TRAL LIBRARY PILANI (RAJASTHAN)

Call No.

546 M527

v. 16

Accession No

19941

A COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY

VOLUME XVI
Pt and General Index, Completing the Series

BY THE SAME AUTHOR

A COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY, in 16 volumes.

Vol. I. H.O.

With 274 Diagrams.

Vol. II. F, Cl, Br, I, Li, Na, K, Rb, Cs.

With 170 Diagrams.

Vol. III. Cu, Ag, Au, Ca, Sr, Ba.

With 158 Diagrams.

Vol. IV. Ra and Ac Families, Be, Mg, Zn, Cd, Hg.

With 232 Diagrams.

Vol. V. B, Al, Ga, In, Tl, Sc, Ce, and Rare Earth Metals, C (Part I).

With 206 Diagrams.

Vol. VI. (C Part II), Si, Silicates.

With 221 Diagrams.

Vol. VII. Ti, Zr, Hf, Th, Ge, Sn, Pb, Inert Gases.

With 235 Diagrams.

Vol. VIII. N, P.

With 156 Diagrams.

Vol. IX. As, Sb, Bi, V, Cb, Ta.

With 161 Diagrams.

Vol. X. S, Se.

With 217 Diagrams.

Vol. XI. Te, Cr, Mo. W.

With 221 Diagrams.

Vol. XII. U, Mn, Ma and Re, Fe (Part I).

With 320 Diagrams.

Vol. XIII. Fe (Part II).

With 381 Diagrams.

Vol. XIV. Fe (Part III), Co.

With 277 Diagrams.

Vol. XV. Ni, Ru, Rh, Pd, Os, Ir.

With 423 Diagrams.

Vol. XVI. Pt and General Index.

With 94 Diagrams.

MODERN INORGANIC CHEMISTRY.

New Edition. Revised and Edited by G. D. PARKES, M.A., D. Phil., in Collaboration with J. W. Mellor, D.Sc., F.R.S.

A COMPREHENSIVE TREATISE ON

INORGANIC AND THEORETICAL CHEMISTRY

BY
J. W. MELLOR, D.Sc., F.R.S.

VOLUME XVI

WITH 94 DIAGRAMS

LONGMANS, GREEN AND CO. LONDON • NEW YORK • TORONTO

LONGMANS, GREEN AND CO. LTD.

6 & 7 CLIFFORD STREET, LONDON, W.I

NICOL ROAD, BOMBAY, I

17 CHITTARANJAN AVENUE, CALCUTTA, I3

36A MOUNT ROAD, MADRAS, 2

LONGMANS, GREEN AND CO.

55 FIFTH AVENUE, NEW YORK, 3

LONGMANS, GREEN AND CO.

215 VICIORIA STREET, TORONTO, I

Pirst Published . . . 1937 Reprinted by Novographic Process March 1947

CODE NUMBER 95266

PREFACE

THE publication of this, the sixteenth volume, marks the completion of the Comprehensive Treatise on Inorganic Chemistry as planned. has been a heavy task to prepare a comprehensive review of so vast a field, and it has inevitably taken a considerable time to complete. The first volume was published in 1922, and succeeding volumes have appeared at regular intervals, until with the publication of the present volume the ordered treatment of the subject has reached its appointed goal. Every attempt has been made to ensure that each volume embodies the information available when sent to press and subsequent developments can readily be traced in the Abstracts of the Chemical Societies. There have, however, been great developments in recent years and many important discoveries have been made, particularly in connection with the elements which were treated in the early volumes. These developments have rendered it advisable to prepare two Supplementary Volumes, which will bring the subjects up to date and include the results of the most recent research.

There is also an ill-defined borderland between Organic and Inorganic Chemistry, particularly in connection with some of the Carbon Compounds of Hydrogen and Nitrogen. It has therefore been decided to plan and prepare a special volume dealing with these borderland compounds. The publishers are making the necessary arrangements for this work to be done, and it is hoped that these three Supplementary Volumes will still further increase the usefulness of the Comprehensive Treatise.

It is a very great pleasure to me to thank Messrs. L. S. Theobald, M.C., A.R.C.S., A. T. Green, F.Inst.P., A.I.C., and F. H. Clews, M.Sc., A.I.C., for their great assistance in reading the proofs of the whole series of volumes and for the many valuable suggestions which they put forward. I would also thank the typists, and those who have checked the references.

CONTENTS

CHAPTER LXXIV

PLATINUM

§ 1.	The History of the Platinum Metals (1); § 2. The Occurrence of the Platinum Metals
	(5); § 3. The Extraction of Platinum (22); § 4. The Purification of Platinum (34);
	§ 5. Qualitative Recognition of the Platinum Metals (35); § 6. Quantitative Deter-
	mination of the Platinum Metals (37); § 7. Some Different Forms of Platinum (46);
	§ 8. Colloidal Platinum (54); § 9. The Structure of Platinum (59); § 10. The
	Mechanical Properties of Platinum (62); § 11. The Thermal Properties of Platinum
	(69); § 12. The Optical Properties of Platinum (80); § 13. The Electrical and
	Magnetic Properties of Platinum (97); § 14. The Chemical Properties of Platinum
	(136); § 15. The Atomic Weight and Valency of Platinum (190); § 16. Intermetallic
	Compounds and Alloys of Platinum (194); § 17. The Lower Oxides of Platinum and
	their Hydrates (235); § 18. Intermediate Oxides (240); § 19. The Higher Oxides
	of Platinum (242); § 20. Platinum Fluorides (249); § 21. Platinum Mono-, Di-,
	and Tri-Chlorides (251); § 22. Platinum Tetrachloride (292); § 23. The Platinum
	Ammines (347); § 24. Platinous Bromide (370); § 25. Platinous Iodide (384); § 26.
	Platinic Iodide (387); § 27. Platinum Sulphides (393); § 28. Platinous Sulphates
	(400); § 29. The Platinum Carbonates (407); § 30. The Platinum Nitrates (408);
	§ 31. Platinum Phosphates (416).

General Index	41	g
---------------	----	---

CHAPTER LXXIV

PLATINUM

§ 1. The History of the Platinum Metals

PLATINUM is one member of a family of six elements called the **platinum metals**. They usually occur together so that before the discovery of the companion elements, the term platinum was applied to an alloy with platinum as the dominant metal. The same thing is often done to-day. The platinum metals, with their sp. gr., are as follow:

					Heavy	IRIDIUM	(21·45) (22·38) (22·47)
Platinum metals	•	•	•	•	1 1	PALLADIUM RHODIUM RUTHENIUM	(11·90) (12·10)

M. Berthelot 1 reported that an Egyptian casket, found at Thebes, and dating from the seventh century B.C., contained platinum, or rather an alloy of platinum, iridium, and gold. There is, however, no evidence to show that the alloy was to the Egyptians anything more than a metal. In 1790, A. M. Cortenvois tried to prove that the electrum—3. 23, 1—of the ancients was platinum, and J. S. C. Schweigger, that the electrum mentioned by Pausanis, in his $\Pi \epsilon \rho i \eta \gamma \eta \sigma i s$, written about the second century of our era, was also platinum. The following passage from Pliny's Historiae naturalis (34. 47), written in the first century of our era, has also been quoted in support of the assumption that cassiteros, or plumbum candidum, was platinum. Pliny said:

It is now known that it (cassiteros) is a production of Lusitania and Gallæcia. It is a sand found on the surface of the earth, and of a black colour, and can be detected only by its weight. It is mingled with small pebbles, particularly in the dried beds of rivers. The miners wash this sand, and calcine the deposit in a furnace. It is slso found in the gold mines that are known as alutiæ or talutiæ, the stream of water which is passed through them detaches certain black pebbles mottled with small white spots and of the same weight as gold. Hence it is that they remain with gold in the baskets in which it is collected; and being separated in the furnace, are then melted, and become converted into album plumbum.

F. Hoefer, and C. de Paravey suggested that the "heavy black pebbles" contained platinum presumably because of their weight, but Pliny's ideas of specific gravity were very vague, and in one place he even said that lead is heavier than gold. H. Kopp, and E. L. Schubarth very rightly considered that these far-fetched allusions have no connection at all with platinum. In the sixteenth century, J. C. Scaliger, writing against G. Cardanus' dictum that all metals are fusible, said that there is a metallic substance in the mines of Mexico and Darian (Panama) which cannot be melted in the Spanish furnaces. It is considered that this metallic substance was probably that which was afterwards called platinum because platinum is now known to occur in these very districts. A: N. von Scherer also said that from a reference in B. A. Balbin's Epitome it appears as if platinum was known to the Bohemian Jesuits at the end of the sixteenth century. Towards the middle of the eighteenth century, A. de Ulloa accompanied the expedition sent from France to measure the arc of the meridian at the equator, and in his account

of the voyage, he mentioned that in the mines of El Chocò, Colombia, South America, there is an unworkable, metallic stone called platina which makes even gold ores useless if it is associated with them in large proportions. The South American platinum mines were described by F. J. de Caldas, G. Mollien, T. C. de Mosquera, J. M. Restrepo, V. Restrepo, and A. M. del Rio. E. P. C. Meyer wrote on the history of platinum.

About 1741, W. Brownrigg received a specimen of native platina from C. Wood, a metallurgist in Jamaica, who said that he had obtained it from Carthagina, Granada. The metal was examined by W. Watson, who regarded it as a semimetal. Other specimens from Spanish America found their way into Europe about this time, and were examined notably by T. Scheffer, A. S. Marggraf, W. Lewis, P. J. Macquer and A. Baumé, P. Bergsöe, etc. Some of the early descriptions were based on the properties of the crude mineral, and did not apply to platinum per se.

Some of the early specimens of platina were contaminated with minute globules of mercury because the minoral had been previously ground with mercury in mills with the object of dissolving out the gold. Until assayers had learned to deal with the alloy of platinum and gold in cupellation processes, gold could be adulterated with platina without being detected by the sp. gr. tests, or by cupellation processes then available. W. Lewis reported that some bars of gold had been received from some Spaniards in payment for goods, and that the bars were very brittle, and could not be refined so that they were "quite useless"; and also, on this account, the Dutch refiners at Dort are said to have called platina diabolus metallorum. It was also said that the King of Spain had ordered the mines that afford the platina to be closed in order to prevent the fraudulent adulteration of gold; C. L. Berthollet and B. Pelletier said that the Spanish Government, for a similar reason, had ordered a consignment of platinum or gold debased by platinum to be thrown into the sea.

The term plating is the diminutive form of the Spanish plata, silver, and it was applied in allusion to the silvery colour of the metal. T. Scheffer called it aurum album or white gold in allusion to its smaller value, or, as E. Uricoechea suggested, to its silver-white colour, and to its close resemblance to gold in many of its properties. It was also called the seventh metal, since, excluding alloys, six elemental metals were then known—1. 1, 1. It was also called platina del Pinto, since some specimens from South America came from the neighbourhood of the river—Rio di Pinto. It was also called Juan blanco, which, according to W. Lewis, arose from some frauds practised with it, from the difficulty in separating from it any associated gold, from its refractoriness in the hands of workmen, just as black-jack is applied to a mock ore which outwardly resembles the true metallic ore, but in the usual way of trials does not yield any metal. Juan blanco would then be equivalent to white-jack, white rogue, or white mock metal. More probably Juan blanco refers to the San Juan in the El Chocò district, and it is probable that the river Pinto was one of the tributaries of the San Juan. The term platinum ultimately crystallized from all these appellations.

E. Milly said that platinum is not an element, but rather an alloy of gold, iron, and mercury; and G. G. L. de Buffon, that it is an alloy of gold and iron. These hypotheses were not acceptable to M. Blondeau, and L. B. G. de Morveau. The observations of W. Lewis, T. Scheffer, A. Cronstedt, A. S. Marggraf, P. J. Macquer and A. Baumé, T. Bergman, T. Willis, C. von Sickinger, L. Crell, C. L. Berthollet and B. Pelletier, A. von Mussin-Puschkin, L. B. G. de Morveau, and J. L. Proust showed that platinum was entitled to rank as an elemental metal, sui generis, even though investigators at a later period separated platinum into a group of elements previously unknown.

There have been some erroneous, and some unverified reports of other elements in platina. Thus, G. Osann said that platinum ore from the Urals contains three new metals: ruthenium said to have a golden lustre; this unverified ruthenium is not to be confounded with the ruthenium discovered by C. Claus; polinium, later shown by G. Osann to be impure iridium; and pluranium, shown by G. Osann to be a mixture of silica, zirconia, and titania. C. F. Chandler reported a white metal in native platinum from Oregon which

resembled the white metal found by F. A. Genth in some Californian gold ores. The metal was unnamed, and the reports unverified. S. Kern reported the discovery of a new element in some platinum residues, and he named it davyum, but J. W. Mallet showed that davyum is a mixture of iridium, rhodium, and iron. T. Wilm reported a new element in platinum ores, but he did not assign to it a name, and A. Guyard reported an element ouralium in Russian platinum, but both reports are unconfirmed. A. del Campo y Cerdan and S. P. de Rubies could detect no new element in the platiniferous minerals from the Urals.

In April, 1803, R. Chenevix ³ received an anonymous circular to the effect that a new metal called **palladium** could be purchased at Forster's of Gerrard Street, Soho, London. The new metal had these properties, amongst others, which showed it to be a noble element previously unknown:

1. It dissolves in pure spirit of nitre, and makes a dark-red solution. 2. Green vitriol throws it down in the state of a regulus from this solution, as it always does gold from aqua regia. 3. If you evaporate the solution you get a red calk that dissolves in spirit of salt or other acids. 4. It is thrown down by quicksilver, and by all the metals but gold, platinum, and silver. 5. Its specific gravity by hammering was only 11·3; but by flattening as much as 11·8. 6. In a common fire the face of it tarnishes a little and turns blue, but comes bright again, like other noble metals, on being stronger heated. 7. The greatest heat of a blacksmith's fire would hardly melt it. 8. But if you touch it while hot with a small bit of sulphur, it runs as easily as zinc.

R. Chenevix believed this was a fraud; he bought up the whole stock; and, after investigating the question, concluded that the substance was not a new element, but rather a platinum-amalgam of peculiar properties. Following the publication of R. Chenevix at the Royal Society, May 13, 1803, where W. H. Wollaston was Secretary, there appeared an advertisement offering a reward to any one who could prepare a grain of this new substance either by R. Chenevix's method, or by any other. No one succeeded in securing the reward, and in 1804, W. H. Wollaston announced that he himself was the discoverer of the new element in platinum ore, and added that he selected the name palladium from the planet Pallas discovered in 1802. It is now difficult to understand why the Secretary allowed the communication of R. Chenevix to be recorded in the transactions of the society. The work of W. H. Wollaston was confirmed by V. Rose and A. F. Gehlen, L. N. Vauquelin, J. B. Trommsdorff, and J. J. Berzelius. The subject was discussed by A. M. White and H. B. Friedman, N. I. Stepanoff, E. K. Fritzman, and M. E. Weeks.

When W. H. Wollaston announced that he was the discoverer of palladium, he also intimated that he had found another new element in platinum ore, and had given it the name **rhodium**—from ρόδον, a rose—in allusion to the fact that soln. of the salts of the metal have a rose-red colour. The results were confirmed by J. J. Berzelius, and C. Claus. In 1803, H. V. Collet-Descotils, and A. F. de Fourcrov. and L. N. Vauquelin announced the existence of two metals in that part of platinum ore which is insoluble in aquaregia; and in 1804, S. Tennant showed that the residues contained two distinct metals, one was named iridium—from iris, the rainbow—on account of the varying colours of its salts, and the other, osmium—from doun, a smell, or odour—on account of the peculiar, chlorine-like odour of its volatile oxide. S. Tennant first thought of calling osmium ptenium—from mtevos, volatile, or winged—in allusion to the volatility of some of its compounds. The chemical relations of these two metals were examined by J. J. Berzelius. As indicated above, G. Osann's report of the discovery in 1828 of three new metals in the platinum ores of the Ural was never confirmed, but C. Claus did find that a residue thought to contain silica, zirconia, titania, and ferric oxide also contained a small proportion of a new metal; he extracted the same metal from the Ural ore, and, following G. Osann, he called the new element ruthenium—from Ruthenia, Russia. C. Claus also showed that many of the properties previously ascribed to iridium really belong to a mixture of iridium and ruthenium. The discovery of these four elements was discussed by M. E. Weeks.

REFERENCES.

¹ M. Berthelot, Compt. Rend., 132. 729, 1901; Ann. Chim. Phys., (7), 23. 5, 1901; A. M. Cortenvois, ib., (1), 12. 59, 1792; Che la platina americana era un metallo conosciuto dagli antichi, Bassano, 1790; Opuscoli scelti sulle scienze, Mailand, 1790; C. de Paravey, Compt. Rend., 31. 179, 1850; J. S. C. Schweigger, Journ. prakt. Chem., (1), 34. 385, 1845; E. L. Schubarth, Pogg. Ann., 85. 621, 1845; H. Kopp, Geschichte der Chemie, Braunschueig, 4. E. L. Schubarth, Pogg. Ann., 65. 621, 1845; H. Kopp, Geschichte der Chemie, Braunschweig, 4. 220, 1847; F. Hoefer, Histoire de la Chimie, Paris, 2. 368, 1843; Observations et recherches experimentules sur le platine, Paris, 6, 1841; M. E. Weeks, Journ. Chem. Educ., 9, 1017, 1932.

² B. A. Balbin, Epitome historica serum Bohemicarum, Pragae, 1679; T. Bergman, Abhand. Ges. Bögmen, 3. 337, 1777; Journ. Mines, 16. 25, 1792; Handl. Akad. Stockholm, 31, 1777; Abh. Svensk. Akad., 38, 317, 1777; Journ. Phys., 15. 38, 1780; P. Bergsöe, Nature, 137. 29, 1936; C. L. Berthollet and B. Pelletier, Ann. Chim. Phys., (1), 14. 20, 1792; M. Blondeau, Journ. Phys., 4. 154, 1774; W. Brownrigg, Phil. Trans., 46. 584, 1750; G. G. L. de Buffon, Journ. Phys., 3, 324, 1774; 4, 252, 324, 417, 1774; F. J. de Caldas, Semanario de la Nueva Granada, Paris, 205, 1848; A. del Campo y Cerdan and S. P. de Rubies, Anal. Fis. Quim., 11, 562, 1913. G. Cardanus, De sublibitate Paris, 1550; C. E. Chandler, Poog. Ann., 117, 190. 562, 1913; G. Cardanus, De subtilitate, Paris, 1550; C. F. Chandler, Pogg. Ann., 117. 190, 1862; Amer. Journ. Science, (2), 32. 351, 1862; C. Claus, Pogg. Ann., 64. 192, 1845; 65. 200, 1845; Bull. Acad. St. Petersburg, (2), 3. 38, 354, 1845; Liebig's Ann., 56. 257, 1845; Journ. prakt. Chem., (1), 32. 479, 1844; (1), 34. 173, 420, 1845; A. F. Cronstedt, Kong. vet. Akad. Handl., Stockholm, 221, 1764; L. Crell, Crell's Ann., i, 328, 1784; F. A. Genth, Amer. Journ. Science, (2), 15. 446, 1853; Proc. Acad. Phil., 9. 209, 1852; A. Guyard, Chem. News, 40. 57, 1879; Monit. Scient., (3), 9. 795, 1879; S. Kern, Chem. News, 36. 4, 92, 155, 164, A. S. Mern, Chem. News, 31, 1875; Month. Science, (3), 8. 635, 1875; S. Reth., Chem. Peters, 32, 1875; S. Reth., Chem. Peters, 32, 1875; S. Reth., Chem. 1757; Commercium Philosopho-Technicum, London, 443, 1763; P. J. Macquer and A. Baumé, Hist. Acad., Paris, 51, 1758; Mém. Acad., 119, 1758; J. W. Mallet, Amer. Chem. Journ., 20, 776, 1898; A. S. Marggraf, Mém. Berlin Acad., 31, 1757; Chymische Schriften, Berlin, 1, 1, 1761; E. P. C. Meyer, Science, (2), 75, 438, 1932; E. Milly, Journ. Phys., 4, 252, 324, 417, 1784; E. I. C. Meyer, Science, (2), 18. 438, 1952; E. Milly, Journ. Phys., 4. 252, 524, 411, 1184; G. Mollien, Voyage dans la République de Colombia, Paris, 1. 218, 1824; L. B. G. de Morveau, Journ. Phys., 6. 193, 1775; Crell's Ann., ii, 371, 1787; T. C. de Mosquera, Memoria sobre la geografia fisica i politica de la Neuva Granada, Bogota, 96, 1852; A. von Mussin-Puschkin, Ann. Chim. Phys., (1), 24. 205, 209, 1797; (1), 28. 85, 1798; (1), 54. 220, 1804; Journ. Mines, 15. 195, 1804; Nicholson's Journ., 9. 65, 1804; Phil. Mag., (1), 20. 76, 1804; G. Osann, Arch. Cles. Naturl., 16. 129, 1829; Mag. Pharm., 26. 294, 1929; Pogg. Ann., 13. 280, 1828; 14. 329, 1828; 15. 158, 1829. J. I. Provet. Ann. (Phim. Phys. (1), 88, 146, 225, 1801; Phil. Mag., 11. 1828; 15. 158, 1829; J. L. Proust, Ann. Chim. Phys., (1), 38. 146, 225, 1801; Phil. Mag., 11. 44, 118, 1801; Anal. Hist. Nat. Madrid, 1. 51, 1799; J. M. Restrepo, Historia de la revolucion de Republica de Colombia, Paris, 7. 124, 1827; V. Restrepo, Estudio sobra las minas de oro y plata de Colombia, Bogota, 1884; New York, 1886; A. M. del Rio, Elementos de Oryctognosa, Mexico, 88, 1795; J. C. Scaliger, Extericarum exercitationum liber quintus decimus de subtilitate ad H. Cardanum, Lutetiae, 1557; T. Scheffer, Handl. Akad. Stockholm, 14, 275, 1751; A. N. von Scherer, Scherer's Journ., 6. 633, 1801; C. von Sickinger, Versuch über die Platina, Mannheim, 1782; Crell's Ann., ii, 372, 1785; A. de Ulloa, Relacion histórica del viaje a la America meridionel, Madrid, 1. 606, 1748; 2. 6, 1748; Voyage historique de l'amérique méridionale, Amsterdam, 2. 371, 1752; E. Uricoechea, Ueber das Iridium und seine Verbindungen, Göttingen, 1854; Amer. Journ. Science, (2), 19. 366, 1855; W. Watson, Phil. Trans., 46. 584, 1750; T. Willis, Journ. Phys., 35. 217, 1789; T. Wilm, Journ. Russ. Phys. Chem. Soc., 15. 361, 1883; Ber., 16. 1298,

³ J. J. Berzelius, Schweigger's Journ., 7. 66, 1813; 22. 317, 1818; Pogg. Ann., 13. 435, 454, 527, 1828; 15. 208, 527, 1829; Akad. Handl. Stockholm, 25, 1828; Quart. Journ. Science, 2. 174, 1829; Ann. Phil., 3. 252, 1814; R. Chenevix, Proc. Roy. Soc., 1. 175, 1832; Nicholson's Journ., 7. 117, 1804; 11. 162, 1805; Phil. Mag., 22. 26, 102, 1805; Phil. Trans., 93. 290, 1803; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpet, 1854; Liebig's Ann., 56. 257, 1845; 59. 234, 1846; 63. 341, 1847; Pogg. Ann., 64. 622, 1845; 65. 200, 1845; Edin. Phil. Journ., 39. 88, 199, 1845; Bull. Acad. St. Petersburg, (2), 5. 182, 241, 1847; Journ. prakt. Chem., (1), 88. 164, 1846; Phil. Mag., (3), 29. 556, 1846; H. V. Collet-Descotils, Journ. Mines, 15. 46, 1803; 8. 185, 1805; Gehlen's Journ., 2. 73, 1804; Ann. Chim. Phys., (1), 48. 153, 1803; Nicholson's Journ., 7. 76, 1804; 8. 118, 1804; A. F. de Fourcroy and L. N. Vauquelin, Ann. Chim. Phys., (1), 48. 177, 1803; (1), 49. 188, 219, 1804; (1), 50. 5, 153, 1804; (1), 89. 150, 225, 1814; Ann. Musée Nat. Hiet., 3. 149, 1803; Phil. Mag., 19. 117, 1804; 44. 33, 1814; 6. 433, 1815; E. K. Fritzman, Ann. Inst. Platine, 5. 23, 1927; G. Osann, Pogg. Ann., 14. 329, 1828; 64. 197, 1845; V. Rose and A. F. Gehlen, Gehlen's Journ., 1. 529, 1803; Ann. Chim. Phys., (1), 52. 5, 1804; Nicholson's Journ., 11. 61, 1805; N. I. Stepanoff, Ann. Inst. Platine, 5. 75, 1927; S. Tennant, Proc. Roy. Soc., 1. 161, 1832; Phil. Trans., 94. 411, 1804; Nicholson's Journ., 8. 220, 1804; 10. 24, 1805; Phil. Mag., 20. 162, 1805; S. Tennant and L. N. Vauquelin, Nicholson's Journ., 22. 238, 1804; Trommsdorff's Journ., 14. 3, 1806; L. N. Vauquelin, Ann. Chim. Phys., (1), 46. 324, 1803; M. E. Weeks, Journ., 612, 1805; Phil. Walleston, Phil. Trans., 94. 419, 428, 1804; 95. 316, 1805; Nicholson's Journ., 7. 75, 159, 1804; 10. 34, 204, 1805; Proc. Roy. Soc., 1. 162, 207, 1832.

§ 2. The Occurrence of the Platinum Metals

The six platinum metals—platinum, iridium, osmium, ruthenium, rhodium, and palladium—form a group which occur in nature associated together as indefinite alloys, and generally uncombined. Estimates of the percentage elementary composition of the igneous rocks of the earth's crust are considered by F. W. Clarke and H. S. Washington ¹ to include platinum $n \times 10^{-9}$, where n is an undetermined integer; iridium and osmium, each $n \times 10^{-10}$; and ruthenium, rhodium, and palladium, each $n \times 10^{-11}$. J. H. L. Vogt gave $n \times 10^{-10}$ for platinum. I. and W. Noddack's estimates are indicated below, and for a later estimate, they gave $5 \cdot 0 \times 10^{-8}$. The subject was discussed by G. Berg, W. Vernadsky, F. Bernauer, A. E. Fersmann, I. and W. Noddack and O. Berg, P. Niggli, E. Herlinger, V. M. Goldschmidt and C. Peters, G. Tammann, O. E. Zvyagintzeff, and P. Vinassa.

Platinum has been reported from extra-terrestrial sources. Thus, J. M. Davison beeved platinum and iridium in the meteoric iron of Coahuila, and Toluca, Mexico; H. H. Niniger, in the meteoric iron of Ballinger, Texas; A. Liversidge, in the meteoric iron of Boogaldi, New South Wales; J. C. H. Mingaye also noted platinum in meteoric iron. The subject was discussed by G. Osann, G. P. Merrill, and O. C. Farrington. Later they gave for platinum in meteorites 7×10^{-6} . G. P. Merrill reported the presence of platinum, palladium, iridium, and ruthenium in meteorites; J. C. H. Mingaye, of platinum, palladium, and iridium. Possibly if the platinum metals had been sought in many other meteorites, they would have been found, J. L. Howe said that it is probable all meteorites contain platinum. I. and W. Noddack's estimates for percentages are as follow, atomic distributions are relative to oxygen unity.

	Earth's crust	Igneous rocks	Meteoric iron	Troilite	Atom, distribution
Platinum .	8.0×10^{-11}	8.3×10^{-8}	1.77×10^{-5}	3.0×10^{-6}	2.3×10^{-6}
Iridium .	3.0×10^{-12}		2.3×10^{-5}	5.0×10^{-6}	3.2×10^{-7}
Osmium .	6.0×10^{-12}		8.8×10^{-6}	1.0×10^{-5}	1.4×10^{-6}
Palladium	8.5×10^{-13}	Manager 1	1.9×10^{-5}	4.5×10^{-6}	4.6×10^{-6}
Rhodium .	9.0×10^{-13}		5.0×10^{-6}	1.0×10^{-8}	1.3×10^{-6}
Ruthenium	$2 \cdot 3 \times 10^{-13}$		$2\cdot39 imes10^{-5}$	4.20×10^{-6}	6.1×10^{-6}

C. C. Hutchins and E. L. Holden ³ observed that 16 lines of the platinum spectrum coincide with lines in the solar spectrum. H. A. Rowland, and M. N. Saha classed platinum, iridium, osmium, and ruthenium amongst those elements whose presence in the solar spectrum is doubtful; and palladium and rhodium amongst the elements present in the solar spectrum. The subject was discussed by H. M. Vernon, E. F. Baxandall, J. N. Lockyer, and H. N. Russell. H. von Klüber classes platinum amongst the elements of doubtful occurrence in the fixed stars.

Platinum usually occurs in nature as a native metal alloyed with one or more members of its family, and to a less extent with iron, nickel, chromium, etc. O. E. Zvyagintzeff 4 studied the subject. Some of the native alloys have received special names—e.g. native platinum, native iridium, native platiniridium, native palladium, allopalladium, iridosmine—neoyanskite or osmiridium with over 40 per cent. of iridium, and siserskite, or iridosmium, with 30, or less, per cent. of iridium—palladium gold, rhodium gold, and ferroplatinum. Very few compounds of the platinum metals occur as minerals. There are only cooperite, represented at first by Pt(As,S)₂, and later by PtS; braggite, (Pt,Pd,Ni)S; laurite, RuS₂, or (Ru,Os)S₂; potarite, PdHg; sperrylite, PtAs₂; and stibiopalladinite, Pd₃Sb.

In addition to the six members of the platinum family, there may be present iron, copper, gold, etc. Consequently **native platinum** may be host to a number of guests or strangers, and the form of native platinum which is attracted by a magnet, was named by J. F. L. Hausmann polyxenite—from πολύς, many, and ξένος, a guest. A. Breithaupt called the latter sideroplatinum—from σιδήρος, iron—or simply ferroplatinum. A great number of analyses of native platinum have

been reported—by J. J. Berzelius, A. G. Betechtin, S. Bleekrode, M. Böcking, C. Claus, P. Collier, H. St. C. Deville and H. Debray, L. Duparc and co-workers, R. A. Farquharsen, A. Frenzel, F. A. Genth, A. Hadding, G. C. Hoffmann, E. Hussak, J. F. Kemp, S. Kern, I. Koifman, N. von Kokscharoff, M. M. Kositzky, A. Kromeyer, P. Krusch, J. J. Kyle, A. Leplay, W. J. Martin, G. Osann, S. P. de Rubies, S. F. Shemtschushny, L. F. Svanberg, A. Terreil, G. Tschernik, H. N. Warren, and F. Weil. The following is a selection:

	Pt	Pd	$\mathbf{R}\mathbf{h}$	Ir	(Ir,Os)
Colombia	76.82-86.20	0.50-1.66	1.22- 3.46	0.85 - 2.52	0.95- 7.98
California	76.50-90.24	0.10-1.95	0.65- 3.39	0.85 - 4.29	0.68 - 22.55
Canada .	$68 \cdot 19 - 78 \cdot 43$	0.09 - 0.26	1.70- 3.10	1.04 - 1.21	3.77 - 14.62
Urals .	68.72 - 86.50	0.14 - 1.87	0.30-11.07	0.83 - 5.32	0.57 - 3.85
Australia	59.80-61.40	1.50-1.80	1.50 - 1.85	$1 \cdot 10 - 2 \cdot 20$	25.0- 26.0

The iron ranged from 2.30 to 9.78; the copper, from 0.21 to 5.20; the gold, from 0.30 to 3.15; and the osmium, from 0.19 to 1.13. S. P. de Rubies observed 0.1 per cent. of nickel and cobalt, in some platinum from Kitlim, Urals; and H. N. Warren found thallium in a number of platinum ores; and W. F. Seyer found that some concentrates are radioactive. The analyses of iridium, and platiniridium by L. F. Svanberg were, respectively,

		Pt	Ir	Pd	Rh	Fe	Cu
Burma .		19.64	76.85	0.89			1.78
Brazil .		$55 \cdot 44$	27.79	0.49	0.86	4.14	3.30

with traces of osmium. Analyses of osmiridium or syserskite were made by J. J. Berzelius, H. St. C. Deville and H. Debray, C. Claus, O. E. Swjaginzeff and B. K. Brunovsky, P. Kovaloff, and P. A. Wagner. The following is a selection, neglecting small proportions of iron and copper:

			Pt	Ir	Pd	Ru	Os
Colombia				57.80	0.63	6.37	35.10
California				53.50	2.60	0.50	43.40
Urals			0.62	43.28	5.73	8.49	40.11
Borneo			0.15	58.27	2.64		38.94
Australia				58.13	3.04	5.22	33.46
South Afric	a		0.2	17.0		8.9	69.9

Analyses of **iridiosmium** or **nevyanskite** were made by H. St. C. Deville and H. Debray, O. E. Swjaginzeff and B. K. Brunovsky, P. Kovaloff, and P. A. Wagner. The following is a selection, neglecting small proportions of iron and copper:

	Pt	Ir	Pd	Ru	Os	$\mathbf{R}\mathbf{h}$
Colombia	0.10	70-40	12.30	-	17.20	-
Urals .	1.10	77.20	0.50	0.20	21.00	-
South Africa	0.1-3.1	46.8 - 77.2		0 to 0.5	21.0-49.3	0.5 - 7.7

The South African iridosmium or nevyanskite contained, in addition to very small proportions of iron, copper, and palladium,

Iridosmium	١.	${f Ir}$	Os	$\mathbf{R}\mathbf{h}$	Pt	Ru
Ruthenic		35.5-57.8	33.5-54.4	0-5.7	0-0.6	4.7-8.5
Rhodic		70.0-70.4	$17 \cdot 2 - 17 \cdot 3$	11.3-17.2	-	******
Platinic		$55 \cdot 2$	27.3	1.5	10.1	5.9

According to P. Kovaloff and P. A. Wagner, the so-called **ferroplatinum** of South Africa has 71 to 78 per cent. Pt; 16 to 21, Fe; 1·0 to 4·5, Ir; and 0·2 to 0·8, Pd; **platinic iron**, 91·85 per cent. Fe, and 8·15, platinum; **cuproplatinum**, 8 to 13 per cent. Cu; 70, Pt; 12 to 15, Fe; 1 to 2, Ir; and 0·16 to 0·25, Pd. The **palladioplatinum** has 73 to 84 per cent. Pt; 3·0 to 21·8, Pd; and 0·1 to 3·6, Ir. The **rhodioplatinum** has 4·6 per cent. Rh. They also described gold-platinum alloys containing, in addition to very small proportions of iron and copper:

Gold	Au	Ag	Pd	Pt	Ir	Ŕh
Palladic	86.0-91.1	0 to 4.2	8-2-11-6	0-0-1		*******
Rhodic	57.0-88.4	,		•		11.6-43.0
Iridic	62-1	2.1		3.8	30.4	-
Platinic	84.6	2.9		10.0		-

The platinum and iridosmine of commerce is mainly derived from detrital or The colour of native platinum is pale steel-grey, or silver-white (sp. gr. 16.8 to 17.6), or dark grey (sp. gr. 14.2 to 14.3), but sometimes the granules are coated with a black layer of iron oxide, may be magnetic oxide, and in that case, the character of the grains is not easily recognized. It occurs in the form of very fine grains, more or less flattened to form scales, sometimes in the form of irregular nuggets which, as shown by J. F. Kemp,⁵ may be or may not be waterworn; and occasionally, although rarely, small grains show distinct cubic crystallization. The grains of platinum in the Urals are frequently 5 mm. in diameter. A. Inostranzeff, A. von Humboldt, W. Haidinger, A. F. Stahl, G. Rose, and N. von Kokscharoff described larger nuggets—in one case A. A. Lösch described a nugget 2 kgrms, in weight; W. Haidinger, ore, 5.6 kgrms, in weight; and three nuggets have been reported from the Nizhni-Tagilsk distinct weighing respectively, 254 lbs., 21 lbs., and 11½ lbs. The structure of the grains has been discussed by G. B. Sowerby, ⁶ P. V. Jeremejeff, F. A. Genth, S. Bleekrode, A. Inostranzeff, S. Meunier, A. Liversidge, A. Daubrée, E. Hussak, R. J. Haüy, J. F. Kemp, F. Mohs, B. von Cotta, and R. Beck-vide infra, crystals of platinum. B. C. Karpoff found more iron and copper in the outerlayer of native grains than were contained in the nuclei. O. E. Zwjaginstzeff and co-workers discussed the occurrence of rhenium in platinum ores.

Other mineral fragments accompany the platinum granules—e.g. chromite, olivine, serpentine, native gold, etc. These minerals are similar to those commonly found in the auriferous gravels and sands, and are doubtless fragments worn away from the rock in which the metals were originally deposited. In the majority of cases, the mother rock, the original home of the platinum, consists of basic or ultra-basic igneous rocks including the peridotites, pyroxenites, and dunites. The peridotites and pyroxenites are composed of iron magnesium silicates, pyroxene, and augite, with hornblende, olivine, chromite, ilmenite, and magnetite; whilst the dunites consist principally of olivine with some chromite. These rocks have been more or less altered to serpentine. Examples have been quoted by J. F. Kemp, 7 D. T. Day, D. T. Day and R. H. Richards, A. Saytzeff, R. Spring, C. W. Purington, H. Bancroft, L. Duparc, S. Bleekrode, C. Lewis, E. Hussak, F. W. Clarke, A. D. Lumb, P. A. Wagner, and O. E. Zvagintseff and co-workers, J. H. L. Vogt, and L. Leroux.

Throughout the Urals, the primary source of the platinum is the eruptive basic rocks, and the principal outcrops are platiniferous dunite, olivine, gabbro, peridotite, diorite, diabase, and gneiss. The whole of the platinum is derived from gravel deposits which are usually auriferous, and associated with dunite. The subject was discussed by A. Antipoff, R. Beck, A. Bergeat and A. W. Stelzner, F. Beyschlag and co-workers, V. J. Bourdnakoff and J. M. Hendrikoff, C. Bullman, A. des Cloizeaux, A. Daubrée, L. Duparc and co-workers, M. von Engelhardt, J. F. von Erdmann, A. von Ernst, J. Fedoroff, A. Frenzel, M. Gorbatscheff, E. de Hautpick, G. von Helmersen, R. Helmhacker, A. von Humboldt, A. Inostranzeff, P. V. Jeremejeff, A. Katterfeld, J. F. Kemp, N. von Kokscharoff, A. Koltowsky, A. Krassnopolsky, P. I. Krotoff, G. Kunz, A. T. Kupffer, A. Laurent, M. Leplay, F. Loewinson-Lessing, A. A. Losch, H. Louis, M. Lubarsky, J. Menge, S. Meunier, A. Minchin, R. Murchison, J. W. Muschketoff, C. W. Purington, G. Rose, S. P. de Rubies, W. Sapelkin and M. Iwanoff, A. Saytzeff, M. Sivkoff, A. F. S. 1, J. N. Fuchs, M. Teploff, A. Terreil, M. Tschupin, W. L. Uglow, W. N. K. Wyssotsky, A. Zawaritsky, and C. Zerrenner.

A. Daubrée pointed out the constant association of platinum with olivi rocks and chromite, and emphasized the resemblance of these rocks to meteorites; and S. Meunier argued that the platinum and iron of these rocks are not magmatic, but were introduced as chlorides and afterwards reduced by heated hydrogen. E. Hussak thought that the platinum found its way into these rocks by the decomposition of pyrites containing platinum—vide infra. C. Bullman objected to

hypotheses, like that of L. Hundeshagen, based on the precipitation of platinum from soln. because of the insolubility of the metal. A. Inostranzeff inferred from the occurrence of platinum in the serpentine, olivine, and chromite rocks that the platinum metals crystallized first from the original molten magma; and the

subject was discussed by F. Beyschlag and co-workers, and R. Beck.

When present in serpentine, platinum is commonly disseminated throughout the rock in fine particles—seldom in bodies. Platinum occurs in sedimentary and metamorphic rocks—e.g. sandstones. The platinum in sedimentary rocks is usually associated with quartz, copper, nickel, silver, and palladium, whilst in alluvial deposits, it is associated with chromite, magnetite, ilmenite, iridium, and osmiridium. Examples of the occurrence of platinum in these rocks were discussed by R. Beck, F. Beyschlag and co-workers, S. Bleekrode, J. B. J. D. Boussingault, C. Bullman, L. Hundeshagen, E. Hussak, J. B. Jaquet, A. Karpinsky, J. F. Kemp, A. Krassnopolsky, P. Krusch, J. C. H. Mingaye, J. S. Newberry, F. Sandberger, R. Spring, and P. A. Wagner. There are a few occurrences of platinum in quartz veins—e.g. the cases discussed by J. B. Bell, P. A. Wagner and T. G. Trevor, and R. A. Farquharson.

Platinum has been found in many sulphide ores and in metals derived from those ores. O. E. Zvjaginsteff and A. N. Filippoff 8 studied the subject. E. Gueymard observed it to occur in tetrahedrite; H. Vogel, in the metal ores of Boitza, Transylvania; H. L. Wells, W. E. Hidden, W. E. Hidden and J. H. Pratt. in the sulphide—nickeliferous pyrrhotite, and chalcopyrite—ores of Sudbury, Canada; J. H. L. Vogt, and G. Lunde and M. Johnson, in the nickeliferous pyrrhotites of Norway; W. N. Hartley and H. Ramage, in pyrites; W. Baragwanath, and C. W. Dickson, in chalcopyrite; F. W. Clarke and C. Catlett, in polydymite; H. L. Wells and S. L. Penfield, W. C. Knight, J. F. Kemp, S. F. Emmons, and T. T. Read, in covellite; R. W. Brock, in the sulphide bearing quartz of British Colombia; J. Catharinet, in the pegmatite of Copper Mountain, British Colombia; J. C. H. Mingaye, in the sulphide ores of Broken Hill, New South Wales; F. W. Clarke, A. Knopf, and L. A. Palmer, in plumbojarosite; F. A. Genth, in some copper-lead-iron sulphides of Lancaster Co., Pennsylvania; and M. d'Argy, in galena.

P. Krusch ⁹ reported platinum in graywacke; A. Orio, in mica schist; J. B. Jaquet, in silurian shales; F. Sandberger, in limonite; A. Eilers, in blister copper; A. Cissarz, in Mansfeld copper shales; J. F. Kemp, in stanniferous sands; J. L. Beeler, in silver ore; G. C. Hoffmann, in a silver amalgam from Vital Creak, British Columbia; M. Pettenkofer, and E. Priwoznik, in some gold coins; H. Rössler, in silver bullion; F. Mylius and C. Hüttner, C. Palmstedt, and H. S. Schrewsbury, in some coins; G. Lunge, in bessemerized nickel; A. L. Day and R. B. Sosman, in electrolytic nickel; A. Daubrée, nickel in platinum; M. von Leuchtenberg, in commercial copper sulphate; J. G. Rose, in commercial borax which had been fused in platinum vessels; G. Lunde, in basic rocks, and tantalite of Finland—0-000006 per cent.; G. Lunde and M. Johnson, peridotite, 0-000074 per cent.; serpentine, 0-00003 per cent.; and chromite, 0-000128 to 0-0020 per cent.; and V. M. Goldschmidt and C. Peters, and K. Hélouis, in coal. W. F. Seyer found the platinum concentrates of British Columbia are radioactive.

The amount of platinum in country rock is generally so small that the commercia traction of the metal is out of question. Although native platinum has ted from many, widely-scattered localities, the districts which produce in commercial quantities are few in number, and limited in extent. The nical distribution of the metal is summarized in Fig. 1.

Rurope.—There is no deposit of platinum of any commercial value in the British Isles. R. P. Greg and W. G. Lettsom ¹¹ reported that the presence of platinum has been recognized at Fort Regent, Jersey, and at Buittle, Kirkeudbrightshire; L. de Launay, at Hormer Hill, Shropshire; E. H. Davison, in the Lizard district, Cornwall; and J. W. Mallet, in the auriferous sands of Wicklow, Ireland. Platinum is not worked in France, but there are a

few places where its presence has been reported. G. A. Kenngott ¹² announced its presence at St. Arev, Dépt. Isère; and E. Gueymard, at Chapeau in the Vallée du Drac, at Rousses in Oisans; and near Presles in Savoy. J. J. Ebelmen, and E. Gueymard noted that platinum is associated with many of the minerals in the Alps. P. Berthier and A. C. Becquerel, M. Villain, and M. d'Argy mentioned the occurrence of platinum in the galena of Confolens, Alloué, Epénéde, Meller and Plauveille, although M. Dangez, and H. F. Gaultier de Claubry expressed some doubts of the reports. J. F. Kemp mentioned its occurrence in the stanniferous sands of Morbihan. In Germany, ¹³ the presence of platinum has been reported in the auriferous sands of the Rhine by L. Hopff, and J. W. Döbereiner; in the silver of Commern and Mechernich, by H. Rössler; in the gold of Wilhelmshütte, by J. J. Berzelius; and near Tilkerode, and Zorge in the Harz, by F. Wrede, J. C. L. Zincken, and O. Luedecke. According to P. Krusch, platinum occurs finely disseminated in the slates and graywackes of Westphalia—Freudenberg, Siegen, Meschede, Sauerland, and Westerwald. The question whether a profitable extraction can be made has been seriously considered. Traces of platinum have been reported in the auriferous sands of Olahpian, and at Boicza in the Siebenbürgen, in Rumania, by W. Haidinger, ¹⁴ V. von Zepharovich, J. Molnar, C. Zerenner, P. Partsch, A. Patera and B. Kopetzky, and J. H. Vogel.

According to B. N. Menschutkin, 15 indications of the existence of platinum in Russia were first obtained in the gold-placers of Ekaterinburg (since 1918, Sverdlovsk), Eastern Siberia. Analyses showed it to be osmiridium; and in 1824, it was found north of

Fig. 1.—The Geographical Distribution of the Platinum Metals.

Ekaterinburg, and declared a state monopoly. About 1914, Russia was producing about 93 per cent. of the world's supply of platinum. The metal was derived from the extensive deposits of alluvial sands in the Ural Mountains. According to C. Claus, A. Köppen, A. Katterfield, N. Mamyscheff, and N. von Kokscharoff, small quantities of a greyish-white, metallic substance was observed in the gold washings of Verk-Isetsk in the Siberian Urals; but the grains were not recognized as platinum until 1822. The development of the Nizhni-Tagilsk deposits began in 1824, and in 1825, the metal was also found in Goroblagodat. The most prolific producing districts are south-west of Nizhni-Tagilsk, north-west of Nizhni-Turinsk, and the Isoff district, near Goroblagodat. The whole of the platinum is derived from gravel deposits which are usually auriferous and associated with dunite. According to N. K. Wyssotsky, and A. D. Lumb:

The platiniferous belt of the Urals consists of four parallel bands striking, roughly, north and south; the westernmost of these, made up of crystalline schists, forms the watershed between Europe and Asia. The next band to the east comprises olivine- and mica-gabbros, diallage-peridotites, diorites and altered syenites—all of which have been erupted from a great depth. The third band is made up of Lower Devonian sedimentary rocks, shattered and buried in places by diabasic eruptive rocks. The eastern portion of this band is formed of eruptive rocks of deep-seated origin which may be gneissose granites. The fourth, or most easterly band, is composed of ancient rocks, which have been eroded by the advancing sea of Lower Tertiary age. The area emerged from the waves as early as the Carboniferous period; consequently the accumulation of platinum, and in some localities of gold, in the

surface-deposits, were not swept away. They were concentrated later on in the alluvia—perhaps at the time of the most intense glaciation, probably in the Pleistocene.

The basic igneous rocks, from which the platinum is derived, are exposed in the form of discontinuous elliptical outcrops near the summits of the Urals, particularly on the western side of the mountains. These outcrops attain larger dimensions in the northern and central Urals than farther south. The process of concentration of platinum in the gravels has clearly extended over a very long period of time, and it is probable that the richer gravels have been reconcentrated, perhaps several

According to L. Duparc and co-workers, the deposits are essentially of magmatic origin. The structure of the rock is in the nature of concentric bandings; the felspathic rocks at the outer edge gradually grade into the intermediate stage of pyroxenes, until the central dunite is reached, composed of olivine and chromite. The richness of the gravels is in proportion to the size of the dunite deposits, and to the extent of erosion of these rocks. Platinum ore derived from a pyroxenite source usually contains high percentages of platinum and palladium, but low percentages of osmium and iron. The reserves in 1916 were sufficient for about twelve years, provided that the same methods of working and rate of extraction were employed during that

According to A. D. Lumb, platinum is concentrated in channels of the Rivers Iss, Veeya, and Tura; north of these, the metal is obtained from beds of the Rivers Sognovki, Kythymi, and Mala Kosva; and, along with gold, in the systems comprised in the Rivers Vagran, Lobva, Niasma, Liabia, Aktai, Emerlo, Talits, and Ivdevi. In the south, platinum is worked on the tributaries of the Rivers Tagil, Salda, Imiaum, and Tura. In the Nizhni-Tagilsk district, the richest placers are in the valleys of the Rivers Visim, Martian, Sisim, Chaush, and Cherna, and farther south, along with gold, in the gravels of Nevian, Verkhne-Isot, Bilenibaev, Alapaev, Sysert, Kyshtym, and Miss, and in the Rivers Tanalyk, Sakmar, and Urtazym. There are smaller deposits in Nikolae-Pavdinsk, Rastes, and Systersk. The placer deposits are derived from country rock made up of serpentine gabbro, diallage, and olivenite and the associated minerals are chiefly quartz, zircon, ilmenite, chromite, magnetite, spinel, and native gold and palladium. The crude platinum usually includes iridium, rhodium, ruthenium, and iron. A. A. Losch, A. Karpinsky, and A. Krassnopolsky discussed the occurrence of platinum in Bissersk, where a 2-kgrm. nugget of platinum was found. In addition to what has been previously stated, the Ural deposits were discussed by C. Blömeke, G. Rose, A. Inostranzeff, I. Koifman, A. G. Betechtin, V. P. Mishin, G. Padalka, E. P. Moldavantzeff, P. P. Pilipenko, G. A. Dodonoff, A. Breithaupt, A. N. Zavaritzky, J. J. Berzelius, C. Zerrenner, A. von Lasaulx, P. V. Jeremejeff, G. Schüler, F. Beyschlag and co-workers, A. F. Stahl, M. von Engelhardt, J. Fedoroff, D. Serdyuchenko, and C. Hintze—vide supra. A. Solitander reported the presence of platinum in the auriferous sands in the north of Finnland.

The occurrence of traces of platinum in the auriferous sands of the River Ivalo, in Lapland, was noted by A. E. Nordenskjöld, 16 and F. J. Wiik, and at Vaske, and Tanna-Juk, by J. H. Langer. The occurrence of traces of platinum in the nickeliferous pyrrhotite of Smäland in Sweden was discussed by J. H. L. Vogt, 17 L. de Launay, and F. M. Stapff. J. H. L. Vogt, 18 and G. Lunde and M. Johnson also described the presence of traces of platinum in the nickel ores of Norway; and G. vom Rath, in the silver of Konigsberg. J. H. Vogel 19 reported traces of platinum in Portugal. According to L. N. Vauquelin, 20 platinum occurs in Spain in the silver mines of Guadalcanal, Estremadura, although J. J. Berzelius had doubts on this subject. A. Orio reported traces of platinum to be associated with the pyrites of Asturia. According to A. D. Lumb, the metal has also been noted at Ronda, Malaga, in the alluvial deposits along the Rivers Verde and Guadaiza. The deposits are derived from serpentine and peridotite rocks. The pay gravels contain 8 grms. of platinum per ton. The metal has also been reported in the other parts but not in payable quantities. It occurs principally in the northern districts, and in the Rivers Minho, Luna, Sil, Orbigo, Gallego, Cinca, Darro, and lower Jenil, where it occurs in the concentrate sands accompanied by magnetite, ilmenite, zircon, and frequently gold. S. P. de Rubies, E. Rubio, L. Duparc and A. Grosset, T. C. Earl, F. Gillman, and D. y Orueta and S. P. de Rubies discussed the occurrence of platinum in Spain.

Asia.—The Uralian deposits in Asia have been indicated in connection with the Russian deposits. R. Helmhacker 21 reported the presence of platinum in the auriferous sands of Altai; and it has also been reported in Armenia—Batum and Sasun—by L. de Launay, 23 but none was found by A. G. Betechtin in the peridotites of Gokoha. J. F. Kemp, and N. Nakovnik reported it in Siberia—in Baikal, Balkash, and Jenissei. K. Jimbo, and T. Wada observed that in Japan, the metal occurs in the auriferous sands of the province of Ishakari, and the Yubari River of Iburi; in the Rivers Yubari-garva, Pechau, and other rivers in the province of Hokkaido where gold and iridosmium are associated with the platinum. It is also found in the gold and iron sands of the Nishi-Mikawa, in the province of Sado. E. de Hautpick mentioned the occurrence of platinum in the auriferous gravels in the Uryanchai district of Mongolia, on the Russian border of China. L. de Launay found that the metal also occurs in the auriferous sands of Rigal, in the Philippines. Traces

of platinum have been noticed associated with the gold obtained from native workings at Bonai, in India.²³ Platinum, and iridioplatinum were discovered in Burma, in 1831, in the auriferous sands of the Ava. The occurrence was described by J. Prinsep, A. Faber, R. Romanis, and H. Burney; and M. F. Heddle proposed to call the metal from this locality avaite. Platinum occurs associated with gold in the Irawaddy River, and it has been obtained commercially at Myitkyina; and it has been located in the iridosmium in the auriferous gravels of the rivers draining the Patkoi Ranges on both the Assam and the Burma sides. Platinum was also discovered in south-eastern Borneo in 1831, in the gravels of Gunung Lawack; and, according to T. Posewitz,²⁴ it is now obtained as a by-product of the gold-washing in the province of Tanah-Laut. The platinum is here associated with osmiridium, and gold. The mineral laurite, (Ru,Os)S₂, occurs in these deposits. L. Hundeshagen also described the occurrence of platinum in the diamond placers, west and south-east of Borneo. The Borneo platinum was examined by M. Böcking. According to L. Hundeshagen, platinum occurs in Sumatra at Singenggnu, east of Sipongi, along with gold, wollastonite, and grossularite in limestones and schists near intrusions of grano-diorite and augite-diorite. E. Heurteau discussed the platinum occurrences in New Caledonia.

and augite-diorite. E. Heurteau discussed the platinum occurrences in New Caledonia.

Africa.—G. Aimé ²⁵ observed traces of platinum in the galena of Algiers; E. Ackermann, in grains in a creek at Gondoko, and at Missiva in the Sudan and Upper Senegal; L. Duparc, L. Duparc and E. Molly, and F. Hermann and O. Günther, in Birnir, Abyssinia; N. R. Junner, in Sierra Leone; R. P. Rothwell, in the bed of the River Uelle, in the Katanga district in the Congo Free State; and A. Lacroix, as a by-product in the alluvial gold mining on the Vatana River, near Ambia, in Madagascar. Traces of platinum have been also reported in the auriferous gravels of Fenerive, Marolambo, and Vandrozo, in Madagascar. The subject was discussed by L. Duparc, and L. Duparc and co-workers. The

gold-platinum deposits at Ruwe, in Katanga, were described by P. V. Brande.

A. E. V. Zealley ²⁸ located platinum in the conglomerates and gravels of the Somabuba Fields, near Gwelo, in Rhodesia. The country rock is serpentinized dunite. The deposit is capped by a ferruginous, siliceous gossan. The ore yields 3 ozs. 12 cwts. of platinum per ton, and 7 ozs. of osmiridium per ton. B. Lightfoot, and H. B. Maufe also noted gold and platinum in a reef in the great dyke of norite at the head of the valley drained by the River Umtebekwe. The platinum is found only in notable quantities in those areas of the dyke where felspar-rich norite is present. According to P. A. Wagner, there are large reserves of platinum in South Africa, principally in the Transvaal. The platinum metals occur in the most diverse circumstances, and in rocks ranging in geological age from the most ancient to the most recent. W. Bettel noted the metal in the black sands from the battery "clean-ups" on the Rand at Klerksdorp, and other gold-mining districts, and in the residual slimes at the Rietfontein mines. A. Hall and W. A. Humphrey observed that samples of chromite from Kromdaal, near Rustenburg, and from the Secocoeniland deposits may contain 1 to ½ dwt. of platinum per ton. The platinum metals in the Transvaal occur in the ultra-basic and basic rocks about Uitkomst, Preezburg, and Messina; in the auriferous conglomerates of Witwatersrand, and the Black Reef in Klerksdorp district; in the norite zone of the Bushveld; and in the igneous complex—a vast body of plutonic and volcanic rocks in the central part of the Transvaal. According to P. A. Wagner, the platinum here occurs in

I. Oreumotectic deposits formed by segregation from the parent norite magma,

and occurring in the acid quartz-bearing differentiates of the norite magma.

II.—Orthotectic deposits formed by direct segregation from the parent norite magma.

A.—Deposits in which platinum is associated with magmatic nickel-copper-iron

sulphides in norite, pyroxenite, and harzburgite.

(a) In the upper part of the norite zone, e.g. (i) Deposits of the Blaauwbank type in which the ore-bearer is quartz-bearing anorthositic norite. (ii) Deposits of the Stulpoort Park type in which the ore-bearer is a medium grained, spotted norite rich in felspar. (iii) Deposits of the Minsk's Claims type, Lydenburg District, in which the ore-bearer is a rather coarse-grained diallage norite

rich in felspar.

(b) In the lower part of the norite zone, e.g. (iv) Deposits of the Merensky Horizon type occurring above and below the main horizon in the Lydenburg District. (v) Deposits of the Merensky Horizon type as developed in the Rustenburg, Pretoria, Lydenburg, Pietersburg, and Potgietersrust districts; the ore bearers are pseudo-porphyritic pyroxenitic diallage-norite, felspathic, pyroxenite, felspathic harzburgite and chromitite. (vi) Deposits of the Tweenfontain type, Potgieterscrust District in which the ore-bearer is a fine-grained pyroxenitic diallagenorite emerging into coarse-grained felspathic bronzitite and bronzitite. (vii) Deposits of the Valk fontein type, Rustenburg District, in which the ore-bearer is bronzitite.

B.—Chromitite deposits.

C.—Olivine-dunite deposits; iron-rich olivine-dunite deposits and hortonolite-dunite deposits.

III.—Contact metasomatic deposits in altered dolomite or sheared bandedironstone directly underlying platinum-bearing norite or pyroxenite.

P. A. Wagner and T. G. Trevor described the platinum deposits in the Waterberg District; F. Behrend, the Transvaal occurrences. J. G. Rose, A. L. du Toit, P. A. Wagner, and W. H. Goodchild discussed the platinum in the magmatic copper-nickel deposits of Insizwa, and Tabankulu in Griqualand, Cape Province. V. Hartog established the presence of small amounts of platinum in the kimberlite of all the more important South African diamond pipes at Kimberley, Blumfontein, Wesselton, Jagerfontein, Premier, De Beers, and Du Toits. The South African deposits were discussed by L. Duparc and M. Tikonowich, H. Merensky, H. R. Adam, A. Newberry, M. Lipovsky, E. Reuning, J. H. L. Vogt, and P. Kukuk.

North America.—In Canada,27 platinum and iridium was reported by T. S. Hunt in the gold washings of the River Loup in Quebec, and the occurrence in Quebec, and East Canada was mentioned by J. F. Kemp, and J. F. Donald. E. R. Faribault discussed the occurrences in *Nova Scotia*; and G. P. Howley, in *Newfoundland*, where traces occur in the serpentinized area in the region of Mount Cormack. Platinum is associated with the copper-nickel ores at Sudbury in Ontario, and in the extraction of nickel, the platinum accumulates in the matte from which it is commercially extracted. D. E. Roberts and R. D. Longyeur found a mean content of 0.0068 oz. of platinum, 0.022 oz. of gold, 0.223 oz. of silver, per ton in addition to 1.95 per cent. of nickel, and 1.11 per cent. of copper. The subject was discussed by F. W. Clarke and C. Catlett, A. P. Coleman, H. J. L. Vogt, and Platinum has been also reported from the vicinity of Star Lake, and Le Pas district in Manitoba. G. C. Hoffmann reported platinum in the sands of the North Saskatchewan River, near Edmonton, Alberta. The subject was discussed by C. Camsell. Several occurrences of platinum associated with gold have been reported in British Colombia. Thus, G. C. Hoffmann, J. F. Donald, J. F. Kemp, and C. Camsell found it in the River Tulamsen and its tributaries -Slate, Cedar, Eagle, Bear, and Granite Creeks. W. L. Uglow observed platinum at Franklin Camp near Grand Forks, and it has also been reported on the Mother Lode Claim, Burnt Basin; and in the following localities—Kootenay, Tranquille, Frazer, North Thompson, and Clearwater Rivers; Rock, and Siwash Creeks; and Ÿale District.

Many occurrences of platinum have been reported in the United States.²⁸ According to C. Bullman, it occurs in Alabama in small quantities; and in Alaska platinum occurs as a by-product in the treatment of copper ore at the Salt Chuck Mine, Ketchikan; the placer deposits of Dyme, Bear, Sweepstake, and Boob Creeks have furnished some platinum. The metal also occurs near the Red Mountain, Kenai Peninsula; and at the head of Kasaan Bay, Prince of Wales Island. These deposits were discussed by G. C. Martin and coworkers, and D. G. Campbell. W. P. Blake, and J. F. Kemp described occurrences in Arizona. The occurrence of the platinum metals in California has been discussed by B. Silliman, R. M. Patterson, C. L. Henning, W. F. Clarke and C. Catlett, W. P. Blake, J. D. Dana, H. Dubois, C. Blömeke, J. E. Teschemacher, H. Ludwig, F. Weil, J. F. Kemp, and O. Luthy. The metals, associated with gold, as the dominant metal, occur over a wide area in placer deposits. The platinum is found in auriferous sands from streams rising in the belt of serpentine rocks in the Siskyou, Butta, Calaveras, Stanislaus, Trinity, Yuba, Kern, Humboldt, Plumas, Sierra, Placer, Shasta, and El Dorado Countries. The platinum in the foothills of the Sierra Nevada was in old stream channels on the western slopes of the mountains. Platinum occurs in the beach deposits on the Pacific coast in the counties of Coos, Curry, Josephine, Oregon, and Del Morte. There is some alluvial platinum near Placerville. The Californian platinum contains 25 to 45 per cent. of iridium, and it is believed to originate in the serpentine and olivine rocks of Sierra Nevada, etc. J. D. Dana mentioned the occurrence of platinum in the Klamath region; and F. A. Genth, at Capo Blanco. Platinum was reported by J. F. Kemp to occur in Colorado, in the black sands of Clear Creek; in the gold gravels of Como; and in a vein near Villa Grove. J. F. Kemp also reported platinum to occur in the Lumpkin county in Georgia; and J. F. Kemp, and T. H. Hite, in the auriferous sands of Snake River from Baskerville to Lewiston in Idaho. In Montana, J. F. Kemp noted the occurrence of platinum at Miles City; and W. Browne, in the auriferous sands of Warm Springs near Helena. In Nevada, J. L. Beeler mentioned the occurrence of platinum in the silver ore at Austin; and W. W. Attwood in the gold of the Comstock Lode. Platinum is associated with the copper-nickel- and cobalt-sulphide ores from Key West, and the Great Eastern Mines near Bunkerville, Lincoln Co. According to F. A. Hale, and A. Knopf, platinum is extracted with the copper and gold ores of the Boss Gold Mine, and the Oro Amigo Mine, near Goodsprings, Clark Co. In New York State, P. Collier noted that platinum occurs at St. Lawrence near Plattsburgh; and J. M. Clarke, in alluvial sands of the Adirondack region. In North Carolina, platinum was reported by J. F. Kemp to occur in the sands of the Cowee Creek, Maron Co.; by C. U. Shepard in the gold washings of Rutherford and Burke counties; at Mason Mountain, Mason Co.; at Brown Mountain in Burke; and at Burnsville, Yancey Co. W. E. Hidden, F. A. Genth, and F. P. Venable also discussed the reports of these occurrences. In Oregon,

platinum was reported by J. F. Kemp, C. Bullman, R. P. Rothwell, J. V. Thévenet, A. E. Kellogg, C. L. Henning, W. P. Blake, and C. F. Chandler to occur in auriferous sands of the Rogue River; in the auriferous sands of Port Orford and Ecklay, Curry Co.; at Kirkby, Josephine Co.; in the beach deposits near Bullards, and Marshfield; in the placer deposits of the Waldo district; in streams from the Blue Mountains, eastern Oregon; in the Granite and Canyon districts; and in the Spanish Gulch, Wheeler Co. Platinum has been reported in *Pennsylvania* by G. A. Kenngott; by F. A. Genth, and J. F. Kemp, associated with the sulphide ores in the mica-schist of Lancaster Co., and in the black triassic shales of Boyertown. In *Washington*, J. M. Clarke, and J. T. Pardee noted the extraction of small quantities of platinum from the beach deposits near Yacolt, and south of the Straits of Juan de Fuca. It has been also located in the Cascade Mountains in the centre of the State. J. M. Hill reported platinum and gold in *Utah* in the Green River east of Vernal, and in the Colorado River, near Hite. According to T. T. Read, J. F. Kemp, S. F. Emmons, C. L. Henning, and H. H. Taft, platinum and palladium (1:3) are obtained in *Wyoming* from the Rambler Mines in Albany Co. F. L. Hess discussed the occurrence of platinum on the Centennial Ridge, Wyoming.

C. F. Landero, 29 in his catalogue of the minerals of Mexico, did not mention the occurrence of platinum in that country although H. J. Burkart, E. von Hautpick, G. von Uslar, and J. J. Nicholl, reported its occurrence in the vicinity of Xacala in the state of Hidalgo; J. F. Kemp, in the Yedras Mine in Smalva; and E. von Hautpick, in the state of Guerrero. J. D. Dana reported the occurrence in Choloteca and Gracias in Honduras; L. B. G. de Morveau, and L. N. Vauquelin discussed the occurrence of platinum in the auriferous sands of the River Jaky of San Domingo; and the subject was discussed by M. Percy, A. F. Gehlen, and A. Vogel, L. N. Vauquelin, L. B. G. de Morveau, and A. von Humboldt.

South America.—Reports on South American platinum were made at the end of the seventeenth century, or the beginning of the eighteenth century, by T. Bergmann, M. R. de Celis, A. F. Gehlen, A. von Humboldt, W. A. Lampadius and G. P. Plattner, A. Damour, and W. Thomson. Before 1914, Columbia was the second largest producer in the world. J. B. J. D. Boussingault mentioned the occurrence of platinum at Santa Rosa de Osos in Antioquia; A. von Humboldt said that the reports of its occurrence at Bolivar are not true; L. de Launay reported platinum in Certegui. The principal source of supply is the alluvial deposits at the head of the San Juan River, where it enters the Pacific Ocean, north of Buenaventura, particularly tributaries of this river—the Condato, Platina Cajon, Opagado, and Tamanal Rivers; and the metal is also obtained in the Upper Atrato River which flows into the Caribbean Sea. The area including the watersheds of the San Juan and Upper Atrat Rivers is known as the Choco district. The metal found in the gravels of the San Juan River is associated with about an equal proportion of gold. but the gravels of the Atrato River have about 15 of platinum to 85 of gold. Early in the nineteenth century, the platinum had so low a commercial value that a great proportion was rejected as waste in the operation of refining gold by the dry-blowing system. Later, as platinum increased in value, much of the dumped metal was recovered—notably in Quibdo, the capital of the Choco district. T. Ospina discussed the gold and platinum deposits in the Mira River; and deposits also occur in the Micay River, in the Barbacoas district. I. Domeyko reports the occurrence of platinum in the departments of Novita and Citara; it occurs in the province of Lloro, and other places discussed by R. W. White, H. Heuland, G. von Humboldt, G. J. Kellner, and A. D. Lumb.

B. L. Millar and J. T. Singewald ³¹ reported that platinum occurs associated with gold in **Ecuador** in the area covered by the Rivers Bogota, Cachabi, Uimbi, Santiago, and Ceyapas. The deposits are of no great economic importance, and operations are mainly confined to native washings. A. Damour, and E. D. Levat reported that platinum is associated with auriferous sand in the River Aporuague, in **French Guiana**. L. J. Spencer ³² described the platinum found in the diamond washings of **British Guiana**. C. Blömeke reported that platinum occurs in **Peru** in the states of Rita, Lucia, Iro, and Aporto. J. J. Kyle, and J. Corréa reported platinum to occur in the auriferous sands of Tierra del Fuego, **Patagonia**. It occurs in the serpentine of Alta Gracia, Cordoba ³³—**Argentina**.

In 1801, J. Vieira do Couta ³⁴ reported that platinum occurs in Brazil in the sands of the Lages River, near Conceiçao, Minas Graes; and E. Hussak observed that the platinum is confined to the alluvium of the rivers having their rise on the eastern slope of the Serra do Espinhaco—the Rio Tanque, Rio Itambe, Rio Peixe, Rio Antonio, and Rio Gyanhacs; and at Condalo, farther north, its occurrence was described by W. H. Wollaston, J. Mawe, and E. Hussak. A. von Humboldt, and E. Hussak reported that platinum also occurs associated with gold and diamonds at Cornego, and in the Rio Abaeté, Minas Graes, E. Hussak described occurrences at Fazenda Condado in Corrego do Bom Successo; in the State of Parnahyba do Norte in the gold washings of the Rio Bruscus; in the gold-bearing jacutinga of the Gongo Socco mine; in the south of the Serra, Itacolumy; and in the alluvial gravels of the Cuyaba and Coxim Rivers south of Matto-Grosso. G. Leonhard, and I. Domeyko also noted platinum in the diamond deposits of Matto-Grosso. L. F. Ferraz observed it in the gold-dredgings of the Rio Coxipo-Mirim. A. J. de Sousa Carneiro reported platinum in the State of Bahia, in Ituassu, Feira de Sao Anna, Serra do Assurura, Sao Bartholomeu, and in the Serras do Pitango and Macahubes. Reports

were made in the first half of the last century on the Brazilian platinum by A. F. Gehlen,

J. B. J. D. Boussingault, and S. J. Denis.

Australasia.—In New South Wales, 35 platinum is obtained at Platina in the Fifield district, and the occurrence was described by J. B. Jaquet, B. Dunstan, J. Plummer, and A. D. Lumb; the metal also occurs in the beach sands on the coastal border of New South Wales and Queensland near Ballina, at Evans Head, and at Currumbim. J. C. H. Mingaye, and J. B. Jaquet described the occurrence in the Broken Hill district at Little Darling and Mulga Springs Creek. Here the deposits resemble those of Sudbury, Canada. B. Dunstan, and L. E. Ball described the occurrences of platinum in *Queensland*, where it occurs in the beach deposits between Southport and Currumbin; in the Coopooroo and Wairmaba Creeks, near Innisfail; in the Lucknow and Alma reefs of the Gympie goldfield; in the auriferous, alluvial deposits of Brickfield Gully; and at the head of the Don River, Central Queensland. A. D. Lumb, and A. M. Howitt described the occurrence of platinum in Victoria, at the Walhalla Copper Mine, and in the Thompson River Copper Mine. According to R. Beck, and A. D. Lumb, platinum and iridosmium occur in Tasmania in the Bald Hill district near Waratah; in the placer deposits of the Nineteen Mile Creek and its tributaries—Linger-and-Die, McGinty's and Barron Creeks; in the rivers Heezleword, Whyte, Castray, Huskisson, Wilson, Boyes, and Savage, and at the Badger gold diggings, west of Savage River, and at the Salisbury goldfield, near Beaconsfield. Platinum has been reported near Boolcoomatta in South Australia; and also in Papua in the Lakekamu district, and in the Yodda Valley,

Platinum is obtained in New Zealand from the Orepuki district in Southland. The subject has been discussed by R. A. Farquharson, J. A. Pond, L. de Launay, R. Beck, and A. D. Lumb. The presence of platinum has also been reported in quartz bodies near the Thames River, and in a pyritic body near the Taramekan River in Westland; in the Taraka and George Rivers flowing into Awarua Bay; in the beach sands of the east coast of Otago; in the Clutha River; in the Nelson gold district; and in the Parapara district.

The world's production of platinum 36 is about 9 tons per annum, and when averaged per annum for the six years ending December 31, 1914, and expressed in troy ounces, it was as follows:

				Borneo		
Russia	Colombia	Australasia	United States	Sumatra	Burma	Canada
200.000	12.080	790	594	180	46	33

The Russian industry was so disorganized during the war and the revolution that the output from the Urals dropped from 210,000 troy ozs. in 1912 to 5500 troy ozs. in 1921. Colombia and Canada accordingly increased their outputs, and South Africa started producing the metal. The Uralian output is recovering its place, for it again leads, with Colombia, and South Africa respectively, in the second and third ranks. The world's production approximated:

				1915	1919	1925	1926
Australia .				43	162	436	
Canada .				475	690	8,698	9,521
Colombia .				18,749	32,236	56,000	55,000
Russia .				104,000	39,425	94,800	92,700
South Africa							4,951
United States	3	•	•	1,190	10,460	4,325	4,923
Tota	ıl			219,933	72,513	164,259	167,500

The production of platinum in Russia was discussed by P. Krusch, P. V. Shchuka, C. Bullman, A. de Keppen, L. de Launay, L. Duparc, and C. Blömecke; in Colombia, by C. Bullman, and L. de Launay; in South America, by C. Blömecke; in Canada, by C. Bullman, J. F. Donald, and L. de Launay; in the United States, by P. Krusch, C. Bullman, and J. F. Kemp; in Sumatra, by P. Krusch; and in Borneo, by L. de Launay, and P. Krusch.

According to J. L. Howe, no reliable data have ever been available for the production of platinum because much of the Russian output has intentionally not been reported in order to avoid taxes. However, with the available data he estimated the upper and lower limits of the amounts of platinum produced in the world up to January, 1917, in troy ounces, to be:

					Minimum	Maximum
Russia.					7,115,482	10,128,303
Colombia					700,000	735,000
Borneo					175,000	200,000
United Sta	tes				10,000	12,000
Canada					9,000	10,000
Other Cour	ntries				9,000	10,000

Tota	al				8,018,482	11,095,303

A considerable amount of so-called *scrap platinum*, in the form of old and worn platinum articles, is returned to the refineries, and subsequently sold as new metal. Nearly 50,000 troy ozs. were so treated in the United States in 1927. J. M. Hill estimated that the world's production up to June, 1917, totalled about 5,000,000 troy ozs., and he supposed this to be distributed as follows:

Chemical and I	Physical a	apparat	tus			1,000,000
Electrical plant	t.	• •				250,000
Catalyst .						500,000
Dental work						1,000,000
Jewellery .						1,000,000
Minor uses and	hoarded	metal				1,250,000

The market value of platinum fluctuates from year to year, but there is a general tendency for it to rise. An agreement amongst the dealers enables them

to control outputs, and to maintain prices without individual competition. In 1880, the price of platinum was between 12s. 6d. and 13s. per oz. troy; in 1890, it had risen to about 25s.; and in 1900, to about 63s.; in 1910, to about 180s. The fluctuations are illustrated graphically in Fig. 2. The subsequent average prices, in shillings per troy oz., were:

Shillings	1916 200	1918 400	1920 561	1925 410	
	1924	1926	1928		
	538	467	335		

The highest price recorded in this period was 770s. per oz. troy in January, 1920, and the lowest price recorded was 270s. per oz. troy. The subject was discussed by P. A. Wagner, H. B. Kosmann, C. L. Henning, etc.

The price of palladium rose to 800s. per oz. troy in 1920, and it then dropped to 350s. per oz. troy in 1923. Since then its price has ranged between 180s. and 200s. per oz. troy. Up to 1914, iridium was sold at about 260s. per oz. troy, and the price thereafter steadily rose until it attained 2000s, per oz. troy

Fig. 2.—The Market Values of Platinum from 1880 to 1915.

in 1925. The price rapidly dropped to 640s. in 1916, and it attained 1800s. per oz. troy in 1928. Since then the price has ranged between 1140s. and 1200s. per oz. troy. Osmium sells at about 240s. per oz. troy; rhodium, 225s. per oz. troy; and ruthenium, 195s. per oz. troy. The price of these three metals is negotiable, being

regulated by the quality and quantity required. According to F. E. Carter, the prices per ounce troy in the United States in 1935 were ruthenium 39.50\$: rhodium, 52.50\$; palladium, 24.5\$; osmium, 50\$; iridium, 55\$; and platinum, 34 \$.

REFERENCES.

¹ A. E. Fersmann, Bull. Acad. St. Petersburg, (6), 6, 367, 1912; W. Vernadsky, Essai de minéralogie descriptive, St. Petersburg, 1, 121, 740, 1914; Geochimie, Paris, 16, 1924; Centr. Min., 758, 1912; Zeit. Kryst., 56, 173, 1915; J. H. L. Vogt, Zeit. prakt. Geol., 6, 325, 1898; 7. 10, 274, 1899; 14. 223, 1906; F. Bernauer, Metallwirtschaft, 7. 411, 1928; F. W. Clarke and H. S. Washington, Proc. Nat. Acad., 8. 112, 1922; The Composition of the Earth's Crust, Washington, 1924; F. W. Clarke, The Data of Geochemistry, Washington, 1920; H. S. Washington, Trans. Amer. Inst. Min. Eng., 39, 735, 1908; Proc. Nat. Acad., 1, 574, 1915; Journ. Franklin Inst., 190, 777, 1920; Journ. Washington Acad., 14, 435, 1924; Bull. Nat. Research Council, Inst., 190. 77, 1920; Journ. Washington Acad.; 14, 435, 1924; Butt. Nat. Research Councit, 2. ii, 30, 1926; Amer. Journ. Science, (4), 38, 90, 1914; (5), 9, 351, 1925; (5), 12, 272, 1926; 1. and W. Noddack and O. Berg, Naturwiss., 13, 568, 1925; I. and W. Noddack, ib., 17, 757, 1930; 18, 757, 1930; Zeit. phys. Chem.—Bodenstein's Vol., 890, 1931; E. Herlinger, Forschr. Min., 12, 253, 1927; V. M. Goldschmidt, Videnskapsselskapets Schrift, 11, 1922; 3, 1923; Der Stoffwechsel der Erde, Kristiania, 1922; V. M. Goldschmidt and C. Peters, Nachr. Gött., 377, 1932; H. von Klüber, Dus Vorkommen der chemischen Elemente im Kosmos, Leipzig, 1931; C. T. T. Schrift and C. Peters, 1930; 1931; Elemente Elemente in Kosmos, Leipzig, 19 G. Tammann, Zeit. anorg. Chem., 181. 96, 1923; 134. 269, 1924; P. Niggli, Fennia, 50. 6, 1928;

G. Tammann, Zeit. anorg. Chem., 181, 96, 1923; 134, 209, 1924; P. Niggii, Fennia, 50. 6, 1928;
O. E. Zvyagintzefi, Ann. Inst. Platine, 10. 14, 1932; Tzretniue Metal., 7, 140, 1932; G. Berg, Metallwirtschaft, 9, 1, 1930; P. Vinassa, Atti Accad. Lincei. (6), 5, 940, 1927.
J. M. Davison, Amer. Journ. Science, (4), 7, 4, 1899; A. Liversidge, Proc. Roy. Soc. New South Wales, 36, 341, 1903; J. L. Howe, Science, (2), 66, 220, 1927; H. H. Niniger, Journ. Geol., 87, 88, 1929; G. Osann, Pogg. Ann., 38, 238, 1856; O. C. Farrington, Meteorites, Chicago, 1915; G. P. Merrill, Proc. Amer. Phil. Soc., 65, 119, 1926; Journ. Washington Acad., 10, 597, 1920; Proc. Nat. Acad., 1, 429, 1915; I. and W. Noddack, Naturwiss., 17, 757, 1920; Zeit. phys. Chem.—Bodensteins' Vol., 890, 1931; J. C. H. Mingaye, Rec. Geol. Sur. New South Wales, 9, 159, 1916; Min. Ind., 7, 477, 1899.

³ C. C. Hutchins and E. L. Holden, Phil. Mag., (5), 24, 325, 1887; Amer. Journ. Science, (3), 34. 451, 1887; H. M. Vernon, Chem. News, 61. 51, 1890; H. A. Rowland, ib., 63. 133, 1891; Johns Hopkins Univ. Circ., 85, 1891; Amer. Journ. Science, (3), 41. 243, 1891; Astrophys. Journ., 6. 384, 1897; J. N. Lockyer, Phil. Trans., 163, 369, 1873; 172. 561, 1881; Compt. Rend., 86, 317, 1878; H. N. Russell, Mount Wilson Contrib., 383, 1929; Astrophys. Journ., 63, 1, 1926; H. von Klüber, Das Vorkommen der chemischen Elemente im Kosmos, Leipzig, 103, 1931; E. F. Baxandall, Researches on the Chemical Origin of Various Lines in Solar and Stellar Spectra, London, 1910; M. N. Saha, Phil. Mag., (6), 40. 808, 1920.

**A. J. J. Berzelius, Akad. Handl. Stockholm, 113, 1828; Pogg. Ann., 13. 564, 1828; 32. 236, 1834; A. G. Betechtin, Gornuii Zhur., 106. 152, 1931; S. Bleekrode, Pogg. Ann., 103. 656, 1858; 107. 189, 1859; Journ. Chim. Phurm., (2), 34. 219, 1858; Journ. prakt. Chem., (1), 74. 361, 1858; (1), 77. 384, 1859; Dingler's Journ., 151. 156, 1859; M. Böcking, Plutinerz aus Borneo, Göttingen, 1855; Neues Jahrb. Min., 444, 1856; Journ. prakt. Chem., (1), 67. 207, 1856; Liebig's Ann., 96. 243, 1855; A. Breithaupt, Vollstandige Charakteristik des Mineral-systems, Dresden, 256, 1832; C. Claus, Beiträge zur Chemie der Platimetalle, Dorpat, 1854; P. Cullior, Amer. Journ. Science, (2), 24, 1821, 1821. 8ystems, Dresuch, 200, 1832; C. Chaus, Deuruge zur Chemie ver I unimerate, Durpay, 16077, P. Collier, Amer. Journ. Science, (3), 21. 123, 1881; R. A. Cooper, Journ. Chem. Met. Min. Soc. South Africa, 28. 281, 1928; H. St. C. Deville and H. Debray, Ann. Chim. Phys., (3), 56. 449, 1859; Liebig's Ann., 111. 209, 1859; Chem. News, 1. 5, 15, 85, 1860; L. Duparc, Bull. Suisse Min. Pétrog., 5. 147, 1925; Arch. Sciences Genève, (4), 456, 1911; Les gütes platinfères de l'Oural et du monde, Genève, 1920; L. Duparc and H. C. Holtz, Tschermak's Mitt., (2), 29. 498, 1911; Duparc and S. D. v. Bubica, Bull. Soc. Min. 28, 20, 1012; L. Duparc and M. N. Tikonowitch L. Duparc and S. P. y Rubies, Bull. Soc. Min., 36. 20, 1913; L. Duparc and M. N. Tikonowitch, Le platine et les platinifères de l'Oural et du Monde, Genève, 1920; R. A. Farquharson, Trans. New Zealand Inst., 43. 448, 1913; A. Frenzel, Neues Jahrb. Min., 684, 1874; F. A. Genth, Proc. Philadelphia Acad., 6. 113, 1852; A. Hadding, Zeit. anorg. Chem., 122. 195, 1922; J. F. L. Hausmann, Handbuch der Mineralogie, Göttingen, 1. 97, 1913; G. C. Hoffmann, Trans. Roy. Soc. Canada, 5. 17, 1887; Amer. Journ. Science, (3), 35. 257, 1888; Berg. Hutt. Ztg., 48. 62, Proc. Russ. Min. Soc., 165, 1844; P. Kovaloff, South African Min. Eng. Journ., 87. i, 350, 1926; A. Kromoyer, Arch. Pharm., (2), 110. 14, 1862; P. Krusch, Die Untersuchung und Bewertung von Erzlagerstätten, Stuttgart, 388, 1911; J. J. Kyle, Oesterr. Zeit. Berg. Hütt., 38. 402, 1890; Anal. Soc. Cient. Argentine, 29. 51, 1890; A. Leplay, Dingler's Journ., 203, 153, 1872; W. J. Martin, Ann. Rep. U.S. Geol. Sur., 16, iii, 628, 1894; G. Osann, Pogg. Ann., 8, 510, 1826; 13, 286, 1828; S. P. de Rubies, Arch. Sciences Genève, (4), 41, 475, 1916; Boll. Soc. Espan. Hist. Nat., 17, 143, 1917; W. F. Seyer, Trans. Roy. Soc. Canada, (3), 23, 75, 1929; S. F. Shemtschushny, Neues Jahrb. Min., ii, 52, 1925; L. F. Svanberg, Akad. Handl. Stockholm, 84, 1834;

Pogg. Ann., 34, 379, 1835; 36, 471, 1835; Förh, Skand. Naturfor., 3, 505, 1842; Journ. prakt. Chem., (1), 31. 169, 1844; Berg. Hütt. Zig., 3. 472, 1844; O. E. Swjaginzeff and B. K. Brunovsky, Zeit. Kryst., 83. 172, 1932; A. Terreil, Compt. Rend., 83. 1116, 1876; Bull. Soc. Chim., (2), 25. 482, 1876; G. Tschernik, Giorn. Zhur., 688, 1927; P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 1929; H. N. Warren, Chem. News, 55. 241, 1887; F. Weil, Génie Ind., 17. 262, 1859; Dingler's Journ., 153. 41, 1859; Berg. Hütt. Zig., 19. 20, 1860; 20. 270, 1861; Berggeist, 5. 57, 1860; O. E. Zvyagintzeff, Ann. Inst. Platine, 18. 14, 1932.

5 N. von Kokscharoff, Materialen zur Mineralogie Russlands, St. Petersburg, 5. 189, 1866;

Oesterr. Zeit. Berg., Hutt., 53. 279, 1905; Zeit. prakt. Geol., 14. 285, 1906; Sitzber. Akad. Wien, 113. 379, 1904; R. J. Hauy, Traité de minéralogie, Paris, 3. 226, 1822; F. Mohs, Anfangsgründe der Naturgeschichte der Mineralreichs, Wien, 527, 1932; P. V. Jeremejeff, Proc. Russ. Min. Soc., 14. 155, 1879; A. Inostranzeff, Compt. Rend., 118. 264, 1894; S. Meunier, ib., 118. 368, 1894; A. Daubrée, ib., 80. 707, 1875; A. Liversidge, Proc. Roy. Soc. New South Wales, 31. 70, 1897; Journ. Chem. Soc., 71. 1125, 1897; A. Breithaupt, Pogg. Ann., 8. 501, 1826; S. Bleekrode, ib., 108. 659, 1858; Journ. Pharm. Chim., (2), 34. 219, 1858; F. A. Genth, Amer. Journ. Science, (2), 14. 277, 1852; R. Beck, Leipzig. Nachr., 59. 387, 1907; B. von Cotta, Berg. Hütt. Zty., 19. 495, 1860; Neues Jahrb. Min., 327, 1861; J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; O. E. Zwjaginstzeff, M. I. Karsunsky and N. Y. Sclakoff, Journ. Russ. Phys. Chem. Soc., 58. 669, 1905. Market 149, 202, 193, 1902; D. C. Lander, M. I. Karsunsky and N. Y. Sclakoff, Journ. Russ. Phys. Chem. Soc., 58.

669, 1926; Nature, 118, 262, 1926; B. C. Karpoff, Ann. Inst. Platine, 5, 363, 1927.

A. Antipoff, Charakter der Erzführung und Zustand des Berghaus im Ural, St. Petersburg, 1861; Mining Journ., 29, 416, 498, 1863; H. Bancroft, Bull. U.S. Geol. Sur., 430, 1910; R. Beck, Leipzig Nachr., 59. 387, 1907; Lehre von der Erzlagerstätten, Berlin, 686, 1903; J. B. Bell, Econ. Geol., 1. 749, 1906; D. Belousoff, Mining Journ., 61. 323, 1891; A. Bergeat and A. W. Stelzner, Die Erzlagerstätten, Leipzig, 1285, 1905; F. Beyschlag, P. Krusch and J. H. L. Vogt, Die Lagerstätten der nutzbaren Mineralien und Gesteine, Stuttgart, 1. 156, 1910; S. Bleckrode, Journ. Pharm. Chim., (2), 34. 219, 1858; Pogg. Ann., 103. 657, 1858; V. J. Bourdnakoff and J. M. Hendrikoff, Mém. Soc. Nat. Oural, 14. 197, 1896; J. B. J. D. Boussingault, Ann. Chim. Phys., (2), 32. 209, 1826; (2), 74. 213, 1840; Compt. Rend., 42. 917, 1856; C. Bullman, Min. Ind., 1. 376, 1893; Eng. Min. Journ., 58. 374, 1892; F. W. Clarke, The Data of Geochemistry, Washington, 719, 1924; A. des Cloizeaux, Compt. Rend., 80, 785, 1875; B. von Cotta and A. Breithaupt, Berg. Hatt. Zig., 19. 495, 1860; A. Daubrée, Compt. Rend., 80. 707, 1875; 116. 156, 1893; Ann. Mines, (7), 9. 129, 1876; D. T. Day, Ann. Rep. U.S. Geot. Sur., 19. ii, 265, 1899; Trans. Amer. Inst. Min. Eng., 30. 702, 1900; D. T. Day and R. H. Richards, Bull. U.S. Geol. Sur., 285, 1906; L. Duparc, Compt. Rend., 156. 411, 1913; Minéralogie technique, Genf, 1913; Rev. Univ. Mines, (7), 18. 157, 1928; Arch. Sciences Genève, (4), 15. 287, 377, 1903; (4), 30. 379, 1910; (4), 31. 211, 1911; L. Duparc and H. C. Holtz, Techermak's Mitt., (2), 29. 498, 1911; L. Duparc and P. Pamfil, Bull. Soc. Min., 33. 347, 1910; L. Duparc and F. Pearce, Arch. Science Genève, (3), 34. 1905, 1902; L. Duparc and S. P. y Rubies, Bull. Soc. Min., 36. 20, 1913; L. Duparc and M. N. Tikonowitch, Le platine et les gîtes platinifères de l'Oural et du monde, Genève, 1920; Bull. Suisse Min. Pétrog., 5, 147, 1925; M. von Engelhardt, Pogg. Ann., 20, 532, 1830; Die Lagerstätte des Gold und Platins im Uralgebirge, Riga, 30, 1828; J. F. von Erdmann, Beiträge zur Kenntnis des Innern von Russland, Dorpat, 132, 1826; A. von Ernst, Kine bergmännische Exkursion durch den Ural, Hannover, 1892; R. A. Farquharson, Trans. New Zealund Inst., 48. 448, 1913; J. Fedoroff, Tschermak's Mitt., (2), 14. 89, 1894; A. Frenzel, Neues Jahrb. Min., 673, 1874; J. N. Fuchs, Schweigger's Journ., 62, 94, 1931; M. Gorbatscheff, Rev. Univ. Mines, 25, 158, 1909; E. de Hautpick, Mining Journ., 90, 963, 1065, 1910; G. von Helmersen, Reise nach dem Ural und dem Kirgisensteppen, St. Petersburg, 1841; R. Helmhacker, Min. Scient. Press., 77, 280, 1898; Zeit. prakt. Geol., 1, 87, 1893; Berg. Hütt. Ztg., 51, 9, 1892; A. von Humboldt, Ann. Mines, (4), 3, 53, 1843; Amer. Journ. Science, (1), 46, 212, 1844; L. Hundeshagen, Trans. Inst. Min. Met., 13. 550, 1904; Chem. News, 90. 77, 1904; E. Hussak, Zeit. prakt. Geol., 14. 289, 1906; Oesterr. Zeit. Berg. Hutt., 53. 279, 1905; Sitzber. Akad. Wien, 113. 376, 1904; Zeit. Kryst., 42. 399, 1906; A. Inostranzeff, Bull. Soc. Nat. St. Petersburg, 22. 17, 1893; 23. 1, 1894; Compt. Rend., 116. 155, 1893; 118. 265, 1894; J. B. Jaquet, Rec. Geol. Sur. New South Wales, 5. 33, 1898; P. V. Jeremejeff, Proc. Russ. Min. Soc., 14. 155, 1879; A. Karpinsky, Fundorte nützlicher Fosilien im europäischer Russland und Ural, St. Petersburg, 20, 1881; A. Katterfeld, Bull. Soc. Oural Science Nat., 25. 6, 1905; J. F. Kemp, Eng. Min. Journ., 78. A. Ratterfeld, Bull. Sci. Out in Science Nat., 25. 6, 1905; J. F. Reinp, Eng. Invi. Journ., 16. 512, 1902; Bull. U.S. Geol. Sur., 193, 1902; N. von Kokscharoff, Materialen zur Mineralogie Russlands, St. Petersburg, 5. 177, 1866; A. Koltowsky, Mining Journ., 1. 227, 1840; 8. 272, 1842; Die Demidoff-Minen im Nischne-Tagilsk-District, St. Petersburg, 1846; Ann. Mines, (3), 17. 227, 1840; A. Krassnopolsky, Bull. Compt. Géol. Russe, 2. 89, 1883; 11. 177, 1890; P. I. Krotoff, ib., 6. 563, 1888; P. Krusch, Die Untersuchung und Bewertung von Erzlagerstätten, Stuttgart, 387, 1911; G. Kunz, Journ. Franklin Inst., 146, 193, 264, 1898; A. T. Kupffer, Kastner's Arch., 12, 236, 1827; A. Laurent, Ann. Mines, (8), 18, 537, 1890; Eng. Min. Journ., 53, 430, 1892; M. Leplay, Compt. Rend., 19, 853, 1844; L. Leroux, L'Ind. Chim., 13, 202, 1926;

C. Lewis, Chem. News, 56. 153, 1887; F. Loewinson-Lessing, Trav. Soc. Nat. St. Petersburg, 30, 19, 1900; Journ. Inst. Polyt. St. Petersburg, 11. 1, 1909; A. A. Losch, Proc. Russ. Min. Soc., 27. 440, 1890; H. Louis, Min. Ind., 6. 539, 1897; M. Lubarsky, Mining Journ., 8. 158, 1828; 11. 125, 1828; A. D. Lumb, The Platinum Metals, London, 2, 1920; J. Menge, Zeit. Min., 2. 11. 125, 1828; A. D. Lumb, The Fatthum Intellity, London, 2, 1920; J. Menge, Zett. Intn., 2. 245, 508, 1826; Edin. Phil. Journ., (2), 2. 199, 1827; Proc. Russ. Min. Soc., 1. 105, 1842; S. Meunier, Compt. Rend., 118, 368, 1894; Compt. Rend. Congres. Géol. Internat., 8, 157, 1898; A. Minchin, Proc. Russ. Min. Soc., 1, 101, 1842; J. C. H. Mingaye, Ann. Rept. Dept. Mines New South Wales, 249, 1889; R. Murchison, Geology of Russia in Europe and the Uralian Mountains, London, 1845; J. W. Muschketoff, Proc. Russ. Min. Soc., 29, 229, 1892; J. S. Newberry, School Mines Guart., 1, 87, 1880; C. W. Purington, Trans. Amer. Inst. Min. Eng., 29, 3, 1899; G. Rose, Pogg. Ann., 31. 673, 1834; Reise nach dem Ural, dem Allai und dem kaspischen Meere. Berlin, 1. 325, 1837; 2. 390, 1843; S. P. de Rubies, Anal. Fis. Quim., 9, 87, 29, 1911; Arch. Sciences Genève, (4), 41. 475, 1926; F. Sandberger, Neues Jahrb. Min., 625, 1875; W. Sapelkin and M. Iwanoff, Der Bergbau in Russland, St. Petersburg, 1903; A. Saytzeff, Die Platinlagerstätten am Ural, Tomsk, 71, 1898; Bull. Comité Géol. Russe, 7, 265, 1888; 13, 97, 1892; Zeit. prakt. Geol., 6. 395, 1898; M. Sivkoff, Mining Journ., 8. 225, 1828; R. Spring, Zeit. prakt. Geol., 13. 49, 1905; A. F. Stahl, Chem. Ztg., 21. 394, 1897; M. Teploff, Ann. Chim. Phys., (2), 60. 394, 18. 35, 1805; Ann. Mines, (3), 8. 5, 1835; A. Terreil, Compt. Rend., 82. 1116, 1878; M. Tschupin, Geographisches und statistisches Lexikon des Gowernments Perm., St. Petersburg, 1873; W. L. Uglow, Eng. Min. Journ., 108. 352, 390, 1919; W. Vernadsky, Beschreibende Mineralogie, St. Petersburg, 1913; J. H. L. Vogt, Econ. Geol., 22, 321, 1928; P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 1929; P. A. Wagner and T. G. Trevor, South African Journ. Industries, 6, 577, 1923; N. K. Wyssotsky, Bull. Compt. Géol. Russe, 22, 533, 1903; Arb. Geol. Com. St. Petersburg, 2, 62, 1913; A. Zawaritsky, Ann. Inst. Mines Cuthérine, 3, 1909; C. Zerrenner, Physikalische Geographie des Gouvernments Perm, Leipzig, 1851;
 E. Zvagintseff, V. V. Lebedinsky and A. N. Filippoff, Compt. Rend. Acad. U.S.S.R., 4, 165, 1933.

⁸ F. A. Genth, Journ. prakt. Chem., (1), 55. 254, 1852; Amer. Journ. Science, (2), 14. 277, 1852; M. d'Argy, L'Inst., 1. 103, 1833; Poyy. Ann., 31. 16, 1834; E. Gueymard, Bull. Soc. Géol., (2), 12. 429, 1855; Compt. Rend., 29. 814, 1849; 38. 941, 1853; W. N. Hartley and H. Ramage, (2), 12. 429, 1855; Compt. Rend., 29. 814, 1849; 38. 941, 1853; W. N. Hartley and H. Ramage, Journ. Chem. Soc., 71. 533, 1897; R. W. Brock, Cunada, Dept. Mines, 81, 1920; H. Vogel, Oesterr. Zeit. Berg. Hütt., 39. 32, 1891; H. L. Wells, Amer. Journ. Science, (3), 37. 67, 1889; W. E. Hidden, ib., (4), 6. 381, 1898; W. E. Hidden and J. H. Pratt, ib., (4), 6. 467, 1898; H. L. Wells and S. L. Penfield, ib., (4), 18. 95, 1902; F. W. Clarke, Data of Geochemistry, Washington, 721, 1924; F. W. Clarke and C. Catlett, Bull. U.S. Geol. Sur., 64, 1890; S. F. Emmons, ib., 213, 1903; A. Knopf, ib., 620, A, 1915; J. F. Kemp. Contr. Geol. Dept. Columbia Univ., 11. 93, 1903; G. Lunde and M. Johnson, Zeit. anorg. Chem., 172. 167, 1928; T. T. Read, Eng. Min. Journ., 79. 985, 1905; W. C. Knight, ib., 72. 845, 1901; J. Catharinet, ib., 79. 127, 1905; L. A. Palmer, ib., 102. 123, 1916; J. C. H. Mingaye, Rec. Geol. Sur. New South Wales. 8. 287, 1909; 9. 127, 1916; W. Baragwanath. Bull. Geol. Sur. Victoria, 20, 1906; South Wales, 8. 287, 1909; 9. 127, 1916; W. Baragwanath, Bull. Geol. Sur. Victoria, 20, 1906;

 Souln Wates, 8, 281, 1909; 9. 121, 1916; W. Baragwanath, Butt. Oct. Sur. Vectoria, 20, 1906;
 C. W. Dickson, Journ. Canadian Min. Inst., 8, 192, 1905; J. H. L. Vogt, Zeit. prakt. Geol., 17, 258, 1902;
 O. E. Zvjaginsteff and A. N. Filippoff, Compt. Rend. Acad. U.R.S.S., 1, 136, 1935.
 Anon., Eng. Min. Journ., 61, 81, 1896; J. L. Beeler, Amer. Journ. Pharm., (4), 1, 348, 1871;
 A. Cissarz, Chem. Erde, 5, 48, 1930; A. Daubrée, Compt. Rend., 82, 1116, 1876; A. L. Day and
 R. B. Sosman, Amer. Journ. Science, (4), 29, 155, 1910; A. Eilers, Trans. Amer. Inst. Min. Eng., 47, 217, 1913; V. M. Goldschmidt and C. Peters, Nachr. Gött., 371, 1933; K. Hélouis, Bull. Soc. Enc. Nat. Ind., (5), 1. 904, 1896; G. C. Hoffmann, Ann. Rept. Geol. Sur. Canada, 6. 26, 1893; J. B. Jaquet, Zeit. prakt. Geol., 1. 322, 1893; Berg. Hütt. Zig., 55. 101, 1896; Rept. Dept. Mines New South Wales, 142, 1892; J. F. Kemp, Eng. Min. Journ., 73. 512, 1902; P. Krusch, Metall Erz, 11. 545, 1914; M. von Leuchtenberg, Journ. prakt. Chem., (1), 41. 222, 1847; Dingler's Journ., 106. 37, 1847; Bull. Acad. St. Petersburg, (2), 6. 129, 1848; G. Lunde, 1847; Dinglet's Journ, 100. 37, 1841; Bull. Acad. St. Feterswary, (2), 0. 129, 1848; G. Lunge, Zeit. anorg. Chem., 161. 1, 1927; G. Lunde and M. Johnson, ib., 172. 167, 1928; G. Lunge, Zeit. angew. Chem., 7. 37, 1894; F. Mylius and C. Hüttner, Ber., 44. 1327, 1901; A. Orio, Elementos de mineralogia, Madrid, 74, 1882; C. Palmstedt, Oefvers. Vet. Akad. Förg., 9. 220, 1852; M. Pettenkofer, Bull. Akad. München, 142, 1848; Buchner's Repert., (2), 47. 72, 1847; Pogg. Ann., 74. 316, 1848; E. Priwoznik, Oesterr. Zeit. Berg. Hütt., 43. 272, 1895; H. Rössler, Liebig's Ann., 180. 240, 1875; Berg. Hütt. Zig., 35. 332, 1876; J. G. Rose, Chem. News, 98, 104, 1908; F. Sandharger, News, 1986, 1875; H. S. Sahrawalburg, Anglant, 27, 7, 1912. 1908; F. Sandberger, Neues Jahrb. Min., 625, 1875; H. S. Schrewsbury, Analyst., 37, 7, 1912; W. F. Seyer, Trans. Roy. Soc. Canada, (3), 23. 75, 1929.

W. F. Seyer, Trans. Roy. Soc. Canada, (3), 23. 75, 1929.
J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; H. F. Keller, Journ. Franklin Inst., 174.
525, 1912; A. D. Lumb, The Platinum Metals, London, 1920; L. Duparc, Rev. Univ. Mines, (7), 18. 157, 1928; G. A. Roush, Mineral Ind., 41. 407, 1932.
J. W. Mallet, Phil. Mag., (3), 37. 393, 1850; Journ. Dublin Geol. Soc., 4. 269, 1850; Edin. Phil. Journ., (2), 50. 82, 1851; L. de Launay, Traité de métallographie, Paris, 3. 759, 1913; R. P. Greg and W. G. Lettsom, Manual of the Mineralogy of Great Britain and Ireland, London, 245, 1858; E. H. Davison, Mining Mag., 33. 89, 1925.
E. Gueymard, Compt. Rend., 29. 780, 814, 1849; Pogg. Ann., 79. 323, 480, 1850; Ann. Mines, (5), 1. 345, 1852; (5), 5. 165, 1854; J. J. Ebelmen, ib., (4), 16. 505, 1849; G. A. Kenngott, Ueberrichte der Resultate mineralogischer Forschungen, Wien, 222, 1849; M. d'Argy, L'Inst., 1. 103, 1833; Pogg. Ann., 31. 16. 1834; M. Villain, ib., 31. 16, 1834; M. Dangez, ib., 31, 590.

103, 1833; Pogg. Ann., 81. 16, 1834; M. Villain, ib., 81. 16, 1834; M. Dangez, ib., 31. 590,

1834; Journ. prakt. Chem., (1), 1. 76, 1834; L'Inst., 1. 35, 1833; P. Berthier and A. C. Becquerel, Pogg. Ann., 31, 590, 1834; J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; H. F. Gaultier de Claubry, Bull. Soc. Enc. Nat. Ind., (1), 32. 476, 1833; Dingler's Journ., 49. 227, 1833.

18 L. Hopff, Kastner's Arch., 27. 394, 1835; J. W. Döbereiner, Arch. Pharm., 25. 57, 1841; Ann. Mines, (4), 3. 850, 1843; H. Rössler, Liebig's Ann., 180. 243, 1876; Berg. Hutt. Ztg.. 35. 332, 1876; J. J. Berzelius, Pogg. Ann., 34. 380, 1835; J. C. L. Zincken, ib., 34. 271, 1835; O. Luedecke, Die minerale des Harzes, Berlin, 6, 1896; A. Duparc, A. del Campo y Cerdan and S. P. de Rubies, Anal. Fis. Quim., 18. 82, 1915; F. Wrede, Berzelius' Jahresber., 14. 185, 1835; Neues Jahrb. Min., 185, 1835; P. Krusch, Min. Scient. Press., 109, 880, 1914.

14 V. von Zepharovich, Mineralogisches Lexicon für das Kaiserthum Oesterreich, Wien, 187, 1893; P. Partsch, Sitzber. Akad. Wien, 7. 127, 1848; C. Zerenner, ib., 11. 462, 1853; W. Haidinger, Ber. Freunde Naturwiss., 8. 412, 1848; A. Patera and B. Kopetzky, ib., 8. 439, 1848; J. Molnar, ib., 3. 412, 475, 1848; J. H. Vogel, Oesterr. Zeit. Berg. Hutt., 39. 32, 1891;

Berg. Hutt. Zig., 50. 93, 1891.

15 Anon., Dingler's Journ., 255. 489, 1884; S. H. Ball and B. Low, Eng. Min. Journ., 103. 407, 1917; J. J. Berzelius, Pogg. Ann., 32. 237, 1834; A. G. Betechtin, Gorni. Zhur., 106. 152, 1930; F. Beyschlag, P. Krusch and J. H. L. Vogt, Die Lagerstätten der nutzbaren Mineralien und Gesteine, Stuttgart, 1. 340, 1910; C. Blömeke, Berg. Hatt. Ztg., 49. 239, 1890; A. Breithaupt, Neues Jahrb. Min., 525, 1835; Schweigger's Journ., 69. 96, 1833; C. Claus, Fragment einer Monographie des Platins und der Platinmetalle, St. Petersburg, 6, 1883; A. des Cloizeaux, Compt. Rend., 80. 785, 1874; G. A. Dodonoff, Bull. Soc. Oural. Science Nat., 85. 18, 1915; C. H. Dorr, Scient. Amer. Month., 8. 547, 1921; L. Duparc, Arch. Sciences Genève, (4), 27. 1, 1909; Compt. Rend., 156. 411, 1913; Helvetica Chim. Acta, 2. 324, 1919; Bull. Soc. Ing. Civils, 88, 1916; Scient. Amer. Suppl., 85. 144, 1918; L. Duparc and P. Pamfil, Bull. Soc. Min., 33. 1, 1910; L. Duparc and M. Tikonowich, Le platine et les gîtes platinifères de l'Oural et du Mond, Genève, 1920; Bull. Suisse Min. Petrol., 5. 147, 1925; M. von Engelhardt, Die Lagerstätte des Golds und Platins im Uralgebirge, Riga, 30, 1828; Pogg. Ann., 20. 532, 1830; J. Fedoroff, Tschermak's Mitt., (2), 14. 85, 1894; J. M. Hill, Eng. Min. Journ., 103. 1145, 1917; Min. Resources U.S. Geol. Sur., i, 11, 1917; C. Hintze, Handbuch der Mineralogie, Leipzig, 1. i, 144, 1904; A. Inostranzeff, Compt. Rend., 116. 155, 1893; Bull. Soc. Nat. St. Petersburg, 22. 17, 1893; 23. 1, 1894; P. V. Jeremejeff, Gorn. Journ., 3. 263, 1887; Proc. Russ. Min. Soc., 14, 155, 1879; A. Karpinsky, Fundorte nützlicher Fossilien im europaïschen Russland und Ural, St. Petersburg, 1881; Bull. Acad. Science Soviet, 20. 133, 1926; A. Katterfield, Berg. Hutt. Ztg., 44. 68, 1885; Kern, Chem. News, 35. 88, 1877; A. Köppen, Russ. Rev., 9. 460, 1880; Dingler's Journ.,
 Kern, Chem. News, 35. 88, 1877; A. Köppen, Russ. Rev., 9. 460, 1880; Dingler's Journ.,
 St. Kern, Chem. News, 35. 88, 1877; A. Köppen, Russ. Rev., 9. 460, 1880; Dingler's Journ.,
 Materialen zur Mineralogie Russlands, St. Petersburg, 5. 190, 1866; A. Krassnopolsky, Rull. Compt. Géol. Russe, 2. 89, 1883; P. Krusch, Zeit. prakt. Geol., 29, 135, 155, 1921; A. K. Kijuz, Sovet. Zolotoprom., 5, 1935; A. von Lasaulx, Niederrh. Ges. Bonn, 99, 1882; A. A. Losch, Proc. Russ. Min. Soc., 27. 398, 1890; A. D. Lumb, The Platinum Metals, London, 34, 1920; N. Mamyschoff, Zeit. Min., 5. 265, 1827; B. N. Menschutkin, Journ. Chem. Educ., 11. 226, 1934; A. R. Merz, Journ. Ind. Eng. Chem., 10. 920, 1918; V. P. Mishin, Bull. Compt. Geol. Leningrad, 46. 141, 1927; E. P. Moldavantzeff, ib., 46. 141, 1927; G. Padalka, ib., 47. 935, 1928; P. P. Pilipenko, Bull. Acad. St. Petersburg, (6), 9. 1229, 1915; G. Rose, Pogg. Ann., 2. 396, 1842; 29. 452, 1833; 34. 378, 1835; Abh. Akad. Berlin, 97, 1849; Reise nach dem Ural, dem Altai, und dem kaspischen Meere, Berlin, 2. 389, 1842; S. P. de Rubies and F. Coma y Roca, Anal. Fis. Quim., 11. 334, 1913; G. Schüler, Neues Jahrb. Min., 407, 1833; D. Serdyuchenko, Die Nordkaukasus, 180, 1932; A. Solitander, Berg. Hutt. Ztg., 62. 199, 1903; R. Spring, Zeit. prakt. Geol., 18. 49, 1905; A. F. Stahl, Chem. Ztg., 21. 394, 1897; L. Tovey, Eng. Min. Journ., 86. 708, 1908; K. N. Visotsky, Natural Production Russia, 4. 109, 1923; N. K. Wyssotsky, Bull. Compt. Géol. Russe, 22. 533, 1903; The Ural and Siberian Platinum Fields, Petrograd, 1923; A. N. Zavaritzky, Mat. Com. Géol. Leningrad, 108, 1928; Min. Ind. Mag. South Africa, 7. 503, 547, 1929; C. Zerrenner, Zeit. deut. geol. Ges., 25. 460, 1873.

18 F. J. Wilk, Die Sammlung finnländischer Mineralien im Mineraliencabinet der Universität

Helsingfors, Helsingfors, 9, 1887; A. E. Nordenskjöld, Pog. Ann., 140. 336, 1870; Chem. News, 22. 96, 1870; J. H. Langer, Polyt. Centrb., 26. 1225, 1873.

17 J. H. L. Vogt, Nikkelforekomster og nikkelproduction, Christiania, 1892; L. de Launay, Traité de métallurgie, Paris, 2. 593, 1913; F. M. Stapff, Berg. Hutt. Zig., 17. 377, 398, 406, 413, 417, 1858; A. J. Waller, Oefvers. Akad. Förh. Stockholm, 88. 10, 1876.

¹⁸ J. H. L. Vogt, Zeit. prakt. Geol., 10. 258, 1902; G. vom Rath, Neues Jahrb. Min., 443, 1869; G. Lunde, Zeit. anorg. Chem., 161. 1, 1928; G. Lunde and M. Johnson, ib., 172. 167, 1928; S. Foslie and M. J. Höst, Norg. Geol. Andersöpelse, 137, 1932.

19 J. H. Vogel, Zeit. angew. Chem., 4. 326, 1891.

²⁰ A. Orio, Elementos de mineralogia, Madrid, 360, 1882; L. Duparc and A. Grosset, Mém. Soc. Phys. Genève, 38. 253, 1916; T. C. Earl, Mining Journ., 111. 860, 1915; F. Gillman, Trans. Inst. Min. Met., 26. 194, 1917; C. H. Dorr, Scient. Amer. Month., 3. 547, 1921; L. N. Vauquelin, Ann. Chim. Phys., (1), 60. 317, 1806; Phil. Mag., 27. 335, 1807; 29. 278, 1807; Nicholson's Journ., 17. 128, 1807; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. 168, 1826; A. D. Lumb, The Platinum Metals, London, 41, 1920; S. P. de Rubies, Arch. Sciences Genève, (4), 41, 475, 1916; Anal. Fis. Quim., 18. 420, 1915; D. y Orueta and S. P. de Rubies, Compt. Rend., 162, 45, 1916; E. Rubio, Revista Minera, 75. 2951, 1924.

²¹ R. Helmhacker, Berg. Hütt. Ztg., 52, 467, 1891.

²⁴ L. de Launay, Traité de métallurgie, Paris, 3. 758, 1913; H. Nakovnik, Trans. Geol. Prospecting Service U.S.S.R., 50, 1173, 1931; J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; K. Jimbo, Journ. Coll. Science Tokyo, 11. 213, 1899; T. Wada, Minerals of Japan, Tokyo, 89. 1904; E. de Hautpick, Mining Journ., 100, 107, 1913; A. G. Betechtin, Tzvefnuje Metal. 392,

²³ J. Prinsep, Asiatic Researches, 18. ii, 279, 1833; Pogg. Ann., 34. 380, 1835; R. Romanis, Chem. News, 54. 278, 1886; H. Burney, Neues Jahrb. Min., 198, 1833; Journ. Asiatic Soc. Bengal, 3. 365, 1834; M. F. Heddle, Encyclopædia Britannica, London, 16. 382, 1883; A. Faber, Pharm. Centrol., (1), 19. 569, 1848; Records Geol. Sur. India, 46. 284, 1915; 47. 163, 1916;

50. 156, 1919.
24 T. Posewitz, Geology and Mineral Resources of Borneo, London, 1892; L. Hundeshagen, Trans. Inst. Min. Met., 13. 550, 1904; Chem. News, 90. 77, 1904; S. Bleekrode, Journ. Pharm. Trans. Inst. Min. Met., 18. 550, 1904; Chem. News, 90. 77, 1904; S. Bleekrode, Journ. Pharm. Chim., (2), 34. 219, 1858; Pogg. Ann., 103. 656, 1858; 107. 189, 1859; Journ. prakt. Chem., (1), 74. 361, 1858; (1), 77. 384, 1859; M. Böcking, ib., (1), 67. 207, 1856; Liebig's Ann., 96. 243, 1855; Platinerz aus Borneo, Göttingen, 1855; P. W. Korthals. News Jahrb. Min., 569, 1837; L. Horner, ib., 9, 1838; Verh. Batavia. Genootsch., 17. 89, 1839; Pogg. Ann., 55. 526, 1842; E. Heurteau, Ann. Mines, (7), 9. 232, 305, 1876.

25 G. Aimé, Compl. Rend., 7. 246, 1838; E. Ackermann, Chem. Ztg., 30, 19, 1906; R. P. Roth-

well, Min. Ind., 7. 570, 1899; A. Lacroix, Mineralogie de la France et de ses colonies, Paris, 5. 841, 1910; Bull. Soc. Min., 41. 98, 1918; L. Duparc, A. de Campo y Cerdan and S. P. de Rubies, Anal. Fis. Quim., 13. 82, 1915; L. Dupare, Arch. Sciences Genève, (4), 37, 37, 1913; Bull. Suisse Min. Petrog., 7, 413, 1927; L. Dupare and E. Molly, ib., 8, 240, 1928; N. R. Junner, Mining Mag., 42. 73, 1930; F. Hermann and O. Günther, Metall Erz, 33. 113, 1936;
 P. V. Brande, Ann. Service Mines Katanga, 5. 64, 1934; Rev. Geol., 16. 63, 1934.
 H. R. Adam, Trans. Geol. Soc. South Africa, 33. 193, 1931; M. Baumann, Journ. Chem.

Met. Min. South Africa, 24. 61, 1923; F. Behrend, Zeit. prakt. Geol., 33, 134, 1925; E. Behrle, Zeit. angew. Chem., 37, 830, 1924; G. Berg, Metallwirtschaft, 7, 409, 1928; W. Bettel, South African Mines, 4, ii, 206, 1906; R. A. Cooper, Journ. Chem. Met. Min. South Africa, 26, 228, 1926; L. Duparc and M. Tikonowich. Bull. Suisse Min. Petrol., 5, 147, 1925; W. H. Goodchild, Trans. Inst. Min. Met., 26, 12, 1917; A. Hall and W. A. Humphrey, Trans. Geol. Soc. South Africa, 11, 75, 1908; P. Krusch, Gewerbefleiss, 105, 213, 1926; P. Kukuk, Berg. Hütt. Zeit.-Gluckauf, 26, 1930; Glückauf, 66, 868, 1930; E. N. Lewis, Metal Ind., 26, 431, 1925; B. Lightfoot, Rept. South Rhodesia Geol. Sur., 19, 1926; 21, 1927; M. Lipovsky, South African Min. Eng. Journ., 37, ii, 273, 1926; H. B. Maufe, Bull. South Rhodesia Geol. Sur., 5, 1919; Rev. Géol., 4. 171, 1923; F. P. Mennall and A. Frost, Proc. Rhodesian Science Assoc., 25. 2, 1926; H. Merensky, South African Min. Eng. Journ., 35. ii, 275, 474, 1925; Zeit. deut. Geol. Geo., 78. 296, 1926; A. Newberry, Eng. Min. Journ., 121. 716, 763, 1926; 123. 58, 1927; E. Reuning, Neues Jahrb. Min. B.B., 57. 637, 1928; J. G. Rose, South Africa Journ. Science, 7. 129, 1911; J. Schlenzig, Metallbörse, 19. 1153, 1929; H. Schneiderhöhn, Chem. Erde, 4. 252, 1930;
 H. Schneiderhöh and H. Moritz, Siebert's Festschrift, 257, 1931; R. Stappenbeck, Metall Erz, 27. 381, 1930; A. L. du Toit, Ann. Rept. Geol. Sur. South Africa, 1912-3; J. H. L. Vogt, Econ. Géol., 22. 321, 1928; P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 1929; South African Journ. Ind., 8. 90, 1925; Econ. Geol., 21. 109, 243, 1926; Reone Econ. Internat., 106, 1926; Mem. Geol. Sur. South Africa, 21, 1924; 24, 1926; Mining Mag., 32. 239, 1925; P. A. Wagner and E. T. Mellor, Trans. Geol. Soc. South Africa, 28. 1, 83, 1926; 29. 145, 1925; F. A. Wagner and E. I. Mellot, Trans. Geol. Soc. South Africa, 28. 1, 85, 1926; 29. 145, 1927; P. A. Wagner and T. G. Trevor, South African Journ. Ind., 6. 577, 1923; F. Wartenweiler and A. King, Third Empire Min. Met. Congr., 1, 1930; A. E. V. Zealley, Rept. South Rhodesia Geol. Sur., 3, 1918; Rev. Géol., 4. 169, 1923; Bull. Imp. Inst., 5. 137, 1907; Trans. South Africa Geol. Soc., 16. 64, 1914; Trans. Roy. Soc. South Africa, 5. 1, 1915.

27 J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; T. S. Hunt, Rept. Geol. Sur. Canada, 120,

1851; Amer. Journ. Science, (2), 15. 448, 1853; Ann. Mines, (5), 3. 683, 1853; J. F. Donald, Eng. Min. Journ., 55. 81, 1893; Berg. Hutt. Ztg., 52. 209, 1893; F. W. Clarke and C. Catlett, ib., 52. 119, 1893; Chem. News, 59. 295, 1889; 67. 53, 1893; Bull. U.S. Geol. Sur., 64, 1890; Amer. Journ. Science, (3), 37. 372, 1889; J. W. Dickson, ib., (4), 15. 137, 1903; G. M. Dawson, Ann. Rep. Geol. Sur. Canada, 3. 104, 156, 1887; G. C. Hoffmann, ib., 4. 67, 1890; 5. 365, 1892; Trans. Roy. Soc. Canada, (3), 7. 65, 1890; Annotated List of Minerals occurring in Canada, Ottawa, 95, 1890; G. P. Howley, Mining World, 26, 783, 1907; E. R. Faribault, Summary Rept. Canada Dept. Mines, F, 11, 1918; D. E. Roberts and R. D. Longyear, Trans. Amer. Inst. Min. Eng., 59. 27, 1918; Canadian Min. Journ., 39. 50, 135, 1918; Trans. Canada Min. Inst., 21. 80, 1919; G. C. Mackenzie, ib., 21. 427, 1919; C. Camsell, Mining Journ., 105. 523, 1914; Journ. Canada Min. Inst., 13. 309, 1910; Bull. Canada Min. Inst., 9. 29, 1910; W. L. Uglow, Eng. Min. Journ., 108. 352, 390, 1919; J. H. L. Vogt, Econ. Geol., 22. 321, 1927; A. P. Coleman,

The Nickel Industry, Ottawa, 28, 1913.

The Nickel Industry, Ottawa, 25, 1913.

28 W. W. Attwood, Amer. Journ. Science, (3), 9, 229, 1875; J. L. Beeler, Amer. Journ. Pharm., (4), 1, 348, 1871; J. E. Bernier, Scient. Amer. Month., 8, 550, 1921; W. P. Blake, Amer. Journ. Science, (2), 18, 156, 1854; (2), 20, 79, 1855; Min. Ind., 8, 475, 1900; C. Blömeke, Berg. Hutt. Ztg., 49, 239, 1890; W. Browne, Min. Ind., 16, 781, 1908; C. Bullman, Min. Ind., 1, 375, 1892; D. G. Campbell, Min. Scient. Press., 119, 520, 1919; C. F. Chandler, Pogg. Ann., 117, 190, 1862; Amer. Journ. Science, (2), 32, 351, 1862; F. W. Clarke and C. Catlett, Bull.

U.S. Geol. Sur., 64, 1890; Berg. Hatt. Ztg., 52, 119, 1893; J. M. Clarke, Min. Ind., 26, 541, 1917; P. Collier, Amer. Journ. Science, (3), 21, 123, 1881; J. D. Dana, A System of Mineralogy, New York, 26, 1892; D. T. Day, Min. Ind., 9. 520, 1900; Trans. Amer. Inst. Min. Eng., 30. New York, 20, 1632; D. 1. 18y, Main. 11m., 5. 1620, 1800; I rans. Amer. 11m. 11m. 11m., 162.

702, 1900; Min. Scient. Press., 81. 158, 1900; J. T. Donald, Berg. Hütt. Ztg., 52. 210, 1893; Eng. Min. Journ., 55. 81, 1893; H. Dubois, Ann. Mines, (5), 6. 518, 1854; Amer. Journ. Science, (2), 21. 205, 1856; S. F. Emmons, Bull. U.S. Geol. Sur., 213, 1903; F. A. Genth, The Minerals of North Carolina, Washington, 14, 1891; Journ. prakt. Chem., (1), 55. 254, 1852; Amer. Journ. Science, (2), 14. 277, 1852; F. A. Hale, Eng. Min. Journ., 98. 642, 1914; C. L. Henning, Die Erzlagerstätten der Vereinigten Staatin von Nord-Amerika, Stuttgart, 246, 1911; F. L. Hess, Bull. U.S. Geol. Sur., 213, 1903; W. E. Hidden, Amer. Journ. Science, (3), 22. 25, 1881; J. M. Hill, Journ. Ind. Eng. Chem., 9. 995, 1917; T. H. Hite, Econ. Geol., 28. 256, 1933; A. E. Kellogg, Mining Journ., 12. 5, 1929; Eng. Min. Journ., 113, 1000, 1922; J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902; Contr. Geol. Dept. Columbia Univ., 11, 93, 1903; Zeit. prakt. Geol., 4, 232, 1896; G. A. Kenngott, Uebersichte der Resultate mineralogischer Forschungen, Wien, 53, 1892; A. Knopf, Bull. Amer. Geol. Soc., 26, 85, 1915; Bull. U.S. Geol. Sur., 620, 1915; Journ. Washington Acad., 5. 370, 1915; Min. Scient. Press., 109, 990, 1914; 110, 878, 1915; H. Ludwig, Arch. Pharm., (2), 110, 14, 1862;
O. Luthy, Dingler's Journ., 240, 313, 1881;
Chem. Ztg., 8, 559, 1879;
G. C. Martin, B. L. Johnson and U. S. Grant, Bull. U.S. Geol. Sur., 587, 1917;
J. T. Pardee, ib., 805, 1929;
R. M. Patterson, Zeit. deut. geol. Ges., 2, 61, 1850;
T. T. Read, Eng. Min. Journ., 79, 985, 1905;
R. P. Rothwell, Min. Ind., 7, 569, 1899;
8, 476, 1900; C. U. Shepard, Amer. Journ. Science, (1), 4. 280, 1847; B. Silliman, ib., (2), 6. 132, 1873; (2),
8. 294, 1849; Edin. Phil. Journ., 48. 185, 1850; H. H. Taft, Eng. Min. Journ., 106. 900, 1918;
J. E. Teschemacher, Edin. Phil. Journ., 51. 193, 1851; Amer. Journ. Science, (2), 10. 121, 1850;
J. V. Thévenet, Mém. Acad. Lyon, 10. 129, 1860; Ann. Mines, (5), 16. 573, 1859; F. P. Venable, Journ. Mitchell Scient. Soc., 8, 123, 1892; Amer. Journ. Science, (3), 48, 540, 1892; F. Weil, Génie Ind., 17. 262, 1859; Dingler's Journ., 153. 41, 1859.

²⁹ M. Percy, Ann. Chim. Phys., (1), 74. 111, 1810; L. B. G. de Morveau, ib., (1), 78. 354, 1810; A. von Humboldt, ib., (2), 32. 204, 1826; Schweigger's Journ., 45. 54, 1825; Pogg. Ann., 10. 490, 1827; Gilbert's Ann., 56. 1, 1817; L. N. Vauquelin, Ann. Mus. Hist. Nat., 15. 317, 1810; Ann. Chim. Phys., (1), 60, 317, 1806; Nicholson's Journ., 17, 128, 1807; Phil. Mag., 27, 335, 1807; 28, 278, 1807; A. F. Gehlen, Schweigger's Journ., 1, 362, 1811; A. Vogel, Repert. Pharm., 22, 292, 1873; J. D. Dana, A System of Mineralogy, New York, 26, 1892; C. F. Landero, Sinopsis mineralogica o catálogo descriptivo de los minerales, Mexico, 404, 1888; H. J. Burkart, Neues Jahrb. Min., 594, 1874; H. Sandberger, ib., 625, 1875; J. F. Kemp,

41, 1788; A. Damour, Compt. Rend., 52. 688, 1861; I. Domeyko, Elementos de mineralojia, Santiago, 442, 1879; C. H. Dorr, Scient. Amer. Month., 3. 547, 1921; A. F. Gehlen, Schweigger's Journ., 1. 362, 1811; H. Heuland, Ann. Phil., 12. 200, 1818; Phil. Mag., 52. 382, 1818; 57. 228, 1821; Ann. Chim. Phys., (2), 9. 331, 1818; A. von Humboldt, Schweigger's Journ., 45. 54, 1825; Pogg. Ann., 10. 490, 1827; Gilbert's Ann., 56. 1, 1817; Ann. Chim. Phys., (2), 32. 204, 1826; G. J. Kellner, Zeit. prakt. Geol., 36. 1, 1928; W. A. Lampadius and G. P. Plattner, Journ. tech. ökonom. Chem., 18. 453, 1833; L. de Launay, Traité de métallurgie, Paris, 3. 756, 1913; Ann. Mines, (9), 7. 265, 1895; A. D. Lumb, The Platinum Metals, London, 55, 1920; T. Ospina,

R. B. White, Min. Ind., 4. 638, 1896; R. W. White, Eng. Min. Journ., 63. 189, 1897.

31 C. Blömeke, Berg. Hutt. Ztg., 49. 239, 1890; J. Corréa, Zeit. prakt. Geol., 1. 330, 1893;
A. Damour, Compt. Rend., 52. 688, 1861; Ann. Mines, (6), 8. 250, 1865; C. H. Dorr, Scient. Amer. Month., 3. 547, 1921; J. J. Kyle, Oesterr. Zeit. Berg. Hutt., 38. 402, 1890; Anal. Soc.

Cient. Argentine, 29. 51, 1890; E. D. Levat, Ann. Mines, (9), 13. 386, 1902; B. L. Millar and J. T. Singewald, The Mineral Deposits of South America, London, 405, 1919.
 L. J. Spencer, Min. Mag., 20. 186, 1924; C. Blömeke, Berg. Hutt. Ztg., 49. 239, 1890; J. J. Kyle, Oesterr. Zeit. Berg. Hutt., 38. 402, 1890; Anal. Soc. Cient. Argentine, 29. 51, 1890; J. Corréa, Zeit. prakt. Geol., 1. 330, 1893.

38 R. Beder, Rev. Minera Soc. Argentina, 2. 97, 1930.

³⁴ J. B. J. D. Boussingault, Ann. Chim. Phys., (2), 32. 204, 1826; J. V. do Conto, Memoria sobre as Minas da Capitania de Mines Geraes, Rio de Janeiro, 122, 1842; A. Daumer, Compt. Rend., 52. 682, 1861; S. J. Denis, Ann. Mines, (3), 19. 602, 1840; I. Domeyko, Elementos de mineralojia, Santiago, 442, 1879; L. F. Ferraz, Ann. Escola Minas Ouro Preto, 11, 1909; A. F. Gehlen, Schweigger's Journ., 1. 362, 1811; W. J. Henwood, Observations on Metalliferous Deposits, Penzance, 1. 175, 1871; L. C. Herder and R. T. Chamberlain, Journ. Geol., 28, 412, 1915; A. von Humboldt, Ann. Chim. Phys., (1), 32, 204, 1826; Pogg. Ann., 7, 519, 1926; E. Hussak, Ueber das Vorkommen von Palladium und Platin in Brasilien, Wien, 1904; Zeit. Berg. Hütt., 53. 278, 1905; Zeit. prakt. Geol., 14. 286, 1906; Sitzber. Akad. Wien, 113. 379, 1904; Ann. Escola Minas Ouro Preto, 8, 1906; G. F. Kunz, Scient. Amer. Suppl., 88. 25, 1919; Bull. Pan. Amer. Union, 4, 1917; G. Leonhard, Handwörterbuch der topographischen Mineradogie, Heidelberg. 419. 1843: J. Mawe, Travels in the Interior of Brazil, particularly in the Gold and Diamond Districts of that Country, London, 157, 209, 1812; Gilbert's Ann., 59. 168, 1818; J. C. Oakenfull, Brazil, London, 292, 1912; E. Rubio, Rev. Minera, 75, 1924; Rev. Géol., 5. 670, 1924; A. J. de Sousa Carneiro, As riquerzas mineraes do Estado de Bahia, Bahia, 1908; J. Vieira do Couta, Rev. Hist. Geogr. Brasileiro, 4. 289, 1848; W. H. Wollaston, Phil. Trans., 95. 316, 1805; 99. 189, 1809; Proc. Roy. Soc., 1. 207, 330, 1832; Nicholson's Journ., 13. 117, 1806; 25. 18, 1810; Phil. Mag., 22.

272, 1805; 33. 250, 1809.

272, 1805; 38. 250, 1809.

3 J. C. H. Mingaye, Zeit. Kryst., 24. 208, 1895; Proc. Roy. Soc. New South Wales, 26. 368, 1892; J. B. Jaquet, Zeit. prakt. Geol., 1. 322, 1893; Rept. Dept. Mines New South Wales, 142, 1892; Berg. Hutt. Zig., 52, 399, 1893; 55, 109, 1896; J. Plummer, ib., 56, 455, 1897; Eng. Min. Journ., 64, 311, 1897; R. Beck, Die Lehre von den Erzlagerstätten, Berlin, 687, 1903; B. Dunstan, Queensland Govt. Min. Journ., 18, 556, 1917; A. D. Lumb, The Platinum Metals, London, 27, 1920; R. A. Farquharson, Trans. New Zealand Inst., 48, 448, 1913; J. A. Pond, ib., 15, 419, 1883; L. de Launay, Traité de métallurgie, Paris, 3, 214, 1927; A. M. Howitt, Rec. Geol. Sur. Victoria, 4, 74, 1917; L. E. Ball, Publ. Geol. Sur. Queensland, 198, 1905.

36 Anon., Platinum and Allied Metals, Imp. Min. Resources Bur., London, 1936; C. Bahr, Maria 19, 200, 1939. C. Pillmank, Min. Resources Bur., London, 1936; C. Bahr, Min. Min. Resources Bur., London, 1936; C. Bahr, Min. Resources Bur

Metallbörse, 18. 929, 1928; C. Blömecke, Berg. Hütt. Ztg., 49. 239, 1890; C. Bullman, Min. Ind., 1. 388, 1893; F. E. Carter, Journ. Ind. Eng. Chem., 27. 751, 1935; J. F. Donald, Eng. Min. Journ., 55. 81, 1893; B. Dunstan, Queensland Govt. Journ., 22. 95, 1921; L. Duparo, Arch. Sciences Genève, (4), 15. 397, 1903; C. L. Henning, Die Erzlagerstätten der Vereinigten Staaten von Nord-Amerika, Stuttgart, 246, 1911; J. M. Hill, Eng. Min. Journ., 108. 1145, 1917; Statten von Nord-America, Stattegart, 240, 1911; J. M. Hill, Eng. Mat. Journ., 108, 1143, 1917;
J. L. Howe, Chem. Met. Engg., 19, 607, 1918; J. F. Kemp, Bull. U.S. Geol. Sur., 193, 1902;
A. de Keppen, Ann. Mines, (9), 5, 192, 1894; H. B. Kosmann, Stahl Eisen, 10, 517, 1890;
P. Kovaloff, South African Min. Eng. Journ., 37, 113, 137, 1926;
P. Krusch, Die Untersuchung und Bewertung von Erzlagerstätten, Stuttgart, 391, 1911;
G. F. Kunz, Chem. News, 124, 229, 1922;
Min. Ind., 32, 541, 1923;
38, 502, 1930;
L. de Launay, Traité de métallurgie, Paris, 3, 746, 1913;
A. M. Linde, Continental Met. Chem. Engg., 2, 247, 1927;
M. J. Lipovsky, ib., 2, 141, 1923;
A. D. Linde, Continental Met. Chem. Engg., 2, 247, 1927;
M. J. Lipovsky, ib., 2, 141, 1923;
A. M. Linde, Continental Met. Chem. Engg., 2, 247, 1927;
M. J. Lipovsky, ib., 2, 2, 247, 1927;
M. J. Lipovsky, ib., 2, 2, 247, 1921;
M. J. Lipovsky, ib., 2, 2, 247, 1927;
M. J. Lipovsky, ib., 2, 2 214, 1927; A. D. Lumb, The Platinum Metals, London, 13, 1920; J. J. O'Neil, Summ. Rept. Canada Geol. Sur., G, 1, 1918; G. A. Roush, Min. Ind., 48, 460, 1934; P. V. Shchuka, Sovet. Zolotoprom., 2, 1935; E. A. Smith, The Platinum Metals, London, 24, 1925; P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 2, 1929; E. M. Weston, South African Min. Eng. Journ., 34. 179, 1923.

§ 3. The Extraction of Platinum

Platinous sands and gravels are washed in the same way as auriferous sands— 3. 23, 2—in order to concentrate the metal. The gold is removed from the residue by treatment with mercury. Compact platinum does not amalgamate with mercury in the cold. The residue contains the grains of platinum-alloyed with the other platinum metals, iron, copper, silver, etc.-mixed with grains of osmiridium, titaniferous iron, chromite, spinel, zircon, quartz, and may be some The washing is sometimes done by hand, sometimes by machines. The process of washing, flotation, and modifications which have been introduced to suit particular cases were discussed by P. von Tunner, 1 C. Schnabel, C. Zerenner, H. Louis, A. von Ernst, A. Laurent, R. P. Rothwell, F. W. Horton, D. T. Day and R. H. Richards, J. Noad, L. Perret, etc.

The extraction of platinum from sulphide ores.—According to P. Wagner,² the South African deposits in the Lydenburg, Potgietersrust, and Rustenburg districts are mined by underground shafts. T. K. Prentice and R. Murdoch have described the process used at Onverwacht. The platinum occurs in the metallic state, but by simple gravity concentration the crushed dunite gave a very low grade concentrate, but a satisfactory higher grade concentrate was obtained by the extensive use of traps for metallics, and the treatment of gravity concentrates by amalgamation using activating agents since, unlike gold, platinum does not amalgamate directly when in contact with mercury. The skeleton flow sheet for the dunite ore from the mine, indicated in Fig. 3, will give an idea of the sequence of operations. At the Maandagshoek plant, good results were obtained with the dunite ores by repeating the concentration of the ore along with an acid treatment. Part of the platinum is recovered by flotation. S. C. Smith, T. L. Kapp, and B. W. Holman discussed the subject.

The sulphide ores at Merensky cannot be satisfactorily concentrated by sp. gr. concentration, or by ore flotation, but, by the flotation of the preliminary concentrates, 90 per cent. of the platinum metals as well as the nickel and copper can be collected in a concentrate containing 6 to 8 ozs. of platinum metals per ton. With oxidized ores, there is only a 65 to 70 per cent. recovery of the platinum metals, and nearly all the copper and nickel is lost. As recommended by P. Trotzig, the concentrate is therefore smelted to a nickel-iron-copper matte, and this is re-smelted to produce a higher grade matte containing approximately 65 ozs. of platinum metals per ton, and 25.5 per cent. of nickel and 15.5 per cent. of copper. The enriched matte is then roasted, and afterwards leached with sulphuric acid to

Fig. 3.—Skeleton Flow Sheet for Mined Rock.

dissolve the nickel, copper, and iron. These metals can be recovered by precipitation from the soln. The sludge remaining after the leaching process is smelted to furnish a mass containing 60 per cent. of platinum metals. With about two-thirds sulphide ore, and one-third oxidized ore, this process is said to recover 78 per cent. of the platinum metals; and with sulphide ore alone, 85 per cent. of platinum metals, and 80 per cent. of the nickel and copper in the ore. At Sudbury, where in the extraction of nickel by the Canadian Copper Co., the platinum metals follow the nickel matte, it was found that 56,405 tons of matte produced in 1916 contained 0.10 troy oz. per ton of platinum and 0.15 troy oz. per ton of palladium.

Actually the company recovered 1093 troy ozs. of palladium and platinum, and 257 troy ozs. of other platinum metals—mainly rhodium and iridium.

A. R. Powell and co-workers smelted the ores, concentrates, etc., so as to form a matte and arranged for the matte to contain a free metal of the iron group, to act as collector for the platinum metal; they also added a disintegrating agent—such as sodium sulphate or hydroxide, the carbonate or sulphide of an alkali or alkaline earth. On cooling, the free metal crystallized in coarse crystals from the matte; and on exposure to the air, the matte disintegrated. The product was then crushed, and the free metal crystals separated by a mechanical process such as a magnetic separator or a shaking table, and then treated for the recovery of the platinum metals. K. Wagenmann discussed the extraction of platinum from sulphide ores.

The method employed in recovering platinum from the Sudbury copper-nickel sulphide ores, described by D. McDonald, M. A. Mosher, R. L. Peek, and C. Langer and S. and C. Johnson, depends on whether the crude nickel is purified by electrolysis or by the Mond process. In the former process, the copper-nickel matte is smelted with nitre cake and coke, and after a repetition of the process, the bottom matte, containing the platinum metals along with about 1.5 per cent. of copper and 72 per cent., is broken up, washed with water to remove sodium sulphide, and with dil. acid to remove iron. The washed sulphide is then treated by one of the two following methods:

(i) Roasted with 15 per cent. of sodium chloride between 600° and 1200°; the copper chlorides are leached out; and the soln. led over scrap copper to cement any platinum metals which may pass into soln. The insoluble "green nickel oxide" is then mixed with 20 per cent. of soda ash, and calcined over 1200°; and washed free from sodium salts when "black nickel oxide" with 77.8 per cent. of nickel remains. This is roasted to remove the last traces of sulphur; smelted with coal in an open-hearth furnace, and cast into anodes—about 4 cwt. in weight. The anodes are used for the electrolysis of a soln. of nickel sulphate which is circulated at a greater rate than the migration velocities of the iron and copper, so as to hinder the deposition of iron and copper on the cathode, where nickel is deposited. The cathodes are protected by canvas bags. The anode slimes are dried, melted to metal, cast into anodes which are bagged, and again used in the electrolysis of nickel sulphate in separate cells. The secondary anode slimes so obtained contain about 2 per cent. of platinum metals, and they are concentrated to 40 to 60 per cent. platinum metals by a chemical process.

(ii) Instead of the chloridizing roast, the washed sulphide is finely-ground, roasted, leached with dil. sulphuric acid, and the residual nickel oxide reduced by water-gas to metallic nickel. This is treated with carbon monoxide in Mond's process. The platinum residues which remain after the volatilization of the nickel were found by C. Langer and co-workers to contain Pt, 1.85 per cent.; Pd, 1.91; Au, 0.56; Ir, Rh, and Ru, 0.39; and Ag, 15.42. These residues are smelted with litharge and soda ash to form a lead bullion which is then cupelled, and granulated. The granulations are boiled in conc. sulphuric acid, the palladiferous silver sulphate diluted and precipitated as chloride which is then reduced to metal,

cast into anodes, and electrolyzed.

The insoluble material from the sulphuric acid treatment is united with the rich concentrate from the 40 to 60 per cent. concentrate from the electrolytic nickel anode slimes, and digested with aqua regia. The gold is precipitated, cast into anodes and electrolyzed; the palladium is precipitated as palladous diammino-chloride; and the platinum as ammonium chloroplatinate.

The platinum concentrates obtained by the above methods require further treatment to isolate the platinum. The dry processes furnish platinum alloyed with more or less iridium, rhodium, etc. None of the dry processes has come into general use. The production of platinum of a high degree of purity from the alloy of the companion metals requires a wet process. According to C. Schnabel,³

the electric smelting of the concentrates has not proved satisfactory because platinum absorbs carbon from the carbon electrodes of the furnace as thus loses most of the properties that make platinum of value in the arts.

C. Claus reviewed the older work of F. C. Achard, C. L. Berthollet and B. Pelletier, J. R. Bréant, W. Lewis, A. S. Marggraf, L. B. G. de Morveau, A. Rochon, J. B. L. Romé de l'Isle, T. Scheffer, P. Sobolevsky, L. N. Vauquelin, and W. H. Wollaston. The two following methods illustrate the attempts made near the beginning of the nineteenth century to obtain platinum free from its natural impurities. M. Jeannety recommended repeatedly fusing the ore with a mixture of six parts of arsenic trioxide and two parts of potassium carbonate. The iron and copper are oxidized, and the resulting platinum-arsenic alloy forms a fusible regulus. In 1779, F. C. Achard made "platinum" crucibles from what was virtually a platinum-arsenic alloy. C. Ridolfi recommended melting the ore, previously washed with hydrochloric acid, with 4 times its weight of lead; again heating the granulated mass with an equal weight of sulphur at a white-heat; there is formed under the slag a regulus of a platinum-lead alloy contaminated with sulphur. The sulphur was removed by melting at a white-heat a mixture of the alloy with some more lead. The resulting alloy was said to be malleable.

Dry processes for isolating the metal.—H. St. C. Deville and H. Debray obtained platinum by fusing a mixture of the concentrated ore and lime in the lime-furnace heated by the oxyhydrogen flame, Fig. 6, 3. 22, 6; and then repeatedly melting the product in a similar furnace, with an oxidizing atmosphere so that the commoner metals are oxidized and absorbed by the lime. The final product is an alloy of platinum, iridium, and rhodium from which platinum can be separated only by the use of a wet process. H. St. C. Deville and H. Debray employed a second process based on the fact that molten lead readily forms an alloy with platinum, but not with osmiridium. Accordingly, a mixture of equal parts of platinum and galena was heated in a small reverberatory furnace provided with a hearth made of calcareous clay, or bone ash. The galena is decomposed by the iron present in the ore, and the liberated lead alloys with the platinum and a lead matte is produced. Litharge is then added, and the whole covered with a fusible glass. The matte is reduced to lead by the litharge, and more platinum-lead alloy is formed, and sulphur dioxide passes off. osmiridium, which resists attack by the galena, and lead remain near the bottom The slag is skimmed off, and the alloy is removed by a cast-iron of the furnace. The alloy in the lower part of the furnace is added to the working portion of the next charge so that it is enriched with osmiridium. Finally, the lower portion is poured on a gently sloping surface when the osmiridium remains whilst the platinum-lead alloy runs away. The platinum-lead alloy is heated at a high temp. in a blast, when a large proportion of the lead is oxidized and driven off. The residue is melted as before in the lime furnace by means of the oxy-hydrogen flame. Lead and other volatile elements are volatilized, or the oxides form a slag. The lead-platinum alloy can also be cupelled at a high temp. J. L. Byers studied the effect of platinum on ordinary gold-assay beads. Rhodium and iridium remain with the platinum. G. Matthey, R. Gilchrist, S. F. Schemtschuschny, H. Rusden and J. Henderson described modifications of the process.

J. W. Mellor suggested extracting the platinum metals from dunite and norite ores by blowing the dry, powdered ore through a deep bath of molten lead along with the flue gases previously passed over heated coke. The platinum metals are dissolved by the lead—any forms of platinum not attacked by the molten lead accumulate at the bottom of the bath. When the lead shows signs of "stiffening" by the dissolved metals, it is cupelled, or otherwise treated to recover the platinum. L. D. Hooper, and W. Günther proposed treating the platiniferous ore with carbon monoxide so as to convert the platinum metals into carbonyls, as in the analogous process for nickel. The carbonyls are separated from the ore by volatilization, or by washing with a suitable solvent—like carbon tetrachloride. The carbonyls

of the different platinum metals so produced can be separated by fractional distillation, or differential solubility. A. E. van Arkel, and E. H. Reerink used the carbonyl process for recovering pure platinum.

D. Enzlin and J. A. Eklund passed the powdered ore—dunite, sulphide, or oxidized ore—or concentrate over zinc amalgam in the presence of an activator. The activator is an aq. soln. containing mercuric chloride, zinc chloride, hydrochloric acid and chlorine, with or without the addition of sodium chloride. The zinc amalgam is applied as a coating to an iron or nickel surface. The soln. is mixed with the ore when it is powdered. The amalgam retains the precious metals, and it is afterwards retorted in the usual way. The percentage extraction under favourable conditions is said to approach 75.

Wet processes for isolating the metal.—(1) Opening up native platinum with aqua regia.—In most of the wet processes which have tried for isolating platinum, the native metal is first opened up by dissolving it in warm, conc. aqua regia. This was done by L. N. Vauquelin, and W. H. Wollaston, who recommended a preliminary treatment with a magnet to remove iron ore, and cold, dil. aqua regia to extract gold, mercury, and iron. L. Gmelin also recommended a preliminary

treatment with conc. hydrochloric acid on a water-bath for several days.

L. N. Vauguelin introduced the dried ore into a retort fitted with a receiver, and added 4 times its weight of aqua regia made from a mixture of 2 parts of hydrochloric acid, of sp. gr. 1.18 with 1 part of fuming nitric acid of sp. gr. 1.48. Another more common mixture is made from 4 vols. of hydrochloric acid. sp. gr. 1.18; 1 vol. of nitric acid, sp. gr. 1.42; and 1 vol. of water. The object of the retort is to confine the poisonous fumes of osmic acid, but W. Lasch added that this precaution is usually unnecessary, although A. Laugier observed that some osmic acid may collect in the acid distillate. To avoid an undue loss of chlorine, J. J. Berzelius recommended covering the platiniferous sand with hydrochloric acid, and adding the nitric acid from time to time. The temp. of the mixture is gradually raised. The process of dissolution is slow since 8 to 10 hrs.' heating in open vessels on a sand-bath with 10-15 times its weight of aqua regia are necessary. E. Barruel recommended acting on the ore first with dil. and then with conc. aqua regia. H. Dullo, and W. C. Heraeus observed that the process of dissolution is hastened if the pressure of the air in the vessel is augmented. H. V. Collet-Descotils, and H. Hess also found that the operation is hastened if the ore be previously fused with 2 to 4 times its weight of zinc. The soln. contains platinum, palladium, gold, iridium, rhodium, ruthenium, base metals, and silver chloride dissolved in the acid liquor; the osmium which is present escapes as volatile tetroxide during the dissolution of the ore. The residue not dissolved by the aqua regia contains the osmiridium with osmium and iridium as the principal constituents with smaller proportions of rhodium, ruthenium, platinum, iron, and copper; the residue also contains sand, chromite, titanite, zircon, etc.

(i) The precipitation of the platinum by ammonium chloride.—The platinum metals have now to be recovered from the aqua regia soln. which contains platinum, iridium, rhodium, palladium, iron, copper, and a small proportion of osmium and ruthenium chlorides. H. St. C. Deville and H. Debray evaporated the liquid to dryness, heated the product to redness, when the platinum salts are converted to the metal and the salts of base metals are converted into oxides which can be removed by levigation in water. The residual platinum metals are melted in the oxy-hydrogen furnace. The usual process is to precipitate the platinum as ammonium chloroplatinate, (NH₄)₂PtCl₆, from the soln. by the addition of ammonium chloride. In the process devised by W. H. Wollaston, the precipitation of iridium is hindered in the presence of an excess of acid. The ammonium chloroplatinate so obtained was washed, dried, and strongly heated in order to convert it into platinum sponge, which was afterwards compressed and hammered whilst red-hot into bars or rolled into sheets. The first washings from the ammonium chloroplatinate were evaporated to about one-twelfth the original volume to obtain a

mixed iridium and platinum salt; and the second part of the wash-water was evaporated to dryness, heated to redness, and added to a fresh portion of ore. Palladium, rhodium, ruthenium, osmium, and iridium are obtained from the residues which do not dissolve in the aqua regia, and the mother-liquors after precipitation.

- C. Claus, W. von Schneider, H. Louis, W. C. Heraeus, and C. Bullman recommend evaporating the aqua regia soln, to dryness, and heating it at say 140° to 150° in order to drive off the nitric acid, and to reduce the iridium tetrachloride to the trichloride. When the residue is dissolved in water or dil, hydrochloric acid. the lower chloride of iridium is not then precipitated with the platinum. An analogous process was used by V. V. Lebedinsky and V. G. Chlopin. A similar remark applies to the palladium and rhodium salts. The liquid is allowed to stand to allow silver chloride and other insoluble matters to settle. Any gold present can be precipitated by ferrous sulphate. If a relatively high proportion of palladium is present, it is advisable to add more ammonium chloride, and nitric acid amounting to 20 to 30 per cent. of the soln. If the liquor is digested on the steambath, ammonium chloropalladate may be precipitated along with much of the platinum and iridium in the soln. The presence of nitric acid, however, greatly retards the precipitation of the other precious metals. W. von Schneider tried to prevent the precipitation of iridium and rhodium with the platinum by evaporating the hydrochloric acid soln. nearly to dryness; diluting with water, and making the soln. alkaline with sodium hydroxide free from potassium. The soln, was then mixed with alcohol and boiled, the precipitate dissolved in hydrochloric acid, and the soln. treated with ammonium chloride to furnish ammonium chloroplatinate. The process was discussed by T. Wilm, E. H. Archibald, F. Schulz, W. Halberstadt, K. Seubert, and C. Claus.
- W. H. Wollaston sometimes precipitated the palladium as cyanide by adding mercuric cyanide to the aqua regia soln. in which the excess of acid has been neutralized; platinum is precipitated by adding ammonium chloride to the filtrate, whilst the rhodium and the greater part of the iridium remain in the filtrate. To prevent the precipitation of iridium, J. J. Berzelius recommended adding some nitric acid to the soln. H. V. Collet-Descotils, J. Cloud, L. N. Vauquelin, and W. von Schneider discussed the process. F. Wyatt treated the aqua regia soln. with ammonium chloride to precipitate the platinum; then with sodium hydroxide and mercuric cyanide to precipitate the palladium—the rhodium remains in soln. The residue insoluble in aqua regia is heated in a current of air when osmium is converted into volatile osmium tetroxide, and rhodium oxide is deposited in the hotter parts of the tube. The residue is heated with salt in a current of chlorine when sodium chloroiridate is formed which can be dissolved in boiling water.
- (ii) The precipitation of the platinum by other reagents.—Instead of using ammonium chloride as precipitant for the platinum, the precipitation by potassium chloride was discussed by J. J. Berzelius, C. Bullman, and H. Pirngruber. V. A. Jacquelain tried a mixed soln, of ammonium and potassium chlorides as precipitant. J. W. Döbereiner treated the aqua soln. with lime-water in darkness, but the process does not give a satisfactory separation of iridium and platinum. It was discussed by C. Claus, W. von Schneider, and H. St. C. Deville and H. Debray. After removing most of the platinum as ammonium chloroplatinate, the metals remaining in soln. can be precipitated by iron or zinc, although iridium is reduced very slowly. The washed material is treated with aqua regia (HCl 4 vols., and HNO₂ 1 vol.) diluted with 4 vols. of water. Gold and palladium are quickly dissolved, the platinum is dissolved a little more slowly, but very little iridium, rhodium, and ruthenium pass into soln. The platinum can be precipitated from the soln. as ammonium chloroplatinate; the gold, if present, by ferrous sulphate; and the palladium can then be precipitated, as indicated above. These precipitates contain more or less iridium, rhodium, and ruthenium. The remaining metals are

recovered by precipitation with zinc in a soln, from which most of the nitric acid has been removed by evaporation.

- I. Duparc said that the process employed in some references for the recovery of all the precious metals in crude platinum involves the following operations:
- (i) The treatment of the mineral with aqua regia with the separation of the insoluble osmiridium and sand, etc.

(ii) The precipitation of the platinum as ammonium chloroplatinate and subsequent calcination of the precipitate to produce platinum sponge.

(iii) The separation of iridium as ammonium chloroiridate from the mother-liquor by

long standing and calcination of the precipitate to obtain metallic iridium.

(iv) The treatment of the mother-liquors (after removal of the platinum and iridium as stated) with iron, or with zinc, to separate in the metallic state other metals of the platinum group (together with any small quantities of platinum not previously separated) which are deposited as a fine black precipitate called "first blacks."

Drying and roasting of the "blacks" and treatment with dilute sulphuric acid to remove

copper and other base metals.

(v) Treatment of the cleaned "blacks" with dilute aqua regia to obtain a solution containing palladium (with traces of platinum, rhodium, and iridium) and an insoluble residue containing rhodium.

(vi) After separating the traces of platinum, rhodium, and iridium from the solution from (v) with ammonium chloride, the palladium is separated by means of metallic iron as a black mass which is purified and the metal sold as palladium sponge.

a black mass which is purified and the metal sold as palladium sponge.

(vii) The insoluble residue from (v) is fused with barium dioxide, and the fused mass treated with aqua regia to effect solution of the rhodium and iridium. These metals are then precipitated with ammonium chloride and finally converted into metallic sponge.

(viii) The insoluble residue of osmiridium remaining after the first treatment of the ore with acid, is fused with zinc to effect its decomposition. The fused product is treated

with aqua regia, and the acid liquor so obtained is submitted to distillation.

(ix) The acid liquor is distilled in the presence of steam whereby osmium distills over as osmic acid, and is collected in water, and the osmium subsequently separated as metal.

- (x) The acid liquor retains the iridium and ruthenium which are separated with ammonium chloride, and finally converted into sponge. When the metals are required in a very pure state the commercial metal obtained by processes such as that briefly described above is further purified.
- (iii) The separation of the platinum by electrolysis.—Platinum can be separated from iridium and rhodium by the electrolysis of an acidic soln. of platinum chloride using a low current density. The Norddeutsche Affinerie 5 used anodes of impure gold containing metals of the platinum group as well as silver, copper, etc.; the cathodes are gold foil; and the electrolyte, a soln. of gold chloride in an excess of hydrochloric acid, or of metallic chlorides which form double salts with gold chloride. Only the gold is deposited at low current densities; platinum is not soluble alone, but it is so when alloyed with gold. The electrolyte is thus enriched in both platinum and palladium. The other metals of the platinum group, along with a little gold, collect as anode slimes; silver forms chloride at the anode and also collects in the anode slime. If the soln, of gold chloride is free from acid, the gaseous chlorine evolved at the anode does not attack the metal, but if an acidic soln. be employed as electrolyte, both gold and platinum are dissolved from the anode. F. Wohlwill assumes that the gold dissolves at the anode only when the electrolyte contains such chlorides as will furnish AuCl4-ions. The platinum is extracted from the electrolyte by precipitation. According to F. Zürn, if the concentrate is made one electrode in a bath of ammonium carbonate or carbamate, and an alternating current is passed through the system, the platinum is converted into carbonates partly soluble and partly insoluble. The carbonate can then be further treated by known processes for the metal. Platinum is also recovered from the anode slimes in the refining of gold by E. Wohlwill's electrolytic process -3. 23, 4—and in the refining of silver by B. Mobius' electrolytic process-3. 22, 3. A. I. Bochkoff discussed the subject.
- (2) Opening up the native platinum with halogens.—H. Frasch 6 proposed to extract platinum from sands with a very small proportion of platinum by treating them with chlorine-water which dissolves the metal. K. L. Graham developed a chlorination process for the extraction of platinum from flotation concentrates of

sulphide ores. The dried ore is roasted for 6 hrs. at a dull red-heat to eliminate sulphur, and oxidize thoroughly all the base metals. The product is then mixed with salt and kept at 500° to 600° for about 5 hrs., and at the same time chlorine is passed over the surface of the heated materials so as to convert the metals of the platinum group, copper, and nickel into soluble chlorides. The product is treated with acidified water. The soln, is agitated with powdered limestone to precipitate the copper as carbonate. Only a small proportion of platinum is removed by this process, and it can be recovered from the copper by subsequent smelting and electrolysis. The platinum metals are precipitated as a black powder by agitation The dried powder is roasted at a red-heat for a few minutes and with zinc dust. contains over 70 per cent. of the metals of the platinum group. The residual soln. is treated with sodium hydroxide or bleaching powder. The residue left after the chlorination treatment is treated with cyanide to extract the gold since it is not attacked by the chlorination process owing to the temp, exceeding the dissociation temp, of gold chloride; at the same time, 4 to 5 per cent, of platinum metals are also recovered. About 90 per cent, of the platinum metals and gold are extracted from the concentrate by this treatment. The subject was discussed by T. L. Kapp, and R. A. Cooper and F. W. Watson.

R. Wagner 7 treated the platinum concentrate with a mixture of bromine or hydrobromic acid and nitric acid, and obtained a soln, of the platinum metals which can be treated as in the case of the soln, in aqua regia. E. Bohon treated an amalgam of platinum with nitric acid, and found that silver, mercury, and the base-metals are dissolved whilst platinum and gold are not dissolved. A. Seigle subjected the finely-powdered ore to the action of steam under pressure in the presence of silicic or boric acid and a soln, of chloride of sodium, calcium, or magnesium. If the ore is not sufficiently silicious, silica or boric acid is added to it. For such platinum concentrates, sodium chloride and nitrate are employed, and the nascent chlorine produced is particularly active in converting the metals into a soluble form. If the platinum ore is poor, it should be first treated with a soln, of potassium ferrocyanide through which air is blown, and the product is afterwards treated under pressure in an autoclave. W. Günther exposed the ore to carbonyl chloride under press, so as to convert the platinum into a carbonyl derivative of the chloride, and then leached the ore with a suitable solvent.

The extraction of platinum from residues insoluble in aqua regia.—H. St. C. Deville and H. Debray 8 recommended fusing the residues rich in platinum with enough lead oxide to make an alloy of lead with 25 per cent. of platinum, along with sand, and carbon; with residues with but a small proportion of platinum, in addition to the lead oxide, some glass, lime, and fluorspar were also employed. The resulting alloy was then fused with galena, sand, and an iron silicate sand to isolate the platinum. W. Savelsberg discussed the subject. For F. Wyatt's observations, vide supra. R. Gilchrist melted the ore with lead; B. G. Karpoff, with bismuth; and E. Leidié and L. Quennessen, with zinc.

A. Guyard fused the platiniferous residue, insoluble in aqua regia, with 3 times its weight of a mixture of equal parts of sodium hydroxide and nitrate, at a bright red-heat, in a thick wrought-iron crucible, for about an hour. The mixture should be well stirred with an iron spoon during the last 20 minutes, and finally poured into an ingot mould. The product is boiled with water, and the soln, contains sodium osmate. The washed residue is treated with aqua regia, when osmiridium remains undissolved. The soln. contains iron, copper, lead, iridium, rhodium, ruthenium, and platinum. The excess of aqua regia is removed by evaporation, adding some water and hydrochloric acid every now and again to remove the nitrogen oxides. The soln, is then acidified with hydrochloric acid and treated with hydrogen sulphide, at a temp. of 70°, for about 15 hrs. If the mother-liquor is coloured only a pale yellow by the dissolved iridium sulphide, it is filtered, and the precipitate is treated with conc. sulphuric acid which converts the sulphur, and the sulphides of copper and lead into sulphur dioxide and soluble sulphates. The mixture is digested with

water, filtered, and washed until the washings are free from copper and iron. Nitric acid is first added to the precipitated sulphides of the platinum metals, and then hydrochloric acid. The soln. is boiled, and the lead chloride filtered from the cold liquid. The soln. is then treated with ammonium chloride in the usual way.

E. Wichers and co-workers observed that the residue contains mainly rhodium, iridium, ruthenium, and osmiridium, and can be treated by one of the following processes: (i) If rhodium is predominant, the dried residue can be intimately mixed with 2.5 times its weight of sodium chloride, and heated to dull redness in a current of chlorine. This converts rhodium into a soluble sodium rhodium chloride, and some of the iridium is likewise converted into a soluble double chloride, but iridium is less readily attacked than rhodium. (ii) If iridium is predominant, the residue is fused at 600° to 700° with 3 parts of sodium hydroxide and 1 part of sodium dioxide in a silver, nickel, or iron dish. Some iridium forms a basic iridate, but most remains insoluble in water, but soluble in hot, conc. hydrochloric The ruthenium remains in the aq. soln, of the fused mass. Rhodium is not rapidly attacked by the alkali fusion, and that treatment may be alternated with the sodium chloride and chlorine method until all the insoluble material is converted into a soluble form. The mixed soln. of iridium, ruthenium, and osmium can be neutralized with hydrochloric or sulphuric acid and boiled with a little alcohol, and the small amount of metal remaining in soln, can be recovered by the hydrochloric acid-zinc reduction.

When the mixed iridium and rhodium chlorides contain more iridium than rhodium, the soln, is treated with chlorine to oxidize tervalent iridium to the quadrivalent stage, and concentrated by evaporation until over 50 grms. of the two metals are present per litre. Enough ammonium chloride is added to precipitate ammonium chloroiridate, which may also contain rhodium. A large excess of ammonium chloride subsequently interferes with the precipitation of rhodium. The iridium still present in the mother-liquor can be recovered by evaporating the soln. to dryness, to eliminate an excess of acid which would interfere with the subsequent separation of rhodium. The residue is extracted with water, and filtered from the impure ammonium chloroiridate. The filtrate containing not more than 50 grms. of rhodium per litre is boiled and treated with sodium nitrite. This reagent first neutralizes the acid present and reacts with ammonium chloride to form ammonium nitrite, which decomposes in the hot solution. Rhodium and the other platinum metals, as well as certain base metals, are converted to soluble double nitrites, while other base metals, notably iron and tin, are precipitated as hydroxides. Heating is continued and more sodium nitrite added until the colour of the solution becomes yellow or light brown. The precipitate is filtered off and treated for the recovery of the small amounts of platinum metals which it may contain. Ammonium chloride is added to the well-cooled filtrate to precipitate ammonium rhodium nitrite. The granular, white or yellowish salt is separated by filtration, washed with water and dried, or dissolved in hydrochloric acid for further purification. It is not suitable for direct ignition to sponge. Residual metals are recovered from the filtrate by means of hydrogen sulphide.

The recovery of platinum from parted gold and silver.—M. Pettenkofer, L. Opificius, J. W. Klever, and T. Ulke discussed methods for recovering the platinum from parted gold—3. 23, 4. M. Pettenkofer recommended the following process for recovering the platinum from the slags produced by melting the parted gold with nitre—or may be with potassium hydrosulphate. The platinum collects in the slag as potassium platinate.

The slag (8 parts) is intimately mixed with galena (2 parts), sodium tartrate (1 part), dry sodium carbonate (4 parts), and powdered glass (2 parts), and added in small portions at a time to a red-hot crucible. The button of lead which is formed collects the platinum metals and gold. The lead alloy is dissolved in hot aqua regia, and the soln is heated on a sand-bath to drive off the nitric acid. The cold soln is filtered and the precipitated lead and silver are washed with water. The gold is precipitated by ferrous chloride or sulphate;

and the filtrate is treated with iron to precipitate the platinum. The precipitate is boiled with nitric acid, dissolved in aqua regia, and the platinum precipitated by ammonium chloride in the usual way.

E. Priwoznik used zinc as a collector for the precious metals. Here the gold containing platinum is melted with about 3 times its weight of zinc, and the granulated alloy treated with sulphuric acid to dissolve out the zinc. The washed product is then treated with nitric acid of sp. gr. 1·199 to extract the silver, and again washed. The residual gold-platinum alloy is dissolved in aqua regia, first at ordinary temp., and afterwards warmed. Platinum alone remains undissolved. The soln. containing gold with a small proportion of platinum is mixed with hydrochloric acid, and evaporated in a dish to drive off nitrous fumes. The product is dissolved in water, and the platinum precipitated with ammonium chloride; and the filtrate is treated with ferrous sulphate to precipitate gold.

The separation of platinum and gold has been also discussed by J. P. J. d'Arcet, N. Awerkejeff, W. Bettel, H. Carmichael, M. Chaudet, F. P. Dewey, H. Freudenberg, P. Jannasch and O. von Mayr, H. von Jüptner, G. Kemp, L. G. Kollock, G. Krüss and L. Hoffman, F. Mylius and C. Hüttner, H. Pirngruber, E. Priwoznik, A. D. van Riemsdijk, E. F. Smith and F. Muhr, L. Vanino and L. Seemann, R. Willsättter, and E. Wohlwill.

The recovery of platinum from accumulations from alcoholic washings in potassium determinations by the chloroplatinate process involves distilling off the alcohol, and treating an aq. soln, with some reducing agent -sunlight, hydrogen, sodium formate, sugar, glycerol, zinc, platinum-aluminium couple, etc. The subject was discussed by A. Berthold, 1º A. W. Blair, R. Böttger, C. Brunner, J. Chambers and R. R. Tatlock, W. Dittmar and J. McArthur, E. Duvillier, G. J. Hough, T. Knösel, G. Krause, L. Opificus, L. V. Parisot, E. A. Smith, A. E. Smoll, H. Precht, J. Post, H. C. Weber, H. W. Wiley, E. H. Reerink, J. O. Whiteley and C. Dietz, and W. C. Zeise. The recovery of platinum from other residues was discussed by E. L. Baldeschwieler and L. A. Mikeska, F. Bayer, R. Böttger, A. Stiebel, W. Savelsberg, T. Ulke, C. W. Davis, G. C. Wittstein, H. Wolffram, H. Schwitter, W. Stein, and F. W. Steinmetz.

REFERENCES.

- C. A. Ackermann, Arizona Min. Journ., 12. 9, 57, 1929; Anon., South African Min. Eng. Journ., 39. i, 558, 1928; D. T. Day and R. H. Richards, Min. Ind., 15. 400, 1907; A. von Ernst, Berg. Hütt. Ztg., 51. 406, 1892; Eine bergmännische Exkursion durch den Ural, Hannover, 37, 1892; O. Feussner, Metallwirtschaft, 7. 469, 1928; F. W. Horton, Met., 3. 831, 1906; Mineral Resources U.S. Geol. Sur., 421, 1905; G. B. Karpoff, Ann. Inst. Platine, 5. 363, 1927; H. F. Keller, Met. Chem. Engg., 10. 788, 1912; D. W. King, Min. Ind. South Africa, 1. 99, 1925; A. Laurent, Ann. Mines, (8), 18. 576, 1890; Berg. Hütt. Ztg., 50. 435, 1891; L. Leroux, Ind. Chim., 12. 295, 355, 1925; 13. 202, 1926; H. Louis, Min. Ind., 6. 545, 1898; J. C. Moulden, Brit. Put. No. 258648, 1925; J. Noad, ib., 6801, 1886; L. Perret, Min. Scient. Press, 104. 856, 1912; Trans. Inst. Min. Met., 21. 647, 1912; R. P. Rothwell, Min. Ind., 1. 379, 1893; H. Rusden and J. Henderson, Journ. Chem. Met. Min. Soc. South Africa, 29. 66, 1928; J. Salvelsberg, U.S. Pat. No. 1723444, 1929; C. Schnabel, Handbuch der Metallhüttenkunde, Berlin, 2. 808, 1904; London, 2. 776, 1907; E. A. Smith, The Platinum Metals, London, 26, 1925; P. von Tunner, Russ. Montanind., 78, 1871; F. Wartenweiler and A. King, Third Empire Min. Met. Congr., 1, 1930; C. Zerenner, Anleitung zum Gold-, Platin-, und Diamant en wuschen, Leipzig, 1851.
- ² W. J. Cayzer, South African Min. Eng. Journ., 40. 3, 31, 1930; R. A. Cooper and F. W. Watson, Journ. Chem. Met. Min. Soc. South Africa, 29. 220, 1929; 30. 242, 1930; C. Götze, Metall Erz, 29. 313, 1932; J. E. Healay and T. K. Prentice, South African Min. Eng. Journ., 40. 89-90, 1930; B. W. Holman, Mining Mag., 32. 283, 1925; T. L. Kapp, Min. Ind. Mag. South Africa, 7. 125, 1928; C. Langer and S. and C. Johnson, Trans. Canada Inst. Min. Met., 30. 903, 1927; D. McDonald, Journ. Soc. Chem. Ind.—Chem. Ind., 50. 1031, 1931; E. C. R. Marks, Brit. Pat. No. 31191, 1928; M. A. Mosher, Trans. Amer. Inst. Min. Eng., 106, 427, 1933; R. L. Peek, Trans. Canada Inst. Min. Met., 25, 122, 1922; A. R. Powell, E. C. Deering and Johnson Matthay and Co., Brit. Pat. Nos. 12787, 316063, 1928; 328564, 1929; French Pat. No. 674312, 1929; T. K. Prentice, Journ. Chem. Met. Mining Soc. South Africa, 29, 269, 1929; 30, 142, 1930; T. K. Prentice and R. Murdoch, ib., 29, 157, 1929; South African Min. Eng. Journ., 39, 565, 1929; H. Rusden and J. Henderson, Journ. Chem. Met. Mining Soc. South Africa, 28, 181, 1928; Chem. News, 136, 283, 1928; S. C. Smith, Brit. Pat. Nos. 289220, 296744, 306566, 1927; 311909, 1928; G. H. Stanley, Journ. South African Une eine für den Betrieb anwendbare Methode, Freiberg, 1927; K. Wagenmann, Metallurgische Studien über deutsche

Platin-Silber-Gold-vorkommen, Halle a. S., 1919; P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 267, 1929; F. Warternweiler and A. King, Empire Congress Min. Met. South Africa, 3. 1, 1930; Report of the Royal Ontario Nickel Commission, Toronto, 481, 1917.

481, 1917.

3 F. C. Achard, Crell's Ann., i, 1, 1784; A. E. van Arkel, Metallwirtschaft, 13. 405, 1934; C. L. Berthollet and B. Pelletier, Ann. Chim. Phys., (1), 14. 20, 1792; J. R. Bréant, Ann. Chim. Phys., (2), 24. 388, 1823; Ann. Phil., 8. 267, 1824; Journ. Pharm. Chim., (2), 9. 319, 1824; Quart. Journ. Science, 17. 386, 1825; J. L. Byers, Bull. Michigan Coll. Min. Tech., 6. 1, 1933; C. Claus, Fragmente einer Monographie des Platins und der Platinmetalle, St. Petersburg, 44, 1883; H. St. C. Deville and H. Debray, Ann. Chim. Phys., (3), 56. 485, 1859; (3), 61. 5, 1861; Ann. Mines, (5), 18. 71, 325, 1860; Liebig's Ann., 104. 227, 1857; 111. 209, 1859; 114. 78, 1860; Pogg. Ann., 107. 214, 1859; Compt. Rend., 44. 1101, 1857; 48. 731, 1859; Dingler's Journ., 145. 44, 1857; 153. 38, 1859; 154. 130, 199, 287, 383, 1859; 165. 198, 205, 1862; Chem. News, 1. 5, 15, 85, 1860; Journ. prakt. Chem., (1), 71. 371, 1857; D. Enzlin and J. A. Eklund, Brit. Pat. No. 23898, 1928; R. Gilchrist, Journ. Amer. Chem. Soc., 45. 2820, 1923; W. Günther, German Pat., D.R.P. 444219, 1925; L. D. Hooper, Brit. Pat. No. 6125, 1925; M. Jeannetty, Observ. Phys., 34. 197, 1789; W. Lewis, Phil. Trans., 48. 638, 1775; 50. 148, 1757; Commercium Philosopho-Technicum, London, 443, 1763; A. S. Marggraf, Chemische Schriften, Berlin, 1. 1, 1761; Mem. Acad. Berlin, 31, 1757; G. Matthey, Proc. Roy. Soc., 28. 463, 1879; Chem. News, 39, 175, 1879; Iron, 13, 654, 678, 1879; J. W. Mellor, Brit. Pat. No. 282543, 1926; L. B. G. de Morveau, Journ. Phys., 6, 193, 1775; Mém. Acad. Dijon, i, 106, 1785; Crell's Ann., i, 333, 1787; ii, 243, 1787; i, 168, 1792; E. H. Reerink, Zeit. anory. Chem., 173, 45, 1928; C. Ridolfi, Giorn. Scienza Arti, 1, 24, 125, 1815; Quart. Journ. Science, 1, 259, 1816; Schweigger's Journ., 24, 439, 1818; Ann. Phil., 7, 29, 1817; 13, 70, 1819; Phil. Mag., 48, 72, 1816; 53, 68, 1819; A. Rochon, Journ. Phys., 47, 3, 1798; Phil. Mag., 2, 19, 170, 1798; Gilbert's Ann., 4, 1927; C. Schnabel, Handbuch der Metallhüttenkunde, Berlin, 2, 814, 1904;

1927; C. Schnabel, Handbuch der Metallhüttenkunde, Berlin, 2, 814, 1904; London, 2, 779, 1907; P. Sobolevsky, Pogg. Ann., 38, 99, 1834; Liebig's Ann., 13, 42, 1834; L. N. Vauquelin, Ann. Chim. Phys., (1), 88, 167, 1813; W. H. Wollaston, Phil. Trans., 119, 1, 1829.

4 E. H. Archibald, Proc. Edin. Roy. Soc., 29, 721, 1909; Zeit. anorg. Chem., 66, 177, 1910; E. Barruel, Quart. Journ. Science, 12, 246, 1822; Phil. Mag., 59, 171, 1822; Dingler's Journ., 8, 231, 1822; J. J. Berzelius, Pogg. Ann., 13, 435, 537, 1829; 15, 208, 1829; Vet. Akad. Handl. Stockholm, 25, 1828; Phil. Mag., (2), 5, 395, 1829; (2), 6, 146, 1829; Quart. Journ. Science, 2, 174, 1829; A. I. Bochkoff, Sovet. Zolotoprom., 3, 1934; C. Bullman, Min. Ind., 1, 388, 1893; C. Claus, Beitrüge zur Chemie der Platinmetalle, Dorpat, 55, 1854; Journ. prakt. Chem., (1), 32, 479, 1844; Liebig's Ann., 107, 143, 1858; J. Cloud, Trans. Amer. Phil. Soc., (2), 1, 161, 1818; Gilbert's Ann., 72, 253, 1822; Schweigger's Journ., 43, 316, 1825; H. V. Collet-Descotils, Mém. Soc. d'Arcueil, 1, 370, 1807; Gilbert's Ann., 27, 231, 1807; Phil. Mag., 87, 65, 1811; Ann. Chim. Phys., (1), 64, 334, 1807; H. St. C. Deville and H. Debray, ib., (3), 56, 467, 1859; Chem. News, 1, 5, 15, 85, 1860; J. W. Döbereiner, Liebig's Ann., 14, 17, 251, 1835; 28, 238, 1838; Arch. Pharm, 14, 274, 1838; H. Dullo, Journ. prakt. Chem., (1), 78, 398, 1859; L. Dupare, Le platine du monde, Genève, 1920; L. Gmelin, Handbook of Chemistry, London, 6, 255, 1852; W. Halberstadt, Ber., 17, 2962, 1884; W. C. Heraeus, Amlicher Berich über die Wiener Wellausstellung im Jahre, Wien, 3, 999, 1873; Dingler's Journ., 220, 95, 1876; J. F. W. Herschel Phil. Mag., (5), 1, 58, 1832; Pogg. Ann., 26, 176, 1832; Liebig's Ann., 3, 337, 1832; H. Hess, Journ. prakt. Chem., (1), 40, 498, 1847; Bull. Acad. St. Peterburg, (2), 6, 80, 1848; Liebig's Ann., 64, 267, 1847; V. A. Jacquelain, Ann. Chim. Phys., (27, 74, 213, 1841; Compt. Rend., 11, 204, 1840; W. Lasch, Journ. prakt. Chem., (1), 63, 344, 1854; A. Laugier, Phil. Mag., 44

B. Mobius, Brit. Pat. No. 16554, 1884; Norddeutsche Affinerie, German Pat., D.R.P. 90276, 90511, 1896; C. Schnabel, Handbuch der Metallhüttenkunde, Berlin, 2. 819, 1904; London, 2. 787, 1907; F. Wohlwill, Zeit. Elektrochem., 4. 379, 402, 421, 1898; 16. 379, 1910; 17. 402, 1911; 18. 421, 1912; F. Zürn, German Pat., D.R.P. 107525, 1898; A. I. Bochkoff, Sovet. Zolotoprom., 3, 1934.

R. A. Cooper and F. W. Watson, Journ. Chem. Met. Mem. Soc. South Africa, 29. 220, 1929; H. Frasch, German Pat., D.R.P. 93178, 1896; K. L. Graham, in P. A. Wagner, The Platinum Deposits and Mines of South Africa, Edinburgh, 279, 1929; T. L. Kapp, Min. Ind. Mag. South Africa, 7, 125, 1928; F. Trickett and J. Noad, Brit. Pat. No. 2778, 1888.

⁷ R. Wagner, Chem. Centr., (3), 6, 713, 1875; A. Seigle, French Pat. No. 363039, 1906; German Pat., D.R.P. 196215, 1906; E. Bohon, ib., 100478, 1898; W. Günther, ib., 444219,

1925.

8 U. Antony and A. Luccheri, Gazz. Chim. Ital., 29. ii, 82, 1899; C. Claus, Bull. Acad. St. Petersburg, (3), 1. 97, 1859; Journ. prakt. Chem., (1), 34, 173, 1845; (1), 79, 28, 1860; Chem. Petersburg, (3), 1. 97, 1859; Journ. prakt. Chem., (1), 34. 173, 1845; (1), 79. 28, 1860; Chem. (Juz., 3. 49, 1845; C. W. Davis, Tech. Paper Bur. Mines, 342, 1924; H. St. C. Deville and H. Debray, Ann. Chim. Phys., (3), 61. 5, 1861; Ann. Mines, (5), 18. 71, 325, 1860; E. Frémy, Ann. Chim. Phys., (3), 12. 457, 1844; (3), 44. 387, 1855; J. Fritzsche and H. Struve, Bult. Acad. St. Petersburg, (2), 6. 81, 1848; Journ. prakt. Chem., (1), 41. 47, 1847; Liebig's Ann., 64. 263, 1847; Phil. Mag., (3), 31. 534, 1847; O. W. Gibbs, Amer. Journ. Science, (2), 31. 65, 1861; R. Gilchrist, Journ. Amer. Chem. Soc., 45. 2320, 1923; A. Gutbier and K. Trenker, Zeit. anorg. Chem., 45. 166, 1905; A. Guyard, Compt. Rend., 56. 1177, 1863; Chem. News, 8. 106, 1863; G. J. Hough, Journ. Ind. Eng. Chem., 21. 162, 1929; J. L. Howe, Journ. Amer. Chem. Soc., 2375, 1001; A. Lely and H. Debray, Compt. Rend., 108, 828, 1888; B. G. Karpoff, Proc. Inst. 775, 1901; A. Joly and H. Debray, Compt. Rend., 106. 828, 1888; B. G. Karpoff, Proc. Inst. Platinum, 6. 98, 1928; F. Krauss and H. Kükenthal, Zeit. anorg. Chem., 132. 315, 1924; E. Leidié and L. Quennessen, Bull. Soc. Chim., (3), 27, 179, 1902; (3), 29, 801, 1903; O. Ruff and F. Vidic, Zeit. anorg. Chem., 136, 49, 1924; W. Savelsberg, Metallborse, 23, 541, 573, 605, 673, 1933; D. C. Smith, U.S. Pat. No. 1649786, 1927; E. Wichers, R. Gilchrist and W. H. Swanger, Trans. Amer. Inst. Min. Eng., 76, 602, 1928; W. H. Wollaston, Phil. Trans. 94. 411, 1804; Nicholson's Journ., 8. 220, 1804; 10. 24, 1805; Phil. Mag., (1), 20. 162, 1805;

F. Wyatt. Eng. Min. Journ., 44. 273, 1887.

 J. P. J. d'Arcet, Ann. Chim. Phys., (1), 89. 135, 1814; N. Awerkejeff, Journ. Russ. Phys. Chem. Soc., 34. 828, 1902; Zeit. anorg. Chem., 35. 333, 1903; W. Bettel, Chem. News, 56. 133, 1887; H. Carmichael, Journ. Soc. Chem. Iud., 22. 1324, 1903; M. Chaudet, Ann. Chim. Phys., (2), 2, 264, 1816; Ann. Mines, (1), 2, 105, 1817; F. P. Dewey, Chem. News, 106, 8, 1912; Journ. Ind. Eng. Chem., 4. 257, 1912; H. Freudenberg, Zeit. phys. Chem., 12. 97, 1893; Elektrochem. Zeit., 18. 301, 336, 1912; F. Mylius and C. Hüttner, Ber., 44. 1324, 1911; L. Opificius, Dingler's Journ., 224. 414, 1877; M. Pettenkofer, Pogg. Ann., 74. 316, 1848; Bull. Acad., München, 142, 1848; Dingler's Journ., 111. 365, 1849; H. Pirngruber, Eng. Min. Journ., 4. 256, 326, 1887; E. Priwoznik, Oesterr. Zeit. Berg. Hütt., 47. 356, 1899; A. D. van Riemsdijk, Meded. Lab. Rijks Munt., 5, 1882; 6, 1885; Rec. Trav. Chim. Pays-Bas, 1. 188, 1882; 4. 263, 1885; H. Rössler, Liebig's Ann., 180. 243, 1876; Synthese einiger Erzminerulien und analoger Metallverbindungen durch Auflösen und Kristallisierenlassen derselben in geschmolzenen Metallen, Berlin, 1895; Berg. Hutt. Zig., 54. 404, 1895; E. F. Smith and F. Muhr, Amer. Chem. Journ., 417, 1891; T. Ulke, Min. Ind., 4, 359, 1896;
 5, 304, 1897; Berg. Hütt. Zig., 56, 421, 1897;
 L. Vanino and L. Seemann, Ber., 32, 1968, 1899;
 R. Willstätter, ib., 36, 1830, 1903;
 E. Wohlwill, Zeit. Elektrochem., 4. 379, 402, 421, 1898.

¹⁰ E. L. Baldeschwieler and L. A. Mikeska, Journ. Amer. Chem. Soc., 57, 977, 1935; F. Bayer, German Pat., D.R.P. 193457, 1906; A. Berthold, Zeit. angew. Chem., 15, 621, 1901; A. W. Blair, Journ. Ind. Eng. Chem., 2. 102, 1910; R. Böttger, Liebig's Ann., 128. 247, 1863; Journ. prakt. Chem., (1), 91. 251, 1864; Jahrb. Phys. Ver. Frunkurt, 64, 1868; Dingler's Journ., 192. 476, 1869; Zeit. anal. Chem., 3. 362, 1864; C. Brunner, Mitt. Nat. Ges. Bern, 17, 1864; Pogg. Ann., 122. 156, 1864; J. Chambers and R. R. Tatlock, Proc. Glasgow Phil. Soc., 6. 390, 1863; Chem. News, 17, 199, 1868; G. A. L. R. Collard, French Pat. No. 640110, 1927; C. W. Davis, Tech. Paper U.S. Bur. Mines, 342, 1924; W. Dittmar and J. McArthur, Trans. Roy. Soc. Edin., 83. G. J. Hough, Journ. Ind. Eng. Chem.—Anal., 4. 162, 1929; T. Knösel, Ber., 6. 1159, 1873; G. Krause, Zeit. anal. Chem., 14. 184, 1875; L. Opificus, ib., 23. 207, 1884; L. V. Parisot, Journ. Chim. Méd., (2), 6. 193, 1840; Dingler's Journ., 77. 396, 1840; J. Post, Chem. News, 46. 243, 1882; Deut. Apoth. Zig., 3, 1882; H. Precht, Zeit. anal. Chem., 18. 509, 1879; E. H. Reerink, 18. 200, 1879; E. H. Reerink, 18. 200, 18. 200, 1879; E. H. Reerink, 18. 200 Reit. Apoll. 249., 5, 1802; H. Frech, Zett. andt. Chem., 10. 509, 1818; E. H. Reetink, Zeit. anorg. Chem., 173. 45, 1928; W. Savelsberg, Metallbörse, 23. 541, 573, 605, 637, 1933; H. Schwitter, Brass World, 28. 228, 1932; E. A. Smith, Metal Ind., 33. 513, 565, 1928; A. E. Smoll, Journ. Ind. Eng. Chem., 11. 466, 1919; W. Stein, Mitt. Forsch. Inst. Prob. Edelmet., 6. 19, 35, 1932; F. W. Steinmetz, Chem. Zig., 49. 807, 1925; A. Stiebel, Jahrb. Phot., 9. 18, 1895; T. Ulke, Min. Ind., 4. 361, 1896; H. C. Weber, Journ. Amer. Chem. Soc., 30. 29, 1908; J. O. Whiteley and C. Dietz, Tech. Publ. Amer. Inst. Min. Eng., 84, 1928; H. W. Wiley, Chem. Name. 78, 214, 1897. Later. Amer. Chem. Soc., 40, 258, 1897. (3. C. Wittstein, Phagen Centre.) News, 75. 214, 1897; Journ. Amer. Chem. Soc., 19. 258, 1897; G. C. Wittstein, Pharm. Centrh., 7. 3, 1866; Dingler's Journ., 179. 299, 1866; Arch. Pharm., (2), 125. 242, 1866; Zeit. anal. Chem., 5. 98, 1866; H. Wolffram, Ueber athylaminhaltige Platinbasen, Königsberg, 18, 1900; W. C. Zeise, Pogg. Ann., 21. 498, 1830; 40. 234, 1837.

VOL. XVI.

§ 4. The Purification of Platinum

Eine Trennung der Platinelemente zu den schwierigsten Aufgaben der Chemie gehört.—

H. KAYSER.

As indicated by E. Péchard, the separation of the metals which accompany platinum in platinum ores is une operation très délicate. One difficulty is due to the fact that the properties of some of the combinations are very different from those of the individual metals. Thus, iridium and rhodium alone are not attacked by cold, conc. aqua regia, but they dissolve when alloyed with certain proportions of platinum. Conversely, an alloy of platinum and iridium is not attacked by aqua regia when sufficient iridium is present. Again, platinum is not attacked by conc. nitric acid, but it dissolves readily in this acid when it is alloyed with certain proportions of silver (G. von Sickingen), zinc (H. V. Collet-Descotils), or lead (H. St. C. Deville and H. Debray). Many schemes have been devised for the qualitative recognition of the metals present in a given specimen of commercial platinum, or in platinum ores. W. Gerlach, and H. E. Stauss discussed the most sensitive lines for the spectroscopic detection of Si, Fe, Ir, Ni, Os, Pd, Pt, Rh, and Ru in platinum metals. The ore or metal can be "opened up" by dissolution in aqua regia, by dissolution in molten silver or lead and the alloy dissolved in acid; or the ore can be dissolved in molten sodium dioxide, in a nickel crucible, and the cold mass dissolved in the acid.

REFERENCES.

1 H. Arnold, Zeit. anory. Chem., 51. 550, 1912; J. J. Berzelius, Phil. May., (2), 5. 395, 1829; (2), 6. 146, 1829; Quart. Journ. Science, 18. 162, 1830; Pogg. Ann., 13. 435, 527, 1828; Kong. Vet. Akad. Handl., 25, 1828; Ann. Chin. Phys., (2), 40. 51, 183, 257, 337, 1829; R. Bunsen, Liebig's Ann., 146, 265, 1868; A. Classen, Ausgewählte Methoden der analytischen Chemie, Braunschweig, 1, 259, 1901; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1854; Russ. Phurm. Zlg., 1, 30, 1862; Journ. prakt. Chem., (1), 38, 195, 1846; H. V. Collet-Desotils, Ann. Chim. Phys., (1), 64, 334, 1807; Mém. d'Arcueil, 1, 370, 1807; W. Crookes, Select Methods in Chemical Analysis, London, 437, 1905; H. St. C. Deville and H. Debray, Ann. Mines, (5), 16, 1, 1859; Ann. Chim. Phys., (3), 56, 385, 1859; Chem. News, 1, 5, 15, 85, 1860; H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Poids Mesures, 153, 1877; F. Döbereiner and F. Weiss, Liebig's Ann., 14, 251, 1835; L. Duparc, Helvetica Chim. Acta, 2, 324, 1919; Journ. Soc. Chem. Ind., 38, 822, A, 1919; L. R. von Fellenberg, Pogg. Ann., 41, 210, 1837; 44, 220, 1838; Phil. Mag., (3), 12, 141, 1838; E. Frémy, Compt. Rend., 18, 144, 1844; Ann. Chim. Phys., (3), 12, 457, 1844; W. Gerlach and K. Ruthardt, Siebert's Festschrift, 51, 1931; O. W. Gibbs, Amer. Journ. Science, (2), 31, 63, 1861; (2), 24, 353, 862; M. Graulich. Chem. Ztg., 33, 2, 1930; A. T. Grigorieff, S. F. Schemtschuschny, O. E. Zvjaginstseff, B. G. Karpoff, Ann. fat. Platine, 4, 343, 1926; H. Hess, Liebig's Ann., 64, 267, 1847; Bull. Acad. St. Petersburg, (2), 6, 80, 1848; Journ. prakt. Chem., (1), 40, 498, 1847; H. C. Holtz, Ann. Chim. Phys., (8), 27, 559, 1912; (9), 2, 56, 1914; La composition des mineraies de platine de l'Oural, Genève, 1920; R. Jagnaux, Analyse chimique des substances commerciales, minérales, et organiques, Liège, 1888; E. V. Koukline, Rev. Mét., 9, 815, 1912; A. Laugier, Ann. Chim. Phys., (1), 83, 191, 1814; (2), 29, 289, 1825; Phil. Mag., (1), 44, 51, 1814; M. C. Lea, Amer. Journ. Science, (

and K. A. Dologoff, Journ. Russ. Phys. Chem. Soc., 61. 1377, 1929; L. N. Vauquelin, Phil. Mag., (1), 44. 33, 1814; Ann. Phil., 4. 216, 1814; Ann. Chim. Phys., (1), 88. 167, 1814; (1), 89. 150, 225, 1814; I. Wada and T. Nakazono, Bull. Inst. Phys. Chem. Research Tokyo, 1. 139, 1923; I. Wada and S. Saito, ib., 8. 749, 1929; T. Wilm, Ber., 18. 2536, 1885; Journ. Russ. Phys. Chem. Soc., 17. 451, 1885; 18. 69, 1886; F. Wöhler, Ann. Chim. Phys., (2), 54. 317, 1833; Liebig's Ann., 9. 149, 1834; Pogg. Ann., 31. 161, 1834; L. Wöhler and L. Metz, Zeit. anorg. Chem., 149. 297, 1925; W. H. Wollaston, Phil. Trans., 99. 189, 1809; Nicholson's Journ., 25. 18, 1810; Phil. Mag., (1), 33. 250, 1809; (1), 35. 164, 1810; M. Wunder and V. Thüringer, Zeit. anorg. Chem., 52. 740, 1913; Ann. Chim. Phys., (8), 30. 164, 1913.

§ 5. Qualitative Recognition of the Platinum Metals

F. Mylius and R. Dietz gave a plan in which the mixed chlorides are boiled in a distilling flask with dil. nitric acid and the distillate collected in a soln. of sodium hydroxide. If osmium is present, the liquid becomes yellow since osmium tetroxide distils over with the steam. The residual liquid is shaken with ether to extract any gold chloride which collects in the ethereal layer. The liquid is then boiled with ammonium acetate and formic acid for several hours in a flask fitted with a reflux condenser, and the black precipitate is washed, dried, and heated to redness in hydrogen. The residue is washed with hydrochloric acid, mixed with sodium chloride, and ignited in chlorine. The product is dissolved in water and treated with ammonium chloride, a precipitate contains the platinum, iridium, and ruthenium, whilst palladium and rhodium remain in soln. (precipitates to left, filtrates to right):

Plans were also given by N. A. Tananaeff and K. A. Dolgoff, S. F. Schemtschuschny and co-workers, I. Wada and co-workers, and W. Graulich. S. C. Ogburg gave the following gravimetric scheme for the separation of the six platinum metals present as chlorides in dil. hydrochloric acid (7 to 8 c.c. HCl per 100 c.c. of soln.):

For confirmatory tests of the different metals *vide* the analytical reactions of the different metals, and Table I. In the older process for the recognition of the platinum metals, hydrogen sulphide is passed into a hot, acidified soln. of the

TABLE I .--- REACTIONS OF SALTS OF THE PLATINUM METALS

	Ruthenium	Rhodium	Palladium	Osmium	Iridium	Platinum
Colour	Dark brown	Red	Brownish- vellow	Gold-yellow	Dark brown	Pale yellow
H ₂ S at 18° (1 min.) . N ₂ S at 80° (1 min.) .	No pp. Bluish-black	No pp. Dark brown	Brown pp. Dark brown	No pp. Black	No. pp. Brown turbidity	No pp. Dark brown
Amm. sulphide	Dark brown pp.; soluble in excess	Dark brown pp.; insoluble in excess	Black pp.; insoluble in excess	Dark brown pp.; insoluble in excess	Brown pp.;	Brown pp.; soluble in excess
Ethyl mercaptan (1:100).	Slow brown pp.	Slow yellow pp.	Yellow pp.	No change	Slow decoloriza- tion	Pale yellow
Warm NH ₄ OH	Green colour	Slow decoloriza- tion	Decoloriza- tion	Yellowish- brown pp.	ыл	Slow decoloriza- tion
Sat. solu. NH4'l Alkali lye	Brown pp. Black pp.; insoluble in excess	No pp. Yellow pp. ; soluble in excess	No pp. Yellowish brown; soluble in in excess	Red pp. Brownish- red pp.	Black pp. Green soln.; brownish- black pp.	Yellow pp. Dark brown pp.
Sat. soln. KCl .	Violet cryst.	Red cryst.	Red cryst.	Brown	Brownish-	Yellow pp.
Soln. KI (1:1000) .	pp. Nil	pp. Nil	pp. Dark pp.	cryst, pp. Nil	red pp. Yellow colour	Slow reddish- brown pp.
Soln, HgCy ₂ Soln, KCyS (1 : 1000)	Nil Dark violet	Nil Yellow	White pp. Nil	Ņil Nil	Nil Decoloriza- tion	Nil Intense vellow
Soln. Na ₂ CO ₃	Dark brown	Yellow	Yellowish- brown	Black	Yellow	Nil
Soln. N ₂ H ₄ .HCl	Yellow	Yellow	Black pp.	Nil	Yellow	Black pp.
Soln. dimethylglyoxime HCl soln. cobaltic luteochloride	Nil Nil	Nil Reddish colour	Yellow pp. Nil	Nil Nil	Nil Brownish colour	Nil Nil

chlorides until precipitation is complete. The precipitate is digested with warm soln. of yellow ammonium sulphide. Ruthenium, rhodium, platinum, and osmium are not dissolved; platinum, iridium, and gold mixed with arsenic, antimony and tin pass into soln. If these three elements are present, the filtrate is treated

with hydrochloric acid to precipitate sulphides. The precipitate is fused with a mixture of sodium carbonate and nitrate and washed with water to remove sodium arsenate. Reduce with zinc and hydrochloric acid, and boil with hydrochloric acid to remove tin; boil the residue with nitric and tartaric acids to remove antimony (filtered solids to left, filtrates to right):

§ 6. Quantitative Determination of the Platinum Metals

The methods available for the determination of the platinum metals when associated with one another in ore, or in alloy, are somewhat complicated. The pioneer work was done by W. H. Wollaston, L. N. Vauquelin, A. Laugier, L. R. von Fellenberg, H. Hess, H. V. Collet-Descotils, F. Döbereiner and F. Weiss, J. Persoz, E. Frémy, C. Ridolfi, F. Wöhler, and J. J. Berzelius. Two general schemes are indicated below. The procedure is necessarily modified according to the number and nature of the metals which have to be isolated. Other schemes have been discussed by H. Arnold, R. Bunsen, A. Classen, C. Claus, W. Crookes, H. St. C. Deville and H. Debray, H. St. C. Deville and J. S. Stas, O. W. Gibbs, L. Wöhler and L. Metz, H. C. Holtz, L. Duparc, V. Rekshinsky, R. Jagnaux, E. V. Koukline, M. C. Lea, E. Leidié, E. Leidié and L. Quennessen, J. W. Mellor, F. Mylius and R. Dietz, O. E. Swjaginzeff, F. Mylius and F. Förster, E. Péchard, L. Quennessen, L. E. Rivot, T. Wilm, and M. Wunder and V. Thüringer.

H. C. Holtz modified the scheme of H. St. C. Deville and co-workers; and the following outline scheme is M. Wunder and V. Thüringer's modification on ore containing iron, copper, gold, rhodium, palladium, iridium, platinum, osmiridium, and sand (solids to left, soln. to right):

The osmiridium may be dissolved in molten sodium dioxide—as indicated in connection with ruthenium (q.v.)—in a nickel crucible, and the cold mass dissolved in hydrochloric acid, and the soln. treated as just indicated for the platinum metals. The ore can be treated with hot aqua regia, and any insoluble residue fused with

sodium dioxide; the cold cake can be dissolved in hydrochloric acid, and the two soln. mixed. The following metals may be present: ruthenium, rhodium, palladium, osmium, iridium, and platinum, as well as gold, copper, and iron along with nickel derived from the crucible. The scheme recommended by J. W. Mellor, for an ore or alloy containing ruthenium, rhodium, palladium, osmium, iridium, and platinum, as well as gold, iron, and nickel derived from the crucible, is as shown at foot of preceding page (solids on left, soln. on right).

E. Leidié mixed the ore with sodium chloride, and heated the mixture to redness

in a current of chlorine:

F. Mylius and A. Mazzucchelli obtained good results in test analyses with the following scheme (precipitation to left, soln. to right):

In order to obtain platinum of a higher degree of purity, J. J. Berzelius 1 neutralized a soln. of platinum in aqua regia by means of lime, or ammonia, saturated the liquid with hydrogen sulphide, and allowed it to stand for a few days in a closed flask. The liquid was filtered from the osmium sulphide, and then treated with potassium chloride. The precipitate was washed with a soln, of potassium chloride until the washings were free from iron chloride. The dry precipitate was heated with twice its weight of potassium carbonate until it began to fuse. The cold product was washed with water, and then with dil. hydrochloric The mixture of platinum and iridium oxide was collected on a filter-paper, washed, and dried. The greater part of the platinum was extracted from the mixture by warm, dil. aqua regia, and the remainder of the platinum was taken up with conc. aqua regia, containing a little sodium chloride to prevent the reduction of the platinic chloride during the evaporation. The soln, was treated with potassium chloride, and the dry precipitate so obtained was gently heated with dry sodium carbonate until the mass blackened and began to fuse. The product containing metallic platinum and the oxides of rhodium and iridium, was washed first with water, and then with dil. hydrochloric acid. The platinum was extracted from the product by aqua regia, and precipitated from the soln. by ammonium chloride.

Following H. St. C. Deville and H. Debray, G. Matthey purified commercial platinum by first melting the crude metal with 6 times its weight of lead, and granulating the alloy. The alloy was then treated with dil. hydrochloric acid which dissolved iron, lead, palladium, and rhodium, leaving behind platinum, iridium, and small quantities of lead, rhodium, and other platinum metals. The residue was boiled with aqua regia, when platinum and lead dissolved, whilst iridium remained behind. The lead was precipitated by sulphuric acid. The filtered liquid was treated with an excess of ammonium and sodium chlorides to precipitate the platinum as ammonium chloroplatinate. When rhodium is present, the precipitate is rose coloured instead of yellow. If rhodium be present, the precipitate is heated with potassium hydrosulphate to form potassium rhodium sulphate whilst the platinum remains as metal. The double salt can be washed out with boiling water. Modifications of the method were employed by H. St. C. Deville and J. S. Stas, E. H. Reerink, and O. J. Broch and co-workers.

E. Wichers and co-workers have pointed out that the repeated precipitation of ammonium chloroplatinate is the most important method of purifying platinum. The salt is relatively insoluble. It may be readily precipitated in a form that is easily filtered and washed, and it may be directly converted to metallic platinum by ignition. Any desired degree of purity may be attained by a sufficient number of reprecipitations. All the platinum metals except rhodium can exist in the quadrivalent state and in this condition form relatively insoluble salts analogous to ammonium chloroplatinate and isomorphous with it. However, because of the usual course of previous separations, osmium and ruthenium are seldom present with platinum except in very small amounts. Palladium is readily reduced from the quadrivalent state to the bivalent state by heating the solution. It is probably true that iridium also is reduced in part, at least, from the quadrivalent state to the trivalent state by heating, especially if the temperature reached 140° to 150° C. The Couble chlorides of bivalent palladium and trivalent iridium with ammonium chloride are much more soluble than ammonium chloroplatinate and not isomorphous with i' Rhodium, iridium, and palladium display remarkable persistence in contaminating 'be platinum salt. Platinum containing 0.7 per cent. of rhodium was found to contain 0.2 per cent. after the first precipitation and 0.04 per cent. after the third precipitation. After seven precipitations a minute amount of rhodium could still be detected in the mother-liquor from ammonium chloroplatinate corresponding to about 450 grms. of platinum. Iridium was not detected after the fifth precipitation. This persistent contamination, presumably caused by adsorption, was emphasized by H. St. C. Deville and J. S. Stas. Silver, if present, may persist for a few precipitations because of the solubility of silver chloride in conc. soln. of chlorides. E. Wichers and co-workers recommend the following procedure:

Crude spongy platinum contained in a porcelain dish with a cover glass to prevent loss by the spray is dissolved in aqua regia-300 to 35 vols. of hydrochloric acid of sp. gr. 1.18, 75 to 100 vols. of water, and 60 to 70 vols. of nitric acid of sp. gr. 1.42. The temp. is raised rather slowly to avoid too vigorous a reaction. In some cases more aqua regia is required for complete solution. The soln. is evaporated fairly rapidly without previous filtration until the temp. reaches 140° to 150° unless the residue becomes pasty before this temp. is attained, in which case the evaporation must be stopped to avoid local overheating. If no large amount of base metal or alkali impurities were present in the sponge, the soln. will be fluid at 150°. A small amount of water is then added, which causes a lively boiling and the evolution of nitrous fumes. In this process any nitrous compounds of platinum are decomposed. L. Duparc and M. N. Tikonowitch state that if the nitrous compounds formed during the treatment with agua regia are not decomposed, a considerable amount of platinum will escape precipitation with ammonium chloride. More water is added to cool the solution below 100°. After digesting a few minutes some hydrochloric acid is added and the evaporation repeated. This whole process can be repeated three or four times, insuring the elimination of nitrous compounds and presumably promoting the reduction of quadrivalent iridium to the trivalent state. After the last evaporation water only is added and the soln. diluted so as to contain not less than 50 grms, and not more than 100 grms, of platinum in 1 litre. It is set aside to allow settling of insoluble matter and then decanted or filtered from any residue. The residue may contain undissolved iridium or rhodium as well as silver chloride, silica, and other insoluble matter. The soln. is heated nearly to boiling and treated with a 20 per cent. soln. of ammonium chloride, using 55 to 60 grms. of the salt for each 100 grms. of platinum and adding enough in excess so that the whole soln. will contain 3 to 5 per cent. of the salt. A moderate excess of ammonium chloride is desirable to decrease the solubility of the platinum salt but a large excess increases the degree of contamination too greatly. The soln. is cooled rapidly and the salt immediately filtered off and drained by suction. If the soln. is allowed to stand a small amount of salt of much lower purity will separate and thus contaminate the main precipitate. The salt is well drained, returned to the dish and thoroughly mixed with a soln. containing 20 per cent. of ammonium chloride. After draining the salt, this whole process is repeated once more. The filtrates and washings are evaporated to recover most of the residual platinum in a second crop of ammonium chloroplatinate, less pure than the first, and for the recovery of other precious metals by precipitation with zinc. The salt is dried and ignited to sponge.

To avoid the long and tedious sequence of re-precipitations of ammonium chloroplatinate, attempts have been made to abbreviate the process by the collective precipitation of the base metals, and other platinum metals by alkaline reagents. F. Döbereiner and F. Weiss recommended adding milk of lime, or lime water to a soln. of the impure platinum; and F. Mylius and A. Mazzucchelli, a soln. of sodium hydrocarbonate in bromine water—i.e. sodium hypobromite. E. Wichers and co-workers also found that good work can be done with alkaline reagents. The reaction is slow in the cold, and to hasten the process, the soln. should be boiled for a few minutes. A reaction between the chloroplatinate and the alkaline soln, tends to make the soln, sufficiently acidic to hinder the complete precipitation of impurities, or to redissolve some of the precipitate. They found that the presence of a bromate retards the hydrolysis of the chloroplatinate. The base metals are readily precipitated in the alkaline soln.; palladium, rhodium, and iridium appear to precipitate very nearly completely; osmium and ruthenium probably precipitate, except for the portion of the ruthenium that is present as nitrosochloride and the osmium and ruthenium that may be oxidized to the tetroxides by the action of the bromate, if the soln. at any time becomes acidic enough to liberate bromine; silver is likely to remain in the soln. as dissolved silver chloride and gold is divided between the precipitate and the soln. However, gold may be eliminated by adding sufficient ferrous sulphate to precipitate it as metal before the addition of sodium hydrocarbonate. The iron from this reagent, of course, is precipitated with the other impurities and may in fact be helpful in collecting small amounts of other precipitated compounds. Some platinum rarely over 5 per cent.—will appear in the precipitate. E. Wichers and co-workers, and R. Gilchrist and E. Wickers recommend the following procedure:

The soln, of impure platinum in aqua regia is evaporated once or twice to eliminate nitric acid. Enough sodium chloride is added to form sodium chloroplatinate and similar salts of the other metals. The soln, is evaporated and the residue thoroughly dried to remove as much as possible of the hydrochloric acid. The residue is dissolved in water and the soln, diluted so as to contain about 50 grms, of platinum per litre. If gold is thought to be present, ferrous sulphate soln. is added in small portions until no further precipitation of gold occurs. The soln, is decanted from the residue and heated nearly to boiling, after which sodium hydrocarbonate is added in small portions to neutralize most of the remaining hydrochloric acid. When the soln, is nearly neutral, as may be judged by diminishing effervescence, 10 to 12 grms, of sodium bromate for each 100 grms, of platinum are added, only a little being added at first to determine whether the soln, is nearly enough neutral not to decompose the bromate. If bromine is evolved, more sodium hydrocarbonate is added until the addition of a little sodium bromate causes no further evolution of bromine. The remaining sodium bromate is then added and the addition of small portions of sodium hydrocarbonate continued until the soln. just turns sensitive litmus paper blue. The soln, is now brought rapidly to boiling and again tested with litmus paper. If it is acid a little more sodium hydrocarbonate is added and the soln, is then boiled for 3 to 5 minutes. It is finally tested once more, and if not alkaline another small portion of sodium hydrocarbonate is added and the boiling continued for a minute. The soln, is then cooled rapidly in running water. After the precipitate settles, the supernatant soln, is siphoned off and passed through a filter to collect the suspended precipitate. If observations or tests indicate that the reaction has not been successful, the soln, is acidified with hydrochloric acid, evaporated down and the whole process repeated, after adding a little aluminium chloride. The aluminium salt is added so as to produce a precipitate which will collect smaller amounts of precipitated compounds. This is also done when practically pure platinum is being treated. If the separation of impurities appears to have been successful, the soln, is digested with hydrochloric acid to decompose the bromate and the platinum is precipitated with ammonium chloride. The ammonium chloroplatinate precipitated from this soln, will carry down considerable sodium chloride, most of which may be removed by leaching with water after the salt has been ignited to sponge.

- E. H. Archibald precipitated the metal from an acid soln. of the platinum as ammonium chloroplatinate; the precipitate was thoroughly washed, dried, and reduced in hydrogen. After removing the ammonium chloride, the platinum-black was boiled with successive portions of conc. hydrochloric acid to dissolve out the iron; and the platinum-black was redissolved. These operations were repeated several times. After three operations, all indications of iridium had disappeared from the spectral lines of the metal. To avoid the difficulty of removing the last traces of nitric acid from a soln. prepared by dissolving the metal in aqua regia, the metal was brought into soln. by making it the anode in an electrolytic cell containing hydrochloric or hydrobromic acid.
- B. G. Karpoff and A. N. Fedorova discussed the separation of platinum and iridium; and F. Mylius and F. Förster described the following method of preparing platinum free from iridium. It is based on the conversion of the platinum chloride into sodium chloroplatinate, and purifying this salt by re-crystallization.

Commercially-purified platinum is dissolved in aqua regia, and the soln., freed from nitrogen oxides by repeated evaporation with hydrochloric acid, is mixed with the theoretical amount of purified sodium chloride. The soln, is concentrated to a small bulk, and allowed to cool whilst being continuously stirred; the crystals which separate are freed from mother-liquor by suction, washed with a cone, soln, of sodium chloride, and dissolved in a hot, 1 per cent, soln, of sodium carbonate. The soln, is allowed to cool, when the salt again crystallizes out. It is then dried at 120°, reduced in hydrogen at a low temp., and the resulting platinum sponge is washed for a long time with water, and finally dried and weighed. It is estimated that the product contained 99-99 per cent, of platinum.

P. Bergsöe based a process for preparing platinum free from iridium on the conversion of the platinum in soln. into barium platinocyanide, and purifying the salt by re-crystallization—100 parts of boiling water dissolve 25 to 33 parts of the salt, and 100 parts of cold water, 3.33 parts of salt.

An aqua regia soln. of 40 grms. of platinum containing traces of iridium, mixed with another 0.25 grm. of iridium, was treated with the theoretical proportion of barium hydroxide, and with hydrogen cyanide. The warm mixture was treated with sulphurous acid until it became colourless, and after removing the precipitated barium sulphate.

by filtration of the hot soln., it was allowed to cool to allow the barium platinocyanide to crystallize out. The latter salt is almost insoluble in a soln, of barium chloride. The barium platinocyanide was re-crystallized 3 times from water, and the mother-liquors evaporated to about one-third or one-fourth their vol. and the further separations mixed with the main product. The yield was 75 per cent. of platinum free from iridium. The mother-liquors contained 7.015 grms, of platinum, and 0.281 grm, of iridium. It is believed that this method of purification gives a better product than the sodium chloroplatinate process. Traces of osmium, ruthenium, and rhodium follow the iridium, but palladium, which forms a double cyanide, isomorphous with that of platinum, cannot be removed by this treatment, but it can be expeditiously removed by other processes—vide supra.

A number of processes for separating iridium and platinum are based on the reduction of iridium tetrachloride to the trichloride by reducing agents which do not affect the platinum tetrachloride. This prevents the formation of a precipitate of the double salt of iridium when the soln, is treated with ammonium or potassium chloride. Thus, C. Krug reduced the iridium salt with ferric chloride.

The metal was dissolved in aqua regia; the nitrogen oxides were removed as before; ammonium chloride was added to the soln.; the impure ammonium chloroplatinate was dissolved in hot water; ferrous chloride was added to the boiling soln., until it no longer became paler; and on cooling iridium-free ammonium chloroplatinate separated out, but the lower chloride of iridium remained in soln. The calcined precipitate was again dissolved in aqua regia as before, and the soln, treated with sodium chloroplatinate. The precipitate was dissolved in alcohol, and the soln, filtered from the rhodium, palladium, and ruthenium. The soln, was evaporated to dryness, and the product heated in an atm. of coal gas. The residue was washed with water, dried, and fused on wood charcoal in the oxy-hydrogen flame.

O. W. Gibbs treated the mixed precipitate of ammonium chloroplatinate and chloroiridate with 3 vols. of boiling water, and added a dil. soln. of potassium nitrite until the soln, appeared green, neutralizing the soln, from time to time with potassium carbonate. The iridium then passes into soln, as K₃lrCl₆, whilst the chloroplatinate contaminated with a little iridium remains unchanged. treatment with potassium nitrite is repeated until the water no longer assumes a green colour. According to A. Joly and E. Leidié, osmium and ruthenium are removed in the form of volatile compounds, and iridium is removed by treatment with lead. A moderately dil. hydrochloric acid soln, of the remaining metals is heated to about 60° and mixed with potassium nitrite. If much platinum is present, potassium chloroplatinate gradually separates as a crystalline precipitate quite free from other metals. After cooling and separation of this salt, the liquid is again heated and further quantities of nitrite are added. Suddenly, and especially if the liquid is stirred, the crystalline double rhodium compound separates, carrying with it lead, bismuth, and tin, and small quantities of copper. If the liquid is allowed to cool, the separation of the rhodium becomes complete, provided that a moderately large quantity of potassium chloride is present. Should iron and copper be present, the addition of the nitrite is continued until the liquid becomes alkaline, and, on boiling, the iron and copper are precipitated, whilst platinum and palladium remain in soln.

M. C. Lea reduced the iridium salt with oxalic acid. The mixed chloroplatinate and chlororidate were dissolved in just enough hot water for the purpose, and the soln. was treated with crystals of oxalic acid until no more bubbling occurred; it was boiled for 2 or 3 minutes, half saturated with ammonium chloride, and cooled. The platinum was precipitated as chloroplatinate, and iridium trichloride remained in soln. M. Vèzes separated the platinum by precipitation as potassium platinous oxalato-dinitrite, $K_2[Pt(C_2O_4)(NO_2)_2].H_2O$. According to C. Claus, the mixed ammonium chloroplatinate and chlororidate can be treated with a little water, and then with an aq. soln. of hydrogen sulphide. Sulphur, and platinum sulphide are precipitated, but iridium sulphide is precipitated only when the hydrogen sulphide is in great excess. The precipitate of platinum sulphide also contains some ammonium chloroplatinate and it yields platinum when calcined. The

mother-liquor also contains some platinum which is recovered by evaporation and treatment with ammonium chloride. A. Bettendorff also employed this process. If the mixed ammonium chloroplatinate and chloroiridate be heated with a little water, and treated with sulphur dioxide, C. Claus found that the iridium salt is reduced and dissolved, whilst the chloroplatinate, being sparingly soluble in sulphurous acid, remains. F. Wöhler and A. Mucklé digested the mixed ammonium chloroplatinate and chloroiridate with potassium cyanide, not in excess, until the residue became pale yellowish-brown, then by recrystallizing the undissolved portion from hot water furnishes ammonium chloroplatinate. C. Claus said that here the potassium cyanide reduces the iridium tetrachloride far more rapidly than is the case with the platinum salt.

According to C. Claus, the mixed soln. of iridium and platinum can be treated with 1 part of sulphuric acid to 3 parts of platinum, and evaporated to dryness. The yellowish-brown mass can be digested with water, filtered, and treated with ammonium chloride to precipitate the platinum. Most of the iridium is transformed into sulphate by this treatment, and only a small proportion of the platinum is affected, the sulphates are not precipitated by the ammonium chloride. C. Birnbaum observed that a mixture of the hydroxides of iridium and platinum can be dissolved in a soln. of potassium sulphite or carbonate, saturated with sulphur dioxide, and boiled with the addition of water until all the sulphur dioxide is expelled, the whole of the iridium is precipitated as sulphite, $Ir(SO_3)_2$; the filtrate contains the platinum which is recovered by evaporation to dryness, and roasting the product.

J. H. Gladstone and A. Tribe treated a soln. of the platinum salt with alkali formate, washed the precipitated metal with conc. nitric acid and then with water. T. Wilm, however, showed that the base metals cannot be removed from metals of the platinum group by reducing agents, since some of the base metals always accompanies the platinum metals—contact action, surface adsorption, or chemical action.

The separation of platinum from copper was discussed by W. H. Swanger and E. Wichers; from gold, by E. Slatineanu; from iridium, by U. Antony, L. C. A. Barreswil, J. J. Berzelius, C. Claus, W. C. Heraeus, E. Leidié, E. Leidié and L. Quennessen, H. Pirngruber, S. P. Sadtler, W. von Schneider, H. Senn, and E. F. Smith; from osmium, by A. Joly and E. Leidié, E. Leidié, E. Leidié and L. Quennessen, and H. Pirngruber; from palladium, by C. Brunner, P. Cohn and F. Fleissner, E. Slatineanu, A. Joly and E. Leidié, J. Langness, E. Leidié, E. Leidié, and L. Quennessen, O. Makowka, H. Pirngruber, H. St. C. Deville and J. S. Stas, F. Mylius and F. Förster, and M. Wunder and V. Thüringer; from rhodium, by H. St. C. Deville and J. S. Stas, A. Joly and E. Leidié, J. Langness, E. Leidié, E. Leidié and L. Quennessen, E. Wichers, and H. Pirngruber; from ruthenium, by H. St. C. Deville and J. S. Stas, A. Joly and E. Leidié, E. Leidié and L. Quennessen, and H. Pirngruber.

W. Truthe 2 studied the behaviour of the platinum metals towards silver and

gold during cupellation at 1100° to 1200°.

Impurities in platinum.—According to C. Claus,³ platinum free from rhodium and iridium dissolves more easily in aqua regia; if the mother-liquor from the ammonium chloride precipitation is mixed with nitric acid, and heated, it darkens in colour if iridium is present; and if an excess of potassium hydroxide and a few drops of alcohol be added, the mixture blackens if rhodium is present. T. J. Seebeck, and O. L. Erdmann discussed the effect of impurities on the properties of platinum. L. Löwenherz observed 0.02 per cent. of impurities—silver, and rhodium—in commercial "pure" platinum; and J. Weineck, 0.01 per cent. of iridium. F. Mylius and F. Förster observed 2 to 3 per cent. of iridium in commercial platinum; but F. Mylius and R. Dietz observed none in a sample of commercial "pure" platinum. G. C. Wittstein noted some osmium in commercial platinum, but F. Mylius and F. Förster added that platinum prepared by the aqua regia process

is not likely to contain that element; and in samples of commercial "platinum," and "pure" platinum, they found, respectively:

\mathbf{Pt}	Ir	$\mathbf{R}\mathbf{h}$	Pd	Ru	Fe	Cu
96.90	2.56	0.20	Trace	0.02	0.20	99.58
99.28	0.32	0.13	, manual and a second	0.04	0.06	0.07 - 99.90

H. St. C. Deville and H. Debray analyzed a number of samples and found: platinum, 90.50 to 3.30 per cent.; iridium, 2.10 to 7.90 per cent.; and rhodium, 0.30 to 3.30 per cent. O. J. Broch and co-workers found that purified samples contained: 99.890 to 99.892 per cent.; platinum; 0.065 to 0.070, rhodium; and 0.023 to 0.029, iridium. K. Kraut noted the contamination of platinum with barium; A. Vogel and co-workers, with chromium; E. Reichardt, with silicon; A. Villiers and F. Borg, with zinc; H. N. Warren, with thallium; A. Classen, with iron; and G. C. Hoffmann, and E. Hussak, with copper. W. N. Hartley noted the presence of carbon and phosphorus in a specimen of brittle platinum; E. Reichardt found silicon in another sample of brittle platinum. T. Wilm said that platinum crucibles become brittle with use if rhodium and palladium are present, because those metals are attacked by the carbon of the coal-gas flame. H. Moser discussed the subject. O. Zvjaginstseff and co-workers did not find dvi-manganese in native platinum.

REFERENCES.

1 U. Antony, Atti Accad. Lincei, (5), 1. i, 121, 1892; Gazz. Chim. Ital., 22. i, 275, 1892; E. H. Archibald, Proc. Roy. Soc. Edin., 29. 721, 1909; Zeit. anorg. Chem., 66. 176, 1910; L. C. A. Barreswil, Compt. Rend., 22. 420, 1841; P. Bergsöe, Zeit. anorg. Chem., 19. 324, 1899; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. i, 170, 1826; A. Bettendorff, Sitzber. Niederth. Ver. Naturwiss., 29. 9, 1872; C. Birnbaum, Liebig's Ann., 139. 177, 1866; Journ. prakt. Chem., (1), 100. 123, 1867; O. J. Broch, H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Mesures, 131, 1879; Ann. Chim. Phys., (5), 22. 120, 1887; C. Brunner, Mitt. Naturf. Ges. Bern, 17, 1864; Pogg. Ann., 122. 159, 1864; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1854; Journ. prakt. Chem., (1), 32. 1479, 1844; (2), 42. 351, 363, 1847; Liebig's Ann., 107. 134, 1858; P. Cohn and F. Fleissner, Monatsh., 17. 361, 1896; H. St. C. Deville and H. Debray, Compt. Rend., 81. 839, 1875; 94. 1559, 1882; Bull. Soc. Chim., (2), 26. 157, 1876; Ann. Mines, (5), 17. 77, 1860; Chem. News, 32. 281, 1875; H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Measures, 162, 1878; F. Döbereiner and F. Weiss, Liebig's Ann., 14. 17, 1835; L. Duparc and M. N. Tikonowitch, Le platine et les gites platinifères de l'Oural et du monde, Genève, 1920; H. Freudenberg, Zeit. phys. Chem., 12. 97, 1893; de l'Oural et du monde, Genève, 1920; H. Freudenberg, Zeit, phys. Chem., 12, 97, 1893; O. W. Gibbs, Amer. Journ. Science, (2), 31, 63, 1861; (2), 34, 341, 1862; (2), 37, 57, 1864; Chem. News, 3, 130, 148, 1861; 7, 61, 73, 97, 1863; 9, 121, 1864; R. Gilchrist and E. Wichers, Journ. Amer. Chem. Soc., 57, 2565, 1935; J. H. Gladstone and A. Tribe, Journ. Chem. Soc., 35, 175, 1879, W. C. Harpany, Divided Leven. 290, 05, 1878, A. Living B. Liddi Chem. Soc., 35, 1861; Chem. Soc., 35, 1861; Chem. Soc., 35, 1861; Chem. Soc., 36, 18 175, 1879; W. C. Heraeus, Dingler's Journ., 220. 95, 1876; A. Joly and E. Leidié, Chem. News, 63. 225, 292, 1891; Compt. Rend., 112. 793, 1259, 1891; B. G. Karpoff and A. N. Fedorova, Ann. 63. 225, 292, 1891; Compt. Rend., 112. 793, 1259, 1891; B. G. Karpoff and A. N. Fedorova, Ann. Inst. Platine, 9. 106, 1932; C. Krug, Die Platinkupferlegierungen, ihre Herstellung und ihr chemisches Verhalten, Leipzig, 1903; J. Langness, Journ. Amer. Chem. Soc., 29. 459, 1907; M. C. Lea, Amer. Journ. Science, (2), 38. 81, 248, 1864; Chem. News, 10. 279, 301, 1864; 11. 3, 13, 1865; E. Leidié, Compt. Rend., 181. 888, 1900; Bull. Soc. Chim., (3), 25. 9, 1901; E. Leidié and L. Quennessen, ib., (3), 27. 179, 1902; Journ. Pharm. Chim., (8), 14. 351, 1901; O. Makowka, Zeit. anal. Chem., 46. 146, 1907; G. Matthey, Proc. Roy. Soc., 28. 463, 1879; Chem. News, 39. 175, 1879; Dingler's Journ., 240. 213, 1881; Berg. Hütt. Ztg., 39. 28, 1880; F. Mylius and R. Dietz, Ber., 21. 3187, 1888; F. Mylius and F. Förster, ib., 25. 665, 1892; Zeit. Instrkde, 12. 93, 1892; Zeit. anorg. Chem., 1. 332, 1892; 2. 272, 1892; F. Mylius and A. Mazzucchelli, ib., 39. 1, 1914; H. Pirngruber, Eng. Min. Journ., 44. 256, 326, 1887; L. Quennessen, Bull. Soc. Chim., (3), 38. 875, 1905; Chem. News, 92. 29, 1905; E. H. Reerink, Zeit. anorg. Chem., 178. 35, 1928; S. P. Sadtler, Chem. News, 24. 281, 1871; On the Iridium Compounds analogous to Chim., (3), 88. 875, 1905; Chem. News, 22. 29, 1905; E. H. Reerink, Zeit. anory. Chem., 113. 35, 1928; S. P. Sadtler, Chem. News, 24. 281, 1871; On the Iridium Compounds analogous to the Ethylene and Protochloride of Platinum Salts, Göttingen, 1871; Amer. Journ. Science, (3), 2. 338, 1871; W. von Schneider, Liebig's Ann. Suppl., 5. 261, 1867; E. Schulz, Ueber das Atomgewicht des Platin, Erlangen, 37, 1912; H. Senn, Zeit. Elektrochem., 11. 229, 1905; K. Seubert, Ber., 14. 865, 1881; Liebig's Ann., 207. 8, 1881; E. Slatineanu, U.S. Pat. No. 1467202, 1923; E. F. Smith, Amer. Chem. Journ., 14. 435, 1892; Zeit. anorg. Chem., 3. 391, 1893; W. H. Swanger and F. Wichars. Laura. Amer. Chem. Soc. 48, 1814, 1924. M. Vårge Rull. Soc. Chim. (3), 21 E. F. Shillin, Amer. Chem. Soc., 182, 1682; 2ett. Anory. Chem., 531, 1685; W. H. Swanger and E. Wichers, Journ. Amer. Chem. Soc., 48, 1814, 1924; M. Vèzes, Bull. Soc. Chim., (3), 21. 481, 1899; E. Wichers, Journ. Amer. Chem. Soc., 48, 1268, 1921; 46, 1919, 1924; E. Wichers, R. Gilchrist and W. H. Swanger, Trans. Amer. Inst. Min. Eng., 76, 602, 1928; E. Wichers and L. Jordan, Trans. Amer. Electrochem. Soc., 48, 385, 1923; Metal Ind., 22, 553, 1923; T. Wilm, Journ. Russ. Phys. Chem. Soc., 18, 360, 1881; 18, 376, 1886; F. Wöhler and A. Mucklé, Liebig's Ann., 104. 368, 1857; Journ. prakt. Chem., (1), 78. 318, 1858; Dingler's Journ., 149. 237, 1858; M. Wunder and V. Thüringer, Zeit. anal. Chem., 52, 660, 1913.

² W. Truthe, Zeit. anorg. Chem., 154, 413, 1926.

O. J. Broch, H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Mesures, 162, 1878; A. Classen, Ber., 23, 938, 1890; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 14, 1854; H. St. C. Deville and H. Debray, Compt. Rend., 81, 839, 1875; O. L. Erdmann, Journ. tech. ökon. Chem., 2, 89, 1828; W. N. Hartley, Phil. Mag., (6), 4, 84, 1902; Proc. Chem. Soc., 18, 30, 1902; G. C. Hoffmann, Trans. Roy. Soc. Canada, 5, 17, 1888; E. Hussak, Zeit. prakt. Geol., 14, 284, 1906; L. Jordan, A. A. Peterson and L. H. Phelps, Trans. Amer. Electrochem. Soc., 50, 155, 1926; K. Kraut, Zeit. anal. Chem., 4, 364, 1865; L. Löwenherz, Zeit. Instrkde., 11, 167, 1890; H. Moser, Mitt. Forschungsinst. Edelmetalle, 6, 99, 1932; F. Mylius and R. Dietz, Ber., 31, 3187, 1898; F. Mylius and F. Forster, Zeit. Instrkde, 12, 93, 1892; Ber., 25, 681, 1892; E. Reichardt, Arch. Pharm., 205, 123, 1874; T. J. Seebeck, Abh. Berlin Akad., 265, 1823; Pogg. Ann., 6, 114, 265, 1826; Schweigger's Journ., 46, 101, 1826; A. Villiers and F. Borg, Compt. Rend., 116, 1524, 1893; A. Vogel, M. Thumbach and F. Kraus, Repert. Pharm., 22, 392, 1873; H. N. Warren, Chem. News, 55, 241, 1887; J. Weineck, Zeit. angew. Chem., 5, 34, 1892; W. P. White, Phys. Rev., (1), 23, 466, 1906; E. Wichers and L. Jordan, Trans. Amer. Electrochem. Soc., 43, 393, 1923; T. Wilm. Ber., 14, 879, 1881; G. C. Wittstein, Dingler's Journ., 179, 299, 1861; Arch. Pharm., (2), 125, 242, 1866; Zeit. anal. Chem., 5, 98, 1866; O. Zvjaginstseff, M. Korsunsky and N. Seljakoff, Nature, 118, 262, 1926.

§ 7. Some Different Forms of Platinum

Platinum may be prepared in the massive or in the crystalline state—vide infra. The metal obtained by the ignition of ammonium chloroplatinate is in the form of a dull grey, soft, spongy powder. To convert this product into malleable platinum the metal must be either fused or welded together. The metal itself fuses at so high a temp. that the manufacture of vessels, or of sheet platinum from ingots cast from the molten metal was impracticable. At first, that is, towards the end of the eighteenth century, attempts were made to reduce the fusibility of the metal by alloying it with a volatile metal, thus F. C. Achard, and M. Jeannety used arsenic; B. Pelletier, phosphorus; and A. von Mussin-Puschkin, mercury. The plates cast from these alloys were heated to drive off the volatile element, and the resulting product hammered together so as to close the pores. The results were not satisfactory.

About 1829, W. H. Wollaston 2 prepared malleable sheets by mixing the finelypowdered metal with a little water, and introducing the "paste" into a brass cylinder so as to avoid inequalities and cavities. The water was pressed out by means of a wooden cylinder, and afterwards the contents of the cylinder were compressed by a powerful lever press. The solid cake was pushed from the cylinder, heated to redness to drive off water and grease, and afterwards heated intensely for 20 minutes in an air-furnace. The red-hot cake is then removed from the furnace and hammered. When the red-hot cake has been sufficiently compressed in this manner, it can, by heating and hammering, like any other ductile metal, be shaped into the required form. The platinum employed should be as free from iridium as possible since the presence of that element is apt to make the platinum brittle. Modifications of the process for preparing malleable platinum were discussed by H. Abich, J. J. Berzelius, J. R. Bréant, M. J. Eichfeld, L. W. Gilbert, C. A. Grüel, V. A. Jacquelain, M. Joris, A. Jouglet, M. Leithner, J. von Liebig, C. M. Marx, W. Marshall, J. Pelouze, M. Pettenkofer, B. Scholz, J. S. C. Schweigger, P. Sobolevsky, and W. Spring. The drawing of the metal into wires was discussed by A. C. Becquerel, A. Galffe, H. F. Read, and W. H. Wollaston.

In 1859, H. St. C. Deville and H. Debray 3 described a furnace for melting platinum. It consists of two blocks of lime bound together by an iron casing. In the upper block there is an opening for the oxy-hydrogen blowpipe flame; and in the lower block there is a cavity in which the platinum is melted, and there is also a narrow groove to facilitate the pouring of the molten metal into ingots moulds when the furnace is tilted. It is said that a kilogram of platinum requires for fusion 60 to 100 litres of oxygen—dependent on the purity of the metal. The hydrogen is now usually replaced by coal gas, and improved burners are employed. The subject was discussed by J. B. Dumas, E. Matthey, and H. Violette. Furnaces

were also devised by H. Roessler, and W. E. Newton. C. W. Siemens and A. K. Huntington described a carbon are crucible furnace for melting platinum, but the presence of carbon is a disadvantage on account of the tendency of the metal to form a carbide. L. Jordan and co-workers, and E. Wichers and L. Jordan recommended melting the metal in a high-frequency, induction furnace filled with a lime hearth; when a magnesia hearth was employed the metal was seriously contaminated with magnesium, and when the metal is melted in a lime crucible, spectroscopic tests indicated the presence of traces of calcium. L. Jordan and co-workers recommended zirconia crucibles; and R. P. Neville, and H. K. Richardson, thoria crucibles. Lime crucibles in the oxyhydrogen flame have the advantage of absorbing some impurities.

The reduction of platinum compounds to the metal.—The platinum salts are easily reduced to the metal, and J. R. Joss ⁴ observed that the prolonged contact of platinum salts with paper results in a reduction to form platinum black. M. C. Lea also noted that solid potassium and ammonium chloroplatinates are partially reduced by a press. of 70,000 atm., and that if characters be marked on bibulous paper soaked in platinic chloride, or ammonium chloroplatinate by a glass rod pressed on the paper, and the paper washed free from soluble salts, characters marked with the rod will appear yellow, or in a few weeks, almost black.

Many salts of platinum decompose to form the metal when heated—e.g. platinum sulphide (R. Schneider). Observations were made by G. von Hevesy and T. Somiya, W. F. Bruce, and R. Adams. E. D. Clarke noted the reduction of platinum salts in the oxy-hydrogen flame. W. Müller, and A. Merget noted that the reduction of platinum compounds by hydrogen occurs, in some cases, at ordinary temp., and M. Kling and A. Engels, that the reduction may occur in a current of coal gas. N. Tarugi found that calcium carbide readily furnishes platinum

or a calcium-platinum alloy when it is heated with platinum salts.

According to Mrs. Fulhame, W. J. Russell, J. L. Smith, and F. C. Phillips, aq. soln. of platinum salts are reduced by hydrogen at ordinary temp. D. Vitali showed that the presence of an arsenic compound favours the reaction, and H. Pellet added that purified hydrogen, freed from all traces of arsenic, does not reduce platinum salts in aq. soln. The slow reduction of platinum salts by hydriodic acid was studied by B. Silliman; by potassium iodide, by H. Rose, and J. L. Lassaigne; by sulphur, hydrogen sulphide, and alkaline sulphides, by Mrs. Fulhame; and by lead or copper sulphide, by W. Skey. N. W. Fischer found that platinum salts are not reduced by selenium, but that they are reduced by tellurium. C. A. Tibbals found that platinum salts are reduced by sodium telluride; V. Meyer and J. Locher, and W. C. Lossen, by hydroxylamine and hydrogen; A. Gutbier and G. Hofmeier, by hydrazine hydrate; N. Tarugi, by hydrazine sulphate in alkaline soln., but, according to P. Jannasch and O. von Mayr, not in acidic soln.; Mrs. Fulhame, and R. Böttger, by phosphorus; Mrs. Fulhame, by phosphine; N. W. Fischer, by arsenic, antimony, and bismuth; T. Polleck, by sodium dioxide and a silver salt; D. Vitali, by silver oxide; and C. Claus, W. Hempel, W. Skey, and L. Kessler, by ferrous sulphate. P. Pascal added that unlike soln, of salts of gold and silver, platinum salts are not reduced in the cold by ferrous pyrophosphate. other "reducing" salts precipitate metallic platinum—vide infra, colloidal platinum.

Mrs. Fulhame, F. W. O. de Coninck, and W. Heintz noted that soln. of platinum salts are reduced by animal charcoal; and H. Fresenius and P. H. M. P. Brinton, by over 80 per cent. alcohol. The reducing action of alcohol was studied by G. Vulpius; of glycerol, by F. Bullnheimer; of ether, by C. W. G. Kastner; of formaldehyde, by N. Awerkijeff, A. Bach, F. Jean and A. Trillat, S. Rothenfusser, and R. E. Liesegang; of sodium formate, by J. J. Berzelius, J. W. Döbereiner, C. Claus, E. Duvillier, F. Göbel, B. Corenwinder and G. Contamine, R. Böttger, and B. Sjollema—vide A. Sieverts and H. Brüning, hydrochloroplatinic acid; of acetic acid, by L. Wöhler; of alkali acetate, by R. Brandes; and oxalic acid, by

E. Dreyfuss. The reduction does not occur, according to R. Brandes, with alkali oxalates, citrates, or benzoates. The reducing action of potassium ferrous oxalate was studied by J. M. Eder; of alkali tartrates, by R. Phillips; of organic acids, by P. Cazeneuve; of benzene, petroleum, and naphtha, by G. Gore; of tertiary amines, by L. Tschugaeff; and of sugars, by D. J. Stern and J. Fränkel; and of glycerol, by R. Zdrawkowitsch.

The reducing action of copper was studied by A. Frumkin and A. Donde, N. W. Fischer—silver acts very slowly; of magnesium, by Z. Roussin, S. Kern, A. Commaille, R. Böttger, D. Tommasi, K. Seubert and A. Schmidt, A. Schmidt, D. Vitali, F. J. Faktor, I. Nordenskjöld, and N. Tarugi; of zinc, by N. W. Fischer, F. Mylius and O. Fromm, and J. Diamant; of cadmium, by N. W. Fischer, F. Mylius and O. Fromm; of mercury, by E. Sonstadt, C. Barfoed, N. W. Fischer, and F. Bohn; of aluminium, by H. W. Wiley, and C. Formenti and M. Levi; N. W. Fischer, lead, and tin; molybdenum, and tungsten, by E. F. Smith; uranium, by N. W. Fischer, and J. L. C. Zimmermann; manganese, by N. W. Fischer; iron,

by N. W. Fischer; and cobalt, by J. Thomsen, and N. W. Fischer.

In 1820, E. Davy 5 prepared platinum in the form of a soft, dull black powder which is called platinum black, noir de platine, Platinmohr or Platinschwarz— B. Geddes discussed the term *Platimoor*. E. Davy said that the platinum black which he prepared soiled any surface on which it was rubbed, and J. von Liebig added that, by pressure, it acquired a white colour, and a metallic lustre. Platinum black is a powerful catalytic agent. E. Davy at first thought it to be a nitrite of platinum, but J. von Liebig showed that platinum black is platinum in a fine state of subdivision. The metal, however, is more or less contaminated by impurities absorbed or adsorbed from the system in which it is prepared. Platinum black was obtained by R. Blondlot by passing an electric current in nitrogen for 3 hrs. between two discs, one of copper and one of platinum, 3 to 4 mm. apart, and heated to bright redness. The black powder on the platinum disc was digested in hot nitric acid to remove the copper, and a residue of platinum black remained. When alloys of platinum with zinc are treated with acids which attack zinc and not platinum, H. V. Collet-Descotils, and J. W. Döbereiner observed that the zinc is dissolved out, and platinum-black remains; J. J. Berzelius used an alloy of platinum and potassium; and L. Gmelin, an alloy of platinum, copper, and zinc with nitric acid. E. K. Rideal, A. A. Pollitt, I. E. Adaduroff and co-workers, I. I. Tschukoff and co-workers, K. von Köppen, and G. Vavon observed that platinum black which has been heated above 300° is less catalytically active. Platinum-black is usually obtained by precipitation from aq. soln. of platinum salts. J. W. Döbereiner, J. H. Kastle and E. Elvove, F. Döbereiner, and J. von Liebig precipitated the platinum with zinc; C. Brunner, with iron; R. Böttger, with magnesium; and F. A. McDermott, with aluminium. W. Hempel used a mixture of ferrous suphate and sodium hydroxide as precipitant: E. Davy, W. C. Zeise, W. Halberstadt, and J. von Liebig used alcohol in alkaline soln.—J. W. Döbereiner observed that sunlight favoured the reduction; W. Halberstadt, ether; A. Sieverts and H. Brüning, R. Willstätter and E. W. Mayer, L. Wöhler, O. Loew, and O. Loew and K. Aso, formaldehyde; A. Gerhardt, formic acid; A. Tribe, potassium formate; F. Göbel, J. W. Döbereiner, L. Mond and co-workers, and A. Gutbier and O. Maisch, sodium formate; J. T. Cooper, sodium tartrate; R. Phillips, ammonium tartrate; R. Böttger, potassium sodium tartrate; M. R. Zdrawkowitch, glycerol and sodium hydroxide; C. Paal, hydrazine hydrate; J. W. Döbereiner, sugar; and A. Sieverts and H. Brüning, magnesium. L. Pigeon, and J. L. Smith employed hydrogen as the reducing agent. C. Luckow obtained platinum black by the electrolysis of a very dil. soln. of platinic chloride. G. R. Levi and R. Haardt discussed the structure of the grains of the powder, and G. von Hevesy and T. Somiya, the preparation of platinum-black with a little lead; the lattice measurements show that the lead is not in solid soln., and measurements of the grain-size, and of the electrolytic polarization were made. O. Loew recommended the following method for preparing platinum black of great catalytic activity:

An aq. soln. (50 to 60 c.c.) of platinic chloride (50 grms.) is mixed with 40 to 45 per cent. of formaldehyde solution (70 c.c.), the mixture cooled well, and then sodium hydroxide (50 grms.) dissolved in water (50 grms.) gradually added; after keeping for 12 hrs. the soln. is filtered. A yellow liquid, from which a small quantity of platinum is deposited on boiling, first passes through the filter, but as soon as most of the salts have been washed out of the residue, the filtrate assumes a deep black colour. The process is interrupted at this stage for several hrs. because the residue soon absorbs oxygen, the temp. rising to 36° to 40°, and the washings then pass through colourless. As soon as oxidation is complete, the residue is washed until completely free from sodium chloride, pressed, and dried over sulphuric acid.

Some kinds of platinum-black deflagrate with a hissing noise when heated—even below redness. According to H. V. Collet-Descotils, that obtained from the alloy of zinc and platinum sometimes detonates like gunpowder—explosive platinum. The phenomenon is not the same as that associated with the fulminating metals—3. 22, 11; and 3. 23, 14. Explosive platinum was prepared by J. W. Döbereiner, M. Faraday and J. Stodart, W. C. Zeise, R. Bunsen, H. Debray, H. St. C. Deville and H. Debray, J. B. J. D. Boussingault, and T. Wilm. When E. Davy's platinum black is heated, it deflagrates with a hissing noise and a red flame. According to R. Bunsen, and H. Debray, the explosive property is evidence of a peculiar allotropic state of the metal; but T. Strengers, and E. Cohen and T. Strengers showed that in the case of rhodium, and iridium, the phenomenon is due to the union of occluded hydrogen and oxygen.

A film of platinum black may be deposited on platinum foil to be used as electrodes in conductivity measurements, etc. The metal so prepared is sometimes called **platinized platinum**. G. Magnus ⁶ dipped the platinum in a slurry of water and ammonium chloroplatinate, and after drying, heated to redness. The operation was repeated until a film of the required thickness was obtained. K. Jablezynsky recommended a 0-3 per cent. soln. of platinic chloride, and 3 to 5 c.c. of formic acid made up to 100 c.c. with water. W. Geibel studied the process. The film was obtained by A. Smee, J. C. Poggendorff, and F. Kohlrausch by electrodeposition. O. Lummer and F. Kurlbaum employed as electrolyte about 3 grms. of platinic chloride, 0-02 to 0-03 grm. of lead acetate, and 100 c.c. of water. Two platinum plates are cleaned with chromic acid and lowered into the soln. The current from a 4-volt accumulator is passed for 10 to 15 mins., reversing the direction of the current every half minute. The coating should be "black and velvety" in appearance.

When platinum black is to be employed as a catalytic agent, it is usually deposited as a thin layer on some porous substance. Thus, platinized asbestos is prepared by moistening the asbestos with a 10 per cent. soln. of hydrochloroplatinic acid, drying, and igniting the mass. The asbestos was so prepared by R. Hare,⁷ and H. N. Warren. Other substances were treated in an analogous manner by W. Boehm, R. Böttger, E. Breslauer, J. F. Duke, J. Klaudy and O. Efrem, W. Majert, M. Neumann, E. Orloff, J. Perl, E. W. von Siemens and J. G. Halske, and C. Winkler. G. P. Thomson, and G. I. Finch and co-workers found that platinized asbestos gives an X-radiogram of asbestos alone; and D. A. Richards added that after the asbestos has been platinized 28 times the X-radiogram of the crystalline platinum appears. The platinum is deposited in cracks in the asbestos, the additional platinizations cause a splitting of the asbestos so that a fresh surface is exposed. The grains of platinum are estimated to be more than 15 A.—or 4 unit cell cubes—and less than 30 A.—or 8 unit cell cubes—in thickness. Platinized pumice is obtained by the same process as that employed for platinized asbestos. J. Stenhouse, and M. Figuier likewise prepared platinized carbon. E. V. Alexeevsky and I. D. Makaroff soaked the charcoal, previously ignited at 950°, in a soln. of chloroplatinic acid, dried the product at 100°, and reduced it at 120° to 150° with electrolytic hydrogen containing formaldehyde.

VOL. XVI.

A. Piloyan and co-workers, and N. Bakh studied the properties of platinized charcoal; I. E. Adaduroff and K. I. Brodovich, the carriers of the platinum catalyst; and S. Vasileff and A. Frumkin, the poisoning of platinized charcoal as a catalyst. V. N. Morris and L. H. Reyerson, and M. O. Kharmandar and G. D. Dakhnyuk prepared platinized silica; and E. V. Alexeevsky and I. D. Makaroff, platinized clay.

Metallic platinum can be obtained as a dull grey, soft, and porous mass called spongy platinum, mousse de platine, or Platinschwann. It has the same sp. gr. as platinum, and when rubbed with a hard rod it furnishes flat particles with a metallic lustre. The particles can be welded by heating it to redness and hammering to form sheets and foil. Platinum sponge is obtained by igniting dried ammonium chloroplatinate, preferably in hydrogen. W. H. Wollaston 8 emphasized the need for igniting the chloroplatinate at as low a temp. as possible, to prevent agglomeration, which makes the process a slow one. The preparation of spongy platinum was described by R. Böttger, J. W. Döbereiner, M. Faraday, K. A. Hirschberg, C. W. G. Kastner, J. N. Planiava, and G. Vulpius. Platinum sponge is employed as a catalytic agent, and it becomes less active the higher the temp., and the more prolonged the ignition. R. Feulgen recommended the following process for preparing spongy platinum which does not tend to pass into colloidal soln. during the process of washing before the removal of the chlorides is complete. It is also a very active catalyst.

A soln, of 5 grms, of hydrochloroplatinic acid in 5 c.c. of water is mixed with 7 c.c. of 40 per cent formaldehyde, and 5 grms, of sodium hydroxide dissolved in 10 c.c. of water are gradually added. The mixture is allowed to remain for half an hour at the ordinary temperature, then heated for 15 mins, at 55° and poured into a half-litre flask half full of water. The flask is agitated violently for a few minutes, which causes the precipitate to settle in coarse particles leaving an almost colourless supernatant liquor. The latter is decanted and the precipitate is washed with water strongly acidified with acetic acid, which again causes the formation of coarse particles which can now be washed as required without showing any tendency to pass into the colloidal state. The metal is finally filtered and dried in a vacuum over sulphuric acid. Great caution must be observed in the subsequent admission of air into the desiceator as the metal readily becomes incandescent owing to absorption of oxygen. Previous to use, it is advisable to grind and wash it once more.

The **plating** of metals, say copper or brass, with platinum has been effected by spreading fine spongy platinum on the metal, then platinum foil, and afterwards rolling at ordinary temp., and at a red-heat. Processes were described by C. Bromeis, M. Labonté and J. Dupuis, and M. Savard. E. Melly was not successful in platinizing metals with thin **platinum films** by using platinum amalgam by the process employed for gilding with gold amalgam, but he did obtain good results by dipping the clean metal in a dil. neutral or alkaline soln. of platinum tetrachloride, and then heating it to 60°; R. Böttger recommended a mixture of 8 parts of sodium chloride with a soln. of 1 part of platinic chloride in 100 parts of water; or a mixture of 1 part of ammonium chloroplatinate with 8 parts of ammonium chloride. Methods were also described by A. P. G. Daumesnil, A. Gawalowsky, J. Stodart, J. H. Johnson, J. A. Paterson, and C. Wilde. For the electrodeposition of platinum, vide infra.

A. W. Wright ¹⁰ obtained films of platinum on glass by spluttering from an electric discharge in evacuated tubes, and he found the most suitable press. is 1.5 to 1.75 mm. in hydrogen. C. Müller, K. Lauch and W. Ruppert, K. Lauch, F. Rother and K. Lauch, J. Mazur, F. H. Newman, A. W. Gauger, G. I. Finch and co-workers, B. Dessau, C. H. Cartwright, L. Houllevigue, A. Kundt, and J. Patterson also prepared films in an analogous way—vide infra. A. Eilert described the preparation of platinum film electrodes. L. Hamburger observed that the film obtained by vaporization in a high vacuum contains ultra-microscopic particles; K. Coper and co-workers found that the layers are not homogeneous.

F. Lüdersdorff prepared platinum lustres by pouring a soln. of dry platinic chloride in 95 to 96 per cent. alcohol into 5 times its bulk of oil of lavender. The

platinic chloride dissolves in the oil; and when this mixture is painted on pottery glazes, and fired in a muffle at a dull red-heat, the so-called platinum lustre is Thin films of platinum on porcelain and glass were also obtained by G. T. Beilby, R. Böttger, J. H. Brianchon, L. P. Cailletet, H. Dullo, M. F. L. Ehrlich and C. T. Storck, L. Elsner, A. Salvétat, H. Schwarz, W. von Uljanin, and J. Zuber. C. F. Vasserot prepared platinum mirrors and platinum films on glass, etc., by mixing 1 part of a sat. soln. of borax in lavender oil with 10 to 15 parts of dry platinic chloride—according to the thickness of the desired film, spreading a uniform coat of the mixture on clean, dry glass, and afterwards fired the coated glass in a muffle at a red-heat. H. Barvir used oil of cloves; R. Böttger, oil of rosemary; L. Elsner, turpentine; and J. Zuber, distilled tar oils. Other recommendations have been made by F. Rother and K. Lauch, H. Barvir, R. Böttger, P. D. Dankoff, J. B. A. Dodé, J. W. Döbereiner, A. Jouglet, O. G. Keiko, L. F. Nilson, A. Salvétat, J. S. C. Schweigger, and H. Schwarz. W. Beetz, and W. C. Röntgen could not prepare perfect films of platinum on glass. S. G. S. Dicker heated the object to be coated with a volatile platinum salt-e.g. platinous carbonylchloride. H. Mayer prepared alkali films of atomic thickness on platinum.

REFERENCES.

¹ F. C. Achard, Crell's Ann., i, 1, 1784; M. Jeannety, Observ. Phys., **34**, 197, 1879; A. von Mussin-Puschkin, Crell's Ann., ii, 26, 1797; Ann. Chim. Phys., (1), **24**, 209, 1797; B. Pelletier, Ann. Chim. Phys., (1), **13**, 105, 1792.

² H. Abich, Pogg. Ann., 23, 309, 1831; Ann. Mines, (3), 6, 244, 1834; A. C. Becquerel, Ann. Chim. Phys., (2), 22, 123, 1823; Schweigger's Journ., 39, 374, 1823; J. J. Berzclius, Journ. tech. ökon. Chem., 13, 320, 1832; J. R. Brennt, Bull. Soc. Enc. Nat. Ind., (1), 26, 20, 1827; Journ. Pharm. Chim., (2), 13, 287, 1827; Schweigger's Journ., 50, 383, 1827; M. J. Eichfeld, Dingler's Journ., 28, 477, 1828; Journ. d'Odessa, 63, 1827; A. Galfic, Chem. News, 36, 182, 1877; Compt. Rend., 85, 625, 1877; L. W. Gilbert. Gilbert's Ann., 62, 205, 1819; C. A. Grüel, Dingler's Journ., 170, 284, 1863; V. A. Jacquelain, Ann. Chim. Phys., (2), 74, 213, 1840; Journ. prakt. Chem., (1), 22, 22, 1841; Dingler's Journ., 78, 48, 1840; 39, 159, 1852; Liebig's Ann., 40, 289, 1841; Ann. Mines, (3), 19, 545, 1841; M. Joris, Schweigger's Journ., 11, 385, 1814; A. Jouglet, Monit. Scient., (3), 2, 1003, 1872; Chem. News, 26, 288, 1872; M. Leithner, Ann. Phil., 5, 20, 1813; J. von Liebig, Ann. Mines, (3), 11, 276, 1837; Journ. Chim. Méd., (2), 2, 581, 1836; Ann. Chim. Phys., (2), 36, 443, 1836; W. Marshall, Schweigger's Journ., 65, 259, 1832; Phil. Mag., (2), 11, 321, 1832; Liebig's Ann., 4, 210, 1832; Dingler's Journ., 65, 259, 1832; C. M. Marx, Schweigger's Journ., 66, 159, 1832; Liebig's Ann., 8, 182, 1833; Journ. tech. ökon. Chem., 16, 127, 1833; P. Pelouze, Compt. Rend., 3, 421, 1836; Dingler's Journ., 111, 357, 1849; H. F. Read, Min. Scient. Press., 49, 163, 1884; B. Scholz, Schweigger's Journ., 111, 357, 1849; H. F. Read, Min. Scient. Press., 49, 163, 1884; B. Scholz, Schweigger's Journ., 11, 367, 1849; H. F. Read, Min. Scient. Press., 49, 163, 1884; B. Scholz, Schweigger's Journ., 11, 367, 1849; H. F. Read, Min. Scient. Press., 49, 163, 1884; B. Scholz, Schweigger's Journ., 11, 1813; P. Sobolevsky, Liebig's Ann., 13, 42, 1835; Ann. Mines, (3), 7, 480, 1835; Pogg. Ann., 33, 99, 1834; W. Spring, Ann. Chim. Phys., (5), 22, 187, 1881; Bull. Acad. Belg., (2), 49, 323, 1880; W. H. Wollaston, Phil. Trans., 103, 114, 1813; 119, 1, 1829; Gilb

3 H. St. C. Deville, Compt. Rev. J. Trans., 120. 56; Chem. News, 21. 94, 1870; Ann. Chim. Phys., (3), 46. 199, 1856; H. S. S. D. 921; K. a. Hir bray. Ann. Chim. Phys., (3), 56. 385, 1859; (3), 61. 5, 1861; Journ. prakty J. 20. 1), 80830; 1860; (1), 87. 293, 1862; Dingler's Journ., 127. 114, 1853; 157. 64, 1860; Vrsyc. News, 21-24,1860; Compt. Rend., 35. 796, 1852; 50. 1038, 1860; 54. 1139, 1862; J. B. A. Dumas, Compt. Rend., 75. 1028, 1872; L. Jordan, A. A. Peterson and L. H. Phelps, Trans. Amer. Electrochem. Soc., 50. 155, 1926; Metal Ind., 22. 553, 1923; E. Matthey, Proc. Roy. Soc., 47, 180, 1890; 51. 447, 1892; Bull. Soc. Chim., (3), 4. 824, 1890; Zeit. anorg. Chem., 2. 474, 1892; Phil. Trans., 183. A, 629, 1892; Chem. News, 39. 175, 1879; R. P. Neville, Metal Ind., 22. 553, 1923; Trans. Amer. Electrochem. Soc., 43. 371, 1923; W. E. Newton, Brit. Pat. No. 1459, 1858; Pharm. Journ., 18. 233, 1859; Dingler's Journ., 143. 415, 1885; H. K. Richardson, Trans. Amer. Electrochem. Soc., 43. 393, 1923; H. Roessler, Dingler's Journ., 257, 153, 1885; C.W. Siemens and A. K. Huntington, B.A. Rep., 496, 1882; Chem. News, 46, 163, 1882; H. Violette, Ann. Chim. Phys., (4), 28, 469, 1873; Compt. Rend., 75, 1027, 1872; E. Wichers and L. Jordan, Trans. Amer. Electrochem. Soc., 43, 393, 1923

393, 1923.

4 R. Adams, Organic Syntheses, New York, 1, 452, 1932; N. Awerkijeff, Journ. Russ. Phys. Chem. Soc., 34, 828, 1902; Zeit. anorg. Chem., 35, 333, 1903; A. Bach, Arch. Sciences Genève, (4), 2, 188, 1896; C. Barfoed, Journ. prakt. Chem., (2), 38, 465, 1888; J. J. Berzelius, Pogg.

Ann.. 36. 8, 1835; R. Böttger, Journ. prakt. Chem. Soc., (2), 2. 137, 1870; Dingler's Journ., 197. 289, 1870; Jahrb. Phys. Ver., 1, 1870; 11, 1872; 14, 1873; F. Bohn, Zeit. anal. Chem., 38. 349, 1899; R. Brandes, Liebig's Ann., 9, 302, 1834; W. F. Bruce, Journ. Amer. Chem. Soc., 58. 687, 1936; F. Bullnheimer, Forsch. Ber. Lebensm., 4. 12, 1897; P. Cazeneuve, Compt. Rend., 111. 743, 1890; E. D. Clarke, Ann. Phil., 17, 424, 1821; C. Claus. Beiträge zur Chemie der Platin-metalle, Dorpat, 1854; A. Commaille, Compt. Rend., 63, 566, 1866; F. W. O. de Coninck, ib., 130, 1551, 1900; B. Corenwinder and G. Contamine, ib., 89, 907, 1879; J. Diamant, Chem. Ztg., 22, 99, 1898; J. W. Döbereiner, Schweigger's Journ., 66, 298, 1832; Pogg. Ann., 28, 180, 1833; E. Dreyfuss, Bull. Soc. Chim., (3), 38. 162, 1882; E. Duvillier, Compt. Rend., 84, 444, 1877; J. M. Eder, Sitzber. Akad. Wien, 81. 196, 1880; Ber., 13. 500, 1880; F. J. Faktor, Pharm. Post, 38. 153, 175, 1805; N. W. Fischer, Pogg. Ann., 9. 256, 1827; 10. 607, 1827; 12. 503, 1828; Das Verhältniss der chemischen Verwandschaft zur galvanischen Elektrizität, Berlin, 1830; C. Formenti and M. Levi, Boll. Chim. Farm., 40. 689, 1901; H. Fresenius and P. H. M. P. Brinton, Zeit. anal. Chem., 50. 21, 1911; A. Frumkin and A. Donde, Ber., 60. B, 1816, 1927; Mrs. Fulhame, An Essay on Combustion, London, 1794; Ann. Chim. Phys., (1), 26, 58, 1798; F. Göbel, Schweigger's Journ., 67, 75, 1833; G. Gore, Chem. News, 38, 295, 1883; Proc. Birmingham Phil. Soc., 4, 61, 1884; A. Gutbier and G. Hofmeier, Journ. prakt. Chem., (2), 71, 360, 1905; W. Heintz, Liebig's Ann., 187, 227, 1877; W. Hempel, ib., 107, 97, 1858; Journ., prakt. Chem., (1), 75, 444, 1858; Dingler's Journ., 149, 444, 1858; G. von Hevesy and T. Somiya, Zeit. phys. Chem., 171, 41, 1934; P. Jannasch and O. von Mayr, Ber., 38, 2130, 1905; F. Jean and A. Trillat, Bull. Soc. Chim., (3), 7. 228, 1892; J. R. Joss, Journ. prakt. Chem., (1), 4. 374, 1835; C. W. G. Kastner, Kastner's Arch., 18. 388, 1829; S. Kern, Chem. News, 33, 112, 1876; L. Kessler, Journ. Pharm. Chim., (3), 11. 86, 1847; M. Kling and O. Engels, Zeit. anal. Chem., 45. 317, J. L. Lassaigne, Journ. Chim. Méd., 8, 585, 1832; M. C. Lea, Amer. Journ. Science, (3),
 46. 241, 413, 1893; Phil. Mag., (5), 37, 31, 470, 1894; Zeit. anorg. Chem., 5, 332, 1894; 6, 7,
 1894; R. E. Liesegang, Phot. Arch., 37, 291, 1896; W. C. Lossen, Ber., 8, 357, 1875; A. Merget, Compt. Rend., 76, 1470, 1873; 77, 38, 1873; V. Meyer and J. Locher, Ber., 8, 219, 1875;
 W. Müller, Pogg. Ann., 136, 63, 1869; F. Mylius and O. Fromm, Ber., 27, 634, 1894; I. Northelm, Compt. Rend., 76, 1470, 1873; 77, 28, 1875; 1875. denskjöld, Oesterr. Zeit. Berg. Hütt., 53. 473, 1905; P. Pascal, Compt. Rend., 146. 862, 1908; H. Pellet, Bull. Soc. Chim., (2), 20. 258, 1873; Compt. Rend., 77. 112, 1873; F. C. Phillips, Zeit. anorg. Chem., 6. 230, 1894; Amer. Chem. Journ., 16. 255, 1894; R. Phillips, Liebig's Ann., 8. 189, 1833; Pogg. Ann., 31. 288, 1834; Phil. Mag., (3), 2. 94, 1833; T. Polleck, Ber., 27. 1051, 1894; H. Rose, Ausführliches Handbuch der analytischen Chemie, Braunschweig, 1. 196, 1851; S. Rothenfusser, Zeit. Unters. Nahr. Genuss., 16. 589, 1908; Z. Roussin, Journ. Pharm. Chim., (4), 3, 413, 1866; Bull. Soc. Chim., (2), 6, 93, 1866; Chem. News, 14, 27, 1866; W. J. Russell, Journ. Chem. Soc., 27, 11, 1874; Chem. News, 28, 277, 1874; A. Schmidt, Ueber die Einwirkung von Magnesium auf Chloride, Göttingen, 1891; R. Schneider, Pogg. Ann., 149, 383, 1873; K. Seubert and A. Schmidt, Liebig's Ann., 287, 240, 1892; A. Sieverts and H. Brüning, Zeit. anorg. Chem., 201. 113, 1931; B. Silliman, Amer. Journ. Science. (1), 6, 376, 1823;
B. Sjollema, Chem. Ztg., 21, 739, 1897; W. Skey, Trans. New Zealand Inst., 3, 225, 1870; Chem. News, 23. 232, 1871; E. F. Smith, Amer. Chem. Journ., 14. 435, 1892; J. L. Smith, Amer. Chemist, 2. 291, 1872; Chem. News, 26. 208, 1872; Zeit. anorg. Chem., 1. 363, 1892; E. Sonstadt, Journ. Chem. Soc., 67. 984, 1895; D. J. Stern and J. Frankel, Zeit, angew. Chem., 6. 579, 1892; N. Tarugi, Gazz. Chim. Ital., 26. i, 425, 1896; 29. i, 512, 1899; 33. ii, 173, 1903; J. Thomsen, Journ. prakt. Chem., (2), 15. 447, 1877; C. A. Tibbals, Journ. Amer. Chem. Soc., 31. 911, 1909; D. Tommasi, Bull. Soc. Chim., (3), 21. 887, 1899; L. Tschugaeff, Ber., 40, 177, 1907; D. Vitali, L'Orosi, 13, 335, 1890; 18, 289, 1895; Boll. Chim. Farm., 46, 89, 1907; G. Vulpius, Arch. Pharm., (3), 5, 417, 1874; H. W. Wiley, Journ. Amer. Chem. Soc., 19, 320, 1897; L. Wöhler, Zeit. anorg. Chem., 40, 436, 1904; B. Zdrawkowitsch, Bull. Soc. Chim., (2), 25, 198, 1876; J. L. C. Zimmermann, Ber., 15, 847, 1882; Liebig's Ann., 216, 17, 1883.

⁵ I. E. Adaduroff, A. N. Tzeitlin and L. M. Orlova, Ukrain. Khem. Zhur., 10, 346, 1935; J. J. Berzelius, Lehrhych der Chem.

1. E. Adaduroff, A. N. 12etolin and L. M. Offova, Okrain. Ahem. Zhur., 10. 340, 1935;
J. J. Berzelius, Lehrbuch der Chemi den. 2 i, 179, 1826; R. Blondlot, Compt. Rend., 102.
210, 1886; R. Böttger, Jahrb. Phy t. 1, 1877; Pharm. Centrh., 18. 218, 1877;
Journ. prakt. Chem., (2), 2. 137, 16
441, 1833; C. Brunner, Mitt. Natura Bein, 858; Pogg. Ann., 105. 496, 1858; Liebig's Ann., 109. 258, 1858; Dingler's Jurn., 150. 37. 1858; R. Bunsen, Liebig's Ann., 138. 257, 1866; 146. 275, 1868; J. P. Carlton, Ann. Phil., 18. 182, 337, 1821; Schweigger's Journ., 38. 240, 253, 1821; Dingler's Journ., 7 350, 1822; E. Cohen and T. Strengers, Zeit. phys. Chem., 61. 698, 1908; H. V. Collet-Descotils, Mém. Soc. d'Arcueil, 1, 370, 1807; Ann. Chim. Phys., (1), 64. 334, 1807; Phil. Mag., 87. 65, 1811; Gilbert's Ann., 27. 231, 1807; J. T. Cooper, Quart. Journ. Science, 5. 120, 1818; E. Davy, Phil. Trans., 105. 136, 1817; 110. 108, 1820; Ann. Phil., 7. 468, 1816; 9. 229, 1817; 15. 297, 1820; 16. 385, 1820; Phil. Mag., 49. 146, 1817; 56. 330, 1820; Schweigger's Journ., 13. 91, 1817; 31. 340, 1821; Ann. Mines, (1), 6. 148, 1821; H. Debray, Compt. Rend., 90. 198, 1880; 164. 1470, 1577, 1667, 1887; H. St. C. Deville and H. Debray, ib., 94. 1557, 1882; F. Döbereiner, Liebig's Ann., 14. 259, 1835; J. W. Döbereiner, Pogg. Ann., 24. 603, 1832; 28. 181, 1833; 36. 308, 1835; 37. 548, 1836; Liebig's Ann., 1. 29, 1832; 2. 1, 343, 1832; 14. 17, 1835; 17. 67, 1836; Schweigger's Journ., 54. 114, 1828; 63. 232, 363, 464, 476, 1831; 66. 298, 1832; Quart. Journ. Science, 2. 196, 1829; M. Faraday and J. Stodart, Phil. Trans., 112. 253, 1822; Edin. Phil. Journ., 7. 350, 1822; Ann. Phil., 21. 202, 1823; Phil. Mag., 60. 363, 1822; B. Geddes, Chem. Ztg.,

22. 57, 1898; A. Gerhardt, Neues Jahrb. Min., 267, 1887; L. Gmelin, Handbook of Chemistry, London, 6. 277, 1851; F. Göbel, Schweigger's Journ., 67. 74, 1833; A. Gutbier and O. Maisch, Ber., 52. 1368, 1919; W. Halberstadt, ib., 17. 2963, 1884; W. Hempel, Liebig's Ann., 107. 97, 1858; G. von Hevesy and T. Somiya, Zeit. phys. Chem., 171. 41, 1934; J. H. Kastle and E. Elvove, Amer. Chem. Journ., 31. 633, 1904; K. von Köppen, Bildungsgeschwindigkeit und Dissoziation von SO₃ bei Anwesenheit von Platin, Braunschweig, 17, 1903; G. R. Levi and R. Haardt, Atti Accad. Lincei, (6), 3, 91, 1926; J. von Liebig, Pogg. Ann., 17, 102, 1829; Ann. Chim. Phys., (2), 42, 316, 1829; O. Loew, Ber., 23, 289, 1890; O. Loew and K. Aso, Bull. Coll. Agric. Tokyo, 7, 1, 1906; C. Luckow, Zeit. anal. Chem., 19, 14, 1880; F. A. McDermott, Journ. Amer. Chem. Soc., 32. 337, 1910; L. Mond, W. Ramsay and J. Shields, Phil. Trans., 186. A, 657, 1895; Zeit. phys. Chem., 19. 29, 1896; Proc. Roy. Soc., 58. 242, 1895; Zeit. anorg. Chem., 10. 178, 1895; C. Paul, Ber., 49. 548, 1916; R. Phillips, Phil. Mag., (3), 2. 94, 1833; L. Pigeon, Ann. Chim. Phys., (7), 2. 451, 1894; A. A. Pollitt, Chem. Age, 3. 200, 1920; E. K. Rideal, Journ. Amer. Chem. Soc., 42. 749, 1920; A. Sieverts and H. Brüning, Zeil. anorg. Chem., 201. 113, 122, 1931; J. L. Smith, Amer. Chemist, 2. 291, 1872; T. Strengers, De explosieve Platinametalen, Utrecht, 1907; A. Tribe, Journ. Chem. Soc., 27. 418, 1874; I. I. Tschukoff, A. A. Glagoleva and V. I. Strukova, Journ. Gen. Chem. U.S.S.R., 4. 9, 1934; G. Vavon, Compt. Rend., 158. 409, 1914; R. Willstätter and D. Hatt. Ber., 45. 1472, 1912; R. Willstätter and E. W. Mayer, ib., 41, 1477, 1908; T. Wilm, Journ. Russ. Phys. Chem. Soc., 18, 376, 1886; Ber., 19. 951, 1886; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; M. R. Zdrawkowitch, Bull. Soc. Chim., (2), 25. 198, 1876; Liebig's Ann., 181. 192, 1876; W. C. Zeise, Pogg. Ann., 9, 632, 1827; Afh. Danske Vid. Selsk., 3, 45, 1828; Overs. Danske Vid. Selsk., 13, 1826.

⁶ W. Geibel, Zeit. Elektrochem., 12, 817, 1906; K. Jablezynsky, Zur Kenntnis der Katalyse in heterogenen System, Freiburg (Schweiz), 1908; Bull. Acad. Cracow, 398, 1908; Zeit. phys. Chem., 64, 749, 1908; F. Kohlrausch, Wied. Ann., 60, 315, 1897; O. Lummer and F. Kurlbaum, Verh. deut. phys. Ges., 14, 66, 1895; G. Magnus, Ann. Chim. Phys., (4), 6, 146, 1865; J. C. Poggendorff, ib., 61, 593, 1844; A. Smee, Ann. Phil., 16, 315, 1840; Phil. Mag., (3), 16, 319, 1840; Dingler's Journ., 142, 157, 1856.

7 I. E. Adaduroff and K. I. Brodovich, Ukrain. Khem. Zhur., 4. 123, 1929; E. V. Alexeevsky and I. D. Makaroff, Journ. Russ. Appl. Chem., 3. 857, 1930; N. Bakh, Koll. Zeit.. 64. 153, 1933; W. Boehm, German Pat., D.R.P. 104034, 104107, 1897; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 13, 1879; E. Breslauer, German Pat., D.R.P. 101688, 1898; J. F. Duke, ib., 91284, 1895; M. Figuier, Journ. Pharm. Chim., (4), 11. 280, 1871; G. I. Finch, C. A. Musison, N. Stuart and G. P. Thomson, Proc. Roy. Soc., 141. A, 414, 1933; R. Hare, Amer. Journ. Science, (1), 20. 160, 1831; Dingler's Journ., 44. 231, 1832; M. O. Kharmandar and G. D. Dakhnyuk, Ukrain. Khem. Zhur., 8. 36, 1933; J. Klaudy and O. Efrem, German Pat., D.R.P. 113705, 1889; W. Majert, ib., 134928, 1901; V. N. Morris and L. H. Reyerson, Journ. Phys. Chem., 31, 1220, 1927; M. Neumann, German Pat., D.R.P. 188503, 1906; 218725, 1908; E. Orloff, Journ. Russ. Phys. Chem. Soc., 40, 796, 1908; J. Perl, German Pat., D.R.P. 104035, 1898; A. Piloyan, N. Krivoruchko and N. Bakh, Koll. Zeit., 64, 287, 1933; D. A. Richards, Phil. Mag., (7), 16, 778, 1933; E. W. von Siemens and J. G. Halske, German Pat., D.R.P. 203904, 1907; J. Stenhouse, Journ. Chem. Soc., 8, 105, 1855; Ann. Chim. Phys., (3), 45, 496, 1855; Liebig's Ann., 96, 36, 1855; G. P. Thomson, Proc. Roy. Soc., 118, A, 625, 1928; S. Vasileff and A. Frumkin, Zeit. phys. Chem., 151, 87, 1930; H. N. Warren, Pharm. Journ., 53, 798, 1894; Chem. News, 63, 294, 1891; C. Winkler, Journ. Amer. Chem. Soc., 1, 300, 1879; German Pat., D.R.P. 4566, 1878

8 R. Böttger, Journ. tech. ökon. Chem., 18. 237, 1833; Schweigger's Journ., 68. 390, 1833; J. W. Döbereiner, ib., 34. 91, 1822; 38. 321, 1823; 39. 4, 142, 1823; 42. 60, 1824; 47. 133, 1826; Journ. prakt. Chem., (1), 1. 114, 1834; Gilbert's Ann., 74. 269, 1823; Ueber neu entdeckte und hochst merkwürdige Eigenschaften des Platins, Jena, 1823; Phil. Mag., (2), 2. 388, 1827; Liebig's Ann., 14. 10, 1835; 53. 145, 1845; Pogg. Ann., 64. 94, 1845; M. Faraday, ib., 18. 577, 1830; Proc. Roy. Soc., 2. 388, 1833; Phil. Trans., 120. 56, 1830; Ann. Chim. Phys., (2), 45. 225, 1830; R. Feulgen, Ber., 54. B, 360, 1921; K. A. Hirschberg, Dingler's Journ., 94. 208, 1844; C. W. G. Kastner, Kastner's Arch., 20. 425, 1830; J. N. Planiava, Zeit. Physik, 5. 9, 1829; Journ. tech. ökon. Chem., 4. 121, 1829; G. Vulpius, Arch. Pharm., (3), 6. 417, 1875; W. H. Wollaston, Phil. Trans., 103, 114, 1813.

R. Böttger, Dingler's Journ., 176. 307, 1865; 188. 252, 1868; Jahrb. Phys. Ver. Frankfurt,
 1, 1867; Liebig's Ann., 39. 176, 1841; Journ. prakt. ('hem., (1), 94. 440, 1865; (1), 103. 311,
 1868; C. Bromeis, Dingler's Journ., 116. 283, 1850; A. P. G. Daumesnil, German Pat., D.R.P.
 10059, 1879; A. Gawalowsky, Zeit. anal. Chem., 41. 618, 1902; J. H. Johnson, Brit. Pat. No.
 2971, 1876; M. Labonté and J. Dupuis, Dingler's Journ., 33. 129, 1829; French Pat. No. 1402,
 1818; E. Melly, Journ. prakt. Chem., (1), 16. 233, 1839; J. A. Paterson, Mech. Mag., 33. 20,
 1840; M. Savard, French Pat. No. 15884, 1853; Pract. Mech. Journ., 6. 265, 1854; Dingler's Journ., 131. 413, 1854; J. Stodart, Nicholson's Journ., 11. 282, 1805; C. Wilde, Arch. Pharm.,
 148. 112, 1859; Dingler's Journ., 153. 238, 1859.

H. Barvir, Ber. Böhm. Ges., 7, 1906; W. Beetz, Ann. Physik, (4), 18, 590, 1906.
 G. T. Beilby, Proc. Roy. Soc., 72, 226, 1903; R. Böttger, Dingler's Journ., 192.
 Journ. prakt. Chem., (1), 107, 43, 1869; Ber., 2, 612, 1869; J. H. Brianchon, Physical Science (1988), Technologiste, 19, 521, 1858; L. P. Cailletet, Seances

1890; Pharm. Centrh., 33. 159, 1892; C. H. Cartwright, Rev. Scient. Instr., 1. 758, 1930; K. Coper, L. Frommer and H. Zocher, Zeit. Elektrochem., 37. 571, 1931; P. D. Dankoff, Journ. Phys. Chem. U.S.S.R., 4. 326, 1933; E. Dossau, Wied. Ann., 29. 353, 1886; S. G. S. Dicker, Brit. Pat. No. 280698, 1926; J. B. A. Dodé, Bull. Soc. Chim., (2), 19. 572, 1873; Ber., 6. 1273, 1873; Dingler's Journ., 211. 74, 1874; J. W. Döberenier, Schweigger's Journ., 54. 412, 1828; H. Dullo, Journ. prakt. Chem., (1), 78. 367, 1859; M. F. L. Ehrlich and C. T. Storck, German Pat., D.R.P. 44044, 46542, 1887; A. Eilert, Zeit. angew. Chem., 35. 445, 452, 1922; L. Elsner, Chem. Ceh. Mitt., 9, 124, 1860; Chem. News, 4. 13, 1861; Dingler's Journ., 160, 315, 1861; G. I. Finch, C. A. Murison, N. Stuart and G. P. Thomson, Proc. Roy. Soc., 141. A, 414, 1933; A. W. Gauger, Journ. Amer. Chem. Soc., 47. 2278, 1925; A. de Gregorio y Rocasolano, Machr. Gött., 177, 1924; L. Hamburger, Koll. Zeit., 23, 177, 1918; L. Houllevigue, Compt. Rend., 149, 1368, 1909; A. Jouglet, ('ompt. Rend., 70, 52, 1870; Bull. Soc. Chim., (2), 13, 477, 1870; O. G. Keiko, Journ. Tech. Phys. U.S.S.R., 3, 653, 1933; A. Kundt, Wied. Ann., 27, 59, 1886; K. Lauch, Ann. Physik, (4), 74, 55, 1924; K. Lauch and W. Ruppert, Phys. Zeit., 27, 452, 1926; F. Lüdersdorff, Dingler's Journ., 105, 36, 1847; H. Mayer, Phys. Zeit., 36, 845, 1935; J. Mazur, Bull. Acad. Polonaise, 81, 1925; C. Müller, Naturwiss., 14, 43, 1926; Sitzber. Akad. Berlin, 464, 1925; F. H. Newman, Phil. Mag., (7), 14, 1047, 1932; L. F. Nilson, Nova Acta Upsala, 15, 1877; Journ. prakt. Chem., (2), 15, 281, 1877; J. Patterson, Phil. Mag., (6), 4, 654, 1902; W. C. Röntgen, Pogg. Ann., 150, 331, 1873; F. Rother and K. Lauch, Phys. Zeit., 24, 462, 1923; A. Salvétat, Dingler's Journ., 112, 45, 1849; 157, 65, 1860; 180, 39, 1866; Ann. Chim. Phys., (3), 25, 342, 1849; Bull. Soc. Enc. Nat. Ind., (1), 58, 662, 1859; (1), 64, 526, 1865; 197, 249, 1870; 267, 326, 1888; J. S. C. Schweigger, Schweigger's Journ., 54, 59, 1828; C. F.

§ 8. Colloidal Platinum

Mrs. Fulhame, in her study of the action of reducing agents on metallic salts in 1794, observed phenomena which would now be interpreted as effects due to the presence of colloidal metals; and the same remark applies to phenomena observed by J. W. Döbereiner, and by A. Schmidt. G. Bredig prepared a colloidal solution of platinum, as a hydrosol, by spluttering platinum electrodes immersed in ice-cold water-3. 23, 10. The process was also employed by G. Bredig and R. Müller von Berneck, A. de Gregorio y Rocasolano, R. Fürth, S. Miyamoto, A. Voet, and C. Ernst. According to E. Müller, the hydrosol is not very stable unless water of the highest degree of purity is employed. M. Kimura observed that when a platinum wire is heated to incandescence, and then plunged into distilled water, the presence of colloidal platinum can be detected by ultra-microscopic examination. H. Kuzel prepared the colloid by bringing the element into a fine state of subdivision by grinding, cathodic spluttering, etc., and then treating it for long periods alternately with dil. acidic soln, and dil. alkaline or neutral soln, under the influence of moderate heat, and violent agitation. After each treatment the material is washed with distilled water or other solvent until it is free from the reagent employed. S. Miyamoto used the silent discharge, E. Jirsa observed that in some cases the colloidal particles are probably oxides.

When a very dil. soln. of a platinum salt, say hydrochloroplatinic acid, is treated with a reducing agent, the platinum which is formed may be in colloidal soln., or a precipitate may be formed, which, when washed with distilled water, is peptized as the associated salts are washed away. K. Regel observed that if potassium chloroplatinate precipitates are treated with magnesium and hydrochloric acid, colloidal platinum is formed. O. Loew, Kalle and Co., H. Schulze, E. C. Auerswald, Y. Shibata and K. Yamasaki, and A. Lottermoser obtained colloidal soln. with formaldehyde as reducing agent in alkaline soln.; K. Shigena, formaldehyde with sodium citrate as peptizer; I. Sano, carbon monoxide. N. Castoro employed acraldehyde as reducing agent; J. Sameshima, coal gas; L. Garbowsky,

'lehyde, propylaldehyde, valeraldehyde, salicylaldehyde, phenol, pyrogallol, vol. resorcinol, hydroxy-acids—salicylic, protocatechuic, gallic, tannic, vanillin and guaiacol. Benzaldehyde did not give a colloidal

soln. F. Henrich examined the multivalent phenols and photographic developers like eikonogen; pyrocatechol, in an alkaline alcoholic soln., furnished a deep brown organosol. Kalle and Co. used hydroxylamine as reducing agent; A. Gutbier, hydrazine hydrate; A. Gutbier and G. Hofmeier, and G. Hofmeier, hydroxylamine hydrochloride, hydrazine hydrochloride and sulphate, and phenylhydrazine hydrochloride; A. Skita and W. A. Meyer, hydrogen in the presence of a soln. containing some gum arabic; Y. Shibata and K. Yamasaki, and J. Donau, carbon monoxide; L. Wöhler and A. Spengel, an ethereal soln. of phosphorus in the presence of gelatin; A. Sieverts and E. Peters, sodium hypophosphite, or phosphite; and J. Meyer, sodium hyposulphite. A. Müller and co-workers obtained colloidal soln in phosphoric acid.

The stability of the colloidal soln, is greatly enhanced by the presence of protective colloids. R. Zsigmondy, G. Bredig, F. Küspert, A. Gutbier and A. Zweigle, J. Groh, H. Plauson, C. Paal and C. Amberger, S. I. Djatschkowsky, and T. S. Price and J. A. N. Friend used gelatin; A. Gutbier and co-workers, extract of Irish moss, or extract of quince seeds; G. Hofmeier, and A. Gutbier and G. Hofmeier, gum arabic; Kalle and Co., C. Paal, and C. Paal and C. Amberger, sodium protalbinate or lysalbinate; F. Evers, caoutchouc; A. H. Erdenbrether, sugars; L. Garbowsky, phenol, phloroglucinol, pyrogallol, resorcinol, quinol, catechol, guaiacol, salicylic and gallic acid, protocatechuic acid, tannic acid, quinic acid, acetaldehyde, propaldehyde, valeraldehyde, and salicyaldehyde, but not benzaldehyde; L. Hugouneng and J. Loiseleur, glycogen; F. Henrich, eikonogen; and C. Amberger, A. Gutbier and G. Hofmeier, and G. Hofmeier obtained the hydrogel by concentrating in vacuo, over sulphuric acid, the colloidal soln, obtained by reducing a soln, of a platinum salt with hydrazine hydrate, in the presence of gum acacia as protective colloid. A. F. Benton made the gel as a shining black substance containing approximately 40 to 50 mols, of water per mol, of platinum by adding a boiling soln. of sodium chloroplatinate-29 grms. of platinum per litre-to a boiling, 5 per cent. of sodium formate, and washing away the electrolyte by decantation; the second washing, after standing two days, yields the hydrogel.

A series of platinum **organosols** has been prepared by the methods of T. Svedberg —3. 23, 10. K. Degen obtained the colloid in alcoholic soln. T. Svedberg found that the colloid is stable in amyl acetate, ethyl acetate, amyl alcohol, iso-butyl alcohol, acetone, n-propyl alcohol; but unstable in ethyl ether, chloroform, ethyl alcohol, and methyl alcohol. The stability is not dependent on the dielectric constants of the media. J. Billitzer obtained colloidal soln. in alcohol, and in chloroform; J. Lindeman and T. Svedberg, in alcohol and ether; and T. Svedberg, and E. F. Burton, in ethyl malonate. E. C. H. Davies and V. Sivertz studied the rhythmic precipitation of platinum on silica gel. H. P. Walmsley studied the **aerosol** of platinum.

The general properties of the colloidal soln, of platinum were discussed by A. Ivanitzkaja and L. Orlova, W. Pauli and T. Schild, N. P. Peskoff, J. Billitzer, E. F. Burton, H. Freundlich, S. S. Bhatnagar, and E. Jordis. R. Gans and R. Calatroni inferred from the absorption spectrum that the submicroscopic particles of the colloid are, like the corresponding gold and silver amicrons, spherical in form. E. Müller said that the size of the particles is between that of silver and that of gold; R. Zsigmondy said that the upper limit for the average diameter is $44\mu\mu$; F. Ehrenhaft gave 0.58×10^{-5} to 0.60×10^{-5} cm. for the mean radius; E. F. Burton found the diameter is between 2×10^{-5} and 6×10^{-5} cm.; L. Rolla, $30\mu\mu$; and H. Bechhold studied the passage of the particles through gelatin-filters. S. W. Pennycuick found that the surface of colloidal platinum particles consists of a platinic acid, probably H₂Pt(OH)₆. Wo. Ostwald discussed the variation of colour of the colloidal soln. with varying degrees of dispersion. According to E. Müller, the colloidal soln. with very small particles is red, and with particles not so small, the colour is brown. K. A. Hofmann and V. Wölfl observed the ethersol produced with magnesium phenyl bromide has a fine red colour. L. Wöhler and A. Spengel, L. Wöhler, and

B. Delachanal and A. Mermet found that the red colour—red colloidal platinum produced when soln. of platinum salts are treated with stannous chloride is due to the presence of colloidal metallic platinum in a very fine state of subdivision, and that the formation of this in place of the more usual brown colloidal metal is due to the action of stannic chloride and its products of hydrolysis as protective colloids. The red colloid is also formed when the reduction of platinum salts is effected by means of a solu, of phosphorus in ether, if gelatin is added as a protective The identity of the two red substances has been established by spectroscopic observations. If the colloidal soln, obtained by reduction with stannous chloride is shaken up with ethyl ether or ethyl acetate, the organic solvents take up the red colour, and this is found to be connected with the solubility of stannic chloride in these media, in which it plays the part of protective colloid. When the aq. soln. is diluted with a large volume of water, or when the ethyl acetate soln. is poured into water, a chocolate-brown precipitate is obtained. According to E. A. Schneider, the precipitate has the composition PtSn₃O₅, but actually no definite compound is formed because the composition of the precipitate varies considerably with the conditions under which it is produced. It is probable that it is analogous with purple of Cassius, and is a mixture of colloidal platinum and colloidal stannic acid. The properties of the purple of Cassius, and red colloidal platinum are similar.

J. Duclaux found that the osmotic press, of the soln, is less than 2 cm. of water. C. Thomas said that the change to white of the colour of the ultramicroscopic particles marks the beginning of coagulation. P. Lal and P. B. Ganguly observed that the colloid is coagulated by exposure to ultra-violet light. E. Müller studied the polarization, and extinctive coeff. of the colloidal soln.; A. T. Williams, and O. Scarpa, the spectra of colloidal soln, of platinum; E. B. Spear and co-workers, the coagulation of the sol in ultra-violet light: and E. B. Spear and K. D. Kahn, the precipitation of the colloid on metallic surfaces. H. Freundlich observed that the hydrosol of platinum shows anodic convection like arsenic sulphide sol. S. W. Pennycuick studied the cataphoretic velocity. L. Rolla found that the velocity of migration of the colloidal particles in an electric field with a drop of potential of 1 volt per cm. is 24.0×10^{-5} cm. per second; T. Svedberg gave for the lower limit 7.6×10-3 cm. per second; and E. F. Burton, 2.3×10-5 cm. per second for the speed of colloidal soln. in ethyl malonate. The subject was discussed by A. Einstein, F. Evers, J. J. Bikermann, N. Bach and N. Balaschowa, W. Biltz, and W. R. Whitney and J. C. Blake.

According to L. Liebermann, reddish-brown, colloidal soln. of platinum become dark brown when hydrogen is passed through the liquid. The colloidal soln. of platinum dissolves hydrogen gas roughly in proportion to the concentration. E. C. Auerswald studied the subject. G. Kernot and F. de S. Niquessa found that some protective colloids-e.g. gum arabic, dextrin, and albumen-reduce the proportion of gas absorbed, but sucrose has a negligibly small effect. In virtue of the absorbed hydrogen, colloidal platinum favours many reductions catalytically though the activity of the colloid decreases with use, and the chemical work done increases, but not proportionally, with the conc. of the colloidal soln. Thus, C. Paal and A. Schwarz found that acetylene is reduced to ethylene and ethane; and ethylene to ethane. C. Paal and J. Gerum observed that many organic substances such as unsaturated oils are hydrogenized—e.g. linseed oil is hardened to a white fat. J. Donau found that a borax bead is coloured reddish-brown by colloidal platinum. J. Eggert found that ferric salts are reduced to the ferrous state; and C. Paal and H. Büttner, that ammonium molybdate is reduced. E. C. Auerswald studied the poisoning of the catalytic activity of platinum hydrosol by mercury.

L. Liebermann observed that the colloidal soln. of platinum contains activated oxygen. C. Paal observed that carbon monoxide is oxidized by oxygen to carbon dioxide in the presence of colloidal platinum; and C. Paal and A. Schwarz, that

hydrogen is oxidized to water. G. Bredig and R. Müller von Berneck studied the catalytic decomposition of hydrogen dioxide by colloidal platinum; the activity diminishes with increasing proportions of protective colloid which may be present. Thus, J. Groh found the effect of increasing the percentage proportion of gelatin on the relative times required to decompose 50 per cent. of hydrogen peroxide:

Gelatin 0.000 0.001 0.010 0.050 0.100 Time for decomposition . . 100 437 460 620 983

According to G. Bredig and K. Ikeda, and T. S. Price and J. A. N. Friend, the activity of the colloid is decreased by hydrogen sulphide or cyanide which are metaphorically said to poison the reaction. C. J. Farmer and F. Parker observed that the activity of the colloid is increased by a short exposure to ultra-violet light, but is decreased with a long exposure until it finally ceases as a black, flocculent precipitate is formed. T. S. Price and J. A. N. Friend observed that the presence of colloidal platinum favours the reaction between hydrogen dioxide and permonosulphuric acid; and J. A. N. Friend, the reaction between hydrogen dioxide and potassium persulphate. G. L. Clark studied the subject.

R. Bärs, R. Fürth, H. P. Walmsley, and L. Hamburger studied the aerosols

of platinum.

O. Bobertag and co-workers found that the metal in colloidal soln, is flocculated by rapid cooling. G. Bredig's colloidal soln, is flocculated when cooled to -70° ; and C. J. Farmer and F. Parker noticed that the metal is flocculated by a prolonged exposure to ultra-violet light; and M. Annetts noted that the colloid becomes less stable on exposure to cathode rays. P. B. Ganguly and N. R. Dhar, and E. B. Spear and co-workers studied the subject. E. Müller noted the rapid precipitation of the metal by a few drops of hydrochloric acid. H. Freundlich studied the coagulation of the soln. by electrolytes. A hydrosol, with 0.7 millimol of platinum per litre, is coagulated by soln, of sodium chloride with 2.5 millimol per litre; potassium chloride, 2.2; silver nitrate, 0.22; sulphuric acid, 0.12; sodium hydroxide, 1.30; barium chloride, 0.058; uranyl nitrate, 0.065; lead nitrate, 0.011; barium hydroxide, 0.058; and aluminium sulphate, 0.007. S. W. Pennycuick studied the exchange of ions at the surface of colloidal platinum. W. Biltz found that a trace of ferric, aluminium, cerium, zirconium, or chromium hydroxide precipitates the colloidal platinum from 1 or 2 c.c. of the sol. N. Pappada found that a 4 per cent. soln. of mercuric chloride does not precipitate the colloidal soln. unless it be warmed; soln. of potassium cyanide or hydrocyanic acid change colloidal platinum chemically; there is also a chemical reaction with the halogens—e.g. chlorine or iodine; 0.1Nsoln. of non-ionized, organic substances—e.g. methyl or ethyl alcohol, glucose, and saccharose—coagulate the sol, but N- and more cone, soln, do not do so; 2 c.c. of 0.1N-soln, of hydrochloric, nitric, and sulphuric acids coagulate the sol, likewise also with 1 c.c. of N-CsCl; 1.5 c.c. of N-RbCl—incompletely, and likewise so with N-KCl, N-NaCl, and N-LiCl; coagulation occurs with 3 c.c. of 2N-KCl; 1 c.c. of 0.1N-BaCl₂, 0.1N-SrCl₂, and 0.1N-CaCl₂; and with 5 drops of 0.1N-Al₂(SO₄)₃, and 0·1N-Cr₂(SO₄)₃; no coagulation occurred with 0·1N-soln. of CsCl, RbCl, KCl, NaCl, or LiCl, or with the corresponding bromides, iodides, sulphates, or nitrates. The coagulation of the sols was studied by S. W. Pennycuick and R. J. Best, A. Voet, P. C. L. Thorne and co-workers, W. D. Bancroft, Wo. Ostwald, and A. Ivanitzkaja and co-workers. E. B. Spear and K. D. Kahn observed that colloidal soln. of platinum are coagulated by metal plates; and M. Annetts, by The plates are more active if roughened. The order of decreasing activity is: zinc, steel, nickel, tin, and copper. A. de Gregorio y Rocasolano studied the ageing of the sol. Y. Shibata and H. Kaneko studied influence of the sol on the rate of oxidation of pyrogallol.

REFERENCES.

¹ C. Amberger, Koll. Zeit., 13. 313, 1913; M. Annetts, Journ. Phys. Chem., 39. 509, 1935; E. C. Auerswald, Ueber kolloide Platinamalgame und daren katalytische Wirkung, Leipzig, 1927; N. Bach and N. Balaschowa, Acta Physicochimica, Russ., 3. 79, 1935; Nature, 137. 617, 1936; N. Bach and N. Baisschowa, Acta Physicochimica, Russ., 5, 18, 1855; Nature, 151, 111, 1855; W. D. Bancroft, Rec. Trav. Chim. Pays. Bas, 42, 733, 1923; R. Bärs, Ann. Physik, (4), 59, 393, 1919; H. Bechhold, Zeit. phys. Chem., 60, 275, 1907; A. F. Benton, Journ. phys. Chem., 30, 1415, 1926; S. S. Bhatnagar, Current Science, 4, 570, 1936; J. J. Bikermann, Journ. Chim. Phys., 32, 460, 1935; J. Billitzer, Zeit. phys. Chem., 45, 307, 1903; Koll. Zeit., 1, 226, 1908; W. Biltz, Ber., 37, 1099, 1904; O. Bobertag, K. Feist and H. W. Fischer, ib., 41. 1908; G. Bredig, Ueber anorganische Fermente, Leipzig, 30, 1901; Zeit. Elektrochem.,
 14. 514, 1898; Zeit. angew. Chem., 11. 953, 1898; G. Bredig and K. Ikeda, Zeit. phys. Chem.,
 17. 1, 1901; G. Bredig and R. Müller von Berneck, ib., 31. 272, 1899; E. F. Burton, Phil. Mag., (6), 11. 442, 1906; N. Castoro, Koll. Zeit., 6. 284, 1910; Zeit. anorg. Chem., 41. 130, 1904; G. L. Clark, Monograph Coll. Symposium, 4. 145, 1926; E. C. H. Davies and V. Sivertz, Journ. Phys. Chem., 30. 1467, 1926; K. Degen, Beiträge zur Kenntnis Colloider Metall-Lösungen, Greiswald, 1903; B. Delachanal and A. Mermet, Compt. Rend., 81, 370, 1875; Bull. Soc. Chim., (2), 24. 435, 1875; Chem. News, 32. 157, 1875; S. I. Djatschkowsky, Koll. Zeit., 74. 51, 1936; J. W. Döbereiner, Schweigger's Journ., 68. 298, 1832; Liebig's Ann., 2. 1, 1832; J. Donau, Monatsh., 25. 913, 1904; 26. 525, 1905; 27. 71, 1906; J. Duclaux, Compt. Rend., 148. 295, 1909; J. Eggert, Zeit. Elektrochem., 20. 370, 1914; 21. 349, 1915; F. Ehrenhaft, Sitzber. Akad. Wien, 114. 1139, 1905; Phys. Zeit., 5. 388, 1904; Ann. Physik, (4), 11. 489, 1903; A. Einstein, Wien, 114. 1139, 1903; Phys. Zeit., 5. 388, 1904; Ann. Physik, (4), 11. 489, 1903; A. Einstein, Zeit. Elektrochem., 13. 41, 1907; A. H. Erdenbrecher, German Pat., D.R.P. 555307, 1929; C. Ernst, Zeit. phys. Chem., 37. 451, 1901; F. Evers, Koll. Zeit., 36. 206, 1925; C. J. Farmer and F. Parker, Journ. Amer. Chem. Soc., 35. 1524, 1913; H. Freundlich, Kapillarchemie, Leipzig, 1922; Zeit. phys. Chem., 44. 152, 1903; 73. 385, 1910; J. A. N. Friend, Journ. Chem. Soc., 39. 1092, 1906; R. Fürth, Koll. Zeit., 34. 224, 1924; Mrs. Fulhame, An Essay on Combustion, London, 1794; P. B. Ganguly and N. R. Dhar, Koll. Zeit., 31. 16, 1922; R. Gans and B. Caletroii, Am. Physik, (4), 24, 465, 1020; J. Carbonwill, Zeit., 31. 16, 1922; R. Gans and R. Calatroni, Ann. Physik, (4), 61. 465, 1920; L. Garbowsky, Ber., 36. 1215, 1220, 1903; A. de Gregorio y Rocasolano, Compt. Rend., 171. 301, 1920; 173. 234, 301, 1921; Nachr. Gött., 177, 1924; Anal. Fis. Quim., 18. 308, 1920; J. Groh, Zeit. phys. Chem., 88. 414, 1914; A. Gutbier, J. Haber and E. Huhn, Koll. Zeit., 18. 57, 1916; A. Gutbier and G. Hofmeier, Journ. prakt. Chem., (2), 71. 359, 1905; A. Gutbier and A. Wagner, *Koll. Zeit.*, 19. 298, 1916; A. Gutbier and A. Zweigle, *ib.*, 31. 346, 1922; L. Hamburger, *ib.*, 23. 177, 1918; F. Henrich, *Ber.*, 36. 609, 614, 1903; K. A. Hofmann and V. Wölfl, ib., 40. 2429, 1907; G. Hofmeier, Ueber anorganische Kryptoide und Kolloide, Erlangen, 38, 1904; L. Hugounenq and J. Loiseleur, Compt. Rend., 182. 851, 1926; A. Ivanitzkaja and L. Orlova, Koll. Beihefte, 18. 1, 1923; A. Ivanitzkaja and M. Proskurnin, Koll. Zeit., 39. 15, 1926; E. Jirsa. ib., 40. 28, 1926; E. Jordis, Zeit. Elektrochem., 10. 509, 1904; Kalle and Co., German Pat., D.R.P. 157172, 1903; G. Kernot and F. de S. Niquessa, Rend. Accad. Napoli, (3), 15, 168, 1909; M. Kimura, Mem. Coll. Engg. Kyoto, 5, 211, 190 1913; F. Küspert, Ber., 35. 2815, 1902; H. Kuzel, German Pat., D.R.P. 197379, 1905; Brit. Pat. No. 25864, 1906; 6110, 1907; P. Lal and P. B. Ganguly, Journ. Indian Chem. Soc., 6. 547, 1929; L. Liebermann, Ber., 37. 1529, 1904; J. Lindeman and T. Svedberg, Koll. Zeit., 29. 1, 1921; O. Loew, Ber., 23. 289, 1890; A. Lottermoser, Ueber anorganische Colloide, Stuttgart, 33, 1901; F. A. McDermott, Journ. Amer. Chem. Soc., 32. 337, 1910; J. Meyer, Zeit. anorg. Chem., 34. 51, 1903; S. Miyamoto, Journ. Chem. Soc. Japan, 55. 611, 1934; Koll. Zeit., 67. 284, 1934; 71. 297, 1935; A. Müller, F. Urbach and F. Blank, ib., 44. 185, 1928; E. Müller, Ann. Physik, (4), 24. 1907; Wo. Ostwald, Koll. Beihefte, 2. 409, 1911; Koll. Zeit., 78. 301, 1935; Ann. Physik, (4), 24, 1907; Wo. Ostwald, Koll. Beihefte, 2, 409, 1911; Koll. Zeit., 73, 301, 1935; C. Paal, Ber., 47, 2202, 1914; 49, 548, 1916; C. Paal and C. Amberger, ib., 37, 126, 1904; Journ. prakt. Chem., (2), 71, 358, 1904; C. Paal and C. Auerswald, Ber., 60, 1648, 1927; C. Paal and H. Büttner, ib., 48, 220, 1915; C. Paal and J. Gerum, ib., 41, 2273, 1908; C. Paal and A. Schwarz, ib., 48, 994, 1202, 1915; N. Pappada, Koll. Zeit., 9, 274, 1911; Gazz. Chim. Ital., 42, i, 311, 1912; W. Pauli, Trans. Faraday Soc., 31, 11, 1935; W. Pauli and T. Schild, Koll. Zeit., 72, 165, 1935; S. W. Pennycuick, ib., 49, 407, 1929; 54, 21, 1931; Journ. Amer. Chem. Soc., 52, 4621, 1930; Journ. Chem. Soc., 2600, 1927; 2108, 1928; 618, 623, 1929; 1447, 1930; Nature, 124, 987, 1929; Zeit. phys. Chem., 148, 413, 417, 1930; Australian Journ. Exp. Biology, 4, 99, 1927; S. W. Pennycuick and R. J. Best, Journ. Chem. Soc., 551, 1928; N. P. Peskoff, Bull. Inst. Polyt. Ivanovo. Voznesensk, 7, 119, 1923; H. Plauson, Brit. Pat. No. 182696, 1921; T. S. Price and J. A. N. Friend. Journ. Chem. Soc., 85, 1526, 1904; K. Regel. 182696, 1921; T. S. Price and J. A. N. Friend, Journ. Chem. Soc., 85, 1526, 1904; K. Regel, Chem. Ztg., 30, 684, 1906; L. Rolla, Atti Accad. Lincei, (5), 17, ii, 651, 1908; J. Sameshima, Journ. Japan. Chem. Soc., 54, 695, 1933; I. Sano, Bull. Chem. Soc. Japan, 9, 320, 1934; O. Scarpa, Koll. Zeit., 2, 50, 1908; A. Schmidt, Ueber die Einwirkung von Magnesium auf Chloride, O. Scarpa, Not. Zeit., 2. 50, 1908; A. Schmidt, Veber are Einwirking von Magnesium daj Chloride, Göttingen, 1891; E. A. Schneider, Pogg. Ann., 136. 105, 1869; H. Schulze, Journ. prakt. Chem., (2), 32. 390, 1885; Y. Shibata and H. Kaneko, Journ. Japan. Chem. Soc., 45. 155, 1924; Y. Shibata and K. Yamasaki, Bull. Chem. Soc. Japan, 10, 139, 1935; K. Shigena, Rept. Ind. Research Inst. Osaka, 8, 2, 1927; A. Sieverts and E. Peters, Koll. Zeit., 12, 268, 1913; A. Skita and W. A. Meyer, Ber., 45, 3580, 1912; E. B. Spear, P. F. Jones, A. S. Neave and M. Shlager, Journ. Amer. Chem. Soc., 43, 1385, 1921; E. B. Spear and K. D. Kahn, ib., 40. 181, 1918; T. Svedberg, Zeit. Elektrochem., 12. 859, 1906; Die Methoden zur Herstellung kolloider Lösungen anorganischer Stoffe, Dresden, 463, 1909; Ber., 39. 1712, 1906; 42. 4376, 1909;

Koll. Zeit., 1. 162, 1907; 2. 144, 1909; T. Svedberg and K. Inouye, ib., 9. 154, 1911; O. Teague and B. H. Buxton, Zeit. phys. Chem., 62, 292, 1908; C. Thomas, Koll. Zeit., 9. 19, 1911; P. C. L. Thorne, A. R. Kennedy and A. H. Holloway, ib., 44, 190, 1928; A. Voet, Trans. Faraday Soc., 31, 1488, 1935; Journ. Phys. Chem., 40, 307, 1936; H. P. Walmsley, Phil. Mag., (7), 7, 1929; W. R. Whitney and J. C. Blake, Journ. Amer. Chem. Soc., 26, 1339, 1904; A. T. Williams, Nature, 130, 963, 1932; Compt. Rend., 201, 665, 1935; L. Wöhler, Verh. dent. Naturf. Aerste, ii, 105, 1907; L. Wöhler and A. Spengel, Koll. Zeit., 7, 245, 1910; R. Zsigmondy, Zur Erkenntnis der Kolloide, Jena, 146, 1905.

§ 9. The Structure of Platinum

R. J. Haüy ¹ first suggested that the crystals belong to the cubic system. He said : la forme de petits cristaux de platine m'a paru être celle du cube ; A. Breithaupt confirmed this with crystals of platinum from Russia; and F. Mohs said that the crystals are hexahedral. G. B. Sowerby found native platinum with a laminated Platinum usually occurs in grains or scales, occasionally in lumps or nuggets weighing up to 21 lbs.—vide supra. The structure of these grains was discussed by R. Beck, H. C. H. Carpenter and S. Tamura, B. von Cotta, A. Daubrée, M. Ginsburg, E. Hussak, A. Inostranzeff, B. C. Karpoff, A. Liversidge, S. Meunier, J. Orcel, V. Pöschl, J. W. Retgers, F. Rinne, S. F. Schemtschuschny, and G. H. Stanley and P. A. Wagner. Well-formed crystals are comparatively rare. Cubes or distorted cubes are the most common crystalline forms. P. V. Jeremejeff described some crystals which he said were usually hexahedral, rarely octahedral. No cleavage was observed, but there is some twinning about the (111)-plane. Octahedral forms were also observed by E. Hussak, G. B. Sowerby, and F. Limmer. J. Orcel obtained octahedral and tetrahedral crystals by volatilization. The colour and streak of platinum are whitish steel-grey. F. Mylius and R. Dietz noted that the fracture of platinum is crystalline; native platinum has a hackly fracture.

A. Jedele studied the corrosion figures. R. Gans and R. Calatroni discussed the nature of the ultra-microscopic particles of platinum. M. Berek discussed the microdetection of platinum in ores.

J.J. Ebelmen obtained, by chance, during the fusion of some silicates, octahedral, and cubo-octahedral crystals of platinum; and J. Joly obtained small octahedral or cubo-octahedral crystals by heating platinum in contact with quartz, or topaz. G. T. Beilby observed that the polished metal has a transparent, glass-like skin which may pass into minute scales or granules. A. Guntz and H. Bassett observed that in high temp. electric furnaces, where platinum is near its m.p., the metal may be sublimed to form small crystals 0.0085 to 0.014 mm. in size. These crystals may be cubic or octahedral, or a combination of these forms, or a combination of cubic and tetrahedral forms. G. T. Beilby, and H. Zahn and J. Kramer noted that amorphous layers are converted into the crystalline metal at a definite temp. G. D. Preston studied the twinning of the crystals. G. A. Hulett and H. W. Berger, and H. Moissan observed that small crystals are formed as a dusty sublimate when platinum is heated in the electric furnace; G. P. Thomson and co-workers, the crystalline structure of thin films; and W. Crookes, that platinum sublimed at 1300° furnishes hexagonal plates with a metallic lustre. F. W. Constant observed mosaic crystals.

W. Campbell found that by suitably cooling platinum, a dendritic structure could be developed in the metal. Dendrites, represented by the so-called platinum tree, were obtained by G. F. Wach by the action of zinc on a dil. soln. of platinic chloride; and W. Holtz wrapped a zinc-rod (1 mm. thick and 1.5 mm. in width at the bottom, and 3 mm. in width at the top) in paper, and when this was immersed in a soln. of platinic chloride, a platinum tree with many branches was developed. The tree had a metallic lustre and was hard enough to permit of filing.

J. W. Mallet observed that the etching with aqua regia of platinum which has been fused showed up the crystalline structure; and T. L. Phipson observed that the metal etched by aqua regia exhibits octahedral and tetrahedral forms; and

analogous results were obtained by A. Noble, F. E. Carter, F. Limmer, and T. Andrews. F. Bran showed the crystalline structure of the metal which had been exposed to anodic attack in hydrochloric acid. T. Andrews said that the general microstructure of platinum is allotrimorphic in character and derived from a system of interfering cubes and octahedra, the cubic and hexagonal form being frequently noticeable. The size of the larger crystal grains varies from 0.002 inch to 0.04 inch in size, and the smaller crystals range from about 0.0002 inch to about 0.007 inch. J. Orcel, K. Gebhard and H. J. Wiester, O. Feussner, E. Schmid, and F. W. Constant studied the subject. S. Kalischer found that platinum wire which showed no signs of crystallization became distinctly crystalline after being heated to redness. M. Socèze noted that platinum which had been heated for a few days in the vicinity of its m.p., acquired a crystalline structure showing cubic and octahedral forms. L. Holborn and co-workers observed that chemically pure platinum after being heated to 1670° was distinctly crystalline. S. Dembinska found that deposits several $m\mu$ thick show no crystal structure until they have been heated beyond a critical temp., 250° to 300°. O. Feussner showed that platinum does not crystallize on annealing below a certain temp, limit.

Fig. 4.—The Recrystallization of Platinum, and the Relation between Temperature, and Grain-Size.

curve representing the annealing temp, and grain-size is hyperbolic and concave to the temp. axis so that a relatively small rise of temp. between 800° and 900°, Fig. 4, causes a large increase in the size of the crystals, but a similar rise of temp. between 1200° and 1500° has a very slight effect on the size of the crystals. Plotting grain-size against the logarithm of the amount of deformation to which the metal has been subjected furnishes a straight line for all temp. The dotted lines in Fig. 4 refer to the effect of temp. on the grain-size. W. Rosenhain also observed a development of the crystalline structure by heating the metal for 4 hrs. in the flame of a bunsen burner. J. F. Daniell, and W. N. Hartley also studied the brittleness of platinum containing carbide, and phosphide. A. F. Noguès heated

platinum gauze many hours in a current of hydrogen and observed marked evidence of the formation of cubic and octahedral crystals. J. L. Byers discussed the structure of cupellation beads; and S. Dembinska, electrodeposited platinum. Z. Jeffries and R. S. Archer observed 450° to be the re-crystallization temp. of platinum. The subject was studied by J. Böhm and P. Feldmann.

According to W. R. Hodgkinson and F. K. S. Lowndes, a platinum wire electrically heated in chlorine acquires a crystalline structure, but not so in bromine vapour. F. Seelheim also obtained lustrous crystals of platinum by passing chlorine over the red-hot metal. L. Troost and P. Hautefeuille observed that if platinum be heated in an inert gas containing a small proportion of chlorine, crystals of platinum appear in the cooler part of the tube. A. E. Törnebohm obtained a similar result by using a mixture of carbon monoxide, air, and chlorine. O. Köttig, and O. L. Erdmann observed that octahedral crystals are formed when platinum is heated at bright redness for some hours in contact with potassium nitrate; and F. Limmer obtained well-formed crystals by heating the platinum sponge in contact with cupric chloride. H. Moissan obtained crystals of platinum

by the decomposition of platinous chloride at a red-heat; S. Cloez, and L. Pigeon, by the thermal decomposition of platinic chloride; V. A. Jacquelain, and F. Limmer, by the thermal decomposition of potassium chloroplatinate; and W. Spring, by heating the metal with conc. hydrochloric acid in a sealed tube at 150°.

H. Behrens found that rolled plates of the metal have a crystalline structure. G. Greenwood found that the cold-worked metal has a fibrous texture resembling that of other face-centred, cubic metals. The (111)-direction is parallel to the drawing force, the texture is somewhat conical, and varies with distance from surface, the interior zones showing the greater fibrous development. J. A. M. van Liempt, H. Mark and K. Weissenberg, A. E. van Arkel, S. Tanaka, R. Vogel, and G. Tammann studied the effect of cold-working. J. A. Ewing and W. Rosenhain observed the development of slip-bands, that is, of lines developed on the surface of metals by plastic strain, and T. and C. R. Andrews showed that when platinum has been subjected to a stress, many of the individual large crystal grains forming the mass, under the influence of the strain, develop innumerable fine stress bands or slip-bands indicating crystalline slip.

The area enclosed by the main lines of disruption roughly approximate to the size of the large crystal grains. The distances between the extremely fine lines or slip bands coincide approximately with the size of the minute crystals forming the mass, the finer slip bands indicate that the crystalline slip has taken place along the facets of the smaller crystals. The direction of the main lines of crystalline disruption do not always coincide with the intercrystalline facet junctions of the large crystal grains. The lines of least resistance or greatest crystalline slip develop chiefly at an approximate angle of 45° to the pressure lines, but the line of greatest weakness in the mass structure of the metal is not always at that angle with the line of the disruptive force.

A. W. Hull found that the X-radiograms of platinum correspond with a facecentred, cubic lattice with edge a=3.930 A. The subject was discussed by N. Uspensky and S. Konobejewsky gave a=4.02 A. for R. W. G. Wyckoff. cathodically spluttered platinum; W. P. Davey, and G. Greenwood, gave $a=3.912~\mathrm{A}$.; and T. Barth and G. Lunde, $a=3.903~\mathrm{A}$. H. Kahler found spluttered and ordinary metal have identical lattices. A. E. von Arkel, G. Bredig and R. Allolio, V. I. Iveronova, G. R. Levi and R. Haardt, K. Matukawa and K. Shinohara, G. Natta, E. A. Owen and E. L. Yates, and G. P. Thomson and co-workers studied the subject. G. Bredig and R. Allolio gave a=3.944 A, for the metal, and 3.908 A. for platinum black charged with hydrogen. A. Osawa found that the lattice expands 2.4, 2.9, and 2.8 per cent. when the metal is saturated with carbon monoxide, oxygen, and hydrogen respectively. A. W. Hull, and W. P. Davey calculated that the platinum atoms of the lattice are 2.780 A. apart. F. M. Jäger and J. E. Zanstra observed evidences of dynamic allotropism by observing the change in the X-ray spectrum on a rising temp. R. Salvia found that the lattice dimensions do not permit of the entry of helium atoms. G. I. Finch and co-workers studied the structure of thin films; E. A. Owen and E. L. Yates, the distortion of the lattice by occluded gas; and J. A. M. van Liempt, the heat of loosening of the space-lattice. L. H. Reyerson and co-workers observed X-radiogram patterns on platinum deposited on silica gel.

REFERENCES.

T. Andrews, Proc. Roy. Soc., 69. A, 433, 1902; T. and C. R. Andrews, ib., 70. A, 250, 1902; A. E. van Arkel, Naturwiss., 13. 662, 1925; Zeit. Krist., 67. 235, 1928; T. Barth, Metallwirtschaft, 7. 413, 1928; T. Barth and G. Lunde, Nordak Geol. Tids., 8. 220, 358, 1925; Zeit. phys. Chem., 117. 478, 1925; 121. 78, 1926; 123. 476, 1926; R. Beck, Leipzig, Nachr., 59. 387, 1907; H. Behrens, Das mikroskopische Gefüpe der Metalle und Legierungen, Hamburg, 1894; G. T. Beilby, B.A. Rep., 604, 1901; Engg., 72. 543, 1901; M. Berek, Zeit. Krist., 77. 1, 1931; J. Böhm and P. Feldmann, Zeit. phys. Chem., 27. B, 425, 1934; F. Bran, Zeit. Elektrochem., 8. 198, 1902; G. Bredig and R. Allolio, Zeit. phys. Chem., 196. 41, 1927; A. Breithaupt, Pogg, Ann., 8. 501, 1826; J. L. Byers, Trans. Amer. Inst. Min. Eng., 102. 286, 1932; W. Campbell. Journ. Franklin Inst., 154. 1, 131, 201, 1902; Met., 4. 329, 1907; H. C. H. Carpenter and S. Tamura, Trans. Inst. Min. Met., 87. 365, 1928; Metal Ind., 32. 405, 1928; F. E. Carter,

Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; S. Cloez, Bull. Soc. Chim., (2), 5, 162, 1866; F. W. Constant, Journ. Elisha Mitchell Soc., 47, 25, 1932; B. von Cotta, Berg. Hütt. Ztg., 19, 495, 1860; Neucs Jahrb. Min., 743, 1860; W. Crookes, Proc. Roy. Soc., 86, A, 461, 1912; J. F. Daniell, Phil. Trans., 121. 456, 1831; Journ. tech. ökon. Chem., 15. 459, 1832; Phil. Mag., 40, 1861; Chem. News, 2, 256, 1860; Journ. prakt. Chem., (1), 79, 117, 1860; J. A. Ewing and 40, 1801; (nem. News, 2, 200, 1800; Journ. pract. Chem., (1), 18. 111, 1800; J. A. Ewing and W. Rosenhain, Phil. Trans., 193. A, 353, 1900; O. Feussner, Zeit. Metallkunde, 19. 342, 1927; 21. 429, 1929; 24. 142, 1932; G. I. Finch and A. W. Ikin, Proc. Roy. Soc., 145. A, 551, 1934; G. I. Finch, C. A. Murison, N. Stuart and G. P. Thomson, ib., 141. A, 414, 1933; R. Gans and R. Calatroni, Ann. Physik, (4), 61. 465, 1920; K. Gebhard and H. J. Wiester, Zeit. Metallkunde, 428, 1929; M. Ginsburg, Zeit. prakt. Geol., 81. 93, 1924; Tech. Zeitschrischau, 9. 8, 1924;
 G. Greenwood, Zeit. Krist., 78. 242, 1931; P. Groth, Chemische Krystallographie, Leipzig, 1. 41, 1906; A. Guntz and H. Bassett, Bull. Soc. Chim., (3), 33, 1306, 1905; W. N. Hartley, Proc. A. Guitz and H. Bassett, Bull. Soc. Chim., (3), 35. 1306, 1905; W. N. Hartley, Proc. Chem. Soc., 18. 30, 1902; Phil. Mag., (6), 4. 84, 1902; R. J. Haüy, Traité de minéralogie, Paris,
 26, 1822; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58. 187, 223, 1888;
 L. Holborn and F. Henning, Sitzber. Akad. Berlin, 936, 1902; L. Holborn, F. Henning and
 L. Austin, Abh. Phys. Tech. Reichsanst., 4. 96, 1906; W. Holtz, Phys. Zeit., 7, 661, 1906;
 G. A. Hulett and H. W. Berger, Journ. Amer. Chem. Soc., 26, 1515, 1904; A. W. Hull, Science,
 S. 227, 1920; Phys. Res. (2), 47, 571, 1921, (2), 48, 26, 100. (2), 52. 227, 1920; Phys. Rev., (2), 17. 571, 1921; (2), 18. 88, 1921; E. Hussak, Sitzber. Akad. Wien, 113. 379, 1904; Oesterr. Zeit. Berg. Hitt., 53. 279, 1905; Zeit. prakt. Geol., 14. 285, 1906; A. Inostranzeff, Bull. Noc. Nat. St. Petersburg, 22. 17, 1893; 23. 1, 1894; Compt. Rend., 116. 155, 1893; 118. 265, 1894; V. I. Iveronova, Journ. Tech. Phys. U.S.S.R., 4. 459, 1934; F. M. Jäger and J. E. Zanstra, Proc. Akad. Amsterdam, 34. 15, 1931; V. A. Jacquelain, Ann. Chim. Phys., (2), 74. 213, 1840; Journ. prakt. Chem., (1), 22. 22, 1841; A. Jedele, Metallwirtschaft, 13. 335. 1934; Z. Jeffries and R. S. Archer, Chem. Met. Engg., 26. 343, 1922; P. V. Jeremejeff, Proc. Russ. Min. Soc., 14. 155, 1879; J. Joly, Nature, 48. 541, 1891; H. Kahler, Phys. Rev., (2), 17. 230, 1921; (2), 18. 210, 1921; S. Kalischer, Ber., 15. 702, 1882; Carl's Report., 18. 292, 1882; Phys. Zeit., 4. 854, 1903; B. C. Karpoff, Ann. Inst. Platine, 5. 363, 1927; O. Köttig, Journ. prakt. Chem., (1), 71. 190, 1857; G. R. Levi and R. Haardt, Atti Accad. Lincei, (6), 3. 91, 1926; J. A. M. van Liempt, Rec. Trav. Chim. Pays-Bas, 53, 941, 1934; Zeit. Liner, (6), 8, 31, 1920; J. A. M. Van Llempt, Rec. Trav. Chim. Pays-Bas, 53, 941, 1934; Zeit. anorg. Chem., 195, 366, 1931; Zeit. Physik, 94, 534, 1935; F. Limmer, Chem. Ztg., 31, 1025, 1907; A. Liversidge, Proc. Roy. Soc. New South Wales, 31, 70, 1897; Journ. Chem. Soc., 71, 1125, 1897; Proc. Chem. Soc., 13, 22, 1897; J. W. Mallet, Journ. prakt. Chem., (1), 67, 252, 1863; Amcr. Journ. Science, (2), 20, 340, 1855; Journ. Franklin Inst., 31, 139, 1856; H. Mark and K. Weissenberg, Zeit. Physik, 14, 328, 1923; 16, 314, 1923; K. Matukawa and K. Shinohara, Part Phys. Meth. Soc. Parts (2), 49, 171, 1000 Proc. Phys. Math. Soc. Japan, (3), 12. 171, 1930; S. Meunier, Compt. Rend., 118. 368, 1894; F. Mohs, Anfangsgründe der Naturgeschichte des Mineralreichs, Wien, 527, 1832; H. Moissan, Am. Chim. Phys., (6), 24. 285, 1890; Compt. Rend., 109. 808, 1889; 142. 192, 1906; F. Mylius and R. Dietz, Ber., 31, 3188, 1898; G. Natta, Congr. Internat. Quim. Purc Appl., 9, ii, 177, 1934; A. Noble, Chem. News, 5, 168, 1862; A. F. Noguès, Compt. Rend., 47, 832, 1858; J. Orcel, Bull. Soc. Min., 49, 84, 1926; A. Osawa, Science Rep. Tohoku Univ., 14, 3, 1925; E. A. Owen and 50c. Min., 42. 84, 1826; A. Osawa, Science Rep. Folioka Crite., 14, 43, 1825; E. A. Owen and E. L. Yates, Phil. Mag., (7), 15, 472, 1933; (7), 16, 606, 1933; T. L. Phipson, Chem. News, 5, 144, 1862; L. Pigeon, Ann. Chim. Phys., (7), 2, 442, 1894; V. Pöschl, Metallwirtschaft, 8, 710, 1929; G. D. Preston, Nature, 119, 600, 1927; J. W. Retgers, Zeit. phys. Chem., 14, 1, 1894; L. H. Reyerson, O. E. Harder and L. E. Swearingen, Journ. phys. Chem., 30, 1623, 1926; F. Rinne, News Jahrb. Min., i, 45, 1894; W. Rosenhain, Proc. Roy. Soc., 70, 252, 1902; R. Salvia, Anal. Fis. Quim., 27, 285, 1929; S. F. Schemtschuschny, Journ. Russ. Phys. Chem. Soc., 51, 417, 1919; Jul. Australian Min. Standards, 94, 224, 1999. Appr. April April Min. Standards, 94, 224, 1999. Anal. Fis. Quim., 27. 285, 1929; S. F. Schemtschuschny, Journ. Russ. Phys. Chem. Soc., 51. 417, 1919; Ind. Australian Min. Standards, 81. 334, 1929; Ann. Inst. Anal. Phys. Chem. Leningrad, 2. 470, 1924; Zeit. anorg. Chem., 153. 99, 1926; 156. 99, 1926; E. Schmid, Zeit. Metallkunde, 20. 370, 1928; Neues Jahrb. Min., ii, 52. 1925; F. Seelheim, Ber., 12. 2067, 1879; W. Spring. Zeit. anorg. Chem., 1. 244, 1892; M. Socèze, Berggeist, 4. 48, 1859; Berg. Hütt. Ztg., 19. 27, 1860; G. B. Sowerby, Ann. Phil., 16. 233, 1820; Ann. Chim. Phys., (2), 15. 111, 1820; Dingler's Journ., 3. 125, 1820; G. H. Stanley and P. A. Wagner, Journ. Chem. Met. Min. Soc. South Africa, 25. 254, 1925; S. Tanaka, Mem. Coll. Kyoto, 8, 319, 1925; 9. 197, 1925; G. Tammann, Zeit. anorg. Chem., 114. 287, 1920; Zeit. Metallkunde, 24. 220, 1932; G. P. Thomson, N. Stuart and C. A. Murison, Proc. Phys. Soc., 45. 381, 1933; A. E. Törnebohm, Geol. För. Förh. Slockholm, 13. 81, 1891; L. Troost and P. Hautefeuille, Compt. Rend., 84. 947, 1877; N. Uspensky and S. Konobejewsky, Zeit. Physik, 16. 215, 1923; R. Vogel, Zeit. Arost. 61. 58, 1924; R. W. G. Wyckoff, Journ. Franklin Inst., 195. 182, 349, 531, 1923; H. Zahn and 58, 1924; R. W. G. Wyckoff, Journ. Franklin Inst., 195, 182, 349, 531, 1923; H. Zahn and J. Kramer, Zeit. Phys., **86**, 413, 1933.

§ 10. The Mechanical Properties of Platinum

The specific gravity of platinum was reported by A. F. de Fourcroy 1 to be 21.06; and 20.85 for feebly-hammered platinum, and 20.98 for the strongly

hammered metal; P. Musschenbroeck gave 27, M. H. Klaproth, 21.74; M. Chabaneau, 24.0, and J. Cloud, 23.5—all three values are too high; P. Berthier also gave some high values along with 21.47 and 21.53; J. J. Berzelius gave 21.45: M. J. Brisson gave 19.5 for the metal which has been fused; 20.3 for the hammered metal, and 21.0 for the wire; M. Faraday and J. Stodart gave 21.3 for the sp. gr.; D. Prechtl, 17.7 for the fused metal; W. H. Wollaston gave 21.16 for wire, 21.25 for malleable platinum, and 21.4 for the wire drawn from the same metal; B. Scholz gave 21-345; P. T. Meissner, 21-359; C. von Sickingen, 21-061; R. F. Marchand, 21.2668 to 21.3092 at 0°; C. Schumacher, 21.1878 to 20.212; C. Barus, 21:31; R. Hare gave 21:16 to 21:31 for the hammered metal. O. J. Broch said that the mean value of the earlier determinations is 21.49. Collections of data were made by R. F. Marchand, R. Böttger, and F. W. Clarke, and observations on the subject were made by G. Osann. H. St. C. Deville and H. Debray gave 21:15 for purified metal not hardened; and the highest value for the purified metal was 21.504 at 17.8°/17.6°. The lower values were attributed to the presence of scaled pores. W. A. Tilden gave 21.323 at 18°/18°; T. W. Richards, 21·31 at 20°; P. W. Bridgman, 21·34 at 20°; W. Schlett, 21·1296 to 21.4802; G. Wertheim, 20.513 to 20.518 at 10° to 15°; J. Y. Buchanan, 21.5; E. Grüneisen, 21:39 to 21:44; T. W. Richards, 21:31; W. Gaede, 21:407; O. J. Broch and co-workers obtained 21:463 for purified strongly hammered metal; and for the best representative value for a number of samples, they gave 21:49 at 0°/4°; F. Mylius and R. Dietz gave 21.4 for the purified metal. A. W. Hull, and W. P. Davey gave 21:23 for the sp. gr. calculated from the X-radiogram data; and W. P. Davey, 21.51.

G. W. A. Kahlbaum and E. Sturm obtained 21·4316 to 21·4327 at 20°/4° for annealed wire, and 21·4152 to 21·4133 for cold-drawn wire; and G. W. A. Kahlbaum, 21·4 at 20°/20° for the rolled or wire-drawn metal, and 21·1 to 21·3 for the compressed metal. The change in sp. gr. with mechanical work was further discussed by W. Schlett, and F. C. A. H. Lantsberry. T. M. Lowry and R. G. Parker gave 21·3351 for the sp. gr. of the massive metal, and 21·3705 for the filings. G. W. A. Kahlbaum and E. Sturm obtained 21·3985 to 21·4312 for the purified metal, 21·4112, at 20°/4°, after torsion, and 2·4284 after annealing. G. Wertheim gave for the hammered metal subjected to a tensile stress before clongation 21·166 to 21·275, and after cracking, 20·987; and with another sample, 20·753 to 21·207 before elongation, and 21·029 after cracking—all at 12° to 13°—vide infra, elastic modulus. J. A. Groshans studied the density relations of the different elements. A. Sayno discussed some relations between the sp. gr., at. wt., m.p., and torsion modulus. G. Quincke gave 18·915 for the sp. gr. of the molten metal.

T. Thomson gave 21·47 for the sp. gr. of spongy platinum; G. Rose, 16·6340; L. Playfair and J. P. Joule, 21·169 to 21·243; E. H. Archibald, 21·16 at 24°/4°; A. W. Warrington gave 21·45 at 0°, and added, $v=v_0(1+0·0000266θ)$. B. Scholz gave 17·894 for the sp. gr. of platinum black; J. von Liebig, 15·80 to 17·572; and G. Rose, gave 20·7732 to 20·9815; and L. Playfair and J. P. Joule, 17·766, but T. Sexl observed that sub-microscopic particles do not have a much lower density than massive platinum. C. Benedicks gave 1·37×10⁻⁸ cm. for the atomic radius; V. M. Goldschmidt, 1·380 A. W. Biltz and K. Meisel, W. Hulme-Rothery, E. H. Westling, J. C. Slater, M. L. Huggins, and G. Hägg discussed the packing density; and G. Destriau, the atomic volume in the solid and liquid states.

H. St. C. Deville and L. Troost ² discussed the **porosity** of platinum. H. St. C. Deville and H. Debray ³ said that platinum is nearly as hard as copper, and it is readily polished; and W. H. Wollaston observed that in compact masses, platinum is harder than copper, and softer than iron. T. Turner found the **hardness** of platinum on Mohs' scale to be 4 to 5; and J. R. Rydberg, 4 to 4.5. S. Bottone observed the relative hardness of platinum to be 0.1107 when that of copper is 0.1360; and F. C. Calvert and R. Johnson gave iron, 1000; lead, 16; and platinum, 375. C. A. Edwards gave 44 for Brinell's hardness; and F. E. Carter

gave for cast, hard, and annealed platinum, respectively, 50, 97, and 47; and for the scleroscopic hardness of hard and annealed platinum, respectively, 21, and 7. Observations were made by P. Rehbinder, C. Johnson, and A. T. Grigorieff. O. J. Broch and co-workers found that a wire supported at its two ends soon acquires a permanent sag. G. T. Beilby observed that the metal is readily hardened and softened. G. Tammann and co-workers studied the effect of cold work on the hardness.

W. H. Wollaston 4 remarked on the high tenacity of platinum wires and found that the metal is very ductile, for it can be drawn out into very thin wires--alone the metal can be drawn to a thickness of $\frac{1}{1040}$ th inch; and when enclosed in silver which is afterwards removed by acid, it can be drawn to agonth inch, or even to agonoth inch, but in the latter case, the wire is not coherent in long pieces. G. A. B. Klingenstein also observed that the metal can be beaten out into thin laminæ, like gold-leaf. W. H. Wollaston found that the presence of a small proportion of iridium makes the metal harder, and less ductile; and W. N. Hartley. that the presence of carbide and phosphide makes the metal brittle. K. Karmarsch found that the toughness of platinum lies between that of gold and that of copper; and A. Baudrimont made a similar observation, and added that the tensile strength of a wire 0.410 mm, in diameter was 22.625 grms, per sq. mm, at 0°; 19.284 at 100° ; and 17.277 at 200° . D. H. Ingall gave 14.27 tons or 32,000 lbs. per sq. in. at 15°. W. Geibel found a wire 1 mm. in diameter broke with a load of 24 kgrms. E. Steinmann studied the effect of annealing—vide infra, platinum-iridium alloys. F. E. Carter gave for 0.5 mm. wire, for hard and annealed platinum, respectively, 34 and 15 kgrms, per sq. mm., and percentage elongations in 2 inches, respectively A. Gaiffe noted how dust on the wires during the drawing may interfere 0.8 and 32. with their tenacity. According to P. Phillips, the tenacity, with slow elongation under the action of a constant load, can be represented by $x=a+b \log t$, where t is the time, and a and b are constants. With a load of 500 kgrms, per sq. cm., the value of b is zero, and with increasing loads, the value of b increases, time t indicates how long the load is acting before elongation begins:

Load .	500	654	771	854	952	1050	1247	1455	1560
$b\! imes\! 10^4$.	0	1.525	2.265	3.22	5.39	6.73	26.40	138.0	Fracture

The results are plotted in Fig. 5 with the corresponding values for copper, silver, and gold. The wires were 0.0506 cm. diameter, and were annealed 5 mins. by a current of 8.5 ampères. F. A. and C. L. Lindemann found at the absolute temp.

Fig. 5.—The Effect of Different Loads on the Tensile Strength of Platinum.

20.4°, 81°, and 290° K., that the tensile strengths of platinum were, respectively, 8600, 7251, and 5080 kgrms. per sq. cm. F. E. Carter gave for hard and annealed platinum, respectively 17,000 and 15,200 kgrms. per sq. mm. Observations were made by A. G. Grigorieff, and S. Erk. E. M. Wise and J. T. Eash found that purified platinum reduced 50 per cent. by cold work had an ultimate tensile strength of 36,000 lbs. per sq. in., proportional limit 20,700 lbs. per sq. in., elongation 2.5 per cent. in 2 ins., and reduction in area 95 per

cent.; when fully annealed at 1100°, the ultimate tensile strength was 20,700 lbs. per sq. in., elongation, 30 per cent. in 2 ins., and reduction in area 93 per cent. The addition of alloying elements in moderate amounts markedly increased the strength, and annealing temp., without detriment to the ductility.

F. Kohlrausch gave 17,020 kgrms. per sq. mm. for the **elastic modulus** or *Young's modulus* of platinum; E. Edlund gave 16,275 kgrms. per sq. mm.; C. Schaefer, 16,029 kgrms. per sq. mm.; and E. Grüneisen obtained two samples,

respectively, 17,021, and 17,080 kgrms. per sq. mm. G. Wertheim found the elastic moduli, E kgrms. per sq. mm., of drawn and annealed wires to be:

		Thi	n wires	Medi	ium wires	Thick wires		
		Drawn	Annealed	Drawn	Annealed	Drawn	Annealed	
$oldsymbol{E}$.		16,052	14,332	17,159	15,483	15,986	16,748	
Sp. gr.		21.166	20.753	21.235	21.083	21.207	20.987	

For drawn platinum wire, N. Katzenelsohn gave 17,187 kgrms. per sq. mm.; K. F. Slotte, 15,989; G. Wertheim, 17,044; H. Tomlinson, 16,225; and A. Winkelmann, 16,926 kgrms. per sq. mm.; and for annealed platinum wire,

G. Wertheim gave 15,518, and G. S. Meyer, 16,020 kgrms. per sq. mm. K. R. Koch and C. Dannecker's results, Fig. 6, show that the elastic modulus is nearly constant as the temp. rises to 400°, after which it falls. W. Sutherland found the extreme values which have been reported were 14,370 and 17,770—mean 16,000. Observations were made by A. T. Kupffer, A. G. Grigorieff, M. Cantone, M. Ascoli, L. P. Sieg, O. Feussner, and N. Gesehus. A. Wassmuth found the temp. coeff. of the elasticity coeff. is

Fig. 6.—The Effect of Temperature on the Elastic Modulus of Platinum.

 0.0_4978 . C. Schaefer gave 0.732 for the temp. coeff. of the elastic modulus in percentages for 100° difference of temp. between 0° and -186° . G. Wertheim gave for the elastic modulus of annealed platinum 15,518 kgrms. per sq. mm. at 10° to 15° ; 14,178 kgrms. per sq. mm. at 100° ; and 12,964 kgrms. per sq. mm. at 200° ; and for the unannealed metal, 15,647 kgrms. per sq. mm. at 10° , and 16,224 kgrms. per sq. mm. at -15° . W. Widder gave for the modulus of elasticity, $E=E_{20}\{1-0.0005734(\theta-20)\}$. K. F. Slotte gave:

H. Tomlinson gave for Young's modulus, 1490×10^6 grms. per sq. cm.; and A. Mallock, 1·27 for the ratio of Young's modulus at -273° and at 0° . P. Lasareff found the elastic limit is proportional to $n^{5/3}$, where n is the number of atoms per c.c. E. Grüneisen gave 1·0014 for the ratio of the adiabatic to the isothermal elastic modulus; and 0·368 to 0·387 for **Poisson's ratio**, *i.e.* the ratio of the lateral contraction to the longitudinal extension; C. Schaefer gave 0·22; F. E. Carter, 0·387; and H. Tomlinson 0·076. G. M. F. Sayre studied the elastic after-effect; and G. Tammann, the effect of cold-work on the physical properties.

C. Schaefer found the **rigidity** or **torsion modulus** to be 6593-6 kgrms. per sq. mm.; E. Grüneisen gave 6220 kgrms. per sq. mm. at 18° ; W. Sutherland gave 6500; H. Tomlinson, 6620; F. Horton, 6585; G. Pisati, 6280; A. T. Kupffer, 6370; and B. Gutenberg and H. Schlechtweg gave 6.8×10^{22} dynes per sq. cm. K. R. Koch and C. Dannecker observed that the effect of temp. on the torsion modulus T kgrms. per sq. mm., and the damping coeff., K, of wires 1.507 mm. in diameter, and 372.0 mm. in length is small, being

F. E. Carter gave 6·10 dynes per sq. cm. for the rigidity; and H. Tomlinson, 692·7×106 grms. per sq. cm. Observations were made by R. H. M. Bosanquet, J. Königsberger, A. G. Grigorieff, K. Iokibe and S. Sakai, and G. Wertheim, P. W. Bridgman observed that the rigidity increases under press. 2·4 per cent. per 10,000 kgrms. per sq. cm.; and that there are no breaks in the curves of shearing stress and pressure. The subject was discussed by L. H. Adams. The elastic VOL. XVI.

after-effect was found by E. Rehkuh to increase slightly with rise of temp. H. Sieglerschmidt studied the relation between the elastic modulus and the thermal expansion; O. Förster, the relation between the elastic modulus, the sp. ht., and the at. wt.; L. P. Sieg, the relation between the elastic modulus and the m.p.; H. Jeffreys, the relation between the tensile strength and the m.p.; A. H. Stuart, and J. Kleiber, the relation between the elastic constants and the sp. ht.; and A. Sayno between the sp. gr., the at. wt., the m.p., and torsion modulus. W. Sutherland gave $e/E=1-0.823\theta/T_m$, where e denotes Young's modulus at θ° , and E, at absolute zero; and T_m is the m.p. of the metal. The relation is imperfect because it gives a finite value for the modulus at the m.p. whereas it ought to give a zero value. Otherwise the observed values are approximately in accord with the expression. A. Jacquerod and H. Mügeli gave for the bending elasticity of platinum 19,900 kgrms. per sq. mm. at 0°, and 0.000075 for the temp. coeff. between 0° and 100°. F. E. Carter gave for the volume elasticity 24.7 dynes per sq. cm.; and for Ericsen's ductility test of hard and annealed platinum, respectively, 7.8 and 12.2 mm. K. Iokibe and S. Sakai gave for the rigidity and logarithmic decrement, for periods of about 10 seconds:

Rigidity × 10 ⁻¹¹		27° 6-41	191° 6·33	369° 6·18	604° 5·80	743° 5·04
6 2		26°	191°	385°	604°	690°
Log. decr		0.0,25	0.0.35	0.0297	0.0220	0.0500

and for the **viscosity** $n=1.75\times10^8$ at 15°. The subject was investigated by T. Kikuta, and G. Subrahmaniam.

T. and C. R. Andrews found that the stress required to compress a platinum cube, of edge 0.30 inch, down to 10 per cent. of its original height, is 12.82 tons per sq. in. E. Grüneisen gave 0.04×10^{-12} c.g.s. units for the cubic **compressibility** of platinum, and 0.39×10^{-6} to 0.40×10^{-6} for the coeff. of cubical compressibility; he found the effect of temp. on the coeff. of cubic compressibility β , to be:

The compressibility thus increases with rise of temp., whereas the coeff. of thermal expansion decreases with a rise of temp. The results with a few metals are illustrated by the curves, Fig. 7. L. H. Adams gave 0.3×10^{-6} to 0.37×10^{-6}

Fig. 7.—The Effect of Temperature on the Compressibility of Platinum.

megabars. P. W. Bridgman gave for wire at 30° $\delta v/v = -10^{-7}(3.60 - 1.8 \times 10^{-5}p)p$, and at 75°, $\delta v/v = -10^{-7}(3.64 - 1.8 \times 10^{-5}p)p$; and for rod at 30° , $\delta v/v = -0.06305p$, and at 75° , $\delta v/v = 0.06309p$. If β denotes the metal compressibility at 30°, and a, the coeff. of thermal expansion, P. W. Bridgman gave $\beta = 0.06305$ for drawn rod, and 0.06360for drawn wire at 30°; $(d\beta/\beta dp) \times 10^{-5} = 1.00$; and $-(da/adp) \times 10^5 = 0.33$. T. W. Richards found that the compressibility represented as the change in vol. which occurs between 100 and 500 atm. press. is 0.21×10^{-6} megabars. J. Y. Buchanan gave 0.1835 for the linear compressibility in million vols. per atm. press. B. Zdanoff studied the compressibility coeff. of crystals. E. Wagner deduced values for the effect of press. on the electronic density, and the electrical conductivity.

A. Press, J. P. Andrews, E. Grüneisen, S. Ratnowsky, W. Wen-Po, G. F. Djang, and A. H. Stuart studied the relation between the thermal expansion, at. vol., and compressibility; W. Widder, the m.p.; R. von D. Wegner, and G. A. Tomlinson studied the internal cohesion; and R. Holm and B. Kirschstein, the adhesion.

C. E. Guye and H. Schapper ⁵ measured the **viscosity** of platinum at different temp. and found that with wires 23 cms. long, and 0.8117 mm. diameter, the damping coeff. c, the period of oscillation, O seconds, and the second elastic modulus, N, were:

		100°	50°	0°	180°	195°
C		2-976	3.457	4.596	4.276	3.024
0.		1.143	1.135	1.133	$1 \cdot 123$	1.111
$N \times 10^{-11}$. 1	5.769				6.698

B. Gutenberg and H. Schlechtweg gave 1.7×10^8 c.g.s. units at ordinary temp. C. E. Guye and S. Mintz studied the effect of temp. on the viscosity, and found that in passing from a high to a low temp. the original logarithmic decrements are not obtained. These differences are smaller the higher is the temp. S. Virtel studied the resistance law for the motion of sub-microscopical particles through gases; and F. Hirata, through viscous liquids. M. Born and O. F. Bollnow calculated the cohesive force of the atoms in the space lattice to be 5.62×10^{11} dynes per sq. cm.

T. W. Richards 6 calculated for the internal pressure 347,000 megabars at 20°; and this value is exceeded only by tungsten. J. H. Hildebrand and co-workers,

and R. H. Mehl studied the cohesive press.

