Teoria dei Campi e di Galois

LEMMI DIMOSTRATI

- 1. (Formula del grado nelle torri di estensioni) Siano $K \subseteq F \subseteq L$. Allora $[L:K] = [L:F] \cdot [F:K]$
- 2. (**Ogni estensione finita è algebrica**) Ma il viceversa è falso...
- 3. (**Fin.Gen. da elementi Algebrici** \implies **Finita**) Se F/K è finitamente generata da elementi algebrici, allora F/K è finita
- 4. (Esistenza del sottocampo fondamentale) Ogni campo K contiene un sottocampo fondamentale che può essere \mathbb{Q} , oppure \mathbb{F}_p
- 5. (**Teorema fondamentale dell'Algebra**) Il campo $\mathbb C$ è algebricamente chiuso
- 6. (Esistenza ed unicità della chiusura algebrica) Sia K campo. Allora $\exists \bar{K}$ chiusura algebrica di K. Inoltre se \bar{K} e $\bar{K'}$ sono chiusure algebriche di K allora $\exists \phi: \bar{K} \to \bar{K'}$ isomorfismo tale che $\phi \mid_{K} \equiv id$. Inoltre la se K è infinito, la chiusura algebrica \bar{K} ha la stessa cardinalità di K
- 7. (Estensione di Omomorfismi) $K \subseteq F$ e $\phi: K \to L$ e F/K algebrica. Allora $\exists \tilde{\phi}: F \to L$ tale che $\tilde{\phi} \mid_{K} \equiv \phi$. Inoltre, se $F = K(\alpha)$ il numero di estensioni possibili di ϕ è uguale al numero di radici distinte di $\phi(\mu_{\alpha})$ in \bar{K} .
- 8. (Condizioni equivalenti alla normalità) F/K algebrica. Allora sono fatti equivalenti:
 - F/K è normale
 - $\forall f \in K[x]$ irriducibile, se f ha una radice in F allora si spezza completamente in F
 - F è il campo di spezzamento di una famiglia di polinomi di K[x]
- 9. (Criterio della Derivata) $f \in K[x]$, deg $f \ge 1$. Allora vale:
 - f ha radici multiple \Leftrightarrow MCD $(f, f') \neq 1$
 - f irriducibile in K[x]. Allora f ha radici multiple $\Leftrightarrow f' \equiv 0$
- 10. (Corollario utile della Derivata) $f \in K[x]$ irriducibile. Allora
 - Char $K = 0 \implies f$ è separabile
 - Char $K = p \implies$ Sia r il massimo intero tale che $f(x) = g(x^{p^r})$ Allora si ha che ogni radice di f ha molteplicità p^r , g è irriducibile e separabile e gli zeri di f sono le radici p^r -esime degli zeri di g
- 11. (Caratterizzazione dei campi perfetti) Se Char K=0 oppure se $K=\mathbb{F}_{p^n}$ allora K è perfetto. In realtà vale che, se Char K=p, allora K è perfetto se e solo se il morfismo di Frobenius $(x\mapsto x^p)$ è surgettivo
- 12. (Grado di separabilità su estensioni semplici) $L=K(\alpha)$ con α algebrico su K e di polinomio minimo μ_{α} . Allora
 - $[K(\alpha):K]_S = \text{numero}\{\text{radici distinte di }\mu_\alpha \text{ in } \bar{K}\}$
 - α è separabile su $K \Leftrightarrow [K(\alpha) : K]_S = [K(\alpha) : K]$
 - Se Char K=p e p^r è la molteplicità di α in μ_{α} allora $[L:K]=p^r[L:K]_S$
- 13. (Il grado di separabilità è moltiplicativo) $K\subseteq L\subseteq M$ algebriche. Allora $[M:K]_S=[M:L]_S\cdot [L:K]_S$

Proprietà delle estensioni

Proprietà	Torri	Shift	Composto	Implica
Finita	✓	✓	~	Algebrica
Algebrica	✓	✓	✓	
Normale	×	✓	✓	
Separabile				

Proprietà delle chiusure

Chiusura

Proprietà varie Se K è infinito \bar{K} ha la stessa cardinalità Se F/K è finita anche \tilde{F}/K è finita Chiusura Algebrica Chiusura Normale