期中考试习题-4

- 一、单选题(共154题,46.2分)
- 1、下列数中最小的数为()
- A, $(101001)_2$
- B, $(52)_8$
- C_{1} (2B)₁₆
- 正确答案: A
- 2、下列数中最大的数为()。
- A, $(10010101)_2$
- B_{s} (227)₈
- C_{5} (96)₁₆
- 正确答案: B
- 3、设寄存器位数为8位,机器数采用补码形式(含1位符号位)。对应于十进制数-27,寄存器内容为()。
- A 27H
- B₂ 9BH
- C、E5H
- 正确答案: C
- 4、对真值0表示形式唯一的机器数是()。
- A、原码
- B、补码和移码
- C、反码
- D、以上都不对
- 正确答案: B
- 5、下列表达式中,正确的运算结果为()。
- A, $(10101)_2x(2)_{10}=(20202)_2$
- B, $(10101)_3x(2)_{10}=(20202)_3$
- $C_{10101}_{2}x(3)_{10}=(30303)_{3}$

正确答案: B

- 6、在整数定点机中,下述说法正确的是()。
- A、原码和反码不能表示-1,补码可以表示-1
- B、三种机器数均可表示-1
- C、三种机器数均可表示-1,且三种机器数的表示范围相同

正确答案: B

- 7、在小数定点机中,下述说法正确的是()。
- A、 只有补码能表示-1
- B、只有原码不能表示-1
- C、三种机器数均不能表示-1

正确答案: A

- 8、某机字长8位,采用补码形式(其中1位为符号位),则机器数所能表示的范围是()。
- A, -127~127
- B, -128~+128
- C, -128~+127

正确答案: C

- 9、当用一个16位的二进制数表示浮点数时,下列方案中最好的是()。
- A、阶码取4位(含阶符1位),尾数取12位(含数符1位)
- B、阶码取5位(含阶符1位),尾数取11位(含数符1位)
- C、阶码取8位(含阶符1位),尾数取8位(含数符1位)

正确答案: B

- 10、将一个十进制数x=-8192表示成补码时,至少采用()位二进制代码表示。
- A, 13
- B、14
- C、15

正确答案: B

- 11、[x]*=1.000···0, 它代表的真值是()。
- A, -0
- B、-1

```
C、+1
```

D, +0

正确答案: B

解析:

- 12、设x为整数, [x]*=1,x1x2x3x4x5, 若要x<-16,x1~x5应满足的条件是。
- A、x₁~x₅至少有一个为1
- B、 x_1 必须为0, $x_2~x_5$ 至少有一个为1
- C、 x₁必须为0, x₂~x₅任意

正确答案: C

- 13、已知两个正浮点数, N₁=2¹¹xS₁,N₂=2¹²xS₂, 当下列()成立时, N₁>N₂。
- $A \cdot S_1 > S_2$
- B, $J_1 > J_2$
- C、S₁和S₂均为规格化数,且J₁>J₂

正确答案: C

- 14、当[x]反=1.1111时,对应的真值为()
- A, -0

$$\frac{1}{100}$$

C、-¹⁶ 正确答案: A

15、设x位整数, [x]反=1,1111, 对应的真值为()

- A, -15
- B、-1
- C, -0

- 16、[x]补=11.000000, 它代表的真值是()
- $A_{\lambda} +3$

- B, 2^{20}
- C_{30}

正确答案: C

- 23、若要表示0~999中的任意一个十进制数,最少需()位二进制数。
- A, 6
- B, 8
- C, 10

正确答案: C

- 24、下列 ()属于有权码。
- A、8421码
- B、格雷码
- C、ASCII码

正确答案: A

- 25\ (24.6)8=()10
- A, 36.75
- B, 10.5
- C、4.5
- D_{20.75}

正确答案: D

- 26, (3117)₁₀=()₁₆
- A, 97B5
- B, 9422
- C、C2D
- D、E9C

正确答案: C

- 27、把(5AB)16转换成二进制值为。
- A. (10110111010)

2

B、(10110101011)₂

- C, $(101010110101)_2$
- D₁ (101110100101)₂

正确答案: B

28、两个八进制数(7)8和(4)8,相加后得()。

- $A_{1}(10)_{8}$
- B、(11)8
- $C_{1}(13)_{8}$
- D、以上都不对

正确答案: C

29、两个十六进制数7E5和4D3相加,得()

- A (BD8)₁₆
- B、(CD8)₁₆
- C、(CB8)₁₆
- D、以上都不对

正确答案: C

30、二进制数10100110等于()

- A、(106)16和(246)8
- B、(246)₈和(166)₁₀
- C_{1} (116)₁₆
- D、以上都不是

正确答案: B

31、下列表示法错误的是()

- A \ (131.6)₁₆
- B、(532.6)₅
- C_{v} (100.101)₂
- D、(267.4)₈

正确答案: B

32、小数(0.65625)10等于()

- A, $(0.11101)_2$
- B、(0.10101)₂
- C_{v} (0.00101)₂
- $D_{1}(0.10111)_{2}$
- 正确答案: B

33、(84)10等于()

- A \ (10100100)₂
- B、(224)8
- C_{v} (054)₁₆
- D、(1210)₄
- 正确答案: C

34、下列说法有误差的是()

- A、任何二进制整数都可用十进制表示
- B、任何二进制小数都可用十进制表示
- C、任何十进制整数都可用二进制表示
- D、任何十进制小数都可用二进制表示

正确答案: D

解析: 浮点数在数轴上的分布是稀疏的。

35、二进制数11001011等于十进制的()

- A, 395
- B、203
- C、204
- D、394

正确答案: B

36、将(305)8转换成十六进制为()

- A (A5)16
- B、(B5)16
- C、(C5)16
- D_v (D5)16

正确答案: C

37、 (76.54)8=()

- A \ (3E.B)16
- B、 (111110.10010)2
- C (62.6835)10
- D₁ (110111.1011)2

正确答案: A

38、(20.8125)10=()2

- A, 1010.1101
- B、10100.1011
- C、10100.1101
- D、1010.1011

正确答案: C

39、补码10110110代表的是十进制负数()

- A₂ -74
- B、-54
- C₂ -68
- D, -48

正确答案: A

40\ (153.513)10=()8

- A 267.54
- B、352.5
- C、231.406...
- D、以上都不对

正确答案: C

41、最少需用()位二进制数表示任一4位长的十进制整数

- A, 10
- B、14
- C、13
- D_v 16

正确答案: B

42、设机器数采用补码形式 数为()	(含1位符号位)	,若寄存器内容为9BH,	则对应的十进制
A、-27 B、-97 C、-101 D、155 正确答案: C			

- 43、若9BH表示移码(含1位符号位),其对应的十进制数是()
- A, 27
- В、-27
- C, -101
- D₂ 101

正确答案: A

解析: 98H是用十六进制表示的,它的二进制表示为10011011移码是符号位取反的补码,则补码为00011011,正数的补码与原码相同,则原码为00011011表示为十进制为27故答案为A

- 44、若要表示0~99999中的任一十进制数,最少需用()位二进制数表示。
- A, 16
- B、17
- C₂ 18
- D, 100000

正确答案: B

- 45、设寄存器内容为10000000, 若它等于0, 则为()
- A、原码
- B、补码
- C、反码
- D、移码

正确答案: D

- 46、设寄存器内容为10000000, 若它等于-128, 则为()
- A、原码
- B、补码
- C、反码
- D、移码

正确答案: B

	设寄存器内容为100000000,	若它等于-127,则为()
A,	原码	
	补码	
	反码	
	移码	
止侦	角答案: C	
48、	设寄存器内容为10000000,	若它等于-0,则为()
A,	原码	
	补码	
	反码	
	移码	
止炉	僧答案: A	
49、	设寄存器内容为11111111,	若它等于-0,则为()
A,	原码	
В、	补码	
C	反码	
	移码	
正矿	角答案: C	
50、	设寄存器内容为11111111,	若它等于-127,则为()
		若它等于-127,则为()
A	设寄存器内容为11111111 , 原码 补码	若它等于-127,则为()
A, B,	原码	若它等于-127,则为()
A, B, C, D,	原码 补码 反码 移码	若它等于-127,则为()
A, B, C, D,	原码 补码 反码	若它等于-127,则为()
A、 B、 C、 D、 正硝	原码 补码 反码 移码	
A、 B、 C、 D、 正硝	原码 补码 反码 移码 ⁶ 答案: A	
A、B、C、D、正確 51、A、	原码 补码 反码 移码 ⁶ 答案: A 设寄存器内容为11111111 ,	
A、B、C、D、正硝 51、	原码 补码 反码 移码 6答案: A 设寄存器内容为11111111 , 原码	
A、B、C、D、正確 51、 A、B、C、D、	原码 补码 反码 移案: A 设寄存器内容为111111111 , 原码 补码 反码 移码	
A、B、C、D、正確 51、 A、B、C、D、	原码 补码 反码 移案: A 设寄存器内容为111111111 , 原码 补码 反码	
A、B、C、D、矿 51、A、B、C、D、矿	原码 补码 移容: A 设寄存器内容为11111111 , 原码 补码 反码 移案: B	
A、B、C、D、矿 51、 A、B、C、D、矿 52、	原码 补码 移容: A 设寄存器内容为11111111 , 原码 补码 反码 移案: B	若它等于-1,则为()

C、反码

- D、移码
- 正确答案: D

53、设寄存器内容为00000000, 若它等于-128, 则为()

- A、原码
- B、补码
- C、反码
- D、移码
- 正确答案: D

54、若 [x]_补=1 , x₁x₂...x₆ , 其中x_i取0或1 , 若要 x>-32 , 应该满足条件()。

- A、x1为0,其他各位任意
- B、x1为1,其他各位任意
- C、 x₁为1, x₂...x₆中至少有一位为1
- D、x₁为0,x₂...x₆中至少有一位为1
- 正确答案: C

55、在浮点机中,下列说法()是正确的。

- A、 尾数的第一数位为1时, 即为规格化形式
- B、 尾数的第一数位与数符不同时, 即为规格化形式
- C、不同的机器数有不同的规格化形式
- D、 尾数的第一数位为0时, 即为规格化形式

正确答案: C

56、在浮点机中,判断原码规格化形式的原则是()。

- A、尾数的符号位与第一数位不同
- B、尾数的第一数位为1,数符任意
- C、尾数的符号位与第一数位相同
- D、阶符与数符不同

正确答案: B

57、在浮点机中,判断补码规格化形式的原则是()。

- A、尾数的第一数位为1,数符任意
- B、尾数的符号位与第一数位相同
- C、尾数的符号位与第一数位不同
- D、阶符与数符不同

- 58、设机器数字长8位(含2位符号位),若机器数DAH为补码,则算术左移一位得(),算术右移一位得()。
- A、B4H, EDH
- B、F4H, 6DH
- C、B5H, EDH
- D、B4H, 6DH

正确答案: A

- 59、设机器数字长8位(含1位符号位),若机器数BAH为原码,则算术左移一位得(),算术右移一位得()。
- A, F4H, EDH
- B、B4H, 6DH
- C、F4H, 9DH
- D、B5H EDH

正确答案: C

- 60、设机器数字长为16位(含1位符号位),若用补码表示定点小数,则最大正数为 ()
- A, $1-2^{15}$
- B、1-2⁻¹⁵
- C_{3} 2¹⁵-1
- D_{s} 2¹⁵

正确答案: B

- 61、设 [x]补=1, x1x2x3x4, 满足()时, x>-8成立。
- A、x1=0, x2~x4至少有一个为1
- B、x1=0, x2~x4任意
- C、x1=1, x2~x4至少有一个为1
- D、x1=1,x2~x4任意

- 62、在定点机中,下列说法错误的是()
- A、除补码外,原码和反码不能表示-1
- B、+0的原码不等于-0的原码
- C、 +0的反码不等于-0的反码
- D、对于相同的机器字长,补码比原码和反码能多表示一个负数 正确答案: A

63、设x为整数, [x]补=1,x1x2...x7, 若按x<-64, 则()