D. V. Gogate and D. S. Kothari 7 gave 1819 for the surface tension of platinum at 2000°. G. Quincke calculated the capillarity coeff. of hard, drawn platinum to be 3025 grms.; annealed platinum, 2388 grms.; and molten platinum, 169.04 mgrms. P. Palladino said that methylene bromide gives a concave meniscus with platinum; S. L. Bigelow and F. W. Hunter studied the effect of platinum walls on the capillarity of water, and of benzene; and E. Warburg and T. Ihmori, the effect on the capillarity of water. • E. Degen discussed the wetting of platinum by water; and F. E. Bartell and M. A. Miller, the adhesion of water to the metal.

The diffusion of various gases, etc., in platinum was studied by C. Matteucci, and G. Moreau, and the subject is discussed in connection with the chemical properties of the metal. W. Kettembeil, and A. Coehn and W. Kettembeil observed that mercury does not diffuse in platinum, but N. T. M. Wilsmore found that platinum amalgam will make platinum swell. W. C. Roberts-Austen observed that platinum diffuses more rapidly in bismuth than it does in lead. The diffusion coeff. for platinum in lead is 1.69 per sq. cm. per day, at 492°.

O. D. Chwolson 9 gave 2700 metres per second for the **velocity of sound** in platinum; A. Masson gave 2792·1 metres per second; and G. Wertheim gave 2684·9 metres per second for drawn wires, and 2733·4 metres per second for annealed wires. J. Kleiber found that the velocity of sound in metals is proportional to the sq. root of the product of the sp. ht. and the linear coeff. of expansion. Relative values were calculated by G. Wertheim on the assumption that the velocity in air is unity:

Thi	n wires	Mediu	m wires	Thic	k wires
	<u> </u>		^		^
Drawn	Annealed	Drawn	Annealed	Drawn	Annealed
8.241	7.832	8.467	8.111	8.218	8.074

REFERENCES.

¹ E. H. Archibald, Proc. Edin. Roy. Soc., 79. 721, 1909; Zeit. anorg. Chem., 60. 191, 1910; C. Barus, Amer. Journ. Science, (3), 86. 427, 1888; C. Benedicks, Zeit. phys. Chem.—Bodenstein's Festschrift, 379, 1931; P. Berthier, Traité des essais par la voie sèche, Paris, 2. 629, 1834; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 3. 231, 1841; W. Biltz and K. Meisel, Zeit. anorg. Chem., 198. 202, 1931; R. Böttger, Tabellarische Uebersicht der specifischen Gewichte der Körper, Frankfort, 1837; P. W. Bridgman, Proc. Amer. Acad., 58. 182, 1923; 64. 39, 1929; M. J. Brisson, Pesanteur specifique des corps, Paris, 1787; O. J. Broch, Procès Verbaux Comité Internat. Poids Menures, 210, 1878; O. J. Broch, H. St. C. Deville and J. S. Stas, ib., 149, 1879; J. Y. Buchanan, Proc. Roy. Soc., 78. A, 296, 1904; M. Chabaneau, Ann. Chim. Phys., (1), 25. 4, 1798; E. D. Clarke, The Gas Blowpipe, London, 93, 1819; F. W. Clarke, A Table of Specific Gravity, London, 15, 1888; J. Cloud, Gilbert's Ann., 72. 253, 1822; Schweiger's Journ, 48. 316, 1825; Trans. Amer.

Phil. Soc., 1, 161, 1818; W. P. Davey, Phys. Rev., (2), 25, 753, 1925; Zeit. Krist., 63, 316, 1926; H. St. C. Deville and H. Debray, Bull. Soc. Chim., (2), 26, 157, 1876; Compt. Rend., 81, 842, 1875; Phil. Mag., (4), 50. 558, 1875; C. A. Edwards, Metal Ind., 18. 221, 1921; C. A. Edwards 1875; Phil. Mag., (4), 50. 558, 1875; C. A. Edwards, Metal Ind., 18. 221, 1921; C. A. Edwards and A. M. Herbert, Journ. Inst. Metals, 25. 175, 1921; M. Faraday and J. Stodart, Quart. Journ. Science, 9. 319, 1820; Phil. Mag., (1), 56. 26, 1820; Edin. Phil. Journ., 3. 308, 1820; A. F. de Fourcroy, Systeme des connaissances chimiques, Paris, 4. 405, 1801; W. Gaede, Phys. Zeit., 4. 105, 1903; Ueber die Aenderung der specifischen Wärme der Metalle mit der Temperatur, Freiburg, 1902; V. M. Göldschmidt, Zeit. phys. Chem., 183. 397, 1925; J. A. Groshans, Rec. Trav. Chim. Pays-Bas, 4. 236, 1885; Phil. Mag., (5), 20. 19, 1885; E. Grüneisen, Ann. Physik, (4), 33. 1262, 1910; G. Hägg, Zeit. phys. Chem., 12. B, 33, 1931; R. Hare, Amer. Journ. Science, (2), 2. 281, 1820; M. L. Huggins, Phys. Rev., (2), 28. 1087, 1926; A. W. Hull, Science, (2), 52. 227, 1920; Phys. Rev., (2), 17. 571, 1921; (2), 18. 88, 1921; G. W. A. Kahlbaum, Ann. Physik, (4), 14. 585, 1904; Journ. Chim. Phys., 2. 537, 1904; G. W. A. Kahlbaum and E. Sturm, Zeit. angra. Chem., 46. 242, 1905; M. H. Klaproth, Scherer's Journ., 9, 413, 1802; F. C. A. H. Lantsanorg. Chem., 48. 242, 1905; M. H. Klaproth, Scherer's Journ., 9. 413, 1802; F. C. A. H. Lantsberry, Proc. Birmingham Met. Soc., 5. 101, 1913; J. von Liebig, Pogg. Ann., 17. 101, 1829; berry, Proc. Birmingiam Met. Soc., 5, 101, 1913; J. Vol. Llebig, Pogg. Ann., 17, 101, 1829; Ann. Chim. Phys., (1), 42, 316, 1829; T. M. Lowry and R. G. Parker, Journ. Chem. Soc., 107, 1005, 1915; R. F. Marchand, Journ. prakt. Chem., (1), 38, 386, 1844; P. T. Meissner, Handbuch der allgemeinen und technischen Chemie, Wien, 1832; P. Musschenbroeck, Introductio ad Philosophism Naturalem, Lugduni Baravorum, 2, 542, 1762; F. Mylius and R. Dietz, Ber., 31. Philosophism Naturalem, Lugduni Baravorum, 2. 542, 1762; F. Myilus and R. Dietz, Ber., 31. 3188, 1898; G. Osann, Pogg. Ann., 73. 605, 1848; L. Playfair and J. P. Joule, Mem. Chem. Soc., 3. 57, 1848; D. Prechtl, Gilbert's Ann., 58. 115, 1818; G. Quincke, Monatsb. Akad. Berlin, 132, 350, 1868; Pogg. Ann., 135. 642, 1868; T. W. Richards, Zeit. phys. Chem., 61. 185, 1908; Journ. Amer. Chem. Soc., 37. 1643, 1915; G. Rose, Pogg. Ann., 73. 14, 1848; 75. 403, 1848; Liebig's Ann., 68. 159, 1848; W. Hulme-Rothery, Phil. Mag., (7), 10. 217, 1930; A. Sayno, Rend. 1st. Lombardo, (2), 25. 637, 1892; W. Schlett, Ann. Physik, 26. 201, 1908; Ueber die Aenderung der Dichte und spezifischen Wärme bei Platin und Nickel durch Bearbeitung und über Temperaturabhangigkeit der spezifischen Wärme derselben, Marburg, 1907; B. Scholz, Schweigger's Journ., 12. abhangigkeit der spezifischen Warme derseiten, Maffourg, 1801; B. Schotz, Schweiger's Journ., 12.
349, 1814; C. Schumacher, Ueber die Berechnung dei bei Wägungen vorkommenden Reduktionen,
Hamburg, 31, 1838; T. Sexl, Zeit. Physik, 16, 34, 1923; C. von Sickingen, Versuche über die
Platina, Mannheim, 1782; J. C. Slater, Phys. Rev., (2), 36, 57, 1930; T. Thomson, A System
of Chemistry, Edinburgh, 1, 660, 1831; W. A. Tilden, Chem. News, 78, 18, 1898; A. W. Warrington, Phil. Mag., (5), 48, 498, 1899; G. Wertheim, Pogg. Ann. Ergb., 52, 1848; Compt. Rend., 19. 229, 1844; Ann. Chim. Phys., (3), 12. 385, 1844; E. H. Westling, Chem. News, 143. 34, 1931; W. H. Wollaston, Phil. Trans., 119. 1, 1929; Pogg. Ann., 15. 299, 1829; 16. 158, 1829; Quart. Journ. Science, 6. 97, 1829.

 H. St. C. Deville and L. Troost, Compt. Rend., 56, 977, 1863.
 G. T. Beilby, Phil. Mag., (6), 8, 258, 1904; S. Bottone, Chem. News, 27, 216, 1873; Amer. Journ. Science, (3), 6, 477, 1873; Pogg. Ann., 150, 644, 1873; O. J. Broch, H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Mesures, 140, 1879; F. C. Calvert and R. Johnson, Pogg. Ann., 108. 575, 1859; Phil. Mag., (4), 17. 114, 1859; Mem. Manchester Lit. Phil. Soc., 15. 113, 1860; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43. 397, 1923; H. St. C. Deville and H. Debray, Compt. Rend., 81. 842; 1875; C. A. Edwards, Metal Ind., 18. 221, 1921; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; H. St. C. Deville and H. Debray, Compt. Rend., 81. 842; 1875; C. A. Edwards, Metal Ind., 18. 221, 1921; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1832; Amer. Electrochem. Soc., 43. 397, 1923; Amer. Electrochem. Soc., 43. 397, 19 1928; Zeit. anorg. Chem., 178. 213, 1929; C. Johnson, Metal Ind., 39. 401, 1931; P. Rehbinder, Zeit. Physik, 72. 191, 1931; J. R. Rydberg, Zeit. phys. Chem., 33. 354, 1900; G. Tammann, Zeit. Metallkunde, 24. 220, 1932; G. Tammann and G. Bandel, Ann. Physik, (5), 16. 120, 1933; G. Tammann and K. L. Dreyer, ib., (5), 16. 111, 1933; T. Turner, Chem. News, 55. 179, 1887; Proc. Birmingham Phil. Soc., 5. 282, 1887; W. H. Wollaston, Phil. Trans., 103. 114, 1813; Ann. Phil., 1. 224, 1813; Gilbert's Ann., 52. 284, 1816.

4 L. H. Adams, Journ. Washington Acad., 17. 529, 1927; J. P. Andrews, Phil. Mag., (6), 50. 665, 1925; T. and C. R. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Phil. Mag., (6), 50. 665, 1925; T. and C. R. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 529, 1927; J. P. Andrews, Proc. Roy. Soc., 70. A, 250, 1902; M. Ascoli, Att. Acad., 17. 520, 1902; M. As

Lincei, (5), 4. 420, 1887; A. Baudrimont, Pogg. Ann., 82. 156, 1851; Liebig's Ann., 76. 123, Lincei, (5), 4. 420, 1887; A. Baudrimont, Pogg. Ann., 82. 156, 1851; Liebig's Ann., 76. 123, 1850; Ann. Chim. Phys., (3), 30. 310, 1850; Compt. Rend., 31. 115, 1850; R. H. M. Bosanquet, Phil. Mag., (5), 24. 160, 1887; P. W. Bridgman, Proc. Amer. Acad., 58. 182, 1923; 67. 333, 1932; 70. 285, 1935; Phys. Rev., (2), 48. 825, 1935; C. Broneis, Dingler's Journ., 116. 288, 1850; J. Y. Buchanan, Proc. Roy. Soc., 73. A, 296, 1904; M. Cantone, Nuovo Cimento, (4), 4. 270, 354, 1896; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; G. F. Djang, Journ. Chem. Phys., 4. 531, 1936; E. Edlund, Ann. Chim. Phys., (4), 8. 257, 1866; Oefvers. Vet Akad. Förh., 22. 295, 1865; Pogg. Ann., 126. 565, 1865; S. Erk, Zeit. Metallkunde, 21. 185, 1929; O. Feussner, Zeit. Physik, 21. 163, 1924; O. Förster, Zeit. Math. Phys., 41. 263, 1896; A. Gaiffe, Compt. Rend., 85. 625, 1877; Dingler's Journ., 240. 216, 1881; W. Geibel, Zeit. anorg. Chem., 70. 246, 1910; N. Geschus, Journ. Russ. Phys. Chem. Soc., 8. 311, 356, 1876; Chem. News. 36. 39, 1877; A. G. Grigorieff. Ann. Inst. Platine, 6, 178, 1928; Zeit. anorg. Chem., 178, 213, 1929; 39, 1877; A. G. Grigorieff, Ann. Inst. Platine, 6. 178, 1928; Zeit. anorg. Chem., 178. 213, 1929; E. Grüneisen, Ann. Physik, (4), 22. 811, 1907; (4), 25. 845, 1908; (4), 26. 398, 1908; (4), 38. 1264, 1910; (4), 39. 257, 1912; B. Gutenberg and H. Schlechtweg, Phys. Zeit., 31. 745, 1930; W. N. Hartley, Phil. Mag., (6), 4. 86, 1902; R. Holm and B. Kirschstein, Wiss. Veröff Siemens-Werken, 15. 122, 1936; F. Horton, Phil. Trans., 204. A, 1, 1905; Proc. Roy. Soc., 78. 334, 1904; 74. 401, 1905; D. H. Ingall, Journ. Inst. Metals, 30. 171, 1923; Metal Ind., 25. 371, 1924; K. Iokibe and S. Sakai, Phil. Mag., (6), 42. 397, 1921; Science Rev. Tohoku Univ., 10. 1, 1921; Proc. Phys. Math. Soc. Japan, (2), 2. 93, 1920; A. Jacquerod and H. Mügeli, Helvetica Phys.

Acta, 4. 3, 1931; H. Jeffreys, Phil. Mag., (7), 19. 840, 1935; K. Karmarsch, Mitt. Hannov. Gewerbever, 139, 1859; Jahrb. Polyt. Inst. Wien, 18. 54, 1934; N. Katzenelsohn, Ueber den Einfluss der Temperatur auf Elasticität der Metalle, Berlin, 1887; T. Kikuta, Science Rep. Tohoku Univ., 10. 139, 1921; J. Kleiber, Ann. Physik, 49, 46. 1054, 1915; G. A. B. Klingenstein, Kastner's Arch., 14.162, 1828; K. R. Koch and C. Dannecker, Ann. Physik, (4), 47. 197, 1915; J. Königsberger, Zeit. Physik, 40. 729, 1927; F. Kohlrausch, Lehrbuch der praktischen Physik, Leipzig, 231, 1905; A. T. Kupffer, Compt. Rend. Ann. Obs. Russ., 1, 1852; 1, 1854; Bull. Acad. St. Petersburg, 12. 129, 1854; P. Lasareff, ib., 13. 1005, 1919; F. A. and C. L. Lindemann, Nernst's Festschrift, 264, 1912; A. Mallock, Proc. Roy. Soc., 95. A, 429, 1919; G. S. Meyer, Wied. Ann., 59. 668, 1896; P. Phillips, Phil. Mag., (6), 9. 527, 1905; G. Pisati, Nuovo Cimento, (3), 1. 181, 1877; (3), 2. 137, 1877; (3), 4. 152, 1878; (3), 5. 34, 137, 1879; Gazz. Chim. Ital., 6. 57, 1876; 7. 61, 173, 1877; A. Press, Phil. Mag., (7), 2. 431, 1926; S. Ratnowsky, Verh. deut. phys. Ges., 15. 74, 1913; E. Rehkuh, Wied. Ann., 35. 494, 1888; T. W. Richards, Zeit. Elektrochem., 13. 519, 1907; Zeit. phys. Chem., 61. 192, 1908; Journ. Amer. Chem. Soc., 37. 1643, 1915; 46. 1419, 1924; A. Sayno, Rend. Ist. Lombardo, (2), 25. 637, 1892; G. M. F. Sayre, Journ. Rheology, 8. 206, 1932; C. Schaefer, Zeit. Physik, 17. 152, 1923; Ann. Physik, (4), 5. 233, 1901; L. P. Sieg. Phys. Rev., (2), 25. 251, 1925; H. Sieglerschmidt, Ann. Physik, (4), 35. 775, 1911; K. F. Slotte, Acta Soc. Fenn., 26, 1899; 29, 1900; E. Steinmann, Recherches sur la thermoélectricité de quelques alliages, Paris, 1900; Compt. Rend., 130. 819, 1900; A. H. Stuart, Journ. Inst. Metals, 16. 168, 1915; Proc. Inst. Mech. Eng., 1155, 1912; G. Subrahmaniam, Phil. Mag., (7), 1. 1074, 1926; W. Sutherland, ib., (5), 82. 31, 215, 524, 1891; G. Tammann, Zeit. Metallkunde. 26. 97, 1934; G. A. Tomlinson, Phil. Mag., (7), 11. 1009, 1931; H. Tomlinson, Phil. Trans., 174. 32, 1884; Proc. Roy. Soc., 32. 41, 1881; 38. 488, 1885; 40. 343, 1886; 43. 88, 1887; Phil. Mag., (5), 23. 245, 1887; (5), 24. 253, 1887; E. Wagner, Ann. Physik. (4), 27. 994, 1908; A. Wassmuth, Phys. Zeit., 6, 755, 1905; R. von D. Wegner, Zeit. Elektrochem., 34. 42, 1928; 35. 344, 1929; W. Wen-Po, Phil. Mag., (7), 22. 49, 281, 1936; G. Wertheim, Compt. Rend., 19. 229, 1844; Pogg. Ann. Ergbd., 2. 60, 1848; Ann. Chim. Phys., (3), 12. 385, 1844; W. Widder, Phys. Zeit., 26. 618, 1925; 32. 349, 1931; A. Winkelmann, Wied. Ann., 63. 117, 1897; E. M. Wise and J. T. Eash, Tech. Publ. Amer. Inst. Min. Eng., 584, 1934; W. H. Wollaston, Ann. Phil., 1. 224, 1813; Gilbert's Ann., 52. 284, 1816; Phil. Trans., 103. 114, 1813; V. Zdanoff, Zeit. Physik, **101**. 86, 1936.

 ⁶ C. Barus, Amer. Journ. Science, (3), 86. 178, 1888; Phil. Mag., (5), 26. 183, 1888;
 M. Born and O. F. Bollnow, Handbuch der Physik, Berlin, 24. 370, 1927;
 B. Gutenberg and H. Schlechtweg, Phys. Zeit., 31. 745, 1930; C. E. Guye and S. Mintz, Arch. Sciences Genève, (4), 26. 263, 1908; C. E. Guye and H. Schapper, Compt. Rend., 150, 962, 1910; F. Hirata, Bull. Chem. Soc. Japan, 10. 507, 1935; S. Virtel, Zeit. Physik, 59. 771, 1930.

4 J. H. Hildebrand, T. R. Hogness and N. W. Taylor, Journ. Amer. Chem. Soc., 45. 2828,

1923; R. H. Mehl, ib., 52. 534, 1930; T. W. Richards, Journ. Chem. Soc., 46. 1419, 1924;

48. 3063, 1926.

⁷ F. E. Bartell and M. A. Miller, Journ. Phys. Chem., **40**, 889, 1936; S. L. Bigelow and F. W. Hunter, Journ. Phys. Chem., **15**, 367, 1911; E. Degen, Pogg. Ann., **38**, 449, 1836; P. Palladino, Giorn. Farm. Chim., **58**, 5, 1909; G. Quincke, Sitzber. Akad. Berlin, 132, 350, 1868; Pogg. Ann., **134**, 360, 1868; E. Warburg and T. Impori, Wied. Ann., **27**, 505, 1886; D. V. Gogate and D. S. Kothari, Phil. Mag., (7), 20. 1136, 1935.

⁸ A. Coehn and W. Kettembeil, Zeit. anorg. Chem., 38. 216, 1904; W. Kettembeil, Studien über elektrolytische Amalgambildung und Versuche zur Metalltrennung durch Amalgambildung, Göttingen, 1903; C. Matteucci, Compt. Rend., 57. 251, 1863; Bull. Soc. Chim., (2), 5. 546, 1863; G. Moreau, Compt. Rend., 149. 118, 1909;
 W. C. Roberts-Austen, Phil. Trans., 187. A, 400, 1896;
 Proc. Roy. Soc., 59, 283, 1896;
 N. T. M. Wilsmore, Zeit. Elektrochem., 10, 685, 1904.

O. D. Chwolson, Lehrbuch der Physik, Braunschweig, 2. 39, 1904; J. Kleiber, Ann. Physik, (4), 48. 1054, 1915; A. Masson, Cosmos, 10. 425, 1858; Pogg. Ann., 108. 272, 1858; Compt. Rend., 44. 464, 1857; G. Wertheim, ib., 19. 229, 1844; Pogg. Ann. Ergbd., 2. 60, 1848; Ann. Chim. Phys., (3), 12. 385, 1844.

§ 11. The Thermal Properties of Platinum

J. F. Daniell 1 measured the thermal expansion of platinum and found that a rod of unit length at 62°, became 1.009926 units just about the m.p. of the metal. M. G. von Paucker observed for the coeff. of linear expansion 0.0411612; F. C. Calvert and co-workers gave 0.0000068 between 0° and 100°; A. Tissot, 0.0,8917 between 16° and 82°; H. Fizeau, 0.0,88206, and later, for purified platinum 0.0,890 at 20°, 0.05899 at 40°, and for the metal with 10 per cent. of iridium, 0.05884. A. Matthiessen observed for the coeff. of cubical expansion between 7.52° and 97°, $v = v_0(1 + 0.042554\theta + 0.07104\theta^2)$. Observations were made by M. Thiesen. E. L. Nichols, and W. D. Flower. R. Benoit obtained values for the coeff. of linear expansion ranging from $\alpha = (8840.5 + 1.89\theta^2) \times 10^{-9}$, and $\alpha = (8901 + 1.21\theta^2) \times 10^{-9}$.

H. le Chatelier gave for purified platinum, $\alpha=0.0_4113$, and for platinum with iridium 0.0_4105 between 0° and 1000° ; and T. Seliwanoff, $\alpha=0.0_5975$ between 0° and about 1600° — α increases rapidly up to 150° , and thereafter, slowly. H. G. Dorsey gave $\alpha=0.0_5815$ between 20° and -180° ; G. Shinoda, 9.9×10^{-6} between 15° and 1000° ; and L. J. Terneden:

$\alpha \times 10^9$.	100° 8,950	200° 9,050	300° 9,175	400° 9,350	500° 9,530	600° 9,750	700° 10,000	800° - 10,441
E. Grüneise	n gave :							
$a \times 10^6$	•		−150° 7·4	−100° 7·9	8	·8	100° 9·2	875° 11·2

and S. Valentiner and J. Wallot gave the following results, plotted in Fig. 8, for the average temp.:

L. Holborn and A. L. Day found that a rod of unit length at 0° becomes l at temp., θ °, between 0° and 1000°, where $l=(8868\theta+1\cdot324\theta^2)\times10^{-9}$, or $l=l_0(1+0\cdot0_58868\theta+0\cdot0_81324\theta^2)$; K. Scheel gave for θ ° between 16° and 56°,

Fig. 8.—The Effect of Heat on the Coefficient of Thermal Expansion (a).

 $l = l_0(1 + 0.058806\theta + 0.08195\theta^2)$; between 16° and -190° , $l=l_0(1+0.058615\theta+0.08370\theta^2)$; between 100° and -190° , $l=l_0(1+0.058749\theta)$ $+0.0_83141\theta^2-0.0_{11}694\theta^3$), and between 16° and -185°, K. Scheel and W. Heuse gave $l = l_0(1 + 0.0_58911\theta + 0.0_8491\theta^2)$; R. Benoit, $l = l_0(1 + 0.058868\theta + 0.081324\theta^2)$; H. K. Onnes and J. Clay, between 18° and -182° , $l=l_0(1$ $+0.059053\theta+0.08494\theta^2$); or volumetrically, $v = v_0(1 + 0.042716\theta + 0.071484\theta^2)$. J. B. Austin studied the subject. F. Henning observed that the changes in length of metre rods of platinum, and platinum with 20 per cent. of iridium, at 16° , were, respectively, -1.649mm. and -1.553 mm. at -191° ; +2.158and +2.006 mm., at 250° ; 4.623 and 4.321

and +2.006 mm., at 250°; 4.623 and 4.321 mm., at 500°; 7.254 and 6.813 mm., at 750°; and 10.051 and 9.483 mm., at 1000°.

E. A. Owen and E. L. Yates measured the thermal expansion of the space-lattice of platinum up to 600°, and obtained for the coeff. of expansion at θ °, $\alpha = \alpha_0(1+0.0_47908\theta+0.0_83817\theta^2-0.0_{11}7945\theta^3+0.0_{14}2943\theta^4)$ which is in close agreement with the generally-accepted values for the material taken as a whole.

E. Grüneisen found changes in the mean coeff. of thermal expansion by pressures of 1 and 1000 kgrms. per sq. cm. to be, respectively, 8.01×10^{-6} and 7.981×10^{-6} between 17° and -190° , and 9.00×10^{-6} and 8.976×10^{-6} between 17° and -100° . H. Buff discussed the heat of thermal expansion. Relations between the coeff. of thermal expansion and other physical properties have been examined. For example, T. Carnelley, and E. M. Lémeray examined the relation between the thermal expansion and the m.p.; H. Siegerschmidt, between the elastic modulus and the coeff. of expansion; H. F. Wiebe, between the at. vol. and the coeff. of expansion; S. Bidwell, between the electrical resistance, the sp. ht., and the coeff. of expansion; A. Press, J. P. Andrews, S. Ratnowsky, G. F. Djang, and E. Grüneisen, between the thermal expansion, at. vol. and compressibility; and Y. Endo, the expansion and the lattice energy.

If the thermal conductivity of gold is 1000, C. Despretz 2 found that the value for platinum is 981.0. G. Wiedemann and R. Franz took silver=100 as standard and found for platinum, in vacuo 9.4 to 11.7, and in air, 8.4 to 9.2; P. Riess gave

10.5; E. Becquerel, 7.93; R. Lenz, 10.3; F. C. Calvert and co-workers, 12.15; and G. Poloni, 11.7 at 18.25°. N. W. Fischer found that the thermal conductivities of copper, iron, and platinum are related as 12:7:6 at 100°; and at 220°, as 43:32:30. E. H. Hall, and E. Grüneisen and E. Goens studied the subject. W. Meissner observed the thermal conductivity of platinum to be k=0.167 cals. per cm. per degree per second at 0°; J. H. Gray gave k=0.1861 between 10° and 97°; and T. Barratt, 0.165 at 17°, and 0.170 at 100°. E. Hagen and H. Rubens represented the thermal conductivity at θ° between 0° and 800° by $k=k_0(1+0.0_2364\theta-0.0_6640\theta^2)$; and R. Holm and R. Störmer, by $k=0.699\{1+0.000283(\theta-19.5)\}$ between 19.5° and 1020°. P. W. Bridgman found a decrease in the thermal conductivity approximately, 1.9 per cent., for a change of press, of 12,000 kgrms, per sq. cm.; and he gave for the press, coeff, of the thermal conductivity -0.0516. W. Jäger and H. Diesselhorst gave 0.166 at 18° and 0.173at 100° for the pure metal, and 0.123 at 18° for impure metal. T. Barratt and R. M. Winter gave for k cals, per cm. per degree per second, 0.165 at 17° and 0.170 at 100°.

W. Swientoslawsky and S. Bakowsky ³ studied the evaporation of liquids from platinum surfaces. P. L. Dulong and A. T. Petit gave 0.0335 for the **specific heat** of platinum between 0° and 100°, and 0.0335 between 0° and 300°. H. V. Regnault obtained 0.03197 and 0.03294 between about 11° and 99°; H. Kopp gave 0.0325 between 20° and 52°; H. Tomlinson, gave between 0° and 100°, 0.03198θ+0.0₅63θ²; R. Bunsen, 0.03234 and 0.032672 between 0° and 100°; J. Joly, 0.0328 between 14° and 100°; L. Schüz, 0.03037 and 0.03295 between 15° and 100°; and A. Bartoli and E. Stracciati, 0.032238 between 16° and 100°. Observations were made by E. Terres and H. Biederbeck; and K. Schulz compiled a bibliography on the sp. hts. of the metals. J. Violle obtained for the mean sp. ht. between 0° and

or, sp. ht.= $0.0317+0.0000006\theta$. U. Behn gave for the purified metal, 0.0311 between 18° and -79° , and 0.0293 between 18° and -186° ; W. Jäger and H. Diesselhorst, 0.0326 between 17° and 100° ; W. A. Tilden, 0.0292 between 15° and -182° , and 0.03147 between 15° and 100° , 0.0338 between 15° and 435° , 0.0377 between 0° and 1000° , and 0.0388 between 0° and 1177° . L. Kunz obtained 0.0359 between 0° and 930° ; 0.0377 between 0° and 946° ; 0.0377 between 0° and 960° ; and 0.0378 between 0° and 1018° . A. Wigand working between 0° and the following temp. obtained 0.03145 at 32° ; 0.03181 at 54° ; 0.03204 at 97° ; 0.03216 at 133° ; 0.03223 at 162° ; and 0.03230 at 199° ; similarly with W. Schlett, 0.03055 at 8.37° ; 0.03072 at 9.84° ; 0.03144 at 49.36° ; 0.03118 at 50.45° ; 0.03198 at 96° ; 0.03206 at 111° ; 0.03236 at 207° ; and 0.03276 at 229° ; whilst W. P. White similarly obtained 0.03348 to 0.03355 at 500° ; 0.03423 to 0.03428 at 700° ; 0.03515 at 900° ; 0.03573 to 0.03578 at 1100° ; 0.03640 to 0.03647 at 1300° ; and 0.03675 to 0.03682 at 1500° . O. Byström gave:

100° 50° 150° 200° 250° 300° Sp. ht. 0.0323860.032480 0.0326680.0329500.0333260.0337960.034750T. W. Richards and F. G. Jackson gave 0.0279 between 20.5° and -190.2° for platinum alloyed with some iridium. W. Plato gave for iridiferous platinum 0.03369 at 600°, and 0.03430 at 750°. H. Esser and co-workers gave 0.0348 between 0° and 800° . J. Dewar observed 0.0135 at -223° . W. Gaede gave for purified platinum the true sp. hts.:

47·8° 99.2° 32.0° 62·2° 77·2° Sp. ht. 0.03129 0.0314560.031675 0.0317980.031927 0.032046W. P. White gave: 500° 700° 900° 1100° 1500° 1300° 0.0390 Sp. ht. . 0.03560.0368 0.03800.0400 0.0407 and E. Grüneisen:

-150° , -100° 0° 100° 875° Sp. ht. . . 0·0275 0·0295 0·0318 0·0332 0·042

W. P. White gave $c=0.03198+0.0_534\theta$; C. S. M. Pouillet, gave $c=0.0324+0.0_54\theta$; J. W. Richards, $c=0.032386+0.0_694\theta+0.0_6188\theta^2$; W. Schlett, $c=0.030595+0.0_4141\theta$ between 0° and 100°; and $c=0.030456+0.0_42972\theta+0.0_7561\theta^2$ between 0° and 300°; A. Magnus, $c=0.03159+0.0_558468\theta$ between 150° and 850°; W. Gaede, $c=0.03159+0.0_4136\theta-0.0_728\theta^2$ for temp. between 0° and 150°; and N. A. Jones and co-workers gave $C_0=5.40+0.0017T$. F. M. Jäger gave for the sp. ht., $c_p=0.03162+0.0_561725\theta+0.0_923325\theta^2$.

W. A. Tilden gave 6.05 for the **atomic heat**; U. Behn, 6.3 from 18° to 100°, 6.1 from 18° to -79°, and 5.4 from -79° to -186°; T. W. Richards and F. G. Jackson, 5.45 from 20° to -188°, and 6.3 from 20° to 100°; O. M. Corbino, 6.47 at 500°, and 7.37 at 1500°; and J. Dewar, 2.63 at -223°. W. Zeidler, and F. Simon and

W. Zeidler gave for the sp. and at. heats, c_p and C_p respectively:

F. M. Jäger and E. Rosenbohm gave:

O. M. Go bino measured the sp. ht. at constant vol.; and L. Fabaro gave $c_p=c_v\{1+0.0_463(T+273)\}$. E. Grüneisen said that the ratio of the sp. ht. at constant press. to that at constant vol. is 1.019 at 18° . W. Weber gave 0.0259 for the sp. ht. at constant vol., and he added that the temp. rises or falls by 100° if the metal be compressed or dilated, respectively, by one sixty-seventh. W. Schlett found the sp. ht. of 3 samples of commercial platinum vessels to range from 0.03118 to 0.03168; a cast specimen had a sp. ht. of 0.03168, when hammered to 2 mm. the value was 0.03134, and when cold-drawn to 0.5 mm., 0.03150; a specimen of cast platinum had a sp. ht. of 0.03188, and after annealing for 30 minutes at a white heat, 0.03145. F. M. Jäger and co-workers found the sp. ht. of annealed platinum to be 2 per cent. higher than that of the unannealed metal. E. Grüneisen found that the mean sp. ht., c_p , of platinum is increased by 0.0619 per kgrm. per sq. cm. S. Bidwell studied the relation between the sp. ht., the electrical resistance, and the coeff. of thermal expansion; A. H. Stuart, and O. Förster, the relation between the elastic constants and sp. ht.; and J. Maydel, the general formula.

The melting point of platinum is so high that the metal was intractable in the furnaces available for melting metals during the first half of last century. W. Nasse 4 could not melt it in the hard-porcelain oven, but L. Elsner melted platinum black into small, metallic beads, and J. J. Prechtl did succeed in melting it in an oven heated by charcoal, and C. Aubel melted it in the hottest part of a charcoal blast-furnace, but W. Heraeus did not accept the evidence. V. Meyer melted the metal in a charcoal blast-furnace; and H. Violette melted 50 grms. in a crucible made of gas-carbon heated in a fire-clay crucible in a furnace connected with a high chimney. The carbon, etc., here present would, according to J. B. Dumas, lower the m.p. of the metal. The metal does not melt in the strongest heat of a forge, although M. Faraday and J. Stodart obtained imperfect fusion; if, however, the fuel be in contact with the platinum fusion may occur owing to the formation of silicides and carbides of platinum. The metal was fused in the oxy-hydrogen flame by E. D. Clarke, W. Maugham, A. Marcet, E. F. Dürre, and R. Hare. R. Hare melted 28 ozs. of platinum on a block of lime heated by the oxyhydrogen flame; and H. St. C. Deville, and H. St. C. Deville and H. Debray modified R. Hare's procedure and were able to melt a kilogram of metal with the consumption of 60 to 100 litres of oxygen. F. Reich melted platinum on a block

of magnesite by the oxy-carbon monoxide flame: and E. J. Chapman used the same source of heat. H. St. C. Deville also melted the metal in the oxy-coal gas flame; and in the alcohol flame fed with oxygen. M. Brettel melted the metal by a few seconds' exposure in the focus of a 3-foot burning lens. W. N. Hartley found that wires 0.025 mm. diameter can be melted in the flame of a candle; W. Skey melted pointed wires in the ordinary blowpipe flame; C. Féry melted thin wires in a bunsen burner. C. Féry and C. Chéneveau found that a horizontal wire heated electrically broke at 1690°, rather below the true m.p., a vertical wire similarly heated fused to a drop at 1710°; a wire held vertically in the flame of a meker burner fused to a bead at 1740°, and in the oxy-coal gas flame, the fusion temp, was between 1700° and 1750° according as an oxidizing or reducing flame was employed. This shows that the m.p. of platinum, like that of silver, depends on the nature of the atmosphere in which the fusion occurs. The subject was discussed by C. W. Waidner and G. K. Burgess. R. C. Smith observed the sintering of precipitated platinum-black occurs at about 500°. J. G. Children, P. Riess, and C. Despretz melted platinum wires heated by the passage of an electric current, and, as previously indicated, C. W. von Siemens and A. K. Huntington, and others melted the metal in an electric furnace. M. Rabinovitsch studied the glow on heating the finely-divided metal; R. Wright and R. C. Smith, the sintering of the finely-divided metal; and J. A. M. van Liempt and J. A. de Vriend, the time of melting thin wires.

The methods available for measuring high temp. were very unsatisfactory throughout the greater part of the nineteenth century; and consequently the m.p. of platinum could not be determined with precision. Thus, E. Becquerel gave 1460° to 1480°; J. Becquerel, 1560° to 1580°; R. Pictet, 1700°; H. Seger, 1725°; C. Barus, 1757°; W. Holman and co-workers, 1760°; F. Hoffmann, 1771°; T. Erhard and A. Schertel, and J. Violle, 1775°; L. Holborn and W. Wein, 1780°; H. St. C. Deville, 1900°; H. St. C. Deville and H. Debray, T. Carnelley, R. Pictet, and G. Quincke, 2000°; J. Dewar, 2100°; P. H. van der Weyde, 2200°; H. A. Mott, 2300°; and C. F. Plattner, 2534°. J. C. Hoadley found that the metal begins to melt at 1621°. The early workers discovered that the metal could be welded at a white heat, and this property enabled W. H. Wollaston to prepare compact masses of malleable platinum, and C. M. Marx, to repair injured platinum vessels. R. Spring found that many metals heated to temp. below their m.p. exhibit properties characteristic of the liquid state; thus, when cylinders of the metals with plane surfaces of contact are subjected to press. for 4 to 8 hrs. at 400°, all the metals tried, with the exception of platinum and antimony, were welded so thoroughly that if the piece be broken the fracture does not take place at the original surfaces of separation.

J. A. Harker obtained 1710° for the m.p. of platinum, but this datum is too low; L. Holborn and S. Valentiner gave 1789°, but this value is rather larger than that obtained by other investigators; L. Holborn and W. Wien gave 1780°; and L. Holborn and F. Henning, 1710°. F. Doerinckel, 1744°; O. Goecke, 1745° to 1755°; K. R. Koch and C. Dannecker, 1750°; A. L. Day and R. B. Sosman, 1755°; W. Nernst and H. von Wartenberg, 1745°; W. Holman and co-workers, 1760°; C. W. Waidner and G. K. Burgess gave 1753°; H. E. Ives, 1764°; F. Hoffmann, 1771°; F. E. Carter, 1755°. G. Ribaud and P. Mohr gave 1762°; L. D. Morris and S. R. Scholes, 1773°; W. F. Roeser and co-workers, 1773·5°; F. H. Schofield, 1773·3°; and F. Hoffmann and C. Tingwaldt, 1773·8° for the f.p. Observations were made by O. Ruff. The temp. determinations also depend on the values assigned to the constant in the equation employed in standardizing the pyrometers.

H. St. C. Deville and H. Debray, and W. Heraeus noted the **spitting** of molten platinum during cooling owing to the liberation of absorbed gases as the metal solidifies. C. E. Mendenhall and L. R. Ingersoll found that platinum may be supercooled 370°, and that when the metal solidifies there is a momentary flash of light. J. L. Byers discussed the behaviour of platinum on cupellation.

Calculations of the m.p. from empirical equations have been made, and J. W. Richards thus obtained 1775°, and E. Brodhun and F. Hoffmann, 1771°; L. I. Dana and P. D. Foote gave 1755° for the best representative value; and W. R. Mott, W. Guertler and M. Pirani gave 1760°, and K. Scheel, 1764°. J. Johnston calculated that the raising of the atm. press. 1 atmosphere lowers the m.p., and that at a press. of 46,000 atm. platinum would accordingly melt at 27°—that is, of course, if something else did not happen. C. T. Heycock and F. H. Neville measured the lowering of the f.p. of cadmium, thallium, lead, and bismuth by about a gram-atom of platinum in 100 gram-atoms of metal. P. W. Robertson, and W. Crossley discussed the relation between the at. vol. and the m.p.; J. Johnston, the effect of press. on the m.p.; A. Stein, the relation between the electrical resistance, the at. vol., and the m.p.; T. Carnelley, and E. M. Lémeray, the relation between the m.p. and the coeff. of thermal expansion; L. P. Sieg, the relation between the m.p. and the elastic modulus; W. Braunbek, the lattice energy of melting; H. Jeffreys, the relation between the m.p. and the tensile strength; W. Herz, the relation between the m.p. and its vibration frequency; W. Widder, and N. F. Deerr, the relation between the m.p. and the latent heat of fusion; and W. Sutherland, the relation between the m.p. and the elastic constants. J. Johnston observed that if D be the density of the substance at the m.p., T, the absolute m.p., and Q, the heat of fusion per gram, then the press. required to melt platinum at 27° is $95 \cdot 1QD \log (T/27)$, or 46,000 atm.

H. Moissan 5 found that the volatilization of platinum readily occurs in the electric arc furnace, indeed, the metal boils and distils as readily as water does at 100°. O. J. Broch and H. St. C. Deville observed no volatilization when melted in oxygen gas; W. N. Hartley observed none in the oxy-hydrogen flame; and F. Mylius and F. Förster, and R. W. Hall found no evidence of volatilization at high temp. If the rate of volatilization of osmium at 1300° is 1000, that of platinum is 2. On the other hand, A. Knocke observed that in vacuo platinum volatilizes at 540°, but not at 538°. W. Crookes observed that an electrically heated wire volatilizes nearly half as rapidly as gold; and at 1300°, platinum lost in 2 hrs. 0.019 per cent. and in 30 hrs., 0.245 per cent., although no loss was observed at 900°; he first thought that the volatility is due to the formation and decomposition of unstable, volatile oxides, but later gave up the hypothesis. R. W. Hall said that the behaviour of platinum when heated is best explained by the hypothesis that an oxide is formed which is stable at high and low temp., but unstable at intermediate temp.—vide infra, action of oxygen on platinum. F. E. Carter said that an appreciable volatilization occurs at 1000°. H. St. C. Deville also said that the metal volatilizes rapidly at a temp. a little above its m.p.; and C. Zengelis, D. Balareff, H. M. O'Bryan, and A. Guntz and H. Bassett observed some volatilization below the m.p. J. Orcel said that the metal is sensibly volatile at 1300°, and rapidly at 1500°. L. Elsner also observed that the metal volatilizes to some extent when heated in the hard porcelain oven. W. Crookes observed the losses in weight when platinum is heated in air at 1300° to be:

but no perceptible loss occurred during 20 hrs.' heating at 900°. I. Langmuir and G. M. J. MacKay estimated the rate of evaporation of platinum, m grms. per sq. cm. per second, at different temp. on the absolute scale, T° K., and found $\log m = 14.0 - 27800T^{-1} - 1.76 \log T$, or:

 T° K. . 1000° 1250° 1500° 1750° 2000° Grms. loss $8\cdot32\times10^{-20}$ 20·4 $\times10^{-16}$ 75·4 $\times10^{-n}$ 25·4 $\times10^{-9}$ 1·95 $\times10^{-6}$ per sq. cm. per sec.

F. Beilstein said that the loss in weight with crucibles becomes less and less with repeated ignitions, and L. L. de Koninck attributed the loss to the distillation of iridium from the alloy. R. W. Hall found the loss in some cases to be greater

after the twentieth ignition than after the first; in some cases, the crucible after a month's use ceases to lose weight. H. A. Jones and co-workers found the rate of evaporation, m grms. per sq. cm. per second, and the vap. press. p bars, to be:

°K.			800°	1000°	1500°	2000°
m			1.39×10^{-86}	6.70×10^{-20}	5.23×10^{-11}	1.24×10^{-6}
\boldsymbol{p}	•	•	5.99×10^{-22}	3.47×10^{-15}	3.31×10^{-6}	9.07×10^{-2}
°K.			3000°	4000°	4800° (b.p.)	
m			1.5×10^{-2}	$1 \cdot 2$	8.9	
p			1.3×10^{3}	1.2×10^5	1.0×10^6	

G. K. Burgess and P. D. Sale showed that iridium is added to the platinum of crucibles for stiffening the metal, although it increases the losses in weight at temp. exceeding 900°. According to G. K. Burgess and R. G. Waltenberg, crucibles with up to about 3 per cent. of iridium have a negligible loss when heated below 900°; iron lowers the heat losses, and below 900°, ferruginous platinum may appear to gain in weight owing to the diffusion of the metal to the surface, and there oxidizing—vide infra, action of iron oxides on platinum. G. K. Burgess and P. D. Sale found that rhodium like iridium stiffens platinum, and reduces the volatilization of platinum above 900°. Observations were made by J. Strong, F. Mohr, E. Sonstadt, A. K. Boldyreff, G. A. Hulett and H. W. Berger, and E. Goldstein. G. C. Wittstein referred the loss to osmium, but F. Stolba pointed out that the loss in weight is greater than the amount of osmium in the platinum.

O. L. Erdmann thought that the grey film produced on platinum heated in a non-reducing bunsen flame is due to an allotropic change because he could detect no variation in weight, but A. Rémont showed that the film can be produced by heating the metal in a reducing flame and is then due to the formation and subsequent decomposition of a carbide, and in the case of burning gas, it is produced not by carbon suspended in the flame, but rather by one or more gaseous constituents of the flame. F. Stolba discussed this subject. L. Troost and P. Hautefeuille, L. Pigeon, and F. Seelheim noted that platinum volatilizes at a yellow heat in chlorine, and V. Meyer found that platinum so lost 1 per cent. in weight when heated in a current of dry chlorine at 1750°—presumably, in this case, an intermediate volatile chloride is formed. J. Strong studied the vaporization of platinum in vacuo from a tungsten filament; and O. Goche, the cathodic evaporation of platinum in a magnetic field.

P. Riess noted that when platinum wires are heated electrically material particles or dust are given off by the metal, and analogous observations were made by A. Berliner, T. A. Edison, J. Elster and H. Geitel, F. Emich, F. Fischer and H. Marx, W. D. Flower, H. Goldschmeid, F. Henning and L. Austin, L. Holborn and F. Henning, G. A. Hulett and W. Berger, S. Kalandyk, H. Kayser, V. Kohlschütter and T. Goldschmidt, J. A. M. van Liempt, O. J. Lodge, W. Muthmann and H. Hofer, R. Nahrwold, and G. Reboul and E. G. de Bollemont. L. Hamburger observed that thin volatilization films of platinum are not resolvable into W. Stewart found that the loss is the same in dry or moist air; it does not occur in hydrogen even at a white-heat, and only very feebly in nitrogen; the loss decreases with decreasing press., thus in air at 760 mm., the loss in 2 hrs. was 1.65 per cent., 0.64 per cent. when the press. was 1.25 mm.; the loss in 2 hrs. in nitrogen at 760 mm. was 0.003 per cent., and at 3 mm. press., the loss was imperceptible. The loss in air is conditioned by the percentage amount of contained oxygen. I. Langmuir observed no loss in steam or in carbon dioxide at 1300°. R. W. Hall noted that the loss in weight occurs when the wires are heated in oxidizing gases, but not in reducing or indifferent gases. It is assumed that a volatile platinum oxide is formed and that the sublimed oxide, on cooling, decomposes into platinum. H. Freundlich observed that the phenomenon does not occur so readily when the platinum is alloyed with other metals. J. H. T. Roberts showed that two sets of nuclei are evolved when platinum wires are heated. The first set is gradually

eliminated with continuous heating, and they are produced by the evolution of the gases occluded by the wires. The properties of the nuclei are as follow:—

They are emitted by the wire at comparatively low temp. The minimum temp, required to produce them is lower the less the press. of the surrounding gas. They alter in size and disappear very soon after their liberation, but last longer if water-vapour has been caused to condense upon them. The ability of the wire to emit them is temporarily lost after an emission, but is slowly regained after the lapse of time. The wire immediately regains the ability to produce them when hydrogen is brought into contact with it; air, oxygen, and nitrogen do not produce this effect. If the wire has been kept at a white-heat in a vacuum for a very long time, the admission and withdrawal of pure hydrogen does not revive the power to emit nuclei in a vacuum.

The second set is dependent on the presence of oxygen about the heated wire,—these nuclei are never obtained below a certain temperature, and about this temp. they are always formed in the presence, but never in the absence of oxygen. The properties of the second set of nuclei indicate that an unstable, endothermal, and volatile platinum oxide is formed as indicated above, and this is in agreement with the following observations:

The second set of nuclei are not formed in nitrogen, hydrogen, or a vacuum, but only in the presence of oxygen. The rate of loss of weight of the metal is zero in nitrogen, hydrogen, or a vacuum. For platinum and rhodium the rate of disintegration at a given temperature is roughly proportional to the oxygen pressure; for iridium, which is very oxidizable, the rate of disintegration increases much more rapidly than the oxygen pressure. The disintegration of palladium is of a different nature and will be considered later. At low pressures of oxygen the nuclei are very small. The nuclei begin to be formed (that is, the disintegration begins) at a fairly definite temperature. The nuclei are very persistent and do not alter in size; they are unaffected by light or by an electric field.

I. Langmuir and G. M. J. MacKay, and W. R. Mott estimated the **boiling point** to be 3907°; H. A. Jones and co-workers gave 4527°; and F. E. Carter, 3910°. G. A. Hulett estimated that the **vapour pressure** of platinum at 200° is 0.0_626 mm. I. Langmuir and G. M. J. MacKay calculated the vap. press. of platinum, p mm. at different temp., on the absolute scale, T° K., and found $\log p = 14.09 - 27800T^{-1}$ —1.26 $\log T$, or:

J. A. M. van Liempt studied the vap. press. curves.

According to L. Arons,6 when a bead of platinum is fused, and cooled, as the metal solidifies it emits a momentary glow owing to the liberation of the heat of fusion. J. Violle gave 27.18 Cals. per gram or 5.3 Cals. per gram-atom for the latent heat of fusion; G. Pionchon gave 27:17 Cals.; and J. W. Richards computed 27.8 cals. per gram, J. A. M. van Liempt calculated 5300 cals. per gram-atom. N. F. Mott studied the relation between the latent heat, the m.p., and the electrical conductivity. N. von Raschevsky, and N. F. Deerr made some observations on the relation between the m.p. and the heat of fusion. I. Langmuir and G. M. J. MacKay represented the latent heat of vaporization by (128,000-2.5T) cals. per gram-atom. F. S. Mortimer also studied the vapour pressure. A. Jouniaux said that Trouton's rule did not apply to platinum. C. M. Guldberg estimated the critical temperature of platinum to be 7000° when that of mercury is 1000°. J. J. van Laar, and M. Thiesen discussed the equation of state of platinum. J. Thomsen studied the thermochemistry of the platinum compounds. G. N. Lewis and co-workers, R. C. Tolman, and E. C. Eastman gave 10.0 for the entropy of platinum at 25°; W. M. Latimer gave 0.41 for the change of entropy between 200° and 900°. The internal energy and entropy were studied by K. K. Kelley, R. D. Kleeman, W. Herz, B. Bruzs, R. von D. Wegener, and E. Kordes. E. D. Eastman and co-workers discussed the thermal energy of the electrons in platinum.

REFERENCES.

1 J. P. Andrews, Phil. Mag., (6), 50. 665, 1925; J. B. Austin, Physics, 8. 240, 1932; R. Benoit, Trav. Mém. Bur. Internat. Poids Mesures, 6. 1, 1888; S. Bidwell, Proc. Roy. Soc., 37. 25, 1884; O. J. Broch, Procès Comité Internat. Poids Mesures, 241, 1878; H. Buff, Pogg. Ann., 145. 626, 1872; Phil. Mag., (4), 44. 544, 1872; F. C. Calvert and R. Johnson, B.A. Rep., 46, 1858; F. C. Calvert, R. Johnson and G. C. Lowe, Proc. Roy. Soc., 10. 315, 1895; Phil. Mag., (4), 20. 230, 1860; Chem. News, 3. 357, 1861; T. Carnelley, Ber., 12. 439, 1879; H. le Chatelier, Compt. Rend., 108. 1097, 1889; J. F. Daniell, Phil. Trans., 120. 26, 1830; 121. 443, 1831; G. F. Djang, Journ. Chem. Phys., 4. 530, 1936; H. G. Dorsey, Phys. Rev., (1), 25. 88, 1907; Y. Endo, Tokoku Univ. Aeronaut. Research Inst., 1. 225, 1924; H. Fizeau, Compt. Rend., 64. 314, 771, 1867; 68. 1125, 1869; Pogg. Ann., 132, 292, 1867; 138. 26, 1869; W. D. Flower, Phil. Mag., (7), 5. 1084, 1928; E. Grüneisen, Ann. Physik, (4), 26. 214, 1908; (4), 33. 76, 1910; (4), 39, 257, 1912; (4), 55. 371, 1918; F. Henning, ib., (4), 22. 631, 1907; L. Holborn and A. L. Day, Sitzber. Akad. Berlin, 1009, 1900; Ann. Physik, (4), 4. 104, 1901; E. M. Lémeray, Compt. Rend., 131. 1291, 1900; A. Matthiessen, Phil. Trans., 156. 861, 1866; Pogg. Ann., 130. 50, 1867; Proc. Roy. Soc., 15. 220, 1866; V. Meyer, Zeit. phys. Chem., 9. 519, 1892; E. L. Nichols, Phil. Mag., (5), 13. 38, 1882; H. K. Onnes and J. Clay, Comm. Phys. Lab. Leiden, 95, b. 1906; Versl. Akad. Amsterdam, 15. 151, 1906; 16. 243, 1907; Proc. Amsterdam Acad., 9, 199, 1906; E. A. Owen and E. L. Yates, Phil. Mag., (7), 17. 113, 1934; M. G. Paucker, Centr. Naturw. Anthropol., 1. 233, 1853; Bull. Acad. St. Petersburg, (2), 10. 209, 1852; A. Press, Phil. Mag., (7), 2. 431, 1926; S. Ratnowsky, Verh. deut. phys. Ges., 15. 74, 1913; K. Scheel and W. Heuse, ib., 9, 449, 1907; Phys. Zeit., 8, 760, 1907; K. Schulz, Fortschr. Min., 4, 336, 1914; 5, 293, 1916; 6. 137, 1920; 7, 327, 1922; T. Seliwanoff, Proc. Russ. Phys. Chem. Soc., 23, 15

757, 1914; H. F. Wiebe, Ber., 11. 610, 1878.

2 T. Barratt, Proc. Phys. Soc., 26. 397, 1914; T. Barratt and R. M. Winter, ib., 26. 347, 1914; Ann. Physik, (4), 77. 1, 1925; E. Becquerel, Compt. Rend., 22. 416, 1846; Ann. Chim. Phys., (3), 17. 242, 1846; P. W. Bridgman, Proc. Amer. Acad., 57. 77, 1922; 59. 119, 1923; Phys. Rev., (2), 18. 115, 1921; F. C. Calvert and R. Johnson, Compt. Rend., 47. 1069, 1858; Phil. Trans., 148. 354, 1858; F. C. Calvert, R. Johnson and G. C. Lowe, Proc. Roy. Soc., 10. 315, 1895; Phil. Mag., (4), 20. 230, 1860; Chem. News, 3. 357, 1861; C. Despretz, Ann. Chim. Phys., (2), 36. 422, 1827; Pogg. Ann., 12. 282, 1828; J. H. Gray, Phil. Trans., 186. A, 185, 1895; Proc. Roy. Soc., 56. 202, 1894; E. Grüneisen and E. Goens, Zeit. Physik, 44. 615, 1927; N. W. Fischer, Pogg. Ann., 19. 512, 1830; 52. 635, 1841; E. Hagen and H. Rubens, Sitzber. Akad. Berlin, 467, 1910; E. H. Hall, Proc. Nat. Acad., 6. 613, 1920; R. Holm, Zeit. tech. Phys., 10. 621, 1929; Wiss. Veröff. Siemens-Konzern, 2. 217, 1929; R. Holm and R. Störmer, ib., 9. 312, 1930; W. Jäger and H. Diesselhorst, Abh. Phys. Tech. Reichsanst., 3. 269, 1900; R. Lenz, Influence de la température sur la conductibilité calorifique des métaux, St. Petersburg, 1869; W. Meissner, Ann. Physik, (4), 47. 1038, 1915; G. Poloni, Rend. Ist. Lombardo, (2), 15. 386, 1882; P. Riess, Pogg. Ann., 64. 49, 1845; G. Wiedemann and R. Franz, Pogg. Ann., 69. 530, 1853.

3 A. Bartoli and E. Stracciati, Rend. Ist. Lombardo, 28, 524, 1895; Gazz. Chim. Ital., 25. i, 389, 1895; U. Behn, Wied. Ann., 66, 237, 1898; S. Bidwell, Proc. Roy. Soc., 37, 25, 1884; R. Bunsen, Wied. Ann., 31, 1, 1887; O. Byström, Oefv. Vet. Förh. Stockholm, 17, 307, 1860; O. M. Corbino, Atti Accad. Lincei, (5), 22. i, 684, 1913; Phys. Zeit., 14, 921, 1913; J. Dewar, Proc. Roy. Soc., 89, A, 158, 1913; P. L. Dulong and A. T. Petit, Ann. Chim. Phys., (2), 7, 113, 1818; H. Esser, R. Averdieck and W. Grass, Arch. Eisenhüttenwesen, 6, 289, 1933; L. Fabaro, Nuovo Cimento, (6), 9, 123, 1915; O. Förster, Zeit. Math. Phys., 41, 263, 1896; W. Gaede, Phys. Zeit., 4, 105, 1903; Ueber die Aenderung der specifischen Wärme der Metalle mit der Temperatur, Freiburg, 1902; E. Grüneisen, Ann. Physik, (4), 26, 401, 1908; (4), 33, 77, 1910; J. C. Hoadley, Journ. Franklin Inst., 84, 91, 1882; F. M. Jäger, Zeit. anorg. Chem., 203, 97, 1931; F. M. Jäger and E. Rosenbohm, Rec. Trav. Chim. Pays. Bas, 47, 513, 1928; Versl. Akad. Amsterdam, 36, 960, 1927; Proc. Akad. Amsterdam, 30, 1069, 1927; 38, 457, 1930; F. M. Jäger, E. Rosenbohm and J. A. Bottema, ib., 35, 763, 1932; F. M. Jäger and J. E. Zanstra, ib., 34, 15, 1931; W. Jäger and H. Diesselhorst, Abh. Phys. Tech. Reichsanst, 3, 269, 1900; J. Joly, Proc. Roy. Soc., 41, 352, 1887; H. A. Jones, I. Langmuir and G. M. J. Mackay, Phys. Rev., (2), 30, 206, 1927; H. Kopp, Liebig's Ann. Suppl., 3, 74, 1864; L. Kunz, Ann. Physik, (4), 14, 325, 1909; A. Magnus, ib., (4), 48, 983, 1915; J. Maydel, Zeit. anorg. Chem., 177, 113, 1928; W. Plato, Zeit. phys. Chem., 55, 736, 1906; C. S. M. Pouillet, Compt. Rend., 3, 782, 1836; Pogg. Ann., 39, 573, 1836; H. V. Regnault, ib., 51, 44, 213, 1840; Ann. Chim. Phys., (2), 78, 5, 1840; J. W. Richards, Journ. Franklin Inst., 136, 184, 1893; T. W. Richards and F. G. Jackson, Zeit. phys. Chem., 70, 447, 1910; W. Schlett, Ueber die Aenderung der Dichte und spezifischen Wärme bei Platin und Nickel durch Bearbeitung und uber Temperaturabhangigkeit der spezifischen

Chem., 128. 383, 1926; A. H. Stuart, Journ. Inst. Metals, 16. 168, 1915; W. Swientoslawsky and S. Bakowsky, Bull. Acad. Polonaise, 191, 1930; E. Terres and H. Biederbeck, Gas Wasserfach, 71. 265, 297, 320, 338, 1928; M. Thiesen, Ber. deut. phys. Ges., 6. 412, 1908; W. A. Tilden, Chem. News, 78. 18, 1898; Phil. Trans., 201. A, 139, 1904; Proc. Roy. Soc., 66. A, 244, 1900; 71. A, 220, 1913; H. Tomlinson, ib., 37. 107, 1884; J. Violle, Phil. Mag., (5), 4. 318, 1877; Bull. Soc. Chim., (2), 30. 167, 1878; Compt. Rend., 85. 543, 1877; W. Weber, Pogg. Ann., 20. 208, 1830; W. P. White, Amer. Journ. Science, (4), 28. 342, 1909; A. Wigand, Ann. Physik, (4), 22. 64, 1907; W. Zeidler, Untersuchungen über die spezifische Wärme bei tiefese Temperaturen, Leipzig, 1926.

4 C. Aubel, Berg. Hutt. Ztg., 21. 392, 1862; 22. 272, 1863; Gilbert's Ann., 52. 279, 1816; C. Barus, Amer. Journ. Science, (3), 48. 332, 1894; On the Thermoelectric Measurement of High Temperatures, Washington, 124, 1889; E. Bocquerel, Compt. Rend., 58. 855, 1863; J. Becquerel, ib., 55. 826, 1862; M. Brettel, Breslau. Gewerbebl., 16, 1860; Dingler's Journ., 157. 399, 1860; W. Braunbek, Zeit. Physik, 38. 549, 1926; E. Brodhun and F. Hoffmann, Zeit. Physik, 37, 137, W. Braunbek, Zeit. Physik, 38. 549, 1926; E. Brodhun and F. Hoffmann, Zeit. Physik, 37. 137, 1926; J. L. Byers, Trans. Amer. Inst. Min. Eng., 102. 286, 1932; T. Carnelley, Melting and Boiling Point Tables, London, 10, 1858; Ber., 12. 439, 1879; F. E. Carter, Trans. Amer. Electrochem. Soc., 43, 397, 1923; Jeweller's Circular U.S.A., 87. 1, 1924; Metal Ind., 23, 106, 1923; E. J. Chapman, Chem. News, 23, 33, 1871; J. G. Children, Gilbert's Ann., 52, 353, 1816; Ann. Chim. Phys., (1), 96, 120, 1815; Phil. Trans., 105, 374, 1815; Phil. Mag., (3), 18, 442, 1841; E. D. Clarke, Quart. Journ. Science, 2, 104, 1817; Ann. Phil., 9, 89, 1817; The Gas Blowpipe, London, 93, 1819; Ann. Chim. Phys., (2), 3, 39, 1816; Gilbert's Ann., 55, 8, 1817; 62, 339, 1819; Schweiger's Ann., 18, 239, 1816; 21, 385, 1817; W. Crossley, Chem. News, 2, 88, 1860; L. I. Dana and P. D. Foote, Trans. Faraday, Soc., 15, 186, 1920; A. L. Daya and R. B. Scemen L. I. Dana and P. D. Foote, Trans. Faraday Soc., 15. 186, 1920; A. L. Day and R. B. Sosman, Amer. Journ. Science, (4), 29. 161, 1910; (4), 33. 517, 1912; N. F. Deerr, Chem. News, 71. 314, 1895; Proc. Chem. Soc., 11. 125, 1895; C. Despretz, Compt. Rend., 29. 545, 1849; Ann. Mines, (4), 19. 333, 1851; H. St. C. Deville, Compt. Rend., 56. 195, 1863; 70. 256, 287, 1870; Chem. News, 21. 94, 1870; Ann. Chim. Phys., (3), 48. 199, 1856; H. St. C. Deville and H. Debray, ib., News, 21. 94, 1870; Ann. Chim. Phys., 35, 46, 186, 1860; H. St. C. Devine and H. Bentay, 40., (3), 56. 385, 1859; (3), 61. 5, 1861; Journ. prakt. Chem., (1), 80. 500, 1860; (1), 87. 293, 1862; Chem. News, 2. 24, 1860; Dingler's Journ., 127. 114, 1853; 157. 64, 1868; Compt. Rend., 35. 796, 1852; 50. 1038, 1860; 54. 1139, 1862; J. Dewar, Phil. Mag., (4), 44. 465, 1872; F. Doerinckel, Zeit. anorg. Chem., 54. 345, 1907; E. F. Dürre, Dingler's Journ., 220. 324, 1867; J. B. Dumas, Compt. Rend., 75. 1028, 1872; L. Elsner, Chem. Tech. Mitt., 7. 36, 1858; Journ. pract. Chem., (1), 99. 258, 1866; T. Erhard and A. Schertel, Jahrb. Berg. Hutt. Sächsen, 17, Januar. Chem., (1), 99. 258, 1800; 1. Erhard and A. Schertel, Janua. Berg. Hutt. Sackven, 17, 1879; Berg. Hutt. Ztg., 38, 127, 1879; M. Faraday and J. Stodart, Phil. Trans., 112. 253, 1822; Edin. Phil. Journ., 7. 350, 1822; Ann. Phil., 21. 202, 1823; Ann. Chim. Phys., (2), 21. 62, 1822; Pil. Mag., (1), 60. 363, 1822; Gilbert's Ann., 72. 225, 1822; C. Féry, Compt. Rend., 137, 909, 1903; C. Féry and C. Chéneveau, ib., 148. 501, 1909; O. Goecke, Der elektrische Vakuumofen, Danzig, 1911; Ber., 43. 1571, 1910; Zeit. angew. Chem., 24. 1459, 1911; W. Guertler and M. Pirani, Zeit. Metallkunde, 11. 1, 1919; R. Hare, Amer. Journ. Science, (1), 33. 195, 1838; (1), 35. 328, 1820. (2), A 27, 1847. Pare Alice Phil. 1839; (2), 4. 37, 1847; Journ. Franklin Inst., 13. 196. 1847; 14. 128, 1847; Proc. Amer. Phil. 1839; (2), 4. 37, 1847; Journ. Franklin Inst., 13. 196, 1847; 14. 128, 1847; Proc. Amer. Phil. Soc., 2. 196, 1842; Journ. prakt. Chem., (1), 16. 512, 1839; (1), 19. 180, 1840; Pogg. Ann., 46. 512, 1839; Dingler's Journ., 108. 270, 1848; J. A. Harker, Proc. Roy. Soc., 76. A, 235, 1905; W. N. Hartley, Chem. News, 73. 229, 1896; Journ. Chem. Soc., 69. 846, 1896; F. Henning and W. Heuse, Zeit. Physik, 29. 157, 1924; W. Heraeus, Dingler's Journ., 167. 132, 1863; Berg. Hütt. Zig., 22. 272, 1863; W. Herz, Zeit. anorg. Chem., 170. 237, 1928; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 61. 911, 1892; 65. 34, 1894; J. C. Hoadley, Chem. News, 47. 171, 1883; Journ. Franklin Inst., 84. 91, 169, 252, 1882; F. Hoffmann, Zeit. Physik. 27, 285, 1924; F. Hoffmann and C. Tingwaldt, Phys. Zeit., 35. 434, 1934; L. Holborn and F. Henning, Sitzber. Akad. Berlin, 331, 1905; L. Holborn and S. Valentiner, Ann. Physik, (4), 22. 1, 1907; L. Holborn and W. Wien, Wied. Ann., 56. 376, 1895; W. Holman, R. R. Lawrence and L. Barr, Phil. Mag., (5), 42, 47, 1896; H. E. Ives. Journ. Franklin Inst., 186, 122, 1918; H. Jeffreys. Phil. Mag., (5), 42. 47, 1896; H. E. Ives, Journ. Franklin Inst., 186. 122, 1918; H. Jeffreys, Phil. Mag., (7), 19. 840, 1935; J. Johnston, Zeit. anorg. Chem., 76. 365, 1912; Journ. Amer. Chem. Soc., 34. 788, 1912; Journ. Washington Acad., 1. 260, 1912; K. R. Koch and C. Dannecker, Ann. Physik, (4), 47. 216, 1915; E. M. Lémeray, Compt. Rend., 131. 1291, 1900; J. A. M. van Liempt and J. A. de Vriend, Zeit. Physik, 93. 100, 1935; A. Marcet, Bibl. Britannique, 59. 274, 1815; Gilbert's Ann., 52. 279, 1816; C. M. Marx, Schweigger's Journ., 66. 159, 1832; Liebig's Ann., 8. 132, 1833; E. Matthey, Phil. Trans., 183. A, 629, 1892; Proc. Roy. Soc., 47. 180, 1890; 51. 447, 1892; Bull. Soc. Chim., (3), 4. 824, 1890; Zeit. anorg. Chem., 2. 474, 1892; W. Maugham, Journ. Soc. Arts, 50. 41, 1835; Dingler's Journ., 61. 75, 1836; C. E. Mendenhall and L. R. Ingersoll, Phil. Mag., (6), 15. 205, 1908; V. Meyer, Ber., 29. 850, 1896; L. D. Morris and S. R. Scholes, Journ. Amer. Cer. Soc., 18. 359, 1935; H. A. Mott, The Chemist's Manual, New York, 1877; W. R. Mott, Trans. Amer. Electrochem. Soc., 34. 255, 1918; W. Nasse, Schweigger's Journ., 46. 80, 1826; W. Nernst and H. von Wartenberg, Verh. deut. phys. Ges., 8. 48, 1906; R. Pictet, Compt. Rend., 88. 1317, 1879; Phil. Mag., (3), 7. 446, 1879; C. F. Plattner, Berg. Hütt. Zig., 7, 628, 1848; J. J. Prechtl, Gilbert's Ann., 58. 111, 1818; Ann. Phil., 13. 229, 1819; G. Quincke, Monatsb. Akad. Berlin, 132. 350, 1868; Pogg. Ann., 185. 642. Phil. Mag., (7), 19. 840, 1935; J. Johnston, Zeit. anorg. Chem., 76. 365, 1912; Journ. Amer. Chem. Phil., 13. 229, 1819; G. Quincke, Monatsb. Akad. Berlin, 132, 350, 1868; Pogg. Ann., 185, 642, 1868; M. Rabinovitsch, Koll. Zeit., 44. 84, 1928; F. Reich, Journ. prakt. Chem., (1), 33. 478, 1844; P. Riess, Abh. Berlin. Akad., 89, 1845; Sitzber. Akad. Berlin, 185, 1845; Pogg. Ann., 65. 481, 1845; G. Ribaud and P. Mohr, Compt. Rend., 192, 37, 1931; J. W. Richards, Journ. Franklin Inst., 136, 186, 1893; C. W. Robertson, Journ. Chem. Soc., 81, 1223, 1902; W. F. Roeser,

F. R. Caldwell and H. T. Wensel, Journ. Research Bur. Standards, 6. 1119, 1931; O. Ruff, Ber., 43, 1564, 1910; K. Scheel, Zeit. angew. Chem., 32, 347, 1919; F. H. Schofield, Proc. Roy. Soc., 146. A, 792, 1934; H. Seger, Berg. Hutt. Ztj., 44, 181, 1885; L. P. Sieg, Phys. Rev., (2), 25, 251, 1925; C. W. von Siemens and A. K. Huntington, B.A. Rep., 496, 1882; Chem. News, 46, 163, 1882; W. Skey, ib., 22, 268, 1870; Trans. New Zealand Inst., 2, 155, 1869; Dinyler's Journ., 199, 426, 1871; R. C. Smith, Journ. Chem. Soc., 123, 2088, 1923; R. Spring, Zeit. phys. Chem., 15, 69, 1894; A. Stein, Phys. Zeit., 13, 287, 1912; W. Sutherland, Phil. Mag., (5), 32, 31, 215, 524; 1891; H. Violette, Ann. Chim. Phys., (4), 28, 469, 1873; Compt. Rend., 75, 1027, 1872; J. Violle, Bull. Soc. Chim., (2), 35, 434, 1881; Journ. Phys., 7, 69, 1873; 9, 81, 1880; Compt. Rend., 85, 546, 1877; 89, 703, 1879; C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 3, 205, 1907; Compt. Rend., 148, 1178, 1909; W. M. Watts, Phil. Mag., (4), 45, 89, 1873; P. H. van der Weyde, Trans. Amer. Inst., 557, 1861; Ber., 12, 441, 1879; W. Widder, Phys. Zeit., 32, 349, 1931; W. H. Wollaston, Phil. Trans., 119, 1, 1829; Phil. Mag., (2), 5, 65, 1829; (2), 6, 1, 1830; Quart. Journ. Science, 6, 97, 1829; Schweigger's Journ., 57, 69, 1829; Pogg. Ann., 16, 158, 1829; R. Wright and R. C. Smith, Journ. Chem. Soc., 119, 1683, 1921.

D. Balareff, Chem. Zig., 46. 573, 1922; F. Beilstein, Journ. Russ. Chem. Soc., 12. (i), 298, 1880; Zeit. anal. Chem., 20, 407, 1881; A. Berliner, Wied. Ann., 33, 291, 1887; A. K. Boldyreff, Centr. Min., 408, 1930; Chem. Ztz., 46, 573, 1922; O. J. Broch and H. St. C. Deville, Procès Verbaux Comité Internat. Poids Mesures, 139, 1879; G. K. Burgess and P. D. Sale, Journ. Ind. Eng. Chem., 6. 542, 1914; 7. 561, 1915; Journ. Washington Acad., 4. 282, 1914; Bull. Bur. Standards, 12. 289, 1916; Scient. Papers Bur. Standards, 254, 1915; G. K. Burgess Butt. Butt. Standards, 12. 259, 1916; Swell. Papers But. Standards, 254, 1916; G. K. Burgess and R. G. Waltenberg, ib., 280, 1916; Journ. Ind. Eng. Chem., 8, 487, 1916; Journ. Washington Acad., 6, 365, 1916; F. E. Carter, Trans. Amer. Electrochem. Soc., 43, 397, 1923; Metal Ind., 23, 106, 1923; W. Crookes, Chem. News, 63, 287, 1891; 67, 279, 1893; 105, 229, 241, 1912; Proc. Roy. Soc., 50, A, 88, 1891; 86, A, 461, 1912; H. St. C. Deville, Ann. Chim. Phys., (3), 46. 199, 1856; T. A. Edison, Proc. Amer. Assoc., 173, 1879; Chem. News, 40, 152, 1879; (a), 76. 133, 1836; T. A. Edison, 176c. Amer. Assoc., 13, 1818; Chem. 182, 1818;
L. Elsner, Chem. Tech. Mitt., 7. 36, 1858; Journ. prakt. Chem., (1), 99. 258, 1866; J. Elster and H. Geitel, Wied. Ann., 31. 109, 1887; F. Emich, Sitzber. Akad. Wien, 101. 100, 1892;
O. L. Erdmann, Journ. prakt. Chem., (1), 79. 117, 1869; Chem. News, 2. 256, 1860; Dingler's Journ., 156, 393, 1860; F. Fischer and H. Marx, Ber., 39. 2562, 1906; W. D. Flower, Phil. Mag., (7), 5, 1084, 1928; H. Freundlich, Zeit. phys. Chem., 44, 153, 1903; O. Goche, Bull. Acad. Belg., (5), 18. 412, 1932; H. Goldschmeid, Ueber kathodische Metallstäubung in verdünnten Gasen, Strassburg, 1908; E. Goldstein, Ber., 37. 4147, 1904; A. Guntz and H. Bassett, Bull. Soc. Chim., (3), 83, 1306, 1905; R. W. Hall, Journ. Amer. Chem. Soc., 22, 494, 1900; L. Hamburger, Koll. Zeit., 23, 177, 1918; W. N. Hartley, Chem. News, 67, 279, 1893; Proc. Roy. Soc., 54. 5, 1893; F. Henning and L. Austin, Abh. Phys. Tech. Reichsanst., 4, 88, 1904; L. Holborn and F. Henning, Sitzber. Akad. Berlin, 936, 1902; G. A. Hulett, Phys. Rev., (1), 33. 310, 1911; G. A. Hulett and H. W. Berger, Journ. Amer. Chem. Soc., 26. 1513, 1904; H. A. Jones, I. Lang-G. A. Hulett and H. W. Berger, Journ. Amer. Chem. Soc., 20, 1015, 1005, 11 1006, 12 1007, 12 1006, 12 1007, 12 schmidt, Zeit. Elektrochem., 14. 226, 1908; L. L. de Koninck, Zeit. anal. Chem., 18. 569, 1879; I. Langmuir, Journ. Amer. Chem. Soc., 28. 1379, 1906; I. Langmuir and G. M. J. MacKay, Phys. Rev., (2), 4. 384, 1914; J. A. M. van Liempt, Zeit. anorg. Chem., 189. 288, 1930; O. J. Lodge, Nature, 31. 268, 1885; V. Meyer, Ber., 12. 2203, 1879; F. Mohr, Zeit. anal. Chem., 12. 150, 1873; Chem. News, 29. 27, 1874; H. Moissan, Compt. Rend., 116. 1429, 1893; 134. 136, 1902; 142. 192, 1906; Bull. Soc. Chim., (3), 11. 825, 1894; (3), 35. 272, 1906; Ann. Chim. Phys., (7), 9. 136, 1896; W. R. Mott, Trans. Amer. Electrochem. Soc., 34. 255, 1918; W. Muthmann and H. Hofer, Ber., 36. 442, 1903; F. Mylius and F. Förster, ib., 25. 675, 1892; R. Nahrwold, Wied. Ann., 31. 467, 1887; H. M. O'Bryan, Rev. Scient. Inst., 5. 125, 1934; J. Orcel Bull. Soc. Min. 49, 84, 1926; L. Pigeon, Am. Chim. Phys., (7), 2, 442, 1804; G. Babool. J. Orcel, Bull. Soc. Min., 49. 84, 1926; L. Pigeon, Ann. Chim. Phys., (7), 2. 442, 1894; G. Reboul and E. G. de Bollemont, Journ. Phys., (5), 2. 559, 1912; Le Radium, 8. 406, 1911; A. Rémont, Bull. Soc. Chim., (2), 35. 486, 1881; P. Riess, Abh. Berlin. Akad., 89, 1845; Sitzber. Akad. Berlin, 185, 1845; Pogg. Ann., 65. 481, 1845; J. H. T. Roberts, Phil. Mag., (6), 25. 270, 1913; F. Seelheim, Journ. Amer. Chem. Soc., 1. 479, 1879; Ber., 12. 2067, 1879; Bull. Soc. Chim., (2), 34. 351, 1880; W. Stewart, Wied. Ann., 66. 90, 1898; F. Stolbs, Dingler's Journ., 198, 177, 1870; Sitzber. Böhm. Ges., 325, 1873; Zeit. anal. Chem., 18. 309, 1874; J. Strong, Phys. Rev., (2), 39. 1012, 1932; L. Troost and P. Hautefeuille, Compt. Rend., 84. 947, 1877; G. C. Wittstein, Dingler's Journ., 179, 299, 1866; C. Zengelis, Zeit. phys. Chem., 46. 287, 1904.

⁶ L. Arons, Wied. Ann., 58. 82, 1896; B. Bruzs, Journ. Phys. Chem., 31. 681, 1927; F. E. Carter, Trans. Amer. Electrochem. Soc., 43. 397, 1923; N. F. Deerr, Chem. News, 71. 314, 1895; Proc. Chem. Soc., 11. 125, 1895; E. D. Eastman, Journ. Amer. Chem. Soc., 45. 80, 1923; E. D. Eastman, A. M. Williams and T. F. Young, ib., 46. 1184, 1924; C. M. Guldberg, Zeit. phys. Chem., 1. 234, 1887; Förh. Vid. Selsk. Christiania, 4, 1887; W. Herz, Zeit. anorg. Chem., 175. 245, 1928; 177. 116, 1928; 179. 277, 1929; 180. 284, 1929; H. A. Jones, I. Langmuir and G. M. J. MacKay, Phys. Rev., (2), 30. 201, 1927; A. Jouniaux, Bull. Soc. Chim., (4), 37. 513, 1925; K. K. Kelley, Bull. Bur. Mines, 350, 1932; R. D. Kleeman, Journ. Phys. Chem., 31. 1669, 1927; E. Kordes, Zeit. anorg. Chem., 160. 67, 1927; J. J. van Laar, Zeit. Physik, 62. 77, 1930; I. Langmuir and G. M. J. MacKay, Phys. Rev., (2), 4. 377, 1914; W. M. Latimer, Journ. Amer. Chem. Soc., 44. 2136, 1922; G. N. Lewis and G. E. Gibson, ib., 39. 2554, 1917;

G. N. Lewis, G. E. Gibson and W. M. Latimer, ib., 44. 1008, 1922; J. A. M. van Liempt, Zeit. anorg. Chem., 114. 105, 1920; F. S. Mortimer, Journ. Amer. Chem. Soc., 44. 1429, 1922; N. F. Mott, Proc. Roy. Soc., 146. A, 475, 1934; G. Pionchon, Ann. Chim. Phys., (6), 11. 33, 1887; N. von Raschevsky, Zeit. Physik, 40. 214, 1927; J. W. Richards, Journ. Franklin Inst., 186. 119, 1893; Chem. News, 75. 278, 1897; M. Thiesen, Ber. deut. phys. Ges., 6. 604, 1908; Verh. deut. phys. Ges., 10. 414, 1908; J. Thomsen, Termokemiske Undersögelsers numeriske ogleoriske Resultuter, Kjöbenhavn, 1905; London, 296, 1908; Journ. prakt. Chem., (2), 15. 453, 1877; (2), 16. 323, 1878; Thermochemische Untersuchungen, Leipzig, 3. 425, 1883; R. C. Tolman, Journ. Amer. Chem. Soc., 42. 1185, 1920; J. Violle, Compt. Rend., 85. 546, 1877; 87. 981, 1878; R. von D. Wegener, Zeit. Elektrochem., 37. 25, 1931.

§ 12. The Optical Properties of Platinum

According to H. St. C. Deville and H. Debray, the colour of platinum prepared by fusion is a more silvery white than is the case with the hammered metal. A. W. Wright said that the colour of thin films by transmitted light is grey with a blue tinge; M. Faraday said grey; W. L. Dudley, purple; H. L. Barvir, grey; G. T. Beilby, blue; and A. Partzsch and W. Hallwachs, greyish-blue. A. W. Wright added that thicker films have a brown tinge, which passes through sepia-brown, brownish-yellow, yellow, and orange-yellow as the thickness of the film increases. F. Ehrenhaft said that in dry air, the dispersed particles produced by evaporation have a dark brown colour—vide supra, colloidal platinum. W. L. Dudley said that the incandescent vapour of platinum is blue. A. Kundt observed no dichroism in the colour of platinum.

K. Försterling and V. Freedericksz² found the **light absorption**, k, and the index of refraction, μ , for light of wave-length λ , to be:

λ		1.00	1.52	1.97	3.29	3.41	4.65μ
\boldsymbol{k}		1.83	1.76	1.65	1.62	1.56	1.41

E. Hagen and R. Rubens gave for the extinction coeff., k in $I=I_0.10^{-kd}$, where d denotes the thickness, and I_0 and I, the intensities of the incident and emergent rays of light of wave-length λ :

```
2.5\mu
0.326
           0.385
                     0.45
                              0.55
                                       0.65
                                                0.8
                                                         1.2
                                                                  2.0
39.2
          38.6
                    37.2
                             37.6
                                      37.8
                                               36.6
                                                        33.4
                                                                 30.2
                                                                          28.4
```

Observations were made by E. Dershem, P. Drude, H. Goldschmidt and H. Dember, L. Holborn and F. Henning, K. Lauch, M. Laue and F. F. Martens, W. Meier, A. Partzsch and W. Hallwachs, G. Quincke, C. V. Raman and K. S. Krishnan, W. Rathenau, H. von Wartenberg, W. Wien, and C. Zakrzewsky. C. Féry and M. Drecq gave 0.82 for the absorption coeff. of platinum black. J. Trowbridge and W. C. Sabine observed no selective absorption for ultra-violet light. R. Pohl found that the absorption of light is proportional to the photoelectric effect. G. B. Rizzo said that the transparency of thin films of platinum for light increases with a rise of temp., and is greater the larger is the refractoriness of the rays; and E. Hagen and H. Rubens added that platinum is less transparent than these metals for ultra-red rays. Observations of the transparency of platinum films were made by H. Schuch, K. W. G. Kastner, H. Kienle and H. Siedentopf, E. van Aubel, and G. Govi. A. Kundt stated that if the velocity of light in silver is 100, that in platinum is 15·3.

The **reflecting power** of platinum, R, determined by K. Fösterling and V. Freedericksz for light of wave-length, λ :

and A. Partszch and W. Hallwachs gave for the reflecting power of electrolytic platinum, R_1 , and for a film prepared by spluttering, R_2 :

	. 0.65							
R_1	. 66.8	72.9	80.6	91.5	95.5	95.4	95.6	96·4 per cent. 94·7
R.	63.8	70.4	79.8	91.6	93.0	92.5	92.7	94.7

Observations were also made by W. J. Beekman and F. W. Oudt, P. Drude, I. C. Gardner, P. R. Gleason, A. de Gramont, E. Hagen and H. Rubens, R. Hamer, F. Henning, E. O. Hulbert, J. Königsberger, K. Lauch, W. Meier, W. A. Miller, A. H. Pfund, H. de la Provostaye and P. Desains, G. Quincke, P. Rouard, E. Schuch, H. E. Strauss, H. von Wartenberg, and W. Wien. E. P. Lewis and A. C. Hardy studied the absorption in the ultra-violet. A film of thickness 0.0_623 cm. was found by J. Moser to be a poor reflector. P. R. Gleason observed a marked reduction in the reflecting power with increasing age. C. Féry said that a surface of platinum black at 100° reflects 18 per cent. of the incident rays; K. J. Angström obtained only 0.82 to 1.25 per cent. for different regions of the spectrum; and T. Royds gave for platinum black deposited in 15 and in 3 mins., respectively, R_1 and R_2 :

λ			0.8	8.7	25.5	51μ
R_1			0.17	0.59	0.93	1·1 per cent.
R.			1.30	5-70	7.08	7.4 .,

F. Limmer said that crystals of platinum obtained by the action of cupric chloride on spongy platinum had an unusually strong reflecting power. P. Desains studied the reflection of heat rays from polished platinum; the selective reflection was studied by H. Rubens; the changes of phase in the reflected light, by H. Kath, and J. Patterson; and the relation between the electrode potential and the optical constants, by V. Freedericksz.

K. Försterling and V. Freedericksz gave for the index of refraction, for light of wave-length λ :

and W. Meier:

Observations were made by E. van Aubel, H. Barvir, E. Dershem, P. Drude, W. Eisenlohr, E. Hagen and H. Rubens, S. Haughton, A. Kundt, K. Laueh, M. Laue and F. F. Martens, G. Quincke, P. A. Ross, D. Shea, W. Voigt, H. von Wartenberg, and C. Zakrzewsky. B. Pogany found for films of thickness d; the following indices of refraction, μ :

J. H. Gladstone calculated 26.01 for the **refraction equivalent** of platinum in PtCl₄; N. Kurnakoff, 11.9 to 16.7 for platinum in PtCl₂.4NH₃; 16.1 to 21.0, in Pt(NO₃)₂Cl₂.4NH₃; 24.7, in K₂PtCl₄; and 37.7, in Na₂PtCl₆.

The birefringence was studied by A. Kundt, and F. Kaempf. H. Rumpelt said that the double refraction cannot be regarded as a consequence of mechanical deformation. J. Thibaud and co-workers observed no evidence of the polarization of a beam of electrons by crystal-reflection. J. B. Nathanson studied the interference fringes of thin films. D. F. J. Arago observed that the light emitted by glowing platinum is partially polarized vertically to the plane of emission. Measurements of the **polarization** were made by H. de la Provostaye and P. Desains, W. von Uljanin, K. Försterling, A. Lallemand, R. A. Millikan, M. Laue and F. F. Martens, H. Knoblauch, W. Möller, and C. W. Waidner and G. K. Burgess. W. von Uljanin found that platinum exhibits a feeble **dispersion** in the region 2μ , and the subject was studied by C. Zakrzewsky, P. Zeeman, J. Bauer, and B. Dessau; and the transmission of light by thin films, by H. Kienle and H. Siedentopf.

M. Cau³ discussed the magneto-optical effect, and B. Pogany, the Faraday

effect with spluttered films.

According to H. F. Weber, the ratio of the emissivity of platinum to that of vol. xvi.

silver is 1.032 at 100° ; H. de la Provostaye and P. Desains gave 3.69 to 3.81; and L. Graetz, 3.2. H. de la Provostaye and P. Desains observed that if the emissivity of soot is 100, that of rolled platinum is 10.74, and of polished platinum, 9.09. E. Hagen and H. Rubens found the emissivity of platinum at 170° for wave-length 4μ , is 8.5 per cent., and for wave-lengths 8μ , 12μ , and 2.55μ , respectively, 4.6, 3.5, and 2.82 per cent. For wave-length 25.5μ , the emissivities at different temp. are:

	170	° 220°	300°	600°	900°	1200°	1500°
Emissivity .	. 3.4	9 3.68	4.04	5.40	6.86	8.34	9.84

The change in the emissivity for wave-lengths 26μ and 8.85μ with temp. is greater than the value calculated from the electrical behaviour. C. Davisson and J. R. Weeks studied the relation between the emissivity and the electrical resistance. W. W. Coblentz's results for the isochromatic radiation energy of platinum are summarized in Fig. 9. E. Bauer and M. Moulin found the emissivity, for angles less than 40° , is nearly constant, but it increases for greater angles. Observations were also made by M. Czerny, H. A. Erickson, E. Furthmann, W. Giess, M. S. Glass, E. Hagen and H. Rubens, A. L. Helfgott, F. Hoffmann, M. Kahanowicz, G. Lieb-

Fig. 9.—The Isochromatic Emissivity Curves of Platinum.

mann, L. L. Lockrow, F. Paschen, F. Rossetti, R. W. Sears and J. A. Becker, V. A. Suydam, A. M. Tyndall, W. von Uljanin, and A. G. Worthing. H. Cassel and E. Glückauf, and T. B. Rymer studied the effect of oxygen on the thermionic emission.

M. Geiseler noticed that platinum glows when heated in the oxy-hydrogen flame, and A. Crova, and E. Becquerel, that glowing platinum radiates energy like carbon, lime, and porcelain. A. Smithells, and V. B. Lewes observed that the glow of platinum is not exceeded by the glow of the carbon particles in hydrocarbon flames. G. Fletcher found that an electrically-heated platinum wire glows more strongly in air containing hydrocarbons than in air alone. P. Desains and P. Curie, and J. Meunier found that platinum can be maintained incandescent in a current of coal-gas and air even though no flame is present; he also showed that the property

depends on the composition of the mixture. If a platinum wire is first cleaned with hydrochloric acid and then heated, it loses the property of remaining incandescent; if, however, it is passed between the fingers it regains that particular property because it takes up saline matter from them. This saline matter can be removed from the fingers by washing them in acidified distilled water, but not with soap and water. Thus, platinum itself is not responsible for the incandescence, but rather the saline matter which is on its surface. C. Braun noted that during the slow cooling of incandescent platinum, it retains its glow more intensely than does porcelain. C. Killing observed that a trace of platinum in thorium gas-mantles favours the incandescence as in the case of a trace of ceria. H. F. Weber observed that platinum emits a grey glow at about 360°; R. Emden said that with impure platinum the glow begins at about 404°, and with the purified metal at 408°. Observations were also made by E. L. Nichols, F. Stenger, G. Liebmann, J. le Bel, and J. Könisberger and K. Schilling. G. A. Shakespear studied the emission of heat rays from platinum. J. T. Bottomley found the heat radiated from a platinum wire at 408° is 0.3788 cal. per sq. cm. per sec., and at 505°, it is 0.07261 cal. per sq. cm. per sec. when the temp. of the surrounding air is 15°.

E. L. Nichols investigated the character and intensity of the rays from platinum glowing at different temp., and found the intensities of the spectral lines of the emitted light, on Kirchoff's scale, to be:

	1294°	1238°	1188°	1081°	901°
609 (red) B -line.	1.7071	0.9470	0.5512	0.0922	0.0097
1017 (yellow) D-line.	1.0000	0.5147	0.2774	0.0382	0.0013
1629 (green) E -line .	0.1086	0.0512	0.0238	0.0019	
2241 (blue) F -line .	0.0391	0.0176	0.0061	0.0002	
2853 (indigo) G -line .	0.0160	0.0071	0.0017		

J. Violle represented the intensities, l, at a temp. θ° , by $\log l = -8.244929 + 0.011475\theta - 0.052969\theta^2$. F. Paschen obtained for the total emission, E, of energy at

The results are plotted in Fig. 10 along with those of J. Stefan, H. F. Weber, and F. Rossetti. Observations were also made by M. Czerny, C. Féry, P. D. Foote, L. Graetz, E. Hagen and H. Rubens, W. A. Harwood and J. E. Petavel, F. Henning,

F. Henning and W. Heuse, L. Holborn and F. Kurlbaum, E. P. Hyde, R. Lucas, O. Lummer and F. Kurlbaum, O. Lummer and E. Pringsheim, W. Möller, M. von Pirani, J. Pohl, A. Schleiermacher, B. S. Srikantan, C. W. Waidner and G. K. Burgess, and O. Wiedeburg. L. A. du Bridge, E. Brodhun and F. Hoffmann, J. Patterson, H. Schmidt and E. Furthmann, A. T. Waterman, and A. G. Worthing, studied the emissivity of thin films of platinum; J. E. Petavel, the scattering of heat rays by platinum at a high temp.; B. W. Bradford, the thermionic emission during the oxidation of carbon monoxide; and P. Jez, and S. Kalandyk, the thermionic emission in the vapour of iodine when the increased effect is attributed to the formation of a film of platinic iodide. The thermionic emission of electrons was studied by H. A. Barton, A. K. Brewer, H. Cassel and E. Glückauf,

Fig. 10.—The Effect of Temperature on the Emissivity of Platinum.

J. F. Chittum, C. Davisson and L. H. Germer, H. A. Erikson, W. D. Flower, R. H. Fowler, K. Fredenhagen, T. H. Harrison, L. L. Lockrow, H. H. Potter, G. Ribaud, O. W. Richardson, T. B. Rymer, B. S. Srikantan, A. T. Waterman, H. A. Wilson, and A. G. Worthing. E. Müller found that the emission from glowing platinum in hydrogen, iodine, or chlorine, unlike that in oxygen or nitrogen, decreased with time and showed a decreasing sensitiveness towards press, changes. The high results in hydrogen, iodine, and chlorine were attributed to chemical changes. P. Jez, R. A. Nelson, M. Wolfke and J. Rolinsky, and S. Kalandyk, studied the positive and negative emission from incandescent platinum in an atm. of iodine, bromine, and chlorine; and A. K. Brewer, the effect of ammonia on the emission of positive ions by platinum. C. Sheard studied the increase of positive thermionic currents from platinum wires in high vacua, produced either by heating the wire, whilst earthed, to a higher temperature than that at which the ionization is subsequently measured, or by heating it, whilst charged to a negative potential, to a temp, sufficient to cause it to discharge negative electricity, in dry air at atmospheric pressure, when the earthed wire is heated to various temperatures, there are two maxima, one after previous heating at 654° and the other at 756°. The negative emission from the wire when heated and charged negatively becomes appreciable at 760°. The results are interpreted on the theory that, on heating the

wire, decomposition of a molecule AB occurs with production of two ions, A positively and B negatively charged, A being expelled or stored up, later to be expelled when an electric force is applied. At higher temp. B loses its electron. It is necessary to assume the presence of at least two substances capable of so producing ions on heating. By heating the wire in the flame of a Bunsen burner, an increased positive emission is also obtained, probably in part due to the removal of a surface material incapable of producing ions and in part due to the hydrogen absorbed, owing to its affinity for electrons. Heating in carbon dioxide decreased, if anything, the positive emission. The decay with time of the positive currents at different temperatures showed the existence of two sources of ions, the first source decaying according to an exponential law, and the second increasing to a maximum before decaying. A. M. Tyndall and G. C. Grindley found that the electrons emitted by an incandescent platinum wire, when removed from the vicinity of the particles, attach themselves to molecules and give rise to normal ions of the same mobility as those produced by polonium. The positive emission is complex, and although the greater number have mobility of 1.4 cm. per sec. per volt per cm. the mean value is of the order of 1.1. It is concluded that positive ions are emitted either as small metallic clusters or as atoms, many of which cluster before reaching the observation chamber, that the uncharged particles are metallic clusters ranging from atomic size to metallic dust, and that their growth and subsequent coagulation are responsible for the blackening of filament lamps. W. H. Crew studied the effect of light. The thermionic emission of positive ions was studied by F. Horton, L. Weissmann, H. A. Erikson, H. A. Wilson, C. Grieb, and L. L. Barnes; and G. I. Finch and A. W. Ikin found that the catalytic activity of films of platinum is connected with electrical activity. The thermionic emission of electrons from oxide-coated platinum was studied by L. H. Germer, C. Davisson and L. H. Germer, and H. E. Ives and T. C. Fry; and the thermionic constants, by H. L. van Velzer.

Platinum chloride yields a **flame spectrum** which, according to J. Formanek, is of short duration. According to A. Gouy, the band spectrum of platinic chloride in the bunsen flame stretching from the red to the violet, is due to platinous chloride. The 16 bands form two groups: The one on the right, at the violet end, is very striking, that on the left is very feeble; some bands have black lines running through them. Some bands are visible in the region above the inner cone of the flame. W. N. Hartley observed no spectrum in the oxy-hydrogen flame; and W. F. Meggers and O. Laporte, and L. H. G. Clark and E. Cohen, the under-water spark spectrum.

J. Formanck observed that platinic chloride furnishes a **spark spectrum** even with a feeble spark. A. J. Angström first examined the spark spectrum of platinum, and after him came D. Alter, A. Masson, V. S. M. van der Willigen, T. R. Robinson, and W. A. Miller; and measurements were made by G. Kirchhoff, W. Huggins, and R. Thalén. According to J. Formanck, the principal lines are the green or α -line 5476; and the green lines 5390, and 5368(ϵ), 5302(β), 5227(δ), 5060(γ); the blue line 4879; and the indigo-blue lines 4553, 4442, 4415, 4392(η), and 4327(ζ)—illustrated in Fig. 11. The spark spectrum was also examined by W. E. Adeney,

L. and E. Bloch, L. de Boisbaudran, R. Colley, E. Demarçay, F. Exner and, E. Haschek, H. Finger, W. Gibbs, C. E. Gissing, A. Hagenbach and H. Konen, W. N. Hartley, W. N. Hartley and H. W. Moss, H. G. Howell and G. D. Rochester,

G. T. Globe, P. Joye, G. Kail, P. Lewis, J. N. Lockyer, B. A. Lomakin, F. McClean, H. W. Morse, H. Nagaoka and co-workers, H. Oyama, W. Spottiswoode, and E. Symons; and the under-water spark spectrum, by L. H. G. Clark and E. Cohen, The arc spectrum was studied by J. M. Eder and E. Valenta, and E. O. Hulbert. F. Exner and E. Haschek, S. Tolansky and E. Lee, A. Hagenbach and H. Konen, A. C. Haussmann, H. Kayser, M. Kimura, J. J. Livingood, W. F. Meggers, H. A. Rowland and R. R. Tatnall, and E. Symons; the ultra-violet spectrum, by G. Berndt, L. and E. Bloch, H. Buisson and C. Fabry, F. Exner and E. Haschek, G. Kail, R. Lang, J. C. McLennan and A. B. McLay, A. Miethe and B. Seegert, and V. Schumann; the electrode light, by W. von Bolton; the mechanism of the spark discharge, by S. R. Milner; the influence of the medium, by P. G. Nutting, and H. Finger; the self-induction, by E. Néculcéa, P. Joye, and G. Berndt; and the most sensitive lines for the spectroscopic detection of platinum by W. Gerlach and co-workers, and H. de Laszlo. The effect of pressure was studied by W. J. Humphreys; and the **Zeeman effect**, by A. C. Haussmann, and J. E. Purvis. The series spectra or the numerical relations amongst the spectral lines, or series spectra, were examined by G. Ciamician, A. Dauvillier, C. C. Kiess and O. Laporte, O. Laporte and D. R. Inglis, R. de L. Kronig, J. E. Mack, P. G. Nutting, P. J. Ovrebo, E. Paulson, and C. P. Snyder. The solar spectrum was examined for platinum lines by E. F. Baxandall, C. C. Hutchins and E. L. Holden, H. A. Rowland, etc.—vide supra, the occurrence of platinum in the sun.

The absorption spectrum of the vapour was studied by J. C. McLennan and co-workers, G. D. Liveing and J. Dewar, W. F. Meggers and O. Laporte, and C. A. von Welsbach. According to J. Formanek, the absorption spectrum of soln. of platinum salts is not characteristic in the sense of being used for qualitative tests. There are absorption bands in the blue and violet. Aq. soln. of potassium chloroplatinate give a pale band about 4860, and bands in the blue and violet. Platinum salts do not react with tincture of alkanna. The colour and spectra of the platinum salts were studied by G. B. Buckton, A. Hantzsch, N. Kurnakoff, C. A. Martius, N. Orloff, R. Samuel, R. Samuel and A. R. R. Despande, J. Schoras, and L. Wöhler and W. Witzmann; and of colloidal solutions by A. T. Williams. The fluorescence and fluorescent spectrum of the platinocyanides of the alkalies and alkaline earths was studied by E. Becquerel, J. Beuel, R. Böttger, D. Brewster, D. Cernez, J. H. Gladstone, E. Hagenbach, H. Jackson, H. Lehmann, E. Lommel, G. G. Stokes, and E. Wiedemann.

The K-series of the **X-ray spectrum** ⁶ includes lines of wave-lengths (A=10⁻⁸ cm.): a_1a (or L_1 –K), 0·18523; a_2a (or L_2 –K), 0·19004; $\beta_1\beta$ (or M_3 –K), 0·16370; $\beta_2\gamma$ (or N_5 , $_6$ –K), 0·15887 with the absorption limit K=0·1581. The K-series was studied by M. de Broglie, J. C. Bryce, J. M. Cork and B. R. Stephenson, A. Dauvillier, G. B. Deodhar, E. Dershem, W. Duane and co-workers, F. Ingelstam, A. J. M. Johnson, H. Kulenkampff, K. Lang, J. E. Lilienfeld and H. Seemann, F. H. Loring, J. E. Mack and J. M. Cork, G. Rechou, J. S. Rogers, J. Schrör, H. Seeman, M. Siegbahn and E. Jönsson, J. Thibaud and A. Soltan, and E. Wagner. The L-series has the lines, $a_1a(M_1$ – L_1), 1·31008; $a_2a^1(M_2$ – L_1), 1·32121; $\beta_1\beta(M_2$ – L_2), 1·11722; $\beta_2\gamma(N_3$ – L_1), 1·09950; $\beta_3\phi(M_3$ – L_3), 1·009950; $\beta_4\phi(M_4$ – L_3), 1·1398; $\beta_5\zeta(O_1$ – L_1), 1·0701; $\beta_6\iota(N_7$ – L_1), 1·1398; $\beta_7\lambda(O_5$ – L_1), 1·0785; $\beta_8(M_1$ – L_3), 1·0928; $\beta_9(M_1$ – L_3), 1·0519; β_{10} , 1·0570; $\gamma_1\delta(N_4$ – L_2), 0·95545; $\gamma_2\chi(N_6$ – L_3), 0·9317; $\gamma_3\chi(N_5$ – L_3), 0·9256; $\gamma_4\psi(\psi)(O_3$, 4– L_3), 0·8950; $\gamma_5\kappa(N_7$ – L_2), 0·9855; $\gamma_6\theta(O_2$ – L_2), 0·9317; $\iota\epsilon(M_5$ – L_1), 1·49723; and $\eta\eta(M_5$ – L_2), 1·2401. Observations on the L-series were made by V. J. Andrew, P. Auger and A. Dauvillier, I. Backhurst, H. Brauns, M. de Broglie, Y. Cauchois, F. C. and L. P. Chalklin, D. Coster, D. Coster and J. Veldkamp, A. Dauvillier, E. Dershem, H. Hirata, M. J. Druyvesteyn, W. Duane and R. A. Patterson, E. Friman, H. Küstner and E. Arends, F. C. Hoyt, S. Idei, A. Jönsson, S. Kaufman, S. Kawata, K. Lang, R. Ledoux-Lebard and A. Dauvillier, E. Olsson, J. S. Rogers, J. Schrör, J. Veldkamp, E. Wagner, D. L. Webster, J. H. Williams, M. Wolf, and J. Zahradnicek. The M-series includes

the lines M_5N_5 , 4·407; M_3N_3 , 5·484; β^{11} , 6·011; β^{11} , 6·030; α^{11} , 6·223; M_1N_1 , 6·250; M_3N_7 , 6·663; M_1N_5 , 8·012; α_1 , 6·049; β_1 , 5·831; β_3 , 5·649; γ_1 , 5·329; γ_2 , 4·733; and γ_3 , 4·623. E. Dershem, E. Hjalmar, F. L. Hunt, A. J. M. Johnson, E. Lindberg, T. H. Osgood, E. G. Purdom and J. M. Cork, and R. A. Rogers, studied the M-series; E. Lindberg, T. Magnusson, and J. Thibaud and A. Soltan, the N-series; and C. G. Barkla, the J-phenomena. Observations on the X-ray spectra were made by W. Duane and co-workers, M. Siegbahn and co-workers, A. Dauvillier, E. Hjalmar, and G. Wentzel. The atomic levels were studied by H. R. Robinson; and A. E. Sandström.

When the X-rays act on platinum, R. Whiddington, R. Berthold, A. P. Weber, H. Murawkin, and J. C. Chapman observed that secondary radiations are emitted, which, according to A. Bestelmeyer, have a velocity of 9.6×10^9 cms. per sec.; and, according to P. D. Innes, have a velocity of 6.1×10^9 to 7.5×10^9 for soft X-rays, and 6.4×109 to 8.1×109 cms. per sec. for hard X-rays. J. Laub found a maximum velocity with the use of 24,000 volts for the production of the X-rays. J. Thibaud studied the emission of positrons by the action of γ -rays on platinum. The emission of X-rays was studied by O. W. Richardson and F. S. Robertson, J. A. Baker, U. Nakaya, C. S. Brainin, and F. C. and L. P. Chalklin; H. W. Edwards, and S. D. Gehman, the reflection of X-rays from platinum; and E. Dershem, the refraction of the rays. The absorption coeff. for X-rays was measured by I. Backhurst, C. G. Barkla, C. G. Barkla and C. A. Sadler, G. Fournier and M. Guillot, K. Grosskurth, A. Ianitizky, F. K. Richtmyer, L. M. Alexander, R. A. Houstoun, and G. W. C. Kave. J. A. Becker observed that a magnetic field of 18,000 gauss has very little effect on the absorption of X-rays of short wave-The penetrating power of X-rays was studied by J. M. Adams, S. Egbert, E. Hupka, and H. B. Keene; T. E. Aurén, and S. J. M. Allen, the absorption; E. Dershem, the refraction; C. Davisson and C. H. Kunsman, R. W. James and G. W. Brindley, A. Rusterholz, and H. E. Strauss, the scattering of the rays; S. D. Gehman, and H. E. Strauss, the reflecting power; E. Dershem, the dispersion of the rays; H. Mark and L. Szilard, the polarization; J. Thibaud, the refraction; the intensity of the rays, by A. Bouwers, W. Friederich, and A. Roiti; the magnetic spectrum of the rays, by A. Bestelmeyer; the fluorescence of the rays, by W. Kaufmann, and E. Marx. S. K. Allison, and H. R. Robinson studied the electron levels of the X-ray spectral lines; the effect of a magnetic field on the absorption of X-rays; and R. Schwarz and M. Klingenfuss, the effect of X-rays on the catalytic activity.

H. Hertz 8 observed that the cathode rays will pass through thin platinum foil. O. von Bäyer found that platinum black reflects the cathode rays very The action of the cathode rays on platinum was also studied by P. Lenard, A. Becker, W. Kohl, H. W. Langenwalther, J. J. Thomson, and E. Gehrcke and R. Seeliger. L. Tonks observed the anchoring of the cathode spot in discharge tubes by platinum projecting through a mercury surface. E. Dershem, and G. P. Thomson studied the diffraction of the rays by thin films of platinum; H. W. Edwards, the intensity of the rays. N. Campbell found that the ionization produced by cathode-rays in falling on platinum can be very greatly reduced by prolonged heating of the metal in a vacuum or in oxygen. The heating first produces no effect, then there is a sudden large change, followed by a slow change, of which the end is never reached. It is probable that ultimately the platinum would not be ionized at all by cathode-rays of less than 40 volts' speed. metal can be put back into its initial state by bombardment with cathode-rays of 100 volts' speed in a pressure of gas below 0.01 mm., but mere contact of the gas or vapours does not restore it appreciably. This restored condition, however, is much less permanent than initially, and a few minutes' heating, instead of a few hours', brings the sudden change. Thus, the same treatment which reduces greatly thermionic and photoelectric effects reduces also the ionization produced at a metal surface by cathode-rays. It is assumed that hydrogen is present in the

metal in two forms, first, condensed on the surface, and, secondly, dissolved in the interior, the sudden diminution of the ionization by heating corresponding with the abolition of the surface layer and the further gradual diminution to the progressive removal of the dissolved gas. The temporary restoration of the surface by the electric discharge is attributed to a surface "double layer." V. Kohlschütter found that when exposed to the **canal rays**, platinum splutters similarly to what it does when used as cathode in the discharge tube, and the action is greater in air than it is in hydrogen. A. J. Dempster, and K. P. Jakovleff studied the absorption of canal rays by platinum. S. C. Roy, J. T. Tate, and K. S. Woodcock studied the emission of electrons by platinum. N. Piltschikoff studied the **Moser rays**; S. Matthes, the δ-radiation of platinum. The action of the so-called **n-rays** was studied by E. Bichat, R. Blondlot, and J. Meyer; and H. Mayer, **alkali ions**. A. Remelé noted that a heated platinum wire emits rays which will pass through paper and affect a photographic plate. J. A. le Bel studied the radiations from a heated platinum wire.

According to F. Paschen, and K. Siegl, when platinum is exposed to radium rays it furnishes a secondary radiation. When small quantities of platinum are dissolved in conc. soln. of uranium nitrate, or a radium salt, and the platinum is separated by chemical means, it has acquired a radioactivity—induced radioactivity —which gradually disappears. The phenomenon with radium was studied by K. A. Hofmann and co-workers, P. Curie and A. Debierne, F. Soddy, T. Tommasina, and R. J. Strutt; with actinium, by O. Hahn; and with thorium emanation, by E. Rutherford and F. Soddy, and F. von Lerch. A. Fischer obtained a solid soln. of the radioactive material and platinum. The diffusion of radium-B and -C was studied by L. Wertenstein and H. Dobrowolska. The emission of α -, β -, and γ -rays by platinum was studied by N. R. Campbell. E. Marsden and H. Richardson found that the speed of the a-rays of radium is retarded by platinum, and the action of the a-rays on the metal was studied by J. E. Henderson and E. Gideon, E. O. Lawrence and co-workers, H. A. Bumstead and A. G. McGougan, H. R. von Traubenberg, and N. R. Campbell. L. Meitner studied the scattering of a-rays by platinum; and J. A. Crowther, W. H. Bragg, W. H. Bragg and R. D. Kleeman, and B. Kucera and B. Masek, the absorption of a-rays. T. I. Campan studied the gas ionization, and secondary emission by impact of positive ions on platinum. E. Badareu, T. I. Campan, H. A. Erikson, R. A. Nelson, O. W. Richardson and C. Sheard, S. Rosenblum, and E. Rudberg studied the emission of positive ions from platinum; G. E. Read, the reflection; Y. Sugiura, the diffraction; and R. W. Gurney, the scattering of positive ions. G. Hoffmann studied the a-ray activity; and G. E. Read, the reflection of positive rays; M. S. Livingston and co-workers, the artificial radioactivity. B. Sabat noted that the electric resistance of platinum is increased in the presence of radium bromide; and H. Dember, that the photoelectric sensitiveness of platinum to light is augmented by exposure to a-rays. W. Wilson observed that a homogeneous beam of β -rays becomes heterogeneous when passed through thin platinum foil. The absorption of β -rays by platinum was studied by S. J. Allen, J. A. Crowther, G. Fournier, V. J. Laine, J. S. Lattès and G. Fournier, J. A. McClelland, and J. Thibaud; and the emission of cathode rays, by A. M. Tyndall and G. C. Crindley, O. Klemperer, H. H. Potter, and E. Warburg. O. von Bäyer studied the effect of platinum on the β -rays from thorium-A; H. Gaertner, the diffraction of electrons by platinum; and C. Boeckner, and H. E. Farnsworth, the radiation from the metal bombarded by slow electrons; O. W. Richardson and K. T. Compton, the latent heat of "evaporation" of electrons; C. C. van Voorhis and K. T. Compton, heats of condensation; C. Davisson and L. H. Germer, J. Thibaud and co-workers, J. J. Trillat and T. von Hirsch, J. V. Hughes, G. P. Thomson, and D. A. Richards, the diffraction of electrons; E. Rupp, the polarization of electrons; and H. R. Robinson and C. J. B. Clews, the energy levels of electrons. N. Ahmad, and E. Stahel and W. Johner studied the absorption of y-rays. M. S. Livingston and co-workers, E. Amaldi

and co-workers, L. Sosnowsky, F. H. Newman and H. J. Walke, E. Fermi and co-workers, and G. Hoffmann discussed the artificial radioactivity; and J. C. McLennan and co-workers, the artificial radioactivity produced by bombardment with neutrons. E. O. Lawrence and M. S. Livingston found but a small yield of neutrons when platinum is bombarded by deutons at 3 million volts pressure. C. A. Murison and co-workers studied the electron diffraction patterns of platinum films produced when the metal is spluttered on glass; W. V. Mayneord, H. Mayer, P. Keck and L. B. Loeb, E. Badareu, P. L. Copeland, and C. Tingwaldt, the emission of electrons; H. B. Wahlin, the emission of positive ions; and F. Schubert, the effect of re-crystallization of the metal. P. D. Foote and coworkers observed no spectra when platinum is bombarded with electrons; J. J. Trillat and M. Motz, and G. I. Finch and co-workers, the diffraction of electrons; G. E. Read, their reflection; R. W. Gurney, the scattering of the ions; A. K. Brewer, the effect of ammonia on the mission of positive ions; R. B. Sawyer, the reflection of lithium ions by platinum; C. Davisson and C. H. Kunzmann, and E. Rudberg, the scattering of electrons; J. T. Tate, the effect of the angle of incidence in the reflection of electrons; T. I. Campan, P. L. Copeland, and F. L. Mohler and C. Boeckner, the secondary emission of electrons from platinum; W. B. Mann, the emission of energy from the surface of an electrically heated platinum wire; E. Rudberg, the bombardment of the metal by slow electrons; J. E. Henderson, the discoloration of platinum by slow electrons; N. I. Koboseff and W. L. Anochin, the desorption of oxygen and hydrogen by electronic bombardment; C. C. van Voorhis and K. T. Compton, the heats of condensation of electrons from ionized helium, nitrogen, and argon; J. A. Kok and W. H. Keesom, the electronic heat capacities; M. L. E. Oliphant and P. B. Moon, the liberation of electrons by bombardment with positive rays; L. T. Jones and V. Duran, and F. Krüger and E. Taege, the effect of various gases on the photoelectric sensitiveness; and E. O. Lawrence and co-workers, and J. Thibaud, the emission of a-particles when the metal is bombarded by deutons of high speed; J. E. P. Wagstaff, and J. B. Austin, the vibration frequency of platinum; and N. Kalabuchoff, the energy of transfer from platinum to sodium chloride.

G. le Bon 10 found that platinum is sensitive to rays below 0.252μ , and G. B. Bandopadhyaya, R. S. Bartlett J. A. Becker, E. Becquerel, W. Bennewitz, E. Bodemann, R. Börnstein, A. K. Brewer, L. A. du Bridge, C. Cha, K. T. Compton and L. W. Ross, J. G. Davidson, W. Frese, E. Gehrke and L. Janicki, H. Goldschmidt and H. Dember, F. Gross, W. R. Grove, E. H. Hall, R. Hamer, W. G. Hankel, T. H. Harrison, F. Herold, K. Herrmann, F. Hlucka, R. B. Jones, N. Kalabuchoff, K. G. Kober, O. Koppuis, G. G. Kretschmar, H. Klumb, J. Kunz, W. N. Lowry, P. Lukirsky and S. Prilezaeff, Q. Majorana, H. Mayer, C. C. Murdock, K. Newbury, K. Newbury and F. Lemery, H. T. Nga, A. Partzsch and W. Hallwachs, T. Pavolini, H. Pellat, R. Pohl, G. Reboul, K. Reger, O. W. Richardson and K. T. Compton, O. Rietschel, H. R. Robinson and C. J. B. Clews, J. Robinson, S. C. Roy, E. Rudberg, E. Rumpf, E. Schaaff, S. Schlivitch, M. Sende, M. Sende and H. Simon, H. Simon, C. Stora, O. Stuhlmann, R. Suhrmann and H. Csesch, F. G. Tucker, A. W. Uspensky, E. Wasser, L. A. Welo, and A. E. Woodruff studied the photoelectric effect. O. Stuhlmann showed that when a beam of ultra-violet light impinges on a film of platinum so thin that its absorption can be neglected, the photoelectric effect caused by the emergent light is greater than the photoelectric effect caused by the emergent beam. Thus, the ratio of the emergent photoelectric effect to the incident photoelectric effect is greater than unity if the films are thin enough, and with platinum the ratio is constant, 1.14; but for thicker films, the ratio is less than unity. The results were confirmed by R. D. Kleeman. J. Robinson showed that the dissymmetry is the result of two effects: (i) the velocities of the electrons emitted, and (ii) the actual numbers of electrons emitted. The dissymmetry is not so marked for velocities as it is for currents. As the thickness of the film increases through 10⁻⁷ cm., the photoelectric effect suddenly

increases; but for films thinner than 10-7, the rate is constant, and begins to diminish after the sudden increase in current has set in. The sudden rise in the photoelectric effect is attributed to the increase in the energy until it is sufficient to ionize the molecules of platinum. The thickness of film which gives the sudden rise in current is the same for slow and quick moving electrons. The orientation of the plane of polarization of the light has no influence on the dissymmetry. W. Frese noted that any treatment which renders the metal passive reduces the photoelectric sensitiveness. T. Pavolini discussed the subject. A. Cochn and K. Sperling studied the action on a photographic plate. L. A. du Bridge, C. del Rosario, and L. A. du Bridge and W. W. Roehr gave for the thermionic work function 4.99 volts, and for the true work function 4.97 volts for photoelectric currents excited by monochromatic light. The photoelectric threshold is 2486 A. O. Stuhlmann studied the subject. W. H. Crew, W. Espe, and L. T. Jones and V. Duran observed the emission of electrons from a platinum tube through which hydrogen is passing; and H. P. Walmsley, the emission of positive ions by hot platinum. C. Davisson and L. H. Germer, R. H. Fowler, O. Koppuis, and H. L. van Velzer studied the thermionic constants; E. D. Eastman, thermoelectric effects, and heat capacity of electrons; and R. Hamer gave $\lambda=2782$ for the limiting frequency of the photoelectric effect; R. Suhrmann found the intensity of the photoelectric current is $i=1.34\times10^6T^2e^{-53610T}$. D. L. Webster studied the critical potentials; J. B. Austin, the characteristic frequency; W. Bennewitz, G. Bethe, K. Herrmann, J. Kluge, K. Reger, and M. Sende and H. Simon, the effect of adsorbed hydrogen; B. Abendroth, and A. K. Brewer, the effect of adsorbed hydrogen, nitrogen, ammonia, helium, and of temp.; H. Leupold, the effect of adsorbed ammonia; and A. E. Woodruff, and R. F. Hanstock, the effect of cold work on the photoelectric effect. C. Cha studied the relation between the incident and emergent velocities of photoelectrons emitted by thin platinum films.

According to R. Ruer and E. Scharff, an anode of platinum polarized in sulphuric acid is sensitive to light. In one case, in darkness, the e.m.f. was constant at 0.913 volt, and after half-an-hour's exposure to daylight, 0.956 volt. G. Grube and L. Baumeister observed that with the light from a mercury vapour lamp, using platinized-platinum electrodes, anodically polarized, and dipping in 2N-H₂SO₄, the nobler the initial potential, the greater was the fall in potential. This continued in the same direction for 15 mins. after the light had been turned off, after which it rose again. Smooth platinum, coated with a golden-yellow oxide by superposition of alternating current on direct current, also showed an initial reduction of potential on exposure to light. On continued illumination, the potential rose until it was higher than the initial value and after four successive illuminations the total rise in potential was 0.179 volt. An electrode which had been strongly oxidized and kept in the dark showed no decrease in potential on exposure to light, but only a positive effect. The sensitivity of the electrode to light is weak in potassium cyanide and still weaker in sodium hydroxide. The action of X-rays is similar to that of light. V. Bjerkness studied the resonance and absorptive power of platinum for electric waves; T. Argyropoulos, and A. Wehnelt, the oscillations of a white-hot platinum wire with a repeated makeand-break; L. Arons, the electric polarization of platinum films; B. Eginitis, voltaluminescence; and J. W. Döbereiner, Nobili's rings. J. N. Frers studied the combinations Pt-CuBr; Pt-Ag₂S; Pt-Cu₂S; Pt-PbS; Pt-MoS₂; Pt-FeS₂; and Pt-ZnO as radio-detectors.

According to R. Nahrwold, 11 air in the vicinity of a glowing platinum wire increases in electrical conductivity; and J. Elster and H. Geitel found that in this way, air, coal-gas, carbon dioxide, and oxygen become positively electrified; and a wire heated to redness in air or oxygen becomes negatively charged. H. A. Wilson observed that the emission of electrified particles is greater in hydrogen than it is in air. The emission of electrified particles by hot platinum was found by A. Wehnelt to be the same if the metal is covered with calcium or barium oxide.

The subject was studied by M. S. Glass. G. H. Martin found that a hydrogen atm. favours the discharge. J. A. McClelland observed that the emission of positive ions continues up to a certain temp., and above that, at a white heat, negative ions are given off. Negative ions were found by A. Occhialini to be given off in intense electrical fields. J. A. Harker and G. W. C. Kaye found that positive ions are emitted up to 1100°, and above that temp., negative ions; the negative ionization in nitrogen at 40 mm. press. increases at first slowly and then more rapidly as the temp. rises from 1350° to 1550°; and at 1460°, by increasing the press. from 0 to 800 mm., the negative ionization increases at first quickly, and then more slowly. Observations on the subject were also made by H. A. Wilson, O. W. Richardson, E. Brunner, K. Fredenhagen, and H. P. Walmsley.

F. Richarz and R. Schenck observed that platinum foil which has been a long time in contact with decomposing ozone makes oxygen electrically conducting. O. J. Lodge noted that air which has lost the faculty of condensing water vapour by being freed from dust, will condense the vapour after being exposed to a redhot platinum wire. G. T. Beilby observed that when a heated platinum plate, resting on glass, is exposed to the products of combustion of coal gas, rings appear on the glass, and the phenomenon is not solely thermal, but is dependent on the emission of ions which serve as nuclei for the condensation of the sulphur trioxide present as impurity in the gas. O. W. Richardson studied the discharge of electricity by hot platinum in phosphorus vapour; and L. Weissmann, and C. Grieb, during the catalysis of detonating gas. E. Warburg studied the action of ultraviolet light on the discharge, and H. T. Barnes and A. N. Shaw, the discharge from pointed electrodes.

F. Horton, and Z. Klemensiewicz attributed the emission of positive ions from hot platinum to the evolution of adsorbed gases; and H. A. Wilson referred the production of negative ions to the occluded hydrogen. According to R. Nahrwold, the fact that a platinum wire glowing feebly electrifies the air positively, and negatively if glowing brightly, is due to the burning of dust particles and other non-gaseous matter in the vicinity of the wire, and by the disintegration of the wire at higher temp, giving off charged particles of metal. When the air was replaced by hydrogen, similar results were obtained when the gas contained dust particles, or when the wire was not perfectly clean, but at higher temperatures, although a negative charge was obtained, it was much less than with atmospheric air, and at the same time it was definitely proved that the disintegration of the wire is very small in hydrogen compared with its amount in atmospheric air. When the wire, after exposure to the air, was heated in an atmosphere of hydrogen quickly, the charge was destroyed when a dull red-heat was attained. This did not occur when the wire was left in the hydrogen for some time before heating it, and the author attributes the results to the formation of oxy-hydrogen gas in the pores of the platinum, and its explosion when the wire is heated.

O. W. Richardson observed that the positive and negative ions emitted by platinum are kinetically the same as the molecules of a gas of the same mol. wt., and at the same temp. F. C. Brown made similar observations. O. W. Richardson and E. R. Hulbirt found that the sp. charge of the electrons given off by platinum at 1100° is $e/m=1.8\times10^{7}$, and at 900° , e/m=387 and e/H=25, when e denotes the e.m.f.; m, the mass of the ions; and H, the mass of the atom of hydrogen. Measurements were made by J. J. Thomson, H. A. Wilson, J. C. Pomeroy, F. Horton, O. W. Richardson and co-workers, F. Deininger, and G. Owen and R. Hallsall.

W. Ogawa, 12 and H. Greismann discussed the use of platinum as a radio-detector.

REFERENCES.

¹ H. L. Barvir, Sitzber. Böhm. Ges., 35, 1906; Neues Jahrb. Min., i, 170, 1908; G. T. Beilby, B.A. Rep., 604, 1901; H. St. C. Deville and H. Debray, Ann. Chim. Phys., (3), **56**, 485, 1859; (3), 61. 5, 1861; W. L. Dudley, Amer. Chem. Journ., 14. 185, 1892; Chem. News, 66. 163, 1892;

F. Ehrenhaft, Phys. Zeit., 11. 619, 1910; M. Faraday, Phil. Trans., 147. 145, 1857; A. Kundt, Wied. Ann., 27. 71, 1886; A. Partzsch and W. Hallwachs, Ann. Physik, (4), 41. 256, 1913; A. W. Wright, Dingler's Journ., 225. 402, 1877; Amer. Journ. Science, (3), 18. 52, 1877; (3), 14. 175, 1877.

² K. J. Angström, Oefvers. Vet. Akad. Förh., 55. 283, 1898; D. F. J. Arago, Mem. d'Arcueil, 3. 323, 1817; E. van Aubel, Bull. Acad. Belg., (3), 11. 408, 1886; (3), 12. 665, 1887; Zeit. phys. Chem., 30. 566, 1899; H. Barvir, Ber. Böhm. Ges., 3, 1906; J. Bauer, Ann. Physik, (5), 20. 481, 1934; W. J. Beekman and F. W. Oudt, Zeit. Physik, 38. 831, 1925; E. Dershem, Phys. Rev., (2), 31. 305, 1928; (2), 33. 659, 1929; P. Desains, Compt. Rend., 74. 1102, 1185, 1872; Phil. (2), 31. 303, 1823; (4), 32. 303, 1823; T. Dessains, Compt. Inc., 1712; 180, 1815; T. Mag., (4), 43. 544, 1872; (4), 44. 77, 1872; B. Dessau, Wied. Ann., 29. 376, 1886; P. Drude, ib., 39. 481, 1890; W. Eisenlohr, Pogg. Ann., 119. 383, 1863; C. Féry, Compt. Rend., 148. 779, 1909; C. Féry and M. Drecq, ib., 155. 1239, 1912; K. Försterling, Nachr. Gött., 449, 1911; K. Försterling and V. Freedericksz, Ann. Physik, (4), 40. 228, 1913; V. Freedericksz, Phys. Zeit., 12. 346, 1911; I. C. Gardner, Astrophys. Journ., 45. 1, 1917; Scient. Amer. Suppl., 34. 140, 1917; J. H. Gladstone, Phil. Trans., 160. A, 15, 1870; Phil. Mag., (4), 39. 231, 1870; P. R. Gleason, Proc. Nat. Acad., 15. 551, 1929; H. Goldschmidt and H. Dember, Zeit. tech. Phys., 7. 137, 1926; G. Govi, Compt. Rend., 85. 699, 1877; Chem. News, 36. 204, 1877; A. de Gramont, Compt. Rend., 194. 677, 1932; E. Hagen and H. Rubens, Zeit. Instrkd., 19. 293, 1899; 22. 42, 1902; Verh. deut. phys. Ges., 3. 173, 1901; 5. 113, 1903; 17. 143, 1898; Sitzber. Akad. Berlin, 269, 1903; 491, 1909; Ann. Physik, (4), 1. 16, 373, 1902; (4), 8. 16, 432, 1903; (4), 11. 884, 1903; W. Hallwachs, ib., (4), 41. 271, 1913; R. Hamer, Phys. Rev., (2), 26. 285, 1925; S. Haughton, Phil. Trans., 153. A, 87, 1863; F. Henning, Zeit. Instrkd., 30. 72, 1910; L. Holborn and F. Henning, Stizber. Akad. Berlin, 936, 1902; E. O. Hulbert, Astrophys. Journ., 42. 203, 1915; F. Kaempf, Gefärbte Flammen und ihre spectroskopisch Beobachtung, Leipzig, 1904; Ann. Physik, (4), 16. 308, 1905; K. W. G. Kastner, Kastner's Arch., 10. 490, 1827; H. Kath, Zur Phusenänderung des Lichtes bei der Reflexion an Metallen, Berlin, 1807; Wild American Sci. 1807; Miller 180, 200 1897; Wied. Ann., 62. 350, 1897; H. Kienle and H. Siedentopf, Zeit. Physik, 58. 726, 1929; H. Knoblauch, Wied. Ann., 24. 260, 1885; J. Königsberger, Ann. Physik, (4), 43. 1205, 1914; A. Kundt. Wied. Ann., 27. 62, 1886; 34. 469, 1888; Sitzber. Akad. Berlin, 255, 1387, 1888; N. Kurnakoff, Journ. prakt. Chem., (2), 52. 518, 1895; A. Lallemand, Ann. Chim. Phys., (5), 8. 93, 1876; K. Lauch, Ann. Physik, (4), 74. 55, 1924; M. Lauc and F. F. Martens, Phys. Zeit., 8. 853, 1907; Ber. deut. phys. Ges., 5. 522, 1908; Verh. deut. phys. Ges., 9. 522, 1907; E. P. Lewis and A. C. Hardy, Phys. Rev., (2), 14. 271, 1921; F. Limmer, Chem. Ztg., 31. 1025, 1907; W. Meier, Ann. Phys., (4), 31, 1017, 1910; Untersuchungen über Dispersion und Absorption bei Metallen für das sichtbare und ultraviolette Spektrum, Göttingen, 1910; W. A. Miller, Phil. Trans., 152. A, 875, 1863; R. A. Millikan, Phys. Rev., (1), 3. 81, 177, 1895; W. Möller, Wied. Ann., 24. 266, 1885; Experimentalle Untersuchung des Lichtemanationsgesetzes glühender Körper, Strassburg, 1884; Elektrotech. Zeit., 5. 370, 405, 1884; J. Moser, Wied. Ann., 42. 662, 1891; J. B. Nathanson, Journ. Amer. Opt. Soc., 23, 388, 1933; A. Partzsch and W. Hallwachs, Ann. Phys., (4), 41, 270, 1913; J. Patterson, Phil. Mag., (6), 4, 673, 1902; A. H. Pfund, Journ. Amer. Opt. Soc., 12, 467, 1926; B. Pogany, Ann. Physik, (4), 49, 540, 1916; R. Pohl, Verk. deut. phys. Ges., 11, 609, 1909; H. de la Provostaye and P. Desains, Ann. Chim. Phys., (3), 30, 376, 1850; (3), 32, 112, 1851; G. Quincke, Pogg. Ann. Jubelbd., 336, 1884; C. V. Raman and K. S. Krishnan, Proc. Roy. Soc., 116, A, 254, 1927; W. Rathenau, Die Absorption des Lichts in Metallen, Berlin, 18, 1889; G. B. Rizzo, Atti Accad. Torino, 28, 823, 1893; Nuovo Cimento, (3), 85. 30, 1894; P. A. Ross, Phys. Rev., (1), 33, 552, 1911; P. Rouard, Compt. Rend., 195, 869, 1932; T. Royds, Phil. Mag., (6), 21, 172, 1911; Phys. Zeit., 11, 318, 1910; H. Rubens, Die selective Reflexion der Metalle, Berlin, 1889; H. Rumpelt, Ann. Physik, (4), 25, 649, 1902; E. Schuch, ib., (5), 13, 297, 1932; D. Shea, Wied. Ann., 47, 177, 1892; H. E. Strauss, Phys. Rev., (2), 31. 491, 1928; (2), 34. 1021, 1929; J. Thibaud, J. J. Trillet and T. von Hirsch, Journ. Phys. Rad., (7), 3. 314, 1932;
J. Trowbridge and W. C. Sabine, Proc. Amer. Acad., 23. 299, 1888;
Phil. Mag., (5), 26. 316, 1888;
W. von Uljanin, Wied. Ann., 62. 540, 1897;
W. Voigt, ib., 23. 142, 1884;
C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 1. 251, 1905;
H. von Wartenberg, Ber. deut. phys. Ges., 8, 118, 1910; 12, 105, 1910; Verh. deut. phys. Ges., 12, 105, 1910; W. Wien, Wied. Ann., 35, 48, 1888; C. Zakrzewsky, Bull. Acad. Cracow, 77, 89, 1910; P. Zeeman, Zeit. phys. Chem., 130. 237, 1927.

M. Cau, Compt. Rend., 194. 2042, 1932; B. Pogany, Ann. Physik, (4), 64. 196, 1921.
 L. L. Barnes, Phys. Rev., (2), 42. 487, 1932; H. A. Barton, ib., (2), 26. 360, 1925; E. Bauer and M. Moulin, Compt. Rend., 150. 168, 1910; E. Becquerel, La lumère, ses causes et ses effects, Paris, 1. 78, 1867; J. Le Bel, Compt. Rend., 152. 129, 1911; J. T. Bottomley, Proc. Roy. Soc., 42. 357, 433, 1887; B. W. Bradford, Journ. Chem. Soc., 1544, 1932; C. Braun, Wied. Ann., 38. 415, 1888; A. K. Brewer, Journ. Amer. Chem. Soc., 54. 4588, 1932; Phys. Rev., (2), 35. 1360, 1930; L. A. du Bridge, Proc. Nat. Acad., 14. 788, 1928; Phys. Rev., (2), 31. 912, 1928; (2), 32. 961, 1928; E. Brodhun and F. Hoffmann, Zeit. Physik, 37. 137, 1926; G. K. Burgess, Bull. Bur. Standards, 1. 443, 1905; H. Cassel and E. Glückauf, Zeit. phys. Chem., 18. B, 347, 1932; J. F. Chittum, Journ. Phys. Chem., 38. 79, 1934; W. W. Coblentz, Journ. Franklin Inst., 170. 169, 176, 1910; Bull. Bur. Standards, 5. 182, 369, 1908; W. H. Crew, Phys. Rev., 28. 1265, 1926; A. Crova, Compt. Rend., 87, 980, 1878; M. Czerny, Zeit. Physik, 26. 182, 1924; C. Davisson and L. H. Germer, Phys. Rev., (2), 21. 208, 1923; (2), 24. 666, 1924; C. Davisson and J. R. Weeks, ib., (2), 17. 261, 1921; Journ. Amer. Opt. Soc., 8, 581, 1924; P. Desains and

P. Curie, Compt. Rend., 90, 1506, 1880; T. Edison, Proc. Amer. Assoc., 173, 1879; Chem. News, 40. 152, 1879; H. Eisler, Elektrotech. Zeit., 25. 188, 1904; R. Emden, Wied. Ann., 36. 214, 1889; H. A. Erikson, Phys. Rev., (2), 21. 720, 1923; (2); 26. 625, 1925; C. Féry, Ann. Chim. Phys., (7), 27. 479, 511, 522, 1902; G. I. Finch and A. W. Ikin, Proc. Roy. Soc., 145. A, 551, 1934; G. Fletcher, Brit. Pat. No. 12264, 1893; W. D. Flower, Phil. Mag., (7), 5. 1084, 1928; P. D. Foote, Journ. Washington Acad., 5, 1, 1915; R. H. Fowler, Proc. Roy. Soc., 122. A, 36, 1929; K. Freden. hagen, Bec. Sachs. Ges., 65, 42, 1913; E. Furthmann, Ueber die Gesamtstrahlung fester Körper, Düsseldorf, 1928; M. Geiseler, Arch. Pharm., (2), 17. 144, 1839; W. Giess, Physica, 5. 203, 1925; L. H. Germer, Phys. Rev., (2), 25, 795, 1925; M. S. Glass, ib., (2), 28, 521, 1926; P. R. Gleason, Proc. Nat. Acad., 15, 551, 1929; L. Graetz, Wied. Ann., 36, 862, 1889; C. Greib, ib., 79, 377, 1912; E. Hagen and H. Rubens, Verh. deut. phys. Ges., 5. 113, 145, 1903; 12. 172, 1910; Ber. deut. phys. Ges., 6. 712, 1910; Phys. Zeit., 11. 140, 1910; Sitzber. Akad. Berlin, 269, 410, 1903; 478, 1909; 467, 1910; Ann. Physik, (4), 11. 884, 1903; T. H. Harrison, Proc. Phys. Soc., 38. 214. 1926; W. A. Harwood and J. E. Petavel, Proc. Roy. Soc., 86. A, 406, 1912; A. L. Helfgott, Zeit. Physik, 49. 555, 1928; F. Henning, Jahrb. Rad. Elektron., 17. 30, 1920; F. Henning and W. Heuse, Wiss. Abhand. Phys. Tech. Reichsanst., 7. 253, 1923; Zeit. Physik, 16. 63, 1923; 29. 157, 1924; F. Hoffmann, Zeit. Physik, 27. 285, 1924; L. Holborn and F. Kurlbaum, Ann. Physik, (4), 10. 240, 1903; F. Horton, Proc. Roy. Soc., 88. A, 117, 1913; E. P. Hyde, Phys. Rev., (1), 31. 315, 1910; H. E. Ives and T. C. Fry, Journ. Amer. Opt. Soc., 23, 73, 1933; P. Jez, (1), 31. 315, 1910; H. E. Ives and T. C. Fry, Journ. Amer. Opt. Soc., 23. 73, 1933; P. Jez, Journ. Phys. Rad., (6), 8. 244, 1927; Compt. Rend. Polonaise Phys. Soc., 7. 21, 1926; H. Kahanowicz, Atti Accad. Lincei, (5), 30. ii, 132, 1921; S. Kalandyk, Journ. Phys. Radium, (6), 9. 231, 1928; Acta Physica Polonica, 3. 165, 1934; C. Killing, Journ. Gasbeleucht., 46. 445, 1903; J. Könisberger and K. Schilling, Phys. Zeit., 9. 348, 1908; V. B. Lewes, Chem. News, 71. 181, 190, 203, 1895; Proc. Roy. Soc., 57. 450, 1895; G. Liebmann, Zeit. Physik, 71. 416, 1931; L. L. Lockrow, Phys. Rev., 19. 97, 1922; R. Lucas, Phys. Zeit., 6. 418, 1905; O. Lummer and F. Kurlbaum, Verh. deut. phys. Ges., 17. 111, 1898; Sitzber. Akad. Berlin, 229, 1894; O. Lummer and E. Pringsheim, Verh. deut. phys. Ges., 1. 226, 1899; J. Meunier, Compt. Rend., 148, 292, 1909; 149, 924, 1909; W. Möller, Experimentalle Untersuchung des Lichtemanations-gestzes glühender Körper, Strassburg, 1884; Elektrotech. Zeit., 5. 370, 405, 1884; Wied. Ann., 24, 266, 1885; E. Müller, Ann. Physik, (5), 14, 831, 1932; Die Emission von glühenden Platin in Gasen im besondere in Jod-dampf und Chlor, Berlin, 1933; R. A. Nelson, Rev. Scient. Instr., 2, 173, 1931; E. L. Nichols, Amer. Journ. Science, (3), 18, 446, 1879; Phil. Mag., (5), 18, 38, 2. 173, 1931; E. L. Nichols, Amer. Journ. Science, (3), 18. 446, 1879; Phil. Mag., (5), 13. 38, 1882; F. Paschen, Wied. Ann., 49. 64, 1893; 51. 40, 1894; 58. 450, 1896; 60. 662, 703, 1897; J. Patterson, Phil. Mag., (6), 4. 672, 1902; J. E. Petavel, Phil. Trans., 197. A, 229, 1901; M. von Pirani, Ber. deut. phys. Ges., 8. 301, 1910; J. Pohl, Phys. Zeit., 35. 1003, 1935; H. H. Potter, Phil. Mag., (6), 46. 768, 1923; H. de la Provostaye and P. Desains, Compt. Rend., 22, 825, 1846; G. Bibard, R. W. Director, 2004, 40, 200 1846; G. Ribaud, Rev. d'Optique, 12. 289, 1933; O. W. Richardson, Phil. Trans., 201. A, 497, 1903; Proc. Roy. Soc., 105. A, 387, 1924; F. Rossetti, Atti Accad. Lincei, (3), 2. 169, 1878; Nuovo Cimento, (3), 3. 238, 1878; Ann. Chim. Phys., (5), 17. 177, 1879; T. B. Rymer, Proc. Roy. Soc., 153. A, 422, 1936; A. Schleiermacher, Wied. Ann., 26, 305, 1885; H. Schmidt and E. Furthmann, Mitt. Inst. Eisenforsch., 10, 225, 1928; R. W. Sears and J. A. Becker, Phys. Rev., (2), 48, 1058, 1935; G. A. Shakespear, Proc. Roy. Soc., 86, 180, 1912; C. Sheard, Phil. Mag., (6), 28, 170, 1914; A. Smithells, Journ. Chem. Soc., 67, 1049, 1895; Chem. Soc., 72, 265, 1895; B. S. Srikantan, Indian Journ. Physics, 5, 685, 1930; Journ. Indian Chem. Soc., 11. 805, 1935; J. Stefan, Sitzber. Akad. Wien, 79. 391, 1879; F. Stenger, Wied. Ann., 32. 271, 1887; V. A. Suydam, Phys. Rev., (2), 5. 497, 1915; A. M. Tyndall, Phil. Mag., (6), 47. 689, 1924;
A. M. Tyndall and G. C. Grindley, ib., (6), 47. 689, 1924;
W. von Uljanin, Wied. Ann., 62. 540, 1897;
H. L. van Velzer, Phys. Rev., (2), 44. 831, 1933;
J. Violle, Compt. Rend., 88. 171, 1879;
92. 866, 1024, 1881;
105. 164, 1887;
C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 1. 243, 1905;
3. 176, 1907;
A. T. Waterman, Phys. Rev., (2), 24. 366, 1924;
H. F. Weber, Sitzber. Akad. Berlin, 491, 1887; 565, 933, 1888; Wied. Ann., 32. 256, 1887; L. Weissmann, Zeit. Akad. Bertin, 491, 1887; 500, 933, 1885; Wied. Ann., 62, 200, 1887; L. Weissman, 200, phys. Chem., 79, 257, 1912; O. Wiedeburg, Wied. Ann., 68, 104, 1899; H. A. Wilson, Phil. Trans., 202. A, 243, 1903; Phil. Mag., (6), 21, 711, 1911; M.Wolfke and J. Rolinsky, Phys. Zeit., 30, 817, 1929; A. G. Worthing, Phys. Rev., (2), 21, 705, 1923; (2), 28, 174, 1926.
W. E. Adeney, Trans. Roy. Soc. Dublin, (2), 7, 331, 1901; (2), 10, 235, 1904; D. Alter, Amer. Journ. Science, (2), 18, 55, 1854; A. J. Angström, Svensk. Vet. Akad. Handl., 229, 1853;

W. E. Adeney, Trans. Roy. Soc. Dublin, (2), 7. 331, 1901; (2), 10. 235, 1904; D. Alter, Amer. Journ. Science, (2), 18. 55, 1854; A. J. Angström, Svensk. Vet. Akad. Handl., 229, 1853; Pogg. Ann., 94. 141, 1855; Phil. Mag., (4), 9. 327, 1855; F. E. Baxandall, Recherches on the Chemical Origin of Various Lines in Solar and Stellar Spectra, London, 1910; E. Becquerel, Ann. Chim. Phys., (3), 57. 40, 1859; Arch. Sciences Genève, (2), 6. 21, 1859; Compt. Rend., 49. 27, 1859; G. Berndt, Ueber den Einfluss von Selbeinduction auf die durch den Inductionsfunken erzeugten Metallspectra im Ultraviolett, Halle, 1901; J. Beuel, Zeit. wiss. Photochem., 11. 150, 1912; L. and E. Bloch, Journ. Phys. Rad., (6), 2. 229, 1921; (6), 6. 154, 1925; Compt. Rend., 172, 803, 962, 1921; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 22, 1855; 24, 1856; Pogg. Ann., 95. 176, 1855; 97. 333, 1856; L. de Boisbaudran, Spectres lumineux, Paris, 1874; Compt. Rend., 76. 1263, 1873; 77. 1152, 1873; W. von Bolton, Zeit. Elektrochem., 9. 913, 1903; D. Brewster, B.A. Rep., 5, 1850; G. B. Buckton, Journ. Chem. Soc., 7. 22, 1854; H. Buisson and C. Fabry, Journ. Phys., (4), 7. 169, 1908; Astrophys. Journ., 28. 169, 1908; D. Cernez, Compt. Rend., 740, 1338, 1905; G. Ciamician, Sitzber. Akad. Wien, 76. 499, 1877; L. H. G. Clark and E. Cohen, Trans. Roy. Soc. Canada, (3), 20. 55, 1926; R. Colley, Journ. Russ. Phys. Chim. Soc., 12. 1, 1880; Journ. Phys., (1), 9. 155, 1880; A. Dauvillier, Compt. Rend., 178. 647, 1921; E. Demarçay,

Spectres electriques, Paris, 1895; J. M. Eder and E. Valenta, Atlas typischer Spectren, Wien, 1911; Sitzber. Akad. Wien, 119. 519, 1910; F. Exner and E. Haschek, Wellenlangentabellen zu spectralanalytischen Untersuchungen auf Grund der ultravioletten Funken spectren der Elemente. Leipzig, 1902; Wellenlängentabellen zu spectralanalytischen Undersuchungen auf Grund der ultravioletten Bogenspectren der Elemente, Leipzig, 1904; Die Spectren der Elemente bei normalen Druck, Leipzig, 1911; Silzber. Akad. Wien, 104. 909, 1895; 105. 503, 1896; 106. 36, 1897; H. Finger, Zeit. wiss. Photochem., 7. 329, 369, 1909; Verh. deut. phys. Ges., 11. 369, 1909; J. Formanek, Die qualitative Spektralanalyse anorganischer und organischer Körper, Berlin, 154. 1905; W. Gerlach and E. Riedl, Phys. Zeit., 34. 516, 1933; W. Gerlach and K. Ruthardt, Siebert's Festschrift, 51, 1931; Zeit. anorg. Chem., 209. 337, 1932; W. Gerlach and E. Schweitzer, ib., 181. 103, 1929; W. Gibbs, Amer. Journ. Science, (2), 47. 200, 1869; C. E. Gissing, Spark Spectra of the Elements, London, 910; J. H. Gladstone, Edin. Phil. Journ., 1. 83, 1855; Chem. Gaz., 12. 420, 1854; Journ. prakt. Chem., (1), 64. 438, 1855; G. T. Globe, Phys. Rev., (2), 48, 346, 1935; A. Gouy, Compt. Rend., 84. 231, 1877; 85. 439, 1877; Ann. Chim. Phys., (5), 18. 100, 1879; A. Hagenbach and H. Konen, Atlas der Emissionspectra, Jena, 1905; E. Hagenbach, Pogg. Ann. Jubelbd., 309, 1874; A. Hantzsch, Ber., 41, 1221, 1908; Zeit. phys. Chem., 72, 363, 1910; W. N. Hartley, Proc. Chem. Soc., 18. 30, 1902; Journ. Chem. Soc., 41. 1882; Trans. Roy. Soc. Dublin, (2), 1. 231, 1882; Phil. Trans., 185. A, 161, 1894; W. N. Hartley and H. W. Moss, Proc. Roy. Soc., 87. A, 38, 1912; A. C. Haussmann, Astrophys. Journ., 66. 333, 1927; Phys. Rev., (2), 31. 152, 1928; H. G. Howell and G. D. Rochester, Proc. Univ. Durham Phil. Soc., 9, 126, 1934; W. Huggins, Phil. Trans., 154, 139, 1865; E. O. Hulbert, Phys. Rev. (2), 24, 129, 1924; W. J. Humphreys, Astrophys. Journ., 6, 169, 1897; 26, 18, 1907; C. C. Hutchins and E. L. Holden, Phil. Maj., (5), 24, 325, 1887; H. Jackson, Proc. Chem. Soc., 12, 58, 1896; P. Joye, Ann. Chim. Phys., (8), 21, 148, 189, 1910; Einfluss des Intensitätsmaximums des Stroms auf das Spektrum der oszillierenden Entlidung, Freiburg, 1909; G. Kail, Sitzber. Akad. Wien, 128. 1269, 1914; H. Kayser, Sitzber. Akad. Berlin, 2, 1897; Astrophys. Journ., 7, 93, 173, 1898; Handbuch der Spectroscopie, Leipzig, 6, 304, 1912; H. Kayser, C. Fabry and J. J. Ames, ib., 32. 215, 1910; C. C. Kiess and O. Laporte, Science, (2), 63. 234, 1926; M. Kimura, Japan. Journ. Phys., 3. 217, 1924; G. Kirchhoff, Untersuchungen über die Sonnenspektra, Berlin, 16, 1866; Sitzber. Akad. Berlin, 63, 1861; 227, 1862; 227, 1863; H. Konen and H. Finger, Zeit. Elektrochem., 15. 166, 1909; R. de L. Kronig, Proc. Roy. Soc., 133. A, 255, 1931; N. Kurnakoff, Zeit. anorg. Chem., 6, 341, 1894; R. Lang, Phil. Trans., 224. A, 371, 1924; O. Laporte and D. R. Inglis, Phys. Rev., (2), 35, 1337, 1930; H. de Laszlo, Journ. Ind. Eng. Chem., 19. 1366, 1927; H. Lehmann, Verh. deut. phys. Ges., 12. 900, 1910; P. Lewis, Phys. Zeit., 5. 547, 1904; G. D. Liveing and J. Dewar, Proc. Roy. Soc., 29. 402, 1879; J. J. Livingood, (2), 34. 185, 1929; J. N. Lockyer, Proc. Roy. Soc., 60, 133, 1896; B. A. Lomakin, Zeit. Physik, 40. 548, 1926; E. Lommel, Sitzber. Akad. Erlangen, 12. 27, 33, 1880; Wied. Ann., 8. 634, 1879; 9. 108, 1880; F. McClean, Monthly Notices Astron. Soc., 52, 22, 1891; J. E. Mack, Phys. Rev., (2), 34. 17, 1929; J. C. McLennan, E. Cohen and M. J. Liggett, Trans. Roy. Soc. Canada, (3), 20. 365, 1926; J. C. McLennan and A. B. McLay, ib., (3), 20. 201, 1926; C. A. Martius, Ueber die Cyanverbindungen der Platinmetalle, Göttingen, 1860; Liebig's Ann., 117. 374, 1861; A. Masson, Compt. Rend., 31, 887, 1850; 32, 127, 1851; Ann. Chim. Phys., (3), 31, 323, 1851; (3), 45, 385, 1855; W. F. Meggers, Chem. News, 133, 6, 1926; Science Papers Bur. Standards, 499, 1925; W. F. Meggers and C. C. Kiess, Journ. Amer. Opt. Soc., 12, 417, 1926; W. F. Meggers and O. Laporte, Phys. Rev., (2), 28, 642, 1926; A. Miethe and B. Seegert, Zeit. wiss. Photochem., 10. 248, 1911; W. A. Miller, Phil. Trans., 152, 861, 1862; S. R. Milner, Proc. Roy. Soc., 81. A, 299, 1908; H. W. Morse, Astrophys. Journ., 19. 229, 1904; 21. 223, 1905; H. Nagaoka, D. Nukiyama and T. Futagami, Proc. Inp. Acad. Tokyo, 3, 392, 398, 403, 409, 415, 1927; E. Néculcéa, Recherches théoretiques et expérimentales sur la constitution des spectres ultraviolettes d'étincelles oscillantes, Paris, 1906; Compt. Rend., 134, 1572, 1902; P. G. Nutting, Astrophys. Journ., 23, 64, 1906; Bull. Bur. Standards, 1, 408, 1905; 2, 446, 1906; N. Orloff, Char. Za. 28, 1407, 1012. F. G. Nutting, Astrophys. Journ., 23, 64, 1906; Bull. Bur. Standards, 1, 408, 1905; Z. 446, 1906; N. Orloff, Chem. Ztg., 36, 1407, 1912; P. J. Ovrebo, Phys. Rev., (2), 31, 1123, 1930; (2), 38, 1098, 1930; H. Oyama, Tech. Rep. Tohoku Univ., 10, 1, 1931; E. Paulson, Ann. Physik, (4), 46, 698, 1915; J. E. Purvis, Trans. Cambridge Phil. Soc., 20, 193, 1906; Phys. Zeit., 8, 594, 1907; T. R. Robinson, Phil. Trans., 152, 936, 1862; H. A. Rowland, Preliminary Table of Solar Spectrum Wave-lengths, Chicago, 1896; Astrophys. Journ., 6, 384, 1897; H. A. Rowland and R. R. Tatnall, ib., 2, 184, 1895; R. Samuel, Zeit. Physik, 70, 43, 1931; R. Samuel and A. R. P. Desponde, ib. 20, 305, 1933. I. Schorge, Rev. 3, 13, 1870. V. Schumann, Phot. Rund. A. R. R. Despande, ib., 80, 395, 1933; J. Schoras, Ber., 3, 13, 1870; V. Schumann, Phot. Rund., 41, 71, 1890; C. P. Snyder, Astrophys. Journ., 14, 179, 1901; W. Spottiswoode, Proc. Roy. Soc., 173, 1880; G. G. Stokes, Phil. Mag., (3), 46. 504, 1853; (4), 10. 95, 1855; Phil. Trans., 143, 385, 1853; E. Symons, Messungen am Bogenspektrum von Platin, Bonn, 1913; Zeit. wiss. Photochem., 12. 277, 283, 1913; R. Thalen, Om Spectralanalyse, Upsala, 1866; Nova Acta Upsala, (3), 6. 30, 1868; Ann. Chim. Phys., (4), 18. 237, 1869; S. Tolansky and E. Lee, Nature, 137. 908, 1936; C. A. von Welsbach, Monatsh., 5. 10, 1884; E. Wiedemann, Wied. Ann., 9. 157, 1880; A. T. Williams, Compt. Rend., 201, 665, 1935; V. S. M. van der Willigen, Verst. Meded. Akad., 7, 1888; Pogg. Ann., 106. 610, 1859; 107. 473, 1859; L. Wöhler and W. Witzmann, Zeit. anorg. Chem., 57. 332, 1908.

V. J. Andrew, Phys. Rev., (2), 42, 591, 1932; P. Auger and A. Dauvillier, Compt. Rend.,
 176. 1297, 1923; I. Backhurst, Phil. Mag., (7), 16, 310, 1933; C. G. Barkla, Phil. Mag.,
 (6), 49, 1033, 1925; H. Brauns, Zeit. wiss. Photochem., 25, 325, 1928; M. de Broglie, Compt.

Rend., 169, 962, 1919; 170, 585, 1920; J. C. Bryce, Phys. Rev., (2), 23, 575, 1924; Y. Cauchois, Compt. Rend., 201, 598, 721, 1935; F. C. and L. P. Chalklin, Phil. Mag., (7), 16, 363, 1933; J. M. Cork and B. R. Stephenson, Phys. Rev., (2), 27. 103, 138, 1926; D. Coster, ib., (2), 18. 218, 1921; (2), 19. 20, 1922; Zeit. Physik, 4. 185, 1921; D. Coster and J. Veldkamp, ib., 74. 191, 1932; A. Dauvillier, Journ. Phys. Rad., (6), 3, 221, 1922; Compt. Rend., 173, 647, 1921; G. B. Deodhar, Proc. Roy. Soc., 131. A, 476, 1931; E. Dershem, Phys. Rev., (2), 33, 120, 1929; M. J. Druyvesteyn, Zeit. Physik, 43, 707, 1927; W. Duane, H. Fricke and W. Stenström, Proc. Nat. Acad., 6, 607, 1920; W. Duane and R. A. Patterson, ib., 6, 509, 1920; 8, 85, 1922; Phys. Rev., (2), 19. 542, 1922; R. Friman, Zcit. Physik, 39. 813, 1926; H. Hirata, Proc. Roy. Soc., 105. A. 40, 1924; E. Hjalmar, Zeit. Phys., 15. 65, 1923; F. C. Hoyt, Phys. Rev., (2), 18. 333, 105. A. 40, 1924; E. Hjalmar, Zett. Phys., 15. 65, 1923; F. C. Hoyt, Phys. Rev., (2), 18. 353, 1921; F. L. Hunt, ib., (2), 29, 919, 1927; (2), 30, 227, 1927; S. Idei, Science Rep. Tohoku Univ., 19. 559, 1930; F. Ingelstam, Ark. Mat. Astron. Fysik, 25, 9, 1935; A. J. M. Johnson, Phys. Rev., (2), 34, 1106, 1929; A. Jönsson, Zeit. Physik, 36, 454, 1926; S. Kaufman, Phys. Rev., (2), 40, 116, 1932; S. Kawata, Mem. Coll. Science Kyoto Univ., 14, 227, 1931; H. Kulenkampff, Ann. Physik, (4), 69, 548, 1922; H. Küstner and E. Arends, Ann. Physik, (5), 22, 443, 1935; K. Lang, ib., (4), 75, 489, 1924; R. Ledoux-Lebard and A. Dauvillier, Compt. Rend., 164, 687, 1917; J. E. Lilienfeld and H. Secmann, Phys. Zcit., 19, 269, 1919; E. Lindberg, Nova Acta Upsala, 7, 7, 1931; 54, 632, 1929; Zeit. Physik, 50, 82, 1928; F. H. Loring, Chem. News, 134, 49, 1927; J. M. Mack and J. M. Cork, Phys. Rev., (2), 30, 741, 1927; T. Magnusson, Zeit. Physik, 79, 161, 1932; E. Olsson, Nature, 129, 94, 1932; T. S. Osgood, ib., 119, 817, 1927; E. G. Purdom and J. M. Cork, Phys. Rev., (2), 44, 974, 1933; G. Rechou, Compt. Rend., 180. E. G. Purdom and J. M. Cork, Phys. Rev., (2), 44, 948, 1933; G. Kechou, Compe. Liena., 100, 1107, 1925; H. R. Robinson, Phil. Mag., (7), 18, 1086, 1934; J. S. Rogers, Proc. Ray. Soc. Victoria, 34, 196, 1922; Proc. Cambridge Phil. Soc., 21, 430, 1923; R. A. Rogers, Phys. Rev., (2), 29, 205, 1927; (2), 30, 747, 1927; A. E. Sandström, Phil. Mag., (7), 22, 171, 1936; J. Schrör, Ann. Physik, (4), 80, 297, 1926; H. Seeman, Phys. Zeit., 15, 794, 1914; M. Siegbahn, Die Spektroscopie der Routgenstrahlen, Berlin, 1924; Jahrb. Rad. Elektron., 18, 296, 1916; 18, 240, 1921; M. Siegbahn and E. Jönsson, Phys. Zeit., 20, 251, 1919; J. Thibaud and A. Soltan, Phys. Disc. Disc. Disc. Comput. Repd. 185, 642, 1927; J. Veldkamp, Physics. Journ. Phys. Radium, (6), 8. 484, 1927; ('ompt. Rend., 185, 642, 1927; J. Veldkamp, Physics, 2. 25, 1935; E. Wagner, Ann. Physik, (4). 46, 868, 1915; D. L. Webster, Phys. Rev., (2), 15, 238, 1920; G. Wentzel, Naturwiss.. 10, 369, 1922; J. H. Williams, Phys. Rev., (2), 45, 71, 1934; M. Wolf, Proc. Akad. Amsterdam, 35, 547, 1932; Ann. Physik, (5), 16, 973, 1933; J. Zahradnicek, Zcit. Physik, 60: 712, 1930.

7 J. M. Adams, Contr. Jefferson Phys. Lab., 4, 1906; Amer. Journ. Science, (4), 23.375, 1907; Proc. Amer. Acad., 42. 683, 1907; L. M. Alexander, Phil. Mag., (7), 4. 670, 1928; S. J. M. Allen, Phys. Rev., (2), 23. 29, 1924; (2), 27. 266, 1926; (2), 28. 907, 1926; S. K. Allison, ib., (2), 34. 7, 1929; T. E. Aurén, Phil. Mag., (6), 33. 471, 1917; I. Backhurst, ib., (7), 7. 553, 1929; J. A. Baker, Phys. Rev., (2), 24. 478, 1924; C. G. Barkla, Phil. Mag., (6), 11. 820, 1906; C. G. Barkla and C. A. Sadler, ib., (6), 14. 413, 1907; J. A. Becker, Phys. Rev., (2), 20. 115, 124, 1922; R. Berthold, Ann. Physik, (4), 76. 409, 1925; A. Bestelmeyer, ib., (4), 22. 429, 1907; A. Bouwers, Physica, 5. 8, 1925; C. S. Brainin, Phys. Rev., (2), 10. 461, 1917; F. C. and and L. P. Chalklin, Phil. Mag., (7), 16. 363, 1933; J. C. Chapman, Proc. Roy. Soc., 36. A, 439, 1912; C. Davisson and C. H. Kunsman, Phys. Rev., (2), 21. 385, 1923; (2), 22. 242, 1923; E. Dershem, ib., (2), 31. 305, 1928; (2), 33. 291, 659, 1929; Proc. Nat. Acad., 14. 380, 1928; H. W. Edwards, Phys. Rev., (2), 37. 339, 1931; S. Egbert, Nature, 53. 502, 1896; G. Fournier and M. Guillot, Compt. Rend., 195. 1264, 1932; W. Friedrich, Ann. Physik, (4), 39. 428,)012; S. D. Gehman, Phys. Rev., (2), 33. 141, 1929; K. Grosskurth, Ann. Physik, (5), 20. 197, 1934; E. Hjalmar, Zeit. Physik, 15. 65, 1923; R. A. Houstoun, Phil. Mag., (7), 2. 512, 1926; E. Hupka, Phys. Zeit., 14. 623, 1913; A. Ianitizky, Journ. Phys. Rad., (7), 1. 153, 1930; P. D. Innes, Proc. Roy. Soc., 79. A, 461, 1907; R. W. James and G. W. Brindley, Zeit. Krist., 78. 470, 1931; W. Kaufmann, Phys. Zeit., 14. 387, 1913; G. W. C. Kaye, Proc. Roy. Soc., 31. A, 338, 1908; Proc. Cambridge Phil. Soc., 14. 236, 1907; 15. 269, 1909; H. B. Keene, Phil. Mag., (6), 26. 712, 1913; Phys. Zeit., 14. 903, 1913; J. Laub, Ann. Physik, (4), 26. 718, 1908; H. Mark and L. Szilard, Zeit. Physik, 35. 743, 1926; E. Marx, Phys. Zeit., 9. 731, 1908; Ann. Physik, (6), 26. 712, 1913; Phys. Zeit., 31. 401, 1930; U. Nakaya, Proc.

O. von Bäyer, Ber. deut. phys. Ges., 6, 953, 1908; A. Becker, Ann. Phys., (4), 78, 253, 1925;
 J. A. Becker, Phys. Rev., (2), 20, 115, 1922;
 J. A. le Bel, Compt. Rend., 152, 129, 1911;
 E. Bichat, ib., 138, 1316, 1904;
 R. Blondlot, ib., 137, 729, 1903;
 188, 545, 1904;
 N. Campbell, Phil. Mag., (6), 28, 286, 1914;
 A. J. Dempster, Nature, 135, 542, 1935;
 E. Dershem, Phys. Rev., (2), 31, 305, 1928;
 (2), 33, 291, 659, 1929;
 Proc. Nat. Acad., 14, 380, 1928;
 H. W. Edwards, Phys. Rev., (2), 37, 339, 1931;
 E. Gehrcke and R. Seeliger, Ber. deut. phys. Ges., 11, 449, 1913;
 H. Hertz, Wied. Ann., 45, 28, 1892;
 K. P. Jakovleff, Zeit. Physik, 63, 114, 1930;
 W. Kohl,

Ann. Phys., (5), 6, 391, 1930; V. Kohlschütter, Zeit. Elektrochem., 12, 871, 1906; H. W. Langenwalther, Ann. Physik, (5), 24, 273, 1935; P. Lenard, Ann. Phys., (4), 15, 502, 1904; S. Matthes, ib., (5), 2, 631, 1929; H. Mayer, Phil. Mag., (7), 16, 594, 1933; J. Meyer, ib., 188, 896, 1940; N. Pittschikoff, Phys. Zeit., 7, 69, 1906; A. Remelć, ib., 6, 804, 1905; S. C. Roy, Phil. Mag., (6), 47, 561, 1924; J. T. Tate, Phys. Rev., (2), 17, 394, 1921; G. P. Thomson, Nature, 120, 802, 1927; Proc. Roy. Soc., 128, A, 649, 1930; J. J. Thomson, Proc. Cambridge Phil. Soc., 17, 201, 1913; L. Tonks, Physics, 6, 294, 1935; K. S. Woodcoek, Phys. Rev., (2), 38, 1696, 1931.

⁹ N. Ahmad, Proc. Roy. Soc., 105. A, 567, 1924; S. J. Allen, Phys. Rev., (1), 32, 224, 1911; E. Amaldi, O. d'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti and E. Segre, Proc. Roy. Soc., A. 522, 1935; J. B. Austin, Phys. Rev., (2), 38, 1788, 1931; E. Badareu, Phys. Zeit., 25, 137, 1924; O. von Bäyer, ib., 13, 485, 1912; C. Boeckner, Journ. Research Bur. Standards, 9, 583, 1932; W. H. Bragg, Phil. Mag., (6), 11, 617, 1906; W. H. Bragg and R. Kleeman, ib., (6), 10, 318, 1905; A. K. Brewer, Journ. Amer. Chem. Soc., 54, 4588, 1932; H. A. Bumstead and A. G. McGougan, Amer. Journ. Science, (4), 34. 309, 1912; Phil. Mag., (6), 24. 462, 1912;
 T. I. Campan, Bul. Fac. Stiinte Cernauti, 3. 245, 1929; Phys. Zeit., 30. 858, 1929; N. R. Camp. bell, Phil. Mag., (6), 9, 543, 1905; (6), 11, 206, 1906; (6), 24, 527, 1912; P. L. Copeland, Phys. Rev., (2), 48, 96, 1935; W. H. Crew, ib., (2), 28, 1265, 1926; J. A. Crowther, Phil. Mag., (6), 9, 236, 1905; (6), 12, 385, 1906; Proc. Cambridge Phil. Soc., 14, 340, 1908; 15, 442, 1910; Proc. Roy. Soc., 84, A, 241, 1910; P. Curie and A. Debierne, Compt. Rend., 133, 931, 1901; C. Davisson and L. H. Germer, Phys. Rev., (2), 24. 666, 1924; (2), 40. 1241, 1932; C. Davisson and C. H. Kunzmann, ib., (2), 21. 385, 1923; (2), 22. 242, 1923; H. Dember, Verh. deut. phys. Ges., 13, 313, 1911; H. A. Erikson, Phys. Rev., (2), 21, 720, 1923; H. E. Farnsworth, ib., (2), 25, 41, 1925; E. Fermi, E. Amaldi, O. d'Agostino, F. Rasetti and E. Segrè, Nuovo Cimento, (7), 11. 429, 1934; Proc. Roy. Soc., 146. A, 483, 1934; G. I. Finch, A. G. Quarrell and H. Wilman, Trans. Faraday Soc., 31. 1051, 1935; G. I. Finch and C. H. Sun, ib., 32. 852, 1936; A. Fischer, Brit. Pat. No. 278347, 285467, 1928; P. D. Foote, W. F. Meggers and R. L. Chenault, Journ. Amer. Opt. Soc., 9, 541, 1924; G. Fournier, Compt. Rend., 180, 1490, 1925; J. N. Frers, Zeit. Elektrochem., 40, 612, 1934; H. Gærtner, Phys. Zeit., 32, 919, 1931; R. W. Gurncy, Phys. Rev., (2), 31, 307, 1928; (2), 32, 467, 1928; O. Hahn, Phys. Zeit., 10, 81, 1909; J. E. Henderson, Phys. Rev., (2), 29, 360, 1927; J. E. Henderson and E. Gideon, ib., 43, 601, 1933; G. Hoffmann, L. Gronder and V. Wölfl, Ann. Physik, (4), 15, 619, 1904; J. V. Hughes, Phil. Mag., (7), 19, 129, 1935; L. T. Jones and V. Duran, Phys. Rev., (2), 31, 916, 1928; N. Kalabuchoff, Zeit. Physik, 93, 702, 1935; P. Keck and L. B. Loeb, Rev. Scient. Instr., 4, 486, 1933; O. Klemperer, Zeit. Physik, 34, 532, 1925; N. I. Koboseff and W. L. Anochin, Zeit. phys. Chem., 13, B, 18, 1931; O. Koppius, Phys. Rev., (2), 18, 443, 1921; F. Krüger and E. Taege, Zeit. Elektrochem., 21, 562, 1915; B. Kucera and B. Masek, Phys. Zeit., 7, 632, 1906; V. J. Laine, ib., 7, 421, 1906; J. S. Lattès and G. Fournier, Compt. Rend., 181, 855, 1926; E. O. Lawrence and M. S. Livingston, Phys. Rev., (2), 45, 220, 1934; E. O. Lawrence, M. S. Livingston and G. N. Lewis, ib., (2), 44, 56, 1933; F. von Lerch, Ann. Physik, (4), 2, 750, 1903; M. S. Livingston, M. C. Henderson and E. O. Lawrence, Proc. Nat. Acad., 20, 470, 1934; J. A. McClelland, Phil. Mag., (6), 8, 67, 1904; J. C. McLennan, L. G. Grimmett and J. Read, Nature, 135, 147, 1935; W. B. Mann, Proc. Roy. Soc., 146, A, 776, 1934; E. Marsden and H. Richardson, Phil. Mag., (6), 8, 67, 1904; J. C. McLennan, L. G. Grimmett and J. Read, Nature, 135, 147, 1935; W. B. Mann, Proc. Roy. Soc., 146, A, 776, 1934; E. Marsden and H. Richardson, Phil. Mag., (6), 8, 67, 1904; J. C. McLennan, L. G. Grimmett and J. Read, Nature, 185, 147, 1935; W. B. Mann, Proc. Roy. Soc., 146, A, 776, 1934; E. Marsden and H. Richardson, Phil. Mag., (6), 25, 184, 1913; H. Mayer, ib., (7), 16, 594, 1933; W. V. Mayneord, Proc. Roy. Soc., 130, A, 63, 1930; L. Meitner, Phys. Zeit., 8, 489, 1907; F. L. Mohler and C. Boeckner, Journ. Research Bur. Standards, 7, Amer. Opt. Soc., 9. 541, 1924; G. Fournier, Compt. Rend., 180. 1490, 1925; J. N. Frers, Zeit. Standards, 7. 751, 1931; Phys. Rev., (2), 37. 1685, 1931; C. A. Murison, N. Stuart and G. P. Thompson, Nature, 129, 545, 1932; R. A. Nelson, Rev. Scient. Instr., 2. 173, 1931; F. H. Newman and H. J. Walke, Phil. Mag., (7), 19. 661, 1935; M. L. E. Oliphant and P. B. Moon, Proc. Roy. Soc., 127. A, 388, 1930; F. Paschen, Phys. Zeit., 5, 502, 1904; N. Piltschikoff, ib., 7. 69, 1906; H. H. Potter, *Phil. Mag.*, (6), **46**, 768, 1923; G. E. Read, *Phys. Rev.*, (2), **31**, 155, 629, 1928; D. A. Richards, *Phil. Mag.*, (7), **16**, 778, 1933; O. W. Richardson and K. T. Compton, ib., (6), 24. 138, 1912; O. W. Richardson and C. Sheard, ib., (6), 31. 497, 1916; H. R. Robinson, 10., (0), 27. 136, 1912; G. W. Richardson and C. Sheard, 10., (0), 31. 497, 1916; H. R. Robinson, ib., (7), 18. 1086, 1935; H. R. Robinson and C. J. B. Clews, Proc. Roy. Soc., 149. A, 597, 1935; C. del Rosario, Phys. Rev., (2), 28. 769, 1926; S. Rosenblum, Compt. Rend., 188. 198, 1926; E. Rudberg, Medd. Vet. Nobel Inst., 6. 12, 1925; Proc. Roy. Soc., 127. A, 111, 1930; 129. A, 652, 1930; E. Rupp, Phys. Zeit., 33. 159, 1932; E. Rutherford and F. Soddy, Journ. Chem. Soc., 81. 321, 1902; B. Sabat, Compt. Rend., 140, 644, 1905; R. B. Sawyer, Phys. Rev., (2), 26, 1030, 1030, E. Schatzet, Phys. Zeit., 37, 1976, 1032. Rev., (2), 35. 1090, 1930; F. Schubert, Phys. Zeit., 37. 595, 1936; K. Siegl, Phys. Zeit., 7. 106, 1906; L. Sosnowsky, Compt. Rend., 200. 446, 1935; F. Soddy, Proc. Roy. Soc., 78. A, 106, 1906; L. Sosnowsky, Compt. Rend., 200. 446, 1935; F. Soddy, Proc. Roy. Soc., 78. A, 429, 1907; E. Stahel and W. Johner, Journ. Phys. Rad., (7), 5. 97, 1934; R. J. Strutt, Phil. Mag., (6), 5. 680, 1903; O. Stuhlmann, Phys. Rev., (2), 18. 109, 1919; (2), 15. 549, 1920; Y. Sugiura, Scient. Papers Inst. Phys. Chem. Research, 16. 29, 1931; R. Suhrmann, Zeit. Physik, 83. 63, 1925; J. T. Tate, Phys. Rev., (2), 17. 394, 1921; J. Thibaud, Journ. Phys. Rad., (6), 6. 82, 1925; Compt. Rend., 197. 1629, 1933; J. Thibaud, J. Trillat and T. von Hirsch, ib., 194. 1223, 1932; G. P. Thomson, Proc. Roy. Soc., 119. A, 651, 1928; 128. A, 649, 1930; C. Tingwaldt, Zeit. Physik, 34. 280, 1925; T. Tommasina, Compt. Rend., 188. 1157, 1904; H. R. von Traubenberg, Zeit. Physik, 2. 268, 1920; J. J. Trillat and T. von Hirsch, Compt. Rend., 194. 72, 1932; J. J. Trillat and M. Motz, Ann. Physique. (11), 4. 293, 1935; F. G. Tucker, Phys. Rev., (2), 22, 574, 1923; A. M. Tyndall and G. C. Grindley, Phil. Mag. F. G. Tucker, Phys. Rev., (2), 22. 574, 1923; A. M. Tyndall and G. C. Grindley, Phil. Mag., (6), 47. 689, 1924; C. C. van Voorhis and K. T. Compton, Phys. Rev., (2), 31. 1122, 1928;

(2), 36, 1435, 1930; J. E. P. Wagstaff, Phil. Mag., (6), 47, 84, 1924; H. B. Wahlin, Nature, 123, 912, 1929; H. P. Walmsley, Mem. Manchester Lit. Phil. Soc., 72, 139, 1928; E. Warburg, Zeit. Physik. 35, 177, 1926; D. L. Webster, Phys. Rev., (2), 15, 238, 1920; L. Wertenstein and H. Dobrowolska, Journ. Phys. Rad., (6), 4, 324, 1923; W. Wilson, Proc. Roy. Soc., 87, A, 310, 1912.

¹⁰ B. Abendroth, Zeit. Physik, 85, 530, 1933; T. Argyropoulos, Wied. Ann., 41, 503, 1890; L. Arons, ib., 41, 473, 1890; Sitzber. Akad. Berlin, 969, 1890; Zeit. phys. Chem., 6, 287, 1890;
J. B. Austin, Phys. Rev., (2), 38, 1789, 1931; G. B. Bandopadhyaya, Proc. Roy. Soc., 120, A, 46, 1928; R. S. Bartlett, Phys. Rev., (2), 25, 247, 1925; (2), 26, 247, 1925; C. Barus, Amer. K. S. Bartlett, Phys. Rev., (2), 25. 247, 1925; (2), 26. 247, 1925; C. Barus, Amer. Journ. Science, (3), 36, 427, 1888; J. A. Becker, Phys. Rev., (2), 24, 478, 1924; E. Becquerel, Trailé de l'électricité et du magnetisme, Paris, 6, 63, 1840; W. Bennewitz, Ann. Physik. (4), 83, 913, 1927; G. Bethe, Zeit. Physik. 80, 701, 1933; V. Bjerkness, Wied. Ann., 47, 69, 1892; E. Bodemann, Ann. Physik, (5), 3, 614, 1929; R. Börnstein, Phil. Mag., (5), 4, 330, 1877; Verh. Ver. Heidelberg, 2, 1, 1880; Wied. Ann., 1, 577, 1877; G. le Bon, Compt. Rend., 135, 32, 1902; A. K. Brewer, Journ. Amer. Chem. Soc., 54, 1888, 1932; Phys. Rev., (2), 35, 1360, 1930; L. A. du Bridge, Proc. Nat. Acad., 12, 162, 1926; Phys. Rev., (2), 29, 451, 1927; (2), 31, 236, 1928; (2), 32, 325, 1928; (2), 39, 108, 1932; L. A. du Bridge and W. W. Roehr, ib., (2), 39, 193, 17, I. Campan, Ral. Fac. Skinte. Cen., 2, 245, 1929.; C. Che. Phys. Rev. 99, 1932; T. I. Campan, Bul. Fac. Stiinte Cern., 3, 245, 1929; C. Cha, Phys. Rev., (2), 23, 298, 1924; Phil. Mag., (6), 49, 262, 1925; A. Coehn and K. Sperling, Zeit. Physik, 83, 291, 1933; K. T. Compton and L. W. Ross, Phys. Rev., (2), 13, 374, 1919; W. H. Crew, ib., (2), 28, 1265, 1926; J. G. Davidson, Phys. Zeit., 8, 658, 1907; C. Davisson and L. H. Germer, Phys. Rev., (2), 24. 666, 1924; J. W. Döbereiner, Schweigger's Journ. 63, 472, 1931; E. D. Eastman, (2), 24. 600, 1924; 3. W. Doberener, Schwerger's Journ. 55, 412, 1951; E. D. Eastman, Journ. Amer. Chem. Soc., 48, 552, 1926; B. Eginitis, Compt. Rend., 138, 1208, 1904;
F. Ehrenhaft and E. Wasser, Zeit. Physik, 59, 727, 1929; W. Espe, Veber die Emission von Elektronen aus Metallen bei Bestrahlund mit Röntgenstrahlen, Berlin, 1929; Ann. Physik,
(5), 4, 381, 1929; H. E. Farnsworth, Phys. Rev., (2), 25, 41, 1925; R. H. Fowler, Proc. Roy. Soc., 117. A, 549, 1928; J. N. Frers, Zeit. Elektrochem., 40. 612, 1934; W. Frese, Zeit. wiss. Soc., 117. A, 549, 1928; J. N. Frers, Zeit. Elektrochem., 40. 612, 1934; W. Frese, Zeit. wiss. Photochem., 21. 37, 1921; E. Gehrke and L. Janicki, Ann. Physik, (4), 47. 679, 1915; M. S. Glass, Phys. Rev., (2), 28. 521, 1926; H. Goldschmidt and H. Dember, Zeit. tech. Phys., 7. 137, 1926; F. Gross, Zeit. Physik, 6. 376, 1921; W. R. Grove, Phil. Mag., (4), 16. 426, 1858; G. Grube and L. Baumeister, Zeit. Elektrochem., 30. 322, 1925; E. H. Hall, Proc. Nat. Acad., 15. 126, 1929; R. Hamer, Phys. Rev., (2), 20. 198, 1922; Journ. Amer. Opt. Soc., 9. 251, 1924; W. G. Hankel, Wied. Ann., 1. 402, 1877; Ber. Sächs. Ges., 27. 399, 1875; R. F. Hanstock, Phil. Mag., (7), 10. 937, 1930; (7), 13. 81, 1932; T. H. Harrison, Proc. Phys. Soc., 38. 214, 1926; F. Herold, Ann. Physik, (5), 85. 587, 1928; K. Herrmann, ib., (4), 77. 503, 1925; Ber. dent. phys. Ges., 14. 557, 573, 1912; F. Hlucka, Zeit. Physik, 81. 76, 1933; 92. 359, 1934; L. T. Jones and V. Duran, Phys. Rev., (2), 31. 916, 1928; R. B. Jones, ib., (2), 34. 227, 1929; N. Kalabuchoff, Zeit. Physik, 93. 702, 1935; R. D. Kleeman, Nature, 83. 339, 1910; Proc. Roy. Soc., 84. A, 92, 1910; J. Kluge, Ann. Physik, (4), 82. 432, 1927; H. Klumb, Zeit. Physik, 45. 652, 1928; K. G. Kober, Phys. Zeit., 16. 95, 1915; J. A. Kok and W. H. Keesom, Physica, 3. 872, 1936; 1928: K. G. Kober, Phys. Zeit., 16. 95, 1915; J. A. Kok and W. H. Keesom, Physica, 3, 872, 1936; O. Koppuis, Phys. Rev., (2), 17. 395, 1921; G. G. Kretschmar, ib., (2), 43. 417, 1933; F. Krüger and E. Taege, Zcit. Elektrochem., 21. 562, 1915; J. Kunz, Phys. Rev., (1), 31. 536, 1910; H. Leupold, Ann. Physik, (4), 82. 841, 1927; W. N. Lowry, Phys. Rev., (2), 35. 1270, 1930; P. Lukirsky and S. Prilezaeff, Zeit. Physik, 49. 236, 1928; Q. Majorana, Atti Accad. Lincei, (6), 18. 347, 433, 1933; Phys. Zeit., 33. 947, 1933; 85. 740, 1934; Rend. Accad. Bologna, 35. (6), 18. 347, 433, 1933; Phys. Zett., 33. 941, 1933; 35. 40, 1934; Rend. Accad. Botogna, 35.
 62, 1932; Compt. Rend., 195. 266, 1932; H. Mayer, Phys. Zeit., 36. 463, 1935; C. C. Murdock, Proc. Nat. Acad., 12. 504, 1926; Phys. Rev., (2), 17. 626, 1921; K. Newbury, ib., (2), 34. 1418, 1929; K. Newbury and F. Lemery, Journ. Amer. Opt. Soc., 21. 276, 1931; H. T. Nga, Journ. Chim. Phys., 32. 564, 1935; A. Partzsch and W. Hallwachs, Ann. Physik, (4), 41. 266, 1913; T. Pavolini, Ind. Chimica, 5. 1107, 1930; H. Pellat, Compt. Rend., 89. 227, 1879; R. Pohl, Verh. deut. phys. Ges., 11. 339, 1909; Phys. Zeit., 35. 1003, 1934; G. Reboul, Compt. Rend., 158. Verh. deut. phys. Ges., 11. 339, 1909; Phys. Zeit., 35. 1003, 1934; G. Reboul, Compt. Rend., 158. 477, 1914; K. Reger, Der Hallwachseffekt an wasserstoffbeladenem Platin, Palladium, und Tantal, Greisswald, 1929; Zeit. Physik, 102. 156. 1936; O. W. Richardson and K. T. Compton, Phil. Mag., (6), 24. 137, 1912; (6), 26. 549, 1913; O. Rietschel, Ann. Physik, (4), 80. 71, 1926; H. R. Robinson, Proc. Phys. Soc., 46. 693, 1934; H. R. Robinson and C. J. B. Clews, Proc. Roy. Soc., 149. 587, 1935; J. Robinson, Phil. Mag., (6), 23. 542, 1912; (6), 25. 115, 1913; (6), 32. 421, 1916; Phys. Zeit., 13. 276, 1912; C. del Rosario, Phys. Rev., (2), 28. 769, 1926; S. Rosenblum, Compt. Rend., 183. 198, 1926; S. C. Roy, Proc. Roy. Soc., 112. A, 599, 1926; R. Ruer and E. Scharff, Nernst's Festschrift, 395, 1912; E. Rudberg, Medd. Vetenskapsakad. Nobelinst., 6. 12, 1925; E. Rumpf, Zeit. Physik, 37. 165, 1926; R. B. Sawyer, Phys. Rev., (2), 35. 1090, 1930; E. Scharff, Zeit. phys. Chem., 28. B, 413, 1934; S. Schlivitch, Compt. Rend., 1090, 1930; E. Schaaff, Zeit. phys. Chem., 26. B, 413, 1934; S. Schlivitch, Compt. Rend.,
 190, 302, 1930; M. Sende, Phys. Zeit., 21, 562, 1920; M. Sende and H. Simon, Ann. Physik, (4), 65. 697, 1921; H. Simon, Phys. Zeit., 21. 563, 1920; C. Stora, Journ. Chim. Phys., 29. 168, S. 697, 1921; H. Simon, Phys. Zett., 21. 303, 1920; C. Stora, Journ. Chim. Phys., 28. 168, 1932; O. Stuhlmann, Phil. Mag., (6), 20. 331, 1910; (6), 22. 854, 1911; Phys. Rev., (2), 18. 109, 1919; (2), 15. 549, 1920; R. Suhrmann, Ann. Physik, (4), 67. 43, 1922; Zeit. Physik, 18, 17, 1922; 33. 63, 1925; 54. 99, 1929; Phys. Zeit., 30. 939, 1929; Phys. Rev., (2), 20. 65, 89, 1922; R. Suhrmann and H. Csesch, Zeit. phys. Chem., 28. B, 215, 1935; J. J. Trillat and T. von Hirsch, Compt. Rend., 194. 72, 1932; F. G. Tucker, Phys. Rev., (2), 22. 574, 1923; A. W. Uspensky, Zeit. Physik, 40. 456, 1926; H. L. van Velzer, ib., (2), 44. 831, 1933; H. P. Walmsley, Mem. Manchester Lit. Phil. Soc., 72. 139, 1928; E. Wasser, Phys. Zeit.

Sowjetunion, 5. 645, 1934; D. L. Webster, Phys. Rev., (2), 15. 238, 1920; A. Wehnelt, Wied. Ann., 68. 233, 1899; L. A. Welo, Phil. Mag., (6), 45. 593, 1923; (7), 2. 463, 1926; A. E. Wood-

ruff, Phys. Rev., (2), 23. 298, 1924; (2), 26. 655, 1925.

11 H. T. Barnes and A. N. Shaw, Proc. Roy. Soc., 82. A, 336, 1909; G. T. Beilby, Chem. News, 88. 178, 1903; 90. 180, 1904; F. C. Brown, Phil. Mag., (6), 17. 355, 665, 1909; E. Brunner, Ann. Physik, (4), 15. 554, 1904; F. Deininger, ib., (4), 25. 306, 1908; Ueber den Austritt negativer Ionen aus einigen glühenden Metallen und aus glühenden Calcium-oxyd, Erlangen, 1908; J. Elster and H. Geitel, Wied. Ann., 19. 609, 1883; 31. 125, 1887; 38. 39, 1889; K. Fredenhagen, Ber. Sächs. Ges., 65. 42, 1913; M. S. Glass, Phys. Rev., (2), 28. 521, 1926; C. Grieb, Zeit. phys. Chem., 79. 377, 1912; J. A. Harker and G. W. C. Kaye, Proc. Roy. Soc., 88. A, 528, 1913; F. Horton, ib., 79. A, 96, 1907; Z. Klemensiewicz, Bull. Acad. Cracow, 417, 1911; Ann. Physik, (4), 38. 796, 1911; O. J. Lodge, Nature, 31. 268, 1885; J. A. McClelland, Proc. Cambridge Phil. Soc., 10. 241, 1901; 11. 286, 1902; 13. 58, 192, 1906; G. H. Martin, Phil. Mag., (6), 14. 306, 1907; R. Nahrwold, Ueber die Luftelectricität, Berlin, 1876; Wied. Ann., 5. 472, 1873; 31. 473, 1887; 35. 120, 1888; A. Occhialini, Atti Accad. Lincei, (5), 16. ii, 119, 1907; G. Owen and R. Hallsall, Phil. Mag., (6), 25. 735, 1913; J. C. Pomeroy, ib., (6), 23. 173, 1912; O. W. Richardson, Proc. Cambridge Phil. Soc., 13. 58, 192, 1905; Phil. Mag., (6), 6. 80, 1903; (6), 8. 400, 1904; (6), 9. 407, 1905; (6), 16. 915, 1908; (6), 18. 681, 1909; (6), 21. 404, 1911; Phys. Zeit., 5. 7, 1904; Proc. Roy. Soc., 71. A, 415, 1903; 78. A, 192, 1906; Phil. Trans., 201. A, 497, 1903; 207. A, 413, 1906; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag., (6), 16. 353, 1908; O. W. Richardson and F. C. Brown, Phil. Mag.,

12 W. Ogawa, Journ. Soc. Chem. Ind. Japan, 31. 476, 1928; H. Greismann, Phys. Zeit., 36.

132, 1935.

§ 13. The Electrical and Magnetic Properties of Platinum

Observations on the **electrical conductivity** of platinum were made early in the nineteenth century. H. Davy, and S. H. Christie, referred the results to the conductivity of copper taken as 100, and obtained 18 to 19.8; J. Cumming gave 21.6; and observations were made by F. P. Dulk, and W. S. Harris. E. Becquerel gave 855 when that of mercury is 100; and with silver=100, E. Becquerel gave 8.042; P. Riess, 10.4; A. Matthiessen, 10.53; and L. Weiller, 10.6. Observations were also made by A. Matthiessen and C. Vogt, C. S. M. Pouillet, A. Arndtsen, E. Lenz, J. Müller, and R. Benoit. H. M. Barlow observed that Ohm's law is rigidly true for an alternating current at 1.3×10^5 amps. per sq. cm.; P. W. Bridgman's assumption that there is a variation was not confirmed.

J. Dewar and J. A. Fleming gave for the sp. electrical resistance of platinum, at 0°, 10,917 c.g.s. units; and for the conductivity 0.000917 mho per cm. cube at 18°. Measurements were made by K. Bädeker, G. Bainter, C. Barus, R. Benoit, H. L. Callendar, J. Clay, O. M. Corbino, J. Dewar and J. A. Fleming, O. Erhardt, A. Emo, J. A. Fleming, E. H. Griffiths, A. T. Grigorieff, T. S. Humpidge, W. Jäger and H. Diesselhorst, W. Meissner, H. Moser, G. Niccolai, E. L. Nichols, M. von Pirani, A. Schleiermacher, F. Uppenborn, L. Weiller, and A. W. Witkowsky. O. Berg gave for the resistance, R ohms:

K. Olszewsky gave for the resistance in ohms when the value at 0° is taken as unity:

		0°	−78·2°	182·5°	208·5°
\boldsymbol{R}		1.000	0.800	0.523	0.453

E. Hagen and H. Rubens gave for the sp. resistance R and the sp. conductivity, K:

R		170° 0·233	220° 0·260	300° 0·312	600° 0.559	900°	1200° 1·33	1500° 1·58
			3.84	3.22	1.79	1.11	0.751	0.541
VOL.	XVI.							H

Quite a number of formulæ has been devised to represent the observed results. The variation of the resistance with temp. was discussed by C. Barus, R. Benoit, T. Burger, L. Cailletet and E. Colardeau, P. Chappuis and J. A. Harker, A. A. Deckert, J. Dewar, H. Dickson, W. Geiss and J. A. M. van Liempt, W. J. de Haas and J. de Boer, F. Henning and J. Otto, T. S. Humpidge, J. Königbserger and O. Reichenheim, A. Michels and P. Geels, W. Nernst, A. von Obermayer, A. Schulze, J. C. Southard and R. T. Milner, V. Strouhal and C. Barus, W. H. Keesom and A. Bijl, and C. W. Waidner and G. K. Burgess. The temp. coeff., α , at θ° , for the resistance, $R=R_0(1+\alpha\theta)$, is 0.00366 according to R. Clausius; J. Dewar and J. A. Fleming gave 0.00367; L. Holborn and A. L. Day, 0.00388; W. Jäger and H. Diesselhorst, 0.0384; H. le Chatelier, 0.00325; M. von Pirani, 0.00380; F. Henning, 0.00392; C. Barus, 0.0029 to 0.003 between 0° and 100°, and 0.00222 to 0.00265 between 0° and 357°; P. W. Bridgman, 0.00387; and L. Holborn, 0.00392. L. Cailletet and E. Bouty gave 0.0030 at 0°, and 0.00342 at -94.57° . L. Holborn gave:

G. Niccolai obtained a linear relation for the resistance at temp. between -189° and 400° , but L. Holborn and W. Wein found that there is a bend in the curve, Fig. 12, corresponding with a parabolic formula. E. Hagen and H. Rubens gave $R=0.154(1+0.0024\theta+0.0_533\theta^2)$; C. W. von Siemens, $R=0.034369T^4+0.00210407T-0.00213$; H. L. Callendar, $R=0.03771T^4+0.002520T-0.02450$; F. Henning and W. Heuse, $R=R_0(1+0.00396952\theta-0.0_664408\theta^2-0.0_{11}517165\theta^4)$; R. Holm and R. Störmer, $R=0.00001048\{1+0.003695(\theta-15)-0.0_6598(\theta-15)^2+0.0_{10}525(\theta-15)^3\}$; and E. Grüneisen expressed his results in terms of P. Debye's function—1. 13, 16. W. Tuíjn, H. Moser, H. Rolnick, A. T. Grigorieff, G. Bainter, and J. T. MacGregor-

Fig. 12.—The Effect of Temperature on the Resistance.

Fig. 13.— The Resistance of Thin Films of Platinum.

Morris and R. P. Hunt studied the subject; and J. M. Gaines, E. Waetzmann and co-workers, and S. Kambara and M. Matsui, resistance thermometers of platinum.

According to F. Streintz, the sp. resistance of platinum black of sp. gr. 11·6 is $R=0.92(1+0.00145\theta)$, a value about six and a half times as great as that of solid platinum, whereas the temp. coeff. is less than half of that of the solid metal. J. Mooser observed that the sp. resistance of samples of spluttered platinum was 11·3, 23·1, and 82·3 times greater than the platinum en masse, presumably owing to the formation of oxidized films on the surfaces of the granules. J. Kramer found the conductivity of thin films, produced by cathode spluttering or by vaporization, is about a millionth part of that of the normal metal. R. Deaglio, H. Kahler, Y. Maslakovetz, H. Murmann, E. Perucca, and S. Virtel studied the subject.

L. C. van Atta, R. S. Bartlett, G. Braunsfurth, A. Féry, A. W. Gauger, F. Joliot, J. Kramer and H. Zahn, E. Perucca, F. W. Reynolds, A. Riede, and K. Schtschodro, studied the conductivity of thin films; and F. Skaupy and O. Kautorowicz, the conductivity of powdered platinum under press. J. Patterson found that the sp. resistance of thin films of platinum rapidly increases as the thickness of the film decreases from $\mu\mu$ downwards. B. Pogany confirmed this, and his results are summarized in Fig. 13. A. Riede represented the conductivity, K mhos, of films of thickness x mgrms. per sq. cm. by K=(1.07x-0.0005)+(0.13x-0.0085). The subject was investigated by E. Bose, R. Pohl, A. C. Longden, and J. Patterson. H. K. Onnes gave for the ratio of the resistance, R, at T° K., to that, R_0 , at 273.09° K.

and W. H. Keesom and J. N. van Ende, J. O. Linde, W. Meissner and B. Voigt, W. Tuijn, and W. Tuijn and H. K. Onnes found that platinum did not show superconductivity at low temp. The indications point to a zero conductivity for the pure metal at absolute zero; and the small constant value observed below 4.3° K. is attributed to the presence of an impurity. The subject was discussed by C. A. Crommelin, W. J. de Haas and J. de Boer, and W. Meissner and B. Voigt. As a rule, the temp. coeff. of the electrical conductivity of a metal is greater the higher the degree of purity. R. Suhrmann found that with platinum foil between 400° and 1600°, in vacuo, the resistance increases as the gas is pumped off, it then passes through a maximum and afterwards decreases. Thus, at 926°, the resistance of platinum rose from 0.4315 to 0.4345 ohm when the metal was soaked in hydrogen,

and as the gas was pumped off, the resistance passed successively through the stages 0.4498, 0.4506, 0.4494, 0.4430, and 0.4280 ohm. The relation between the resistance, R ohms, and temp. of the metal in two different states of hydrogenation is indicated in Fig. 14. The subject was studied by A. W. Gauger, K. Herrmann, L. Holborn, H. Kleine, Y. Maslakovetz, F. W. Reynolds, K. Weil, and H. A. Wilson. W. H. Stannard compiled a table of resistance; and J. D. Stranathan studied the resistance with high frequency currents. G. Szivessy found that after being heated to redness in oxygen, the resistance of platinum was increased 3.8 per cent. E. Grüneisen and E. Goens studied the application of Wiedemann and Franz's rule; F. W. Reynolds, and H. Dobretsberger, the effect of absorbed hydrogen, nitrogen, and carbon dioxide on the high frequency resistance; R. Holm and W. Meissner, the effect of oxygen on platinum films; F. W. Reynolds, the effect of oxygen,

Fig. 14.—The Effect of Occluded Hydrogen on the Resistance of Platinum at Different Temperatures.

and hydrogen; R. Suhrmann, K. Weil, and H. Kleine, the effect of hydrogen. K. Kleine found that the resistance of vacuum annealed platinum increases if it is allowed to stand in air for five days. L. Holborn and W. Wien studied the action of steam on the conductivity.

O. Feussner observed that the temp. coeff. of platinum wire generally decreases by an amount almost within the limits of experimental error when it is subject to mechanical stress. When a wire is passed through a drawing-plate to reduce its cross-sectional area, a very large decrease in the temp. coeff. occurs. P. W. Bridgman reported that the temp. coeff. between 0° and 100° of a sample of purified platinum was 0.003905, and after being subjected to a press. of 12,000 kgrms. per sq. cm., 0.003868. P. Cohn found that the resistance of platinum wire decreases with heating, and this the more rapidly the higher the temp., as indicated

in Fig. 15, and by increasing the drawing velocity the resistance is increased by about 0.1 per cent. In Fig. 15, the resistance is represented by the ordinates and the logarithm of the time, by the abscissæ. W. H. Johnson showed that an annealed

Fig. 15.—The Change in the Resistance of Platinum with Time and Temperature.

metal wire should conduct electricity better than an unannealed wire, and in agreement with this, C. W. von Siemens found that the conductivity of a drawn wire increased in the ratio 100:100.3 by annealing at a red-heat; E. Becquerel similarly observed the ratio 100: 101.3; and O. Chwolson found the change with a feeble heating to be -5.3per cent., and with a strong heating +5.8 per cent. G. W. A. Kahlbaum and E. Sturm also showed that the resistance of a hard platinum wire is 0.98150, and after annealing at a red-heat, 0.97555, a decrease of 0.61 per cent. A. Heintz emphasized the fact that since the conductivity of the wire depends on its structure, measurements of the resistance should be made on specimens which have been subjected to a similar heat treatment. G. Tammann and K. L. Dreyer studied the effect of cold-work. L. Guillet and M. Ballay observed an increase of 1.6 per cent, in the resistance of the

cold-worked metal when annealed at 850°. L. R. Koller noted that the decrease of a film of spluttered platinum in vacuo is due to coalescence which is retarded by the presence of gases. G. Bainter, F. Joliot, and A. Riede studied the effect of the nature of the support on the resistance; and F. Ehrenhaft and E. Wasser, the resistance of gases with a platinum aerosol.

M. Ascoli observed that the resistance increased as the elastic modulus increased, and H. Tomlinson found that the increase of resistance per unit caused by a stress of a gram per sq. cm. is 2285×10^{-12} ; and he also studied the effect of torsion on the resistance; and O. Feussner, and H. Rolnick, the effect of tension. S. Lussana found that the resistance, R ohms, decreased with an increase of pressure, p atm., on the metal, so that if δR denotes the change of the resistance:

K. Honda and co-workers studied the subject. E. D. Williamson found the ratio of the electrical resistance at 1 kgrm. and 12,000 kgrms. per sq. cm. press. is 0.9776. P. W. Bridgman obtained for the press. coeff. at 0° , -78.4° , and -182.9° , and 7000 kgrms. per sq. cm. press., the respective values -0.0_5193 , -0.0_5197 , and -0.0_5234 . A. Lafay gave $\delta R/R = -0.0_5186$; E. Lissell, $-0.0_5827p + 0.0_{10}41p^2$; and S. Lussana, $-0.0_5156p + 0.0_{10}521p^2$. A. Michels and P. Geels found that at lower press. the coeff. varies more than it does with temp. P. W. Bridgman showed that the samples here employed were probably contaminated with iridium. P. W. Bridgman also gave for the fractional change in the longitudinal resistance of platinum, 1.78×10^{-6} per kgrm. per sq. cm., and for the fractional change in the transverse resistance 0.34×10^{-6} per kgrm. per sq. cm. The press. coeff. of the sp. resistance found by E. Grüneisen is -0.05179; by P. W. Bridgman, -0.05207; and by B. Beckman, 0.05150. P. W. Bridgman obtained for platinum of a high degree of purity, with press. up to 12,000 kgrms. per sq. cm.:

		0°	25°	50°	75°	100°
\boldsymbol{R}		1.0000	1.0967	1.1934	1.2901	1.3868
SR	0 kgrms	0.051975	-0.051950	-0.01935	-0.051915	-0.01900
R	12,000 kgrms.	-0.051765	-0.051771	$0.0_{5}1774$	-0.01776	-0.051777
	Average .	-0.051870	-0.051862	$-0.0_{5}1854$	-0.051846	-0.01838

S. Bidwell studied the relation between the resistance, R, and the thermal expansion; and A. Stein, the relation between the resistance and the melting-point. According to E. L. Nichols, if l denotes the length of platinum at temp. up to near the m.p., then taking the values of R and l at 0° , as unity, the corresponding values of l and R are:

```
. 1.0000
                         1.00489
                                                                   1.01495
               1.00125
                                    1.01022
                                              1.01229
                                                        1.01371
                                                                             1.01567
               1.5057
                         2.3035
                                    3.3533
                                                                   4.0655
                                                                             4.2005
R = 1.0000
                                              3.7090
                                                        3.8904
```

W. Broniewsky studied the subject. The relation between the resistance and the thermal conductivity was studied by G. Wiedemann and R. Franz, and H. Reddemann; and W. Jäger and H. Diesselhorst observed that platinum has a greater value for the ratio thermal: electrical conductivity, and a greater temp. coeff. than corresponds with Wiedemann and Franz's rule—3. 21, 5. F. Streintz, and S. Bidwell studied the relation between the specific heat and the resistance of platinum; and N. F. Mott, the relation between the latent heat, the m.p., and the electrical conductivity. R. Börnstein said that the conductivity of platinum is increased by exposure to light; but C. W. von Siemens observed no perceptible change. The subject was discussed by C. Hausemann, and F. Weber. According to W. Jäger and H. von Steinwehr, the percentage increase in the resistance, δR , of a platinum wire—0.1 mm. in diameter, and 35 cms. in length, and total resistance 5 ohms—by the passage of a current of C ampères, as the temp. Fises $\delta \theta^{\circ}$, is as follows:

C .		0.0043	0.0196	0.0355	0.0524	0·0 689	0.1000
δR		0	0.035	0.10	0.235	0.41	0.88
$\delta \theta$.		0	0.009	0.025	0.059	0.101	0.220

The subject was studied by F. Weber. A. Broca and M. Turchini studied the resistance of platinum to alternating currents. A. T. Waterman, and J. W. Nicholson studied the electron theory of conduction. K. Bamberger observed no change in the resistance of platinum in a magnetic field, and the subject was studied by W. Kohlrausch, S. H. Christie, and P. Kapitza; and L. Grunmach found that a transverse magnetic field produces but a very small change in the resistance. F. Weigert found that a platinum wire 0.05 mm. diameter and of resistance 13.18 ohms, had a resistance of 13.311 ohms in a magnetic field of 11,500 gauss, and 13.242 ohms in a magnetic field of 16.210 ohms. N. d'Agostino observed that with a wire 0.15 mm. and 13.48 ohms resistance, the quotients x of the change in the magnetic field and the total resistance for magnetic fields of 2400, 3690, 4840, and 6510 gauss are respectively -0.0525, 0.0561, 0.0411, and 0.0420.

4840, and 6510 gauss are respectively -0.0_525 , 0.0_561 , 0.0_411 , and 0.0_420 .

J. Frenkel and N. Miroluboff, G. Borelius, H. M. Barlow, A. T. Waterman, F. Simon, H. F. Mott, and E. H. Hall studied the theory of conductivity; and Z. A. Epstein, the periodic variation of the resistance of metals with at. wts.

The heating effect of the electric current in platinum was studied by E. Becquerel, 2 G. D. Botto, J. G. Children, H. Davy, A. Farkas and H. H. Rowley, R. T. Glazebrook and co-workers, W. R. Grove, E. Lenz, J. Müller, W. H. Preece, P. Riess, A. de la Rive, M. Viard, and F. Zöllner; the use of platinum for resistance wires in electric furnaces, by G. Nordström; the development of stationary waves by wires heated by alternating currents, by A. Imhof; the effect on sounds produced by the current, by T. Argyropulos, R. M. Ferguson, and W. H. Preece; the mechanical action of the current by A. Berliner, E. Edlund, F. Exner, W. R. Grove, R. Nahrwold, G. von Quintus-Icilius, and H. Streintz; and the resistance at the contact surface of electrode and electrolyte by O. Scarpa; and R. Holm, at the contact of two surfaces; E. Branly observed the unipolar conductivity of the Ag-Mica-Pt condenser; F. Skaupy and O. Kantorowicz, the resistance of the compressed powder; H. Rohmann, the unipolar contact between two pieces of platinum wire which have been heated to incandescence for a long time in vacuo; R. Holm and R. Störmer, the resistance of platinum contacts; and

G. Hoffmann, the production of a current between two platinum plates separated a small distance by applying a difference of potential under such conditions that the

intervening gas is not ionized.

The Volta effect of platinum against other metals—dry—was examined by J. W. Ritter,³ who found platinum to be positive against antimony, negative against gold; T. J. Seebeck likewise placed platinum between copper and silver; and F. Polednik found the contact potential of platinum against glass to be +2.22 volts, and against fused quartz, +1.15 volts; and C. H. Pfaff, between tellurium and palladium. By frictional electricity, A. Macfarlane placed platinum between gold and tin. The subject was discussed by J. J. Berzelius, E. Dubois, E. Edlund, J. H. Gladstone and A. Tribe, J. M. Gaugain, and O. Knoblauch. The difference of potential between platinum and air was found by M. Andauer to be 0.25 volt. The e.m.f. of the Volta effect of platinum against carbon was measured by W. E. Ayrton and J. Perry, and W. G. Hankel; against copper, by W. E. Ayrton and J. Perry, F. Krüger and G. Schulz, R. Vieweg, F. Exner, W. G. Hankel, E. Edlund, A. Hagenbach, and A. Righi; against silver, by F. Exner, H. Greinacher, R. Vieweg, F. Krüger and G. Schulz, and W. G. Hankel; against gold, by W. G. Hankel, and H. Pellat; against magnesium, by W. E. Ayrton and J. Perry, B. J. Goosens, J. H. Gladstone and A. Tribe, and E. Obach; against zinc, by S. Arrhenius, E. Becquerel, F. Exner, H. Gautier, J. H. Gladstone and A. Tribe, W. Hallwachs, W. G. Hankel, M. H. Jacobi, R. Kohlrausch, and E. Obach; against cadmium, by W. E. Ayrton and J. Perry, and W. G. Hankel; against mercury, by F. Exner and J. Tuma, W. G. Hankel, R. Vieweg, H. Hörig, and C. Christiansen; against aluminium, by W. G. Hankel; against tin, by W. G. Hankel, and W. E. Ayrton and J. Perry; against lead, by W. G. Hankel, and W. E. Ayrton and J. Perry; against brass, by W. G. Hankel, and R. Vieweg; against nickel, by R. Vieweg, and F. Krüger and G. Schulz; against nickel-silver, by W. G. Hankel; against antimony, by W. G. Hankel; F. Krüger and G. Schulz, and G. Mönch, against tungsten, tantalum, iron, molybdenum; T. Terada, against platinum in hydrochloric acid; and against bismuth, by W. G. Hankel. O. W. Richardson and F. S. Robertson found the contact difference of potential with platinum at 1470° is nearly proportional to the press. of hydrogen. R. D. Kleeman and C. R. Pitts studied the sign of the electric layer away from the surface of a soln. in contact with air or a metal. J. B. Seth and co-workers studied the e.m.f. developed when platinum is in contact with a rotating steel disc; A. Coehn and co-workers, R. von D. Wegner, E. Perucca, and F. Polednik, the contact potential between platinum and insulators; B. Kamiensky, platinum and the dielectric; and M. Andauer, platinum and air. P. E. Shaw and co-workers, J. H. Jones, and W. M. Jones studied the frictional electricity developed with platinum.

The literature on the electrical properties of platinum here given was previously reviewed by G. Wiedemann, and W. Loewenstein. The electrode potential of platinum was examined in a qualitative way by H. Buff, who found that in water it is feebly negative, and positive in dil. and conc. nitric acid, dil. sulphuric acid, and in conc. soln. of zinc sulphate; by C. Cappa, who found it positive in water, dil. sulphuric acid, and nitric acid; and by E. Gerland, who found it to be negative in water. H. Buff observed ordinary platinum to be negative in sulphuric acid, but positive when the metal is charged with hydrogen; E. Becquerel found the metal charged with hydrogen is negative in water, and if exposed to the action of oxygen or iodine vapour, it is positive; and W. G. Hankel noticed that in water, the polished metal is negative, and the fresh filings are positive. F. Exner and J. Tuma observed no difference of potential with purified platinum in water, sulphuric acid, or soln. of copper sulphate. I. I. Schukoff compared the effect with smooth platinum and platinum-black. N. T. M. Wilsmore found the potential in normal soln. of potassium chloride against a normal calomel electrode to be less than -1.140 volt. W. E. Ayrton and $\check{\mathbf{J}}$. Perry observed the e.m.f. against distilled water is -0.285 to -0.345 volt at 16.5° ; against a conc. soln. of alum, 0.246 volt;

against a soln. of sodium chloride of sp. gr., 1.18, -0.856 volt at 15.5°; against a cone, soln, of ammonium chloride, -0.057 volt; against cone, sulphuric acid, 1.300 to 1.600 volt; and against conc. nitric acid, 0.672 volt. F. Bergius observed that the potential of copper, silver, or zinc against platinum in fuming sulphuric acid decreases as water is added, and finally attains a constant value. K. Horovitz studied the effect of the acidity of H'-ion conc. of the soln.; and G. Tammann and K. Bochow, the effect of adsorbed hydrogen. F. Vles and A. Ugo measured the effect of the acidity of the soln.

W. Ostwald found the absolute potential of platinum with occluded air against 2N-, N-, and 0.1N- H_2SO_4 to be respectively -1.341, -1.325, and -1.219volts; and against N-KOH, -0.492 volt. The subject was studied by K. Bennewitz and J. Schulz, V. Karpen, S. Makishima, S. Veil, W. J. Müller and K. Konopicky, I. I. Schukoff and co-workers, A. Slygin and A. Frumkin, and M. Thalinger and M. Volmer. E. Müller observed the natural potential of smooth platinum in N-H₂SO₄, and against a normal hydrogen electrode, taken to be zero, is -0.73 volt, and with platinized platinum electrode, -0.88 volt; B. Neumann gave -1.14 volt for the absolute potential of platinum coated with platinum black in N-PtCl₄; and F. Ott, 0.490 to 0.825 volt for platinum coated with columbium S. Glasstone and A. Hickling studied the variation of the potential with time, in chloride soln. F. W. Küster and W. Lommel observed the potential of platinum in N-, 2N-, 4.84N-Na₂S to be, respectively 799, 750, and 600 microvolts; and F. W. Küster gave for the potential E volt, of soln. of n gram-atoms of sulphur in sodium sulphide, Na_2S_n , for :

. 4.47 4.67 4.84 4.98 5.12 5.22 5.245.20 5.04 4.45 0.5 0.250.125 0.06250.031250.01560.0078 E=0.06211-0.6087-0.6000-0.5916-0.5836-0.57580.56830.56030.5523 - 0.5411

E. G. Weischede found the electrode potential in ammoniacal 0.04N-soln, is 0.64 volt at 20°; and in acidic soln. with 20.4 mgrms. of platinum is 100 c.c., 0.857 volt at 20°, and 0.924 volt at 60°; J. Liger, in soln. of sodium chloride and hydroxide, barium chloride, nickel sulphate, and copper salts; and A. Smits, in bromine water -15. 68, 6, Fig. 41. F. Giordani and B. Focaccia studied the cathodic and anodic potentials of smooth platinum in 30 per cent. soln. of potassium hydroxide. S. B. Christy observed for N-, 0.1N-, and 0.01N-KCy, respectively -0.40, -0.46, and -0.50 volt; B. Neumann, for soln. of potassium dichromate, -1.063 volt; dichromic acid, -1.397 volt; sodium hydrosulphate, -0.662 volt; potassium ferrocyanide, -0.593 volt; nitric acid, -1.259 volt; and neutral ferrous sulphate, -0.635 volt; and E. F. Burton, for ethyl malonate, -0.054 volt; G. Holst, in hydrazine; and J. Sambussy, in nitrobenzene. P. Bechtereff observed that the electrode potential of platinum in molten sodium hydroxide at 330° to 650° is the same as that of iron, cobalt, nickel, gold, silver, copper, constantan, or magnetite.

According to W. D. Bancroft, the potential of normal soln. of some depolarizers is as follows: potassium permanganate, 1.76 volts; chlorine in potassium chloride, 1.67 volts; manganese dioxide in potassium chloride, 1.63 volts; bromine in potassium bromide, 1.43 volts; chloric acid, 1.42 volts; dichromic acid, 1.40 volts; bromine in potassium hydroxide, 1.32 volts; perchloric acid, 1.27 volts; nitric acid, 1.26 volts; ferric chloride, 1.24 volts; chlorine in potassium hydroxide, 1.19 volts; potassium nitrate, 1.14 volts; potassium dichromate, 1.06 volts; and iodine

in potassium iodide, 0.89 volts.

S. J. French and L. Kahlenberg found that the potential of platinum in N-KCl in hydrogen becomes more basic reaching a maximum and then falling off; in nitrogen, the potential becomes more basic, reaching a maximum, and then falling off; and in oxygen, the potential changes very little. Carbon monoxide, and methane alter the potential, but helium has very little effect. B. Kamiensky studied the potential in contact with an aq. soln. of potassium chloride and an emulsion of potassium xanthate and turpineol. L. Kahlenberg and J. V. Steinle

observed the single potential of platinum in 0.5N-Na₃AsO₄ to be 0.983 volt; in 0.5N-K₃AsO₄, 0.980 volt; and in N-KCl sat, with arsenic trioxide, 0.943 volt; and S. Koidzumi studied the potential of platinum in alkaline soln. containing alcohol; A. Frumkin and co-workers showed that in the alteration in the potential of platinized carbon in an atm. of hydrogen from positive to negative with increasing content of platinum, the metal in the intermediate state is uniformly at the same potential and not located at an equal number of positive and negative centres. J. Chloupek found that the potential of a platinum electrode in soln. of ortho-, pyro-, and meta-phosphoric acid, and arsenic acid, containing mixtures of manganous and manganic oxides, against a mercury sulphate electrode in 2N-H₂SO₄, varied between 0.98 and 1.18 volt, and, at first, increased slowly with time, then decreased owing to the instability of the soln. H. V. Tartar and H. K. McClain studied the effect of an electric field; and R. Audubert, G. E. Muchin and M. I. Silberfarb, I. Lifschitz, C. Stora, G. Athanasiu, and C. Winther, the Becquerel effect; J. M. Ort and M. H. Roepke, the potential in dil. alkaline sugar soln.; J. Harty, the potential of a photovoltaic cell in combinations with ethyl- and phenyl-magnesium chloride; T. Swensson, the e.m.f. of a cell with a partition Pt | soln.: soln. | Pt in which one half is kept in darkness, and the other half illuminated by ultra-violet light. The electrolytes were soln, of several salts. G. Athanasiu examined the effect of radiant heat on the Pt: PtCl4: Pt-cell; and G. Grube and L. Baumeister, that of light and X-rays on polarized platinum electrodes. L. V. Nikitin observed that some cells with platinum electrodes appear to be sensitive to sound.

According to C. Fredenhagen, platinum electrodes in some oxidizing soln. show a constant potential immediately after immersion, whilst in others it is variable, and this indicates that the velocity of reaction of the ions of the oxidizing soln, with the gases absorbed by the platinum is very variable. In oxidation elements, the platinum electrodes always become charged with gases; in some cases, the potential measured is entirely due to this gas charge, and is in no way conditioned by the giving up of electrons from the ion of the solution to the electrode. The magnitude of the gas charge is dependent on the H'-ion conc. in the liquid, but the potential of the oxidizing agent is absolutely independent of this. N. E. Loomis and S. F. Acree prepared platinum electrodes for use as hydrogen electrodes in 0.1HCl in determining the H'-ion concentration in reacting systems, in which the deviation from the mean is less than 0.1 millivolt. H. D. Kirschman and co-workers, D. J. Brown and J. C. Zimmer, studied the subject. F. Fischer observed that when external influences are excluded, the e.m.f. of certain open cells of the type: Cu | CuSO₄ soln. | Pt slowly falls to zero, and the same change takes place in a few hours if the electrolyte be agitated. Cells with mercury or silver in place of copper behave similarly, but not so with zinc. The change with the copper cell takes place only at the platinum electrode, and it is assumed that cuprous sulphate is formed from the metallic copper and the copper sulphate, this in turn involving a tendency throughout the electrolyte to the separation of copper. The copper potential is thus transferred to the platinum electrode. The part played by the cuprous sulphate is illustrated by the fact that by the use of various solutions all saturated with cuprous sulphate the platinum can be made to assume any potential between that of oxygen and that of copper. The fall in the e.m.f. of the cell is attributed to the formation of an alloy of platinum and copper which gradually becomes richer in copper as the distribution of cuprous sulphate through the electrolyte proceeds. R. Luther made observations on the same subject; and W. J. Müller and J. Königsberger found the optical properties of the platinum were not affected by the reaction in the cell, and this does not support the hypothesis that an alloy is formed. H. V. Tartar and H. K. McClain referred the electrode potential to adsorbed films; R. D. Kleeman and co-workers, the sign of the electrical layer of a soln. in contact with platinum. E. R. Smith found that the e.m.f. of a cell with the electrode reaction PtCl₄"+2Cl'=PtCl₆"+2€ shows reversibility;

and the platinoplatini-electrode was studied by V. F. Miller and H. Terrey, and E. R. Smith. W. M. Pierce studied the relation between current and time in a Pt-H₂SO₄ cell; F. P. Bowden, the potential changes which occur during the discharge of electricity at bright platinum electrodes in air-free, 0·2N-H₂SO₄ sat. with hydrogen or oxygen; and L. W. Haase, the effect of light on the oxygen depolarization current of the Fe-Pt couple. N. Harvey observed no luminescent effect during the electrolysis of aminophthalic hydrazide with platinum electrodes.

R. Abegg and co-workers reviewed the work on the e.m.f. of cells with two platinum electrodes with an electrolyte in aq. soln. A. C. Becquerel obtained a difference of potential with a cell Pt | KOH, HNO3 | Pt; C. Matteucci, with Pt | H₂SO₃(or K₂SO₃), HNO₃(or H₂CrO₄) | Pt; J. Hopkinson, A. Walcker, M. Faraday, and J. Müller studied similar combinations. L. Bleekrode used conc. and dil. soln. of platinic chloride as electrolyte. M. Berthelot, E. Branly, F. P. Dulk and L. Moser, A. van Eccher, F. G. Henrici, M. H. Jacobi, J. P. Joule, S. Pagliani, F. Plzak, J. C. Poggendorff, F. M. Raoult, F. Richarz, A. de la Rive, K. Schreber, and E. Warburg, used other electrolytes. A. C. Becquerel, and G. Quincke, observed a difference of potential with platinum and spongy platinum in conc. nitric acid; C. Fromme with hydrogenized platinum and nitric or chromic acid: C. F. Schönbein, with platinum, and platinum rubbed with a piece of phosphorus; C. E. Fawsit, with polished or hammered platinum, and annealed platinum in a soln. of platinic chloride; J. M. Gaugain, in distilled water with platinum and platinum rubbed with sand-paper, filter-paper, or linen: and A. Bringhenti observed an e.m.f. is developed when a large electrode of platinized platinum and a small one of smooth platinum is placed in an alcoholic soln. of the corresponding sodium alkoxide-methyl, ethyl, or propyl alcohol. The current is not very constant, and varies with the time the circuit is closed, and with the surface of the electrodes. E. du Bois-Reymond, H. Wild, R. Hunt, and F. Zantedeschi observed an e.m.f. is developed when one of two electrodes of the same size is under pressure; and E. du Bois-Reymond, F. G. Henrici, M. Krouchkoll, and E. Becquerel, when the electrolyte about one of the two electrodes is agitated. O. Erbacher studied the exchange of ions on the surface of a platinum electrode; H. Jablczynska-Jedrzejewska, the poisoning of the cathode with hydrogen sulphide; R. Audubert, the inversion potential; and R. G. van Name and F. Fenwick, H. D. Kirschman and co-workers, S. Sekine, A. H. Wright and F. H. Gibson, K. Horovitz, and A. F. Guerasinoff, J. L. R. Morgan and O. M. Lammert, I. I. Schukoff and coworkers, B. Bruns and A. Frumkin, I. M. Kolthoff and T. Kameda, L. P. Hammett, and M. Thalinger and M. Volmer, the use of the platinum electrodes in electrometric titrations. G. S. Forbes and E. P. Bartlett found that some reducing agents, as, for example, ferrous sulphate, arsenious acid, chromous sulphate, and potassium ferrocyanide, increase the oxidizing potential of the dichromate ion on platinum by amounts up to 0.2 volt. No other oxidizing agent has been found to give a similar effect. The potential increases continuously up to the point where all the dichromate is reduced, and then drops suddenly when excess of the added reducing agent is present; and the reaction can be applied to the electrometric titration of a dichromatic soln. with a ferrous salt. A. C. Becquerel observed that an electric current is developed when platinum wires are inserted in fruits and tuberous roots.

W. R. Grove ⁵ observed that platinum charged with hydrogen as a gas electrode in oxygen is positively charged; and E. Becquerel also found it positive in air or condensed oxygen. F. Streintz found that hydrogenized platinum is electronegative towards ordinary platinum; and R. Lorenz and A. Mohn observed that the potential of a hydrogen electrode of 1 atm. press. on platinized platinum in water against a 0·1N-electrode, is 0·75 volt. G. Markovsky found that the e.m.f. of a platinum plate in hydrogen against a platinum plate in gas-free sulphuric acid is 0·646 volt; and when oxygen is substituted for hydrogen, the current is in the opposite direction, and the e.m.f. is 0·372 volt. Electrolytic hydrogen,

and hydrogen from zinc and sulphuric acid, give the same value for the e.m.f.; and a similar result is obtained with electrolytic and chemically prepared oxygen. The e.m.f. of an oxygen cell is diminished by the addition of platinum sulphate to the soln., whilst that of the hydrogen cell increases—the sum of the two remaining The e.m.f. is independent of the density and temp., up to 70°, of the gas. F. Förster observed that the potential communicated by oxygen to platinum is characteristic of a chemical compound—a platinum oxide; and that the e.m.f. of hydrogen towards oxygen between platinized electrodes depends on the electrode material. G. N. Lewis showed that the e.m.f. of the gas cell is less than corresponds with the formation of the water, and hence the value 1:14 volt observed by N. T. M. Wilsmore, V. Czepinsky, and E. Bose at 25° and 1 atm. press. is too high. The subject was discussed by R. Abegg and J. F. Spencer, K. Bennewitz and W. Schieferdecker, S. J. French and L. Kahlenberg, G. Grube and H. Reinharat, F. Haber, R. Köhler, R. Seeliger and M. Reger, and J. B. Westhaver. Gas-cells with platinum electrodes were studied by W. Beetz, R. Höber, J. A. Kendall, L. Mond and C. Langer, H. F. Morley, J. Pieper, Lord Rayleigh, C. F. Schönbein, and M. Thalinger and M. Volmer; and Z. Szabo, and J. J. Hermans, the cell Pt $\mid \mathbf{H}_2, m_1 \mathbf{HCl} \mid m_2 \mathbf{HCl_2H_2} \mid \mathbf{Pt}$, at 25°.

C. F. Schönbein observed that platinum in water containing ozone, chlorine, bromine, or iodine is electronegative towards platinum in distilled water. F. Schulze-Berge found that platinum saturated with hydrogen is electropositive, and on contact with ozone is electronegative to a platinum plate in air. The potential difference decreases with time, but does not vanish completely. In chlorine, platinum is electropositive to silver. According to R. Luther and J. K. H. Inglis, when the anode liquid of an electrolytic cell contains a strong oxidizer, and a platinum electrode dipping in it is combined with a calomel electrode, the e.m.f. is about 1.1 volts. The oxidizer is supposed to be ozone. Different acids saturated with ozone give under similar conditions, and within narrow limits, the same e.m.f. Electrodes charged with oxygen give a somewhat lower value, whilst a charge of hydrogen raises the oxidation potential. The increase produced by hydrogen soon passes away, and the electrode regains its normal value. The electrode can be freed from either oxygen or hydrogen by a mixture of ferrous or ferric salts. The ozone gas cells were studied by A. Brand, O. Mumm, S. Jahn, and L. Gräfenberg; oxidizing gas cells by C. Fredenhagen; and the Volta effect in water vapour by E. Dubois.

According to W. R. Grove, the sequence of the e.m.ff. of platinum foil charged with different gases, so arranged in the series that platinum charged with a given gas is positive towards platinum charged with one of the preceding gases in the series is: chlorine, bromine, iodine, oxygen, nitric oxide, carbon dioxide, nitrogen, camphor, ethereal oils, ethylene, ether, alcohol, sulphur, phosphorus, carbon monoxide, and hydrogen. B. O. Peirce observed that the nature of the liquid has a great influence on the e.m.f. of any combination of two gases in the gas cell.

At ordinary temp. the relative e.m.f. with water and hydrogen and oxygen is 0.874; nitrous oxide, 0.790; carbon dioxide, 0.981; nitric oxide, 0.933; air, 0.807; water, 0.807; and carbon monoxide, 0.404; with dil. sulphuric acid, and hydrogen and oxygen, 0.926; hydrogen and carbon dioxide, 0.892; and hydrogen and nitric oxide, 0.768; with hydrogen and oxygen and a soln. of sodium sulphate, 0.698; in a soln. of potassium sulphate, 0.698; with a soln. of zinc sulphate, and hydrogen and oxygen, 0.771; hydrogen and carbon dioxide, 0.820; and hydrogen and nitric oxide, 0.860; with water and iodine and bromine, 0.335; with a soln. of sodium bromide, and hydrogen and bromine, 1.252; with a soln. of potassium bromide, and hydrogen and bromine, 1.253; and oxygen and bromine, 0.500; a soln. of potassium iodide, and oxygen and iodine, 0.057, and hydrogen and iodine, 0.861; with dil. hydrochloric acid, and hydrogen and nitric oxide, 0.765; hydrogen and oxygen, 0.855; and hydrogen and chlorine, 1.390; and with a soln. of sodium chloride, and hydrogen and chlorine, 1.390; oxygen, 0.760; carbon dioxide, 0.846; and nitric oxide, 0.750. At a temp. between 75° and 80°, with water, and hydrogen and oxygen, 0.828; nitric oxide, 0.945; carbon dioxide, 0.875; nitrous oxide, 0.780; and water, 0.954.

- W. Beetz found the relative e.m.f. in volts of platinum electrodes in different gases to be 3.49 in oxygen against water; 23.98 in hydrogen against oxygen; 20.48 in hydrogen against water; 12.12 in hydrogen against carbon monoxide; 16.37 in carbon monoxide against bromine; 28.32 in hydrogen against bromine; 9.50 in air against chlorine; 30.25 in hydrogen against chlorine; and 20.50 in hydrogen against air; whilst for platinized platinum in the following gases against platinum charged with hydrogen in dil. sulphuric acid, he found the relative values: in chlorine, -46.6; in bromine, -32.3; in oxygen, -16.1; in iodine, -15.8; in nitrous oxide, -5.3; in cyanogen, -5.0; in carbon dioxide, -3.8; in nitric oxide, -2.1; in air, -2.0; in carbon disulphide, 1.7; in methane, 6.7; in phosphorus vapour, 16.1; in carbon monoxide, 28.5; in hydrogen sulphide, 69.0; and in hydrogen, 81.4. Smooth platinum gives nearly the same values. V. Hoeper found the potential of a platinum plate charged with carbon monoxide against a soln. of cuprous chloride in hydrochloric acid to be -0.78 to -0.72 volt.
- J. G. Davidson measured the conductivity of a bunsen flame into which a soln. of salt has been injected by measuring the current produced by an e.m.f. of 400 volts. Ionization of the salt occurs only when the platinum cathode coated with salt attains the temp. of the flame. The metal retains the salt in a solid state for a long time. The current increases when the distance between the electrodes is decreased, and varies with the position of the anode. When the anode is coated with the salt instead of the cathode, only about a quarter of the current is obtained. The temp. of the flame or salt practically determines the conductivity of the flame. Numerous ions are formed in the inner cone of a pure flame, but they recombine in the region immediately above. The subject was investigated by F. V. Bossche, R. von Hasslinger, G. Moreau, and E. Wiedemann and H. Ebert.
- C. R. A. Wright and C. Thompson observed that an electric current is developed when a thin layer of spongy platinum is simultaneously exposed to the action of air and a soln. of brine. The other electrode is submerged in the liquid. Spongy platinum gives a larger current than does platinum foil. The upper plate absorbs a film of oxygen which uniting with the metal generates an electric current. W. G. Hankel noted that electricity is developed when water is dropped into a platinum dish.
- H. Davy ⁶ placed platinum between electropositive gold and electronegative rhodium in the **electrochemical series** in dil. sulphuric acid; and S. Marianini placed it between tellurium and gold in sea-water acidified with sulphuric acid. The general electronegative character of platinum in various soln. was noted by A. R. Arrot, A. Avogadro and I. Michelotti, A. C. Becquerel, E. Becquerel, M. Faraday, G. F. Fechner, J. M. Gaugain, G. Gore, M. H. Jacobi, L. Kahlenberg, E. Lenz and A. Saweljeff, B. Neumann, J. C. Poggendorff, A. de la Rive, O. Scarpa, C. F. Schönbein, W. Skey, F. Streintz, A. Walcker, and C. R. A. Wright and C. Thompson.

The contact potential of platinum was studied by W. Ende; 7 and the polarity of a platinum cell, by F. Streintz. The electromotive force of platinum and hydrogenized platinum was studied by J. A. Kendall, and A. Schluigin and A. Frumkin; of platinum against potassium amalgam with a soln. of platinic chloride as electrolyte, by J. P. Joule, J. Regnauld, and C. Wheatstone; and with dil. sulphuric acid as electrolyte, by W. Beetz, and J. Goodman. The e.m.f. of platinum against sodium at -80° was found by E. Dorn and B. Völlmer to be 3.018 volts; and E. Corminas gave with sodium hydroxide as electrolyte, 3.0 volts; with fuming hydrochloric acid, 3.2 volts; with dil. sulphuric acid (3:10), 3.3 volts; sodium nitrate and sulphuric acid (3:10), 3.3 volts; conc. soln. of potassium chlorate, 3.5 volts, the same soln. with sulphuric acid (1:1), 3.6 volts; conc. soln. of potassium dichromate with sulphuric acid (10:3), 3.8 volts; fuming nitric acid, 3.8 volts; conc. soln. of potassium permanganate, 4.0 volts, the same

with sulphuric acid (10:3), 4.5 volts, or (55:50), 4.5 volts. Observations were made by G. Oesterfeld.

G. Wiedemann,⁸ and W. Loewenstein have summarized observations on the e.m.f. of cells of platinum against many elements in various electrolytes. e.m.f. of platinum against copper in various electrolytes was measured by H. E. Armstrong, E. Becquerel, W. Beetz, E. Bichat and R. Blondlot, F. Braun, H. Buff, J. P. Joule, M. Krouchkoll, L. Mond and C. Langer, A. von Oberbeck, S. Pagliani, H. Pellat, J. C. Poggendorff, F. M. Raoult, F. Streintz, D. Tommasi, and C. R. A. Wright and C. Thompson; likewise with silver, by E. Bichat and and R. Blondlot, E. Branly, F. Braun, W. Hittorf, J. P. Joule, R. Luther, J. C. Poggendorff, and E. J. Roberts; and gold, by E. Becquerel, F. Braun, and F. M. Raoult. O. Erbacher measured the e.m.f. of platinum against polonium. G. Gore measured the e.m.f. of platinum against magnesium with a soln. of many electrolytes; and of platinum against zinc or zinc amalgam with dil. sulphuric acid as in A. Smee's cell was studied by W. Beetz, E. Branly, R. B. Clifton, C. Fromme, G. Guglielmo, J. P. Joule, R. T. Lattey and M. W. Perrin, J. Miesler, L. Mond and C. Langer, F. Paschen, J. H. Paterson, F. Richarz, R. Ruer, F. Todt, C. Wheatstone, M. Straumanis and co-workers, and W. Wolff. B. C. Damien observed that with amalgamated zinc, as the concentration of the sulphuric acid fell from 92 to 30, and 0 per cent., the e.m.f. rose from 1.264 to 1.345 volt, and then fell to 1.083 volt. C. R. A. Wright and C. Thompson observed that with platinum sponge or platinum black, in air, with acid of the concentrations 1:10, 1:20, and 1:40, the respective voltages were 1.750, 1.628, and 1.681; and if some persulphuric acid is present, F. Richarz gave 2.06. Observations with other oxidizing agents were made by R. Ruer, and with zinc sulphate soln. by J. Gubkin, A. von Oberbeck, and C. Hockin and H. A. Taylor. A. Crova studied the effect of temp.; and J. Thomsen, and P. A. Favre, the thermal value of the reaction in the cell.

W. R. Grove's cell is of the type Pt | HNO3, H2SO4 | Zn, and it was studied by W. Beetz, O. Behrend, R. Böttger, E. Branly, H. Buff, R. B. Clifton, C. Fromme, C. A. Grüel, R. Ihle, J. P. Joule, A. König, R. Kohlrausch, J. H. Koosen, J. Miesler, S. F. B. Morse, F. Petruschefsky, J. C. Poggendorff, K. Przibram, and J. Regnauld. The theory of the cell was studied by F. Haber; and the thermal value of the reactions in the cell by J. Thomsen, P. A. Favre, and M. Berthelot. Cells of this type with other electrolytes were studied by W. Beetz, F. Braun, H. Buff, N. J. Callan, R. B. Clifton, A. Crova, B. C. Damien, E. Dorn and B. Völlmer, A. von Eccher, G. Gore, E. F. Herroun, J. P. Joule, J. H. Koosen, M. Kugel, A. P. Laurie, S. Pagliani, F. Paschen, J. C. Poggendorff, A. Righi, H. N. Warren, and C. Wheat-Combinations of cadmium and platinum with various electrolytes were studied by W. D. Bancroft, F. Braun, G. Gore, A. P. Laurie, L. Mond and C. Langer, A. von Oberbeck, J. C. Poggendorff, and C. R. A. Wright and C. Thompson. Cells with platinum and mercury with various electrolytes were studied by W. D. Bancroft, G. J. Burch and V. H. Veley, F. Dolezalek, F. Förster, E. Heyn and O. Bauer, R. Ihle, R. Luther, W. Muthmann and F. Frauenberger, B. Neumann, R. Peters, J. C. Poggendorff, F. Richarz, and C. R. A. Wright and C. Thompson.

E. Branly, and G. Gore studied combinations of platinum with aluminium in various electrolytes; A. Bartoli and G. Papasogli, P. Bechtereff, W. E. Case, V. Karpen, A. Naccari and M. Ballati, F. Paschen, and S. P. Thompson, of platinum with carbon; F. G. Wick, of platinum with silicon; H. E. Armstrong, W. E. Case, A. Mazzucchelli, S. Pagliani, H. Pellat, J. C. Poggendorff, and S. Skinner, of platinum with tin; F. Braun, B. C. Damien, W. Hittorf, R. M. Raoult, F. Streintz, and G. Tammann and E. Janckel, of platinum with lead; W. Hittorf, and A. Bernoulli, of platinum with chromium; J. C. Poggendorff, of platinum with antimony; J. C. Poggendorff, and G. J. Burch and V. H. Veley, of platinum with bismuth; E. Branly, W. Hittorf, J. P. Joule, J. C. Poggendorff, and L. Schönn, of platinum with iron; W. Hittorf, of platinum with cobalt; W. Hittorf, and V. O. Krenig

and V. N. Uspenskaya, of platinum with nickel; and K. F. San, of platinum and rhodamine-B.

A few cases have been examined when molten compounds have been employed as electrolyte: thus, H. Davy 9 employed molten lead oxide with zinc and platinum electrodes; M. Faraday, molten potassium chlorate or nitrate, sodium sulphate or phosphate, lead oxide or iodide, and bismuth oxide with platinum and copper electrodes, and molten silver nitrate or chloride with platinum and iron electrodes. R. Fabinyi and G. Farkas, A. C. Becquerel, T. Andrews, and W. Negbaur employed a number of other combinations. P. Lukirsky and co-workers observed that in the electrolysis of crystals of sodium chloride with a platinum anode, platinic or some lower chloride is formed.

W. Dittenberger and R. Dietz ¹⁰ found the **transport number** of platinum in soln. containing 0.0493, 0.0096, and 0.00052 grm. of platinum per c.c., decreases with concentration, being respectively 0.137,0.113, and 0.075; for soln. of $PtCl_4$. H_2O , or possibly $H_2[PtCl_4(OH)_2]$, W. Hittorf and H. Salkowsky gave 0.146 to 0.126 for the transport number of the anion $\frac{1}{2}PtCl_4O$, and 0.854 to 0.874 for the H_2 -cation; and W. Hittorf gave for soln. of sodium chloroplatinate, 0.562 for the $PtCl_6$ -anion, and 0.438 for the Na-cation. A. Miolati gave 61.5 for the speed of migration of $\frac{1}{2}[PtCl_4(OH)_2]''$; and P. Walden, 53.4 for $[Pt(CyS)_6]$.

F. Haber gave 10^{-140} to 10^{-150} for the electrolytic solution pressure of platinum; and B. Neumann gave 4×10^{-36} atm. F. Glaser also remarked on the high soln. press. of platinum in soln. of potassium cyanide. E. Bose discussed the equilibrium: $Pt_{metal}+Pt$ $\rightleftharpoons 2Pt$, and W. Moldenhauer, the thermal changes in the reaction. H. Herwig found 0-000395 farads are necessary for the discharge of the condenser cell: $Pt \mid H_2O \mid Pt$. The subject was discussed by J. Billitzer, and

S. L. Bigelow.

C. F. Schönbein, and A. Brester observed the formation of hydrogen on a platinum cathode hinders the electrolysis. F. Förster and A. Piguet observed that of all the metals so far investigated the cathode potential of platinized platinum for the discharge of hydrogen is the smallest. W. A. Caspari, and A. Coehn gave 0.09 volt for the hydrogen overvoltage on plain platinum cathodes; H. G. Möller, 0.08 volt; A. Thiel and co-workers, and E. Breuning, 0.06 to 0.08 volt; and E. Müller, and W. D. Harkins, 0.01 volt at 12°. For platinized platinum, A. Coehn, and W. A. Caspari gave 0.005 volt; W. D. Harkins, 0.002 volt; E. Müller, 0.01 volt; A. Thiel and E. Breuning, up to 0.0001 volt; and J. Tafel, 0.07 volt with a current of 1 ampère. G. Carrara observed 0.02 to 0.04 volt in N-H₂SO₄ and 0.1 volt in N-KOH, and 0.10 volt in N-H₂SO₄ in methyl alcohol, and 0.05 volt in ethyl alcohol. F. P. Bowden and E. K. Rideal, A. Slygin and co-workers, E. Liebreich and W. Wiederholt, N. Koboseff and N. I. Nekrassoff, I. Zlotowsky, A. L. Ferguson and G. M. Chen, J. A. V. Butler and G. Armstrong, F. T. Chang and H. Wick, A. L. Ferguson and G. M. Chen, A. L. Ferguson and G. Dubpernell, A. Frumkin and A. Schligin, S. Glasstone, W. D. Harkins and H. S. Adams, G. R. Hood and F. C. Krauskoff, V. V. Ipatéeff and co-workers, M. Knobel, E. Liebreich and W. Wiederholt, F. Meunier, T. Onoda, P. P. Porfiroff, P. Sederholm and C. Benedicks, A. Smits, and P. S. Tutundzic studied the subject. F. Kaufler showed that the cathode at which there is an overvoltage of hydrogen must be locally heated more than is the case with no hydrogen overvoltage, and the superior reducing power of the former may be due to the elevated temp. He found that benzophenone and acetophenone were not reduced if no heating current be employed, but it did occur with a heating current. The potential of the heated electrode is rather lower than that of the unheated one. C. Marie studied the effect of the viscosity of the electrolyte on the overvoltage of hydrogen. P. Sederholm and C. Benedicks studied the effect of curvature on the overvoltage; H. T. Beans and L. P. Hammett, the hydrogen electrode; I. Slendyk and P. Herasymenko, the separation of hydrogen from platinum cathodes; and P. Herasymenko and I. Slendyk studied the effect of

traces of ruthenium, rhodium, palladium, and iridium on the hydrogen overvoltage of platinum; and A. Gorodetzkaya and B. Kabanoff, the contact angle of the hydrogen bubbles. N. Thon electrolyzed soln. of platinum salts with an electrode of rare gas. N. Koboseff and N. I. Nekrassoff studied the emission of electrons during the cathode polarization of platinum; M. O. Charmandarian and B. I. Pervuschin, the electrokinetic potential; and R. Köhler, the effect of occluded hydrogen on the reduction potential. C. O. Henke and O. W. Brown observed no relationship between the catalytic activity of metals and their overvoltages; A. Sieverts and P. Luegg, no effect of α -naphthoquinoline on the potential of hydrogen separation on platinum; and J. M. Ort and M. H. Roepke, the effect on soln. of sugar.

A. Coehn and Y. Osaka observed that the **oxygen overvoltage** of a plain platinum anode is very high, for it is 1.67 volts, and that of a platinized platinum anode is 1.47 volts. G. Tammann and F. Runge, P. S. Tutundzic, J. A. V. Butler and co-workers, T. Onoda, S. Glasstone and A. Hickling, A. D. Garrison and J. F. Lilley, H. M. Cassel and E. Krumbein, E. Tommila, and F. Glaser made observations on the subject, and F. Haber reported the formation of some hydrogen dioxide at the anode. F. Förster and A. Piguet found that the rate of increase of the anode potential of platinum in 2N-KOH, or 2N-H₂SO₄, is greater than it is with palladium, iridium, iron, and nickel. The subject was studied by V. V. Pitscheta, A. Rius, and F. P. Bowden. The electrolytic valve action was studied by E. Newbery. L. W. Haase observed that the oxygen depolarization current is favoured by darkness. A. P. Rollet, and J. W. Shipley and C. F. Goodeve studied alternating current electrolysis with platinum, copper, and silver electrodes; and V. Cupr, oxidation-reactions at the platinum anode.

L. Arons emphasized the fact that with platinum electrodes it requires a very feeble e.m.f. to develop hydrogen and oxygen in the electrolysis of suitable aq. D. Reichinstein observed that the formation of hydrogen on a platinum cathode proceeds more rapidly than is the case with oxygen on a platinum anode under quite similar conditions. A. Coehn found the reversible production of hydrogen on platinized platinum is 1.08 volt. K. Bennewitz observed that the decomposition potential of sulphuric acid with rotating platinized electrodes is The decomposition at this potential is supposed to occur only at certain points on the electrode, and to become general at a voltage between 1.50 and 1.63. Previous investigators observed breaks at 1.47 and 1.95 volts in the curves representing the variation of the voltage and the change of e.m.f. in the electrolysis of sulphuric acid, but these breaks were not observed with the rotating electrodes. There is a break at 2.20 volts with a soln. of alkali hydrosulphate in conc. sulphuric acid which is supposed to represent the formation of persulphuric acid: 2HSO₄' ⇒H₂S₂O₈+2⊕. The break at 1.08 volts' was observed only with stationary electrodes, and it is connected with the passivity of the metal. There is a break at 0.76 volt with both stationary and rotating electrodes, and it is supposed to be connected with the formation of platinum oxides or hydroxides, and not with passivity. G. Armstrong and co-workers studied the subject. K. Bornemann found that platinum electrodes in N-H₂SO₄ with hydrogen dioxide furnish a curve with a break at 1.20 to 1.22 volts, and with electrodes which have been heated to redness, at 1.06 to 1.08 volts. A. Mazzucchelli and C. Barbero also investigated the potential with soln. of hydrogen dioxide; and O. Mumm, and F. Förster, the potential of ozone formation. The decomposition voltage curve of hydrochloric acid was discussed by E. Müller, R. Luther and F. J. Brislee, and E. Bose. According to G. Pfleiderer, when a dil. soln. of hydrochloric acid is electrolyzed with fresh platinum anodes, and the current is kept constant, the potential rises gradually from 1.4 volts to about 1.9 volts, when oxygen is given off freely. The oxidation of the platinum may be due to the influence of hypochlorous acid formed by the action of chlorine on the water. Both oxygen and chlorine are formed, and the formation of oxygen can be regarded as a secondary phenomenon: $2Cl_2+2H_2O$ $=4ClH+O_2$; and D. Macaluso also studied the behaviour of platinum in a soln.

of chlorine in hydrochloric acid. A. Coehn and Y. Osaka found that with a soln. of potassium hydroxide, cooled by a freezing mixture, much ozone is evolved with a platinum anode at 3 volts. W. Kettembeil observed a break in the decomposition curve at 1.32 volts. G. Armstrong and co-workers studied the subject. A. Coehn and St. Jahn studied the phenomenon with soln. sat. with carbon dioxide; W. Kettembeil, with soln. of alkaline earth chlorides; and B. Kamiensky, the increased negative charge of a platinum electrode in a soln. of potassium chloride in the presence of potassium xanthate.

The deposition potential of copper, silver, gold, zinc, cadmium, and iron on platinum was studied by A. Coehn; of lead dioxide, by K. Elbs and J. Forssell; of nickel, by G. Coffetti and F. Förster; and of platinum, by G. Bodländer, B. Neumann, and J. Wagner. B. Bruzs studied the separation of hydrogen, oxygen, and silver at bright platinum electrodes. G. Grube and co-workers observed that in conc. hydrochloric acid, electrodeposited platinum dissolves anodically more rapidly than rolled sheet. The dissolution of active platinum begins when E=1 volt, and chlorine begins to be evolved at the passive pole at 1·2 to 1·4 volts. Platinum can be transferred electrolytically from anode to cathode in M-H₂PtCl₆ in 5N-HCl at 75° . With low current densities, the platinum dissolves at the anode as Pt···, but with high current densities, part dissolves as Pt··. B. Kabanov and A. Frumkin studied the bubble formation on platinum electrodes; M. O. Kharmadaryan and B. I. Pervuschin, moving electrodes; and M. O. Charmandarian and B. J. Pervuschin, N. Thon, K. Gostkowsky, T. Malarsky and K. Gostkowsky, A. Coehn and O. Schafmeister, and S. Procopiu, the electrokinetic potential.

N. Gautherot, 11 and P. Sue observed that if platinum wires which have been used as electrodes in a soln. of salt, be put under and over the tongue, with the wires in contact, the taste alters owing, it was suggested, to the electrolysis of the water. The polarization of platinum cathodes in dil. sulphuric acid was observed by A. C. Becquerel, G. Bird, E. du Bois-Reymond, A. Crova, G. T. Fechner, C. Fromme, J. M. Gaugain, J. Harty, H. von Helmholtz, F. C. Henrici, G. Jones and S. M. Christian, M. Krieg, P. L. Maréchaux, E. Pirani, J. C. Poggendorff, F. M. Raoult, C. F. Schönbein, H. Schröder, E. I. Spitalsky and V. V. Picheta, F. Streintz, P. G. Tait, P. S. Tutundzic, E. Warburg, and J. C. von Yelin. M. Berthelot, J. A. V. Butler and G. Armstrong, H. Fricke, A. N. Frumkin and A. Shluigin, C. M. Gordon, W. T. Heys, E. Merritt, N. I. Nekrassoff, A. V. Pamfiloff and O. S. Fedorova, E. Rothé, I. Slendyk, O. Stelling, I. Wolff, and E. E. Zimmerman attributed the cathodic polarization of platinum to the formation of hydrides; and in the case of the anode, E. Rothé attributed the result to the formation of platinum oxides. H. Edler and C. A. Knorr observed that adsorbed hydrogen greatly influences the current-voltage curves of platinum electrodes in benzene. F. Richarz observed that the formation of persulphuric acid, ozone, or hydrogen dioxide exercised no influence on the polarization of platinum in dil. sulphuric acid. The maximum polarization of platinum was found by W. Hallock to be 1.95 volts; E. Pirani gave 2.21 to 2.29 volts; C. Wheatstone, 2.23 volts; J. F. Daniell, 2.49 to 2.857 volts; H. Buff, 2.56 volts; J. C. Poggendorff, 2.33 volts; A. F. Svanberg, 2.31 volts; and F. Richarz, 2.5 volts. The average for dil. sulphuric acid is near. 2.8 volts. Observations on the subject were made by A. Wüllner and K. R. Koch, J. L. Kassner and co-workers, C. B. Jolliffe, M. Wien, J. B. Henderson, F. Exner, W. Beetz, N. Nekrassoff, J. Parnell, P. G. Tait, F. Krüger, and F. M. Raoult. V. Karpen studied the polarization in a soln. of potassium iodide and iodine; and W. H. Hunter and L. F. Stone, inorganic depolarizers.

R. Thöldte found the polarization in 10 per cent. sulphuric acid with feeble strength of current, is approximately doubled when the strength of the current is doubled, and with currents of greater strength, the increase is smaller, and approaches a constant value. The subject was studied by F. Richarz, H. von Helmholtz, A. W. Witkowsky, A. Bartoli, A. Bartoli and G. Poloni, H. Buff, J. A. Fleming,

J. G. MacGregor, H. Draper, E. Lenz, S. Glasstone and G. D. Reynolds, J. C. Poggendorff, and C. Fromme. With currents of feeble intensity, the polarization on the cathode decreases with time, and increases on the anode; with more intense currents, the polarization at the anode soon attains a constant value. The subject was studied by W. Beetz, A. Bernstein, E. Edlund, F. Förster, C. Fredenhagen, J. B. Henderson, K. R. Klein, M. Krieg, D. Macaluso, A. Naccari and G. Guglielmo, J. Parnell, W. Peddie, F. M. Raoult, J. Shields, and F. Streintz. According to H. Draper, the polarization increases about 1 per cent. for a rise of temperature of 4°. The subject was investigated by T. R. Robinson, R. Abegg. F. Exner, A. Bartoli, A. de la Rive, W. Beetz, J. C. Poggendorff, and F. M. Raoult. R. Thöldte found that the polarization decreases as the size of the electrodes is reduced until it attains a constant value. The subject was studied by A. Bartoli, E. Lenz, W. Andauer, and C. Fromme. The effect of the concentration of the electrolyte was examined by E. Bouty, C. Fromme, and J. M. Gaugain; and the rate of the reaction with hydrogen on the cathode, by L. P. Hammett. E. Lenz observed that with the same current density, the polarization decreased with increasing conc. of sulphuric acid; and A. Bartoli, that the addition of glycerol lessened the polarization. The nature of the surface of the electrodes was found by J. C. Poggendorff to be such that with smooth platinum electrodes, the maximum polarization was 2.12 to 2.33 volts, and with platinized platinum, 1.83 to 1.85 volts. The subject was studied by C. Fromme, J. Roszkowsky, E. E. Zimmerman, J. Tafel, E. Brunner, and A. Friessner. H. J. T. Ellingham discussed the behaviour of nitric acid at a platinum cathode.

C. F. Schönbein noted that in the electrolysis of water with an anode of smooth platinum and a cathode of platinized platinum gas is developed less vigorously than when the electrodes are reversed. R. Luther noted that with ozone, the oxidation potential with plain electrodes is larger than it is with platinized electrodes. The subject was discussed by F. Förster, and F. Förster and E. Müller. The comparison of the two electrodes in the electrolysis of alkali chloride soln. was made by F. Haber, H. Wohlwill, R. Lorenz and H. Wehrlin, F. Förster and E. Müller, E. Müller, F. Winteler, W. Oechsli, and A. Bültemann; the electro-oxidation of ammonium sulphate was studied by A. Bültemann; the reduction of formaldehyde alkaline soln., by A. Bringhenti; the electrolysis of formic acid, by T. Salzer; the electro-oxidation of potassium ferrocyanide, by A. Brochet and J. Petit.

According to K. R. Koch, 12 the anodic polarization of a platinum electrode in acidulated water by oxygen with an electric current insufficient to produce any perceptible decomposition, is greater than the polarization of the other electrode by hydrogen. E. Cohn observed that the resistance of a voltameter with large platinum plates in dil. acid is scarcely affected by polarization. E. I. Spitalsky and V. V. Pitcheta said that the potential at platinum anodes during the passage of a current depends on the formation of a film of mol. oxygen, or suboxide. the current is broken, the potential depends on the accumulation of at. oxygen. The behaviour of an anode depends on its previous history, and reproducible results can be obtained only under strictly uniform conditions. The subject was discussed by L. Arons, A. Bartoli, W. Beetz, M. le Blanc, E. du Bois-Reymond, F. P. Bowden, J. A. V. Butler and G. Armstrong, J. Daniel, H. Dufour, F. Exner, C. Fromme, W. L. Hildburgh, T. P. Hoar, H. Luggin, D. Macaluso, C. Matteucci, G. Meissner, T. A. L. du Moncel, J. L. R. Morgan and co-workers, E. Müller, E. Müller and F. Spitzer, W. Nernst and A. M. Scott, K. Ochs, N. Piltschikoff, J. C. Poggendorff, A. de la Rive, V. Rothmund and A. Lessing, E. I. Spitalsky and V. V. Pitcheta, F. Strientz, J. Tafel and B. Emmert, and P. S. Tutundzic. A. V. Pamfiloff studied the anodic polarization with platinum and with platinized platinum electrodes, in the form of a loop of wire, in N- and 0.5N-H₂SO₄ with current densities 0.01 to 0.12 amp. per sq. cm. It was found that with the platinum anode, rotating at 300 to 500 revs. per min., the electrode potential rises quickly in the first 5 mins.,

then more slowly, reaching a maximum in 10 to 20 mins, at a current density of 0.04 to 0.1 amp., and 21 to 3 hrs. at 0.01 amp. After a short interruption of the polarizing current, a different potential occurs, and, in general, the numerical values obtained are not constant in different experiments, although the general character of the curves is the same. These numerical values depend greatly on the previous treatment of the electrode under observation (action of oxidizing or reducing agents, cathode polarization, etc.). With a platinized electrode the maximum is attained more slowly and the results are more constant; short interruptions of the current have no effect on the electrode potential. The difference between the potential of the platinized and the solid electrode is 0.1 to 0.2 volt, not 0.4 to 0.6 as observed by F. Förster. The results are explained by the interaction of the surface of the electrode with the gas generated in the process of electrolysis, the metal suffering a change from which it recovers only after some time; the question of whether an oxide of platinum or a solid soln, of the gas in platinum is formed is an open one. J. A. V. Butler and G. Drever observed that platinum is anodically polarized in acidic and alkaline soln., and an adsorbed layer of oxygen is formed prior to the establishment of the oxygen overvoltage, but, as in the case of iridium, there is no evidence of a slow formation of oxides of a peroxidic character such as occurs with palladium and rhodium.

The depolarization potentials were found by V. V. Pitcheta to be inversely proportional to the current density for both smooth and platinized platinum. The depolarization of the platinum was studied by J. Billitzer, F. Weigert, and E. Müller. G. Meissner found that platinum is not polarized by oxygen at ordinary temp., but it is polarized at a red-heat; ozone was found by G. Bodländer, and C. F. Schönbein to polarize platinum negatively. F. Kaufler and C. Herzog found that with plain platinum electrodes in the best conducting mixture of sulphuric acid and water, there is contact resistance of about 3 ohms per sq. cm, of electrode surface with a current of 0.01 to 0.02 ampère, this decreases with an increase in the current density. The subject was investigated by J. C. Poggendorff, R. Ruer, O. Troje, W. W. H. Gee and H. Holden, and K. R. Koch and A. Wüllner. A. L. Clark studied the polarization capacity and the electrical double layers; and K. R. Klein studied the rate of anodic depolarization. G. Armstrong and co-workers, and J. A. V. Butler and G. Armstrong observed some periodicities in the anodic polarization of platinum electrodes in dil. sulphuric acid saturated with hydrogen; and A. Günther-Schulze, the effect of platinum salts on valve metals.

According to C. F. Varley, 13 with two platinum plates, 6.45 sq. cm. surface, the polarization capacity, C microfarads, with different e.m.f., E volts, is:

\boldsymbol{E}		0.2	0.4	0.8	1.0	1.2	1.4	1.6
C		175	210	385	408	487	484	549

The subject was investigated by R. Blondlot, F. Kohlrausch, P. Schönherr, E. Warburg, W. Wien, A. M. Scott, F. Krüger, and A. P. Sokoloff; and the polarization capacity over a wide frequency, by I. Wolff. L. R. Morgan and co-workers studied the reproducibility of quinhydrone electrodes with platinum.

T. Andrews 14 observed that the contact of platinum with bismuth makes the bismuth passive; W. Heldt obtained a similar result with tin; L. Schönn, with iron; and P. Monnartz, with ferrochromium alloys. The surface of anodically polarized platinum, and the surface of platinum which has been treated with strong oxidizing agents, were found by F. Haber to be changed, for the metal will then liberate iodine from a soln. of potassium iodide. The platinum anode saturated with oxygen is not completely reversible. From potential measurements also, it is assumed that the insolubility of platinum is a form of passivity produced by the formation of a superficial layer of oxide on the metal. The film of oxer is electrically active, but has a smaller oxygen press. than the gas itself. The property of platinum was discussed by G. Grube, R. Ruer, V. V. Picheta, W. J. Minder and O. Hering, G. C. Schmidt, E. Grave, F. Förster and J. Yamaski, J. Steiner and Vol. XVI.

L. Kahlenberg, E. S. Hedges and J. E. Myers, A. Günther-Schulze, G. Tammann, M. Thalinger and M. Volmer, K. Bennewitz, and G. Senter. E. Müller observed that in an electrolytic cell containing hydrochloric acid, a gradually increasing anodic potential difference results in the current strength rising to a constant value which is maintained for an interval—Fig. 16. It was assumed that the

Fig. 16.—Anodic Potential—Current Curves of Hydrochloric Acid.

ion in soln. primarily concerned in the electrolysis is exhausted in the region corresponding with the flat part of the wire. R. Luther and F. J. Brislee showed that this explanation cannot be correct, and they suggest that here Cl2"-ions are present in the soln, and that these ions are in equilibrium with the Cl'-ions, and the exhaustion of these ions is responsible for the constant value of the current strength. The condition of the platinum anode is the most important factor. When the anodic potential difference, after a gradual increase, is gradually diminished, without break of current, the corresponding variation of the current strength is not always that given by the first potential difference-current curve. The current strength may fall away rapidly almost to zero, the electrode having become "passive." If, while the electrode is still passive, the potential

difference is again increased, the horizontal portion of the potential difference-current curve cannot now be obtained. This passive condition is due to a superficial change of the platinum anode, and has nothing to do with the solution. It disappears immediately if the current is broken, and if the anode potential difference is allowed to fall below 1.6 volts, a passive electrode becomes spontaneously active. Further, if the change of potential difference is reversed before i_{llm} is reached, the passive condition does not set in. There are thus three states of the platinum surface. The production of the passive condition does not depend on the presence of ('l'-ions, but begins in acid solutions at about 1.9 volts and vanishes at about 1.6 volts

C. Fredenhagen observed that platinum electrodes in alkaline soln. of mixtures of potassium ferrocyanide and ferricyanide are non-polarizable; and C. Grube, that in the electrolytic oxidation of a ferrocyanide in neutral or alkaline soln., the reaction FeCy6""+ is probably instantaneous. Passivity may be produced by a thin film of oxide on the metal, or by adsorbed oxygen, dependent on the conditions. G. Just also found that the accelerating action of platinum on the reaction between potassium ferricyanide and iodide is connected with the oxidation and reduction of the metal. The anodic formation of a brown film of oxide on platinum was observed by W. Beetz, and the subject was studied by R. Ruer, S. Popoff and M. J. McHenry, W. Nernst and H. von Wartenberg, F. Haber and L. Bruner, G. Pfleiderer, F. C. Frary, G. C. Schmidt, M. le Blanc, K. R. Koch, M. Krouchkoll, K. Waitz, H. Hauser, R. Lorenz and co-workers, F. Förster, C. Marie, L. Wöhler, L. Wöhler and F. Martin, L. Arons, G. Grube, L. Cailletet and E. Collardeau, M. Berthelot, and H. N. Warren. According to C. Marie, the brown colour observed by F. Kohlrausch on the anode during the electrolysis of soln. of platinum chloride is due to a superficial oxidation of the platinum; and similarly with the electrolysis of soln. of sodium hydroxide, nitric acid, or hydrochloric acid with platinum electrodes. E. P. Schoch showed that the observed and potential of platinum is not usually the reversible potential of the oxygen, but of a platinum oxide; and C. M. Gordon and F. E. Clark, that the capacity of a plantum electrode is conditioned by a film of oxide. G. Lippmann said that the disciple of hydrogen or oxygen from a platinum plate in electrolysis does not

affect the optical properties of the electrodes. A. Rundspaden, and W. Hampe observed no oxidation of platinum at the anode during electrolysis. J. L. R. Morgan and O. M. Lammert studied the quinhydrone electrode with platinum and platinum alloys.

According to F. Haber, ¹⁵ a platinum electrode in a soln. of potassium hydroxide gradually acquires a film of finely-divided platinum; the electrode becomes rough and dull in hydrochloric acid; and it acquires a film of platinum-black in hypochlorite soln. The subject was discussed by G. Bredig and F. Haber, M. Sack, and A. P. Sokoloff. F. Giordani and B. Focaccia, and P. Schoop found that with soln. of calcium chloride the electrode acquires cracks and pores, but when the platinum is alloyed with 10 per cent. of iridium, the metal is stable. R. Ruer observed the disintegrations of platinum electrodes in the electrolysis of nitric acid by an alternating current, owing to the alternate oxidation and reduction of the metal. The subject was discussed by P. Burger. W. D. Bancroft and J. E. Magoffin studied the energy changes in the electrolysis of sulphuric acid.

The attack of platinum anodes in the direct current electrolysis of dil. sulphuric acid was observed by K. Arndt, 16 G. Grube and co-workers, A. Brochet and J. Petit, M. Margules, J. Tafel and B. Emmert, and G. Senter; hydrochloric acid, and soln. of chlorides, by W. H. Wahl, F. Haber, F. Bran, H. C. P. Weber, C. Marie, E. H. Archibald, M. Margules, F. Schulz, and A. Nobis; ammonia, ammonium salts, and potash lye, by E. Reichel; ammoniacal nitrate soln., by A. Thiel; nitric acid, by M. Margules; soln. of sulphides, by W. Schulte, F. W. Durkee, W. Klapproth, and H. Ost and W. Klapproth; soln. of cyanides, by T. Wilm, F. Reichel, A. Fischer, L. Elsner, R. Ruer, F. Glaser, A. Brochet and J. Petit, and F. M. Perkin; soln. of ammonium acetate and chrome-alum, by C. Engels; phosphoric acid, formic acid, and acetic acids, but not oxalic acid, by M. Margules; and alkali hydroxides, by G. Janeczek, M. Margules, P. Bechtereff, and E. A. Bourgoin; molten potassium nitrate, by W. Hittorf; molten potassium carbonate, by T. Gross; molten lead chloride, by M. Faraday; and molten potassium uranium hexachloride, The attack of platinum electrodes in the alternating current electrolysis of dil. sulphuric acid was studied by R. Ruer, A. Brochet and J. Petit, M. Margules, and W. J. Müller; in hydrochloric acid, by P. Burger, and M. Margules; in nitric acid, by H. J. T. Ellingham, M. Margules, and P. Burger; in soln. of alkali hydroxides, by M. Margules; in sodium phosphate soln., and phosphoric acid, by M. Margules, and E. Drechsel; in soln. of sulphides, by F. W. Durkee; and in soln. of ammonium carbonate and carbamate, by E. Drechsel, and B. Gerdes; and A. Brochet and J. Petit, in soln. of cyanides.

The electrolysis of sulphuric acid by alternating currents with platinum electrodes, was studied by P. Burger, F. Krüger, and D. Reichinstein; and of nitric acid, by T. Gross, and H. Danneel; and the polarization of electrodes with alternating currents, by S. Glasstone, and N. Isgarischeff and S. Berkmann. Rotating platinum electrodes were used by F. Fischer and co-workers in the preparation of ozone.

Platinum electrodes were used in the formation of ammonia by E. Briner and E. Mettler; in the electrolysis of ammonium salt soln., by E. Drechsel; potassium iodide soln., by N. Peskoff and B. Saprometoff; sodium sulphide soln., by P. P. Lebedew; in the preparation of nitrogen chloride, by F. Mareck; in the formation of periodates, by E. Müller; and in the electrolysis of ferrocyanid soln., by K. Schaum and R. von der Linde, and in the electrolysis of glycerol, phenol, by A. Bartoli and G. Papasogli. W. Jäger, and K. Kahle tried a gamated platinum electrodes in place of mercury in the standard caloma Platinum cathodes were employed by A. Brochet, H. Danneel, and K. Be in the electrolysis of sulphuric acid; by A. L. Voege, E. Müller, and J the electrolysis of nitric acid; by H. Davy, in the electrolysis of phowhen platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid when platinum phosphide is formed; by W. Thomson, and A. C. (H. D. Law, in the electrolysis of arsenious or arsenic acid

is formed; by A. Brester, in the electrolysis of soln. of sodium sulphate when a sodium-platinum alloy is formed; by R. Luther, A. Brochet and C. L. Barillet. W. J. Müller and J. Königsberger, H. E. Medway, and W. S. Kimley, in the electrolysis of soln. of copper salts; by A. Matthiessen, in the electrolysis of a soln. of barium chloride, when a barium-platinum alloy is formed; by A. Millot, W. Peddie, and A. Mascazzini and G. Parodi, in the electrolysis of soln. of zinc salts; by V. Borelli, and R. Abegg, in the electrolysis of mercury salts whereby the platinum is amalgamated; and by J. Miesler, and F. Mylius and O. Fromm. the electrolysis of soln, of platinum chloride—in the latter case no floating metallic films were formed about the cathode. Platinum cathodes were used by W. Löb. and W. Löb and R. W. Moore in the reduction of nitrobenzene; by H. Hofer and F. Jacob, in the reduction of polynitrobodies; and J. Tafel, in the unsuccessful reduction of caffeine. Platinum anodes were employed by H. A. Wilson, in the electrolysis of nitric acid; by A. Bültemann, in that of alkaline soln. of potassium nitrite; F. W. Durkee, sodium sulphide; F. Förster and A. Friessner, A. Friessner, and A. Bültemann, sodium sulphite; and J. B. Westhaver, sulphuric acid; M. G. Levi and M. Voghera used platinum anodes in preparing hyposulphites; E. Müller, F. Richarz, K. Elbs, A. Bültemann, and O. Schönherr, persulphates; and F. Förster and A. Friessner, dithionates. Use of platinum anodes in the electrolysis of soln, of chlorides in the formation of chlorates, and perchlorates was studied by F. Förster and E. Müller, A. Bültemann, F. A. Gooch and F. L. Gates, W. Oechsli, and R. von Hasslinger; the electrolysis of soln. of sodium bromide, by G. Kretzschmar, A. Bültemann, and F. Boericke; and of iodides in the formation of periodates, by E. Müller, and E. Müller and O. Friedberger; in the oxidation of ferrocyanides, by A. Brochet and J. Petit; in the electrolysis of alkaline soln. of formates, and of formic acid, by A. Bültemann, and T. Salzer; alkaline soln, of oxalates and of oxalic acid, by A. Bültemann; of fatty acids, by K. Elbs and O. Brunner; and of sugar soln. by P. Rabe and C. Roy.
E. Beutel and A. Kutzelnigg obtained sulphide films by the electrolysis of thiosulphate soln.

The electrodeposition of platinum from soln. of hydrochloroplatinic acid was studied by A. C. and E. Becquerel, 17 and C. Luckow, and they did not obtain smooth deposits of the metal. E. G. Weischede found the deposition potential from 0.04N-soln, in ammoniated soln, is -0.57 to -0.53 volt at 20° and current density 10⁻³ amp, per sq. cm.; and in acidic soln, of 20.4 mgrms, of platinum per 100 c.c., at 20° and 60°, respectively, 0.68 to 0.53 volt and 0.69 to 0.59 volt and current density 8×10^{-4} amp. per sq. cm. C. W. Keitel used a bath of a 10 per cent. soln. of ammonium sulphate or nitrate with 5 per cent. free ammonia, and 2 per cent. of platinous diamminonitrite, replenishing the ammonia and nitrate as required. The bath is operated at 95°, with 2·2 volts. C. W. Keitel and H. E. Zschiegner used a bath prepared by boiling platinous chloride with sodium nitrite until the soln. is vellow or colourless, and then adding an excess of ammonia. T. Erdey-Gruz and H. Wick, and C. Marie and N. Thon made observations on the subject. F. Kohlrausch found that chlorine is given off at the anode, and both hydrogen and platinum appear at the cathode. It is, however, doubtful if platinum is the primary product of the electrolysis. An aq. soln. of platinic chloride gave on electrolysis with weak currents, hydrogen alone at the cathode, no platinum separating, and at the anode oxygen was obtained. With stronger currents, a deposit of platinum appears on the athode and oxygen at the anode. The author regards the depositions of platinum the last case as due to secondary action, and suggests that platinic chloride exists plution as H₂PtCl₄O, with the ions H₂ and PtCl₄O. The secondary deposition inum may be due to the reaction $2H_2+3H_2PtCl_4O=Pt+2H_2PtCl_6+3H_2O$ as tion gradually changes to one of hydrogen platinochloride. The platinum 'ecomes bent during the passage of the current, perhaps owing to occlusion ogen taking place with contraction in volume. G. Grube and co-workers 3-grained deposits of platinum are produced when a soln. of 0.1M-HCl is electrolyzed at 60° with a current density of 0.01 to 0.02 amp.

per sq. cm., and the current yield is 60 to 70 per cent. At the anode, dissolution of platinum begins at E=1 volt; chlorine begins to be evolved at $1\cdot2$ to $1\cdot4$ volts. W. Hittorf said that the platinum deposited electrolytically from a soln. of alkali chloroplatinate is produced at the cathode by the reducing action of the alkali metal. Observations were also made by W. Halberstadt, H. Danneel, A. Classen, P. K. Frölich and G. L. Clark, E. R. Thews and R. W. Harbison, A. R. Powell and co-workers, E. F. Smith, E. F. Smith and H. F. Keller, L. Schucht, F. Wöhler, A. Joly and E. Leidié, J. W. Langness, P. Haas, C. W. Keitel and H. E. Zschiegner, S. Popoff and A. H. Kunz, D. McDonald, F. Braun, and A. Coehn. E. Liebreich found that in depositing platinum on silver in a soln. of nickel sulphate, platinum shows a slight reaction just prior to the evolution of hydrogen.

A. C. and E. Becquerel found a difficulty in obtaining a smooth deposit, but by using a dil. soln. of the chloride acidified with sulphuric acid, F. Rüdorff, and H. Freudenberg obtained a dull deposit which could be polished with sand. A. Classen employed a hot soln. of the chloride acidified with sulphuric or hydrochloric acid, or mixed with ammonium or potassium oxalate; C. Luckow used a dil. soln. of platinic chloride mixed with sodium chloride; W. Halberstadt, a warm soln. of platinic bromide acidified with hydrobromic acid; and E. F. Smith used a soln. of ammonium chloroplatinate mixed with some sodium phosphate, and phosphoric acid. A. Fischer did not obtain a deposit by the electrolysis of a

soln. of potassium cyanoplatinate.

The electrodeposition of platinum on metals has been effected by W. H. Wahl by means of a bath of alkali platinate—a soln. of hydrated platinum dioxide in alkali lye. R. Böttger, J. Wiess, and W. Rathenau employed a bath of alkali chloroplatinate—a soln. of potassium chloroplatinate in alkali lye. M. Roseleur and M. Lanaux, R. Böttger, W. A. Thoms, S. P. Thompson, M. Baum, K. Sadakata, T. Yoshida, and the Platinum Plating Co. used a bath of alkali phosphatoplatinate -say G. Nikolaus' recipe: where the electrolyte is a boiling soln. of 4 grms. of platinic chloride, 20 grms. of ammonium phosphate; 90 grms. of sodium phosphate; and 5 grms. of sodium chloride per litre. The article to be plated should be kept in motion, and a potential difference of 6 to 8 volts employed. P. Jewreinoff, and W. H. Wahl employed a bath of alkali oxalatoplatinate; T. Wilm, F. Glaser, A. Fischer, and H. Freudenberg employed a bath containing cyanide soln.; and R. Böttger, and W. C. Arzen, a soln. of ammonium chloroplatinate and sodium citrate. The subject was discussed by M. Baum, R. Böttger, A. Church, D. Clerk and C. A. Fawsitt, J. B. A. Dodé, H. Elkington, L. l'Hôte, T. Howse, J. H. Johnson, H. H. Lake, W. A. Lampadius, H. H. Landois, S. T. Leo and T. N. Shen, L. B. G. de Morveau, R. Namais, A. Polain, A. E. W. Smith, C. Stahlschmidt, L. M. Stoffel, J. B. Thompson, A. Wogrinz, and J. Langness. M. de Kay Thompson, and C. W. Keitel recommended a mixture of the cis- and trans-forms of platinum dinitritodiamminonitrite obtained by treating a soln. of sodium chloroplatinate with sodium nitrite, boiling, adding a slight excess of ammonia, and dissolving the precipitate, after filtering and washing, in more ammonia. The bath is made up by dissolving 100 grms, of ammonium nitrate or sulphate in a litre of distilled water containing 5 per cent. of ammonia, adding 20 grms. of the solid plating salt, and heating. It is worked at 95° and is quite stable. It is kept ammoniacal, and more salt is added as is necessary. H. S. Booth and M. Merlub-Sobel deposited platinum from soln. of salts in liquid ammonia. R. H. Atkinson studied the electrolytic transfer of the metal using fused chlorides as electrolytes; G. Gru' and co-workers discussed the subject. In the electrolysis of soln. of platic chloride containing cerous chloride, A. B. Schiötz found that platinum alc deposited. M. Prasad and N. B. Choksey studied the effect of a magneti-C. Sandonnini and V. N. Borghello observed no action occurred on elect carbon tetrachloride with 10 per cent. sulphuric acid and a platinum with a lead anode dehalogenization occurred.

J. Plücker 18 noted the spluttering of platinum from the cathode

tube; and G. Granquist found that at 0.6 mm. press., platinum splutters more easily than gold. The loss in weight is independent of the temp. W. Crookes observed that the loss in weight from an electrode weighing 10-1940 grms. was $2\cdot0370$ grms. in 24 hrs.; F. Ehrenhaft said that the radius of the spluttered particles is $4\cdot4\times10^{-6}$ to $14\cdot7\times10^{-6}$ cm. With a pressure approximating 0.4 mm., and a current of $0\cdot0006$ amp., and voltage E, L. Holborn and L. Austin found the losses in weight in 30 mins., under comparable conditions, to be:

		Air	•	Hydrogen					
$E_{ m Loss}$	890 0·63	1190 1·04	$\frac{1300}{1 \cdot 29}$	1440 1·38	1280 0·54	$1430 \\ 0.82$	1890 0·83	2090 0·74 mgrm.	

V. Kohlschütter and R. Müller observed that with a current continuing for t minutes, with a press. p mm., the losses in mgrms. from a 0.5 mm. thick platinum cathode, were:

	H	ydrogen	Helium	Nitrogen			Oxygen			Argon	
			••	-			~~		10	60	
t		30	30	30	45	70	30	3 0	40	30	30
\boldsymbol{p}		0.61	0.34	0.55	1.33	0.17	0.24	0.53	0.60	0.70	0.79
Loss		0.9	0.5	$2 \cdot 0$	2.6	1.0	1.4	$2 \cdot 4$	$3 \cdot 7$	0.9	0.8

V. Kohlschütter and T. Goldschmidt, and T. Goldschmidt found that with different gases, the losses of platinum by spluttering were relatively, helium, 0.23; nitrogen, 1.2; oxygen, 1.9; and argon, 5. E. Blechschmidt, R. Blondlot, C. H. Cartwright, W. T. Cooke, R. K. Cowsik, J. Elster and H. Geitel, F. Fischer and O. Hähnel, O. Hähnel, W. Hittorf, E. O. Hulburt, L. R. Ingersoll and L. O. Sordahl, H. Kayser, J. de Kowalsky and E. Banasinsky, E. Marx, K. Meyer and A. G. Schulze, J. Mooser, F. H. Newman, G. Reboul and E. G. de Bollemont, and F. Wächter studied the subject—vide supra, the forms of platinum. A. Voet investigated the anodic dispersion; P. Jolibois, the structure of the spark striking the surface of a solution; T. Kinbara observed the effect of a current from a platinum pole on a photographic dry plate.

The fall of potential with a platinum cathode with the **glow discharge** was found by E. Warburg ¹⁹ to be 300 volts in hydrogen, and 232 volts in nitrogen free from oxygen; by R. J. Strutt, 226 volts in helium, and 167 volts in argon; R. Defregger, in helium, 168 volts with platinized platinum, and 160 volts with smooth platinum; by H. Dember, 165 volts in helium with a highly polished platinum wire, and 163 volts in argon; by J. W. Capstick, 369 volts in oxygen; and by G. Bode, 320 to 340 volts in chlorine; 376 to 414 volts in bromine; and 380 to 430 volts in iodine. Observations were made by H. Rohmann, O. Klemperer, C. A. Skinner, W. Matthies, F. Müller, O. W. Richardson, H. P. Waran, F. Deininger, and J. A. Cunningham. C. del Rosario investigated the low press. discharge. F. W. Aston discussed the effect of platinum on Crookes' dark space; L. Tonks, anchoring the cathode spot; and A. Janitzky, the effect o, occluded gas in the anode.

According to W. R. Grove, 20 after silver and gold, the arc discharge of platinum furnishes the shortest and darkest arc-light of all the metals tried. E. Leccher found that between horizontal platinum electrodes, 5 mm. in diameter, and 2 mm. apart, the difference of potential is 35 volts. L. Arons gave 30 volts for a current f 4.5 amps. in nitrogen at atm. press. with the electrodes 1.5 mm. apart. L. Chrisler studied the platinum arc in air; A. J. Dempster, the emission of

tive ions; and S. Virtel, the properties of particles from the electric arc. vations were made by C. E. Guye and co-workers, W. B. Nottingham, Malcom and H. T. Simon, H. E. Ives, and J. Stark. According to A. Simek Cadlcova, drops of molten tellurium dioxide move from the negative to

no pole on the surface of hot platinum.

beck 21 represented platinum in the thermoelectric series between 'rhodium, and J. P. Emmet observed that a current flows from warm

platinum to the cold metal when in contact with antimony, arsenic, platinum, copper, silver, lead, tin, zinc, mercury, iron, nickel, gold, and bismuth. Observations on the subject were made by J. Cumming, W. G. Hankel, P. O. C. Vorsselmann-de-Heer, H. Rohmann, W. Rollmann, A. Abt, J. M. Gaugain, N. F. Mott, and A. Matthiessen. H. le Chatelier observed that with purified platinum, its position in the thermoelectric scale is not altered by annealing. N. A. Hesehus studied the subject. Observations on the sensitiveness of thermocouples were made by K. E. F. Schmidt; the neutral points were discussed by Lord Kelvin, P. G. Tait, C. G. Knott and co-workers, and M. Chassagny and H. Abraham. C. Benedicks and C. W. Borgmann studied the influence of gas ions on the electrothermal effect; and A. V. Makaroff and I. V. Plastinin, the thermoelectric homogeneity of platinum wires.

A. C. Becquerel observed a **thermoelectric force** with a thermocouple of platinum wires in contact whereby a current flows from the hot to the cold wire; G. Magnus, A. C. Becquerel, B. L. Rosing, J. M. Gaugain, F. C. Henrici, P. Raethjen, and W. Durham observed a thermoelectric force with wires of different structure, e.g. hard and soft wires. F. P. le Roux, and E. Cohn observed that with a stretched and an unstretched wire, a current flows through the hot junction from the stretched to the unstretched wire—Lord Kelvin added that this occurs only if the stretching is permanent; and E. Wagner found that a compressed wire gives a thermoelectric force against an uncompressed wire, amounting at 58°, and a press. of a kgrm. per sq. cm., to $0.0_{10}186$ volt per degree. P. W. Bridgman observed that the thermoelectric force, $E \times 10^6$ volts, with a couple of platinum uncompressed and compressed at p kgrms. per sq. cm.:

	p	10°	20°	40°	60°	80°	100°
1	2,000	. 0.30	0.63	1.40	$2 \cdot 23$	2.98	3.60
$E \times 10^6$	6,000	. 0.91	1.96	4.28	6.61	8.76	10.70
	12,000	. 1.79		8.60	13.39	17.76	21.57

and the results with one sample of purified platinum against lead were $E \times 10^6 = -3.092\theta - 0.01334\theta^2$ volts; and with another specimen, $E \times 10^6 = -1.788\theta - 0.0173\theta^2 + 0.042\theta^3$ volts. K. Tsuruta studied the effect of longitudinal tension; G. Tammann, and G. Tammann and G. Bandel, the effect of cold work. V. B. Lewes observed that molten platinum heated in the oxy-hydrogen flame gives a greater thermoelectric current than does the molten metal near the m.p. C. G. Knott, and J. Monckman observed that a thermoelectric current flows through the hot junction from non-hydrogenized to hydrogenized platinum. W. Ende, and G. Meyer studied the effect of striction; and J. L. Hoorweg, the effect of different kinds of platinum. J. Würschmidt, and G. K. Burgess and P. D. Sale determined the purity of the platinum by determinations of its thermoelectric force. R. M. Holmes measured the thermoelectric force of these couples. F. Jenkin observed a thermoelectric current between platinum and platinum covered with copper oxide; and R. Bunsen, with platinum and pyrolusite, or platinum and copper pyrites.

E. Heiber measured the thermoelectric force of platinum against the solid alkali metals—Li, Na, K, Rb, and Cs. H. C. Barker found that for a temp. difference of θ °, the thermoelectric force, E microvolts, of the platinum-potassium couple is:

or -0.94 millivolt at 100° . Observations were also made by A. Naccar M. Bellati. H. C. Barker gave for the *platinum-sodium* couple -0.21 m at 100° , or

A. Abt, A. C. Becquerel, J. W. Draper, E. Edlund, J. Galibourg, A. Hiel, W. Jäger and H. Diesselhorst, I. Klemencic and P. Czermac

J. Monheim, H. V. Regnault, E. Wagner, and R. von Wegner made observations on the platinum-copper couple. A. E. Caswell found 2·29 millivolts between 0° and 36°; E. Wagner, 7·9 millivolts at 60°; M. Chassagny and H. Abraham, —0·0005917 volt between 0° and 100°; and E. Becquerel, 0·000378 volt. W. Jäger and H. Diesselhorst gave for the thermoelectric force at 100°, 0·72 millivolt; J. Dewar and J. A. Fleming, 0·76; K. Noll, 0·73; W. H. Steele, 0·76; and E. Wagner, 0·75 millivolt. K. Noll observed with one junction at 0°:

Lord Kelvin gave 64° for the neutral point. K. Bädeker gave 480 millivolts between 0° and 100° for the platinum and cuprous oxide couple. The thermoelectric force of the platinum-silver couple was investigated by R. von D. Wegner, G. G. de Metz, A. C. Becquerel, G. Borelius and co-workers, A. Matthiessen, J. W. Draper, and W. Broniewsky. L. Holborn and A. L. Day gave for the thermoelectric force at 100°, 0·72 millivolt; W. Jäger and H. Diesselhorst, 0·71; J. Dewar and J. A. Fleming, 0·78; K. Noll, 0·67; W. H. Steele, 0·73; and E. Wagner, 0·76 millivolt. G. Borelius and co-workers studied the effect against a silver-gold alloy at a low temp. L. Holborn and A. L. Day gave for the e.m.f. $E=5\cdot8910+0\cdot1320^2$ volts; they also gave for the temp. coeff. 0·00405 volt between 0° and 950°. L. Holborn and A. L. Day gave for the thermoelectric force at 100°, 0·74 millivolt; W. Jäger and H. Diesselhorst, 0·72; J. Dewar and J. A. Fleming, 0·56; K. Noll, 0·71; W. H. Steele, 0·74; and E. Wagner, 0·78 millivolt. Observations were made by A. C. Becquerel. Lord Kelvin gave $-3\cdot06$ for the neutral point. L. Holborn and A. L. Day also gave:

and for the platinum-gold couple, $E=-398+8.769\theta+0.00844\theta^2$ volts between 0° and 1050°, when the temp. coeff. is 0.00389. Observations were made by O. Knopp, and G. G. de Metz. Lord Kelvin gave -1.5° for the neutral point. L. Holborn and A. L. Day, and R. von D. Wegner also gave for the gold-platinum couple:

J. Dewar and J. A. Fleming found that the thermoelectric force of the platinum-magnesium couple at 100° is 0.42 millivolt; K. Noll gave 0.40; and E. Wagner, 0.43 millivolt. Observations were made by A. V. Tidblom. W. Jäger and H. Diesselhorst gave 0.75 millivolt for the thermoelectric force of the platinum-zinc couple at 100°; J. Dewar and J. A. Fleming, 0.77; K. Noll, 0.74; W. H. Steele, 0.60; and E. Wagner, 0.79. Observations on zinc were made by G. G. de Metz, A. V. Tidblom, and A. C. Becquerel; and on brass, by A. Abt, and G. G. de Metz. Lord Kelvin gave 38° for the neutral point with brass. W. Jäger and H. Diesselhorst gave 0.85 millivolt for the thermoelectric force of the platinum-cadmium couple at 100°; J. Dewar and J. A. Fleming, 0.92; K. Noll, 0.88; W. H. Steele, 0.90; and E. Wagner, 0.92 millivolt. Observations were made by A. V. Tidblom. Lord Kelvin gave —12.2° for the neutral point. The thermoelectric force of the platinum-mercury couple was found by H. C. Barker to be:

07 millivolt at 100°. K. Noll gave zero at 100°; and E. Wagner, 0.04 Observations were made by C. Matteucci, and P. O. C. Vorsselmann-H. Hörig observed 10-6 volt per degree at 150°, and when under a press. S. per sq. cm., 2.18×10-6 volt per degree per kgrm. per sq. cm., 4H. Diesselhorst gave 0.38 millivolt at 100° for the thermoelectric itinum-aluminium couple; J. Dewar and J. A. Fleming gave 0.40;

K. Noll, 0.37; W. H. Steele, 0.38; and E. Wagner, 0.41 millivolt. Observations were made by G. G. de Metz. J. Buchanan gave for the thermoelectric force of the platinum-carbon couple $E=566+3.94\theta$ microvolts, with the neutral point at -145° . J. W. Draper, A. V. Tidblom, and A. C. Becquerel measured the thermoelectric force of the platinum-tin couple, and W. Jäger and H. Diesselhorst gave 0.42 millivolt at 100° ; J. Dewar and J. A. Fleming, 0.45; K. Noll, 0.40; W. H. Steele, 0.41; and E. Wagner, 0.44 millivolt. Lord Kelvin gave 44° for the neutral point. A. V. Tidblom measured the thermoelectric force of some tin-zinc alloys against platinum. For the platinum-lead couple, W. Jäger and H. Diesselhorst gave 0.41 millivolt; J. Dewar and J. A. Fleming, 0.44 millivolt; K. Noll, 0.41; and E. Wagner, 0.46 millivolt. J. Buchanan gave -85° for the neutral point; and M. Avanarius gave $E=0.085(\theta_1-\theta_2)+0.0046(\theta_1-\theta_2)^2$. Lord Kelvin gave 36° for the neutral point. Observations on lead were also made by P. G. Tait, G. G. de Metz, E. Becquerel, and A. V. Tidblom, and on some lead-zinc and lead-tin alloys by A. V. Tidblom, J. Dewar and J. A. Fleming gave for lead for temp. between θ° and θ° , in c.g.s. units;

W. H. Steele gave 4.70 millivolts at 100° for the thermoelectric force of the platinum-antimony couple; and observations were made by A. V. Tidblom. W. Jäger and H. Diesselhorst gave -6.52 millivolts at 100° for the platinum-bismuth couple; J. Dewar and J. A. Fleming, -7.25 millivolts; and E. Wagner, -7.39 millivolts. Observations were also made by A. V. Tidblom, A. von Fitzgerald-Minarelli, and J. P. Joule. A. Blondlot measured the thermoelectric force of the platinum-selenium couple; and L. W. Austin, and A. Teichmann, that of the platinum-tellurium couple. H. Pécheux gave for the thermoelectric force of the platinum-tantalum couple between 0° and 400°, $dE/d\theta = 0.26 + 0.0048\theta$ microvolt. The couple was discussed by A. Schulze, who also studied the platinum-molybdenum couple, and the platinum-tungsten couple.

E. Wagner gave 0.82 millivolt at 100° for the thermoelectric force of the platinum-manganin couple, and W. Jäger and H. Diesselhorst gave 0.57 millivolt. Observations were made by O. Knopp. W. Jäger and H. Diesselhorst gave for the thermoelectric force of the platinum-iron couple 1.45 millivolts at 100°; J. Dewar and J. A. Fleming gave 1.91; and E. Wagner, 1.77 millivolts. H. le Chatelier gave $-16.6\theta+0.0096\theta^2$ between 0° and 700°, and $-2.5\theta-0.0105\theta^2$ between 700° and 1000°. P. G. Tait gave 519° for the neutral point. Observations were made by H. V. Regnault, J. M. Gaugain, A. Abt, G. Belloc, O. Knopp, O. Boudouard, C. Benedicks, W. Broniewsky, C. S. M. Pouillet, A. C. Becquerel, C. A. Young, and B. Franz-vide iron, 13. 66, 1934. For the thermoelectric force of the platinumcobalt couple, K. Noll gave -1.52 millivolts at 100° , and G. Reichard, -1.99 millivolts. Observations were made by O. Knopp. For the platinum-nickel couple W. Jäger and H. Diesselhorst gave -1.62 millivolts at 100°; J. Dewar and J. A. Fleming, -1.43; K. Noll, -1.65; E. Wagner, -1.52; G. Reichard, -1.94: and K. Feussner and St. Lindeck, -1.20 millivolts. W. Rohn also studied th subject. R. von D. Wegner, and K. E. Grew measured the effect with nickel (qand with nickel-copper alloys. J. T. Bottomley and A. Tanakadate measured thermoelectric force of the platinum-platinoid couple; A. Abt, of the plat nickel-silver couple; and for the platinum-constantan couple, G. Reichar -3.30 millivolts at 100°; W. Jäger and H. Diesselhorst, -3.44; E. -3.47; and K. Feussner and St. Lindeck, -3.04 millivolts. O. Berg ga

W. Goedecke studied the thermoelectric force of platinum replatinum alloys; and the thermoelectric force of platinum agair has been also discussed previously, in connection with the metals

and for the thermoelectric force of platinum against the other platinum metals, vide infra.

A. Walcker, and L. Nobili observed that in cold water hot platinum is positive against cold platinum, also in sulphuric acid (1:2), in soln. of sodium chloride (1:10 and 1:100), but negative in soda lye. F. C. Henrici said that the hot metal is positive in soln. of sulphuric or nitric acid, ammonium chloride, potassium iodide, cupric chloride, mercuric nitrate, stannic chloride, and ferric chloride or sulphate; and negative in water, hydrochloric acid, potassium hydroxide, chlorate, carbonate or sulphate, sodium carbonate, copper sulphate, silver nitrate, ferrous chloride or sulphate, acetic acid, oxalic acid, very dil. soln. of sulphuric or nitric acid, barium chloride, mercuric chloride, manganous chloride, and potassium ferrocyanide. Observations were made by M. Faraday, A. Voller, H. Wild, A. C. Becquerel, G. Gore, B. Kaniewsky, and R. Kremann and co-workers. E. Bouty studied the thermoelectric force of platinum against platinic chloride. The thermoelectric force against some fused salts and glass was studied by R. Böttger, T. Andrews, and W. G. Hankel.

The Peltier effect was studied by E. Edlund, 22 and H. Jahn. A. E. Caswell gave 0.85. P. W. Bridgman measured the Peltier effect, $P \times 10^6$ joules per coulomb, with platinum, uncompressed metal and metal compressed at p kgrms. per sq. cm., and found:

or $P \times 10^6 = (-3.092 - 0.02668\theta)(\theta + 273)$ volts for one sample of platinum against lead, and for another specimen, $P \times 10^6 = (-1.788 - 0.0346\theta + 0.0_3126\theta^2)(\theta + 273)$ volts. J. Gill also measured the Peltier effect between platinum and dil. sulphuric and nitric acids, and soln. of sodium chloride and potassium bromide and sulphate.

According to O. Berg, the **Thomson effect** is negative, and changes only a little with temp., and he found that $\sigma \times 10^6 = 8.79$ to 9.69. Lord Kelvin observed that the heat flows from the warmer to the colder parts in the direction of the current. The subject was studied by E. H. Hall, C. Benedicks, W. König, F. P. le Roux, H. Haga, and J. Weiss. According to P. W. Bridgman, $\sigma \times 10^6 = 0.02668(\theta + 273)$ volts per degree for one sample of platinum against lead, and $\sigma \times 10^6 = -0.0346 -0.03252\theta(\theta + 273)$ volts per degree for another sample. For a platinum couple made of uncompressed metal and metal compressed at p kgrms. per sq. cm., the Thomson heat effects, $\sigma \times 10^8$ joules per coulomb per degree, were:

	\boldsymbol{p}		00	20°	40°	6 0°	80°	100°
$\sigma \times 10^8$	2,000		10.9	10.0	5.0	- 6.3	-13.4	19.8
	6,000		49.2	24.6	1.6	- 13.3	18.3	-17.9
	12,000		95.7	61.9	$2 \cdot 5$	36.0	-48.6	59.0

According to E. W. Hall,²³ the **Hall effect** at 20° is 2·4 when that of iron is -78; gold, 6·8; and tin, 0·2. A. von Ettingshausen and W. Nernst gave -0·00024 or the Hall coeff.; H. Zahn, -0·000127; J. Königsberger and G. Gottstein, 0·000200; and A. W. Smith, 0·000202. P. Raethjen gave for platinum foil, 0·00230 at 20° and 10,500 gauss. W. Frey, and H. Alterthum observed that retal at a high temp. shows a very small temp. coeff. for the Hall effect:

mith observed a value -0.000202 at 20° , and 0.000222 at -190° . So found that the curve representing the Hall effect at different temp. In between 83° and 194°. H. B. Peacock obtained for thin films \$8°. Observations were made by P. Raethjen, A. Riede, A. K. Chapter, and E. Bossa. H. Zahn gave -21×10^{-9} for **Leduc's effect**, and studied the **Carbino effect**.

Observations on the magnetic properties of impure platinum were made by J. P. Dessaignes, 24 F. Gobel, and P. Dulk. O. J. Broch and co-workers, and M. Faraday considered the purified metal to be feebly magnetic. J. Königsberger gave 29×10-6 vol. unit for the magnetic susceptibility of platinum, and W. Finke gave 22.6×10-6. K. Honda gave 1.132×10-6 mass unit at 18°, and 0.7×10-6 at 1000°; J. Königsberger, 1.35×10^{-6} ; Y. Shimizu, 1.08×10^{-6} ; and A. E. Oxley gave 64.3×10^{-7} mass unit for platinum-black, and 14.7×10^{-7} mass unit for hydrogenized platinum-black—vide infra. The decrease with rise of temp. is slower than corresponds with Curie's law—vide iron. A. Kussmann discussed the subject. mizu studied the effect of stress on the magnetic susceptibility. A. N. Guthrie and L. T. Bourland found that up to 427°, the magnetic susceptibility of platinum follows the Curie-Weiss rule, and the deviation is referred to an underlying diamagnetism independent of temp. M. Owen, E. C. Wiersma, and H. du Bois and co-workers studied this subject. F. W. Constant, and F. E. Lowance and F. W. Constant studied the effect of cold work on the magnetic susceptibility. According to H. F. Biggs, the magnetic susceptibility is diminished by absorbed hydrogen so that the saturated metal would probably be diamagnetic. J. Lamont, and S. H. Christie made observations on the magnetic induction. S. Meyer gave 0.227×10-6 for the atomic magnetism. R. C. Loyarte, C. Sadron, P. Weiss, P. Weiss and G. Foëx, T. Schmidt, and P. Collet and G. Foëx discussed the magnetic moment of platinum; B. Cabrera and A. Dupérier, the atomic magnetism Pt", -17.4×10-6 c.g.s. unit; E. C. Stoner, the spin paramagnetism; and R. Becker and R. Landshoff, D. M. Bose and H. G. Bhar, J. A. Christiansen and R. W. Asmussen, E. Vogt, W. Kopp, G. Foëx, and W. Klemm and co-workers, the magnetic properties of some platinum compounds. O. Goche studied the effect of a magnetic field on cathodic evaporation. A magnetic field at right angles to the current, flowing between platinum electrodes in an aq. soln. of an electrolyte, alters the current. F. H. Loring studied the subject. J. Dorfman and R. Jaanus studied the rôle of conductivity electrons in ferromagnetism.

REFERENCES.

N. d'Agostino, Atti Accad. Lincei, (5), 17. i, 538, 1908; A. Arndtsen, Pogg. Ann., 104. 13, 1858; Ann. Chim. Phys., (3), 54. 40, 1858; M. Ascoli, Atti. Accad. Lincei, (5), 4. 425, 1887; L. C. van Atta, Rev. Scient. Instr., 1. 687, 1930; K. Bädeker, Ueber die elektrische Leitfähigkeit und dis thermoelectrische Kraft einiger Schwermetallverbindungen, Leipzig, 1906; G. Bainter, Zeit. Physik, 73. 691, 1932; K. Bamberger, Widerstandmessungen im Magnetfeld, Berlin, 1901; H. M. Barlow, Phil. Mag., (7), 8. 289, 1929; (7), 9. 1041, 1930; R. S. Bartlett, ib., (7), 5. 848, 1928; C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; (3), 40. 219, 1890; Bull. U.S. Geol. Sur., 92, 1892; B. Beckman, Arkin Mal. Astron. Fys., 7. 42, 1912; Ann. Physik, (4), 46. 481, 931, 1915; Phys. Zeit., 16. 50, 1915; E. Becquerel, Ann. Chim. Phys., (3), 17. 255, 1846; Compt. Rend., 22. 416, 1846; R. Benoit, ib., 76. 342, 1873; O. Berg, Ann. Physik, (4), 32. 516, 1910; S. Bidwell, Proc. Roy. Soc., 37. 25, 1884; R. Börnstein, Naturwiss. Vei. Heidelberg, 1880; G. Borelius, Zeit. Physik, 54. 806, 1929; E. Bose, Phys. Zeit., 7. 373, 1906; G. Braunsfurth, Ann. Physik, (5), 9. 385, 1931; Untersuchungen über die elektrische Leitfähigkeit dünner Metallschichten, Berlin, 1931; P. W. Bridgman, Proc. Nat. Acad., 3. 10, 1917; Proc. Amer. Acad., 52. 613, 1917; 57. 113, 1922; 59. 119, 1923; 60. 435, 1925; 67. 305, 1932; 70. 285, 1935; A. Broca and M. Turchini, Compt. Rend., 140. 1238, 1905; W. Broniewsky, Journ. Chim. Phys., 6. 57, 609, 1907; T. Burger, Phys. Zeit., 4. 775, 1906; Ber. deut. phys. Ges., 4. 478, 1906; H. L. Callendar, Phil. Mag., (5), 47. 191, 1899; Phil. Trans., 178. A, 186, 1887; L. Cailletet and E. Bouty, Compt. Rend., 140, 138, 1885; L. Cailletet and E. Colardeau, Journ. Phys., (2), 7. 289, 1888; P. Chappuis and J. A. Harker, Trav. Mém. Bur. Internat., 12. 1, 1901; H. le Chatelier, Compt. Rend., 111, 424, 1890; S. H. Christie, Phil. Trans., 128, 139, 1833; O. Chwolson, Bull. Acad. St. Petersburg, (3), 10. 379, 1877; R. Clausius

1930; F. P. Dulk, Kastner's Arch., 7. 35, 1824; F. Ehrenhaft and E. Wasser, Zeit. Physik, 59. 727, 1929; O. Ehrhardt, Wied. Ann., 24. 228, 1885; A. Emo, Atti Ist. Venezia, (6), 2. 1153, 1884; Z. A. Epstein, Zeit. Physik, 32. 621, 1925; A. Féry, Ann. Physique, (10), 19. 421, 1933; Journ. Phys. Rad., (6), 9. 38, 1928; (7), 4. 301, 1933; Compt. Rend., 187. 819, 1928; O. Feussner, Zeit. Physik, 21. 163, 1924; J. A. Fleming, Proc. Roy. Inst., 15. 239, 1896; Proc. Roy. Soc., 66. 50, 1900; J. Frenkel and N. Miroluboff, Zeit. Physik, 49. 885, 1928; J. M. Gaines, Abst. Theses Massachusetts Inst. Tech., 54, 1932; A. W. Gauger, Journ. Amer. Chem. Soc., 47, 2278, 2323, 1925; W. Geiss and J. A. M. van Liempt, Zeit. Physik, 41. 867, 1927; E. H. Griffiths, Phil. Trans., 184. A, 390, 1893; A. T. Grigorieff, Ann. Inst. Platine, 6. 178, 1928; Zeit. anorg. Chem., 178. 213, 1929; E. Grüneisen, Ann. Physik, (5), 16. 530, 1933; Ber. deut. phys. Ges., 16. 36, 1918; Zeit. Physik, 19. 382, 1918; E. Grüneisen and E. Goens, ib., 44. 615, 1927; L. Grunmach, Ann. Physik, (4), 22. 170, 1907; L. Grunmach and F. Weigert, Ber. deut. phys. Ges., 4. 359, 1906; Phys. Zeit., 7. 735, 1906; Ann. Physik, (4), 22. 170, 1906; W. Guertler, Zeit. anorg. Chem., 51. 427, 1906; L. Guillet and M. Balley, Compt. Rend., 176. 1800, 1923; W. J. de Haas and J. de Boer, Comm. Leiden Lab., 231c, 1934; Physica, Rena., 170. 1800, 1923; W. J. de Hass and J. de Boer, Comm. Leiden Lao., 251c, 1804; I ngowa, 1. 609, 1934; E. Hagen and H. Rubens, Sitzber. Akad. Berlin, 416, 1903; E. H. Hall, Phys. Rev., (2), 28. 392, 1926; W. S. Harris, Phil. Trans., 117. 18, 1927; Proc. Roy. Soc., 2. 298, 1833; C. Hausemann, Wied. Ann., 2. 550, 1877; A. Heintz, Berg. Hütt. Ztg., 46. 151, 1887; F. Henning, Naturwiss., 16. 617, 1928; Zeit. Instrkd., 34. 116, 1914; Ann. Physik, (4), 40. 635, 1913; F. Henning and W. Heuse, Zeit. Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 23. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, Physik, 28. 95, 1924; F. Henning and J. Otto, Physik, Ph 535, 1913; F. Henning and W. Heuse, Zeit. Physik, 23, 1924; F. Henning and G. Occo, Phys. Zeit., 37, 601, 1936; K. Hermann, Ann. Physik, (4), 77, 503, 1925; E. W. Hobbs, Ph.l. Mag., (6), 32, 141, 1916; G. Hoffmann, Zeit. Physik, 4, 363, 1921; L. Holborn, Ann. Physik, (4), 6, 242, 1901; (4), 59, 146, 1919; Zeit. Physik, 8, 58, 1922; L. Holborn and A. L. Day, Sitzber. Akad. Berlin, 691, 1899; L. Holborn and W. Wien, Wied. Ann., 56, 385, 1895; R. Holm and W. Meissner, Zeit. tech. Phys., 12, 663, 1931; R. Holm and R. Störmer, Wiss. Veröffent. Siemens-Konzern, 9, 312, 1930; K. Honda, T. Nishina and T. Hirone, Cali. Physich, 78, 80, 1932; Sziemens-Konzern, 9, 312, 1930; K. Honda, T. Nishina and T. Hirone, Physich, 78, 80, 1932; Sziemen Rev. Tokalou Hain. 94, 851, 1932; T. S. Humpidge, Proc. R. Stormer, W. 182. Veroffett. Stemens-Ronzern, 9. 312, 1930; R. Honda, T. Nishina and T. Hirone, Zeit. Physik, 76. 80, 1932; Science Rep. Tohoku Univ., 21. 851, 1932; T. S. Humpidge, Proc. Roy. Soc., 39. 16, 1885; W. Jäger and H. Diesselhorst, Abh. Phys. Tech. Reichsanst., 3. 259, 1900; Sitzber. Akad. Berlin, 719, 1899; Ber., 38. 719, 1899; W. Jäger and H. von Steinwehr, Zeit. Instrkd., 26. 240, 1906; Ann. Physik, (4), 21. 23, 1906; Zeit. phys. Chem., 54. 428, 1906; W. H. Johnson, Chem. News, 42. 70, 1880; 44. 178, 1881; Proc. Manchester Lit. Phil. Soc., 19. 147, 1880; 20. 125, 1881; F. Joliot, Compt. Rend., 186. 1526, 1928; 190. 627, 1930; Monthly Bull. Refrigeration, 11. 258, 1930; G. W. A. Kahlbaum and E. Sturm, Zeit. anorg. Chem., 46. 290, 1905; H. Kahler, Phys. Rev., (2), 18. 210, 1921; S. Kambara and M. Matsui, Journ. Japan. Soc. Chem. Ind., 35. 165, 1932; P. Kapitza, Proc. Roy. Soc., 123. A, 292, 342, 1929; W. H. Keesom and A. Bijl, Comm. Phys. Lab. Leiden, 242, B, 1936; Physica, 3. 418, 1936; W. H. Keesom and J. N. van Ende, Proc. Akad. Amsterdam, 32. 1171, 1929; H. Kleine, Zeit. W. H. Reesom and J. N. van Ende, Proc. Akad. Amsterdam, 32, 1171, 1929; H. Kleine, Zeit. Physik, 33, 391, 1925; J. Königsberger and O. Reichenheim, Phys. Zeit., 7, 570, 1906; W. Kohlrausch, Wied. Ann., 33, 51, 1888; L. R. Koller, Phys. Rev., (2), 17, 231, 1921; (2), 18, 221, 1921; J. Kramer, Ann. Physik, (5), 19, 37, 1934; J. Kramer and H. Zahn, Naturwiss., 43, 792, 1932; A. Lafay, Ann. Chim. Phys., (8), 19, 290, 1910; Compt. Rend., 149, 506, 1909; I. Langmuir, Journ. Amer. Chem. Soc., 28, 1374, 1906; E. Lenz, Pogg. Ann., 34, 432, 1835; 45, 119, 1838; Mém. Acad. St. Petersburg, 2, 631, 1833; J. O. Linde, Ann. Physik, (5), 10, 52, 1931; E. Lissell, Om Tryckets Infigurate på det Elektriska Ledningsmotståndel hos Metaller, Narad (1902), Contract Vistalian (1903), Contra 1931; E. Lissell, Om Trycket's Inflytande på det Elektriska Ledningsmotståndel hos Metaller, Upsala, 1902; Oefvers. Vet. Akad. Förh., 697, 1898; A. C. Longden, Phys. Rev., (1), 11. 40, 1900; S. Lussana, Nuovo Cimento, (4), 10. 77, 1899; (5), 5. 307, 1903; J. T. MacGregor-Morris and R. P. Hunt, Phil. Mag., (7), 14. 372, 1932; Y. Maslakovetz, Journ. Tech. Phys. U.S.S.R., 1. 401, 1931; A. Matthiessen, Pogg. Ann., 103. 429, 1858; Ann. Chim. Phys., (3), 54. 255, 1858; A. Matthiessen and C. Vogt, Pogg. Ann., 122. 19, 1864; Phil. Mag., (4), 28. 467, 1864; Phil. Trans., 154. 167, 1864; W. Meissner, Zeit. Physik, 38. 647, 1926; Ann. Physik, (4), 47. 1038, 1915; Wiss. Abhand. Phys. Tech. Reichsanst., 10. 237, 1926; W. Meissner and B. Voigt, Ann. Physik, (5), 7. 892, 1930; A. Michels and P. Geels, Proc. Akad. Amsterdam, 29, 1106, 1926; 1915; W48s. Abhana. Phys. Tech. Ketchsankt., 10. 251, 1926; W. Meissner and B. voigv, Ann. Physik, (5), 7. 892, 1930; A. Michels and P. Geels, Proc. Akad. Amsterdam, 29. 1106, 1926; J. Mooser, Wied. Ann., 42. 659, 1891; H. Moser, Ann. Physik, (5), 6. 852, 1930; N. F. Mott, Proc. Roy. Soc., 146. A, 465, 1934; 153. A, 699, 1936; J. Müller, Program. Gymn. Wesel, 1, 1857; Pogg. Ann., 103. 176, 1858; H. Murmann, Zeit. Physik, 89. 426, 1934; W. Nernst, Sitzber. Akad. Berlin, 306, 1911; Ann. Physik, (4), 36. 395, 1911; G. Niccolai, Atti Accad. Lincei, (5), 16. i, 909, 1907; E. L. Nichols, Phil. Mag., (5), 18. 38, 1882; Ber., 15. 524, 1882; Proc. Amer. Assoc. 24, 1881; J. W. Nicholson, Phil. Mag., (5), 492, 245, 1911; A. von Obermayer Lincel, (3), 16. 1, 909, 1907; E. L. Nicholson, Phil. Mag., (5), 18. 38, 1882; Ber., 18. 524, 1882; Proc. Amer. Assoc., 24, 1881; J. W. Nicholson, Phil. Mag., (6), 22. 245, 1911; A. von Obermayer, Sitzber. Akad. Wien, 60. 245, 1869; K. Olszewsky, Phil. Mag., (5), 40. 207, 1895; H. K. Onnes, Versl. Akad. Amsterdam, 19. 1202, 1911; H. K. Onnes and J. Clay, Comm. Phys. Lab. Leiden, 95, c, 1906; J. Patterson, Proc. Cambridge Phil. Soc., 9. 118, 1901; Phil. Mag., (6), 4. 662, 1902; E. Perucca, Ann. Physik, (5), 4. 252, 1930; Atti Accad. Torino, 69. 166, 1934; M. von Pirani, Verh. deul. phys. Ges., 12. 301, 1910; B. Pogany, Ann. Physik, (4), 49. 538, 1916; R. Pohl, Phys. 7617, 7650, 1006. Phys. Zeit., 7. 500, 1906; C. S. M. Pouillet, Eléments de physique expérimentale, Paris, 1. 754, 1829; Pogg. Ann., 15. 92, 1829; H. Reddemann, Ann. Physik, (5), 20. 502, 1934; F. W. Reynolds, Phys. Rev., (2), 23. 302, 1924; (2), 24. 523, 1924; A. Riede, Zeit. Physik, 48. 302, 1928; Ann. Physik, (4), 45. 881, 1914; P. Riess, Die Lehre von der Reibungselektrizität, Berlin, 1. 134, 1867; H. Rolnick, Phys. Rev., (2), 36. 506, 1930; A. Schleiermacher, Wied. Ann., 26. 287, 1885; K. Schtschodro, Bull. Acad. St. Petersburg, 18. 727, 1919; A. Schulze, Zeit. Metallkunde, 15. 38, 155, 1923; C. W. von Siemens, Proc. Roy. Soc., 19. 443, 1871; Phil. Mag.,

(4), 42. 150, 1871; Wied. Ann., 2. 521, 1877; E. W. von Siemens, Sitzber. Akad. Berlin, 299, 1877; Pojj. Ann., 110. 18, 1860; F. Simon, Zeit. phys. Chem., 109. 136, 1924; F. Skaupy and O. Kantorowicz, Metallwirtschaft, 10. 45, 1931; J. C. Southard and R. T. Milner, Journ. Amer. Chem. Soc., 55, 4384, 1933; W. H. Stannard, Journ. Amer. Opt. Soc., 15, 64, 1927; A. Stein, Phys. Zeit., 13. 287, 1912; J. D. Stranathan, Phys. Rev., (2), 26, 500, 1926; F. Streintz, Sitzber. Akad. Wien, 109. 229, 1900; Monatsh., 21, 461, 1900; Ann. Physik., (4), 3, 1, 1900; (4), 8, 847, 1902; Zeit. Elektrochem., 11, 273, 1905; V. Strouhal and C. Barus, Abh. Böhm. Ges., (6), 12, 15, 1884; R. Suhrmann, Zeit. Physik., (2), 19, 1, 1923; G. Szivessy, Ann. Physik., (4), 23, 963, 1907; G. Tammann, Zeit. Metallkunde, 24, 220, 1932; G. Tammann and K. L. Dreyer, Ann. Physik., (5), 16, 111, 1933; H. Tomlinson, Proc. Roy. Soc., 26, 401, 1877; 33, 276, 1882; 39, 503, 1885; W. Tuijn, Proc. Acad. Amsterdam, 32, 115, 1929; Comm. Phys. Lab. Leiden, 196, 1929; W. Tuijn and H. K. Onnes, Arch. Neerl., (3), 10, 5, 1927; F. Uppenborn, Centrh. Elektrotech., 7, 564, 1886; S. Virtel, Zeit. Physik, 59, 771, 1930; E. Waetzmann, M. Gnielinsky and H. Heisig. ib., 58, 449, 1929; C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 6, 149, 1909; A. T. Waterman, Phys. Rev., (2), 22, 259, 1923; Phil. Mag., (7), 6, 865, 1928; F. Weber, Zürich. Vierteljahr., 22, 335, 1878; F. Weigert, Phys. Zeit., 7, 735, 1906; Ber. deut. phys. Geo., 4, 359, 1906; Ann. Physik, (4), 22, 170, 1906; K. Weil, Zeit. Physik, 64, 237, 1930; L. Weiller, Nostrand's Eng. Mag., 33, 288, 1885; Rev. Ind., 242, 1884; Dingler's Journ., 253, 134, 1884; Centralzt. Opt. Mech., 6, 28, 1885; G. Wiedemann and R. Franz, Pogg. Ann., 89, 498, 1853; E. D. Williamson, Journ. Franklin Inst., 193, 491, 1922; H. A. Wilson, Phil. Trans., 202, A, 265, 1903; A. W. Witkowsky, Phil. Mag., (5), 41, 314, 1896.

Phil. Trans., 202. A, 265, 1903; A. W. Witkowsky, Phil. Mag., (5), 41. 314, 1896.

² M. Andauer, Zeit. phys. Chem., 188. 357, 1928; 145. 220, 1929; T. Argyropulos, Compt. Rend., 11. 525, 1890; Wied. Ann., 41. 503, 1890; E. Becquerel, Arch. l'Elect., 8, 181, 1843; Ann. Chim. Phys., (3), 9, 21, 1843; A. Berliner, Wied. Ann., 33, 289, 1888; G. D. Botto, Arch. l'Elect., 5, 353, 1845; Mem. Accad. Torino, 8, 275, 1846; E. Branly, Compt. Rend., 165, 524, 1917; J. G. Children, Phil. Trans., 105, 363, 1815; Gilbert's Ann., 52, 353, 1816; H. Davy, ib., 71, 259, 1822; Phil. Trans., 111, 425, 1821; Ann. Phil., (2), 3, 1, 1822; E. Edlund, Pogg. Ann., 101, 86, 1857; F. Exner, Wied. Ann., 2, 100, 1877; Pogg. Ann. Erzbd., 7, 59, 1876; Sitzber. Akad. Wien, 75, 373, 1877; A. Farkas and H. H. Rowley, Zeit. phys. Chem., 22, B, 335, 1933; R. M. Ferguson, Proc. Roy. Soc., 85, A, 541, 1911; W. R. Grove, Phil. Mag., (3), 24, 268, 346, 422, 1844; (3), 27, 445, 1845; (3), 35, 114, 1849; Phil. Trans., 133, 91, 1843; G. Hoffmann, ib., 4, 363, 1921; R. Holm, Zeit. Physik, 8, 151, 1927; R. Holm and B. Störmer, Wiss. Veröffent. Siemens-Konzern, 9, 323, 1930; A. Imhof, Phys. Zeit., 28, 262, 1922; B. Kamiensky, Zeit. phys. Chem., 145, 48, 1929; E. Lenz, Bull. Acad. St. Petersburg, (2), 2, 161, 1844; Pogg. Ann., 61, 18, 1844; J. Müller, Fortschr. Phys., 384, 1849; Ber. Nat. Ges. Greiburg, 6, 97, 1873; R. Nahrwold, Wied. Ann., 31, 467, 1887; G. Nordström, Tek. Tid. Bergsvetenskap, 61, 55, 68, 77, 1931; F. Polednik, Zeit. Physik, 66, 619, 1930; W. H. Preece, Proc. Roy. Soc., 30, 408, 1880; 36, 464, 1884; 43, 280, 1888; 44, 109, 1888; G. von Quintus-Icilius, Pogg. Ann., 101, 86, 1857; O. W. Richardson and F. S. Robertson, Phil. Mag., (6), 43, 162, 1922; P. Riess, Pogg. Ann., 65, 481, 1845; A. de la Rive, Traité d'électricité théorique et appliquée, Paris, 2, 186, 1856; H. Rohmann, Zeit. Physik, 36, 803, 1926; O. Scarpa, Chim. Ind., 16, 488, 1926; F. Skaupy and O. Kantorowicz, Zeit. Electrochem., 37, 482, 1931; H. Streintz, Phys., Zeit., 150, 368

M. Andauer, Zeit. phys. Chem., 138. 357, 1928; S. Arrhenius, Wied. Ann., 33. 638, 1888;
W. E. Ayrton and J. Perry, Phil. Trans., 171. 1, 1880; Proc. Roy. Soc., 27. 219, 1878;
E. Becquerel, Compt. Rend., 22. 677, 1846; J. J. Berzelius, Gilbert's Ann., 42. 45, 1812; Lehrbuch der Chemie, Dresden, 1. 118, 1843; A. Coehn and A. Curs, Zeit. Physik, 29. 186, 1924; A. Coehn and A. Lotz, ib., 5. 242, 1921; C. Christiansen, Wied. Ann., 56. 646, 1891; 57. 688, 1896;
E. Dubois, Compt. Rend., 184. 1424, 1927; 185. 110, 1927; E. Edlund, Pogg. Ann., 140. 435. 1870; 143. 538, 1871; F. Exner, Wied. Ann., 9. 603, 1880; F. Exner and J. Tuma, Sitzber. Akad. Wien, 97. 917, 1888; J. M. Gaugain, Compt. Rend., 59. 493, 1864; H. Gautier, Bull. Soc., 20. 218, 1872; Phil. Mag., (3), 44. 73, 1872; Chem. News, 26. 109, 1872; Journ. Chem. Soc., 20. 218, 1872; Phil. Mag., (3), 44. 73, 1872; Chem. News, 26. 109, 1872; Journ. Chem. Soc., 35. 567, 1879; B. J. Goosens, Wied. Ann., 16. 551, 1882; H. Greinacher, Ann. Physik, (4), 16. 708, 1905; A. Hagenbach, ib., (4), 8. 568, 1902; W. Hallwachs, Wied. Ann., 29. 10, 1886; W. G. Hankel, Abh. Sächs. Ges., 6. 1, 1861; 7. 385, 1865; Pogg. Ann., 115. 57, 1862; 126. 286, 1865; H. Hörig, Ann. Physik, (4), 28. 371, 1909; M. H. Jacobi, Pogg. Ann., 50. 510, 1840; 53. 336, 1841; Bull. Acad. St. Petereburg, (1), 6. 368, 1840; (1), 8. 262, 1841; Phil. Mag., (3), 17. 241, 1840; Compt. Rend., 11. 1058, 1840; J. H. Jones, Phil. Mag., (6), 50. 1160, 1925; W. M. Jones, ib., (6), 29. 261, 1915; B. Kamiensky, Zeit. phys. Chem., 146. 48, 1929; R. D. Kleeman and C. R. Pitts, Journ. Phys. Chem., 29. 508, 1925; O. Knoblauch, Zeit. phys. Chem., 39. 232, 1902; R. Kohlrausch, Pogg. Ann., 88. 472, 1853; F. Krüger and G. Schulz, Ann. Physik, (5), 26. 308, 1936; A. Mactarlane, Proc. Edin. Roy. Soc., 12. 412, 1884; G. Mönch, Erlanger Ber., 65. 202, 1934; E. Obach, Pogg. Ann., 88. 472, 1853; F. Krüger and G. Schulz, Ann. Physik, (5), 26. 308, 1936; A. Mactarlane, Proc. Edin. Roy. Soc., 12. 412,

Lincei, (5), 1. 860, 1889; J. W. Ritter, Nicholson's Journ., 7. 288, 1804; Gilbert's Ann., 16. 293, 1804; 19. 1, 1805; T. J. Seebeck, Abh. Akad. Berlin, 295, 1823; Schweiger's Journ., 87. 21, 1923; J. B. Seth, B. Gulati and S. Singh, Phil. Mag., (7), 12. 409, 1931; P. E. Shaw and C. S. Jex, Proc. Roy. Soc., 118. A, 97, 1928; P. E. Shaw and E. W. L. Leavey, ib., 138. A, 502, 1932; T. Terada, Mem. Coll. Kyoto, 19. A, 57, 1936; R. Vieweg, Ann. Physik, (4), 74. 146, 1924; R. von D. Wegner, Zeit. Elektrochem., 34, 42, 1928.

A. Abegg, F. Auerbach and R. Luther, Messungen elektromotorischer Kräfte galvanischer Ketten mit wässrigen Elektrolyten, Halle a. S., 2, 1911; G. Athanasiu, Compt. Rend., 178. 386, Retten mit wassrigen Liektrotyten, Halle a. S., 2, 1911; G. Athahasti, Compl. Rend., 178. 380, 561, 1924; R. Audubert, ib., 177. 818, 1923; 189. 800, 1265, 1929; Journ. Phys. Rad., (6), 6, 313, 1925; W. E. Ayrton and J. Perry, Phil. Trans., 171. 15, 1880; Proc. Roy. Soc., 27. 196. 1878; W. D. Bancroft, Zeit. phys. Chem., 12. 289, 1893; P. Bechtereff, Bull. Polyt. Inst. St. Petersburg, 15. 443, 1911; A. C. Becquerel, Ann. Chim. Phys., (2), 28. 244, 1923; (2), 24. 342, 1823; Mém. L'Inst., 28. 301, 1853; Compt. Rend., 32. 657, 1851; Traité de l'électricité et du magnetisme, Paris, 2. 91, 1834; E. Becquerel, Compt. Rend., 70. 1313, 1870; Ann. Chim. Phys., (3), 44. 401, 1855; K. Bennewitz and J. Schulz, Zeit. phys. Chem., 124. 115, 1926; F. Bergius, (3), 44. 401, 1855; K. Beiniewitz and J. Schulz, Zett. phys. Chem., 124, 110, 1820; F. Beigus, ib., 72. 357, 1910; M. Berthelot, Compt. Rend., 134, 793, 865, 873, 933, 1009, 1461, 1902; 135, 6, 129, 485, 1902; 136, 413, 481, 1109, 1357, 1497, 1601, 1903; 137, 285, 291, 421, 965, 1903; Ann. Chim. Phys., (7), 27, 145, 1902; (7), 30, 433, 1903; L. Bleekrode, Pogg. Ann., 142, 611, 1871; E. du Bois-Reymond, Sitzber. Akad. Berlin, 297, 1854; F. P. Bowden, Proc. Roy. Soc., 125. A, 446, 1929; E. Branly, Ann. Ecole Norm., (2), 3. 225, 1873; A. Bringhenti, Gazz. Chim. Ital., 36. i, 200, 1906; D. J. Brown and J. C. Zimmer, Journ. Amer. Chem. Soc., 52. 1, 1930;
B. Bruns and A. Frumkin, Zeit. phys. Chem., 147. 125, 1930;
H. Buff, Liebig's Ann., 41. 140, 1842; 42. 5, 1842; 45. 137, 1844; E. F. Burton, Phil. Mag., (6), 11. 446, 1906; C. Cappa, Atti Accad. Torino, 13. 867, 1878; J. Chloupek, Coll. Czech. Chem. Comm., 2. 129, 1930; S. B. Christy, Zeit. Elèktrochem., 8. 105, 1902; F. P. Dulk and L. Moser, Dove's Repert., 2. 115, 1838; A. von Eccher, Nuovo Cimento, (3), 5. 5, 1879; O. Erbacher, Zeit. Elektrochem., 38. 532, 1932; F. Exner and J. Tuma, Sitzber. Akad. Wien, 97. 927, 1888; M. Faraday, Phil. Trans., 130. 1932; F. Exter and J. Tuma, Stizier. Akda. Wien, 91. 921, 1888; M. Faraday, Phil. Trans., 180. 61, 93, 1840; C. E. Fawsitt, Proc. Roy. Soc. Edin., 26. 5, 1906; F. Fischer, Zeit. phys. Chem., 52. 88, 1905; G. S. Forbes and E. P. Bartlett, Journ. Amer. Chem. Soc., 35. 1527, 1913; C. Fredenhagen, Zeit. anorg. Chem., 29. 407, 1902; S. J. French and L. Kahlenberg, Metal Ind., 33. 445, 1928; Trans. Amer. Electrochem. Soc., 54. 163, 1928; C. Fromme, Wied. Ann., 19. 300, 1883; A. Frumkin, S. Levina and O. Zarubina, Zeit. phys. Chem., 155. 41, 1931; J. M. Gaugain, Compt. Rend., 74. 610, 1332, 1872; E. Gerland, Sitzber. Niederth. Ges. Bonn, 19, 1966. 1868; Pogg. Ann., 133. 513, 1868; F. Giordani and B. Focaccia, Gazz. Chim. Ital., 59. 914, 1929; S. Glasstone and A. Hickling, Journ. Chem. Soc., 10, 1934; A. G. Grigorieff, Ann. Inst. Platine, 6. 178, 1928; G. Grube and L. Baumeister, Zeit. Elektrochem., 30. 322, 1924; A. F. Guerasinoff, Journ. Russ. Phys. Chem. Soc., **58**. 197, 1926; L. W. Haase, Zeit. Elektrochem., **36**. 456, 1930; L. P. Hammett, Journ. Amer. Chem. Soc., **46**. 7, 1924; W. G. Hankel, Abh. Sächs. Ges., **7**. 585, 1865; Pogg. Ann., **126**. 286, 1865; J. Harty, Journ. Phys. Chem., **39**. 355, 1935; N. Harvey, Journ. Phys. (hem., 33, 1456, 1929; F. G. Henrici, Pogg. Ann., 47, 431, 1839; 121, 589, 1864; J. Hopkinson, Proc. Roy. Soc., 24, 183, 1876; G. Holst, Svenska Kem. Tids., 43, 2, 1931; J. Hopkinson, Proc. Roy. Soc., 24. 183, 1876; G. Holst, Svenska Kem. Tids., 43. 2, 1931;
K. Horovitz, Sitzber. Akad. Wien, 132. 367, 1924;
R. Hunt, Athenwum, 597, 1849;
H. Jablozynska-Jedrzejewska, Rocz. Chem., 16. 306, 1936;
M. H. Jacobi, Pogg. Ann., 50. 510, 1840;
54. 347, 1841;
69. 207, 1850;
J. P. Joule, Phil. Mag., (3), 24. 113, 1844;
L. Kahlenberg and J. V. Steinle, Trans. Amer. Electrochem. Soc., 44. 501, 1923;
B. Kamiensky, Zeit. phys. Chem., 158. 441, 1932;
V. Karpen, Compt. Rend., 187. 418, 1928;
H. D. Kirschman,
B. Wingfield and H. J. Lucas, Journ. Amer. Chem. Soc., 52. 23, 1920;
W. Kleeman and
R. H. Bennett, Phys. Rev., (2), 21. 479, 1923;
R. D. Kleeman and W. Fredrickson, ib., (2),
22. 134, 1923;
R. D. Kleeman and R. D. Pitts, ib., (2), 23. 556, 1923;
S. Koidzumi, Mem.
Coll. Kyoto, 17. 329, 1934;
I. M. Kolthoff and T. Kameda, Journ. Amer. Chem. Soc., 51. 2888,
1929. M. Krouchkoll. Journ. Phys. (2), 2. 500. 1883;
Comut. Rend., 97, 161, 1883;
F. W. Küster. 1929; M. Krouchkoll, Journ. Phys., (2), 2. 500, 1883; Compt. Rend., 97. 161, 1883; F. W. Küster, Zeit. anorg. Chem., 44. 439, 1905; F. W. Küster and W. Lommel, ib., 44. 445, 1905; Zeit. Elektrochem., 8. 496, 1902; I. Lifschitz, Chem. Weekbl., 24. 154, 1927; J. Liger, Bull. Soc. Chim., (5), 1. 1679, 1935; W. Loewenstein, in L. Gmelin, Handbuch der anorganischen Chemie, Heidelberg, 5. iii, 102-129, 198-221, 1915; N. E. Loomis and S. F. Acree, Amer. Chem. Journ., 46. 585, 1911; R. Luther, Zeit. Elektrochem., 8. 646, 1902; Zeit. phys. Chem., 52. 626, 1905; H. K. McClain and H. V. Tartar, Journ. Phys. Chem., 38. 161, 1933; S. Makishima, Zeit. Elektrochem., 41. 697, 1935; C. Matteucci, Compt. Rend., 32. 145, 1851; V. F. Miller and H. Terrey, Journ. Chem. Soc., 605, 1927; J. L. R. Morgan and O. M. Lammert, Journ. Amer. Chem. Soc., 53. 2154, 1931; G. E. Muchin and M. I. Silberfarb, Ukraine Chem. Journ., 5. 323, 1930; E. Müller, Zeit. anorg. Chem., 26. 56, 1901; J. Müller, Untersuchungen über Flussigkeitsketten, Leipzig, 1869; Pogg. Ann., 140. 114, 380, 1870; W. J. Müller and J. Königsberger, Ber. deut. phys. Ges., 4. 545, 1906; Phys. Zeit., 7. 796, 1907; W. J. Müller and K. Konopicky, Zeit. Elektrochem., 34. 840, 1928; R. G. van Name and F. Fenwick, Journ. Amer. Chem. Soc., 47. 9, 19, 1925; B. Neumann, Zeit. phys. Chem., 14. 213, 1894; L. V. Nikitin, Compt. Rend. Acad. U.R.S.S., 2. 67, 1936; J. M. Ort and M. H. Roepke, Journ. Phys. Chem., 38. 1061, 1934; W. Ostwald, Zeit. phys. Chem., 35. 339, 1900; T. Ott, Elektrolytische Reduktion der Niobsäure, München, 51, 1911; S. Pagliani, Atti Accad. Torino, 21. 518, 1886; W. M. Pierce, Phys. Rev., (2), 31. 470, 1928; F. Plzak, Zeit. anorg. Chem., 32. 385, 1902; J. C. Poggendorff, Pogg. Ann., 54. 185, 1841; G. Quincke, ib., 107. 9, 1859; F. M. Raoult, Ann. Chim. Phys., (4), 2. 371, 1864; F. Richarz,

Zeit. phys. Chem., 4. 18, 1889; A. de la Rive, Pogg. Ann., 15. 102, 1829; Ann. Chim. Phys., (2), 39. 297, 1828; P. Sambussy, Compt. Rend., 194. 1724, 1932; C. F. Schönbein, Ber. Verh. Naturf. Ges. Basel, 3. 58, 1838; Bull. Univ., 15. 168, 1838; K. Schreber, Wied. Ann., 36. 662, 1889; I. I. Schukoff, Journ. Gen. Chem. Russ., 3. 959, 1933; I. I. Schukoff, I. N. Bushmakin and C. Stora, Compt. Rend., 200. 1034, 1935; S. Sekine, Zeit. Elektrochem., 34. 250, 1928; A. Slygin and A. Frumkin, Acta Physicochimica Russ., 3. 791, 1936; E. R. Smith, Journ. Research Bur. Standards, 5. 735, 1930; A. Smits, Rec. Trav. Chim. Pays. Bas., 15. 135, 1896; Ber., 29. R. 770, 1896; C. Stora, Journ. Chim. Phys., 29. 168, 1932; V. I. Strukova, Journ. Russ. Phys. Chem. Soc., 61. 169, 1929; T. Swensson, Arkiv Kemi Min. Geol., 7. 19, 1917; G. Tammann and K. Bochow, Zeit. anorg. Chem., 169, 33, 1928; H. V. Tartar and H. K. McClain, Journ. Amer. Chem. Soc., 53, 3201, 1931; M. Thalinger and M. Volmer, Zeit. phys. Chem., 150, 401, 1930; S. Veil, Compt. Rend., 201, 551, 885, 1935; 202. 121, 1936; F. Vles and A. Ugo, Arch. Phys. Biol., 7, 119, 1930; A. Walcker, Pogg. Ann., 4, 321, 1825; E. Warburg, Wied. Ann., 38, 342, 1899; E. G. Weischede, Elektrolytische Bestimmung und Trennung der Platinmetalle Platin, Iridium, und Osmium, Darmstadt, 1927; G. Wiedemann. Die Lehre von der Elektricität, Braunschweig, 1, 192, 1893; H. Wild, Pogg. Ann., 125, 119, 1865; Mitt. Naturf. Ges. Bern, 200, 1864; N. T. M. Wilsmore, Zeit. phys. Chem., 35, 291, 1900; C. Winther, ib., 145, 81, 1929; A. H. Wright and F. H. Gibson, Journ. Ind. Eng. Chem., 19, 749, 1927; F. Zantedeschi, Ann., Fixica, 21, 1850.

⁶ R. Abegg and J. F. Spencer, Zeit. anorg. Chem., 44. 399, 1905; E. Becquerel, Compt. Rend., 22. 677, 1846; W. Beetz, Pogg. Ann., 77. 493, 1849; 90. 42, 1853; Ber. Akad. München, 8. 140, 1878; Wied. Ann., 5. 1, 1878; K. Bennewitz and W. Schieferdecker, Zeit. phys. Chem., 157. 32, 1931; E. Bose, ib., 34. 738, 1900; 38. 1, 1901; F. V. Bossche, Bull. Acad. Belg., 864, 1903; A. Brand, Ann. Physik, (4), 9. 468, 1902; V. Czepinsky, Zeit. anorg. Chem., 30. 1, 1902; J. G. Davidson, Phys. Zeit., 7. 816, 1906; E. Dubois, Compt. Rend., 186. 1832, 1928; F. Förster, Zeit. phys. Chem., 69, 336, 1909; C. Fredenhagen, Zeit. anorg. Chem., 29. 456, 1902; S. J. French and L. Kahlenberg, Trans. Amer. Electrochem. Soc., 54. 163, 1928; Metal Ind., 38. 443, 543, 569, 1928; L. Gräfenberg, Zeit. Elektrochem., 8, 297, 1902; W. R. Grove, Pogg. Ann., 58, 202, 1842; Phil. Trans., 135, 359, 1845; Phil. Mag., (3), 14. 129, 1839; (3), 21. 417, 1842; G. Grube, Zeit. Elektrochem., 35, 703, 1929; G. Grube and H. Reinharat, ib., 37, 307, 1931; F. Haber, Zeit. anorg. Chem., 51, 357, 1906; W. G. Hankel, Abh. Sichs. Ges., 20, 559, 1883; Ber. Sächs. Ges., 35, 123, 1883; Wied. Ann., 22, 387, 1884; R. von Hasslinger, Monatsh., 22, 907, 1901; J. J. Hermans, Zeit. phys. Chem., 176, 55, 1936; R. Höber, Pfüger's Arch., 82, 631, 1900; V. Hoeper, Zeit. anorg. Chem., 20, 443, 1899; S. Jahn, ib., 60, 292, 1908; J. A. Kendall, Proc. Roy. Soc., 36, 208, 1884; Chem. News, 49, 49, 1883; R. Köhler, Zeit. phys. Chem., 135, 369, 1928; G. N. Lewis, ib., 55, 465, 1906; R. Lorenz and A. Mohn, ib., 60, 430, 1907; R. Luther, Zeit. Elektrochem., 8, 646, 1902; R. Luther and J. K. H. Inglis, Zeit. phys. Chem., 43, 203, 1903; G. Markovsky, Amer. Journ. Science, (3), 43, 531, 1892; Wied. Ann., 44, 472, 1891; L. Mond and C. Langer, Elektrochech. Zeit., 10, 454, 1889; Proc. Roy. Soc., 46, 296, 1890; G. Moreau, Compt. Rend., 135, 898, 1902; 137, 922, 1070, 1913; H. F. Morley, Phil. Mag., (5), 5, 272, 1878; Proc. Phys. Soc., 2, 212, 1879; O. Mumm, Zeit. phys. Chem., 59, 459, 190

⁶ A. R. Arrot, Phil. Mag., (3), 22. 427, 1843; Mem. Chem. Soc., 1. 142, 1843; A. Avogadro and I. Michelotti, Ann. Chim. Phys., (2), 22. 364, 1823; A. C. Becquerel, Compt. Rend., 77. 1130, 1873; 81. 803, 849, 1875; 82. 1007, 1876; E. Becquerel, Ann. Chim. Phys., (3), 48. 200, 1856; H. Davy, Phil. Trans., 116. 408, 1826; W. Ende, Phys. Zeit., 30. 477, 1929; M. Faraday, Phil. Trans., 124. 425, 1834; 130. 61, 93, 1840; G. F. Fechner, Pogg. Ann., 42. 508, 1837; 47. 7, 1839; Schweigger's Journ., 53. 129, 1828; J. M. Gaugain, Compt. Rend., 69, 1300, 1869; 70. 1851; 1870; G. Gore, Proc. Birmingham Phil. Soc., 4. 130, 239, 1885; Proc. Roy. Soc., 30. 38, 1879; M. H. Jacobi, Pogg. Ann., 69. 211, 1846; Bull. Acad. St. Petersburg, (2), 5. 86, 97, 209, 1847; L. Kahlenberg, Journ. Phys. Chem., 3. 390, 1899; E. Lenz and A. Saweljeff, Bull. Acad. St. Petersburg, (1), 5. 1, 1844; Pogg. Ann., 67. 497, 1864; W. Loewenstein, in L. Gmelin, Handbuch der anorganischen Chemie, Heidelberg, 5. iii, 114, 1915; S. Marianini, Brugnatclit's Giorn., 8. 10, 1825; Il Poligrafo, 3. 79, 1830; Schweigger's Journ., 49. 52, 1827; Ann. Chim. Phys., (2), 33. 113, 1826; (2), 38. 5, 1828; (2), 45. 117, 1830; Saggio di esperienze electromotrice, Venedig, 1825; Quart. Journ. Science, 22. 402, 1828; B. Neumann, Zeit. phys. Chem., 14. 223, 1894; J. C. Poggendorff, Isis, 706, 1821; Pogg. Ann., 50. 263, 1840; 66. 597, 1845; 73. 619, 1848; J. C. Poggendorff, Isis, 706, 1821; Pogg. Ann., 50. 263, 1840; 66. 597, 1845; 73. 619, 1848; A. de la Rive, Ann. Chim. Phys., (2), 61. 40, 1836; O. Scarpa, Journ. Phys. Radium, (7), 4. 725, 1933; C. F. Schönbein, Pogg. Ann., 43. 96, 1838; W. Skey, Trans. New Zealand Inst., 3. 232, 1870; 4. 313, 1871; Chem. News, 23. 221, 255, 1871; 76. 109, 1897; F. Streintz, Sitzber. Akad. Wien, 77. 410, 1878; A. Walcker, Pogg. Ann., 4. 449, 1825; G. Wiedemann. Die Lehre von der Elektricität, Braunschweig, 1. 191, 1893; C. R. A. Wright and C. Thompson, Proc. Roy. Soc., 42. 212, 1887; 43. 268, 1887; B.A. Rep., 657, 1887; Journ. Chem. Soc.,

 W. Beetz, Fortschr. Phys., 372, 1847; E. Corminas, Centrb. Elektrotech., 7, 491, 1885;
 E. Dorn and B. Völlmer, Wied. Ann., 60, 468, 1897; W. Ende, Phys. Zeit., 80, 477, 1929; J. Goodman, Phil. Mag., (3), 30. 127, 1847; J. P. Joule, ib., (3), 24. 113, 1844; J. A. Kendall, Chem. News, 49. 49, 1884; Proc. Roy. Soc., 36. 208, 1884; G. Oesterfeld, Zeit. Elektrochem., 19. 585, 1913; J. Regnauld, Cosmos, 15. 443, 1859; Compt. Rend., 43. 47, 1856; Ann. Chim. Phys., (3), 44. 453, 1855; A. Schluigin and A. Frumkin, Acta Physicochim., 3. 791, 1935; F. Streintz, Phys. Zeit., 22. 260, 1921; C. Wheatstone, Phil. Trans., 133. 216, 1843; Pogg. Ann., 62. 522, 1844.

