdash \ f \tau: \sigma[\alpha:=\tau] \rightarrow \beta$$

$$\tau:*, \sigma:*, \beta:*, f: \forall \alpha. \ \sigma \rightarrow \beta, x: \sigma[\alpha:=\tau] \ \vdash \ f \tau x: \beta$$

Удаление ∃

Удаление ∃. Тип

$$\exists \alpha. \ \sigma \rightarrow (\sigma \rightarrow \rho) \rightarrow \rho = (\forall \beta. (\forall \alpha. \ \sigma \rightarrow \beta) \rightarrow \beta) \rightarrow (\sigma \rightarrow \rho) \rightarrow \rho$$

Терм этого типа

$$\lambda f^{\exists \alpha. \sigma}. \lambda g^{\sigma \to \rho}. f \rho (\Lambda \alpha. g)$$

Построение терма

$$f: \exists \alpha. \ \sigma \vdash (f \rho) : (\forall \alpha. \ \sigma \rightarrow \rho) \rightarrow \rho$$

 $g: \sigma \rightarrow \rho \vdash (\Lambda \alpha. \ g) : \forall \alpha. \ \sigma \rightarrow \rho$

Кодирование в $\lambda 2$: булев тип

Bool =
$$\forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$$

Констант этого типа в точности две: TRUE: Bool и FALSE: Bool:

TRUE =
$$\Lambda \alpha$$
. $\lambda t^{\alpha} f^{\alpha}$. t

FALSE =
$$\Lambda \alpha$$
. $\lambda t^{\alpha} f^{\alpha}$. f

Условный оператор задаёт способ «использования» для Bool:

$$\begin{array}{rcl} \text{IIF} & : & \text{Bool} \rightarrow \rho \rightarrow \rho \rightarrow \rho \\ & \text{IIF} & = & \lambda \, e^{\text{Bool}} . \lambda x^{\rho} \, y^{\rho} . \, e \, \rho \, x \, y \\ & \text{IIF} \, e & = & \lambda x^{\rho} \, y^{\rho} . \, e \, \rho \, x \, y \\ & \text{IIF} \, e \, x \, y & = & e \, \rho \, x \, y \end{array}$$

«Комбинаторный» синтаксис часто удобнее лямбд.

Кодирование в $\lambda 2$: булев тип (2)

Проверка (в контексте $\rho:*, a:\rho, b:\rho$)

IIF TRUE
$$ab \rightarrow_{\beta}$$
 TRUE ρab
$$= (\Lambda \alpha. \lambda t^{\alpha} f^{\alpha}. t) \rho ab$$

$$\rightarrow_{\beta} (\lambda t^{\rho} f^{\rho}. t) ab$$

$$\rightarrow_{\beta} a$$

IIF FALSE
$$\alpha b \rightarrow_{\beta}$$
 FALSE $\rho \alpha b$
$$= (\Lambda \alpha. \lambda t^{\alpha} f^{\alpha}. f) \rho \alpha b$$

$$\rightarrow_{\beta} (\lambda t^{\rho} f^{\rho}. f) \alpha b$$

$$\rightarrow_{\beta} b$$

Кодирование в $\lambda 2$: булев тип (3)

Операторы AND, OR и NOT.

AND : Bool
$$\rightarrow$$
 Bool \rightarrow Bool AND $xy = \Lambda \alpha . \lambda t^{\alpha} f^{\alpha} . x \alpha (y \alpha t f) f$

Синим выделено отличие от бестиповой лямбды.

OR :
$$Bool \rightarrow Bool \rightarrow Bool$$
OR $xy = ???$ Самостоятельно

NOT : $Bool \rightarrow Bool$
NOT $x = ???$ Самостоятельно

Кодирование в $\lambda 2$: двухэлементный кортеж

Тип пары значений с типами σ и τ (произведение типов $\sigma \times \tau$) можно задать так:

$$\sigma \times \tau \equiv \forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha$$

Отметим, что $\sigma \times \tau \equiv \sigma \wedge \tau$.

