Lecture 5

## Simple Linear Regression

DSC 40A, Fall 2024

#### **Announcements**

- Homework 1 is due Friday night.
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

## Agenda

- 0-1 loss
- Predictin rules using features
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.



Answer at q.dsc40a.com

## Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

## Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$L_{0,1}(y_i,h) = egin{cases} 0 & y_i = h \ 1 & y_i 
eq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = rac{1}{n} \sum_{i=1}^n L_{0,1}(y_i,h)$$

## Question 🤔

#### Answer at q.dsc40a.com

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0&y_i=h\ 1&y_i
eq h \end{cases}$$

Suppose  $y_1, y_2, \ldots, y_n$  are all unique. What is  $R_{0,1}(y_1)$ ?

- A. O.
- B.  $\frac{1}{n}$ .
- $igl( \bullet \ \ \mathsf{C}. \ \frac{n-1}{n}. igl)$
- D. 1.

## Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

$$= \text{propertion of all points not equal to h}$$

$$\text{unique}$$

$$M_{\text{Inimited}} \text{ for } h = y_i \text{ where } y_i \text{ is the most frequent value in the dataset.}$$

$$h^* = \text{Node } (y_1, y_2, \dots, y_n)$$

$$\text{Nost common value}$$

## Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions,  $h^*!$ 

|               | Loss         | Minimizer | Always<br>Unique? | Robust to Outliers? | Differentiable? |
|---------------|--------------|-----------|-------------------|---------------------|-----------------|
| <del></del> > | $L_{ m sq}$  | mean      | yes 🗸             | no X                | yes <a></a>     |
|               | $L_{ m abs}$ | median    | no X              | yes 🗸               | no X            |
|               | $L_{\infty}$ | midrange  | yes 🗸             | no X                | no X            |
|               | $L_{0,1}$    | mode      | no X              | yes 🗸               | no X            |

The optimal predictions,  $h^*$ , are all **summary statistics** that measure the **center** of the dataset in different ways.

## Predictions with features

## Towards simple linear regression



- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, H(x)=h.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model,  $H(x)=w_0+w_1x.$
- This will allow us to make predictions that aren't all the same for every data point.

## Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.

Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model,  $H(x)=w_0+w_1x$ , has two parameters:  $w_0$  and  $w_1$ .



## The modeling recipe

1. Choose a model.

2. Choose a loss function.

bose a loss function.
$$\int_{a} \left( H(x_i), y_i \right) = \int_{a} \int_{a$$

3. Minimize average loss to find optimal model parameters.

#### **Features**

A **feature** is an attribute of the data – a piece of information.

- Numerical: maximum allowed speed, time of departure
- Categorical: day of week
- Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table). **D**eparture time Day of week | Accident on route Commute time Monday 101 yes **8**:03 Tuesday 87 no 0:20 Wednesday 79 yes **8**:30 Thursday 76 no

## Modeling

- We believe that commute time is a function of departure time.
- I.e., there is a function H so that: commute time pprox H departure time)
- *H* is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule *H*.

## **Possible Hypothesis Functions**

- $H_1$ (departure time) = 90 10 ·(departure time-7)
- $H_2$ (departure time) = 90 (departure time-8)<sup>2</sup>
- $H_3$ (departure time) = 20 + 6·departure time

These are all valid prediction rules.

Some are better than others.

## **Comparing predictions**

- How do we know which hyppthesis is best:  $H_1, H_2, H_3$ ?
- We gather data from n days of commute. Let  $x_i$  be departure time,  $y_i$  be commute time:

```
(departure time_1 , commute time_1) (x_1,y_1) (departure time_2 , commute time_2) (x_2,y_2) \cdots (departure time_n , commute time_n) (x_n,y_n)
```

See which rule works better on data.

#### Commuting Time vs. Home Departure Time



the best on?

but how do we know?

## Quantifying the performance of a model

• Reminder: one loss function, which measures how far  $H(x_i)$  is from  $y_i$ , is absolute loss. (H(xi)-yi)

ullet The mean absolute error of H(x) is

$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^n |y_i - H(x_i)|$$
 departure time

- ullet We want the **best** prediction,  $H^*(x)$ .
- The smaller  $R_{
  m abs}(h)$  is, the better the hypothesis.

#### Mean absolute error





## Finding the best hypothesis H(x)

- ullet Goal: out of all functions $\mathbb{R} o \mathbb{R}$ , find the function H with the smallest mean absolute error.
- That is,  $H^*$  should be the function that minimizes

$$R_{\mathrm{abs}}(h) = rac{1}{n} \sum_{i=1}^n |y_i - H(x_i))|.$$

## Finding the best hypothesis H(x)

- ullet Goal: out of all functions  $\mathbb{R} o \mathbb{R}$ , find the function H with the smallest mean absolute error.
- ullet That is,  $H^*$  should be the function that minimizes

$$R_{\mathrm{abs}}(h) = rac{1}{n} \sum_{i=1}^n |y_i - H(x_i))|.$$

There are two problems with this.

## Question Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?



• B. no



## Question Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?



B. no



#### **Problem**

- We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called **overfitting**.
- Remember our real goal: make good predictions on data we haven't seen.

#### **Solution**

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
  - $\circ$  Linear:  $H(x)=w_0+w_1x$ .  $\leftarrow$  this weh on linear  $\circ$  Quadratic:  $H(x)=w_0+w_1x_1+w_2x^2$ .  $\leftarrow$  In a few weeks
  - $\circ$  Exponential:  $H(x)=w_0e^{w_1x}$ .
  - $\circ$  Constant:  $H(x)=w_0$ .