- A、 x1=1, x2~x7任意
- B、x1=0, x2~x7至少有一个为1
- C、x1=0, x2~x7任意
- D、x1=1, x2~x7至少有一个为1

正确答案: C

64、计算机中表示地址时,采用()

- A、原码
- B、补码
- C、反码
- D、无符号数

正确答案: D

65、浮点数的表示范围和精度取决于()

- A、阶码的位数和尾数的机器数形式
- B、阶码的机器数形式和尾数的位数
- C、阶码的位数和尾数的位数
- D、阶码的机器数形式和尾数的机器数形式

正确答案: C

66、在浮点机中()是隐含的

- A、阶码
- B、数符
- C、尾数
- D、基数

正确答案: D

- 67、在规格化的浮点表示中,若只将移码表示的阶码改为补码表示,其余部分保持不变,则将会使浮点数的表示范围
- A、增大
- B、减小
- C、不变
- D、以上都不对

- 68、设浮点数的基值为8,尾数采用模4补码表示,则()为规格化数
- A 11.111000

- B, 00.000111
- C₂ 11.101010
- D、11.11101

正确答案: C

解析: 当浮点数为正数时,数值为前3位不全为0时,是规格化数。当浮点数为负数时,数值为前3位不全为1时,是规格化数。模4补码表示有两位符号位,即变形补码。

69、设机器字长为8位(含1位符号位),以下()是0的一个原码。

- A. 11111111
- B, 10000000
- C、01111111
- D. 11000000

正确答案: B

70、当定点运算发生溢出时,应()

- A、向左规格化
- B、向右规格化
- C、发出出错信息
- D、舍入处理

正确答案: C

71、在定点补码运算器中, 若采用双符号位, 当() 时表示结果溢出。

- A、双符号位相同
- B、双符号位不同
- C、两个正数相加
- D、两个负数相加

正确答案: B

72、采用规格化的浮点数是为了()

- A、增加数据的表示范围
- B、方便浮点运算
- C、防止运算时数据溢出
- D、增加数据的表示精度

正确答案: D

73、设浮点数的基数为4,尾数用原码表示,则以下()是规格化的数。

- A, 1.001101
- B, 0.001101
- C、1.011011

- D、0.000010 正确答案: C
- 74、在各种尾数舍入方法中,平均误差最大的是()。
- A、截断法
- B、恒置"1"法
- C、0舍1入法
- D、恒置"0"法
- 正确答案: A
- 75、浮点数舍入处理的方法除了0舍1入法外,还有()法。
- A、末位恒置"0"
- B、末位恒置"1"
- C、末位减1
- D、末位加1
- 正确答案: B
- 76、如果采用0舍1入法进行舍入处理,则0.01010110011舍去最后一位后,结果为()
- A, 0.0101011001
- B 0.0101011010
- C 0.0101011011
- D₂ 0.0101011100
- 正确答案: B
- 77、如果采用末位恒置1法进行舍入处理,则0.01010110011舍去最后一位后,结果为()
- A, 0.0101011001
- B, 0.0101011010
- C 0.0101011011
- D. 0.0101011100
- 正确答案: A
- 78、在浮点数中,当数的绝对值太大,以至于超过所能表示的数据时,称为浮点数的()。
- A、正上溢
- B、上溢
- C、正溢
- D、正下溢
- 正确答案: B

- 79、在浮点数中,当数的绝对值太小,以至于小于所能表示的数据时,称为浮点数的()
- A、正下溢
- B、下溢
- C、负溢
- D、负上溢

正确答案: B

- 80、【2009】一个C语言程序在一台32位机器上运行。程序中定义了三个变量x、y和z, 其中x和z为int型,y为x的ort型。当x=127,y=-9时,执行赋值语句x=x+y后,x0、x0。x0。为 diameter x1。
- A、 x=0000007FH, y=FFF9H, z=00000076H
- B、x=0000007FH, y=FFF9H, z=FFFF0076H
- C、 x=0000007FH, y=FFF7H, z=FFFF0076H
- D、x=0000007FH, y=FFF7H, z=00000076H

正确答案: D

解析:考点:整数的补码表示和补码加法。x和z是int型,占四个字节,y是short型占两个字节。

y与x相加要进行扩展,符号位扩展后,得到FFFF FFF7H,相加后最高位的进位溢出丢弃,得到0000 0076H

- 81、【2010】假定有4个整数用8位补码分别表示。r1=FEH, r2=F2H, r3=90H, r4=F8H, 若将运算结果放在一个8位的寄存器中,则下列运算会发生溢出的是()
- A, r1xr2
- B_v r2xr3
- C, rlxr4
- $D_x r2xr4$

正确答案: B

解析: 用补码表示时8位寄存器所能表示的整数范围为-128到+127。

 $r1=(15\times16+14)-256=-2$;

 $r2=(15\times16+2)-256=-14$;

 $r3=(9\times16+0)-256=-112$;

 $r4=(15\times16+8)-256=-8$;

则r1×r2=28, r2×r3=1568, r1×r4=16, r2×r4=112, 只有r2×r3结果溢出。

82、【2010】假定变量i, f, d数据类型分别为int, float和double (int 用补码表示, float和double分别用IEEE754单精度和双精度浮点数据格式表示),已知i=785, f=1.5678e³, d=1.5e¹⁰⁰,若在32位机器中执行下列关系表达式,则结果为真的是

I.i==(int)(float)i

II.f==(float)(int)f

III.f==(float)(double)f

IV.(d+f)-d==f

- A、仅I和II
- B、仅I和III
- C、仅II和III
- D、仅III和IV

正确答案: B

解析:考查不同精度的数在计算机中的表示方法及其相互装换。

在c++中为了尽量保证精度不丢失,一般会把低转化为高精度,比如 char->int->float->double

由于(int)f=1,小数点后面4位丢失,故II错。IV的计算过程是先将f转化为双精度浮点数据格式,然后进行加法运算,故(d+f)-d得到的结果为双精度浮点数据格式,而f为单精度浮点数据格式,故IV错。

- (I)i=(int)(float)i//i变成浮点数,不变;
- (II)f=(floal)(int)f//f变成整数时,精度变小;
- (III)f=(float)(double)f//f转为双精度,大小不变;
- (IV)(d+f)-d=f//双精度值==单精度值,结果出错。

83、【2011】float型数据常用IEEE754 单精度浮点数格式表示。若编译器将float型变量x分配在一个32位浮点寄存器中,且x=-8.25,则FR1 的内容是()

A、C104 0000H

B、C242 0000H

C、C184 0000H

D、C1C2 0000H

正确答案: A

解析: A. x的二进制表示为-1000.01 = -1.000 01×211

根据IEEE754标准隐藏最高位的"1", 又E-127=3, 所以E=130=1000 0010 (2)

数据存储为:1位数符+8位阶码(含阶符)+23位尾数。(格式化原码尾数的最高位恒为1,所以不在尾数中表示出来,计算时在尾数前面自动添加1)

故FR1内容为:

 $1\ 10000\ 0010\ 0000\ 10000\ 0000\ 0000\ 0000\ 000$

84、【2012】假定编译器规定int和short类型长度分别为32位和16位,执行下列C语言语句:

unsigned short x=65530;

unsigned int y=x;

得到y的机器数为()。

A. 0000 7FFAH

B₂ 0000 FFFAH

C、FFFF 7FFAH

D、FFFF FFFAH

正确答案: B

解析: B, unsigned说明x, y均为无符号数, x是FFFFH-5=FFFAH, 为正数, 将其转化为32位的int为0000 FFFAH

85、【2012】float类型(即IEEE754单精度浮点数格式)能表示的最大正整数是 ()。

A, 2^{126} - 2^{103}

B. 2^{127} - 2^{104}

 C_{3} 2^{127} - 2^{103}

 D_3 2^{128} - 2^{104}

正确答案: D

解析:考查: IEEE754 单精度浮点数格式

对于一个非0且不是无穷大的浮点数, 其阶码实际值为-126~+127, 对应移码1~254。

尾数的最大值为: 0.1111.....111111共23位小数

取阶码127, 即指数127。

浮点数真值: $(-1)^{s\times}$ (1.M) ×2^{E-127},最大正整数:整数(s=0),尾数最大(M为23位全 1),阶码最大(阶码254,255为特殊标志),故float类型能表示的最大正整数为: $(-1)^{0\times}$ (1+1-2⁻²³) ×2¹²⁷=2¹²⁸-2¹⁰⁴

问题1:表示的为什么是正整数而不是小数?其实23位尾数是用来表示小数部分的,但是用阶码可以表示的指数是127,如果都用上是远大于小数部分的23位的。

问题2: 0.1111.....1111111 共23个1是怎么表示成 $1-2^{-23}$ 的呢?其实可以这样想如果给这个数加上一个0.000......000001那么就会变为1...而这个0.000......000001就是 2^{-23} !

86、【2012】某计算机存储器按字节编址,采用小端方式存放数据,假定编译器规定 int型和short型长度分别为32位和16位,并且数据按边界对齐存储。某C语言程序段如下:

```
int a;
char b;
short c;
} record;
```

record.a=273

若record变量的首地址为0xC008,则地址xC008中内容及record.c的地址分别为()

A, 0x00, 0xC00D

B, 0x00, 0xC00E

C, 0x11, 0xC00D

D, 0x11, 0xC00E

正确答案: D

解析: 273=256+16+1=100010001B=0000 0111H

小端:高地址存高半字/字节;低地址存低半字/字节

什么是数据按边界对齐存储?

简单的说,对于int型而言,起始地址为4的倍数;对于char类型而言,起始地址为任意字节皆可;对于short类型而言,起始地址为2的倍数;对于结构体而言,起始地址结构体内类型最大的字节量的整数倍;

0xC008 中内容:0x11, record.c的地址:0xC00E

内存中的存储

地址	数据(0x)
0xC008	11 (record.a)
0XC009	01 (record.a)
0XC00A	00 (record.a)

地址	数据(0x)
0XC00B	00 (record.a)
0XC00C	record.b
0XC00D	
0XC00E	record.c
0XC00F	record.c

为什么0XC00D不能直接存放record.c?

按照边界对齐方式存储的规则, 0XC00D, D化成十进制为13, 不能整除2字节 (record.c), 因此后放。

87、【2013】某数采用 IEEE 754 单精度浮点数格式表示为 C640 0000H,则该数的值是()

A -1.5*2¹³

B₃ -1.5*2¹²

C, -0.5*2¹³

D₂ -0.5*2¹²

正确答案: A

符号位1负数

阶码 140-127=13

尾数 1.5

88、【2013】某字长为8位的计算机中,已知整型变量x、y的机器数分别为[x]补 =11110100, [y]补=10110000。若整型变量 z=2*x+y/2, 则 z 的机器数为

A, 11000000

B, 0 0100100

C、10101010

D、溢出

正确答案: A

解析:解析:将 x 左移一位,得到 11101000

将 y 右移一位, 得到 11011000

两数相加判断是否溢出可以使用双符号位法来判断,符号位和最高位进位都是1,不会造成溢出。

两个数的补码相加的机器数为 11000000

89、【2013】用海明码对长度为8位的数据进行检/纠错时,若能纠正一位错。则校验位数至少为()

A, 2

B, 3

C, 4

D₂ 5

正确答案: C

解析:考查:设校验位的位数为k,数据位的位数为n,应满足下述关系: $2^k \ge n+k+1$ 。n=8,当k=4时, $2^4 (=16) \ge 8+4+1 (=13)$,符合要求,校验位至少是4位。

90、【2014】float型整数用IEEE754单精度浮点格式表示,假设两个float型变量x和y分别在32为寄存器f1和f2中,若(f1)=CC90 0000H,(f2)=B0C0 0000H,则x和y之间的关系为:

A、x<y且符号相同

B、x<y且符号不同

C、x>y且符号相同

D、x>y且符号不同

正确答案: A

解析:解析:将f1 f2 分别展开,分别判断符号位和阶码

在x,y同为负数的情况下, x的阶码为26, 尾数为1.125; y的阶码为-30, 尾数为1.5, 则 y>x

91、【2015】由3个"1"和5个"0"组成的8位二进制补码,能表示的最小整数是()

A, -126

B₂ -125

C, -32

D₂ -3

正确答案: B

解析:考查:二进制的补码表示。

对于这道题,我们应该怎样考虑?