8 H. E. Armstrong, Chem. News, 53. 211, 1886; W. D. Bancroft, Zeit. phys. Chem., 12. 294, 1893; A. Bartoli and G. Papasogli, Gazz. Chim. Ital., 14. 85, 1884; Nuovo Cimento, (3), 12. 141, 1882; P. Bechtereff, Bull. Polyt. Inst. St. Petersburg, 15. 443, 1911; E. Becquerel, Ann. Chim. Phys., (3), 9. 54, 1843; W. Beetz, Pogg. Ann., 90. 42, 1853; O. Behrend, Centrb. Elektrotech., 9. 497, 1887; A. Bernoulli, Phys. Zeit., 5. 632, 1904; M. Berthelot, Compt. Rend., 134. 869, 1902; E. Bichat and R. Blondlot, Journ. Phys., (2), 2. 503, 1883; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 1, 1863; E. Branly, Ann. École Norm., (2), 2. 284, 1873; F. Braun, Wied. Ann., 16. 561, 1883; 17, 628, 1882; H. Buff. Liebick Ann., 20, 2. 284, 1864, 1904. Frankjurt, I, 1863; E. Branly, Ann. Ecole Norm., (2), 2. 228, 1873; F. Braun, Wied. Ann., 16. 561, 1883; I. 628, 1882; H. Buff, Liebig's Ann. Suppl., 4. 264, 1866; Popg. Ann., 73. 479, 1848; G. J. Burch and V. H. Veley, Phil. Trans., 182. A, 319, 1891; Chem. News, 63. 2, 1891; N. J. Callan, Phil. Mag., (3), 31. 81, 1847; W. E. Case, Proc. Roy. Soc., 40. 345, 1886; Electrician, 39. 688, 1897; U.S. Pat. No. 334345, 334346, 334347, 1886; R. B. Clifton, Proc. Roy. Soc., 26. 299, 1877; A. Crova, Compt. Rend., 68. 440, 1869; B. C. Damien, Ann. Chim. Phys., (6), 6. 289, 1885; F. Dolezalek, Zeit. phys. Chem., 26. 332, 1898; E. Dorn and B. Völlmer, Wied. 283; 1863; F. Dolezatek, Zett. phys. Chem., 20. 332, 1895; E. Dorn and B. Vollmer, Wied. Ann., 60. 468, 1897; A. von Eccher, Pogg. Ann., 129. 93, 1866; O. Erbacher, Zeit. phys. Chem., 156. 135, 1931; P. A. Favre, Compt. Rend., 68. 1306, 1869; 78. 890, 971, 1871; F. Förster, Zeit. phys. Chem., 69. 236, 1909; C. Fromme, Wied. Ann., 8. 326, 1878; 12. 399, 1881; 18. 552, 1883; 19. 86, 300, 1883; G. Gore, Proc. Roy. Soc., 44. 151, 296, 1888; 45. 265, 1888; Chem. News, 57. 184, 254, 1888; 58. 1, 15, 1888; Phil. Mag., (5), 27. 353, 1889; (5), 30. 483, 1800. 1890; (5), 33. 342, 1892; W. R. Grove, ib., (3), 15. 287, 1839; Compt. Rend., 8. 567, 1839; C. A. Grüel, Pogg. Ann., 51. 381, 1840; J. Gubkin, Einige Messungen von elektromotorischen Kräften gasfreier und mit wasserstoff gesättigter Elemente, Freiburg, i, B., 1888; G. Guglielmo, Rev. Scient. Ind., 13. 282, 1881; Atti Accad. Torino, 17. 54, 1881; Nuovo Cimento, (3), 9. 266, 1881; F. Haber, Zeit. phys. Chem., 57. 172, 1908; E. F. Herroun, Phil. Mag., (5), 33. 516, 1892; E. Heyn and O. Bauer, Mitt. Materialprüfungsamt, 26. 68, 1908; W. Hittorf, Zeit. 1892; E. Heyli and O. Bauer, Mut. Materialprajangsim, 26, 68, 1908; W. Hitori, Zett. phys. Chem., 80, 490, 1899; 34, 401, 1900; C. Hockin and H. A. Taylor, Journ. Tel. Eng., 8, 282, 1879; R. Ihle, Zeit. phys. Chem., 19, 584, 1896; Zeit. Elektrochem., 2, 174, 1895; J. P. Joule, Phil. Mag., (3), 24, 113, 1844; V. Karpen, Compt. Rend., 186, 230, 1928; A. König, Wied. Ann., 17, 347, 1882; R. Kohlrausch, Pogg. Ann., 75, 227, 1848; J. H. Koosen, ib., 144, 627, 1871; Wied. Ann., 23, 348, 1884; 32, 510, 1887; V. O. Krenig and V. N. Uspenskaya, Korrosion Metallschutz, 12, 123, 1936; M. Krouchkoll, Compt. Rend., 100, 1213, 1885; M. Krouchkoll, Compt. Rend., 100, 1213, 1885; M. Kugel, Contrb. Elektrotech., 9. 116, 1888; R. T. Lattey and M. W. Perrin, Trans. Faraday M. Rugel, Centro. Lektrotech., 9. 110, 1888; R. 1. Lattey and M. W. Ferrin, Trans. Faraday Soc., 26. 227, 1930; A. P. Laurie, Chem. News, 71. 121, 1895; Proc. Edin. Roy. Soc., 13. 328, 1885; Journ. Chem. Soc., 49. 700, 1886; Phil. Mag., (5), 21. 409, 1886; R. Luther, Zeit. Elektrochem., 8. 646, 1902; A. Mazzucchelli, Gazz. Chim. Ital., 31. ii, 374, 1901; J. Miesler, Sitzber. Akad. Wien, 96. 984, 1887; Monatsh., 8. 626, 1887; L. Mond and C. Langer, Elektrotech. Zeit., 10. 454, 1889; Proc. Roy. Soc., 46. 296, 1890; S. F. B. Morse, Amer. Journ. Science, (1), 45. 390, 1843; Arch. l'Elect., 3. 651, 1843; Elect. Mag., 1. 164, 1845; W. Muthmann and F. Fraugopherger, Rev. Bayer, Akad. 24, 201, 1904. A. Neceptiand M. Relleti. Neceptimente. F. Frauenberger, Ber. Bayr. Akad., 84. 201, 1904; A. Naccari and M. Ballati, Nuovo Cimento, (2), 11. 120, 1872; B. Neumann, Zeit. phys. Chem., 14. 228, 1894; A. von Oberbeck, Wied. Ann., 31. 337, 1887; S. Pagliani, Atti Accad. Torino, 25. 509, 1890; F. Paschen, Wied. Ann., 41. 59, 1890; J. H. Paterson, Mech. Mag., 33. 20, 1840; H. Pellat, Compt. Rend., 89. 227, 1879; R. Peters, Zeit. phys. Chem., 26. 193, 1898; F. Petruschefsky, Bull. Acad. St. Petersburg, (2), R. Peters, Zeit. phys. Chem., 26. 193, 1898; F. Petruschefsky, Bull. Acad. St. Petersburg, (2), 15. 336, 1857; J. C. Poggendorff, Pogg. Ann., 53. 345, 1841; 54. 425, 1841; 57. 101, 1842; 70. 60, 1847; 72. 495, 1847; 90. 42, 1853; K. Przibram, Zeit. Instrkd., 5. 109, 1885; F. M. Raoult, Ann. Chim. Phys., (4), 2. 345, 1864; J. Regnauld, ib., (3), 44. 453, 1855; Compt. Rend., 43. 47, 1856; Cosmos, 15. 443, 1859; F. Richarz, Zeit. phys. Chem., 4. 18, 1889; A. Righi, Nuovo Cimento, (2), 14. 131, 1876; Mem. Accad. Bologna, (4), 8. 749, 1888; E. J. Roberts, Journ. Amer. Chem. Soc., 52. 3877, 1930; R. Ruer, Zeit. phys. Chem., 44. 90, 1903; K. F. San, Phys. Rev., (2), 23. 617, 1924; L. Schönn, Pogg. Ann. Ergbd., 5. 319, 1871; S. Skinner, Phil. Mag., (5), 38. 271, 1894; (5), 39. 444, 1895; Proc. Phys. Soc., 13. 218, 1895; A. Smee, Phil. Mag., (3), 16. 315, 1840; M. Straumanis, A. Lugge and E. Ence, Korrosiom Metallschutz, 12. 148, 1936; F. Streintz, Phys. Zeit., 22. 260, 1921; Sitzber. Akad. Wien, 77. 140, 1878; G. Tammann and E. Jenckel, Zeit. anorg. Chem., 173. 337, 1928; S. P. Thompson, Proc. Roy. Soc., 42. 387, 1887; J. Thomsen, Journ. prakt. Chem., (2), 21. 46, 1880; F. Todt, Zeit. Elektrochem., 34. 586, 1928; D. Tommasi, Compt. Rend., 93. 638, 1881; 8. F. Thompson, Proc. Roy. Soc., 42, 387, 1887; J. Thomsen, Journ. prakt. Chem., (2), 21, 46, 1880; F. Todt, Zeit. Elektrochem., 34. 586, 1928; D. Tommasi, Compt. Rend., 93, 638, 1881;
H. N. Warren, Chem. News, 62, 4, 1890; C. Wheatstone, Phil. Trans., 133, 216, 1843;
F. G. Wick, Phys. Rev., (1), 27, 238, 1908; W. Wolff, Ueber Sauerstoffzelle, Freiburg i B., 1888; C. R. A. Wright and C. Thompson, Proc. Roy. Soc., 43, 268, 1888; 46, 372, 1889.
T. Andrews, Zeit. Elektrochem., 3, 118, 1897; A. C. Becquerel, Compt. Rend., 38, 905, 1854; H. Davy, Phil. Trans., 116, 508, 1826; R. Fabinyi and G. Farkas, Compt. Rend., 106, 1597, 1888; M. Faraday, Phil. Trans., 123, 675, 1883; P. Lukirsky, S. Scukareff and O. Trapespikoff, Zeit. Physik, 31, 524, 1925; W. Naghaur, Ueher die Potential diffuserazen von Katten emit.

nikoff, Zeit. Physik, 81, 524, 1925; W. Negbaur, Ueber die Potential differenzen von Ketten mit

trockenen festen Elektrolyten, Leipzig, 1892; Experimentaluntersuchungen über Potentialdifferenzen an den Berühungsflächen sehr verdünnter Lösungen, Leipzig, 1892; Wied. Ann., 44. 737, 1891; 46. 680, 1892.

¹⁰ G. Armstrong, F. R. Hemsworth and J. A. V. Butler, Proc. Roy. Soc., 143. A, 89, 1933; L. Arons, Sitzber. Akad. Berlin, 969, 1890; Zeit. phys. Chem., 6. 287, 1890; Wied. Ann., 41. 478, 1890; H. T. Beans and L. P. Hammett, Journ. Amer. Chem. Soc., 47, 1215, 1925; K. Bennewitz, Beiträge zur Frage der Zersetzungsspannung, Berlin, 1909; Zeit. phys. Chem., 72. 208, 1910; S. L. Bigelow, Journ. Phys. Chem., 6. 603, 1902; J. Billitzer, Zeit. phys. Chem., 51. 167, 1905; G. Bodlander, ib., 27. 57, 1898; K. Bornemann, Zeit. Elektrochem., 15. 675, 1909; E. Bose, Zeit. phys. Chem., 49. 227, 1904; Zeit. Elektrochem., 14. 314, 1908; F. P. Bowden, Proc. Roy. Soc., 125. A, 446, 1929; F. P. Bowden and E. K. Rideal, ib., 120. A, 80, 1928; A. Brester, Arch. Néerl., (1), 1. 296, 1866; Arch. Sciences Genève, (2), 28. 60, 1866; Chem. News, 18. 144, 1868; E. Breuning, Neue Untersuchungen über die Ueberspannung des Wasserstoffs, Marburg, 1913; B. Bruzs, Zeit. phys. Chem., 145. 470, 1929; J. A. V. Butler and G. Armstrong, Journ. Chem. Soc., 743, 1834; J. A. V. Butler and G. Drever, Trans. Faraday Soc., 32, 427, 435, 1936; J. A. V. Butler, W. E. Hugh nad D. H. Hey, ib., 22, 24, 1926; G. Carrara, Zeit. phys. Chem., 69, 79, 1909; W. A. Caspari, ib., 30, 89, 1899; H. M. Cassel and E. Krumbein, b., 17. 70, 1934; F. T. Chang and H. Wick, ib., 172. 448, 1935; M. O. Charmandarian and B. I. Pervuschin, Zeit. Elektrochem., 36. 248, 1930; Ukrain. Chem. Journ., 8. 44, 1933; A. Cochn, Zeit. phys. ('hem., 38. 618, 1901; Zeit. Elektrochem., 6. 38, 1900; A. Cochn and Chem. Leit. Phys. ('hem., 38. 618, 1901; Zeit. Elektrochem., 6. 38, 1900; A. Cochn and Chem.) St. Jahn, Ber., 37. 2836, 1904; A. Cochn and Y. Osaka, Zeit, anorg. Chem., 34. 91, 1903; A. Cochn and O. Schafmeister, Zeit. phys. Chem., 125. 401, 1927; G. Coffetti and F. Förster, Ber., 38. 2943, 1905; V. Cupr, Chem. Listy, 30. 27, 43, 1936; W. Dittenberger and R. Dietz, Wied. Ann., 68, 856, 1899; K. Elbs and J. Forssell, Zeit. Elektrochem., 8, 772, 1902; A. L. Ferguson and G. M. Chen, Journ. Phys. Chem., 36, 1156, 1166, 1932; 39, 191, 1935; A. L. Ferguson and G. Dubpernell, Trans. Amer. Electrochem. Soc., 64, 221, 1933; F. Förster, Zeit. phys. Chem., 69, 243, 1909; F. Förster and A. Piguet, Zeit. Elektrochem., 10, 714, 1904; A. Frumkin and A. Schligin, Compt. Rend. Acad. Science U.S.S.R., 2. 173, 1934; A. D. Garrison and J. F. Lilley, Trans. Amer. Electrochem. Soc., 65, 171, 1934; F. Glaser, Zeit. Elektrochem., 4, 374, 1898; S. Glasstone, Journ. Chem. Soc., 1745, 1923; S. Glasstone and A. Hickling, Trans. Faraday Soc., 31, 1656, 1935; A. Gorodetzkaya and B. Kabanoff, Phys. Zeit. Sovejetunion, 5, 418, 1934; K. Gostkowsky, Acta Phys. Polon, 1, 483, 1932; G. Grube, F. Oettel and H. Reinhardt, Siebert's Festschrift, 108, 1931; G. Grube and L. Baumeister, Zeit. Elektrochem., 30. 322, 1924; G. Grube and G. Reinhardt, ib., 37. 307, 1931; L. W. Haase, Zeit. Elektrochem., 36. 456, 1930; F. Haber, Zeit. anorg. ('hem., 16. 441, 1898; 51. 368, 1907; W. D. Harkins, Journ. Amer. Chem. Soc., 32. 518, 1910; W. D. Harkins and H. S. Adams, Journ. Phys. Chem., 29. 205, 1925; C. O. Henke and O. W. Brown, Journ. Phys. Chem., 28, 71, 1924; P. Herasymenko and I. Slendyk, Coll. Czech. Chem. Comm., 5, 427, 1933; H. Herwig, Wied. Ann., 4. 474, 1878; W. Hittorf, Pogy. Ann., 106. 521, 1859; W. Hittorf and H. Salkowsky, Zeit. phys. Chem., 28, 551, 1899; G. R. Hood and F. C. Krauskoff, Journ. Phys. Chem., 35. 786, 1931; V. V. Ipatéeff, V. V. Shishkin, G. A. Poleff and I. A. Dubkoff, Journ. Phys. Chem. U.S.S.R., 5. 1114, 1934; B. Kabanov and A. Frumkin, Zeit. phys. Chem., 165. 433, 1933; B. Kamiensky, ib., 158, 441, 1932; F. Kaufler, Zeit. Elektrochem., 13, 637, 1907; W. Kettembeil, Studien über elektrolytische Amalgambildung und Versuche zur Metalltrennung durch Amalgambildung, Göttingen, 18, 1903; M. O. Kharmadaryan and B. I. Pervushin, Phys. Zeit. Sowjetunion, 4. 334, 1933; M. Knobel, Trans. Amer. Electrochem. Soc., 47. 139, 1925; N. Koboseff and N. I. Nekrassoff, Zeit. Elektrochem., **36**. 529, 1930 ; R. Köhler, Ueber die Diffusion eines Wasserstoff oder Reduktionspotentials durch Platin und Palladium, Leipzig, 1928; E. Liebreich, Korrosion Metallschutz, 3. 79, 1927; E. Liebreich and W. Wiederholt. Zeit. Elektrochem., 34. 28, 1928; R. Luther and F. J. Brislee, Zcit. phys. Chem., 45, 216, 1903; 50, 595, 1905; D. Macaluso, Journ. prakt. Chem., (2), 9. 225, 1874; T. Malarsky and K. Gostkowsky, Acta Phys. Polon., 1. 465, 1932; C. Marie. Compt. Rend., 147. 1401, 1998; A. Mazzucchelli and C. Barbero, Gazz. Chim. Ital., 35. i, 417, 1905; Atti Accad. Lincei, (5), 15. ii, 35, 1906; F. Meunier, Bull. Accad. Belg., 9. 300, 1923; Journ. Chim. Phys., 22. 595, 1925; A. Miolati, Zeit. anorg. Chem., 22. 458, 1900; H. G. Möller, Zeit. phys. Chem., 65. 246, 1908; W. Moldenhauer, Zeit. Elektrochem., 11. 307, 1905; E. Müller, Zeit. anorg. Chem., 28. 1, 1901; O. Mumm, Zeit. phys. Chem., 59. 459, 1907; B. Neumann, ib., 14, 193, 1894; E. Newbery, Proc. Roy. Soc., 137, A, 134, 1932; Journ. Chem. Soc., 109, 1066, 1916; T. Onoda, Zeit. anorg. Chem., 165, 79, 93, 1927; 172, 87, 109, 1928; Journ. Faculty Science, Tokyo, 1, 223, 1926; J. M. Ort and M. H. Roepke, Journ. Phys. Chem., 38. 1061, 1934; G. Pfleiderer, Zeit. phys. Chem., 68. 81, 1910; V. V. Pitscheta, Journ. Gen. Chem. Russ., 1. 377, 1931; P. P. Porfiroff, Compt. Rend. Acad. Science U.S.S.R., 1. 386, 1935; S. Procopiu, Zeit. phys. Chem., 154, 322, 1931; D. Reichinstein, Zeit. Elektrochem., 16, 1916, 1910; 17, 85, 699, 1911; A. Rius, ib., 36, 149, 1930; A. P. Rollet, Compt. Rend., 185. 457, 1927; C. F. Schönbein, *Pogg. Ann.*, 47, 563, 1839; P. Sederholm and C. Benedicks, *Zeit. Elektrochem.*, 38, 77, 1932; J. W. Shipley and C. F. Goodeve, *Trans. Roy. Soc. Canada*, (3), 21. 393, 1927; A. Sieverts and P. Luegg, Zeit. anorg. Chem., 126. 193, 1923; I. Slendyk and P. Herasymenko, Zeit. phys. Chem., 162. 223, 1932; A. Slygin and A. Frumkin, Acta Physicochim., 3. 791, 1935; A. Slygin, A. Frumkin and W. Medwedowsky, ib., 4. 911, 1936; A. Smits, Proc. Akad. Amsterdam, 26, 259, 1923; E. I. Spitalsky and V. V. Pitscheta, Journ. Russ. Phys. Chem. Soc., 60, 1351, 1928; J. Tafel, Zeit. phys. Chem., 50, 708, 1905; G. Tammann and VOL. XVI.

F. Runge, Zeit. anorg. Chem., 156. 85, 1926; A. Thiel and E. Breuning, Fetschr. Med. Naturw. Ges., Münster, 148, 1912; Zeit. anorg. Chem., 83, 329, 1913; A. Thiel and W. Hammerschmidt, ib., 132, 15, 1923; N. Thon, Compt. Rend., 187, 119, 1928; 188, 253, 1929; Zeit. phys. Chem., 147, 147, 1930; Journ. Chim. Phys., 31, 411, 1934; E. Tommilla, Suomen Kem., 9, 76, 1936; P. S. Tutundzic, Zeit. Elektrockem., 41, 602, 1935; J. Wagner, Zeit. phys. Chem., 28, 71, 1899; Massanalytische Studien, Leipzig, 1898; P. Walden, Zeit. anorg. Chem., 23, 376, 1900; 1. Zlotowsky, Bull. Acad. Polonaise, 115, 127, 143, 1934.

11 R. Abegg, Wied. Ann., 62. 253, 1897; T. Akerberg, Zeit. anorg. Chem., 31. 189, 1902; M. Andauer, Zeit. phys. Chem., 145. 220, 1929; G. Armstrong, F. R. Himsworth and J. A. V. Butler, Proc. Roy. Soc., 143. A, 89, 1933; A. Bartoli, Nuovo Cimento, (3), 1. 133, 1877; (3), 7. 234, 1880; A. Bartoli and G. Poloni, ib., (2), 5. 292, 1871; A. C. Becquerel, Ann. Chim. (3), 1. 252, 1617, 1600; A. Dartolf and G. Holdin, at (2), 22, 1617, 1610. Better, Am. Chim. Phys., (2), 25, 413, 1825; Quart. Journ. Science, 17. 372, 1824; Compt. Rend., 70. 961, 1870; W. Beetz, Wied. Ann., 10. 358, 1880; Pogg. Ann., 79. 106, 1850; 90. 42, 1853; A. Bernstein, ib., 155, 177, 1875; M. Berthelot, Compt. Rend., 94, 1377, 1882; Bull. Soc. Chim., (2), 89. 112, 1883; G. Bird, Phil. Mag., (3), 13, 379, 1838; E. du Bois-Reymond, Sitzber. Akad. Berlin, 474, 1859; E. Bouty, Compt. Rend., 108, 393, 1889; A. Bringhenti, Gazz. Chim. Ital., 36. i, 213, 1906; A. Brochet and J. Petit, Compt. Rend., 139, 855, 1904; E. Brunner, Zeit. phys. Chem., 58, 124, 1907; 63, 505, 1908; B. Bruzs, ib., 145, 470, 1929; A. Bültemann, Ueber den Einfluss des Anodenmaterials auf Anodenvorgänge, Dresden, 70, 1905; H. Buff, Pogg. Ann., 73, 500, 1848; 130. 342, 1867; J. A. V. Butler and G. Armstrong, Proc. Roy. Soc., 137. A, 604, 1932; J. A. V. Butler and A. Drever, Trans. Faraday Soc., 32, 427, 1936; A. L. Clark, Trans. Roy. Soc. Canada, (3), 17. 275, 1924; A. Coehn and O. Schafmeister, Zeit. phys. Chem., 125. 401, 1927; A. Crova, Ann. Chim. Phys., (3), 68. 433, 1863; (4), 4. 37, 1865; J. F. Daniell, Phil. Trans., 132. 145, 1842; H. Draper, Phil. Mag., (5), 25. 496, 1888; H. Edler and C. A. Knorr, Zeit. phys. Chem., 158. 433, 1932; E. Edlund, Pogg. Ann., 85. 209, 1852; H. J. T. Ellingham, Journ. Chem. Soc., 1565, 1932; F. Exner, Sitzber. Akad. Wien, 103. 859, 1894; Wied. Ann., 5, 388, 1880; G. T. Fechner, Lehrbuch der Galvanismus, Leipzig, 466, 1829; Pogg. Ann., 47. 14, 1839; J. A. Fleming, Phil. Mag., (5), 1. 142, 1876; F. Förster, Zeit. phys. Chem., 69. 270, 1909; F. Förster and E. Müller, Zeit. Elektrochem., 8. 531, 1902; C. Fredenhagen, Zeit. anorg. Chem., 29. 426, 1902; H. Fricke, Phil. Mag., (7), 10. 310, 1932; A. Friessner, Zeit. Elektrochem., 10. 265, 1904; C. Fromme, Ber. Oberhess. Ges., 21. 1, 1882; Wied. Ann., 12. 399, 1881; 83. 124, 1888; 38. 393, 1889; 39. 199, 1890; A. N. Frumkin and A. Shluigin, Compt. Rend. Acad. U.R.S.S., 2. 173, 1934; J. M. Gaugain, Compt. Rend., 65. 462, 1867; 69. 1302, 1869; 70. 515, 1870; N. Gautherot, Ann. Chim. Phys., (1), 39. 203, 1801; Journ. Phys., 56. 429, 1802; S. Glasstone and G. D. Reynolds, Trans. Faraday Soc., 28. 582, 1932; C. M. Gordon, Wied. Ann., 61. 1, 1897; G. Grube, F. Oettel and H. Reinhardt, Siebert's Festschrift, 108, 1931; G. Grube and L. Baumeister, Zeit. Elektrochem., 30. 322, 1924; G. Grube and G. Reinhardt, ib., 37. 307, 1931; A. Günther-Schulze, Zeit. Physik, 3. 349, 1920; F. Haber, Zeit. anorg. Chem., 16. 438, 1898; W. Hallock, Amer. Journ. Science, (3), 25. 268, 1883; Wied. Ann., 16. 56, 1882; L. P. Hammett, Journ. Amer. Chem. Soc., 46. 7, 1924; J. Harty, Journ. Phys. Chem., 39. 359, 1935; H. von Helmholtz, Zeit. ges. Naturwiss., 6. 186, 1872; Sitzber. Akad. Berlin, 559, 587, 1873; 285, 1880; Pogg. Ann., 150. 486, 1873; Wied. Ann., 11. 737, 1880; Proc. Roy. Soc. Edin., 11. 202, 1882; J. B. Henderson, Proc. Roy. Soc., 54. 77, 1893; Zeit. anorg. Chem., 6. 83, 1894; F. C. Henrici, Pogg. Ann., 46. 595, 1838; 52. 391, 1841; 55. 258, 1842; W. T. Heys, Journ. Scient. Instr., 4. 401, 1927; W. H. Hunter and L. F. Stone, Journ. Phys. Chem., 39. 1139, 1935; C. B. Jolliffe, Phys. Rev., (2), 22. 293, 1923; G. Jones and S. M. Christian, Journ. Amer. Chem. 1880; G. T. Fechner, Lehrbuch der Galvanismus, Leipzig, 466, 1829; Pogg. Ann., 47. 14, 1839; C. B. Jolliffe, Phys. Rev., (2), 22, 293, 1923; G. Jones and S. M. Christian, Journ. Amer. Chem. Soc., 57. 272, 1935; V. Karpen, Compt. Rend., 199. 480, 1934; J. L. Kassner, R. B. Hunze and J. N. Chatfield, Journ. Amer. Chem. Soc., 54. 2278, 1932; K. R. Klein, Wied. Ann., 62. 271, 1897; K. R. Koch, ib., 48. 734, 1893; M. Krieg, In welchen Abhängigkeitsverhältnis steht die zeitliche Abnahme der galvanischen Polarisation zur Natur der Elektrotyten und Elektroden, Halle, 1884; Repert. Phys., 21. 805, 1885; F. Krüger, Zeit. phys. Chem., 45. 1, 1903; E. Lenz. Pogg. Ann., 59. 200, 407, 1843; Bull. Acad. St. Petersburg, (2), 1. 209, 1843; (2), 2. 161, 1844; R. Lorenz and H. Wehrlin, Zeit. Elektrochem., 6. 389, 408, 419, 437, 445, 461, 1900; R. Luther, ib., 8. 646, 1902; D. Macaluso, Ber. Sächs. Ges., 25. 306, 1873; J. G. MacGregor, Trans. Roy. Soc. Canada, (3), 1. 49, 1883; P. L. Maréchaux, Gilbert's Ann., 11. 216, 1802; E. Merritt, Phys. Rev., (2), 17. 524, 1921; E. Müller, Zeit. anorg. Chem., 22. 85, 1900; A. Naccari and G. Guglielmo, Atti Accad. Torino, 16. 302, 1880; Nuovo Cimento, (3), 9. 162, 1881; N. I. Nekrassoff, Zeit. Elektro-Accad. Torino, 16, 302, 1880; Nuovo Cimento, (3), 9, 162, 1881; N. I. Nekrassoff, Zeit. Elektrochem., 36, 529, 1930; 38, 186, 1932; W. Oechsli, ib., 9, 807, 1903; A. V. Pamfiloff, Bull. Inst. Polyt. Ivanovo-vosiesensk, 7, 68, 1923; A. V. Pamfiloff and O. S. Fedorova, ib., 8, 20, 1924; J. Parnell, Phil. Mag., (4), 39, 52, 1870; W. Peddie, Proc. Roy. Soc. Edin., 13, 628, 1886; E. Pirani, Ueber galvanische Polarisation, Berlin, 1883; Wied. Ann., 21, 64, 1884; J. C. Poggendorff, Pogg. Ann., 61, 614, 1844; 67, 531, 1846; 70, 500, 1848; S. Procopiu, Zeit. phys. Chem., 154, 322, 1931; F. M. Raoult, Compt. Rend., 67, 950, 1868; Ann. Chim. Phys., (4), 2, 365, 1864; F. Richarz, Wied. Ann., 39, 233, 1890; Zeit. phys. Chem., 4, 25, 1889; 5, 284, 1890; A. de la Riye, Recherches sur la cause de l'électricit voltaigne, Genàve 1838, Possi (4), 2. 365, 1864; F. Kicharz, Wied. Ann., 38. 233, 1890; Zett. phys. Chem., 4. 25, 1889; 5.
284, 1890; A. de la Rive, Recherches sur la cause de l'électricité voltaique, Genève, 1836; Pogg. Ann., 15. 108, 1829; 42. 99, 1837; Ann. Chim. Phys., (2), 28. 213, 1825; (2), 39. 297, 1828; T. R. Robinson, Trans. Irish Acad., 21. 297, 1848; J. Roszkowsky, Zeit. phys. Chem., 15. 267; 1804; E. Rothé, Ann. Chim. Phys., (8), 1. 280, 1904; T. Salzer, Zeit. Elektrochem., 8. 897, 1902, C. F. Schönbein, Pogg. Ann., 48. 112, 1838; 47. 563, 1839; H. Schröder, ib., 54. 57, 1841; J. Shields, Chem. News, 65. 195, 1892; I. Slendyk, Coll. Czeck. Chem. Comm., 4. 335, 1932;

E. J. Spitalsky and V. V. Picheta, Journ. Russ. Phys. Chem. Soc., 60. 1351, 1928; O. Stelling, Zeit. Elektrochem., 41. 712, 1935; F. Streintz, Wied. Ann., 13. 659, 1881; 32. 116, 1887; P. Sue, Histoire du Galvanisime, Paris, 1. 204, 1802; Vogt's Neues Mag., 4. 832, 1802; A. F. Svanberg, Skand. Naturf. Förh., 5. 350, 1847; Pogg. Ann., 73. 298, 1848; J. Tafel, Zeit. phys. Chem., 50. 708, 1905; P. G. Tait, Proc. Roy. Soc. Edin., 6. 579, 1868; Phil. Mag., (4), 243. 1869; R. Thöldte, Ann. Physik, (4), 18. 1067, 1905; P. S. Tutundzic, Zeit. Elektrochem., 41. 602, 1935; 42. 21, 1936; E. Warburg, Wied. Ann., 38. 343, 1899; C. Wheatstone, Phil. Trans., 183. 315, 1843; G. Wiedemann, Die Lehre von der Elektricität, Braunschweig, 1, 1893; M. Wien, Ann. Physik, (4), 8. 372, 1902; F. Winteler, Zeit. Elektrochem., 7. 635, 1901; A. W. Witkowsky, Wied. Ann., 11. 759, 1880; H. Wohlwill, Zeit. Elektrochem., 5. 52, 1899; I. Wolff, Phys. Rev., (2), 27. 755, 1926; Physics, 7. 203, 1936; A. Wüllner and K. R. Koch, Wied. Ann., 45. 476, 1892; J. C. von Yelin, Gilbert's Ann., 73. 365, 1823; E. E. Zimmerman, Phys. Rev., (2), 29. 913, 1927; (2), 33. 277, 1929; (2), 35. 543, 1930.

L. Arons, Wied. Ann., 46. 169, 1892; 58. 680, 1896; A. Bartoli, Nuovo Cimento, (3), 6. 153. 1880; W. Beetz, Wied. Ann., 10. 367, 1880; 12. 290, 1881; J. Billitzer, Sitzber. Akad. Wien, 110. 1238, 1901; M. le Blanc, Zeit. phys. Chem., 8. 299, 1891; 12. 333, 1893; G. Bodländer, Ueber langsame Verbrennung, Stuttgart, 444, 1899; E. du Bois-Reymond, Sitzber. Akad. Berlin, 1110, 1861; F. P. Bowden, *Proc. Roy. Soc.*, **125**. A, **446**, 1929; J. A. V. Butler and G. Armstrong, *ib.*, **187**. A, 604, 1932; *Nature*, **129**. 613, 1932; J. A. V. Butler and G. Drever, *Trans. Faraday* Soc., 32. 427, 1936; A. L. Clark, Trans. Roy. Soc. Canada, (3), 17. 275, 1924; E. Cohn, Wied. Soc., 32. 427, 1936; A. L. Clark, Trans. Roy. Soc. Canada, (5), 11. 213, 1924; E. Conn, Wied. Ann., 18. 665, 1881; J. Daniel, ib., 49. 281, 1893; Phil. Mag., (5), 37. 185, 288, 1894; H. Dufour, Arch. Sciences Genère, (2), 26. 35, 1866; F. Exner, Sitzber. Akad. Wien, 77. 231, 1878; Anz. Akad. Wien, 15. 46, 1878; Phil. Mag., (5), 5. 400, 1878; Wied. Ann., 5. 388, 1878; 12. 280, 1881; F. Förster, Zeit. phys. Chem., 69. 236, 1909; C. Fromme, Wied. Ann., 18. 552, 1883; 19. 86, 300, 1883; 29. 497, 1886; 30. 503, 1887; W. W. H. Gee and H. Holden, Phil. Mag., (5), 26. 126, 1888; Proc. Phys. Soc., 9. 157, 335, 1888; A. Günther-Schulze, Ann. Physik, (4), 26. 391, 1908; W. L. Hildburgh, Journ. Amer. Chem. Soc., 23. 300, 1900; T. P. Hoar, Proc. Roy. Soc., 142. 628, 1933; F. Kaufler and C. Herzog, Ber., 42. 3861, 1909; K. R. Klein, Wied. Ann., 62. 259, 1897; K. R. Koch, ib., 8. 97, 1879; K. R. Koch and A. Wüllner, ib., 45, 476, 1892; E. Lenz, Pogg. Ann., 59. 203, 407, 1843; H. Luggin, Wied. Ann., 56. 347, 1895; 57. 700, 1896; D. Macaluso, Ber. Sächs. Ges., 306, 1873; Journ. prakt. Chem., (2), 9. 225, 1874; C. Matteucci, Bibl. Univ., (2), 17. 378, 1838; Phil. Mag., (3), 18. 469, 1838; G. Meissner, Untersuchungen über den Sauerstoff, Hannover, 261, 1863; T. A. L. du Moncel, Compt. Rend., 82, 1022, 1366, 1876; 83, 17, 182, 307, 501, 1876; J. L. R. Morgan and W. A. Duff, Journ. Amer. Chem. Soc., 22, 331, 1900; J. L. R. Morgan and W. L. Hildburgh, ib., 23, 34, 1900; E. Müller, Studien über kathodische Polarisation und Depolatisation, Dresden, 1901; Zeit. anorg. Chem., 26. 1, 1901; E. Müller and F. Spitzer, ib., 50. 353, 1906; W. Nernst and A. M. Scott, Wied. Ann., 68. 388, 1897; K. Ochs, Zeit. Elektrochem., 2. 398, 1896; A. V. Pamfiloff, Bull. Inst. Polyt. Ivanovo-Voznesensk, 7, 68, 1923; N. Pilschikoff, Compt. Rend., 108, 898, 1889; V. V. Pitcheta, Journ. Russ. Gen. Chem., 1, 377, 1931; J. C. Poggenderff, Pogg. Ann., 52, 497, 1841; A. de la Rive, ib., 15, 122, 1829; Recherches sur la cause de l'électricité voltaique, Genève, 1836; Ann. Chim. Phys., (2), 39. 297, 1828; V. Rothmund and A. Lessing, Ann. Physik, (4), 15. 193, 1904; R. Ruer, Zeit. Elektrochem., 14. 313, 1908; C. F. Schönbein, Pogg. Ann., 47. 101, 1839; E. I. Spitalsky and V. V. Pitcheta, Journ. Russ. Phys. Chem. Soc., 60, 1351, 1928; F. Strientz, Wied. Ann., 33, 465, 1888; Sitzber. Akad. Wicn, 96. 846, 1887; J. Tafel and B. Emmert, Zeit. phys. Chem., 52. 372, 1905; O. Troje, Beitrag zur Analyse des Uebergangswederstandes, Königsberg, 1889; P. S. Tutundzic, Zeit. Elektrochem., 41. 602, 1935; 42. 21, 1936; F. Weigert, Zeit. phys. Chem., 60. 513, 1907; W. Winter, Phys. Zeit., 14. 828, 1913.

W. Winter, Phys. Zeit., 14. 828, 1913.

18 R. Blondlot, Recherches expérimentales sur la capacité de polarisation voltaïque, Paris, 1881; Compt. Rend., 39. 148, 1879; F. Kohlrausch, Nachr. Gött., 453, 1872; Pogg. Ann., 148. 143, 1873; Pogg. Ann. Jubelbd., 299, 174; F. Krüger, Ueber Polarizationkapazität, Greisswald, 1899; Zeit. phys. Chem., 45. 70, 1903; L. R. Morgan, O. M. Lammert and M. A. Campbell, Trans. Amer. Electrochem. Soc., 61. 199, 1932; P. Schönherr, Ann. Physik, (4), 6. 116, 1901; A. M. Scott, Wied. Ann., 67. 388, 1899; A. P. Sokoloff, Journ. Russ. Phys. Chem. Soc., 19. 191; A. M. Scott, Wied. Ann., 67. 388, 1899; A. P. Sokoloff, Journ. Russ. Phys. Chem. Soc., 19. 1872; Proc. Roy. Soc., 19. 243, 1871; Phil. Mag., (4), 41. 310, 1871; E. Warburg, Ann. Physik, (4), 6. 125, 1901; W. Wien, ib., (4), 8. 380, 1902; Wied. Ann., 58. 37, 1896; I. Wolff, Phys. Rev., (2), 27. 755, 1926.

14 T. Andrews, Phil. Mag., (3), 12. 305, 1838; L. Arons, Wied. Ann., 41. 473, 1890; W. Beetz, ib., 5. 1, 1878; K. Bennewitz, Zeit. phys. Chem., 72. 208, 1910; Beiträge zur Frage der Zereetzungsspannung, Berlin, 1909; M. Berthelot, Compt. Rend., 119. 834, 1894; M. le Blanc, Zeit. Elektrochem., 11. 8, 1905; R. Böttger, Polyt. Notizbl., 34. 39, 1879; L. Cailletet and E. Collardeau, Compt. Rend., 119. 830, 1894; F. Förster, Elektrochemie wässeriger Lösungen, Leipzig, 221, 1905; Zeit. phys. Chem., 69. 236, 1909; F. Förster and J. Yamasaki, Zeit. Elektrochem., 16. 321, 1910; F. C. Frary, Zeit. angew. Chem., 20. 2247, 1907; C. Fredenhagen, Zeit. anorg. Chem., 29. 396, 1902; C. M. Gordon and F. E. Clark, Zeit. Elektrochem., 12. 769, 1906; E. Grave, Zeit. phys. Chem., 77. 513, 1911; G. Grube, Trans. Faraday Soc., 9. 214, 1914; Zeit. Elektrochem., 16. 621, 1910; 18. 211, 1912; A. Günther-Schulze, Ann. Physik, (4), 26. 391, 1908; F. Haber, Zeit. Elektrochem., 12. 416, 1906; Thermodynamik technischer Gusreaktionen, München, 161, 1905;

Zeit. anorg. (hem., 51, 368, 1906; F. Haber and L. Bruner, Zeit. Elcktrochem., 10, 710, 1904; W. Hampe, Chem. Ztz., 14, 1778, 1891; H. Hauser, Zur Oxydtheorie der Knallgaskette, Zürich, 1906; E. S. Hedges and J. E. Myers, Journ. Chem. Soc., 125, 604, 1924; W. Heldt, Journ. prakt. Chem., (1), 90, 260, 1863; G. Just, Zeit. phys. Chem., 63, 522, 1908; K. R. Koch, Wied. Ann., 8, 92, 1879; 42, 77, 1891; F. Kohlrausch, ib., 63, 423, 1897; M. Krouchkoll, Compt. Rend., 45, 177, 1882; G. Lippmann, Journ. Phys., (1), 10, 202, 1881; R. Lorenz, Zeit. Elektrochem., 15, 666, 1909; R. Lorenz and H. Hauser, Zeit. anorg. Chem., 51, 81, 1906; R. Lorenz and E. Lauber, Zeit. Elektrochem., 15, 206, 1909; R. Lorenz and P. E. Spielmann, ib., 15, 354, 1909; R. Luther and F. J. Brislee, Zeit. phys. Chem., 45, 233, 1903; C. Marie, Journ. Chim. Phys., 6, 596, 1908; Compt. Rend., 145, 117, 1907; P. Monnartz, Met., 8, 193, 1911; J. L. R. Morgan and O. M. Lammert, Journ. Amer. Chem. Soc., 53, 2154, 1931; E. Müller, Zeit. anorg. Chem., 26, 1, 1901; Zeit. Elektrochem., 8, 426, 1902; W. J. Müller and O. Hering, Monatsh., 66, 35, 1935; W. Nernst and H. von Wartenberg, Zeit. phys. Chem., 56, 546, 1906; G. Pficiderer, ib., 68, 62, 1910; V. V. Picheta, Journ. Russ. Gen. Chem., 1, 377, 1931; S. Popoff and M. J. McHenry, Journ. Ind. Eng. Chem., 20, 534, 1928; R. Ruer, Zeit. phys. Chem., 44, 81, 1903; Zeit. Elektrochem., 9, 236, 1903; 11, 10, 66, 1905; 14, 314, 623, 1908; A. Rundspaden, Liebig's Ann., 151, 306, 1869; G. C. Schmidt, Zeit. phys. Chem., 106, 105, 1923; E. P. Schoch, Journ. Phys. Chem., 14, 665, 1910; L. Schönn, Pogg. Ann. Ergbd., 5, 319, 1871; G. Senter, Trans. Faraday Soc., 2, 1, 1907; J. Steiner and L. Kablenberg, Trans. Amer. Electrochem. Soc., 66, 205, 1934; G. Tammann, Zeit. Elektrochem., 35, 21, 1929; M. Thalinger and M. Volmer, Zeit. phys. Chem., 150, 401, 1930; K. Waitz, Wied. Ann., 20, 285, 1883; H. N. Warren, Chem. News, 71, 309, 1895; L. Wöhler, Zeit. Elektrochem., 15, 773, 1909; L. Wöhler and F. Martin, ib., 15, 792, 1909.

¹⁵ W. D. Bancroft and J. E. Magoffin, Journ. Amer. Chem. Soc., 57, 2561, 1935; G. Bredig and F. Haber, Ber., 31, 2745, 1898; P. Burger, Versuche über die Elektrolyse mit Wechselströmen und ihre Anwendung zur Hersetllung chemischer Produkte, Darmstadt, 1906; H. J. T. Ellingham, Journ. Chem. Soc., 1565, 1932; F. Giordani and B. Focaccia, Gazz. Chim. Ital., 59, 914, 1929; F. Haber, Zeit. anorg. Chem., 16, 447, 1898; Zeit. Elektrochem., 8, 550, 1902; R. Ruer, Veber die elektrolytische Aufösung von Platin mittels Wechselströmen, Göttingen, 1903; Zeit. Elektrochem., 9, 237, 1903; Zeit. phys. Chem., 44, 81, 1903; M. Sack, Zeit. anorg. Chem., 34, 351, 1901; P. Schoop, Zeit. Elektrochem., 2, 209, 1895; A. P. Sokoloff, Wied. Ann., 58, 509, 1896; Journ. Russ. Phys. Chem. Soc., 28, 129, 1896.

¹⁶ R. Abegg, Zeit. Elektrochem., 14, 145, 1908; Zeit. angew. Chem., 21, 320, 1908; German Pat., D.R.P. 186878, 1908; J. Aloy, Recherches sur l'uranium et ses composés, Paris, 1901; E. H. Archibald, Proc. Roy. Soc. Edin., 29, 721, 1909; Zeit. anorg. Chem., 66, 179, 1910; K. Arndt, Siebert's Festschrift, 1, 1931; A. Bartoli and G. Papasogli, Gazz. Chim. Ital., 13, 287, 1883; 14, 90, 1884; P. Bechtereff, Bull. Polyt. Inst. St. Petersburg, 15, 443, 1911; K. Bennewitz, Beiträge zur Frage der Zersetzungsspannung, Berlin, 1909; Zeit. phys. Chem., 72, 224, 1910; E. Beutel and A. Kutzelnigg, Monatsh., 58, 295, 1931; F. Boericke, Zeit. Elektrochem., 11, 57, 1905; V. Borelli, Gazz. Chim. Ital., 37. i, 425, 1907; E. A. Bourgoin, Bull. Soc. Chim., (2), 12. 435, 1869; F. Bran, Zeit. Elektrochem., 8, 197, 1902; A. Brester, Arch. Néerl., (1), 1, 296, 1866; Arch. Sciences Genève, (2), 28. 62, 1867; E. Briner and E. Mettler, Journ. Chim. Phys., 6. 137, 1908; A. Brochet, Compt. Rend., 136. 1062, 1903; A. Brochet and C. L. Barillet, Zeit. Elektrochem. 9. 251, 1903; Bull. Soc. Chim., (3), 29. 73, 1902; A. Brochet and J. Petit, ib., (3), 31. 738, 1255, 1257, 1904; Zeil. Elektrochem., 10. 914, 1904; 11. 102, 441, 1905; Ann. Chim. Phys., (8), 3, 433, 1904; (8), 5. 307, 1905; Compt. Rend., 138, 1095, 1904; 139, 855, 1904; 140, 655, 1905; A. Bültemann, Ueber den Einfluss des Anodenmaterials auf Anodenvorgänge, Dresden. 1905; P. Burger, Versuche über die Elektrolyse mit Wechselströmen und ihre Anwendung zur Herstellung Chemischer Produkte, Darmstadt, 1906; A. C. Chapman and H. D. Law, Analyst, 31. 3, 1906; H. Danneel, Zeit. Elektrochem., 9. 256, 1903; 12. 18, 1905; H. Davy, Phil. Trans., 97. 36, 1807; E. Drechsel, Journ. prakt. Chem., (2), 20. 378, 1879; (2), 22. 476, 1880; (2), 29. 229, 1884; Ludwig's Festschrift, 1886; F. W. Durkee, Amer. Chem. Journ., 18. 525, 1896; K. Elbs, Journ. prakt. Chem., (2), 48. 185, 1893; K. Elbs and O. Brunner, Zeit. Elektrochem., 6. 604, 1900; H. J. T. Ellingham, Journ. Chem. Soc., 1565, 1932; L. Elsner, Dingler's Journ., 101. 117, 1846; Journ., prakt. Chem., (1), 37, 441, 1846; C. Engels, Ber., 28, 3182, 1895; Zeit. Elektrochem., 2, 413, 1895; M. Faraday, Phil. Trans., 124, 77, 1834; A. Fischer, Zeit. anorg. Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. Fischer and K. Bendixson, ib., 61, 13, 153, 1909; F. Fischer and Chem., 42, 382, 1904; F. F K. Massenez, ib., 52. 202, 1906; F. Förster and A. Friessner, Ber., 85. 2515, 1902; F. Förster A. Friessner, 16., 20. 1802, 1803, 1802, 1803, 1802, 1803, 1802, 1803, 1802, 1803, 1802, 1803, 1 Zeit. anorg. Chem., 16. 445, 1898; R. von Hasslinger, German Pat., D.R.P. 202562, 1908; W. Hittorf, Pogg. Ann., 72. 481, 1847; Liebig's Ann., 64. 268, 1848; Journ. prakt. Chem., (1), 42. 469, 1847; H. Hofer and F. Jacob, Ber., 41. 3187, 1908; N. Isgarischeff and S. Berkmann, Zcit. Elektrochem., 31. 180, 1925; W. Jäger, Die Normalelemente, Halle, 1902; G. Janeczek, Ber., 8. 1018, 1875; K. Kahle, Zeit. Instrkd., 13. 191, 1893; Wied. Ann., 51. 203, 1894; C. W. Keitel, U.S. Pat. No. 1779436, 1929; C. W. Keitel and H. E. Zschiegner, Trans. Amer. Electrochem. Soc., 59. 131, 1932; W. S. Kimley, Journ. Amer. Chem. Soc., 32. 637, 1910; W. Klapproth, Die Fällung des Zinns aus seinem Sulfosalzen und seine Trennung von Antimon

durch Elektrolyse, Hannover, 13, 1901; G. Kretzschmar, Zeit. Elektrochem., 10, 789, 1904; F. Krüger, Zeit. phys. Chem., 45, 70, 1903; Ueber Polarizationkapazität, Greisswald, 1899; Ann. Physik, (4), 21, 154, 1906; P. P. Lebedew, Zeit. Elektrochem., 18, 891, 1912; M. G. Levi and M. Voghera, Atti Accad. Lincei, (5), 15, i, 322, 1906; W. Löb, Zeit. Elektrochem., 9, 753, 1903; W. Löb and R. W. Moore, Zeit. phys. Chem., 47, 418, 1904; R. Luther, ib., 36, 399, 1901; F. Mareck, Chem. Centr., (3), 15, 479, 1884; M. Margules, Wied. Ann., 65, 629, 1898; 66, 540, 1898; C. Marie, Compt. Rend., 145, 117, 1907; C. Marie and N. Thon, Journ. Chim. Phys., 29, 11, 1932; A. Mascazzini and G. Parodi, Gazz. Chim. Ital., 7, 222, 1877; A. Matthiessen, Journ. Chem. Soc., 8, 294, 1855; H. E. Medway, Amer. Journ. Science, (4), 18, 181, 1904; Zeit. anorg. Chem., 42, 110, 1904; J. Miesler, Monatsh, 8, 365, 1887; A. Millot, Bull. Soc. Chim., (2), 32, 482, 1879; E. Müller, Zeit. Elektrochem., 7, 398, 1901; 10, 49, 1904; Studien über kathodische Polarisation und Depolarisation, Dresden, 1901; Zeit. anorg. Chem., 26, 1, 1901; E. Müller and O. Friedberger, Ber., 35, 2652, 1902; W. J. Müller, Zeit. Elektrochem., 48, 557, 1904; W. J. Müller and J. Königsberger, Phys. Zeit., 7, 851, 1906; F. Mylius and O. Fromm, Wied. Ann., 51, 593, 1894; A. Nobis, Die Wasserstoff-Chlorkette, Dresden, 1909; W. Oechsli, Zeit. Elektrochem., 9, 807, 1903; H. Ost and W. Klapproth, Zeit. anagew. Chem., 14, 807, 1901; W. Peakoff and B. Saprometoff, Koll. Zeit., 69, 181, 1934; P. Rabe and C. Roy, 89, 283, 1906; N. Peskoff and B. Saprometoff, Koll. Zeit., 69, 181, 1934; P. Rabe and C. Roy, 89, 283, 1906; N. Peskoff and B. Saprometoff, Koll. Zeit., 69, 181, 1934; P. Rabe and C. Roy, 89, 283, 1906; F. Schulz, Ueber das Atomgewicht des Platins, Erlangen, 1912; G. Senter, Trans. Faraday Soc., 2, 1, 1907; J. Tafel, Zeit. anorg. Chem., 31, 398, 1899; Zeit. phys. Chem., 34, 187, 1900; F. Schulz, Ueber das Atomgewicht des Platins, Erlangen, 1912; G. Senter, Trans. Faraday Soc.,

Y. C. Arzen, Jahrb. Élektrochem., 13, 668, 1906; R. H. Atkinson, Trans. Faraday Soc., 26, 490, 1930; M. Baum, German Pat., D.R.P. 201664, 201665, 201666, 1907; A. C. and E. Becquerel, Compt. Rend., 55. 19, 1862; Chem. News, 6, 126, 1862; Libig's Ann., 124, 311, 1862; Dingler's Journ., 165, 375, 1862; E. Beutel and A. Kutzelnigg, Monatsh., 58, 295, 1931; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 1, 1867; 64, 1868; 20, 1877; Dingler's Journ., 138, 318, 1855; 188, 252, 1868; 192, 475, 1869; 229, 395, 1878; Polyt. Notizhl., 4, 1855; Tagebl. Naturf. Cassel, 46, 1878; Licbig's Ann., 35, 350, 1840; H. S. Booth and M. Merlub-Sobel, Journ. Phys. Chem., 35, 330, 1931; F. Braun, Wied. Ann., 46, 474, 1891; A. Church, Deut. Gewerb. Phys. Chem., 35, 330, 1931; F. Braun, Wied. Ann., 46, 474, 1891; A. Church, Deut. Gewerb. Lip., 32, 43, 1867; Polyt. Notizbl., 22, 351, 1867; A. Classen, Ber., 17, 2477, 1884; D. Clerk and C. A. Fawsitt, Brit. Pat. No. 1182, 1879; A. Coehn, Zeit. phys. Chem., 25, 654, 1898;
 H. Danneel, Zeit. Elektrochem., 9, 256, 1903; 12, 18, 1905; J. B. A. Dodé, U.S. Pat. No. 219807, 1878; Journ. Amer. Chem. Soc., 1, 407, 1879; Deut. Ind. Zig., 9, 9, 1868; H. Elkington, London Journ. Arts Sciences, 18, 246, 1841; Brit. Pat. No. 7304, 1837; T. Erdey-Gruz and H. Wick, Zeit. phys. Chem., 162, 63, 1932; A. Fischer, Zeit. anorg. Chem., 42, 382, 1904; H. Freudenberg, Zeit. phys. Chem., 12, 114, 1893; P. K. Frölich and G. L. Clark, Zeit. Elektrochem., 31, 649, 1925; F. Glaser, ib., 9, 11, 1903; G. Grube and D. Beischer, ib., 39, 38, 1933; G. Grube, F. Oettel and H. Reinhardt, Siebert's Festschrift, 108, 1931; G. Grube and H. Reinhardt, Zeit. Elektrochem., 37, 307, 1930; P. Haas, Metallwaren Ind., 30, 315, 1932; W. Halberstadt, Ber., 17, 2964, 1884; W. Hittorf, Pogg. Ann., 106, 521, 1859; L. l'Hôte, Ann. Chim. Anal., 10, 253, 1905; T. Howse, Ann. Phil., 14, 469, 1819; P. Jewreinoff, Technologiste, 14, 293, 1853; Polyt. Centr., 19, 509, 1853; Dingler's Journ., 136, 464, 1855; D. Lighter's Journ.

5. 695, 1892; K. Sadakata, Japan Nickel Rev., 4. 85, 1936; C. Sandonnini and V. N. Borghello, Atti Accad. Lincei, (6), 20. 334, 1934; A. B. Schiötz, Zeit. Elektrochem., 27. 521, 1921; L. Schucht, Berg. Hütt. Zig., 39, 122, 1880; Chem. News, 41. 295, 1880; A. E. W. Smith, Metal Ind., 43. 201, 1933; E. F. Smith, Journ. Amer. Chem. Soc., 5. 201, 1883; Electroanalysis, Philadelphia, 151, 1907; Amer. Chem. Journ., 13. 206, 1891; 14. 453, 1892; E. F. Smith and H. F. Keller, ib., 12. 252, 1890; E. F. Smith and F. Muhr, ib., 13. 417, 1891; Ber., 24. 2175, 1891; Journ. Franklin Inst., 129. 239, 1890; 131. 300, 1891; C. Stahlschmidt, Journ. prakt. Chem., (1), 98. 320, 1866; Dingler's Journ., 179, 162, 1866; L. M. Stoffel, Monit. Scient., (3). 9. 1099, 1879; E. R. Thews and R. W. Harbison, Chem. Zig., 57. 980, 1933; J. B. Thompson, Chem. News, 29. 26, 1872; Bull. Soc. Chim., (2), 18. 518, 1872; S. P. Thompson, Brit. Pat. No. 8284, 1887; W. A. Thoms, ib., 10477, 1886; U.S. Pat. No. 367731, 1887; W. H. Wahl, Journ. Franklin Inst., 100. 63, 1890; Chem. News, 62. 33, 40, 1890; E. G. Weischede, Elektrolytische Bestimmung und Trennung der Platimmetalle Platin, Iridium, und Osmium, Darmstadt, 1927; J. Weiss, Die Galvanoplustic, Wien, 179, 1878; T. Wilm. Journ. Phys. Russ. Chem. Soc., 20, 447, 1888; Ber., 21, 1434, 1888; F. Wöhler, Liebig's Ann., 148, 375, 1867; A. Wogrinz, Metallwaren Ind., 31, 90, 109, 172, 215, 234, 1933; T. Yoshida, Japan Nickel Rev., 4, 82, 1936.

18 E. Blechschmidt, Ann. Physik, (4), 81. 999, 1926; R. Blondlot, Compt. Rend., 102. 210, 1886; C. H. Cartwright, Rev. Scient. Instr., 1. 758, 1930; W. T. Cooke, Zeit. phys. Chem., 55. 537, 1906; R. K. Cowsik, Indian Journ. Phys., 8. 209, 1933; W. Crookes, Chem. News, 63. 289, 1891; Proc. Roy. Soc., 50. 88, 1891; F. Ehrenhaft, Phys. Zeit., 11. 619, 1910; J. Elster and H. Geitel, Wied. Ann., 31. 126, 1887; F. Fischer and O. Hähnel, Zeit. Elektrochem., 14. 433, 1908; T. Goldschmidt, Ueber kathodische Metallzerstäubung in verdünntem Gasen, Strassburg, 1908; G. Granquist, Oefvers. Vet. Akad. Förh., 709, 1898; O. Hähnel, Zeit. Elektrochem., 14. 366, 1908; Ueber kathodverstaubung von Metallen in verdünnten Gasen, Berlin, 1904; W. Hittorf, Wied. Ann., 21. 126, 1884; L. Holborn and L. Austin, Abh. Phys. Tech. Reichsanst., 4. 104, 1904; E. O. Hulburt, Rev. Scient. Instr., 5. 85, 1934; L. R. Ingersoll and L. O. Sordahl, Phys. Rev., (2), 32. 649, 1928; P. Jolibois, Compt. Rend., 202. 400, 1936; H. Kayser, Math. Naturw. Mitt., 221, 1896; T. Kinbara, Bull. Inst. Phys. Chem. Research, 13. 275, 1934; V. Kohlschütter, Zeit. Elektrochem., 14. 417, 437, 1908; V. Kohlschütter and T. Goldschmidt, ib., 14. 233, 1908; V. Kohlschütter and R. Müller, ib., 12. 372, 1906; J. de Kowalsky and E. Banasinsky, Arch. Sciences Genève, (4), 32. 468, 1911; E. Marx, Ber. deut. phys. Ges., 6. 627, 1908; Phys. Zeit., 9. 731, 1908; Ann. Physik, (4), 28. 153, 1908; K. Meyer and A. G. Schulze, Zeit. Physik, 71. 279, 1931; J. Mooser, Wied. Ann., 42. 639, 1891; F. H. Newman, Phil. Mag., (7), 14. 1047, 1932; J. Plücker, Pogg. Ann., 103. 90, 1858; 104. 116, 1858; 105. 70, 1858; Phil. Mag., (4), 16. 408, 1858; (4), 18. 1, 7, 1859; G. Reboul and E. G. de Bollemont, Compt. Rend., 152. 758, 1911; A. Voet, Trans. Faraday Soc., 31. 1488, 1935; F. Wächter, Wied. Ann., 17, 909, 1882.

F. W. Aston, Proc. Roy. Soc., 87, 437, 1912; G. Bode, Phys. Zeit., 6, 618, 1905; J. W. Capstick, Proc. Roy. Soc., 63, 366, 1898; J. A. Cunningham, Phil. Mag., (6), 5, 68, 1903;
 R. Défregger, Ann. Physik, (4), 12, 663, 1903; F. Deininger, Ueber den Austritt negativer Ionen aus einigen glühenden Metallen und aus glühenden Calcium-oxyd, Erlangen, 1908; Ann. Physik, (4), 25, 306, 1908; H. Dember, ib., (4), 20, 392, 1906; A. Janitzky, Zeit. Physik, 31, 277, 1925;
 O. Klemperer, Phys. Zeit., 29, 947, 1928; W. Matthies, Ann. Physik, (4), 18, 473, 1905; Phys. Zeit., 6, 729, 1905; Ber. Phys. Med. Soc. Erlangen, 37, 1905; F. Müller, Journ. Russ. Phys. Chem. Soc., 39, 267, 1907; O. W. Richardson, Phys. Zeit., 5, 11, 1904; H. Rohmann, Zeit. Physik, 31, 311, 1925; 39, 437, 1926; C. del Rosario, Phys. Rev., (2), 29, 360, 1927; C. A. Skinner, Phil. Mag., (6), 8, 387, 1904; Phys. Zeit., 5, 610, 1905; R. J. Strutt, Phil. Mag., (5), 49, 297, 1900; L. Tonks, Physics, 6, 294, 1935; H. P. Waran, Phil. Mag., (7), 11, 397, 1931; E. Warburg, Wied. Ann., 40, 17, 1890.

E. Warburg, Wied. Ann., 40. 17, 1890.

**10 L. Arons, Verh. Ges. Naturf. München, 61, 1899; Naturw. Rund., 14. 453, 1899; V. L. Chrisler, Astrophys. Journ., 54. 273, 1921; A. J. Dempster, Nature, 135. 542, 1935; W. R. Grove, Phil. Mag., (3), 16. 480, 1840; C. E. Guye and A. Bron, Arch. Sciences Genève, (4), 25. 453, 1901; Compt. Rend., 146. 1091, 1908; C. E. Guye and L. Zebrikoff, ib., 145. 169, 1888; Phys. Zeit., 8. 704, 1907; Arch. Sciences Genève, (4), 24. 549, 1907; H. E. Ives, Journ. Franklin Inst., 198. 457, 1924; E. Leccher, Wied. Ann., 33. 626, 1888; H. W. Malcom and H. T. Simon, Phys. Zeit., 8. 471, 1907; W. B. Nottingham, Phys. Rev., (2), 27. 806, 1926; (2), 28. 764, 1926; A. Simek and H. Kadlcova, Rec. Trav. Chim. Pays-Bas, 44. 608, 1925; J. Stark, Ann. Physik, (4), 12. 699, 1903; S. Virtel, Zeit. Physik, 59. 771, 1930.

11 A. Abt, Centr. Zig. Opt. Mech., 8, 183, 1887; T. Andrews, Proc. Roy. Soc., 38, 216, 1885; Phil. Mag., (3), 10, 433, 1837; L. W. Austin, Phys. Zeit., 12, 1226, 1911; M. Avanarius, Pogg. Ann., 119, 406, 1863; K. Bädeker, Ann. Physik, (4), 22, 766, 1907; H. C. Barker, Amer. Journ. Science, (4), 24, 165, 1907; A. C. Becquerel, Compt. Rend., 70, 1313, 1870; Ann. Chim. Phys., (2), 23, 140, 1823; (2), 31, 371, 1926; (2), 41, 353, 1829; E. Becquerel, ib., (4), 8, 415, 1866; Compt. Rend., 62, 966, 1866; G. Belloc, Compt. Rend., 131, 336, 1900; 184, 105, 1902; Thermoelectricité du fer et des aciers, Paris, 1903; C. Benedicks, Journ. Iron Steel Inst., 89, i, 407, 1914; C. Benedicks and C. W. Borgmann, Ark. Mat. Astron. Fys., 24, 1, 1934; O. Berg, Ann. Physik, (4), 32, 516, 1910; R. Blondlot, Compt. Rend., 91, 882, 1880; R. Böttger, Pogg. Ann., 50, 58, 1840; G. Borelius, W. H. Keesom, C. H. Johansson and J. O. Linde, Proc. Akad. Amsterdam, 32, 17, 32, 1930; 35, 25, 1932; J. T. Bottomley and A. Tanakadate, Phil. Mag., (5), 28, 163, 1889; O. Boudouard, Rev. Mét., 1, 80, 1904; E. Bouty, Compt. Rend., 90, 917, 1880; Journ. Phys., (1), 9, 229, 1880; P. W. Bridgman, Proc. Amer. Acad., 53, 346, 1918; W. Broniewsky,

Rev. Mét., 7. 348, 1910; Compt. Rend., 156. 699, 1913; J. Buchanan, Proc. Phys. Soc., 7. 185, 1886; Phil. Mag., (5), 20. 117, 1885; R. Bunsen, Pogg. Ann., 123. 505, 1864; G. K. Burgess and P. D. Sale, Journ. Ind. Eng. Chem., 6. 452, 1914; A. E. Caswell, Phys. Rev., (1), 88. 400, 1911; M. Chassagny and H. Abraham, Compt. Rend., 111. 602, 732, 1890; 112. 1198, 1891; Ann. Chim. Phys., (6), 27. 355, 1892; H. le Chatelier, Journ. Phys., (2), 6. 23, 1887; Compt. Rend., 102. 819, 1886; E. Cohn, Wied. Ann., 6. 385, 1879; J. Cumming, Ann. Phil., (2), 6. 177, 1823; Schweigger's Journ., 40. 317, 1824; Trans. Cambridge Phil. Soc., 2. 47, 1823; J. Dewar and J. A. Fleming, Phil. Mag., (5), 40. 106, 1895; J. W. Draper, ib., (3), 16. 451, 1840; W. Durger, ib., (3), 16. 451, 1840; W. Durger, ib., (3), 16. 451, 1840; W. Durger, ib., (3), 1845; J. W. Draper, i Amer. Journ. Science, (1), 25. 271, 1834; (1), 28. 311, 1834; W. Ende, Phys. Zeit., 30. 427, 1929; M. Faraday, Phil. Trans., 180. 61, 93, 1840; K. Feussner and St. Lindeck, Abh. Phys. Tech. Reichsanst., 2. 515, 1895; A. von Fitzgerald-Minarelli, Sitzber. Akad. Wien, 71. 694, 1875; R. Franz, Pogg. Ann., 85. 388, 1852; J. Galibourg, Rev. Mét., 22. 400, 527, 610, 1925; J. M. Gaugain, Ann. Chim. Phys., (3), 65. 5, 1862; Compt. Rend., 36. 645, 1853; W. Goedecke, Siehert's Festerbrift, 72, 1931. G. Gores Phil Mag. (4), 12, 11, 1857. Siebert's Festschrift, 72, 1931; G. Gore, Phil. Mag., (4), 18. 1, 1857; (4), 48. 54, 1872; Proc. Roy. Soc., 19. 324, 1871; 27. 513, 1878; 81. 244, 1881; K. E. Grew, Phys. Rev., (2), 41. 356, 1932; W. G. Hankel, Abh. Sächs. Ges., 6. 225, 1852; Pogg. Ann., 62. 197, 1844; 103. 612, 1868; E. Heiber, Ann. Physik, (5), 23. 111, 1935; F. Heimburg, Phys. Zeit., 24. 149, 1923; F. C. Henrici, Pogg. Ann., 80. 169, 1850; N. A. Hesehus, Journ. Russ. Phys. Chem. Soc., 89. 1, 1907; A. Hiel, Zeit. Elektrochem., 9. 91, 1903; H. Hörig, Ann. Physik, (4), 28. 371, 1909; L. Holborn and A. L. Day, Sitzber. Akad. Berlin, 694, 1899; Ann. Physik, (4), 2. 505, 1900; L. Holborn and S. Valentiner, ib., (4), 22. 1, 1907; R. M. Holmes, Phys. Rev., (2), 21. 386, 1923; (2), 22. 137, 1923; Science, (2), 56. 201, 1922; J. L. Hoorweg, Wied. Ann., 9. 562, 1880; W. Jäger and H. Diesselhorst, Abh. Phys. Tech. Reichsanst., 3. 269, 1900; F. Jenkin, B.A. Rep., 173, 1862; Chem. News, 4. 222, 1861; Electrician, 1. 15, 1862; J. P. Joule, Phil. Trans., 149, 91, 1859; B. Kaniewsky, 222, 1861; Electrician, 1. 15, 1862; J. P. Joule, Phil. Trans., 149, 91, 1859; B. Kaniewsky, Journ. Russ. Phys. Chem. Soc., 41, 115, 1909; Lord Kelvin (W. Thomson), Phil. Trans., 146, 698, 1856; I. Klemencic and P. Czermac, Wied. Ann., 50, 175, 1893; O. Knopp, Phys. Zeit., 10, 439, 1909; C. G. Knott, Proc. Edin. Roy. Soc., 83, 171, 1887; C. G. Knott and J. G. MacGregor, Trans. Roy. Soc. Edin., 28, 321, 1878; R. Kremann, Nernst's Festschrift, 234, 1912; R. Kremann and F. Noss, Monatsh., 34, 7, 1913; V. B. Lewes, Journ. Chem. Soc., 69, 226, 1896; G. Magnus, Pogg. Ann., 83, 469, 1851; A. V. Makaroff and I. V. Plastinin, Journ. Tech. Phys. U.S.S.R., 4, 1195, 1934; C. Matteucci, Pogg. Ann., 47, 600, 1839; Bibl. Univ., 15, 186, 1838; A. Matthiessen Phil. Trans., 149, 260, 1859; Pogg. Ann., 47, 600, 414, 1958; C. G. de Mot., 1838; A. Matthiessen Phil. Trans., 148, 260, 1859; Pogg. Ann., 108, 414, 1958; C. G. de Mot. 1838; A. Matthiessen, Phil. Trans., 148. 369, 1858; Pogg. Ann., 108. 414, 1858; G. G. de Metz, Compt. Rend., 139. 447, 1904; G. Meyer, Wied. Ann., 59. 134, 1896; J. Monckman, Proc. Roy. Soc., 44. 220, 1888; J. Monheim, Zeit. Elektrochem., 40. 375, 1934; N. F. Mott, Proc. Roy. Soc., 156. A, 368, 1936; A. Naccari and M. Bellati, Nuovo Cimento, (2), 16. 5, 120, 1876; Atti Ist. Venezia, 2. 599, 1876; L. Nobili, Schweigger's Journ., 53. 273, 1828; Bibl. Univ., 37. 118, 180, 1828; K. Noll, Wied. Ann., 53. 900, 1894; H. Pécheux, Compt. Rend., 153. 1140, 1911; C. S. M. Pouillet, ib., 3. 786, 1836; P. Raethjen, Phys. Zeit., 25. 84, 1924; H. V. Regnault, Mém. Acad., 21. 240, 1847; G. Reichard, Ann. Physik, (4), 6. 832, 1901; H. Rohmann, Zeit. Physik, 38. 803, 1926; W. Rohn, Zeit. Metallkunde, 16. 297, 1924; W. Rollmann, Pogg. Ann., 83. 77, 1851; 34. 275, 1851; 39. 90, 1953; B. L. Rosing, Journ. Russ. Phys. Chem. Soc., 30. 151, 1898; F. P. le Roux, Ann. Chim. Phys., (4), 10. 226, 1867; Compt. Rend., 63. 324, 1866; Phil. Mag., (3), 32. 394, 1866; K. E. F. Schmidt, Phys. Zeit., 10. 438, 1909; A. Schulze, Zeit. Metallkunde, 24. 206, 1932; T. J. Seebeck, Pogg. Ann., 6. 148, 1826; Abh. Akad. Berlin, 265, 1823; W. H. Steele, Phil. Mag., (5), 37. 218, 1894; P. G. Tait, Proc. Edin. Roy. Soc., 7. 773, 1872; 8. 32, 1873; Nature, 8. 86, 1873; Trans. Roy. Soc. Edin., 27. 125, 1873; G. Tammann, Zeit. Metallkunde, 24. 220, 1932; G. Tammann and G. Bandel, Ann. Physik, (5), 16. 120, 1933; A. Teichmann, Zeit. Physik, 59, 615, 1930; A. V. Tidblom, Lunds Arskr., (2), 10. 3, 1873; K. Tsuruta, Journ. Univ. Japan, 9. 53, 1896; A. Voller, Pogg. Ann., 149, 398, Compt. Rend., 189. 447, 1904; G. Meyer, Wied. Ann., 59. 134, 1896; J. Monckman, Proc. Roy. 10. 3, 1873; K. Tsuruta, Journ. Univ. Japan, 9. 53, 1896; A. Voller, Pogg. Ann., 149. 398, 1873; P. O. C. Vorsselmann-de-Heer, ib., 47. 603, 1839; 49. 117, 1840; E. Wagner, Ann. Physik, (4), 27. 980, 1908; A. Walcker, Pogg. Ann., 5. 327, 1825; R. von D. Wegner, Zeit. Elektrochem., 34. 42, 1928; H. Wild, Pogg. Ann., 103. 376, 1858; J. Würschmidt, Zeit. Metallkunde, 16. 271, 1924; C. A. Young, Amer. Journ, Science, (3), 20. 358, 1880; Phil. Mag., (5), 10. 450, 1880.

C. Benedicks, Compt. Rend., 167. 296, 1918; Rev. Mét., 15. 329, 1918; O. Berg, Ann. Physik, (4), 82. 517, 1910; P. W. Bridgman, Proc. Amer. Acad., 53. 346, 1918; A. E. Caswell, Phys. Rev., (1), 83. 404, 534, 1911; E. Edlund, Pogg. Ann., 140. 435, 1870; 143. 404, 1871; J. Gill, Wied. Ann., 40. 115, 1890; H. Hags, Ann. Ecole Polyt. Delft. 3. 43, 1887; E. H. Hall, Proc. Nat. Acad., 6. 613, 1920; H. Jahn, Wied. Ann., 34. 755, 1888; Lord Kelvin (W. Thomson), Phil. Trans., 146. 661, 1856; W. König, Phys. Zeit., 17. 227, 1916; F. P. le Roux, Ann. Chim. Phys., (4), 10. 258, 1867; J. Weiss, Zeit. phys. Chem. Unterr., 24. 344, 1912.
H. Alterthum, Ann. Physik, (4), 39. 934, 1912; (4), 40. 391, 1913; M. Cantone and E. Rouse. Mam. Accord. Unit 2, 2, 1, 1930; A. K. Chanman. Phil. Mag. (6), 32, 303, 1916; A. von

12 H. Alterthum, Ann. Physik, (4), \$9. 934, 1912; (4), 40. 391, 1913; M. Cantone and E. Bossa, Mem. Accad. Ital., 2. 1, 1930; A. K. Chapman, Phil. Mag., (6), 32. 303, 1916; A. von Ettingshausen and W. Nernst, Sikzber. Akad. Wien, 94. 28, 1886; 96. 787, 1887; 104. 602, 1886; Wied. Ann., 29. 343, 1886; 38. 474, 1888; Journ. Phys., (2), 6. 292, 1887; W. Frey. Die Anhängigkeit des Hall-Effekts in Metallen von der Temperatur, Leipzig, 1908; Ann. Physik, (4), 46. 1057, 1915; E. H. Hall, Amer. Journ. Science, (3), 20. 161, 1880; Phil. Mag., (5), 10. 323, 1880; Proc. Nat. Acad., 11. 416, 1925; Phys. Rev., (2), 26. 820, 1925; B.A. Rep., 552, 1881; J. Königsberger and G. Gottstein, Ann. Physik, (4), 46. 446, 1915; (4), 47. 566, 1915; Phys.

Zeit., 14. 232, 1913; H. B. Peacock, Phys. Rev., (2), 25. 113, 1925; (2), 27. 474, 1926; P. Raethjen, Phys. Zeit., 25. 84, 1924; A. Riede, Zeit. Physik, 48. 302, 1928; A. W. Smith, Phys. Rev., (1), 30. 1, 1910; H. Zahn, Ann. Physik, (4), 15. 886, 1904; (4), 16. 148, 1905; (4), 23. 131, 1907; Jahrb. Rad. Elektron., 5. 166, 1908; Phys. Zeit., 16. 279, 1915.

14. R. Becker and R. Landshoff, Physik, 8. 91, 1935; H. F. Biggs, Phil. Mag., (6), 32. 131, 1907; Jahrb. Rad. Elektron., 5. 166, 1908; Phys. Zeit., 16. 279, 1915.

131, 1901; Janto, Rue. Beeker and R. Landshoff, Physik, 8, 91, 1935; H. F. Biggs, Phil. Mag., (6), 82. 131, 1916; H. Du Bois and H. K. Honda, Versl. Akad. Amsterdam, 18, 666, 1910; H. du Bois and M. Owen, ib., 20, 673, 1912; D. M. Bose and H. G. Bhar, Zeit. Physik, 48, 716, 1928; O. J. Broch, H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Mesures, 138, 1879; B. Cabrera and A. Dupérier, Compt. Rend., 185, 414, 1927; J. A. Christiansen and R. W. Asmussen, Kgl. Danske Vid. Selsk. Medd., 18, 11, 1935; S. H. Christie, Phil. Trans., 123, 139, 1833; P. Collet and G. Foëx, Compt. Rend., 192, 930, 1213, 1931; Journ. Phys. Rad., (7), 2, 290, 1931; F. W. Constant, Phys. Rev., (2), 34, 1217, 1929; (2), 35, 116, 1930; J. P. Dessaignes, Journ. Phys., 83, 15, 1816; Schweigger's Journ., 20, 86, 1817; J. Dorfman and R. Jaanus, Naturwiss., 16, 1026, 1928; P. Dulk, Kastner's Arch., 1, 38, 1824; M. Faradsy, Phil. Trans., 136, 21, 41, 1846; Phil. Mag., (3), 8, 177, 1836; Pogg. Ann., 70, 35, 1847; W. Finke, Magnetische Messungen an Platinmetallen und monoklinen Kristallen, insbesondere der Eisen-, Kobalt., und Nickelsalze, Leipzig, 1910; Ann. Physik, (4), 31, 167, 1910; G. Foëx, Journ., Phys. Rad., (7), 2, 353, 1931; F. Gobel, Schweigger's Journ., 60, 415, 1830; Edin. Phil. Journ., 11, 388, 1831; O. Goche, Bull. Acad. Belg., 18, 412, 1932; A. N. Guthrie and L. T. Bourland, Phys. Rev., (2), 37, 303, 1931; H. K. Honda, Ann. Physik, (4), 32, 1046, 1910; K. Honda and Y. Shimizu, Nature, 132, 565, 1933; Science Rep. Tohoku Univ., 20, 460, 1931; W. Klemm, H. Jacobi and W. Tilk, Zeit. anorg. Chem., 201, 1, 1931; J. Königsberger, Wied. Ann., 66, 698, 1898; W. Kopp, Der thermische Verlauf der Paramagnetismus bei Magnetit, Platin, und Pulladium, Zürich, 1919; A. Kussmann, Zeit. Metallkunde, 25, 259, 1933; J. Lamont, Pogg. Ann., 71, 128, 1847; F. H. Loring, Chem. News, 109, 121, 133, 1919; F. E. Lowance and F. W. Constant, Phys. Rev., (2), 38, 1547, 1931; Journ. Elisha Mitchell Soc., 47, 24, 1932; R. C. Loyart

§ 14. The Chemical Properties of Platinum

A. Jaquerod and F. L. Perrot, F. Soddy, H. Damianovich, and H. Damianovich and J. J. Trillat, observed that platinum absorbs a small proportion of helium. W. Ramsay, and M. W. Travers observed that helium does not diffuse through heated platinum. H. Damianovich and co-workers, and J. Piazza studied the action of helium. A. Féry observed the effect of helium adsorption on the resistance of the metal. According to R. Salvia, cathodic spluttered platinum deposited in the presence of helium has a face-centred cubic lattice, and there is not space in the lattice for the entry of helium atoms. H. Damianovich noted the change in the microstructure of platinum in an electric discharge in helium. R. W. Lawson showed that platinum electrodes in helium absorb a little gas, and similar results were obtained with neon. W. Ramsay, and M. W. Travers found that argon does not diffuse through heated platinum. J. C. Stimson, and G. I. Finch and J. C. Stimson studied the subject. The adsorption of argon by platinum was observed by M. W. Travers to be very small. The absorption of argon by the electrodes in discharge tubes was discussed by L. Troost and L. Ouvrard, B. Brauner, S. Friedländer, J. M. Eder and E. Valenta, and H. Kayser; and of krypton, by J. N. Collie, E. C. C. Baly, and S. Valentiner and R. Schmidt, and likewise also with xenon. W. Ramsay and co-workers, and V. Kohlschütter and co-workers, observed no combination with helium, neon, argon, krypton, and xenon. J. N. Collie suggested the possibility of a combination with xenon. F. Fischer and co-workers observed no sign of a combination with argon when platinum is spluttered in liquid argon. W. T. Cooke, and W. Frankenburger and co-workers studied the subject. H. Damianovich and co-workers compared the action of helium on platinum in an electric discharge with the product in oxygen, nitrogen, and hydrogen. H. Damianovich found that the rate of dissolution of platinum in aqua regia decreases with absorbed gases in the order He, O₂, N₂. P. M. Niccolini ² discussed the odour of the element.

Ordinary platinum contains much occluded gas which is very difficult to remove. A. Berliner ³ estimated that the metal contains roughly 80 vols. of occluded gas. Platinum freed from occluded gases can be readily recharged with gas. L. Mond and co-workers found that platinum foil at ordinary temp. gives off very little gas, but at dull redness it gives up 0.4 times its vol. of gas—chiefly carbon dioxide. B. Delachanal observed:

	Π_2	CH ₄	CO	CO_2	N_2
144 grms. Pt .	3.65	0.47	4.05	0.70	1·31—10·20 e.e.
146 grms. PtIr	3.65	0.87	3.60	0.60	1:08- 9:80 e.c.

150 grms. of platinum black occluded 17 c.c. of gas—15·3 c.c. were absorbed by potash lye, and the remainder was incombustible. D. Tommasi gave for the absorption coeff. 1·75 for hydrogen, 9·35 for oxygen, 9·42 for sulphur dioxide, and 65·00 for carbon monoxide. J. L. Smith found that air condenses on smooth platinum as a film which can be removed by polishing. C. Zengelis observed that when hydrogen is passed into a liquid in which platinum is immersed, the metal adsorbs hydrogen.

The absorption of hydrogen by the platinum metals was noted by H. Becquerel, K. Fischbeck, A. Frumkin and co-workers, G. F. Hüttig, W. Frankenburger and co-workers, W. G. Palmer, J. C. Stimson, T. Wilm, and F. Winteler. A. Sieverts observed that the solubility of hydrogen in compact platinum is very small. A. Mior said that platinum can take up 8.4 times its vol. of hydrogen, but it takes a very much longer time to saturate the metal at ordinary temp. than it does at a higher temp. A. Sieverts and E. Jurisch found that equilibrium is attained very rapidly at a high temp. M. Bodenstein also reported an appreciable solubility at room temp., but A. Sieverts and E. Jurisch thought that some observations must have been misinterpreted, since they found that 100 grms. of compact platinum absorbed at

	409°	827°	1033°	1136°	1239°	1342°
Hydrogen	. (0.006)	0.009	0.021	0.036	0.055	0.084 mgrm.

These results compared with those for nickel are represented by the curves in Fig. 17. T. Graham observed that at a red-heat platinum absorbs hydrogen and

retains it tenaciously at ordinary temp., but it gives off the gas at a red-heat in vacuo. The metal does not change its appearance when it absorbs the hydrogen, but after driving off the gas, it appears to be covered with bubbles. At a red-heat 1 vol. of platinum absorbs 0.17 vol. of gas; platinum black absorbs 1.48 vols. Platinum foil which absorbed 0.76 vol. of hydrogen in 3 hrs. at 100°, absorbed 1.45 vols. at 230°. One vol. of platinum wire made from molten metal absorbs 0.128 to 0.207 vol. of hydrogen at a red-heat; worked platinum (old crucible), 3.83 to 5.53 vols.; worked platinum (old tube), 2.28 to 2.80 vols.; and platinum black, 1.48 vols. Observations were also made by M. Berthelot, A. Mior, W. Odling, W. Skey, L. Anelli, F. H. Pollard, and A. Berliner. The observations of M. C. Boswell, and M. C. Boswell and R. R. McLaughlin, were vitiated by the use of a leaky apparatus. H. Damianovich and C. Christen

Fig. 17.—The Absorption of Hydrogen by Platinum.

studied the action of hydrogen at a low press., and under the influence of an electric discharge. G. Kernot and F. de S. Niquesa studied the absorption of hydrogen by colloidal platinum—vide supra; and S. H. Barstow, by thin films of platinum.

M. von Pirani and A. R. Meyer found drawn platinum does not take up hydrogen at a red-heat. When platinum is heated to a high temp. in hydrogen, the m.p. is depressed 250° to 300°, and the metal becomes brittle. The effect is not due to the occlusion of hydrogen but rather to the presence of a small quantity of a carbonaceous impurity in the hydrogen from which, at or near its m.p., the metal takes carbon. A. Sieverts and W. Krumbhaar showed that molten platinum probably dissolves hydrogen.

T. Graham also found that when platinum is used as the cathode in the electrolysis of water, it can take up as much as 2·19 vols. of hydrogen which is given up at a red-heat in vacuo, or when the hydrogenized metal is used as anode in the electrolytic cell. F. Winteler observed that when spongy platinum is used as cathode, some of the absorbed gas is given off when the circuit is broken. The absorption of electrolytic hydrogen was studied by H. Schlesinger, L. Cailletet and E. Collardeau, A. E. Freeman, E. Root, J. Eggert, M. A. Schirmann, and J. R. Partington.

According to A. Sieverts and E. Jürisch, the absorption of hydrogen by compact platinum at a high temp, is probably a case of simple dissolution, but in the case of platinum black, chemical changes supervene. M. W. Travers, and W. Heald studied the absorption of hydrogen by platinum obtained by cathodic spluttering, and R. Burstein and A. Frumkin, by platinized charcoal. G. Neumann and F. Streintz observed that platinum black takes up 49.30 times its vol. of hydrogen, and G. Neumann, 63:14 to 77:14 vols. L. Mond and co-workers found that under reduced press. platinum black absorbs a certain vol. of hydrogen, and more is absorbed as the press. is raised to 200 or 300 mm., and a further increase of press. is almost without effect since by increasing the press. from 1 atm. to 4½ atm., only one more vol. of hydrogen is absorbed. About 310 vols. of hydrogen are absorbed per unit vol. of platinum black, and of this, 200 vols. are converted by the absorbed oxygen into water, so that only 110 vols. are really occluded by the platinum. Part of the hydrogen can be removed at ordinary temp, in vacuo, and by far the larger proportion at about 250° to 300°, but a red-heat is necessary for its complete removal. The amount of hydrogen absorbed by platinum is very largely influenced by slight traces of impurity. E. Müller and K. Schwabe observed that the quantity of occluded hydrogen depends on the temp. of formation of the metal from its oxide; on the method of preparing the oxide, and on the rate at which the hydrogen is brought in contact with the metal. The freshly-prepared metal can absorb more hydrogen than is the case with the metal which has been kept for some time. L. Mond and co-workers also observed that platinum sponge obtained by heating platinum black to redness has a greater absorption power than platinum sponge made by heating ammonium chloroplatinate. A. de Hemptinne also noted that platinum black which has been heated to 180° suffers a reduction of absorptive power. H. S. Taylor and R. M. Burns found that the number of vols. of hydrogen taken up by 1 vol. of

		•	25°	110°	218°
Platinum sponge			4.05	4.50	4.90
Platinum black			6.85	6.00	4.90

A. F. Benton said that it was here assumed that the absorbed hydrogen is all removed at 110° in vacuo; actually, more than half the absorbed hydrogen is retained by the metal under these conditions. He gave 36.7 vols. as the average absorption by 1 vol. of platinum black at 25° and 1 atm. press. H. S. Taylor and R. M. Burns noted that the absorption power depends on the mode of preparation and is less pronounced the higher the temp. of preparation. R. Burstein and A. Frumkin studied the absorption of hydrogen by platinized charcoal. E. Müller and K. Schwabe observed that the platinum can adsorb initially more hydrogen than is the case if the metal has been degassed before it is allowed to re-adsorb the gas. E. B. Maxted's results on the effect of age on the absorption are summarized in

Fig. 18. A. Sieverts and H. Brüning's curve for the speed of absorption of hydrogen by platinum black prepared by the reducing action of magnesium is shown in Fig. 19, for 25° and also for -20°. E. B. Maxted and N. Hassid observed that

Fig. 19, for 25° and also for -20° . E. B. with 12 grms. of platinum the rates of absorption with different initial concentrations of hydrogen decrease as the absorption concentration at which the gas is added increases. A. F. Benton's curves for the rates of approach to equilibrium at different temp. and pressure, with 4.269 grms. of platinum at 737.7 mm. and at 774.3 mm., are shown in Fig. 20. T. Wilm noted the evolution of heat during the absorption of hydrogen by platinum black, and P. A. Favre observed that the heat developed in the early stages of the absorption is 23.075 cals. per eq. of hydrogen, and in the later stages, 13.528

Fig. 18.—The Heat of Absorption of Hydrogen by Platinum Black.

Cals. L. Mond and co-workers could not confirm this result. The decrease in the values is connected with the union of the hydrogen with the oxygen already occluded by the metal. They gave 68-8 Cals. per gram of hydrogen, or 137-6 Cals. per mol of hydrogen. According to E. B. Maxted, the differential heat of adsorption rises from a low value to a maximum, and finally decreases with further adsorption. The results for two specimens are summarized in Fig. 19. H. S. Taylor

Fig. 19.—Rates of Absorption of Hydrogen.

Fig. 20.—Rates of Approach to Equilibrium.

and R. M. Burns obtained curves which exhibited no maximum, but gradually decreased with an increase in the adsorption concentration; and E. B. Maxted and N. Hassid found that the differential heat of adsorption on platinum is nearly constant between 13,300 and 17,500 cals.; the heat of desorption also was nearly constant between —15,000 and —19,100 cals. G. B. Taylor and co-workers gave 20,000 cals. (approx.) for the heat of adsorption of hydrogen. The subject was studied by E. W. Flosdorf and G. B. Kistiakowsky, P. A. Favre, and A. Montier.

A. de Hemptinne found that platinum black absorbs less hydrogen at -78° than it does at 15°, and if the absorption tube at -78° be allowed to regain a higher temp., a marked absorption of gas occurs at about -40° . Freshly-prepared platinum black has a great absorptive power even at the temp. of liquid air—it can induce the union of hydrogen and oxygen at -190° . A. Gutbier observed a small maximum in the absorption curve at 0° . E. Harbeck and G. Lunge said that when platinum black saturated with hydrogen is cooled from 250°, it takes up the same amount of hydrogen as was given off in raising the temp. H. Baerwald found platinized asbestos absorbs more hydrogen at the temp. of liquid air than it does at room temp. F. H. Pollard also made some observations on the absorptive power of platinized asbestos. The gas molecules which bombard the metal are partly absorbed and partly reflected. The molecules which make non-elastic

collision will be adsorbed if the energy developed does not exceed that of the attraction force of the surface molecules. M. Knudsen, and F. Soddy and A. J. Berry measured what has been called the accommodation coeff. or the energy of exchange between hydrogen and platinum and obtained 0.24 at room temp., and 0.25 at -75°. H. H. Rowley and K. F. Bonhöffer obtained 0.22 at room temp., and 0.37 at -163°. The result with parahydrogen was 10 per cent. smaller at -133°, and at -93°, 15 per cent. smaller than for ordinary hydrogen. N. L. Koboseff and W. L. Anochin studied the subject. A. Sieverts and H. Brüning observed that 2.017 grms. of platinum black, prepared by reduction with formaldehyde, and occupying 0.094 c.c., at 752 mm., absorbed, at 20°, the vols. of hydrogen per vol. of platinum black indicated in Fig. 21. The results with platinum black,

Fig. 21.—The Effect of Temperature on the Absorption of Hydrogen.

Fig. 22.—The Effect of Temperature on the Absorption of Hydrogen.

obtained by reduction with magnesium, for lower temp., are represented by the upper curve, Fig. 22, and there is a break in the curve at about 0°. The lower curve was obtained on a rising temp. with platinum black, obtained by reduction with magnesium, and degasified in vacuo at 200°, and hydrogen introduced at -120° —first under reduced press. and finally at atm. press. The temp. was then slowly raised 20° every half-hour up to 100°, and then cooled again to -120° . The absorption curve obtained is indicated in Fig. 23. The absorption isotherms were studied by W. G. Palmer.

Fig. 23.—The Effect of Temperature on the Adsorption of Hydrogen.

Fig. 24.—The Effect of Ageing on the Adsorption of Hydrogen.

A. F. Benton observed that for pressures, p mm., the vol. of gas, c.c. at n.p. θ , absorbed by 4.269 of grms. of platinum black:

A. Sieverts and H. Brüning's results for the effect of press. on the absorption at different temp. are summarized by the curves, Fig. 25, with platinum reduced by magnesium; the dotted curves represent the results with platinum black reduced

by formaldehyde. The adsorption curve has the form $x=ap^{1/n}$, or $x=ap^{0.12}$. W. R. Ham, and G. Borelius gave more complicated expressions.

Observations showing the diffusion of hydrogen in platinum were made by T. Graham, H. von Helmholtz, M. Bodenstein, H. Reischauer, V. Lombard,

E. Waldschmidt-Leitz and F. Seitz, G. C. Schmidt and T. Lücke, W. W. Randall, V. Lombard, R. Köhler, G. Borelius, A. E. Freeman. M. Thoma, A. L. Ferguson and G. Dubpernell. F. H. Pollard, and W. Nernst and F. Lessing. R. Jouan compared the rates of diffusion of H¹ and H². A. Winkelmann observed that the rate of diffusion increases after the platinum has been heated some time, and that this is due not to the expulsion of occluded air, but rather to the crystalline structure assumed by the metal. The diffusion of hydrogen through red-hot platinum is not proportional to the press, of the gas: and it is probable that the diffusion is accompanied by a dissociation of the molecules so that only atoms of hydrogen diffuse in the metal. Analogous results were obtained with palladium. O. W. Richardson and co-workers found that the rate of diffusion is proportional to the square root of the press., and they also assume that it is atomic hydrogen which diffuses in the metals. W. C. Heraeus and W. Geibel studied the diffusion of hydrogen through red-hot platinum crucibles; the hydrogen present in the inner zone of the Bunsen flame diffuses through the hot platinum into the interior of a platinum crucible heated in this part of the flame. This

Fig. 25.—The Effect of Pressure on the Adsorption of Hydrogen.

hydrogen can reduce very energetically; thus, ferric oxide is partially reduced to iron, magnesium sulphate to sulphide, sodium sulphate to sulphite, etc. Consequently, a platinum crucible containing anything which on reduction would yield a substance capable of attacking platinum may be destroyed if heated in the inner zone of a Bunsen flame.

M. Traube assumed that a platinum hydride is formed when platinum is used as a catalyst in hydrogenation reactions; and similarly with T. Graham, L. Troost and P. Hautefeuille, and M. Berthelot. J. H. Gladstone and A. Tribe also suggested that part of the hydrogen occluded in platinum is chemically combined, and L. Wöhler came to a similar conclusion. F. Winteler found that when a film of platinum on glass in hydrochloric acid is touched with a piece of zinc, a dark film with a metallic lustre immediately forms on the surface of the acid, and he regarded this as a platinum-hydrogen alloy. R. Engel showed that when platinum hypophosphite, suspended in water, is treated with copper sulphate, some platinum passes into soln, and some platinum hydride, as well as copper hydride, is formed. H. A. Wilson suggested that a platinum hydride, stable at a high temp., is formed when an electrical discharge is sent through hot platinum electrodes in hydrogen. F. Mohr, H. Moissan, and G. F. Hüttig studied the subject. The discontinuity in the temp. of an electrically heated wire and the absorption of heat was attributed by A. Farkas and H. H. Rowley to the formation or decomposition of hydrides.

M. Berthelot showed that spongy platinum absorbs several times its vol. of hydrogen, forming a hydride which is not decomposed at 200°, only 1 vol. of gas being expelled at that temp. When oxygen in the cold is passed into the evacuated globe containing the hydride, water is formed, with evolution of 50 Cals. per 16 grms. oxygen, from which it may be deduced that 1 grm. of hydrogen

absorbed by spongy platinum and capable of being oxidized in the cold by free oxygen, evolves 9.5 Cals. Platinum black prepared by reducing a soln. of a platinum salt with formic acid, does not evolve any gas when heated to 500° or 600° in vacuo, 62.255 grms. of the platinu mblack absorbed 0.0342 grm. hydrogen in the cold, with evolution of 14.2 cals. per grm. of hydrogen absorbed, and formation of two hydrides: in vacuo this loses 23 c.c. or 0.02 grm. hydrogen, and on passing oxygen over it, the increase of weight is 0.0765 grm, with development of 51.6 Cals. per 16 grms. oxygen, which is equivalent to 0.0091 grm. of hydrogen. Consequently, 0.0226 grm. of hydrogen, or nearly two-thirds of the gas, remains as a hydride, which is not oxidized by oxygen in the cold. This hydride is decomposed by gradually heating it to the temp. at which glass softens. The heat of formation of the less stable hydride is +8.7 Cals., H=1 grm., that of the more stable being nearly double, or +17 Cals. The proportion of the total weight of hydrogen absorbed to platinum=1 to 20, while in the more stable hydride it is 1 to 30. Platinum black prepared by reducing platinum in alkaline soln. always contains oxygen possibly as suboxide. The hydrogen absorbed is used partly in the reduction of the oxide, partly in the formation of hydride. The absorption of hydrogen in this case is attended with the evolution of +12 Cals. per grm. of gas absorbed, but a small quantity of water is formed at the same time. Of the hydrogen absorbed, one-fifth is oxidized by oxygen in the cold, whilst four-fifths require a higher temperature. H. Dobretsberger studied the effect of absorbed hydrogen on the highfrequency resistance; and G. Tammann, of cold-work. Observations on the heat of absorption were made by P. A. Favre, but E. Rothe did not think the results were accurate. H. S. Taylor, E. Waldburger, L. P. Hammett and A. E. Lorch, and O. Schmidt studied the activation of hydrogen by platinum.

E. C. Auerswald, and C. Paal and C. Auerswald prepared a colloidal soln. of platinum hydride by treating a colloidal soln. of platinum, protected by sodium lysalbate, alternately with hydrogen and exposure to air. When the hydrosol of platinum hydride is shaken with mercury, a hydrosol of platinum amalgam and free hydrogen are formed. N. Bach studied the properties of suspensions of platinized carbon. The state of the absorbed hydrogen was discussed by H. Schröder. L. Mond and co-workers observed no evidence in favour of the assumption that definite platinum hydrides, Pt₃₀H₃ or Pt₃₀H₂, are formed.

E. Bose concluded that the gas absorbed by the cathode is wholly or partially dissociated into single atoms. It is inferred that the catalytic activity of platinum in hydrogenation reactions is due to the accumulation of hydrogen ions at the surface of the metal, and therefore the seat of the catalytic activity is in the neighbourhood of the surface, and not in the metal itself. The subject was discussed by E. Müller and K. Schwabe, E. B. Maxted and G. J. Lewis, G. Bredig and R. Allolio, P. Anderson, G. Vavon, F. Horton and A. C. Davies, V. S. Sadikoff and A. K. Mikhailoff, R. Köppen, T. Kariyone, M. C. Boswell and C. H. Bayley, L. Kandler and C. A. Knorr, M. Calvin, and G. Vavon. Y. Venkataramaiah and M. V. N. Swamy noted that hydrogen is activated by diffusion through platinum, I. Langmuir showed that probably the surface of the platinum, at press. below 1 bar, is covered with a layer of gas of the thickness of 1 atom or 1 molecule. This layer is not removed at 360°, and there is very little more absorption when the press. is raised to 200 bars, because layers thicker than a molecule are not formed. The metal is saturated where a unimolecular layer is formed. On this assumption, A. F. Benton said that the mol. vol. of platinum black is approximately 9.30, and therefore, the vol. occupied by each platinum atom is 1.53×10^{-23} c.c., and the area assignable to each atom in a platinum surface is 6.2×10^{-16} sq. cm. There are then 1.6×10^{15} atoms per sq. cm., and if the assumption be made that each platinum atom on the surface holds 1 atom of adsorbed gas, there must be 0.80×10^{15} mols. of hydrogen or carbon monoxide adsorbed per sq. cm. of surface. In other words, 3.0×10^{-5} c.c. of gas is required to form 1 sq. cm. of such an adsorbed layer. A. F. Benton observed an average of 37.3 c.c. of hydrogen per c.c. of

platinum, and hence inferred that the platinum black had a surface area of 1.3×10^6 sq. cm. per c.c., or 6.0 sq. metres per gram. The subject was discussed by A. Eucken, and M. Polanyi. E. Müller and K. Schwabe observed that of the hydrogen adsorbed by reduced platinum, 53 to 69 per cent. is irreversibly absorbed (indicating chemical combination) and the remainder is reversibly absorbed (indicating molecular penetration in the lattice or simple soln.). P. Anderson showed that hydrogen just removed from hydrogenized platinum is more chemically active than ordinary hydrogen in reducing copper oxide, and sulphur. S. Roginsky, and C. Y. Meng and co-workers studied the ionization of hydrogen gas in contact with platinum; J. Horiuchi and M. Polanyi, the ionization of hydrogen at a platinum electrode in alkali lye; and E. B. Maxted and C. H. Moon compared the ratio of adsorp-

tion of light and heavy hydrogen.

According to G. Bredig and R. Allolio, and W. Frankenburger and K. Mavrhofer. X-radiograms show that the space-lattice expands 0.9 per cent. when the metal has absorbed the gas. A. Osawa found that the arrangement of the atoms in the space-lattice of platinum black is not changed by the absorption of hydrogen, but there is a linear expansion of 2.4 per cent. indicating that the gas enters into the space-lattice of the metal. F. Horton and A. C. Davies found that positive ions were produced when a positively charged plate is bombarded with electrons with a minimum velocity corresponding with 13 volts, and the effect is due not to hydrogen, but to platinum. L. V. Pisarshevsky supposed that the catalytic action and in hydrogenation is due to the splitting of the hydrogen atom into electron and The subject was studied by B. Batscha, J. E. Nyrop, and R. Adams K. and L. Packendorff studied platinum as hydrogenation and de-hydrogenation catalyst. G. I. Finch and J. C. Stimson, and N. R. Dhar inferred that ions are emitted by platinum when it absorbs a gas, and these ions account for the catalytic activity of the metal. G. Bethe studied the effect of platinum on the photoelectric properties of hydrogen; and A. Féry, the effect of hydrogen on the electrical resistance. K. Bennewitz and P. Günther found that the resistance of platinum wire at 750° to 850° decreases during the absorption of hydrogen, and increases when the gas is extracted. The change in resistance depends on the temp. and, somewhat below 1200°, the change is very slight. At higher temp., the resistance increases during the absorption of hydrogen; this is accompanied by the formation of larger metal crystals, a loosening of the texture of the metal, and a diminution in contact between the individual crystal surfaces. H. Damianovich noted the change in the microstructure of platinum after exposure to the electric discharge in hydrogen. K. F. Bonhoeffer and co-workers, and P. H. Emmett and R. W. Harkness, studied the effect of platinum on the parahydrogen conversion; P. H. Emmett and R. W. Harkness, and A. and L. Farkas, the displacement of light by heavy hydrogen; and J. Horiuchi and M. Polanyi, the distribution of heavy hydrogen between water and the hydrocarbons. C. Paal and A. Schwarz found that hydrogen is oxidized at ordinary temp. in the presence of a colloidal soln. of platinum; D. P. Smith, F. W. Reynolds, and A. Coehn and K. Sperling studied the effect on the electrical resistance; and A. Janitzky, the effect on the current passing through a vacuum tube with a glowing cathode.

S. Vassilieff and A. Frumkin observed that mercuric chloride is strongly adsorbed by platinized charcoal and is not displaced when the latter is saturated with hydrogen. The addition of a mol. of mercuric chloride per atom of platinum suffices to abolish the capacity of the charcoal to assume a higher oxygen potential, i.e. it adsorbs the same quantity of acid as unplatinized charcoal. In an acid medium, desorption of acid by hydrogen is not affected by the presence of mercuric chloride. If, however, the mercuric chloride is adsorbed from an alkaline solution, or is previously "fixed" by means of hydrogen, the platinum is poisoned and desorption of acid is incomplete. Reduction of adsorbed oxygen by means of hydrogen is also inhibited under similar conditions. Mercuric chloride influences only slightly the development of a hydrogen potential by oxygen-free charcoal.

F. P. Bowden and E. K. Rideal, F. W. Reynolds, and O. Erbacher studied the active surface of platinum; G. Käb, the influence of adsorbed gas on the

catalytic activity; and J. C. Stimson, the electrical state of the metal.

O. Loew and K. Aso 4 observed that when moist platinum black has been exposed to air for some time, it contains nitric acid and traces of ammonia. J. W. Döbereiner, and T. J. Pelouze and E. Frémy showed that compact platinum absorbs oxygen when heated to a high temp. Neither T. Graham, nor T. Wilm detected any absorption of oxygen when platinum is heated in air. A. Sieverts found a little oxygen is taken up by a platinum wire heated in oxygen; G. Bodländer and K. Köppen said that oxygen is absorbed between 700° and 900°; C. Langer and V. Meyer noted an absorption occurs at 1690°; and E. Goldstein, at a white-heat. The absorption of oxygen was also observed by A. Magnus, E. F. Smith, V. A. Roiter and M. G. Leperson, J. C. Stimson, G. I. Finch and J. C. Stimson, B. Neumann and E. Goebel, L. H. Reyerson and L. E. Swearingen, H. Reischauer, and L. Holborn and F. J. Austin; and E. Bose said that the absorption is due to a process of solution, and not to the formation of a compound. R. Lucas said that purified platinum does not absorb oxygen, but platinum containing iridium does not do so with activated oxygen. R. Schwarz and W. Kunzer found that an oxide is formed. F. E. Carter said that the finely-divided metal, in oxygen, begins to form black platinum monoxide at 450°, that this oxide at 500° forms platinum and its dioxide, and that the dioxide at 500° furnishes platinum and oxygen. According to E. K. Rideal and O. H. W. Jones, the loss in weight of a platinum wire heated electrically, to 1400° K. to 1900° K., in a glass bulb immersed in liquid air, is greater in oxygen than in vacuo. This is in agreement with the observations of R. Nahrwold, G. Owen, W. Stewart, and J. Elster and H. Geitel. E. K. Rideal and O. H. W. Jones infer that two reactions are involved; (i) a surface reaction between the platinum and oxygen at a rate which is directly proportional to the press., p, of the oxygen; and (ii) a reaction which occurs simultaneously between the platinum vapour and the oxygen. The combined effect is represented by the equation -dp/dt = a + bp, where a and b are constants. Below 1700° K., and above that temp, when p is less than 50 bars, the second reaction: Pt+ O_2 --Pt O_2 , predominates. I. Langmuir suggested that the alteration in the speed of the reaction at high press, and temp, is due to the concentration of ozone, or of oxygen atoms, but E. K. Rideal and O. H. W. Jones consider this to be less likely than the hypothesis of a surface reaction. H. H. Rowley and K. F. Bonhöffer found the accommodation coeff. of oxygen to be 50 per cent. higher than for hydrogen (q.v.). H. Damianovich and J. Piazza studied the action of hydrogen at a low press. under the influence of an electric discharge. H. Damianovich observed that platinum with adsorbed gases dissolves at a lower speed in aqua regia. R. Schwarz and W. Kunzer found that with activated hydrogen some hydride is formed.

L. Mond and co-workers found that although platinum foil at ordinary temp., or at a red-heat, does not absorb appreciable quantities of oxygen, yet two samples of platinum sponge at a red-heat absorbed respectively 2·4, and 0·5 vol. of oxygen. Platinum black was found to absorb relatively large proportions of oxygen—about 100 times its vol. The evolution of the absorbed oxygen is appreciable at 100°, and between 300° and 400°, the rate of evolution is very great, but a red-heat is necessary for its complete removal. Curves for four different specimens of platinum black are indicated in Fig. 27. While hydrogen is given off when the metal is heated, oxygen is absorbed at temp. below 300°, and given off at 360°. A. de Hemptinne observed that platinum black always contains a considerable proportion of absorbed oxygen. G. Neumann found that at 450°, platinum takes up 63 to 77 vols. of oxygen; L. Wöhler, that when platinum black is heated six weeks at 109° to 280° in air, it takes up 2·3 per cent. of oxygen; H. S. Taylor and R. M. Burns found that 1 vol. of platinum sponge absorbed 1·90, 2·80, and 4·30 vols. of oxygen, respectively, at 25°, 110°, and 218°; and platinum black, 26·50 and 26·10 vols.

of oxygen, respectively, at 25° and 110°. A. F. Benton obtained as an average at 25° and 1 atm. press., an absorption of 20·4 vols. The rates of approach to equilibrium at different temp., θ , and press., of two samples are indicated in Fig. 26. P. Grandadam, and P. Laffitte and P. Grandadam studied the absorption of oxygen by platinum sponge or platinum black when heated in oxygen under press. A. Sieverts observed that 30·45 grms. of platinum wire heated in vacuo gave

		20°	200°	400°	600°	800°	1000°
O_2		0.11	0.11	0.14	0.18	0-18	0.29 c.c.
Time		0	35	65	80	96	110 minutes.

C. Paal and C. Amberger observed that colloidal platinum readily takes up oxygen from the air, and the elementary hydrosol is not regenerated when the sol is treated with hydrogen.

W. W. Randall found that oxygen does not diffuse through heated platinum; but A. L. Ferguson and G. Dubpernell discussed the transfer of electrolytic oxygen

Fig. 26.—The Rate of Approach to Equilibrium.

Fig. 27.—The Evolution of Oxygen from Platinum Black at different Temperatures.

through the metal. J. Thomsen observed that the affinity of platinum for oxygen is small. According to I. Langmuir, a platinum filament at temperatures above 1600° K. gradually causes the removal of oxygen at low pressures. The oxygen combines with the platinum atoms as fast as they evaporate from the filament, and forms the dioxide, which collects on the bulb as a brown deposit. G. B. Taylor and co-workers gave approximately 65,000 cals. for the heat of adsorption; and E. B. Maxted and N. J. Hassid, 60,000 cals. per gram mol. of oxygen. H. St. C. Deville and H. Debray said that platinum is never found as a mineral associated with oxygen; T. Wilm noted that platinum obtained by the ignition of the ammines or ammonium salts at a red-heat in air is not oxidized; and no sign of oxidation occurs when platinum sponge is heated to redness in air. H. le Chatelier added that under suitable conditions of temp. or press., the metal may be oxidized. Y. Okayama studied the subject. W. Skey noted that the surface of the metal exposed to air liberates iodine from a dil. soln. of potassium iodide in dil. sulphuric acid; J. L. Smith also noted the condensation of air on the surfaces of platinum crucibles. According to W. Skey, platinum which has been "in contact for a short time with distilled water, ammoniated water, or with aq. soln. of the alkalies, carbonates or chlorides," will not amalgamate. Acids, on heating to about 200°, restore the amalgamable condition; and G. Meissner, H. Rumpelt, and B. Dessau showed that a film can be detected optically on platinum heated in air or oxygen—vide supra, the volatilization of platinum. H. Damianovich noted a change in the microstructure of platinum after exposure to the electric discharge in oxygen. A. Féry studied the effect of adsorbed oxygen on the electrical resistance.

The heat developed during the occlusion of oxygen by platinum was found by L. Mond and co-workers to be 11.0 cals, per gram of oxygen, and since this is almost the same as the value given by J. Thomsen for the heat of formation of platinous hydroxide, the two phenomena may be related, the necessary water being present in platinum black dried in vacuo. They finally concluded that the occlusion of oxygen by platinum or palladium is a true oxidation phenomenon. According to L. Wöhler, and C. Engler and L. Wöhler, platinum black containing occluded oxygen turns potassium iodide starch solution blue; it is somewhat soluble in dilute hydrochloric acid, the weight of platinum in solution is less than the weight of platinum black dissolved, and if the difference be attributed to oxygen it is found that the ratio of platinum to oxygen agrees well with PtO; the amount of oxide present in the platinum sponge depends on the state of division. It does not easily amalgamate, and the amalgam formed becomes covered with a film of the black oxide; hydrogen dioxide does not reduce it in the cold, but on boiling, complete reduction takes place, and it is also reduced by alcohol, ether, and other organic substances; in absence of air, it oxidizes arsenious to arsenic acid, and the residue loses its spongy character and becomes granular. It is further shown that the properties of active platinum sponge closely resemble those of platinous oxide, in confirmation of the theory of A, de la Rive that in the catalysis by platinum black, the intermediate active agent is this oxide. However, platinum sponge free from oxide causes more active oxidation than does platinous oxide, and this is explained by C. Engler and W. Wild's theory of the intermediate formation of peroxide and secondary formation of oxide, which takes place more readily with the finely-divided sponge than with the more compact platinous oxide. R. Vondracek also inferred that platinum black contains a very labile compound of platinum and oxygen; and E. Goldstein, that in the electrical discharge in oxygen with platinum electrodes, a compound of platinum and oxygen is formed, that the absorption of oxygen is very rapid if the electrodes are at a high temp., and that the faculty of platinum to form these oxides is connected with its catalytic activities. P. Laffitte and P. Grandadam found that platinum is oxidized when heated between 300° and 500° at 50 to 200 kilogrms. per sq. cm. press. At the optimum temp., 455°, spongy platinum at 4 atm. press. increased in weight 2.1 per cent.; and at 150 atm. press., 7.37 per cent., and platinum black increased 13.96 per cent. The product is a mixture of platinum monoxide and dioxide. F. C. Phillips also noted that the order of the oxidizability of the platinum metals is connected with their faculty of burning hydrogen—namely, osmium, palladium, platinum, and iridium.

Platinum black containing occluded oxygen was found by J. W. Döbereiner 5 to exert an action on hydrogen and other combustible gases or vapours whereby the metal may be heated to redness, and if air has access, the gases may be set on fire. If air or oxygen has not access, the oxidation ceases as soon as the occluded oxygen is consumed, but if air or oxygen has access, the platinum black takes up more oxygen, and transfers it to the combustible body so that the process is continuous. The subject was discussed by A. Adie, W. Artus, A. Baudrimont, A. C. Becquerel, M. Berthelot, M. Bodenstein, R. Böttger, M. C. Boswell and C. H. Bayley, C. Brunner, G. L. Cabot, H. Courcot and J. Meunier, W. Davies, J. W. Döbereiner, F. P. Dulk, P. L. Dulong and L. T. Thénard, A. Fyfe, L. W. Gilbert, F. Gill, C. A. Grüel, G. F. Hänle, H. Karmarsch, W. Klinkerfues, W. Knop, J. von Liebig, G. Merryweather, G. Merz, C. F. Mohr, F. Parmentier, C. H. Pfaff, M. V. Poljakoff and co-workers, P. W. Schmidt, C. F. Schönbein, J. S. C. Schweigger, H. A. von Vogel, A. Wagner, E. O. Wiig, and T. Wilm. A. Osawa found that the arrangement of the atoms in the lattice of platinum black is not changed by the adsorption of oxygen, but there is a linear expansion of 2.9 per cent. The inflammation of hydrogen was described by A. Garden, C. G. Gmelin, W. Herapath, and A. Pleischl; of alcohol, or ether vapour, by S. F. Dana, K. Fuchs, H. B. Miller, and G. Schübler; and the self-ignition of coal

gas, by J. Bischof, W. Boehm, R. Böttger, E. Breslauer, H. Bunte, J. F. Duke, W. F. Gintl, C. Killing, J. Klaudy and O. Efrem, W. Klinger, W. Klinkerfues, J. Lewis, V. Nicolardot, E. Nowack, W. von Olderhausen, E. Orloff, F. Parmentier, J. Perl, H. Schröter, G. Sulbach, and numerous others.

K. A. Hofmann and O. Schneider 7 found the catalytic activity of the platinum metals in oxidizing hydrogen in the presence of sodium chlorate decreased in the order Pt. Rh. Ru. Pd. Au. Os. Ir. Ag. The catalysis of the reaction between hydrogen and oxygen by platinum, platinum black, platinum sponge, and colloidal platinum was discussed by M. Bodenstein, J. Böeseken and co-workers, W. A. Bone and R. V. Wheeler, M. C. Boswell and C. H. Bayley, G. Bredig and R. Allolio, D. L. Chapman and P. W. Reynolds, P. D. Dankoff and A. A. Kochetkoff, N. R. Dhar, R. P. Donnelly and C. N. Hinshelwood, E. Drechsel, C. Ernst, J. Field, G. I. Finch and co-workers, B. Foresti, W. French, A. Frumkin and co-workers, J. Gerum, W. Hartmann, A. de Hemptinne, H. Hess, K. A. Hofmann, K. A. Hofmann and co-workers, F. Hoppe-Seyler, J. Horiuti and M. Polanyi, N. I. Koboseff and V. L. Anochin, I. Langmuir, L. L. Lockrow, G. Maneuvrier and P. Chappuis, E. von Meyer, L. Mond and co-workers, W. Müller, E. Orloff, C. Paal and J. Gerum, C. Paal and A. Schwarz, L. V. Pisarschevsky, M. V. Polyakoff and P. Stadnik, H. Remy and co-workers, S. J. Roginsky and A. B. Schechter, R. Ruer, F. F. Rupert, O. Sackur, H. G. Tanner and G. B. Taylor, G. B. Taylor and co-workers, L. Vallery, R. Vondracek, E. O. Wiig, and R. Willstätter and co-workers. W. Davies discussed the rate of rise of temp. of the platinum—combustion begins at 200°; the effect of temperature was studied by A. Berliner, A. de Hemptinne, and A. Schrotter; the effect of pressure, by P. J. Kirkby; the effect of X-rays, by P. H. Emmett and E. J. Jones; the effect of light, by W. French, and P. H. Emmett and E. J. Jones; the null-effect of X-rays, by P. H. Emmett and E. J. Jones; the effect of retarding agents or "poisons," by S. Vasileff and F. Frumkin, N. R. Dhar, C. Moureu and C. Dufraisse, F. Krüger and E. Taege, E. W. R. Steacie and J. W. McCubbin, E. Adaduroff and co-workers, G. Vavon and A. Husson, E. B. Maxted and V. Stone, R. W. Raudnitz, R. Böttger, M. C. Boswell and C. H. Bayley, and G. Bredig and co-workers, C. Ernst, R. Höber, and W. Ostwald; the retardation produced by overheating the carrier of the platinum catalyst, by I. E. Adaduroff and co-workers; and the decay of activity of the colloid with time, by H. Damianovich and O. F. F. Nicola.

The oxide theory of catalysis assumes that the platinum forms an unstable oxide which is alternately reduced and re-oxidized $nPt+O_2=Pt_nO_2$; $Pt_nO_2 + 2H_2 = 2H_2O + nPt$; or $Pt_nO_2 + H_2 = Pt_n + H_2O_2$, and $Pt_nO_2 + 2H_2O_2$ $=nPt+2H_2+3O_2$, M. Traube 8 supposed that $nPt+mH_2O_2=Pt_nO_m+mH_2O$, is followed by $Pt_nO_m+mH_2O_2=nPt+mH_2O+mO_2$, and E. Oliveri-Mandala said that M. Traube's hypothesis does not explain the catalysis of ammonium nitrite, hydrazine, hydrazoic acid, and hydroxylamine; and he assumed that the catalyst reacts with water, forming an oxide, and hydrogen. The subject was discussed by F. D. Aguirreche, T. Bayley, B. Batscha, G. Bodländer, J. Böeseken and co-workers, E. Bose, M. C. Boswell and R. R. McLaughlin, G. Bredig and co-workers, J. W. Döbereiner, J. Elster and H. Geitel, T. J. Fairley, W. French, K. Fuchs, F. Haber, R. W. Hall, K. A. Hofmann and co-workers, Kalle and Co., F. Kuhlmann, J. von Liebig, L. Mond and co-workers, E. Mulder, M. Musler, A. A. Noyes and G. V. Sammet, C. Paal and J. Gerum, T. L. Phipson, C. F. Schönbein, E. Schöne, H. H. Storch, M. Traube, A. Trillat, A. Valentini, R. Vondracek, and R. Willstätter and co-workers. The occlusion theory involving a condensation of the gas in the metal, or an activation of the hydrogen by the dissociation of the molecules into atoms, was discussed by W. M. Bayliss, G. Bredig, M. Bodenstein, H. G. Denham, H. von Euler, M. Faraday, W. French, H. von Helmholtz, V. Henri, H. Heymann, C. G. Hüfner, O. Loew, E. von Meyer, B. Neumann, and J. J. Thomson. M. Berthelot discussed the possibility of the formation of intermediate

hydrides; G. T. Beilby, P. J. Kirkby, and B. L. Vanzetti, the emission of ions by the platinum; and D. Tommasi, and O. Loew, to the evolution of thermal energy by the occlusion of the gas. The hydrogenation of organic compounds with platinum as catalyst was studied by H. S. Davis and co-workers. The poisoning of the catalyst by various gases was discussed by G. Bredig and co-workers, C. Engler and L. Wöhler, R. Höber, K. Jablczynsky, A. S. Loevenhart, O. Loew, E. Opl, R. W. Raudnitz, A. Schwarz, and L. Wöhler; and the analogy with ferments, by P. Bergell, T. Bokorny, G. Bredig and co-workers, H. Mouton, and C. F. Schönbein. V. Haas adapted H. E. Armstrong's electrochemical theory to explain the catalytic action of the platinum metals in gaseous or other systems. The catalytic power is attributed to the catalyst playing the rôle of a galvanic element.

Neither moist nor dry **ozone** acts on platinum, but A. Volta ⁹ showed that if the metal is charged with hydrogen, water is rapidly formed. The formation of ozone at the positive end of an electrically heated, red-hot platinum wire was discussed by V. S. M. van der Willigen, J. Elster and H. Geitel, E. St. Edme, and F. P. le Roux. C. H. L. von Babo thought that platinized asbestos in an ozone tube favoured the ozonization; A. W. Williamson, C. F. Schönbein, and E. Mulder and H. G. L. van der Meulen studied the catalytic decomposition of ozone by platinum black. H. G. Thode and A. C. Grubb studied the effect of platinum on the formation of ozone in the corona discharge. Soln. of ozone were found by R. Luther, R. Luther and J. K. H. Inglis, L. Gräfenberg, R. Kremann, M. Targetti, and A. Brand, to be decomposed catalytically by platinized platinum.

According to T. Ihmori, 10 platinum condenses water very slightly; the condensation disappears entirely after rubbing with leather. Old platinum may require heating to redness, probably in order to destroy a film of grease. Observations on the adsorption of water vapour were made by J. W. Smith, S. Lenher, and I. R. McHaffie and S. Lenher. A. Pockels discussed the wetting of platinum by water. L. Mond and co-workers found that platinum black dried at 100° contains 0.5 per cent. of water, and this can only be removed in a vacuum at about 400°, at which temp, the platinum black is converted, at least partially, into spongy platinum. At any given temp, the water retained by platinum black seems to be constant. Vide supra for the synthesis of water from its elements in the presence of a platinum catalyst. F. Foreman said that heated platinum does not decompose water. Water does not oxidize platinum, but W. Skey observed that platinum passes into a state in which it will not amalgamate with mercury when it has been in contact with water for a short time, and he attributed this fact to the formation of a film of oxide or suboxide of the metal. The decomposition of steam by red-hot platinum was studied by H. V. Regnault, and W. R. Grove. M. Traube-Mengarini and A. Scala found that a very small quantity of colloidal platinum is formed when platinum is boiled for a long time with water. L. Wöhler studied the oxidation of platinum black by the decomposition of water. W. Swientoslawsky and S. Bakowsky studied the rate of evaporation of water from a platinum surface. W. Traube and W. Lange observed the catalytic effect of the platinum metals in the decomposition of water by chromous salts. S. Lenher studied the adsorption of water vapour by platinum; and J. W. Smith, by amalgamated platinum. G. B. Taylor and co-workers gave 60,000 cals. for the heat of adsorption of water by platinum.

T. J. Fairley ¹¹ observed that platinum readily dissolves in most acids if they contain **hydrogen dioxide.** C. Marie did not detect any action on platinum exposed to acidic or alkaline soln. of hydrogen dioxide; but with platinum black, L. Wöhler, and R. Vondracek assumed that an oxide is formed—vide supra. L. J. Thénard, W. Skey, and C. F. Schönbein observed that hydrogen dioxide is decomposed by contact with platinum. A. Rius studied the close relation between the potential of a platinum surface and its catalytic activity in the decomposition of hydrogen

R. Wright and R. C. Smith compared the activity of platinum black in relation to the temp. of its preparation; R. Schwarz and M. Klingenfuss, the paralyzing effect of X-rays on the catalytic activity of colloidal platinum; and A. de Gregorio y Rocasolano, that the activity of the sol increases with age to a maximum and then decreases. W. Spring noted that polished platinum decomposes hydrogen dioxide, and R. C. Smith found that washing the surface with alcohol and water, or the presence of a film of grease, inhibits the decomposition. The change in the surface from amorphous to crystalline also decreases the catalytic activity, as in the case observed by G. Vayon. The catalytic effect with compact platinum was studied by A. von Bäyer and V. Villiger, K. Bornemann, H. Damianovich and O. F. F. Nicola, T. S. Glikman, A. de Gregorio y Rocasolano, F. Haber and S. Grindberg, V. Henri, H. Heymann, A. Kailan, G. R. Levi, E. B. Maxted and co-workers, A. R. Miro and N. G. Morales, E. Oliveri-Mandala, M. V. Polyakoff and co-workers, F. Richarz, A. Rius, V. A. Roiter and M. G. Leperson, R. Schwarz and W. Friedrich, I. I. Shukoff and co-workers, A. Sieverts and H. Brüning, J. Sirkin and V. G. Vassiléeff, R. C. Smith, S. Tanatar, J. Teletoff, M. Traube, I. I. Tschukoff and co-workers, F. Weigert, R. Wolff, and R. Wright and R. C. Smith; with platinum black, and spongy platinum, by H. von Euler, M. A. Heath and J. H. Walton, A. Sieverts and J. F. Müller, J. Weiss, and L. Wöhler; with colloidal platinum, by G. Bredig and co-workers, Y. K. Suirkin and I. N. Godneff, A. Lebedew, N. E. Ditman, L. Liebermann and W. von Genersich, and E. B. Spear-C. Paal and C. Amberger placed the colloids in the decreasing order of activity: Os, Pd, Pt, and Ir; the poisoning of the catalytic activity was studied by G. Bredig and co-workers, F. Böck, D. Gernez, A. S. Loevenhart and J. H. Kastle, C. H. Neilson and O. H. Brown, H. V. Tartar and N. K. Schaffer, G. Bredig and W. Reinders, C. Engler and L. Wöhler, J. H. Kastle and C. R. Smith, A. S. Loevenhart and J. H. Kastle, T. S. Price and co-workers, C. F. Schönbein, and L. Wöhler. The favourite theory of the catalytic activity turns on the formation of an unstable, intermediate oxide of platinum, and the subject was discussed by T. Bayley, G. Bredig and co-workers, F. Böck, C. H. Neilson and O. H. Brown, C. Engler and L. Wöhler, and L. Liebermann; there is also the occluded hydrogen theory by W. Nernst, H. J. S. Sand, G. Senter, and J. Teletoff; and the occluded oxygen theory, by H. von Euler. E. Leidié and L. Quennessen, L. Quennessen, F. C. Carter. and P. Nicolardot and C. Chatelot found that sodium dioxide forms an insoluble product when fused with platinum.

H. Moissan ¹² observed that **fluorine** attacks platinum at 500° to 600°, forming platinum difluoride, and he observed that at ordinary temp. platinum is not attacked by purified fluorine, but it is corroded if the fluorine contains the vapour of hydrogen fluoride, or is dissolved in hydrofluoric acid. G. Gore observed that when silver fluoride is decomposed by chlorine in a platinum vessel at a red-heat, some platinic fluoride is formed; bromine under similar conditions also forms platinic fluoride; and similarly also with iodine. W. R. Hodgkinson and F. K. S. Lowndes found that **hydrogen fluoride** attacks a red-hot platinum wire. W. von Bolton found that in contact with platinum hydrofluoric acid acts rapidly on columbium, when without the platinum, heat is required. According to F. C. Carter, the attack by hydrofluoric acid in the cold is negligible.

According to A. Kemp, dry liquid **chlorine** does not attack platinum; and H. Goldschmidt observed that neither chlorine, nor charcoal saturated with chlorine acts on platinum at 250°. P. Schützenberger said that the metal is attacked at 350°. When platinum is heated in chlorine gas, the metal is attacked and platinum chloride is volatilized. The reaction was observed by F. Seelheim, V. Meyer, L. Troost and P. Hautefeuille, and W. R. Hodgkinson and F. K. S. Lowndes. According to C. Langer and V. Meyer, the action of dry chlorine on platinum increases with temp., and between 300° and a yellow heat decreases to almost zero; the action then increases as the temp. rises to 1300°, and is very energetic at 1600° to 1700°. P. Schützenberger observed that dry chlorine at 250°

acts on spongy platinum to form platinous chloride, and the reaction was studied by L. Pigeon. C. Nogareda found that chlorine forms a unimolecular adsorption layer, and that the attack by chlorine molecules between 600° and 850° furnishes PtCl₄; above 1200°, the attack is by chlorine atoms. G. Gore observed that when silver chloride is melted in a platinum crucible in an atmosphere of chlorine, the metal is attacked; and H. Erdmann and O. Hauser found that platinum is attacked when heated with chlorides of the alkalies or alkaline earths in a bunsen flame. For G. Gore's observations on the action of chlorine and silver fluoride, vide supra. C. F. Schönbein also observed that aq. soln. of chlorine attack the metal liberating oxygen; and that platinum black decomposes chlorine water catalytically with the evolution of oxygen. S. Cooke noted that platinum charged with hydrogen acts on chlorine to form hydrogen chloride; O. Ruff and H. Krug observed no action with the metal in contact with chlorine trifluoride.

W. R. Hodgkinson and F. K. S. Lowndes observed that a red-hot platinum wire in hydrogen chloride is attacked; and W. L. Dudley showed that hydrogen chloride in the presence of air or oxygen readily attacks platinum. P. Perotti, and H. Schiff noted that platinum favours the union of hydrogen and chlorine electrolytic gas; and the thermal decomposition of hydrogen chloride in the presence of platinum was discussed by W. Weldon; M. Berthelot observed no action at 550°; and M. G. Levi and O. Garavini observed that the decomposition occurs at 800° to 1100° in the presence of platinum, and at 1500°, without platinum. According to F. C. Carter, platinum is not attacked by hot or cold conc. hydrochloric acid, but T. Wilm, W. L. Dudley, and H. St. C. Deville and J. S. Stas found that precipitated platinum is soluble in hot, conc. hydrochloric acid in the presence of air; and C. Engler and L. Wöhler found that dil. hydrochloric acid partially dissolves platinum black in the absence of air, but if the metal is freed from occluded oxygen, it no longer dissolves. L. Wöhler found that finely-divided platinum, in an atmosphere of carbon dioxide freed from air, is slightly soluble in conc. hydrochloric acid when heated in a scaled tube at 200°. M. Berthelot found that fuming hydrochloric acid does not attack platinum in darkness, but the metal is attacked if exposed to light, and in the presence of manganese dioxide, twice as much platinum is dissolved as in its absence. H. Kinder observed that when iron is deposited electrolytically on platinum, and treated with hydrochloric acid, some platinum passes into soln. with the iron. J. W. Mallet, and C. Matignon found that the metal is slowly attacked by hydrochloric acid in the presence of air, forming, according to A. M. Vasileff, hydrochloroplatinic acid; E. Salkowsky found that the attack is favoured by hydrogen dioxide. According to P. Rudnick and R. D. Cooke, unignited platinum black dissolves in conc. hydrochloric acid in the presence of hydrogen dioxide yielding hydrochloroplatinic acid free from nitrogen compounds. H. E. Patten could detect no appreciable action of a soln. of hydrogen chloride in chloroform, carbon tetrachloride, ethyl chloride, benzene, silicon tetrachloride, stannic chloride, phosphorus trichloride, antimony pentachloride, sulphur monochloride, and thionyl chloride, and with the soln. in arsenic trichloride no greater action was observed than with arsenic trichloride alone. According to C. A. Peters, when a soln. of sodium chloride rests on mercury with a platinum wire connecting both liquids, mercurous chloride and sodium hydroxide are produced. C. Marie observed that an acidic soln. of potassium chlorate slowly attacks platinum. C. F. Schönbein found that in the presence of platinum black, hypochlorous acid decomposes with the evolution of oxygen, and F. Förster and E. Müller represented the reaction: HClO=HCl+O, accompanied by 3HClO=HClO₃+2HCl, and by HClO+HCl=H₂O+Cl₂. E. Schaer noted that the oxidation of some organic substances by this acid is favoured by the presence of colloidal platinum. S. Cooke observed that hydrogenized platinum reduces soln. of potassium hypochlorite to the chloride. W. C. Bray found that platinized platinum favours the decomposition of chlorine dioxide: 6ClO₂+3H₂O=5HClO₃ +HCl. C. F. Schönbein observed that a soln. of indigo-blue is decolorized by

aq. soln. of chloric acid in the presence of platinum black, and similarly with an ad. soln. of perchloric acid. E. V. Zappi recommended a mixture of chloric acid and conc. hydrochloric acid as a solvent for platinum—the activity of the mixture is due to the liberation of chlorine: HClO₃+5HCl=3Cl₂+3H₂O. According to S. Cooke, hydrogenized platinum favours the decomposition of soln, of potassium chlorate, whilst potassium perchlorate is not affected. E. Schaer noted that the oxidation of some organic substances by chloric and the chlorates is favoured by the presence of colloidal platinum. C. Marie noted the attack of platinum by a soln. of potassium chlorate in N-H₂SO₄; and R. Vondracek observed that when ethyl alcohol is boiled with an aq. soln. of potassium chlorate in presence of platinum black, the chlorate is reduced, but there is no reduction in the absence of platinum. A similar reduction of chlorate takes place when dextrose is oxidized by potassium chlorate in presence of platinum black. C. F. Schönbein found that soln. of indigo-blue are decolorized by aq. soln. of potassium chlorate, in the presence of platinum black; and O. Loew and K. Aso, that soln, of potassium chlorate and perchlorate are reduced to chloride by glucose in the presence of platinum black. H. Sirk, and F. Förster and E. Müller noted that the presence of platinum favours the evolution of chlorine from a mixture of potassium chlorate and hydrochloric acid; and E. Wiederholt found that platinum black favoured the evolution of oxygen from potassium chlorate at 260° to 270°, and the action was studied by W. R. Hodgkinson and F. K. S. Lowndes, E. Baudrimont, and R. Böttger.

According to A. J. Balard, bromine in the cold does not act on platinum, and J. von Liebig observed no action at a red-heat. W. R. Hodgkinson and F. K. S. Lowndes observed that the attack on heated platinum is shorter than is the case with chlorine, and C. Langer and V. Meyer obtained similar results with bromine as those observed with chlorine. C. Nogareda found that above 1200°, bromine atoms attack platinum yielding platinous and platinic bromides. J. Urmston and R. M. Badger studied the photochemical reaction between bromine and platinum. R. Wagner said that soln. of bromine in water or hydrochloric acid have no action on platinum. For G. Gore's observations with silver fluoride and bromine, vide supra. J. Urmston and R. E. Badger studied the photochemical reaction between bromine and platinum. W. R. Hodgkinson and F. K. S. Lowndes observed that hydrogen bromide attacks a red-hot platinum wire. C. F. Schönbein found that a soln. of indigo-blue is decolorized by bromic acid in the presence of platinum black. E. Schaer noted that the oxidation of some organic substances by bromic acid and the bromates is favoured by the presence of colloidal platinum. J. S. Stas observed that molten potassium bromide does not attack platinum unless potassium bromate is also present—for G. Méker's observations, vide infra.

According to J. L. Lassaigne, the action of iodine on platinum is questionable, but with spongy platinum the heated metal forms a little iodide; and W. R. Hodgkinson and F. K. S. Lowndes likewise observed that under analogous conditions, traces of platinous iodide are formed. G. van Praagh and E. K. Rideal observed that at relatively low temp. iodine vapour does not attack the metal, but at about 1027°, the molecule of iodine dissociates, and at about 1127° the atomic iodine attacks the metal to form PtI and PtI2. The combined rate of the reaction at lower temp. is represented by -dp/dt = a + bp, where p is the press. and a and b are constant. The a term is due to the formation of a unimolecular layer of PtI on the surface of the platinum, which evaporates at a rate independent of the press.; and the term bp is due to the formation of PtI2 by the attack of the phosphorus layer by iodine atoms at a rate proportional to the press. of the iodine vapour. The rate of formation of PtI₂ rapidly becomes negligible in comparison with that of PtI. Below a certain critical press. the surface of the metal is bare, and the formation of PtI becomes a reaction of the first order. The reaction was studied by L. Jacobs and H. K. Whalley, C. Nogareda, G. E. Pringle and G. van Praagh, and G. van Praagh. L. Wöhler, and C. Engler

and L. Wöhler noted that a small quantity of iodine is absorbed by platinum black from 0.01N-soln. of iodine. W. R. Hodgkinson and F. K. S. Lowndes observed that with a red-hot platinum wire in the vapour of iodine chloride, platinous chloride, and traces of the iodide are formed. W. Engelhardt found no action occurs between colloidal platinum and iodine. W. Pullinger observed that platinum is attacked by a soln, of iodine. For G. Gore's observations on the action of iodine and silver fluoride, vide supra. M. Bodenstein and V. Meyer noted the union of hydrogen and iodine is favoured by hot platinized asbestos. C. N. Hinshelwood and R. E. Burk, and A. Oelander studied the decomposition of hydrogen iodide on a platinum surface. H. St. C. Deville observed that hydriodic acid has virtually no action on platinum, and W. Pullinger found that platinum sponge dissolves in hydriodic acid to form platinic iodide. According to C. F. Schönbein, a soln. of hydriodic acid, or an acidic soln. of potassium iodide, liberates iodine in the presence of platinous black, but not so with neutral soln. of potassium iodide; on the other hand, L. Wöhler observed that in air, on a waterbath, iodine is slowly liberated by platinum black from a neutral soln. of potassium iodide. The platinum black loses this property if it has been preheated to a high temp. If the platinum black is freed from occluded gases it has no action on soln. of potassium iodide, but it becomes active if it be exposed to air anew. W. Skey noted that platinum loses its power of liberating iodide from potassium iodide soln. by calcination, or by washing with ammonia or alkaline soln., and it becomes active again if it be exposed to air, or digested with hydrochloric or sulphuric acid—hot or cold. G. Just observed that platinum foil which has been dipped in a soln. of potassium ferricyanide and thoroughly washed, can liberate iodine from a soln. of potassium iodide. H. Danneel observed that if a soln, of hydriodic acid be shaken with finely-divided platinum and silver, in an atmosphere of hydrogen, silver iodide is formed. The reaction is reversible. H. S. Taylor studied the decomposition of potassium iodide on platinum surfaces. A. Connell observed that iodic acid has no action on platinum, and C. F. Schönbein found that a soln. of indigo-blue is decolorized by iodic acid or by a soln. of potassium iodate in the presence of platinum black at ordinary temp., and O. Loew and K. Aso, that potassium iodate is reduced to iodide by glucose and platinum black. G. Lemoine studied the catalytic effect of platinum on the reaction between iodic and oxalic acids. E. Schaer noted that the oxidation of some organic substances by the iodates is favoured by the presence of colloidal platinum.

There are two groups of catalyzed reactions: I. Homogeneous catalysis in which the catalyst is not separated by a boundary surface from the reacting mixture—e.g. water vapour in the oxidation of carbon monoxide; and of hydrochloric acid in the hydrolysis of ethyl acetate. II. Heterogeneous catalysis in which the catalyst exposes a boundary surface to the reacting mixture—e.g. in the contact catalysis of manganese dioxide in the decomposition of potassium chlorate, there is a solid-solid boundary surface; with platinum in the oxidation of sulphur dioxide there is a gas-solid boundary surface; and with mercury in the decomposition of hydrogen peroxide, there is a liquid-liquid boundary surface. There are two main explanations of the way heterogeneous catalysts do their work:

(i) The intermediate compound theory exemplified by the so-called chain reactions, or cyclic reactions. Thus, J. Mercer (1842) attributed the action of manganese dioxide on potassium chlorate to the cycle with $\mathrm{Mn_2O_7}$ as the intermediate compound; similarly, T. Fleitmann (1865), the effect of cobalt salts on the production of oxygen from hypochlorites to the alternate formation and decomposition of a higher cobalt oxide; A. de la Rive (1834), and C. Engler (1901), the action of platinum on the union of hydrogen and oxygen which is taken to involve the formation of superficial films of oxide in the cyclic reactions: $2\mathrm{Pt} + \mathrm{O_2} = 2\mathrm{PtO}$, followed by $\mathrm{PtO} + \mathrm{H_2} = \mathrm{Pt} + \mathrm{H_2O}$; and G. Bredig and A. von Antropoff (1906), the effect of mercury on the decomposition of hydrogen peroxide to the formation of mercury peroxide as an intermediate compound.

- (ii) The condensed film or adsorption theory, exemplified by the so-called wall-reactions, was suggested by M. Faraday (1833), in which the gases—say hydrogen and oxygen—are condensed on the surface of the catalyst; and it is assumed that under the pressure due to surface forces the gases can react more rapidly since it is known that high pressures usually augment the reactivity of gases. Thus, N. Beketoff (1859), and W. Ipatéeff (1909), have shown that hydrogen gas under high pressures can displace silver and several other metals from solutions of their salts.
- T. Graham (1868) thought it possible that when a metal adsorbs a film of gas, the gas molecules are orientated in such a way that the same parts of the molecules are all in direct contact with the metal, and the other parts are exposed to the gas. According to I. Langmuir (1916), the adsorbed layer is unimolecular in thickness, and generally orientated. The poisoning of a solid catalyst is then due to the formation of films of molecules of the "poison gas" on the catalyst, which prevent the adsorption of gases which would otherwise react on the surface of the catalyst. The adsorbed molecules are held by attractive forces analogous to residual affinity, for a molecule in the interior of a liquid or solid is attracted by other molecules equally in all directions, whereas a molecule on the surface can be attracted inwards by the other molecules. Accordingly, the surface molecules of a solid or liquid are supposed to exert a residual, uncompensated attraction. When gases are adsorbed by the crystals of a salt, F. Haber (1914) attributed the attraction to the electrical forces produced by the positively and negatively charged ions at the surfaces of the crystals. The adsorption theory of catalysis assumes many forms. In general, it is supposed that under certain conditions, when molecules are adsorbed on the surface of the catalyst, they are activated in some way so that chemical change may occur more favourably. The force of adsorption is thus related to chemical forces, for the activation of the molecules by the catalyst is attributed to the lowering of the energy required to break down the molecules of the reacting substances by distorting, dislocating, straining, or profoundly modifying the adsorbed molecules. Hence, (i), in the so-called molecular distortion theory, the affinity is supposed to be weakened by the adsorption forces so that the atoms of the molecule are loosened or partially separated; and (ii), in the atomic distortion theory, the affinity is supposed to be weakened by the disturbing effect of the catalyst on the intra-atomic, electronic orbits of the atoms.

The adsorption of one or both the reacting gases by the catalyst may occur in different ways—e.g. a diatomic gas may be adsorbed so that it forms a molecular or an atomic layer or both. The molecular distortion may mean that the molecule is attached (adsorbed) at more than one point on the catalyst, so that the molecule is stretched, twisted, or otherwise strained, and, in consequence, becomes less stable, i.e. chemically activated—multiple adsorption theory. (1930) suggested that the adsorbed molecules, in the unimolecular adsorption film on the surface of the catalyst, may be so attached that only one of their atoms is linked to the catalyst. As a result, the distribution of the intramolecular vibrational energy will be so changed that it possibly accumulates on one particular bond, which thus becomes weakened, and, in consequence, activated. Again, according to H. S. Taylor (1925), the activity of the catalyst may be confined to a certain number of adsorption centres. The fact that the catalyst in some cases is active only when finely-divided, and when prepared at a low temperature, may mean that some of the atoms have not attained the orderly arrangement possessed by the crystal lattice. The vagabond atoms of the catalyst, left out of the lattice structure, will have a different adsorptive power for the reacting gases, and the localities where these atoms occur may be special centres of adsorption and, consequently, of catalytic activity. M. Bodenstein (1929) suggested that the rate of the catalytic reaction may be determined by the speed at which one of the reacting substances moves through the unimolecular adsorption film of gas to the centres of activity on the catalyst.

A catalyst may exert a very specific action so that the catalyst directs the reaction in one direction in preference to another. This is exemplified by P. Sabatier's work on the catalysis of organic compounds. Thus, the vapour of formic acid is decomposed into hydrogen and carbon dioxide when passed over zinc oxide, and into water and carbon monoxide when passed over titanic oxide:

$$\text{H.COOH} \begin{cases} ZnO \rightarrow \text{H}_2 + \text{CO}_2 \\ TiO_2 \rightarrow \text{H}_2\text{O} + \text{CO} \end{cases}$$

Ethyl alcohol in the presence of nickel decomposes into acetaldehyde and hydrogen; and in the presence of alumina, it forms ethylene and water:

$$C_2H_5OH\begin{cases}Ni \rightarrow CH_3.COH + H_2\\Al_2O_3 \rightarrow C_2H_4 + H_2O\end{cases}$$

Again, a mixture of carbon monoxide and hydrogen, at 300°, furnishes chiefly formaldehyde in the presence of copper at 300°; chiefly methyl alcohol in the presence of a mixture of zinc and chromium oxides at 300° to 358°; and chiefly methane in the presence of finely-divided nickel at 150° to 200°:

$$CO + nH_2 \begin{cases} Cu & \rightarrow \text{ H.COH} \\ Cr_2O_3 & \rightarrow \text{ CH}_3\text{OH} \\ Ni & \rightarrow \text{ CH}_4 + \text{H}_2\text{O} \end{cases}$$

Again, the presence of water vapour favours the oxidation of carbon monoxide; the union of hydrogen and oxygen; the union of the hydrogen and chlorine; and the union of hydrogen chloride and ammonia. In fact, if these gases be intensely dried, the reactions may not occur under conditions where the moist gases readily combine. The catalyst is here supposed to act by a cycle or chain of reactions, say: $CO+H_2O=CO_2+H_2$; followed by: $2H_2+O_2=2H_2O$. At high temperatures, the reaction: $2CO+O_2=2CO_2$, may proceed directly. On the other hand, a catalyst may retard the progress of a reaction, and it is then called a negative catalyst. Thus, K. Than (1864) found that the presence of water vapour retards the decomposition of ammonia; W. A. Shenstone (1887), that dry ozone at 0° decomposes 30 times as rapidly as the moist gas at $26\cdot4^\circ$; and H. G. van de Stadt (1893), that moisture retards the oxidation of phosphorus.

The presence of certain impurities may reduce the chemical activity of the catalyst resulting in what is metaphorically called a **poisoning of the catalyst**. E. Turner (1823), M. Faraday (1834), and W. C. Henry (1836), for example, noticed that finely-divided platinum becomes less active in stimulating the reaction between hydrogen and oxygen if certain foreign gases are present—the presence of carbon monoxide, and ethylene act as **inhibitors** of the reaction. Again, the oxidation of sulphur dioxide in the presence of a catalyst was not successful commercially until it was found that the reacting gases must first be freed from arsenical compounds which poison the catalyst; sulphur compounds also act as poisons in the synthesis of ammonia, and in hydrogenation processes. The poison is thought to act by being preferentially adsorbed on the surface of the catalyst.

In some cases, the activity of a catalyst is enhanced by admixture with another catalyst so that the activity of the mixture is greater than the sum of the activities of the individual constituents. This is the so-called **promotor action.** For example, dehydrating agents act as promotors in the catalystic hydrogenation of carbon monoxide or dioxide. Finely-divided manganese oxide favours the oxidation of carbon monoxide at temperatures as low as -30° , but the catalyst is poisoned by alkali, and promoted by cupric oxide. The catalyst called *hopcalite* is manganese and cupric oxides in the proportions 3:2. The poisoning by alkali does not occur so readily with the promoted catalyst. In some cases the promotor acts by increasing the available catalytic surface; or by reducing the tendency of the catalyst to sinter by heat. The promotor may also favour the decomposition of the inter-

mediate compound formed by the catalyst, or the catalyst may favour the decom-

position of the intermediate compound formed by the promotor.

A. Orlowsky ¹³ found that the affinity of **sulphur** for platinum is quite small. C. Ridolfi observed that no sulphide is formed by the direct action of sulphur. E. Davy observed that some platinum sulphide is formed when the metal is heated with sulphur; and G. Preuner observed that the action is not particularly strong even between 950° and 1240°. A. Wigand found that the metal acquires a dark brown film in boiling sulphur. W. C. Heraeus and W. Geibel, and W. R. Hodgkinson and F. K. S. Lowndes, observed that sulphur vapour had no perceptible action on an electrically heated platinum wire. A. Jedele observed that sulphur has a limited solubility in platinum, and that the effect of sulphur on the yield point and fracture, in kgrms. per sq. mm., and the percentage elongation at room temp., and at 850°, are indicated in Table II. J. Milbauer found that platinum

850° Room temperature per cent. Yield Yield Fracture Elongation Fracture Elongation 0.1512.719.9 14.7 6.4 8.7 5.80.06 11.2 16.6 10.1 6.1 6.9 5.514.0 0.029.9 16.3 26.2 $5 \cdot 3$ 7.4 0.006 9.4 15.3 24.7 4.3 5.3 14.5

TABLE II .- THE EFFECT OF SULPHUR ON THE TENACITY OF PLATINUM.

black accelerates catalytically the formation of hydrogen sulphide by passing hydrogen over molten sulphur at 278°; and Y. Venkataramaiah observed that hydrogen which has diffused through platinum will attack sulphur. According to R. Böttger, if gun-cotton be impregnated with platinum black, it detonates immediately when exposed to hydrogen sulphide. E. B. Maxted noted that the presence of hydrogen sulphide retards the adsorption of hydrogen by platinum. The gas is strongly adsorbed by platinum, and on degassing the metal at 100°, an equal vol. of hydrogen is evolved, the sulphur remaining on the platinum. Both before, and to a smaller extent after this treatment, the rate of adsorption of hydrogen by platinum is markedly retarded, but there is no decrease in the ultimate proportion of gas adsorbed. W. Skey noted that the surface of platinum is altered by exposure to hydrogen sulphide, or ammonium sulphide, so that the metal no longer amalgamates with mercury. M. Domanicky said that the attack by sulphur monochloride is very slow if at all. According to W. R. Hodgkinson and F. K. S. Lowndes, sulphur dioxide has no action on an electrically heated platinum wire. J. Uhl observed that sulphur dioxide acts on platinum, producing platinum sulphide and sulphur trioxide. E. Mulder noted the action of sulphur dioxide in a gas-flame on platinum crucibles. A. Sieverts and E. Jurisch noted that sulphur dioxide is insoluble in compact platinum; but G. Magnus said that at 0° platinum absorbs about one-third of its vol. of sulphur dioxide. J. P. Cooke and T. W. Richards, D. O. Shiels, and D. Tommasi also noted that some sulphur dioxide is absorbed by platinum. P. Chappuis measured the heat developed when platinum black absorbs sulphur dioxide; and G. B. Taylor and co-workers gave approximately 25,000 cals. for the heat of adsorption. The subject was studied by B. Neumann and E. Goebel. The oxidation of sulphur dioxide by air or oxygen in the presence of spongy platinum or platinum black was discussed by I. E. Adaduroff and co-workers, T. von Artner, Badische Anilin- und Sodafabrik, E. Baur, M. Bodenstein and co-workers, G. Bodländer and K. von Köppen, M. O. Charmandarian and G. D. Dachniuk, Chemische Fabrik vorm. Goldenberg und Geromont, C. L. Clark and co-workers, P. D. Dankoff and co-workers, J. W. Döbereiner, L. Duparc and co-workers, O. Efrem, Farbwerke vorm.

Meister, Lucius und Brüning, W. Grillo and M. Schröder, E. de Haën, E. Hänisch and M. Schröder, H. N. Holmes and co-workers, J. T. Jullion, R. Knietsch, K. von Köppen, G. R. Levi, G. R. Levi and M. Faldini, G. Magnus, E. B. Maxted and A. N. Dunsby, R. Messel and W. S. Squire, H. Neuendorf, B. Neumann and H. Jüttner, S. Pastorelli, J. H. Perry, P. Phillips, E. Raynaud and L. Pierron, C. L. Reese, E. S. Ridler, E. J. Russell and N. Smith, C. F. Schönbein, D. O. Shiels, A. Skrabal, G. C. Stone, J. S. Streicher, G. B. Taylor and S. Lenher, A. P. Thompson, W. H. Thornthwaite, A. Trueman, C. Winkler, F. Winteler, and L. Wöhler and co-workers. I. E. Adaduroff and K. I. Brodovitsch investigated carriers of the platinum—e.g. asbestos, and silica gel; G. L. Clark and co-workers observed no activation of the catalyst by X-rays; but R. Schwarz and M. Klingenfuss noted an acceleration; and E. B. Maxted and A. N. Dunsby studied the poisoning of the platinum by arsenic; and G. R. Levi and M. Faldini, the deleterious effect of iridium and rhodium-vide 10. 57, 27. E. Mulder found that platinum black favours the oxidation of sulphurous acid; L. Wöhler noted that sulphurous acid dissolves a little platinum black; and J. H. Gladstone, that platinum black charged with hydrogen reduces sulphurous acid to hydrogen sulphide. C. Geitner showed that finely-divided platinum does not hinder the decomposition of sulphurous acid at an elevated temperature; but sulphurous acid decolorizes soln. of platinic chloride. Platinic chloride in a sealed tube with sulphurous acid at 200° forms platinous sulphide. A. Hantzsch found that spongy platinum decomposes potassium nitrosyl sulphite into potassium sulphate and nitrous oxide; and similarly also with ammonium nitrosyl sulphite. H. B. North found that platinum is not attacked by **sulphuryl chloride** in a sealed tube at ordinary temp.; and there is a very slight corrosion after many hours' exposure at 150°, but after many days' heating at this temp., crystals of platinic chloride are formed.

H. St. C. Deville and J. S. Stas observed that platinum black, precipitated by formic acid, is fairly soluble in boiling sulphuric acid, and M. Delépine, that some platinum vessels are attacked by boiling sulphuric acid, whilst others are not attacked unless the acid contains nitrous fumes in soln. According to F. C. Carter, platinum is attacked by hot sulphuric acid but not by the cold acid. A. Scheurer-Kestner showed that the dissolution of platinum in boiling sulphuric acid is a true solution process, and is not dependent on oxidation. Under similar conditions, 93 to 94 per cent. sulphuric acid dissolved a gram of platinum per 1000 kgrms.; 98 per cent. sulphuric acid dissolved 6 to 7 grms. of platinum per 1000 kgrms.; and 99 per cent, sulphuric acid dissolved 9 grms, of platinum per 1000 kgrms. The solubility was greater if the sulphuric acid contained nitrous fumes in soln.; and if the metal was alloyed with iridium, the resistance to attack was greater. E. Hartmann and F. Benker discussed this subject. C. Marie observed that the presence of potassium sulphate accelerates the attack by sulphuric acid; L. R. W. McCay, that the presence of sulphurous acid or of antimony trioxide or arsenic trioxide, retards the attack; and A. H. Allen, that sulphuric acid containing potassium permanganate does not attack platinum. Owing to the reducing action of ammonium sulphate, M. Delépine found that platinum does not lose weight when boiled in sulphuric acid containing ammonium compounds, and the contrary result by J. T. Conroy was obtained at a lower temp. The reducing action is symbolized: $4H_2SO_4 + Pt = Pt(SO_4)_2 + 2SO_2 + 4H_2O$; and $3Pt(SO_4)_2$ +2(NH₄)₂SO₄=2N₂+3Pt+8H₂SO₄. L. Wöhler found that dil. sulphuric acid dissolves the minutest trace of platinum black, but leaves spongy platinum untouched; .W. C. Heraeus gave for the solubility of platinum in 94 per cent. acid, 0.6 grm. per ton, and in 97 per cent. acid, 2.0 grms. per ton. The time the metal is exposed to the acid and the surface area of the metal should be stated. J. T. Conroy found that in 28 hrs. 0.04 grm. was dissolved by 95 per cent. sulphuric acid at 250° to 260°. R. H. Adie observed no formation of sulphur dioxide or hydrogen sulphide with warm (200°) or cold, conc. sulphuric acid. to M. Delépine, 1 sq. dm. of platinum foil, 10\mu to 20\mu thick, during an hour's

exposure to sulphuric acid containing potassium sulphate lost weight at the rate of 0.008 to 0.012 grm. per hour. At 350° to 355°, and a mixture of 50 grms. sulphuric acid and 10 grms. of potassium sulphate, the loss is 0.04 to 0.05 grm.; and with a mixture of 50 grms. of sulphuric acid and 20 grms. of potassium sulphate, the loss at 365° to 370° amounted to 0.12 to 0.13 grm. With sulphuric acid containing in soln.

Nitric acid . . 0 0.00002 0.00004 0.0001 0.001 part Loss in weight . 0.0088 0.0075 0.0118 0.0083 0.0083 grm.

so that the effect is very small. R. H. Adie observed no evolution of hydrogen sulphide or sulphur dioxide at 250°. The subject was studied by G. J. Burch and J. W. Dodgson. L. Quennessen found that sulphuric acid, containing 94 per cent. H₂SO₄ and free from nitrous acid, has very little solvent action on platinum when the two are heated in a vacuum at 400°, but in the presence of oxygen the platinum is dissolved and the oxygen absorbed, whilst sulphuric acid containing a slight excess of sulphur trioxide in soln. dissolves platinum at 400° in vacuo to the same extent as the more dilute acid in the presence of oxygen. Expressing solubilities in grams of metal dissolved per sq. decimetre per hour, 94 per cent. sulphuric acid, and commercial platinum 0·001 grm. in vacuo, and 0·124 grm. in oxygen; with purified platinum, the data were, respectively, 0·0006 and 0·0227 grm.; and sulphuric acid with 2 per cent. of free sulphur trioxide dissolves 0·0265 grm. of platinum in vacuo. E. Salkowsky observed no acceleration in the attack by dil. sulphuric acid in the presence of hydrogen dioxide. K. W. Frölich observed that whilst platinum is rarer than gold when it is in contact with sulphuric acid at

ordinary temp., the case is reversed above 200°, as illustrated in Fig. 28, which gives the e.m.f. of the millivolts against the Hg₂Cl₂ | Hg electrode at different temp. H. St. C. Deville and H. Debray observed that cast platinum vessels resist boiling sulphuric acid better than those made from malleable platinum. When an alloy of platinum and zinc is treated with sulphuric acid, C. Gourdon found that some platinum passes into soln. with the zinc. H. Debray observed that the presence of platinum hastens the dissolution of tin, lead, or zinc in acids J. H. Gladstone and A. Tribe found -vide supra. that platinum containing occluded hydrogen furnishes sulphur dioxide when it is treated with sulphuric acid; S. Cooke, that conc. sulphuric acid slowly yields sulphur dioxide when it is treated with hydrogen

Fig. 28.—The Electromotive Force of Platinum and Gold in Concentrated Sulphuric Acid at Different Temperatures.

in the presence of platinum; and J. Milbauer, that the presence of platinum retards the accelerated formation of sulphur dioxide produced by the presence of mercuric sulphate in sulphuric acid treated with hydrogen. The catalytic action of platinum is poisoned by arsenic trioxide. F. C. Carter noted that platinum is attacked by fused potassium hydrosulphate, KHSO₄. M. G. Levi and E. Migliorini observed that platinum black acts on ammonium sulphate to form some nitric acid-vide infra. C. J. Thatcher studied the effect of platinum on the electrooxidation of sodium thiosulphate to tetrathionate. M. G. Levi and E. Migliorini found that platinum black accelerates the decomposition of persulphates of ammonium, potassium, and sodium; smooth platinum is inactive. T. S. Price observed that colloidal platinum does not decompose soln. of potassium or ammonium persulphate, or of perdisulphuric acid. J. A. N. Friend represented the $K_2S_2O_8+H_2O_2=K_2SO_4+H_2SO_4+O_2$. C. Marie observed that an acidic soln. of potassium persulphate slowly attacks platinum. T. S. Price found permonosulphuric acid is decomposed slowly by platinum, and rapidly if hydrogen dioxide be present. The reaction was studied by L. Wöhler. T. S. Price and J. A. N. Friend represented the reaction: H_2SO_5 : $+H_2O_2$ = H_2SO_4 + H_2O + O_2 . M. Traube found that platinum black hinders the formation of persulphuric acid by the electrolysis of 40 per cent. sulphuric acid; and G. Petrenko studied the effect of the platinum electrodes on the yield of persulphuric acid. M. G. Levy and co-workers studied the reaction with soln. of **potassium persulphate**.

J. J. Berzelius, 14 and F. Rössler observed that when **selenium** is heated with spongy platinum, union occurs with vivid combustion and a selenide is formed. A. Orlowsky studied the affinity of platinum for sulphur and selenium. R. Marc found that platinum favours the production of the high conductivity form of selenium exposed to light. E. Mitscherlich found platinum to be insoluble in **selenic acid**. F. Rössler showed that finely-divided platinum and **tellurium** unite with incandescence when heated to form a telluride. J. W. Mellor noted that platinum crucibles are attacked by some **selenides**.

According to R. Vondracek, 15 platinum black in a soln. of ammonia takes up nitrogen, which can be driven from the metal by treatment with potash-lye. S. H. Bastow, J. C. Stimson, and G. I. Finch and J. C. Stimson studied the subject. W. W. Randall said that nitrogen does not diffuse through heated platinum. E. J. B. Willey studied the activation of nitrogen in the presence of platinum. F. Wolfers found that nitrogen in the presence of nickel forms nickel nitride, which then attacks the platinum between 300° and 600°, and makes the metal brittle. H. Damianovich and G. Berraz studied the action of nitrogen at a low press. and exposed to an electric discharge. B. Delachanal observed that commercial platinum occludes 0.36 to 0.91 c.c. of nitrogen per 100 grms, of metal; H. Dobretsberger, the effect of absorbed nitrogen on the high-frequency resistance of platinum; A. Féry, the effect of nitrogen on the electrical resistance; and H. Damianovich, the action on the rate of dissolution in aqua regia. S. H. Bastow said that in the absorption of nitrogen by films of platinum, where the metal is presumed to be in the atomic state of subdivision, as the temp, is raised, the nitrogen is given off. The adsorbed nitrogen reacts with hydrogen or water to form ammonia, so that it is assumed that PtN2 is formed. F. Wolfers observed that nitrogen acts on platinum in the presence of nickel, presumably a volatile nickel nitride is formed at about 300°, and that then attacks platinum at 600° making it brittle. Hence nickel-platinum thermocouples should not be used above 500°. L. Wöhler, O. Loew, and E. J. Russell and N. Smith discussed the oxidation of atm. nitrogen in air in the presence of alkaline soln, and platinum black to form nitrous acid or ammonium nitrite. G. T. Beilby and G. G. Henderson found that if platinum be heated in ammonia to 800°, the surface of the metal is darkened, and dulled, and under the microscope has a bubbly appearance. The surface film can be rubbed off with filter paper; the frictional electricity of the metal is reduced; and the electrical resistance is increased. W. C. Heraeus observed no perceptible change in a platinum wire heated in ammonia for half an hour at 1500°. The formation of ammonia by passing a mixture of hydrogen and nitrogen over spongy platinum at a dull red-heat, and in other ways, was discussed by L. Brunel and P. Woog, J. K. Dixon, G. S. Johnson, P. Jolibois and F. Olmer, F. Kuhlmann, O. Loew, W. Nernst and F. Jost, H. S. Taylor, L. Wöhler, L. T. Wright, and J. Y. Yee and P. H. Emmett-vide 8. 49, 15; the retarding or poisoning effects of acetylene, phosphine, and hydrogen sulphide were studied by J. Y. Yee and P. H. Emmett; the oxidation of ammonia by the action of oxygen in the presence of spongy platinum or platinum black, by L. E. Adaduroff and co-workers, E. A. Arnold and R. E. Burk, V. I. Atroshchenko, G. T. Beilby and G. G. Henderson, A. K. Brewer, E. Decarrière, J. W. Döbereiner, L. Duparc and co-workers, W. Frankenberger and co-workers, S. L. Handforth and J. N. Tilley, W. Hennel, W. Henry, A. Klages, K. Kraut, A. Luyckx, D. Meneghini, L. Mond and co-workers, A. A. Noyes and G. V. Sammet, W. Ostwald and E. Bauer, J. R. Partington, P. Pascal and E. Decarriere, N. A. Figurovsky, W. Reinders and A. Cats, O. Schmidt and R. Böcker, C. F. Schönbein,

G. M. Schwab and H. Schmidt, A. Trillat, S. Uchida, R. Vondracek, H. W. Webb, and H. C. Woltereck-vide 8. 49, 18; the formation of ammonia from nitric acid and alcohol in the presence of platinum black, by J. W. Döbereiner; W. Skey noted that aq. ammonia affects the surface of platinum so that it cannot be amalgamated with mercury until it has been treated with an acid. R. E. Burk examined the effect of platinum on the thermal decomposition of ammonia. R. Coustal and H. Spindler found that a platinum anode is slowly attacked in liquid ammonia. The decomposition of hydrazoic acid by platinum as catalyst was studied by E. Oliveri-Mandala. The decomposition of hydrazine, $2N_2H_4 = 2NH_3 + N_2 + H_2$, and $3N_2H_4=2NH_3+2N_2+3H_2$, with platinum black as catalyst was studied by A. Gutbier and K. Neundlinger, K. Neundlinger, and E. Oliveri-Mandala, A. Purgotti and L. Zanichelli found that platinum freed from air would not endure the decomposition of hydrazine, whilst ordinary platinum preparations will do so. but the descrated platinum will endure the decomposition of hydrogen dioxide. and of hydroxylamine. The decomposition of hydrazine sulphate with platinum as a catalyst was studied by S. Tanatar; and the oxidation of hydrazine, NoH4+O9 =2H₂O+N₂, by A. Purgotti and L. Zanichelli. The reduction of hydroxylamine to ammonia in the presence of finely-divided platinum: 4NH₂OH=2NH₃ +N₂O+3H₂O, was studied by V. Meyer, A. Findlay and W. Thomas, O. Loew, O. Flaschner, E. Oliveri-Mandala, and S. Tanatar.

H. Cassel and E. Glückauf, 16 and J. Lüke and R. Fricke observed that nitrous oxide has no action on glowing platinum; J. Lüke and R. Fricke found that the nitrous oxide is decomposed. E. W. R. Steacie and J. W. McCubbin, G. M. Schwab and B. Eberle, J. K. Dixon and J. E. Vance, M. S. Shah, J. A. Hedvall and coworkers, G. van Praagh and B. Topley, and C. N. Hinshelwood and C. R. Prichard studied the effect of platinum on the thermal decomposition of nitrous oxide; L. Duparc and co-workers, the hydrogenation of this oxide with platinum as catalyst; and M. L. Nichols and I. A. Derbigny, the reduction of the oxide by titanous chloride. W. R. Hodgkinson and F. K. S. Lowndes could not detect any action when a red-hot platinum wire is exposed to nitric oxide. L. Duparc and co-workers studied the hydrogenation of nitric oxide with platinum as catalyst: and J. Zawadzky and co-workers, the decomposition of nitric oxide. P. Sabatier and J. B. Senderens did not observe any oxidation of platinum by nitrogen peroxide. G. B. Taylor and co-workers studied the hydrogenation of nitric oxide in the presence of platinum; and T. E. Green and C. N. Hinshelwood, the decomposition of the gas by hot platinum wire. L. I. de N. Ilosva observed that when air is passed over platinum wire at 280° to 350°, spongy platinum at 250° to 350°. or platinum black at 180° to 300°, nitrogen trioxide is formed. The oxidation of nitrogen with heated platinum as catalyst was studied by O. Dieffenbach and W. Moldenhauer, K. Kaiser, O. Loew, D. R. Lovejoy, and L. Wöhler; the catalytic action of platinum on the decomposition of nitric oxide, by J. L. Gay Lussac. M. Berthelot, F. Emich, K. Jellinek, and P. Sabatier and J. B. Senderens-vide 8. 49, 35; and the reduction of nitrogen oxides by hydrogen with platinum as catalyst, by S. Cooke, A. Jouve, and the Wertdeutsche Thomasphosphatwerke. J. J. Sudborough found that nitrosyl chloride does not attack platinum in the cold, but at 100°, PtCl₄.2NOCl is slowly formed. L. Wöhler observed that nitrous acid free from chlorides does not dissolve platinum black. The reduction of nitrous acid, and of alkali and ammonium nitrites, by platinum black was studied by A. A. Blanchard, S. Cooke, O. Flaschner, O. Loew, J. Meyer and E. Trützner, and H. N. Warren. R. Vondracek suggested that the decomposition of ammonium nitrite by platinum black proceeds in two stages: firstly, the platinum black, which, to begin with, contains oxygen, oxidizes the ammonium nitrite, thus: $2NH_4NO_2+xPtO_n+yH_2O=N_2+2HNO_2+xPt+(y+3)H_2O$, and, secondly, the nitrous acid formed in the first stage is reduced by the platinum, which is now oxygen-free, thus: $2nHNO_2+xPt=nN_2+nH_2O_+Pt_xO_n$. L. Wöhler found that nitric acid does not dissolve platinum black. C. Therie observed that warm, conc.

nitric acid slowly attacks platinum, and F. M. Gavriloff studied the solubility of platinum alloyed with silver in this acid. T. Gross noted that platinum is attacked when a mixture of sulphuric and nitric acids is subjected to an alternating current in a platinum crucible. The reduction of nitric acid, and of alkali and ammonium nitrates, was studied by S. Cooke, J. H. Gladstone, J. H. Kastle and E. Elvove, O. Loew, O. Loew and K. Aso, and C. F. Schönbein; whilst F. C. Carter, and G. P. Baxter and F. L. Grover added that the purified metal is not attacked by hot conc. nitric acid; and fused alkali nitrates do not attack the metal. C. Fromme studied the electrochemical behaviour of nitric acid towards platinum—vide C. Marie, and J. Jannek and J. Meyer observed that hot, conc. Grove's cell. nitric acid, not the fuming acid, has a distinct action on platinum; and J. H. Gladstone and A. Tribe noted that ordinary nitric acid has no action on platinum, with platinum containing occluded hydrogen, the hydrogen is turbulently oxidized. C. Winkler observed that platinum dissolves in purified nitric acid only when the metal is alloyed with other metals like copper, silver, gold, lead, and bismuth; and N. Tarugi observed that platinum is more or less soluble in nitric acid when mercury is present. E. Schaer showed that the oxidation of some organic substances by nitric acid and the nitrates is favoured by the presence of colloidal platinum. C. Bromeis found that electroplated films of platinum-¹/₃₀₀₀th line thick—resist the strongest acids; C. Kellner observed that acids are adsorbed by platinum black; and O. Loew and K. Aso noted that the reduction of nitric acid to ammonia in the presence of dextrose and platinum black. S. J. Green studied the reduction of nitric compounds.

According to H. Bornträger, platinum dissolves in aqua regia with an excess of hydrochloric acid to form hydrochloroplatinic acid, and with an excess of nitric acid, to form platinic nitrosyltetrachloride. Similar results were obtained with mixtures of nitric and hydrobromic acids. T. A. Edison discussed the action of aqua regia on platinum. N. A. E. Millon observed that the metal does not dissolve in aqua regia if no nitrous acid is present—vide infra, hydrochloroplatinic acid—and if the aqua regia contains a large proportion of a potassium salt, the attack is greatly retarded. H. Dullo found that the attack is accelerated under press. A. Muckle and F. Wöhler found that aqua regia does not dissolve all the platinum from an iridium-platinum alloy—much remains associated with undissolved iridium; and J. W. Mallet also observed that platinum-iridium alloys strongly resist the action of aqua regia. C. Claus found that of the platinum metals, palladium dissolves most readily in aqua regia and platinum comes next. The other metals in a compact state do not dissolve in this acid. C. Reinhardt said that in these cases it is best to alloy the metal with zinc, digest the alloy in cold hydro-

chloric acid of sp. gr. 1·142, and dissolve the residue in aqua regia.

According to E. Davy, 17 phosphorus combines with spongy platinum in an evacuated tube considerably below a red-heat; the union is attended by flame and vivid incandescence, and platinum phosphide is formed which F. W. Clarke and O. T. Joslin represent by Pt₃P₅. A. Granger observed that the vapour of phosphorus attacks finely-divided platinum at 500°; W. C. Heraeus gave 600° for the temp. of formation of phosphide with compact platinum; and W. R. Hodgkinson and F. K. S. Lowndes found that a red-hot platinum wire is immediately destroyed by phosphorus vapour. W. Biltz and co-workers studied the equilibrium diagram, with the compounds PtP2 and Pt20P7. A. Jedele observed that the platinum phosphides—Pt₂P, PtP, and Pt₃P₅—are very sparingly soluble in the metal, and the effect of phosphorus on the yield point and fracture in kgrms. per sq. mm., and the percentage elongation at room temp., and at 850° are indicated in Table III. H. W. Melville and E. B. Ludlam studied the catalytic effect of platinum on the oxidation of phosphorus. H. le Chatelier noted that platinum thermocouples are spoilt by the vapours of phosphorus. C. F. Schönbein found platinum black makes dry phosphorus at -5° luminesce; and H. W. Melville and E. B. Ludlam studied the catalytic oxidation of the vapour of phosphorus by platinum at 200°. O. J. Walker observed that in the precipitation of copper or silver from soln. of their salts by phosphorus, if a conducting metal like platinum be in contact with the phosphorus, the silver or copper is deposited on the platinum. H. Moissan observed that when **phosphorus trifluoride or pentafluoride** is passed over red-hot spongy platinum, some **platinous phosphopentafluoride**, PtF₂.PF₃, and phosphide are formed. E. Baudrimont found that spongy platinum and **phosphorus trichloride** at 250° form a platinum chloride; J. H. Gladstone said that the compact metal is not attacked. W. R. Hodgkinson and F. K. S. Lowndes found that a red-hot platinum wire in the vapour of **phosphorus pentachloride** produces a flame, some phosphorus is formed, and this reacts with the metal, forming a fusible phosphide. According to E. Baudrimont, phosphorus pentachloride, at 200°, attacks the metal, and at a higher temp., a volatile compound of platinic and phosphoric chlorides is formed. The subject was also studied by P. Schützenberger, and P. Schützenberger and M. Fontaine. H. Goldschmidt

P per cent.	R	loom temperatu	res	850°			
	Yield	Fracture	Elongation	Yield	Fracture	Elongation	
0.26	21.4	25.9	4.75				
0.105	16.8	23.5	11.3				
0.025	16.3	21.4	19.4				
0.005	13.9	20.9	11.9	nation to the second			
0.003	10.4	13.9	14.2	3.6	4.2	6.2	
0.001	12.2	14.9	24.9	6.2	7.9	6.1	
0.000	8.7	14.8	27.1	5.1	6.9	9.0	

TABLE III, -- THE EFFECT OF PHOSPHORUS ON THE TENACITY OF PLATINUM.

represented the reaction with compact platinum PCl₅+Pt=PCl₃+PtCl₂. W. Ramsay and J. Shields observed that no hydrogen is liberated by boiling platinum black with a soln, of sodium hypophosphite owing to the oxygen occluded by the metal. The reaction was studied by A. Sieverts, and M. Major. A. Sieverts observed that platinum black is a catalyst for the oxidation of the hypophosphite. A. A. Vedensky and A. V. Frost found that colloidal platinum favours the oxidation of phosphorous acid. F. Loessner studied the action of hypophosphorous acid. R. E. Barnett noted that platinum pyrophosphate is formed when the metal is heated with phosphorus pentoxide in oxygen. According to C. Hüttner, a hot, conc. soln. of phosphoric acid attacks platinum in air, but not if air be excluded. C. W. Jurisch also noticed that molten phosphoric acid attacks platinum. B. Pelletier observed that glacial phosphoric acid attacks platinum in the presence of carbon. M. Schmöger found that platinum crucibles are not attacked at a red-heat by magnesium pyrophosphate, but if reducing conditions are present, W. C. Heraeus observed that the metal is disintegrated at 900°. The subject was discussed by G. E. F. Lundell and J. I. Hoffman.

A. F. Gehlen ¹⁸ observed that when spongy platinum is heated with arsenic, the combination is attended by vivid incandescence; L. Wöhler prepared PtAs₂; and W. R. Hodgkinson and F. K. S. Lowndes found that a red-hot platinum wire is immediately fused when in contact with arsenic—vide 9. 51, 10. A. F. Gehlen found that neither arsenic trioxide nor arsenic acid exerts any action on the metal—vide 9. 51, 10. E. Mulder observed that platinum black transforms arsenic trioxide in aq. soln. into arsenic pentoxide, and C. Engler and L. Wöhler added that this occurs in the absence of air owing to the absorbed oxygen. J. H. Gladstone and A. Tribe observed the reduction of arsenious acid in aq. soln. to arsenic by hydrogenized platinum. H. E. Patten observed that platinum is blackened by arsenic trichloride; and L. Kahlenberg and J. V. Steinle observed no reaction

with arsenic trichloride and platinum at ordinary temp. or at 100°. A. F. Gehlen, and F. Rössler observed that antimony reacts when it is heated with platinum very much as does arsenic, and the alloys were studied by V. A. Nemiloff and M. M. Voronoff, and T. J. Poppema and F. M. Jäger—vide 9. 52, 9; and H. E. Patten found that the metal is not attacked by antimony pentachloride. A. F. Gehlen, C. T. Heycock and F. H. Neville, and F. Rössler also noted that bismuth readily unites with platinum when a mixture of the two elements is heated—vide 9. 53, 7. For the action of bismuth oxide, vide infra. F. E. Brown and J. E. Snyder found that vanadium oxytrichloride has no action on platinum.

J. B. J. D. Boussingault, 19 and A. Colson found that at a red-heat platinum does not unite with carbon. N. W. Fischer observed that in the inner cone of the flame of a spirit-lamp, the surface of the metal is corroded. R. Chenevix and H. V. Collet-Descotils found that in a high temp. furnace, platinum forms a fusible carbide, and J. B. J. D. Boussingault suggested that the presence of silicon favours the breakdown of platinum under these conditions. A. B. Griffiths, and A. Rémont also noted that platinum is attacked by carbon at a red-heat—vide 5, 39, 20. F. E. Carter observed no serious contamination when cast in graphite moulds, but the metal even below the m.p. readily takes up carbon, and on cooling, the carbon settles out between the crystal grains making the metal brittle and darker in colour. The diffusion of carbon in platinum was studied by G. Tammann and K. Schönert. F. Wöhler noted that the presence of platinum increases the combustibility of carbon. H. Wölbling studied the absorption of platinum by active carbon. M. W. Travers noted the absorption of carbon by spluttered platinum; and W. P. White, the absorption of impurities by platinum at a high temp. M. S. Belenky and co-workers, and S. Lewina and co-workers, studied activated carbon metallized with platinum.

The action of carbon monoxide on platinum has been discussed, 5, 39, 27. W. Davies observed that combustion begins at 400°. A. Sieverts and E. Jurisch found that carbon monoxide at 1136° is insoluble in compact platinum; and E. Harbeck, and E. Harbeck and G. Lunge, thought that with platinum black a definite compound of carbon monoxide is formed, because the 60 vols. of carbon monoxide absorbed at ordinary temp. are suddenly liberated at 250°. B.W. Bradford studied the thermionic emission during the oxidation of carbon monoxide. H. S. Taylor and R. M. Burns showed that at 25°, 110°, and 218°, 1 vol. of spongy platinum absorbed, respectively, 1.20, 0.85, and 0.45 vol. of carbon monoxide, and at 25° and 110°, platinum black absorbed, respectively, 18·0 and 19.7 vols. of carbon monoxide. A. F. Benton said that at 25°, and 1 atm. press., platinum black absorbed 37.8 vols. of carbon monoxide. B. Delachanal observed that 3·19 to 4·05 c.c. of carbon monoxide were absorbed by about 150 grms, of commercial platinum. A. Osawa observed that the arrangement of the atoms in the space-lattice of platinum black is not affected by the absorption of carbon monoxide, but there is a linear expansion of 2.8 per cent. C. Paal showed that carbon monoxide is oxidized at ordinary temp. in the presence of a soln. of colloidal platinum. K. A. Hofmann and O. Schneider found that the catalytic activity of the platinum metals in the oxidation of carbon monoxide in the presence of a soln, of sodium chlorate, decreases in the order Os, Rh, Au, Pt, Ru, Pd, Ir, and Ag. F. P. Bowden and E. K. Rideal, A. Hocart, W. Davies, and A. E. Mitchell and A. L. Marshall discussed the subject. G. I. Finch and D. L. Hodge, A. S. Ginsberg and A. P. Ivanoff, G. M. Schwab, and C. R. Prichard and C. N. Hinshelwood studied the effect of the presence of other metals. D. Tommasi, F. H. Pollard, A. de Hemptinne, J. C. Stimson, G. I. Finch and J. C. Stimson, and L. Mond and co-workers observed the absorption of a little carbon monoxide. The subject was studied by I. Langmuir, A. J. F. de Silva, P. V. McKinney and E. F. Morfit, B. S. Srikantan, and W. G. Palmer. I. L. Bell found that carbon monoxide is not decomposed when it is heated with platinum; G. Orloff noted the pyrogenetic oxidation of carbon monoxide and hydrogen in contact with platinum. L. Wöhler

observed that in a mixture of hydrogen and carbon monoxide, the former gas is oxidized in the presence of platinum black more rapidly than the latter. subject was studied by W. Davies. H. B. Dixon found that dry carbon monoxide is completely oxidized in the presence of dry oxygen and a glowing platinum wire. M. Traube noted that some hydrogen dioxide is formed when moist carbon monoxide is oxidized in the presence of platinum. J. J. Coquillion studied the action of platinum on a mixture of water vapour and carbon monoxide. E. von Meyer, and M. Faraday noted that carbon monoxide retards the activity of platinum on a mixture of hydrogen and oxygen. P. Sabatier and J. B. Senderens observed that platinum below 420° does not induce the hydrogenization of carbon monoxide to methane. The reaction was studied by E. F. Armstrong and T. P. Hilditch. G. O. Kemp observed that in the presence of platinum, carbon monoxide is oxidized by nitrous oxide forming nitrogen and carbon dioxide. A. Baikoff found that the platinum thermocouple, in a gas flame, disturbs the equilibrium of the gases. F. Fischer and co-workers compared the activity of the platinum metals in the hydrogenation of carbon monoxide to methane; and V. Voorhees and R. Adams, the platinum oxides with platinum black. A. Gutbier and W. Schieferdecker studied the action of hydrogen on carbon dioxide in the presence of platinum. According to P. Schützenberger, and W. Pullinger a mixture of carbon monoxide and chlorine forms platinum carbonyl chlorides with heated platinum. L. Mond and co-workers observed that a little carbon dioxide is absorbed by platinum. H. S. Taylor and R. M. Burns observed that at 25°, 110°, and 218°, 5 grms. of spongy platinum absorbed, respectively, 3.30, 2.60, and 2.10 c.c. of carbon dioxide, in all cases less than 0.05 vol. per vol. of platinum; with platinum black at 25° and 110°, 1.70 and 0.85 vols. of carbon dioxide were absorbed respectively. Observations were also made by A. F. Benton, J. C. Stimson, G. I. Finch and J. C. Stimson, and L. H. Reyerson and L. E. Swearingen; and B. Delachanal found that 0.51 to 0.70 c.c. of carbon dioxide was absorbed by about 150 grms, of commercial platinum. G. B. Taylor and co-workers gave approximately 25,000 cals. for the heat of adsorption. H. Dobretsberger studied the effect of absorbed carbon dioxide on the high-frequency resistance of platinum. A. Morren found that at a white-heat platinum decomposes carbon dioxide; and W. Muthmann and A. Schaidhauf, that platinum influences the dissociation of carbon dioxide in the high-tension arc. T. Bergman observed that carbonic acid does not attack platinum. B. S. Srikantan, and I. Langmuir studied the catalytic decomposition of carbon dioxide and water by platinum. According to P. Sabatier and J. B. Senderens, platinum below 420° does not induce the hydrogenization of carbon dioxide to methane. C. R. Prichard and C. N. Hinshelwood, B. S. Srikantan, M. Temkin and E. Mikhailova, and L. Duparc and co-workers studied the reduction of carbon dioxide in the presence of platinum as catalyst. J. H. Robertson found that dry carbonyl chloride is a useful reagent for the volatilization of the platinum metals; the optimum temp. is about 500°. B. S. Srikantan studied the reactions H₂+CO₂=CO+H₂O in the presence of platinum. J. Milbauer and J. Doskar studied the catalytic action of platinum on the oxidation of carbon disulphide by sulphuric acid; and J. Milbauer, its action on the decomposition of carbonyl sulphide. J. B. Dumas found that sulphocarbonates in the presence of spongy platinum are immediately decomposed in air and water.

W. W. Randall found that **methane** does not diffuse through heated platinum. W. P. Yant and C. O. Hawk studied the effect of platinum in the oxidation of methane. According to H. S. Taylor and R. M. Burns, at 25°, 110°, and 218°, one gram of spongy platinum absorbs respectively, 3.45, 2.60, and 2.05 c.c. of **ethylene**, or less than 0.05 vol. of gas per vol. of platinum; and at 25°, and 110° with platinum black, respectively, 7.70 and 6.00 vols. of gas per vol. of metal are absorbed. M. Faraday noted that, like carbon monoxide, ethylene retards the activity of platinum in a mixture of hydrogen and oxygen. V. N. Morris and

L. H. Reyerson, and L. H. Reyerson and L. E. Swearingen studied the adsorption of methane and ethylene. P. Sabatier and J. B. Senderens observed no catalytic action of finely-divided platinum in the thermal decomposition of ethylene. K. S. Ablezova and S. Z. Roginsky, O. Beeck, M. Tauber, O. Schmidt, J. Eckell, R. Burstein and A. Frumkin, A. W. Gauger, G. B. Taylor and co-workers, G. Bredig and R. Allolio, B. Bruns and K. Ablezova, and K. Bennewitz and W. Neumann studied the hydrogenation of ethylene with a platinum catalyst; R. C. Cantelo, and M. Tauber, studied the decomposition of ethylene and ethane in the presence of platinum; I. E. Adaduroff, the dehydrogenation of cycloparaffins; and H. W. Underwood, S. Lenher, S. Lenher and I. R. McHaffie, J. Errera and V. Henri, N. P. Zelinsky and M. D. Turowa-Pollak, G. Lunge and J. Akunoff, W. D. Bancroft and A. B. George, and R. H. McKee and F. A. Strauss, platinum as a catalyst in general hydrogenations—e.q. H. von Euler and A. Oelander, with formic acid; P. de Wilde, C. Paal and A. Schwarz, C. Paal and C. Hohenegger, and W. Caro found that in the presence of hydrogen and colloidal soln, of platinum, ethylene is reduced to ethane; and acetylene to ethylene and ethane; G. Vavon, the hydrogenation of limonene; R. Fort and C. N. Hinshelwood, the oxidation of benzene, and W. G. Palmer studied the adsorption of benzene by platinum, J. W. Smith, by amalgamated platinum; R. C. Kirk and W. E. Bradt, the electrooxidation of toluene; and N. D. Zelinsky and co-workers, the hydrogenation of benzene, and the dehydrogenation of hexamethylene. E. W. R. Steacie and R. Morton studied the thermal decomposition of propaldehyde; and H. A. Taylor, the decomposition of acetone in contact with platinum. J. J. Redwood, and J. H. Vogel noted that the acetylene flame increases the weight of a platinum crucible by carbonization. O. Angelucci found spongy platinum favours the formation of ammonium carbonate from acetylene and nitric oxide at 800°. E. Tiede and W. Jenisch examined the influence of platinum in the pyrogenic decomposition I. Horiuti and M. Polanyi observed an exchange of H² and H¹ in of acetylene. H²₂O, C₂H₄ and in C₆H₆ at 80°, but not at room temp. The increase in weight which occurs when platinum crucibles are heated in coal-gas was observed by T. Wilm, F. Mylius and C. Hüttner, and A. Rémont; and observations on the subject were also made by S. Kern, P. Schützenberger and A. Colson, A. Colson, C. L. Berthollet, C. G. Memminger, T. Kariyone, J. B. J. D. Boussingault, V. Meyer, and A. B. Griffiths. E. B. Maxted and V. Stone studied hydrogenation of crotonic, oleic, and benzoic acids. According to T. Wilm, the action of platinum on coal-gas differs from that of palladium on the one hand, and of rhodium on the other. Only after a long time can any deposition of carbon be observed, which then takes place on the margin of the platinum, whilst the middle maintains its grey metallic appearance, nor does any alteration in vol. occur. In one case, when the action had gone on for an hour and a half, the weight of the metal had increased by 3.28 per cent., the formula PtC requiring 5.7 per cent. of carbon. On exposure to the air, the contents of the vessel underwent no change, but on passing a current of air over the heated mass, the carbon was completely burnt. Platinum, therefore, appears to produce a separation of carbon by contact action, as in the case of palladium, but, unlike the latter, the carbon is deposited in the pores of the metal without changing its volume, and not on the surrounding walls of the crucible, whilst rhodium forms a loose combination with the element. R. J. Wysor found the corrosion of platinum crucibles is less with a Méker burner than with a bunsen burner. O. L. Erdmann discussed the grey film formed when platinum is heated only in an oxidizing flame.

The catalytic hydrogenation, oxidation, and dehydrogenization of hydrocarbons, etc., was studied by F. Bellamy, M. Bodenstein, B. Bruns and K. Ablezova, W. Caro, J. J. Coquillion, J. J. Coquillion and J. Henrivaux, N. Demjanoff and M. Dojarenko, M. Faillebin, A. S. Ginsberg, E. Harbeck and G. Lunge, C. Harries and K. Gottlob, G. S. Hiers and R. Adams, E. W. Leitz and F. Seitz, V. B. Lewes, G. Lunge and J. Akunoff, R. F. Marchand, E. B. Maxted and C. H. Moon, C. H. Neilson, C. Paal and W. Hartmann,

F. C. Phillips, P. Sabatier and J. S. Senderens, O. Schmidt, A. Schwarz, H. Wieland, P. de Wilde, R. Willstätter and D. Hatt, and N. D. Zelinsky; A. A. Balandin, cyclohexane; aldehydes and ketones, A. Bringhenti, P. Sabatier and J. B. Senderens, A. Skita and W. A. Meyer, A. Trillat, and G. Vavon; alcohols, E. Bjelouss, A. Bringhenti, J. W. Döbereiner, S. Fokin, A. Glaessner, E. F. Gorup-Besanez, E. Grimaux, S. F. Hermbstädt, J. von Liebig, M. Martens, E. Orloff, Lord Rayleigh and W. Ramsay, P. Sabatier and J. B. Senderens, O. Schmidt, C. F. Schönbein, E. Sell, and A. Trillat; organic acids and salts, H. Behrens, C. F. Boehringer, J. Boëseken, R. F. Brunel, C. Dittrich, J. W. Döbereiner, E. Fischer, S. Fokin, O. Loew, O. Loew and K. Aso, N. A. E. Millon and J. Reiset, C. Paal and coworkers, F. Russ, P. Sabatier and co-workers, A. Schwarz, F. W. Schweigger-Seidel, O. Sule, V. Vrabely, and N. D. Zelinsky and N. Glinka; sugars and starches, J. W. Döbereiner, C. H. Neilson, F. Plzak and B. Husek, B. Rayman and O. Sule, M. Traube, and R. Vondracek; nitrogen compounds, H. Debus, H. G. Denham, K. Elbs, J. H. Gladstone, C. Paal and J. Gerum, J. D. Riedel, H. J. S. Sand, J. M. Thomson, and A. Trillat; and various other organic compounds, M. Ascoli and G. Izar, G. Bredig and F. Sommer, C. Foa and A. Aggazzotti, S. Fokin, E. Knoevenagel and A. Tomasczewsky, W. Knop, R. Lespieau and G. Vavon, L. Liebermann, O. Loew, R. Majima, C. H. Neilson, L. Pincussohn, E. Schaer, A. Skita, A. Skita and H. H. Franke, O. Stark, J. Tafel and K. Naumann, M. Traube, G. Vavon, C. O. Weber, R. Willstätter and co-workers, and E. Windisch.

B. Neumann and E. Altmann studied the catalytic effect of platinum in the action of hydrogen on carbon disulphide. W. R. Hodgkinson and F. K. S. Lowndes found that a red-hot platinum wire in the vapour of carbon tetrachloride breaks up the compound into chlorine, carbon, etc. P. Schützenberger found that when cyanogen is passed over heated platinum, platinum carbide and nitrogen are formed. H. B. Dixon observed that red-hot platinum favours the oxidation of cyanogen to carbon dioxide. H. Sinozaki and R. Hara studied the oxidation of hydrocyanic acid. Molten potassium cyanide was found by L. Gmelin to attack platinum crucibles forming a potassium platinous cyanide; and H. St. C. Deville and H. Debray observed that when potassium cyanide is heated with platinum black, at 500° to 600°, the main reaction is symbolized: 4KCy+2H₂O+Pt=K₂PtCy₄ +2KOH+H2; and a boiling, conc. soln. of potassium cyanide attacks the metal, forming the same complex salt. H. Rössler observed no action with aq. soln. of potassium cyanide on platinum; and A. Brochet and J. Petit observed that in the cold the solubility of platinum is nil, but dissolution commences at about 100°. According to F. Glaser, the dissolution of platinum does not occur when mercury is being electrodeposited from potassium cyanide soln, containing sulphuric acid, potassium sulphate, hydrocyanic acid or ammonium cyanide when the temp. is low, say 15° to 20°, and the current is weak. The dissolution of platinum in soln, of potassium cyanide occurs at a higher temp., say 25° to 30°. Platinum dissolves in soln. of potassium cyanide in the absence of oxygen, and hydrogen is evolved. The solubility is very small in the cold, but is increased by a rise of temp., or by the presence of sodium or potassium amalgam: L. Wöhler observed that with platinum black the solubility is favoured by oxygen, or hydrogen dioxide. H. St. C. Deville and H. Debray found that mercury is not precipitated by platinum from a boiling aq. soln. of mercuric cyanide, but if a little potassium cyanide is present, mercury is deposited and it combines with the platinum. C. Marie observed that platinum is attacked by a 12 per cent. soln. of potassium ferrocyanide in a 2 per cent. soln. of sodium hydroxide. G. Just noted the catalytic oxidation of ferrocyanides in alkaline soln. by platinum. S. Cooke, J. H. Gladstone, and G. Just noted the reduction of potassium ferricyanide by hydrogenized platinum. C. Marie observed that an alkaline soln. of potassium ferricyanide slowly attacks platinum. E. Raub studied the action of onion, leek, and mustard juices.

A. Trillat studied various reactions catalyzed by a hot spiral of platinum; G. F. Hüttig and E. Weissberger studied the catalytic decomposition of **methyl alcohol** by platinum; and B. S. Srikantan, the efficiency of platinum as a catalyst. W. G. Palmer studied the adsorption of **ethyl alcohol** by platinum. E. Müller and K. Schwabe studied the oxidation of ethyl alcohol by a platinum catalyst, and L. B. Loeb, the heat of oxidation. A. Bringhenti found that alkaline soln. of the alcohols, or soln. of sodium methoxide, ethoxide, and n-propoxide are catalyti-

cally oxidized in the presence of platinum. Water retards the activity of the catalyst on the alkoxides. An e.m.f. is developed when electrodes of platinized and smooth platinum are dipped in an alcoholic soln. of sodium alkoxide. M. Tauber studied the voltaic potential of platinum during hydrogenations, and R. Köppen, the effect of the substance supporting the platinum on its catalytic action. M. S. Platonoff studied the adsorption of fumaric, maleic, itaconic, mesoconic, and citraconic acids. B. Bruns and co-workers studied the formation of acid oxides on the surface of platinized charcoal; E. B. Maxted and V. Stone, the poisoning of the catalyst. W. E. Grove and A. S. Loevenhaut said that the supposed hydrolysis of starch by platinum black is really due to the presence of platinum oxides in the platinum black. M. S. Platonoff and co-workers studied the adsorption of organic acids by platinum black; W. H. Carothers and R. Adams, and M. Faillebin, the hydrogenation of aldehydes and ketones; F. Sigmund, the hydrogenation of phenylacetaldehyde di-n-propylacetal, cinnamaldehyde diethylacetal, and benzaldehyde diethylacetal; H. P. van Beck, formaldehyde; V. Haas, G. Käb, C. N. Hinshelwood and B. Topley, H. C. Tingey and C. N. Hinshelwood, C. H. D. Clark and B. Topley, and E. Müller and co-workers, formic acid; and F. Berezovskaya and co-workers, fumaric and maleic acids in light. A. Skita noted the greater activity of colloidal platinum over spongy platinum in the hydrogenation of the nucleus of cyclic compounds—phenylene-2-acetic-2-propionic acid, benzylamine, \beta-phenylethylamine, iso-quinoline. J. W. Kern and co-workers studied the reduction of olefines; A. S. Ginsberg and A. P. Ivanoff, the hydrogenation of aliphatic compounds; J. S. Pierce and co-workers, the reduction of furylalkylcarbinols; H. Heckel and R. Adams, the reduction of aminophenols to cyclic amino-alcohols; N. D. Zelinsky and M. B. Turowa-Pollak, benzene: W. H. Carothers and R. Adams, the reduction of aldehydes—e.g. benzaldehyde; E. Waser, benzoic acid, nitroantipyrine, vanillylidehippuric acid, antipyrine, benzamido-cinnamic acid, and cinnamyl alcohol; R. Willstätter and F. Seitz, naphthalene; W. E. Kaufmann and R. Adams, furfuraldehyde; M. Faillebin, aldehydes and ketones; H. L. Lochte and co-workers, and K. A. Taipale, azines, ketazines, semicarbazones, and phenylhydrazones; G. Vavon, limonene; G. Vavon and A. Husson, cyclohexane, nitrobenzene, cinnamic acid, and acetophenone; R. Willstätter and D. Jaquet, indole, and the anhydrides of the o-dicarboxylic acids-e.g. phthalic anhydride and naphthalic anhydride-phthalic acid, naphthalic acid, and p-toluic acid; R. Willstätter and D. Hatt, benzene, naphthalene, durene, phenol, aniline, benzoic acid, pyrrole, iso-hemopyrrole, m-chlorotoluene, and allyl bromide; K. Hess, a-1-methylpyrrylpropane- β -ol, 2-pyrrylpropane- $\beta\gamma$ -diol, 2-acetylpyrrole, and 2-propionylpyrrole; C. Paal and W. Hartmann, and C. Paal and A. Schwarz, phenylpropiolic acid; J. Böeseken and co-workers, cinnamic, muconic, aconitic, itaconic, citraconic, mesaconic, cyclopropane-1: 1-dicarboxylic, ethylenetricarboxylic, and vinylglycollic acids; F. Sigmund, the hydrogenation of aromatic aldehydes; E. W. R. Steacie and H. N. Campbell, the decomposition of ether; P. C. Allen and C. N. Hinshelwood, the decomposition of acetaldehyde; the decomposition of benzoyl peroxide and hydroperoxide, by F. I. Berezovskaya and O. Semikhatova; N. D. Zelinsky and A. A. Balandin, the dehydrogenations of decahydronaphthalene; G. Cusmano and E. Cattini noted the catalytic oxidation of buchu-camphor in the presence of platinum black; E. Müller and K. Schwabe, the oxidation of alcohol; E. W. R. Steacie and H. N. Campbell, the decomposition of ether; M. S. Platonoff and co-workers, the adsorption of organic acids; V. Grignard, the hydrogenation of tertiary methylheptenols; R. Willstätter and E. W. Leitz, aromatic compounds; H. Wieland, the dehydrogenation of dextrose, gluconic acid, lactic acid, phenol, m-cresol, guaiacol, pyrogallol, aniline, alcohol, and acetaldehyde, but not tyrosine and uric acid; R. Willstätter and E. W. Mayer, benzoic acid, erucyl alcohol, geraniol, phytol, and cholesterol; C. Paal and J. Gerum, fumaric, maleic, and cinnamic acids, methyl cinnamate, and nitrobenzene; according to O. Loew and K. Aso, platinum black converts maleic into

fumaric acid, and reduces nitrobenzoic acid, and trinitrophenol: R. Vondracek. L. Lindet, F. Plzak and B. Husek, and B. Rayman and O. Sulc. studied the hydrolysis of sucrose: C. H. Neilson, the hydrolysis of ethyl butyrate; E. Schaer, oxidations by benzoic peroxide, and quinone; H. A. Taylor and M. Schwartz, and E. W. R. Steacie and co-workers, the thermal decomposition of dimethyl ether, and diethyl ether; B. Bruns and M. Wanjan, the inversion of sugars: H. A. Taylor, the decomposition of acetone; K. Suzuki, geraniol; L. Michaelis and E. S. G. Barron, the reduction of cysteine; Y. Shibata and K. Yamasaki, the oxidation of pyrogallol; G. K. Hughes and co-workers, the reduction of the bromoalkylbarbituric acids; Y. Shibata and K. Yamasaki, the oxidation of pyrogallol; A. S. Richardson and A. O. Snoddy, the hydrogenation of cotton-seed oil; E. B. Maxted and C. H. Moon, the oxidation of crotonic acid; and F. Thoren, the catalase action. E. Salkowsky found that placial acetic acid even when mixed with hydrogen dioxide does not attack W. G. Palmer studied the absorption of acetic acid by platinum. J. H. Mathews observed that a soln. of trichloroacetic acid in nitrobenzene does not attack platinum; and J. L. Sammis observed that a soln. of copper cleate in various solvents, and C. B. Gates, that **oleic acid** do not attack the metal. A. Carpené observed that the metal was not attacked on standing 192 hrs. in red wine; and W. Thomson and F. Lewis observed that platinum has an injurious effect on indiarubber. J. Ranedo studied the effect of platinum on the oxidation of organic matter by sulphuric acid.

H. Moissan 20 observed that **boron** contains platinum when it has been prepared in platinum vessels from a mixture of potassium and boric acid; and F. Wöhler and H. St. C. Deville observed that boron forms a boride when heated with platinum -vide 5, 32, 4. A. Sieverts and K. Brüning studied the absorption of hydrogen by the platinum borides. O. Ruff and W. Menzel observed no reaction with boron pentafluoride below a dull red-heat. J. G. Rose observed that borax which has been fused in platinum vessels for 4 hrs. at a red-heat contained 0.3 mgrm. per 100 grms. H. V. Collet-Descotils observed that platinum is attacked by molten borax and carbon. L. Pissarjewsky studied the catalytic decomposition of sodium perborate by platinum. According to H. St. C. Deville, 21 H. N. Warren, F. P. Miles, and H. le Chatelier, silicon readily attacks platinum at an elevated temp.—vide 6. 40, 14. F. C. Carter said that silicon forms a brittle alloy with platinum; and silica along with carbonaceous material or hydrogen has the same effect as indicated by L. I. Dana and P. D. Foote, J. B. J. D. Boussingault, and A. Guyard. I. Traube found that molten potassium silicate attacks platinum strongly; and W. P. White found silicates had in general no action below 900°. W. Jander said that molten silicates dissolve platinum not in the ionic form, but as metal; and at its m.p., platinum takes up iron from fused silicates in the presence of reducing gases. The attack of platinum crucibles by iron silicates was studied by T. Poleck, R. W. Mahon, W. Jander, and E. Isaak and G. Tammann. C. G. Memminger found that topaz fused in a platinum crucible under reducing conditions formed brittle platinum W. R. Hodgkinson and F. K. S. Lowndes observed that silicon tetrafluoride is decomposed by a red-hot platinum wire, forming crystals of silicon and platinum fluoride. K. Fuwa studied the coloration of glass by platinum. catalysis of the oxidation of titanous sulphate by platinum black was studied by B. Diethelm, B. Diethelm and F. Förster, and H. G. Denham. H. Rose, and W. B. Giles noted that platinum crucibles are attacked by soln. of titanic acid in the presence of nitric or sulphuric acid.

The action of platinum on the metals is discussed below. The favourable action of platinum on the dissolution of metals in acids was discussed by L. H. Zenneck, ²² J. T. Conroy, and W. Ostwald. M. Philippson observed that when a platinum plate is introduced into colloidal copper, prepared by cathodic disintegration, copper is gradually precipitated. The precipitation is independent of the electrolytic soln. press. of the precipitating metals, and these metals, under the influence of the discharge of the colloidal particles during precipitation, are able in their turn

to assume the colloidal state. A. Trillat found that a trace of platinum favours the catalytic activity of copper. R. Engel noted the favourable action of platinum on the dissolution of copper in hydrochloric acid; and W. Nernst, on the dissolution of copper in a soln. of potassium cyanide. A platinum plate is without action on the hydrosol of silver. F. Vles and M. Get studied the effect of platinum on silver sols. F. C. Carter observed that platinum absorbs calcium when heated electrically in lime; M. Ballo, a trace of platinum favours the reducing action of magnesium; N. A. E. Millon, the dissolution of zinc in acids; L. Schönn, the dissolution of cadmium in nitric acid: and C. Barreswil, and N. A. E. Millon, that the presence of traces of platinum favours the evaporation of mercury; but F. C. Carter observed no tendency to amalgamation below 200°. M. Volmer and A. Weber studied the wetting of platinum by mercury; Y. Okayama, and A. I. Leipunsky, the oxidation of mercury by oxygen in the presence of a heated platinum filament. W. R. E. Hodgkinson and F. K. S. Lowndes observed no attack by mercury vapour on the red-hot wire; but T. Ihmori found that an adsorption of mercury vapour by platinum black occurs such that at 17°, a specimen of platinum black, 0.3 grm., increased in weight 0.0021 grm. in 5 hrs. Platinum foil showed no increase in weight. O. Loew found that with hydrogen amalgam. in water, heat is developed; and L. Cailletet, that with ammonium amalgam, or sodium amalgam, under water, platinum is amalgamated. E. B. Maxted noted the adsorption of lead or mercury which acts as a catalytic poison on platinum. L. Schönn noted that platinum favours the dissolution of tin in nitric acid; N. A. E. Millon, the dissolution of iron in acids; and L. Varenne, the depassivation of iron in conc. nitric acid. W. G. Imhoff studied the deleterious action of zinc on platinum. J. L. Gay Lussac and L. J. Thénard found that platinum is oxidized when heated with potassium peroxide; and W. L. Dudley, T. Polcck, L. Quennessen, and E. Leidié and L. Quennessen found that the metal is also attacked when heated with sodium dioxide. W. Dittmar, and L. Troost said that platinum is not attacked by lithium oxide in the absence of air at a white-heat; but R. Ricke and K. Endell observed that the metal is attacked in the preparation of molten lithium silicates in platinum crucibles. G. Brügelmann observed that the sp. gr. and crystal form of barium oxide made in platinum and in clay crucibles are different. According to P. Nicolardot and C. Chatelot, at 825°, barium oxide is much less corrosive than the alkali hydroxides. O. Sackur found that the metal is perceptibly attacked by barium oxide and strontium oxide at an elevated temp., and H. Rose noted that it is attacked likewise by manganese dioxide; and J. J. Berzelius, and G. Bischof, by molten potassium hydroxide. W. Dittmar observed that there is no attack by alkali hydroxides at a red-heat, when air is excluded, but if air has access, peroxides are formed and the metal is attacked. F. C. Carter, and M. le Blanc and L. Bergmann observed no attack by sodium hydroxide at 400°, but the metal is corroded at temp. exceeding 700°. T. Gross observed that in the electrolysis of fused potassium hydroxide, or of potassium carbonate mixed with a little nitrate, in a platinum crucible, at a yellow heat, with an alternating current of 50 cycles per second, 120 volts, and 35 amps., the metal is attacked, and needles resembling graphite are formed on and in the fused mass. J. J. Berzelius found that platinum is attacked by molten lithium hydroxide, and the subject was studied by W. Dittmar, L. Troost, L. N. Vauquelin, P. Nicolardot and C. Chatelot, H. A. von Vogel, and L. Kralovanszky. According to W. Skey, platinum is so affected by soln. of the fixed alkalies that it can no longer be amalgamated until the metal has been treated with acids. It was supposed that a film of oxide is formed on the metal. C. Marie observed that the metal is oxidized by an aq. soln. of potassium permanganate and sodium hydroxide. According to P. Nicolardot and C. Chatelot, platinum crucibles undergo marked corrosion when sodium hydroxide or potassium hydroxide is fused in them, and the crucibles are subsequently washed, first with water and then with dilute acid. New crucibles resist better than old crucibles, and the presence of iridium rather PLATINUM 169

diminishes the resistance to corrosion. Potassium hydroxide is decidedly more corrosive than sodium hydroxide. Observations were also made by L. Quennessen, and E. Leidié and L. Quennessen. L. L. de Koninck found that platinum is attacked by molten alkali carbonates, and this the more if manganese is present owing to the formation of alkali manganates; R. W. Mahon noticed that the action is also favoured by the presence of iron compounds. T. Gross observed an attack during the electrolysis of the fused carbonate—vide supra. J. J. Berzelius, L. Troost, and W. Dittmar also showed that lithium carbonate attacks platinum in air, presumably owing to the formation of lithium dioxide since, W. Dittmar showed that in nitrogen, the metal is not attacked. C. Kellner found that alkalies are adsorbed by platinum black; and W. Skey, that contact with alkalies or alkali carbonates affects platinum so that it does not amalgamate with mercury. E. J. Kohlmeyer and J. W. Westermann found that platinum is not attacked by lead oxide (also bismuth oxide) in a neutral atm. at temp. up to 1200°, but at 1300°, the slow dissociation of the oxide occurs, and platinum gradually absorbs the metal, forming fusible drops; at 1400°, rapid perforation of the platinum occurs. The magnesium aluminite, called Marquardt's body, attacks platinum at 1600°, and the crucible fails at 1700° owing to the absorption of magnesium, and aluminium by the platinum. Platinum wire roughens in contact with magnesia or with alumina at 1600°; and fails at about 1700°. E. Tiede and R. Piwonka studied the alumina platinum phosphors.

W. Skey 23 observed that contact of platinum with chlorides prevents the metal amalgamating with mercury. According to G. Méker, finely-divided platinum is not attacked by fused ammonium sulphate, nor appreciably by alkali bromides between 250° and 350°; but a mixture of ammonium sulphate with ammonium bromide or potassium bromide forms red ammonium bromoplatinite; ammonium chloride in place of the bromide, also attacks platinum; and with ammonium or potassium iodide, iodine is liberated. A. Frumkin and A. Obrutscheva studied the hydrolytic adsorption of sodium sulphate. A mixture of potassium sulphate and potassium bromide also attacks platinum; and similarly with a mixture of potassium sulphate and potassium chloride. A. Frumkin and A. Donde found that platinized charcoal, activated in air, adsorbs acid from potassium chloride soln., and liberates alkali, whereas the opposite effect occurs in an atm. of hydrogen. The addition of thiocarbamide to the potassium chloride soln, poisons the platinum, and the charcoal then absorbs only acid independently of the atmosphere. Spongy platinum adsorbs alkali from a soln. of sodium sulphate; but spongy platinum which absorbs acid and liberates alkali in the presence of oxygen could not be prepared. J. Persoz, F. C. Carter, and W. F. Hillebrand found that molten potassium hydrosulphate attacks platinum. H. Weisz, and R. Schwarz and H. Stock, observed that platinum can serve as nuclei for the solarization of silver bromide films. E. Kraus observed that platinum is attacked by molten calcium chloride owing to the formation of some calcium oxide; and the reaction was studied by A. Petzholdt. E. Schaer noted that the presence of colloidal platinum favoured the oxidation of some organic substances by cupric salts, and also by silver nitrate. D. Tommasi studied the reduction of silver chloride by platinum. The effect of platinum on the photochemical reaction with silver bromide: 3AgBr ⇒ Ag₂Br +AgBr₂ was studied by B. L. Vanzetti, W. J. Russell, and E. Cohen. V. Kohlschütter noted the reduction of soln. of silver oxide by hydrogen in the presence of a platinum catalyst. C. St. Pierre observed that a soln. of auric chloride is partly reduced by platinum. T. L. Phipson and D. Tommasi found that auric chloride is reduced by hydrogen in the presence of platinum. W. P. Jorissen and W. E. Ringer found that traces of platinum favour the phosphorescence of zinc sulphide. K. A. Hofmann and V. Wölfl observed that platinum separates radium-F from hydrochloric acid soln, of bismuth-polonium, and soln, of radium-lead chloride containing radium-D, and radium-F. R. Abegg and J. F. Spencer studied the oxidation of thallous nitrate with platinum anodes. E. A. Baur and A. Glässner

found that soln. of ceric salts are reduced by platinized platinum with the evolution of oxygen. W. R. Hodgkinson and F. K. S. Lowndes found that a red-hot platinum wire in the vapour of mercuric chloride furnishes some platinous chloride. H. Ley said that when a soln, of mercuric chloride is shaken with platinum, there is probably some reduction. R. Peters observed that when a soln. of sodium chloride is allowed to stand over mercury and a platinum wire is present, some mercuric chloride and sodium hydroxide are formed, and W. Skey observed a similar result with hydrochloric acid. E. Schaer noted that the presence of colloidal platinum favoured the oxidation of some organic substances by mercuric chloride. According to E. Alexander, platinum does not reduce a soln, of mercuric chloride in ethyl acetate. S. Cooke noted that mercuric salts are rapidly reduced by hydrogenized J. J. Berzelius noted the attack of platinum crucibles by vanadium salts. L. Pissarjewsky noted the catalytic reduction by platinum of the vanadium salt K₈V₅O₂₆ to KVO₄. J. C. G. de Marignac noted that platinum is attacked by fused potassium columbium fluoride. F. W. Tschirch observed that osmium octofluoride tarnishes platinum. E. Schaer noted that the presence of colloidal platinum favoured the oxidation of some organic substances by chromic acid. C. Marie found that platinum is oxidized by a normal soln. of potassium dichromate in N-H₂SO₄. C. Marie observed that an acidic soln, of potassium dichromate slowly attacks platinum. S. Cooke found that acidic soln, of potassium dichromate are rapidly reduced by hydrogen in the presence of platinum. C. F. Schönbein noted that soln. of potassium chromate in the presence of platinum black colour blue a soln, of starch and potassium iodide. M. Soller, and E. Müller and M. Soller found that with a smooth platinum anode, a soln. of chrome alum in N-H₂SO₄ is not appreciably oxidized to chromic acid, and with a platinized platinum anode, the oxidation proceeds about one-third as far as it does with an anode of lead dioxide. A. F. Joseph and W. N. Rae noted a marked attack by chromium phosphate at 1200°. The decomposition of soln. of chromous salts, $2Cr^{\bullet \bullet} + 2H^{\bullet} = 2Cr^{\bullet \bullet \bullet} + H_2$, was studied by T. Döring, K. Jablczynsky, and R. Peters. C. Fromme studied the electrochemical behaviour of **chromic acid** towards platinum—vide Bunsen's cell. A. Chilesotti studied the favourable action of platinum cathodes in the electrolytic reduction of molybdates. C. Paal and H. Büttner found ammonium molybdate is reduced by colloidal platinum. O. Ruff and co-workers observed that platinum resists the action of tungsten hexafluoride, but not of uranium hexafluoride.

C. Marie observed that platinum is oxidized by potassium permanganate in a 2 per cent. soln. of sodium hydroxide, or in sulphuric acid; A. H. Allen, however, observed no attack with sulphuric acid containing potassium permanganate. W. Foster found that finely-divided platinum favours the reduction of potassium permanganate; $2KMnO_4+H_2O=2KOH+Mn_2O_7$; and $Mn_2O_7+4H_2O$ =2Mn(OH)₄+3O. C. Marie observed that acidic or alkaline soln. of potassium permanganate slowly attack platinum. E. Schaer noted that the presence of colloidal platinum favoured the oxidation of some organic substances by per-R. Peters found manganese trichloride is very unstable in the manganates. presence of platinized platinum. W. Foster said that dil. neutral soln. of potassium permanganate are reduced by finely-divided platinum. R. B. Sosman and J. C. Hostetter, and J. W. Greig and co-workers found that at 1600°, in air, platinum reduces both ferric oxide and ferrosic oxide, oxygen is evolved, and a solid soln. of iron in platinum is formed; and the reaction occurs at 1200° if the oxygen pressure is small. Hence platinum crucibles sometimes increase in weight if used to heat iron oxides at a high temp. J. Napier did not find platinum to be attacked by soln. of ferric salts. According to A. Béchamp and C. St. Pierre, J. Personne, H. Schild, A. L. Beebe, and D. Tommasi, ferric chloride is reduced to ferrous chloride by platinum; and the subject was discussed by C. St. Pierre. C. Marie observed no attack by ferric chloride. E. Schaer noted that the presence of colloidal platinum favoured the oxidation of some organic substances by ferric salts. J. Eggert

studied the reduction of ferric salts by colloidal soln. of platinum. S. Cooke noted the reduction of ferric salts by hydrogenized platinum. E. Müller and G. Wegelin found that the presence of platinum favoured the reduction of ferric chloride by zinc; and R. Peters, W. Manchot and J. Herzog, and E. Oberer, the reduction of cobaltic salts. C. St. Pierre noted that palladic chloride is partially reduced by platinum, and E. Bose studied the equilibrium between platinum and platinic chloride. E. W. Hilgard found that spongy platinum favours the decomposition of potassium chloroplatinate. J. A. Buchner studied the action of ammonium nitrate on platinum. C. Claus, J. Lang, O. Köttig, and S. Tennant noted that fused potassium nitrate attacks platinum. The metal is also attacked by molten barium and strontium nitrates. H. St. C. Deville and H. Debray noted that when platinum is treated with iron disulphide in fused borax, platinum sulphide is formed.

According to A. Frumkin and A. Obrutscheva, if a hydrogen electrode is immersed in a soln. of a neutral salt, e.g. sodium sulphate, in which the osmotic press. of the hydrogen ions is less than the electrolytic soln. tension of the electrode, a small amount of hydrogen ions will pass into soln, and the resulting negative charge on the surface of the electrode will attract sodium ions from the soln., which will therefore become acid. A. Frumkin and A. Donde observed that purified spongy platinum, well-washed with purified water in an atm. of hydrogen, adsorbs alkali from a soln, of sodium sulphate; the alkali is not completely removed by washing with a considerable quantity of water, so that the amount of acid liberated is always in excess of that of the alkali. It has not been found possible to prepare spongy platinum in presence of oxygen which adsorbs acid and liberates alkali. Charcoal treated with platinum and activated in air adsorbs acid from potassium chloride soln, and liberates alkali, whereas the opposite effect is observed in an atm. of hydrogen. Addition of thiocarbamide to the potassium chloride soln. poisons the platinum, and the charcoal then adsorbs only acid independently of the gaseous atm. I. M. Kolthoff and T. Kameda also observed that platinizedplatinum, in an atm. of hydrogen, adsorbs the cation from a neutral salt soln., and an eq. amount of free acid is formed in the soln. Zinc sulphate soln., in an atm. of hydrogen, increased in acidity to an extent eq. to the amount of zinc adsorbed by the platinum. Ammonium chloride likewise became slightly acid, but in oxygen such soln, became very distinctly acid, and the acidity increased the longer the oxygen was passed. This is attributed to the formation of hexaaquoplatinic acid, which reacts with the ammonium ions present: H2Pt(OH)6 +2NH₄->(NH₄)_oPt(OH)₆+2H. Similar results were obtained with trimethylammonium and potassium chlorides. No acid adsorption from hydrochloric acid occurs in a hydrogen atm., but in an oxygen atm, there is eq. adsorption of hydrogen and chlorine ions. Sodium hydroxide is strongly adsorbed in a hydrogen atm.; maximum adsorption occurs at a concentration of 0.0007N. This adsorption is increased by addition of sodium chloride, and in presence of large amounts of the latter the maximum disappears. In the presence of oxygen the hexa-aquoplatinic acid formed neutralises some of the alkali, and only apparent adsorption of the latter, therefore, takes place. F. Tödt observed that the hydrolytic adsorption in phosphate buffer soln. containing potassium chloride, at a platinized-platinum surface, gives rise to acid in amount sufficient to account for the hydrogen effect observed by L. Wolff. H. Gall and W. Manchot studied the reducing action of hydrogen and platinum on various inorganic salts.

Reactions of platinum of analytical interest.—A soln. of hydrochloroplatinic acid gives no precipitate with hydrochloric acid, but the soln. gives yellow precipitates of the sparingly soluble chloroplatinates when treated with conc. soln. of potassium or ammonium chloride. When the soln. of hydrochloroplatinic acid is treated with hydrogen sulphide in the cold, platinum disulphide is slowly precipitated, the precipitation is faster with a warm soln. N. W. Fischer ²⁴ observed that the limit of the reaction occurs with a soln. containing one part of platinum in 30,000 parts of liquid. According to R. Gaze, the precipitation is incomplete—

perhaps a colloidal soln, is formed—but if some mercuric chloride is present, the platinum disulphide is formed rapidly and completely along with the mercuric sulphide. U. Antony and A. Lucchesi observed that the precipitation is quantitative with cone, soln, at 90°, but not at 15° to 18°; with dil, soln, colloidal sulphide is formed. H. Reinsch observed no precipitation in soln, of one part of platinic chloride in 100 parts of water and 25 parts of hydrochloric acid; and N. W. Fischer added that the precipitate is soluble in hydrochloric acid. Actually the precipitated sulphide is insoluble in mineral acids, but readily soluble in aqua regia; it is slowly dissolved by alkali sulphides, but is more readily soluble in alkali polysulphides from which soln, it is precipitated by acids. A soln, of ammonium sulphide precipitates platinum sulphide; if **ammonium polysulphide** is employed the precipitation is slow in the cold, but faster with warm soln. Complete precipitation is attained with difficulty.

The soln, of hydrochloroplatinic acid is reduced by stannous chloride to hydrochloroplatinous acid, not to the metal; if the soln, is acidified with hydrochloric acid, and only a small proportion of platinum is present, the liquid becomes yellow, and, according to L. Wöhler and A. Spengel, there is formed a colloid analogous to purple of Cassius. N. W. Fischer said that the limit to the coloration is 1 part of platinum in 100,000 parts of liquid; and J. L. Lassaigne observed that 1 part in 10,000 parts of liquid gives a reddish-yellow liquid and a precipitate; with 20,000 parts of liquid, a paler reddish-yellow liquid; with 40,000 parts of liquid, an orange-yellow colour; with 80,000 parts of liquid, a yellowish-colour; but with 160,000 parts of liquid, a pale yellow; and with 640,000 parts of liquid, a very pale yellow colour. L. Wöhler and A. Spengel said that the sensitiveness of the test is 10⁻⁷ grm. of platinum in a c.c. of liquid; and R. Ruer, 0.01 mgrm. of platinum in 10 c.c. of liquid. A deep, reddish-yellow precipitate is produced by mercurous nitrate. R. Böttger found that a distinct yellow colour is produced by mercurous nitrate when I part of platinum is present in 100,000 parts of liquid. G. Forchhammer found the sensitiveness in the presence of nitric acid is 1 in 10,000. Unlike the corresponding reaction with gold, ferrous salts do not precipitate platinum from acidic soln, of hydrochloroplatinic acid; but in a soln, which has been neutralized with sodium carbonate, platinum is precipitated along with ferric hydroxide. Unlike gold also, oxalic acid does not precipitate the metal from soln. of hydrochloroplatinic acid. When treated with alkali iodides, hydrochloroplatinic acid is reduced to hydrochloroplatinous acid, with the separation of iodine, and A. Walcker, and F. Field arranged the conditions to detect 1 grm. of platinum in over 1,000,000 c.c. of soln. J. L. Lassaigne said that with 1 part of platinum in 10,000 parts of liquid, an orange-yellow colour passing to red is formed; with 20,000 parts of liquid, a yellow colour is produced which soon becomes red; with 40,000 parts of liquid, the colour is first yellowish and then rose coloured; with 160,000 parts of liquid, a rose colour is produced in a few minutes; and with 320,000 parts of liquid, a scarcely perceptible rose colour appears after some time. F. Emich and J. Donau said the sensitiveness is such as to detect 0.000005 grm. of platinum. G. G. Aquilina recommended iodic acid as a test for detecting platinum. O. Brunck found that sodium hyposulphite reduces platinic to platinous chloride with the precipitation of sulphur. R. Doht precipitated platinum by boiling the soln. with hypophosphorous acid. Unlike gold soln., metallic platinum is not precipitated from hydrochloroplatinic acid by sulphurous acid, acetylene, hydroxylamine, and hydrogen dioxide in alkaline soln.; and metallic platinum is precipitated from the hot soln. by formic acid, by formaldehyde, by glycerol and sodium hydroxide, by hydrazine, by magnesium, and by zinc. W. N. Ivanoff observed that soln. of platinum salts give a precipitate with thiocyanate. When platinum salts are boiled with pyrocatechol or pyrogallol, a blood-red soln. is produced which changes to dark brownish-red; and when a platinum salt soln. is made alkaline with ammonia, the same coloration is produced with resorcinol (S. C. Ogburn). W. Singleton recommended as tests for platinum, ammoniacal

resorcinol soln., reduction with stannous chloride, microscopical test with hexamethylenetetramine or potassium chloride, addition of sodium thiocyanate and ammonium nitrate. According to E. Sonstadt, when mercury of a high degree of purity is agitated with a soln. of 1 part of platinochloride in 3,000,000 parts of water, the precipitation of platinum can be recognized. G. Malatesta and E. di Nola found that with very dil. soln. of hydrochloroplatinic acid, benzidine in acetic acid soln. gives a flocculent bluish precipitate. The sensitiveness is equal to 0.0000125 part of platinum. V. G. Chlopin said that platinous salts give no precipitate, and conc. soln. of platinic salts, a rose-red precipitate. M. Wunder and V. Thuringer found that the precipitation with dimethylglyoxime is not quantitative. R. Meldrum detected 1 part of platinum in 5000 parts of liquid by precipitation with potassium ferrocyanide.

The physiological action of platinum salts.—The toxic and corrosive action of platinum salts introduced in the stomach of animals was observed by C. G. Gmelin.²⁵ According to F. Höfer, a dose of 1.25 grms. of platinum chloride or 1.87 grms. of sodium chloroplatinate, has a marked poisonous action. Conc. soln. of platinic chloride produce irritation of the skin, and erythema; the mucous membrane is irritated, and the brain is affected. Sodium chloroplatinate has a milder action. The therapeutic action has some analogies with those of mercury, iodine, gold, and arsenic, but platinum salts act less strongly than auric or mercuric chlorides. Platinum salts were once used as remedies for syphilis, and rheumatic affections. J. A. Blake said that the lethal dose for injections is 0.02 mgrm. per kgrm., and that the relative toxic actions of gold, platinum, and lithium are as 1. \frac{1}{10}: \frac{1}{27}. R. S. Hardman and C. H. Wright reported that a child accidentally swallowed 8 grains of potassium chloroplatinite. This was attended by vomiting and diarrhoea with the usual symptoms of gastro-enteritis; the child collapsed, and in spite of treatment, died from cardiac failure in five hours. At the autopsy, the mucous membrane of the stomach was found to be pale except for a patch of brownish-yellow staining on the posterior wall; the spleen was enlarged and the kidneys, highly congested, displayed punctiform hæmorrhages; a chronic intussusception was found which possibly had something to do with the fatal termina-Platinum was found in the stomach and intestines. J. A. Blake studied the relation between the valency and the biological action of platinum salts; and F. Hofmeister found that increasing the number of NH₃-groups in the platinum ammines favours the development of the toxicity, but differences in constitution and valency had no appreciable effect. J. Dunin-Borkowsky and Z. Szymanowsky observed no connection between the agglutinating and hamolyzing power of salts of the heavy metals and the valency or chemical relationships of the metals.

C. Foa and A. Aggazzotti observed that intravenous injections of colloidal platinum had no perceptible effect on dogs. A. Robin and G. Bardet found that the colloid increased the separation of urea, uric acid and indoxyl, and raised the respiratory quotient. M. Ascoli and G. Izar showed that when administered to man hypodermically and intravenously, there is an increase in the output of nitrogenous compounds. W. Chonstein studied the effect of subcutaneous or intravenous injection of sodium chloroplatinate on the elimination of nitrogen compounds. According to J. Jütt, oxyhæmoglobin readily forms compounds with salts and double salts of the heavy metals; the compounds thus obtained are very sparingly soluble in blood, especially in the presence of sodium chloride. metallic compounds are obtained by the replacement of five hydrogen atoms in oxyhamoglobin by five atoms of a metal, the valency of the metal appearing to be without influence. The main action of heavy metals as poisons is that the formation of the metallic compounds with the oxyhemoglobin renders the blood incapable of acting as an oxygen carrier. The physiological action of platinic chloride was studied by A. W. Pell. J. Feigl and A. Rollet found that the colloid has a specific action in promoting the gastric secretion of a dog, which is not possessed by metals when administered in the form of ordinary ionizable salts. A. Robin and G. Bardet

observed that in some infectious maladies, the colloid promoted oxidation of the tissues, and the cure of the disease. C. Levaditi and co-workers found the double thiosulphate of platinum and sodium to be less active than the corresponding salt of gold in its trypanocidal action on rabbits.

Compact platinum was found by H. Thiele and K. Wolf to have no baneful action on bacteria. E. Behring, L. Bitter, E. Rosenthal and W. Bamberger, and the Farbwerke vorm. Meister, Lucius und Brüning studied the value of platinum salts as antiseptics; A. Calmette, A. Pedler, and T. L. Brunton and J. Fayrer, as antidotes for snake poisoning. H. Micheels and P. de Heen, the favourable action on the germination of wheat; A. Chassevant and C. Richet, the inhibiting action on the lactic fermentation of whey; A. Devaux, the non-fixation of platinum by the cell walls of plant stems from which the calcium and magnesium salts have been abstracted by acids; and T. Thunberg, the null-effect of hydrochloroplatinic acid on the absorption of oxygen by lecithin.

Some uses of platinum.—C. Ridolfi 26 tried plating copper and brass with platinum leaf to make stills and evaporating pans, but not successfully. Platinum plating gives a non-tarnishable coating for silver and base metals. Platinum generally alloyed with 10 per cent. of iridium has been employed in making standard international measures of length, and weight; the metal is employed in the production of mirrors, and cross-wires for optical instruments; and in the construction of pyrometers—e.q. thermo-couple, contact breakers and resistance pyrometers, as well as optical pyrometers. The metal is used in the construction of chemical apparatus-e.g. crucibles, gooch filters, electrodes, etc. K. Falck described the use of platinum in dental work as alloys and pins for artificial teeth, foil for crowns, and supports for dentures; in electro-analytical work, a catalyst in numerous chemical reactions—the oxidation of ammonia, and of sulphur dioxide—and in the construction of automatic gas-lighters; in the electrical industries for glassto-metal joints, and for various contacts particularly if arcing is liable to occur. Platinum or platinum-iridium points are used for hypodermic syringes, and for cautery points. Platinum or a gold-platinum alloy is used in the artificial silk industry for spinnerets; and for spraying jets in the manufacture of sulphuric acid. Platinum and its alloys are used as a non-magnetic substitute for steel in some chronometers and watches. It has been tried in the construction of incandescent lamps, as a resistance material in the construction of electrically heated muffles, as platinum points in magnetos for aeroplane motors, etc. Investigations are being made of platinum-iridium flutes which are said to have a greater purity of tone than flutes made of other materials. The salts of platinum are also employed as reagents-e.g. in the determination of potassium, rubidium, and cæsium—and in photographic work—e.q. in platinum printing, and toning.

According to B. N. Menschutkin, in 1828, the Russian Government had accumulated large stores of platinum from the Uralian districts, and the metal was minted as coins of 3, 6, and 12 roubles. This was continued until 1845, when the minting was stopped and the coins withdrawn from circulation, the reason being that the Russian Government was unable to fix and maintain the price of the metal, so that large quantities of coins passed to other countries. Some platinum medals

have also been struck. Platinum is also employed in jewellery.

REFERENCES.

E. C. C. Baly, Proc. Roy. Soc., 72. 84, 1903; Phil. Trans., 202. A, 183, 1903; Phys. Zeit.,
 799, 1903; B. Brauner, Chem. News, 71. 116, 1895; J. N. Collie, Proc. Roy. Soc., 97. A,
 349, 1920; W. T. Cooke, ib., 77. A, 148, 1906; Zeit. phys. Chem., 55, 537, 1906; H. Damianovich, 349, 1920; W. 1. Cooke, 10., 77. A, 140, 1800; Zett. phys. Chem., 35, 1800; H. Damianovich, Anal. Inst. Investigation Cient. Tech., 1. 30, 1930; 2. 15, 24, 1931; Anal. Fis. Quim., 26, 365, 1928; Anal. Soc. Cient. Santa Fe, 6, 17, 20, 1934; Anal. Soc. Cient. Argentina, 118, 227, 1934; Anal. Assoc. Quim. Argentina, 17, 95, 1929; Gazz. Chim. Ital., 59, 571, 1929; Compt. Rend., 188, 790, 991, 1929; H. Damianovich and G. Berrez, Anal. Inst. Investigation Cient. Tech., 1, 58, 1930; H. Damianovich and J. Piazza, ib., 1, 45, 59, 1932; 2, 15, 24, 1933; H. Damianovich and J. J. Trillat, Compt. Rend., 188, 991, 1929; J. M. Eder and E. Valenta, Sitzber.

Akad. Wien, 104. 1171, 1895; Monatsh., 17. 50, 1896; A. Féry, Journ. Phys. Rad., (7), 4. 301, 1933; Ann. Physique, (10), 19. 421, 1933; G. I. Finch and J. C. Stimson, Proc. Roy. Soc., 124. A, 356, 1929; F. Fischer and G. Iliovici, Ber., 41. 3802, 4449, 1908; F. Fischer and F. Schröter, ib., 43. 1442, 1454, 1910; W. Frankenburger, K. Mayrhofer and E. Schwamberger, Zeit. Elektrochem., 37. 473, 1931; S. Friedländer, Zeit. phys. Chem., 19. 657, 1896; Chem. News, 74. 179, 1896; A. Jaquerod and F. L. Perrot, Compt. Rend., 140. 1542, 1905; H. Kayser, Math. Naturrw. Mitt., 221, 1896; V. Kohlschütter, Zeit. Elektrochem., 12. 869, 1906; 15. 930, 1909; V. Kohlschütter and T. Goldschmidt, ib., 14. 221, 1908; V. Kohlschütter and R. Müller, ib., 12. 365, 1906; R. W. Lawson, Phys. Zeit., 14. 938, 1913; J. Piazza, Anal. Inst. Investig. Cient. Technol., 2. 33, 1933; W. Ramsay and J. N. Collie, Proc. Roy. Soc., 60. 53, 1896; W. Ramsay and G. Rudorf, Die Edelgase, Leipzig, 1918; R. Salvia, Anal. Fis. Quim., 27. 285, 1929; F. Schröter, Ueber die elektrische Verstäubung der Metalle in flüssigen Argon und flüssigen Stickstoff, Berlin, 1909; F. Soddy, Proc. Roy. Soc., 78. A, 429, 1907; J. C. Stimson, ib., 144. A, 307, 1934; M. W. Travers, Proc. Roy. Soc., 60. 451, 1897; L. Troost and L. Ouvrard, Compt. Rend., 121. 394, 1895; Chem. News, 72. 153, 1895; S. Valentiner and R. Schmidt, Sitzber. Akad. Berlin, 816, 1905; Ann. Physik, (4), 18. 187, 1905.

² P. M. Niccolini, Boll. Soc. Ital. Biol. Sper., 9, 369, 1934.

³ R. Adams, V. Voorhees and R. L. Shriner, Organic Syntheses, 8, 92, 1928; P. Anderson, Journ. Chem. Soc., 121, 1153, 1922; L. Anelli, Nuovo Cimento, (4), 4, 268, 1896; E. C. Auerswald, Ueber kolloide Platinamalgam und deren katalytische Wirkung, Leipzig, 1927; N. Bach, Koll. Zeit., 64. 153, 1933; H. Baerwald, Ann. Physik, (4), 23. 105, 1907; S. H. Barstow, Journ. Chem. Soc., 33. 308, 1878; B. Batscha, Zeit. phys. Chem. Unterr., 40, 258, 1927; H. Becquerel, Compt. Rend., 70, 1313, 1870; K. Bennewitz and P. Günther, Zeit. phys. Chem., 111, 257, 1924; A. F. Benton, Journ. Amer. Chem. Soc., 48, 1850, 1926; A. Berliner, Wied. Ann., 35, 807, 1888; M. Berthelot, Bull. Soc. Chim., (2), 39, 109, 1883; Ann. Chim. Phys., (5), 30, 519, 1883; Compt. Rend., 94. 1377, 1882; G. Bethe, Zeit. Physik, 80. 11, 1933; M. Bodenstein, Liebig's Ann., 440. 177, 1924; Zeit. phys. Chem., 46. 736, 1903; Zeit. Elektrochem., 16. 713, 1910; 28. 517, 1923; K. F. Bonhoeffer and A. Farkas, Zeit. phys. Chem., 12. B, 231, 1931; Trans. Faraday Soc., 28. 242, 561, 1931; K. F. Bonhoeffer, A. Farkas and K. W. Rummel, Zeit. phys. Chem., 21. B, 225, 1933; G. Borelius, Ann. Physik, (4), 83. 121, 1927; G. Borelius and S. Lindblom, ib., (4), 82. 201, 1927; E. Bose, Zeit. phys. Chem., 34. 700, 1900; M. C. Boswell, Trans. Roy. Soc. Canada, (3), 16. 1, 1922; M. C. Boswell and C. H. Bayley, Journ. Phys. Chem., 29, 11. 679, 1925; M. C. Boswell and R. R. McLaughlin, Trans. Roy. Soc. Canada, (3), 17. 1, 1923; F. P. Bowden and E. K. Rideal, *Proc. Roy. Soc.*, 120. A, 59, 80, 1928; G. Bredig and R. Allolio, *Zeit. phys. Chem.*, 126. 41, 49, 1927; H. Brüning, *Studien über Platinmohr*, Leipzig, 1931; R. Burstein and A. Frumkin, *Journ. U.S.S.R. Phys. Chem.*, 3, 106, 1932; *Trans. Faraday Soc.*, 28, 273, 1932; L. Cailletet and E. Collardeau, *Compt. Rend.*, 119, 830, 1894; M. Calvin, *Trans. Faraday Soc.*, 32, 1428, 1936; A. Coehn and K. Sperling, *Zeit. Physik*, 83, 291, 1933; H. Damianovich, Anal. Soc. Cient. Santa Fe, 6. 20, 1934; H. Damianovich and C. Christen, Anal. Inst. Cient. Tech., 1. 54, 1932; B. Delachanal, Compt. Rend., 148, 561, 1909; N. R. Dhar, Andl. Inst. Cieft. Tech., 1, 34, 1932; B. Delachanal, Compt. Rend., 148, 301, 1909; N. K. Dhar, Journ. Phys. Chem., 28, 948, 1924; H. Dobretsberger, Zeit. Physik, 65, 334, 1930; J. Eggert, Zeit. Elektrochem., 20, 370, 1914; P. H. Emmett and R. W. Harkness, Journ. Amer. Chem. Soc., 57, 1624, 1935; R. Engel, Compt. Rend., 91, 1069, 1880; O. Erbacher, Zeit. phys. Chem., 163, 215, 231, 1933; A. Eucken, Zeit. Elektrochem., 28, 6, 257, 1922; A. Farkas, Trans. Faraday Soc., 32, 922, 1936; A. and L. Farkas, ib., 31, 821, 1935; A. Farkas and H. H. Rowley, Zeit. phys. Chem., 22, B, 335, 1933; P. A. Favre, Compt. Rend., 77, 649, 1873; Phys. Chem., 22, 1957, 1874; Ann. Chim. Phys. (5), 4, 256, 1874; A. J. Eurguson and G. Dubrocoroll. Technology. 78. 1257, 1874; Ann. Chim. Phys., (5), 1. 256, 1874; A. L. Ferguson and G. Dubpernell, Trans. Amer. Electrochem. Soc., 64. 253, 1933; A. Féry, Journ. Phys. Rad., (7), 4, 301, 1933; Ann. Physique, (10), 19, 421, 1933; G. I. Finch and J. C. Stimson, Proc. Roy. Soc., 124, A, 356, 1929; K. Fischbeck, Zeit. Elektrochem., 40. 378, 1934; E. W. Flosdorf and G. B. Kistiakowsky, Journ. Phys. Chem., 34. 1907, 1930; W. Frankenburger and K. Mayrhofer, Zeit. Elektrochem., 35. 590, 1929; W. Frankenburger, K. Mayrhofer and E. Schwamberger, ib., 37, 473, 1931; A. E. Freeman, Journ. Amer. Chem. Soc., 35. 927, 1913; A. Frumkin, S. Levina and O. Zarubina, Zeit. phys. Chem., 155. 41, 1931; J. Gerum, Katalytische Wirkungen kolloidaler Metalle der Platingruppe, Erlagen, 1908; J. H. Gladstone and A. Tribe, Journ. Chem. Soc., 33, 308, 1878; T. Graham, Phil. Trans., 156, 399, 1866; Proc. Roy. Soc., 15, 223, 1866; Pogg. Ann., 129, 588, 1868; Journ. prakt. Chem., (1), 99. 126, 1867; Phil. Mag., (4), 32. 401, 503, 1866; (4), 36. 63, 1868; Liebig's Man. Suppl., 5. 46, 1867; A. Gutbier and O. Maisch, Ber., 52. 1368, 1919; A. Gutbier and W. Schieferdecker, ib., 184. 306, 1929; W. R. Ham, Journ. Chem. Phys., 1. 476, 1933; L. P. Hammett and A. E. Lorch, Journ. Amer. Chem. Soc., 55. 70, 1933; E. Harbeck and G. Lunge, Zeit. anorg. Chem., 16. 32, 1897; E. A. Harding and D. P. Smith, Journ. Amer. Chem. Soc., 40, 1508, 1918; W. Heald, Phys. Zeit., 8, 662, 1907; H. von Helmholtz, Zeit. ges. Naturwiss., 6. 186, 1872; Monatsber. Akad. Berlin, 217, 1876; Phil. Mag., (5), 2. 153, 1876; Pogg. Ann., 150, 485, 1873; A. de Hemptinne, Zeit. phys. Chem., 27, 429, 1898; Bull. Acad. Belg., (3), 36, 155, 1928; W. C. Heraeus and W. Geibel, Zeit. angew. Chem., 20, 1892, 1907; J. Horiuchi and M. Polanyi, Trans. Faraday Soc., 30. 1161, 1934; Mem. Manchester Lit. Phil. Soc., 78. 47, 1934; F. Horton and A. C. Davies, Proc. Roy. Soc., 97. A, 23, 1920; G. F. Hüttig. Zeit. angew. Chem., 39. 67, 1926; A. Janitzky, Zeit. Physik, 3. 277, 1925; R. Jouan, Journ. Phys. Rad., (8), 7. 101, 1936; G. Käb, Zeit. phys. Chem., 115. 224, 1925; L. Kandler and C. A. Knorr, Zeit. Elektrochem., 42. 669, 1936; T. Kariyone, Journ. Japan Pharm. Soc., 506,

1924; G. Kernot and F. de S. Niquesa, Rend. Accad. Napoli, (3), 15. 168, 1909; M. Knudsen, Ann. Physik, (5), 6, 129, 1930; N. L. Koboseff and W. L. Anochin, Zeit. phys. Chem., 13, B, 18, 63, 1931; R. Köhler, ib., 135, 369, 1928; R. Köppen, Zeit. Elektrochem., 38, 938, 1932; I. Langmuir, Journ. Amer. Chem. Soc., 38. 2221, 1916; 39. 1848, 1917; 40. 1361, 1508, 1918; V. Lombard, Journ. Chim. Phys., 25. 587, 1928; Compt. Rend., 184. 1557, 1927; A. E. Lorch, Catalytic Properties of Bright Platinum and Iridium Deposits in the Activation of Hydrogen, New York, 1932; E. B. Maxted, Journ. Chem. Soc., 127, 73, 1925; 1093, 2203, 1930; Journ. Soc. Chem. Ind., 58, 102, T, 1934; E. B. Maxted and N. Hassid, Trans. Furaday Soc., 28, 253, 1932; Journ. Chem. Soc., 3313, 1931; 1532, 1932; E. B. Maxted and G. J. Lewis, ib., 502, 1933; E. B. Maxted and C. H. Moon, ib., 1542, 1936; C. Y. Meng, P. A. Anderson and Y. M. Hsieh, Chinese Chem. Soc., 3. 103, 1935; A. Mior, Nuovo Cimento, (4), 9. 74, 1871; F. Mohr, Ber., 4. 239, 1871; H. Moissan, Rev. Gén. Chim. Pure Appl., (5), 6. 481, 1905; L. Mond, W. Ramsay and J. Shields, Phil. Trans., 186. A, 657, 1895; Proc. Roy. Soc., 58. A, 242, 1895; 62. 50, 290, and J. Shields, Phil. Trans., 186. A, 657, 1895; Proc. Roy. Soc., 58. A, 242, 1895; 62. 50, 290, 1897; Zeit. anorg. Chem., 10. 178, 1895; Zeit. phys. Chem., 19. 59, 1896; 25. 666, 1898; A. Montier, Compt. Rend., 79. 1224, 1874; E. Müller and K. Schwabe, Zeit. phys. Chem., 154. 143, 1931; Zeit. Elektrochem., 35. 165, 1929; W. Nernst and F. Lessing, Gott. Nachr., 146, 1902; G. Neumann, Sitzber. Akad. Wien, 101. 52, 1892; G. Neumann and F. Streintz, Monatsh., 12. 642, 1891; 13. 40, 1892; Wied. Ann., 46. 431, 1892; Sitzber. Akad. Wien, 100. 629, 1891; J. E. Nyrop, Journ. Phys. Chem., 39. 655, 1935; W. Odling, Chem. News, 16. 32, 63, 1867; A. Osawa, Science Rep. Tohoku Univ., 14. 43, 1925; C. Paal and C. Auerswald, Ber., 60. B, 1648, 1927; C. Paal and J. Gerum, ib., 41. 805, 1908; C. Paal and A. Schwarz, Journ. prakt. Chem., (2), 93. 106, 1916; K. and L. Packendorff, Ber., 67. B, 1388, 1934; W. G. Palmer, Proc. Rov. Soc., 110, A, 133, 1926; 122, A, 487, 1929; J. R. Partington, Nature, 115, 534. Chem., (2), 93. 106, 1916; K. and L. Packendorff, Ber., 67. B, 1388, 1934; W. G. Palmer, Proc. Roy. Soc., 110. A, 133, 1926; 122. A, 487, 1929; J. R. Partington, Nature, 115, 534, 1925; M. Pirani and A. R. Meyer, Zeit. Elektrochem., 16. 444, 1910; L. V. Pisarshevsky, Bull. Acad. U.S.S.R., 7, 571, 1933; M. Polanyi, Zeit. Elektrochem., 28, 110, 1922; F. H. Pollard, Journ. Phys. Chem., 27, 356, 1923; W. W. Randall, Amer. Chem. Journ., 19, 682, 1897; H. Reischauer, Zeit. phys. Chem., 26, B, 399, 1934; F. W. Reynolds, Phys. Rev., (2), 24, 523, 1924; O. W. Richardson, J. Nicol and T. Parnell, Phil. Mag., (6), 7, 266, 1904; (6), 8, 1, 1904; S. Roginsky, Acta Physicoram U.R.S.S., 1, 473, 1934; E. Root, Pogg. Ann., 159, 416, 1873; Monatsher. Akad. Berlin, 217, 1876; Phil. Mag., (5), 2, 153, 1876; Sitzber. Akad. Berlin, 217, 1876; E. Rothe, Ann. Chim. Phys., (8), 1, 280, 1904; H. H. Rowley and K. F. Bonhöffer, Zeit. phys. Chem., 21, B, 84, 1933; H. H. Rowley and W. V. Evans, Journ. Amer. Chem. Soc., 57, 2059, 1935; V.S. Sadikoff and A. K. Mikhailoff, Journ. Chem. Soc., 438, 1928; M. A. Schirmann. Zeit. tech. Phys., 10, 637, 1929; Phys. Zeit., 30, 876, 1929; O. Schmidt. Amer. Chem. Soc., 51. 2003, 1935; V.S. Sadikon and A. R. Mikhalon, Journ. Chem. Soc., 438, 1928; M. A. Schirmann. Zeit. tech. Phys., 10. 637, 1929; Phys. Zeit., 30. 876, 1929; O. Schmidt. Zeit. phys. Chem., 165. 133, 209, 1933; H. Schlesinger, Phys. Zeit., 10. 213, 1909; G. C. Schmidt and T. Lücke, Zeit. Physik, 8. 152, 1921; H. Schröder, Pogg. Ann. Ergbd., 5. 87, 1871; R. Schwarz and W. Kunzen, Zeit. anorg. Chem., 183, 376, 1929; A. Sieverts, ib., 92, 329, 1915; Zeit. Elektrochem., 16. 709, 1910; Zeit. phys. Chem., 60. 185, 1907; 88. 103, 451, 1914; Zeit. Metallkunde, 21. 37, 1929; A. Sieverts and H. Brüning, Zeit. anorg. Chem., 201. 113, 122, 1931; Hearaeus' Festschrift, 97, 1930; A. Sieverts and E. Jurisch, Ber., 45, 226, 1912; A. Sieverts and W. Krumbhaar, ib., 43. 899, 1910; W. Skey, Trans. New Zealand Inst., 3. 221, 1870; D. P. Smith, Proc. Nat. Acad., 7. 28, 1921; J. L. Smith, Chem. News, 31. 55, 1875; F. Soddy and A. J. Berry, Proc. Roy. Soc., 83. A. 254, 1910; 84. A, 576, 1911; J. C. Stimson, ib., 144. A, 307, 1934; G. Tammann, Zeit. Elektrochem., 35. 21, 1929; H. S. Taylor, Journ. Amer. Chem. Soc., 53. 578, 1931; Science Progress, 26. 398, 1932; H. S. Taylor and R. M. Burns, Journ. Amer. Chem. Soc., 43. 1273, 1921; G. B. Taylor, G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem., 34, 748, 799, 1930;
 M. Thoma, Zeit. phys. Chem., 3, 69, 1889;
 D. Tommasi, Rend. Ist. Lombardo, (2), 11, 128, 1878; M. Hollas, Zett. phys. Chem., 3. 05, 1865; D. Hollass, Mend. 1st. Lomborac, (2), 11-125, 1876; Monit. Scient., (3), 21. 866, 1879; Ber., 11. 811, 1878; M. Traube, Gesammelte Abhandlungen, Berlin, 431, 1899; M. W. Travers, Proc. Roy. Soc., 60. 449, 1897; L. Troost and P. Hautefeuille, Ann. Chim. Phys., (5), 2. 273, 1874; Compt. Rend., 78. 686, 1874; G. Vavon, ib., 178. 360, 1921; G. Vavon and A. Husson, ib., 175. 277, 1922; S. Vassilieff and A. Frumkin, Zeit. phys. Chem., 151. 87, 1930; Y. Venkataramaich and M. V. N. Swamy, Proc. Scient. Soc. Vizianagram. 1. 23, 1922; E. Waldburger, Die Ermüdung von Platin abs Katalysator in pyrogenen Wasserstoffelektroden, Basel, 1930; E. Waldschmidt-Leitz and F. Seitz, Ber., 58. B, 563, 1925; T. Wilm, Beiträge zur Chemie der Platinmetalle, Dorpat, 1881; H. A. Wilson, Proc. Roy. Soc., 80. A, 382, 1908; A. Winkelmann, Ann. Physik, (4), 8, 388, 1902; F. Winteler, Zeit. Elektrochem., 4. 339, 1898; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe,

4. 535, 1636; L. Woller, Die pseudokadaysteche Sauerstoffaktivierung des Flains, Karistine, 1901; C. Zengelis, Zeit. anal. Chem., 49. 729, 1910.

4 P. Anderson, Journ. Chem. Soc., 121. 1153, 1922; A. F. Benton, Journ. Amer. Chem. Soc., 48. 1850, 1926; M. Bodenstein, Liebig's Ann., 440. 177, 1924; G. Bodländer and K. Köppen, Zeit. Elektrochem., 9. 760, 1903; E. Bose, Zeit. phys. Chem., 34. 707, 1900; F. E. Carter, Trans. Amer. Electrochem. Soc., 43. 397, 1923; H. le Chatelier, Bull. Soc. Chim., (2), 48. 342, 1887; Zeit. phys. Chem., 1. 516, 1887; H. Damianovich, Anal. Inst. Cient. Tech., 2. 15, 24, 1931; Anal. Inst. Cient. Santa Fe, 6. 20, 1934; H. Damianovich and G. Berraz, ib., 1. 58, 1931; H. Damianovich and J. Piazza, Anal. Inst. Investigation Cient. Tech., 1. 45, 59, 1932; 2. 15, 24, 1933; B. Dessau, Wied. Ann., 29. 360, 1886; H. St. C. Deville and H. Debray, Compt. Rend., 87. 44, 1878; Journ. Pharm. Chim., (4), 28. 441, 1878; Bull. Soc. Chim., (2), 32. 294, 1879; J. W. Döbereiner, Journ. prakt. Chem., (1), 1. 114, 369, 1834; Pogg. Ann., 31. 512, 1834; Liebig's Ann., 12. 236, 1834; J. Elster and H. Geitel, Wied. Ann., 31. 126, 1887; C. Engler and W. Wild, Zeit. anorg. Chem., 30. 1669, 1897; C. Engler and L. Wöhler, ib., 29. 5, 1902;

A. L. Ferguson and G. Dubpernell, Trans. Amer. Electrochem. Soc., 64. 253, 1933; A. Féry, Ann. Physique, (10), 19. 421, 1933; Journ. Phys. Rad., (7), 4. 301, 1933; G. I. Finch and J. C. Stimson, Proc. Roy. Soc., 124. A, 356, 1929; E. Goldstein, Ber., 37. 4147, 1904; T. Graham. Journ. Amer. Chem. Soc., 22. 494, 1900;
 A. de Hemptinne, Zeit. phys. (11), 4. 83, 1935;
 R. W. Hall.
 Journ. Amer. Chem. Soc., 22. 494, 1900;
 A. de Hemptinne, Zeit. phys. Chem., 27. 434, 1898;
 Bull. Acad. Belg., (3), 36. 155, 1898;
 L. Holborn and F. J. Austin, Sitzber. Akad. Berlin, 245, 1903; P. Laffitte and P. Grandadam, Compt. Rend., 198. 1925, 1934; C. Langer and V. Meyer, 1. 1825, 182 1934; E. B. Maxted and N. J. Hassid, Trans. Faraday Soc., 29, 698, 1933; G. Meissner, Unter-40, 1892; Y. Okayama, Journ. Chem. Soc. Japan, 32, 202, 1929; G. Owen, Phil. Mag., (6), 6. 306, 1903; C. Paal and C. Amberger, Ber., 40. 2202, 1907; T. J. Pelouze and E. Frémy; Traité de chimie générale, Paris, 3. 398, 1856; F. C. Phillips, Amer. Chem. Journ., 16. 163, 1894; W. W. Randall, Amer. Chem. Journ., 19. 682, 1897; H. Reischauer, Zeit. phys. Chem., 26. B, 399, 1934; L. H. Reverson and L. E. Swearingen, Journ. Phys. Chem., 31, 88, 1927; F. W. Reynolds, Phys. Rev., (2), 24, 523, 1924; E. K. Rideal and O. H. W. Jones, Proc. Roy. Soc., 123. A, 202, 1929; A. de la Rive, Compt. Rend., 7, 1061, 1838; Pogg. Ann., 46, 489, 1829; V. A. Roiter and M. G. Leperson. Ber. Ukrain. Phys. Chem., 4. 41, 1934; H. H. Rowley and K. F. Bonhöffer, Zeit. phys. Chem., 21. B, 84, 1933; H. Rumpelt, Ueber Doppelbrechung in Metallschichten, Leipzig, 1909; Ann. Physik, (4), 28. 649, 1909; R. Schwarz and W. Kunzer, Zeit. anorg. Chem., 183. 376, 1929; A. Sieverts, Zeit. phys. Chem., 60, 185, 1907; W. Skey, Trans. New Zealand Inst., 3, 332, 339, 347, 1876; Chem. News, 35, 203, 1877; 36, 60, 1877; E. F. Smith, Amer. Chemist, 2. 291, 1872; J. L. Smith, ib., 5. 213, 1874; Chem. News, 31. 55, 1875; W. Stewart, Phil. Mag., (5), 48. 451, 1899; J. C. Stimson, Proc. Roy. Soc., 144. A, 307, 1934; G. B. Taylor, G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem., 34. 748, 799, 1930; H. S. Taylor and R. M. Burns, Journ. Amer. Chem. Soc., 43. 1280, 1921; J. Thomsen, Journ. prakt. Chem., (2), 15. 451, 1877; R. Vondracek, Zeit. anorg. Chem., 39. 24, 1904; T. Wilm, Ber., 15. 2225, 1882; Beiträge zur Chemie der Chemie der Platinmetalle, Dorpat, 91, 1882; Journ. Russ. Phys. Chem. Soc., 14. 240, 1882; L. Wöhler, Ber., 35. 3539, 1906; Zeit. Elektrochem., 12. 781, 1906; Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901: Zeit. anorg. Chem., 40. 423, 1904.

⁶ A. Adie, Gilbert's Journ., 2. 333, 1824; Edin. Journ. Science, 1. 144, 1824; W. Artus, Journ. prakt. Chem., (1), 6. 176, 1835; A. Baudrimont, Compt. Rend., 41, 177, 1851; Pogg. Ann., 96, 351, 1855; A. C. Becquerel, Compt. Rend., 70, 1313, 1870; M. Berthelot, Bull. Soc. Chim., (2), 39, 112, 1883; Ann. Chim. Phys., (5), 30, 438, 1883; Compt. Rend., 94, 1377, 1882; M. Bodenstein, Liebig's Ann., 440, 177, 1924; R. Böttger, Schweiger's Journ., 63, 371, 1831; 68, 390, 1833; Liebig's Ann., 47, 348, 1843; Journ. prakt. Chem., (1), 30, 272, 1843; Journ. tech. ökon. Chem., 12, 233, 1831; 18, 237, 1833; M. C. Boswell and C. H. Bayley, Journ. Phys. Chem., 29, 11, 1925; C. Brunner, Pogg. Ann., 105, 496, 1858; G. L. Cabot, Journ. Soc. Chem. Ind., 11, 801, 1892; H. Courcot and J. Meunier, Compt. Rend., 145, 1161, 1907; S. F. Dana, Amer. Journ. Science, (1), 8, 198, 1824; Schweiger's Journ., 43, 380, 1825; W. Davies, Phil. Mag., (7), 19, 309, 1935; J. W. Döbereiner, Kastner's Arch., 2, 225, 1824; Phil. Mag., (1), 65, 150, 1825; (3), 9, 544, 1836; (3), 10, 154, 1837; Pogg. Ann., 36, 308, 458, 1836; 37, 548, 1836; 64, 94, 1845; Liebig's Ann., 1, 29, 1832; 14, 10, 1835; Journ. prakt. Chem., (1), 1, 76, 254, 1824; (1), 9, 233, 1825; (1), 28, 165, 1843; Schweigger's Journ., 39, 159, 1823; F. P. Dulk, Kastner's Arch., 467, 1825; P. L. Dulong and L. J. Thénard, Ann. Chim. Phys., (2), 23, 440, 1823; (2), 24, 380, 1823; Phil. Mag., (1), 62, 282, 1823; Schweigger's Journ., 39, 205, 1823; 40, 229, 1824; K. Fuchs, Repert. Physik, Pogg. Ann., 2, 329, 1824; A. Garden. Schweigger's Journ., 40, 115, 1823; Ann. Phil., 22, 466, 1823; L. W. Gilbert's Journ., 76, 102, 1824; T. Gill, Ann. Phil., 11, 217, 1818; C. G. Gmelin, Schweigger's Journ., 78, 102, 1824; T. Gill, Ann. Phil., 11, 217, 1818; C. G. Gmelin, Schweiger's Journ., 78, 102, 1824; T. Gill, Ann. Phil., 11, 217, 1818; C. G. Gmelin, Schweiger's Journ., 78, 102, 1824; T. Gill, Ann. Phil., 12, 1818; Polyt. Notizol., 23, 30, 1874; G. F. Hänle, Repert. Pharm., 2, 64, 1835; W. Herapath, Ph

Univ., 46. 113, 1843; Ber. Ver. Naturf. Ges. Basel, 6. 5, 1844; Journ. prakt. Chem., (1), 29. 238, 1843; G. Schübler, Schweigger's Journ., 20. 199, 1817; J. S. C. Schweigger, Phil. Mag., (1), 64. 3, 1824; Schweigger's Journ., 39. 205, 1823; 40. 10, 239, 277, 1824; 41. 402, 1824; 63. 375, 1831; H. A. von Vogel, Kastner's Arch., 4. 434, 1825; A. Wagner, Polyt. Centr., 16. 1, 1850; E. O. Wiig. Journ. Amer. Chem. Soc., 55. 2673, 1933; T. Wilm. Ber., 14. 878, 1881.

1831; H. A. von Vogel, Kastner's Arch., 4. 434, 1825; A. Wagner, Polyt. Centr., 16. 1, 1850; E. O. Wiig, Journ. Amer. Chem. Soc., 55. 2673, 1933; T. Wilm, Ber., 14. 878, 1881.

^e J. Bischof, German Pat., D.R.P. 10051, 1879; W. Boehm, ib., 104034, 104107, 106846, 1896; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 13, 1879; E. Breslauer, German Pat., D.R.P. 101688, 1898; H. Bunte, Journ. Gasbeleucht., 43, 529, 1900; D. L. Chapman and G. Gregory, Proc. Roy. Soc., 147. A, 68, 1934; J. F. Duke, German Pat., D.R.P. 91284, 1895; W. F. Gintl, Deit. Ind. Zig., 3, 1873; C. Killing, Journ. Gasbeleucht., 42, 293, 1899; J. Klaudy and O. Efrem, German Pat., D.R.P. 113705, 1899; W. Klinger, ib., 108600, 1898; W. Klinkerfues, Deut. Ind. Zig., 365, 1871; J. Lewis, German Pat., D.R.P. 30174, 1884; Dingler's Journ., 259, 413, 1866; V. Nicolardot, German Pat., D.R.P. 6201, 1878; E. Nowack, ib., 113861, 1899; W. von Olderhausen, Deut. Ind. Zig., 506, 1873; Journ. Gasbeleucht., 16, 514, 1873; E. Orloff, Journ. Russ. Phys. Chem. Soc., 40, 796, 1908; F. Parmentier, Compt. Rend., 114, 744, 1892; J. Perl, German Pat., D.R.P. 104055, 1898; H. Schröter, ib., 8015, 1879; G. Sulbach, ib., 94145, 1895; H. W. Underwood, Chem. Met. Engg., 29, 584, 709, 1923.

H. W. Underwood, Chem. Met. Engg., 29. 584, 709, 1923.

7 I. E. Adaduroff, A. N. Zeitlin and L. M. Orlova, Ukrain. Chem. Journ., 10. 346, 1935;

Journ. Appl. Chem. Russ., 9. 399, 1936; A. Berliner, Ueber die katalytische Wirkung der Metalle Journ. Appt. Crem. Russ., 9, 399, 1936; A. Berliner, Ueber die kaldigtische Wirkung der Metalle auf Knullgas und ihre Fähigkeit Wasserstoff zu occludiren, Freiburg i. B., 1888; Wied. Ann., 55. 791, 1888; M. Bodenstein, Zeit. phys. Chem., 46, 775, 1903; 47, 52, 1904; Ber., 37, 1361, 1904; Liebig's Ann., 440, 177, 1924; J. Böeseken and H. W. Hofsteda, Proc. Akad. Amsterdam, 20, 424, 1918; J. Böeseken, B. van der Weide and C. P. Morn, Rec. Trav. Chim. Pays. Bas, 35, 260, 1916; R. Böttger, Schweigger's Ann., 63, 372, 1831; W. A. Bone and R. V. Wheeler, Phil. Trans., 206, A, 1, 1906; M. C. Boswell and C. H. Bayley, Journ. Phys. Chem., 29. 11, 1925; M. C. Boswell and R. R. McLaughlin, Trans. Roy. Soc. Canada, (3), Chem., 29. 11, 1925; M. C. Boswell and R. R. McLaughlin, Trans. Roy. Soc. Canada, (3), 17. 1, 1923; G. Bredig, Zeit. phys. Chem., 38. 122, 1901; G. Bredig and R. Allolio, ib., 128. 41, 1927; G. Bredig and R. M. Berneck, ib., 31. 268, 1899; G. Bredig and K. Ikeda, ib., 37. 1, 1901; H. Damianovich and O. F. F. Nicola, Ann. Quim. Argentina, 17. 142, 1929; D. L. Chapman and P. W. Reynolds, Proc. Roy. Soc., 156. A, 284, 1936; P. D. Dankoff and A. A. Kochetkoff, Compt. Rend. Acad. U.S.S.R., 2. 359, 1934; W. Davies, Phil. Mag., (7), 17. 233, 1934; N. R. Dhar, Zeit. anorg. Chem., 128, 207, 1923; R. P. Donnelly and C. N. Hinshelwood, Journ. Chem. Soc., 1727, 1929; E. Drechsel, Journ. prakt. Chem., (2), 38. 75, 1888; P. H. Emmett and E. J. Jones, Journ. Phys. Chem., 34. 1102, 1930; C. Ernst, Zeit. phys. Chem., 37. 448, 1901; J. Field, Pharm. Journ., 8. 381, 1849; F. I. Finch and L. G. Cowen, Proc. Roy. Soc., 111. A, 257, 1926; G. I. Finch and A. W. Ikin, ib., 145. A, 551, 1934; G. I. Finch, C. A. Murison, N. Stuart and G. P. Thomson, ib., 141. A, 414, 1933; B. Foresti, Ateneo Carmese, 4. 805, 1932; W. French, Chem. News, 81. 292, 1900; Proc. Chem. Soc., 13, 52, 1897; A. Frumkin, A. Levina and O. Zarubina, Zeit. 292, 1900; Proc. Chem. Soc., 13. 52, 1897; A. Frumkin, A. Levina and O. Zarubina, Zeit. phys. Chem., 155. 41, 1931; J. Gerum, Katalytische Wirkungen kolloidaler Metalle der Platin-gruppe, Erlangen, 1908; W. Hartmann, Katalytische Wirkungen kolloidaler Metalle der Platin-gruppe, Erlangen, 1913; A. de Hemptinne, Zeit. phys. Chem., 27. 429, 1898; Bull. Acad. Belg., (3), 36. 155, 1898; W. C. Henry, Phil. Mag., (3), 9. 324, 1836; Liebig's Ann., 23. 140, 1837, H. Hess, Mém. Acad. St. Petersburg, (6), 1. 587, 1831; Anz. Gött. Gelechst., 139, 1833; R. Höber, Arch. Physiol., 82. 631, 1900; K. A. Hofmann, Ber., 55. B, 573, 1265, 1922; K. A. Hofmann Arch. I hystol., 32. 631, 1500; K. A. Hofmann and O. Schneider, ib., 48. 1585, 1915; K. A. Hofmann and C. Zippel, ib., 53. B, 298, 1920; A. Holt, Phil. Mag., (6), 13. 630, 1907; F. Hoppe-Seyler, Ber., 22. 2215, 1889; J. Horiuti and M. Polanyi, Nature, 132. 931, 1933; P. J. Kirkby, Phil. Mag., (6), 10. 467, 1905; N. I. Koboseff and V. L. Anochin, Zeit. phys. Chem., 13. B, 18, 63, 1931; F. Krüger and E. Taege, Zeit. Elektrochem., 21. 562, 1915; I. Langmuir, Trans. Faraday Soc., 17. 607, 621, 1922; L. L. Lockrow, Phys. Rev., (2), 19. 97, 1922; G. Maneuvrier and P. Chappuis, Compt. Rend., 106. 1719, 1888; E. B. Maxted, Journ. Chem. Soc., 115, 1050, 1919; 117, 1280, 1501, 1920; 119, 225, 1921; 127, 73, 1925; E. B. Maxted and V. Stone, ib., 672, 1934; E. von Meyer, Journ. prakt. Chem., (2), 18, 121, 1875; (2), 14. 124, 1876; L. Mond, W. Ramsay and J. Shields, Proc. Roy. Soc., 62, 50, 290, 1897; Zeit. phys. Chem., 25, 666, 1898; C. Moureu and C. Dufraisse, Journ. Chem. Soc., 127, 1, 1925; W. Müller, Pogg. Ann., 136, 63, 1869; E. Orloff, Journ. Russ. Phys. Chem. Soc., 40, 1596, 1908; W. Ostwald, Berührungswirkung, Leipzig, 1897; C. Paal and J. Gerum, Ber., 41. 805, 1908; C. Paal and A. Schwarz, Journ. prakt. Chem., (2), 93. 106, 1916; L. V. Pisarschevsky, Bull. Acad. Science U.S.S.R., 571, 1933; Ukrain. Khem. Zhur., 1. 1, 1925; M. V. Polyakoff and P. Stadnik, Phys. Zeit. Sowjetunion, 3. 227, 1933; R. W. Raudnitz, Zeit. phys. Chem., 37. 551, 1901; H. Remy, Zeit. anorg. Chem., 157. 329, 1926; H. Lemy and H. Gönningen, Zeit. anorg. Chem., 148. 279, Zeit. anorg. Chem., 157. 329, 1926; H. Kemy and H. Gönningen, Zeit. anorg. Chem., 148. 279, 1925; 149. 283, 1925; H. Remy and B. Schaeffer, ib., 136. 149, 1924; S. J. Roginsky and A. B. Schechter, Compt. Rend. U.R.S.S., 1. 310, 1934; R. Ruer, Zeit. Elektrochem., 11. 679, 1905; F. F. Rupert, Journ. Amer. Chem. Soc., 42. 402, 1920; O. Sackur, Zeit. phys. Chem., 54. 641, 1906; Zeit. Elektrochem., 12. 637, 1906; A. Schrotter, Pogg. Ann., 64. 471, 1845; Compt. Rend., 20. 193, 1845; A. Schwarz, Ueber die katalytische Hydrogenisation ungesättigter Verbindungen durch kolloidales Platin und über den Einfluss antikatalytischer Stoffe auf den Hydrogenisationsprozess, Erlangen, 62, 1912; E. W. R. Steacie and J. W. McCubbin, Canadian
Lourn. Research. 44. B. 84. 1926. A. Stock and O. Cuttmann. Res. 27, 201, 1904. Journ. Research, 14. B, 84, 1936; A. Stock and O. Guttmann, Ber., 37, 901, 1904;

H. G. Tanner and G. B. Taylor, Journ. Amer. Chem. Soc., 58. 1289, 1931; G. B. Taylor,
G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem., 34. 748, 799, 1930; L. Vallery, Compt. Rend., 185. 583, 1927; S. Vasileff and F. Frumkin, Journ. Phys. Chem. U.S.S.R., 1. 663, 1930;
Zeit. phys. Chem., 151. 87, 1930; G. Vavon, Compt. Rend., 178. 360, 1931; G. Vavon and
A. Husson, ib., 175. 277, 1922; R. Vondracek, Zeit. anorg. Chem., 39. 24, 1904; E. O. Wiig, Journ. Amer. Chem. Soc., 55. 2673, 1933; R. Willstätter and D. Jaquet, Ber., 51. 767, 1918;
R. Willstätter and E. Waldschmidt, ib., 54. B, 113, 1921.

⁸ F. D. Aguirreche, Anal. Fis. Quim., 25. 411, 1927; H. E. Armstrong, B.A. Rep., 962, 1885; Proc. Roy. Soc., 40, 287, 1886; 70, 99, 1902; 74, 86, 1904; Journ. Chem. Soc., 49, 112, 1886; 67, 112, 1895; 83, 1088, 1903; Journ. Soc. Chem. Ind., 24, 473, 1905; B. Batscha, Zeit. phys. Chem. Unterr., 40, 258, 1927; T. Bayley, Phil. Mag., (5), 7, 126, 1879; W. M. Bayliss, Nature of Enzyme Action, London, 14, 1908; G. T. Beilby, Chem. News, 88, 178, 1903; P. Bergell, Zeit. klin. Med., 57, 381, 1905; M. Berthelot, Bull. Soc. Chim., (2), 39, 112, 1883; Ann. Chim. Phys., (5), 30. 536, 1883; Compt. Rend., 94. 1377, 1882; 119. 834, 1895; M. Boden-Ann. Chim. Phys., (6), 30. 536, 1863; Compl. Rend., 34, 1862; 118. 534, 1863; R. Bodellstein, Zeit. phys. Chem., 29. 690, 1899; 60. 1, 1907; G. Bodländer, Ueber langsame Verbrennung, Stuttgart, 1899; J. Böeseken and H. W. Hofsteda, Proc. Akud. Amsterdam, 20. 424, 1918; J. Böeseken, B. van der Weide and C. P. Mom, Rec. Trav. Chim. Pays-Bas, 35. 260, 1916; T. Bokorny, Centrb. Bakt., 21. 103, 1908; E. Bose, Zeit. phys. Chem., 34. 707, 1900; M. C. Boswell and C. H. Bayley, Journ. Phys. Chem., 29. 11, 1925; M. C. Boswell and R. R. McLaughlin, Trans. Roy. Soc. Canada, (3), 17. 1, 1923; G. Bredig, Anorganische Fermente, Leipzig, 44, 1901; Zeit. phys. Chem., 38, 122, 1901; G. Bredig and R. M. von Berneck, ib., 31, 265, 1899; G. Bredig and K. Ikeda, ib., 37. 1, 1901; G. Bredig and F. Sommer, ib., 70. 34, 1910; P. D. Dankoff and A. A. Kochetkoff, Compt. Rend. Acad. U.S.S.R., 2. 359, 1934; H. S. Davis, G. Thomson and G. S. Crandall, Journ. Amer. Chem. Soc., 54. 2340, 1932; H. G. Denham. Zeit. phys. Chem., 72. 694, 1910; N. R. Dhar, Journ. Phys. Chem., 28. 948, 1924; J. W. Döbereiner, Schweigger's Journ., 34. 91, 1822; J. Elster and H. Geitel, Wied. Ann., 31. 26, 1887; 37. 319, 1889; 40. 181, 1890; P. H. Emmett and E. J. Jones, Journ. Phys. Chem., 34, 1102, 1930; C. Engler and 131, 1850; F. H. Eminett and E. J. Johns, Journ. Phys. Chem., 24, 1102, 1850; C. Engler and E. J. Wöhler, Zeit. anorg. Chem., 29, 1, 1902; H. von Euler, Oefvers. Vet. Akad. Förh., 267, 1900;
T. J. Fairley, Journ. Chem. Soc., 31, 1, 135, 1877; M. Faraday, Liebig's Ann., 14, 1, 1835;
Phil. Trans., 124, 55, 1834; Pogg. Ann., 33, 151, 1834; W. French, Chem. News, 81, 292, 1900;
K. Fuchs, Repert. Physik, 25, 255, 1889; V. Haas, Chem. Listy, 14, 106, 1920; F. Haber, Zeit. anorg. Chem., 19, 39, 1898; Zeit. phys. Chem., 34, 515, 1900; R. W. Hall, Journ. Amer. Chem. Soc., 22. 494, 1900; H. von Helmholtz, Pogg. Ann., 150. 483, 1873; V. Henri, Zeit. Elektrochem., 11. 790, 1905; H. Heymann, Zeit. phys. Chem., 81. 204, 1912; R. Höber, Arch. Physiol., 82. 11. 160, 1900; K. A. Hofmann, Ber., 55. B, 573, 1922; K. A. Hofmann and R. Ebert, ib., 49. 2369, 1916; K. A. Hofmann and L. Zippel, ib., 53. B, 298, 1920; C. G. Hüfner, Journ. prakt. Chem., (2), 10. 396, 1874; K. Jablczynsky, Zeit. phys. Chem., 64. 756, 1908; Bull. Acad. Cracow, 48. 75, 1908; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 15. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 15. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 15. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Zur Kenntnis der Katalyse in heterogenen Systemen, 3. 1608; Anz. Akad. Krakau, 298, 1908; Freiburg, 1908; Kalle and Co., German Pat., D.R.P. 157172, 1903; P. J. Kirkby, Phil. Mag., (6), 10. 467, 1905; F. Kuhlmann, Compt. Rend., 7. 1107, 1838; Amer. Journ. Science, (1), 37. 198, 1839; Dingler's Journ., 73. 60, 1839; J. von Liebig, Pogg. Ann., 17. 102, 1829; A. S. Loevenhart, Ber., 39, 130, 1906; O. Loew, ib., 23, 289, 1890; Journ. prakt. Chem., (2), 11, 374, 1875; E. von Meyer, Journ. prakt. Chem., (2), 14, 124, 1876; L. Mond, W.Ramsay and J. Shields, Zeit. phys. Chem., 19, 25, 1895; 25, 657, 1898; Proc. Roy. Soc., 58, 242, 1895; 62. 50, 290, 1897; Phil. Trans., 186. A, 657, 1895; H. Mouton, Ann. Inst. Pasteur. 14. 571, 1900; E. Mulder, Rec. Trav. Chim. Pays-Bas, 2. 44, 1883; M. Musler, Compt. Rend., 7, 1162, 1838; B. Neumann, Zeit. phys. Chem., 14, 196, 1894; A. A. Noyes and G. V. Sammet, ib., 44, 11, 1902; E. Oliveri-Mandala, Gazz. Chim. Ital., 46, ii, 137, 1916; 50, ii, 81, 1920; E. Opl, Chem. Ztg., 29, 757, 1905; C. Paal and J. Gerum, Ber., 40, 2219, 1907; T. L. Phipson, La force catalytique ou études sur les phénomènes de contact, Haarlem, 1858; Verh. Maatsch. Wet. Haarlem, 14. 1, 1861; R. W. Raudnitz, Zeit. phys. Chem., 37. 551, 1901; A. de la Rive, Compt. Rend., 7. 1061, 1858; Pogg. Ann., 48. 489, 1839; C. F. Schönbein, Pogg. Ann., 105. 258, 1858; Journ. prakt. Chem., (1), **75**, 107, 1856; (1), **89**, 31, 325, 1863; (1), **105**, 207, 1868; Abh. Bayr. Akad., **8**, 37, 1857; E. Schöne, Liebig's Ann., **192**, 285, 1878; **193**, 241, 1878; A. Schwarz, Ueber die katalytische Hydrogenisation ungesättigter Verbindungen durch kolloidales Platin und über den Einfluss antikatalytischer Stoffe auf den Hydrogenisationsprozess, Erlangen, 1912; W. Spring, Bull. Acad. Belg., (3), **30**, 37, 1895; Zeit. anorg. Chem., **10**, 166, 1895; H. H. Storch, Journ. Phys. Chem., 33. 456, 1929; J. J. Thomson, Applications of Dynamics to Physics and Chemistry, London, 206, 236, 1888; D. Tommasi, Monit. Scient., (3), 9. 866, 1879; Ber., 11. 811, 1878; Rend. Ist. Lombardo, (2), 11. 128, 1878; M. Traube, Gesammelte Abhandlungen, Berlin, 95, 1899; A. Trillat, Bull. Soc. Chim., (3), 27. 797, 1902; A. Valentini, Gazz. Chim. Ital., 14. 214, 1884; B. L. Vanzetti, Atti Accad. Lincei, (5), 17. ii, 285, 1908; R. Vondracek, Zeit. anorg. Chem., 39. 38, 1904; R. Willstätter and D. Jaquet, Ber., 51. 767, 1918; R. Willstätter and E. Waldschmidt, ib., 54. B, 113, 1921; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901.

C. H. L. von Babo, Liebig's Ann. Suppl., 2. 297, 1863; A. Brand, Ann. Physik, (4), 9. 468, 1902; E. St. Edme, Compt. Rend., 52. 408, 1861; J. Elster and H. Geitel, Wied. Ann., 39. 321, 1890; L. Gräfenberg, Zeit. Elektrochem., 8. 297, 1902; R. Kremann, Zeit. anorg. Chem., 36. 403, 1903; R. Luther, Zeit. Elektrochem., 8. 645, 1902; R. Luther and J. K. H. Inglis, Zeit. phys. Chem., 43. 203, 1903; E. Mulder and H. G. L. van der Meulen, Med. Akad. Amsterdam,

18. 170, 1883; Rec. Trav. Chim. Pays-Bas, 1. 167, 1882; F. P. le Roux, Compt. Rend., 50. 691, 1860; C. F. Schönbein, Journ. prakt. Chem., (1), 91. 85, 1866; M. Targetti, Nuovo Cimento, (4), 10. 360, 1899; H. G. Thode and A. C. Grubb, Trans. Amer. Electrochem. Soc., 63. 297,

 In G. 1000 and A. C. Grudd, Trans. Amer. Liectrochem. Soc., **98**, 294, 1933; A. Volta, Gazz. Chim. Ital., **9**, 521, 1879; A. W. Williamson, Liebig's Ann., **54**, 127, 1845; V. S. M. van der Willigen, Pogg. Ann., **98**, 511, 1856.
 F. Foreman, Econ. Geol., **24**, 812, 1929; W. R. Grove, Proc. Roy. Soc., **8**, 657, 1851; Phil. Trans., **137**, 1, 17, 1847; T. Ihmori, Wied. Ann., **31**, 1006, 1887; S. Lenher, Journ. Chem. Soc., 1785, 1926; S. Lenher and I. R. McHaffie, Journ. Phys. Chem., 31, 719, 1927; I. R. McHaffie and S. Lenher, Journ. Chem. Soc., 127. 1559, 1925; L. Mond, W. Ramsay and J. Shields, Phil. Edite S. Leiller, Journ. Onem. Soc., 121. 1909, 1920; L. Mond, W. Kamsay and J. Shields, Phil. Trans., 186. A, 657, 1895; Proc. Roy. Soc., 58. 242, 1895; Zeit. phys. Chem., 19. 59, 1896; A. Pockels, Koll. Zeit., 62. 1, 1933; H. V. Regnault, Ann. Chim. Phys., (2), 62. 337, 1836; W. Skey, Trans. New Zealand Inst., 8. 332, 1876; Chem. News, 35. 204, 1877; J. W. Smith, Journ. Chem. Soc., 2045, 1928; W. Swientoslawsky and S. Bakowsky, Bull. Acad. Polonaise, 191, 1930; G. B. Taylor, G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem., 34. 748, 799, 1930; W. Traube and W. Lunge, Ber., 58. B, 2773, 1925; M. Traube-Mengarini and A. Scala, Atti Acad. Lincei. (5), 18. i, 542, 1909; (5), 18 ii 111, 1900. I. Wöhlar Par., 22 A. Scala, Atti Accad. Lincei, (5), 18. i, 542, 1909; (5), 18. ii, 111, 1909; L. Wöhler, Ber., 36. 3482, 1903.

¹¹ A. von Bäyer and V. Villiger, Ber., 34. 853, 1901; T. Bayley, Phil. Mag., (5), 7. 126, 1879; F. Böck, Oesterr. Chem. Ztg., 6, 49, 1903; K. Bornemann, Zeit. Elektrochem., 15, 676, 1909; Zeit. anorg. Chem., 34. 1, 1903; G. Bredig, Anorganische Fermente, Leipzig, 1901; G. Bredig and H. M. von Berneck, Zeit. phys. Chem., 31, 258, 1899; A. Bredig and K. Ikeda, 37. 4, 1901; G. Bredig and W. Reinders, ib., 37. 323, 1901; F. S. Carter, Journ. Ind. Eng. Chem., 27. 751, 1935; H. Damianovich and O. F. F. Nicola, Anal. Assoc. Quim. Argentine, 17. 142, 1929; N. E. Ditman, Science, (2), 60. 183, 1924; P. H. Emmett and E. J. Jones, Journ. Phys. Chem., 34. 1102, 1930; C. Engler and L. Wöhler, Zeit. anorg. Chem., 29. 17, 1902; H. von Euler, Oefvers. Vet. Akad. Förh., 57. 267, 1900; T. J. Fairley, B.A. Rep., 42, 1875; D. Gernez, Ann. Ecole Norm., (2), 4. 336, 1875; T. S. Glikman, Bull. Acad. Science U.R.S.S., 7. 1593, 1934; A. de Gregorio y Rocasolano, Anal. Fis. Quim., 18. 308, 361, 1920; Compt. Rend., 170. 1502, 1920; 171. 301, 1920; F. Haber, Zeit. anorg. Chem., 51. 362, 1906; F. Haber and S. Grindberg, Jahrb, Elektrochem., 5. 199; 1898; Zeit. anorg. Chem., 18. 37, 1898; M. A. Heath and J. H. Walton, Journ. Phys. Chem., 37, 977, 1933; V. Henri, Zeit. Elektrochem., 11, 790, 1905; H. Heymann, Zeit. phys. Chem., 81, 211, 1912; A. Kailan, Ber., 55. B, 2492, 1922; J. H. Kastle and C. R. Smith, Amer. Chem. Journ., 32, 376, 1904; A. Lebedew, Bull. Soc. Chim., (4), 3, 56, 1908; E. Leidié and L. Quennessen, ib., (3), 27, 179, 1902; G. R. Levi, Atti Accad. Lincei, (6), 8, 409, 1929; G. R. Levi and R. Haardt, Gazz. Chim. Ital., 56, 424, 1926; L. Liebermann, Ber., 37. 1519, 1904; L. Liebermann and W. von Genersich, Orvosi Dtetilap, 48, 577, 1904; Arch. Physiol., 104. 155, 1904; A. S. Loevenhart and J. H. Kastle, Amer. Chem. Journ., 29, 397, 1903; C. Marie, Journ. Phys. Chim., 6, 596, 1908; Compt. Rend., 146, 476, 1908; E. B. Maxted, Journ. Chem. Soc., 121, 1760, 1922; E. B. Maxted and G. J. Lewis, ib., 502, 1908; Chim., 6, 1908; Chim 1933; E. B. Maxted and C. H. Moon, ib., 393, 1935; A. R. Miro and N. G. Morales, Anal. Fis. Quim., 31, 103, 1933; C. H. Neilson and O. H. Brown, Amer. Journ. Physiol., 10, 225, 1903; 12, 378, 1904; 13, 427, 1905; W. Nernst, Zeit. phys. Chem., 47, 52, 1904; P. Nicolardot and C. Chatelot, Bull. Soc. Chim., (4), 25, 4, 1919; E. Oliveri-Mandala, Gazz. Chim. Ital., 50, ii, 81, 1920; 59, 699, 1929; 60, 878, 1930; C. Paal and C. Amberger, Ber., 40, 2201, 1907; M. V. Polyakoff, Journ. Phys. Chem. U.S.S.R., 5. 954, 1934; M. V. Polyakoff, P. M. Stadnik and A. G. Elkenbard, ib., 5. 966, 1934; Acta Physicochim. U.S.S.R., 1. 817, 1934; T. S. Price and A. D. Denning, Zeit. phys. Chem., 46. 89, 1904; T. S. Price and J. A. N. Friend, Journ. Chem. Soc., 85. 1526, 1904; L. Quennessen, Bull. Soc. Chim., (4), 25. 237, 1919; F. Richarz, Zeit. anorg. Chem., 37. 75, 1903; A. Rius, Zeit. Elektrochem., 36. 149, 1930; V. A. Roiter, Ber. Ukrain. Phys. Chem., 4. 49, 1934; V. A. Roiter and M. G. Leperson, ib., 4. 41, 1934; H. J. S. Sand, Proc. Roy. Soc., 74. 356, 1905; Zeit. phys. Chem., 51. 641, 1905; C. F. Schönbein, 11. 0. 15. Saild, Froc. Roy. Soc., 12. 300, 1905; Lett. Phys. Chem., 51. 041, 1905; C. F. Schofbein, Journ. prakt. Chem., (1), 78. 88, 1859; (1), 98. 76, 1866; Gebehrte Anz. München, 49. 169, 1859; Verh. Nat. Ges. Basel, 2. 280, 1860; 4. 286, 1867; Pogg. Ann., 100. 130, 1860; Ann. Chim. Phys., (3), 58. 479, 1860; Chem. News, 13. 207, 1866; R. Schwarz and W. Friedrich, Ber., 55. B, 1040, 1922; R. Schwarz and M. Klingenfuss; Zeit. Elektrochem., 28. 472, 1922; G. Senter, Zeit. phys. Chem., 44. 318, 1903; 51. 705, 1905; 52. 746, 1905; 53. 604, 1905; Proc. Roy. Soc., 74. 201, 1905; I. I. Shukoff, A. A. Glagoleva and V. I. Strukova, Journ. Gen. Chem. Russ., 3. 10. 1022; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and H. Brilling. Zeit. and Chem. 904, 201, 1922; A. Signarda and S. Lingella and Chem. 1922; A. Signarda and S. Lingella and Soc., 74. 201, 1905; I. I. Shukoff, A. A. Glagoleva and V. I. Strukova, Journ. Gen. Chem. Russ., 4. 9, 1934; A. Sieverts and H. Brüning, Zeit. anorg. Chem., 204. 291, 1932; A. Sieverts and J. F. Müller, ib., 204. 405, 1932; J. Sirkin and V. G. Vassiléeff, Compt. Rend. Acad. Science U.R.S.S., 1. 513, 1935; W. Skey, Trans. New Zealand Inst., 8. 332, 1876; R. C. Smith, Journ. Phys. Chem., 29. 1116, 1925; E. B. Spear, Katalytische Zersetzung des Wasserstoffsuperoxyde unter verschiedenen sauerstoffdrucken, Heidelberg, 1907; Journ. Amer. Chem. Soc., 30. 195, 1908; W. Spring, Zeit. anorg. Chem., 10. 166, 1895; Bull. Acad. Belg., (3), 30. 32, 1895; Y. K. Suirkin and I. N. Godneff, Journ. Phys. Chem. U.S.S.R., 5. 32, 1934; S. Tanater, Ber., 36. 199, 1903; H. V. Tartar and N. K. Schaffer, Journ. Amer. Chem. Soc., 50. 2604, 1928; J. Teletoff, Katalytische Reaktionsgeschwindigkeit in heterogenen Systemen, Heidelberg, 1906; Journ. Russ. Phys. Chem. Soc., 39. 1358, 1907; L. J. Thénard, Traité de Chimie, Paris, 8. 478, 1813; M. Traube, Sitzber. Akad. Berlin, 1041, 1887; Ber., 15. 672, 1882; I. I. Tschukoff, I. N. Buschmakin and V. I. Strukow, Journ. Russ. Phys. Chem. Soc., 61. 169, 1929; G. Vavon, Compt. Rend., 158. 409, 1914; R. Vondracek, Zeit. anorg. Chem.,

1904; F. Weigert, Zeit. phys. Chem., 60. 541, 1907; J. Weiss, Trans. Faraday Soc.
 1547, 1935; L. Wöhler, Ber., 36. 3482, 1903; Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; R. Wolff, Compt. Rend., 196. 1113, 1933; R. Wright and R. C. Smith, Journ. Chem. Soc., 119. 1683, 1921.

12 A. J. Balard, Ann. Phil., 12. 387, 411, 1826; Ann. Chim. Phys., (2), 32. 337, 1826; E. Baudrimont, Monit. Scient., (3), 1. 783, 1871; Journ. Pharm. Chim., (4), 14. 81, 161, 1871; Compt. Rend., 73. 254, 1871; M. Berthelot, Ann. Chim. Phys., (5), 16. 433, 1879; (8), 3. 289. 1904; Bull. Soc. Chim., (2), 31. 302, 1879; Journ. Pharm. Chim., (4), 28. 521, 1878; Compt. Rend., 87. 623, 1878; 138. 1297, 1904; M. Bodenstein and V. Meyer, Ber., 26. 1146, 1893; R. Böttger, Repert. Pharm., 6. 247, 1857; W. von Bolton, Zeit. Elektrochem., 13. 145, 1907; W. C. Bray, Zeit. anorg. Chem., 48. 222, 1906; F. C. Carter, Journ. Ind. Eng. Chem., 27. 751, 1935; A. Connell, Edin. Phil. Journ., 11. 72, 1831; Schweigger's Journ., 62. 495, 1931; S. Cooke, Proc. Glasgow Phil. Soc., 18. 285, 1887; Zeit. phys. Chem., 8. 239, 1889; Chem. News, 58. 103, 1888; H. Danneel, Zeit. phys. Chem., 38. 415, 1900; H. St. C. Deville, Compt. Rend., 42. 894, 1856; H. St. C. Deville and J. S. Stas, Proces Verbaux Comité Internat. Poids Mesures, 153, 1878; W. L. Dudley, Proc. Amer. Assoc. Science, 105, 1893; Journ. Amer. Chem. Soc., 15. 273, 1893; W. Engelhardt, Koll. Zeit., 45. 42, 1928; C. Engler and L. Wöhler, Zeit. anorg. Chem., 29. 5, 1902; H. Erdmann and O. Hauser, Natur. Rund., 21. 418, 1906; F. Förster and E. Müller, Zeit. Elektrochem., 8. 522, 1902; 11. 502, 1905; J. H. Gladstone, Chem. News, 37. 245, 1878; Journ. Chem. Soc., 33. 306, 1878; H. Goldschmidt, Chem. Centr., (3), 12. 494, 1881; G. Gore, Chem. News, 23. 13, 1871; C. N. Hinshelwood and R. E. Burk, Journ. Chem. Soc., 127. 2896, 1925; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58. 187, 223, 309, 1832; G. Lemoine, Compt. Rend., 178. 7, 1921; M. G. Levi and O. Garavini, Gazz. Chim. Ital., 41. i, 756, 1911; H. Ley, Zeit. phys. Chem., 30. 247, 1899; J. von Liebig, Ann. Chim. Phys., (1), 62. 443, 1836; O. Loew and K. Aso, Bull. Coll. Agric. Tokyo, 7. 1, 1906; J. W. Mallet, Amer. Chem. Journ., 25. 430, 1901; C. Marie, Journ. Phys. Chim., 6. 596, 1908; Compt. Rend., 146. 475, 1908; C. Matignon, ib., 187. 1051, 1903; G. Méker, ib., 125. 1029, 1807; V. Meyer, Ber., 12. 2203, 1879; 18. 134, 1885; H. Moissan, Compt. Rend., 109. 283, 1889; Ann. Chim. Phys., (6), 24. 283, 1891; (6), 25. 125, 1891; C. Nogareda, Anal. Fis. Quim., 32. 286, 396, 567, 658, 1934; A. Oelander, Zeit. phys. Chem., 7. B, 311, 1930; H. E. Patten, Journ. Phys. Chem., 7. 172, 1903; P. Perotti, Ber. 11. 1691, 1878; C. A. Peters, Amer. Journ. Science, (4), 32. 386, 1911; Zeit. anorg. Chem., 74. 170, 1912; T. L. Phipson, Chem. News, 41. 13, 1880; L. Pigeon, Ann. Chim. Phys., (7), 2. 453, 1894; Bull. Soc. Chim., (3), 3. 365, 1890; Compt. Rend., 108. 1009, 1889; G. von Praagh, Journ. Chem. Soc., 798, 1933; G. van Praagh and E. K. Rideal, Proc. Roy. Soc., 134. A, 385, 1931; G. E. Pringle and G. von Praagh, Proc. Cambridge Phil. Soc., 27, 250, 1931; W. Pullinger, Ber., 24, 2294, 1891; P. Rudnick and R. D. Cooke, Journ. Soc., 27. 250, 1931; W. Pullinger, Ber., 24. 2294, 1891; P. Rudnick and R. D. Cooke, Journ. Amer. Chem. Soc., 39. 633, 1917; O. Ruff and H. Krug, Zeit. anorg. Chem., 190. 270, 1930; E. Salkowsky, Chem. Ztg., 40. 448, 1916; E. Schaer, Arch. Pharm., (2), 239. 610, 1901; Liebig's Ann., 323. 32, 1902; H. Schiff, Ber., 11. 1691, 1878; C. F. Schönbein, Journ. prakt. Chem., (1), 75. 102, 1858; (1), 98. 76, 1866; (1), 105. 207, 1868; Pogg. Ann., 67. 233, 1868; Ann. Chim. Phys., (4), 7. 103, 1866; (4), 8. 465, 1866; Journ. Chim. Phurm., (4), 4. 395, 1866; Verh. Nat. Ges. Basel, 4. 286, 1867; Chem. News, 13. 207, 1866; P. Schützenberger, Ann. Chim. Phys., (4), 21. 351, 1870; F. Seelheim, Ber., 12. 2067, 1879; H. Sirk, Zeit. Elektrochem., 11. 261, 1905; W. Skey. Chem. News, 36. 60, 1877; Trans. New Zealand Inst., 8. 347, 1876; J. S. Stas, Mém. Acad. Belg., 35. 1, 1865; H. S. Taylor, Proc. Roy. Soc., 118. A, 77, 1926; D. Tommasi, Chem. News, 41. 116, 1880; L. Troost and P. Hautefeuille, Compt. Rend., 34. 947, 1877; J. Urmston and R. M. Badger. Journ. Amer. Chem. Soc., 58, 343, 1934; A. M. Vasileff. 947, 1877; J. Urmston and R. M. Badger, Journ. Amer. Chem. Soc., 58, 343, 1934; A. M. Vasileff, Uchenuie Zap. Kazan. Univ., 90. 989, 1930; R. Vondracek, Zeit. anorg. Chem., 39. 24, 1904; R. Wagner, Chem. Centr., (3), 6. 713, 1875; W. Weldon, Brit. Pat. No. 2170, 1871; E. Wiederholt, Pogg. Ann., 116. 175, 1862; Chem. News, 7. 157, 1863; T. Wilm, Beiträge zur Chemie der Platinmetalle, Dorpat, 1882; Ber., 14. 636, 1881; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Ber., 36. 3483, 1903; E. V. Zappi, Anal. Fis. Quim. Argentina, 8. 68, 1915.

I. E. Adaduroff, Journ. Appl. Chem. Russ., 6. 193, 1933; I. E. Adaduroff and K. I. Brodovitsch, Ukrain. Chem. Journ., 4. 123, 1929; I. E. Adaduroff and P. D. Didenko, Journ. Appl. Chem. Russ., 8. 823, 1935; R. H. Adie, Chem. News, 79. 261, 1899; Proc. Chem. Soc., 15. 132, 1899; A. H. Allen, Chem. News, 25. 85, 1872; T. von Artner, German Pat., D.R.P. 440338, 1926; Badische Anilin. und Sodafabrik, ib., 140353, 1901; 142895, 1902; E. Baur, Zeit. phys. Chem., 137. 315, 1931; M. Bodenstein and C. G. Fink, ib., 60. 45, 1907; M. Bodenstein and W. Pohl, Zeit. Elektrochem., 11. 373, 1905; G. Bodländer and K. von Köppen, ib., 9. 559, 1903; R. Böttger, Jahrb. Phys. Ver. Frankfurt, 67, 1886; Journ. prakt. Chem., (1), 103. 310, 1868; G. J. Burch and J. W. Dodgson, Chem. News, 69. 225, 1894; F. C. Carter, Journ. Ind. Eng. Chem., 27. 751, 1935; P. Chappuis, Wied. Ann., 19. 21, 1883; M. O. Charmandarian and G. D. Dachniuk, Ukrain. Chem. Journ., 8. 36, 1933; Chemische Fabrik vorm. Goldenberg und Geromont, German Pat., D.R.P. 119279, 1899; Brit. Pat. No. 618, 1900; G. L. Clark, P. C. McGrath and M. C. Johnson, Proc. Nat. Acad., 11. 646, 1925; J. T. Conroy, Journ. Soc.

Chem. Ind., 22. 465, 1903; J. P. Cooke and T. W. Richards, Amer. Chem. Journ., 10. 81, 191, Chem. Ind., 22. 465, 1903; J. P. Cooke and T. W. Richards, Amer. Chem. Journ., 10. 81, 191, 1888; Chem. News, 58, 7, 17, 39, 52, 1888; S. Cooke, Proc. Glasgow Phil. Soc., 18, 285, 1887; Zeit. phys. Chem., 3, 239, 1889; Chem. News, 58, 103, 1888; P. D. Dankoff, I. Joffe, A. Kochetkoff and I. Perebezentzeff, Journ. Phys. Chem. U.S.S.R., 4, 334, 1933; E. Davy, Phil. Mag., (1), 40, 27, 209, 263, 350, 1812; Schweigger's Journ., 10, 382, 1814; H. Debray, Bull. Soc. Chim., (2), 48, 650, 1887; Compt. Rend., 104, 1667, 1887; M. Delépine, Bull. Soc. Chim., (3), 35, 8, 1906; (4), 7, 104, 1910; Compt. Rend., 141, 886, 1013, 1905; 142, 631, 1906; 150, 104, 1910; H. St. C. Deville and H. Debray, ib., 54, 1139, 1862; H. St. C. Deville and J. S. Stas, Procès Verbaux Comité Internat. Poids Mesures, 153, 1878; J. W. Döbereiner, Liebig's Ann., 2. 343, 1832; Pogg. Ann., 24. 603, 1832; N. Domanicky, Journ. Russ. Phys. Chem. Soc., 48, 1724, 1917; L. Duparc, P. Wenger and C. Urfer, Helvetica Chim. Acta, 8, 609, 1925; O. Efrem, Brit. Pat. No. 14339, 1899; Farbwerke vorm. Meister, Lucius und Brüning, German Pat., D.R.P. 135887, 1902; J. A. N. Friend, Journ. Chem. Soc., 89, 1092, 1906; K. W. Fröhlich, Zeit. Elektrochem., 41, 207, 1935; C. Geitner, Ueber das Verhalten des Schwefels und der Schwefligen Säure zu Wasser bei hohem Druck und hoher Temperatur, Göttingen, 1863; Liebig's Ann., 129. 354, 1864; J. H. Gladstone, Chem. News, 37, 245, 1878; Journ. Chem. Soc., 33, 306, 1877; J. H. Gladstone and A. Tribe, ib., 35, 178, 1879; C. Gourdon, Compt. Rend., 76, 1250, 1873; W. Grillo, Chem. Ztg., 30, 268, 1906; Brit. Pat. No. 25158, 1898; 10412, 1901; W. Grillo and
M. Schröder, German Pat., D.R.P. 102244, 1898; 115333, 1899; E. de Haën, ib., 128616, 1900; E. Hänisch and M. Schröder, Brit. Pat. No. 9188, 1887; A. Hantzsch, Ber., 27, 3264, 1800; E. Hanken and M. Schröder, Brit. Pat. No. 3188, 1881; A. Hantzsch, Ber., 21. 3204, 1894; E. Hartmann and F. Benker, Zeit. angew. Chem., 16. 1152, 1903; W. C. Heraeus, ib., 16. 1201, 1903; W. C. Heraeus and W. Geibel, ib., 20. 1892, 1907; W. R. Hodgkinson and K. F. S. Lowndes, Chem. News, 58. 223, 1888; H. N. Holmes and A. L. Elder, Journ. Ind. Eng. Chem., 22. 471, 1930; H. N. Holmes, J. Ramsay and A. L. Elder, ib., 21. 850, 1929; A. Jedele, Zeit. Metallkunde, 21. 271, 1935; J. T. Jullion, Brit. Pat. No. 11425, 1846; R. Knietsch, Ber., 34. 4069, 1901; K. von Köppen, Bildungsgeschwindigkeit und Dissoziation von SO₃ bei Anwesenheit von Platin, Braunschweig, 1903; G. R. Levi, Atti Accad. Lincei, (6), 8. 409, 1928; G. R. Levi and M. Faldini, Giorn. Chim. Ind. Appl., 9. 223, 1927; M. G. Levi and E. Migliorini, Gazz. Chim. Ital., 36. ii, 599, 1906; M. G. Levi, E. Migliorini and G. Ercolini, ib., 38. i, 598, 1908; L. R. W. McCay, Proc. Internat. Congress Appl. Chem., 8. i, 350, 1912; Chem. Ztg., 36, 1072, 1912; G. Magnus, Pogg. Ann., 24, 610, 1832; 89, 609, 1853; Sitzber. Akud. Berlin, 378, 1853; C. Marie, Compt. Rend., 146, 475, 1908; Journ. Chim. Phys., 6, 596, 1908; E. B. Maxted, Journ. Chem. Soc., 2203, 1931; E. B. Maxted and A. N. Dunsby, ib., 1600, 1928; R. Messel, Zeit. angew. Chem., 19. 238, 1906; R. Messel and W. S. Squire, Chem. News, 33, 177, 1876; J. Milbauer, Ann. Chim. Phys., (8), 10, 125, 1907; Zeit. phys. Chem., 57, 649, 1907; 77, 380, 1911; E. Mulder, Rec. Truv. Chim. Pays.-Bas, 2, 43, 1883; 14, 307, 1896; H. Neuendorf, German Pat., D.R.P. 127846, 1899; B. Neumann and E. Goebel, Zeit. Elektrochem., 39, 352, 672, 1933; B. Neumann and H. Jüttner, ib., 36, 87, 1930; H. B. North, Bull. Soc. Chim., (4), 9. 647, 1911; A. Orlowsky, Ber., 14. 2823, 1882; Journ. Russ. Phys. Chem. Soc., 13. 547, 1881; S. Pastorelli, Atti Accad. Lincei, (6), 7. 754, 1928; J. H. Perry, U.S. Pat. No. 1914458, 1914835, 1933; G. Petrenko, Journ. Russ. Phys. Chem. Soc., 36. 1081, 1904; P. Phillips, Schweigger's Journ., 65. 443, 1832; Journ. tech. ökonon. Chemie, 14. 330, 1832; Brit. Pat. No. 6096, 1831; G. Preuner, Zeit. anorg. Chem., 55. 282, 1907; T. S. Price, Ber., 35. 291, 1902; T. S. Price and J. A. N. Friend, Journ. Chem. Soc., 85. 1526, 1904; L. Quennessen, Compt. Rend., 142. 1341, 1906; Bull. Soc. Chim., (3), 35. 620, 1906; E. Raynaud and L. Pierron, Brit. Pat. No. 16254, 1900; C. L. Reese, Journ. Soc. Chem. Ind., 22. 351, 1903; E. S. Ridler, U.S. Pat. No. 1980829, 1934; C. Ridolfi, Giorn. Scienza Arti, 1, 24, 125, 1815; Quart. Journ. Science, 1, 259, 1816; Ann. Phil., 7, 29, 1817; 13, 70, 1819; Phil. Mag., (1), 48, 72, 1816; (1), 53, 68, 1819; Schweigger's Journ., 24, 439, 1818; E. J. Russell and N. Smith, Wied. Ann., 77, 348, 1900; E. Salkowsky, Chem. Ztg., 40, 448, 1916; A. Scheurer-Kestner, Bull. Soc. Chim., (2), 24, 505, 1875; (2), 30, 28, 1878; Mech. Mag., 84, 245, 1866; Journ. Franklin Inst., 52. 69, 471, 1866; Dingler's Journ., 221. 82, 1876; Journ. Pharm. Chim., (4), 28. 170, 1878; Compt. Rend., 81. 892, 1875; 86. 1082, 1878; 91. 59, 1880; C. F. Schönbein, Pogg. Ann., 67. 233, 1846; R. Schwarz and M. Klingenfuss, Zeit. Elektrochem., 28. 472, 1922; D. O. Shiels, Journ. Phys. Chem., 33. 1167, 1175, 1929; A. Sieverts and E. Jurisch, Ber., 45. 221, 1912; W. Skey, Chem. News, 22. 282, 1870; Trans. New Zealand Inst., 3. 216, 1876; A. Skrabal, Oesterr. Chem. Zeg., 6. 533, 1903; G. C. Stone, Journ. Soc. Chem. Ind., 22. 350, 1903; J. S. Streiber, Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Mat. Franc. 27. 501, 1920; G. P. Franke, G. P. Math. Chem. Math. Phys. Bernelle, G. P. Math. Chem. Math. Phys. Bernelle, G. P. Math. Phys. Phys. Bernelle, G. P. Math. Phys. Phys. Bernelle, G. P. Math. Phys. 1903; J. S. Streicher, Chem. Met. Engg., 37, 501, 1930; G. B. Taylor, G. B. Kistiakowsky and 1903; J. S. Streicher, Chem. Met. Engg., 31. 501, 1930; G. B. Taylor, G. B. Kistakowsky and J. H. Perry, Journ. Phys. Chem., 34. 748, 799, 1930; G. B. Taylor and S. Lenher, Zeit. phys. Chem., 47. 691, 1904; A. P. Thompson, Chem. Met. Engg., 38. 705, 1931; W. H. Thornwaite, Brit. Pat. No. 188, 1854; D. Tommasi, Rend. Ist. Lombardo, 11. 128, 1878; M. Traube, Ber., 22. 1518, 1889; A. Trueman, Brit. Pat. No. 982, 1854; J. Uhl, Ber., 23. 2512, 1890; Y. Venkataramiah, Proc. Assoc. Vizianagram, 1, 1922; Journ. Amer. Chem. Soc., 45. 261, 1923; A. Wigand, Ber. deut. phys. Ges., 6. 498, 1908; C. Winkler, Dingler's Journ., 218. 128, 1875; German Pat., D.R.P. 4566, 1878; F. Winteler, Zeit. angew. Chem., 18. 1512, 1654, 1905; 19. 237, 1906; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Zeit. Elektrochem., 9. 748, 1903; L. Wöhler, A. Foss and W. Plüddemann, Ber., 39. 3539, 1906.

14 J. J. Berzelius, Pogg. Ann., 7. 242, 1826; 8. 423, 1826; R. Marc, Zeit. anorg. Chem.,

50. 464, 1906; J. W. Mellor, A Treatise on Quantitative Inorganic Analysis, London, 441, 1913;

E. Mitscherlich, Pogg. Ann., 9, 630, 1827; 12, 630, 1828; Ann. Chim. Phys., (2), 36, 100, 1827;
 A. Orlowsky, Journ. Russ. Phys. Chem. Soc., 13, 547, 1881; Ber., 14, 2823, 1881; F. Rössler,

Zeit. anorg. Chem., 9. 31, 1895; 15. 406, 1897.

15 I. E. Adaduroff, Journ. Chem. Ind. Moscow, 2, 1933; Ukrain. Chem. Journ., 10. 106, 1935; I. E. Adaduroff and P. D. Didenko, Journ. Appl. Chem. Russ., 7. 1339, 1934; I. E. Adaduroff and P. J. Weinschenker, ib., 5. 1, 1930; E. A. Arnold and R. E. Burk, Journ. Phys. Chem., 54. 23, 1932; I. E. Adaduroff, J. M. Deitsch and N. A. Prozorovsky, Journ. Appl. Chem. Russ., 9, 807, 1936; V. I. Atroshchenko, Journ. Appl. Chem. U.R.S.S., 8, 25, 823, 1935; P. W. Bachman and G. B. Taylor, Journ. Phys. Chem., 33, 447, 1929; S. H. Bastow, Journ. Chem. Soc., 1950, 1931; G. T. Beilby and C. G. Henderson, ib., 79. 1254, 1901; A. K. Brewer, Journ. Amer. Chem. Soc., 54. 4588, 1932; L. Brunel and P. Woog, Compt. Rend., 145. 922, 1907; R. E. Burk, Proc. Nat. Acad., 14. 601, 1928; H. Cassel and E. Glückauf, Zeit. phys. Chem., 9. B, 427, 1930; R. Coustal and H. Spindler, Compt. Rend., 195. 1263, 1932; H. Damianovich, Anal. Inst. Cient. Tech., 2. 15, 24, 1931; H. Damianovich and G. Berraz, ib., 1. 58, 1931; E. Decarrière, Bull. Soc. Chim., (4), 37. 412, 1925; B. Delachanal, Compt. Rend., 148. 561, 1909; J. K. Dixon, Journ. Amer. Chem. Soc., 53. 2071, 1931; J. K. Dixon and J. E. Vance, 16., 57. 868, 1935; H. Dobretsberger, Zeit. Physik, 65. 334, 1930; J. W. Döbereiner, Schweigger's Journ., 63. 476, 1831; Liebig's Ann., 1. 29, 1932; L. Duparc, P. Wenger and C. Urfer, Helvetica Chim. Acta, 8, 609, 1925; 11. 337, 1928; A. Féry, Ann. Physique, (10), 19. 421, 1933; Journ. Phys. Rad., (7), 4, 301, 1933; N. A. Figurovsky, Journ. Appl. Chem. Russ., 9, 37, 1936; G. I. Finch and J. C. Stimson, Proc. Roy. Soc., 124. A, 356, 1929; A. Findlay and W. Thomas, Journ. Chem. Soc., 119. 170, 1921; O. Flaschner, Sitzber. Akad. Wien, 116. 141, 1907; Monatsh., 28. 209, 1907; W. Frankenberger, K. Mayrhofer and E. Schwamberger, Zeit. Mondish., 28. 201, 1907; W. Frankeiberger, R. Mayrinder and E. Schwamberger, Zeit. Elektrochem., 37, 473, 1931; S. J. Green, Journ. Soc. Chem. Ind., 52, 52, T, 1933; T. Gross, Zeit. Elektrochem., 14, 146, 1907; A. Gutbier and K. Neundlinger, Zeit. phys. Chem., 84, 203, 1913; S. L. Handforth and J. N. Tilley, Journ. Ind. Eng. Chem., 26, 1287, 1935; W. Hennel, Przemysl Chem., 16, 258, 1932; W. Henry, Ann. Phil., 25, 424, 1825; W. C. Heraeus, Zeit. angew. Chem., 10, 920, 1902; G. S. Johnson, Journ. Chem. Soc., 39, 128, 1881; Chem. News, 43. 288, 1881; P. Jolibois and F. Olmer, Compt. Rend., 201. 62, 1935; A. Klages, Chem. Ztg., 22, 449, 1898; K. Kraut, Liebig's Ann., 136, 69, 1865; Ber., 20, 1113, 1887; F. Kuhlmann, Compt. Rend., 9, 496, 1839; O. Loew, Ber., 23, 1443, 1890; Journ. Agric. Science, 3, 320, 1910; O. Loew and K. Aso, Bull. Coll. Agric. Tokyo, 7, 1, 1906; A. Luyckx, Bull. Chim. Soc. Belg., 43, 160, 1934; C. Maric, Compt. Rend., 146, 475, 1908; D. Meneghini, Gazz. Chim. Ital., 42, i, 126, 1912; V. Meyer, Ber., 8, 219, 1875; L. Mond, W. Ramsay and Chim. Ital., 42. 1, 126, 1812; V. Meyer, Br., 6. 25, 1815; T. Molla, W. Isalisay and J. Shielda, Proc. Roy. Soc., 62. 50, 1897; Zeit. phys. Chem., 25, 657, 1898; W. Nernst and F. Jost, Zeit. Elektrochem., 13. 521, 1907; K. Neundlinger, Katalyse des Hydrazins durch Platinmohr, Erlangen, 1913; M. L. Nichols and I. A. Derbogny, Journ. Phys. Chem., 30. 491, 1926; A. A. Noyes and G. V. Sammet, Zeit. phys. Chem., 41. 15, 1902; E. Oliveri-Mandala, Gazz. Chim. Ital., 46. ii, 137, 1916; 50. ii, 81, 1920; W. Ostwald, Brit. Pat. No. 698, 1902; W. Ostwald and E. Bauer, Siebert's Festschrift, 240, 1931; C. Paal and J. Gerum, Ber., 40, 2215, 1907; J. R. Partington, Nature, 117, 756, 1926; P. Pascal and E. Decarrière, Mém. Poudres, 21. 68, 87, 1924; G. van Praagh and B. Topley, *Trans. Faraday Soc.*, 27, 312, 1931; A. Purgotti and L. Zanichelli, *Gazz. Chim. Ital.*, 34, i, 57, 1904; W. W. Randall, *Amer. Chem. Journ.*, 19, 682, 1897; W. Reinders and A. Cats, *Chem. Weekbl.*, 9, 47, 1912; E. J. Russell and N. Smith, Journ. Agric. Science, 1. 144, 1906; O. Schmidt and R. Böcker, Ber., 39. 1366, 1906;
 C. F. Schönbein, Journ. prakt. Chem., (1), 75. 101, 1858;
 G. M. Schwab and B. Eberle, Zeit. phys. Chem., 19. B, 102, 1932; G. M. Schwab and H. Schmidt, ib., 3. B, 337, 1929; Zeit. Elektrochem., 35. 605, 1929; W. Skey, Trans. New Zealand Inst., 3, 216, 1870; Chem. News, 22. 282, 1870; J. C. Stimson, Proc. Roy. Soc., 144. A, 307, 1934; S. Tanatar, Zeit. phys. Chem.,
 40. 478, 1902; 41. 37, 1902; G. B. Taylor, G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem.,
 34. 748, 799, 1930; H. S. Taylor, Proc. Roy. Soc.,
 113. A, 77, 1926; A. Trillat, Compt. Rend., 136. 54, 1903; S. Uchida, Journ. Phys. Chem., 30. 1297, 1926; R. Vondracek, Zeit. anorg. Chem., 39. 24, 1904; H. W. Webb, Journ. Soc. Chem. Ind., 50. 128, T, 1931; E. J. B. Willey, T. Badzynsky, Rocz. Chem., 11. 158, 1931; J. Zawadzky and G. Perlinsky, Compt. Rend., **198**. 260, 1934.

G. P. Baxter and F. L. Grover, Journ. Amer. Chem. Soc., 36. 1089, 1914; M. Berthelot, Bull. Soc. Chim., (2), 26. 101, 1876; A. A. Blanchard, Zeit. phys. Chem., 41. 681, 1902; H. Bornträger, Repert. Anal. Chem., 7. 741, 1887; C. Bromeis, Dingler's Journ., 116. 288, 1850; F. C. Carter, Journ. Ind. Eng. Chem., 27. 751, 1935; H. Cassel and E. Glückauf, Zeit. phys. Chem., 9. B, 427, 1930; 17. B, 380, 1932; 19. B, 47, 1932; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1854; S. Cooke, Zeit. phys. Chem., 3. 239, 1889; Chem. News, 58. 103, 1888; Proc. Phil. Soc. Glasgow, 18. 285, 1887; O. Dieffenbach and W. Moldenhauer, U.S. Pat. No. 914813, 1908; J. K. Dixon and J. E. Vance, Journ. Amer. Chem. Soc., 57. 818, 1935; H. Dullo, Journ. prakt. Chem., (1), 1. 204, 1860; Dingler's Journ., 157. 152, 1860; Journ. Chim. Méd., (4), 6. 259, 1860; Chem. News, 1. 204, 1860; L. Duparc, P. Wenger and C. Urfer, Helvetica Chim. Acta, 8. 609, 1925; T. A. Edison, Scient. Amer., 41. 216, 1879; Chem. Ztg., 3.

650, 1879; F. Emich, Monatsh., 13. 78, 1892; O. Flaschner, Sitzber. Akad. Wien, 116. 141, 1907; Monatsh., 28. 209, 1907; C. Fromme, Wied. Ann., 18. 552, 1882; 19. 86, 1883; F. M. Gavriloff, Vestnik Metall, 11, 1928; J. L. Gay Lussac, Ann. Chim. Phys., (2), 1. 394, 1816; (3), 203, 1848; J. H. Gladstone, Chem. News, 37, 245, 1878; J. H. Gladstone and A. Tribe, Journ. Chem. Soc., 35, 175, 1879; S. J. Green, Journ. Soc. Chem. Ind., 52, 52, T, 1933; T. E. Green and C. N. Hinshelwood, Journ. Chem. Soc., 1709, 1926; G. Gross, Zeit. Elektrochem., 14, 146, 1907; J. A. Hedvall, R. Hedin and O. Persson, Zeit. phys. Chem., 27, B, 196, 1966. 1934; C. N. Hinshelwood and C. R. Prichard, Journ. Chem. Soc., 127. 327, 806, 1925; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58, 223, 1888; L. I. de N. Ilosva, W. K. Hodgainson and F. K. S. Lowndes, Chem. News, 58, 225, 1885; L. I. de K. Hosva, Bull. Soc. Chim., (3), 2, 734, 1889; J. Jannek and J. Meyer, Ber., 46, 2876, 1913; Zeit. anorg. Chem., 83, 71, 1913; K. Jellinek, ib., 49, 276, 1906; A. Jouve, Compt. Rend., 128, 435, 1899; K. Kaiser, U.S. Pat. No. 987375, 1910; J. H. Kastle and E. Elvove, Amer. Chem. Journ., 31, 635, 1904; C. Kellner, Wied. Ann., 57, 79, 1895; O. Loew, Ber., 28, 667, 866, 3018, 1890; O. Loew and K. Aso, Bull. Coll. Agric. Tokyo, 7, 1, 1906; D. R. Lovejoy, U.S. Pat. No. 829872, 1901. J. Elline and B. Erick, J. Tirchell, Coll. Agric. 1908, 1908, 1909, 1901; J. Lüke and R. Fricke, Zeit. phys. Chem., 20. B, 357, 1933; J. W. Mallet, Proc. Roy. Noc., 80. A, 83, 1908; C. Marie, Compt. Rend., 146, 1908; J. Meyer and E. Trützner, Zeit. Elektrochem., 14, 69, 1908; N. A. E. Millon, Compt. Rend., 14, 906, 1842; A. Muckle and F. Wöhler, Liebig's Ann., 104, 368, 1857; Journ. prakt. Chem., (1), 73, 318, 1858; Dingler's Journ., 149, 237, 1858; M. L. Nichols and J. A. Derbigny, Journ. Phys. Chem., 30, 491, 1926; G. van Praagh and B. Topley, Trans. Faraday Soc., 27. 312, 1931; C. Reinhardt, Chem. Ztg., 11. 52, 1887; T. W. Richards and A. Staehler, Ber., 39, 3611, 1096; P. Sabatier and J. B. Senderens, Compt. Rend., 114, 1429, 1892; E. Schaer, Arch. Pharm., (2), 239, 610, 1901; Liebig's Ann., 323, 32, 1902; C. F. Schönbein, Journ. prakt. Chem., (1), 57, 62, 1852; (1), 75, 104, 1858; G. M. Schwab and B. Eberle, Zeit. phys. Chem., 19. B, 102, 1932; M. S. Shah, Proc. Science Congress India, 15, 170, 1928; E. W. R. Steacie and J. W. McCubbin, Journ. Chem. Phys., 2. 585, 1934; Canadian Journ. Research, 14. B, 84, 1936; J. J. Sudborough, Journ. Chem. Soc., 59. 663, 1891; N. Tarugi, Gazz. Chim. Ital., 33. ii, 171, 1903; G. B. Taylor, G. B. Kistiakowsky 33. 1631; N. Farugi, Gazz. Chim. Hali., 38. 11, 171, 1903; G. B. Taytor, G. B. Ristinkowsky and J. H. Perry, Journ. Phys. Chem., 34. 748, 1930; H. Vondracek, Zeit. anorg. Chem., 39. 28, 1904; H. N. Warren, Chem. News, 63. 290, 1891; Wertdeutsche Thomasphosphatwerke, German Pat., D.R.P. 157287, 1901; C. Winkler, Zeit. anal. Chem., 13. 369, 1874; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Ber., 36. 3479, 1903; J. Zawadzky and T. Badzynsky, Rocz. Chem., 11. 158, 1931; J. Zawadzky and G. Perlinsky, Compt. Rend., 198, 260, 1934.

¹⁷ R. E. Barnett, Journ. Chem. Soc., 67, 513, 1895; E. Baudrimont, Ann. Chim. Phys., (4), 2. 16, 1864; Recherches sur les chlorures et les bromures de phosphore, Paris, 1864; Compt. Rend., 53. 637, 1861; W. Biltz, F. Weibke and E. May, Zeit. anorg. Chem., 223. 129, 1935; H. le Chatclier, Mesure des températures élevées, Paris, 1900; F. W. Clarke and O. T. Joslin, Chem. News, 48. 283, 1883; Amer. Chem. Journ., 5. 231, 1883; E. Davy, Phil. Mag., (1), 40. 263, 1812; J. H. Gladstone, Phil. Mag., (3), 35. 345, 1849; H. Goldschmidt, Chem. Centre., (3), 12. 493, 1881; A. Granger, Compt. Rend., 123. 1284, 1896; Ann. Chim. Phys., (7), 14. 86, 1898; Arch. Sciences Genève, (4), 6. 391, 1898; Contribution à l'étude des phosphures métalliques, Paris, 1898; Chem. News, 77. 227, 1898; Monit. Scient., (4), 12. 363, 1898; W. C. Heraeus, Zeit. angew. Chem., 15. 219, 917, 1902; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 223, 1888; C. Hüttner, Zeit. Instrkd., 26. 191, 1906; Zeit. anorg. Chem., 59. 216, 1908;
 A. Jedele, Zeit. Metallkunde, 21. 271, 1935;
 C. W. Jurisch, Dingler's Journ., 267, 424, 1888; A. Jedele, Zeit. Metallkunde, 21. 271, 1935; C. W. Jurisch, Dingler's Journ., 267. 424, 1888; F. Loessner, Über Reaktionen der unterphosphorigen Saure und Wasserstoffverbindungen der Schwermetalle, Weida i. Th., 1911; G. E. F. Lundell and J. I. Hoffman, Journ. Research Bur. Standards, 5. 279, 1930; 6. 55, 1931; M. Major, Zur Kenntnis der phosphorigen und unterphosphorigen Saüre, Weida i. Th., 1908; H. W. Melville and E. B. Ludlam, Proc. Roy. Soc., 135. A, 315, 1932; H. Moissan, Compt. Rend., 102. 763, 1885; Ann. Chim. Phys., (6), 24. 282, 1891; B. Pelletier, ib., (1), 1. 105, 1879; (1), 13. 120, 1792; W. Ramsay and J. Shields, Zeit. phys. Chem., 19. 29, 1896; M. Schmöger, Zeit. anal. Chem., 37. 308, 1898; C. F. Schönbein, Pogg. Ann., 68. 41, 1846; Phil. Mag., (3), 29. 122, 1846; P. Schützenberger, Compt. Rend., 70. 1289, 1870; P. Schützenberger and M. Fontaine, Bull. Soc. Chim., (2), 17. 483, 1872; A. Sieverts, Zeit. anorg. Chem., 64. 56, 1909; A. Sieverts and F. Loessner, ib., 76. 15, 1912; A. Sieverts and E. Peters, Zeit. phys. Chem., 91. 199, 1916; A. A. Vedensky and A. V. Frost, Journ. Russ. Gen. Chem., 1, 1108, 1931; O. J. Walker, Journ. Chem., Soc., 1370, 1926. Gen. Chem., 1. 1108, 1931; O. J. Walker, Journ. Chem. Soc., 1370, 1926.

18 F. E. Brown and J. E. Snyder, Journ. Amer. Chem. Soc., 1510, 1925; C. Engler and L. Wöhler, Zeit. anorg. Chem., 29. 7, 1902; A. F. Gehlen, Schweigger's Journ., 20. 353, 1817; J. H. Gladstone and A. Tribe, Chem. News, 37. 245, 1878; Journ. Chem. Soc., 38. 308, 1878; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 61. 896, 1892; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58. 223, 1888; L. Kahlenberg and J. V. Steinle, Trans. Amer. Electrochem. Soc., 44. 515, 1923; E. Mulder, Rec. Trav. Chim. Pays-Bas, 2. 43, 1883; V. A. Nemiloff and M. Vorgnoff. Ann. Inst. Phylips. 19, 17, 1935; Zeit. anorg. Chem. 298. V. A. Nemiloff and M. M. Voronoff, Ann. Inst. Platine, 12. 17, 1935; Zeit. anorg. Chem., 226. 177, 1936; H. E. Patten, Journ. Phys. Chem., 7, 170, 1903; T. J. Poppema and F. M. Jäger, Proc. Amsterdam Acad., 38. 833, 1935; Rec. Trav. Chim. Pays-Bas, 55. 492, 1936; F. Rössler, Zeit. anorg. Chem., 9. 31, 1895; L. Wöhler, ib., 186. 324, 1930.

19 K. S. Ablezova and S. Z. Roginsky, Compt. Rend. Acad. U.R.S.S., 1. 487, 1935; I. E. Adaduroff, Journ. Phys. Chem. U.S.S.R., 2. 740, 1931; P. C. Allen and C. N. Hinshelwood,

Proc. Roy. Soc., 121. A, 141, 1928; G. Angelucci, Gazz. Chim. Ital., 36. ii, 517, 1906; E. F. Arm-

strong and T. P. Hilditch, Proc. Roy. Soc., 103. A, 25, 1923; B.A. Rep., 327, 1922; M. Ascoli and G. Izar, Biochem. Zeit., 5, 394, 1907; A. Baikoff, Journ. Russ. Phys. Chem. Soc., 37, 156, 1905; A. A. Balandin, Journ. Phys. Chem. U.S.S.R., 4, 247, 1933; W. D. Bancroft and A. B. George, Journ. Phys. Chem., 35. 2194, 1931; H. P. van Beck, Die katalytische Zersetzung alkalischer Lösungen von Formaldehyd durch die Platinmetalle, Dresden, 1932; O. Beeck, Phys. Rev., (2), 46, 331, 1934; H. Behrens, Brit. Pat. No. 3392, 1901; M. S. Belenky, W. P. Jouse and L. J. Kovaleva, Zeit. anorg. Chem., 212. 362, 1933;
 I. L. Bell, Chem. News, 23. 268, 1871;
 F. Bellamy, Compt. Rend., 100. 1460, 1885;
 K. Bennewitz and W. Neumann, Zeit. phys. Chem., 17. B, 457, 1932; A. F. Benton, Journ. Amer. Chem. Soc., 48, 1850, 1926; F. Berezovskaya, M. Kogon and F. Moskalenskaya, Compt. Rend. U.R.S.S., 4, 50, 1934; F. Berezovskaya and O. Semikhatova, Bull. Acad. Science U.R.S.S., 1583, 1934; T. Bergman, De acido aereo, Upsala, 1774: C. L. Berthollet, Ann. Chim. Phys., (1), 67. 88, 1808; E. Bjelouss, Ber., 45, 625, 1912; M. Bedenstein, Liebig's Ann., 440, 177, 1924; C. F. Boehringer, German Pat., D.R.P. 187788, 189332, 1906; J. Böeseken, Rec. Trav. Chim. Pays-Bas, 35, 260, 1916; J. Böeseken, O. B. van 1803.2, 1300; J. Roeseken, Rec. Trav. Chim. Pays-Bas, 85, 200, 1916; J. Boeseken, O. B. Van der Weide and C. P. Mom, ib., 35, 260, 1916; J. B. J. D. Boussingault, Ann. Chim. Phys., (2), 16, 5, 1921; Compt. Revd., 82, 591, 1876; F. P. Bowden and E. K. Rideal, Proc. Roy. Soc., 120.
A. 50, 1928; B. W. Bradford, Journ. Chem. Soc., 1544, 1932; G. Bredig and R. Allolio, Zeit. phys. Chem., 126, 41, 1927; G. Bredig and F. Sommer, ib., 70, 63, 1910; A. Bringhenti, Gazz. Chim. Ital., 36, i, 187, 213, 1906; A. Brochet and J. Petit, Bull. Soc. Chim., (3), 31, 1255, 1257, 1904; Ann. Chim. Phys., (8), 3, 433, 1904; Zeit. Elektrochem., 10, 741, 913, 1904; Compt. Rend., 138, 1005, 1004; R. E. Brand, Kell. Zeit. Al. 1005, 1011; R. Brand, and K. Abloge. Rend., 138, 1095, 1904; R. F. Brunel, Koll. Zeit., 44, 1005, 1911; B. Bruns and K. Ablezova, Acta Phys. Chim. U.R.S.S., 1. 90, 1934; B. Bruns, B. Maximova and E. Pos, Koll. Zeit., 63, 286, 1933; B. Bruns and M. Wanjan, Zeit. phys. Chem., 151, 97, 1930; R. Burstein and A. Frumkin, Phys. Zeit. Sowjetunion, 2, 198, 1932; R. C. Cantelo, Journ. Phys. Chem., 31, 124, 1927; W. Caro, German Pat., D.R.P. 253160, 1911; W. H. Carothers and R. Adams, Journ. Amer. Chem. Soc., 47, 1047, 1925; A. Carpené, Boll. Soc. Vinicoltori Ital., 3, 482, 1888; F. E. Carter, Tech. Publ. Amer. Inst. Mim. Eng., 70, 1928; R. Chenevix and H. V. Collet-Descotils, Ann. Chim. Phys., (1), 67, 89, 1808; C. H. D. Clark and B. Topley, Journ. Phys. Chem., 32, 121, 1928; L. J. Collier, T. H. Harrison and W. G. A. Taylor, Trans. Faraday Soc., 581, 1934; A. Colson, Compt. Rend., 93, 1074, 1881; 94, 1710, 1882; S. Cooke, Proc. Phil. Soc. Glasgow, 18, 285, 1887; Chem. News, 58, 103, 1888; J. J. Coquillion, Bull. Soc. Chim., (2), 20. 493, 1873; (2), 33. 177, 1880; Chem. News, 28. 125, 1873; 31. 239, 1875; 38. 287, 1878; 493, 1873; (2), 33, 177, 1880; Chem. News, 28, 125, 1873; 31, 239, 1875; 38, 287, 1878;
 Compt. Rend., 77, 444, 1873; 80, 1089, 1875; 86, 1197, 1878; 87, 795, 1878; 88, 1204, 1879;
 J. Coquillion and J. Henrivaux, Journ. Usines Gaz, 14, 355, 1890;
 G. Cusmano, Gazz. Chim. Ital., 53, i, 158, 1923;
 G. Cusmano and E. Cattini, ib., 54, i, 377, 1924;
 W. Davies, Phil. Mag., (7), 17, 233, 1934;
 (7), 19, 309, 1935;
 H. Debus, Liebig's Ann., 128, 200, 1863;
 B. Delachanal, Compt. Rend., 148, 561, 1909;
 N. Demjanoff and M. Dojarenko, Journ. Russ. Phys. Chem. Soc., 45, 176, 1913;
 H. G. Denham, Zeit. phys. Chem., 72, 675, 1910;
 H. St. C. Deville and H. Debray, Compt. Rend., 82, 241, 1876;
 C. Dittrich, the Unrecolledge von admirable and Retrach Leipzig, 1900;
 Zeit. 72. 645, 1910; H. St. C. Deville and H. Dedray, Compt. Remt., 62. 221, 1010; C. Dicticii, Die Uranylsalze von physikalisch-chemischen Standpunkte aus Betrach., Leipzig, 1900; Zeit. phys. Chem., 29, 458, 1899; H. B. Dixon, Chem. News, 51, 309, 1885; 53, 164, 1886; Journ. Chem. Soc., 49, 94, 384, 1886; H. Dobretsberger, Zeit. Physik, 65, 334, 1930; J. W. Döbereiner, Ann. Chim. Phys., (2), 24, 91, 1823; Gilbert's Ann., 74, 269, 1823; Schweigger's Journ., 38, 321, 1823; 63, 232, 1831; Journ. prakt. Chem., (1), 29, 451, 1843; J. B. Dumas, Ann. Chim. Phys., (5), 7, 71, 1876; J. Dumas, Ann. Chim. Phys., (60) 7. 71, 1876; L. Duparc, P. Wenger and C. Urfer, Helvetica Chim. Acta. 8, 609, 1925; J. Eckell, Zeit. Elektrochem., 39, 423, 1933; K. Elbs, ib., 2, 522, 1896; O. L. Erdmann, Chem. News, 2. 256, 1860; Journ. prakt. Chem., (1), 79. 117, 1860; J. Errera and V. Henri, Journ. Phys. Rad.. (6), 7. 225, 1926; H. von Euler and A. Oelander, Zeit. phys. Chem., 137. 29, 1928; M. Faillebin, Ann. Chim. Phys., (10), 4. 410, 1925; Compt. Rend., 175, 107, 1922; 177, 1118, 1923; M. Faraday, Phil. Trans., 124, 55, 1834; G. I. Finch and D. L. Hodge, Proc. Roy. Soc., 125. A, 532, 1934; G. I. Finch and J. C. Stimson, ib., 124. A, 356, 1929; E. Fischer, Ano., Soc., 125. A, 332, 1934; G. I. Finch and J. C. Stimson, vo., 127. A, 300, 1220; R. Fischer, Liebig's Ann., 386, 374, 1912; F. Fischer, H. Tropsch and P. Dilthey, Brennstoff Chem., 6, 265, 1925; N. W. Fischer, Kastner's Arch., 14, 148, 1828; C. Foa and A. Aggazzotti, Biochem. Zeit., 19, 51, 1909; S. Fokin, Journ. Russ. Phys. Chem. Soc., 38, 416, 1906; 39, 608, 1907; 45, 286, 1913; R. Fort and C. N. Hinshelwood, Proc. Roy. Soc., 127. A, 218, 1930; C. B. Gates, Journ. Phys. Chem., 15, 97, 1911; A. W. Gauger, Journ. Amer. Chem. Soc., 47, 2278, 1925; A S. Ginsherg Lourn. Chem. Th. S. R. F. 705, 1925; A. S. Ginsherg and A. P. Ivanoff A. S. Ginsberg, Journ. Gen. Chem. U.S.S.R., 5. 795, 1935; A. S. Ginsberg and A. P. Ivanoff, Journ. Russ. Phys. Chem. Soc., 62. 1991, 1930; J. H. Gladstone, Phil. Mag., (3), 35. 345, 1849; J. H. Gladstone and A. Tribe, Journ. Chem. Soc., 38, 308, 1878; Chem. News, 37, 245, 1878; A. Glaessner, Oesterr. Chem. Ztg., 5, 337, 1902; F. Glaser, Zeit. Elektrochem., 9, 15, 1903; L. Gmelin, Schweigger's Journ., 6, 230, 1922; E. F. Gorup-Besanez, Journ. prakt. Chem., (1), 84. 462, 1861; Liebig's Ann., 118. 257, 1861; A. B. Griffiths, Chem. News, 51. 97, 1885; V. Grignard, Bull. Soc. Chim., (4), 48. 473, 1928; E. Grimaux, Compt. Rend., 104. 1276, 1887; V. Grignard, Bull. Soc. Chim., (4), 48. 475, 1928; E. Grimaux, Compt. Rend., 192. 1210, 1881; Bull. Soc. Chim., (2), 45. 481, 1886; W. E. Grove and A. S. Loevenhaut, Proc. Amer. Soc. Biol. Chem., 28, 1908; O. Gutbier and W. Schieferdecker, Zeit. anorg. Chem., 184. 305, 1929; V. Haas, Chem. Listy, 14. 106, 1920; E. Harbeck, Ueber die Einwirkung von Kohlenoxyd auf Platin und Palladium, Bern, 1897; E. Harbeck and G. Lunge, Zeit. anorg. Chem., 16. 65, 1897; C. Harries and K. Gottlob, Liebig's Ann., 383, 228, 1911; H. Heckel and R. Adams, Journ. Amer. Chem. Soc. 47, 1719, 1905. Soc., 47. 1712, 1925; A. de Hemptinne, Zeit. phys. Chem., 27. 437, 1898; Bull. Acad. Belg., (3).
 36. 155, 1898; S. F. Hermbstädt, Abh. Akad. Berlin, 285, 1831; Journ. tech. ökon. Chem., 17.

232, 1833; K. Hess, Ber., 46. 3113, 1913; G. S. Hiers and R. Adams, ib., 59. B, 162, 1926; C. N. Hinshelwood and B. Topley, Journ. Chem. Soc., 123, 1014, 1923; R. Hocart, Bull. Soc. Chim., (4), 39, 398, 1926; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58, 223, 1888; K. A. Hofmann and O. Schneider, Ber., 48, 1585, 1915; I. Horiuti and M. Polanyi, Trans. Faraday Soc., 30. 1164, 1934; G. F. Hüttig and E. Weissberger, Siebert's Festschrift, 173, 1931; G. K. Hughes, A. K. Macbeth and S. W. Pennyeuick, Journ. Chem. Soc., 769, 1934; G. Just, Zeit., phys. Chem., 63, 522, 1908; G. Käb, ib., 115, 224, 1925; T. Kariyone, Journ. Japan. Pharm. Soc., 282, 1924; W. E. Kaufmann and R. Adams, Journ. Amer. Chem. Soc., Japan. Pharm. Soc., 282, 1924; W. E. Kaufmann and R. Adams, Journ. Amer. Chem. Soc., 45. 3029, 1923; G. O. Kemp, Johns Hopkins Univ. Circ., 14. 116, 1895; Chem. News, 71. 108, 1895; J. W. Kern, R. L. Shriner and R. Adams, Journ. Amer. Chem. Soc., 47. 1147, 1925; S. Kern, Chem. News, 35. 77, 1877; R. C. Kirk and W. E. Bradt, Trans. Amer. Electrochem. Soc., 67. 258, 1935; E. Knoevenagel and A. Tomasczewsky, Ber., 36. 2831, 1903; W. Knop, Sitzber. Sächs. Akad., 1, 1879; R. Köppen, Zeit. Elektrochem., 38. 938, 1932; I. Langmuir, Trans. Faraday Soc., 17. 607, 621, 1922; Journ. Amer. Chem. Soc., 28. 1357, 1906; E. W. Leitz and F. Seitz, Ber., 58. B, 563, 1925; S. Lenher, Journ. Chem. Soc., 272, 1927; S. Lenher and I. R. McHaffie. Journ. Phys. Chem. 24, 719, 1927; R. Lenpiègu and G. Vayon. S. Lenher and I. R. McHaffie, Journ. Phys. Chem., 31. 719, 1927; R. Lespièau and G. Vavon, Compt. Rend., 148. 1333, 1909; V. B. Lewes, Chem. News, 69. 87, 103, 111, 125, 1894; S. Lewina, Compt. Rend., 148. 1333, 1909; V. B. Lewes, Chem. News, 69. 87, 103, 111, 125, 1894; S. Lewina, A. Frumkin and A. Lenaff, Acta Physicochimica U.R.S.S., 3, 397, 1935; L. Liebermann, Arch. Physiol., 104. 233, 1904; J. von Liebig, Liebig's Ann., 14, 133, 1835; Pogg. Ann., 36, 275, 1835; L. Lindet, Compt. Rend., 138, 508, 1904; H. L. Lochte, W. A. Noyes and J. R. Bailey, Journ. Amer. Chem. Soc., 43, 2597, 1921; 44, 2556, 1922; H. L. Lochte and J. R. Bailey, Ber., 56, B, 1799, 1923; L. B. Loeb, Proc. Nat. Acad., 6, 107, 1920; O. Loew, Ber., 28, 289, 3215, 1890; L. Loew and K. Aso, Bull. Coll. Agric. Tokyo Univ., 7, 1, 1906; G. Lunge and J. Akunoff, Zeit. anorg. Chem., 24, 191, 1900; R. H. McKee and F. A. Strauss, Chem. Met. Engg., 24, 697, 1921; P. V. McKinney and E. F. Morfit, Journ. Amer. Chem. Soc., 55, 3050, 1933; R. Majima, Rev. 45, 2727, 1912; R. F. Marchand. Lourn. markt. Chem. Soc., 55, 3050, 1933; R. Majima, Rev. 45, 2727, 1912; R. Marchand. Lourn. markt. Chem. Ch. 26, 200, 1842; Liebig's Ann., Rev. 45, 2727, 1912; R. Warchand. Lourn. markt. Chem. Ch. 26, 200, 1842; Liebig's Ann., Rev. 45, 2727, 1912; R. Warchand. Lourn. markt. Chem. Ch. 26, 200, 1842; Liebig's Ann., 26, 2727, 2010. Ber., 45. 2727, 1912; R. F. Marchand, Journ. prakt. Chem., (1), 26. 490, 1842; Liebig's Ann., 44. 277, 1842; C. Marie, Compt. Rend., 146. 475, 1908; Journ. Phys. Chim., 6, 596, 1908; M. Martens, Bull. Acad. Belg., (1), 6, 95, 1839; J. H. Mathews, Journ. Chem. Soc., 9, 659, 1905; E. B. Maxted and C. H. Moon, ib., 1190, 1935; 635, 1936; Trans. Faraday Soc., 32, 1375, 1936; E. B. Maxted and V. Stone, Journ. Chem. Soc., 26, 1934; C. G. Memminger, Amer. Chem. Journ., 7, 172, 1887; E. von Meyer, Journ. prakt. Chem., (2), 10, 301, 1874; (2), 13, 121, 1875; (2), 14, 124, 1876; V. Meyer, Chem. News, 73, 235, 1896; L. Michaelis and E. S. G. Barron, Journ. Biol. Chem., 81. 29, 1929; J. Milbauer and J. Doskar, Chim. Ind., 782, 1933; N. A. E. Millon and J. Reiset, Compt. Rend., 16. 1190, 1843; Ann. Chim. Phys., (3), 8. 280, 1843; A. E. Mitchell and A. L. Marshall, Journ. Chem. Soc., 123, 2448, 1923; L. Mond, W. Ramsay and J. Shields, Phil. Trans., 186. A, 657, 1895; Proc. Roy. Soc., 58. A, 242, 1895; Zeit. phys. Chem., 19, 59, 1896; A. Morren, Compt. Rend., 70, 991, 1870; V. N. Morris and L. H. Reyerson, Journ. Phys. Chem., 31, 1332, 1927; E. Müller and W. Loerpabel, Monatsh. 54. 825, 1929; E. Müller and K. Schwabe, Koll. Zeit., 52. 163, 1930; E. Müller and K. Sponsel, Zeit. Elektrochem., 28. 307, 1922; W. Muthmann and A. Schaidhauf, ib., 17. 499, 1911; F. Mylius and C. Hüttner, Zeit. anorg. Chem., 95, 257, 1916; Zeit. Instrkd., 29, 191, 1909; 30, 190, 1910; C. H. Neilson, Amer. Journ. Physiol., 10, 191, 1903; 15, 148, 412, 1906; B. Neumann and E. Altmann, Zeit. Elektrochem., 37, 766, 1931; E. Orloff, Journ. Russ. Phys. Chem. Soc., 39. 1023, 1414, 1907; G. Orloff, Ber., **42**, 895, 1909; A. Osawa, Science Rep. Tohoku Univ., **14**, 43, 1925; C. Paal, Ber., **49**, 548, 1916; C. Paal and J. Gerum, ib., **41**, 2281, 1908; Katalytische 43, 1926; C. Paal, Der., 48, 945, 1910; C. Paal and J. Gerum, 10., 41, 2201, 1900; Munuqueone Wirkungen kolloidaler Metalle der Platingruppe, Erlangen, 1908; C. Paal and W. Hartmann, Ber., 42, 2239, 2930, 1909; C. Paal and C. Hohenegger, ib., 48, 275, 1915; C. Paal and A. Schwarz, ib., 48, 994, 1195, 1202, 1915; 51, 640, 1918; W. G. Palmer, Proc. Roy. Soc., 110, A, 133, 1926; 122, A, 487, 1929; F. C. Phillips, Amer. Chem. Journ., 16, 163, 1894; J. S. Pierce and R. Adams, Journ. Amer. Chem. Soc., 47, 1098, 1925; T. S. Pierce and C. Parles 25, 1930, 1930; J. Biomesacher, Richard Reider, 2964, 1090, J. Biomesacher, Richard Reider, 2964, 1090, J. Biomesacher, Richard Reider, 2964, 2964, 1090, J. Biomesacher, Richard Reider, 2964, 2964, 1090, J. Biomesacher, Richard Reider, 2964, 2965, 2964, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, 2964, 2965, S. Pierce and C. Parks, ib., 51. 3384, 1929; L. Pincussohn, Biochem. Zeit., 8, 395, 1908; M. S. Platonoff, Journ. Russ. Phys. Chem. Soc., 61. 1055, 1930; M. S. Platonoff, Y. A. Borgman and C. Y. Salman, ib., 62. 1975, 1931; F. Plzak and B. Husek, Zeit. phys. Chem., 47. 733, 1904; F. H. Pollard, Journ. Phys. Chem., 27. 356, 1923; C. R. Prichard and C. N. Hinshelwood, Journ. Chem. Soc., 127. 806, 1925; W. Pullinger, Ber., 24. 2291, 1891; W. W. Randall, Amer. Chem. Journ., 19. 682, 1807; J. Ranedo, Anal. Fis. Quim., 31. 195, 1933; E. Ranh Mitt. Forsch. Psychiagamts. Edulmatall. 7, 51, 1923. Lord Rayleigh, and 1933; E. Raub, Mitt. Forsch. Probierants. Edelmetall., 7. 51, 1933; Lord Rayleigh and W. Ramsay, Chem. News, 71. 51, 1895; B. Rayman and O. Sulc, Zeit. phys. Chem., 21. 481, 1896; J. J. Redwood, Journ. Soc. Chem. Ind., 17. 1107, 1901; A. Rémont, Bull. Soc. Chim., (2), 35. 486, 1881; L. H. Reyerson and L. E. Swearingen, Journ. Phys. Chem., 31. 88, 1927; A. S. Richardson and A. O. Snoddy, Journ. Ind. Eng. Chem., 18. 570, 1926; J. D. Riedel, German Pat., D.R.P. 264528, 1912; J. H. Robertson, Journ. South African Chem. Inst., 12. 39, 1929; H. Rössler, Zeit. Chem., (2), 2. 175, 1866; Zeit. anal. Chem., 5. 403, 1866; Bull. Soc. Chim., 11. Rossier, Lett. Chem., (2), Z. 1719, 1800; Lett. anal. Chem., 5. 403, 1800; Bull. Soc. Chim., (2), 6. 323, 1866; F. Russ, Zeit. anorg. Chem., 31. 85, 1902; P. Sabatier, Ber., 44. 1984, 1911; P. Sabatier and A. Mailhe, Compt. Rend., 152. 1212, 1911; P. Sabatier and J. B. Senderens, ib., 124. 616, 1897; 131. 40, 267, 1900; 134. 689, 1129, 1909; 137. 302, 1903; Bull. Soc. Chim., (3), 25. 671, 1901; Ann. Chim. Phys., (8), 4. 344, 1905; E. Salkowsky, Chem. Ztg., 40. 448, 1916; J. L. Sammis, Journ. Phys. Chem., 10. 606, 1906; H. J. S. Sand, Phil. Mag., (6), 9. 20, 1904; E. Schaer, Arch. Pharm., (2), 239. 610, 1901; Liebig's Ann., 323. 32, 1902; O. Schmidt, Ber 68, R. 1008, 1025. Natures of 351, 1023. Zait when Chem., 152, 260, 1031, 1485. Ber., 68. B, 1098, 1935; Naturwiss., 21. 351, 1933; Zeit. phys. Chem., 152. 269, 1931; 165.