Любые два значения $\alpha: \sigma$ и $b: \tau$ порождают значение $\langle \alpha, b \rangle$ типа их произведения $\sigma \times \tau$:

PAIR
$$ab \equiv \langle a, b \rangle \equiv \Lambda \alpha. \lambda f^{\sigma \to \tau \to \alpha}. f a b$$

Тип этого конструктора пары

$$\sigma \rightarrow \tau \rightarrow \sigma \times \tau \equiv \sigma \rightarrow \tau \rightarrow \forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha$$

Кодирование в $\lambda 2$: двухэлементный кортеж (2)

Две проекции пары $p:\sigma \times \tau$

Итератор для пары $p: \sigma \times \tau$

$$\begin{array}{ccc} \text{UNCURRY} & : & (\sigma\!\to\!\tau\!\to\!\rho)\!\to\!\sigma\times\tau\!\to\!\rho \\ \text{UNCURRY} & \equiv & \lambda f^{\sigma\to\tau\to\rho}\,p^{\sigma\times\tau}.\,p\,\rho\,f \\ \text{UNCURRY} & f\,p & \equiv & p\,\rho\,f \end{array}$$

Выразите FST и SND в терминах UNCURRY.

Кодирование в $\lambda 2$: размеченное объединение

Тип размеченного объединения значений типов σ и τ (суммы типов $\sigma + \tau$) можно задать так:

$$\sigma + \tau \equiv \forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha$$

Отметим, что $\sigma + \tau \equiv \sigma \vee \tau$.

В $\sigma + \tau$ хранится либо значение типа σ , либо типа τ , инъектированные в него одним из двух конструкторов

INJL :
$$\sigma \rightarrow \sigma + \tau$$

INJL $\alpha \equiv \Lambda \alpha . \lambda f^{\sigma \rightarrow \alpha} g^{\tau \rightarrow \alpha} . f \alpha$

INJR :
$$\tau \rightarrow \sigma + \tau$$

INJR b $\equiv \Lambda \alpha. \lambda f^{\sigma \rightarrow \alpha} g^{\tau \rightarrow \alpha}. g b$

Кодирование в $\lambda 2$: размеченное объединение (2)

$$\sigma + \tau \equiv \forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha$$

«Итератор» для размеченного объединения $\mathfrak{h}^{\sigma+\tau}$ (разбор случаев):

$$\begin{array}{ccc} \text{CASES} & : & (\sigma \! \to \! \rho) \! \to \! (\tau \! \to \! \rho) \! \to \! (\sigma + \tau) \! \to \! \rho \\ \\ \text{CASES} & \equiv & \lambda f^{\sigma \! \to \! \rho} \, g^{\tau \! \to \! \rho} \, h^{\sigma \! + \tau}. \, h \, \rho \, f \, g \\ \\ \text{CASES } f \, g \, h & \equiv & h \, \rho \, f \, g \end{array}$$

ρ задает тип результата разбора, а f и g являются обработчиками допустимых вариантов хранения.

Кодирование в $\lambda 2$: размеченное объединение (3)

```
\mathsf{TST1} : \mathsf{Bool} + \mathsf{Nat}
           TST1 \equiv INJL FALSE \equiv \Lambda \alpha. \lambda f^{Bool \to \alpha} g^{Nat \to \alpha}. f FALSE
           TST2 : Bool + Nat
           TST2 \equiv INJR \overline{42} \equiv \Lambda \alpha. \lambda f^{Bool \to \alpha} g^{Nat \to \alpha}. g \overline{42}
CASES fgh \equiv h \rho fg, где \mathbf{f}: \sigma \rightarrow \rho, g: \tau \rightarrow \rho, h: \sigma + \tau
                    CASES NOT ISZRO TST1 : Bool
               CASES NOT ISZRO TST1 \rightarrow_{\beta} NOT FALSE \rightarrow_{\beta} TRUE
               CASES NOT ISZRO TST2 : Bool
               cases not iszro tst2 ~\rightarrow_{\beta}~ iszro \overline{42}\rightarrow_{\beta} false
```