选择题的话,可以投机一点,直接将选项转为补码就行了。

但要是在问答题中,由于最小的数肯定是负数,首先第一位就是1 ,又因为补码要取反,所以最小的数应该是 1,0000011.除开符号位取反加1后变成 1,1111101。这个数的十进制是-125

或者有这样一种说法,补码小这个数就小,补码大这个数就大!

补码:10000011

原码:111111101=-125

92、【2016】有如下C语言程序段:

short si = -32767;

unsigned short usi= si;

执行上述两条语句后,usi的值为()

A, -32767

B、32767

C、32768

D₂ 32769

正确答案: D

解析: 这段C语言程序完成的任务是将带符号整数转换成无符号整数。

因C语言中的数据在内存中为补码表示形式

先把-32767表示成原码形式是(因为补码不是一步可以得到的, 先原码再补码)

(-32767)原码=1111 1111 1111 1111

(-32767) 补码 =1000 0000 0000 0001

再把这个补码赋给usi, usi会把最高位符号位1也当做数值位

usi=1000 0000 0000 0001=32769

- 93、【2018】冯诺依曼机构计算机中数据采用二进制编码表示,其主要原因是()
- I. 二进制的运算规则简单
- II. 制造两个稳态的物理器件较容易
- III. 便于用逻辑门电路实现算术运算

A、仅I、II

B、仅I、III

C、仅II、III

D, I, II, III

正确答案: D

94、【2018】IEEE754 单精度浮点格式表示的数中,最小的规格化正数是()

- A, 1.0×2^{-126}
- B, 1.0×2^{-127}
- C. 1.0×2^{-128}
- D, 1.0×2^{-149}

正确答案: A

95、【2019】考虑以下C语言代码

unsigned short usi=65535;

short si=usi;

执行上述程序段后,si的值是()

- A, -1
- В、-32767
- C、-32768
- D₂ -65535

正确答案: A

解析:这段C语言程序完成的任务是将无符号的整数转换为有符号的整数。无符号整数65535表示为1111 1111 1111 1111,转换为带符号整数之后,最高位为符号位,用补码表示,其真值为-1

- 96、【2020】已知带符号整数用补码表示,float型数据用IEEE754标准表示,假定变量x的类型只能是int或float。当x的机器数为C800 0000H,x的值可能是()
- A, -7×2^{27}
- B、-2¹⁶
- C_{3} 2¹⁷
- D, 25×2^{27}

正确答案: A

解析: C800 0000H =1100 1000 0000 ...0000,符号位为1,一定是负数,所以C和D选项可以排除。如果是int型,则数值为-011 1000 0000 0000...0000,结果为 -7×2^{27} ,如果为float型,则阶码为10010000=128+16=144,阶码真值=144-127=17,结果为- 2^{17}

97、下列说法正确的是()。

- A、 计算机中一个汉字内码在主存中占用4字节
- B、输出的字型码16×16点阵在缓冲存储区中占用32字节
- C、输出的字型码16×16点阵在缓冲存储区中占用16字节
- D、以上说法都不对

正确答案: B

解析: 计算机中一个汉字内码在主存中占用2字节,输出的字型码16×16点阵在缓冲储存区中占用 16×16/8=32字节。

98、一台字符显示器的VRAM中存放的是()。

- A、显示字符的ASCII码
- B、BCD码
- C、字模
- D、汉字内码

正确答案: A

解析:在字符显示器的VRAM中存放ASCII码用以显示字符。

99、显示汉字采用点阵字库,若每个汉字用16×16的点阵表示,7500个汉字的字库容量是()。

- A. 16KB
- B, 240KB
- C, 320KB
- D、1MB

正确答案: B

解析:每个汉字用16×16点阵表示,则占用16×16/8=32B,汉字库容量=7500x32B-22500B≈240K

100、在下列机器数()中,0的表示形式是唯一的。

- A、原码
- B、补码
- C、反码
- D、原码和反码

正确答案: B

解析:对于真值0,原码和反码各有两种不同的表示形式,而补码只有唯一的一种表示形式。

101、计算机系统中采用补码运算的目的是为了()。

- A、与手工运算方式保持一致
- B、提高运算速度
- C、简化运算器的设计
- D、提高运算的精度

解析:计算机中的CPU仅有加法电路,没有减法电路。采用补码运算的目的之一,是将减法变成加法。同时,补码运算将符号位视为数共同参与运算,其结果不会出错,因此运算器设计时只需要一个加法器就可以完成加减运算,简化了运算器的设计,所以计算机系统采用补码来运算。

102、关于数据表示和编码,下列说法正确的是()。

- A、奇偶校验码是一种功能很强的检错纠错码
- B、在计算机中用无符号数来表示内存地址
- C、原码、补码和移码的符号编码规则相同
- D、用拼音从键盘上敲入汉字时,使用的拼音码是汉字的字模码

正确答案: B

解析: 奇偶校验码能检错, 但是不能纠错。所以A答案错误。原码、补码和移码的符号编码规则显然不同, 所以C答案错误。用拼音从键盘上输入汉字时, 使用的编码是ASCII码。所以D答案错误。

103、下列各种数制的数中,最小的数是()。

A, (101001)₂

B.

 $(101001)_{BCD}$

 C_{s} (52)₈

 D_{s} (233)₁₆

正确答案: B

解析: A为29H, B为29D, C转换成二进制为101010, 即2AH, 显然最小的为29D。在没有特殊说明的情况下,可默认BCD码就是8421码。

104、用海明码来发现并纠正1位错,信息位为8位,则校验位的位数为()。

A, 1

B, 3

C, 4

D, 8

正确答案: C

解析:在海明码中,为了达到检测和纠正1位错,则校验位的位数k应满足 $2^k \ge n+k+1$,其中n为信息位的位数,因 $2^k \ge 8+4+1$,故需要4位。如果在纠正1位错的情况下还要能够发现2位错,则还需再增加1位校验位,即需满足 $2^k-1-1 \ge n+k$ 。

105、机器运算发生溢出的根本原因是()。

- A、数据位的位数有限
- B、运算中将符号位的进位丢弃
- C、运算中将符号位的借位丢弃
- D、数据运算中的错误

正确答案: A

解析:无论采用何种机器数,只要运算的结果大于数值设备所能表示数的范围,就会产生溢出。

106、16位长的浮点数,其中阶符1位,阶码6位,数符1位,尾数8位,当采用原码表示时,所能表示的范围是()。

- A, $-2^{64} \cdot 2^{64} (1-2^{-8})$
- $B_{s} -2^{63} 2^{63} (1-2^{-8})$
- $C_{5} -2^{63} 2^{63} (1-2^{-9})$
- $D_{s} = 2^{63} (1-2^{-8})^{2} 2^{63} (1-2^{-8})$

正确答案: D

解析: 浮点数分为尾数和阶码,采用原码表示方法,题目中16位浮点数,阶符1位,阶码6位,因此阶码的最大值是63,最小值是-63,尾数中数符是1位,尾数是8位,因此尾数的最大值是($1-2^{-8}$),最小值是 $-(1-2^{-8})$ 。因此数值的范围是 $-2^{63}(1-2^{-8})^{\sim}2^{63}(1-2^{-8})$

107、16位长的浮点数,其中阶符1位,阶码6位,数符1位,尾数8位,当采用补码表示时,所能表示的数的范围是()。

A、

 $-2^{64}^{\circ}2^{64}(1-2^{-8})$

- $B_{\lambda} -2^{63} ^{263} (1-2^{-8})$
- $C_{5} -2^{63} 2^{63} (1-2^{-9})$
- $D_{s} = 2^{63} (1-2^{-8})^{2} 2^{63} (1-2^{-8})$

正确答案: B

解析:浮点数分为位数和阶码,采用补码表示时,题目中16位浮点数,阶符1位,阶码6位,因此阶码的最大值是63,最小值是-64;尾数中数符是1位,尾数是8位,因此尾数的最大值是 $(1-2^{-8})$,最小值是-1。因此数值的范围是 -2^{63} 2 63 $(1-2^{-8})$ 。

108、设x为整数, [x]=1,x1x2x3x4x5, 若要x<-16, X1~X5应满足()条件。

- A、X1~X5至少有一个为1
- B、X1必须为0, X2~X5至少有一个为1
- C、X1必须为0, X2~X5任意
- D、X1必须为1, X2~X5任意

正确答案: C

解析: 若等于-16,则X1为1, X2~X5为0;因此当x1为1时,取反后为0,大于-16;故x1必须为0。

109、已知两个浮点数, N1=2^J₁×S₁, N2==2^J₂×S₂, 当()成立时, N1>N2

- A_{s} $S_1 > S_2$
- $B \setminus J_1 > J_2$
- C、 S_1 和 S_2 均为规格化数,且 $J_1>J_2$
- D、S₁和S₂均为规格化数,且S₁>S₂

正确答案: C

解析: 浮点数比较大小要同时考虑位数和阶符。

110、设[x]原=1,X₁X₂X₃X₄, 当满足()时, x>-1/成立。

- A、 X_1 必为0, X_2 X_4 至少有一个为1
- B、 X₁必为0, X₂~X₄任意
- C、X₁必为1, X₂~X₄任意
- D、 X_1 必为1, X_2 X_4 必须一个为1

正确答案: B

解析: [x]原=1. $X_1X_2X_3X_4$, X_1 , X_2 , X_3 , X_4 的权值分别是1/2、1/4、1/8、1/16, ,因为x的符号位是1,表示的是负数,要x > -1/2成立,故 X1 必为0。

111、设x为真值, x*为绝对值, [-x*]*=[-x]*,成立的条件是()

- A、x任意
- B、x为正数
- C、x为负数
- D、都不成立

正确答案: B

解析:要使 $[-x^*]_{h}=[-x]_{h}$,说明- $x^*=-x$,也就是说 $x^*=x$,只有当x为正数时成立

- 112、长度相同、格式相同的两种浮点数,假设前者基数大,后者基数小,其他规定均相同,则它们可表示的数的范围和精度为()。
- A、两者可表示的数的范围和精度相同

- B、前者可表示的数的范围大但精度低
- C、后者可表示的数的范围大且精度高
- D、前者可表示的数的范围大且精度高

正确答案: B

解析:基数越大,则范围越大,但精度变低(数变稀疏)。

113、设浮点数阶的基数为8,尾数用模4补码表示,下列浮点数中()是规格化数。

- A 11.111000
- B, 00.000111
- C、11.101010
- D₂ 11.111101

正确答案: C

解析:基数为8时,当浮点数为正数时,数值位前3位不全为0时,是规格化数;当浮点数为负数时,数值位前3位不全为1时,是规格化数。模4补码表示有两位符号位,即变形补码。

- 114、【2012】float 型数据常用IEEE 754 单精度浮点格式表示。假设两个 float型变量 x和y分别存放在32位寄存器f1和f2中, 若 (fl)=CC90 0000H, (f2)=B0C0, 则x和y之间的关系为()。
- A、x<y且符号相同
- B、x<y 且符号不同
- C、x>y且符号相同
- D、x>y且符号不同

正确答案: A

解析: (f1) 和 (f2) 对应的二进制分别为110011001001...和101100001100...,根据 IEEE 754标准,可知f1的数符为1,阶码为10011001,尾数为1.001,而f2的数符为1,阶码为01100001,尾数1.1,则可知两数均为负数,符号相同,B、D排除,f1的绝对值为1.001× 2^{26} ,f2的绝对值为1.1× 2^{30} ,则f1的绝对值比f2的绝对值大,而符号为负,真值大小相反,即f1的真值比f2的真值小,即x<y,故选A

115、有关运算器的功能描述,正确的是()。

- A、完成加法运算
- B、完成算术运算
- C、既完成算术运算又完成逻辑运算
- D、完成逻辑运算

正确答案: C

116、在浮点数中,判断补码规格化形式的原则是()。

- A、 尾数的第一数位为1, 数符任意
- B、尾数的符号位与第一数位相同
- C、尾数的符号位与第一数位不同
- D、阶符与数符不同

正确答案: C

117、【2021】已知带符号数用补码表示,变量x、y、z的机器数分别为 FFFDH、FFDFH、7FFCH,下列结论中正确的是()