209, 1933; C. F. Schönbein, Journ. prakt. Chem., (1), 75, 101, 1858; Pogg. Ann., 67, 233, 1846; P. Schützenberger, Ann. Chim. Phys., (4), 15, 104, 1868; (4), 21, 350, 1870; Bull. Soc. Chim., (2), 35, 355, 1881; P. Schützenberger and A. Colson, Compt. Rend., 94, 26, 1882; G. M. Schwab, Zeit. Eletrochem., 42. 670, 1936; A. Schwarz, Ueber die katalytische Hydrogenisation ungesättigter Verbindungen durch colloides Platin und über den Einfluss antikatalytische Stoffe auf den Hydrogenisations prozess, Erlangen. 1912; F. W. Schweigger-Seidel, Schweigger's Journ., 63. 234, 1831; E. Sell, Compt. Rend., 61. 741, 1865; Y. Shibata and K. Yamasaki, Journ.
 Chem. Soc. Japan, 55. 693, 1934; A. Sieverts and E. Jurisch, Ber., 45. 228, 1912; F. Sigmund, Monatsh., 58, 607, 1929; A. J. F. da Silva, Bull. Soc. Chim., (3), 15, 835, 1897; H. Sinozaki and R. Hara, Tech. Rep. Tohoku Univ., 6, 95, 1926; A. Skita, Chem. Ztg., 35, 1098, 1911; Ber., 57. B, 1977, 1924; A. Skita and H. H. Franke, ib., 44. 2862, 1911; A. Skita and W. A. Meyer, ib., 45. 3589, 1912; J. W. Smith, Journ. Chem. Soc., 2045, 1928; B. S. Srikantan, Journ. Indian Chem. Soc., 6, 931, 949, 959, 1929; 7, 745, 1930; Indian Journ. Phys., 5, 685, 1930;
O. Stark, Ber., 46, 2635, 1913; E. W. R. Steacie, Trans. Roy. Soc. Canada, (3), 26, 103, 1932; E. W. R. Steacie and H. N. Campbell, Proc. Roy. Soc., 128. A, 451, 1930; E. W. R. Steacie and 50. 713, 1905; K. A. Taipale, Ber., 56. B, 954, 1923; G. Tammann and K. Schönert, Zeit. anorg. Chem., 122. 27, 1922; M. Tauber, Magyar Chem. Foly., 38. 150, 1932; Zeit. phys. Chem., B. 97. 1932; G. B. Taylor, G. B. Kistiakowsky and J. H. Perry, Journ. Phys. Chem., 34.
 748, 799, 1930; H. A. Taylor, ib., 33. 1793, 1929; H. A. Taylor and M. Schwartz, ib., 35.
 1044, 1931; H. S. Taylor and R. M. Burns, Journ. Amer. Chem. Soc., 43. 1280, 1921;
 M. Temkin and E. Mikhailova, Acta Physicorum U.R.S.S., 2, 9, 1935; J. M. Thomson, Chem. News, 48. 244, 1881; W. Thomson and F. Lewis, Chem. News, 64. 169, 1891; Proc. Manchester Lit. Phil. Soc., 4. 266, 1891; F. Thoren, Svensk. Kem. Tido, 42, 134, 1930; E. Tiede and W. Jenisch, Brenstoff Chem., 2. 5, 1921; H. C. Tingey and C. H. Hinshelwood, Journ. Chem. Soc., 121, 1668, 1922; D. Tommasi, Rend. Ist. Lombardo, 11, 128, 1878; M. Traube, Zeit. anal. Chem., 13, 349, 1874; Ber., 15, 225, 1882; M. W. Travers, Proc. Roy. Soc., 60, A, 449, 1897; A. Trillat, Bull. Soc. Chim., (3), 29, 35, 1903; Brit. Pat. No. 8575, 1895; Carrett Will. 1997. Compt. Rend., 127. 1495, 1901; 132. 1227, 1495, 1901; 137. 187, 1903; H. W. Underwood, Chem. Met. Engg., 29. 584, 709, 1923; G. Vavon, Compt. Rend., 154. 1705, 1912; 158. 409, Chem. Mel. Enyg., 29, 584, 709, 1923; G. Vavon, Compt. Rend., 154. 1705, 1912; 158. 409, 1914; G. Vavon and A. Husson, ib., 175. 277, 1922; J. H. Vogel, Zeit. angew. Chem., 19. 49, 1906; R. Vondracek, Zeit. phys. Chem., 50, 560, 1905; V. Voorhees and R. Adams, Journ. Amer. Chem. Soc., 44. 1397, 1922; V. Vrabely, Magyar Chem. Foly., 35, 28, 38, 1930; E. Waser, Helvetica Chim. Acta, 8, 117, 1925; C. O. Weber, Gummi Ztg., 18, 255, 1903; W. P. White, Phys. Rev., (1), 23, 474, 1906; H. Wieland, Ber., 45, 484, 2615, 1912; 46, 3327, 1913; P. de Wilde, Bull. Acad. Belg., (2), 37, 73, 1874; Ber., 7, 353, 1874; R. Willstätter and D. Hatt, ib., 45, 1471, 1481, 1912; R. Willstätter and E. Hauenstein, ib., 42, 1850, 1909; R. Willstätter and E. W. Leitz, ib., 54, B, 113, 1921; R. Willstätter and D. Jaquet, ib., 51, 767, 1918; R. Willstätter and E. W. Mayer, ib., 41, 1477, 2199, 1908; R. Willstätter and F. Seitz, ib., 57, B, 683, 1924; R. Willstätter and E. Waser, ib., 43, 1177, 1910; T. Wilm, Journ. Russ. Phys. Chem. Soc., 13, 490, 1881; Ber., 14, 874, 1881; E. Windisch Ueher die Hudrogenisation ungesättigter Soc., 13. 490, 1881; Ber., 14. 874, 1881; E. Windisch, Ueber die Hydrogenisation ungesättigter organischer Verbindungen durch Platin- und Palladium-Wasserstoff und antikatalytische Wirkung von Fremdstoffen auf den hydrogenisierungsprozess, Erlangen, 1919; F. Wöhler, Quart. Journ. Science, 6. 178, 1929; Phil. Mag., (2), 6. 467, 1829; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Ber., 38. 3482, 1903; H. Wölbling, Zeit. angew. Chem., 45. 720, 1932; R. J. Wysor, Journ. Ind. Eng. Chem., 5. 705, 1913; W. P. Yant and C. O. Hawk, Journ. Amer. Chem. Soc., 49, 1454, 1927; N. D. Zellinsky, Journ. Russ. Phys. Chem. Soc., 43, 1220, 1911; Ber., 44, 3121, 1911; 45, 3678, 1912; N. D. Zelinsky and A. A. Balandin, Bull. Acad. Soviet. Union, 29, 1929; N. D. Zelinsky and N. Glinka, Ber., 44, 2311, 1911; Journ. Russ. Phys. Chem. Soc., 43, 1084, 1911; N. D. Zelinsky and M. B. Turowa-Pollak, Ber., 58. B, 1298, 1925.

H. V. Collet-Descotils, Ann. Chim. Phys., (1), 67. 88, 1808; H. Moissan, Compt. Rend.,
 114. 320, 1892; L. Pissarjewsky, Zeit. anorg. Chem., 32. 341, 1902; J. G. Rose, Chem. News,
 104, 1908; O. Ruff and W. Menzel, Zeit. anorg. Chem., 202. 49, 1931; A. Sieverts and
 K. Brüning, Zeit. phys. Chem., 168. 411, 1934; F. Wöhler and H. St. C. Deville, Compt. Rend.,
 108, 1856

43. 1086, 1856.

21 J. B. J. D. Boussingault, Compt. Rend., 82. 591, 1876; F. C. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; H. le Chatelier, Mesure des températures elevées, Paris, 1900; L. I. Dana and P. D. Foote, Chem. Met. Engg., 22. 23, 63, 1920; G. H. Denham, Zeit. phys. Chem., 72. 675, 1910; Die Zersetzung der Titansalz au Platin, Heidelberg, 1909; H. St. C. Deville, Journ. Pharm. Chem., (3), 81. 116, 1857; Ann. Chim. Phys., (3), 49, 62, 1857; B. Diethelm and F. Förster, Zeit. phys. Chem., 62, 129, 1908; K. Fuwa, Journ. Japan. Cer. Soc., 34, 466, 1926; W. B. Giles, Chem. News, 99, 4, 1909; A. Guyard, Bull. Soc. Chim., (2), 25, 510, 1876; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58, 223, 1888; E. Isaak and G. Tammann, Zeit. anorg. Chem., 55, 63, 1908; W. Jander, ib., 77, 381, 1925; 148, 377, 1925; R. W. Mahon, Journ. Amer. Chem. Soc., 15, 578, 1893; C. G. Memminger, Amer. Chem. Journ., 7, 172, 1885;

F. P. Miles, ib., 8, 428, 1887; T. Poleck, Ber., 27, 1052, 1894; H. Rose, Traité complet de chimie analytique, Paris, 1, 1028, 1859; E. Tiede and R. Piwonka, Ber., 64, B, 2252, 1932; H. N. Warren, Chem. News, 60, 5, 1889; W. P. White, Phys. Rev., (1), 23, 449, 1906; Phys. Zeit., 8, 338, 1907.

24 M. Ballo, Ber., 15. 3003, 1882; 16. 694, 1883; C. Barreswil, Compt. Rend., 22. 420, 1846; J. J. Berzelius, Schweiger's Journ., 7. 551, 1813; 34. 81, 1822; G. Bischof, ib., 45. 209, 1825; M. le Blanc and L. Bergmann, Ber., 42. 4741, 1909; G. Brügelmann, Zeit. anal. Chem., 29. 125, 1890; L. Cailletet, Compt. Rend., 44. 1250, 1857; F. C. Carter, Proc. Amer. Inst. Min. Eng.—Metals, 783, 1928; Journ. Ind. Eng. Chem., 27. 751, 1935; J. T. Conroy, Journ. Soc. Chem. Ind., 21. 303, 1902; W. Dittmar, ib., 3. 138, 1884; 7. 730, 1888; Chem. News, 50. 5, 1884; Zeit. anal. Chem., 24. 76, 1885; W. L. Dudley, Journ. Amer. Chem. Soc., 18. 901, 1896; Amer. Chem. Journ., 28. 64, 1902; R. Engel, Compt. Rend., 121. 528, 1895; J. L. Gay Lussac and L. J. Thénard, Recherches physico-chimiques, Paris, 1. 141, 1811; T. Gross, Zeit. Elektrochem., 14. 46, 1907; W. R. E. Hodgkinson and F. K. S. Lowndes, Chem. News, 58. 223, 1889; T. Ihmori, Wied. Ann., 28. 81, 1886; W. G. Imhoff, Amer. Metal Market, 37. 174, 1930; C. Kellner, Wied. Ann., 57. 79, 1895; E. J. Kohlmeyer and J. W. Westermann, Siebert's Festschrift, 193, 1931; L. L. de Koninck, Zeit. anal. Chem., 18. 569, 1879; L. Kralovanszky, Schweiger's Journ., 54. 232, 346, 1828; E. Leidié and L. Quennessen, Bull. Soc. Chim., (3), 27. 181, 1902; A. I. Leipunsky, Zeit. phys. Chem., 78. 767, 1912; O. Loew, Journ. prakt. Chem., (2), 1. 307, 1870; R. W. Mahon, Amer. Chem. Journ., 28. 64, 1902; C. Marie, Compt. Rend., 146. 476, 1908; E. B. Maxted, Journ. Chem. Soc., 117. 1520, 1920; 127. 73, 1925; N. A. E. Millon, Ann. Chim. Phys., (3), 18. 337, 1846; Compt. Rend., 21. 37, 1845; W. Nernst, Kustner's Arch., 30. 1560, 1897; P. Nicolardot and C. Chatelot, Bull. Soc. Chim., (4), 25. 4, 1919; Y. Okayama, Journ. Japan. Soc. Chem. Ind., 32. 163, 1929; Zeit. phys. Chem., 6. B, 355, 1930; W. Ostwald, Ber. Sachs. Akad., 239, 1891; Natur. Rund., 6. 488, 1891; M. Philippson, Koll. Zeit., 11. 49, 1912; Bull. Acad. Belg., 580, 1912; T. Poleck, Ber., 27. 1051, 1894; L. Quennessen. Bull. Soc. Chim., (4), 25.

neck, Kastner's Arch., 17. 108, 1829.

23 R. Abegg and J. F. Spencer, Zeit. anorg. Chem., 44, 379, 1905; E. Alexander, Reaktionen wn Salzen in Aethylacetat, Giessen, 1899; A. H. Allen, Chem. News, 25. 85, 1872; E. Baur and A. Glässner, Zeit. Elektrochem., 9. 534, 1903; A. Bechamp and C. St. Pierre, Compt. Rend., A. Gassner, Zeil. Elektrochem., 9, 334, 1903; A. Bechamp and C. St. Pierre, Compl. Rend., 52, 757, 1861; A. L. Beebe, Chem. News, 53, 269, 1886; J. J. Berzelius, Schweigger's Journ., 62, 349, 1831; Ann. Chim. Phys., (2), 47, 337, 1831; E. Bose, Zeit. Elektrochem., 14, 314, 1908; J. A. Buchner, Repert. Pharm., 39, 360, 1831; F. C. Carter, Journ. Ind. Eng. Chem., 27, 751, 1935; A. Chilesotti, Gazz. Chim. Ital., 33, ii, 349, 1904; Zeit. Elektrochem., 12, 197, 1906; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1854; E. Cohen, Maandbl. Nat., 19, 27, 1906; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1854; E. Cohen, Maandbl. Nat., 19, 27, 1906; C. Claus, Beiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1906; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, Reiträge zur Chemie der Platinmetalle, Dorpat, 1864; E. Cohen, Maandbl. Nat., 19, 27, 1908; C. Claus, 1908; 87, 1895; S. Cooke, Proc. Phil. Soc. Glasgow, 18, 285, 1887; Chem. News, 58, 103, 1888; Zeit. phys. Chem., 3. 239, 1889; H. St. C. Deville and H. Debray, Monit. Ind., (5), 6. 548, 1879; 77. Döring, Journ. prakt. Chem., (2), 66. 100, 1902; J. Eggert, Zeit. Elektrochem., 20. 370, 1914; 21. 349, 1915; W. Foster, Chem. News, 115. 73, 1917; C. Fromme, Wied. Ann., 18. 552, 1882; 19. 86, 1883; A. Frumkin and A. Donde, Ber., 60. B, 1816, 1927; A. Frumkin and A. Obrutscheva, Zeit. anorg. Chem., 158, 84, 1926; H. Gall and W. Manchot, Ber., 58. B, 482, 1926; J. H. Chem., 158, 1926; H. Gall and W. Manchot, Ber., 58. B, 482, 2025. 1925; J. H. Gladstone and A. Tribe, Chem. News, 37. 245, 1878; Journ. Chem. Soc., 83. 308, 1878; J. W. Greig, E. Pognjak, H. E. Merwin and R. B. Sosman, Amer. Journ. Science, (5), 30. 291, 1935; T. Gross, Elektrochem. Zeit., 14. 146, 1907; E. W. Hilgard, Zeit. anal. Chem., 32. 184, 1893; W. F. Hillebrand, Bull. U.S. Geol. Sur., 422, 1910; W. R. Hodgkinson and F. K. S. Lowndes, Chem. News, 58. 223, 1888; K. A. Hofmann and V. Wölfl, Ber., 40. 2426, 1907; K. Jablczynsky, Zeit. phys. Chem., 64, 750, 1908; Bull. Acad. Cracow, 398, 1908; Die Zersetzung des chromochlorüs an Platinblech, Freiburg, 1909; W. P. Jorissen and W. E. Ringer, Publ. Congr. Chim. Pharm., 1, 1905; Ber., 37. 3983, 1904; A. F. Joseph and W. N. Rae, Journ. Chem. Soc., 111. 201, 1917; G. Just, Zeit. phys. Chem., 63, 522, 1908; O. Köttig, Journ. prakt. Chem., (1), 71. 190, 1857; E. J. Kohlmeyer and J. W. Westermann, Siebert's Festschrift, 193, 1931; V. Kohlschütter, Zeit. Elektrochem., 14. 49, 1908; I. M. Kolthoff and T. Kameda, Journ. Amer. Chem. Soc., 51. 2888, 1929; L. L. de Koninck, Zeit. anal. Chem., 18. 569, 1879; E. Kraus, Pogg. Ann., 43. 138, 1838; J. Lang, ib., 118. 282, 1863; H. Ley, Zeit. phys. Chem., 30. 247, 1899; W. Manchot and J. Herzog, Ber., 33. 1742, 1900; C. Marie, Compt. Rend., 146. 475, 1908; J. C. G. Marignac, ib., 66. 180, 1868; Arch. Sciences Genève, (2), 31. 99, 1868; G. Méker, Compt. Rend., 125. 1029, 1897; E. Müller and M. Soller, Zeit. Elektrochem., 11. 863, 1905; E. Müller and G. Wegelin, Zeit. anal. Chem., 50. 615, 1911; J. Napier, Mem. Chem. Soc., 2. 16, 1843; E. Oberer, Beiträge zur Kenntnis des Kobaltisulfate, Zürich, 1903; C. Paal and H. Büttner, Ber., 48. 220, 1915; J. Personne, Bull. Soc. Chim., (1), 4. 65, 1862; J. Persoz, Ann. Chim. Phys., (2), 55. 210, 1833; R. Peters, Zeit. phys. Chem., 26. 217, 1898; A. Petzholdt, Journ.

prakt. Chem., (1), 17. 469, 1839; T. L. Phipson, Chem. News, 41. 13, 1880; C. St. Pierre, Bull. Soc. Chim., (1), 4. 74, 1862; Compt. Rend., 54. 1079, 1862; L. Pissarjewsky, Zeit. anorg. Chem., 32. 341, 1902; P. Rohland, ib., 29. 159, 1901; O. Ruff, F. Eisner and W. Heller, ib., 52. 263, 1907; O. Ruff and A. Heinzelmann, ib., 72. 63, 1911; O. Ruff and F. W. Tschirch, Ber., 46. 299, 1913; W. J. Russell, Chem. News, 75. 302, 1897; Proc. Roy. Soc., 61. 424, 1897; E. Schaer, Arch. Pharm., (2), 239. 610, 1901; Liebig's Ann., 323. 32, 1902; H. Schild, Berg. Hütt. Ztg., 47. 251, 1888; C. F. Schönbein, Journ. prakt. Chem., (1), 75. 102, 1858; R. Schwarz and H. Stock, Zeit. wiss. Photochem., 22. 26, 1922; W. Skey, Chem. News, 35. 204, 1877; Trans. New Zealand Inst., 8. 332, 1876; M. Soller, Die Rolle des Bleisuperoxyde als Anode, besonders bei der elektrolytischen Regeneration der Chromsäure, Halle a. S., 1905; R. B. Sosman and J. C. Hostetter, Journ. Washington Acad., 5. 293, 1915; S. Tennant, Scherer's Journ., 1. 308. 1799; Japan. Phys., (1), 51. 157, 1800; E. Tiede and R. Piwonka, Ber., 64. B, 2252, 1931; D. Tommasi, Rend. 1st. Lombardo, (2), 11. 281, 1878; Chem. News, 41. 116, 1880; F. Tödt, Zeit. Elektrochem., 38. 12, 1932; F. W. Tschirch, Ueber die Fluoride des Osmiums, Danzig, 1913; B. L. Vanzetti, Atti Acad. Lincei, (5), 17. ii, 285, 1908; H. Weisz, Zeit. phys. Chem., 54, 305, 1906; L. Wolff, Zeit. Elektrochem., 36. 803, 1930; 37. 619, 1931.

U. Antony and A. Lucchesi, Gazz. Chim. Ital., 26. i, 217, 1896; G. G. Aquilina, Journ. Chim. Méd., (3), 1. 682, 1845; R. Böttger, Schweigger's Journ., 68. 292, 1833; O. Brunck, Liebig's Ann., 336. 295, 1904; V. G. Chlopin, Ann. Inst. Platine, 4. 324, 1926; R. Doht, Zeit. anal. Chem., 64. 37, 1924; F. Emich and J. Donau, Sitzber. Akad. Wien, 116. 732, 1907; Monatsh., 28. 825, 1907; F. Field, Chem. News, 43. 75, 1881; N. W. Fischer, Schweigger's Journ., 53. 103, 1828; G. Forchhammer, Danske Vid. Selsk. Forh., 8, 1827; Schweigger's Journ., 52. 3, 1828; R. Gaze, Apoth. Ztg., 27. 959, 1912; W. N. Ivanoff, Chem. Ztg., 47. 209, 1923; Ann. Inst. Platine, 4. 331, 1926; J. L. Lassaigne, Journ. Chim. Méd., (2), 8. 585, 1832; O. Makowka, Zeit. anal. Chem., 46. 145, 1907; G. Malutesta and E. di Nola, Boll. Chim. Farm., 52. 461, 1913; R. Meldrum, Chem. News, 78. 270, 1898; S. C. Ogburn, Journ. Chem. Educ., 5. 1371, 1928; Journ. Amer. Chem. Soc., 48. 2507, 1926; H. Reinsch, Journ. prakt. Chem., (1), 13. 132, 1838; R. Ruer, Zeit. Elektrochem., 14. 310, 1908; W. Singleton, Ind. Chem., 3. 121, 1927; E. Sonstadt, Journ. Chem. Soc., 67. 985, 1895; A. Walcker, Quart. Journ. Science, Ann. Chim. Anal., 17. 328, 1912.

M. Ascoli and G. Izar, Berlin. klin. Wochschr., 21, 1907; Biochem. Zeit., 5. 394, 1907;
E. Behring, Deut. Militärärztl. Zeit., 337, 1888; Centr. Med. Wissensch., 27, 120, 1889;
L. Bitter, Zeit. Hyg., 69, 483, 1912;
J. A. Blake, Compt. Rend., 96, 439, 1883;
106, 1250, 1888;
T. L. Brunton and J. Fayrer, Proc. Roy. Soc., 27, 465, 1878;
A. Calmette, Ann. Inst. Pasteur,
8, 275, 1894;
A. Chassevant and C. Richet, Compt. Rend., 117, 673, 1893;
W. Chonstein, Arch. Exp. Path., 16, 393, 1883;
H. Devaux, Compt. Rend., 133, 58, 1901;
J. Dunin-Borkowsky and Z. Szymanowsky, Bull. Acad. Cracow, 746, 1909;
Farbwerke vorm. Meister, Lucius und Brüning, German Pat., D.R.P. 268220, 268221, 1912;
J. Feigl and A. Rollet, Biochem. Zeit., 145, 1908;
C. Foa and A. Aggazzotti, ib., 19, 59, 1909;
C. G. Gmelin, Journ. Chem. Méd.,
(2), 2, 188, 1826;
(2), 3, 388, 1827;
Schweiger's Journ., 43, 110, 1825;
Edin. Journ. Med. Science,
3, 324, 1827;
R. S. Hardman and C. H. Wright, Brit. Med. Journ., i, 529, 1896;
F. Höfer, Journ. Pharm. Chim., (2), 27, 213, 1840;
Gazz. Méd., 48, 1840;
F. Hofmeister, Arch. Exp. Path., 16, 393, 1883;
J. Jütt, Pharm. Post, 30, 185, 1897;
J. L. Lassaigne, Journ. Chim. Méd., (2), 8, 513, 577, 1832;
C. Levaditi, A. Girard and S. Nicolau, Compt. Rend., 181, 163, 1925;
H. Micheels and P. de Heen, Bull. Acad. Belg., 1027, 1907;
A. Pedler, Proc. Roy. Soc., 27, 17, 1878;
A. W. Pell, Journ. Russ. Phys. Chem. Soc., 24, 334, 1892;
A. Robin and G. Bardet, Compt. Rend., 138, 783, 1904;
E. Rosenthal and W. Bamberger, Zeit. Immun. Exp. Therap., 19, 9, 1913;
H. Thiele and K. Wolf, Arch. Hyg., 34, 43, 1899;
T. Thunberg, Skand. Arch. Physiol., 24, 94, 1910.

R. H. Atkinson and A. R. Raper, Journ. Inst. Metals, 59.
 , 1936; F. E. Carter, Proc. Amer. Inst. Min. Eng.—Metals, 759, 1928; Eng. Min. Journ., 128. 1001, 1929; Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Chem. Met. Engg., 36. 553, 1929; Journ. Ind. Eng. Chem., 27. 751, 1936; Japan. Nickel Rev., 4. 21, 1936; X. Dubois, Science et la Vie, 33. 229, 1928; K. Falck, Siebert's Festschrift, 31, 1931; O. Feussner, Metallwirtschaft, 7. 469, 1928; Zeit. Metallkunde, 26. 251, 1934; B. Holman, Canadian Min. Journ., 52. 566, 1931; M. H. Jacobi, Compt. Rend., 49. 896; 1859; Chem. News, 1. 23, 1860; M. Joris, Schweigger's Journ., 11. 385, 1814; K. Karmasch, Dingler's Journ., 223. 11, 1877; A. Katteifeld, Berg. Hütt. Zig., 44. 68, 1885; H. F. Keller, Journ. Franklin Inst., 174. 525, 1912; E. F. Kingsbury, Tech. Publ. Amer. Inst. Min. Eng., 95, 1928; L. Leroux, L'Ind. Chim., 12. 295, 1925; B. N. Menschutkin, Journ. Chem. Educ., 11. 226, 1934; S. C. Ogburn, ib., 5. 1371, 1928; J. Pelouze, Dingler's Journ., 155. 118, 1860; C. Ridolfi, Giorn. Scienza Arti, 1. 24, 125, 1815; Ann. Phil., 7. 29, 1817; 13. 70, 1819; Phil. Mag., (1), 48. 72, 1816; (1), 53. 68, 1819; Schweigger's Journ., 24. 439, 1818; Quart. Journ. Science, 1. 259, 1818; G. Suzuki, Japan. Nickel Rev., 4. 63, 1936; E. R. Thews, Chem. Fabr., 49, 1930; P. M. Tyler and R. M. Santmyers, Bur. Mines Information, 6389, 1931; E. M. Weston, South African Min. Eng. Journ., 24. 179, 1923; J. O. Whiteley, Dental Record, 47. 390, 1927; E. M. Wise, Metal Progress, 28. 36, 1933; T. A. Wright, Brass World, 20. 69, 1924; Y. Yamamoto, Japan. Nickel Rev., 4. 29, 1936.

§ 15. The Atomic Weight and Valency of Platinum

Platinum forms the two chlorides—PtCl₂ and PtCl₄—where the metal is respectively bivalent and quadrivalent. This is confirmed by the two oxides, PtO, and PtO₂. Platinum is univalent in the platinum monochloride studied by S. Streicher, 1 L. Wöhler and S. Streicher, and W. Manchot and G. Lehmann obtained evidence of the formation of univalent platinum—vide infra, platinum suboxide. Platinum is tervalent (i) in an ill-defined brown oxide, and hydrated oxide, (ii) in platinum trichloride studied by F. Martin, L. Wöhler and F. Martin, P. C. Ray and N. N. Ghosh, and L. Pigeon; (iii) in M. Blondel's yellow acid, HPt(SO₄)₂.6H₂O, and in the yellow potassium salt, KPt(SO₄)₂.H₂O; (iv) in S. M. Jörgensen's reddish-brown a-Pt(NH₃) en Br₃, and the analogous red a-Pt(NH₃) py Cl₃; (v) in L. A. Tschugaeff and I. I. Tscherniaeff's black β-Pt(NH₃)₂(OH)Cl₂, and the red PtenCl₃, and in the red crystals obtained by H. D. K. Drew and co-workers by mixing α -[Pt(NH₃) en Cl₂] and α -[Pt(NH₃) en Cl₄]; and (vi) in the palladium salts and in the black Pt(NH₃)₂Cl₃ prepared by H. D. K. Drew and co-workers. E. G. Cox and co-workers discussed the planar structure of complex salts of bivalent platinum. J. F. Heyes said that the metal at high temp. behaves as a bivalent element, and at ordinary temp. as a quadrivalent element. W. Biltz discussed the effect of temp. on the valency of platinum towards oxygen. F. Kohlrausch deduced from his electrolytic observations that the metal behaves as if its valency were between 2 and 3, and L. Holborn and L. Austin obtained a similar conclusion from observations on the cathodic spluttering of platinum. The platinum chlorides, nitrites, etc., exhibit a strong tendency to form complex molecules so that the platinum in potassium nitritoplatinite, $K_2Pt(NO_2)_4$, and in potassium chloroplatinite, K_2PtCl_4 , behaves as if it were sexivalent; and in potassium chloroplatinate, K2PtCl6, as if it were octovalent. The constitution of these salts, and of the ammines has been discussed by I. I. Tscherniaeff, A. A. Frinberg, C. W. Blomstrand, F. P. J. Dwyer and D. P. Mellor, P. T. Cleve, S. M. Jörgensen, A. Werner, etc., in connection with the ammines—49. 19—and the cobaltammines—67. 17, 1835. The primary valency of platinum in the chloroplatinates is four. subject was discussed by T. M. Lowry. H. Töpsöe considers the complex chlorides of the type: 2RCl.PtCl4 are isomorphous with the analogous complex fluorides of tin, titanium, zirconium, and silicon, and the analogous chlorostannates; and I. Bellucci and N. Parravano showed that the potassium salts of plumbic, stannic, and platinic acids are isomorphous. H. Reihlen and W. Hühn discussed the optical activity of some ammino-salts. There are also the hydrochloroplatinous acids described by L. Wöhler and F. Martin—tetrachloroplatinous acid, H₂PtCl₄; the doubtful pentachloroplatinous acid, H2PtCl5, thought to be a derivative of PtCl3-platinum tervalent; and hexachloroplatinic acid, H2PtCl6; and platinic acid, H₂PtO₄—a derivative of platinum trioxide. F. Martin, and L. Wöhler and F. Martin showed that in the trioxide platinum is probably sexivalent. P. C. Ray and S. C. S. Gupta suggested that the mercaptidochloride, PtCl(C₂H₅)₂S₂, contains quinquevalent platinum:

$$\begin{array}{c|cccc} & C_2H_5 & C_2H_5 \\ & S & S & S \\ \hline & Cl-Pt & Pt-Cl & \\ & \parallel & \parallel \\ & C_2H_5-S & S-C_2H_5 \\ & \downarrow & \\ & C_2H_5-S & S-C_2H_5 \\ \hline & C_1 & & \\ \end{array}$$

and examples were also given by P. C. Ray and N. N. Ghosh. W. Pullinger suggested that platinum is octovalent in the compound PtCl₂.2COCl₂:

$$0 = \operatorname{Pt} \leqslant_0^0 \qquad \qquad \operatorname{Cl}_{\bullet} = \operatorname{Pt} <_{\stackrel{\bullet}{C}0}^{C0}$$

Platinum sexivalent

Platinum octovalent

R. C. Menzies, L. A. Tschugaeff, I. I. Tschernaieff, P. T. Cleve, S. M. Jörgensen, C. W. Blomstrand, A. Werner, F. M. Jäger, J. Piccard and J. H. Dardel, A. F. Richter, H. Reihlen and co-workers, H. Remy, A. P. Smirnoff, and E. G. Cox and co-workers, studied the co-ordination and stereochemistry of the platinum salts.

The atomic weight of platinum approximates 195. This is in agreement with the sp. ht. rule; with the isomorphism rule—vide supra; and with the usual location of the metal in the periodic table. The position of platinum in the periodic table was discussed by R. Abegg,² E. Q. Adams, U. Alvisi, T. Bailey, G. H. Bailey and T. C. Lamb, H. Bassett, E. Baur, A. E. de Chancourtois, L. de Boisbaudran and A. de Lapparent, A. van den Broek, T. Carnelley, R. M. Deeley, J. Delauney, J. Delauney and M. Garnier, G. Erréra, L. R. Gibbes, A. J. Hopkins, J. L. Howe, J. Königsberger, S. M. Losanitsch, R. Lorenz, F. H. Loring, D. I. Mendeléeff, J. Monckman, J. A. R. Newlands, W. Preyer, D. Radulescu, J. W. Retgers, G. Rudorf, J. R. Rydberg, W. Sander, K. Scheringa, K. Schirmeisen, E. Schulze, E. von Stackelberg, G. Tammann, J. Thomsen, B. N. Tschitscherin, F. P. Venable, A. Vosmaer, J. Walker, G. Wendt, A. Werner, and C. Zengelis.

Some attempts were made by J. J. Berzelius ³ in 1813, by L. N. Vauquelin, and by E. Davy in 1817 to determine the atomic weight of platinum. J. J. Berzelius' analysis of platinous chloride furnished 194.7 for the atomic weight of platinum, and later, he analyzed potassium chloroplatinate, and obtained 198.3 from the ratio K₂PtCl₆: 4Cl; 196.6 from the ratio K₂PtCl₆: 2KCl; 197.4 from the ratio K₂PtCl₆: Pt; and 197.1 from the ratio 2KCl: Pt. These results were supported by the values 197.68 to 198.12 reported by T. Andrews to be derived from a determination of the platinum and chlorine in potassium chloroplatinate dried at 105°. J. S. Stas emphasized the difficulty involved in removing the last traces of water from this salt.

The atomic weights obtained by J. J. Berzelius, and T. Andrews are far too high, and they are generally rejected from the computation of average values. In 1881, K. Seubert showed that the value is nearer 195 than 197, for he calculated 195·13 from the ratio $(NH_4)_2PtCl_6:Pt$; $197\cdot22$ from $(NH_4)_2PtCl_6:6$, $194\cdot83$ from $K_2PtCl_6:Pt$; $195\cdot06$ from $K_2PtCl_6:2$ KCl; and $195\cdot31$ from $K_2PtCl_6:4$ AgCl. These results were confirmed by those of W. Halberstadt, who obtained $194\cdot65$ from the ratio $PtBr_4:Pt$; $194\cdot87$ from $(NH_4)_2PtBr_6:Pt$; $195\cdot08$ from $K_2PtBr_6:Pt$; $195\cdot78$ from $K_2PtBr_6:2$ KBr; $195\cdot01$ from $(NH_4)_2PtCl_6:Pt$; $194\cdot75$ from $K_2PtCl_6:Pt$; and $195\cdot29$ from $K_2PtCl_6:2$ KCl. The analyses of potassium chloroplatinate by W. Dittmar and J. McArthur involve corrections for some hydroxyl replacing chlorine, and hydrogen replacing potassium, and they calculated $195\cdot50$ from the ratio 2KCl: $195\cdot10$ F. Schulz obtained $194\cdot5$ from five analyses of ammonium chloroplatinate.

E. H. Archibald obtained values based on analyses of potassium and ammonium chloroplatinates and bromoplatinates. The analyses of potassium chloroplatinate furnish 195·213 from the ratio K_2Cl_6 : Pt; 195·219 from 4AgCl: Pt; 195·236 from 2AgCl: Pt; 195·228 from 4AgCl: K $_2$ PtCl $_6$; 195·274 from 2AgCl: K $_2$ PtCl $_6$; 195·220 from 4Ag: Pt; 195·233 from 2Ag: Pt; 195·208 from 4Ag: K $_2$ PtCl $_6$; and 195·252 from 2Ag: K $_2$ PtCl $_6$. The analyses of potassium bromoplatinate furnish 195·221 from the ratio K_2 Br $_6:$ Pt; 195·225 from 4AgBr: Pt; 195·222 from 2AgBr: Pt; 195·238 from 4AgBr: Pt; 195·238 from 2AgBr: K $_2$ PtBr $_6$; 195·220 from 4Ag: Pt; 195·224 from 2Ag: Pt; 195·220 from 4Ag: K $_2$ PtBr $_6$; and 195·242 from 2Ag: K $_2$ PtBr $_6$. The analyses of ammonium chloroplatinate

furnished 195·191 from the ratio $(NH_4)_2PtCl_6$: Pt; 195·216 from 6AgCl: Pt; 195·245 from 6AgCl: $(NH_4)_2PtCl_6$; 195·213 from 6Ag: Pt; and 195·241 from 6Ag: $(NH_4)_2PtCl_6$. The analyses of ammonium bromoplatinate furnished 195·206 from the ratio $(NH_4)_2PtBr_6$: Pt; 195·214 from 6AgBr: Pt; 195·242 from 6Ag: $(NH_4)_2PtBr_6$; 195·220 from 6Ag: Pt; and 195·244 from 6Ag: $(NH_4)_2PtBr_6$. The best representative value from E. H. Archibald's determinations is 195·22.

The international standard for the best representative value of the atomic weight of platinum for 1931 is 195.2, and representative values were discussed by F. W. Clarke, L. Meyer and K. Seubert, J. D. von der Plaats, W. M. Watts, T. W. Richards, W. A. Noyes, G. D. Hinrichs, and A. Vürtheim.

C. T. Heycock and F. H. Neville 4 discussed the molecular state of platinum in alloys with cadmium, lead, and bismuth; and E. O. von Lippmann estimated 30 to 40 atoms per molecule. W. C. Roberts-Austen added that experiments on the diffusion of platinum suggested that the molecules are more complex than those of silver, or gold. The relations between the elements and their at. wts. were discussed by G. Osann, M. Gerber, F. Sanford, and C. A. Martius; the relations between the at. wts. and the affinities of the elements, by E. Donath and J. Mayrhofer, P. Pfeiffer, and F. Gramp; between the at. wts. and the heats of reaction, by M. Berthelot; the relations between the at. wts. and the clastic constants, by J. Johnston; and the relations between the at. wts. and the colour of the elements, by M. C. Lea.

The atomic number of platinum is 78. E. Amaldi, 5 A. J. Dempster, B. Fuchs and H. Kopfermann, H. Kopfermann and K. Krebs, B. Jaeckel and H. Kopfermann, F. Allison and E. J. Murphy, and B. Venkatesachar and L. Sibaiya reported that platinum has five isotopes of atomic mass 192, (193), 194, 195, and 196 with the relative abundances, for the 192, 194, 195, and 196 isotopes are, respectively, 2, 10, 13, 16; J. H. Bartlett studied the subject. The atomic disruption of platinum by the bombardment of a-particles has not been noted by E. Rutherford and J. Chadwick, or by H. Pettersson and G. Kirsch; J. M. Cork and E. O. Lawrence, and A. Matzner observed the atomic disintegration of platinum by bombardment with neutrons; G. Kirsch found that with a-rays from polonium, disintegration occurs; and G. I. Pokrovsky said that the platinum becomes radioactive. According to N. Bohr, and E. C. Stonier, the electronic structure of platinum is (2) for the K-shell; (2, 2, 4) for the L-shell; (2, 2, 4, 4, 6) for the M-shell; (2, 2, 4, 4, 6, 6, 8) for the N-shell; (2, 2, 4, 4, 4) for the O-shell; and (2) for the P-shell. S. K. Allison, A. E. van Arkel and J. H. de Boer, E. Bose, J. Chadwick, J. A. Crowther, F. Deininger, H. Eyring and A. Sherman, P. D. Foote, M. Kahanovicz, S. Kato, W. Meier, B. V. Nekrasoff, C. D. Niven, J. Patterson, H. Perlitz, R. Pohl, G. I. Pokrovsky, P. Ray, O. W. Richardson, W. Hume-Rothery, H. J. Walke, and H. A. Wilson made estimates of the number of electrons per atom of platinum.

REFERENCES.

Bellucci and N. Parravano, Atti Accad. Lincei, (5), 14. ii, 457, 1905; W. Biltz, Nachr. Gött., 293, 1908; C. W. Blomstrand, Die Chemie der Jetztzeit, Heidelberg, 1869; Ber., 4. 639, 1871; 6. 1468, 1873; M. Blondel, Ann. Chim. Phys., (8), 6. 110, 1905; Bull. Soc. Chim., (4), 7. 99, 1910; Recherches sur quelques combinaisons du platine, Paris, 1905; P. T. Cleve, Œfvers. Akad. Stockholm, 22. 487, 1866; 27. 777, 883, 1870; 28. 175, 181, 187, 1871; Bull. Soc. Chim., (2), 7. 12, 1867; (2), 25. 161, 1871; (2), 26. 203, 1871; (2), 27. 100, 294, 1872; Nova Acta Upsala, 6, 1868; Journ. prakt. Chem., (1), 100. 22, 1867; Stockholm Akad. Handl., 7. 6, 1868; 10. 9, 1871; Svenska Handl. Akad., 10. 9, 1872; Chem. News, 24. 73, 1871; 25. 47, 286, 311, 1872; E. G. Cox, F. W. Pinkard, W. Wardlaw and K. C. Webster, Journ. Chem. Soc., 459, 1475, 1935; H. D. K. Drew, ib., 1790, 1934; H. D. K. Drew and F. S. H. Head, ib., 224, 1934; H. D. K. Drew, F. W. Pinkard, G. H. Preston and W. Wardlaw, ib., 1908, 1932; H. D. K. Drew and H. J. Truss, ib., 1335, 1933; 1244, 1935; F. P. J. Dwyer and D. P. Mellor, Journ. Amer. Chem. Soc., 56. 1551, 1934; A. A. Grinberg, Ann. Inst. Platine, 10. 47, 1933; J. F. Heyes. Phil. Mag., (5), 25. 297, 1888; L. Holborn and L. Austin, Abh. Phys. Tech. Reichsanst., 4. 109, 1904; F. M. Jäger, Zeit. Kryst., 58, 172, 1923; S. M. Jörgensen, Journ. prakt. Chem., (2),

16, 357, 1877; (2), 25, 346, 1882; (2), 27, 433, 1883; (2), 33, 509, 1886; Zeit, anorq. Chem., 153, 1900; F. Kohlrausch, Wied. Ann., 63, 423, 1897; Zeit. Elektrochem., 4, 413, 1898;
 T. M. Lowry, Journ. Soc. Chem. Ind.—Chem. Ind., 46, 79, 103, 1927; W. Manchot and (4. Lehmann, Ber., 63. B, 2775, 1930; F. Martin, Vier Oxydationsstufen des Platins, Karlsruhe, 1909; R. C. Menzies, Journ. Chem. Soc., 1755, 1934; J. Piccard and J. H. Dardel, Helvetica Chim. Acta, 4, 406, 1921; L. Pigeon, Ann. Chim. Phys., (7), 2, 452, 1894; W. Pullinger, Ber., 24. 2292, 1891; P. C. Ray, Journ. Indian Chem. Soc., 4, 89, 1927; Journ. Chem. Soc., 115. 24. 2212, 131, 142, 133, 1923; P. C. Bay and K. C. Bose-Ray, Journ. Indian Chem. Soc., 2, 178, 1925; P. C. Ray and N. N. Ghosh, ib., 11, 737, 1936; Zeit. anorg. Chem., 220, 247, 1934; P. C. Ray and S. C. S. Gupta, ib., 187, 33, 1930; 198, 53, 1891; 203, 401, 1932; H. Reihlen and W. Hühn, Naturwiss., 19, 442, 1931; H. Reihlen, G. Seipel and E. Weinbrenner, Liebig's Ann., 520, 256, 1935; H. Remy, Journ. prakt. Chem., (2), 114, 337, 1926; A. F. Richter, Zeit. phys. Chem., 135, 442, 1928; A. P. Smirnoff, Helvetica Chim. Acta, 3, 177, 1920; S. Streicher, Ueber die Chloride von vier Valenzstuffen des Iridiums und Platins, Darmstadt, 1913; H. Töpsöe, Arch. Sciences Genève, (2), **45**, 223, 1872; I. I. Tscherniaeff, Ann. Inst. Platine, **10**, 33, 1933; I. A. Tschugaeff, Compt. Rend., **161**, 563, 1915; L. A. Tschugaeff and I. I. Tscherniaeff, Zeit. anorg, Chem., 182, 159, 1929; A. Werner, Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, Braunschweig, 1905; Vierteljahr Nat. Ges. Zürich, 62. 553, 1917; L. Wöhler and F. Martin, Ber., 42, 3959, 4102, 1909; Zeit, anorg. Chem., 57, 398, 1908; L. Wöhler and S. Streicher, Ber., 46, 1592, 1913. ² R. Abegg, Ber., 38, 1386, 1905; E. Q. Adams, Journ. Amer. Chem. Soc., 23, 684, 1911;

U. Alvisi, Alti Accad. Lincci, (5), 2. i, 191, 1893; G. H. Bailey and T. C. Lamb, Journ. Chem. Soc., 61, 745, 1892; Chem. News, 66, 35, 1892; T. Bailey, Journ. Amer. Chem. Soc., 20, 935, 1898; H. Bassett, Chem. News, 65, 3, 1892; E. Baur, Zeit. phys. Chem., 76, 569, 1911; W. Biltz. Zeit. Elektrochem., 17, 670, 1911; L. de Boisbaudran and A. de Lapparent, Compt. Rend., 112, 77, 1891; A. van den Brock, Phys. Zeit., 12, 490, 1911; T. Carnelley, Chem. News, 38, 261, 1878; Ber., 12, 439, 1879; A. E. de Chancourtois, Vis Tellurique, Paris, 1863; R. M. Deeley, Journ. Chem. Soc., 63, 852, 1893; Chem. News, 67, 157, 1892; J. Delauney, Compt. Rend., 123, 600, 1896; J. Delauney and M. Garnier, Monit. Scient., (4), 23, 27, 1909; G. Erréra, Bull. Acad. Belg., 160, 1900; L. R. Gibbes, Synoptical Tables of the Elements, Charleston, 1875; A. J. Hopkins, Journ. Amer. Chem. Soc., 33, 1005, 1911; J. L. Howe, Chem. News, 82, 15, 30, 37, 52, 1900; J. Königsberger, Zeit. Elektrochem., 15, 97, 1908; R. Lorenz, Zeit. anorg. Chem., 12, 329, 1896; F. H. Loring, Chem. News, 100, 281, 1909; 101, 12, 1910; S. M. Losanitsch, Ghlas Srpska Akad. Belgrade, 27, 139, 1905; D. I. Mendelceff, Ber., 13, 1796, 1880; J. Monekman, Chem. News, 95, 5, 1907; J. A. R. Newlands, ib., 10, 59, 1864; W. Preyer, Das genetische System der chemischen Elemente, Berlin, 1893; D. Radulescu, Bull. Soc. Bucarest,

Das genetische System der chemischen Elemente, Berlin, 1893; D. Radulescu, Bull. Soc. Bucarest, 21, 59, 1912; J. W. Retgers, Zeit. phys. Chem., 16, 577, 1895; G. Rudorf, Chem. Ztg., 30, 595, 1906; J. R. Rydberg, Zeit. anorg. Chem., 14, 66, 1897; W. Sander, Zeit. Elektrochem., 6, 133, 1899; K. Scheringa, Chem. Weekbl., 8, 868, 1911; K. Schirmeisen, Zeit. phys. Chem., 33, 223, 1900; E. Schulze, Zeit. Kryst., 26, 189, 1896; E. von Stackelberg, Zeit. phys. Chem., 77, 75, 1911; G. Tammann, Zeit. anorg. Chem., 49, 113, 1906; Zeit. Elektrochem., 14, 789, 1909;

J. Thomsen, Zeit. anorg. Chem., 9, 190, 1895;
 B. N. Tschitscherin, Journ. Russ. Phys. Chem. Soc., 20, iii, 1, 1891;
 F. P. Venable, Journ. Amer. Chem. Soc., 17, 75, 947, 1895;
 A. Vosmaer, Chem. Weekbl., 7, 483, 1910;
 J. Walker, Chem. News, 63, 251, 1891;
 G. Wendt, Deut. Chem. Zia., 26, 1895;
 A. Werner, Ber., 38, 914, 1905;
 C. Zengelis, Chem. Zia., 30, 294, 1906.

Chem. Breadi, J. 453, 1816; S. Waltel, Vient. News, 36, 251, 1831; G. Wellit, Bread. Chem. Ltg., 26, 1895; A. Werner, Ber., 38, 914, 1905; C. Zeugelis, Chem. Ltg., 30, 294, 1906.

3 T. Andrews, B.A. Rep., 33, 1852; Chem. Gaz., 10, 379, 1852; E. H. Archibald, Trans. Roy. Soc. Edin., 29, 721, 1909; Zeit. anorg. Chem., 60, 197, 1910; J. J. Berzelius, Ann. Chim. Phys., (1), 88, 26, 113, 1813; (1), 89, 20, 1813; Pogg. Ann., 8, 177, 1826; 13, 469, 1828; F. W. Clarke, A Recalculation of the Atomic Weights, Washington, 473, 1910; Phil. Mag., (5), 12, 10, 1881; Amer. Chem. Journ., 3, 263, 1881; Chem. News, 50, 62, 1884; Journ. Amer. Chem. Soc., 18, 197, 1896; E. Davy, Quart. Journ. Science, 3, 131, 1817; Phil. Mag., (1), 49, 146, 1817; Phil. Trans., 107, 136, 1877; W. Dittmar and J. McArthur, Journ. Soc. Chem. Ind., 6, 799, 1887; Trans. Roy. Soc. Edin., 33, 591, 1888; W. Halberstadt, Ber., 17, 2975, 1884; G. D. Hinrichs, Monit. Scient., (4), 20, 419, 1906; (4), 22, 155, 1908; L. Meyer and K. Scubert, Die Atomgewichte der Elemente, Leipzig, 244, 1883; Chem. News, 48, 211, 1883; W. A. Noyes, Ber., 24, 238, 1891; J. D. van der Plaats, Ann. Chim. Phys., (6), 7, 499, 1886; Rec. Trav. Chim. Pays-Bas, 5, 123, 1886; T. W. Richards, Amer. Chem. Journ., 20, 543, 1898; F. Schulz, Ueber das Atomgewicht des Platins, Erlangen, 55, 1912; K. Scubert, Liebig's Ann., 207, 1, 1881; 261, 272, 1891; Ber., 14, 865, 1881; 21, 2179, 1888; J. S. Stas, Mém. Acad. Belg., 35, 1, 1865; L. N. Vauquelin, Ann. Chim. Phys., (2), 5, 260, 1817; Ann. Phil., 12, 18, 1818; Quart. Journ. Science, 4, 74, 1818; A. Vürtheim, Chem. Weekbl., 17, 637, 1920; W. M. Watts, Chem. News, 19, 302, 1869.

M. Berthelot, Compt. Rend., 90. 1511, 1880; 91. 17, 1880; Ann. Chim. Phys., (5), 21, 386, 1880; E. Donath and J. Mayrhofer, Ber., 16. 1588, 1883; M. Gerber, Chem. News, 63, 242, 1881; F. Gramp, Ber., 7, 1723, 1874; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 61, 888, 1891; Chem. News, 62, 280, 1890; 66, 289, 1892; J. Johnston, Journ. Amer. Chem. Soc., 34, 788, 1912; Zeit. anorg. Chem., 76, 261, 1912; M. C. Lea, ib., 9, 312, 1895; Amer. Journ. Science, (3), 49, 357, 1895; E. O. von Lippmann, Chem. Centr., (3), 17, 756, 1886; C. A. Martius, Ueber de Cyanverbindungen der Platinmetalle, Göttingen, 1860; Liebig's Ann., 117, 381, 1861; G. Osann, Kastner's Arch., 12, 487, 1827; P. Pfeiffer, Zeit. anorg. Chem., 31.

VOL. XVI.

191, 1902; W. C. Roberts-Austen, Phil. Trans., 187, A, 402, 1896; F. Sanford, Journ. Amer. Chem. Soc., 33, 1349, 1911.

F. Allison and E. J. Murphy, Phys. Rev., (2), 36, 1097, 1930; S. K. Allison, Phys. Rev., (2), 33, 1087, 1929; E. Amaldi. Nuovo Cimento, (9), 12, 223, 1935; A. E. van Arkel and J. H. de Boer, Chem. Weekhl., 26, 114, 1929; F. W. Aston, Nature, 133, 684, 1934; J. H. Bartlett, Phys. Rev., (2), 45, 847, 1934; N. Bohr, Nature, 112, Suppl., 1923; E. Bose, Phys. Zeit., 7, 374, 1906; J. Chadwick, Phil. Mag., (6), 40, 734, 1920; J. Chadwick and C. D. Ellis, Radiation from Radioactive Substances, Cambridge, 1930; J. M. Cork and E. O. Lawrence, Phys. Rev., (2), 49, 788, 1936; J. A. Crowther, Proc. Roy. Soc., 84, A, 239, 1910; F. Deininger, Ann. Physik, (4), 25, 306, 1908; A. J. Dempster, Nature, 135, 993, 1935; H. Eyring and A. Sherman, Journ. Chem. Phys., 1, 345, 1933; P. D. Foote, Trans. Amer. Inst. Min. Eng., 73, 628, 1926; B. Fuchs and H. Kopfermann, Naturwiss., 23, 372, 1935; B. Jaeckel, Zeit. Physik, 100, 513, 1936; B. Jaeckel and H. Kopfermann, ib., 99, 492, 1936; M. Kahanovicz, Atti Accad. Lincei, 6(6), 8, 584, 1928; S. Kato, Bull. Inst. Chem. Research Tokyo, 13, 53, 1930; G. Kirsch, Naturwiss., 21, 332, 1933; H. Kopfermann and K. Krebs, Zeit. Physik, 101, 193, 1936; A. Matzner, Sitzber. Akad. Wien, 143, 579, 1935; W. Meier, Ann. Physik, (4), 31, 1049, 1910; Untersuchungen über Dispersion und Absorption bei Metallem für das sichtbare und ultraviolette Spektrum, Göttingen, 1910; B. V. Nekrasoff, Bull. Soc. Chim., (5), 3, 151, 1936; C. D. Niven, Phil. Mag., (7), 3, 1314, 1927; J. Patterson, ib., (6), 3, 655, 1902; H. Perlitz, Metallwirtschrift, 12, 103, 1932; H. Pettersson and G. Kirsch, Atomzertrümmerung, Leipzig, 104, 1926; Sitzber. Akad. Wien, 134, 491, 1925; R. Pohl, Phys. Zeit., 7, 501, 1906; G. I. Pokrovsky, Zeit. Physik, 57, 560, 1929; P. Ray, Zeit. anorg. Chem., 174, 187, 1928; O. W. Richardson, Proc. Roy. Soc., 71, 4, 415, 1903; Phys. Zeit., 5, 10, 1904; W. Hulme-Rothery, Phil. Mag., (7), 10, 217, 1930; E. Rutherford and J. Chadwick; Nature, 107, 41, 1921; Proc. Phys.Soc., 36, 417, 1924; Phil. M

§ 16. Intermetallic Compounds, and Alloys of Platinum

J. Dewar and A. Scott 1 observed that platinum is very strongly attacked by the vapour of the alkali metals. According to H. Davy, platinum-potassium alloys are readily formed since the two metals when heated together unite with incandescence, forming a brittle, shining mass. H. Davy observed that the alloy of potassium and platinum burns when heated in air, forming a yellow powder which gives off oxygen when heated, and is decomposed by water. K. A. Hofmann and H. Hiendlmaier observed that if potassium is melted with platinum in air, the product passes into soln, as potassium platinate. H. Davy likewise prepared platinum-sodium alloys. C. T. Heycock and F. H. Neville observed that platinum is insoluble in molten sodium. J. Dewar and A. Scott noted that platinum is attacked by the vapour of sodium, and V. Meyer added that sodium vapour, in nitrogen, begins to attack platinum at a red-heat, and the attack is greater, the higher the temp. F. Haber and M. Sack, and M. Sack observed that platinum takes up sodium when heated to redness in the vapour of the alkali metal, and when the metal is afterwards treated with water, it becomes loose and porous on the surface. According to A. Brester, a sodium-platinum alloy is formed by the electrolysis of sodium sulphate with a platinum cathode. P. G. Ehrhardt found that platinum-lithium alloys are harder than platinum itself.

According to A. F. Gehlen,² platinum-copper alloys are readily formed at a white-heat; and E. D. Clarke obtained the alloy by melting equal weights of the two metals in the oxyhydrogen flame. H. le Chatelier observed that at its m.p., copper gives off sufficient vapour to corrode platinum. Alloys were also made by C. S. Brainin, C. Winkler, J. Murray, C. Barus, and F. Doerinckel. According to C. Krug, the two metals form alloys in all proportions. E. M. Wise and coworkers studied the use of the platinum-copper alloys for dental purposes. B. N. Sen discussed the diffusion of copper into platinum. The f.p. curve, Fig. 29, falls continuously from the m.p. of platinum to that of copper, and there is therefore a continuous series of solid soln. As pointed out by G. Tammann, no compound appears on the curve although C. Krug was under the impression that a platinum cupride, PtCu, is formed. The subject was discussed by K. Bornemann, E. Jänecke,

K. Honda and T. Ishigaki, J. A. M. van Liempt, C. Barus, W. Guertler, and A. von der Ropp. N. S. Kurnakoff and V. A. Nemiloff observed the f.p. curves, Fig. 30, and found that solid alloys exhibit recalescence between 700° and 800° with a maximum of 850° with alloys having 50 at. per cent. of platinum. This indicates the formation of the PtCu-compound, and this is confirmed by measurements

Figs. 29 and 30.—The Freezing Points of Platinum-Copper Alloys.

of the hardness (Fig. 31), conductivity, and temp. coeff. of the conductivity (Fig. 32) of re-heated and tempered alloys. H. Röhl discussed the elastic properties of the $\mathrm{Cu_3Pt}$ alloy.

G. Natta, and C. Matano studied the diffusion of platinum in copper. According to C. Krug, alloys with 4 per cent. of platinum are rose-red; with 10 to 12 per cent., bronze colour; with 15 to 20 per cent., gold-yellow; with 50 per cent.,

Fig. 31.—The Hardness of the Pt-Cu Alloys.

Fig. 32.—The Resistance and Temperature Coefficient of the Pt-Cu Alloys.

pale grey; and with 75 per cent., it is difficult to distinguish the colour from that of platinum itself. F. Doerinckel said that alloys with over 40 per cent. of platinum are white; A. F. Gehlen that alloys with 3.7 per cent. of platinum are rose-red; and E. D. Clarke, that alloys with 50 per cent. of platinum are golden yellow. A. F. Gehlen said that the alloy with 3.7 per cent. of platinum had a fine-grained structure. H. Behrens observed that when polished surfaces are etched with nitric acid, deep furrows are cut between cushion-like crystals. W. Lewis found the sp. gr. of alloys with platinum and

Copper . 0.969 66.7 80 83.3 88.9 92.3 96.15 100 per cent. Sp. gr. . 11.400 10.410 9.908 9.693 9.300 9.251 8.970 8.830

W. Biltz and F. Weibka studied the at. vol. F. Doerinckel said that the alloys are soft and tough; and that the hardness is between 3 and 4 on Mohs' scale. F. E. Carter's values for Brinell's hardness of workable alloys are given in Table IV.

	A 11		Percentage amount					
	 Alloy	 	5	10	15	20		
Ir.			80	105	140	175		
Os			117	175				
Pd			65	70	73	75		
Rh		. !	67	73	77	80		
Ru			105	158		1		
4 u		. i	102	148				
Ag			80	125	170	172		
`u			110	135	142	145		
Ni			138	195	236	270		

TABLE IV. -BRINELL'S HARDNESS OF PLATINUM ALLOYS.

A. F. Gehlen said that the alloy with 3.7 per cent. of platinum is malleable, and E. D. Clarke that the 50:50-alloy has a sp. gr. like gold, is malleable, and easily filed. F. E. Carter said that with up to 10 per cent. of copper, the alloys do not blacken on heating, but with more copper they do blacken and become difficult to work. Alloys with up to 30 per cent. of copper may be hot rolled, but beyond that, the alloys are hard and brittle. C. Krug observed that alloys with over 10 per cent. of platinum are liable to "spitting" when they solidify. C. H. Johansson and J. O. Linde examined the X-ray spectrum. H. J. Seemann, and C. Barus, and E. Sedström measured the sp. resistance and its temp. coeff. F. E. Carter said that the addition of copper to platinum raises the electrical resistance very markedly; the resistance R ohms, the temp. coeff. a per c.c., and the thermal e.m.f. against platinum at 1100° , are:

Copper	5	10	15	20	25	30 per cent.
R .	227	335	430	540	530	500
a .	0.00015	0.00015	0.00015	0.00016	0.00012	Months Trans
E.m.f.	+3.48	+5.05		+.0.80	***	-5.05

C. S. Brainin patented an alloy with about 25 per cent. of copper for use as high-resistance wires. N. S. Kurnakoff and V. A. Nemiloff's results are summarized in Fig. 32. H. le Chatelier found the thermoelectric force of platinum against an alloy with 5 per cent. of copper to be $E=1.3\theta-0.0024\theta^2$ between 0° and 1500°. E. Sedström studied the subject; and G. Tammann and H. Wiederholdt, the polarization of the alloy; and E. Vogt, and H. J. Seemann, the magnetic properties of the alloys.

A. Sieverts and co-workers observed that platinum raises the solubility of hydrogen in molten copper. E. D. Clarke said that the 50:50-alloy is tarnished in air; and C. Krug noted that the alloys generally resist atmospheric corrosion very well. A. Sieverts and E. Bergner found that platinum lowers the solubility of sulphur dioxide in copper. F. Doerinckel, and H. Behrens noted that alloys with up to 50 per cent. of platinum are etched by nitric acid. According to C. Winkler, alloys with [Cu] per cent. of copper, yield [Pt] per cent. of platinum when treated with nitric acid:

HNO ₃ sp. gr.	1.398		1.298		1.190		1·298 (fuming)		
			,	~		٠,			
[Cu]	90.24	99.00	89.89	98.85	90.61	99.00	89.80	94.78 per cent.	
[Pt]	45.60	52.00	26.57	41.27	11.19	37.03	51.16	40.81 ,,	

C. Krug said that the solubility of platinum is not influenced by the concentration or proportion of the acid employed, but it is affected by the duration of the action; and since a portion of the copper always remains associated with the platinum,

he assumed that the insoluble part is a chemical compound. G. Tammann's study of the action of gold chloride, nitric acid sp. gr. 1.44, fuming hydrochloric acid, palladium chloride, ferric chloride, cupric chloride, mercurous nitrate, ammonium sulphide, and sodium sulphide indicated a limit with alloys having up to 32 per cent. of platinum.

J. P. J. d'Arcet ³ prepared **platinum-silver alloys** by melting the component metals together. H. le Chatelier observed that molten silver at its m.p. gives off enough vapour to attack platinum. F. E. Carter said that silver rapidly hardens platinum, and alloys used in dentistry, and in making electrical contacts are fairly ductile. The so-called *dental alloys*, first and second qualities, contain, respectively, 66 and 75 per cent. of silver—the remainder being platinum. Some alloys containing 51 to 62 per cent. of tin, 30 to 46 per cent. of silver, 1.3 to 5.8 per cent. of gold, and 0.4 to 1.6 per cent. of platinum, are, according to E. A. Smith, used in the preparation of dental amalgam. The silver-platinum dental alloys were studied by E. M. Wise and co-workers.

J. Murray, H. Rössler, C. Winkler, F. Doerinckel, J. F. Thompson and E. H. Miller, A. von der Ropp, and V. Strouhal and C. Barus obtained the alloys by melting the constituent metals either in the blast-gas flame, the oxyhydrogen flame, or in high temp. furnaces. W. Truthe studied the effect of silver on platinum in cupellation. W. Spring noted that when platinum electroplated with silver is drawn into wire, the metals alloy under the severe press. E. Priwoznik obtained the alloy by igniting silver nitritoplatinite. H. Rössler said that the two metals form alloys in all proportions, but F. E. Carter said that the alloys do not form a continuous series of solid soln. as in the case of platinum alloyed with gold, or palladium with silver. The metals do not readily dissolve in one another, and they tend to separate on cooling. J. Prinsep attempted to measure the m.p. of silverplatinum alloys by a gold air thermometer; and to use the alloys as pyroscopes. C. T. Heycock and F. H. Neville observed that adding 3.55 per cent. of platinum to silver raised the f.p. to 990°. F. Doerinckel found that a series of solid soln. is formed with from 0 to 48 per cent. of platinum; the composition of the endmember of the series is platinum diargentide, PtAgo, but it is not considered to be a chemical individual. Above 1184°, it decomposes into crystals rich in platinum, and a fused mass with about 32 per cent, of platinum. J. F. Thompson and E. H. Miller thought it possible that a compound is formed because of some irregu-

Figs. 33 and 34.—Freezing-point Curves of the Silver-Platinum Alloys.

larities in the solvent action of nitric acid; and for similar reasons A. von der Ropp suggested that platinum hemitriargentide, Pt₂Ag₃, is formed. G. Tammann added that no evidence of any compound of the two elements appears on the f.p. curve. N. S. Kurnakoff and W. A. Nemiloff's correction of F. Doerinckel's curve is shown in Fig. 33, where A represents a solid soln. of platinum in silver; B, a

solid soln, of silver in platinum; and A+B, a mixture of the two solid soln. Observations on the subject were made by W. Guertler, G. Natta, K. Bornemann, and E. Jänecke. C. H. Johansson and J. O. Linde's results are summarized in Fig. 34, where the Greek letters refer to solid soln.

According to J. F. Thompson and E. H. Miller, under the microscope, the alloy with 10-39 per cent. of platinum consists of crystals set in a non-composite ground mass. On cooling from 1200°, a development of heat was observed at 1045° to 1050°, and a much larger development at 1000°. The alloy containing 20.59 per cent. platinum, when cooled from 1100°, developed heat at 1085° and possibly also at 995°. The microstructure showed large, white dendrites in a non-composite ground mass. The alloy containing 31.46 per cent. platinum, on cooling from 1300°, gave marked but irregular developments of heat between 1170° and 1100°. The structure consisted of grey crystals in a dark ground mass. The alloy containing 37.89 per cent. platinum resembled the 31.46 per cent. alloy in structure, but gave sharp developments of heat at 1240° and 1170°. The alloy containing 57.05 per cent. platinum also resembled the 31.46 per cent. alloy in structure; on cooling from 1400°, it gave developments of heat at 1240°, 1180°, and 1090°. K. Gebhard and H. J. Wiester studied the recrystallization of the platinum-silver alloys. C. H. Johansson and J. O. Linde's results for the lattice constant of the alloys are summarized in Fig. 35. The results for the dotted lines

Fig. 35.—The Lattice Constants of the Platinum-Silver Alloys.

Fig. 36.—The Hardness and Tenacity of Platinum-Silver Alloys.

refer to solid soln. The alloys for up to about 30 per cent. platinum were quenched from 750° to 850°, and those above 50 at. per cent. platinum were quenched from 1150°. The X-radiograms were studied by J. Weerts. The sp. gr. referred to water at 4° is:

Platinum	0	10.39	20.59	31.46	37.89	57.05 per cent.
Sp. gr.	10.61	11-17	11.80	12.57	13.19	14.25

W. Lewis gave for the sp. gr. of alloys with

Silver	50	66.7	75	87.5	100 per cent,
Sp. gr.	13.535	$12 \cdot 452$	11.790	10.867	10.980

W. Biltz and F. Weibka studied the at. vol. J. P. J. d'Arcet observed that the alloys of platinum with silver are less white, less malleable, and less hard than silver, and when quietly fused, an alloy richer in platinum collects at the bottom. C. Winkler obtained analogous results. J. F. Thompson and E. H. Miller observed that alloys with over 30 per cent. of platinum are much harder than those with a lower proportion of platinum, and the hardness increases as the proportion of platinum increases; and F. Doerinckel added that alloys with up to 30 per cent. of platinum are scarcely harder than their components, but beyond that point the hardness increases, and an alloy with 70 per cent. of platinum is rather harder

than calcite. N. S. Kurnakoff and W. A. Nemiloff's measurements of Brinell's hardness of alloys annealed at 650°, and at 950° to 1050°, and of the tensile strength in kgrms. per sq. mm. are summarized in Fig. 36—vide Table IV. W. Geibel's measurements of the tensile strength of 1 mm. wires are summarized in Fig. 37. These alloys were used by H. Bush for hooks and rivets.

A. Matthiessen found the linear thermal expansion of alloys with 66 per cent. of silver to be $l = l_0(1+0.0_41415\theta+0.0_7107\theta^2)$; and the cubic expansion $r = r_0(1+0.0_44216\theta+0.0_7322\theta^2)$. F. A. Schulze gave for the thermal conductivity, k,

J. F. Thompson and E. H. Miller noted that alloys with over 40 per cent, of silver do not spit perceptibly on solidification. E. Hagen and H. Rubens measured the emissivity of the alloys; and H. Weisz found that platinum acts as a nucleus for the solarization of silver bromide films in photography.

A. Matthiessen and C. Vogt found that the curve for the electrical conductivity has a break for alloys with 33 per cent. of platinum. The conductivity

Fig. 37.—The Tensile Strength of Platinum-Silver Alloys.

Fig. 38.—Electrical Properties of the Platinum-Silver Alloys.

of an alloy with 66-6 per cent, of silver, or 16-95 vols, per cent, of platinum, is 6-696 when that of silver alone is 100; and at θ^+ , 6-696 -0-00221 θ +0-0₅1393 θ ². A. Matthiessen and C. Vogt also gave for alloys with 5-5 vols, per cent, of platinum, 18-031-0-01395 θ +0-0₅182 θ ²; and 2-51 vols, per cent, of platinum 31-640 -0-03936 θ +0-0₅3642 θ ². Measurements were also made by C. Barus, D. A. G. Bruggeman, and W. Geibel; and J. F. Thompson and E. H. Miller gave for the resistance in ohms, R,

J. Dewar and J. A. Fleming gave for an alloy with 66 per cent. of silver,

N. S. Kurnakoff and W. A. Nemiloff's measurements of the sp. resistance, $R \times 10^6$, of the sp. conductivity, $K \times 10^{-4}$, and of the temp. coeff. of the resistance between 25° and 100° are summarized in Fig. 38, and those of C. H. Johansson and J. O. Linde in Fig. 39. P. Wenke and M. Wien studied the effect with thin films. Observations on the temp. coeff. were made by C. Barus, C. G. Knott and J. G. McGregor, H. Chevallier, and F. Uppenborn. The effect of an alternating current was studied by R. S. Willows; the effect of torsion, by H. Tomlinson, and J. Klemencic; and

a comparison of the ratio of the thermal, k, and the electrical, K, conductivities at 25°, by F. A. Schulze.

Platinum		0	10	25	30	33 per cent.
$K > 10^4$.		57.35	12.72	4.23	3.22	3.05
$k/K>10^{\circ}$		69	77	90	95	106

W. Geibel's results for the thermoelectric force of platinum, E millivolts, against

Fig. 39.— Electrical Resistance of the Platinum-Silver Alloys.

platinum-silver alloys are indicated in Fig. 40; and those of C. H. Johansson and J. O. Linde for the platinum-silver alloys against silver, at 18°, in Fig. Observations were also made by A. W. Smith, W. H. Keesom and J. N. van Ende, C. G. Knott and G. McGregor, W. Broniewsky, V. Strouhal and C. Barus, and H. Tomlinson; and the thermoelectric force against copper was measured by J. Klemencic. F. Braun observed that when spluttered by a current from a Leyden jar, the alloy separates into its constituents. D. A. G. Bruggeman studied the dielectric constants.

F. E. Carter observed that even but a few per cent. of platinum in silver reduces the rate of tarnishing of the silver. According to J. P. J. d'Arcet, sulphuric acid dissolves only silver from platinum silver alloys. J. F. Thompson and E. H. Miller found that all the silver is dissolved only from alloys containing 90 per cent. or more silver; alloys with less

silver do not give it all up to the acid. Thus,

Silver in alloy	89.61	79-41	68.54	$62 \cdot 11$	42.95 per cent.
Silver in residue	Trace	0.59	0.98	2.24	2.70

A small trace of platinum is inclined to dissolve with the silver, but by diluting the acid, this may be prevented. The subject was also studied by H. Carmichael;

Fig. 40.—Thermoelectric Properties of the Platinum-Silver Alloys against Platinum.

Fig. 41.—Thermoelectric Properties of the Platinum-Silver Alloys against Silver.

and A. Steinmann recommended the use of a soln, of 100 vols, of acid and 22 vols, of water for dissolving out the silver, the operation being twice repeated at 240°.

K. Hradecky observed that selenic acid dissolves silver from these alloys yielding a residue of platinum.

F. Doerinckel observed that dil. nitric acid attacks the alloys with increasing difficulty as the proportion of platinum increases; and when 50 per cent. of platinum is present the alloy is etched only slightly. An alloy with 60 per cent. of platinum, and rapidly cooled from the molten state, is readily attacked by conc. nitric acid, but if the alloy has been annealed for 6 hrs. at 1180°, it is much more resistant. C. von Siekingen, and J. P. J. d'Arcet observed that although platinum is not attacked by nitric acid, yet it dissolves slightly when its alloys with silver are treated with that acid. H. How, and E. Priwoznik considered the solubility of the platinum to be connected with the formation of a silver nitritoplatinite. The solubility of the platinum in nitric acid was also observed by H. Debray, J. E. Herberger, P. Johnson, J. W. Mallet, H. Miller, A. D. van Riemsdyk, W. J. Sharwood, and H. N. Warren. C. Winkler, and A. von der Ropp showed that the cone, of the acid is of importance. According to J. Spiller, nitric acid of sp. gr. 1.42 will dissolve 0.75 to 1.25 per cent, of platinum from its alloy with 12 times its weight of silver, whilst treatment with a more cone, acid is attended by the separation of platinum black. A less conc. acid dissolves less platinum. J. F. Thompson and E. H. Miller observed that alloys with less than 20 per cent. of silver furnish a colloidal, dark brown sol of platinum, which, after standing several days, flocculates and deposits the platinum as a black powder in a very fine state of subdivision, and leaves a colourless soln of the silver salt. According to A. von der Ropp, the residual platinum explodes when dried on a filter, and heated to about 200°. C. Winkler found that [Pt] per cent. of platinum is dissolved from alloys with [Ag] per cent, of silver:

HNO_3 sp. gr.		1.398		1.298		1.190		1.298	
				ســـــــــــــــــــــــــــــــــــــ			~		
[Ag]		90.83	99.24	90-24	99.05	89.84	98.96	90.44	94.92
[Pt]		56.95	75.00	$44 \cdot 43$	70.00	69.33	75.86	37.45	35.23

J. F. Thompson and E. H. Miller found that with nitric acid of sp. gr. 1.10, the following proportions of platinum passed into soln, from 100 parts of alloy:

(Alle		10.39	20.59	31.46	37.89	57·05 p	er cent.
-Platinum∤ Res	idue .	3.59	6.77	24.50	35.49	52.97	,,
Diss	solved .	6.80	13.82	6.96	2.40	4.08	••

The results are irregular, but they are taken to prove that, in assaying, platinum cannot be satisfactorily separated by nitric acid from its alloy with silver. I. Koifman obtained analogous results with alloys, containing 0.219 to 5.162 per cent. of

platinum. J. E. Herberger observed that aqua regia extracts the platinum from the alloys and converts the silver into chloride. G. Tammann's study of the action of gold chloride, nitric acid sp. gr. 1.44, fuming hydrochloric acid, ferric chloride, and ammonium sulphide indicated a limit of reactivity with up to 35 per cent, of platinum. J. W. Mallet found that an alloy with 31.09 per cent. of platinum, at ordinary temp., gradually absorbs five times its weight of mercury and becomes very brittle. E. Jänecke constructed the diagram. Fig. 42, for platinum-silver-copper alloys, showing the eutectic line, and the region of solid soln.

Αq

System: Pt-Ag-Cu.

J. Prinsep, 4 C. Hatchett, J. Murray, J. O. Whiteley, and E. D. Clarke prepared some platinum-gold alloys; and alloys were also obtained by melting the constituent metals in the oxyhydrogen flame or in a high temp. furnace, by T. Erhard and A. Schertel, C. Barus, and F. Doerinckel. J. Weineck rolled gold-plated platinum; and J. W. Pratt noticed that an alloy is formed when gold chloride is heated above its m.p. in a platinum vessel. E. M. Wise

and J. T. Eash, and H. Bush recommended the alloys for artificial teeth; and dental alloys of these two metals were studied by E. M. Wise and co-workers. J. Prinsep attempted to measure the m.p. of gold-platinum alloys by a gold air thermometer, and to use the alloys as pyroscopes. W. Truthe studied the effect of platinum on gold in cupellation; and E. Matthey, the liquation of the alloys. K. Fischbeck, A. Jedele, and W. Jost studied the rate of diffusion of platinum in gold. F. Doerinckel found that alloys of gold with up to 60 per cent. of platinum from a continuous series of solid soln., and that there is a considerable interval of temp. between the liquidus and solidus curves. W. Stenzel and J. Weerts found that the solubility of platinum in gold at 1100°, 900°, and 700° is 43, 30, and 25 at. per cent., and that of gold in platinum, 19, 7, and 3.5 at. per cent., respectively. F. Doerinckel's diagram modified by A. T. Grigoréeff is given in Fig. 43. The region A represents a solid soln. of platinum in gold; B, a solid soln. of gold in platinum; and A+B, a mixture of the two solid soln. G. Tammann said that no

Figs. 43 and 44.—The Freezing Point of Platinum-Gold Alloys.

compounds are formed. The subject was discussed by W. Guertler, M. Dreibholz, O. Feussner, K. Bornemann, and E. Jänecke. C. H. Johansson and J. O. Linde's results are summarized in Fig. 44. G. Scatchard and W. J. Hamer studied the theory of the solid soln.

Fig. 45.—The Lattice Constants of the Gold-Platinum Alloys.

According to F. Doerinckel, the yellow tint imparted by gold rapidly disappears as the proportion of platinum increases; the colour of an alloy with 10 per cent. of platinum is much paler than that of gold; with 30 per cent. of platinum, the yellow tinge of gold is just perceptible; and with 40 per cent. of platinum, the colour is the same as that of platinum. C. Hatchett said that the alloy of 1 part of platinum and 11 of gold is greyish-white; L. B. G. de Morveau, that the alloy with 15.5 per cent. of platinum is gold coloured: M. H. Klaproth, that alloys with Au: Pt exceeding 8 are gold coloured; L. Gilbert, that the colour of an alloy with 1 per cent. of platinum is indistinguishable from that of gold; and E. D. Clarke, that the alloy with 1 part of platinum to 9.6 of gold is almost the colour of gold. T. Erhard and A. Schertel observed that rapidly cooled alloys have a fine crystalline structure, and, slowly cooled alloys.

a coarse crystalline structure. C. H. Johansson and J. O. Linde's results for the lattice-constants are summarized in Fig. 45. The alloys with 40 to 100 at. per cent. of platinum were quenched from 1200°, and those with 0 to 32 at. per cent.

of platinum, from 1000°. The results represented by the dotted lines were with samples quenched at 800°. W. Stenzel and J. Weerts found that the lattice parameter of quenched homogeneous alloys is a linear function of the composition. W. Lewis gave for the sp. gr. of the binary alloys from platinum of sp. gr. 19·285:

F. Doerinckel found that the hardness of an alloy with 10 per cent. of platinum is very like that of gold; with 20 to 30 per cent. of platinum, the same as that of platinum, and with over 50 per cent. of platinum, about the same as that of calcite. The following is a selection from A. T. Grigoréeff's measurements of Brinell's hardness, H, of the cast alloys and of annealed alloys:

Platinum	0	5	10	20	40	60	80	90	100
$H_{\mathrm{Ann.}}^{\mathrm{Cast}}$	-	$27 \cdot 4$	33.8	38.2	83.0	127.3	155.3	99.5	• ,
"Ann.	13.92	30.2	$34 \cdot 2$	37.2	77.7	92.3	128.8	111.4	26.0

The results of C. H. Johansson and J. O. Linde are summarized in Fig. 46- vide Table IV—for alloys quenched from 900°; for alloys with 8 to 32 at. per cent. of

platinum from 1000°, and with 40 to 96 at. per cent. of platinum from 1175° to 1225°; and alloys annealed at 900°. W. Goedecke studied the change of the hardness during the ageing of the alloys; and P. D. Merica, the precipitation hardness. C. Hatchett found that the alloy with 91.67 per cent. of gold is malleable; and E. D. Clarke, that alloys with 33.3 to 50 per cent. of gold are brittle. F. E. Carter said that the addition of gold rapidly hardens platinum, and that the limit of workability is attained with 10 per cent. of gold. The alloys with gold in excess work satisfactorily, but it is difficult to make them homogeneous. L. Nowack studied the age-hardening of the alloys. W. Geibel found that alloys with up to 20 per cent. of platinum are easy to work, but alloys with 20 to 40 per cent. are difficult. O. Feussner studied the hardening of the alloy by additions of the alkaline earth metals, magnesium, zinc, tin, iron, cobalt, and The tensile strengths of 1 mm. wires exnickel. pressed in kgrms, are:

Fig. 46.—Brinell's Hardness of the Platinum-Gold Alloys.

Platinum .	0	10	20	30	40 per cent.
Tensile strength	21.5	32	52	58	69 karına

The elastic modulus of an alloy with 77.8 per cent. of gold was found by G. Wertheim to be 9844 kgrms. per sq. mm., and the tensile strength to be 7.12 kgrms. per sq. mm.; he also found the velocity of sound in the alloy to be 6.848 when that in air is unity. F. A. Schulze gave for the thermal conductivity, k,

Platinum		0	10	20	30	40 per cent.
k .	_	3.30	0.76	0.41	0.30	0.26

C. H. Johansson and J. O. Linde's results for the thermal conductivity of the alloys are summarized in Fig. 47. F. E. Carter gave for Brinell's hardness H; Ericson's ductility test in mm.; and the resistance R ohms:

Gold	5	10	60	70	80	90 per cent.
Hard .	177	222	226	193	158	105
Annealed	98	162	174	135	104	61
Ductility .	****		6.9	9.7	11.3	12.2
R .	133	******	156	153	122	70

F. Doerinckel's values for the m.p. are indicated in Fig. 43. T. Erhard and A. Schertel gave :

Observations on a few isolated alloys were made by P. Silow, Y. Shimizu, J. Prinsep, and A. Heintz. T. Erhard and A. Schertel found that alloys with 15 to 40 per cent. of platinum are inclined to segregation, and similar results were obtained by

Fig. 47.- The Thermal Conductivity of the Platinum-Gold Alloys.

Fig. 48.—The Electrical Resistance of Platinum-Gold Alloys.

H. Seger, and E. Matthey. According to A. D. van Riemsdyk, the presence of 22 thousandths of platinum does not hinder superfusion and flashing in the cupellation of gold. According to W. Geibel, the electrical conductivity, K, at 0° , and the temp. coeff. a, between 0° and 160° , are:

Platinum	0	10	20	30	40 per cent.
$K imes 10^4$	47.52	9.76	5.57	5.18	3·06
a .	0.00326	0.00098	0.00054	0.00059	0.00037
$k/K \times 10^7$	71	76	85	86	93

where the ratios of the thermal and electrical conductivities are by F. A. Schulze. C. H. Johansson and J. O. Linde's results are summarized in Fig. 48 for the electrical

Fig. 49,--The Thermoelectric Force of Platinum-Gold Alloys against Gold.

resistance of alloys quenched from different temperatures. The results within the loop refer to alloys with two phases. C. Barus, and J. O. Linde made observations on the electrical resistance of the alloys. G. Scatchard and W. J. Harmer studied the chemical potentials of liquid and solid solutions of Ag-Pt alloys. W. Geibel found that the thermoelectric force of the alloys against platinum is negative and increases as the proportion of platinum in the alloy is raised. The values become more negative with repeated heating. C. H. Johansson and J. O. Linde's results for the thermoelectric force $E \times 10^6$ volts per degree, against gold, at 18°, are indicated in Fig. 49; and the results for the magnetic

susceptibility, in Fig. 50. Y. Shimizu studied the effect of stress on the magnetic susceptibility.

P. Johnson found that nitric acid dissolves not only gold but some platinum from the alloys. K. W. Fröhlich discussed the error involved in the determination of platinum when alloys with gold and silver are treated with hot sulphuric acid. Some platinum passes into soln. J. Weineck observed that conc. sulphuric acid, and molten potassium hydroxide with or without potassium nitrate, and molten potassium hydrosulphate have no marked action on the alloy. F. Doerinckel found that the alloys resist cold aqua regia very well; soln. of potassium cyanide rapidly attack alloys with a low proportion of platinum; the action is slower with increasing proportions of platinum; and when 60 per cent. of platinum is present, the attack A.G. Norddeutsche Affinerie found that the alloys is slow with boiling soln. dissolve anodically in hydrochloroauric acid; and F. Haber found that 11 per cent. hydrochloric acid, at the b.p., attacks platinum anodes as vigorously as a 36 per cent. soln. at ordinary temp.; but an 8 per cent. soln., at the b.p., leaves the platinum intact, and a soln, below 30 per cent, hydrochloric acid does not attack the metal at ordinary temp. L. Quennessen studied the attack by caustic alkalies. P. Nicolardot and J. Boudet found that crucibles made with gold alloyed with 12.5 to 25 per cent. of platinum are badly attacked during the electrolysis of alkaline soln., and in the presence of sulphides, and sodium cyanide.

E. Jänecke represented the ternary platinum-gold-copper alloys as a continuous series of solid soln.; and the platinum-gold-silver alloys as a series of solid soln. with a gap, Fig. 51. E. Matthey noted the segregation of

Fig. 50.—The Magnetic Susceptibility of the Platinum-Gold Alloys.

Fig. 51.— The Ternary System: Pt Au Ag.

both series of alloys. E. B. Craft and J. W. Harris said that the alloy with 67.5 to 70 per cent. of gold, 25 per cent. of silver, and 5 to 7.5 per cent. of platinum, is harder than platinum; and F. A. Bolley used the alloy 8 parts of platinum, 1 part of silver, and 3 parts of gold for dental work. L. N. Vauquelin, and H. Debray noted that nitric acid completely dissolves the alloy with 1 part of platinum, 10 parts of gold, and 30 parts or more of silver. A. von der Ropp noted that nitric acid dissolves most of the silver and gold, but leaves some platinum alloy undissolved; press. increased the solubility of the platinum. E. Matthey noted that castings of the quaternary platinum-gold-silver-copper alloys are not homogeneous. R. B. Graf used the 45: 15: 25: 15-alloy for electric contacts. L. Nowack studied the platinium-gold-zinc alloys. N. H. Furman studied an application of the amalgam—gold-platinum-mercury alloy—in electrometric titrations.

According to M. Tarugi, 5 when platinum salts are heated with calcium carbide, a platinum-calcium alloy is formed, and it is easily decomposed by water. F. E. Carter said that when the platinum is melted under reducing conditions in a lime-crucible, it takes up calcium to form an alloy. E. D. Clarke observed that a platinum-barium alloy is formed by melting a mixture of the two elements in the oxyhydrogen flame. The bronze-coloured alloy disintegrates to a reddish powder in 24 hrs. A. Matthiessen found that in the electrolysis of molten barium chloride with a platinum cathode, a yellow, brittle alloy is formed, and it is slowly

decomposed by water with the separation of pulverulent platinum. H. Boving obtained surface films of alloys with alkaline earth metals by heating platinum wires in the vapour of the metal. The product was tried as a lamp filament.

According to W. R. E. Hodgkinson and co-workers, 6 the preparation of platinum-magnesium alloys is difficult because the vapour of magnesium is almost completely absorbed by the glass or porcelain containing vessel. If magnesium is heated with platinum in hydrogen, for some hours, a friable alloy corresponding with platinum dimagneside, PtMg₂, is formed. F. E. Carter said that platinum may take up magnesium to the extent of 3 per cent. M. Balbo noted the reduction of nitrobenzene to aniline by platinized magnesium; and H. Princass, the spectrum of the Pt-Mg catalyst.

According to A. F. Gehlen, and R. W. Fox, 1 part of spongy platinum unites with 1.5 to 2 parts of zinc, at a temp. below redness, producing a vivid combustion amounting to an explosion. R. Böttger, and J. Murray also noted the vigour of the reaction in the formation of **platinum-zinc alloys**. H. St. C. Deville and H. Debray observed that platinum dissolves in molten zinc, and alloys were made by C. Barus, C. Winkler, and C. T. Heycock and F. H. Neville by fusing a mixture of the two elements; W. R. E. Hodgkinson and co-workers, and A. Pospieloff, by the action of the vapour of zinc on platinum; F. Mylius and O. Fromm, C. A. Kohn and J. Woodgate, T. S. Price, and V. Engelhardt, by the electrodeposition of zinc on platinum; J. W. Döbereiner, by the action of platinum on zinc-sodium alloys; and F. Mylius and O. Fromm, by the action of zinc on soln, of platinum salts.

Some compounds have been reported, but the evidence in support of their chemical individuality is equivocal—e.g. W. R. E. Hodgkinson and co-workers reported crystalline **platinum zincide**, PtZn to be formed by strongly heating **platinum dizincide**, PtZn₂, which is said to be formed by heating platinum for 5 hrs. in the vapour of zinc. H. St. C. Deville and H. Debray obtained the dizincide by treating a platinum-zinc alloy, containing an excess of zinc, with hydrochloric acid, and H. Behrens, by treating the alloy with dil. sulphuric acid. H. Behrens said that the crystalline powder consists of brownish crystals—probably hexagonal. C. T. Heycock and F. H. Neville observed that molten zinc dissolves 4 per cent. of platinum without altering appreciably its f.p., and they obtained a product corresponding with **platinum hemitrizincide**, Pt₂Zn₃, with a m.p. which W. Guertler supposed corresponds with a cutectic temp. A. Westgren, U. Dehlinger, and W. E. Schmid studied the X-radiograms of the Pt₅Zn₂₁-alloy.

A. F. Gehlen, and R. W. Fox said that the alloys are bluish-white. H. Behrens observed that polished surfaces of alloys with 10 per cent. platinum, etched with dil. sulphuric acid, show the presence of rod- and needle-like crystals. A. J. Bradley discussed the X-radiograms. A. F. Gehlen, and R. W. Fox observed that platinum is rendered brittle when alloyed with 0.25 part of zinc, and zinc is rendered brittle by alloying with 0.05 part of platinum. C. Winkler also found that alloys with 90 to 99 per cent. of zinc are very brittle. C. Barus measured the electrical resistance, and its temp. coeff. R. W. Fox observed that the platinum-zinc alloys lose the greater part of their zinc by oxidation when they are heated in air. G. Tammann and W. Wiederholt studied the polarization of the alloy.

J. B. J. D. Boussingault found that the black powder which remains when an alloy with 80 per cent. of zinc is treated with dil. sulphuric acid contains 31 per cent. of zinc. These residues were also studied by H. Debray, and H. St. C. Deville and H. Debray—vide supra, explosive or fulminating platinum. A. von der Ropp observed that when the alloys are treated with nitric acid, a part of the platinum passes into soln. with the zinc. C. Winkler found that with alloys containing [Zn] per cent. of zinc, [Pt] per cent. of platinum passes into soln., thus:

Sp. gr. HNO ₃		1.3	1.398		1.298		1.190		1.298 (fuming)		
		سسہ		,		سيب		ســـــ			
$\{\mathbf{Z}\mathbf{n}\}$.	•	90.00	98.71					90.79	96·74 per cent.		
Pt		10.29	19.67	10.70	31.66	19.40	$37 \cdot 14$	4.86	10.76		

T. Cooper prepared a platinum-copper-zinc alloy by melting a mixture of the first two metals covered with borax and carbon in a crucible at a white-heat, and stirring in the zinc when the crucible had been taken from the furnace. The gold-coloured alloy does not rust, and it is attacked only by boiling nitric acid. J. J. Burle, and C. Krug also prepared these alloys. J. J. Burle also prepared platinum-copper-silver-zinc alloy. L. Nowack studied the age hardening of the platinum-gold-zinc alloys. F. Stromeyer prepared a platinum-cadmium alloy by heating platinum with an excess of cadmium until the excess is volatilized. A. Pospieloff, and W. R. E. Hodgkinson and co-workers also obtained an alloy by the action of the vapour of cadmium on platinum; and F. Mylius and O. Fromm, by the precipitation of platinum by cadmium from soln. of platinum salts. K. W. Ray studied the equilibrium diagram.

F. Stromeyer, and W. R. E. Hodgkinson and co-workers' products corresponded with **platinum dicadmide**, PtCd₂. The silver-white, fine-grained product is very brittle. Its sp. gr. is 13:53 at 15°—calculated 12:59. Scarcely any cadmium volatilizes from the alloy at a red-heat. When digested with nitric acid, some platinum passes into soln, along with the cadmium. All the alloys with over 6 per cent, of platinum were found by K. W. Ray to be very brittle, and harder than either metal component. The cadmium is dissolved out by hydrochloric or

sulphuric acid, leaving spongy platinum behind.

B. Wood noted the brittleness of these alloys. C. T. Heycock and F. H. Neville observed that the f.p. of cadmium is lowered about 4.5° by the addition of 1 at. per cent. of platinum. K. W. Ray found that platinum dissolves in molten cadmium, forming white alloys having a low m.p. The f.p. curve shows that platinum dicadmide, PtCd₂, and platinum hemienneacadmide, Pt₂Cd₉, are formed. The hemienneacadmide decomposes at 615° into cadmium and the dicadmide, which melts at 725°. The cutectic with 2 per cent. of cadmium and the hemienneacarbide melts at 315°. Cadmium volatilizes rapidly during the preparation of alloys with over 50 per cent. of platinum, and the pasty mass can be melted only under press. C. Barus made some measurements of the electrical resistance, and of its temp. coeff. G. Tammann and W. Wiederholt studied the polarization of the alloy. F. Mylius and O. Fromm found that hydrogen is given off turbulently when the alloy is treated with hydrochloric acid.

J. F. Daniell, R. Böttger, E. Melly, I. N. Plaksin and S. M. Schtamova, and C. Engler and L. Wöhler prepared platinum-mercury alloys, or platinum amalgams by triturating spongy platinum with mercury. R. Böttger used a warm mortar, and J. F. Daniell found that the amalgamation is facilitated if water acidified with acctic acid is also present. C. Engler and L. Wöhler observed that owing to occluded oxygen, and oxidation films, platinum black amalgamates with difficulty; and M. Tarugi, that the grey mercury which separates when magnesium is added to a soln. of mercury salt, does not amalgamate platinum black by trituration. A. Tribe observed that platinum black which has been treated with hydrogen readily amalgamates with mercury in a few hours. T. Ihmori showed that platinum black absorbs mercury vapour; and C. Hockin and H. A. Taylor, that platinum

rapidly amalgamates with mercury boiling in an evacuated vessel.

J. F. Daniell observed that compact platinum does not take up mercury at ordinary temp. even when kept in contact with it for 6 years, but if the mercury be heated—to 200°, according to F. E. Carter—the metal acquires a film of mercury which can easily be wiped off; and J. M. Crafts added that a small proportion of mercury is taken up by the metal. E. N. Horsford also noted that compact platinum does not take up mercury at ordinary temp. M. Krouchkoll emphasized that for amalgamation, the surface of the compact metal should be thoroughly cleaned, and he recommended dipping the platinum in boiling nitric acid, and heating it to redness many times. W. Skey showed that the contact of platinum with aq. ammonia or alkali-lye prevents amalgamation by oxidizing the surface of the metal, but the metal amalgamates if in contact with mineral acids. G. McP. Smith

- and H. C. Bennett said that amalgams, not mercury, alone "wet" the surface of platinum in consequence of their surface tension. E. Englisch observed that mercury attacks platinum at 400°; and C. Hockin and H. A. Taylor, that an amalgam is formed when red-hot platinum is plunged into mercury. F. E. Carter said that sodium amalgam attacks platinum, and there is a process for removing platinum from its crushed ore which is based on this reaction.
- P. Casamajor observed that the union of platinum with mercury is favoured by contact with zinc; and J. S. C. Schweigger, that the amalgamation is hastened by galvanic action. R. Abegg and H. S. Hatfield, V. Borelli, W. L. Hardin, and T. Wilm noted the formation of amalgams when platinum is electrodeposited on a mercury cathode. W. W. Mather obtained the amalgam by heating platinic chloroiodide with mercury in a sealed tube. According to J. Schumann, and W. Kettembeil, platinum is best amalgamated by contact with alkali amalgams. A. C. Christomanos used ammonium amalgam. J. P. Joule, M. Tarugi, and O. Loew obtained amalgams by allowing mercury to stand in contact with hydrochloroplatinic acid for a long time; F. Mylius and O. Fromm, and A. Hilgar and E. von Raumer, by the action of mercury on soln, of platinum salts; R. Böttger, and M. Tarugi, by the action of sodium amalgam on ammonium chloroplatinate, and, according to C. Hockin and H. A. Taylor, on other platinum salts; H. St. C. Deville and H. Debray, by the action on platinum of a soln, of mercuric cyanide mixed with a little potassium cyanide; G. McP. Smith, by the action of platinum on a cone, soln, of potassium mercuric eyanide; and M. Tarugi, by reducing a mixed soln, of platinic and mercuric chlorides with magnesium, or
- C. Paal and E. C. Auerswald, and E. C. Auerswald prepared colloidal platinum amalgam by using sodium protablinate or lysalbinate as protective colloids, when mercury acts on a platinum hydrosol, by the reduction of a mixture of platinum hydrosol and mercuric oxide hydrosol, by reducing a mixed soln, of hydrochloroplatinic acid and mercuric chloride, and by mixing colloidal soln, of mercury and platinum. The catalytic action of the colloid on hydrogen dioxide, and electrolytic gas; and also the oxidation of carbon monoxide; and the reduction of nitrobenzene, have been studied.

The amalgam may appear as a viscid mass, which when heated boils up, loses its mercury, and leaves behind a finely-divided, black powder, or a grey, coherent mass of mercury. If pressure is applied during the ignition, A. von Mussin-Puschkin said that the product is fit for working into malleable platinum. E. Melly, and W. W. Mather observed that when pressed in chamois leather, or between the fingers, some mercury is exuded. J. Schumann obtained an amalgam of sp. gr. 10.386, containing 7.9 per cent. of platinum; and J. P. Joule obtained products with 12 to 43.2 parts of platinum to 100 parts of mercury. According to R. Böttger, the dull black powder obtained by heating the amalgam over a spirit lamp still retains 1sth of its weight of mercury. Boiling the residue with conc. nitric acid for 24 hours extracts only a trace of mercury, and the washed and dried residue has a vigorous catalytic action on hydrogen gas and alcohol. If the amalgam be heated to a higher temp., all the mercury is expelled, and grey, coherent platinum remains which no longer inflames a jet of hydrogen. If, instead of heating the platinum amalgam, it is digested with nitric acid, frequently renewed, the black powder which remains is mixed with a few shining particles of platinum. It does not ignite a mixture of hydrogen and air at ordinary temp., but does so if heated.

C. H. Latham studied the adsorption of water vapour by platinum amalgam. According to R. Sabine, if a drop of dil. sulphuric, hydrochloric, oxalic, or acetic acid be placed on the clean surface of a rich amalgam of a metal positive to mercury—e.g. copper, zinc, antimony, tin, or lead—the drop does not remain still as it would do on purified mercury, but sets itself into an irregular jerky motion; but with the amalgam of a metal negative to mercury—e.g. silver, gold, or platinum—the drop of acid remains quite still. The movement is attributed to alternate oxidation

of a portion of the surface of the amalgam by air outside the drop, and deoxidation by electrolysis in the interior of the drop. G. A. Hulett calculated that mercury which distils from an amalgam saturated with platinum at 200° contains 1 part of platinum in a hundred million parts of mercury. By distilling 6.70 grms. of mercury at 200° and 25 mm. press., the mercury would occupy 39,540 litres, and the 0.067 mgrm. of platinum in this vol. would show a partial press. of 0.0₆26 mm., if platinum be monatomic in the state of vapour. This datum represents the vaporess. of platinum at 200°; and it follows that each e.e. of space or gas in equilibrium with platinum at 200°, contains 5.3×10° atoms of platinum. C. Hockin and H. A. Taylor found that the e.m.f. of platinum amalgam against amalgamated zine in dil. sulphuric acid, is 1.363 to 1.169 volt for liquid amalgam, 1.168 volt for solid amalgam, and 1.086 for amalgam with only a trace of platinum. Hydrogen is absorbed by even dilute amalgams, and G. Meyer studied the cathodic polarization of the amalgam.

According to H. Moissan, when platinum amalgam is shaken with water for 15 seconds or less, it forms an emulsion of a buttery consistency and having five times the vol. of the original amalgam. The product is stable and not affected by being heated to 100° or cooled to -80°. A section made at the latter temp. reveals small drops of water disseminated throughout the amalgam, giving the latter a cellular appearance. When exposed in a vacuum, it diminishes in vol., a little water and a small quantity of gas separating. The emulsion is also produced by shaking 2 c.c. of pure mercury with 12 c.c. of water to which some drops of a 10 per cent, platinic chloride soln, have been added, and when platinum amalgam is shaken with water, similarly treated, the increase in vol. is greater than with pure water. Platinum amalgam emulsifies similarly when shaken with sulphuric acid, aqueous ammonia, aq. or ammoniacal ammonium chloride soln., sodium chloride soln., glycerol, acetone, anhydrous alcohol, ether, oil of turpentine, carbon tetrachloride, or chloroform, and forms stable emulsions. Benzene is inactive. Platinum amalgam, to which sodium has been added, also increases in volume and emulsifies when shaken with water. P. Lebeau added that the property of forming emulsions is not exhibited by the other metals of the platinum group, and with platinum amalgam, the property is shown when only 0.038 per cent. of platinum is present. The platinum amalgam loses its property by admixture with amalgams of zinc, calcium, lead, or tin. The volume of the mass formed is dependent not only on the nature of the liquid, but also on the state of the platinum from which the amalgam was made, being much greater when the latter is finelydivided, although even in this case the effect is diminished if the metal be strongly heated before the amalgam is made. Microscopic examination of sections cut from the mass, obtained by shaking platinum amalgam with a soln. of gelatin and then cooling to the f.p. of mercury, show that it had a structure similar to that of soap lather, so that it is probably due entirely to surface tension. G. Michaud observed that a trace of platinum in mercury prevents the formation of ammonium amalgam from sodium amalgam and a soln. of ammonium chloride. N. Tarugi found that conc. nitric acid dissolves so much the more platinum the greater the proportion Thus, from a mixture containing 4.64 per cent. of platinum and 95.35 of mercury, nitric acid dissolves the whole of the platinum; as the percentage of platinum present increases, the proportion of the total amount dissolved by the acid diminishes, whilst the proportion of mercury dissolved decreases from 99 per cent. in a mixture of 91.11 parts of mercury and 8.88 of platinum to zero for a mixture of 17.02 per cent. of mercury with 82.97 of platinum. J. W. Smith studied the adsorption of water vapour and benzene vapour by amalgamated platinum. F. Glaser discussed the solubility of platinum amalgam in a soln, of potassium cyanide—vide supra. J. W. Mallet prepared platinum-silver-mercury alloys by the action of silver amalgam on platinum.

C. and A. Tissier 9 prepared platinum-aluminium alloys. O. Brunck observed that aluminium dissolves platinum very slowly; 1 part of platinum required 2 hrs.

VOL. XVI.

to dissolve in 6 parts of aluminium at a red-heat. The ease with which aluminium oxidizes, makes it difficult to prepare alloys by fusing the two metals together, and in order to protect the aluminium from oxidation, during the preparation of the alloys, M. Chouriguine recommended dipping it in a soln. of lithium chloride, and drying it by heat before melting the metal in an electric furnace. M. Chouriguine's observations on the f.p. of the platinum-aluminium alloys are summarized in Fig. 52. A compound, platinum trialuminide, PtAl₃, is formed,

Fig. 52.—Freezing-point Curves of the Platinum-Aluminium Alloys.

and it appears imbedded in a matrix of aluminium in the form of violet-black octahedral dendrites. Alloys richer in platinum appeared to contain another compound, but this was not identified. O. Brunck observed that when an alloy of 1 part of platinum and 6 parts of aluminium is treated with 2 per cent. hydrochloric acid, there remains a bronze-coloured powder of sp. gr. 6.688, and with a composition corresponding with platinum tritadecaluminide, Pt₃Al₁₀.

According to M. Chouriguine, the white alloys with less than 10 per cent. of platinum are malleable, and take a good polish. The trialuminide is very hard, brittle, and easily powdered. Alloys with 70 to 80 per cent. of platinum are yellow, brittle, and fragile, and when digested with hydrochloric acid, they furnish a bronze-coloured crystalline powder; alloys with 80 to 90 per cent. of platinum are malleable, and resist acids. According to W. Campbell and J. A. Mathews, the introduction of up to 10 per cent. of aluminium

does not perceptibly change the colour of

platinum, but with 30 to 50 per cent., the alloys have a yellow tinge. F. E. Carter said that the alloy with 70.4 per cent. of aluminium, Al₃Pt, is hard and brittle; those with less than 9 per cent. of platinum are soft, malleable, and white; above this, the alloys are harder, and yellow. C. Barus made some observations on the electrical resistance and of its temp. coeff. K. Hélouis did not detect any change with the introduction of a small proportion of platinum. J. H. Gladstone and A. Tribe observed that aluminium with a layer of platinum decomposes water at 100°. A. Gawalowsky obtained a platinum-gold-aluminium alloy, a platinum-gold-silver-aluminium alloy, and the platinum-silver aluminium alloy known in commerce as platalargan.

A. Thiel io obtained a platinum-indium alloy by depositing indium on a platinum cathode. W. Crookes prepared platinum-thallium alloys by direct fusion; L. Hackspill, by dissolving platinum sponge in molten thallium; and F. Kuhlmann, by calcining thallous chloroplatinate. C. T. Heycock and F. H. Neville noted the effect of platinum on the f.p. of thallium. were studied by E. Zintl and A. Harder. The solubility of platinum in thallium The only compound observed was or of thallium in platinum is very small. platinum thallide, PtTl, which forms hexagonal crystals with a=5.605 A., and c=4.639 A. According to L. Hackspill, the m.p. of an alloy of platinum in thallium does not exceed that of thallium until the proportion of platinum attains 10 per cent., and as the proportion reaches 48.8 per cent., the m.p. rises to 685°. With increasing proportions of platinum, the m.p. at first falls slightly, but then rises continuously up to 855° for 65 per cent. of platinum. The m.p. goes on rising as more platinum is added. The maximum at 685° corresponds with the m.p. of platinum thallide, PtTl. Alloys rich in thallium contain brilliant white crystals

which are easily polished, and they are surrounded by a dark soft eutectic. When 48.8 per cent. of platinum is present, these crystals constitute the entire alloy. Alloys richer in platinum are susceptible of a high polish, their surface appears homogeneous, but their composite character is shown by oxidation in a bunsen flame. Platinum thallide forms steel-grey, prismatic needles, and it is obtained by the slow action of 10 per cent. nitric acid on alloys with less than 10 per cent. of platinum. It has a sp. gr. 15.65 at 14°, its hardness is 3 on Mohs' scale; and its sp. ht. is 0.0450. It loses a little thallium on continued heating above the m.p., but does not give pure platinum even on prolonged fusion in the oxyhydrogen flame. The alloy is attacked by the halogens, and dissolved by warm aqua regia; the latter on boiling, however, gives the insoluble thallium chloroplatinate. It is not attacked by hydrochloric acid, and only superficially acted on by sulphuric and nitric acids and by potassium hydrosulphate. It resists the action of the fused alkali carbonates, and is only very slowly attacked by sodium dioxide. It dissolves easily in fused zinc, lead, or silver. Its quantitative analysis, rendered very difficult by its properties, was effected by cupellation with four times its weight of silver and three times its weight of lead. The compound PtTl is very similar, especially in its physical properties, to the alloy PtPb. L. Hackspill prepared a platinum-thallium-silver alloy by dissolving silver in the platinum-thallium alloy; and a platinum-thallium-zinc alloy by dissolving zinc in the platinumthallium alloy. Mercury below its b.p. forms a platinum-thallium-mercury alloy, or a platinum-thallium amalgam.

C. Winkler 11 observed that platinum germanium alloys can be readily obtained by adding platinum to molten germanium. According to H. Kellermann, platinum dissolves in molten cerium at about 800°. Much heat is developed during the formation of the platinum-cerium alloys. An alloy with 25 per cent. of platinum is hard and brittle, and it makes a good pyrophoric metal. The alloys were also

examined by A. Hirsch.

A. F. Gehlen ¹² prepared a platinum-tin alloy by heating together a mixture of spongy platinum with twice its weight of tin filings; and E. D. Clarke, and J. Murray noted that when tinfoil is rolled up with fine platinum foil, and heated before the blowpipe flame, combination occurs attended by a kind of explosion. H. Goldschmidt observed that the metals alloy below the m.p.; and H. Debray, and F. Doerinckel prepared alloys by melting mixtures of the two metals. An

alloy was obtained by B. Delachanal and S. Mermet by reducing platinum purple of Cassius by hydrogen at a red-heat; by M. Faraday, by the electrolysis of molten stannous chloride with a platinum cathode; and N. W. Fischer, and F. Mylius and O. Fromm, by the precipitation of platinum with tin from a soln. of a platinum salt.

F. Doerinckel, K. Honda and T. Ishigaki, and N. Podkopajeff studied the thermal equilibra in the binary system, and the results are summarized in Fig. 53. The f.p. curve of this system shows a eutectic at 1180°, four breaks, and a maximum at 1281°, and 62.5 per cent. of platinum, corresponding with platinum stannide, PtSn. This compound appears in

Fig. 53.—The Freezing-point Curves of the Platinum-Tin System.

hexagonal crystals, and is very brittle. I. Oftedal gave for the lattice dimensions $a=4\cdot103$ A., $c=5\cdot428$ A., and $a:c=1:1\cdot323$. Whilst F. Doerinckel gave 1281° for the m.p., N. Podkopajeff gave 1324° . According to F. Doerinckel, the components of the eutectic at 1181° are platinum stannide and platinum tritastannide, Pt_3Sn ;

this compound is stable only below 1364°, decomposing at that temp. into crystals of platinum, and a fused mass containing about 80 per cent. of that metal. M. Podkopajeff gave 1266° for the m.p. of this compound. According to F. Doerinckel, the break in the curve at 846° represents the interaction of platinum stannide and the fused alloy to form what is probably platinum hemitristannide, Pt₂Sn₃. H. St. C. Deville and H. Debray obtained this same compound by slowly cooling an alloy of platinum with six times its weight of tin, and then treating the product with hydrochloric acid; and P. Schützenberger, by the action of hydrogen on Pt₂Sn₃O₂(OH)₂, or on Pt₂(SnO)₂SnO₂. The greyish-white powder contains cubic or rhombohedral crystals. F. Doerinckel said that it exists in two allotropic forms, one stable below 738°, and the other stable between 738° and 846°. P. Schützenberger observed that when oxidized in air, it forms Pt₂(SnO)₃; and when heated in chlorine, stannous chloride distils off. F. Doerinckel observed that the f.p. curve at 538° has a break corresponding with a reaction between the hemitristannide and the fused alloy, to form what is probably platinum tritaoctostannide, Pt₃Sn₈. The compound forms long needles, and it decomposes when melted. The diagram was discussed by W. Guertler, and K. Bornemann.

Three other compounds have been reported although the f.p. curve does not indicate their existence. M. Lévy and L. Bourgeois observed that when PtO₂.4SnO₂ is reduced by hydrogen at a red-heat, and the product is treated with hydrochloric acid, platinum tetritatristannide, Pt₄Sn₃, is formed in lustrous plates with a black reflex. J. W. Mallet reported platinum distannide, PtSn₂, or Pt₄Sn₇, to be formed as a hard brittle mass which is easily pulverized. The sp. gr. is 10·72. Mercury amalgamated with a little sodium attacks this product. If an alloy with 2 per cent. of platinum is treated with very dil. hydrochloric acid, lustrous plates appear on the surface, and these are easily detached by a glass rod. A more cone. acid, or the application of heat, destroys the crystals. The analysis corresponds with platinum tetrastannide, PtSn₄. N. Podkopajeff also prepared this compound. With sodium chloride and chlorine at a red-heat, there is formed sodium chloroplatinate, and volatile stannous chloride; and at a red-heat, hydrogen chloride removes all the tin as stannous chloride. G. Tammann studied the subject.

A. F. Gehlen said that the alloy is tin-white, brittle, and with a laminated texture. F. Doerinckel observed that alloys with up to 20 per cent. of platinum are coarsely crystalline, and tin-white; alloys with 30 per cent. of platinum have a finer structure and are pale grey; alloys with between 40 and 55 per cent. of platinum have a fine crystalline structure, and are somewhat darker in colour; alloys with about 62.5 per cent. of platinum have a more lustrous fracture with with the same texture and colour; and with more platinum, the lustre decreases, and the colour becomes darker. According to F. M. Jäger and J. A. Bottema, the crystals of the monostannide, PtSn, are hexagonal with the same type of structure as NiAs, and the lattice has two mols, of PtSn per cell. The lattice parameters are $a=4\cdot103$ A., and $c=5\cdot428$ A. The calculated sp. gr. is $13\cdot9$. W. Lewis gave for the sp. gr. of the tin-platinum alloys:

Tin . . 50·4 66·3 80·0 88·9 92·3 96 100 per cent. Sp. gr. . 10·827 8·972 7·794 7·705 7·613 7·471 7·180

F. Doerinckel found that the alloys with up to 30 per cent. of platinum are scarcely harder than their components, but beyond this point, the hardness rapidly increases, and attains a maximum with 80 per cent. of platinum. G. Wertheim found that an alloy with the proportions Sn: Pt=50·1, has a sp. gr. 7·578; an elasticity coeff. of 5309 kgrms. per sq. mm., a tensile strength of 4·75 kgrms. per sq. mm.; and the velocity of sound 7·890 (air unity). F. M. Jäger and J. A. Bottema gave 1281° to 1330° for the limits of the m.p.; this estimate is based on F. Doerinckel's 1281°; and N. Podkopajeff's, 1330°. The heat capacity, Q cals., between θ and 0° is:

or $Q=0.03836\theta+0.0_525362\theta^2+0.0_9359597\theta^3$; for the sp. ht. $c_p=0.03836+0.0_550724\theta+0.0_8107879\theta^2$; and for the mol. ht., $C_p=12.0422+0.0015924\theta+0.0_633866\theta^2$. The data for the mol. ht. do not follow Neumann's rule—1. 13, 13. An alloy with the at. proportions Sn: Pt=1:0·1, was found by A. Matthiessen to have at 21° an electrical conductivity of 9·37 (silver 100); and C. Barus made observations on the electrical resistance and its temp. coeff. C. Hockin and H. A. Taylor found the e.m.f. of an alloy against amalgamated zinc, in dil. sulphuric acid, to be 0·548 volt, and in a conc. soln. of zinc sulphate, 0·484 volt; the corresponding data for the amalgamated alloy are respectively, 0·552 and 0·409 volt. Low fusing alloys are formed when tin is melted in contact with platinum. G. Tammann and W. Wiederholt studied the polarization of the alloy.

F. Doerinckel found that dil. hydrochloric acid readily attacks alloys with 0 to 30 per cent. of platinum, and with increasing proportions of platinum, the attack becomes slower, so that an alloy with 40 per cent. of platinum is attacked very slowly by the conc. acid. As indicated above, H. St. C. Deville and H. Debray obtained platinum hemitristannide as a residue after treating the alloy with dil. hydrochloric acid. P. Schützenberger noted that some black scales resembling graphite may be formed as a residue after treatment with hydrochloric acid. H. Debray said that the residues form black scales which resemble graphite, and contain in addition to the platinum metal a considerable proportion of tin, together with small quantities of oxygen and hydrogen. Their composition, however, is very variable. They behave like platinum-black, developing more or less heat when placed in an atm. of hydrogen, and causing the detonation of explosive gaseous mixtures. The development of heat is not merely a result of the condensation of the hydrogen in the pores of the substance, but is partly due to the reduction of some oxidized metal, and the consequent formation of water. Probably many substances which are called platinum-black are of a similar nature, and act in a similar manner. When the metallic residues are heated in vacuo they lose water, and afterwards deflagrate without losing oxygen, and sometimes even become incandescent. They are more readily attacked by reagents than the metals which they contain. F. Doerinckel found that alloys with up to 80 per cent. of platinum are readily attacked by aqua regia, and the attack is slower as the proportion of platinum increases; alloys with 90 per cent. of platinum are attacked with difficulty by aqua regia, and by chlorine. J. W. Mallet obtained a platinumtin-mercury alloy, or platinum-tin amalgam, by the action of mercury on the platinum-tin alloy.

J. J. Berzelius 13 observed that when molten lead is poured into a platinum crucible, some of the platinum is dissolved; J. Murray found that when lead is wrapped in platinum foil and heated, union occurs with incandescence; C. Ridolfi, and A. F. Gehlen prepared platinum-lead alloys by heating to redness, 1 part of spongy platinum and 2.7 parts of lead-combination occurs without incandescence, and an easily fusible alloy is formed. Alloys were also made by C. Winkler, H. Goldschmidt, S. de Luca, A. Bauer, C. Barus, and F. Doerinckel by fusing together the constituent metals; C. A. Martius, by heating lead cyanoplatinite to a high temp.; and according to F. Mylius and O. Fromm, lead forms the allow when it is used to precipitate platinum from platinum salt soln. C. T. Heycock and F. H. Neville found that 0.148, 0.299, and 0.600 at. per cent. of platinum in lead lowered the f.p. 6.42°, 6.5°, and 6.3° respectively. Observations on the f.p. of the binary system were made by W. Guertler, K. Honda and T. Ishigaki, G. Tammann, and K. Bornemann. F. Doerinckel found that the f.p. curve, Fig. 54, contains these breaks and a eutectic so that none of the three components which these metals form is stable at their respective m.p. The compound richest in platinum could not be identified owing to the small thermal effect. It is stable below 910°. W. Guertler suggested that it may be platinum tritaplumbide, Pt₃Pb, analogous with the corresponding stannide, or it may be platinum tetritaplumbide, Pt₄Pb. F. Doerinckel found that this compound reacts with the fused mass at 787° to

form platinum plumbide, PtPb, which was also prepared by A. Bauer by fusing platinum with a small excess of lead, under borax, and dissolving out the excess of lead by acetic acid. N. A. Puschin and P. N. Laschtschenko observed that the

Fig. 54.—Freezing-point Curves of the Platinum-Load System.

compound, under the microscope, appears in six-rayed stars which always lie on crystals of the diplumbide. A. Baur said that the crystalline mass resembles bismuth, and has a reddish colour. It is very brittle, and has a sp. gr. 15.736 to 15.77. It is decomposed by boiling mineral acids, but not by dil. acetic acid. F. Doerinckel observed that the compound decomposes when melted, and when cooled, it reacts with the fused alloy at 385° to form a third compound which K. Bornemann suggested may be platinum The eutectic hemitriplumbide, Pt₂Pb₃. between this compound and lead contains 5 per cent. of platinum, and solidifies at about 290°. H. Senn reported platinum diplumbide, PtPh₂, to be obtained by

electrolyzing an acidic soln. of lead fluosilicate with an alloy of lead with 10 per cent. of platinum as anode; the anode mud contains brilliant plates of the diplumbide which N. A. Puschin and P. N. Laschtschenko described as prismatic crystals. H. Senn added that if the current density exceeds 1 amp. per sq. dm., the compound decomposes. It is decomposed by nitric acid.

According to A. F. Gehlen, the alloy, with platinum and 2.7 times its weight of lead, has the colour of bismuth, splits under the hammer, and has a fibrous fracture; the 50:50-alloy has a purple colour, and striated surface, and it is hard and brittle, and exhibits a granular fracture. W. Lewis found the sp. gr. of some alloys to be:

F. Doerinckel said that the hardness of these alloys increases gradually as the proportion of platinum rises to 45 per cent.; with from 45 to 85 per cent. of platinum, the alloys are rather harder than fluorite. Alloys containing 5 to 30 per cent. of platinum are readily fractured by pressure. The fracture of alloys with 5 to 30 per cent. of platinum is very coarsely crystalline; with 40 to 50 per cent. of platinum, the fracture is less coarsely crystalline, and reddish; with 60 per cent. of platinum, the fracture and colour resemble hardened steel. G. Wertheim found the coeff. of elasticity for an alloy with the at. proportion Pb: Pt=85:1, and sp. gr. 11 473, is 2684 kgrms. per sq. mm., and with alloys 6: 1 and sp. gr. 12.207, 3107.5 kgrms. per sq. mm.; the elastic limit of the 85:1 alloy is 0.4 to 0.6 kgrm. per sq. mm.; the tensile strength is 1.65 kgrms, per sq. mm. The velocity of sound with the 85: 1-alloy is 4.560 (air unity), and with the 6: 1-alloy, 4.756. A. Matthiessen found the electric conductivity of an alloy with the at. proportion Pb: Pt=1:0.1 to be 5.18 (silver 100) at 21.4°. C. Barus measured the electrical resistance and its temp. coeff. According to N. A. Puschin and P. N. Laschtschenko, the e.m.f. of the alloys against lead in $N-Pb(NO_3)_2$ soln. furnishes a curve with two breaks, corresponding respectively with platinum plumbide, and diplumbide. For alloys with up to 33 at. per cent. of lead, the e.m.f. is the same as for lead; there is then a sudden drop corresponding with PtPb2; and there is a second fall with 50 at. per cent. of lead corresponding with PtPb. G. Tammann and W. Wiederholt studied the polarization of the alloy.

A. F. Gehlen observed that the exposed fracture of the 50:50-alloy is altered

by exposure to air; and H. St. C. Deville found that the lead of alloys with only a small proportion of platinum slowly passes into carbonate. F. Doerinckel showed that the grey, freshly fractured surfaces of alloys with 5 to 30 per cent. of platinum oxidize rapidly on exposure to air; the alloy with 2.5 per cent. of platinum oxidizes rapidly on exposure to air; the alloy with 2.5 per cent. of platinum oxidizes more rapidly than lead; air acts very slowly on alloys with 40 to 50 per cent. of platinum, and not at all on alloys with more platinum. A. F. Gehlen found that when the alloys are heated to redness in air, only part of the lead separates from the platinum; and that the separation continues only so long as the alloy remains fusible; the subject was studied by H. St. C. Deville and H. Debray. A. Bauer and P. von Mertens showed that sulphuric acid decomposes an alloy with 10 per cent. of platinum slowly and incompletely; and an alloy with 2 per cent. of platinum suddenly and completely at 260° to 280°. According to A. von der Ropp, nitric acid attacks all alloys with up to 50 per cent, of lead rather rapidly, and the attack with alloys containing more platinum was found by F. Doerinckel to be slower. H. Senn discussed the residues, and H. Debray, the explosive residues -vide zinc. Some platinum passes into soln, along with the lead. C. Winkler found that with alloys containing [Pb] per cent. of lead, [Pt] per cent. of platinum passes into soln.:

$\mathrm{Sp.\ gr.\ HNO_3}$.		1.3	98	1.2	98	1.09		
[Pb]			90.20	98-60	90.46	98.64	88.75	98.88
îPti			7.19	21.33	9.09	17.80	8.33	22.50

L. Hackspill prepared a platinum-thallium-lead alloy by dissolving lead in the platinum-thallium alloy.

According to J. J. Berzelius, ¹⁴ a platinum crucible in which preparations of vanadium have been frequently ignited becomes covered with a thin film of a platinum-vanadium alloy, without altering its colour or lustre. When heated in air, a film of fused vanadic acid is formed which prevents the further oxidation of the alloyed vanadium.

R. Karlen ¹⁵ prepared some **platinum-tantalum alloys** in an electric furnace in vacuo. Alloys with 1 to 2 per cent. of tantalum can be rolled below redness. The addition of 1 per cent. of tantalum increases the hardness of platinum 25 to 30 per cent.; and 2 per cent. of tantalum augments the hardness nearly 40 per cent. According to M. G. Korsunsky, solid soln. are formed. The alloys are not altered by air at a high temp., or by sulphuric, hydrochloric, nitric, or hydrofluoric acid.

or by a conc. soln. of potash-lye. Fused potassium hydrosulphate has no action; and fused sodium or potassium carbonate has only a very feeble action. The alloys are also attacked by aqua regia.

C. Barus ¹⁶ prepared platinum-chromium alloys by melting a mixture of the two metals in an oxyhydrogen furnace. W. Guertler made some observations on these alloys. M. G. Korsunsky said that solid soln, are formed. C. Barus measured the electrical resistance of the alloys. L. Mü'ler determined the liquidus curve of some platinum-chromium alloys, and the results are summarized in Fig. 55. V. A. Nemiloff studied the hardness, conductivity, etc., of the alloys, and observed evidence of the formation of platinum hemichromide, Pt₂Cr, and of platinum chromide, PtCr, but not on the thermal

Fig. 55.—The Liquidus Curves of Alloys of Platinum with Chromium and Tungsten.

diagram, which shows only solid soln. E. Friederich and A. Kussmann detected a compound platinum trichromide, PtCr₃, in the alloy, and they studied the ferromagnetism of the alloys. Measurements of the electrical resistance were also made. E. Friederich found that the alloys with 2 to 15 per cent. of chromium

are magnetic with a maximum at 10 per cent. of chromium; the magnetic transition point is 390° to 400°. E. Jänecke discussed the ternary systems involving platinum-chromium-copper alloys, also the platinum-chromium-silver alloys,

and the platinum-chromium-gold alloys.

C. Barus, C. F. Dreibholz, W. Guertler, and W. Lederer prepared some platinummolybdenum alloys according to the method employed for the platinum-chromium alloys. M. G. Korsunsky said that solid soln. are formed. C. Barus measured the clectrical resistance. P. J. Hjelm found that an alloy with 50 per cent. of molybdenum was pale grey, hard, and brittle, and an alloy with 20 per cent. of molybdenum was bluish-grey, hard, brittle, with a granular fracture. J. J. and F. de Elhuyar, and E. Haagn and W. C. Heraeus prepared platinum-tungsten alloys from the two metals; and E. Weintraub, by drawing thin wires of the two metals and melting them in the electric furnace. The alloys with 20 to 60 per cent. of platinum are malleable, and harder than platinum. M. G. Korsunsky said that solid soln, are formed. The alloy also resists oxidation when heated in air, and attack by chemical reagents better than platinum. L. Müller determined the liquidus curve of some platinum-tungsten alloys, and the results are summarized in Fig. 55. Measurements of the electrical resistance were also made. I. E. Adadaroff and co-workers studied the oxidation of ammonia using the platinum-tungsten-silver, and platinum-tungsten-rhodium alloys as catalysts. T. Meiffren prepared a platinum-gold-copper-tungsten alloy.

J. Aloy electrolyzed molten potassium chlorouranate, with platinum electrodes,

and obtained a platinum-uranium alloy.

C. Barus ¹⁷ prepared **platinum-manganese alloys** by melting a mixture of the two elements in the oxyhydrogen flame. He studied the electrical resistance of some alloys. W. Guertler made some observations on these alloys.

E. Jänecke discussed the ternary systems involving platinum-manganese-copper alloys, and the platinum-manganese-silver alloys. W. Goedecke, F. Beck, and A. Schulze studied the thermoelectric force of platinum against a platinum-rhenium alloy.

H. St. C. Deville 18 reported native ferroplatinum associated with 13 per cent. of iron; A. Breithaupt, J. J. Berzelius, G. Osann, A. von Mussin-Puschkin, and H. Debray reported up to 19 per cent. of iron; and other observations have been made by A. Terreil, A. Daubrée, and H. St. C. Deville and H. Debray. J. Stodart and M. Faraday prepared some alloys, and some of their properties were examined by R. A. Hadfield, and H. List. E. D. Clarke found that platinum-iron alloys can be obtained by heating equal parts of the two metals in an oxyhydrogen flame; C. Barus employed a similar process; W. Lewis, and A. F. Gehlen said combination does not occur in an ordinary furnace, although H. St. C. Deville said that the metals unite at a comparatively low temp. E. Isaac and G. Tammann melted mixtures with up to 50 per cent. of platinum in a porcelain tube, and mixtures with 50 to 90 per cent. of platinum in a magnesia tube, and in an atm. of nitrogen. H. St. C. Deville and H. Debray obtained an alloy by heating platinum with 10 parts of pyrite, and 1 part of borax, and treated the product in turn with nitric acid, potash lye, and hydrofluoric acid. J. B. J. D. Boussingault dissolved equal parts of the two metals in aqua regia, removed the excess of acid by evaporation, added aq. ammonia, and heated the washed precipitate in a current of hydrogen at a low red-heat. The alloy was pyrophoric. F. Mylius and O. Fromm said that iron in dil. soln. of platinum salts forms an iron-platinum alloy. F. E. Carter discussed the contamination of platinum by contact with iron during annealing operations; and in rolling, and wire drawing iron may be embedded in the surface of platinum, and on subsequent heating, dissolved by the metal. Hence, before reheating, the adherent iron should be removed by hot, conc. hydrochloric acid. N. Agéeff and M. Zamotorin studied the diffusion of platinum in iron; and W. C. Roberts-Austen showed that at 492° 1.69 grms. diffuse per sq. cm. per day, or 1.96×10^{-5} grm, per second in iron. M. G. Korsunsky said that solid

soln. are formed. E. Isaac and G. Tammann observed that the two metals at a high temp. form a continuous series of solid soln., Fig. 56, but as the temp. falls, this decomposes into two other series of solid soln. extending from 0 to 50 per cent. platinum, and from 60 to 100 per cent. platinum.

W. A. Nemiloff's values for the temp. coeff. of the resistance of the annealed and quenched alloys, and the singular points, have some analogies with the hardness curves. There are breaks in the cooling curves of alloys with 0 to 40 per cent. of platinum and with from 70 to 90 per cent. of platinum—owing to a modification in the crystals of the solid soln. rich in platinum. Allovs with up to 10 per cent. of platinum have two breaks corresponding with the transitions from γ - to β -iron, and from β - to α -iron, respectively. There is only the change from γ - to α -iron in alloys having 10 to 40 per cent. of platinum. All the alloys from 0 to 90 per cent. of platinum are magnetic, and this property appears to diminish in the same ratio as the iron, from 80 to 20 per cent, of that metal. The alloys from 10 to 50 per cent. of platinum lose their magnetic power on heating at temperatures varying from 800° to 650°, and this property returns on cooling at much lower temperatures; the curve of temperature at which the magnetic power reappears practically coincides with that representing the transformation y- to a-iron referred to above. On the other hand, the temperatures at which the alloys contain-

Fig. 56.—Freezing-point Curves of the Platinum-Iron Alloys.

ing 60 to 90 per cent, of platinum regain their magnetic power are much lower than the breaks in the cooling curve in this region. P. Oberhoffer, L. Graf and A. Kussmann, F. Wever, and W. Guertler also made observations on these alloys.

According to E. Isaac and G. Tammann, the colour of the alloys becomes paler as the proportion of platinum increases. The structure of the alloys with about 88 per cent. of platinum is very similar to that of native ferroplatinum. G. H. Billings added that the fracture of alloys with 1 per cent. of platinum is not essentially different from that of iron, but the grain is rather finer, resembling more or less closely the fracture of a 0·3 per cent. carbon steel. W. A. Nemiloff discussed the microstructure of the alloys. The sp. gr. of an alloy with 0·82 per cent. of platinum, and 0·08 per cent. of carbon is 7·861. W. Lewis gave for the sp. gr. of the platinum-iron alloys:

E. Isaac and G. Tammann said that the hardness of the alloys decreases with a proportion of platinum up to 5 per cent., and the hardness then gradually rises as the proportion of platinum increases up to 40 per cent. of platinum; beyond that point up to 90 per cent. platinum, the hardness remains constant. The brittleness of the alloys reaches a maximum at 50 per cent. platinum. W. A. Nemiloff observed Brinell's hardness for the annealed (A) and quenched (Q) alloys and obtained for alloys with:

```
61.83
                                                                                                                       67.53
                                                                                                                                          70.68
                                                                                                                                                             77:60
                                                                                                                                                                                90.41 96.32% wt.
                                                8.94
                                                               27.74
                                                                                  48.87
                                                                                                                                          40.82
                                               2.71
                                                                  9.89
                                                                                  21.42
                                                                                                    31.67
                                                                                                                       37.30
                                                                                                                                                             49.78
                                                                                                                                                                                72.95 88.22% at.
\mathbf{Brinell} \begin{cases} \mathbf{A} \ 67 \cdot 79 \ 118 \cdot 48 \ 148 \cdot 34 \ 197 \cdot 84 \ 203 \cdot 38 \ 251 \cdot 39 \ 268 \cdot 56 \ 161 \cdot 68 \ 110 \cdot 64 \ 65 \cdot 69 \\ \mathbf{Q} \ 70 \cdot 39 \ 100 \cdot 81 \ 146 \cdot 65 \ 137 \cdot 78 \ \qquad \qquad 109 \cdot 62 \ 118 \cdot 01 \ 147 \cdot 08 \ 94 \cdot 94 \ 59 \cdot 28 \end{cases}
```

The results are summarized in Fig. 57. In the quenched samples two solid. soln. are indicated with 0 to 40 at. per cent. of platinum, and 35 to 100 at. per cent. with the annealed samples, the first maximum corresponds with the formation of a **platinum ferride**, PtFe. G. H. Billings said that platinum makes iron harder, but less so than does the same proportion of carbon. E. Jänecke observed that the lowest m.p., 1500°, occurs with alloys having 7 at. per cent. of platinum. W. Wien

0.006 0.007 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.

Fig. 57. The Hardness of the Iron-Platinum Alloys.

Fig. 58.—The Temperature Coefficient of the Electrical Resistance of the Fe-Pt Alloys.

studied the optical properties of an alloy of iron and platinum. C. Barus measured the electrical resistance and its temp. coeff. L. W. Haase studied the oxygen depolarization current; and J. Würschmidt, the thermoelectric force. H. St. C. Deville and H. Debray said that alloys with 17 and 20 per cent. of iron are magnetic. A. Daubrée found that an alloy with 16-87 per cent. of iron exhibits magnetic polarity, but an alloy with 11 per cent. of iron is only feebly magnetic. F. Aallot studied the Curie point, and the magnetic moment. W. Jellinghaus studied the coercive force.

C. F. Schönbein observed that an alloy with 1 per cent. of platinum is not attacked by nitric acid, and this was confirmed by P. Monnartz. The alloys are soluble in aqua regia. According to J. B. J. D. Boussingault, if the pyrophoric alloy, just mentioned, be placed in hydrochloric acid, without coming in contact with air, part of the iron dissolves with the evolution of hydrogen. The heavy, black powder which remains as a residue after washing contains about 20 per cent. of iron which may be dissolved out with nitric acid, and it also contains a trace of moisture but no hydrogen. The residue takes fire in air below a red-heat, and burns with the emission of sparks. Sometimes the combustion begins at the hottest part, and spreads throughout the mass with a red light, as in the burning of tinder. The powder, after combustion, gains 1 per cent. in weight.

J. Murray did not obtain alloys of platinum and steel at the temp. of an alcohol flame. W. Lewis said that platinum forms with cast iron a dark, malleable, very hard alloy; G. H. Billings prepared an alloy with 4 per cent. platinum with cast iron containing 2 per cent. of carbon, and found that it could be hammered and rolled though showing signs of red-shortness. J. Stodart and M. Faraday described the following platinum-steel alloys; 9:2-alloy: perfect alloy, sp. gr. 15.88, does not tarnish in air; 1:1-alloy: crystalline structure, sp. gr. 9.862, takes high polish, does not tarnish in air; 1:8-alloy: finely damased alloy; 1:10-alloy: sp. gr. 8-1; 1:67-alloy: best adapted for cutting instruments; and 1:100-alloy: uniform surface, fine fracture, not so hard as silver-steel, but is much tougher. J. R. Bréant, and H. Bush found that the 1:200 alloy can be damased very well and is adapted for razors. H. Remy and H. Gonnington studied the catalytic effect in the hydrogen-oxygen reaction. J. Stodart and M. Faraday found that steel

alloyed with a small proportion of platinum dissolves in dil. sulphuric acid more quickly than with steel without the platinum; the acceleration can be detected with 0.0025 part, and is most marked with 0.005 to 0.01 part; with 0.025 part, the solubility is perceptibly slower, and steel with 0.5 part does not dissolve more quickly than steel alone; an alloy of 2 parts of steel with 9 of platinum is not affected by dil. sulphuric acid. These alloys behave in an analogous way with other acids. When 100 parts of steel are alloyed with 1 part of platinum, or any other metal insoluble in nitric acid, and treated with dil. sulphuric acid, and the undissolved portion-containing iron, carbon, hydrogen, and platinum-is boiled with nitric acid, a black residue is left. This latter substance, when heated to 200°, detonates slightly, producing a faint light, but if gradually heated, decomposition occurs without detonation. It dissolves in aqua regia vielding a soln, containing a large proportion of platinum, and but little iron. Observations on the subject were made by H. Debray, and F. Osmond and J. Werth-vide supra, explosive platinum. H. Sawamura observed the effect of platinum on the graphitization of cast iron.

E. Maumené prepared a platinum-iron-copper alloy by melting a mixture of the component metals under borax. W. Goedecke studied some platinum-iron-gold alloys. E. Jänecke made some observations on the ternary system; and also on that of the platinum-iron-silver alloys; that of the platinum-iron-chromium alloys; and of the platinum-iron-manganese alloys.

C. Barus 19 prepared platinum-cobalt alloys by fusing a mixture of the two elements in the oxyhydrogen flame. W. Guertler studied the subject. According to M. G. Korsunsky, solid soln, are formed. C. Barus measured the sp. elastic resistance of some alloys. V. A. Nemiloff found that the platinum-cobalt system consists of an unbroken series of solid soln.—Fig. 62—with a minimum m.p. for 25 at. per cent. of platinum. Alloys of maximum Brinell's hardness, contain 11.6 and 50.6 at. per cent. of platinum-Fig. 63. The sp. electrical resistances of alloys with 97.54, 94.64, and 92.98 per cent. of platinum are, respectively, $R \times 10^6 = 31.27$, 39.08, and 41.49 at 25°, and 34.39, 42.81, and 45.84 at 100°, so that the temp. coeff. are, respectively, 0.001375, 0.001314, and 0.001449. F. E. Carter said that the alloys have a higher electrical resistance than is the case with the nickel alloys. Alloys with 2.5, 5, and 10 per cent. of cobalt have the respective resistances 170, 245, and 155 ohms per million ft. The alloys are workable with up to 10 per cent. of cobalt. G. Grube and H. Kästner studied the conductivity of the alloys. L. Néerl, and F. W. Constant studied the magnetic properties of some alloys with 5 to 10 per cent. of cobalt. No evidence of a eutectic was observed, but many crystals show a cubic formation. The Curie points of alloys of cobalt with platinum and the maximum intensity of magnetization, Imax, obtainable at the temp. of liquid air, -194°, were found by F. W. Constant to be:

Platinum		90	95	97	98.5 per cent.
Curie point		249°	49°	-82°	—191°
I		364	254	104	7

W. Jellinghaus measured the coercive force of the alloys. H. Remy and H. Gonnington studied the catalytic effect of the alloy in the hydrogen-oxygen reaction. E. Jänecke studied the ternary systems involving the platinum-cobalt-copper alloys; the platinum-cobalt-silver alloys; and the platinum-cobalt-iron alloys.

The association of nickel with native platinum was observed by A. Terreil,²⁰ and A. Daubrée. W. A. Lampadius prepared a **platinum-nickel alloy** by heating a mixture of equal parts of the two metals on charcoal burning in oxygen; and C. Barus melted the metals in the oxyhydrogen flame. L. Nowack discussed the so-called *white gold alloys*. The alloy with 5 per cent. of nickel is used as the heating filament in radio tubes. The alloys were studied by J. Cournot, W. Guertler, and L. Nowack. According to M. G. Korsunsky, solid soln. are formed. W. A. Lampa-

dius said that the pale yellowish-white alloy is quite malleable, takes a high polish, and is equal to copper in fusibility, and to nickel in magnetic power. N. S. Kurnakoff and V. A. Nemiloff observed no evidence of the formation of a chemical compound of nickel and platinum on the f.p. curve, Fig. 59. The alloys

Fig. 59.—The Freezing-point Curves of the Ni-Pt Alloys.

form two types of solid soln., one with less and the other with more than 20 at. per cent. of platinum. The Brinell's hardness curve is shown in Fig. 60—vide Table IV.; and the electric resistance and temp. coeff. between 25° and 100°, in Fig. 61. W. C. Heraeus found that by heating alloys with 8 to 15 per cent. of platinum to 800°, there is only a slight loss in tensile strength, and elasticity. C. Barus measured the sp. electric resistance and its temp. coeff. F. E. Carter said that a 10 per cent. alloy has a resistance of 180 ohms per million ft., and a 5 per cent. alloy, 140 ohms per million ft., and a temp. coeff. of 0.00189 per degree between 0° and 1200°. M. Hartmann and M. Braun, and J. Würschmidt measured the thermoelectric force; L. Néerl, C. Manders, F. W. Constant, the magnetic

properties; and A. B. Jones, the photoelectric effect. K. Hélouis noted that the alloys resist oxidation when heated in air. H. Remy and H. Gonnington studied the catalytic effect in the hydrogen-oxygen reaction. G. Tammann's study of the action of gold chloride, nitric acid sp. gr. 1-44, fuming hydrochloric acid, soln. of copper chloride, ferric chloride, ammonium sulphide, and sodium polysulphide showed that the reactions are limited with alloys having up to 25 per cent. of platinum. A. Gawalowsky said that the nickel-platinum alloy, known in commerce as platnik,

Fig. 60.—The Hardness of the Ni-Pt Alloys.

Fig. 61.—The Electrical Resistance and Temperature Coefficient of the Ni-Pt Alloys.

can be used as a substitute for platinum in analytical operations. E. Jänecke studied the ternary systems involving the platinum-nickel-copper alloys; and the platinum-nickel-silver alloys. W. and R. Borchers prepared a platinum-nickel-silver-chromium alloy; H. Bush, a platinum-nickel-silver-tin alloy; and W. and R. Borchers also prepared some more complex alloys. E. Jänecke studied the ternary system, involving the platinum-nickel-gold alloys; and the platinum-nickel-iron alloys. W. and R. Borchers described a platinum-nickel-cobalt-chromium alloy, and also a platinum-nickel-cobalt-chromium-molybdenum alloy.

According to F. E. Carter,²¹ ruthenium hardens platinum to about the same extent as does osmium. The limit of workability is about 10 to 15 per cent. of ruthenium. The Brinell's hardness of the annealed alloy, with 10 per cent. of ruthenium, is 210—vide Table IV—and its electrical resistance, 245 ohms per million ft. L. Holborn and A. L. Day measured the thermoelectric force of a

platinum-ruthenium alloy, 90: 10, against platinum, and found that with the cold joint at 0° , the thermoelectric force, E millivolts at:

	185°	0°	200°	400°	600°	800°	1000°	1200°	1500°
\boldsymbol{E}	-0.53	0	1.59	3.58	5.74	8.01	10.41	12.90	16.58

F. E. Carter said that the alloys lose weight on heating owing to the volatilization of ruthenium, but not so much is lost as in the case of the alloy with osmium.

Fig. 62.—Freezing-point Curves of Co-Pt alloys.

Fig. 63.—The Hardness of the Co-Pt alloys.

H. Remy and H. Gonnington studied the catalytic effect in the hydrogen-oxygen reaction. G. R. Levi found that the presence of 10 per cent. of ruthenium scarcely affected the catalytic activity of platinum on hydrogen dioxide; D. Martienssen also used the alloy as a catalyst.

According to G. K. Burgess and P. D. Sale,²² platinum-rhodium alloys are readily produced. R. B. Sosman observed that no compounds, but only solid soln. of the two elements, are formed between the limits 0 and 55 per cent. of

Fig. 64.—The Melting Points of the Rhodium-Platinum alloys.

Fig. 65.—Freezing-point Curve of the Platinum-Rhodium Alloys.

rhodium. J. S. Acken's observations on the melting points are summarized in Fig. 64. W. Keitel and H. E. Zschiegner prepared platinum-rhodium electrolyti-

cally. L. Müller, and O. Feussner and L. Müller's results for the f.p. of mixtures of platinum and rhodium are summarized in Fig. 65. W. A. Nemiloff and N. M. Voronoff found that solid soln. are formed at all concentrations. J. Weerts represented the dimensions of the lattice parameter \dot{a} of the face-centred cube by Fig. 66. K. Iokibe and S. Sakai found the viscosity of a platinum-rhodium alloy at 17° to be 4.19×10^8 ;

Fig. 66.—Lattice Parameters of the Rh-Pt Alloys.

and the rigidity, and logarithmic decrement, with a period of about 10 seconds:

	21°	174°	333°	497°	534°	610°
Rigidity × 10 ⁻¹¹	6.48	6.33	6.15	5.83	5.70	5.43
Log deer	0.0.20	0.0.21	0.0.37	0.0.72	0.0136	-

G. K. Burgess and co-workers observed that the presence of rhodium reduces the loss in weight of platinum by volatilization at temp. exceeding 900°, so that best quality platinum crucibles might have 3 to 5 per cent. of rhodium and be free from iron, iridium, and other impurities. The sp. gr. of the alloys by J. S. Acken are

summarized in Fig. 67, and their hardness, in the same diagram. W. A. Nemiloff and N. M. Voronoff found the Brinell's hardness of the alloy to be:

Rhodium is sometimes added to platinum for hardening platinum, and such alloys retain their hardness even after long exposure at a high temp.—vide Table IV. An alloy with 20 per cent. of rhodium has been recommended as wire for high temp. resistance furnaces. The alloys have a lower rate of volatilization than platinum, and they do not crystallize so readily. They are therefore preferred to platinum alone for crucible and some thermoelectric work. An alloy with 3½ per

Fig. 67.—The Density and Hardness of the Rhodium-Platinum Alloys.

Fig. 68.—The Electrical Resistance and its Temperature Coefficient of the Rhodium-Platinum Alloys.

cent. of rhodium is in use. E. R. Thews, and I. E. Adaduroff discussed some uses of the alloys. F. E. Carter observed that alloys with up to 50 per cent. of rhodium can be worked, but those with higher percentages work with difficulty. Rhodium does not harden platinum so much as ruthenium, or iridium, but it hardens the metal more than palladium. The Brinell's hardness, H, the tensile strength in kgrms. per sq. mm., the resistance R ohms per million ft., and the temp. coeff. a per degree between 0° and 1200° , are:

Rhodium			3.5	10	20	50 per cent.
Hardness			107	165	211	323
Annealed	1000°				169	254
Annealed	1200°		65	90	107	138
R .			103	110	125	134
a			0.00195	0.00135	0.00120	

T. Barratt and R. M. Winter found the thermal conductivity of an alloy with 10 per cent. rhodium to be 0.072 Cal. per cm. per sec. per degree at 17°, and 0.073 at 100°. The electrical resistance, and the temp. coeff. of the resistance of the alloys observed by J. S. Acken, are indicated in Fig. 69. W. A. Nemiloff and N. M. Voronoff found the sp. resistance, $R \times 10^6$, to be, at 25° and 100°:

Rhodium	0	10	20	30	40	50	60	100 at. %
$R \times 10^6 \left\{ rac{25^{\circ}}{100} ight.$	10.88	16.97	19-69	20.40	19.83	17.95	16.35	6.02
10°(100		19.64			22.07		-00	-
Temp, coeff.	0.00392	0.00221	0.00165	0.00136	0.00156	0.00134	0.00147	Standards.

J. L. R. Morgan and O. M. Lammert studied electrodes made of this alloy in electrometric titrations. J. L. R. Morgan and co-workers studied the reproducibility of the quinhydrone electrode with platinum-rhodium. R. B. Sosman,

A. L. Day and R. B. Sosman found the thermoelectric force, E millivolts, of the alloys against platinum to be:

Pt : Rh	()°	200°	400°	600°	800°	1000°	1200°	1400°	1600°
95:5	0	0.55	2.53	3.92	5.33	6.79	8.20	9.82	11.31
90:10	0	0.64	3.25	$5 \cdot 23$	7.33	9.57	11.93	14.34	16.75
85:15	0	0.65	3.45	5.71	8.23	10.96	13.87	16.89	19.94

Observations were also made by L. H. Adams, C. Barus, K. Bito and M. Matsui, V. N. Bozhovsky and B. V. Drozdoff, H. le Chatelier, A. L. Day and L. Holborn, J. Dewar and J. A. Fleming, J. Galibourg, W. Goedecke, L. Holborn and S. Valentiner, L. Holborn and W. Wein, T. Nakada, W. A. Nemiloff and N. M. Voronoff, A. L. Norbury, W. F. Roeser and H. T. Wensel, S. Schulze, A. W. Smith, J. C. Southard and R. T. Milner, F. Stäblein and J. Hinnüber, and C. W. Waidner and G. K. Burgess. F. R. Caldwell found the thermal e.m.f. of purified platinum against platinum-rhodium alloys, in millivolts, to be as indicated in Table V.

Table V.—Thermoelectric Force in Millivolts of Platinum against Platinum-Rhodium Alloys.

Tempe-	Per cent. rhodium												
rature	0.1	1.0	10.0	21.6	39-0	56.6	61.2	80.7	100				
50°	0.009	0.088	0.298	0.280	0.295	0.304	0.298	0.296	0.314				
100° 200°	0·020 0·042	0·180 0·372	0·643 1·436	0.621 1.443	0.651 1.515	0.676 1.592	0.672 1.590	0.623 1.492	0.696 1.606				
400° 600°	0.087 0.130	$0.758 \\ 1.128$	3.249 5.221	3·500 5·936	3·700 6·356	3.914 6.732	3.920 6.747	3·770 6·602	3·915 6·772				
800° 1000°	0·171 0·213	1.489 1.852	7·331 9·570	8·702 11·771	9·446 12·960	9.996	10.028	9.931	10·158 14·050				
1200	0.254	2.218	11.922	15.121	16.876	17.863	17.986	18.024	18.432				

L. Holborn and F. Henning found that the loss in weight of the thermocouple near the m.p. is less with platinum-rhodium alloys than it is with platinum-iridium alloys. W. Broniewsky discussed the thermoelectric properties of the alloys.

According to E. Matthey, C. Barus, and J. Dewar and J. A. Fleming, alloys containing less than 5 per cent. of rhodium are soluble in aqua regia; but alloys with over 30 per cent. of rhodium are insoluble in aqua regia, and fuse more readily than rhodium itself. V. A. Nemiloff and N. M. Voronoff found the alloys are not corroded by acids, but at 750° alloys with over 10 per cent. of rhodium are oxidized by air. At higher temp, the oxide is decomposed, and no oxidation occurs above 1150°. For example:

Rhodium	. 10	20	30	40	50	60 at. per cent.
Surface area	. 8.5	9.6	11.0	7.7	4.8	5.9 sq. cm.
(Before calcination	. 1.3906	1.4830	2.0192	1.2312	0.8160	$0.9600~{ m grm}$.
Weight Calcined at 750°	. 1.3906	1.4831	2.0193	1.2318	0.8164	0.9606 ,,
Calcined at 1150°	. 1.3905	1.4829	2.0192	1.2312	0.8162	0.9603

- G. R. Levi found that the presence of 10 per cent. of rhodium diminished the catalytic activity of platinum in hydrogen dioxide. A rhodium-platinum gauze has been recommended as a catalyst in the oxidation of ammonia.
- R. Chenevix ²³ prepared a **platinum-palladium alloy** from equal weights of the two metals at a temp. a little below the m.p. of palladium. The grey alloy had the hardness of bar iron; a ductility less than that of a gold-palladium alloy; and a sp. gr. of 51·141. J. A. M. van Liempt studied the alloys. C. L. Utterback studied the contamination of palladium when it is heated in contact with

platinum. G. Tammann and H. J. Rocha observed that alloys with less than 30 per cent. of palladium have a granular structure and those with more than 40 per cent. of palladium have a dendritic structure. E. R. Thews discussed some uses of the alloys. There appears to be a continuous series of solid soln. T. Barth and G. Lunde studied the lattice constant of the alloys. G. Tammann and H. J. Rocha observed that the maximum hardness of the alloys occurs at 10 to 20 per cent. of palladium when the alloys are quenched from 1400°, at 30 per cent. when they are quenched from 1200°, and at 40 per cent., when they are annealed at 600° for 12 hrs.—vide Table IV. Quenched alloys, except that containing 38 per cent. of palladium, are all harder than annealed alloys. F. Goldberger and O. Kienberger, and N. S. Kurnakoff studied the streak as an indication of the composition of the alloy. W. Geibel obtained the results indicated in Fig. 69 for the tensile strength in kilograms for a wire of diameter 1 mm. The

Fig. 69.—The Tensile Strength of the Palladium-Platinum Alloys.

Fig. 70.—The Electrical Properties of the Platinum-Palladium Alloys.

subject was studied by E. M. Wise and J. T. Eash. According to F. E. Carter, palladium does not harden platinum in the same way as do the other metals of the group, and a whole series of homogeneous alloys can be formed which are easily workable. The alloy of maximum hardness has about 25 per cent. of palladium. The Brinell hardness, H, Ericson's ductility test, and the electrical resistance, R ohms per million ft., are as follows:

Palladium .		10	20	25	50	75 per cent.
$H_{f Annealed}^{f Hard}$.		160	170	175	165	155
Annealed		85	95	100	90	80
Ductility .		11.1	11.5	8.1	7.9	9.5
p .		130	160	170	190	145

The values for the electrical conductivity $\times 10^{-4}$ at 0° and its temp. coeff. between 0° and 160° are indicated in Fig. 70; and the thermoelectric force of the alloys against platinum, expressed in millivolts, are summarized in Fig. 71. C. Barus made observations on the electrical resistance of the alloys. L. Holborn and A. L. Day found the thermoelectric force, E millivolts, of the couples:

$\mathbf{Pt}:\mathbf{Pd}$		-185°	0_{o}	200°	400°	600°	800°	1000°	1200°
90:10		-0.11	0	0.62	1.48	2.42	3.35	4.78	5.25
10:90			0	-0.31	-0.35	0.12	$1 \cdot 2$	$4 \cdot 2$	-

Observations were made by A. W. Smith, R. von D. Wegner, and J. Monheim. E. Vogt studied the magnetic properties of the platinum-palladium alloys; and Y. Shimizu gave for the magnetic susceptibilities, χ , in mass units:

Platinum . 100.00 95.96 82.24 75.24 67.38 50.09 41.39 11.90 0 per cent. $X \times 10^6$ 1.12 1.32 1.41 1.60 2.19 2.55 1.08 4.25 5.20

G. Borelius studied the diffusion of hydrogen in the alloy.

A. Sieverts and co-workers, and G. Borelius studied the absorption of hydrogen by the platinum-palladium alloys, and found that the solubility, S, is proportional

Fig. 71.—The Thermoelectric Force of the Platinum-Palladium Alloys against Platinum.

to the square root of the press., and it increases with rise of temp. The results are summarized in Fig. 72. G. Borelius and S. Lindblom studied the passage of

hydrogen through the alloy. G. Tammann and H. J. Rocha observed that the solubility of hydrogen in the alloys is very small when less than 40 per cent. of palladium is present, and then increases rapidly with the palladium content. The solubility is slightly greater in alloys quenched from 1300° than it is in alloys annealed at 700°. Alloys with over 74 at. per cent. of palladium become coated with gold when immersed in a soln. of chloroauric acid, and those with over 50 per cent. of palladium are blackened by an alcoholic soln. of iodine. F. E. Carter said that the alloys have rather the character of platinum. Boiling nitric acid has no solvent action on alloys with up to 25 per cent. of palladium; nor do these alloys show the colour effect of palladium when heated. They G. R. Levi are used to some extent in jewellery. found that the presence of 10 per cent. of palladium diminished the catalytic activity of platinum on hydrogen dioxide; H. Remy and H. Gonnington, the hydrogen-oxygen reaction; and E. Decarrière, the catalytic activity of the alloys on the oxidation of ammonia.

Fig. 72.—The Solubility of Hydrogen in Platinum-Palladium Alloys.

F. Korn ²⁴ said that the platinum-palladium-gold alloys are used as a substitute for platinum, with the trade-name pallas; and F. E. Carter said that the platinum-palladium-rhodium alloys are useful for jewellery. W. C. Heraeus, and F. E. Carter found that with platinum-osmium alloys osmium has about VOL. XVI.

2½ times the hardening effect of iridium on platinum, and it also increases the electrical resistance 2½ times as quickly. An alloy with over 10 per cent. of osmium is difficult to work owing to its hardness and lack of ductility—vide Table IV. The annealing must be done under reducing conditions or the osmium burns off. F. Zimmermann discussed the hardness of the alloys. H. Remy and B. Schäffer observed that osmium-platinum alloys are not very active catalysts in the reaction between hydrogen and oxygen, although separately the metals are active. H. Remy and H. Gonnington studied the subject. G. R. Levi observed that the presence of 10 per cent. of osmium almost doubled the catalytic activity of platinum on hydrogen dioxide. E. Haagn used an alloy with 40 to 60 per cent. of ruthenium, 35 to 50 per cent. of osmium, and 5 to 15 per cent. of platinum-palladium-osmium alloys, formerly used for jewellery, were abandoned in favour of the platinum-palladium-rhodium alloys because of the volatilization of osmium when heated—a subject discussed by C. M. Hoke.

G. Rose, 25 and A. Breithaupt described a native platinum-iridium alloy from the Urals. V. Rekschinsky discussed the separation of osmiridium (q,v,) from metals of the platinum group. J. J. Berzelius observed that equal weights of platinum and iridium form a brittle alloy which can be welded, and that the alloy with a small proportion of iridium is ductile and harder than iridium, and more resistant to high temperatures, and to chemical reagents. H. Morin, and A. Gaudin prepared alloys with 10 per cent. of iridium and found them to be malleable, and not to tarnish when employed as metallic mirrors on copper. B. S. Jacobi discussed the use of an alloy with 20 per cent. of iridium for medals. He said that the alloy can be cold-worked, and that it is hard, and is only slightly affected by aqua regia. O. J. Broch and co-workers, and H. St. C. Deville and H. Debray described the preparation of the platinum-iridium standard measure for the Comité International des Poids et Mesures. F. E. Carter noted iridium can be worked at high temp., but a little platinum induces brittleness. Iridium is employed to harden platinum to enable it to be used in chemical ware, electric work, and jewellery. In medium hard jewellery, the platinum contains 5 per cent. of iridium, and in hard jewellery, 10 per cent. The limit of workability is 30 to 35 per cent. of iridium. The alloys are solid soln,, and any coring in the crystal grains can be rectified by annealing. Segregation does not usually occur. F. Korn, and E. A. Smith discussed the application of the alloys in the jewellery trade, etc. H. St. C. Deville and H. Debray found the sp. gr. of alloys with 10, 15, 33.3, and 95 per cent. of iridium to be respectively 21.615, 21.618, 21.874, and 22.384. T. Barratt and R. M. Winter gave for the thermal conductivity of alloys:

	17*			100°		
Per cent. iridium	10	- 15	20	10	15	20
Cals. per cm. per sec. per degree .	0.074	0.056	0.042	0.075	0.059	0.042

O. Feussner and L. Müller, and L. Müller measured the f.p. of alloys of the two metals, and the results are summarized in Fig. 73. F. E. Carter said that the alloys do not oxidize above 1150° , but iridium slowly volatilizes from them; a film of oxide forms when the alloy is cooled in the range 1150° to 900° . K. Friederich studied the magnetic properties of the alloys. They darken superficially when heated within the range 900° to 1100° , presumably owing to the formation of an oxide; at a higher temp., the oxide is decomposed and the surface regains its colour. Iridium itself acquires a bluish film under similar conditions. The alloys begin to lose weight above 900° owing to the volatilization of the iridium oxide. Hence for high temp. gravimetric work iridium is objectionable in platinum crucibles, and in thermocouple work. F. Haber studied the resistance of platinum-iridium electrodes in the electrolysis of hydrochloric acid; and J. Lüke and R. Fricke, the decomposition of nitrous oxide by glowing wires of the alloy. B. S. Srikantan studied the reaction $H_2+CO_2\rightleftharpoons CO+H_2O$ on platinum-iridium alloys; H. Remy

and H. Gonnington, the hydrogen-oxygen reaction. W. A. Nemiloff discussed the microstructure of the alloys. W. A. Nemiloff's observations on the Brinell's

Fig. 73.--The Liquidus Platinum-Curve of Iridium Allovs.

Fig. 74.—The Tensile Strength and Hardness of Platinum-Iridium Alloys.

hardness are summarized in Fig. 74, and the same diagram gives the tensile strength of the alloys in kgrms, per sq. nm.-vide Table IV. J. Weerts obtained the dimensions a of the parameters of the face-centred cubic lattice of the alloys shown in Fig. 75. F. Goldberger and O. Kienberger studied the streak as an indication of the composition of the alloy. W. Geibel observed that alloys made into wires 1 mm. diameter, had a breaking load, in kilograms, of

Fig. 75.—The Lattice Parameter of the Ir-Pt Alloys.

Iridium		0	5	10	15	20	25	30	35 per cent.
Load		24	40	48	66	81	98	114	126 kgrms.

E. Steinmann's results for the effect of annealing on the tensile strength are summarized in Fig. 76. K. B. Thews gave 40 kgrms. per sq. mm. for a 5 per cent.

iridium alloy, and 100 kgrms. per sq. mm. for a 25 per cent. iridium alloy. E. M. Wise and J. T. Eash gave for the alloy with 20 per cent. iridium, reduced 50 per cent. by cold drawing, the ultimate strength 140,500 lbs. per sq. in., proportional limit 101,000 lbs. per sq. in., elongation 2.5 per cent. in 2 in., a reduction in area of 85 per cent.; after a softening anneal at 1400°, the ultimate strength was 93,500 lbs. per sq. in.; proportional limit, 59,500 lbs. per sq. in.; elongation, 20 per cent. in 2 ins., and reduction of area, 88 F. E. Carter gave for per cent. Brinell's hardness, H, Ericson's duc-

Fig. 76.--The Effect of the Annealing Temperature on the Tensile Strength.

tility test in mm.; and the resistance, R ohms per million feet:

Iridium				0.	5	10	15	20	25	30 per cent.
(Hard				97	170	220	280	33 0	370	400
$H_{\mathbf{Annea}}^{\mathbf{Hard}}$	led .			47	110	150	190	230	270	310
,	(Hard			7.8	7.1	$7 \cdot 1$	7.0	7.0	$4 \cdot 1$	mercon a
Ductility-		1-4(1	100°	$12 \cdot 2$	10.7	10.0	9.7	9.0	8.0	****
Ductility-	Annea	nea(1	200°	$12 \cdot 2$	10.7	10.4	10.2	$9 \cdot 7$	7.8	2.0
R .	` .	.`		60	120	160	185	200	210	210

The ductility data show that with increasing iridium content, higher annealing temp. are required. The hard-worked alloys do not show a very marked difference in ductility until over 20 per cent. is attained, when there is a decrease. F. Korn, and N. S. Kurnakoff studied the subject.

A. E. Tutton measured the coeff. of thermal expansion of a platinum-iridium alloy. W. A. Nemiloff measured the sp. electrical resistance, R, of some alloys at 25°, and 100°, and obtained:

Iridium	0.25	1	2	5	10	20 per cent.
$R \times 10^{6} \left\{ \frac{25^{\circ}}{100^{\circ}} \right\}$	11.948	14.894	14.792	22.773	$24 \cdot 349$	30.685
11 ^ 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14.838	17.590	17.605	25.376	26.705	32.710

The results at 25°, and the temp. coeff. of the binary alloys between 25° and 100° are indicated in Fig. 77. L. Guillet and M. Ballay observed a slight increase in the resistance when the alloy is cold-worked and annealed at 950°. J. Obata studied the effect of a magnetic field, and J. L. R. Morgan and co-workers, the

24 21 18 15 15 00° 200° 400° 600° 800° 1000° 1200°

Fig. 77.—The Electrical Resistance of the Platinum-Iridium Alloys.

Fig. 78.—The Thermoelectric Force of the Platinum-Iridium Alloys.

reproducibility of quinhydrone electrodes with platinum-iridium electrodes. W. Geibel, R. von D. Wegner, W. Broniewsky, W. H. Keesom and J. N. van Ende, and J. W. Schmidt measured the thermoelectric force of the alloys. The results are summarized in Fig. 78. B. Brenner, C. W. Waidner and G. K. Burgess, H. le Chatelier, and C. Barus made some observations on the subject. J. Lüke and R. Fricke studied the action of the alloy on nitrous oxide. P. G. Tait gave $dE/d\theta = 7.90 + 0.0062\theta$ microvolts per degree for lead against alloys with 15 per cent. of iridium, $5.90 - 0.0133\theta$ for alloys with 10 per cent. iridium, and $6.15 + 0.0055\theta$ for alloys with 5 per cent. iridium; and the corresponding neutral points are respectively -1274° , 444° , and -1118° . F. Haber found that the alloy with 10 per cent. iridium is scarcely attacked when used as anode in the electrolysis of hydrochloric acid, and the alloy with 20 per cent. is not attacked at all. G. R. Levi observed that the presence of 10 per cent. of iridium decreased the catalytic activity of platinum on hydrogen dioxide. M. Delépine noted the dissolution of the platinum-iridium alloy in sulphuric acid at the rate of 0.10 grm. per hour per sq. dm. at 265°.

H. St. C. Deville and H. Debray discussed the platinum-iridium-rhodium alloy which occurs as "a triple alloy of an invariable composition"; and they prepared the quaternary platinum-iridium-rhodium-tin alloy. F. E. Carter said that the platinum-iridium-rhodium alloys are used for radio tubes. The platinum-iridium-osmium alloys are used for sparking plugs. C. O. Bannister and E. A. du Vergier discussed the analyses of the platinum-iridium alloys.

REFERENCES.

A. Brester, Arch. Néerl., (1), 1. 296, 1866; Arch. Sciences Genève, (2), 28. 62, 1867; H. Davy, Phil. Trans., 98. 1, 1808; J. Dewar and A. Scott, Chem. News, 40. 294, 1879; P. G. Ehrhardt, German Pat., D.R.P. 396377, 1922; F. Haber and M. Sack, Zeit. Elektrochem., 8. 250, 1902; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 55. 666, 1889; K. A. Hofmann and H. Hiendlmaier, Ber., 39. 3184, 1906; V. Meyer, ib., 13. 392, 1880; M. Sack, Zeit. anorg. Chem., 34. 313, 1903.

² C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; H. Behrens, Das mikroskopische Gefüge der Metalle und Legierungen, Hamburg. 1894; W. Biltz and F. Weibka, Zeit. anorg. Chem., 223. 321, 1935; K. Bornemann, Die binären Metallegierungen, Halle a. S., 43, 1909; Met., 6. 333, 1909; C. S. Brainin, U.S. Pat. No. 1624857, 1927; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Journ. Ind. Eng. Chem., 27. 745, 1935; H. le Chatelier, Mesures des temperatures élevées, Paris, 1900; Compt. Rend., 102, 819, 1886; E. D. Clarke, Rec. Trav. Chim. Pays-Bas, 18. 239, 1816; Quart. Journ. Science, 2, 104, 1817; Gilbert's Ann., 55, 8, 119, 1817; Ann. Chim. Phys., (2), 3, 39, 1816; F. Doerinckel, Zeit. anorg. Chem., 54, 336, 1907; A. F. Gehlen, Schweigger's Journ., 20, 253, 1817; W. Guertler, Metallographie, Berlin, 1, 112, 1912; K. Honda and T. Ishigaki, Science Rep. Tohoku Univ., 14, 219, 1925; E. Jänecke, Zeit. phys. Chem., 67, 671, 1909; C. H. Johansson and J. O. Linde, Ann. Physik. (4), 82, 449, 1927; W. Jost. Zeit. phys. Chem., 21, 18, 158, 1933; C. Krug, Die Platinkupferlegierungen, Leipzig, 10, 1903; N. S. Kurnakoff, Ann. Inst. Platine, 9, 126, 1932; N. S. Kurnakoff and V. A. Nemiloff, ib., 8, 5, 17, 1931; Zeit. anorg. Chem., 210, 1, 1933; W. Lewis, Phil. Trans., 48, 638, 1755; 50, 148, 1747; Commercium Philosopho-Technicum, London, 550, 1763; J. A. M. van Liempt, Rec. Trav. Chim. Pays-Bas, 45, 203, 1926; C. Matano, Japan. Journ. Phys., 9, 41, 1934; J. Murray, Edin. Phil. Journ., 4, 203, 1821; G. Natta, Naturwiss., 23, 527, 1935; H. Röhl, Ann. Physik, (5), 18, 155, 1933; A. von der Ropp, Eine Untersuchung über die Oxydation des Platins durch Salpetersäure, Berlin, 19, 1900; E. Sedström, Einige physikalische Eigenschaften metallischer Mischkristalle, Stockholm, 1924; H. J. Seemann, Zeit. Metallkunde, 24, 299, 1932; Zeit. Physik, 84, 557, 1933; 95, 97, 1935; B. N. Sen, Compt. Rend., 199, 1189, 1934; A. Sieverts, Zeit. Elektrochem., 16, 707, 1910; A. Sieverts and E. Bergner, Zeit. phys. Chem., 82, 257, 1913; A. S

⁸ J. P. J. d'Arcet, Ann. Chim. Phys., (1), 89. 135, 1814; C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; W. Biltz and F. Weibka, Zeit. anorg. Chem., 223, 321, 1935; K. Bornemann, Die binären Metallegierungen, Halle a. S., 50, 1909; E. Braun, Ann. Physik, (4), 17, 359, 1905; W. Broniewsky. Rev. Mét., 7, 350, 1910; D. A. G. Bruggeman, Ann. Physik, (5), 24. 636, 665, 1935; H. Bush, Centraltq. Opt. Mech., 2, 30, 1881; Dingler's Journ., 240, 216, 1881; H. Carmichael, Soc. Chem. Ind., 22, 1325, 1903; F. E. Caiter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; H. le Chatelier, Mesures des températures élevées, Paris, 1900; H. Chevallier, Compt. Rend., 130, 120, 1612, 1900; 131, 1192, 1900; H. Debray, ib., 104, 1581, 1887; J. Dewar and J. A. Fleming, Phil. Maq., (5), 34, 326, 1892; (5), 36, 271, 1893; F. Doerinckel, Zeit. anorg. Chem., 54, 338, 1907; K. Gebhard and H. J. Wiester, Zeit. Metallkunde, 21, 428, 1929; W. Geibel, Zeit. anorg. Chem., 70, 253, 1911; W. Guertler, ib., 54, 72, 1907; Metallographie, Berlin, 1, i, 112, 1912; E. Hagen and H. Rubens, Sitzber. Akad. Berlin, 478, 1909; J. E. Herberger, Repert. Pharm., (2), 5, 211, 1836; Liebig's Ann., 20, 186, 1836; C. T. Heycock and F. H. Noville, Proc. Roy. Soc., 60, 160, 1896; Phil. Trans., 189, A, 95, 1897; H. How, Journ. Chem. Soc., 7, 48, 1854; K. Hradecky, Monatsh., 36, 289, 1915; E. Jänecke, Zeit. phys. Chem., 67, 673, 1909; C. H. Johansson and J. O. Linde, Ann. Physik, (5), 6, 458, 1930; P. Johnson, Phil. Mag., (1), 40, 3, 1812; W. H. Keesom and J. N. van Ende, Proc. Akad. Amsterdam, 32, 1171, 1929; J. Klemencic, Sitzber. Akad. Wieu, 97, 838, 1888; C. G. Knott and J. G. McGregor, Trans. Edin. Roy. Soc., 28, 321, 1878; I. Koifman, Arch. Science Genève, (4), 40, 509, 1915; C. Krug, Die Platinkupferlegierungen, Leipzig, 30, 1903; N. S. Kurnakoff and W. A. Nemiloff, Zeit. anorg. Chem., 168, 339, 1928; Ann. Inst. Platine, 4, 306, 1926; W. Lewis, Commercium Phlosopho-Technicum, London, 540, 1763; Journ. Lehm., 177, 1827; Ann. Chim. Phys., (2), 41, 247, 1829;

W. Spring, Ber., 15, 596, 1882; A. Steinmann, Schweiz. Woch. Chem. Pharm., 49, 441, 453, 1911; V. Strouhal and C. Barus, Abh. Böhm. Ges., (6), 12, 14, 1884; G. Tammann, Zeit. anorg. Chem., 55, 293, 1907; 142, 61, 1925; J. F. Thompson and E. H. Miller, Journ. Amer. Chem. Soc., 28, 1115, 1906; H. Tomlinson, Proc. Roy. Soc., 28, 401, 1877; 37, 386, 1885; W. Truthe, Zeit. anorg. Chem., 154, 413, 1926; F. Uppenborn, Centr. Elektrotech., 7, 564, 1886; H. N. Warren, Chem. News., 66, 140, 1892; J. Weerts, Zeit. Metallkunde, 18, 8, 1932; H. Weisz, Zeit. phys. Chem., 54, 305, 1906; R. S. Willows, Phil. Mag., (6), 12, 604, 1906; C. Winkler, Zeit. anal. Chem., 13, 369, 1874; E. M. Wise, W. S. Crowell and J. T. Eash, Trans. Amer. Inst. Min. Eng., 99, 363, 1932.

4 C. Barus, Amer. Journ. Science, (3), 36, 433, 1888; F. A. Bolley, Dingler's Journ., 129.
444, 1853; K. Bornemann, Die binären Metallegierungen, Halle a.S., 56, 1909; H. Bush, Centralzig. Opt. Mech., 2. 30, 1881; Jingler's Journ., 240, 216, 1881; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; E. D. Clarke, Ann. Phil., 9, 89, 194, 1817; Gilbert's Ann., 62, 339, 1819; Schweigger's Journ., 21, 385, 1817; E. B. Craft and J. W. Harris, U.S. Pat. No. 937284, 1909; Electrochem. Ind., 7, 496, 1909; H. Debray, Compt. Rend., 104, 1581, 1887; F. Doerinckel, Zeit. anorg. Chem., 54, 333, 1907; 55, 293, 1907; M. Dreibholz, Zeit. Phys. Chem., 108, 1, 1924; T. Erhard and A. Schertel, Jahrb. Berg. Hütt. Sachen, 17, 154, 1879; Berg. Hütt. Ztg., 38, 127, 1879; O. Feussner, Continental Met. Chem. Engg., 1, 99, 1926; Deut. Goldschm. Ztg., 37, 317, 1935; K. Fischbeck, Zeit. Elektrochem., 40, 378, 1934; K. W. Fröhlich, 54, 1207, 1935; N. H. Furman, Journ. Amer. Cer. Soc., 50, 268, 273, 1928; W. Geibel, Zeit. anorg. Chem., 70, 251, 1911; L. Gilbert, Gilbert's Ann., 62, 247, 1819; W. Goedecke, Siebert's Festschrift, 100, 1931; R. B. Graf, U.S. Pat. No. 1101534, 1914; A. T. Grigoréeff, Zeit. anorg. Chem., 70, 251, 1911; L. Gilbert, Gilbert's Ann., 62, 247, 1819; W. Goedecke, Siebert's Festschrift, 197, 1935; N. H. Furman, Journ. Ann. 164, 1928; W. Guertler, Metallographie, Berlin, 1., 114, 1912; F. Haber, Zeit. anorg. Chem., 16, 442, 1898; C. Hatchett, Phil. Trans., 93, 43, 1803; A. Heintz, Berg. Hütt. Ztg., 46, 151, 1887; E. Jänecke, Zeit. phys. Chem., 67, 671, 1909; A. Jedele, Zeit. Elektrochem., 39, 691, 1933; C. H. Johansson and J. O. Linde, Ann. Physik, (5), 6, 762, 1930; P. Johnson, Phil. Mag., (1), 40, 3, 1812; W. Jost, Zeit. phys. Chem., 21, 8, 168, 1933; M. H. Klaproth, Ann. Arts Manf., 12, 237, 1804; W. Lewis, Phil. Trans., 13, 50, 48, 1933; M. H. Klaproth, Ann. Arts Manf., 12, 237, 1804; W. Lewis, Phil. Trans., 15, 100; A. Johnson, Physik, (5), 6, 762, 1931; E. Matthey, Chem. News, 61, 111, 1890

⁶ H. Boving, U.S. Pat. No. 1562202, 1925; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; E. D. Clarke, Ann. Phil., 9. 80, 194, 1817; Gilbert's Ann., 62. 339, 1819; Schweigger's Journ., 21. 385, 1817; A. Matthiessen, Journ. Chem. Soc., 8. 294, 1855; M. Tarugi, Gazz. Chim. Ital., 29. i, 512, 1899.

M. Balbo, Ber., 16, 694, 1883; Dingler's Journ., 249, 96, 1883; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; W. R. E. Hodgkinson, R. Waring and A. P. H. Desborough, Chem. News, 80, 185, 1899; B.A. Rep., 714, 1899; H. Princass, Metallbörse, 22, 625, 1932.
 C. Barus, Amer. Journ. Science, (3), 36, 433, 1888; H. Behrens, Das mikroskopische Gefage

C. Barus, Amer. Journ. Science, (3), 36. 433, 1888; H. Behrens, Das mikroskopische Gefüge der Metalle und Legierungen, Hamburg, 42, 1894; R. Böttger, Pharm. Centr., (1), 9. 128, 1838;
 J. B. J. D. Boussingault, Ann. Chim. Phys., (2), 53. 441, 1833;
 A. J. Bradley, Science Progress, 28. 253, 1933;
 J. J. Burle, Journ. Chim. Méd., 8. 557, 1832;
 French Pat No. 1873, 1826;
 T. Cooper, Journ. Franklin Inst., 3. 198, 1827;
 Dingler's Journ., 25. 402, 1827;
 H. Debray, Compt. Rend., 104. 1580, 1887;
 U. Dehlinger, Erg. Exakt. Naturwiss., 10. 325, 1931;
 H. St. C. Deville and H. Debray, Compt. Rend., 94. 1559, 1882;
 J. W. Döbereiner, Schweigger's Journ., 42. 182, 1824;
 Kastner's Arch., 3. 89, 1824;
 V. Engelhardt, Met., 10. 65, 1913;
 W. Ekman, Zeit. phys. Chem., 12. B, 57, 1931;
 R. W. Fox, Ann. Phil., 18. 467, 1819;
 A. F. Gehlen, Schweigger's Journ., 20. 353, 1817;
 W. Guertler, Metallographie, Berlin, 1, i, 483, 1912;
 C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 71, 421, 1897;
 Chem. News, 62, 280, 1890;
 W. E. Hodgkinson, R. Waring and A. P. H. Desborough, ib., 80. 185, 1899;
 C. A. Kohn and J. Woodgate, Journ. Soc. Chem. Ind., 8, 256, 1889;
 C. Krug, Die Platinkupferlegierungen, Leipzig, 11, 1903;
 J. Murray, Edin. Phil. Journ., 4, 203, 1821;
 6, 386, 1822;
 F. Mylius and

O. Fromm, Ber., 27, 630, 1894; Zeit. anorg. Chem., 9, 161, 1895; L. Nowack, Zeit. Metallkunde,
22, 94, 1930; A. Pospieloff, Ber. deut. phys. Ges., 5, 345, 1907; T. S. Price, Chem. News, 97,
89, 1908; K. W. Ray, Proc. Iowa Acad., 38, 166, 1931; A. von der Ropp, Eine Untersuchungen über die Oxydation des Platins durch Salpetersäure, Berlin, 19, 1900; W. E. Schmid, Zeit. Metallkunde, 27. 49, 1935; F. Stromeyer, Schweigger's Journ., 22. 362, 1818; Ann. Phil., 14. 269, 1819; G. Tammann and W. Wiederholt, Zeit. anorg. Chem., 125. 67, 1922; A. Westgren, Journ. Franklin Inst., 212. 577, 1931; Zeit. Metallkunde, 22. 373, 1930; C. Winkler, Zeit. anal. Chem., 18. 376, 1874; B. Wood, Chem. News, 6. 135, 1862.

⁸ R. Abegg and H. S. Hatfield, German Pat., D.R.P. 186878, 1905; E. C. Auerswald, Ueber kolloide Platinamalgame und deren katalytische Wirkung, Leipzig, 1927; R. Böttger, Journ. prakt. Chem., (1), 3. 283, 1834; V. Borelli, Gazz. Chim. Ital., 37. i, 428, 1907; L. Cailletet, Dingler's Journ., 145. 118, 1857; Compt. Rend., 44. 1250, 1857; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; P. Casamajor, Chem. News, 34. 34, 1876; Amer. Chemist, 6. 450, 1876; Arch. Pharm., (3), 11. 464, 1877; Eng. Mag., 15. 305, 1876; A. C. Christomanos, Verh. Ges. Naturf. Leipzig, 68, 1884; Ber., 36. 2082, 1903; J. M. Crafts, Bull. Soc. Chim., (2), 2007. 48. 856, 1888; J. F. Daniell, Journ. Roy. Inst., 1. 1, 1831; Quart. Journ. Science, 11. 319, 1821; Schweigger's Journ., 33, 486, 1821; Pogg. Ann., 20, 260, 1830; H. St. C. Deville and H. Debray, Compt. Rend., 82, 241, 1876; C. Engler and L. Wöhler. Zeit. anorg. Chem., 29, 7, 1902; E. Englisch, Wied. Ann., 50, 106, 1893; F. Glaser, Zeit. Elektrochem., 9, 17, 1903; W. L. Hardin, Journ. Amer. Chem. Soc., 18, 990, 1896; A. Hilger and E. von Raumer, Ver. Bayer. angew. Chem., 10, 111, 1892; C. Hockin and H. A. Taylor, Journ. Telegraph. Eng., 8, 282, 1879; E. N. Horsford, Amer. Journ. Science, (2), 13, 305, 1852; G. A. Hulett, Phys. Rev., (1), 38, 309, 1911; T. Ihmori, Wied. Ann., 28, 81, 1886; J. P. Joule, Journ. Chem. Soc., 16, 378, 1863; B.A. Rep., 55, 1850; W. Kettembeil, Studien über elektrolytische Amalgambildung und Versuche zur Metalltrennung durch Amalgambildung, Leipzig, 1903; M. Krouchkoll, Journ. Phys., (2), 3, 319, 1879; C. H. Latham, Journ. Amer. Chem. Soc., 50, 2987, 1928; P. Lebeau, Compt. Rend., 144. 843, 1907; Ann. Chim. Phys., (8), 11. 340, 1907; O. Loew, Journ. prakt. Chem., (2), 1. 307, 1870; J. W. Mallet. Proc. Roy. Soc., 80. A, 83, 1908; W. W. Mather, Amer. Journ. Science, (1), 27, 263, 1835; E. Melly. Journ. prakt. Chem., (1), 16, 235, 1839; G. Meyer, Wied. Ann., 53. 857, 1894; C. Michaud, Amer. Chem. Journ., 16. 488, 1894; H. Moissan, Compt. Rend., 144. 593, 1907; A. von Mussin-Puschkin, Ann. Chim. Phys., (1), 24. 205, 209, 1797; (1), 28. 85, 1798; (1), 54. 220, 1804; Crell's Ann., i, 452, 1799; Scherer's Journ., 6. 134, 1803; Journ. Mines, 15. 195, 1804; Nicholson's Journ., 9. 65, 1804; Phil. Mag., (1), 20. 76, 1804; F. Mylius and O. Fromm, Ber., 27, 630, 1894; C. Paal and E. C. Auerswald, ib., 60. B, 1648, 1927; I. N. Plaksin and S. M. Schtamova, Ann. Inst. Plat., 11, 141, 1933; W. Ramsay, Journ. Chem. Soc., 55, 532, 1889; R. Sabine, B.A. Rep., 435, 1878; Phil. Mag., (5), 6, 211, 1878; J. Schumann, Untersuchungen von Amalgamen, Leipzig, 1891; Wied. Ann., 43, 111, 1891; J. S. C. Schweigger, Schweigger's Journ., 12, 224, 1814; W. Skey, Chem. News, 22, 282, 1870; M. M. Smith, Smith G. McP. Smith, Journ. Amer. Chem. Soc., 27. 540, 1895; G. McP. Smith and H. C. Bennett, Journ. Amer. Chem. Soc., 32. 622, 1900; J. W. Smith, Journ. Chem. Soc., 2045, 1928; M. Tarugi, Gazz. Chim. Ital., 26. i, 425, 1896; 33. ii, 184, 1903; A. Tribe, Journ. Chem. Soc., 27. 419, 1874; T. Wilm, Ber., 13. 1198, 1880.

⁶ C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; O. Brunck, Ber., 34. 2735, 1901; W. Campbell and J. A. Mathews, Journ. Amer. Chem. Soc., 24. 256, 1902; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; M. Chouriguine, Compt. Rend., 155, 156, 1912; Rev. Mét., 9. 874, 1912; A. Gawalowsky, Pharm. Rund., 17. 189, 1891; Repert. Pharm., 2. 65, 1891; Zeit. anal. Chem., 64. 473, 1924; J. H. Gladstone and A. Tribe, Phil. Mag., (4), 50. 284, 1875; K. Hélouis, French Pat. No. 93259, 1871; Bull. Soc. Chim., (2), 18, 43, 1873; C. and A. Tissier, Guide pratique de la recherche de l'extraction et de la fabrication de l'aluminium et des metaux

alcalins, Paris, 1858.

10 K. Bornemann, Die binären Metallegierungen, Halle a. S., 87, 1912; Met., 7, 606, 1908; W. Crookes, Journ. Chem. Soc., 17. 112, 1864; W. Guertler, Metallographie, Berlin, 1. i, 617, 1912; L. Hackspill, Compt. Rend., 146. 820, 1908; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 65. 34, 1894; F. Kuhlmann, Bull. Soc. Chim., (2), 1. 330, 1864; Compt. Rend., 58. 1037, 1864; A. Thiel, Ber., 37. 176, 1904; E. Zintl and A. Harder, Zeit. Elektrochem., 41. 767, 1935.

11 A. Hirsch, Journ. Ind. Eng. Chem., 8. 880, 1912; Trans. Amer. Electrochem. Soc., 20. 57, 1911; H. Kellermann, Die Ceritmetalle und ihre pyrophoren Legierungen, falle a. S., 88,

 C. Winkler, Journ. prakt. Chem., (2), 34. 177, 1886; (2), 36. 177, 1887.
 C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; K. Bornemann, Die binären Metallegierungen, Halle a. S., 103, 1912; Met., 8. 295, 1911; E. D. Clarke, Ann. Phil., 14. 229, 470, 1819; B. Delachanal and S. Mermet, Compt. Rend., 81, 370, 1875; H. Debray, ib., 104, 1470, 1577, 1667, 1887; Bull. Soc. Chim., (2), 48. 649, 1887; H. St. C. Deville and H. Debray, Ann. 1611, 1661; C. Hockin and H. A. Taylor, Journ. Telegraph. Eng., 8, 282, 1879; K. Honda and T. Ishigaki, Science Rep. Tohoku Univ., 14. 219, 1925; F. M. Jäger and J. A. Bottema, Proc. Akad. Amsterdam, 85. 352, 1932; Rec. Trav. Chim. Pays-Bas, 52. 89, 1933; M. Lévy and L. Bourgeois,

Bull. Soc. Min., 5. 140, 1882; Compt. Rend., 94. 1366, 1882; W. Lewis, Commercium Philosopho-Technicum, London, 553, 1763; Phil. Trans., 48. 638, 1755; 50. 148, 1757; J. W. Mallet, Proc. Roy. Soc., 80. A, 83, 1908; A. Matthiessen, Pogg. Ann., 110, 221, 1860; Proc. Roy. Soc., 10. 207, 1859; Phil. Trans., 150. 177, 1860; J. Murray, Edin. Phil. Journ., 4. 202, 1821; F. Mylius and O. Fromm, Ber., 27. 630, 1894; I. Oftedal, Zeit. phys. Chem., 128. 135, 1927; 132. 208, 1927; N. Podkopajeff, Journ. Russ. Phys. Chem. Soc., 40. 249, 1908; P. Schützenberger, Compt. Rend., 98. 985, 1886; G. Tammann, Zeit. anorg. Chem., 117. 95, 1921; G. Tammann and W. Wiederholt, ib., 125. 67, 1922; G. Wertheim, Ann. Chim. Phys., (3), 12. 581, 1844.

 C. Barus, Amer. Journ. Science, (3), 36, 433, 1888; A. Bauer, Ber., 3, 836, 1870; 4, 449,
 1871; Sitzber. Akad. Wien, 62, 46, 1870; 63, 333, 1871; A. Bauer and P. von Mertens, Ber., 8. 212, 1875; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 1. i, 184, 1826; K. Bornemann, Die binaren Metallegierungen, Halle a. S., 110, 1912; Met., 8. 364, 1911; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; H. Debray, Compt. Rend., 104, 1581, 1887; H. St. C. Deville, ib., 64, 1098, 1867; H. St. C. Deville and H. Debray, ib., 48, 731, 1859; Ann. Chim. Phys., (3), 56, 485, 1859; F. Doerinckel, Zeit. anorg. Chem., 54, 358, 1907; A. F. Gehlen, Schweigger's Journ., 20, 353, 1817; H. Goldschmidt, Chem. Met. Engg., 9, 348, 1911; Stahl Eisen, 31, 1231, 1911; Zeit. angew. Chem., 24, 2119, 1911; W. Guertler, Metallographie, Berlin, 1. i, 620, 1912; L. Hackspill, Compt. Rend., 146, 821, 1908; C. T. Heycock and F. H. Neville, Journ. Chem. Soc., 61, 911, 1892; Chem. News, 62, 280, 1890; K. Honda and T. Ishigaki, Soura. Chem. Soc., 61, 911, 1892; Chem. News, 62, 280, 1890; R. Honda and L. Isnigani, Science Rep. Tohoku Univ., 14, 219, 1925; W. Lewis, Phil. Trans., 48, 638, 1755; 50, 148, 1757; Commercium Philosopho-Technicum, London, 549, 1763; S. de Luca, Rend. Accad. Napoli, 15, 69, 1876; Compt. Rend., 82, 1187, 1876; C. A. Martius, Chem. News, 5, 323, 1862; Liebig's Ann., 117, 357, 1861; A. Matthiessen, Proc. Roy. Soc., 10, 207, 1859; Pogg. Ann., 110, 221, 1860; Phil. Trans., 150, 177, 1860; J. Murray, Edin. Phil. Journ., 4, 202, 1821; F. Mylius and O. Fromm, Ber., 27, 630, 1904; N. A. Puschin and P. N. Laschtschenko, Zeit. anorg. Chem., 62, 35, 1909; Journ. Russ. Phys. Chem. Soc., 41, 23, 1909; C. Ridolfi, Giorn. Scienza Art., 1, 24, 125, 1815; Phil. Mag., (1), 48, 72, 1816; (1), 53, 68, 1819; Ann. Phil., 7. 29, 1817; 13, 70, 1819; Schweigger's Journ., 24, 439, 1818; W. C. Roberts-Austen, Phil. Trans., 187, A, 383, 1896; Proc. Roy. Soc., 59, A, 281, 1896; Chem. News, 74, 289, 1896; A. von der Ropp, Eine Untersuchung über die Oxydation des Platins durch Salpetersäure, Berlin, 19, 1900; H. Senn, Zeit. Elektrochem., 11, 244, 1905; G. Tammann, Zeit. anorg. Chem., 117. 95, 1921; G. Tammann and W. Wiederholt, ib., 125, 67, 1922; G. Wertheim, Ann. Chim. Phys., (3), 12. 581, 1844; C. Winkler, Zeit. anal. Chem., 13. 373, 1874.
 ¹⁴ J. J. Berzelius, Svenska Vet. Akad. Handl., 22, 1831; Schweigger's Journ., 62. 349, 1831;

Pogg. Ann., 22. 1, 1831.

15 R. Karlen, Étude des alliages tantale-platine, Genève, 1922; M. G. Korsunsky, Brit. Pat. No. 254666, 1925.

J. Aloy, Recherches sur l'uranium et ses composés, Paris, 15, 1901; C. Barus, Amer. Journ. Science, (3), 36. 433, 1888; C. F. Dreibholz, Zeit. phys. Chem., 108. 1, 1924; J. J. and F. de Elhuyar, A Chemical Examination of Wolfram, London, 1785; E. Friederich, Zeit. tech. Phys., 13. 59, 1932; E. Friederich and A. Kussmann, Phys. Zeit., 36. 185, 1935; W. Guertler, Metallographie, 1. i, 368, 1912; Zeit. Metallkunde, 15. 150, 251, 1923; E. Haagn, U.S. Pat. No. 1566534, 1926; E. Haagn and W. C. Heraeus, Brit. Pat. No. 230356, 1924; P. J. Hjelm, Nersska Vet. Akad. Handl., 280, 1788; E. Jänecke, Zeit. phys. Chem., 67. 683, 1909; M. G. Korsunsky, Brit. Pat. No. 254666, 1925; W. Lederer, Darstellung und Untersuchungen reinen geschmolzen Molybdäns, München, 1911; T. Meiffren, Brit. Pat. No. 1075, 1878; L. Müller, Ann. Physik, (5), 7. 24, 1930; V. A. Nemiloff, Ann. Inst. Platine, 11. 125, 1934; E. Weintraub, U.S. Pat. No. 1096655, 1914.

¹⁷ C. Barus, Amer. Journ. Science, (3), 36. 434, 1888; F. Beck, Metallwirtschaft, 12. 636, 1933; W. Goedecke, Siebert's Fest., 12, 1931; W. Guertler, Metallographie, Berlin, 1. i, 105, 1912; E. Jänecke, Zeit. phys. Chem., 67. 678, 1909; A. Schulze, Zeit. Ver. deut. Ing., 77. 1241, 1933.

 F. Aallot, Bull. Soc. Phys., 360, 1934; Compt. Rend., 199, 128, 1934; I. E. Adaduroff and V. I. Atroschtschenko, Ukrain. Chem. Journ., 11, 209, 1936; N. Agéeff and M. Zamotorin, Ann. Inst. Polyt. Leningrad, 31, 15, 1928; C. Barus, Amer. Journ. Science, (3), 36, 434, 1888; J. J. Berzelius, Srenska Vet. Akad. Handl., 113, 1828; G. H. Billings, Trans. Amer. Inst. Min. Eng., 5, 451, 1877; J. B. J. D. Boussingault, Ann. Chim. Phys., (2), 53, 441, 1833; J. R. Bréant, ib., (2), 24, 388, 1823; Ann. Phil., 8, 267, 1824; Quart. Journ. Science, 18, 386, 1825; A. Breithaupt, Vollständige Charakteristik des Mineralsystems, Dresden, 256, 1832; H. Bush, Centralztg. Opt. Mech., 2, 30, 1881; Dingler's Journ., 240, 216, 1881; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43, 397, 1923; Jeweller's Circ. U.S.A., 87. 1, 1924; Metal Ind., 28. 106, 1923; E. D. Clarke, Ann. Phil., 14. Sewitter 8 Circ. U.S.A., 81. 1, 1924; Metal Ind., 28. 100, 1923; R. D. Clarke, Ann. Phil., 14.
229, 470, 1819; A. Daubrée, Compt. Rend., 80. 526, 1875; Études synthetiques de géologie expérimentale, Paris, 1. 119, 1879; H. Debray, Compt. Rend., 80. 711, 1875; 104. 1582, 1887;
H. St. C. Deville, ib., 80. 589, 1875; H. St. C. Deville and H. Debray, ib., 89. 591, 1879;
A. F. Gehlen, Schweigger's Journ., 20. 353, 1817; W. Goedecke, Siebert's Festschrift, 100, 1931;
L. Graf and A. Kussmann, Phys. Zeit., 36. 544, 1935; W. Guertler, Metallographie, Berlin,
1. i, 105, 1912; L. W. Haase, Zeit. Elektrochem., 36. 456, 1930; R. A. Hadfield, Phil. Trans.,
280, 4, 291, 1621. F. Leane and C. Tammonn, Zeit grager Chem., 56, 1007. F. Livocke 230. A, 221 1931; E. Isaac and G. Tammann, Zeit. anorg. Chem., 55, 65, 1907; E. Jünecke,

Zeit. phys. Chem., 67. 672, 1909; W. Jellinghaus, Zeit. tech. Phys., 17. 33, 1936; M. G. Korsunsky, Brit. Pat. No. 254666, 1925; W. Lewis, Commercium Philosopho-Technicum, London, 556, 1763; H. List, Edel-Erden Erz, 4. 66, 1923; E. Maumené, Bull. Soc. Chim., (2), 47. 39, 1887; P. Monnartz, Met., 8. 193, 1911; J. Murray, Edin. Phil. Journ., 4. 203, 1821; A. von Mussin-Puschkin, Ann. Chim. Phys., (3), 56. 449, 1859; F. Mylius and O. Fromm. Ber., 27. 630, 1894; W. A. Nemiloff, Zeit. anorg. Chem., 204. 49, 1932; Ann. Inst. Platine, 7. 1, 1929; P. Oberhoffer, Met., 6. 612, 1910; G. Osann, Pogg. Ann., 8. 505, 1826; 18. 286, 1828; F. Osmond and J. Werth, Compt. Rend., 104. 1801, 1887; H. Remy and H. Gonnington, Zeit. anorg. Chem., 140. 279, 1925; W. C.. Roberts-Austen, Phil. Trans., 187. A, 383, 1896; H. Sawamura, Mem. Coll. Kyoto, 4. 159, 1926; C. F. Schönbein, Pogg. Ann., 43. 17, 1838; J. Stodart and M. Faraday, Phil. Trans., 112. 253, 1822; Quart. Journ. Science, 9. 319, 1820; Phil. Mag., (1), 56. 26, 1820; Edin. Phil. Journ., 3. 308, 1820; 7. 350, 1822; Ann. Phil., 21. 202, 1823; A. Terreil, Compt. Rend., 82. 1116, 1876; F. Wever, Mitt. Inst. Eisenforsch., 13. 183, 1931; W. Wien, Wied. Ann., 85. 59, 1888; J. Würschmidt, Zeit. Metallkunde, 16. 271, 1924.

Ann., 35. 59, 1888; J. Würschmidt, Zeit. Metallkunde, 16. 271, 1924.

19 C. Barus, Amer. Journ. Science, (3), 36. 433, 1888; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43. 397, 1923; Jeweller's Circ. U.S.A., 87. 1, 1924; Metal Ind., 23. 106, 1923; F. W. Constant, Nature, 123. 943, 1929; Phys. Rev., (2), 548, 1217, 1929; (2), 35. 117, 1930; (2), 36. 786, 1654, 1930; G. Grube and H. Kästner, Zeit. Elektrochem., 42. 156, 1936; W. Guertler, Metallographie, Berlin, 1. i, 107, 1912; E. Jänecke, Zeit. phys. Chem., 67. 668, 1909; W. Jellinghaus, Zeit. tech. Phys., 17. 33, 1936; M. G. Korsunsky, Brit. Pat. No. 254666, 1925; L. Néerl, Ann. Physique, (10), 18. 5, 1932; V. A. Nemiloff, Zeit. anorg. Chem., 213. 283, 1933; Ann. Inst. Platine, 9, 23, 1932; H. Remy and H. Gonnington,

Zeit. anorg. Chem., 149, 279, 1925.

C. Barus, Amer. Journ. Science, (3), 36. 433, 1888; W. and R. Borchers, German Pat., D.R.P. 278903, 1913; H. Bush, Centralztg. Opt. Mech., 2, 30, 1881; Dingler's Journ., 240. 216, 1881; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43, 297, 1923; Jeweller's Circ. U.S.A., 87, 1, 1924; Metal Ind., 23, 106, 1923; F. W. Constant, Phys. Rev., (2), 34, 548, 1217, 1929; (2), 36, 1654, 1930; J. Cournot, Rev. Mét., 24, 740, 1925; A. Daubrée, Compt. Rend., 82, 16, 1876; A. Gawalowsky, Zeit. anal. Chem., 64, 473, 1924; W. Guertler, Metallographie, Berlin, 1, i, 107, 1912; M. Hartmann and M. Braun, German Pat., D.R.P. 100704, 1898; K. Hélouis, French Pat. No. 93259, 1871; W. C. Heraeus, German Pat., D.R.P. 236713, 1910; E. Jänecke, Zeit. phys. Chem., 67, 668, 1909; A. B. Jones, Phys. Rev., (2), 34, 227, 1929; M. G. Korsunsky, Brit. Pat. No. 254666, 1925; N. S. Kurnakoff and V. A. Nemiloff. Ann. Inst. Platine, 8, 5, 17, 1931; Zeit. anorg. Chem., 210, 13, 1933; W. A. Lampadius, Schweigger's Journ., 10, 175, 1814; C. Manders, Ann. Chim. Phys., (11), 5, 167, 1936; L. Néerl, Ann. Physique, (10), 18, 1, 1932; L. Nowack, Metallwirtschaft, 7, 465, 1928; H. Remy and H. Gonnington, Zeit. anorg. Chem., 148, 275, 1925; G. Tammann. b., 142, 61, 1925; A. Terreil, Compt. Rend., 82, 1116, 1876; J. Würschmidt, Zeit. Metallkunde, 16, 271, 1924.

²¹ F. E. Carter, Trans. Amer. Electrochem. Soc., 43, 397, 1923; Jeweller's Circ. U.S.A., 87, 1, 1924; Metal Ind., 23, 106, 1923; Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; L. Holborn and A. L. Day, Amer. Journ. Science, (4), 8, 303, 1899; Sitzber. Akad. Berlin, 691, 1899; Ann. Physik, (4), 2, 505, 1900; G. R. Levi, Atti Accad. Lincei, (6), 8, 409, 1928; O. Martienssen, German Pat., D.R.P. 418868, 1924; H. Remy and H. Gonnington, Zeit. anorg. Chem., 148, 279, 1925.

²² J. S. Acken, Journ. Research Bur. Standards, 12. 249, 1934; L. H. Adams, Journ. Amer. Chem. Soc., 36. 65, 1914; Tech. Paper Bur. Standards, 170, 1921; I. E. Adaduroff, Ukraine Khem. Zhur., 10. 106, 1935; T. Barratt and R. M. Winter, Ann. Physik, (4), 77. 1, 1925; Proc. Phys. Soc., 26. 347, 1914; C. Barus, Phil. Mag., (5), 34. 376, 1892; K. Bito and M. Matsui, Journ. Soc. Chem. Ind. Japan, 36. 421, 424, 1933; V. N. Bozhovsky and B. V. Drozdoff, Trav. Inst. Métrol. Standardisation, 2, 1933; W. Broniewsky, Rev. Mét., 7. 340, 1910; G. K. Burgess and P. D. Sale, Journ. Ind. Eng. Chem., 6, 452, 1914; 7, 561, 1915; Scient. Papers Bur. Standards, 254, 1915; G. K. Burgess and R. G. Waltenberg, ib., 280, 1916; F. R. Caldwell, Journ. Research Bur. Standards, 10, 373, 1933; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43, 397, 1923; Metal Ind., 23, 106, 1923; Jeweller's Circ. U.S.A., 87, 1, 1924; H. le Chatelier, Compt. Rend., 102, 819, 1886; A. L. Day and L. Holborn, Amer. Journ. Science, (4), 8. 303, 1899; Ann. Physik, (4), 2. 522, 1900; A. L. Day and R. B. Sosman, Amer. Journ. Science, (4), 29. 93, 1910; Publ. Carnegie Inst. Washington, 157, 1911; J. Dewar and J. A. Fleming, Phil. Mag., (5), 34. 326, 1892; (5), 36. 271, 1893; O. Feussner and L. Müller, Heraeus' Festschrift, 15, 1930; J. Galibourg, Rev. Mét., 22, 400, 527, 610, 1925; W. Goedecke, Siebert's Festschrift, 72, 1931; L. Holborn and F. Henning, Sitzber. Akad. Berlin, 936, 1902; L. Holborn and S. Valentiner, Ann. Physik, (4), 22. 1, 1907; L. Holborn and W. Wein, Wied. Ann., 47. 107, 1892; K. Iokibe and S. Sakai, Proc. Phys. Math. Soc. Japan, (2), 2. 93, 1920; Science Rep. Tohoku Univ., 10. 1, 1921; Phil. Mag., (6), 42. 397, 1921; W. Keitel and H. E. Zschiegner, Trans. Amer. Electrochem. Soc., 59. 131, 1932; G. R. Levi, Atti Accad. Lincei, (6), 8. 409, 1928; E. Matthey, Proc. Roy. Soc., 51. 447, 1892; J. L. R. Morgan and O. M. Lammert, Journ. Amer. Chem. Soc., 53. 2154, 1931; J. L. R. Morgan, O. M. Lammert and M. A. Campbell, Trans. Amer. Electrochem. Soc., 61. 199, 1932; L. Müller, Ann. Physik, (5), 7. 9, 1930; T. Nakada, Japan. Nickel Rev., 4. 113, 1936; W. A. Nemiloff and N. M. Voronoff, Ann. Inst. Platine, 12. 27, 1935; Zeit. anorg. Chem., 226. 185, 1936;

A. L. Norbury, Phil. Mag., (7), 2. 1188, 1926; H. Remy and H. Gonnington, Zeit. anorg. Chem., 148, 279, 1925; W. F. Roeser and H. T. Wensel, Journ. Research Bur. Standards, 10. 275, 1933; A. Schulze, Zeit. Ver. deut. Ing., 77, 1241, 1933; A. W. Smith, Bull. Engg. Exp. Station Ohio Univ., 20, 1920; R. B. Sosman, Amer. Journ. Science, (4), 30, 1, 1910; J. C. Southard and R. T. Milner, Journ. Amer. Chem. Soc., 55, 4384, 1933; F. Stäblein and J. Hinnüber, Arch. Eisenhüttenwesen, 3, 781, 1929; E. R. Thews, Metal Ind., 38, 473, 1931; C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 3, 200, 1907; J. Weerts, Zeit. Metallkunde, 24, 138, 1932; J. Würschmidt, ib., 16, 271, 1924.

T. Barth and G. Lunde, Norsk. Geol. Tids., 8. 220, 358, 1925; Zeit. phys. Chem., 121.
78, 1926; C. Barus, Amer. Journ. Science, (3), 36. 427, 1888; G. Borelius, Ann Physik,
(4), 83. 121, 1927; G. Borelius and S. Lindblom, ib., (4), 82. 201, 1927; F. E. Carter,
Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43. 397, 1923;
Jeweller's Circ. U.S.A., 87. 1, 1924; Metal Ind., 23. 106, 1923; R. Chenevix, Nicholson's Journ., 5. 136, 1803; 7. 117, 1804; E. Decarrière, Bull. Soc. Chim., (4), 37. 412, 1925;
W. Geibel. Zeit. anorg. Chem., 69. 38, 1910; 70. 240, 1911; F. Goldberger and O. Kienberger, Mikrochem., 10. 397, 1932; L. Holborn and A. L. Day, Ann. Physik, (2), 505, 1900; Sitzber. Akad. Berlin, 691, 1899; Amer. Journ. Science, (4), 8. 303, 1899; F. Korn, Metal Ind., 38. 309, 1931; N. S. Kurnakoff, Ann. Inst. Platine, 9. 126, 1932; G. R. Levi, Atti Accad. Lincei., (6), 8. 409, 1928; J. A. M. van Liempt, Rec. Trav. Chim. Pays-Bas, 45. 203, 1926; J. Monheim, Zeit. Elektrochem., 40. 375, 1934; O. Quadrat and J. Jiriste, Chem. Listy, 23. 493, 1920; H. Remy and H. Gonnington, Zeit. anorg. Chem., 148, 279, 1925; Y. Shimizu, Science Rep. Tohoku Univ., 21. 826, 1932; A. Sieverts, Zeit. anorg. Chem., 27. 337, 1914; A. Sieverts, E. Jurisch and A. Metz, ib., 92. 329, 1915; A. W. Smith, Bull. Engg. Exp. Station Ohio Univ., 20, 1921; G. Tammann and H. J. Rocha, Siebert's Festschrift, 309, 1931; E. R. Thews, Met. Ind., 38, 473, 1931; C. L. Utterback, Rev. Scient. Instr., 39, 1930; E. Vogt, Ann. Physik, (5), 14, 1, 1932; R. von D. Wegner, Zeit. Elektrochem., 34. 42, 1928; E. M. Wise and J. T. Eash, Tech. Publ. Amer. Inst. Min. Eng.—Metals, 584, 1934.

G. R. Levi, Atti Accad. Lincei, (6), 8. 409, 1928; F. Korn, Metal Ind., 38. 309, 1931;
 F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc.,
 397, 1923; Jeweller's Circ. U.S.A., 87. 1, 1924; Metal Ind., 28. 106, 1923; E. Hangn,
 German Pat., D.R.P. 350703, 1922; 437173, 1925; U.S. Pat. No. 1574966, 1926; H. Remy
 and B. Schäffer. Zeit. anorg. Chem., 136. 149, 1924; H. Remy and H. Gonnington, ib., 148.
 279, 1925; F. Zimmermann, Met. Chem. Engg., 7. 388, 1913; C. M. Hoke, Brass World, 20.

242, 1924; W. C. Heraeus, ib., 7, 230, 1911.

25 C. O. Bannister and E. A. du Vergier, Analyst, 39. 340, 1914; T. Barratt and R. M. Winter, Ann. Physik, (4), 77. 1, 1925; Proc. Phys. Soc., 26. 347, 1914; C. Barus, Amer. Journ. Science, (3), 36. 427, 1888; J. J. Berzelius, Pogg. Ann., 13. 463, 1828; 15. 208, 527, 1829; A. Breithaupt, Schweigger's Journ., 69. 96, 1833; B. Brenner, Journ. Ind. Eng. Chem. (Anal.), 7. 438, 1935;
O. J. Broch, H. St. C. Deville and J. Stas, Ann. Chim. Phys., (5), 22. 120, 1881; W. Broniewsky, Rev. Mét., 7. 340, 1910; F. E. Carter, Tech. Publ. Amer. Inst. Min. Eng., 70, 1928; Trans. Amer. Electrochem. Soc., 43. 397, 1923; Jeweller's Circ. U.S.A., 87. 1, 1924; Metal Ind., 23. 106, 1923; H. le Chatelier, Bull. Soc. Chim. Belg., (2), 45. 482, 1886; Mesure des températures élerées, Paris, 108, 1900; M. Delépine, Compt. Rend., 142. 631, 1906; H. St. C. Deville and H. Debray, Arch. Sciences Genève, 48. 45, 1873; Gazz. Chim. Ital., 4. 167, 1874; Ann. Chim. Chim. 1875. Phys., (3), 56, 385, 1859; Chem. News, 1, 5, 15, 85, 1860; Compt. Rend., 81, 839, 1875; O. Feussner and L. Müller, Heraeus' Festschrift, 14, 1930; H. Fizeau, Compt. Rend., 78, 1205, 1874; K. Friederich, Zeit. tech. Phys., 13. 59, 1932; A. Gaudin, Compt. Rend., 6, 862, 1838; Journ. prakt. Chem., (1), 16, 55, 1839; W. Geibel, Zeit. anorg. Chem., 70, 246, 1910; F. Goldberger and O. Kienberger, Mikrochem., 10, 397, 1932; L. Guillet and M. Ballay, Compt. Rend., 176. 1800, 1923; F. Haber, Zeit. anorg. Chem., 16. 438, 1898; B. S. Jacobi, Ueber Platin und dessen Anwendung als Münze, St. Petersburg, 1860; Journ. prakt. Chem., (1), 80, 499, 1860; Chem. News, 1, 23, 1860; W. H. Keesom and J. N. van Ende, Proc. Akad. Amsterdam, 32. 1171, 1929; F. Korn, Metal Ind., 38. 309, 1931; N. S. Kurnakoff, Ann. Inst. Platine, 9. 119, 1932; G. R. Levi, Atti Accad. Lincei, (6), 8, 409, 1929; J. Lüke and R. Fricke, Zeit. phys. Chem., 20. B, 357, 1933; Zum Zerfall von Stockoxydul an glühenden Platin und Platin-Iridium, Leipzig, 1933; G. Matthey, Chem. News, 39, 175, 1879; Proc. Roy. Soc., 28, 463, 1879; Iron. 18. 654, 678, 1879; J. L. R. Morgan and O. M. Lammert, Journ. Amer. Chem. Soc., 58. 2154, 1931; J. L. R. Morgan, O. M. Lammert and M. A. Campbell, Trans. Amer. Electrochem. Soc., 81. 199, 1932; H. Morin, Compt. Rend., 78. 1502, 1874; L. Müller, Ann. Physik, (5), 7. 24, 1930; W. A. Nemiloff, Ann. Inst. Platine, 7. 14, 1929; Zeit. anorg. Chem., 204. 41, 1932; J. Obata, Recherches Electrotech. Lab. Tokyo, 101, 1921; V. Rekschinsky, Trans. Inst. Chem. Reagents, 2. 28, 1923; H. Remy and H. Gonnington, Zeit. anorg. Chem., 148. 279, 1925; G. Rose, Pogg. Ann., 34. 377, 1835; E. A. Smith, Metallurgist, 7. 102, 120, 1931; S. B. Srikentan, Journ. Indian Chem. Soc., 6. 949, 1932; E. Steinmann, Compt. Rend., 130. 819, 1900; Recherches sur la thermochem. Soc., 6. 1949, 1952; E. Steinmann, Compt. Rena., 190, 819, 1950; necherches att it thermo-électricité de quelques alliages, Paris, 1900; P. G. Tait, Trans. Roy. Soc. Edin., 27, 125, 1873; K. B. Thews, Deut. Goldschmiedezeit., 33, 271, 1930; Metallbörse, 11, 31, 1932; A. E. Tutton, Zeit. Kryst., 30, 529, 1899; Phil. Trans., 191, A, 313, 1898; C. W. Waidner and G. K. Burgess, Bull. Bur. Standards, 3, 200, 1907; J. Weerts, Zeit. Metallkunde, 24, 138, 1932; R. von D. Wegner, Zeit. Elektrochem., 34, 42, 1928; E. M. Wise and J. T. Eash, Tech. Publ. Amer. Inst. Min. Eng., 584, 1934; J. Würschmidt, Zeit. Metallkunde, 16, 371, 1924.

§ 17. The Lower Oxides of Platinum and their Hydrates

P. Klason ¹ observed that when a hot soln. of potassium chloroplatinite is evaporated, platinic chloride, and a derivative of a lower oxide, probably **platinum suboxide**, or **platinum hemioxide**, Pt₂O, are formed. G. Neumann said that J. W. Döbereiner's datum on the amount of oxygen occluded by platinum corresponds with 3.05 per cent., and that the value calculated for Pt₂O is 3.85 per cent. This is probably a coincidence, although it has been taken to be an indication that a hemioxide is formed. P. T. Cleve prepared **platinous dihydroxytetrammine**, Pt₂(NH₃)₄(OH)₂, by boiling platinous cis-dichlorotetrammine with soda-lye, and drying the product at 100°. The dirty white powder is insoluble in water; hydrochloric acid forms a mixture of cis-dichlorodiammine and dichlorotetrammine; whilst nitric and sulphuric acids form the corresponding nitrate and sulphate; and aqua regia forms platinic tetrachlorotetrammine. C. W. Blomstrand discussed the nature of the compound.

W. Manchot and G. Lehmann treated a 1 per cent. aq. soln. of potassium platinocyanide with 3 per cent. sodium amalgam, and obtained a colourless solution which reduced an ammoniacal soln. of silver, cadmium salt soln., mercuric chloride, bismuth salt, litmus, anthraquinonesulphonate, and acidic indigotin. If exposed to air, the reducing power of the soln. slowly disappears. Reduction can also be effected by potassium amalgam, calcium filings, electrolytically, or by aluminium and potassium hydroxide. Barium platinocyanide may be used or potassium chloroplatinite or chloroplatinate in presence of the equivalent amount of potassium cyanide. Attempts to concentrate the reduced soln. on a water-bath or in vacuo are accompanied by an evolution of gas, and potassium platinocyanide separates.

The soln, is supposed to contain univalent platinum.

According to L. Gmelin, platinum monoxide or platinous oxide, PtO, is probably formed during the "combustion" of platinum which occurs at the m.p. and which is attended with sparking, the emission of fumes, and the formation of a dirty green dust. The "combustion" does not occur at an ordinary white heat, but only in the oxyhydrogen flame, the oxy-alcohol flame, or when a thin platinum wire is explosively spluttered by an electric current. The alleged nature of the product is very doubtful. According to L. Wöhler, the oxygen associated with platinum black is probably present in great part as platinous oxide or its hydrate. The preparation of oxygenated spongy platinum is best conducted at 510°, and not above 560°. P. Laffitte and P. Grandadam obtained the oxides PtO and PtO, by heating the metal in oxygen to 100° to 560° at a press. of 8 to 200 atm. W. F. Bruce discussed the subject. J. J. Berzelius said that the hydrate can be deprived of its water by a gentle heat; and C. Engler and L. Wöhler added that the water is difficult to drive off, and requires a temp. of at least 300°. L. Wöhler found that the expulsion of the water is attended by some decomposition of the oxide so that the pure oxide free from hydrate cannot be so prepared. J. W. Döbereiner heated calcium chloroplatinate, Ca₂Pt₂O₅Cl₂.7H₂O, in a covered crucible, and obtained a violet powder which becomes very hot when treated with water; the lime and calcium chloride can be removed by water and dil. nitric acid, and there remains platinous oxide.

J. W. Döbereiner's product is a violet powder; J. J. Berzelius' product is a grey powder; and L. Wöhler's, velvety black. P. Laffitte and P. Grandadam gave 14-9 for the sp. gr. at 15°. H. G. Howell and G. D. Rochester studied the band spectrum. L. Wöhler said that platinous oxide is perceptibly decomposed at 430°; P. Laffitte and P. Grandadam said that it decomposes at 560°; and, according to J. J. Berzelius, the oxide is completely decomposed at a red-heat so that the product of the operation above cited by L. Gmelin is not likely to have been the monoxide. J. J. Berzelius also observed that when the monoxide is mixed with powdered charcoal, and heated to redness, there is a strong detonation. L. Wöhler observed that the oxide very slowly dissolves in boiling hydrochloric

acid, and that the rate of dissolution is catalytically increased in the presence of a trace of platinous chloride, or of a soln. of platinous hydroxide in hydrochloric acid. J. W. Döbereiner found that the monoxide dissolves in sulphurous acid, but not in the other oxyacids; and L. Wohler, that it is a little soluble in aqua regia. L. F. Nilson obtained platinous nitrosyl oxides, $(Pt.O.ON:ON.OH)_2O$; and also $Pt_3H_4(NO_2)_8O.2H_2O$; and J. Lang, $H_2Pt(NO_2)_4$. F. Mylius and F. Förster obtained evidence indicating the formation of platinous carbonyl oxide, or platinous oxycarbonyl, [Pt(CO)O], or CO.PtO. J. W. Döbereiner observed that formic acid reduces the oxide to platinum black with a violent evolution of carbon dioxide; and that it takes up some oxalic acid from a boiling aq. soln. F. D. Aguirreche hydrogenized salicylic acid using platinum oxide as catalyst.

As indicated above, L. Wöhler showed that the oxygen associated with ordinary platinum black is in part present as hydrated platinous oxide, PtO.nH₂O. J. J. Berzelius prepared it by gently warming platinous chloride with a soln. of potassium hydroxide, and washing the precipitate. Part of the platinum monoxide is dissolved by the alkali-lye which is in consequence coloured green, and it can be recovered from the soln. by the addition of sulphuric acid. J. von Liebig added that the hydrated oxide so obtained is contaminated with chloride, and if too much potash-lye be present, the precipitate redissolves. E. von Meyer recommended using a small excess of potash-lye, and drying the carefully-washed product at 105° to 110°. L. N. Vauquelin observed that if soda-lye be employed for the precipitation, the precipitated hydrate is contaminated with soda which cannot be removed by washing. J. Thomsen boiled a soln. of a mol of potassium chloroplatinate in 300 mols of water with 2 mols of a dil. soln. of sodium hydroxide, and washed the black precipitate first by decantation, and afterwards on a filter - L. Mond and co-workers observed that the product is always contaminated with chlorides, and L. Wöhler, that it has a tendency to oxidize unless it is washed in an atm. of an inert gas-say carbon dioxide-and dried in a desiccator first filled with carbon dioxide, and afterwards evacuated. F. Martin, and L. Wöhler and F. Martin prepared the hydrated oxide by dropping a soln. of sodium carbonate into one of potassium chloroplatinite—or of a soln. of hydrochloroplatinic acid which has been treated with sulphur dioxide—and boiling the liquid in an atm. of carbon dioxide until the black, hydrated oxide is precipitated; the product is again boiled with a soln, of sodium carbonate to remove the chlorides from the precipitate which is then washed and dried as before.

The hydrated monoxide is a black powder which, according to L. Wöhler, has the composition of a monohydrate, or platinous hydroxide, Pt(OH)2, if it has been dried for a sufficient length of time at 100°. L. Wöhler and F. Martin considered this hydrate to be platinous acid, H₂PtO₂, which forms salts, platinites. J. Thomsen obtained the hydroxide by boiling a dil. aq. soln. of potassium chloroplatinite with the proper proportion of soda-lye; and L. Wöhler and W. Frey, by boiling in an atm. of carbon dioxide a soln. of potassium chloroplatinite mixed with the calculated quantity of sodium hydroxide, boiling the precipitate several days in water, and drying in an atm. of carbon dioxide for 48 hrs. at 120° to 150°. The precipitate obtained at ordinary temp. approximates to the dihydrate, PtO.2H₂O. J. J. Berzelius stated that when potassium hydroxide is fused in a platinum vessel, out of contact with air, potassium platinite is formed, and it yields a dark soln. in water. Likewise when platinous chloride is decomposed by potash-lye, a dark green soln. of potassium platinite is formed. L. N. Vauquelin obtained what was regarded as sodium platinite by decomposing a soln, of platinous chloride with an excess of soda-lye.

Kalle and Co. prepared colloidal platinous hydroxide by mixing a dil. soln. of sodium protalbinate and sodium carbonate with a dil. soln. of platinous chloride and sodium acetate, and warming the mixture on a water-bath at 70° to 80°. The dialyzed soln. on evaporation furnishes dark green plates which form a colloidal soln. with water. A. Skita and W. A. Meyer used gum arabic as protective colloid.

L. Mond and co-workers observed that hydrated platinous oxide loses the greater proportion of its water at 200° to 250°; and C. Engler and L. Wöhler added that the last traces of water are driven off with difficulty, and a temp. over 300° is required. L. Wöhler observed that after heating 2 days on a waterbath, the hydrate contained 13.4 per cent. of water, and 8.5 per cent. of oxygen; after heating 14 days at

			230	300	400	
Water, H ₂ O		2	13.4	8.4	***	per cent.
Oxide oxygen			8.5	8.5	7.4	

The calculated oxygen for PtO is 7.6, and the calculated $\rm H_2O$ for $\rm Pt(OH)_2$ is 6.3 per cent. L. Mond and co-workers found that oxygen is lost between 237° and 360°, and that after removing water, the platinous oxide gives off water very slowly at 380° ; and at 440° the greater part of the oxygen can be gradually pumped off, but a red-heat is necessary to remove all the oxygen. The subject was studied by J. Thomsen. L. Wöhler found that in vacuo, or in an atm. of carbon dioxide, decomposition begins at 400° , but no decomposition is perceptible at 365° . The velocity of decomposition decreases with decreasing proportions of water. Platinum monoxide decomposes when heated into platinum and platinum dioxide, which dissolves in the monoxide lowering its dissociation press. Thus, a sample of monoxide at 510° gave a dissociation press. of 752 mm., which in 40 hrs. decreased to 203 mm. J. Thomsen gave for the heat of formation: $2Pt+O_2+2H_2O=2Pt(OH)_2+38\cdot44$ Cals. M. le Blanc and H. Sachse said that the conductivity of the oxide is small.

Chemical properties of platinous oxide.—E. von Meyer observed that hydrogen reduces the oxide with great energy; and L. Wöhler, that the oxide, dried at ordinary temp. or at 100°, reacts vigorously with hydrogen. E. von Meyer observed that the monoxide oxidizes hydrogen rather more vigorously than does platinum dioxide. The reaction was studied by A. R. Ubbelohde. L. Wöhler showed that the oxide explodes in an electrolytic mixture of hydrogen and oxygen. L. Mond and co-workers found that the oxide adsorbs oxygen; and L. Wöhler and co-workers, that the freshly-precipitated and moist oxide may adsorb 2 per cent. of oxygen; but the dried oxide, even if exposed to oxygen under 100 atm. press, for some hours, adsorbs no perceptible quantity of oxygen, but it is oxidized in a short time at 100°. A suspension of the monoxide in boiling water does not form the hemitrioxide when oxygen is passed through the liquid for 2 days; the monoxide, however, is oxidized by ozone. C. Engler and L. Wöhler observed that hydrogen dioxide is reduced completely when boiled with platinum monoxide, but not perceptibly in the cold. The hydrated oxide is easily soluble in cold hydrochloric acid, and, according to J. J. Berzelius, hydrochloroplatinic acid and metal are formed. L. Wöhler found that the air-dried oxide is not easily soluble in 2N-HCl. If heated on the water-bath the oxide becomes still less soluble in hydrochloric acid, and after the monoxide has been heated to 300° or 400°, platinous oxide can be boiled for an hour with conc. hydrochloric acid, or aqua regia, without perceptible change, dissolution occurs slowly with a more protracted boiling. L. Wöhler said that when hydrochloric acid acts on the hydrated oxide, there are two concurrent reactions: (i) Pt(OH)₂+4HCl=H₂PtCl₄+2H₂O, and (ii) 2Pt(OH)₂ =Pt(OH)₄+Pt, followed by Pt(OH)₄+6HCl=H₂PtCl₆+4H₂O. The first of the concurrent reactions progresses more rapidly than the second. J. Thomsen noted that the hydrated oxide is freely soluble in hydrobromic acid; and L. Wöhler, and J. Thomsen found that platinum monoxide oxidizes hydriodic acid. W. Plüddemann, and L. Wöhler and co-workers observed that the reduction of platinum monoxide by sulphur dioxide begins at 130°, proceeds vigorously at 200°, and is very rapid at 400°. L. Wöhler also showed that the hydrated oxide is readily soluble in sulphurous acid to form, according to C. Engler and L. Wöhler, a reddish-brown liquid, and a little metallic platinum. L. Wöhler observed that the freshly-precipitated and moist hydrated oxide is very sparingly soluble in sulphuric acid, and similarly

with the hydrated oxide dried in a desiccator, but when dried at 110°, it is soluble in fuming sulphuric acid at 200°. The dry or moist hydrated oxide is virtually insoluble in nitric acid. It transforms arsenic trioxide into the pentoxide. C. Engler and L. Wöhler found that carbon monoxide reduces platinous oxide to platinum; and E. von Meyer observed that it oxidizes carbon monoxide at ordinary temp. more readily than does platinum dioxide. P. V. McKinney and co-workers studied the reaction. J. Thomsen observed that formic acid reduces the oxide to metal with the evolution of carbon dioxide. F. Bullnheimer observed that platinum oxide is reduced to the metal by giverol. L. Wöhler observed that the freshlyprecipitated and moist hydrated oxide is virtually insoluble in dil. or conc. acetic acid. Boiling soln. of acetic acid, oxalic acid, and other organic acids are oxidized by the hydrated monoxide with the evolution of carbon dioxide. A boiling soln, of glucose is similarly oxidized. The hydrated oxide is soluble in a soln, of potassium cyanide. C. Engler and L. Wöhler noted that tincture of guaiacum, and diphenylamine are oxidized. According to J. J. Berzelius, the hydrated monoxide is decomposed by a boiling soln, of **potasium hydroxide**, forming potassium platinate and metal. L. Wöhler observed that the moist oxide is scarcely soluble in a soln. of sodium hydroxide, although it is not precipitated from salt soln. by an excess of that alkali lye. A boiling sulphuric acid soln, of potassium permanganate is reduced to manganese dioxide, and platinum dioxide is formed.

Derivatives of the three types of ammines have been obtained, namely, the di-, tri-, and tetra-ammines. J. Reiset 3 prepared platinous tetramminohydroxide, [Pt(NH₄)₄](OH)₂, by adding the theoretical proportion of baryta water to a soln. of platinous tetramminosulphate, evaporating the filtrate out of contact with air, and finally in vacuo over sulphuric acid until it solidifies. The mass of white, acicular crystals is deliquescent in air. It melts at 110° and loses with intumescence 2 mols, of ammonia and 1 mol, of water so that Pt(NH₃)₂O remains. J. Thomsen gave for the heats of neutralization of 2 eq. of an aq. soln. with sulphuric acid be 30.84 Cals., and with hydrochloric acid, 27.29 Cals. The mol. conductivities of a mol of the compound in 500, 1000, and 2000 litres were found by A. Werner and A. Miolati to be, respectively, 247.6, 260.8, and 267.2. G. Bredig gave 74.1 for the speed of migration of the [Pt(NH₃)₄]"-ion. J. Reiset said that the aq. soln. has an alkaline, and caustic taste, and does not give off ammonia when boiled; the aq. soln. absorbs carbon dioxide from the atmosphere, and, like a soln. of potassium hydroxide, it decomposes starch-sugar; and like a soln. of potassium hydroxide, it precipitates silver oxide from a soln, of silver nitrate. M. Peyrone observed that the compound is slightly soluble in alcohol. It forms salts when treated with acids. It has been called Reiset's first base, when [Pt(NH₃)₂](OH)₂ represents Reiset's second base. The constitution was discussed by C. W. Blomstrand, H. and A. Euler, C. Gerhardt, W. Odling, C. Weltzein, and A. Werner.

W. Odling prepared platinous dihydroxydiammine, $[Pt(NH_3)_2(OH)_2]$, by the action of baryta water on the corresponding sulphate. The salt crystallizes easily, it is very soluble in water, forming a strongly alkaline solm, which attacks carbon dioxide from the atmosphere. The base is neutralized by acids, and the resulting salts readily form complexes with other metal salts. A. A. Grinberg, and A. A. Grinberg and D. I. Ryabchikoff studied the strength of these bases. P. Klason obtained acicular crystals of the dihydrate. The aq. solm is feebly acidic. H. D. K. Drew and co-workers studied the α - and β -forms of this base. A. Werner obtained platinous hydroxytriamminohydroxide, $[Pt(NH_3)(OH)]OH$; and F. W. Pinkard and co-workers reported platinous dihydroxylaminodiamminohydroxide, $[Pt(NH_2OH)_2](OH)_2$; and F. Hoffmann, platinous dihydroxylaminehydroxide, $[Pt(NH_2OH)_2(OH)_2]$. J. Reiset obtained platinous oxydiammine, $[Pt(NH_3)_2O]$, by heating the tetramminehydroxide at 110°. The grey mass decomposes at 195° into platinum, nitrogen, ammonia, and steam. When heated in air to about 200°, it decomposes with a hissing noise. It is insoluble in water, and in aq. ammonia; with acids, it furnishes insoluble, explosive products.

- H. Alexander prepared platinous tetrahydroxylaminehydroxide, [Pt(NH₂OH)₄]-(OH)₂, by treating the corresponding chloride with a strong base; R. Uhlenhut, by treating hydrochloroplatinic acid with a soln. of hydroxylamine; H. Wolfram, by the action of hydroxylamine on a soln. of hydrochloroplatinous acid; and N. Tarugi, by the action of an ammoniacal soln, of hydroxylamine hydrochloride on a conc. soln. of platinic chloride. The compound forms white, yellowish, or reddish-violet powder, or white acicular crystals. After drying at 80°, H. Wolfram found that the salt is brownish-yellow; H. Alexander said that the salt partially decomposes at 100°; and R. Uhlenhut, that it darkens at 169°, and explodes about 173°. H. Alexander, and R. Uhlenhut found that the salt is insoluble in hot or cold water; easily soluble in mineral acids, but it requires warm sulphuric acid for dissolution, and it is decomposed by the conc. acid. The base is insoluble in alcohol, and ether; it is soluble in formic and acetic acids; and the hydrochloric acid soln. reduces Fehling's soln. and also gold chloride soln. in the cold. base forms salts with acids. The constitution was discussed by A. Werner. P. Klason, and W. Odling obtained the cis- and trans-forms of this base. P. T. Cleve prepared platinous tetramminodihydroxide, Pt₂(NH₃)₄(OH)₂, by the action of a boiling soln. of sodium hydroxide on platinous cis-dichlorodiammine, and drying the washed product at 100°; the dirty white powder explodes above 100°. It is insoluble in water and is converted by acids into salts. F. Hoffmann prepared platinous dihydroxylaminediamminohydroxide, [Pt(NH₃)₂(NH₂OH)₂](OH)₂, from the corresponding chloride; he also prepared platinous dihydroxylaminebispyridinehydroxide, [Pt(NH₂OH)₂(C₅H₅N)₂](OH)₂, as a double salt with platinous chloride. A. Werner obtained platinous bispropylenediaminehydroxide. [Pt{C₃H₆(NH₂)₂}₂](OH)₂: H. Wolfram, H. Alexander, and F. Hoffmann prepared cis- and trans-forms of platinous dihydroxydihydroxylamine, [Pt(NH₂OH)₂(OH)₂]; H. Wolfram also prepared platinous oxyhydroxylaminoethylamineoxide, 2| Pt(NH₂OH)₂O|| Pt(NH₂OH)(C₂H₅NH₂)O].
- S. G. Hedin prepared platinous quaterpyridinehydroxide, $[Pt(C_8H_5N)_4](OH)_2$; he also prepared the cis- and trans-forms of platinous dihydroxybispyridine, $[Pt(C_8H_5N)_2(OH)_2]$, as well as the dihydrate and the decahydrate. This compound in its a- and \$\beta\$-forms was studied by H. D. K. Drew and co-workers. C. W. Blomstrand, and C. Enebuske described the trans-form of platinous bismethylsulphinedihydroxide, $[Pt\{(CH_3)_2S\}_2(OH)_2]$; C. W. Blomstrand, the trans-form of platinous bisethylsulphinedihydroxide, $[Pt\{(C_2H_5)_2S\}_2(OH)_2]$; C. Rudelius, the trans-form of platinous bispropylsulphine dihydroxide, $[Pt\{(C_3H_7)_2S\}_2(OH)_2]$; C. W. Blomstrand, and H. Löndahl., platinous bis see butylsulphine-dihydroxide, $[Pt\{(C_4H_9)_2S\}_2(OH)_2]$; F. G. Angell and co-workers, and H. Löndahl, platinous bisethylenesulphinedihydroxide, $[Pt\{(C_2H_4)_2S\}(OH)_2]$; N. S. Kurnakoff, platinous bisthiocarbamidebispyridinehydroxide, $[Pt(C_2H_4)_2S](OH)_2$; G. Quesneville, M. G. Saillard, P. Schützenberger, and P. Schützenberger and M. G. Saillard, platinous dihydroxytoluidinethylphosphitehydroxide, $[Pt(C_2H_5N_3(OH)_2)]$; P. Schützenberger, platinous ethylphosphitedihydroxide, $[Pt(C_2H_6)_2PO_3(OH)_2]$; P. Schützenberger and C. Fontaine, ethylphosphitedihydroxide, $[Pt(C_2H_6)_2PO_3(OH)_2]$; and P. Schützenberger and C. Fontaine, $[Pt(Na_3PO_3)O]$.

REFERENCES.

W. Manchot and G. Lehmann, Ber., 63. B, 2775, 1930; P. Klason, Bihand. Svenska Akad. Handl., 28. 6, 1902; Journ. prakt. Chem., (2), 67. 18, 1903; J. W. Döbereiner, ib., (1), 1. 114, 369, 1834; P. Laffitte and P. Grandadam, French Pat. No. 785082, 1935; G. Neumann, Sitzber. Akad. Wien, 101. 53, 1892; C. W. Blomstrand, Die Chemie der Jetztzeit, Heidelberg, 1869; Journ. prakt. Chem., (2), 38, 362, 1888; Ber., 4, 46. 1871; L. Gmelin, Handbook of Chemistry, London, 6. 231, 1852; P. T. Cleve, Svenska Akad. Handl., 10. 9, 1872.

* F. D. Aguirreche, Anal. Fis. Quim., 25. 313, 1927; J. J. Berzelius, Schweigger's Journ., 7. 55, 1816; 34. 81, 1821; M. le Blanc and H. Sachse, Phys. Zeit., 32. 887, 1931; W. F. Bruce, Journ. Amer. Chem. Soc., 58. 687, 1936; F. Bullnheimer, Forsch. Ber. Lebensm., 4. 12, 1897; J. W. Döbereiner, Pogg. Ann., 28. 183, 1833; C. Engler and L. Wöhler, Zeit. anorg. Chem., 29. 13, 1902; L. Gmelin, Handbook of Chemistry, London, 6. 231, 1852; H. G. Howell and G. D. Rochester, Proc. Phil. Soc. Univ. Durham, 9. 126, 1935; Kalle and Co., German Pat., D.R.P. 248525, 1911; P. Laffitte and P. Grandadam, Compt. Rend., 200. 456,

1935; J. Lang, Journ. prakt. Chem., (1), 83. 419, 1861; J. von Liebig, Pogg. Ann.. 17. 108, 1929; P. V. McKinney, Journ. Amer. Chem. Soc., 56. 2577, 1934; P. V. McKinney and E. F. Morfit, ib., 55. 3050, 1933; F. Martin, Ber., 42. 3331, 1909; Vier Oxydationsstufen des Platins, Karlsruhe, 1909; E. von Meyer, Journ. prakt. Chem., (2), 14. 129, 1876; L. Mond, W. Ramsay and J. Shields, Proc. Roy. Soc., 62. 50, 290, 1897; Zeit. phys. Chem., 25. 666, 1898; F. Mylius and F. Förster, Ber., 24. 2440, 1891; L. F. Nilson, Journ. prakt. Chem., (2), 16. 276, 1877; Bull. Soc. Chim., (2), 31. 362, 1879; Ber., 10. 934, 1877; Nova Acta Upsala. (3), 15. 1, 1877; Oefrers. Akad. Förh., 33. 7, 1876; 34. 5, 1877; W. Plüddemann, Beiträge zur Aufklärung des Schwefelsäure-kontaktprozesses, Berlin, 1907; A. Skita and W. A. Meyer, Ber., 45. 3585, 1912; J. Thomsen, Termokemioke Undersögelser, Kjobenhavn, 311, 1905; Journ. prakt. Chem., (2), 15. 298, 451, 1877; A. R. Ubbelohde, Trans. Faraday Soc., 29. 532, 1933; L. N. Vauquelin, Ann. Chim. Phys., (2), 5. 264, 1817; L. Wöhler, Ber., 36. 3477, 1903; Zeit. Elektrochem., 15. 773, 1909; Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Zeit. anorg. Chem., 40. 424, 1904; L. Wöhler. A. Foss and W. Plüddemann, Ber., 39. 3539, 1906; L. Wöhler and W. Frey, Zeit. Elektrochem., 15. 133, 1909; L. Wöhler and F. Martin, ib., 15. 792, 1909.

792, 1909.

3 H. Alexander, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1887; Liebig's Ann., 246. 246, 1888; F. G. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; C. W. Blomstrand, Die Chemie der Jetzteit, Heidelberg, 1869; Journ. prakt. Chem., (2), 38. 362, 1888; Ber., 4. 46, 1871; G. Bredig, Zeit. phys. Chem., 18. 235, 1894; P. T. Cleve, Svenska Vet. Akad. Handl., 10. 9, 1872; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 988, 1932; C. Enebuske, Lunds Arsskr., (2), 22. 2, 1887; H. and A. Euler, Ber., 37. 2394, 1904; C. Gerhardt, Compt. Rend., 31. 241, 1850; C. Grimm, Journ. prakt. Chem., (1), 69. 420, 1856; Liebig's Ann., 99. 67, 1856; Phil. Mag., (4), 12. 301, 1856; A. A. Grinberg, Acta Physicochim., 3. 573, 1935; A. A. Grinberg and D. I. Ryabchikoff, ib., 3. 555, 1935; Compt. Rend. Acad. U.R.S.S., 4, 259, 1936; S. G. Hedin, Om pyridinens Platinabaser, Lund, 1886; F. Hoffmann, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1889; J. Jacobsen, Compt. Rend., 149. 575, 1909; P. Klason, Bihand. Svenska Akad. Handl., (2), 28. 6, 1902; H. Kolbe, Journ. prakt. Chem., (2), 2. 217, 1870; N. S. Kurnakoff, Journ. Russ. Phys. Chem. Soc., 25. 585, 1893; Journ. prakt. Chem., (2), 50. 503, 1894; H. Löndahl, Lunds Arsskr., (2), 24. 4, 1889; (2), 27. 3, 1891; W. Odling, Ber., 3, 682, 1870; M. Peyrone, Ann. Chim. Phys., (3), 12. 193, 1844; (3), 16. 462, 1846; Liebig's Ann., 51. 1, 1844; 55. 205, 1845; F. W. Pinkard, H. Saenger and W. Wardlaw, Journ. Chem. Soc., 1056, 1933; G. Quesneville, Monit. Scient., (3), 6. 667, 1876; J. Reiset, Ann. Chim. Phys., (3), 11. 423, 1844; Liebig's Ann., 52. 262, 1844; Journ. prakt. Chem., (1), 33. 321, 1844; Compt. Rend., 11. 711, 1840; 18. 1100, 1844; C. Rudelius, Lunds Arsskr., (2), 22. 19, 1887; M. G. Saillard, Compt. Rend., 74. 1527, 1872; Bull. Soc. Chim., (2), 18. 254, 1872; P. Schützenberger and M. G. Saillard, ib., (2), 18. 124, 1872; N. Tarugi, Gazz. Chim. Ital., 33. ii. 451, 1903; J. Thomsen, Journ. prakt. Chem., (2), 18. 247

§ 18. Intermediate Oxides

According to S. M. Jörgensen, platinosic oxide, or platinum tritatetroxide, Pt₃O₄, is obtained by heating 1 part of anhydrous sodium chloroplatinite with 4 parts of dry sodium carbonate, until the mixture begins to fuse. The chloroplatinites of potassium and ammonium cannot be substituted for the sodium salt. The black residue which remains after treating the fused mass with water, and with dil. nitric acid, is repeatedly washed by decantation with hot nitric acid, and finally with water acidified with nitric acid, and is then dried at 110°. This oxide is converted into platinum black by formic acid; it is not attacked by mineral acids, not even by boiling aqua regia. It slowly loses oxygen at a red-heat, but it is rapidly reduced in an atm. of hydrogen or coal-gas, even at the ordinary temp. L. Wöhler's observations with this product showed that it is a mixture of platinum monoxide and dioxide, which may by chance approximate to the composition of the assumed Pt₃O₄. According to E. Prost, the enneahydrate, Pt₃O_{4.9}H₂O, is formed as an intermediate stage in the hydrolysis of a soln. of the nitrate, Pt(NO₃)₂.3PtO₂.5H₂O, which when treated with water yields yellow PtO₂.3H₂O; and the filtrate with more water yields Pt₃O₄.9H₂O. Boiling water converts the original salt into Pt₅O₁₁.11H₂O, which is considered to be a mixture

of hydrates, as L. Wöhler also showed this to be the case with the alleged hydrated platinosic oxide.

According to W. L. Dudley,² when spongy platinum is fused with sodium dioxide, and the product washed with water, a yellow substance is obtained which it is supposed to be a sodium salt of platinum sesquioxide, Pt₂O_{3.}2Na₂O; when the alkali of this salt is neutralized with acid, and the product washed. there remains platinum sesquioxide or platinum hemitrioxide, Pt₂O₃.2H₂O. When this dihydrate is heated to 100°, it loses no water; at 385°, it loses 5.22 per cent. of water; and at 450°, it forms a dark brown, amorphous powder of the anhydride, Pt₂O₃. J. J. Berzelius supposed that this oxide is formed when powdered platinum is heated with a mixture of potassium nitrate and hydroxide. W. L. Dudley represented the formation of the compound by $2Pt+3Na_2O_2=Pt_2O_3.2Na_2O+Na_2O$; $Pt_2O_3.2Na_2O + 4CH_3COOH = Pt_2O_3.2H_2O + 4NaC_2H_3O_2$, or Pt₂O₃.2Na₂O+4H₂O=Pt₂O₃.2H₂O+4NaOH. M. Blondel obtained the dihydrate, by heating the trihydrate to 100° to 105°. L. Wöhler found that the product always retains about 2 per cent. of Na2O very tenaciously, and it behaves like a mixture of sodium platinate and platinic hydroxide. W. L. Dudley observed that the dihydrate is reduced to platinum black by boiling sodium hydroxide and alcohol; it is insoluble in nitric acid, sulphuric acid, and cold, dil. hydrochloric acid, but it is dissolved by hot, conc. hydrochloric acid, in the presence of air, with the formation of platinic chloride.

M. Blondel prepared the trihydrate, Pt₂O₃.3H₂O, by adding an excess of alkalilye to a soln. of platinisulphuric acid, Pt₂(OH)₆.(SO₃)₄(OH)₂.8½H₂O, and drying the well-washed product in vacuo. The brown trihydrate loses a mol. of water at 100° to 105°. It dissolves readily in hydrochloric acid to form a mixed soln. of platinous and platinic chlorides; and it also dissolves slowly in sulphuric acid. M. Delépine prepared the pentahydrate, Pt₂O_{3.5}H₂O, as an ochre-yellow insoluble powder, by the prolonged action of cold water on the potassium salt of platinum sulphuric acid, Pt(OH)(HSO₄)(KSO₄). The product retains some alkali, and

sulphate very tenaciously.

L. Wöhler and W. Frey obtained the hydrated hemitrioxide, Pt₂O₂ nH₂O, by treating a soln. of Pt₂O₃.3SO₃.H₂SO₄.11.5H₂O with 2N-NaOH, and boiling the precipitate with a soln. of sodium carbonate, then washing it with sulphuric acid, followed by water, and drying the product in vacuo. F. Martin, and L. Wöhler and F. Martin prepared a hydrate, Pt₂O₃, nH₂O, by adding solid platinum trichloride to a hot soln. of sodium carbonate, or by dissolving the chloride in a 1:1-soln. of potassium hydroxide, and precipitating with acetic acid. The hydrate cannot be prepared by oxidizing platinous hydroxide. The brown hydrate is darker in tint if it be precipitated hot. It is not oxidized by boiling with water through which oxygen is passed. It decomposes when dehydrated in vacuo, so that it is doubtful if the anhydrous oxide, Pt2O3, has been prepared. The hydroxide dissolves in conc. alkali-lye, and in conc. sulphuric acid. Chemically, it behaves like an oxide in an intermediate position between platinous and platinic hydroxides.

REFERENCES.

VOL. XVI. R

S. M. Jörgensen, Journ. prakt. Chem., (2), 16. 344, 1877; L. Wöhler, Zeit. anorg. Chem.,
 40. 450, 1904; Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901;
 E. Prost, Bull. Acad. Belg., (3), 11. 414, 1886; Bull. Soc. Chim., (2), 46. 157, 1886.
 W. L. Dudley, Amer. Chem. Journ., 28. 59, 1902; M. Blondel, Ann. Chim. Phys., (8),
 124, 1905; M. Delépine, Bull. Soc. Chim., (4), 7. 103, 1910; L. Wöhler, Zeit. anorg. Chem.,
 40. 450, 1904; L. Wöhler and W. Frey, Zeit. Elektrochem., 15. 133, 1909; L. Wöhler and
 F. Martin, Ber., 42. 3964, 1909; F. Martin, Vier Oxydationsstufen des Platins, Karlsruhe,
 1909; J. J. Berzelius, Jahresber., 9. 110, 1830.

§ 19. The Higher Oxides of Platinum

Anhydrous platinum dioxide, or platinic oxide, PtO2, was obtained by J. J. Berzelius 1 by gently heating the hydrate—E. von Meyer recommended a protracted heating at 175°, and O. Brunck, at 150°. L. Wöhler added that a complete dehydration without some decomposition is not possible. P. Laffitte and P. Grandadam, and A. Baroni obtained the oxide by heating the metals in oxygen at a high press.—vide platinous oxide. J. J. Berzelius' dioxide obtained by heating the commercial nitrate for 35 days at 250° to 280°, according to L. Wöhler, contained 13.82 per cent. of oxygen when the theoretical amount is 14.1 per cent. R. Adams and co-workers, W. F. Short, W. F. Bruce, and V. Voorhees and R. Adams prepared it by fusing chloroplatinic acid with sodium nitrate at 500° to 550°, and washing the product with water to eliminate the nitrates. It is used as a catalyst in organic syntheses, and it can be reactivated by shaking it with air or oxygen, but there is an accumulation of poison in use which necessitates its purification. E. P. Schoch obtained the dioxide by anodic oxidation. J. Piazza obtained a mixture of platinum and its dioxide at the platinum cathode during an electric discharge in oxygen; and P. Grandadam, by heating the metal in oxygen under press.

G. P. Thomson and co-workers obtained X-radiograms of the dioxide. The black powder, said J. J. Berzelius, loses oxygen when heated. L. Wöhler said that the oxide is completely decomposed into platinum and oxygen at 450° in an atm. of carbon monoxide; at 510° in an atm. of oxygen; and above 300° in an atm. of carbon dioxide. C. Marie also noted that the salt is decomposed at a dull red-heat. I. Wöhler said that the speed of dissociation depends on the proportion of water of hydration. The last traces of oxygen are very difficult to remove by a blast-flame; in air or carbon dioxide the oxygen is not all expelled in a combustion furnace, but it can be removed by heating in hydrogen. According to L. Wöhler and W. Frey, when platinum dioxide is heated at 510° to 515°, in vacuo, until its oxygen-content diminished below that required for the monoxide, the residue contained metallic platinum; and an examination of the residue indicated that when platinum dioxide is heated, it dissociates into the metal and a solid soln. of either the monoxide or sesquioxide in the dioxide. The equilibrium press, are attained too slowly for measurement. The oxides may be heated for days between 100° and 200° above the temp. corresponding with equilibrium without losing oxygen perceptibly. The metal takes up oxygen equally slowly. The dissociation press. of the monoxide and sesquioxide are, however, higher than that of the dioxide. The evolution of oxygen from the dioxide at constant temp, begins slowly, then becomes very rapid, and finally diminishes gradually. The rapid evolution begins at 514° to 520° when the oxygen content of the oxide has fallen to 11.6 to 12 per cent. It is probable that a supersaturated solution of monoxide or sesquioxide in the dioxide is first formed, and when this has reached a certain concentration it decomposes suddenly. The subject was studied by F. Becker. E. von Meyer observed that hydrogen reduces it energetically, and that it oxidizes hydrogen at ordinary temp. L. Wöhler showed that the dioxide oxidizes hydriodic acid; it is insoluble in dil. and cone. hydrochloric acid, and in sulphuric acid; and it is reduced to the monoxide by sulphurous acid, heated on a water-bath, and the product slowly passes into soln. J. Landauer found that sodium thiosulphate colours the dry dioxide black. L. Wöhler observed that the oxide is insoluble in nitric acid, and in aqua regia; and it is not reduced by arsenic trioxide. E. von Meyer said that it oxidizes carbon monoxide at ordinary temp.; and L. Wöhler, that it is not reduced by ether. A soln. of stannous chloride in hydrochloric acid, on a water-bath, slowly reduces the dioxide to the monoxide.

According to L. Schaffner, pure hydrated platinum dioxide cannot be prepared since the product always contains complex salts—presumably adsorption products. N. W. Fischer said that a hydrate is precipitated by magnesium from a soln. of

platinic chloride; C. Marie, that the hydrate is formed by the action of oxidizing agents-acid soln. of potassium permanganate, dichromate, chlorate, or ferrocyanide—on platinum; L. Wöhler, by heating platinic nitrate to constant weight at 380°, boiling the product with conc. nitric acid, and drying it at 380° to constant weight; L. Wöhler and W. Frey, by boiling conc. soln. of platinic chloride and sodium carbonate; A. Rosenheim, by boiling a soln, of platinic chloride supersaturated with sodium hydroxide; and the replacement of the chlorine in hydrochloroplatinic acid, H₂PtCl₆, by OH-groups by treatment with alkali hydroxide was studied by W. Hittorf, and F. Kohlrausch. L. Wöhler boiled platinic chloride with an excess of 2N-NaOH, and neutralized the cold soln, with acetic acid when the hydroxide $H_2Pt(OH)_6$ is precipitated as a yellow powder, which, when heated, turns brown and then black. When the precipitated hydroxide is boiled for a long time, it is converted into the compound PtO_{2.3}H₂O, which, when left over sulphuric acid in a desiccator, is converted into the compound PtO2.2H2O. The latter hydroxide, when heated at 100°, becomes dark coloured, with the formation of the compound PtO2.H2O, which parts with its water with great difficulty. The monohydrate is insoluble in aqua regia and in hydrochloric acid.

M. Blondel, and H. Töpsöe found that the tetrahydrate loses 2 mols. of water slowly at 100° and becomes yellowish-brown; at 120°, another mol. of water is given off; and at 150°, it darkens in colour owing to reduction. These results do not agree with the observations of L. Wöhler, who found that when the white hydrate precipitated from a cold soln, is dried in air, it is coloured straw-yellow or nankeenyellow, and it contains 4 mols. of water; if precipitated from boiling soln., the product is ochre-yellow, and it contains 3 mols. of water, and the same results are obtained if the product is dried a short time over calcium chloride; if dried for a long time over conc. sulphuric acid, or a short time on a water-bath, the product is rose-yellow or amber-brown, and contains 2 mols. of water; and if dried for a long time at 100°, the colour is dark brown or deep black, and it contains 1 mol, of water. The last mol, of water is difficult to remove, for after 10 days at 180°, the product contained 6·3 per cent. of water; after 8 days at 250°, 4·6 per cent.; after 24 hrs. at 410° to 450°, 3 per cent.; after heating in oxygen at 400°, 2.6 per cent.; and it decomposes into its elements when heated in oxygen above 510°. F. Becker was unable to dehydrate the hydrated dioxide without some decomposition. C. Marie also noted that the oxide is decomposed at a dull red-heat.

As just indicated, L. Wöhler obtained the monohydrate, PtO₂. H₂O, from a higher hydrate; and E. von Meyer, by evaporating a mixed soln. of platinic chloride and an excess of sodium carbonate, to dryness, washing the residue with hot water, digesting the solid with dil. acetic acid, and then washing with hot water. The product is black. M. Blondel reported the polymer, (PtO₂.H₂O)₅, to be formed by the action of boiling water for 14 days on (PtO₂)₅.2HCl.9H₂O, and drying the product at 100° to 105°. E. von Meyer reported the hemitrihydrate, PtO₂.1½H₂O, to be formed by drying at 110° the product of the action of sodium carbonate on platinic chloride. H. Töpsöe prepared the dihydrate, PtO_{2.2}H₂O, by heating the higher hydrate at 100°, and it was obtained by L. Wöhler by drying the higher hydrate for a long time over conc. sulphuric acid. J. J. Berzelius observed that alkalies precipitate basic double salts from soln. of most platinic salts, but with platinic nitrate and potash-lye, the hydrate is first precipitated, and, after that, the double salt. L. Pigeon heated a mixture of platinic chloride and sodium hydroxide in a sealed tube for many hours at 180°, and after washing the precipitate with water, dried it in vacuo at ordinary temp. H. Töpsöe evaporated a soln. of platinic chloride mixed with an excess of sodium carbonate to dryness on a water-bath, washed the product with water, then with acetic acid, and finally with hot water. G. C. Wittstein obtained the dihydrate by adding calcium carbonate to a soln. of platinic sulphate, and washing the excess of calcium carbonate from the precipitate by acetic acid, and the calcium sulphate, by water. J. W. Döbereiner obtained the dihydrate by dissolving the alkali from sodium

platinate by means of acetic acid. M. Blondel obtained the polymer, which he called metaplatinic acid, (PtO₂,H₂O)₅, by the action of mineral acids on the salt Na₂O.5PtO₂.9H₂O, and he found it to be sparingly soluble in dil. hydrochloric The dihydrate varies in colour from rust-yellow to amber-brown, and, according to L. Pigeon, the particles are crystalline and polarize light. L. Wöhler obtained the trihydrate, PtO₂.3H₂O, from the higher hydrate as a precipitate from boiling soln.; E. Prost, by adding water to a soln. of platinic nitrate; but L. Wöhler always found the product to contain some basic nitrate, as was also the case with the anodic deposit obtained in the electrolysis of a soln. of platinic nitrate in The colour of the trihydrate ranges from ochre-yellow to nankeenyellow. E. Frémy obtained the tetrahydrate, PtO2.4H2O, by boiling a soln. of platinic chloride for a long time with an excess of sodium hydroxide, and precipitating the hydrate with acetic acid. L. Wöhler, and I. Bellucci employed a similar process. I. Bellucci dissolved the dihydrate in molten potassium or sodium hydroxide, and neutralized the product with acetic acid; and he also neutralized a soln, of the alkali salts—K₂Pt(OH)₆, or Na₂Pt(OH)₆—with acetic acid. M. Blondel treated Pt(OH)₄.2HCl.nH₂O with water in a dialyzer. The colour of the tetrahydrate is white.

L. Wöhler observed that hydrogen does not reduce the monohydrate perceptibly at ordinary temp., but when feebly warmed the reduction proceeds vigorously, and if some platinous oxide is present, such as occurs if the hydrate has been preheated to 400°, the reduction proceeds rapidly at ordinary temp., until it is retarded by the protective action of the platinum formed on the surfaces of the grains. The hydrates lower than the dihydrate make electrolytic gas explode, but the trihydrate only glows in the gas. The decomposition of hydrogen dioxide proceeds slowly in the presence of the hydrated dioxide, and this even in acidic or alkaline boiling soln, when stirred. The freshly-precipitated hydrate was found by W. H. Wahl, C. Marie, and L. Wöhler to be soluble in conc. hydrochloric acid, but after being dried on a water-bath, it is no longer completely soluble. L. Wöhler observed that dissolution occurs immediately if the hydrate has been reduced with stannic chloride, or with sulphurous acid. W. Bersch observed that the dihydrate produces an alkaline reaction with a soln, of potassium iodide, but it has no perceptible action on soln. of potassium chloride or bromide. W. H. Wahl found that the freshly-precipitated hydrate is soluble in sulphuric acid, and L. Wöhler added that if the hydrate has been dried on a water-bath, dissolution is incomplete. C. Marie said that the hydrate is not perceptibly soluble in dil. sulphuric acid-except in the presence of reducing agents like sulphurous acid or alcohol. If the hydrated dioxide be heated with conc. sulphuric acid, it loses water, and darkens in colour. For the compound with ammonia, vide infra, fulminating platinum. W. H. Wahl observed that the freshly-precipitated hydrate is soluble in nitric acid, but L. Wöhler added that after the hydrate has been dried on a water-bath, it becomes insoluble in that acid. W. H. Wahl observed that a dil. aq. soln. of phosphoric acid dissolves a small proportion of the hydrated dioxide in the cold, and much more when heated; the solubility also increases as the conc. of the acid is increased. The hydrated dioxide is soluble in formic acid, and very sparingly soluble in acetic acid. Boiling acetic acid gradually decomposes the hydrated dioxide. J. W. Döbereiner, E. Frémy, and H. Töpsöe said that different reports as to the solvent action of acetic acid are based on differences in the degree of hydration of the specimen under observation. The best solvent for the hydrated dioxide was found by W. H. Wahl to be oxalic acid. Dissolution takes place rapidly even in the cold, and when aided by heat platinic oxalate is formed, and some carbon dioxide is evolved owing to the decomposition of the acid. L. Wöhler also found that if boiled for 4 hrs. with N-soln. of oxalic acid, the hydrated dioxide is reduced to metal. W. Bersch observed no reaction with potassium thiocyanate. R. Adams and co-workers, and F. D. Aguirreche discussed the use of platinic oxide as a catalyst in organic hydrogenations, etc. Dil. aq. soln. of sodium hydroxide,

and, better still, potassium hydroxide dissolve the hydrate at ordinary temp. L. Wöhler found that the hydrated dioxide accelerates the decomposition of hot soln. of potassium permanganate, and when boiled with a conc. soln. of platinic chloride in the presence of acetic acid, the hydrated dioxide is reduced to metal. H. Kautsky and W. Baumeister studied the adsorption of the $[Pt(OH)_6]$ "-ions by thorium hydroxide gel; and A. Rosenheim, the action of platinic hydroxide on tungstates.

B. Gerdes prepared **platinic hexamminohydroxide**, [Pt(NH₃)₆ (OH)₄], by boiling the chloride with an eq. quantity of silver oxide, and cooling the filtered liquid. The white hexagonal plates are sparingly soluble in water; the soln. has an alkaline reaction; it decomposes ammonium salts; absorbs carbon dioxide

from the air to form a carbonate; and forms salts with acids.

C. Gerhardt prepared **platinic tetrahydroxydiammine**, [Pt(NH₃)₂(OH)₄], by the action of ammonia on a boiling soln. of the corresponding nitrate, cooling the liquid, washing the precipitate, and drying at 130°. The yellow, microcrystalline powder is not changed at 130°; it decrepitates at a higher temp. losing water and ammonia, and leaving platinum behind. It is scarcely soluble in water, but soluble in hot, dil. acids; boiling potash-lye does not dissolve or decompose the compound. It was studied by W. Odling, C. Weltzien, H. Kolbe, C. Grimm, and P. T. Cleve. B. E. Dixon prepared silver platinic hydroxytriamidodiammino-

hydroxide, $[Ag_3{Pt(NH_3)_2(NH_2)_3(OH)}_2](OH)_3$.

J. Jacobsen prepared platinic decahydroxyammine, $[NH_3Pt(OH)_5]_2$, by pouring an excess of ammonia into a soln. of dichloroplatinic acid. The liquid turns a dark colour, and finally precipitates a brown, flocculent mass containing no chlorine and resembling ferric hydroxide. Washed with boiling water until free from ammonia and dried, this precipitate presents a conchoidal structure. If dried at 100° and then over sulphuric acid, it rehydrates with such avidity that the particles jump about. When it is heated gently above 250°, the compound blackens, and finally explodes with some violence, giving spongy platinum, nitrogen, oxygen, and water vapour. If pyridine is employed in place of ammonia, a similar detonating compound is formed, namely, platinic decahydroxypyridine, $C_5H_5N[Pt(OH)_5]_2$. The fulminating compound is easily soluble in hydrochloric acid, and its composition corresponds with $\{Pt(OH)_5\}_2(NH_3)$, it loses water when heated at 220°, 6 mols, being removed.

The dihydrate $PtO_2.2H_2O$ can be formulated as the tetrahydroxide, $Pt(OH)_4$, and M. Blondel added that since two of the hydroxyl groups are basic, and two acidic, the dihydrate can be regarded as a **dihydroxyplatinic acid**, $H_2PtO_2(OH)_2$, forming in the one case potassium platinate, $K_2PtO_2(OH)_2.2H_2O$, and in the other case $H_2PtO_2(SO_4).3H_2O$. This subject was discussed by I. Bellucci, and H. Töpsöc. I. Bellucci regarded the tetrahydrate as a **hexahydroxyplatinic acid**, $H_2Pt(OH)_6$, in which the six chlorine atoms of hydrochloroplatinic acid, H_2PtCl_6 , have been replaced by six hydroxyl-groups. M. Blondel said that before drying, the tetrahydrate contains the group $Pt(OH)_4$, and after drying it is not to be regarded as $Pt(OH)_4.2H_2O$, but rather as $H_2Pt(OH)_6$. S. W. Pennycuik observed the acid

in soln, of colloidal platinum.

W. J. Pope and S. J. Peachey prepared trimethyl platinic hydroxide, $(CH_3)_3Pt(OH)$, by boiling an acetone soln. of the iodide with silver hydroxide.

Several observers have noted the formation of **potassium platinates**, thus, H. Davy,² and K. A. Hofmann and H. Hiendlmaier found that the yellow powder obtained by the combustion of a platinum-potassium alloy behaved like a platinate; and S. Tennant obtained by the action of fused potassium nitrate—(i) a brown insoluble product containing a small proportion of potassium oxide, and (ii) a brown soluble product. J. J. Berzelius added that when potassium nitrate and hydroxide are fused with platinum, and the product washed with water, there remains a partly purple, and partly yellow oxide which dissolves with difficulty in hydrochloric acid leaving a residue of platinum. When potassium chloroplatinate is boiled with

an excess of potash-lye, there is formed a yellow liquid which dries to a scarlet mass. When this product is heated not quite to redness, and the excess of potassium hydroxide and chloride are washed out, there remains a rust-yellow, colloidal platinate which is coagulated by the addition of a salt. It contains 7 per cent. of potassium oxide; hydrochloric acid, and hot sulphuric and nitric acids remove the alkali; conc. hydrochloric acid slowly converts it into potassium chloroplatinate, and platinic chloride; at a red-heat, the platinate passes into platinite by the loss of oxygen; it detonates violently when heated with combustible matters.

M. Blondel dissolved freshly-precipitated, hydrated platinum dioxide in conc. potash-lye, evaporated the decanted liquor over sulphuric acid, and dried the vellow crust in air and then in vacuo. The composition agreed with that of potassium platinate, K₂PtO₃.3H₂O. When an acid is added to the aq. soln. of potassium platinate it precipitates hydrated platinum dioxide. The soln, is stable when concentrated and in the presence of an excess of alkali-lye. When dried at 110°, potassium platinate passes into potassium hexahydroxyplatinate, K₂Pt(OH)₆. 1. Bellucci and N. Parravano reported that the golden yellow crystals, obtained by seeding the aq. soln. with the corresponding stannic salt, are trigonal, with the axial ratio a: c=1:1.9952, and $\alpha=69^{\circ}$ 11' 14". The (111)-cleavage is good: and the double refraction is positive. The salt loses 0.30 per cent. of water at 160°; 0.37 per cent., at 200°. P. Niggli and W. Nowacki, and H. Seifert studied the crystals. According to I. Bellucci, decomposition begins about 160°, and at a higher temp. the salt decomposes into potassium hydroxide and platinum. The salt forms a very alkaline soln. with water, and the electrical conductivity of a soln. containing an eq. of the salt, $\frac{1}{2}K_2Pt(OH)_6$, in v litres of water at 25°, is:

$$v$$
 . . 32 64 128 256 512 1024 λ . . 93·7 97·6 102·1 105·5 109·6 113·6 $-\lambda_{cr} = 117\cdot4$

The transport number of the anion $Pt(OH)_6$ is 43·1. Acetic acid precipitates $H_2Pt(OH)_6$ from the aq. soln.; and silver and thallium nitrates precipitate the corresponding salts. The salt is insoluble in alcohol. M. Blondel, and I. Bellucci prepared sodium hexahydroxyplatinate, $Na_2Pt(OH)_6$, in a similar manner. When the clear, alkaline soln. is kept a few days it becomes colloidal, and precipitates $Na_2O.3PtO_2.6H_2O$; and if the soln. is dialyzed, it forms a soln. which on evaporation yields insoluble sodium pentaplatinate. I. Bellucci prepared silver hexahydroxyplatinate, $Ag_2Pt(OH)_6$, by adding an excess of a soln. of silver nitrate to a soln. of the potassium salt, washing the precipitate by decantation, and drying it on a porous tile; at 100° , the pale yellowish-white powder becomes superficially brown when exposed to light for a long time. It is insoluble in water; acetic acid precipitates $H_2Pt(OH)_6$ from the aq. soln. The aq. soln. can be washed without decomposition. I. Bellucci also prepared thallous hexahydroxyplatinate, $Tl_2Pt(OH)_6$, by the method employed for the silver salt.

G. Rousseau prepared two sodium platinates with Na₂O: PtO₂: H₂O= 2.33:87.02:10.65, and 5.34:86.69:7.97.He said: amorphous sodium platinate, formed by the action of platinic chloride on sodium hydroxide, does not crystallize even at a temp. sufficient to volatilize the excess of alkali. The crystallized salt can, however, readily be obtained by heating a mixture of equal parts of sodium hydroxide and chloride in a platinum crucible at the m.p. of copper for 2 hrs. In order to avoid the destruction of the crucible, it is advisable to add finely-divided platinum to the mixture. If the platinate which forms is continually stirred into the molten mass, it separates in brownish-yellow, microscopic lamellæ, which have a feeble action on polarized light and dissolve readily in hydrochloric acid. If, however, the platinate is allowed to collect in a ring at the surface of the fused mass, it forms much larger reddish-brown hexagonal lamellæ, which dissolve with difficulty in hydrochloric acid. These platinates become anhydrous at 200° to 300°, and at a dull-red heat decompose with separation of

metallic platinum and sodium hydroxide. The stability of the platinates is of the same order as that of the manganates and ferrates, and the composition of the latter is almost identical with that of the corresponding platinum compounds.

M. Blondel found that red, insoluble scales of sodium metaplatinate, or sodium pentaplatinate, Na₂O.5PtO_{2.9}H₂O, are formed when a clear, alkaline soln. of sodium hexahydroxyplatinate is dialyzed for some days, and then evaporated over sulphuric acid, and dried in vacuo. M. Blondel also found that if the clear, alkaline soln. of the hexahydroxyplatinate is kept for some days, it becomes colloidal, and then deposits reddish-yellow, pulverulent sodium triplatinate, Na₂O.3PtO₂.6H₂O. H. G. Söderbaum obtained the same salt by melting sodium chloroplatinate with an equal weight of sodium hydroxide, extracting the cold mass with water, neutralizing the liquid with dil. hydrochloric acid to precipitate the platinate, washing the product by suction, and drying it by pressure between filter-paper; and J. W. Döbereiner exposed a clear mixed soln, of sodium carbonate and hydrochloroplatinic acid to sunlight for some days, or heated the mixed soln, to 100°, and obtained a reddish-yellow, pulverulent, partly crystalline precipitate of the triplatinate. If the soln, of the two salts are used in as concentrated a state as possible, the mixture boiled down to dryness, and the residue washed with water, a denser precipitate is obtained, having more of an ochre-yellow colour. J. W. Döbereiner said that at a red-heat the salt first gives off water, afterwards oxygen gas, and leaves a black residue, from which the soda may be dissolved out by water. The residual black powder appears to be a mixture of platinum and platinic oxide, since hydrochloric acid extracts platinic oxide. Formic acid, with the aid of heat, converts sodium platinate into platinum black, causing at the same time a brisk evolution of carbon dioxide and formation of sodium formate. Heated ag, soln, of oxalic acid dissolve sodium platinate with evolution of carbon dioxide, forming a dark liquid, which, on cooling, first becomes green and then dark blue, and deposits copper-coloured needles of platinous oxalate. Acetic acid withdraws all the soda from sodium platinate together with a small quantity of platinic oxide, and leaves ochre-yellow hydrated platinic oxide. Dil. nitric acid dissolves it easily and completely, forming a deep yellow liquid, which forms, with nitrate of silver, a yellow precipitate, soluble in nitric acid. Dil. oxygen-acids extract the soda without dissolving the platinic oxide; from the denser ochre-yellow compound, strong nitric acid dissolves out nothing but soda.

Platinum is attacked by the alkaline earth oxides—by calcium oxide least, and by barium oxide most; platinum crucibles are attacked by fused barium nitrate. J. J. Berzelius mixed a soln. of a platinic salt with a large excess of baryta and obtained barium platinate as a light yellow powder which at a red-heat gives a mixture of baryta and platinum. G. Rousseau observed that when barium oxide, mixed with an equal quantity of the chloride or bromide, is heated for several hours at 1100° in an open platinum crucible, a considerable quantity of crystallized barium platinate is formed. It has the composition 3BaO.PtO2, and is more readily obtained in crystals by first producing the amorphous platinate by heating platinic chloride with barium oxide, and then adding a sufficient quantity of barium chloride or bromide and heating at the melting point of copper. alkalinity of the mixture has great influence on the crystallization. The crystals are prisms with hexagonal bases, and are insoluble in acetic acid, but dissolve in hydrochloric acid. At an orange-red heat, in presence of barium chloride, the platinate decomposes and metallic platinum separates. If the proportion of barium oxide employed is less than 30 per cent., the product is barium platinate, BaPtO₃. H. Töpsöe obtained the tetrahydrate, BaPtO₃.4H₂O, by boiling a mixture of a soln. of hydrochloroplatinic acid and barium hydroxide. The precipitate contains some chloride. Dil. soln. furnish yellowish-white scales, and conc. soln., straw-yellow, microscopic, plumose or stellar crystal aggregates. The salt is not changed at 100°, but at 300° to 400° it forms the dark brown monohydrate, BaPtO3.H2O, which is insoluble in dil. nitric acid. The tetrahydrate is sparingly soluble in water,

baryta water, or soda-lye; it is soluble in acids, but cold acetic acid has no action, whilst the hot acid forms barium acetate and hydrated platinum dioxide.

For the tin platinates, vide 7. 46, 14; the vanadium platinates, 9. 54, 6; chromium platinates, 11. 60, 15 and 16; the molybdenum platinates, 11. 61, 11; and the tungsten platinates, 11. 62, 12.

According to E. Prost,³ an oxide, Pt₅O₁₁.11H₂O, is obtained by boiling a soln. of hydrated platinum dioxide in conc. nitric acid. L. Wöhler could not prepare this product, and considered it to be a mixture of different hydrated oxides.

L. Wöhler 4 and co-workers, C. Marie, M. le Blanc, and R. Ruer showed that the oxide film which was observed by F. Kohlrausch to form on the anode during the electrolysis of a soln. of platinic chloride is possibly platinum trioxide, PtO3; and that the same film is formed when the metal becomes passive. F. Haber and S. Grinberg showed that it liberates iodine from potassium iodide. According to L. Wöhler and F. Martin, when the yellow soln. of hydrated platinum dioxide in 2N-KOH is oxidized anodically whilst the soln, is well-cooled, the anode soon becomes covered with a golden yellow, amorphous deposit, which peels off in thin, silky plates. It is potassium platinic decoxide, K₂O.3PtO₃. The trioxide can be obtained from this salt by treatment with ice-cold 0.5N-acetic acid. The reddishbrown product contained slightly less oxygen than that necessary for the trioxide, owing to the fact that it readily parts with some of its oxygen as soon as all the alkali has been removed. On keeping, the percentage of oxygen gradually decreases, but it never falls to that necessary for the dioxide, probably because a solid solution of the trioxide in the dioxide is formed. Platinum trioxide is not acted on by dil. sulphuric, nitric, or acetic acids. It slowly liberates chlorine from dil. hydrochloric acid. Sulphurous acid dissolves it with the formation of a colourless complex. Conc. sulphuric and nitric acids slowly decomposed it with the formation of the dioxide. On gently heating, it gives the dioxide. In the cold it has no action on alcohol or acetic acid. The oxidation which takes place on warming is due to the dioxide which is formed. It does not decompose into hydrogen dioxide. and must therefore be classed as a polyoxide or peroxide of platinum of the constitution

$$O = Pt \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

G. Grube,⁵ in his study of the behaviour of the oxygen electrode, found that potentials from 1.5 volts downwards are due to solid soln. of platinum trioxide in platinum dioxide, or of platinum dioxide in platinum monoxide. Since, however, platinum electrodes can be polarized up to potentials of 2 volts, G. Grube suggested that an unknown platinum tetroxide, PtO₄, is formed.

REFERENCES.

¹ R. Adams and R. L. Shriner, Journ. Amer. Chem. Soc., 45. 2171, 1923; R. Adams, V. Voorhees and R. L. Shriner, Organic Syntheses, 8. 92, 1928; F. D. Aguirreche, Anal. Fis. Quim., 25. 411, 1927; A. Baroni, Atti Accad. Lincei, (7), 21. 756, 1936; F. Becker, Ueber die Dissoziation der Oxyde des Iridiums und des Platins, Darmstadt, 1927; I. Bellucci, Zeit. anorg. Chem., 44. 182, 1905; Atti Accad. Lincei, (5), 12. ii, 635, 1904; Gazz. Chim. Ital., 35. i, 163, 1905; W. Bersch, Zeit. phys. Chem., 8. 394, 1891; J. J. Berzelius, Schweigger's Journ., 7. 58, 1813; M. Blondel, Recherches sur quelques combinations du platine, Paris, 1905; Ann. Chim. Phys., (8), 6. 103, 1905; W. F. Bruce, Journ. Amer. Chem. Soc., 58. 687, 1936; O. Brunck, Zeit. anorg. Chem., 10. 247, 1895; P. T. Cleve, Svenska Vet. Akad. Handl., 10. 9, 1872; B. E. Dixon, Journ. Chem. Soc., 2948, 1932; J. W. Döbereiner, Pogg. Ann., 28. 181, 1833; N. W. Fischer, Das Verhältniss der chemischen Verwandschaft zur galvanischen Electrizität in Versuchen dargestellt, Berlin, 1830; E. Frémy, Compt. Rend., 31. 893, 1850; Ann. Chim. Phys., (3), 31. 478, 1850; B. Gerdes, Ueber die bei Elektrolyse des carbaminsauren und kohlensauren Ammons mit Wechselströmen und Platinelektroden entstehenden Platinbasen, Leipzig, 1882; C. Gerhardt, Compt. Rend. Trav. Chim., 273, 1850; Liebig's Ann., 76. 311, 1850; Journ. prakt. Chem., (1), 51. 351, 1850; (1), 53. 345, 1851; P. Grandadam, Ann. Chim. Phys., (11), 4. 83, 1935; C. Grimm, ib., (1), 69. 420, 1856; Phil. Mag., (4), 12. 301, 1856; Liebig's Ann., 99. 67, 1856; W. Hittorf,

Zeit. phys. Chem., 28. 547, 1899; J. Jacobsen, Compt. Rend., 149. 575, 1909; K. Kautsky and W. Baumeister, Ber., 64. B, 2446, 1931; F. Kohlrausch, Zeit. phys. Chem., 33. 267, 1900; H. Kolbe, Journ. prakt. Chem., (2), 2. 217, 1870; P. Laffitte and P. Grandadam, French Pat. No. 785082, 1935; Bruxelles Congr. Chem. Ind., 15. 339, 1936; J. Landauer, Ber., 5. 406, 1872; C. Marie, Journ. Chim. Phys., 6. 596, 1908; Compt. Rend., 146, 477, 1908; E. von Meyer, Journ. C. Marie, Journ. Chem. 1 135., 16. 330, 1905; Compr. Rena., 140. 471, 1905; F. Von Meyer, Journ. prakt. Chem., (2), 14. 130, 1876; W. Odling, Proc. Roy. Inst., 6. 176, 1872; Chem. News, 21. 269, 289, 1870; Zeit. Chem., (2), 6. 435, 1870; Ber., 3. 682, 1870; S. W. Pennyouik, Journ. Chem. Soc., 2108, 1928; J. Piazza, Anal. Soc. Cient. Santa Fe, 6. 23, 1934; L. Pigeon, Recherche chimique et calorimetrique sur quelques combinaisons haloïdes du platine, Paris, 1893; Ann. Chim. Phys., (7), 2. 481, 1894; W. J. Pope and S. J. Peachey, Journ. Chem. Soc., 2007, 75. 571, 1909; E. Prost, Bull. Acad. Belg., (3), 11. 414, 1886; Bull. Soc. Chim., (2), 48. 157, 1886; A. Rosenheim, Ber., 24. 2397, 1891; L. Schaffner, Liebig's Ann., 51. 182, 1844;
E. P. Schoch, Journ. Phys. Chem., 14. 665, 1910; W. F. Short, Journ. Soc. Chem. Ind., 55. 14, T, 1936; G. P. Thomson, N. Stuart and C. A. Murison, Proc. Phys. Soc., 45. 381, 1938. 55. 14, 1, 1936; G. P. Thomson, N. Stuart and C. A. Murison, Proc. Phys. Soc., 45, 381, 1933; H. Töpsöe, Tids. Fys. Kemi, 7, 321, 1870; Ber., 3, 463, 1870; V. Voorhees and R. Adams, Journ. Amer. Chem. Soc., 44, 1397, 1922; W. H. Wahl, Journ. Franklin Inst., 100, 68, 1890; Chem. News, 62, 33, 40, 1890; C. Weltzien, Liebig's Ann., 97, 27, 1856; G. C. Wittstein, ib., 44, 276, 1842; Repert. Pharm., 74, 43, 1841; L. Wöhler, Ber., 36, 3496, 1903; Die pseudokalalytische Saueraktivierung des Platins, Karlsruhe, 1901; Zeit. anorg. Chem., 40, 449, 1904; Zeit. Elektrochem., 15, 770, 1909; L. Wöhler and W. Frey, ib., 15, 2132, 1909; L. Wöhler and W. Frey, ib., 15, 2132, 1909; L. Wöhler and F. Martin, id., 45, 701, 1909; L. Wöhler and G. Kirs. Phys. 132, 1909; L. Wöhler and F. Martin, ib., 15. 791, 1909; G. Wyrouboff, Ann. Chim. Phys., (8), 13. 549, 1908; F. Zambonini, Zeit. Krist., 41. 56, 1906.

 13. 549, 1908; F. Zambonini, Zeit. Krist., 41. 56, 1906.
 1. Bellucci, Gazz. Chim. Ital., 35. i. 163, 1905; 35. ii, 334, 1905; Zeit. anorg. Chem., 44.
 173, 1905; Atti Accad. Lincei, (5), 12. ii, 635, 1904; I. Bellucci and N. Parravano, ib., (5), 13. ii, 307, 1904; (5), 14. i, 462, 1905; J. J. Berzelius, Jahresber., 9. 110, 1830; Lehrbuch der Chemie, Dresden, 2. i, 177, 1826; M. Blondel, Ann. Chim. Phys., (8), 6. 90, 1905; Recherches sur quelques combinaisons du platine, Paris, 1905; H. Davy, Phil. Trans., 98. 1, 1808; J. W. Döbereiner, Pogg. Ann., 28. 180, 1833; Liebig's Ann., 8. 189, 1833; 14. 21, 1835; K. A. Hofmann and H. Hiendlmaier, Ber., 39. 3184, 1906; P. Niggli and W. Nowacki, Zeit. Kryst., 86. 65, 1933; G. Rousscau, Compt. Rend., 109. 145, 1889; H. Seifert, Zeit. Kryst., 82. 15, 1932; H. G. Söderbaum, Oefvers. Vet. Akad. Förh., 42. 10, 1885; S. Tennant, Phil. Trans., 87. 219. 1797; Scherer's Journ... 1. 308, 1799; Journ. Phys., 51, 157, 1800; H. Töpsöe, Tids. 87. 219, 1797; Scherer's Journ., 1. 308, 1799; Journ. Phys., 51. 157, 1800; H. Töpsöe, Tids. Fys. Kemi, 7. 321, 1868; Ber., 3. 462, 1870.

E. Prost, Bull. Accad. Belg., (3), 11. 414, 1886; Bull. Soc. Chim., (2), 46. 157, 1886;
 L. Wöhler, Zeit. anorg. Chem., 40, 433, 1904.

⁴ L. Wöhler and F. Martin, Ber., 42. 3326, 1909; F. Martin, Vier Oxydationsstufen des Platins, Karlsruhe, 1909; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; Zeit. Elektrochem., 15. 771, 1909; Zeit. anory. Chem., 40. 424, 1904; L. Wöhler and W. Frey, Zeit. Elektrochem., 15. 132, 1909; F. Haber and S. Grinberg, Zeit. anory. Chem., 18. 40, 1898; M. le Blanc, Lehrbuch der Elektrochemie, Leipzig, 261, 1906; R. Ruer, Zeit. Elektrochem., 11. 674, 1905; 14. 308, 1908; F. Kohlrausch, Wied. Ann., 63. 430, 1897; C. Marie, Compt. Rend., 145. 117, 1907; 146. 475, 1908.

^b G. Grube, Zeit. Elektrochem., 16, 632, 1910.

§ 20. Platinum Fluorides

- H. Moissan 1 found that fluorine free from hydrogen fluoride does not attack platinum below 100°, and combination does not readily occur below 500° to 600°. If hydrogen fluoride is present, the reaction occurs more readily even in the case of liquid hydrogen fluoride saturated with fluorine. He prepared platinum difluoride, or platinous fluoride, PtF2, together with the tetrafluoride, by heating platinum wire to 500° or 600° in a current of fluorine. C. Poulenc observed that some difluoride is formed when ammonium fluoplatinate is heated over 300°. According to H. Moissan, the tetrafluoride is soluble in water, but the difluoride remains attached to the surface of the metal as an insoluble, green layer. On ignition, it decomposes into fluorine and platinum. H. Moissan prepared platinous phosphopentafluoride.
- J. J. Berzelius reported that when an aq. soln. of potassium fluoride is added to an aq. soln. of platinic chloride, free from an excess of acid, as long as a precipitate continues to form, and the filtered liquid evaporated, platinic fluoride may be extracted from the mass by means of alcohol—potassium chloroplatinate remains. The alcoholic liquid mixed with water is then evaporated. On cooling to a low temp., a non-crystalline, yellow, transparent mass is formed which is completely soluble; and if a temp. of 60° be employed, the mass becomes dark brown, and

when extracted with water leaves a basic salt undissolved. S. G. Hedin reported

the possible existence of platinous difluorobispyridine, [Pt(C5H5N)2F2].

C. Poulenc observed that platinum tetrafluoride or platinic fluoride, PtF₄, cannot be obtained by heating platinum tetrachloride in hydrogen fluoride; since, according to W. Jeroch, and O. Ruff and W. Jeroch, only dark brown, anhydrous platinic chloride is formed below 200°, and over 220°, the platinic chloride decomposes into its constituent elements. Nor was platinum tetrafluoride obtained by heating platinum tetrachloride with molten potassium hydrofluoride at 280°. H. Moissan prepared the tetrafluoride by heating a bundle of platinum wire to dull redness in a platinum or fluorspar tube through which a current of fluorine is passed. As soon as combination is complete, the product is transferred to a dry tube. G. Gorc observed that some of this salt is formed when silver fluoride is melted with iodine in a platinum vessel; and O. Ruff and J. Zedner, when fluorine is passed over columbium in a platinum vessel.

Platinum tetrafluoride furnishes a deep red, fused mass, or chamois-yellow crystals resembling those of anhydrous platinum tetrachloride. The salt is extremely hygroscopic, and cannot be kept for a long time in a dried but corked tube. It decomposes at a red-heat, forming crystals of platinum; and when heated in a glass vessel, the glass is energetically decomposed to form platinum and silicon tetrafluoride. When treated with a small proportion of water, a tawny coloration is first produced, then heat is rapidly developed, and the salt is decomposed with the formation of hydrofluoric acid and hydrated platinum dioxide. soln. are more stable, but they behave similarly if the liquid is warmed. hydrolysis shows why platinic fluoride cannot be prepared by the action of hydrofluoric acid on hydrated platinum dioxide; and renders it questionable if J. J. Berzelius' preparation was what it was thought to be. The fact that fluorine containing hydrogen fluoride attacks platinum more vigorously than fluorine alone; and the existence of double salts with the alkali metals made H. Moissan suggest that possibly a platinic hydrofluoride, PtF4.nHF, can be formed. Platinic fluoride forms crystalline compounds with the fluorides and chlorides of phosphorus and boron.

J. J. Berzelius obtained a dark brown, gummy mass from a mixture of his platinum fluoride and ammonium fluoride. The product was resolved by water into a soluble acidic salt, and an insoluble basic salt. It was insoluble in alcohol. According to C. Poulenc, there is a state of equilibrium between ammonium fluoride and platinic chloride in the molten state, some ammonium fluoplatinate, probably (NH₄)₂PtF₆, is formed, but it cannot be separated from the chloroplatinate which is associated with it. C. Poulenc obtained it by the action of ammonium fluoride on hydrated platinum dioxide, and the compound is not decomposed when heated to 300° in a current of hydrogen fluoride, but it is decomposed at a higher temp. to form platinum, platinum tetrafluoride, etc.

J. J. Berzelius obtained potassium fluoplatinate, K₂PtF₆, by treating a soln. of potassium fluoride with less than an eq. quantity of hydrochloroplatinic acid, decanting the liquid from the precipitated potassium chloroplatinate, and evaporating. The dark brown, deliquescent salt is insoluble in alcohol. H. I. Schlessinger and M. W. Tapley obtained it by heating finely-divided platinum with the lead salt 3KF.HF.PbF₄, and they studied the absorption spectra. J. J. Berzelius also reported sodium fluoplatinate to be a dark brown, gum-like mass which is hydro-

lyzed by water into a soluble acidic salt, and an insoluble basic salt.

REFERENCES.

J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. ii, 953, 1826; Schweigger's Journ., 7.
 1816; 34. 81, 1821; G. Gore, Chem. News, 23. 13, 1871; S. G. Hedin, Om pyridinens platinabaser, Lund, 1886; Lunds Arsskr., (2), 22. 3, 1887; W. Jeroch, Versuche zur Darstellung von Edelmetallfluoriden, Berlin, 1906; H. Moissan, Compt. Rend., 109. 807, 1889; Bull. Soc. Chim., (3), 5. 454, 1891; Ann. Chim. Phys., (6), 24. 282, 1891; C. Poulenc, ib., (7), 2. 74, 1894; O. Ruff and W. Jeroch, Ber., 46. 922, 1913; O. Ruff and J. Zedner, ib., 42. 493, 1909; H. I. Schlessinger and M. W. Tapley, Journ. Amer. Chem. Soc., 46. 276, 1924.

§ 21. Platinum Mono-, Di-, and Tri-Chlorides

M. C. Lea 1 said that when potassium chloroplatinate (12 grms.) is heated in a covered vessel, on a water-bath, with potassium hydrosulphite (9 grms.) and water (160 c.c.) for 10 to 12 hrs., the reduction is complete, and a red salt crystallizes out on evaporation. Similar results were obtained by heating potassium chloroplatinite (9 grms.) with potassium hypophosphite (1 grm.) and water (300 c.c.), at 80° to 90°, for 18 to 20 hrs. The completion of the action is shown by the pure ruby colour of the soln., the least shade of orange indicating the presence of chloroplatinite. The first method is the safest, as the reduction cannot go beyond the chloroplatinite, but in the second method, the red salt separates more easily and completely, and, with care, very good results are obtained. If, when reducing with potassium hypophosphite, the action is continued after complete conversion into the red salt, the solution rapidly changes to dark brown. Hydrochloric acid has no effect on this solution, nitric acid decolorizes it, potash causes a brown precipitate soluble in excess of the precipitant, and ammonia a brown precipitate insoluble in excess. This compound could not be isolated, but M. C. Lea considered it to be platinum subchloride. According to S. Streicher,² and L. Wöhler and S. Streicher, platinum monochloride, PtCl, is formed when brownish-green platinum dichloride is kept between 581° to 583°. This is a very narrow range of stability. It is formed along with platinum, and appears as a pale vellowish-green powder. The strong sublimation of the chloride at 500°, and the simultaneous lowering of the partial press, of the chlorine by admixture with oxygen or carbon dioxide decreases as the tetrachloride passes into dark green trichloride to brownish-green dichloride, and to a mixture of yellowish-green monochloride and metal. mol. heat of formation is (Pt,Cl)=16·10 Cals. E. Sonstadt said that a hydrated monochloride, PtCl.nH₂O, is formed when a very dil. soln. of potassium chloroplatinate is exposed to direct sunlight; or by heating a soln, of 1 part of potassium chloroplatinate in 10,000 parts of water for some days. The reaction is represented: $K_2PtCl_6=2KCl+PtCl_4$, followed by $2PtCl_4+6H_2O=2PtCl+6HCl+3H_2O_2$. free acid present in platinum tetrachloride, when used alone, prevents the reaction. The hydrated salt, when treated on the water-bath with conc. soda-lye, turns brown, and dissolves to a slight extent. But the brown residue is only partly dehydrated, and recovers its original colour after washing and exposure. The soda soln. deposits the unchanged salt on dilution and long exposure to the air. It dissolves readily in hydrochloric acid; slightly in hot dil. sulphuric acid, apparently without decomposition; in moderately dil. nitric acid, used in large proportion, it dissolves to a deep brown liquid, which, evaporated to dryness on the water-bath until no acid odour is perceptible, leaves a dark brown residue. This dissolves in hot water to a clear dark brown liquid, which, on further heating, suddenly deposits the whole of the original salt, less any impurities present, which remain in the soln. The precipitate, when collected on a filter, is deeper coloured than before, being of an orange tint. The filtrate is free from platinum; but on continued washing with water, the salt dissolves slightly, and the filtered liquid becomes clouded. P. C. Ray and co-workers prepared platinum ethylsulphinomonochloride, $PtCl.(C_2H_5)_2S$, or $\{(C_2H_5)_2S:PtCl\}_2$; platinum ethylsulphinobenzylaminomonochloride, $Pt_2Cl(CH_2.C_6H_5.NH_2)(C_2H_5)_2S$; platinum ethylsulphinobenzylaminomonochloride, $Pt_2Cl(CH_2.C_6H_5.NH_2)(C_2H_5)_2S$; platinum ethylsulphinobenzylaminomonochloride, $Pt_2Cl(CH_2.C_6H_5.NH_2)(C_2H_5)_2S$; sulphinobispyridinomonochloride, $Pt_2Cl(C_5H_5N)_2(C_2H_5)_2S$; ethylsulphinopyridinomonochloride, $2Pt_2Cl(C_5H_5N).(C_2H_5)_2S$; platinum hemiand ethylsulphinoethylaminochloride, PtCl(C₂H₅.NH₂).(C₂H₅)₂S.

P. Schützenberger 3 noted that some platinum dichloride or platinous chloride, PtCl₂, is formed when spongy platinum is heated in dry chlorine at 240° to 250°; there is scarcely any action at 200°; and the yield is no greater at 300°. According to L. Troost and P. Hautefeuille, chlorine attacks platinum at 1400° to form platinum dichloride which can be condensed in a cooled tube before the dichloride has time to decompose. The phenomenon was discussed by P. Duhem. L. Pigeon

heated platinum tetrachloride to 400° in a current of chlorine, and C. Gordon heated hydrated platinum tetrachloride on a sand-bath until the colour changed from dark brown to dark grey. L. Wöhler and F. Martin preferred platinum tetrachloride for this preparation in preference to hydrochloroplatinic acid. J. J. Berzelius recommended evaporating the hydrochloroplatinic acid to dryness, and, with frequent stirring, raising the temp. to about 232°, and, added L. N. Vauquelin, washing out the undecomposed acid with water. G. Magnus employed a similar process, and said that if the heating be insufficient to decompose all the platinum tetrachloride, the residue dissolves completely in water, forming a dark brown, nearly opaque liquid, because the platinum dichloride is rendered soluble through the medium of the tetrachloride. On evaporating the soln. the monochloride is deposited in the form of a brown powder, the quantity being the greater, the more the liquid is concentrated; and on evaporating to dryness and digesting in cold water, the whole of the brown powder remains undissolved. This powder, notwithstanding its different colour, has the same composition as the greenish-grey platinum dichloride, but dissolves much more easily in hydrochloric acid. After the liquid containing the platinum tetrachloride has been decanted off, the brown powder is no longer soluble in water, but dissolves again in the decanted liquid, on the application of heat and the addition of water. K. Seubert observed that the product is contaminated with oxychloride. F. Hoffmann recommended heating the hydrochloroplatinic acid at 340° in a current of carbon dioxide; W. A. Shenstone and C. R. Beck said at 357° in a current of hydrogen chloride; L. F. Nilson recommended 300°; and L. Pigeon, at 357° in a vessel containing potassium hydroxide and in vacuo. K. Scubert dissolved spongy platinum in conc. hydrochloric acid while passing a current of chlorine through the liquid heated on a sand-bath, evaporated the dark brown soln., and heated it to 230° to 240°. F. Gramp obtained yellow crystals of the dichloride by the action of iodine on a soln. of platinum tetrachloride. M. Katayama noted the anodic formation of platinum dichloride in the warm cell Pb: PbCl_{2solid}: Cl(Pt anode).

The colour of these preparations ranges from dark olive-green to greenish-grey or greyish-green; but if the product is contaminated with platinic chloride, W. Peters said that the colour is greyish-brown. The product is pulverulent, but F. Gramp obtained it in yellow crystals. The colour was discussed by W. Ackroyd. V. M. Goldschmidt, and L. Pauling discussed the lattice structure. C. H. D. Bödecker found the sp. gr. to be 5.87; and R. Klement gave 6.054 for the sp. gr. at 25°/4°, and 44.0 for the mol. vol. J. Dewar and A. Scott observed that the vapour density is 251—theoretical for PtCl₂, 265.7; and L. Rügheimer and E. Rudolfi found that the mol. wt. of soln. in bismuth chloride ranges from 258.8 to 260.8. J. J. Berzelius observed that the dichloride is decomposed by heat into chlorine and platinum, and F. P. Dunnington, and W. A. Shenstone and C. R. Beck recommended this as a process for preparing chlorine of a high degree of purity. C. Nogareda studied the formation of the chloride from its elements. L. Wöhler and F. Martin said that when the dichloride is heated in chlorine above 400° its weight does not change; and S. Streicher, and L. Wöhler and S. Streicher, that the temp. of formation and decomposition is 582°. No decomposition occurs at 560° although the salt is very volatile. The loss of weight at 560°, 570°, and 580° is approximately the same, but at 590°, the loss is doubled. In a current of chlorine at 581° to 583°, platinum monochloride is formed. The volatility of the salt when heated to decomposition was noted by G. Matthey, and W. A. Shenstone and C. R. Beck added that the properties of the sublimate are not always those of platinous chloride being sometimes a yellowish, fusible substance converted by a strong heat into a red, infusible solid; and it is sometimes this same red, infusible solid. L. Wöhler and F. Martin gave for the thermal value of the reaction $2PtCl+Cl_2=2PtCl_2+32\cdot 17$ Cals., and for $2Pt+Cl_2=2PtCl+32\cdot 21$ Cals. S. Meyer gave for the magnetic susceptibility -0.029×10^{-6} mass unit, and A. N. Guthrie

and L. T. Bourland found the susceptibility to be independent of temp. D. M. Bose

and H. G. Bhar also studied the magnetic properties.

V. Ipatéeff and A. Andreevsky observed that hydrogen, at elevated temp. and press., acting on 3 to 30 per cent. soln. of platinous chloride, precipitates the platinum, and the proportion of platinum precipitated is the greater, the greater is the initial conc. of the soln. The addition of acids, and of ferric chloride inhibits the reaction, but without affecting the influence of the other factors. With 0.01 to 1 per cent. soln., in the presence of iron and nickel salts, the reduction is complicated and slow. particularly if mineral acids are present. W. J. Russell found that hydrogen precipitates the metal from platinum salts at ordinary temp, and press. J. J. Berzelius said that the greenish-grey powder behaves like a fatty substance in that it is scarcely wetted by water; and that the salt is not affected by water; G. Magnus also noted that the brown powder is insoluble in water, but is soluble in the motherliquor. E. Knoevenagal and E. Ebler observed that no precipitate is formed with hydrogen dioxide. J. J. Berzelius, and G. Magnus noted that the salt is soluble in hot hydrochloric acid, and, with access of air, some hydrochloroplatinic acid is formed—L. F. Nilson added that some hydrochloroplatinic acid may be formed with the separation of platinum—vide infra. Potassium iodide colours soln. of platinous salts a dark reddish-brown, and after a time the soln. is decolorized as a precipitate of platinous iodide is formed. O. Stelling estimated platinum by the potentiometric titration of platinous salts with a 0.1N-soln. of potassium bromate. H. Rose observed that hydrogen sulphide, and ammonium sulphide give a brown soln. with a hydrochloric acid soln. of platinous chloride, and later platinous sulphide is precipitated, and the precipitate dissolves in a large excess of ammonium sulphide. J. J. Berzelius observed that the dichloride is not changed by sulphuric acid or by nitric acid; and that boiling aqua regia converts it into hydrochloroplatinic acid. H. Rose observed that stannous chloride colours soln. of platinous salts reddish-brown without forming a precipitate. P. Schottländer found that a soln. of ammonium chloroplatinite and sodium thiosulphate furnish platinous thiosulphate, as a white precipitate, when treated with alcohol. W. Peters observed that in an atm. of ammonia, additive compounds are formedvide infra-M. Delépine noted that an ammine is precipitated when ammonia is added to the aq. soln. H. Rose observed no precipitate is formed by addition of a soln. of sodium phosphate. G. Gore said that platinous chloride is insoluble in liquid ammonia, and E. Divers, that it is insoluble in an ammonia soln. of ammonium P. Schützenberger prepared the compounds with carbon monoxide indicated below, and the results were confirmed by W. Manchot. W. Manchot and E. Enk found that at 140°, platinum dichloride and tetrachloride with carbon monoxide form platinum dicarbonyldichloride, PtCl2(CO)2; -and W. Manchot and G. Lehmann observed that the carbonyl, 2PtCl2.3CO, is also formed. P. Schützenberger and C. Fontaine, and A. Rosenheim and W. Löwenstamm prepared from phosphorus trichloride the complex platinous dichlorobisphosphorotrichloride, [Pt(PCl₃)₂Cl₂], and platinous dichlorobisphosphorotrihydroxde, [Pt{P(OH)₃}₂Cl₂]; platinous dichlorophosphorotrihydroxide, [Pt{P(OH)₃}Cl₂], platinous chlorophosphorotrihydroxidodihydrophosphite, [Pt{P(OH)₃}Cl(H₂PO₃)], and P. Schützenberger, platinous dichlorosilverphosphite, [Pt{P(OAg)₃}₂Cl₂]. P. Schützenberger, P. Schützenberger and C. Fontaine, E. Baudrimont, A. Werner, G. Quesneville, A. Rosenheim and W. Löwenstamm, A. Rosenheim and W. Levy, and D. Cochin described platinous dichlorophosphorotrichloride, [Pt(PCl₃)Cl₂]₂, and platinous dichlorophosphorotrichloroplatinite, [Pt(PCl₃)Cl₂]₂.PtCl₂.

H. Rose observed that mercuric cyanide does not react immediately with soln. of platinous chloride; nor has potassium ferrocyanide or ferricyanide any action. M. S. Kharasch and T. A. Ashford prepared complex salts with ethylene. K. A. Hofmann and H. Kirmreuther found that the ethylene halides gradually reduce soln. of platinous chloride. L. Tschugaeff observed that when platinous chloride is heated on a water-bath, the tertiary amines precipitate platinum.

E. Beckmann and W. Gabel found that platinous chloride is soluble in quinoline. H. Rose found that oxalic acid gives no precipitate with soln. of platinous salts. W. Eidmann found that the salt is insoluble in acetone; J. J. Berzelius, that an aq. soln. of potassium hydroxide converts it into hydrated platinous oxide and potassium chloride. H. Rose added that potassium hydroxide does not act on soln. of platinous salts, and that potassium or sodium carbonate gives a dark brown precipitate. F. Müller and A. Riefkohl studied the solubility in 2N-soln. of sodium chloride. L. Rügheimer and E. Rudolfi found that the chloride is soluble in a soln. of bismuth chloride. G. Mazzaron found that platinum chloride gives chlorine not chromyl chloride when treated with potassium dichromate and sulphuric acid.

Two compounds of platinous chloride with hydrochloric acid have been reported. L. F. Nilson said that **platinous hydrotrichloride**, PtCl₂.HCl.2H₂O, is formed by decomposing barium chloroplatinite with the theoretical quantity of sulphuric acid; evaporating the filtered liquid first at 50°, and then in vacuo; and drying the product over sulphuric acid and potassium hydroxide in vacuo. The dark brown, amorphous mass gives off water and hydrogen chloride at 100°. I. L. Kondakoff and co-workers, and L. F. Nilson said that the aq. soln. contains hydrochloroplatinous acid. C. Liebermann and C. Paal obtained salts with organic bases; and some ammines have been prepared—vide infra. Platinous hydrotrichloride loses a mol. of hydrogen chloride in vacuo at 100°, and with a protracted exposure some water is also given off. P. Klason said that platinous hydrotrichloride is not a chemical individual, but rather a mixture of platinum dichloride and tetrahydrated hydrochloroplatinous acid.

J. J. Berzelius, L. N. Vauquelin and G. Magnus dissolved platinous chloride in boiling hydrochloric acid with exclusion of air. The soln, dried in vacuo furnishes platinous dihydrotetrachloride, PtCl₂.2HCl.nH₂O, or, according to P. Klason, hydrochloroplatinous acid, H₂PtCl₄.4H₂O. J. Thomsen showed that a soln. of this salt can be obtained by treating a hot, sat. soln. of potassium chloroplatinite with the theoretical quantity of hydrochloroplatinic acid, and filtering from the precipitated potassium chloroplatinate. The heat of formation is (Pt,Cl₂,2HCl,Aq.) =41.83 Cals.; and (Pt,O,4HCl,Aq.)=31.55 Cals. L. Pigeon did not obtain satisfactory results by reducing hydrochloroplatinic acid with sulphurous acid since it is difficult to determine whether the reduction has gone too far, or not far enough; but he obtained a soln, by treating a soln, of a mol, of hydrochloroplatinic acid with a mol. of dry barium carbonate, and a mol. of barium dithionate with 3 times its weight of hot water, heating the mixture on a water-bath at 100°, and filtering the liquor. L. F. Nilson heated hydrochloroplatinic acid on a sand-bath at 300° until the dish and contents had the weight required for platinous chloride. The unconverted platinum tetrachloride was extracted with hot water, and the residue dissolved in hot, conc. hydrochloric acid. L. Pigeon said that the soln. cannot be crystallized, and he preferred to convert it into potassium chloroplatinite by the addition of potassium chloride.

L. N. Vauquelin observed that on evaporating the soln., brown platinous chloride is formed. L. F. Nilson, and A. Miolati and U. Pendini recommended evaporating the soln. first at 50°, and then in vacuo, and drying the product over sulphuric acid and potassium hydroxide in vacuo. L. Wöhler and F. Martin found that the salt is stable in hydrochloric acid soln.; no separation of platinum was observed after it had been heated 10 hrs. in a sealed tube. If hydrochloric acid be not in excess, the soln. readily forms platinum and hydrochloroplatinic acid. It is supposed that the hydrochloroplatinous acid forms hydrodichloroxy-platinic acid, H₂PtOCl₂, which then decomposes into platinum and platinic chloride, PtCl₄.H₂O. Whilst solid platinous chloride can be heated to 600° or 700° in chlorine for many hours at atm. press., the salt decomposes when the aq. soln. is heated in a sealed tube at 120°. T. Curtius and J. Rissom observed that a soln. of potassium azide furnishes brownish-red potassium azidoplatinite. L. N. Vauquelin observed that sodium hydroxide precipitates from the soln. hydrated platinous

oxide. The **chloroplatinites** were studied by L. F. Nilson, who arranged them in 4 groups typified by: $2RCl.PtCl_2$, $R''Cl_2.PtCl_2$, $2R'''Cl_3.3PtCl_2$, and $R''''Cl_4.2PtCl_2$. The chloroplatinites were prepared either by decomposing barium chloroplatinite with the sulphate of the metal whose chloroplatinite is to be prepared, or else by treatment of an hydroxide with hydrochloroplatinous acid. The chloroplatinites are usually very soluble in water; they are for the most part deliquescent, and crystallize only from very conc. soln.; but few of them are without water of crystallization. At 100° , they are decomposed, with production of metallic platinum, a few evolving hydrochloric acid. By evaporating their soln. in presence of hydrochloric acid, the platinum is usually partially converted into platinic chloride—vide infra.

W. Peters 4 found that a mol. of platinous chloride at 20° to 26°, and 749 to 754 mm. press. slowly absorbs about 5 mols. of ammonia, and at the same time changes to a white or pale grey platinous pentamminochloride, Pt(NH₃₎₅Cl₂; and if this product be kept in vacuo, platinous tetramminodichloride, [Pt(NH₃)₄]-Cl₂, H₂O, is formed. J. Reiset prepared platinous tetramminochloride by boiling platinous chloride with ag. ammonia, with frequent additions of more ammonia, until the first-formed green [Pt(NH₃)₄]PtCl₄ redissolves, and then evaporating the soln, for crystallization. A similar process was employed by M. Peyrone, P. T. Cleve, and C. Grimm. M. Peyrone saturated the soln. of platinous chloride with aq. ammonia, in the cold, dissolved the precipitate in boiling hydrochloric acid, treated the filtrate with alcohol, washed with alcohol, and purified by recrystallization from cold water. P. T. Cleve, P. Klason, C. W. Blomstrand, and H. and A. Euler described platinous dichlorotetrammine, Pt(NH₃)₄Cl₂, formed by the action of hydrochloric acid on the corresponding hydroxide, and by the action of the calculated quantity of hydrochloroplatinous acid on ammonium diamminotetrachloroplatinite. The black powder dissolves in hydrochloric acid, forming platinous cis-dichlorodiammine. S. M. Jörgensen recommended:

The filtered soln. of 20 grms. of ammonium chloroplatinite in 100 c.c. of cold water and 50 c.c. of $N\text{-NH}_4\text{OH}$, is allowed to stand in a covered flask, in ice-water for 18 hrs. Add 100 c.c. 20 per cent. aq. ammonia, warm the mixture for some minutes on the waterbath until all the $[Pt(NH_3)_4]PtCl_3$ has dissolved, filter and cool. Triturate the product three times with 100 c.c. of cold 80 per cent. alcohol to remove the ammonium chloride, dissolve the residue in 45 c.c. of warm water, and when the filtered liquid is cool, add 4 vols. of absolute alcohol, and allow the flask to stand for half an hour in cold water. Wash the white product on a suction filter three times with 80 per cent. alcohol, and once with absolute alcohol, and dry it in air—Yield 15-0 grms.

J. Thomsen obtained platinous tetramminochloride by reducing finely-divided platinic dichlorotetramminochloride with hydrogen sulphide; L. Ramberg, by dissolving in boiling aq. ammonia the precipitate obtained by the action of ammonia on platinum chloroplatinite, and evaporating the filtered soln; J. Reiset, from a soln. of platinous cis- or trans-dichlorodiammine in aq. ammonia; C. Claus, and S. M. Jörgensen, from the mother-liquor obtained in preparing [Pt(NH₃)₄]PtCl₄; and O. Carlgren, and O. Carlgren and P. T. Cleve, by slowly evaporating a soln. of [(NH₃)₃Pt(NH)₂Pt(NH₃)₃]SO₄[Pt(NH₃)₄]SO₄ in hydrochloric acid.

E. Koefoed obtained what he considered to be an isomeric form of platinous tetramminochloride from platinous cis-dichlorodiammine and ammonia; or by boiling platinous tetramminochloroplatinite with ammonia. The amber-yellow crystals have a greenish sheen. When the salt is treated with hydrochloric acid, some platinous chlorotriamminochloride is formed. Alcohol precipitates the salt unchanged from its aq. soln. Platinous chloride converts it into the tetra-amminochloroplatinite.

H. Kolbe, C. W. Blomstrand, W. Odling, C. Gerhardt, A. Hantzsch and F. Rosenblatt, C. Weltzien, A. W. Hofmann, C. Claus, A. Werner, and P. Klason studied the constitution of the compound; and A. Rosenheim and L. Gerb, and H. D. K. Drew and co-workers studied the stereochemistry of the tetrammines.

M. Peyrone, A. M. Boldyreva, and P. T. Cleve observed that the salt furnishes colourless, tetragonal crystals with a salty taste, and that the crystals have no action on litmus paper. Q. Sella found that the tetragonal crystals have the axial ratio a: c=1:0.5623, no marked cleavage, and negative double refraction. N. S. Kurnakoff and I. A. Andrejewsky gave a: c=1:0.566, and said that there is no appreciable cleavage; that the double refraction is weak and negative; and that the indices of refraction are $\omega = 1.672$, and $\epsilon = 1.667$. H. D. K. Drew and co-workers found that the X-radiograms of the salts prepared from the a- or β -diammine are the same. The tetragonal lattice of the monohydrate has $\alpha = 7.30 \,\mathrm{A}$. and c=4.23 A.; and probably D_4^1 or D_{46}^1 . The evidence obtained so far seems to indicate that the four ammonia groups are situated at the corners of a square around the platinum atom, the water molecules lying midway between platinum atoms in a direction inclined to the plane of the ammonias. Observations were also made by A. M. Boldyreva, E. G. Cox and G. H. Preston, and B. N. Dickinson -vide the palladium analogue. E. G. Cox gave a=7.39 A., c=4.21 A., and The distances Pt: Pt=4.21 A., Pt: NH₃=2.62 A., Cl: NH₃ a: c=1:0.570.==3.36 A., and Pt: Cl=4.25 A. The 4 covalencies in the complex [Pt(NH₃)₄] are co-planar, and directed to the 4 corners of a square. R. Lorenz and I. Posen gave 2.737 for the sp. gr. of [Pt(NH₃)₄]Cl₂. N. S. Kurnakoff gave for the sp. gr. of a 7·166 per cent. soln., 1·05095 at 19·1°/4°. P. T. Cleve said that the crystals lose all their water at 100°, and J. Reiset, that 4.88 per cent. is lost at 110°, and on exposing the product to air, the water is rapidly taken up again. Large crystals which have been dehydrated may decrepitate on cooling. When heated to about 250°, ammonia is evolved, and there remains platinous diamminochloride; at a higher temp., ammonium chloride, and hydrogen chloride are given off, and A. A. Grinberg and B. V. Pittsin studied the subject. platinum remains. M. Peyrone said that the evolution of ammonia begins at 220°, and becomes energetic at 240°, and a soln. of the product in hot water yields crystals of dichlorodiammine. E. N. Gapon measured the diffusion coeff. J. Petersen gave 0.275° for the lowering of the f.p. of a 1.837 per cent. soln. J. Thomsen found the heat of soln, to be -8756 cals. N. Kurnakoff gave for the coeff, of refraction of a 7.166 per cent. soln., 1.33993 for Li-light; 1.34217 for Na-light; and 1.34519 for Tl-light; the mol. refraction with the μ -formula is 74·1; and the at, refraction of platinum is between 11.9 and 16.7. A. Werner and A. Miolati found the mol. conductivity of a mol of the salt in 500, 1000, and 2000 litres of water to be, respectively, 247.6, 260.8, and 267.2. R. Lorenz and I. Posen found the eq. conductivity, λ, of a mol of the salt in v litres to be:

v . . . 32 64 128 256 512 1024 ∞ λ . . . 121.2 128.8 133.7 137.9 140.9 144.7 150.8

The ionic velocity of the complex [Pt(NH₃)₄] is 37.8; for the complex [Pten₂],

32.0; for cis-[Pt(NH₃)₂py₂]., 25.8; and for [Ptpy₄]., 21.0.

J. Reiset, and P. T. Cleve found that a sat. soln. contains 20 per cent. of the salt at 16.5°, and that the solubility increases with a rise of temp. N. S. Kurnakoff and I. A. Andrejewsky observed that when recrystallized from water a few times, the product is a solid soln. of isomorphous PtCl₂(NH₃)₄. H₂O and PtCl₂(NH₃)₂. 4PtCl₂(NH₃)₄. J. Reiset observed that if chlorine is passed into the aq. soln., platinic dichlorotetramminochloride is formed; and P. T. Cleve, that iodine forms no definite compound, but only a mixture; and M. Peyrone, that when evaporated with hydrochloric acid, in excess, ammonium chloride and platinous trans-dichlorodiammine are formed. L. Tschugaeff and S. Krassikoff studied the action of sulphur dioxide. A. R. Klien studied the action of water, acids, and alkaline soln. M. Peyrone also noted that sulphuric acid or nitric acid introduces the sulphate or nitrate radicle in place of the chloride radicle; and J. Reiset added that with hot nitric acid, platinic dichlorotetramminonitrate is formed. I. I. Shukoff and O. P. Schipulina studied the adsorption of the salt by charcoal.

and the adsorption of the tetrammine on charcoal, and likewise compared the results with other members of that series of complex salts. The addition of alcohol or ether to the aq. soln. precipitates the original salt as a white, crystalline powder. M. Peyrone observed that oxalic acid converts the chloride into an oxalate. H. Kautsky and W. Baumeister studied the adsorption of the [Pt(NH₃)₄]...ions by silicic acid. J. Reiset found that a little ammonia is expelled when a soln. of the salt is heated with alkali lye; and M. Peyrone, that potassium carbonate decomposes the salt slowly in the cold, rapidly at 40° to 50°, forming potassium chloride, and the tetramminocarbonate. J. Reiset found that with soluble silver salts, silver chloride is precipitated and the corresponding salt of the tetrammine is formed. M. Peyrone said that the reaction with potassium amalgam can be symbolized: $K_2Hg_n+[Pt(NH_3)_4|Cl_2=2KCl+4NH_3.PtHg_n \text{ (black powder)}.$ S. Aoyama found that copper precipitates all the platinum from an acidic soln. N. S. Kurnakoff and I. A. Andrejewsky observed that platinous dichlorodiamminedichlorotetramminoplatinite, PtCl₂(NH₃)₂.4PtCl₂(NH₃)₄, is isomorphous with PtCl₂(NH₃)₄.nH₂O. A. M. Boldyreva studied the tetragonal crystals. G. B. Buckton found that a soln. of stannous chloride produces a voluminous, white precipitate which dissolves on warming; and when this soln, is cooled, the precipitate which is formed contains stannic oxide; if the soln, is heated a red soln, is formed, along with ammonium chloride and a precipitate of platinum and stannic oxide. With ferric chloride, platinic dichlorodiamminochloride and ferrous chloride are formed. According to M. Peyrone, platinous chloride in aq. soln. forms platinous tetramminochloroplatinite, [Pt(NH₃)₄]Cl₂.PtCl₂; J. Reiset, that an excess of hydrochloroplatinic acid gives an olive-green precipitate of platinous tetramminochloroplatinate, [Pt(NH₃)₄]Cl₂.PtCl₄, which, according to P. T. Cleve, is mixed with some platinous tetramminotetrachloride and platinic dichlorotetramminochloride. These reactions were studied by A. Cossa. E. G. Cox could not confirm the conclusion of N. S. Kurnakoff and I. A. Andrejewsky that the tetrammine forms a solid soln. with the diammine—4{Pt(NH₃)₄Cl₂}Pt(NH₃)₂Cl₂.

Platinous tetramminochloride forms a series of double salts with other metal chlorides. Thus, G. B. Buckton, and C. W. Blomstrand described platinous tetramminochlorocuprate, [Pt(NH₃)₄]CuCl₄; G. B. Buckton, platinous tetramminochlorobarytate, [Pt(NH₃)₄]BaCl₄; platinous tetramminochlorozincate, [Pt(NH₃)₄|ZnCl₄; platinous tetramminochloromercurate, [Pt(NH₃)₄]HgCl₄; platinous tetramminochlorostannite, [Pt(NH₃)₄]SnCl₄; platinous tetramminochlorostannate, [Pt(NH₃)₄]SnCl₆; platinous tetramminochloroplumbate, [Pt(NH₃)₄]PbCl₄; and N. S. Kurnakoff, platinous tetramminochlorocobaltate,

 $[Pt(NH_3)_4]CoCl_4$.

The corresponding platinous tetramminochloroplatinite, [Pt(NH₃)₄]PtCl₄, also called Magnus' green salt, was prepared by G. Magnus by saturating a soln. of brown platinous chloride in hydrochloric acid with aq. ammonia, and allowing it to stand for some time. J. Gros, and C. Claus also saturated a soln. of hydrochloroplatinous acid with aq. ammonia. L. Ramberg used a similar process. A. Cossa obtained the salt from a mixture of platinous chloride with platinic chloride and platinic tetramminochloride, and also by the action of platinous tetramminochloroplatinate on potassium chloroplatinite; P. T. Cleve, by mixing conc. soln. of platinous chloride and hydrochloroplatinic acid, and from a mixture of potassium chloroplatinite and platinic chlorohydroxytetramminonitrate; M. Peyrone, by adding platinous chloride to the mother-liquor left after preparing platinous tetramminochloride; F. W. Clarke and M. E. Owens, and L. Ramberg, by adding a soln. of potassium chloroplatinite to aq. ammonia; and L. Tschugaeff and W. Subbotin, by shaking for 3 or 4 hrs. a mixture of platinous chloride with platinous tetralkylsulphinochloroplatinite. S. P. Sharples obtained it by boiling a soln, of platinous chloride with platinum black, and then adding aq. ammonia, and alcohol to the liquid. H. and W. Biltz recommended the following process:

VOL. XVI. 8

Reduce a hot soln, of 2 grms, of hydrochloroplatinic acid in 7 c.c. of water by adding sulphurous acid a little at a time, and towards the end, drop by drop; wait before each addition until the odour of sulphurous acid has entirely disappeared—towards the end of the operation this requires some time—and test if a drop of the reddish-yellow soln. gives a precipitate when brought in contact with a conc. soln. of ammonium chloride on a watch-glass. An excess of sulphurous acid would decolorize the soln, and form hydrosulphitoplatinous acid. When no precipitate or only a slight one is produced by the ammonium chloride, boil the soln. of hydrochloroplatinous acid so prepared, and add an excess of conc. aq. ammonia. Magnus' green salt is precipitated in acicular crystals. The precipitation continues as the soln. cools, and sometines there is also formed a little yellow, crystalline platinous dichlorodiammine which does not settle so readily and can be decanted off with the water. Drain off the salt by suction, and wash successively with water, alcohol, and ether. The yield 0.25 grm. is small because most of the platinum remains in the mother-liquor as platinous tetramminochloride. Add to this soln, three times its vol. of alcohol, redissolve the precipitate in 30 c.c. of hot water, precipitate the platinum tetramminochloroplatinite from this boiling soln. by adding hydrochloroplatinous acid until no more green precipitate is formed. The total yield is about 1.3 grms, when the theoretical yield is 1.7 grms.

The crystals of platinous tetramminochloroplatinite were described by M. Raewsky, M. Peyrone, and P. T. Cleve as dark green needles or prisms. A. M. Boldyreva said that the crystals are tetragonal and uniaxial. E. Hertel and K. Schneider found that the space-lattice of the green, tetragonal crystals has a=6.297 A., c=5.15 A., and a:c=1:0.8175, but E. G. Cox and co-workers found that the structure has the PtCl₄- and Pt(NH₃)₄-groups of the same form as those in potassium chloroplatinite, and in [Pt(NH₃)₄|Cl₂, excepting that the NH₃groups in the cation are not rotary. The tetragonal crystals have the cell dimensions a=6.29 A., and c=6.42 A., each NH₃-group is at a distance 3.74 A. from four chlorine atoms, and 3.68 A. from two. The sp. gr. is less than 4.1; the calculated value is 3.9 with 1 mol. of [Pt(NH₃)₄]PtCl₄ in the unit cell. E. Hertel studied the subject. J. Gros said that when heated the salt gives off some vapours of ammonium chloride, etc.; and platinum remains behind. L. Tschugaeff and N. Pschenicyn studied the depolymerization symbolized: $[Pt(NH_3)_A]PtCl_A$ =2[Pt(NH₃)₂Cl₂]. N. R. Dhar found the mol. conductivity of an aq. soln. of a mol of the salt in 4050, 6750, 20,250, and 60,750 litres of water to be, respectively, 566.67, 640.56, 647.32, and 650.90. P. T. Cleve said that the salt is very sparingly soluble in water. L. Tschugaeff and I. Tscherniaeff oxidized Magnus' salt with ammonium persulphate, and obtained (Pt,4NH₃)₂(SO₄)(PtCl₄)₂(OH)₂; and with nitric acid in the presence of hydrogen dioxide, [Pt,4NH3,(NO3)]PtCl4. C. Gerhardt observed that chlorine converts it into [Pt(NH₃)₄Cl₂]PtCl₄ and then into [Pt(NH₃)₄Cl₂]PtCl₆. G. Magnus added that the aq. soln. is not decomposed by hydrochloric acid, and J. Gros, that boiling hydrochloric acid or sulphuric acid takes up no ammonia. J. Gros, and M. Raewsky found that nitric acid converts the salt into $[Pt(NH_3)_4Cl_2](NO_3)_2$ and $[Pt(NH_3)_4(OH)Cl](NO_3)_2$; and A. Cossa, that ammonium nitrate forms a mixture of different compounds, [Pt(NH₃)₄]- $[Pt(NH_3)Cl_3]_2$, $[Pt(NH_3)_4Cl_2](NO_3)_2$, and $[Pt(NH_3)_2Cl_2]$. J. Reiset found that boiling ammonia converts the salt into platinous tetramminochloride. I. I. Shukoff and O. P. Schipulina observed that the salt is decomposed when it is adsorbed by carbon. F. W. Clarke and M. E. Owens showed that the salt forms a brown soln. with hot aq. potassium cyanate. J. Gros observed no evolution of ammonia occurs when the salt is boiled with an aq. soln. of potassium hydroxide. P. T. Cleve showed that silver nitrate forms silver chloroplatinite and platinous tetramminonitrate; and J. Reiset, that boiling hydrochloroplatinic acid forms platinous chloride, and [Pt(NH₃)₄Cl₂]PtCl₄. The constitution of the green platinous tetramminochloroplatinite was discussed by C. Weltzien, and M. Peyrone.

S. M. Jörgensen and S. P. L. Sörensen observed that in preparing the green salt by the action of potassium chloroplatinite on platinous dichlorodiammine, a red isomeride may be formed. The conditions favourable for the production of the red salt are: the absence of potassium chloroplatinate often present in traces in the platinous salt, and a very dil. neutral or slightly ammoniacal soln. in the

presence of a large excess of water. The formation of the green salt is favoured by the use of concentrated solutions or of solutions acidified with hydrochloric acid. E. G. Cox and co-workers prepared the pink salt by treating an aq. soln. of [Pt(NH₃)₄]Cl₂ with a quarter of its vol. of aq. ammonia of sp. gr. 0.88, and then with a neutral soln. of potassium chloroplatinite free from chloroplatinate. A good yield of the pink salt is deposited, and it is contaminated with a little green salt. According to S. M. Jörgensen and S. P. L. Sörensen, the precipitate should be washed with aq. alcohol, and finally with absolute alcohol; it furnishes small, ill-defined needles, rose-red in colour. The same salt is obtained in well-defined. small, tetragonal prisms by interaction of the yellow platinous dimethylamineamminochloroplatinite with platinous dichlorodiammine. E. K. Schneider found that the space-lattice of the red, tetragonal crystals has a=6.293 A., c=5.25 A., and a:c=1:0.8340. E. G. Cox and co-workers said that these results are wrong. The crystals are rhombic and have a space-lattice with a=7.9 A., b=8.2 A., and c=7.9 A.; the calculated sp. gr. is 3.9, when there are two mols. of [Pt(NH₈)₄]PtCl₄ per unit cell. The red and green salts are anhydrous, and in the dry condition they are very stable, but on boiling the red salt with water it is changed quantitatively into the green salt; the converse change has not been observed. E. G. Cox and co-workers found that when examined by X-radiograms or by the microscope the pink salt of Magnus is indistinguishable from the empirically isomeric Cleve's salt, [Pt(NH₃)₃Cl]₂PtCl₄. According to H. D. K. Drew and H. J. Tress, the triammine is (i) more soluble in water than the pink salt of Magnus; (ii) a cold aq. soln. of sodium nitrate rapidly changes the red to the green salt, but it does not affect the colour of the triammine; (iii) a lukewarm aq. soln. of [Pt(NH₃₎₄]Cl₂ liberates the triammine from its platinous salt with the precipitation of the green salt of Magnus, whereas with the red tetrammine, there is no action for some time, and if, on heating, the red salt becomes green, only the tetrammine, and no triammine is found in the filtrate; and (iv) when the two salts are treated with a cold aq. soln. of silver nitrate, silver chloroplatinite is precipitated. On removing the excess of silver with a soluble chloride, and treating the liquids with an aqueous soln. of potassium chloroplatinite, in the one case, the initial triammine is regenerated in red plates, and in the other case, acicular crystals of the green salt are formed. With potassium chloropalladite so used instead of the chloroplatinite, the triammine furnishes platinous chlorotriamminochloropalladite, [Pt(NH₃)₃Cl]₂PdCl₄, whereas the red salt of Magnus gave greyish-pink needles of platinous tetramminochloropalladite, [Pt(NH₄)₄]PdCl₄. The evidence shows that there is no connection between the red platinous triammine and the red form of Magnus' salt.

The red and green salts of Magnus appear to be similar in crystalline form when viewed under the microscope; their solubilities are similar; no difference has been detected in the chemical reactions; they have the same molecular weights; dichroism does not explain their occurrence; and nothing has yet been observed to show any difference in chemical structure. No other pair of red and green isomeric platinous salts is known, but the substitution of the four ammonia residues in [Pt(NH₃)₄]PtCl₄ by methyl-, n-butyl-, iso-butyl-, or amyl- amine forms a green salt, whereas a similar substitution of ethyl- or of n-propyl-amine gives a red salt, but platinous tetraethylaminochloroplatinite, [Pt(C₂H₅NH₂)₄]PtCl₄, is green.

H. D. K. Drew and co-workers prepared platinous tetramminochloropalladite, [Pt(NH₃)₄]PdCl₄, in lilac-grey needles. J. Reiset prepared platinous tetramminochloroplatinate, [Pt(NH₃)₄]PtCl₆, as a red, crystalline mass by the action of an excess of platinic chloride on platinous tetramminochloride, but P. T. Cleve said that [Pt(NH₃)₄Cl₂]PtCl₄ is produced by this process. A. Cossa, however, obtained it by adding, at ordinary temp., a neutral soln. of platinic chloride, or of sodium chloroplatinate, to a soln. of platinous tetramminochloride. The yellow, amorphous product slowly passes into [Pt(NH₃)₄Cl₂]PtCl₄, and the change is rapid with boiling

- soln. P. Schützenberger and D. Tommasi described platinous biscarbonyl-diamminochloride, $[Pt(NH_3)_2(CO)_2]Cl_2$.
- E. A. Hadow, and S. M. Jörgensen obtained a double salt, platinous tetramminodinitratotetramminochloroplatinate, $2[Pt(NH_3)_4]PtCl_4.[Pt(NH_3)_4(NO_3)_2]PtCl_4$; and the triple salt, platinous tetramminosulphitochloroplatinite, $2[Pt(NH_3)_4]Cl_3.PtSO_3.PtCl_4.$ A. Cossa, and S. M. Jörgensen obtained platinous tetramminotrichloroamminoplatinite, $[Pt(NH_3)_4]-[Pt(NH_3)Cl_3]_2$; S. M. Jörgensen, platinous tetramminotrichloroethylamineplatinite, $[Pt(NH_3)_4]-[Pt(NH_3)_4][Pt(C_2H_5NH_2)Cl_3]_2$; platinous tetramminotrichloropyridineplatinite, $[Pt(NH_3)_4]-[Pt(C_5H_5N)Cl_3]_2$; platinous tetramminotrichloroethylamineplatinite, $[Pt(NH_3)_4]-[Pt(C_5H_5N)Cl_3]_2$; platinous tetramminotrichloroethylamineplatinite, $[Pt(NH_3)_4][Pt(C_2H_4)Cl_3]_2$; and platinous tetramminotrichloroallylalcoholoplatinite, $[Pt(NH_3)_4][Pt(C_3H_5OH)Cl_3]_2$.
- L. Tschugaeff and I. Tscherniaeff prepared derivatives of **platinous aquotriam-minochloride**, $[Pt(NH_3)_3(H_2O)]Cl_2$, by passing air through a soln. of the dihydroxylaminoamminochloride containing ammonia and ammonium sulphate, or any other sulphate, and a trace of a copper salt. The colourless precipitate—possibly $(NH_3)_4Pt...(OH)_2$ — $Pt(NH_3)_4$ —is soluble in warm dil. sulphuric acid, and when the soln. is treated with platinous chloride, **platinous aquotriamminochloroplatinite**, $[Pt(NH_3)_3(H_2O)]PtCl_4$, is formed in green needles. When this salt is warmed with hydrochloric acid, or a soluble chloride, it forms the chlorotriammine, $[Pt(NH_3)_3Cl]_2PtCl_4$.
- A. Cossa 5 prepared platinous chlorotriamminochloride, [Pt(NH₃)₃Cl|Cl, from a mixed soln. of the corresponding nitrate and conc. hydrochloric acid by cooling it with ice, drying the crystals between bibulous paper, recrystallizing from aq. soln., and drying at 100°. P. Klason heated a mixture of equimolar proportions of platinous tetramminochloride and hydrochloric acid at 108°, allowing the platinous trans-dichlorodiammine to crystallize out, then added potassium chloroplatinite to precipitate the unchanged tetramminochloride from the boiling soln., and there remained the chlorotriamminochloride. P. Klason obtained a bad yield by treating the cis-dichlorodiammine with ammonia. A. Cossa prepared the salt by adding ammonia to green platinous tetramminochloroplatinite, platinous cisor trans-dichlorodiammine, or to platinum trichlorotriammine; and he recommended mixing a boiling soln. of platinous chlorotriamminochloroplatinite with a soln, of platinous tetramminochloride, filtering, and evaporating for crystallization. The salt appears in colourless scales or prisms which, according to A. Cossa, belong to the monoclinic system. A. Werner and A. Miolati found that the mol. conductivities of a soln. of a mol of the salt in 250, 500, 1000, and 2000 litres of water, are, respectively, 101.0, 107.6, 115.8, and 127.8. The constitution of the salt was discussed by P. T. Cleve, and P. Klason. P. Klason found that the salt is hydrolyzed in aq. soln. P. T. Cleve observed that chlorine converts it into [Pt(NH₃)₃Cl₃]Cl; A. Cossa, that hydrochloric acid forms platinous cis-dichlorodiammine, and ammonia furnishes platinous tetramminochloride. The salt is insoluble in alcohol. P. Klason noted the formation of the complexes platinous chloroethylsulphodiamminochloride, [Pt(NH₈)₂(SC₂H₅)Cl]; and platinous bisphenylsulphodiammine, [Pt(NH₃)₂(SC₆H₅)₂]. P. T. Cleve noted that potassium chloroplatinite forms platinous chlorotriamminochloroplatinite, and A. Cossa, that sodium chloroplatinate forms platinous chlorotriamminochloroplatinate.

M. Peyrone obtained a small yield of platinous chlorotriamminochloroplatinite, or Cleve's salt, [Pt(NH₃)₃Cl]PtCl₄, by adding ammonium carbonate to a very dilute, neutral, boiling soln. of platinous chloride. P. T. Cleve treated a hydrochloric acid soln. of platinous chloride with ammonia and found that insoluble platinous chlorotriamminochloroplatinite, and tetramminochloroplatinite and soluble platinous tetramminochloride and chlorotriamminochloride were formed, and he also obtained it from soln. of platinous triammino-salts and platinous chloride. L. Ramberg obtained it by the action of ammonia on potassium chloroplatinite in the presence of ammonium chloride. A. Cossa heated a soln. of 10 grms. of platinous tetramminochloride in 50 c.c. of water with 75 c.c. of hydrochloric acid of sp. gr. 1·198 at 20°, in a reflux condenser in boiling water, filtered

the cold soln. from the platinous diamminodichloride; added potassium chloroplatinite and filtered from the platinous tetramminochloroplatinite and evaporated the soln., and obtained a yield of 2.70 grms. of platinous chlorotriamminochloroplatinite in rose-red, lustrous plates or scales. The general methods depend on adding ammonia to the dichlorodiammine, or removing ammonia from the tetramminochloride. L. Tschugaeff prevented the ammonation of the dichlorodiammine being carried too far, by employing potassium cyanate which evolves ammonia gradually when hydrolyzed:

One grm. of platinous cis-dichlorodiammine (Peyrone's chloride) is boiled with 0.7 grm. of potassium cyanate and 18 to 20 c.c. of water. After soln, is complete the boiling is continued for one minute. Several portions prepared in this way are combined, and heated with an excess of hydrochloric acid, sp. gr. 1-19 (4 c.c. for each portion); the whole is then heated to boiling, and cooled. After collecting the unchanged dichlorodiammine which separates, an excess of potassium chloroplatinite is added to the filtrate, whereby a mixture of platinous tetramminochloroplatinite and of platinous chlorotriamminochloroplatinite is formed. This mixture is then separated by taking advantage of the fact that the latter compound is fairly readily soluble in hot water. The yield of chloroplatinite thus obtained is about 50 per cent. of the theoretical, calculated on the dichlorodiammine which enters into reaction.

- E. G. Cox and co-workers found that the pink salt of Magnus is formed only under special conditions, and that the salt usually called the pink salt of Magnus is really Cleve's salt. The X-radiograms of the two salts are very similar. The c-axes of the two are equal, and the a-axis of Cleve's salt is probably 3 or $3/\sqrt{2}$ times that of the tetrammine salt.
- A. R. Klien studied the action of water, acids, and alkalies on the salt. Platinous chlorotriamminochloroplatinite is soluble in cold water, and freely soluble in boiling water; it is not decomposed by boiling water; ammonia transforms it into platinous tetramminochloroplatinite; nitric acid yields platinic chlorodinitratotriamminochloride; silver nitrate precipitates silver chloroplatinite, and forms a soln. of platinous nitratotriamminonitrate; silver sulphate forms platinous sulphatotriammine; potassium permanganate in a boiling soln. forms platinous chlorotriamminochloroplatinate, $[Pt(NH_3)_4(\P)PtC]_6$, with sodium chloroplatinate. A. Cossa observed that there is formed platinous chlorotriamminochloroplatinate. M. Peyrone prepared platinous chlorotriamminotrichloroamminoplatinite, $[Pt(NH_3)_3C]_{\parallel}Pt(NH_3)C]_3$.

W. Odling 6 prepared yellow platinous trans-dichlorodiammine, [Pt(NH₃)₂Cl₂], by the action of hydrochloric acid on the corresponding hydroxide, Reiset's second base; and also by the action of ammonia on platinous chloride. This salt has also been called Reiset's chloride, and platinous a-dichlorodiammine. J. Reiset, M. Peyrone, P. T. Cleve, and L. Ramberg prepared it by heating platinous tetramminochloride to 250° as long as ammonia is evolved, and until a white cloud of ammonium chloride appears. The residue can be crystallized twice from hot water, or transformed into the nitrate, by treatment with silver nitrate, and the filtrate treated with hydrochloric acid. Just as J. Reiset obtained the salt by heating platinous dinitrato- or sulphato-diammine with hydrochloric acid or alkali chloride, M. Peyrone evaporated to dryness a mixture of platinous tetramminochloride and an excess of conc. hydrochloric acid, and extracted the ammonium chloride with water; and J. Reiset, also, by boiling platinous tetramminochloroplatinite for a long time with a soln. of ammonium nitrate, sulphate, or chloride, and cooling the liquid. A. Cossa observed that some [Pt(NH₃)₄]|Pt(NH₃)Cl₃)₂, previously described, is formed. S. M. Jörgensen found that dichlorodiammine is formed in the thermal decomposition of ammonium chloroplatinite at 170°. H. and W. Biltz recommended the following process:

Heat about 0.3 grm. of platinous tetramminochloride to 250° in a test-tube immersed in a paraffin bath. If any water is given off, stop the heating to remove the drops, condensed on the upper walls of the test-tube, by a strip of filter-paper. Continue the heating until ammonia is evolved, the substance becomes dark coloured, and a brittle platinum

black begins to deposit on the glass. The treatment occupies about 20 mins. Extract the greyish-yellow mass in a beaker with 20 c.c. of boiling water; and filter the hot pale yellow soln., from the black residue. On cooling, a mass of pale yellow crystals of the trans-salt is deposited from the soln. Drain the crystals, wash with alcohol, then with ether, and allow them to dry. Yield 0-1 grm.