Кодирование в $\lambda 2$: натуральные числа

Каков тип, например, $\overline{3}=\lambda z\,s.\,s\,(s\,(s\,z))$? Если выбрать $z:\alpha$, то из аппликаций ясно, что $s:\alpha\to\alpha$. Поэтому естественно определить

Nat
$$= \forall \alpha. \ \alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha$$

(или, переставив в абстракции s и z, $\forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$)

Конструкторы для Nat

ZERO : Nat

ZERO = $\Lambda \alpha . \lambda z^{\alpha} s^{\alpha \to \alpha} . z$

 $SUCC : Nat \rightarrow Nat$

SUCC n = $\Lambda \alpha$. $\lambda z^{\alpha} s^{\alpha \to \alpha}$. $s (n \alpha z s)$

Индуктивный параметр «перевычисляется».

Кодирование в $\lambda 2$: натуральные числа (2)

Любое натуральное число выразимо через конструкторы

$$\overline{n} = \Lambda \alpha. \lambda z^{\alpha} s^{\alpha \to \alpha}. s^{n}(z) = SUCC^{n}(ZERO)$$

В ЯП конструкторы часто вводят как примитивы:

data Nat = ZERO | SUCC Nat

Итератор для n:Nat

$$\begin{array}{ccc} \text{IT} & : & \rho \! \to \! (\rho \! \to \! \rho) \! \to \! \text{Nat} \! \to \! \rho \\ \\ \text{IT} & \equiv & \lambda x^{\rho} \, f^{\rho \! \to \! \rho} \, n^{\text{Nat}} . \, n \, \rho \, x \, f \\ \\ \text{IT} \, \, x \, f \, n & \equiv & n \, \rho \, x \, f \end{array}$$

Кодирование в $\lambda 2$: натуральные числа (3)

Итерирование происходит ожидаемым образом (контекст $\rho:*, x:\rho, f:\rho\to\rho$; IT $xfn\equiv n\rho xf$):

IT
$$x f ZERO \equiv (\Lambda \alpha. \lambda z^{\alpha} s^{\alpha \to \alpha}. z) \rho x f$$

$$\rightarrow_{\beta} (\lambda z^{\rho} s^{\rho \to \rho}. z) x f$$

$$\rightarrow_{\beta} (\lambda s^{\rho \to \rho}. x) f$$

$$\rightarrow_{\beta} x$$
IT $x f (SUCC n) \equiv (\Lambda \alpha. \lambda z^{\alpha} s^{\alpha \to \alpha}. s (n \alpha z s)) \rho x f$

$$\rightarrow_{\beta} (\lambda z^{\rho} s^{\rho \to \rho}. s (n \rho z s)) x f$$

$$\rightarrow_{\beta} (\lambda s^{\rho \to \rho}. s (n \rho x s)) f$$

$$\rightarrow_{\beta} f (n \rho x f)$$

$$= f (IT x f n)$$

Кодирование в $\lambda 2$: натуральные числа (4)

Рекурсия в терминах итерации

Итерирование IT x f $n \equiv n \rho x$ f идёт с типом $\rho \equiv \sigma \times \text{Nat}$. В частности,

$$\vdash$$
 PRED : Nat \rightarrow Nat
PRED n \equiv REC n ZERO $(\lambda x^{\text{Nat}} y^{\text{Nat}}. y)$

Кодирование в $\lambda 2$: списки

Каков тип
$$[\overline{3},\overline{7},\overline{42}]=\lambda n\,c.\,c\,\overline{3}\,(c\,\overline{7}\,(c\,\overline{42}\,n))$$
?
Если выбрать $n:\alpha$, то $c:\mathrm{Nat}\!\to\!\alpha\!\to\!\alpha$. Определим

$$\begin{array}{lll} \mathtt{ListNat} & \equiv & \forall \alpha. \; \alpha \! \rightarrow \! (\mathtt{Nat} \! \rightarrow \! \alpha \! \rightarrow \! \alpha) \! \rightarrow \! \alpha \\ \\ \mathtt{List} \; \sigma & \equiv & \forall \alpha. \; \alpha \! \rightarrow \! (\sigma \! \rightarrow \! \alpha \! \rightarrow \! \alpha) \! \rightarrow \! \alpha \end{array}$$

