Curso de Álgebra Linear Prof^a Mara Freire

2.3- NÚCLEO DE UMA TRANSFORMAÇÃO LINEAR

Def.: O núcleo de uma transformação linear T: $V \to W$ é o conjunto de todos os vetores $v \in V$ que são transformados em $0 \in W$. Indica-se esse conjunto por N(T) ou ker(T):

$$N(T) = \{ v \in V/T(v) = 0 \}$$

Obs: Se N(T) $\subset V$, então N(T) $\neq \emptyset$, pois $0 \in N(T)$, tendo em vista que T(0) = 0.

Exemplos:

1- Determinar o núcleo da transformação T: $IR^2 \rightarrow IR^2$ definida por T(x, y) = (x + y, 2x - y).

2- Seja T: $IR^3 \rightarrow IR^2$ a transformação linear dada por: T(x, y, z) = (x - y + 4z, 3x + y + 8z). Determinar ker(T).

2.3.1- Propriedades do Núcleo:

- 1- O núcleo de uma transformação linear T: $V \rightarrow W$ é um *subespaço vetorial* de V.
- 2- Uma transformação linear T: $V \to W$ é injetora se, e somente se, N(T) = {0}, ou seja, uma aplicação de T: $V \to W$ é injetora se $\forall v_1, v_2 \in V$, T(v_1) = T(v_2), então $v_1 = v_2$ ou, de modo equivalente, $\forall v_1, v_2 \in V$, se $v_1 \neq v_2$ implica T(v_1) \neq T(v_2).
- (\rightarrow) Quero mostrar que se T é injetora, então $N(T) = \{0\}$.

De fato: Seja $v \in N(T)$, isto é, T(v) = 0. Por outro lado, sabe-se que T(0) = 0. Logo, T(v) = T(0). Como T é injetora por hipótese, v = 0. Portanto o vetor zero é o único elemento do núcleo, isto é, $N(T) = \{0\}$.

 (\leftarrow) Quero mostrar que se N(T) = $\{0\}$, então T é injetora.

De fato: Sejam $v_1, v_2 \in V$ tais que $T(v_1) = T(v_2)$. Então $T(v_1) - T(v_2) = 0$ ou $T(v_1 - v_2) = 0$ e, portanto, $v_1 - v_2 \in N(T)$. Mas, por hipótese, o único elemento do núcleo é o vetor 0, e portanto, $v_1 - v_2 = 0$, isto é, $v_1 - v_2$. Como $T(v_1) = T(v_2)$ implica $v_1 = v_2$, T é injetora.

Curso de Álgebra Linear Prof^a Mara Freire

2.4- IMAGEM

Def.: A imagem de uma transformação linear T: $V \to W$ é o conjunto de todos os vetores $w \in W$ que são imagens de pelo menos um vetor $v \in V$. Indica-se esse conjunto por Im(T) ou T(V):

$$Im(T) = \{ w \in W/T(v) = w \text{ para algum } v \in V \}$$

Obs: Se $\text{Im}(T) \subset W$, então $\text{Im}(T) \neq \emptyset$, pois $0 = T(0) \in \text{Im}(T)$. Se Im(T) = W, T diz-se *sobrejetora*, isto é, $\forall w \in W$ existe pelo menos um $v \in V$ tal que T(v) = w.

Exemplos:

1- Determinar a imagem da transformação T: $IR^3 \to IR^3$ definida por T(x, y, z) = (x, y, 0) a projeção ortogonal do IR^3 sobre o plano xy.

2- Determinar a imagem da transformação T: $V \rightarrow W$ definida por T(v) = 0.

2.4.1- Propriedades da Imagem:

- 1- A imagem de uma transformação linear T: $V \rightarrow W$ é um subespaço vetorial de W.
- 2.4.2- **Teorema da Dimensão**: Seja V um espaço de dimensão finita e $T: V \to W$ uma transformação linear. Então, dim N(T) + dim Im(T) = dim V.

Exemplos:

- 1- No exemplo 1, o núcleo (eixo z) da projeção ortogonal T tem dimensão 1 e a imagem (plano xy) tem dimensão 2, enquanto o domínio IR^3 tem dimensão 3.
- 2- No exemplo 2, da transformação nula, temos dim Im(T) = 0. Portanto, dim N(T) = dim V, pois N(T) = V.

Curso de Álgebra Linear Prof^a Mara Freire

2.5- ISOMORFISMO

Def.: Isomorfismo do espaço vetorial V no espaço vetorial W é o nome dado a uma transformação linear T: $V \rightarrow W$, que é bijetora. Nesse caso, os espaços vetoriais são ditos isomorfos.

Obs: Dois espaços vetoriais de dimensão finita são isomorfos se tiverem a mesma dimensão.

Exemplos:

- 1- O operador linear T: $IR^2 \rightarrow IR^2$, T(x, y) = (2x + y, 3x + 2y) é um isomorfismo no IR^2 , pois $dim\ V = dim\ W = 2$.
- 2- O espaço vetorial IR^2 é isomorfo ao subespaço $W = \{(x, y, z) \in IR^3/z = 0\}$ do IR^3 (W representa o plano xy do IR^3).

De fato: a aplicação linear T: $IR^2 \to W$, tal que T(x, y) = (x, y, 0), é bijetora: a cada vetor (x, y) do IR^2 corresponde um só vetor (x, y, 0) de W e, reciprocamente. Logo, IR^2 e W são isomorfos.

Exercícios

- 1- Determinar o núcleo e a imagem do operador linear T: $IR^3 \rightarrow IR^3$, definida por T(x, y, z) = (x + 2y z, y + 2z, x + 3y + z).
- 2- Seja T: $IR^3 \rightarrow IR^3$ a transformação linear tal que T(e_1) = (1, 2), T(e_2) = (0, 1) e T(e_3) = (-1, 3), sendo { e_1 , e_2 , e_3 } a base canônica do IR^3 .
- a) Determinar o N(T) e uma de suas bases. T é injetora?
- b) Determinar a Im(T) e uma de suas bases.
- 3- Determinar o núcleo e a imagem da transformação linear T: $IR^3 \rightarrow IR^2$, definida por T(x, y, z) = $(x_1 + x_2, x_2 + x_3)$.
- 4- Verificar se o vetor (5, 3) pertence ao conjunto Im(T), sendo T: $IR^2 \rightarrow IR^2$, definida por T(x, y) = (x 2y, 2x + 3y).
- 5- Dada a transformação linear. T: $IR^2 \rightarrow IR^3$, definida por T(x, y) = (x + y, x, 2y).
- a) Determinar o núcleo, uma base para esse subespaço e sua dimensão.
- b) Determinar a imagem, uma base para esse subespaço e sua dimensão

RESPOSTAS

1- N(T) = $\{(5z, -2z, z)/z \in IR\}$ = $\{z(5, -2, 1)/z \in IR\}$ = [(5, -2, 1)] e Im(T) = $\{(a, b, c) \in IR^3/a + b - c = 0\}$. 2- a) N(T) = $\{(z, -5z, z)/z \in IR\}$ e para z = 1, temos B = $\{(1, -5, 1)\}$. T não é injetora. b) Im(T) = IR^2 e B = $\{(1, 2), (0, 1)\}$. 3- a) N(T) = $\{(z, -z, z)/z \in IR\}$ e Im(T) = $\{(1, 0), (1, 1), (0, 1)\}$. 5- a) N(T) = $\{(0, 0)\}$, dim N(T) = 0. Im(T) = $\{(x, y, z) \in IR^3/2x - 2y - z = 0\}$, dim Im(T) = 2.