The colour of the trans-salt ranges from a pale yellow to a sulphur yellow. It may occur in acicular crystals, or, according to A. Cossa, in rhombic, hexagonal plates. A. M. Boldyreva said that the crystals are tetragonal and uniaxial. H. D. K. Drew and co-workers found that the pale yellow crystals are tabular, and often elongated, and twinning is common. The crystals have a straight extinction; positive elongation; and refractive index 1.76. M. Peyrone said that the salt decomposed at about 270° into ammonium chloride, hydrogen chloride, nitrogen and platinum. J. Lifschitz and E. Rosenbohm studied the optical properties. A. Werner and A. Miolati found the mol. conductivities of soln. with a mol of the salt in 500 and 1000 litres of water are respectively 22.60 and 22.42. A. Werner and C. Herty said that the electrical conductivity of the soln. is characteristic of that of a non-ionized salt. H. D. K. Drew and co-workers found that the conductivity increases rapidly with time, so that the mol. conductivities, μ , of soln. with a mol. of the β -salt in 2866 and 1234 litres, respectively, were:

Time .		0	62	131	174	2752
$\mu_{v=1234}^{v=2866}$		7·0	21.0	26.1	32.7	89.8
$^{\mu}(v=1234)$		7.5	9.0	11.2	14-1	38.7

They attributed the change to the destructive action of water generating ammonium chloride. A. Werner and A. Miolati made observations on the conductivity of soln. of the salt. The salt dissolves very slowly in water. W. Odling observed that the salt is very sparingly soluble in cold water; but is more soluble in hot water-M. Peyrone observed that 140 parts of boiling water dissolve 1 part of salt, and P. T. Cleve, that 130 parts of boiling water or 4472 parts of water at 0° are required to dissolve 1 part of salt. H. D. K. Drew and co-workers said that 100 grms. of water at 25° dissolve 0.036 grm. of the a-salt. The treatment of the salt with chlorine, aqua regia, or a mixture of potassium chlorate and hydrochloric acid furnishes citron-yellow, octahedra of platinic dichlorotetramminochloride; bromine furnishes a mixture containing platinous dibromodiammine, and similarly with iodine; with hot nitric acid, yellow fumes are evolved. L. Tschugaeff and W. Chlopin found that Reiset's chloride in the presence of ammonia and ammonium carbonate forms platinic chloropentamminochloride—vide infra. Peyrone's chloride; and that with hydrogen dioxide, hydroxy-compounds are formed. The salt is converted by aniline or ethylamine into platinous bisaniline diamminochloride or bisethylaminediamminochloride respectively. An excess of potassium cyanide dissolves the salt with the liberation of ammonia and the formation of potassium cyanidoplatinite. L. Ramberg studied the liberation of ammonia from the platinum ammines when they are treated with sodium hydroxide; and I. I. Shukoff and O. P. Shipulina, the adsorption of the salt by charcoal. A. Werner observed that when the salt is triturated with silver oxide, the resulting colourless alkaline fluid furnishes the trans-salt when treated with an excess of conc. hydrochloric acid. P. T. Cleve said that a soln. of silver nitrate does not precipitate all the N. S. Kurnakoff found that thiocarbamide forms the complex salts PtCl₂(CS(NH₂)₂)₄, PtCl₂(CS(NH₂)₂)₂, and PtCl₂.CS(NH₂)₂; and that with pyridine there is formed $PtCl_2\{CS(NH_2)_2\}_2(C_5H_5N)_2$.

E. Koefoed reported that a brown salt of the same composition as that of the yellow salt just described is formed by boiling yellow platinous tetramminochloride with conc. hydrochloric acid; and by boiling a conc. soln. of platinous tetramminochloroplatinite in aq. ammonia, not too long with dil. hydrochloric acid, evaporating the soln. to dryness, treating the residue with hydrochloric acid (sp. gr. 1·19) and evaporating to dryness a few times, crystallizing from boiling water, and drying at 100°. The leather-brown crystals are sparingly soluble in water, but they are

more soluble than is the case with the yellow salt. The solubility of the salt in hot water is much greater, and with boiling water, the brown salt passes into the yellow form. Aqua regia, or a mixture of potassium permanganate and hydrochloric acid, form $[Pt(NH_3)_2Cl_4]$; potassium iodide furnishes $[Pt(NH_3)_2I_2]$; and ammonium sulphite gives crystalline needles of a double salt. F. Hoffmann prepared platinous hydroxychlorodiammine, $[Pt(NH_3)_2(OH)Cl]$; and A. R. Klien studied the salt. A. Grünberg and D. I. Rjabtschikoff prepared platinous diaquodiamminochloride, $[Pt(NH_3)_2(H_2O)_2]Cl_2$, and platinous hydroxyaquodiamminochloride, $[Pt(NH_3)_2(H_2O)(OH)]Cl$.

- C. Grimm obtained a dark red, crystalline powder of what he regarded as ammonium platinous dichlorodiamminochloride, $2NH_4Cl.[Pt(NH_3)_2Cl_2]$, by crystallizing a soln. of platinous tetramminochloride with a large excess of ammonium chloride. N. S. Kurnakoff, and H. and A. Euler said that the product is probably impure platinic dichlorotetramminochloride (q.v.).
- W. Odling obtained platinous cis-dichlorodiammine, [Pt(NH₃)₂Cl₂], or Peyrone's chloride, or platinous β -dichlorodiammine, by gently heating a soln. of platinous chloride, tetramminochloroplatinite, or trans-dichlorodiammine in aq. ammonia; and P. T. Cleve, by precipitation from a soln. of the corresponding nitrate or sulphate by the addition of hydrochloric acid or alkali chloride. P. T. Cleve also prepared it by adding ammonia to a brown soln. of platinous chloride in cold hydrochloric acid, boiling the greenish-yellow precipitate with water, when insoluble platinous tetramminochloroplatinite and a soln. of the cis-salt are formed. The soln. on cooling deposits the cis-salt. M. Peyrone prepared this salt by gently heating a soln. of platinous tetramminochloride in aq. ammonia, dissolving the precipitate in boiling hydrochloric acid, washing the precipitate with water to remove the tetramminochloride, and recrystallizing from a soln. in hot hydrochloric acid. M. Peyrone obtained the salt by pouring potashlye into a soln. of platinous chloride neutralized with ammonium carbonate; he also prepared the salt from a soln. of platinous chloride in hydrochloric acid, and neutralized with ammonium carbonate, by boiling the soln. with an excess of ammonium carbonate, cooling the filtered liquid, and recrystallizing from hot aq. soln.

H. and W. Biltz recommended the following procedure for the cis-salt:

Prepare a soln. of hydrochloroplatinous acid from a gram of hydrochloroplatinic acid as indicated above in connection with platinous tetramminochloroplatinite. Concentrate the soln. to a vol. of about 2 c.c. and neutralize it while still warm with a conc. soln. of ammonium carbonate. Add an excess of the latter to make a total vol. of about 15 c.c. Boil the soln. The colour changes from a dark reddish-brown to an intense yellow, and at the same time green crystals of platinous tetramminochloroplatinite are deposited. Filter the boiling hot soln., and remove the yellow crystals which separate as the soln. cools. Rinse the crystals with alcohol, and ether, and recrystallize them from a few c.c. of boiling water. The product can then be obtained free from Magnus' green salt. The yield is less than 1 grm.

- S. M. Jörgensen obtained the cis-salt by heating 1 part of ammonium chloroplatinite for many days with 25 parts of water in a sealed tube at 140°.
- S. M. Jörgensen recommended mixing a filtered soln. of 20 grms. of ammonium chloroplatinite in 100 c.c. of cold water with 50 c.c. of 5N-NH₄OH, and allowing the liquid to stand for 12 to 18 hrs. in ice-cold water. Wash the mixture of the cis-salt and platinous tetramminochloroplatinite with iced water until the filtrate gives no precipitate with potassium chloroplatinite. Wash the precipitate with boiling water. The tetramminochloroplatinite remains on the filter-paper. Mix the filtrate with one-third its vol. of dil. hydrochloric acid (1:1), and after the mixture has stood 24 hrs., filter off the cis-salt, wash it with acid-free alcohol, and dry it in air. The yield is 10.7 grms.
- E. Biilmann and A. C. Anderson recommended reducing a soln. of ammonium chloroplatinate to chloroplatinite by ammonium oxalate, treating the filtered liquid with 5N-NH₄OH, allowing the mixture to stand 24 hrs. at 0°, and crystallizing the cis-salt from boiling, 4 per cent. hydrochloric acid. F. Hoffmann, P. Klason,

and L. Ramberg employed modifications of this process. P. Klason also obtained the cis-salt by adding ammonia to a cold, aq. soln. of potassium amminotrichloroplatinite; J. Thomsen, by converting the copper in cuprous tetramminochloroplatinite into sulphide by means of hydrogen sulphide, warming the alkaline filtrate whereby a black substance is precipitated; the yellow liquor is then evaporated and cooled. H. and A. Euler obtained the salt along with Pt₂(NH₃)₄Cl₂ in their study of the action of ammonia on hydrochloroplatinous acid; and W. Lossen found that it is formed among the products of the action of hydroxylamine hydrochloride on platinic chloride. The compound was studied by A. Grünberg and D. I. Rjabtschikoff.

The cis-salt furnishes yellow, or dark yellow accoular or prismatic crystals. H. D. K. Drew and co-workers said that the colour is a deeper yellow than is the case with the a-salt; the crystals are mostly accoular; with a straight extinction—frequently inclined; positive elongation; twinning is common but different from that of the a-salt. The refractive index is about 1.76. A. M. Boldyreva said that the crystals are tetragonal. M. Peyrone found that the salt decomposes at 270° with the evolution of ammonium and hydrogen chlorides. The electrical conductivity of a rapidly prepared soln. of a mol of the salt in 1000 litres of water is nearly zero, being about 1.17. The conductivity, or ionization, increases with time. Thus, S. M. Jörgensen reported that the mol. conductivity of a soln. of a mol of the salt in 1000 litres of water at 25° is:

Time . . . 0 15 25 45 90 minutes
$$\mu$$
 . . . 5.4 8.6 9.2 12.8 20.8

A. Werner and A. Miolati, and A. Werner and C. Herty discussed this subject. W. Odling said that the salt is soluble in water, and, added M. Peyrone, without change, but P. Klason found that at 100°, the cis-salt slowly passes into the trans-salt, and that the change is faster at a higher temp. L. Tschugaeff and I. Tscherniaeff oxidized Peyrone's salt with ammonium persulphate and obtained PtCl₂(OH)(NH₃)₂. M. Peyrone found that 1 part of the salt dissolves in 33 parts of boiling water; P. T. Cleve said 26 parts of boiling water, and 387 parts of water at 0°; and P. Klason said 390 parts of water at ordinary temp. H. D. K. Drew and co-workers found that 100 grms. of water at 25° dissolve 0.2523 grm. of the β -salt. H. D. K. Drew and co-workers found the mol. conductivities of soln. with a mol of the \$\beta\$-salt in 1234 litres to be respectively 7.7, 14.4, 36.8, and 86.0 for times 0, 66, 193, and 1397 min.; and they attributed the change to the generation of ammonium chloride by the disruptive action of water. L. Tschugaeff and W. Chlopin observed that hydrogen dioxide converts Peyrone's chloride into platinic dichlorodihydroxydiammine, ozone in hydrochloric acid soln. increases the valency of Peyrone's chloride, but adds two chlorine atoms; in alkaline soln., both addition and substitution may occur simultaneously. P. T. Cleve observed that chlorine, or aqua regia forms hexagonal or rhombic plates of cis-[Pt(NH₃)₂Cl₄]; M. Peyrone, that hydrochloric acid dissolves it without decomposition; P. T. Cleve, that sulphur dioxide passed into a boiling soln. forms cis-[Pt(NH₃)₂(HSO₃)Cl], and sodium sulphite forms $3Na_2SO_3.PtSO_3.1\frac{1}{2}H_2O$; M. Peyrone, that dil. sulphuric acid dissolves the salt without decomposition, $Pt(NH_3)_2(HSO_3)Cl$, that the cold, conc. acid has no action, but the hot, conc. acid decomposes it with the evolution of hydrogen chloride and sulphur dioxide. L. Tschugaeff and W. Chlopin observed that Peyrone's chloride is acted on by ammonia and ammonium carbonate to form platinic hydroxypentamminocarbonate—vide supra, the trans-salt. M. Peyrone found that nitric acid transforms the Peyrone's chloride without the separation of platinum into lemon-yellow octahedra; and P. T. Cleve, that boiling with aq. ammonia converts the salt into platinous tetramminechloride, whilst boiling alkali-lye forms Pt₂(NH₃)₄(OH)₂H₂O. L. Ramberg studied the evolution of ammonia from the platinum ammines boiled with alkalilye. M. Peyrone observed that a soln. of ammonium carbonate converts the

cis-salt into the tetramminochloride, but an aq. soln. of potassium carbonate dissolves the cis-salt with difficulty, and without chemical change. P. T. Cleve observed that an excess of a soln. of potassium cyanide forms potassium cyanido-platinate with the evolution of ammonia. M. Peyrone observed that with silver nitrate, silver chloride is precipitated, and P. T. Cleve added that the corresponding cis-salt is formed, thus, with silver nitrate there is produced cis-[Pt(NH₃)₂(NO₃)₂]. P. Klason observed that with mercaptan, [Pt(NH₃)₂Cl(C₂H₅S)] is formed.

C. W. Blomstrand, and P. T. Cleve represented the α - and β -salts:

$$\begin{array}{ccc} \text{Trans- or α-salt} & \text{Cis- or β-salt} \\ \text{Pt} < & \text{NH}_3\text{Cl} \\ \text{NH}_3\text{Cl} & \text{Pt} < & \text{NH}_3\text{.NH}_3\text{Cl} \\ \end{array}$$

and S. M. Jörgensen at first accepted these formulæ, but finally reversed them. The subject was discussed by F. Rosenblatt and A. Schleede, F. G. Angell and co-workers, H. Reihlen and G. von Hühn, H. D. K. Drew and F. S. H. Head, and F. P. J. Dwyer and D. P. Mellor. P. Klason represented the salts by the formulæ:

$$Pt < \frac{NH_3Cl}{NH_3Cl} \\ H_3N = Pt < \frac{NH_3Cl}{Cl}$$

and A. Werner used the planar formulæ, now generally accepted, namely:

$$\begin{array}{ccc} \text{H}_{3}\text{N}. & \text{Pt} < \stackrel{\text{Cl}}{\text{Cl}} & \text{H}_{3}\text{N} > \text{Pt} < \stackrel{\text{Cl}}{\text{Cl}} \\ \text{H}_{3}\text{N} > \text{Pt} < \stackrel{\text{Cl}}{\text{Cl}} \end{array}$$

The subject was discussed by H. Reihlen and K. T. Nestle, A. Grünberg, A. Cossa, A. Rosenheim and W. Händler, and F. W. Pinkard and co-workers. H. D. K. Drew and co-workers found that when the α -salt is treated with alkali hydroxides, or silver oxide, a base is formed, which, when neutralized with hydrochloric acid, forms a third isomeride, **platinous** γ -dichlorodiammine, [Pt(NH₃)₂Cl₂], with a calculated mol. wt. of 300. Mol. wt. determinations by the b.p. of aq. soln. are in agreement with this degree of complexity for the β - and γ -salts, but the results with the α -salt are less decisive. If this isomeride really exists, and the observations of K. A. Jensen make it very doubtful, it shows that A. Werner's planar formulæ are not a complete explanation of the isomerism of the dichlorodiammines unless it be assumed that the four linkages to the platinum are inclined at fixed angles which are not right angles. This hypothesis is improbable. H. D. K. Drew and co-workers also showed that evidence does not favour the existence of planar and tetrahedral types, or of spatial and structural types, but rather supports the assumption that the three dichlorodiammines are structural isomerides:

The β -salt gives an intense purple coloration when rubbed with phenoxtellurine dibisulphate, but not so with the α - and γ -salts, the reaction is analogous with the behaviour of tellurides, selenides, and sulphides observed by H. D. K. Drew, and hence it is assumed that the β -salt has a formula of the type PtX_2 . The colorations produced by the tri- and tetra-ammines depend on the presence of a salt of this type when the salt is in equilibrium—e.g. $[Pt(NH_3)_4]PtCl_4 \rightleftharpoons [Pt(NH_3)_4]Cl_2 + PtCl_2$; and the chloroplatinites: $K_2PtCl_4 \rightleftharpoons 2KCl + PtCl_2$. Derivatives of quadrivalent platinum do not give this coloration; and this is also the case with ordinary platinous chloride which shows that this salt does not possess the simple structure.

The reaction of the dichlorodiammines with silver oxide is slow, but it proceeds more rapidly with warm soln. The β -salt gives a soluble, hygroscopic yellow base, but the α -isomeride produces the same base as the γ -isomeride. The product is

assumed to be the base of the γ -salt because it yields the γ -salt when neutralized by hydrochloric acid, and the change from the α - to the γ -form is symbolized:

In the dipyridine series where no hydrogen is attached to nitrogen, no γ -base is formed, since the β -chloro-salt forms $Pt(py.OH)_2$, and the α -salt, the α -base, $[Pt\ py_2(OH)_2]$. The action of an aq. soln. of potassium or sodium hydroxide on the three dichlorodiammines, resembles that of silver oxide, only the β -base is further changed by hot alkali-lye. The α - and β -dichlorodiammines do not react appreciably with alkali-lye. The fact that β -dichlorodiammine cannot be obtained from tertiary aliphatic ammines, since only platinous chloride and a hydrochloride of the amine are formed, is in agreement with the assumption that the β -isomeride has the halogen attached to nitrogen, and the tendency to ionization is feeble.

When the dichlorodiammines are chlorinated, the α - and β -dichlorides unite each with two chlorine atoms to form the α - and β -tetrachlorides, which are not intertransformable; the α -tetrachloride is tetragonal; the β -tetrachloride, monoclinic or orthorhombic. The γ -dichloride gives on chlorination the α -tetrachloride. Each of the tetrachlorides gives back on reduction the particular dichloride from which it was originally formed; it follows, therefore, that if the α - and the β -dichlorides are structural isomerides, the tetrachlorides are structural isomerides also. This is in agreement with the formulæ:

$$\begin{array}{c} \text{Cl} \\ \text{H}_3\text{N} \searrow \overset{\bullet}{\text{Pt}} \swarrow \text{NH}_3 \\ \text{Cl} & \text{ClH}_3\text{N} > \text{Pt} < \overset{\text{Cl}}{\text{Cl}} \\ \text{Cl} & \text{Cl} \end{array}$$

a-Tetrachlorodiammine

\beta-Tetrachlorodiammine

According to H. D. K. Drew and co-workers, the crystals of γ -dichlorodiammine are orange-yellow, and mostly accountable with a tendency to parallel growths and dendritic forms; radiated growths occur. The extinction is straight, and the elongation negative. The refractive index is less than is the case with the α - or β -salts. The X-radiograms are different from those of the α -salt. The mol. conductivities, μ , for soln. with v=4690, and 1234 litres per mol, were very low at the start, but they rapidly increase with time owing to the generation of ammonium chloride, and not to hydrolysis, or to the catalytic effect of the platinized electrodes:

Time .			0	67	139	1410
$\mu_{v=1234}^{v=4690}$			21.3	30.3	56 ·0	116.6
$\mu_{v=1234}$	 _	_	5.6	7.9	14.7	30.7

At 25°, 100 grms. of water dissolve 0.0491 grm. of the γ -salt. For some reactions of the salt, vide supra. F. Rosenblatt and A. Schleede concluded from the X-radiograms that the γ -salt is another crystalline form of the trans-salt. H. D. K. Drew and F. S. H. Head prepared a representative of the cis- and trans-isomerides of the platinous tetrammines: [Pt(NH₃)(C₂H₅.NH₂){NH₂.CH₂.C(CH₃)₂.NH₂}]Cl₂; and A. Hantzsch, those of pyridine.

- C. W. Blomstrand, and P. Klason added the theoretical amount of hydrochloroplatinic acid to a soln. of potassium trichloroamminoplatinite, and on evaporating the soln. in a current of air at ordinary temp. until no hydrotrichloroamminoplatinous acid remains, and washing out the potassium chloroplatinite with cold water, there is formed a yellowish-brown, crystalline powder of **platinous dichloroammine**, [Pt(NH₃)Cl₂]₂, which remains unchanged at 108°; it is almost insoluble in cold water, and not very soluble in hot water; the compound is hydrolyzed so that the evaporation of aq. soln. is conducted at ordinary temp. and in vacuo.
 - E. Koefoed prepared platinous trichlorotriammine, Pt(NH₃)₃Cl₃, by heating

platinous nitrosodichlorodiamminohydrochloride, Pt(NH₃)₂Cl₂.NO.HCl, at the temp, of boiling naphthalene until a soln, of the product in soda-lye gives no green precipitate with hydrochloric acid. The greyish-yellow product is not attacked by cold water, but it is attacked by hot water. The soln. in boiling water deposits on cooling platinous cis-dichlorodiammine, and hydrochloric acid added to the filtrate precipitates platinic dichlorotetramminochloride. Silver nitrate removes half the combined chlorine as silver chloride. The product may be a mixture of cis-[Pt(NH₃)₂Cl₂] and [Pt(NH₃)₄Cl₂]Cl₂. L. Tschugaeff and I. Tscherniaeff prepared platinous dichlorohydroxydiammine, PtCl₂(OH)(NH₃)₂, by oxidizing Peyrone's salt with ammonium persulphate; by the cautious reduction of PtCl₂(OH)₂(NH₂)₂ with zinc dust; or by heating a mixture of PtCl₂(NH₂)₂ and

PtCl₂(OH)₂(NH₃)₂ with slightly acidulated water.

P. Klason 7 regarded trichloroamminoplatinous acid, H[Pt(NH₃)Cl₃].H₂O, as the parent of a series of trichloroamminoplatinites. S. M. Jörgensen prepared ammonium amminotrichloroplatinite, NH4[Pt(NH3)Cl3].H2O, by treating the platinous tetramminochloride with ammonium chloroplatinite, filtering off the platinous tetramminochloroplatinite, concentrating the soln. on a water-bath until crystals of platinous cis-dichlorodiammine appear, and evaporating the filtered soln. in the cold over conc. sulphuric acid. P. Klason obtained it by heating platinous cis-dichlorodiammine with N-HCl on a water-bath, precipitating the hydrochloroplatinous acid by adding the theoretical quantity of platinous tetramminochloride, evaporating the soln. to dryness, in vacuo, and recrystallizing the product from the aq. soln. According to S. M. Jörgensen, the salt furnishes orange-red, rhombic bipyramidal crystals resembling those of the potassium salt. They effloresce and slowly lose their water over conc. sulphuric acid; they are rehydrated over water, and dehydrated at 98°. The aq. soln. furnishes crystals of platinous tetramminochloride, and of platinous trichloroammino-tetramminoplatinite, [Pt(NH₃)Cl₃]₂[Pt(NH₃)₄], and the reaction is almost quantitative. When the salt is treated with mercaptan, P. Klason obtained platinous bissulphinoammine, [Pt(NH3{(C2H5)2S}2]2; and also a derivative of platinous chlorosulphinoammine, namely, $4[Pt(NH_3)Cl\{(C_2H_5)_2S\}][Pt(NH_3)Cl_2]$. The salt forms complexes: $[Pt(NH_3)Cl_3]_2[Pt(NH_3)_4]; [Pt(NH_3)Cl_3]_2[Pt(C_2H_5NH_2)_4];$ and $[Pt(NH_3)Cl_3]_2$ -[Pt(C5H5N)4]. H. Ley and K. Ficken prepared potassium dichloroalaninoplatinite, $K[Pt(C_3H_6O_2N)Cl_2]$, and also potassium dichlorogly cineplatinite, $K[(PtC_2H_4O_2N)Cl_2]$.

A. Cossa prepared potassium amminotrichloroplatinite, K[Pt(NH₃)Cl₃].H₂O, by the action of ammonia on potassium chloroplatinite; and by the action of theoretical proportions of potassium chloroplatinite on [Pt(NH₃)Cl₃]₂[Pt(NH₃)₄], and separating the [Pt(NH₃)₄]PtCl₄ simultaneously formed. The orange-red or reddish-yellow crystals, according to S. M. Jörgensen, are rhombic bipyramids with the axial ratios a:b:c=1.2620:1:0.8231. There is no marked cleavage. The optic axial angle 2V=64°; the double refraction is negative; and the indices of refraction for Na-light are a=1.5438, and $\beta=1.5754$. The pleochroism is: a, yellowish-red; β, reddish-yellow; and γ, deep yellow or red. The hardness is 1 to 2. A. Sella also made observations on the crystals. A. Cossa observed that when the salt is heated, it decomposes into platinum, potassium and ammonium chlorides, and hydrogen chloride. A. Werner and A. Miolati found the mol. conductivities of soln. of a mol of the salt in v litres of water, at 25°, to be:

v			125	250	500	1000	2000
ш			96.62	101.3	103.3	106.8	111.2

A. Cossa observed that the salt is soluble in water. It is transformed by chlorine, or a mixture of potassium permanganate and acid into platinum pentachloroammine; and warm hydrochloric acid forms ammonium chloride and potassium chloroplatinite. P. Klason observed that ammonia converts it into platinous cis-dichlorodiammine; and A. Cossa, that the reaction with ammonia proceeds through the stages [Pt(NH₃)₂Cl₂], [Pt(NH₃)₃Cl]Cl, and [Pt(NH₃)₄]Cl₂. Alcohol

does not dissolve the salt, but with boiling alcohol, platinum is formed. A boiling soln, of sodium hydroxide does not split off ammonia, but it forms a black explosive product. S. M. Jörgensen, and A. Cossa prepared pale brown crystals of **silver amminotrichloroplatinite**, Ag[Pt(NH₃)Cl₃], by the action of silver nitrate on the potassium salt. A. Cossa observed that an excess of silver nitrate in cold soln, of potassium amminotrichloroplatinite precipitates two-thirds of the chlorine as silver chloride, and with boiling soln, all the chlorine is precipitated. No sparingly-soluble complex salts are formed by potassium amminotrichloroplatinite with zinc, mercuric, or stannous chlorides. According to A. Werner, when an excess of a hot soln, of the potassium amminotrichloroplatinite is mixed with potassium amminopentachloroplatinite, a compound crystallizing in green leaflets is deposited at a certain temp., but is converted into potassium amminotrichloroplatinite as the mixture cools.

R. Uhlenhut 8 prepared platinous tetrahydroxylaminechloride, [Pt(NH₄OH)₄]-Clo, by dissolving a gram of the hydroxide in 5 c.c. of boiling, dil. hydrochloric acid; W. Lossen, by warming a soln. of hydroxylamine hydrochloride with platinous chloride, concentrating by evaporation and cooling; and F. Hoffmann, by the action of an excess of hydroxylamine on platinous cis-dichlorobispyridine. H. Alexander made it by shaking platinous chloride with an excess of hydroxylamine, triturating the grey or brown product with cold hydrochloric acid, dissolving the mass in water, and precipitating with alcohol or with a current of hydrogen chloride; and also by mixing a 10 per cent. soln. of potassium chloroplatinite (1 mol.) with solid hydroxylamine hydrochloride (4 mols.), and then adding alkali carbonate. After the soln. has stood some time, add alkali-lye (2 mols.), dissolve the precipitate in the theoretical proportion of cold, dil. hydrochloric acid, and precipitate the salt from the filtered soln. by adding alcohol or passing hydrogen chloride through the liquid. The white, acicular or tabular crystals detonate when heated to about 110°. They are soluble in water and in ordinary alcohol, but, according to W. Lossen, insoluble in alcohol. H. Alexander, and R. Uhlenhut said that the salt is insoluble in conc. hydrochloric acid; hydrobromic acid gives colourless needles of the bromide; sodium thiosulphate gives a white crystalline precipitate; aq. ammonia, or alkali-lye precipitates the hydroxide; sodium carbonate or phosphate gives a fine crystalline precipitate; potassium chromate, a reddish-brown, amorphous precipitate; Fehling's soln., and auric chloride reduce the soln.; silver nitrate does not precipitate all the chloride; and platinic chloride or hydrochloroplatinic acid precipitates the platinous tetrahydroxylaminechloroplatinate, [Pt(NH₂OH)₄]PtCl₄, in blue or violet needles, which explode when heated above 100°. According to H. Alexander, the salt is insoluble in water but sparingly soluble in hot water; insoluble in alcohol; soluble in hydrochloric acid, and the yellow soln. on a waterbath furnishes the trans-salt [Pt(NH₂OH)₂Cl₂]; it dissolves with the development of red fumes in nitric acid; hydroxylamine converts it into platinous tetrahydroxylaminechloride; and a suspension of the salt in water when treated with ammonia forms a white precipitate.

According to H. Alexander, if the filtrate from the mixture of platinous chloride with an excess of hydroxylamine be evaporated at a low temp., and treated with alcohol, a white precipitate approximating platinous tetrahydroxylaminehydroxyohloride, [Pt(NH₂OH)₄]-(OH)Cl.2H₂O, is formed; and platinous tristetrahydroxylaminetetrahydroxydichloride, 2[Pt(NH₂OH)₄](OH)₂.[Pt(NH₂OH)₄]Cl₂, or [Pt(NH₂OH)₄](OH)₂.2[Pt(NH₂OH)](OH)Cl, is produced in microscopic needles by adding the theoretical proportion of barium oxide to a soln. of platinous chloride and hydroxylamine hydrochloride.

According to H. Alexander, if an excess of aq. ammonia be added to a soln. of platinous trans-dichlorodihydroxylamine, and the precipitate rapidly filtered off, washed with cold water, dissolved in a little cold hydrochloric acid, filtered, and mixed with conc. hydrochloric acid, with cooling, there is formed platinous trans-dihydroxylaminediamminochloride, [Pt(NH₃)₂(NH₂OH)₂]Cl₂; and the same product is obtained by dissolving the corresponding hydroxide in a little conc.

hydrochloric acid, and treating the soln. at a low temp. with alcohol. The colourless needle-like crystals are soluble in water, and insoluble in alcohol, or in conc. hydrochloric acid. Alkali hydroxides form a gelatinous precipitate of the dihydroxylaminediamminochloride; alkali carbonates, oxalates, and phosphates give white, crystalline precipitates; and potassium chloroplatinite, or hydrochloroplatinous acid, forms platinous trans-dihydroxylaminediamminochloroplatinite, [Pt(NH₃)₂(NH₂OH)₂]PtCl₄, in dark green, acicular crystals. L. Tschugaeff and I. I. Tscherniaeff could not confirm H. Alexander's observations on the action of ammonia on α-Pt(NH₂OH)Cl₂; and F. W. Pinkard and co-workers found that with a small proportion of aq. ammonia of sp. gr. 0-880, in the cold, the tetrammine, [Pt(NH₂OH)₂(NH₃)₂](OH)₂, is formed, but with dil. ammonia, a yellowish-brown precipitate of variable composition, is obtained, and which probably contains some [Pt(NH₂OH)₂(NH₃)₂](OH)₂. I. I. Tscherniaeff and A. S. Samsonova studied the subject.

F. Hoffmann, and L. Tschugaeff and I. I. Tscherniaeff also obtained platinous cis-dihydroxylaminediamminochloride, [Pt(NH₃)₂(NH₂OH)₂|Cl₂, by triturating platinous cis-dichlorodiammine with ten times its weight of water, adding the theoretical proportion of hydroxylamine hydrochloride, warming the mixture on a water-bath, then adding the theoretical amount of potassium carbonate dissolved in five times its weight of water, warming until solution is complete, and cooling. White, crystalline masses are formed. The salt is sparingly soluble in water, soluble in warm acids, and in acetic acid; it can be recovered unchanged by the evaporation of its soln, in hydrochloric or sulphuric acid. The ag. soln, is always turbid, and if the turbid soln. is clarified by animal charcoal, it slowly becomes turbid again at ordinary temp., and rapidly when heated. When treated with potassium chloroplatinite, violet crystals of platinous cis-dihydroxylaminediamminochloroplatinite, [Pt(NH₃)₂(NH₂OH)₂|PtCl₄, are formed, sparingly soluble in water and acids. L. Tschugaeff and I. I. Tscherniaeff also prepared platinous dihydroxylaminodiamminochloropalladite, $|Pt(NH_3)_2(NH_2OH)_2|PdCl_4$; platinous $[Pt(NH_3)(NH_2OH)_3]Cl_2$; trihydroxylaminoamminochloride, platinous hydroxylaminoamminochloroplatinite, $[Pt(NH_3)(NH_2OH)_3]PtCl_4$; platinous trihydroxylaminoamminochloropalladite, $[Pt(NH_3)(NH_2OH)_3]PdCl_4$; platinous hydroxylaminotriamminochloride, [Pt(NH₃)₃(NH₂OH)]Cl₂; and platinous hydroxylaminotriamminochloroplatinite, [Pt(NH₃)₃(NH₂OH)PtCl₄.

Alexander prepared platinous trans-dichlorodihydroxylamine, [Pt(NH₂OH)₂]Cl₂, by treating with warm hydrochloric acid the precipitate obtained by adding an excess of hydroxylamine to a soln. of platinous chloride; by evaporating on a water-bath the pale yellow soln. of platinous tetrahydroxylaminechloroplatinite, and cooling the liquor; and by digesting platinous tetrahydroxylaminechloride with an excess of hot hydrochloric acid and cooling—H. Wolfram employed a similar process. R. Uhlenhut obtained the salt by evaporating the filtrate, obtained in the preparation of platinous tetrahydroxylamine chloride, to about half its vol. and then cooling. The orange-yellow, or golden yellow, acicular crystals are less soluble in water than the tetrahydroxylaminechloride. They are soluble in alcohol, and in ether. The salt can be recrystallized from a soln. in dil. hydrochloric acid. Aq. ammonia forms the dihydroxylaminediamminochloride; and hydroxylamine, the tetrahydroxylaminechloride. Neither alkali hydroxides nor silver oxide produces the free base. When the soln, mixed with silver nitrate is allowed to stand for a long time in the cold, a feeble turbidity appears.

H. Wolfram prepared platinous cis-dichlorodihydroxylamine, [Pt(NH₂OH)₂Cl₂], by mixing 2 c.c. of an 83 per cent. soln. of hydroxylamine with 2 c.c. of water, and adding the soln. to 11 grms. of potassium chloroplatinite dissolved in 50 c.c. of water; and F. Hoffmann, by mixing a mol. of potassium chloroplatinite in 100 c.c. of water with 2 mols. of hydroxylamine hydrochloride, and a mol. of potassium carbonate. The dark brown precipitate crystallizes after standing in contact with

the mother-liquor for some hours.

F. Hoffmann, and L. Tschugaeff and I. I. Tscherniaeff prepared platinous dichlorohydroxylaminoammine, [Pt(NH₃)(NH₂OH)Cl₂], by boiling in a flask with a reflux condenser, platinous cis-dihydroxylaminediamminochloride with sufficient dil. hydrochloric acid to dissolve the salt in the cold; when the hot soln. is cooled, the salt separates in yellow crystals. L. Tschugaeff and I. I. Tscherniaeff platinous hydroxychlorohydroxylamine, Pt(NH₂OH)Cl(OH), F. W. Pinkard and co-workers could not confirm this.

L. Tschugaeff observed that complex hydrazine compounds can be prepared without difficulty if water be excluded, and he obtained platinous tetrahydrazinochloride, [Pt(N₂H₄)₄]Cl₂, by adding hydrazine to a soln. of platinous tripropylammoniumchloride [Pt{(C3H7)3N.HCl}2Cl2], in chloroform; and L. Tschugaeff and M. Grigorieff prepared it by interaction of hydrazine hydrate with substances of the type $[Pt(SC_2H_5, C_2H_4, C_2H_5S)_2Cl_2]$ or of $[Pt(R_2S)_2Cl_2]$. The chloride can be kept for several days in the dry condition, but decomposes more rapidly in aq. soln. especially on the addition of alkali, with effervescence and liberation of platinum. With sodium iodide soln., the chloride gives a precipitate of the iodide, [Pt(N₂H₄)₄]I₂; whilst potassium platinochloride soln. produces a flesh-coloured precipitate. It forms platinous tetrahydrazinochloroplatinite, [Pt(N₂H₄)₄]PtCl₄; and platinous tetrahydrazinohydrochloride.

L. Tschugaeff and M. Grigorieff prepared platinous trans-dihydrazine-diamminochloride, $[Pt(NH_3)_2(N_2H_4)_2]Cl_2$, by adding 4 to 6 c.c. of hydrazine hydrate to a gram of dry platinous trans-dichlorodiammine, the temp. rises a little, and as soon as all is dissolved an excess of alcohol is added. The oil which separates soon crystallizes, and the product is then washed with absolute alcohol, followed by dry ether. The product is dried a short time in air and finally over phosphorus pentachloride. The colourless acicular crystals are more stable and less soluble than the corresponding cis-salt. It gives a precipitate with potassium iodide; and a red precipitate of platinous dihydrazinodiamminochloroplatinite, [Pt(NH₃)₂(N₂H₄)₂]PtCl₄, which soon darkens, is formed when the soln, is treated with potassium chloroplatinite. Hydrochloric acid in the cold forms a stable and sparingly soluble platinous trans-dihydrazinediamminodihydrochloride, $[Pt(NH_3)_2(N_2H_4)_2]Cl_2.2HCl.$

L. Tschugaeff and M. Grigorieff prepared platinous cis-dihydrazinediamminochloride, [Pt(NH₃)₂(N₂H₄)₂ [Cl₂, by the action of hydrazine hydrate on platinous cis-dichlorodiammine, as in the case of the trans-salt. The cis-salt furnishes colourless, prismatic crystals, which can be preserved for a few days, but gradually darken owing to liberation of platinum; the soln in water, which dissolves large quantities of the solid, decomposes much more rapidly. The mol. conductivity of a soln. of a mol of the salt in 250 litres of water at 25° is 236.6. Other salts of the new complex were prepared by double decomposition of the chloride in concentrated aq. soln. with potassium iodide and with potassium platinochloride, the precipitate in the latter case being greenish. The addition of hydrochloric acid to an aq. soln. of the chloride causes the deposition of a much less soluble, crystalline platinous cis-dihydrazinediamminodihydrochloride, $[Pt(NH_3)_2(N_2H_4)_2]Cl_2.2HCl$, which, on treatment in aq. soln. with potassium chloroplatinite furnishes platinous cis-dihydrazinediamminochloroplatinite, [Pt(NH₃)₂(N₂H₄)₂]₂(PtCl₄)₃; and, on boiling with dil. hydrochloric acid yields hydrazine hydrochloride and platinous cis-dichlorodiammine. They also prepared platinous dinitritodihydrazine, [Pt(N₂H₄)₂(NO₂)₂]. L. Tschugaeff and coworkers prepared a series of platinous hydrazinocarbylaminochlorides.

Platinous chloride was found by A. Wurtz, S. M. Jörgensen, and L. Tschugaeff to form a complex with methylamine, namely, platinous quatermethylaminechloride, $[Pt(Cl_3NH_1)_4]Cl_3$, and the corresponding platinous quaterethylaminechloroplatinite, $[Pt(C_2H_5NH_2)_4]PtCl_4$. H. D. K. Drew and H. J. Tress obtained platinous quaterethylaminochloroplatinite, $[Ptetn_4]Cl_3.2H_3O$; platinous quaterethylaminochloroplatinite, $[Ptetn_4]PtCl_4$; platinous dichloroquaterethylaminochloroaurate, $[Ptetn_4Cl_3]AuCl_6$; and platinous quaterpropylaminochloroaurate, $[Ptetn_4Cl_3]AuCl_6$; ehloride, $[Pt\ pyn_4]Cl_2.2H_2O$. S. M. Jörgensen prepared platinous trans-bismethylamine-diamminochloroplatinite, $[Pt(NH_a)_2(CH_3NH_2)_2]PtCl_4$, as well as platinous cis-bismethylamine-diamminochloroplatinite. D. Strömholm obtained complexes with mercuric chloride. A. Wurtz, C. Gordon, and S. M. Jörgensen obtained platinous dichlorobismethylamine, $[Pt(CH_3NH_2)_2Cl_3]$. S. M. Jörgensen prepared platinous quaterdimethylaminechloride, $[Pt((CH_3)_3NH_4]Cl_2]$, platinous quaterdimethylaminechloroplatinite, $[Pt(CH_3)_3NH_3]PtCl_4$; platinous dimethylaminetriamminochloride, $[Pt(NH_2)_2((CH_2)_3NH_3)PtCl_4]$; platinous trans-bisdimethylaminediamminochloride, $[Pt(NH_3)_2((CH_3)_3NH_3)PtCl_4]$; platinous trans-bisdimethylaminediamminochloride, $[Pt(NH_3)_2((CH_3)_3NH_3)PtCl_4]$; platinous trans-bisdimethylaminediamminochloride, $[Pt(NH_3)_2((CH_3)_3NH_3)PtCl_4]$; platinous trans-bisdimethylaminediamminochloride. S. M. Jörgensen, and E. Koefoed, platinous cis-bisdimethylaminediamminochloride, $[Pt(NH_3)_2((CH_3)_2NH_3)Cl_2]$ in the case of platinic β - bisdimethylaminediamminochloride, $[Pt(NH_3)_2((CH_3)_2NH_3)Cl_2]$ but H. D. K. Drew and G. H. Wyatt found that S. M. Jörgensen also prepared platinous cis-bisdimethylaminechloroplatinite; and platinous dichlorobisdimethylamine, $[Pt((CH_3)_3NH_3)Cl_3]$.

aminechloroplatinite; and platinous dichlorobisdimethylamine, [Pt{(CH₃)₂NH)₂Cl₃].

H. Wolffram, A. Wurtz, P. C. Ray and co-workers, L. Tschugaeff, J. Petersen, and A. Johnson studied platinous quaterethylaminochloride, [Pt(C₂H₅NH₂)₄]Cl₃, as a white isomer; and its dihydrate; and, by the action of a hydrochloric acid solution of hydrogen peroxide on this salt, H. Wolffram obtained what he considered to be a red isomer of the dihydrate; and also, platinous quaterethylaminechloroplatinite, [Pt(C₂H₅NH₂)₄]PtCl₄. H. Reihlen and E. Flohr found that Wolffram's red salt can also be prepared by mixing together aqueous solutions of colourless platinous quaterethylaminochloride and yellow platinic quaterethylaminochloride, [Pt etn₄Cl₂]Cl₂, and hence they concluded that Wolffram's red salt is probably a double salt, [Pt etn₄Cl₂]Cl₂.4H₄O, because the red salt is pale yellow in aqueous solution, and gives with sodium chloroplatinate and potassium chloroplatinite products which correspond with the normal reactions of the components of the double salt. It is also assumed that when the red salt is dihydrated, the space-lattice is destroyed. It is not probable that the red colour of the dihydrate is due to a special space-lattice because the dehydrated red salt changes from a yellow to a red colour, when re-hydrated by exposure to moist air.

H. Reihlen and E. Flohr said that the ionized halogen atoms of Wolffram's red salt cannot be replaced by radicles which would alter the space-lattice, but H. D. K. Drew and H. J. Tress pointed out that this statement merely refers to the difficulty involved in preparing these salts, and to differences in their stability. Two or four of the ethylamine groups may be replaced by propylamine groups; and a pale yellow platinosic hydroxy-quaterethylaminodichloride, [Pt etn₄(OH)]Cl₂.2H₂O, can be prepared. This is taken to indicate that the red salt is possibly a platinosic chloroquaterethylaminedichloride, [Pt etn₄Cl]Cl₂.CH₂O, and that the special properties of Wolffram's salt are a consequence of chemical structure, and not of crystal space-lattice.

Whilst H. Reihlen and E. Flohr rejected the assumption that the platinum in the red salt is tervalent because "no compounds of tervalent platinum are known," on the contrary, several have been reported—vide supra. H. D. K. Drew and H. J. Tress considered the red salt to have tervalent platinum, [Pt etn_Cl]Cl_2.2H_2O, in contrast with the intertransformable dimeric salt, [Cl etn_4Pt.Pt etn_Cl]Cl_4, in which the platinum is quadrivalent. When the red salt is dissolved in water, one or other of these forms enters into equilibrium with the cations [Pt etn_4]" and [Pt etn_4Cl_1]" and Cl'-ions. K. A. Jensen said that it is doubtful if Wolffram's red salt contains tervalent platinum because it is diamagnetic, whereas the other compounds of tervalent platinum are paramagnetic.

P. C. Ray and P. C. Mukherjee prepared [Pt(C₂H₅NH₃)₄]Cl₂.2H₂O. A. Cossa described complexes with ammonia, [Pt(C₂H₅NH₃)₄].[Pt(NH₃)Cl₃]₂; with ethylamine, [Pt(C₂H₅NH₂)₄][Pt(C₂H₅NH₂)₄][Pt(C₂H₅NH₂)₄][Pt(C₂H₅NH₂)₄][Pt(C₂H₅NH₂)₄][Pt(C₂H₅NH₂)₄]]; and with pyridine, [Pt(C₂H₅NH₂)₄][Pt(C₅H₅N(Cl₃)₂. H. Reihlen and E. Flohr not only prepared the salt [Pt(NH₂C₂H₅)₄]Cl₃.2H₂O; but also the complex salts, [Pt(NH₂C₂H₅)₄]Cl₃.Pt(NH₄C₂H₅)₄Cl₃]Cl₂.4H₄O; [Pt(NH₂C₂H₅)₄]Cl₃. [Pt(NH₂C₂H₅)₄]PtCl₄; [Pt(NH₂C₂H₅)₄Cl₃]PtCl₄; and [Pt(NH₂C₂H₅)₄]PtCl₄. S. M. Jorgensen, J. Lifschitz and E. Rosenbohm, A. Hantzsch and F. Rosenblatt, P. T. Cleve, and C. Gordon prepared platinous trans-bisethylaminediamminochloride, and its hemihydrate, and also platinous cis-bisethylaminediamminochloride, and its hemihydrate, and also platinous trans-bisethylaminediamminochloroplatinite, [Pt(NH₃)₂(C₂H₅NH₃)₃]PtCl₄, and platinous cis-bisethylaminediamminochloroplatinite. S. M. Jörgensen prepared platinous trans-bismethylaminebisethylaminechloride, [Pt(CH₃NH₃)₃(C₂H₅NH₃)₃]PtCl₄; platinous cis-bismethylaminebisethylaminechloride; and platinous cis-bismethylamine platinous cis-dichlorobisethylamine. A. Cossa prepared impure platinous dichloroethylamine, [Pt(C₂H₃NH₃)(Cl₃], S. M. Jörgensen reported platinous dichloroethylamineammine, [Pt(C₂H₃NH₃)(NH₃)Cl₃]. P. Griess and C. A. Martius prepared platinous dichloroethylaminechloroplatinite, K[Pt(C₂H₄NH₃)(Cl₃]; platinous tetramminoethylaminechloroplatinite, K[Pt(C₂H₄NH₃)Cl₃]; platinous tetramminoethylaminechloroplatinite, K[Pt(C₂H₄NH₃)Cl₃]; platinous tetramminoethylaminechlor

aminetrichloroplatinite, $[Pt(NH_3)_4][Pt(C_2H_5NH_2)Cl_3]$; and platinous quinquiesethylaminetrichloroplatinite, $[Pt(C_2H_5NH_2)_4][Pt(C_2H_5NH_2)Cl_3]$. S. M. Jörgensen, and J. Petersen described platinous bisethylenediaminechloride, $[Pt\{C_2H_4(NH_2)_2\}_2]Cl_2$, and platinous bisethylenediaminechloroplatinite, $[Pt\{C_2H_4(NH_2)_2\}_2]PtCl_4$ —E. G. Cox and G. H. Preston studied the crystal lattices; and E. N. Gapon, the diffusion coeff., and N. S. Kurnakoff, platinous bisethylenediaminechlorocobaltate, $[Pt\{C_2H_4(NH_2)_2\}_2]CcCl_3$; and platinous bisethylenediaminechlorocuprate, $[Pt\{C_2H_4(NH_2)_2\}_2](CuCl_3)_2$, as well as platinous bisethylenediaminechlorocupriplatinate. S. M. Jörgensen, and P. Griess and C. A. Martius described platinous trans-dichlorocethylenediamine, $[Pt\{C_2H_4(NH_2)_2\}Cl_2]$, and platinous cis-dichlorocethylenediamine; $[Pt(NH_3)_2]Cl_2]$, and platinous ethylenediaminediamminochloroplatinite, $[Pt(NH_3)_2]Cl_2]$, S. M. Jörgensen, and H. D. K. Drew, platinous ethylenediaminediamminochloroplatinite, $[Pt(NH_3)_2]Cl_2H_4(NH_2)_2]$]- $PtCl_4$; and platinous ethylenediaminediamminochloroplatinite, $[Pt(NH_3)_2]Cl_2H_4(NH_2)_2]$]- $PtCl_4$; and platinous ethylenediaminedihydrochloride, $[Pt(NH_3)_2]Cl_2H_4(NH_2)_2]$]- $PtCl_4$; and platinous ethylenediaminedihydrochloride, $[Pt(NH_3)_2]Cl_2H_4(NH_2)_2$]- $PtCl_4$; and platinous ethylenediaminedihydrochloride, $[Pt(NH_3)_2]PtCl_3$, and the dihydrate; S. M. Jörgensen, platinous ethylenediamine ethylenediaminehexachloroplatinite, $[Pt(L)_2]PtCl_4$, and platinous ethylenediamine ethylenediaminehexachloroplatinite, $[Pt(L)_2]PtCl_4$, and platinous ethylenediamine ethylenediaminehexachloroplatinite, $[Pt(L)_2]PtCl_4$, $[Pt(L)_3]PtCl_4$, $[Pt(L)_4]PtCl_4$, and platinous ethylenediamine ethylenediaminehexachloroplatinite, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, and platinous dichlorodiaminodichyleneaminohydrochloride, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, $[Pt(L)_4]PtCl_4$, [P

$$\begin{bmatrix} \mathrm{CH_2.NH_2} \\ \mathrm{C(CH_3)_2.NH_2} \end{bmatrix} \mathrm{Pt} \underbrace{ \begin{array}{c} \mathrm{NH_2.CH(C_6H_5)} \\ \mathrm{NH_2.CH(C_6H_5)} \\ \end{bmatrix}} \mathrm{Cl_2}$$

into antimeric optically active forms which is taken to show that the 4-covalent platinum must have a planar configuration of its valencies, since the regular tetrahedral arrangement would have a symmetrical configuration for the complex cation.

L. A. Tschugaeff and B. Orelkin obtained platinous bisaminoacetalchloride, [Pt(NH_a,-

CH₃.CH(OC₂H₃)₂|₂|Cl₃. P. Griess and C. A. Martius prepared anlilne ethylenetrichloroplatinite, [Pt(C₂H₄)Cl₃]|H(C₄H₃NI₂); ammonium ethylenetrichloroplatinite, NH₄[Pt(C₃H₄)Cl₃], as well as the monohydrate, and W. C. Zeise's tetritapentahydrate; W. C. Zeise, K. Birnbaum, J. von Liebig, and S. M. Jörgensen obtained potassium ethylenetrichloroplatinite, K[Pt(C₂H₄)Cl₃], and the monohydrate; S. M. Jörgensen, silver ethylenetrichloroplatinite, K[Pt(C₂H₄)Cl₃]; platinous tetramminoethylenedichloroplatinite, [Pt(NH₃)₄]Pt(C₂H₄)Cl₂]; W. C. Zeise, and P. Griess and C. A. Martius reported platinous dichloroethyleneammine, [Pt(NH₃)(C₃H₄)Cl₂]; and P. Schützenberger and D. Tommasi, platinous dichloroearbonylethylene, [Pt(C₂H₄)Cl₂]; W. C. Zeise, W. Prandtl and K. A. Hofmann, P. Klason, S. M. Jörgensen, J. von Liebig, and W. Prandtl and K. A. Hofmann, platinous dishloroethylene, [Pt(C₂H₄)Cl₂]; L. Tschugaeff and B. Orclkin prepared a complex with aminoacetal. S. M. Jörgensen prepared platinous quaterpropylaminechloride, [Pt(C₃H₂NH₃)₄]Cl₂, and platinous quaterpropylaminechloride, [Pt(C₃H₂NH₃)₄]Cl₂, and platinous trans-bispropylaminechloroplatinite, [Pt(NH₃)₄]C(₃H₂NH₃)₄]PtCl₄, and platinous trans-bisethylaminebispropylaminechloride, [Pt(C₄H₃NH₃)₄]C(C₃H₂NH₃)₄]C(C₄H₃NH₃)₄]C(C₄H₃NH₃)₄C(C₄H₃NH₃)₄C(C₄H₃NH₃)₄C(C₄H₃NH₃)₃C(C₃H₃NH₃)₄C(C₄H₃NH₃)₄C(C₃H₃NH₃)₄C(C₃H₃NH₃)₄C(C₃H₃NH₃)₄C(C₃H₃NH₃)₃C(C₃H₃NH₃)₄C(C₃H₃NH₃)₄C(C₃H₃NH₃)₃C(C₃H₃NH₃)₄

PLATINUM

273

platinous propylenediaminodiamminochloride, [Pt(NH₃)₂(C₃H₈(NH₂)₂)]Cl₂; L. Tschugaeff and W. Sokoloff, the lovo-salt: A. Werner, platinous propylenediaminediamininochloroplatinite, $[Pt(NH_3)_2|C_3H_6(NH_2)_2]|PtCl_4$: L. Tschugaeff and W. Sokoloff, platinous propylenediamineothylenediaminechloride, $[Pt\{C_2H_4(NH_2)_2\}|C_3H_6(NH_2)_2]|Cl_2$, and platinous propylenediaminetrimethylenediaminechloride, $[Pt\{C_3H_6(NH_2)_2\}|(CH_2)_3(NH_2)_2]|Cl_2$. L. Tschugaeff, and C. Gordon prepared platinous quaterbutylaminechloride,

 $[Pt(C_4H_9NH_2)_4]Cl_2$, and platinous quaterbutylaminechloroplatinite, $[Pt(C_4H_9NH_2)_4]PtCl_4$; L. Tschugaeff obtained platinous quaterisobutylaminechloroplatinite, $|Pt(C_4H_9NH_2)_4|PtC_4|$; and C. Gordon, platinous bisbutylaminediamminochloride, $|Pt(NH_3)_2|C_4H_9NH_2)_2|C_2$. L. Tschugaeff reported platinous quateramylaminechloroplatinite, $[Pt(C_5H_{11}NH_2)_4]PtCl_4$; D. Strömholm obtained complexes with mercuric chloride; K. Birnbaum, potassium amylenetrichloroplatinite, $[Pt(C_5H_{10})Cl_3]H_2O$; F. Mylius and F. Förster, amylammoinium carbonyltrichloroplatinite, $[Pt(CO)Cl_3]H'(C_5H_{11}NH_2)$; and P. Schützenberger and D. Tommasi, platinous chlorocarbonyldiamminethloride, $[Pt(NH_3)_s(CO)Cl]Cl$. C. Liebermann and C. Paul prepared allylaminetrichloroplatinous acid, $[Pt((C_3H_5NH_2)Cl_3]H$; ethylallylaminetrichloroplatinous acid, $Pt_1\{(C_2H_5)(C_3H_5)NH_1C_3\}H$; bisethylallylaminetrichloroplatinous acid, $Pt_1\{(C_2H_5)_2(C_3H_5)NH_1C_3\}H$; and bispropylallylaminetrichloroplatinous acid, $Pt_1\{(C_3H_5)_2(C_3H_5)NH_1C_3\}H$. P. C. Ray and co-workers prepared platinous quaterbenzylaminochloride, $[Pt(CH_2, C_6H_5, NH_2)_4]CI_2$. H. D. K. Drew and F. S. H. Head obtained various ammino-salts of ethylamine, isobutylenediamine, ethylenediamine, and pyridine. A. A. Grinberg prepared complexes with glycine, platinous glycinodiamminochloride, $Pt(NH_3)_2(C_2H_5O_2N)CI$, and $Pt(NH_3)_2(C_2H_5O_2N).2HCI$.

M. Raewsky prepared platinous quateranilinechloride, [Pt(CaH5NH2)4]Clog P. T. Cleve, platinous trans-bisanilinediamminochloride, [Pt(C₆H₅NH₂)₂(NH₃)₂](Cl₂; platinous cis-bisanilinediamminochloride, platinous trans-bisanllinediamminochloroplatinite, $[Pt(NH_3)_2(C_6H_5NH_2)_2]$ - $PtCl_4$, and platinous cis-bisanllinediamminochloroplatinite. J. J. Chydenius, C. Gordon, P. C. Ray and co-workers, D. Cochin, and P. T. Cleve described platinous P. C. Ray and co-workers, D. Cochin, and P. T. Cleve described platinous dichlorobisaniline, $[Pt(C_6H_5NH_2)_2Cl_2]$; P. Griess and C. A. Martus, platinous dichloroanilinethylene, $[Pt(C_6H_5NH_2)(C_2H_4)Cl_2]$; F. Mylius and F. Forster, aniline carbonyltrichloroplatinite, $(C_6H_5NH_2)(C_2H_4)Cl_2]$; and P. T. Cleve, platinous chloroanilinediamminochloride, $[Pt(NH_3)_2(C_6H_5NH_2)Cl_2]$, and platinous chloroanilinediamminochloride, $[Pt(NH_3)_2(C_6H_5NH_2)Cl_2]$; M. Raewsky prepared platinous bisanilinehydrochloride, $[Pt(C_6H_5NH_2)_2Cl_2]$; M. Raewsky prepared platinous bisanilinehydrochloride, $[Pt(C_6H_5NH_2)_2Cl_2]$; M. Raewsky prepared platinous bisanilinehydrochloride, $[Pt(C_6H_5NH_2)_2Cl_2]$; and the pentahydrate. P. C. Ray and co-workers prepared platinous dichlorodistoluidine, $[Pt(C_6H_5NH_2)_2Cl_2]$; and G. Gordon, platinous dichlorobistolidine, $[Pt(C_4H_5NH_2)_2Cl_2]$; F. Förster described platinous dichlorocarbonylphenylhydrazine, $[Pt(C_6H_5N_2H_3)(CO)Cl_2]$. P. Schützenberger, W. Manchot, A. J. F. da Silva, and W. Pullinger described platinous dichlorodicarbonyl, $[Pt(CO)_2Cl_2]$; W. Pullinger platinous dichlorobistolione, $[Pt(C_6H_5N_2H_3)(CO)Cl_2]$. P. Schützenberger, W. Manchot, A. J. F. da Silva, and W. Pullinger described platinous dichlorodicarbonyl, $[Pt(CO)_2Cl_2]$; W. Pullinger, P. Schützenberger, and A. J. F. da Silva, platinous dichlorocarbonyl, $[Pt(CO)Cl_2]_2$, and platinous chlorovinylcarbonyl, $[Pt(CO)Cl(C_2H_3)]_2$. platinous chlorovinylearbonyl, $[Pt(CO)Cl(C_2H_3)]_2$

E. Billmann prepared potassium allylalcoholotrichloroplatinite, $K[Pt(C_3H_3OH)CI_3]$; cinchonine allylalcoholotrichloroplatinite, $H_2(C_{19}H_{22}N_2O)[Pt(C_3H_3OH)CI_3]$; and platinous tetramminoallylalcoholotrichloroplatinite, $[Pt(NH_3)_4][Pt(C_3H_3OH)CI_3]_2$. F. W. Pinkard and co-workers prepared some complex pyridine salts—platinous a-hydroxylaminopyridinechloride, $[Pt(NH_2OH) py]Cl_2$; platinous a-chlorobispyridinoamminochloride, $[Pt(NH_3) py_2Cl]Cl$; platinous a chloropyridinodiamminochloride, [Pt(NH₃) py₂Cl]₂Cl; platinous a-chlorobiste, $[Pt(NH)_3 py_2Cl_2]PtCl_4$; $[Pt(NH_2OH)(NH_3) py_2]Cl_2$; pyridinoamminochloroplatinate, platinous a-hydroxylaminoplatinous bispyridinoamminochloride, a-hydroxylaminotrispyridinochloride, [Pt(NH2OH)py3]Cl2; platinous a-dihydroxylaminobispyridinochloride, [Pt(NH₂OH)₂ py₂]Cl; and platinous α -dihydroxylaminopyridinoamminochloride, [Pt(NH₂OH)₂-(NH₃) py]Cl₂. G. T. Morgan and F. H. Burstall prepared complexes with dipyridyl.

J. Petersen, S. M. Jörgensen, F. Forster, N. S. Kurnakoff, R. Lorenz and I. Posen, P. C. Ray and N. N. Ghosh, E. N. Gapon, A. Hantzsch and F. Rosenblatt, H. D. K. Drew and co-workers, P. C. Ray and co-workers, and S. G. Hedin described platinous quaterpyridinechloride, $[Pt(C_5H_5N)_4]Cl_2$, with the double salts platinous quaterpyridinechlorocuprate, $[Pt(C_5H_5N)_4](CuCl_3)_2$, and $[Pt(C_6H_5N)_4]_2CuCl_6, 12H_2O$; platinous quaterpyridinechlorozincate, $[Pt(C_6H_5N)_4]ZnCl_4$; platinous quaterpyridinechlorocadmate, $[Pt(C_3H_5N)_4]CdCl_4$; platinous quaterpyridinechloropolatinite, $[Pt(C_5H_5N)_4]CdCl_4$; platinous quaterpyridinechloroplatinite, $[Pt(C_5H_5N)_4]PtCl_4$; A. Cossa and S. G. Hedin, platinous quaterpyridinechloroplatinate, $[Pt(C_5H_5N)_4]PtCl_6$; A. Cossa, platinous quaterpyridineammino-trichloroplatinite, $[Pt(C_5H_5N)_4][Pt(NH_3)Cl_3]_2$; platinous quaterpyridineothylaminetrichloroplatinite, $[Pt(C_5H_5N)_4][Pt(C_2H_5NH_2)Cl_3]_2$; and platinous quinquiespyridinetrichloroplatinite, $[Pt(C_5H_5N)_4][Pt(C_2H_5NH_2)Cl_3]_2$; S. M. Jörgensen described platinous pyridinetriamminochloride, $[Pt(NH_3)_3(C_5H_5N)]Cl_2$. S. M. Jörgensen described platinous pyridinetriamminochloride, $[Pt(NH_3)_3(C_5H_5N)]PtCl_4$. E. N. Gapon, R. Lorenz and I. Posen, A. Hantsch and F. Rosenblatt, E. G. Cox, P. Klason, and S. M. Jörgensen prepared platinous trans-bispyridinediamminochloride, $[Pt(NH_3)_2(C_5H_5N)_2]Cl_2$. H₂O, and the corresponding VOL XVI quaterpyridinechlorozincate, [Pt(C6H5N)4]ZnCl4; platinous quaterpyridinechlorocadmate,

VOL. XVI.

platinous cis-bispyridinediamminochloride, and platinous trans-bispyridinediamminochloroplatinite, {Pv(NH₃)₂(C₅H₅N)₂|PtCl₄, and the corresponding platinous cis-bispyridinediamminochloroplatinite. S. M. Jörgensen, and P. Klason prepared platinous trans-dichloropyridineammine, {Pv(NH₃)(C₅H₅N)Cl₂|, and the corresponding platinous cis-dichloropyridineammine—with a possible isomeric form of the latter. I. Ostromisslensky and A. Bergmann prepared platinous chlorosulphitopyridinoammine, {Pv(NH₂)(C₅H₅N)(HSO₃)Cl]; platinous dichlorotylenediamine, {Pv(C₆H₃(CH₃)(NH₂)₂(Cl₂); and platinous dichloro-tso-butylenediamine. C. W. Blomstrand, S. M. Jörgensen, H. Kirmreuther, F. Förster, P. C. Ray and co-workers, and S. G. Hedin reported platinous trans-dichlorobispyridine, {Pv(C₆H₁N)₂Cl₃|.

I. I. Tschorniaeff and A. M. Rubinstein, and F. Hoftmann prepared platinous bis-pyridinedihydroxylaminechloroplatinite, {Pv(NH₂OH)₂(C₅H₈N)₂|PvCl₄: the corresponding platinous hydroxybispyridinedihydroxylaminechloroplatinite, 2|Pv(NH₂OH)₂(C₅H₈N)₂|QOH)₂.

(Pv(NH₂OH)₂(C₄H₈N)₃)PvCl₄.8H₂O; and platinous dichlorobydroxylaminepyridine, {Pv(NH₂OH)₂(C₅H₈N)₂|VCO)Cl₂|; S. M. Jörgensen, T. Anderson, A. Cossa, F. Hoffmann, S. G. Hedin, Pv(Co)Cl₃|H₁Ch₄N₅N)₂|Some and F. Forster obtained platinous cis-dichlorobispyridine; and F. Mylius and F. Förster, pyridinium carbonyltrichloroplatinite, [Pv(CO)Cl₃|H₁Ch₄N₅N)₃ and a doubtful 2C₅H₈N,HCl.PvCl₂CO. S. M. Jörgensen described platinous bispyridinebydrochloride, 2C₅H₈N,HCl.PvCl₂Co. S. M. Jörgensen described platinous bispyridinebydrochloride, 2C₅H₈N,HCl.PvCl₂Co. S. M. Jörgensen prepared ammonium pyridinebisdimethyleneaminechloroplatinite, {Pv(CH₃NH₂C₅H₅N)₂|Cl₂, platinous cis-bispyridinebisdimethyleneaminechloroplatinite, {Pv(CH₃NH₂C₅H₅N)₂|PvCl₄, and the corresponding platinous cis-bispyridinebismethyleneamine pyridinetrichloroplatinite, R. A. Werner and F. F

trichloroplatinite, Rb[Pt(C_bH_bN)Cl₃]: and easium pyridinetrichloroplatinite, Cs[Pt(C_cH_bN)Cl₃]: as well as platinous tetrammine pyridinetrichloroplatinite, [Pt(C_cH_bN)+], [Pt(C_cH_bN)Cl₃]: platinous quaterethylamine pyridinetrichloroplatinite, [Pt(C_cH_bN)+], [Pt(C_cH_bN)Cl₃]: and platinous quaterpyridine pyridinetrichloroplatinite, [Pt(C_cH_bN)+], [Pt(C_cH_bN)Cl₃]: P. C. Ray and P. C. Mukherjee prepared platinous bispiperidine, [Pt(C_cH_bN)Cl₃]: P. C. Ray and E. G. Cox and co-workers, platinous disalicylaldoximinochloride, [Pt(C_cH_bN)2]Cl₂: P. C. Ray and co-workers, platinous dichlorobispiperidine, [Pt(C_cH_bN)2]Cl₂: P. C. Ray and co-workers, PtCl₂.3C₂H₁N; A. Werner and F. Fassbender, platinous dichloroplatinite, [Pt(C_cH_bN)Cl₃]: and G. Williams, and E. G. Cox and co-workers, platinous dichlorobisquinoline, [Pt(C_bH_bN)2]cl₂]: also platinous dichlorobisquinoline) deleterate pyridine, [Pt(C_cH_bN)Cl₃]: Also platinous dichlorobisquinoline, [Pt(C_bH_bN)2]cl₂]: also platinous dichlorobisquinoline) deleterate pyridine, [Pt(C_bH_bN)2]cl₂]: Also platinous dichlorobisquinoline chloroplatinite, [C₁₃H₁₄NH.NH₂]PtCl₄.4H₂O; and [Pt(C₃H₁₄NNH₂)₃]PtCl₃]. [Pt(C₆H₁₀O)Cl]. F. Mylius and F. Förster described quinoline carbonyltrichloroplatinite, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichloromesityloxide, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichloromesityloxide, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichloromesityloxide, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichloromethoxydicyclopentadlene, [Pt(C_bH_bN₂)₂Cl₂]: and platinous dichlorobis-3-aminopyridine, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichloromethoxydicyclopentadlene, [Pt(C_bH_bN₂)₂Cl₂]: platinous dichlorobismethylphenylbyrazole, K. A. Hofmann and G. Büüge prepared platinous dichlorobismethylphenylbyrazole. K. A. Hofmann and G. Büüge prepared platinous dichlorobismethylphenylbyrazole. [Pt(C_bH_bN₂)₂Cl₂, in its isomeric forms, and chloroplatinites; they also

Č. Enebuske described platinous quatermethylsulphinechloride, $[Pt\{(CH_3)_2S\}_4]Cl_2$; C. Enebuske, P. Klason, P. C. Ray and P. C. Mukherjee, E. G. Cox and co-workers, L. Tschugaeff and W. Sokoloff, and L. Tschugaeff and J. Benewolensky described platinous quatermethylsulphinechloroplatinite, $[Pt\{(CH_3)_2S\}_4]PtCl_4$, and platinous quatermethylsulphinechloroplatinite, $[Pt\{(CH_3)_2S\}_4]PtCl_4$; J. Petren, C. W. Blomstrand, and C. Enebuske, platinous chlorotrismethylsulphinechloroplatinite, $[Pt\{(CH_3)_2S\}_cC]PtCl_3$, or $[Pt\{(CH_3)_2S\}_cC]_1]Pt\{(CH_3)_2S\}_cC]_1$. C. Enebuske, P. Klason, and L. Tschugaeff and J. Benewolensky described platinous trans-dichlorobisdimethylsulphine, $[Pt\{(CH_3)_2S\}_2Cl_3]$, and the corresponding platinous cis-dichlorobisdimethylsulphine, as well as the complex

with chloroform, described by C. Enebuske, and M. Weibull. P. Klason described platinous bisdimethylsulphinediamminochloride, $[Pt(NH_3)_2\{(CH_3)_2S\}_2]Cl_2$, and platinous dimethylsulphinetriamminochloride, $[Pt(NH_3)_3\{(CH_3)_2S\}]Cl_2.H_2O$.

E. C. Fritzmann prepared platinous quaterethylsulphinochloride, [Pt{(C,H,),S},]Cl2; E. C. Fritzmann prepared platinous quaterethylsulphine. The isomerism of these salts was discussed by F. G. Angell and co-workers. H. Löndahl prepared platinous chlorotrisdiethylsulphinechloride, $[Pt\{(C_2H_5)_2S\}_3C]]Cl$; C. W. Blomstrand, E. C. Fritzmann, and P. Klason, platinous trans-dichlorobisdiethylsulphine, $[Pt\{(C_2H_5)_2S\}_3Cl]_2\}$, as well as the corresponding platinous cis-dichlorobisdiethylsulphine, and the double salt with platinous chloride. P. C. Ray and P. C. Mukherjee prepared $Pt(C_2H_5)_2S.(C_2H_5)_2NH.Cl_2$; $(PtCl_2)_2.2(C_2H_5)_2S.(C_2H_5)_2NH$; $PtCl_2.(C_2H_6)_2S.(CH_3)_3N$. P. Klason, and L. Tschugaeff $(PtCl_2)_2, 2(c_2H_5)_2S, (c_2H_5)_2S, (r_3H_5)_2S, (c_3H_5)_2S, (c_$ H. Löndahl obtained platinous diethylsulphinetriamminochloride, $[Pt(NH_3)_3](C_2H_5)_2S[Cl_2,$ in two isomeric forms, and also as a monohydrate, and platinous diethylsulphinetriamminochloroplatinite, $[Pt(NH_3)_3](C_2H_5)_2S[PtCl_4]$. P. Klason prepared platinous chlorodiethylsulphinediamminochloride, $[Pt(NH_3)_3](C_2H_5)_2S[Cl_2]$, in two isomeric forms, as well as platinous chlorodiethylsulphinediamminoethylmercaptide, $[Pt(NH_3)_2|(C_2H_5)_2S|C1]_2$, and platinous chlorodiethylsulphinediamminoethylmercaptide, $[Pt(NH_3)_2|(C_2H_5)_2S|C1]_2$, and platinous trans-dichlorodiethylsulphinepyridine, $[Pt(C_5H_5N)|(C_2H_5)_2S|C1]_3$, and two isomeric forms of platinous cis-dichlorodiethylsulphinepyridine. P. C. Ray and co-workers prepared platinous dichlorodiethylsulphine, $[Pt(C_5H_5N)](C_2H_5)_2S|C_2H_5)_2NH$, also 2PtCl₂.3(CH₃)₂S₂, and 2PtCl₂.3(C₂H₅)₂S₂. K. A. Jensen could not confirm the four isomers reported by P. C. Ray and K. C. Bose-Ray. K. A. Jensen measured the dipole moments of many of these salts, and also measured the electrical conductivities of solutions in water, and in methyl alcohol. Marked hydrolysis and alcoholysis occur. Molecular weight determinations correspond with the doubled formula $[PtCl_2(R_2S)_2]_2$. J. Lifschitz and W. Froentjes discussed the a- and β -forms of platinous bisdiethylsulphinedichlorides as structural isomerides. They obtained the a- and β -forms and a dimeric form of $[Pt\{(C_2H_5)(CH_3).S\}_2Cl_2]$, with the respective m.p. 63°, 127°, and 133°. They also obtained dextro- and lavo-forms with thiolactic acid. All the a-forms pass into the β-forms when exposed to ultra-violet light.

 $\begin{array}{lll} Blomstrand & prepared & platinous \\ C_2H_5)_2S_3Cl_2 \end{bmatrix}. & H. Löndahl prepared & platinous & bisdiethylenesulphinechloride, \\ \end{array}$ $\begin{array}{ll} [Pt\{(CH_3)_2S\}\{(C_2H_4)_2S\}Cl_2]. & H. \ L\"{o}ndahl \ prepared \ platinous \ bisdlethylenesulphinechloride,} \\ [Pt\{(C_2H_4)_2S_2\}_2]Cl_2: \ platinous \ dichlorodlethylenedisulphine,} [Pt\{(C_2H_4)_2S_2\}Cl_2]: \ platinous \ pla$ chlorotrisdiethylenedisulphinechloride, $[Pt((C_2H_4)_2S_2)_3(T)]C1$; and platinous diethylenedisulphinetriamminochloride, $[Pt(NH_3)_3](C_2H_4)_2S_2\}[C1_2$. P. C. Ray and co-workers also prepared

this compound.

 $\{(C_3H_7)_2S\}Cl_2\}$; and H. Löndahl, platinous dichlorodi-n-propylsulphinedi-iso-propylsulphine, $[Pt(\{C_3H_7)_2S\}Cl_2]$; and H. Löndahl, platinous dichlorodi-n-propylsulphinedi-iso-propylsulphine, $[Pt(\{C_3H_7)_2S\}Cl_3]$. E. C. Fritzmann described platinous diethyldithiodimethylpropanochloride, $2C(CH_3)_2(CH_2SC_2H_5)_2.2PtCl_2$; platinous tetrathioerythritochloride, $C(CH_2SC_2H_5)_4.PtCl_2$; platinous dimethylethylenedithiolchloride, $2(C_2H_5SHC:CHSC_2H_5)_2.$ PtCl₂; and K. A. Jensen, platinous thiocarbazidochloride, $[Pt(thio)_2]Cl_2$, as well as

platinous thiocarbazidochloroplatinite, [Pt(thio)₂]PtCl₄.

H. Löndahl, C. W. Blomstrand, and M. Weibull prepared platinous quaterdi-n-butyl-sulphinechloroplatinite, [Pt{(C₄H₂)₂S}₄]PtCl₄; platinous quaterdi-iso-butylsulphinechloroplatinite; platinous distributes the platinous distributes distributes distributes the platinite; platinous trans-dichlorobisdi-n-butylsulphine, $[Pt{(C_4H_9)_2S}_2Cl_2]$, and platinous cis-dichlorobisdi-n-butylsulphine; and similarly with platinous trans-dichlorodi-isobutylcis-dichlorobisdi-n-butylsulphine; and similarly with platinous trans-dichlorodi-iso-butylsulphine, and platinous cis-dichlorodi-iso-butylsulphine; H. Löndahl also prepared complexes with carbon disulphide, and with chloroform. K. A. Jensen could not confirm H. Löndahl's α - and γ -forms of $\operatorname{PtCl}_2((C_4H_0)_2S)_2$. H. Löndahl described platinous trans-dichlorodicthylsulphinedibutylsulphine, $[\operatorname{Pt}((C_2H_5)_2S)_{\{(C_4H_0)_2S\}_2\},$ and a complex with chloroform. C. W. Blomstrand prepared platinous cis-dichlorobisdi-iso-amylsulphine, $[\operatorname{Pt}((C_2H_{11})_2S)_2Cl_2]$; P. T. Cleve, platinous trianilinediamminochloride, $[\operatorname{Pt}(\operatorname{NH}_3)_2(C_4H_5\operatorname{NH}_2)_3]$ -Cl₂; H. Löndahl, M. Weibull, and C. W. Blomstrand described platinous trans-dichloro-

bisdibcnzylsulphine, $[Pt((C_6H_5CH_2)_2S)_2Cl_2]$, and a complex with chloroform; and P. C. Ray and P. C. Mukherjee, a complex with ethylamine. P. C. Ray and co-workers prepared platinous quaterbenzylsulphinochloride, $P(Cl_2, 2(CH_2, C_0H_5)_2S)$. L. Tschugaeff and S. Iljin prepared platinous dichlorodimethyldimethyleneethylsulphine, $P(Cl_2, C(CH_3)_2(CH_2, SC_2H_5)_2)$; platinous dichloroerythritylethylsulphine, PtCl₂.C(CH₂.SC₂H₅)₄; and platinous dichloro-acetylenediethylsulphine, PtCl₂.S(C₂H₅).CH: CH.S(C₂H₅).

N. S. Kurnakoff, and W. J. Sell and T. H. Easterfield prepared platinous quaterthio-

N. S. Kurnakoff, and W. J. Sell and T. H. Easterfield prepared platinous quaterthio-carbamidochloride, $\{Pt\{CS(NH_2)_2\}_4|Cl_2\}$ and N. S. Kurnakoff, J. E. Reynolds, and G. Prätorius-Seidler, platinous quaterthiocarbamidochloroplatinate, $\{Pt\{CS(NH_2)_2\}_4|Cl_2\}$; N. S. Kurnakoff, platinous bisthiocarbamidediamminochloride, $\{Pt\{NH_2\}_2\}_4|Cl_2\}$; platinous dichlorobisthiocarbamide, $\{Pt\{CS(NH_2)_2\}_2Cl_2\}$; platinous dichlorobisthiocarbamide, $\{Pt\{CS(NH_2)_2\}_2Cl_2\}$; platinous dichlorobisthiocarbamide, $\{Pt\{CS(NH_2)_2\}_2Cl_2\}$; platinous dichlorobisthiocarbamide, $\{Pt\{CS(NH_2)_2\}_2Cl_3\}_{1}^{2}t\{CS(NH_2)_2\}$. N. S. Kurnakoff, platinous triehlorobisthiocarbamide, $\{Pt\{CS(NH_2)_2\}Cl_3\}_{1}^{2}t\{CS(NH_2)_2\}$. N. S. Kurnakoff, platinous quaterthioacetamidechloride, $\{Pt(CH_3.CS.NH_2)_4\}Cl_2$, and platinous quaterthioacetamidechloroplatinate, $\{Pt(CH_3.CS.NH_2)_4\}PtCl_6$. A. W. Hofmann prepared platinous thiotormaldehydechloride, $2Pt(Cl_3.CS.NH_2)_4\}PtCl_6$. A. W. Hofmann prepared platinous dichloro- β -aminodiethylsulphine, $\{Pt(CH_3.CS.H_2NH_2)Cl_2\}$.

L. A. Tschugaeff and P. Teearu prepared platinous quaterbutylcarbylaminechloride, $\{Pt(C.H_6.NC), \{Cl_6...m.d)\}$.

 $[Pt(C_4H_8.NC)_4]Cl_2$; and platinous quatermethylcarbylaminechloroplatinite, $[Pt(CH_3.NC)_4]$ PtCl₄; platinous quaterbutylcarbylaminechloroplatinite, $[Pt(C_4H_9.NC)_4]PtCl_4$; L. A. Tschugaeff and P. Tecaru, platinous dichlorobismethylcarbylamine, $[Pt(C_4H_9.NC)_2Cl_2]$; platinous dichlorobisbutylcarbylamine, $[Pt(C_4H_9.NC)_2Cl_2]$; L. Ramberg, L. Tschugaeff and P. Tecaru, and K. A. Hofmann and G. Bügge, platinous dichlorobisphenylcyanide, $[Pt(C_6H_5.CN)_2Cl_2]$, and also associated with chloroform, and with benzene; platinous dichlorobisphenylearbylamine, [Pt(C₈H₅·NC)₂Cl₂], in a colourless and in a violet form; P. Klason, K. A. Hofmann and G. Bügge, L. Ramberg, C. Enebuske, and L. Tschugaeff and P. Tecaru obtained platinous quaterphenylearbylaminechloroplatinite, [Pt(C₈H₅·NC)₄]PtCl₄; L. A. Tschugaeff and platinous quaterpnenyicarpyiaminecnioropiatinite, $[Pt(C_0H_5,NC)_4]PtCI_4; L. A. Ischugeri and co-workers prepared platinous dihydrazinoctocarbylaminochloride, <math display="block">[(CH_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_2H_3)_2 - Pt(CI_3,CN)_4]Pt(N_3$

$$\begin{bmatrix} \mathrm{CH_3NC} & \mathrm{Pt} & \mathrm{NH_2,NH} & \mathrm{Pt} & \mathrm{CH_3NC} \\ \mathrm{CH_3NC} & \mathrm{NH,NH_2} & \mathrm{Pt} & \mathrm{CH_3NC} \end{bmatrix} \mathrm{Cl_2} \begin{bmatrix} \mathrm{CH_3NC} & & \mathrm{HCl} \\ \mathrm{CH_3NC} & \mathrm{Pt} & \mathrm{NH_2,NH} & \mathrm{Pt} & \mathrm{CH_3NC} \\ \mathrm{CH_3NC} & \mathrm{CH_3NC} \end{bmatrix} \mathrm{Cl_2} \\ & & & & & & & & \\ \mathrm{CH_3NC} & & &$$

P. C. Ray and N. N. Ghosh prepared $PtCl(C_2H_5)_2S_2$; $Pt_2Cl_2.(C_2H_5)_2S_2.2$ py; and $Pt_3Cl_2.2(C_2H_5)_2S_2.2$ py. L. Tschugaeff and B. Orelkin, platinous quateramino-acetalchloride, $|Pt\{(NH_2.CH_2CH(OC_2H_5)_2\}_4|Cl_2$; platinous quateraminoacetalchloroplatinite, $|Pt\{(NH_2.CH_2.CH(OC_2H_5)_2\}_4|PtCl_4$; L. Tschugaeff and B. Orelkin, platinous bisaminoacetaldiamminochloride, $|Pt(NH_3)_2|NH_2.CH_2.CH(OC_2H_5)_2\}_2|Cl_2$, and platinous bisaminoacetal-diamminochloroplatinite, $|Pt(NH_3)_2|NH_2.CH_2.CH(OC_2H_5)_2\}_2|PtCl_4$; and K. A. Hofmann and G. Bügge, platinous dichlorodiacetonitrile, $|Pt(CH_3.CN_2Cl_3)|$. L. Tschugaeff and M. Chlopin, and L. Tschugaeff and A. Kobljansky prepared platinous bisdimethyldithioethyleneglycolatochloroplatinite, $|Pt(CH_3.C.2H_4.S.C_2H_4.S.C_2H_5)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_2H_5.S.C_2H_4.S.C_2H_6)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_2H_5.S.C_2H_4.S.C_2H_6)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_2H_5.S.C_2H_4.S.C_2H_6)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_2H_5.S.C_2H_4.S.C_2H_6)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_2H_4.S.C_3H_6)|$ platinous bisdiethyldithioethyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_2H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_2H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_4.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_6.S.C_3H_6)|$ platinous bisdiethyldithiopropyleneglycolatochloroplatinite, $|Pt(C_3H_7.S.C_3H_6.S.C_3H_6.S.C_3H_6)|$ bisdiethyldithiohydroxyethyleneglycolatochloroplatinite, $[Pt(C_2H_5.S.CH_2.CH(OH).CH_2.S.-C_2H_6)_2]PtCl_4. L. Ramberg obtained a complex platinous dichlorobisethylglycolatodiammine, <math>3[Pt(NH_3)_2Cl_2].[Pt(NH_3)_2CO_2.CH_2.S.C_2H_5)]. L. Ramberg prepared complexes containing ethylthioacetate. e.g., platinous dichlorodiamminobisethylthioacetate, <math>Pt_2(NH_3)_2Cl_3(CO_2.CH_2.S.C_2H_5)]. L. Ramberg prepared complexes containing ethylthioacetate. e.g., platinous dichlorodiamminobisethylthioacetate, <math>Pt_2(NH_3)_2Cl_3(CO_2.CH_2.S.C_2H_5). CO_2.CH_2.S.C_2H_5). L. Tschugaeff and A. Kobljansky, platinous dichlorodithloethylenemethylglycolate, <math display="block">[Pt(CH_3.S.C_2H_4.S.C_3H_5). L. Tschugaeff and A. Kobljansky, platinous dichlorodithloethylenemethylglycolate, <math display="block">[Pt(C_3H_5.S.C_2H_4.S.C_2H_4.S.C_2H_5$ L. Ramberg, platinous dichlorobisthioethylglycolate, [Pt(HOOC,CH2.S.C2H5)2Cl2], in its

N. S. Kurnakoff reported platinous quatermonomethylthiocarbamidechloride, $[Pt(CS(NH_2)(NHCH_3)]_4|Cl_2$; platinous quatermonoethylthiocarbamidechloride, $[Pt(CS(NH_2)(NHC_3H_5)]_4|Cl_2$; platinous quatermono-iso-undecylthiocarbamidechloride, $[Pt(CS(NH_2)(NHC_1H_23)]_4|Cl_2$; platinous quaterdiethylthiocarbamidechloride, $[Pt(CS(NHC_1H_23)]_4|Cl_2$; platinous quaterdi-iso-undecylthiocarbamidechloride, $[Pt(CS(NHC_1H_23)]_4|Cl_2$; platinous quatertriethylthiocarbamidechloride, $[Pt(CS(NHC_2H_5)(N(C_2H_5)]_4]Cl_2$; platinous quaterxanthogenamidechloride, $[Pt(NH_2CS,CC_2H_5)]_4|Cl_2$, associated with cthyl alcohol; and H. Debus, and N. S. Kurnakoff described platinous quaterxanthogenamidechloroplatinate, $[Pt(NH_2CS,CC_2H_5)]_4|Cl_2$, associated with cthyl alcohol; and H. Debus, and N. S. Kurnakoff described platinous quaterxanthogenamidechloroplatinate, $[Pt(NH_2CS,CC_2H_5)]_4|Cl_2$; and G. Ponzio, platinous dichlorobis-iso-undecylthiocarbamide, $[Pt(Cl_2](CS),Cl_2]_4|Cl_2$; and W. Froentjes prepared a series of platinous thiolacetatochlorides.

J. Petren, and E. C. Fritzmann studied platinous quaterdiethylseleninechloride, $[Pt\{(C_2H_5)_2Se\}_4]Cl_2$, platinous quaterdiethylseleninechloroplatinite, $[Pt\{(C_2H_5)_2Se\}_4]PtCl_3$; platinous trans-dichlorobisdiethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Cl_2]$, platinous cis-dichlorobisdiethylselenine, and the salts platinous dichlorobisdiethylseleninechloromercurate, $[Pt\{(C_2H_5)_2Se\}_2Cl_2]$ -HgCl_2, and platinous dichlorobisdiethylseleninechloroplatinite, $[Pt\{(C_2H_5)_2Se\}_2Cl_2]$ -platinous trans-chloropyridinediethylselenine, $[Pt(C_5H_5N)\{(C_2H_5)_2Se\}Cl_2]$; platinous chloropyridinediethylselenine, $[Pt\{(C_2H_5)_2Se\}_3Cl]]$ PtCl_3; and platinous dichlorotisbenzyl-tellurine, $[Pt\{(C_2H_5)_2Se\}_3Cl]]$ PtCl_3; and platinous dichlorotisbenzyl-tellurine, $[Pt\{(C_2H_5)_2Se\}Cl_2]$, platinous cis-dichlorodiethylsulphinediethylselenine, and platinous dichlorodiethylsulphinediethylselenine, and platinous dichlorodiethylsulphinediethylselenine, and platinous dichlorodiethylsulphinediethylseleninechloroplatinite, $[Pt\{(C_2H_5)_2S\}\{(C_2H_5)_2Se\}$ and E. C. Fritzmann, platinous dichlorobisbenzyltelluride, $[Pt\{(C_2H_5)_2S\}_2Cl_2]$.

A. Cahours and H. Gal prepared platinous quatertrimethylphosphinechloride, $[Pt\{P(CH_3)_3\}_4]Cl_2$; C. W. Blomstrand, H. Kolbe, and A. Cahours and H. Gal, platinous trans-dichlorobistrimethylphosphine $[Pt\{P(CH_3)_3\}_2Cl_2]$, and platinous cis-dichlorotrimethylphosphine; A. Cahours and H. Gal, platinous quatertriethylphosphinechloride, $[Pt\{P(C_2H_5)_3\}_4]Cl_2$, platinous quatertriethylphosphinechlorosurate, $[Pt\{P(C_2H_5)_3\}_4]Cl_2$, and platinous quatertriethylphosphinechloroplatinate, $[Pt\{P(C_2H_5)_3\}_4]PtCl_6$. A. Werner, A. Sella, A. des Cloizeaux, P. T. Cleve, H. Kolbe, C. W. Blomstrand, and A. Cahours and H. Gal described platinous trans-dichlorobistriethylphosphine, $[Pt\{P(C_2H_5)_3\}_2Cl_2]$; and platinous cis-dichlorobistriethylphosphine. P. Klason and J. Wanselin, platinous bistriethylphosphinediamminochloride, $[Pt(NH_3)_2P(C_2H_5)_3]_2[Cl_2]$, and its two isomers, as well as platinous bistriethylphosphinediamminochloroplatinite, $[Pt(NH_3)_2\{P(C_2H_5)_3\}_2]PtCl_4$. K. A. Jensen measured the dipole moments of many of the cis- and trans-phosphino-compounds in addition to the platinous dichlorobistriethylphosphine—e.g. platinous cis- and trans-dichlorobistriptylphosphine, $[Pt\{(C_4H_9)_3P_2Cl_2]$; and platinous trans-dichlorobistributylphosphine, $[Pt\{(C_4H_9)_3P_2Cl_2]$;

phosphine, $[Pt(\{C_2H_5\}_2C_1]]$; and platinous ethylphosphitochloride, $PtCl_2.P(OC_2H_5)_3$; and $PtCl_2.P(OC_2H_5)_3$; and $PtCl_3.PtCl_3$; and platinous chloroethylphosphitotriamminochloroplatinate, $[Pt(NH_3)_3\{P(OC_2H_5)_3\}Cl]PtCl_3$; and platinous chloroethylphosphitotriamminochloroplatinate, $[Pt(NH_3)_3\{P(OC_2H_5)_3\}Cl]PtCl_5$. $PtCl_3$: $PtCl_3$:

chloride, $[Pt(C_7H_9NH_3)_2[P(OCH_3)_3]_2]Cl_2$; platinous bistoluidinebisethylphosphitochloride, $[Pt(C_7H_9NH_3)_2[P(OC_2H_5)_3]_2]Cl_2$; A. Rosenheim and W. Levy, P. Schützenberger, P. Schützenberger and C. Fontaine, and C. H. Herty and R. O. E. Davis, platinous P. Schützenberger and C. Fontaine, and C. H. Herty and R. O. E. Davis, platinous chloroethylphosphitodiamminochloride, $[Pt(NH_3)_2[P(OC_2H_5)_3]Cl]c]$; platinous chloroethylphosphitodiamminochloride, $[Pt(NH_3)_2[P(OC_2H_5)_3]Cl]PtCl_5$; and also complexes $[Pt(NH_3)_3[P(OC_2H_5)_3]Cl]c]$, or $[Pt(NH_3)_3[P(OC_2H_5)_3]Cl]cl$; and platinous chloroethylphosphitobisanilinochloride, $[Pt(C_3H_5)_3]PtCl_6$; D. Cochin prepared platinous chloroethylphosphitobisanilinochloride, $[Pt(C_5H_5)_3]PtCl_6$; D. Cochin prepared platinous chloroethylphosphitobistoluidinechloride, $[Pt(C_7H_7NH_2)_2[P(OC_2H_5)_3]Cl]c]$; and platinous chlorobisethylphosphite, $[Pt\{P(OC_2H_5)_3]Cl]c]$. A. Rosenheim and co-workers, and P. Schützenberger, platinous dichlorobismethylphosphite, $[Pt\{P(OC_2H_5)_3\}Cl]c]$; D. Cochin, platinous dichloranilinemethylphosphite, $[Pt(C_2H_5)_3]Cl]c$. D. Cochin, and A. Rosenheim and W. Levy, platinous dichloroanilinethylphosphite, $[Pt(C_0C_1H_5)_3]Cl]c$. D. Cochin, and A. Rosenheim and W. Levy, platinous dichloroanilinethylphosphite, $[Pt(C_0H_5)_3]Cl]c$. D. Cochin, and A. Rosenheim and W. Levy, platinous dichloroanilinethylphosphite, $[Pt(C_0C_1H_5)_3]Cl]c$. In its transand cis-forms; platinous dichlorotoluidinemethylphosphite, $[Pt(C_7H_7NH_2)\{P(OC_2H_5)_3\}Cl]c$. In the transand cis-forms, and P. Schützenberger, platinous chlorohydroxytoluidinethylphosphite, $[Pt(C_7H_7NH_2)\{P(OC_2H_5)_3\}Cl]c$. A. Rosenheim and W. Levy prepared platinous dichloropyridinethylphosphite, $[Pt(C_7H_7NH_2)]c$. A. Rosenheim and W. Levy prepared platinous dichloropyridinethylphosphite, $[Pt(C_7H_7NH_2)]c$. forms, and P. Schützenberger, platinous chlorohydroxytoluidinethylphosphite, $[Pt(C_1H,NH_s)-\{P(O_2H_b)_3\}(OH)Cl]$. A. Rosenheim and W. Levy prepared platinous dichloropyridinethylphosphite, $[Pt(C_5H_6N)\{P(OC_2H_b)_3\}Cl_2]$, in its trans- and cis-forms; G. Queeneville, platinous hydroxychlorophosphoanilidephosphoxyanilide, $[Pt\{P(C_6H_6N)_3\}\{PO(C_8H_6N)\}(OH)Cl]$; platinous hydroxychlorophosphoanilidephosphoxytoluidide, $[Pt\{P(C_7H_8N)_3\}\{PO(C_7H_8N)\}(OH)Cl]$; P. Schützenberger and C. Fontaine, platinous tetrachloroethylenebisethylphosphite, $[Pt_2(C_2H_4)\{P(OC_2H_5)_3\}Cl_4\}$; platinous dichlorocarbonylethylphosphite, $Pt(CO)\{P(OC_2H_5)_3\}Cl_2\}$; platinous dichlorophosphorustrichioridethylphosphite, $[Pt(PCH_3)\{P(OC_2H_5)_3\}Cl_2\}$; and platinous dichloromethylphosphite, $[Pt(PCH_3)\{P(OC_2H_5)_3\}Cl_2\}$; and platinous dichloromethylphosphite, $[Pt(POH_3)\{P(OC_2H_5)_3\}Cl_2\}$; P. Schützenberger and C. Fontaine, P. Schützenberger, and O. W. Gibbs, platinous dichlorotrihydroxyphosphorous acid. $[Pt(POH)_3]\{P(OC_3H_5)_3\}$. C. Fontaine, P. Schutzenberger, and O. W. Gibbs, platinous dichlorotrinydroxyphosphorous acid, $[Pt\{P(OH)_3\}Cl_2]_2$; platinous chlorooxypentahydroxyphosphite, $[Pt\{P(OH)_3\}Cl\{OP(OH)_2\}]_2$; and platinous chlorodioxytrihydroxyphosphite, $[Pt\{P(OH)_3\}Cl(OPO)]_2$; P. Schützenberger, and C. Fontaine, platinous dichloromethylphosphite, $[Pt\{P(OCH_3)_3\}Cl_2]_2$; P. Schützenberger and C. Fontaine, and A. Rosenheim and W. Löwenstamm, platinous dichloroethylphosphite, $[Pt\{P(OC_2H_3)_3\}Cl_2]_2$; D. Cochin, platinous dichloroethylphosphite platinous dichloropropylphosphite, $[Pt\{P(OC_3H_7)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $[Pt\{P(OH_3)_3\}-Cl_2]_2$; P. Schützenberger and C. Fontaine, platinous dichloromonallylphosphite, $(OC_3H_5)(Cl_2|_2$; platinous dichlorodisilverphosphite, $[Pt(P(OAg)_3)Cl_2]_2$, and some complex salts; platinous dichlorotrisilverphosphite, $[Pt\{P(OAg)_3\}Cl_2]_2$; and platinous tetrachlorolead-phosphite, $[Pt_2\{P_2(O_2Pb)_3\}Cl_4].5H_2O$, and a basic salt. G. Quesneville prepared platinous bisphosphaminodiamminechloride, $[Pt(NH_3)_2\{P(NH_2)_3\}Cl_2]$, as a double salt with ammonium bisphosphaminodiamminechloride, $[Pt(NH_3)_2](P(NH_2)_3](Cl_2)$, as a double salt with ammonium bisphosphaminodiamminechloride. chloride; and platinous chlorophosphaminediamminochloride, [Pt(NH₂)₂(P(NH₂)₃)Cl]Cl, as a double salt associated with ammonium chloride; and it also occurs as a heptahydrate. G. Quesneville reported platinous hydroxychlorophosphotrianlilide, $[Pt\{P(C_bH_bN)_3\}(OH)Cl]$, platinous hydroxychlorophosphotricluidide, $[Pt\{(C_rH_aN)_s\}(OH)Cl]$; anlilinium phosphotrianlilidetrichloroplatinite, $[Pt\{P(C_bH_bN)_3\}Cl_3]H(C_bH_bNH_2)$; and toluidinium phosphotrichloroplatinite, $[Pt\{P(C_rH_aN)_3\}Cl_3]H(C_rH_rNH_2)$.

A. Cahours and H. Gal prepared platinous quatertriethylarsine, $[Pt\{As(C_2H_5)_3\}_4]Cl_2$; platinous trans-dichlorobistriethylarsine, $[Pt\{As(C_2H_5)_3\}_2Cl_2]$; and platinous cis-dichlorobistriethylamine. K. A. Jensen measured the dipole moments of cis- and trans-compounds with the phosphines, arsines, and stibines; and he prepared platinous dichlorobistributylarsine, $[Pt\{(C_4H_9)_3As\}_2Cl_2]$. R. Bunsen prepared platinous dichloroxycacodyl, $[Pt\{As(CH_3)_4O\}Cl_2]$, and the cacodyl compounds were studied by K. A. Jensen and E. Frederiksen. A. W. Hofmann, and K. A. Jensen prepared platinous dichlorobistriethylstibine, $[Pt\{Sb(C_2H_5)_3\}_2Cl_2]$; and K. A. Jensen, platinous dichlorobistributylstibine, $[Pt\{(C_4H_9)_3Sb\}_2Cl_2]$; and platinous dichlorobistriphenylstibine, $[Pt\{(C_9H_9)_3Sb\}_2Cl_2]$, and he measured their dipole moments.

Chloroplatinites.—L. N. Vauquelin, ¹⁰ and G. Magnus prepared ammonium chloroplatinite, (NH₄)₂PtCl₄, by evaporating a mixed soln. of platinous chloride and ammonium chloride in hydrochloric acid, and drying the crystals at 100°. M. Peyrone saturated a soln. of platinous chloride in hydrochloric acid with ammonium carbonate, evaporated the soln. to dryness on a water-bath, washed the reddish residue repeatedly with alcohol to remove the ammonium chloride, exposed the product in air so as to remove all traces of alcohol, dissolved the product in boiling water, and filtered the hot liquid. When the liquid is allowed to cool slowly, prismatic crystals are deposited. L. F. Nilson obtained the salt by adding ammonium chloride to the mother-liquors obtained in the preparation of very soluble chloroplatinites. J. Thomsen added hydrochloroplatinic acid to a hot soln. of potassium chloroplatinite, added ammonium chloride to the filtered liquid, and evaporated the liquid for crystallization. P. Berthier added ammonium

sulphite to a soln. of hydrochloroplatinic acid, and obtained a yellow precipitate which dissolved when the mixture was warmed; the liquid then decolorizes, and on evaporation deposits crystals of the chloroplatinite. C. E. Claus, P. Schottländer, and K. Birnbaum reduced a warm soln. of hydrochloroplatinic acid or ammonium chloroplatinate with sulphur dioxide, added ammonium chloride, and evaporated the liquid for crystallization. J. Thomsen reduced the soln. with cuprous oxide or chloride; and E. Biilmann and A. C. Andersen, with ammonium oxalate. J. Thomsen treated copper ammonium chloroplatinite with hydrogen sulphide to precipitate the copper, acidified the filtrate with hydrochloric acid, and evaporated for crystallization. The purple-red or garnet-red, four-sided prisms or plates were found by H. Töpsöe to belong to the cubic system. H. Schröder gave 2.936 for the sp. gr., and H. Töpsöe, 145.6 for the mol. vol. L. F. Nilson observed that the salt is stable in air. J. Thomsen found the heat of formation (Pt, Cl₂, 2NH₄Cl)=45·17 Cals., and (Pt, Cl₂, 2NH₄Cl, Aq.)=41·38 Cals. L. F. Nilson found the salt to be sparingly soluble in cold water, and freely soluble in hot water; L. Tschugaeff and W. Chlopin found that in the presence of ammonia and ammonium carbonate, hydrogen peroxide acts on ammonium chloroplatinite to form the hydroxychloroplatinate. H. D. K. Drew and co-workers studied the action of ammonia- vide the potassium salt. M. Peyrone said that the salt is insoluble in alcohol and that the presence of alcohol produces some peculiar change in the salt which interferes with its crystallization. L. N. Vauquelin observed that the cold, aq. soln. gives no precipitate with soda-lye, but with hot soln., a black precipitate is produced and ammonia is evolved. L. A. Tschugaeff, and M. Vèzes described the preparation of the chloroplatinites.

G. Magnus prepared potassium chloroplatinite, K₂PtCl₄, by transforming hydrochloroplatinic acid into hydrochloroplatinous acid by heat, and mixing a soln. of the product with potassium chloride. M. C. Lea, and H. Wolffram added that the reduction of the hydrochloroplatinic acid is incomplete, even at 250° to 300°. R. Böttger reduced a soln. of potassium chloroplatinate with hydrogen sulphide, by passing the gas until half the platinum was precipitated, and evaporating the filtered soln. P. Klason, C. W. Blomstrand, M. Gröger, L. Wöhler and W. Frey, H. Wolffram, M. C. Lea, N. S. Kurnakoff, L. Pigeon, C. Rudelius, and J. Petren reduced the warm soln. of potassium chloroplatinate, or hydrochloroplatinic acid with sulphur dioxide or sulphurous acid; M. C. Lea, and M. Gröger, with potassium hydrosulphite; M. Gröger, with potassium hyposulphite; M. C. Lea, potassium hypophosphite; M. Vèzes, E. V. Zappi, H. Wolffram, and P. Klason, potassium oxalate; and J. Thomsen, E. Koefoed, H. Wolffram, M. Gröger, and M. C. Lea, cuprous chloride. L. F. Nilson obtained the salt by adding potassium chloride to the mother-liquors obtained in preparing more soluble chloroplatinites.

The salt is variously described as furnishing brownish-red, or ruby-red, four-sided prisms, and A. E. Nordenskjöld found the crystals to be tetragonal bipyramids with a:c=1:0.4161. R. G. Dickenson found that the X-radiograms corresponded with a tetragonal lattice having a=6.99 A., and c=4.13 A. W. Jander, A. G. Boldyrew and W. W. D. Dobrowolsky, and L. Pauling and M. L. Huggins made some observations on the lattice structure. A. Streng also described the crystals and observed a feeble dichroism. F. W. Clarke gave 3.291 to 3.306 for the sp. gr.; and R. G. Dickenson calculated 3.39 from the X-radiograms. R. Klement gave 3.382 for the sp. gr. at $25^{\circ}/4^{\circ}$, and 122.7 for the mol. vol. I. Traube gave for the sp. gr., and mol. soln. vol.:

K ₂ PtCl ₄ .		2.791	4.349	6.958	8.973 per cent.
Sp. gr Mol. soln. vol.		1.01962	1.03221	1.05395	1.07120
Mol. soln vol	_	103.5	101.2	100.0	100.2

L. F. Nilson observed that the salt is stable in air, and at 100°, or confined over sulphuric acid, it slowly loses about 1 per cent. of water which cannot be removed from the crystals by pressure between bibulous paper. The ordinary salt decrepi-

tates when heated, but not so if it has been previously dried. J. Petersen found the lowering of the f.p., and the calculated mol. wt.:

K ₂ PtCl ₆	 1.150	2.532	3.147	7.715 per cent.
Lowering f.p	 0·145°	0·290°	0·355°	0-900€
Mol. wt	357	395	399	386—Theory, 415

The calculated values for the J. H. van Hoff's coeff.—1. 15, 10- range from 2·32 to 2·96. J. Thomsen found the heat of formation (Pt, Cl₂, 2KCl)=45·17 Cals.; (Pt, Cl₂, 2KCl, Aq.)=41·8 Cals.; and the heat of soln., 12·22 Cals. J. Lifschitz and E. Rosenbohm studied the optical properties; D. P. Mellor and F. M. Quodling, the birefringence; S. Aoyama and co-workers, the X-ray spectrum; and R. Samuel and co-workers, the absorption spectrum. A. Werner and A. Miolati measured the mol. conductivity of soln. with a mol of the salt in v litres, at 25°, and observed:

8,		250	500	1000	2000
μ		251.6	260-4	267-6	279-3

N. Demassieux and J. Heyrovsky studied the dissociation of the salt in soln.; E. R. Smith, the potential of the chloroplatinate-chloroplatinite electrode; W. Schneider, the piezoelectric effect. E. Feytis gave for the magnetic susceptibility, -0.356×10 6 mass unit. E. Rosenbohm studied the subject. G. Magnus said that the salt readily dissolves in water, forming a reddish-yellow soln.; and W. Crookes observed that 100 parts of water dissolve 0.926 part of the salt at 16°, and 5.263 parts with boiling soln. According to J. Lang, a soln, of the salt is coloured brownish-black by hydrogen sulphide, and with hot soln., a black precipitate is formed; ammonium sulphide gives a black precipitate. W. Peters observed that no ammonia is absorbed by the dry salt; and J. Lang, that with aq. ammonia, green platinous tetramminochloroplatmite is formed; ammonium carbonate also decolorizes the hot soln. H. D. K. Drew and co-workers symbolized the reaction with ammonia: $K_2PtCl_4 \rightarrow K_2Pt(NH_3Cl)Cl_3 \rightarrow Pt(NH_3Cl)Cl$; and by $K_2Pt(I_4 \rightarrow K_2Pt(NH_3(I)_2(I_2 \rightarrow Pt(NH_3(I)_2), A. Sieverts studied the action of sodium)$ hypophosphite on dil. soln. of potassium chloroplatinite resulting in the formation of colloidal soln, of platinum. M. Vèzes observed that potassium nitrite forms a chloronitrite. E. Biilmann and A. C. Andersen found that allyl alcohol makes the red soln, pale yellow, and K[Pt(C3H5OH)Cl3] is formed. K. Birnbaum showed that complex salts are formed with ethylene, propylene, and amylene; E. Koeofed, that dimethylamine forms [Pt{(CH₃)₂NH₂Cl₂], and diethylamine gives a precipitate mainly of platinum black; and N. S. Kurnakoff, that acetamide, with a warm soln., forms blue and violet colours, and propionamide, butylamide, capronamide, succinimide, and phthalimide give blue colours, whilst thiourca furnishes complex salts, and guanidine or guanidine carbonate, in boiling soln., gives a greenishblack precipitate. J. Lang found that a soln. of potassium hydroxide has no reaction on a hot or cold soln. of the salt, but potassium and sodium carbonates produce a black precipitate which settles very slowly. H. Schwarz studied some reactions of the salt; and A. Grünberg, the nature of the trans-effect with the PtCl"4-ions.

L. F. Nilson prepared **rubidium chloroplatinite**, Rb₂PtCl₄, by adding hydrochloroplatinous acid to a soln. of rubidium chloride, drying the salt on a waterbath, extracting the salt with water, drying the salt between bibulous paper and then over sulphuric acid or at 100°. R. Böttger passed hydrogen sulphide through a soln. of rubidium chloroplatinate until half the platinum is precipitated, and evaporated the filtrate. The red, or brownish-red, four-sided prisms are stable in air. L. F. Nilson said that the salt is sparingly soluble in cold water and freely soluble in hot water; and W. Crookes added that 100 parts of water dissolve 0·135 part of salt at 15·5°, and 0·637 part in boiling water. L. F. Nilson also prepared **cæsium chloroplatinite**, Cs₂PtCl₄, by adding cæsium sulphate to a soln. of barium chloroplatinite. L. Wöhler and F. Martin reduced a soln. of hydrochloro-

platinic acid to hydrochloroplatinous acid, by means of sulphur dioxide, then added a soln. of casium chloride, and separated the crystals on a suction-filter; R. Böttger employed hydrogen sulphide as reducing agent—vide supra. The crystals were also examined by E. H. Ducloux. The salt appears in brownish-red or flesh-red, four-sided prisms, which R. Godeffroy said can be melted without decomposition. L. F. Nilson observed that the salt is sparingly soluble in cold water and freely soluble in hot water; and W. Crookes added that 100 parts of water dissolve 0-0764 part of the salt at 15-5°, and 0-383 part in boiling water. According to R. Godeffroy, the solubility, S parts of salt per 100 parts of water, was found to be:

		20°	40°	60°	80°	100 '
\mathcal{S}		3.4	6.73	8.68	10.92	12.10

- L. F. Nilson prepared lithium chloroplatinite, Li₂PtCl₃.6H₂O, by saturating a soln, of hydrochloroplatinous acid with lithium carbonate, evaporating the soln. spontaneously and drying the crystals at 100°. The dark green, four-sided prisms resemble the crystals of potassium permanganate. They deliquesce in air; and are freely soluble in water. G. Magnus prepared sodium chloroplatinite, Na. PtCl₄, as the tetrahydrate, by adding sodium chloride to hydrochloroplatinous acid -vide supra, the potassium salt; J. Lang, by treating a soln, of platinous chloride in hydrochloric acid with sodium carbonate, evaporating the soln, to dryness, extracting the residue with alcohol, and evaporating at a gentle heat; and L. F. Nilson, by saturating a soln, of hydrochloroplatinous acid with sodium carbonate, evaporating the soln, to dryness, dissolving the residue in water and crystallizingthe first crop of crystals is the chloroplatinate. The red, four-sided prisms were found by L. F. Nilson to deliquesce a little in moist air, and to effloresce in dry air. The salt melts at 100°, and slowly gives off water. L. Wöhler and P. Balz found that the salt is stable above 800°. J. Thomsen gave for the heat of formation (Pt, Cl_2 , 2NaCl) = 41.38 Cals. W. Peters observed that the salt becomes anhydrous at 150", forming a dark brown mass. L.F. Nilson said that the salt is soluble in water: and G. Magnus, that it is soluble in alcohol. W. Peters observed that the anhydrous salt slowly absorbs ammonia, forming sodium tetramminochloroplatinite, Na, PtCl₄.4NH₃, and that in vacuo, the tetrammine passes into sodium triamminochloroplatinite, Na, PtCl4.3NH3.
- L. F. Nilson obtained copper chloroplatinite, CuPtCl₄.6H₂O, by saturating hydrochloroplatinous acid with copper carbonate, evaporating the soln, to dryness, extracting with water, and crystallizing the aq. soln. The olive-brown crystals are stable in air; they melt at 100° and give off 5 mols. of water. The salt is freely soluble in water. G. B. Buckton, and C. W. Blomstrand observed that with aq. ammonia there is formed copper tetramminochloroplatinite, [Cu(NH₃)₄]PtCl₄, in olive-green crystals which are decomposed by boiling water, forming [Pt(NH₃)₂Cl₂]Cl₂. The colour of the salt was discussed by N. S. Kurnakoff. E. Millon and A. Commaille prepared platinous tetramminochlorocuprate, [Pt(NH₃)₄|CuCl₄, by adding a conc. soln. of hydrochloroplatinic acid to an ammoniacal soln. of cuprous chloride; and J. Thomsen, by dissolving cuprous chloride in hydrochloroplatinic acid, and precipitating with aq. ammonia, or by mixing ammonium chloroplatinite with an ammoniacal soln. of a cupric salt. The salt furnishes violet or grey, four-sided prisms which are stable when dry at 150°, but at a higher temp. decompose leaving cuprous chloride and platinum behind. The salt is almost insoluble in water, but it is partially decomposed by a protracted washing. It is freely soluble in warm hydrochloric acid, and when ammonia is added to this soln. the original compound is re-precipitated. Part of the copper is precipitated as cupric sulphide when hydrogen sulphide is passed into water containing the salt in suspension, and afterwards the platinum is all precipitated as sulphide. Conc. sulphuric acid decomposes the salt energetically. Aq. ammonia forms a blue soln. and brown precipitate, PtO(NH₃)₂, and the blue

soln. is decolorized when boiled, forming a black precipitate; the filtrate contains ammonium chloride and $[Pt(NH_4)_4]Cl_2$. When the soln. in dil. hydrochloric acid is treated with ammonium carbonate nearly all the copper is precipitated as basic chloride. The salt is insoluble in alcohol. The salt gives off ammonia when treated with potassium hydroxide, and when the mixture is boiled, a brown substance is formed which, when washed, dried, and heated, explodes. N. S. Kurnakoff, and S. G. Hedin noted the formation of copper quaterpyridinochloroplatinite, $CuCl_2.2PtCl_2(C_5H_5N)_4.12H_2O$; and platinous quaterpyridinochlorocuprate, $PtCl_2.2CuCl_2(C_5H_5N)_4$; and N. S. Kurnakoff, copper quaterethylenediaminochloroplatinite, $Cuen_4.2PtCl_2.9H_2O$.

A. Commaille reported silver trichloroplatinite, AgPtCl₃, to be formed by adding sufficient silver nitrate to a warm soln, of hydrochloroplatinic acid, and drying the precipitate at 120°. The yellow product becomes grey when exposed to light. When treated with ammonia it gives silver chloride, and some hydrochloroplatinic A boiling ammoniacal soln, of alcohol precipitates platinum acid is formed. black. S. M. Jörgensen considered that this product is a mixture. W. Peters, and J. Lang prepared silver chloroplatinite, Ag2PtCl4, by the action of silver nitrate on potassium chloroplatinite. The pale red precipitate blackens in light. It is insoluble in cold and boiling water, but it becomes dark yellow when boiled with water. Hydrochloric acid slowly, rapidly when warm, extracts all the platinous chloride. Aq. ammonia extracts the silver chloride; and gaseous ammonia forms an approximation to silver hexamminochloroplatinite, Ag₂PtCl₄.(6+1₂)NH₃, and this product in vacuo forms approximately silver triamminochloroplatinite, Ag₂PtCl₄.(3+1½)NH₃. J. Thomsen mixed ammoniacal soln, of silver chloride with ammonium chloroplatinite and obtained rosered needles of silver tetramminochloroplatinite, Ag₂PtCl₄.4NH₃, which lose ammonia when dried, forming a green substance which when heated gives off ammonium chloride, leaving a residue of silver chloride and platinum. L. Tschugaeff and N. K. Pschenicyn studied the depolymerization of |Ag(NH₃)|₂PtCl₄. N. S. Kurnakoff obtained silver ethylenediaminechloroplatinite, Ag{C₂H₄(NH₂)₂}-PtCl₃; and S. M. Jörgensen one with ethylene. From the observations of W. Peters it is probable that hydrochloroplatinous acid and auric chloride probably give a precipitate of gold instead of forming gold chloroplatinite.

L. F. Nilson reported that calcium chloroplatinite, CaPtCl₄.8H₂O, is not formed when impure hydrochloroplatinous acid is treated with calcium oxide, but if the purified acid is employed, and the soln, evaporated over sulphuric acid, thin, four-sided plates of the salt are formed. The salt is deliquescent in moist air; it effloresces in dry air; it melts at 100°, and slowly loses 5 mols. of water passing into the chloroplatinate and platinum. L. F. Nilson prepared strontium chloroplatinite, SrPtCl₄.6H₂O, by mixing purified hydrochloroplatinous acid with the theoretical proportion of strontium chloride, evaporating to dryness, extracting with water, and evaporating the soln. over sulphuric acid. The thin, four-sided plates effloresce over sulphuric acid; they melt at 100° with the evolution of twothirds the water of hydration; they deliquesce in moist air; and they are freely soluble in water. L. F. Nilson prepared barium chloroplatinite, BaPtCl4.3H2O, by saturating hydrochloroplatinous acid with barium carbonate, and crystallizing the soln. J. Lang observed that with the spontaneous evaporation of the soln., barium chloride is first precipitated. The four-sided prisms are coloured a darker red than the potassium salt. The salt loses 2 mols. of water at 100°, without decomposition, and the last mol. of water is expelled at 150°. The salt is readily dissolved by water, and with ammonia it forms green platinous tetramminochloroplatinite.

L. F. Nilson prepared **beryllium chloroplatinite**, BePtCl₄.5H₂O, by saturating hydrochloroplatinous acid with beryllium carbonate, evaporating the soln. to dryness on a water-bath, extracting with water, precipitating the hydrochloroplatinic acid as ammonium chloroplatinate, and concentrating the filtrate over sulphuric acid.

The ruby-red, rhombohedral crystals do not change in dry air, but they deliquesce in moist air; at 100°, water and hydrogen chloride are evolved. The salt dissolves in water in all proportions. L. F. Nilson prepared **magnesium chloroplatinite**, MgPtCl₄.6H₂O, by a similar process. The four-sided or six-sided plates are fairly stable in air; they lose hygroscopic moisture at 100°: and are very soluble in water.

F. L. Hünefeld partially precipitated an aqua regia soln, of platinum with zinc until the soln, had acquired a pale yellow colour, and evaporated the filtrate. The first crop of crystals of zinc chloroplatinite, ZnPtCl4.6H2O, is followed by a crop of crystals of the chloroplatinate. If the zine acts for a short time only, the chloroplatinate is the main product, but if the action be continued until a vellow powder is precipitated with the platinum, and the liquid be then boiled and filtered, the chief product is the chloroplatinite. L. F. Nilson obtained the salt by double decomposition of barium chloroplatinite and zinc sulphate. The pale yellow crystals become dark orange when heated, and then yellowish-brown. The hexahydrate gives off all the combined water at 100°, without melting. At a high temp, the salt is resolved into zinc chloride, platinum and chlorine with a "transient jumping motion." The salt is sparingly soluble in cold water, more easily soluble in boiling water, and the original salt separates out on cooling, or on the addition of alcohol. The aq. soln. gives a brown precipitate with ammonium sulphide; and the salt is but slightly attacked by sulphuric acid. The aq. soln, gives a yellow precipitate with a soln, of cuprous chloride in hydrochloric acid; and a dingy flesh-coloured precipitate with silver nitrate. G. B. Buckton obtained platinous tetramminochlorozincate, [Pt(NH₃)₄]ZnCl₄, from a conc. soln. of platinous tetramminochloride and zinc chloride. The colourless plates are soluble in water. J. Thomsen, and N. S. Kurnakoff prepared zinc tetramminochloroplatinite, [Zn(NH₃)₄]PtCl₄, by adding ammonium chloroplatinite to an ammoniacal soln, of zinc chloride. The reddish needles are slightly soluble in water, and freely soluble in hydrochloric acid, from which soln, the salt is precipitated unchanged on adding aq. ammonia. L. Tschugaeff and N. K. Pschenicyn studied the depolymerization of this salt. S. G. Hedin obtained a complex salt with pyridine.

L. F. Nilson prepared **cadmium chloroplatinite**, CdPtCl₄, in soln., but not in the solid state from soln. of cadmium sulphate and hydrochloroplatinous acid, or of barium chloroplatinite. The soln. deposits cadmium chloride when evaporated. J. Thomsen prepared brick-red **cadmium tetramminochloroplatinite**,

[Cd(NH₃)₄|PtCl₄, as in the case of the corresponding zinc compound.

L. F. Nilson did not prepare mercury chloroplatinite by the evaporation of a soln, of mercuric chloride in hydrochloroplatinous acid, since the mercuric chloride crystallizes out unchanged. Mercurous nitrate gives a dark brown precipitate when added to a soln, of potassium chloroplatinite, but the precipitate soon becomes B. Buckton prepared platinous tetramminochloromercurate. [Pt(NH₃)₄]HgCl₄, by treating platinous tetramminochloride with mercuric chloride, and drying the crystalline precipitate at 120°. The salt crystallizes during the cooling of a boiling soln. The salt is insoluble in hydrochloric acid. C. Rudelius prepared a complex with propyl sulphide; and J. Petren, one with ethyl selenide. J. J. Berzelius reported a mercurosic oxychloroplatinite, 2HgO.2HgCl.PtCl_{2.5}H₂O, to be formed by the action of mercurous nitrate on hydrochloroplatinic acid; and A. Commaille also obtained the same product. The brown precipitate when heated furnishes a sublimate of mercurous chloride, and a residue of platinous oxide—the sublimate also contains a little mercuric oxide, and chloride. ammonia quickly blackens the compound, and potash-lye acts more rapidly. Boiling hydrockloric acid forms platinum black; and boiling nitric acid dissolves it slowly and completely.

L. F. Nilson obtained aluminium chloroplatinite, AlPtCl₅, from a soln. of equimolar proportions of aluminium chloride and hydrochloroplatinous acid; and from the filtrate after mixing soln. of aluminium sulphate and barium chloro-

platinite. The four-sided, prismatic crystals deliquesce in air, they melt at 100° slowly giving off $9\frac{1}{2}$ mols. of water. L. F. Nilson could not prepare **indium chloroplatinite.** L. F. Nilson prepared **thallous chloroplatinite**, Tl_2PtCl_4 , by mixing warm soln. of thallous sulphate and an alkali or ammonium chloroplatinite. The salt is recrystallized from boiling water, and dried at 100° . The salt is sparingly soluble in boiling water. S. Meyer found the magnetic susceptibility at 20° to be -0.205×10^{-6} mass unit.

L. F. Nilson prepared **cerous chloroplatinite**, CeCl₃.2PtCl₂.10·5H₂O, in thin, four-sided prisms which lose 15 mols, of water at 100°; **lanthanum chloroplatinite**, 2LaCl₃.3PtCl₂.18H₂O, in thin, four-sided prisms, and also 2LaCl₃.3PtCl₂.27H₂O, in prisms which lose 16 mols, of water at 100°; **didymium chloroplatinite**, 2DiCl₃.4PtCl₂.2H₂O, in prisms or plates which are deliquescent in air, and 2DiCl₃.3PtCl₂.18H₂O, in prismatic crystals; **erbium chloroplatinite**, 2ErCl₃.2PtCl₂.27H₂O, in dark red prisms, which lose 17 mols, of water at 100°, and 2ErCl₃.3PtCl₂.24H₂O, in long, four-sided prisms, which lose 11 mols, of water at 100°; **yttrium chloroplatinite**, 2YCl₃.3PtCl₂.24H₂O, in dark red, four-sided prisms, which melt at 100°, losing 10 mols, of water; **thorium chloroplatinite**, 2ThCl₄.3PtCl₂.24H₂O, in rhombohedral crystals, which lose one-fourth of their water of hydration at 100° without melting; and **zirconyl chloroplatinite**, ZrOCl₂.PtCl₂.8H₂O, in quadratic prisms.

R. J. Kane obtained greenish-brown, deliquescent crystals of stannous chloroplatinite, which are decomposed by water, and also a chloroplatinite with more tim. This salt forms a red soln, in water, and the salt is hydrolyzed. G. B. Buckton treated platinous tetramminochloroplatinite, [Pt(NH₃)₄|SnCl₄, and likewise stannous tetramminochloroplatinite, [Pt(NH₃)₄|SnCl₆. C. Rudelius obtained a complex with propyl sulphide. J. Lang treated a soln, of lead nitrate or acetate with potassium chloroplatinite and obtained lead chloroplatinite, PbPtCl₄, as a pale red, amorphous precipitate, which is decomposed slowly by boiling water. G. B. Buckton mixed soln, of platinous chloroplatinite and lead acetate, and obtained four-sided plates of lead tetramminochloroplatinite, [Pb(NH₃)₄|PtCl₄, which are not decomposed at 170°; and are insoluble in hydrochloric acid, and in alcohol.

- L. F. Nilson obtained **chromic chloroplatinite**, 2CrCl₃.3PtCl₂.18H₂O, by evaporating in vacuo the filtrate from a mixture of soln, of equimolar parts of violet chromic sulphate and barium chloroplatinite. The red deliquescent prisms lose water and hydrogen chloride at 100°. S. M. Jörgensen prepared **chromic hydroxychlorohexamminochloroplatinite**, [Cr₂(NH₃)₆(OH)₂Cl₃[2PtCl₄. L. F. Nilson also obtained **manganese chloroplatinite**, MnPtCl₄.6H₂O, from barium chloroplatinite and manganese sulphate. The crystals lose 4 mols, of water at 100°. The crystals were examined by H. Töpsöe and H. Christiansen.
- L. F. Nilson obtained **ferrous chloroplatinite**, FePtCl₄.7H₂O, from the filtrate from a mixture of soln. of ferrous sulphate and barium chloroplatinite. The deliquescent, dark red prisms lose 5 mols. of water at 100°. According to G. B. Buckton, ferrous salts do not unite with platinous tetramminochloride, and ferric chloride transforms it into platinic dichlorotetramminochloride.
- I. F. Nilson obtained **cobalt chloroplatinite**, CoPtCl₄.6H₂O, by evaporating, over sulphuric acid, a soln. of hydrochloroplatinous acid saturated with cobalt chloride. Crystals of cobalt chloroplatinate are first deposited, and then crystals of the chloroplatinite in four-sided or six-sided plates which are deliquescent in moist air, and efflorescent in dry air. The salt loses 5 mols. of water at 100°. N. S. Kurnakoff prepared **cobalt hexamminochloroplatinite**, [Co(NH₃)₆]PtCl₄, in yellowish-red plates; and also **platinous tetramminochlorocobaltite**, [Pt(NH₃)₄]CoCl₄, from a mixture of soln. of platinous tetramminochloride and cobalt chloride. The complexes **cobaltous quaterpyridinochloroplatinite**, Co py₄PtCl₄, and **cobaltous trisethylenediaminochloroplatinite**, Co en₂PtCl₄, were

also obtained. A. Werner, and S. M. Jörgensen prepared complex chloro-acetates; S. M. Jörgensen, complex chloroxalates; and A. Werner and H. Müller, complex chlorothiocyanates. A. Werner and A. Klein prepared cobaltic dichlorotetramminochloroplatinite, $[Co(NH_3)_4Cl_2]_2PtCl_4$, as a green, unstable powder, by the action of potassium chloroplatinite on cobaltic bisdichlorotetramminosulphate. N. S. Kurnakoff studied the salt. S. M. Jörgensen prepared cobaltic dinitritotetramminochloroplatinite, $[Co(NO_2)_2(NH_3)_4]_2PtCl_4$; and cobaltic trisethylenediaminechloroplatinite, $[Co(NH_3)]_2(PtCl_4)_3$; cobaltic chlorobisethylenediamineamminochloroplatinite, $[Co(NH_3)]_2(PtCl_4)_3$; A. Werner and R. Feenstra, cobaltic dichloroquaterpyridinechloroplatinite, $[Co[NH_3]]_2(PtCl_4)_3$; A. Werner and A. Fröhlich, cobaltic dichlorobispropylenediaminechloroplatinite, $[Co[NH_3]]_2(PtCl_4)_3$; A. Werner and E. Kindscher, cobaltic dioloctamminochloroplatinite, $[Co[NH_3]]_2(PtCl_4)_3$; A. Werner and E. Kindscher, cobaltic dioloctamminochloroplatinite, $[Co[NH_3]]_2(PtCl_4)_3$; A. Werner and E. Kindscher, cobaltic dioloctamminochloroplatinite,

L. F. Nilson prepared nickel chloroplatinite, NiPtCl₄:6H₂O, by saturating hydrochloroplatinous acid with nickel carbonate, evaporating the soln, to dryness, extracting the product with water, precipitating the hydrochloroplatinic acid as ammonium chloroplatinate, and concentrating the filtrate over sulphuric acid. The dark brown plates are deliquescent in moist air, efflorescent in dry air; and they lose 3 mols, of water at 100°. J. Thomsen, and N. S. Kurnakoff prepared nickel tetramminochloroplatinite, [Ni(NH₃)₄]PtCl₄; and N. S. Kurnakoff, nickel hexamminochloroplatinite, [Ni(NH₃)₆]PtCl₄; and he also obtained complexes with ethylenediamine. H. D. K. Drew and co-workers prepared from the tetrammine and aq. soln, of potassium chloroplaldite or chloroplatinite, palladous tetramminochloroplatinite, [Pd(NH₃)₄]PtCl₄, in pink needles; and palladous bispyridinodiamminochloroplatinite, [Pd(NH₃)₂]C₅H₅N)₂]PtCl₄. Com-

plex platinous chloroplatinites have been discussed above.

Hydroxychloroplatinites.—R. J. Kane 11 prepared platinous trioxydichloride, PtCl₂.3PtO, by boiling a soln, of platinic chloride with conc. sulphuric acid almost to dryness; and washing the black product with water. At a red-heat, chlorine and water are evolved, and platinum remains. Hydrochloric acid dissolves it as hydrochloroplatinous acid; ammonia transforms it into an explosive compound; and it is soluble in potash-lye. According to A. Miolati and U. Pendini, the aq. soln. contains hydroxytrichloroplatinous acid, H₂[Pt(OH)Cl₃]. The reddish-brown aq. soln. has an acidic reaction, and it furnishes precipitates of the silver and lead salts when treated with, respectively, silver and lead acetates. They prepared potassium hydrochloroplatinite, K₂Pt(OH)Cl₃, in acicular crystals, by neutralizing a soln. of the acid with potassium hydroxide, and evaporating over sulphuric acid. A brown precipitate of silver hydroxychloroplatinite, Ag₂Pt(OH)Cl₃, is produced by adding silver acetate to a conc. soln. of hydroxychloroplatinous acid. By evaporating a soln. of hydrochloroplatinous acid at 50° to 60°, a soln, was obtained which, with silver nitrate, gave a precipitate of silver dihydroxychloroplatinite, Ag₂Pt(OH)₂Cl₂. By saturating a soln. of hydroxychloroplatinous acid with lead acetate, a dark brown precipitate of lead hydroxychloroplatinite, PbPt(OH)Cl₃, was formed.

G. Gore ¹² said that when silver fluoride is fused in an atm. of chlorine in a platinum crucible, silver fluochloroplatinate, $4Ag(Cl., F).PtCl_4$, is formed. J. Petren reported platinous chlorobromobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2ClBr]$, and platinous chlorobromoethylsulphineethylselenine, $[Pt\{(C_2H_5)_2S\}_{\{(C_2H_5)_2Se\}}ClBr]$.

P. C. Ray and co-workers 13 claimed to have prepared complexes containing

platinum hemipentachloride, Pt₂Cl₅—e.g. Pt₂Cl₅.3(CH)₂S₂.

F. Martin, ¹⁴ and L. Wöhler and F. Martin heated platinous chloride in an atm. of chlorine at 390° to 400°, and obtained what was considered to be **platinum trichloride**, or **platinosic chloride**, PtCl₃, and they also obtained it by heating powdered platinic chloride for 10 hrs. at 390° in dry chlorine freed from hydrogen chloride. L. Pigeon also obtained it by heating platinum in chlorine for 6 hrs. at 360°, and cooling the product rapidly in an atm. of chlorine. G. Magnus probably

obtained the same product by heating hydrochloroplatinic acid to 220° to 250°. L. Wöhler and F. Martin said that the powder is black with a greenish tinge unlike platinum di- or tetra-chloride. R. Klement gave 5.256 for the sp. gr. at 25°/4°, and 57.4 for the mol. vol. S. Streicher, and L. Wöhler and S. Streicher said the decomposition temp. is 435°, and that the heat of formation is (2PtCl2, Cl2) =26.2 ('als. The trichloride was found by F. Martin, and L. Wöhler and F. Martin, to be reduced by hydrogen in the cold; it is slightly soluble in cold water, and only after several days is enough dissolved to impart to the soln. a yellow colour; it immediately dissolves in boiling water to form a brownish-red soln. which reacts acid, and probably contains hydroxytrichloroplatinosic acid, H₂PtOCl₃, as a result of hydrolysis. This same acid is formed when an aq. soln. of hydrochloroplatinic acid is reduced with sulphur dioxide. The aq. soln. of platinum trichloride yields the original salt if evaporated in vacuo at 60° and then at 100°; the salt is almost insoluble in cone. hydrochloric acid at ordinary temp., but the warm acid forms a yellow soln, containing platinic and platinous chlorides; it readily dissolves in an aq. soln. of potassium iodide, forming a dark brown liquid; and alcohol reduces it to metal at the same time forming aldehyde. The free acid, hydrochloroplatinosic acid, H₂PtCl₅, could not be isolated, but on passing a little chlorine into hydrochloroplatinous acid, the presence of tervalent platinum can be recognized by precipitation as a green cassium salt, but decomposition sets in rapidly. L. Tschugaeff and I. Tscherniaeff studied the action of liquid ammonia on platinum trichloride. E. Müller and R. Bennewitz titrated soln. of tervalent platinum salts electrometrically with soln, of stannous chloride.

S. M. Jörgensen obtained a complex salt, platinosic pyridineamminotrichloride, Pt(NH₃)-(C₅H₅N)Cl₃, or Pt₂(NH₃)₂(C₆H₅N)₂Cl₆. There are a few complex salts containing both platinous and platinic chlorides. Thus, P. C. Ray and co-workers obtained platinosic bispyridinetrichloride, PtCl₃(C₅H₅N)₂; and platinosic quaterpyridinotrichloride, PtCl₃(C₅H₅N)₄; and they discussed the varying valency of platinum with respect to the mercaptanic radicle. E. Biilmann and A. Hoff prepared platinic allylacetictrichloride as a double salt with platinious tetrammine, [(C₃H₅,CH₂.COOH)PtCl₃]₃|Pt(NH₃)₄]; and similarly with platinic allylmalonictrichloride, [(C₃H₅,CH₂.COOH)PtCl₃]₄|Pt(NH₃)₄]; and with platinic vinylacetictrichloride, [C₃H₅.CH₂.COOH)₂|PtCl₃]₂|Pt(CH₃N₄)₄|; and with platinic vinylacetictrichloride, P. Pfeiffer and H. Hoyer prepared a series: with allyl alcohol, [Co en₂Cl₂]|Pt(C₃H₅,OH)Cl₃]; with allyl acetate, [Co en₂Cl₂][Pt(CH₃.COOC₃H₅)Cl₃]; with crotyl alcohol, K[Pt(C₄H₇,OH)Cl₃]; and in which [Co en₂Cl₂][Pt(CH₃.COOC₃H₅)Cl₃]; with crotyl alcohol, K[Pt(C₄H₇,OH)Cl₃]; and in which [Co en₂Cl₂]. [Co en₂Cl₂]₂]Pt(CH₁,OH)Cl₃]; and with crotonaldehyde, [Co en₂Cl₂][Pt(C₃H₅,COH)Cl₃]. A. Cossa, and S. G. Hedin prepared platinous quaterpyridinechloroplatinate, [Pt(C₅H₅N₃)₄]PtCl₆; A. Cossa, platinic quaterethylaminechloroplatinite, [Pt(C₂H₅NH₃)₄]₂PtCl₄; J. E. Reynolds, G. Prätorius-Seidler, and N. S. Kurnakoff, platinous quaterthiocarbamidechloroplatinite, [Pt(C(S(NH₂))₂]₄]PtCl₅; N. S. Kurnakoff, and H. Debus, platinous quaternamidechloroplatinite, [Pt(C(S(NH₂))₂]₄]PtCl₆; L. Tschugaeff and J. Benewolensky, platinous quatermethylaphosphinechloroplatinate, [Pt(C(C₃)₃)₃]PtCl₆; and A. Cahours and H. Gal, platinous quaterethylphosphinechloroplatinate, [Pt(C(C₃)₃)₃]PtCl₆; and A. Cahours and H. Gal, platinous quaterethylphosphinechloroplat

F. Martin, and L. Wöhler and F. Martin prepared cessium chloroplatinosate, 2CsCl.PtCl_3 , or $\text{Cs}_2 \text{PtCl}_5$, as a dark green, crystalline precipitate, by oxidizing cesium chloroplatinite with chlorine water at 0°. In the case of potassium and rubidium salts, the chloroplatinates are formed. The salt is also formed by adding cesium chloride to a well-cooled hydrochloric acid soln. of hydrated platinum sesquioxide, or by adding cesium chloride to a cold soln. of platinum trichloride. The salt appears in dark green, cubic crystals. The salt readily decomposes into a mixture of cesium chloroplatinite and chloroplatinate. In a warm aq. soln. the green colour quickly changes to yellow—characteristic of cesium chloroplatinate. Sunlight accelerates the decomposition into the higher and lower chlorides. The salt also decomposes when heated, or when exposed to moist air.

REFERENCES.

¹ M. C. Lea, Amer. Journ. Science, (3), 48, 397, 1894; Zeit. anorg. Chem., 8, 121, 1895.

C. W. Blomstrand, Ber., 4, 678, 1871; P. T. Cleve, Svenska Akad, Handl., 10, 9, 1872;
 H. and A. Euler, Ber., 37, 2393, 1904; P. Klason, ib., 28, 1483, 1895; P. C. Ray, B. C. Guha and K. C. Bose-Ray, Journ. Indian Chem. Soc., 3, 358, 1926; E. Sonstadt, Proc. Chem. Soc., 14, 25, 179, 1898; Chem. News, 77, 79, 1898; 78, 263, 1898; S. Streicher, Ueber die Chloride von vier Valenzstufen des Iridiums und Platins, Darmstadt, 1913; L. Wöhler and S. Streicher, Ber., 46, 1592, 1913.

³ W. Ackroyd, Chem. News, 67, 64, 1893; S. Aoyama, Zeit. anorg. Chem., 133, 230, 1924; E. Baudrimont, Recherches sur les chlorures et les bromures de phosphore, Paris, 1864; Ann. Chim. Phys., (4). 2. 47, 1861; Compt. Rend., 55, 363, 1862; E. Beckmann and W. Gabel, Zeit. anorg. Chem., 51. 236, 1906; J. J. Berzelius, Schweigger's Journ., 7. 55, 1813; Pogg. Ann., 8. 179, 1826; C. H. D. Bödecker, Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen, Leipzig, 1860; A. M. Boldyreva, Ann. Inst. Platine, 7, 170, 1929; D. M. Bose, Zeil. Physik, 65, 677, 1930; D. M. Bose and H. G. Bhar, ib., 48, 716, 1928;
D. Cochin, Compt. Rend., 86, 1402, 1878; Bull. Soc. Chim., (2), 31, 498, 1879; T. Curtius and J. Rissom, Journ. prakt. Chem., (2), 58, 261, 1898; T. Curtius and H. Schulze, ib., (2), 42, 521. 1890; M. Delépine, Bull. Soc. Chim., (3), 13, 222, 1895; Compt. Rend., 120, 152, 1895; J. Dewar and A. Scott, B.A. Rep., 597, 1881; E. Divers, Proc. Roy. Soc., 21, 109, 1873; Phil. Trans., 163. 351, 1873; Chem. News, 27. 37, 1873; P. Duhem, Traité élémentaire de mécanique chimique fondée sur la thermodynamique, Paris, 1. 241, 1897; F. P. Dunnington, Chem. News, 40, 49, 1879; W. Eidmann, Ein Beitrag zur Erkenntnis des Verhaltens chemischer Verbindungen in nichtswässerigen Lösungen, Giessen, 1899; V. M. Goldschmidt, Norske Vid. Akad. Oslo, 5, 7, 1925; 1, 6, 1926; C. Gordon, Zeit. anorg. Chem., 3, 178, 1870; G. Gore, Proc. Roy. Soc., 20, 441, 1872; 21. 140, 1873; F. Gramp, Zeit. anorg. Chem., 7, 1723, 1879; A. N. Guthrie and L. T. Bourland, 21. 140, 1613; F. Glainp, Zett. anny. Actual 123, 1616.
21. 140, 1613; F. Glainp, Zett. anny. Actual 123, 1616.
22. 140, 1613; F. Glainp, Zett. anny. Actual 161, 1616.
23. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 1616.
24. 2481.
25. 1616.
26. 2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.
2616.</ P. Klason, Bihang. Svenska Akad. Handl., (2), 28. 6, 1902; Journ. prakt. Chem., (2), 67. 18, 1903; R. Klement, Zeit. anorg. Chem., 174. 195, 1927; E. Knoevenagel and E. Ebler, Ber., 35. 3067, 1902; I. L. Kondakoff, F. Balas and L. Vit, Chem. Listy, 23. 579, 1929; 24. 1, 1930; C. Liebermann and C. Paal, Zeit. anorg. Chem., 16, 529, 1883; G. Magnus, Pogg. Ann., 14, 239, 1828; W. Manchot, Ber., 58, B, 2518, 1925; W. Manchot and E. Enk, ib., 63, B, 1635, 1930; W. Manchot and G. Lehmann, ib., 63, B, 1221, 1930; G. Matthey, Proc. Roy. Soc., 28, 464, 1879; Chem. News. 39, 175, 1879; G. Mazzaron, Atti Ist. Venezia, (7), 7, 1124, 1896; S. Meyer, Sitzher, Akad. Wien, 108, 876, 1899; V. and C. Meyer, Ber., 12, 1429, 1879; A. Miolati and U. Pendini, Zeit. anorg. Chem., 33, 264, 1903; L. F. Nilson, Nova Acta Upsala, 15, 1877; Oefvers, Vet. Akad. Forh., 33, 7, 1876; Journ. prakt. Chem., (2), 15, 261, 1876; Chem.
 News, 34, 270, 1876; 36, 183, 1877; 37, 31, 1878; C. Nogareda, Anal. Fis. Quim., 32, 396, 1934; L. Pauling, Proc. Nat. Acad., 15, 709, 1929; W. Peters, Zeit. anorg. Chem., 77, 167, 1912; Ber., 41, 3175, 1908; L. Pigeon, Ann. Chim. Phys., (7), 2, 459, 1894; Recherches chimiques et calorimetriques sur quelques combinaisons haloides du platine, Paris, 1893; Compt. Rend., 120. 681, 1895; G. Quesneville, Monit. Scient., (3), 6. 660, 1876; H. Rose, Handbuch der analytische Chemie, Leipzig, 1, 390, 1867; A. Rosenheim and W. Levy, Zeit. anorg. Chem., 43, 46, 1905; A. Rosenheim and W. Löwenstamm, ib., 37, 397, 1903; L. Rügheimer and E. Rudolfi, Liebig's Ann., 339, 342, 1905; W. J. Russell, Journ. Chem. Soc., 27, 3, 1874; Chem. News, 28. 277, 1873; P. Schottländer, Liebig's Ann., 140. 200, 1866; P. Schützenberger, Ann. Chim. Phys., (4), 21. 351, 1870; Compt. Rend., 70. 1415, 1870; P. Schützenberger and C. Fontaine, Bull. Soc. Chim., (2), 18, 154, 1872; P. Schützenberger and D. Tommasi, Compt. Rend., 70, 1289, 1870; I. I. Schukoff and O. P. Schipulina, Koll. Zeit., 49, 126, 1929; K. Scubert, Liebig's Ann., 207, 17, 1881; W. A. Shenstone and C. R. Beck, Chem. News, 67, 116, 1893; Proc. Chem. Soc., 9, 38, 1893; Journ. Chem. Soc., 61, 445, 1892; O. Stelling, Svenska Kem. Tids., 48. 130, 1931; S. Streicher, Ueber die Chloride von vier Valenzstufen des Iridiums und Platins, Darmstadt, 1913; J. Thomsen, Journ. prakt. Chem., (2), 15. 297, 1877; L. Troost and P. Hautefeuille, Compt. Rend., 84. 947, 1877; L. Tschugaeff, Ber., 40. 177, 1907; L. N. Vauquelin, Ann. Chim. Phys., (2), 5. 392, 1817; A. Werner, Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, Braunschweig, 52, 1909; L. Wöhler and F. Martin, Ber., 42. 3959, 1909; Zeit. Elektrochem., 15. 791, 1909; L. Wöhler and S. Streicher, Ber., 46, 1592, 1913.

4 F. J. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; S. Aoyama, Zeit. garage Chem., 123, 230, 1924; H. and W. Biltz. Hebrarachianischen auch January Chem.

⁴ F. J. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; S. Aoyama, Zeit. anorg. Chem., 133. 230, 1924; H. and W. Biltz, Uebungsbeispiele aus der anorganischen Experimentalchemie, Leipzig, 1907; New York, 184, 1909; C. W. Blomstrand, Die Chemie der Jetzteit, Heidelberg, 1869; Ber., 4. 46, 1871; A. M. Boldyreva, Ann. Inst. Platine, 7. 170, 1929; G. B. Buckton, Journ. Chem. Soc., 5. 213, 1852; Journ. prakt. Chem., (1), 57. 367, 1852; Liebig's Ann., 84. 270, 1852; E. Bülmann, Ber., 33. 2198, 1900; O. Carlgren, Oefvers. Akad. Förh., 47. 6, 1891; O. Carlgren and P. T. Cleve, Zeit. anorg. Chem., 1. 67, 1892; F. W. Clarke and M. E. Owens, Amer. Chem. Journ., 3. 351, 1881; Chem. News, 45. 62, 1882;

C. Claus, Liebig's Ann., 107, 138, 1858; P. T. Cleve, Handl. Akad. Stockholm, (2), 10, 9, 1872; Oefrers. Akad. Stockholm, 28, 175, 1871; Ber., 4, 70, 673, 1871; 6, 1468, 1873; Chem. News, 24, 73, 1871; 25, 47, 286, 311, 1872; A. Cossa, Atti Accad. Torino, 22, 323, 1887; 41, 1, 1891; Gazz. Chim. Ital., 17. 1, 1887; 20. 725, 1890; 22. ii, 620, 1892; Atti Accad. Lincei, (4), 7. i, 3, 1891; Ber., 23, 2503, 1890; Zeit. anorg. Chem., 2, 193, 1892; E. G. Cox, Journ. Chem. Soc., 1912, 1932; E. G. Cox, F. W. Pinkard, G. H. Preston and W. Wardlaw, ib., 2527, 1932; E. G. Cox and G. H. Preston, ib., 1089, 1933; N. R. Dhar, Zeit. anorg. Chem., 80, 52, 1913;
B. N. Dickinson, Zeit. Krist., 88, 281, 1934; H. D. K. Drew, F. W. Pinkard, G. H. Preston and W. Wardlaw, Journ. Chem. Soc., 1895, 1932; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, ib., 988, 1004, 1932; H. D. K. Drew and H. J. Tress, ib., 1586, 1935; H. and A. Euler, Ber., 37, 2393, 1904; E. N. Gapon, Zeit. anorg. Chem., 168, 127, 1928; L. Geeb, Ucher die Isomerië der Platin (II) Ammine, Berlin, 1930; C. Gerhardt, Compt. Rend. Trav. Chim., 273, 1850; Journ. prakt. Chem., (1), **51**, 351, 1850; (1), **53**, 345, 1851; Liebig's Ann., **76**, 307, 1850; Compt. Rend., 31, 241, 1850; C. Grimm, Liebig's Ann., 99, 95, 1856; A. A. Grinberg, Helvetica Chim. Acta, 14. 455, 1931; A. A. Grinberg and B. V. Pittsin, Ann. Inst. Platine, 9. 73, 1932; J. Gros, Ann. Chim. Phys., (2), 69, 204, 1838; Liebig's Ann., 27, 241, 1838; E. A. Hadow, Journ, prakt. Chem., (1), 100, 32, 1867; Journ. Chem. Soc., 19, 345, 1866; O. Hantzsch and F. Rosenblatt, Zeit. anorg. Chem., 187. 241, 1930; E. Hertel, Zeit. Elektrochem., 37. 537, 1931; E. Hertel and K. Schneider, Zeit. anorg. Chem., 202. 77, 1931; A. W. Hofmann, Phil. Trans., 141, 357, 1851; Liebig's Ann., 79, 39, 1851; S. M. Jörgensen, Zeit. anorg. Chem., 24, 171, 1906; 25, 357, 1900; S. M. Jörgensen and S. P. L. Sörensen, ib., 48, 441, 1906; H. Kautsky and W. Baumeister, Ber., 64. B, 2446, 1931; P. Klason, Zeit. anorg. Chem., 28, 1483, 1895; Bihang. Svenska Akad. Handl., (2), 28. 6, 1902; Journ. prakt. Chem., (2), 67. 1, 1903; A. R. Klien, Ueber die Bindefestigkeit der negativen Reste in den Kobalt-, Chrom- und Platinammoniaken. Ucber eine neue Nitritorhodanatotetraminkobalt-Reihe, Zurich, 1899; E. Kocfoed, Studier i Platinosoforbindelerne, Kopenhagen, 10, 1888; Danske Vid. Selsk. Skrift., (6), 4, 400, 1888; H. Kolbe, Journ. prakt. Chem., (2), 2. 220, 1870; N. S. Kurnakoff, ib., (2), 52. 515, 1895; Zeit. anorg. Chem., 17, 213, 1898; Journ. Russ. Phys. Chem. Soc., 29, 706, 1898; N. S. Kurnakoff and I. A. Andrejewsky, Zeit. anorg. Chem., 189, 137, 1930; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97, 1, 1921; R. Lorenz and I. Posen, Zeit. anorg. Chem., 96, 81, 217, 1916; G. Magnus, Pogg. Ann., 14, 242, 1828; F. Müller and A. Rietkohl, Zeit. Elektrochem., 36, 181, 1930; W. Odling, Ber., 3, 682, 1870; Zeit. Chem., (2), 6, 435, 1870; Chem. News, 21, 269, 289, 1870; Proc. Roy. Inst., 6, 176, 1872; W. Peters, Zeit. anorg. Chem., 77, 167, 1912; Ber., 41. 3175, 1908; 53. 1143, 1920; J. Peterson, Zeit. phys. Chem., 10. 580, 1892; M. Peyrone, Liebig's 3175, 1908;
33. 1143, 1920;
J. Petersen, Zeil. phys. Chem., 10, 580, 1892;
M. Peyrone, Liebig's Ann., 51.
1, 1844;
55. 205, 1845;
Ann. Chim. Phys., (3), 12, 193, 1844;
M. Raewsky, ib., (3), 22, 278, 1848;
Compt. Rend., 23, 353, 1846;
24, 1151, 1847;
25, 794, 1847;
L. Ramberg, Zeit. anorg, Chem., 83, 35, 1913;
J. Reiset, Compt. Rend., 11, 711, 1840;
18, 1100, 1844;
Ann. Chim. Phys., (3), 11, 417, 1844;
A. Rosenheim and L. Gerb, Zeit. anorg. Chem., 210, 289, 1933;
P. Schützenberger and D. Tommasi, Compt. Rend., 70, 1289, 1870;
Q. Sella, Mem. Accad. Torino, 17, 337, 493, 1858;
20, 355, 1863;
S. P. Sharples, Amer. Chemist, 4, 46, 1873;
I. I. Shukoff and O. P. Schipulina, Journ. Russ. Phys. Chem. Soc., 61, 1485, 1929;
Koll. Zeit, 156, 1929;
J. Thomsen, Danske Vid. Selyk, Farb. 231, 1867;
Journ. graph. Chem. (3), 45 49. 126, 1929; J. Thomsen, Danske Vid. Selsk. Forh., 231, 1867; Journ. prakt. Chem., (3), 15. 294, 1877; (2), 16, 294, 327, 1877; L. Tschugaeff, Journ. Chem. Soc., 107, 1247, 1915; Ann. Inst. Platine, 1, 66, 1921; L. Tschugaeff and S. Krassikoff, Zeit. auorg. Chem., 131, 299, 1923; L. Tschugaeff and N. Pschenicyn, Journ. Russ. Phys. Chem. Soc., 52, 47, 1920; L. Tschugaeff and W. Subbotin, Ber., 43, 1202, 1910; L. Tschugaeff and I. Tscherniaeff, Ann. Inst. Plating. 7. 124, 1929; Compt. Rend., 161, 792, 1915; Zeit. anorg. Chem., 182, 159, 1929; C. Weltzien, Liebig's Ann., 97, 27, 1856; A. Werner, Neuerc Anschauungen auf dem Gebiete der anorganischen Chemic, Braunschweig, 1923; A. Werner and A. Miolati, Zeit. phys. Chem., 12, 50, 1893; 14, 506, 1894: Gazz. Chim. Ital., 24. ii, 408, 1894.

⁵ P. T. Cleve, Nova Acta Upsala, 6. 5, 1866; A. Cossa, Atti Accad. Lincei, (5), 3. ii, 360, 1894; Gazz. Chim. Ital., 25. ii, 505, 1895; E. G. Cox, F. W. Pinkard, W. Wardlaw and G. H. Preston, Journ. Chem. Soc., 2527, 1932; P. Klason, Journ. prakt. Chem., (2), 67. 1, 1903; Bihang Svenska Akad. Handl., (2), 28. 6, 1902; A. R. Klien, Ueber die Bindefestigkeit der negativen Reste in den Kobalt Chrom-, und Platin-ammoniaken, Zürich, 1899; E. Koefoed, Studier i Platinosoforbindelerne, Kopenhagen, 1888; Danske Vid. Selsk. Skrift., (6), 4. 395, 1888; M. Peyrone, Ann. Chim. Phys., (3), 12, 193, 1844; (3), 16, 462, 1846; Liebig's Ann., 51, 15, 1845; 61, 180, 1847; Mem. Accad. Torino, 10, 171, 1849; L. Ramberg, Ber., 46, 2362, 1913; Zeit. anorg. Chem., 83, 33, 1913; L. Tschugaeff, Journ. Russ. Phys. Chem. Soc., 51, 193, 1920; A. Werner and A. Miolati. Zeit. phys. Chem., 12, 50, 1893; 14, 506, 1894.

and A. Miolati, Zeit. phys. Chem., 12, 50, 1893; 14, 506, 1894.

§ F. G. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; E. Biilmann and A. C. Anderson, Ber., '86, 1570, 1903; H. and W. Biltz, Uebungsbeispiele aus der anorganischen Experimentalchemie, Leipzig, 1907; New York, 186, 1909; C. W. Blomstrand, Ber., 4, 51, 678, 1871; A. M. Boldyreva, Ann. Inst. Platine, 7, 170, 1929; P. T. Cleve, Oefvers. Akad. Stockholm, 28, 175, 1871; Ber., 4, 70, 673, 1871; 6, 1418, 1873; Chem. News, 24, 73, 1871; 25, 47, 286, 311, 1872; Zeit. anorg. Chem., 1, 65, 1893; Svenska Akad. Handl., (2), 10, 9, 1872; A. Cossa, Zeit. anorg. Chem., 14, 366, 1897; E. G. Cox, Journ. Chem. Soc., 1912, 1932; E. G. Cox and G. H. Preston, ib., 1089, 1933; H. D. K. Drew, ib., 3054, 1926; 2328, 1932; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, ib., 988, 1932; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, ib., 988, 1932; H. D. K. Drew

and G. H. Wyatt, ib., 56, 1934; F. P. J. Dwyer and D. P. Mellor, Journ. Amer. Chem. Soc., 58. 1551, 1934; H. and A. Euler, Ber., 37. 2393, 1904; C. Grimm, Liebig's Ann., 99. 95, 1856; A. Grünberg, Helvetica Chim. Acta, 14. 455, 1931; Zeit. anorg. Chem., 157. 299, 1926; A. Grünberg and D. I. Rjabtschikoff, Compt. Rend. Acad. U.R.S.S., 4. 259, 1936; A. Hantzsch, Ber., B. 2761, 1926; F. Hoffmann, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1889;
 K. A. Jensen, Zeit. anorg. Chem., 229, 252, 1936;
 S. M. Jörgensen, Zeit. anorg. Chem., 19, 134, 1889; 24. 181, 1900; 25. 365, 1900; P. Klason, Bihang, Svenska Akad, Handl., 28. 6, 1902; Journ. prakt. Chem., (2), 67. 23, 1903; Arkiv. Kemi Min., 1. 185, 1905; Ber., 28. 1483, 1895; 37. 1355, 1904; A. R. Klien, Ueber die Bindefestigkeit der negativen Reste in den Kobalt-, Chrom- und Platinammoniaken. Ueber eine neue Nilritorhodanalotetraminokobalt-Reihe, Zürich, 1899 : E. Kocford, Om nogle Nitrosoplatinammoniakforbindelser, Kopenhagen, 1894 ; Studier i Platosoforbindelserne, Kopenhagen, 10, 1888; Danske Selsk. Skrift., 4. 400, 1888; N. S. Kurnakoff, Journ. prakt. Chem., (2), 51. 254, 1895; (2), 52. 188, 1895; Journ. Russ. Phys. Chem. Soc., 25. 565, 1894; Ann. Inst. Anal. Phys. Chem., 2. 483, 1924; N. S. Kurnakoff and I. A. Andrew- Kuthakoff and I. A. Andrewsky, Zeit. anorg. Chem., 189. 137, 1930; Ann. Inst. Platine, 7. 161, 1929; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97. 1, 1921; W. Lossen, Liebig's Ann., 160. 248, 1871; W. Odling, Proc. Roy. Inst., 6. 176, 1872; Chem. News, 21. 291, 1870; Ber., 3. 682, 1870; M. Peyrone, Ann. Chim. Phys., (3), 12. 193, 1844; (3), 16. 462, 1846; Liebig's Ann., 51. 15, 1845; 61. 180, 1847; Mem. Accad. Torino, 10. 171, 1849; F. W. Pinkard, E. Sherratt, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 1012, 1934; L. Ramberg, Ber., 46. 2362, 1913; Zeit. anorg. Chem., 83. 33, 1913; P. C. Ray and P. C. Mukerjee, Journ. Indian Chem. Soc., 6.
 Zeit. anorg. Chem., 22it anorg. Chem., 451, 71, 1926; R. Reiblen and G. von Hühn. Liebig's 885, 1929; H. Reihlen, Zeit. anorg. Chem., 151, 71, 1926; H. Reihlen and G. von Hühn, Liebig's Ann., 499, 144, 1932; H. Reihlen and K. T. Nestle, Zeit. anorg. Chem., 159, 343, 1927; Liebig's Ann., 447. 211, 1926; J. Reiset, Compt. Rend., 18. 1103, 1844; Ann. Chim. Phys., (3), 11. 417, 1844; F. Rosenblatt and A. Schleede, Naturwiss., 21. 178, 1933; Ber., 66. B, 472, 1933; A. Rosenheim and W. Händler, ib., 59, 1387, 1926; I. I. Shukoff and O. P. Shipulina, Koll. Zeit., 49, 1261, 1929; J. Thomsen, Danske Selsk. Skrift, 229, 1867; L. Tschugaeff, Journ. Russ. Phys. Chem. Soc., 51, 193, 1920; L. Tschugaeff and W. Chlopin, Zeit. anorg. Chem., 151, 253, 1926; L. Tschugaeff and I. Tscherniaeff, Ann. Inst. Platine, 7. 124, 1929; Zeit. anorg. Chem., 182, 159, 1929; A. Werner, ib., 8, 159, 1895; A. Werner and C. Herty, Zeit. phys. Chem., 38, 348, 1901; A. Werner and A. Miolati, ib., 12, 50, 1893; 14, 506, 1894.

A. Cossa, Zeit. anorg. Chem., 14, 366, 371, 1897; Atti Accad. Lincei, (4), 7, 3, 1891; Mem. Accad. Torino, (2), 41, 1, 1891; Gazz. Chim. Ital., 20, 725, 1890; 27, ii, 11, 1897; Ber., 23, 2509, 1890; S. M. Jörgensen, Danske Selsk. Skrift, (6), 9, 229, 1900; Zeit. anorg. Chem., 24, 174, 1900; P. Klason, Arkiv. Kemi Min., 1, 185, 1904; Ber., 28, 1483, 1895; 37, 1355, 1904; Bihang. Svenska Akad. Handl., 28, 6, 1902; Journ. prakt. Chem., (2), 67, 16, 1903; H. Ley and K. Ficken, Ber., 45, 377, 1912; A. Sella, Riv. Min. Crist. Ital., 12, 31, 1893; A. Werner, Zeit. anorg. Chem., 12, 48, 1896; A. Werner and C. Herty, Zeit. phys. Chem., 38, 331, 1901; A. Werner and A. Miolati, ib., 12, 53, 1893; 14, 507, 1894.

8 H. Alexander, Ueber hydroxylaminehaltige Platinbasen, Königsberg, 1887; Liebig's Ann., 246, 254, 1888; F. Hoffmann, Ueber hydroxylaminehaltige Platinbasen, Königsberg, 24, 1884; W. Lossen, Liebig's Ann., 160, 246, 1871; F. W. Pinkard, H. Saenger and W. Wardlaw, Journ. Chem. Soc., 1056, 1933; I. I. Tscherniaeff and A. S. Samsonova, Ann. Inst. Platine, 11, 39, 1933; L. Tschugaeff, Compt. Rend., 159, 189, 1914; L. Tschugaeff and M. Grigorieff, Ber., 47, 2446, 1914; Journ. Russ. Phys. Chem. Soc., 51, 193, 1920; L. Tschugaeff and R. Orelkin, Zeit. anorg. Chem., 182, 29, 1929; L. Tschugaeff and N. K. Pshenicyn, Journ. Russ. Phys. Chem. Soc., 52, 47, 1920; L. Tschugaeff, M. Skanavi-Grigorieva and A. Posnjak, Zeit. anorg. Chem., 148, 37, 1926; Ann. Inst. Platine, 4, 299, 1926; L. Tschugaeff and I. I. Tscherniaeff, Journ. Russ. Phys. Chem. Soc., 51, 220, 1920; Journ. Chem. Soc., 113, 884, 1918; Compt. Rend., 161, 637, 1915; R. Uhlenhut, Liebig's Ann., 311, 121, 1900; 312, 235, 1900; H. Wolfram, Urber aethylaminhaltige Platinbasen, Königsberg, 1900.

T. Anderson, Liebig's Ann., 96, 202, 1855; F. G. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; L. Balbiano, Gazz. Chim. Ital., 23, i, 524, 1893; E. Biilmann, Ber., 33, 2196, 1900; K. Birrbaum, Liebig's Ann., 145, 69, 1868; C. W. Blomstrand, Journ. prakt. Chem., (2), 38, 362, 525, 1888; Ber., 4, 49, 1871; R. Bunson, Mem. Chem. Soc., 1, 63, 1842; Phil. Mag., (3), 20, 395, 1842; A. Cahours and H. Gal, Bull. Soc. Chim., (2), 14, 387, 1870; Compt. Rend., 70, 901, 1381, 1870; 71, 208, 1870; J. J. Chydenius, Om anilins inverkan pu platinachlorur och svafelsyrlig platinacydul, Helsingfors, 1859; L. Claisen, Ber., 42, 59, 1909; 44, 1161, 1911; P. T. Cleve, Svenska Akad. Handl., 10, 9, 1872; Oefvers. Akad. Förh., 27, 8, 1870; A. des Cloizeaux, Compt. Rend., 70, 897, 1870; D. Cochin, ib., 38, 1403, 1878; A. Cossa, Atti Accad. Lincei, (4), 7, 3, 1891; (5), 2, ii, 332, 1893; Gazz. Chim. Ital., 22, ii, 626, 1892; 24, i, 395, 1894; Zeil. anorg. Chem., 2, 187, 1892; E. G. Cox, Journ. Chem. Soc., 1912, 1932; E. G. Cox, F. W. Pinkard, W. Wardlaw and K. C. Webster, ib., 459, 1935; E. G. Cox and G. H. Preston, ib., 1089, 1933; E. G. Cox, H. Saenger and W. Wardlaw, ib., 2216, 1932; 182, 1934; H. Debus, Liebig's Ann., 72, 15, 1849; H. D. K. Drew, Journ. Chem. Soc., 2328, 1932; H. D. K. Drew and F. S. H. Head, Nature, 132, 210, 1933; Journ. Chem. Soc., 221, 1934; H. D. K. Drew and F. S. H. Head, Nature, 132, 210, 1933; Journ. Chem. Soc., 221, 1934; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, ib., 988, 1004, 1932; H. D. K. Drew and H. J. Tress, ib., 1244, 1586, 1935; H. D. K. Drew and G. H. Wyatt, ib., 2975, 1932; 56, 1934; C. Enebuske, Journ. prakt. Chem., (2), 38, 358, 1888; Lunds Arsskr., (2), 22, 2, 1887; F. Förster, Ber., 24, 3764, 1891; E. C. Fritzmann, Journ. Russ. Phys. Chem.

VOL. XVI.

Soc., 47, 588, 1915; Ann. Inst. Platine, 4, 55, 1926; Zeit. anorg. Chem., 73, 239, 1911; 133, 133, 1924; E. N. Gapon, ib., 168. 127, 1928; L. Gerb, Ueber die Isomerie der Platin (II) ammine, Berlin, 1930; O. W. Gibbs, Amer. Chem. Journ., 8. 289, 1886; C. Gordon, Ber., 3. 175, 1870; P. Griess and C. A. Martius, Compt. Rend., 53, 922, 1861; Liebig's Ann., 120, 326, 1861; A. A. Grinberg, Ann. Inst. Platine, 8, 93, 1931; 10, 47, 1932; Helvetica Chim. Acta, 14, 455, 1931; A. A. Grinberg and B. V. Ptitzuin, Ann. Inst. Platine, 9. 55, 1932; A. A. Grinberg and L. M. Volshtein, Compt. Rend. Acad. U.R.S.S., 2. 485, 1935; A. Grünberg and N. Pschenitzin, Zeit. anorg. Chem., 157, 173, 1926; A. Hantzsch and F. Rosenblatt, ib., 187, 241, 1930; E. Hardy Zeit. anorg. Chem., 157. 173, 1926; A. Hantzsch and F. Rosenblatt, 10., 187. 241, 1930; E. Hardy and G. Calmels, Bull. Soc. Chim., (2), 48. 232, 1887; S. G. Hedin, Om Pyridinens Platinabaser, Lund, 1886; Lunds Arsskr., (3), 22. 3, 1887; C. H. Herty and R. O. E. Davis, Journ. Amer. Chem. Soc., 30. 1087, 1908; F. Hoffmann, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1889; A. W. Hofmann, Liebig's Ann., 103. 357, 1857; Ber., 3. 578, 1870; K. A. Hofmann and G. Bügge, ib., 40. 1772, 1907; K. A. Hofmann and J. von Narbutt, ib., 41. 1625, 1908; K. A. Jensen, Zeit. anorg. Chem., 221. 6, 1934; 225. 97, 115, 1935; 226. 168, 1936; 229. 225, 279, 1936; K. A. Jensen and E. Frederiksen, ib., 230. 34, 1936; S. M. Jörgensen, Journ. prakt. Chem., (2), 33, 531, 1886; (2), 39, 1, 1889; (2), 41, 429, 1890; Zeit. anorg. Chem., 24, 162, 1900; 25, 353, 1900; 48, 382, 1906; A. Johnson, Neues Jahrb. Min., i, 97, 1907; H. Kirmreuther, Ber., 44. 3118, 1911; P. Klason, Oefvers. Akad. Förh., 302, 1895; Ber., 28. 1477, 1489, 1493, 1895; 37. 1355, 1904; Arkiv. Kemi Min., 1. 185, 1904; Bihang. Svenska Akad. Handl., (2), 28. 6, 1902; Journ. prakt. Chem., (2), 67. 1, 1903; P. Klason and J. Wanselin, ib., (2), 67. 41, 1903; Bihang. Svenska Akad. Handl., (2), 28. 7, 1902; E. Koefoed, Om nogle Nitrosoplatinammoniakforbindelser, Kopenhagen, 1894; H. Kolbe, Journ. prakt. Chem., (2), 2. 217, 1870; N. S. Kurnakoff, Zeit. anorg. Chem., 17. 214, 1898; Journ. Russ. Phys. Chem. Soc., 25, 565, 1893; 29, 706, 1897; 31. 688, 1899; Journ. prakt. Chem., (2), 50. 489, 1894; (2), 51. 249, 1895; V. von Lang, Sitzber. Akad. Wien, 61. 193, 1870; H. Ley and K. Fickan, Ber., 45. 379, 1912; C. Liebermann and C. Paal, Ber., 16. 530, 1883; J. von Liebig, Pogg. Ann., 31. 326, 1834; Liebig's Ann., 9. 9, 1834; 23. 12, 1837; J. Lifschitz and W. Froentjes, Zeit. anorg. Chem., 224. 173, 1935; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97. 1, 1921; J. Lifschitz and W. Froentjes, Zeit. anorg. Chem., 224. 173, 1935; H. Löndahl, Journ. prakt. Chem., (2), 27. 3, 1891; Bidrag till kännedommen om Platinaethylsulfinamminföreningarne, Lund, 1900; R. Lorenz and I. Posen, Zeit. anorg. Chem., 96. 81, 217, 1916; W. Manchot, Ber., 58. B, 2518, 1925; F. G. Mann, Journ. Chem. Soc., 1224, 1927; 890, 1928; 1345, 1930; 466, 1934; F. G. Mann and W. J. Pope, Proc. Roy. Soc., 109. A, 444, 1925; W. H. Mills and T. H. H. Quibell, Journ. Chem. Soc., 839, 1935; G. T. Morgan and F. H. Burstall, ib., 965, 1934; F. Mylius and F. Förster, Ber., 24, 2428, 1891; I. Ostromisslensky and A. Bergmann, ib., 43, 2770, 1910; Journ. Russ. Phys. Chem. Soc., 42, 611, 1910, J. Petersen, Zeit. phys. Chem., 10, 581, 1892; J. Petren, Om Platinaethylselcninföreningar, Lund, 1898; P. Pfeiffer and H. Hoyer, Zeit. anorg. Chem., 211. 241, 1933; F. W. Pinkard, H. Saenger and W. Wardlaw, Journ. Chem. Soc., 1056, 1933; E. Pomey, Compt. Rend., 104. 364, 1887; G. Ponzio, Gazz. Chim. Ital., 24. ii, 277, 1894; G. Prätorius-Seidler, Journ. prakt. Chem., (2), 21. 142, 1880; W. Prandtl and K. A. Hofmann, Ber., 38. 2981, 1900; W. Pullinger, Journ. Chem. Soc., 59. 598, 1891; G. Quesneville, Monit. Scient., (3), 6. 661, 1876; M. Raewsky, Compt. Rend., 26. 424, 1848; L. Ramberg, Platinaföreninger af Fenylkarbylamin och Benzonitril, Lund, 1903; Ber., 40. 2579, 1907; 46. 1696, 2353, 1913; L. Ramberg and A. Tiberg, ib., 47, 731, 1914; B. Rathke, Ber., 17, 307, 1884; P. C. Ray and K. C. Bose-Ray, Journ. Indian Chem. Soc., 2. 178, 1925; Zeit. anorg. Chem., 178, 329, 1929; P. C. Ray, K. C. Bose-Ray and N. B. Adhikari, Journ. Indian Chem. Soc., 4. 467, 1927; P. C. Ray, K. C. Bose-Ray and S. R. Chaudhury, ib., 5. 139, 1928; P. C. Ray and N. N. Ghosh, Zeit. anorg. Chem., 215, 201, 1933; 220, 247, 1934; Journ. Indian Chem. Soc., 11. 737, 1934; P. C. Ray, B. C. Guha and K. C. Bose-Ray, ib., 3, 155, 358, 1926; P. C. Ray and S. C. S. Gupta, Zeit. anorg. Chem., 203, 401, 1932; 211. 62, 1933; P. C. Ray and P. C. Mukherjee, Journ. Indian Chem. Soc., 6, 885, 1929; H. Reihlen and E. Flohr, Ber., 67. B, 2010, 1934; H. Reihlen and W. Hühn, Naturwiss., 19, 442, 1931; Liebig's Ann., 489, 42, 1931; 519, 80, 1935; J. E. Reynolds, Journ. Chem. Soc., 22, 1, 1869; A. Rosenheim and L. Gerb, Zeit. anorg. Chem., 210. 289, 1933; A. Rosenheim and W. Händler, Ber., 59. B, 1387, 1926; A. Rosenheim Chem., 210. 289, 1933; A. Rosenheim and W. Handier, Ber., 59. B, 1501, 1520; A. Rosenheim and W. Levy, Zeit. anorg. Chem., 37. 394, 1903; 43. 34, 1905; A. Rosenheim and W. Löwenstamm, ib., 37. 394, 1903; C. Rudelius, Journ. prakt. Chem., (2), 22. 4, 1887; M. G. Saillard, Compt. Rend., 74. 1527, 1872; Bull. Soc. Chim., (2), 18. 254, 1872; P. Schützenberger, Compt. Rend., 66. 666, 747, 1868; 70. 1134, 1287, 1414, 1870; Ann. Chim. Phys., (4), 15. 100, 1868; (4), 21. 350, 1870; Bull. Soc. Chim., (2), 10. 188, 1866; (2), 14. 17, 1870; (2), 17. 482, 530, 1872; P. Schützenberger and C. Fontaine, ib. (2), 17. 386, 1872; (2), 18. 107, 1979; P. Schützenberger and M. C. Scilland, ib. (2), 48, 113, 1973; P. Schützenberger and M. C. Scilland, ib. (2), 48, 113, 1973; P. Schützenberger and 1872; P. Schützenberger and M. G. Saillard, ib., (2), 18. 112, 1873; P. Schützenberger and D. Tommasi, Compt. Rend., 70, 1288, 1870; W. J. Sell and T. H. Easterfield, B.A. Rep., 731, 1893; Chem. News, 68, 223, 1893; A. Sella, Mem. Accad. Torino, (2), 20, 391, 1863; A. J. F. da Silva, Bull. Soc. Chim., (3), 15. 835, 1896; D. Strömholm, Zeit. anorg. Chem., 126. 129, 1923; I. I. Tscherniaeff, Ann. Inst. Platine, 10. 33, 1902; I. I. Tscherniaeff and L. Tschugaeff and A. Kobljansky, ib., 83, 16, 1913; L. Tschugaeff and W. Lebedinsky, Compt.

Rend., 161. 563, 1915; 162. 43, 1916; L. Tschugaeff, V. Malzshewsky and E. Fritzmann, Zeit. anorg. Chem., 135. 385, 1924; L. Tschugaeff and B. Orelkin, Compt. Rend., 155. 1021, 1912; L. Tschugaeff, B. Orelkin and C. Fritzmann, Zeit. anorg. Chem., 182. 28, 1929; L. A. Tschugaeff and W. Sokoloff, Ber., 40. 3463, 1907; 42. 58, 1909; 43. 1201, 1910; L. Tschugaeff and P. Teearu, ib., 47. 568, 2643, 1914; L. Tschugaeff and I. J. Tscherniaeff, Journ. Russ. Phys. Chem. Soc., 51. 193, 1920; L. Tschugaeff and N. Wladimiroff, Zeit. anorg. Chem., 135. 392, 1924; L. Tschugaeff, N. Wladimoroff and E. Fritzmann, ib., 135. 392, 1924; S. Tyden, Dictiodigly-kolatoplatosyra jämte nägra salter och additions derivat, Lund, 1911; G. Wallin, Oefvers. Akad. Förh., 49. 21, 1892; M. Weibull, Zeit. Krist., 14. 116, 1888; J. Weiss, Liebig's Ann., 268. 150, 1892; A. Werner, Zeit. anorg. Chem., 3. 318, 1893; 21. 235, 1899; A. Werner and F. Fassbender, ib., 15. 141, 1897; A. Werner and C. H. Herty, Zeit. phys. Chem., 38. 349, 1901; G. Williams, Chem. Gaz., 16. 346, 1858; Journ. prakt. Chem., (2), 76. 251, 1859; H. Wolffram, Ueber athylaminhaltige Platinbasen, Königsberg, 1900; A. Wurtz, Ann. Chim. Phys., (3), 30. 443, 1850; W. C. Zeise, De chlorido platinæ et alcohole vini sese invicem permutantibus nec non de nocis substantiis inde oriundis commentalis, Kopenhagen, 1830; Pogy. Ann., 21. 517, 1831; 40. 234, 1837; 45. 332, 1838; 47. 478, 1839; Danske Selsk. Skrift, (4), 6. 333, 1837; (4), 8. 171, 1841; Danske Selsk. Förh., 9, 1837; 2, 1838; 11, 1839; Liebig's Ann., 23. 1, 1837; 33. 34, 1840; Pogg. Ann. Ergbd., 1, 155, 312, 1832.

¹⁰ S. Aoyama, K. Kimura and Y. Nishina, Zeit. Physik, 44, 810, 1927; P. Berthier, Ann. Chim. Phys., (2), 7, 74, 82, 1818; (3), 7, 1843; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. ii, 950, 1836; E. Biilmann and A. C. Andersen, Ber., 36, 1570, 1903; K. Birnbaum, Zeit. H., 950, 1835; E. Billmann and A. C. Andersch, Ber., 36, 1840; 1893; K. Billmann and A. C. Andersch, Ber., 36, 1840; 1893; K. Billmann and A. C. Andersch, Ber., 36, 1840, 1893; K. Billmann, Zett. Chem., (2), 3, 28, 1867; Liebig's Ann., 145, 69, 1868; Bull. Soc. Chim., (2), 8, 416, 1867; Chem. News, 17, 60, 1868; C. W. Blomstrand, Ber., 4, 49, 1871; Journ. prakt. Chem., (2), 38, 351, 1888; R. Böttger, ib., (1), 91, 251, 1864; A. G. Boldyrew and W. W. D. Dobrowolsky, Zeit. Krist., 93, 321, 1936; P. A. von Bonsdorff, Pogg. Ann., 17, 250, 1829; 19, 337, 1830; G. B. Buckton, Journ. Chem. Soc., 5, 213, 1852; F. W. Clarke, Amer. Journ. Science, (3), 16, 206, 1878; Ber., 11, 1504, 1878; C. E. Claus, Liebig's Ann., 107, 138, 1858; A. Commaille, Bull. Soc. Chim., (2), 6, 262, 1866; W. Crookes, Chem. News, 9, 37, 1864; L. Crosnier, Compt. Rend., 23, 217, 1846; N. Demassieux and J. Heyrovsky, Bull. Soc. Chim., (4), 45, 30, 1929; R. G. Dickenson, Journ. Amer. Chem. Soc., 44, 2404, 1922; H. D. K. Drew, F. W. Pinkard. G. H. Preston and W. Wardlaw, Journ. Chem. Soc., 1895, 1932; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, ib., 988, 1004, 1932; E. H. Ducloux, Anal. Assoc. Quim. Argentina.
9. 215, 1921; Mikrochemie, 2. 108, 1924; E. Feytis, Compt. Rend., 152, 711, 1911;
N. W. Fischer, Schweigger's Journ., 53, 108, 1828; R. Godeffroy, Arch. Pharm., (3), 9, 343, 1876; Liebig's Ann., 181. 176, 1876; M. Gröger, Zeit. angew. Chem., 10. 154, 1897; A. Grünberg, Acta Physicochim., 3. 573, 1935; S. G. Hedin, Om pyridinens Platinabaser, Lund, 1886; Lunds Arsskr., (2), 22. 3, 1887; F. L. Hünefeld, Schweigger's Journ., 60. 197, 1830; W. Jander, Zeit. anorg. Chem., 199, 306, 1931; S. M. Jörgensen, Journ. prakt. Chem., (2), 16, 350, 1877; (2), 39, 10, 1889; (2), 41, 457, 1890; (2), 45, 260, 1892; R. J. Kane, Phil. Mag., (3), 7, 399, 1835; Liebig's Ann., 20, 187, 1836; Journ. prakt. Chem., (1), 7, 135, 1836; P. Klason, Ber., 37, 1360, 1904; Arkiv. Kemi Min., 1, 185, 1904; R. Klement, Zeit. anorg. Chem., 174, 195, 1977. 1927; E. Koefoed, Om nogle Nitrosoplatinammoniaforbindelser, Kopenhagen, 1894; Studier i Platoforbindelserne, Kopenhagen, 1888; Danske Vid. Sclsk. Skrift, (6), 4. 414, 1888; N. S. Kur-Nakoff, Journ. prakt. Chem., (2), 50. 483, 1894; (2), 51. 249, 1895; Journ. Russ. Phys. Chem. Soc., 29. 706, 1898; Zeit. anorg. Chem., 17. 214, 1898; J. Lang, Om nagra nya Platinacrydulföreningar, Upsala, 1861; Journ. prakt. Chem., (1), 86. 126, 1862; Oefvers. Akad. Forh., 18. 228, 1861; M. C. Lea, Amer. Journ. Science, (3), 48. 398, 1894; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97. 1, 1921; G. Magnus, Pogg. Ann., 14, 214, 1828; D. P. Mellor and F. M. Quodling, Proc. Roy. Soc. N.S.W., 69. 167, 1935; S. Meyer, Sitzber. Akad. Wien, 108. 877, 1899; E. Millon and A. Commaille, Ann. Chim. Phys., (4), 3, 316, 1864; Compt. Rend., 57, 822, 1863;
 Bull. Soc. Chim., (2), 1, 357, 1864; L. F. Nilson, Oefvers. Akad. Förh., 33, 13, 1876; A. E. Norden. skjöld, Bihang. Svenska Akad. Handl., 2. 2, 1874; L. Pauling and M. L. Huggins, Zeit. Krist., 87. 205, 1934; W. Peters, Zeit. anorg. Chem., 77. 183, 1912; Ber., 42. 4829, 1909; J. Petersen, Zeit. phys. Chem., 10. 580, 1892; J. Petren, Om Platinaethylselenföreningar, Lund, 1898; M. Peyrone, Liebig's Ann., 55. 206, 1845; L. Pigeon, Compt. Rend., 120. 682, 1895; E. Rosenbohm, Zeit. phys. Chem., 93. 693, 1919; C. Rudelius, Platinapropylsulfinföreningar, Lund, 1886; R. Samuel and A. R. R. Despande, Zeit. Physik, 80. 395, 1933; R. Samuel, A. H. Khan and N. Ahmad, Zeit. phys. Chem., 22. B, 431, 1933; R. Samuel and M. Uddin, Trans. Faraday Soc., 31, 423, 1935; W. Schneider, Zeit. Physik, 51, 263, 1928; P. Schottländer, Liebig's Ann., 140, 200, 1866; H. Schröder, Dichtigkeitsmessungen, Heidelberg, 1873; H. Schwarz, Ueber die Beziehungen zwischen Metallammoniaken und komplexen Salzen, Zürich, 1903; A. Sieverts, Koll. Zeit., 12. 263, 1913; E. R. Smith, Journ. Research Bur. Standards, 5. 735, 1930; A. Streng, Neues Jahrb. Min., ii, 142, 1888; J. Thomsen, Journ. prakt. Chem., (2), 15. 295, 452, 1877; Ber., 2. 669, 1869; Danske Vid. Selsk. Forh., 225, 1867; H. Töpsöe, Arch. Sciences Genève, (2), 35. 58, 1879; (2), 45. 223, 1872; Danske Vid. Selsk. Forh., 151, 1868; H. Töpsöe and H. Christiansen, Danske Selsk. Skrift, (5), 9. 623, 1873; Ann. Chim. Phys., (5), 1. 41, 1874; 1. Traube, Zeit. anorg. Chem., 8. 38, 1895; L. Tschugaeff, Ann. Inst. Platine, 7, 207, 1929; L. Tschugaeff and W. Chlopin, Zeit. anorg. Chem., 151, 253, 1926; L. Tschugaeff and N. K. Pschenicyn, Journ. Russ. Phys. Chem. Soc., 52, 47, 1920; L. N. Vauquelin, Ann. Chim.

Phys., (2), 5. 264, 1817; M. Vèzes, Bull. Soc. Chim., (3), 19. 879, 1898; Ann. Chim. Phys.,
(6), 29. 175, 1893; A. Werner, Ber., 40. 4111, 1897; Liebig's Ann., 386, 190, 1912; A. Werner and R. Feenstra, Ber., 39. 1538, 1906; A. Werner and A. Fröhlich, ib., 40. 2232, 1907; A. Werner and E. Kindscher, Liebig's Ann., 375. 83, 1910; A. Werner and A. Klein, Zeit. A. Werner and E. Kindscher, Liebig's Ann., 315. 83, 1910; A. Werner and A. Kiein, Zeit. anorg. Chem., 14. 38, 1893; A. Werner and A. Miolati, Zeit. phys. Chem., 12. 53, 1893; 14. 506, 1894; A. Werner and H. Müller, Zeit: anorg. Chem., 22. 109, 1900; L. Wöhler and P. Balz, ib., 149. 353, 1925; L. Wöhler and W. Frey, Zeit. Elektrochem., 14. 133, 1909; L. Wöhler and F. Martin, Ber., 42. 4101, 1909; H. Wolffram, Ueber aethylaminhaltige Platinbasen, Königsberg, 1900; E. V. Zappi, Anal. Fis. Quim. Argentina, 3. 186, 1915.

11 R. J. Kane, Phil. Trans., 182. 298, 1842; Phil. Mag., (3), 21. 50, 1842; A. Miolati and L. Bendii, Zeit pages (1908).

U. Pendini, Zeit. anorg. Chem., 33. 264, 1903.

¹² G. Gore, Journ. Chem. Soc., 22. 368, 1879; Chem. News, 23. 13, 1871; J. Petren, Om Platinaethylseleninföreningar, Lund, 1898.

18 P. C. Ray and S. C. S. Gupta, Zeit. anorg. Chem., 203. 401, 1932; 211. 62, 1933; P. C. Ray and N. B. Adhikari, Journ. Indian Chem. Soc., 9. 251, 1932.

¹⁴ E. Biilmann and A. Hoff, Rec. Trav. Chim. Pays-Bas, 36, 306, 1917; A. Cahours and H. Gal, Bull. Soc. Chim., (2), 2. 460, 1870; Compt. Rend., 71. 208, 1870; A. Cossa, Zeit. anorg. H. Gal, Butt. Soc. Chim., (2), 2. 400, 1870; Compt. Rena., 71. 208, 1870; A. Cossa, Zett. anorg. Chem., 2. 186, 1892; Atti Accad. Lincei, (4), 7. 3, 1891; Gazz. Chim. Ital., 22. ii, 620, 1892; H. Debus, Liebig's Ann., 72. 15, 1849; S. G. Hedin, Om pyridinens platinabaser, Lund, 50, 1886; Lunds Arsskr., (2), 22. 23, 1887; S. M. Jörgensen, Journ. prakt. Chem., (2), 33. 526, 1886; Zeit. anorg. Chem., 25. 367, 1900; R. Klement, ib., 174. 195, 1927; N. S. Kurnakoff, Journ. Russ. Phys. Chem. Soc., 25. 565, 1893; G. Magnus, Pogg. Ann., 14. 239, 1828; Quart. Journ. Science, 1. 420, 1829; F. Martin, Vier Oxydationsstufen des Platins, Karlsruhe, 1909; E. Müller and R. Bennewitz, Zeit. anorg. Chem., 179, 113, 1929; P. Pfeiffer and H. Hoyer,
1. 241, 1022. J. Bierge, Revents E. Muner and R. Bennewitz, Lett. anorg. Chem., 119, 113, 1929; P. Pfeller and H. Hoyer, ib., 211, 241, 1933; L. Pigeon, Recherches chimiques et culorimetriques sur quelques combinaisons haloides du platine, Paris, 1893; Ann. Chim. Phys., (7), 2, 452, 1894; G. Prätorius-Seidler, Journ. prakt. Chem., (2), 21, 142, 1880; P. C. Ray, Journ. Chem. Soc., 121, 1283, 1922; P. C. Ray and K. C. Bose-Ray, Journ. Indian Chem. Soc., 2, 178, 1925; P. C. Ray, K. C. Bose-Ray and N. B. Adhikari, ib., 4, 467, 1927; 9, 251, 1932; P. C. Ray, K. C. Bose-Ray and S. R. Chaudhury, ib., 5, 139, 1928; P. C. Ray, B. C. Guha and K. C. Bose-Ray, ib., 3, 358, 1926; P. C. Ray and S. C. S. Gupta, Zeit. anorg. Chem., 198, 53, 1931; 203, 401, 1932; 211, 62, 1933; J. E. Reynolds, Journ. Chem. Soc., 22, 1, 1869; S. Streicher, Ueber die Chloride von vier Valenzstufen des Leidiums Journ. Chem. Soc., 22. 1, 1869; S. Streicher, Ueber die Chloride von vier Valenzstufen des Iridiums und Platins, Darmstadt, 1913; L. Tschugaeff and J. Benewolensky, Zeit. anorg. Chem., 82. 421, 1913; L. Tschugaeff and I. Tscherniaeff, ib., 182. 159, 1929; L. Wöhler and F. Martin, Zeit. Elektrochem., 15. 791, 1909; Ber., 42. 3959, 4100, 1909; L. Wöhler and S. Streicher, ib., 46. 1592, 1913.

§ 22. Platinum Tetrachloride

L. Pigeon 1 observed that only a very small yield of anhydrous platinic chloride, or platinum tetrachloride, Pt(1/4, is obtained by passing chlorine over heated, finely-divided platinum. At 360° di- and tetra-chlorides are formed, but a considerable proportion of the metal is not attacked. C. Nogareda found that the tetrachloride is formed between 600° and 850°. A. Gutbier and F. Heinrich added that the yield is not much better if platinum be heated with arsenic trichloride in a sealed tube. L. Pigeon recommended the following process:

Finely-divided, spongy platinum mixed with somewhat less than its own weight of selenium is placed in a stout glass tube one-third filled with arsenic trichloride, and a current of chlorine is passed in, the tube being gradually heated until the liquid boils. The platinum is rapidly and completely dissolved, and the tube is then sealed and heated at 250° for several hours. After cooling, the tube contains a pale yellow liquid, orange-yellow crystals, and also, if the selenium is in excess, colourless crystals. The crystals are separated and heated in vacuo at 110°. They then consist of platinum tetrachloride and selenium tetrachloride, and are heated at 360° in a current of chlorine, when selenium chloride sublimes and anhydrous platinum tetrachloride remains as a brown, very hygroscopic powder. At 440°, it is converted into the dichloride. If platinum selenide is used instead of a mixture of platinum and selenium, no action takes place even at 300°; if selenium is omitted altogether, the platinum is not completely attacked, but the action becomes complete if selenium is added.

H. Precht removed nitric acid by repeatedly evaporating the soln. of platinum in aqua regia alternately with hydrochloric acid and water. H. B. North obtained the tetrachloride by heating platinum wire with sulphuryl chloride in a sealed tube for many days at 150°. The anhydrous salt can be obtained by dehydrating the hydrated tetrachloride, or hydrochloroplatinic acid. Thus, L. Pigeon heated the hydrate at 215° in vacuo in the presence of potassium hydroxide; A. Rosenheim and W. Löwenstamm heated hydrochloroplatinic acid in a current of dry chlorine at about 275°; and A. Gutbier and F. Heinrich, and L. von Müller added that this is by far the best mode of preparing the anhydrous salt, and L. Pigeon employed a modification of the process. L. Wöhler and F. Martin, and F. Martin passed a current of dry hydrogen chloride over dry hydrochloroplatinic acid at 275°, and W. Pullinger employed a similar process although A. Rosenheim and W. Löwenstamm, and A. Gutbier and F. Heinrich said that the product is a mixture of platinum di- and tetra-chlorides. L. Pigeon added the theoretical quantity of potassium iodide to a hot soln of hydrochloroplatinic acid, and then passed chlorine over the washed and dried platinum tetrajodide heated by an oil-bath.

The salt has been obtained in soln. J. W. Mallet noticed that platinum black exposed to the atmosphere on a filter whilst in contact with cone, hydrochloric acid forms a yellow soln, containing platinic chloride. L. Opificius observed that when aqua regia acts on a mixture of platinum and ammonium chloroplatinate, and the temp, is gradually raised to boiling, whilst the soln, is evaporated, the reaction can be symbolized: $2Pt+(NH_4)_2PtCl_6+10HNO_3+6HCl=3PtCl_4+12H_2O+6NO_2+6NO$. The hydrated platinic chloride forms a clear soln, with alcohol showing that the ammonium salt has been all destroyed—vide infra, hydrochloroplatinic acid. According to J. Brown, commercial platinic chloride contains some iron salt; and, according to W. Gintl and B. Reinitzer, some auric chloride, and, according to A. F. Hollemann, some sulphuric acid. The subject was discussed by K. W. G. Kastner.

A number of definite hydrates have been reported. F. Reiff studied the tendency of the hydrates to form aquo-salts. According to L. Pigeon, the monohydrate, PtCl4.H2O, is formed when the higher hydrates are exposed over potassium hydroxide in vacuo at 100°. A. Gutbier and F. Heinrich said that this hydrate is formed when the anhydrous salt is exposed to air for a short time. S. M. Jörgensen observed that the monohydrate decomposes with the expulsion of the last mol. of water by heat. A. Miolati prepared the tetrahydrate, PtCl4.4H2O, by adding uranyl acetate to an alcoholic soln. of the pentahydrate, filtering off the precipitate and washing it with alcohol and ether, and drying it over conc. sulphuric acid in vacuo: M. Blondel, by drying the octohydrate over sulphuric acid in vacuo; R. Engel, by dissolving in a soln. of hydrochloroplatinic acid the quantity of hydrated platinic oxide necessary for neutralization; and evaporating the filtered liquid. R. Engel said that the crystals of the tetrahydrate are not deliquescent. S. A. Norton added 2 mols, of a soln, of silver nitrate to a soln, of a mol, of hydrochloroplatinic acid, and evaporated the filtered liquid over sulphuric acid. R. Engel represented the reaction: H₂PtCl₆+2AgNO₃=2AgCl+2HNO₃+PtCl₄. analyses of the product by A. Gutbier and F. Heinrich, S. M. Jörgensen, L. Pigeon, and S. A. Norton agree with the analysis of the pentahydrate, PtCl₄.5H₂O. L. Pigeon evaporated a neutral soln. of platinic chloride in vacuo at not too high a temp., and obtained what he regarded as a heptahydrate, PtCl₄.7H₂O. C. H. D. Bödeker said that the ordinary hydrated platinic chloride is the octohydrate, PtCl₄.8H₂O, but, according to R. Engel, the partial analyses made by C. H. D. Bödeker may have applied to H₂PtCl₆.6H₂O instead of to PtCl₄.8H₂O. M. Blondel obtained the octohydrate by dissolving at ordinary temp. a mol. of platinic oxide in 2 mols. of hydrochloric acid, allowing the soln. to crystallize, and drying the product in air at 15°; he also said that this hydrate is formed when an aq. soln. of the pentahydrate is allowed to crystallize. The report of W. W. Mather, H. Lawrow, and M. Protopoff that the ordinary salt is the decahydrate, PtCl₄.10H₂O, is considered by R. Engel to have been based on incomplete analyses of H₂PtCl₆.6H₂O, which contain very nearly the proportion of platinum required for PtCl₄.10H₂O. The assumed decahydrate was said to be obtained by evaporating an aq. soln. of platinic chloride, and cooling the liquid.

The anhydrous chloride furnishes reddish-brown or brown, tabular crystals,

which L. Wöhler and F. Martin said are very hygroscopic, and which W. Pullinger said are not hygroscopic. A. Rosenheim and W. Löwenstamm, and A. Gutbier and F. Heinrich observed that the crystals gradually absorb moisture from the air to form PtCl₄.H₂O, then PtCl₄.5H₂O, and finally H₂PtOCl₄.4H₂O. R. Engel observed that the crystals of the tetrahydrate are not deliquescent; and S. A. Norton that the pentahydrate furnishes red, monoclinic crystals which effloresce in ordinary, dry air, but, according to S. M. Jörgensen, they deliquesce a little in moist air. S. A. Norton observed no deliquescence in moist air. H. St. C. Deville and J. S. Stas said that the aq. soln. is yellow or orange-red. C. H. D. Bödeker gave 2.431 for the sp. gr. of the octohydrate at 15°; and R. Klement gave 4.303 for the sp. gr. at 25°/4°, and 78.3 for the mol. vol. H. Precht found the sp. gr. of aq. soln., containing p per cent. of platinic chloride, containing 2.24 parts of HCl for 100 parts of PtCl₄ to be:

The mol. vols. are by I. Traube. G. T. Gerlach made some observations on the sp. gr. of soln.

According to L. Pigeon, the anhydrous chloride is stable up to 260°; but F. Martin, and L. Wöhler and F. Martin found that in an atm. of chlorine, the salt decomposes above 275°, and S. Streicher, and L. Wöhler and S. Streicher gave 370° for the temp. of formation and decomposition. L. Wöhler and F. Martin's observations on the range of stability of the platinum chlorides are summarized in Fig. 79. C. Nogareda studied the subject. A. Gutbier and F. Heinrich found

	PtCI4	Picis	PtCl ₂	Pt	
200	300°	400°	soo°	600°	700°

Fig. 79.—Range of Stability of the Platinum Chlorides.

that the salt is stable at 360°, but decomposes at about 400° into platinous chloride and chlorine. S. M. Jörgensen observed that the pentahydrate loses a mol. of water rapidly when confined over sulphuric acid, and another mol. is lost very slowly. Both S. M. Jörgensen, and S. A. Norton found that the salt loses 4 mols. of water at 100°, and S. M. Jörgensen added that the salt decomposes in the attempt to expel the last mol. of water; and, according to L. Pigeon, and S. A. Norton, platinous chloride is formed in the vicinity of 360°. C. Gordon stated that after 24 hrs.' heating of the hydrated salt to 150°, metallic platinum, and only a little platinous chloride, are formed. M. Blondel noticed that in vacuo over sulphuric acid, the octohydrate loses 4 mols. of water.

According to G. Oddo, the mol. wts. calculated from the f.p. of soln. of the anhydrous chloride in phosphoryl chloride for soln. of concentration 0.5410, 3.1874, and 3.7114, are, respectively, 171.23, 324.3, and 320.1. L. Pigeon gave for the heat of formation of the anhydrous tetrachloride, (Pt, 2Cl₂)=59.4 to 59.8 Cals.; and (2PtCl₃, Cl₂)=23.55 Cals.; for the heat of formation of the tetrahydrate from the anhydrous salt and liquid water, (PtCl₄, 4H₂O)=21.32 Cals.; and for the pentahydrate, 21.42 Cals. L. Pigeon also gave for the heat of soln. of the anhydrous salt, 19.58 Cals.; for that of the tetrahydrate, -1.74 Cals.; and for that of the pentahydrate, -1.84 Cals.

E. Doumer found the index of refraction of the soln, with respect to water to be 0.267. J. H. Gladstone gave 71.06 for the mol. refraction; 26.0 for the refraction equivalent; and 0.132 for the sp. refraction. Observations were also made by N. S. Kurnakoff. J. H. Gladstone and W. Hibbert found the mol. refraction of different soln, for the H_{α} -line and the D-line to be, respectively, 78.22 and 79.81 for 39.40 per cent. soln., 77.57 and 79.03 for 21.68 per cent. soln.; and 77.20 and 78.39 for 8.10 per cent. soln. A. Hantzsch, Y. Shibata and K. Harai, and R. Clark

and K. Meyer studied the absorption spectrum of aq. soln.; and A. Hébert and G. Reynaud, the absorption of X-rays. F. Kohlrausch observed that the hydrolysis of aq. soln. of platinic chloride proceeds in darkness, but more rapidly when exposed to sunlight. G. Foussereau observed that the conductivity of a soln. of concentration 1:1593 in darkness increases in 7 days from 0.038 to 0.051, and for a similar change in daylight, $5\frac{1}{2}$ hrs. were needed, and in sunlight, 1 hour. F. Kohlrausch found that red, yellow, blue, and white light are increasingly efficient in increasing the speed of hydrolysis. A. F. Gehlen observed that when an ethereal soln. of platinic chloride is exposed to light, it becomes pale yellow and deposits platinum. The aq. soln. is not precipitated in the dark, either by an excess of sodium carbonate or by calcium carbonate, but on exposure to light a compound of platinic oxide with soda or lime is deposited. J. Fiedler observed that in light, platinum is reduced from a mixture of platinic chloride and oxalic acid; soln. of platinic chloride, or of potassium or sodium chloroplatinates are also reduced on exposure to light.

 \dot{W} . Hampe observed that an aq. soln. of platinic chloride is a good electrical conductor, and there is a deposition of platinum; a soln. in dry ether is electrically conducting; and a soln. in absolute alcohol conducts well, depositing platinum sponge. J. Wagner observed that the electrical conductivity of aq. soln. increases on standing so that a soln. of a mol of the pentahydrate in v=200 litres of water was at first $\mu:=209\cdot5$, after standing an hour, 218·2, and after standing 15½ hrs., 263·3. G. Foussereau found that the conductivity of the aq. soln. is affected by light in that it accelerates the rate of change, but not the final state of equilibrium. Measurements were made by W. Dittenberger and R. Dietz, G. Foussereau, and F. Kohlrausch; A. Miolati observed:

$oldsymbol{v}$.		32	64	128	256	512	1024
Fresh		$102 \cdot 2$	132.4	168-1	207.7	246.0	276.5
$\mu_{\text{(Months)}}^{\text{(Fresh)}}$	old	205.0	222.5	242.0	$264 \cdot 4$	$285 \cdot 1$	206.2

F. Kohlrausch observed that the hydrolysis decreases rapidly with increasing concentration, and it augments two or three times the conductivity of soln. between 0·05N- and N-PtCl₄; he attributed the acidity and the high conductivity of soln. of platinic chloride to the formation of a complex acid, H_2 PtCl₄(OH)₂; and this was confirmed by A. Miolati; H. T. S. Britton and E. N. Dodd represented the reaction by $PtCl_4 + nH_2O \rightleftharpoons nHCl + Pt(OH)_nCl_{4-n}\rightleftharpoons (n-m)HCl + mH^* + Pt(OH)_nCl'_{4-n+m}$. O. Stelling studied the electrolytic reduction of the acid in hydrochloric acid soln. N. Thon studied the electrolysis with a rarefied gas electrode. W. Hampe noted the conductivity of the aq. soln., and that platinum is electrolytically deposited; and that alcoholic soln. are good conductors, but ethereal soln. are bad ones. D. M. Bose and H. G. Bhar, and J. A. Christiansen and R. W. Asmussen studied the magnetic properties.

S. M. Jörgensen gave for the constitution of the pentahydrate:

$$Cl_2 = Pt < Cl = Cl - H \cdot 4H_2O$$

G. Wyrouboff said Pt(OH)₂Cl₂.2HCl.2H₂O; and L. Pigeon added that all 5 mols. of water are water of crystallization because they can be removed by gradually heating the salt to 215° without interfering with the PtCl₄-group. Chlorine is first evolved at about 360°. S. M. Jörgensen, and F. Kohlrausch, however, showed that the fifth molecule of the pentahydrate cannot be removed without decomposing the salt. The constitution was discussed by A. Hantzsch, and A. Müller.

According to A. Miolati, the conductivity of aq. soln. of platinic chloride is characteristic of that for a weak acid, and is similar to that of sclenious acid. W. Hittorf and H. Salkowsky, and W. Dittenberger and R. Dietz observed that in the electrolysis of aq. soln., platinum goes to the anode. This is taken to indicate that an oxy-acid, H₂PtOCl₄, is formed. W. Pullinger found that an aq. soln. of platinic

chloride has a marked acidic reaction towards litmus, and rapidly decomposes a soln, of sodium carbonate with the evolution of carbon dioxide. F. Kohlrausch observed that, owing to hydrolysis, the conductivity of the aq. soln. changes rapidly as time goes on, and, when the limit of the hydrolysis in dil. soln. is attained, all the chlorine is present as hydrogen chloride; in more conc. soln., the hydrolysis does not go so far. The observed data agree with the assumption that H2PtOCl4 is a moderately-ionized, monobasic acid. The hydrolysis is accompanied by a change in colour from an almost greenish-yellow to a bright orange-red, and in more dil. soln., there is a kind of fluorescence, which is attributed to the separation of finely-divided platinic hydroxide. A. Miolati observed that when an aq. soln. of platinic chloride is titrated with sodium hydroxide using phenolphthalein as indicator, neutralization occurs when 2 eq. of the alkali have been added. The sp. conductivities of soln, to which successive quantities of alkali have been added, showed that an acid and a normal salt were present. The presence of a dibasic acid in aq. soln. of platinic chloride is also shown when a standard soln. of ammonia is employed in the titration. Salts corresponding with the acid $H_2[Pt(OH)_2Cl_4]$, or H₂[PtOCl₄], have been prepared. L. Reed observed that when a drop of an aq. conc. soln. of platinic chloride is placed on filter-paper, the double ring which is formed corresponds with the presence of two different hydrates with different rates of diffusion. A. Miolati suggested that the increase in conductivity with the age of the soln. is due to a reaction symbolized: $2H_2|Pt(OH)_2Cl_4| \rightleftharpoons H_2PtCl_6 + Pt(OH)_4Cl_2$ +H₂O; and J. Wagner explained the increase in the conductivity with the age of the soln, is due to the reactions symbolized: H,Pt(OH),Cl₄ ⇒H,PtOCl₄+H₂O; followed by H₂PtOCl₄=PtCl₄+H₂O; and by PtCl₄+H₂O=2HCl+PtOCl₂. W. Hittorf and H. Salkowsky said that the platinic chloride probably passes into soln, as the monohydrate, and that this added mol. of water causes the ready scission of the molecule. It is assumed that platinic chloride is intermediate between ordinary metallic chlorides, and those chlorides which are decomposed by water. W. D. Treadwell and M. Zürcher studied the electrometric titration of the salt.

F. C. Phillips observed that hydrogen reduces the solid, hydrated platinic chloride below 80° with the evolution of water and hydrogen chloride; and that an aq. soln, of the chloride is slowly but completely reduced by hydrogen in the cold, or at 100°. V. V. Ipatéeff and co-workers found that at 20° to 30°, platinum is precipitated by hydrogen under 25 to 50 atm. press. W. Pullinger, A. Rosenheim and W. Löwenstamm, A. Gutbier and F. Heinrich, and L. Pigeon noted that anhydrous platinic chloride is freely soluble in water, and that there remains a pale, orange-red residue which is thought to be one of the lower chlorides; A. Gutbier and F. Heinrich, and L. Pigeon found that the hydrated forms also dissolve in water—the monohydrate with the evolution of heat, and the tetraand penta-hydrates with the absorption of heat. For the hydrolysis of the salt in aq. soln., vide supra. According to R. Engel, dry hydrogen chloride liquefies the solid tetrahydrate at 50°, forming hydrochloroplatinic acid; and S. M. Jörgensen also observed that hydrochloric acid immediately converts the pentahydrate into hydrochloroplatinic acid. A. Ditte observed that hydrated platinic chloride dissolves more readily in hydrochloric acid, the more concentrated the acid. D. Helbig and G. Fausti showed that hydrated platinic chloride is insoluble in liquid hydrogen chloride. F. Gramp showed that iodine reduces an aq. soln. of platinic chloride to platinous chloride. H. St. C. Deville and J. S. Stas, H. Rose, etc., observed that potassium chloride, or ammonium chloride, precipitates a yellow or orange, crystalline or amorphous chloroplatinate, sparingly soluble in water and acids, insoluble in alcohol. C. Claus said that potassium iodide colours a soln. of a platinic salt a deep purple-red, and a precipitate of platinic iodide then appears. The precipitation is hastened by heating the liquid. W. H. Seamon observed that potassium chloride added to a soln. containing a little iodine produces a red coloration owing to the formation of platinic iodide; if much iodine is present, a precipitate is formed. H. Peterson observed that the dark reddish-

brown coloration, produced by adding potassium chloroplatinate to a cold, conc. soln. of potassium iodide, becomes lemon-yellow when treated with sodium thiosulphate: $PtCl_4+4KI = Ptl_2+I_2+4KCl_1$, and $I_2+2Na_2S_2O_3=2NaI+Na_2S_4O_6$, and the reactions are available for the volumetric determination of platinum. According to C. Claus, a soln. of platinic chloride is slowly coloured brownish-red by hydrogen sulphide, and finally, a dark brown precipitate of platinic sulphide is formed; the precipitation is more rapid in hot soln. The same precipitate is formed by ammonium sulphide, and it is soluble in a large excess of this reagent. C. T. Barfoed added that the precipitate dissolves in warm, dil. nitric acid, but not in hydrochloric acid; N. W. Fischer said that the precipitate is soluble in hydrochloric acid, and H. Reinsch observed that a soln, of 1 part of platinic chloride in 100 parts of water and mixed with 25 parts of hydrochloric acid does not give a precipitate with hydrogen sulphide. This statement suggests that there is a reversible reaction: PtCl₄+2H₂S=PtS₂+4HCl-10. 57, 9. U. Antony and A. Lucchesi found that all the metal is precipitated as platinic sulphide from a 3 per cent. aq. soln. of platinic chloride at 90°, and that for analytical purposes, the precipitate should be collected and washed in an atm. of hydrogen sulphide, and dried in an atm. of nitrogen, at 70° to 80°. At ordinary temp., 15° to 18°, a mixed yellow and brown precipitate is formed in soln, of hydrochloroplatinic acid, and the supernatant liquid remains red; the mixed precipitate continually loses hydrogen sulphide on heating, and ultimately yields platinic sulphide at 200°. The brown and yellow precipitates are possibly platinic hydrosulphides. The reddish mother-liquor contains colloidal platinic sulphide, which is slowly deposited even at 0°. A 0.5 per cent. aq. soln. of hydrochloroplatinic acid gives no precipitate at 15° to 18° with hydrogen sulphide, but only a red-brown coloration; no precipitate is obtained on boiling, but on adding hydrochloric acid, the soln, deposits platinic sulphide, and becomes decolorized. The precipitation of platinic sulphide from the more conc. soln. at 15° to 18° thus seems due to the action of the liberated hydrochloric acid. H. Schiff found that potassium polysulphide-or liver of sulphur-gives a precipitate which dissolves when boiled with an excess of the reagent. L. Crosnier studied the action of metal sulphides on platinic chloride: and A. Levallois found that when the hydrated chloride is heated with lead sulphide, it is decolorized, and furnishes yellow anastosmosed needles. O. Brunck found that sodium hyposulphite colours a soln, of platinic chloride dark red, and hydrochloroplatinous acid is formed, and some sulphur is precipitated. A soln, containing 0.1 grm, of platinum per litre is intensely coloured at once by the hyposulphite; but a soln, with 0.01 grm, per litre is coloured when warmed and viewed in a layer 10 cms. thick. G. Geitner found that sulphurous acid decolorizes a soln. of platinic chloride, and if the decolorized soln. be heated in a sealed tube at 200°, platinic sulphide is formed; at ordinary temp., K. Birnbaum found that platinous chloride is formed and that the chlorine of that compound can be replaced by the radicles HSO₃, NH₄SO'₃, etc. According to P. Berthier, a soln. of platinic chloride is very rapidly decolorized by soln. of potassium or ammonium sulphite, particularly when heated with an excess of the sulphite, a white precipitate is formed which dissolves in an excess of water particularly when The precipitate formed in cold soln, is probably the chloroplatinite. J. von Liebig observed that when a soln. of hydrochloroplatinic acid is decolorized by sulphurous acid, and treated with ammonia, platinous tetramminochloroplatinite is formed—and similarly with ammonium or potassium sulphite. J. B. A. Dumas said that the anhydrous salt is insoluble in conc. sulphuric acid; but, according to D. Vitali, conc. sulphuric acid acts on hydrated platinic chloride with the evolution of chlorine, and the formation of a yellow precipitate. H. B. North found that the pentahydrate is sparingly soluble in sulphuryl chloride.

A. Smits observed that magnesium nitride reduces platinic chloride to the metal. G. Gore observed that platinic chloride is slightly soluble in liquid ammonia, and E. Divers that it dissolves and reacts with an ammonia soln. of ammonium

W. Peters showed that anhydrous platinic chloride takes up 6 mols, of dry ammonia, and that the resulting hexammine in vacuo loses a mol. of ammonia. R. Silberberger found that the presence of platinum salts in dil. soln. does not affect the precipitation of barium sulphate by the addition of barium chloride; in conc. soln, some platinic salt may be adsorbed by the precipitated barium sulphate. H. Vohl, and W. Knop observed that in acidic soln, platinum salts give a precipitate of platinous sulphide when they are treated with a soln, of sodium thiosulphate particularly with warm soln.; and P. Schottländer, and P. Jochum, that in ammoniacal soln., a complex platinous alkali thiosulphate is formed. M. C. Lea observed that with an ammoniacal soln, of sodium thiosulphate, ammonium chloroplatinate is first precipitated, and then, with heating the soln, becomes yellow, then colourless, and finally wine-red. C. Langlois observed that trithionic acid gives a black precipitate; M. C. Lea, that tetrathionic acid forms a wine-red soln.; F. Raschig, that sulphaminic acid produces no change in a soln. of hydrochloroplatinic acid; and J. A. Palmer, that ammonium thiocarbonate in ammoniacal soln. along with ammonium chloride, gives a precipitate soluble in excess. H. Rose, M. Delépine, and G. and W. van Dam noted that with ammonia a precipitate of ammonium chloroplatinate is formed in soln. of platinic chloride, and that the precipitate is soluble in excess when heated; the precipitate is attacked by chlorine; $3Cl_2+(NH_4)_2PtCl_6=PtCl_4+8HCl+N_2$. H. St. C. Deville and J. S. Stas, S. M. Jörgensen, and S. A. Norton observed that ammonium chloride slowly forms a precipitate with the aq. soln. at ordinary temp, or when heated.

T. Curtius and H. Schulz represented the reaction with hydrazine: 2PtCl. +N₂H₄.H₂O=2PtCl₂+4HCl+N₂+H₂O. E. Knoevenagel and E. Ebler found that hydrazine gives a precipitate in an ammoniacal or feebly acidic soin, and hydroxylamine gives an incomplete precipitation in ammoniacal soln. N. Tarugi studied the reaction with hydroxylamine; and F. Reitzenstein observed that hydroxylamine gives no precipitate with a cyanide soln. H. Rose found that potassium nitrite precipitates potassium chloroplatinate from soln. of platinic chloride, and that boiling the soln. produces no further change. H. Precht, H. D. Rogers and M. H. Boyé observed that a soln. of platinum in aqua regia containing an excess of nitric acid furnishes platinic tetrachlorobisdinitrosylchloride, [Pt(NOCl)2Cl4]--R. Weber recommended furning nitric acid, and gave the formula PtCl4.N2O3Cl2.H2O. S. M. Jörgensen obtained it by passing the vapours from aqua regia into a conc. soln. of hydrochloroplatinic acid, and drying the crystals at 100°; and J. J. Sudborough, by the action of nitrosyl chloride on platinum at 100°. S. M. Jörgensen said that the yellowish-brown crystalline powder contains cubic forms. No water is lost at 100°, but stronger heating decomposes the salt leaving platinum behind. The crystals are very deliquescent, and freely soluble in water. The salt decomposes in aq. soln. E. Baudrimont prepared a complex with phosphorus pentachloride, namely, platinic tetrachlorodiphosphorichloride, [Pt(PCl₅)₂Cl₄]. R. Böttger observed that phosphorus, at ordinary temp., does not decompose soln. of platinum salts, but A. C. Christomanos observed that a soln. of phosphorus in ether or benzene gives a precipitate with soln. of platinic chloride. R. Böttger observed that phosphine does not give a precipitate with soln. of platinic salt; on the contrary, P. Kulisch found that with platinic chloride soln., phosphine gives a lemon-yellow precipitate which soon becomes darker, and finally, dark brown. R. Engel said that some platinous hypophosphite is formed. G. Oddo found that anhydrous platinic chloride is soluble in phosphoryl chloride. L. Vanino, A. Gutbier, and A. Gutbier and G. Hofmeier observed that hypophosphorus acid does not precipitate platinum. M. C. Lea, and A. Atterberg said that with hypophosphites platinic chloride is reduced to platinous chloride and, added A. Sieverts and M. Major, the metal is not formed in hot or cold or in acidified soln. but with very dil. soln. of potassium chloroplatinite, and a large excess (1:120) of a warm soln. of sodium hypophosphite. A. Sieverts and E. Peters observed that a yellowish-brown colloidal soln. of platinum is formed. A. Rosen-

heim and W. Levy observed that platinic chloride acts only on the esters of quinquevalent phosphorus and not on those of tervalent phosphorus; with ethyl phosphate, it interacts to form triethyl phosphate platinochloride, whilst it does not act on ethyl phosphite. Platinous chloride, on the other hand, reacts with esters of phosphorous acid, but not with esters of phosphoric acid. C. Claus, and H. Rose found that sodium phosphate does not give a precipitate with cold or boiling soln, of platinic chloride. B. E. Dixon studied the action of alkali phosphates on hydrochloroplatinic acid in ammoniacal soln. L. Kahlenberg and J. V. Steinle represented the reaction with arsenic by $3PtCl_4+4As+6H_2O$ = 3Pt+2As₂O₃+12H(1. J. F. Simon, and R. Bartels found that arsine gives a black precipitate with soln. of platinic chloride. C. Reichard observed that potassium hydroarsenite precipitates platinic arsenite from soln. of platinic salts; and T. Thomson, that sodium arsenate gives a light brown precipitate soluble in nitric acid. J. F. Simon, and R. Bartels observed that stibine gives a black precipitate in soln. of platinic chloride, and that the precipitate contains antimony trioxide and platinum, and possibly a platinum and antimony compound is formed. M. C. Harding found that a dil. soln. of platinic chloride, and an excess of antimonious acid, gives a dark brown precipitate containing platinum and antimony trioxide.

According to E. Heymann, when a soln. of platinic chloride is treated with carbon at room temp., hydrolytic absorption occurs; and a reduction to metallic platinum occurs at 100°. E. Heymann found that the platinum compound which is adsorbed by carbon from aq. soln. of platinic chloride, at ordinary temp., is probably a hydrolysis product, say, Pt(OH)₄, at 100°, platinum is adsorbed. According to G. Gore, coal gas, bubbled through a soln. of platinic chloride, decomposes only a very small proportion during 10 weeks; the products of combustion also produce only a slight decomposition. P. Köthner, and H. Erdmann and P. Köthner found that ethylene, and isobutylene have no action in the cold, whilst propylene, trimethylene, and acctylene have no action in the cold or at 100°. In the replacement of chlorine atoms by hydrocarbon radicles, compounds like platinic trimethyl-chloride, (CH₃)₃PtCl, are formed. According to E. G. Cox and C. Webster, this compound has a body-centred cubic lattice with a=10.52 A., and 8 mols. per unit cell.

F. C. Phillips observed that **carbon monoxide** acts on cold and boiling soln, of platinic chloride forming carbon dioxide; no precipitate is formed, but the soln, is reduced to platinous chloride, and if the action is continued for days or weeks, the metal is precipitated. I. Sano obtained a colloidal soln, by the action of carbon monoxide. G. Gore also obtained a yellow precipitate on passing a mixture of carbon monoxide and dioxide through a soln, of platinic chloride for 2 or 3 days. At 140°, W. Manchot and E. Enk said that platinous dicarbonyl dichloride is formed (q,v.).

J. Haidlen and R. Fresenius said that potassium cyanide with soln. of platinic chloride give a precipitate of platinic cyanide, soluble in an excess assisted by heat; the precipitate is decomposed by acids. C. Claus, and H. Rose found that unlike the palladium salt, platinic chloride does not react with mercuric cyanide. H. Rose observed that potassium ferrocyanide gives a precipitate of potassium chloroplatinate, and C. Claus, that potassium ferrocyanide gives a dark green liquid, and potassium ferricyanide produces a dirty brownish-green colour. C. Luckow said that no precipitation occurs with the ferrocyanide or ferricyanide and 0.05N-PtCl₄; and R. Meldrum observed no reaction with the ferricyanide in cold or hot, acidic or alkaline soln; but the ferrocyanide produces a precipitate in I per cent. soln. and the precipitate becomes dark green when boiled, and it is blackened by ammonia; a 0.2 per cent. soln., when boiled with a few drops of the ferrocyanide, gives a dark green, almost black, coloration. When boiled with an excess of the ferrocyanide, a green precipitate is formed which becomes olive-green and finally yellow when it is treated with ammonia; the addition of more ferrocyanide produces a yellow soln. The green precipitate dissolves in hydrochloric

acid to give an indigo-blue soln., and this reaction enables 1 part of platinum in 1000 parts of soln. to be detected. D. Vitali noted that in ammoniacal soln. of platinum chloride potassium ferrocyanide and ferricyanide give yellow precipitates of potassium chloroplatinate, with a red soln. in the former case, and a green soln. in the latter case. E. H. Miller and J. A. Mathews, and F. van Dyke Cruser and E. H. Miller observed that **potassium cobalticyanide** gives no precipitate with 10 per cent. soln. of hydrochloroplatinic acid or sodium chloroplatinate. C. Claus, and H. Rose said that **potassium thiocyanate** darkens a soln. of platinic chloride owing to the formation of a very soluble thiocyanate. The reaction was studied by G. B. Buckton. F. W. Clarke and M. E. Owens found that an alcoholic soln. of platinic chloride gives a pale buff precipitate with **potassium cyanate**.

A. E. Dunstan, and A. E. Dunstan and L. Cleaverley observed that benzoflavol forms a complex salt: (C21H17O2N)4H2PtCl6; G.T. Morgan and F.M.G. Micklethwait obtained a complex with cumarin, (C₃₆H₂₄O₈)H₂PtCl₆.4H₂O; A. von Baeyer and V. Villiger, with cinnamaldehyde, and benzylideneacetone; and A. Rosenheim and co-workers, with ethylacetoacetate, and acetylacetone. According to F. C. Phillips, carbonyl sulphide gives a black coloration with platinic chloride; methyl hydrosulphide, a yellowish-brown precipitate, and methyl sulphide, a pale yellow precipitate, which, according to P. C. Ray and P. C. Mukherjee, is PtCl₃.2(CH₃)₂S. M. Delépine observed that a precipitate is produced by soln. of thiocarbamates. A. W. Hofmann studied the action of thioacetamide, and A. Behal and E. Choay, the action of **chloralimide**. C. Vincent observed that **dimethylamine** gives an orangevellow precipitate with conc. soln. of platinic chloride; trimethylamine, a yellow precipitate; and dipropylamine, no precipitate. G. Martina observed no precipitation with **phenylhydrazine.** W. Hampe found that the salt is slightly soluble in dry ether, and also in absolute alcohol. A. Rosenheim and W. Löwenstamm, W. Eidmann, and W. C. Zeise found that platinic chloride is soluble in alcohol. P. Schützenberger evaporated a soln. of platinic chloride in absolute alcohol at ordinary temp. in vacuo over sulphuric acid and obtained platinic tetrachlorobisethylalcoholate, [Pt(C₂H₅OH)₂Cl₄]. E. Biilmann observed that allyl alcohol does not reduce boiling soln. of platinic chloride. W. C. Zeise observed that platinic chloride is soluble in ether, but A. Rosenheim and W. Löwenstamm, and R. Willstätter said that it is insoluble in ether. F. Mylius and C. Hüttner observed that when ether is shaken up with an aq. soln., only a trace of platinic chloride dissolves in the ethereal layer. W. C. Zeise, W. Eidmann, A. Rosenheim and co-workers, and A. Naumann found that anhydrous platinic chloride is soluble in acetone; A. Rosenheim and W. Löwenstamm, soluble in acetylacetone; and A. Naumann, slightly soluble in **methyl acetate.** C. Claus, and H. Rose observed no reaction between lead acetate and soln. of platinic chloride; H. Rose, that oxalic acid gives no precipitate; C. Claus, that tannin acts neither in cold nor in hot soln.; K. A. Hofmann and D. Strom, that tetraformaltrisazine gives an intense yellow coloration; A. C. Neish, that m-nitrobenzoic acid gives no precipitation; and M. Wunder and V. Thuringer, that dimethylglyoxime is not a suitable precipitant for quantitative work. E. Beckmann and W. Gabel reported the hydrated chloride to be soluble in quinoline. W. D. Bancroft found that platinic chloride gives a precipitate with gelatin, but not with agar-agar: K. Kruis, that aniline black is fixed on fibres by platinic chloride; J. Murray, that blue vegetable colours are turned green by platinic chloride; and V. Martinand, that a soln. of platinic chloride acts catalytically like an oxydase. E. Wedekind observed that a colloidal soln. of zirconium silicide gradually produces a precipitate with soln. of platinic chloride; and C. Claus, that borax does not give a precipitate in cold or in boiling soln. E. Müller and W. Stein titrated the soln. electrometrically with titanous chloride.

F. Reitzenstein observed that **sodium amalgam** does not react with cyanide soln. of platinum salts, and similarly also with **zinc** dust. O. Loew found that hydrochloroplatinic acid and **zinc amalgam** form mercury hydride. G. and W. van

Dam observed that a drop of mercury causes the evolution of ammonia from soln. of platinic alkylaminochlorides. A. Merget studied the action of mercury vapour. F. Mylius and O. Fromm found that tin gave a black or yellowish-brown precipitate; and lead precipitates a platinum-lead alloy. H. Rose observed that soln. of platinic chloride with potassium hydroxide give a precipitate of potassium chloroplatinate, which dissolves if a large excess of alkali is present, and the mixture is warmed. F. Reitzenstein observed that sodium hydroxide gives no precipitate in cyanide soln. of platinum salts. D. Vitali observed that silver oxide decomposes soln. of platinic chloride completely. According to H. Rose, potassium carbonate or hydrocarbonate gives a precipitate with soln. of platinic chloride, and the precipitate is insoluble in an excess; sodium carbonate does not give a precipitate at ordinary temp., but with a prolonged boiling sodium platinate is formed; calcium hydroxide forms a yellowish-white precipitate, especially in sunlight, and barium carbonate gives no precipitate in the cold or with boiling soln. J. F. W. Herschel studied the action of lime-water on the soln. exposed to light. W. Kwasnik found that barium dioxide reduces a mixture of platinic chloride and silver chloroplatinate to metal, but not so with hydrochloroplatinic acid. K. Birnbaum noted that silver chloride is readily dissolved in conc. soln. of platinic chloride, as nearly neutral as possible, but is recovered unchanged on evaporating the soln. C. Claus, and A. Commaille observed that silver nitrate gives a yellow precipitate of silver chloroplatinite. F. W. Clarke found that with silver fluoride there is a reaction: PtCl₄+4AgF+2H₂O=PtO₂+4AgCl+4HF, and with silver nitrate some nitric acid is formed. H. Gerresheim observed that with a soln of Millon's base, HgOH.NH.HgCl, in hydrochloric acid, ammonium chloroplatinate is precipitated. C. Claus, and A. Commaille observed a reddish precipitate with mercurous nitrate soln. C. T. Barfoed observed that stannous chloride colours soln. of platinic salts a deep reddish-brown, and after a time the soln, is decolorized as a gelatinous precipitate is formed. R. Ruer observed that with conc. soln. the precipitate is brown, and with very dil. soln., it is yellow; and G. A. Hulett obtained yellow colorations with very dil. soln. L. Wöhler and A. Spengel found that the red colour is developed by the presence of ether, or better still, of ethyl acetate: it is not conditioned by the formation of platinous chloride, but rather by the formation of colloidal platinum—vide purple of Cassius—3. 23, 11; 7. 46, 14. E. Müller and W. Stein titrated the soln. electrometrically with stannous chloride. M. Frenkel said that no precipitate is produced by potassium chromate in soln, of platinic chloride. O. W. Gibbs obtained a series of complex platinic molybdates by the action of platinic chloride on soln. of ammonium molybdate; and complex platinic tungstates, when sodium tungstate is used. F. W. O. de Coninck observed that dil. soln. of uranous sulphate and manganous sulphate do not act on soln. of chloroplatinates in darkness or in diffuse daylight; in sunlight, the uranous sulphate is oxidized to uranic sulphate, and a basic sulphate whilst platinous chloride is formed. A mixture of manganous chloride and platinic chloride gave no precipitate after standing 6 months. E. H. Miller found platinic chloride useful as an external indicator in the titration of manganese or zinc salts with potassium ferrocyanide; it furnishes an emerald-green coloration. J. Wagner observed that the reaction between permanganate and an oxalate is accelerated by platinic chloride. J. Murray observed the decomposition of platinic chloride by magnetized iron. H. Rose said that ferrous sulphate does not act on soln. of platinic chloride or sulphate even after a long time, but some reduction occurs with the nitrate. R. Chenevix, and H. Rose found that a mixture of platinic and mercuric chlorides is slowly reduced by ferrous sulphate, but rapidly if some platinous chloride is also present. R. W. Mahon employed a soln. of platinic chloride containing 0.05 grm. of platinum per litre and 34 grms. of mercuric chloride as indicator in the titration of iron by stannous chloride. The latter in the presence of this soln. reduces the iron to the ferrous state, and then precipitates a dark cloud of mercurous chloride mixed with platinum.

W. J. Pope and S. J. Peachey prepared trimethyl platinic chloride, (CH₃)₃PtCl, by the action of hydrochloric acid on the hydroxide; or by treating the chloride

or sulphate with potassium chloride.

L. Pigeon reported that a mass of reddish-brown crystals of hydropentachloroplatinic acid, IICl.PtCl₄.2H₂O, or HPtCl₅.2H₂O, is formed when the hexahydrate of hydrohexachloroplatinic acid is heated in vacuo in the presence of potassium hydroxide for 2 or 3 days on a water-bath. The heat of formation (PtCl₄, HCl.2H₂O) = 10.46 Cals. A. Miolati and I. Bellucci considered *hat the alleged hydropentachloroplatinic acid is really hydroxypentachloroplatinic acid, H₂Pt(OH)Cl₅--vide infra.

According to L. Pigeon, if cone. sulphuric acid be added to a cold, cone., hydrochloric acid soln. of platime chloride, yellow, crystalline hydrohexachloroplatinic acid, or simply hydrochloroplatinic acid, H₂PtCl₆.4H₂O, is precipitated. The tetrahydrate can be filtered off and dried on porcelain tiles. The ordinary form of this acid is the hexahydrate, H₂PtCl₆.6H₂O. R. Engel showed that the decahydrated platinic chloride of C. H. D. Bödeker, H. Lawrow, and M. Protopoff is probably the hexahydrated acid—vide supra. S. M. Jörgensen, R. Engel, and L. Pigeon made some observations on the constitution. L. F. Nilson represented it by (H.Cl.; Cl)₂=Pt=Cl₂.6H₂O; R. Engel, (PtCl₄.2H₂O)2(HCl.2H₂O); and L. Pigeon, PtCl₄(HCl.2H₂O)₂.2H₂O. J. J. Berzelius showed that the aq. soln. reacts acidic to litmus. J. Thomsen showed that the acid is dibasic, and forms double salts with the bases. The heats of neutralization of an eq. of the acid with 2, 4, and 6 eq. of NaOH—namely, 27·216, 27·24O, and 27·336 Cals.—are characteristic of strong acids. P. Klason, and P. Walden also showed that the properties of the soln. agree with the dibasicity of the acid. L. Spiegel discussed the electronic structure.

An aq. soln. of hydrochloroplatinic acid was prepared by N. A. E. Millon, by dissolving spongy platinum in conc. aqua regia, the excess of nitric acid can be removed by successive additions of hydrochloric acid and evaporations. The presence of a trace of nitrous acid is necessary for the dissolution of the platinum. A mixture of nitric acid, free from nitrous acid, and potassium chlorate has no action on spongy platinum even at 125°; nor is spongy platinum attacked by a cold mixture of sufficiently-diluted hydrochloric acid and purified nitric acid, but the attack proceeds slowly on adding potassium nitrite. H. D. Rogers and M. H. Boyé said that a platinic nitrosylchloride is formed if a very large excess of aqua regia is employed, and R. Weber, if fuming nitric acid be used. The excess of nitric acid was removed by R. Weber, F. Stolba, etc., by repeated evaporation with hydrochloric acid.

K. Scubert recommended cleaning platinum scraps with boiling hydrochloric acid, and then dissolving them in aqua regia contained in a large flask, and kept warm for about 3 days. The soln, was then evaporated to free it from the excess of nitric acid; soda-lye added until the soln, reacts alkaline; and the liquid boiled for a long time to decompose the hypochlorites; some alcohol added, then hydrochloric acid, and the mixture filtered to remove the olive-green precipitate which was mainly iridium chloride. The platinum was precipitated as ammonium chloroplatinate, ignited, and the residue boiled several times with dil, hydrochloric acid, then washed by decantation with hot water, and the residue digested with aqua regia, diluted with 2 vols, of water, and kept warm on a water-bath for 12 hrs. The soln, was evaporated in a slow current of chlorine, with frequent additions of hydrochloric acid to drive off the nitric acid.

L. Pigeon, and W. Dittmar and J. McArthur dissolved the spongy platinum in hydrochloric acid through which a current of chlorine was passed for 12 hrs. The excess of chlorine was removed from the clear liquid by evaporation. E. V. Zappi dissolved platinum in a mixture of conc. hydrochloric and chloric acid. P. Rudnick, and P. Rudnick and R. D. Cooke oxidized with conc. hydrogen dioxide. H. C. P. Weber obtained a soln. of hydrochloroplatinic acid by dissolving spongy or scrap platinum in aqua regia, removing the excess of acid by neutralization or evaporation, and reducing the soln. with alkali formate or zinc. The precipitated

platinum is warmed with a little dil. hydrochloric acid in order to remove iron, and is then transferred to the electrolytic apparatus, where it is washed and afterwards covered with conc. hydrochloric acid. The electrodes are composed of sheet platinum. The precipitated platinum thus forms the anode of an electrolytic cell. On concentrating the soln, of hydrochloroplatinic acid resulting from the electrolysis, a small quantity of chlorine is introduced in order to ensure the absence of platinous compounds. H. Precht described the preparation of hydrochloroplatinic acid from platinum residues. L. N. Vauquelin passed chlorine into warm water containing ammonium chloroplatinate in suspension until all the ammonia is decomposed—there is here a possibility of forming explosive nitrogen chloride. L. Pigeon employed this process.

On slowly evaporating the soln, of hydrochloroplatinic acid prepared by one of these processes--say over calcium oxide and cone, sulphuric acid as recommended by R. Weber--brownish-red, deliquescent crystals of the hexahydrate are formed. H. W. Hake said that the maximum quantity of water absorbed during a few days' exposure to atmospheric air amounts to 47.82 per cent.—i.e. H₂PtCl₆.21H₂O. R. Engel said that the salt is relatively stable. When heated, it loses hydrogen chloride and water, and then some chlorine is given off and platinous chloride is formed. H. Töpsöe observed that some hydrogen chloride, and chlorine are lost at 110°, and, added J. J. Berzelius, at a higher temp., platinous chloride and platinum are formed. According to L. Pigeon, no platinous chloride is formed when the hydrochloroplatinic acid is heated 5 hrs. in vacuo at 170°; at 280°, a small proportion of platinous chloride is formed, but more is produced at 358°. When heated in vacuo in the presence of potassium hydroxide, the first product of the action is HPtCl₅.2H₂O, and afterwards platinous chloride appears. The heat of formation $(2HCl.6H_2O, PtCl_4)=20.46$ Cals., $(HCl.4H_2O, HPtCl_5.2H_2O)$ =10.00 Cals., and (PtCl₄, 2HCl)= 24.8 Cals.; the heat of soln, is 4.34 Cals. J. Thomsen gave (Pt, Cl₄, 2HCl, Aq.)=84.62 Cals.; (Pt, O₂, 6HCl, Aq.)=64.06 Cals. Y. Shibata and K. Harai, and R. Samuel and A. R. Despande studied the absorption spectrum.

K. Seubert said that the aq. soln. of the purified salt is golden-yellow, and J. J. Berzelius added that if some iridium salt is present, the colour may be reddish-yellow, or brown. According to A. Hantzsch, eq. soln. of hydrochloroplatinic acid and of sodium chloroplatinate, containing the complex PtCl₆"-ion, in the same solvent, are optically identical—that is, they show the same absorption spectrum, and the molecular absorption is independent of the degree of ionization. The light absorption of the acid and of the salt is also unaffected by changes of temperature. The solvent does not appear to exercise any influence on the absorption in the blue and violet parts of the spectrum, but does so to a very slight extent in the green and ultra-violet. The temp. coeff. of the absorption spectrum is very small. F. Kohlrausch observed that the behaviour of soln. of hydrochloroplatinic acid in light resembles that of soln. of platinic chloride—vide supra.

The electrical conductivity of soln. of 0.1N- H_2 PtCl₆ changes in light owing to hydrolysis; but more conc. soln. are stable, and are not affected by light. A freshly-prepared soln. with 0.0002 gram-equivalent per litre had an eq. conductivity 380, and when hydrolyzed in light, 1048, showing that all the chlorine is probably present as hydrochloric acid. J. A. Prins and A. Fonteyne studied the X-ray diffraction of aq. soln. The eq. conductivities, λ , of soln. of the following concentration in gram-equivalents per litre, at 18°, were:

	0.0002N-	0.001N-	0.002N-	0-01N-	0·1N-	0.37N-	0.88N-	2.65N-
$\lambda_{\text{Insolated}}^{\text{Not insolated}}$	380	367	362	352	325	302	265	155
"Insolated .	1048	1036	776	365				

F. Braun succeeded in converting up to 49 per cent. of the heat of combination into electrical energy. S. Nagami measured the lowering of the f.p., the ionic

mobility, migration velocities, and the effect on the hydrolysis of acetates. The eq. electrical conductivities of soln, with an eq. of the acid in v litres, at 25°, are:

ą,		10	50	100	1000	10,000
λ		$366 \cdot 1$	384.3	395.5	409.6	418

M. Boll, and M. Boll and P. Job also studied the conductivity of 0.0001N-soln. of hydrochloroplatinic acid exposed to light, and the results show that in every case an atom of chlorine remains combined with the platinum; they suggested that the compound formed will probably contain two atoms of platinum in the molecule since the monoplatinic acids are unstable under the given conditions; the hydrolysis may be represented by the equation: $2H_2Pt(OH)_6$ $_nCI_n+(2n-1)H_2O$ $=(2n-1)HC1+H_2Pt(OH)_5Cl.H_2Pt(OH)_6$, where n may be 1, 2, 3, 4, 5, or 6. The soln, obtained remain unaltered for a time, but finally deposit a reddish-brown, flocculent precipitate of platinic hydroxide: H2PtCl(OH)5.H2Pt(OH)6+H2O == H(1+2H₂Pt(OH)₆; and there is a further increase in conductivity. M. Boll observed that the hydrolytic changes which occur in the dark with very dil. soln. of hydrotetrachloroplatinic acid at temp, between 10° and 100° are the same as those taking place in light, or under the influence of high-frequency rays. O. Stelling studied the electrolytic reduction of hydrochloroplatinic acid in a soln. of hydrochloric acid; and G. Grube and co-workers studied the equilibrium: 2H₂PtCl₄ \rightleftharpoons H₂PtCl₆ + Pt+2HCl at 60°. The value of E at 60° for PtCl₄": PtCl₆" is 0.745 volt; for Pt: PtCl₆", 0.765 volt; and Pt: PtCl₄", 0.785 volt.

P. Vallet said that reduction by hydrogen commences at 100°. W. Kwasnik found that barium dioxide gives a precipitate containing barium, platinum, and chlorine, and the filtrate, on evaporation, yields barium chloroplatinate. H. Töpsöe observed that hydrochloroplatinic acid is not decomposed by hypochlorous acid. The soln, of hydrochloroplatinic acid is decolorized by sulphur dioxide, or by ammonium or potassium sulphites, forming a soln. of hydrochloroplatinous acidthe reaction was studied by J. von Liebig, and P. Berthier. For the action of ammonia, vide infra, the ammines. O. Brunck observed that soln. of hydrochloroplatinic acid are reduced to hydrochloroplatinous acid, when they are treated with sodium hyposulphite. The dark red coloration has been recommended as a qualitative test for the metal. P. Schützenberger and C. Fontaine obtained a combination of platinic and phosphorous chlorides, platinic tetrachlorophosphorotrichloride, [Pt(PCl₃)Cl₄], by warming the compound with platinous chloride, [Pt(PCl₃)Cl₂]₂, in a current of chlorine. E. Baudrimont obtained platinic tetrachlorobisphosphoripentachloride, [Pt(PCl₅)₂Cl₄], by dissolving spongy platinum in hot phosphorus pentachloride. The ochre-yellow product fumes in air, decomposes over 300°, and it is decomposed by water. Ammonia does not form ammonium chloroplatinate. J. Thomsen said that hydrochloroplatinic acid is not decomposed by sodium hydroxide; and W. Kwasnik, that barium dioxide forms barium chloroplatinate. The action of silver nitrate was represented, by S. M. Jörgensen, by the equations: 2HCl.PtCl₄+2AgNO₃=2AgCl.PtCl₄+2HNO₃ in cold soln., and by $2HCl.PtCl_4 + 4AgNO_3 + H_2O = 2AgCl + 2AgCl.PtOCl_2 + 4HNO_3$, or $2HCl.PtCl_4$ +4AgNO₃+2H₂O=2AgCl.Pt(OH)₂Cl₂+4HNO₃ in hot soln. The reaction was studied by A. T. Cahours, A. Commaille, J. B. A. Dumas, R. Engel, A. F. de Fourcroy, W. Hittorf and H. Salkowsky, A. Miolati, S. A. Norton, L. Pigeon, and L. N. Vauquelin. H. Saha and K. N. Choudhury found that a dil. soln. of hydrochloroplatinic acid gives a precipitate of NH2.HgCl.PtCl4 when treated with Millon's salt, NH₂HgCl, in ammonia soln. According to P. Schützenberger, when a soln, of the dehydrated hydrochloroplatinic acid in absolute alcohol is evaporated in vacuo, it deposits crystals of [Pt(C2H5OH)2Cl4]. A. Sieverts and H. Brüning found that in the reduction of a mol. of hydrochloroplatinic acid in cold soln., 2 mols. of formaldehyde are required, and 1 mol. in hot soln. formaldehyde is oxidized to formate in the first case and to carbonate in the second. Quadrivalent platinum is reduced to bivalent platinum by formic acid, but further

reduction proceeds very slowly except in the presence of carbonate. Platinum black prepared by reduction with an excess of sodium formate retains sodium formate very tenaciously. If the ratio HCOONa: H₂PtCl₆ is less than 2:1, the black is mixed with hydroxide and gives off oxygen when heated; gas-free platinum black is produced when the ratio is just 2:1, and the product is grey, and not finely-divided. An excess of formate is required for finely-divided metal. E. Pace prepared a double salt with cocaine and hydrochloroplatinic acid; and R. Fricke and F. Ruschhaupt, double salts with benzamide, and with acetamide.

The salts of hydrochloroplatinic acid, with PtCl₆ as a bivalent radicle, are chloroplatinates. L. F. Nilson arranged the chloroplatinates in groups typified by: 2R'Cl.PtCl₄, R"Cl₂.PtCl₄, R"Cl₂.PtCl₄, and R""Cl₄.PtCl₄. F. Morges, and P. Walden showed that they are simple salts with the PtCl₆ as a bivalent radicle, and are not double salts. The general properties were studied by P. Rohland; and the relation stabilities of the halogenoplatinates, by H. I. Schlesinger and R. E. Palmateer. O. Stelling studied the electrolytic reduction of the hydrochloric acid soln. M. Delépine and P. Boussi studied the dehydration of the chloroplatinates, but obtained no evidence of the presence of polymerized water molecules.

According to W. Peters,² when anhydrous platinic chloride is exposed to the action of dry ammonia, it takes up 6 mols. to form platinic hexamminotetrachloride, [Pt(NH₃)₆]Cl₄. This compound loses a mol. of ammonia in vacuo, but takes it up again in an atm. of ammonia. B. Gerdes obtained this hexammine by adding hydrochloric acid to a soln of the carbonate in dil. soda-lye. The nature of the salt was discussed by S. H. C. Briggs, P. Klason, and J. A. N. Friend. According to B. Gerdes, the white acicular crystals gradually pass into amber-yellow rhombohedra. They are stable at 110°, and readily soluble in water. A. Werner and A. Miolati found the mol. conductivities of soln. with a mol of the salt in 250, 500, 1000, and 2000 litres to be, respectively, 432.5, 483.9, 522.9, and 553.5. G. Beck, and I. I. Tscherniaeff and S. I. Chorunshenkoff studied the ionization constants; and A. A. Grünberg and G. P. Faermann, the acidity of the salts. A. A. Grünberg, and G. Schwarzenbach gave for the effects of acidifying the platinum hexammines: $[Pt(NH_3)_6]^{4+} \rightleftharpoons [Pt(NH_3)_5.(NH_2)]^{3+} + H^+ = -0.55 \text{ volt}; \text{ and } [Pt(NH_3)_5(H_20)]^{4+}$ ==[Pt(NH₃)₅(OH)]³⁺+H+= -0.23 volt. B. Gerdes observed that platinic and auric chlorides gave sparingly soluble precipitates. That produced by the former is the dihydrate, [Pt(NH₃)6]Cl₄.2H₂O, which furnishes yellow octahedra which lose their water at 120°, and become paler in colour.

O. Carlgren and P. T. Cleve prepared platinic dihydroxytetramminochloride, $[Pt(NH_3)_4(OH)_2]Cl_2$, by the action of 3 per cent. hydrogen dioxide on platinous tetramminochloride; and by the action of barium chloride on the corresponding sulphate. L. A. Tschugaeff and W. Chlopin found that this compound is formed by the action of hydrogen dioxide on platinous cis-dichlorodiammine. O. Carlgren and P. T. Cleve said that the aq. soln. furnishes colourless, monoclinic plates which K. Johansson found to have the axial ratios a:b:c=1.5310:1:0.6702, and and $\beta=100^{\circ}$ 34'; the (110)-cleavage is incomplete. A. Werner, and A. Werner and A. Miolati found the mol. conductivity of soln. with a mol of the salt in 125, 250, and 500 litres at 20° to be, respectively, 204.9, 218.8, and 225.7. O. Carlgren and P. T. Cleve found that 100 parts of cold water dissolve 0.485 part of the salt, and boiling water, 2.04 parts. Hydrochloric acid precipitates platinic dichlorotetramminochloride from the soln.

The product obtained by W. Peters by keeping the hexammine in vacuo is possibly platinic chloropentamminochloride, [Pt(NH₃)₅Cl|Cl₃; and L. A. Tschugaeff and N. Vladimiroff, and L. A. Tschugaeff and W. Chlopin obtained it by the action of ammonia and ammonium carbonate on platinous trans-dichlorodiammine. A. A. Grünberg and G. P. Faermann discussed the acidity of the salt. L. A. Tschugaeff, and L. A. Tschugaeff and W. Chlopin also prepared platinic chloropentamminochloroplatinate, [Pt(NH₃)₅Cl]Cl.PtCl₆.2H₂O; platinic hydroxypentamminochloride,

VOL. XVI.

[Pt(NH₃)₅(OH)]Cl₃.H₂O, in colourless, rhombic plates; and platinic chloroamidotetramminochloride, [Pt{NH₄(NH₂)Cl}]Cl₂; L. A. Tschugaeff and N. Vladimiroff prepared platinic chloropentamminohydroxide, [Pt(NH₃)₅Cl](OH)₃—vide infra, the carbonate. A. Werner reported platinic hydroxyaquochlorotetramminochloride, [Pt(NH₃)₄(H₂O)(OH)]Cl₃, to be formed by the action of conc. hydrochloric acid on the dihydroxytetrammine. It loses hydrogen chloride in air, and with a small proportion of water deposits the dihydroxytetrammine, but with a large proportion of water it forms a soln, with an acidic reaction. I. I. Tscherniaeff and A. N. Fedorova studied the pentammines containing ethylenediamine. When platinous ethylenediaminodioxamminodichloride is treated with chlorine it forms the trans-salt of platinic dichloroethylenediaminodiamminochloride, and when this salt is treated with ammonia, it forms platinic chloroethylenediaminotriamminochloride. [Pt en(NH₃)₃Cl]Cl₃.

J. Gros prepared platinic dichlorotetramminochloride, [Pt(NH₃)₄Cl₂|Cl₂, by evaporating the corresponding dry nitrate with an excess of conc. hydrochloric acid, or by adding hydrochloric acid or an alkali nitrate to a soln. of the corresponding nitrate. M. Raewsky obtained it by passing chlorine into a conc., boiling soln, of platinous tetramminochloride—by using a cold soln,, and drying the product at 150°, the monohydrate was formed; C. Gerhardt, by boiling platinic tetrachlorodiammine, with aq. ammonia, and also by treating the hydroxychlorotetramminonitrate with hydrochloric acid; O. Carlgren and P. T. Cleve, by treating a soln, of dihydroxytetramminosulphate, acidified with hydrochloric acid, with barium chloride; and A. Cossa, by mixing boiling soln. of 4:14 grms. of platinic chloride in 100 c.c. of water, and 8.67 grms. of platinous tetramminochloride in 350 c.c. of water the product is mixed with some [Pt(NH₃)₄]PtCl₄. N. S. Kurnakoff, I. I. Tscherniaeff and co-workers, H. and A. Euler, W. Odling, C. Weltzien, S. H. C. Briggs, C. Grimm, and J. A. N. Friend discussed the nature of this compound. This salt is a white, or pale yellow crystalline powder, and by slowly cooling a boiling soln., J. Gros obtained regular, octahedral crystals. A. Werner and A. Miolati found the mol. conductivities of soln, of a mol of the salt in 1000 and 2000 litres of water to be, respectively, 228.9 and 240.6; and G. Bredig gave 54.3 for the velocity of migration of the ½[Pt(NH₃)₄Cl₂]"-ion at 25°. E. Rosenbohm studied the magnetic susceptibility. A. A. Grünberg and G. P. Faermann discussed the acidity of the salt.

C. Grimm observed that platinic dichlorotetramminochloride is almost insoluble in cold water, and sparingly soluble in boiling water. A. R. Klien studied the action of water, acids, and alkaline soln. J. Thomsen, and H. and A. Euler observed that when hydrogen sulphide is passed through water with the salt in suspension, sulphur is precipitated and platinous tetramminochloride is formed. H. and A. Euler observed that warm, conc. sulphuric acid converts platinic dichlorotetramminochloride into the dichloro-sulphate; and an excess of nitric acid yields the corresponding nitrate. J. Gros found that with molten potassium hydroxide, ammonia is developed, and there remains platinum mixed with potassium chloride; P. T. Cleve also observed that the salt forms an orange-red soln, with conc. potashlye, and ammonia is developed; when this soln. is boiled it becomes pale yellow and deposits potassium chloride on cooling, and when the soln, is treated with water, white flecks, free from chlorine, are precipitated, and when the precipitate is heated it detonates. C. Grimm, J. Gros, and H. and A. Euler found that silver nitrate precipitates from the soln. about half the chlorine as silver chloride; and C. Gerhardt observed that with a small excess of silver nitrate and a few minutes' boiling, the reaction can be symbolized: [Pt(NH₃)₄Cl₂]Cl₂+3AgNO₃+H₂O $=[Pt(NH_3)_4(OH)Cl](NO_3)_2+3AgCl+HNO_3.$ L. A. Tschugaeff prepared platinic amidochlorotetramminochloride, [Pt(NH₃)₄(NH₂)Cl]Cl₂.

J. Reiset treated platinous tetramminochloride with an excess of platinic chloride and obtained **platinic dichlorotetramminochloroplatinite**, [Pt(NH₃)₄Cl₂]-PtCl₄; he obtained the same salt by crystallization from a soln. of platinous tetram-

minochloroplatinite in a boiling soln. of platinic chloride; P. T. Cleve, by mixing boiling soln. of platinic dichlorotetramminochloride and potassium chloroplatinite; P. T. Cleve, and A. Cossa, by mixing soln. of platinic chloride and of platinous tetramminochloride; and C. Gerhardt, by the action of chlorine on platinous tetramminochloroplatinate. The reddish-brown, crystalline powder is sparingly soluble in water; and with silver nitrate, it precipitates silver chloride, and forms platinic hydroxychlorotetramminonitrate. C. Gerhardt obtained platinic dichlorotetramminochloroplatinate, [Pt(NH₃)₄Cl₂|PtCl₆, by passing chlorine into water with platinous tetramminochloroplatinite in suspension; C. Grimm, by passing chlorine into a soln. of platinous tetramminochloride; and P. T. Cleve, by mixing sodium chloroplatinate with platinic dichlorotetramminonitrate. The crystals are quadratic plates or octahedra, with the colour of potassium dichromate; they do not lose weight at 100°; and when boiled a short time with silver nitrate, precipitate three-quarters of the contained chlorine as silver chloride.

E. A. Hadow prepared platinic hydroxychlorotetramminochloride, [Pt(NH₃)₄(OH)Cl]Cl₂, by mixing a hot conc. soln. of the corresponding nitrate with an excess of ammonium chloride; he considered it to be a hemihydrate, but P. T. Cleve observed that the salt is anhydrous when dried at 100°. C. W. Blomstrand, P. T. Cleve, and W. Odling discussed the constitution. The snow-white

precipitate consists of rhombic prisms, sparingly soluble in water.

P. T. Cleve obtained platinic trichlorotriamminochloride, [Pt(NH₃)₃Cl₃|Cl, in pale yellow, rhombic or hexagonal plates by boiling platinous nitratotriamminonitrate with aqua regia, and drying the crystalline product at 100°. A. Werner and A. Miolati found that the mol. conductivities of soln. of a mol of the salt in 500, 1000, and 2000 litres are, respectively, 91·43, 96·75, and 106·5. The conductivity of the first-named soln, changed to 97·5 in 3 hrs. and to 106·5 in 24 hrs.

C. Gerhardt prepared platinic trans-tetrachlorodiammine, [Pt(NH3)2Cl4], by passing chlorine into boiling water with platinous trans-dichlorodiammine in suspension until the pale yellow salt becomes lemon-yellow and a drop of the liquid forms yellow crystals on cold glass. C. Grimm employed a similar process, and P. T. Cleve, and W. Odling employed aqua regia or potassium permanganate as oxidizing agents in place of chlorine; and L. A. Tschugaeff and W. Chlopin, ozone in hydrochloric acid soln. S. M. Jörgensen oxidized a boiling hydrochloric acid soln. of platinous trans-bispyridinediamminochloride with potassium permanganate, and allowed the soln. to cool slowly. W. Lossen, and H. Alexander obtained the salt as a by-product in the preparation of hydroxylamine hydrochloride in the mother-liquor remaining after the removal of ammonium chloride by platinic chloride; and F. Hoffmann observed that it is formed when platinic cis-dihydroxylaminediamminochloride is boiled with hydrochloric acid. The nature of the compound was discussed by E. Gapon, C. Weltzien, C. Gerhardt, W. Odling, S. H. C. Briggs, S. M. Jörgensen, and A. Werner and co-workers. The lemonvellow, crystalline powder consists of octahedral or quadratic plates. According to E. G. Cox and G. H. Preston, the crystals of the α-salt are lemon-yellow, tetragonal -sometimes bipyramids—usually tabular on the (001)-face; and the X-radiograms corresponded with a cell having a=5.72 A., c=10.37 A., and 2 mols. per unit cell, so that the calculated sp. gr. is 3.61, and the observed result is 3.3. Each ammonia group in the cell is surrounded by 8 chlorine atoms, belonging to its own or adjoining molecules, and each chlorine atom is surrounded by 4 ammonia mols. The β -salt forms lemon-yellow rhombic plates tabular on the (010)-face and bounded by the (101)-face or the (100)-face. The crystals are sometimes distorted. The cell dimensions are a=10.0 A., b=11.2 A., and c=6.0 A. There are four molecules per unit cell, and the calculated sp. gr. is 3.6, when the found value is 3.3. P. T. Cleve observed that the crystals begin slowly to decompose at 200° to 216°, and F. Hoffmann added that no explosion occurs. E. Petersen observed that a mol of the salt dissolved in 250 litres of water depressed the f.p. 0.028°; and A. Werner and A. Miolati observed that the electrical conductivity of the soln.

containing a mol of the salt in 1000 litres is practically zero immediately after the salt has dissolved, but as time goes on, hydrolysis occurs, and after a minute, the mol conductivity, μ , of a soln. with a mol of the salt in 1000 litres, after t minutes, was:

E. Petersen found the conductivity of soln. with a mol of the salt in v litres to be:

v	125	250	500	1000	2000	4000
(at 0° .		116.5	123.5	128.5	128.8	128.6
$\mu_{\left\{ f{at}\; 25^{\circ} \right\} }^{\left\{ f{at}\; 25^{\circ} \right\} }$	$135 \cdot 2$	142.3	155.5	180.0	204.9	$242 \cdot 3$

E. Rosenbohm studied the magnetic susceptibility. W. Odling, and W. Lossen observed that the salt is sparingly soluble in cold water but more soluble in hot water; and P. T. Cleve observed that 100 parts of water at 0° dissolve 1 part of the salt, and at 100°, 2.94 to 3.03 parts. C. Gerhardt, and P. T. Cleve found that boiling sulphuric acid, or nitric acid attacks the salt, but boiling aq. ammonia forms a pale yellow soln. of platinic dichlorotetramminochloride, from which alcohol precipitates a white, gum-like mass, soluble in water. A soln. of potassium hydroxide dissolves the salt without the evolution of ammonia, and a dirty yellow precipitate is formed when acids are added to the golden-yellow soln. The chlorine is all precipitated when a soln. of the salt is boiled for a long time with silver nitrate.

P. T. Cleve prepared platinic cis-tetrachlorodiammine, [Pt(NH₃)₂Cl₄], by treating platinous cis-dichlorodiammine with chlorine, or boiling it with nitric acid; and S. M. Jörgensen, by the action of a conc. soln. of ammonium chloride on silver dihydroxychloroplatinate. The orange-yellow powder consists of rhombic or hexagonal plates, or needles. According to P. T. Cleve, the salt loses no weight at 160°, but becomes olive-green; at 210°, it becomes dark green; and at about 240°, slowly decomposes. E. Petersen found that the lowering of the f.p. of a soln. with a mol of the salt in 250 litres is 0·014°. A. Werner and A. Miolati found the electrical conductivity of aq. soln. is nearly zero immediately after the salt has dissolved, but as time goes on, hydrolysis occurs, and the conductivity increases. E. Petersen gave for the conductivities of soln. with a mol of the salt in 125, 250, 500, and 1000 litres at 25°, respectively, 16·9, 20·6, 24·0, and 27·3; and for a soln. of a mol of the salt in 1000 litres:

Age of solution	0	5	15	30	60 minutes
Mol. conductivity	25.6	32.0	39.6	$53 \cdot 3$	$79 \cdot 2$

The nature of the salt was studied by A. Werner and C. H. Herty, and A. Miolati. P. T. Cleve said that 100 parts of water dissolve 0.333 part of salt at 0°, and 1.54 parts at 100°. The salt is not decomposed by cone. sulphuric acid; sulphur dioxide in the boiling aq. soln. forms platinous cis-hydrosulphitochlorodiammine, and alkali-lye forms a pale yellow soln. without the evolution of much ammonia.

P. T. Cleve reported platinic tetrachlorotetrammine, $Pt(NH_3)_4Cl_4.H_2O$, to be obtained by heating platinic dihydroxytetrammine, $Pt_2(NH_3)_4(OH)_2.H_2O$, with aqua regia. The yellow, amorphous powder is dried at 100° . B. E. Dixon prepared silver chlorodiamidotriamminochloride, $[Ag_3(Pt(NH_3)_3(NH_2)_2Cl]_2]Cl_5$; and silver platinic hydroxytriamidodiamminochloride, $[Ag_2(Pt(NH_3)_2(NH_2)_3(OH))]Cl_2$.

P. T. Cleve prepared platinic dihydroxydichlorobisamidohexamminochloride,

$$\begin{bmatrix} HO \\ (NH_3)_3 \end{bmatrix} Pt \begin{bmatrix} NH_2 \\ NH_2 \end{bmatrix} Pt \begin{bmatrix} OH \\ (NH_3)_3 \end{bmatrix} Cl_4$$

by the action of hydrochloric acid on the nitrate of the series, and drying the product over sulphuric acid, or at 100°. The snow-white, acicular crystals are sparingly

309

soluble in water; and silver nitrate precipitates all the chlorine from the salt in aq. soln.

Platinic chloride forms a number of complex salts with the alkyl and other amines, sulphines, selenines, phosphines, etc. S. M. Jörgensen a prepared platinic dichloroquater-methylaminechloride, $[Pt(CH_3NH_2)_cCl_2]Cl_2$; I. I. Tacherniaeff, platinic dichloroethylenediaminopyridinoamminochloride, $[Pt(NH_3)$ en $Pt(NH_3)$ en $Pt(NH_3)$ platinic trichloropyridinoethylenediaminochloride, $[Pt(NH_3)en\ Cl_3]Cl$; platinic trichloropyridinoethylenediaminochloride, $[Pt(NH_3)en\ Cl_3]Cl$; platinic trichloropyridinoethylenediaminochloride, $[Pten\ py\ Cl_3]Cl$; platinic dichloronitritopyridinoethylenediaminochloride, $[Pten\ py\ Cl_3]Cl$; platinic dichloronitritopyridinoethylenediaminochloride, $[Pten\ py\ (NO_3)Cl]Cl$; platinic chlorodinitritopyridinoethylenediaminochloride, $[Pten\ py\ (NO_3)Cl]Cl$; platinic chlorodinitritopyridinoethylenediaminochloride, $[Pten\ py\ (NO_3)Cl]Cl$; [Ptempy (NO₂)C1]C1, plasinic chlorodinitritopyridinoethylenediaminohydroxide, [Ptempy (NO₂)₂C1]OH; platinic chlorodinitritopyridinoethylenediaminochloride, [Ptempy (NH₂)(NO₂)C1]C1.2H₂O; platinic chloronitritopyridinoethylenediaminoammonochloride, [Pt(NH₃) en py (NO₂)C1]Cl₂; platinic chloronitritoethylenediaminodiaminochloride, [Pt(NH₃) en py (NO₂)C1]Cl₂; platinic chloronitritoethylenediaminodiaminochloride, [Pt(NH₃) en (NO₂)C1]Cl₂, and platinic chloronitritoethylenediaminochloride, [Pt(NH₃) en (NO₂)C1]C1, and platinic dichloroethylenediaminodiamminochloride, [Pt(NH₃)₂ en Cl₂|Cl₂, and its isomeride; platinic dichloronitritopyridinoethylenediaminochloride, [Pt en py (NO₂)Cl₂]Cl, and its isomerides; platinic dichloronitritopyridinoethylenediaminohydroxide, [Pt en py (NO2)Cl2]OH, and its isomerides; platinic dichioronitritoethylenediaminoamminochioride, $[Pt(NH_3)en(NO_2)Cl_2]Cl$, and its isomerides; C. A. Wurtz, T. Anderson, E. Davillier and A. Buisine, F. W. O. de Coninck, A. Ries, P. Groth, O. Luedecke, E. von Meyer, A. W. Hofmann, L. Berend and C. Stochr, C. M. Wetherill, O. Mendius, and E. Schmidt described platinic bismethylaminehydrochloride, 2(CH₃)NH₂.HCl.PtCl₄; E. Duvillier and A. Buisine, V. Meyer and M. Lecco, C. Ciamician and P. Silber, J. Bertheaume, W. H. Bresler, A. Ries, J. A. le Bel, T. H. Hjortdahl, O. Luedecke, H. Töpsöe, and P. Groth, platinic bisdimethylaminehydrochloride, $2(CH_3)_2NH.HCl.PtCl_4$, or $2(CH_3)_2H_2NCl.PtCl_4$; E. Duvillier and A. Buisine, L. J. Eisenberg, L. Knorr, R. Willstätter, A. Ladenburg, A. W. Hofmann, O. Luedecke, J. Schabus, A. Ries, J. Bertheaume, and T. Langeli, platinic bistrimethylaminehydrochloride, $2(CH_3)_3N.HCl.PtCl_4$; and A. W. Hofmann, H. Töpsöe, A. Ries, E. Duvillier and A. Buisine, E. Duvillier, O. Luedecke, E. Schmidt and L. Krauss, and O. Klein, platinic bistetramethylamine-chloride, $2(CH_3)_4NCl.PtCl_4$. H. Wolffram prepared platinic dichioroquaterethylamine-chloride, $[Pt(C_2H_5NH_2)_4Cl_2]Cl_2$; and A. Cossa, platinic dichloroquaterethylamine-chloride, $[Pt(C_2H_5NH_2)_4Cl_2]PtCl_4$; P. C. Ray and co-workers, platinic bisethylamino-chloride, $PtCl_4(C_2H_5NH_2)_4$; C. A. Wurtz, J. Tafel, F. W. Clarke, F. L. Sonnenschein, E. Diepolder, J. Schabus, A. Ries, A. W. Hofmann, A. des Cloizeaux, P. Groth, and H. Topsoe, platinic bisethylaminehydrochloride, 2(C2H5)NH2.HCl.PtCl4; A. W. Hofmann, H. Topsoe, platinic bisethylaminehydrochloride, $2(C_2H_5)NH_2$.HCl.PtCl₄; A. W. Hofmann, E. Duvillier and A. Buisine, H. Müller, J. Schabus, A. Ries, and H. Topsoe, platinic blsdiethylaminehydrochloride, $2(C_2H_5)_2NH$.HCl.PtCl₄; F. L. Sonnenschein, A. W. Hofmann, E. Duvillier and A. Buisine, A. Ries, and H. Malbot, platinic bistriethylaminehydrochloride, $2(C_2H_5)_3N$.HCl.PtCl₄; H. Reihlen and E. Flohr, platinic tetraethylamine chloride, [Pt"ae₄|Cl₂|Pt""ae₄Cl₂|.4H₂O; W. Lossen, P. Groth, A. Ries, J. Schabus, A. W. Hofmann, H. Malbot, E. Duvillier and A. Buisine, C. Weltzien, F. L. Sonnenschein, O. Klein, and J. A. le Bel, platinic bistetraethylammoniumchloride, $2(C_2H_5)_4N$ Cl.PtCl₄.

J. A. le Bel, platinic bistetraethylammoniumchloride, $2(C_2H_5)_4NCl.PtCl_4$.

J. A. le Bel, and P. Groth described a complex salt of platinic methylethylaminehydrochloride, $(CH_3)(C_2H_5)NH.HCl.PtCl_4$; Z. H. Skraup and D. Wiegmann, J. A. le Bel, and K. Lippitsch, platinic bismethylethylaminehydrochloride, $2(CH_3)(C_2H_5)NH.HCl.PtCl_4$; J. A. le Bel, and A. Ries, platinic bisdimethylethylaminehydrochloride, $2(CH_3)_4(C_2H_5)N.HCl.PtCl_4$; V. Meyer and M. Lecco, T. H. Hjortdáhl, P. Groth, A. Ries, and H. Töpsöe, platinic bismethylethylaminehydrochloride, $2(CH_3)_4(C_2H_5)N.HCl.PtCl_4$; O. Klein, A. Ries, and H. Töpsöe, platinic bistrimethylethylammonium chloride, $2(CH_3)_3(C_2H_5)NCl.PtCl_4$; V. Meyer and M. Lecco, A. Ries, and H. Töpsöe, platinic bisdimethyldiethylammoniumchloride, $2(CH_3)_3(C_2H_5)NCl.PtCl_4$; A. W. Hofmann, A. Ries, P. Groth, O. Klein, J. A. le Bel, and H. Töpsöe, platinic bismethylitriethylammoniumchloride, $2(CH_3)(C_2H_5)($ chloride, $2(CH_3)(C_2H_5)_3NCl.PtCl_4$; A. Ries, platinic tetramethylammoniumtr|methylethylammoniumchloride, $(CH_3)_4NCl.(CH_3)_3(C_2H_5)NCl.PtCl_4$; A. Ries, platinic tetramethylammoniumtrimethylethylammoniumchloride, $(CH_3)_4NCl.(CH_2)_3(C_2H_5)NCl.PtCl_4$; and A. Ries, platinic trimethylethylammoniumdimethylethylammoniumchloride, (CH₃)₃(C₂H₅)NCl.(CH₃)₂-

(C₂H₅)₂NCl.PtCl₄.

T. Anderson, Z. H. Skraup and D. Wiegmann, T. H. Hjortdahl, A. W. Hofmann, K. Lippitsch, H. Topsoe, A. Ries, O. Mendius, and P. Groth, platinic bis-n-propylaminehydro-The plant of the A. Ries, J. A. le Bel, and P. Groth, platinic bistripropylaminehydrochloride, 2(C₃H₂)₃N.HCl.

PtCl₄; A. Ries, and P. Groth, platinic tetrapropylammoniumehloride, 2(C₃H₇)₄NCl.PtCl₄; J. A. le Bel, and P. Groth, platinic dimethylaminedipropylaminehydrochloride, (CH₃)₂NH.HCl. (C₃H₇)₂NH.HCl.PtCl₄; R. Störmer and V. von Lepel, J. A. le Bel, A. Ries, and P. Groth, platinic bismethyl-n-propylaminehydrochloride, 2(CH₃)(C₃H₇)NH.HCl.PtCl₄; J. A. le Bel, A. Ries, and P. Groth, platinic bismethyl-l-propylaminehydrochloride, 2(CH₃)(C₃H₇)NH.HCl.PtCl₄; J. A. le Bel, and A. Ries, platinic dimethylaminedimethylpropylaminehydrochloride, (CH₃)₂NH.HCl.(CH₃)₂(C₃H₇)N.HCl.PtCl₄; J. A. le Bel, M. Passon, and A. Ries, platinic bismethyl-n-dipropylaminehydrochloride, 2(CH₃)(C₃H₇)₂N.HCl.PtCl₄; J. A. le Bel, A. Ries, and P. Groth, platinic bismethyl-idipropylaminehydrochloride, 2(CH₃)(C₃H₇)₂N.HCl.PtCl₄; T. Langeli, A. Ries, and J. A. le Bel, platinic bistrimethyl-n-propylammoniumehloride, 2(CH₃)₃(C₃H₇)NCl.PtCl₄; A. Ries, and J. A. le Bel, platinic bisdimethyldipropylammoniumehloride, 2(CH₃)₃(C₃H₇)NCl.PtCl₄; A. Ries, and J. A. le Bel, platinic bisdimethyldipropylammoniumehloride, 2(CH₃)₂(C₃H₇)₂NCl.PtCl₄; A. Ries, and P. Groth, platinic bismethyltripropylammoniumehloride, 2(CH₃)(C₃H₇)NH.HCl.PtCl₄; A. Ries, and J. A. le Bel, platinic bisethyl-n-propylaminehydrochloride, 2(CH₃)(C₃H₇)NH.HCl.PtCl₄; A. Ries, and J. A. le Bel, platinic bisethyl-i-propylaminehydrochloride, 2(C₂H₅)(C₃H₇)NH.HCl.PtCl₄; A. Ries, and P. Groth, platinic bisethyl-i-propylaminehydrochloride, 2(C₂H₅)(C₃H₇)NH.HCl.PtCl₄; A. Ries, and P. Groth, platinic bisethyl-i-propylaminehydrochloride, 2(C₂H₅)(C₃H₇)N.HCl.PtCl₄; A. Ries, and P. Groth, platinic bisethyl-i-propylaminehydrochloride, 2(C₂H₅)(C₃H₇)N.HCl.PtCl₄; A. Ries, and P. Groth, platinic bisethyl-i-propylammoniumehloride, 2(C₂H₅)₂(C₃H₇)NCl.PtCl₄; A. Ries, and P. Groth, platinic bisdiethylpropylammoniumehloride, 2(C₄H₅)₂(C₃H₇)NCl.PtCl₄;

chlorotriaminopropanes, [Pt(NH₂:CH₂:CH(NH₃)CH₂(NH₂)Cl₄].

A. Lieben and A. Rossi, E. Linnemann and V. Von Zotta, A. Ries, and P. Groth described platinic bis-n-butylaminehydrochloride, 2(C₄H₂)NH₂.HCl.PtCl₄; E. Duvillier and A. Buisine, E. Linnemann, P. Groth, A. Ries, platinic bis-tutylaminehydrochloride, 2(C₄H₂)NH₂.HCl.PtCl₄; E. Linnemann, A. Ries, B. Braumer, and M. Freund and F. Lenze. platinic bis-teritary-butylaminehydrochloride; A. Lieben and A. Rossi, platinic bis-n-dibutylaminehydrochloride, 2(C₄H₂)₂NH.HCl.PtCl₄; H. Malbot, A. Ries, A. Ehrenberg, J. A. le Bel, and P. Groth, platinic bis-1-dibutylaminehydrochloride, 2(C₄H₂)₃N.HCl.PtCl₄; P. Groth, A. Ries, and H. Malbot, platinic bis-1-tributylaminehydrochloride, 2(C₄H₂)₃N.HCl.PtCl₄; P. Groth, A. Ries, and H. Malbot, platinic bis-1-tetrabutylammoniumehloride, 2(C₄H₂)₃N.HCl.PtCl₄; A. P. N. Franchimont and H. van Erp. platinic bismethyl-n-butylaminehydrochloride, 2(CH₃)(C₄H₂)NH.HCl.PtCl₄; J. A. le Bel, A. Ries, and P. Groth, platinic bistrimethyl-n-butylammoniumehloride, 2(CH₃)₃(C₄H₃)NCl.PtCl₄; A. Ries, platinic bistrimethyl-1-butylammoniumehloride, 2(CH₃)₃(C₄H₃)NCl.PtCl₄; A. Ries, platinic bistrimethyl-1-butylammoniumehloride, 2(CH₃)₃(C₄H₃)NCl.PtCl₄; A. Ries, platinic bistrimethyl-1-butylammoniumehloride, 2(CH₃)₃(C₄H₃)NCl.PtCl₄; A. Ries, platinic bisethyl-see-butylaminehydrochloride; J. A. le Bel, P. Groth, A. Ries, and J. A. le Bel, platinic bisethyl-see-butylaminehydrochloride, 2(C₂H₃)(C₄H₉)NH.HCl.PtCl₄; A. Ries, three modifications of platinic bisethyl-1-butylammoniumehloride, 2(C₂H₃)₃(C₄H₉)NCl.PtCl₄; A. Ries, high and A. von Droste-Huelshoff, platinic bisethyl-1-butylammoniumehloride, 2(C₂H₃)(C₄H₉)NCl.PtCl₄; A. Ries, platinic bisethyl-1-butylammoniumehloride, 2(C₂H₃)(C₄H₉)NCl.PtCl₄; A. Ries, platinic bisethyl-1-butylammoniumehloride, 2(C₂H₃)(C₄H₉)NH.HCl.PtCl₄; A. Ries, platinic bisethyl-1-butyla

bismethylethylpropyl-i-butylammoniumchloride, $2(CH_3)(C_2H_5)(C_3H_7)(C_4H_9)NCl.PtCl_4$. C. A. Wurtz, C. G. Williams, O. Mendius, A. Ries, A. W. Hofmann, and P. Groth described platinic bisamylaminehydrochloride, $2(C_5H_{11})NH_2.HCl.PtCl_4$, with n-amyl; R. T. Plimpton, A. W. Hofmann, A. Ries, and P. Groth, the active and inactive forms of this salt; J. Tafel, and N. Kursanoff, the compound with secondary amyl; and M. Freund and F. Lenze, W. Rudneff, A. Ries, and P. Groth, two modifications of the compound with tertiary amyl. A. W. Hofmann, A. Ries, and J. A. le Bel studied platinic bisdiamylaminehydrochloride, $2(C_5H_{11})_2NH.HCl.PtCl_4$, with n-amyl; R. T. Plimpton, and R. D. Silva, the compound with inactive iso-amyl, and R. T. Plimpton, the compound with active iso-amyl. A. W. Hofmann studied platinic bistriamylaminehydrochloride, $2(C_5H_{11})_3N.HCl.PtCl_4$, with n-amyl; R. T. Plimpton, and R. D. Silva, with inactive iso-amyl; and R. T. Plimpton, with active iso-amyl. A. W. Hofmann described platinic bistetramylammoniumchloride, $2(C_5H_{11})_4NCl.PtCl_4$; R. Störmer and V. von Lepel, platinic bismethyl-i-amylaminehydrochloride, $2(C_5H_{11})NH.HCl.PtCl_4$; J. A. le Bel, and A. Ries, platinic bistrimethylamyl-ammoniumchloride, $2(CH_3)_3(C_5H_{11})NH.HCl.PtCl_4$, with active amyl; H. and A. Malbot, O. Schmiedeberg and E. Harnack, J. A. le Bel, A. Ries, and P. Groth, with iso-amyl. J. A. le Bel, A. Ries, and P. Groth studied platinic bisethyl-i-amylaminehydrochloride, $2(C_2H_5)(C_5H_{11})NH.HCl.PtCl_4$, with n-amyl, and A. Durand, with inactive amyl. A. W. Hofmann described platinic bisdiethyl-i-amylaminehydrochloride, $2(C_2H_5)_2(C_2H_{11})N.H.Cl.PtCl_4$; also platinic bistriethyl-i-amylammoniumchloride, $2(C_2H_5)(C_5H_{11})N.H.Cl.PtCl_4$; and platinic bismethylethyl-i-amylaminehydrochloride, $2(CH_3)(C_2H_5)_2(C_5H_{11})N.H.Cl.PtCl_4$; with inactive n-amyl, and i-amyl; and J. A. le Bel, and P. Groth, platinic methylethylpropyl-i-amylammoniumchloride, $2(CH_3)(C_2H_5)(C_5H_{11})NCl.PtCl_4$; with inactive n-amyl, and i-amyl; and J. A. le Bel, and P. Groth, platinic methylethylpropyl-i-amylammoniumchloride, $2(CH_3)(C_2H_5)(C_5H_{11})NCl.PtCl_4$;

A. Cahours and A. W. Hofmann, H. Malbot, and C. Liebermann and C. Paal described platinic bisallylaminehydrochloride, $2(C_3H_5)NH_2$ -HCl.PtCl₄; A. Cahours and A. W. Hofmann, and H. Malbot, platinic bistriallyaminehydrochloride, $2(C_3H_5)_3N$ -HCl.PtCl₄; and platinic bisteriallylammoniumchloride, $2(C_3H_5)_4N$ Cl.PtCl₄; J. Weiss, H. and A. Malbot, and A. Partheil, platinic bistrimethylallylammoniumchloride, $2(C_4H_5)_3(C_3H_5)N$ Cl.PtCl₄; A. Rinne, and C. Liebermann and C. Paal, platinic bisethylallylaminehydrochloride, $2(C_2H_5)(C_3H_5)N$ H.HCl.PtCl₄; A. Rinne, and C. Liebermann and C. Paal, platinic bisriethylallylaminehydrochloride, $2(C_2H_5)_2(C_3H_5)N$ H.HCl.PtCl₄; E. Reboul, platinic bisriethylallylammoniumchloride, $2(C_2H_5)_2(C_3H_5)N$ H.HCl.PtCl₄; C. Liebermann and C. Paal, platinic bispropylallyaminehydrochloride, $2(C_3H_7)(C_3H_5)N$ H.HCl.PtCl₄; and P. Groth, and C. Liebermann and C. Paal, platinic bisdipropylallylaminehydrochloride, $2(C_3H_7)(C_3H_5)N$ H.HCl.PtCl₄; and P. Groth, and C. Liebermann and C. Paal, platinic bisdipropylallylaminehydrochloride, $2(C_3H_7)(C_3H_5)N$ H.Cl.PtCl₄.

N. S. Kurnakoff, and A. Schleicher and co-workers prepared platinic dichlorobisethylene-diaminechloride, $[Pt\{C_2H_4(NH_2)_2\}_2Cl_2|Cl_2$, and platinic dichlorobisethylenediaminechlorocuprate, $[Pt\{C_2H_4(NH_2)_2\}_2Cl_2]CuCl_4$, as well as a complex with platinous bisethylenediamine-chlorocuprate—vide supra. F. M. Jäger studied the crystals of the first-named salt. W. Schacht, and C. Neuberg prepared platinic ethylenediaminehydrochloride, $C_2H_4(NH_2)_2$. 2HCl.PtCl₄; J. Lifschitz and E. Rosenbohm studied the optical properties of platinic trisethylenediaminochloride, $[Pt(C_3H_6(NH_2)_2.2\cdot5$ aq. A. P. Smirnoff obtained platinic trispropylenediaminochloride, $[Pt(C_3H_6(NH_2)_4]Cl_4]Cl_4$, in its racemic, and dextro-, and levo-forms. A. Werner, platinic tetrachloropropylenediamine, $[Pt(C_2H_6(NH_2)_2)Cl_2]$; and A. W. Hofmann, platinic dichlorobispropylenediaminechloride, $[Pt(C_3H_6(NH_2)_2)Cl_2]$; and A. W. Hofmann, platinic propylenediaminehydrochloride, $[Pt(NH_2)_2, 2HCl.PtCl_4$. L. A. Tschugaeff and co-workers prepared platinic chloroamidotetramminochloride, $[Pt(NH_2)_4, (NH_2)Cl]Cl_2$; and F. G. Mann, platinic tetrachloro- $\beta\beta\beta\beta''$ -triaminopropanemonohydrochloride, $[Pt(NH_2, CH_2, CHNH_2, CH_2, NH_2)$ -(HCl)Cl₄].H₂O; and platinic tetrachloro- $\beta\beta\beta\beta''$ -triaminopropanemonohydrochloride, $[Pt(NH_2, CH_2, CHNH_2, CH_2, CHNH_2)Cl_2]Cl_2$ platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloride, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloroplatinate, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloride, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloroplatinate, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloroplatinate, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminotriethylaminochloroplatinate, $[PtN(C_2H_4, NH_2)Cl_2]Cl_2$ -platinic dichloro- $\beta\beta\beta\beta''$ -triaminodiammine, $[Pt(NH_3)Cl_2]Cl_2$ -platinic nitritochloroethylenediaminodiammine, $[Pt(NH_$

I. I. Tscherniaeff and A. N. Federova prepared platinic dichloroethylenediaminodiammine, $[Pt(NH_3)_2 \text{ en Cl}_2]Cl_2$; and platinic nitritochloroethylenediaminodiammine, $[Pt(NH_3)_2 \text{ en} (NO_2)Cl]Cl_2$. The former reacts reversibly with aq. ammonia to form a mixed pentammine, $[Pt(NH_3)_3 \text{ en Cl}]X_3$, and hexamine, $[Pt(NH_3)_4 \text{ en}]X_4$. I. Tscherniaeff prepared three of the four possible isomerides of platinic nitritodichloroethylenediaminomethylaminochloride, $[Pt \text{ en } (CH_3.NH_2)(NO_2)Cl]_2[Cl]$; and also the optical isomerides of platinic chloroethylenediaminomethylaminochloride, $[Pt \text{ en } (CH_3.NH_2)(NO_2)_2Cl]_2[Cl]$; and of platinic dinitritochloroethylenediaminopyridinochloride, $[Pt \text{ en } py (NO_2)_2Cl]_2[Cl]$; I. I. Shukoff and O. P. Shipulina studied the absorption of platinic trichloroamminoethylenediaminochloride, $[Pt(NH_3) \text{ en } Cl_3]_2[Cl]$, by charcoal. F. G. Mann obtained platinic tetrachlorodiaminodiethylaminohydrochloridechloroplatinate, $[Cl_4Pt(H_2N.C_2H_4)_2NH.HCl]$, the corresponding platinic tetrachlorodiaminodiethylaminohydrochloridechloroplatinate, $[Cl_4Pt(H_2N.C_2H_4)_2NH.HCl]_2PtCl_4.H_2O$, and platinic trichlorodiaminodiethylamino, $[PtCl_3.(H_2N.C_2H_4)_2NH]$. F. G. Mann and W. J. Popo prepared optically active platinum tetrachlorotriaminopropanemonohydrochloride,

E. Fischer, and E. Renouf prepared platinic bisdimethylhydrazinehydrochloride, $2(CH_3)_2N_2H_2$.HCl.PtCl, E. Fischer, platinic bisdiethylhydrazinehydrochloride, $2(C_2H_5)_2$.

N₂H₂.HCl.PtCl₄; and L. A. Tschugaeff and co-workers, platinic carbylaminohydrazinochloride, and a chloroplatinate, and L. A. Tschugaeff and A. S. Samsonova also prepared

some complexes with hydroxylamine.

A. W. Hofmann, T. Anderson, and E. Lippmann and G. Vortmann prepared platinic bisanilinehydrochloride, 2C₄H₅NH₂.HCl.PtCl₄; O. Widman, platinic bis-m-toluidinehydrochloride, 2C₇H₇NH₂.HCl.PtCl₄; A. W. Hofmann, and J. S. Muspratt and A. W. Hofmann, platinic bis-p-toluidinehydrochloride, 2C,H,NH,HCl.PtCl,; O. Pieper, platinic bisxylldine-hydrochloride, 2C,H,NH,Hcl.PtCl, and isomeric forms were obtained by H. Strassmann, E. Paterno and P. Spica, and E. Bamberger and W. Lodter. H. W. Dudley studied various chloroplatinate.

T. Anderson, C. G. Williams, J. G. Gentele, C. W. Blomstrand, A. Wurtz, C. Liebermann and C. Paal, F. W. O. de Coninck, S. G. Hedin, A. Werner and F. Fassbender, P. C. Ray and co-workers, I. I. Tscherniaeff and A. M. Rubinstein, A. Werner, and S. M. Jörgensen studied the compounds of platinic chloride with pyridine. C. W. Blomstrand, S. M. Jörgensen, T. Anderson, and S. G. Hedin prepared platinic trans-tetrachlorobispyridine, [Pt(C₅H₅N)₂Cl₄], and A. Cossa, A. Werner and F. Fassbender, T. Anderson, C. Liebermann and C. Paal, L. Balbiano, C. G. Williams, E. Koefoed, and S. G. Hedin, C. Liebermann and C. Paal, L. Balbiano, C. G. Williams, E. Koefoed, and S. G. Hedin, platinic cis-tetrachlorobispyridine, $[Pt(C_5H_5N)_2Cl_3]$. S. G. Hedin prepared platinic dichloroquaterpyridinechloride, $[Pt(C_5H_5N)_4Cl_3]Cl_2.7H_2O$; A. Cossa, platinic dichloroquaterpyridinechloroplatinite, $[Pt(C_5H_5N)_4Cl_3]PtCl_3$; S. G. Hedin, and S. M. Jörgensen, platinic dichloroquaterpyridinechloroplatinate, $[Pt(C_5H_5N)_4Cl_3]PtCl_3$; and a complex with platinic pentachloropyridine, $[Pt(C_5H_5N)_4Cl_3]PtCl_5]$, $[Pt(C_5H_5N)_4Cl_3]PtCl_5$; and a complex with platinic pentachloropyridine, $[Pt(C_5H_5N)_4Cl_3]PtCl_5]$, $[Pt(C_5H_5N)_4Cl_3]PtCl_5$; and a complex with platinic pentachloropyridine, H. Weidel and K. Hazura, G. Ciamician and P. Silber, W. Königs, A. Ladenburg, M. Delépine and R. Sornet, R. Meyer and A. Tanzen, V. von Lang, and C. G. Williams, platinic bispyridinehydrochloride, $2C_5H_5N$.HCl.PtCl $_4$; T. Anderson, P. T. Cleve, S. M. Jörgensen, C. Liebermann and C. Paal, and A. Werner and F. Fassbender prepared pyridinium pyridinepentachloroplatinate, Li[Pt(C_5H_5N)Cl $_5$]. nH_2O ; sodium pyridinepentachloroplatinate, Li[Pt(C_5H_5N)Cl $_5$]. nH_2O ; sodium pyridinepentachloroplatinate, potassium pyridinepentachloroplatinate, pentachloroplatinate, Na[Pt(C_6H_5N)Cl₅]. H_2O ; potassium pyridinepentachloroplatinate, K[Pt(C_6H_5N)Cl₅]; rubidium pyridinepentachloroplatinate, Rb[Pt(C_5H_5N)Cl₅]; eæsium pyridinepentachloroplatinate, Cs[Pt(C_5H_5N)Cl₅]; eæsium pyridinepentachloroplatinate, Cs[Pt(C_5H_5N)Cl₅]. S. M. Jörgensen prepared platinic tetrachloropyridineammine, [Pt(NH₃)(C_5H_5N)Cl₄]; S. M. Jörgensen, platinic hexachlorobispyridinediammine, Pt₂(NH₃)₂(C_5H_5N)₂Cl₅; F. Förster, platinic dichlorodicarbonylbispyridine, Pt₂(CO)₂(C_5H_5N)₂Cl₂, and the complex salt Pt₂(CO)₂(C_5H_5N)₂Cl₂[Pt(C_5H_6N)₂Cl₂]₂. S. I. Khorupschaptoff existing ethylandiaminahleropyridineters shloride. S. I. Khorunschenkoff studied platinic ethylenediaminobispyridinotetrachloride.

T. Anderson, T. Wertheim, H. Vohl, C. G. Williams, and A. H. Church and E. Owen studied the compounds of picoline with platinic chloride. J. Dewar, H. Vohl, F. W. O. de Coninck, and W. Ramsay studied platinic tetrachloropicoline, $[Pt(C_0H_7N)Cl_4]$; and platinic tetrachlorobispicoline, $[Pt(C_0H_7N)_2Cl_4]$; H. Weidel, A. Baeyer, J. N. Collie and W. S. Myers, F. C. Garrett and J. A. Smythe, H. Frese, E. Dürkopf and M. Schlaugk, A. Ladenburg, O. Lange, H. Goldschmidt and E. J. Constam, and C. Stoehr, platinic bis-a-picolinehydro**chloride,** $2C_6H_7N$.HCl.PtCl $_4$, or $[Pt(C_6H_7N)_9Cl_4]$, as well as the *monohydrate*, and E. Seyfferth reported the *dihydrate*. A. Hesekiel, H. Weidel, A. Baeyer, C. Stoehr, P. Schwarz, A. Ladenburg, A. Ladenburg and J. Sieber, J. Mohler, and F. Bacher prepared platinic bis-β-picolinehydrochloride, 2C₄H₇N.HCl.PtCl₄, or [Pt(C₆H₇N)₂Cl₄]; and A. Ladenburg, A. Behrmann and A. W. Hofmann, O. Lange, S. Gabriel and J. Colman, and K. E. Schultze, platinic bis
p-picolinehydrochloride, 2C₄H₇N.HCl.PtCl₄. T. Anderson, A. Baeyer, and C. Stoehr

prepared picolinium β -picolinepentachloroplatinate, $[Pt(C_0H_7N)Cl_5]H(C_0H_7N)$. T. Anderson, A. H. Church and E. Owen, C. G. Williams, and H. Vohl prepared complex salts with lutidine. F. W. O. de Coninck, and C. Stoehr studied platinic tetrachlorobis-βlutidine, $[Pt(C_1H_nN)_nC_1]$; F. C. Garrett and J. A. Smythe, A. Ladenburg, A. Ladenburg and F. C. Roth, V. von Lang, A. Hantzsch, platinic α_2 -dimethylpyridinehydrochloride, $2C_1H_nN.HCl.PtCl_1$; F. C. Garrett and J. A. Smythe, and F. B. Ahrens and R. Gorkow, platinic $\alpha_1\beta'$ -dimethylpyridinehydrochloride and its dihydrate; M. Conrad and W. Epstein, F. C. Garrett and J. A. Smythe, F. Grünling, A. Ladenburg, C. F. Roth and O. Lange, platinic aa'-dimethylpyridinehydrochloride; F. B. Ahrens, platinic $\beta\gamma$ -dimethylpyridinehydrochloride and its dihydrate; and E. Dürkopf, platinic $\beta\beta'$ -dimethylpyridinehydrochloride. A. Ladenburg, and C. Stoehr prepared platinic a-ethylpyridinehydrochloride; H. Weidel and K. Hazura, A. Ladenburg, C. Stoehr, L. Berend and C. Stoehr, T. Anderson, C. G. Williams, and F. W. O. de Coninck, platinic \$\beta\$-ethylpyridinehydrochloride; A. Ladenburg, and J. Ferns and A. Lapworth, platinic y-ethylpyridinehydrochloride. C. Stochr prepared lutidinium lutidine-

pentachloroplatinate, [Pt(C,H,N)Cl₅]H(C,H,N).
T. Anderson, F. B. Ahrens, and A. H. Church and E. Owen studied the compounds of collidine with platinic chloride. A. Calm and K. von Buchka, and F. W. O. de Coninck prepared platinic tetrachlorobiscollidine, $[Pt(C_4H_{11}N)_*Cl_4]$; I. Guareschi, platinic bisa $\beta\gamma$ -trimethylpyridinehydrochloride, $2C_8H_{11}N$.HCl.PtCl $_4$; F. B. Ahrens, platinic bisa $\gamma\beta'$ -trimethylpyridinehydrochloride; A. Hantzsch, E. Dürkopf, F. C. Garrett and J. A. Smythe, P. Bishard and J. N. Collie platinic bisacchi, and the contraction of the contrac P. Riehm, and J. N. Collie, platinic bis-aya'-trimethylpyridinehydrochloride; A. Richard,

F. W. O. de Coninck, H. Weidel and B. Pick, K. E. Schultze, and A. Ladenburg, platinic bis-α-methyl-γ-ethylpyridinehydrochloride; H. Vohl, A. Baeyer, A. Hesekiel, and F. Auerbach, platinic bis-α-methyl-β'-ethylpyridinehydrochloride; K. E. Schultz and A. Ladenburg, platinic bis-α-methyl-α'-ethylpyridinehydrochloride, A. Calm and K. von Buchka, and F. W. O. de Coninck, platinic bis-β-methyl-γ-ethylpyridinehydrochloride; A. Ladenburg, E. Lellmann and W. O. Müller, and A. W. Hofmann, platinic bis-α-propylpyridinehydrochloride; A. Ladenburg, and W. Königs and G. Happe, platinic bis-γ-isopropylpyridinehydrochloride; and A. Ladenburg, platinic bis-γ-isopropylpyridinehydrochloride. A. Calm and K. von Buchka, and F. W. O. de Coninck prepared collidinum collidinepenta-ehloronlatinate. [Pt/CaH., NICL.]H/CaH., NIC.] chloroplatinate, $[Pt(C_8H_{11}N)Cl_5]H(C_8H_{11}N)$.

O. Hesse obtained quinine chloroplatinate, (C₂₀H₂₅N₂O₂)₂PtCl₆.3H₂O; isoquinine chloroplatinate, $(C_{20}H_{25}N_2O_3)_2$ PtCl₆.3H₄O; cinchonidine chloroplatinate, $(C_{10}H_{25}N_2O)_2$ PtCl₆.2H₄O; iso-cinchonidine chloroplatinate, $(C_{10}H_{25}N_3O)_2$ PtCl₆.2H₂O; and quinamine chloroplatinate,

(C₁₉H₂₅N₂O₂)₂PtCl₆·2H₂O.
O. Wallach and F. Lehmann, E. Seyfferth, A. Ladenburg, T. Hjortdahl, V. von Zepharovich, and W. Königs prepared platinic bispiperidinehydrochloride, $2C_5H_{11}N.HCl.$ PtCl₄, and a complex with alcohol of crystallization; A. Werner and F. Fassbender, platinic trans-tetrachloropiperidinepyridine, $\{Pt(C_5H_5N)(C_5H_{11}N)Cl_4\}$; F. W. O. de Coninck, platinic tetrachlorobisquinoline, $\{Pt(C_9H_7N)_3Cl_4\}$; A. Baeyer, H. Weidel and K. Hazura, E. Lellmann and H. Abt, O. Eckstein, Z. H. Skraup, C. G. Williams, S. Hoogewerf and W. A. van Dorp, G. Goldschmiedt and M. von Schmidt, and F. W. O. de Coninck, platinic bisquinolinehydrochloride, $2C_9H_7N.HCl.PtCl_4$, and A. Baeyer described the monohydrate, and M. Kretschy, O. Eckstein, Z. H. Skraup, and S. Hoogewerf and W. A. van Dorp, the dihydrate. S. Hoogewerf and W. A. van Dorp, and A. Pietet and S. Popovici described platinic bis-iso-quinolinehydrochloride, $2C_9H_7N.HCl.PtCl_4$, and its dihydrate; and W. Heintz, platinic biscarbamidehydrochloride, $2CO(NH_4)_4.HCl.PtCl_4$, and its dihydrate.

and W. Hentz, platinic biscarbamidehydrochloride, $2\text{CO}(\text{NH}_2)_2.\text{HCl.PtCl}_4$, and its dihydrate. F. W. O. de Coninck 10 described platinic tetrachlorobistetrahydroquinoline, $[\text{Pt}(C_0H_{11}N)_2.\text{Cl}_4]$; W. Henke, platinic tetrachlorobispropionitrile, $[\text{Pt}(C_2H_6\text{CN})_2\text{Cl}_4]$; W. Henke, and L. Ramberg, platinic tetrachlorobisbenzonitrile, $[\text{Pt}(C_2H_6\text{CN})_2\text{Cl}_4]$; C. Stochr and M. Wagner, platinic tetrachloro- $\beta\beta$ -dimethyldipyridine, $[\text{Pt}(C_3H_{12}N_2)\text{Cl}_4]$; J. Schlenker, platinic tetrachlorobis-4, 5-dimethylpyrimidine, $[\text{Pt}(C_4N_2H_3)_2\text{Cl}_4]$; A. Byk, platinic tetrachlorobis-4, 5-methylethylpyrimidine, $[\text{Pt}(C_2N_2H_{10})_2\text{Cl}_4]$; and E. Hardy and O. Calmels, platinic tetrachlorobisorine, $[\text{Pt}(C_2H_{12}N_2N_4\text{Cl}_4)]$; platinic tetrachlorobisphorine, $[\text{Pt}(C_1)_2H_{12}N_4\text{Cl}_4]$; platinic tetrachlorobisphorine $[\text{Pt}(C_1)_2H_2\text{SN}_4\text{Cl}_4]$; R. Dootson prepared platinic tetrachlorobistichloropyridine, [Pt(C,H,C,N),Cl.], R. Zigoglbauer, platinic tetrachloro-otetrachlorobistrichloropyridine, $[Pt(C_3H_2Cl_3N)_2Cl_4]$. R. Ziegelbauer, platinic tetrachlorophenylenebiguanidine, $[Pt(C_3H_2N_3)Cl_4]$, and the dihydrate; E. Hardy and G. Calmels, platinic tetrachloropilocarpidine, $[Pt(C_{10}H_{14}N_2O_2)Cl_4]$; and F. W. Pinkard and co-workers, complexes with glycine.

L. Balbiano 11 described some complexes with pyrazol, thus, platinic tetrachlorobispyrazol, L. Daldiano "described some complexes with pyrazol, thus, platinic tetrachiorobispyrazol, $[Pt(C_3H_4N_3)_2Cl_4]$; platinic tetrachlorobis-3, 5-methylchloropyrazol, $[Pt(C_4H_5N_3Cl_4)_2Cl_4]$; platinic tetrachlorobis-3, 5-dimethylpyrazol, $[Pt(C_5H_4N_2Cl_4)_2Cl_4]$; platinic tetrachlorobis-3, 5-dimethylpyrazol, $[Pt(C_5H_4N_2Cl_4)_2Cl_4]$; platinic tetrachlorobis-p-tolylpyrazol, $[Pt(C_1H_10N_3)_2Cl_4]$; platinic dichlorobis-y-tolylpyrazol, $[Pt(C_1H_10N_3)_2Cl_4]$; platinic dichlorobis-1-ethyl-3, 5-dimethylpyrazol, $[Pt(C_2H_1N_3)_2Cl_3]$; platinic dichlorobis-1-ethyl-3, 5-dimethylpyrazol, $[Pt(C_3H_1N_3)_2Cl_3]$; platinic dichlorobis-1-phenylpyrazol, $[Pt(C_3H_3N_3)_2Cl_3]$; platinic dichlorobis-1-phenylpyrazol, $[Pt(C_3H_3N_3)_3Cl_3]$; platinic dichlorobis-1-phenylpyraz platinic dichlorobis-1-etnyl-3, 5-dimethylpyrazol, $[Pt(C_2H_{11}N_2)_2C_1]$; platinic dichlorobis-1-phenyltetrachloropyrazol, $[Pt(C_2H_1N_2)_2C_1]$; platinic dichlorobis-0-tolypyrazol, $[Pt(C_10H_2N_2)_2C_1]$; platinic dichlorobis-0-tolypyrazol, $[Pt(C_10H_2N_2)_2C_1]$; platinic dichlorobis-1-phenyl-3-methylpyrazol, $[Pt(C_10H_2N_2)_2C_1]$; L. Balbiano, and L. Balbiano and G. Marchetti, platinic dichlorobis-1-phenyl-3-methylpyrazol, $[Pt(C_10H_2N_2)_2C_1]$; L. Balbiano, and L. Balbiano, platinic dichlorobis-1-phenyl-3, 5-dimethylpyrazol, $[Pt(C_1H_2N_2)_2C_1]$; L. Balbiano, platinic dichlorobis-1-phenyl-3, 5-dimethylpyrazol, $[Pt(C_1H_1N_2)_2C_1]$; platinic dichlorobis-1-phenylmethylethylpyrazol, $[Pt(C_1H_1N_2)_2C_1]$; platinic dichlorobis-1-phenylmethylethylpyrazol, $[Pt(C_1H_1N_2)_2C_1]$; and G. Ortoleva, platinic dichlorobispyridinephenylpyrazol, $[Pt(C_1H_1N_2)_2C_1]$;

methylethylpyrazol, $[Pt(C_{12}H_{13}N_3)_2^2C_{12}]$; platinic dichlorobis-i-phenylmethylethyltrichloropyrazol, $[Pt(C_{12}H_{10}N_3C_{12})_2C_{12}]$; and G. Ortoleva, platinic dichlorobispyridinephenylpyrazol, $[Pt(C_{12}H_{10}N_3)_2C_{12}]$; and G. Ortoleva, platinic dichlorobispyridinephenylpyrazol, $[Pt(C_{12}H_{10}N_3)_2C_{12}]$; C. Stoehr, platinic tetrachlorobispyrazine, $[Pt(C_4H_4N_2)_2C_{14}]$; C. Stoehr, platinic tetrachlorobis-2, 5-dimethylpyrazine, $[Pt(C_4H_4N_2)_2C_{14}]$; C. Stoehr and M. Wagner, platinic tetrachlorobis-2, 5-dimethylpyrazine, $[Pt(C_5H_{13}N_2)_2C_{14}]$; and O. Poppenberg, platinic tetrachlorobis-cinnamylpyridazine, $[Pt(C_1H_{10}N_2)_2C_{14}]$; C. Stoehr, pyrazinium pyrazinepentachloroplatinate, $[Pt(C_4H_4N_3)C_1_3]H(C_4H_4N_3)$; dimethylpyrazinium 2, 5-dimethylpyrazinepentachloroplatinate, $[Pt(C_5H_5N_3)C_1_5]H(C_5H_5N_2)$; P. Brandes and C. Stoehr, trimethylpyrazinium 2, 3, 6-trimethylpyrazinepentachloroplatinate, $[Pt(C_5H_10N_2)C_1]H(C_7H_{10}N_2)C_1]H(C_7H_{10}N_2)$; C. Stoehr, 2, 5-dimethyl-3-ethylpyrazinepentachloroplatinic acid, $[Pt(C_5H_{13}N_2)C_1]H$; G. T. Morgan and F. H. Burstall, complexes with dipyridyl.

G. Pellizzari and C. Massa, platinic tetrachlorobis-1-phenyl-2, 8-triazol, [Pt(C₂H₂N₃)₂Cl₄]; G. Pellizzari and C. Massa, platinic tetrachlorobis-1-phenyl-2, 8-triazol, [Pt(C₂H₇N₃)₂Cl₄]; G. Pellizzari and C. Massa, platinic tetrachlorobis-1-phenyl-2, 8-triazol, [Pt(C₃H₇N₃)₂Cl₄]; G. Pellizzari and C. Massa, platinic tetrachlorobis-0-tolyl-1, 8-triazol, [Pt(C₃H₇N₃)₂Cl₄]; G. Pellizzari and C. Massa, platinic tetrachlorobis-0-tolyl-1, 8-triazol, [Pt(C₃H₇N₃)₂Cl₄]; and platinic tetrachlorobis-p-tolyl-1, 8-triazol, [Pt(C,H,N,),Cl4]; G. Pellizzari and M. Bruzzo, platinic tetrachlorobis-o-tolyl-2, 8-triazol, [Pt(C,H,N,),Cl4]; and platinic tetra-

chlorobis-p-tolyi-2, 3-triazol, $[Pt(C_0H_0N_3)_2Cl_4]$; G. Pellizzari and C. Massa, platinic tetrachlorobis-a-naphthyl-1, 3-triazol, $[Pt(C_{12}H_0N_3)_2Cl_4]$; and platinic tetrachlorobis- β -naphthyl-1, 3-triazol; G. Pellizzari and M. Bruzzo, platinic tetrachlorobis-a-naphthyl-2, 3-triazol, $[Pt(C_{12}H_0N_3)_2Cl_4]$; and platinic tetrachlorobis- β -naphthyl-2, 3-triazol-1; A. Andreocci, platinic tetrachlorobis- β -naphthyl-2, 3-triazol-1; A. Andreocci, platinic tetrachlorobis- β -naphthyl-2, 3-triazol-1; A. Andreocci, platinic tetrachlorobis-1-phenyl-2-methyl-1, 3-triazol, $[Pt(C_0H_0N_3)_2Cl_4]$; and G. Pellizzari and A. Alciatore, platinic tetrachlorobis-o-tolyl-2, 5-dimethyl-2, 3-triazol, $[Pt(C_{11}H_{13}N_3)_2Cl_4]$; Accusatore, pratmic tetrachioropis-o-tolyi-z, 5-dimethyl-2, 3-triazol, $[Pt(C_{11}H_{13}N_3)_3Cl_4]$; and platinic tetrachlorobis-o-tolyi-2, 5-dimethyl-2, 3-triazol. A. Andreocci, platinic dichlorobis-1-phenyl-3-methyl-1, 3-triazol, $[Pt(C_9H_8N_3)_2Cl_2]$; and platinic dichlorobis-1-phenyl-3-methyl-1, 3-triazolone, $[Pt(C_9H_8N)_2Cl_2]$. G. Cuneo obtained platinic tetrachlorobis-1-phenyl-3-imidotriazoline, $[Pt(C_8H_8N_4)_2Cl_4]$; and platinic tetrachlorobis-p-tolyl-3-imidotriazoline, $[Pt(C_9H_{10}N_4)_2Cl_4]$. S. Ruhemann and H. E. Stapleton, S. Ruhem and R. W. Merriman, O. Hantzsch and O. Silberrad, and G. Pellizzari prepared platinic tetrachlorobistetrazoline, $[Pt(C_2H_4N_4)_2Cl_4]$; and S. Ruhemann and R. W. Merriman, and G. Pellizzari, platinic tetrachlorobisdimethyltriazoline, $[Pt(C_4H_8N_4)_2Cl_4]$. L. Claisen prepared platinic tetrachlorobis- α -methylisoxazol, $[Pt(C_4H_5NO)_2Cl_4]$; and E. Hardy and G. Calmels, platinic tetrachlorobis- β -hydroxyethylpyridine, $[Pt(C_7H_9NO)_2Cl_4]$.

P. T. Cleve 14 described platinic hydroxyacetatotetramminochloride, [Pt(NH₃)₄(OH)-(C₂H₃O₂)|Cl₂, and platinic hydroxyacetatotetramminocholoro, [Pt(NH₃)₄(OH)(C₂H₃O₂)]-PtCl₄H₂O; G. Wallin, platinic tetrachlorobisamidoacetate, [Pt(NH₂.CH₂.COOH)₂Cl₄], and platinic tetrachlorobisethylamidoacetate, [Pt(NH₂.CH₂.COOC₂H₅)₂Cl₄]; E. Hardy and G. Calmels, platinic tetrachlorojaborinate, [Pt(C₁₉H₂₅N₃O₃)Cl₄]; E. Hardy and G. Calmels, platinic tetrachlorojaborinate, [Pt(C₁₉H₂₅N₃O₃)Cl₄]; and platinic tetrachlorobisjaborinate, [Pt(C₁₉H₂₅N₃O₅)2Cl₄]; G. Wallin, platinic dichlorobisglycine, [Pt(NH₂.CH₂.COOC₂H₃) and platinic description of the platinic dichlorobisglycine, [Pt(NH₂.CH₂.COOC₂H₃]; B. Inner, perturbellorogus planelitinic axid [Pt(C₁₉H₂N₃O₃) (Pt) A. Hartweeley and A. Hart

Jacornate, [Pt(Cl₁₉H₂₅N₃O₅]₂O₅l₄]; G. Walth, platinic dientoronsigycine, [Pt(NH₂CH₂COO)₂-Cl₂]; B. Unger, pentachloroguanineplatinic acid, [Pt(C₅H₅N₅O)Cl₅]H.2H₂O; and A. Hantzsch, platinic diehloroquatermethylpseudolutidostyrilchloride, [Pt(C₈H₁₁NO)₄Cl₂]Cl₂.

M. Lesbre and E. Gardner prepared the guanidine salts, [Pt(CH₅N₃)Cl](OH)_n, and [Pt(CH₅N₃)Cl₂]₂; and the cyanutriamide salts, [Pt(C₃N₃(NH₂)₃Cl](OH)_n.

C. Enebuske, ¹⁵ A. Loir, P. C. Ray and P. C. Mukherjee, P. C. Ray, and L. Tschugaeff and J. Benewolensky prepared platinic tetrachlorobisdimethylsulphine, [Pt((CH₃)₂Sl₂Cl₄]; G. Carrara, G. L. Laird, A. Cahours, D. Strömholm, and H. Klinger, platinic bistrimethyl-sulphonlumchloride, 2(CH₃)₃SCl.PtCl₄; C. W. Blomstrand, M. Weibull, F. G. Angell and and G. Carrarra, platinic bisdimethylethylsulphoniumchloride, $2(CH_3)_2(C_2H_5)SCl.PtCl_4$; F. Krüger, R. Nasini and A. Scala, D. Strömholm, W. Lossen, and H. Klinger and A. Maassen, platinic bismethyldiethylsulphoniumchloride, 2(CH₃)(C₂H₅)₂SCl.PtCl₄; C. Rudelius, and M. Weibull, platinic tetrachlorobisdipropylsulphine, [Pt{(C3H7)2S}2Cl4]; A. Cahours, platinic bistripropylsulphoniumchloride, $2(C_3H_7)_3SCI.PtCl_4$; G. Aminoff, P. Groth, and D. Strömholm, platinic bismethyldi-n-propylsulphoniumchloride, $2(CH_3)(C_3H_7)_2SCI.PtCl_4$, as well as the corresponding platinic bismethyldi-i-propylsulphoniumchloride; A. Cahours, platinic bisdiethylpropylsulphoniumchloride, 2(C₂H₅)₂(C₃H₇)\$Cl.PtCl₄; G. Aminoff, and platinic bisactivity propyisation intensional, $2(C_2 I_1)_2(C_3 I_7)_3(C_3 I_7)_3(C_4 I_4)$; and $C_2 I_3(C_2 I_3)(C_4 I_7)_3(C_4 I_7)_3(C_4$ SCl.PtCl₄; D. Strömholm, platinic bismethyldi-i-butylsulphoniumchloride, 2(CH₃)(C₄H₂)₂SCl. PtCl₄, and its hydrate; G. Aminoff, P. Groth, and D. Strömholm, platinic bismethylethyl-n-butylsulphoniumchlorlde, $2(CH_3)(C_2H_5)(C_4H_9)SCl.PtCl_4$, platinic bismethyleihyl-i-butylethyl-n-butylsulphoniumchloride, $2(CH_3)(C_2H_5)(C_4H_9)SCl.PtCl_4$, platinic bismethylethyl-i-butyl-sulphoniumchloride, as well as the corresponding compound with secondary butyl; D. Strömholm, platinic methyl-n-propyl-i-butylsulphoniumchloride, $2(CH_3)(C_3H_7)(C_4H_9)SCl.$ PtCl₄, and platinic methyl-i-propyl-i-butylsulphoniumchloride; D. Strömholm, platinic bismethylethylamylsulphoniumchloride, $2(CH_3)(C_2H_5)(C_2H_5)(C_2H_5)(C_2H_5)(C_2H_5)$ A. Cahours, platinle bisdimethylbenzyl-sulphoniumchloride, $2(CH_3)(C_2H_7)SCl.PtCl_4$; D. Strömholm, platinic bismethylethylbenzyl-sulphoniumchloride, $2(CH_3)(C_2H_7)(C_2H_7)SCl.PtCl_4$; D. Strömholm, platinic bismethyl-i-propyl-benzylsulphoniumchloride, $2(CH_3)(C_3H_7)(C_7H_7)SCl.PtCl_4$; and A. Husemann, and H. Löndahl, platinic tetrachlorobisethylenesulphine, $Pt\{S(C_2H_4)_2S\}Cl_4\}$.

Q. Prätorius-Seidler prepared platinic bishilocarbamidehydrochloride, $2CS(NH_2)_2$.HCl. PtCl.: W. Schacht. platinic tetrachlorobistrimethylenethiocarbamide. $Pt\{HS.C.N(CH_3)_2, LCL\}$

PtCl4; W. Schacht, platinic tetrachlorobistrimethylenethiocarbamide, [Pt{HS.C: N(CH₃)₃. NH₃Cl₄; A. W. Hofmann, and W. Schacht, platinic tetrachlorobisdiethylenethiocarbamide, [Pt(S:C.NH:CH₂:NH)₂Cl₄]; and A. W. Hofmann, and A. Girard, platinic tetrachlorobistrithioformaldehyde, [Pt(C₃H₆S₃)₂Cl₄].

W. Marckwald, and A. Wohl and W. Marckwald described platinic tetrachlorobisimido-

azolylmercaptan, [Pt(HS.C.NH.CH: CH.N:)2Cl4]; W. Marckwald, platinic tetrachlorobis- μ -imidoazolylmercaptan, $P(HS.C.NH.CH:CH.N:)_2Cl_4$; platinic tetrachlorobis- ν -methyl $imidoazolyl-\mu-mercaptan, \{Pt\{HS.C.\overline{N(CH_3).CH}:CH.N:\}_{3}Cl_{4}\}; \ platinic \ tetrachlorobis-\nu-phenyl-p$ $imidoazolyl-\mu-mercaptan, \\ [Pt{HS.C.N(C_0H_5)CH:CH.N:}_2Cl_4]; platinic tetrachlorobis-\nu-p-tolyl-\mu-mercaptan, \\ [Pt{HS.C.N(C_0H_5)CH:CH.N:}_2cl_4]; platinic tetrachlorobis-\nu-p-tolyl-\mu-mercaptan, \\ [Pt{HS.C.N(C_0H_5)CH:CH.N:}_2cl_4]; platinic tetrachlorobis-\nu-p-tolyl-\mu-mercaptan, \\ [Pt{HS.C.N(C_0H_5)CH:CH.N:}_2cl_4]; \\ [Pt{HS.C.N(C_0H_5)CH:CH.N(C_0H_5)CH:CH.N(C_0H_5)CH$

imidoazolyl- μ -mercaptan, $[Pt]HS.C.N(C_aH_4.CH_3)CH: CH.N:]_2Cl_4]$; platinic tetrachlorobis- ν -m-xylylimidoazolyl- μ -mercaptan, $\{Pt\{HS.C.N.C_6H_3(CH_3)_2.CH: CH.N:\}_2Cl_4\}$; and platinic tetrachlorobis - ν - α - naphthylimidoazolyl - μ - mercaptan, [Pt{HS.C.NC, H, CH : CH.N :} Cl4]. P. C. Ray and co-workers described platinum methylmercaptidochloride, Pt(I(CH3)2S2.H2O; platinum mercaptidochloride, $PtCl(C_2H_5)_2S_2$, and platinum mercaptidobromide, $PtBr(C_2H_5)_2S_2$, in which it is assumed that the platinum is quinquivalent—vide supra, the valency of platinum; and also Pt₅Cl(R₂S₂)₄, in which only one platinum atom is quinquivalent.

F. W. Semmler prepared platinic disulphovinylsulphinevinylchloroplatinate, 3 Pt{(('2H3)2S}-

F. W. Semmler prepared platinic disulphovinylsulphinevinylchloroplatinate, $3[Pt\{(C_2H_3)_2S\}, S_2], 2C_2H_3Cl.PtCl_4$; F. W. Semmler, and T. Wertheim, platinic disulphoallyl-sulphineallyl-chloroplatinate, $3[Pt\{(C_3H_5)_2S\}, S_2], 2C_3H_5Cl.PtCl_4$; and C. H. Keutgen, platinic tetrachlorodiallylhexasulphine, $Pt\{(C_3H_5)_2S\}, Cl.A_4\}$.

C. L. Jackson 16 described platinic tetrachlorobisdimethylselenine, $[Pt\{(CH_3)_2Se\}, Cl.A_4\}$; C. L. Jackson, platinic bistrimethylselenoniumehloride, $2(CH_3)_3SeCl.PtCl_4$; J. Petren, platinic tetrachlorobisdiethylselenine, $Pt\{(C_2H_5)_2Se\}, Cl.A_4\}$; A. F. W. Schimper, and L. von Pieverling, platinic triethylselenoniumehloride, $2(C_2H_5)_3SeCl.PtCl_4$; J. Petren, platinic tetrachlorobisdiethylselenine, $Pt\{(C_2H_5)_2Se\}, Cl.A_4\}$; C. L. Jackson, platinic tetrachlorobisdiethylselenine, $[Pt\{(C_2H_5)_2Se\}, Cl.A_4\}$; C. L. Jackson, platinic tetrachlorobisdiethylselenine, $[Pt\{(C_2H_5)_2Se\}, Cl.A_4\}$; and platinic bisdimethylbenzylselenoniumehloride, $2(CH_3)_2(CA, T_2), SeCl.PtCl_4$. A. Cahours described platinic bistrimethyltelluroniumehloride, $2(CH_3)_3TeCl.PtCl_4$.

A. Cahours and A. W. Hofmann 17 described platinic bistrimethylphosphinehydrochloride, 2(CH₃)₃P.HCl.PtCl₄; A. Cahours and A. W. Hofmann, A. Partheil and A. van Haaren, and J. N. Collie, platinic bistetramethylphosphoniumchloride, 2(CH₃)₄PCl.PtCl₄; A. W. Hofand J. N. Collie, platinic bistetramethylphosphoniumchloride, $2(CH_3)_4PCl.PtCl_4$; A. W. Hofmann, platinic bisethylphosphinehydrochloride, $2(C_2H_5)PH_2.HCl.PtCl_4$; and platinic bisdiethylphosphinehydrochloride, $2(C_2H_5)_2PH.HCl.PtCl_4$; E. Drechsel and E. Finkelstein, and A. Cahours and A. W. Hofmann, platinic bistriethylphosphinehydrochloride, $2(C_2H_5)_3P$.HCl. PtCl₄; Q. Sella, A. Cahours and A. W. Hofmann, platinic bistrimethylphosphoniumchloride, $2(C_2H_5)_4PCl.PtCl_4$; A. Cahours, platinic bistimethylphosphoniumchloride, $2(CH_3)_3(C_2H_5)_2PCl.PtCl_4$; J. N. Collie, platinic bisdimethyldiethylphosphoniumchloride, $2(CH_3)_2(C_2H_5)_2PCl.PtCl_4$; A. W. Hofmann, and A. Cahours and A. W. Hofmann, platinic bismethyltriethylphosphoniumchloride, $2(CH_3)_2(C_2H_5)_2PCl.PtCl_4$; A. W. Hofmann, and A. Cahours and A. W. Hofmann, platinic bismethyltriethylphosphoniumchloride, $2(CH_3)_2(C_3H_3)_2PCl.PtCl_4$; A. W. Hofmann, and A. Cahours and A. W. Hofmann, platinic bismethyltriethylphosphoniumchloride, $2(CH_3)_2(C_3H_3)_2PCl.PtCl_4$; A. W. Hofmann, and A. Cahours and A. W. Hofmann, platinic bismethyltriethylphosphoniumchloride, $2(CH_3)(C_2H_5)_3PCl.PtCl_4$; J. N. Collie, platinic bistriethylpropylphosphoniumchloride, $2(C_2H_5)_3(C_3H_7)PCl.PtCl_4$; R. H. Pickard and J. Kenyon prepared trimethyloxyphosphoniumchloroplatinate, $4(CH_3)_3PCl.H_2PtCl_6$; and a similar compound was obtained by J. A. Collie: triethyloxyphosphoniumchloroplatinate, a similar compound was obtained by J. A. Collie: triethyloxyphosphoniumchloroplatinate, $4(C_2H_5)_3PO.H_2PtCl_6$; and tripropyloxyphosphoniumchloroplatinate, $6(C_3H_7)_3PO.H_2PtCl_6$; A. Cahours and A. W. Hofmann, platinic bistrimethylamylphosphoniumchloride, $2(C_2H_3)_3(C_5H_{11})PCl.PtCl_4$; J. N. Collie, and A. Cahours and A. W. Hofmann, platinic bistriethylamylphosphoniumchloride, $2(C_2H_5)_3(C_5H_{11})PCl.PtCl_4$; A. W. Hofmann, platinic bistriethylallylphosphoniumchloride, $2(C_2H_5)_3(C_5H_{11})PCl.PtCl_4$; and J. N. Collie, platinic bisethyltribenzylphosphoniumchloride, $2(C_2H_5)_3(C_3H_5)PCl.PtCl_4$; F. Fleissner, E. A. Letts and J. N. Collie, and R. H. Pickard and J. Kenyon described platinic trichlorotrisbenzyloxyphosphinechloride, $[Pt((C_7H_7)_3PO]_3Cl_3]Cl$. E. Pomey, and A. Rosenheim and W. Löwenstamm described platinic tetrachlorobistriethylphosphite. $[Pt(P(O_2H_1)_3).Cl.]$: A. Michaelis platinic tetrachlorobis-n-dimethyloxyphosphine-

phosphite, $[Pt(P(OC_2H_5)_3]_2Cl_4]$; A. Michaelis, platinic tetrachlorobis-p-dimethyloxyphosphlnebenzoate, $[Pt\{(CH_3)_2PO(C_2H_4,COOH)\}_2Cl_4]$; E. Pomey, platinic tetrachlorotriethylphosphite, $[Pt\{P(OC_2H_5)_3\}Cl_4]$; A. Rosenheim and W. Lowenstamm, and A. Rosenheim and W. Levy, platinic tetrachlorotriethylphosphate, $[Pt(OP(OC_2H_5)_3]Cl_4]_2$. P. Schützenberger, and P. Schützenberger and C. Fontaine described a number of ill-defined complexes with phosphorus compounds.

W. M. Dehn and B. B. Wilcox 18 described platinic bisdimethylarsinehydrochloride, 2(CH₃)₂AsH.HCl.PtCl₄; E. Amort, A. Partheil and E. Amort, and E. Mannheim, platinum 2(CH₃₎₂AsH.HCI.PtCl₄; E. Amort, A. Partheil and E. Amort, and E. Mannheim, platinum bistetramethylarsoniumchloride, $2(CH_3)_4$ AsCl.PtCl₄, or $[(CH_3)_3$ AsCl]₂PtCl₄; E. Amort, A. Partheil and E. Amort, E. Mannheim, and H. Landolt, platinic bistetraethylarsoniumchloride, $2(C_2H_5)_4$ AsCl.PtCl₄, or $[(C_2H_5)_4$ AsCl.PtCl₄; A. Cahours, platinic bisdimethyldiethylarsoniumchloride, $2(CH_3)_2(C_2H_5)_2$ AsCl.PtCl₄; E. Mannheim, E. Amort, and A. Partheil and E. Amort, platinic bistetra-n-propylarsoniumchloride, $2(C_3H_7)_4$ AsCl.PtCl₄, and platinic bistetra-i-propylarsoniumchloride, or $[(C_3H_7)_3$ AsCl]₂PtCl₄; E. Mannheim, E. Amort, and A. Partheil and E. Amort, platinic bistetrabutylarsoniumchloride, $2(C_4H_9)_4$ AsCl.PtCl₄, or $[As(C_4H_9)_3$ AsCl]₂PtCl₄; A. Partheil and E. Amort, A. Gronover, and A. Michaelis and H. Paetow platinic bistetrabenzylarsoniumchloride, $2As(C_4H_2).Cl.PtCl.$ and A. Michaelis and U. Paetow, platinic bistetrabenzylarsonlumchloride, 2As(C7H7)4Cl.PtCl4, or [(C,H,),AsCl],PtCl,H,O; and A. Michaelis and U. Paetow, platinic bismethyltribenzyl-

arsoniumchloride, $2(CH_3)(C_7H_7)_3$ AsCl.PtCl₄.

H. Landolt described platinic bistetramethylstiboniumchloride, $2(CH_3)_4$ SbCl.PtCl₄; R. Löwig, platinic quatertetraethylstiboniumchloride, $4(C_2H_5)_4$ SbCl.3PtCl₄; A. Partheil and E. Mannheim, and G. B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and E. Mannheim, and G. B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstiboniumchloride, $2(C_3H_5)_4$ SbCl.PtCl₄; A. Partheil and B. Buckton, platinic bistetraethylstibon A. Partheil and E. Mannheim, platinic bistetrapropylstiboniumchloride, $2(C_3H_7)(8bCl.PtCl_4)$; and G. T. Morgan and V. E. Yarsley obtained platinous trimethylstibinochloroplatinate,

[Pt{(CH_a)_aSb}_a]PtCl_a.

Hydrochloroplatinic acid, H₂PtCl₆, as indicated above, furnishes a series of salts, the chloroplatinates, R₂PtCl₆, typified by **ammonium chloroplatinate**, (NH₄)₂PtCl₆, which, as shown by E. von Meyer, ¹⁹ is not to be regarded as a double salt of ammonium chloride and platinic chloride. J. J. Berzelius, and J. Thomsen said that ammonium chloroplatinate is precipitated as a lemon-yellow, crystalline powder on adding a soln. of an ammonium salt to one of platinic chloride. If the tint is reddish-yellow, ammonium chloroiridate is probably present, and this impurity can be nearly all removed by boiling with nitric acid. J. W. Döbereiner suggested a method of purification by adding an excess of calcium oxide to the hydrochloroplatinic acid, to precipitate iron, copper, palladium, rhodium, and iridium oxides, before treatment with ammonium chloride. K. Seubert prepared the salt of a high degree of purity for at. wt. determinations:

A conc. soln, of ammonium chloride is poured into a dil. soln, of purified hydrochloroplatinic acid. The precipitate is washed by decantation successively with water, alcohol, and water until the filtrate has but a scarcely perceptible acidic reaction. The precipitate is collected on a suction filter, dried in vacuo over sulphuric acid, and then in an air-bath at 100° to 110°. The ammonium chloroplatinate so obtained can be reduced with hydrogen at 180°, washed by decantation with water, and ignited. The resulting spongy platinum is dissolved in dil. aqua regia, and the soln, evaporated many times with conc. hydrochloric acid. The product is dissolved in acidulated water, concentrated by evaporation in a current of chlorine until a drop of the liquid furnishes a crystalline mush when cooled on a glass plate. The crystals are separated from the cold liquid by a suction-filter, and dissolved in acidulated water so that the soln, has about 34.5 grms, of platinum per 1200 c.c. This soln., cooled by ice, is mixed with a soln of 50 grms, of ammonium chloride in 1200 c.c. of water, and the precipitate washed by decantation with acidulated, ice-cold water, and dried as indicated above. The spongy platinum can also be dissolved in aqua regia, or hydrochloric acid through which a current of chlorine is passing whilst the liquid is heated on a water-bath.

W. Halberstadt obtained the salt for at. wt. determinations as follows:

Platinum was dissolved in aqua regia, and the soln. evaporated repeatedly with conc. hydrochloric acid, and finally the diluted soln. was concentrated in a current of chlorine. Insufficient animonium chloride was added to precipitate all the platinum, the filtrate was again treated with insufficient ammonium chloride for complete precipitation, and the operation repeated on the filtrate once more. The three precipitates were separately washed, dried, and ignited. Each of the resulting products was boiled with hydrochloric acid, washed with water, calcined and weighed. The platinum was dissolved in aqua regia, etc., as before, and after evaporating the dil. soln. in a current of chlorine, the residue was dissolved in water, and an ice-cold soln. of the calculated quantity of ammonium chloride was added whilst the soln. was being stirred. The precipitate was washed by decantation with water, separated on a suction-filter, and dried in an air-bath at 150°.

S. M. Jörgensen mixed an aq. soln. of a mol of pentahydrated platinic chloride with a mol of ammonia, evaporated the liquid, and extracted the product with cold water to remove soluble impurities. E. H. Archibald purified the platinum in the following manner:

The metal was precipitated from a soln. of the chloride as ammonium chloroplatinate, the precipitate being thoroughly washed and dried and then reduced in a current of pure hydrogen. After removal of ammonium chloride, the platinum-black was boiled with successive portions of concentrated hydrochloric acid to dissolve out traces of iron. The platinum was then redissolved, and the above processes repeated several times. After three operations all indications of iridium had disappeared. To avoid the difficulty of removing the last traces of nitric acid from a soln. prepared by dissolving platinum in aqua regia, the metal was brought into soln. by making it the anode in an electrolytic cell containing hydrochloric or hydrobromic acid. Ammonium or potassium chloroplatinate or bromoplatinate was obtained from a soln. of purified platinum chloride or bromide as indicated above.

Analyses of the salt were made by J. J. Berzelius, K. Seubert, W. Halberstadt, F. Schulze, P. C. Ray and A. C. Ghosh, and S. M. Jörgensen. As shown by J. J. Berzelius, and H. St. C. Deville and J. S. Stas, precipitated ammonium chloroplatinate is a lemon-yellow, crystalline powder; and when crystallized from its aq. soln., it yields orange-yellow octahedra. J. J. Berzelius added that a reddish-

yellow colour is produced if iridium be present, and, according to T. Wilm, if palladium or rhodium be present. E. Carozzi observed that the yellow octahedral crystals are isomorphous with the corresponding salts of lead, and tin. According to A. Ries, the cubic crystals appear in three forms: (i) Hexakistetrahedral crystals, stable at low temp., and the cleavage is octahedral; (ii) Pseudoctahedral crystals stable up to 0° , and the cleavage is pseudoctahedral; and (iii) Hexakisoctahedral crystals from a little below 0° up to the temp. of decomposition, and the cleavage is octahedral. There is possibly a fourth pseudocubic form stable at very low temp. G. Engel gave a=9.834 A. for the cubic lattice. P. Niggli and W. Nowacki discussed the crystals. M. L. Huggins, G. B. Naess and O. Hassel, and R. W. G. Wyckoff and co-workers studied the lattice structure of methylammonium chloroplatinate. E. Carozzi studied the isomorphism with ammonium chlorostannate. According to C. H. D. Bödeker, the sp. gr. is 2.995 to 3.009; H. Töpsöe gave 3.065; E. Carozzi, 3.009; and E. H. Archibald, 3.034. R. Romanis discussed the mol. vol.

P. Vallet said that decomposition by heat commences at 250° and is complete at 430°, and the reduction by hydrogen commences at 120°, and is complete at 200°. E. H. Archibald observed that the salt is slightly decomposed at 185°. J. J. Berzelius observed that when heated below redness, there is formed a greyishgreen powder, probably, ammonium chloroplatinite. S. M. Jörgensen observed that platinous cis- and trans-dichlorodiammine are formed. J. J. Berzelius, and P. C. Ray and A. C. Ghosh found that at a higher temp., the salt is decomposed, without melting, to form platinum, hydrogen chloride, nitrogen, and ammonium chloride, and E. J. Maumené thought that some NH.HCl is produced. W. Knop observed that the compound precipitated from a conc. hydrochloric acid soln., washed and dried at 100°, and rapidly cooled, decrepitates vigorously when heated, owing to the presence of occluded nitrogen which can be liberated by dissolution in soda-lye. J. Thomsen gave for the heat of formation (Pt, 2Cl₂, 2NH₄Cl, Aq.) =84·62 Cals. P. Walden found the eq. conductivity, λ, of a soln. of a gramequivalent in v litres, to be:

v		64	128	256	512	1024
λ		115.5	120.0	124-1	$127 \cdot 1$	129.3

Observations were also made by S. Nagami. E. Feytis gave for the magnetic susceptibility, -0.42×10^{-6} mass unit. N. W. Fischer, and W. Crookes observed that 1 part of ammonium chloroplatinate will communicate a yellow tinge to 20,000 parts of water, and that 100 parts of cold water dissolve 0.667 part of salt, and with boiling water, 1.25 parts. A. von Mussin-Puschkin measured the solubility of the salt. E. H. Archibald and J. W. Kern found the solubility, S grms. $(NH_4)_2PtCl_6$ in 100 grms. of water, to be:

and at 20° , for soln. with C mol of ammonium chloride per litre,

E. Ogawa's observations on the mutual solubility of ammonium chloroplatinate and chloroiridate, at 25°, are summarized in Figs. 80 and 81. L. Pigeon noted that when heated 5 hrs. in **chlorine** at 360°, the salt lost 12·23 per cent. in weight; and W. Knop found that when chlorine is passed into water with the salt in suspension, nitrogen is evolved, and hydrochloroplatinic and hydrochloric acids are formed. N. W. Fischer found that the salt is insoluble in cold **hydrochloric acid**, and its soln. in hot hydrochloric acid deposits the salt on cooling. K. Birnbaum studied the action of sulphurous acid. W. Knop observed that the salt is decomposed by hot, conc. **sulphuric acid**, and N. W. Fischer, that its soln. in hot, dil. sulphuric

acid deposits the salt on cooling. P. Schottländer observed that with sodium thiosulphate, there is formed a complex between sodium thiosulphate, and platinum sulphite. R. Fresenius found that the salt is very slightly soluble in aq. ammonia in the cold, but it readily dissolves in the hot liquid, forming, according to N. W. Fischer, a colourless or pale yellow liquid. The ammoniacal soln. is stable in closed vessels, but when exposed to air, or when evaporated, it deposits a greyish-white precipitate; and a precipitate is also formed when the ammoniacal soln. is

700 (NH4) 2 Ir Cl₆ per cent.

Fig. 81.—The Solubility of Ammonium chloroiridate in the presence of the chloroplatinate.

treated with conc. acids-phosphoric, sulphuric, nitric, or hydrochloric-with alkali carbonates, phosphates, sulphates, and oxalates, and with ferrous sulphate. A. Laurent and C. Gerhardt found that alcohol precipitates from the ammoniacal soln, a white amorphous mass approximately $\hat{N}_4H_{10}PtCl_2$ —but the composition is not constant. J. J. Berzelius, and W. Knop noted that when ammonium chloroplatinate is digested with aq. ammonia, a pale greenish-yellow powder is formed, containing, probably, some [Pt(NH₃)₄]Pt(I₄. R. Böttger observed that a conc. soln. of **ammonium chloride** precipitates the salt almost completely from its aq. soln., and H. St. C. Deville and J. S. Stas said that the salt is sparingly soluble in a cold, sat. soln. of ammonium chloride, and that the yellow soln. slowly becomes colourless in contact with the chloroplatinate, or when warmed to 100°. N. W. Fischer observed that the salt crystallizes out on cooling a soln. in hot nitric acid. I. I. Shukoff and O. P. Schipulina found that the salt decomposes when absorbed on **charcoal**. For the reduction by **carbon monoxide**, vide supra, colloidal platinum. The salt is insoluble in ether, and in absolute alcohol. R. Fresenius studied the solubility in alcohol. J. Dalietos and K. Makris found alcohol vapour is oxidized by sodium but not by potassium chloroplatinate. According to R. Fresenius, at 15° to 20°, 1 part of the salt dissolves in 26,535 parts of 97.5 per cent. alcohol, in 1.476 parts of 76 per cent. alcohol, and 66.5 parts of 55 per cent. alcohol. If free hydrochloric acid is present, 1 part of the salt dissolves in 76 per cent. alcohol. O. Döpping found that the salt is soluble in a soln. of ammonium succinate; and C. Claus, very soluble with decomposition in a soln. of potassium thiocyanate. W. Knop observed that the salt is soluble in a soln. of sodium hydroxide; and E. von Meyer added that a large excess of potassium hydroxide liberates an atom of nitrogen per mol. in the form of ammonia, and with a smaller proportion of potassium hydroxide less nitrogen is so evolved. Fulminating platinum is one of the chief products of the action. N. W. Fischer observed that the salt is soluble in a soln. of stannous chloride; and J. B. Rogojsky, that it is less soluble in a soln, of hydrochloroplatinic acid than it is in water.

M. L. Huggins prepared tetramethylammonium chloroplatinate, (CH₃)₄NPtCl₆,

319

and found that the X-radiograms corresponded with a cubic lattice with edge a=12.65 A., and having each platinum atom surrounded by six chlorine atoms at the corners of a regular octahedron, and each nitrogen atom surrounded by four carbon atoms at the corners of a regular tetrahedron. The distance of the Pt-Cl atoms apart is 2.35 A., if that of the N-C atoms is assumed to be 1.47 A.

J. Thiele ²⁰ prepared hydrazinium chloroplatinate, $(N_2H_5)_2PtCl_6$, by mixing a soln. of platinic chloride in absolute alcohol with a conc. aq. soln. of hydrazine hydrochloride and precipitating with absolute ether, washing with the ether, and drying in vacuo. The yellow salt is stable, and dissolves in water with effervescence. E. Herlinger ²¹ prepared **propylammonium chloroplatinate**, $\{N(C_3H_7)_4\}_2PtCl_6$.

J. J. Berzelius 22 observed that potassium chloroplatinate, K2PtCl6, is precipitated as a lemon-yellow, crystalline powder on mixing an aq. soln. of platinic chloride with a soln, of potassium hydroxide or of a potassium salt. W. A. Noyes and H. C. P. Weber evaporated 500 c.c. of a soln. of hydrochloroplatinic acid, produced from about 120 grms, of platinum, and contained in a glass-stoppered flask in a current of chlorine, until the liquid occupied about 250 c.c. It was then filtered and diluted to about a litre, and poured in a fine stream into a soln. of about one-third more than the theoretical quantity of potassium chloride, keeping the liquid agitated by a current of air. The precipitate was washed successively in water, alcohol, and ether, and dried by gradually raising the temp. to 400° in a current of air dried by conc. sulphuric acid and phosphorus pentoxide. It can be obtained having a high degree of purity by the methods employed by K. Seubert, W. Halberstadt, or E. H. Archibald for the corresponding ammonium salt- vide supra. J. S. Stas also described the preparation of the salt having a high degree of purity. The need for the removal of the last traces of nitric acid from the soln, before adding the potassium chloride was discussed by H. Precht and co-workers. E. H. Archibald and co-workers, A. F. Holleman, R. Fresenius, W. A. Noyes and H. C. P. Weber, and W. Dittmar and J. McArthur; the most suitable washing liquid, by H. Precht and co-workers, R. Finkener, D. Lindo, L. Tietjens and B. Apel, A. H. Allen, B. Sjollema, A. Atterberg, and H. Fresenius; and the most suitable conditions for drying the salt, by A. L. Winton, R. Ruer, R. Fresenius, F. T. B. Dupré, C. G. Eggertz and L. F. Nilson, and G. Krause. The preparation of the salt was discussed by P. Rudnick; the composition by A. Vürtheim; the structure by T. M. Lowry; and the relative stability by H. I. Schlesinger and R. E. Palmeteer.

Potassium chloroplatinate varies in colour from a lemon-yellow to orangeyellow. According to A. L. Winton, the slow evaporation of dil. soln. yields large crystals, and conc. soln. yield a fine powder. The crystals belong to the cubic system, and are usually octahedral though they may appear in thin plates and rod-like forms. The (111)-cleavage is well defined. The crystals were studied by R. Reinicke, G. B. Naess and O. Hassel, F. J. Ewing and L. Pauling, J. E. Lennard-Jones and B. M. Dent, P. P. Ewald, W. Biltz, and N. Wooster. According to P. Stoll, the X-radiograms correspond with a face-centred, cubic lattice with the parameter a=9.64 A.; G. Engel gave 9.725 A. There are four molecules in a unit cell arranged as indicated in Fig. 82. The atoms of platinum are face-centred in the elementary cell; the 8 atoms of potassium are arranged at the corners of a cube so that they appear about the platinum atoms as if on a sphere with radius 4.17 A.; and the 6 atoms of chlorine are arranged at the corners of an octahedron about each atom of platinum at a distance 2.48 A. W. A. Frederikse and H. J. Verweel gave 2.29 A. The calculated ionic radii are: for platinum, 0.73 A.; for potassium, 1.80 A.; and for chlorine, 1.75 A. Observations were made by M. Mathieu. The sp. gr. found by G. Tschermak is 3.694; H. Schröder, 3.344; C. H. D. Bödeker, 3.586; E. H. Archibald, 3.499 at 24°/4°; and R. Klement, 3.474 at 25°/4°, and for the mol. vol. 140.0. R. Romanis discussed the mol. vol. I. Traube found that at 20°/4°, soln. with 0.874, 0.919, and 0.930 per cent. of potassium chloroplatinate had the respective sp. gr. 1-00408, 1-00445, and 1-00457; and the respective mol. soln. vol., 163.5, 159.9, and 157.6. G. B. Naess and O. Hassel studied the interatomic distances. F. Rüdorff found that measurements of the rate of diffusion agree with the assumption that in aq. soln. KCl and PtCl₄

Fig. 82.—The Space-Lattice of Potassium Chloroplatinate, K_2PtCl_6 .

are formed. H. W. Hake exposed K₂PtCl₆.6H₂O to air and observed that deliquescence continued till it had absorbed 15 mols, more of water. E. H. Archibald observed that the purified salt can be heated to 400° in dry air without decomposition, but a specimen prepared from an aqua regia soln, was found by W. A. Noves and H. C. P. Weber to be decomposed at 250°. J.J. Berzelius observed that when strongly heated the salt is decomposed to form a mixture of platinum and potassium chloride. V. A. Jacquelain found that when the salt is heated to a temp. a little below its m.p., it is partially decomposed, and the separated platinum remains as a black powder when the pro-

duct is washed with water; if the salt be fused for an hour, the whole of the platinum forms shining lamine possibly owing to the welding of the grains of powder, as the potassium chloride volatilizes, the lamine of platinum unite to form a network of metal, but decomposition is incomplete even after the salt has been kept in a molten state for a long time. G. Gire observed that dissociation begins at about 600° , and below 774° , the m.p. of potassium chloride, the heat of the reaction is 38.6 Cals. and above that temp., 46.0 Cals. The vap. press., p, in mm. of mercury, is:

H. Kopp gave 0.120 for the mol. ht., and the subject was studied by J. Maydel. J. Thomsen gave for the heat of formation (Pt, 2Cl₂, 2KCl)=89.0 Cals.; and from a soln. of K₂PtCl₄ and chlorine gas, 47.9 Cals.; and (Pt, 2Cl₂, 2KCl, Aq.)=84.62 Cals.; L. Pigeon gave (PtCl₄, 2KCl)=29.7 Cals. in the solid state, and 23.53 Cals. in aq. soln. J. Thomsen gave -13.76 Cals. for the heat of solution. N. S. Kurnakoff found that the index of refraction of a 13.375 per cent. soln., and of sp. gr., 1.11225 at. 17·2°/4°, is 1·34770 in Li-light, and 1·35021 in Na-light. This gives 80·5 for the mol. refraction for Na-light, and with the μ -formula; and the corresponding at refraction of platinum is 24.7. L. Raiteri gave 1.8103 for $\lambda = 677$; 1.8209 for $\lambda = 606$; 1.8353 for $\lambda = 535$; and 1.8560 for $\lambda = 458$. J. Lifschitz and E. Rosenbohm studied the optical properties. O. Stelling examined the X-ray spectrum. R. Samuel and co-workers, A. Hantzsch, and H. I. Schlesinger and M. W. Tapley studied the absorption spectrum; and O. Stelling and F. Olsson, and S. Aoyama and co-workers, the X-ray spectrum. P. Walden gave for the eq. electrical conductivity, λ , of a soln. of a gram-equivalent in v litres:

v		32	6 4	128	256	512	1024	
λ		108.5	114.4	119-1	122.7	125.7	125.4	

J. A. Prins and R. Fontayne, S. Nagami, and A. Werner and A. Miolati also made some observations on this subject; and E. R. Smith measured the potential of the chloroplatinate-chloroplatinite electrode. E. Feytis found the magnetic susceptibility to be -0.393×10^{-6} mass unit. E. Rosenbohm studied the subject.