## Finding the best linear model

- Goal: Out of all linear functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.
  - $\circ$  Linear functions are of the form  $H(x) = w_0 + w_1 x$ .
  - $\circ$  They are defined by a slope  $(w_1)$  and intercept  $(w_0)$ .
- ullet That is,  $H^*$  should be the linear function that minimizes

$$R_{abs}(H) = rac{1}{n} \sum_{i=1}^n ig| y_i - H(x_i) ig|$$

## Finding the best linear model

- Goal: Out of all linear functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.
  - $\circ$  Linear functions are of the form  $H(x)=w_0+w_1x$ .
  - $\circ$  They are defined by a slope  $(w_1)$  and intercept  $(w_0)$ .
- That is,  $H^*$  should be the linear function that minimizes

$$R_{abs}(H) = rac{1}{n} \sum_{i=1}^n ig| y_i - H(x_i) ig|$$

There is still a problem with this.

#### Problem #2

It is hard to minimize the mean absolute error:

$$R_{abs}(H) = rac{1}{n} \sum_{i=1}^n \left| y_i - H(x_i) 
ight|$$
• Not differentiable! We can't use calculus

- What can we do?

## Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function  $H^{st}(x)$  that minimizes empirical risk:

MSE 
$$R_{\mathrm{sq}}(H) = rac{1}{n} \sum_{i=1}^{n} \left( y_i - H(x_i) 
ight)^2$$
 $\mu(x_i) = V_0 + V_1 \times i$ 

• Since linear hypothesis functions are of the form  $H(x)=w_0+w_1x$ , we can rewrite  $R_{\rm sq}$  as a function of  $w_0$  and  $w_1$ :

$$R_{ ext{sq}}(w_0,w_1)=rac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)^2$$

ullet How do we find the parameters  $w_0^*$  and  $w_1^*$  that minimize  $R_{
m sq}(w_0,w_1)$ ?

#### Loss surface

For the constant model, the graph of  $R_{\rm sq}(h)$  looked like a parabola.



What does the graph of  $R_{\rm sq}(w_0,w_1)$  look like for the simple linear regression model?



# Minimizing mean squared error for the simple linear model

## Minimizing multivariate functions

• Our goal is to find the parameters  $w_0^*$  and  $w_1^*$  that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) 
ight)^2.$$

- $R_{\mathrm{sq}}$  is a function of two variables:  $w_0$  and  $w_1$ .
- To minimize a function of multiple variables:

Take partial derivatives with respect to each variable.
 Set all partial derivatives to 0.
 Solve the resulting system of equations.
 Ensure that you've found a minimum, rather than a maximum or saddle point

- (using the second derivative test for multivariate functions).

## Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$

## Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left( y_i - \left( w_0 + w_1 x_i 
ight) 
ight)^2$$

To find the  $w_0^*$  and  $w_1^*$  that minimize  $R_{\mathrm{sq}}(w_0,w_1)$ , we'll:

- 1. Find  $\frac{\partial R_{\mathrm{sq}}}{\partial w_0}$  and set it equal to 0.
- 2. Find  $\frac{\partial R_{\text{sq}}}{\partial w_1}$  and set it equal to 0.
- 3. Solve the resulting system of equations.

## Question 🤔

#### Answer at q.dsc40a.com

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) 
ight)^2 .$$

Which of the following is equal to  $\frac{\partial R_{\text{sq}}}{\partial w_0}$ ?

$$ullet$$
 A.  $\dfrac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)$ 

• B. 
$$-\frac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1x_i)\right)$$

$$ullet$$
 C.  $-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}$ 

$$ullet$$
 D.  $-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)$ 

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left( y_i - \left( w_0 + w_1 x_i 
ight) 
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_0} &= \ \end{array}$$

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left( y_i - \left( w_0 + w_1 x_i 
ight) 
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_1} &= \ \end{array}$$

## **Strategy**

We have a system of two equations and two unknowns ( $w_0$  and  $w_1$ ):

$$-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

To proceed, we'll:

- 1. Solve for  $w_0$  in the first equation. The result becomes  $w_0^*$ , because it's the "best intercept."
- 2. Plug  $w_0^*$  into the second equation and solve for  $w_1$ . The result becomes  $w_1^*$ , because it's the "best slope."

## Solving for $w_0^st$

$$-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)=0$$

## Solving for $w_1^*$

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}=0$$

## Least squares solutions

We've found that the values  $w_0^*$  and  $w_1^*$  that minimize  $R_{\mathrm{sq}}$  are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i \qquad \qquad ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

These formulas work, but let's re-write  $w_1^*$  to be a little more symmetric.

## An equivalent formula for $w_1^*$

Claim:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})} = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}$$

Proof:

## Least squares solutions

• The **least squares solutions** for the intercept  $w_0$  and slope  $w_1$  are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

- We say  $w_0^*$  and  $w_1^*$  are **optimal parameters**, and the resulting line is called the regression line.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- ullet To make predictions about the future, we use  $H^*(x)=w_0^*+w_1^*x$  .

#### Let's test these formulas out in code! Follow along here.



## Causality





Can we conclude that leaving later causes you to get to school quicker?

#### What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions. Next, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
  - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss causality.
- Learn how to build regression models with multiple inputs.
  - To do this, we'll need linear algebra!