- A、 若x、y和z为无符号数,则z<x<y
- B、 若x、y和z为无符号数,则x<y<z
- C、 若x、y和z为带符号数,则x<v<z
- D、 若x、y和z为带符号数,则y<x<z

正确答案: D

解析: 3个机器数均为补码表示的带符号数,其中z为正数,x、y为负数,而x=FFFDH,等于十进制数-3,y=FFDFH,等于十进制数-33,所以y<x<z

118、【2021】下列数值中,不能用IEEE754 浮点数格式精确表示的是()

- A, 1.2
- B, 1.25
- C₂ 2.0
- D, 2.5

正确答案: A

解析: 1.25D=1.01B, 2.0D=10.0B, 2.5D=10.1B, 只有1.2D无法精确地转换成二进制数, 所以不能用IEEE754浮点数格式精确地表示出来。

119、若用二进制数表示十进制数0~999999,则最少需要的二进制数的位数是()。

- A, 6
- B₂ 16
- C, 20
- D₂ 100 000

正确答案: C

解析: 999999<220, 所以如果用二进制表示需要20位

120、十进制数2000用十六进制表示为()。

- A₂ 7CDH
- B、7D0H
- C₂ 7E0H
- D₂ 7F0H

正确答案: B

解析: 2000=11111010000B=7D0H

121、一个8位二进制整数,若采用补码表示,且由4个1和4个0组成,则最小值为()。

- A, -120
- B₂ -7
- C, -112
- D₂ -121

正确答案: D

解析:补码负数的特点是::数值位对应的真值越小,其绝对值越大。所以,由4个1和4个0组成的补码数中,最小的补码表示为10000111,即真值为-121

122、某计算机字长为8位,采用补码表示小数。若某数真值为-0.1001,则它在该计算机中的机器数形式为()。

- A 10111
- B、10110111
- C. 10111000
- D. 10110000

正确答案: C

解析: 因为字长为8位,真值-0.1001=-0.1001000,所以其补码表示为1.01110000。

123、对于定点机,下列说法中错误的是()。

- A、除补码外,原码和反码不能表示-1
- B、 + 0的原码不等于-0的原码
- C、 + 0的反码不等于-0的反码

D、 对于相同的机器字长,补码比原码和反码能多表示一个负数

正确答案: A

解析: 在定点机中,假设字长为8位,[-1]_原=10000001,[-1]_补=11111111,[-1]_反=11111110。

124、计算机中常采用下列几种编码表示数据,其中,+0和-0编码相同的是()。

I.原码

II.反码

III.补码

IV.移码

- A、I和III
- B、II和III
- C、III和IV
- D、I和IV

正确答案: C

解析:假设字长为8位,[+0]_原=00000000,[-0]_原=10000000;[+0]_反=00000000, [-0]_反=11111111;[+0]_补=[-0]_补=00000000;[+0]_移=[-0]_移=10000000。

125、下列机器数中,真值最大的是()。

- A, $[X]_{k}=1000011$
- B、[X]原=1000 0011
- C、[X]_反=1000 0011
- D、[X]_移=1000 0011

正确答案: D

解析:在这4个机器数中,前3个均为负数,仅有第4个是正数。

126、-131的1字节、2字节补码表示分别是()。

A 83H, 0083H

- B、7DH, FF83H
- C、溢出, FF83H
- D、溢出, FF7DH

正确答案: D

解析: 1字节补码的表示范围为-128~127, 所以-131在1字节补码表示为溢出; 2字节补码的表示范围为-32768~32767, -131的二进制表示为-1000 0011, 所以2字节补码表示为1111 1111 0111 1101。

127、设寄存器内容为11111111, 若它等于+127, 则为()。

- A、 原码
- B、补码
- C、反码
- D、移码

正确答案: D

解析: 对于偏置值为2°的移码,同一数值的移码和补码除最高位相反外,其他各位相同。因为 [+127] $_{\frac{1}{N}}$ = 0111 1111 , 所以[+127] $_{\frac{1}{N}}$ = 1111 1111

128、若9BH表示移码,其对应的十进制数是()。

- A, 27
- B、-27
- C, -101
- D₂ 101

正确答案: A

解析: 用移码表示9BH为1001 1011,则补码表示为0001 1011,对应的十进制真值为27。

129、某数在计算机中用8421码表示为0111 1000 1001, 其真值为()。

- A 789
- B、789H

- C、1929
- D、11110001001B

正确答案: A

解析: 8421码用4位二进制编码表示一位十进制数。

130、某数在计算机中用余3码表示为100110000111,其真值为()。

- A 654
- B、654H
- C₂ 987
- D₂ 987H

正确答案: A

解析: 余3码是在8421码的基础上加+3。如果是8421码,结果为987;现在是余3码,所以结果为654。注意,对应的真值是十进制数而不是十六进制数。

131、下列编码中,不用于表示字符的是()。

- A₂ BCD
- B, EBCDIC
- C. Unicode
- D, ASCII

正确答案: A

解析: BCD码只能用于表示十进制数,不能用于表示字符。EBCDIC(广义二进制编码的十进制交换码)是字母或数字字符的二进制编码,是IBM为它的更大型的操作系统而开发的。

- 132、已知大写英文字母A的ASCH码为41H。现字母F被存放在某个存储单元中,若采用偶校验(假设最高位作为校验位),则该存储单元中存放的十六进制数据是()。
- A, 46H
- B_v C6H
- C₂ 47H
- D、C7H

正确答案: B

解析:英文字母F的ASCII码应为46H = 1000110B。标准的ASCII码为7位,在7位数前面增加1位校验位。按照偶校验规则,偶校验位为1。存储单元中存放的是整个校验码(包括校验位和信息位),应为11000110B = 10B = C6H。

133、汉字"啊"的十进制区位码为"16-01",它的十六进制机内码为()。

- A 1601H
- B₂ 9681H
- C、BOA1H
- D₂ B081H

正确答案: C

解析: 区位码16-01的十六进制形式为1001H, 国标码为1001H+2020H=3021H, 机内码为3021H+8080H=B0A1H。

134、"春"字的机内码为B4BAH,由此可以推算它在GB 2312-1980中所在的区号是()。

- A、19区
- B、20区
- C、3区
- D、35区

正确答案: B

解析:汉字国标码=汉字机内码-8080H=B4BAH-8080H=343AH。汉字区位码=汉字国标码-2020H=141AH。前两数14H转换为十进制数为20,对应区号;后两数1AH转换为十进制数位26,对应位号。

135、在存储一个汉字内码的两字节中,每个字节的最高位是()

- A、1和1
- B、1和0
- C、0和1
- D、0和0

正确答案: A

解析:汉字机内码是在相应的汉字国标码的每个字节的最高位上加1。

136、在4×24点阵字库中,每个汉字字模信息需要存储的字节数是()。

- $A_{\lambda} 24 \times 24$
- B、3×3
- C、3×24
- $D_{\lambda} 2 \times 16$

正确答案: C

解析:在24×24点阵字库中存储一个汉字的字模码需要24×24个点,即3×24=72字节。

137、假定下列字符码中有奇偶校验位,但没有数据错误,采用奇校验的字符码是 ()。

- A 11001010
- В、11010111
- C₂ 11001100
- D₂ 11001011

正确答案: D

解析: 正确的奇校验码中1的个数是奇数。

138、在4位有效信息上增加3位校验位后得到码长7位的海明码,它的检错、纠错能力 是()

- A、纠一位错或检两位错
- B、纠一位错且检两位错
- C、只有检错能力,没有纠错能力
- D、 只有纠错能力, 没有检错能力

正确答案: A

解析:7位海明码,在4位有效信息上增加3位校验位,则有K=3,N=4,满足2^k≥ N+K+1,所以可以纠一位错或检两位错。

139、海明码是在n个信息位之外增设k个校验位,从而形成一个位的新的码字,使新的码字的码距比较均匀地拉大。n和k的关系是()。

- A, $2^{k}-1 \ge n+k$
- B, $2^{k}-1 \le n+k$
- $C_n = k$
- D, n-1=k

正确答案: A

解析: 如果仅考虑纠正一位错的情况,只需满足2k≥N+K+1。

- 140、以下关于校验码的叙述中正确的是()。
- I. 校验码的码距必须大于2
- II.校验码的码距越大,检错纠错能力越强
- III.增加奇偶校验位的位数可以提高奇偶校验的正确性
- IV.采用奇偶校验可检测出一位数据错误的位置并加以纠正
- V.采用海明校验可检测出一位数据错误的位置并加以纠正
- A, I, II, V
- B, II, IV
- C, I, V
- D, II, V

正确答案: D

解析:码距越大,检/纠错能力就越强。海明码不仅可以发现错误,还能指出错误的位置,为自动纠错提供了依据。

- 141、关于数据表示和编码,下列说法中正确的是()。
- A、奇偶校验码是一种功能很强的检错纠错码
- B、在计算机中用无符号数表示内存地址
- C、原码、补码和移码的符号编码规则相同
- D、 用拼音从键盘输入汉字时, 使用的拼音码是汉字的字模码

正确答案: B

解析: 奇偶校验码只能检错不能纠错;补码和移码的符号编码规则相反;汉字的字模码是汉字的输出码而不是输入码。利用排除法,可得出结论。

- 142、计算机系统中采用补码运算的目的是()。
- A、与手工运算方式保持一致
- B、提高运算速度
- C、简化运算器的设计
- D、提高运算精度

正确答案: C

解析:采用补码运算,可以将减法运算变成加法运算,同时符号位视为数的一部分参与运算,这样可简化运算器的设计。

- 143、计算机内部的定点数大多用补码表示。以下是一些关于补码特点的叙述,其中正确的是()。
- I.0的表示是唯一的
- II. 符号位可以和数值部分一起参与运算
- III. 与其真值的对应关系简单、直观
- IV. 减法可用加法来实现
- A、I和II
- B、I和III
- C, I, II, III
- D, I, II, IV

正确答案: D

解析:在补码表示中,真值0的表示形式是唯一的;符号位可作为数值位的一部分看待,和数值位一起参与运算;加/减法统一采用加法操作实现。故I、II、IV均正确。而III是原码表示的特点。

144、考虑以下C语言程序:

short si=-8196;

unsigned short usi=si;

执行上述程序段后,usi的值是()。

- A 8196
- B、34 572
- C₂ 57 339
- D₂ 57 340

正确答案: D

解析: -8196=-10 0000 0000 0100B, 带符号整数为1101 1111 1111 1100, 转换为无符号整数, 其值为57340。

145、某字长为8位的计算机中,已知整型变量x、y的机器数分别为[x]补 =11011000, [y]补=10100110。若整型变量z=2×x+y/2,则z的机器数为

- A. 10000011
- B. 0000011
- C. 00111000
- D、溢出

正确答案: A

解析:求 $z=2\times x+y/2$,就是将x左移一位,y右移一位,然后再相加。由于[x] $_{\uparrow}$ =11011000,则2[x]补=10110000,[y] $_{\uparrow}$ =10100110,1/2[y] $_{\uparrow}$ =11010011,则两者相加结果为10000011。

146、运算发生溢出的根本原因是()。

- A、数据位的位数有限
- B、运算中将符号位的进位丢弃
- C、运算中将符号位的借位丢弃

D、数据运算中的错误

正确答案: A

解析:无论采用何种机器数,只要运算结果大于设备所能表示数的范围,就会产生溢出。

- 147、判断加/减法溢出时,可采用判断进位的方式。如果符号位的进位为C0,最高数值位的进位为C1,产生溢出的条件是()。
- I. C0=1
- II. C1=1
- III. C0、C1都为1
- IV. CO、C1都为0
- V. C0=1, C1=0
- VI. C0=0, C1=1
- A、I和II
- B、III
- C、IV
- D、V和VI