The salt was analyzed by K. Seubert, J. J. Berzelius, W. Halberstadt, M. Vezes, and W. Dittmar and J. McArthur. K. Seubert always obtained a little water

when the salt is reduced in hydrogen. W. Dittmar and J. McArthur said that the trace of water which the salt contains may be present as hydroxide and not as absorbed water or water of crystallization. J. S. Stas said that the salt can be prepared "absolutely" free from water if obtained precipitated from very dil. soln., and, according to E. H. Archibald, the salt dried at 400° is free from water. The constitution of the salt was discussed by J. A. N. Friend, and S. H. C. Briggs. According to J. J. Berzelius, and R. Finkener, the salt is completely reduced to platinum when it is heated in hydrogen. P. Vallet said that reduction by hydrogen commences at 160°, and it is complete at 300°. The salt is sparingly soluble in cold water, but more soluble in hot water, forming a pale yellow liquid. W. Crookes found that 100 parts of water dissolve 0.926 part of salt at 15°, and 5.26 parts at 100°. G. Kirchhoff and R. Bunsen found the solubility, S grms. of salt per 100 grms. of water, to be:

and E. H. Archibald and co-workers gave:

N. Demassieux and J. Heyrovsky studied the dissociation of the salt in soln. According to W. A. Noyes and H. C. P. Weber, and E. H. Archibald and co-workers, the aq. soln. slowly acquires an acidic reaction at ordinary temp., and more rapidly when boiled. The results of E. H. Archibald and W. A. Gale are summarized in Fig. 83. E. Sonstadt observed that heating a soln. of 1 part of the salt in 1000 parts

of water produces no perceptible change in 1 to 2 hrs., a soln. of 1 part of the salt in 10,000 parts of water becomes turbid almost at once, and almost opaque after it has stood for a few hours. If the soln. be heated for some days, adding water from time to time, a precipitate is formed, and the liquid is clear. It is suggested that the hydrolysis is initiated by the salt dissociating into platinic and potassium chlorides, and the water then attacks the platinic chloride. Ex-

Fig. 83.—The Hydrolysis of Potassium Chloroplatinate and Bromoplatinate.

posing the aq. soln. to sunlight also hastens the hydrolysis as in the case of heat. J. Fiedler observed that a soln. of potassium chloroplatinate is reduced to platinum by exposure to sunlight. A. von Schrötter said that potassium chloroplatinate is less soluble in a soln. of **potassium chloride** than it is in water, and nearly insoluble in a sat. soln. of potassium chloride, so that O. W. Gibbs could say that it is insoluble in a soln. of potassium chloride. E. H. Archibald gave for the solubility, S grms. K_2PtCl_6 in 100 grms. of soln. containing [KCl] mols of potassium chloride per litre, at 20° :

The solubility decreases with increasing concentration of potassium chloride, but increases with increasing concentration of **sodium chloride**—Fig. 84. The data for sodium chloride at 16° are:

A. von Schrötter observed that potassium chloroplatinate is slightly soluble in cold, dil. acids; but it is more soluble when the temp. is raised. W. Dittmar vol. xvi.

and J. McArthur observed that 100 parts of water dissolve 0.628 part of the salt; of 5 per cent. hydrochloric acid, 0.662 part; of 5 per cent; soln. of platinic chloride, 0.233 part; of a soln. of platinic chloride containing 0.05 grm. free HCl, and 0.05 grm. of platinum per c.c., 0.168 part; and of sulphuric acid, containing 40 grms. SO₃ per litre, 0.900 part. L. Tschugaeff and S. Krassikoff studied the action of sulphur dioxide. J. L. Lassaigne said that the salt is not attacked by cold, conc. sulphuric acid. C. Himly found that potassium chloroplatinate is readily dissolved by a soln. of **sodium thiosulphate** that contains a little sodium hydroxide. A. Minozzi observed that a selenite reduces the soln, to form platinum selenide. According to W. Peters, potassium chloroplatinate does not absorb dry ammonia, but it combines with methylamine to form potassium dodeciesmethylaminechloroplatinate, K₂PtCl₆.12CH₃NH₂, and with dimethylamine to form potassium sexiesdimethylaminechloroplatinate, K₂PtCl₆.6(CH₃)₂NH. A soln. of ammonium chloride was found by R. H. Brett to dissolve potassium chloroplatinate; A. L. Winton and H. J. Wheeler observed that the action is very small; and H. Haefeke, and R. Finkener noted that the effect produced depends on the duration of the attack, and the temp. P. Jannasch and C. Stephan observed

Fig. 84... The Effect of Potassium and Sodium Chlorides on the Solubility of K₂PtCl₆.

Fig. 85.—The Solubility of K₂PtCl₆ in Methyl and Ethyl Alcohols.

that **hydrazine hydrate** precipitates platinum quantitatively from a boiling soln. M. Vèzes found that a hot, dil. soln. of the salt dissolves in a soln. of **potassium nitrite**, forming a yellow liquid which when heated gives off nitrous fumes, and possibly contains $K_2Pt(NO_2)Cl_5$; and also **potassium tetranitrito-platinite**, $K_2Pt(NO_2)_2Cl_2$ is formed.

P. Rohland said that potassium chloroplatinate is insoluble in **ether**, and in **methyl alcohol**; M. Péligot, that a litre of methyl alcohol at 20° dissolves 0-072 grm. of the salt; and E. H. Archibald and co-workers, that the solubility, S grm. of K_2PtCl_6 in 100 grms. of soln., at 20° , with methyl alcohol containing different proportions of water, Fig. 85, is as follows:

H. Precht observed that 1 part of the salt dissolves in 42,600 parts of absolute **ethyl alcohol**; 37,300 parts of 96 per cent. alcohol; and 26,400 parts of 80 per cent. alcohol; and R. Fresenius, that at 15° to 20°, 1 part of the salt dissolves in 12,083 parts of absolute alcohol; in 3775 parts of 76 per cent. alcohol; in 1053 parts of 55 per cent. alcohol; in 1835 parts of 76 per cent. alcohol containing hydrogen chloride. Measurements were also made by M. Péligot, and M. Pierrat. E. H. Archibald and co-workers found that the solubility, S grm. of K_2PtCl_6 in

100 grms. of soln., at $20^\circ,$ with ethyl alcohol containing different proportions of water, Fig. 85, is as follows :

The solubilities in **isobutyl alcohol** saturated with water, and also with 91.8 per cent. of water, are, respectively, 0.6250 and 0.3180 grm. of K_2PtCl_6 per 100 grms. of soln. R. Finkener said that potassium chloroplatinate is less soluble in a mixture of alcohol and ether than it is in alcohol alone, and hence R. Finkener, and B. C. Corenwinder and G. Contamine recommended a mixture of the two for washing the precipitated salt; and H. N. Warren proposed using a mixture of **amyl alcohol** and ether. O. Döpping found that the salt is soluble in a soln. of **ammonium succinate.** Potassium chloroplatinate was found by A. Atterberg to be reduced to metal by **thioacetic acid**; by H. N. Warren, by **formic acid**; by R. Böttger, M. Woussen, F. Jean and J. A. Trillat, and B. C. Corenwinder and A. Contamine, by **sodium formate**; by L. L. de Koninck, by **calcium formate**; and by F. Mohr, by **sodium oxalate.**

The reduction of potassium chloroplatinate to metal by zinc dust was noted by J. Diamant; by mercury, by E. Sonstadt; by magnesium ribbon, by L. L. de Koninck, C. Favre, A. Villiers and F. Borg, A. Fiechter, R. Trnka, and A. Atterberg; and by finely-divided cobalt, by L. Pigeon. W. F. Hillebrand noted a reaction between the platinum of the evaporating dish, and a soln. of the salt. H. Rose noted that the salt is soluble in soln. of potassium hydroxide, and that when a mixture of the salt with potassium hydroxide and a little water is heated, some platinum dioxide is formed. The hot sat. soln. in potash-lye on cooling and the addition of hydrochloric acid deposits the chloroplatinate. The salt is insoluble in hot or cold soln. of alkali carbonates or hydrocarbonates. A. Mercier found that the salt is reduced to metal by mercurous chloride.

A. Cossa prepared **potassium amminopentachloroplatinate**, $K[Pt(NH_3)Cl_5]$. H_2O , by oxidizing an acidified soln. of potassium amminotrichloroplatinite with potassium permanganate, or chlorine, and evaporating the liquor on a waterbath; and by the action of chlorine, on $[Pt(NH_3)Cl_3]_2[Pt(NH_3)_4]$, separating the insoluble $[Pt(NH_3)_4Cl_2]Cl_2$, and adding potassium chloride to the clear liquor. The yellow, triclinic crystals lose their water at 100° . A. Werner and A. Miolati, S. M. Jörgensen, and S. H. C. Briggs discussed the constitution of the salt. A. Werner and A. Miolati found the conductivity, μ , of the salt in 125 litres to be 108.5, and the values increase with time.

showing a progressive hydrolysis. If the salt be mixed with platinous tetrammino-chloride, there is formed the complex platinous tetramminotetrachloroammino-platinate, $[Pt(NH_3)Cl_5]_2Pt(NH_3)_4$. A. Werner and F. Fassbender also prepared potassium pyridinepentachloroplatinate, $K[Pt(C_5H_5N)Cl_5]$.

G. Kirchhoff and R. Bunsen prepared rubidium chloroplatinate, Rb_2PtCl_6 , by adding a soln. of rubidium chloride to one of platinic chloride, and drying the washed precipitate at 150° ; and A. Windaus, by pouring a small excess of a conc. soln. of platinic chloride into a soln. of a rubidium salt in a little alcohol acidified with hydrochloric acid, then adding alcohol, filtering the mixture by suction, washing with alcohol, and drying at 105° . The pale yellow powder contains regular octahedra. G. Natta and R. Pirani examined the X-radiogram, and found that the cubic cell has a=9.83 A.; a volume 949.85×10^{-24} c.c., and that there are 4 mols. per unit cell. The density is 4.04. G. Engel gave a=9.882 A., and density 3.957. G. B. Naess and O. Hassel studied the lattice constants; and G. Kirchhoff and R. Bunsen found that hydrogen partially removes the chlorine from the platinum in the cold, and reduction is complete when the salt is heated. The salt is less soluble in water than the potassium salt; W. Crookes said that

100 parts of water at 15° dissolve 0.135 part of salt, and at 100°, 0.637 part; and G. Kirchhoff and R. Bunsen measured the solubility of the salt, and E. H. Archibald and L. T. Hallett's results are indicated below. The minimum at 14° shows that the salt forms a hydrate. W. Peters observed that the salt does A. Werner and F. Fassbender prepared rubidium not absorb dry ammonia. pyridinepentachloroplatinate, $Rb[Pt(C_5H_5N)Cl_5]$. G. Kirchhoff and R. Bunsen, and A. Windaus prepared cæsium chloroplatinate, Cs₂PtCl₆, by the methods employed for the rubidium salt. The pale yellow powder consists of microscopic, regular octahedra, which are less soluble in water than the rubidium salt. E. H. Ducloux examined the crystals of the salt; G. B. Naess and O. Hassel, the lattice constants. G. Engel gave a=10.192 A. for the cubic crystals. W. Crookes observed that 100 parts of water at 15° dissolve 0.076 part of salt, and at 100°, 0.383 part; and G. Kirchhoff and R. Bunsen measured the solubility of the casium salt. The solubility-S grms, of salt per 100 grms, of water-of the rubidium and exium salts, determined by E. H. Archibald and L. T. Hallett, were:

		0.	10°	20°	40°	60°	80°	100°
Rb ₂ PtCl ₆		0.0137	0.0200	0.0283	0.0565	0.0997	0.1824	0.3340
Cs ₂ PtCl ₆		0.0047	0.0064	0.0086	0.0158	0.0290	0.0525	0.0915

G. Natta and R. Pirani found that the crystals belong to the cubic system and that the X-radiograms indicate that there are 4 mols. per unit cell, and that $a=10\cdot15$ A.; the volume is $1045\cdot7\times10^{-24}$ c.c.; and the density is $4\cdot25$. They also studied the solid soln, of rubidium and casium chloroplatinates, and of casium chloroplatinate and chlorotellurate. G. Engel gave $a=10\cdot185$ A., and density, $4\cdot205$. A. Werner and F. Fassbender prepared casium pyridinepentachloroplatinate, $Cs[Pt(C_5H_5N)Cl_5]$.

C. Scheibler ²³ prepared **lithium chloroplatinate**, Li₂PtCl₆.6H₂O, by evaporating cone. soln. of the salt over sulphuric acid. The *hexahydrate* forms orange-yellow, tabular crystals, which lose their water at 180°, and, according to W. Peters, the salt decomposes. C. Scheibler added that the general behaviour of the salt resembles that of the sodium salt; and it is readily soluble in water, alcohol, and a mixture of alcohol and ether, but not in ether. G. F. Smith and A. C. Shead recommended the use of this salt in place of hydrochloroplatinic acid for precipitating potassium. A. Werner and F. Fassbender prepared **lithium pyridinepentachloroplatinate**,

 $Li[Pt(C_5H_5N)Cl_5].nH_2O.$

L. N. Vauquelin, and A. von Mussin-Puschkin prepared sodium chloroplatinate, Na₂PtCl₆.6H₂O, by mixing aq. soln. of platinic and sodium chlorides, and evaporating; P. Rohland recommended using theoretical proportions of the two salts. N. S. Kurnakoff and M. I. Ravitsch studied the ternary system: NaCl-PtCl4-H2O; and T. A. Genke, the mutual solubilities of the component salts, and concluded that sodium chloroplatinate is hydrolyzed in aq. soln. at 25°. S. Nagami found that for soln. with an eq. of NaHPtCl₆ in 200, 500, and 1000 litres, at 25°, the conductivities were 497, 511, and 517 respectively. L. F. Nilson, and R. Böttger added sodium carbonate to a soln. of hydrochloroplatinic acid. J. S. Stas noted that some sodium chloroplatinate is formed when sodium chlorate is fused in a platinum vessel. H. Precht purified the dry salt by dissolving it in hot alcohol when sodium chloride remains undissolved. The hexahydrate appears in aurorared columns or plates, or as an orange-red powder. M. Delépine and P. Boussi studied the hydrates. P. Rohland, and H. Töpsöe obtained triclinic needles, and J. C. G. de Marignac, triclinic pinacoids with the axial ratios a:b:c=0.9625:1:0.8444, and $\alpha = 101^{\circ} 56'$, $\beta = 128^{\circ} 2'$, and $\gamma = 72^{\circ} 6'$, as given by P. Groth. H. Töpsöe gave 2.500 for the sp. gr., and 226.0 for the mol. vol. H. Precht gave 1.368 for the sp. gr. of a sat. soln. containing 39.77 per cent. of salt at 15°. B. L. Vanzetti measured the rate of diffusion of the salt in aq. soln., and in gelatin; and F. Rüdorff observed that the diffusion experiments indicate that sodium chloroplatinate behaves like a double salt in aq. soln.

According to L. N. Vauquelin, the hexahydrate loses all its water of hydration when carefully heated, and leaves the anhydrous salt as an orange-yellow powder. H. Precht said that the hexahydrate loses most of its water at about 100° . J. C. G. de Marignac observed that the water is expelled at 100° , W. Peters at 150° , and J. Thomsen at 150° to 160° . M. A. Rakuzin studied the subject. The anhydrous chloroplatinate was found by L. N. Vauquelin to swell up when more strongly heated, but it requires a fairly high temp. for its complete decomposition into platinum and sodium chloride. L. Wöhler and P. Balz observed no evidence of the formation of complexes of univalent or tervalent platinum in the thermal decomposition of the salt; the chloroplatinate is stable below 600° , and above 800° , only the chloroplatinite is formed. G. Gire noted that the heat of formation is 40.6 Cals., and the vap. press., p, in mm. of mercury is:

F. M. Raoult found that the lowering of the f.p. of aq. soln. indicates that in a soln. of a mol of the salt in 4 litres of water, about a quarter of a mol. is dissociated. L. Pigeon gave for the heat of formation (PtCl₄, 2NaCl)=13·9 Cals. for the solid, and 25·29 Cals. for the aq. soln. J. Thomsen gave (Pt, 2Cl₂, 2NaCl)=73·72 Cals.; (Pt, 2Cl₂, 2NaCl, 6H₂O)=92·89 Cals.; (Pt, 2Cl₂, 2NaCl, Aq.)=84·62 Cals.; and for the reaction between gaseous chlorine and an aq. soln. of sodium chloroplatinite, 43·03 Cals.; V. F. Miller and H. Terry, 40·88 Cals.; J. Thomsen, for the heat of crystallization, 19·17 Cals., or an average of 3·195 Cals. for each mol. of water, when the observed values are 4·32 Cals. each for the first and second mols, 2·54 Cals. each for the third and fourth mols, and 2·725 Cals. each for the fifth and sixth mols. The heat of solution of the anhydrous salt is 8·54 Cals., and for the hexahydrate, -10·634 Cals., or for the hydrates:

E. Doumer found the refractive index to be 0.267 when the value for water is unity; and N. S. Kurnakoff gave for a 29·123 per cent. soln., and sp. gr. 1·28259, the refractive indices 1·38749 for Li-light, and 1·39085 for Na-light; and the mol. refraction for Na-light with the μ -formula is 106·5. This makes the at. refraction of platinum to be 16·1 and 21·0. According to A. Hantzsch and co-workers, eq. soln. of hydrochloroplatinic acid, and of sodium chloroplatinate in the same solvent are optically identical, that is, show the same absorption spectrum, and the molecular absorption is independent of the degree of ionization. The light absorption of the acid and of the salt is also unaffected by changes of temperature. The solvent does not appear to exercise any influence on the absorption in the blue and violet parts of the spectrum, but does so to a very slight extent in the green and ultra-violet. J. Fiedler observed that a soln. of sodium chloroplatinate is reduced to platinum by exposure to sunlight. L. Pigeon found that the electrical conductivity of a soln. of 0·01 mol of salt in a litre of water is 1·830.

A. von Mussin-Puschkin said that the hexahydrate is freely soluble in water, and J. Thomsen made a similar observation with respect to the anhydrous salt. H. Precht found that a soln. sat. at 15° contains 39.77 per cent. of Na₂PtCl₆, and that in boiling water it dissolves in almost all proportions. T. A. Henke found that the salt is hydrolyzed in aq. soln. G. Sailer observed that sodium thiosulphatoplatinite is ultimately formed by the action of sodium hyposulphite.

W. Peters observed that the dehydrated salt takes up dry ammonia to form sodium hexamminochloroplatinate, Na₂PtCl₆.6NH₃, and that this ammine, in vacuo, forms sodium pentamminochloroplatinate, Na₂PtCl₆.5NH₃. Sodium chloroplatinate also unites with methylamine to form sodium dodeciesmethylaminechloroplatinate, Na₂PtCl₆.12CH₃NH₂; and with dimethylamine to form sodium sexiesdimethylaminechloroplatinate, Na₂PtCl₆.6(CH₃)₂NH. A. von

Mussin-Puschkin observed that ammonium chloride precipitates ammonium chloroplatinate from the soln. of the sodium salt, and sodium chloride remains in soln.

The hexahydrate was found by A. von Mussin-Puschkin to be freely soluble in alcohol, and H. Precht observed that it is more soluble in absolute alcohol than it is in aq. alcohol. M. Péligot's measurements of the solubility of the salt in alcohol

Fig. 86.—The Solubility of Sodium Chloroplatinate in Ethyl Alcohol.

are summarized in Fig. 86. H. Precht observed that alcohol precipitates the salt from a sat., ag. soln., and that a sat. soln. in absolute alcohol contains 11.9 per cent. of salt. The solubility in 95 per cent. alcohol is 6.34 per cent., and in 90 per cent. alcohol at 15°, 5.35 per cent., and at 55°, 27.15 per cent. A soln. in absolute alcohol contains 48.3 per cent. of dehydrated salt, and on adding a drop of water to the liquid, the mass solidifies as the hexahydrate is formed. On cooling a soln. of the salt in 99.2 per cent. alcohol, a mixture of the anhydrous and hexahydrated salt separates out. J. Dalietos and C. G. Makris found alcohol vapour is readily oxidized by sodium but not by potassium chloroplatinate. H. Precht observed that the salt is precipitated by ether from the sat. aq.

soln. at 15°; and a mixture of equal parts of alcohol and ether dissolves 2·43 per cent. of the hexahydrate. P. Rohland, and H. Precht said that the salt is insoluble in ether free from alcohol. A. Werner and F. Fassbender prepared sodium pyridinepentachloroplatinate, Na[Pt(C₅H₅N)Cl₅].

L. Pigeon observed that finely-divided cobalt reduces the salt and platinum is formed. A. von Mussin-Puschkin reported that sodium or potassium hydroxide or carbonate forms with a soln. of sodium chloroplatinate a precipitate which dissolves in an excess of the alkali. E. H. Archibald and co-workers discussed the action of potassium chloride illustrative of the balanced reaction: $K_2PtCl_6+2NaCl \rightleftharpoons Na_2PtCl_6+2KCl$, exemplified by the effect of sodium chloride on the solubility of potassium chloroplatinate—vide supra. W. Ostwald found that the theoretical proportion of silver nitrate precipitates silver chloroplatinate quantitatively.

P. A. von Bonsdorff ²⁴ prepared copper chloroplatinate, CuPtCl₆.6H₂O, by the spontaneous evaporation of a mixed soln. of the constituent salts over sulphuric The pale, olive-green crystals of the hexahydrate resemble those of the magnesium salt. H. Töpsöe observed that the needles or prisms are trigonal, with the axial ratio a: c=1:0.5219, and $a=112^{\circ}2'$. The sp. gr. is 2.734, and the mol. vol. 212.8. L. Pauling studied the crystals. According to P. A. von Bonsdorff, the crystals effloresce to a greenish-grey powder over sulphuric acid; they are stable in the dry winter's air, but deliquesce in the humid air of summer. H. Töpsöe observed that 4 mols. of water are given off at 110°; and W. Peters said that the salt becomes anhydrous at 180°, and it is then dark brown, and absorbs dry ammonia to form copper octodecamminochloroplatinate, CuPtCl₆.18NH₃, which in vacuo forms copper hexamminochloroplatinate, CuPtCl₆.6NH₃. With methylamine, there is formed what are probably copper duodeviciesmethylaminechloroplatinate, CuPtCl₆.18CH₃NH₂; and copper quinquiesmethylaminechloroplatinate, CuPtCl₆.5CH₈NH₂; with dimethylamine there is formed copper duodeciesdimethylaminechloroplatinate, CuPtCl₆.12(CH₃)₂NH; and copper sexiesdimethylaminechloroplatinate, CuPtCl₆.6(CH₃)₂NH; and with trimethylamine, copper bistrimethylaminechloroplatinate, CuPtCl₆.2(CH₃)₃N. W. Peters observed that when copper chloroplatinate is boiled with formaldehyde or formic acid, traces of platinum are formed.

G. Gore 25 obtained evidence of the formation of a silver chloroplatinate,

Ag₂PtCl₆, by melting silver chloride in an atm. of chlorine in a platinum vessel. L. N. Vauquelin obtained a yellow precipitate by adding silver nitrate to a soln. of hydrochloroplatinic acid, and J. E. Herberger said that ammonia extracts only a part of the silver chloride contained in the precipitate. K. Birnbaum found that if silver chloride be dissolved in hydrochloroplatinic acid, the silver salt crystallizes out unchanged when the soln, is evaporated. The salt was prepared by A. Commaille, S. A. Norton, and S. M. Jörgensen. L. Pigeon reported the formation of silver chloroplatinate from a soln, containing the theoretical proportions of silver nitrate and hydrochloroplatinic acid; and A. Miolati added that if an excess of silver nitrate be present, Ag₂Pt(OH)₂Cl₄ is formed. W. Ostwald, the silver salt is formed quantitatively when the theoretical proportion of silver nitrate is added to a soln, of sodium chloroplatinate. L. Pigeon gave for the heat of formation (2AgCl, PtCl₄)=7.7 Cals. According to S. M. Jörgensen, and A. Miolati, cold water slowly decomposes the salt, forming silver chloride and H₂Pt(OH)₂Cl₄, and with hot water the reaction proceeds rapidly. observed that the salt absorbs about 10 mols. of dry ammonia, forming silver octamminochloroplatinate, Ag₂PtCl₆.8NH₃; and in vacuo, this forms silver tetramminochloroplatinate, Ag₂PtCl₆.4NH₃; K. Birnbaum obtained silver diamminochloroplatinate, Ag₂PtCl₆.2NH₃, by mixing freshly-prepared hydrochloroplatinic acid with an ammoniacal silver chloride soln, and washing the yellow product rapidly with cold water, and drying it over sulphuric acid. The salt loses water at 100°, and at a higher temp, forms platinum and silver chloride. It is insoluble in water. Ammonia is evolved when the product is treated with potashlye; when boiled with sodium carbonate, a dirty yellow precipitate is formed containing a part of the silver and part of the platinum.

W. Peters found that when a mixed soln, of auric chloride and hydrochloroplatinic acid is evaporated, no **gold chloroplatinate** is formed since the gold separates out in the metallic state. A. Cahours and H. Gal prepared **platinic**

quatertriethylphosphinechloroaurate, $Pt\{P(C_2H_5)_3\}_4|AuC|_4$.

P. A. von Bonsdorff 26 prepared calcium chloroplatinate, CaPtCl₆.6H₂O, in small, orange-red prismatic crystals by evaporating a mixture of hydrochloroplatinic acid with an excess of calcium chloride, and separating mechanically the crystals of the octohydrate from those of calcium chloride. P. Rohland, and H. Töpsöe prepared the enneahudrate, CaPtCl₆.9H₂O, by evaporating a soln. of theoretical proportions of the component chlorides over sulphuric acid. L. Pauling found that the crystals of the hexahydrate are rhombohedral with a=112° 0'. P. A. von Bonsdorff, and W. Peters said that the water can be expelled by heating to 170°, and a yellow powder remains. The crystals of the hydrate are freely soluble in water; H. Precht observed that the sat. alcoholic soln. contains 53 per cent. of salt; P. Rohland added that the salt is soluble in methyl alcohol of sp. gr. 0.790 at 15°, and in ethyl alcohol of sp. gr. 0.8035 at 15°, and the salt is decomposed in soln, into its component chlorides. It is insoluble in ether. W. Peters said that when the anhydrous salt is exposed to dry ammonia it forms calcium dodecamminochloroplatinate, CaPtCl₆.12NH₃, and that in vacuo, this forms calcium hexamminochloroplatinate, CaPtCl₆.6NH₃. P. A. von Bonsdorff prepared strontium chloroplatinate, SrPtCl₆.8H₂O, as in the case of the calcium salt. The rhombic prisms are stable in air, but effloresce in warm air. The salt is freely soluble in water. H. Precht found that the salt is decomposed by absolute alcohol.

A. von Mussin-Puschkin, and P. A. von Bonsdorff also prepared **barium** chloroplatinate, BaPtCl₆.6H₂O, by the spontaneous evaporation of a mixed soln. of hydrochloroplatinic acid with an excess of barium chloride. P. Rohland used theoretical proportions of the two constituents. H. Töpsöe added that it is difficult to prevent contamination with barium chloride since there is a slight decomposition of the salt during recrystallization. The salt was also prepared by J. J. Berzelius. The hexahydrate forms orange-yellow, monoclinic prisms and plates which, according to H. Töpsöe, have the axial ratios a:b:c=0.9645:1:1.4949, and $\beta=102^{\circ}$ 15'.

The (001)-cleavage is perfect; the sp. gr. is 2.868, and the mol. vol. is 216.0. W. Kwasnik obtained the octohydrate, BaPtCl₆.8H₂O, by the action of hydrochloroplatinic acid on barium oxide, concentrating the filtered soln. on a waterbath, precipitating with absolute alcohol, washing the product, and recrystallizing from aq. soln. The hexahydrate forms the monohydrate at 70°, and the anhydrous salt is formed at 100° in a current of dry air. W. Peters said that all the water is lost at 150° to 160°. When heated to a higher temp., platinum and barium chloride are formed. According to G. Gire, the vap. press., p, in mm. of mercury, is:

428° 458° 514° 556° 607° 655° 721° p · · · 4·6 9·8 31·2 80·3 210 531 1600

The heat of formation is 40.9 Cals. H. Precht, and H. Töpsöe observed that the salt is partially decomposed in aq. soln., and H. Precht, and P. Rohland, that the salt is almost completely decomposed by methyl alcohol, and by ethyl alcohol. W. Peters observed that the anhydrous salt takes up dry ammonia to form barium hexamminochloroplatinate, BaPtCl₆.6NH₃, which, in vacuo, forms barium pentamminochloroplatinate, BaPtCl₆.5NH₃.

J. Thomsen ²⁷ prepared **beryllium chloroplatinate**, BePtCl₆.8H₂O, by dissolving beryllium hydroxide, freed from adsorbed ammonium salts by digestion with bromine water, in hydrochloroplatinic acid, and evaporating the soln, for crystallization. A. Welkow evaporated a mixture of conc. soln, of beryllium and platinic chlorides slowly over conc. sulphuric acid. The crystals are dark yellow, being four-or six-sided prisms, or six- or eight-sided plates. According to J. C. G. de Marignac, the crystals belong to the tetragonal system; and they were examined by K. Haushofer. A. Welkow, and J. Thomsen said that the crystals of the octohydrate are stable in dry air, but deliquesce in moist air; they lose 4 mols. of water at 100° to 120°, and above 150° water and hydrogen chloride are given off. The salt is

freely soluble in water, and alcohol, but insoluble in ether.

H. Töpsöc, 28 and A. von Mussin-Puschkin prepared magnesium chloroplatinate, MgPtCl₆.12H₂O, by evaporating a soln. of the component salts, at a low temp. H. Töpsöe, and H. Töpsöe and C. Christiansen observed that the dark reddishyellow crystals of the *dodecahydrate* are trigonal with the axial ratio a: c=1:0.7057, and $a=106^{\circ}$ 39'; the crystals are birefringent. The sp. gr. is 2.060, and the mol. vol. 315.3. The crystals are stable in air, but pass into the hexahydrate at 100°. L. Pauling studied the crystals. P. A. von Bonsdorff obtained the hexahydrate by the spontaneous evaporation of an aq. soln. of the component salts, and H. Töpsöe added, at a temp. higher than that needed for the dodecahydrate; it is also obtained by slowly cooling a sat, soln, down to about 20°. H. Precht found that the salt cannot be purified by recrystallization. H. Töpsöe observed that the pale yellow crystals are trigonal, with the axial ratio a: c=1:0.5169, and a 112° 10'; the sp. gr. is 2.437, and the mol. vol. 222.5. P. Gaubert found the refractive indices vary with the moisture content; and for the heptahydrate, for sodium light, $\omega = 1.561$, and $\epsilon = 1.91$. P. A. von Bonsdorff said that the crystals are stable in air, but H. Töpsöc found that the crystals rapidly absorb moisture to form a pale yellow powder. According to P. A. von Bonsdorff, the crystals lose 4 mols. of water when heated. H. Precht found that the hexahydrate dissolves in absolute alcohol forming a sat. soln. with 43.2 per cent. of MgPtCl6, but with the salt dried at 150°, the soln contains only 37.8 per cent. P. Rohland added that the salt is soluble in 80 per cent. alcohol of sp. gr. 0.8055 at 15°; and in methyl alcohol of sp. gr. 0.790 at 17°, but it is insoluble in ether. The alcoholic soln, suffers some dissociation, forming magnesium chloride.

L. Hünefeld prepared zinc chloroplatinate, ZnPtCl_{6.6}H₂O, by treating a soln. of platinum in aqua regia with zinc until the soln, acquires a pale yellow colour, and evaporating the filtrate; the first crop of crystals is the chloroplatinite, and the later crop, chloroplatinate. A. Eberhard said that the crystals are red. P. A. von Bonsdorff obtained the salt by crystallization from a mixed soln, of the

two component chlorides. L. Hünefeld said that the crystals of the hexahydrate are pale yellow, and H. Töpsöe described them as orange-yellow prisms belonging to the trigonal system, with the axial ratio a:c, and $a=112^{\circ} 10'$. The (101)cleavage is perfect. H. Töpsöe and C. Christiansen discussed the positive birefringence. L. Pauling studied the crystals. P. A. von Bonsdorff found the crystals to be isomorphous with those of the hydrated magnesium and manganese chloroplatinates. S. M. Jörgensen gave 2.717 for the sp. gr. R. Romanis discussed the mol. vol. L. Hünefeld said that when heated, the salt loses water becoming brown and then grey; W. Peters added that the salt is anhydrous and brown when heated to 160". A. Eberhard said that the crystals lose "4H₂O" at 102" to 103"; and the remaining "2H₂O" is lost slowly above 130°; P. A. von Bonsdorff, that at a high temp., chlorine is evolved, zinc chloride is sublimed, and platinum remains. L. Hünefeld reported that the salt deliquesces in air; but P. A. von Bonsdorff, and H. Töpsöe said not so. The salt was found by L. Hünefeld to be easily soluble in water, and alcohol; and to be easily decomposed with the evolution of chlorine and hydrogen chloride when it is treated with sulphuric acid. W. Peters observed that the anhydrous salt takes up dry ammonia to form zinc enneamminochloroplatinate, ZnPtCl₆.11NH₃, which in vacuo forms zinc heptamminochloroplatinate, ZnPtCl₆.7NH₃. P. A. von Bonsdorff, and H. Töpsöe prepared cadmium chloroplatinate, CdPtCl₆.6H₂O, as in the case of the magnesium salt. The pale yellow crystals of the hexahydrate were found by H. Töpsöe, and H. Töpsöe and C. Christiansen to be isomorphous with the zinc salt, and to furnish trigonal crystals with the axial ratio a: c=1:0.5335, and $\alpha=112^{\circ}0'$. The (101)-cleavage is complete; the birefringence is positive; the sp. gr. is 2.882; and the mol. vol. 218.7. The crystals are stable in air at ordinary temp., and become anhydrous at 100°. W. Peters obtained the trihydrate in the form of pale yellow needles, which become grey at 170°. W. Peters observed that the anhydrous salt takes up dry ammonia to form cadmium heptadecamminochloroplatinate, CdPtCl₆.17NH₃; and this in vacuo forms cadmium duodecamminochloroplatinate, CdPtCl₆,12H₂O. By boiling the aq. soln, with formaldehyde, or formic acid, a trace of platinum is deposited.

P. A. von Bonsdorff observed that mercurous chloride dissolves in warm hydrochloroplatinic acid, and that crystals, possibly mercurous chloroplatinate, are formed on cooling; but K. Birnbaum found that mercurous chloride acts on hydrochloroplatinic acid, forming a soln, which on evaporation deposits a crop of crystals of mercuric chloride, then a deliquescent amorphous mass containing mercuric and platinic chlorides which with aq. ammonia, produces a pale yellow deposit containing mercury, platinum, and ammonia. L. F. Nilson said that a mixed soln, of mercuric and platinic chlorides does not furnish mercuric chloroplatinate.

W. F. Salm-Horstmar, 29 and A. Welkow prepared aluminium chloroplatinate, AlPtCl₇.15H₂O, by evaporating over sulphuric acid a mixture of hydrochloroplatinic acid and a soln, of aluminium in hydrochloric acid, and pressing the crystals between bibulous paper. The lemon-yellow, or orange-yellow four- or six-sided columns or plates are triclinic with the axial ratios a:b:c=1:0.6418:0.5373, and $\alpha = 92^{\circ}$ 0', $\beta = 91^{\circ}$ 35', and $\gamma = 90^{\circ}$ 50'. The crystals are stable in dry air, but deliquesce in moist air. When heated, the crystals become black, and on cooling, red; the m.p. and f.p. are 52°; the salt loses 12 mols. of water at 120°, and the remainder, with decomposition, at 200°. The salt is freely soluble in water, and alcohol, but it is not soluble in ether. Platinum is deposited when a soln. of the salt is treated with zinc. L. F. Nilson reported indium chloroplatinate, 2InCl₃.5PtCl₄. 36H₂O, to be formed by evaporating to dryness a mixture of 2 molar parts of hydrochloroplatinic acid, and 1 molar part of a soln. of indium oxide in hydrochloric acid, dissolving the product in water and crystallizing the soln, over sulphuric acid, and drying the crystals between bibulous paper. The honey-yellow, prismatic crystals deliquesce rapidly in air; they melt at 100°, and lose 18 mols. of water. F. Kuhlmann, and W. Crookes obtained pale yellow crystals of thallous chloroplatinate, TlPtCl₆, by adding hydrochloroplatinic acid to a dil. soln. of a thallous salt. One hundred parts of water at 15° dissolve 0.00638 part of salt, and at 100°, 0.0513 part. G. Engel gave a=9.755 A. for the cubic lattice. G. Werther, and M. Hibberling observed that no precipitate of **thallic chloroplatinate** is formed when a thallic salt is added to hydrochloroplatinic acid.

S. Jolin, 30 J. C. G. de Marignac, and P. T. Cleve prepared cerous chloroplatinate, CeCl₃.PtCl₄.13H₂O, in quadratic, orange plates which are hygroscopic and lose 9 mols. of water at 110°. According to S. Jolin, and P. T. Cleve, the salt is very soluble in water, and alcohol. M. Holtzmann obtained deliquescent, orange prisms of 4CeCl₃.3PtCl₄.24H₂O, which melt on the water-bath, and are soluble in water, and alcohol. P. T. Cleve, and J. C. G. de Marignac prepared lanthanum chloroplatinate, LaCl₃.PtCl₄.13H₂O, in orange, tabular crystals isomorphous with those of the cerium salt. The chloroplatinate is very soluble in water. F. T. Frerichs and E. F. Smith prepared a similar salt, La₂(PtCl₆)₃.24H₂O. C. von Scheele prepared praseodymium chloroplatinate, PrCl₃.PtCl₄.12H₂O, in yellow crystals of sp. gr. 2.412. J. C. G. de Marignac prepared the "didymium" salt. P. T. Cleve obtained samarium chloroplatinate, SmCl3.PtCl4.101H2O, in orange, deliquescent prisms of sp. gr. 2.712; C. Benedicks, gadolinium chloroplatinate, GdCl₃.PtCl₄. 10H₂O, in orange-yellow prisms, of sp. gr. 2·719; L. F. Nilson, and P. T. Cleve, yttrium chloroplatinate, 4YCl_{3.5}PtCl_{4.5}1(or 52)H₂O, in red, deliquescent prisms, which melt at 100° with the loss of 10 mols, of water; P. T. Cleve, erbium chloroplatinate, ErCl₃.PtCl₄.10&H₂O, in deliquescent plates which lose 3 mols. of water over sulphuric acid; P. T. Cleve prepared ytterbium chloroplatinate, 2YbCl₃.-PtCl₄.22H₂O, in reddish-brown, deliquescent, rhombic plates, which effloresce in a desiccator, lose 11 mols. of water at 100° and melt below that temp. There is also a hydrate with 35 mols. of water. P. T. Cleve, thorium chloroplatinate, ThCl₄PtCl₄.12H₂O, in orange, deliquescent, tabular crystals, and L. F. Nilson, zirconyl chloroplatinate, (ZrO)PtCl₆.12H₂O, from a soln. of zirconyl chloride and hydrochloroplatinic acid, in pale yellow, four-sided prisms which melt below 100° with the loss of 6 mols. of water.

- L. F. Nilson ³¹ obtained **stannic chloroplatinate**, SnPtCl₈.12H₂O, by evaporating to dryness on a water-bath a mixture of about 2 mols. of hydrochloroplatinic acid and 1 mol. of stannic chloride, extracting the mass with water, evaporating the soln. for crystallization, and drying the crystals between bibulous paper. The pale yellow plates do not change in dry air, but deliquesce in moist air; they lose 2 mols. of water at 100°. K. Birnbaum, H. Töpsöe, and P. Rohland prepared **lead chloroplatinate**, PbPtCl₆.3(or 4)H₂O, by evaporating soln. of the theoretical proportions of the constituent chlorides. The pale yellow or orange-red, cubic crystals were found by H. Töpsöe to have a sp. gr. of 3-681, and a mol. vol. of 182-4. The crystals are stable in air, and they effloresce over sulphuric acid. According to H. Töpsöe, the crystals lose all their water at 125°, but W. Peters found that some water is retained at 200°. K. Birnbaum found that the salt is soluble in water, and in alcohol, and H. Töpsöe, and W. Peters observed that the salt in aq. soln. partially decomposes, forming sparingly soluble lead chloride and soluble platinic chloride.
- L. F. Nilson 32 prepared **chromic chloroplatinate**, $CrCl_3.PtCl_4.10H_2O$, by evaporating on a water-bath a soln. of equimolar proportions of hydrochloroplatinic acid and green chromic chloride, extracting the dry mass with water, evaporating the soln. over sulphuric acid, and drying the crystals between bibulous paper. G. O. Higley washed the crystals with acetone, and dried them on a porous tile over sulphuric acid. The dark green, thin rhombic plates effloresce slowly in dry air; they lose all but 10 mols. of water at 100° . They are freely soluble in water and in alcohol, but almost insoluble in acetone. G. O. Higley treated a soln. of the salt with silver nitrate and obtained silver chloroplatinate with a trace of silver chloride, and he inferred that the salt is a complex with doubled water molecules, $[Cr(H_4O_2)_5Cl]PtCl_6$. P. T. Cleve prepared **chromic chloroaquo**-

tetramminochloroplatinate, [Cr(NH₃)₄(H₂O)Cl]PtCl₆, in brownish-red, rhombic crystals by treating a soln. of chromic chloroaquotetramminochloride with hydrochloroplatinic acid. S. M. Jörgensen prepared chromic chloropentamminochloroplatinate, [Cr(NH₃)₅Cl]PtCl₆, in yellowish-brown rectangular prisms, by treating a soln. of chromic chloropentamminochloride with hydrochloroplatinic acid; and chromic hexamminochloroplatinate, [Cr(NH₃)₆]Cl.PtCl₆.2½ H₂O, as yellow needles by the action of hydrochloroplatinic acid on a soln. of the hexamminochloride. The salt loses all its water in 24 hrs. at 100°, and it is decomposed by cold water or dil. hydrochloric acid to form [Cr(NH₃)₆]₂Cl₄.PtCl₆.2H₂O, which forms dark orange, prismatic or rhombic crystals, which lose a mol. of water at 100°. If the hexamminochloride is treated with sodium chloroplatinate in aq. soln., orange-yellow, six-sided plates or prisms of [Cr(NH₃)₆]₂(PtCl₆)₃.6H₂O, are formed. The salt is almost insoluble in water, and loses all its combined water in 24 hrs. at 100°—vide chromates, 11. 60, 15; and dichromates, 11. 60, 16.

W. J. Sell prepared complex chromic carbamidochloroplatinate, $2\mathrm{CrCl_3}.\mathrm{PtCl_4}.12\mathrm{CO}(\mathrm{NH}_2)_2.2\mathrm{H}_2\mathrm{O}$; P. Pfeiffer and P. Koch, chromic trans-dichloroquaterethylenediaminechloroplatinate, $[\mathrm{Cr}\ \mathrm{en}_2\mathrm{Cl}_2]_3(\mathrm{PtCl_6}).12\mathrm{H}_2\mathrm{O}$; P. Pfeiffer and T. G. Lando, chromic cis-dichloroquaterethylenediaminechloroplatinate, $[\mathrm{Cr}\ \mathrm{en}_2\mathrm{Cl}_2]_3(\mathrm{PtCl_6}).12\mathrm{H}_2\mathrm{O}$; R. F. Weinland and P. Dinkelacker, chromic hexacetatodihydroxychloroplatinate, as a tetrahydrate, $2[\mathrm{Cr}_3(\mathrm{OH})_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_6]\mathrm{PtCl_6}.$ 4H_2O; A. Werner, the pentahydrate; R. F. Weinland and co-workers, the decahydrate; R. F. Weinland and co-workers, the decahydrate; R. F. Weinland and E. Gussmann, chromic hexacetatodihydroxytrispyridinechloroplatinate, $2[\mathrm{Cr}_3(\mathrm{OH})_2(\mathrm{NH}_3)_3(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_6]\mathrm{PtCl_6}$; and R. F. Weinland and E. Gussmann, chromic hexacetatodihydroxytrispyridinechloroplatinate, $2[\mathrm{Cr}_3(\mathrm{OH})_2(\mathrm{C}_5\mathrm{H}_5\mathrm{N})_3(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_6]\mathrm{PtCl_6}$.

P. A. von Bonsdorff 33 prepared manganese chloroplatinate, MnPtCl₆.6H₂O, by the spontaneous evaporation of a soln. of the constituent chlorides; and H. Töpsöe, by the same process, or by cooling a hot, sat. soln. The dark yellow or orange prisms of the hexahydrate were found by H. Töpsöe, and H. Töpsöe and C. Christiansen to be trigonal, and to have the axial ratio a: c=1:0.5310, and $\alpha=111^{\circ}$ 47'; the (10Ī)-cleavage is complete; the sp. gr. is 2.692, and the mol. vol., 213.0. E. Herlinger gave 212.1 for the mol. vol. If the soln. is crystallized below 20°, H. Töpsöe observed that the dodecahydrate, which appears in pale yellow trigonal crystals with the axial ratio a: c=1:0.7073, and $\alpha=106^{\circ}$ 36'; positive birefringence; sp. gr. 2.112, and mol. vol. 322.6. The dodecahydrate is stable in air at low temp., but effloresces at a higher temp. It loses 10 mols. of water at 100°. L. Pauling studied the crystals. W. Peters observed that the crystals are stable at ordinary temp., in air, but they effloresce at a higher temp. They lose water and become brown at 160°, and take up ammonia to form a basic manganese salt, MnPt(OH)Cl₅.

P. A. von Bonsdorff prepared **ferrous chloroplatinate**, FePtCl₆.6H₂O, by the spontaneous evaporation of a soln. of the component chlorides. L. Pauling studied the crystals. The dark yellow, or brownish-yellow crystals were found by H. Töpsöe to be trigonal, with the axial ratio a:c=1:0.5144, and $\alpha=112^{\circ}$ 14'; sp. gr. 2.714, and mol. vol. 211.3. E. Herlinger gave 210.7 for the mol. vol. The salt is deliquescent, and it is readily oxidized in air, or in aq. soln. L. F. Nilson prepared **ferric chloroplatinate**, FeCl₃.PtCl₄.10½H₂O, by evaporating to dryness, on a waterbath, a mixed soln. of 2 mols. of hydrochloroplatinic acid, and a mol. of ferric chloride, extracting the mass with water, evaporating the aq. soln. over sulphuric acid, and drying the crystals between bibulous paper. The yellowish-red, deliquescent, four-sided prisms give off 5 mols. of water at 100°. H. St. C. Deville and J. S. Stas observed that when a soln. of platinic chloride is poured into one of ferric chloride with a great excess of ammonium chloride, ammonium chloroplatinate is precipitated, together with a yellow or brownish-yellow precipitate containing both iron and platinum.

P. A. von Bonsdorff ³⁴ prepared **cobaltous chloroplatinate**, CoPtCl₆.6H₂O, by the spontaneous evaporation of soln. of the component salts. The brownish-yellow, or yellowish-brown deliquescent prisms of the *hexahydrate* were found by

- H. Töpsöe, and H. Töpsöe and C. Christiansen to be trigonal with the axial ratio a:c=1:0.5140, and $a=112^{\circ}$ 14'; the $(10\bar{1})$ -cleavage is complete; and the birefringence positive. S. M. Jörgensen gave 2.699 for the sp. gr. L. Pauling studied the crystals. E. Herlinger gave 213.0 for the mol. vol. W. Peters obtained the anhydrous salt by heating the hexahydrate to 170°. The olive-green powder takes up dry ammonia to form the cobaltous dodecamminochloroplatinate, $CoPtCl_6.12NH_3$, at 22°, and at -20° , to form cobaltous octodecamminochloroplatinate, $CoPtCl_6.18NH_3$; and in vacuo, cobaltous decamminochloroplatinate, $CoPtCl_6.10NH_3$.
- J. B. Rogojsky, W. Gibbs and F. A. Genth, S. M. Jörgensen, A. G. Bergman, and F. M. Jäger described cobaltic bishexamminochloroplatinate, [Co(NH₃)₆]₂(PtCl₆)₃.6H₂O; S. M. Jörgensen, and F. Ephraim and W. Flügel, cobaltic hexamminochloroplatinate, [Co(NH₃)₆]₆(PtCl₆)₂H₂O; S. M. Jörgensen, cobaltic trisethylenediaminechloroplatinate, [Co en₃]₂(PtCl₆)₃.2H₂O; S. M. Jörgensen, cobaltic trisethylenediaminechloroplatinate, [Co en₃]₂(PtCl₆)₃.2H₂O; W. Gibbs and F. A. Genth, W. Gibbs. C. D. Braun, and S. M. Jörgensen, cobaltic aquopentamminochloroplatinate, [Co(NH₃)₆(H₂O)]₂(PtCl₆)₃.6H₂O; S. M. Jörgensen, cobaltic aquopentamminochloroplatinate, [Co(NH₃)₆(H₂O)]₂(PtCl₆)₃.2H₂O; A. Werner, cobaltic aquobisethylenediamineamminochloroplatinate, [Co(NH₃)₆(H₂O)]₂(PtCl₆)₃.4H₂O; S. M. Jörgensen, and A. Werner and A. Miolati, cobaltic triaquotriamminochloroplatinate, [Co(NH₃)₃(H₂O)₃]₂(PtCl₆)₃.4H₂O; F. Claudet, W. Gibbs and F. A. Genth, S. M. Jörgensen, and J. N. Brönsted and A. Petersen, cobaltic chloropentamminochloroplatinate, [Co(NH₃)₃Cl]PtCl₆; S. M. Jörgensen, cobaltic chloropentamminochloroplatinate, [Co(NH₃)₃(H₂O); S. M. Jörgensen, cobaltic chloroaquotetramminochloroplatinate, [Co(NH₃)₃(H₂O)]₂PtCl₆; S. M. Jörgensen, cobaltic dintritotetramminochloroplatinate, [Co(NH₃)₄(H₂O); S. M. Werner and A. Klein, and G. Vortmann, cobaltic dichlorotetramminochloroplatinate, [Co(NH₃)₄(NO₂)₂]₂PtCl₆; A. Werner and R. Frölich, cobaltic dichloroquaterpyridinechloroplatinate, [Co py₄Cl]₂PtCl₆; A. Werner and G. Lindenberg, cobaltic dichlorobistrimethylenediaminechloroplatinate, [Co₂(O₂)(NH₃)₄](PtCl₆)₂.6H₂O; A. Werner and E. Kindscher, cobaltic di-camino-chloroplatinate, [Co₂(O₂)(NH₃)₄](PtCl₆)₂.6H₂O; A. Werner and Co-workers, cobaltic μ-amino-peroxo-quaterethylenediaminechloroplatinate, [Co₂(O₂)(NH₃)₄](PtCl₆)₂.6H₂O; A. Werner and G. Jantseh, cobaltic tetrol-diaq
- P. A. von Bonsdorff ³⁵ prepared **nickel chloroplatinate**, NiPtCl₆.6H₂O, by spontaneously evaporating soln. of the component salts. The greenish-yellow prisms of the *hexahydrate* were found by H. Töpsöe to be trigonal, with the axial ratio a:c=1:0.5162, and $a=112^{\circ}12'$; the (101)-cleavage is complete; the birefringence is positive; W. Biltz gave for the sp. gr. 2.798; and the mol. vol., 206·3. L. Pauling studied the crystals. E. Herlinger gave 205·4 for the mol. vol. W. Peters found that the hexahydrate becomes anhydrous at 200°; and the brown product takes up dry ammonia to form **nickel dodecamminochloroplatinate**, NiPtCl₆. 12NH₃, which in vacuo furnishes **nickel decamminochloroplatinate**, NiPtCl₆. 10NH₃. N. S. Kurnakoff prepared **nickel bisethylenediaminechloroplatinate**, NiPtCl₆. $3C_2H_4(NH_2)_2$, and **nickel trisethylenediaminechloroplatinate**, NiPtCl₆. $3C_2H_4(NH_2)_2$.

Platinic oxychlorides.—According to M. Blondel,³⁶ platinic hydroxide dissolves in dil. hydrochloric acid, forming a soln. of the normal chloride, and when the sat. soln. is dialyzed, there is formed a product which coagulates when gently warmed, or mixed with a trace of an alkali salt. The coagulate is reddish-brown platinic metoxyhydrochloride, (PtO₂)₅.2HCl.9H₂O. It can be heated to 180° without losing hydrogen chloride, but it begins to decompose at 200°, forming platinous chloride. It is not soluble in water, but boiling water converts it into metaplatinic acid, (PtO₂.H₂O)₅. It dissolves slowly in hydrochloric acid to form both hydrochloroplatinous and hydrochloroplatinic acids.

L. N. Vauquelin noted that when hydrochloroplatinic acid is mixed with insufficient soda-lye to give it an alkaline reaction, and allowed to evaporate spontaneously, brownish-yellow, or grey laminæ are formed of a sodium oxychloroplatinate, of unknown composition.

M. Blondel also obtained an oxychloroplatinate by adding sodium hydroxide to a dil. soln. of sodium chloroplatinate at 100° so that the soln, remains acidic. In this way, 5 mols. of sodium hydroxide can be added per mol. of hydrochloroplatmic acid without reversing the acidity of the liquid. After dialysis, a product is formed with variable proportions of platinum, sodium, and chlorine. E. Johannsen obtained various calcium oxychloroplatinates by the action of calcium hydroxide on soln. of hydrochloroplatinic acid; and F. Weiss and F. Döbereiner, and E. Johannsen, various barium oxychloro-platinates by the action of barium hydroxide on that acid.

S. M. Jörgensen obtained some chromic hydroxychloroplatinates: chromic hydroxydecamminochloroplatinate, $[Cr_2(OH)(NH_3)_{10}]_2(PtCl_6)_5$, $10H_3O$, and $[Cr_2(OH)(NH_3)_{10}]_2(PtCl_6)_5$, $10H_3O$, and $[Cr_2(OH)_3(NH_3)_6]_2(PtCl_6)_3$, $4H_2O$, and $[Cr_2(OH)_3(H_2O)(NH_3)_6]_2(PtCl_6)_3$. $4H_2O$, and $[Cr_2(OH)_3(H_2O)(NH_3)_6]_2(PtCl_6)_3$. $4H_2O$; G. Vortmann and O. Blasberg, cobaltic hydroxychloroctamminochloroplatinate, $2Co(OH)Cl_2.PtCl_4.8NH_3.H_2O$; F. A. Genth, ammonium cobaltic hydroxytriamminochloroplatinate, $3NH_4Cl.Co_2(OH)_3Cl_3.2PtCl_4.3NH_3$; and G. Vortmann, $3NH_4Cl.2Co(OH)_2Cl.2PtCl_4.7NH_4.3H_2O$ —vide infra.

Hydroxychloroplatinic acids.—A series of acids has been reported with the general formula H₂PtCl_{6-n}(OH)_n. A. Miolati and I. Bellucci, and I. Bellucci prepared pentahydroxychloroplatinic acid, H₂Pt(OH)₅Cl, by the action of cold 0.1N-H₂SO₄ on the corresponding barium salt. The brown, deliquescent syrup is a dibasic acid; it reacts with carbonates, slowly in the cold, rapidly when warmed. S. M. Jörgensen reported the corresponding anhydride dioxyhydroxychloroplatinic acid, H₂PtO₂(OH)Cl, to be probably formed when an ag. soln. of equimolar parts of platinic chloride and ammonia is evaporated to dryness, extracted with water, the filtered soln, treated with another molar part of ammonia, and then evaporated on the water-bath.

I. Bellucci, and A. Miolati and I. Bellucci prepared silver pentahydroxychloroplatinate, AgoPt(OH)5Cl, in brown flakes, by adding an excess of silver acetate to a soln, of the corresponding barium salt, and drying the washed precipitate over calcium chloride. E. Johannsen, and J. F. W. Herschel prepared calcium pentahydroxychloroplatinate, CaPt(OH), Cl. H. O., by mixing hydrochloroplatinic acid with an excess of lime water in sunlight or violet light. The mixture remains clear in darkness. E. Johannsen, and A. Miolati and I. Bellucci used a somewhat similar process. A. Miolati, I. Bellucci, A. Miolati and I. Bellucci, and P. Klason discussed the nature of this salt. The white or yellowish-white powder can be obtained as tabular crystals. J. W. Döbereiner observed that at a red-heat, the salt loses 25 per cent. of water and oxygen to form a residue of calcium oxide and chloride, and platinous oxide. The salt is insoluble in water; soluble in hydrochloric and nitric acids; silver nitrate precipitates from the acidic soln. an orange-yellow precipitate; the nitric acid soln. with ammonium chloride was found by F. Weiss and F. Döbereiner slowly to form a precipitate of ammonium chloroplatinate. E. Johannsen observed that the salt is slowly decomposed in the presence of water and carbon dioxide. I. Bellucci, and A. Miolati and I. Bellucci prepared strontium pentahydroxychloroplatinate, SrPt(OH)₅Cl.H₂O, by a process analogous to that used for the calcium salt. A. Miolati also obtained barium pentahydroxychloroplatinate, $BaPt(OH)_5Cl.nH_2O$. E. Johannsen also prepared this salt; and A. Miolati and I. Bellucci obtained the monohydrate. I. Bellucci, and A. Miolati and I. Bellucci prepared mercuric pentahydroxychloroplatinate, HgPt(OH)5Cl, by treating an acetic acid soln. of the barium salt with mercuric acetate; and similarly with thallous pentahydroxychloroplatinate, TlPt(OH)₅Cl; but with lead acetate a basic lead pentahydroxychloroplatinate, Pb(OH)₂.PbPt(OH)₅Cl, is formed.

A. Rosenheim and W. Löwenstamm obtained pale yellow dihydroxytetrachloroplatinic acid, H₂Pt(OH)₂Cl₄.3H₂O, or oxytetrachloroplatinic acid, H₂PtOCl₄.4H₂O, by allowing a soln, of platinic chloride to stand exposed to the atm. for some time. The acid was obtained by S. M. Jörgensen, W. Pullinger, and S. A. Norton by the action of hot water on silver chloroplatinate. The soln, is evaporated and heated to 100° when H₂PtOCl₄ is formed, but a further dehydration cannot be effected without decomposing the compound. The aq. soln. has an acidic reaction, and

at 100°.

readily decomposes carbonates. It behaves like a dibasic acid, forming a series of salts. M. Boll studied the hydrolysis of the acid in light.

A. Miolati prepared a soln. of sodium dihydroxytetrachloroplatinic acid by mixing soln. of platinic chloride with sodium hydroxide in theoretical proportions. The mol. conductivity of a soln. of a mol in v litres is:

and $\mu_{1024} - \mu_{32} = 19.4$, corresponding with the regular value for a dibasic acid. A. Miolati prepared copper dihydroxytetrachloroplatinic acid, CuPt(OH)₂Cl₄, by the action of a soln. of platinic chloride on freshly-precipitated cupric hydroxide in excess, evaporating the filtered liquor in vacuo over sulphuric acid, dissolving the gum-like mass in absolute alcohol, adding dry ether, and evaporating the filtered liquor in vacuo over phosphorus pentoxide. S. M. Jörgensen obtained silver dihydroxytetrachloroplatinate, Ag₂Pt(OH)₂Cl₄, by treating a cold soln. of platinic chloride with silver nitrate, and drying the washed precipitate at 100°. The salt was also discussed by F. Reiff, A. Miolati, W. Hittorf and H. Salkowsky, and I. Jacobsen. The yellowish-brown, amorphous salt is decomposed by boiling water to form the tetrahydroxydichloroplatinate, and hydrochloric acid converts it into silver chloride and hydrochloroplatinic acid. A. Miolati prepared zinc dihydroxytetrachloroplatinate, ZnPt(OH), Cl₄, 3H₂O, as in the case of the copper salt. The yellowish-brown product is freely soluble in water and in alcohol. The corresponding cadmium dihydroxytetrachloroplatinate, CdPt(OH)2Cl4, was also prepared; and likewise thallous dihydroxytetrachloroplatinate, Tl₂Pt(OH)₂Cl₄, as a yellowish-brown powder; insoluble in water, decomposed when allowed to stand over sulphuric acid; and not changed by a prolonged digestion with a soln. of thallous sulphate on a water-bath. The corresponding lead dihydroxytetrachloroplatinate, PbPt(OH)₂Cl₄, was prepared, and it appears to be associated with more or less basic salt, Pb(OH)2.PbPt(OH2)Cl4.

I. Jacobsen prepared tetrahydroxydichloroplatinic acid, H₂Pt(OH)₄Cl₂, in

aq. soln. by the action of silver nitrate on a cold soln. of hydrochloroplatinic acid in the molar proportions 2:1, washing the precipitate with ice-water, and treating the product with hot water on a water-bath. The resulting dihydroxytetrachloroplatinic acid is treated with 2 mols. of silver nitrate, and the precipitate is washed and boiled for about 8 hrs. M. Blondel obtained it by treating platinic oxide, PtO₂.4H₂O, at 0° with dil. hydrochloric acid (1:5), and separating the soln. from the undissolved platinic oxide. A. Miolati and U. Pendini prepared the salt by mixing equimolar parts of 0.1N-HCl and hydrochloroplatinic acid in the cold, evaporating the soln. to dryness, and extracting the dry mass with water. Ammonium chloroplatinate remains undissolved, and the filtered soln. can be again evaporated and the treatment repeated two or three times. A black, hygroscopic mass of tetrahydroxychloroplatinic acid is thus obtained. M. Blondel observed that the solid is unstable even at 0°, and rapidly changes to hydrochloroplatinic acid, and when the acid soln. is diluted with water hydrated platinic dioxide, PtO₂.4H₂O, is precipitated. I. Jacobsen found that the soln. is darkened by an excess of aq. ammonia, and after a time, a brown precipitate is formed. The reaction proceeds more quickly with hot soln. M. Blondel showed that potassium chloride does not give a precipitate of K₂PtCl₆ when added to the aq. soln.; and other alkali salts furnish a gelatinous precipitate which is soluble in much S. M. Jörgensen reported dioxydichloroplatinic acid, H₂PtO₂Cl₂, to be formed as a brownish-black, amorphous, deliquescent mass by evaporating a mixed

A. Miolati and U. Pendini prepared silver tetrahydroxydichloroplatinate, Ag₂Pt(OH)₄Cl₂, as a dark brown precipitate, by adding a sat. soln. of silver acctate

soln. of equimolar parts of ammonia and of PtCl_{4.5}H₂O, extracting the dry mass with water, evaporating the aq. soln. on a water-bath, and drying the product

to a cold, conc. soln. of the corresponding acid. They also obtained **mercuric tetrahydroxydichloroplatinate**, HgPt(OH)₄Cl₂, by adding mercuric acetate to a soln. of the acid. The yellowish-red precipitate is soluble in hydrochloric acid; and impure **thallous tetrahydroxydichloroplatinate**, Tl₂Pt(OH)₄Cl₂, was prepared. The corresponding lead tetrahydroxydichloroplatinate, PbPt(OH)₄Cl₂, was obtained as a flocculent, reddish-yellow precipitate.

M. Blondel described a silver platinum oxychloride, AgCl.4PtO₂.HCl.4H₂O, to be formed by adding silver nitrate to a soln. of platinic oxide in hydrochloro-

platinic acid. It is decomposed by warm water.

L. Pigeon reported a platinic hydropentachloride, $HCl.PtCl_4.2H_2O$, to be formed by heating hydrochloroplatinic acid, $H_2PtCl_6.6H_2O$, in vacuo, in the presence of potassium hydroxide, for 2 or 3 days on a water-bath—vide supra—but A. Miolati and I. Bellucci showed that the product is more likely to be hydroxypentachloroplatinic acid, $H_2Pt(OH)Cl_5.nH_2O$. It forms a reddish-brown, deliquescent mass which gives a pale yellow, acid, aqueous soln. readily decomposing carbonates in the cold. With ammonia soln., it gives no precipitate, and on heating the liquid it becomes almost colourless. Ammonium and potassium chlorides precipitate the respective platinichlorides. The mol. electrical conductivity of a soln. of a mol of the salt in v litres at 25° , is:

2,		32	64	128	256	512	1024
и		$282 \cdot 9$	304.0	329.3	359.3	$392 \cdot 6$	430.5

The change in the electrical conductivity is attributed to hydrolysis; and titration experiments with 0·1N-NaOH and phenolphthalein as indicator show that one of the two replaceable hydrogen atoms has a strongly acidic character, whilst the other has only weak acidic properties.

O. Ruff and W. Jeroch added a conc. soln. of potassium fluoride to platinic chloride, and dried the yellow, amorphous potassium hydroxypentachloroplatinate, $K_2Pt(OH)Cl_5$, on a porous tile. The salt is readily soluble in water. A. Miolati and I. Bellucci obtained lithium hydroxypentachloroplatinate, $Li_2Pt(OH)Cl_5$, in yellow needle-like crystals, by exactly neutralizing a soln. of the acid with lithium hydroxide, and allowing the soln. to stand in vacuo. They obtained a soln. of sodium hydroxypentachloroplatinate, $Na_2Pt(OH)Cl_5$, in a similar manner, and found the electrical conductivity of soln. of a mol of the salt in v litres to be:

\boldsymbol{v}		32	64	128	256	512	1024
и		$93 \cdot 2$	97.5	101.3	104.5	109-4	117.0

so that $\mu_{1024}-\mu_{32}=23\cdot 8$, the regular value for the neutral sodium salt of a dibasic acid. A. Miolati and I. Bellucci could not prepare copper hydroxypentachloride. The corresponding silver hydroxypentachloroplatinate, $Ag_2Pt(OH)Cl_5$, was obtained as a yellow precipitate, stable in boiling water, by treating a cold soln. of the acid and with silver nitrate. A. Miolati and I. Bellucci prepared strontium hydroxypentachloroplatinate, $SrPt(OH)Cl_5.H_2O$; and also barium hydroxypentachloroplatinate, $Brt(OH)Cl_5.4H_2O$, in orange-yellow prisms, by neutralizing a soln. of the acid with baryta water, and concentrating the soln. in a desiccator; but zinc hydroxypentachloroplatinate, $ZnPt(OH)Cl_5$, could not be prepared; but the corresponding cadmium hydroxypentachloroplatinate, $CdPt(OH)Cl_5$, was obtained in an impure state. Rose-red thallous hydroxypentachloroplatinate, $Tl_2Pt(OH)Cl_5$, was obtained by mixing soln. of the corresponding acid with thallous acetate; with lead acetate a basic lead hydroxypentachloroplatinate, $Pb(OH)_2.PbPt(OH)Cl_5$, was formed.

P. T. Cleve prepared platinic trichloronitritodiammine, $[Pt(NH_3)_2Cl_3(NO_2)]$; platinic trans-dichlorodinitritodiammine, $[Pt(NH_3)_2Cl_2(NO_2)_2]$, a complex salt with silver nitrate, platinic cis-dichlorodinitritodiammine, and also platinic hydroxychlorodinitritodiammine, $[Pt(NH_3)_2(OH)(NO_2)Cl]$; F. Reiff described the complex with hydroxyaquotetrachloroplatinic acid, $H[PtCl_5(H_2O)(OH)].C_4H_8O_2$.

According to J. L. Proust,³⁷ if a soln, of hydrochloroplatinic acid be decomposed by potash-lye, the precipitate of **fulminating platinum** detonates at an elevated temp., but not so vigorously as fulminating gold or silver. J. W. Döbereiner added that the straw-yellow precipitate of 3PtO₂.NH₃ detonates feebly with rapid heating, and more vigorously with slow heating. A. F. de Fourcroy and L. N. Vauquelin made analogous observations; and E. Davy treated platinic sulphate with ammonia, boiled the precipitate with potash-lye, and dried the washed precipitate. The brown product is stable in air; it does not detonate by trituration, shock, or the electric spark, but it detonates vigorously when heated to 205°. Chlorine water converts it into ammonium chloride and hydrochloroplatinic acid; hydrochloric acid does not attack it perceptibly; sulphuric acid dissolves it, forming a dark brown liquid without the evolution of gas; and nitric acid converts it into a basic nitrate.

E. von Meyer applied the term Knallplatine or fulminoplatinums to a number of bodies obtained by the action of potash-lye on ammonium chloroplatinate. These bodies are nearly insoluble in water, and do not form definite compounds with either acids or alkalies. The nitrogen contained in them is so firmly held in combination that they give off no ammonia when boiled with strong potash solution. When heated per se they undergo total decomposition, generally with explosive violence, owing to the sudden liberation of a large quantity of nitrogen. When ammonium chloroplatinate is boiled with a quantity of aqueous potash insufficient for complete decomposition, added very slowly, a product of the formula $PtNClO_3H_6$ is obtained, the formation of which may be represented by the equation: $(NH_4)_2PtCl_6 + 5KOH = 5KCl + 2H_2O + NH_3 + PtNClO_3H_6$. The chemical behaviour of this body, and the existence of other bodies standing in simple relations to it, show, however, that the formula here indicated must be quadrupled so as to make $Pt_4N_4Cl_4O_{12}H_{24}-$ or platinum fulminotetrachloride. Its relation to the other three fulminoplatinums is indicated by the following $Pt_4N_4Cl_4O_{12}H_{24} + KOH = KCl + Pt_4N_4Cl_3(OH)O_{12}H_{24}$ chloride); $Pt_4N_4Cl_2O_{12}H_{24} + 2KOH = 2KCl + 2H_2O + Pt_4N_4Cl_2O_{12}H_{22}$ (fulminodichloride); and $Pt_4N_4Cl_4O_{12}H_{24} + 3KOH = 3KCl + 2H_2O + Pt_4N_4Cl(OH)O_{12}H_{22}$ (fulminomonochloride). According to E. von Meyer, the decomposition of ammonium chloroplatinate by potash-lye results in the formation of bodies containing equal numbers of atoms of platinum and nitrogen, whence it follows that ammonium chloroplatinate cannot be regarded as a double salt of platinic chloride and ammonium chloride, $PtCl_4(NH_4Cl)_2$, the two atoms of nitrogen having essentially different functions in the compound. When ammonium chloroplatinate is heated even with a large excess of potash, only half the nitrogen is eliminated in the form of ammonia. The constitution of these four substances has not been determined.

The first member of the series, **platinum fulminotetrachloride**, Pt₄N₄Cl₄O₁₂II₂₄, is obtained only with great difficulty, one of its atoms of chlorine being very easily eliminated. It is formed by heating ammonium chloroplatinate with aq. potashlye (4·6 mols.), added very slowly until a temporary alkaline reaction is produced. The pale yellow precipitate is purified by repeated boiling with very dil. acetic acid and water. A slight excess of potash-lye determines the formation of bodies containing less chlorine. Platinum fulminotetrachloride when digested with aq. ammonia gives up half its chlorine, and when evaporated with ammonia over the water-bath, it loses three-fourths of its chlorine; whence it appears that two atoms of chlorine are eliminated easily, and a third with more difficulty, whilst the fourth is firmly held in combination. The bodies formed by the action of ammonia explode violently when heated. When gently heated with oxalic acid in presence of dil. sulphuric acid, platinum fulminotetrachloride gives off a quantity of carbon dioxide corresponding to a loss of 3 atoms of oxygen from each mol. At 150° it gives off 4 mols, of water.

The second member of the series, platinum fulminotrichloride, $Pt_4N_4(l_3(OH)-O_{12}H_{24})$, is formed when ammonium chloroplatinate is decomposed with an

insufficient quantity of potash-lye (4.5 to 5 mols.), added in small portions somewhat rapidly. At 150°, it loses 3 mols. of water, and when more strongly heated, it explodes, giving off gases which consist mainly of nitrogen but contain also free oxygen. When treated with ammonia, it gives up two atoms of chlorine. It is acted on by oxalic acid in the same manner as the tetrachloride, the carbon dioxide evolved corresponding with a loss of 3 atoms of oxygen from each molecule. After the reaction the liquid contains a black precipitate, which gives off ammonia when heated with soda. When gently heated in hydrogen, the trichlorocompound undergoes violent decomposition, yielding water, ammonia, and free nitrogen.

The third member of the series **platinum fulminodichloride**, Pt₄N₄(l₂O₁₂H₂₂, is formed on heating ammonium chloroplatinate with aq. potash-lye, added in moderate quantities until the liquid remains slightly alkaline and ceases to evolve ammonia. It is a fine yellow body, closely resembling the compound last described in most of its reactions. It is completely decomposed by treatment with zine and sulphuric acid, the platinum being thrown down in a finely-divided metallic state, whilst the whole of the chlorine goes into solution. Sulphur dioxide passes into water in which the compound is suspended, gradually dissolves it, forming a nearly colourless solution, which when neutralized with sodium carbonate and evaporated yields crystals of the salt, 2PtSO₃.6Na₂SO₃.3H₂O.

The fourth member of the series, **platinum fulminochloride**, Pt₄N₄Cl(OH)O₁₂H₂₂, is obtained as a dark yellow powder by heating ammonium chloroplatinate with 4·7 mols. of potash-lye added at once, until ammonia is no longer evolved. It loses 4 mols. of water at 152°. When gradually heated to 260° with sodium carbonate, nearly the whole of the hydrogen is oxidized to water, whilst the nitrogen is for the most part set free. It is not appreciably acted on by oxalic acid. With nascent hydrogen, it behaves like the dichloro-compound—vide supra.

REFERENCES.

U. Antony and A. Lucchesi, Gazz. Chim. Ital., 26. i, 217, 1896; A. Atterberg, Chem. Ztg., 22, 538, 1898; A. von Bacyer and V. Villiger, Ber., 34, 2679, 1901; W. D. Bancroft, Journ. Phys. Chem., 14, 220, 1910; C. T. Barfoed, Larebog i den analytiske Chemic, Kjöbenhavn, 392, 1863; R. Bartels, Ueber die Einwirkung des Antimomusserstoffs auf Metallsalzlosungen, Berlin, 1889; E. Bandrimont, Recherches sur les chlorures et les bromures de phosphore, Paris, 1864; Ann. Chim. Phys., (4), 2, 47, 1864; Compt. Rend., 55, 363, 1862; G. Beck, Zeit. anorg. Chem., 206. 416, 1932; E. Beckmann and W. Gabel, ib., 51, 236, 1906; A. Behal and E. Choay, Bull. Soc. Chim., (3), 5, 50, 1891; P. Berthier, Ann. Chim. Phys., (3), 7, 82, 1843; J. J. Berzelius, Schweiger's Journ., 7, 55, 1813; 34, 81, 1822; Lehrbuch der Chemie, Dresden, 2, ii, 953, 1926; E. Billmann, Ber., 33, 2197, 1900; K. Birnbaum, Zeit. Chem., (2), 3, 528, 1867; Licbig's Ann., 152, 137, 1871; 159, 116, 1871; Chem. News, 20, 189, 322, 1869; 24, 109, 1871; M. Blondel, Recherches sur quelques combinations du platine, Paris, 1905; Ann. Chim. Phys., (8), 6, 98, 1905; C. H. D. Bödeker, Die Bezichungen zwischen Dichte und Zusamminsetzung bei festen und liquiden Stoffen, Leipzig, 1860; R. Böttger, Polyt. Notiz., 33, 30, 1878; M. Boll, Compt. Rend., 156, 691, 1913; 157, 115, 1913; 168, 1108, 1919; M. Boll and P. Job, ib., 154, 881, 1912; 155, 826, 1912; D. M. Bose and H. G. Bhar, Zeit. Physik, 48, 716, 1928; F. Braun, Wied. Ann., 17, 683, 1882; H. T. S. Britton and E. N. Dodd, Journ. Chem. Soc., 1429, 1933; J. Brown, Amer. Journ. Science, (4), 19, 31, 1905; Zeit. anorg. Chem., 47, 315, 1905; O. Brunck, Liebig's Ann., 336, 295, 1904; G. B. Buckton, Journ. Chem. Soc., 7, 22, 1864; A. T. Cahours, Leçons de chimie générale élémentaire, Paris, 2, 556, 1855; O. Carlgren and P. T. Cleve, Zeit. anorg. Chem., 4, 1805; Nicholson's Journ., 51, 182, 1905; J. A. Christiansen and R. W. Asmussen, Kong. Dansk. Vid. Selsk. Mat. Medd., 12, 10, 1934; A. C. Christiansen and R. W. Asmus

1881; Compt. Rend., 91. 986, 1881; W. Dittenberger and R. Dietz, Wied. Ann., 68. 856, 1899: W. Dittmar and J. McArthur, Trans. Roy. Soc. Edin., 33. 564, 1888; E. Divers, Proc. Roy. Soc., 21, 109, 1873; Phil. Trans., 163, 359, 1873; Chem. News, 27, 37, 1873; B. E. Dixon, Journ. Chem. Soc., 2306, 1931; E. Doumer, Compt. Rend., 110, 40, 1889; J. B. Dumas, Traité de chimie appliquée aux arts, Paris, 3. 766, 1831; A. E. Dunstan, Proc. Chem. Soc., 23. 290, 1907; A. E. Dunstan and L. Cleaverley, Journ. Chem. Soc., 91. 1622, 1907; F. van Dyke Cruser and E. H. Miller, Journ. Amer. Chem. Soc., 28. 1132, 1906; W. Eidmann, Ein Beitrag zur Erkenntnis des Verhaltens chemischer Verbindungen in nichtwässerigen Lösungen, Giessen, 1899; R. Engel, Compt. Rend., 91. 1068, 1882; Bull. Soc. Chim., (2), 50. 101, 1888; (3), 1. 695, 1889; Ann. Chim. Phys., (6), 17. 366, 1889; H. Erdmann and P. Köthner, Zeit. anorg. Chem., 18. 53, 1898; J. Fiedler, De lucis effectibus chemicis in corpora anorganica, Vratislaviae, 1835; N. W. Fischer, Schweiger's Journ., 53.108, 1928; A. F. de Fourcroy, Système des connaissances chimiques et de leurs applications aux phénomènes de la nature et de l'art, Paris, 4. 433, 1801; G. Foussereau, Compt. Rend., 103. 248, 1886; M. Frenkel, Zeit. anorg. Chem., 1. 238, 1892; R. Fricke and F. Ruschhaupt, ib., 146. 141, 1925; A. F. Gehlen, Gehlen's Journ., 3. 566, 1804; G. Geitner, Liebig's Ann., 129. 358, 1864; Journ. prakt. Chem., (1), 93. 99, 1864; B. Gerdes, ib., (2), 26. 257, 1882; G. T. Gerlach, Zeit. anal. Chem., 27. 279, 1888; H. Gerresheim, Liebig's M. (2), 26, 261, 1662; G. I. (Criscii, Zeit. anat. Chem., Journ., 17, 73, 1895; W. Gintl and B. Reinitzer, Ber. Oesterr. Ges. Chem. Ind., 1. 17, 1879; Dingler's Journ., 234, 432, 1879; Chem. News, 48, 25, 1881; 44, 17, 1881; J. H. Gladstone, Phil. Trans., 160, 15, 1870; J. H. Gladstone and W. Hibbert, Journ. Chem. Soc., 67, 836, 1895; C. Gordon, Ber., 3, 177, 1870; G. Gore, Phil. Chem. Soc., 67, 836, 1895; C. Gordon, Ber., 3, 177, 1870; G. Gore, Chem. Chem. Soc., 67, 836, 1895; C. Gordon, Ber., 3, 177, 1870; G. Gore, Chem. Chem. Soc., 67, 836, 1895; C. Gordon, Ber., 3, 177, 1870; G. Gore, Chem. Chem. Chem. Soc., 67, 836, 1895; C. Gordon, Ber., 3, 177, 1870; G. Gore, Chem. Ch Proc. Roy. Soc., 20. 441, 1872; 21. 140, 1873; Proc. Birmingham Phil. Soc., 4. 61, 1883; Chem. News, 48. 295, 1883; F. Gramp, Ber., 7, 1723, 1874; G. Grube, F. Oettel and H. Reinhardt, Siebert's Festschrift, 108, 1931; G. Grube and H. Reinhardt, Zeit. Elektrochem., 37, 307, 1931; A. Gutbier, Zeit. anorg. Chem., 32, 352, 1902; A. Gutbier and F. Heinrich, ib., 81, 378, 1913; A. Gutbier and G. Hofmeier, Journ. prakt. Chem., (2), 71, 360, 1905; Koll. Zeit., 5, 50, 1909; J. Haidlen and R. Fresenius, Liebig's Ann., 43, 137, 1842; H. W. Hake, Proc. Chem. Soc., 12. 34, 1896; 13. 147, 1897; W. Hampe, Chem. Ztg., 12. 171, 1888; A. Hantzsch, Zeit. phys. Chem., 72. 363, 1910; Ber., 41. 1219, 1908; 60. B, 1942, 1927; A. Hantzsch, R. Clark and K. Meyer, ib., 41. 1216, 1908; M. C. Harding, Zeit. anorg. Chem., 20. 235, 1899; A. Hébert and G. Reynaud, Bull. Soc. Chim., (3), 21. 394, 1899; D. Helbig and G. Fausti, Atti Accad. Lincei, (5), 13. 30, 1904; J. F. W. Herschel, Phil. Mag., (3), 1. 58, 1832; E. Heymann, Zeit. anorg. Chem., 207. 257, 1932; W. Hittorf and H. Salkowsky, Zeit. phys. Chem., 28. 554, 1899; A. W. Hofmann, Ber., 11. 340, 1818; K. A. Hofmann and D. Strom, ib., 45. 1728, 1912; A. F. Hollemann, Chem. Ztg., 16, 35, 1892;
 G. A. Hulett, Phys. Rev., (1), 33, 310, 1911;
 V. V. Ipatéeff and A. Andreevsky, Compt. Rend., 183, 51, 1926;
 Bull. Soc. Chim., (4), 39, 1405, 1926; V. V. Ipatéeff and V. G. Troneff, Compt. Rend. Acad. Science U.R.S.S., 1, 622, 627, 1935; Journ. Gen. Chem. Russ., 5, 643, 661, 1935; P. Jochum, Ueber die Einwirkung des unterschweflogsauren Natrons auf Metallsalze, Berlin, 1885; S. M. Jörgensen, Danske Selsk. Skrift., (5), 6. 13, 1865; Journ. prakt. Chem., (2), 16. 352, 1877; L. Kahlenberg and J. V. Steinle, Trans. Amer. 1805; Journ. prakt. Chem., (2), 10. 502, 1817; L. Kamenberg and G. V. Steine, Trans. Amer. Electrochem. Soc., 44. 514, 1923; K. W. G. Kastner, Kastner's Arch., 26. 407, 1834; P. Klasen, Ber., 28. 1484, 1895; R. Klement, Zeit. anorg. Chem., 164. 195, 1927; E. Knoevenagel and E. Ebler, Ber., 35. 3067, 1902; W. Knop, Chem. Centr., (2), 4. 17, 1859; P. Köthner, Ueber Rubidium, Halle a. S., 1896; F. Kohlrausch, Wied. Ann., 63. 423, 1897; Zeit. phys. Chem., 33. 257, 1900; K. Kruis, Dingler's Journ., 212. 347, 1874; P. Kulisch, Liebig's Ann., 231. 327, 1885; Ueber die Einwirkung des Phosphorwasserstoffs auf Metallsalzlosungen, Berlin, 1885; 327, 1885; Ueber die Einwirkung des Phosphorwasserstoffs auf Metallsalzlosungen, Berlin, 1885; N. S. Kurnakoff, Journ. prakt. Chem., (2), 52. 517, 1895; W. Kwasnik, Arch. Pharm., 229. 580, 1891; C. Langlois, Ann. Chim. Phys., (3), 4. 77, 1842; Compt. Rend., 10. 461, 1840; Mém. Strassburg Soc. Hist. Nat., 3, 1840; H. Lawrow, Zeit. Chem., (2), 7. 616, 1871; M. C. Lea, Amer. Journ. Science, (2), 38. 248, 1864; (3), 38. 397, 1894; A. Levallois, Compt. Rend., 96. 1667, 1883; J. von Liebig, Liebig's Ann., 23. 23, 1837; Pogg. Ann., 17. 108, 1829; O. Loew, Journ. prakt. Chem., (2), 1. 307, 1870; C. Luckow, Chem. Ztg., 16. 837, 1892; R. W. Mahon, Amer. Chem. Journ., 15. 360, 578, 1893; J. W. Mallet, ib., 25. 430, 1901; W. Manchot and E. Enk. Ber., 63. B, 1636, 1930; F. Martin, Vier Oxydationssufen des Platins, Karlsruhe, 1909; G. Martina, L'Orosi, 15. 37, 1892; V. Martinand, Compt. Rend., 148. 183, 1909; W. W. Mather, Amer. Journ. Science, (1), 27. 262, 1835; R. Meldrum, Chem. Newe, 78. 270, 1898; A. Merget, Phot. Arch., 14. 191, 195, 1873; E. H. Miller, Journ. Amer. Chem. Soc., 18. 1100, 1896; E. H. Miller and J. A. Mathews, ib., 22. 62, 1900; N. A. E. Millon, Compt. Rend., 14. 906, 1842; A. Miolati, Zeit. anorg. Chem., 22. 445, 1900; Journ. prakt. Chem., (2), 77. 450, 1908; Zeit. A. Miolati, Zeit. anorg. Chem., 22, 445, 1900; Journ. prakt. Chem., (2), 77, 450, 1908; Zeit. phys. Chem., 22, 463, 1900; A. Miolati and I. Bellucci, ib., 26, 210, 1901; G. T. Morgan and F. M. G. Micklethwait, Journ. Chem. Soc., 89, 863, 1906; F. Morges, Gazz. Chim. Ital., 8, 479, 1878; A. Müller, Zeit. anorg. Chem., 219, 113, 1934; E. Müller and W. Stein, Zeit. Elektrochem., 36. 220, 376, 1930; L. von Müller, Zur Kenntnis der Platinmetalle, Erlangen, 1912; J. Murray, Phil. Mag., (1), 58. 273, 1821; F. Mylius and O. Fromm, Ber., 27. 630, 1894; F. Mylius and 7. Hugh, (1), 34. 25, 162; F. Bylus and C. Ffolini, Ber., 21. 35, 163; F. Bylus and C. Hüttner, ib., 44. 1316, 1911; S. Nagami, Journ. Chem. Soc. Japan, 48. 501, 1927; A. Naumann, Ber., 37. 4328, 1904; 42. 3790, 1909; A. C. Neish, Journ. Amer. Chem. Soc., 26. 787, 1904; L. F. Nilson, Journ. prakt. Chem., (2), 15. 191, 1877; Oefvers. Akad. Förh., 33. 7, 1876; Nova Acta Upsala, (3), 9. 46, 1877; C. Nogareda, Anal. Fis. Quim., 32. 396, 1934; H. B. North, Bull. Soc. Chim., (4), 9. 647, 1911; S. A. Norton, Amer. Journ. Science, (3), 1. 375, 1871; (3), 4. 312, 1872; Journ. prakt. Chem., (2), 2. 469, 1870; (2), 5. 365, 1872; G. Oddo,

Atti Accad. Lincei, (5), 10. i, 452, 1901; L. Opificius, Polyt. Notizbl., 38. 166, 1883; Zeit. anal. Chem., 23. 207, 1884; E. Pace, Arch. Farm. Sperim., 42. 35, 1926; J. A. Palmer, Journ. anal. Chem., 1. 361, 1888; W. Peters, Zeit. anorg. Chem., 77. 174, 1912; H. Peterson, ib., 19. 59, 1898; F. C. Phillips, ib., 6. 229, 1894; Amer. Chem. Journ., 16. 255, 1894; L. Pigeon, Recherches chimiques et calorimétriques sur quelques combinaisons haloides du platine, Paris, 1893; Bull. Soc. Chim., (3), 3. 365, 1890; Compt. Rend., 108. 1009, 1889; 110. 78, 1890; 112. 791, 1891; Ann. Chim. Phys., (7), 2. 453, 1894; W. J. Pope and S. J. Peachey, Journ. Chem. Soc., 95. 571, 1909; H. Precht, Zeit. anal. Chem., 18. 509, 1879; J. A. Prins and R. Fonteyne, Physica, 2. 1016, 1935; M. Protopoff, Zeit. Chem., (2), 7. 616, 1871; W. Pullinger, Journ. Chem. Soc., 61. 423, 1892; F. Raschig, Liebig's Ann., 241. 178, 1887; P. C. Ray and P. C. Mukherjee, Journ. Indian Chem. Soc., 6. 885, 1929; L. Reed, Chem. News, 67. 261, 1893; C. Reichard, Ber., 27. 1027, 1894; F. Reiff, Zeit. anorg. Chem., 208. 321, 1932; H. Reinsch, Journ. prakt. Chem., (1), 13. 132, 1838; F. Reitzenstein, Liebig's Ann., 282. 267, 1894; H. D. Rogers and M. H. Boyé, Amer. Journ. Science, (1), 38. 186, 1840; (1), 39. 369, 1840; Trans. Amer. Phil. Soc., 7. 59, 1841; Liebig's Ann., 40. 289, 1841; Phil. Mag., (3), 17. 397, 1840; Journ. prakt. Chem., (1), 26. 150, 1842; P. Rohland, Zeit. anal. Chem., 49. 359, 1910; Zeit. anorg. Chem., 15. 415, 1897; 16. 306, 1898; H. Rose, Handbuch der analytische Chemie, Leipzig, 1. 390, 1867; Sitzber. Akad. Berlin, 186, 1846; Pogg. Ann., 68. 445, 1846; A. Rosenheim and W. Levy, Zeit. anorg. Chem., 37, 394, 1903; 43, 34, 1905; A. Rosenheim and W. Löwenstamm, ib., 37, 403, 1903; A. Rosenheim, W. Löwenstamm and L. Singer, Ber., 36. 1833, 1903; P. Rudnick, Journ. Amer. Chem. Soc., 43. 2575, 1921; P. Rudnick and R. D. Cooke, ib., 39, 633, 1917; R. Ruer, Zeit. Elektrochem., 14, 310, 1908; H. Saha and K. N. Choudhury, Zeit. anorg. Chem., 86. 228, 1914; R. Samuel and A. R. Despande, Zeit. Physik, 80. 395, 1933; R. Samuel and M. Uddin, Trans. Faraday Soc., 81. 423, 1935; Zett. Ingain, 30. 350, 1835; R. Samuel and M. Coulin, Trans. Tartady Soc., 81. 423, 1835;
 I. Sano, Bull. Chem. Soc. Japan, 9. 320, 1934;
 II. Schlesinger and R. E. Palmateer, Journ. Amer. Chem. Soc., 52. 4316, 1930;
 P. Schottländer, Liebig's Ann., 140. 200, 1866;
 P. Schützenberger, Compt. Rend., 70. 1134, 1870;
 Bull. Soc. Chim., (2), 14. 17, 1870;
 Ann. Chim. Phys., (4), 21. 362, 1870;
 P. Schützenberger and C. Fontaine, Bull. Soc. Chim., (2), 17. 490, 1872;
 W. H. Seamon, Journ. anal. Chem., 3. 270, 1890. 1889; K. Scubert, Chem. News, 43, 252, 1881; 44, 82, 1881; Ber., 14, 565, 1881; Liebig's Ann., 207, 8, 1881; Y. Shibata and K. Harai, Journ. Chem. Soc. Japan, 56, 1, 1935; A. Sieverts and H. Brüning, Zeit. anorg. Chem., 201. 113, 1931; A. Sieverts and M. Major, ib., 64, 56, 1909; A. Sieverts and E. Peters, Koll. Zeit., 12. 268, 1913; R. Silberberger, Monatsh., 25. 220, 1904; J. F. Simon, Pogg. Ann., 40. 411, 1837; Liebig's Ann., 28. 271, 1837; A. Smits, Rec. Trav. Chim. Pays-Bas, 15. 135, 1896; Ber., 29. 770, 1896; L. Spiegel, Zeit. anorg. Chem., 29. 365, 1902; O. Stelling, Zeit. Elektrochem., 37. 321, 1931; F. Stolba, Listy Chem., 12. 270, 1888; S. Streicher, Ueber die Chloride von vier Valenzstufen des Iridiums und Platins, Darmstadt, 1913; J. J. Sudborough, Journ. Chem. Soc., 59, 663, 1891; S. Tanatar, Ber., 38, 1184, 1905;
N. Tarugi, Gazz. Chim. Ital., 33, ii, 452, 1903; J. Thomsen, Pogg. Ann., 139, 314, 1870;
148. 533, 1871; T. Thomson, Ann. Phil., 15. 84, 1820; N. Thon, Compt. Rend., 197. 1114, 1933; H. Töpsőe, Danske Vid. Selsk. Forh., 123, 1868; Arch. Sciences Genève, (2), 35, 58, 1868; I. Traube, Zeit. anorg. Chem., 8, 38, 1895; W. D. Treadwell and M. Zürcher, Helvetica Chim. Acta, 10. 291, 1927; L. Tschugaeff, Zeit. anorg. Chem., 187, 1, 1924; P. Vallet, Compt. Rend., 195, 1074, 1932; L. Vanino, Ber., 30, 2001, 1897; L. N. Vauquelin, Ann. Chim. Phys., (2), 5, 264, 1817; C. Vincent, Bull. Soc. Chim., (2), 27, 194, 1877; (2), 33, 158, 1880; (2), 46, 288, 1886; D. Vitali, L'Orosi, 12, 225, 1889; 13, 335, 1890; Boll. Chim. Farm., 45, 665, 1906; H. Vohl, Liebig's Ann., 96. 241, 1855; Journ. prakt. Chem., (1), 67. 178, 1856; J. Wagner,
Massanalytische Studien, Leipzig, 1898; Zeit. phys. Chem., 28. 33, 66, 1899; P. Walden, ib.,
2. 77, 1887; H. C. P. Weber, Bull. Bur. Standards, 4. 365, 1908; Journ. Amer. Chem. Soc., 30. 1908; R. Weber, Sitzber. Akad. Berlin, 77, 1867; Journ. prakt. Chem., (1), 101, 42, 1867;
 Pogg. Ann., 131, 443, 1867; E. Wedekind, Koll. Zeit., 7, 251, 1910; R. Willstätter, Ber., 36, 1830, 1903;
 L. Wöhler and F. Martin, Zeit. Elektrochem., 15, 791, 1909;
 Ber., 42, 3959, 1909; L. Wöhler and A. Spengel, Koll. Zeit., 7. 243, 1910; L. Wöhler and S. Streicher, Zeit. Elektrochem., 48. 1592, 1913; M. Wunder and V. Thuringer, Ann. Chim. Anal. Appl., 17. 328, 1912; G. Wyrouboff, Ann. Chim. Phys., (8), 13. 548, 1908; E. V. Zappi, Anal. Fis. Quim. Argentina, 3. 68, 1915; W. C. Zeise, Liebig's Ann., 83. 20, 29, 1840; Phil. Mag., (3), 14. 84, 1839; Afhand. Danske Selsk., (4), 8. 171, 1841; Oefvers. Danske Selsk., 3, 1839; 11, 1839.

2 H. Alexander, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1887; G. Beck, Zeit.

** H. Alexander, Ueber hydroxylaminhalitge Platinodaen, Konigsberg, 1887; G. Beck, Zeit. anorg. Chem., 206. 416, 1932; C. W. Blomstrand, Ber., 4. 49, 1871; G. Bredig, Zeit. phys. Chem., 13. 235, 1894; S. H. C. Briggs, Journ. Chem. Soc., 93. 1564, 1908; O. Carlgren and P. T. Cleve, Oefvers. Akad. Förh., 47. 305, 1890; Zeit. anorg. Chem., 1. 74, 1892; P. T. Cleve, Svenska Akad. Handl., 7. 7, 1868; 10. 9, 1872; Acta Upsala, 6. 46, 1866; O. Carlgren, Oefvers. Akad. Förh., 47. 6, 1890; A. Cossa, Atti Accad. Torino, 22. 323, 1887; Gazz. Chim. Ital., 17. 6, 1887; E. G. Cox and G. H. Preston, Journ. Chem. Soc., 1089, 1933; B. E. Dixon, ib., 2948, 1932; H. and A. Euler, Ber., 27. 2391, 1904; J. A. N. Friend, Journ. Chem. Soc., 93. 1006, 1908; E. Gapon, Ukrainski Chem. Zhur., 1. 595,1925; B. Gerdes, Ueber die bei Elektrolyse des carbaminsauren und kohlensauren Ammons mit Wechselströmen und Plotinelektroden entstehenden Platinodasen, Leipzig, 1882; Journ. prakt. Chem., (2), 26. 257, 1882; C. Gerhardt, Liebig's Ann., 76. 314, 1850; Compt. Rend. Trav. Chem., 273, 1850; Compt. Rend., 31. 241, 1850; C. Grimm, Liebig's Ann., 99. 85, 1856; J. Gros, ib., 27. 249, 1838; A. A. Grünberg, Zeit. anorg. Chem., 198. 193, 1930; A. A. Grünberg and G. P. Faermann, Ann. Inst. Platine, 8. 115, 1931;

Zeit. anorg. Chem., 193, 193, 1930; E. A. Hadow, Journ. Chem. Soc., 19, 345, 1866; F. Hoffmann, Hydroxylaminhaltige Platinbasen, Königsberg, 1889; K. Johansson, Zeit. anorg. Chem., 1. 73, 77. 137, 1912; E. Petersen, Zeit. phys. Chem., 22, 410, 1899; M. Raewsky, Ann. Chim. Phys., (3), 22, 278, 1848; J. Reiset, ib., (3), 11, 429, 1844; E. Rosenbohm, Zeit. phys. Chem., 93, 693, 1919; G. Schwarzenbach, Zeit. phys. Chem., 176, 133, 1936; J. Thomsen, Pogg. Ann., 139, 314, 1870; 143, 533, 1871; 1. I. Tscherniaeff, Ann. Inst. Platine, 5, 102, 1927; 6, 23, 1928; 11. 55, 1933; I. I. Tscherniaeff and S. I. Chorunshenkoff, ib., 8, 93, 1931; I. I. Tscherniaeff and A. N. Fedorova, *ib.*, **8.** 73, 1931; L. A. Tschugaeff, *ib.*, **4.** 37, 1926; L. A. Tschugaeff and W. Chlopin, *Compt. Rend.*, **161**, 699, 1915; *Zeit. anorg. Chem.*, **151**, 253, 1926; L. A. Tschugaeff and N. K. Pschenicyn, *Journ. Russ. Phys. Chem. Soc.*, **52**, 47, 1920; L. A. Tschugaeff, M. S. Skanavigrigoreva and A. Posnjak, *Ann. Inst. Platine*, **4**, 299, 1926; L. A. Tschugaeff and N. Vladimiroff, Compt. Rend., 160, 840, 1915; C. Weltzien, Liebig's Ann., 97, 27, 1856; A. Werner, Zeit. anory. Chem., 40, 4093, 1907; A. Werner and C. H. Herty, Zeit. vhys. Chem.,

38. 351, 1901; A. Werner and A. Miolati, ib., 12. 54, 1893; 14, 508, 1894.

T. Anderson, Trans. Edin. Roy. Soc., 20, 347, 1853; 21, 219, 1857; Proc. Roy. Soc. Edin.,
3. 309, 1857; Phil. Mag., (4), 9, 145, 214, 1855; Liebig's Ann., 80, 49, 1851; 96, 204, 1855;
J. A. le Bel, Compt. Rend., 110, 140, 1890; 112, 725, 1891; 116, 513, 1893; 125, 351, 1897; Bull. Soc. Chim., (3), 5, 723, 1891; (3), 6, 130, 1891; L. Berend and C. Stochr, Journ. prakt. Chem., (2), 42. 417, 1890; J. Bertheaume, Journ. Pharm. Chim., (7), 2. 117, 1910; Compt. Rend., 150, 1064, 1910; B. Braumer, Liebig's Ann., 192, 73, 1878; W. H. Bresler, Ann. Chim. Anal., 6, 28, 1901; Deut. Zuckerind., 25, 1593, 1627, 1900; A. Cahours and A. W. Hofmann, Liebig's Ann., 102, 303, 1857; C. Ciamician and P. Silber, Gazz. Chim. Ital., 22, ii, 518, 1892; F. W. Clarke, Ber., 12, 1399, 1879; A. des Cloizeaux, Ann. Mines, (5), 11, 306, 1857; E. Coman, ducci and M. Arena, Giorn. Farm. Chim., 56. 385, 1907; F. W. O. de Coninck, Compt. Rend.-92. 413, 1881; Bull. Soc. Chim., (2), 35. 297, 1881; A. Cossa, Gazz. Chim. Ital., 22. ii, 620, 1892; Zeit. anorg. Chem., 2. 187, 1892; E. Diepolder, Ber., 31. 497, 1898; A. Durand, Bull. Soc. Chim., (3), 17. 407, 1897; E. Duvillier, ib., (3), 3. 507, 1890; E. Duvillier and A. Buisine, Ann. Chim. Phys., (5), 23, 307, 1881; A. Ehrenberg, Journ. prakt. Chem., (2), 36, 125, 1887; L. J. Eisenberg, Liebig's Ann., 205, 142, 1880; A. P. N. Franchimont and H. van Erp. Rec. Trav. Chim. Pays. Bas, 14. 323, 1895; M. Freund and F. Lenze, Ber., 24. 2164, 1891; P. Groth. Chemische Krystallographie, Leipzig, 1. 492, 1906; T. H. Hjordahl, Zeit. Kryst., 6. 463, 1886; Univ. Program. Christiania, 1, 1881; A. W. Hofmann, Liebig's Ann., 79. 20, 1851; Phil. Trans., 141. 357, 1851; Ber., 14. 664, 1881; 15. 771, 1882; S. M. Jörgensen, Journ. prakt. Chem., (2), 33. 531, 1886; O. Klein, Liebig's Ann., 181, 358, 1876; L. Knorr, Ber., 22. 184, 1889; N. Kursanoff, Journ. Russ. Phys. Chem. Soc., 30. 269, 1898; A. Ladenburg, Liebig's Ann., 247. 60, 1888; T. Langeli, Gazz. Chim. Ital., 16. 389, 1886; A. Lieben and A. Rossi, Liebig's 247. 60, 1888; T. Langeli, Gazz. Chim. Ital., 16. 389, 1886; A. Lieben and A. Rossi, Liebig's Ann., 158. 175, 1871; C. Liebermann and C. Paal, Ber., 16. 526, 1883; E. Linnemann, Liebig's Ann., 162. 24, 1872; E. Linnemann and V. von Zotta, ib., 162. 5, 1872; K. Lippitsch, Zeit. Kryst., 15. 503, 1889; W. Lossen, Liebig's Ann., 181. 369, 1876; O. Luedecke, Zeit. Kryst., 4. 325, 1880; Krystallographische Beobachtungen, Halle, 1878; H. Malbot, Ann. Chim. Phys., (6), 13. 477, 1888; Compt. Rend., 104. 367, 1887; H. and A. Malbot, Bull. Soc. Chim., (3), 7. 137, 1892; F. G. Mann, Journ. Chem. Soc., 2681, 1926; 1224, 1927; 890, 1928; F. G. Mann and W. J. Pope, Nature, 119. 351, 1927; W. Marckwald, Ber., 32. 3509, 1899; W. Marckwald and A. von Droste-Huelshoff, ib., 32. 562, 1899; O. Mendius, Liebig's Ann., 121. 141, 1862; E. von Meyer, Journ. prakt. Chem., (2), 18. 321, 1878; V. Meyer and M. Lecco, Liebig's Ann., 180, 178, 1876; H. Müller, ib., 91. 40, 1854; A. Partheil, ib., 268, 154, 1892; M. Passon, Ber., 24, 1680, 1891; R. T. Plimpton, Journ. Chem. Soc., 39, 333, 1881; P. C. Ray, B. C. Guha and 1680, 1891; R. T. Plimpton, Journ. Chem. Soc., 39, 333, 1881; P. C. Ray, B. C. Guha and K. C. Bose-Ray, Journ. Indian Chem. Soc., 3, 358, 1926; E. Reboul, Compt. Rend., 92, 1423, 1881; H. Reihlen and E. Flohr, Ber., 67. B, 2010, 1935; A. Ries, Zeit. Kryst., 36. 324, 1902; 39. 55, 1904; 49. 533, 1911; A. Rinne, Liebig's Ann., 168. 264, 1873; W. Rudneff, Journ. Russ. Phys. Chem. Soc., 11. 171, 1879; J. Schabus, Sitzber. Akad. Wien, 15. 204, 1855; Liebig's Ann., 98. 272, 1854; A. Schleicher, H. Henkel and L. Spies, Journ. prakt. Chem., (2), 105. 31, 1922; E. Schmidt, Liebig's Ann., 121. 141, 1862; E. Schmidt and L. Krauss, Zeit. Oesterr. Apoth. Ver., 45. 541, 1907; O. Schmiedeberg and E. Harnack, Arch. Exp. Path., 5. 101, 1876; S. B. Schryver and J. N. Collie, Journ. Chem. Soc., 57, 767, 1890; Chem. News, 62, 105, 1890; A. Schuftan, Ber., 27, 1010, 1874; A. Siersch, Liebig's Ann., 148, 264, 1868; R. D. Silva, Compt. Rend., 64, 1301, 1867; Z. H. Skraup and D. Wiegmann, Monatsh., 10, 105, 1889; Compt. Rena., 34. 1807; Z. H. Skraup and D. Wiegmann, Monatsh., 10. 105, 1889; F. L. Sonnenschein, Liebig's Ann., 101. 23, 1857; H. Steinmetz, Zeit. phys. Chem., 52. 460, 1905; R. Störmer and V. von Lepel, Ber., 29. 2113, 1896; J. Tafel, ib., 19. 1926, 1886; H. Töpsöe, Danske Selsk. Förh., 1, 1882; Sitzber. Akad. Wien, 73. 98, 1876; I. I. Tscherniaeff, Ann. Inst. Platine, 6. 23, 55, 1928; L. A. Tschugaeff, Ann. Inst. Platine, 4. 37, 1926; J. Weiss, Liebig's Ann., 268. 144, 1892; C. Weltzien, ib., 93. 273, 1855; C. M. Wetherill, Amer. Journ. Science, (3), 1. 369, 1871; C. G. Williams, Journ. prakt. Chem., (1), 89. 61, 1863; Chem. Gaz., 16. 346, 1858; R. Willstätter, Ber., 28. 3288, 1895; H. Wolffram, Ueber aethyldminhaltige

Platinbasen, Königsberg, 1900; C. A. Wurtz, Ann. Chim. Phys., (3), 30, 443, 1850; Compt. Rend., 28, 223, 1849; J. Züblin, Ber., 10, 2084, 1877.

⁴ H. W. Dudley, Journ. Chem. Soc., 763, 1931; A. W. Hofmann, Ber., 6, 311, 1873; F. M. Jäger, Zeit. Krist., 58, 172, 1923; N. S. Kurnakoff, Zeit. anorg. Chem., 47, 227, 1898; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97. 1, 1921; F. G. Mann, Journ. Chem. Soc., 1224, 1927; 466, 1934; F. G. Mann and W. J. Pope, Nature, 119, 351, 1927; C. Neuberg, Zeit. physiol. Chem., 45, 120, 1905; W. Schacht, Arch. Pharm., 235, 459, 1897; A. Schleicher, H. Henkel and L. Spies, Journ. prakt. Chem., (2), 105, 31, 1922; I. 1. Shukoff and O. P. Schipulina, Koll. Zeit., 49, 126, 1929; A. P. Smirnoff, Helvetica Chim. Acta, 3, 177, 1920; I. I. Tscherniaeff, Ann. Inst. Platine, 8, 37, 55, 1931; I. I. Tscherniaeff and A. N. Federova, ib., 8. 73, 1931; L. A. Tschugaeff, M. S. Skanavi-Grigoreva and A. Posnjak, ib., 4. 299, 1926; A. Werner, Zeit. anorg. Chem., 21. 236, 1899.

⁵ E. Fischer, *Liebig's Ann.*, **199**. 311, 1879; *Ber.*, **8**. 1589, 1875; E. Renouf, *ib.*, **13**. 2171, 1880; L. A. Tschugaeff and A. S. Samsonova, *Ann. Inst. Platine*, **11**. 39, 1933; L. A. Tschugaeff,

M. S. Skanavii-Grigoreva and A. Posnjak, ib., 4. 299, 1926.

⁶ T. Anderson, Trans. Roy. Soc. Edin., 20. 347, 1853; 21. 219, 1857; Proc. Roy. Soc. Edin., 3. 309, 1857; Phil. Mag., (4), 9. 145, 214, 1855; Liebig's Ann., 96. 204, 1855; E. Bamberger and W. Lodter, Ber., 20. 1710, 1887; H. W. Dudley, Journ. Chem. Soc., 763, 1931; A. W. Hofmann, Liebig's Ann., 57. 61, 1843; Ber., 5. 721, 1872; E. Lippmann and G. Vortmann, Ber., 12. 79, 1879; J. S. Muspratt and A. W. Hofmann, Liebig's Ann., 54, 15, 1845; E. Paterno and P. Spica, Gazz. Chim. Ital., 5, 27, 1875; O. Pieper, Liebig's Ann., 151, 132, 1869; H. Struss-

mann, Ber., 21. 577, 1888; O. Widman, ib., 13. 677, 1880.

 T. Anderson, Phil. Mag., (4), 9, 146, 214, 1855; Trans. Roy. Soc. Edin., 20, 347, 1853;
 21. 219, 1857; Proc. Roy. Soc. Edin., 8, 309, 1857; Liebig's Ann., 80, 56, 1851; 96, 199, 1855;
 L. Balbiano, Atti Accad. Lincei, (4), 7, 519, 1890; C. W. Blomstrand, Chemie der Jetzeit, Heidelberg, 409, 1869; Ber., 4. 49, 1871; G. Ciamician and P. Silber, Atti Accad. Lincei, (4), 1. i. 124. 1885; Gazz. Chim. Ital., 15. 190, 1885; P. T. Cleve, Svenska Akad. Handl., 10. 9, 1872; F. W. O. de Coninck, Bull. Soc. Chim., (2), 39, 498, 1883; (2), 40, 271, 1883; A. Cossa, Zeit. (2), 33. 509, 1886; Zeit. anorg. Chem., 25. 353, 1900; S. I. Khorunschenkoff, Ann. Inst. Platine, 11. 73, 1933; E. Koefoed, Om nogle Nitrosoplatinammoniakforbindelser, Kopenhagen, Flatine, 11. '3, 1933; E. Koefoed, Om nogle Nitrosoplatinammoniakjorbindelser, Kopenhagen, 1894; W. Königs, Ber., 14. 1857, 1881; A. Ladenburg, Liebig's Ann., 247. 5, 1888; V. von Lang, Sitzber. Akad. Wien, 102. 883, 1893; Zeit. Kryst., 25. 527, 1895; C. Liebermann and C. Paal, Ber., 16. 531, 1880; R. Meyer and A. Tanzen, ib., 46. 3196, 1913; P. C. Ray, B. C. Guha and K. C. Bose-Ray, Journ. Indian Chem. Soc., 3. 358, 1926; I. I. Tscherniaeff and A. M. Rubinstein, Ann. Inst. Platine, 11. 63, 1933; H. Weidel and K. Hazura, Monatsh., 3. 788, 1882; A. Werner, Zeit. anorg. Chem., 3. 320, 1893; 21. 241, 1899; A. Werner and F. Fassbender, ib., 15. 123, 1897; C. G. Williams, Journ. prakt. Chem., (1), 67. 247, 1856; Edin. Phil. Journ., (2), 2. 324, 1856; C. A. Wurtz, Ann. Chim. Phys., (3), 30. 443, 1850; Compt. Rend., 28. 223, 1840 1849.

⁸ F. B. Ahrens, Ber., 28, 796, 1895; 29, 2997, 1896; F. B. Ahrens and R. Gorkow, Chem. Zeit., 2. 414, 1903; T. Anderson, Trans. Roy. Soc. Edin., 16. 463, 1849; 21. 219, 1857; Liebig's Ann., 60, 92, 1846; 96, 203, 1855; Proc. Edin. Roy. Soc., 3, 309, 1857; Phil. Mag., (4), 9. 145, 1855; F. Auerbach, Ber., 25. 2487, 1892; F. Bacher, ib., 21. 293, 1888; A. Baeyer, ib., 2. 400, 1869; 12. 1322, 1879; Liebig's Ann., 155. 287, 1870; A. Behrmann and A. W. Hofmann, Ber., 17. 2698, 1884; L. Berend and C. Stochr, Journ. prakt. Chem., (2), 42, 419, 1890; A. Calm and K. von Buchka, Die Chemie des Pyridines und seiner Derivate, Braunschweig, 1891; A. H. Church and E. Owen, Phil. Mag., (4), 20. 116, 1860; J. N. Collie, Journ. Chem. Soc., 71. 308, 1897; J. N. Collie and W. S. Myers, ib., 61. 727, 1892; F. W. O. de Coninck, Ann. Chim. Phys., (5), 27. 465, 1882; Compt. Rend., 91. 296, 460, 1880; 92. 413, 1881; Bull. Soc. Chim., (2), 35. 299, 1881; (2), 39. 498, 1883; M. Conrad and W. Epstein, Ber., 20. 163, 1887; J. Dewar, Assoc. Franc. Avanci Sciences, 349, 1877; E. Dürkopf, Ber., 21. 2715, 1888; E. Dürkopf and M. Schlaugk, 21. 298, 1888; 23. 1113, 1890; F. Engelmann, Liebig's Ann., 231. 55, 1885; J. Ferns and A. Lapworth, Journ. Chem. Soc., 101. 273, 1912; H. Frese, Zeit. angew. Chem., 16. 11, 1903; S. Gabriel and J. Colman, Ber., 35. 2850, 1902; F. C. Garrett and J. A. Smythe, Journ. Chem. Soc., 81. 452, 1902; H. Goldschmidt and E. J. Constam, Ber., 16. 2976, 1883; F. Grünling, Zeit. Kryst., 13. 30, 1888; I. Guareschi, Atti Accad. Torino, 35. 426, 644, 1900; A. Hantzsch, Ber., 17. 2909, 1884; Liebig's Ann., 215. 35, 1882; Ueber die Synthese pyridinartiger aus Acetessigester und Aldehydammoniak, Leipzig, 1882; A. Hesekiel, Ber., 18. 3093, 1885; artiger aus Acetessigester und Aldehydammoniak, Leipzig, 1882; A. Hesekiel, Ber., 18. 3093, 1885; O. Hesso, Liebig's Ann., 207. 288, 309, 1881; A. W. Hofmann, Ber., 17. 825, 1884; W. Königs and G. Happe, ib., 35. 1347, 1902; A. Ladenburg, Liebig's Ann., 247. 12, 1888; 301. 151, 1898; Ber., 18. 2962, 1885; 20. 227, 1651, 1887; 21. 287, 1888; 32. 44, 1899; A. Ladenburg and F. C. Roth, ib., 78. 915, 1885; A. Ladenburg and J. Sieber, ib., 23. 2727, 1890; V. von Lang, Sitzber. Akad. Wien, 55. 408, 1867; O. Lange, Ber., 18. 3439, 1885; E. Lellmann and W. O. Müller, ib., 23. 682, 1890; J. Mohler, ib., 21. 1009, 1888; W. Ramsay, Phil. Mag., (5), 4. 242, 1877; A. Richard, Bull. Soc. Chim., (2), 32. 488, 1879; P. Richm, Liebig's Ann., 238.

18, 1887; C. F. Roth and O. Lange, Ber., 19, 788, 1896; K. E. Schultze, ib., 20, 413, 2920, 1887; P. Schwarz, ib., 24, 1678, 1891; E. Seyfferth, Journ. prakt. Chem., (2), 34, 248, 1886; C. Stoehr, Ber., 20, 2730, 1887; 22, 1128, 1889; Journ. prakt. Chem., (2), 42, 421, 1890; (2), 43, 155, 1891; (2), 45, 26, 1892; H. Vohl, Arch. Pharm., 194, 233, 1870; H. Weidel, Sitzber. Akad. Wien, 79, 865, 1879; Ber., 12, 2009, 1879; H. Weidel and K. Hazura, Monatsh., 3, 781, 1882; H. Weidel and B. Pick, ib., 6, 660, 1884; T. Wertheim, Sitzber. Akad. Wien, 2, 453, 1849; Liebig's Ann., 70, 63, 1849; C. G. Williams, Chem. Gaz., 16, 301, 325, 1858; Phil. Mag., (4), 8, 211, 1854.

A. Baeyer, Ber., 12. 1322, 1879; F. W. O. de Coninck, Ann. Chim. Phys., (5), 27. 484, 1882; Bull. Soc. Chim., (2), 40. 274, 1883; O. Eckstein, Ber., 39. 2137, 1906; G. Goldschmiedt and M. von Schmidt, Monatsh., 2. 81, 1881; W. Heintz, Liebig's Ann., 198. 91, 1879; T. Hjortdahl, Forh. Selsk. Christiania, 8, 1878; S. Hoogewerf and W. A. van Dorp, Rec. Trav. Chim. Pays-Bas, 1. 10, 1882; 4. 127, 1885; W. Königs, Ber., 14. 1857, 1881; M. Kretschy, Monatsh., 2. 19, 1881; A. Ladenburg, Ber., 17. 156, 1884; 18. 2959, 1885; E. Lellmann and H. Abt, Liebig's Ann., 237, 323, 1887; A. Pictet and S. Popovici, Ber., 25. 734, 1892; E. Seyfferth, Journ. prakt. Chem., (2), 34. 242, 1886; Z. H. Skraup, Monatsh., 1. 317, 1880; 2. 145, 1881; O. Wallach and F. Lehmann, Liebig's Ann., 237, 240, 1887; H. Weidel and K. Hazura, Monatsh., 3. 786, 1882; A. Werner and F. Fassbender, Zeit. anorg. Chem., 15. 140, 1897; C. G. Williams, Chem. Chiz., 14. 261, 1856; Journ. prakt. Chem., (1), 69, 357, 1856; Trans. Roy. Soc. Edin., 21. 377, 1857; V. von Zepharovich, Sitzber. Akad. Wien, 52, 244, 1865.
A. Byk, Ber., 36, 1918, 1903; F. W. O. de Coninck, Ann. Chim. Phys., (5), 27, 480, 1882;

A. Byk, Ber., 36. 1918, 1903; F. W. O. de Coninck, Ann. Chim. Phys., (5), 27, 480, 1882;
E. Hardy and G. Calmels, Compt. Rend., 102, 1251, 1886; Bull. Soc. Chim., (2), 48, 232, 1887;
W. Henke, Liebig's Ann., 106, 283, 1858; E. H. Keiser, Amer. Chem. Journ., 8, 310, 1886;
F. W. Pinkard, E. Sharratt, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 1012, 1934;
L. Ramberg, Ber., 40, 2586, 1908; Platineföreningar af Fenylkarbylamin och Benzonitril, Lund, 1903;
J. Schlenker, Ber., 34, 2815, 1901;
W. J. Sell and F. W. Dootsn, Journ. Chem. Soc., 73, 444, 1898;
C. Stoehr and M. Wagner, Journ. prakt. Chem., (2), 48, 5, 1893;
R. Ziegelbauer,

Monatsh., 17, 659, 1896.

L. Balbiano, Gazz, Chim. Ital., 18, 363, 1888; 23. i, 525, 1893; Atti Accad. Lincei, (4),
 27, 504, 1891; (5), 1. ii, 366, 1892; (5), 2. i, 198, 1893; A. Andreocci, ib., (4), 7. i, 271, 1891;
 (4), 7. ii, 158, 1891; L. Balbiano and G. Marchetti, ib., (5), 2. 117, 1893; Gazz. Chim. Ital.,
 23. i, 489, 1893; G. Ortoleva, ib., 36. i, 474, 1906.

L. Balbiano, Gazz. Chim. Ital., 24. ii, 102, 1894; Atti Accad. Lincei, (5), 3. i, 433, 1894;
 P. Brandes and C. Stoehr, Journ. prakt. Chem., (2), 58. 505, 1896; G. T. Morgan and F. H. Burstall, Journ. Chem. Soc., 965, 1934; O. Poppenberg, Ber., 34. 3267, 1901; C. Stoehr, Journ. prakt. Chem., (2), 47. 458, 1893; (2), 48. 22, 1893; (2), 51. 461, 1895; C. Stoehr and M. Wagner,

ib., (2), 47. 474, 1893.

13 A. Andreocci, Atti Accad. Lincei, (4), 7. ii, 164, 1891; (5), 6. i. 222, 1897; L. Claisen, G. Cuneo, Gazz. Chim. Ital., 29. i, 19, 1894; A. Hantzsch and O. Silberrad, Ber., 33. 83, 1900; M. Hardy and G. Calmels, G. Pellizzari, Gazz. Chim. Ital., 24. i, 338, 1894; 32. i, 199, 1902;
39. i, 532, 1909; Atti Accad. Lincei, (5), 11. i, 228, 1894; G. Pellizzari and A. Alciatore, ib., (5), 10. i, 449, 1901; Gazz. Chim. Ital., 31. ii, 128, 1901; G. Pellizzari and M. Bruzzo, ib., 31. ii, 117, 1901; Atti Accad. Lincei, (5), 10. i, 418, 1901; G. Pellizzari and C. Massa, ib., (5), 10. i, 367, 1901; Gazz. Chim. Ital., 26. ii, 421, 1896; 31. ii, 110, 1901; S. Ruhemann and R. W. Merriman, Journ. Chem. Soc., 97. 1772, 1905; S. Ruhemann and H. E. Stapleton, ib., 75. 1133, 1899.
14 P. T. Cleve, Svenska Akad. Handl., 7. 7, 1868; A. Hantzsch, Ber., 17. 1030, 1884; E. Hardy and G. Calmels, Bull. Soc. Chim., (2), 48. 232, 1887; M. Lesbre and E. Gardner, Congr. Soc. Savantes, 68. 104, 1933; B. Unger, Liebig's Ann., 59. 60, 1846; G. Wallin, Oefvers.

Akad. Förh., 49. 32, 1892.

15 G. Aminoff, Zeit. Kryst., 42. 381, 1906; F. G. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; C. W. Blomstrand, Journ. prakt. Chem., (2), 38. 357, 1888; A. Cahours, Ann. Chim. Phys., (5), 10. 18, 1877; G. Carrara, Atti Accad. Lincei, (6), 1. i, 309, 1892; F. Dehn, Liebig's Ann. Suppl., 4. 91, 1866; C. Enebuske, Journ. prakt. Chem., (2), 38. 365, 1888; Lunds Arsskr., (2), 22. 37, 1887; A. Girard, Compt. Rend., 70. 628, 1870; P. Groth, Chemische Krystallographie, Leipzig, i, 534, 1906; A. W. Hofmann, Ber., 2. 158, 1869; S. 587, 1870; 5. 244, 1872; A. Husemann, Liebig's Ann., 126. 286, 1863; K. A. Jensen, Zeit. anorg. Chem., 225. 115, 1935; C. H. Keutgen, Arch. Pharm., 228. 6, 1890; H. Klinger, Ber., 10. 1880, 1877; H. Klinger and A. Maassen, ib., 243. 216, 1888; 252. 243, 1889; F. Krüger, Journ. prakt. Chem., (2), 14. 197, 1876; G. L. Laird, Liebig's Ann., 243. 209, 1888; Zeit. Kryst., 14. 3, 1888; H. Löndahl, Journ. prakt. Chem., (2), 38. 515, 1888; Lunds Arsskr., (2), 27. 28, 1891; A. Loir, Ann. Chim. Phys., (3), 89. 441, 1853; W. Lossen, Liebig's Ann., 132. 85, 1864; W. Marckwald, Ber., 25. 2359, 1892; R. Nasini and A. Scala, Atti Accad. Lincei, (4), 4. i, 237, 1888; Gazz. Chim. Ital., 18. 67, 1888; A. von Oefele, Liebig's Ann., 132. 85, 1864; C. Prätorius-Seidler, Journ. prakt. Chem., (2), 21. 143, 1880; P. C. Ray, Proc. Chem. Soc., 30. 304, 1914; P. C. Ray and S. C. S. Gupta, Zeit. anorg. Chem., 187. 33, 1930; 193. 53, 1931; 203. 401, 1932; Journ. Chem. Soc., 123. 139, 1923; P. C. Ray and P. C. Mukherjee, Journ. Indian Chem. Soc., 6. 885, 1929; P. C. and K. C. B. Ray, Zeit. anorg. Chem., 173. 329, 1929; C. Rudelius, Lunds Arsskr., (3), 22. 37, 1887; W. Schacht, Arch. Pharm., 235. 465, 1897; F. W. Semmler, Liebig's Ann., 241. 138, 1887; D. Strömholm, Om sulfin- och tetinforeninger, Upsala, 1899; Ber., 38. 828, 1900; L. Tschugaeff and J. Benewolensky, Zeit. anorg. Chem., 82. 420, 1913; M. Weibull,

Zeit. Kryst., 14, 141, 1888; T. Wertheim, Liebig's Ann., 51, 301, 1844; A. Wohl and W. Marckwald, Ber., 22, 1355, 1889.

16 A. Cahours, Ann. Chim. Phys., (5), 10, 50, 1877; C. L. Jackson, Liebig's Ann., 179, 8, 1875; J. Petren, Om Platinaethylseleninföreningar, Lund, 1898; L. von Pieverling, Ber., 9.

1471, 1876; W. Schimper, Zeit. Kryst., 1. 218, 1877.

17 A. Cahours and A. W. Hofmann, Liebig's Ann., 104. 31, 1857; J. N. Collie, Journ. Chem. Bull. Soc. Chim., (2), 35, 421, 1881; A. Rosenheim and W. Levy, Ber., 37, 394, 1903; 41, 34, 1905; A. Rosenheim and W. Löwenstamm, Zeit. anorg. Chem., 37, 400, 1903; P. Schützenberger, Compt. Rend., 71, 69, 1870; P. Schützenberger and C. Fontaine, Bull. Soc. Chim., (2), 18, 110, 1872; Q. Sella, Mem. Accad. Torino, (2), 20, 355, 1863.

18 E. Amort, Ueber die Einwirkung von Arsenwasserstoff auf Quecksilberchlorid und über hexaalkylierte Diarsoniumverbindungen, Heidelberg, 1898; G. B. Buckton, Journ. Chem. Soc., 13. 115, 1860; A. Cahours, Ann. Chim. Phys., (3), 62. 257, 1861; Liebig's Ann., 122. 209, 1862; W. M. Dehn and B. B. Wilcox, Amer. Chem. Journ., 35, 32, 1906; A. Gronover, Beiträge zur Kenntnis der Hexaalkyldiarsoniumverbindungen, Heidelberg, 1899; H. Landolt, Journ. prukt. Chem., (1), 63. 283, 1854; Liebig's Ann., 84. 61, 1852; 92. 371, 1854; R. Löwig, Ueber das Stibäthylium und seine Verbindungen, Breslay, 1854; Journ. prakt. Chem., (1), 64. 424, 1855; E. Mannheim, Liebig's Ann., 341. 197, 1905; A. Michaelis and U. Paetow, ib., 233. 79, 1886; G. T. Morgan and V. E. Yarsley, Journ. Chem. Soc., 127, 184, 1925; A. Partheil and E. Amort, Ber., 31. 596, 1898; Arch. Pharm., 237. 138, 1899; A. Partheil and E. Mannheim, ib., 238.

- 175, 1900.

 19 E. H. Archibald, Proc. Edin. Roy. Soc., 29, 721, 1909; Journ. Chem. Soc., 117, 1104, 1920; Zeil. anorg. Chem., 60, 180, 1910; E. H. Archibald and L. T. Hallett, Journ. Amer. Chem. Soc., 47. 1314, 1925; E. H. Archibald and J. W. Kern, Trans. Roy. Soc. Canada, (3), 11. 7, 1917; J. J. Berzelius, Schweigger's Journ., 7, 55, 1812; 34, 81, 1821; K. Birnbaum, Liebig's Ann.,
 152, 137, 1869; 159, 116, 1871; Chem. News, 20, 189, 322, 1869; 24, 109, 1871;
 C. H. D. Bödeker, Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen, Leipzig, 1860; R. Böttger, Beiträge zur Physik und Chemie, Frankfurt a. M., 3, 37, E. Carozzi, Gazz. Chim. Ital., 54. 556, 1924; C. Claus, Bull. Acad. St. Petersburg, (2),
 273, 1848; W. Crookes, Chem. News, 9. 37, 1864; J. Dalictos and K. Makris, Prakt. Acad. Athenes, 3. 569, 1928; H. St. C. Deville and J. S. Stas, Procès Verb. aux Comité Internat. Poids Mesures, Paris, 155, 1878; J. W. Döbereiner, Liebig's Ann., 28, 238, 1838; Arch. Pharm., 14, 274, 1838; O. Döpping, Liebig's Ann., 47, 253, 1843; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 988, 1004, 1932; G. Engel, Zeit. Krist., 90, 341, 1935; Centr. Min., 285, 1934; E. Feytis, Compt. Rend., 152, 710, 1911; N. W. Fischer, Kastner's Arch., 14. 156, 1828; R. Fresenius, Anleitung zur quantitativen chemischen Analyse, Braunschweig, 1846; Liebig's Ann., 59. 118, 1846; P. Groth, Chemische Krystallographie, Leipzig, 1. 489, 1906; W. Halberstadt, Ber., 17. 2965, 1884; M. L. Huggins, Phys. Rev., (2), 27. 638, 1926; S. M. Jörgensen, Journ. prakt. Chem., (2), 16. 353, 1877; Zeit. anorg. Chem., 25. 363, 1900; W. Knop, Chem. Centr., (2), 4. 241, 1859; A. Laurent and C. Gerhardt, Compt. Rend. Trav. Chim., 113, 1849; E. J. Maumené, Bull. Soc. Chim., (3), 4, 179, 1890; E. von Meyer, Journ. prakt. Chem., (2), 18. 319, 1878; A. von Mussin-Puschkin, Ann. Chim. Phys., (1), 24. 205, 209, 1797; (1), 28. 85, 1798; (1), 54. 220, 1804; Journ. Mines, 15. 195, 1804; Nicholson's Journ., 9. 65, 1804; Phil. Mag., (1), 20. 76, 1805; G. B. Naess and O. Hassel, Skr. Norske Vid. Akad. Oslo, 7, 1933; S. Nagami, Journ. Chem. Soc. Japan, 48. 501, 1927; G. Natta and D. Dismit Alia. R. Pirani, Atti Accad. Lincei, (6), 15. 92, 1932; P. Niggli and W. Nowacki, Zeit. Kryst., 86. 65, 1933; E. Ogawa, Journ. Chem. Soc. Japan, 51, 189, 1930; L. Pigeon, Ann. Chim. Phys., (7), 2. 462, 1894; P. C. Ray and A. C. Ghosh, Zeit. anorg. Chem., 64. 185, 1909; A. Ries, Zeit. Kryst., 36. 322, 1902; 49. 520, 1911; J. B. Rogojsky, Ann. Chim. Phys., (3), 41. 452, 1854; R. Romanis, Chem. News, 49. 273, 1884; P. Schottländer, Liebig's Ann., 140. 200, 1866; F. Schulze, Ueber das Atomgewicht des Platins, Erlangen, 1912; I. I. Shukoff and O. P. Schipulina, Journ. Russ. Phys. Chem. Soc., 61. 1485, 1929; K. Seubert, Liebig's Ann., 207. 11, 1818; G. F. Smith and A. C. Shead, Journ. Amer. Chem. Soc., 53. 947, 1931; J. Thomsen, Journ. prakt. Chem., (2), 15. 294, 1877; H. Töpsöe, Overs. Selsk. Forh. Kopenhagen, 216, 1869; P. Vallet, Compt. Rend., 195. 1074, 1932; P. Walden, Zeit. phys. Chem., 2, 76, 1887; T. Wilm, Zur Chemie der Platinmetalle, Dorpat, 1882; R. W. G. Wyckoff, Amer. Journ. Science, (5), 16, 349, 1928; Zeit. Kryst., 68, 233, 1928; R. W. G. Wyckoff and E. Posnjak, Journ. Amer. Chem. Soc., 43. 2292, 1921.
 20 J. Thiele, Liebig's Ann., 270. 33, 1892.

 - ²¹ E. Herlinger, Zeit. Krist., 62. 454, 1925.
- ²² A. H. Allen, Chem. News, 35, 259, 268, 1877; 36, 17, 38, 47, 1877; B.A. Rep., 24, 1876; S. Aoyama, K. Kimura and Y. Nishina, Zeit. Physik, 44. 810, 1927; E. H. Archibald, Proc. Edin. Roy. Soc., 29. 721, 1909; Zrit. anorg. Chem., 60. 180, 1910; Journ. Chem. Soc., 117. 1104, 1920; E. H. Archibald and W. A. Gale, ib., 121. 2849, 1922; E. H. Archibald and L. T. Hallett, Journ. Amer. Chem. Soc., 47. 1314, 1925; E. H. Archibald, W. G. Wilcox and

B. G. Buckley, ib., 30, 750, 1908; A. Atterberg, Chem. Ztg., 22, 522, 538, 1898; Zeit. anal. Chem., 36, 314, 4897; 51, 483, 1912; J. J. Berzelius, Schweiger's Journ., 7, 55, 1812; 34, 8, 1821; W. Biltz, Zeit. clektrochem., 29, 348, 1923; C. H. D. Bödeker, Die Beziehungen zwischen Dichte und Zusemmensetzung bei festen und lequiden Stoffen, Leipzig, 1860; R. Böttger, Zeit. anal. Chem., 13. 176, 1874; R. H. Brett, Phil. Mag., (3), 10. 95, 1837; Liebig's Ann., 23. 132, 1837; Journ. prakt. Chem., (1), 10. 261, 1837; S. H. C. Briggs, Journ. Chem. Soc., 93. 1564, 1908; B. C. Corenwinder and A. Contamine, Compt. Rend., 89, 907, 1879; A. Cossa, Mem. Accad. Torino, (2), 41. 3, 1890; Ber., 23. 2508, 1890; W. Crookes, Chem. News, 9, 205, 1864; P. Delépine and P. Boussi, Bull. Soc. Chim., (4), 23. 278, 1918; N. Demassieux and J. Heyrovsky, ib. 326, 1898; G. Engel, Naturwiss., 21, 704, 1933; Centr. Min., 285, 1934; Zeit. Krist., 90, 341, 1935; P. P. Ewald, ib., 61, 1, 1924; F. J. Ewing and L. Pauling, ib., 68, 223, 1928; C. Favre, Compt. Rend., 122, 1331, 1896; E. Feytis, ib., 152, 710, 1911; A. Fiechter, Zeit. anal. Chem., 50. 629, 1911; J. Fiedler, De lucis effectibus chemicis in corpora anorganica, Vratislavia, 1835;
R. Finkener, Pogg. Ann., 129, 637, 1866; W. A. Frederikse and H. J. Verweel, Rec. Trav. Chim. Pays-Bas, 47, 904, 1928; H. Fresenius, Chem. Ztg., 34, 1032, 1910; R. Fresenius, Liebig's Ann., 59. 117, 1846; Anleitung zur quantitativen chemischen Analyse, Braunschweig, 1846; Zeit. anal. Chem., 16. 63, 1877; 21. 234, 1882; 33. 358, 1892; J. A. N. Friend, Journ. Chem. Soc., 93, 1006, 1908; O. W. Gibbs, Amer. Journ. Science, (2), 31, 70, 1861; Chem. News, 3. Soc., 93. 1006, 1908; O. W. Gibbs, Amer. Journ. Science, (2), 31. 70, 1861; Chem. News, 3.
130, 148, 1861; G. Gire, Ann. Chim. Phys., (10), 4, 183, 370, 1925; P. Groth, Chemische Krystallographie, Leipzig, 1, 488, 1906; H. Haefeke, Chem. Ztg., 20, 88, 1896; H. W. Hake, Proc. Chem. Soc., 12, 34, 1896; W. Halberstatlt, Ber., 17, 2965, 1884; A. Hantzsch, ib., 41, 1216, 1908; Zeit. phys. Chem., 72, 362, 1910; W. F. Hillebrand, Bull. U.S. Geol. Sur., 422, 1910; C. Himly, Journ. Pharm. Chim., (3), 2, 430, 1842; Liebig's Ann., 43, 150, 1842; A. F. Holleman, Chem. Ztg., 16, 35, 1892; V. A. Jacquelain, Ann. Chim. Phys., (2), 74, 213, 1840; Compt. Rend., 11, 204, 1840; Journ. prakt. Chem., (1), 22, 22, 1841; P. Jannasch and C. Stephan, Ber., 37, 1980, 1904; F. Jean and J. A. Trillat, Bull. Soc. Chim., (3), 7, 228, 1892; S. M. Jörgensen, Zeit annra Chem., 25, 377, 1900; G. Kurchhoff and R. Bunsen, Paga Ann. S. M. Jörgensen, Zeit. anorg. Chem., 25, 377, 1900; G. Kurchhoff and R. Bunsen, Pogg. Ann., 113, 337, 1861; R. Klement, Zeit. anorg. Chem., 174, 195, 1927; L. L. de Koninck, Chem. 113. 331, 1861; R. Klement, Zeil. aworg. Chem., 174. 195, 1927; L. L. de Koninck, Chem. 21g., 19. 901, 1895; H. Kopp, Liebig's Ann. Suppl., 3. 1, 1865; G. Krause, Arch. Pharm., (3), 2. 407, 1874; N. S. Kurnakoff, Journ. prakt. Chem., (2), 52. 515, 1895; J. L. Lassaigne, Journ. Chim. Méd., 8. 715, 1832; Liebig's Ann., 8. 185, 1833; J. E. Lennard-Jones and B. M. Dent, Phil. Mag., (7), 3. 1204, 1927; J. Lifschitz and E. Rosenbohm, Zeit. phys. Chem., 97. 1, 1921; D. Lindo, Chem. News, 44. 77, 86, 129, 1881; T. M. Lowry, Proc. Cambridge Phil. Soc., 25. 219, 1929; M. Mathieu, Compt. Rend., 188. 1611, 1929; J. Maydel, Zeit. anorg. Chem., 188, 289, 1930. A. Morgior, Reil. Aword, Rela. Chem., 10, 402, 1807. A. Misogri, Atti. Aword. 186. 289, 1930; A. Mercier, Bull. Assoc. Belg. Chem., 10. 403, 1897; A. Minozzi, Atti Accad. Lincei, (5), 18. ii, 150, 1909; F. Mohr, Zeit. anal. Chem., 12. 137, 1873; 21. 216, 1883; G. B. Naess and O. Hassel, Skr. Norske Vid. Akad. Oslo, 7, 1933; S. Nagami, Journ. Chem. Soc. Japan, 48. 501, 1927; G. Natta and R. Pirani. Atti Accad. Lincei, (6), 15. 92, 1932; (6), 16. 265, 1932; W. A. Noyes and H. C. P. Weber, Journ. Amer. Chem. Soc., 30. 15, 1908; M. Péligot, Monit. Scient., (4), 6. 872, 1892; W. Peters, Zeit. anorg. Chem., 77. 183, 1912; 89. 197, 1914; M. Pierrat, Compt. Rend., 172. 1041, 1921; L. Pigeon, Recherches chimiques et calorinétriques sur quelques combinaisons haloïdes du platine, Paris, 1893; H. Precht, Zeit. anal. Chem., 18, 509, 1879; H. Precht, H. Vogel and H. Haefcke, Lands. Ver. Stat., 47, 97, 1896; J. A. Prins and R. Fontayne, Physica, 2, 1016, 1935; L. Raiteri, Atti Accud. Lincei, (5), 31, 112, 1922; R. Reinicke, Zeit. Krist., 82, 419, 1932; P. Rohland, Zeit. anorg. Chem., 15. 415, 1897; 16. 306, 1898; R. Romanis, Chem. News, 49, 273, 1884; H. Rose Ausführliches Handbuch der analytischen Chemie, Braunschweig, 1, 198, 1851; E. Rosenbohm, Zeit. phys. Handbuch der analytischen Chemie, Braunschweig, 1. 198. 1851; E. Rosenbohm, Zeit. phys. Chem., 93. 693, 1919; P. Rudnick, Journ. Amer. Chem. Soc., 43. 2575, 1921; F. Rüdorff, Ber., 21. 3048, 1888; R. Ruer, Chem. Ztg., 20. 270, 1896; R. Samuel and A. R. R. Despande, Zeit. Physik, 80. 395, 1933; R. Samuel, A. A. H. Khan and N. Ahmad, Zeit. phys. Chem., 22. 431, 1933; H. I. Schlesinger and R. E. Palmateer, Journ. Amer. Chem. Soc., 52. 4316, 1930; H. I. Schlesinger and M. W. Tapley, ib., 46. 276, 1924; H. Schröder, Dichtigkeitsmessungen, Heidelberg, 6, 1873; A. von Schrötter, Sitzber. Akad. Wien, 50. 268, 1864; K. Seubert, Liebig's Ann., 207. 6, 1881; B. Sjollema, Chem. Ztg., 21. 739, 1897; E. R. Smith, Journ. Research Bur. Standards, 5. 735, 1930; E. Sonstadt, Proc. Chem. Soc., 14. 25, 179, 1898; Journ. Chem. Soc., 67. 984, 1895; J. S. Stas, Bull. Acad. Bruxelles, 10. 208, 1860; O. Stelling, Zeit. phys. Chem., 24. B, 282, 1934; O. Stelling and F. Olsson, ib., 7. B, 210, 1930; P. Stoll, Raumgitter von Komplexsalzen, Zürich. 1926; J. Thomsen, Journ. vrakt. 210, 1930; P. Stoll, Raumgitter von Komplexsalzen, Zürich, 1926; J. Thomsen, Journ. prakt. Chem., (2), 15, 449, 1877; L. Tietjens and B. Apel, Zeit. anal. Chem., 36, 315, 1897; I. Traube, Zeit. anorg. Chem., 8, 38, 1895; R. Trnka, Zeit. anal. Chem., 51, 103, 1912; G. Tschermak, 226t. analy. Chem., 6, 36, 1893; N. Trinks, 22ct. anat. Chem., 61, 1912; G. Tschleimas, Sitzber. Akad. Wien. 45, 608, 1862; L. Tschugaeff and S. Krassikoff, Zeit. anorg. Chem., 131, 299, 1923; P. Vallet, Compt. Rend., 195, 1074, 1932; M. Vèzes, ib., 110, 758, 1890; Ann. Chim. Phys., (6), 29, 176, 1893; A. Villiers and F. Borg, Bull. Soc. Chim., (3), 9, 602, 1893; A. Vürtheim, Chem. Weekbl., 17, 637, 1920; P. Walden, Zeit. phys. Chem., 2, 76, 1887; H. N. Warren, Chem. News, 75, 256, 1897; A. Werner and F. Fassbender, Zeit. anorg. Chem.,

130, 1897; A. Werner and A. Miolati, Zeit. phys. Chem., 12, 54, 1893; 14, 507, 1894;
 A. Werner and P. Stoll, Zeit. anorg. Chem., 121, 319, 1922;
 A. Windaus, Ber., 42, 3775, 1909;
 A. L. Winton, Journ. Amer. Chem. Soc., 17, 462, 1895;
 A. L. Winton and H. J. Wheeler, Chem. News, 77, 263, 1898;
 N. Wooster, Science Progress, 26, 462, 1932;
 M. Woussen, Ann. Agronom., 13, 431, 1888.

 E. H. Archibald, W. G. Wilcox and B. G. Buckley, Journ. Amer. Chem. Soc., 30, 747,
 1908; R. Böttger, Liebig's Ann., 128, 246, 1863; J. Dalietos and C. G. Makris, Prakt. Acad. Athens, 3. 569, 1928; M. Delépine and P. Boussi, Bull. Soc. Chim., (4), 23, 278, 1918; E. Doumer, Compt. Rend., 110. 140, 1890; J. Fiedler, De lucis effectibus chemicis in corpora anorganica, Vratislaviæ, 1835; T. A. Genke, Journ. Russ. Phys. Chem. Soc., 58, 596, 1926; G. Gire, Ann. Chim. Phys., (10), 4. 186, 370, 1925; P. Groth, Chemische Krystallographie, Leipzig, 1. 542, 1906; A. Hantzsch, R. Clark and K. Meyer, Ber., 41, 1216, 1908; T. A. Henke, Journ. Russ. Phys. Chem. Soc., 58, 596, 1926; N. S. Kurnakoff, Journ. prakt. Chem., (2), 52, 515, 1895; N. S. Kurnakoff and M. I. Ravitsch, Ann. Inst. Anal. Phys. Chim., 7, 225, 1935; C. G. Makris, Journ. Phurn. Chim., (8), 13, 569, 1931; J. C. G. de Marignae, Mém. Soc. Phys. Genève, 14, 223, 1855; Compt. Rend., 42, 288, 1856; V. F. Miller and H. Terry, Journ. Chem. Soc., 605, 1927; A. von Mussin-Puschkin, Ann. Chim. Phys., (1), 24, 205, 209, 1797; (1), 28, 85, 1879; 54. 220, 1804; Crell's Ann., i, 91, 1800; Journ. Mines, 15, 195, 1804; Nicholson's Journ.,
 65, 1804; Phil. Mag., (1), 20, 76, 1804; S. Nagami, Journ. Chem. Soc. Japan, 48, 501. 1927; L. F. Nilson, Journ. prakt. Chem., (2), 15, 267, 1877; Nova Acta Upsala, (3), 9, 15, 1877; Oefrers. Akad. Förhs., 33. 7, 1876; W. Ostwald, Zeit. phys. Chem., 3, 597, 1889; M. Péligot, Monit. Scient., (4), 6, 873, 1892; W. Peters, Ber., 42, 4831, 1909; Zeit. anorg. Chem., 77, 176, 1912; 89, 197, 1914; L. Pigcon, Compt. Rend., 110, 80, 1890; 112, 793, 1891; Bull. Soc. Chim., (3), 6, 548, 1891; Recherches chimiques et calorimétriques sur quelque combinaisons haloides du platene, Paris, 1893; Ann. Chim. Phys., (7), 2, 499, 1894; H. Piecht, Chem. Ztg., 20, 209, 1896; Zeit. anal. Chem., 18, 514, 1879; M. A. Rakuzin, Ukraine Khem. Zuhr., 7, 65, 1932; F. M. Raoult, Compt. Rend., 99, 914, 1884; P. Rohland, Zeit. anorg. Chem., 15, 415, 1897; 16. 306, 1898; F. Rüdorff, Ber., 21. 3048, 1888; G. Sailer, Zeit. anorg. Chem., 116. 209, 1921; C. Scheibler, Journ. prakt. Chem., (1), 67, 485, 1856; G. F. Smith and A. C. Shead, Journ. Amer.
 Chem. Soc., 53, 947, 1931; J. S. Stas, Chem. News, 72, 285, 1895; J. Thomsen, Journ. prakt.
 Chem., (2), 15, 452, 1877; (2), 18, 39, 1878; H. Töpsöe, Arch. Sciences Genève, (2), 45, 223, 1872; B. L. Vanzetti, Atti Accad. Lincei, (5), 16. ii, 655, 1907; L. N. Vauquelin, Ann. Chim. Phys., (2), 5. 264, 392, 1817; A. Werner and F. Fassbender, Zeit. anorg. Chem., 15. 130, 1897; L. Wöhler and P. Balz, ib., 149, 353, 1925.

P. A. von Bonsdorff, Pogg. Ann., 17, 247, 1829; 18, 331, 1829; 19, 337, 1830; 33, 61, 1837; Ann. Chim. Phys., (2), 44, 189, 244, 1830; L. Pauling, Zeit. Krist., 72, 490, 1930;
 W. Peters, Zeit. anorg. Chem., 77, 176, 1912; 89, 198, 1914; Ber., 42, 4831, 1909; H. Töpsöe, Arch. Sciences Genève, (2), 35, 58, 1869; (2), 45, 223, 1872; Danske Selsk. Forh., 154, 1868.

²⁵ K. Birnbaum, Zeit. Chem., (2), **8**, 520, 1867; A. Cahours and H. Gal, Bull. Soc. Chim., (2), **14**, 387, 1870; Compt. Rend., **156**, 302, 1870; A. Commaille, ib., **63**, 553, 1866; Bull. Soc. Chim., (2), **6**, 262, 1866; G. Gore, Journ. Chem. Soc., **22**, 368, 1868; Chem. News, **23**, 13, 1871; J. E. Herberger, Repert. Pharm., **55**, 210, 1831; S. M. Jörgensen, Journ. prakt. Chem., (2), **16**, 345, 1877; A. Miolati, ib., (2), **77**, 450, 1908; S. A. Norton, Amer. Journ. Science, (3), **1**, 375, 1871; (3), **4**, 312, 1872; Journ. prakt. Chem., (2), **2**, 469, 1870; (2), **5**, 365, 1872; W. Ostwald, Zeit. phys. Chem., **3**, 597, 1889; W. Peters, Zeit. anorg. Chem., **77**, 168, 1912; **89**, 197, 1914; Ber., **42**, 4829, 1909; L. Pigeon, Ann. Chim. Phys., (7), **2**, 482, 1894; L. N. Vauquelin, ib., (2), **5**, 264, 392, 1817.

²⁶ J. J. Berzelius, Schweigger's Journ., 7. 55, 1812; 34. 81, 1821; P. A. von Bonsdorff, Pogg. Ann., 17, 250, 1829; 18, 331, 1829; 19, 337, 1830; 38, 61, 1837; Ann. Chim. Phys., (2), 44, 189, 224, 1830; G. Gire, ib., (10), 4, 183, 370, 1925; Compt. Rend., 174, 1700, 1922; W. Kwasnik, Arch. Pharm., 229, 579, 1891; A. von Mussin-Puschkin, Ann. Chim. Phys., (1), 24, 205, 209, 1797; (1), 28, 85, 1798; (1), 54, 220, 1804; Journ. Mines, 15, 195, 1804; Nicholson's Journ., 9, 65, 1804; Phil. Mag., (1), 20, 76, 1804; L. Pauling, Zeit. Krist., 72, 490, 1930; W. Peters, Zeit. anorg. Chem., 77, 168, 1912; 89, 197, 1914; Ber., 42, 4289, 1909; H. Precht, Zeit. anal. Chem., 18, 516, 1872; P. Rohland, Ber., 15, 415, 1897; H. Töpsöe, Danske Selsk. Forh., 142, 1868; Arch. Science Genève, (2), 85, 58, 1869; (2), 45, 223, 1873; Sitzber, Akad. Wien, 69, 275, 1874.

²⁷ K. Haushofer, Mikroskopische Reaktionen, Braunschweig, 24, 1885; J. C. G. de Marignac, Arch. Sciences Genève, (2), 39, 374, 1870; L. Pauling, Zeit. Krist., 72, 490, 1930; J. Thomsen, Bull. Soc. Chim., (2), 15, 50, 1871; Ber., 3, 827, 1870; A. Welkow, ib., 6, 1288, 1873.

Bull. Soc. Chim., (2), 15, 50, 1871; Ber., 3, 827, 1870; A. Welkow, ib., 6, 1288, 1873.

²⁸ K. Birnbaum, Zeit. Chem., (2), 3, 521, 1867; P. A. von Bonsdorff, Pogg. Ann., 17, 250, 1829; 19, 337, 353, 1830; A. Eberhard, Arch. Pharm., 255, 66, 1917; P. Gaubert, Bull. Soc. Chim., (3), 40, 177, 1917; L. Hünefeld, Schweigger's Journ., 60, 197, 1830; S. M. Jörgensen, Ann. Chim. Phys., (5), 6, 449, 1865; A. von Mussin-Puschkin, ib., (1), 24, 205, 209, 1797; (1), 28, 85, 1798; (1), 54, 220, 1804; Journ. Mines, 15, 195, 1804; Nicholson's Journ., 9, 65, 1804; Phil. Mag., (1), 20, 76, 1804; L. F. Nilson, Nova Acta Upsala, 9, 15, 1877; Journ. prakt. Chem., (2), 15, 279, 1877; (2), 16, 263, 1877; Ber., 9, 1146, 1876; L. Pauling, Zeit. Krist., 72, 490, 1930; W. Peters, Zeit. anorg. Chem., 77, 177, 1912; Ber., 42, 4829, 1909; H. Precht, Zeit. anal. Chem., 18, 515, 1879; P. Rohland, Zeit. anorg. Chem., 15, 415, 1897; R. Romanis, Chem. News, 49, 273, 1884; H. Töpsöe, Arch. Sciences Genève, (2), 35, 58, 1868; (2), 45, 223, 1872; Danske

Selsk. Forh., 145, 1868; H. Töpsöe and C. Christiansen, Ann. Chim. Phys., (5), 1, 42, 1874;

Danske Selsk. Skrift., (5), 9, 623, 1873.

 W. Crookes, Journ. Chem. Soc., 17, 112, 1864; Chem. News, 9, 37, 1864; G. Engel, Centr. Min., 285, 1934; Zeit. Krist., 90, 341, 1935; M. Hebberling, Liebig's Ann., 134, 11, 1865;
 F. Kuhlmann, Chem. News, 58, 1037, 1864; L. F. Nilson, Journ. prakt. Chem., (2), 15, 266. 1877; (2), 16, 269, 1877; Nova Acta Upsala, (3), 9, 15, 1877; Oefvers. Akad. Forh., 33, 7, 1876; W. F. Salm-Horstmar, Pogg. Ann., 99, 638, 1856; Journ. prakt. Chem., (1), 70, 121,

1857; A. Welkow, Ber., 7. 304, 1874; G. Werther, Journ. prakt. Chem., (1), 92, 197, 1864.

30 C. Benedicks, Zeit. anorg. Chem., 22, 393, 1900; P. T. Cleve, Bull. Soc. Chim., (2), 21, 118, 197, 247, 345, 1874; (2), 43, 162, 359, 1885; Compt. Rend., 91, 427, 1880; 97, 94, 1883; Zeit. anorg. Chem., 32, 129, 1902; F. T. Frerichs and E. F. Smith, Liebig's Ann., 191, 331, 1979. 1878; M. Holtzmann, Journ. prakt. Chem., (1). 84, 76, 1861; Phil. Mag., (4), 22, 216, 1861; S. Jolin, Bihang. Akad. Stockholm, 2. 6, 1874; Bull. Soc. Chim., (2), 21. 534, 1874; J. C. G. de Marignac, Arch. Sciences Genève, (2), 46, 193, 1873; Ann. Chim. Phys., (4), 30, 45, 1873;
L. F. Nilson, Ber., 9, 1056, 1876; Bull. Chim. Phys., (2), 27, 206, 1877;
C. von Scheele, Zeit.

anorg. Chem., 18, 352, 1898.

31 K. Birnbaum, Zeit. Chem., (2), 3, 520, 1867; L. F. Nilson, Oefvers. Akad. Förh., 33, 7, 1876; Nova Acta Upsala, (3), 9, 15, 1877; Journ. prakt. Chem., (2), 15, 181, 1877; W. Peters, Zeit. anorg. Chem., 77, 176, 1912; Ber., 42, 4831, 1909; P. Rohland, ib., 16, 306, 1898;

 H. Töpsöc, Danske Selsk. Forh., 144, 1868; Arch. Sciences Genève, (2), 45, 223, 1872.
 P. T. Cleve, Oefvers. Akad. Forh., 18, 169, 1861; Svenska Akad. Handl., 6, 4, 1866;
 G. O. Higley, Journ. Amer. Chem. Soc., 26, 613, 1904; S. M. Jörgensen, Journ. prakt. Chem. (2), 20, 129, 1879; (2), 30, 15, 1884; L. F. Nilson, ib., (2), 15, 281, 1877; (2), 16, 267, 1877; Bull. Soc. Chim., (2), 27, 210, 1877; Oefvers. Akad. Forh., 33, 7, 1876; Nova Acta Upsala, (3), 9, 79, 1877; P. Pfeiffer and P. Koch, Zeit. anorg. Chem., 56, 294, 1907; P. Pfeiffer and T. G. Lando, Ber., 37, 4282, 1904; W. J. Sell, Proc. Roy. Soc., 33, 269, 1882; 45, 343, 1889;
 R. F. Weinland, Ber., 41, 3237, 1908; R. F. Weinland and E. Büttner, Zeit. anorg. Chem., 75. 368, 1912; R. F. Weinland and P. Dinkelacker, Ber., 42, 3009, 1909; R. F. Weinland and E. Gussmann, Zeit. anorg. Chem., 67, 180, 1910; A. Werner, Ber., 41, 3461, 1908.

³³ P. A. von Bonsdorff, Pogg. Ann., 17, 250, 1829; 19, 337, 1830; H. St. C. Deville and J. S. Stas, Proces Verb. Comité Internat. Poids Mesures, 160, 1878; E. Herlinger, Zeit. Krist., 62. 454, 1925; L. F. Nilson, Oefrers, Akad. Forh., 33, 7, 1876; Nova Acta Upsala, (3), 9, 15, 1877; Journ. prakt. Chem., (2), 16, 261, 1877; L. Pauling, Zeit. Krist., 72, 490, 1930; W. Peters, Ber., 42, 4829, 1909; Zeit. anorg. Chem., 77, 177, 1912; H. Topsöe, Danske Selsk. Forh., 148, 1868; Arch. Sciences Genève. (2), 35. 58, 1868; (2), 45. 223, 1872; H. Töpsöe and

C. Christiansen, Ann. Chim. Phys., (5), 1. 42, 1874; Danske Schrift., (5), 9. 623, 1873.

34 A. G. Bergman, Journ. Russ. Phys. Chem. Soc., 56, 177, 1925; P. A. von Bonsdorff, Pogg. Ann., 17, 250, 1829; 19, 337, 1830; C. D. Braun, Untersuchungen über ammoniakalische Kobaltverbindungen, Göttingen, 14, 1862; J. N. Bronsted and A. Petersen, Journ. Amer. Chem. Soc., 43, 2269, 1921; F. Claudet, Journ. Chem. Soc., 4, 359, 1852; F. Ephraim and W. Flügel, Helvetica Chim. Acta, 7, 726, 1924; W. Gibbs, Proc. Amer. Acad., 11, 17, 1876; W. Gibbs and F. A. Gcuth, Amer. Journ. Science, (2), 23, 245, 329, 1857; E. Herlinger, Zeit. Krist., 62, 154, 1925; F. M. Jäger, ib., 39, 544, 1904; S. M. Jörgensen, Danske Skrift., 6, 1865; Zeit. anorg. Chem., 5, 189, 1894; 16, 194, 1898; Journ. prakt. Chem., (2), 18, 229, 1878; (2), 31, 55, 1885; (2), 35, 425, 1887; (2), 39, 12, 1889; (2), 41, 457, 1890; (2), 42, 215, 1890; L. Pauling, Zeit. Krist., 72, 490, 1930; W. Peters, Ber., 42, 4829, 1909; Zeit. anorg. Chem., 77, 178, 1912; L. R. Pogosiky, Lourne prakt. Chem., (1), 58, 496, 1859; Lem. Chim. Phys. (3), 44, 451, 1854. J. B. Rogojsky, Journ. prakt. Chem., (1), 56, 496, 1852; Ann. Chim. Phys., (3), 41, 451, 1854;
 H. Steinmetz, Zeit. Krist., 57, 252, 1922; H. Töpsöe, Danske Selsk. Forh., 151, 1868; Arch. Sciences Genève, (2), 35, 58, 1869; H. Töpsöe and C. Christiansen, Ann. Chim. Phys., (5), 1, 42, 1874; Danske Skrift., 9, 623, 1873; G. Vortmann, Ber., 15, 1897, 1882; A. Werner, Liebig's Ann., 386, 190, 1912; A. Werner and R. Feenstra, Ber., 39, 1544, 1906; A. Werner and R. Fröhlich, ib., 40. 2232, 1907; A. Werner and J. Fürstenberg, Liebig's Ann., 375. 102, 1910; A. Werner and G. Jantsch, Ber., 40, 4432, 1907; A. Werner and E. Kindscher, Liebig's Ann., 375. 82, 1910; A. Werner and A. Klein, Zeit. anorg. Chem., 14. 38, 1897; A. Werner, H. Kuh and P. Wüst, Ber., 47, 1973, 1914; A. Werner and G. Lindenberg, Liebig's Ann., 386, 271, 1912; A. Werner and A. Miolati, Zeit. phys. Chem., 14. 517, 1894.

36 W. Biltz, Zeit. anorg. Chem., 115. 241, 1921; P. A. von Bonsdorff, Pogg. Ann., 17. 250, 1829; 19. 337, 1830; E. Herlinger, Zeit. Krist., 62. 154, 1925; N. S. Kurnakoff, Zeit. anorg. Chem., 22. 467, 1900; Journ. Russ. Phys. Chem. Soc., 31. 688, 1899; L. Pauling, Zeit. Krist., 72. 490, 1930; W. Peters, Ber., 42. 4829, 1909; Zeit. anorg. Chem., 77. 178, 1912; H. Töpsöe, Danske Selsk. Forh., 150, 1868; Arch. Sciences Genève, (2), 35. 58, 1869; (2), 45. 223, 1872.

36 I. Bellucci, Atti Accad. Lincei, (5), 11. ii, 241, 274, 1902; Gazz. Chim. Ital., 38. i, 145, 1903; M. Blondel, Ann. Chim. Phys., (8), 6. 81, 1905; M. Boll, Compt. Rend., 156. 138, 1913; 1903; M. Biondel, Ann. Chim. Phys., (8), 6. 81, 1905; M. Boll, Compt. Rend., 186. 138, 1913; P. T. Cleve, Bull. Soc. Chim., (2), 21. 118, 197, 247, 345, 1874; (2), 43. 162, 359, 1885; Compt. Rend., 91. 427, 1880; 97. 94, 1883; Zeit. anorg. Chem., 32. 129, 1902; J. W. Döbereiner, Pogg. Ann., 28. 180, 1833; F. A. Genth, Liebig's Ann., 80. 276, 1851; Nordamerikan Monatsber., 2. 8, 1851; J. F. W. Herschel, Phil. Mag., (3), 1. 58, 1832; W. Hittorf and H. Salkowsky, Zeit. phys. Chem., 28. 548, 1899; I. Jacobsen, Compt. Rend., 149. 755, 1909; S. M. Jörgensen, Journ. prakt. Chem., (2), 16. 345, 1877; (2), 25. 407, 1882; (2), 45. 226, 1892; E. Johannsen, Liebig's Ann., 155. 208, 1870; P. Klason, Ber., 28. 1484, 1895; A. Miolati, Zeit. anorg. Chem., 22, 445, 1900; A. Miolati and I. Bellucci, Atti Accad. Lincei, (5), 9, 51, 97, 1900; Gazz. Chim. Ital., 30, ii, 567, 1900; Zeit. anorg. Chem., 26, 209, 1901; 33, 258, 1903; A. Miolati and U. Pendini, ib., 33, 264, 1903; S. A. Norton, Journ. prakt. Chem, (2), 2, 469, 1870; (2), 5, 365, 1872; L. Pigeon, Ann. Chim. Phys., (7), 2, 433, 1894; W. Pullinger, Journ. Chem. Soc., 61, 422, 1892; F. Reiff, Zeit. anorg. Chem., 208, 321, 1832; A. Rosenheim and W. Löwenstamm, ib., 37, 404, 1803; O. Ruff and W. Jeroch, Ber., 46, 925, 1913; L. N. Vauquelin, Ann. Chim. Phys., (2), 5, 264, 1817; Ann. Phil., 12, 28, 1878; G. Vortmann, Monatsh., 6, 436, 1885; G. Vortmann and O. Blasberg, Ber., 22, 2654, 1889; F. Weiss and F. Döbereiner, Liebig's Ann., 14, 18, 1835.

³⁷ E. Davy, Phil. Trans., 107. 136, 1817; Ann. Phil., 7. 468, 1816; 9. 229, 1817; Quart. Journ. Science, 3. 131, 1817; Phil. Mag., (1), 49. 146, 1817; Schweigger's Journ., 19. 91, 1816; J. W. Döbereiner, Gilbert's Ann., 72. 194, 1822; A. F. de Fourcroy and L. N. Vauquelin, Gehlen's Journ., 1. 348, 1806; Ann. Chim. Phys., (1), 48. 177, 1803; E. von Meyer, Journ. prakt. Chem., (2), 18. 305, 1878; J. L. Proust, Ann. Chim. Phys., (1), 49. 177, 1804; Gehlen's Journ., 1. 347,

1806.

§ 23. The Platinum Ammines

The platinum ammines are here arranged as in the analogous cases of the chromic and cobaltic ammines. There is a long list in the *Platiake* of W. Loewenstein in L. Gmelin and K. Kraut, *Handbuch der anorganischen Chemie* (Heidelberg, 5. iii, 429, 1915). F. Reitzenstein, and I. I. Tscherniaeff studied the complex salts. For the complexes with platinum monochloride, vide supra.

The mechanism of the linkage of the co-ordinated molecules with the central atom of the nucleus has not been fully explained. In one version of the electronic theory, the linkage is attributed to the transfer of a pair of electrons by each co-ordinated molecule as donor. This furnishes an outer ring or shell of electrons exceeding the stable octet. Rings or shells with 12 and 18 electrons are assumed to form stable rings or shells in complexes in which the co-ordination number is 6 or 8. To overcome the difficulty, some of the linkages formed by the electrons are assumed to be singlets; or else they are attributed to dipole valency, thus, in a compound of the type $[M(NH_3)_m]X_n$, the negative charge on the electrons will be greatest at the corners of the usual octet, and weakest at the central atom will there be greatest. In other words, the central atom will be surrounded by an electric field with six positive poles corresponding with the faces of the cube—Fig. 87.

Figs. 87 to 89.—Arrangement for Molecules with Co-ordination Numbers, 4, 6, and 8.

Consequently, when the central atom is approached by a dipole molecule, like water or ammonia, the negative portion—oxygen or nitrogen as the case may be—is attached to one of the six mid-points of the faces of the cube—dotted in Fig. 88—so that the six molecules will be arranged about the central atom at the corners of a regular octahedron. As previously indicated, P. Stoll (1926), and R. W. G. Wyckoff (1931), have shown that in the crystal lattices of compounds like $K_2[PtCl_6]$, $Rb_2[PdBr_6]$, $[Ni(NH_3)_6]Cl_2$, $[Co(NH_3)_6]I_3$, and $(NH_4)_2[SiF_6]$, the ammonia molecules or the halogen atoms in the square brackets are arranged at the corners of an octahedron surrounding the central atom. This shows the origin of the co-ordination number 6. In this co-ordination, the "neutral" molecules are attached by the negative portions to the positive surface of the central atom. The electrical field is concentrated in the "neutral" molecules so that the electronegative X-atoms

are forced away from the central atom, and exhibit ionization: $[M(NH_3)_m]X_n = [M(NH_3)_m] + nX'$. The co-ordination number is 4 when the 4 molecules are arranged about the central atom at the corners of a regular tetrahedron—Fig. 87; and the co-ordination number is 8 when the 8 molecules are arranged about the central atom at the corner of a cube—Fig. 89. When the six co-ordinated molecules completely surround the central atom so that there is no space available for the introduction of more molecules, the co-ordination number 6 cannot be exceeded. Suppose each face of the cube—Fig. 88—could accommodate two molecules, the co-ordination number would rise to 12.

The presence of electrical fields about atoms and molecules does not mean that all are capable of dipole attachment without electronic exchange. The fields may be too feeble, or vibrational energy of the molecules due to heat may prevent the formation of these compounds by dipole valency. The effect of the positive charge in favouring this kind of union is more marked when it lies near to the atomic nucleus, such as occurs when the atoms are small; and with a given metal, it is greater, when the metal is exercising its higher valencies.

Molecules like NH_3 and H_2O act as dipoles, and they are attached to the central atom covalently by electrostatic attraction, but charged ions may also attach themselves also by electrostatic attraction. Thus, in ferric chloride, FeCla, the octets about the four atoms are completed electrovalently. The octet of iron has positive charges located at the centres of six faces of the imaginary (dotted) cube, Fig. 88, and here are attached electrostatically three Cl'-ions. The remaining three positive charges attract the negative ions of three molecules of exesium chloride. There are therefore six chlorine ions, respectively, at the six apices of the octahedron, Fig. 88. The neutral molecules, CsCl, are attached to the positive surface of the central atom by negative ions, and the oppositely-charged ions remain in the outer sphere so that, on ionization, Cs₃[FeCl₆] ⇒ 3Cs'+[FeCl₆]". The chlorine ions in such complexes, [MCl₆]", are not liberated as single ions unless the complex is decomposed, but are held tenaciously by dipole valency to the apices of the octahedron, Fig. 89. If one of these positions is taken up by a molecule of water, ammonia, or some other neutral body, a Cl'-ion is released. The electrical nature of the combination is not apparent before the displacement has taken place; no charge is acquired by the chlorine ion in separating from the complex, because it was already charged in the complex itself.

According to the electronic theory of valency, in the platinous ammines, starting with the central platinous,: Pt:, with a group of four valency electrons, the tetrammine is formed by the introduction of four ammonia molecules, in which each molecule shares a pair of electrons with the platinum atom by means of a duplet linkage. This raises the number of electrons in the ring to twelve, so that there is a stable dodecet instead of an octet grouping—vide supra, singlet linkages. If one of the ammonia molecules be replaced by, say, a neutral chlorine atom, the ammonia molecule taking away with it two shared electrons, and the chlorine atom bringing in only one electron, means that there is an electron short. This is made good by the complex bringing in an electron from outside, thus reducing the positive charge of the nucleus by one unit. In that way, $[Pt(NH_3)_3(1]^{+}$ + passes into $[Pt(NH_3)_3(1]^{+}$, and so on with successive replacements of NH_3 -groups by Cl-atoms, until, at the limit, a chloroplatinite, $[PtCl_4]^{-}$, say potassium chloroplatinite, $K_9[PtCl_4]$:

 $\begin{bmatrix} NH_3 & \bullet & + & NH_3 \\ \bullet & + & Pt & + \\ NH_3 & \bullet & + & NH_3 \\ \bullet & + & NH_3 \end{bmatrix} & \begin{bmatrix} NH_3 & \bullet & NH_3 \\ \bullet & Pt & \bullet \\ + & Pt & \bullet \\ NH_3 & \bullet & CI \end{bmatrix} & \begin{bmatrix} NH_3 & \bullet & CI \\ + & Pt & \bullet \\ - & Pt & \bullet \\ NH_3 & \bullet & CI \end{bmatrix} & \begin{bmatrix} CI & \bullet & CI \\ \bullet & Pt & \bullet \\ - & Pt & \bullet \\ NH_3 & \bullet & CI \end{bmatrix}$ $[Pt(NH_3)_6]^{\bullet \bullet} - ion \qquad [Pt(NH_3)_3 CI]^{\bullet} - ion \qquad [Pt(NH_3)_3 CI_3] & - [PtCI_6]'' - jon$

where ● denotes the electrons of platinum; ⊙, those of chlorine; and ‡, those of ammonia is formed. One of the two chlorine electrons comes out of the nucleus, and this reduces the positive charge of the nucleus by one unit for each chlorine electron brought in from outside. Since the symbol → is used to indicate a valency bond in which two shared electrons are supplied by one atom, or atomic group, as donor, and the symbol — for an ordinary valency bond formed by two atoms sharing a pair of electrons, the alternative symbols for the platinous compounds are of the type:

In the ammines, ammonia can be replaced, molecule by molecule, by pyridine, C_5H_5N , methylamine, $CH_3.NH_2$, etc. In these compounds, each nitrogen atom shares a pair of electrons with the central atom of, say, platinum; but with a molecule of ethylenediamine, $NH_2.CH_2.CH_2.NH_2$ — often written en, for the sake of brevity—each of the two nitrogen atoms of ethylenediamine can contribute a pair of electrons to the central atom to form what G. T. Morgan (1920) called chelate compounds—from $\chi\eta\lambda\dot{\eta}$, a claw—in allusion to the pincer-like claws of the crustacea; thus:

$$\begin{bmatrix} NH_3 + \bullet + NH_2 \cdot CH_2 \\ \bullet + Pt & \bullet & \cdot \\ NH_3 + \bullet + NH_2 \cdot CH_2 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} NH_3 & NH_2 \cdot CH_2 \\ NH_3 & NH_2 \cdot CH_2 \end{bmatrix}$$

Pt(NH₃)₂(NH₂.CH₂.CH₂.CH₂.NH₂)] or [Pt(NH₃)₂ en]

In the platinic ammines, the central platinic atom,: Pt:, with an uncompleted group of six electrons, in forming the hexammine, takes up six ammonia molecules by double linkages, and this makes a total of 18 electrons. If one of the ammonia groups is replaced by chlorine, which donates only one electron to the central platinum atom, another electron must come from outside to complete the octodecet grouping. This reduces the original charge of four positive units to three:

When a univalent, electronegative radicle like chlorine displaces a molecule of ammonia, or water, the positive valency of the complex drops by one unit for each substitution until the neutral ammine is attained. Beyond that, the introduction of another electronegative radicle in place of ammonia, renders necessary the introduction of an extra electron from outside, and this imparts a negative charge to the complex Pt(NH₃)Cl₅-ion. At the limit, there is formed the complex, bivalent, electronegative PtCl₆--ion, typified by the salt, potassium chloroplatinate, K₂PtCl₆. These remarks apply, mutatis mutandis, also to other ammines—e.g. cobalt, chromium, iridium, and many other metals.

It will be observed that in the electronic theory, A. Werner's distinction between principal and subsidiary valencies is virtually superseded, and, as pointed out by N. V. Sidgwick (1927), according to the electronic theory, all the valencies attaching the groups to the central atom are the same; otherwise expressed, the number of shared

electrons in the valency group of the central atom is the same whether the co-ordinated units are molecules or univalent radicles; and, accordingly; the one kind can replace those of the other kind, unit by unit. The special feature of A. Werner's hypothesis still retained is the co-ordination number which represents the number of groups joined to the central atom by non-ionizable linkages whether these are linkages of univalent radicles, or whole molecules.

- I.—The platinous ammines with one platinum atom in the nucleus.
- 1.—The pentammine family, or compounds of the bivalent basic group [PtA₅]".
 - (i) Trianilinodiammines, [Pt(NH₃)₂(C₆H₅NH₂)₃|X₂, represented by the (1) chloride; and (2) sulphate.
 - (ii) Ethylenesulphinotriammines, [Pt(NH₃)₃{(C₂H₄)₂S₂}]X₂, represented by the (1) chloride; and (2) sulphate.
- 2.—The tetrammine family, or compounds of the bivalent basic group [PtA₄]".
 - (i) Tetrammines, $[Pt(NH_3)_4]X_2$, represented by (1) (2) chloride—and double chlorides with those of copper, barium, zinc, mercury, tin, lead, cobalt, and platinum (ous and ic), and other double salts with ammonia, ethylamine, pyridine, ethylene, and amyl alcohol; (3) bromide and a bromoplatinite, and a complex with amyl alcohol; (4) iodide and a complex with mercury iodide; (5) sulphite, chlorosulphite, and sulphitoplatinites; (6) hydrosulphite and hydrosulphitoplatinites; (7) sulphate; (8) hydrosulphate; (9) nitrite, and nitritoplatinite; (10) nitrate, and nitratoplatinate; (11) phosphate and complexes with the ammonium phosphates; (12) carbonates; (13) hydrocarbonates; (14) acetate; (15) oxalate and oxalatoplatinite; (16) hydroxalates; (17) tartrate; (18) hydrotartrate; (19) picrate; (20) phenylmercaptide; (21) phenylthioglycolate; (22) thiocyanate and thiocyanatoplatinite; (23) ferrocyanide; (24) cyanoplatinite; (25) chromate; (26) dichromate.
 - (ii) Tetrahydrazines, [Pt(N₂H₄)₄]X₂, represented by the (1) chloride; and
 (2) iodide.
 - (iii) Dihydrazinodiammines, [Pt(NH₃)₂(N₂H₄)₂]X₂, represented by the cisand trans-chlorides, chloroplatinite, and chloropalladite.
 - (iv) Tetrahydroxylamines, [Pt(NH₂OH)₄|X₂, represented by (1) hydroxide;
 (2) chloride, basic chlorides, and chloroplatinite; (3) hydrochloride; (4) bromide; (5) sulphate; (6) nitrate; (7) phosphate; and (8) oxalate.
 - (v) Trihydroxylaminoammines, [Pt(NH₃)(NH₂OH)₃]X₂, represented by the chloride, and the chloroplatinite and chloropalladite.
 - (vi) Hydroxylaminotriammines, [Pt(NH₃)₃(NH₂OH)]X₂, represented by the chloride and chloroplatinite.
 - (vii) Dihydroxylaminodiammines, [Pt(NH₈)₂(NH₂OH)₂]X₂, represented by the chloride.
 - (viii) Dihydroxylaminobispyridines, [Pt(NH₂OH)₂py₂]X₂, represented by the chloride, and chloroplatinite.
 - (ix) Aquotriammines, [Pt(NH₃)₃(H₂O)]X₂, represented by the (1) chloroplatinite, and (2) bromoplatinite.
 - (x) Quatermethylamines, [Pt(CH₃NH₂)₄]X₂, represented by the chloride and chloroplatinite.
 - (xi) Quaterethylamines, [Pt(C₂H₅NH₂)₄]X₂, represented by the (1) chloride, some isomeric forms, chloroplatinite, and chloroamminoplatinates;
 (2) bromide; (3) sulphate; (4) nitrate; and (5) oxalate.
 - (xii) Quaterpropylamines, [Pt(C₃H₇NH₂)₄]X₂, represented by the chloride and the chloroplatinite.

- (xiii) Quaterbutylamines, [Pt(C₄H₉NH₂)₄|X₂, represented by the chloride and the chloroplatinite of the normal and isobutylamines.
- (xiv) Quateranylamines, [Pt(C₅H₁₁NH₂)₄]X₂, represented by the chloroplatinite.
- (xv) Quaterdimethylamines, $[Pt\{(CH_3)_2NH\}_4]X_2$, represented by the chloride and chloroplatinite.
- (xvi) Quaterbenzylamines, [Pt(C₆H₅.CH₂.NH₂)₄|Cl₂.
- (xvii) Quateranilines, [Pt(C6H5NH2)4]X2, represented by the chloride.
- (xviii) Bisethylenediamines, [Pt en₂|X₂, represented by (1) chloride and its double salts with copper, cobalt, and platinous chlorides; (2) bromide and the double salts with copper and platinous bromides;
 (3) perchlorate; (4) carbonate; (5) oxalate; and (6) cyanoplatinate.
- (xix) Bispropylenediamines, [Pt pn₂]X₂, represented by racemic, levo-, and dextro-salts: by (1) hydroxide; (2) chloride; (3) bromide; (4) iodide; (5) sulphate; (6) nitrate; and (7) picrate.
- (xx) Quaterpyridines, [Pt py4]X2, represented by (1) hydroxide; (2) chloride, the double salts with copper, zinc, cadmium, cobalt, platinous, and platinic chlorides, as well as by complexes with the ammino-, ethylamine-, and pyridine-trichloroplatinates; (3) bromide; (4) iodide; (5) sulphite; (6) sulphate and double sulphates with copper and zinc; (7) hydrosulphate; (8) dithionate; (9) nitrite and nitritoplatinite; (10) nitrate and bromonitrate; (11) hydronitrate; (12) carbonate; (13) hydrocarbonate; (14) thiocyanate; (15) acetate; (16) oxalate; (17) chromate; and (18) dichromate.
- (xxi) Quatermethylcarbylamines, [Pt(CH₃.NC)₄]X₂, represented by the (1) chloroplatinite; and (2) picrate.
- (xxii) Quaterbutylcarbylamines, [Pt(C₄H₉.NC)₄]X₂, represented by the (1) chloride and chloroplatinite; (2) cyanoplatinite; and (3) picrate.
- (xxiii) Quaterphenylcarbylamines, [Pt(C₆H₅.NC)₄]X₂, represented by the (1) chloroplatinite; and (2) bromoplatinite.
- (xxiv) Qualeraminoacetals, [Pt{NH₂.CH(OC₂H₅)₂}₄]X₂, represented by the chloride and chloroplatinite.
- (xxv) Quaterthioacetamides, [Pt(CH₃.CS.NH₂)₄]X₂, represented by (1) chloride and chloroplatinate; and (2) sulphate.
 (xxvi) Quaterthiocarbamides, [Pt{CS(NH₂)₂}₄]X₂, represented by (1) chloride
- (xxvi) Quaterthiocarbamides, [Pt{CS(NH₂)₂}₄]X₂, represented by (1) chloride and chloroplatinate; (2) bromide; (3) iodide; (4) sulphate; (5) nitrate; (6) thiocyanate; and (7) picrate.
- (xxvii) Quatermethylthiocarbamide, [Pt{CS(NH₂)(NHCH₃)}₄]X₂, represented by the chloride.
- (xxviii) Quaterethylthiocarbamide, [Pt{CS(NH₂)(NHC₂H₅)}₄|X₂, represented by the chloride.
 - (xxix) Quater-iso-undecylthiocarbamide, [Pt{(CSNH₂)(NHC₁₁H₂₃)}₄]X₂, represented by the chloride.
 - (xxx) Quaterdiethylthiocarbamide, [Pt{CS(NHC₂H₅)₂}₄]X₂, represented by the chloride.
 - (xxxi) Quaterdi-iso-undecylthiocarbamide, [Pt{CS(NHC₁₁H₂₃)₂}₄]X₂, represented by the chloride.
- (xxxii) Quatertriethylthiocarbamide, $[Pt{CS(NHC_2H_5)(N(C_2H_5)_2)}_4]X_2$, represented by the chloride.
- (xxxiii) Quaterxanthogenamides, [Pt(NH₂CS.OC₂H₅)₄]X₂, represented by (1) chloride and chloroplatinate; and (2) sulphate.
- (xxxiv) Quatermethylsulphines, [Pt{(CH₃)₂S}₄]X₂, represented by (1) chloride, chloroplatinite, and chloroplatinate; (2) bromoplatinite; (3) sul-

- phate; (4) nitritoplatinite; (5) nitrate; (6) picrate; and (7) nitroprusside.
- (xxxv) Quaterethylsulphines, [Pt{(C₂H₅)₂S}₄]X₂, represented by (1) nitritoplatinite, and (2) picrate.
- (xxxvi) Quaterpropylsulphines, [Pt{(C₃H₇)₂S}₄]X₂, represented by the chloroplatinite.
- (xxxvii) Quaterbutylsulphines, [Pt{(C₄H₉)₂S}₄|X₂, represented by the chloroplatinite with normal and iso-butyl.
- (xxxviii) Bisethylenesulphines, $[Pt\{S(C_2H_4)_2S\}_2|X_2$, represented by the (1) chloride; (2) bromide; (3) iodide; and (4) sulphate.
 - (xxxix) Bisdimethyldithioethyleneglycols, [Pt(CH₃,S,C₂H₄,S,CH₃)₂]X₂, represented by (1) chloroplatinite; (2) nitritoplatinite; and (3) nitroprusside.
 - (xl) Bisdiethyldithioethyleneglycols, [Pt(C₂H₅.S.C₂H₄.S.C₂H₅)₂|X₂, represented by (1) chloride, chloroplatinite, and chloroplatinate; (2) bromoplatinite; (3) nitritoplatinate; (4) pierate; (5) pierolonate; and (6) nitroprusside.
 - (xli) Bisdipropyldithioethyleneglycols, [Pt(C₃H₇,S,C₂H₄,S,C₃H₇)₂]X₂, represented by (1) chloroplatinite; and (2) nitritoplatinite.
 - (xlii) Bisdibutyldithioethyleneglycols, [Pt(C₄H₉.S.C₂H₄.S.C₄H₉)₂|X₂, represented by (1) chloroplatinite; and (2) nitritoplatinite.
 - (xliii) Bisdiethyldithiotrimethyleneglycols, [Pt(C₂H₅,S,C₃H₆,S,C₂H₅)₂|X₂, represented by (1) chloroplatinite; (2) nitritoplatinite; and (3) nitroprusside.
 - (xliv) Bisdipropyldithiotrimethyleneglycols, [Pt(C₃H₇.S.C₃H₆.S.C₃H₇)₂]X₂, represented by the chloroplatinite.
 - (xlv) Bisdiethyldithioxydiethylglycols,[Pt(C₂H₅.S.CH₂(OH).CH₂.S.C₂H₅)₂]X₂, represented by (1) chloroplatinite; and (2) nitritoplatinite.
 - (xlvi) Dithioglycolesters.
 - (xlvii) Quaterethylselenines, [Pt{(C₂H₅₎₂Se}₄|X₂, represented by (1) chloride and chloroplatinite; (2) sulphate; and (3) nitrate.
 - (xlviii) Bisdiethyldiselenotrimethyleneglycols, [Pt(C₂H₅.Se.C₃H₆.Se.C₂H₅)₂]X₂, represented by (1) picrate; and (2) nitroprusside.
 - (xlix) Quatertrimethylphosphines, $[Pt\{P(CH_3)_3\}_4|X_2$, represented by the chloride.
 - (l) Quatertriethylphosphines, [Pt{P(C₂H₅)₃}₄]X₂, represented by the chloride, chlorocuprate, and chloroplatinate.
 - (li) Quatertriethylarsines, $[Pt{As(C_2H_5)_3}_4]X_2$, represented by the chloride.
 - (lii) Dimethylaminetriammines, [Pt(NH₃)₃{(CH₃)₂NH}|X₂, represented by the chloride and chloroplatinite.
 - (liii) Pyridinetriammines, [Pt(NH₃)₃(C₅H₅N)]X₂, represented by the chloride and chloroplatinite.
 - (liv) Methylsulphinotriammines, [Pt(NH₃)₃{(CH₃)₂S}]X₂, represented by the chloride.
 - (lv) Ethylsulphinotriammines, [Pt(NH₃)₃{C₂H₅)₂S}|X₂, represented by two isomeric chlorides, and chloroplatinite.
 - (lvi) Triamminotriethylphosphites, [Pt(NH₃)₃{P(OC₂H₅)₃}]X₂, represented by a complex chloride and chloroplatinate.
 - (lvii) Bismethylaminediammines, [Pt(NH₃)₂(CH₃NH₂)₂]X₂, represented by the chloride in its cis- and trans-forms.
 - (lviii) Bisethylaminediammines, [Pt(NH₃)₂(C₂H₅NH₂)₂]X₂, represented by the cis- and trans-forms of the (1) chloride and the chloroplatinite; (2) iodide; (3) sulphate; and (4) nitrate.

- (lix) Bispropylaminediammines, [Pt(NH₃)₂(C₃H₇NH₂)₂|X₂, represented by the cis- and trans-forms of the chloride.
- (lx) Bisbutylaminediammines, [Pt(NH₃)₂(C₄H₉NH₂)₂]X₂, represented by the chloride.
- (lxi) Bisdimethylaminediammines, [Pt(NH₃)₂((CH₃)₂NH)₂|X₂, represented by the cis- and trans-forms of the (1) chloride and chloroplatinite; and (2) bromide.
- (lxii) Bisanilinediammines, [Pt(NH₃)₂(C₆H₅NH₂)₂]X₂, represented by the cis- and trans-forms of the (1) chloride and chloroplatinite; (2) sulphate; (3) nitrate; and (4) oxalate.
- (lxiii) Bis-β-methyltrimethylenediamines, [Pt{CH_(CH₃)(CH₂.NH₂)₂]₂]X₂, represented by (1) bromide; (2) iodide; (3) nitrate; (4) tartrate; and (5) camphorsulphonates.
- (lxiv) Ethylenediaminediammines, [Pt(NH₃)₂{(¹₂H₄(NH₂)₂)]X₂, represented by the chloride, chloroplatinite, and chloroplatinate.
- (lxv) Propylenediaminediammines, [Pt(NH₃)₂{(C₃H₆(NH₂)₂}|X₂, represented by the inactive and leevo-forms of the chloride, and chloroplatinite.
- (lxvi) Bispyridinediammines, [Pt(NH₃)₂(C₅H₅N)₂]X₂, represented by the cisand trans-forms of the chloride and chloroplatinite.
- (lxvii) Bispropionitrilediammines, $[Pt(NH_3)_2(C_2H_5CN)_2|X_2$, represented by the cyanide.
- (Ixviii) Bisaminoacetaldiammines, [Pt(NH₃)₂{NH₂.CH₂.CH(OC₂H₅)₂}₂]X₂, represented by the chloride and chloroplatinite.
 - (lxix) Bisthiocarbamidiammines, [Pt(NH₃)₂{CS(NH₂)₂}₂|X₂, represented by the chloride.
 - (lxx) Bisphosphamidodiammines, [Pt(NH₃)₂{P(NH₂)₃}₂|X₂, represented by the chloride.
- (lxxi) Biscarbonyldiammines, [Pt(NH₃)₂(CO)₂]X₂, represented by the chloride.
- (lxxii) Bismethylsulphinodiammines, [Pt(NH₃)₂{(CH₃)₂S}₂X₂, represented by the chloride.
- (lxxiii) Ethylenesulphinodiammines, $[Pt(NH_3)_2\{(C_2H_4)_2S_2\}]$, represented by the sulphate.
- (lxxiv) Diamminodiethylthioglycollate, [Pt(NH₃)₂{H.CO₂.CH₂.S(C₂H₅)₂}|X₂, represented by the (1) sulphate; and (2) nitrate.
- (lxxv) Quaterthiocarbamides, [Pt{CS(NH2)2}4|Cl2-see xxvi.
- (lxxvi) Bisthiocarbamidodiammines, [Pt{CS(NH₂)₂}₂(NH₃)₂]Cl₂.
- (lxxvii) Bisethylphosphinodiammines, [Pt(NH₃)₂{P(C₂H₅)₃}₂|X₂, represented by the chloride and its isomers, and the chloroplatinite.
- (lxxviii) Diamminobismethylphosphite, [Pt(NH₃)₂{P(OCH₃)₃}₂]X₂, represented by the chloride.
 - (lxxix) Bispyridinedihydroxylamines, [Pt(NH₂OH)₂(C₅H₅N)₂]X₂, represented by the chloroplatinite—see vii.
 - (lxxx) Bismethylaminebisethylamines, [Pt(CH₃NH₂)₂(C₂H₅NH₂)₂]X₂, represented by the cis- and trans-chloride.
- (lxxxi) Bismethylaminebispropylamines, [Pt(CH₃NH₂)₂(C₃H₇NH₂)₂]X₂, represented by the cis- and trans-chloride.
- (lxxxii) Bisethylaminebispropylamines, [Pt(C₂H₅NH₂)₂(C₃H₇NH₂)₂]X₂, represented by the cis- and trans-chloride and chloroplatinite.
- (lxxxiii) Ethylenediamine propylenediamines, [Pt{C₂H₄(NH₂)}{C₃H₆(NH₂)₂}|X₂, represented by the chloride.
- (lxxxiv) Propylenediaminetrimethylenediamines, $\{NH_2\}_2\}\{X_2, \text{ represented by the chloride.}$ [Pt $\{C_3H_6(NH_2)_2\}\{(CH_2)_3-(NH_2)_2\}$]

(lxxxv) Bisethylaminobispyridines, [Pt(C₂H₅NH₂)₂(C₅H₅N)₂]X₂, represented by the cis- and trans-chloroplatinite.

(lxxxvi) Bisdimethylaminebispyridines, [Pt{(CH₃)₂NH₂(C₅H₅N)₂|X₂, represented by the chloride and chloroplatinite.

(lxxxvii) Bispyridinebisthiocarbamides, $[Pt(\hat{C}_5H_5N)_2\{CS(NH_2)_2\}_2|X_2$, represented by (1) hydroxide; (2) chloride.

(lxxxviii) Bisacetonitrilotetrammines, [Pt(NH₃)₄(CH₃.CN)₂]X₂, represented by (1) the isomeric chlorides and the chloroplatinites; and (2) the picrates.

(lxxxix) Bisanilinebismethylphosphites, [Pt(C₆H₅NH₂)₂{P(OCH₃)₃}₂|X₂, represented by the chloride.

(xc) Bisanilinebisethylphosphites, [Pt(C₆H₅NH₂)₂{P(OC₂H₅)₃}₂]X₂, represented by the chloride.

(xci) Bistoluidinebismethylphosphites, [Pt(C₇H₉N)₂{P(OCH₃)₃}₂]X₂, represented by the chloride.

(xcii) Bistoluidinebisethylphosphites, [Pt(C₇H₉N)₂{P(OC₂H₅)₃}₂]X₂, represented by the chloride.

3.—The triammine family, or compounds of the univalent group | PtA₃X|'.

- (i) Hydroxytriammines, [Pt(NH₃)₃(OH)]X, represented by the hydroxide.
- (ii) Chlorotriumnines, [Pt(NH₃)3(1]X, represented by the chloride, chloroplatinite, and chloroplatinate.

(iii) Sulphatotriammines, Pt(NH₃)₃SO₄.

- (iv) Nitritodihydroxylamnines, [Pt(NH₃)(NH₂OH)₂(NO₂)]X, represented by the chloride and chloroplatinite—sec x.
- (v) Nitritohydroxylaminopyridinoammines, [Pt(NH₃)py(NH₂OH)(NO₂)]X, represented by the chloride, and chloroplatinite, and nitrite—see x.

(vi) Nitritoethylenediaminoammines, [Pt(NH₃)en(NO₂)]X, represented by the hydroxide—see x.

(vii) Nitritopyridinodiammines, [Pt(NH₃)₂py(NO₂)|X, represented by the chloride and chloroplatinite—see x.

(viii) Nitritoethylenediaminoammine, [Pt(NH₃)en(NO₂)]X, represented by the chloroplatinite—see x.

(ix) Nitratotriammines, [Pt(NH₃)₃(NO₃)]X, represented by the nitrate.

(x) Nitritotriammines, [PtA₃(NO₂)]X, e.g. nitritotrihydroxylaminochloroplatinite, [Pt(NH2OH)3(NO2)]PtCl4; nitritodihydroxylaminoamminochloroplatinite, [Pt(NH₃)(NH₂OH)₂(NO₂)|PtCl₄; nitritohydroxylaminodiamminochloroplatinite, [Pt(NH₃)₂(NH₂OH)(NO₂)|PtCl₄; nitritoethylenediaminoamminochloroplatimite, [Pt(NH₃)en(NO₂)]-PtCl₄; nitritopyridinediamminochloroplatinite, |Pt(NH₃)₂py(NO₂)|-PtCl₄, and its isomerides; nitritobispyridinoamminochloroplatinite, [Pt(NH3)py2(NO2)]PtCl4; nitritopyridinohydroxylaminoamminochloroplatinite, [Pt(NH₃)(NH₂OH)py(NO₂)]PtCl₄, and its nitritopyridinomethylaminoamminochloroplatinite, $\begin{array}{llll} & [Pt(NH_3)(CH_3NH_2)py(NO_2)]PtCl_4\;; & along & with & the & complexes\; : \\ & [(NH_3)_2(NO_2)Pt(NH_2.CH_2.CH_2.NH_2)Pt(NH_3)_2(NO)]PtCl_4\;; & [(NH_3)_2(NO)]PtCl_4\;; & [(NH_3)_2(NO)]PtC$ $(NH_2OH) (NO_2) Pt (NH_2.CH_2.CH_2.NH_2) Pt (NO_2) (NH_2OH) (NH_3)$ PtCl; [(NH₃)py(NO₂)Pt(NH₂.CH₂.CH₂.NH₂)Pt(NO₂)py(NH₃) |PtCl₄; $[(NH_3)(NH_2OH)(NO_2)Pt(NH_2: NH_2)Pt(NO_2)(NH_2OH)(NH_3)]SO_4;$ and $[(NH_3)_2(NO_2)Pt(NH_2:NH_2)Pt(NO_2)(NH_3)_2|SO_4$.

(xi) Oxalatotriammines, Pt(NH₃)₃(C₂O₄).

- (xii) Chloroglycinodiammines, Pt(NH₃)₂(C₂H₅O₂N)Cl, represented by (1) chloride, and chloroplatinite; (2) hydrochloride; (3) hydrobromide; and (4) hydroiodide.
- (xiii) Chlorotricarbonyls, [Pt(CO)₃Cl|X, represented by the chloroplatinate.

(xiv) Nitritoethylenediaminoammine, [Pt(NH₃)en(NO₂)]X, represented by the chloride—see x.

- (xv) Chlorotrimethylsulphines, [Pt{(CH₃)₂S}₃Ct]X, represented by the chloroplatinate.
- (xvi) Chlorotrisethylsulphines, [Pt{(C₂H₅)₂S}₃Cl]X, represented by the chloride.
- (xvii) Sulphatotrisethylsulphines, [Pt{(C2H5)2S}3SO4.
- (xviii) Nitritotrisethylsulphines, [Pt{(C₂H₅)₂S₃NO₃]X, represented by the nitrate.
 - (xix) Sulphatobutylsulphines, [Pt{(C₄H₉)₂S}₃SO₄].
 - (xx) Chloroethylenesulphines, [Pt₂{(C₂H₄)₂S₂}₃Cl₂|X₂, represented by the chloride.
 - (xxi) Chlorotrisethylsulphines, [Pt{(C2H5)2S}3Cl]X, represented by the chloride.
- (xxii) Sulphatotrisethylsulphines, [Pt{(C2H5)2Se}3]SO4.
- (xxiii) Chloroanilinediammines, [Pt(NH₃)₂(C₆H₅NH₂)Cl]X, represented by the chloride and chloroplatinite.
- (xxiv) Chlorophosphaminediammine, [Pt(NH₃)₂(Ct₆H₅NH₂)Cl]X, represented by the double salt with ammonium chloride.
- (xxv) Chlorocarbonyldiammines, [Pt(NH₃)₂(CO)Cl]X, represented by the chloride.
- (xxvi) Chloroethylsulphinediammines, [Pt(NH₃)₂{(C₂H₅)₂S}Cl]X, represented by the (1) chloride and chloroplatinite; and (2) ethylmercaptide.
- (xxvii) Iodoethylenesulphinediammines. | Pt(NH₃)₂{(C₂H₄)₂S₂}1|X, represented by the iodide, and the iodochloroplatinite.
- (xxviii) Chlorodiamminoethylphosphites, [Pt(NH₃)₂{P(OC₂H₅)₃}Cl|X, represented by the chlorode and the chloroplatinite.
 - (xxix) Chlorobisanilineethylphosphite, [Pt(C₆H₅NH₂)₂{P(OC₂H₅)₃}Cl]X, represented by the chloride.
 - (xxx) Chlorobistoluidineethylphosphite, [Pt(C₇H₉N)₂{P(OC₂H₅)₃}Cl]X, represented by the chloride.
- 4.—The diammine family represented by the null-valent group $[PtA_2X_2]$.
 - (i) Diammines, [Pt(NH₃)₂X₂], illustrated by various cis- and trans-forms of (1) oxide; (2) hydroxide; (3) chloride and double salt with ammonium chloride; (4) hydroxychloride; (5) bromide; (6) iodide; (7) chlorosulphite; (8) sulphite-double salts with the sulphites of ammonium, sodium, copper, silver, barium, zinc, lead, uranyl, manganese, cobalt, and nickel, chlorosulphites, and ammonium chlorosulphites; (9) chlorohydrosulphite; (10) sulphate; (11) nitrite, and nitritoplatinite; (12) nitrate; (13) chlorocarbonate; (14) thiocarbonate; (15) chlorothiocarbonate; (16) oxalate; (17) cyanide and cyanoplatinite; (18) thiocyanate and the double salt with silver thiocyanate; (19) mercaptides and chloromercaptides, iodomercaptides, and sulphatomercaptides; (20) xanthogenate; and (21) ethylthioglycolate; and nitratoethylthioglycolate.
 - (ii) Dihydrazines, [Pt(N2H4)2X2], represented by the chloride.
 - (iii) Dihydroxylamines, [Pt(NH₂OH)₂X₂], represented by various cis- and trans-forms of the (1) oxide; (2) hydroxide; and (3) chloride.
 - (iv) Hydroxylaminoammines, $[Pt(NH_3)(NH_2OH)X_2]$, represented by the chloride.
 - (v) Bismethylamines, [Pt(CH₃NH₂)₂X₂], represented by the (1) chloride; and (2) bromide.
 - (vi) Bisethylamines, [Pt(C₂H₅NH₂)₂X₂], represented by the cis- and transforms of (1) chloride; and (2) bromide.
 - (vii) Bisdiethylamines, [Pt{(C₂H₅)₂NH}₂Cl₂], and also a complex with acetone, PtCl₂(C₂H₅)₂NH.(CH₃)₂CO.
 - (viii) Bispropylamines, [Pt(C₃H₇NH₂)₂X₂], represented by (1) chloride; and (2) iodide.

- (ix) Bisdimethylamines, [Pt{(CH₃)₂NH}₂X₂], represented by (1) chloride; (2) bromide; and (3) nitrate.
- (x) $\alpha\beta\gamma$ -triaminopropanes, [Pt{NH₂.CH₂.CH(NH₂).CH₂NH₂}₂Cl₂], represented by (1) chloride; (2) bromide; (3) iodide; and (4) picrate; as well as compounds with one of the base replaced by hydrogen chloride, camphor sulphonates, oxalic acid, and thiocyanic acid.
- (xi) Bisanilines, $[Pt(C_6H_5NH_2)_2X_2]$, represented by (1) chloride; (2) sulphite and double salts with silver and barium sulphites; and (3) hydrosulphites.
- (xii) Bistoluidines, $[Pt(C_7H_7NH_2)_2X_2]$, represented by the chloride.
- (xiii) Bisxylidines, [Pt(C₈H₉NH₂)₂X₂], represented by the chloride.
- (xiv) Ethylenediamines, [Pt{C₂H₄(NH₂)₂}X₂, represented by the cis- and trans-chloride.
- (xv) Propulenediamines, $[Pt\{C_3H_6(NH_2)_2\}X_2]$, represented by the chloride.
- (xvi) Toluylenediamines, [Pt{C₇H₆(NH₂)₂}X₂], represented by the chloride.
- (xvii) m-tolylenediammines, [Pt(C7H₁₀N₂)X₂], represented by the chloride.
- (xviii) Bispyridines, [Pt{(C₅H₅N)₂}X₂], represented by cis- and trans-forms of (1) hydroxide; (2) fluoride; (3) chloride; (4) bromide; (5) iodide; (6) sulphite and sulphitoplatinites; (7) hydrosulphite; (8) sulphate; (9) hydroxysulphate; (10) nitrite; (11) nitrate; (12) carbonate; (13) thiocyanate; and (14) phenylmercaptide.
 - (xix) Bis-2-amino-l-acetylpyridines, [Pt(C₇H₈ON₂)₂X₂], represented by the chloride.
- (xx) Bis-3-aminopyridines, [Pt(C₅H₆N₂)₂X₂], represented by the chloride.
- (xxi) Bispiperidines, [Pt(C₅H₁₁N)₂X₂], represented by the chloride. (xxii) Bisquinolines, [Pt(C₉H₇N)₂X₂], represented by the chloride. (xxiii) Bisacetonitriles, [Pt(CH₃.CN)₂X₂], represented by the chloride.

- (xxiv) Bismethylcarbylamines, $[Pt(\bar{C}H_3.NC)_2X_2]$, represented by the (1) chloride; and (2) cyanide.
- (xxv) Bispropionitriles, [Pt(C2H5.CN)2X2], represented by the cyanide.
- (xxvi) Bisethylcarbylamines, [Pt(C₂H₅, NC)₂X₂], represented by the cyanide.
- (xxvii) Bisbutylcarbylamines, [Pt(C₄H₉,NC)₂X₂], represented by (1) chloride; and (2) cyanide.
- (xxviii) Bisbenzonitriles, [Pt(C₆H₅.CN)₂X₂], represented by the (1) chloride and complexes with chloroform, and benzene; (2) bromide; and (3) iodide.
 - (xxix) Bisphenylcarbylamines, [Pt(C₀H₅NC)₂X₂], represented by (1) chloride; (2) bromide; (3) iodide; (4) polyiodide; and (5) nitrite.
 - (xxx) Bisamidoacetates, [Pt(NH2.CH2.COOH)2X2], represented by (1) chloride; (2) bromide; and (3) iodide.
- (xxxi) Bisamidomethylacetates, [Pt(NH2.CH2.COOCH3)2X2], represented by the chloride.
- (xxxii) Bisamidoethylacetates, [Pt(NH₂.CH₂.COOC₂H₅)₂X₂], represented by (1) chloride; and (2) bromide.
- (xxxiii) Bisamidoacetals, [Pt{NH₂.CH₂.CH(OC₂H₅)₂}₂X₂], represented by the chloride.
- (xxxiv) Bisthioacetamides, [Pt(CH₃.CS.NH₂)₂X₂], represented by the chloride.
- (xxxv) Bisthiocarbamides, [Pt{CS(NH₂)₂}₂X₂], represented by the chloride.

- (xxxvi) Dicarbonyls, [Pt(CO)₂X₂], represented by the chloride. (xxxvii) Diphosgenes, [Pt(COCl₂)₂X₂], represented by the chloride. (xxxviii) Bisdimethylsulphines, [Pt{(CH₃)₂S}₂X₂], represented by cis- and transforms of (1) hydroxide; (2) chloride, chloroplatinite, and a complex with chloroform; (3) bromide; (4) iodide; (5) sulphate; (6) nitrite; (7) nitrate; (8) phosphate; (9) borate; (10) carbonate; (11) cyanide; (12) thiocyanate; (13) nitroprusside; and (14) chromate.

- (xxxix) Bisdiethylsulphines, [Pt{(C₂H₅)₂S₂X₂], represented by cis- and transforms of (1) hydroxide; (2) chloride and chloroplatinite; (3) bromide; (4) iodide; (5) sulphate; (6) nitrite; (7) nitrate; (8) phosphate; (9) oxalate; (10) chromate; and (11) dichromate.
 - (xl) Methylethylsulphines, $[Pt\{(CH_3)(C_2H_5)S\}_2X_2]$, represented by the iodide.
 - (xli) Diethylaminoethylsulphines, [Pt(C₂H₅)₂S.(C₂H₅)₂NH]X₂, represented by the chloride.
 - (xlii) Bisdipropylsulphines, [Pt{(C₃H₇)₂S}₂X₂], with normal and iso-propyl cis- and trans-forms of (1) hydroxide; (2) chloride, double salts with mercuric, stannous, and platinous chloride, and hydroxy-chloride; (3) bromide; (4) iodide and iodoplatinite; (5) chloro-iodide; (6) sulphate; (7) thiosulphate; (8) nitrite; (9) nitrate and hydroxynitrate; (10) oxalate; (11) cyanide; (12) thiocyanate; and (13) chromate.
 - (xliii) Bishutylsulphines, [Pt{(C₄H₉₎₂S₂X₂], represented by the normal, isoand secondary butyl cise and transforms of (1) hydroxide; (2) chloride and complexes with chloroform and with carbon disulphide; (3) bromide; (4) iodide; (5) sulphide; (6) sulphate; (7) nitrite; (8) nitrate; (9) chloronitrate; and (10) chromate.
 - (xliv) Bis-iso-amylsulphines, [Pt $\{(C_5H_{11})_2S\}_2X_2$], represented by the (1) chloride; and (2) iodide.
 - (xlv) Bisbenzylsulphines, [Pt{C₆H₅.CH₂)₂S}₂X₂], represented by (1) chloride, and a complex with chloroform; (2) bromide, and complexes with ethyl alcohol, and with chloroform; (3) iodide; (4) sulphate (5) nitrite and complex with chloroform; and (6) hydroxynitrate.
 - (xlvi) Ethylenedisulphines, [Pt{(C₂H₄)₂S₂}X₂], represented by (1) hydroxide;
 (2) chloride; (3) bromide; (4) iodide; (5) sulphate; (6) hydroxy-sulphate; (7) nitrite; (8) nitrate; (9) oxalate; (10) cyanide;
 (11) thiocyanate; (12) chromate; and (13) permanganate.
- (xlvii) Dimethyldithioethyleneglycols, [Pt(CH₃.S.C₂H₄.S.CH₃)X₂], represented by (1) chloride; and (2) nitrate.
- (xlviii) Diethyldithioethyleneglycols, [Pt(C₂H₅.S.C₂H₄.S.C₂H₅)X₂], represented by (1) chloride; (2) bromide; (3) nitrite; and (4) nitroprusside.
 - (xlix) Dipropylthioethyleneglycols, [Pt(C₃H₇,S,C₂H₄S,C₃H₇)X₂], represented by (1) chloride; and (2) nitrite.
 - (l) Dibutylthioethyleneglycols, [Pt(C₄H₉.S.C₂H₄.S.C₄H₉)X₂], represented by (1) chloride; and (2) nitrite.
 - (li) Diethylpropylenesulphines, Pt(C₂H₅.S.C₃H₆.S.C₂H₅)X₂], represented by (1) chloride; and (2) nitrite.
 - (lii) Dipropylpropylenesulphines, [Pt(C3H7.S.C3H6.S.C3H7)X2], represented by the chloride.
 - (liii) Diethyldithioxydiethylsulphines, [Pt(C₂H₅.S.CH₂.CH(OH).CH₂.S.C₂H₅)-X₂], represented by (1) chloride; and (2) nitrate.
 - (liv) Bisethylthioglycollic acid, [Pt(CH₂.S.C₂H₅.COOH)₂X₂], represented by the cis- and trans-forms of the chloride.
 - (lv) Bisethylmethylthioglycollate, [Pt(CH₂.S.C₂H₅.COOCH₃)₂X₂], represented by (1) the cis- and trans-forms of the chloride, and (2) oxalate.
 - (lvi) Bisthioglycollic acid, [Pt{S(CH₂.COOH)₂}₂X₂], represented by (1) chloride; (2) bromide; (3) iodide, and a complex with the potassium salt; (4) cyanide; and (5) thiocyanate.
 - (lvii) Bissodiumthioglycollate, [Pt{S(CH₂.COONa)₂}₂X₂], represented by the nitrite.
- (lviii) Bispotassiumthioglycollate, [Pt{S(CH₂·COOK)₂}₂X₂], represented by (1) chloride; (2) bromide; and (3) iodide.

- (lix) Bisbariumthioglycollate, [Pt{S(CH₂,COO)₂Ba}₂X₂], represented by the chloride.
- (lx) Bismethylthioglycollate, Pt{S(CH₂.COOCH₃)₂}₂X₂, represented by the chloride.
- (lxi) Bisethylthioglycollate, [Pt{S(CH2,COOC2H5)2}2X2], represented by the chloride.
- (lxii) Ethylenethioglycollic acid, [Pt{C₂H₄(S.CH₂.COOH)₂}X₂], represented by the chloride.
- (lxiii) Ethylenepotassiumthioglycollate, [Pt{C₂H₄(S.CH₂.COOK)₂}X₂], represented by the chloride.
- (lxiv) Bisdiethylselenines, [Pt{(C₂H₅)₂Se}₂X₂], represented by cis- and trans-forms of (1) chloride and double salts with mercuric and platinous chlorides; (2) bromide and the bromoplatinite; (3) chlorobromide; (4) iodide; (5) chloroiodide; (6) bromoiodide; (7) sulphate; (8) nitrite; (9) nitrate; (10) thiocyanate; and (11) chromate.
- (lxv) Bisphosphorous acid, [Pt{P(OH)₃}₂X₂], represented by the chloride.
- (lxvi) Bisphosphorustrichloride, [Pt(PCl₃)₂X₂], represented by the chloride.
- (lxvii) Bisphosphorustribromide, [Pt(PBr₃)₂X₂], represented by the bromide. (lxviii) Bistrimethylphosphines, [Pt(P(H₃)₃)₂X₂], represented by the cis- and
- trans-chlorides.
 - (lxix) Bistriethylphosphines, [Pt{P(C₂H₅)₃}₂X₂], represented by the cis- and trans-chlorides, and a complex with phenylmercaptide.
 - (lxx) Bistrimethylphosphite, $[Pt\{P(OCH_3)_3\}_2X_2]$, represented by the (1) chloride; and (2) bromide.
- (lxxi) Bistriethylphosphite, [Pt{P(OC $_2H_5$) $_3$ } $_2X_2$], represented by the chloride.
- (lxxii) Bistriphenylphosphite, [Pt{P(OC₆H₅)₃},X₂], represented by the chloride.
- (lxxiii) Bissilverphosphite, $[Pt{P(OAg)_3}_2X_2]$, represented by the chloride. (lxxiv) Bistriethylarsines, $[Pt{As(C_2H_5)_3}_2X_2]$, represented by the cis- and trans-chlorides.
- (lxxv) Bistriethylstibines, [Pt{Sb(C2H5)3}2X2], represented by the chloride.
- (lxxvi) Bisacetamides, [Pt(NH2.CO.CH3)2X2].
- (lxxvii) Bisamidoacetate, [Pt(NH2.CH2.CO2)2].
- (lxxviii) Bis-a-amidoproprionate, [Pt(NH₂, CH₃, CH₂, CO₂)₂].
 - (lxxix) Bismethylethylglyoximine, [Pt(NO.C.C₂H₅CH₃.C.NOH)₂].
 - $(lxxx) \ \textit{Bismethylpropylglyoximine}, \ [Pt(NO: C_3H_7CH_3, CNOH)_2].$
 - $(lxxxi) \ \textit{Bismethyl-iso-butylglyoximine}, \ [Pt(NO: C.C_4H_9CH_3, C.NOH)_2].$
- $(lxxxii) \ \textit{Bisdiphenylglyoximine}, \ Pt(NO: (C_6H_5C_6H_5, C, NOH)_2).$
- (lxxxiii) Bisethylthioglycolate, [Pt(CO2.CH2.S.C2H5)2], represented by the cisand trans-forms.
- (lxxxiv) Chlorobisethylthioglycollate, [Pt(HCO, CH, S.C, H5)(CO, CH, S.C, H5)Cl].
- (lxxxv) Nitratoethylthioglycollatoammines, [$Pt(NH_3)(CO_2.CH_2.S.C_2H_5)(NO_3)$].
- (lxxxvi) Bisdiphenylthioglycolate, [Pt(CO2.CH2.S.C6H5)2].
- (lxxxvii) Ethylenethioglycollate, [Pt{C₂H₄(S.CH₂.CO₂)₂}].
- (lxxxviii) Bisethylenethioglycollate, $[Pt\{C_2H_4(S.CH_2.CO_2)_2\}_2X_2]$, represented by the acid and the sodium salt.
- (lxxxix) Bisthiodiglycollate, [Pt{S(CH2COOH)2}2], represented by (1) acid; and the salts; (2) methyl; (3) potassium; (4) sodium; (5) silver; (6) calcium; and (7) barium.
 - (xc) Bisthioglycollate, [Pt{S(CH₂COOR)₂}(RO.CO.CH₂S.CH₂COOR)X], represented by (1) hydrochloride and the potassium salt; (2) hydrobromide and the potassium and barium salts; (3) hydroiodide, and

the potassium salt; (4) hydrosulphite and the potassium and sodium salts; (5) hydronitrite and the sodium salt; (6) hydrocyanide and the potassium salt; (7) hydrothiocyanate.

(xci) Bisxanthogenates, [Pt(S.CS.OC₂H₅)₂X₂].

(xcii) Dithiocyanates, [PtA₂(SCN)₂], e.g. dithiocyanatodiammine, [Pt(NH₃)₂-(SCN)₂], with cis- and trans-forms, and a complex with silver nitrate; dithiocyanatobispyridine, [Pt py₂(SCN)₂]; and dithiocyanatoethylenediamine, [Pt en(SCN)₂].

(xciii) Hydroxylamineammines, [Pt(NH3)(NH2OH)X2], represented by the

chloride.

(xeiv) Dinitrito-complexes, $[PtA_2(NO_2)_2]$, e.g. dinitritodihydroxylamine, $[Pt(NH_2OH)_2(NO_2)_2]$, and its isomerides; dinitritodiammine, $[Pt(NH_3)_2(NO_2)_2]$; dinitritohydroxylaminoammines, $[Pt(NH_3)-(NH_2OH)(NO_2)_2]$; dinitritopyridinoammine, $[Pt(NH_3)-(NO_2)_2]$; dinitritohydroxylaminopyridine, $[Pt(NH_2OH)-(NO_2)_2]$; dinitritoethylenediamine, $[Pt-(NO_2)_2]$.

(xcv) Chloronitrito-complexes, [PtA₂(NO₂)Cl], e.g. chloronitritodihydroxylamine, [Pt(NH₂OH)₂(NO₂)Cl]; chloronitritohydroxylaminoammine, [Pt(NH₃)(NH₂OH)(NO₂)Cl]; chloronitritohydroxylaminopyridine, [Pt py(NH₂OH)(NO₂)Cl]; chloronitritopyridinoammine, [Pt(NH₃) py(NO₂)Cl]; chloronitritoethylenediamine, [Pt en(NO₂)-

CI]; and chloronitritodiammine, [Pt(NH₃)₂(NO₂)CI].

(xcvi) Ethylamineammines, [Pt(NH₃)(C_2H_5 NH₂) X_2], represented by the (1) chloride; (2) bromide; and (3) iodide.

(xevii) Dimethylamineammines, [Pt(NH₃){(CH₃)₂NH}X₂], represented by the bromide.

(xeviii) Dimethylanilinoammines, Pt(NH₃){(CH₃)₂[C₆H₅N}Cl₂].

(xcix) Anilineammines, [Pt(NH₃)(C₂H₅NH₂)X₂], represented by the iodide.

(c) Pyridineanmines, [Pt(NH₃)(C₅H₅N)X₂], represented by the cis- and trans-forms of the chloride; and (2) the hydrosulphitochloride.

(ci) Bis-m-tolylenediamines, $[Pt(C_7H_{10}N_2)_2]X_2$, represented by (1) chloride; (2) sulphate; and (3) dithionate.

(cii) Ethyleneammines, [Pt(NH₃)(C₂H₄)X₂], represented by the chloride.

(ciii) Ethylsulphineammines, [Pt(NH₃){(C₂H₅)₂S}X₂, represented by the cis- and trans-forms of the iodide.

(civ) Ethylaminehydroxylamines, [Pt(NH₂OH)(C₂H₅NH₂)X₂], represented by the oxide.

(cv) Pyridinehydroxylamines, [Pt(NH₂OH)(C₅H₅N)X₂], represented by the chloride.

(cvi) Ethylenediethylamines, [Pt(C₂H₄){(C₂H₅)₂NH}X₂], represented by the chloride.

(cvii) Ethyleneanilines, [Pt(C $_6$ H $_5$ NH $_2$)(C $_2$ H $_4$)X $_2$], represented by the chloride.

(cviii) Anilinetrimethylphosphite, $[Pt(C_6\bar{H}_5NH_2)\{P(OCH_3)_2\}X_2]$, represented by the chloride.

(cix) Anilinetriethylphosphite, [Pt(C₆H₅NH₂){P(OC₂H₅)₃}X₂], represented by the cis- and trans-forms of (1) chloride; and (2) bromide.

(cx) Toluidinetrimethylphosphite, [Pt(C₇H₇NH₂{P(OCH₃)₃}X₂], represented by the chloride.

(cxi) Toluidinetriethylphosphate, [Pt(C₇H₇NH₂){P(OC₂H₅)₃}X₂], represented by (1) hydroxide; (2) cis- and trans-forms of the chloride; and (3) hydroxychloride.

(exii) Pyridines, PtCl₂.3C₅H₁₁N.

(cxiii) Ethylenediaminebisethylenes, [Pt₂ en(C_2H_4)₂ X_4], represented by the chloride.

(cxiv) Carbonylphenylhydrazines, [Pt(C₆H₅.N₂H₃)(CO)X₂], represented by the chloride.

- (cxv) Pyridine piperidines, $[Pt(C_5H_5N)(C_5H_{11}N)X_2]$, represented by the chloride.
- (cxvi) Carbonylpyridines, [Pt(C5H5N)(CO)X2], represented by (1) chloride; and (2) bromide.
- (cxvii) Pyridineethylsulphines, [Pt(C5H5N){(C2H5)2S}X2], represented by the cis- and trans-forms of the chloride.
- (cxviii) Pyridineethylselenines, $[Pt(C_5H_5N)\{(C_2H_5)_2Se\}X_2]$, represented by (1) chloride; (2) bromide; (3) iodide; (4) sulphate; and (5) nitrate.
 - (cxix) Pyridinetriethylphosphite, $[Pt(C_5H_5N)\{P(OC_2H_5)_3\}X_2]$, represented by the cis- and trans-chloride.
 - (cxx) Phosphorotrianilidephosphoroxyanilide, $[Pt{P(C_6H_6N)_3}{PO(C_6H_6N)}-$ Xol, represented by the hydroxychloride.
- (exxi) Phosphorotritoluididephosphoroxytoluidide, [Pt{P(C7H8N)3}-{PO(C₇H₈N)}X₂, represented by the hydroxychloride.
- (cxxii) Carbonylethylenes, [Pt(C2H4)(CO)X2], represented by the chloride.
- (cxxiii) Ethylenetriethylphosphite, [Pt₂(C₂H₄){P(OC₂H₅)₃}₂X₄], represented by the chloride.
- (cxxiv) Carbonyltriethylphosphite, [Pt(CO){P(OC₂H₅)₃}X₂], represented by the chloride.
- (exxv) Methylethylsulphines, [Pt{(CH₃)₂S}{(C₂H₅)₂S}X₂], represented by the chloride.
- (exxvi) Ethylpropylsulphines, [Pt{(C2H5)2S}{(C3H7)2S}X2], with normal and iso-propyl (1) chloride; (2) bromide; (3) iodide; (4) sulphate; and (5) nitrite.
- (exxvii) Ethylbutylsulphines, $[Pt\{(C_2H_5)_2S\}\{(C_4H_9)_2S\}X_2]$, represented by (1) chloride and complex with chloroform; and (2) iodide.
- (exxviii) n-Propyl-i-propylsulphines, [Pt{(C₃H₇)₂S}X₂], represented by the iodide.
 - (cxxix) Benzylsulphines, PtCl₂.2(CH₂.C₆H₅)₂S. (cxxx) Diethylenedisulphines, PtCl₂.(C₂H₄)₂S₂.
- (cxxxi) Ethylsulphineethylselenincs, [Pt{($\tilde{C}_2\tilde{H}_5$)₂S}{($(C_2H_5)_2Se$ }X₂], represented by (1) cis- and trans-forms of the chloride and chloroplatinite;
 - (2) bromide; (3) chlorobromide; (4) iodide; (5) chloriodide; (6) sulphate; (7) nitrite; (8) nitrate; and (9) chloronitrate.
- (cxxxii) Phosphorohydroxytriethylphosphite, [Pt{P(OH)₃}{P(O('₂H₅)₃}X₂], represented by the chloride.
- (exxxiii) Phosphorochloridetriethylphosphite, $[Pt(PCl_3)\{P(OC_2H_5)_3\}X_2]$, represented by the chloride.
- (cxxxiv) Trimethylphosphitetriethylphosphite, [Pt{P(OCH₃)₃}{P(OC₂H₅)₃}X₂], represented by the chloride.
- 5.—The monammine family of the type [PtAX₂]₂, a null-valent group.
 - (i) Ammines, [Pt(NH₃)X₂]₂, represented by (1) chloride; (2) chloromercaptide and chloromercaptide platinite; (3) iodomercaptide; (4) pyrothiocarbonate; and (5) thiocyanate.
 (ii) Hydroxylamines, [Pt(NH₂OH)X₂]₂, represented by the hydroxide.

 - (iii) Ethylamines, [Pt(C₂H₅NH₂)X₂]₂, represented by the chloride.
 - (iv) Pyridines, [Pt(C₅H₅N)X₂]₂, represented by the chloride.
 - (v) Thiocarbamides, [Pt(CS(NH₂)₂)X₂]₂, represented by the chloride.
 - (vi) Phosphorotrianilides, $[Pt\{P(C_6H_6N)_3\}X_2]_2$, represented by the hydroxychloride.
 - (vii) Phosphorotritoluidides, [Pt{P(C₇H₈N)₃}X₂]₂, represented by the hydroxychloride.
 - (viii) Ethylenes, [Pt(C₂H₄)X₂]₂, represented by the chloride.
 - (ix) Carbonyls, [Pt(CO)X₂]₂, represented by the (1) oxide; (2) chloride; (3) bromide; (4) iodide; (5) sulphide; (6) hydrosulphide; (7) cyanide; and (8) chlorovinyl.

- (x) Oxymesityls, $[Pt(C_6H_{10}O)X_2]_2$, represented by the chloride.
- (xi) Ethylsulphines, $[Pt\{(C_2H_5)_2S\}X_2]_2$, represented by (1) chloride; (2) ethylmercaptan; and (3) chloroethylmercaptan.
- (xii) Phosphorohydroxides, [Pt{P(OH)₃}X₂]₂, represented by the (1) chloride; and (2) chlorophosphite.
- (xiii) Phosphorochlorides, [Pt(PCl₃)X₂]₂, represented by the chloride and chloroplatinite.
- (xiv) Phosphorobromides, [Pt(PBr₃)X₂]₂, represented by the bromide.
- (xv) Trimethylphosphites, [Pt{P(OCH₃)₃}X₂]₂, represented by the chloride.
- (xvi) Triethylphosphites, [Pt{P(OC₂H₅)₃}X₂]₂, represented by (1) hydroxide; (2) chloride and chloroplatinite; (3) bromide; (4) nitrate; and (5) chloronitrate.
- (xvii) Tripropylphosphites, $[Pt{P(O(_3H_7)_3}X_2]_2$, represented by the chloride.
- (xviii) Allylphosphites, |Pt{P(OH)₂(OC₃H₅)}X₂|₂, represented by the chloride.
 - (xix) Potassiumphosphites, [Pt{P(OK)₃}X₂]₂, represented by the oxide.
 - (xx) Sodiumphosphites, [Pt{P(ONa)₃}X₂]₂, represented by the oxide.
 - (xxi) Silverphosphites, [Pt{P(OAg)₃}X₂]₂, represented by the chloride, and phosphochloride. There is also [Pt{P(OH)(OAg)₂}Cl₂]₂.
- (xxii) Leadphosphites, $[Pt\{P_2(O_2Pb)_3\}X_2]_2$, represented by the chloride.
- (xxiii) Oxycacodyls, [Pt{As₂(CH₃)₄O}X₂[2, represented by (1) chloride; (2) bromide; (3) iodide; (4) sulphate; and (5) nitrate.
- 6.—The monammine family of the type [PtAX₃]', a univalent acidic group.
 - (i) Trichloroammines, [Pt(NH₃)Cl₃]R, represented by (1) acid; (2) ammonium; (3) potassium; (4) silver; and (5) platinoustetrammine.
 - (ii) Trichlorotrimethylamines, [Pt{(CH₃)₃N}Cl₃|R, represented by allyl salt.
 - (iii) Trichloroethylamines, [Pt{(C₂H₅)NH₂}Cl₃]R, represented by (1) potassium; and (2) platinoustetrammine salts.
 - (iv) Trichloroallylamines, [Pt{(C3H5)NH2}Cl3|R, represented by the acid.
 - (v) Trichloroethylallylamines, [Pt{(C₂H₅)(C₃H₅)NH}Cl₃|R, represented by the acid.
 - (vi) Trichlorodiethylallylamines, $[Pt\{(C_2H_5)_2(C_3H_5)N\}Cl_3]R$, represented by the acid.
 - (vii) Trichlorodipropylallylamines, $[Pt\{(C_3H_7)_2(C_3H_5)N\}Cl_3]R$, represented by the acid.
 - (viii) Trinitritotoluidines, [Pt(C₇H₉N)(NO₂)₃]R, represented by the toluidine
 - (ix) Hexachloroethylenediamines, $[Pt_2(NH_2,C_2H_4,NH_2)Cl_6]R_2$, represented by the ethylenediamine salt.
 - (x) Trichloropyridines, [Pt(C₅H₅N)Cl₃]R, represented by the (1) ammonium; (2) pyridine; (3) potassium; (4) rubidium; (5) cæsium; and (6) platinoustetrammine salts.
 - (xi) Dichloramidoacetates, [Pt(NH₂.CH₂.COO)Cl₂|R, represented by the potassium salt.
 - (xii) Dichloroamidopropionates, [Pt(NH₂.CH₃.CH.COO)Cl₂]R, represented by the potassium salt.
 - (xiii) Trichlorothiocarbamides, [Pt{CS(NH₂)₂}Cl₃]R, represented by the acid, and the thiocarbamide salts.
 - (xiv) Trichlorophosphotrianilides, [Pt{P(C $_6H_6N)_3$ }Cl $_3$]R, represented by the aniline salt.
 - (xv) Trichlorophosphotritoluidides, [Pt{P(C₇H₈N)₃}Cl₃], represented by the toluidine salt.
 - (xvi) Trichloroethylenes, [Pt(C₂H₄)Cl₃]R, represented by (1) acid; (2) ammonium; (3) aniline; (4) ethylenediamine; (5) potassium; (6) silver; and (7) platinoustetrammine salts.
 - (xvii) Trichlorocarbonyls, [Pt(CO)Cl₃]R, represented by (1) amylamine; (2) aniline; (3) phenylhydrazine; (4) pyridine; and (5) quinoline.

(xviii) Tribromocarbonyls, [Pt(CO)Br₃]R, represented by the pyridine salt.

(xix) Tri-iodocarbonyls, [Pt(CO)I₃]R, represented by (1) potassium; and (2) trimethylamine salts.

(xx) Trithiocyanatocarbonyls, [Pt(CO)(SCN)₃]R, represented by (1) ammonium; and (2) potassium salts.

(xxi) Trichloroallylalcohols, [Pt(C₃H₅OH)Cl₃]R, represented by (1) cinchonine; (2) potassium; and (3) platinoustetrammine salts.

- H.—Platinous ammines with more than one platinum atom in the nucleus.
 - (i) Octammino-diol-sulphate, [Pt(NH₃)₄....(OH)₂....Pt(NH₃)₄].
- III.—The platinosic ammines—vide supra, platinum trichloride.
- IV.—The platinic ammines with one platinum atom in the nucleus.
- 1.—The hexammine family, or compounds of the quadrivalent group [PtA6] |"".
 - (i) Ammines, [Pt(NH₃)₆]X₄, represented by the (1) hydroxide; (2) chloride and chloroplatinate; (3) sulphate; (4) nitrate; (5) carbonate.
 - (ii) Trispropylenediammines, [Pt(C₃H₆,N₂H₄)₃]X₄, in its racemic, dextroand levo-forms, and represented by (1) chloride; (2) bromide;
 (3) iodide; (4) sulphate; (5) nitrate; and (6) tartrate.
- 2.—The pentammine family, or compounds of the tervalent group $[PtA_5X]X_3$.
 - (i) Hydroxypentammines, [Pt(NH₃)₅(OH)|X₃, represented by (1) chloride;
 (2) carbonate; (3) nitrate; and (4) acetate.
 - (ii) Chloropentammines, [Pt(NH₃)₅Cl]X₃, represented by the (1) hydroxide;
 (2) chloride, and the chloroplatinate;
 (3) sulphate and the chlorosulphate;
 (4) carbonate; and (5) nitrate.

(iii) Bromopentammines, [Pt(NH₃)₅Br]X₃, have been prepared.

- (iv) Chloroethylenediaminotriammines, [Pt(NH₃)₃ enCl[X₃, represented by the (1) chloride; (2) sulphate; and (3) nitrate.
- 3.—The tetrammine family, or compounds represented by the PtA₄-group.

A.—Type: $[PtA_4X_2]Y_2$, which has a bivalent group.

- (i) Dihydroxytetrammines, [Pt(NH₃)₄(OH)₂]Y₂, represented by (1) chloride and chloroplatinate; (2) bromide; (3) iodide; (4) sulphate; (5) nitrite; (6) nitrate; and (7) dichromate.
- (ii) Dichloroletrammines, [Pt(NH₃)₄(N₂]Y₂, represented by (1) chloride; chloroplatinite, and chloroplatinate; (2) bromide; (3) sulphate and sulphatoplatinate; (4) nitrate and nitratoplatinate; (5) carbonate; (6) oxalate; (7) thiocyanate; (8) chromate; and (9) dichromate.
- (iii) Dibromotetrammines, [Pt(NH₃)₄Br₂|Y₂, represented by (1) chloride;
 (2) bromide; (3) sulphate and sulphatoplatinate; (4) nitrate and nitratoplatinate;
 (5) phosphate;
 (6) carbonate and carbonatoplatinate;
 (7) oxalate;
 and (8) dichromate.

(iv) Chloroamidotetrammines, [Pt(NH₃)₄NH₂Cl]Y₂, represented by (1) chloride; (2) bromide; and (3) nitrate.

- (v) Bromoamidotetrammines, [Pt(NH₃)₄NH₂Br]Y₂, represented by the bromide.
- (vi) Chloronitritotetramminochloride, [Pt(NH₃)₄(NO₂)Cl|Cl₂.
- (vii) Chloronitritopyridinotriamminochloride, [Pt(NH₃)₃ py(NO₂)Cl]Cl₂.
- (viii) Dichloroethylenediaminodiamminochloride, [Pt(NH₃)₂ enCl₂]Cl₂.
- (ix) Chloronitritoethylenediaminodiamminochloride, [Pt(NH₃)₂ en(NO₂)Cl]-Cl₂.
- (x) Dichloropyridinoethylenediaminoamminochloride, [Pt(NH₃) en pyCl₂]Cl₂.
- (xi) Chloronitrito pyridino ethylenedia mino ammino chloride, [Pt(NH₈) en py-(NO₂)CI|Cl₂.

- (xii) Diiodotetrammines, [Pt(NH₃)₄I₂]X₂, represented by (1) iodide and iodoplatinate; (2) sulphate; and (3) nitrate.
- (xiii) Sulphatotetrammines, [Pt(NH₃)₄SO₄|X₂, represented by (1) hydroxide; (2) sulphate; (3) chlorosulphate; and (4) bromosulphate.
- (xiv) Dinitritotetrammines, [Pt(NH₃)₄(NO₂)₂]X₂, represented by the nitrate.
- (xv) Dinitratotetrammines, [Pt(NH₃)₄(NO₃)₂]X₂, represented by (1) chloride, and chloroplatinate; (2) nitrate; (3) carbonatoplatinate; (4) chromate; and (5) dichromate.
- (xvi) Carbonatotetrammines, [Pt(NH₃)₄CO₃|X₂, represented by (1) carbonate;
 (2) chlorocarbonate; (3) bromocarbonate; and (4) nitratocarbonate.
- (xvii) Dichloroquatermethylamines, [Pt(CH₃NH₂)₄Cl₂]X₂ represented by (1) chloride; and (2) nitrate.
- (xviii) Dichloroquaterethylamines, [Pt(C₂H₅NH₂)₄Cl₂|X₂, represented by the chloride and chloroplatinite.
 - (xix) Dichloroethylenediaminodiammines, [Pt en(NH₃)₂Cl₂|X₂, represented by the chloride.
 - (xx) Dichlorobisethylenediamines, [Pt en₂Cl₂]X₂, represented by the chloride, chlorocuprates, and chloroplatinite.
 - (xxi) Dibromobisethylenediamines, [Pt en₂Br₂]X₂, represented by the bromide, bromocuprates, and bromoplatinite.
- (xxii) Dithiocyanatobisethylenediamines, [Pt en₂(CNS)₂|X₂, represented by the thiocyanate.
- (xxiii) Dichlorobispropylenediamines, [Pt pn₂Cl₂]X₂, represented by the chloride.
- (xxiv) Dibromobispropylenediamines, [Pt pn₂Br₂]X₂, represented by the bromide.
- (xxv) Dichloroquaterpyridines, [Pt py₄Cl₂]X₂, represented by the (1) chloride, chloroplatinite, and chloroplatinate; and (2) nitrate.
- (xxvi) Dibromoquater pyridines, [Pt py₄Br₂]X₂, represented by (1) nitrate; and (2) hydronitrate.
- (xxvii) Dichloroqualermethylpseudolutidostyril, [Pt(C₈H₁₁NO)₄Cl₂|X₂, represented by the chloride.
- (xxviii) Hydroxychlorotetrammincs, [Pt(NH₃)₄(OH)Cl]X₂, represented by (1) chloride; (2) bromide; (3) nitrate; (4) carbonate; (5) oxalate; (6) chromate; and (7) dichromate.
 - (xxix) Hydroxybromotetrammines, [Pt(NH₃)₄(OH)Br]X₂, represented by (1) chloride; (2) bromide; (3) nitrate; and (4) oxalate.
 - (xxx) Hydroxyiodotetrammines, [Pt(NH₃)₄(OH)1|X₂, represented by the (1) iodoplatinate; and (2) sulphate.
 - (xxxi) Hydroxynitratotetrammines, [Pt(NH₃)₄(OH)(NO₃)]X₂, represented by (1) nitrate; (2) pyrophosphate; and (3) oxalate.
- (xxxii) Hydroxyacetatotetrammines, [Pt(NH₃)₄(OH)(C₂H₃O₂)]X₂, represented by (1) chloride, and chloroplatinite; (2) sulphate; (3) nitrate; and (4) dichromate.
- (xxxiii) Chloroaminotetrammines, [Pt(NH₃)₄(NH₂)Cl|X₂, represented by the (1) hydroxydihydrophosphate; and (2) the bisdihydrophosphate.
- (xxxiv) Nitritochloroethylenediaminodiammines, [Pt(NH₃)₂ en(NO₂)Cl|X
 ₂, represented by the chloride.
- (xxxv) Nitratochlorotetrammines, [Pt(NH₃)₄(NO₃)Cl|X₂, represented by (1) sulphate; and (2) nitrate.
- (xxxvi) Nitratobromotetrammines, [Pt(NH₃)₄(NO₃)Br]X₂, represented by (1) sulphate; and (2) nitrate.
- (xxxvii) Chlorobromotetrammines, [Pt(NH₃)₄ClBr]X₂, represented by the chloride.
- (xxxviii) Chloroiodotetrammines, [Pt(NH₃)₄ClI]X₂, represented by the chloride.

(xxxix) Nitratobromoguater pyridines, [Pt py4(NO3)Br]X2, represented by the hydronitrate.

(xl) Dibromopropylenediaminediammines, [Pt(NH₃)₂ pn Br₂]X₂, represented by the chloride.

(xli) Diiodobispyridinediammines, [Pt(NH₃), py₂I₂]X₂, represented by the iodide. B.—Type: [PtA₄X₃]Y, which has a univalent group.

(i) Phosphatotetrammines, [Pt(NH₃)₄(PO₄)]Y, represented by (1) chloride;

(2) bromide; and (3) nitrate.

(ii) Hydroxysulphatotetrammines, [Pt(NH₃)₄(OH)(SO₄)]Y, represented by (1) chloride and chloroplatinate; (2) bromide; (3) sulphate; (4) nitrate; (5) oxalate; (6) chromate; (7) dichromate.

(iii) Chlorosulphatotetrammines, [Pt(NH₃)₄Cl(SO₄)]Y, represented by sul-

phate.

(iv) Bromosulphatotetrammines, [Pt(NH₃)₄Br(SO₄)|Y, represented by the sulphate.

(v) Chlorocarbonatotetrammines, [Pt(NH₃)₄Cl(CO₃)]Y, represented by the chloronitratocarbonatoplatinate.

(vi) Bromocarbonatotetrammines, [Pt(NH₃)₄Br(CO₃)]Y, represented by (1) carbonate; and (2) bromonitratocarbonatoplatinate.

(vii) Nitratocarbonatoammines, Pt(NH₃)₄(NO₃)(CO₃) | Y, represented by the carbonate.

4.—The triammine family represented by the univalent group $[Pt(NH_3)_3X_3]$.

(i) Trichlorotriammines, [Pt(NH₃)₃Cl₃]Y, represented by the chloride.

(ii) Nitritodichloroethylenediaminomethylamines, [Pt en(CH₃.NH₂)(NO₂)-Cl₂]Y, represented by the chloride.

(iii) Dinitritochloroethylenediaminomethylamines, [Pt en(CH₃.NH₂)(NO₂)₂-Cl|Y, represented by the chloride.

(iv) Dinitritochloroethylenediaminopyridines, [Pt en py(NO₂)₂Cl[Y, represented by the chloride.

(v) Dinitritochloroethylenediaminoammines, [Pt en(NH₃)(NO₂),Cl]Cl, in cisand trans-forms.

(vi) Dichloronitritotriamminochloride, [Pt(NH₃)₃(NO₂)Cl₂]Cl.

(vii) Chlorodinitritotriamminochloride, [Pt(NH₃)₃(NO₂)₂Cl]Cl.

(viii) Chlorodinitritopyridinodiamminochloride, [Pt(NH₃)₂ py(NO₂)₂Cl]Cl.

(ix) Dichloronitritopyridinodiamminochloride, [Pt(NH₃)₂ py(NO₂)Cl₂]Cl. (x) Dichloronitritopyridinomethylaminoamminochloride,

[Pt(NH₃)-(CHaNHa)py(NOa)ClalCl.

(xi) Chlorodinitritopyridinomethylaminoamminochloride, [Pt(NH₃)- $(CH_3NH_2)py(NO_2)_2Cl_1Cl_1$

(xii) Dichloronitritopyridinomethylaminoamminochloride, $Pt(NH_3)$ -(CH₃NH₂) py(NO₂)Cl₂|Cl, and isomerides.

(xiii) Chlorodinitritopyridinoethylenediaminochloride, [Pt en py(NO₂)₂Cl |Cl, and isomerides.

(xiv) Trichloropyridinoethylenediaminochloride, [Pt en pyCl₃]Cl₂H₂O.

(xv) Trichloropyridineethylenediaminohydroxide, | Pt en pyCl₃]OH.

(xvi) Dichloronitroethylenediaminoamminochloride, [Pt(NH₃) en(NO₂)Cl₂]Cl, and their isomerides.

(xvii) Trichloroethylenediaminoamminochloride, [Pt(NH₃) enCl₃]Cl.

(xviii) Dichloronitritopyridinoethylenediaminochloride, [Pt en py(NO2)Cl2]Cl.

(xix) Chlorodinitritopyridinoethylenediaminochloride, [Pt en py(NO₂)₂Cl]Cl.

(xx) Chlorodinitritopyridinoethylenediaminohydroxide, [Ptenpy(NO₂)₂Cl]OH. (xxi) Chloroamidonitritopyridinoethylenediaminochloride, Pt en pv(NH₂)-

(NO₂)Cl₁Cl₂H₂O. (xxii) Dichloronitritopyridinoethylenediaminochloride, [Pt en py(NO₂)Cl₂]Cl, and its isomerides.

- (xxiii) Dichloronitritoethylenediaminoamminohydroxide, [Pt(NH₃) en(NO₂)Cl₂]-OH, and its isomerides.
- (xxiv) Trichlorotristribenzyloxyphosphines, [Pt{(C₇H₇₎₃PO}₃Cl₃]Y, represented by the chloride.
- (xxv) Dihydroxynitratotriammines, [Pt(NH₃)₃(OH)₂(NO₃)]Y, represented by the nitrate.
- (xxvi) Hydroxydinitratotriammines, [Pt(NH₃)₃(OH)(NO₃)₂]Y, represented by the bromide.
- (xxvii) Dinitratochlorotriammines, [Pt(NH₃)₃Cl(NO₃)₂]Y, represented by the chloride.
- (xxviii) Dinitratobromotriammines, [Pt(NH₃)₃Br(NO₃)₂]Y, represented by the bromide.
- (xxix) Nitratodibromotriammines, [Pt(NH₃)₃Br₂(NO₃)]Y, represented by the iodide.
- (xxx) Sulphatobromotriammines, [Pt(NH₃)₃Br(SO₄)]Y, represented by the bromide.
- 5.—The diammine family represented by the null valent group [Pt(NH₃)₂X₄].
 - (i) Diammines, [Pt(NH₃)₂X₄], represented by the cis- and trans-forms of (1) hydroxide; (2) chloride; (3) bromide; (4) iodide; (5) polyiodide; (6) sulphate; (7) nitrate; and (8) cyanide. Also (1) trimethyliodide; (2) nitritotrichloride and a double salt with silver nitrite; (3) nitratotrichloride and a double salt with chloroplatinite; and (4) nitratotrihydroxide. Also the cis- and transforms of (1) dihydroxysulphate; (2) dihydroxydinitrate; (3) dihydroxyoxalate; (4) trichloronitrite; (5) dichlorodinitrite; (6) dibromodinitrite; (7) sulphatodinitrite; and (8) dinitritodinitrate. There are also (1) hydroxychlorodinitrite; and (2) chlorodinitritonitrate.
 - (ii) Propylenediamines, [Pt pnX₄], represented by the chloride.
 - (iii) Ethylenediamines, Pten(NO₂)Cl₂].
 - (iv) Ethylenediamines, [Pt en X₄], represented by (1) trichloronitrite; (2) the amidotrichloride; (3) the amidonitritodichloride; and (4) the ethyleneaminoimidotrichloride.
 - (v) $\alpha\beta$ -isobutylenediamines, $[Pt\{C_4H_8(NH_2)\}_2][Pt \text{ or } PdCl_4]$, etc.
 - (vi) Bispyridines, [Pt py2X4], represented by cis- and trans-forms of (1) chloride; (2) bromide; (3) dibromodichloride; (4) iodide; and (5) sulphate.
 - (vii) Pyridinoammines, [Pt(NH₃) pyX₄], represented by the trichloronitrite.
 - (viii) Bispicolines, $[Pt(C_6H_7N)_2X_4]$, represented by the chloride of α -, β -, and y-picoline.
 - (ix) Bislutidines, [Pt(C₇H₉N)₂X₄], represented by the chloride.
 - (x) Biscollidines, [Pt(C₈H₁₁N)₂X₄], represented by the chloride.

 - (xi) Bisquinolines, $[Pt(C_0H_7N)_2X_4]$, represented by the chloride. (xii) Bistetrahydroquinolines, $[Pt(C_0H_{11}N)_2X_4]$, represented by the chloride.
 - (xiii) 3-methyl-2-aminomethyl-4-ethylquinolines, [Pt(C₁₃H₁₄N.NH₂)₂][PtCl₄].
 - (xiv) Bispropionitriles, [Pt(C₂H₅CN)₂X₄], represented by the chloride.
 - (xv) Bisbenzonitriles, [Pt(C6H5CN)2X4], represented by (1) chloride; and (2) bromide.
 - (xvi) $\beta\beta$ -dimethyldipyridyls, [Pt(C₁₂H₁₂N₂)X₄], represented by the chloride.
 - (xvii) Bis-4, 5-dimethylpyrimidines, [Pt(C₆H₈N₂)₂X₄], represented by the chloride.
 - (xviii) Bis-4, 5-methylethylpyrimidines, [Pt(C₇H₁₀N₂)₂X₄], represented by the chloride.
 - (xix) Bisjaborines, $[Pt(C_9H_{14}N_2)_2X_4]$, represented by the chloride.
 - (xx) Bis-a-methylisoxazols, [Pt(C₄H₅NO)₂X₄], represented by the chloride.

(xxi) Bis-β-hydroxyethylpyridine, [Pt(C₇H₉NO)₂X₄], represented by the chloride.

(xxii) Bisamidoacetates, [Pt(NH₂.CH₂.COOH)₂X₄], represented by (1) chloride; (2) bromide; (3) bromochloride; (4) iodide; and (5) iodobromide.

(xxiii) Bisamidoethylacetates, [Pt(NH2.CH.COOC2H5)2X4], represented by (1) chloride; and (2) bromochloride.

(xxiv) Bis-β-pyridine-a-lacetates, [Pt(C₈H₉NO₃)₂X₄], represented by the chloride.

(xxv) Bisjaborinates, $[Pt(C_{19}H_{25}N_3O_5)_2X_4]$, represented by the chloride. (xxvi) Bistrichloropyridines, $[Pt(C_5H_2Cl_3N)_2X_4]$, represented by the chloride.

(xxvii) Bispyrazole, [Pt(C3H4N2)2X4], represented by the chloride.

(xxviii) Bis-3, 5-methylpyrazol, [Pt(C₄H₆N₂)₂X₄], represented by the chloride.

(xxix) Bis-3, 5-methylchloropyrazol, [Pt(C4H5N2C1)2X4], represented by the chloride.

(xxx) Bis-3,5-dimethylpyrazole, $[Pt(C_5H_8N_2)_2X_4]$, represented by the chloride.

(xxxi) Bis-3, 5-dimethyltetrachloropyrazole, [Pt(C5H4N2Cl4)2X4], represented by the chloride.

(xxxii) Bis-p-tolylpyrazole, [Pt(C₁₀H₁₀N₂)₂X₄], represented by the chloride.

(xxxiii) Bisglyoxaline, [Pt(C₃H₄N₂)₂X₄], represented by the chloride.

(xxxiv) Pyrazine, [Pt(C4H4N2)X4], represented by the chloride.

(xxxv) Bis-2, 5-dimethylpyrazine, [Pt(C6H8N2)2X4], represented by the chloride.

(xxxvi) 2, 5-dimethyl-3-ethylpyrazine, [Pt(C₈H₁₂N₂)X₄], represented by the chloride.

(xxxvii) Biscinnumenylpyridazine, [Pt(C₁₂H₁₀N₂)₂X₄], represented by the chloride.

(xxxviii) Bis-1, 3, 4-triazole, [Pt(C2H3N3)2X4], represented by the chloride.

(xxxix) Bis-1-phenyltriazoles, [Pt(C₈H₇N₃)₂X₄], represented by the chlorides with 1, 3- and 2, 3-triazole.

(xl) Bis-1-tolyltriazole, [Pt(C9H9N3)2X4], represented by the chloride with 1, 3- and 2, 3-triazole, and o- and p-tolyl.

(xli) Bis-1-naphthyltriazoles, $[Pt(C_{12}H_0N_3)_2X_4]$, represented by the chlorides with 1, 3- and 2, 3-triazole, and α - and β -naphthyl.

(xlii) Bis-1-phenyl-3-methyl-1, 3-triazole, [Pt(C9H9N3)2X4], represented by the chloride.

(xliii) Bis-1-tolyl-2, 5-dimethyl-2, 3-triazoles, [Pt(C₁₁H₁₃N₃)₂X₄], represented by the chlorides with o- and p-tolyl.

(xliv) Bis-1-phenyl-3-imidotriazoline, [Pt(C₈H₈N₄)₂X₄], represented by the chloride.

(xlv) Bis-1-tolyl-3-imidotriazoline, $[Pt(C_9H_{10}N_4)_2X_4]$, represented by the chloride of p-tolyl.

(xlvi) Bistetrazolines, [Pt(C₂H₄N₄)₂X₄], represented by the chloride.

(xlvii) Bisdimethyltriazolines, [Pt(C4H8N4)2X4], represented by the chlorides.

(xlviii) Bisimidazolylmercaptan, [Pt(HS.C.NH.CH: CH.N:)2X4], represented by the chloride.

(xlix) Bis- μ -imidazolylmercaptan, [Pt(HS.C.NH.CH: CH.N:)₂X₄], sented by the chloride.

(1) Bis-v-methylimidazdyl-µ-mercaptan, [Pt(HS.C.N(CH₃).CH : CH.N :)₂- X_4 , represented by the chloride.

(li) $Bis-v-phenylimidazolyl-\mu-mercaptan$, $[Pt(HS.C.N(C_6H_5).CH:CH.N:)_2-mercaptan]$ X_4 , represented by the chloride.

(lii) Bis-ν-tolylimidazolyl-μ-mercaptan, [Pt(HS.C.N(C₇H₇).CH:CH.N:)₂X₄], represented by the chloride of p-tolyl.

(liii) Bis-ν-xylylimidazolyl-μ-mercaptan, [Pt(HS.C.N(C₈H₉).CH:CH.N:)₂X₄], represented by the chloride.

- (liv) Bis-ν-naphthylimidazolyl-μ-mercaptan, [Pt(HS.C.N(C₁₀H₇)CH:CH.N:)₂- X_4], represented by the chloride of α -naphthyl.
- (Iv) Bistrimethylenethiocarbamide, [Pt(HS.C: N(CH₂)₃NH)₂X₄], represented by the chloride.
- (lvi) Bisethylenethiocarbamide, $[Pt(S:C.NH:C_2H_4:NH)_2X_4]$, represented by the chloride.
- (Ivii) Bisethylalcohol, [Pt(C₂H₅OH)₂X₄], represented by the chloride.
- (Iviii) Bismethylsulphine, [Pt{(CH₃)₂S₂X₄], represented by (1) chloride; (2) bromide; (3) bromochloride; (4) iodide; (5) chloroiodide; and (6) bromoiodide.
 - (lix) Bisethylsulphines, [Pt{(C2H5)2S}2X4], represented by (1) chloride; (2) bromide; (3) chlorobromide; and (4) iodide.
 - (lx) Bismethylethylsulphine, [Pt{(CH₃)(C₂H₅)S₂X₄], represented by the chloride.
 - (lxi) Bispropylsulphines, [Pt{(C3H7)2S}2X4], represented by normal and iso-salts: (1) chloride; (2) bromide; (3) chlorobromide; and (4) hydroxynitrate.
- (lxii) Bisbutylsulphines, [Pt{(C4H9)2S}2X4], represented by secondary, normal, and iso-salts: (1) chloride; (2) bromide; (3) chlorobromide; (4) iodide; (5) polyiodide; and (6) chloroiodide.
- (lxiii) Bisbenzylsulphine, [Pt{(C₆H₅.CH₂)₂S}₂X₄], represented the chloride.
- (lxiv) Ethylenedisulphine, $[Pt\{(C_2H_4)_2S_2\}X_4]$, represented by the chloride.
- (lxv) Bistrithioformaldehyde, [Pt(C3H6S3)2X4], represented by the chloride.
- (lxvi) Bismethylselenine, [Pt{(CH₃)₂Se}₂X₄], represented by the chloride.
- (lxvii) Bisethylsclenines, $[Pt\{(C_2H_5)_2Se\}_2X_4]$, represented by (1) chloride; (2) bromide; (3) chlorobromides; (4) iodide; (5) chloroiodides; (6) bromoiodides; (7) chloronitrite; (8) bromonitrite; (9) iodonitrite; (10) nitrate; (11) hydroxynitrate; (12) chloronitrate; and (13) bromonitrate.
- (lxviii) Bisbenzylselenines, $[Pt\{(C_6H_5.CH_2)_2Se\}_2X_4]$, represented by the chloride.
 - (lxix) Bisphosphorichlorides, [Pt(PCl₅)₂X₄], represented by the chloride.
 - (lxx) Bisethylphosphines, [Pt{P(C₂H₅)₃}₂X₄], represented by the (1) dichlorodibromides; and (2) dichlorodiiodides.
 - (lxxi) Bisethylphosphites, [Pt{P(OC₂H₅)₃}₂X₄], represented by (1) chloride; and (2) dichlorobromide.
- (lxxii) Bismethylphosphates, [Pt{OP(OCH₃)₃}₂X₄], represented by the bromide. (lxxiii) Bismethyloxyphosphinebenzoates, [Pt{(CH₃)₂POC₆H₄COOH}₂X₄], represented by the chloride.
- (lxxiv) Bisylycines, [Pt(NH2.CH2.COO)2X2], represented by (1) chloride; (2) bromide; and (3) iodide.
- (lxxv) Bismethylethylglyoximines, [Pt(NO: C.C₂H₅.CH₃.C: NOH)₂X₂], represented by the browide sented by the bromide.
- (lxxvi) Bispyrazoles, $[Pt(C_3H_3N_2)_2X_2]$, represented by the chloride. (lxxvii) Bis-3, 5-methylpyrazoles, $[Pt(C_4H_5N_2)_2X_2]$, represented by the chloride.
- (lxxviii) Bis-3, 5-dimethylpyrazoles, $[Pt(C_5H_7N_2)_2X_2]$, represented by the chloride.
 - (lxxix) Bis-1-ethyl-3, 5-dimethylpyrazoles, [Pt(C₇H₁₁N₂)₂X₂], represented by the chloride.
 - (lxxx) Bis-1-phenylpyrazoles, [Pt(C9H7N2)2X2], represented by the chloride.
 - (lxxxi) Bis-1-phenyltetrachloropyrazols, [Pt(C9H3N2Cl4)2X2], represented by the chloride.
- (lxxxii) Bistolylpyrazols, $[Pt(C_{10}H_9N_2)_2X_2]$, represented by the chlorides of o- and p-tolyl.

- (lxxxiii) Bis-1-phenylmethylpyrazoles, [Pt(C₁₀H₉N₂)₂X₂], represented by the 3-methyl and the 4-methyl chlorides.
- (lxxxiv) Bis-1-phenyl-3, 5-dimethylpyrazoles, $[Pt(C_{11}H_{11}N_2)_2X_2]$, represented by the chloride.
- (lxxxv) Bisphenylmethylethylpyrazoles, [Pt(C₁₂H₁₃N₂)₂X₂], represented by the chloride.
- (lxxxvi) Bis-1-phenylmethylethyltrichloropyrazoles, [Pt(C₁₂H₁₀N₂Cl₃)₂X₂], represented by the chloride.
- (lxxxvii) Bispyridinephenylpyrazoles, [Pt(C₁₂H₇N₃)₂X₂], represented by the chloride.
- (lxxviii) Bis-1-phenyl-3-methyl-1, 3-triazoles, [Pt($C_9H_8N_3$), X_2], represented by the chloride.
 - (lxxxix) Bis-1-phenyl-3-methyl-1, 3-triazolone, [Pt(CoH8ON3)2X2], represented by the chloride.
 - (xc) Pyridineammines, [Pt(NH₃)(C₅H₅N)X₄], represented by the chloride.
 - (xci) Pyridinepiperidines, [Pt(C₅H₅N)(C₅H₁₁N)X₄], represented by the chloride.
 - (xcii) Ethylsulphineethylselenine, $[Pt\{(C_2H_5)_2S\}\{(C_2H_5)_2Se\}X_4]$, represented by the (1) chloride; (2) bromide; (3) chlorobromide; (4) iodide; (5) bromoiodide; (6) bromonitrate; and (7) chloronitrate.
- 6.—The monammine family represented by compounds of:
 - A.—Type: $[PtAX_4]$ which is nullvalent.
 - (i) Picoline, $[Pt(C_6H_7N)X_4]$, represented by the chloride.
 - (ii) o-Phenylenebisguanidide, [Pt(C8H9N5)X4], represented by the chloride.
 - (iii) Pilocarpidine, [Pt(C₁₀H₁₄N₂O₂)X₄], represented by the chloride.
 - (iv) Pilocarpine, [Pt(C₁₁H₁₆N₂O₂)X₄], represented by the chloride.
 - (v) Jaborinate, $[Pt(C_{19}H_{25}N_3O_5)X_4]$, represented by the chloride. (vi) Jaborine, $[Pt(C_{22}H_{32}N_4O_4)X_4]$, represented by the chloride.

 - (vii) Ethylsulphine, $[Pt\{(C_2H_5)_2S\}X_4]$, represented by the chlorodibromoethylsulphide.
 - (viii) Vinylsulphine, [Pt(C2H3)2S]X2], represented by the complex of the sulphide with the chloroplatinite.
 - (ix) Allylsulphine, [Pt{(C₃H₅)₂S̄}X₂], represented by a complex of the sulphide with the chloroplatinite.
 - (x) Diallylhexasulphine, [Pt{(C3H5)2S6}X4], represented by the chloride.
 - (xi) Phosphortrichloride, $[Pt(PCl_3)X_4]$, represented by the chloride. (xii) Ethylphosphites, $[Pt(PCl_2H_5)_3]X_4$, represented by (1) chloride; and (2) dichlorodibromide.
 - (xiii) Methylphosphate, [Pt{OP(OCH₃)₃}X₄|₂, represented by the dichlorodibromide.
 - (xiv) Ethylphosphates, [Pt{OP(OC₂H₅)₃}X₄]₂, represented by (1) chloride; and (2) dichlorodibromide. B.—Type: [PtAX₅] which is a univalent acidic radicle.
 - (i) Pentachloroammines, [Pt(NH₃)Cl₅]R, represented by (1) potassium; and (2) platinous tetrammine salts.
 - (ii) Pentachloropyridines, [Pt(C₅H₅N)Cl₅|R, represented by (1) pyridinium; (2) potassium; (3) rubidium; (4) cæsium; (5) lithium; (6) sodium; and (7) chloroplatinicquaterpyridine salts.
 - (iii) Pentachloropicoline, [Pt(C₆H₇N)Cl₅]R, represented by the picoline
 - (iv) Pentachlorolutidine, [Pt(C₇H₉N)Cl₅]R, represented by the lutidine
 - (v) Pentachlorocollidine, [Pt(C₈H₁₁N)Cl₅]R, represented by the collidine
 - (vi) Pentachloropyrazine, [Pt(C₄H₄N₂)Cl₅]R, represented by the pyrazine salt.

(vii) Pentachlorodimethylpyrazines, [Pt(C₆H₈N₂)Cl₅]R, represented by the dimethylpyrazine salt.

(viii) Pentachlorotrimethylpyrazines, [Pt(C₇H₁₀N₂)Cl₅]R, represented by the trimethylpyrazine salt.

(ix) Pentachloro-2, 5-dimethyl-3-ethylpyrazines, [Pt(C₈H₁₂N₂)Cl₅]R, represented by the corresponding pyrazine salt.

(x) Pentachloroguanines, [Pt(C₅H₅N₅O)Cl₅]R, represented by the corresponding guanine salt.

V.—The platinic ammines with more than one platinum atom in the nucleus.

(i) Dihydroxyhexammine-μ-diamines, [(HO)(NH₃)₃Pt(NH₂)₂Pt(NH₃)₃-(OH) |X₄, represented by the (1) chloride; (2) sulphate; (3) nitrate; (4) phosphate; and (5) dichromate.

(ii) Dibromohexammine-μ-diamines, $[Br(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3Br]X_4$ represented by (1) chloride; (2) sulphate; and (3) nitrate.

(iii) Diiodohexammine-μ-diamines, [I(NH₃)₃Pt(NH₂)₂Pt(NH₃)₃I|X₄, presented by (1) iodide; (2) sulphate; (3) nitrate; (4) phosphate; and (5) oxalate.

(iv) Dinitratohexammino-μ-diamines, $[(NO_3)(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3$ (NO_3)]X₄, represented by the nitrate.

(v) Dibromohexammine-μ-diimines, [Br(NH₃)₃Pt(NH)₂Pt(NH₃)₃Br | X₂, represented by the nitrate.

(vi) Diiodohexammine-μ-diimines, [I(NH₃)₃Pt(NH)₂Pt(NH₃)₃I]X₂, represented by the (1) iodide; (2) sulphatoplatinite; and (3) nitrate.

(vii) Dinitratohexammine-μ-diimines, $[(NO_3)(NH_3)_3Pt(NH)_2Pt(NH_3)_3$ (NO₃)]X₂, represented by the sulphatoplatinite.

- (viii) Dihydrazinooctocarbylamines, [(CH₃.NC)₄Pt\(\bigcNH.NH₂\)Pt(CH₃.NC)₄]-X₂.nH₂O, represented by (1) chloride; (2) iodide; (3) perchlorate; and (4) azide.
 - (ix) Dihydrazinooctoethylcarbylamines, $[C_2H_5.NC)_4Pt < NH.NH_2 > Pt(C_2H_5.NC)_4Pt < NH_2.NH > Pt(C_2H_5.NC)_4Pt < NH_2.NH$ NC)4 X2.nH2O, represented by (1) chloride and chloroplatinate; (2) iodide; (3) perchlorate; and (4) nitrate.

(x) Dihydrazinohydrochlorotetracarbylamines, (CH₃.NC)₄.Pt₂.2N₂H₃.2HCl.

(xi) Dihydrazinohydrochlorotetraethylcarbylamines, (C₂H₅.NC)₄.Pt₂.2N₂H₃. 2HCl.Cl₂.

VI.—The platinum ammines whose nature is unknown.

VOL. XVI.

(i) Platinum dihydroxytetrahydrocarbonatcheptammine, Pt(NH₃)₇(OH)₂-(HCO₃)₄, of B. Gerdes.

(ii) Platinum trichlorotriammine, Pt(NH₃)₃Cl₃, of E. Koefoed.

(iii) Platinum tetrammine, Pt₂(NH₃)₄X₂, of P. T. Cleve, C. W. Blomstrand, H. and A. Euler, and P. Klason, represented by (1) hydroxide; (2) chloride; (3) sulphate; and (4) nitrate.

(iv) Platinum tetrammine, Pt₂(NH₃)₄X₄, represented by the chloride of P. T. Cleve.

- (v) Platinum dicarbonylbispyridines, Pt₂(CO)₂(C₅H₅N)₂X₂, of F. Förster, represented by (1) chloride; (2) chloropyridine; and (3) bro-
- (vi) Platinum enneaiodoctammine, Pt₄(NH₃)₈I₉, of P. T. Cleve.
- (vii) Platinum hexaiodotetrammine, Pt₂(NH₃)₄I₆, of P. T. Cleve.

(viii) Platinum pentaiodotetrammine, Pt₂(NH₃₎₄I₅, of P. T. Cleve. (ix) Platinum hexachlorobispyridinediammine, Pt₂(NH₃)₂(C₅H₅N)₂Cl₆, of S. M. Jörgensen.

(x) Platinum hexabromobisethylaminediammine, Pt₂(NH₃)₂(C₂H₅NH₂)₂Br₆, of S. M. Jörgensen.

2 B

- (xi) Platinous triscarbonyltetrachloride, 2PtCl₂.3CO, of P. Schützenberger, and A. J. F. da Silva.
- (xii) Platinous tetrachlorotristhioformaldehyde, 2PtCl₂.3C₃H₆S₃, of A. W. Hof-
- (xiii) Platinic tetrasulphotrisamylsulphide, 2PtS₂.3(C₃H₅)₂S, of T. Wertheim
- (xiv) Platinum decahydroxyammine, (OH)₅Pt(NH₃)Pt(OH)₅, of J. Jacobsen. (xv) Platinum decahydroxypyridine, (OH) Pt(C5H5N)Pt(OH), of J. Jacobsen.
- (xvi) Pt(NH₃)₄X₂NO.HX, represented by the (1) chloride; (2) sulphatochloride: and (3) nitrate of E. Koefoed, and E. A. Hadow.
- (xvii) [Pt(NH₃)₄Cl₂]₂Cl₂(NO)(HCl), of E. Koefoed.
- (xviii) Pt(NH₃)₂(NO₂)(NO)Cl.HCl, of E. Koefoed.
 - (xix) Pt(NH₃)₂(NO₂)Cl(NO)(HNO₃), of E. Koefoed.
 - (xx) $Pt_2(NH_3)_4(NO)_2(OH)(HI)_2I_3$, of E. Koefoed.
 - (xxi) Pt(NH₈)₂(NO₂)(NO)HCl, of E. Koefoed.
- (xxii) Pt₂(NH₃)₆(HSO₄)₂SO₄(NO)₂(H₂SO₄)(HCl), of E. Koefoed.
- (xxiii) $Pt\{(CH_3)_2NH\}_2(NO_2)_2(NO)(HCl)$, of E. Koefoed.
- (xxiv) $Pt(NH_3)_2\{(CH_3)_2NH\}_2Cl_2(NO)[Pt(NH_3)_2\{(CH_3)_2NH\}_2Cl_2]Cl_2$, of E. Koefoed.
- (xxv) $Pt_2(C_2H_5NH_2)_8(NO_2)Cl_3(NO)_2(HCl)_2.2H_2O$, of E. Koefoed.
- (xxvi) Pt(C₂H₅NH₂)₂(OH)Cl(NO)(HCl), of E. Koefoed.
- (xxvii) $Pt(NH_3)_2(C_2H_5NH_2)_2Cl_2(NO)(HCl).2_2H_2O$, of E. Koefoed.
- (xxviii) $Pt(NH_3)_2(C_5H_5N)_2Cl_2(NO)(HCl).H_2O$, of E. Koefoed.
- (xxix) Pt(NH₃)(C₅H₅N)Cl₂(NO)(HNO₃).H₂O, of E. Koefoed.
- $(xxx) Pt\{(C_2H_5)_9S\}_2(NO_2)_2(NO)(HCl).[Pt\{(C_2H_5)_9S\}_2Cl_2]_2, of E. Koefoed.$
- (xxxi) (NH₄)HPtCl₂.H₂O, of P. Schützenberger and C. Fontaine.
- (xxxii) Pt(PC₄H₁₆O₃N₂)Cl, of P. Schützenberger and C. Fontaine.
- (xxxiii) Pt(OH)(OC₂H₅)₂.Pt.N₂H₄.2HCl.PtCl₄, of P. Schützenberger and C. Fontaine.
- (xxxiv) Pt₂(NH₃)(N₂H₄)(P₂O₂)(C₂H₅O)₄, of P. Schützenberger and C. Fontaine.
- (xxxv) P(OC₂H₅)₃Pt, of P. Schützenberger.
- (xxxvi) $P_2(O\bar{C}_2\bar{H}_5)_6Pt$, of P. Schützenberger.
- (xxxvii) Pt₃{P(OC₂H₅)₃}₂, of P. Schützenberger and C. Fontaine.
- (xxxviii) Pt{PO(OC₂H₅)₃}, of P. Schützenberger and C. Fontaine. (xxxix) Pt(NH₃){P₂O(OC₂H₅)₅}Cl, of P. Schützenberger and C. Fontaine.
 - (xl) Pt(N₂H₄)P(OH)(OC₅H₁₁)₂(HCl), of P. Schützenberger and C. Fontaine.

REFERENCES.

- ¹ 1. I. Tscherniaeff, Ann. Inst. Platine, 5. 118, 1927; F. Reitzenstein, Zeit. anorg. Chem.,
- 18. 152, 1898.
 C. W. Blomstrand, Ber., 4, 678, 1871; P. T. Cleve, Svenska Akad. Handl., 10, 9, 1872; H. and A. Euler, Ber., 37, 2393, 1904; F. Förster, ib., 24, 3753, 1891; B. Gerdes, Ueber die bei Elektrolyse des carbaminsauren und kohlensauren Ammons mit Wechselströmen und Platin-C. Fontaine, ib., (2), 18. 110, 1872; A. J. F. da Silva, ib., (3), 15. 835, 1896; T. Wertheim, Liebig's Ann., 51. 302, 1844.

§ 24. Platinous Bromide

W. Pullinger ¹ could not prepare platinous bromide, or platinum dibromide, PtBr₂, by the direct action of bromine on platinum. V. Meyer and H. Züblin observed that in preparing platinic bromide by the action of bromine and hydrobromic acid on spongy platinum in a sealed tube, at 180°, evaporating the filtered soln., heating the residue to 180°, and extracting the platinic bromide from the mass by water, a little platinous bromide remains undissolved. L. Wöhler and F. Müller obtained the anhydrous tetrabromide by heating bromoplatinic acid in a current of bromine at 300°; at 370° the tribromide is formed, and at 405° to 410°, the dibromide. The dibromide is thus difficult to prepare because it is stable over a temp. range of 5°. A. Gutbier observed that platinous bromide is formed when platinic bromide is heated to 180°; and W. Halberstadt, and H. Töpsöe, when hydrobromoplatinic acid is heated to 100°, or more rapidly at 200°. W. Halberstadt observed that the bromide is formed in the electrolysis of a conc. soln. of platinic bromide; and M. Katayama, during the working of the cell: Pb|PbBr_{solid}|Br (and platinum).

W. Pullinger observed that platinous bromide is black if it has not been heated over 180°, and dark brown if prepared at 250°. W. Halberstadt, and H. Töpsöe said that the bromide forms a greenish-brown powder. R. Klement gave 6.652 for the sp. gr. at 25°/4°, and 53.4 for the mol. vol. H. Töpsöe showed that platinous bromide does not lose weight at 100°, but if heated at 200° for a long time a small proportion is decomposed, and if heated for a short time at 240° no decomposition can be detected. The salt is insoluble in water; it forms a brownish-red soln. with bromine water; and a yellow liquid with a soln, of potassium bromide. J. Thomsen gave (Pt, O, 4HBr, Aq.)=43.44 Cals. for the heat of formation of hydrobromoplatinous acid, H₂PtBr₄. W. Manchot and G. Lehmann observed that the halogen is eliminated more quickly in a current of carbon monoxide better than it is in an indifferent gas, and no carbonyl bromide is formed. W. Rosenheim and W. Levy described a complex with phosphorous bromide, namely, platinous dibromobisphosphorotribromide, [Pt(PBr₃)₂Br₂]; and also platinous dibromophosphorotribromide, [Pt(PBr₃)Br₂]₂.

J. Reiset obtained platinous tetramminobromide, [Pt(NH₃)₄]Br₂,nH₂O, by the action of barium bromide on a soln. of the tetramminosulphate. The cubic crystals are not decomposed by boiling water; and P. T. Cleve added that if the mixed soln, is evaporated over sulphuric acid, and the crystals are pressed between bibulous paper, four-sided prisms or plates of the hemitrihydrate are formed. The crystals effloresce in dry air; they lose water at 100°; and they dissolve freely in water. C. Nogareda, and A. A. Grinberg and B. V. Ptitsin studied the thermal decomposition, and formation of the bromide from its elements. E. Biilmann and A. C. Anderson prepared green platinous tetramminobromoplatinate, $[Pt(NH_3)_4]$ -PtBr₄, sparingly soluble in water; and they also obtained a complex platinous allylalcoholtetramminobromoplatinite, [Pt(NH₃)₄][Pt(C₃H₅OH)Br₃]₂. L. A. Tschugaeff and I. I. Tscherniaeff prepared platinous aquotriamminobromoplatinite, [Pt(NH₃)₃-(H₂O)|PtBr₄, by adding potassium bromoplatinite to a soln. of the chloride. The green needles are converted by hydrobromic acid or a soluble bromide into platinous bromotriamminobromoplatinite, [Pt(NH₃)₃Br]₂PtBr₄. L. A. Tschugaeff prepared this salt by the method employed for the corresponding chloro-salt. P. T. Cleve prepared platinous trans-dibromodiammine, [Pt(NH₃)₂Br₂], by the action of potassium bromide on the corresponding chloride, and drying the product at 100°. The pale yellow, crystalline powder is sparingly soluble in hot water, and the soln, on cooling deposits the original salt; he also obtained in an analogous manner, platinous cis-dibromodiammine in golden-yellow needles. H. D. K. Drew and co-workers prepared the three isomerides of platinous dibromodiammine, [Pt(NH₃)₂Br₂], analogous with the corresponding chlorides (q.v.), by the action of an excess of a soln, of alkali bromide on the corresponding chloride, or of hydrobromic acid on the corresponding base. The a-salt forms sulphur-yellow, prismatic needles, which give no coloration with phenoxtellurine dibisulphate; a β-salt forms orange needles which give an orange-yellow coloration with phenoxtellurine dibisulphate; and the γ -salt occurs in clusters of dark orange prisms. H. Alexander prepared platinous tetrahydroxylaminebromide, [Pt(NH₂OH)₄]Br₂, in colourless needles, by the action of hydrobromic acid on the corresponding chloride.

S. M. Jörgensen prepared platinous trans-dibromobismethylamine, [Pt(CH₂NH₂)₂Br₃], by evaporating on a water-bath, a soln. of platinous quatermethylaminechloroplatinite in aq. methylamine with repeated additions of cone. hydrobromic acid, washing with very dil. hydrobromic acid and then with alcohol, recrystallizing from boiling water, and drying at 100°. The yellow prisms are sparingly soluble in water and more soluble in alcohol. S. M. Jörgensen also prepared platinous dibromobisdimethylamine, [Pt(NH₃)₃((CH₃)₂NH)₂Br₂], as well as platinous dibromobisdimethylaminediammine, [Pt(NH₃)₃((CH₃)₂NH)₂Br₂], and platinous dibromodimethylamineammine, [Pt(NH₃)₃((CH₃)₂NH)₃Br₂]. H. Wolfram, H. Reihlen and E. Flohr, and A. Johnsen obtained golden-yellow platinous quaterethylaminebromide, [Pt(C₂H₃NH₂)₂Br₂], dibromoethylamineammine, [Pt(NH₃)(C₂H₃NH₂)Br₃]. F. G. Mann prepared platinous bis-B-methyltrimethylenediaminobromide, [Pt(NH₃)(C₂H₃NH₂)Br₃]. F. G. Mann prepared platinous bis-B-methyltrimethylenediaminobromide, [Pt(CH₃)(CH₃NH₂)₃Br₂]. P. C. Ray and co-workers propared PtBr(C₂H₃)₃S₂; Pt₂Br₃(C₃H₃)₃S₂: 2py; and Pt₃Br₂: 2(C₂H₃)₃S₃: 2py. H. Wolfram, and A. Johnsen obtained platinum bisethylaminediamminehexabromide, Pt₃(NH₃)₂(C₂H₃NH₂)₂Br₆, of unknown constitution. N. S. Kurnakoff described the complex platinous bisethylenediaminebromocuprate, [Pt en₂]CuBr₄: A. Werner, platinous bisethylenediaminebromocuprate, [Pt en₂]CuBr₄: A. Werner, platinous bisethylenediaminebromocuprate, [Pt en₃]CuBr₄: A. Werner, platinous duaterpyridinebromide, [Pt(C₃H₆N)₄Br₂: as a trihydrate, and S. G. Hedin, platinous quaterpyridinebromide, [Pt(C₃H₆N)₄Br₂: as a trihydrate, and S. G. Hedin, platinous dibromocarbonylpyridine, [Pt(C₄H₆N)(CO)Br₃]: W. Pullinger, and F. Mylius and F. Förster, platinous dibromocarbonylpyridine, [Pt(C₄H₆N)₂Br₂]. a complex with chloroform, and platinous dibrom

L. Tschugaeff and D. Fränkel described platinous quatermethylsulphinebromoplatinite, $[Pt\{(CH_3)_2S\}_4]PtBr_4$; C. Enebuske, and L. Tschugaeff and D. Fränkel, platinous dibromobismethylsulphine, $[Pt\{(CA_3)_2S\}_2Br_2]$; C. W. Blomstrand, and P. Klason, platinous dibromobispropylsulphine, $[Pt\{(C_2H_5)_2S\}Br_2]$; M. Weibull, and C. Rudelius, platinous dibromobispropylsulphine, $[Pt\{(C_2H_5)_2S\}Br_2]$ —with normal and iso-propyl; C. Rudelius, platinous dibromoethylpropylsulphine, $[Pt\{(C_2H_5)_2S\}\{(C_3H_7)_2S\}Br_2\}$; M. Weibull, and H. Löndahl, platinous dibromobisbutylsulphine, $[Pt\{(C_4H_9)_2S\}Br_2\}$, with normal, iso-, and secondary butyl; H. Löndahl, and C. W. Blomstrand, platinous bisbenzylsulphine, $[Pt\{(C_4H_9)_2S\}Br_2\}$, and complexes with alcohol, and with chloroform. H. Löndahl, and F. G. Angell and co-workers, platinous bisethylenesulphinebromide, $[Pt\{(C_2H_4)S\}_2]Br_2$, and platinous dibromoethylenesulphine, $[Pt\{(C_2H_4)S\}Br_2\}$. K. A. Jensen measured the dipole moments, and the electrical conductivities of solutions of the salts—vide the chlorides

N. S. Kurnakoff prepared platinous quaterthiocarbamidebromide, $[Pt\{CS(NH_2)_2\}_4]Br_2$, L. Tschugaeff and P. Teearu, and L. Ramberg, platinous quaterphenylcarbylaminebromoplatinite, $[Pt\{C_4H_5,NC)_4]PtBr_4$; L. Tschugaeff and D. Fränkel, platinous bisdiethylthioethyleneglycolbromoplatinite, $[Pt(C_2H_5,S.C_2H_4,S.C_2H_5)_2]PtBr_4$; S. Tyden, platinous dibromobisthiodiglycolate, $[Pt\{S(CH_2,COOH)_2\}_2Br_2]$, and the corresponding platinous dibromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2\}_2Br_2]$, platinous bromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOH)_2(HO,CO,CH_2,S.CH_2,COO)\}Br]$, platinous bromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.CH_2,COO)\}Br]$, platinous bromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.COO)\}Br]$, platinous bromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.COO)\}Br]$, platinous bromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.COO)\}Br]$, platinous dibromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.COO)\}Br]$, platinous dibromobispotassiumthioglycolate, $[Pt\{S(CH_2,COOK)_2,S.COO)\}Br]$, platinous dibromoethylseleninepromoplatinite, $[Pt\{(C_2H_5)_2Se\}_2Br_2]PtBr_2$, platinous dibromoethylseleninepromoplatinite, $[Pt\{(C_2H_5)_2Se\}_2Br_2]PtBr_2$, platinous dibromoethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Br_2]$, and platinous dibromobisphosphorotribromide, $[Pt\{PGC_1,S_2\}_2Pr_2Br_2\}$. A. Rosenheim and W. Levy, platinous dibromobismethylphosphine, $[Pt\{P(OC,H_5)_3\}_2Br_2\}$; platinous dibromoethylphosphite, $[Pt\{P(OC,H_5)_3\}_2Br_2\}$; platinous dibromoethylphosphite, $[Pt\{POC,H_5\}_3\}_2Br_2\}$; platinous dibromoethylphosphite, $[Pt\{P(OC,H_5)_3\}_2Br_2\}$, and R. Bunsen, platinous dibromo-oxycacodyl, $[Pt\{AS_2(CH_3)_4O\}_3Pr_2\}$.

G. Méker obtained octahedral crystals of ammonium bromoplatinite by the action of fused ammonium sulphate and ammonium or potassium bromide on finely-divided platinum. J. Thomsen also prepared sodium bromoplatinite, Na₂PtBr₄.6H₂O, by evaporating to dryness a soln. of platinic chloride in hydro-

bromic acid, and crystallizing from the aq. soln. of the residue. The heat of formation is (Pt, Br₂, 2NH₄Br, Aq.)=31.84 Cals. J. Thomsen obtained **potassium bromoplatinite**, K₂PtBr₄.2H₂O, by boiling a soln. of a mol. of potassium chloroplatinite with 4 mols. of sodium bromide in so little water that a large proportion of the sodium chloride which is formed separates out. By repeated evaporation, filtering, and cooling, the potassium salt can be freed from most of the sodium chloride, and the salt can then be re-crystallized from its aq. soln. E. Billmann and A.C. Anderson obtained it by evaporating on a water-bath a mixture of 115.5 grms. of hydrobromoplatinic acid with four times its weight of water with 28.3 grms. of potassium oxalate until the weight is about 218 grms. Allow the liquid to cool overnight, separate the product by suction, and dry it in air—yield 44 grms. N. Demassieux and J. Heyrovsky studied the dissociation of the salt in soln.

The prismatic crystals of the dihydrate are almost black, and, according to O. B. Böggild, they are rhombic bipyramids with the axial ratios a:b:c=0.6058:1:0.7050. The optical character is negative. R. Klement gave 3.747 for the sp. gr. at $25^{\circ}/4^{\circ}$, and 167.9 for the mol. vol. The crystals remain bright in a cool place, or in a closed vessel at ordinary temp. The water is given off when the crystals are exposed to sunlight, or kept in a desiccator. When the dihydrated crystals are allowed to stand over water, the vapour is absorbed and a dark red soln. is formed. The heat of formation of the anhydrous salt was found by J. Thomsen to be (Pt, Br₂, 2KBr)=32·31 Cals.; (Pt, Br₂, 2KBr, Aq =31·84 Cals.; and the heat of solution, -10.63 Cals. E. Billmann and A. C. Anderson observed that the salt is freely soluble in water, and when the soln. is boiled for some time, it is decomposed.

L. Wöhler and F. Müller prepared **platinum tribromide**, PtBr₃, by heating the tetrabromide at 370°; at 405°, it decomposes into the dibromide. R. Klement obtained platinum tribromide analogous with the trichloride, and found its sp. gr. at 22°/4° to be 6.504, and its mol. vol. 66.9.

A. J. Balard, and P. A. von Bonsdorff dissolved platinum in a mixture of hydrobromic and nitric acids, evaporated the soln. at about 70°, and obtained platinum tetrabromide, or platinic bromide, PtBr4. H. Töpsöe added that if the nitric acid is in excess some tetrabromonitrosylbromide is formed, and if the hydrobromic acid is in excess, hydrobromoplatinic acid. C. F. Rammelsberg observed that some platinic bromide is formed when a soln, of platinic sulphate is treated with barium bromate (bromide?), and the filtered soln. evaporated. L. Pigeon employed a process analogous to that used in the preparation of platinic chloride. V. Meyer and H. Züblin employed the process indicated in connection with platinous bromide. W. Halberstadt evaporated to dryness the soln. of hydrobromoplatinic acid, obtained in V. Meyer and H. Züblin's process, in order to drive off the excess of bromine, extracted the mass with water, evaporated the soln. again to dryness, and then heated the brownish-red product to 180° to 200° with vigorous stirring until the vapour of hydrogen bromide was no longer perceptible. The product is boiled with water, and the soln. evaporated to dryness; the residue is again heated to 180° and the sequence of operations repeated so that finally the filtered soln. is evaporated. L. von Müller observed that the nature of the product depends on the time occupied in drying the mass, and A. Gutbier and co-workers observed that the product is impure, and L. von Müller, and A. Gutbier and co-workers recommended drying the product in bromine at 180°. The product dried at different temp, contained the following percentage proportions of platinum:

	100°	110°	120°	120° to 130°
Platinum	26.75	27.59	31·13 to 32·96	33.05 to 34.12 per cent.
	130° to 140°	140° to 150°	150° to 175°	180°
Platinum	36.59 to 37.89	37.14	39·19 to 40·31	41.34 per cent.

L. Wöhler and F. Müller obtained the anhydrous tetrabromide by heating hydrobromoplatinic acid in a current of bromine at 300°. C. Nogareda studied the

formation of the bromide from platinum and found the stages are Pt->PtBr->PtBr₄. Platinic bromide was analyzed by V. Meyer and H. Züblin, W. Halberstadt, A. Gutbier and co-workers, L. von Müller, and A. Miolati and I. Bellucci. Dark brown, amorphous platinic bromide is stable in air. W. Peters observed that when it is dried in vacuo, it is somewhat moist. W. Halberstadt could not obtain it in the crystalline state, but C. F. Rammelsberg did do so. R. Klement gave 5.687 for the sp. gr. at 25°/4°, and 90.6 for the mol. vol. W. Pullinger found that after 4 hrs.' heating at 310°, in a current of air, the salt was not completely converted into

Bromides.

platinous bromide and bromine. L. Wöhler and F. Müller's observations on the range of stability of the bromides are summarized in Fig. 90. C. Nogareda studied the subject. L. Pigeon said that

the heat of formation of the solid is (Pt, 2Br₂)=42·43 to 56·83 Cals. according as the bromine is liquid or gas; the heat of formation of the salt in soln., (Pt, 2Br_{2llq.}, H₂O)=52·29 Cals.; and the heat of soln. is +9·86 Cals. A. Gutbier and coworkers said that hydrogen reduces platinic bromide, even at ordinary temp., forming hydrogen bromide. The salt is soluble in water, and L. Pigeon said that 100 c.c. of water dissolve 0·4 grm. of the salt at ordinary temp., and W. Halberstadt gave 0·41 grm. per 100 grms. of water at 20°. For the electrical conductivity, vide infra, dihydroxy-tetrabromoplatinic acid. According to W. Halberstadt, the salt is freely soluble in hydrobromic acid; and soln. of potassium, sodium, or calcium bromides give red precipitates.

An aq. soln. of the salt was found by W. Halberstadt to give a fawn-coloured precipitate when treated with aq. ammonia, and a soln. of ammonium bromide gives a red precipitate. According to W. Peters, the anhydrous salt rapidly absorbs dry ammonia to form platinic hexamminobromide, [Pt(NH₃)₆]Br₄, and this, in vacuo, yields platinic pentamminobromide, PtBr₄.5NH₃. P. T. Cleve prepared platinic dibromotetramminobromide, [Pt(NH₃)₄Br₂]Br₂, by mixing hot soln. of the corresponding nitrate, and ammonium bromide; and A. Werner, by the action of bromine on a warm soln. of platinous tetramminosulphate. The orange-red crystals are sparingly soluble in hot water. Silver nitrate precipitates silver bromide from the aq. soln.—the hot filtered liquor on cooling furnishes pale yellow crystals of what is considered to be [Pt(NH₃)₄(OH)Br](NO₃)₂. L. A. Tschugaeff prepared platinic bromoamidotetramminobromide, [Pt(NH₃)₄(NH₂)Br]Br₂; and platinic chloroamidotetramminobromide, [Pt(NH₃)₄(NH₂)Cl]Br₂. P. T. Cleve obtained platinic trans-tetrabromodiammine, [Pt(NH₃)₂Br₄], by adding bromine to platinous trans-chlorodiammine. The orange-yellow powder consists of foursided plates, or octahedra, which are sparingly soluble in water. The corresponding platinic cis-tetrabromodiammine forms dark red prisms or rhombic or hexagonal plates, sparingly soluble in cold water. A. R. Klien studied the action of water, acids, and alkaline soln. According to E. G. Cox and G. H. Preston, the a- and β -diamminotetrabromides are isomorphous with the corresponding tetrachlorides.

H. Töpsöe prepared platinic tetrabromonitrosylbromide, PtBr₄.2NOBr, by dissolving platinum in a mixture of hydrobromic acid and an excess of nitric acid. The dark brown powder contains cubic crystals. Moisture decomposes the salt with the evolution of nitrous fumes; and when confined over calcium chloride nitrosyl bromide is evolved. P. T. Cleve obtained platinic hydroxybromotetramminonitrate, [Pt(NH₃)₄(OH)Br](NO₃)₂, by the action of silver nitrate on platinous dibromotetramminonitrate. The straw-yellow powder consists of short prisms. The salt loses nothing at 100°, but detonates like gunpowder when strongly heated. It is sparingly soluble in cold water, and freely soluble in hot water; hydrochloric acid converts it into chlorobromotetramminochloride; nitric acid forms bromonitratotetramminonitrate; and an excess of oxalic acid gives a mixed precipitate.

W. Manchot and G. Lehmann observed that in carbon monoxide the halogen

is eliminated at a lower temp, than it is in an indifferent gas, and that no carbonyl bromide is formed. W. Halberstadt and others observed that platinic bromide is easily soluble in absolute and in aq. alcohol, in alcohol, and in glycerol. The ethereal soln. deposits platinum when warmed; the salt is also slightly soluble in acetic acid, and also in soln. of potassium or ammonium oxalate. An excess of soda-lye added to an aq. soln. of platinic chloride gives a yellowish-red precipitate, and silver nitrate, a brownish-red precipitate.

A. Gutbier and F. Bauriedel, F. Bauriedel, and P. Groth described platinic bismethylaminehydrobromide, 2CH₂NH₂,2HBr.PtBr₄; A. Gutbier and F. Bauriedel, F. Bauriedel, A. Ries, T. Hjortdahl, and H. Topsoe, platinic bisdimethylaminehydrobromide, 2(CH₃)₂NH.HBr.PtBr₂; F. Bauriedel, A. Gutbier and F. Bauriedel, A. Ries, and H. Töpsöe, platinic bistrimethylaminehydrobromide, $2(CH_3)_3N.HBr.PtBr_4$; A. Gutbier and A. Rausch, A. Ries, and H. Töpsöe, platinic bistetramethylammonium bromide, $2(CH_3)_4NH_3Br.PtBr_4$; F. Bauriedel, A. Gutbier and F. Bauriedel, H. Töpsöe, and P. Groth, platinic bisethylaminehydrobromide, $2C_2H_5NH_2$. HBr.PtBr₄; F. Bauriedel, A. Gutbier and F. Bauriedel, P. Groth, A. Ries, and H. Töpsöe, platinic bisdiethylaminehydrobromide, $2(C_2H_5)_2NH$.HBr.PtBr₄; H. D. K. Drew and H. J. Tress, platinic quaterethylaminobromide, [Pt etn₄Br₂]Br₂; F. Bauriedel, A. Gutbier and F. Bauriedel, H. Töpsöe, and P. Groth, platinic bistricthylaminehydrodei, A. Gutbier and F. Bauriedei, H. Topsoe, and P. Groth, platinic districtly laminehydrobromide, $2(C_2H_5)_3N.HBr.PtBr_4$; A. Gutbier and A. Rausch, and A. Ries, platinic bistetraethy lammonium bromide, $2(C_2H_5)_4NBr.PtBr_4$; J. A. le Bel, platinic dimethyldethy laminehydrobromide, $2(CH_3)_2(C_2H_5)_2NH.HBr.PtBr_4$; A. Ries, platinic bistrimethy lethylammonium bromide, $2(CH_3)_2(C_2H_5)_2NBr.PtBr_4$; A. Ries, platinic bisdlethylammonium bromide, $2(CH_3)_2(C_2H_5)_2NBr.PtBr_4$; A. Ries, platinic bismethyltriethylammonium bromide, $2(CH_3)_2(C_2H_5)_2NBr.PtBr_4$; A. Ries, platinic bismethyltriethylammonium bromide, $2(CH_3)_2(C_2H_5)_2NBr.PtBr_4$; F. Bauriedel, and A. Gutbier and F. Bauriedel, platinic bis-n-propylaminehydropromide, 2C₃H₇NH₂, HBr.PtBr₄, and also platinic bls-i-propylaminehydrochloride; J. A. le Bel, A. Ries, and P. Groth, platinic bispropylaminehydrobromide, $2(C_3H_7)_3NH.HBr.PtBr_4$; A. Gutbier and A. Rausch, platinic bistripropylaminehydrobromide, $2(C_3H_7)_3N.HBr.PtBr_4$; A. Ries, platinic bistetrapropylammoniumbromide, 2(C₃H₇)₄NBr.PtBr₄; A. Ries, platinic bismethyltripropylammoniumbromide, 2(CH₃)(C₃H₇)₃-NBr.PtBr₄; A. Ries, piatinic bistriethyipropylammoniumbromide, 2(C₂H₅)₃(C₃H₇)NBr.PtBr₄; NBr. PtBr₄; A. Ries, platinic bistriethylpropylammoniumbromide, $2(C_2H_5)_3(C_3H_7)NBr.PtBr_4$; F. Bauriedel, and A. Gutbier and F. Bauriedel, platinic bis-n-butylaminehydrobromide; $2C_4H_9NH_3.HBr.PtBr_4$, and platinic bis-iso-butylaminehydrobromide; A. Gutbier and A. Rausch, platinic bistri-iso-butylaminehydrobromide, $2(C_4H_9)_3N.HBr.PtBr_4$; A. Ries, and P. Groth, platinic bistri-iso-butylaminehydrobromide, $2(C_2H_9)_3N.HBr.PtBr_4$; A. Ries, and P. Groth, platinic bistriethylbutylammoniumbromide, $2(C_2H_9)_3(C_4H_9)NBr.PtBr_4$; A. Gutbier and A. Rausch, platinic bistriethylbutylammoniumbromide, $2(C_2H_8)_3(C_4H_9)NBr.PtBr_4$; A. Gutbier and A. Rausch, platinic bistriethylbutylammoniumbromide, $2(C_2H_1)_3(C_4H_1)NBr.PtBr_4$, platinic bistrieto-amylaminehydrobromide, $2(C_2H_1).NH.HBr.PtBr_4$, and platinic bistrieto-amylaminehydrobromide, $2(C_2H_2).NH.HBr.PtBr_4$, and platinic bistrieto-amylaminehydrobromide, $2(C_2H_3).NH.HBr.PtBr_4$, and $2(C_2H_3).NH.HBr.PtBr_4$, and $2(C_2H_3).NH.HBr.PtBr_4$, Bild A. Rausch, platinic bis-iso-amylamineny drobromide, $2(C_5H_{11})_2$ NH. HBr.PtBr₄, and platinic bistri-iso-amylamine-hydrobromide, $2(C_5H_{11})_3$ N. HBr.PtBr₄; and A. Gutbier and A. Rausch, platinic bisally iamine-hydrobromide, $2(C_5H_{11})_3$ N. HBr.PtBr₄; phenylammonium bromoplatinate, $\{(C_6H_5)(CH_3)NH_2\}_2$ PtBr₆; phenylemthylammonium bromoplatinate, $\{(C_6H_5)(CH_3)NH_2\}_2$ PtBr₆; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_3)NH_2\}_2$ PtBr₆; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_3)NH_2\}_2$ PtBr₆; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_3)NH_2\}_2$ PtBr₆; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₆; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₇; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₇; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₇; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₇; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)NH_2\}_2$ PtBr₈; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5)(CH_5)NH_2\}_2$ PtBr₈; phenylethylammonium bromoplatinate, $\{(C_6H_5)(CH_5$ $\{(C_6H_6)(C_2H_6)NH_2\}_2PtBr_6; \ \ phenyldiethylammonium \ bromoplatinate, \ \{(C_6H_6)(C_2H_5)_2NH\}_2-PtBr_6; \ bromophenylammonium \ bromoplatinate, \ (C_6H_4Br.NH_3)_2PtBr_6; \ in its \ o-, \ m-, \ and \ p-forms; \ chlorophenylammonium \ bromoplatinate, \ (C_6H_4Cl.NH_3)_2PtBr_6; \ in its \ m- \ and \ p-forms; \ 2:4-dichlorophenylammonium \ bromoplatinate, \ \{(C_6H_6Cl_2,NH_3)_2PtBr_6; \ in itrosyldimethylammonium \ bromoplatinate, \ \{NO.NH(CH_3)_2\}_2PtBr_6; \ in itrosyldiethylammonium \ bromoplatinate, \ \{NO.NH(C_3H_2)_2\}_2PtBr_6; \ in itrosyldi-iso-butyl-ammonium \ bromoplatinate, \ \{NO.NH(C_4H_2)_2\}_2PtBr_6; \ in itrosyldi-iso-butyl-ammonium \ bromoplatinate, \ \{NO.NH(C_4H_2)_2\}_2PtBr_6; \ in itrosyldi-iso-butyl-ammonium \ bromoplatinate, \ \{C_4H_4,NH_3\}_2PtBr_6; \ in its \ o-, \ m-, \ and \ p-forms; \ tolylammonium \ bromoplatinate, \ \{C_7H_{12}N_3\}_2PtBr_6; \ in its \ o-, \ and \ p-forms; \ tribenzylammonium \ bromoplatinate, \ \{(C_7H_7)_3NH\}_2PtBr_6; \ in its \ o-, \ and \ p-forms; \ tribenzylammonium \ bromoplatinate, \ \{(C_7H_7)_3NH\}_2\}_2PtBr_6; \ benzylmethylammonium \ bromoplatinate, \ \{(C_7H_7)_7NH\}_2\}_2PtBr_6; \ benzylmethylammonium \ bromoplatinate, \ \{(C_7H_7)_7NH\}_2\}_2PtBr_6; \ benzylmethylammonium \ bromoplatinate, \ \{(C_7H_7)_7NH\}_2\}$ bromoplatinate, $\{(C_7H_7)(CH_3)NH_2\}_2PtBr_*$; benzylidenemethylammonium bromopiatinate, bromoplatinate, $\{(C_2H_7)(CH_3)NH_2\}_2PtBr_6$; benzylidenemethylammonium bromoplatinate, $\{CH(C_6H_5):NH(CH_3)\}_2PtBr_6$; xylylammonium bromoplatinate, $\{(C_1H_2)_2C_6H_3,NH_3\}_2PtBr_6$; ni its $1:2:3\cdot,1:3:4$, and $1:4:5\cdot$ forms; benzylammonium bromoplatinate, $\{(C_7H_7)(C_2H_6)NH_2\}_2PtBr_6$; benzylideneethylammonium bromoplatinate, $\{CH(C_6H_5):NH(C_2H_5)\}_2PtBr_6$; benzylidenephenylammonium bromoplatinate, $\{CH(C_6H_5):NH(C_2H_5)\}_2PtBr_6$; benzylidenephenylammonium bromoplatinate, $\{(C_6H_4)NH_3\}_2PtBr_6$; benzylidenephenylammonium bromoplatinate, $\{C_6H_4(NH_3)_3\}_2PtBr_6$; in its $o\cdot$, $m\cdot$, and $p\cdot$ forms; naphthylammonium bromoplatinate, $\{(C_1H_7,NH_3)_3PtBr_6$, in its $a\cdot$ and $\beta\cdot$ forms; phenylbenzylammonium bromoplatinate, $\{NH_2(C_6H_5)(C_7H_7)\}_2PtBr_6$; phenylbenzylammonium bromoplatinate, $\{NH_2(C_6H_5)(C_7H_7)\}_2PtBr_6$; phenylbenzylammonium bromoplatinate, $\{(CH_3)_3(C_6H_5)N\}_2PtBr_6$; 2:4:5-trimethylphenylammonium bromoplatinate, $\{(CH_3)_3(C_6H_5)N\}_2PtBr_6$; 2:9 yridinium

A. B. Weinhagen prepared choline bromoplatinate, (C₅H₁₄ON)₂PtBr₄; pyridinium

bromoplatinate, $(C_5H_5N)_2H_2PtBr_6$; betaine bromoplatinate, $(C_5H_{12}O_2NCl)_2PtBr_6$; arecaidine bromoplatinate, $(C_7H_{11}O_2N)_2H_2PtBr_6$, H_2O ; arecoline dichlorotetrachloroplatinate, $(C_8H_{12}O_2N)_2H_2PtCl_2Br_4$; and nicoline bromoplatinate, $(C_1H_{14}N_2)H_2PtBr_6.H_2O$; but not

morphine bromoplatinate, or hydrazine bromoplatinate.

F. Bauriedel, C. J. Obermaier, and A. Gutbier and co-workers described platinic bisanlinehydrobromide, 2C,H,NH,HBr.PtBr,; F. Bauriedel, and A. Gutbier and co-workers, platinic bistoluidinehydrobromide, 2C,H,NH,HBr.PtBr, with o., m., and p.tolyl; F. Bauriedel, and A. Gutbier and co-workers, platinic bissylidinehydrobromide, 2C,H,NH,. HBr.PtBr, with the 1, 2, 4-, the 1, 3, 4-, and the 1, 4, 5-xylidine; C. J. Obermaier, and A. Gutbier and co-workers, platinic bisnaphthylamine inches and β-naphthylamine; F. Bauriedel, and A. Gutbier and F. Bauriedel, platinic ethylenediaminehydrobromide, C,H,(NH,),2HBr.PtBr,; and platinic propylenediaminehydrobromide, C,H,(NH,),2HBr.PtBr,; and platinic propylenediaminehydrobromide, C,H,(NH,),2HBr,PtBr,; and platinic propylenediaminehydrobromide, C,H,(NH,),2HBr,1HB,O, and A. P. Smirnofi, platinic trispropylenediaminobromide, Pten,Br,1H,O, and A. P. Smirnofi, platinic trispropylenediaminobromide, Pten,Br,1H,O, and A. P. Smirnofi, platinic trispropylenediaminobromide, Pten,Br,1H,O, and A. P. Smirnofi, platinic trispropylenediaminobromide, Pt(C,H,N,H,),Br,O, and A. P. Smirnofi, platinic trispropylenediaminobromide, Pten,Br, in its racemic, dextro- and levo-forms. S. G. Hedin prepared platinic tetrabromobispyridine, [Pt(C,H,N),Br,I),Fr, Bauriedel, A. Gutbier and F. Bauriedel, and A. Gutbier and A. Rausch, platinic bispyridinehydrobromide, 2C,H,N. HBr.PtBr, with α- and β-picoline; and platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, with α- and β-picoline; and platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, the guanidine bromoplatinate, (C,H,N,PtBr, the guanidine salt, [Pt(CH,N,S),PtBr,N,HBr.PtBr, platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, and platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, and platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, with ordinary and iso-quinoline; α-picolinium bromoplatinate, ((CH,N,S),PtBr, A. Gutbier and F. Bauriedel, platinic bispicolinehydrobromide, 2C,H,N. HBr.PtBr, with ordinary and iso-quinoline; α-picolinium bromoplatinate, ((CH

C. Enebuske and M. Weibull described platinic tetrabromobismethylsulphine, $[Pt\{(CH_3)_2S\}_2Br_4]$; C. W. Blomstrand, F. G. Angell and co-workers, and M. Weibull, platinic tetrabromobisethylsulphine, $[Pt\{(C_2H_5)_2S\}_2Br_4]$; C. Rudelius, H. Löndahl, and M. Weibull, platinic tetrabromobispropylsulphine, $[Pt\{(C_3H_5)_2S]_2Br_4]$, represented by normal and isopropyl; F. G. Angell and co-workers, platinic dichloredibromobisethylsulphine, $[Pt\{(C_2H_5)_2S\}_2Br_2C]_2$; P. C. Ray and N. N. Ghosh prepared complexes with ethylamine, Pt_4Br_2 . $3(C_2H_5)_2S_2.(C_2H_5)NH_2$; with pyridine, $Pt_2Br_3.(C_2H_5)_2S_2.2C_5H_5N$; with benzylamine, $Pt_4Br_2.5(C_2H_5)_2S_2.2C_5H_5NH_2$; with phenylhydrazine, $Pt_1Br_2.9(C_2H_5)_2S_2.2C_6H_5.NH.NH_2$; with tripropylamine, $Pt_1Br_2.9(C_2H_5)_2S_3.N(C_2H_7)_2$; and with quinoline, $Pt_2Br_2(C_2H_5)_2S_2.2C_5H_5NH.NH_2$; with tripropylamine, $Pt_1Br_2.9(C_2H_5)_2S_3.N(C_2H_7)_2$; and with quinoline, $Pt_2Br_2(C_2H_5)_2S_2.2C_5H_5NH.NH_2$; with tripropylamine, $Pt_1Br_2.9(C_2H_5)_2S_3.N(C_2H_7)_2$; and with quinoline, $Pt_2Br_2(C_2H_5)_2S_2.2C_5H_7N$. J. Petren, platinic tetrabromoethylselenine, $[Pt\{(C_2H_5)_2S_2\}_2Br_4]$, and platinic tetrabromoethylselenine, $[Pt\{(C_2H_5)_2S_2\}_2Br_4]$.

A. J. Balard obtained hydrobromoplatinic acid, H₂PtBr_{6.9}H₂O, by the action of a mixture of hydrobromic and nitric acids on platinum. W. Pullinger recommended dissolving platinum sponge in hydrobromic acid saturated with bromine in a scaled glass tube at 180°, and E. Biilmann and A. C. Anderson boiled the spongy platinum with the hydrobromic acid and bromine in a flask fitted with a reflux condenser, and heated on a water-bath. V. Meyer and H. Züblin used the process; L. von Müller did not obtain a good yield; H. Töpsöe evaporated the red liquid over calcium dioxide, and dried the crystals over sulphuric acid. W. Halberstadt washed the product with carbon disulphide on an asbestos filter. A. Gutbier and F. Bauriedel, L. von Müller, F. Bauriedel, and A. Gutbier and A. Rausch repeatedly evaporated hydrochloroplatinic acid with conc. hydrobromic acid on a water-bath, added hydrobromic acid and bromine three or four times, repeating the evaporation after each addition. The residue is dissolved in hydrobromic acid, and the deep carmine-red soln. evaporated over barium oxide.

The carmine-red crystals were said by H. Töpsöe to be monoclinic prisms. When the crystals are confined over calcium chloride, the faces gradually become dull owing to the loss of hydrogen bromide; and the crystals melt at 100° giving off water, bromine, and hydrogen bromide, and over 100° there is formed a mixture

of platinous bromide and hydrobromoplatinic acid. The crystals deliquesce in air. L. Pigeon gave for the heat of formation in soln. (Pt, 2Br₂, 2HBr)=60·70 Cals.; or (PtBr₄, 2HBr)=18·27 Cals.; and J. Thomsen gave (Pt, 2Br₂, 2HBr)=57·64 Cals. also in aq. soln.; and (Pt, O₂, 6HBr.Aq.)=80·36 Cals., H. I. Schlesinger and R. E. Palmateer studied the conditions for the reaction PtBr₆"+6Cl'=PtCl₆"+6Br'. H. Töpsöe, and W. Halberstadt found the crystals to be freely soluble in water, alcohol, ether, chloroform, and acetic acid. L. Pigeon said that a soln. of a mol. of the acid with 2 mols. of silver nitrate forms silver bromoplatinate which becomes colourless when the mixture is boiled for a long time. Hydrobromoplatinic acid furnishes a series of **bromoplatinates** isomorphous with the chloroplatinates. H. I. Schlesinger and R. E. Palmateer discussed the relative stabilities of the halogenoplatinates.

H. Töpsöe prepared ammonium bromoplatinate, (NH₄)₂PtBr₆, by adding ammonium bromide to an aq. soln. of hydrobromoplatinic acid, or, according to W. Halberstadt, to an aq. soln. of platinic bromide, and drying the product at 100°. The process was also employed by C. J. Obermaier, and A. Gutbier and co-E. H. Archibald dissolved platinum electrolytically in hydrobromic acid, and added a dil. soln. of ammonium bromide with continuous stirring as in the case of the chloroplatinate. G. Méker observed that the metal is rapidly attacked by a fused mixture of ammonium sulphate and bromide under conditions where it is not attacked by either reagent alone. The red ammonium bromoplatinate which is formed is readily separated because it is insoluble in the ammonium salts. Ammonium bromoplatinate crystallizes from hot soln, in cubic crystals with the octahedral faces highly developed, but when deposited from cold soln., the cubic faces are the more prominent. The crystals are carmine-red, orangered, or brownish-red. E. Carozzi found the crystals are isomorphous with the corresponding salts of tin, lead, and selenium. H. Töpsöe, and E. Carozzi gave 4.20 for the sp. gr., and E. H. Archibald, 4.265 at $24^{\circ}/4^{\circ}$. The mol. vol. is 169.9. E. H. Archibald found that the crystals are decomposed at a temp, exceeding 185°; and P. C. Ray and A. C. Ghosh found that platinum, bromine, ammonium bromide, hydrogen bromide, and nitrogen are formed at higher temp. J. Thomsen gave for the heat of formation, (Pt, 2Br₂, 2NH₄Br, Aq.)=57·16 Cals. W. Halberstadt found that the salt is sparingly soluble in water, 100 parts of soln. at 20° contain 0.59 part of the salt; and H. Töpsöe, that at 15°, 100 parts of water dissolve 0.5 part of salt. E. H. Archibald and J. W. Kern observed for the solubility, S grms. $(NH_4)_2$ PtBr₆ per 100 grms. of water:

and for soln. with C mol NH₄Br per litre, at 20°:

P. A. von Bonsdorff, C. J. Obermaier, L. von Müller, W. Halberstadt, L. Pitkin, and A. Gutbier and co-workers prepared **potassium bromoplatinate**, K_2PtBr_6 , by adding a soln. of potassium bromide to hydrobromoplatinic acid; E. Billmann and A. C. Anderson washed the precipitate with ice-cold water, and then with alcohol. E. H. Archibald added a dil. soln. of potassium bromide slowly and with constant stirring to a soln. of platinum dissolved electrolytically in hydrobromic acid. G. Meker found that platinum is rapidly attacked by a fused mixture of ammonium sulphate and potassium bromide, and obtained crystals of potassium bromoplatinate as in the case of the corresponding ammonium salt. The yield is bad if a mixture of potassium sulphate and bromide is employed. The carminered, conc. soln. deposits octahedral crystals belonging to the cubic system, when evaporated spontaneously. M. Mathieu found that the X-radiogram corresponds with that of the analogous chloroplatinate, and that the space-lattice has a=10.35

A., and there are 4 mols. per unit cell. H. Töpsöe gave 4·51 for the sp. gr.; C. H. D. Boedcker, 4·68; E. H. Archibald, 4·658 at 24°/4°; and R. Klement, 4·537 at 25°/4°, and 166·0 for the mol. vol. P. A. von Bonsdorff observed that the salt decrepitates when heated, at the same time it acquires a darker colour, and then decomposes with the evolution of bromine vapours. It is more stable than the corresponding chloroplatinate, and, added E. H. Archibald, it can be heated to 400° without decomposition. J. Thomsen gave for the heat of formation (Pt, 2Br₂, 2KBr)=59·26 Cals., (Pt, 2Br₂, 2KBr, Aq.)=57·16 Cals.; and (K₂PtBr_{4soln.}, Br_{2gas})=25·35 Cals., and for heat of solution, -12·26 Cals. H. I. Schlesinger and M. W. Tapley studied the absorption spectrum. A. Miolati gave for the electrical conductivity, λ, of soln. with a gram-equivalent of the salt in v litres:

and for a dil. soln. with v=128, the conductivity increases with time owing to hydrolysis, thus:

Time . . 0 1 2 5 30 30 90 min.
$$\lambda$$
 . . . 105.7 110.4 112.6 113.6 118.4 119.7 120.3

N. Demassieux and J. Heyrovsky studied the dissociation of the salt in soln.; and H. I. Schlesinger and R. E. Palmateer, the relative stability of the halogen salts. The salt is sparingly soluble in water, and W. Halberstadt observed that 100 parts of a sat., aq. soln., at 20°, contain 2.02 parts of the dry salt. P. A. von Bonsdorff observed that the salt is insoluble in water. E. H. Archibald and W. A. Gale's observations on the hydrolysis of the salt in aq. soln., measured with that of the corresponding chloroplatinate, are summarized in Fig. 90. According to M. Vèzes, an excess of potassium nitrite converts a boiling soln. of potassium bromoplatinate into potassium nitriteplatinite; and with 4 mols. of potassium nitrite there is formed potassium dinitritodibromoplatinite.

C. J. Obermaier, A. Gutbier and co-workers, and L. von Müller prepared rubidium bromoplatinate, Rb₂PtBr₆, in yellowish-red octahedra, by adding a soln. of rubidium bromide to hydrobromoplatinic acid, and recrystallizing the precipitate from a soln. in hydrobromic acid. They also prepared cæsium bromoplatinate, CsPtBr₆, in reddish-yellow octahedra, by mixing soln. of cæsium bromide and hydrobromoplatinic acid, and recrystallizing the precipitate from a soln. in hydrobromic acid.

P. A. von Bonsdorff prepared sodium bromoplatinate, Na₂PtBr₆.6H₂O, by mixing aq. soln. of sodium bromide and hydrobromoplatinic acid; and J. Thomsen, by boiling mixed soln, of platinic chloride and hydrobromic acid, adding the equivalent of 2 mols. of sodium bromide, evaporating to dryness, and recrystallizing from aq. soln. The dark red crystals of the herahydrate were found by H. Töpsöe to be triclinic pinacoids with the axial ratios a:b:c=0.9806:1:0.8553, and $\alpha=101^{\circ}9\frac{1}{2}$, $\beta = 126^{\circ} 53\frac{1}{3}$, and $\gamma = 73^{\circ} 50\frac{1}{3}$; and they are isomorphous with the corresponding chloride. The sp. gr. is 3.323, and the mol. vol. 250.2. P. A. von Bonsdorff observed that the crystals are stable in air, and H. Töpsöe, that in moist air the faces of the crystals become matte. W. Peters found that the crystals lose all their water at 150°, and becomes reddish-violet. J. Thomsen gave for the heat of formation of the hexahydrate from the anhydrous salt 18.54 Cals., and (Pt, 2Br₂, 2NaBr) =46.79 Cals.; (Pt, 2Br₂, 2NaBr, 6H₂O)=65.33 Cals.; (Pt, 2Br₂, 2NaBr, Aq.) =57.16 Cals.; the heat of soln. of the anhydrous salt is 99.9 Cals., and of the hexahydrate, -8.55 Cals. P. A. von Bonsdorff said that the hexahydrate is soluble in water and alcohol; and J. Thomsen, that the anhydrous salt attracts moisture from the air. W. Peters found that the anhydrous salt slowly absorbs dry ammonia to form sodium hexamminobromoplatinate, Na₂PtBr₆.6NH₃, which, in vacuo, forms sodium pentamminobromoplatinate, Na₂PtBr₆.5NH₃. H. I. Schlesinger and R. E. Palmateer studied the photochemical reaction, Na₂PtBr₆+6NaCl \rightleftharpoons Na₂PtCl₆+6NaBr.

H. Töpsöe prepared **copper bromoplatinate**, $CuPtBr_6.8H_2O$, by spontaneously evaporating mixed soln. of cupric bromide and hydrobromoplatinic acid. The brown plates are probably rhombic with the axial ratios a:b:c=0.744:1:1.009. The crystals of the *octohydrate* deliquesce in air, and at 100° form a brown powder of the anhydrous salt. L. Pigeon, and A. Miolati and I. Bellucci obtained **silver bromoplatinate**, Ag_2PtBr_6 , from soln. of silver nitrate and hydrobromoplatinic acid. L. Pigeon gave for the heat of formation $(PtBr_4, 2AgBr)=10.37$ Cals. A. Miolati and I. Bellucci found that the salt is not decomposed in a sealed tube at 150° , and it is stable when boiled with a large excess of water.

P. A. von Bonsdorff, and H. Töpsöe prepared calcium bromoplatinate, CaPtBr₆.12H₂O, by neutralizing hydrobromoplatinic acid with calcium carbonate, and evaporating the soln. over sulphuric acid. The scarlet-red crystals are monoclinic; they are stable in air and soluble in water. H. Töpsöe prepared strontium bromoplatinate, SrPtBr₆.10H₂O, in a similar manner; the tabular crystals have sp. gr. of 2·923, and mol. vol. 323·2. They are a little deliquescent. H. Töpsöe, and P. A. von Bonsdorff prepared barium bromoplatinate, BaPtBr₆.10H₂O. The reddish-brown crystals are probably monoclinic; the sp. gr. is 3·713, and the mol. vol., 267·8. The crystals are stable in dry air, but deliquesce in moist air.

They are dehydrated at 120°.

H. Töpsöe, and P. A. von Bonsdorff prepared magnesium bromoplatinate, MgPtBr₆.12H₂O, by cooling a hot soln., or by spontaneously evaporating a soln. of magnesium bromide and hydrobromoplatinic acid. The dark scarlet-red crystals are, according to H. Töpsöe, and H. Töpsöe and C. Christiansen, trigonal with the axial ratio a:c=1:0.6974, and $\alpha=106^{\circ}$ 54′; the optical character is negative; the sp. gr. is 2.802, and the mol. vol. 327·4. The crystals are fairly stable in air; but over calcium chloride they lose 6 mols. of water, forming an orange-red powder. The weight remains constant up to 120°. The remainder of the water is lost with decomposition at 180°. P. A. von Bonsdorff, and H. Töpsöe obtained zinc bromoplatinate, ZnPtBr₆.12H₂O, as in the case of the magnesium salt. The carmine red, deliquescent crystals were found by H. Töpsöe, and H. Töpsöe and H. Christiansen to be trigonal with the axial ratio a:c=1:0.6990, and $a=106^{\circ}$ 52′; the optical character is negative; the sp. gr. 2.877, and the mol. vol. 333·4.

C. J. Obermaier prepared thallous bromoplatinate, Tl₂PtBr₆, from a soln. of thallous bromide and hydrobromoplatinic acid. The salt is yellowish-red, and it is almost insoluble in water and in aq. hydrobromic acid. H. Töpsöe obtained lead bromoplatinate, PbPtBr₆, by evaporating a soln. of lead bromide and hydrobromoplatinic acid. The gum-like mass furnishes a yellowish-brown powder of sp. gr. 6-025, and mol. vol. 146-8. The salt suffers no change at 120°. It is readily

soluble in water.

S. M. Jörgensen obtained **chromic hexamminobromoplatinate**, $[Cr(NH_3)_6]_2$ - $(PtBr_6)_3.4H_2O$, as a scarlet precipitate, by inixing soln. of chromic hexamminobromide and sodium bromoplatinate. The quadratic, and eight-sided plates lose all their water when confined over sulphuric acid. He also obtained **chromic bromopentamminobromoplatinate**, $[Cr(NH_3)_5Br]PtBr_6$, by mixing soln. of the corresponding bromide, and sodium bromoplatinate. The dark orangered crystalline precipitate is sparingly soluble in water, and is decomposed by hydrobromic acid (1:1). C. Christiansen prepared **chromic aquopentamminobromoplatinate**, $[Cr(NH_3)_5(H_2O)]Br(PtBr_6)$, by the action of the corresponding bromide on sodium bromoplatinate. The dark red, six-sided, pyramidal crystals form chromic bromopentammine bromide when treated with hydrobromic acid.

H. Töpsöe prepared manganese bromoplatinate, MnPtBr₆.12H₂O, by slow cooling, or the spontaneous evaporation of the soln. obtained by saturating hydrobromoplatinic acid with manganese carbonate. The red crystals of the dodecahydrate are isomorphous with those of the magnesium salt, and they are trigonal with the axial ratio a:c=1:0.7025, and $a=106^{\circ}$ 45'; the sp. gr. is 2.759, and the mol. vol. 343.7. E. Herlinger gave 342.7 for the mol. vol. The crystals are fairly

stable in air, they effloresce over calcium chloride; lose 10½ mols. of water at 110° to 120°, and any further loss of water is attended by the decomposition of the salt. P. A. von Bonsdorff obtained the *hexahydrate* in dark red, six-sided prisms isomorphous with hexahydrated magnesium chloroplatinate. The crystals are stable

in dry air; deliquescent in moist air.

H. Töpsöe obtained cobalt bromoplatinate, CoPtBr₆.12H₂O, by evaporating over sulphuric acid the soln. obtained by saturating hydrobromoplatinic acid with cobalt carbonate. The carmine-red, deliquescent crystals are trigonal with the axial ratio a: c=1:0.6979, and $a=106^{\circ}$ 53'. H. Töpsöe and C. Christiansen said that the optical character is positive; and H. Töpsöe, that the sp. gr. is 2.762, and the mol. vol. 344.6. E. Herlinger gave 343.9 for the mol. vol. S. M. Jörgensen obtained cobaltic hexamminobromoplatinate, [Co(NH₃)₆]Br(PtBr₆).H₂O, by the action of the corresponding bromide on sodium bromoplatinate. The crimson-red crystals lose half a mol. of water at 100°. S. M. Jörgensen prepared cobaltic aquopentamminobromoplatinate, [Co(NH₃)₅(H₂O)]₂(PtBr₆)₃.4H₂O, by the action of sodium bromoplatinate on the chloride of the series. The cinnabar-red, quadratic or six-sided plates of the tetrahydrate are orange-yellow in transmitted light, and they lose 4 mols. of water at 100°; he also obtained the monohydrate of [Co(NH₃)₅(H₂O)]Br(PtBr₆), in dark red, six-sided prisms or pyramids, which do not lose water over sulphuric acid, but at 100°, 2 mols. of water are given off to form cobaltic bromopentamminobromoplatinate, [Co(NH₃)₅Br]PtBr₆. S. M. Jörgensen obtained this salt by the action of sodium bromoplatinate on the nitrate of the series. The reddish-brown crystals are soluble in water. He also obtained cobaltic dibromobisethylenediaminebromoplatinate, [Co en₂Br₂]₂PtBr₆, by the action of sodium bromoplatinate on the bromide of the series.

H. Töpsöe, and H. Töpsöe and C. Christiansen prepared nickel bromoplatinate, NiPtBr₆.6H₂O, by spontaneously evaporating the soln. obtained by saturating hydrobromoplatinic acid with nickel carbonate. The greenish-brown, deliquescent crystals are trigonal prisms with the axial ratio a: c=1:0.5136, and $a=112^{\circ}$ 16'. The optical character is positive; W. Biltz gave for the sp. gr. 3.715; and the mol. vol., 327.2. The crystals lose their water in a desiccator to form a yellow

powder.

P. T. Cleve prepared platinic hydroxybromotetramminobromide, $[Pt(NH_3)_4-(OH)Br]Br_2$, in yellow prisms, sparingly soluble in water, by the action of ammonium bromide on a hot soln. of the nitrate of the series. O. Calgren and P. T. Cleve prepared platinic dihydroxytetramminobromide, $[Pt(NH_3)_4(OH)_2]Br_2$, by the action of barium bromide on the corresponding sulphate. The evaporation of the filtered soln. furnishes colourless prisms, sparingly soluble in water. A mol of the salt in v litres of water at 20° was found by A. Werner to have the conductivity, μ :

\boldsymbol{v}	v .		125	250	500	1000	
μ			204.7	217.4	226.5	235.5	

A. Miolati and I. Bellucci stated that an aq. soln. of platinic bromide contains dihydroxytetrabromoplatinic acid, $H_2Pt(OH)_2Br_4$, and he inferred that a dibasic acid is present in this soln. from the electrometric titration of the soln. with aq. ammonia or sodium hydroxide, and from the electric conductivity, μ , of soln. with a mol of platinic bromide in v litres:

\boldsymbol{v}	v .		128	256	512	1024
ш			344.4	348.9	353.6	359.4

A. Miolati and I. Bellucci obtained lithium dihydroxytetrabromoplatinate, $\text{Li}_2\text{Pt}(OH)_2\text{Br}_4$, from a mixture of platinic bromide and lithium carbonate in warm water, and when the evolution of carbon dioxide ceased evaporating the liquid over sulphuric acid, in vacuo. The dark red, deliquescent mass obtained by adding alcohol to the syrup is very soluble in water. The liquid, obtained by adding 2 eq.

of sodium hydroxide in $0\cdot 1N$ -NaOH, has the mol. conductivity, μ , for soln. with a mol of sodium dihydroxytetrabromoplatinate, Na₂Pt(OH)₂Br₄, in v litres, at 25°:

v		32	64	128	256	512	1024
ш		105-3	$109 \cdot 2$	114.9	118.5	122.9	125.6

where μ_{1024} - μ_{32} =20·3 in accord with the value for the neutral salt of a dibasic Dark brown silver dihydroxytetrabromoplatinate, Ag₂Pt(OH)₂Br₄, is obtained by adding a small excess of silver nitrate to a soln. of platinic bromide, washing the precipitate with cold water, and drying it at 100°. Neither by the action of barium hydroxide nor carbonate on an aq. soln. of platinic bromide was it possible to prepare barium dihydroxytetrabromoplatinate, BaPt(OH)2Br4. A dark red precipitate of mercuric dihydroxytetrabromoplatinate, HgPt(OH)₂Br₄, is produced when mercuric acetate is added to an ag. soln. of platinic bromide. The silver, mercury, and thallous salts were also discussed by F. Reiff. The brown precipitate of thallous dihydroxytetrabromoplatinate, Tl₂Pt(OH)₂Br₄, is formed when thallous acetate is added to an aq. soln. of platinic bromide with lead acetate, dark brown lead dihydroxytetrabromoplatinate, PbPt(OH)2Br4, S. M. Jörgensen obtained chromic hydroxydecamminobromois precipitated. platinate, [Cr₂(OH)(NH₃)₁₀]₂Br₄(PtBr₆)3·4H₂O, in salmon-red, four-sided crystals, by the action of hydrobromoplatinic acid on the thiocyanatobromide. Tschugaeff prepared platinic bromopentamminobromide, [Pt(NH₃)₅Br]Br₃, in vellow prisms; and platinic chloropentamminobromide, [Pt(NH₃)₅Cl|Br₃, in pale vellow, sparingly soluble needles.

- Cleve obtained [Br(NH₃)₃Pt(NH₂)₂Pt(NH₃)₃Br|Cl₄, by the action of an excess of hydrochloric acid on the corresponding nitrate. The yellowish-white crystals can be dried over sulphuric acid or in vacuo. P. T. Cleve prepared platinic dichlorotetrammino-bromide, [Pt(NH₃)₄Cl₂]Br₂, by the action of ammonium bromide on the corresponding nitrate; and M. Raewsky, by the action of bromine on a boiling soln. of platinous tetramminobromide. The orange-yellow, crystalline powder is sparingly soluble in water; fuming hydrochloric acid converts it into [Pt(NH₃)₄ClBr]Cl₂; and silver nitrate precipitates silver chloride and bromide from the hot soln. Likewise platinic dibromotetramminochloride, [Pt(NH₃)₄Br₂]Cl₂, was produced by the action of ammonium chloride on the corresponding nitrate. The salts were studied by H. D. K. Drew and co-workers. P. T. Cleve obtained platinic chlorobromotetramminochloride, [Pt(NH₃)₄ClBr]Cl₂, by the action of an excess of fuming hydrochloric acid on the dichlorotetramminochromide, on the dibromotetramminochloride, or on the hydroxybromotetramminonitrate, and drying the vellow powder over sulphuric acid, or at 100°. L. A. Tschugaeff prepared yellow crystalline platinic amidobromotetramminobromide, [Pt(NH₃)4(NH₂)Br]Br₂; and platinic amidochlorotetramminobromide, [Pt(NH₃)₄(NH₂)Cl]Br₂.
- A. Werner described platinic dibromobispropylenediaminochloride, $[Pt\{(C_2H_6)(NH_2)_2\}_{Br_3}]Cl_2$; platinic dibromopropylenediaminediamminochloride, $[Pt(NH_9)_2(C_3H_6(NH_2)_2)Br_2]Cl_2$; S. G. Hedin, platinic dichlorodibromobispryldine, $[Pt((C_3H_6N)_2Cl_2Br_3)]$; C. Enebuske, platinic dichlorodibromobismethylsulphine, $[Pt\{(C_3H_6)_2S\}_2Cl_3Br_2]$; C. W. Blomstrand, and M. Weibull, platinic dichlorodibromobispropylsulphine, $[Pt\{(C_3H_7)_2S\}_2Cl_2Br_2]$; H. Löndahl, and M. Weibull, platinic dichlorodibromobisbutylsulphine, $[Pt\{(C_4H_9)_2S\}_2Cl_2Br_2]$; H. Löndahl, and M. Weibull, platinic dichlorodibromobisbutylsulphine, $[Pt\{(C_4H_9)_2S\}_2Cl_2Br_2]$, with iso- and secondary butyl; J. Petren, platinic dichlorodibromobisethylselenine, $[Pt\{(C_2H_8)_2S_2Cl_2Br_2]$, platinic dichlorodibromobisethylselenine, $[Pt\{(C_2H_8)_2S\}_2Cl_2Br_2]$, and platinic dichlorodibromochisethylphosphine, $[Pt\{(C_2H_5)_3S_2Cl_2Br_2]$; and A. Cahours and H. Gal, platinic dichlorodibromobisethylphosphine, $[Pt\{P(C_2H_5)_3\}_2Cl_2Br_2]$; and A. Rosenheim and W. Levy, platinic tetrabromobismethylphosphate, $[Pt\{O(C_2H_5)_3\}_2Cl_2Br_2]$; platinic tetrabromobisothylphosphate, $[PtC(C_2H_5)_3\}_2$; and platinic dibromodichloroethylphosphate, $[PtCl_2Br_2.PO(OC_2H_5)_3$.
- G. Gore reported a complex silver fluobromoplatinate, $nAgBr.PtF_4$, is formed when silver fluoride in an atm. of bromine is melted in a platinum crucible. L. Pitkin reported a series of **potassium chlorobromoplatinates**, $K_2PtCl_nBr_{6-n}$, to be

formed by crystallization from soln, with different proportions of the chloro- and bromoplatinates. L. Pitkin said that the products are not mixtures because a particular compound can be obtained by different modes of preparation, and solubility determinations give constant values. On the other hand, C. H. Herty found that the products change in composition with small changes in the ratio of the two salts in soln., and he accordingly inferred that the products are isomorphous mixtures or solid soln. R. Klement also obtained potassium tetrachlorodibromoplatinate, K₂PtCl₄Br₂, by the action of bromine on the chloroplatinate; he gave 3.826 for the sp. gr. at 25°/4° and 150.3 for the mol. vol. L. Pitkin reported potassium pentachlorobromoplatinate, K₂PtCl₅Br, to be obtained by crystallization from a warm soln. of 5 mols. of the chloroplatinate, and 1 mol. of the bromoplatinate; and potassium tetrachlorodibromoplatinate, K₂PtCl₄Br₂, from a soln. of 4 grms. of potassium bromide in the smallest possible quantity of water, up to 2 c.c. of conc. hydrochloric acid, and 0.5 grm, of platinic chloride. A. Miolati said that this product is also obtained by treating potassium chloroplatinite with bromine. The salt can be recrystallized from warm water; it furnishes orange-red, dichroic, cubic crystals. The electrical conductivity, λ , of a cold ag. soln. changes with time so that for half a mol of K₂PtCl₄Br₂ in 128 litres, the change with time, in minutes, is:

Time .		0	1	5	10	15	125	215	255
λ.		116.4	117.8	118.9	120.3	128.8	137.4	147-1	149.5

and the maximum value was attained in 22 hrs., and the results for a half mol of the salt in v litres are represented by λ_1 , whilst the values with a soln. of two-thirds an eq. of potassium chloroplatinate are represented by λ_2 .

v .	64	128	256	512	1024
λ_1 .	145-1	157-1	167.0	175.6	188-8
λ	139.0	144.9	153.0	$162 \cdot 1$	173.3

A. Miolati and I. Bellucci prepared silver tetranitritodibromoplatinate, $Ag_2Pt(NO_2)_4Br_2$. L. Pitkin also obtained potassium trichlorotribromoplatinate, $K_2PtCl_3Br_3$, from a soln. of 488 parts of one chloroplatinate and 755 parts of the bromoplatinate; L. Pigeon, and L. Pitkin obtained potassium dichlorotetrabromoplatinate, $K_2PtCl_2Br_4$, from a soln. of 1.4658 grms. of the chloroplatinate, and 4.5336 grms. of the bromoplatinate. L. Pitkin also reported potassium chloropentabromoplatinate, $K_2PtCl_2Br_5$, in ruby-red, octahedral crystals.

- S. M. Jörgensen described cobaltic chloropentamminobromoplatinate, [Co(NH₃)₅Cl]PtBr₆, in yellowish-brown, rectangular plates, obtained by the action of potassium bromoplatinate on the nitrate of the series; cobaltic bromopentamminochloroplatinate, [Co(NH₃)₅Br]PtCl₆, as a reddish-brown, crystalline precipitate, soluble in water, by the action of hydrochloroplatinic acid on the chloride of the series. A. Werner and A. Wolberg obtained cobaltic dibromotetramminochloroplatinate, [Co(NH₃)₄Br₂]PtCl₆, by the action of hydrochloroplatinic acid on the chloride or sulphate of the series. The yellowish-green scales are freely soluble in water. S. M. Jörgensen prepared cobaltic dibromobisethylenediaminechloroplatinate, [Co en₂Br₂]₂(PtCl₆).3H₂O, in pale green needles, obtained by the action of hydrochloroplatinic acid on the bromide of the series. It loses 3 mols. of water over sulphuric acid, or at 100°.
- P. T. Cleve prepared platinic hydroxychlorotetramminobromide, $[Pt(NH_3)_4-(OH)Cl]Br_2$, in pale yellow prisms, by the action of ammonium bromide on a soln. of the nitrate, and drying the product at 100° ; and likewise platinic hydroxybromotetramminochloride, $[Pt(NH_3)_4(OH)Br]Cl_2$, in straw-yellow, four-sided, rhombic prisms, by the action of ammonium chloride on a soln. of the nitrate, and drying the product over sulphuric acid. P. T. Cleve obtained platinic bromo-chlorotetramminochloride, $[Pt(NH_3)_4BrCl]Cl_2$, by the action of hydrochloric acid on the bromosulphatotetramminosulphate. G. Wallin prepared platinic

PLATINUM 383

dichlorodibromobisamidoacetate, $[Pt(NH_2,CH_2,COOH)_2Cl_2Br_2]$; and platinic dichlorodibromobisethylamidoacetate, $[Pt(NH_2,CH_2,COOC_2H_5)_2Cl_2Br_2]$; E. Pomey, platinic dichlorodibromobisethylphosphite, $[Pt\{P(OC_2H_5)_3\}_2Cl_2Br_2]$; P. Klason, platinic chlorodibromoethylmercaptidoethylsulphine, $[Pt\{(C_2H_5)_2S\}(C_2H_5S)Cl_3Br_2]$; J. Petren, platinic dichlorodibromoethylsulphinoethylselenine, $[Pt\{(C_2H_5)_2S\}(C_2H_5)_2S\}(C_2H_5)_2S\}(C_2H_5)_2S$; E. Pomey, platinic dichlorodibromoethylphosphite, $[Pt\{P(OC_2H_5)_3\}Cl_2Br_2]$; A. Rosenheim and W. Loewenstamm, platinic dichlorodibromoethylphosphate, $[Pt\{OP(OCH_3)_3\}Cl_2Br_2]$, and platinic dichlorodibromoethylphosphate, $[Pt\{OP(OC_2H_5)_3\}Cl_2Br_2]$.

P. T. Cleve prepared platinic trans-dibromodinitritodiammine, $[Pt(NH_3)_2-(NO_2)_2Br_2]$ and platinic cis-dibromodinitritodiammine; and J. Petren, platinic dibromodinitritoethylsulphineethylselenine, $[Pt\{(C_2H_5)_2S\}\{C_2H_5\}_2S\}\{(NO_2)_2Br_2]$.

REFERENCES.

¹ H. Alexander, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1887; Liebig's Ann., 246. 246, 1888; F. G. Angell, H. D. K. Drew and W. Wardlaw, Journ. Chem. Soc., 349, 1930; E. H. Archibald, Proc. Roy. Soc. Edin., 29, 721, 1909; Zeit. anorg. Chem., 66, 181, 1910; E. H. Archibald and W. A. Gale, Journ. Chem. Soc., 121, 2849, 1922; E. H. Archibald and J. W. Kern, Trans. Roy. Soc., Canada, (3), 11, 7, 1917; A. J. Balard, Ann. Chim. Phys., (2), 2020, 1939, 32. 362, 1826; E. Baudrimont, ib., (4), 2. 47, 1861; Compt. Rend., 55, 363, 1864; Recherches sur les chlorures et bromures de phosphore, Paris, 1864; F. Bauriedel, Untersuchungen über das Platin, Erlangen, 12, 1910; J. A. le Bel, Compt. Rend., 125. 351, 1897; E. Biilmann and A. C. Anderson, Ber., 36, 1566, 1903; W. Biltz, Zeit. anorg. Chem., 115. 241, 1921; C. W. Blomstrand, Journ. prakt. Chem., (2), 38, 357, 1888; C. H. D. Boedeker, Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen, Leipzig, 1860; O. B. Böggild, Ber., 36. 1568, 1903; P. A. von Bonsdorff, Pogg. Ann., 19. 343, 1830; 33. 61, 1834; R. Bunsen, Liebig's Ann., 37. 1, 1841; 42. 14, 1842; Taylor's Scient. Mem., 3. 281, 1843; A. Cahours and H. Gal, Compt. Rend., 70. 902, 1870; O. Calgren and P. T. Cleve, Oefvers. Akad. Förh., 47. 305, 18. Gai, Compt. Rena., 70. 902, 1870; O. Caigren and F. I. Cleve, Ogrees. Akad. Forn., 47. 305, 1890; Zeit. anorg. Chem., 1. 74, 1892; E. Carozzi, Gazz. Chim. Ital., 54. 556, 1924; C. Christiansen, Journ. prakt. Chem., (2), 23. 42, 1881; P. T. Cleve, Acta Univ. Upsala, 6, 5, 1866; Svensku Akad. Handl., 7, 6, 1868; 10. 9, 1872; E. G. Cox and G. H. Preston, Journ. Chem. Soc., 1889, 1933; E. G. Cox, H. Saenger and W. Wardlaw, ib., 2216, 1932; N. Demassieux and J. Heyrovsky, Bull. Soc. Chim., (4), 45, 30, 1929; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 988, 1932; H. D. K. Drew and H. J. Tress, ib., 1244, 1935; C. Encbuske, Journ. prakt. Chem., (2), 38, 365, 1888; Lunds Asskr., (2), 22, 37, 1886; F. Förster,
 Ber., 24, 3755, 1891; G. Gorc, Journ. Chem. Soc., 22, 368, 1869; Chem. News, 23, 13, 1871;
 A. A. Grinberg and B. V. Ptitsin, Ann. Inst. Platine, 9, 73, 1932; P. Groth, Chemische Krystallographie, Leipzig, 1. 493, 1906; A. Gutbier, Zeit. anorg. Chem., 81. 382, 1913; A. Gutbier and F. Bauriedel, Ber., 42. 4244, 1909; A. Gutbier, F. Bauriedel and C. J. Obermaier, ib., 43. 3228,
 1910; A. Gutbier, P. Haas and H. Gebhardt, Journ. prakt. Chem., (2), 79, 457, 1909; A. Gutbier, F. Heinrich and M. Blumer, Zeit. anorg. Chem., 81, 382, 1913; A. Gutbier, F. Krauss and L. von Müller, Sitzber. Phys. Med. Sizi, Erlangen, 45, 25, 1914; A. Gutbier and A. Rausch, Journ. prakt. Chem., (2), 88, 409, 1913; W. Halberstadt, Ber., 17, 2965, 1884; S. G. Hedin, Om Pyridens Platinbaser, Lund, 1886; Acta Univ. Lund, (2), 22. 3, 1887; E. Herlinger, Zeit. Krist., 62. 154, 1925; C. H. Herty, Journ. Amer. Chem. Soc., 18. 130, 1896; Ber., 29. 411, 1896; T. Hjortdahl, Univ. Program. Christiania, 1, 1881; Zeit. Kryst., 6, 463, 1886; F. M. Jäger, ib., 58. 172, 1923; K. A. Jensen, Zeit. anorg. Chem., 225, 97, 115, 1935; 229, 225, 1936; S. M. Jörgensen, Journ. prakt. Chem., (2), 18. 228, 1878; (2), 19. 60, 1879; (2), 25. 88, 334, 1882; (2), 33. 531, 1886; Zeit. anorg. Chem., 48. 380, 1906; A. Johnsen, Neues Jahrb. Min., i, 97, 1907; M. Katayama, Zeit. phys. Chem., 61. 566, 1908; P. Klason, Ber., 28. 1498, 1895; R. Klement, Zeit. anorg. Chem., 164. 195, 1927; A. R. Klien, Ueber die Bindefestigkeit der negativen Reste in den Kobalt. Chrom- und Platinammoniaken, Zürich, 1899; N. S. Kurnakoff, Journ. prakt. Chem., (2), 50. Chrom- und Platinammoniaken, Zurich, 1899; N. S. Kurnakon, Journ. prakt. Chem., (2), 50. 488, 1894; Journ. Russ. Phys. Chem. Soc., 29, 706, 1897; 31, 688, 1899; Zeit. anorg. Chem., 17, 214, 1898; M. Lesbre and E. Gardner, Congr. Soc. Savantes, 68, 104, 1933; H. Löndahl, Journ. prakt. Chem., (2), 38, 515, 1888; Lunds Arsskr., (2), 24, 4, 1888; R. Maly and F. Hinteregger, Monatsh., 3, 89, 1882; W. Manchot and G. Lehmann, Ber., 63, B, 1221, 1930; F. G. Mann, Journ. Chem. Soc., 2681, 1926; 466, 1934; M. Mathieu, Compt. Rend., 188, 1611, 1930; G. Milor, Campt. Part., 1931, 1931, 1897. V. Mayora and H. Tüblin Bar., 13, 404, 1890. 1929; G. Méker, Compt. Rend., 125. 1031, 1897; V. Meyer and H. Züblin, Ber., 13. 404, 1880; A. Miolati, Atti Accad. Lincei, (5), 5. ii, 148, 1896; Zeit. anorg. Chem., 14. 243, 1897; A. Miolati A. Molati, Att Accad. Lincet, (6), 6. 11, 146, 1886; Lett. along. Chem., 14. 243, 1897; A. Milland I. Bellucci, Atti Accad. Lincet, (5), 9. ii, 140, 1900; Gazz. Chim. Ital., 30. ii, 580, 1900; Zeit. anorg. Chem., 26. 222, 1901; L. von Müller, Zur Kenntnis zur Platinmetalle, Erlangen, 20, 1912; F. Mylius and F. Förster, Ber., 24. 2441, 1891; C. Nogareda, Anal. Fis. Quim., 32. 567, 1934; C. J. Obermaier, Ueber die Einwirkung von Kobalt auf Hydroxylammonium salze und zur Kenntnis von Platin und Gold, Erlangen, 1910; W. Peters, Zeit. anorg. Chem., 77. 174, 1912; J. Petren, Om platinaethylseleninföreningar, Lund, 1898; L. Pigeon, Ann. Chim. Phys., (7), 2, 484,

1894; Compt. Rend., 113. 476, 1891; Bull. Soc. Chim., (3), 7. 118, 1892; Recherches chimiques et calorimetriques sur quelques combinaisons haloïdes du platine, Paris, 1893; L. Pitkin, School Mines Quart., 1. 64, 1880; Chem. News, 41. 118, 1880; Journ. Amer. Chem. Soc., 1. 472, 1879; 2. 408, 1880; E. Pomey, Compt. Rend., 92. 794, 1881; Bull. Soc. Chim., (2), 85. 421, 1881; W. Pullinger, Journ. Chem. Soc., 59. 598, 1891; G. Quesneville, Monit. Scient., (3), 6. 660, 1876; M. Raewsky, Ann. Chim. Phys., (3), 22. 278, 1848; L. Ramberg, Platineföreningar af Fenylkarbylamin och Benzonitril, Lund, 1903; Ber., 40. 2586, 1907; C. F. Rammelsberg, Sitzber. Akad. Berlin, 326, 1841; Pogg. Ann., 55. 86, 1842; P. C. Ray and A. C. Ghosh, Zeit. anorg. Chem., 64. 187, 1909; P. C. Ray and N. N. Ghosh, ib., 215. 201, 1933; P. C. Ray and K. C. B. Ray, ib., 178. 329, 1929; F. Reiff, ib., 208. 321, 1932; H. Reihlen and E. Flohr, Ber., 67. B, 2010, 1934; J. Reiset, Ann. Chim. Phys., (3), 11. 426, 1844; A. Ries, Zeit. Krist., 36. 332, 1902; 49. 522, 1911; A. Rosenheim and W. Löven, Zeit. anorg. Chem., 48. 45, 1905; A. Rosenheim and W. Löwenstamm, ib., 37. 400, 1903; C. Rudelius, Lunds Asskr., (2), 22. 4, 19, 1887; H. I. Schlesinger and R. E. Palmateer, Journ. Amer. Chem. Soc., 52. 4316, 1930; H. I. Schlesinger and M. W. Tapley, ib., 46. 276, 1924; P. Schützenberger, Compt. Rend., 70. 1414, 1870; P. Schützenberger and C. Fontaine, Bull. Soc. Chim., (2), 17. 493, 1872; (2), 18. 154, 1872; A. P. Smirnoff, Helvetica Chim. Acta, 3. 177, 1920; J. Thomsen, Journ. prakt. Chem., (2), 15. 453, 1877; H. Töpsöe, Arch. Sciences Genève, (2), 35. 58, 1868; (2), 45. 223, 1812; Danske Selsk. Förh., 2. 123, 1868; 1, 1882; Sitzber. Akad. Wien, 73. 99, 1876; H. Töpsöe and C. Christiansen, Danske Selsk. Skrift, (5), 9. 9, 1873; Ann. Chim. Phys., (6), 11, 1874; L. A. Tschugaeff, Ann. Inst. Platine, 4. 37, 1926; Zeit. anorg. Chem., 46. 154, 1905; 137. 1, 401, 1924; Journ. Chem. Soc., 107. 1247, 1915; L. A. Tschugaeff and D. Fränkel, Compt. Rend., 154. 35, 1912

§ 25. Platinous Iodide

G. van Praagh and E. K. Rideal ¹ assumed that platinum subiodide, or platinum monoiodide, PtI, is formed when iodine attacks platinum at a high temp.—vide supra, the action of iodine on platinum. J. L. Lassaigne prepared platinous iodide, or platinum diiodide, PtI₂, by warming platinous chloride with an aq. soln. of potassium iodide for 15 minutes, and drying the washed product. G. Clementi found it difficult to prepare this salt. H. Töpsöe added that if the digestion is too short, the metathesis is incomplete, and if too long, some platinous iodide is converted into platinum and platinic iodide. W. Peters recommended treating platinous iodide with hydriodic acid of sp. gr. 1.96, and drying the product at 100°; and L. Ramberg, dissolving a mol. of potassium chloroplatinite in about 5 times its weight of boiling water, and adding 2 mols. of potassium iodide in a (1:4)-soln., warming the mixture twice on a water-bath for a short time, allowing the soln. to stand over night, washing the product with water, and drying at 90°.

