Project 2 Report Data Cluster using K-means algorithm provided by the system.

Submitted By: Priyank Arora (1001553349)

Description:

Using k-mean algorithm to split the data into k classes and calculating the accuracy using Hungarian algorithm,

- 1. We use the same number of classes in kmean as there is in original data.
- 2. Obtain the confusion matrix using the original labels and predicted labels.
- 3. Use hungarian algorithm to solve the confusion matrix and obtain the accuracy of k means.

Language Used	Python (2.7.12)								
Library used	Numpy, sklearn								
Files used	ATNTFaceImages400.txt, HandWrittenLetters.txt, project2.py								

TASKS

Task A: Run k-means on AT&T 100 images, set K=10. Obtain confusion matrix. Re-order the confusion matrix and obtain accuracy.

Command	python project2.py A										
Output	Cont	Confusion Matrix									
	11	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	10	Θ]
	[(Θ	Θ	10	Θ	Θ	0	Θ	Θ	Θ	0]
	Ī	5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	5]
	[4	4	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	6]
	[(Θ	Θ	Θ	Θ	Θ	Θ	Θ	10	Θ	Θ]
	[(Θ	Θ	Θ	10	Θ	Θ	Θ	Θ	Θ	Θ]
	[(Θ	Θ	Θ	Θ	Θ	10	Θ	Θ	Θ	Θ]
	[(Θ	Θ	Θ	Θ	10	Θ	Θ	Θ	Θ	Θ]
	[(Θ	10	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ]
	[]	1	Θ	Θ	Θ	Θ	Θ	9	Θ	Θ	Θ]]
	Reo	rd	ere	ed M	lati	rix					
	1]	5	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	4]
	[(Θ	10	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ]
	[(Θ	Θ	10	Θ	Θ	Θ	Θ	Θ	Θ	Θ]
	[(Θ	Θ	Θ	10	0	Θ	Θ	Θ	Θ	0]
]	Θ	Θ	Θ	Θ	10	Θ	Θ	Θ	Θ	Θ]
	[(Θ	Θ	Θ	Θ	Θ	10	Θ	Θ	Θ	Θ]
	7. 1.	Θ	0	Θ	Θ	Θ	Θ	9	Θ	Θ	Θ]
		Θ	Θ	Θ	Θ	Θ	Θ	Θ	10	Θ	Θ]
	[(Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	10	Θ]
	[:	5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	6]]
	Acci	ur	acy	/ =	90.	009	6				COURSE CONTRACT OF STREET

Task B: Run k-means on AT&T 400 images, set K=40. Obtain confusion matrix. Re-order the confusion matrix and obtain accuracy.

Command	python project2.py B									
Output	Confusion Matrix [[0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 9 0 0] [0 0 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 4]] Reordered Matrix [[10 0 0 0 0 0] [0 10 4 0 0 0] [0 0 0 0 0 0] [0 0 0 9 0 0] [0 0 0 9 0 0] [0 0 0 0 9 0] [0 0 0 0 0 6]] Accuracy = 73.25%									

Task C: Run k-means on Hand-written-letters data, set K=26, as above.

Command	python project2.py C																			
Output]	0	Θ Θ]	16	1	11	0	0	3	Θ	Θ	Θ	0	0	0	2	0	3	0	Θ
	[2	0 0]	6	2	Θ	Θ	Θ	Θ	3	1	2	Θ	Θ	Θ	1	Θ	1	Θ	Θ
	[0	1 0]	Θ	13	2	2	1	1	Θ	0	5	Θ	Θ	Θ	Θ	Θ	Θ	3	Θ
]	0	Θ Θ]	0	1	Θ	Θ	Θ	Θ	Θ	1	1	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ
]	Θ 17	0 10]	0	4	Θ	Θ	Θ	Θ	Θ	Θ	0	1	Θ	3	Θ	7	Θ	Θ	Θ
	[9	0 11]	Θ]	1	1	Θ	Θ	Θ	Θ	Θ	12	Θ	Θ	5	Θ	3	Θ	2	1
	Ac	cui	racy	=	46	. 55%	5													