Cyclic groups

1. Cyclic groups

Definition
Finite cyclic groups

Definition

Recall, from Section ??, the notion of a cyclic subgroup.

Definition 1

A group G is cyclic means there exists $g \in G$ such that $\langle g \rangle = G$.

Example 1

Often we say "infinite cyclic" to describe groups isomorphic to \mathbb{Z} (see Section ?? for the definition of isomorphism).

Question

What is the generator for the group \mathbb{Z} ?

Example 2

 $\mathbb{Z}\times\mathbb{Z}$ is not cyclic.

Proof: Assume, to the contrary, that there exist $a,b \in \mathbb{Z}$ such that $\langle (a,b) \rangle = \mathbb{Z} \times \mathbb{Z}$. Then for any arbitrary element $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ there exists an integer n such that x = na and y = nb. There exists another integer, m, such that (x + 1, y) = (ma, mb), which implies

$$x+1 = na + 1 = ma$$

 $y = nb = mb$
 $\implies n = m$
 $\implies x+1 = na + 1 = na$,

which is a contradiction.

Finite cyclic groups

We state the **division algorithm**, as it will prove useful, particularly in Section **??**.

Theorem 1 (Division Algorithm)

Suppose $n \in \mathbb{Z}$ and $d \in \mathbb{N}$. Then there exist unique integers q (the **quotient**), and r (the **remainder**) such that

$$n = q \cdot d + r \quad and \quad 0 \le r < d. \tag{1.1}$$

In this context, d is called the divisor.

Definition 2

For $n \in \mathbb{N}$, the set of all possible remainders upon division by n,

$$\mathbb{Z}_n:=\{0,1,\ldots,n-1\},\,$$

equipped with the binary operation

$$\bigoplus_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

(a, b) \mapsto r, as in Equation (1.1),

putting
$$a + b = n$$
 and $n = d$,

is called the group of integers mod n.

Question (cf. Problem 57)

For fixed $n \in \mathbb{N}$, which elements generate \mathbb{Z}_n (besides 1)?

Example 3 (cf. Problem 56)

The following are "addition tables" for each of the groups \mathbb{Z}_5 and $\mathbb{Z}_6.$

\mathbb{Z}_5	١٨	1	2	2	1	\mathbb{Z}_6	0	1	2	3	4	5	
						0	0	1	2	3	4	5	
0						1	1	2	3	4	5	0	
1	1	2	3	4	0		2						
2	2	3	4	0	1								
	3						3						
						4	4	5	0	1	2	3	
4	4	U	1	2	3	5	5	0	1	2	3	4	

Proposition 1

Every subgroup of a cyclic group is cyclic.

Corollary 1

Every subgroup of \mathbb{Z} is cyclic.

Exercise 1 (cf. Problem 58)

Find one generator for the subgroup

- (a) $\langle 2,3\rangle < \mathbb{Z}$.
- (b) $\langle 4,6 \rangle < \mathbb{Z}$.

Exercise 2 (cf. Problem 59)

Prove every cyclic group is abelian.

Exercise 3 (cf. Problem 60)

Use Lagrange's Theorem (Theorem ??) to show any group of prime order must be cyclic.