The soft black powder, said J. L. Lassaigne, sticks to the fingers like lamp-black; it is tasteless, odourless, and stable in air. R. Klement gave 6.403 for the sp. gr. at 25°/4°, and 70·1 for the mol. vol. When heated to the b.p. of mercury, it gives off iodine, and leaves spongy platinum behind. Water, and cold hydrochloric acid have no action on the salt; cold, aq. hydriodic acid, of sp. gr. 1.038, acts on it forming platinum and platinic iodide which passes into soln.; a hot, aq. soln. of potassium iodide acts similarly, but the greater part of the platinous iodide remains undecomposed. Conc. sulphuric and nitric acids have no action on the salt. When digested with aq. ammonia, a dark yellowish-green powder is formed, which, when heated, gives off water, ammonium iodide, and ammonia. W. Peters said that the salt absorbs dry ammonia—vide infra. J. L. Lassaigne found that alcohol has no action on platinous iodide, when the salt is digested with potash lye or soda lye, part of the platinous oxide which is formed separates as a black powder, and part passes into soln.

W. Peters obtained orange-red platinous hexamminoiodide, PtI2.6NH3, by

the action of dry ammonia on platinous iodide; and this compound, in vacuo, furnishes platinous tetramminoiodide, $[Pt(NH_3)_4]I_2$. L. Ramberg prepared the tetramminoiodide by heating a mol of platinous iodide with dil. aq. ammonia (1000 c.c. water and 500 c.c. ammonia of sp. gr. 0-91); and J. Reiset, by the action of a soln, of barium iodide on a boiling soln, of the tetramminosulphate, and also by the action of ammonia on trans-diiodo-diammine. The dry salt does not change at 120°. The tabular crystals change their colour when exposed to air. When the aq. soln, is boiled, it forms the diiododiammine. A. A. Grinberg and B. V. Ptitsin studied the thermal decomposition of the salt. The salt forms with mercuric iodide platinous tetramminoiodomercurate, $[Pt(NH_3)_4]HgI_3)_2$. L. A. Tschugaeff and M. S. Grigorieff prepared platinous dihydrazinodiamminoiodide, $[Pt(NH_3)_2-(N_2H_4)_2]I_2$. A. Schleicher and co-workers prepared the cis- and trans-forms of platinous bispyridinodiamminoiodide, $[Pt(NH_3)_2py_2]I_2$; and platinous bispethylenediaminoiodide, $[Pten_2]I_2$, in its cis- and trans-forms; and studied its passage to $[Pt_2]I_2$ and $[Pt_2]I_1 - 5H_2O$ by the action of acids.

P. T. Cleve, and A. Schleicher and co-workers prepared platinous cis-diiododiammine, [Pt(NH₃)₂I₂], by mixing cone, soln, of potassium iodide and the cisnitrate, and drying the product at 100°. The yellow crystals are sparingly soluble in boiling water; iodine forms a polyiodide; hot aqua regia forms the tetrachlorodiammine; and ammonia, the diiodotetrammine. J. Reiset, and A. Schleicher and co-workers prepared platinous trans-diiododiammine by boiling an aq. soln, of the tetramminoiodide; and L. Ramberg, by passing steam through a soln, of the tetramminoiodide. L. A. Tschugaeff prepared the diiododiammine by boiling a soln, of platinous iodide with aq. ammonia; and F. G. Mann, piatinous iododiaminodiethylaminoiodide, [1Pt(H₂N,C₂H₄)₂NH]I. The orange yellow crystalline powder is soluble in aq. ammonia forming, according to J. Reiset, the tetramminoiodide. According to P. T. Cleve, the trans-salt reacts with iodine to form tetraiododiammine; and with hot aqua regia, to form trans-tetrachlorodiammine. E. Koefoed prepared a chocolate-brown variety.

S. M. Jörgensen described platinous diiodobismethylamine, [Pt(CH₃NH₂)₂I₂]. L. A. Tschugaeff prepared this salt by boiling a solm of platinous iodicle with methylamine; and F. G. Mann, platinous bis-β-methyltrimethylenediaminoiodide, [Pt{CH(CH₃)(CH₂.NH₂)₂]₁]₂; and platinous bis-β-methyltrimethylenediaminoiodide, [Pt{CH(CH₃)(CH₂.NH₂)₂]₁]₂. H. Reihlen discussed platinous diiodo-βββ'-triaminotriethylamine, [PtN(C₂H₁.NH₂)₂]₂]₂, prepared by F. G. Mann. F. Mylius and F. Förster described trimethylaminocarbonyltriiodoplatinite, [Pt(CO)₁₃]H{(CH₃)₃N}, or (CH₃)₃N.H.1.P1₂,CO; P. T. Cleve, platinous bisdimethylaminediaminoiodide, [Pt(NH₃)₂(C₂H₃NH₂)₂]₁; P. T. Cleve, platinous diiodoethylamineammine, [Pt(NH₃)(C₂H₃NH₂)₁]₃, and platinous diiodoanilineammine. [Pt(NH₃)(C₃H₃NH₂)₂]₁; and A. Schleicher and co-workers, cis- and trans-forms of platinous diiodobis-aniline, [Pt(C₃H₃NH₂)₂]₂; S. M. Jörgensen, platinous diiodobispropylamine, [Pt(C₃H₃NH₂)₂]₂; A. Werner, platinous bispropylenediamineiodide, [Pt{C₃H₆(NH₂)₂}₂]₂; S. G. Hedin, platinous diiodobispyridine, [Pt(C₅H₅N)₂I₂], and platinous quaterpyridineiodide, [Pt(C₅H₅N)₄]₁; F. Mylius and F. Förster, platinous diiodocarbonyl, [Pt(CO]I₂]; L. A. Tschugaeff, and co-workers, platinous dihydrazinoctomethylearbylaminoiodide, [(C₂H₅NC)₄Pt(N₂H₃)₂Pt(C₃H₅NC)₄]₁, M. Weibull, and C. Enebuske described platinous diiodobismethylsulphine, [Pt((CH₃)₂S]₂I₃]; M. Weibull, A. Hamberg, K. A. Hofmann and W. O. Rabe, P. Klason, and C. W. Blomstrand, nlatinous, diiodobisatethylsulphine, [Pt((CH₃)₂S]₂I₃]; Pt. C. Budelius, and M. Weibull

M. Weibull, and C. Enebuske described platinous dinouonisment suspline, $[Pt((C_1 l_2)_2 S_1 z_1]_1]$; M. Weibull, A. Hamberg, K. A. Hofmann and W. O. Rabe, P. Klason, and C. W. Blomstrand, platinous diodobisethylsulphine, $[Pt((C_2 H_5)_2 S_1 z_1]_1]$; C. Rudelius, and M. Weibull, platinous diiodobispropylsulphine, $[Pt((C_3 H_7)_2 S_1 z_1]_1]_1$; With normal and iso-propyl, and platinous diiodobispropylsulphineiodoplatinite, $[Pt((C_3 H_7)_2 S_1 z_1]_1]_1$; K. A. Hofmann and W. O. Rabe, platinous diiodobismethylethylsulphine, $[Pt((C_1 H_3)(C_2 H_5)_2 S_1 z_1]_1]_1$; in its cis- and trans-forms; M. Weibull, and C. Rudelius, platinous diiodoethylsulphinepropylsulphine, $[Pt((C_2 H_5)_2 S_1 z_1]_1]_1$, with normal and iso-propyl; H. Löndahl, platinous diiodobisbutylsulphine, $[Pt((C_4 H_5)_2 S_1 z_1)_1]_1$, with normal, iso-, and secondary butyl, and platinous diiodoethylsulphinebutylsulphine, $[Pt((C_4 H_5)_2 S_1 z_1)_1]_1$; C. W. Blomstrand and C. Rudelius, platinous diiodobis-l-amylsulphine, $[Pt((C_6 H_1)_1 S_1 z_1]_1]_1$; Platinous diiodoethylenesulphine, $[Pt((C_6 H_5 C_1 z_1)_2 I_1]_2]_1$, platinous diiodoethylenesulphine, $[Pt((C_2 H_4)_2 S_2 I_1]_2]_1$, and platinous iodoethylenesulphineamminoiodide, $[Pt(NH_3)((C_2 H_4)_2 S_2 I_1]_1]_1$; S. Tyden, platinous diiodobis-thioglycolate, $[Pt(S(CH_2 COOK)_2)_1 I_2]_1$; P. Klason, platinous iodoethylmeraptidodiammine, Vol. XVI.

[Pt(NH₅)₂(SC₂H₅)I]; L. Ramberg prepared platinous diiodobisbenzonitrile, [Pt(C₆H₅. CN)₂I₂], and he prepared platinous diiodobisphenylcarbylamine, [Pt(C₆H₅,NC)₂I₂,] and platinous triiodophenylcarbylamine, $[Pt(C_6H_5NC)l_3]$; G. Wallin, platinous diiodobisamidoacetae, $[Pt(NH_2.COOH)_2l_2]$; P. Klason, platinous iodomercaptanodiammine, $[Pt(NH_3)-(CH_2.COOH)_2l_2]$; P. Klason, platinous iodomercaptanodiametrapy iodo (C_2H_5S) []; L. A. Tschugaeff and co-workers prepared platinous methylcarbylaminehydrazino- $(C_2H_58)1$; L. A. Tschugaeff and co-workers prepared platinous methylcarbylaminenydrazinoiodide, $\{(C_1H_5NC)_2Pt(N_2H_3)_2Pt(C_1H_5NC)_2]1_2$; and platinous ethylcarbylaminohydrazinoiodide, $\{(C_2H_5NC)_2Pt(N_2H_3)_2Pt(C_2H_5NC)_2]1_2$. J. Petren prepared platinous diiodobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2]_1$, platinous diiodopyridineethylselenine, $[Pt(C_3H_5)N\{(C_2H_5)_2Se\}]_2]$, and platinous diiodoethylsulphineethylselenine, $[Pt\{(C_2H_5)_2S\}]\{(C_2H_5)_2Se\}]_1$; H. Löndahl, platinous bisethylenesulphineiodide, $[Pt\{(C_2H_4)_2S_2\}]I_2$; and R. Bunsen, and K. A. Jensen and E. Frederiksen, platinous diiodocacodyloxide, $[Pt\{As_2(CH_3)_4O\}I_2]$. K. A. Jensen studied the dipole moments of some iodosulphines, and of the phosphines; he also prepared the cisand trans- platinous diiodobistriethylphosphines, $[Pt\{(C_2H_5)_3P\}_2I_2]$; and trans- platinous diiodo-histriethylphosphines, $[Pt\{(C_2H_5)_3P\}_2I_2]$; and trans- platinous diiodo-histriethylphosphines, $[Pt\{(C_2H_5)_3P\}_2I_2]$; and trans- platinous diiodo-histriethylphosphines, and of the phosphines, and trans- platinous diiodo-histriethylphosphines, bistriethylstibine, $[Pt\{(C_2H_5)_3Sb\}_2I_2]$.

R. Klement prepared potassium iodoplatinite, K₂PtI₄, analogous with the chloroplatinite and gave 172.5 for the mol. vol.

According to R. J. Kane, when a dil. aq. soln. of platinic chloride is mixed with an excess of potassium iodide, and the precipitate washed free from potassium chloroplatinate by hot water, and then dried, there remains black platinosic iodide, or platinum triiodide, PtI_3 . G. Clementi used warm soln. R. Klement gave 7.414 for the sp. gr. at $25^{\circ}/4^{\circ}$ and 77.7 for the mol. vol. R. J. Kane observed that the tiiodide gives off iodine at 121°, and all the iodine is expelled below redness. Cold water has no action on the salt, but boiling water extracts some iodine. Cold hydrochloric, sulphuric, and nitric acid have no action on the salt. An aq. soln. of potassium iodide and hydriodic acid dissolve the salt to form a wine-red soln. Aq. ammonia colours the salt green, brown, and red. Alcohol, and ether have no action on the salt. Potash lye dissolves the salt forming a yellowish soln. which becomes pale red when neutralized with nitric acid, and colourless with an excess of acid. The alleged triiodide is thought to be a mixture of platinous and platinic iodides formed by the partial decomposition of the platinic iodide by the hot water.

P. T. Cleve reported a number of what may be platinosic iodoammines. For instance, platinosic enneaiodoctammine, 7PtI₂.PtI₄.16NH₃, or Pt₄(NH₂)₈I₉, was obtained as a black powder by the action of soda lye on platinosic pentalodotetrammine, Pt₂(NH₃)₄I₅, or 3PtI₂.PtI₄.8NH₃, which was obtained by the action of hydriodic acid on platinosic hexalodotetrammine, Pt₂NH₃)₄I₆, or Pt₂I₆.4NH₃, obtained by boiling platinic tetraiododiammine with hydriodic acid. G. T. Morgan and F. H. Burstall prepared complexes with dipyridyl. with nydriodic acid. G. T. Morgan and F. H. Burstall prepared complexes with dipyridyl. The platinous chloroidides are represented by some complex salts. O. Carlgren and P. T. Cleve prepared platinous dichloroidimminochloroidide, $|Pt(NH_a)_2Cl_2||Cl_1$. H. Löndahl obtained platinous iodoethylenesulphineamminoidochloroplatinite, $|Pt(NH_a)_1(C_2H_d)_2S_2||I||$. PtCl₂; C. Rudelius platinous cis-chloroidobispropylsulphine; $|Pt((C_3H_7)_2S||Cl||)$; and J. Petren, platinous chloroidobisethylselenine, $|Pt((C_2H_b)_2S_1||Cl||)$; and platinous chloroidoethylsulphine-ethylselenine, $|Pt((C_2H_b)_2S_1||Cl||)$; J. Petren also reported platinous bromoidobisethylselenine, $|Pt((C_2H_b)_2S_1||Cl||)$; J. Petren also reported platinous bromoidobisethylselenine, $|Pt((C_2H_b)_2S_1||Cl||)$.

REFERENCES.

 W. Biltz, Zeit. anorg. Chem., 115. 241, 1921; C. W. Blomstrand, Journ. prakt. Chem.,
 (2), 38. 357, 1888; C. W. Blomstrand and C. Rudelius, ib., (2), 38. 525, 1888; R. Bunsen,
 Liebig's Ann., 37. 1, 1841; 42. 14, 1842; Taylor's Scient. Mem., 3. 281, 1843; O. Carlgren and P. T. Cleve, Zeit. anorg. Chem., 1. 65, 1892; G. Clementi, Nuovo Cimento, (2), 2. 192, 1855; P. T. Cleve, Svenska Akad. Handl., 10. 9, 1872; Oefvers. Akad. Förh., 27. 8, 1870; C. Enebuske, Lunds Arsskr., (2), 22. 2, 1887; A. A. Grinberg and B. V. Ptitsin, Ann. Inst. Platine, 9, 73, 1932; A. Hamberg, Oefvers. Akad. Förh., 52, 312, 1895; S. G. Hedin, Om Pyridinens Platinabuser, Lund, 1886; Lunds Arsskr., (2), 22. 3, 1887; K. A. Hofmann and W. O. Rabe, Zeit. anorg. Chem., 14, 294, 1897; K. A. Jensen, Zeit. anorg. Chem., 225, 97, 1935; 229, 225, 1936; K. A. Jensen and E. Frederiksen, ib., 230, 34, 1936; S. M. Jörgensen, Journ. prakt. Chem., (2). 33. 535, 1886; R. J. Kane, Dublin Journ. Med. Chem., 1. 304, 1832; Phil. Mag., (3), 2. 197, 1933; P. Klason, Ber., 28. 1499, 1895; Bihang. Svenska Akad. Handl., (2), 28. 6, 1902; R. Klement, Zeit. anorg. Chem., 164. 195, 1927; E. Koefood, Studier i Platosoforbindelserne, Kopenhagen, 1888; Danske Selsk. Skrift, (6), 4. 400, 1888; N. S. Kurnakoff, Journ. prakt. Chem., (2), 50. 485, 1895; J. L. Lassaigne, Journ. Chim. Méd., (1), 8. 708, 1832; Ann. Chim. Phys., (2), 51. 113, 1832; H. Löndahl, Lunds Arsskr., (2), 27. 3, 1891; F. G. Mann, Journ. Chem. Soc., 890, 1261, 1928; 451, 1929; 466, 1934; F. G. Mann and W. J. Pope, Proc. Roy. Soc., 109. A, 444, 1925; G. T. Morgan and F. H. Burstall, Journ. Chem. Soc., 965, 1934; F. Mylius and F. Förster,

Ber., 24. 2438, 1891; W. Peters, Zeit. anorg. Chem., 77. 167, 1912; J. Petren, Om Platinaethylseleninforeningar, Lund, 1898; G. van Praagh and E. K. Rideal, Proc. Roy. Soc., 134. A, 385, 1931; L. Ramberg, Platineföreningar af Fenylkarbylamin och Benzonitril, Lund, 1903; Ber., 40. 2585, 1907; Zeit. anorg. Chem., 83. 36, 1913; H. Reihlen, Liebig's Ann., 448. 312, 1926; J. Reiset, Ann. Chim. Phys., (3), 11. 417, 1844; Compt. Rend., 11. 711, 1840; 18. 1100, 1844; C. Rudelius, Lunds Arsskr., (2), 22. 19, 1887; A. Schleicher, H. Henkel and L. Spies, Journ. prakt. Chem., (2), 105. 31, 1922; A. Schleicher and W. Schmidt, Zeit. anorg. Chem., 142. 367, 1925; H. Töpsöe, Danske Selsk. Forh., 74, 1869; L. A. Tschugaeff, Bull. Soc. Chim., (4), 25. 234, 1919; L. A. Tschugaeff and M. S. Grigorieff, Ber., 47. 2451, 1914; Journ. Russ. Phys. Chem. Soc., 51. 193, 1920; L. A. Tschugaeff, M. S. Grigorieff and A. Posnjak. Zeit. anorg. Chem., 148. 37, 1925; L. A. Tschugaeff, M. S. Skanavi-Grigorieva and A. Posnjak, Ann. Inst. Platine, 4. 299, 1926; S. Tyden, Di-tiodiglykolatoplatosyra jämte nägra salter och Additions-Derivut, Lund, 1911; G. Wallin, Oefvers. Akad. Förh., 49. 21, 32, 1892; M. Weibull, Zeit. Kryst., 14. 116, 1888; A. Werner, Zeit. anorg. Chem., 21. 235, 1899; L. Wöhler and F. Müller, ib., 149. 377, 1925.

§ 26. Platinic Iodide

L. Wöhler and F. Müller ¹ obtained **platinous iodide**, or **platinum diiodide**, PtI₂, by heating the triiodide above 400° in a sealed tube. H. D. K. Drew and co-workers prepared **platinous diamminodiiodide**, [Pt(NH₃)₂I₂], by the action of an excess of an

aq. soln. of an alkali halide on a soln. of the corresponding chloride; or by the action of hydriodic acid on the base. The α -salt is a pale yellow crystalline powder; and the β -salt forms orange-yellow, prismatic needles, and gives a reddish-brown colouration with phenoxtellurine disulphate. L. Wöhler and

Fig. 91.—Range of Stability of the Platinum Iodides.

- F. Müller obtained **platinum triiodide**, PtI₃, by heating the tetraiodide at 350° to 400° in a sealed tube. Their observations on the range of stability of the iodides are summarized in Fig. 91.
- J. L. Lassaigne found that when spongy platinum is heated with iodine at ordinary press., union is incomplete. No platinic iodide, or platinum tetraiodide. PtI₄, is formed when spongy platinum is heated with iodine and water, and with a mixture of hydriodic and nitric acids, but G. Clementi obtained platinic iodide by heating finely-divided platinum with iodine in a scaled glass tube below the temp. of dissociation of the tetraiodide. L. Wöhler and F. Müller obtained the anhydrous tetraiodide by heating platinum with iodine in a sealed tube at 240° to 300°; the triiodide is formed at 350° to 400°; and the diiodide at a higher temp. W. Pullinger prepared platinic iodide by dissolving platinum in a soln, of iodine in hydriodic acid, evaporating the liquid to dryness, heating the residue in an air-bath at 180°, and washing the product with water. G. Clementi obtained the iodide by the action of hydriodic acid on hydrated platinic oxide; J. L. Lassaigne, by boiling a mixture of dil. soln. of platinic chloride, free from acid, and of potassium iodide, and washing and drying the precipitate. L. Pigeon employed 4 mols. of potassium iodide to 1 mol. of platinic chloride, or adding the theoretical proportion of potassium iodide soln, to hydrochloroplatinic acid. H. Töpsöe recommended this process. I. Bellucci warmed on the water-bath a mixture of a soln. of hydrochloroplatinic acid or magnesium chloroplatinate and a small excess of hydriodic acid. The precipitate was washed by decantation with boiling water, collected on a filterpaper, and dried at 100°.
- J. L. Lassaigne said that the black precipitate is flocculent and amorphous, or crystalline; it has no smell or taste. R. Klement gave 6.064 for the sp. gr. at 25°/4°, and 115.9 for the mol. vol. L. Pigeon observed that platinic iodide gives off iodine at ordinary temp.—1.4 per cent. loss was observed in 24 hrs.; H. Töpsöe said that very little iodine is lost at 100°; and J. L. Lassaigne found that iodine vapour is developed at 130°, and platinum finally remains. W. Pullinger found that the iodine is not completely removed from platinic iodide by molten sodium carbonate. L. Pigeon gave for the heat of formation with gaseous iodine, (Pt, 2I₂) =39.0 Cals., and with solid iodine 17.4 Cals. F. Jez found the thermionic emission

of platinum in iodine vapour is greater than in air due, it is suggested, to the formation of a film of platinic iodide which is responsible for the emission. According to E. H. Archibald and W. A. Patrick, the mol. electrical conductivity in alcohol, in mhos at 25° increases with dilution and attains a constant value at dilutions of about 600 litres. The conductivity increases rapidly with time as indicated in Fig. 92, but constancy is attained in about 25 hrs. at 25°. The increase is attributed

Fig. 92.—The Electrical Conductivity of Solutions of Platinic Iodide in Ethyl Alcohol.

to a reaction involving the formation of a substance having a large conductivity in the alcohol. With methyl alcohol soln, the conductivity is rather greater than it is in soln. with ethyl alcohol, but similar variations with time and concentration occur. J. L. Lassaigne observed that platinic iodide is insoluble in water, and is not decomposed by boiling with Chlorine-water forms hydrochloroplatinic acid, and may be chlorine iodide. Platinic iodide combines with other iodides to form crystalline iodoplatinates; H. Töpsöe found that the salt is soluble in soln. of alkali iodides, but not so readily in soln, of other iodides. W. Manchot and G. Lehmann observed that in carbon monoxide, the halogen is displaced at a lower temp, than it is in an indifferent gas, and no carbonyl iodide is formed. According to F. Field, the rose colour of a soln. of platinic and potassium iodides is

destroyed by soln. of urine, albumin, tannic acid, gallic acid, pyrogallic acid, potassium cyanide or thiocyanate, the liquid in which animal or vegetable substances have been boiled, and saliva; but not by urea, uric acid, starch, dextrin, cane-sugar, grapesugar, glycerol, gelatin, oxalic acid, tartaric acid, citric acid, acetic acid, carbon disulphide, and alcohol. H. Töpsöe noted that sulphurous acid converts the iodide into platinous sulphite. J. L. Lassaigne found that cold, conc. sulphuric acid does not act on the iodide, but when heated, iodine is evolved. R. J. Kane observed that ammonia converts the salt into the oxyiodide, PtOI₂.2NH₃.H₂O, and H. Töpsöe showed that an ammine is formed when platinic iodide is dissolved in aq. ammonia. I. Bellucci found that platinic iodide forms a green soln. with alcohol, and some of the iodide is decomposed; the salt dissolves in 95 per cent. alcohol without decomposition at ordinary temp., but in light the salt is slowly decomposed. A. Schleicher and W. Schmitz prepared platinous bisethylenediaminoiodide, [Pt en₂]I₂, and found that dil. sulphuric acid converts it into [(H₂O)—Pt(en)₂—(H₂O)₅I(H₂O)₅—Pt(en)₂—(H₂O)]I.5H₂O.

P. T. Cleve prepared platinic diiodotetramminoiodide, [Pt(NH₃)₄I₂]I₂, by the action of an excess of potassium iodide on the corresponding dichloro-nitrate; by the action of iodine on platinous tetramminoiodide; and by the action of potassium triiodide on platinous tetramminochloride. The black scales recall graphite, the salt also occurs in dark brown, translucent plates. The salt decomposes at 130° to 140°. A. R. Klien studied the action of water, acids, and alkaline soln. According to P. T. Cleve, the salt is soluble in water, particularly boiling water; mercury reduces it to platinous tetramminoiodide; silver nitrate slowly precipitates all the iodine from the aq. soln. and a boiling soln. of an ammonium salt partially converts it into platinic diiodohexammino-μ-diamineiodide, [I(NH₃)₃Pt(NH₂)₂Pt(NH₃)₃I]₄. The diiodotetramminoiodide also forms lemon-yellow needles of platinic diiodotetramminoiodomercurate, [Pt(NH₃)₄I₂](HgI₃)₂. P. T. Cleve prepared platinic transtetraiododiammine, [Pt(NH₃)₂I₄], by the action of tincture of iodine on platinous diiododiammine. The black, amorphous powder passes into the diiodohexammino-μ-diamineiodide when it is boiled with aq. ammonia; boiling, conc. potash lye

PLATINUM 389

colours the salt orange-yellow, but little or no ammonia is evolved; and acids vield a black product. P. T. Cleve obtained platinic diiodohexammino-μ-diimidoiodide, [I(NH₃)₃Pt(NH)₂Pt(NH₃)₃I]I₂.H₂O, by boiling platinic diiodotetramminoiodide with aq. ammonia. The chrome-yellow, rhombic plates furnish silver iodide when treated with silver nitrate; and nitric acid forms iodonitroxyltetramminonitrate. S. M. Jörgensen obtained platinic cis-tetraiododiammine, by the action of potassium iodide on the cis-tetrachlorodiammine. The crystals resemble those of iodine. P. T. Cleve reported platinic hexaiododiammine, [Pt(NH₃)₂I₄(I₂)], to be formed by the action of a hot tincture of iodine on the cis-tetraiodotetrammine. The black powder consists of hexagonal dark purple-red plates. Alkali lye colours the salt brown, then cinnabar-red, and when heated, ammonia is evolved and the colour becomes yellow. L. A. Tschugaeff and co-workers prepared platinic hydrazinocarbylaminoiodide.

W. J. Pope and S. J. Peachey described platinic iodotrimethylaminodiammine, [Pt(NH₃)₂- $(CH_3)_3NI]; F. G. Mann and W. J. Pope reported platinic dichloro-<math>\beta\beta'\beta''$ -triaminotriethylaminoiodide, $[PtN(C_2H_4,NH_2)_3Cl_2]I_2$. R. L. Datta, platinic bismethylaminehydroiodide, $2CH_3NH_2$.-H. $[PtI_4]$; platinic bisdimethylaminehydroiodide, $2(CH_3)_2NH.HI.PtI_4$; platinic bistrimethylaminehydroiodide, $2(CH_3)_3N.HI.PtI_4$; platinic bistertamethylaminehydroiodide, $2(CH_3)_4NI.PtI_4$; platinic bistertamethylaminehydroiodide, $2(C_2H_5)_4NI.PtI_4$; platinic bistertamethylaminehydroiodide, $2(C_2H_5)_4N.HI.PtI_4$; platinic bistertamorpylaminodide, $2(C_2H_5)_4N.I.PtI_4$; R. L. Dattamid T. Ghosh, platinic methylethylpropylphenylammoniumiodide, $2(C_4H_5)(C_4H_5)(C_4H_5)(C_4H_5)(C_5H_5)NT$. PtI₄. A. P. Smirnoff prepared platinic trispropylenediaminoiodide, $2(C_2H_5)(C_3H_$ iodide, |PtN(C2H4.NH2)3Cl2]I2. R. L. Datta, platinic bismethylaminehydroiodide, 2CH3NH2. platinous bispyridinediamminochloride in two forms according as the cis- or trans-platinous salt is employed. R. L. Datta prepared platinic bis- α -picolinehydrolodide, $2C_5H_7N.HI.PtI_4$; R. L. Datta and T. Ghosh, platinic bispiperidinehydrolodide, $2C_5H_{11}N.HI.PtI_4$; and platinic bisquinolinehydrolodide, $2C_9H_7N.HI.PtI_4$, with ordinary and iso-quinoline. G. Wallin reported platinic tetralodobisamidoacetate, $[Pt(NH_2CH_2COOH)_2I_4]$; and platinic dilodobis-

reported platinic tetralodobisamidoacetate, $[Pt(NH_2CH_2COOH)_2I_4]$; and platinic dilodobis-glycine, $[Pt(NH_2CH_2COO)_2I_2]$.

C. Enebuske described platinic tetralodobismethylsulphine, $[Pt\{(CH_3)_2S\}_2I_4]$; R. L. Datta, platinic bistrimethylsulphoniumiodide, $2(CH_3)_3SI.PtI_4$; C. W. Bornstrand, and C. Rudelius, platinic tetralodobisethylsulphine, $[Pt\{(C_2H_5)_2S\}_2I_4]$; R. L. Datta, platinic bistriethylsulphoniumiodide, $2(C_2H_5)_3SI.PtI_4$; C. Rudelius, and M. Weibull, platinic tetralodobis-i-propylsulphine, $[Pt\{(C_3H_7)_2S\}_2I_4]$; H. Löndahl, platinic tetralodobis-i-butylsulphinelodide, $[Pt\{(C_4H_7)_2S\}_2I_4]$; J. Petren, platinic tetralodobis-thylselenine, $[Pt\{(C_2H_5)_2Se\}_2I_4]$; and platinic tetralodoethylselenine, $[Pt\{(C_2H_7)_2Se\}_2I_4]$; and

platinic tetralodoethylselenine, $\{Pt\{(C_2H_5)_2\}\{(C_2H_5)_2\}e\}I_4\}$.

According to J. L. Lassaigne, cold, dil. hydriodic acid in contact with platinic iodide for, say, 24 hrs., forms a red soln. which when evaporated in vacuo, or over lime yields crystals of hydriodoplatinic acid, H₂PtI₆.9H₂O. J. L. Lassaigne thought that the crystals were anhydrous, but H. Töpsöe showed that the solid so formed is the enneahydrate. J. L. Lassaigne said that the reddish black, deliquescent acicular crystals are odourless, and have an astringent, somewhat acidic, taste. H. Töpsöe showed that the six-sided plates are monoclinic, and show twinning. The faces of the crystals lose their metallic lustre when exposed to air, and acquire a black film of platinic iodide owing to the loss of hydrogen iodide. J. L. Lassaigne found that in a dry vacuum, the crystals evolve a little hydrogen iodide, and more so at 100° ; at a higher temp., hydrogen iodide and iodine are evolved and platinum remains. The compound is freely soluble in water, and when the wine-red soln is diluted with a large proportion of water, platinic iodide is deposited, and more quickly if the aq. soln. be exposed to sunlight, or, according to H. Töpsöe, if heated. J. L. Lassaigne said that chlorine decomposes the aq. soln. with the deposition of iodine, and platinic iodide; and alkali lye forms alkali iodides. Hydriodoplatinic acid forms a series of salts, the iodoplatinates. H. I. Schlesinger and R. E. Palmateer discussed the relative stability of the halogenoplatinates.

- J. L. Lassaigne prepared ammonium iodoplatinate, $(NH_4)_2Ptl_6$, by digesting at a gentle heat a soln. of platinic iodide and ammonium iodide, and evaporating the red liquid. H. Töpsöe recommended evaporating the soln. over calcium oxide. J. L. Lassaigne's analysis corresponds with $(NH_4)_2Ptl_5$, but the analyses of H. Töpsöe, and R. L. Datta correspond with $(NH_4)_2Ptl_6$. R. L. Datta prepared the salt by adding an excess of a soln. of ammonium iodide, gradually, with agitation, to a 10 per cent. soln. of hydrochloroplatinic acid, washing the product with a little water and dil. alcohol, and drying in a desiccator. J. L. Lassaigne observed that the black, four-sided plates are stable in air; H. Töpsöe said that the octahedral crystals belong to the cubic system, and that the habit is not changed if an excess of ammonium iodide be present in the mother-liquid. The sp. gr. is 4-61, and the mol. vol. 216-0. R. L. Datta observed that when the salt is heated, iodine is evolved, then white clouds of ammonium iodide, and finally platinum remains. The salt forms a dark-red soln. with water, and the aq. soln. gradually deposits platinic iodide. The salt is insoluble in a sat. soln. of ammonium iodide; and in alcohol.
- J. L. Lassaigne prepared potassium iodoplatinate, K₂PtI₆, by allowing a soln, of platinic iodide and potassium iodide to crystallize, and washing the crystals with alcohol of sp. gr. 0.843 to remove admixed potassium iodide. W. W. Mather, and H. Töpsöe used a similar process. R. L. Datta added 10 per cent. hydrochloroplatinic acid, with agitation, to a sat. soln. of potassium iodide, washed the crystals with a little water on a suction-filter, and then with alcohol. R. J. Kane used a similar process but added some ether to the soln. The black, rectangular plates were shown by H. Töpsöe to belong to the cubic system, and by recrystallizing in the presence of an excess of potassium iodide he obtained cubes, and from aq. soln., octahedra. The sp. gr. given by C. H. D. Boedeker is 5:176; by H. Töpsöe, 5.031; and R. Klement gave 4.963 for the sp. gr. at 29°/4', and 208.5 for the mol. vol. H. I. Schlesinger and M. W. Tapley studied the absorption spectrum; and H. I. Schlesinger and R. E. Palmateer, the relative stabilities of the halogen salts. J. L. Lassaigne observed that a part of the iodine is lost at 100°. The salt is readily soluble in water forming a deep wine-red soln. Very dil. soln. were found by J. L. Lassaigne, and W. W. Mather to deposit platinic chloride, particularly when exposed to light. The salt is not decomposed by conc. sulphuric acid. M. Vézes showed that with a boiling soln, of potassium nitrite, potassium nitritoplatinite is formed. J. L. Lassaigne said that the salt is insoluble, or very sparingly soluble in absolute alcohol. R. L. Datta prepared rubidium iodoplatinate, Rb₂PtI₆, by the action of a conc. soln. of rubidium iodide on hydrochloroplatinic acid. The black crystals are soluble in water; and similarly also with cæsium iodoplatinate, Cs., PtIa.
- J. L. Lassaigne prepared sodium iodoplatinate, Na₂PtI₆.6H₂O, from a soln. of platinic iodide and sodium iodide; and H. Töpsöe, by treating hydrochloroplatinic acid with an excess of sodium iodide, and evaporating the liquid at ordinary temp. over sulphuric acid. The lead-grey, striated needles were found by J. L. Lassaigne to be deliquescent, and H. Töpsöe said the brown prisms are not deliquescent, and that they are probably monoclinic, and that twinning occurs, about the (100)-face. The sp. gr. is 3·707, and the mol. vol. 300·4. L. Pigeon found that the heat of formation in an excess of a soln. of sodium iodide is (PtI₄, 2NaI)=7·3 Cals. The faces of the crystals become matte on exposure to air. J. L. Lassaigne said that the salt is freely soluble in water and in alcohol.
- H. Töpsöe prepared calcium iodoplatinate, CaPtI₆.12H₂O, by evaporating over sulphuric acid, a soln. of an excess of calcium iodide in hydrochloroplatinic acid. The rhombohedral crystals are not deliquescent, and dissolve freely in water, and in alcohol. J. L. Lassaigne obtained barium iodoplatinate, BaPtI₆.nH₂O, by slowly evaporating a soln. of platinic iodide and barium iodide. The deliquescent crystals resemble those of the sodium salt.
- H. Töpsöe obtained magnesium iodoplatinate, MgPtI₆.9H₂O, by evaporating, over sulphuric acid, a soln. of an excess of magnesium iodide in hydrochloroplatinic

acid. The trigonal crystals have the axial ratio a:c=1:1.8700, and $a=72^{\circ}$ 6'; the sp. gr. is 3.458; and the mol. vol. 302.3. H. Töpsöe obtained **zinc iodoplatinate**, ZnPtI₆.9H₂O, from a soln. of platinic and zinc iodides; and by evaporating, over sulphuric acid, a soln. of an excess of zinc iodide in hydrochloroplatinic acid. The trigonal crystals resemble those of the magnesium and manganese salts; the axial ratio is a:c=1:1.8685, and $a=72^{\circ}$ 13'; the sp. gr. is 3.689; and the mol. vol. 321.7. J. L. Lassaigne also prepared the deliquescent crystals and said that they have an astringent taste. *Vide supra*, for **platinic tetramminoiodomercurate**, $|Pt(NH_3)_4|(HgI_3)_2$.

- H. Töpsöe prepared manganese iodoplatinate, MnPtI₆.9H₂O, by evaporating spontaneously, over sulphuric acid, a soln. of an excess of manganese iodide in hydrochloroplatinic acid. The trigonal crystals have the axial ratio a: c=1:1.8685, and $\alpha = 72^{\circ} \text{ 8}'$; the sp. gr. is 3.604; and the mol. vol., 326.4. E. Herlinger gave 352.7 for the mol. vol. of the hexahydrate. J. L. Lassaigne obtained ferrous iodoplatinate, FePtI6.9H2O, by evaporating a soln. of platinum and ferrous iodides; and H. Töpsöe, by evaporating, over sulphuric acid, a soln. of ferrous iodide in an excess of hydrochloroplatinic acid. The trigonal crystals have the axial ratio a: c=1:1.8675, and $a=72^{\circ}$ 11'; the sp. gr. is 3.455; and the mol. vol. 340.8. E. Herlinger gave 3400 for the mol. vol. of the hexahydrate. The deliquescent crystals acquire a film of ferric hydroxide on exposure to air. H. Töpsöe prepared cobalt iodoplatinate, CoPtl₆.9H₂O, by evaporating, over sulphuric acid, a soln. of an excess of cobalt iodide in hydrochloroplatinic acid. The trigonal crystals of the enneahydrate have the axial ratio a: c=1:1.8757, and $\alpha=72^{\circ}\ 2'$; the sp. gr. 3.618; and mol. vol. 326.2. On exposure to air, the faces of the crystals become matte, owing to the loss of iodine. Trigonal crystals of the dodccahydrate are also obtained. The sp. gr. is 3.048, and the mol. vol. 408-1. E. Herlinger gave 325.5 for the mol. vol. H. Töpsöe also prepared nickel iodoplatinate, NiPtI6.6H2O, by crystallization from a hot, sat. soln. of an excess of nickel iodide in hydrochloroplatinic acid, or by evaporating the soln. spontaneously at ordinary temp. The green crystals of the hexahydrate are trigonal with the axial ratio a: c=1:0.5186, and $\alpha = 112^{\circ} 18'$; W. Biltz found that the sp. gr. is 3.976, and the mol. vol. 283.2. The crystals are slightly deliquescent, and soon lose their lustre on exposure to air. They dissolve in water with decomposition. The enneahydrate is obtained by spontaneously evaporating at ordinary temp., a soln. with the theoretical proportions of hydrochloroplatinic acid and nickel iodide. The trigonal crystals have the axial ratio a: c=1:1.8788, and $a=71^{\circ}55'$. The crystals are isomorphous with the corresponding salts of magnesium, zinc, manganese, iron, and cobalt. The sp. gr. is 3.549; and the mol. vol. 332.5. E. Herlinger gave 331.8 for the mol. vol. The crystals are deliquescent, and lose iodine on exposure to air. The salt is decomposed when it dissolves in water.
- I. Bellucci obtained dihydroxytetraiodoplatinic acid, $H_2Pt(OH)_2I_4$, in soln. by allowing platinic iodide to remain in contact with 95 per cent. alcohol. The soln. has an acidic reaction; decomposes carbonates; and gives precipitates of dihydroxytetraiodoplatinates when treated with soluble salts of the metals. By adding a small excess of a 10 per cent. soln. of silver nitrate to an alcoholic soln. of platinic iodide, washing the dark red precipitate with water, and drying it in vacuo, silver dihydroxytetraiodoplatinate, $Ag_2Pt(OH)_2I_4$, was formed. With a conc. soln. of mercuric chloride in the presence of sodium acetate, there was formed red mercuric dihydroxytetraiodoplatinate, $HgPt(OH)_2I_4$; with a conc. soln. of thallous acetate, brick-red thallous dihydroxytetraiodoplatinate, $Tl_2Pt(OH)_2I_4$; and with lead acetate greyish-red lead dihydroxytetraiodoplatinate, $PbPt(OH)_2I_4$. F. Reiff also discussed the silver and thallous salts.
- R. J. Kane in his study of the action of ammonia on platinic iodide reported the formation of **platinic dioxytetraiodotetrammine**, $Pt_2(NH_3)_4O_2I_4$, or $PtOI_2.2NH_3.H_2O$; O. Carlgren and P. T. Cleve obtained **platinic dihydroxytetramminoiodide**, $[Pt(NH_3)_4(OH)_2]I_2$; E. Koefoed, **platinic hydroxyiodotetrammino-**

iodide, RI₂[Pt(NH₃)₄(OH)I]I₂; and L. A. Tschugaeff, platinic diiodotetrammino-

iodide, $|Pt(NH_3)_4I_2|I_2$.

W. J. Pope and S. J. Peachey prepared trimethyl platinic iodide, $(CH_3)_3PtI$, by the action of Grignard's reagent—magnesium methyliodide—on hydrochloroplatinic acid: $PtCl_4 + 3(CH_3)MgI = (CH_3)_3PtI + 2MgCl_2 + MgI_2$. When heated with a mixture of benzene, alcohol, and cone, ammonia, it forms trimethyl platinic diamminoiodide, $Pt(CH_3)(NH_3)_2I$.

Several mixed halides have been reported. H. Kämmerer dissolved platinum with 4 gram-atoms of iodine in aqua regia, evaporated the soln, on a water-bath and allowed it to cool over sulphuric acid; the brick-red, deliquescent prisms of platinic dichlorodiiodide, PtCl₂I₂, which are formed melt below 100°. Potassium or ammonium chloride precipitates the chloroplatinate whilst iodides remain in soln.; potassium iodide colours the soln. deep red; and iodine chloride forms platinic chloride and iodine. W. W. Mather reported platinic chlorotriiodide, PtCII₃, to be formed by evaporating to dryness a mixture of hydrochloroplatinic acid and hydriodic acid, and heating the residue to 149° when hydrogen chloride and iodide, and iodine chloride escape. H. Töpsöe added that if too large an excess of hydriodic acid is employed some hydroiodoplatinous acid is formed. The black powder gives off iodine and iodine chloride when heated between 205° and 315°, and spongy platinum remains. The salt is insoluble in water, and behaves towards sulphur dioxide, alkali sulphites, and ammonia like platinic iodide; it is sparingly soluble in alcohol, and forms a red soln, with potash lye, from which sulphuric acid precipitates the chlorotriiodide unchanged. P. T. Cleve, and O. Carlgren and P. T. Cleve prepared platinic chloroiodotetramminochloride, |Pt(NH₃)₄ClI |Cl₂, by the action of hydrochloric acid on the nitrate or sulphate of the diiodohexamminoμ-diamine.

C. Enebuske prepared platinic dichlorodiiodobismethylsulphine, $[Pt\{(CH_3)_2S\}_2-Cl_2I_2]$; H. Löndahl, platinic dichlorodiiodobisbutylsulphine, $[Pt\{(C_4H_9)_2S\}_2Cl_2I_2]$, with iso- and secondary butyl; J. Petren, platinic dichlorodiiodobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Cl_2I_2]$, and platinic chlorotriiodobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2-Cl_3]$; and A. Cahours and H. Gal, platinic dichlorodiiodobisethylphosphine,

 $[Pt{P(C_2H_5)_3}_2Cl_2l_2].$

The platinic bromoiodides are represented by platinic dibromodiiodomethylsulphine, $[Pt\{(CH_3)_2S\}_2Br_2I_2]$, prepared by C. Enebuske; J. Petren described platinic tribromoiodobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Br_2I_2]$, platinic dibromodiiododiethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Br_2I_2]$, platinic bromotriiododiethylselenine, $[Pt\{(C_2H_5)_2Se\}_2Br_2I_2]$; platinic dibromodiiododiethylsulphinodiethylselenine, $[Pt\{(C_2H_5)_2Se\}_3Br_2I_2]$; and G. Wallin, platinic dibromodiiodobisamidoacetate, $[Pt(NH_2.CH_2.COOH)_2Br_2I_2]$. J. Petren prepared platinic diiododinitritoethylsulphinoethylselenine, $[Pt\{(C_2H_5)_2Se\}(NO_2)_2I_2]$.

REFERENCES.

¹ E. H. Archibald and W. A. Patrick, Journ. Amer. Chem. Soc., 34, 369, 1912; I. Bellucci, Gazz. Chim. Ital., 33, i. 147, 1893; Atti Accad. Lincei, (5), 11, i, 8, 1902; W. Biltz, Zeit. anorg. Chem., 115, 241, 1921; C. W. Blomstrand, Journ. prakt. Chem., (2), 38, 367, 1888; C. H. D. Boedeker, Die Beziehungen zwischen Dichte und Zusummensetzung bei festen und liquiden Stoffen, Leipzig, 1860; A. Cahours and H. Gal, Compt. Rend., 70, 902, 1870; O. Carlgren and P. T. Cleve, Zeit. anorg. Chem., 1, 68, 1892; G. Clementi, Nuovo Cimento, (2), 2, 192, 1855; P. T. Cleve, Svenska Akad. Handl., 7, 7, 1868; 10, 9, 1872; R. L. Datta, Journ. Chem. Soc., 103, 427, 1913; Journ. Amer. Chem. Soc., 35, 1187, 1913; R. L. Datta and T. Ghosh, ib., 36, 1019, 1914; H. D. K. Drew, F. W. Pinkard, W. Wardlaw and E. G. Cox, Journ. Chem. Soc., 988, 1932; C. Enebuske, Journ. prakt. Chem., (2), 38, 365, 1888; Lunds Arsekr., (2), 22, 37, 1887; F. Field, Chem. News, 43, 75, 180, 1881; S. G. Hedin, Om Pyridinens Platinbaser, Lund, 1886; Acta Univ. Lund. (2), 22, 3, 1887; E. Herlinger, Zeit. Krist., 62, 154, 1925; P. Jez, Journ. Phys. Rad., (6), 8, 244, 1927; Compt. Rend. Polonaise Soc. Phys., 7, 21, 1926; S. M. Jörgensen, Journ. prakt. Chem., (2), 16, 355, 1877; (2), 33, 507, 1886; H. Kämmerer, Liebig's Ann., 148, 329, 1868; R. J. Kane, Phil. Trans., 142, 299, 1842; Dublin Journ. Med., (1), 9, 26, 1833; R. Klement, Zeit. anorg. Chem., 164, 195, 1927; A. R. Klien, Ueber die

Bindefestigkeit der negativen Reste in den Kobalt-, Chrom- und Platinammoniaken, Zürich, 1899; E. Koefoed, Om nogle Nitrosoplatinammoniakforbindelser, Kopenhagen, 1894; J. L. Lassaigne, Journ. Chim. Méd., (1), 5. 334, 1829; (1), 8, 712, 1832; Ann. Chim. Phys., (2), 51, 113, 1832; H. Löndahl, Lunds Arsskr., (2), 27, 3, 1891; W. Manchot and G. Lehmann, Ber., 63, B, 1221, 1930; F. G. Mann and W. J. Pope, Proc. Roy. Soc., 109, A, 444, 1925; W. W. Mather, Amer. Journ. Science, (1), 27, 257, 1835; J. Petren, Om Platinaethylseleninforeningar, Lund, 1898; L. Pigeon, Ann. Chim. Phys., (7), 2, 496, 1894; Recherches chimiques et calorimétriques sur quelques combinaisons haloides du platine, Paris, 1893; W. J. Pope and S. J. Peachev, Journ. Chem. Soc., 95, 571, 1909; W. Pullinger, ib., 59, 598, 1891; F. Reiff, Zeit. anorg. Chem., 208, 321, 1932; C. Rudelius, Lunds Arsskr., (2), 22, 4, 1887; Journ. prakt. Chem., (2), 38, 505, 1888; A. Schleicher and W. Schmitz, Zeit. anorg. Chem., 142, 367, 1934; H. I. Schlesinger and R. E. Palmateer, Journ. Amer. Chem. Soc., 52, 436, 1930; H. I. Schlesinger and M. W. Tapley, ib., 46, 276, 1924; A. P. Smirnoff, Helvetica Chim. Acta, 3, 177, 1920; H. Töpsöc, Danske Selsk. Forh., 2, 77, 1869; Arch. Science Genève, (2), 38, 297, 1870; (2), 45, 223, 1872; L. A. Tschugaeff, M. Skanavi-Grigorieva and A. Posnjak, Ann. Inst. Platine, 4, 299, 1926; M. Vèzes, Ann. Chim. Phys., (6), 29, 207, 1893; G. Wallin, Oefvers. Akad. Forh., 49, 32, 1892; M. Weibull, Zeit. Krist., 14, 141, 1888; L. Wöhler and F. Müller, Zeit. anorg. Chem., 149, 377, 1925.

§ 27. Platinum Sulphides

C. Ridolfi 1 utilized the fact that sulphur does not attack platinum but attacks the base metals to separate platinum from impurities. R. A. Cooper obtained a mineral whose composition be represented by Pt(As, S)₂, in the residue left after the action of aqua regia on the platiniferous norites of Bushveld, Transvaal. The mineral was called **cooperite**. R. A. Cooper later reported that the arsenic was present as an impurity in the form of sperrylite, and he changed the formula to PtS₂. H. Schneiderhöhn, and H. R. Adam made observations on the mineral on the assumption that it is platinum disulphide. F. A. Bannister showed that the analyses agree better with the formula PtS. H. R. Adam studied the mineral.

E. Davy prepared platinous sulphide, or platinum monosulphide, PtS, by heating to redness a mixture of sulphur and spongy platinum in an evacuated glass tube; but F. Rössler could not obtain the sulphide as a fused regulus. G. Preuner observed the formation of the sulphide in small proportions when gaseous sulphur acts on platinum at 950° to 1240°; L. Thomassen, by heating stöichiometrical proportions of the two elements in a quartz tube; H. G. Krall, and L. Wöhler and co-workers, by heating the disulphide at 630°; J. Uhl, superficially by passing sulphur dioxide over heated platinum; and W. Skey, by contact of hydrogen sulphide or ammonium sulphide whereby the metal acquires a film and so resists amalgamation. H. St. C. Deville and H. Debray obtained the sulphide by melting metal with ten times its weight of pyrite under borax at a red-heat, and washing the product first with cold and then with hot, conc. hydrochloric acid; R. Schneider, by heating a higher sulphide in a current of carbon dioxide; R. Böttger, by igniting oxidized platinum sulphide in a platinum crucible until it takes fire with a loud hissing noise, allowing the crucible to cool whilst the contents are protected from air, boiling the residue with aqua regia, washing the product, and drying it in vacuo; L. N. Vauquelin, by igniting ammonium chloroplatinate with twice its weight of sulphur in a closed crucible, and also by heating the same salt with an equal weight of sulphur and ignited sodium carbonate and washing away the sodium sulphide by water-vide infra, Pt₄S₅; J. J. Berzelius, by decomposing platinous chloride with an alkali sulphide; and W. Knop, C. Himley, and H. Vohl, by boiling a soln. of platinic chloride with an excess of sodium thiosulphate until the liquid is deep red, adding a large proportion of water, then hydrochloric acid, and keeping warm for a long time nearly at 100° until the evolution of sulphur dioxide has ceased. The liquid is then colourless, and there is a grey precipitate of platinous sulphide mixed with sulphur—the latter is easily removed by washing with a suitable solvent. A. Voet prepared the colloidal sulphide.

According to L. N. Vauquelin, platinous sulphide is a dull, lead-grey powder which acquires a metallic lustre when rubbed on paper; it also occurs as a shining

black powder; or in slender, black, lustrous needles. According to F. A. Bannister, the X-radiograms of cooperite, PtS, show that the tetragonal crystals have a face-

Fig. 93. - Isothermal Decomposition of Platinum Monosulphide.

centred unit cell with edges a=4.91 A., and c=6.10A., or a: c=1:1.242; and the values for synthetic platinous sulphide are a=4.92 A., and c=6.12 A.; the unit cell contains four PtS-molecules with planar PtS₄-groups, and tetrahedral PtS₄-groups. The shortest distance between the platinum and sulphur atoms is 2.32 A.; between the sulphur atoms, 3.05 A.; and between the platinum atoms, 3.47 A. L. Pauling and M. L. Huggins discussed this subject. The sp. gr. of cooperite is 10.2, and of synthetic platinous sulphide, 10.1. W. Biltz and R. Juza gave 10:04 for the sp. gr.; and 22:6 for the mol. vol. E. Davy's value 6.2 for the sp. gr. is too low. When platinous sulphide is heated in a closed vessel, it shows signs of fusion. W. Biltz and R. Juza measured the isothermal decomposition and the results are summarized in Fig. 93. The sulphide is slightly miscible with platinum, but there is no indication of subsulphides. The heat

of formation from solid rhombic sulphur is (Pt, S)=16 Cals. J. N. Frers studied the combination PtS-ZnO as a radio-detector.

F. A Bannister found a mineral in the platiniferous ore of Rustenburg, Transvaal, which he called **braggite**—after W. H. Bragg. It contains about 5 per cent. of nickel, 20 per cent. of palladium, 19 per cent. of sulphur, and 58 per cent. of platinum; its composition approximates (Pt,Pd,Ni)S. The crystals are tetragonal prisms, and the X-radiograms correspond with a unit cell with a=6.37 A., and c=6.58 A. Each cell contains eight (Pt,Pd,Ni)S-molecules. The sp. gr. is 8-63, and the value calculated from the lattice constants is 8-9.

E. Davy said that the compound is a non-conductor of electricity. R. Böttger found that at 19°, hydrogen reduces the sulphide to spongy platinum. E. Davy observed that the sulphide is stable in air, and when heated in air, it forms the metal. A. Mailfert observed that with ozone there is formed some sulphuric acid. B. Aulenkamp studied the sensitiveness of the sulphide to light. E. Davy observed that the sulphide is not attacked by water, and it is scarcely attacked by boiling mineral acids, or boiling aqua regia. R. Böttger said that in air, platinous sulphide acts on alcohol like platinum black, but less vigorously. R. Böttger, and H. St. C. Deville and H. Debray showed that the sulphide is not attacked by boiling potash lye; and J. Ribau, that it is almost insoluble in alkali sulphides. E. Davy observed that the sulphide is decomposed when heated with zinc filings, or with potassium chlorate; and R. Böttger also found that fused potassium nitrate acts H. Löndahl observed the possible formation of platinous sulpho**bis-i-butylsulphine**, $[Pt\{(C_4H_9)_2S\}_2S]$, as a brown, oily precipitate, by the action of potassium sulphide on a soln. of the corresponding sulphate. F. Mylius and F. Förster prepared platinous sulphocarbonyl, [Pt(CO)S]₂, and a complex with 2H₂S; and V. N. Ivanoff, platinum bisthiocarbamidotetrahydroxysulphide, $Pt_{4}(OH)_{4}S\{CS(NH_{2})\}_{2}. \ A \ number \ of \ platinous \ halogen-sulphines \ and \ thio-salts$ have been described in connection with the platinum halides.

R. Schneider observed the formation of potassium sulphoplatinite, $K_2S.PtS$, or K_2PtS_2 , but was unable to isolate the salt. He prepared potassium stannic sulphoplatinite, $K_2S.3PtS.SnS_2$, by melting 1 part of spongy platinum with 2 parts of stannic sulphide, 6 to 8 parts of dry potassium carbonate, and 6 to 8 parts of sulphur, and found that when this salt is heated to dark redness in a current of hydrogen, it loses sulphur as hydrogen sulphide to form a mixture of platinum, tin, and potassium sulphoplatinite. When the residue is treated with water in the

absence of air, the soln, contains potassium sulphoplatinite and potassium hydroxide, whilst the undissolved residue is a mixture of platinum, tin, and potassium hydrosulphoplatinite, K₂PtS₂.2H₂PtS₂. When the soln is exposed to the air, the potassium sulphoplatinite is partially oxidized according to the equation $3K_2PtS_2+3O=K_2PtO_3+2K_2PtS_3$, and when this oxidized solution is treated with hydrochloric acid, platinic sulphide is precipitated. When potassium sulphoplatinite is treated with dil. hydrochloric acid in absence of air, sulphoplatinous acid, H2PtS2, is formed which, in the presence of air, is oxidized to water and platinic sulphide. By fusing a mixture of platinous oxystannate, Pt₂Sn₆O₁₀, with twice its weight of sulphur, and washing the product, there remains a black powder consisting of acicular crystals of platinous sulphostannate, 4PtS.SnS₂, which is not attacked by boiling nitric or hydrochloric acid, but is decomposed by boiling aqua regia. The salt is stable in air, but when heated, it is completely decomposed into platinum and platinous stannate. R. Schneider observed that when 2Na₂S.2PtS.PtS₂ is decomposed by boiling water, sodium sulphoplatinite, Na₂S.PtS, is formed; and he obtained sodium hydrosulphoplatinite, 2H₂S.Na₂S.3PtS, or Na₂PtS₂.2H₂PtS, from the red liquid obtained in the preparation of Na₂S.PtS.2PtS₂ with absolute alcohol, and washing the precipitate with dil. alcohol (2:1), and finally with alcohol. The brown product is converted into platinic sulphide and sodium carbonate on exposure to air. It forms a brown soln, with water from which alcohol precipitates the original salt; and when treated with hydrochloric acid, the sodium is extracted: 2H₂PtS₂.- $Na_2PtS_2 + 2HCl = 2NaCl + 3H_2PtS_2$.

The analyses of the products obtained by L. N. Vauquelin-vide supraapproximate to Pt₅S₆, and R. Schneider considers that this salt is actually produced. He considers it to be platinous tetritasulphoplatinate, (PtS)₄PtS₂, or $Pt_4(PtS_6)$, platinous hexasulphoplatinate, and said that it is best prepared by fusing together for 8 to 10 minutes, at a bright red heat, a mixture of 2 parts of ammonium chloroplatinate, and 3 parts each of sulphur, and dry sodium carbonate. It forms steel-grey needles, having a metallic aspect and belonging to the rhombic system. It is unchanged in the air when dry, but if the moist substance be heated on the water-bath it absorbs oxygen, and then contains sulphuric acid. Heated in carbon dioxide it loses one-sixth of its sulphur, platinous sulphide remaining; heated in the air, the sulphur is entirely burned away. When strongly heated in a stream of hydrogen it is entirely reduced. It is unacted upon by boiling hydrochloric or nitric acid, but is slowly attacked by boiling aqua regia. Fused with nitre, it is easily and completely decomposed. R. Schneider prepared platinous dihydrohexasulphoplatinate, Pt₃H₂(PtS₆), by the action of warm hydrochloric acid on K₂S.3PtS.PtS₂; it readily oxidizes in air to form water and platinum sesquisulphide; if the sodium salt 2Na₂S.2PtS.PtS₂ be similarly treated in the cold, reddish-brown platinous tetrahydrohexasulphide, Pt₂H₄(PtS₆), is formed.

R. Schneider prepared potassium triplatinous hexasulphoplatinate, $K_2Pt_3(PtS_6)$, by melting at a high temp. an intimate mixture of 1 to 2 parts of spongy platinum with 6 parts each of sulphur and potassium carbonate. The bluish-grey plates of the salt can be separated by levigation, washed, and dried at 120°. The sp. gr. is 6.44 at 15°. The salt is stable in air at ordinary temp., but when heated, it glows like tinder giving off sulphurous oxides, and forming potassium sulphate and platinum. It is attacked when heated in hydrogen chloride forming hydrogen sulphide; dil. hydrochloric acid forms platinous dihydrohexasulphoplatinate; when heated in hydrogen, hydrogen sulphide is formed. R. Schneider prepared sodium diplatinous hexasulphoplatinate, $Pt_2Na_4(PtS_6)$, by melting together a mixture of 1 part of platinum sponge with 6 to 9 parts each of dry sodium carbonate and sulphur, and washing the product with water. The pale copper-red, rhombic needles are coloured brown and black by exposure to air, or aerated water; they are decomposed by boiling water; and sodium sulphide reacts: $Na_2S+PtS+2H_2O=H_2PtS_2+2NaOH$. Dil. hydrochloric acid reacts as indicated

above forming platinous tetrahydrohexasulphoplatinate. The fresh precipitate, in contact with neutral silver, zinc, cadmium, thallous, ferrous, and manganese salts, exchanges sodium for the corresponding metal, but not so with salts of the alkaline earths.

R. Schneider observed that if freshly-prepared sodium diplatinous hexasulphoplatinate is treated with a dil. soln. of copper sulphate, with exclusion of air, there is formed copper diplatinous hexasulphoplatinate, Pt₂Cu₂(PtS₆), in bluish-grey pseudomorphs of the sodium salt. The copper salt is stable in air; it glows like tinder when heated leaving a residue of platinum and of copper oxide. Boiling nitric or hydrochloric acid extracts the copper; and the salt is partially decomposed by boiling aqua regia. R. Schneider obtained silver diplatinous hexasulphoplatinate, Pt₂Ag₄(PtS₆), by the action of a soln. of silver nitrate on the corresponding sodium salt. If heated in air or in hydrogen, a mixture of silver and platinum is formed. Hydrochloric acid has no perceptible action; warm nitric acid extracts the silver; and hot aqua regia dissolves some platinum and leaves a residue of silver chloride and platinic sulphide. R. Schneider prepared zinc diplatinous hexasulphoplatinate, $Pt_9Zn_9(PtS_8)$, cadmium diplatinous hexasulphoplatinate, Pt₂('d₂(PtS₆); thallous platinic hexasulphoplatinate, PtTl₄(PtS₆); stannic diplatinous hexasulphoplatinate, PtoSn(PtSn); lead diplatinous hexasulphoplatinate; $Pt_2Pb_2(PtS_6)$; manganese diplatinous hexasulphoplatinate, Pt₂Mn₂(PtS₆); and ferrous diplatinous hexasulphoplatinate, Pt₂Fe₂(PtS₆).

R. Schneider 2 prepared platinum hemitrisulphide, or platinum sesquisulphide, Pt₂S₃, which he considered to be **platinous sulphoplatinate**, PtS.PtS₂, or Pt(PtS₃), platinous trisulphoplatinate, by the spontaneous oxidation of H₂S.3PtS.PtS₂; or by the action of a dil. soln. of sodium chloroplatinate on sodium platinosic sulphide, 2Na₂S.2PtS.PtS₂. The steel-grey powder has a sp. gr. of 5.52. When moist, the powder absorbs oxygen from the air. It loses about 5 per cent. of water at 120°; and at a higher temp, it suddenly swells up and gives off more water; at a still higher temp., sulphur is sublimed. When roasted in air, it begins to glow like tinder giving off sulphurous oxides, and finally leaving a residue of platinum sponge. It is easily reduced in hydrogen; it is not attacked by boiling nitric or hydrochloric acid; but it is slowly attacked by boiling aqua regia. Na₂S.PtS.2PtS₂ be suspended in water and treated with dil. hydrochloric acid, there is formed unstable platinous hydrotrisulphoplatinate, PtH₂(PtS₃)₂, or PtS.H₂S.2PtS₂, which is readily decomposed on exposure to air, forming platinic sulphide. R. Schneider observed that sodium platinous trisulphoplatinate, PtNa₂(PtS₃)₂, or PtS.Na₂S.2PtS₂, is formed when sodium diplatinous hexasulphoplatinate is boiled with water. The brown, crystalline powder rapidly darkens on exposure to air, and water, sodium carbonate, and platinic sulphide are formed; with dil. hydrochloric acid, platinous hydrotrisulphoplatinate is formed.

The mineral cooperite was at first represented by Pt(As, S)₂, then by PtS₂, and later by PtS (q.v.). E. Davy prepared **platinic sulphide**, or **platinum disulphide**, PtS₂, by heating to low redness a mixture of 2 parts of sulphur with 3 parts of ammonium chloroplatinate in a glass tube closed with mercury, and stopping the heating when the evolution of gas has ceased. R. Böttger said that the product is contaminated with sulphur because the mixture has not been heated long enough. W. Biltz and R. Juza, and H. G. Krall also prepared the disulphide from its components, and by heating sulphur with platinic chloride. E. A. Geitner heated hydrochloroplatinic acid decolourized by sulphur dioxide, to 200° in sealed tubes. J. Persoz heated to whiteness a mixture of platinum with 2 parts of sodium carbonate and 3 parts of sulphur, and washed the product with water; the platinic sulphide remains in long, aurora-red needles. L. Wöhler and co-workers obtained it by the action of hydrogen sulphide on platinic chloride, and by heating the product with sulphur at 600°. R. Böttger prepared the sulphide by allowing a mixture of 1 part of dry platinic chloride, 4 parts of absolute alcohol, and 5 parts of carbon disulphide to stand in a stoppered bottle for a week with occasional shaking. The

product is then washed with 80 per cent. alcohol to remove the carbon disulphide, rubbed to a pasty mass, and boiled with a large proportion of water. The product is then washed with water until free from chlorides; pressed between bibulous paper; and dried in vacuo over sulphuric acid at a temp. below 125°. J. J. Berzelius treated a platinic salt with hydrogen sulphide, or an alkali sulphide, washed the precipitate with boiling water, and dried it in vacuo; U. Antony and A. Lucchesi, passed hydrogen sulphide through a 3 per cent. soln. of hydrochloroplatinic acid at 90°—if the temp. is below 90°, sulphoplatinates are formed—washed the product in an atm. of hydrogen sulphide and dried it at 70° to 80° until the weight was constant. R. Schneider obtained platinic sulphide by exposing moist sodium diplatinous hexasulphoplatinate or platinous tetrahydrohexasulphoplatinate to atm. air as indicated above.

Platinic sulphide is a dark brown, steel-grey, or black powder. L. Thomassen found that the X-radiogram corresponds with a trigonal lattice having a=3.537 A., c=5.019 A., and a:c=1:1.419. F. A. Bannister gave a=3.54 A., and c=5.02 A. The sp. gr., according to E. Davy, is 3.5. R. Schneider found this datum is too low, and gave 5.27 for the sp. gr. This is still too low for F. A. Bannister gave 7.86; and W. Biltz and R. Juza gave 7.66, and 33.9 for the mol. vol. E. Davy said that the sulphide does not fuse when heated. R. Böttger found that the thermal decom-

position begins between 225° and 250°, and, according to J. J. Berzelius, an atom of sulphur is first given off and platinous sulphide is formed. W. Biltz and R. Juza measured the vap. press. of the sulphur and obtained the isothermal curves indicated in Fig. 94. The heat of formation of the disulphide from the solid monosulphide and solid rhombic sulphur is 5 Cals. Only the di- and monosulphides were observed. According to R. Schneider, when the disulphide is heated in air, it glows like tinder, leaving behind spongy platinum. E. Davy said that the disulphide is a non-conductor of electricity. W. Skey discussed the behaviour of the disulphide as a cathode in electrolyses. R. Böttger said that the sulphide is not decomposed by hydrogen at ordinary temp. E. Pollacci said that platinic sulphide readily oxidizes in air; E. Davy also observed that some preparations are not decomposed by air or water at ordinary temp., and P. de Clermont and J. Frommel added that boiling water has no action; but J. J. Berzelius' preparation when moist was

Fig. 94.—The Isothermal Dissociation of Platinum Disulphide.

observed to produce sulphuric-acid on exposure to air, and to char paper on which it rested. J. J. Berzelius' preparation is much more sensitive to chemical reagents than is the case with the other preparations. L. R. von Fellenberg showed that at a dull red-heat, chlorine decomposes platinic sulphide producing platinum and sulphur chloride. R. Böttger observed that boiling conc. sulphuric, hydrochloric or nitric acid of sp. gr. 1.2 has no action on the sulphide; and E. Davy, and R. Schneider added that of all the acids tried, hot aqua regia alone exerts a slight action on this compound. J. J. Berzelius' preparation was observed to be rapidly decomposed by aqua regia, and to be slowly and completely dissolved by fuming nitric acid. A. Guerout found that sulphurous acid has no perceptible action on the compound.

According to J. J. Berzelius, when hydrogen sulphide is passed over precipitated, black platinic sulphide, the compound acquires a reddish-brown colour by absorption of gas, but on exposure to air, the gas is given off and the black colour is restored. E. von Meyer also indicated that the pale brown precipitate obtained by hydrogen sulphide with hot soln. of potassium chloroplatinate is eine

lockere Verbindung of platinic and hydrogen sulphides, which loses its hydrogen sulphide when washed with hot water. K. A. Hofmann and F. Höchtlen obtained dark brown platinic dihydrotrisulphide, PtS₂.H₂S, or PtS(HS)₂, or H₂PtS₃, by the action of dry hydrogen sulphide on a soln. of platinic chloride in absolute alcohol, and washing the product with carbon disulphide to remove free sulphur. U. Antony and A. Lucchesi obtained platinic hydrosulphide, Pt(HS)₄, or PtS₂.2H₂S, by the first action of hydrogen sulphide on a dil. soln. of hydrochloroplatinic acid at ordinary temp., the continued passage of the gas produces some decomposition. P. Schützenberger prepared platinic thiocarbide, S:Pt:C:Pt:S.

R. Böttger observed that boiling aq. ammonia, and ammonium sulphide have no perceptible action on the sulphide. J. Ribau observed that the sulphide is insoluble in ammonium or alkali sulphides or polysulphides; and P. de Clermont, that it is insoluble in boiling soln. of ammonium salts. J. J. Berzelius' preparation dissolves completely in aq. soln. of alkali sulphides or hydroxides forming platinum and alkali thiosulphates. R. Böttger observed that platinic sulphide is decomposed when it is kneaded with potassium at ordinary temp., and intense combustion occurs; sodium does not act until it is warmed. Boiling soln. of potassium hydroxide, or sodium carbonate do not act on the sulphide. E. Davy said that the sulphide is decomposed when heated with zinc, or when fused with potassium chlorate, or hydroxide, and, added R. Böttger, with potassium nitrate. W. Skey observed that platinum disulphide reduces auric chloride.

C. Winssinger obtained a colloidal solution of platinic sulphide by dialyzing the liquid obtained by the action of hydrogen sulphide on a very dil. soln. of a platinic salt. U. Antony and A. Lucchesi employed a 3 per cent. soln. of hydrochloroplatinic acid, or sodium chloroplatinate at 15° to 18°. G. Hofmeier employed 50 c.c. of a 1:1,000 aq. soln. of platinic chloride, diluted it to 200 c.c. and passed the gas for a short time at 50° to 60°, and dialyzed the liquid. J. C. H. Heyer, and T. Svedberg added yellow soln. of ammonium sulphide to a soln. of platinic chloride. G. Hofmeier recommended gum arabic as a protective colloid. The colloidal soln. is brown or brownish red in transmitted light, and dark grey in reflected light. The colloidal sulphide is coagulated by heat, by evaporation, by

hydrochloric acid, alkali chlorides, barium sulphate, and animal charcoal.

According to J. J. Berzelius, platinic sulphide precipitated by hydrogen sulphide dissolves in ammonium sulphide to form a reddish-brown soln, of what was thought to be ammonium sulphoplatinate, (NH₄)₂PtS₃. The liquid—possibly a colloidal soln.—deposits platinic sulphide when treated with acids. K. A. Hofmann and F. Höchtlen prepared ammonium polysulphoplatinate, (NH₄)₂PtS₃.S₁₂.2H₂O, by saturating a 25 per cent. soln. of ammonium sulphide with sulphur at 30°, and dropping the liquid, with constant stirring, into a cold, 10 per cent. soln. of platinic The reddish-brown precipitate is allowed to stand in a closed vessel for 2 or 3 days at 5°, filtered by suction, washed with carbon disulphide, and dried some hours in vacuo over sulphuric acid. The red, rhombic pyramids are stable when dry; they are insoluble in ether; and form a yellowish-red soln. with alcohol. J. J. Berzelius obtained a green mass—possibly potassium sulphoplatinate, K₂PtS₃, when potassium disulphide is fused in a platinum crucible. The aq. soln. deposits platinic sulphide. Precipitated platinic sulphide is soluble in aq. soln. of potassium sulphide; and similarly also with sodium sulphide, and as indicated above, it is possible that the soln. contains sodium sulphoplatinate, Na₂PtS₃. The preparation of L. N. Vauquelin, and J. Persoz, indicated above in connection with platinic sulphide, may have contained sodium sulphoplatinate.

F. W. Semmler prepared platinic disulphovinylsulphine, $[Pt\{(C_2H_3)_2S\}S_2]$, and platinic disulphovinylsulphinechloroplatinite, $[Pt\{(C_2H_3)_2S\}S_2]$, $[Pt\{(C_2H_3C)PtC]_4]$; T. Wertheim, platinic disulphoallylsulphine, $[Pt\{(C_3H_5)_2S\}S_2]$; —vide the sulphine

salts of the halides, etc.

According to J. J. Berzelius, moist, precipitated platinic sulphide when exposed to air forms sulphuric acid, and in many respects behaves like J. W. Döbereiner's

PLATINUM 399

platinum black. The precipitated sulphide, indeed, contains some free platinum. R. Böttger observed that if the precipitated sulphide be exposed to air, with constant stirring, at 50° to 62°, it forms a black powder, which when heated to 100° in a retort becomes violet-black. It is supposed to contain some oxidized platinic sulphide. Its sp. gr. is 6·286; it has a sour taste; forms sulphuric acid when treated with water; takes fire in air at 250°, burning with a hissing noise and violet flame, with the evolution of sulphurous oxides; and it becomes warm in a current of hydrogen above 25° and decrepitates giving off hydrogen sulphide, and leaving a residue of spongy platinum.

E. von Meyer doubted if the so-called "oxidized sulphide" contains platinic oxysulphide, PtOS, but it may contain the normal platinum dihydroxysulphide, Pt(OH)₉S, or else (PtS)₉O(OH)₉. The former is said to be the first stage in the oxidation of platinic sulphide; and the platinic oxydihydroxydisulphide, (PtS)₂O(OH)₂, or PtOS.4H₂O, is produced when the dark brown precipitate formed by hydrogen sulphide in hot soln, of potassium chloroplatinate, or nearly neutral soln, of platinic chloride, and washing free from chlorides, is dried on a water-bath, and heated, with frequent stirring, for about 10 days at 70° to 100°. The product is washed with hot water, and the treatment repeated. The product is finally dried at 100° to 110° in a current of carbon dioxide. If the temp, of desiccation is higher than this, oxidation occurs. When the powder is warmed in air, sulphurous oxides are evolved, and platinum is formed. Hydrogen forms platinous sulphide and water; nascent hydrogen slowly forms hydrogen sulphide; chlorine in the presence of moisture forms sulphuric and hydrochloric acids; conc. hydrochloric acid reacts slowly without the evolution of chlorine, and after some time the soln, contains a little sulphuric acid; hydrogen sulphide forms water and sulphur: sulphur dioxide forms sulphur trioxide with the evolution of heat: sulphurous acid is slowly oxidized; ammonia is rapidly absorbed with the evolution of heat and the formation of water; nitrous and nitric oxides do not react with the oxysulphide; carbon monoxide forms platinous sulphide and carbon dioxide; oxalic acid slowly decomposes with the evolution of carbon dioxide; methyl alcohol is oxidized to formaldehyde; ethyl alcohol becomes warm and forms aldehyde and acetic acid; toluene is partially converted into benzaldehyde; potassium permanganate is slowly reduced; and ferrous salts are slowly converted into ferric salts.

REFERENCES.

1 H. R. Adam, Trans. Geol. Soc. South Africa, 33, 103, 1931; 34, 35, 152, 1931; B. Aulenkamp, Zeit. Physik, 18, 70, 1923; F. A. Bannister, Min. Mag., 23, 188, 1932; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2, i, 180, 1826; Schweigger's Journ., 34, 22, 1822; W. Biltz and R. Juza, Zeit. anorg. Chem., 190, 161, 1930; R. Böttger, Journ. prakt. Chem., (1), 8, 274, 1834; R. A. Cooper, Journ. Met. Min. Soc. South Africa, 28, 281, 1928; 29, 230, 1929; E. Davy, Phil. Mag., (1), 40, 27, 209, 350, 1812; H. St. C. Deville and H. Debray, Compt. Rend., 89, 590, 1879; J. N. Frers, Zeit. Elektrochem., 40, 612, 1934; C. Himley, Liebig's Ann., 48, 152, 1842; V. N. Ivanoff, Chem. Zig., 47, 209, 1923; W. Knop, Chem. Centr., (2), 4, 17, 1859; H. G. Krall, Beiträge zur Kenntnis der Sulfide der Platin metalle, Darmstadt, 1933; H. Löndahl, Lunds Arsskr., 27, 3, 1891; A. Mailfert, Compt. Rend., 94, 1186, 1882; F. Mylius and F. Förster, Ber., 24, 2441, 1891; L. Pauling and M. L. Huggins, Zeit. Krist., 87, 205, 1934; G. Preuner, Zeit. anorg. Chem., 55, 82, 1907; J. Ribau, Compt. Rend., 85, 283, 1877; Bull. Soc. Chim., (2), 28, 244, 1877; C. Ridolfi, Giorn. Scienza Arti, 1, 24, 125, 1815; Quart. Journ. Science, 1, 259, 1816; Ann. Phil., 7, 29, 1817; 13, 70, 1819; Phil. Mag., (1), 48, 72, 1816; (1), 53, 68, 1819; Schweiger's Journ., 24, 439, 1818; F. Rössler, Synthese einiger Erzmineralien und analoger Metallverbindungen durch Auflösen und Kristallisierenlassen derselben in geschmolzenen Metallen, Berlin, 1895; Zeit. anorg. Chem., 9, 59, 1895; R. Schneider, Journ. prakt. Chem., (2), 2, 164, 1870; (2), 7, 227, 1873; (2), 8, 29, 1874; (2), 45, 40, 1892; (2), 48, 416, 1893; Pogg. Ann., 136, 105, 1869; 138, 607, 661, 1869; 148, 625, 1873; H. Schneiderhöhn, Centr. Min., 193, 1929; H. Schneiderhöhn and P. Ramdohr, Lehrbuch der Erzmikroskopie, Berlin, 2, 216, 1931; W. Skey, Chem. News, 22, 282, 1871; L. Thomassen, Zeit. phys. Chem., 135, 385, 1928; 2, B, 349, 1929; 4, B, 277, 1929; J. Uhl, Ber., 28, 2512, 1890; L. N. Vauquelin, Ann., 96, 23

U. Antony and A. Lucchesi, Gazz. Chim. Ital., 26. i. 213, 1896; F. A. Bannister, Min. Mag., 28, 188, 1932; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2, i, 180, 1826; W. Biltz and R. Juza, Zeit. anorg. Chem., 190, 161, 1930; R. Böttger, Journ. prakt. Chem., (1), 3, 267, 1834; P. de Clermont, Compt. Rend., 88, 972, 1879; Bull. Soc. Chim., (2), 31, 483, 1879; P. de Clermont and J. Frommel, Ann. Chim. Phys., (5), 18, 189, 1879; Bull. Soc. Chim., (3), 38, 368, 1879; E. Davy, Phil. Mag., (1), 40, 27, 209, 350, 1812; J. W. Döbereiner, Schweigger's Journ., 38, 321, 1823; L. R. Fellenberg, Pogg. Ann., 50, 70, 1840; E. A. Geitner, Liebig's Ann., 129, 385, 1864; A. Guerout, Compt. Rend., 75, 1276, 1872; J. C. H. Heyer, Crell's Ann., ii, 227, 321, 1785; F. Höchtlen, Ueber kristallisierte Polysulfide und Thiocarbonate von Schwermetallen, München, 1904; K. A. Hofmann and F. Höchtlen, Ber., 36, 3090, 1903; 37, 246, 1904; G. Hofmeier, Ueber anoryanische Kryptoide und Kolloide, Erlangen, 1904; H. G. Krall, Beiträge zur Kenntnis der Sulfide der Platinmetalle, Darmstadt, 1933; E. von Meyer, Journ. prakt. Chem., (2), 15, 4, 1879; (2), 16, 1, 1876; L. Pauling and M. L. Huggins, Zeit. Krist., 87, 205, 1934; J. Persoz, Ann. Chim. Phys., (2), 55, 215, 1834; E. Pollacci, Monit. Scient., (4), 22, 374, 1908; E. Prost, Bull. Soc. Chim., (2), 46, 156, 1886; J. Ribau, Bull. Soc. Chim., (2), 28, 244, 1877; Compt. Rend., 85, 283, 1877; R. Schneider, Journ. prakt. Chem., (2), 2, 164, 1870; (2), 7, 227, 1873; (2), 8, 29, 1874; (2), 45, 40, 1892; (2), 48, 411, 1893; Pogg. Ann., 136, 105, 1869; 138, 604, 661, 1869; 148, 625, 1873; P. Schneider, Journ. prakt. Chem., (2), 2, 164, 1870; (2), 7, 227, 1873; (2), 8, 29, 1874; (2), 45, 40, 1892; (2), 48, 411, 1893; Pogg. Ann., 136, 105, 1869; 138, 604, 661, 1869; 148, 625, 1873; P. Schneider, Dier Methoden zur Herstellung kolloider Lösungen anorganischer Stoffe, Dresden, 1909; L. Thomassen, Zeit. phys. Chem., 135, 385, 1928; 2, B, 349, 1929; 4, B, 277, 1929; L. N. Vauquelin, Ann. Chim.

§ 28. Platinous Sulphates

- P. T. Cleve ¹ obtained the ammine of platinum subsulphate, Pt₂SO₄ or platinum hémisulphate, namely, platinum tetramminosulphate, Pt₂(NH₃)₄SO₄, as a black, amorphous powder, by the action of dil. sulphuric acid on the corresponding hydroxide. According to J. J. Berzelius, platinous sulphate, PtSO₄, is known only in aq. soln., not in the crystalline state. Hydrated platinous oxide dissolves in dil. sulphuric acid forming a dark brown soln. which assumes a redder tint when diluted with water, and becomes darker on exposure owing to oxidation. L. N. Vauquelin observed that when sulphuric acid is heated with platinous chloride until all the chlorine is expelled, and evaporated, a black, amorphous mass is produced which deliquesces in air, and a conc. aq. soln. is black and yellowish-green when dilute. The soln. loses its colour in a few days with the deposition of hydrated platinous oxide. A. Litton and G. H. E. Schnedermann also observed that the brown soln. of platinous sulphate deposits platinum when diluted sufficiently.
- J. Reiset prepared platinous tetramminosulphate, Pt(NH₃)₄|SO₄, by evaporating the liquid obtained when the corresponding chloride is treated with silver sulphate; and M. Peyrone, P. T. Cleve, and H. and A. Euler, by mixing platinous diamminodichloride with sulphuric acid, dissolving the precipitate in hot water, neutralizing with ammonia, and cooling the liquid. The salt can be recrystallized from aq. soln. C. Weltzien also described this salt. H. Töpsöe observed that the colourless, tetragonal crystals have the axial ratio a: c=1:1.8278; the (001)cleavage is complete, and the (111)-cleavage incomplete. The optical character is negative. Observations on the crystals were also made by A. E. Nordenskjöld, E. Rosenbohm studied the magnetic susceptibility. J. Lang and Q. Sella. observed that the salt does not decompose at 220°, and J. Reiset, that decomposition begins at 270°. A. A. Grinberg and B. V. Ptitsin studied the thermal decomposition of the salt. The salt is more soluble in hot than it is in cold water; 100 parts of water at 16.5° dissolve 3.125 parts of salt, M. Peyrone's value is less than this. The aq. soln. is neutral. P. T. Cleve found that with bromine, the dibromotetramminosulphate is formed. M. Peyrone, and P. T. Cleve observed that with sulphuric acid, platinous tetramminohydrosulphate, 5 Pt(NH₃)₄ SO₄.4H₂SO₄.4H₂O₅ is formed; and H. and A. Euler, and P. T. Cleve also prepared 3[Pt(NH₃)₄]SO₄. H₂SO₄.H₂O. M. Peyrone observed that nitric acid forms a blue soln, with the

tetramminosulphate, and when the liquid is boiled, and the product dissolved in water, [Pt(NH₃)₄(OH)(NO₃)](NO₃)₂, is formed. The tetramminosulphate is insoluble in alcohol. P. T. Cleve reported platinous triamminosulphate, Pt(NH₃)₃SO₄, to be formed by treating the corresponding chloroplatinite with silver sulphate, evaporating the filtrate, and drying the snow-white mass of crystals at 100°. E. Rosenbohm studied the magnetic susceptibility. The salt is sparingly soluble in cold water, but readily soluble in hot water. L. A. Tschugaeff and I. Tscherniaeff prepared platinous octammino-diol-sulphate, [(NH₃₎₄Pt....(OH)₂····Pt(NH₃₎₄]SO₄, as indicated in connection with the aquotriammines. R. Uhlenhuth prepared triclinic crystals of platinous tetrahydroxylaminosulphate, Pt(NH₂OH)₄SO₄. L. A. Tschugaeff and M. S. Grigorieff prepared platinous tetrahydrazinosulphate, $[Pt(N_2H_1)_4]SO_4$.

J. Reiset, P. T. Cleve, and L. Ramberg prepared platinous trans-sulphatodiammine, [Pt(NH₃)₂(SO₄)].H₂O, by boiling the corresponding iodide or the chloride with silver sulphate, and evaporating the clear liquor. The air-dried salt does not lose water at 120°, but at higher temp, water is lost in the decomposition. The salt is sparingly soluble in cold water, but more soluble in hot water. The aq. soln. reacts acidic. Soluble chlorides precipitate from the aq. soln. the dichlorodiammine; aqua regia forms platinic trans-tetrachlorodiammine; iodine tineture forms platinic tetraiododiammine; and aq. ammonia forms platinous tetrammino sulphate. P. T. Cleve obtained the corresponding platinous cis-sulphatodiammine, from the corresponding cis-dichlorodianimine.

C. Enebuske described platinous quatermethylaminesulphinosulphate, $[Pt\{(CH_3)_iS(SO_4):A.\ Wurtz,\ and\ H.\ Wolfram,\ platinous\ quaterethylaminesulphate, <math display="block">[Pt(C_2H_5NH_2)_4|SO_4:P.\ T.\ Cleve,\ platinous\ transbisethylaminediamminosulphate, \\ [Pt(NH_3)_2(C_2H_5NH_2)_2|SO_4:as\ well = 1.5]$ as the hexahydrate; Γ . T. Cleve, platinous bisanilinediamminosulphate, $[Pt(NH_3)_2(C_6H_5NH_2)_2]$ -SO₄; A. Werner. platinous bispropylenediaminesulphate, $[Pt(C_5H_6N, H_2)_2]_2[SO_4]$; S. G. Hedm. platinous trans-sulphatobispyridine, $[Pt(C_5H_5N)_2|SO_4]_2$; Platinous customers also platinous hydroxysulphatobispyridine, $[Pt(C_5H_5N)_2|SO_4]_2$; Platinous quaterpyridinesulphate, $[Pt(C_5H_6N)_4]_3$; Platinous quaterpyridinesulphatesulph

platinous quaterpyridinesulphate, $[Pt(C_5H_5N)_4]SO_4$, platinous quaterpyridinehydrosulphate, $[Pt(C_5H_5N)_4](HSO_4)_2$, alone and associated with pyridine; there are also the double sulphates platinous quaterpyridinesulphatocuprate, $[Pt(C_5H_5N)_4]Cu(SO_4)_2.8H_2O$, and platinous quaterpyridinesulphatozincate, $[Pt(C_5H_5N)_4]Zn(SO_4)_2.12H_2O$. A. Rosenheim and W. Handler prepared platinous bis-m-tolylenediamine, $[Pt(C_7H_{10}N_2)_2]SO_4.3H_2O$.

C. Enebuske described platinous sulphatobismethylsulphine, $[Pt\{(CH_3)_2S\}_2SO_4].2H_2O$; C. W. Blomstrand, platinous sulphatobismethylsulphine, $[Pt\{(C_2H_3)_2S\}_2SO_4].7H_2O$; H. Löndahl, platinous trisethylsulphinesulphate, $Pt\{(C_2H_5)_2S\}_3SO_4.4H_2O$; and platinous trisethylsulphinesulphate, $[Pt\{(C_2H_5)_2S\}_3SO_4.4H_2O$; and platinous trisethylsulphinesulphate, $[Pt\{(C_2H_4)_2S\}_3SO_4]$; C. Rudelius, platinous sulphatobis-butylsulphine, $[Pt\{(C_3H_2)_2S\}_2SO_4]$, with normal and iso-propyl; H. Löndahl, platinous sulphatobis-butylsulphine, $[Pt\{(C_3H_2)_2S\}_2SO_4]$, platinous sulphatodibenzylsulphine, $[Pt\{(C_3H_5)_2S\}_2SO_4]$, platinous bisethylenesulphinesulphate, $[Pt\{(C_2H_4)_2S_2\}_2SO_4]$; platinous sulphatodibenzylsulphine, $[Pt\{(C_3H_5)_2S\}_2SO_4]$; P. T. Cleve, platinous trisanlinediamminosulphate, $[Pt(NH_3)_2(C_3H_5NH_2)_3]SO_4$; L. Ramberg, bisethylthioglycolatodiamminosulphate, $[Pt(NH_3)_2(H.CO_2CH_2.S.C_2H_5)_2]SO_4$; N. S. Kurnakoff, platinous quaterthioacetamide, $[Pt(NH_3)_2(H.CO_2CH_2.S.C_2H_5)_2]SO_4$; N. S. Kurnakoff, and W. J. Sell and T. H. Easterfield, platinous quaterthiocarbamidesulphate, $[Pt(C_3H_5)_3SO_4]$; R. Bunsen, platinous sulphatoxycacodyl, $[Pt\{As_2(CH_3)_2O\}SO_4]$; L. Ramberg, platinous triannious quaterthylselenine, $[Pt(C_2H_5)_2Se\}_3O_4]$; platinous sulphatobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_3O_4]$, platinous sulphatotrisethylselenine, $[Pt\{(C_2H_5)_2Se\}_3O_4]$, platinous sulphatotrisethylselenine, $[Pt\{(C_2H_5)_2Se\}_3O_4]$, and platinous sulphatoethylsulphinoethylselenine, $[Pt\{(C_2H_5)_2Se\}_3O_4]$, and platinous $\{(C_2H_5)_2Se\}SO_4\}.$

L. N. Vauquelin obtained a dark green precipitate by evaporating a mixed soln, of platinous and potassium sulphates. The dried mass is black and probably represents an impure potassium sulphatoplatinite. At a red heat, it leaves a residue of platinum and potassium sulphate.

E. Prost reported a subsulphide, ammonium subsulphatoplatinite, 2(NH₄)₂SO₄. Pt₈(SO₄)₂.25H₂O, to be formed by adding alcohol to a mixed soln. of ammonium

Some sulphates of what is regarded as tervalent platinum have been investigated. They are here called the platinosic sulphates. M. Delépine reported that a platinosic **dihydroxyhydrosulphate**, $Pt(OH)_o(HSO_a).H_oO$, can be obtained by boiling platinum with sulphuric acid for a long time when the liquid gradually darkens in colour until finally, after 30 hrs., it becomes almost black when it contains about 20 grms. of platinum per litre. The soln, can be diluted with water, or it can be evaporated to dryness, the residue taken up with water, and when the soln, is treated with half its vol. of conc. sulphuric acid, it furnishes black plates. Since at 100° this compound loses 1.5 mols, of water per atom of platinum, it might be represented by the formula O{Pt(OH)(HSO₄)}₂.3H₂O; and since it can be converted into an equimolar mixture of H₂Pt(I₄ and H₂Pt(I₆, it was inferred that the platinum in the compound is tervalent. The compound crystallizes from aq. soln. in black, rectangular prisms. The compound is extremely soluble in water, cone, sulphuric acid, acetic acid, alcohol, and acetone forming reddish-brown soln, with ether it forms a compound containing 2 mols. of ether, which is insoluble in ether. Alkali lye precipitates from the soln, a dark brown oxide,

According to M. Blondel, platinosic hydroxydihydrosulphate, Pt(OH)(HSO₄)₂. 91H₂O, can be represented as Pt₂(OH)₆(SO₃)₄(OH)₂.81H₂O, and L. Wöhler and W. Frey consider it to be a hydrosulphatoplatinosic acid analogous to hydrochloroplatinic acid. M. Blondel, and M. Delépine showed that when platinum dissolves in boiling sulphuric acid in an atm. of carbon dioxide, the reaction $2Pt+7H_2SO_4=3SO_2+4H_2O+2(HO)Pt(HSO_4)_2$, is reversible; when air was used, twice as much platinum dissolved, and less sulphur dioxide was evolved, owing to the oxidation of the sulphur dioxide to trioxide under the influence of the platinum. With oxygen, four times as much platinum dissolved, and less still sulphur dioxide was evolved. When a mixture of carbon and sulphur dioxides was used, no soln. of platinum took place, and, in some cases, platinum was precipitated from soln. M. Blondel observed that in J. J. Berzelius' process for preparing platinic sulphate, this compound is in part obtained because platinic oxide is slowly reduced to platinosic oxide at about 110°. E. Prost reported that Pt₈O₁₃SO₄.16H₂O is precipitated when a soln, of platinic sulphate, free from nitric acid, is boiled. M. Blondel prepared this compound by reducing a soln, of platinic sulphate in sulphuric acid by means of oxalic acid, and L. Wöhler and W. Frey employed the same reducing agent. The orange-red prisms or plates were found by M. Blondel to be triclinic pinacoids with the axial ratios a:b:c=1.6236:1:0.5492, and $\alpha = 90^{\circ} 29', \beta = 101^{\circ} 53', \text{ and } \gamma = 88^{\circ} 55'; \text{ the (010)-cleavage is complete.}$ The salt effloresces in dry air, and when dried over sulphuric acid under reduced press., it forms the stable Pt(OH)(HSO₄)₂. This compound does not change at 110°, but at 150° it begins to lose sulphur trioxide, and is partially reduced. When exposed to moist air for some days it forms a gum-like mass. The aq. soln. decomposes slowly in the cold, and more quickly when heated, forming a brown precipitate with a variable composition. An excess of hydrochloric acid produces a mixture of platinous and platinic chlorides. The acid is dibasic. Although the addition of the eq. of 2 mols, of sodium hydroxide forms a crystallizable sodium salt, more alkali can be added because the salt is gradually polymerized with the liberation of acid in a colloidal form. When an excess of the alkali lye is added to a boiling soln., a polymerized form of platinum sesquioxide is precipitated. Sodium, potassium, and barium hydroxides and the oxides of thallium, iron, and silver form crystallizable salts. Aq. soln. of the acid give no precipitate at first with barium chloride, but they do so after standing some time. This acid therefore has some analogies with the complex sulphates of iron and chromium studied by A. Recoura. L. Wöhler and W. Frey found that the titration with a soln. of potassium permanganate agrees with the assumption that the compound contains tervalent platinum.

The platinic dihydroxyhexammino- μ -aminodisulphate, [(OH)(NH₃)₃Pt(NH₂)-Pt(NH₃)₃(OH)|(SO₄)₂ of P. T. Cleve, obtained in snow-white needles by the action of dil. sulphuric acid on the corresponding nitrate, has been regarded as **platinosic**

M. Delépine prepared hydroxytetramminosulphate, Pt(OH)(SO₄).4NH₃.H₂O. potassium platinosic sulphate K₂SO₄.Pt₂(SO₄)₃.2H₂O, or KPt(SO₄)₂.H₂O, by adding potassium sulphate to a soln. of platinum in sulphuric acid; and M. Bloudel, by adding a potassium salt to a soln. of platinosic hydroxydihydrosulphate. straw-yellow needles or prisms are stable at 150°. The salt is sparingly soluble in water; it is decomposed by boiling water; and, in time, in cold water, impure hydrated platinosic oxide is precipitated. It is vigorously reduced by alcohol. M. Blondel obtained orange-red prisms of sodium platinosic sulphate, Na₂SO₄. Pt₂(SO₄)₃.8H₂O, or NaPt(SO₄)₂.4H₂O, in a similar manner. The monoclinic prisms have the axial ratios a:b:c=1.1127:1:0.6898, and $\beta=94^{\circ}$ 31'. The crystals do not effloresce in dry air; at 100° water is slowly given off and an uncrystallizable product is formed. The salt is freely soluble in water. M. Blondel also obtained crystalline silver platinosic sulphate, Ag_2SO_4 . $Pt_2(SO_4)_3$. nH_2O ; barium platinosic sulphate, $BaSO_4.Pt_2(SO_4)_3.nH_2O$; thallous platinosic sulphate, $Tl_2SO_4.Pt_2(SO_4)_3$. nH₂O; and ferrous platinosic sulphate, FeSO₄.Pt₂(SO₄)₃.nH₂O. M. Blondel's compounds, together with the sulphatoplatinosic acid, HPt(SO₄)₂.6H₂O, are considered by H. D. K. Drew and H. J. Tress to be salts of tervalent platinum.

D. Schou prepared platinous dichlorodiamminochlorocarbonate, 2 Pt(NH₃)₂Cl₂-[{Pt(NH₃)₂Cl₂}₂(CO₃)], by mixing a soln, of potassm chloroplatinite in water at 40° with a mixture of ammonium hydrocarbonate and water, and then passing carbon dioxide through the soln, until it acquires an indigo-blue colour and some quantity of a blackish-blue precipitate is deposited. The soln, is precipitated with alcohol, and the precipitate washed successively with water and alcohol, and dried by exposure to the air. It forms small crystals and aggregates, is sparingly soluble in water, insoluble in alcohol and ether, is gradually decomposed by cold hydrochloric acid, and, by boiling with the acid, is converted into platinous dichlorodiammine. When boiled with ammonia, a small quantity remains undissolved, and the soln, when saturated with hydrogen chloride and treated with potassium chloroplatinite gives a precipitate of Magnus' green salt, [Pt(NH₃)₄]-PtCl₄. When treated with a slight excess of silver nitrate, a yellow soln, of platinous

dinitratodiammine is obtained.

N. W. Fischer, and A. von Mussin-Puschkin observed that platinic sulphate. $Pt(SO_4)_9$, is formed when platinum is boiled in sulphuric acid; J. J. Berzelius, that soln, of hydrated platinic oxide or of platinic chloride in sulphuric acid furnish this sulphate on evaporation; and E. Davy that the repeated evaporation to dryness of furning nitric acid and platinic sulphide furnishes this salt. It was said that the black porous mass has a sour, metallic taste, somewhat sharp; that on ignition at a red heat, it leaves metallic platinum behind; it deliquesces quickly in air; it forms a dark brown soln, with water and with hydrochloric, nitric or phosphoric acid, and in alcohol, and ether. J. J. Berzelius said that alkali lye precipitates a basic salt from the aq. soln., and J. von Liebig, that alkali lye does not precipitate platinic oxide from the aq. soln. All this, said M. Blondel, indicates that platinosic hydroxydihydrosulphate was formed; he also said that norma' platinic sulphate does not exist; and E. Prost added that the chemical individuality of neither the normal sulphate nor double salts of the type R₂SO₄.Pt(SO₄)₂, has been established.

According to L. Stuchlik, the soln. of platinum in sulphuric acid of sp. gr. 1.840, obtained by M. Margules, by means of an alternating current, deposits yellow crystals which retain sulphuric acid after several recrystallizations from water. By repeatedly crystallizing the salt from water, in vacuo, large orange leaflets of the tetrahydrate, Pt(SO₄)₂.4H₂O, are obtained. The salt loses water in a desiccator, and becomes darker in colour. The anhydrous salt exhibits a green metallic lustre. The salt containing sulphuric acid is stable, losing little in weight at 100°, and retaining its orange colour. Both salts dissolve readily in water, the hydrated salt forms a yellow soln., and the anhydrous salt, a dark soln. The yellow soln, deposits a brown basic salt when warmed, sulphuric acid precipitates

the hydrated sulphate from the dark-coloured soln. The sulphuric acid soln. of M. Margules gives brown precipitates when treated with potash or soda lye; and

with aq. ammonia, a pale yellow precipitate is formed.

B. Gerdes prepared platinic hexamminosulphate, [Pt(NH₃)₆](SO₄)₂.H₂O, by the action of sulphuric acid or of a soluble sulphate on a salt of the hexammine. The white, crystalline powder is almost insoluble in water. L. Tschugaeff and N. Vladimiroff, and W. Palmaer prepared platinic chloropentamminosulphate, $[Pt(NH_3)_5(1]_9(SO_4)_3;$ and I. I. Tscherniaeff prepared $[Pt(NH_3)_5(H_9O)](SO_4)_9$, and Pt(NH₃)₅(OH)(HSO₄)SO₄. P. T. Cleve prepared platinic dihydroxytetramminosulphate, [Pt(NH₃)₄(OH)₂|SO₄, by boiling the corresponding hydroxysulphatotetramminosulphate with an equivalent amount of barium hydroxide; O. Carlgren and P. T. Cleve, and A. Werner, by the action of hydrogen dioxide on a warm soln. of platinous tetramminosulphate, and recrystallizing from hot water; and N. Tarugi, by the action of a conc. ammoniacal soln. of ammonium persulphate on an excess of an aq. soln. of platinic chloride, and warming the mixture to dissolve the ammonium chloroplatinate which is first precipitated, and when the liquid is decolourized the salt separates out. The prismatic crystals do not lose weight over conc. sulphuric acid, or at 100°. The salt is sparingly soluble in boiling water. A. Werner gave for the conductivity, μ , of a soln. with a mol of the salt in 125, 250, 500, and 1000 litres, respectively, 134.38, 162.36, 181.61, and 196.53, in agreement with a 3-ion salt. I. I. Tscherniaeff and S. I. Chorunshenkoff studied the iónization constants. Hydrochloric acid forms the dichlorotetramminochloride; and barium chloride precipitates all the sulphate. O. Carlgren and P. T. Cleve, and A. Werner obtained the tetrahydrate, and O. Carlgren and P. T. Cleve, the monohydrate. P. T. Cleve prepared platinic hydroxysulphatotetramminosulphate, [Pt(NH₃)₄(OH)(SO₄)]₂SO₄.3H₂O, by boiling an aq. soln. of platinic dibromotetramminosulphate with about two molar proportions of silver sulphate until all the bromide is precipitated; and A. Werner, by boiling an aq. soln. of platinous tetramminosulphate with two molar proportions of bromine added drop by drop. The soln., filtered hot, furnishes tabular crystals on cooling. The salt is sparingly soluble in water. Barium salts precipitate from the soln, only one-third the sulphate; conc. sulphuric acid forms a colourless soln. C. Gerhardt, and C. Weltzien prepared platinic disulphatodiammine, [Pt(NH₃)₂(SO₄)₂] by dissolving the hydroxide in sulphuric acid; and P. T. Cleve prepared the trihydrate. P. T. Cleve prepared platinic trans-dihydroxysulphatodiammine, $[Pt(NH_3)_2(OH)_2(SO_4)].H_2O$, by the action of silver sulphate on the corresponding chloride. The straw-yellow crystalline salt is sparingly soluble in water; and he also obtained platinic cis-dihydroxysulphato-E. Davy obtained what P. T. Cleve considered to be platinic sulphatotetramminohydroxide, [Pt(NH₃)₄SO₄](OH)₂, by boiling a soln. of platinic sulphate neutralized with ammonia for a few minutes, and when the soln. is decolourized allowing it to cool. The pale brown powder detonates slightly when heated; it is insoluble in water. A. R. Klien studied the action of water, acids, and alkaline soln. P. T. Cleve obtained platinic sulphatotetramminosulphate, $[Pt(NH_3)_4SO_4]SO_4$, $[Pt(NH_3)_4SO_4]SO_4$ by the action of conc. sulphuric acid on the hydroxynitratotetramminonitrate. The white salt loses $\frac{2}{3}$ mol. of water at 100°, there is no further loss at 120°, and decomposition occurs at 130°. P. T. Cleve reported platinic dihydroxyhexammino- μ -diaminesulphate, $[(OH)(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3(OH)](SO_4)_2$, by the action of sulphuric acid on the corresponding nitrate.

H. Alexander prepared platinic tetrahydroxylaminesulphate, $[Pt(NH_2OH)_4]$ - $(SO_4)_2H_2O$, by digesting the hydroxide, chloride, or oxalate with the theoretical amount of sulphuric acid on a water-bath, filtering the hot liquid, and allowing it to cool. R. Uhlenhuth employed a similar process, and said that the crystals are triclinic prisms. According to H. Alexander, the salt loses about 3·3 per cent. of water at 80° to 90°, and it decomposes at 100° with a slight detonation. It is sparingly soluble in cold water, and readily soluble in hot water with a slight decomposition. The neutral aq. soln. decomposes on a water-bath with the separa-

tion of brown flecks, and of platinum. It can be recrystallized from water, or from dil. sulphuric acid. F. Hoffmann reported **platinic dihydroxylaminediamminosulphate**, $[Pt(NH_3)_2(NH_2OH)_2](SO_4)_2$, by the action of the corresponding chloride on silver sulphate, or by the action of the theoretical amount of sulphuric acid on the oxalate. The yellow, prismatic crystals are soluble in water at ordinary temp.; the soln. becomes turbid at 30°. P. T. Cleve described **platinic hydroxyacetatotetramminosulphate**, $[Pt(NH_3)_4(OH)(C_2H_3O_2)]SO_4.1\frac{1}{2}H_2O$. W. J. Pope and S. J. Peachey prepared **trimethyl platinic sulphate**, $\{(CH_3)_3Pt\}_2SO_4.2H_2O$, by the action of dil. sulphuric acid on the corresponding hydroxide.

PLATINUM

As in the case of the hydroxychloroplatinic acids, $H_2Pt(OH)_{6-n}Cl_n$, so with the basic platinic sulphates, there may be a series of **hydroxysulphatoplatinic acids** involving $H_2Pt(OH)_4SO_4$, $H_2Pt(OH)_2(SO_4)_2$ and $H_2Pt(SO_4)_3$. The soln. of platinum in sulphuric acid, free from nitric acid, was found by E. Prost to deposit a brick-red powder $4Pt(OH)_4.Pt(OH)_2SO_4.3H_2O$; and R. Ruer obtained a chocolate-brown powder, $PtO_2.3Pt(OH)_4.Pt(OH)_2SO_4$, containing a small proportion of a platinous salt. There is nothing here to establish the chemical individuality of the products. As indicated above, E. Davy obtained a black mass, by the action of fuming nitric acid on platinic sulphide, which approximated in composition to platinum dioxysulphate. PtO_2SO_4 , and E. Prost obtained $4Pt(OH)_4.Pt(OH)_2SO_4$. $3H_2O$ from cold soln., and $Pt_8O_{13}SO_4.16H_2O$ from boiling soln. M. Blondel said that no such compound as PtO_2SO_4 has been proved to exist.

According to M. Blondel, at 0°, hydrated platinic oxide dissolves slowly in sulphuric acid, diluted with its own vol. of water, and there separates from the soln. orange-yellow, microscopic needles of **tetrahydroxysulphatoplatinic acid**, $H_2Pt(OH)_4(SO_4).H_2O$. He said that this represents the composition of what is usually designated normal platinic sulphate. This compound is not soluble in water, and it is decomposed forming free acid and hydrated platinic oxide. It loses 3 mols. of water at 100° to form **hydrodioxysuphatoplatinic acid**, $H_2PtO_2(SO_4)$, which is soluble in water and easily polymerized. Some basic ammines are indicated above.

I. I. Tscherniaeff and A. N. Fedorova prepared platinic chloroethylenediaminotriamminosulphate, [Pten(NH₃)₃Cl₂(SO₄)₃, from the corresponding chloride; and A. P. Smirnoff, platinic trispropylenediaminosulphate, $[Pt(C_3H_6,N_9H_4)_3](SO_4)_2$. J. Gros, and W. Palmaer prepared platinic dichlorotetramminosulphate, [Pt(NH₃)₄Cl₂]SO₄, by treating the corresponding nitrate or chloride with warm, dil. sulphuric acid, or with sodium sulphate. Crystals of the dihydrate separate out on cooling. The dihydrate loses no water over sulphuric acid, but at 100°, J. Gros, and P. T. Cleve obtained the applydrous salt. C. Weltzien, and C. Gerhardt also obtained the anhydrous salt, as a crystalline powder, by the action of conc. sulphuric acid on the corresponding nitrate. According to P. T. Cleve, the anhydrous salt is sparingly soluble in hot and cold water; and C. Grimm found the dihydrate to be sparingly soluble in cold water, and freely soluble in hot water; it can be recrystallized by cooling hot soln.; nitric and hydrochloric acids form the corresponding salts. Barium salts precipitate the sulphate; and silver salts produce a turbidity with aq. soln. which have been boiled for a long time. P. T. Cleve prepared platinic chlorosulphatotetramminosulphate, [Pt(NH₃)₄Cl(SO₄)|₂SO₄, or [Pt(NH₃)₄Cl₂]SO₄.[Pt(NH₃)₄(SO₄)|SO₄, by the action of sulphuric acid on the phosphatotetramminochloride. P. T. Cleve prepared platinic hydroxysulphatotetramminochloride, [Pt(NH₃)₄(OH)(SO₄)]Cl.2H₂O, by treating the sulphate with one-third molar proportions of barium chloride. The colourless or pale yellow, 4-sided prisms of the dihydrate become anhydrous at 100° to 110°. At a higher temp. the salt is decomposed. It is soluble in cold, and very soluble in hot water. Ammonium sulphide gives a dark brown precipitate; conc. soda lye dissolves the salt and no ammonia is evolved when the liquid is boiled; hydrochloric acid forms dichlorotetramminochloride; barium chloride, and sodium phosphate give no precipitates; silver nitrate forms a precipitate at once; ammonium oxalate forms

a white precipitate; potassium chromate, a lemon-yellow precipitate; and Sodium chloroplatinate prepotassium dichromate, an orange-red precipitate. cipitates orange plates of platinic hydroxysulphatotetramminochloroplatinate, | Pt(NH₃)₄(OH)(SO₄)]₂PtCl₆.2H₂O. L. A. Tschugaeff and I. I. Tscherniaeff prepared golden yellow platinous tetramminosulphatohydroxychloroplatinate, [Pt(NH₃)₄]₂-(SO₄)(PtCl₄)₂(OH)₂, by the action of ammonium persulphate on Magnus' salt. It is decomposed by washing with water at ordinary temp.; the dry salt oxidizes alcohol to aldehyde; and forms a stable complex with pyridine. K. A. Jensen measured the dipole moment of platinous ethylsulphinosulphate, $PtSO_4\{\{C_2H_5\}S\}_2$.

P. T. Cleve prepared platinic dibromotetramminosulphate, [Pt(NH₃)₄Br₂]SO₄, by adding bromine to a hot conc. soln. of platinous tetramminosulphate. lemon-yellow prisms are sparingly soluble in water; silver sulphate precipitates all the bromine, forming [Pt(NH₃)₄(OH)(SO₄)]₂SO₄.3H₂O, and with one molar proportion of bromine, there is formed platinic bromosulphatotetramminosulphate, Pt(NH₃)₄Br(SO₄)]₂SO₄.H₂O, in sulphur-yellow needles, which are dehydrated at 150°. The salt is freely soluble in hot water; two-thirds of the contained sulphate is precipitated by a soluble barium salt; an excess of sodium bromide forms dibromotetramminobromide; and hydrochloric acid forms bromochlorotetramminochloride. P. T. Cleve prepared platinic hydroxysulphatotetramminobromide, |Pt(NH₃)₄(OH)(SO₄)|Br.2H₂O, in colourless or pale yellow plates, by mixing equimolar proportions of barium bromide, and the corresponding sulphate; filtering; and evaporating for crystallization. P. T. Cleve also prepared platinic bromosulphatotriamminobromide, [Pt(NH₃)₃(SO₄)Br|Br,H₂O, by adding bromine to platinous triamminosulphate. The yellow needles dissolve in water, and lose half a mol. of water at 100° to 110° . P. T. Cleve obtained platinic dibromohexammine- μ diaminosulphate, [Br(NH₃)₃Pt(NH₂)₂Pt(NH₃)₃Br](SO₄)₂.2H₂O, by the action of sulphuric acid on the corresponding nitrate.

P. T. Cleve reported platinic diiodotetramminosulphate, [Pt(NH₃)₄I₂]SO₄, by the action of tincture of iodine on platinous tetramminosulphate. The rhombic, dull red prisms are sparingly soluble in water, and the aq. soln, is decomposed when boiled. P. T. Cleve obtained platinic hydroxyiodotetramminosulphate, [Pt(NH₃)₄-(OH)I|SO₄.H₂O, by the action of hydrogen dioxide on a soln, of platinous diiodotetrammino-\(\mu\)-diimidosulphatotetramminoplatinite. The reddish brown, octahedral crystals are sparingly soluble in water; barium chloride precipitates all the sulphate from the aq. soln. P. T. Cleve prepared platinic diiodohexammino-\(\mu\)diaminosulphate, $[I(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3I](SO_4)_2$, by the action of dil. sulphuric acid on the corresponding nitrate. O. Carlgren and P. T. Cleve, and P. T. Cleve obtained platinic diiodohexammine- μ -diimidosulphatotetramminoplatinous sulphate, [I(NH₃)₃Pt(NH)₂Pt(NH₃)₃I|SO₄.[Pt(NH₃)₄|SO₄, by the action of sulphurous acid on the corresponding nitrate. The yellowish crystals are sparingly soluble in boiling water. Barium chloride precipitates from the aq. soln. all the sulphate; it is soluble in 3 per cent, hydrogen dioxide forming the hydroxyiodotetramminosulphate, etc.; dil. hydrochloric acid forms iodochlorotetramminochloride, etc.; and silver nitrate precipitates the iodide. C. W. Blomstrand prepared platinic sulphatodinitritotetrammine, [Pt(NH₃)₄(NO₂)₂SO₄].

REFERENCES.

H. Alexander, Ueber hydroxylaminhaltige Platinbasen, Königsberg, 1887; Liebig's Ann.,
 246, 246, 1888; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. ii, 946, 1826; C. Birnbaum,
 Liebig's Ann., 139, 170, 1866; C. W. Blomstrand, Oervers. Akad. Förh., 25, 224, 1869; Bull.
 Soc. Chim., (2), 13, 144, 1870; Ber., 2, 204, 1869; Journ. prakt. Chem., (2), 27, 191, 1883;
 M. Blondel, Bull. Soc. Chim., (4), 7, 99, 1910; Ann. Chim. Phys., (8), 6, 125, 1905; Recherches Nr. Biblidel, Ball. Sol. Chim., (4), 1. 83, 1810; Ann. Chim. Phys., (6), 6, 123, 1805; Recretches sur quelques combinaisons du platine. Paris, 1905; R. Bunsen, Liebig's Ann., 37. 1, 1841; 42. 14, 1842; Taylor's Scient. Mem., 3. 281, 1843; O. Carlgren and P. T. Cleve, Oefvers. Akad. Förh., 47. 305, 1890; Zeit. anorg. Chem., 1. 74, 1892; P. T. Cleve, Svenska Akad. Handl., 7. 8, 1868; 10. 9, 1872; Acta Upsala, 6. 5, 1866; E. Davy, Phil. Trans., 110, 108, 1820; Phil. Mag., (1), 20, 350, 1812; (1), 56, 330, 1820; Ann. Phil., 15, 297, 1820; 16, 385, 1820;

M. Delépine, Compt. Rend., 150, 107, 1910; Bull. Soc. Chim., (4), 7, 103, 1910; H. D. K. Drew and H. J. Tress, Journ. Chem. Soc., 1244, 1935; C. Enebuske, Lunds Arsskr., (2), 22, 2, 1887; H. and A. Euler, Ber., 37, 2391–1904; N. W. Fischer, Kasther's Arch., 14, 149, 1828; Quart. Journ. Science, 5, 193, 1829; B. Gerdes, Ueber die bei Elektrolyse des curbaminsaures und kohlensuuren Ammons mit Wechselströmen und Platinelektroden enstchenden Platinbusen, Leipzig, 1882; Journ. prakt. Chem., (2), 26, 257, 1882; C. Gerhardt, Compt. Rend. Trac. Chim., 273, 1850; C. Grimm, Liebig s Ann., 99, 85, 1856; A. A. Grinberg and B. V. Ptitsin, Ann. Inst. Platine, 9, 73, 1932; J. Gros, Liebig s Ann., 27, 245, 1838; S. G. Hedin, Om pyridinens platinabaser, Lund, 1886; Lunds Arsskr., (2), 22, 3, 1887; F. Hoffmann, Hydroxylaminhaltige Platinbusen, Königsberg, 1889; K. A. Jensen, Zeit. anurg. Chem., 1914, 1934; 225, 97, 115, 1935; A. R. Klien, Ueber die Bindefestigkeit der negativen Reste in den Kobalt., Chrom. und Platinammonicken, Zürich, 1899; N. S. Kurnakoff, Journ. prakt. Chem., (2), 50, 489, 1894; (2), 51, 253, 1895; Journ. Russ. Phys. Chem. Soc., 25, 565, 1893; J. Lang, Om nägru nya platinaoxydulfareningar, Upsala, 1861; Journ. prakt. Chem., (1), 83, 417, 1861; Srenska Akad. Handl., 5, 1865; J. von Liebig, Liebig's Ann., 23, 37, 1837; A. Litton and G. H. E. Schnedermann, ib., 42, 316, 1842; H. Löndahl, Lunds Arsskr., (2), 27, 3, 1891; M. Margules, Wied. Ann., 65, 633, 1898; 66, 540, 1898; A. von Mussin-Puschkin, Journ. Mics, 15, 195, 1934; A. E. Nordenskjöld, Bihang. Svenska Akad. Handl., 2, 2, 1874; W. Palmaer, Ber., 22, 15, 1889; J. Petren, Om Platinaethylseleninföreningar, Lund, 1898; M. Peyrone, Ann. Chem. Soc., 95, 571, 1909; E. Prost. Bull. Soc. Chim., (2), 46, 158, 1886; Bull. Acad. Belg., (3), 11, 414, 1886; L. Ramberg, Zeit. anorg. Chem., 83, 36, 1913; Ber., 46, 1696, 2353, 1913; A. Recoura, Compt. Rend., (10, 1335, 1895; 137, 189, 1903; J. Reiset, Ann. Chim. Phys., (3), 14, 22, 1844; E. Rosenbohm, Zeit. phys. Chem.,

§ 29. The Platinum Carbonates

No platinum carbonates have been prepared, but some complex carbonates are known. J. Reiset 1 obtained platinous tetramminocarbonate [Pt(NH₃)₄]CO₃.H₂O, by the action of atm. carbon dioxide on a soln. of the corresponding hydroxide; and M. Peyrone, by the action of potassium carbonate on the corresponding chloride at 40° to 50°. By saturating a soln. of the hydroxide with carbon dioxide, J. Reiset obtained platinous tetramminohydrocarbonate, [Pt(NH₃)₄](HCO₄)₂, as a white, crystalline powder which is not decomposed at 120°. When this salt is boiled with water there is formed platinous tetramminocarbonatohydrocarbonate, | Pt(NHa)4 |a white crystalline powder which begins to CO_3 .[Pt(NH₃)₄](HCO₃)₂, as decompose at 200°. B. Gerdes obtained platinic dihydroxyheptamminotetracarbonate, Pt₂(NH₃)₇(OH)₂(HCO₃)₄, by electrolyzing, with an alternating current, for some hours, soln. of ammonium carbonate with platinum electrodes, at 40° to 50°, S. G. Hedin described platinous quaterpyridinetetramminocarand cooling. bonatohydrocarbonate, [Pt(C₅H₅N)₄CO₃.Pt(NH₃)₄|(HCO₃)₂.16H₂O, by treating the sulphate with barium hydroxide, and passing carbon dioxide into the filtered soln. Crystals are obtained by evaporation on the water-bath. The hexadecahydrate at 70° passes into the tetrahydrate, which decomposes as more water is driven off. S. G. Hedin prepared platinous carbonatobispyridine, [Pt(C5H5N)2CO3]; and C. Enebuske, platinous carbonatobismethylsulphine, [Pt{(CH₃)₂S}₂CO₃].

B. Gerdes obtained platinic hexamminocarbonate, [Pt(NH₃)₆](CO₃)₂, by electrolyzing with an alternating current an ice-cold soln. of ammonium carbonate, and, after 12 hrs., filtering off the white deposit, washing it with cold water, dis-

solving it in dil. soda lye, diluting the soln, with water and then saturating it with carbon dioxide; and by treating a soln, of the corresponding chloride with sodium The white powder, consisting of octahedral crystals, is insoluble in L. A. Tschugaeff, and L. A. Tschugaeff and N. Vladimiroff prepared platinic chloropentamminocarbonate, [Pt(NH₃)₅Cl]₂(CO₃)₃. M. Raewsky prepared platinic hydroxychlorotetramminocarbonate, [Pt(NH₃)₄(OH)Cl]CO₃, H₂O, by treating the corresponding nitrate with ammonium carbonate, and allowing the mixture to stand for 24 hrs. The caseous precipitate becomes crystalline if the soln, is boiled. P. T. Cleve used sodium carbonate as precipitant. The white or pale yellow, prismatic crystals decompose at 140° to 150°. P. T. Cleve prepared platinic chlorocarbonatotetramminocarbonate, [Pt(NH₃)₄Cl(CO₃)]₅CO₃, by adding platinic dichlorotetramminonitrate to a boiling soln. of ammonium carbonate. The white powder decomposes when heated without detonation. It dissolves in nitric acid with the evolution of earbon dioxide. P. T. Cleve also prepared platinic bromocarbonatotetramminocarbonate, [Pt(NH₃)₄Br(CO₃)]₅CO₃.2H₅O, in an analogous way. The crystalline powder loses ammonia at 140°, and at a higher temp, decomposes with a hissing noise. L. A. Tschugaeff and W. Chlopin obtained platinic hydroxy**pentamminocarbonate**, $[Pt(NH_3)_5(OH)]_2(CO_3)_3$, by the action of ozone on a mixture of ammonia, ammonium carbonate, and platinous cis-dichlorodiammine.

K. A. Hofmann prepared platinous thiocarbonatodiammine, $[Pt(NH_3)_2CS_3]$, by crystallization from a mixture of potassium chloroplatinite, conc. ammonia, and carbon disulphide. In vacuo, over sulphuric acid, the salt becomes anhydrous. The red needles are insoluble in water, aq. ammonia, or soda lye at ordinary temp., but when heated, with the two latter, there is formed a pale reddish-yellow liquid. A soln. of sodium nitroprusside gives no colouration when dil. soda lye is added; and when boiled with methyl iodide, no mercaptan or methylsulphine is formed. Red needles of platinous dichlorotetramminothiocarbonate, $[Pt(NH_3)_2Cl_2]$. $[Pt(NH_3)_2CS_2]$, were also prepared. A mixture of ammonium chloroplatinite, aq. ammonia, and carbon disulphide also furnishes black crystals of platinous amminothiocarbonate, $[Pt(NH_3)_CCs_5]_0$, which is soluble in soda lye.

REFERENCES.

P. T. Cleve, Acta Upsala, 6, 5, 1866; C. Enebuske, Lunds, Arsskr., (2), 22, 2, 1887;
 B. Gerdes, Ueber die bei Elektrolyse des carbaminsauren und kohlensauren Ammons mit Wechselstrouen und Platinelektroden entstehenden Platinibasen, Leipzig, 1882; Journ. prakt. Chem., (2), 26, 269, 1882; S. G. Hedin, Om pyridinens Platinabaser, Lund, 39, 1886; K. A. Hofmann, Zeit. anorg. Chem., 14, 278, 1807; M. Peyrone, Ann. Chim. Phys., (3), 12, 193, 1844; (3), 16, 462, 1846; Liebig's Ann., 51, 1, 1844; M. Raewsky, Compt. Rend., 23, 253, 1846; 24, 1154, 1847; Ann. Chim. Phys., (3), 22, 278, 1848; J. Reiset, ib., (3), 11, 425, 1844; D. Schou, Zeit. anorg. Chem., 13, 36, 1897; L. A. Tschugaeff, ib., 137, 1, 1924; L. A. Tschugaeff and W. Chlopin, Compt. Rend., 161, 699, 1915; Zeit. anorg. Chem., 151, 253, 1926; L. A. Tschugaeff and N. Vladimiroff, Compt. Rend., 160, 840, 1915.

§ 30. The Platinum Nitrates

P. T. Cleve ¹ treated platinous tetramminosubhydroxide, $Pt_2(NH_3)_4(OH)_2$, with dil. nitric acid, and obtained a black, amorphous mass of **platinum tetramminosubnitrate**, $2PtNO_3.4NH_3$, or $Pt_2(NH_3)_4(NO_3)_2$. It explodes strongly when heated.

J. J. Berzelius said that some platinous nitrate, Pt(NO₃)₂, is formed when the greenish brown soln, of hydrated platinous oxide in dil. nitric acid is evaporated to dryness: but some platinic nitrate is formed at the same time, and this the more, the greater the excess of nitric acid employed. J. Reiset crystallized platinous tetramminonitrate, [Pt(NH₃)₄](NO₃)₂, from the filtrate obtained from mixed soln, of the corresponding chloride and silver nitrate; M. Peyrone obtained it by mixing the corresponding chloroplatinite with nitric acid, and P. T. Cleve, by mixing it with silver nitrate; and B. Gerdes, by electrolyzing with an alternating current a soln.

of ammonium carbonate with platinum electrodes, at 40° to 50°, evaporating the filtrate, precipitating with absolute alcohol, and purifying by dissolution in water and precipitation with alcohol. The salt appears in colourless needles, or monoclinic prisms, which, according to Q. Sella, and A. E. Nordenskjöld, have the axial ratios a:b:c=1.3549:1:1.0177, and $\beta=112^{\circ}$ 49', the (110)- and (101)cleavages are complete; the (001)-cleavage is incomplete. The salt begins to lose weight at 200°, and it detonates like gunpowder at higher temp. M. Peyrone observed that 100 parts of boiling water dissolve about 10 parts of salt, and J. Reiset added that the aq. soln. is neutral. B. Gerdes observed that water converts the salt into platinic hydroxynitratotetramminonitrate; chlorine, bromine, or iodine forms the corresponding platinic halogeno-nitrate, [Pt(NH₃)₄X₂](NO₃)₂; nitric acid containing nitrogen trioxide gives sky-blue octahedral crystals of platinic dinitritotetramminonitrate; and M. Peyrone, that when the salt is boiled with nitric acid and alcohol, a yellowish white, insoluble precipitate is formed, and fumes are given off which excite tears and affect the olfactory organ, and when condensed by cooling with a soln, of the undecomposed salt in nitric acid, a blue substance is obtained.

P. T. Cleve obtained **platinous nitratotriamminonitrate**, [Pt(NH₃)₃NO₃]-NO₃.H₂O, from a soln. of the corresponding chlorotriamminochloroplatinite and silver nitrate. The white, or pale yellow, crystalline mass decomposes violently when heated; and bromine forms platinic bromodinitratotriamminobromide. A. Werner stated that hydrochloric acid produces platinous chlorotriamminochloride; and potassium chloroplatinite, platinous tetramminochloroplatinite.

J. Reiset prepared platinous trans-dinitratodiammine, $[Pt(NH_3)_2(NO_3)_2]$, by the action of silver nitrate on a soln, of the trans-diiododiammine -- P. T. Cleve used the dichlorodiammine, in which case, added L. Ramberg, the product is always contaminated with chloride. The pale yellow, crystalline mass decomposes when heated. P. T. Cleve found that the salt dissolves slowly in warm water, and J. Reiset added that the aq. soln. reacts acidic. P. T. Cleve observed that chlorine, and aqua regia convert the salt into platinic tetrachlorodiammine; J. Reiset, that ammonia converts it into platinous tetramminonitrate; and P. T. Cleve, that with the vapour of hyponitrous acid, the soln, becomes blue, and forms dinitritotetrammine. L. Ramberg studied the evolution of ammonia when heated with sodium hydroxide. P. T. Cleve observed that ferric chloride is reduced to ferrous chloride; potassium ferrocyanide gives a green colouration in a few hours, and potassium ferricyanide, a brownish-red colouration; sodium hydrophosphate gives a pale yellow, crystalline precipitate; potassium chromate and dichromate, dark brown precipitates; and sodium chloroplatinate, a dark brown soln., and a precipitate of platinic tetrachlorodiammine. P. T. Cleve also prepared platinous cis-dinitratodiammine in an analogous manner. R. Uhlenhuth described platinous tetrahydroxylaminenitrate, [Pt(NH₂OH)₄](NO₃)₂, prepared in colourless needles, by the action of dil. nitric acid on the hydroxide. F. Hoffmann prepared platinous dihydroxylaminediamminonitrate, [Pt(NH₃)₂(NH₂OH)₂ [(NO₃)₂, by the action of barium nitrate on the cis-sulphate.

A. Hantzsch and F. Rosenblatt described platinous quatermethylaminonitrate $[Pt(CH_2NH_2)_4](NO_3)_2$. F. G. Mann, platinous bis- β -methyldimethylenediaminonitrate, $[Pt(CH_2NH_2)_4](NO_3)_2$. H. Wolffram, and A. Johnsen, platinous quaterethylaminenitrate, $[Pt(C_2H_5NH_2)_4](NO_3)_2$; P. T. Cleve, platinous bisethylaminediamminonitrate, $[Pt(C_2H_5NH_2)_2](NO_3)_2$, and platinous trans-bisanilinediamminonitrate, $[Pt(NH_3)_2-(C_6H_5NH_2)_2](NO_3)_2$, and platinous cis-bisanilinediamminonitrate; L. A. Tschugaeff and W. Sokoloff; platinous bispropylenediaminenitrate, $[Pt\{C_3H_4(NH_2)_2\}_2](NO_3)_2$, from a-propylenediamine; S. G. Hedin, platinous quaterpyridinenitrate, $[Pt(C_3H_5N)_4](NO_3)_2$; platinous quaterpyridinehydronitrate, $[Pt(C_5H_5N)_4](NO_3)_2$; platinous quaterpyridine, $[Pt(C_5H_5N)_4](NO_3)_2$; also platinous cis-dinitritobispyridine. L. Ramberg, platinous nitratoethylthloglycolatodiammine, $[Pt(NH_3)_2(NO_3)(CO_2.CH_2.S.C_2H_5)]$; G. T. Morgan and F. H. Burstall obtained a complex with dipyridyl.

C. Encluske described platinous quatermethylsulphinenitrate, $[Pt\{(CH_3)_2S\}_4](NO_3)_2$, and platinous quaterethylselenine, $[Pt\{(C_2H_5)_2Se\}_4](NO_3)_2$; platinous dinitratobismethylsul-

phine, $\{Pt\{(CH_3)_2S\}_2(NO_3)_2\}$; J. Petren, C. W. Blomstrand, and H. Löndahl, platinous transdinitratobisethylsulphine, $\{Pt\{(C_2H_5)_2S\}_2(NO_3)_2\}$, and platinous cis-dinitratobisethylsulphine; H. Löndahl, platinous nitratotrisethylsulphinenitrate, $\{Pt\{(C_2H_5)_2S\}_3(NO_3)\}NO_3$; C. Rudelius, platinous trans-dinitratopropylsulphine, $\{Pt\{(C_3H_7)_2S\}_2(NO_3)_2\}$, and platinous cis-dinitratopropylsulphine, $\{Pt\{(C_3H_7)_2S\}_2(NO_3)_2\}$, and platinous cis-dinitratopropylsulphine, $\{Pt\{(C_3H_7)_2S\}_2(NO_3)_2\}$, and platinous cis-dinitratopropylsulphine, $\{Pt\{(C_3H_7)_2S\}_2(NO_3)_2\}$. platinous trans-dinitratopropylsulphine, $[Pt\{(C_3H_7)_2S\}_2(NO_3)_2],$ and platinous cis-dinitratopropylsulphine; with normal, and iso-propyl; and platinous trans-hydroxynitratopropylsulphine, $[Pt\{(C_3H_7)_2S\}_2(OH)(NO_3)].$ K. A. Jensen studied the dipole moments of these salts. M. Weibull, and H. Löndahl, platinous trans-dinitratobutylsulphine, $[Pt\{(C_4H_9)_2S\}_2(NO_3)_2],$ and platinous cis-dinitratobutylsulphine, with normal and iso-butyl.; N. S. Kurnakoff, platinous quaterthiocarbamidonitrate, $[Pt\{CS(NH_2)_2\}_4|(NO_3)_2],$ J. Petren. platinous dinitratobisethylselenine, $[Pt\{(C_2H_6)_2S\}_2(NO_3)_2],$ platinous dinitratopyridineethylselenine, $[Pt\{(C_2H_6)_2S\}_2(C_2H_5)_2SC\}_2(NO_3)_2],$ and platinous dinitratoethylsulphinethylselenine, $[Pt\{(C_2H_6)_2S\}_2(C_2H_5)_2SC\}_2(NO_3)_2],$ and platinous dinitratoethylsulphine, $[Pt\{(C_2H_4)_2S\}_2(NO_3)_2],$ and L. Ramberg, platinous nitratoethylthioglycocolatoammine, $[Pt(NH_3)(CO_2,CH_2,S,C_2H_5)(NO_3)],$ K. A. Jensen studied trans- platinous dinitratobistrlethylphosphine, $[Pt\{(C_2H_6)_3\}_2(NO_3)_2],$ platinous hydroxynitratosilverphosphite, $[Pt\{(C_2H_6)_3\}(NO_3)_2]$ dinitratoethylphosphite, $[Pt\{(C_2H_6)_3\}(NO_3)_2],$ platinous hydroxynitratosilverphosphite, $[Pt\{(C_2H_6)_3\}(NO_3)_2]$

 $[Pt\{P(OC_2H_5)_3\}(NO_3)_2], \ platinous \ hydroxynitratosilverphosphite, [Pt]P(OAg)_3\}(NO_3)[OP(OH)-1]$ $\begin{aligned} &\{OAg\}_3\}\{NO_3\}_2\}, \text{ associated with } &\{Pt\{P(OAg)_3\}Cl\{OP(OH)(OAg)\}\}\}; \text{ and } platinous dinitratoethyl-phosphite,} &\{Pt\{P(OC_2H_5)_3\}(NO_3)_2\}_2\}; R. Bunsen, platinous dinitratoxycacodyl. &\{Pt\{As_2(CH_3)_4O\},NO_3\}_2\}; \text{ and } L. A. Tschugaeff and co-workers; platinous dihydrazinoctoethylcarbyl-aminonitrate,} &\{(C_2H_5,NC)_4Pt(N_2H_3)_2Pt(C_2H_5,NC)_4\}(NO_3)_2.2H_2O. \end{aligned}$

J. Petren described platinous chloronitratobisethylselenine, [Pt{(C₂H₅)₂Se}₂- $C[(NO_3)]$; platinous chloronitratoethylsulphinethylselenine, $Pt\{(C_2H_5)_2S\}-\{(C_2H_5)_2Se\}C[(NO_3)]$; L. Ramberg, platinous nitratoethylthiolacetatodiammine, $Pt(NH_3)_2(NO_3)(CO_2, CH_2, S, C_2H_5)$; platinous nitratoethylthiolacetatomonammine, $Pt(NH_3)(NO_3)(CO_2, CH_2, S, C_2H_5)$; sodium dinitratobisethylthiolacetatoplatinite, $Pt(NO_3)_2(CO_2Na.CH_2.S.C_2H_5)_2$; and platinous trans-dinitratobisethylthiolacetatodiammine, Pt(NH₃)₂(NO₃)₂(CO₂,CH₂,S,C₂H₅)₂,H₂O; and P. Schützenberger and $\text{C. Fontaine, platinous chloronitratoethylphosphate, } [Pt\{PO(OC_2H_5)_3\}Cl(NO_3)]_2.$

E. Prost obtained a basic salt platinosic oxynitrate, 3PtO₂.Pt(NO₃)₂.5H₂O, by evaporating a soln, of hydrated platinic oxide in cone, nitric acid. The red mass is insoluble in water. P. T. Cleve's products may be platinosic compounds: platinosic $[(OH)(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3(OH)]$ dihydroxyhexammino- μ -diamidonitrate, (NO₃)₄.2H₂O obtained by the action of silver nitrate on a boiling soln. of [I(NH₃)₃- $Pt(NH_2)_2Pt)NH_3)_31|(NO_3)_4$; or by crystallization from $[(NO_3)(NH_3)_3Pt(NH_2)_2-Pt(NH_3)_3(NO_3)](NO_3)_4.4H_2O$. The white, crystalline dihydrate becomes anhydrous at 100°; and it detonates like gunpowder if heated to a higher temp. It is sparingly soluble in cold water but soluble in hot water. Hydrochloric acid converts it into the dihydroxychloride; and sulphuric acid, into the dihydroxysulphate, potassium iodide and bromide, and ammonium oxalate give precipitates. If the salt be boiled with nitric acid, there is formed platinosic nitratohexammino- μ diamidonitrate, $[(NO_3)(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3(NO_3)](NO_3)_4.4H_2O$. produces the original salt. The tetrahydrate becomes anhydrous at 100°. Bromine converts it into platinosic dibromohexammino-µ-diamidonitrate, [Br(NH₃)₃-Pt(NH₂)₂Pt(NH₃)₃Br |(NO₃)₄.2H₂O; and with iodine, platinosic diiodohexammino- μ -diamidonitrate, $[I(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3I](NO_3)_4.3$ (or 4) H_2O . The pale orange crystals become anhydrous at 100°, and detonate at a higher temp. If the dibromsalt is treated with an excess of ammonia, there is formed platinosic dibromohexammino- μ -diimidonitrate, [Br(NH₃)₃Pt(NH)₂Pt(NH₃)₃Br](NO₃)₄; a boiling soln. of platinic diiodotetramminonitrate be treated with an excess of ammonia, platinosic diiodohexammino- μ -diimidonitrate, $[I(NH_3)_3Pt(NH)_2$ - $Pt(NH_3)_3I(NO_3)_4$, is formed.

J. J. Berzelius obtained a soln. of platinic nitrate, Pt(NO₃)₄, by dissolving hydrated platinic oxide in nitric acid; by decomposing a soln. of platinic sulphate with an eq. quantity of barium nitrate and filtering; and by adding potassium nitrate to a soln. of platinic chloride as long as potassium chloroplatinate is deposited -there is some doubt about the third process. When the dark brown liquid is evaporated, it forms a liquid of the consistency of honey, and it is partially soluble in water leaving as a residue a basic nitrate. L. Wöhler electrolyzed a nitric acid

soln. of platinic nitrate and obtained on the platinum anode an ochre-yellow film, soluble in hydrochloric and sulphurous acids, but insoluble in dil. nitric and sulphuric acids. It has an acidic reaction towards litmus. The deposit is a basic platinic nitrate. E. Koefoed reported platinic nitrosyltetramminohydronitrate, Pt(NH₃)₄-

 $(NO)(NO_3)_4$. HNO_3 .

B. Gerdes obtained platinic hexamminonitrate, [Pt(NII₃)₆](NO₃)₄, by the action of nitric acid on the carbonate. The colourless needles are easily soluble in water. I. I. Tscherniaeff and S. I. Chorunshenkoff studied the ionization constants. A. Werner and A. Miolati measured the electrical conductivity of platinic dinitratotetramminonitrate, [Pt(NH₃)₄(NO₃)₂](NO₃)₂. W. Odling, C. Gerhardt, and P. T. Cleve described platinic tetranitratodiammine, [Pt(NH₃)₂(NO₃)₄], prepared by the action of an excess of nitric acid on the dihydroxydinitratodiammine. The colourless or pale yellow powder consists of prisms, insoluble in cold water, sparingly soluble in hot water, and freely soluble in water acidified with nitric acid; the salt crystallizes unchanged from a cooling, hot, aq. soln. Warm hydrochloric acid, and a boiling soln, of potassium chloride form the tetrachloride. P. T. Cleve obtained platinic trihydroxynitratodiammine, [Pt(NH₃)₂(OH)₃(NO₃)], by boiling a soln, of the cis-tetrachlorodiammine with silver nitrate; and adding alcohol to the filtrate. The yellowish white, amorphous precipitate is soluble in water. C. Gerhardt, W. Odling, T. Bergman, and P. T. Cleve described platinic trans-dihydroxydinitratodiammine, [Pt(NH₃)₂(OH)₂(NO₃)₂], prepared by the action of ammonia on platinic nitrate; and by boiling the tetrachlorodiammine with silver nitrate. The yellowish-white powder, consisting of rhombic or hexagonal plates, is sparingly soluble in cold water, and soluble in hot water. The aq. soln. reddens litmus. Hydrochloric acid precipitates the tetrachloro-salt from a warm C. Gerhardt, soln.; potassium dichromate gives a cinnabar-red precipitate. W. Odling, and O. Carlgren and P. T. Cleve described platinic dihydroxytetramminonitrate, [Pt(NH₃)₄(OH)₂](NO₃)₂, to be formed by boiling the hydroxynitratotetrammine with ammonia; by the action of hydrogen dioxide on platinous tetramminonitrate; and by the action of barium nitrate on the corresponding sulphate. The white powder consists of rhombic plates. The salt detonates when heated vigorously. The salt is sparingly soluble in cold water but more soluble in hot water-O. Carlgren and P. T. Cleve said that 100 parts of cold water dissolve 0.29 part of salt, and boiling water 2.63 parts. A. Werner obtained no aquo-salt by triturating it with nitric acid. C. Gerhardt said that sulphuric acid turns the dry salt blue, and red nitrous fumes are evolved. The soln, gives white precipitates with ammonium oxalate, sodium hydrophosphate, and sodium carbonate; no precipitate is formed with ammonium chloride; and hydrochloric acid precipitates dichlorotetramminochloride. C. Gerhardt, W. Odling, C. W. Blomstrand, and P. T. Cleve described platinic hydroxynitratotetramminonitrate, $[Pt(NH_3)_4(OH)(NO_3)](NO_3)_2$, prepared by warming platinous tetramminosulphate or nitrate with conc. nitric acid; by boiling platinic diiodotetramminonitrate with silver nitrate, or, according to B. Gerdes, by the action of cold water on the dinitritotetramminonitrate. The white crystals decompose with detonation when heated. The salt is sparingly soluble in cold water, easily soluble in hot water, and less soluble in nitric acid. Hydrochloric acid slowly forms dichlorotetramminonitrate; ammonium chloride gives no precipitate; conc. sulphuric acid forms sulphatotetramminosulphate; nitric acid gives a white precipitate; neither potash lye nor aq. ammonia gives a precipitate in sat. soln.; aq. ammonia forms dihydroxytetramminonitrate; ammonium carbonate forms carbonatonitratotetramminocarbonate; ammonium oxalate gives a white precipitate; sodium phosphate forms phosphatotetramminonitrate; potassium dichromate forms dinitratotetramminedichromate; potassium chromate gives a yellow precipitate. P. T. Cleve prepared platinic dihydroxynitratotriamminonitrate, [Pt(NH₃)₃(OH)₂(NO₃)]NO₃.H₂O, from silver nitrate and platinic bromodinitratotriamminobromide. The white crystalline powder is soluble in water. F. M. Jäger studied the crystals of platinic trisethylenediaminonitrate.

 $Pten_3(NO_3)_4.2H_2O$. L. A. Tschugaeff and co-workers prepared platinic carbylaminohydrazinonitrate.

A. P. Smirnoff prepared platinic trispropylenediaminonitrate, $[Pt(C_3H_6,N_2H_4)_3](NO_3)_4$. P. T. Cleve described platinic hydroxyacetatotetramminonitrate, $[Pt(NH_3)_4(OH)(C_2H_3O_2)](NO_3)_2$; L. Ramberg, platinic bisethylthioglycolatodiamminonitrate, $[Pt(NH_3)_4(OH)(C_2H_3O_2)](NO_3)_2$, $[Pt(C_3H_5)_2](NO_3)_2$, $[Pt(C_3H_5)_2](NO_3)_2$]; J. Petren, platinic tetranitratobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2(OH)_2(NO_3)_2]$; J. Petren, platinic tetranitratobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2(OH)_2(NO_3)_2]$; and platinic dihydroxydinitratobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2(OH)_2(NO_3)_2]$;

W. J. Pope and S. J. Peachey prepared trimethyl platinic nitrate, (('H₃)₃Pt(NO₃),

by the action of warm cone, nitric acid on the corresponding hydroxide.

L. A. Tschugaeff and W. Chlopin prepared platinic hydroxypentamminonitrate, Pt(NH₃)₅(OH) |(NO₃)₃; and L. A. Tschugaeff, W. Palmaer, and L. A. Tschugaeff and N. Vladimiroff, platinic chloropentamminonitrate, [Pt(NH₃)₅Cl](NO₃)₃, in colourless prisms; and platinic hydroxypentamminonitrate, [Pt(NH₃)₅(OH)](NO₃)₃, in colourless, glistening scales. I. I. Tscherniaeff and A. N. Fedorova, platinic chloroethylenediaminotriamminonitrate, [Pten(NH₃)₃CI](NO₃)₃, by the action of nitric acid on the chloride. W. Odling, and P. T. Cleve described platinic dinitratotetramminochloride, | Pt(NH₃)₄(NO₃)₂|Cl₂, prepared by the action of hydrochloric acid on a hot soln, of the hydroxynitratotetramminonitrate. It is deposited as a monohydrate, but becomes anhydrous at 100°. It is soluble in cold water, and very soluble in hot water. Ammonium chloride gives no precipitate in aq. soln.; potassium chromate precipitates the dinitrato-chromate; silver intrate precipitates all the chloring as silver chloride; and hydrochloroplatinic acid forms platinic dinitratotetramminochloroplatinate, [Pt(NH₃)₄(NO₃)₂[PtCl₆,2H₅O₅] J. Gros, M. Raewsky, W. Odling, M. Peyrone, E. A. Hadow, A. Grünberg, and P. T. Cleve prepared platinic dichlorotetramminonitrate, | Pt(NH₃)₄Cl₂|(NO₃)₂, by warming platinous tetramminochloroplatinite or the corresponding chloride with nitric acid; P. T. Cleve, by passing chlorine into a cone, soln, of platinous tetramminonitrate; and C. Gerhardt, from the mother-liquor obtained in the preparation of hydroxychlorotetramminonitrate. The salt is sometimes called Gros' nitrate; and its constitution was discussed by J. J. Berzelius, C. Gerhardt, C. Claus, C. Weltzien, H. Kolbe, C. Grimm, C. H. D. Bödeker, H. Schiff, C. W. Blomstrand, W. Odling, A. Geuther, and C. F. Rammelsberg. The colourless or pale yellow prismatic crystals were found by C. F. Rammelsberg to be monoclinic, and to have the axial ratios a:b:c=0.7544:1:0.7190, and $\beta=109^{\circ}0'$. M. Raewsky said that the salt decrepitates when heated, and then gives off ammonium chloride, water, etc., leaving platinum behind. N. S. Kurnakoff found the index of refraction of a soln. of concentration 2.712, or sp. gr. 1.01753 at 14.1°/4° to be 1.33417, 1.33651, and 1.33848, respectively, for Li-, Na-, and Tl-light; the mol. refraction with the μ -formula is therefore 105.4 for Na-light. A. Werner and A. Miolati found the conductivity of soln. with a mol of salt in 250, 500, 1000, and 2000 litres to be, respectively, 204.2, 222.0, 233.8, and 243.7.

According to W. Odling, the salt is freely soluble in water. P. T. Cleve found that potassium iodide forms platinic diiodotetramminoiodide; J. Gros, that hydrogen sulphide precipitates very little platinum; P. T. Cleve, that sulphur dioxide forms platinous tetramminohydrosulphite; E. A. Hadow, that sodium sulphate forms the dichlorotetramminosulphate; P. T. Cleve, that an excess of aq. ammonia forms a pale yellow soln., which on evaporation furnishes a glassy mass which when heated detonates like gunpowder; J. Gros, M. Raewsky, and P. T. Cleve, that potash lye, particularly when boiling develops ammonia, leaving a soln. which, on standing, furnishes a white powder which detonates when heated; J. Gros, that calcium hydroxide acts on the solid giving very little ammonia; J. Gros, and P. T. Cleve, that alkali carbonates give a precipitate of hydroxychlorotetramminocarbonate, and ammonium carbonate, chlorocarbonatotetramminocarbonate; P. T. Cleve, that sodium phosphate precipitates phosphatotetramminochloride; P. T. Cleve, and M. Raewsky, that silver nitrate in the cold makes the soln. turbid,

and when the mixture is boiled for half an hour, about half the chloride is precipitated as silver chloride, and hydroxychlorotetramminonitrate is formed, more chloride is precipitated if the soln, be boiled for some days; and P. T. Cleve, that potassium chromate and dichromate precipitate yellow chlorochromates, and hydrochloroplatinic acid forms dichlorotetramminochloroplatinate.

L. A. Tschugaeff prepared platinic aminochlorotetramminonitrate, [Pt(NH₃)₄-

(NH₂)Cl (NO₃)₂.

M. Raewsky prepared platinic bydroxychlorotetramminonitrate, [Pt(NH₃)₄-(OH)CI](NO₃)₂, by boiling platinous tetramminochloroplatinite with an excess of nitric acid until red fumes are no longer evolved, the precipitate which forms when the liquid is cooled is dissolved in boiling water, and the soln, is evaporated over sulphuric acid in vacuo. The re-crystallization is repeated 4 times and finally the product is dried at 120°. C. Gerhardt obtained it by boiling silver nitrate with platinic dichlorotetramminochloride, E. A. Hadow used the dichlorotetramminonitrate. C. W. Blomstrand, W. O. Odling, M. Raewsky, C. Gerhardt, and E. A. Hadow discussed the constitution of what is called Raewsky's nitrate. The white powder consists of six-sided plates. When heated, water, etc., are evolved with a feeble detonation. The salt is soluble in cold water, and more easily so in Hydrochloric acid precipitates the dichlorotetramminochloride; ammonium chloride forms the chloride; sulphuric acid or alkali sulphates give no precipitate except that sodium sulphate gives a precipitate after some time; nitric acid, the chloronitratotetramminonitrate; sodium phosphate gives a crystalline precipitate; potassium hydroxide forms a vellow liquid and develops ammonia; alkali carbonates, and ammonium carbonate give a white precipitate of the carbonate; acetic, tartaric, and succinic acids give no precipitate; silver nitrate gives no precipitate with cold soln, nor with cold soln, that have been boiled for half an hour but with 10 hrs. boiling, about two-thirds of the chlorine is precipitated as silver chloride; potassium chloroplatinite gives a green crystalline precipitate; and platinous chloride, in dil. nitric acid soln., gives a copper-coloured precipitate.

P. T. Cleve described platinic chloronitratotetramminonitrate, $[Pt(NH_3)_4(NO_3)]$ Cl|(NO₃)₂, to be formed by the action of an excess of conc. nitric acid on the hydroxychlorotetramminonitrate. The crystalline powder consists of rhombic prisms which are hydrolyzed by water to hydroxychlorotetramminonitrate. P. T. Cleve obtained platinic chlorodinitratotriamminochloride, [Pt(NH₂)₃(NO₂)₂(Cl₁Cl₂ by the action of nitric acid on platinous chlorotriamminochloroplatinite. The white crystals are insoluble in water. M. Peyrone reported platinic trichloronitratodiammine, [Pt(NH₃)₂(NO₃)Cl₃], to be formed by the action of nitric acid on platinous cis-dichlorodiammine. The yellow prisms decompose at 200°; 100 grms, of a sat. aq. soln. contain 1.8 grms. of salt, and a boiling soln., 6.0 grms.; boiling hydrochloric, nitric, or oxalic acid does not dissolve the salt; but hot sulphuric acid develops chlorine; aq. ammonia dissolves the salt; ammonium oxalate, and sodium sulphate give no precipitate; the salt is insoluble in alcohol, and in ether; hot potash lye develops ammonia; and silver nitrate precipitates part of the chlorine. E. A. Hadow prepared platinic dichlorodinitratodiammine, [Pt(NII₃)₂(NO₃)₂Cl₂], in association with platinous tetramminochloroplatinite (q.v.). P. T. Cleve prepared platinic chlorodinitritonitratodiammine, [Pt(NH₃)₂(NO₂)₂(NO₃)Cl], by the action of hydrochloric acid on a conc. soln. of the dinitritodinitratodiammine. A. Wurtz reported platinic dichloroquatermethylaminenitrate, [Pt(CH₃NH₂)₄Cl₂] $(NO_3)_2$; S. G. Hedin described platinic dichloroquaterpyridinenitrate, $[Pt(C_5H_5N)_4]$ $(l_2|(NO_3)_2, \text{ and platinic dichloroquaterpyridinehydronitrate, } [Pt(C_5H_5N)_4Cl_2]$ (NO₃)₂.2HNO₃.2H₂O; and H. Löndahl, platinous chloronitratobisbutylsulphine, $Pt\{(C_4H_9)_2S\}_2(NO_3)Cl\}.$

P. T. Cleve obtained **platinic dibromotetramminonitrate**, [Pt(NH₃)₄Br₂](NO₃)₂, by dropping bromine into a conc. soln. of platinous tetramminonitrate, and then boiling the liquid; pale yellow, 4-sided plates or prisms separate from the cooling soln. The salt decomposes between 180° and 185°. It is sparingly soluble in cold

water, but freely soluble in hot water; it dissolves in aq. ammonia; ammonium bromide precipitates the red bromide; ammonium chloride precipitates the chloride; silver nitrate precipitates silver bromide in cold soln., and with boiling soln., the hydroxybromotetramminonitrate is formed; potash lye forms an orange-red soln. but no ammonia is given off, but that gas is evolved with the heated lye; alkali carbonates give a mixed precipitate; sodium phosphate precipitates phosphatotetramminobromide; and potassium ferrocyanide gives a red precipitate.

P. T. Cleve prepared platinic bromonitratotetramminonitrate, [Pt(NH₂)₄(NO₃)-Br](NO₃)₂, by the action of an excess of conc. nitric acid on the hydroxybromotetramminonitrate. The lemon-yellow powder contains rhombic prisms. The salt is hydrolyzed by water to hydroxybromotetramminonitrate. A. R. Klien studied the action of water, acids, and alkaline soln. P. T. Cleve reported platinic hydroxydinitratotriamminobromide, | Pt(NH₃)₃(NO₃)₂(OH) | Br.H₂O, by the action of the theoretical amount of silver nitrate on the bromodinitratoamminobromide. The straw-yellow scales are soluble in water, and an aq. soln. of silver nitrate precipitates part of the bromide from cold soln., and all is removed from boiling P. T. Cleve also obtained platinic bromodinitratotriamminobromide, [Pt(NH₃)₃(NO₃)₂Br|Br.H₂O, by the action of bromine on platinous nitratotriamminonitrate. The golden yellow scales are soluble in water, and silver nitrate precipitates all the bromine from boiling soln,, and forms the dihydroxynitratotriamminonitrate. L. A. Tschugaeff prepared platinic chloroamidotetramminonitrate, [Pt(NH₃)₄(NH₂)Cl](NO₃)₂; and B. E. Dixon, platinic dichloroamidotriamminonitrate, $[Pt(NH_3)_3(NH_2)Cl_2]NO_3$. S. G. Hedin described platinic dibromoquaterpyridinenitrate, $[Pt(C_5H_5N)_4Br_2](NO_3)_2$, platinic dibromoquaterpyridinehydronitrate, $[Pt(C_5H_5N)_4Br_2](NO_3)_2$. HNO₃.3H₂O, platinic bromonitratoquaterpyridinehydronitrate, $[Pt(C_5H_5N)_4Br_2](NO_3)_2$. HNO₃.3H₂O, platinic bromonitratoquaterpyridinehydronitrate pyridinehydronitrate, $[Pt(C_5H_5N)_4(NO_3)Br](NO_3)_2$. HNO₃; and platinic dibromodinitratobisethylselenine, $[Pt\{(C_2H_5)_2Se\}_2(NO_3)_2Br_2]$.

P. T. Cleve prepared **platinic diiodotetramminonitrate**, $[Pt(NH_3)_4I_2](NO_3)_2$, by the action of an excess of tincture of iodine on a soln. of platinous tetramminonitrate. The dark brown precipitate crystallizes from its hot, aq. soln. in dark brown scales. When the aq. soln. is boiled, iodine is given off, and when the soln. is shaken with mercury, mercuric iodide is formed. Ammonia converts the boiling aq. soln. into **platinum diiodohexammino-\mu-diimidonitrate**, $[I(NH_3)_3Pt(NH)_2-Pt(NH_3)_3I](NO_3)_2--vide supra$, platinosic salts. P. T. Cleve, and O. Carlgren and P. T. Cleve obtained **platinic dibromonitratotriamminoiodide**, $[Pt(NH_3)_3Br_2(NO_3)]I$, in yellowish-white needles, by gradually adding bromine to a hot soln. of platinum diiodohexammine- μ -diamidonitrate. K. Johansson, and O. Carlgren and P. T. Cleve prepared **platinum dinitratohexammino-\mu-diimidosulphate**, $[(NO_3)(NH_3)_3Pt(NH)_2-Pt(NH_3)_3(NO_3)]SO_4$, by the action of the theoretical proportion of silver nitrate

on the corresponding diiodo-sulphate-vide supra, the platinosic salts.

P. T. Cleve obtained platinic bromonitratotetramminosulphate, $[Pt(NH_3)_4(NO_3)-Br|SO_4,H_2O]$, in small rhombic prisms and plates, by the action of conc. sulphuric acid on hydroxybromotetramminonitrate; and also platinic hydroxysulphatotetramminonitrate, $[Pt(NH_3)_4(OH)(SO_4)]NO_3$, by treating the sulphate with the theoretical proportion of barium nitrate. P. T. Cleve obtained platinous chloronitratotetramminosulphate, $[Pt(NH_3)_4(NO_3)Cl|SO_4]$, by the action of conc. sulphuric acid on the hydroxychlorotetramminonitrate. The white prismatic crystals are sparingly soluble in cold water, and freely soluble in hot water; and an excess of ammonium bromide forms dibromotetramminobromide. P. T. Cleve prepared platinic carbonatonitratotetramminocarbonate, $[Pt(NH_3)_4(NO_3)(CO_3)]_2CO_3$, in white prisms or scales, by boiling an aq. soln. of the hydroxynitratotetramminonitrate with ammonium carbonate; and platinic bromocarbonatotetramminocarbonate dibromotetramminonitrate, $[Pt(NH_3)_4(CO_3)Br]_2CO_3$. $[Pt(NH_3)_4Br_2](NO_3)_2$, in eggyellow needles, by mixing boiling soln. of the dibromotetramminonitrate with sodium carbonate until the precipitate first formed redissolves, and cooling the liquid filtered hot.

P. T. Cleve, E. A. Hadow, B. Gerdes, and E. Koefoed prepared platinic dinitritotetramminonitrate, $[Pt(NH_3)_4(NO_2)_2](NO_3)_2$, by passing nitrous fumes into a soln. of platinous tetramminosulphate; by the action of sodium nitrite on a soln. of platinous tetramminonitrate; P. T. Cleve, platinic iodonitritotetramminonitrate, $[Pt(NH_3)_4(NO_2)I](NO_3)$, by the action of dil. nitric acid (1:1) on platinum diiodohexammino- μ -diimidoiodide; P. T. Cleve, platinic dinitritodinitratodiammine, $[Pt(NH_3)_2(NO_2)_2(NO_3)_2]$, by boiling platinous dinitritodiammine with nitric acid; and P. T. Cleve, platinic chlorodinitritonitratodiammine, $[Pt(NH_3)_2(NO_2)_2(NO_3)CI]$, by the action of hydrochloric acid on conc. soln. of the dinitritodinitratodiammine.

REFERENCES.

¹ T. Bergman, Opuscula Physica et chimicà, Lipsae, 2, 166, 1780; J. J. Berzelius, Lehrbuch der Chemie, Dresden, 2. ii, 947, 1828; Schweigger's Journ., 7. 55, 1812; 34. 81, 1821; Liebig's Ann., 38, 358, 1841; C. W. Blomstrand, Ber., 4, 49, 1871; Die Chemie der Jetztzeit, Heidleberg, 1869; Journ. prakt. Chem., (2), 38. 362, 1888; C. H. D. Bödeker, Lehrbuch der Chemic, Berlin, 1851; R. Bunsen, Liebig's Ann., 37, 1, 1841; 42, 14, 1842; Taylor's Scient. Mem., 3, 281, 1843; O. Carlgren and P. T. Cleve, Oefvers. Akad. Forh., 47, 305, 1890; Zeit. anorg. Chem., 1, 74, 1892; C. Claus, Bull. Acad. St. Petersburg, (2), 13, 97, 1855; Journ. prakt. Chem., (1), 63, 99, 1854; Mélanges Phys. Chim. Acad. St. Petersburg, 2, 130, 1854; Chem. Gaz., 12, 441, 1854; P. T. Cleve, Svenska Akad. Handl., 10, 9, 1872; Acta Upsala, 6, 5, 1866; Oefvers. Akad. Forh., 27, 8, 1870; B. E. Dixon, Journ. Chem. Soc., 2948, 1932; C. Enebuske, Lands Arsskr., (2), 22, 2, 1887; B. Gerdes, Ueber die bei Elektrolyse des carbaminsauren und kohlensauren Ammons mit Wechselströmen und Platinelektroden entstehenden Platinbasen, Leipzig, 1882; Journ. prakt. Chem., (2), 26, 270, 1882; C. Gerhardt, Compt. Rend. Trav. Chim., 273, 1850; Liebig's Ann., 76, 311, 1850; A. Geuther, Lehrbuch der Chemie gegründet auf die Werthigkeit der Elemente, Jena, 1870; C. Grimm, Liebig's Ann., 99. 67, 95, 1856; J. Gros, ib., 27. 245, 1838; A. Grünberg, Ann. Inst. Platine, 4. 276, 1926; Ann. Inst. Anal. Phys. Chem., 3. 466, 1926; E. A. Hadow, Journ. Chem. Soc., 19. 345, 1866; A. Hantzsch and F. Rosenblatt, Zeit. anorg. Chem., 187, 241, 1930; S. G. Hedin, Om pyridinens Platinabaser, Lund, 1886; Lunds Arsskr., (2), 22, 3, 1887; F. Hoffmann, Hydroxylaminhaltige Platinbasen, Königsberg, 1889; F. M. Jäger, Zeit. Krist., 58, 172, 1923; K. A. Jensen, Zeit. anorg. Chem., 225, 97, 115, 1935; 229, 225, 1936; S. M. Jörgensen, ib., 24, 156, 1900; K. Johansson, Liebig's Ann., 155. 204, 1870; A. Johnsen, Neues Jahrb. Min., i, 98, 1907; A. R. Klien, Ueber die Bind festigkeit der negativen Reste in den Kobalt-, Chrom- und Platinammoniaken, Zürich, 1899; E. Koefoed, Om nogle Nitroso-Platinammoniakforbindelser, Kopenhagen, 1894; H. Kolbe, Journ. prakt. Chem., (2), 2, 217, 1870; N. S. Kurnakoff, ib., (2), 50, 489, 1894; (2), 52, 515, 1895; Zeit. Kryst., 26, 626, 1896; Journ. Russ. Phys. Chem. Soc., 25, 565, 1893; H. Löndahl, Lunds Arsskr., (2), 27, 2, 1891; F. G. Mann, Journ. Chem. Soc., 1261, 1928; G. T. Morgan and F. H. Burstall. ib., 965, 1934; A. E. Nordenskjöld, Bihang Svenska Akad. Handl., 2, 2, 1874; W. Odling, Proc. Roy. Inst., 6, 176, 1872; Chem. News, 21, 269, 289, 1870; Ber., 3, 682, 1870; W. Palmaer, Ber., 22. 15, 1889; J. Petren, Om Platinaethylseleninföreningar, Lund, 1898; M. Peyrone, Ann. Chim. Phys., (3), 12, 193, 1844; (3), 16, 462, 1846; Nuovo Cimento, (1), 2, 387, 1855; Liebig's Ann., 51. 19, 1844; W. J. Pope and S. J. Peachey, Journ. Chem. Soc., 95, 571, 1909; E. Prost, Bull. Acad. Belg., (3), 11, 414, 1886; Bull. Soc. Chim., (2), 46, 157, 1886; M. Raewsky, Liebig's Ann., 68, 317. 1848; L. Ramberg, Ber., 46, 1696, 2362, 1913; Zeit. anorg. Chem., 83, 36, 1913; C. F. Rammelsberg, Handbuch der krystallographisch-physikalischen Chemie, Leipzig, 1. 376, 1881; J. Reiset, Ann. Chim. Phys., (3), 11, 421, 1844; C. Rudelius, Lunds Arsskr., (2), 22, 19, 1887; Journ. Drakt. Chem., (2), 38, 505, 1888; H. Schiff, Liebug's Ann., 123, 1, 1862; P. Schützenberger and C. Fontaine, Compt. Rend., 70, 1414, 1870; Q. Sella, Mem. Accad. Torino, (2), 17, 353, 1858; A. P. Smirnoff, Helvetica Chim. Acta, 3, 177, 1920; I. I. Tscherniaeff, Ann. Inst. Platine, 11. 55, 1933; I. I. Tscherniaeff and S. I. Chorunshenkoff, ib., 8, 83, 1931; I. I. Tscherniaeff and A. N. Fedorova, ib., 8, 73, 1931; L. A. Tschugaeff, ib., 4, 37, 1926; Zeit. anorg. Chem., 137. 140, 1924; L. A. Tschugaeff and W. Chlopin, Compt. Rend., 161, 699, 1915; L. A. Tschugaeff, M. S. Skanavi-Grigoreva and Posnjak, Ann. Inst. Platine, 4, 299, 1926; L. A. Tschugaeff and W. Sokoloff, Ber., 40, 3463, 1907; 42, 58, 1909; L. A. Tschugaeff and N. Vladimiroff, Compt. Rend., 160. 840, 1915; R. Uhlenhuth, Liebig's Ann., 311. 121, 1900; 312. 235, 1900; M. Weibull, Zeil. Kryst., 14. 139, 1889; C. Weltzien, Liebig's Ann., 97. 19, 1856; 100. 108, 1856; A. Werner,
 Zeit. anorg. Chem., 8. 158, 1895; Ber., 40. 4097, 1907; A. Werner and A. Miolati, Zeit. phys. Chem., 14. 507, 1894; L. Wöhler, Die pseudokatalytische Sauerstoffaktivierung des Platins, Karlsruhe, 1901; H. Wolffram, Ueber aethylaminhaltige Platinbasen, Königsberg, 1900; A. Wurtz, Ann. Chim. Phys., (3), 30, 462, 1850.

§ 31. Platinum Phosphates

- Dixon 1 prepared platinous hexamminohydroxyhydrophosphate. [Pt(NH₃)₆]₂(OH)₂(HPO₄)₂.2H₂O, by the action of ammonium hydrophosphate, on an ammoniacal soln, of the hexamminochloride. According to P. T. Cleve, phosphoric acid does not give a precipitate with soln, of platinous tetramminochloride, but if the soln, be first neutralized with ammonia sometimes a precipitate of platinous ammonium tetramminohydrophosphate $[Pt(NH_3)_4]NH_4(PO_4).(NH_4)_{3}$ PO₄.4(NH₄)H₅PO₄.H₂O, is formed. The powder consists of acicular crystals which melt at 100° with the loss of ammonia; and ammonia is lost when the salt is confined over sulphuric acid. If a soln, of the salt in hot water be evaporated on the waterbath until ammonia is no longer evolved, rectangular plates of [Pt(NH₃)₄]HPO₄. 2(NH₄)H₂PO₄.2H₃PO₄.9H₂O, are formed. If the addition of phosphoric acid to a neutralized soln, of platinous tetramminochloride gives no precipitate, the addition of alcohol furnishes a precipitate which, when recrystallized from hot water, consists of colourless or pale yellow plates of platinous tetramminohydrophosphate, 4|Pt(NH₂)₄|HPO_{4.5}H₂O. The crystals are stable in air, and lose 4 mols. of water at 115°. The salt is sparingly soluble in cold water, but freely soluble in hot water; browine precipitates platinic phosphatotetramminobromide from the hot soln.; and silver nitrate gives a yellow precipitate. H. Alexander precipitated platinous tetrahydroxylaminephosphate, [Pt(NH₂OH)₄]₃(PO₄)₂.3H₂O, by adding sodium hydrophosphate to a soln. of the corresponding chloride. F. Hoffmann reported platinous cis-dihydroxylaminodiamminohydrophosphate, to be formed, in pale yellow needles, when a soln, of the cis-chloride is treated with a soln, of sodium phosphate. C. Encluske obtained platinous phosphatobismethylsulphine, $[Pt\{(CH_3)_2S\}_2(PO_4)_2]_nH_2O$, as a precipitate, by adding a conc. soln. of sodium phosphate to one of the corresponding sulphate. C. W. Blomstrand also prepared platinous phosphatobisethylsulphine, $Pt\{(C_0H_5)_0S\}_0(PO_4)_0\}.4H_0O$.
- P. T. Cleve prepared platinosic dihydroxyhexammino- μ -diamidohydrophosphate, $|(OH)(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3(OH)|(HPO_4)_2$, from a soln. of the corresponding nitrate and sodium hydrophosphate, and platinosic diiodohexammino- μ -diamidohydrophosphate, $|I(NH_3)_3Pt(NH_2)_2Pt(NH_3)_3|(HPO_4)_2$, from a soln. of the corresponding nitrate and sodium hydrophosphate.
- A. V. Kroll observed that in the preparation of calcium ultraphosphates when the vapour of phosphorus pentoxide acts on platinum, a brown powder or iridescent film is produced which readily dissolves in water forming a deep blue liquid. When it is heated, phosphorus pentoxide is evolved. By analogy with silver ultraphosphate, or triphosphate, Ag₂O₃O₅—3. 22, 24, it was assumed that platinous ultraphosphate or platinous triphosphate, PtO.3P₂O₅, is formed.

According to W. H. Wahl, hydrated platinic oxide dissolves in warm phosphoric acid to form a wine-yellow, or cherry-red soln. of **platinic phosphate**. The solubility of the hydrated dioxide in the cold acid is small. The solubility is greater, the more conc. the soln. of acid. The salt has not been isolated. By adding ammonia to the soln. of hydrated platinic oxide in phosphoric acid until the reaction is alkaline, W. H. Wahl obtained a soln. of **ammonium phosphatoplatinate**, but he did not isolate the salt.

M. Raewsky prepared platinic phosphatotetramminochloride, [Pt(NH₃)₄(PO₄)]-Cl.2H₂O, by treating the hydroxychlorotetramminonitrate with sodium phosphate; and P. T. Cleve, by treating the dichlorotetramminonitrate with an excess of sodium hydrophosphate, and drying the washed product at 100° or over sulphuric acid. The pale yellow, crystalline powder, consisting of rhombohedral or rhombic plates, loses half a mol. of water at 120° to 150°. It is insoluble in cold water, and sparingly soluble in hot water. P. T. Cleve obtained platinic phosphatotetramminobromide, [Pt(NH₃)₄(PO₄)]Br.2H₂O, by treating the dibromotetramminonitrate in a similar manner. The dirty yellow powder consists of 6-sided prisms or plates. P. T. Cleve reported platinic dibromotetramminodihydrophosphate, [Pt(NH₃)₄Br₂]-

 $H_2PO_4.2H_2O$, to be formed by the action of bromine on platinous tetrammino-hydrophosphate. The lemon-yellow needles or prisms become anhydrous at 100° . The salt is soluble in hot water. B. E. Dixon prepared platinic chloroamidotetramminohydroxydihydrophosphate, $[Pt(NH_3)_4Cl(NH_2)](OH)H_2PO_4)$; platinic chloroamidotetramminobisdihydrophosphate, $[Pt(NH_3)_4Cl(NH_2)](H_2PO_4)_2$; platinic dichlorotetramminohydroxydihydrophosphate, $[Pt(NH_3)_4Cl_2](OH)(H_2PO_4)_2$. $[Pt(NH_3)_4(Pt)_4](OH)(Pt)_4$. And platinic chlorohydrophosphatoamidotriammine, $[Pt(NH_3)_4(Pt)_4](Pt)_4$. P. T. Cleve also prepared platinic phosphatotetramminonitrate, $[Pt(NH_3)_4(Pt)_4](Pt)_4$. P. T. Cleve also prepared platinic phosphatotetramminonitrate, $[Pt(NH_3)_4(Pt)_4](Pt)_4$. P. T. Cleve also prepared platinic phosphatotetramminonitrate, $[Pt(NH_3)_4(Pt)_4](Pt)_4$. The salt is sparingly soluble in water. For some phosphatoalkylsulphines, vide supra, the complex halides, etc.

R. E. Barnett prepared **platinic pyrophosphate**, PtP₂O₇, by passing the vapour of phosphorus pentoxide over spongy platinum, removing the metaphosphoric acid by water, and then washing with aqua regia until nothing further is dissolved, washing, and drying. The product is a pale greenish-yellow powder, apparently amorphous; its density is 4.856. It is stable at a red heat, darkening somewhat but regaining its original colour on cooling. In contact with a flame, however, it is readily reduced, giving off white fumes. It is insoluble in water and unaffected by aqueous acids and alkalies, although easily decomposed by fusion with sodium-potassium carbonate. It is insoluble in a solution of sodium pyrophosphate. Chlorine and bromine appear to be without action on it. It is gradually decomposed by solutions of hydrogen sulphide or alkali sulphides. P. T. Cleve obtained **platinic hydroxynitratotetram-minopyrophosphate**, [Pt(NH₃)₄(OH)(NO₃)]P₂O₇.H₂O, by adding a soln. of sodium pyrophosphate to one of the phosphatotetramminonitrate.

REFERENCES.

H. Alexander, Veber hydroxylaminhaltige Platinbasen, Königsberg, 1887; Liebig's Ann.,
 246, 246, 1888; R. E. Barnett, Chem. News, 71, 256, 1895; Journ. Chem. Soc., 67, 513, 1895;
 C. W. Blomstrand, Journ. prakt. Chem., (2), 38, 362, 1888; P. T. Cleve, Acta Upsala, 6, 5, 1866; Sevenska Akad. Handt, 7, 7, 1868; B. E. Dixon, Journ. Chem. Soc., 2306, 1931; 2948, 1932; C. Enebuske, Lunds Arsskr., (2), 22, 2, 1887; F. Hoffmann, Hydroxylaminhaltige Platinbasen, Königsberg, 1889; A. V. Kroll, Zeit. anorg. Chem., 76, 400, 1912; M. Raewsky, Compt. Rend., 47, 1153, 1847; Ann. Chim. Phys., (3), 22, 278, 1848; W. H. Wahl, Journ. Franklin Inst., 100, 70, 1890; Chem. News, 62, 33, 40, 1890.

GENERAL INDEX

(Compiled by Miss E. M. Rigby)

A

Aarite, 9. 80; 15. 5 Abichite, 9. 161 Abloclastite, 15. 9
"Abnormal" in chemistry, 1. 192 Abnormal steel, 12, 675 Abraumsalze, 2. 428 Abrazite, 6. 711 Abriachanite, 6. 913 Abschrecken, 12, 675 Absolute boiling point, 1. 165 - temperature, 1. 160 --- zero, 1. 160 Absorption coefficient, 1 527 __ X-rays, 4. 33 - mass, **4**. 34 ---- index, 3. 47 --- spectra. 4. 19 Abu-r-Raihan, 1. 42 Académie des Sciences, 1. 5 Academy of Nature's secrets, 1. 2 Acadialite, 6. 729 Acadiolite, 6. 729 Acanthite, 14. 193 Acantoide, 6. 584 Accademia del Cimento, 1. 4 dei Segreti, 1. 2 Acceleration, period of, 2, 150 Acceptor, 7. 565 Acciaio, 12. 709 al crogiuolo, 12, 711 ---- cementato, **12.** 753 — fucinato, 12. 710 — fuso, 12. 711 - soldato, 12. 710 Accumulator, 4, 827 -- light, 4. 827 Accumulators, 7. 542 lead, 7. 542 Acerado, 4. 697 Acerdèse, 12. 238 Acero cementado, 12. 753 Acetamide and hydrogen, 1. 304 Acetatosodalite, 6. 583 Acetic acid, 13, 613, 615 and hydrogen, 1. 303 - anhydride, **13**. 615 Acetohydroximic acid, 7. 306 Acetone, 13. 615 and hydrogen, 1. 304 Acetylated salts, 11. 437 Acetylene and CO₂, 6, 32 --- black, **5**. 752 ---- carbides, **5**. 847 Acetylides, 5. 845 Acetyl phosphorous acid, 8, 1005

Achandrites, 12, 523 Achirite, 6, 342 Achmatite, 6, 721 Achrematite, 9, 263; 11, 568 Achroite, 6. 741 Achtaragite, 6. 717 Achtaryndite, 6, 717 Acieular crystals, 1. 597 Acid, anhydrides, 1, 396 ---- history, 1. 382 ---- primitive, 1. 384 ---- primordial, 1. 384 --- salts, 1. 387 ---- sulfureux, 10. 187 Acide à la craic, 6, 2 -- carbonique, 6. 2 Acide hydrosulfereux, 10. 485 --- hypoazotique, 8, 530 ---- hyposulphurique, 10. 576 sulfurique, 10, 187 · tungstique, 11. 753 Acidimetry, 1. 391 Acidity, principle of, 1, 384 Acids, 1. 385 and bases neutralization, 1. 1006 - strength measuroment, 1 1004 - salts, reactions, 1, 1002 - - basicity, 1. 1002 -- -- binary, 1. 387 - theory, 1. 404 - constitution theories, 1, 402 ... Graham's theory, 1, 402 --- hydro-, 1. 386 ---- ion theory, 1, 1000 - - - Laurent and Gerhardt's theory, 1, 404 - Liebig's theory, 1. 403 - oxy-, 1. 386 - oxygen theory, 1. 385 —— source of acidity, 1. 384 ----- strength of, 1. 1003 ---- strong, 1. 981 --- ternary, 1. 387 ----- unitary theory, 1. 404 ---- weak, **1**. 981 Acidium fixum, 10. 186 ---- pingue, 1. 384 ---- volatile, 10. 186 Acier, 12. 709 ---- au creuset, 12. 710, 711 ---- cémenté, 12. 753 ---- poule, 12. 752 - soudé, **12**. 710 Aciération, 5, 893; 12, 681 Acmite, 6, 390, 913; 12, 529 ---- chromic, **6**. 914 potash, 6. 914

```
Acqua toffana, 9, 42
                                                 Aeschynite, 5, 517; 7, 3, 185, 896; 9, 839,
Acquerite, 3, 300
                                                      905; 12.5
Acquetta di Napoli, 9, 42
                                                 Æther, 1, 33
 --- Perugia, 9. 42
                                                 Acthiops apyros, 4, 943
Acrochordite, 9, 222
                                                 ---- empyros, 4. 943
Actmium, 4, 132, 600
                                                      harrisii, 4. 943
  --- -A, 4. 142
                                                 --- martialis, 13. 736, 762
     -B, 4, 143
                                                 -- -- Lemeryi, 13, 762
· - - martis, 13. 781
     -C<sub>2</sub>, 4, 144
-D, 4, 144
-X, 4, 139
                                                 --- - mercuralis, 4. 943
                                                 ---- mineralis, 4. 943
---- per se, 4. 707
     decay products, 4, 138
                                                    - turqueti, 4. 943
     emanation, 7, 889
                                                 Affini valencies, 1, 225
Actinolite, 6, 391, 405, 426; 12, 529
                                                 Affinities, neutral, 1, 213
Actinon, 7. 889
                                                 Affinity, 1, 205, 785
Actinote, 6. 405
                                                 - - and electromotive force, 1, 1012
Active charcoal, 5. 747
                                                 --- chemical, 1, 291, 1011
--- constant, 1, 296
---- deposit, 4. 97, 106
oxygen, 1, 925
                                                 --- Davy's electrical theory, 1, 398
-- ·- valency, 1. 207
                                                    - elective, 1, 223
Activity of colloids, 1. 777
                                                 -- hygroscopic, 1. 81
---- molecules, 16. 153
                                                 --- measurement, 1, 294
                                                 -- of degree, 1, 205, 223, 224
--- kind, 1, 205
--- optical, 1. 608
Adamantine spar, 5, 247
Adamas, 5. 710
                                                 ---- pressure, 1. 235
Adamite, 4, 408, 660; 5, 271; 9, 4, 181

    reciprocal, 1, 298

Adamsite, 6. 606

    residual, 8, 234

Adelforsite, 6, 738
                                                 -- -- selective chemical, 1, 785
Adelite, 9, 180
                                                 ---- tables, 1. 297
Adelpholite, 5, 517; 7, 100; 9, 839; 12.
                                                 --- units, 1. 224
                                                 Afrodite, 6, 428
Adhesion, 1, 821
                                                 Afterschörl, 6. 911
Adiabatic compression gases, 1, 863
                                                 Afwillite, 6. 359
---- elasticity, 1. 820
                                                 Agalmatolite, 6, 498, 619
--- expansion gases, 1. 863
                                                 Agate, 6. 139
Adipite, 6, 729
                                                   --- moss, 6. 139
Admiralty nickel, 15. 235
                                                 --- tree, 6. 139
Adnie, 15. 234, 235
                                                 Ageing steel, 12, 680
Adsorption, 1. 311; 13. 853
                                                 Aglaite, 6. 643
--- - electrical, 5. 801
                                                 Agnesite, 9, 704
   - Gibbs equation, 1. 854
                                                 Agnolite, 6, 900; 12, 148
- - isotherm, 5. 793
                                                 Agricola, G., 1. 51
---- equation, 5. 793
                                                 Agricolite, 6. 836; 9. 589
---- mechanism of, 5, 803
                                                 Aguilarite, 3. 300; 10. 694
--- - negative, 1. 854; 5. 803
                                                 Aguilerite, 10. 919
                                                 Aich-metal, 13. 545
---- phenomena, 13. 853
---- positive, 1. 854
                                                 Aikainite, 9. 589
                                                 Aikenite, 3. 7
Aikinite, 7. 491; 9. 693; 15. 9
Aduceradtjern, 12. 709
Adularia, 6. 662
----- habit, 6. 670
                                                 Aimatolite, 9. 220
Adularie, 6. 662
                                                 Ainalite, 7. 394
                                                 Ainolite, 9. 839
Aërolites, 12. 523
Aegirine, 6. 914
                                                 Air, 1. 61, 122, 123; 13. 607
---- augites, 6. 915
                                                 - - adsorption by solids, 8, 37
                                                 --- and CO<sub>2</sub>, 6. 32
Aegirite, 6. 914; 7. 100; 12. 529
                                                 --- composition, 8. 1
Aenigmatite, 6. 391, 845, 846; 7. 3; 12.
    529
                                                 ---- (element), 1. 32
Æolotropic crystals, 1. 610
                                                 ---- factitious, 6. 1
----- solids, 1. 820
Aerial acid, 6. 1
                                                 ---- fire, 1. 344
                                                 --- fixed, 6. 1
Aerinite, 6. 622
                                                 ---- hardening steels, 13. 634
Aero, 1. 122
                                                 ---- inflammable, 1. 125
Aerosite, 9. 294
                                                 ---- marine acid, 2. 20
Aerugite, 9. 231
                                                   — mephitic, 8. 45, 46
Aerugo nobilis, 3, 76, 270; 7, 357
                                                 ---- mixture or compound, 8. 14
Æs album, 15. 209

    - phlogisticated, 1. 125; 8. 45

- -- candidum, 7. 279
                                                ---- preservation liquid, 1. 873
---- cuprium, 3. 2
                                                 ---- pressure of, 1. 149
---- eyprium, 3. 2
```

--- properties (physical), 8. 22

GENERAL INDEA 421	
Air respirable, 1, 69	Alkali dihydrorthophosphates, 2. 858
solubility of, 1. 534; 8. 37	dimetaphosphates, 2. 867
vital, 1. 69	diphosphates, 2. 862
vitiated, 1. 344	fluophosphites, 8. 997
weight of, 1. 143	fluorides, 2. 512
Airol, 9. 630	garnets, 6 . 582
Aithalite, 12. 266	halides, 1 . 599
Akanthikonite, 6. 721	hexametaphosphate, 2. 870
Akermanite, 6, 403	lexamminotetrachloroaluminates, 5.
Akontite, 9 . 309 Akrit, 14 . 542	322 - history, 1, 382
Alabandin, 12. 387	- history, 1 . 382 hydrocarbonates, 2 . 773
Alabandina sulfurea, 12. 387	hydrorthophosphates: secondary, 2.
Alabandite, 12. 148, 387	851
Alabaster, 3. 760	hydrosulphates, 2. 677
Alabastron, 9. 339	
Alaite, 9. 715, 753	iodides, 2 . 596
Alalite, 6. 409	iodoplumbate, 7. 764
Alamosite, 7, 491	— metals binary alloys, 2. 478
Alaskaite, 7. 491; 9. 589, 693	history, 2. 419
Alaunerde naturliche, 6. 497	occurrence, 2, 423
Alavandina, 6. 910 Albata metal, 15. 210	
Albertus Magnus, 1. 46	- metaphosphate, 2, 867
Albin, 6 . 368	metry, 1, 391
Albite, 6, 662, 663; 7, 896	mild, 2. 495
—— microcline, 6. 664	—— mineral, 2, 420
twinning, 6 . 670	monosulphide, 2 . 621
Albitic acid, 6. 295	nitramidates, 8 . 269
Album sublimatum, 4, 797	— nitrates, 2. 802
Aleaparrosa verde, 14. 245	ortho-phosphates, 2. 847
Alchemy, 1. 49; 4. 147	perarsenates, 9. 147
in China, 1. 23 Alcogel, 1. 771	perphosphates, 8, 993 polysulphides, 2, 629
Alcohol, 9. 339	psilomelanes, 12 . 266
Alcohols, 1. 389	pyrophosphate, 2. 862
Aleool, 9. 339	salts, catalysis by, 1. 487
Alcosol, 1. 771	silicates, 6. 317, 324
Aldebaranium, 5, 505, 705	sulphate, 2. 656
Aleacion de plata con bismato, 9. 635	· sulphates, 10 . 255
Alexandrite, 4. 206; 5. 154, 294; 11. 177	sulphozincate, 4. 607
Alexandrolite, 6, 865	tellurosulphostannates, 11. 114
Alfenide, 15, 209, 210	tetrametaphosphates, 2, 869
Algaroth, powder of, 9, 504	tourinalines, 6, 741, 742
Algerite, 6, 763 Algiers metal, 7, 332	trimetaphosphates, 2. 869 uranous carbonate, 12. 112
Algodonite, 37; 9. 4, 62	- ·- vanadates, 9. 757
Alipite, 6 . 933; 15 . 5	vegetable, 2. 420
Alisonite, 7. 491, 796	works, 2. 735
Alite, 6. 556	Alkalies: caustic-, 2. 421
Alkahest, 1. 50	fixed-, 2 . 420
Alkali alkaline earth tungsten-bronzes, 11.	mild-, 2 . 421
751	volatile-, 2. 420
aluminium silicates, 6. 640	Alkaline earth borates, 5. 85
amalgams properties chemical, 4, 1018	
	- — perphosphates, 8, 993
antimonitomolybdates, 9, 433	silicates, 6. 347
antimonitotungstates, 9. 433	
beryllium pyrophosphate, 4. 247	vanadates, 9. 768
bicarbonates, 2. 772	
bismuth pyrophosphate, 9. 712	Alkalinity, principle of, 1. 384
borates, 5. 65	Alkalites, 6. 587
bromides, 2. 577	Alkermes minerale, 9, 513
carbides, 5. 844, 847	Al-Khazini, 1. 42
carbonates, 2. 710; 18. 608	Alkohol, 9. 339
	Alkyl metaphosphate, 8, 1025 —— molybdatoarsenites, 9, 131
eaustic, 2 . 495 chlorides, 2 . 521	stannous iodides, 7. 459
	-,

422 GENERAL INDEX	
Allactite, 9, 4, 219; 12, 148	Alum hydroxylamine, 5. 344
Allagite, 6, 897	lithia, 5 . 342
Allaktite, 9. 219	- magnesia, 4. 252; 5. 154, 354
Allanite, 4. 206; 5. 509; 6. 722	manganese, 5. 154, 354
Allemontite, 9, 69, 343	meal, 5 . 343
Allochroite, 6. 921; 12. 148	potash, 5 . 343
Alloclas, 9. 696	roche, 5 . 148
Alloclase, 9. 589	···- rock, 3. 148
Alloclasite, 9, 4, 696; 14, 424	Roman, 5. 149, 343
Allogonite, 4. 206	rubidia, 5. 345
Anopalladium, 15, 592	sesquimagnesia, 5. 354
Allophane, 6. 496	silver, 5. 341, 345
opaline, 6 . 497	soda, 5 . 342
Allotellum acid, 11. 87	—— zinc, 5. 354
Allotrimorphic crystals, 12. 876	Alumbre nativo, 5. 342
Allotropism, 4, 131	Alumen, 5. 148
- and heat of reaction, 1. 700	de Tolpha, 5, 149, 353
Allotropy, 5, 719	di Metelin, 5. 149
dynamic, 5, 723	glaciale, 5, 148
enantiomorphic, 5, 723	- Lesbium, 5, 149
enantiotropic, 10, 25	rupeum, 5. 148
	Alumian, 5, 154, 339
natural, 15. 179	Alumin, 5, 151 Alumina, 5, 150
	calorescence of, 5, 266
—— Vaucher's bearing, 4. 671	colloidal, 5. 261
Alloys: alkali metals, 2. 478	
· · · · dental, 16. 197	crystals, preparation, 5. 259
—— fusible, 9 . 630	- dispersed, 5. 261
—— heat resisting, 13. 457	fluorspar-cryolite fusibility, 5. 167
heterogeneous, 12. 871	sp gr., 5. 168
iron, 13 . 526	fusibility, 5 . 167
pyrophoric, 5 . 610	hydrated, 5 . 253
Alluaudite, 12. 463	hydrogel, 5 . 276
Allumettes chimiques, 8, 1059	hydrosol, 5 . 276
——————————————————————————————————————	· · · · magnosia-lime, 5. 295
Alluvial gold, 3, 491	preparation, 5. 254
Allylaminetrichloroplatinous acid, 16. 273	Bayer's process, 5. 254
Allylammonium bromopalladite, 15. 677	from bauxite, 5. 254
	from clays, 5. 257
ehloroiridate, 15, 770	Alumina bydratác day Renux 5 240
chloropalladite. 15 . 670 chlorosmate, 15 . 719	Alumine hydratée des Beaux, 5. 249
Almadine, 5. 295	Aluminite, 5, 353 Aluminite, 5, 154, 338
Almandina, 6. 910	siliceous, 6 . 497
Almandine, 6. 714, 910; 12. 529	Aluminium, 5, 148, 151; 7, 20
Almaosite, 6. 886	activated, 5. 206
Aloxite, 5. 271	alloys, 5. 229
Alpakka, 15, 209, 210	- aluminoxyorthosilicate, 6. 458
Alpax, 6 . 184	amalgams, 5. 240
Alpha rays or a-rays, 4, 73, 80	amminobromide, 5. 326
ionization by, 4 . 83	—— amminoiodopentamide, 5. 328
	ammonium barium oxydodecamolyb-
ments, 4. 81	date, 11. 600
Alquifol, 5, 714	carbonate, 5. 359
Alshedite, 5, 512; 6, 840; 7, 3	chromium sulphate, 11. 463
Alstonite, 3, 622, 625, 834	dithionate, 10. 593
Altaite, 7. 491; 11. 2, 56 Altered mica, 12. 148	dodecamolybdate, 11, 599
	ferric alums, 14. 349
Aluandite, 2. 426 Aludel, 4. 701	hydroxysulphate, 5. 353 phosphate, 5. 367
—— bath, 4. 701	selenate, 10. 869
furnace, 4. 701	silicododecatungstate, 6. 880
Alum, 5. 154; 13. 615	
	analytical reactions, 5. 221
ammonium ferric, 14. 337	and thallium, 5. 429
—— basic, 5 . 352	arsenate, 9. 185
cæsia, 5 . 345	arsenide, 9. 67
—— cubic, 5. 345	arsenite, 9. 128
—— ferric ammonium, 14. 337	atom decomposition, 5. 228
	-

Aluminium atom electronic structure, 5.	Aluminium copper decahydroxyortho-
228	arsenate, 9, 162
atomic number, 5. 228	
weight, 5. 227	
azide, 8. 352 ·	chromium alloys, 15 . 245
barium alloys, 5. 235	iron alloys, 15. 313
oxydodecamolybdate, 11. 600	magnesium alloys, 15. 231
phosphate, 5. 370	pentadecahydroxypentarsenate,
benzene chloromercurite, 4. 811	9. 186
-beryllium alloys, 5. 235	phosphate, 5. 368
bismuth alloys, 9. 638	tetroxydiarsenate, 9. 186
—— borate, 5. 102	decachlorotellurite, 11. 103
—— borocarbide, 5 . 13, 872	(deca) hydroxytrisulphate, 5. 338
borotungstate, 5. 110	(di) barium dimesotrisilicate, 6. 758
brasses, 5 . 240	mesopentasilicate, 6. 766
· bromate, 2. 353	orthotrisilicate, 6. 751
bromide, 5 . 324	beryllium hexametasilicate, 6.
—— hexahydrated, 5. 324	804
—— pentahydrated, 5 . 325	- · · · · calcium aluminohydroxytriortho-
bromostannate, 7. 456	silicate, 6. 722
bronze, 5 . 222, 229	dihydropentamesodisilicate,
cadmium alloys, 5 . 240	6. 748
cæsium selenate, 10 . 869	dihydrotriorthosilicate, 6.
sulphate, 5 . 345	718
calcium alloys, 5. 234	dimanganous tetrahydro-
aluminodiorthosilicate, 6 . 697	hexorthosilicate, 6. 896
hemipentahydrated, 6, 710	dimesotrisilicate, 6. 755,
· tetrahydrated, 6. 712	761
and sodium fluorides, 5. 308	ferrous boratotetrortho silicate,
carbonate, 5. 359	6. 911
—————— decahydroxytriarsenate, 9. 187	hexametasilicate, 6. 733
ferric chromium silicate, 6, 866	magnesium dihydrotri-
ferrous manganese boratosili-	orthosilicate, 6, 718
cate, 6. 911	- manganous boratotetr-
——————————————————————————————————————	orthosilicate, 6, 911
potassium trimesodisilicate, 6.	orthosilicate, 6. 715
746	orthotrisilicate, 6, 735, 738,
sulphatophosphate, 5, 370	749
tetrahydrometasilicate, 6. 707	pentametasilicate, 6. 747
uranyl silicate, 6. 883	tetrametasilicate, 6. 729,
carbide, 5 . 846, 870	730, 739
carbonate, 5. 358	triorthodisiliente, 6. 747
carbonyl, 5. 952	triorthosilicate, 6. 752
chlorate, 2. 353	
chloride, 5. 311	
enneahydrated, 5, 315	hthium orthosilicate, 6. 569
hexahydrated, 5. 314 preparation, 5. 312	pentametasilicate, 6. 641
proparation, J. 312	magnesium triorthosilicate, 6.
——————————————————————————————————————	815
	manganese tetrahydroxydimeta-
chlorobromide, 5. 326	silicate, 6. 900
hexahydrated, 5 . 326	triorthosilicate, 6. 901
chloropalladite, 15. 670	
chloroplatinate, 16. 329	disilicate, 6, 747
chloroplatinite, 16. 283	dihydropentamesodisilicate,
chlorostannate, 7. 449	6. 748
chlorosulphate, 5. 319, 335	sodium dihydropentamesodisili-
chromide, 11. 172	cate, 6 . 748
chromite, 11. 200	orthotrisilicate, 6. 653
	pentametasilicate, 6. 747
—— molybdenum-iron alloys, 18. 626	tetrametasilicate, 6. 734
steels, 13. 616	triorthosilicate, 6. 580, 752
— cobalt alloys, 14. 534	strontium dimesotrisilicate, 6. 758
pentafluoride, 14. 607	diamidodiphosphate, 8. 711
——————————————————————————————————————	—— diamminochloride, 5. 320
— cobaltic oxide, 14. 586	diboride, 5 . 25
colloidal, 5. 170	—— dihydrosulphate trihydrated, 5. 336
—— copper alloys, 5 . 229	—— dihydroxydisulphate, 5. 338
——————————————————————————————————————	dihydroxyhydromesosilicate, 6. 652
<i>y -</i> /	,

Aluminium dimetasilicate ammonium, 6.	Aluminium hydroselenite monohydrate,
645 lithium, 6 . 640	10. 830 hydroxide, 5. 277
(dioxy) calcium diorthosilicate, 6. 713	———— monohydrated, 5. 281
- dioxychromate, 11. 284	sesquihydrated, 5. 281
dioxyhydroxide, 5. 281	—— hydroxides, 5 . 273
dioxymetasilicate, 6. 455	hydroxychloride, 5 . 277
—— disulphotrichloride, 10. 643	hydroxydichloride, 5. 318
dithionate, 10 . 593	hydroxylamine sulphate, 5. 345
ditritarsenide, 5. 213 (ditrita)titanide, 7. 21	hydroxyphosphite, 8, 917 hypochlorite, 2, 275
(tetrita)titanide, 7. 21	- hyponitrite, 8. 416
(trita)titanide, 7. 21	hypophosphate, 8. 938
ditungstide, 11. 762	hypophosphite, 8. 886
dodecaiodotriplumbite, 7. 778	icosiumminoiodide, 5. 328
- dodecanitritotriplatinate, 8, 520	- impurities in, 5, 169
eka, 1. 261; 5. 373 electrodeposition, 5. 163, 164, 165	—— iodate, 2. 353 —— iodide, 5. 327
electrothermic process, 5, 168	ammoniobasie, 8 . 262
enneamminochloride, 5. 319	hexahydrated, '5. 327
epidote, 6 . 722	pentadecahydrated, 5. 327
—— excited, 5 . 206	iodoamide, 8 . 262
ferrate, 13 . 936	iodoantimonite, 9. 502
ferrie calcium oxyphosphate, 14. 411	iodobismuthite, 9. 677
	iodoimidotriamide, 5 . 328 iron alloy, 13 . 549
oxyphosphate, 14. 411	cobalt alloys, 14. 553
ferrite, 13. 919	manganese alloys, 13. 667
— feirous bromide, 14. 121	
	isotopes, 5 . 228
hydrosulphate, 14. 299	lead oxydodecamolybdate, 11, 600
	lithium dimesosilicate, 6. 652 heptitabromorthosilicate, 6. 573
sulphate, 14. 299	mesotrisilicate, 6. 641, 668
sulphatophosphate, 14 . 396	orthosilicate, 6 . 569
sulphide, 14. 168	hydrated, 6 . 573
ferroxytetraluminyldiorthosilicate, 6.	paratetrasilicate, 6. 641
909	phosphate, 5. 367
fluoaluminate, 14. 3	—— sulphate, 5. 342 —— - tetrametasilicate, 6 . 641
fluoborate hydrated, 5. 128 fluoride, 5. 300	magnesium alloys, 5. 235
hemiheptahydrated, 5. 302	aluminatorthosilicate, 6, 812
monohydrated, 5. 302	carbonate, 5 . 359
trihydrated, 5 . 302	copper alloys, 5. 237
fluosificide, 6 . 954	ferrous sulphate, 14 . 300
	iron alloys, 13. 557 manganous sulphate, 12. 424
	manganous surphace, 12. 424 mesopentasilicate, 6. 826
hemitristannide, 7. 383	· · · · · — nickel alloys, 15. 231
hemizirconide, 7. 116	copper alloys, 15 . 231
henetricontabromopentantimonate, 9.	pentaluminatorthosilicate, 6. 813
497	——————————————————————————————————————
heptaluminylborohydroxytriorthosili-	silicates, 6 . 808
cate, 6. 462 hexabromoantimonite, 9. 496	manganese alloys, 12. 208
- hexabromobismuthite, 9, 673	vanadatosilicate, 6. 836
hexaiodohexanitritotriplatinite, 8. 523	manganic trisulphate, 12. 430
hexammineiodide, 8. 262	—— manganous bromide, 12. 383
hexamminoiodide, 5. 328	phosphate, 12. 455
- hexamminotriiodide, 5. 328 - hexantinyrinopermanganate 12 335	
hexantipyrinopermanganate, 12. 335 hexaseleniti, 10. 830	sulphide, 12 . 397 mercury alloys, 5 . 240
hexasulphoheptachloride, 10. 643	metachloroantimonate, 9. 491
history, 5 . 148	—— metacolumbate, 9. 866
hydroarsenate, 9. 186	metantimonate, 9. 457
hydrophosphate, 5. 365	metaphosphate, 5. 362, 365
hydronyronhornhota 5 365	metasilicate, 6. 475
hydropyrophosphate, 5. 365 hydroselenite, 10. 829	metavanadate, 9. 775
nymosomo, iv. 629	—— molybdate, 11. 563

Aluminium molybdenum alloys, 11. 523	Aluminium phosphite, 8, 917
cobalt alloys, 14. 541	phosphorylhexachloride, 8, 1026
—— nickel alloys, 15. 247	phosphoryltribromotrichloride, 8. 1026
	—— platinum alloys, 16 , 209
monophosphide, 8 . 846	
monoxyorthosilicate, 6. 458	
nickel alloys, 15 . 223	potassium alloys, 5. 229
bromde, 15 . 429	amide, 8 . 262
chromium alloys, 15. 245	carbonate, 5 . 359
	decamolybdate, 11. 598
steel, 15, 329	dimetasilicate, 6 . 648
- · · · copper alloys, 15. 225	dodecamolybdate, 11 . 599
magnesium alloys, 15 . 314	ferric alums, 14 . 349
· manganese-copper alloys, 15. 255	hydroxysulphate, 5 , 353
pentafluoride, 15 . 405	mesotrisilicate, 6. 665
	nitrate, 5. 361
	· · orthosilicate, 6 . 571
sulphate, 15. 476	hydrated, 6, 574
	selenate, 10 , 869
tin alloys, 15. 235	
nickelous hydrosulphate, 15 , 476 - nitrate, 5 , 359	
dihydrate, 5 . 360	sulphatoselenate, 10 . 930 tellurate, 11 . 96
cnneahydrate, 5 . 360	triorthoarsenate, 9. 186
- hexahydrate, 5 . 360	- preparation, 5, 160
octohydrate, 5. 360	production, 5, 152, 160
pentadecahydrate, 5. 360	—— properties, chemical, 5, 202
nitride, 8. 111	physical, 5. 173
nitrite, 8 . 495	- purification, 5. 169
- nitrosyl chloride, 8. 617	pyroarsenate, 9. 186
hexachloride, 8 . 438	pyrophosphate, 5 . 362, 365
occurrence, 5. 153	rubidium selenate, 10. 869
octobromoplumbite, 7. 753	sulphate, 5 . 315
octobromostannite, 7, 454	selenate, 10. 869
octochlorostannite, 7. 434	selenide, 10. 781
octodecamminoiodide, 8. 262	- selenite, 10, 829
- octohydroxytrisulphite, 10, 301	trihydrate, 10. 829
octosulphoheptachloride, 10. 643	silicates, 6 , 453 alkali, 6 , 640
octylaluminylhydroxytriorthosilicate, 6. 462	- hydrated, 6. 467
orthoantimonate, 9 . 457	silicide, 6. 183
orthoarenate, 9. 186	- silicododecarnolybdate, 6. 871
octohydrate, 9, 186	silicododecatungstate, 6. 880
orthophosphate, 5. 362	- silicon cobalt alloys, 14. 536
colloidal, 5. 363	iron alloys, 13 . 570
orthosilicate, 6. 454	nickel alloys, 15 . 231
oxide properties, chemical, 5. 269	
physical, 5. 263	alloys, 5. 232
(vide alumina), 5. 253	dioxymolybdate, 11, 600
oxides occurrence, 5. 247	
oxychlorides, 5. 318	oxydodecamolybdate, 11. 600
oxydichromate, 11, 285, 342	
palladium alloys, 15 . 649	
paratungstate, 11. 819	
passivity, 5. 205	sodium alloys, 5 . 229
pentabromostannite, 7, 454	amide, 8. 262
—— pentachloride, 7. 434 —— pentachlorostannate, 7. 434	arsenitosilicate, 6. 826
pentaemorostamate, 7, 404 pentaemorostamate, 5, 320	calcium sulphatotriorthosilicate,
pentaninincemorks, 2. 525 pentasulphatodiplumbite, 7. 821	6. 584
pentasuphatodiffulnote, 7. 021	carbonate, 5 . 359
pentitamanganeside, 12. 210	chlorotriorthosilicate, 6. 582
pentitatelluride, 11. 54	chromatosilicate, 6. 866
pentitatriphosphide, 8. 846	dimetasilicate, 6 , 643, 644, 645
perchlorate, 2. 401	
periodate, 2 . 415	fluoarsenate, 9. 259
permanganite, 12. 279	hydrotrimetasilicate, 6 . 651
—— peroxide, 5. 273, 283	
phosphate, 5 . 362	————— hydroxysulphate, 5 353

OEMBIO	II INDEA
Aluminium-sodium orthosilicate, 6. 570	Aluminium triamminochloride, 5. 320
——————————————————————————————————————	triarsenotrichloride, 9. 244
phosphate, 5. 367	tribromide, 9. 249
pyrophosphate, 5. 367	—— trichromide, 11. 172
selenate, 10 . 869	trihydroxide, 5. 275
silicomolybdate, 6. 871	trihydroxydiphosphate, 5. 366
	trihydroxyphosphate, 5. 366
	- trihydroxytetranitritodiplatinite, 8.
tricarbonatotriorthosilicate, 6.	520
triorthoarsenate, 9. 186	—— triiodohexarsenite, 9. 257 —— trimanganeside, 12. 211
trisulphotriorthosilicate, 6. 587	- trioxyenneaselenite, 10. 829
solubility of hydrogen, 1. 306	———— heptahydrate, 10. 829
stannide, 7. 383	trisulphotrichloride, 10. 643
	tritadiarsenide, 9. 68
strontium pyrophosphate, 5. 370	—— tritadimanganeside, 12. 210
subchloride, 5. 311	tritaheptaphosphide, 8. 846
subfluoride, 5. 301	tritamanganeside, 12. 210
	tritaphosphide, 8. 846
subsulphate basic, 5, 339	tritatungstide, 11. 742
	tritetritazirconide, 7. 117 trithionate, 10. 609
	- triuranate, 12. 67
——————————————————————————————————————	tungstate, 11. 789
dihydrated, 5. 334	octohydrate, 11. 789
dodecahydrated, 5. 333	- — tungsten cobalt alloys, 14. 542
heptacosihydrated, 5. 333	uranate, 12. 64
heptadecahydrated, 5. 333	uses, 5 . 222
hexadecallydrate, 5. 332	- — vanadates, 9. 775
hexahydrated, 5. 333	wool, 5. 170
octodecahydrate, 5 . 333 trihydrated, 5 . 333	X-radiogram, 1. 642
acid, 5. 333	
	magnesium alloys, 5. 240
sulphitoiodide, 5. 327	nickel alloys, 15. 231
sulphodecachloride, 10. 647	phosphate, 5. 371
sulphoheptachloride, 10. 647	sulphate, 5 . 354
sulphomolybdate, 11. 652	—— zirconium, 7. 116
sulphopentachloride, 10. 643	zoisite, 6 . 720
sulphosilicate, 6 . 987	Aluminolites, 5. 249
- sulphotungstate, 11 . 859 sulphuryl chloride, 10 . 231, 673	colloidal, 5. 249 crystalline, 5. 249
sulphuryltrichloride, 10. 691	Aluminosilicates, 6. 304
tantalate, 9. 904	constitution, 6. 311
tellurate, 11. 96	Aluminosulphuric acid, 5. 336
telluride, 11. 53	Aluminothermic reactions, 5. 218
tellurite, 11. 81	Aluminotriorthosilicates, 6. 605
(tetra) decahydroxysulphate, 5. 337	Aluminotungstates, 11. 789
tetrahydrosulphate, 5. 336	Aluminous azide, 8. 352
tetrahydroxysulphate, 5. 338	Aluminovanadium, 9. 727
tetrahydroxysulphite, 10. 301	Aluminum, 5. 151
tetraselenite, 10. 829 tetrasulphoheptachloride, 10. 643	Aluminyl aluminium (di) magnesium ortho- pentasilicate, 6. 809
tetrasulphotrichloride, 10. 643	—— (di) difluosilicate, 6 . 561
tetratritaselenide, 10. 781	potassium orthosilicate, 6. 567
tetritamanganeside, 12. 210	sodium orthosilicate, 6. 567
tetritastannide, 7. 383	(di)aluminyl sodium antimonate, 9. 456
—— tetritatungstide, 11. 742	Alumium, 5. 151
——— thallous selenate, 10. 871	Alumochalcosiderite, 14. 411
—— sulphate, 5. 467	Alumogel, 5. 275
thiohypophosphate, 8, 1064	Alums, 5. 336, 341
thiophosphite, 8, 1062	—— pseudo, 5. 356
thiopyrophosphate, 8. 1070 thiosulphate, 10. 549	—— X-radiograms, 1. 642 Alun de Rome, 5. 353
thosulphate, 10. 549 titanate, 7. 56	Alundum, 5. 271
— (tri) lithium hexahydroxydimetasili-	Alunite, 2. 657; 5. 154, 257, 353; 14. 344
cate, 6 . 607	
potassium trimesotrisilicate, 6.	soda, 5, 353
665	—— zinc, 5. 154

GENERAL INDEX 427	
Alunogen, 5, 154, 333	Amidotetrimidopentaphosphoric acid, 8.
Alunogene, 5. 333	Amidotetrimidopentaphosphoric acid, 8.
Alurgite, 6. 608; 12. 148	Amidothioimidosulphonie acid, 8. 635
Aluschlite, 6, 472	Amidothiophosphorie acid, 8. 725
Alutiæ, 16 . l	Amines, 8. 252
Alvite, 4. 206; 5. 512; 7. 100, 167	μ -amino-salt, 14. 672
Alzene, 5. 239	Aminoacetal, 16. 272
Amalgam, 3., 300; 4, 696, 1024 —— ammonium, 4, 1005	Aminotrisulphonates, 8, 667
—— gold, 3 . 494 ; 4 . 698	Ammines, 14. 690 constitution, 8. 228
hydrogen, 4. 753	metal, 8. 243
—— lead, 1. 3	Ammino compounds, 4, 845
—— palladium hydrosol, 15, 649	Amminomonimidotetraphosphoric acid, 8.
silver, 4 . 696	715
	Ammiolite, 9. 343, 437
Amalgamation, 3, 303	Ammonal, 5, 219
	Ammonia, 11. 368; 13. 608, 612, 615 —— adsorption by solids, 8. 200
process gold, 3. 495	alum, 5. 344; 13. 609
Amalgams, 4. 696	alunite, 5. 353
alkali metals, 4, 1010	analytical reactions, 8. 224
—— alkaline earth metals, 4. 1031	- effect on catalysis, 1, 487
—— aluminium, 5. 240	gallic alum, 5. 385
dental, 4. 1027; 7. 370	hemihydrate, 8 . 194
Amaranite, 12, 529	hexamminochloride, 8. 216
Amarantite, 14, 328, 332 Amarillite, 14, 346	history, 8. 144
Amarillo de barita, 11, 273	—— hydrate, 8. 194 —— hydroxypentachlorosmate, 15. 720
di estronciana, 11. 271	in air, 8 . 13
—— ultrames, 11. 273	indium alum, 5 . 404
Amazon stone, 6. 663	liquid, analogy with water, 8. 276
Amazonite, 6 . 662, 663	ionization, 8. 279
Amberoid, 15. 208	metal, 8. 243
Amblygonite, 2, 426; 5, 155, 367; 8, 733	occurrence, 8. 146
Amblystegite, 6 . 392 Amesite, 6 . 622; 12 . 529	oxidation, 8. 207 pectolite, 6. 367
Amethyst, 6, 138	- physiological action, 8. 205
Oriental, 5 . 247	preparation, 8. 148
Amethystine, 6. 138	- from gas-liquor, 8. 166
Amethystzontes, 6. 715	Haber's process, 8. 158
Amianthus, 6, 422, 425	Serpek's process, 8, 112
Amicrons, 1. 770	properties, chemical, 8, 205
Amides, 8, 229, 252	physical, 8 . 173 ——rate absorption, 8 . 196
Amidide, 8. 229 Amidochromic acid, 8. 266	Serpek's process, 8. 112
Amidodiphosphoric acid, 8. 709	solubility (various solvents), 8. 197
Amidogen, 8. 229	(water), 8. 194
—— hydride, 8 . 229	— substituted, 8. 252
Amidoguanidinium-trichloropalladite, 15.	—— turpeth, 4. 788, 979
671	Ammoniacum, 2. 781
Amidohexamidoheptaphosphoric acid, 8. 719	Ammoniates, metal, 8. 243 Ammoniobasic compounds, 4. 786, 845
Amidoheximidoheptaphosphoric acid, 8.	Ammoniojarosite, 12. 529; 14. 328, 343, 344
716	Ammonium, 2. 781; 4. 1007
Amidopentimidohexaphosphoric acid, 8.719	—— aluminate, 5. 289
Amidopersulphonic acid, 8. 670	aluminium carbonate, 5. 359
(di)amidophosphoric acid, 8. 704	chromium sulphate, 11. 463
Amidophosphorous acids, 8. 704	dimetasilicate, 6 . 645
(di)amidophosphorous acid, 8, 704	dedeesmelyhelete 41 500
(mon)amidophosphorous acid, 8, 704 Amidopropionic acid and hydrogen, 1, 304	—— —— dodecamolybdate, 11. 599 —— —— ferric alums, 14. 349
Amidopyrophosphoric acid, 8, 709	hydroxysulphate, 5. 353
Amidosulphinates, 8. 632, 634	phosphate, 5. 367
Amidosulphinic acid, 8. 632, 633	selenate, 10. 869
Amidosulphites, 8. 640	silicododecatungstate, 6. 880
Amidosulphonates, 8. 637, 640	sulphate, 5. 344
Amidosulphonic acid, 8. 637	—— aluminotungstate, 11. 789
Amidosulphurous acid, 8, 633	
Amidosulphyryl chloride, 8. 662 —— phosphorous tetrachloride, 8. 662	amidochromate, 8. 266 amidodiphosphate, 8. 716
phosphorous vonachiorido, o. von	without working of 110

Ammonium amidoselenite, 8, 636	Ammonium herium diphoenhetostovene
amidosulphinate, 8. 634	Ammonium barium diphosphatoctovana-
amidosulphonate, 8. 640	datotridecamolybdate, 9. 834
amidothioimidosulphonate, 8. 636	donnalyhdata 9 824
- amminochlorotantalate, 9. 920	decamolybdate, 9, 834
	decamolybdate, 9. 834
amminoiodocuprite, 8. 205	diphosphatododecavanadato-
	octomolybdate, 9. 835
amminosulphides, 8 . 218 amminotrichloroplatinite, 16 . 267	
antimonatomolybdate, 9. 459	decamolybdate, 9. 834 —— diphosphatotetradecavanadate-
	decamolybdate, 9. 835
antimonitomolybdate, 9. 433	divanadatotrimolybdate, 9. 784
antimonitotungstates, 9, 433	dodecavanadatohexatriconta-
antimony sulphate, 9. 582	molybdate, 9. 784
aquochloroperiridite, 15. 765	hydroxynitrilo-iso-disul-
aquopentafluoride, 11. 363	phonate, 8. 679
argentofluoride, 3. 390	icosihydroquiniusdiarsenito-
arsenates, 9. 149	dimolybdate, 9. 131
arsenatoctomolybdate, 9, 209	imidodisulphonate, 8, 655
arsenatoctovanadatohenicositung-	imidosulphinite, 8. 646
state, 9. 202	iridium disulphate, 15. 786
arsenatoctovanadatopentacosimolyb-	
date, 9. 202	nitrilotrisulphonate, 8. 669
arsenatodecavanadatoctodecamolyb-	paramolybdate, 11. 586
date, 9. 202	phosphatomolybdate, 11. 663
arsenatodecavanadatohenamolybdate,	trimetaphosphate, 2. 877; 3. 894
9. 202	—— beryllium carbonate, 4. 244
arsenatodecavanadatoheptadecamo-	ferrous fluosulphate, 14. 297
lybdate, 9 . 202	fluoride, 4. 230
arsenatodecavanadatopentadecamo-	hexaorthoarsenate, 9. 175
lybdate, 9 . 202	manganous fluosulphate, 12. 422
arsenatodecavanadatotridecamolyb-	nickelous fluosulphate, 15. 475
date, 9. 202	
arsenatodivanadate, 9. 200	pyrophosphate, 4. 247
arsenatododecavanadatodecamolyb-	sulphate, 4. 241
date, 9. 202	tetraorthoarsenate, 9. 175
arsenatododecavanadatopentadeca-	trisulphite, 10. 285
molybdate, 9. 202	biniodide, 2 . 233
arsenatohexavanadatoicosimolybdate,	—— bismuth decasulphodithiosulphate, 10.
9 . 202	molybdate, 11. 570
arsenatotetrachromate, 9. 204	
arsenatotetradecavanadatohena-	——————————————————————————————————————
molybdate, 9. 202	tungstate, 11. 795
arsenatotrimolybdate, 9. 209	bismuthotungstate, 9. 651
—— arsenatavanadatotungstate, 9. 202,	bispyridinium chloroperiridite, 15. 763
215	bisulphate, 2. 703
arsenatovanaditovanadatotungstate,	—— blue perchromate, 11. 357
9. 202	borates, 5. 65, 79
arsenatovanadylvanadates, 9. 201	—— boratofluoride, 5. 125
arsenitoarsenatotungstate, 9. 214	bromate, 2. 338
arsenitomolybdate, 9. 131	—— bromide, 2. 590
arsenitotungstate, 9. 132	ammines, 2. 594
arsenitovanaditotungstate, 9. 132	bromoaurate, 8. 607
aurosic tetrasulphite, 10. 280	bromobisarsenite, 9. 256
aurous sulphite, 10. 280	bromocarnallite, 4. 314
triamminodisulphite, 10. 280	bromocuprate, 3. 200
azide, 8. 344	- bromodiiodoplumbite, 7, 773
azidodithiocarbonate, 8. 339	
barium aluminium oxydodecamolyb-	bromoiodide, 2. 595, 619
date, 11. 600	
chromate, 11. 274	bromopalladate, 15, 678
	bromopaliadite, 15, 677
cobaltic decamolybdate, 11. 575	bromoperiridite, 15, 775
octamminohexasulphite, 10.	hemihydrate, 15, 775
315 grandimeterhoenhete 8 803	bromoperruthenite, 15. 538
dimetaphosphate, 3. 893 diphosphatoctovanadatotetra-	
decamolybdate, 9. 834	bromoplumbite, 7. 751
accountry receives as OUT	water control of the total

	44 507
Ammonium bromopyroselenite, 10, 913	Ammonium cerous molybdate, 11, 587
bromoruthenate, 15, 538	——————————————————————————————————————
bromostannutes 7 456	
bromostannates, 7. 456 bromotitanate, 7. 88	tungstate, 11. 790
eadmium amminoquadrichromate, 11.	chabazite, 6 . 733
280	chlorate, 2. 338
—— —— diamminochromate, 11. 280	chloride, 2. 561; 13. 609, 615
diamminomolybdate, 11. 563	and hydrogen, 1, 302
diamminoxytetranitrite, 8, 490	BaCl ₂ -CuCl ₂ -H ₂ O, 3 . 716, 720
dihydroxyquadrichromate, 11.	preparation, 2, 562
280	
	uses, 2. 574
dithiosulphate, 10. 566	
- hexachloride, 4, 553	chloroaquoperruthenite, 15. 532
nitrate, 4. 656	chloroarsenite, 9. 255
paramolybdate, 11. 587	chloroaurates, 3, 594
paratungstate, 11, 819	- chlorobromide, 2, 595
pentachloride, 4, 554	
phosphate, 4. 661 phosphatotetritaenneamolyb-	chlorocuprate, 3. 185
date, 11. 670	chlorodiiodoplumbite, 7. 773
phosphatotrimolybdate, 11. 668	chlorodithionate, 10. 583
selenate, 10. 867	chloroiodide, 2. 619
dihydrate, 10. 867	ehloroiodobismuthite, 9, 682
hexahydrate, 10. 867	chloroiridate, 15. 769
sulphate, 4. 636	
hexahydrated, 4, 636	chloropalladate, 15. 672 chloropalladite, 15. 669
sulphite, 10. 287	chloroperiridite, 15. 764
	monohydrate, 15. 764
monohydrated, 10. 547	chloroperosmite, 15. 717
tribromide, 4. 571	chloroperrhodite, 15. 579
trichloride, 4. 553	chloroperruthenite, 15, 529
tungsten tetramminoennea-	chloroplatinate, 16. 316 chloroplatinite, 16. 278
chloride, 11. 842	chloroplumbate, 7. 734
casium, disulphitotetrammino-	chloroplumbites, 7, 725
cobaltate—cis-, 10. 317 —— calcium arsenate, 9. 172	——— chloropyroselenite, 10. 913
	—— chloropyrosulphonate, 10. 681
copper tetrasulphate, 3. 811	chlororuthenate, 15. 534
cupric tetrasulphate, 3. 813	chlororuthenite, 15 . 525
———— dimetaphosphate, 3. 894	chlorosmate, 15. 719 chlorostannate, 7. 447
disulphate, 3. 812	chlorotetrabromodiplumbite, 7. 751
hexasulphate, 3, 812	chlorotitanate, 7. 85
hydroxynitrilodisulphonate, 8. 677	chromate, 11. 241
imidodisulphonate, 8. 654	- chromatopentamminobischromate, 11.
nickel nitrite, 8, 511	311
paramolybdate, 11. 586	—— chromatosulphate, 11. 450 —— chromic — chloropentaquodichlorosul-
phosphate, 3. 878	chromic chloropentaquodichiorosui- phate, 11, 468
phosphatohemiheptatungstate,	chloropentaquodisulphate, 11.
11. 873	468
——————————————————————————————————————	chloropentaquosulphatohydro-
carbonate, 13. 613	sulphate, 11. 468
acid, 2. 787	dichloro-hydrosulphatotrisul-
half acid, 2. 786	phate, 11. 469 ————————————————————————————————————
preparation, 2. 782	phate, 11. 469
properties, 2. 784	dichlorotetraquodisulphate, 11.
carbonates, 2. 780	468
—— carbonatostannite, 7. 480 —— carnallite, 4. 306	
ceric dihydrododecamolybdate, 11. 000	hexachloride, 11. 417, 418
dodecamolybdate, 11. 600	hovemminotriovalate 11 409
nitrate, 5. 673	hexamminotrioxalate, 11. 409 monohydrate, 11. 418
sulphate, 5, 662	pentachloride, 11. 418
cerous carbonate, 5. 666	Postago, and

Ammonium chromic selenate, 10. 876	Ammonium cobaltous orthophosphate, 14.
trichlorodisulphate, 11. 468	852
chromidodecamolybdate, 11. 601	dodecahydrate, 14. 852
chromipyrophosphate, 11. 481	hexahydrate, 14. 852
chromite, 11. 397	———— monohydrate, 14. 852
chromium ferric alums, 14. 350	——————————————————————————————————————
heptamminoctonitrate, 11. 478	——————————————————————————————————————
hexafluoride, 11. 363	phosphatohemipentamolybdate,
hydroxyphosphate, 11. 482	11. 670
pentafluoride, 11. 363	
——————————————————————————————————————	——————————————————————————————————————
tetrachloride, 11. 417	
triammino-oxalatochloride, 11.	— constitution, amide theory, 8. 229
417	
chromochromate, 11. 210	amidogen theory, 8, 229 ammonia-radicle theory, 8, 229
chromotellurate, 11. 97	ammonium base theories, 8. 229
chromous carbonate, 11. 471	electron theory, 230
fluoride, 11 . 362	electron theory, 230 of compounds, 8, 228
sulphate, 11. 434	Werner's theory, 8. 234
· · · · chromyl difluochromate, 11. 365	copper ammoniohydroxyantimonate,
cobalt azide, 8 . 355	9. 454
decamolybdate, 11. 574	barium nitrite, 8 . 488
- dithionate, 10. 597	calcium nitrite, 8. 488
mercury alloy, 14, 534	cerous nitrite, 8, 496
pentasulphate, 14. 774	
- · - · persulphite, 10 . 480 - · - phosphate, 8 . 920	cobaltous sulphate, 14, 781
sulphatofluoberyllate, 14. 783	diamminomolybdate, 11. 559
tetrafluoride, 14. 606	dithionate, 10. 587
cobaltic aquopentamminochlorosul-	ferrous sulphate, 14. 297
phate, 14. 794	fluotitanate, 7. 72
aquopentamminomolybdate, 11.	hexahydrotrisdiarsenitodirflolyb-
575	date, 9. 131
decamolybdate, 11. 598	lead nitrite, 8 . 498
disulphate, 14. 789	—— —— molybdate, 11 . 559
dodecamolybdate, 11. 574	nickel sulphate, 15. 474
	octohydrobisdiarsenitodimolyb-
791	date, 9. 131
hexamminosulphate, 14. 791	pentafluodioxytungstate, 11. 839
	———— phosphatohemipentamolybdate,
	11. 669
hexanminosulphate, 14 . 805 ————————————————————————————————————	
nate, 16. 333	——————————————————————————————————————
tetramminodisulphite, 10. 315	tungstate, 11. 782
tetramminotrisulphite, 10. 315	tungsten tetramminoennea-
cobaltite, 14. 593	chloride, 11. 842
cobaltous amminotrichloride, 14. 637	—— cupric a-stannate, 7. 418
carbonate, 14. 811	calcium tetrasulphate, 3, 813
dodecahydrate, 14. 811	—— diamminoiodide, 3. 209
enneahydrate, 14 . 811	——————————————————————————————————————
tetrahydrate, 14. 811	——————————————————————————————————————
chromate, 11. 312	
	——— tetramminolodide, 3. 209
diamminoquaterochromate, 11.	cupri-tetrafluoride, 3. 156
312	
dibudant and 44 852	
dihydrophosphate, 14. 853	hemitridecahydrate, 10. 278 pentahydrate, 10. 278
dihydrophosphatohemipenta-	—— cuprous cyanidothiosulphate, 10. 533
molybdate, 11. 670	——————————————————————————————————————
disulphite, 10. 313	dichlorotetrathiosulphate, 10.533
hexamminoselenate, 10. 885	——— dijodotetrathiosulphate, 10. 533
hexasulphitocobaltate, 10. 315	dithiocyanatotetrasulphate, 10.
	533
hemienneahydrate, 14. 811	orthophosphate, 3. 287
tetrahydrate, 14. 811	——— pentathiosulphate, 10. 530
nickelous sulphate, 15. 478	sulphite, 10. 274

4	
Ammonium thiocarbonate, 6, 125	Ammonium dihypovanadatotetradecatung-
thiocyanatothiosulphate, 10. 533 thiosulphate, 10. 530	state, 9. 747 —— dihypovanadatotetravanadate, 9.
trithiosulphate, 10. 530	792
- decaborate octohydrated, 5. 86	dihypovanadoctovanadate, 9, 792
—— decabromoaluminate, 5. 326	diimidopentathiodiphosphate, 8. 727
decahydropentaselenitododecavana-	diimidopentathiopyrophosphate, 8.
date, 10. 835	1056
—— decaiodotriplumbite, 7. 772 —— hexahydrate, 7. 772	diiodate, 2. 340 diiodothiosulphate, 10. 533
decametaphosphate, 2. 878	dilanthanum octosulphate, 5. 659
decamolybdate, 11. 597	—— (di) dimercuriammonium nitrate, 4.
enneadecallydrate, 11. 597	1001
decamolybdatosulphite, 10. 307	dihydrated, 4. 1001
——— deuterohexavanadate, 9. 759	- mercuric dinitratodichloride, 4. 997
deuterotetravanadate, 9. 759	
diamidodiphosphate, 8. 711 diamidophosphate, 8. 707	drate, 4. 1001 —— dimercuriammonium chloride, 4. 845
— diamminotetrachlorocuprate, 3. 186	chromato, 11. 284
diarsenatodecatungstate, 9. 213	nitrate, 4, 999
diarsenatohenicositungstate, 9. 214	dihydrated, 4. 1000, 1001
diarsenatoheptadecatungstate, 9. 213	sulphate, 4. 978, 979
diarsenatoheptamolybdate, 9. 206	dodecahydrated, 4, 978, 979
diarsenatohexatungstate, 9. 213	—— dimetaphosphate, 2, 876; 8, 985
diarsenatotellurate, 11. 96 - diarsenatotetracositungstate, 9. 214	dimolybdate, 11, 580 dimolybditetramolybdate, 11, 531
diarsenatotetradecatungstate, 9. 213	dimolybditotetramolybdate, 11. 593
dibromocuprite, 3. 195	dioxydiselenotungstate, 10. 798
— dibromodichlorostannite, 7. 454	dioxydisulphomolybdate, 11. 654
diceious octosulphate, 5. 659	dioxydisulphotungstate, 11.861
- — dichlorobisdimethylglyoximorhodite,	dioxypentafluomolybdate, 11. 614
15. 577	—— dioxytetrafluomolybdate, 11. 613 —— dioxytrifluoride, 11. 613
——— dichlorocuprite, 3. 163 —— dichlorodibromoplumbite, 7. 751	diperchromates, 11. 357
dichlorodicuprite, 3. 163	diphosphatoctovanadatododeca-
— — dichlorotribromobismuthite, 9. 673	molybdate, 9 . 831
dichromate, 11. 323	- diphosphatoctovanadatohena-
- dichromyl tetrafluochromate, 11. 365	molybdate, 9. 832
- dicupric sulphate, 3. 255	diphosphatoctovanadatohoptadeca- molybdate, 9. 830
difluodioxyphosphate, 8. 997 difluodithionate, 10. 599	diphosphatoctovanadatotetradeca-
——————————————————————————————————————	molybdate, 9, 830
——— difluovanadate, 9. 801	octocosihydrate, 9. 830
—— dihydrated tetranitritoplatinite, 8. 518	pentadecahydrate, 9. 830
dihydroarsenate, 9. 156	diphosphatoctovanadatotrideca-
dihydroarsenatohemipentamolybdate,	molybdate, 9. 831 —— diphosphatodecavanadatodeca-
9. 207 —— dihydroarsenatomolybdate, 9. 206	molybdate, 9. 832
—— dihydroarsenatotrimolybdate, 9, 208	—— diphosphatodecavanadatohena-
—— dihydroarsenite, 9. 120	molybdate, 9. 832
dihydromanganidiorthophosphate, 12.	diphosphatodecavanadatopentadeca-
461	molybdate, 9. 830
dihydrophosphatohemipentamolyb-	—— diphosphatodecavanodatotrideca- molybdate, 9. 831
date, 11. 668 heptadecahydrate, 11. 668	dotricontahydrate, 9. 831
heptahydrate, 11. 668	diphosphatododecavanadatododeca-
dihydrophosphatomolybdate, 11. 671	molybdate, 9. 831
dihydropyrophosphate, 2. 876	— diphosphatoheptadecavanadatoennea-
—— dihydrorthophosphate, 2. 871	molybdate, 9, 832
dihydrotetraselenitohexavanadate, 10.	december dec
835	decamolybdate, 9. 830 ————————————————————————————————————
dihydrothoridodecamolybdates, 11.	molybdate, 9. 829
—— dihydrotrioxysulpharsenate, 9. 327	- diphosphatohexavanadatoheptadeca-
tetrahydrate, 9. 327	molybdate, 9. 829
—— dihydrotriselenite, 10. 821	diphosphatohexavanadatohexadeca-
dihydroxylaminometavanadate, 9,	tungstate, 9. 835
470	diphosphatohexavanadatopentadeca- molybdate, 9, 830, 831
dihypovanadatodivanadatoctocosi- molybdate, 9. 793	icosihydrate, 9 . 830
mory buave, e. 100	,, ,

	A
Ammonium, diphosphatohexavanadato-	Ammonium enneapotasisum decameta-
tetradecamolybdate, 9. 831	phosphate, 8. 990 ——— enneasulphide, 2. 654
diphosphatohexavanadatotrideca- molybdate, 9. 831	—— erbrium sulphate, 5 . 704
diphosphatotellurate, 11, 120	ethylenetrichloroplatinite, 16. 272
diphosphatotetradecavanadatohena-	monohydrate, 16 . 272
molybdate, 9. 882	tetritapentahydrate, 16. 272
diphosphatovanaditotungstate, 9.	ferric alum, 14. 337
826	antimony chloride, 14. 102
- diplatinic triacontatungstate, 11. 803	arsenate, 9. 227
- dipraseodymium hexasulphate, 5. 659	carbonate, 14. 370
diselenitoctomolybdate, 10. 837	——————————————————————————————————————
pentahydrate, 10. 837	disulphate, 14. 336
disclenitodecamolybdate, 10. 836	dodocanyolybdata 11 602
diselenitododecamolybdate, 10, 837	dodecamolybdate, 11, 602 dodecatungstate, 11, 832
- diselenitopentamolybdate, 10, 837	fluoride, 14. 7
disulphatoaluminate, 5, 344	heptachloride, 14. 99
	heptacosichlorotrihypoanti-
—— disulphatocuprate, 3. 255	monate, 9, 486
disulphatoindate, 5. 404	hexafluoride, 14. 7
——tetrahydrated, 5. 404	
disulphatovanadite, 9. 820	oxytetrasulphate, 14 . 339
disulphide, 2. 651	paratungstate, 11. 820
disulphitodiamminocobaltate-trans-,	pentabromoiodide, 14. 135
10. 318	—— pentachloride, 14 . 99
disulphitodicthylenediammino-	pentadecoxysexieschromate, 11.
cobaltite—trans-, 10. 318	310
disulphitodipropylenediammino-	——————————————————————————————————————
cobaltate trans-, 10. 318 disulphitoethylenediamine cis-, 10.	pyrophosphate, 14, 414 sulphate, 11, 831
(anteaprina)	sulphate, 11. 651 sulphatofluoberyllate, 14. 353
318 toran = 10 318	sulphide, 14. 182
10. 317	tetrachloride, 14. 99
, trans-, 10. 317	tridecachloride, 14. 101
ditelluratohexamolybdate, 11. 97	trisulphate, 14. 336
dithiometaphosphate, 8, 1070	ferrisulphatosulphite, 10. 313
—— dithionate, 10. 582	ferrodinitrosylthiosulphate, 8. 442
dithiophosphate, 8. 1068	ferroheptanitrosyltrisulphide, 8. 441
—— diuranate, 12. 65	ferrous aquopentamminosulphate, 14.
—— diuranyl pentacarbonate, 12. 114	290
pentahypophosphite, 8, 889	
trisulphate, 12, 108	cobaltous sulphate, 14. 783
——————————————————————————————————————	dithionate, 10. 597
divanadatodimolybdate, 9. 781	ferrie octosulphate, 14. 357
divanadatohexamolybdate, 9. 782	oxycarbonate, 14. 370
—— pentahydrated, 9. 782	hydrophosphate, 14. 397
hexahydrate, 9. 782	nickelous sulphate, 15. 477
divanadatopentatungstate, 9, 785	persulphate, 10. 480
divanadatophosphate, 9. 828	———— phosphate, 14. 395
—— divanadatotetramolybdate, 9. 781	pyrophosphate, 14. 398
—— divanadatotetratungstate, 9. 785	selenate, 10. 880
——— hemipentahydrate, 9. 785	sulphatofluoberyllate, 14. 301
tetrahydrate, 9. 785	suplifie, 10, 312
divanadatotrimolybdate, 9. 781 dodecaborate enneahydrated, 5. 81	tetrafluoride, 14. 3
Averagium carboneta 5 704	trifluoride, 14. 3
—— dysprosium carbonate, 5. 704 —— cicosichloroenneamercuriate, 4. 851	fluoborate, 5. 127
enneabromodiantimonite, 9. 496	—— fluobromoplumbite; 7. 751
enneabromodiperrhodite, 15. 581	—— fluochloroplumbite, 7. 733
	fluochromate, 11. 365
enneachlorodiantimonite, 9. 479	fluohydroxyselenate, 10. 903
—— enneafluohypovanadate, 9. 797	—— fluoindate, 5. 399
enneahydrododecasclenitohexavana-	fluomanganite, 12347
date, 10. 835	fluoperborate, 5. 129
—— enneaiododiantimonite, 9. 502	fluoplatinate, 16, 250

Ammonium Quantumbita 7 709	A
Ammonium fluoplumbite, 7. 703 —— fluoride, 2. 519	Ammonium hexatungstate, 11. 829 —— hexauranate, 12. 68
ammino-, 2. 520	hexavanadatoctomolybdate, 9. 782
—— fluoscandiate, 5. 489	—— hexavanadatoheptamolydate, 9. 782
—— fluosilicate, 6. 945	hexavanadatopentamolybdate, 9. 781
fluostannate, 7. 422	hexavanadatotetracosimolybdate, 9.
fluostannite, 7. 422	782
fluosulphonate, 10. 685	hexavanadatotetramolybdate, 9. 781
fluotitanate, 7, 70, 670	hexavanadatotungstate, 9. 785
fluozirconate, 7. 139 gadolinium nitrate, 5. 695	—— hexavanadyl tetrasulphite, 10. 305 —— hexerododecavanadate, 9. 760
gallic disulphate, 5. 385	
gold amminophosphatomolybdate, 11.	
—— henachloroantimonitohypoantimonate, 9. 485	hydrazinodisulphonate, 8. 683 hydrazinomonosulphonate, 8. 683
	hydroamidoselenite, 8. 636
—— henicosichloropentamercuriate, 4. 852	hydroarsenate, 9. 155
—— heptabromoaluminate, 5. 326	hydroarsenatodimolybdate, 9. 206
heptachlorodibismuthite, 9. 666	hydroarsenatodioxydichromate, 9. 204
heptachlorodiferrate, 14. 100	hydroarsenatotrimolybdate, 9, 208
heptadecafluosilicate, 6. 945	
	hydrobromide, 2. 594
heptafluosilicate, 6, 945	hydrocarbonate, 2. 787
heptafluotantalate, 9. 916	preparation, 2. 787
—— heptafluotitanate, 7. 70	properties, 2. 788
heptafluozirconate, 7. 139	hydrodofluoplumbate, 7. 705
heptahydrodecamolybdate, 11. 595	hydrofluoride, 2. 520
—— heptahydrate, 11, 595	hydroheptamolybdate, 11. 594
heptaiodoantimonite, 9, 502	hydrohyponitrite, 8, 410
heptaiodobismuthite, 9, 676	hydrohyposulphite, 10. 181
heptasulphide, 2. 653 heptasulphotristannate, 7. 474	- hydronitrate, 2. 842
	hydronitrilodithiophosphate, 8. 726
hexaborate heptahydrated, 5. 80	hydropentasulphato columbite, 9. 881
hexabromohypoantimonate, 9. 496	hydropermanganite, 12. 275
- hexabromoselenate, 10. 901	hydrophosphatodimolybdate, 11. 670
- hexabromostannite, 7. 453-4	hemipentahydrate, 11. 670
hexabromotellurite, 11. 104	state, 9. 836
hexachlorobismuthite, 9. 666	hydrophosphatotetravanadatotetra-
	tungstate, 9. 836
— hexachloroperruthenite, 15. 531	hydrophosphatotrivanadatohexa-
hexachloroplatinatohypoantimonate,	tungstate, 9. 836
9. 485	hydrophosphite, 8. 911
hexachloroplumbite, 7. 727	hydropyrotellurate, 11. 89
hexachlorostannatohypoantimonate,9.	
485	hydroselenatouranate, 10. 877
—— hexachlorostannite, 7. 432 —— hexachlorotellurite, 11. 102	hydroselenide, 10. 765
hexachlorothallate, 5. 445	— — hydroselenite, 10. 820
——————————————————————————————————————	hydrosilicate, 6. 329
hexachromate, 11. 352	hydrostannidodecamolybdate, 11. 601
—— hexadecabromotriantimonite, 9. 496	hydrosulphatarsenate, 9. 333, 334
—— hexadecatungstate, 11. 832	hydrosulphide properties 2 646
hexafluoaluminate, 5. 303	—— hydrosulphide, properties, 2. 646 —— hydrosulphite, 10. 259
hexafluoantimonate, 9. 468	hydrotellurate, 11. 89
—— hexafluoarcenate, 9. 236 —— hexafluoferrate, 14. 7	hydrotelluride, 11. 40
hexafluohafniate, 7. 171	hydrotetramidotetraphosphate, 8. 716
hexafluotitanite, 7. 66	—— hydrotetraphosphide, 8. 832
hexafluovanadite, 9. 796	hydrotetroxytrisulphodimolybdate,
hexahydroarsenatoctodecamolyb-	11. 655
date, 9. 211	hydrotrioxysulpharsenate, 9. 327
hexaiodotellurite, 11. 106	—— hydroxide, 8. 194 —— hydroxylamine paramolybdate, 11. 552
—— hexamolybdate, 11. 594 —— hexaphosphatodivanadatohexaconta-	
tungstate, 9. 835	——————————————————————————————————————
hexaselenitohexamolybdate, 10. 837	hydroxynitrilomononosulphate, 8. 671
	2 F
VOL. XVI.	

Ammonium hydroxyperosmate, 15. 713	Ammonium lead rhodium chloronitrate, 15.
—— hyperborate, 5 . 120	591
	trithiosulphate, 10. 551
—— hypobromite, 2. 270	
hypochlorite, 2. 96, 270	—— lithium chromate, 11. 244
—— hypoiodite, 2 . 270	——— disulphitotetramminocobaltate—
hypomolybdatomolybdate, 11. 604	cis-, 10. 317
hyponitrate, 8. 410	——————————————————————————————————————
hyponitritosulphate, 8. 688	pentametaphosphate, 2. 878; 8.
	988
hypophosphate, 8, 932	periodate, 2. 409
hypophosphite, 8 . 880	
—— hypophosphite molybdate, 8 . 888	sulphate, 2. 705
hypophosphitomolybditomolybdate,	trimetaphosphate, 2. 877
· 8. 888	luteodivanadatophosphate, 9. 828
· · · · hyposulphite, 10. 180	luteovanadatophosphate, 9. 827
hypovanadate, 9. 746	magnesium arsenate, 9. 177
hypovanadatoctovanadate, 9. 792	bromide, 4. 314
	carbonate, 4. 370
hypovanadato-vanadatotungstate, 9	
793	———— chloride, 4. 306
hypovanadous sulphate, 9. 818	——————————————————————————————————————
imidochromate, 8 . 266	cobaltous sulphate, 14 . 781
imidomolybdate, 8. 267	dimetaphosphate, 4. 396
imidosulphinite, 8. 645	dithiophosphate, 8. 1068
imidotrithiophosphate, 8. 727	ferrous sulphate, 14. 297
	————hydrocarbonate, 4. 371
iodate, 2. 339	iodide 4 917
hydrated, 2. 340	———— iodide, 4 . 317
—— iodatophosphate, 2. 874	manganous sulphates, 2. 423
iodide, 2 . 615	molybdate, 11. 562
ammine, 2. 619	—— monothiophosphate, 8, 1069
X-radiogram, 1. 642	nickelous sulphate, 15. 475
——- iodides, 14 . 133	orthosulpharsenate, 9. 321
	paratungstate, 11. 818
iodobisarsenite, 9. 256	
iodocarnallite, 4. 317	——————————————————————————————————————
iodocuprite, 3 . 205	phosphate, 4. 384
—— iodoiridate, 15. 779	monohydrated, 4. 386
- iodoiridite, 15. 777	selenate, 10. 863
- · · iodoperiridite, 15. 777	selenate, 10. 863 sulphate, 4. 342
iodoplatinate, 16 . 390	sulphite, 10. 285
	telluride, 11. 50
——— iodosmate, 15 . 725]	
iodostannate, 7. 463	——————————————————————————————————————
iodostannito, 7. 460	vanadate, 9. 773
— — iodosulphonate, 10 . 689	voltaite, 14 . 353
iodotrichlorobismuthate, 8. 272	—— manganate, 12. 287
iridium disulphate, 15. 785	manganese arsenate, 9. 221
hexachlorodihydrosulphite, 10.	dithionate, 10. 596
324	oxytrifluoride, 12. 347
——————————————————————————————————————	manganic alum, 12. 429
trisulphite, 10. 324	tetracosihydrate, 12. 429
isotetrahydroborododecatungstate, 5.	————— dodecamolybdate, 11. 602
109	molybdate, 11. 572
isotungstate, 11 . 773	paratungstate, 11. 820
—— lanthanous molybdate, 11. 587	pentachloride, 12. 378
lanthanum carbonate, 5. 666	pentafluoride, 12. 345
———— hexachromate, 11. 287	perphosphate, 12, 463
	pyrophosphate, 12. 462
nitrate, 5. 671	byrophosphate, 12. 402
selenate, 10. 872	trihydrate, 12. 462
sulphate, 5 . 659	tetrasulphate, 12. 429
—— sulphite, 10. 302	tridecamolybdate, 11. 602
tungstate, 11 . 790	tungstate, 11. 797
lead chromate, 11. 304	manganous carbonate, 12. 439
cobalt nitrite, 8. 506	chromate, 11. 309
	cobaltous sulphate, 14. 782
hydroxynitrilo digulphonato	
hydroxynitrilo disulphonate, 8.	decamolybdate, 11. 598
678	dihydrophosphatohemipenta-
imidochromate, 8 . 266	molybdate, 11. 669
imidomolybdate, 8. 267	dimetaphosphate, 12. 458
nickel nitrite, 8 . 512	disulphate, 12. 414
nitritotrisulphonate, 8. 669	dodecamolybdate, 11. 602
phosphatopentadecamolybdate,	ferrous sulphate. 14, 301
11. 671	
	hantachlorida 19 264
pyrophosphate, 7. 880	neptacinorae, 12. 304

Ammonium manganous hexachloride, 12.	Ammonium metasulphotetrantimonite, 9.
364	533
—— -— hexamminotetrachloride, 12. 365	—— metasulphotriarsenite, 9 . 290
—— hydroxylaminochlorides, 12. 364	—— metatungstate, 11. 821
molybdate, 11 . 571	hexahydrate, 11. 821
nickelous sulphate, 15 . 477	tetrahydrate, 11. 821
oxytrisulphate, 12 . 415	—— metavanadate, 9. 758
permanganitomolybdate, 11. 573	—— molybdate, 11. 551
——————————————————————————————————————	molybdatosulphate, 11. 658
heptahydrate, 12. 453	molybdatotrisulphate, 11. 658
phosphatohemipentamolybdate,	molybdenum amminopentachloride,
11 . 669	11. 622
—— pyrophosphatomolybdate, 11. 671	chloride, 11. 629
selenate, 10 . 878	dioxytetrachloride, 11. 632
sulphite, 10 . 311	enneafluoride, 11 . 610
——————————————————————————————————————	hemipentoxide, 11 . 532
tetrachloride, 12 . 364	
dihydrate, 12 . 364	hexachloride, 11 . 621
monohydrate, 12. 364	oxypentabromide, 11. 637
tetramminotridecachloride, 12.	pentabromide, 11 . 635
364	pentachloride, 11, 621
trichloride, 12. 363	
	tetrachlorotetraiodide, 11. 640
trisulphate, 12. 415	tetradecachloride, 11. 623
mephite, 6 . 2	tetrafluoride, 11 . 609
mercuric bromosulphite, 10. 296	trioxytetradecafluoride, 11. 611
	tungstate, 11 . 796
chlorosulphite, 10 . 292, 296	—— molybdenyl pentabromide, 11, 637
———— dibromochloride, 4. 882	pentachloride, 11. 629
dibromodiiodide, 4. 918	molybditetramolybdate, 11. 533
dibromotrichloride, 4. 882	- molybdosic sulphates, 11. 657
——— hydroxysulphite, 10 . 292	molybdous heptachloride, 11. 619
imidodisulphonate, 8. 657	octochloride, 11 . 618
nitrates, 4. 999	monamidodiphosphate, 8, 710
nitratotetrachloride, 4. 997	monamidophosphate, 8, 705
oxynitrate, 4. 1002	monoperditungstate, 11, 834
pentabromide, 4. 891	tetrahydrate, 11. 834
pentaiodide, 4. 927	monoselenotrithionate, 10, 926
—— pentathiosulphate, 10 . 548	monosulphide, 2. 648
	ammine, 2. 650, 651
	monothiohydrophosphite, 8, 1063
——————————————————————————————————————	monothiophosphate, 8. 1069
hydrated, 4. 927	neodymium carbonate, 5. 666
tribromotetraiodide, 4. 917	molybdate, 11. 587
——————————————————————————————————————	nitrate, 5. 671
	nickel azide, 8 . 355
———— tungstate, 11. 788	cadmium nitrate, 8. 512
- mercuri dimercuriammonium iodide,	carbonate, 15 . 486
4. 925	——————————————————————————————————————
mercurous aluminotungstate, 11. 789	diamminochromate, 11, 313
———— diamminopersulphate, 10. 480	dihydrophosphatohemipenta-
——————————————————————————————————————	molybdate, 11. 670
nitrate, 4 . 988	dihydroxyquaterchromate, 11.
mercury rhodium chloronitrate, 15. 591	313
—— mesodistannate (a-), 7. 417	dimetaphosphate, 15 . 496
—— metabromoantimonate, 9. 497	
—— metachloroantimonate, 9. 490	dithionate, 10. 598
—— metaiodoantimonite, 9. 502	hexamminosulphate, 15. 468
—— metantimonate, 9. 446	nitrotobismuthite, 8. 512
metaphosphate, 2. 876	orthophosphate, 15. 495
metarsenite, 9. 120	dihydrate, 15, 495
— metasilicate, 6. 329	hexahydrate, 15. 495
metasulpharsenate, 9. 316	persulphate, 10. 480
metasulpharsenatoxymolybdate, 9.	phosphatohemipentamolybdate,
332	11. 670
— metasulphoantimonite, 9. 533	phosphite, 8. 920
— metasulphotetrantimonate, 9. 570	selenate, 10, 887
decahydrate, 9. 570	sulphatofluoberyllate, 15. 478
enneahydrate, 9. 570	sulphide, 15 . 443
tetrahydrate, 9. 570	sulphite, 10. 319
• • • • • • • • • • • • • • • • • • • •	

Ammonium nickel tetrafluoride, 15. 404	Ammonium oxide, 8. 223
———— trichloride, 15. 418	oxyarsenotrichloride, 9. 245
hexamminochloride, 15. 418	oxychromate, 11. 241
nickelic tridecamolybdate, 11. 602	oxydimercuriammonium diibromate,
tungstate, 11. 802	11. 342
nickelous decamolybdate, 11. 598	oxyfluopertitanate, 7, 68
diamminomolyhdate 11 578	oxyhenafluodicolumbate, 9. 873
	oxyhexafluocolumbate, 9. 872
henitricontamolybdate, 11. 604	oxyhexafluotantalate, 9. 918
hexadecamolybdate, 11. 603, 604	oxyhydroheptafluotantalate, 9. 918
pentasulphate, 15. 468	oxypentachlorocolumbate, 9. 879
tetratricontamolybdate, 11. 604	oxypentachlorotungstate, 11. 849
nitramidate, 8. 269	oxypentafluocolumbate, 9. 872
	oxypentafluomolybdate, 11. 611
	oxytetrafluocolumbate, 9. 872
properties, chemical, 2. 840 physical, 2. 833	
—— nitratoaurate, 3. 616	—— palladious selenate, 10. 890 —— palladium polysulphide, 15. 682
nitratometatungstate, 11. 814, 861	—— palladous sulphatoselenate, 10. 930
nitratoplumbite, 7. 864	paramolybdate, 11. 583
nitratostannate, 7. 481	——————————————————————————————————————
nitratosulphate, 2. 843; 8. 692	tetrahydrate, 11. 583
nitrilodiphosphate, 8. 714	—— parasulphomolybdate, 11. 651
nitrilodithiophosphate, 8. 726	—— paratungstate, 11. 812
—— nitrilosulphinate, 8. 667	henahydrate, 11, 812
nitrilotrisulphonate, 8. 667, 681	
—— nitrite, 8. 470	hexahydrate, 11. 813
nitritoperosmite, 15. 728	———— pentahydrate, 11. 812
nitrohydroxylaminate, 8. 305	—— pentabromide, 2 . 595
nitrosylchlororuthenate, 15. 537	pentabromobismuthite, 9. 672
——————————————————————————————————————	pentabromodiplumbite, 7. 751
——————————————————————————————————————	—— pentabromoindate monohydrated, 5.
—— nitrosylsulphite, 8. 434	401
octoborate hexahydrated, 5. 80	pentabromoperrhodite, 15. 581
———— tetrahydrated, 5. 81	pentabromotungstite, 11. 854
octobutaborate, 5. 80	—— pentachloroantimonite, 9. 479
octochloroantimonate, 9. 490	—— monohydrate, 9. 479
—— octochlorotrimercuriate, 4. 851	— pentachloroaquoperrhodite, 15. 578
octofluotantalate, 9. 917	—— pentachlorobismuthite, 9. 666 ——— heptapentahydrate, 9. 666
octofluovanadate, 9. 802	—— pentachlorocuprite, 3. 163
octohydroarsenatoenneamolybdate, 9.	
210	—— pentachlorodimercuriate, 4, 852 —— pentachlorodiplumbite, 7, 726
octomolybdate, 11. 595	trihydrate, 7. 726
—— octomoly bdatodisulphite, 10. 307	—— pentachloroferrate, 14. 99
octosulphate, 10. 447	—— pentachloroindate monohydrated, 5.
octosulphide, 2. 654	400
octotungstate, 11. 830 octovanadatohexamolybdate, 9. 782	—— pentachloroperrhodite, 15. 578
octovanadatotetradecatungstate, 9.	
786	monohydrate, 15 . 578
octovanadatotridecamolybdate, 9. 782	—— pentachloropyridinoiridate, 15. 768
orthoarsenate, 9. 155	—— pentachlorozincate, 4. 552
orthophosphate, normal, 2. 874	— pentadecafluotetrahypovanadate, 9.
orthosilicate, 6. 329	798
orthosulpharsenate, 9. 316	— pentadecaiodotetrantimonite, 9. 502
orthosulpharsenite, 9. 290	—— pentafluoaluminate, 5. 303
orthosulphoantimonate, 9. 569	—— pentafluoantimonite, 9. 465
orthosulphoantimonite, 9. 533	pentafluoferrate, 14. 7
orthosulphovanadate, 9. 816	pentafluotellurite, 11. 98
osmiamate, 15. 727	pentafluotetroxydivanadate, 9. 800
osmium dodecachloride, 15. 720	pentafluotitanite, 7. 66
osmyl bromide, 15, 724	pentafluovanadite, 9. 796
	pentahydrododecaselenitohexavana-
	date, 10. 835
	pentahydrotrimolybdate, 11. 574
- oxalatobisdinitritobisdiammino-	—— pentahydrate, 11. 594 —— pentametaphosphate, 2. 877; 8. 988
cobaltiate, 8. 510	— pentamolybdate, 11. 593
oxalatotriamminochromate, 11. 409	pentamolybdate, 11. 555 pentamolybdatedisulphite, 10. 307
	*

GENERA	L INDEA 451
Ammonium pentasodium imidosulphonate,	Ammonium phosphitohexamolybdate, 8.918
8. 650	— phosphitopentamolybdate, 8. 918
	phosphitotungstate, 8, 919 platinic arsenite, 9, 134
pentasulphide, 2. 652	platinous ammoniumablerosulphito-
—— pentathiopyrophosphate, 8. 1070	platinous ammonium chlorosulphito-
pentatungstate, 11. 828	diamminosulphite—cis-, 10.321
pentavanadylhydropentacosifluoride,	arsenite, 9. 134
9. 799	
penterosulphotriarsenate, 9. 316	minosulphite—cis-, 10. 321
penterotetradecavanadate, 9, 760	
	dichlorodiamminochloride, 16.
perborate hemihydrated, 5. 119	263
—— percarbonate, 6. 84	dichlorodisulphite, 10. 323
—— perceric carbonate, 5. 668	disulphite, 10. 322
perchlorate, 2. 396	
—— perchromate, 11. 356	10. 321
—— perdichromates, 11. 359	
—— perdisulphomolybdate, 11. 654	tetramminohydrophosphate, 16.
perdiuranate, 12. 71	416
—— perhydroxycarbonate, 6 . 85	——————————————————————————————————————
—— periodates, 2 . 408, 409, 410	trihydrate, 10. 322
—— permanganate, 12 . 301	trichlorohydrosulphite, 10. 323
permanganite, 12 . 275	plumbite, 7. 668
permanganitomolybdates, 11, 572, 573	—— polysulphoplatinate, 16. 398
permanganous octomolybdate, 11. 597	potassium arsenatodecavanadato-
permolybdate, 11. 607	hexadecamolybdate, 9. 202
permonosulphomolybdate, 11. 653	arsenatododecavanadatodeca-
pernickelie enneamolybdate, 11. 597	molybdate, 9, 202
peroxypertitanate, 7. 65	arsenatotetradecavanadatodo-
perparamolybdate, 11. 608	decamolybdate, 9. 202
perphosphate, 2. 874	arsenatotetradecavanadatotri-
perpyrovanadate, 9. 795	decamolybdate, 9. 202
— perrhenate, 12. 476	barium silicovanadatodecatung-
perruthenate, 15. 521	state, 6. 838
	calcium disulphate, 3. 812
—— monohydrate, 15. 521	chloroplumbite, 7. 729
persulphate, 10. 475; 15. 151	chromate, 11. 257
perthiocarbonate, 6. 131	chromium sulphate, 11. 463
—— pervanadate, 9 . 795	decametaphosphate, 2. 878
—— phosphates, 2. 871	decamolybdatotrisulphite, 10.307
phosphatoarsenatovanadatotungstate,	————— dimetaphosphate, 2. 877
9. 203	diphosphatoctovanadatotetra-
—— phosphatoarsenatovanaditotungstate,	decamolybdate, 9. 833
9. 202	————— diphosphatodecavanadatotri-
phosphatoarsenatovanaditovanadato-	decamolybdate, 9. 833
tungstate, 9. 203	diphosphatododecavanadato-
—— phosphatoctomolybdate, 11. 667	decamolybdate, 9. 833
phosphatocuprite, 3. 287	diphosphatododecavanadatodo-
—— phosphatodecamolybdate, 11. 664	decamolybdate, 9.833
—— phosphatododecamolybdate, 11. 662	diphosphatohxeavanadatocto-
phosphatododecatungstate, 11. 866	decamolybdate, 9. 833
phosphatoenneamolybdate, 11. 666	diphosphatohexavanadatopenta-
phosphatoenneatungstate, 11. 871	decamolybdate, 9. 833
phosphatohemihenicositungstate, 11.	diphosphatotetradecavanadato-
869	enneamolybdate, 9. 833
phosphatohemiheptadecamolybdate,	diphosphatotetradecavanadato-
11. 667	henamolybdate, 9. 833
phosphatohemiheptadecatungstate,11.	- diphosphatotetravanadatoicosi-
871	molybdate, 9. 833
	disulphatocuprate, 3. 259
phosphatohemiheptatungstate, 11. 873 phosphatohenamolybdate, 11. 664	hexachlorobismuthite, 9. 667
—— phosphatohenatungstate, 11. 868	
—— phosphatoheptamolybdate, 11. 667	9. 784 imidaahramata 9. 266
phosphatohexamolybdate, 11, 667	imidochromate, 8. 266
phosphatohexatungstate, 11. 872	iridium disulphate, 15. 786
phosphatoplatinate, 16. 416	manganous permanganitomolyb-
—— phosphatotetrachromate, 11. 482	date, 11. 573
phosphatotetramolybdate, 11. 667	metatetravanadate, 9. 766
phosphatotritungstate, 11. 874	monamidophosphate, 8. 706
phosphitododecamolybdate, 8. 918	orthophosphates, 2. 875

Ammonium potassium pentametaphos-	Ammonium silicovanadatomolybdate, 6.
phate, 2. 877; 8. 988	837
permanganitomolybdate, 11. 573	silver aluminotungstate, 11. 789
platinous chlorodisulphite, 10.	amidosulphonate, 8, 642
trichlorosulphite, 10. 323	
pyrophosphate, 2. 876	chromate, 11. 267
silicovanadatodecatungstate, 6.	cobaltic hexanitrites, 8. 504
838	decahydropentaselenitododeca-
silicovanadatomolybdates, 6. 837	vanadate, 10 . 835
sulphitochloroiridite, 15. 758	dibromotetrathiosulphate, 10.
	540 dichlorotetrathiosulphate, 10.
triselenitodecamolybdate, 10. 836	539
triterodecavanadate, 9. 766	diiodotetrathiosulphate, 10. 540
uranyl trisulphate, 12. 108	heptasulphite, 10 . 280
praeseodymium molybdate, 11, 587	heptathiosulphate, 10, 536
	nitrate, 3. 479
praseodymium carbonate, 5, 666 ——————————————————————————————————	
purpureododecavanadatophosphate, 9.	11. 873
828	rhodium chloronitrate, 15. 590
- pyridinetrichloroplatinite, 16. 274	
pyroantimonate, 9. 447	tetrahydroenneasulphite, 10, 280
pyroarsenite, 9, 120	
pyrophosphate, 2, 876 pyrosulpharsonate, 9, 316	trithiosulphate, 10. 536 sodium arsenate, 9. 173
pyrosulpharsenatosulphomolybdate, 9.	beryllium orthophosphate, 4. 247
323	bismuth nitratonitrite, 8, 500
pyrosulphate, 10 . 445	
pyrosulphite, 10 . 327	cuprous hexamminoctothiosul-
pyrotellurite, 11. 77	phate, 10, 533
rhodic dodecamolybdate, 11, 603 rhodium alum, 15, 588	——————————————————————————————————————
chloronitrate, 15 . 590	dimetaphosphate, 2. 877
	gold pyrophosphatohemihena-
ruthenate, 15 . 518	molybdate, 11 . 671
salts, 1. 919	hexadecatungstate, 11. 832
- samarium carbonate, 5, 666 molybdate, 11, 587	hexanitritobismuthite, 8, 500
sulphate, 5, 659	hydrorthophosphate, 2. 874
scandium carbonate, 5. 492	hydrosulphite, 10. 270
sulphate, 5. 492	iridium disulphate, 15 . 786
	magnesium pyrophosphate, 4. 394
scolecite, 6 . 750 selenate, 10 . 853	manganese pyrophosphatotung-
selenatoaluminate, 10. 869	state, 11. 874 manganic tridecamolybdate, 11.
	602
selenatochromate, 10. 876	manganous pyrophosphate, 12.
selenatomonoiodate, 10, 914	457
- — selenatophosphate, 10, 932	
selenatosulphate, 10. 925 selenatotriiodate, 10. 914	nitratoimidodisulphonate, 8. 651
selenide, 10 . 765	
selenite, 10. 820	orthosulpharsenate, 9. 317
monohydrate, 10. 820	——————————————————————————————————————
selenitometavanadate, 10. 835	3: 2-paratungstate, 11. 816
tritahydrate, 10. 835	4: 1-paratungstate, 11. 816
	heptahydrate, 11. 816
selenomolybdate, 10, 797	pentahydrate, 11. 816 tridecahydrate, 11. 816
- selenosulphostannate, 10. 921	3: 2-pentadecatungstate, 11. 832
sesquicarbonate, 2. 786, 797	4: 2-pentadecatungstate, 11.832
sesquithiocarbonate, 6, 122	pentametaphosphate, 2. 877; 8.
sesquivanadate, 9. 759	988
	phosphatohemiheptadecamolyb-
silicododecatungstate, 6. 875	date, 11. 667 phosphatomolybdate, 11. 663
silicovanadatodecatungstate, 6. 838	prosphatomory bate, 11. 665
g, J. 300	T. D E E

state, 11, 874 — sesquiphosphate, 2, 2706 — sulphite, 10, 270 — tetravanadatphexamolybdate, 9, 784 — tetreroctorolumbate, 9, 865 — tetreroctoraccavanadate, 9, 765 — trihydrodiorthoarsenate, 9, 153 — triteroclecavanadate, 9, 766 stannate (β), 7, 417 stannic phosphatohenatungstate, 11, 868 — phosphatohexitetradecamolybdate, 11, 670 — phosphatohexitetradecamolybdate, 11, 670 — stannic hosphate, 11, 670 — stanny chloride, 7, 442 — stibite, 6, 760 — strindiosulphonate, 3, 894 — hydroxynitrilodisulphonate, 8, 677 — imidosulphane, 8, 685 — nickel nitrite, 8, 511 — trioxysulpharsenate, 9, 329 — subphatbophatinite, 16, 491 — sulphate, 2, 695; 13, 698, 615; 15 — sed, 2, 793 — monohydate, 10, 255 — properties, chemical, 2, 701 — physical, 2, 696 — sulphatoblatinite, 9, 670 — sulphatohosphate, 8, 948 — sulphatopheritite, 11, 118 — sulphatorolitimite, 15, 798 — sulphatoridiuoantimonite, 9, 466 — sulphatorolitimite, 1, 1, 189 — sulphorolydate, 11, 689 — sulphatoridiuoantimonite, 9, 466 — sulphatorolitimite, 1, 1, 189 — sulphatoridiuoantimonite, 9, 466 — sulphatoridiuonantimonite, 9, 466		
tetralvamadatyhexamolybdate, 9. sulphate, 2. 766 sulphate, 2. 766 sulphate, 2. 786 sulphate, 10. 270 sulphate, 2. 784 tetravamadatyhexamolybdate, 9. 784 tetreroctorolumbate, 9. 865 tetreroctorackeavamadate, 9. 766 stannate (3), 7. 417 stannic phosphatohexaticungstate, 11. 868 phosphatohexitetradeamolybdate, 11. 71 stannic phosphatohexitetradeamolybdate, 11. 600 stanyle hloride, 7. 442 stilbite, 6. 760 stannated (4), 7. 417 stannic phosphatovanaditotungstate, 9. 827 stannidodecamolybdate, 11. 601 stanyle hloride, 7. 442 stilbite, 6. 760 stanyle hloride, 7. 442 stilbite, 6. 760 stroxysulpharsemate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 600, 615; 15. 151 said, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 366 sulphatophosphate, 8. 948, 1071 sulphatotitamite, 7. 95 sulphatophosphate, 8. 948 sulph		Ammonium tetraborate tetrahydrated, 5.
sulphite, 10. 270 sulphite, 10. 270 tetravanadatphexamolybdate, 9. 784 tetreroctorolumbate, 9. 865 tetrerotetradecavanadate, 9. 765 strihydrodiorthoarsenate, 9. 153 triterodecavanadate, 9. 766 stannate (β), 7. 417 stannic phosphatohexatungstate, 11. 868 phosphatohexitetradecamolybdate, 11. 670 phosphatovanaditotungstate, 9. 827 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stiblite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 677 imidosulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphatoblasimuthite, 9. 679 sulphatohexafluodiantimonite, 9. 466 sulphatobismuthite, 9. 676 sulphatohexafluodiantimonite, 9. 466 sulphatobismuthite, 9. 678 sulphatotilarite, 7. 92 sulphatotilarite, 7. 92 sulphatotilarite, 7. 93 sulphatotilarite, 7. 474 sulphostannate, 8. 818 sulphurylphormide, 10. 689 sulphurylphoromide, 10. 689 sulphurylphoromate, 10. 689 sulphurylphoromate, 10. 689 sulphurylphoromate, 10. 689 sulphurylphoromate, 8. 665 sulphostannate, 9. 203 tetralubrate, 9. 826 tetravanadatopelubrate, 9. 759 tetravanadatopelubrate, 9. 759 tetravanadatopelubrate, 9. 826 tetravanadatopelubrate, 9. 827 tetravanadatopelubrate, 9. 829 tetravanadatopelubrate, 9. 82		
tetravanadatophexamolybdate, 9. 784 tetrerocteroclumbate, 9. 865 tetrerocteradecavanadate, 9. 765 tetrerocteradecavanadate, 9. 765 tetrerocteradecavanadate, 9. 766 stannate (β), 7. 417 stannic phosphatohexitetradecamolybdate, 11. 88 phosphatohexitetradecamolybdate, 11. 89 stannid chloride, 7. 442 stilbite, 6. 760 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stilbite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 884 hydroxynitrilodisulphonate, 8. 677 imidiosulphonate, 8. 654 hydroxynitrilodisulphonate, 8. 677 imidiosulphonate, 8. 654 hydroxynitrilodisulphonate, 8. 677 imidiosulphonate, 8. 655 mokel nitrite, 8. 511 tricysynlphatement, 9. 299 subsulphatoplatinite, 16. 401 sulphatobismuthite, 9. 670 sulphatobismuthite, 7. 92 sulphatotitanite, 7. 93 sulphatoportitanate, 7. 95 sulphatoportitanate, 7. 95 sulphatophoritanate, 8. 984 sulphatophoritanate, 7. 95 sulphatophoritanate, 7. 95 sulphatophoritanate, 7. 95 sulphatophoritanate, 9. 96 sulphatophoritanate, 7. 95 sulphatophoritanate, 7. 95 sulphatophoritanate, 7. 95 sulphatophoritanate, 8. 984 sulphatophoritanate, 9. 965 sulphatophoritan		
tetravanadatopexamolybdate, 9. 784 tetreroctorolumbate, 9. 865 trihydrodiorthoarsenate, 9. 153 triterodecavanadate, 9. 768 stannate (β), 7. 417 stannic phosphatohenatungstate, 11. 868 phosphatohexitetradecamolybdate, 11. 670 phosphatovanaditotungstate, 9. 827 stannidoecamolybdate, 11. 601 stannyl chloride, 7. 442 stilbite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 654 nickel nitrite, 8. 511 trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatobismuthite, 9. 670 sulphatohexafluodiantimonite, 9. 466 sulphatophosphate, 8. 948, 1071 sulphatotillurite, 11. 118 sulphatotilurite, 11. 188 sulphatophosphate, 8. 948, 1071 sulphinidodianide, 8. 665 sulphinidodianide, 8. 665 sulphinidonianide, 8. 665 sulphinidonianide, 8. 665 sulphinidonianide, 8. 665 sulphinothexaflucitanite, 7. 92 sulphatotrifluoantimonite, 9. 466 sulphinide, 8. 663 sulphinidonianide, 8. 665 sulphinothexafluodiantimonite, 9. 466 sulphinide, 8. 663 sulphinothexafluodiantimonite, 9. 466 sulphinide, 8. 663 sulphinothexafluodiantimonite, 9. 466 sulphinothe		
monohydrate, 7. 751 tetreroctorolumbate, 9. 865 tetreroctetradecavanadate, 9. 766 trihydrodiorthorasenate, 9. 153 triterodecavanadate, 9. 766 stannate (β), 7. 417 stannic phosphatohexitetradecamolybdate, 11. 601 888 phosphatohexitetradecamolybdate, 11. 601 stannid chloride, 7. 442 stilbite, 6. 760 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stilbite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 677 imidosulphonate, 8. 654 nickel nitrite, 8. 511 tricxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphatoplatinite, 16. 401 sulphatoplatinite, 16. 401 sulphatoplatinite, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatophosphate, 3. 948, 1071 sulphatoticulurite, 11. 118 sulphatoplatinite, 7. 92 sulphatophosphate, 3. 948, 1071 sulphatoticulurite, 11. 18 sulphatophoritanate, 7. 95 sulphatophoritanate, 7. 95 sulphatophatinite, 16. 898 sulphatophatinate, 16. 898 sulphatophoritanite, 7. 789 sulphatophatinate, 16. 898 sulphoritylchoride, 10. 689 sulphatophatinate, 1, 1. 88 sulphostannate, 7. 474 trihydrated, 7. 474 sulphostannate, 7. 478 sulphostannate, 7. 474 sulphostannate, 7. 474 sulphostannate, 7. 478 sulphostannate, 7. 474 sulphostannate, 7. 478 sulphostannate, 7. 478 sulphostannate, 7. 478 sulphostannate, 7. 478 sulphostannate, 10. 689 sulphurylthocynand, 10. 689 sulphurylthocynande, 10		
tetrerotectocolumbate, 9. 865 tetrerotetraceuvanadate, 9. 765 trihydrodiorthoarsenate, 9. 153 triterodecavanadate, 9. 766 stannate (\$\textit{g}\$), 7. 417 stannic phosphatohenatungstate, 11. 868 phosphatohexitetradecamolybdate, 11. 670 phosphatohexalitotungstate, 9. 827 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stiblite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 654 nikel nirite, 8. 511 trickysulpharsenate, 9. 293 subbalphatopiatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatobismuthite, 9. 670 sulphatobismuthite, 9. 670 sulphatobismuthite, 9. 670 sulphatotianite, 7. 92 sulphatotianite, 7. 92 sulphatotianite, 7. 92 sulphatotichlorioridite, 15. 758 sulphicohrorioridie, 15. 758 sulphicohrorioridie, 15. 656 sulphicohromostannite, 7. 474 trihydrated, 7. 474 trihydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphostannite, 1. 889 sulphurylchoride, 10. 689 sulphurylchioride, 10. 689 sulphurylchioride, 10. 689 sulphurylchioride, 10. 689 sulphurylchioride, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylt		
trihydrodiorthoarsenate, 9, 153 — triterodecaynalate, 9, 766 stannate (\$\textit{g}\$), 7, 417 stannic phosphatohenatungstate, 11, 868 — phosphatohexitetradecamolybdate, 11, 670 — phosphatovanaditotungstate, 9, 827 stannidodecamolybdate, 11, 601 — stannyl chloride, 7, 442 — stibite, 6, 760 — strontium chromate, 11, 271 — dimetaphosphate, 3, 894 — hydroxynitrilodisulphonate, 8, 677 — imidosulphonate, 8, 654 — nickel nitrite, 8, 511 — trioxysulpharsenate, 9, 329 — subsulphatoplatinite, 16, 401 — sulphate, 2, 695; 13, 609, 615; 15. — 151 — acid, 2, 703 — monohydrate, 10, 255 — properties, chemical, 2, 701 — physical, 2, 696 — sulphatoblexafluodiantimonite, 9, 466 — sulphatopretitanate, 7, 95 — sulphatoticulurite, 11, 118 — sulphatotitanite, 7, 92 — sulphatotitanite, 7, 93 — sulphatotitanite, 7, 92 — sulphatotitanite, 7, 93 — sulphatotitanite, 7, 94 — hydroxynadate, 9, 816 — effect on catalysis, 1, 487 — sulphatotitanite, 7, 92 — sulphatotitanite, 7, 474 — heptahydrated, 7, 474 — heptahydrated, 7, 474 — heptahydrated, 7, 474 — ttrihydrated, 7, 474 — heptahydrated, 7, 474 — ttrihydrated, 7, 474 — sulphovanadites, 9, 816 — sulphurylbromide, 10, 689 — sulphatohexamaditohexamolybdate, 11, 591 — tetramidosulphomatoploteavanaditote		
titerodecavanadate, 9, 766 stannic (g), 7, 417 stannic phosphatohenatungstate, 11. 868 phosphatohenatungstate, 12. 819 phosphatovanaditotungstate, 12. 827 stannidodecamolybdate, 11. 601 stornidodecamolybdate, 11. 601 sulphate, 2. 605; 13. 609, 615; 15. 161 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 695 sulphatobexafluctionintmonite, 9. 466 sulphatophosphate, 8. 948, 1071 sulphatophosphate, 8. 948, 1071 sulphatotellurite, 11. 118 sulphatotellurite, 11. 180 sulphurylchloridodiamide, 8. 663 sulphinidodiamide, 8. 665 sulphitoediamide, 10. 689 sulphovanadites, 9. 816 sulphotopatamite, 10.		
stannate (β), 7, 417 stannic phosphatohenatungstate, 11. 868 — phosphatohexitetradecamolybdate, 11. 670 — phosphatohexanatitotungstate, 9. 827 stannidotecamolybdate, 11. 601 stannyl chloride, 7, 442 stilbite, 6, 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 677 imidosulphonate, 8. 654 — nickel nitrite, 8. 511 trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2, 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 sulphatophosphate, 3. 898 sulphotoridanite, 7, 92 sulphatohexafluodiantimonite, 9, 466 sulphatophosphate, 8. 948, 1071 sulphatotitanite, 7, 92 sulphatotitanite, 7, 93 sulphototrifice, 16, 689 sulphomolybdate, 11, 118 sulphatotitanite, 7, 92 sulphatotitanite, 7, 92 sulphatotitanite, 7, 92 sulphatophosphate, 8, 665 sulphice, 2, 645 — effect on catalysis, 1, 487 sulphatotitanite, 7, 92 sulphatotitanite, 7, 92 sulphatotitanite, 7, 92 sulphatophosphate, 8, 965 sulphomolybdate, 11, 153 sulphotatoritic, 16, 398 sulphomolybdate, 11, 153 sulphatotitanite, 7, 474 trihydrated, 7, 474 sulphomolybdate, 11, 153 sulphatothororicitie, 16, 398 sulphomolybdate, 11, 650 sulphurylbromide, 10, 689 sulphorylbromide, 10, 689 sulphorolybdate, 11, 197 telluratorasenate, 9, 203 telluratorasenate, 9, 204 telluratoriasenate, 9, 204 telluratoriasenate, 9, 204 tetranidoloporomercuriate, 4, 849 tetrachlorooficatie, 4, 849 tetrachloroof	trihydrodiorthoarsenate, 9. 153	
stannic phosphatohenatungstate, 888 — phosphatohexitetradecamolybdate, 11. 670 — phosphatovanaditotungstate, 9. 827 — stannidodecamolybdate, 11. 601 — stannyl chloride, 7. 442 — stannidodecamolybdate, 11. 271 — stannyl chloride, 7. 442 — stibile, 6. 760 — strontium chromate, 11. 271 — dimetaphosphate, 3. 894 — hydroxynitrilodisulphonate, 8. 677 — imidosulphonate, 8. 654 — nickel nitrite, 8. 511 — trioxysulpharsenate, 9. 329 subplatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. — acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 sulphatophosphate, 8. 948, 1071 sulphatophosphate, 8. 948, 1071 sulphatophosphate, 8. 948, 1071 sulphatopimide, 2. 645 — effect on catalysis, 1. 487 sulphatotitanite, 7. 92 sulphatotitinite, 15. 758 sulphicedifferite, 14. 182 sulphotoritic, 15. 758 sulphotoritic, 15. 758 sulphotoritic, 7. 474 — heptalydrated, 7. 474 — heptalydrated, 7. 474 — trihydrated, 7. 474 — heptalydrated, 7. 474 — trihydrated, 7. 474 — heptalydrated, 7. 474 — trihydrated, 7. 478 sulphotungstate, 11. 659 sulphovanadites, 9. 896	tennate (9) 7 417	
stannidodecamolybdate, 11. 670 phosphatovanaditotungstate, 827 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stilbite, 8. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 677 imidosulphonate, 8. 654 nickel nitrite, 8. 511 trioxysulpharsenate, 9. 329 subulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatobismuthite, 9. 670 sulphatobismuthite, 9. 670 sulphatophorphate, 8. 948, 1071 sulphatotilarite, 7. 92 sulphatotilarite, 7. 93 sulphatotilarite, 7. 92 sulphatotilarite, 11. 118 sulphatotilarite, 7. 92 sulphatotilarite, 7. 92 sulphatotiritiovantimonite, 9. 466 sulphinide, 2. 645 sulphicerrite, 14. 31 tetrachloroplumbite, 7. 726 tetrachloroplumbite, 7. 732 tetrachloroplumbite, 7. 332 tetrachloroplumbite, 7. 726 tetrachloroplumbite, 7. 132 tetrachloroplumbite, 7. 726 tetrachloroplumbite, 7. 132 tetrachloroplumbite, 7. 726 tetrachloroplumbite, 7. 132 tetrachloroplumbite, 7. 132 tetrachloroplumbite, 7. 32 tetrachloroplumbite, 7. 32 tetrachloroplumbite, 7. 132 tetrachloroplumbite, 9. 659 tetrachlor		
phosphatohexitetradecamolybdate, 1670 phosphatovanaditotungstate, 9. 827 stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stibilite, 6. 760 strontium chromate, 11. 271 dimetaphosphate, 3. 894 hydroxynitrilodisulphonate, 8. 677 inidosulphonate, 8. 654 nickel nitrite, 8. 511 trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatohexanfluodiantimonite, 9. 466 sulphatoticulrite, 11. 118 sulphatotitanite, 7. 92 sulphatoticulrite, 11. 118 sulphatotiteline, 7. 92 sulphatoticulrite, 11. 118 sulphatotiteline, 7. 92 sulphatoticulrite, 11. 18 sulphatoticulrite, 11. 609 sulphotorrite, 14. 182 sulphotorrite, 14. 182 sulphotoprophate, 8. 665 sulphicehloroiridite, 15. 758 sulphotorrite, 14. 182 sulphotophorite, 15. 758 sulphotorrite, 14. 182 sulphotophorite, 16. 398 sulphotophorite, 16. 398 sulphotophorite, 16. 398 sulphotophorite, 17. 764 tetrahlorostanuite, 7. 432 tetrachlorostanuite, 7. 452 tetrachoromate, 11. 183 sulphatohexalite, 9. 696 tetrafluodioxyu		
date, 11. 670 — phosphatovanaditotungstate, 9. 827 — stannidodecamolybdate, 11. 601 — stannyl chloride, 7. 442 — stilbite, 6. 760 — strontium chromate, 11. 271 — dimetaphosphate, 8. 894 — hydroxynitrilodisulphonate, 8. 677 — imidosulphonate, 8. 654 — nickel nitrite, 8. 511 — trioxysulphasenate, 9. 329 — subsulphatoplatinite, 16. 401 — sulphate, 2. 695; 13. 609, 615; 15. 151 — acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 — sulphatobismuthite, 9. 670 — sulphatobismuthite, 9. 670 — sulphatotismite, 11. 118 — sulphatotilanite, 7. 95 — sulphatotilanite, 7. 92 — sulphatotilanite, 7. 92 — sulphatotilanite, 7. 92 — sulphatotilanite, 7. 92 — sulphatotilanite, 7. 95 — effect on catalysis, 1. 487 — sulphinedodianide, 8. 663 — sulphinidodianide, 8. 665 — sulphinotodinanide, 8. 665 — sulphinotodinanide, 8. 665 — sulphitochlororiclite, 15. 758 — sulphototanite, 7. 474 — trihydrated, 7. 474 — trihydrated, 7. 474 — heptahydrated, 7. 474 — trihydrated, 7. 474 — sulphostannite, 7. 478 — sulphostannite, 7. 478 — sulphototanite, 11. 113 — sulphotomylbomide, 11. 652 — sulphovanadites, 9. 816 — sulphurylbromide, 10. 689 — sulphurylbromide, 2. 662 — tetrandlorozinate, 4. 552 — tetrafluodioxyvanadatoe, 4. 15. 90 — tetrafluodioxyvanadate, 9. 799 — tetrafluodioxyvanadate, 9. 796 — tetra	phosphatohexitetradecamolyb-	
stannyl chloride, 7, 442 stalnyl chloride, 7, 442 stannyl chloride, 7, 489 strontium chromate, 11, 271 dimetaphosphate, 3, 894 hydroxynitrilodisulphonate, 8, 677 imidosulphonate, 8, 654 nickel nitrite, 8, 511 trioxysulpharsenate, 9, 329 subsulphatoplatinite, 16, 401 sulphate, 2, 695; 13, 609, 615; 15. 151 acid, 2, 703 monohydrate, 10, 255 properties, chemical, 2, 701 physical, 2, 696 sulphatophosphate, 8, 948, 1071 sulphatopertitanate, 7, 95 sulphatophosphate, 8, 948, 1071 sulphatopertitanate, 7, 95 sulphatophosphate, 8, 948, 1071 sulphatotellurite, 11, 118 sulphatotiflurite, 15, 758 sulphitochloroiridite, 15, 758 sulphimide, 8, 663 sulphindodiamide, 8, 665 sulphotostannite, 7, 478 sulphotsannate, 7, 478 heptahydrated, 7, 474 trihydrated, 7, 474 trihydrated, 7, 474 sulphotsannite, 1, 188 sulphotamate, 10, 689 sulphovanadatomolybdate, 11, 652 sulphovanadates, 9, 816 sulphovanadatomolybdate, 11, 652 sulphovanadates, 9, 816 sulphurylchromide, 10, 689 sulphurylchromide, 2, 685 tetrachlorozicaluri, 11, 100 tetrachlorozicaluri, 11, 100 tetrachlorozicaluri, 11, 13, 35, 2 tetrafluodioxytungstate, 11, 838 tetrafluodioxytungstate, 11, 838 tetrafluodioxytungstate, 9, 799 tetrafluodioxytungstate, 9, 297 tetrachromate, 11, 251 tetrachlorozicale, 4, 552 tetrachlorozicale, 4, 552 tetrachlorozicalet, 4, 565 tetrachlorozicalet, 4, 565 tetrafluodioxytungstate, 11, 584 tetrahlorozicalet, 4, 525 tetrafluodioxytungstate, 11, 584 tetrafluodioxytungstate, 9, 297 tetrafluodioxytungstate, 9, 297 tetrafluodioxytungstate, 9, 297 tetrafluodioxytungstate, 9, 279 tetraflu		
stannidodecamolybdate, 11. 601 stannyl chloride, 7. 442 stilbite, 6. 760 strontium chromate, 11. 271 — dimetaphosphate, 3. 894 — hydroxynitrilodisulphonate, 8. 677 — imidosulphonate, 8. 654 — nickel nitrite, 8. 511 — trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 — acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 sulphatobismuthite, 9. 670 sulphatoperitianate, 7. 95 sulphatoperitianate, 7. 95 sulphatototlurite, 11. 118 sulphatotilurite, 11. 118 sulphatotilurite, 11. 118 sulphatotiluritie, 11. 118 sulphatotiluritie, 11. 118 sulphotothoroiridite, 15. 768 sulphinde, 2. 645 — effect on catalysis, 1. 487 sulphinde, 16. 683 sulphinde, 16. 398 sulphotannate, 7. 474 — heptahydrated, 7. 474 — trihydrated, 7. 474 sulphostannite, 7. 478 sulphotophotate, 11. 650 sulphotothoroiridite, 15. 768 sulphotothoroiridite, 15. 768 sulphotothoroiridite, 15. 768 sulphotothoroiridite, 15. 768 sulphotothoroiridite, 15. 788 sulphotothoroiridite, 16. 699 sulphurylchoride, 10. 689 sulphovanadatomolybdate, 11. 652 sulphototangatae, 11. 858 tetramidosulphonatopeatarinite, 2. 652 tetrafluodioxytungstate, 11. 838 tetrafluodioxyvanadate, 9. 799 tetrafluodioxyvanadate, 9. 790 tetrafluodioxyvanadate, 9. 772 tetrafluodioxyvanadate, 9. 790 tetrafluodioxyvanadate, 9. 790 tetrafluodioxyvanadate, 9. 750 tetrafluodioxyvanadate, 9. 750 tetrafluodioxyvanadate, 9. 790 tetrafluodioxyvanadate, 9. 750 tetrafluodioxyvanadate, 9.		
stannyl chloride, 7, 442 stilbite, 6, 760 strontium chromate, 11, 271 dimetaphosphate, 3, 894 hydroxynitrilodisulphonate, 8, 657 imidosulphonate, 8, 654 inickel nitrite, 8, 511 trioxysulpharsenate, 9, 329 subsulphatoplatinite, 16, 401 sulphate, 2, 695; 13, 609, 615; 15 l51 acid, 2, 703 monohydrate, 10, 255 properties, chemical, 2, 701 physical, 2, 696 sulphatohypovanadate, 9, 818 sulphatophosphate, 8, 948, 1071 sulphatophosphate, 8, 948, 1071 sulphatotitanite, 7, 95 sulphatotrifluoantimonite, 9, 466 sulphotorinide, 11, 650 sulphototrioridite, 15, 758 sulphimidodiamide, 8, 665 sulphotothororidite, 15, 758 sulphotothororidite, 15, 758 sulphotothororidite, 11, 650 sulphotothurgstate, 11, 854 tetraindosulphonatophate, 10, 593 sulphotothurgstate, 11, 858 sulphotyphorophate, 1, 659 sulphovanadites, 9, 816 sulphurylbromide, 10, 689 sulphotochamate, 10, 189 sulphotochamate, 10, 255 tetrachlooromate, 11, 110 tetrafluodioxytungstate, 11, 83e tetrafluodioxytungstate, 11, 83e tetrafluodioxytungstate, 11, 83e tetrafluodioxytungstate, 11, 83e tetrafluodioxytungstate, 10, 265 tetrahydrorancate, 9, 296 tetrahydrorasenatohemipentamolybdate, 9, 211 tetrahydroarsenatohemipentamolybdate, 11, 592 tetrahydroarsenatohemipentamolybdate, 11, 592 tetrahydroarsenatohemipentamolybdate, 11, 592 tetrahydroarsenatohemipentamolybdate, 11, 592 tetrahydroarsenatohemipentamolybdate, 11,		
stilbite, 6. 780 strontium chromate, 11. 271 — dimetaphosphate, 3. 894 — hydroxynitrilodisulphonate, 8. 677 — imidosulphonate, 8. 654 — nickel nitrite, 8. 511 — trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. — acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 sulphatobresimuthite, 9. 670 sulphatobresimuthite, 9. 670 sulphatoporetitanate, 7. 95 sulphatoptoritianate, 7. 95 sulphatotitanite, 7. 92 sulphatotitanite, 7. 92 sulphatotitimite, 7. 92 sulphatotifiuoantimonite, 9. 466 sulphide, 2. 645 —— effect on catalysis, 1. 487 sulphatotofriide, 15. 758 sulphitochloroiridite, 15. 758 sulphotofriide, 16. 398 sulphooterrite, 14. 182 sulphostannate, 7. 474 — heptahydrated, 7. 474 sulphostannate, 7. 478 sulphostannate, 7. 474 sulphostannate, 7. 478 sulphotungstate, 11. 858 sulphotungstate, 11. 858 sulphotoride, 10. 689 sulphurylchloride, 10. 68		
strontium chromate, 11. 271 — dimetaphosphate, 3. 894 — hydroxynitrilodisulphonate, 8. 677 — imidosulphonate, 8. 654 — nickel nitrite, 8. 511 — trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. — 151 — acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 sulphatobismuthite, 9. 679 sulphatohexafluodiantimonite, 9. 466 sulphatohypowanadate, 9. 818 sulphatoprosphate, 8. 948, 1071 sulphatotellurite, 11. 118 sulphatotitanite, 7. 92 sulphatotidurite, 11. 118 sulphatotidurite, 11. 189 sulphice, 2. 645 — effect on catalysis, 1. 487 sulphindodiannide, 8. 665 sulphidodiannide, 8. 665 sulphidostannate, 7. 778 sulphostannite, 7. 474 — heptahydrated, 7. 474 — trihydrated, 7. 474 — trihydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 9. 816 sulphurylbrioride, 10. 689 sulphurylbrioride, 1		
mydroxynitrilodisulphonate, 677 imidosulphonate, 8, 654 mickel nitrite, 8, 511 trioxysulpharenate, 9, 329 subsulphatoplatinite, 16, 401 sulphate, 2, 695; 13, 609, 615; 15. 151 monohydrate, 10, 255 monohydrate, 10, 255 monohydrate, 10, 255 monohydrate, 2, 696 sulphatobismuthite, 9, 670 sulphatobismuthite, 9, 670 sulphatohypovanadate, 9, 818 sulphatophorandate, 9, 818 sulphatophorandate, 9, 818 sulphatotellurite, 11, 118 sulphatotellurite, 11, 118 sulphatotifluonatinonite, 9, 466 sulphide, 2, 645 meffect on catalysis, 1, 487 sulphimide, 8, 663 sulphiotediloricitite, 15, 758 sulphimidodiamide, 8, 663 sulphiotediloricitite, 15, 758 sulphototlurite, 11, 1650 sulphotollurite, 11, 13 sulphostannate, 7, 474 trinydrated, 7, 474 sulphostannate, 7, 474 sulphostannate, 7, 474 trinydrated, 7, 474 sulphostannate, 7, 474 sulphovanadatomolybdate, 11, 650 sulphotollurite, 11, 113 sulphovanadatomolybdate, 11, 652 sulphovanadatomolybdate, 11, 652 sulphovanadatomolybdate, 11, 659 sulphurylchloride, 10, 689 sulphurylchloride		
677 — imidosulphonate, 8, 654 — nickel nitrite, 8, 511 — trioxysulpharsenate, 9, 329 subsulphatoplatinite, 16, 401 — sulphate, 2, 695; 13, 609, 615; 15, 16 — acid, 2, 703 — monohydrate, 10, 255 — properties, chemical, 2, 701 — physical, 2, 696 — sulphatobismuthite, 9, 670 — sulphatopertitanate, 7, 95 sulphatopertitanate, 7, 95 sulphatopertitanate, 7, 95 sulphatopertitanate, 7, 92 sulphatotrifluoantimonite, 9, 466 sulphide, 2, 645 — effect on catalysis, 1, 487 — sulphimide, 8, 663 sulphindelprite, 14, 182 sulphostannate, 7, 474 — heptahydrated, 7, 474 — trihydrated, 7, 474 sulphostannate, 7, 478 sulphotolurite, 11, 113 sulphotomylbdate, 11, 650 sulphotolurite, 11, 113 sulphotomylbronide, 10, 689 sulphurylchlorice, 10, 689 sulphotomylce, 2, 625 tetraphosphatodivanadatoetotesaracontatungstate, 9, 829 tetrafluodioxytungstate, 11, 83 tetrafluodioxytungstate, 11, 838 tetrafluodioxytungstate, 14, 83 tetrafluodioxytungstate, 9, 801 tetrafluodioxytungstate, 14, 83 tetrafluodioxytungstate,		
mickel nitrite, 8. 511 trioxysulpharsenate, 9. 329 subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatobismuthite, 9. 670 sulphatobesmuthite, 9. 670 sulphatoperitianate, 7. 95 sulphatoperitianate, 7. 95 sulphatoticanite, 7. 92 sulphinide, 2. 645	677	
tetrafluodioxyvanadate, 9, 799 subsulphatoplatinite, 16, 401 sulphate, 2, 695; 13, 609, 615; 15. 151		
subsulphatoplatinite, 16. 401 sulphate, 2. 695; 13. 609, 615; 15. 151 acid, 2. 703 monohydrate, 10. 255 properties, chemical, 2. 701 physical, 2. 696 sulphatobismuthite, 9. 670 sulphatobismuthite, 9. 670 sulphatohypovanadate, 9. 818 sulphatoppritianate, 7. 95 sulphatoportitanate, 7. 95 sulphatotellurite, 11. 118 sulphatotifluoantimonite, 9. 466 sulphide, 2. 645 sulphide, 2. 645 sulphide, 2. 645 sulphide, 2. 645 sulphide, 3. 665 sulphiochloroiridite, 15. 758 sulphororite, 14. 182 sulphomolybdate, 11. 650 sulphobtannate, 7. 474 trihydrated, 7. 474 sulphostannite, 7. 478 sulphotungstate, 11. 858 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylehloride, 10. 689 sulphurylehloride, 10. 689 sulphurylehloride, 10. 689 sulphurylithiceyanate, 10. 689 sulphurylehloride, 10. 689 sulphurylithiceyanate, 10. 689 sulphurylehloride, 2. 645 tetraphosphatodivanadatodetessaracontamolybdate, 9. 829	nickel mitrite, 8, 511	
sulphate, 2, 695; 13, 609, 615; 15. 151 acid, 2, 703 monohydrate, 10, 255 properties, chemical, 2, 701 physical, 2, 696 sulphatobismuthite, 9, 670 sulphatobismuthite, 9, 670 sulphatophosphate, 8, 948, 1071 sulphatophosphate, 8, 948, 1071 sulphatoticlurite, 11, 118 sulphatoticlurite, 11, 118 sulphatotitanite, 7, 92 sulphatotiriluoantimonite, 9, 466 sulphinde, 2, 645 cffect on catalysis, 1, 487 sulphimide, 8, 663 sulphotellurite, 14, 182 sulphotelloroiridite, 15, 758 sulphotelrite, 14, 182 sulphotemate, 1, 1, 650 sulphotelmate, 16, 398 sulphotemate, 7, 474 heptahydrated, 7, 474 sulphotematete, 11, 113 sulphotelmite, 11, 113 sulphotematete, 11, 858 sulphovanadites, 9, 816 sulphovanadites, 9, 816 sulphovanadites, 9, 816 sulphovanadites, 9, 816 sulphovanate, 10, 689 sulphurylbrioride, 10, 689 sulphurylhriveynante, 10, 689 sulphurylhriveynante, 10, 689 sulphurylthiceynante, 10, 689 sulphotenante, 10, 689 sulphotenante, 11, 652 tetranitritodiamminocobaltiate, 8, 509 tetranitritoplatinite, 8, 518 tetranitritoplatinite, 10, 533 tetralanthanun henasulphate, 5, 659 tetranphosphatodioecavanaditotetratessa		
- acid, 2. 703 - monohydrate, 10. 255 - properties, chemical, 2. 701 - physical, 2. 696 - sulphatobismuthite, 9. 670 - sulphatohypovanadate, 9. 818 - sulphatopportitanate, 7. 95 - sulphatopertitanate, 7. 95 - sulphatotellurite, 11. 118 - sulphatotitanite, 7. 95 - sulphatotitanite, 7. 95 - sulphatotitinite, 7. 95 - sulphatotitinite, 7. 95 - sulphatotitinite, 7. 95 - sulphatotitinite, 7. 92 - sulphatotitinite, 7. 92 - sulphatotitinite, 7. 95 - sulphatotitinite, 7. 95 - sulphatotitinite, 7. 95 - sulphide, 2. 645 effect on catalysis, 1. 487 - sulphimide, 8. 665 - sulphimide, 8. 665 - sulphimide, 8. 665 - sulphotoriric, 14. 182 - sulphotoriric, 14. 182 - sulphotoplatinate, 16. 398 - sulphostannate, 7. 474 trihydrated, 7. 474 - trihydrated, 7. 474 - sulphostannate, 7. 474 - trihydrated, 7. 474 - sulphostannate, 7. 474 - trihydrated, 7. 474 - sulphostannate, 10. 689 - sulphovanadites, 9. 816 - sulphovanadites, 9. 816 - sulphurylchoride, 10. 689 - sulphurylchoride, 10		
- acid, 2. 703 — monohydrate, 10. 255 — properties, chemical, 2. 701 — physical, 2. 696 — sulphatobismuthite, 9. 670 — sulphatohexafluodiantimonite, 9. 466 — sulphatopertitanate, 7. 95 — sulphatotellurite, 11. 118 — sulphatotellurite, 11. 118 — sulphatotellurite, 11. 118 — sulphatotitanite, 7. 92 — sulphatotitanite, 7. 92 — sulphatotitiduoantimonite, 9. 466 — sulphide, 2. 645 — effect on catalysis, 1. 487 — sulphidodiamide, 8. 663 — sulphimidodiamide, 8. 663 — sulphimidodiamide, 8. 665 — sulphiotochlorricitite, 15. 758 — sulphoplatinate, 16. 398 — sulphoplatinate, 16. 398 — sulphostannate, 7. 474 — trihydrated, 7. 474 — sulphotungstate, 11. 858 — sulphovanadites, 9. 816 — sulphovanadites, 9. 816 — sulphotylbrioride, 10. 689 — sulphurylchioride, 10. 689 — sulphurylthicoyanate, 10. 689 — sulphotellurite, 11. 177 — telluratohexamolybdate, 11. 97 — telluratotriarsenate, 9. 203 — telluratotriarsenate, 9. 204 — tetrahydroarsenatohemipentamolybdate, 9. 759 — tetrahydrorthotetravanadate, 9. 759 — tetrahydrorthotetravanadate, 9. 759 — tetrahydroxylaminotetramolybdate, 10. 533 — tetrahydroxylaminotetramolybdate, 10. 533 — tetrahydroarsenatohemipentamolybdate, 10. 533 — tetrahydroarsenatohemipentamolybdate, 10. 533 — tetrahydroarsenatohemipentamolybdate, 10. 533 — tetrahydroarsenatohemipentamolybdate, 10. 533 — tetrahydroarsenatohe		
- monohydrate, 10. 255 - properties, chemical, 2. 701 - physical, 2. 696 - sulphatobismuthito, 9. 670 - sulphatohypovanadate, 9. 818 - sulphatopertitanate, 7. 95 - sulphatopertitanate, 7. 95 - sulphatotellurite, 11. 118 - sulphatotellurite, 11. 118 - sulphatotifluoantimonite, 9. 466 - sulphide, 2. 645 effect on catalysis, 1. 487 - sulphindide, 8. 663 - sulphimide, 8. 665 - sulphimide, 8. 665 - sulphimide, 11. 582 - sulphotohloridite, 15. 758 - sulphotohloridite, 15. 758 - sulphotohydate, 11. 650 - sulphoplatinate, 16. 398 - sulphostannate, 7. 474 - trihydrated, 7. 474 - trihydrated, 7. 474 - sulphostannite, 7. 478 - sulphostannite, 7. 478 - sulphotolurite, 11. 113 - sulphotungstate, 11. 858 - sulphovanadites, 9. 816 - sulphurylchloride, 10. 689 - sulphury	acid, 2. 703	
	monohydrate, 10. 255	9. 211
sulphatobismuthite, 9, 670 sulphatohexafluodiantimonite, 9, 466 sulphatopertitanate, 7, 95 sulphatopertitanate, 7, 95 sulphatotophosphate, 8, 948, 1071 sulphatotilurite, 11, 118 sulphatotifluoantimonite, 9, 466 sulphatotrifluoantimonite, 9, 466 sulphinide, 2, 645 sulphatotrifluoantimonite, 9, 466 sulphinide, 8, 663 sulphimide, 8, 663 sulphimide, 8, 663 sulphimide, 8, 665 sulphimidodiamide, 8, 665 sulphororicitite, 15, 758 sulphotoricitite, 15, 758 sulphosplatinate, 16, 398 sulphosplatinate, 7, 474 sulphostannate, 7, 474 sulphostannate, 7, 474 sulphovanadate, 9, 816 sulphovanadatomolybdate, 11, 652 sulphovanadites, 9, 816 sulphurylchloride, 10, 689 sulphurylchlo	properties, chemical, 2, 701	1
sulphatohexafluodiantimonite, 9. 466 sulphatohypovanadate, 9. 818 sulphatophypovanadate, 7. 95 sulphatophyposphate, 8. 948, 1071 sulphatotellurite, 11. 118 sulphatotitanite, 7. 92 sulphatotitinoantimonite, 9. 466 sulphide, 2. 645	physical, 2, 696	
sulphatopyovanadate, 9. 818 sulphatoppertitanate, 7. 95 sulphatoppertitanate, 7. 95 sulphatoptophate, 8. 948, 1071 sulphatotitanite, 7. 92 sulphatotitanite, 7. 92 sulphatotifluoantimonite, 9. 466 sulphide, 2. 645		
sulphatopertitanate, 7. 95 sulphatophosphate, 8. 948, 1071 sulphatotellurite, 11. 118 sulphatotitanite, 7. 92 sulphatotrifluoantimonite, 9. 466 sulphatotrifluoantimonite, 9. 466 sulphinide, 2. 645 sulphinide, 8. 663 sulphimide, 8. 665 sulphimide, 8. 665 sulphinideliamide, 8. 665 sulphoferrite, 14. 182 sulphorelite, 14. 182 sulphorelite, 14. 182 sulphostannate, 7. 474 ——heptahydrated, 7. 474 ——trihydrated, 7. 474 sulphostannite, 7. 478 sulphotellurite, 11. 113 sulphotellurite, 11. 113 sulphotellurite, 11. 113 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanat		
sulphatotellurite, 11. 118 sulphatotitanite, 7. 92 sulphatotitanite, 7. 92 sulphatotitifluoantimonite, 9. 466 sulphide, 2. 645		
sulphatotellurite, 11. 118 sulphatotitanite, 7. 92 sulphatotrifluoantimonite, 9. 466 sulphide, 2. 645		
sulphatotrifluoantimonite, 9. 466 sulphide, 2. 645 sulphide, 8. 663 sulphimide, 8. 663 sulphimidodiamide, 8. 665 sulphoferrite, 14. 182 sulphomolybdate, 11. 650 sulphoplatinate, 16. 398 sulphostannate, 7. 474 tetranidosulphonatoplatinite, 8. 518 sulphostannate, 7. 474 sulphostannite, 7. 478 sulphotellurite, 11. 113 sulphotungstate, 11. 858 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylthiocyanate, 10. 689 sulp	sulphatotellurite, 11. 118	tetraiodoplumbite, 7. 772
sulphide, 2. 645 — effect on catalysis, 1. 487 — sulphimide, 8. 663 — sulphimide, 8. 665 — sulphimidodiamide, 8. 665 — sulphiochloroiridite, 15. 758 — sulphoferrite, 14. 182 — sulphooplatinate, 16. 398 — sulphoplatinate, 16. 398 — sulphostannate, 7. 474 — heptahydrated, 7. 474 — trihydrated, 7. 474 — trihydrated, 7. 478 — sulphostannite, 7. 478 — sulphostannite, 11. 113 — sulphovanadites, 9. 816 — sulphovanadites, 9. 816 — sulphovanadites, 9. 816 — sulphurylbromide, 10. 689 — sulphurylchloride, 10. 689 — sulphurylthiocyanate, 10. 689 — tetraiodothiosulphate, 10. 533 — tetralanthanum henasulphate, 5. 659 — tetramolyblate, 11. 591 — tetramolybl	sulphatotitanite, 7. 92	
sulphimide, 8. 663 sulphimidodiamide, 8. 665 sulphimodoliamide, 8. 665 sulphoferrite, 14. 182 sulphomolybdate, 11. 650 sulphoplatinate, 16. 398 sulphostannate, 7. 474 heptahydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphotellurite, 11. 113 sulphotungstate, 11. 858 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylbromide, 10. 689 sulphurylhirate, 10. 689 sulphurylhirozyanate, 10. 689 sulphurylhiozyanate, 10. 689 sulphurylthiozyanate, 10. 689 sulphurylthiozyan		
sulphimidodiamide, 8. 665 sulphicochloroiridite, 15. 758 sulphoferrite, 14. 182 sulphomolybdate, 11. 650 sulphoplatinate, 16. 398 sulphostannate, 7. 474		
sulphoterrite, 14. 182 sulphomolybdate, 11. 650 sulphostannate, 7. 474 — heptahydrated, 7. 474 — trihydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphostannite, 11. 113 sulphotellurite, 11. 113 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylthiocyanate, 10. 689 sulp		
sulphoferrite, 14. 182 sulphomolybdate, 11. 650 sulphoplatinate, 16. 398 sulphostannate, 7. 474 heptahydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphostannite, 11. 113 sulphotellurite, 11. 113 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylbromide, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanate, 10. 689 stulphurylthiocyanate, 10. 689		
	sulphoferrite, 14. 182	
sulphostannate, 7. 474 heptahydrated, 7. 474 sulphostannite, 7. 478 sulphostannite, 7. 478 sulphotellurite, 11. 113 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylhthiocyanate, 10. 689 syngonite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratotriarsenate, 9. 204 tellurite, 11. 77 telluratotriarsenate, 9. 204 tetrantimonate, 9. 443 tetraphosphatodivanadatoctotessar- contamolybdate, 9. 829 tetraphosphatododecavanaditotetra- tessaracontatungstate, 9. 826 tetraphosphatododecavanaditotetra- tetratricontatungstate, 9. 826 tetraphosphatododecavanaditotetra- tetraphosphatododecavanaditotetra- tetraphosphatododecavanaditotetra- tetraphosphatodovanadatodoressar- contamolybdate, 9. 829 tetraphosphatodovanadatodoressara- contamolybdate, 9. 829 tetraphosphatodovanadatodoressara- contamolybdate, 9. 829 tetraphosphatodivanadatodotessara- contamolybdate, 9. 829 tetraphosphatodivanadatodotessara- contamolybdate, 9. 829 tetraphosphatodivanadatodotessara- contamolybdate, 9. 829 tetraphosphatodivanadatodotessara- contamolybdate, 9. 829 tetraphosphatodovanadatodotessara- contamolybdate, 9. 829 tetraphosphatodovanadatodotessara- contamolybdate, 9. 829 tetraphosphatodovanadatodotessara- contamolybdate, 9. 829 tetraphosphatodovanadatodotessara- contamolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 826 tetraphosphatodovanadatomolybdate, 9. 826 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 829 tetraphosphatodovanadatomolybdate, 9. 826 tetraphosphatodovanadatomolybdate, 9. 6	sulphomolybdate, 11. 650	tetranitritodiamminocobaltiate, 8. 509
- heptahydrated, 7, 474 - trihydrated, 7, 474 - sulphostannite, 7, 478 - sulphotellurite, 11, 113 - sulphotungstate, 11, 858 - sulphovanadatomolybdate, 11, 652 - sulphovanadites, 9, 816 - sulphurylbromide, 10, 689 - sulphurylbromide, 10, 689 - sulphurylthiocyanate, 10, 689 - sulphurylthiocyanate, 10, 689 - sulphurylthiocyanate, 10, 689 - syngenite, 3, 812 - tellurate, 11, 89 - telluratoarsenate, 9, 203 - telluratotriarsenate, 9, 204 - tellurite, 11, 77 - telluratotriarsenate, 9, 204 - tellurite, 11, 77 - telluratodivanadatoctotessar-contamolybdate, 9, 829 - tetraphosphatodivanadatoctotessar-contamolybdate, 9, 829 - tetraphosphatododecavanaditotetra-tessaracontatungstate, 9, 826 - tetraphosphatododecavanaditotetra-tessaracontatungstate	—— sulphoplatinate, 16. 398	
sulphotellurite, 11. 113 sulphotellurite, 11. 113 sulphotellurite, 11. 1858 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylchloride, 10. 689 sulphuryllritate, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanate, 10. 689 syngenite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratotriarsenate, 9. 204 tellurite, 11. 77 telluratotriarsenate, 9. 204 tellurite, 11. 77 terraphosphatodivanadatodiotessara- contamolybdate, 9. 829 tetraphosphatodioteanadatodiotessara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodioteavanaditotetra- tessaracontatungstate, 9. 835 tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditotetra- tessaracontatungstate, 9. 826 tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodomacal- tetraphosphatodomacal	sulphostannate, 7. 474	
sulphotellurite, 11. 113 sulphotellurite, 11. 113 sulphotellurite, 11. 1858 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylchloride, 10. 689 sulphuryllritate, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocyanate, 10. 689 syngenite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratotriarsenate, 9. 204 tellurite, 11. 77 telluratotriarsenate, 9. 204 tellurite, 11. 77 terraphosphatodivanadatodiotessara- contamolybdate, 9. 829 tetraphosphatodioteanadatodiotessara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 829 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodiotesara- contamolybdate, 9. 826 tetraphosphatodioteavanaditotetra- tessaracontatungstate, 9. 835 tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditotetra- tessaracontatungstate, 9. 826 tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- andato- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodioteavanaditodera- tetraphosphatodomacal- tetraphosphatodomacal	heptahydrated, 7, 474	
- sulphotellurite, 11. 113 - sulphotungstate, 11. 858 - sulphovanadatomolybdate, 11. 652 - sulphovanadites, 9. 816 - sulphurylbromide, 10. 689 - sulphurylchloride, 10. 689 - sulphurylnitrate, 10. 689 - sulphurylnitrate, 10. 689 - sulphurylthiocyanate, 10. 689 - syngenite, 3. 812 - tellurate, 11. 89 - telluratoarsenate, 9. 203 - telluratotriarsenate, 9. 204 - tellurite, 11. 77 - contamolybdate, 9. 829 - tetraphosphatododecavanaditotetra tetraphosphatohexadecavanaditoheni tricontatungstate, 9. 835 - tetraphosphitotetradecavanaditoheni tricontatungstate, 8. 919 - tetraselenotungstate, 10. 798 - tetrasulphide, 2. 652 - tetrasulphoeuprate, 3. 227 - telluratotriarsenate, 9. 204 - tetrauranate, 12. 67 - tetrauranate, 12. 67 - tetravanadatodimolybdate, 10. 308 - tetravanadatodimolybdate, 10. 781	sulphostannite 7 478	
sulphotungstate, 11. 858 sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylbromide, 10. 689 sulphurylhitrate, 10. 689 sulphurylthiocyanate, 10. 689 syngonite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratotriarsenate, 9. 204 tellurite, 11. 77 telluratotriarsenate, 9. 204 tellurite, 11. 77		
sulphovanadatomolybdate, 11. 652 sulphovanadites, 9. 816 sulphurylbromide, 10. 689 sulphurylchloride, 10. 689 sulphurylthiocyanate, 10. 689 sulphurylthiocya		
	sulphovanadatomolybdate, 11. 652	
sulphurylchloride, 10. 689 sulphurylnitrate, 10. 689 sulphurylthiocyanate, 10. 689 syngonite, 3. 312 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratotriarsenate, 9. 204 tellurite, 11. 77 telluratotriarsenate, 9. 204 telluratodimolybdate, 10. 308 tetravanadatodimolybdate, 10. 781	sulphovanadites, 9. 816	
sulphurylnitrate, 10. 689 sulphurylthiocyanate, 10. 689 syngenite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratohexamolybdate, 11. 97 telluratotriarsenate, 9. 204 tellurato, 11. 77 telluratorsenate, 9. 204 telluratorsenate, 9. 204 telluratorsenate, 9. 204 teravanadatodimolybdate, 10. 308 tetravanadatodimolybdate, 10. 781	—— sulphurylbromide, 10. 689	
sulphurylthiocyanate, 10. 689 syngonite, 3. 812 tellurate, 11. 89 telluratoarsenate, 9. 203 telluratohexamolybdate, 11. 97 telluratotriarsenate, 9. 204 tellurato, 11. 77 telluratotriarsenate, 9. 204 tetravanadatodimolybdate, 10. 308 tetravanadatodimolybdate, 10. 781	sulphurylchloride, 10. 689	
tellurate, 11. 89 telluratoarsenate, 9. 203 telluratohexamolybdate, 11. 97 telluratotriarsenate, 9. 204 telluratotriarsenate, 9. 204 telluratotriarsenate, 12. 67 telluratotriarsenate, 9. 204 tellurite, 11. 77 tellurate, 12. 89 tetrasulphocuprate, 3. 227 tetrathionate, 10. 617 tetrauranate, 12. 67 tetrauranyl pentasulphite, 10. 308 tetravanadatodimolybdate, 10. 781		4
		tetrauranate, 12. 67
tellurite, 11. 77 tetravanadatodimolybdate, 10. 781	telluratotriarsenate, 9. 204	tetrauranyl pentasulphite, 10. 308
tellurium sulphite, 10. 306 tetravanadatopentamolybdate, 9. 782	tellurite, 11. 77	- · · · tetravanadatodimolybdate, 10. 781
	tellurium sulphite, 10. 306	tetravanadatopentamolybdate, 9. 782

THE CHILDREN	
Ammonium tetravanadatotetramolybdate,	Ammonium trihydrohypophosphate, 8. 932
9. 781	trihydrohypovanadate, 9. 746
tetravanadylhydrododecafluoride, 9. 800	trihydrophosphatohemipentamolybdate, 11. 668
tetrerodecavanadate, 9. 759	——— hemitridecahydrate, 11. 669
tetroxydisulphatodivanadate, 9. 825	hexahydrate, 11. 668
thellic bromoplumbite, 7. 753 chloroplumbite, 7. 732	—— tetrahydrate, 11. 668 —— trihydroselenite, 10. 821
disulphate, 5. 469	trihydrotetraselenitohexavanadate,
disulphate, 5. 469 trisulphate, 5. 469	10. 835
thallium hydroxydisulphate, 15, 786	triimidochromate, 8. 266 tri-iodate, 2. 340
	triiodide, 2. 619
—— thiocarbamate, 6. 132	— triiodoplumbite, 7. 771
thiocarbonate, 6. 121	trimercuric sulphate, 4, 978
thiophosphate, 8, 1064 thiosulphate, 10, 514	—— trimetaphosphate, 2. 877 —— trimolybdate, 11. 588
thoridodecamolybdates, 11. 601	trioxydifluomolybdate, 11. 612
thorium carbonate, 7. 249	trioxypentafluomolybdate, 11. 615
	— trixoysulpharsenate, 9. 327 — trioxytetradecafluocolumbate, 9. 872
——————————————————————————————————————	tribxytrifluomolybdate, 11. 613
hexanitrate, 7. 251	—— triperchromates, 11. 356
hexasulphate, 7. 246	triphosphatotellurate, 11. 120
—— hydronitrate, 7. 251 —— pentachloride, 7. 235	—— triselenitodecamolybdate, 10. 836 —— trisilver trisulphuryldiimidodiamide,
pentanitrate, 7. 250	8. 666
dihydrate, 7. 251	trisulphatochromate, 11. 464
pentanylphate, 7, 246	—— trisulphatocuprate, 3. 255 —— trisulphatododecafluotetrantimonite,
pentasulphate, 7. 246 tetrasulphate, 7. 245	9. 466
trisulphate, 7. 245	trisulphatoplumbate, 7, 823
titanate, 7. 50	trisulphide, 2. 651
—— titanidodecamolybdate, 11. 600 —— titanium carbonate, 7. 96	gold, 2. 651 trisulphimide, 8. 663
	trisulphitotriamminocobaltate, 10.318
oxysulphate, 7. 95	trisulphomolybdate, 11. 651
titanous alum, 7. 92 sulphate, 7. 92	
titanyl sulphate, 7. 95	——————————————————————————————————————
triamidodiphosphate, 8. 712	pentahydrate, 9. 759
triammino-bromocuprite, 8. 195	trithionate, 10. 607 trithiophosphate, 8. 1067
triamminochloride, 8. 206 triamminocuprite, 8. 205	tritungstate, 11. 810
triarsenatqtellurate, 11. 96	triuranyl disulphite, 10, 308
triarsenatotetravanadate, 9. 201	trivanadyl disulphite, 10. 305
triazomonosulphonate, 8. 684 tribromide, 2. 594	— tungstate, 11. 773 — tungsten tetrafluoride, 11. 837
tri-bromocuprite, 3. 195	— ultramarine, 6 . 589
tribromomagnesiate, 4. 314	uranate, 12. 18, 61
tribromoplumbite, 7, 751	uranium hydroxydisulphotetraura- nate, 12. 97
tribromostannite, 7. 453 trichlorocuprate, 8. 184	hydroxyhydrodisulphotetraura-
trichlorocuprite, 8. 163	nate, 12. 97
trichlorohypobismuthate, 9. 662	
trichloromagnesiate, 4. 306 trichloromercuriate, 4. 851	red, 12. 97 tetracarbonate, 12. 116
monohydrated, 4. 851	tungstate, 11. 797
— trichloroplumbite, 7. 726	—— uranous carbonate, 12. 112
trichlorostannite, 7, 432	——————————————————————————————————————
trichlorosulphitopalladite, 15. 669 trichlorotribromobismuthite, 9. 673	tetrasulphate, 12. 103
trichromate, 11. 349	uranyl arsenate, 9. 215
tridecachlorotetraferrate, 14. 101	
	——————————————————————————————————————
trifluoferrate, 14. 3	hexahydrate, 11. 308
trifluorocuprate, 3. 156	trihydrate, 11. 308
	disulphate, 12. 108 ———————————————————————————————————
trihydroheptamolybdate, 11. 594	Lizzy CLEUVY 9 ZMI LVO

Ammonium uranyl disulphite, 10. 308	Ammonium zinc thiosulphate, 10. 546
——————————————————————————————————————	triamminosexichromate, 11. 280
—— hydroxysulphite, 10. 308	tribromide, 4. 571
—— pentafluoride, 12 . 77	zirconidodecamolybdate, 11. 601
———— phosphate, 12, 132	- zirconium carbonate, 7. 161
——————————————————————————————————————	octohydroxyhexasulphate, 7. 159
————— selenate, 10. 877	tetrasulphate, 7. 159
selenite, 10. 838	——————————————————————————————————————
sulphate, 12. 17	— zirconyl tetrasulphate, 7. 159
tetrabromide, 12. 93	——————————————————————————————————————
tetrachloride, 12. 89	(tri) tetrasulphate, 7. 159 trisulphate, 7. 159
——————————————————————————————————————	—— dihydrodiamidotetraphosphate, 8. 716
tricarbonate, 12. 113	hydroxynitrilodisulphonate, 8. 673
trinitrate, 12. 125	hydroxynitrilo-iso-disulphonate, 8. 678
	imidodisulphonate, 8. 649
	imidosulphonate, 8. 647
vanadates, 9 . 757 vanadatochromate, 9 . 780	—— pentasilver tetrasulphuryltriimidodia-
	mide, 8. 666
—— vanadatomolybdatoarsenate, 9. 211 —— vanadatophosphate, 9. 828	sodium orthoarsenate, 9, 155 (di)ammonium (tetra)cuprous trisulphite,
vanaditodisulphate, 9. 820	10. 275
vanaditotungstate, 9. 742	(dodec)ammonium (di)cuprous sulphite, 10.
—— vanadium tetroxydisulphate, 9. 825	275
vanadous sulphate, 9. 820	(hept)ammonium cuprous tetrasulphite, 10.
dodecahydrate, 9. 820	275
hexaliydrate, 9. 820	(hexa)ammonium silicodecatungstate, 6. 882
tetrahydrate, 9. 820	(octa)ammonium isosilicododecatungstate,
vanadyl carbonate, 9. 825	6. 873
disulphate, 9. 824	
——————————————————————————————————————	(penta)ammonium cuprous trisulphite, 10.
– – – pentafluoride, 9 . 797	275
—— vanadyltetrafluoride, 9 . 799	hydroxybisnitrilodisulphonate, 8. 673
monohydrate, 9 . 798	(tetra)ammonium diborate, dihydrated, 5.
vanadyltrifluoride, 9. 800	80
(di)vanadyl pentafluoride, mono-	(di)cuprous trisulphite, 10, 275
hydrate, 9. 800	isotetrahydrosilicododecatungstate, 6.
trisulphate, 9. 824 yttrium carbonate, 5. 683	magnesium diphosphate, 4, 385
	octofluostannate, 7. 423
zine chromate, 11. 279	silicododecamolybdate, 6. 869
cobaltous sulphate, 14. 782	(tri)ammonium hydrodiamidotetraphos-
———— diamminobischromate, 11. 280	phate, 8. 715
dihydrophosphate, 4. 661	—— hydroxynitrilodisulphonate, 8: 673
dimetaphosphate, 4. 663	imidodisulphinite, 8. 646
dithionate, 10. 592	imidodisulphonate, 8. 648
terrous sulphate, 14. 298	——————————————————————————————————————
fluoride, 4 . 534	imidotrithiophosphate, 8. 727
	Animono-acids, 8. 277, 278
hyposulphite, 10 . 183 manganous sulphate, 12 . 423	
nickelous sulphate, 15. 476	Ammonohydrazonitric acid, 8, 330
oxychlorides, 4 . 546	Ammonolysis, 8. 277
oxydodecachloride, 4. 546	Ammononitric acid, 8. 330, 341
oxyhenachloride, 4. 546	Amoibite, 9. 310
oxyhexadecachloride, 4. 546	Amonton's law, 1. 160
oxyoctochloride, 4. 546	Amorphous ore, 5. 249
—— paramolybdate, 11. 586	Ampangabeite, 5. 516; 9. 867, 905; 12. 4
paratungstate, 11. 819	Ampanganbeite, 9. 839
pentachloride, 4. 551, 552	Ampère, 1. 963
persulphate, 10. 479	Amphibole, 2, 2; 6, 391
phosphate, 4. 661	asbestos, 6. 426
—— —— monohydrated, 4, 661 —— polyiodide, 4, 581	
polylodide, 4. 551 potassium sulphate, 4. 641	—— rhombie, 6 . 391
	triclinic, 6 . 391
sulphate, 4, 635	Amphibolic acid, 6. 822
——————————————————————————————————————	Amphigène, 6. 648
——————————————————————————————————————	Amphilogite, 6. 607
	Amphithalite, 5. 370
tetraiodide, 4. 582	Amphodelite, 6. 693

Amphoteric oxides, 1. 394	Anhydrides, 1. 395, 396
Amyl acetate and hydrogen, 1, 304	acid, 1. 396
alcohol and hydrogen, 1. 303	— basic, 1. 397
orthosilicate, 6. 309	Anhydrite, 2. 430; 3. 623, 761
- ultramarine, 6. 590	soluble, 769
Amylaminium carbonyltrichloroplatinite,	—— X-radiogram, 1. 642
16 . 273	Anhydrobasiche Tetrammin-Diaquodiam
di-iso-amylammonium bromopalladate, 15.	minkobaltsalze, 14. 681
678	Anhydrobisdiphenylsilicanediol, 6. 309
bromopalladite, 15. 677	Anhydro-iodic acid, 2. 307, 324
bromosmate, 15 . 723	Anhydrosulphatochlorine monoxide, 10. 682
chloroiridate, 15. 770	Anhydrous manganie alum, 12. 429
chloropalladate, 15. 673	Anhydroxycobaltamminenitrate, 14. 843
chloropalladite, 15 . 670	Aniline and hydrogen, 1. 304
chlororuthenate, 15. 534	carbonyltrichloroplatinite, 16. 273
chlorosmate, 15 . 719	- ceric dodecamolybdate, 11. 600
ido-amylammonium bromoruthenate, 15.	ethylenetrichloroplatinite, 16. 272
539	ferroheptanitrosyltrisulphide, 8. 442
iso-amylammonium bromopalladate, 15.	hexaiodobismuthites, 9. 676
678	hydrochloride, 11. 831
bromopalladite, 15. 677	Antinium bromopalladite, 15, 677
bromoperruthenite, 15, 538 bromosmate, 15, 723	bromosmate, 15 . 723 chloroiridate, 15 . 771
chloropalladate, 15. 673	- chloropalladite, 15. 670
chloropalladite, 15. 670	- chloroperiridite, 15. 763
tri-iso-amylammonium bromopalladate, 15.	phosphotrianilidetrichloroplatinite, 16.
678	278
bromopalladite, 15 . 677	Animal charcoal, 5, 750
bromosmate, 15. 723	Animals metabolism, 6. 10
chloroiridate, 15. 770	Animicite, 4. 698
chloropalladate, 15, 673	Animikite, 9. 404; 15. 9
chloropalladite, 15. 670	Anion, 1. 92
··· chlorosmate, 15. 719	o-anisidinium bromosmate, 15, 723
iso-amylanilinium bromosmate, 15 . 723	p-anisidinium bromopalladite, 15 . 677
o-amylanilmium chlorosmate, 15. 719	· bromosmate, 15. 723
Anabolic metabolism, 6. 11	chloropalladite, 15, 670
Anak. 7. 277	Anisotropic crystals, 1. 610
Analeime, 6. 644	
carnea, 6 . 752 Analeite, 6 . 575, 644	Anistropy ultramicroscopic, 5 , 760 Ankerite, 4 , 251, 371; 12 , 148, 150, 529;
silver, 6 . 683	14. 359
thallo-, 6. 826	Anlassen, 12, 690
Analysis, 1. 91	Annabergite, 9. 4, 230; 14. 424; 15. 5
ionic hypothesis, 1, 1009	Annealing, 12, 673, 723
positive ray, 4. 50	Annerödite, 5. 516; 7. 100; 9. 839; 12. 4
Analzim, 6. 644	Annite, 6 . 608
Anapaïte, 14 . 395	Annivite, 9. 4, 291
Anapaite, 12, 529	Anode, 1, 92
Anatase, 7. 2, 30	mud, 8. 27
Anauxite, 6 . 495	slime, 8. 27
Anaximonog 4 22	Anomite, 6, 608
Anaximenes, 1. 32 Ancudite, 6. 477	Anomites, 6, 611
Ancylite, 7. 185	Anophorite, 13, 529 Anorthite, 6, 662, 692, 693
Andalusite, 6. 458	
Anderbergite, 5. 512; 6. 847	ferrie, 6 . 698
Anderberjite, 7. 100	hydrated chloro-, 6. 700
Andesine, 6. 662, 693, 700	potash, 6. 662, 698, 706
Andradite, 6. 714, 921; 12. 529	soda, 6. 698
Andreasbergolite, 6. 766	strontia, 6 . 707
Andreolite, 6. 766	zinc, 6. 698
Andrewsite, 12. 529; 14. 410	Anorthoclase, 6. 662, 664
Anemousite, 6 . 662, 695	Anorthose, 6. 664
Angaralite, 6. 922	Antamokite, 11. 2, 49
Anglarite, 9. 553; 14. 390	Anthion, 10. 465
Angle of optical extinction, 1. 608	Anthite, 6. 726
Angles exial 1 615	Anthochroite, 6, 915; 12, 148
Angles, axial, 1. 615 of crystals, interfacial, 1. 593	Anthogramnite, 6, 396
Anglesite, 7, 491, 803	Antholite, 6, 396, 917 Anthophyllite, 6, 391, 396; 12, 529

Anthophyllite amphibolic, 6, 396	Antimonium diaphoreticum, 9, 420, 439
blättingen, 6 . 396	· ablutum, 9. 420, 452
clino-, 6 , 398	—— fernininum, 9 . 587
—— ferro-, 6 . 916 —— iron, 6 . 912	plumosum, 9. 577
magnesio-, 6 . 916	
strahligen, 6 . 396	sulphure mineralisatum, 9. 513
Anthosiderite, 6. 907	triplex est, 9. 341
Anthracitic diamond, 5, 719	Antimonkupferglanz, 9, 550
Anthropomorphical chemistry, 1, 2 Anticatalysts, 1, 938	Antimonocker, 9. 435 Antimonspath, 9. 421
Anticathode, 4. 31	Antimony α-, 9. 361
Antëdrite, 6. 751	altotropes, 9. 357
Antifriction metal, 4, 671; 7, 362	amminotrichloride, 9, 476
Antigorite, 6. 422 Antihypo, 6. 87	amminotrioxide, 9. 426 ammonium ferrie chloride, 14. 102
Antillite, 6. 392	
Antimoine natif arsenifère, 9, 69	analytical reactions, 9. 382
oxydé octaédrique, 9. 421	arsenate, 9 . 197
	arsenite, 9. 130
Antimonatotungstates, 11, 795	atomic disintegration, 9. 390
Antimonatotungstic acid, 9, 459	number, 9 . 389
Antimonbleikupferblende, 9, 550	weight, 9 . 388
Antimonblende, 9. 577 Antimonblüthe, 9. 421	azide, 8. 354
Antimonglanz, 9, 513	barium sulphate, 9, 583 - bischloromercuriate, 9, 481
Antimonial copper, 9, 343	black, 9. 358
crocus, 9. 578	blende, 9 . 577
fahlerz, 15 . 9	bromides, 9 , 493
	butter of, 9 , 469 by electrolysis, 9 , 353
saffron, 9. 577, 578	- calcium sulphate, 9. 583
	carbide, 5 . 887
	earbonate, 9, 585
Antimoniale causticum, 9, 469 Antimonic acids, 9, 439	- chlorideshigher, 9, 484 chloronitride, 8, 724
- ·· borotungstate, 5. 111	chloronitrosylpentachloride, 9, 488
diarsenatoctodecatungstate, 9. 214	chlorosulphides, 9. 583
nitrosyl chloride, 8 . 617; 9 . 476	cobaltic dichlorobisethylenediamine
oxide, 9 . 421, 439 Antimonides, 9 . 401	hexachloride, 14. 670 colloidal solutions, 9. 362
Antimonidantimonious hemafluoride, 9.	- · · decafluoiodide, 9. 510
468	decafluopentachloride, 9. 510
Antimonii butyram, 9, 469, 504	decafluopentadecachloride, 9. 510
	—— diamminochloride, 9. 496 —— diamminotrifluoride, 9. 464
— cum sulphur Hofmanii, 9. 574	difluotriehloride, 9. 509
stellae, 9 . 340	dihydride, 9 . 391
Antimonious acids, 9. 428	dinitroxylpentadecachloride, 8. 542
antimonate, 9. 434	
barium thiosulphate, 10, 553 borotungstate, 5, 111	- dioxysulphide, 9 . 578
—— calcium thiosulphate, 10. 533	dioxytetrasulphide, 9. 577
lead enneaiodide, 7. 762	disulphatotrioxide, 9. 582
oxide, 9 . 420, 421	monohydrate, 9, 582
—— potassium thiosulphate, 10. 553 —— sodium thiosulphate, 10. 553	———— trihydrate, 9 . 582 —— disulphoselenide, 10 . 921
strontium thiosulphate, 10. 553	ditritoxide, 9. 421
thallous thiosulphate, 10. 553	dodecabromolanthanate, 5. 645
Antimonipentantimonious icosifluoride, 9.	electronic structure, 9. 389
468 Antimonite, 9. 343, 513	—— enneachloride, 9 . 475, 487 —— ethyl pentabromide, 9 . 493
Antimonites, 9. 425, 428	—— explosive, 9 . 359
Antimonitetrantimonious heptadecafluo-	extraction, 9. 348
ride, 9. 468	female, 9. 587
Antimonitophosphatotungstate, 9. 433 Antimonitriantimonious tetradecafluoride,	
9. 468	ferrous sulphide, 14. 168
Antimonium, 9. 341	—— flores, 9 . 378

Antimony fluonitrosylpentafluoride, 9. 467	Antimony pentachloride monohydrated, 9.
fluorides-higher, 9. 466	487
—— fluosilicate, 6 . 955	tetrahydrated, 9. 487
glance, 7. 896; 9. 343	— pentachloropentahydrochloride, 9. 487
axotomous, 9. 546	pentadecafluopentachloride, 9. 509
	pentafluobromide, 9. 510
—— glass, 9 . 513, 577	pentafluodecachloride, 9. 510
grey, 9. 357	pentafluoiodide, 9. 510
—— halogenosulphides, 9. 583	- pentafluopentachloride, 9. 510
—— hemiarsenide, 9. 69	pentafluopentadecachloride, 9. 510
heminitrosylpentachloride, 9. 488	
hemioxide, 9. 421	pentafluoride, 9. 467
hemipentachloronitrosylpentachloride,	pentaiodide, 9. 502
9. 488	—— pentaselenide, 10 . 794
hemitriamminotetrafluoride, 9. 467	—— pentasulphide, 9. 564
henasulphodichloride, 9. 584	colloidal, 9. 566
henisulphatotrioxide, 9. 582	pentasulphodichloride, 9. 583
heptachlorodiiodide, 9. 511	pentoxide, 9. 421, 439
hexabromocerate, 5. 645	
—— hexabromolanthanate, 5. 645	——————————————————————————————————————
—— hexachloride nitrosyl, 9. 379	di-, 9 . 442
hexamminotrifluoride, 9 . 464	hemiennea-, 9. 442
hexasulphotrichloride, 9. 584	hemi-, 9 . 442
hexitatridecaoxide, 9. 440	hexa., 9. 442
hexitatridecoxide, 9. 435	—— mono-, 9 . 442
—— history, 9 . 339	penta-, 9 . 442
—— hydrides, 9 . 390	
imidohydrofluoamidotrifluoride, 9. 467	tripenta-, 9. 442
iodides, 9. 498	hydrogels, 9. 445
isotopes, 9 . 389	
lead heptoxytetrachloride, 9. 507	
	—— pentoxydibromide, 9. 507
metallic precipitation, 9. 384	pentoxydichloride, 9, 505
metantimonate, 9, 434	pentoxydiiodide, 9. 507
mixed halides, 9. 509	pentoxysulphide, 9. 578
—— molybdates, 11. 570	perchlorate, 2. 401
— monamidodiphosphate, 8. 710	phosphate, 9. 585
—— monamminotrifluoride, 9. 464	phosphodecachloride, 8. 1015
monophosphide, 8. 851	phosphopentadecachloride, 8. 1015
—— monoselenide, 10 . 794	phosphorus decachloride, 9. 489
—— monotropie, 9 . 361	phosphonyl octochloride, 9. 489
—— nickel lead alloys, 15 . 237	physiological action, 9. 385
nitrate bispentoxide, 9. 585	—— potassium henasulphate, 9. 583
nitride, 8 . 124, 272	sulphate, 9. 583
nitrogen sulphopentachloride, 9. 476	properties, chemical, 9. 378
— nitroxyldecachloride, 8. 438	
occurrence, 9 . 342	refining, 9. 353
ochre, 9 . 4 35	selenate, 10. 875
octochlorotriiodide, 9. 511	selenium dioxyenneachloride, 10. 906
octosulphate, 9. 581	silicide, 6 . 188
octosulphatotrioxide, 9. 581	silver sulphate, 9. 583
orthoantimonate, 9. 434	
- orthosulphophosphate, 9. 585	
	solubility of hydrogen, 1. 306
	star, 9. 350, 355
oxybromide, 9. 507	strontium sulphate, 9. 583
—— oxybromides, 9 . 507	suboxide, 9. 421
oxychloride, 9. 504	subsulphide, 9. 512
oxychromite, 11. 201	sulpharsenate, 9. 322
oxyhalides, 9. 503	sulpharsenite, 9. 301
oxyfluoride, 9. 503	
oxyiodide, 9. 507	
oxypentasulphide, 9. 577	sulphides, 9. 512
oxyselenide, 10. 780	———— higher, 9. 564
oxyselenite, 10. 834	sulphite, 10. 304
oxysulphides, 9. 576	
oxytetrachloride, 9. 504	sulphochloride, 9. 584
oxytrichloride, 9. 506	sulphodocosichloride, 9. 584
oxytridecachloride, 9. 506	
passive, 9. 373	
pentabromide, 9, 493, 496	sulphoiodide, 9. 584
pentabloride, 9. 486	sulphotrichloride, 9. 584
Laurence recol &: 200	auphomonum, 5. 00%