正确答案: D

解析: 采用进位位判断溢出时,当符号位进位和最高数值位进位的值不相同时才会产生溢出。即溢出=C0⊕C1。

- 148、当定点运算发生溢出时,应()。
- A、向左规格化
- B、向右规格化
- C、发出出错信息

D、讲行舍入处理

正确答案: C

解析: 定点运算结果一旦发生溢出,只能产生中断,向CPU报错。

- 149、表示浮点数时,若要求机器零在计算机中的表示为全0,则阶码应采用的编码是 ()。
- A、原码
- B、反码
- C、补码
- D、移码

正确答案: D

解析:移码全为0时,它所对应的真值最小(绝对值最大的负数)。所以,当阶码为全0,尾数也为全0时,表示机器零。

- 150、有字长相同的两种浮点数。第一种阶码位数多,尾数位数少;第二种阶码位数少,尾数位数多。阶的底数都是2。则()。
- A、它们表示的数的范围与精度相同
- B、第一种数的范围大,但精度低
- C、 第二种数的范围大, 精度高
- D、第一种数的范围大,精度高

正确答案: B

解析:字长相同的两种浮点数,阶码位数越多表示的数范围越大,尾数越多表示的精度越高。

- 151、若浮点运算结果尾数不是规格化数,将进行结果规格化。结果规格化有左规和右规之分,下列操作中,属于结果规格化的操作是()。
- I. 尾数左移1位, 阶码加1
- II. 尾数左移1位, 阶码减1
- III. 尾数右移1位, 阶码加1
- IV. 尾数右移1位, 阶码减1

- A、I和III
- B、II和III
- C、I和IV
- D、II和IV

正确答案: B

解析:向左规格化规则:尾数每左移1位,阶码减1。向右规格化规则:尾数每右移1位,阶码加1。

152、按照IEEE754标准规定的32位浮点数(41A4C000)₁₆对应的十进制数是()。

- A \ 4.593 75
- B、-20.59375
- C、-4.593 75
- D₂ 20.593 75

正确答案: D

153、假定采用IEEE 754单精度浮点数格式表示一个数为45100000H,则该数的值是()。

- A, $(+1.125)_{10} \times 2^{10}$
- B. $(+1.125)_{10} \times 2^{11}$
- C_{x} (+0.125)₁₀×2¹¹
- D, $(+0.125)_{10} \times 2^{10}$

正确答案: B

111111011B=11。因为隐含了尾数最高数位,尾数为1.001,所以其真值为 (+1.125)₁₀×2¹¹

154、	在C语言中,不	同类型	的数据混合运算时	,要先转换成同-	-类型后进行运算。	设
某表	达式中包含int、	long,	char和double类	型的变量和数据,	则该表达式最后的	り运
算结	果的类型是()) 。				

- A, char
- B、int
- C、long
- D、double

正确答案: D

解析:不同类型的数据混合运算时,转换遵循的原则是升格,故最终结果为double类型。4种类型数据转换规则为char→int→long→double

- 二、填空题(共69题, 20.7分)
- 1、计算机中广泛应用()进制数进行运算、存储和传递,其主要理由是()。

正确答案:

第1空:

第2空:

物理器件性能所致

2、在整数定点机中,机器数为补码,字长8位(含2位符号位),则所能表示的十进制数范围为()至(),前者的补码形式为(),后者的补码形式为()。

正确答案:

第1空:

第2空:
63
第3空:
11000000
第4空:
00111111
3、机器数为补码,字长16位(含1位符号位),用十六进制写出对应于整数定点机的最大正数补码是(),最小负数补码是()。
正确答案: 第1空:
7FFF
第2空:
8000
4、某整数定点机,字长8位(含1位符号位),当机器数分别采用原码、补码、反码及 无符号数时,其对应的真值范围分别为()、()、()和()(均用十进制数表示)。
正确答案: 第1空:
-127~+127
第2空:
-128~+127

第3空:
-127~+127
第4空:
0~255
5、某小数定点机,字长8位(含1位符号位),当机器数分别采用原码、补码和反码时,其对应的真值范围分别是()、()、()(均用十进制表示)。
正确答案: 第1空:
-127/128~+127/128
第2空:
-1~+127/128
第3空:
-127/128~+127/128
6、在整数定点机中,采用1位符号位,若寄存器内容为10000000,当它分别表示为原码、补码、反码及无符号数时,其对应的真值分别为()、()、()和()。(均用十进制表示)。
正确答案: 第1空:
-0
第2空:

-128

第3空:
-127
第4空:
128
7、在小数定点机中,采用1位符号位,若寄存器内容为10000000,当它分别表示为原码、补码和反码时,其对应的真值分别为()、()和()(均用十进制表示)。
正确答案: 第1空:
-0
第2空:
-1
第3空:
-127/128
8、在整数定点机中,采用1位符号位,若寄存器内容为11111111,当它分别表示为原码、补码、反码及无符号数时,其对应的真值分别为()、()、()和()(均用十进制表示)。
正确答案 : 第1空:
-127
第2空:

第3空:
-0
第4空:
255
9、在小数定点机中,采用1位符号位,若寄存器内容为11111111,当它分别表示为原码、补码和反码时,其对应的真值分别为()()和()和()用十进制表示)。
正确答案: 第1空:
-127/128
第2空:
-1/128
第3空:
-0
10 、机器数字长为8位(含1位符号位),当 $x=-128$ (十进制)时,其对应的二进制为(), $[x]_{\bar{p}}=$ (), $[x]_{\bar{p}}=$ (), $[x]_{\bar{p}}=$ (), $[x]_{\bar{p}}=$ ()
正确答案: 第1空:
-10000000
第2空:
不能表示

第3空:
不能表示
第4空:
10000000
第5空:
0000000
11、机器数字长为8位(含1位符号位),当x=-127(十进制)时,其对应的二进制 为(),[x] _原 =(),[x] _反 =(),[x] _补 =(),[x] _疹 =()
正确答案: 第1空:
-1111111
第2空:
11111111
第3空:
10000000
第4空:
10000001
第 <i>5</i> 空:
0000001

12、机器数字长为8位(含1位符号位),当x=-1(十进制)时,其对应的二进制为 (),[x] _原 =(),[x] _反 =(),[x] _补 =(),[x] _移 =()
正确答案: 第1空:
-0000001
第2空:
10000001
第3空:
11111110
第4空:
11111111
第5空:
01111111
13、机器数字长为8位(含1位符号位),当x=-0(十进制)时,其对应的二进制为 (),[x] _原 =(),[x] _反 =(),[x] _补 =(),[x] _移 =()
正确答案: 第1空:
-0000000
第2空:
10000000

第3空:
11111111
第4空:
00000000
第5空:
10000000
14、机器数字长为8位(含1位符号位),当x=+100(十进制)时,其对应的二进制为(),[x] _原 =(),[x] _反 =(),[x] _补 =(),[x] _移 =()
正确答案: 第1空:
+1100100
第2空:
01100100
第3空:
01100100
第4空:
01100100
第5空:
11100100

15、机器数字长为8位(含1位符号位),当x=+127(十进制)时,其对应的二进制 为(),[x] _原 =(),[x] _反 =(),[x] _补 =(),[x] _移 =()
正确答案: 第1空:
+1111111
第2空:
01111111
第3空:
01111111
第4空:
01111111
第5空:
11111111
16、设机器数字长为8位(含1位符号位),若机器数为00H(十六进制),当它分别 代表原码、补码、反码和移码时,等价的十进制整数分别为()()()和()
正确答案: 第1空:
0
第2空:
± 0

第3空:
0
第4空:
-128
17、设机器数字长为8位(含1位符号位),若机器数为80H(十六进制),当它分别代表原码、补码、反码和移码时,等价的十进制整数分别为()、()、()和()。
正确答案: 第1空:
-0
第2空:
-128
第3空:
-127
第4空:
± 0
18、设机器数字长为8位(含1位符号位),若机器数为81H(十六进制),当它分别代表原码、补码、反码和移码时,等价的十进制整数分别为()、()、()和()。
正确答案: 第1空:

-1
第2空:
-127
第3空:
-126
第4空:
+1
19、设机器数字长为8位(含1位符号位),若机器数为FEH(十六进制),当它分别代表原码、补码、反码和移码时,等价的十进制整数分别为()、()、()和()。
正确答案: 第1空:
第1空:
第1空: -126
第1空: -126 第2空:
第1空: -126 第2空: -2
第1空: -126 第2空: -2 第3空:

20、设机器数字长为8位(含1位符号位),若机器数为FFH(十六进制),当它分别代表原码、补码、反码和移码时,等价的十进制整数分别为()、()、()和()。
正确答案: 第1空:
-127
第2空:
-1
第3空:
-0
第4空:
+127
21、采用浮点表示时,若尾数为规格化形式,则浮点数的表示范围取决于()的位数,精度取决于()的位数,()确定浮点数的正负。
正确答案: 第1空:
第1空:
第1空: 阶码
第1空: 阶码 第2空:

22、一个浮点数,当其尾数右移时,欲使其值不变,阶码必须()。尾数右移一位, 阶码()
正确答案: 第1空:
增加
第2空:
加1
23、对于一个浮点数, ()确定了小数点的位置,当其尾数左移时,欲使其值不变,必须使()。
正确答案: 第1空:
阶码的大小
第2空:
阶码减少
24、采用浮点表示时,最大浮点数的阶符一定为()(填正/负),尾数的符号一定为()(填正/负)。最小浮点数的阶符一定为()(填正/负),尾数的符号一定为()(填正/负)。
正确答案: 第1空:
正
第2空:
正

第3空:
正
第4空:
负
25、移码常用来表示浮点数的 () 部分,移码和补码除符号位 () 外,其他各位 () 。
正确答案: 第1空:
阶码
第2空:
不同
第3空:
相同
26、采用浮点表示时,当阶码和尾数的符号均为正,其他的数字全部为()时,表示的是最大的浮点数。当阶码的符号为(),尾数的符号为(),其他数字全部为1时,这是最小的浮点数。
正确答案: 第1空:
1
第2空:
正

第3空:
负
27、设浮点数字长为24位,欲表示-6x10 ⁴ ~6x10 ⁴ 之间的十进制数,在保证数的最大
精度条件下,除阶符、数符各取1位外,阶码应取()位,尾数应取()位。按这样分配,这24位浮点数的溢出条件是()。
正确答案: 第1空:
5
第2空:
17
第3空:
阶码大于+31
28、已知16位长的浮点数,欲表示-3x10 ⁴ ~3x10 ⁴ 间的十进制数,在保证数的最大精度条件下,除阶符、数符各取1位外,阶码应取()位,尾数应取()位。这种格式
的浮点数(补码形式),当()时,按机器零处理。
正确答案: 第1空:
4
第2空:
10
第3空:

2-33

29、当 0 >x>-1时,满足 [x] _原 =[x] _补 的x值是();当0>x>-2 ⁷ 时,满足[x] _原 =[x] _补 的x值是()。
正确答案: 第1空:
-0.5
第2空:
-64
30、最少需用()位二进制数可表示任一五位长的十进制数。
正确答案: 第1空:
17
31、设24位长的浮点数,其中阶符1位,阶码5位,数符1位,尾数17位,阶码和尾数均用补码表示,且尾数采用规格化形式,则它能表示的最大正数真值是(),非零最小正数真值是(),绝对值最大的负数真值是(),绝对值最小的负数真值是()(均用十进制表示)。
正确答案: 第1空:
2 ³¹ × (1-2- ¹⁷)
第2空:

第3空:
-2 ³¹
第4空:
$2^{-32} \times (-2^{-1}-2^{-17})$
32、设浮点数阶码为8位(含1位阶符),尾数为24位(含1位数符),则在32位二进制补码浮点规格化数对应的十进制真值范围内:最大正数为(),最小正数为
(),最大负数为(),最小负数为()(均用十进制表示)。
正确答案: 第1空:
$2^{127} \times (1-2^{-23})$
第2空:
7 -129
第3空:
$2^{-128} \times (-2^{-1} - 2^{-23})$
第4空:
-2 ¹²⁷
33、设机器数字长为8位(含1位符号位),对应十进制数x=-0.6875的[x] _原 为(), [x] _补 为(),[x] _反 =(),[-x] _原 为(),[-x] _补 为(),[-x] _反 =()
正确答案: 第1空:

1.1011000
第2空:
1.0101000
第3空:
1.0100111
第4空:
0.1011000
第5空:
0.1011000
第6空:
0.1011000
设机器数字长为8位(含1位符号位),对应十进制数x=-52的[x] _原 为(),[x] _补 为(),[x] _反 =(),[-x] _原 为(),[-x] _补 为(),[-x] _反 =()
正确答案: 第1空:
10110100
第2空:
11001100

第3空:
11001011
第4空:
00110100
第5空:
00110100
第6空:
00110100
35、补码表示的二进制浮点数,尾数采用规格化形式,阶码3位(含阶符1位),尾数5
位(含1位符号位),则所对应的最大正数真值为(),最小正数真值为(),最大负数 真值为(),最小负数真值为()(写出十进制各位数值)。
真值为(),最小负数真值为()(写出十进制各位数值) 。 正确答案:
真值为(),最小负数真值为()(写出十进制各位数值)。 正确答案: 第1空:
真值为(),最小负数真值为()(写出十进制各位数值)。 正确答案: 第1空:
真值为(),最小负数真值为()(写出十进制各位数值)。 正确答案:第1空: 7.5
真值为(),最小负数真值为()(写出十进制各位数值)。 正确答案: 第1空: 7.5 第2空:
真值为(),最小负数真值为()(写出十进制各位数值)。 正确答案: 第1空: 7.5 第2空: 1/32

36、某机字长16位(含1位符号位),它能表示的无符号整数范围是(),用原码表示的定点小数范围是(),用补码表示的定点小数范围是(),用补码表示的定点整数范围是()。
正确答案: 第1空:
0~65535
第2空:
- (1-2 ⁻¹⁵) ~(1-2 ⁻¹⁵)
第3空:
-1~1-2 ⁻¹⁵
第4空:
-32768~32767
37、已知十进制数x=-2.75,分别写出对应8位字长的定点小数(含1位符号位)和浮点数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取2 ⁻⁴ ,浮点数为规格化数,则定点表示法对应的[x] _原 为(),[x] _补 为(),[x] _办 为()。
正确答案: 第1空:
1.0010110
第2空:
1.1101010

第3空:
1.1101001
第4空:
010; 1.1011
第5空:
010; 1.0101
第6空:
010; 1.0100
38、已知十进制数x=-5.5,分别写出对应8位字长的定点小数(含1位符号位)和浮点数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取2 ⁻⁴ ,浮点数为规格化数,则定点表示法对应的[x] _原 为(),[x] _补 为(),[x] _反 为(),浮点表示法对应的[x] _原 为(),[x] _反 为()。
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取 2^{-4} ,浮点数为规格化数,则定点表示法对应的 $[x]_{\@iffill}$ 为(), $[x]_{\hiffill}$ 为(), $[x]_{\hiffill}$
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取 2^{-4} ,浮点数为规格化数,则定点表示法对应的 $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{A}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为()。 正确答案:
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取 2^{-4} ,浮点数为规格化数,则定点表示法对应的 $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{A}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为(), $[x]_{\mathbb{R}}$ 为()。 正确答案:第1空:
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取2 ⁻⁴ ,浮点数为规格化数,则定点表示法对应的[x] _原 为(),[x] _补 为(),[x] _点 为(),[x] _{\alpha} ¬(x),[x] _{\alpha} ¬(x),[x] _{\alpha} ¬(x),[x] _{\alpha} ¬(x),[x] _{\alpha} ¬(x),[x]
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取2 ⁻⁴ ,浮点数为规格化数,则定点表示法对应的[x] _原 为(),[x] _补 为(),[x] _点 为(),[x] _点 为()。 正确答案: 第1空: 1.0101100
数(其中阶符1位,阶码2位,数符1位,尾数4位)的各种机器数,要求定点数比例因子选取2-4,浮点数为规格化数,则定点表示法对应的[x]原为(),[x]补为(),[x]补为(),[x]成为()。 正确答案:第1空: 1.0101100 第2空: 1.1010100

43、已知[x]_补=1.0000,则[½x]_补=(),x=(),[x]_原=(),[x]_反=()。

FBH	
第3空:	
84H	
第2空:	
-4	
正确答案: 第1空:	
44、设机器代码为FCH,机器数为补码形式(采用1位符号),则对应的十分为(),其原码形式为(),反码形式为()(均用十六进制表示)。	进制真值
不能表示	
第4空:	
不能表示	
第3空:	
-1	
第2空:	
1.1000	
正确答案: 第1空:	

为(),其原码形式为(),反码形式为()(均用十六进制表示)。

正确答案: 第1空:
-59
第2空:
ВВН
第3空:
С4Н
46、已知[x]补=1.1010100,则x=(),[½x]补=()。
40、 CXI[X]补-1.1010100 , 火以入- (
正确答案: 第1空:
-0.0101100 ; -11/32
第2空:
1.1101010
47、若[x] _反 =1.0101011,则[-x] _补 =(),设x * 为绝对值,则[-x*] _补 =()。
正确答案: 第1空:
0.1010100
第2空:
1.0101100

48、若[x] _反 =0.01010,则 [-x] _补 =(),设x * 为绝对值,则[-x*] _补 =()。
正确答案: 第1空:
1.10110
第2空:
1.10110
49、设x * 为绝对值,等式[-x] _补 =[-x*] _补 成立的条件是()
正确答案: 第1空:
x为正数或0
50、至少需用()位二进制数就能表示任一四位长的十进制无符号整数。
正确答案: 第1空:
14
51、某浮点数基值为2,阶码4位(含1位阶符),尾数8位(含1位数符),阶码和尾数均用补码表示。它所能表示的最大正数真值是(),非零最小正数真值是(),最大负数真值是(),最小负数真值是()。如果尾数采用规格化表示,上述值分别是()、()、()和();如果阶码采用移码表示,上述值()(均用十进制表示)。
正确答案: 第1空:

	确答案: 1空:
0.1	11001
第	2空:
0.0	011001
第	3空:
0.0	0011001
第	4空:
1.0	00111
53	、设x=-25/32,则[x] _补 =(),[½x]补=(),[¼x] _补 =(),[-x] _补 =()。
33	、
正	、 以
正第	确答案:
正 第 1.(确答案: 1空:
正 第 1.(确答案: 1空: 00111
正第1.6	确答案: 1空: 00111 2空:
正第 1.0 第 1.1 第	确答案: 1空: 00111 2空: 100111
正第 1.0 第 1.1 第	确答案: 1空: 2空: 100111 3空:

第2空:
补码
57、若移码的符号为1,则该数为()数;若符号为0,则为()数。
正确答案: 第1空:
正
第2空:
负
58、在原码、补码、反码和移码中,()对0的表示有两种形式,()对0的表示只有一种形式。
正确答案: 第1空:
原码、反码
第2空:
补码、移码
59、设机器字长为8位,-1的补码在整数定点机中表示为(),在小数定点机中表示为()。
正确答案: 第1空:
11111111

第2空:
1.0000000
60、在浮点数中,尾数用原码表示时,其规格化特征是(),尾数用补码表示时,其 规格化特征是()
正确答案: 第1空:
符号位任意,第一数字位为1
第2空:
符号位与第一数字位不同
61、一个定点数由()和()两部分组成。根据小数点的位置不同,定点数有()和()两种表示方法。
正确答案: 第1空:
数符
第2空:
数值位
第3空:
纯小数
第4空:
纯整数

62、16位二进制补码(含1位符号位)所能表示的十进制整数的范围是 () 至 () , 前者的十六进制补码表示为 () ,后者的十六进制补码表示为 () 。
正确答案: 第1空:
-32768
第2空:
+32767
第3空:
8000H
第4空:
7FFFH
63、在各种机器数中,0为唯一形式的机器数是();表示定点整数时,若要求数值0 在计算机中唯一表示为全"0",应采用();表示浮点数时,若要求机器零在计算机 中表示为全"0",则阶码应采用()。
正确答案 : 第1空:
第1空:
第1空: 补码和移码
第1空: 补码和移码 第2空:

64、设寄存器内容为FFH,若其表示127,则为 () 码;若其表示-127,则为 () 码;若其表示-1,则为 () 码;若其表示-0,则为 () 码。
正确答案: 第1空:
移
第2空:
原
第3空:
补
第4空:
反
65、在浮点数的基值确定后,且尾数采用规格化形式,则浮点数的范围取决于(),
精度取决于(),小数点的真正位置取决于()。
精度取决于(),小数点的真正位置取决于() 。 正确答案:
精度取决于(),小数点的真正位置取决于()。 正确答案: 第1空:
精度取决于(),小数点的真正位置取决于()。 正确答案: 第1空: 阶码的位数
精度取决于(),小数点的真正位置取决于()。 正确答案: 第1空: 阶码的位数 第2空:

66、若移码的符号为1,则该数为()数;若符号为0,则为()数。
正确答案: 第1空:
正
第2空:
负 ————————————————————————————————————
67、在计算机中,有符号数共有()、()、()和()四种表示法。
正确答案: 第1空:
原码
第2空:
补码
第3空:
反码
第4空:
移码
68、在浮点数中,当数的绝对值太大,以至于大于阶码所能表示的数值时,称为浮点数的() 当数的绝对值大小 以至于小于阶码所能表示的数值时 称为浮点数的

()。()时,机器需停止运算,做中断处理。

正确答案: 第1空:
上溢
第2空:
下溢
第3空:
上溢
69、当浮点数的尾数部分为0,不论其阶码为何值,机器都把该浮点数当做()处理。
正确答案: 第1空:
机器零
三、简答题(共14题,4.2分)
1、若[x] _补 >[y] _补 ,是否有x>y?
正确答案:
不一定。当x和y同号时,若[x] _补 >[y] _{补 , 则x>y成立}
2、证明:[-x] _补 =-[x] _补
正确答案:

证明
$$[-x]_{\uparrow \downarrow} = -[x]_{\uparrow \downarrow}$$

(1) 若 $[x]_{\uparrow \downarrow} = 0. x_1 x_2 \cdots x_n$
则 $x = 0. x_1 x_2 \cdots x_n$
所以, $-x = -0. x_1 x_2 \cdots x_n$
故 $[-x]_{\uparrow \downarrow} = 1. \overline{x_1} \overline{x_2} \cdots \overline{x_n} + 2^{-n}$
又因为, $[x]_{\uparrow \downarrow} = 0. x_1 x_2 \cdots x_n$
所以, $-[x]_{\uparrow \downarrow} = -0. x_1 x_2 \cdots x_n$
 $= 2 - 0. x_1 x_2 \cdots x_n$
 $= 1. \overline{x_1} \overline{x_2} \cdots \overline{x_n} + 2^{-n}$
比较(a)、(b) 两式得
 $[-x]_{\uparrow \downarrow} = -[x]_{\uparrow \downarrow}$
(2) 若 $[x]_{\uparrow \downarrow} = 1. x_1 x_2 \cdots x_n$
则 $x = -(0. \overline{x_1} \overline{x_2} \cdots \overline{x_n} + 2^{-n})$
所以, $-x = 0. \overline{x_1} \overline{x_2} \cdots \overline{x_n} + 2^{-n}$
故 $[-x]_{\uparrow \downarrow} = 0. \overline{x_1} \overline{x_2} \cdots \overline{x_n} + 2^{-n}$
又因为, $[x]_{\uparrow \downarrow} = 1. x_1 x_2 \cdots x_n$

 $\equiv -(0. x_1 x_2 \cdots x_n + 2^{-n})$

3、如何判断一个七位二进制整数A=a1a2a3a4a5a6a7是否是4的倍数?

正确答案:

当a6a7为00时,A即为4的倍数

4、在浮点数中,如何判断溢出?

正确答案:

浮点机中溢出的判断根据阶码来判断, 当阶码大于最大正阶码时, 即为浮点数溢出。 若阶码小于最小负阶码时, 按机器零处理。

5、计算机中如何判断原码、补码和反码的规格化形式?