Конструкторы для List σ

$$NIL$$
 : List σ

NIL
$$\equiv \Lambda \alpha. \lambda n^{\alpha} c^{\sigma \to \alpha \to \alpha}. n$$

CONS :
$$\sigma \rightarrow \text{List } \sigma \rightarrow \text{List } \sigma$$

CONS x l
$$\equiv \Lambda \alpha. \lambda n^{\alpha} c^{\sigma \to \alpha \to \alpha}. c x (l \alpha n c)$$

$$[\overline{3}, \overline{7}, \overline{42}] = \text{CONS } \overline{3} \text{ (CONS } \overline{7} \text{ (CONS } \overline{42} \text{ NIL)})$$

Кодирование в $\lambda 2$: списки (2)

Итератор для $l: List \sigma$ (свёртка)

$$\begin{array}{ccc} \texttt{FOLD} & : & \rho \! \to \! (\sigma \! \to \! \rho \! \to \! \rho) \! \to \! \texttt{List} \, \sigma \! \to \! \rho \\ \\ \texttt{FOLD} & \equiv & \lambda x^{\rho} \, f^{\sigma \! \to \! \rho \! \to \! \rho} \, l^{\texttt{List} \, \sigma}. \, l \, \rho \, x \, f \end{array}$$

Проверьте, что свёртка ведёт себя ожидаемо, то есть

FOLD
$$x f NIL \rightarrow_{\beta} x$$

FOLD $x f (CONS el) \rightarrow_{\beta} f e (l \rho x f)$

$$= f e (FOLD x f l)$$

Пример свёртки:

FOLD
$$[\overline{3}, \overline{7}, \overline{42}] \times f = f \overline{3} (f \overline{7} (f \overline{42} \times))$$

Общая теория (индуктивных типов Мартин-Лёфа)

Рассмотрим

SomeType
$$= \forall \alpha. \, \tau_1 \rightarrow \tau_2 \rightarrow \ldots \rightarrow \tau_n \rightarrow \alpha$$

где au_i зависит от lpha, имея lpha по крайней мере в самой правой позиции: $au_i = \ldots \to lpha$

▶ Количество конструкторов равно п («арности» SomeType):

$$op$$
 op op

Теория типов Мартин-Лёфа: тип конструктора

SomeType
$$= \forall \alpha. \, \tau_1 \rightarrow \tau_2 \rightarrow \ldots \rightarrow \tau_n \rightarrow \alpha$$

- \blacktriangleright Арность і-го конструктора равна арности τ_i .
- ► Тип i-го конструктора $f_i : \tau_i[\alpha := SomeType]$.

Например, для списка $f_i : \tau_i[\alpha := \text{List } \sigma]$:

List
$$\sigma \equiv \forall \alpha. \alpha \rightarrow (\sigma \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$$

NIL : List σ

CONS : $\sigma \rightarrow \text{List } \sigma \rightarrow \text{List } \sigma$

Теория типов Мартин-Лёфа: код конструктора

Пусть $\tau_i = \sigma \rightarrow \tau \rightarrow \alpha \rightarrow \alpha$. Тип i-го конструктора

$$f_i: \sigma \rightarrow \tau \rightarrow SomeType \rightarrow SomeType$$

▶ Построение і-ого конструктора — однозначная процедура:

$$\begin{array}{lll} f_i &=& \lambda x_1^\sigma \, x_2^\tau \, a_1^{{\tt SomeType}}. \{\ldots\} \colon \sigma \!\rightarrow\! \tau \!\rightarrow\! {\tt SomeType} \!\rightarrow\! {\tt SomeType} \\ f_i \, x_1 \, x_2 \, a_1 &=& \{\ldots\} \colon {\tt SomeType} \\ f_i \, x_1 \, x_2 \, a_1 &=& \Lambda \alpha. \, \lambda t_1^{\tau_1} \, t_2^{\tau_2} \, \ldots \, t_n^{\tau_n}. \, t_i \, \{\ldots\} \\ f_i \, x_1 \, x_2 \, a_1 &=& \Lambda \alpha. \, \lambda t_1^{\tau_1} \, t_2^{\tau_2} \, \ldots \, t_n^{\tau_n}. \, t_i \, x_1 \, x_2 \, (a_1 \, \alpha \, t_1 \, t_2 \, \ldots \, t_n) \end{array}$$

Индуктивные параметры «реконструируются».

NIL
$$\equiv \Lambda \alpha . \lambda n^{\alpha} c^{\sigma \to \alpha \to \alpha} . n$$

CONS $x l \equiv \Lambda \alpha . \lambda n^{\alpha} c^{\sigma \to \alpha \to \alpha} . c x (l \alpha n c)$

Теория типов Мартин-Лёфа: итераторы

Если SomeType $= \forall \alpha. \, \tau_1 \rightarrow \tau_2 \rightarrow \ldots \rightarrow \tau_n \rightarrow \alpha$, то тип итератора

$$\mathtt{IT} \ : \ \tau_1[\alpha := \rho] \,{\to}\, \tau_2[\alpha := \rho] \,{\to}\, \ldots \,{\to}\, \tau_n[\alpha := \rho] \,{\to}\, \mathtt{SomeType} \,{\to}\, \rho$$

Код итератора тривиален; для s: SomeType имеем

IT
$$= \lambda x_1^{\tau_1[\alpha:=\rho]} x_2^{\tau_2[\alpha:=\rho]} \dots x_n^{\tau_n[\alpha:=\rho]} s^{\text{SomeType}} \cdot s \rho x_1 x_2 \dots x_n$$

IT $x_1 x_2 \dots x_n s = s \rho x_1 x_2 \dots x_n$

Вспомним итераторы

$$\sigma + \tau$$
 CASES fgh \equiv hpfg $\sigma \times \tau$ UNCURRY fp \equiv ppf List σ FOLD xfl \equiv lpxf

Домашнее задание

Реализуйте функции $OR: Bool \rightarrow Bool \rightarrow Bool$ и $NOT: Bool \rightarrow Bool.$

Задайте в $\lambda 2$ перечислительный тип Three, населённый ровно тремя константами ONE: Three, TWO: Three, THREE: Three. Выпишите его конструкторы и «итератор» для него. Реализуйте функцию SHIFT: Three \rightarrow Three со следующим поведением:

SHIFT ONE = TWO

 $SHIFT\ TWO\ =\ THREE$

SHIFT THREE = ONE

Домашнее задание (2)

Выразите FST и SND в терминах UNCURRY.

Выразите PLUS и MULT для Nat в терминах IT.

Выразите MAP : $(\sigma \rightarrow \tau) \rightarrow \text{List } \sigma \rightarrow \text{List } \tau$ в терминах FOLD.

Определите в $\lambda 2$ индуктивный тип ${\tt Tree}\,\sigma \tau$, задающий бинарное дерево, хранящее в узлах значения типа σ , а в листьях — типа τ .

Выпишите его конструкторы и «итератор» для него.

Литература (1)

TAPL гл. 23, 24

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002

http://www.cis.upenn.edu/~bcpierce/tapl

ITT гл. 5

Herman Geuvers, Introduction to Type Theory Alfa Lernet Summer school 2008, Uruguay

http://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html

Литература (2)

ОЯП гл. 9

Дж.Митчелл, Основания языков программирования, М.-Ижевск, НИЦ РХД, 2010

РАТ гл. 11

Jean-Yves Girard, Paul Taylor, Yves Lafont, Proofs and Types, Cambridge University Press, 1989