正确答案:

在浮点机中,机器数采用原码表示时,不论尾数的符号是0或1,只需第一数值位为1,即为规格化形式,机器数采用补码或反码时,尾数的符号位与第一数值位不同即为规格化形式。

6、设浮点数字长16位,其中阶码4位(含1位阶符),尾数12位(含1位数符),将(-43/128)10转换成二进制规格化浮点数及机器数(其中阶码采用移码,基值为2,尾数采用补码),并回答此浮点格式的规格化数表示范围。

正确答案:

 $(-43/128)_{10}$ =-0.0101011= 2^{-1} ×(-0.1010110)

按题要求的机器数形式为0,111; 1.01010100000。按题目给定的浮点格式的规格化数表示范围是:最大正数为 $2^7 \times (1-2^{-11})$; 最小正数为 2^{-9} ; 最大负数为 $-2^{-8} \times (2^{-1}+2^{-11})$; 最小负数为 -2^7 。

7、设浮点数字长16位,其中阶码5位(含1位阶符),尾数11位(含1位数符),将(-13/64)₁₀转换成二进制规格化浮点数及机器数(其中阶码采用移码,基值为2,尾数采用补码),并回答此浮点格式的规格化数表示范围。

正确答案:

 $(-13/64)_{10}$ = -0.001101=2⁻²×(-0.1101000)

按题要求的机器数形式为0,1110;1.0011000000。

数的表示范围是:

最大正数为2¹⁵×(1-2⁻¹⁰);最小正数为2⁻¹⁷;

最大负数为-2⁻¹⁶×(2⁻¹+2⁻¹⁰);最小负数为-2¹⁵。

8、在浮点机中如何判断溢出?

正确答案:

浮点机中溢出根据阶码来判断, 当阶码大于最大正阶码时, 即为浮点数溢出。若阶码小于最小负阶码时, 按机器零处理。

9、由6个字符的7位ASCII编码再加上横向、纵向奇偶校验位构成下表中所示的交叉校验矩阵(HP为横向奇偶校验位,VP为纵向奇偶校验位)。分别写出X₁~X₁₂代表的数字(0或1)以及Y₁、Y₂代表的字符。

6 个字符的交叉校验矩阵

字符	7 位 ASCII 码						
3	0	X_1	X_2	0	0	* 1	1
Y_1	1	0	0	1	0	0	X_3
+	X_4	1	0	1	0	1	1
Y_2	0	1	X 5	X_6	1	1	1
D	1	0	0	X 7	1	0	X_8
=	0	<i>X</i> 9	1	1	1	X 10	1
VP	0	0	1	1	1	X_{11}	1

正确答案:

从表中左起第6列可以看出,ASCII码纵向采用偶校验,据此可求出 $X_1=0$, $X_{12}=1$ 。

根据 $X_4=0$ 可知,横向也是偶校验,可求出 $X_3=1$, $X_{11}=1$ 。

根据 $X_{11}=1$, 可求出 $X_{10}=0$; 根据 $X_{10}=0$, 可求出 $X_{9}=1$; 根据 $X_{9}=1$, 可求出 $X_{1}=1$; 根据 $X_{1}=1$, 可求出 $X_{2}=1$; 根据 $X_{2}=1$, 可求出 $X_{5}=1$; 根据 $X_{5}=1$, 可求出 $X_{6}=0$; 根据 $X_{6}=0$, 可求出 $X_{7}=0$; 根据 $X_{7}=0$, 可求出 $X_{8}=0$.

故X₁~X₁₂的数字为1110 1000 1011。

由字符Y1的ASCII码1001001=49F可知, Y_1 即字母I(由D的ASCII码是1000100=44H推得);由字符 Y_1 的ASCII码10Y2=37H可知, Y_2 即数字7(由3的ASCII码是0110011=33H推得)。

10、已知下列字符编码:A=1000001, a=1100001, 0=0110000。不查表,写出 E、z、9的7位ASCII码和第一位加入偶校验位的8位编码(写成十六进制形式)。

正确答案:

7位ASCII码: E=1000101, z=1111010, 9=0111001。

第一位加入偶校验位的8位编码: E=45H, z=FAH, 9=39H

11、判断表中所示的BCD编码系统是有权码还是无权码。如果是有权码,则给出这种BCD码的名称。

表: BCD编码系统				
十进制数	BCD编码			
0	0			
1	1			
2	11			
3	101			
4	111			
5	1000			
6	1010			
7	1100			
8	1110			
9	1111			

正确答案:

设该BCD码从左至右各位分别为A、B、C、D、且假定其为有权码、则

- ·从数值5的编码1000可求得A的位权为5;
- ·从数值1的编码0001可求得D的位权为1;
- ·从数值2的编码0011可求得C的位权为1;
- ·从数值7的编码1100可求得B的位权为2。

最后用A、B、C、D各位的位权分别验证其他数值的编码值,结果都正确,说明这种BCD码是5211码。

12、假定某计算机的总线采用奇校验,每8位数据有一位校验位。若在32位数据线上 传输的信息是8F3CAB96H,则对应的4位校验位应是什么?若接收方收到的数据信息 和校验位分别为97842FE4H和0110B,则说明发生了什么情况?

正确答案:

32位传输数据为8F3CAB96H. 则4位校验位为0101B。

若接收数据和校验位分别为97842FE4H和0110B. 表示低16位数据中有错误。

13、十进制数12345用32位补码整数和32位浮点数(IEEE 754标准)表示的结果各是什么?

其整数表示和浮点数表示中存在一段相同的位序列,请标出这段位序列,并说明为什么会相同。

对一个负数来说,其整数表示和浮点数表示是否也一定会出现一段相同的位序列?为 什么?

正确答案:

十进制数12345用32位补码整数表示为0000 0000 0000 0000 001**1 0000 0011 1001**,用十六进制表示为00003039H。

整数表示和浮点数表示中相同位序列为1000000111001 (用粗体标示)。因为对正数来说,原码和补码的编码相同,所以其定点整数和浮点数尾数的有效数位一样。12345的有效数位是11000000111001。有效数位在定点整数中位于低位部分,在浮点数尾数中位于高位部分,因为尾数中有隐含的一位1,所以第一个有效数位在浮点数中不表示出来。因此,相同的位序列只有13位。

对一个负数来说,其整数表示和浮点数表示中不一定会有一段相同的位序列。因为整数用补码表示,而IEEE754浮点数的尾数用原码表示,负数的原码和补码表示不同。

14、有以下C语言程序代码:

short si=-12345;

unsigned short usi=si;

int i=si;

unsigned ui=usi;

执行上述程序段,写出输出变量si、usi、i、ui的十进制和十六进制值。

正确答案:

si的十进制值为-12345, 十六进制值为CFC7H。

usi的十进制值为53191,十六进制值为CFC7H。

i的十进制值为-12345,十六进制值为FFFF CFC7H。

ui的十进制值为53191, 十六进制值为0000 CFC7H。

四、论述题(共1题,0.3分)

1、【2017】已知

```
f(n) = \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 = 11 \cdots 1B(n-1)
```

计算f(n)的C语言函数f1如下:

```
int f1(unsigned n)
{
    int sum=1, power=1;
    for(unsigned i=0;i<=n-1;i++)
    {
        power *= 2;
        sum += power;
    }
    return sum;
}</pre>
```

将f1中的int都改成float,可得到计算f(n)的另一个函数f2。假设unsigned和int型数据都占32位,float采用IEEE754单精度标准。

- 1. 当n=0时,f1会出现死循环,为什么?若将f1中的变量i和n都定义为int型,则f1 是否还会出现死循环?为什么?
- 2. f1(23)和f2(23)的返回值是否相等?机器数各是什么?(用十六进制表示)
- 3. f1(24)和f2(24)的返回值分别为33 554 431和33 553 432.0, 为什么不相等?
- 4. $f(31)=2^{32}-1$,而f1(31)的返回值却为-1,为什么?若使f1(n)的返回值与f(n)相等,则最大的n是多少?
- 5. f2(127)的机器数为7F80 0000H,对应的值是什么?若使f2(n)的结果不溢出,则最大的n是多少?若使f2(n)的结果精确(无舍入),则最大的n是多少?

1.当n=0时, f1会出现死循环, 为什么?若将f1中的变量i和n都定义为int型, 则f1是否还会出现死循环?为什么?

【解析】由于i和n是unsigned型,因此"i<=n-1"是无符号数比较,n=0时,n-1的机器数为全1,值为 2^{32} -1,为unsigned型可表示的最大数,条件"i<=n-1"永真,因此出现死循环。若i和n改为int类型,则不会出现死循环。因为"i<=n-1"是有符号整数比较,n-1此时为-1,i<=n-1不成立就退出for循环。

2.f1(23)和f2(23)的返回值是否相等?机器数各是什么? (用十六进制表示)

PS:返回值是根据二进制串(机器数)的解释。

3.f1(24)和f2(24)的返回值分别为33 554 431和33 553 432.0, 为什么不相等?

【解析】当n=24时, f(24)=1 1111 1111 1111 1111 1111 B, 而float型数只有24位有效位, 舍入后数值增大(答这个即可), 所以f2(24)比f1(24)大。下图所示:末尾的1 舍去, 末尾进1, 然后前面的一坨1变为0, 再一次右移, 此时阶码+1。(0舍1入)

 $4.f(31)=2^{32}-1$,而f1(31)的返回值却为-1,为什么?若使f1(n)的返回值与f(n)相等,则最大的n是多少?

【解析】f(31)已超出了int型数据的表示范围,用f1(31)实现时得到的机器数为32个1,作为int型数解释时其值为-1,即f1(31)的返回值为-1。因为int型最大可表示的数是0后面加31个1,因此使f1(n)的返回值与f(n)相等的最大n值为30。

5.f2(127)的机器数为7F80 0000H,对应的值是什么?若使f2(n)的结果不溢出,则最大的n是多少?若使f2(n)的结果精确(无舍入),则最大的n是多少?

【解析】IEEE754用"阶码全1,尾数全0"表示无穷大。f2的返回值为float型,机器数7F80 0000H对应的值是正无穷。当n=126时,f(126)=2¹²⁷-1=1.11…1×2¹²⁶,对应的阶码为126+127=253,尾数部分舍入后阶码加1,最终阶码为254,是IEEE754单精度格式表

示的最大阶码。因此使f2结果不溢出的最大n值为126. (刚好能达到0舍1入后是结果不溢出的n最大情况)

当n=23时,f(23)为24位1,float型数有24位有效位,所以不需要舍入,结果精确,因此使f2获得精确结果的最大n值为23.

五、计算题(共13题, 3.9分)

1、设浮点数字长16位,其中阶码4位(含1位阶符),尾数12位(含1位数符),将 x=51/128转换为二进制规格化浮点数及机器数(其中阶码采用移码,基值为2,尾数采用补码),并回答此浮点格式的规格化数的表示范围。

正确答案:

 $(51/128)_{+} = 0.0110011 = 2^{-1} \times 0.$

阶码采用移码、基值为 2、尾数采用礼浮点格式的规格化数表示范围是:最为 $-2^{-8}\times(2^{-1}+2^{-11})$;最小负数为 -2^{7} 。

2、设浮点数字长16位,其中阶码5位(含1位阶符),尾数11位(含1位数符),将 x=-13/64转换为二进制规格化浮点数及机器数(其中阶码采用移码,基值为2,尾数 采用补码),并回答此浮点格式的规格化数的表示范围。

正确答案:

$$(-13/64)_{+} = -0.001101 = 2^{-2} \times (-13/64)_{+}$$
 按题要求的机器数形式为 $0,1110;$ $2^{-10});最小正数为 $2^{-17};$ 最大负数为 $-2^{-16} \times (-13/64)_{+}$$

- 3、设浮点数字长为16位,其中阶码8位(含1位阶符),阶码采用移码表示,基值为
- 2, 尾数用补码表示, 计算:
 - (1) 机器数为83BCH的十进制数值。
 - (2) 此浮点格式的规格化表示范围。

- (1) 83BCH=1000 0011 1011 1100,十进制
 - (2) 最大正数为 2127 x(1-2-7);最小正数为 2
- 4、设浮点数字长为16位,其中阶码8位(含1位阶符),阶码采用移码表示,基值为
- 2, 尾数用补码表示, 计算:
- (1)机器数为7E60H的十进制数值。
- (2)此浮点格式的规格化表示范围。

正确答案:

- (1) 7E60H=0111 1110 0110 0000,十进制
 - (2) 最大正数为 2¹²⁷×(1-2⁻⁷);最小正数为 2
- 5、设浮点数字长32位,其中阶码8位(含1位阶符),尾数24位(含1位数符),当阶码的基值分别为是2和16时:
 - (1) 说明2和16在浮点数中如何表示;
- (2) 当阶码和尾数均用补码表示,且尾数采用规格化表示时,给出两种情况下所能表示的最大正数真值和非零最小正数真值;
 - (3) 数的表示范围有什么不同?

- (1) 基值为2和16在浮点数表示均用二进制表示,运算规则也基本相同。付或减1时,尾数相应移1位;若基值为16,
- (2) 基值为 2:最大正数为 2¹²⁷×(1-2⁻²³), 基值为 16:最大正数为 16¹²⁷(1-2⁻²³)
- (3) 基值为 16 时,数的表示范围大。

设浮点数字长16位,其中阶码5位(含1位阶符),尾数11位(含1位数符),当阶码的基值分别为是2和8时:

- (1)说明2和8在浮点数中如何表示;
- (2) 当阶码和尾数均用补码表示,且尾数采用规格化表示时,给出两种情况下所能表示的最大正数真值和非零最小正数真值;
- (3)数的表示范围有什么不同?

正确答案:

- (1) 基值为2和8在浮点数表示形用二进制表示,运算规则也基本相同。但在或减1时,尾数相应移1位;若基值为8,则
 - (2) 基值为2:最大正数为2¹⁵×(1-2⁻¹⁶ 基值为8:最大正数为8¹⁵×(1-2⁻¹⁶
 - (3) 基值为8时,数的表示范围大。

7、给定下列十六进制数,若将此数分别视为无符号数、原码、补码、反码和移码表示,写出其对应的十进制整数值(有符号数的符号位占1位)

00H; 05H; 7FH; 80H; 85H; FEH; FFH

-		
十六进制数	无符号数	原码
0 0	0	+0
0 5	5	+5
7 F	127	+127
8 0	128	-0
8 5	133	-5
F E	254	-126
F F	255	-127

^{8、}已知机器数字长为4位(其中1位为符号位),写出定点机(包括小数定点机和整数定点机两种)中原码、补码和反码的全部形式,并注明其对应的十进制真值。

小数对

机器数形式	原码对应的真值
0000	+0
0001	+1/8
0 0 1 0	+2/8
0 0 1 1	+3/8
0 1 0 0	+4/8
0 1 0 1	+5/8
0 1 1 0	+6/8
0 1 1 1	+7/8
1000	-0
1001	-1/8
1010	-2/8
1011	-3/8
1 1 0 0	-4/8
1 1 0 1	-5/8
1 1 1 0	-6/8
1 1 1 1	_7/8

机器数形式	原码对应的真值
0 0 0 0	+0
0 0 0 1	+1
0010	+2
0 0 1 1	+3
0 1 0 0	+4
0101	+5
0 1 1 0	+6
0 1 1 1	+7
0001	-0
1001	-1
1010	-2
1011	-3
1 1 0 0	-4
1 1 0 1	-5
1110	-6
1 1 1 1	-7

$$y_{\text{N}} = y_0.y_1y_2...y_n$$
, π $[-y]_{\text{A}}$

正确答案:

设
$$y_0 = 0$$
, 有
$$[y]_{4h} = 0. \ y_1 \ y_2 \cdots y_n$$

$$y = 0. \ y_1 \ y_2 \cdots y_n$$

$$-y = -0. \ y_1 \ y_2 \cdots y_n$$

$$[-y]_{4h} = [-0. \ y_1 \ y_2 \cdots y_n]_{4h}$$

$$[-y]_{4h} = 1. \ \overline{y_1} \ \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

$$\ \partial y_0 = 1, \ \overline{q}$$

$$[y]_{4h} = 1. \ y_1 y_2 \cdots y_n + 2^{-n}$$

$$y = -(0. \ \overline{y_1} \ \overline{y_2} \cdots \overline{y_n} + 2^{-n})$$

$$-y = 0. \ \overline{y_1} \ \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

$$[-y]_{4h} = 0. \ \overline{y_1} \ \overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

可见, $[-y]_{*}$ 由 $[y]_{*}$ 每位求反末位加1求行

10、设浮点数字长16位,其中阶码5位(含1位阶符),尾数11位(含1位数符),写出x=-29/1024对应的浮点规格化数的原码、补码、反码和阶码用移码、尾数用补码表示。

正确答案:

设
$$x = (-29/1\ 024)_{+} = -0.0000011101 = 2^{-1}$$
[x]_原 = 1,0101; 1.1110100000
[x]_补 = 1,1011; 1.0001100000

 $[x]_{5} = 1,1010; 1.00010111111$

阶码用移码,尾数用补码的机器数形式是0

11、设浮点数字长16位,其中阶码5位(含1位阶符),尾数11位(含1位数符),写出x=-53/512对应的浮点规格化数的原码、补码、反码和阶码用移码、尾数用补码表示。

正确答案:

设
$$x = (-53/512)_{+} = -0.000110101 = 2^{-11} \times [x]_{\bar{R}} = 1,0011; 1.1101010000$$
 $[x]_{+} = 1,1101; 1.0010110000$
 $[x]_{\bar{L}} = 1,1100; 1.0010101111$

阶码用移码、尾数用补码的机器数形式是0

- 12、设机器字长为16位,定点表示时,尾数15位,阶符1位。
 - (1) 定点原码整数表示时,最大正数为多少?最小负数为多少?
 - (2) 定点原码小数表示时,最大正数为多少?最小负数为多少?

正确答案:

已知机器字长为16位, 定点表示时, 尾数15位, 阶符1位。则有

- (1) 定点原码整数表示时,当表示最大的正整数时,小数点应该在数值位的后面, 阶符1位,整数位15位,即0,111 1111 1111 1111,所以最大正数为(2¹⁵– 1)10=(32767)₁₀;最小的负整数也和最大的正整数一样,只不过阶符为1,表示负数,即 1,111 1111 1111 1111。所以该最小负数为-(2¹⁵–1)₁₀=(-32767)₁₀。
- (2) 定点原码小数表示时,当表示最大的正整数时,该数为 $0.111\ 1111\ 1111$ $1111, (1-2^{-15})_{10}$; 当表示最小的负数为 $1.111\ 1111\ 1111\ 1111, 即-(1-2^{-15})_{10}$ 。
- 13、设浮点数字长为16位,其中阶码为5位(含1位阶符),尾数为11位(含1位数符),写出-23/128对应的浮点规格化数的原码形式、补码形式、反码形式和阶码用移码、尾数用补码的形式。

正确答案:

根据题意,浮点数字长是16位,阶码为5位(含1位阶符),尾数为11位(含1位数符)。-23写成二进制数即-10111,-23/128只需将-10111右移7位即可,移位的结果为-0.0010111,即-0.100111×2⁻¹⁰。则浮点规格化数的原码形式为1,0010;1.1011100000。

补码的运算规则为原码除符号位(包括阶码和尾数的符号位)之外,每位求反(包括阶码和尾数的数值位),再加1。注意尾数和阶码分开处理。浮点规格化数的补码形式为1,1110; 1.0100100000。

反码的运算规则为原码除符号位(包括阶码和尾数的符号位)之外,每位求反 (包括阶码和尾数的数值位)。注意尾数和阶码分开处理。浮点规格化数 1,0011; 1.1011000000的反码形式为1,1101; 1.0100011111。

移码(又叫增码)是符号位取反的补码,一般用作浮点数的阶码,引入的目的是为了保证浮点数的机器零为全0。浮点规格化数阶码用移码,尾数用补码是常见的一种表述形式。阶码的补码为1,1110,用移码表示为1,1110,尾数的补码是1.0100100000。所以该数的阶码用移码,尾数用补码表示为1,1110;1.0101000000。

六、共用选项题(共7题,24.7分)

- 1、用n+1位字长表示定点数(其中1位为符号位),它所能表示的整数范围是①,它 所能表示的小数范围是②。
- (1)-(2) 题共用备选答案:
- A. $0 \le |N| \le 2^n 1$
- B. $0 \le |N| \le 2^{n+1}-1$
- C. $0 \le |N| \le 1 2^{-(n+1)}$
- D. $0 \le |N| \le 1 2^{-n}$
- (1) 它所能表示的整数范围是
- (2) 它所能表示的小数范围是
- 正确答案: (1)A(2)D
- 2、32位字长的浮点数,其中阶码8位(含1位阶符),尾数24位(含1位数符),则其对应的最大正数为①,最小负数为②,最小的绝对值为③;若机器数采用补码表示,且尾数为规格化形式,则对应的最大正数为④,最小正数为⑤,最小负数为⑥。
- (1)-(6) 题共用备选答案:
- A. $2^{127}(1-2^{-23})$
- B. $-2^{127}(1-2^{-23})$
- C. 2⁻¹²⁹
- D. -2^{+127}
- E. 2^{-128} x 2^{-23}
- $F. 2^{-127} x 2^{-23}$
- (1)(1)

A. $-2^{64} \sim 2^{64} (1-2^{-8})$ B. $-2^{63} \sim 2^{63} (1-2^{-8})$ C. $-2^{63} \sim 2^{63} (1-2^{-9})$ D. $-2^{63} (1-2^{-8}) \sim 2^{63} (1-2^{-8})$
(1) ① (2) ② 正确答案: (1)D(2)B
4、16位长的浮点数,其中阶码7位(含1位阶符),尾数9位(含1位数符),当机器数采用原码表示时,它所能表示的最接近0的负数是①。当采用补码表示时,它所能表示的最接近0的负数是②。
(1)-(2) 题共用备选答案: A2 ⁻⁷¹ B2 ⁻⁷² C2 ⁻⁷³
(1) ① (2) ② 正确答案: (1)A(2)B
5、十进制数56的十六进制表示为(①),十进制数-39的十六进制表示为(②)(负数用补码表示)。
(1)-(2) 题共用备选答案: A. D8 B. D9 C. 56

3、16位长的浮点数,其中阶码7位(含1位阶符),尾数9位(含1位数符),当浮点数采用原码表示时,所能表示的数的范围是①;当采用补码表示时,所能表示的数的范

(2) (2) (3) (3) (4) (4) (5) (5) (6) (6)

围是②。

(1)-(2) 题共用备选答案:

正确答案: (1)A(2)B(3)F(4)A(5)C(6)D

- D. 38
- (1)(1)
- (2) (2)

正确答案: (1)D(2)B

- 6、十六进制数28的十进制表示为①,十六进制数E5的十进制数表示为②(负数用补码表示)。
- (1)-(2) 题共用备选答案:
- A. -26
- B. 24
- C. 40
- D. -27
- (1)(1)
- (2) (2)
- 正确答案: (1)C(2)D
- 7、设待校验的数据为D8~D1=10101011, 若采用海明码校验, 其海明码为(①)(设海明码具有一位纠错能力, P13采用全校验); 若采用CRC, 且生成多项式为10011,则其CRC码为(②)。
- (1)-(2) 题共用备选答案:
- A. 0101001011111
- B. 0100001111111
- C. 101010111010
- D. 101010101011
- (1) (1)海明码
- (2) (2) CRC码

正确答案: (1)A(2)C

解析: 当采用海明码校验时,海明码为P13~P1: 01010 0101 1111 (带下画线的数为校验位),其中P1=P3+P5+P7+P9+PP11=1,=1,P2=P3+P6+P7+P10+P11=1,P4=P5+P6+P7+P12=1,P8=P9+P108=P9+P10+P11+P12=0,P13位为全校验位,因为P12~P1中1的个数为偶数个,故P13=0;采用CRC时,将信息位左移4位,进行模2除,得余数为1010,故CRC码为10101011 1010。