Antimony sulphotriiodide, 9. 584	Antimonyl phosphite, 8, 907, 918
tellurate, 11. 97	potassium pentachloroantimonate, 9.
telluride, 11. 59	506
—— tetrabromide, 9. 496	sodium tetrafluoride, 9. 503
tetrachloride, 9. 484	sulphantimonate, 9. 578
tetracosisulphoiodide, 9. 585	—— sulphate, 9 . 582
tetrafluoride, 9. 466	Antlerite, 3. 265
—— tetraiodide, 9. 498	Antophyllite, 6. 396
— tetramminopentachloride, 9. 488	Antozone, 1. 899
tetramminotrifluoride, 9. 464	
tetraselenite, 10. 834	Antrimolite, 6. 749
	Aonia, 7. 277
tetrasulphate, 9. 581	Apatelite, 14. 328, 333
tetrasulphatotrioxide, 9. 581	Apatite, 3. 623, 697, 896; 5. 530; 7. 896;
tetrasulphide, 9. 564	8. 733; 9. 261
tetritapentaselenide, 10. 794	cerium, 5. 675
tetroxide, 9 . 351, 421, 434	—— didymium, 5 . 675
—— monohydrated, 9. 437	X-radiogram, 1. 642
tetroxybischromate, 11. 305	Aphanèse, 9. 161
tetroxyheptachloride, 9. 506	Aphenesite, 9. 161
tetroxysulphide, 9. 578	Apheizite, 6. 741
thiophosphate, 8. 1066	Aphrodite, 6 . 420, 428
triamminodifluotrichloride, 9. 509	Aphrosiderite, 6. 624; 12. 529
—— triamminopentachloride, 9. 488	Aphthitalite, 2. 430, 657
triamminotrichloride, 9. 476	Aphthorite, 9. 291
triamminotrifluoride, 9. 464	Aphtit, 15. 314
triarsenide, 9. 69	Apjohnite, 5. 154, 354; 12. 148, 423
tribromide, 9. 493	Aplome, 6, 921; 12, 148
trichloride, 9. 469	Apollinaris, 6. 6
trichlorohemihydrochloride, 9. 475	Apophyllite, 6. 368
trichloromercuriate, 9. 481	Apparent equilibrium, 1. 715
trichlorotrihydrochloride, 9. 475	Apples, 13. 615
— — trifluoride, 9. 463	Applied chemistry, 1. 11
trigonal, 9. 357	Apyrite, 6 . 741
trihydride, 9 . 391	Aqua bromata, 2. 71
trioxide, 9 . 421	— calcinationis omnium metallorum, 8.
acetogels, 9. 430	618
alcogels, 9. 430	chlorata, 2. 71
colloidal, 9 . 422	
hydrogels, 9 . 429	chrysulca, 2. 21
properties, chemical, 9. 425	dissolutiva, 8 , 556
——————————————————————————————————————	
	phagadenica, 4. 774
trioxypentahydroxychloride, 9. 504	
trioxytetrasulphide, 9. 578	regia, 2. 20; 8. 617
trioxytrihydroxytrichloride, 9. 504	
	regis, 8 . 618
trisulphide, 9. 512, 513	salis ammoniaci, 8. 618
colloidal, 9. 526	
hydrogel, 9 . 526	nitri, 2. 20
hydrosol, 9. 526	—— secunda, 2. 20
—— properties, chemical, 9. 521	Aquadag. 5. 753
——————————————————————————————————————	Aquamarine, 4. 204; 6. 803
—— trisulphodiselenide, 10. 921	Aquamol, 5. 219
—— trisulphohexaiodide, 9. 584	Aquilarite, 10. 773
— tritatetraselenide, 10. 794	Aquobasic compounds, 4. 845
—— tungstates, 11. 795	Aquodisulphitotriamminocobaltic acid, 10.
uses, 9. 386	318
—— vanadates, 9 . 779	Aquopentachloroperiridous, 15. 763
vermilions, 9. 565	acid, 15. 765
yellow, 9. 358	Aquopentammines, 11. 401
(di)antimony phosphorus pentadecachloride,	Aquosulphitotetrammines, 10. 316
9. 489	Araeoxene, 7. 491
Antimonyl, 9. 425	Aragonite, 3. 622, 814; 4. 406
bromide, 9. 507	X-radiogram, 1. 642
	Arakawaite, 4. 664
copper oxytriiodide, 9. 508	Aramayoite, 9. 692
iodide, 9 . 507	Arbor jovis, 7. 298, 338
lead oxychloride, 9. 507	saturni, 7. 516
—— mercury oxytriiodide, 9. 508	Are high-tension, 1. 882
metacolunbotantalate, 9. 905	—— low tension, 1. 882
nitrate, 9. 585	spectrum, 4. 7

```
Arcanum duplicatum, 2. 656
                                                 Argon properties, physical, 7. 906
 Archal, 4. 399
                                                 Argozoil, 15. 210
 Archimedes, 1, 36
                                                 Arguerite, 4. 1024
 Architecture of crystals, 1. 616
                                                 Arguroide, 15. 209
                                                 Arguzoid, 15. 208, 209
 Arconium, 4. 171
 Arcticite, 6. 762
                                                 Arguzoide, 15. 210
 Arctolite, 6. 718
                                                 Argyllite, 9. 818
                                                 Argyrites, 7. 638, 644
 Ardennite, 6, 836; 9, 4, 715; 12, 148
                                                 Argyrodite, 3. 300; 4. 406; 7. 254, 275, 896
 Arccaidine bromoplatinate, 16. 376
 Arecoline dichlorotetrachloroplatinate, 16.
                                                 Argyropyrite, 14. 193
                                                 Argyropyrrhotite, 14. 193
                                                Argyrose, 3. 438
 Arendalite, 6. 721
Arequipite, 6, 836; 9, 343
                                                Argyrythrose, 9. 294
Arfvedsonite, 6. 391, 916; 7. 100; 12.
                                                Aricite, 6, 711
     148, 529
                                                Aristotle, 1. 30, 36
                                                Arite, 9, 4, 80: 15, 5
 Arfwedsonite, 6. 916
Arg. 3. 295
                                                Arithmetic, chemical, 1, 202
Argat, 3. 295
                                                Arizonite, 7, 2, 60; 12, 529
Argent allemand, 15, 208
                                                Arkansite, 7. 2, 31
                                                Arktolite, 6, 718

    d'allemagne, 15, 208

     antimoiné sulfuré noir, 9. 540
                                                Armangite, 9, 4, 132
                                                Armco iron, 12, 656, 757
 --- des chats, 6. 604
— molybdique, 11. 60
                                                Armenian salt, 8, 144
---- noir, 9, 540
                                                    - whetstone, 5, 247
Argental, 4. 1024
                                                Arnimite, 3. 266
                                                Arnold Villanovanus, 1, 47
Argentarium, 7, 630
Argenterio niellée, 3, 447
                                                Arœoxene, 9, 715, 778
                                                Aromite, 5. 354
Argentic acid, 3, 483
Argentine, 7, 298
                                                Arquerite, 4. 696
Argentite, 3, 300, 438
                                                Arrest, doubling of Ar. 12. 854
Argentobismuthinite, 9, 691
                                                Arrested reactions, 4. 983
                                                Arrhenite, 4, 206; 5, 520; 7, 100; 9, 839
Argento domeylsite, 9. 63
Argentojarosite, 12, 529; 14, 343, 344
                                                Arrojadite, 12, 529; 14, 396, 411
Argentopyrite, 14, 193
                                                Arsa naki, 9. l
Argento-titanium, 7, 20
                                                Arsacetin, 9. 40
Argentum, 3, 295
                                                Arsamine, 9. 40
    - antimonio sulphurato mineralisatum,
                                                Arsenantimonial nickel, 9. 343
                                                Arsenargentite, 9, 4, 64
                                                Arsenatoantimonic acid, 9. 197

    arsenico cupro et ferro mineralisatum,

        9, 291
                                                Arsenatochromates, 9, 204
-- cinerum crystallis pyramidalis trigonis,
                                                Arsenatoctomolybdates, 9, 206
        9. 291
                                                Arsenatodimolybdates, 9. 206
-- -- mineralisatum nigrum fragile, 9. 540
                                                Arsenatododecamolybdates, 9. 206
   - nativum antimonio adunatum, 9. 404
                                                Arsenatoenneamolybdates, 9. 206
                                                Arsenatohemipentamolybdates, 9. 206
---- purum, 3. 295
--- rude album, 9. 291
                                                Arsenatoluteomolybdic acid, 9. 210
---- - nigrum, 9, 540
                                                Arsenatomolybates, 9. 206
 --- vivum, 4. 695
                                                Arsenatosodalite, 6. 583, 826; 9. 188
Argetan, 15, 210
Argil, 5, 150
                                                Arsenatotrimolybdates, 9. 206
Arsenatotungstates, 9. 212
---- pur, 5, 150
                                                Arsenatovanadato molybdates, 9. 201
Argile chimique, 6, 494
                                                (di)arsenatoferric acid, 9. 226
- - collordale, 6. 476
                                                Arsenic, 9. 1, 90; 12. 529
—— acid, 9. 137, 139
---- savonneuse, 6. 496
   — smectique, 6. 496
                                                  — — hemihydrated, 9. 140
--- veritable, 6. 473
                                                 ---- nitrosyl, 8. 435
                                                   - a-, 9. 16
Argill native, 5. 338
Argillaceous hæmitite, 13. 775
                                                ---- β-, 9. 16
    - iron ore, 2. 529
                                                   — γ-, 9. 16
    - limestone, 3. 815
                                                - allotropic forms, 9. 16
Argon, 7. 889
                                                --- amalgam, 9. 67
--- amide, 8. 272
 atomic disruption, 7. 948
--- weight, 7. 947
                                                ---- amminopentasulphide, 9. 314
---- electronic structure, 7. 949
                                                --- amorphous, 9. 16
                                                ---- analytical reactions, 9. 37
-- history, 7. 889
---- hydrate, 7. 943
---- isotopes, 7. 948
                                                ---- and iron alloys, 9. 71
                                                ---- antimonide, 9. 409
---- occurrence, 7. 892
                                                ---- atomic disintegration, 9. 48
—— preparation, 7. 902
                                                    - --- number, 9. 48
—— properties, chemical, 7. 947
                                                    - --- weight, 9. 47
```

Arsenic azide, 8. 337	Arsenic pentaiodide, 9. 254
bromides, 9. 247	pentaselenide, 10. 792
—— butter of, 9. 149, 237	—— pentasilicide, 6 . 188
carbide (tri), 5. 887	—— pentasulphide, 9 . 313
carbonate, 9. 337	pentasulphodichloride, 9. 335
caustique, 9 . 137	pentasulphodiiodide, 9. 336
chlorides, 9 . 237	pentoxide, 9. 137
—— chloroimide, 8 . 272	dihydrate, 9. 140
colloidal, 9 . 14	hamitrihudrata 0 140
crystalline, 9. 16	hemitrihydrate, 9, 140
	—— heptahydrate, 9. 141
—— diarsenyl enneoxydibromide, 9. 249 —— enneaoxydiiodide, 9. 253	monohydrate, 9, 140
dibydroublenemeroupiete 0 244	pentatritahydrate, 9. 140
dihydrochloromercuriate, 9. 244	tetrahydrate, 9. 140
diiodide, 9 . 250	trihydrate, 9. 140
diiodotrichloride, 9. 241	phosphate, 9. 337
dioxydinitratotriarsenate, 9. 337	phosphoetochloride, 8 . 1005; 9 . 243
dioxydiphosphide, 8 . 851; 9 . 337	phosphodecachloride, 8 . 1015; 9 . 243
dioxyphosphide, 8 . 851; 9 . 337	physiological action, 9. 42
—— diselenide, 10, 792	properties, chemical, 9. 32
—— disulphatotrioxide, 9. 333	physical, 9 . 20
—— disulphide, 9 . 265, 268	sodium bromoazide, 8. 337
colloidal, 9 . 268	suboxide, 9 . 90
—— disulphoselenide, 10. 921	sulphate, 9 . 333
—— disulphotriselenide, 10. 921	sulphates, 9 . 332
—— dodecamminotriiodide, 9 . 293	sulphatotrioxide, 9. 333
electronic structure, 9. 48	sulphides, 9 . 265
enneaoxyhexasulphoenneaiodide, 9.337	
extraction, 9. 15	sulphodiselenide, 10. 921
flowers of, 9 . 90	—— sulphododecaiodide, 9. 336
fluorides, 9 . 235	
— — glass, 9 . 91	
grey, 9 . 18	10. 647
halogenosulphides, 9. 335	sulphoiodide, 9. 336
- hemiennea-amminotriiodide, 9. 253	sulphomolybdates, 11. 652
hemiheptamminotribromide, 9. 249	sulphophosphate, 9. 337
hemiheptamminotrichloride, 9. 242	sulphotellurite, 11. 114
hemioxide, 9 . 90	
hemiphosphide, 8, 851	tellurate, 11 . 96
hemiselenide, 10 . 791	— telluride, 11 . 58
- hexasulphatotrioxide, 9. 333	tetracosisulphoiodide, 9. 253
history, 9 . 1	tetracosisulphotriiodide, 9. 336
hydride, 9 . 48	tetramiminotrichloride, 9. 242
hydrobischloromercuriate, 9. 244	tetramminotriiodide, 9. 253
hydrogel, 9 . 278	tetrasulphate, 9. 333
—— hydrosol, 9 . 278	
hydrosulphide, 9 . 272	tetroxide, 9. 136, 137
—— imide, 8 . 272	thiophosphate, 8. 1065
in sulphuric acid, 10 . 370	thiosulphate, 10. 552
iodides, 9 . 250	— triamminotribromide, 9. 249
isotopes, 9 . 48	—— tribromide, 9. 247
liver of, 9. 116	trichloride, 9. 237
—— meal, 9. 90	—— trifluoride, 9 . 235
—— metallic, 9. 16	—— trihydride, 9 . 50
—— molybdates, 11. 570	triiodide, 9 . 251
	—— trioxide, 9 . 90
—— monoiodide, 9 . 250	colloidal, 9. 91
	vitreous, 9. 91
monophosphide, 8, 851	- trioxytetraiodide, 9. 253
	trischloromercuriate, 9. 244
nitride, 8 . 123, 272	pentahydrate, 9. 245
occurrence, 9. 3	
octodecatungstic acid, 11. 832	
octosulphate, 9. 333	
— octosulphatotrioxide, 9. 333	trisulphatotrioxide, 9. 333
—— organosol, 9. 285	trisulphide, 9. 272
—— oxybromide, 9 . 249	trisulphodiselenide, 10, 921
—— oxychloride, 9 . 245	trisulphohexaiodide, 10. 655
oxyfluoride, 9. 237	tritasulphide, 9. 267
oxysulphides, 9. 325	valency, 9. 47
pentachloride, 9. 237, 241	vanadates, 9. 779
—— pentafluoride, 2. 12; 9. 236	—— vitreous, 9 . 16, 91

440	GENERAL INDEA
Arsenic white, 9. 90	Arsine properties, chemical, 9. 54
Arsenical copper, 9. 4	
mundic, 12. 529	Arsinic acid, 9. 101
nickel, 9. 4	Arsonic acid, 9. 101
—— pyrites, 9 . 72, 73 ; 12 . 529	Art bronzes, 7. 348
———— axotomous, 9. 73	Artiads, 1. 208
	Artinite, 4. 365
silver blende, 9 . 294 soot, 9 . 91	Aryans, 1. 20
	Asbeferrite, 6. 917
Arsenici butyrum, 9. 137, 149, 23'	
Arsenicate, 9. 169 Arsenican, 9. 1	Asbestolite, 6 . 426 Asbestos, 6 . 426
Arsenico-wagnerite, 4. 388	actinolite, 6 . 426
Arsenicum, 9. 1, 2	—— amphibole, 6 . 426
album, 9. 1, 90	chrysolite, 6 . 426
calciforme, 9 . 90	hornblende, 6 . 426
cristallinum, 9. 90	porcelain, 6 . 426
—— faricaceum, 9. 90	Asbolan, 14. 424
ferro mineralisatum, 9. 306	Asbolite, 12. 148, 266; 14. 424
fixum, 9 . 137, 149	Ascharite, 2. 430; 5. 4, 97
metallinum, 9. 2	Aschentrecker, 6, 740
——— nativum, 9 . 90 Arsenides, 9 . 61	Aschirite, 6, 342
Arsenides, 3 . 01 Arsenikblüthe, 9 . 94	Asem, 4. 670, 695 Asiderites, 12. 523
Arsenikkalk naturlichen, 9. 94	Asmanite, 6 . 247
Arseniksauer kalk, 9. 169	Aspasiolite, 6. 811
Arsenikspiessglanz, 9. 69	Asperolite, 6. 343
Arsenikwismuth, 9, 703	Asperolithite, 3. 8
Arseniopleïte, 3. 623	Aspidelite, 7. 3
Arseniopleite, 9. 4, 222; 12. 148	Aspidolite, 6, 605, 608
Arseniosiderite, 3. 623; 9. 4,	
529	Association of liquids, 1, 858, 860
Arsenious acid, 9. 90	Aster samius, 6. 428
barium thiosulphate, 10, 552	Asterism, 6, 614
——————————————————————————————————————	Asterium, 4. 21; 7. 890
potassium thiosulphate, 10.	Asteroidal elements, 4. 3 Asteroite, 6. 915; 12. 148
sodium hyposulphite, 10. 183	
- — thiosulphate, 10. 552	Astracanite, 2. 430
thallous thiosulphate, 10. 55	
Arsenites, 9. 116	Astrakanite, 4, 252, 336; 7, 896
Arsenitomolybdates, 9. 131	—— potassium, 4 . 339
Arsenitophosphatotungstates, 9. 1	
Arsenitosodalite, 6 . 583, 826; 9 . 1	
Arsenitotungstates, 9. 132	Astrolite, 12. 529
Arsenoarsenic oxide, 9. 136	Astrophyllite, 6, 843; 7, 3; 12, 149
Arsenobigmite 9 108 589	Atocamite, 2. 15; 8. 8, 178, 179 Ataxites, 12. 523, 528
Arsenobismite, 9. 198, 589. Arsenocrocite, 9. 228	Atelesite, 9. 589
Arsenoferrite, 12. 529	Atelestite, 9. 4, 198
Arsenoklasite, 12. 148	Ateline, 3. 178
Arsenolamprite, 9. 3	Aterite, 15. 210
Arsenolite, 9. 4, 94	Atheriastite, 6. 763
Arsenomelan, 7. 491	Atlasite, 3. 275
Arsenomelane, 9. 299	Atmolysis, 1. 342
Arsenomiargyrite, 9. 293	Atmosphere, 1. 147, 148
Arsenopyrite, 9. 306; 15. 9	extent of, 1. 150
Arsenopyrites, 9. 4 Arsenosic oxide, 9. 136, 137	pressure of, 1. 149
Arsenostibnite, 9. 343	Atom, 1. 103, 187; 4. 910, 158
Arsenosulphides, 9. 305	- architecture, 4. 165
Arsenotellurite, 11. 2, 114	Bohr's, 4. 167
Arsenwasserstoff, 9. 50	calcium, 4 . 175
bromide, 9. 249	cataclysm. 4. 180
chloride, 9. 237	composite, 4. 12
fluoride, 9. 237	
monochloride, 9. 245	hydrogen, 4. 169
Arsenyl arsenic enneaoxydibromid	9, 9. 249 — Langmuir's octet theory, 4. 196
	Lewis' cubical, 4, 195
Arsine, 9. 50	Rutherford, 4. 166

Atom Saturnian, 4. 765	Aureolin, 8, 502; 14, 519
volume, 1. 188	Aureus pulvis pyrius, 3. 582
Atomic co-volume, 1. 240	Auric acid, 3. 584
heat, sec Heat atomic, 1. 798	beryllium chloride, 4. 233
heats, effect of state of aggregation, 1.	—— bromide, 3 . 605, 606
803	chloride, 3 . 586, 589
motion, 1, 783	chloroimide, 8. 259
source of, 1. 785	chloroscandate, 5, 490
—— number copper, 3 . 112	dihydrated, 5, 490
	henicosihydrated, 5, 490
history of, 1. 105	diethylbromide, 3, 607
	dihydroxyamide, 8 , 259 ferrous iodide, 14 , 133
weights, 1. 104, 180, 181, 198, 199; 4.	hydronitrate, 3, 616
351	hydroxide, 3, 580
and Dulong and Petit's rule, 1.	- imidoamide, 8. 259
804	imidochloride, 3. 583
and isomorphism, 1. 668	iodide, 3 . 609
molecular heat, 1. 807	manganous octochloride, 12. 366
volumes, 1. 763	dodecahydrate, 12. 368
, unit of, 1. 200	nitrate, 3. 616
volume, 1 . 259	nitrosylchloride, 3. 595
—— volumes, 1 . 228	oxide, 3 . 577, 579
Atomicity, 1. 224	phosphochloride, 8. 1017
Atoms, 1. 740	phosphoctobromide, 8, 1035
Dalton's, 1. 177	—— phosphohexachloride, 8, 1007
—— disruption, 4, 155, 156	phosphorobromide, 3, 608
——— distance apart in molecules, 1, 783	phosphorochloride, 3, 595
electric spectrum, 4. 50	potassium octosulphite, 10, 281
energy of, 1, 785	tetramminohexasulphite, 10. 281
individuality in molecules, 1, 782	salts, 3. 577
— kinetic theory, 1. 782 — motion in molecules, 1. 783	—— selenide, 10 . 774 —— selenochloride, 3 . 595
primitive, 1. 225	silicochloride, 3, 595
recoil, 4 . 109	- — sodium sulphite, 10. 281
— vibration frequency, 1. 828	sulphate, 3. 615
weighing, 1. 179	sulphide, 3 . 613
weights of, 1. 179	
with multiple charges, 4. 50	stannichloride, 3. 595
Atopite, 3, 623; 9, 343, 455; 12, 149	stibnochloride, 3. 595
Atramentum album, 4. 613	· telluride, 11. 49
candidum, 14 . 243	tetrahydroxyimide, 8, 259
coeruleum, 14 . 243	—— tetramminosulphite, 10. 281
sutorium, 4. 613; 14. 242, 243	—— thallous nitrate, 5. 476
sympatheticum, 14 . 421	titanochloride, 8. 595
viride, 14 . 243	Aurichaleite, 4. 408, 648
Atrun, 2. 710	Aurichalcum, 4. 399
Attakolite, 5. 370	Auripigmentum, 9. 1, 267
Attraction intermolecular, 1, 525, 755, 822, 841; 4, 187	Aurites, 3. 577 Auroauric sulphide, 3. 612
intramolecular, 4. 187	Aurobismuthinite, 9. 692
— molecular, 1. 865	Aurojarosite, 14. 343
Auer, 7. 218	Aurora, 3. 296
Auerbachite, 6. 847; 7. 100	Aurosic ammonium tetrasulphite, 10. 280
Auerlite, 5. 515; 7. 100, 185	Aurosmirid, 15, 687
Augate, 6 . 817	Aurosoaurie bromide, 3. 605
Augelite, 5. 155, 366; 8. 733	chloride, 3 . 586
Augite, 6 . 390	—— hydroxide, 3 . 579
Augites, 6. 410	—— oxide, 3 . 577, 579
aegirine, 6 . 915	sulphates, 3 . 615
	Aurotellurite, 11. l
titanic, 6. 818	Aurous amminochloride, 3, 589 — amminoiodide, 3, 609
Augustin's process silver, 3. 305	——— amminonitride, 8 . 101 ——— amminotrihydroxynitride, 8 . 101
Aura, 1. 122 —— electrica, 1. 877	ammonium sulphite, 10. 280
	triamminodisulphite, 10. 280
Auralite, 6. 811	antimonate, 9. 454
Aurates, 8. 577, 584	—— barium sulphite, 10. 280, 284
VOL. XVI.	2 g
·	~ -

Aurous bromide, 3. 605, 606	Avogadro's hypothesis and kinetic theory,
bromoaurate, 3. 605	1. 748
carbide, 5 . 855	solutions, 1. 545
—— chloride, 3 . 586, 587	Berzelius on, 1. 187
chloroaurate, 3. 586	Cannizzaro on, 1. 191
diamminobromide, 3. 606	——————————————————————————————————————
—— diamminochloride, 3. 589	——————————————————————————————————————
dodeca-amminochloride, 3. 589	———— Gaudin on, 1. 190
hexamminoiodide, 3. 609	Gerhardt and Laurent on, 1. 190
hydroxide, 3 . 578	history of, 1. 186
iodide, 3 . 608	W. Prout on, 1. 190
nitrate, 3. 616	——— Wollaston on, 1. 187
oxide, 8 . 577, 578	Awariute, 15. 4
phosphinobromide, 3. 606	Awaruite, 12. 529; 15. 5, 256
phosphorochloride, 3, 589	Awr, 8. 296
phosphorochlorobromide, 3, 606	Axes, crystal, 1. 614
phosphorotriethoxychloride, 3, 589	— of symmetry, 1. 614
phosphotetrabromide, 8, 1033	optic, 1. 607
phosphotetrachloride, 8, 1007	
— phosphotrichlorobromide, 8. 1007	Axial angles, 1. 615
—— potassium disulphite, 10 . 280 —— salts, 3 . 577	Axinite, 6. 451, 911; 12. 149
—— selenide, 10. 774	
sodium disulphite, 10. 280	Azeotropic mixture, 1, 556
dithiosulphate, 10. 540	Azides, 8. 330, 344
dihydrate 10 541	Azidodithiocarbonate, 8. 338
	Azido-dithiocarbonic acid, 6. 134; 8. 338
heptathiosulphate, 10. 541	Azidosulphonic acid, 8. 314
sulphide, 3 . 610	Azidothiocarbonyl disulphide, 8. 338
colloidal, 3. 611	Azoimide, 8. 328, 329, 330, 344
thiosulphate, 10. 540	Azorite, 5. 520; 6. 857; 7. 100
triamminochloride, 3. 589	Azote, 1. 69; 8. 46
Aurum, 3. 296	Azoth, 8. 46
—— bismuticum, 11. l	Azotogen, 8. 360
—— fulminans, 3. 582	Azoxyhydroxyl, 8. 305
galene, 11. 114	Azufre, 10. l
graphicum, 11. 47	Azur, 14. 420
—— mosaicum, 7. 469	Bleu, 14. 420
musioum, 7. 469	stone, 6 . 586
—— obryzum, 3. 301	Azurite, 3. 7, 270, 274
	zinc, 3. 275
sclopetans, 3 . 582	
volatile, 3 . 582	
Auryl hydrosulphate, 3. 615	73
nitrate, 3. 616	В
— — oxide, 8. 580	
oxynitrate, 3. 616	Bababudanite, 6. 913
Ausenophyllite, 9, 96	Babbit metal, 7. 362
Ausis, 3. 296	Babingtonite, 6. 391, 917; 12. 149, 529
Aussichtlos, 15. 478	Babo's ozonizer, 1. 885
Austenite, 12. 798, 819	Back electromotive force, 1. 1029
retained, 12. 834	Bacon Roger, 1. 46
Austrium, 5. 504	Bacterium radicicola, 8. 359
Australiana 4 427	Bacterized peat, 8. 360
Autoclave, 1. 437	Baddcleyite, 7, 100, 123
Autoridation 1 005 7 565	Badenite, 14. 424; 15. 5
Autoxidation, 1. 925; 7. 565	Bäckströmite, 12. 149, 225
Autunite, 3. 623; 7. 896; 8. 733; 12. 4,	Bagrationite, 5. 509; 6. 721
Available energy, 1. 717	Baierine, 9. 906
Avalite, 6. 607	Bakerite, 5. 4; 6. 441
Avasite, 6 . 908	Baldaufite, 12. 529
Aventurine, 13. 877	Baldwin's phosphorus, 3, 740
felspars, 6. 693	Ball mills, 3. 497 Ballesterosite, 14. 200
glazes, 13. 775, 780	Balling up, 12. 637
Averroës, I.R., 1. 42	Balmer's spectrum, 4. 169
Avicenna, E.S., 1. 41	Balneum regis, 9. 341
Avogadro's constant, 1. 753	Baltimorite, 6 . 422, 6 24
——— for colloids, 1. 778	Bamlite, 6 . 455
hypothesis, 1. 172	Bamprite, 8. 860
• • • • • • • • • • • • • • • • • • • •	

Band eisen, 15. 260	Barium arsenatodocosivanadatotetraconta-
spectrum, 4. 7	tungstate, 9. 203
head of, 4. 7	arsenatohenidecatungstate, 9. 214
	arsenatohexavanadatohexacosimolyb-
Bar, 1. 149 —— steel, 12. 710	date, 9. 202
Baralite, 6 . 622	
Barbierite, 6 . 662, 669	arsenide, 9. 66
Barcenite, 4. 697; 9. 343, 438	arsenious thiosulphate, 10, 552
Barilla, 2. 733, 713	arsenitomolybdate, 9. 131
Barite, 3. 762	- arsenitotungstate, 9. 132
Barium, 3. 620	atomic wt., 3. 646
———— action on water, 1. 135	aurate, 3. 584
aluminate, 5, 290	aurous sulphite, 10 , 280, 284
	autunite, 12 . 135 azide, 8 . 350
phosphate, 5 . 370	
aluminotungstate, 11. 789	benzylidene hydrazionomonosul-
amalgams, 4. 1031	phonate, 8. 683
- amide, 8 . 259	bisbromoarsenite, 9. 256
amidosulphonate, 8. 643	bischloroarsenite, 9. 256
amidothioimidosulphonate, 8. 636	bismuth alloys, 9 . 636
ammonium aluminium oxydodeca-	thiosulphate, 10. 554
molybdate, 11 . 600 ——————————————————————————————————	boride, 5, 24 borocarbonate, 5, 88
	bromate, 2, 346
chromidodecamolybdate, 11. 602	hydrated, 2. 346
cobaltic decamolybdate, 11. 575	bromide, 3 . 725
octamminohexasulphite, 10.	dihydrated, 3. 727
315	properties, chemical, 3. 727
dimetaphosphate, 3. 893	physical, 3. 726
	bromoarsenatoapatite, 9. 262
decamolybdate, 9, 834	bromoaurate, 3. 607 bromopalladite, 15. 677
molybdate, 9. 834	bromoplatinate, 16. 379
diphosphatodecavanadatotri-	bromosmate, 15. 724
decamolybdate, 9. 834	bromotriorthoarsenate, 9. 262
diphosphatododecavanadatodo-	bromotriorthovanadate, vanadatapa-
decamolybdate, 9, 834	lite, 9. 813
diphosphatododecavanadato-	cadmium alloys, 4 . 687
octomolybdate, 9, 835	- tetrabloride, 4, 559
decamolybdate, 9, 834	
diphosphatotetradecavanadato-	tetrathiosulphate, 10. 547
decamolybdate, 9. 835	———— trithiosulphate, 10. 547
	casium nickel nitrite, 8. 512
dodecavanadatohexatriconta-	calcium carbonate, 3. 846
molybdate, 9. 784	
hydroxynitrilo-iso-disulphonate, 8. 679	sodium potassium carbonate, 3.
icosihydroquiniusdiarscnitodi-	846
molybdate, 9. 131	sulphatofluoride, 3. 813
—— imidodisulphonate, 8. 655	tetrachloride, 3, 720
imidosulphinite, 8. 646	carbamate, 2. 796
——————————————————————————————————————	carbide, 5 . 859
nickel nitrite, 8. 511	carbonate occurrence, 3. 814
nitrilotrisulphonate, 8, 669	preparation, 3. 814
——————————————————————————————————————	properties, chemical, 3, 839 physical, 3, 833
potassium silicovanadatodeca-	solubility, 3. 824
tungstate, 6. 838	carbonyl, 5 . 951
——————————————————————————————————————	chabazite, 6 . 733
analytical reactions, 3, 641	- chlorate, 2. 344, 345
antimonatotungstate, 9. 459	hydrated, 2. 345
antimonious thiosulphate, 10. 553	chloride, 8. 697
antimonite, 9. 432	and fluoride, 3. 718 — and hydrogen, 1. 303
—— antimony alloys, 9 . 406 —— sulphate, 9 . 583	and nydrogen, 1, 303 and metasilicate, 6, 364
arsenatoctovanadatotricontamolyb-	CaCl ₂ SrCl ₂ , 3. 720
date, 9. 202	—— CuCl ₂ KCl H ₂ O, 3. 715, 720

Barium chloride CuCl ₂ -NaCl-H ₂ O, 3. 715,	
720	dihydrated, 5. 89
CuCl ₂ -NH ₄ Cl- H ₂ O, 3. 715, 720	pentahydrated, 5. 89
- KCl-NaCl, 3. 702, 703	dichlorothiosulphate, 10. 544 dichromate, 11. 341
preparation, 3. 697	dihydrate, 11. 341
properties, chemical, 3. 714	dihydroarsenate, 9, 172
	dihydroarsenatotrimolybdate, 9. 208
SrCl ₂ -NaCl, 3, 720	dihydroarsenite, 9. 125
chlorite, 2. 284	dihydrodiphosphite, 8. 916
chloroamidosulphonate, 8. 643	hemihydrate, 8. 916
chloroantimonate, 9. 491	monohydrate, 8. 916
chloroarsenatoapatite, 9. 260	trihydrate, 8. 916
chloroaurate, 3. 595	dihydrohypophosphate, 8. 937
chlorobromide, 3. 731	dihydrophosphate, 3. 886, 887
chlorocarbamate, 2. 796	—— dihydropyrophosphate, 3. 892
chlorochabazite, 6. 733	dihydropyrophosphite, 8, 922
chlorochromate, 11, 398	—— dihydrotriphosphite, 8 . 915
chlorochromatochloride, 11. 398	dihydroxytetrabromoplatinate, 16.381
hydrate, 11. 398 ehlorodihydrophosphate, 3. 902	diimidodiphosphate, 8, 713
clorodithionate, 10. 590	diiododinitritoplatinite, 8, 523 diiodotriarsenite, 9, 257
chrloroiridate, 15. 771	dimetaphosphate, 3. 893
	dihydrated, 3 . 893
chloropalladite, 15. 670	dioxide, 3. 666
chloroplatinate, 16. 327	diperoxyhydrate, 3. 667
hexahydrate, 16. 327	hydroxylhydrate, 3. 671
monohydrate, 16. 328	monohydrated, 3. 667
octohydrate, 16 . 328	octohydrated, 3 . 667
chloroplatinite, 16. 282	peroxyhydrate, 8 . 667
chlorostannate, 7. 449	—— dioxydisulpharsenate, 9, 330
chlorosulphate, 3. 799	dipermanganite, 12. 278
chlorotriorthoarsenate, 9. 260	diphosphatoctodecavanadatoennea-
	molybdate, 9. 834
chromatoselenate, 10. 876	diphosphatotetradecavanadatohena-
chromatosulphate, 11, 450	molybdate, 9. 834
chromidioxydodecamolybdate, 11. 602 chromioxydodecamolybdate, 11. 601	diplatinic triacontatungstate, 11, 803
cobalt sulphide, 14. 757	diselenitoctomolybdate, 10. 837 diselenitopentamolybdate, 10. 837
cobaltic dodecanitrite, 8. 504	- —— heptahydrate, 10. 837
enneamolybdate, 11. 575	disilicide, 6 . 179
octamminohexasulphite, 10. 315	disulphitotetramminocobaltate, 10.
oxyoetonitrite, 8 . 504	317
—— cobaltite, 14. 594	disulphoniodide, 3. 737
cobaltous chloride, 14. 642	disulphorthosulphotetrantimonite, 9.
—— columbate, 9 . 866	542
copper ammonium nitrite, 8. 488	disulphuryliodide, 10. 691
- · - potassium nitrite, 8. 488	ditetrametaphosphate, 3. 895
	dithionate, 10. 589
cuprate, 3. 149	dihydrate, 10. 589
cupric chloride, 3, 720	tetrahydrate, 10. 589
	dithiophosphate, 8. 1068 ditungstate, 11. 810
	diuranate, 12. 66
cyanotetrazole, 8. 339	—— diuranyl dicarbonate, 12. 116
decaboratodibromide, 5. 141	octohydrate, 12. 116
decaboratodichloride, 5. 141	——————————————————————————————————————
decamolybdatotrisulphite, 10. 307	dodecaborate, 5. 93
deuterodecavanadate, 9. 771	dodecamercuride, 4. 1032
deuterohexavanadate, 9. 771	enneahydropentalanthanate, 5. 628
——————————————————————————————————————	enneamolybdate, 11. 597
tetradecahydrate, 9. 771	enneathionate, 10. 629
deutertetravanadate, 9. 770	ethylenediaminomonosulphonate, 8.
dialuminium dimesotrisilicate, 6. 758	683
mesopentasilicate, 6, 766	ferrate, 13. 934
orthotrisilicate, 6. 751	ferric chlorides, 14. 104
diamidodiphosphate, 8. 711 diberyllium orthosilicate, 6. 382	
diborate, 5. 62, 88	
	bungatato, 11. GUI

Barium ferrite, 13. 914	Barium hydrophosphate colloidal, 3. 882
—— ferroheptanitrosyltrisulphide, 8. 442	hydrophosphatododecatungstate, 11.
ferrous orthosilicate, 6 . 908	867
triferric ferryl decametasilicate,	dotessaracontahydrate, 11. 867
6. 922	
	tetrapentecontahydrate, 11. 867
fluoaluminate, 5. 308	tetratessaracontahydrate, 11. 867
fluoarsenatoapatite, 9. 259	hydropyrotellurate, 11. 93
fluoborate dihydrated, 5. 128	hydropyrotellurite, 11. 80
—— fluoplumbite, 7 . 70 4	hydroselenite, 10. 825
fluoride, 3 . 688	hydrosulphate, 3. 784
and chloride, 3. 718	hydrosulphide, 3. 750
preparation, 3. 688	hydrotellurate, 11. 93
——— properties, chemical, 3. 693	—— hydrotetrasulphate, 3. 784
physical, 3. 689	hydrotrioxysulpharsenate, 9. 329
fluoroapatite, 3 . 901	hydrotrisulphate, 3. 784
——— fluorobromide, 3 . 731	hydroxide, 3 . 673
—— fluorochloride, 3 . 694, 718	hexadecahydrated, 3. 676
——— fluoroiodide, 3 . 739	monohydrated, 3. 676
fluoronitrate, 3 . 694	octohydrated, 3. 675
fluorophosphate, 3. 901	properties, chemical, 3. 635
fluosilicate, 6 . 951	——————————————————————————————————————
fluostannate, 7 . 423	solubility, 3 . 677
trihydrate, 7. 423	trihydrated, 3. 676
fluosulphonate, 10. 685	hydroxybenzylidenehydrazonomono-
fluotantalate, 9. 917	sulphonate, 8. 683
—— fluotitanate, 7. 72	- hydroxydisulphate, 15. 786
—— —— hemihydrated, 7. 72	hydroxyhydrosulphide, 3. 742
fluotriorthoarsenate, 9. 259	pentahydrated, 3. 744
fluozirconate, 7. 141	hydroxynitrilodisulphonate, 8. 677
—— gold thiosulphate, 10. 545	hydroxynitrilo - iso - disulphonate, 8.
hemisilicide, 6 . 179	679
henamercuride, 4. 1032	hydroxynitrilomonosulphonate, 8. 672
heptaperinanganite, 12. 278	hydroxypentachloroplatinate, 16. 335
heptauranate, 12. 68	
hexaborate hexahydrated, 5. 92	hydroxyperosmate, 15, 713
hexadecamercuride, 4. 1031	hydroxyphosphate, 3, 902
	hydroxythiocarbonate, 6. 115
hexafluoferrate, 14. 8	hypoantimonate, 9, 437
hexahydroarsenatoctodecamolybdate,	hypobromite, 2. 273
9. 211	hypochlorite, 2, 272
hexahydroferriarsenate, 9. 228	hyponitrite, 8 . 414
hexahydropentaphosphite, 8. 916	hydrated, 8, 414
hexahydrotetrarsenitotetratriconti-	tetrahydrated, 8, 414
molybdate, 9. 131	hypophosphate, 8. 937
hexaiododiplumbite, 7. 777	hypophosphite, 8. 884
hexametaphosphate, 3. 895	hypophosphitomolybdate, 8. 888
hexammine, 8 . 249	hypophosphitotungstate, 8, 888
hexamminochloroplatinate, 16. 328	hypovanadatovanadatomolybdate, 9.
hexamminoiodide, 3. 737	793
hexaphosphatotetravanadatohexa-	—— imide, 8 . 260
contatungstate, 9. 835	imidodiphosphate, 8. 713
hexarhodate, 15. 571	iodate, 2. 347
hexarsenite, 9. 126	
—— hexasulphitodicobaltate, 10. 315	iodide, 3 . 734
hexavanadatoctodecamolybdate, 9.	——————————————————————————————————————
784	hexahydrated, 8. 734, 735
hexavanadatododecatungstate, 9. 787	iodoarsenatoapatite, y. 203
—— hydride, 3 . 649	iodoaurate, 3. 610
—— history, 8. 619	—— iodoplatinate, 16 . 390
hydrazinodisulphinate, 8. 682	iodostannite, 7. 460
hydrazinodisulphonate, 8. 683	—— iodotriorthoarsenate, 9. 263
hydrazinomonosulphonate, 8. 683	iodotriorthovanadate, vanadatiodapa-
hydroaluminoarsenate, 9. 186	tite, 9. 814
hydroarsenate, 9. 171	iridic chloronitrite, 8. 514
hydroarsenite, 9. 125	—— iridium disulphate, 15. 786
hydrocarbonate, 8. 844	iron alloy, 13. 541
hydrodioxydiselenophosphate, 10. 932	—— isopropylstannonate, 7, 410
hydrodisulphate, 8. 784	isotetrahydroborododecatungstate, 5.
hydrohyponitrite, 8. 414	110
hydroimidodisulphonate, 8. 655	isotopes, 3. 648
hydrophosphate, 3. 881	lanthanum tungstate, 11. 791
	-

Barium lead calcium fluoboryl diorthotrisili-	Barium nickelate, 15. 401
cate, 6. 890	
chromates, 11, 304	nickelic tungstate, 11. 802 nitrate, 3. 849
iodide, 3 . 738	——————————————————————————————————————
orthophosphate, 7, 876	
orthophosphate, 1. 810	properties, chemical, 3, 860
oxychloride, 7. 744	physical, 3. 856
——————————————————————————————————————	solubility, 3 . 850
thiosulphate, 10. 552	
—— lithium silicate, 6 . 371	
magnesium dithionate, 10. 592	nitratometatungstate, 11. 862
manganato, 12. 288	—— nitratoplumbite, 7. 866
manganese metasilicate, 6. 898	nitride, 8. 102
manganic dodecamolybdate, 11. 602	nitrilodithiophosphate, 8. 727
——————————————————————————————————————	- nitrilotrisulphonate, 8. 669
	nitrite, 8. 485
inanganitomanganate, 12, 290	
manganous chloride, 12. 368	nitritochloroperiridite, 15. 765
tetrabromides, 12 . 383	—— nitritoperosmite, 15. 728
—— mercuriate, 4 . 780	nitrohydroxylaminate, 8. 306
mercuric heptanitrite, 8. 495	occurrence, 3 . 626
hexabromide, 4. 894	—— octamminobromide, 3. 730
hexaiodide, 4 . 939	octoborate dodecahydrated, 5. 93
imidodisulphonate, 8. 658	— octobromoaluminate, 5. 326
——————————————————————————————————————	octochlorodithallate hexahy-
octamminotetraiodide, 4. 940	drated, 5. 447
	octochloromercuriate, 4. 860
phosphatohenatungstate, 11. 868	have bredened 4 860
sulphide, 4. 957	hexahydrated, 4. 860
——————————————————————————————————————	octochromite, 11. 199
sulphite, 10 . 300	—— octodecachlorodialuminate, 5. 322
tetrabromide, 4. 894	octodecachlorotetraluminate, 5. 322
tetraiodide, 4 . 940	octomolybdate, 11. 596
pentahydrate, 4. 940	octopermanganite, 12. 278
mesodisilicate, 6. 363	octotungstate, 11. 830
— mesotrisilicate, 6. 364	octovanadatohexamolybdate, 9. 784
—— mesotrititanate, 9. 54	octovanadatomolybdate, 9. 783
	orthoarsenate, 9, 168
metaborate, 5. 88	
metaluminate, 5. 293	orthographic, 9, 125
metantimonate, 9. 454	orthoborate, 5. 87
metaphosphate, 3. 893	orthododecacolumbate, 9. 866
metaplumbate, 7 . 698	orthohexatantalate, 9, 903
metarsenate, 9. 172	orthopertantalate, 9. 914
—— metarsenite, 9. 125	orthophosphate, 3. 866
metasilicate, 6. 358	properties, chemical, 3, 868
and chloride, 6 . 364	physical, 3. 867
	orthoplumbate, 7. 699
	orthosilicate, 6. 353
hexahydrated, 6, 361	orthogulaharsenate 9 320
monohydrated, 6, 360	orthosulpharsenate, 9. 320
metasulpharsenatoxymolybdate, 9.	orthosulpharsenite, 9. 295
332	orthosulphoantimonate, 9. 574
metasulpharsenite, 9. 296	orthosulphoantimonite, 9. 542
metasulphoantimonite, 9. 542	orthosulphodimolybdate, 11, 652
—— metasulphododecarsenite, 9. 296	orthosulphopyroarsenate, 9. 320
metatitanate, 7. 54	orthosulphotetrantimonite, 9. 542
—— metatungstate, 11. 825	orthovanadate, 9. 768
metavanadate, 9. 769	osmate, 15. 706
———— monohydrate, 9. 769	osmiamate, 15. 728
	osmic sulphide, 10. 324
—— metazirconate, 7. 136	Osinic sulphide, 10. 521
molybdate, 11. 561	osmyl oxynitrite, 15. 729
—— molybdenum hemipentioxide, 11. 532	oxide, higher, 3. 666
—— monamidodiphosphate, 8 . 710	properties, chemical, 8. 663
monomercuride, 4. 1033	physical, 8. 660
—— monometaphosphate, 3. 893	oxides, 8. 652
monoselenotrithionate, 10. 928	oxybromide, 8. 731
——————————————————————————————————————	oxybromoaluminate, 5. 326
monosulphide, 3. 741	—— oxychloride, 3. 716, 717
	oxychloroaluminate, 5. 323
monothiophosphate, 8. 1069	
—— monoxide, 3 . 653	oxychloroplatinates, 16. 333
neodymium tungstate, 11. 791	oxyfluopertitanate, 7. 69
—— nickel alloy, 15 . 205	oxyiodide, 3. 738
pentasulphide, 15. 444	oxyiodoaluminate, 5. 329
——————————————————————————————————————	—— oxysulpharsenite, 9. 326

Barium-palladium alloy, 15. 648	1 Barium platinate 18 947
paramolybdate, 11. 586	Barium platinate, 16. 247 ————————————————————————————————————
	tetrahydrate, 16. 247
decosihydrate, 11. 586 dodecahydrate, 11. 586	platinic molybdate, 11. 576
—— hexahydrate, 11. 586	—— platinosic sulphate, 16. 403
paratungstate, 11. 818	platinous cis-sulphitodiamminosul-
octohydrate, 11. 818	phite, 10. 321
pentabromoperrhodite, 15. 581 pentachloroantimonite, 9. 481	10. 321
—— pentachlorobismuthite, 9. 667	
pentafluotellurite, 11. 98	plumite, 7. 668
—— pentahydroxychloroplatinate, 16. 333	polybromide, 3. 730
monohydrate, 16. 333	polyiodide, 3 . 738
—— pentaiodoantimonite, 9. 502	polyselenide, 10 . 775
- pentaiodobismuthite, 9. 677 - pentamercuric dodecaiodide, 4. 939	polysulphides, 3, 752
pentamercuric dodecarodide, 4. 939	
hexadecaiodide, 4. 940	
hexahydrated, 4. 940	chromate, 11, 273
—— pentamminochloroplatinate, 16. 328	chromidodecamolybdate, 11. 602
—— pentamolybdatodisulphite, 10. 307	cobalt nitrite, 8. 505
pentapermanganite, 12. 278	—— —— dimetaphosphate, 3. 894
pentasulphide, 3. 755	diphosphatotetravanadatocto-
—— pentathionate, 10 . 627 —— pentauranate, 12 . 68	decamolybdate, 9. 834 —— - hydroxynitrilodisulphonate, 8.
—— perborate, 5. 120	677
—— perchlorate, 2. 399	hyponitritosulphate, 8. 690
percobaltite, 14. 601	imidodisulphonate, 8. 655
perdicobaltite, 14. 601	iron nitrite, 8 . 501
—— - perdichromate, 11. 359	nickel nitrite, 8. 511
—— perditungstate, 11. 835	nitrilotrisulphonate, 8. 669
	nitrite, 8. 488 oxytrisulpharsenate, 9. 330
perferrite, 13. 926	pentabromide, 3. 732
periodates, 2. 412, 413	phosphate, 3. 877
—— permanganate, 12. 333	decahydrated, 3. 877
— permanganite, 12. 278	phosphatohenatungstate, 11. 868
——————————————————————————————————————	silicododecatungstate, 6. 878
permanganitomolybdate, 11. 573	silicovanadatoenneatungstate, 6,
permolybdate, 11. 608 permonocarbonate, 6. 86	838 sulphatochloride, 3, 813
permonosulphomolybdate, 11. 653	sulphatonitrate, 3. 813
—— permonouranate, 12. 73	tetrachloride, 3. 719; 4. 310
—— pernickelate, 15 . 401	trichromate, 11. 351
pernickelic enneamolybdate, 11. 597	trimetaphosphate, 3, 894
—— pernickelite, 15. 40l	præseodymium tungstate, 11. 791
peroxide, action of heat, 1. 355 peroxypertitanate, 7. 65	preparation, 3. 626 properties, chemical, 3. 637
perrhenate, 12. 477	physical, 3. 631
—— perruthenite, 15 . 576	pyroarsenate, 9. 171
persulphate, 10. 478	pyroarsenite, 9125
	pyrophosphate, 3. 891
——————————————————————————————————————	- — dihydrated, 3. 891
perthiocarbonate, 6. 131	monohydrated, 3. 891
	—— pyroselenite, 10. 825 —— pyrosulpharsenate, 9. 320
phosphates, 8. 864	pyrosulpharsenatosulphomolybdate, 9.
—— phosphatoctotungstate, 11. 872	323
phosphatodecatungstate, 11. 870	pyrosulpharsenatoxymolybdate, 9.
phosphatododecamolybdate, 11. 663	331
phosphatoenneatungstate, 11. 871	—— pyrosulpharsenite, 9. 296
phosphatohemiheptatungstate, 11. 873	pentahydrate, 9. 296 pyrosulphate, 10. 447
—— phosphatohenatungstate, 11. 868 —— phosphatohexatungstate, 11. 873	pyrosulphate, 10. 447 pyrosulphoantimonite, 9. 542
phosphatohexitatetradecamolybdate,	—— pyrovanadate, 9. 769
11. 670	relations Sr, Ca, 3. 907
phosphide, 8 . 842	rhenate, 12. 478
phosphite, 8. 915	rhodium dodecanitrite, 8. 513
photoluminescence, 3. 745	rubidium dithionate, 10. 591
—— plagioclase, 6. 707	ruthenate, 15. 518

Barium sulphide and metasilicate, 6. 364 — selenator isulphate, 10. 925 selenatorisulphate, 10. 925 selenatorisulphate, 10. 825 — monohydrate, 10. 825 — monohydrate, 10. 825 sesquithiocarbonate, 6. 127 silicodecatungstate, 6. 882 silicododecatungstate, 6. 882 silicododecatungstates, 6. 883 silicotodecatungstates, 6. 878 silicotodecatungstates, 6. 878 silicotodecatungstates, 11. 867 silicototanate, 7. 54 silicototanate, 7. 54 silicototanate, 11. 867 phosphatohenatungstate, 11. 886 rithiosulphate, 10. 545 celoiride, 3. 720 cobalt nitrite, 8. 565 dithionate, 10. 591 fluoride, 3. 695 hydroxynitrilodisulphonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphate, 3. 878 decalydrated, 3. 878 phosphate, 3. 878 phosphate, 3. 878 decalydrated, 3. 878 phosphate, 3. 878 decalydrated, 3. 892 silicototeanate, 7. 449 trimetaphosphate, 3. 892 stannate (a.), 7. 419 trihydrate, 7. 419 trihydrate, 7. 419 stannic borate, 5. 105 stillite, 6. 760 stillite, 6. 760 stillite, 8. 488 sulphamiate, 6. 331, 36 sulphate, 8. 683 sulphate, 8. 763 sulfazidate, 8. 672 sulfphotydraxylaminate, 8. 673 sulfazidate, 8. 878 properties, chemical, 3. 742, 744 sulphatelaminate, 3. 742, 746 sulphatophumbite, 7. 747 sulphide, 3. 665 sulphate, 10. 684 sulphate, 11. 692 sulphate, 11. 692 sulphate, 11. 692 sulphate, 11. 693 sulphatelaminate, 7. 476 sulphatophumbite, 7. 270 cobalt nitrite, 8. 505 dithicotocal phonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 878 cotomorylaminate, 8. 695 nitrilotisulphonate, 8. 699 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphate, 3. 780 sulphate, 10. 591 cternaborotomorylaminate, 11. 610 sulphimide, 11. 131 sulphate, 11. 274 tetramideliphosphote, 11. 605 sulphate, 11. 605		
selenitor, 10. 825 solenite, 10. 825 monohydrate, 10. 825 selenitomolybdate, 10. 837 sesequithiocarbonato, 6. 127 silicodecatungstate, 6. 882 silicododecatungstate, 6. 882 silicododecatungstate, 6. 883 silicotitanate, 7. 54 silicotanate, 7. 54 silicotanate, 17. 58 mitrite, 8. 488 phosphatohenatungstate, 11. 868 trithiosulphonate, 10. 345 sodium arsenate, 9. 173 calcium carbonate, 3. 846 chloride, 3. 720 cobalt nitrite, 8. 505 dithionate, 10. 591 fluoride, 3. 695 heptasulphate, 3. 869 heptasulphate, 3. 869 nitrilotisulphonate, 8. 659 nitrilotisulphonate, 8. 659 nitrilotisulphonate, 8. 669 oxysulphopenhate, 3. 887 decarborate, 5. 330 paratungstate, 11. 818 phosphatohecatungstate, 11. 818 phosphatohecatungstate, 11. 818 phosphate, 3. 783 silicotitanate, 7. 54 tetramilpholiphorate, 3. 739 stalinate (a.), 7. 419 trinydrate, 7. 419 stannib corate, 5. 105 stilbite, 6. 760 stormium calcium hexachloride, 3. 720 culphatuniate, 5. 105 stilbite, 6. 760 stormium calcium hexachloride, 3. 720 sulphatmate, 8. 662 sulphamate, 8. 662 sulphamate, 8. 664 sulphate, 3. 763 sulphoridis, 3. 744 sulphinidiodiamide, 8. 665 sulphinide, 8. 665 sulphinide, 8. 665 sulphinide, 8. 665 sulphinide, 8. 665 sulphoridismide, 8. 665 sulphorolybdate, 11. 652 sulphonolybdate, 11. 652 sulphorolybdate, 11. 652 sulphatonolybdate, 11. 650 sulphatonolybdate, 11. 650 sulphatonolyb	Barium'salts, catalysis by, 1. 487	Barium sulphide and metasilicate, 6. 364
solenite, 10. 825 — monohydrate, 10. 825 — selonitomolybdate, 10. 825 — selonitomolybdate, 10. 827 — silicotdocatungstate, 6. 882 — silicoddocamolybdate, 6. 871 — silicotdocamolybdate, 6. 878 — silicotdocamolybdate, 6. 879 — metatungstate, 11. 826 — nitrite, 8. 488 — phosphatododocatungstate, 11. 887 — phosphatohenatungstate, 11. 888 — phosphate, 3. 845 — chloride, 3. 720 — cobalt nitrite, 8. 505 — dithionate, 10. 591 — fluoride, 3. 695 — hydroxynitrilodisulphonate, 8. 667 — initidodisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — phosphatodocatungstate, 11. 88 — phosphate, 3. 878 — phosphate, 3. 878 — phosphate, 3. 878 — phosphate, 3. 882 — silicotitanate, 7. 54 — tritanyl mesodisilicate, 6. 844 — trimetaphosphate, 3. 892 — stilicate, 6. 391 — silicotitanate, 7. 549 — trithydrate, 7. 419 — trihydrate,	selenate, 10 . 862	
selenite, 10. 825 —monohydrate, 10. 825 selenitornolybdate, 10. 837 sesequithiocarbonate, 6. 872 silicodecatungatate, 6. 882 silicododecatungatate, 6. 878 silicotitanate, 7. 54 silicotodecatungatate, 6. 878 silicotodecatungatate, 6. 878 silicototanate, 7. 54 silicotodecatungatate, 11. 826 —motatungatate, 11. 826 —nitrite, 8. 488 phosphatodenatungatate, 11. 868 rithiosulphate, 10. 545 sodium arsenate, 9. 173 —calcium carbonate, 3. 846 —chloride, 3. 720 —cobalt nitrite, 8. 505 —heptasulphate, 3. 865 —hydroxynitrilodisulphonate, 8. 677 imidodisulphonate, 8. 659 —oxysulphopeniarsenate, 9. 330 paratungatate, 11. 818 phosphatododecatungatate, 11. 88 phosphatododecatungatate, 11. 88 phosphatododecatungatate, 11. 89 silicotitanate, 7. 54 sulphate, 3. 762 sulphate, 3. 782 sulphate, 3. 782 sulphate, 3. 782 sulphate, 3. 782 sulphate, 3. 782 sulphate, 3. 783 sulfactinate, 7. 54 stiftingatate, 11. 818 phosphatododecatungatate, 11. 88 phosphatododecatungatate, 11. 88 phosphatododecatungatate, 11. 88 phosphatododecatungatate, 11. 88 sulphate, 3. 782 sulphate, 3. 783 sulfactinate, 7. 54 stiftingylmosolybidate, 11. 50 sulphatenate, 5. 91 sulphatenate, 6. 878 sulphated, 8. 789 sulphated, 8. 789 sulphated, 8. 789 sulphate, 8. 786 sulphamate, 8. 895 sulphate, 8. 788 sulphate, 8. 780 sulphate, 8. 786 sulphamate, 8. 885 sulphamate, 8. 885 sulphamate, 8. 862 sulphamate, 8. 863 sulphamate, 8. 862 sulphamate, 8. 863 sulphateophymbite, 7. 821 sulphatophymbite, 7. 821 sulphateophymbite, 8. 862 sulphateophymbite, 9. 884 sulphateophymbite, 9. 884 sulphateophymbit		
solonitomolydbate, 10. 825 solonitomolydbate, 5. 90 sesquiborate, 5. 90 sesquiborate, 6. 822 silicodocdeamolybdate, 6. 872 silicotdoceatungstate, 6. 882 silicotdoceatungstate, 6. 882 silicotdoceatungstate, 6. 878 silicottianate, 7. 544 silicovanadatoennoatungstates, 6. 838 silver chloride, 3. 720 metatungstate, 11. 826 mitrite, 8. 488 phosphatoclodecatungstate, 11. 868 trithiosulphate, 10. 545 sodium arsenate, 9. 173 calcium carbonate, 3. 846 carbonate, 3. 846 carbonate, 3. 846 chloride, 3. 720 cobalt nitrite, 8. 505 dithionate, 10. 591 fluoride, 3. 695 hydroxynitrilodisulphonate, 8. 657 imitidodisulphonate, 8. 659 mitrilotrisulphonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphate, 3. 878 phosphatoclodecatungstate, 11. 88 phosphate, 3. 878 phosphatododecatungstate, 11. 88 titranyl mesodisilicate, 6. 844 trimetaphosphate, 3. 892 silicate, 6. 391 silicate, 6. 892 sulphamote, 8. 665 sulphamote, 8. 666 sulphinidodismide, 8. 665 sulphamotybdate, 11. 652 sulphomotybdate, 11. 652 sulphamotybdate, 11. 652 sulphomotybdate, 11. 652 sulphamotybdate, 11. 652 sulphamotate, 5. 916 tetallurate, 11. 93 tetaracetochlorochromate, 11. 398 tetrarcholorophumbite, 7. 434 tetrarcholorophumbite, 7. 434 tetrarphosphate, 3. 894 tetraraminochloride, 3. 716 tetramotyblate, 11. 593 tetraraminochloride, 3. 716 tetramotyblate, 11. 593 tetraraminochloride, 3. 716 tetramotyblate, 11. 593 tetraraminochloride, 3. 737 tetrasulphuryloidide, 10. 691 tetrathorium, 2. 920 tetrahorate, 9.		——————————————————————————————————————
selenitomolybdate, 10. 837 sesquithiocarbonate, 6. 127 silicodecatungstate, 6. 878 silicotideaetungstate, 6. 878 silicotideaetungstate, 7. 54 silicotideaetungstate, 11. 868 silicotideaetungstate, 11. 826 mitrite, 8. 488 mitrite, 8. 484 mitrite, 8. 484 mitrite, 8. 484 mitrite, 8. 484 mitrite, 8. 665 sulphate, 11. 583		eulphidee 3 740
sesquiborate, 5. 90 sesquiborate, 6. 127 silicodrodeamolybladae, 6. 882 silicodrodeamolybladae, 6. 887 silicotidanate, 7. 54 silicovanadatoonnoatungstates, 6. 838 silver chloride, 3. 720 metatungstate, 11. 826 mitrite, 8. 488 phosphatododecatungstate, 11. 868 mitrite, 8. 488 mitrite, 8. 488 phosphatododecatungstate, 11. 868 mitrite, 8. 488 mitrite, 8. 489 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 489 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 489 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 488 mitrite, 8. 489 mitrite,		
sesquithiocarbonate, 6, 127 silicodocatungstate, 6, 882 silicodocatungstate, 6, 878 silicodocatungstate, 7, 54 silicovanadatoconatungstates, 8, 838 silver chloride, 3, 720 metatungstate, 11, 826 mitrite, 8, 488 phosphatodocatungstate, 11, 868 trithiosulphate, 10, 545 sodium arsenate, 9, 173 calcium carbonate, 3, 846 carbonate, 3, 846 carbonate, 8, 855 dithionate, 10, 591 fluoride, 3, 720 cobalt nitrite, 8, 505 dithionate, 10, 591 fluoride, 3, 685 heptasulphate, 3, 865 heptasulphate, 3, 865 heptasulphate, 3, 865 heptasulphate, 3, 865 heptasulphate, 1, 188 phosphate, 3, 878 decahydrated, 3, 878 phosphatododecatungstate, 11. 867 pyrophosphate, 3, 878 decahydrated, 3, 878 decahydrated, 3, 878 phosphatododecatungstate, 11. serving and training and traini		
silicotdoceantugstate, 6, 882 silicotdoceantugstate, 6, 878 silicotdoceantugstate, 6, 878 silicotdoceantugstate, 6, 878 silicotdianate, 7, 54 silicovanadatoconoatungstates, 6, 838 silver cholride, 3, 720 metatungstate, 11, 826 mitrite, 8, 488 phosphatodoceatungstate, 11, 868 mitrite, 8, 488 mitrite, 8, 482 mitrite, 8, 488 mi		
silicotdodecatungstate, 6, 878 silicovanadatoonnoatungstates, 6, 838 silver chloride, 3, 720 metatungstate, 11, 826 — nitrite, 8, 488 — phosphatododecatungstate, 11, 867 — phosphatododecatungstate, 11, 868 — trithiosulphate, 10, 545 — sodium arsenate, 9, 173 — calcium carbonate, 3, 846 — carbonate, 3, 845 — calcium carbonate, 3, 846 — carbonate, 3, 845 — chloride, 3, 720 — cobalt nitrite, 8, 505 — dithionate, 10, 591 — fluoride, 3, 695 — heptasulphate, 3, 805 — hydroxynitrilodisulphonate, 8, 665 — nitrilotrisulphonate, 8, 672 — pyrophosphate, 3, 892 — silicate, 6, 391 — silicate, 6, 391 — silicate, 6, 391 — trinydrate, 7, 419 — trinydrate, 11, 588 — sulphato, 8, 653 — sulphate, 8, 672 — sullphatonate, 8, 655 — sulphate, 8, 676 — preparation, 3, 763 — properties, chemical, 3, 798 — physical, 3, 792 — solubility, 3, 777 — sulphatophumbite, 7, 821 tetrathorostannite, 11, 138 — tetrateocholorochromate, 11, 398 — tetrathorostannite, 7, 441 — tetrathorostannite, 7, 441 — tetrathorostannite, 7, 441 — tetrathorostannite, 7, 441 — tetrathorostannite, 7, 434 — tetrathorostannite, 7, 434 — tetrathorostannite, 7, 434 — tetrathorostannite	silicodecatungstate, 6. 882	
silicotvanadatonmeatungstates, 6. 838 silver chloride, 3. 720 — metatungstate, 11. 826 — nitrite, 8. 488 — phosphatodecatungstate, 11. 869 — phosphatohenatungstate, 11. 868 — trithiosulphate, 10. 545 — sodium arsenate, 9. 173 — calcium carbonate, 3. 846 — carbonate, 3. 890 — detalnytate, 3. 805 — hydroxynitrilodisulphonate, 8. 655 — initrilotrisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — decalydrated, 3. 878 — phosphate, 3. 878 — decalydrated, 3. 878 — phosphatododecatungstate, 11. 867 — pyrophosphate, 3. 892 — silicaticanate, 7. 419 — trinydrate, 8. 653 — sulphate, 8. 653 — properties, chemical, 8. 798 — physical, 3. 792 — solubility, 8. 777 — sulphopophembate, 8. 895 — sulphatophymbite, 7. 821 — tetrachloroplumbite, 9. 867 — tetrachloroplumbite, 7. 731 — tetrachlorostamithe, 9. 667 — tetrachloroplumbite, 7. 731 — tetrachlorostamithe, 7. 412 — tetramydrosilicandecatungstate, 6. 878 — tetramydrosilicante, 6. 127 — tetramydrosilicante, 6. 127 — tetramydrosilicante, 8. 433 — tetrasulphate, 3. 892 — tetramitrioplatinite, 8. 520 — tetramitrioplatinite, 8. 520 — tetramitrioplatinite, 8. 520 — t		
silver chloride, 3, 720 metatungstate, 11, 826 mitrite, 8, 488 phosphatododecatungstate, 11, 868 phosphatohenatungstate, 11, 868 phosphatohenatungstate, 11, 868 mitribosulphate, 10, 545 sodium arsenate, 9, 173 calcium carbonate, 8, 846 carbonate, 3, 845 calcium carbonate, 3, 846 carbonate, 3, 845 calcium carbonate, 8, 869 decahydrated, 10, 591 fluoride, 3, 895 heptasulphate, 3, 805 hydroxynitidodisulphonate, 8, 665 mitrilotrisulphonate, 8, 672 silicate, 6, 391 silicate, 7, 419 heptahydrated, 7, 419 trinydrate, 7, 419 trinydrate, 7, 419 heptahydrate, 7, 419 trinydrate, 7, 419 trinydrate, 7, 419 trinydrate, 7, 419 stannic borate, 5, 105 stornium calcium hexachloride, 3, 720 trinydrate, 10, 618 tetlurate, 11, 93 tetrachlorobismuthite, 9, 667 tetrachlorobismuthite, 9, 667 tetrachlorobismuthite, 9, 667 tetrachlorobismuthite, 9, 667 tetrachlorophumbite, 7, 731 tetraclorostannite, 7, 434 tetrachlorophumbite, 7, 731 tetraclorostannite, 7, 434 tetrachlorophumbite, 7, 731 tetraclorostannite, 7, 434 tetracliorostannite, 7, 434 tetrachlorophumbite, 7, 821 tetrachlorophumbite, 7, 821 tetrachlorophumbite, 7, 821 tetrachlorophumbite, 7, 821 tetrachlorophumbite, 7, 867 tetrahydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 8, 625 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 8, 625 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 6, 127 tetramplydroxyliocarbonate, 8, 625 tetramplydroxyliocarbonate, 11, 189 tetrachlorostannite, 7, 434 tetrachlorostannite, 7, 434 tetrachlorostannite, 7, 434 tetrachlorostannite, 9, 389 tetrahydro		
silver chloride, 3. 720 — metatungstate, 11. 826 — nitrite, 8. 488 — phosphatodecatungstate, 11. 868 — trithiosulphate, 10. 545 — sodium arsenate, 9. 173 — calcium carbonate, 3. 846 — carbonate, 3. 845 — carbonate, 3. 846 — carbonate, 3. 845 — carbonate, 3. 846 — carbonate, 10. 591 — fluoride, 3. 695 — hydroxynitrilodisulphonate, 8. 655 — nitrilotrisulphonate, 8. 655 — nitrilotrisulphonate, 8. 659 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — decahydrated, 3. 878 — decahydrated, 3. 878 — phosphatododecatungstate, 11. 887 — pyrophosphate, 3. 892 — silicatianate, 7. 54 — titanyl mesodisilicate, 6. 844 — trimetaphosphate, 3. 894 — trithydrate, 7. 419 — trithydroxyleminate, 8. 655 — sulphate, 8. 655 — reparation, 8. 655 — tritumyl mesodrisilicate, 6. 844 — monohydrate, 10. 544 — trianylophypolyno		
metatungstate, 11. 826 — nitrite, 8. 488 — phosphatododecatungstate, 11. 868 — trithosulphate, 10. 545 — sodium arsenate, 9. 173 — calcium carbonate, 3. 846 — earbonate, 3. 846 — carbonate, 3. 845 — chloride, 3. 720 — cobat nitrite, 8. 505 — dithionate, 10. 591 — fluoride, 3. 695 — heptasulphate, 3. 895 — heptasulphate, 3. 805 — hydroxynivilodisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — phosphate, 3. 892 — silicate, 6. 391 — silicotitanate, 7. 54 — tritanyl mesodisilicate, 6. 844 — trimetaphosphate, 3. 894 — tritoxysulpharsenate, 9. 329 — stannate (a.), 7. 419 — trithydrate, 7. 419 — trihydrate, 7. 615 — sulphate, 8. 662 — sulphate, 8. 663 — properties, chemical, 3. 798 — physical, 3. 792 — solubility, 8. 777 — sulphatophumbite, 7. 821 tetrachlorosimuthite, 9. 667 tetrachlorostamite, 7. 434 tetrachderaluzivenate, 6. 827 tetrachlorostamite, 7. 434 tetrachelorostamite, 7. 434 tetrachlorostamite, 7. 54 tetrachlorostamite, 7. 53 tetracheralcealuzivenate, 6. 878 tetrachlorostamite, 7. 434 tetracholorostamite, 7. 434 tetracholorostamite, 7. 434 tetracher		
phosphatododecatungstate, 11. 868 — trithiosulphate, 10. 545 — sodium arsenate, 9. 173 — calcium carbonate, 3. 846 — earbonate, 3. 846 — earbonate, 3. 845 — calcium carbonate, 3. 846 — earbonate, 3. 845 — chloride, 3. 720 — chloride, 3. 720 — fluoride, 3. 695 — heptasulphate, 3. 895 — heptasulphate, 3. 895 — heptasulphonate, 8. 655 — nitrilotrisulphonate, 8. 655 — nitrilotrisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — decahydrated, 3. 878 — phosphatododecatungstate, 11. 889 — silicate, 6. 391 — silicotitanate, 7. 54 — trimetaphosphate, 3. 892 — silicotitanate, 7. 54 — trimetaphosphate, 3. 894 — tricxysulpharsenate, 9. 329 — stannate (a.), 7. 419 — heptahydrate, 7. 419 — trihydrate, 7. 419 — trihydrate, 7. 419 — trihydrate, 7. 419 — stannic borate, 5. 105 — stilbite, 6. 760 — strontium calcium hexachloride, 3. 720 — chromate, 11. 274 — nitrite, 8. 488 — sulphate, 3. 662 — sulphate, 3. 665 — preparation, 3. 763 — physical, 3. 792 — sulphatophosphate, 3. 895 — trioxysulpharsenate, 9. 329 — stannate, 8. 662 — sulphate, 3. 765 — preparation, 3. 763 — physical, 3. 792 — sulphatophumbite, 7. 846 — tetrachlorostannite, 7. 434 — tetrahydrosilicoddecatungstate, 6. 878 — tetrahydroxythiocarbonate, 6. 127 — tetramorphosphate, 3. 895 — tetrahydroxythiocarbonate, 6. 127 — tetramorphosphate, 3. 895 — tetramorphosphate, 3. 895 — tetrahydroxythiocarbonate, 6. 127 — tetramorphosphate, 3. 895 — tetrahydroxythiocarbonate, 6. 127 — tetramorphosphate, 3. 895 — tetramorphosphate, 3. 620 — tetratical providedecatungstate, 6. 878 — tetrahydroxylomatite, 6. 844 — tetramorphosphate, 3. 892 — tetramorp	—— metatungstate, 11. 826	
— phosphatohenatungstate, 11. 868 — trithiosulphate, 10. 545 — sodium arsenate, 9. 173 — celcium carbonate, 3. 846 — chloride, 3. 720 — cobalt nitrite, 8. 505 — dithionate, 10. 591 — fluoride, 3. 695 — heptasulphate, 3. 805 — hydroxynitrilodisulphonate, 8. 667 — imidodisulphonate, 8. 655 — nitrilotrisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — phosphate, 3. 878 — phosphated, 3. 892 — silicate, 6. 391 — silicate, 6. 391 — silicate, 6. 391 — titranyl mesociisilicate, 6. 844 — trimetaphosphate, 3. 894 — tritxysulpharsenate, 9. 329 — stannate (a.), 7. 419 — heptahydrater, 7. 419 — trithydrater, 7. 419 — trithydrater, 7. 419 — stannic borate, 5. 105 — stibite, 6. 760 — strontium calcium hexachloride, 3. 720 — chromate, 11. 274 — nitrite, 8. 488 — sulphate, 3. 763 — sulphate, 3. 763 — physical, 3. 792 — sulphate, 3. 763 — properties, chemical, 3. 798 — physical, 3. 792 — sulphatophosphate, 3. 895 — riviphoraphate, 3. 895 — physical, 3. 792 — sulphatophosphate, 3. 895 — riviphoraphate, 3. 894 — trimotybdate, 11. 398 — tetrachlorostannite, 7. 731 — tetrachlorostannite, 7. 419 — tetrachlorostannite, 7. 419 — tetrachlorostannite, 7. 419 — tetrachlorostannite, 7. 419 — tetrachorostannite, 7. 419 — tetracholorodecatungstate, 6. 878 — octohydrated, 3. 895 — tetramiponsphate, 3. 895 — tetramiponsphate, 3. 895 — tetramiponsphate, 3. 895 — tetramiponsphate, 3. 895 — tetramiporophable, 3. 895 — tetrasulphunoide, 6. 127 — tetrachlorodecannoite, 6. 127 — tetra	nitrite, 8 . 488	telluride, 11 . 50
tetracetochiorechromate, 11. 398 trithiosulphate, 10. 545 sodium arsenate, 9. 173 calcium carbonate, 3. 846 carbonate, 3. 846 carbonate, 3. 845 chloride, 3. 720 dithionate, 10. 591 fluoride, 3. 695 heptasulphate, 3. 805 heptasulphate, 3. 805 heptasulphate, 3. 805 heptasulphonate, 8. 655 nitrilotrisulphonate, 8. 655 nitrilotrisulphonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphate, 3. 878 decaphyrated, 3. 878 phosphatodoceatungstate, 11. 88 pryrophosphate, 3. 892 silicate, 6. 391 silicotitanate, 7. 54 titanyl mesodisilicate, 6. 844 trimetaphosphate, 3. 894 tritriydrate, 7. 419 heptahydrate, 7. 419 trihydrate, 7. 419 stannic borate, 5. 105 stilbite, 6. 760 strontium calcium hexachloride, 3. 720 chromate, 11. 274 nitrite, 8. 488 subphaluminate, 5. 331, 336 sulfazidate, 8. 672 sulfhydroxylaminate, 8. 672 sulfhydroxylaminate, 8. 662 sulphamet, 8. 665 sulphamidate, 8. 662 sulphamet, 8. 665 properties, chemical, 3. 798 sulphatophumbite, 7. 821 tetrachlorostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetracholrostannite, 7. 4.34 tetracholrostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetracholrostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachlorostannite, 7. 4.34 tetrachelorostannite, 7. 4.34 tetrachlorostannite, 7. 4.19 tetrachlorostannite, 7. 54 t		
- sodium arsenate, 9. 173 - calcium carbonate, 3. 846 - carbonate, 3. 846 - carbonate, 3. 845 - chloride, 3. 720 - cobalt nitrite, 8. 505 - dithionate, 10. 591 - fluoride, 3. 695 - hydroxynitrilodisulphonate, 8. 655 - nitrilotrisulphonate, 8. 665 - nitrilotrisulphonate, 8. 669 - oxysulphopentarsenate, 9. 330 - paratungstate, 11. 818 - phosphatodoceatungstate, 11. 887 - phosphatodoceatungstate, 11. 887 - physophophate, 3. 892 - silicate, 6. 391 - silicotitanate, 7. 54 - titanyl mesodisilicate, 6. 844 - trimetaphosphate, 3. 894 - trinydrate, 7. 419 - trinydrate, 7. 341 - tetrachloroslaunite, 7. 731 - tetraclardiozirconate, 7. 141 - tetralydroxylhiocarbonate, 6. 127 - tetraminochloride, 3. 716 - tetramolybdate, 3. 894 - cotchydrate, 3. 894 - cotchydrated, 3. 895 - tetramolybdate, 11. 593 - tetraminochloride, 8. 520 - tetramolybdate, 9. 126 - tetrasulphnophate, 9. 126 - tetrasulphosphate, 3. 892 - tetrasulphosphate, 3. 753 - tetraminochloride, 3. 716 - tetramolybdate, 11. 593 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochlo		
- sodium arsenate, 9. 173 - calcium carbonate, 3. 846 - carbonate, 3. 846 - carbonate, 3. 845 - chloride, 3. 720 - cobalt nitrite, 8. 505 - dithionate, 10. 591 - fluoride, 3. 695 - hydroxynitrilodisulphonate, 8. 655 - nitrilotrisulphonate, 8. 665 - nitrilotrisulphonate, 8. 669 - oxysulphopentarsenate, 9. 330 - paratungstate, 11. 818 - phosphatodoceatungstate, 11. 887 - phosphatodoceatungstate, 11. 887 - physophophate, 3. 892 - silicate, 6. 391 - silicotitanate, 7. 54 - titanyl mesodisilicate, 6. 844 - trimetaphosphate, 3. 894 - trinydrate, 7. 419 - trinydrate, 7. 341 - tetrachloroslaunite, 7. 731 - tetraclardiozirconate, 7. 141 - tetralydroxylhiocarbonate, 6. 127 - tetraminochloride, 3. 716 - tetramolybdate, 3. 894 - cotchydrate, 3. 894 - cotchydrated, 3. 895 - tetramolybdate, 11. 593 - tetraminochloride, 8. 520 - tetramolybdate, 9. 126 - tetrasulphnophate, 9. 126 - tetrasulphosphate, 3. 892 - tetrasulphosphate, 3. 753 - tetraminochloride, 3. 716 - tetramolybdate, 11. 593 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochloride, 3. 786 - tetraminochloride, 3. 720 - tetraminochlo		
carbonate, 3. 845 chloride, 3. 720 cobalt nitrite, 8. 505 dithionate, 10. 591 fluoride, 3. 695 heptasulphate, 3. 805 hydroxynitrilodisulphonate, 8. 655 mitrilotrisulphonate, 8. 665 mitrilotrisulphonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphato, 3. 878 decahydrated, 3. 878 phosphatododecatungstate, 11. 887 phosphato, 3. 878 decahydrated, 3. 878 phosphatododecatungstate, 11. 887 phosphato, 3. 878 decahydrated, 3. 878 phosphatododecatungstate, 11. 887 phosphato, 3. 892 silicate, 6. 391 silicotitanate, 7. 54 titanyl mesodisilicate, 6. 844 trimetaphosphate, 3. 892 stannate (a-), 7. 419 trihydrate, 7. 419 trihydrate, 7. 419 stannic borate, 5. 105 stilbite, 6. 760 strontium calcium hexachloride, 3. 720 chromate, 11. 274 mitrite, 8. 488 susphamate, 8. 682 sulphatol, 8. 763 sulphatol, 8. 763 sulphatmidate, 8. 662 sulphate, 8. 760, 765 colloidal, 3. 765 preparation, 3. 763 properties, chemical, 3. 798 physical, 3. 792 solubility, 3. 777 sulphatoplumbite, 7. 821 tetralydroxythiocarbonate, 6. 127 tetramicphosphate, 3. 894 tetramicphosphate, 3. 894 tetramicphosphate, 3. 895 tetramicphosphate, 3. 895 tetramicphosphate, 3. 895 tetramicphosphate, 3. 892 tetramiculare, 9. 126 tetramiculare, 9. 127 tetramiculare, 9. 126 tetramiculare, 10. 618 tetrasulphonodide, 2. 7.11 tetramiculare, 9.	calcium carbonate, 3, 846	
chloride, 3. 720 cobalt nitrite, 8. 505 dithionate, 10. 591 fluoride, 3. 695 heptasulphate, 3. 805 hydroxynitrilodisulphonate, 8. 677 imidodisulphonate, 8. 665 nitrilotrisulphonate, 8. 665 nitrilotrisulphonate, 8. 669 oxysulphopentarsenate, 9. 330 paratungstate, 11. 818 phosphate, 3. 878 decahydrated, 3. 878 phosphate, 3. 878 phosphate, 3. 892 tetransintrite, 8. 520 tetrantimonate, 9. 443 tetrasulphopidide, 1. 593 tetrantimonate, 9. 443 tetrasulphopidide, 3. 753 tetrasulphoniodide, 10. 691 tetratellurite, 11. 80 tetratellurite, 11. 80 tetratellurite, 11. 80 tetratulpuritie, 11. 80 tetrasulphoniodide, 3. 753 tetrasulphoniodide, 3. 755 tetrasulphoniod	carbonate, 3. 845	—— tetradecafluozirconate, 7. 141
- dithionate, 10. 591 - fluoride, 3. 695 - heptasulphate, 3. 895 - heptasulphate, 3. 895 - hydroxynitrilodisulphonate, 677 - minidodisulphonate, 8. 669 - mitrilotrisulphonate, 8. 669 - mitrilotrisulphonate, 8. 669 - mitrilotrisulphonate, 8. 669 - mitrilotrisulphonate, 8. 669 - paratungstate, 11. 818 - phosphate, 3. 878 - decahydrated, 3. 878 - phosphato, 3. 892 - silicate, 6. 391 - silicotitanate, 7. 54 - titanyl mesodisilicate, 6. 844 - trinetaphosphate, 3. 894 - trioxysulpharsenate, 9. 329 - stannate (a.), 7. 419 - trihydrate, 7. 419 - trihydrate, 7. 419 - stannic borate, 5. 105 - stilbite, 6. 760 - strontium calcium hexachloride, 3. 720 - chromate, 11. 274 - mitrite, 8. 488 - sulphate, 3. 763 - sulphate, 3. 763 - sulphamidate, 8. 662 - sulphamidate, 8. 665 - colloidal, 3. 765 - preparation, 3. 763 - physical, 3. 792 - solubility, 3. 777 - sulphatophomphate, 3. 895 - tetraminochloride, 3. 894 - tetranitritoplatinite, 8. 520 - tetranitritoplatinite, 8. 520 - tetraminoridide, 3. 753 - tetraminity objecte, 3. 892 - tetranitritoplatinite, 8. 520 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 10. 691 - tetratellurite, 11. 80 - tetrathyopsyhate, 3. 892 - tetranitritoplatinite, 8. 520 - tetranitritoplatinite, 8. 520 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 10. 691 - tetratellurite, 11. 80 - tetratellurite, 11. 80 - tetrasulphoniodide, 9. 784 - tetroxide, 3. 672 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 9. 784 - tetroxide, 3. 672 - thallium cobalt nitrite, 8. 505 - thiographoniodide, 10. 691 - tetratellurite, 11. 80 - tetratellurite, 11. 80 - tetrasulphoniodide, 9. 784 - tetroxide, 3. 672 - tetrasulphoniodide, 3. 737 - tetrasulphoniodide, 10. 691 - tetratellurite, 11. 80 - tetrasulphoniodide, 10. 691 - tetratellurite, 11. 80 - tetrasulphoniodide, 10. 691 - tetravanadatohexamolybdate, 9. 784 - tetroxide, 3. 672 - thallium cobalt nitrite, 8. 505 - thiographosphate, 3. 612 - tetrasulphoniodide, 10. 691 - tetravanadatohexamolybdate, 9. 784 -	chloride, 3 . 720	,
- fluoride, 3. 895 - heptasulphate, 3. 805 - hydroxynitrilodisulphonate, 8. 677 - imidodisulphonate, 8. 6655 - initrilotrisulphonate, 8. 6695 - oxysulphopentarsenate, 9. 330 - paratungstate, 11. 818 - phosphate, 3. 878 - decahydrated, 3. 878 - decahydrated, 3. 878 - phosphatododecatungstate, 11. 867 - pyrophosphate, 3. 892 - silicate, 6. 391 - silicotitanate, 7. 54 - titanyl mesodisilicate, 6. 844 - trimetaphosphate, 3. 894 - trinoxysulpharsenate, 9. 329 - stannate (a·), 7. 419 - heptahydrate, 7. 419 - trihydrate, 7. 419 - trihydrate, 7. 419 - trihydrate, 7. 419 - trihydrate, 7. 419 - stannic borate, 5. 105 - stilibite, 6. 760 - strontium calcium hexachloride, 3. 720 - chromate, 11. 274 - nitrite, 8. 488 - sulphamidate, 8. 662 - sulphamidate, 8. 662 - sulphamidate, 8. 665 - sulphamidate, 8. 665 - sulphamidate, 8. 665 - preparation, 3. 763 - proporties, chemical, 3. 798 - physical, 3. 792 - solubility, 3. 777 - sulphatoplumbite, 7. 821 - tetramolybdate, 11. 593 - tetramolybdate, 11. 594 - tetrasphosphate, 3. 892 - tetrascenite, 9. 226 - tetrascenite,	cobalt nitrite, 8 . 505	
— heptasulphate, 3. 805 — hydroxynitrilodisulphonate, 8. 677 — imidodisulphonate, 8. 669 — nitrilotrisulphonate, 8. 669 — oxysulphopentarsenate, 9. 330 — paratungstate, 11. 818 — phosphate, 3. 878 — decahydrated, 3. 878 — phosphatododecatungstate, 11. 867 — pyrophosphate, 3. 892 — silicate, 6. 391 — silicate, 6. 391 — silicate, 6. 391 — silicotitanate, 7. 54 — titanyl mesodisilicate, 6. 844 — trimetaphosphate, 3. 894 — trioxysulpharsenate, 9. 329 — stannate (a-), 7. 419 — heptahydrate, 7. 419 — trihydrate, 3. 763 — sulphate, 3. 763 — sulphate, 3. 763 — sulphate, 3. 763 — sulphate, 3. 655 — sulphamate, 8. 655 — sulphamate, 8. 662 — sulphate, 8. 760, 765 — coloidal, 8. 765 — preparation, 8. 763 — physphate, 3. 892 — solubility, 3. 777 — sulphatophonate, 8. 669 — oxysulphopentarsenate, 9. 330 — tetraminochloride, 8. 520 — tetrantiritoplatainite, 8. 520 — tetrantiritoplatinite, 8. 520 — tetrasulphosphate, 3. 892 — tetrasulphosphate, 3. 892 — tetrasulphoryloidide, 10. 691 — tetratulurite, 11. 80 — tetratulurite, 11. 80 — tetrasulphoryloidide, 10. 691 — tetrasulphuryloidide, 10. 691 — tetrasulphuryliodide, 10. 691 — tetrasulphioryliodide, 10. 691 — tetrasu	dithionate, 10. 591	
	hentasulphate 3 805	
	hydroxynitrilodisulphonate, 8.	
— nitrilotrisulphonate, 8, 669 oxysulphopentarsenate, 9, 330 paratungstate, 11, 818 phosphate, 3, 878 decahydrated, 3, 878 phosphatododecatungstate, 11, 867 pyrophosphate, 3, 892 tetrasulphuryloidide, 10, 691 tetratellurite, 11, 80 tetratulphuryloidide, 10, 691 tetratulphuryloide, 2, 734 tetratulphuryloidide, 10, 691 tetratulphuryloide, 2, 691 tetratulphuryloide, 2, 691 tetratulphuryloidide, 10, 691 tetratulphuryloidide, 2, 784 tetratulphu	677	
	imidodisulphonate, 8. 655	
- — paratungstate, 11. 818 - — phosphate, 3. 878 - — decahydrated, 3. 878 - — phosphatododecatungstate, 11. 867 - — pyrophosphate, 3. 892 - — silicate, 6. 391 - — silicotitanate, 7. 54 - — titanyl mesodisilicate, 6. 844 - — trinetaphosphate, 3. 894 - — trioxysulpharsenate, 9. 329 - stannate (a.), 7. 419 - — heptahydrate, 7. 419 - — heptahydrate, 7. 419 - — trihydrate, 7. 419 - — trihydrate, 7. 419 - — stannic borate, 5. 105 - stilibite, 6. 760 - strontium calcium hexachloride, 3. 720 - — chromate, 11. 274 - — nitrite, 3. 488 - — sulphate, 3. 763 - subchloride, 3. 713 - sulfazidate, 8. 672 - sulfphaluminate, 5. 331, 336 - sulphamate, 8. 655 - sulphate, 8. 760, 765 - — colloidal, 3. 765 - — preparation, 3. 763 - — properties, chemical, 3. 798 - — physical, 3. 792 - solubility, 3. 777 - sulphatoplumbite, 7. 821 - tetrasulphide hydrated, 3. 753 - tetrasulphuryliodide, 10. 691 - tetratellurite, 11. 80 - tetrathonate, 10. 618 - tetravanadatohexadecamolybdate, 9 784 - tetravanadatohexadecamolybdate, 9 Talium cobalt nitrite, 8. 505 - thiolium cobalt nitrite, 8. 505 - thiolium cobalt nitrite, 8. 505 - thiosulphare, 10. 544 - — dithionates, 10. 594 - titanyl meodrisilicate, 6. 844 - tetravanadatohexadecamolybdate, 9 Talium cobalt nitrite, 8. 505 - thiolium cobalt nitrite, 8. 505 - thiosulphare, 10. 544 - — monohydrate, 10. 544 - — trianifodiphosphate, 7. 252 - trianifodiphosphate, 8. 712 - trianifodiphosphate, 8. 712 - trianifodiphosphate, 8. 712 - trianifodiphosphate, 8. 684 - tridecamercurite, 9. 10. 544 - Talium cobalt nitrite, 8. 505 - thiosulp	nitrilotrisulphonate, 8. 669	
- — phosphated, 3. 878 - — decahydrated, 3. 878 - — phosphatododecatungstate, 11. 867 - — pyrophosphate, 3. 892 - — silicate, 6. 391 - — silicotitanate, 7. 54 - — titanyl mesodisilicate, 6. 844 - — trimetaphosphate, 3. 894 - — trioxysulpharsenate, 9. 329 - stannate (a-), 7. 419 - — trihydrate, 7. 42 - — trinitie, 8. 488 - — sulphate, 8. 763 - sulphate, 8. 672 - sulfazidate, 8. 672 - sulfazidate, 8. 672 - sulphamate, 8. 655 - sulphamate, 8. 655 - sulphamate, 8. 665 - colloidal, 3. 765 - preparation, 3. 763 - properties, chemical, 3. 798 - — physical, 3. 792 - solubility, 8. 777 - sulphatophosphate, 8. 895 - sulphatophosphate, 8. 895 - sulphatophosphate, 8. 895 - sulphatophosphate, 8. 895 - sulphatophombite, 7. 821 - tetrasulphoniodide, 3. 753 - tetrasulphoniodide, 3. 758 - tetrasulphoniodide, 3. 768 - tetrasulphonidehydate, 3. 764 - tetravanadatohexadecamolybdate, 9 tetrasulphonidehydide, 10. 618 - tetrasulphonidehydide, 10. 618 - tetrasulphonidehydide, 10. 618 - tetrasulphonidehydide, 10. 618 - tetrasulphonidide, 10. 618 - tetrasulphonidehydide, 10. 618 - tetrasulphonidehyd	oxysulphopentarsenate, 9. 330	
The phosphatododecatungstate, 867	phosphate 3 878	
The phosphatododecatungstate, 867	decahydrated, 3, 878	
## The image is a substance of the image is substance of the substance of	phosphatododecatungstate, 11.	
	867	
	pyrophosphate, 3. 892	
- titanyl mesodisilicate, 6. 844 - trimetaphosphate, 3. 894 - trioxysulpharsenate, 9. 329 - stannate (a·), 7. 419 - heptahydrate, 7. 419 - trihydrate, 7. 419 - thillous chlorides, 5. 441 - dithionates, 10. 594 - thiophosphate, 8. 1065 - thiosulphate, 10. 544 - monohydrate, 10. 544 - thorium orthophosphate, 7. 252 - titanic sulphate, 7. 94 - titanic sulphate, 6. 844 - titanyl mesotrisilicate, 6. 844 - titanyl mesotrisilicate, 6. 844 - triamidodiphosphate, 8. 712 - triantimonate, 9. 444 - triazomonosulphonate, 8. 684 - tridecamercuride, 4. 1032 - trihydrohypovanadate, 9. 747 - trimercuric decaiodide, 4. 940 - hexadecahydrate, 4. 940 - hexadecahydrate, 4. 940 - trimercuric decaiodide, 4. 940 - thallium cobalt nitrite, 8. 505 - thiolosulphate, 10. 544 - thorium orthophosphate, 8. 1065 - thiosulphate, 10. 544 - titanotrisilicate, 6. 844 - titanotrisilica	silicate, 6. 391	
- trioxysulpharsenate, 9. 329 - stannate (a-), 7. 419 - heptahydrate, 7. 419 - trihydrate, 7. 419 - stannic borate, 5. 105 - stilbite, 6. 760 - strontium calcium hexachloride, 3. 720 - chromate, 11. 274 - nitrite, 8. 488 - sulphate, 3. 763 - subchloride, 3. 713 - sulfazidate, 8. 672 - sulfhaydroxylaminate, 8. 672 - sulphamidate, 8. 665 - sulphamidate, 8. 662 - colloidal, 3. 765 - preparation, 3. 763 - properties, chemical, 3. 798 - palphatophosphate, 3. 895 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 5. 31, 36 - sulphatophosphate, 3. 720 - sulphatophosphate, 3. 720 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 5. 31, 36 - sulphatophosphate, 4. 10. 544 - sulphate, 10. 544 - sulphate, 10. 544 - sulphate, 10. 544 - sulphate		
- trioxysulpharsenate, 9. 329 - stannate (a-), 7. 419 - heptahydrate, 7. 419 - trihydrate, 7. 419 - stannic borate, 5. 105 - stilbite, 6. 760 - strontium calcium hexachloride, 3. 720 - chromate, 11. 274 - nitrite, 8. 488 - sulphate, 3. 763 - subchloride, 3. 713 - sulfazidate, 8. 672 - sulfhaydroxylaminate, 8. 672 - sulphamidate, 8. 665 - sulphamidate, 8. 662 - colloidal, 3. 765 - preparation, 3. 763 - properties, chemical, 3. 798 - palphatophosphate, 3. 895 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 5. 31, 36 - sulphatophosphate, 3. 720 - sulphatophosphate, 3. 720 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 4. 10. 544 - sulphatophosphate, 5. 31, 36 - sulphatophosphate, 4. 10. 544 - sulphate, 10. 544 - sulphate, 10. 544 - sulphate, 10. 544 - sulphate	trimetaphosphate, 3. 894	
- heptahydrate, 7. 419 - trihydrate, 7. 419 - stannic borate, 5. 105 - stilbite, 6. 760 - strontium calcium hexachloride, 3. 720 - chromate, 11. 274 - nitrite, 8. 488 - sulphate, 8. 763 - sulphate, 8. 763 - sulfazidate, 8. 672 - sulfhydroxylaminate, 8. 672 - sulphamidate, 8. 662 - sulphate, 8. 765 - sulphate, 8. 777 - sulphatophosphate, 8. 895 - stitontrisilicate, 6. 844 - titanic sulphate, 7. 94 - titanotrisilicate, 6. 844 - titanyl mesotrisilicate, 6. 844 - triandodiphosphate, 8. 712 - triantimonate, 9. 444 - triandodiphosphate, 8. 712 - triantimonate, 9. 444 - triandodiphosphate, 8. 712 - triantimonate, 9. 444 - triantimonate, 9. 384 - triantimonate, 9. 384 - triantimonate, 9. 444 - tri	trioxysulpharsenate, 9. 329	
		—— thallous chlorides, 5. 441
- stilbite, 6, 760 - strontium calcium hexachloride, 3, 720 - chromate, 11, 274 - chromate, 1274 - mitrite, 8, 488 - sulphate, 3, 763 - sulphate, 3, 763 - sulfazidate, 8, 672 - sulfhydroxylaminate, 8, 672 - sulphaluminate, 5, 331, 336 - sulphamidate, 8, 662 - sulphamidate, 8, 662 - sulphamidate, 8, 662 - sulphamidate, 8, 662 - sulphamidate, 8, 765 - colloidal, 3, 765 - preparation, 3, 763 - properties, chemical, 3, 798 - physical, 3, 792 - solubility, 3, 777 - sulphatophosphate, 3, 895 - sulphatoplumbite, 7, 821 - thiosulphate, 10, 544 - monohydrate, 10, 544 - thorium orthophosphate, 7, 252 - titanic sulphate, 7, 94 - titanotrisilicate, 6, 844 - triamidodiphosphate, 8, 712 - triantimonate, 9, 444 - triazomonosulphonate, 8, 684 - tridecamercuride, 4, 1032 - trimydrohypovanadate, 9, 747 - trimercuric decaiodide, 4, 940 - hexadecahydrate, 4, 940 - trimetaphosphate, 3, 894 - trimolybdate, 11, 589 - triphosphate, 3, 892 - triphosphate, 3, 892 - triphumbide, 7, 615 - triselenitodecamolybdate, 10, 836 - trisulphatarsenite, 9, 333		
- chromate, 11. 274 - nitrite, 8. 488 - sulphate, 3. 763 - sulphate, 3. 763 - sulfazidate, 8. 672 - sulfhydroxylaminate, 8. 672 - sulphaluminate, 5. 331, 336 - sulphamidate, 8. 662 - sulphamidate, 8. 662 - sulphamidate, 8. 662 - sulphamidate, 8. 662 - sulphate, 8. 765 - colloidal, 3. 765 - preparation, 3. 763 - properties, chemical, 3. 798 - physical, 3. 792 - solubility, 3. 777 - sulphatophosphate, 3. 895 - sulphatophosphate, 7. 821 - sulphatophosphate, 3. 895 - sulphatoph		
- sulphate, 3. 763 - subchloride, 3. 713 - suboxide, 3. 653 - sulfazidate, 8. 672 - sulfhydroxylaminate, 8. 672 - sulphaluminate, 5. 331, 336 - sulphamate, 8. 655 - sulphamidate, 8. 662 - sulphamidate, 8. 662 - sulphate, 3. 760, 765 - colloidal, 3. 765 - preparation, 8. 763 - properties, chemical, 3. 798 - physical, 3. 792 - sulphatophosphate, 3. 895 - sulphatoplumbite, 7. 821 - titanyl mesotrisilicate, 6. 844 - titanyl mesotrisilicate, 6. 844 - triamidodiphosphate, 8. 684 - triantimonate, 9. 444 - triazomonosulphonate, 8. 684 - tridecamercuride, 4. 1032 - trimydrohypovanadate, 9. 747 - trimetaphosphate, 3. 894 - trimolybdate, 11. 589 - trimolybdate, 11. 589 - triphosphate, 3. 892 - triphosphate, 3. 892 - triplumbide, 7. 615 - triselenitodecamolybdate, 10. 836 - trisulphatarsenite, 9. 333		
	sulphamate, 8. 655	
	sulphamidate, 8. 662	trimercuric decaiodide, 4. 940
- properties, chemical, 3. 798 - physical, 3. 792 - solubility, 3. 777 - sulphatophosphate, 3. 895 - sulphatoplumbite, 7. 821 - triplumbide, 7. 615 - triplelenitodecamolybdate, 10. 836 - trisulphatarsenite, 9. 333	nreparation 2 762	
——————————————————————————————————————		
	physical, 3. 792	
	solubility, 8. 777	triplumbide, 7. 615
		triselenitodecamolybdate, 10. 836
surphacostannate, 1. 499 —— trisulphide, 8. 752		trisulphatarsenite, 9, 333
	sulphaverannaus, 1. 498	trisuipinde, 5. 752

Barium tritadiamide, 8. 260	Barium harmatome, 6. 766
—— triterodecavanadate, 9. 771	—— labradorite, 6 . 707
—— trithionate, 10 . 609	—— mica, 6 . 607
trithiophosphate, 8. 1067	nephelite, 6 . 571
tritungstate, 11 . 811	oligoclase, 6 . 707
hexahydrate, 11. 811	—— patite, 3 . 625
	—— psilomelanes, 12 , 266
triuranate, 12 . 67	saltpetre, 3 . 625, 849
tungstate, 11. 786	uranite, 12. 136
dihydrate, 11. 786	water, 3. 676
hemihydrate, 11. 786	Barytes, 3, 762; 7, 896
hemipentahydrate, 11. 786	—— cockscomb, 3 . 763
——————————————————————————————————————	crested, 3. 763
—— ultramarine, 6 . 590	—— uses, 3 . 802
uranate, 12, 63	Barytobiolite, 6. 608
uranite, 3 . 625	Barytocalcite, 3, 622, 625, 814, 834, 846
	Barytocelestines, 3, 763
nate, 12 . 98	Barytophillite, 6. 620
hydroxyhydrodisulphotetraura-	Basalt, 7. 896
nate, 12. 98	Basaltes albus, 6. 648
red, 12 . 98	erystallizations, 6. 909
—— uranous diphosphate, 12, 130	Basaltine, 6. 817
hexachloride, 12 . 83	Basanomelane, 7. 57
uranyl carbonate, 12. 116	Base, acidifiable, 1. 385
pentafluoride, 12 . 79	bullion, 7 . 277
phosphate, 12. 136	history, 1. 382, 383
——————————————————————————————————————	metal, 3. 358, 525
tridecahydrate, 12. 136	Bases, 1, 393
sulphide, 12 . 96	and acids, neutralization, 1. 1006
uses, 3 . 644	strength measurement, 1.
vanadatomolybdate, 9. 784	1004
vanadatomolybdatoarsenate, 9. 211	salts, reactions, 1. 1002
—— vanadatotungstate, 9. 787	ion theory, 1. 1001
vanadyl trifluoride, 9. 801	strength of, 1. 1003
wagnerite, 4 . 388	strong, 1. 981
zinc tetrachloride, 4. 558	weak, 1. 981
——————————————————————————————————————	Basic anhydrides, 1. 397
zincate, 4. 530	rhodo-salts, 11. 408
(di)barium dialuminate, 5. 292	Basicity, 1. 224
diborate, 5. 87	—— acids, Ostwald and Walden's rule, 1.
hexaborate, 5. 90	1002
heptahydrated, 5, 91	of acids, 1. 389
—— hydroxynitrilomonosulphonate, 8. 672	Basilite, 9. 460
potassium trimetasilicate, 6 . 371	Basitomglanz, 9. 551
(hepta)barium potassium octometasilicate,	Basler Tauffstein, 6. 909
6. 371	Bassetite, 12. 136
(tetra)barium octoaluminylheptametasili-	Bastite, 6. 392
cate, 6 . 734	Bastnäsite, 5. 522
(tri)barium aluminate, 5 . 291	Bastonite, 6. 608
decaborate hexahydrated, 5. 91	Batchelorite, 6. 492
—— hydroxynitrilodisulphonate, 8. 677	Batrachite, 6. 408
imidodisulphonate, 8. 655	Baudisserite, 4. 349
Barkevicite, 12. 529	Bauerofen, 12. 584
Barkervikite, 6 . 391, 916; 12 . 149	Bauldaufite, 14. 392
Barnhardite, 12. 529; 14. 183, 189	Baulite, 6. 663
Barophoresis, 13, 837	Baumhauerite, 7. 491; 9. 300
Barote, 3. 620	
	Baumherite, 9, 4
	Baumherite, 9. 4 Baurach, 5. 1
Barracanite, 14. 183, 192	Baurach, 5. 1
Barracanite, 14 . 183, 192 Barrandite, 8 . 733; 12 . 529; 14 . 411	Baurach, 5. 1 Bauracon, 5. 1
Barracanite, 14, 183, 192 Barrandite, 8, 733; 12, 529; 14, 411 Barraudite, 5, 155	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1
Barracanite, 14, 183, 192 Barrandite, 8, 733; 12, 529; 14, 411 Barraudite, 5, 155 Barsowite, 6, 693	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurak, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382 Barysilite, 6. 887; 7. 491; 12. 149	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382 Barysilite, 6. 887; 7. 491; 12. 149 Baryta, 3. 620, 652	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382 Barysilite, 6. 887; 7. 491; 12. 149 Baryta, 3. 620, 652 —— anorthite, 6. 707	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382 Barysilite, 6. 887; 7. 491; 12. 149 Baryta, 3. 620, 652 ————————————————————————————————————	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurak, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————
Barracanite, 14. 183, 192 Barrandite, 8. 733; 12. 529; 14. 411 Barraudite, 5. 155 Barsowite, 6. 693 Barthite, 9. 127 Bartholomite, 12. 529; 14. 346 Barylite, 6. 382 Barysilite, 6. 887; 7. 491; 12. 149 Baryta, 3. 620, 652 —— anorthite, 6. 707	Baurach, 5. 1 Bauracon, 5. 1 Baurak, 5. 1 Baurax, 5. 1 Bauxite, 5. 154, 249, 273 ————————————————————————————————————

5.22.22.2	
Bayldonite, 7 . 491; 9 . 4, 196 Beaconite, 6 . 430	Benzylideneethylammonium bromoplati- nate, 16. 375
Bean ore, 13. 886	Benzylidenemethylammonium bromoplati-
Bearing metals, 7, 362	nate, 16. 375
Beaumontite, 6. 755 Beauxite, 5. 249	Benzylidenephenylammonium bromoplati- nate, 16. 375
Beautite, 5, 249 Beaverite, 7, 822; 14, 328, 350	Benzylmethylammonium bromoplatinate,
Bebaite, 6 . 742	16. 375
Beccarite, 6. 857; 7. 100	
Bechilite, 3, 623; 5, 3, 92	—— chloroiridate, 15. 770
Beckblände, 12. l	Benzylsilicie acid, 6. 309
Beckelite, 5, 514	Beraunite, 8. 733; 12. 529; 14. 408
Becker, J. J., 1. 64	Beresovite, 7. 491; 11. 25, 473
Beckerz-schwarz, 12. l	Beresowite, 7, 491; 11, 125, 473
Becquerelite, 12 . 4, 59, 64 Becquerel's rays, 4 . 53, 73	Berezovite, 11. 473 Bergamaskite, 6. 821
chemical effects of, 4. 75	Berg-butter, 14. 299
physical effects of, 4. 73	Berggeel, 13. 885
Bedil, 7. 276, 484	Berggelb, 13. 885
Beegerite, 7, 491; 9, 589, 692	Berggrün, 6. 343
Beer, 13. 615	Bergmannite, 6 . 573, 652
Beer's law, 8. 175	Bergseife, 6. 472
Beldongrite, 12, 149, 266	Bergzunderz, 9. 555
Belite, 6 , 556	Beril feuilléte, 6. 458
Bell-metal ore, 7, 283, 475 ——- metals, 7, 348	Berlauite, 6 . 624 ; 12 . 529 Berlin blue, 3 . 274
Belonesite, 4. 296	Berlinerblau-natürliche, 14. 390
Belonite, 4. 296; 9. 693	Berlinite, 5, 155, 362
Belonites, 1. 628	Bernoulli's equatum, 1. 744
Belonosite, 11, 488, 561	Berthelot's law limiting density, 1. 196
Bementite, 6 , 448, 900; 12 , 149	Berthierine, 6. 622
Benedict metal, 15, 179	Berthierite, 9. 343, 553; 12. 529
Benitoile, 6 . 835; 7 . 3, 54 —— X-radiogram, 1 . 642	Berthier's rule, 6 . 692 Berthonite, 9 . 551
Benjaminite, 9. 695	Bertollides, 1. 519
Bentonite, 6. 495	Bertrandite, 4. 205; 6. 380, 381
Benzalanilinium bromosmate, 15. 723	Beryl, 4, 204, 205; 6, 380, 803; 7, 896
chloroiridate, 15 . 771	golden, 4 . 204
Benzalethylammonium bromosmate, 15.	X-radiogram, 1. 642
723	Beryllards, 4, 228
Benzalmethylammonium bromosmate, 15.	Beryllerde, 4, 205 Beryllia, 4, 221
722	extraction of, 4. 207
chloroiridate, 15. 770	leucite, 6 . 649
Benzene, 13. 615	Beryllium, 4. 204, 205; 11. 522
and CO ₂ , 6. 32	alkali pyrophosphate, 4. 247
sulphinic acid, 10. 238	alpha (a) oxide, 4. 224
Benzidine chloropalladite, 15. 670	—— aluminate, 5. 294 —— aluminide, 5. 235
Benzidinium bromopalladite, 15. 677	aluminium alloys, 5. 235
bromoplatinate, 16. 375	aluminohydroxyorthosilicate, 6. 802
Benzol, 13. 613	amalgams, 4. 1035
Benzoyl sulphimide, 8. 664	ammonium carbonate, 4. 244
— telluride, 11. 42	ferrous fluosulphate, 14. 297
Benzyl ultramarine, 6. 590	——————————————————————————————————————
Benzylammonium bromoiridate, 15. 777 —— bromoplatinate, 16. 375	manganous fluosulphate, 12. 422
bromoruthenate, 15. 539	nickelous fluosulphate, 15. 475
—— bromosmate, 15 . 723	orthoarsenate, 9. 175
chloroiridate, 15. 770	pyrophosphate, 4. 247
chlororuthenate, 15. 534	sulphate, 4. 241
— chlorosmate, 15. 719	——————————————————————————————————————
Benzylanilinium bromosmate, 15, 723	tetraorthoarsenate, 9. 175
Benzylethylammonium bromoplatinate, 16.	antimonite, 9. 432 arsenide, 9. 66
375	arsenites, 9. 126
chloroiridate, 15. 770	weight, 4. 218
trichloropalladite, 15. 671	auric chloride, 4. 233
Benzylidene sulphamide, 8. 662	azide, 8. 3 50

Beryllium beta (β) oxide, 4. 224	Beryllium hydroxyorthoborate, 5, 96
— boride, 5 . 24	hypophosphate, 8. 937
borocarbide, 5 . 24, 867	
bromate, 2. 350	iodata 9 350
	iodate, 2. 350
bromide, 4. 233	iodide, 4 . 234
calcium fluo-orthophosphate, 4. 247	sesquiammino, 4. 235
carbide, 5 . 84 6, 86 6	iodoantimonite, 9, 502
carbonate, 4 . 242	iodobismuthite, 9. 677
———— basic, 4. 242	iron alloy, 13. 542
chlorate, 2. 349	nickel alloys, 15 . 313
—— chloride, 4 . 231	isotopes, 4 . 220
————— diammino-, 4 . 232	leucite, 6 . 803
hexammino-, 4. 232	- manganese orthosilicate, 6, 381
iodic, 4 . 233	—— manganous sulphates, 12. 422
———— properties, chemical, 4. 232	metachloroantimonate, 9. 491
physical, 4. 231, 250	metantimonate, 9. 455
——————————————————————————————————————	metaphosphate, 4. 246
—— tetranimino, 4. 232, 252	— metasilicate, 6. 380
chloromercuriate, 4. 860	metatungstate, 11. 826
chloropalladate, 15. 673	metavanadate, 9. 772
chloropalladite, 15, 670	—— molybdate, 11. 561
chloroplatinate, 16. 328	dihydrate, 11, 561
	nickel alloys, 15. 205
octohydrate, 16, 328	
chloroplatinite, 16. 282	ehromium-iron alloys, 15 . 327
chlorostannate, 7. 449	4
- · · chlorotungstates, 11. 852	fluoride, 15 . 405
chromate, 11. 274	nickelous sulphate, 15 . 475
	heptahydrate, 15. 475
chromium pentachloride, 11 . 419	hexahydrate, 15. 475
cobalt alloys, 14 . 532	
columbate, 9 . 866	nitrate, 4. 244
	basic, 4 . 242
tetrahydrate, 9. 866	tetrahydrated, 4. 245
copper alloys, 4 . 668	nitratometatungstate, 11. 862
nickel alloys, 15 . 206	nitratophosphate, 4. 246
cupric sulphate, 4. 241	nitride, 8. 104
cupride, 4. 668	nitrite, 8 . 488
deuterohexavanadate, 9. 773	occurrence, 4 . 204
diammine, 9. 773	octohydroxydisulphite, 10. 285
- dodecammine 9 773	orthoarsenate, 9. 175
	orthophosphate, 4. 246
dieluminium havemetegilieute 8 804	orthosilicate, 6. 380
dialuminium hexametasilicate, 6 . 804	
dihydrophosphate, 4. 246	oxide, 4. 221
dihydroxydisilicate, 6, 381	
—— diiododinitritoplatinite, 8. 523	
—— diiodotriarsenite, 9 . 257	
dimolybdate, 11. 581	
—— dioxide, 4 . 228	oxybromide, 4. 234
dodecachlorothallate, 5. 447	oxycarbonate, 4. 242
dodecahydroxychromate, 11. 274	- oxychloride, 4. 232
	tetrahydrated, 4. 232
ferric-pentachloride, 14. 104	oxydioxide, 4 . 228
ferrite, 18. 914	oxyfluoride, 4 . 229
ferrous sulphate, 14. 297	oxyiodide, 4 . 234
—— fluoride, 4. 229	oxymolybdate, 11. 561
fluosilicate, 6 . 952	oxynitrate, 4. 245
hemioxyorthophosphate, 4. 246	oxynitratomolybdate, 11. 659
heptaselenite, 10. 826	oxynitratovanadate, 9. 826
hexahydroxydithionate, 10. 591	oxyorthoarsenate, 9. 175
—— history, 4 . 204	oxyselenites, 10. 825
	—— oxysulphite, 10 . 284
	oxytetranitritodiplatinite, 8. 520
hydrophochate 4 246	oxytetraphosphites, 8. 916
	ovytrieulichita 40 984
—— hydroselenite, 10 . 825	oxytrisulphite, 10. 284
—— hydroxide, 4. 224	Parsons' test, 4. 216'
ageing, 4 . 226 ——————————————————————————————————	—— pentachloroantimonite, 9. 481
colloidal, 4. 225	
preparation, 4. 224	trihydrate, 9. 481
—— properties, chemical, 4. 226	pentachloroferrate, 14, 104
—— —— physical, 4. 225	—— pentaselenite, 10. 825
- ·	

Beryllium perchlorate, 2, 400	Beryllus, 4. 204
—— periodate, 2. 414	Berzelainite, 10. 694
permanganate, 12 . 334	Berzelianite, 3. 7; 10. 769
pentahydrate, 12. 334	Berzeliite, 3, 623; 4, 252; 9, 4, 221; 12.
phosphate nitrato, 4. 246	149
phosphide, 8 . 842	—— soda, 9 . 222
phosphite, 8. 916	Berzeline, 6. 584; 10. 769-
polysulphide, 4. 235	Berzelite, 6. 651; 7. 740
—— potassium carbonate, 4. 244	Berzelium, 5. 504; 7. 174, 209
dimetasilicate, 6. 803	Berzelius' electrochemical theory, 1. 399
——————————————————————————————————————	Bessemer steels, 12, 711, 648
nickelous fluosulphate, 15. 475	——————————————————————————————————————
pyrophosphate, 4. 247	
	Bestuscheff's tinctura tonico-nervina, 14. 10
trisulphite, 10. 285	Beta rays, or β-rays, 4. 73, 84
preparation, 4 . 211	—— magnetic spectrum, 4. 85
properties, 4. 211	Betafite, 5. 519; 9. 839, 867, 905; 12. 4
chemical, 4 . 214	Betaine bromoplatinate, 16. 376
physical, 4. 212	Bettendorff's reaction, 9, 111
—— pyrophosphate, 4. 246	test arsenic, 9. 38
reactions of analytical interest, 4. 216	Beudantite, 7. 491, 877; 9. 4. 334; 12.
selenate, 10. 863	529; 14. 412
—— selenide, 10 , 775	Beustite, 6. 722
selenite, 10. 825	Beyrichite, 15. 5, 435
silicates, 6 . 386	Bezoar, 9. 420
silicide, 6 . 180	Bezoardeeium minerale, 9, 420
silicododecatungstate, 6. 879	Bianchite, 12. 529; 14. 298
—— sodium ammonium orthophosphate, 4.	Biaxial crystals, 1. 607
fluoride, 4 . 230	Biblical chemistry, 1. 28
hydromesotrisilicate, 6. 381	Bieberite, 14, 424, 761 Biharite, 6, 500
	Bildstein, 6 . 473
orthophosphate, 4. 246	Bilinite, 14. 338, 350
oxydiorthoarsenate, 9. 175	Billinite, 12. 529
pyrophosphate, 4, 247	Bindheimite, 7. 491; 9. 343, 458
silicate, 6. 382	Binitrosulfure de fer, 8, 439, 440
	Binnite, 9, 4, 291, 298, 299
solubility of hydrogen, 1. 306	—— pea-shaped, 9 . 298
sulpharsenite, 9. 296	rod-shaped, 9. 298
	Biological test arsenic, 9. 39
basic, 4. 239	Biotina, 6. 693
dihydrated, 4. 236	Biotite, 6 . 604, 605, 608
heptahydrated, 4. 236	baryta, 6 . 608
hexahydrated, 4, 236	titaniferous, 6. 609
——— monohydrated, 4. 236 ———— potassium, 4. 240	Biphosphamide, 8, 709
tetrahydrated, 4. 235	2, 2'-bipyridal, 15, 576
sulphide, 4 . 235	Birefringent liquids, 1. 645
sulphite, 10. 284	Birides, 5. 23 Birkeland and Eyde's furnace, 8. 374
sulphomolybdate, 11. 652	Birolingite, 6. 432
sulphosilicate, 6. 382	Bisbeeite, 6. 341
sulphotungstate, 11. 859	Bischofite, 2. 15, 430; 4. 252, 298
—— tellurate, 11. 94	Bisemutum, 9. 587
telluride, 11. 50	Bisethylallylaminetrichloroplatinous acid,
—— tellurite, 11 . 80	16. 273
tetraiodoplumbite, 7. 778	Bisethylenediaminopropylene diamines, 11.
- tetravanadate, 9. 772	401
thiosulphate, 10. 545	Bishop's ring, 8. 2
triselenite, 10. 826	Bisilyl, 6. 216
tungstate, 11. 787	bis-iso-undecylaminechloroplatinite, 16. 272
uranate, 12. 63	Bismatosmaltite, 9, 589
—— uses, 4. 217	Bismite, 9. 589
	Bismithides, 9. 589
zine sulphate, 4. 640	Bismon, 9. 598 Bismonth 9. 587
(di)beryllium barium orthosilicate, 6. 382	Bismuth, 9. 587
(penta)beryllium diborate, 5. 95	α-, 9. 603 β-, 9. 603
Beryllonates, 4. 228	alkali pyrophosphates, 9. 712
Beryllonite, 4. 206, 246; 7. 896; 8. 733	allotropic forms, 9. 603

70' 13 3 0 00-	
Bismuth amalgams, 9, 637	Bismuth dimethoxide, 9. 675
amines, 8 . 272	dioxide, 9. 653
amminobistrichloride, 9. 664	dioxymolybdate, 11, 570
ammonium decasulphodithiosulphate,	dioxytrichloride, 9. 680
10. 552	disulabida 0 600
	- — disulphide, 9 . 682
molybdate, 11 . 570	dithionate, 10. 595
nitrate, 9. 710	ditungstate, 11. 810
sodium nitratonitrite, 8. 500	—— electronic structure, 9. 633
thiosulphate, 10. 554	enneaoxydiarsenate, 9. 198
tungstate, 11. 795	- enneaoxydiorthophosphate, 9. 712
amorphous, 9 . 598	
	extraction, 9. 593
- analytical reactions, 9, 629	e ferrous chloride, 14. 35
antimonide, 9 . 409	nitrate, 9 . 710
arsenates, 9 . 198	——— flowers of, 9 . 646
arsenite, 9 . 130	— — fluorides, 9 . 659
atomic disintegration, 9. 633	—— fluosulphide, 9 . 659, 702
number, 9 . 633	glance, 9. 684
weight, 9. 632	
	halogenosulphides, 9, 702
barium thiosulphate, 10. 554	hemioxide, 9 . 643
boride, 5 . 28	– – hemipentamminotribromide, 9. 672
bromides, 9 . 670	hemiselenide, 10 . 795
bromosulphide, 9. 702	henicosibromocerate, 5. 645
cadmium nitrate, 9. 710	
- cæsium nitrate, 9. 710	- heptoxydisulphate, 9. 700
	- hexabromocerate, 5. 645
nitrite, 8 . 499	hexabromolanthanate, 5. 645
thiosulphate, 10. 554	- hexasulphitodicobaltate, 10. 315
carbide, 5 . 887	—— higher oxides, 9 . 653
carbonates, 9 . 703	history, 9. 587
chlorides, 9. 660	
	hydride, 9 . 624
chlorosulphide, 9. 702	—— hydrogel, 9 . 598
ehromate, 11. 305	hydroheptachloride, 9. 664
··· eobalt nitrate, 9 . 710	hydrosol, 9 . 598
cobaltie carbonatotetramminoiodide,	hydrotetrachloride, 9. 662
14. 817	hydrotetraiodide, 9. 676
chloropentamminoctoiodide, 14.	hydroxide, 9 . 650
746	
	hydroxychromate, 11. 306
dichlorobisethylenediaminebro-	hydroxydichromate, 11. 306, 343
mide, 14 . 729	hydroxynitrate, 9. 708
———— dichlorobisethylenediamine-	hydroxysulphate, 9. 700
chloride, 14 . 670	hydroxysulphatostannate, 7, 479
dichlorotetramminosulphate, 14.	hydroxysulphite, 10. 305
801	hyponitrite, 8. 417
————— dinitritotetramminoiodide, 8. 508	hypophosphate, 8. 939
dinitritotetramminoperchlorate,	hypophosphite, 8. 887
8. 508	iodides, 9. 674
dinitritotetramminoselenate, 8.	iodoazide, 8 . 337
508	iodosulphide, 9. 702
hexamminohexabromide, 14. 721	—— isotopes, 9 . 633
hexamminohexaiodide, 14. 743	lanthanum sulphate, 9. 701
trisethylenediaminechloride, 14.	- — lead sulphoselenides, 10. 921
657	—— magistry of, 9 . 707
	- — magnesium nitrate, 9. 710
——————————————————————————————————————	——— manganese nitrate, 9. 710
cobaltous nitrate, 14. 828	
colloidal solution, 9. 598	manganous nitrate, 12. 446
colloidale, 9 . 598	mercurous tungstate, 11. 795
—— copper arsenate, 9. 198	—— metallic precipitation, 9. 630
nickel alloys, 15 . 202	metantimonate, 9. 460
nitrate, 9. 710	metaphosphate, 9. 712
thiosulphate, 10. 554	metasulphoctoantimonite, 9. 553
diamminotribromide, 9. 672	molybdate, 11. 570
—— diamminotrichloride, 9. 664	monarsenide, 9. 70
dibromide, 9 . 670	—— monobromide, 9 . 670
didymium sulphate, 9. 701	monochloride, 9. 660
—— dihydride, 9. 624	—— monoselenide, 10. 794
—— dihydrotetraselenite, 10. 834	
dihydrotetrasulphate, 9. 700	nickel nitrate, 9 . 710; 15 . 492
—— dihydroxynitrate, 9. 708	nitrate, 9. 705
diiodide, 9 . 674	———— basic, 9 . 707
dimethide, 9. 675	dihydrate, 9. 705
•	

402	GENERAL INDEX
Bismuth nitrate hemitrihydra	te, 9. 705 Bismuth solubility of hydrogen, 1. 306
hexahydrate, 9. 705	
monohydrate, 9. 70	
pentahydrate, 9. 70	
nitride, 8, 124	
nitrite, 8 . 499 nitrosyl chloride, 8 . 438,	617 subnitrate, 9, 707 suboxide, 9, 643
—— nitrosyltrichloride, 9. 665	
nitroxyltetrachloride, 9.	
nitroxyltrichloride, 9. 66	
occurrence, 9. 588	sulphates, 9. 698
··· ochre, 9 . 589, 646	sulphatodihydrochloride, 9. 701
organosol, 9 . 599	sulphatohydrochloride, 9. 701
orthoantimonate, 9. 460	sulphatoperiridite, 15. 784
orthographic 9. 197	sulphatotetrahydrochloride, 9. 701
hemihydrate, 9. 197	
orthoborate dihydrated, a orthophosphate, 9. 711	sulphite, 10 , 305
	- sulphoditelluride, 11. 60
orthosilicate, 6.836	sulphoditellurite, 11. 114
orthosulphoantimonite, 9	
orthosulphophosphate, 9.	
orthotellurate, 11. 97	sulphotellurite, 11. 114
orthovanadate, 9. 779	sulphotungstate, 11, 859
oxybromide, 9 , 680	
oxychloride, 9. 679	sulphuret, 9, 684
oxychromite, 11. 201 oxydihydrotrifluoride, 9.	678 —— tellurate, 11. 97 —— telluride, 11. 60
oxydihydroxycarbonate,	
oxydisulphide, 9. 699	tetrachloride, 9. 660
oxyfluoride, 9 . 678	—— tetrametaphosphate, 9, 713
—— oxyhalides, 9 . 678	tetritarsenide, 9. 70
oxyiodide, 9 . 681	tetroxide, 9 . 653
—— oxysulphides, 9 . 698	thallous nitrite, 8. 499
oxytrifluoride, 9 . 679	
—— passive, 9 . 627	- thiocarbonate, 6, 128
pentachloride, 9 . 660 pentadecoxyhexabromide	
pentafluoride, 9. 6 59	tin-iron alloys, 13. 579
pentasulphide, 9. 684	- triamminotribromide, 9. 672
– pentoxide, 9 . 653, 655	—— triamminotrichloride, 9. 664
	triamminotriiodide, 9. 676
- permonosulphomolybdate	
pernitrate, 9 . 708	trichloride, 9, 660, 662
peroxide, 9 . 653	
—— phosphates, 9 . 711 —— phosphide, 8 . 852	tridecaoxyheptabromide, 9. 681 trifluoride, 9. 659
phosphite, 8 . 918	trihydride, 9. 626
physiological action, 9. 62	8 trihydrohexachloride, 9. 664
—— potassium chromate, 11.	
hydroxydichromate,	
hydroxydisulphate, !	
nitrite, 8 . 499	colloidal, 9. 650
thiosulphate, 10 . 554	
tungstate, 11. 795	
—— properties, chemical, 9. 62 —— physical, 9. 600	24
pyrophoric, 9 . 598	trioxydichloride, 9. 680
—— pyrophosphate, 9. 712	- trioxysulphide, 9. 698
—— pyrosulpharsenate, 9. 322	triselenide, 10. 795
pyrosulpharsenite, 9. 301	trisulphide, 9. 684
radicactive, 4. 114	colloidal, 9. 685
rubidium thiosulphate, 10	
selenate, 10 . 875	tritaoetochloride, 9. 661
selenite, 10. 834	tritetritasulphide, 9. 685
	24 — trithophosphate, 8. 1007
sodium pyrophosphate, 9.	
thiosulphate, 10. 553	
	, , , , , , , , , , , , , , , , , , , ,

0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	100
Bismuth uranyl iodide, 12. 94	Bismutosmaltite, 14. 424
—— uses, 9 . 630	Bismutosphaerite, 9. 589
valency, 9. 632	Bismutum oxyjodatum, 9. 681
vanadates, 9 . 779	Bispropylallylaminetrichloroplatinous acid,
white, 9 . 707	16. 273
yttrium sulphate, 9. 701	Bispyridinium ammonium chloroperiridite,
zinc nitrate, 9 . 710	15. 763
bismuthates, 9. 657	Bisulfure d'hydrogène, 6. 94
bismuthaurite, 3. 494, 531; 9. 636	Bisulphurie acid, 10, 359
bismuthic gold, 9. 636	Bitter salt, 4, 249, 321
bismuthicum subnitricum, 9. 707 Bismuthides, 9. 634	
Bismuthin, 9. 684	Bittererde, 4. 250, 280
Bismuthine, 9. 626	Bittern, 2. 525
Bismuthinite, 9. 589, 684	Bittersalzerde, 4. 250
Bismuthite, 9. 589, 684	Bituminous limestone, 3, 815
Bismuthoplagionite, 7, 491	Bityite, 4. 206
Bismuthosphaerite, 9. 703	Bivariant systems, 1. 447
Bismuthous metasulphoctoantimonite, 9.	Bixbyite, 12. 149, 280, 529; 13. 816
684	Bjelkite, 7. 491; 9. 589, 694
—— orthosulphoantimonite, 9. 684	Black ash, 2, 731
Bismuthplagionite, 7, 491 Bismuthspar, 9, 589	—— band ores, 14, 355
Bismuthum phosphoricum solubile, 9, 711	damp, 6 . 7 gold, 3 . 531
Bismuthyl bromide, 9. 680	—— heart cast iron, 12. 724
	——————————————————————————————————————
—— carbonate, 9 . 703 —— monohydrate, 9 . 703	jack, 4. 408
chloride, 9 . 679	lead, 5. 713
dihydrated, 9. 662 monohydrated, 9. 662	light, 4 . 53
	nickel, 15. 5
chromate, 11. 305	—— nickelling, 15. 38
cobaltic hexanitrite, 8. 505	— precipitate, 4 . 809
	Blackband, 12. 529
diargeneta 9 108	Blätterblende, 4 . 408 Blättertellur, 11 . 114
diarsenate, 9 . 198 dichromate, 11 . 306, 343	Blagden's law, 1. 516
—— dihydrotrifluoride, 9. 678	Blakeite, 12. 529; 14. 307
—— dithionate, 10. 595	Blanc de plomb, 7. 847
diuranate, 12. 67	d'espagne, 9. 707
fluoride, 9 . 678	—— d'Offenbanya, 11. I
—— heptahydroxydecasulphite, 10. 305	de zinc, 4. 507
hydroxide, 9 . 651	Blandfordite, 12. 141, 149
—— hydroxydecasulphite, 10. 305	Blanquette, 2. 713
	Blasenstahl, 12. 752
hydroxynitrate, 9, 709	Blaseofen, 12. 584 Blast furnace, 12. 584
hydroxypentanitrate, 9, 710 hydroxypentasulphite, 10, 305	
iodide, 9. 681	
metantimonate, 9. 460	Blasting powder, 2. 826
molybdate, 11 . 570	Blattererz, 11. 1, 47
—— nitrate, 9 . 709	Blattertellur, 11. l
nitrite, 8 . 499	Blatterzeolith, 6. 758
orthoantimonate, 9. 460	Blauofen, 12. 584
orthoarsenate, 9. 198	Bleach-liquor, 2. 244
orthochromate, 11. 305	Bleaching, 2. 243, 262
oxydithionate, 10. 595 paradichromate, 11. 305	—— Berthollet's method, 2. 243 —— powder, 2. 244, 258; 13. 615
paradicinomate, 11. 500 —perchlorate, 9. 401	
potassium dichromate, 11. 343	——— manufacture, 2 . 259
———— metantimonate, 9 . 460	
quaterochromate, 11. 306, 343	Bleiarsenite, 9. 300
—— sulphate, 9. 700	Bleierde, 7. 832
—— sulphite, 10 . 305	Bleierze salzsaures, 7. 852
tetrarsenate, 9. 198	Bleifahlerz, 9. 550
trihydropentaiodide, 9. 681	Bleiglätte, 7. 638
	Bleiglanz, 7, 781 Bleiglas, 7, 803
trihydroxytetrasulphite, 10. 305	Bleiglas, 7. 803 Bleinière, 7. 491; 9. 458
Bismutoferrite, 6. 836; 9. 589 Bismutolamprite, 9. 684	Bleischimmer, 9. 555
Bismutoplagionite, 9. 589, 695	Bleischwärze, 7. 832

404 CENTERA	n mona
District M. 701	Doiling point and molecular weight 1 561
Bleischweiff, 7, 781	Boiling point and molecular weight, 1. 561
Bleispath, 7. 829	osmotic pressure, 1. 568 vapour pressure, 1. 561
Blende, 4. 586	
—— cadmium, 4 . 587	determination, 1, 563
resin, 4 . 407	Beckmann's process, 1. 563 effect volatility of solvent,
—— Schwarze, 12. 387	effect volatility of solvent,
Sidot's, 4. 592	1. 565
zine, 4 . 407, 586	Landsberger's process, 1.
Bleu azur, 14 . 420	564
célestique, 14 . 519	—— points colloids, 1. 774
de saxe, 14. 519	solutions with two, 2. 327
Blind roaster, 2, 730	Bole, 6, 472; 13, 887
Blister copper, 3. 25	of Stolpen, 6. 498
roasting, 3. 25	Boleite, 2. 15
steel, 12. 752	Boleite, 7, 491, 743
Bloedite, 2, 430; 4, 252, 336	Bolivarite, 5. 366
Blomstrandine, 5, 517, 518; 7, 3; 9, 904	Bolivian, 9. 542
Blomstrandite, 5. 519; 7. 3; 9. 839, 905;	Bolivianite, 9. 542
12. 4	Bolivite, 9, 589, 699
Blood and hydrogen, 1. 304	Bologna spar, 3. 619
charcoal, 5. 750	
Bloom 12 583 597	Bolognian stone, 3, 619 Rolomberita, 6, 915
Bloom, 12, 583, 597	Bolopherite, 6, 915
Bloomary, 12, 583	Boltonite, 6. 384
Bloomery, 12, 583	Boltzmann's constant, 1, 809
Blown metal, 12, 709	distribution theorem, 1, 792
Blue Berlin, 3, 274	Bone black, 5, 750
billy, 12 . 637	char, 5. 750
- · · · brittleness, 12 . 696; 13 . 32, 599	—— charcoal, 5. 750
- carmine, 11 . 765	—— china, 6 . 515
clay, 5. 716	phosphate, 3, 904
d'azur, 14. 519	turquoise, 5 . 368
de Prusse natif, 14 . 390	Bones degelatinized, 8, 735
earth, 5. 716	degreased, 8 . 735
felspar, 3 . 274 ; 5 . 370	· · fluorine in, 2. 2
gold, 13 . 541	Bononian stone, 3. 619
heat, 13. 32	Bonsdorffite, 6. 811
iron earth, 12 . 529	Bonus, P., 1. 48
john, 3 . 688	Boothite, 3. 234
——— Leithner's, 5. 298	Borach, 5. 1
Leyden, 5 . 298	Boracic acid, 5, 2, 48
mountain, 5. 370	Boracite, 2. 15, 430; 3. 623; 4. 252; 5. 4,
powder, 4. 411	137
	—— eadmium, 5 . 140
spar, 3 . 274; 5 . 370	cobalt, 5. 140
—— Thénard's, 5. 298	ferrous, 5 . 140
	iron, 5 . 137
Blueite, 14. 200; 15. 5, 445	—— manganese, 5. 140
Blumenbachite, 12. 387	nickel, 5. 140
Blutstein, 13, 774	Turkish, 5. 89
Blyclents, 7, 781	—— zinc, 5. 140 Bornaius, 5. 3
Blyglants, 7. 781	Boracium, 5. 3
Blyspat, 7, 829	Borak, 5. 1
—— grön, 7. 883	Boramide, 5. 132; 8. 261
Boast, 5. 720	Boranes, 5. 35
Bobierrite, 4. 252, 382; 8. 733	Boranol, 5. 35
Bodenbenderite, 12. 5	Borate magnésio-calcaire, 5. 137
Bodenite, 5. 509	Borates, 5. 47, 65
Boehme, J., 1. 48	Boratobromides, 5. 140
Bœumlerite, 2. 431	Boratofluoric acid, 5, 123, 124
Bog manganese, 12, 149, 267	Boratoiodides, 5. 140
ore, 12 . 529 ; 13 . 886	Boratosodalite, 6. 583
Bohnerz, 13. 886	Borax, 5. 1, 3
Bohr's atom, 4. 167	—— calcined, 5 . 670
Boiler scale, 6. 80	—— dehydrated, 5 . 48
Boiling, 1. 436	glass, 5. 71
constant, 1. 562, 564	——— lime, 5 . 93
curve, 1. 167	—— usta, 5. 70
—— point, 1. 436, 438	veneta, 5 . 68
absolute, 1. 165	Borazite, 5. 137

Bordeaux mixture, 3. 262	Boron monamminotrifluoride, 5. 122
soda, 3 . 267	monophosphide, 8. 844
Border mica, 6. 612	—— (name), 5. 3
Bordosite, 4. 697, 812, 1024	nickel alloys, 15. 223
Borgströmite, 12. 529; 14. 328, 334	nitride, 8. 108
Boric acid, 5. 2, 4, 48; 18. 613, 615	nitrite, 8. 495
and indicators, 5. 59	- nitrosyl chloride, 5. 132
glassy, 5. 41	nitrosylfluoride, 8, 434
properties, chemical, 5. 61	nitrosyltetrachloride, 8. 544
physical, 5. 52	occurrence, 5. 3
solubility, 5 . 56	oxides, 5. 39
tribasicity, 5 . 44	oxymonochloride, 5. 133
vitreous, 5. 41	oxytrichloride, 5. 133
water-glass, 5. 75	pentadecamminotriiodide, 5. 136
acids, 5 . 47	—— pentamminotriiodide, 5. 136
anhydride, 5 . 41	pentasulphide, 5. 145
oxide, 5 . 4 1	—— phosphate, 5. 147
Borickite, 8, 733; 12, 529; 14, 411	phosphinochloride, 5. 132
Borimide, 5, 132; 8, 261	phosphinotrichloride, 8. 816
——— trihydrochloride, 5 . 132	phosphinotrifluoride, 8. 816
Borites, 5 . 39	—— phosphoctobromide, 8. 1035
Bornine, 11 . 60	phosphodiiodide, 8. 845
Bornite, 7. 896; 12. 529; 14. 183, 189	phosphohexabromide, 8, 1033
Borobutane, 5. 36	phosphohexabromotrichloride, 8. 1005
——— diammine, 5 . 36	phosphoiodide, 5. 136; 8. 845
Borocalate, 5. 3, 72	phosphopentachlorohexabromide, 8.
Boroethane, 5. 37	1016
	phosphorylhexachloridotribromotri-
Borofluorides, 5, 124, 125	
Borohexylene, 5. 36	ehloride, 8. 1025
Borohydrates, 5. 40	preparation, 5. 7
Borol, 5. 146	properties, chemical, 5. 14
Boromagnesite, 4 . 252; 5 . 4, 97	—— physical, 5. 10
Boromolybdie acid, 5. 108	sesquiamminochloride, 5. 131
Boron active, 5. 9	silicide, 6 . 183
adamantine, 5 . 10, 13	suboxide, 5. 39
amide, 8 . 261	sulphate, 5. 146
analytical reactions, 5. 17	sulphobromide, 5. 145
—— arsenate, 9 . 185	—— sulphochloride, 5. 145
arsenide, 9. 68	—— telluride, 11. 53
arsenotribromide, 9. 57	tetramminotribromide, 5. 134
arsinotribromide, 5. 135	tetritaselenide, 10. 780
—— atomic number, 5. 21	—— tribromide, 5. 134
weight, 5 . 18	trichloride, 5. 129
atoms decomposition, 5. 21	trifluodihydrosulphide, 10. 139
	trifluoride, 5. 121
bromodiodide, 5 . 136	trifluotetradecahydrosulphide, 10. 139
carbide, 5 . 26 , 870	— trihydride, 5. 34
cobalt alloy, 14. 534	triiodide, 5. 135
cobaltic hexamminofluoride, 14. 610	trioxide, 5. 41
colloidal solution, 5. 8	tripentitaphosphide, 8. 845
decahydride, 5. 36	
diamminotrifluoride, 5. 122	triselenide, 10. 780
dibromoiodide, 5 . 136	trisulphide, 5. 142
—— dioxide, 5 . 39	ultramarine, 6. 590
eka, 1. 261	valency, 5. 19
electronic structure, 5. 21	Boronatrocalcite, 3. 623; 5. 4, 93
enneamminobromide, 5. 135	Boronium compounds, 5. 19
ethyl, 5. 132	Boronized copper, 5. 17
—— graphitoidal, 5. 10, 13, 25	Borosilicates, 6. 447
—— hemienneamminochloride, 5. 131	Borotitanates, 7. 3
—— hemiphosphinofluoride, 5. 122	Borotungstates, 5. 108; 11. 789
hexamminochloride, 5. 131	Borotungstique acide, 5, 108
hexamminotrisulphide, 5. 144	Borras, 5. I
	Borspar, 5. 90
	Bort, 5. 720
	Boryckite, 3. 623; 12. 529
hydrosulphate, 5. 147	Boryl, 5. 35
hydrosulphide, 5. 145	—— disulphate, 5. 146
imide, 8 . 261	
imidohydrochloride, 8. 261	
iron alloys, 13. 548	Boschjesmanite, 12. 424
nickel alloys, 15. 314	Boscovich's theory of matter, 1. 112
VOL. XVI.	2 н

Bose's swarm theory, liquid crystals, 1. 649	Braunstein metal, 12. 141
Bosjemanite, 5. 154; 12. 149	—— piedmontischer, 6. 768
Bosjesmanite, 12. 424	reducirten, 12. 141
Bosphorite, 12, 529; 14, 392	roter, 12. 432
Boss process silver extraction, 3. 304	Braunsteinblende, 12. 387
Botallacite, 3. 178 Botriolite, 6. 449	Braunsteinerz Luftsaures, 12. 432
Botryite, 14. 348	
Botryogen, 4. 252; 12. 150, 529; 14. 328,	Braunsteinkalk, 12. 141 Braunsteinkies, 12. 387
348	Braunsteinkönig, 12. 141
Botryolite, 6. 449	Braunsteinregulus, 12. 141
Botryte, 14. 348	Bravaisite, 6. 624, 921
Boulangerite, 7, 491; 9, 343, 544	Bravoite, 9. 715; 15. 5, 449
Bound energy, 1. 716	Brazilite, 7. 723
Bournonite, 6 . 455; 7 . 491; 9 . 343, 550 —— nickel glanz, 9 . 550	Brazing solder, 4. 671
Boussingaultite, 4. 342	Breccia, 8, 815
Boville bordelaise, 3. 262	Bredbergite, 6. 921 Breislakite, 6. 916
Bowenite, 3. 422	Breithauptite, 3. 220; 9. 343, 415; 15. 5
Bowl-sprite, 9. 2	Breunerite, 4. 251, 349; 14. 369
Bowmanite, 4. 206; 5. 370	Brevicite, 6, 573, 653
Boydenite, 12. 800	Brevium, 4, 122, 127
Boyle, R., 1, 52, 53	Brewsterite, 3. 625; 6. 575, 758
Boyle's law, 1. 151 and kinetic theory gases, 1. 743	Brewsterlin, 6, 562
solutions, 1. 543	Brewsterlinite, 6, 562
——————————————————————————————————————	Brewstolin, 6, 562 Bricks Dinas, 6, 289
effect of molecular weight on, 1.	ganister, 6 . 289
194	sand-lime, 6. 283
Brackebuschite, 9. 715, 778	Brilliant, 5. 711
Brackebushite, 7. 491; 12. 149	Brimstone, 10. 1
Braes, 4. 670 Braggite, 12. 4; 15. 592; 16. 5, 394	Briquets phosphoriques, 8, 1059
Bragite, 5. 516	Britannia metal, 7, 332
Brandisite, 6. 816; 12. 529	Britholite, 5, 529; 6, 835 Brithynspar, 6, 751
Brandtite, 3. 623; 9. 4; 12. 149	British cement, 6. 554
Brannerite, 12. 4	— thermal unit, 1. 699
Brass, 3. 1, 2; 4. 670	Brittle silver ore, 3, 300
Admiralty naval, 4. 671	Brittleness, 13. 61
alpha (a), 4. 672 beta (β), 4. 672	blue, 12 . 696
cartridge, 4. 671	—— temper, 12. 696
common, 4. 671	Brocades, 6 . 620 Brochantite, 3 . 7, 234, 262, 264, 265; 4 . 639
complex, 4. 670	Brodie's ozonizer, 1. 886
— delta (δ), 4. 672	Bröggerite, 5. 530; 7. 185, 896; 12. 4, 50
distillation of zinc from, 3. 10	o-bromanilinium bromosmate, 15. 723
epsilon (ε), 4. 672	—— chlorosmate, 15 . 723
eta (η) , 4. 672	Bromargyrite, 2. 16; 3. 300, 418
gamma (γ), 4. 672 	Bromates, 2. 296
magnesium, 4. 253	
manganese, 4. 670	—— properties, 2, 305
nickel, 4 . 670	properties, 2. 305 uses, 2. 319
—— properties, chemical, 4. 677	Bromatosodalite, 6. 583
——————————————————————————————————————	Bromazide, 8. 336
Tin, 4. 670 Brasses, aluminium-, 5. 240	Bromic acid, 2, 296
machine, 7. 347	constitution, 2. 320
manganese-nickel, 15. 211	
nickel, 15. 40	bromosquotetramminosulphate, 11.
Brauneisenstein, 13. 877, 885, 886	466
ochriger, 18. 885	Bromides: acid, 2. 220
Braunerite, 14. 359	complex, 2. 228
Braunite, 12. 149, 236, 746	—— detection, 2, 209
Braunmangan, 12. 238 Braunmanganerz, 12. 238	—— preparation, 2. 214
Braunmenakerz, 6. 840	— properties, 2. 217
Braunstein, 12. 140, 141	— thermochemistry, 2. 218 Bromine, 13. 615
blättricher schwarz, 12. 231	atomic weight, 2. 101, 105
depurirten, 12. 141	—— chemical reactions, 2. 90
•	·

GENE	L.
Bromine chlorine compounds, 2. 114	
fluorine compounds, 2. 114	
—— history, 2. 20, 24	
hydrate, 2. 72	
iodine compounds, 2. 122	
—— mol. wt., 2 . 107	
—— monoxide, 2. 242	
—— occurrence, 2. 15	
—— pentoxide, 2. 293	
—— physical properties, 2. 46	
solubility, 2. 72	
and soln 2 82	
organic solvents, 2, 84	
salt soln., 2. 82	
and soln., 2. 82 organic solvents, 2. 84	
trinuoride, 2. 113	
trioxide, 2. 281, 285	
uses, 2. 96	
valency, 2. 108	
—— water, 2. 71 Bromite, 2. 16; 3. 418	
Bromlite, 3. 625, 846	
Bromoanilinium bromopalladite, 15. 677	
m-bromoanilinium bromopalladite, 15. 67	7
bromosmate, 15. 723	•
chloroiridate, 15. 777	
chlorosmate, 15. 723	
o-bromoanilinium chloroiridate, 15. 777	
chloropalladite, 15. 678	
p-bromoanilinium bromosmate, 15. 783	
chloroiridate, 15, 777	
chloropalladite, 15. 678 chlorosmate, 15. 723	
Bromoantimonic acid, 9. 497	
Bromoaquobisethylenediamines, 11. 404	
Bromoaquotetrammines, 11. 404	
Bromoargyrite, 3. 300, 418	
Bromoboracites, 5. 140	
Bromocalcium-sodalites, 6. 583	
Bromocarnallite, 2. 16; 4. 314	
Bromocuprates, 3. 200	
Bromocuprites, 8. 195	
Bromodiaquotriammines, 11. 403, 404	
Bromoiodides, 2. 237	
Bromoiodides, 2. 237 Bromolaurionite, 7. 754	
Bromolithia-sodalite, 6. 583	
Bromomercuriates, 4. 891	
Bromomimetite, 9. 263	
Bromonitric acid, 8. 541	
Bromoperruthenites, 15. 538	
Bromoperruthenous acid, 15. 537	
Bromophenylammonium bromoplatinate.	
Bromophenylammonium bromoplatinate, 16. 375	
Bromoplatinates, 16. 377	
Bromoplumbites, 7. 751	
Bromopyromorphite, 7. 885	
Bromoruthenates, 15. 538	
Bromosilicomethane, 6, 979 Bromosodalites, 6, 583	
Bromostannates, 7. 456	
Bromostannites, 7. 453	
Bromosulphonic acid, 10. 689	
Bromotellurites, 11. 104	
Bromotriiodosilane, 6. 984	
Bromous acid, 2. 285	

```
Bromowagnerite, 3. 897; 4. 388
 Bromozirconates, 7. 149
 Bromum solidificatum, 2. 97
 Bromuntersalpetersäure, 8. 620
 Bromyrite, 2. 16
 Brongniardite, 7, 255, 491
Brongniardite, 9, 343
 Brongniartine, 4. 639
Brongianrtite, 9. 551
Bronze, 3. 1, 2; 4. 670; 7. 347
---- age, 1. 19
 ---- aluminium, 5. 222, 229
 --- analysis ancient, 3. 1, 2
 --- caries of, 3. 76
 --- complex, 4. 670; 7. 347
—— manganese, 4, 670; 4, 671
—— phosphor, 7, 347
—— siliceux, 7, 356
 ---- silicieux, 5. 17
Brossite, 4. 371
 Brostenite, 12, 149, 266, 280
Brown powder, 2, 828 --- salt, 16, 262
    - spar, 3. 622; 4. 251
 Brownian movement, 1. 775
 Brownish-red sodium rhodium sulphite, 10.
 Brucine bromoiridate, 15. 777
 - -- chloroiridate, 15. 771
 Brucite, 4. 251, 290; 6. 813
Brugnatellite, 4. 376: 14. 369
Brunsenite, 15. 5, 374
 Brunsvigite, 6. 620
 Brunswick green, 9. 122
Brush ore, 12. 529
Brushite, 3. 623, 880, 882; 8. 733
Buchner's crystals, 3. 757
Bucholzite, 6. 455
Bucking, 2. 243
Buckingite, 14. 350
Bucklandite, 5, 509; 6, 721
Buerre de zinc, 4. 535
Buff stone, 6. 468
Bulk modulus, 1. 820
Bull dog, 12. 637
Bumping, 1. 453, 847
     (boiling acid), 10. 368
Bunsen's dichromate cell, 1. 1028
     - nitric acid cell, 1. 1028
Buntkupferenz, 14. 189
Buntkupferkies, 14. 189
Burden, 12. 589
Burning, 1. 59
Burnt lime, 3. 653
     - pig, 18. 558
Buschmannite, 12. 424
Bush sickness, 13. 376
Bushmanite, 12. 149, 424
Bustamente's furnace, 4. 701
Bustamite, 6. 391, 897; 12. 149
Butlerite, 14. 328, 331
- zine, 4. 535
```

Butyl tetrachloroferrate, 14. 102	Cadmium, 1. 521; 4. 398
Butyl(iso) alcohol and hydrogen, 1. 303	—— alloys, 4 . 665
Butylamineammonium chlororuthenate, 15.	— aluminate, 5 . 296
534	aluminium alloys, 5. 240
Butylammonium bromoruthenate, 15.	amalgams, 4. 1037
538-9	amide, 8 . 261
ferric fluorides, 14. 8	
fluoferrate, 14. 8	amidosulphonate, 8, 643
	amminochlorosmate, 15. 720
di-iso-butylammonium bromopalladate, 15.	amminochromate, 11. 280
678	amminoselinete, 10. 827
bromopalladite, 15. 677	amminosulphite, 10. 287
	ammonium amminoquadrichromate,
	11. 280
chloropalladite, 15. 670	diamminochromate, 11. 280
chloroperruthenite, 15. 532	diamminomolybdate, 11. 563
chlororhodate, 15. 579	diamminoxytetranitrite, 8. 490
chlororuthenate, 15. 534	dihydroxyquadrichromate, 1. 280
chlorosmate, 15. 719	dimetaphosphate, 4. 663
——————————————————————————————————————	dithionate, 10. 593
iso-butylammonium bromoiridate, 15. 777	dithiosulphate, 10. 546 fluoride, 4. 534
bromoperruthenite, 15. 538	fluoride, 4 . 534
bromosmate, 15. 723 chloroiridate, 15. 770	hexachloride, 4. 553
chloroiridate, 15 . 770	—— nickel nitrite, 8 . 512
chloropalladate, 15. 673	nitrate, 4. 656
chloroperruthenite, 15. 532	l paramolybdate, 11, 587
chlororhodate, 15. 579	paratungstate, 11. 819
chlorosmate, 15. 719	pentachloride, 4. 554
heptachloroperruthenite, 15. 533	——————————————————————————————————————
n-butylammonium bromoiridate, 15. 777	phosphate, 4, 661
bromopalladate, 15 . 676	phosphatotetritaenneamolyb-
bromopalladite, 15. 677	date, 11. 670
bromoperruthenite, 15, 538	selenate, 10. 867
bromosmate, 15. 723	dihydrate, 10. 867
chloroiridate, 15 . 770	
chloropalladate, 15. 673	sulphate, 10. 287
chloropalladite, 15. 670	——————————————————————————————————————
chloroperruthenite, 15. 532	tetrathiosulphate, 10. 547
chlororhodate, 15. 579	monohydrated, 10. 547
—— chlorosmate, 15 . 719	tribromide, 4, 571
—— heptachloroperruthenite, 15. 533	
tri-iso-butylammonium bromopalladate, 15.	tungsten tetramminoennea-
678	chloride, 11. 842
	—— and stannous chlorides, 7. 434
——————————————————————————————————————	thallium, 5 . 428
chloroiridate, 15. 770	antimonite, 9 . 432
	argentide, 4. 684
chloropalladite, 15. 670	arsenate hydrogel, 9. 182
chloroperruthenite, 15. 533	arsenic alloys, 9. 66
chlororutnenate, 15, 534	atomic number, 4 . 503
chlorosmate, 15. 719	weight, 4 . 501
Butyrum antimonii, 9. 469, 504	auride, 4 . 684
stanni, 4. 812	azide, 8 . 351
—— zinci, 4. 535	barium alloys, 4. 687
n-butyrylcholinechloroplatinate, 16. 312	tetrabromide, 4 . 572
Buzane, 8. 329	
Bythium, 10. 3	tetraiodide, 4. 584
Bytounite, 6 . 662, 694	tetrathiosulphate, 10. 547
Byzantium (see Constantinople), 1. 44	trithiosulphate, 10. 547
-	—— bismuth alloys, 9. 637
	nitrate, 9. 710
_	blende, 4. 587; 7. 896
C	boracite, 5. 140
	borotungstate, 5. 110
Cabrerite, 4. 252; 9. 4, 231; 14. 424; 15. 5	bromate, 2. 350
Cacheutaite, 10. 771, 788	ammino-, 2. 350
Cacoclasite 6. 713	bromide, 4. 564
Cacodylic acids, 9. 101	monohydrated, 4. 567
Cacoxenite, 12. 529; 14. 408	tetrahydrated, 4. 567
Cadmia, 4. 398, 642; 6. 442	bromoapatite, 4. 660
fornacum, 4. 404, 642	bromoarsenatoapatite, 9. 262
·	· · · · · · · · · · · · · · · · · · ·

bromophophate, 4, 609 selemate, 10, 868 tetrabomide, 4, 572 tetrabomide, 4, 572 tetrabomide, 4, 588 tetrahodride, 4, 588 tetrahodride, 4, 588 bexachloride, 4, 588 bexachloride, 4, 586 hexachloride, 4, 588 hexachloride, 4, 686 thiosulphate, 10, 547 carbonate, 4, 666 thiosulphate, 10, 547 carbonate, 4, 642, 643 hemilydrated, 4, 643 calcium carbonates basis, 4, 647 cerum alloys, 5, 807 cerous sulphate, 5, 807 cerous sulphate, 5, 807 cerous sulphate, 5, 807 cerous sulphate, 5, 509 chlorate, 2, 330 chlorate, 2, 330 chlorate, 2, 340 diamminophate, 4, 540 hemilydrated, 4, 541 hemilydrated, 4, 541 hemilydrated, 4, 541 heptatrilabydrated, 4, 541 chloropalatite, 4, 560 chlorourate, 3, 395 chlororidate, 15, 772 chloromecuriate, 4, 863 chloroplatitie, 16, 283 chloroplatitie, 16, 4747 chloroprophatitie, 4, 670 dichlorobisethylenediamine- oloidite, 14, 747 chlorobisethylenediamine- oloidite, 14, 743 hexaminopentachloride, 14, 656 charaminolexabromide, 14, 745 hexaminopolati	Codminus brown as II 1'4 AF ORE	
cusium pentabromide, 4, 572 cusium pentabromide, 4, 573 selenato, 10, 868 selenato, 10, 868 tetrachoride, 4, 558 tetrachoride, 4, 559 tidiamminosulphate, 4, 633, 634 timminosulphate, 4, 638 tetrachoride, 4, 549 tidiamminosulphate, 4, 638 tetrachoride, 4, 559 tidiamminosulphate, 4, 638 tetrachoride, 4, 559 tidiamminosulphate, 4, 638 tetrachoride, 4, 559 tidiamminosul	Cadmium bromopalladite, 15. 677	Cadmium cobaltous octopyridinohexa-
cesium pentabromide, 4, 572 pentaiodide, 4, 583 selenate, 10, 868 tetrabromide, 4, 558 tetrachloride, 4, 558 tetraiodide, 4, 583 calcium alloys, 4, 686 tetraiodide, 4, 583 tetraiodide, 4, 543 terraiodide, 4, 543 calcium carbonates basic, 4, 647 cerous sulphate, 5, 669 cerous sulphate, 5, 669 celhorodide, 4, 535 tetraiodide, 4, 540 tetraiodide, 4, 540 tetraiodide, 4, 541 tetraiodide, 4, 540 tetraiodide, 4, 540 tetraiodide, 4, 541 tetraiodide, 4, 540 tetraiodide, 4, 540 tetraiodide, 4, 541 tetraiodide, 4, 540 tetraiodide,		
selenate, 10. 868 selenate, 10. 868 tetrabornide, 4. 572 tettrachloride, 4. 558 tetrachloride, 4. 559 telasente, 5. 569 tetrachloride, 4. 559 telasente, 5. 569 telasente, 4. 541 telasente, 5. 541 tela		
selenate, 10. 868 tetrabromide, 4. 558 tetrabromide, 4. 558 tetraiodide, 4. 583 tetrabromide, 4. 583 tribromide, 5. 636 calcium alloys, 4. 686 hexachloride, 4. 558 hypophosphite, 8. 885 mitrate, 4. 666 thiosulphate, 10. 547 carbonate, 4. 642, 643 hemilydrated, 4. 643 Calcium carbonates basic, 4. 647 cerium alloys, 5. 607 cerous sulphate, 5. 659 chlorotae, 2. 350 mannino, 2. 350 chloride, 4. 554 hemipentahydrated, 4. 541 portalrydrated, 4. 541 chloroapatite, 9. 260 chloroarsenatopatite, 9. 260 chloropalladate, 15. 670 chlorophambite, 7. 731 chlorostannate, 7. 749 chlorophosphate, 4. 632 chloroplatinite, 16. 283 chlorophumbite, 7. 731 chlorostannate, 7. 749 chlorophosphate, 4. 630 chloroplatinite, 16. 283 chlorophosphate, 4. 630 chloroplatinite, 16. 283 chlorophumbite, 7. 731 chlorostannate, 7. 749 chlorotriorthoarsenate, 9. 260 chromium alloy, 11. 171 cobalt alloys, 14. 533 cobaltic aquopentamminoenneabromium, 11. 280 chromite, 14. 737 dichlorobisethylenediamine- iodide, 14. 732 dichlorobisethylenediamine- broinide, 14. 737 dichlorobisethylenediamine- broinide, 14. 730 dichlorobisethylenediamin		
tetrachloride, 4, 558 tettraiodide, 4, 583 tribromide, 4, 572 calcium alloys, 4, 686 hexachloride, 4, 558 hypophosphite, 8, 885 mitrate, 4, 666 thiosulphate, 10, 547 carbonate, 4, 642, 643 hemilydrated, 4, 643 Calcium carbonates basic, 4, 647 cerium alloys, 5, 607 cerous sulphate, 5, 659 chlorate, 2, 350 homolydrated, 4, 541 hemipentahydrated, 4, 541 heptatritahydrated, 5, 545 chlororidate, 15, 752 chlororarenatopatitie, 9, 260 chloroarsenatopatitie, 9, 260 chloropalladite, 15, 670 chloropalladite, 16, 283 chloroplatinite, 16, 2		cuprous hexachloride, 4. 559
tetraiodide, 4. 5.83		
deutorohexavanadate, 9, 774 calcium alloys, 4, 686 hexachloride, 4, 558 hypophosphite, 8, 885 mitrate, 4, 666 thiosulphate, 10, 547 carbonate, 4, 642, 643 hemilydrated, 4, 643 Calcium carbonates basic, 4, 647 cerous aulphate, 5, 669 chlorate, 2, 359 chlorate, 2, 359 chlorate, 3, 540 menohydrated, 4, 541 hemipentahydrated, 4, 541 hemipentahydrated, 4, 541 properties, chemical, 4, 548 properties, chemical, 4, 548 properties, chemical, 4, 548 chloropalladite, 15, 679 chloroarsenatoapatite, 9, 290 chloroarenatoapatite, 9, 290 chloroarenatoapatite, 15, 679 chlororidate, 15, 679 chlorophosphate, 4, 660 chlorophosphate, 16, 329 chlorooridinte, 16, 329 chlorooridinte, 16, 288 chloroplatinte, 16, 283 chlorophosphate, 14, 280 chromite, 11, 280 chromite, 11, 280 chromite, 14, 733 cobaltic aquopentamminoenneabromide, 14, 723 aquopentamminoiodide, 14, 743 dichlorobisethylenediaminebromide, 14, 747 dichlorobisethylenediaminebromide, 14, 748 hexamminoheptachloride, 14, 656 hexamminoheptachloride, 14, 656 hexamminoheptachloride, 14, 656 cobaltous carbonates, 14, 813 hexamminopentachlorode, 14, 656 cobaltous carbonates, 14, 813 hexamminoheptachloride, 14, 656 hexamminohepta		
calcium alloys, 4, 686 — hexachloride, 4, 558 — hypophosphite, 8, 885 — hypophosphite, 8, 885 — hypophosphite, 10, 547 — carbonate, 4, 642, 643 — hemihydrated, 4, 643 Calcium carbonates basic, 4, 647 — cerium alloys, 5, 607 — chlorate, 2, 350 — dihydrated, 4, 540, 541 — hemipentahydrated, 4, 541 — heptatritahydrated, 4, 541 — pontahydrated, 4, 541 — dihydrated, 4, 661 — di		
— hexachloride, 4, 558 — hypophosphite, 8, 885 — nitrate, 4, 656 — thiosulphate, 10, 547 — carbonate, 4, 642, 643 — hemihydrated, 4, 643 Calcium carbonates basic, 4, 647 — cerium alloys, 5, 607 — cerous sulphate, 5, 659 — chlorate, 2, 350 — dipydrated, 4, 540, 541 — hemihydrated, 4, 541 — heptatritahydrated, 4, 541 — heptatritahydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 544 — pentahydrated, 4, 544 — pentahydrated, 4, 544 — pentahydrated, 4, 541 — popties, chemical, 4, 548 — — physical, 4, 536 — tetrahydrated, 4, 541 — popties, chemical, 4, 548 — ohloroapatite, 4, 660 — chloroarsenatoapatite, 9, 260 — chlorophosphate, 4, 660 — chlorophosphate, 4, 682 — trihydrated, 15, 673 — chlorophalidate, 15, 673 — chlorophosphate, 4, 680 — dimydrated, 11, 280 — chromite, 11, 280 — chromite, 11, 280 — chromite, 14, 733 — aquopentamminocenneabromide, 14, 733 — dichlorobisethylenediaminebrohide, 14, 747 — dichlorobisethylenediaminebrohide, 14, 748 — hexamminoheptachloride, 14, 656 — hexamminohe	calcium allova 4 686	deuteronexavanadate, y. 774
mitrate, 4, 656 — nitrate, 4, 656 — thiosulphate, 10, 547 — cerbonate, 4, 642, 643 — hemihydrated, 4, 643 Calcium carbonates basic, 4, 647 — cerium alloys, 5, 607 — chlorate, 2, 350 — dinfydrated, 4, 540, 541 — hemipentahydrated, 4, 541 — heptatritahydrated, 4, 541 — pontahydrated, 4, 541 — dihydrated, 4, 561 — dihydrated, 4, 541 — dihydrated, 4, 661 — dihydrated, 4, 661 — dihydrated, 4, 541 — dihydrated, 4, 661 — dihydrated, 4,		dodecammine, 9, 774
— intrate, 4, 696 — thiosulphate, 10, 547 — carbonate, 4, 642, 643 — hemihydrated, 4, 643 — cerous sulphate, 5, 669 — chlorate, 2, 350 — dihydrate, 4, 540, 541 — hemipentahydrated, 4, 541 — poptatriathydrated, 4, 541 — poptatived, 4, 542 — poptatived, 4, 543 — poptatived, 4, 543 — poptatived, 4, 543 — poptativ	hypophosphite, 8 . 885	triammine. 9. 774
carbonate, 4. 642, 643 — hemihydrated, 4, 643 Calcium carbonates basic, 4. 647 — cerium alloys, 5, 607 — cerous sulphate, 5, 659 — chlorate, 2, 350 — chlorate, 2, 350 — chlorate, 2, 350 — dihydrated, 4, 540, 541 — hemipentahydrated, 4, 541 — hemitentahydrated, 4, 541 — henthydrated, 4, 541 — henthydrated, 4, 541 — pentahydrated, 5, 530 — delorolare, 6, 660 — chloroapsalite, 9, 200 — chloroapsalite, 9, 200 — chloroarsenate, 15, 673 — chloroplaladite, 15, 673 — chloroplaladite, 15, 673 — chloroplaladite, 15, 673 — chloroplaladite, 16, 329 — trihydrate, 16, 283 — chloroplaladite, 16, 283 — chloroplaladite, 16, 283 — chloroplalatite, 16, 283 — chloroplatinite, 16, 283 — diritiarsenide, 9, 67 — diritiarsenide, 9, 127 — diritarsenide, 9, 127 — dishydrochoride, 4, 561 — dihydrochoride, 4, 561 — dihydrotelraorthoarsenate, 9, 182 — dihydrophosphate, 4, 661 — dihydrotelraorthoarsenate, 9, 182 — dihydrothoride, 10, 827 — monohydrate, 10, 827 — monohydrate, 10, 827 — monohydrate, 10, 827 — monohydrate, 10, 827 — diphydroxytetrachoroplatinate, 16, 339 — diloroplatinite, 16, 283 — di	nitrate, 4. 656	diamidodiphosphate, 8. 71;
Calcium carbonates basic, 4, 647 — cerium alloys, 5, 607 — cerous sulphate, 5, 859 — chlorate, 2, 350 — dinince, 4, 535 — dinylared, 4, 540, 541 — hemipentahydrated, 4, 541 — heptatritahydrated, 4, 541 — portahydrated, 4, 541 — poptatritahydrated, 4, 541 — pentahydrated, 4, 541 — dihydrated, 4, 549 — dihydroarsenate, 9, 182 — dihydroarsenate, 9,		diamminobromide, 4. 571
Calcium carbonates basic, 4, 647 — cerous allyhate, 5, 697 — cerous sulphate, 5, 697 — chlorate, 2, 350 — ammino-, 2, 350 — chloride, 4, 535 — dihydrated, 4, 540, 541 — heptatritalydrated, 4, 541 — heptatritalydrated, 4, 541 — heptatritalydrated, 4, 541 — properties, chemical, 4, 548 — — physical, 4, 536 — tetrahydrated, 4, 541 — chloroapatite, 4, 660 — chloroapatite, 4, 660 — chloropalladite, 15, 673 — chloropalladite, 15, 673 — chloropalladite, 15, 673 — chloropalladite, 15, 673 — chloropalladite, 16, 329 — hexahydrate, 16, 329 — chloroplatinite, 16, 329 — dihydrate, 11, 280 — dihydrate, 11, 280 — chlorotrioribonasenate, 9, 260 — chromite, 11, 280 — chlorotrioribonasenate, 9, 260 — chromite, 11, 280 — dihydrate, 14, 633 — dibydrotriselenide, 14, 63 — disodiim phosphate, 4, 661 — dihydroxytetrafluorolydate, 11, 614 — diplatinous hexasulphoplatinate, 16, 396 — disodiim phosphate, 4, 661 — disulphide, 14, 194 — disulphide, 14, 194 — disulphide, 14, 194 — disulphide, 14, 194 — disulphide, 14, 299 — sulphide, 14,		
cerous sulphate, 5, 659 chlorate, 2, 350 chlorate, 2, 350 chlorate, 2, 350 chlorate, 4, 535 dihydrated, 4, 540, 541 hemipentahydrated, 4, 541 heptatritahydrated, 4, 541 monohydrated, 4, 541 properties, chemical, 4, 548 properties, chemical, 4, 548 chloroapatite, 4, 660 chloroapatite, 4, 660 chloroapatite, 4, 660 chloromoreuriate, 4, 586 chloropalladite, 15, 673 chlorophosphate, 4, 660 chloropphosphate, 4, 660 chloroplatinite, 16, 329 chlororindate, 15, 673 chlorophosphate, 4, 660 chloroplatinite, 16, 329 chloromereuriate, 8, 290 chloromereuriate, 8, 290 chloroplatinite, 16, 329 chloroplati		
cerous sulphate, 5. 659 chlorate, 2, 350 chlorate, 2, 350 chloride, 4, 535 chloride, 4, 535 chloride, 4, 536 chloride, 4, 536 chloride, 4, 536 chloride, 4, 541 chemipentahydrated, 4, 541 cheptatritahydrated, 4, 541 cheptatritahydrated, 4, 541 cheptatritahydrated, 4, 541 chemipentahydrated, 4, 541 chemipentahydrated, 4, 541 chloropartie, 4, 660 chloroarsenatospatite, 9, 260 chloroarsenatospatite, 9, 260 chloroarsenatospatite, 9, 260 chloropalladite, 15, 673 chloropalladite, 15, 670 chloroplatinite, 16, 329 chloroplatinite, 17, 731 chlorostannate, 7, 449 chlorotriorthoarsenate, 9, 260 chromate, 11, 280 chromate, 11, 280 chromite, 11, 280 chromite, 11, 280 chromite, 11, 280 chromite, 14, 733 cobalt alloys, 14, 533 cobaltic aquopentamminoennesbromide, 14, 733 dichlorobisethylenediaminebroidie, 14, 745 dichlorobisethylenediaminebroidie, 14, 747 dichlorobisethylenediaminebroidie, 14, 748 hexamminopentachloride, 14, 656 hexamminopen		
chlorate, 2, 350 — annmino., 2, 350 — chloride, 4, 535 — dihydrated, 4, 541 — heptatritahydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 541 — properties, chemical, 4, 548 — physical, 4, 536 — tetrahydrated, 4, 541 — physical, 4, 536 — thoroaurate, 3, 595 — chloroaurate, 3, 595 — chloroaurate, 3, 595 — chloroiridate, 15, 772 — chloropenshate, 4, 660 — chlorophashate, 4, 660 — chlorophatinite, 16, 283 — chloroplatinite, 16, 289 — chlorotiorithoarsenate, 9, 260 — chromite, 11, 280 — chromite, 11, 280 — chromite, 14, 230 — dichlorobisethylenediamino-todide, 14, 745 — dichlorobisethylenediamino-todide, 14, 747 — dichlorobisethylenediamino-thloroide, 14, 747 — dichlorobisethylenediamino-thloroide, 14, 740 — hexamminoheptachloride, 14, 656 — hexamminopentachloride, 1		
diarsenite, 9, 67 diarsenite, 9, 127 diborate, 4, 535 diborate, 4, 540, 541 hemipentahydrated, 4, 541 heptatriahydrated, 4, 541 properties, chemical, 4, 548 properties, chemical, 4, 548 tetrahydrated, 4, 541 hemipentahydrated, 4, 541 properties, chemical, 4, 548 hemipentahydrated, 4, 541 hemipentahydrated, 4, 541 hemipentahydrated, 4, 541 hemipentahydrated, 4, 541 heptatriahydrated, 4, 541 hemipentahydrated, 4, 541 heptatriahydrated, 4, 541 hemipentahydrated, 4, 541 heptatriahydrated, 4, 541 heptatriahydrated, 4, 541 hemipentahydrated, 4, 541 heptatriahydrated, 4, 661 heptatriahydrated, 4, 663 heptatriahydrated, 4, 661 heptatriahydrated, 4, 663 heptatriahydrated, 4, 663 heptatriahydrated, 4, 661 heptatriahydrated, 4, 663 heptatriahydrated, 4, 663 heptatriahydrated, 4, 663 heptatriahydrated, 4, 661 heptatriahydrated, 4, 663 heptatriahydrat		
chloride, 4, 536 chipdrated, 4, 541 cheptatritahydrated, 4, 541 chloropatrite, 4, 536 chloropatrite, 9, 260 chloromereuriate, 4, 861 chloropalladate, 15, 673 chloropalladate, 15, 673 chloropalladate, 16, 329 chloroplatinite, 16, 283 chloroplatinite, 16, 283 chloroplatinite, 16, 283 chloroplatinite, 17, 731 chlorostannate, 7, 449 chlorotriorthoarsenate, 9, 260 chromium alloy, 11, 171 cobalt alloys, 14, 533 cobaltic aquopentamminoenneabromide, 14, 730 dichlorobisethylenediaminebromide, 14, 730 dichlorobisethylenediaminebroidide, 14, 747 dichlorobisethylenediaminebroidide, 14, 747 dichlorobisethylenediaminechloride, 14, 666 hexamminoheptachloride, 14, 656 hexamminoheptachloride, 14, 656 hexamminopentachloride, 14, 656 hexamminopentachloride, 14, 656 hexamminopentachloride, 14, 656 cobaltous carbonates, 14, 813 diaydroalroareate, 9, 208 dihydroalroareanate, 9, 182 dihydrochloride, 4, 661 dihydrochloride, 4, 661 dihydrochloride, 16, 282 dihydrochloride, 16, 263 dihydrochloride, 16, 263 dihydrochlori		
dibydrated, 4, 540, 541 — heptatritahydrated, 4, 540 — monohydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 541 — pentahydrated, 4, 541 — properties, chemical, 4, 548 — properties, chemical, 4, 548 — properties, chemical, 4, 548 — properties, chemical, 4, 549 — chloroparenatopatite, 9, 260 — chloroarsenatopatite, 9, 260 — chloropalladate, 15, 673 — chloropalladate, 15, 673 — chloropalladate, 15, 670 — chlorophalinate, 16, 329 — chloroplatinite, 16, 329 — chloroplatinite, 16, 329 — chlorostannate, 7, 449 — chlorobiesthylenediaminobroide, 14, 723 — aquopentamminoheptachloride, 14, 661 — aquopentamminoheptachloride, 14, 661 — aquopentamminoheptachloride, 14, 670 — dichlorobisethylenediaminochlorobethylenediami		
	dihydrated, 4, 540, 541	
— monohydrated, 4, 541 — pentahydrated, 4, 541 — properties, chemical, 4, 548 — dihydrochloride, 4, 661 — dihydrated, 4, 661 — dihydrated, 4, 661 — dihydrated, 4, 661 — dihydrated, 4, 661 — dihydroteraorthoarsenate, 9, 182 — dihydroteraorthoarsenate, 9, 260 — doloropalladite, 15, 673 — doloropalladite, 15, 673 — doloropalladite, 16, 329 — dihydrate, 16, 329 — diododinitritoplatinite, 16, 329 — dioxytetrafluomolybdate, 11, 614 diphosphide, 8, 844 diplatinous hexasulphoplatinate, 16, 396 — disodium phosphate, 4, 661 disulphide, 8, 844 diplatinous hexasulphoplatinate, 16, 396 disodium phosphate, 4, 661 dihydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 18, 334 diinydroteraorthoarsenate, 9, 260 dihydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 9, 260 dihydroteraorthoarsenate, 9, 260 diinydroteraorthoarsenate, 18, 334 diiododinitritoplatinate, 16, 329 diiododinitritoplatinate, 16, 329 diiododinitritoplatinate, 16, 329 diiododinitritoplatinate, 16, 329 diiododinitritoplatinate, 16	hemipentahydrated, 4. 541	dihydroarsenate, 9. 182
		dihydroarsenatotrimolybdate, 9. 208
- — physical, 4, 548 - — tetrahydrated, 4, 541 - chloroaparite, 4, 660 - chloroarsenatoapatite, 9, 260 - chloroarate, 3, 595 - chloroarate, 15, 772 - chloromercenite, 4, 861 - chloropalladate, 15, 673 - chloropalladate, 15, 673 - chloropalladite, 15, 670 - chloroplambite, 4, 660 - chloroplatinate, 16, 329 - chloroplatinate, 16, 329 - chloroplatinite, 16, 283 - chloroplatinite, 16, 283 - chloroplatinite, 7, 731 - chlorostannate, 7, 449 - chlorotriorthoarsenate, 9, 260 - chromate, 11, 280 - chromate, 11, 280 - chromite, 11, 280 - chromite, 11, 280 - chromite, 11, 270 - chlorobisethylenediamine- bromide, 14, 723 - aquopentamminoentea- bromide, 14, 730 - dichlorobisethylenediamine- iodide, 14, 747 - dichlorobisethylenediamine- iodide, 14, 670 - dodecanitrite, 8, 504 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 1		
- — physical, 4. 536 — tetrahydrated, 4. 541 — chloroapatite, 4. 660 — chloroaratte, 3. 595 — chloromereuriate, 4. 861 — chloropalladite, 15. 673 — chlorophladite, 15. 673 — chlorophladite, 15. 673 — chlorophosphate, 4. 660 — chlorophosphate, 4. 660 — chloroplatinite, 16. 329 — chloroplatinite, 16. 329 — chloroplatinite, 16. 283 — chloroplatinite, 16. 283 — chloroplatinite, 7. 731 — chlorostannate, 7. 449 — chlorotriorthoarsenate, 9. 260 — chloromite, 11. 280 — chromite, 11. 280 — chromite, 11. 280 — chromite, 11. 280 — chromite, 14. 673 — aquopentamminoenneabromide, 14. 661 — aquopentamminoidide, 14. 743 — dichlorobisethylenediaminebrohic, 14. 730 — dichlorobisethylenediaminebrohic, 14. 747 — dichlorobisethylenediaminebrohic, 14. 670 — dodecanitrite, 8. 504 — hexamminohexabromide, 14. 743 — hexamminohexabromide, 14. 676 — cobaltous carbonates, 14. 813		
- tetrahydrated, 4, 541 - chloroapatite, 4, 660 - chloroarsenatoapatite, 9, 260 - chloroarsenatoapatite, 9, 260 - chloroarsenatoapatite, 9, 260 - chloromereuriate, 4, 861 - chloropalladate, 15, 673 - chloropalladite, 15, 670 - chlorophosphate, 4, 660 - chloroplatinate, 16, 329 - chloroplatinate, 16, 329 - chloroplatinite, 16, 329 - chloroplatinite, 16, 329 - chloroplatinite, 16, 283 - chloroplatinite, 7, 731 - chloroplatinite, 7, 731 - chlorostannate, 7, 449 - chlorotriorthoarsenate, 9, 260 - chromate, 11, 280 - chromite, 11, 280 - chromite, 11, 280 - chromite, 11, 280 - chromite, 14, 723 - cobaltic aquopentamminoenneabromide, 14, 730 - dichlorobisethylenediaminobromide, 14, 730 - dichlorobisethylenediaminodide, 14, 747 - dichlorobisethylenediaminodide, 14, 747 - dichlorobisethylenediaminodide, 14, 747 - dichlorobisethylenediaminodide, 14, 666 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 14, 743 - hexamminohexabromide, 14, 743 - hexamminohexabromide, 14, 813 - hexamminohexabromide, 14, 813 - hexamminomentachloride, 14, 813 - hexamminomentachloride, 14, 813 - hexamminomentachloride, 14, 813 - hexamminomentachloride, 14, 813 - dimercuride, 4, 1039 - dimetaphosphate, 4, 663 - diindecamminochloroplatinate, 16, 329 - dimetaphosphate, 4, 663 - diindecamminochloroplatinate, 16, 329 - dimetaphosphate, 4, 663 - diindecamminochloroplatinate, 16, 329 - dimetaphosphate, 4, 661 - disuphosphate, 4, 661 - disuphototramminochoghate, 10, 317 - ditritantimonide, 9, 407 - ditritantimonide, 9, 407 - ditritantimonide, 9, 407 - ditritantimonide, 14, 164 - disuphitectramminochoghate, 14, 164 - disuphitectramminochoghate, 14, 164 - disuphitectramminochoghate, 14, 164 - disuphitectramminochoghate, 14, 167 - ditritantimonide, 14, 164 - disuphitectramminochoghate, 14, 269 - extraction, 4, 421 - ferric chloride, 14, 167 - ditritant		
- chloroapatite, 4, 660 - chloroarenatoapatite, 9, 260 - chloroarenatoapatite, 9, 260 - chloroarenate, 3, 595 - chloroarenate, 4, 861 - chloropalladate, 15, 673 - chloropalladate, 15, 673 - chloropalladate, 15, 673 - chloropalladate, 15, 670 - chlorophosphate, 4, 660 - chloroplatinate, 16, 329 - chloroplatinate, 16, 329 - chloroplatinite, 16, 283 - chloroplatinite, 16, 329 - chloroplatinate, 16, 329 - diidiodcdinitritoplatinite, 8, 523 - dimetaphosphate, 4, 663 - dimetaphosphate, 4, 663 - diplorophosphate, 4, 661 - disulphide, 18, 844 - diplosphide, 8, 844 - disulphide, 14, 661 - disulphide, 14, 103 - ditritantimonide, 9, 407 - ditrit		
- chloroairsenatoaputite, 9. 260 - chloroaurate, 3. 595 - chloromercuriate, 4. 861 - chloropalladate, 15. 673 - chloropalladite, 15. 670 - chlorophosphate, 4. 660 - chlorophosphate, 4. 660 - chloroplatinate, 16. 329 hexahydrate, 16. 329 chloroplatinate, 16. 329 chloroplatinate, 16. 329 chloroplatinate, 16. 329 hexahydrate, 16. 329 chloroplatinate, 16. 329 chloropalladate, 15. 670 - chlorophosphate, 4. 660 - chloroplatinate, 16. 329 diiodecamminoeblorplatinate, 16. 329 dimercuride, 4. 1039 - dimetaphosphate, 4. 663 - dinetaphosphate, 4. 663 - diplotophate, 4. 663 - dinetaphosphate, 4. 663 - diplotophate, 4. 661 - diplotophate, 4. 66		
- chloroaurate, 3, 595 - chloroiridate, 15, 772 - chloropalladate, 15, 673 - chloropalladite, 15, 670 - chlorophosphate, 4, 660 - chloroplatinate, 16, 329 - chloroplatinate, 16, 329 - chloroplatinate, 16, 329 - chloroplatinite, 16, 283 - chloroplatinite, 16, 283 - chloroplatinite, 7, 731 - chlorostannate, 7, 731 - chlorostannate, 7, 731 - chlorostriorthoarsenate, 9, 260 - chromite, 11, 280 - chromite, 11, 290 - chromite, 11, 290 - chromite, 14, 730 - aquopentamminoenneabromide, 14, 745 - dichlorobisethylenediamine- iodide, 14, 747 - dichlorobisethylenediamine- iodide, 14, 747 - dichlorobisethylenediamine- iodide, 14, 670 - dodecanitrite, 8, 504 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 14, 720 - hexamminohexabromide, 14, 730 - hexamminohexabromide, 14, 743 - hexamminohexabromide, 14, 743 - hexamminopentachloride, 14, 743 - hexamminopentachloride, 14, 743 - hexamminopentachloride, 14, 818 - cobaltous carbonates, 14, 813 - hexamminohexabromide, 14, 785 - cobaltous carbonates, 14, 813 - hexamminopentachloride, 14, 616 - cobaltous carbonates, 14, 813 - diimetaphosphate, 4, 663 - dimetaphosphate, 4, 663 - diphosphide, 8, 844 - diplosphide, 8, 843 - disodium phosphate, 4, 661 - disulphitoeteramminoecobaltate, 10, 317 - ditritantimonide, 9, 407 - ditritantimonide, 9, 407 - ditritantimonide, 14, 194 - ferric chloride, 14, 299 - sulphide, 14, 175 - disublibations hexaculphoplatinate, 16, 329 - disodium		
- chloropridate, 15. 772 - chloropmercuriate, 4. 861 - chloroppalladate, 15. 673 - chloroppalladate, 15. 670 - chloropphosphate, 4. 660 - chlorophosphate, 4. 660 - chlorophosphate, 16. 329 hexahydrate, 16. 329 - chloroplatinite, 16. 329 - diplatinous hexasulphoplatinate, 16. 396 - disodium phosphate, 4. 661 - disulphitotetramminoeobaltate, 10. 317 - ditritantimonide, 9. 67 - extraction, 4. 421 - ferric hloride, 14. 104 - chlorodiate, 11. 280 - diplatinous hexasulphoplatinate, 16. 396 - disvitantium, 16. 4. 661 - disulphitoeteramminoeobaltate, 10. 317 - ditritantimonide, 9. 407 - ditritantimonide, 9. 407 - ditritaphosphide, 4. 421 - ferric hloride, 4. 53 918 - ferrous hexachloride, 14. 35 - sulphate, 14. 167, 194 - fluoride,		
- chloromereuriate, 4, 861 - chloropalladate, 15, 673 - chloropalladate, 15, 670 - chlorophosphate, 4, 660 - chloroplatinate, 16, 329 - hexahydrate, 16, 329 - chloroplatinite, 16, 283 - chloroplatinite, 16, 289 - chloroplatinite, 16, 329 - chloroplatinite, 16, 329 - chloroplatinite, 16, 289 - chloroplatinite, 16, 289 - diplatinous hexasulphoplatinate, 16, 396 - disolium phosphate, 4, 661 - disulphitotetramminocebaltate, 10, 317 - disulphitotetramminocebaltate, 10, 317 - ditritantimonide, 9, 407 - ditritantimonide, 9, 67 - extraction, 4, 421 - ferric, 13, 918 - ferrous hexachloride, 14, 194 - diplorophide, 8, 844 - diplorophide, 8, 844 - diplorophide, 8, 843 - disolium phosphate, 4, 661 - disolium phosphide, 8, 843 - ditritantimonide, 9, 67 - extraction, 4, 421 - ferric, 13, 918 - ferrous hexachloride, 14, 194 - mustificate principle, 14, 104 - mustificate principle, 14, 104 - mustificate, 16, 229 - mustificate, 16, 283 - diplatinous hexasulphoplatinate, 16, 396 - disolium phosphate, 4, 661 - disulphiteteramminocebaltate, 10, 317 - ditritantimonide, 9, 47 - extraction, 4, 421 - ferric, 13, 918 - ferrous hexachloride, 14, 167, 194 - fluosilicate, 6, 951 - fluostamate, 7, 73 - gold alloys, 4, 684 - disulphiteteramminochromate, 9, 4, 681 - disulphiteteramminochromate, 9, 4, 681 - disulphiteteramminoche, 9, 67 - extraction, 4,		
- chloroplalidite, 15. 670 - chlorophosphate, 4. 660 - chloroplatinate, 16. 329 - chloroplatinite, 16. 329 - disodium phosphate, 4. 661 - disulphitotetramminocobaltate, 10. 317 - ditritantimonide, 9. 407 - ditritaphosphide, 8. 843 - ditritaphosphide, 9. 67 - extraction, 4. 421 - ferric chloride, 14. 104 - disulphide, 14. 104 - disu	chloromereuriate, 4. 861	
- chlorophosphate, 4, 660 - chloroplatinate, 16, 329 -	chloropalladate, 15. 673	dimetaphosphate, 4. 663
- hexahydrate, 16. 329 - trihydrate, 16. 329 - chloroplatinite, 16. 283 - chloroplumbite, 7. 731 - chlorostannate, 7. 449 - chlorotriorthoarsenate, 9. 260 - chromate, 11. 280 - dinydrate, 11. 280 - chromite, 11. 200 - chromium alloy, 11. 171 - cobalt alloys, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoiodide, 14. 745 - dichlorobisethylenediaminebromide, 14. 730 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 656 - hexamminoheptachloride, 14. 656 - hexamminoheptachloride, 14. 656 - hexamminohexabromide, 14. 720 - hexamminopentachloride, 14. 656 - cobaltous carbonates, 14. 813 - disodium phosphate, 4. 661 - disulphitotetramminocobaltate, 10. 317 - ditritantimonide, 9. 407 - ditritantimonide, 9. 407 - ditritantimonide, 9. 421 - cettraction, 4. 421 - cettraction, 4. 421 - disulphide, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric chloride, 14. 194 - estraction, 4. 421 - ferric thoride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric chloride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 4. 421 - ferric hloride, 9. 67 - estraction, 4. 421 - ferric hloride, 9. 67 - estraction, 4. 421 - ferric hloride, 9. 67 - estraction, 4. 421 - ferric hloride, 9. 67 - estraction, 4. 421 - ferric chloride, 9. 67 - estraction, 4. 421 - ferric chloride, 9. 67 - estraction, 4. 421 - ferric hloride, 9. 67 - estraction, 4. 421 - ferric hloride, 14. 194 - estraction, 9. 67 - estraction, 9. 68 - estraction, 9. 68 - estraction, 9. 69 - estraction, 9. 67 - estraction, 9. 69 -		
- chloroplatinite, 16. 283 - chloroplumbite, 7. 731 - chlorostannate, 7. 449 - chlorotriorthoarsenate, 9. 260 - chromate, 11. 280 - chromite, 11. 200 - chromite, 11. 200 - chromium alloy, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoheptachloride, 14. 661 - aquopentamminoiodide, 14. 745 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediamine-iodide, 14. 748 - hexamminoheptachloride, 14. 656 - hexamminoheptachloride, 14. 656 - hexamminoheptachloride, 14. 656 - hexamminoheptachloride, 14. 656 - cobaltous carbonates, 14. 813 - disulphitotetramminoeobaltate, 10. 317 - ditritaphosphide, 8. 843 - ditritarsenide, 9. 67 - extraction, 4. 421 - ferric chloride, 14. 194 - disulphide, 14. 194 - sulphide, 14. 194 - sulphide, 14. 194 - ferrice, 13. 918 - ferrous hexachloride, 14. 185 - sulphide, 14. 187 - sulphide, 14. 187 - sulphide, 14. 187, 194 - fluostannate, 7. 424 - fluostannate, 7. 73 - gold alloys, 4. 684 - hemiamminochromate, 11. 280 - hemiamminochromate, 12. 280 - hemiamminochromate, 13. 280 - hemiamminochromate, 14. 299 - heptamminochromate, 15. 140	nexanydrate, 10, 329	
- chloroplumbite, 7. 731 - chlorostannate, 7. 449 - chlorotriorthoarsenate, 9. 260 - chromate, 11. 280 - dihydrate, 11. 280 - chromite, 11. 200 - chromite, 11. 200 - chromite, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoiodide, 14. 745 - dichlorobisethylenediaminebromide, 14. 730 - dichlorobisethylenediamineiodide, 14. 747 - dichlorobisethylenediamineiodide, 14. 748 - dichlorobisethylenediamineiodide, 14. 749 - hexamminohexabromide, 14. 720 - hexamminohexabromide, 14. 720 - hexamminopentachloride, 14. 813 - distritantimonide, 9. 407 - ditritaphosphide, 8. 843 - ditritantimonide, 9. 67 - extraction, 4. 421 - ferric chloride, 14. 194 - multiplice, 13. 918 - ditritantimonide, 9. 407 - ditritaphosphide, 8. 843 - ditritantimonide, 9. 407 - ditritaphosphide, 8. 843 - ditritantimonide, 9. 407 - extraction, 4. 421 - ferric chloride, 14. 194 - multiplice, 14. 194 - multip	- chloroplatinite 16 283	
- dihydrate, 11. 280 - chromite, 11. 200 - chromium alloy, 11. 171 - cobalt alloys, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoheptachloride, 14. 661 - aquopentamminoidide, 14. 745 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediamineidide, 14. 747 - dichlorobisethylenediamineidide, 14. 747 - dichlorobisethylenediamineidide, 14. 747 - dichlorobisethylenediamineidide, 14. 656 - hexamminoheptachloride, 14. 743 - hexamminoheptachloride, 14. 656 - hexamminoheptachloride, 14. 743 - hexamminoheptachloride, 14. 745 - dichlorobisethylenediamineidide, 14. 747 - dichlorobisethylenediamineidide, 14. 747 - distannide, 14. 194 - multiplide, 14. 299 - multip		
- chromite, 11. 200 - chromium alloy, 11. 171 - cobalt alloys, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoheptachloride, 14. 661 - aquopentamminoiodide, 14. 745 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 747 - dichlorobisethylenediaminebromide, 14. 748 - dichlorobisethylenediaminebromide, 14. 749 - dodecanitrite, 8. 504 - hexamminoheptachloride, 14. 656 - hexamminopentachloride, 14. 720 - hexamminopentachloride, 14. 813 - cobaltous carbonates, 14. 813 - disulphide, 14. 194 - sulphate, 14. 194 - sulphate, 14. 167, 194 - ferrice chloride, 14. 165 - ferrous hexachloride, 14. 167, 194 - sulphate, 14. 167, 194 - fluoride, 4. 533 - fluosilicate, 6. 951 - fluotitanate, 7. 73 - hexahydrated, 7. 73 - distannide, 7. 384 - hemiamminochromate, 11. 280 - hemiphosphide, 8. 843 - heptadecamminochloroplatinate, 16. 329 - heptamminometachloroantimonate, 9. 491 - hexadecaboratodibromide, 5. 140	chromate, 11. 280	ditritarsenide, 9. 67
- chromium alloy, 11. 171 - cobalt alloys, 14. 533 - cobaltic aquopentamminoenneabromide, 14. 723 - aquopentamminoheptachloride, 14. 661 - aquopentamminoiodide, 14. 745 - dichlorobisethylenediaminebromide, 14. 730 - dichlorobisethylenediamineiodide, 14. 747 - dichlorobisethylenediaminochlorobi	——————————————————————————————————————	
	chromium alloy, 11, 171	
	Cobait alloys, 14. 033	
14. 661 — aquopentamminoiodide, 14. 745 — dichlorobisethylenediamine- bromide, 14. 730 — dichlorobisethylenediamine- iodide, 14. 747 — dichlorobisethylenediamino- chloride, 14. 670 — dodecanitrite, 8. 504 — hexamminoheptachloride, 14. 656 — hexamminoiodide, 14. 743 — hexamminoidide, 14. 743 — hexamminopentachloride, 14. 656 — cobaltous carbonates, 14. 813 — hexadecaboratodibromide, 5. 140		
		- — fluoride, 4, 533
		fluosilicate, 6. 951
- dichlorobisethylenediamine- iodide, 14. 747 - dichlorobisethylenediamino- chloride, 14. 670 - dodecanitrite, 8. 504 - hexamminoheptachloride, 14. 656 - hexamminohexabromide, 14. 720 - hexamminoidide, 14. 743 - hexamminopentachloride, 14. 656 - cobaltous carbonates, 14. 813 - hexadecaboratodibromide, 5. 140		fluostannate, 7. 424
iodide, 14. 747 — dichlorobisethylenediamino-chloride, 14. 670 — dodecanitrite, 8. 504 — hexamminoheptachloride, 14. 656 — hexamminohexabromide, 14. 720 — hexamminoidide, 14. 743 — hexamminopentachloride, 14. 656 — cobaltous carbonates, 14. 813 — hexadecaboratodibromide, 5. 140	bromide, 14 . 730	—— fluotitanate, 7. 73
chloride, 14. 670 — dodecanitrite, 8. 504 — hexamminoheptachloride, 14. 656 — hexamminohexabromide, 14. 720 — hexamminoidide, 14. 743 — hexamminopentachloride, 14. 656 — cobaltous carbonates, 14. 813 — hemiamminochromate, 11. 280 — hemioxide, 4. 505 — hemiphosphide, 8. 843 — heptadecamminochloroplatinate, 16. 329 — heptamminometachloroantimonate, 9. 491 — hexadecaboratodibromide, 5. 140		
dodecanitrite, 8. 504 hexamminoheptachloride, 14. 656 hexamminohexabromide, 14. 720 hexamminoiodide, 14. 743 hexamminopentachloride, 14. 656 cobaltous carbonates, 14. 813 hexamminometachloroantimonate, 9. 491 hexadecaboratodibromide, 5. 140		
656 — hexamminohexabromide, 14. 720 — hexamminoidide, 14. 743 — hexamminopentachloride, 14. 656 — cobaltous carbonates, 14. 813 — hexadecaboratodibromide, 5. 140		
——————————————————————————————————————	hexamminoiodide, 14, 743	
	hexamminopentachloride, 14. 656	
	—— cobaltous carbonates, 14. 813	
	———— hexachloride, 14. 644	—— hexadecaboratodichloride, 5. 140

Cadmium hexadecaboratodiiodide, 5. 141	Cadmium monoxynitrate, 4. 655
hexahydroarsenatoctodecamolybdate,	trihydrated, 4. 655
9. 211	monoxysulphate, 4. 626
hexaiodoplumbite, 7, 778	nickel alloys, 15 . 222
hexamminobromide, 4. 571	copper alloy, 15. 222
hexamminochloride, 4. 550	lead alloys, 15. 237
- hexamminoiodide, 4. 582	trisethylenediaminobromide, 15.
hexamminonitrate, 4. 656	429
hexamminopersulphate, 10. 479	trisethylenediaminochloride, 15.
- hexamminosulphate, 4. 633	417
history, 4. 398, 404	trisethylenediaminoiodide, 15.433
—— hydrazinebromide, 4. 570	nickelous sulphate, 15. 476
- hydrazinechloride, 4. 551	nitrate, 4. 650
hydrazineiodide, 4. 581	basic, 4. 655
hydrazinohydrosulphite, 10. 287	dihydrated, 4. 651
hydrazinosulphite, 10. 287	enneahydrated, 4. 651
hydrobromide, 4 . 570	tetrahydrated, 4. 651
hydrofluocolumbate, 9. 872	nitride, 8 . 107
hydroiodide, 4. 581	nitrite, 8 . 490
hydrosulphide, 4. 607	nitrohydroxylaminate, 8. 306
hydroxides, 4 . 521	occurrence, 4 . 404
hydroxylaminechloride, 4. 551	octoborate, 5 . 100
hydroxylamino-bromide, 4. 570	oetofluozireonate, 7. 142
- hydroxypentachloroplatinate, 16. 335	octomolybdate, 11 . 597
hypophosphate, 8. 938	officinalis, 6 . 442
hypophosphite, 8, 885	orthoarsenate, 9. 182
· iodate, 2. 351	orthoarsenite, 9. 127
- ammino-, 2. 351	orthodisulphomolybdate, 11. 652
iodide, 4. 574	orthophosphate, 4, 659
iodobismuthite, 9. 677	orthosilicate, 6 . 440, 444
iron alloys, 13 . 545	orthosulpharsenate, 9. 321
- · isotetrahydroborododecatungstate, 5.	orthosulphoantimonite, 9. 543
110	oxalatodinitritohexamminocobaltiate,
lithium alloys, 4 . 668	8. 510
trichloride, 4 . 554	oxide, 4. 506, 508
— — magnesium alloys, 4. 688	properties, chemical, 4, 515
	physical, 4. 510
sulphate, 4. 641	oxychlorides, 4. 546
manganate, 12 . 289	oxychromate, 11. 280
manganite, 12. 242	oxydibromide, 4. 569
- manganous hexachloride, 12. 369	oxydiodide, 4. 580
mercuric hexabromide, 4. 894	—— oxynitrite, 8 . 490
hexamminotetraiodide, 4. 923,	oxyorthosilicate, 6. 444
941	
oxybromide, 4. 894	palladium alloy, 15. 648
oxynitrate, 4, 998	paratungstate, 11. 819
	—— pentafluoferrate, 14. 8 —— pentafluovanadite, 9. 797
tetraiodide, 4. 940 tetramminotetraiodide, 4. 923,	pentahuovanauto, 5. 1539
	—— pentamminochloride, 4. 550
941 moreuridas 4 1030	pentamminochromate, 11. 280
—— mercurides, 4 . 1039	pentapermanganite, 12. 278
	pentasulphide, 4. 608
metacolumbate, 9. 866	perchlorate, 2. 400
hemiheptahydrate, 9. 866	— periodate, 2. 414
metantimonate, 9. 456	permanganate, 12. 335
hexahydrate, 9. 456	—— hexahydrate, 12. 335
pentahydrate, 9. 456	—— permonosulphomolybdate, 11. 653
metarsenate, 9. 182	peroxides, 4. 521, 530
metasilicate, 6. 441	—— pervanadate, 9 . 795
trihemihydrated, 6. 442	phosphate, 4. 658
metatungstate, 11. 826	phosphatohemipentamolybdate, 11.
netavanadate, 9. 774	669
molybdate, 11. 562	phosphatohexatungstate, 11. 873
molybdenum alloys, 11. 523	—— phosphide, 8. 843
monantimonide, 9. 407	—— phosphite, 8. 916
monoamminochloride, 4. 551	—— platinum alloy, 16. 207
monohydroxide, 4. 505	—— polybromide, 4. 581
monomercuride, 4. 1039	polyiodide, 4. 581
monothiophosphate, 8. 1069	—— potassamide, 8. 261
• •	

Cadmium potassium alloys, 4. 667	Cadmium sodium mercuride, 4. 1039
	paratungstate, 11. 819
	phosphate, 4. 662
deuterohexavanadate, 9. 774	
dicalcium sulphate, 4. 640	dihydrated, 4. 637
dichromate, 11. 341	sulphide, 4. 604
hexachloride, 4 . 557	sulphite, 10. 287
hexanitrite, 8. 491	tetrachloride, 4. 554
nickel nitrite, 8. 512	tetraiodide, 4. 583
octothiosulphate, 10, 567	tetrametaphosphate, 4. 664
	trimetaphosphate, 4. 663
selenate, 10. 868	— solubility of hydrogen, 1. 306
hexahydrate, 10. 868	strontium alloys, 4. 687
selenatosulphate, 10 . 930	hexachloride, 4. 558
sulphate, 4 . 638	tetraiodide, 4. 584
dihydrated, 4. 638	tetrathiosulphate, 10. 547
hemitrihydrated, 4. 638	subbromide, 4 . 570
hexahydrated, 4. 638	subchloride, 4 . 548
sulphatoselenate, 10. 930	subhydroxide, 4 . 505
	subiodide, 4 , 581
sulphite, 10. 287 tetrahydrodihydrohypophos-	suboxide, 4, 505
phate, 8. 938	subsulphate, 4 . 613 sulpharsenite, 9 . 296
tetraiodide, 4. 583	sulphate, 4. 614; 11. 831
tetrametaphosphate, 4. 664	
tetranitrite, 8 . 490	complexes, 4. 633
tetrathiosulphate, 10, 547	——————————————————————————————————————
tribromide, 4 . 572	hemihydrated, 4. 616
trichloride, 4. 555	hemipentahydrated, 4. 616
tetriiodide, 4, 583	hemitrihydrated, 4. 616
——————————————————————————————————————	heptahydrated, 4, 616
triterosilicate, 6. 445	
tungsten tetramminoennea-	octotrihydrated, 4. 616
chloride, 11. 842	tetrahydrated, 4. 616
— properties, chemical, 4. 472	sulphates basic, 4. 625
	lithium and, 4. 636
pyridinopersulphate, 10. 479	sulphide, 4 . 586
pyridinopermanganate, 12. 335	a-, 4. 593
pyroarsenate, 9, 182	β-, 4. 593
pyroarsenite, 9. 127	colloidal, 4 . 606
pyrophosphate, 4. 662	——————————————————————————————————————
pyroselenite, 10 . 827 pyrosulpharsenate, 9 . 321	
quadrantoxide, 4. 505	dihydrate, 10. 287
rubidium hexabromide, 4. 572	hemitrihydrate, 10. 287
selenate, 10. 868	trihydrate, 10. 287
tetrachloride, 4 . 557	sulphoantimonate, 9. 575
tribromide, 4 . 572	sulphochromite, 11. 433
voltaite, 14. 353	sulphomolybdate, 11. 652
	sulphoselenides, 10. 919
selenate, 10 . 867	sulphotellurite, 11. 113
—— selenatothiosulphate, 10 . 925 —— selenide, 10 . 777	—— sulphotungstate, 11. 859 —— sulphurylbromide, 10. 689
—— selenite, 10. 777 —— selenite, 10. 827	—— sulphurylchloride, 10. 689
——————————————————————————————————————	sulphuryliodide, 10. 689
silicate, 6 . 438	— sulphurylnitrate, 10. 689
silicide, 6 . 182	sulphurylthioaganate, 10. 689
silicododecamolybdate, 6. 871	—— tellurate, 11. 94
— silicododecatungstate, 6. 879	telluride, 11. 51
silver alloys, 4. 684	tellurite, 11. 80
sodium alloys, 4. 667	—— tetrabromide, 4 . 570
——————————————————————————————————————	tetrafluodioxytungstate, 11. 839
	tetrafluohypovanadate, 9. 798
——————————————————————————————————————	tetrametaphosphate, 4. 664 decahydrated, 4. 664
nyposuipinio, iv. 100	uccanyurated, T. 001

Cadmium tetramminobromide, 4: 571 ——tetramminochloride, 4: 550	Cæsium ammonium cis-disulphitotetram- minocobaltate, 10. 317
tetramminochloroplatinite, 16. 283	anhydro-iodate, 2. 338
tetramminochromate, 11. 280	- aquochloroperiridite, 15. 765
tetramminodithionate, 10. 592	argentoiodides, 3. 433
tetramminohexaiodide, 4. 582	at. wt., 2. 470
—— tetramminoiodide, 4. 582	azide, 8. 348
tetramminopermanganate, 12. 335	azidodithiocarbonate, 8. 338
tetramminosulphate, 4. 635	bismuth nitrate, 9, 710
dihydrated, 4. 635 tetrahydrated, 4. 635	
—— tetranitritoplatinite, 8. 520	thiosulphate, 10. 554
tetrapyridinotetrathionate, 10. 619	bromide, 2. 577
tetrastannide, 7. 376	——————————————————————————————————————
tetrathionate, 10. 619	
thallium nickel nitrite, 8, 512	bromoarsenite, 9 . 256
voltaite, 14. 353	bromoaurate, 3, 607
thallous chloride, 5. 441	
sulphite, 10, 302	bromoiridate, 15. 776
thiocarbonate, 6. 127 thiohypophosphate, 8. 1063	bromopalladate, 15. 678
thiophosphate, 8. 1065	bromopalladite, 15. 677
thiopyrophosphate, 8, 1070	— bromoperruthenite, 15. 538
thiosulphate, 10. 546	—— bromoplatinate, 16. 378
	—— bromosmate, 15. 724
triamminochloride, 4, 550	bromostannate, 7. 456
triarsenatotetravanadate, 9. 201	
triarsenide, 9. 67	selenate, 10. 868 tetrabromide, 4. 572
trichromate, 11, 351	tetrabromide, 4. 572
	tetrachloride, 4. 558
trimercurie octoiodide, 4. 941	tetraiodide, 4. 583
trioxybischromate, 11. 280	tribromide, 4 . 572
trioxydinitrate, 4, 655	calcium tetrachloride, 8, 719
octohydrated, 4. 655	
trioxysulpharsenate, 9. 329	carbonate, 2. 725
triphosphate, 4. 664	properties, chemical, 2. 767
trisodium tetrathiosulphate, 10. 547	physical, 2. 747
	carnellite, 4 . 308
	ceric nitrate, 5. 673
triterohexavanadate, 9. 774 trithiophosphate, 8. 1067	cerous nitrate, 5. 671
tritungstate, 11, 811	
tungstate, 11. 788	preparation, 2. 528
ultramarine, 6 . 590	properties, chemical, 2, 552
uranate, 12. 64	——————————————————————————————————————
uranyl nitrate, 12 . 127	—— chloroaluminate, 5. 322
yellow, 4. 593	chloroaquoperruthenite, 15. 532
zine alloys, 4. 688	chloroarsenite, 9. 256
	chloroaurates, 3. 594 chlorobromides, 2. 588
(di)cadmium gold stannide, 7, 384	chlorobromoplumbite, 7. 753
— potassium sulphate, 4. 638	chloroiodide, 2. 610, 611
Cadmiumgelb, 4. 593	chloroiridate, 15. 769
Cadmous chloride, 4. 548	chloropalladate, 15. 672
Cædite, 14. 542	chloropalladite, 15. 669
Carlestine, 7. 896	chloroperiridite, 15. 764
Cæsammonium, 8. 246 Cæsia alum, 5. 345	chloroperpalladate, 15. 671
felspar, 6. 662, 668	
gallic alum, 5. 385	chloroplatinite, 16. 324
indium alum, 5. 404	- chloroplatinosate, 16. 286
Cæsiojanosite, 14. 343	chloroplumbate; 7. 735
Cæsium acetylenecarbide, 5. 849	chlororhenate, 12. 479
aluminium selenate, 10. 869	chlororuthenate, 15. 535
	chlororuthenite, 15. 525
amalgams, 4. 1015 amide, 8. 253	chloroscandate, 5. 490
amine, 8. 246	chlorostannate, 7. 449
anumno, o. 210	morosomiavo, 1. 447

Cæsium chlorotitanite, 7, 77	Cæsium ferric pentachloride, 14. 103
chromate, 11. 259	selenate, 10. 882
—— chromic selenate, 10. 876	tetrabromide, 14. 125
- chromium oxypentachloride, 11. 391	tetrachloride, 14. 103
— pentachloride, 11. 419	trichlorodibromide, 14. 125
	ferrite, 13 . 906
	ferroheptanitrosyltrisulphide, 8. 441
mirhoto 44 469	- ferrous selenate, 10. 881
tetrachloride, 11, 419	
chromous sulphate, 11, 435	
cobalt amminotetrachlorides, 14. 639	
	fluoborate, 5, 127
	fluogermanate, 7. 269
	fluoride, 2 . 512
- — cobaltous chromate, 11. 312	fluoroperiodates, 2, 417
hexahydrate, 14. 778	
pentabromide, 14. 718	
pentachloride, 14. 639	fluosulphonate, 10. 685
———— tetrabromide, 14. 718	fluotitanate, 7, 72
tetrachloride, 14. 639	fluozirconate, 7, 141
——————————————————————————————————————	gallium selenate, 10 . 870
trichloride, 14, 639	— - hemimercuride, 4 , 1015
copper lead hexanitrite, 8, 500	—— hemipentaphosphide, 8, 835
selenate, 10. 860	henadecachloropentamercuriate, 4. 859
cuprous dithiosulphate, 10, 535	heptachlorodicuprate, 3, 189
decafluotriantimonite, 9. 465	heptafluocolumbate, 9. 872
decamercuride, 4, 1015	heptafluodiantimonite, 9, 465
—— diarsenoenneabromide, 9. 248	heptafluotantalate, 9, 917
	heptafluocolumbate, 9. 872
dichromate, 11 . 339	heptafluodiantimonite, 9. 465
—— difluoperosmate, 15. 713	- — heptafluotantalate, 9. 917
dihydroarsenatotrimolybdate, 9. 208	- hexaborate, 5. 78
dihydrorthophosphate, 2. 858	hexabromohypoantimonate, 9, 496
diiododinitritoplatinite, 8. 522	hexabromoiridate, 15. 777
dimercuric pentaiodide, 4. 934	hexabromoplumbite, 7, 752
dimercuride, 4, 1015	hexabromoselenate, 10. 901
dioxide, 2. 487	hexabromotellurite, 11. 105
diphosphate, 2, 862	hexachlorobismuthite, 9. 667
disulphatoaluminate, 5. 345	- hexachloroferrate, 14. 103
disulphatochromiate, 11. 463	hexachlorohypoantimonate, 9. 485
disulphatocuprate, 3. 257	hexachloroindate, 5. 400
disulphatoindate, 5. 404	hexachlorolanthanate, 5. 642
disulphatovanadite, 9. 821	hexachloroplumbite, 7. 730
disulphide, 2. 631, 632	hexachlorotellurite, 11. 102
—— dithionate, 10. 586	
hemihydrate, 10. 586	446
divanadyl tetrasulphite, 10. 305	hexadecamolybdate, 11. 603
dodecachloroantimonitoantimonate, 9.	hexafluoaluminate, 5. 307
492	hexafluocolumbate, 9. 872
	hexafluoplumbate, 7. 705
- dodecamercuride, 4, 1015	hexafluotantalate, 9. 916
enneabromodiperrhodate, 15, 581	hexahydroarsenatoetodecamolybdate,
enneabrontodithallate, 5, 453	9. 211
	hexaiodotellurite, 11. 106
enneachlorodiarsenite, 9. 244	hexamercuride, 4, 1015
enneachlorodibismuthite, 9, 667	hexasulphide, 2, 631, 640
enneachlorodithallate, 5. 446	history, 2. 422
enneaiododiantimonite, 9. 502	hydrocarbonate, 2. 774
enneaiododibismuthite, 9. 677	hydronitrate, 2, 821
enneanitritodibismuthite, 8, 499	- hydrorthophosphate, 2. 851
ferrate, 13. 934	
ferric alum, 14. 345	hydroselenate, 10, 857
chlorobromide, 14 . 77	hydroselenite, 10. 823 hydrosulphide, 2. 642
——————————————————————————————————————	
dichlorotribromide, 14. 125	hydrotollurate 44 09
disulphate, 14. 345	hydrotellurate, 11. 92
dodecachloride, 14. 103	hydroxide, 2, 495
hexachloride, 14. 103	properties, 2, 500
octochloride, 14. 103	hydroxyfluodithionate, 10. 599
pentabromide, 14. 125	hydroxypentachlorosmate, 15. 720

Cæsium hydroxyperosmate, 15. 713	Cæsium monosulphide properties, chemical,
hydroxytetrafluoride, 9. 504	2. 627
hydrosulphite, 10. 182	physical, 2. 624
- icosifluotantalate, 9. 918	monoxide, 2. 486
iodate, 2. 333	neodymium sulphate, 5. 658
iodato-periodate, 2. 408	—— nickel amminotrichloride, 15. 419
— iodide, 2 . 596	
—— properties, physical, 2. 605	iodide, 15 . 433
	nitritobismuthite, 8. 513
iodoarsenite, 9. 257	selenate, 10. 889
iodoplatinate, 16 . 390	tribromide, 15 . 429
iodostannate, 7. 463	trichloride, 15. 419
iridium disulphate, 15. 785	nickelous disulphate, 15. 472
lanthanum (hexa) henasulphate, 5. 658	hexahydrate, 15. 472
nitrate, 5. 671	nitrate, 2. 802
lead dithiosulphate, 10. 552	properties chemical, 2. 820 physical, 2. 808
trithiosulphate, 10. 552	physical, 2, 606
lithium alloys, 2. 481	nitratoplumbite, 7. 866
magnesium bromide, 4. 315	nitride, 8 . 99
carbonate, 4. 370	nitrite, 8. 479 nitroxylchloroperruthenite, 15. 532
chromate, 11. 277	nitrosylchlororuthenate, 15. 537
	dihydrate, 15. 537
sulphate, 4. 340	octofluctitanate, 7. 72
thiosulphate, 10. 545	octomolybdate, 11. 596
manganate, 12. 287	octosulphate, 10. 448
—— manganie alum, 12 . 430	orthododecacolumbate, 9. 865
pentachloride, 12. 379	orthododecatantalate, 9. 901
- tetracosihydrate, 12. 430	orthohexacolumbate, 9. 864
tetrasulphate, 12. 430	orthohexatantalate, 9. 902
manganous disulphate, 12. 421	orthopertantalate, 9. 914
selenate, 10. 879	orthophosphate, normal, 2, 847
tetrachloride, 12. 368	properties, chemical, 2, 849
dihydrate, 12. 368	properties, chemical, 2, 849 physical, 2, 848
trichloride, 12. 368	osmiamate, 15. 728
mercuric bromodiiodide, 4. 935	oxypentabromocolumbate, 9. 880
chlorodecabromide, 4. 893	oxypentachlorocolumbate, 9. 879
chlorodibromide, 4. 893	- oxypentachlorotungstate, 11. 849
dibromodiiodide, 4. 934	oxypentafluocolumbate, 9. 874
dichlorodibromide, 4, 893	—— paramolybdate, 11. 586
	paratetrarsenate, 9. 155
nitrate, 4. 997	pentabromide, 2. 588
octoiodide, 4. 934	—— pentabromoferrate, 14. 125 —— pentabromoindate monohydrated, 5.
pentabromide, 4. 893	401
	—— pentabromoperrhodite, 15, 581
	pentabromotungstite, 11. 854
tribromide, 4. 893	pentachloroaquoperrhodite, 15. 578
tribromodiiodide, 4. 934	pentachlorocuprite, 3. 163
trichlorodibromide, 4. 893	—— pentachlorodimercuriate, 4. 859
triiodide, 4. 934	—— pentachlorodiplumbite, 7. 730, 752
metachloroantimonate, 9. 491	—— pentachloroferrate, 14. 103
metaphosphate, 2. 867	— — pentachlorohydrazinoiridate, 15. 763
metasilicate, 6. 335	pentachloroindate monohydrated, 5.
metavanadate, 9. 766	400
molybdate, 11. 558	pentachloromercuriate, 4. 859
molybdenum dioxytetrachloride, 11.	—— pentachloroperrhodite, 15. 578
632	pentachloropyridinoiridate, 15. 768
————— dioxytrichloride, 11. 632	pentochlorothallate, 5. 446
hexachloride, 11. 622	——————————————————————————————————————
———— pentabromide, 11. 635	pentacosifluoheptantimonite, 9. 465
pentachloride, 11. 622	pentafluoantimonite, 9. 465
molybdenyl pentabromide, 11. 637	pentafluotellurite, 11. 98
pentachloride, 11. 630	pentafluozirconate, 7. 140
monofluotrihydrorthophosphate, 8.	pentaiodide, 2. 610
998	—— pentaiodostannite, 7. 460 —— pentamolybdatodisulphite, 10. 307
monomercuride, 4, 1015	pentamory bulleton surprise, 10. 50.
monosulphide, 2. 622	—— perhastiphite, 2. 001, 000
——————————————————————————————————————	Pornormo, o. rro

Cæsium percarbonate, 6. 84	Consistent Astronomy Astronomy Astronomy
perchlorate, 2. 395	Cæsium tetrafluoantimonite, 9. 465
perdecamolybdate, 11. 609	
perdisulphomolybdate, 11. 654	tetramercuride, 4, 1015 tetramolybdate, 11, 593
—— perdodecatungstate, 11. 836	
—— periodates, 2. 408	trihydrate, 11. 593
permanganate, 12. 331	tetranitritodiamminocobaltiate, 8. 510
— perorthocolumbate, 9, 870	tetranitritoplatinite, 8. 519
perparatungstate, 11. 836	tetrasulphide, 2. 631, 634
—— perrhenate, 12. 476	tetrasulphocuprate, 3. 228
—— persulphate, 10 . 477	tetrasulphuryliodide, 10. 691
—— pertetramolybdate, 11. 609	tetrathionate, 10. 618
phosphatoheptadecamolybdate. 11.	tetroxide, 2. 485, 491
667	thallic disulphate, 5. 470
phosphatotrimolybdate, 11. 667	— thallous chlorides, 5, 441
phosphide, 8 . 835	thiosulphate, 10 . 529
—— potassium alloys, 2. 481	thorium fluoride, 7. 228
praseodymium sulphate, 5, 658	
preparation, 2. 449	dodecahydrate, 7, 236
properties, chemical, 2, 468 physical, 2, 451	
pyridinepentachloroplatinate, 16. 312,	hexanitrate, 7. 251
324	- octochloride, 7. 235
pyridinetrichloroplatinite, 16. 274	trisulphate, 7. 247
pyrophosphate, 2. 862	- titanous alum, 7. 93
- pyrosulphate, 10. 446	pentachloride, 7. 77
- rhodium alum, 15. 588	tribromide, 2. 587
disulphide, 15. 588	tribromoplumbite, 7. 752
	trichlorocuprate, 3, 189
dodecahydrate, 15. 588	- trichlorocuprite, 3. 163
hexahydrate, 15. 588	trichloroplumbite, 7, 730
	trichloroferrite, 14. 32
ruthenate, 15 . 518	trichloromercuriate, 4, 859
monohydrate, 15. 518	- trichlorostannite, 7. 433
salts extraction, 2. 442, 444	trichromate, 11. 350
selenate, 10 . 857	tridecabromodiantimonate, 9. 497
- · — selenatoaluminate, 10. 869	trihydrodiselenite, 10. 823
selenatochromate, 10. 876	triiodide, 2. 609
	triiodoplumbite, 7, 775
sclenite, 10 , 823	triiodostannite, 7, 460
- selenosulphate, 10, 925	
	trimolybdenum dioxyheptachloride,
- chloroaurate, 3, 595	11. 632
cobaltic hexanitrites, 8, 504	trioxytetrafluopermolybdate, 11. 615
nitrate, 3. 481	trisulphatoplumbate, 7. 824
nitrite, 8 . 484	trisulphide, 2. 631, 634
trithiosulphate, 10. 539	trisulphuryliodide, 10. 690
strontium enneachloride, 3. 719	trithionate, 10. 608
subchloride, 2. 530	tungsten enneachloride, 11. 842
suboxide, 2. 486	—— uranous hexachloride, 12. 83
sulphate, preparation, 2. 660	uranyl chloride, 12. 17
——————————————————————————————————————	
physical, 2. 660	sulphate, 12. 17
sulphite, 10 . 270	tetrachloride, 12. 90
sulphomolybdate, 11. 652	trinitrate, 12. 126
sulphoniodide, 2. 607	vanadous sulphate, 9. 821
syngerite, 3. 811	zine pentabromide, 4. 572
tetrabromoferrate, 14. 125	pentachloride, 4. 557
tetrabromoplumbite, 7, 752	
tetrabromothallate, 5, 453	
tetrachlorocerate, 5, 640	
tetrachlorocuprate, 3, 188	tetrabromide, 4. 572
tetrachlorocuprite, 3. 163 tetrachlorodioxyruthenate, 15. 535	tetraiodide, 4. 583
tetrachloroferrate, 14. 103	zirconium trioxydisulphate, 7. 158
tetrachloroferrite, 14. 32	(octo)cæsium silicododecatungstate, 6. 877
tetrachloromercuriate, 4. 859	Cagamite, 4. 646
— tetrachloroplumbite, 7. 730	Cahnite, 9. 185
- tetradecafluotrizirconate, 7. 141	Cailletet and Matheas' law, 1. 169
,	·

Cainosite, 5. 514	Calcium arsenate colloidal, 9. 167
Cal, 11. 673	arsenatotrimolybdate, 9. 209
Caläern, 4 . 402, 408	
Calaite, 8, 733	atom, 4, 175 atomic wt., 3, 646
Calamine, 4. 408, 642; 6. 442; 12. 150	
electric, 4 . 643; 6 . 442	aurate, 3. 584 autunite, 12. 135
—— green, 4 . 408 Calamite, 6 . 404	
Calaverite, 3. 494; 11. 2, 48	
Calcareous gas, 6. 2	enromate, 11. 274
iron ore, 14. 355	lead fluoboryl diorthotrisilicate,
sinter, 3. 814	6 . 890
Calcaria sulphuratostibiata, 9. 574	——— metasilicate, 6. 372
Calcarium spatum, 6. 766	sodium carbonate, 3. 846
Calcaroni, 10. 14	potassium carbonate, 3. 846 strontium carbonate, 3. 840
Calcii hypophosphis, 8, 880 Calcimagnite, 3, 814	hevachloride 3 720
Calcimangite, 12. 149	
Calcination, 1. 55, 68	tetrachloride, 3. 720
Calciners, Brunton's, 7, 287	beryllum fluo-orthophosphate, 4. 247
——— Oxland's, 7 . 287	bismuth alloys, 9. 636
Calcioferrite, 3, 623; 8, 733; 12, 529; 14.	bismuthide, 9 . 636
411	boride, 5 . 24
Calcionalization 8 274	boroarsenate, 9, 186
Calciopaligorscite, 6. 825 Calciostrontianite, 3. 622, 834	
Calciothorite, 5. 514	
Calciovolborthite, 9. 715	properties, chemical, 3. 727
Calciovorborthite, 9. 767	physical, 3. 726
Calcite, 3. 622, 814; 5. 530; 7. 896; 12. 267	trihydrated, 3. 728
—— dolomitic, 3 . 814	— bromoarsenate, 9. 258
— X-radiogram, 1. 641	- bromoarsenatoapatite, 9. 262
Calcium, action on water, 1, 135 —— aluminates, 5, 290	bromoarsenatowagnerite, 9. 258 bromoborate, 5. 44
aluminatoferrite, 18. 920	bromophosphate, 3. 897
aluminium alloys, 5. 234	bromoplatinate, 16. 379
aluminodiorthosilicate, 6. 697	bromostannate, 7. 456
hemipentahydrated, 6. 710	bromotriorthoarsenate, 9. 262
tetrahydrated, 6 . 712	bromovanadate, vanadatowagnerite,
carbonate, 5. 359	9. 813
	cadmide, 4 . 686 cadmium alloys, 4 . 686
oxyphosphate, 14. 411	hoxachloride, 4. 558
— phosphate, 5 . 370	hypophosphite, 8. 885
sulphate phosphate, 5. 370	nitrate, 4. 656
tetrahydrometasilicate, 6. 708	thiosulphate, 10. 547
amalgams, 4. 1032	—— cæsium tetrachloride, 3 . 719
amide, 8 . 259	trisulphate, 3 , 810, 811
amidosulphonate, 8. 642 ammonium arsenate, 9. 172	
chromate, 11. 270	carbonate, basic, 3 . 657
dimetaphosphate, 3. 894	colloidal, 3, 815
	dihydrated, 3. 822
hexasulphate, 3. 812	——— hexahydrated, 3. 822
hydroxynitrilodisulphonate, 8.	occurrence, 8. 814
677	—— pentahydrated, 3, 822 —— preparation, 3, 814
	properties, chemical, 8, 839
paramolybdate, 11. 586	
	solubility, 3 . 824
phosphatohemiheptatungstate,	
11. 873	carbonatodiorthosilicate, 6. 365
trisulphate, 3. 811	carbonatosulphatometasilicate, 6. 365
—— analytical reactions, 3 . 621	
antimonious thiosulphate, 10. 553 antimonite, 9. 432	——————————————————————————————————————
antimony alloys, 9. 405	silicozircatotantalate, 6. 859
	—— chlorate, 2. 344, 345
argentide, 4, 685	
	chloride, 3. 697; 13. 615

Calcium chloride and fluoride, 3. 718	Calcium cupric tetrachloride, 3. 719
——————————————————————————————————————	- cupride, 4. 684
BaCl ₂ -SrCl ₃ , 3. 720	cuprous thiosulphate, 10. 544
——————————————————————————————————————	decaboratodibromide, 5. 141
——————————————————————————————————————	decaboratodichloride, 5. 141
———— hexahydrated, 8. 704	decamercuride, 4. 1033
——————————————————————————————————————	decatungstate, 11. 832
——————————————————————————————————————	deuteroctovanadate, 9. 771
———— NaCl-KCl, 8. 720	deuterohexavanadate, 9. 770
nreperation 8 607	deuterotetravanadate, 9. 770
preparation, 3. 697 properties, chemical, 3. 714	enpeabydrate 9 770
——————————————————————————————————————	
	dialuminatometasilicate, 6. 728
sodium chloride 3 718	—— dialuminium aluminohydroxytriortho-
sodium chloride, 3. 718 tetrahydrated, 3. 704	silicate, 6. 722
chlorite, 2. 284	dihydropentamesodisilicate, 6.
chloroaluminate, 5. 293	748
	dihydrotriorthosilicate, 6. 718
	————— dimesotrisilicate, 6 . 755, 759, 761
	ferrous boratotetrorthosilicate, 6.
—— chloroaurate, 3. 595	911
chloroborate, 5. 44	hexametasilicate, 6. 733
	manganous boratotetrorthosili-
	cate, 6 . 911 ——————————————————————————————————
chloroiridate, 15. 772	
chlorometasilicate, 6. 364	pentametasilicate, 6. 747
chloropalladate, 15. 673	
chloropalladite, 15. 670	triorthodisilicate, 6. 727
chlorophosphate, 8. 869	triorthosilicate, 6. 752
chloroplatinate, 16. 327	dialuminometasilicate, 6. 691
enneahydrate, 16. 327	dialuminorthosilicate, 6. 692
	dialuminoxyldiorthosilicate (dihy-
chloroplatinite, 16. 282	
chloroplumbate, 7, 736	drated), 6. 713
chlororthosilicate, 6. 364	dialuminylorthotrisilicate, 8 . 752 diamminochloride, 3 . 716
chlorostannate, 7. 449	diborate 5 69 97
chlorostannite, 7. 433	diborate, 5. 62, 87
chlorotriorthoarsenate, 9. 260	dihydrated, 5, 88
chlorotriorthophosphate, 3. 896	
chlorovanadate, vanadatowagnerite,	a-tetrahydrated, 5, 88 β-tetrahydrated, 5, 88
9. 809	
chromate, 11. 267	diborylatanata 7 410
chromatosulphate, 11. 450	—— diborylstannate, 7, 419 —— dicerium aluminohydroxytriorthosili-
—— chromite, 11. 198	
cobalt alloy, 14. 532	cate, 5. 510 —— dichlorometaferrite, 13. 913
cobaltic dodecanitrite, 8. 504	—— dichromate, 11. 340, 341
oxyoctonitrite, 8. 504	—— dichromic triorthosilicate, 6. 866
cobaltous chloride, 14. 641	dichromitobischromate, 11. 269
copper alloys, 4. 684	dichromitochromate, 11. 269
ammonium nitrite, 8. 488	dichromitoquaterchromate, 11. 269
arsenate, 9. 173	dichromitosexieschromate, 11. 269
——————————————————————————————————————	
hydroxyarsenate, 9. 175	dichromitotrischromate, 11. 269 diferric aluminohydroxytriorthosili-
	cate, 6. 722
hydroxyorthovanadate, 9. 767	tetrorthotitanatosilicate, 6. 846
—— metadisilicate, 6. 372	
orthovanadate, 9. 767	diferrous aluminohydroxydiorthosili-
potassium nitrite, 8. 488	
tetrasulphate, 3. 811	cate, 6. 919
pyrovanadate, 9. 767	dihydroantimonate, 9, 454
sodium arsenate, 9. 174	dihydroarsenate, 9. 172
tungstate, 11. 818	dihydroarsenatotrimolybdate, 9, 208
uranyl carbonate, 12. 116	dihydrodeuterchevayanadeta 9 770
——— vanadate, 9. 772	dihydrodeuterohexavanadate, 9, 770
cuprate, 3 . 149	dihydrodeuterotetraplumbate, 7, 700
cupric ammonium tetrasulphate, 8.	dihydrodeuterotriplumbate, 7, 700
813	dihydrodiboryldiorthosilicate, 6, 449
disulphate, 3. 812	dihydrophosphate, 3, 886
oxycarbonato-phosphate, 3. 897	—— monohydrated, 3. 887

Calcium dihydroproterodiplumbate, 7. 699	Calcium fluocolumbatosilicate, 6. 829
—— dihydropyrophosphite, 8. 922	—— fluoride, 3. 688
dihydrotetraluminyldiorthosilicate, 6.	———— and chloride, 3. 718
709	
—— dihydrotrimetasilicate, 6. 363	properties, chemical, 3. 693 physical, 3. 689
—— dihydrotriorthosilicate, 6. 363	properties, chemical, c. 000
- dihydroxyaluminium triorthosilicate,	fluorobromide, 8. 731
6. 754	fluorochloride, 3. 718
dihydroxybisphosphoryltrichloride, 8.	Augraindida 2 720
1026	fluoroiodide, 3. 739
dihydroxymetasilicate, 6. 358	fluorthovanadate, 9. 801
dihydroxytetraaluminium triorthosili-	fluoritante 7 432
cate, 6. 717	fluostannate, 7, 423
	fluotantalate, 9. 917
	fluotitanate, 7. 72
dijodopitritoplatinita 8 522	dihydrated, 7. 72 trihydrated, 7. 72
diiodonitritoplatinite, 8. 522	trinydrated, 7. 72
diiodotriarsenite, 9. 257	fluotriorthoarsenate, 9. 259
dimanganic aluminohydroxytriortho	—— fluotriorthophosphate, 3. 896
silicate, 6. 768	—— fluozirconate, 7. 141
dimanganous dialuminium tetrahydro-	harmotome, 6 . 766
hexorthosilicate, 6. 896	—— hemipermanganite, 12. 277
—— dimercuride, 4. 1032	hemiplumbide, 7. 614
dimetaphosphate, 3. 893	— hemistannide, 7. 373
——————————————————————————————————————	—— hemitriplumbide, 7. 614
dioxide, 3. 666	—— heptafluoaluminate, dihydrated, 5. 309
dihydrated, 3 . 668 diperoxyhydrate, 3 . 668	—— heptapermanganite, 12. 277
———— diperoxyhydrate, 3. 668	—— hexaborate dodecahydrated, 5. 92
hydroxyhydrate, 3. 671 octohydrated, 3. 668	enneahydrated, 5. 91
octohydrated, 3. 668	octohydrated, 5. 92
—— dioxyaluminium diorthosilicate, 6. 713	tetrahydrated, 5. 92
dipermanganite, 12. 277	
disilicide, 6 . 176	—— hexachloromercuriate, 4. 860
disilicodinitride, 8. 115	hexahydrated, 4. 860
dithionate, 10 . 588, 592	—— hexachloroplumbite, 7. 730
dithiophosphate, 8. 1068	hexachromitobischromate, 11. 269
—— dititanatohexametantimonite, 9. 433	hexahydroarsenatoctodecamolybdate,
— ditritasilicide, 6. 177	9. 211
ditungstate, 11. 812	hexahydroxyphosphate, 3. 904
trihydrate, 11. 810	hexahydroxysulphide, 3. 757
——————————————————————————————————————	hexahydroxythiocarbonate, 6. 125
diuranyl orthovanadate, 9. 789	hexaiododiplumbite, 7. 777
dodecaborate, 5. 93	hexametaphosphate, 3. 895
dodecachloromercuriate, 4. 860	hexammine, 8 . 248
octohydrated, 4 . 860	—— hexamminobromide, 3. 730
—— dodecamminochloroplatinate, 16. 327	hexamminochloroplatinate, 16. 327
dodecamolybdate, 11. 599	
—— enneamercuride, 4. 1033	—— hexantimonite, 9. 432
—— ferrate, 13. 935	hexantipyrinopermanganate, 12. 334
ferric chlorides, 14. 104	—— hexasulphitodicobaltate, 10. 315
nuopnospnate, 14. 412	hexerohexadecavanadate, 9. 771
fluophosphate, 14. 412 garnet, 6. 921	hexerohexadecavanadate, 9. 771 hexerohexaphosphate, 8. 992
hexahydroxytetrarsenate, 9, 227	hexerohexaphosphate, 8. 992
- hexahydroxytetrarsenate, 9. 227 - oxyphosphate, 14. 411 - sulphide, 14. 194 - ferrite, 13. 910 - ferrodiboryldiorthosilicate, 6. 450 - ferroheptamtrosyltrisulphide, 8. 442 - ferrous aluminium manganese boratosilicate, 6. 911 - chlorides, 14. 33 - mesozirconate, 7. 136 - metasilicate, 6. 915	
- hexahydroxytetrarsenate, 9. 227 - oxyphosphate, 14. 411 - sulphide, 14. 194 - ferrite, 13. 910 - ferrodiboryldiorthosilicate, 6. 450 - ferroheptamtrosyltrisulphide, 8. 442 - ferrous aluminium manganese boratosilicate, 6. 911 - chlorides, 14. 33 - mesozirconate, 7. 136 - metasilicate, 6. 915 - orthosilicate, 6. 908	- hexerohexaphosphate, 8. 992 - history, 3. 619 - hydrazinodisulphinate, 8. 682 - hydrazinomonosulphonate, 8. 683 - hydride, 3. 649 - hydroarsenate, 9. 169 - dihydrate, 9. 169 - monohydrate, 9. 169 - hydroarsenite, 9. 124 - hydrocarbonate, 3. 843 - hydrodioxydiselenophosphate, 10. 932
- hexahydroxytetrarsenate, 9. 227 - oxyphosphate, 14. 411 - sulphide, 14. 194 - ferrite, 13. 910 - ferrodiboryldiorthosilicate, 6. 450 - ferroheptamtrosyltrisulphide, 8. 442 - ferrous aluminium manganese boratosilicate, 6. 911 - chlorides, 14. 33 - mesozirconate, 7. 136 - metasilicate, 6. 915 - orthosilicate, 6. 908 - phosphate, 14. 395	
	- hexerohexaphosphate, 8. 992 - history, 3. 619 - hydrazinodisulphinate, 8. 682 - hydrazinomonosulphonate, 8. 683 - hydride, 3. 649 - hydroarsenate, 9. 169 - dihydrate, 9. 169 - monohydrate, 9. 169 - hydroarsenite, 9. 124 - hydrocarbonate, 3. 843 - hydrodioxydiselenophosphate, 10. 932 - hydrofluoride, 3. 694 - hydrofluoride, 3. 694 - hydrofluoride, 10. 183 - hydroimidodisulphonate, 8. 654
	- hexerohexaphosphate, 8. 992 - history, 3. 619 - hydrazinodisulphinate, 8. 682 - hydrazinomonosulphonate, 8. 683 - hydride, 3. 649 - hydroarsenate, 9. 169 - dihydrate, 9. 169 - monohydrate, 9. 169 - hydroarsenite, 9. 124 - hydrocarbonate, 3. 843 - hydrodioxydiselenophosphate, 10. 932 - hydrofluoride, 3. 694 - hydrofluoride, 3. 694 - hydrofluoride, 10. 183 - hydroimidodisulphonate, 8. 654
- hexahydroxytetrarsenate, 9. 227 - oxyphosphate, 14. 411 - sulphide, 14. 194 - ferrite, 13. 910 - ferrodiboryldiorthosilicate, 6. 450 - ferroheptamtrosyltrisulphide, 8. 442 - ferrous aluminium manganese boratosilicate, 6. 911 - chlorides, 14. 33 - mesozirconate, 7. 136 - metasilicate, 6. 915 - orthosilicate, 6. 908 - phosphate, 14. 395 - phosphatosilicates, 6. 826 - sodium tetrantimonate, 9. 461 - uranyl rare earth pyrocolumbatotantalate, 9. 906	
- hexahydroxytetrarsenate, 9. 227 - oxyphosphate, 14. 411 - sulphide, 14. 194 - ferrite, 13. 910 - ferrodiboryldiorthosilicate, 6. 450 - ferroheptamtrosyltrisulphide, 8. 442 - ferrous aluminium manganese boratosilicate, 6. 911 - chlorides, 14. 33 - mesozirconate, 7. 136 - metasilicate, 6. 915 - orthosilicate, 6. 908 - phosphate, 14. 395 - phosphatosilicates, 6. 826 - sodium tetrantimonate, 9. 461 - uranyl rare earth pyrocolumbato-	- hexerohexaphosphate, 8. 992 - history, 3. 619 - hydrazinodisulphinate, 8. 682 - hydrazinomonosulphonate, 8. 683 - hydride, 3. 649 - hydroarsenate, 9. 169 - dihydrate, 9. 169 - monohydrate, 9. 169 - hydroarsenite, 9. 124 - hydroarsenite, 9. 124 - hydrodisulphate, 3. 843 - hydrodisulphate, 3. 783 - hydrofluoride, 3. 694 - hydrofluoride, 3. 694 - hydrominidodisulphonate, 8. 654 - hydrophosphate, 3. 880, 882

Calcium hydroselenite, 10. 825	Calcium lead trioxydichloride, 7. 743
—— monohydrate, 10. 825	trithiosulphate, 10. 552
—— hydrosulphide, 3 . 750	—— light, 1. 326
—— hydrosulphite, 10 . 283	lithium carbonate, 3. 844
hydrotetrasulphate, 8. 783	—— metasilicate, 6 . 366
—— hydrotrioxyselenophosphate, 10. 932	orthosilicate, 6. 365
hydrotrisulphate, 3. 783	phosphate, 3. 878
	— magneside, 4 . 685
——————————————————————————————————————	magnesium alloys, 4. 685
	aluminatoferrite, 13. 921
——— properties, chemical, 3 . 635	
—— —— physical, 3 . 681 —— solubility, 3 . 677	
	choride, 4. 509
hydroxycarbonate, 8, 839	dialuminium dihudrotriorthosili
	cate, 6 . 718
- — hydroxyhydrosulphide, 3 . 755	dihydro-orthodisilicate, 6. 420
	————— dimetasilicate, 6 . 410
hydroxylamite, 8. 290	ennealuminoxyaluminotrisilicate,
hydroxymetasulphoantimonite, 9. 542	6. 816
- — hydroxynitrate, 3. 861	fluorthoarsenate, 9. 258
hydroxynitrilodisulphonate, 8. 676	hexaborate hexahydrated, 5, 100
hydroxyphosphate, 3. 902	
hydroxythiocarbonate, 6. 115	lead manganese orthoarsenate, 9.
hypoantimonate, 9. 437	222
—— hypobromite, 2. 273	———— manganese arsenate, 9. 222
hypochlorite, 2. 272	orthosilicate, 6, 408
—— hypoiodite, 2 . 273	potassium sulphate, 4. 344, 345 trihydrohexaluminoxyalumino-
——— hyponitrite, 8 . 414	trihydrohexaluminoxyalumino-
tetrahydrate, 8. 414	triorthosilicate, 6. 817
hypophosphate, 8. 937	manganate, 12 . 289
hypophosphite, 8. 883	—— manganese alloy, 12 . 205
hyposulphite, 10 . 182	
hemitrihydrate, 10 . 182	I Ierric triarsenate, 9, 228
hypovanadatodecavanadate, 9. 793	metasilicate, 6 . 897 orthodisilicate, 6 . 895
hypovanadatophosphate, 9. 826	orthodisilicate, 6 . 895
hypovanadatovanadate, 9. 770	orthosilicates, 6. 894
imide, 8 . 260	manganic ferric permanganite, 12. 280
——— iodatachromate, 11. 270	—— manganitomanganate, 12. 290
iodate, 2. 347	manganous carbonate, 12. 439
——————————————————————————————————————	chloride, 12. 368
iodide, 3 . 734	ferrous metasilicate, 6. 917
hexahydrated, 3. 735	
—— iodoarsenatoapatite, 9. 263	——————————————————————————————————————
iodoborate, 5. 44	mercuriate, 4. 780
iodochloride, 3. 738	—— mercuric carbonate, 4. 982 —— —— heptanitrite, 8. 495
iodophosphate, 8, 897	———— hexabromide, 4 . 894
iodoplatinate, 16. 390	hexiodide, 4. 938
iodotriorthoarsenate, 9. 263	imidochlorosulphonate, 8. 658
iodotriorthovanadate, 9. 263 vanadatiodapatite, 9. 814	imidosulphonate, 8. 658
	imidotetraoxysulphonate, 8. 657
iron alloys, 13. 541 titanatocolumbate, 9. 867	oxvnitrate, 4, 997
isoperpylstannonate, 7. 410	- — tetrabromide, 4. 894 — tetraiodide, 4. 939
- isotetrahydroborododecatungstate, 5.	tetraiodide, 4, 939
110	
isotopes, 3 . 648	thiosulphate, 10. 549
lanthanum carbonate, 5. 666	mesodisilicate, 6. 347
lazulite, 5. 370	dihydrated, 6. 361
lead chlorovanadatophosphate, 9. 827	mesotitanosilicate, 6. 841
	mesotrisilicate hydrated, 6. 363
	—— metaborate, 5. 87
molybdate, 11. 566, 569	—— metachloroantimonate, 9. 491
orthoantimonate, 9. 459	—— metacolumbate, 9. 865, 903
orthoplumbate, 7. 700	——————————————————————————————————————
orthotitanatotetrantimonite, 9.	metaferrite, 18. 911
433	metaluminate, 5. 293
phosphatomolybdate, 11. 671	metantimonate, 9. 454
——— sulphatohydrosilicate, 6. 890	metantimonite, 9. 432
—— sulphide, 7. 797	—— metaphosphate, 3. 893

Calcium metaplumbate, 7, 698	Calcium orthoposphate properties chemical,
——————————————————————————————————————	3. 868
——————————————————————————————————————	——————————————————————————————————————
metarsenate, 9. 172	orthoplumbate, 7. 699
— metarsenite, 9, 124 — metasilicate, 6, 347, 353	tetrahydrated, 7. 699
	orthopyrophosphate, 8. 892 orthosilicate, 6. 347, 351
hemihydrated, 6 . 359	α-, 6. 352
hemipentahydrated, 6. 360	β 6 . 352
—— hemitrihydrated, 6 . 359	β' -, 6 . 352
	γ-, 6 . 352
	monohydrated, 6 . 358
—— pentitahydrated, 6. 360 —— metasulpharsenatoxymolybdate, 9.331	trihydrated, 6. 359
metasulpharsenite, 9. 296	orthostannate, 7, 419
metasulphoctarsonite, 9. 296	orthosulpharsenate, 9. 320 orthosulpharsenite, 9. 295
metasulphoennearsenite, 9. 296	orthosulphoantimonate, 9, 574
—— metatetrarsenite, 9. 124	orthosulphoantimonite, 9. 542
metatitanate, 7. 52	orthovanadate, 9. 768
metatungstate, 11. 825	osmate, 15 . 706
metavanadate, 9. 769	oxide, higher, 3, 666
	magnesia-alumine, 5, 295
— metazirconate, 7. 136	
—— molybdate, 11. 560	oxides, 3 . 652
—— molybdenum oxytetrabromide, 11. 638	oxybischromate, 11. 269
—— monometaphosphate, 3. 893	oxybisphosphoryltrichloride, 8. 1026
— monosilicide, 6. 176	oxybromide, 3 . 730
monosulphide, 3, 740	oxychloride, 3. 716
monothiophosphate, 8. 1069 monoxide, 8. 653	oxychloroplatinates, 16. 333
	oxylexaphosphate, 3. 904
sulphate, 15. 475	oxylodide, 3. 738
nickelate, 15 . 401	oxymetaferrite, 13. 911
nitrate, 3 . 849, 850	oxynitrate, 3. 853
and ethyl alcohol, 3. 855	
dihydrated, 8. 850	hemihydrated, 3. 853
——————————————————————————————————————	trihydrated, 8, 853
solubility, 3 . 850	oxyorthophosphate, 8. 903 oxyorthosilicate, 6. 351
tetrahydrated, 3. 850	oxypentasulphite, 10. 283
trihydrated, 3 . 850	oxypyrophosphorylchloride, 8. 1028
nitratosilicododecatungstate, 6. 877	oxysulphate, 3. 800
nitride, 8 . 101	oxytrichromate, 11. 351
nitrite, 8. 485	oxytrisphosphoryltrichloride, 8. 1026
nitritoperosmite, 15. 728 nitrohydroxylaminate, 8. 305	paratrisilicate, 6. 347, 350
occurrence, 3. 622	paratungstate, 11. 818 —— pentabromoantimonite, 9. 496
oetamminochloride, 3. 716	pentachlorobismuthite, 9. 667
octerohexaphosphate, 8. 992	pentahydroxychloroplatinate, 16. 333
octoborate dodecahydrated, 5. 93	pentaiodobismuthite, 9, 677
enneahydrated, 5. 92	—— pentamercuric dodecaiodide, 4. 939
octobromoaluminate, 5. 326	
octochlorodithallate, hexahydrated, 5. 447	
octodecachlorotetraaluminate, 5, 322	pentamercuride, 4. 1032
octomercuride, 4. 1032	pentapermanganite, 12. 277 pentasulphide, 8. 755
octomolybdate, 11. 596	penterasulphotetrarsenate, 9. 320
orthoarsenate, 9. 167	penterohexaphosphate, 8. 992
orthoarsenite, 9. 124	—— penterotetradecavanadate, 9. 971
orthoborate, 5. 87	—— pentitastannide, 7. 373
orthoboratodichloride, 5. 141 orthocolumbate, 9. 865	perborate, 5. 120
orthodiplumbate, 7, 700	perchlorate, 2, 399
orthodisilicate, 6. 364	perchromate, 11. 359
orthoferrite, 13. 911	percobaltite, 14. 601 perdichromate, 11. 359
orthopentantalate, 9. 914	perhexatungstate, 11. 836
orthophosphate, 3. 866	periodates, 2. 412, 413
colloidal, 3 . 866	periridite, 15. 754

Calcium permanganate, 12. 334	Calcium properties, chemical, 3. 637
—— permanganite, 12 . 277	————— physical, 8. 631
—— permonosulphomolybdate, 11. 653	pyroantimonate, 9, 455
permonouranate, 12. 73	pyroarsenate, 9. 170
pernickelite, 15. 400 persulphate, 10. 478	pyroarsenite, 9. 124
peruranato, 12. 73	pyrocolumbate, 9. 865 pyrophosphate, 3. 891
pervanadate, 9. 795	tetrahydrated, 3. 891
phosphate, normal, 3. 866	pyrosulpharsenate, 9. 320
ternary, 3. 866	pyrosulpharsenatoxymolybdate, 9. 331
	pyresulpharsenate, 9. 295
phosphates, 3 . 864	pyrosulphoantimonite, 9. 542
—— phosphatoctotungstate, 11. 872	pyrosulphate, 10 . 446
—— phosphatodecatungstate, 11. 870	pyrotantalate, 9. 903
phosphatohexatungstate, 11. 872	pyrotellurite, 11. 80
phosphatosilicate, 6 , 364	pyrovanadate, 9 . 769
phosphatosilicates, 6, 826	
phosphatozirconate, 7. 165 phosphide, 8. 841	- rare earth columbato tantalate, 9. 904
phosphite, 8 . 914	
—— platinum alloy, 16 . 205	904
—— plumbide, 7. 614	relations Ba, Sr, 3. 907
plumbite, 7. 668	- rubidium disulphate, 3. 810
polybromide, 3 . 730	trisulphate, 3. 810, 811
polyiodide, 3 . 737	ruthenate, 15. 518
polyplumbate, 7. 699	selenate, 10. 861
—— polyselenide, 10 . 775	dihydrate, 10. 861
polysulphide, 3. 752	hemihydrate, 10. 862
potassium aluminates, 5. 294	
aluminium trimesodisilicate, 6.	selenide, 10 . 774
ammonium disulphate, 3. 812	selenite, 10. 825 tritatetrahydrate, 10. 825
	selenium trioxyoctochloride, 10. 910
carbonate, 3. 845	selenotrithionate, 10. 928
chromate, 11. 269	sesquiborate, 5 . 90
dihydrate, 11. 269	sesquisilicate, 6. 347
monohydrate, 11. 269	silicate hydrated, 6. 358
cobalt nitrite, 8 . 505	silicide, 6. 176
deuterotetravanadate, 9. 771	silicocyanamide, 6, 178; 8, 115
dialuminium pentamesodisili- cate, 6. 747	silicocyanide, 6 . 178; 8 . 115 silicodecatungstate, 6 . 882
——————————————————————————————————————	silicodinitride, 8. 115
disulphate, 3. 807	silicododecamolybdate, 6. 870
hexasulphate, 3. 808	siliconitride, 8. 115
	silicophosphate, 3. 873
nickel nitrite, 8 . 512	silicostannate, 6. 883
sulphate, 15. 475	silicotitanate, 7. 54
nitrite, 8 . 488, 501	silicozirconates, 6. 855
orthopertantalate, 9. 914	silver alloys, 4. 685
pentacarbonate, 8. 845 perorthocolumbate, 9. 870	
——————————————————————————————————————	sodalites, 6 . 583
phosphatohemipentamolybdate,	- sodium aluminium sulphatotriortho-
11. 669	silicate, 6 . 584
phosphatoplumbate, 7. 886	and aluminium fluorides, 5. 308
phosphatostannate, 7. 483	arsenate, 9. 173
phosphatothorate, 7. 253	carbonate, 3 . 866
phosphatotitanate, 7. 97	dihydroxytetrasulphate, 3. 806
pyrophosphate, 8. 892	dimetaphosphate, 3 . 894
quinquamonochromate, 11. 270	disulphate, 8 . 805 fluozirconatosilicate, 6 . 857
——————————————————————————————————————	hexafluoaluminate hydrated, 5.
seximonochromate, 11. 270	309
—— sodium carbonate, 3. 845	hexametaphosphate, 3. 895
- sulphatochromates, 11. 269	hexarsenate, 9. 173
	hydrotrimetasilicate, 6. 367
——————————————————————————————————————	imidodisulphonate, 8. 654
	magnesium fluoaluminate, 5. 309
	manganese hydrotrimetasilicate,
—— preparation, 3. 626	6. 900

Calcium sodium manganous ferrous phos-	Calcium sulphuryl phosphate, 10. 233
phate, 12. 455	— tellurate, 11. 93
nitratodithiosulphate, 10. 544	telluride, 11. 49
octoxyfluodicolumbate, 9. 874	tellurite, 11. 80
orthopertantalate, 9. 914	tetraborate, 5. 91
paratungstate, 11. 818	tetrachlorobariate, 3. 720
pentabromide, 3. 732	tetrachlorobismuthous acid, 9. 667
pentametasilicate, 6. 366	tetrachloroplumbate, 7. 730
—— pentasulphate, 3 . 804 —— perorthocolumbate, 9 . 870	tetrachromate, 11. 352
	tetrachromitochromite, 11. 269 tetraferric enneahydroxyarsenate, 9.
potassium trimetasilicate, 6. 372	228
pyroantimonate, 9. 455	tetraferrite, 13. 911
pyrophosphate, 3, 892	tetrahydrometatrisilicate, 6. 363
selenate, 10. 862	tetrahydrosilicododecatungstate, 6.
	877
tetrasulphate, 8. 805	tetrahydroxyorthoborate, 5. 88
thiosulphate, 10. 544	—— tetrahydroxyoxytrisulphide, 3. 757
titanium orthosilicate, 6. 844	tetrahydroxyperthiocarbonate, 6. 131
zirconatosilicate, 6 . 858 titanosilicate, 6 . 843	tetrahydroxythiocarbonate, 6. 125
trihydroxyzirconatometasilicate,	decahydrated, 6, 126
6 . 856	—— heptahydrated, 6, 126 —— tetramercuride, 4, 1033
trimetaphosphate, 3. 894	tetrametaphosphate, 3. 894
trisulphate, 3. 805	octohydrated, 3. 895
zirconatometasilicate, 6. 858	tetrammine, 8. 248
zirconium chlorotrimesotrisili-	—— tetramminoacetylenecarbide, 5. 863
cate, 6 . 857	tetramminochloride, 3. 716
chlorotriorthosilicate, 6. 857	tetramolybdate, 11. 593
columbatosilicate, 6. 858	tetranitritoplatinite, 8. 520
a-stannate, 7. 418	tetraphosphate, 3. 892
—— pentahydrate, 7. 419 —— tetrahydrate, 7. 419	tetraselenite, 10. 825
trihydrate, 7. 419	tetrasulphide, 3, 753
stannic borate, 5. 105	tetrasulphoniodide, 8. 737 tetrasulphorthosulpharsenite, 9. 295
stannide, 7. 373	tetrasulphuryldiiodide, 10. 691
strontium carbonate, 3. 846	tetratritamercuride, 4. 1033
phosphatoarsenate, 9. 171	tetrauranyl tricarbonate, 12. 115
phosphatoarsenate, 9. 171 sodium carbonate, 3. 846	tetrerodecavanadate, 9. 771
subcarbide, 5. 858, 860	—— tetreropentasilicate, 6. 365
subchloride, 3. 713	tetrahydrated, 6. 365
suboxide, 3. 653	trihydrated, 6. 365
sulphaluminate, 5. 331	tetroxide, 3. 672
sulphamidate, 8 . 662 sulphate, 3 . 760	
	disulphate, 5. 466
anhydrous, 3, 763 ————————————————————————————————————	thiophosphate, 8. 1065
dihydrated, 3. 763	thiosulphate, 10. 541
hemihydrated, 3. 763	titanic sulphate, 7. 94
preparation, 3. 763	titanium oxysulphide, 7. 91
properties, chemical, 3. 798	titanyl orthosilicate, 6. 840
—— —— physical, 3. 792	trialuminide, 5. 235
solubility, 3. 777	triantimonate, 9. 444
sulphatoaluminate, 5. 353 sulphatocarbonatometasilicate, 6. 365	triarsenatotetravanadate, 9. 201
	triferric enneahydroxydiarsenate, 9.
sulphatostannate, 7. 479	trimagnesium silicate, 6. 404
properties, chemical, 3. 742, 744	trimetaboratodibromide, 5. 141
physical, 3. 742, 750	trimetaboratodichloride, 5. 141
	trimolybdate, 11. 589
sulphimide, 8 . 664	trioxychromite, 11. 198
—— sulphite, 1. 520; 10. 283	trioxyorthoarsenate, 9. 167
photoluminescence, 3. 745	trioxytrisulphatodialuminate, 5. 294
sulphometastannate, 7. 476	tripontitasilicate, 6. 350
sulphomolybdate, 11. 652	tripermanganite, 12. 277
sulphorthostannate, 7. 476	triphosphate, 3. 892
sulphosilicate, 6. 987 sulphotellurite, 11. 113	triplumbide, 7. 614
sulphotrimolybdate, 11. 652	—— trisilicodialuminide, 6. 185
sulphovanadites, 9. 816	
	January V. 100

	•
Calcium tristannide, 7. 373	(penta)calcium dimagnesium silicate, 6. 404
trisulphatarsenite, 9. 333	—— hexaferrite, 13. 911
—— trisulphatodialuminate, 5. 294	—— hexaluminate, 5 . 292
tritadiamide, 8. 260	potassium tetrafluohexametasilicate,
- tritapermanganite, 12. 277	6 . 369
triterohexavanadate, 9. 770	
	(tetra)calcium decarborate, 5. 89
triterotetraplumbate, 7. 700	—— dialuminate, 5. 290
trithallide, 5. 427	—— hexaluminate, 5. 292
trithionate, 10. 609	—— hexaplumbic dihydroxytriorthosili-
trithiophosphate, 8. 1067	cate, 6. 888
tritungstate, 11. 811	(tri)calcium decaborate enneahydrated, 5.
tungstate, 11. 783	91
—— ultramarine, 6 . 589	decaluminate, 5 . 293
uranate, 12 . 63	—— dialuminate, 5. 291
uranatovanadate, 12. 69	ferrous tetrametasilicate, 6. 405
uranium hydroxydisulphotetraura-	—— imidodisulphonate, 8. 654
nate, 12. 98	
iron deuterohexacolumbate, 9.	Calcopyrite X-radiogram, 1. 642
905	Calcouranite, 12. 134
	Calcspar, 3, 622, 814
——— metacolumbate, 9. 904	
red, 12 . 98	Calcuranite, 3. 623
	Calcorborthite, 9. 767
	Calderite, 6. 921
—— uranous diphosphate, 12. 130	Caledonite, 7. 819
hexachloride, 12. 83	Calgoorlite, 4. 697
— — uranyl aluminium silicate, 6. 883	Caliche, 2. 17, 803
arsenate, 9. 216	azufrado, 11. 249
dicarbonate, 12. 115	Calicheras, 2. 803
decahydrate, 12. 115	Californite, 6. 726
icosihydrate, 12. 115	Calimia, 4. 408
dioxytetraphosphate, 12. 136	Calitzenstein, 4. 613
hydrophosphate, 12. 136	Call, 11. 673
dihydrate, 12. 136	Callaina, 5. 368
tetrahydrate, 12. 136	Callainite, 5. 155; 8. 733
trihydrate, 12. 136	Callaica, 5. 368
orthodisilicate, 6. 883	Callaite, 5. 155
——————————————————————————————————————	Callilite, 9. 589
——————————————————————————————————————	Calomel, 2. 15; 4. 697, 797
sulphate, 12. 110	Calor coelestis, 1. 55
tantalocolumbate, 9. 867	Calorie, 1. 693, 698, 699
—— tetracarbonate, 12. 115	Big, 1. 699
uses, 3 . 644	—— Gram, 1. 699
vanadatobromowagnerite, 9. 813	Kilogram, 1. 699
— — vanadatopyromorphite, 9. 827	Pound, 1. 699
vanadatotungstate, 9. 787	Calorite, 15. 245
vanadyltrifluoride, 9. 801	Calotype process, 3. 416
wagnerite, 3. 897, 902; 4. 388	Calvonignite, 12. 266
- yttrium uranyl deuterotetracolum-	Calyptolite, 6 . 857; 7 . 100
bate, 9. 904	Calx, 1. 55
titanocolumbate, 9. 904	antimonii alba, 9. 452
zinc alloys, 4. 685	elota, 9. 420
	martis phlogisto juneta, 14. 390
——————————————————————————————————————	plumbi acrata, 7. 846
zincate, 4. 530	——————————————————————————————————————
zincide, 4 . 687, 685	
(di)calcium dialuminate, 5. 292	Campylite, 9, 4, 261, 262
—— dialuminium pentametasilicate, 6.	Camsellite, 5. 97; 6. 451
739	Canaanite, 6. 409
diborate, 5 . 87	Canal rays, 5. 42, 47
—— hexaborate, 5. 90	Canbyite, 6. 908; 12. 529
—— —— heptahydrated, 5 . 90	Cancrinite, 6. 580
pentahydrated, 5 . 90	—— lime, 6 . 582
hexaferrite, 18 . 911	Candite, 5. 297
lead trimetasilicate, 6. 888	Canfieldite, 7. 275, 283
magnesium silicate, 6. 403	Canizzarite, 9. 694
potassium cadmium sulphate, 4. 640	Cannizzarite, 9. 692
—— zinc sulphate, 4. 640	Canton's phosphorus, 3. 740
sodium decaborate hexadecahydrated,	Capacity factor of energy, 1. 712
5. 93	Capillary electrometer, 1. 1016
octohydrated, 5. 94	Capillose, 15 . 43 5
zinc orthodisilicate, 8. 444	Capnite, 4. 643
milic of diodestinosto, v. 111	

Caporcianite, 6. 738	Carbon dioxide properties, physical, 6. 19
soda, 6. 740	
Cappelenite, 5. 514	
Caput mortuum, 1. 55; 10. 351; 13. 781	—— dipentitasulphide, 6. 87
Caracolite, 7. 491	diselenide, 10. 783
Carat, 3. 532; 5. 712	—— disulphide, 6 . 87, 95; 18 . 613; 16 . 275
international, 5. 712	
Carbanic acid, 2, 792	hydrogen, 1. 304
Carbazide ferroheptanitrosyltrisulphide, 8. 442	effect on catalysis, 1. 487
Carbazot-silicium, 8. 115	
Carbide carbon, 5. 895	physiological action, 6. 116
corbitie, 12. 847	preparation 6 94
tungsten steels, 13. 634	——————————————————————————————————————
Carbides, 5. 844	
Carbocerine, 5, 521	purification, 6. 94
Carbolic acid, 13 , 613, 615	reactions, 6, 116
Carbon, 5, 710; 12, 528	uses, 6 . 116
acetylene disulphide, 6, 113	disulphohexabromide, 6. 89
action oxygen, 5. 811	disulphoselenohexabromide, 10. 920
water, 5 . 811	—— disulphotetrabromide, 6 . 110
adsorption gases, 5, 789	ditelluride, 11. 54
-·· from soln., 5 . 799	ditritasulphide, 6. 87, 88
a-, 5 . 747	ditritoxide, 5. 905
- allotropic states, 5, 718	- enneadodecitoxide, 5. 906
- amide, 8, 262	ethylene disulphide, 6, 113
- amorphous, 5. 744	graphite, 5. 895
preparation, 5, 744	hardening, 5, 895; 12, 860
properties, physical, 5, 755 annealing, 12, 858	hexaboride, 5, 26
arsenide, 9. 68	history, 5 , 70 hydrosulphide, 6 , 111
- atom, disintegration, 5. 843	hydrosulphotrisulphonate, 6. 92
tetrahedron, 1. 214	- iron alloys, see Iron-carbon alloys
atomic number, 5. 843	system, 12. 796
weight, 5. 837, 840	equilibrium, 12. 796
benzene, 5 . 721	- isotopes, 5. 843
β-, 5. 747	molecule, 5. 839
· · · blacks, 5. 749	- monoboride, 5. 27
boride, 5 . 26, 870	monosulphide, 6. 87, 89
—— carbide, 5 . 895	monoxide, 5 . 904
carbonyl disulphide, 6. 113	history, 5 . 907
colloidal, 5. 752	occurrence, 5 . 909
	preparation, 5. 909
compounds in air, 8. 10	properties, chemical, 5. 927
constitution, 5. 837 diffusion in iron, 12. 738	
dioxide, 5 . 904	nitride, 5 . 887 ; 8 . 115
action electric sparks, 6. 62	occurrence, 5 . 715
heat, 6. 61	oxycarbide, 5. 905
light, 6 . 61	oxychloride, 5. 962
radium radiations, 6. 62	oxygen iron, 12 . 621
silent discharge, 6. 63	——————————————————————————————————————
as a solvent, 6 . 59	oxysulphide, 5. 971
assimilation by plants, 6. 12 decomposition, 6. 61	—— pentitadiselenide, 10. 783
decomposition, 6. 61	phosphide, 8. 846
formation, 6. 15 history, 6. 1	phosphinodioxide, 8. 815
history, 6. 1	phosphinodisulphide, 8. 815
hydrates, 6 . 50	—— properties, chemical, 5. 821
ennea-, 6 . 51	——————————————————————————————————————
hemi-, 6. 50	pseudo-, 5. 721
hexa-, 6. 51	quadrantosulphide, 6. 87
	self-oxidation, 5. 812
natural waters & A 51	sesquisulphide, 6. 87
natural waters, 6 . 6, 51 occlusion in solids, 6 . 57	
occurrence, 6. 2	
origin atmospheric, 6. 4	
physiological action, 6. 74	
preparation, 6. 15	sulphoselenide, 10. 919
properties, chemical, 6. 61	—— sulphotelluride, 11. 111

Carbon temper, 5. 739; 12. 858	Carthusian powder, 9. 513
tetrachloride, 13. 615	Caryinite, 3. 623; 4. 252; 7. 491; 9. 222;
tetritaselenide, 10. 783	12. 149, 150
— tetritasulphide, 6. 87	Carynite, 9. 4
trihemisulphide, 6. 87, 89	Caryocerite, 5. 514
	Caryopilite, 6. 897; 12. 149
— valency, 5. 837	
Carbonado, 5. 720	Cascade furnace, 4. 701
	Case hardening, 12. 737
Carbonate of copper, blue, 8. 7	Cassel brown, 18. 887
	Cassel's green, 12. 289
	—— yellow, 7. 742
Carbonates, 6. 72	Cassenite, 6. 663
Carbonatoapatite, 3. 896	Cassiopëium, 5. 505, 705
Carbonatomarialite, 6. 764	Cassiterite, 5. 530; 7. 394, 896
Carbonatomeionite, 6. 764	tantalum, 7. 394
Carbonic acid, 6. 2, 72, 119	X-radiogram, 1. 641
Carbonyl bromide, 5. 970	Cassiteros, 7. 276, 277; 16. 1
chlorobromide, 5. 970	Cassitorotantalite, 9. 909
cuprous chloride, 3. 162	Cassius, Purple of, 3. 564
fluoride, 5 . 970	Cast iron, 12. 712
halides, 5 . 962	alloy, 12. 597, 708, 709
ruthenium bromide, 15. 537	————— black heart, 12. 709, 724
sulphide, 5 . 971	charcoal hearth, 12. 709
Carbonyls, 5. 950	——————————————————————————————————————
Carborundum, 5. 876	——— malleable, 12. 709
fire sand, 5. 878	1 mottled, 12, 596, 708
X-radiogram, 1. 642	non-magnetic, 13. 257 refined, 12. 709
Carbosil, 5. 219	refined, 12, 709
Carbrox, 5. 750	white, 12. 596, 708, 713
Carbuncle, 8. 117; 6. 740	———— heart, 12. 709, 724
Carbunculus, 5. 295; 6. 714	Castanite, 12. 529; 14. 328, 332
Carbure, 5. 844	Castellite, 6. 831
Carburet of potassium, 5. 847	Castelnaulite, 5. 527
Carburization iron, 12. 725	Castillite, 10. 694, 795; 14. 189
Carelinite, 9. 589	Casting, temperature of, 12. 721
Caries of bronze, 3. 76	Castor, 7. 896
Carlosite, 6. 843	Caswellite, 6. 608; 12. 149
Carlsbad twinning, 6. 670	Cat-gold, 6. 604
Carmenite, 8. 210	—— silver, 6 . 504
Carmine spar, 9. 4, 228	Catalan forge, 12. 582
Carminite, 7. 491; 9. 4, 228; 12. 529	Catalysis, 1. 325, 357, 936; 2. 143; 16. 154
Carnallite, 2. 15, 430; 4. 252, 298; 7. 896	adsorption theory, 16. 153
ammonium, 4. 306	atomic distortion theory, 16. 153
—— bromo, 4. 314	by contact, 1. 486
iodo, 4 . 317	———— hydrochloric acid, 2. 196
cæsium, 4. 308	—— condensed film theory, 16. 153
rubidium, 4 . 308	contact, 16. 152
Carnat, 6. 472	dissociation, 10. 673
Carnatite, 6. 693	heterogeneous, 16. 152
Carnegieite, 6 . 570, 695	homogeneous, 16. 152
Carneigietite, 6. 662	inhibitore 16 154
Carnelian, 6. 139	—— inhibitors, 16. 154 —— intermediate compound theory, 16. 152
Carnotite, 3. 902; 6. 835; 7. 896; 9. 707,	mechanism of, 1. 488
715; 12. 4	— molecular distortion theory, 16. 153
calcium, 9. 789	multiple adsorption theory, 16. 153
	negative, 1. 358; 16. 154
—— potassium, 9. 788 Carnot's equation, 1. 720	promotors, 16. 154
principle, 1. 713	—— pseudo-, 10. 673
	Catalyst poisoning, 16. 154
Carolinium 7 174 200	Catalysts, 1. 937
Carolinium, 7, 174, 209	
Carolonium, 5. 504	negative, 1. 938
Caron's cement, 12. 737	—— poisoning of, 1. 937
Caro's acid, 10. 449, 482	Catalytic reactions, 1. 358
Carpholite, 6. 900; 12. 149	Cataphoresis, 8. 541
Carphosiderite, 12. 529; 14. 328, 344	Cataphorite, 6. 821; 12. 529
Carphostilbite, 6. 709	Catapleiite, 5. 512; 6. 855; 7. 100
Carpolite, 6. 473	Catarinite, 12. 529; 15. 5
Carposiderite, 14. 334	Cataspilite, 6. 619, 811
Carrara marble, 8. 815 Carrollite, 14. 424, 757; 15. 9	Catharinite, 15 . 4, 5, 256
COPPOSITE TA 474 707 1 10 W	Cathkinite, 6. 432

Cathode, 1. 93	Ceric aniline dodecamolybdate, 11. 600
rays, 4. 25	cæsium nitrate, 5. 673
Cation, 1. 93	—— carbonate, 5. 660
Cat's-eye, 4. 206; 6. 139, 913	cerous sulphate, 5. 662
Cause, 1. 13, 57	chloride, 5. 641
Caustic alkali, 2. 495	—— cobalt decafluoride, 14. 607
alkalies, 2. 421	cobaltic hexamminosulphate, 14. 791
——— lime, 3 . 619, 653	cobaltous nitrate, 14. 828
Caustification, 2. 497	—— decachromite, 11. 200
—— ionic theory, 5 . 498	dichromite, 11. 200
molecular theory, 2. 498	dihydroarsenate, 9. 187
Cavolinite, 6 . 569, 585	fluoride, 5. 637
Cawk, 3. 762	heptitoctochromite, 11. 200
Cazo process extraction silver, 3. 303	hydroarsenate, 9. 187
Cebollite, 6, 754	hydro-orthophosphate, 5. 676
Colodonite 6. 426	hydroxide, 5 . 632
Celadonite, 6. 920	
Celestine, 3, 762	—— hydrosol, 5. 652 —— hydroxynitrate, 5. 672
—— uses, 3 . 802 Celite, 6 . 556	
Cell, Griesheim's, 2. 35	lanthanum sulphate, 5. 662
Solway's, 2. 36	- magnesium nitrate, 5. 674
Sueur's, 2. 35	manganous nitrate, 12. 446
Cellarins' receiver, 2. 163	—— molybdate, 11. 564
Cellular structure metals, Quincke's theory,	neodymium sulphate, 5. 662
1. 603	—— nickel nitrate, 15 . 492
Celsian, 6. 662, 698, 706	nickelous decaffuoride, 15, 405
Celsite, 14, 542	—— nitrate, 5 . 672
Celtia, 5, 706, 708	octodecachromite, 11. 201
Celtium, 5. 498, 708; 7. 166	oxide, 5 . 629
hydroxide, 5 . 708	oxycarbonates, 5. 666
—— oxide, 5 . 708	oxychloride, 5. 640, 641
Cement, 6 . 553	oxysulphate, 5 . 662
—— British, 6 . 554	oxytetrasulphate, 5. 661
clinker, 6 . 55 4	pentitadichromite, 11. 200
copper, 3. 30	—— perchlorate, 2. 402
Keene's, 3. 776	potassium nitrate, 5. 673
Mack's, 3. 776	sulphate, 5. 662
Parker's, 6. 554	—— praseodymium sulphate, 5. 662
—— plasters, 3. 775	—— pyrophosphate, 5 . 676 —— rubidium nitrate, 5 . 673
Portland, 6. 554	rubidium nitrate, 5 . 673
	selenite, 10. 831
Scott's selenitic, 3. 776, 800	silver dodecamolybdate, 11. 600
steel, 12 . 753 Cementation, 3 . 30; 12 . 736	sulphate, 5. 662
iron, 12. 736	sodium dodecamolybdate, 11. 600
process gold parting, 3. 508	
steel, 12. 736	tetrachromite, 11. 200
Cementite, 12, 528, 797, 860	thallium sulphate, 5. 662
granular, 12. 847	tritoctochromite, 11. 200
spheroidizing, 12. 851	zinc nitrate, 5. 674
Cementstahl, 12. 753	Corine, 5. 509
Conosite, 5. 514	Ceriododecamolybdates, 11. 600
Centibar, 1. 150	Cerite, 5. 496, 507; 7. 100; 12. 6
Centrallassite, 6. 362	Cerium aluminide, 5. 608
Contre of symmetry, 1. 614	amalgams, 5. 607
Ceramic art, 6. 513	analytical reactions, 5. 608
Cerargyrate, 2. 15; 3. 300, 390	antimony alloys, 9. 409
Cerasite, 6. 808; 7. 739	apatite, 5. 675
Cerbolite, 4. 342	arsenide, 9. 68
Cererite, 5. 507	atomic number, 5. 622
Cer-homilite, 6. 451	——— weight, 5. 621
Ceria, 5. 501, 626	azide, 8 . 354
isolation, 5. 550	—— bismuthide, 5 . 604
Coria ammonium dibudanta dan malah	borotungstate, 5. 110
Ceric ammonium dihydroctodecamolyb-	—— bromate, 2. 355 —— cadmium alloys, 5. 607
date, 11. 600	cadmium alloys, 5. 607
	calcium alloys, 5. 606
	phosphatosilicate, 6, 835
5447A400, 6. 000	silicozircatotantalate, 6. 859

Cerum sulphate hexahydrate, 5. 653 cloprotungstates, 11. 852 copper alloys, 5. 605 cupride, 5. 605 cupride, 5. 605 cupride, 5. 605 dialuminide, 5. 608 diamminotrichloride, 5. 640 dibismuthide, 5. 604 dibismuthide, 5. 604 dibismuthide, 5. 604 dioxysulphate, 5. 651 dioxysulphate, 5. 656 epidote, 5. 510 fluosilicate, 6. 954 splatinumide, 5. 608 hemistannide, 7. 385 hemiziristannide, 7. 385 hemiziride, 5. 607 hydraxine sulphate, 5. 659 hydride, 5. 601 hydroxylarnine sulphate, 5. 659 hydroxylarnine sulphate, 5. 659 mitride, 8. 120 nitrite, 8. 416 nitrohydioxylarninate, 8. 306 occurrence, 5. 587 octamminotrichloride, 5. 640 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 650 paraoxide, 5. 633 platinum alloys, 16. 601 pyridine sulphate, 5. 650 paraoxide, 5. 628 silicate, 6. 826 silicate, 6. 803 sesquioxide, 5. 628 silicate, 6. 603 sesquioxide, 5. 628 silicate, 6. 603 sesquioxide, 5. 628 silicate, 6. 604 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 661 pyridine sulphate, 5. 650 paraoxide, 5. 628 silicate, 6. 826 silicate, 6. 803 sesquioxide, 5. 628 silicate, 6. 603 sesquioxide, 5. 629 silicate, 6. 604 oxalicum medicinale, 5. 604 oxalic	a	
copper alloys, 5. 605 cuprous disulphite, 10, 302 dithiosulphate, 10, 549 dialuminide, 5. 604 dibismuthide, 5. 604; 9. 638 dinitride, 8. 121 dioxide, 5. 629 dioxyaulphate, 5. 651 distannide, 7, 385 disulphide, 5. 649 dodecamminotrichloride, 5. 606 epidote, 5. 510 fluosilieato, 6. 054 gold alloys, 5. 606 epidote, 5. 510 fluosilieato, 6. 054 gold alloys, 5. 606 hemistuminde, 7. 385 hemitristannide, 5. 607 metaborate, 5. 601 hydroxylamine sulphate, 5. 659 hydrate, 5. 602 hydrate, 5. 603 mercury alloys, 5. 605 mercury alloys, 5. 606 mercury alloys, 5. 606 mercury alloys, 5. 607 metaborate, 8. 120 nitrite, 8. 120 nitrit	Cerium carbide, 5. 873, 885	Cerium sulphate hexahydrate, 5. 653
cuprous disulphite, 10. 302 dithiosulphate, 10. 549 dialuminide, 5. 608 diamminotrichloride, 5. 640 dibismuthide, 5. 604; 9. 638 dinitride. 8. 121 dioxide, 5. 623 dioxysulphate, 5. 651 distamide, 7. 385 disulphide, 5. 640 docsamminotrichloride, 5. 640 ennearageneide, 5. 666 ennearageneide, 5. 666 finosilicate, 6. 946 gold alloys, 5. 606 hemistunide, 7. 385 hemitristannide, 7. 385 hemitristannide, 7. 385 hemitristannide, 7. 385 hemitristannide, 7. 385 hemitride, 8. 607 hexacupride, 5. 607 hexacupride, 5. 608 hemistunide, 5. 608 mortobroule, 5. 601 hydroxylamine sulphate, 5. 659 hydrite, 5. 601 hydroxylamine sulphate, 5. 659 hydrite, 5. 601 motobismuthide, 9. 638 monoxide, 5. 623 monoxide, 5. 623 monoxide, 5. 625 nitride, 8. 120 mitride, 8. 120 mitride, 8. 120 mitride, 8. 120 mitride, 8. 646 cocurrence, 5. 873 oxychoride, 5. 641 oxysulphide, 5. 608 quadrantomagneside, 5. 609 selenide, 5. 603 sesquioxide, 5. 628 silicide, 5. 604; 6. 185 silicide, 5. 604 adivardatide, 5. 605 hydrate, 12. 40 tritablininide, 5. 605 tetrafiloride, 5. 604 tetrachoride, 5. 604 tetrachoride, 5. 606 tetricunide,		
cuprous disulphite, 10, 302 disthiosulphate, 10, 549 dialuminide, 5, 604 dibiamuthide, 5, 604; 9, 638 dinitride, 8, 121 dioxide, 5, 629 dioxysulphate, 5, 651 distannide, 7, 385 disulphide, 5, 606 enicamagnoside, 5, 608 hemicupride, 5, 608 hemicupride, 5, 608 hemicupride, 5, 608 hemicupride, 5, 607 hexacupride, 5, 607 hexacupride, 5, 607 hexacupride, 5, 607 hydroxylamine sulphate, 5, 659 hydratie, 5, 601 hydroxylamine sulphate, 5, 659 hydratie, 5, 601 hydroxylamine sulphate, 5, 659 hydratie, 5, 601 hydroxylamine sulphate, 5, 659 nickel alloys, 13, 557 magneside, 5, 608 mencury alloys, 5, 607 metaborate, 5, 104 metoxide, 5, 633 monobiamuthide, 9, 638 monobiamuthide, 5, 640 oxalicum medicinale, 5, 543 oxycarbide, 5, 637 oxycarbide, 5, 637 oxycarbide, 5, 637 oxycarbide, 5, 637 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 659 splatinum alloys, 16, 211 preparation, 5, 589 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 659 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 659 selenide, 5, 603, 648 sulphite, 10, 302 tetratluminide, 5, 605 tetratluminide, 5, 605 tetratluminide, 5, 606 thorium nitrate, 5, 660 thorium nitrate, 5, 660 thorium nitrate, 5, 606 thorium nitrate, 5, 606 thorium nitrate, 5, 606 thorium nitrate, 5, 606 thiorium nitrate, 5, 606 thiorium nitrate, 5, 606 thiorium nitrate, 5, 606 thorium nitrate, 5, 606 thiorium nitrate, 7, 479 sulphite, 10, 302 tetratluminide, 5, 601 totratluminide, 5, 601 totratluminide, 5, 605 thorium nitrate, 5, 606 thorium nitrate, 5, 606 thorium nitrate, 7, 271 totraluminide, 5, 605 thorium nitrate, 7, 237 totraluminide, 5, 605 thiorium nitrate, 7, 247 tribismuthide, 5, 606 thiorium nitrate, 6, 606 thorium nitrate, 6, 606 thorium nitrate, 7, 271 totraluminide, 5, 605 thorium nitrate, 6, 607 totraluminide, 5, 605 thiorium nitrate, 6, 607 totraluminide, 5, 605 totrician, 5, 606 thiorium nitrate, 7, 237		tetrahydrate 5 653
disluminide, 5. 608 diamminotrichloride, 5. 640 dibismuthide, 5. 604; 9. 638 dinitride, 8. 121 dioxide, 5. 629 dioxysulphate, 5. 651 distannide, 7. 385 disulphide, 5. 640 enneamagneside, 5. 606 enidete, 5. 510 fluosilicate, 6. 954 gold alloys, 5. 606 hemicluminide, 5. 608 hemicluminide, 5. 608 hemicluminide, 7. 385 hemitristannide, 5. 605 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydride, 5. 601 metoxide, 5. 633 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 occamminotrichloride, 5. 640 oxidie, 5. 633 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 occamminotrichloride, 5. 640 oxidient madioxy, 18. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 occamminotrichloride, 5. 640 oxidient, 6. 607 metaborate, 5. 104 coxidient midely, 15. 650 paraoxide, 5. 633 monoxide, 5. 625 nickel alloys, 16. 615 phypointrie, 8. 629 solenide, 8. 603 platinum alloys, 16. 211 preparation, 5. 589 quadrantomagneside, 5. 606 quadrantomagneside, 5. 607 quinoline sulphate, 5. 659 quadrantomagneside, 5. 607 quinoline sulphate, 5. 659 quadrantomagneside, 5. 606 solenide, 5. 603 sesquioxide, 5. 628 silicide, 5. 604; 6. 185 silicodordecatungstate, 6. 880 silver alloys, 5. 605 pphosphatosilicate, 6. 826 solenide, 5. 603 mirde, 6. 609 hemicluminide, 5. 600 mercury alloys, 5. 607 metaborate, 5. 104 (di)divate, 12. 43 uranti, 12. 44 urante, 12. 43 uranti, 12. 43 uranti, 12. 43 uranti, 12. 43 urantinide, 5. 604 urante, 12. 64 urante, 12. 64 urante, 12. 64 urante, 13. 604 urante, 14. 791 coloido, 5. 633 conomitie, 5. 633 monoxide, 5. 633 monoxide, 5. 633 monoxide, 5. 633 monoxide, 5. 633 monoxid		sulphatostarinate 7 479
dialuminide, 5, 604 dibismuthide, 5, 604; 9, 638 dinitride, 8, 121 dioxide, 5, 629 dioxysulphate, 5, 640 dioxide, 5, 629 dioxysulphate, 5, 640 distannide, 7, 385 deminitride, 5, 606 epiclote, 5, 510 fluosilicate, 6, 954 gold alloys, 5, 606 hemicupride, 5, 605 hemistannide, 7, 385 hemitristannide, 7, 385 hemitristannide, 7, 385 hemitristannide, 7, 385 hemitristannide, 7, 385 hemitride, 5, 607 hexacupride, 5, 605 hydrazine sulphate, 5, 659 hydrazine sulphate, 5, 659 hydrazine sulphate, 5, 669 hydroxylamine sulphate, 5, 669 hyponitrite, 8, 416 hypophoephite, 8, 886 icosismminotrichloride, 5, 640 metoxide, 5, 633 monobismuthide, 9, 638 monoxide, 5, 625 nickel alloys, 5, 606 mercury alloys, 5, 606 mercury alloys, 5, 606 mercury alloys, 5, 607 metaborate, 5, 104 metoxide, 5, 633 monobismuthide, 9, 638 monoxide, 5, 637 oxycarbide, 5, 873 oxycarbide, 5, 860 paraoxide, 5, 630 pyridine sulphate, 5, 669 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 669 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 669 selenide, 5, 603 sesquioxide, 5, 626 silicide, 5, 604; 6, 185 silicodocdecatungstate, 6, 880 silver alloys, 5, 606 sodium alloys, 5, 605 pproperties, chemical, 5, 607 diodicolocatungstate, 6, 880 silver alloys, 5, 606 sodium alloys, 5, 605 pproperties, chemical, 5, 607 diodicolocatungstate, 6, 880 silver alloys, 5, 606 diodicolocatungstate, 6, 880 silver alloys, 5, 605 phyphate, 10, 302 tetrauluminide, 5, 640 tetrialuminide, 5, 640 tetrium nitrate, 7, 251 tetrauluminide, 5, 640 tetrium nitrate, 7, 257 tetraluminide, 5, 606 thorium nitrate, 7, 251 tetrauluminide, 5, 607 tetroxined, 5, 606 thorium nitrate, 7, 251 tetrauluminide, 5, 606 thorium nitrate, 7, 251 tetrauluminide, 5, 606 tetriuminide, 9, 648 tritchioride, 5, 606 trioxide, 5, 629 trindride, 5,		
diamminotrichloride, 5. 640 dibisumbide, 5. 604; 9. 638 dinitride, 8. 121 dioxide, 5. 629 dioxysulphate, 5. 651 distannide, 7. 385 disulphide, 5. 640 enneamagneside, 5. 606 epidote, 5. 510 fluosilicate, 6. 954 gold alloys, 5. 606 hemiculpride, 5. 605 hemistannide, 7. 385 hemitristannide, 7. 385 hemitristannide, 7. 385 hemitristannide, 7. 385 hemizincide, 5. 607 hexacupride, 5. 605 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydride, 5. 601 metoxide, 5. 633 monoxide, 5. 633 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 oxycarbide, 5. 633 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 occamminotrichloride, 5. 640 coxidicum medicinale, 5. 543 oxycarbide, 5. 633 platinum alloys, 16. 211 preparation, 5. 689 quadrantomagneside, 5. 669 quadrantomagneside, 5. 669 quadrantomagneside, 5. 669 quadrantomagneside, 5. 669 soloima alloys, 5. 605 mphysical, 5. 695 selonide, 5. 603 sesquioxide, 5. 628 silicide, 5. 604; 6. 185 silicodocdecatungstate, 6. 880 silver alloys, 5. 605 mphosphatosilicate, 6. 825 soloiblity of hydrogen, 1. 307 sulphate basic, 5. 661 dodecahydrated, 5. 652 hydrated selenide, 10. 782 hydrated selenide, 10. 7		sulphite, 10. 302
dioxide, 5, 629 dioxysulphate, 5, 651 distannide, 7, 385 disulphide, 5, 640 enneamagneside, 5, 606 epidote, 5, 510 fluosilicate, 6, 954 lemistannide, 7, 385 hemitritatannide, 7, 386 hydrate, 5, 607 hydrate, 5, 607 hydrate, 5, 607 hydrate, 8, 406 icolade, 5, 646 iron alloys, 18, 567 machorate, 5, 104 metoxide, 5, 633 monobismuthide, 9, 638 monoxide, 5, 633 platinum alloys, 16, 211 preparation, 5, 589 properties, chemical, 5, 601 —physical, 5, 691 pyridine sulphate, 5, 659 quadrantomagneside, 5, 606 quadrantomagneside, 5, 607 quinoline sulphate, 5, 669 seloide, 5, 603; 6, 185 silicodocdecatungstate, 6, 880 silver alloys, 5, 606 sodium alloys, 5, 606 sodium alloys, 5, 606 sodium alloys, 5, 607 hydrated selenide, 10, 782 hydroareante, 9, 187 didydratet selenide, 10, 782 hydroareante, 9, 187 didydratet selenide, 10, 782 hydrated selenide, 10		
dioxide, 5. 629 dioxysulphate, 5. 651 distannide, 7. 385 disulphate, 5. 606 dodecamminotrichloride, 5. 608 depidote, 5. 510 distannide, 7. 385 demilibration de, 7. 385 demilibration demilibration de, 7. 385 demilibration demilibration demilibra		
disxysulphate, 5. 651		
distannide, 7, 385 disuphide, 5, 649 dodecamminotrichloride, 5, 640 dodecamminotrichloride, 5, 640 dodecamminotrichloride, 5, 640 epidote, 5, 510 fluosilicate, 6, 954 gold alloys, 5, 606 hemialuminide, 5, 608 hemicupride, 5, 605 hemistannide, 7, 385 hemitristannide, 7, 385 hemi		
— disulphide, 5. 649		
dodecamminotrichloride, 5. 640 enpeamagneside, 5. 606 epidote, 5. 510 fluosilicate, 6. 954 gold alloys, 5. 606 hemicupride, 5. 605 hemistannide, 7. 385 hemicipride, 5. 607 hexacupride, 5. 607 hexacupride, 5. 607 hexacupride, 5. 608 hydrazine sulphate, 5. 659 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 633 monobismuthide, 9. 638 monoxide, 5. 633 monobismuthide, 9. 638 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitride, 8. 659 cocamminotrichloride, 5. 640 oxyalcum medicinale, 5. 543 oxycarbide, 5. 873 oxycarbide, 5. 873 oxycarbide, 5. 873 oxycarbide, 5. 873 platinum alloys, 16. 650 paraoxide, 5. 603 selenide, 5. 603 selenide, 5. 603 selenide, 5. 603 selenide, 5. 608 sodium alloys, 5. 608 solium alloys, 5. 609 solium alloys, 5. 609 solium alloys, 6. 609 quinolium sulphate, 5. 609 solium alloys, 6. 609 solium alloys,		
enictore, 5. 510 fluosilicate, 6. 954 gold alloys, 5. 606 hemialuminide, 5. 608 hemialuminide, 5. 608 hemistamide, 7. 385 hemistranide, 7. 385 hemistranide, 7. 385 hemistranide, 7. 385 hemistricolde, 5. 607 hexacupride, 5. 607 hexacupride, 5. 608 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 669 icosiamminotrichloride, 5. 640 iodide, 5. 646 iron alloys, 13. 557 megneside, 5. 606 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 633 monobismuthide, 9. 638 monobismuthide, 9. 638 monobismuthide, 9. 638 monobismuthide, 9. 638 coctamminotrichloride, 5. 640 occurrence, 5. 587 octamminotrichloride, 5. 640 oxyaulphide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitri		
— epidote, 5. 510 — fluosilicate, 6. 954 — gold alloys, 5. 606 — hemialuminide, 5. 608 — hemicupride, 5. 605 — hemistamide, 7. 385 — hemitristannide, 7. 385 — hemizrincide, 5. 605 — hydrazine sulphate, 5. 659 — hydrazine sulphate, 5. 659 — hydroxylamine sulphate, 5. 659 — hyponitrite, 8. 416 — hypophosphite, 8. 886 — icosiamminotrichloride, 5. 640 — iodide, 5. 646 — iron alloys, 13. 557 — magneside, 5. 606 — mercury alloys, 5. 607 — metaborate, 5. 104 — metoxide, 5. 638 — monoxide, 5. 638 — monoxide, 5. 638 — monoxide, 5. 638 — mitride, 8. 120 — nitride, 8. 120 — nitrodydioxylaminate, 8. 306 — occurrence, 5. 587 — oxyarbide, 5. 873 — oxyenbide, 5. 641 — oxyaluphide, 5. 660 — paraoxide, 5. 631 — physical, 5. 591 — pyridine sulphate, 5. 669 — paraoxide, 5. 609 — quinoline sulphate, 5. 669 — quadrantozincide, 5. 607 — quinoline sulphate, 5. 669 — selenide, 5. 603 — selenide, 5. 603 — selenide, 5. 603 — selenide, 5. 603 — phosphatosilicate, 6. 835 — solubility of hydrogen, 1. 307 — sulphate basic, 5. 661 — dodecahydrated, 5. 652 — hydrated selenide, 10. 782 — hydrated selenide, 10.		
- fluosilicate, 6. 954 gold alloys, 5. 606 hemialuminide, 5. 608 hemialuminide, 5. 608 hemistamnide, 7. 385 hemistrande, 7. 385 hemistriced, 5. 607 hexacupride, 5. 607 hexacupride, 5. 609 hydrazine sulphate, 5. 659 hydroxylamine sulphate, 5. 640 iodide, 5. 646 iron alloys, 13. 557 magneside, 5. 606 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 633 monobismuthide, 9. 638 monoxide, 5. 623 mitride, 8. 120 nitride, 8. 567 occurrence, 5. 587 octamminotrichloride, 5. 640 oxalicum medicinale, 5. 543 oxycarbide, 5. 633 oxycarbide, 5. 633 oxycarbide, 5. 661 paraoxide, 5. 639 platinum alloys, 16. 211 preparation, 5. 589 properties, chemical, 5. 661 quadrantomagneside, 5. 606 quadrantomagneside, 5. 607 quinoline sulphate, 5. 659 quadrantomagneside, 5. 606 quadrantomide, 5. 626 silicate, 6. 826 silicate, 6. 635 soduluitly of hydrogen, 1. 307 sulphate basic, 5. 651 — dodecahydrated, 5. 652 hydrated selenide, 10. 782 hydroarsenate, 9. 187 tritabismuthide, 5. 634 tritabismuthide, 9. 638 tritetriabismuthide, 9. 638 trit		
hemialuminide, 5. 608 hemicupride, 5. 605 hemistannide, 7. 385 hemiztristannide, 7. 385 hemiztristannide, 7. 385 hemizincide, 5. 607 hexacupride, 5. 605 hydrazine sulphate, 5. 659 hydrazine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 650 hypophosphite, 8. 886 icosiamminotrichloride, 5. 640 iodide, 5. 646 iron alloys, 13. 557 magneside, 5. 606 meroxide, 5. 633 monobismuthide, 9. 638 mitrides, 8. 100 mitrides, 8. 120 monobismuthide, 9. 638 tritaluminide, 5. 604 uranate, 12. 64 uranate, 12. 64 uranite, 12. 43 uranyl sulphite, 10. 309 uses of, 5. 610 (dieerium calcium aluminohydroxytriorthosilicate, 5. 510 Cerosice molybdate, 11. 564 Cerosocerie hydrosulphate, 5. 660 oxychloride, 5. 641 oxysulphide, 5. 659 paraoxide, 5. 641 oxysulphide, 5. 659 paraoxide, 5. 660 quadrantozincide, 5. 601 physical, 5. 591 pyridine sulphate, 5. 659 quadrantozincide, 5. 606 decenides, 6. 603 dithionate, 10. 594 decenides, 6. 638 dihydrotexaselenide, 10. 782 hydroarsena		tribromide, 5 . 645
hemicupride, 5, 605 hemitristannide, 7, 385 hemitristannide, 7, 385 hemitristannide, 5, 607 hexacupride, 5, 607 hexacupride, 5, 605 hydrazine sulphate, 5, 659 hydrazine sulphate, 5, 659 hydroxylamine sulphate, 5, 659 hydroxylamine sulphate, 5, 659 hydroxylamine sulphate, 5, 660 magneside, 5, 606 mercury alloys, 5, 607 magneside, 5, 606 mercury alloys, 5, 607 metoxide, 5, 625 mickel alloys, 15, 232 mitride, 8, 120 monobismuthide, 5, 640 oxalicum medicinale, 5, 640 oxalicum medicinale, 5, 641 oxysulphide, 5, 663 properties, chemical, 5, 601 mphysical, 5, 691 quadrantozincide, 5, 607 quadrantozincide, 5, 607 quinoline sulphate, 5, 669 magneside, 5, 603 monobismuthide, 5, 605 mphysical, 5, 605 mphysical, 5, 605 mitride, 8, 120 monobismuthide, 9, 638 tritaluminide, 5, 604 uranite, 12, 43 uranite, 1		—— trichloride, 5 . 639
— hemistamide, 7. 385 hemiziristamide, 7. 385 hemiziristamide, 7. 385 hemiziristamide, 7. 385 hemiziristamide, 7. 385 hemiziride, 5. 607 hexacupride, 5. 606 hydrazine sulphate, 5. 659 hydride, 5. 601 hydroxylamine sulphate, 5. 659 hydroxylamine sulphate, 5. 659 hyponitrite, 8. 416 hypophosphite, 8. 886 icosiamminotrichloride, 5. 640 ioidide, 5. 646 iron alloys, 13. 557 magneside, 5. 606 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 633 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitrites, 8. 496 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 oxycarbide, 5. 631 paraoxide, 5. 633 platinum alloys, 16. 211 preparation, 5. 589 properties, chemical, 5. 601 oxysulphide, 5. 650 quadrantozincide, 5. 607 quinoline sulphate, 5. 659 selenide, 5. 603 sesquioxide, 5. 626 silicate, 6. 826 silicide, 5. 604; 6. 185 silicide, 5. 604; 6. 185 silicide, 5. 604; 6. 185 silicide, 5. 606 sodium alloys, 5. 606 sodium alloys, 5. 606 solium alloys, 5. 605 — phosphateosilicate, 6. 880 silicide, 5. 636 — phosphateosilicate, 6. 835 solubility of hydrogen, 1. 307 sulphate basic, 5. 651 — dodecahydrated, 5. 638 hydraarsantlide, 9. 638 tritaluminide, 9. 638 tritatuminide, 9. 638 tritetriabismuthide, 9. 638 tritetriabismuthid		
hemitriatenide, 7, 385 hemizincide, 5, 607 hexacupride, 5, 605 hydraine sulphate, 5, 659 hydroxylamine sulphate, 5, 659 hypophosphite, 8, 886 icosiamminotrichloride, 5, 640 iodide, 5, 646 iron alloys, 13, 557 magneside, 5, 606 mercury alloys, 5, 607 metaxide, 5, 633 monobismuthide, 9, 638 monoxide, 5, 635 mitride, 8, 120 nitride, 8, 120 nitride, 8, 120 nitrohydioxylaminate, 8, 306 occurrence, 5, 587 oxycarbide, 5, 633 paraoxide, 5, 633 properties, chemical, 5, 601 mphysical, 5, 591 pyridine sulphate, 5, 659 quadrantozincide, 5, 607 quinoline sulphate, 5, 659 quadrantozincide, 5, 607 quinoline sulphate, 5, 659 selenide, 5, 604 siliced deceatungstate, 6, 880 siliced of hydrogen, 1, 307 sulphate basic, 5, 606 sodium alloys, 5, 606 solium alloys, 16, 211 preparation, 5, 589 properties, chemical, 5, 601 oddecahydrated, 5, 633 sesquioxide, 5, 603 solium alloys, 16, 22 crosic molybdate, 11, 564 Cerosoceric hydrosulphate, 5, 660 oxalicum medicinale, 5, 640 oxysulphide, 5, 640 oxysulphide, 5, 633 platinum alloys, 16, 211 preparation, 5, 589 quadrantozincide, 5, 607 quinoline sulphate, 5, 659 selenide, 5, 603 sesquioxide, 5, 626 silicide, 5, 604 silicododecatungstate, 6, 880 silicododecatungstate, 6, 880 silicododecatungstate, 6, 880 silicododecatungstate, 6, 880 solium alloys, 16, 211 oxysulphide, 5, 638 occurrence, 5, 587 oxycarbide, 5, 633 occurrence, 5, 587 oxycarbide, 5, 633 octaminotrichloride, 5, 640 oxysulphide, 5, 659 oxygulphide, 5, 659		
— hemizincide, 5. 607 — hexacupride, 5. 605 — hydrazine sulphate, 5. 659 — hydride, 5. 601 — hydroxylamine sulphate, 5. 659 — hypophosphite, 8. 886 — icosiamminotrichloride, 5. 640 — iodie, 5. 646 — iron alloys, 13. 557 — magneside, 5. 606 — mercury alloys, 5. 607 — metaborate, 5. 104 — metoxide, 5. 633 — monobismuthide, 9. 638 — monoxide, 5. 633 — monobismuthide, 9. 638 — monoxide, 5. 625 — nitride, 8. 120 — occurrence, 5. 587 — octamminotrichloride, 5. 640 — oxalicum medicinale, 5. 543 — oxycarbide, 5. 633 — platinum alloys, 16. 211 — preparation, 5. 589 — properties, chemical, 5. 601 — physical, 5. 591 — physical, 5. 591 — pyridine sulphate, 5. 669 — quadrantozincide, 5. 667 — quinoline sulphate, 5. 669 — quadrantozincide, 5. 607 — quinoline sulphate, 5. 669 selenide, 5. 603 sesquioxide, 5. 626 silicate, 6. 826 silicate, 6. 826 silicide, 5. 804; 6. 185 silicide, 5. 604; 6. 185 silicide, 5. 604; 6. 185 silicide, 5. 604; 6. 185 silicide, 5. 606 sodium alloys, 5. 606 sodium alloys, 5. 606 sodium alloys, 5. 606 ——phosphatosilicate, 6. 835 ——phosphatosilicate, 6. 835 ——phosphatosilicate, 6. 835 ——phosphatosilicate, 6. 635 ——phosphatosilicate, 6. 835 ——phosphatosilicate, 6. 83		
- hexacupride, 5. 605 - hydrazine sulphate, 5. 659 - hydroxylamine sulphate, 5. 659 - hydroxylamine sulphate, 5. 659 - hypophosphite, 8. 886 - icosiamminotrichloride, 5. 640 - iodide, 5. 646 - iron alloys, 13. 557 - magneside, 5. 606 - mercury alloys, 5. 607 - metaborate, 5. 104 - metoxide, 5. 633 - monobismuthide, 9. 638 - monoxide, 5. 625 - nickel alloys, 15. 232 - nitride, 8. 120 - nitrolydioxylaminate, 8. 306 - occurrence, 5. 587 - oxyaclicum medicinale, 5. 543 - oxyaclicum delicinale, 5. 543 - oxyalphide, 5. 660 - paraoxide, 5. 633 - platinum alloys, 16. 211 - preparation, 5. 589 - properties, chemical, 5. 601 - physical, 5. 591 - quadrantozincide, 5. 667 - quinoline sulphate, 5. 669 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 669 - sellenide, 5. 603 - sesquioxide, 5. 626 - silicide, 5. 604; 6. 185 - silicodoceatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - — phosphatosilicate, 6. 835 - — phosphatosilicate, 6. 835 - monobismuthide, 5. 669 - uranate, 12. 43 - uranite, 12. 43 - u		
- hydrazíne sulphate, 5. 659 hydride, 5. 601 hydroxylamine sulphate, 5. 659 hypophosphite, 8. 886 icosiamminotrichloride, 5. 640 iodide, 5. 646 iron alloys, 13. 557 magneside, 5. 606 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 625 mickel alloys, 15. 232 nitride, 8. 120 nitride, 8. 640 oxalicum medicinale, 5. 640 oxalicum medicinale, 5. 640 oxalium alloys, 16. 211 preparation, 5. 689 properties, chemical, 5. 601 —physical, 5. 569 quadrantomagneside, 5. 606 quadrantomagneside, 5. 607 quinoline sulphate, 5. 659 selenide, 5. 603 sesquioxide, 5. 626 silicide, 5. 604; 6. 185 silicide, 5. 605 selenide, 5. 605 solubility of hydrogen, 1. 307 sulphate basic, 5. 651 —dodecahydrated, 5. 652 —dodecahydrated, 5. 652 —hydroarenate, 9. 187 dihydroarenate, 9. 187 dihydroarenate, 9. 180 ceroir mediate, 12. 43 —uranite, 12. 43 —uranite, 12. 43 —uranite, 12. 43 —uranite, 12. 43 —ura		
— hydride, 5. 601 — hydroxylamine sulphate, 5. 659 — hypophosphite, 8. 886 — icosiamminotrichloride, 5. 640 — iodide, 5. 646 — iron alloys, 13. 557 — magneside, 5. 606 — mercury alloys, 5. 607 — metaborate, 5. 104 — metoxide, 5. 633 — monobismuthide, 9. 638 — monoxide, 5. 625 — nickel alloys, 15. 232 — nitride, 8. 120 — nitrolydioxylaminate, 8. 306 — occurrence, 5. 587 — octamminotrichloride, 5. 640 — oxalicum medicinale, 5. 543 — oxycarbide, 5. 633 — paraoxide, 5. 631 — physical, 5. 650 — paraoxide, 5. 639 — properties, chemical, 5. 661 — physical, 5. 591 — pyridine sulphate, 5. 669 — quadrantomagneside, 5. 606 — quadrantomagneside, 5. 606 — quadrantomagneside, 5. 606 — quadrantomagneside, 5. 606 — quadrantomagneside, 5. 607 — quinoline sulphate, 5. 659 — selenide, 5. 603 — sesquioxide, 5. 626 — silicide, 5. 604; 6. 185 — silicododecatungstate, 6. 880 — silver alloys, 5. 606 — sodium alloys, 5. 605 — phosphatosilicate, 6. 835 — oddecahydrated, 5. 652 — hemihydrated, 5. 638 — hemihydrated, 5. 638 — hexaiodohexanitritotriplatinite, 8. 523 — hydroarsenate, 9. 187 — dihydrate, 12. 43 — uranite, 12. 64 — uranite, 12. 64 — uranite, 12. 43 — uranite, 1		
— hydroxylamine sulphate, 5. 659 hyponitrite, 8. 416 hypophosphite, 8. 886 icosiamminotrichloride, 5. 640 iodido, 5. 646 iron alloys, 13. 557 magneside, 5. 606 mercury alloys, 5. 607 metaborate, 5. 104 metoxide, 5. 633 monoxide, 5. 633 monomosimuthide, 9. 638 monoxide, 5. 625 nickel alloys, 15. 232 nitride, 8. 120 nitride, 8. 120 nitride, 8. 120 nitrohydioxylaminate, 8. 306 occurrence, 5. 587 oxycarbide, 5. 640 oxalicum medicinale, 5. 543 oxycarbide, 5. 641 oxysulphide, 5. 650 paraoxide, 5. 633 platinum alloys, 16. 211 preparation, 5. 589 properties, chemical, 5. 660 —physical, 5. 591 pyridine sulphate, 5. 659 quadrantomagneside, 5. 609 quadrantomagneside, 5. 609 quadrantomagneside, 5. 609 selenide, 5. 603 sesquioxide, 5. 626 silicide, 6. 826 silicide, 6. 826 silicide, 6. 826 silicide, 5. 604; 6. 185 silicododecatungstate, 6. 880 silver alloys, 5. 605 —phosphatosilicate, 6. 835 solubility of hydrogen, 1. 307 sulphate basic, 5. 651 —dihydrate, 12. 43 —dihydrate, 12. 43 —urantl sulphite, 10. 309 uses of, 5. 610 (dicerium caleium aluminohydroxytriorthorite, 5. 638 Ceroite, 6. 423 Cerosic molybdate, 11. 564 Cerosice molybdate, 11. 564 Cerosice molybdate, 11. 564 Cerosice molybdate, 5. 660 —oxide, 5. 633 —enolyblate, 5. 660 —molyblate, 5. 660 —molyblate, 5. 660 —esulphate, 5. 660 —esulphite, 10. 309 —esulphite, 10. 302 —esulphite, 10. 302 —esulphite, 10. 302 —esulphite, 10. 302 —esulphite, 5. 659 —essium nitrate, 5. 671 —eric sulphate, 5. 669 —essium nitrate, 5. 664 —eric sulphate, 5. 669 —ehoroplatinite, 16. 284 —henylorated, 5. 639 —hexahydrated, 5. 639 —ehoroplatinite, 16. 284 —henylorate, 12. 43 —dilydrotera		
— hylophosphite, 8. 886 — icosiamminotrichloride, 5. 640 — iodide, 5. 646 — iron alloys, 13. 557 — magneside, 5. 606 — mercury alloys, 5. 607 — metaborate, 5. 104 — metoxide, 5. 633 — monobismuthide, 9. 638 — monoxide, 5. 625 — nickel alloys, 15. 232 — nitride, 8. 120 — octamminotrichloride, 5. 640 — oxalicum medicinale, 5. 543 — oxycarbide, 5. 633 — paraoxide, 5. 633 — paraoxide, 5. 633 — paraoxide, 5. 633 — paraoxide, 5. 633 — properties, chemical, 5. 661 — physical, 5. 591 — pyridine sulphate, 5. 659 — quadrantomagneside, 5. 606 — quadrantomagneside, 5. 607 — quinoline sulphate, 5. 659 — selenide, 5. 603 — sesquioxide, 5. 626 — silicide, 6. 604; 6. 185 — silicide, 6. 626 — sodium alloys, 5. 606 — sodium alloys, 5. 605 — phosphatosilicate, 6. 835 — solubility of hydrogen, 1. 307 — sulphate basic, 5. 651 — dodecahydrated, 5. 652 — hydroarsenate, 9. 187 — dodecahydrated, 5. 652 — hydroarsenate, 9. 187 — hydroarsenate, 5. 610 (diperium calcium aluminohydroxytriorthorthorydicate, 5. 630 — cerolite, 6. 423 Cerosic molybdate, 11. 564 Cerosic molybdate, 11. 560 — oxile lalughate, 5. 650 — sulphate, 5. 653 — essilm nitrate, 5. 659 — essium nitrate, 5. 639 — hexahydrated, 5. 639 — ehloroplatinite, 16. 284 — cobal		uranite, 12. 43
- icosiamminotrichloride, 5. 640 iodide, 5. 646 iron alloys, 13. 557 - magneside, 5. 606 - mercury alloys, 5. 607 - metaborata, 5. 104 - metoxide, 5. 633 - monobismuthide, 9. 638 - monoxide, 5. 625 - nickel alloys, 15. 232 - nitride, 8. 120 - nitride, 8. 120 - nitride, 8. 120 - nitride, 8. 120 - nitrohydioxylaminate, 8. 306 - occurrence, 5. 587 - octamminotrichloride, 5. 640 - oxalicum medicinale, 5. 543 - oxycarbide, 5. 633 - platinum alloys, 16. 211 - preparation, 5. 589 - properties, chemical, 5. 661 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantomagneside, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 603 - selenide, 5. 603 - sesquioxide, 5. 605 - solium alloys, 5. 606 - solium alloys, 5. 606 - solium alloys, 5. 606 - solium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - didecerium calcium aluminohydroxytri- orthosilicate, 5. 510 Cerofluorite, 5. 638 Cerosic molybdate, 11. 564 Cerosceric molybdate, 14. 566 — molybdate	hyponitrite, 8. 416	——————————————————————————————————————
dide, 5. 646		
- iron alloys, 13. 557 - magneside, 5. 606 - mercury alloys, 5. 607 - metaborate, 5. 104 - metoxide, 5. 633 - monobismuthide, 9. 638 - monoxide, 5. 625 - nickel alloys, 15. 232 - nitride, 8. 120 - nitrides, 8. 120 - nitrides, 8. 496 - occurrence, 5. 587 - octamminotrichloride, 5. 640 - oxalicum medicinale, 5. 543 - oxychloride, 5. 641 - oxysulphide, 5. 663 - paraoxide, 5. 633 - platinum alloys, 16. 211 - preparation, 5. 589 - properties, chemical, 5. 601 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 603 - selenide, 5. 604 - silicate, 6. 826		
— megneside, 5. 606		
Cerolite, 6. 423 Cerosic molybdate, 11. 564 Cerosceric hydrosulphate, 5. 660 — oxide, 5. 623 Cerosceric hydrosulphate, 5. 660 — oxide, 5. 633 Cerous ammonium carbonate, 5. 666 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate, 5. 668 — oxide, 5. 633 Cerous ammonium carbonate,		
metaborate, 5. 633		
— metoxide, 5. 633 — monobismuthide, 9. 638 — monoxide, 5. 625 — nickel alloys, 15. 232 — nitride, 8. 120 — nitride, 8. 120 — nitride, 8. 496 — nitrohydioxylaminate, 8. 306 — occurrence, 5. 587 — octamminotrichloride, 5. 640 — oxalicum medicinale, 5. 543 — oxycarbide, 5. 873 — oxycarbide, 5. 873 — oxycarbide, 5. 661 — paraoxide, 5. 633 — platinum alloys, 16. 211 — preparation, 5. 589 — properties, chemical, 5. 601 — physical, 5. 591 — pyridine sulphate, 5. 659 — quadrantomagneside, 5. 606 — quadrantozincide, 5. 607 — quinoline sulphate, 5. 659 — selenide, 5. 603 — selenide, 5. 603 — selenide, 5. 604; 6. 185 — silicide, 5. 604; 6. 185 — silicide, 5. 604; 6. 185 — silicide, 5. 605 — phosphatosilicate, 6. 835 — solubility of hydrogen, 1. 307 — sulphate basic, 5. 651 — dodecahydrated, 5. 652 — hydroarsenate, 9. 187 Cerous ammonium carbonate, 5. 666 — copper nitrite, 8. 496 — oxide, 5. 638 — sulphate, 5. 666 — sulphate, 5. 666 — oxpleta, 11. 587 — morphydidate, 11. 587 — nitrate, 5. 671 — sulphate, 5. 659 — sulphate, 5. 659 — caminum sulphate, 5. 659 — cadmium sulphate, 5. 659 — chloride, 5. 603, 639 — heptahydrated, 5. 638 — chloroplatinite, 16. 330 — chloroplatinite, 16. 284 — chromate, 11. 286 — cobaltous nitrate, 14. 828 — dihydroarsenate, 9. 187 — dihydrotetraselenide, 10. 830 — dithionate, 10. 594 — dodecanitritotriplatinite, 8. 521 — hydroarsenate, 9. 187		
— monobismuthide, 9. 638 — monoxide, 5. 625 — nickel alloys, 15. 232 — nitride, 8. 120 — nitrides, 8. 496 — nitrohydioxylaminate, 8. 306 — occurrence, 5. 587 — octamminotrichloride, 5. 640 — oxalicum medicinale, 5. 543 — oxycarbide, 5. 873 — oxycarbide, 5. 873 — oxycarbide, 5. 631 — paraoxide, 5. 633 — platinum alloys, 16. 211 — preparation, 5. 589 — properties, chemical, 5. 601 — physical, 5. 591 — pyridine sulphate, 5. 659 — quadrantozincide, 5. 666 — quadrantozincide, 5. 667 — quinoline sulphate, 5. 659 — selenide, 5. 603 — sesquioxide, 5. 626 — silicate, 6. 826 — silicate, 6. 826 — silicododecatungstate, 6. 880 — silicododecatungstate, 6. 880 — silicododecatungstate, 6. 880 — silicotododecatungstate, 6. 880		
		oxide, 5. 633
- nitride, 8, 120 - nitrites, 8, 496 - nitrohydioxylaminate, 8, 306 - occurrence, 5, 587 - octamminotrichloride, 5, 640 - oxalicum medicinale, 5, 543 - oxycarbide, 5, 873 - oxychloride, 5, 664 - oxysulphide, 5, 650 - paraoxide, 5, 633 - platinum alloys, 16, 211 - preparation, 5, 589 - properties, chemical, 5, 601 - physical, 5, 591 - pyridine sulphate, 5, 659 - quadrantomagneside, 5, 606 - quadrantomagneside, 5, 607 - quinoline sulphate, 5, 659 - selenide, 5, 603 - selenide, 5, 603 - selenide, 5, 603 - selenide, 5, 606 - silicate, 6, 826 - silicide, 5, 604 - silver alloys, 5, 606 - solubility of hydrogen, 1, 307 - sulphate basic, 5, 651 - mitrate, 5, 659 - sulphite, 10, 302 - tungstate, 11, 790 - bromate, 2, 357 - bromoaurate, 3, 607 - carbonate, 5, 669 - carbonate, 5, 661 - carbonate, 5, 662 - chloroplatinate, 5, 662 - chloroplatinate, 16, 330 - chloroplatinite, 16, 284 - dihydroarsenate, 9, 187 - dihydroarsenate, 9, 187 - dodecanitritotriplatinite, 8, 523 - hemihydrated, 5, 638 - hexaiodohexanitritotriplatinite, 8, 523 - hydrated selenide, 10, 782 - hexaiodohexanitritotriplatinite, 8, 523 - hydrated selenide, 10, 782 - hexaiodohexanitritotriplatinite, 8, 523 - hydrated selenide, 10, 782 - hexaiodohexanitritotriplatinite, 8, 523 - hydrated selenide, 10, 782		
- occurrence, 5. 587 - octamminotrichloride, 5. 640 - oxalicum medicinale, 5. 543 - oxycarbide, 5. 873 - oxycarbide, 5. 641 - oxysulphide, 5. 650 - paraoxide, 5. 633 - platinum alloys, 16. 211 - preparation, 5. 589 - properties, chemical, 5. 601 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantomagneside, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - selenide, 5. 603 - selenide, 5. 606 - selicide, 5. 604; 6. 185 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - hydroarsenate, 9. 187		
- oxysulphide, 5. 650 - paraoxide, 5. 633 - platinum alloys, 16. 211 - preparation, 5. 589 - properties, chemical, 5. 601 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - selenide, 5. 603 - selenide, 5. 604 - silicate, 6. 826 - silicate, 6. 826 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - hydrated selenide, 10. 782 - hydroarsenate, 9. 187 - hydrated selenide, 10. 782 - hydroarsenate, 9. 187 - hydrated selenide, 10. 782 - hydroarsenate, 9. 187 - hydrated selenide, 10. 782 - hydroarsenate, 9. 187		bromoaurate, 3. 607
— platinum alloys, 16. 211 — preparation, 5. 589 — properties, chemical, 5. 601 — physical, 5. 591 — pyridine sulphate, 5. 659 — quadrantomagneside, 5. 606 — quadrantozincide, 5. 607 — quinoline sulphate, 5. 659 — selenide, 5. 603 — sesquioxide, 5. 626 — silicate, 6. 826 — silicide, 5. 604; 6. 185 — silicide, 5. 606 — silicododecatungstate, 6. 880 — silver alloys, 5. 606 — phosphatosilicate, 6. 835 — phosphatosilicate, 6. 835 — solubility of hydrogen, 1. 307 — sulphate basic, 5. 651 — dodecahydrated, 5. 652 — dodecahydrated, 5. 652 — hydrated selenide, 10. 782 — hydroarsenate, 9. 187 — hydrated selenide, 10. 782 — hydroarsenate, 9. 187 — hydrated selenide, 10. 782 — hydroarsenate, 9. 187		
- preparation, 5. 589 - properties, chemical, 5. 601 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603, 639 - heptahydrated, 5. 639 - chloroaurate, 3. 595 - chloroplatinate, 16. 330 - chloroplatinite, 16. 284 - chloroplatinite, 16. 330 - chloroplatinate, 16. 330 - chloro		
- properties, chemical, 5. 601 - physical, 5. 591 - pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicate, 6. 826 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 639 - hexahydrated, 5. 639 - hexahydrated, 5. 639 - chloroaurate, 3. 595 - chloroplatinate, 16. 330 - chloroplatinite, 16. 284 - choroate, 11. 286 - chloroplatinite, 16. 284 - choroate, 11. 286 - choroate, 11. 286 - choroate, 11. 286 - cobaltic hexamminosulphate, 14. 791 - dihydroarsenate, 9. 187 - dihydroarsenate, 10. 830 - dithionate, 10. 594 - dodecanitritotriplatinite, 8. 521 - hydrated selenide, 10. 782 - hydroarsenate, 9. 187		
- pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicide, 5. 604; 6. 185 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - chloroplatinite, 16. 330 - chloroplatinite, 16. 284 - chloroplatinite, 16. 330 - chloroplatinite, 16. 284 - chloroplatinite, 16. 286 - chloroplatinite, 16. 286 - chloroplatinite, 16. 286 - chloro		
- pyridine sulphate, 5. 659 - quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicide, 5. 604; 6. 185 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - chloroplatinite, 16. 330 - chloroplatinite, 16. 284 - chloroplatinite, 16. 330 - chloroplatinite, 16. 284 - chloroplatinite, 16. 286 - chloroplatinite, 16. 286 - chloroplatinite, 16. 286 - chloro		hexahydrated, 5. 640
- quadrantomagneside, 5. 606 - quadrantozincide, 5. 607 - quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicide, 5. 604; 6. 185 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - chloroplatinate, 16. 330 - chloroplatinate, 16. 284 - chloroplatinate, 16. 286 - dihydroarsenate, 9. 187 - dihydroarsenate, 9. 187 - dihydroarsenate, 10. 830 - dithionate, 10. 594 - dihydroarsenate, 10. 830 - dithionate, 10. 594 - dodecanitritotriplatinite, 8. 521 - hexalodolecanitritotriplatinite, 8. 523 - hexalodolecanitritotri		
- quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicide, 5. 604; 6. 185 - silicododecatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - cobaltic hexamminosulphate, 14. 791 - cobaltic hexamminosulphate, 14. 791 - dihydroarsenate, 9. 187 - dihydroarsenate, 9. 187 - dihydroarsenate, 9. 187 - dihydroarsenate, 9. 187 - dodecahydrated, 5. 652 - cromate, 11. 286 - cobaltic hexamminosulphate, 14. 791 - dihydroarsenate, 9. 187	—— quadrantomagneside, 5. 606	chloroplatinate, 16. 330
- quinoline sulphate, 5. 659 - selenide, 5. 603 - sesquioxide, 5. 626 - silicate, 6. 826 - silicide, 5. 604; 6. 185 - silicido decatungstate, 6. 880 - silver alloys, 5. 606 - sodium alloys, 5. 605 - phosphatosilicate, 6. 835 - solubility of hydrogen, 1. 307 - sulphate basic, 5. 651 - dodecahydrated, 5. 652 - cobaltic hexamminosulphate, 14. 791 - cobaltous nitrate, 14. 828 - dihydroarsenate, 9. 187 - dihydroarsenate, 10. 830 - dithionate, 10. 594 - dodecanitritotriplatinite, 8. 521 - hexaiodohexanitritotriplatinite, 8. 523 - hydraated selenide, 10. 782 - hydroarsenate, 9. 187	—— quadrantozincide, 5. 607	chloroplatinite, 16. 284
	quinoline sulphate, 5. 659	
	silicate, v . 520	
	silicododecaturgstate. 6. 880	
— phosphatosilicate, 6 . 835 — solubility of hydrogen, 1 . 307 — sulphate basic, 5 . 651 — dodecahydrated, 5 . 652 — hydrated selenide, 10 . 782 — hydroarsenate, 9 . 187		—— fluoride, 5 . 638
	—— solubility of hydrogen, 1. 307	
enneanydrated, 5. 002 hydropyrophosphate, 5. 075		
	enneanydrated, b. 002	nydropyrophosphate, a. 013

Cerous hydrosulphate, 5. 656	Cerulean blue, 14. 519
hydrosulphite, 10. 830	Ceruleofibrite, 9. 259
hydroxide, 5. 628	Céruse, 7. 829
iodate, 2. 354, 357	Cerussa nativa, 7. 829
iodide, 5 . 603	usta, 7. 673
	Cerussite, 7. 491, 829
lead orthophosphate, 7. 879 magnesium nitrate, 5. 671	Cervantite, 9. 343, 435
	Cesarolite (or Césarolite), 12. 149, 267, 279
manganous nitrate, 12. 445	Ceylonite, 5. 297
metaphosphate, 5. 675	Chabasin, 6 . 729
—— metatungstate, 11. 826	Chabasite, 6 . 729
molybdate, 11. 563, 564	
nickel nitrate, 15. 492	
nitrate, 5. 668	
nitrite, 8. 496	barium, 6. 733
orthophosphate, 5. 675	
orthosulpharsenate, 9. 322	
orthovanadate, 9. 775	natron, 6, 734
oxypentaselenite, 10, 830	—— potassium, 6. 733
—— paratungstate, 11. 819	
—— perchlorate, 2. 402	—— thallo-, 6 . 826
periodate, 2. 416	Chacal, 5. 714
— potassium carbonate, 5, 665	Chain reactions, 16. 152
copper nitrite, 8. 496	Chalcanthite, 8. 7, 234
nitrate, 5 . 670	Chalcanthites, 4: 639; 12. 403
———— nickel nitrite, 8. 512	Chalcanthon, 14. 242
orthophosphate, 5. 675	Chalcedony, 6, 139
sulphate, 5 . 658 sulphite, 10 . 302	Chalcites, 14. 243
	Chalcitis, 3. 3; 14. 243
pyroarsenite, 9. 297	Chalcocite, 3. 7, 210
pyrophosphate, 5. 675	Chalcodite, 6, 624; 12, 529
—— pyrosulpharsenate, 9. 322	Chalcolamprite, 6. 829; 7. 3, 100; 9. 839
- rubidium nitrate, 5. 670	Chalcolite, 12. 2, 4, 133
selenates, 10. 871	Chalcolithite, 3. 8
——————————————————————————————————————	Chalcomenite, 10, 694, 823
dodecahydrate, 10. 872	Chalcomiklite, 14. 189
enneahydrate, 10. 872	Chalcomorphite, 6. 362
———— henshydrate, 10. 872	Chalcophacite, 9. 186
heptahydrate, 10. 872	Chalcophanite, 12. 149
hexahydrate, 10. 872	Chalcophyllite, 9, 4, 162
——————————————————————————————————————	Chalcopyrite, 3. 7; 12. 529; 14. 183, 184
—— pentanydrate, 10. 872	Chalcopyrohotin, 12. 529
tetrahydrate, 10. 872	Chalcopyrrhotite, 14, 183, 192
selenide, 10. 782	Chalcosiderite, 5. 155; 8. 733; 12. 529; 14.
—— selenite, 10. 830	410 Chalcostibite 0 242 526
sodium carbonate, 5. 665	Chalcostibite, 9, 343, 536
	Chalcostibuite, 8, 7
	Chalden 1 20
——————————————————————————————————————	Chaldea, 1. 20 Chalitite, 6. 709
sulphate, 5. 657	
sulphite, 10. 302 tungstate, 11. 790	Chalk, 3. 622, 814
tungstate, 11. 790	—— French, 6. 430
sulphate, 5. 650	Chalkanthon, 14. 243 Chalkanthos, 14. 243
sulphatocerate, 5, 660	
sulphatonitrate, 5. 669	Chalkenthum, 14. 243 —— viride cyprium, 14. 243
sulphotungstate, 11. 859	Chalkomelan, 3. 131
tellurate, 11. 96	Chalkopyrrhotin, 14. 192
thallium copper nitrite, 8, 496	Chalkosiderit, 14. 410
nickel nitrite, 8. 512	Chalkosine, 8. 210
thallous nitrate, 5. 671 triterodecavanadate, 9. 775	Chalkostibit, 9. 536
	Chalmersite, 3. 7; 12. 529; 14. 183, 192
tungstate, 11. 789	Chalybinglenz, 9. 546
(di)cerous ammonium octosulphate, 5. 659	Chalybite, 3. 622; 12. 529; 14. 355
potassium hexasulphate, 5. 658	Chalypite, 12. 529
potassium nexasurphate, 5. 658	Chamber acid, 10. 363
pentasulphate, 5. 658	crystals, 8. 696
sodium hexasulphate, 5. 657	Chamoisite, 6. 623
(tetra)cerous potassium enneasulphate, 5.	Chamosite, 6. 622; 12. 529
658	Chanaccillite, 9. 65, 343, 404
sodium enneasulphate, 5. 657	Chancourtois' telluric screw, 1. 253

Chapmante, 8, 836 Charactivite equation, 1, 161 Charcanthum candidum, 4, 613 Charcoal absorption, oxygen, 1, 371 — activated, 5, 747 — activated, 5, 747 — activated, 5, 748 — activated, 5, 748 — of hydrogen, 1, 310 — animal, 5, 780; 8, 735 — blood, 5, 750 — bone, 5, 748 — pit, 5, 748 — retort, 5, 748 — stove, 5, 748 — sugar, 5, 747 — wood, 5, 748 — and kinetic theory, 1, 747 — solutions, 1, 162 — deviations, 1, 162 — deviations, 1, 162 — charon's sewers, 6, 6 Charonita, 9, 76; 15, 5, 9 Chale and theory, 1, 307 — charonitation, finite theory, 2, 141, 142 — polar theory, 1, 397 — affinity, 1, 1011 — change, 1, 83 — combanations, 1, 658 — combanations,		
Charcoal absorption, oxygen, 1, 371 — activated, 5, 747 — actives, 5, 747 — actives, 5, 748 — after from 8oln, 5, 799 — of hydrogen, 1, 310 — animal, 5, 750; 8, 735 — blood, 5, 750 — bone, 5, 788 — pit, 5, 748 — retort, 5, 748 — stove, 5, 748 — stove, 5, 748 — stove, 5, 748 — stove, 5, 748 — and kinetic theory, 1, 747 — asolutions, 1, 545 — deviations, 1, 162 — deviations, 1, 163 — de	Chapmanite, 6. 836	Chemistry, Egypt, 1. 24
Charcoal absorption, oxygen, 1, 371 — active, 5, 747 — active, 5, 747 — advorption gases, 5, 789 — of hydrogen, 1, 310 — animal, 5, 750; 8, 735 — blood, 5, 750 — bone, 5, 750 — bone, 5, 768 — pit, 5, 748 — retort, 5, 748 — stove, 1, 747 — wood, 5, 748 — device in the company of the composition of		
- active, 5. 747 - adsorption gases, 5. 789 - of hydrogen, 1. 310 - animal, 5. 750; 8. 735 - blood, 5. 750 - bone, 5. 750 - bone, 5. 758 - pit, 5. 748 - pit, 5. 748 - pit, 5. 748 - solutions, 1. 548 - stove, 5. 748 - sugar, 5. 747 - wood, 5. 748 - deviations, 1. 162 - offect molecular weight on, 1. 194 Charnock, T., 1. 48 Charlor Law, 1. 158 - offect molecular weight on, 1. 194 Charnock, T., 1. 48 Charones sorobes, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charutz, 3. 296 Chatellite, 9. 76 Cheluficritie, 6. 763 Chelentite, 15. 5, 9 Chard action, kinotic theory, 2. 141, 142 - polar thorry, 1. 397 - affinity, 1. 1011 - change, 1. 83 - combinations, 1. 658 - composition and refractive index, 1. 677 - one feet of temperature, 1. 732 - equivalent, 1. 984 - fogs, 10. 401 - mixtures, 1. 658 - potential, 1. 1011 - reaction, work, 1. 730 - reactions, 4. 51 - radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 - anthropomorphical, 1. 2 - applied, 1. 11 - arabian, 1. 40 - Aryan, 1. 20 - Biblical, 1. 28 - Byzantium, 1. 38, 39, 44 - Chaldean, 1. 20 - Chalcean, 1. 20 - preparation, 2. 296 - detection, 2. 209 - preparation, 2. 298 - properties, 2. 217		
- adsorption gases, 5, 789 - from soln, 5, 799 - of hydrogen, 1, 310 - animal, 5, 750; 8, 735 - blood, 5, 750 - bone, 5, 750 - bone, 5, 750 - kiln, 5, 748 - prit, 5, 748 - retort, 5, 748 - stove, 6, 64 - charding, 9, 229 - charding, 1, 20 - charding, 5, 75 - cha		
— from soln, 5. 799 — of hydrogen, 1. 310 — animal, 5. 750; 8. 735 — blood, 5. 750 — bone, 5. 750 — kiln, 5. 748 — pit, 5. 748 — stort, 5. 748 — stort, 5. 748 — stort, 5. 748 — stort, 5. 748 — sugar, 5. 747 — wood, 5. 749 — and kinetic theory, 1. 747 — solutions, 1. 162 — effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charones serobes, 6. 6 Charon's sowers, 6. 6 Charon's sowers, 6. 6 Charon's sowers, 6. 6 Charon's savers, 6. 70 Challier, 9. 76 Challier, 9. 76 Chelufferitte, 6. 763 Chelentite, 9. 76 Chelentite, 15. 5, 9 Chelufferitte, 6. 763 Chelentite, 9. 76 Chelentite, 15. 5, 9 Chelmisfortite, 6. 763 — combinations, 1. 658 — combinations, 1. 658 — combinations, 1. 658 — combinations, 1. 964 - fogs, 10. 401 — intensity, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 - fogs, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — raction, work, 1. 730 — reactions, 4. 51 — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Chaldean, 1. 20 — preparation, 2. 296 — properties, 2. 305 Chlorieseicd, 9. 1. 114 — origin of term, 1. 43 — persian, 1. 20 — philosophical, 1. 3 — Phenician, 1. 22 — penistoric, 1. 10 — crigin of term, 1. 43 — Persian, 1. 20 — philosophical, 1. 3 — Phenician, 1. 22 — penistoric, 1. 10 — Roman, 1. 37 — Syrian, 1. 40 Cherevikite, 1. 199 Cherokine, 7. 883		
- of hydrogen, 1, 310 - animal, 5, 750; 8, 735 - blood, 5, 750 - bone, 5, 750 - bone, 5, 756 - kiln, 5, 748 - pit, 5, 748 - retort, 5, 748 - stove, 5, 748 - stove, 5, 748 - stove, 5, 748 - stove, 5, 748 - sugar, 5, 747 - wood, 5, 748 - charles' Law, 1, 158 - charles' Law, 1, 162 - fleet molecular weight on, 1, 194 - charles', 1, 1, 148 - charoness scrobes, 6, 6 - Charutz, 3, 296 - Charon's sowers, 6, 6 - Charoutz, 3, 296 - Charlier, 1, 1, 197 - Chathamite, 9, 76; 15, 5, 9 - Chemister, 1, 1, 191 - change, 1, 83 - charlique, 9, 229 - charlingue, 9, 229 - charlingue, 9, 229 - charlingue, 1, 1011 - change, 1, 83 - composition and refractive index, 1,		
	of hydrogen 1 310	
— blood, 5. 7560		
— bone, 5. 750 kiln, 5. 748 — pit, 5. 748 — retort, 5. 748 — stove, 5. 788 — sugar, 5. 747 — wood, 5. 748 Charles' Law, 1. 158 — and kinetic theory, 1. 747 — solutions, 1. 162 — — effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charoneas scrobes, 6. 6 Charout, 3. 296 Charolite, 8. 6 Charoneas swers, 6. 6 Charout, 3. 296 Chatchier's law, 2. 147 Chathamite, 9. 76; 15. 5. 9 Chau arrenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 253 Cheleutite, 9. 553 Cheleutite, 9. 553 Cheleutite, 9. 553 Cheleutite, 9. 553 Cheleutite, 15. 5, 9 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — surface tension, 1. 853 — combinations, 1. 658 — composition and refractive index, 1. 678 — energy, 1. 1011 — change, 1. 83 — ometality, 1. 1011 — matches, 8. 1059 — mists, 10. 401 — intensity, 1. 1011 — matches, 8. 1059 — mister, 10. 401 — intensity, 1. 1011 — reaction, work, 1. 730 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — radion, 1. 40 Aryan, 1. 20 — Biblical, 1. 28 — preparation, 2. 296 — detection, 2. 305 — lectrolytic process, 2. 298 — properties, 2. 305 Chlorice scid, 2. 299 — preparation, 2. 217		
— kiln, 5. 748 — pit, 5. 748 — stove, 5. 748 — stove, 5. 748 — wood, 5. 748 — wood, 5. 748 Charles' Law, 1. 158 — and kinetic theory, 1. 747 — — solutions, 1. 152 — effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charones scrobes, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charutz, 3. 296 Chatelier's law, 2. 147 Chathamite, 9. 76; 15. 5, 9 Chaux arsenatée anhydre, 9. 221 — de manimoine native, 9. 421 — de manganese argentin, 12. 266 — metallique, 9. 229 Chazollite, 9. 553 Chelentite, 15. 5, 9 Chelmsfortite, 6. 763 Chelmite, 15. 5, 9 Chelmsfortite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1 — more flect of temperature, 1. 732 — energy, 1. 1011 — change, 1. 83 — energy, 1. 1011 — reaction, work, 1. 730 — effect of temperature, 1. 732 — enivalent, 1. 964 — fogs, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — ractions, 4. 51 — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension et, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — pneumatic, 1. 122 — prehistoric, 1. 10 — Roman, 1. 37 — Syrian, 1. 40 Cherzolite, 1. 190 Cherzolite, 1. 190 Cherzolite, 1. 190 Chersolite, 5. 259 Chierokine, 7. 883 Chert, 6. 140 Chessylite, 2. 274 Chesterlite, 6. 663 Childraite, 5. 155, 370; 8. 733; 12. 149, 529; 14. 397 Chilette, 9. 716, 778; 18. 877 Chilette, 9. 716, 778; 18. 870; 29; 14. 397 Chilette, 9. 716, 778; 18. 870; 29; 14. 397 Chilette, 9. 716, 778; 18. 870 Chilette, 9. 74 Chesterlite, 6. 632 Childraite, 6. 229 Chazollite, 9. 589 Child cast pig iron, 1. 28 Childrate, 9. 420 Chilette, 9. 46 Childraite, 9. 476 Chilette, 9. 476 Chilette, 9. 476 Chilett		
— pit. 5. 748 — retort, 5. 748 — stove, 5. 738 — sugar, 5. 747 — wood, 5. 748 Charles' Law, 1. 158 — and kinetic theory, 1. 747 — solutions, 1. 545 — deviations, 1. 162 — effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charoneas scrobes, 6. 6 Charutz, 3. 296 Charon's sewers, 6. 6 Chatulier's law, 2. 147 Chathamite, 9. 76; 15. 5, 9 Chaux arsenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 229 Chazellite, 9. 553 Chelentite, 15. 5, 9 Chelentite, 15. 5, 9 Chelmisforlite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — surface tension, 1. 853 — constant, 1. 434, 737 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — reaction, work, 1. 730 — potential, 1. 1011 — matches, 8. 1059 mists, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — potential, 1. 1011 — reaction, work, 1. 730 — potential, 1. 1011 — reaction, work, 1. 730 — potential, 1. 1011 — reaction, 4. 51 — reaction, 4. 51 — reaction, 4. 51 — reaction, 4. 51 — mixtures, 1. 658 — potential, 1. 1011 — reaction, 4. 51 — reaction, 4. 51 — reaction, 4. 51 — mixtures, 1. 658 — potential, 1. 1011 — reaction, 4. 51 — reaction, 4. 51 — mixtures, 1. 658 — potential, 1. 1011 — reaction, 4. 51 — reaction, 4. 51 — mixtures, 1. 658 — potential, 1. 1011 — reaction, 4. 52 — mixtures, 1. 658 — potential, 1. 1011 — reaction, 4. 51 — reaction, 4. 52 — potential, 1. 1011 — reaction, 4. 52 — potential, 1. 1011 — reaction, 4. 52 — potential, 1. 1011 — reaction, 4. 52 — potential, 1. 20 — properties, 2. 305 Chlorides acid, 2. 299 — properties, 2. 209 — properties, 2. 209 — properties, 2. 217		
— retort, 5. 748 — stove, 5. 748 — wood, 5. 748 — wood, 5. 748 Charles' Law, 1. 158 — and kinetic theory, 1. 747 — solutions, 1. 545 — deviations, 1. 162 — effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charones scrobes, 6. 6 Charon's sewers, 6. 6 Charon's sewers, 6. 6 Charotic, 2. 296 Chatelier's law, 2. 147 Chathamite, 9. 76; 15. 5. 9 Chaux arsenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 253 Cheleutite, 9. 553 Cheleutite, 9. 553 Cheleutite, 15. 5, 9 Chellemsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — sufface tension, 1. 853 — combinations, 1. 658 — composition and refractive index, 1. 677 — surface tension, 1. 853 — constant, 1. 434, 737 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 – fogs, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20		pneumatic, 1. 122
		prehistoric, 1. 19
	—— stove, 5 . 748	
Charles' Law, 1. 158		
—— and kinetic theory, 1. 747 ——————————————————————————————————		Cheneviscite, 9. 4, 227
—— solutions, 1. 545 —— deviations, 1. 162 —— effect molecular weight on, 1. 194 Charnock, T., 1. 48 Charones, scrobes, 6. 6 Charon's sewers, 6. 6 Charots, 3. 296 Chatelier's law, 2. 147 Chathamito, 9. 76; 15. 5. 9 Chaux arsenatée anhydre, 9. 221 — de manganèse argentin, 12. 266 — metallique, 9. 229 Chazellito, 9. 553 Chelentite, 15. 5. 9 Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — surface tension, 1. 853 — constant, 1. 434, 737 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — matches, 8. 1059 — mists, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — reaction, vork, 2. 296 — detection, 2. 319 — preparation, 2. 296 — detection, 2. 305 Chloric acid, 2. 296 — constitution, 2. 230 — preparation, 2. 206, 299 — preparation, 2. 208, 299 — properties, 2. 305 Chloric acid, 2. 299 — properties, 2. 305 Choric acid, 2. 299 — properties, 2. 305 Choric acid, 2. 299	Charles' Law, 1. 158	Chenevixite, 12. 529
—— deviations, 1, 162 —— effect molecular weight on, 1, 194 Charnock, T., 1, 48 Charoneas scrobes, 6, 6 Charon's sewers, 6, 6 Charotic, 3, 296 Chatelier's law, 2, 147 Chathamite, 9, 76; 15, 5, 9 Chaux arsenatée anhydre, 9, 221 —— d'antimoine native, 9, 421 —— de manganése argentin, 12, 266 —— metallique, 9, 229 Chazollite, 9, 553 Chelentite, 9, 76 Cheleutite, 15, 5, 9 Chelleutite, 15, 15, 18, 877 Chilinte, 9, 258 Chillinte, 9, 258 C	and kinetic theory, 1. 747	Cherokine, 7. 883
Charones, T., 1. 48 Charones scrobes, 6. 6 Charon's sewers, 6. 6 Charutz, 3, 296 Chatelier's law, 2, 147 Chathamite, 9, 76; 15, 5, 9 Chautine, 9, 553 Chelentite, 9, 553 Chelentite, 15, 5, 9 Chelentite, 10, 10, 10 Change, 1, 83 Composition and refractive index, 1, 677 Composition, 1, 1011 Com	solutions, 1. 545	Chert, 6. 140
Charnock, T., 1, 48 Charones scrobes, 6, 6 Charon's sewers, 6, 6 Chartolier's law, 2, 147 Chathamite, 9, 76; 15, 5, 9 Chaux arsenatée anhydre, 9, 221 — d'antimoine native, 9, 421 — de maganèse argentin, 12, 266 — metallique, 9, 229 Chazollite, 9, 553 Cheleutite, 15, 5, 9 Cheleutite, 16, 763 Chemical action, kinetic theory, 2, 141, 142 — polar theory, 1, 397 — affinity, 1, 1011 — change, 1, 83 — combinations, 1, 658 — composition and refractive index, 1, 677 — surface tension, 1, 853 — combinations, 1, 658 — composition and refractive index, 1, 677 — ergety, 1, 1011 — equilibria, 1, 730 — ergety, 1, 1011 — equilibria, 1, 730 — equivalent, 1, 964 — fogs, 10, 401 — intensity, 1, 1011 — matches, 8, 1059 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — reaction, work, 1, 730 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — matches, 8, 1059 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — reaction, work, 1, 730 — reaction, work, 1, 730 — reaction, work, 1, 730 — reaction, 2, 209 — properties, 2, 305 Chlorates, 2, 296 — detection, 2, 296 — detection, 2, 296 — detection, 2, 296 — detection, 2, 296 — properties, 2, 305 Chlorides acid, 2, 219 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 — properties, 2, 205 — properties, 2, 205 — properties, 2, 2	——————————————————————————————————————	Cherzolite, 11. 199
Charnock, T., 1, 48 Charones scrobes, 6, 6 Charon's sewers, 6, 6 Chartolier's law, 2, 147 Chathamite, 9, 76; 15, 5, 9 Chaux arsenatée anhydre, 9, 221 — d'antimoine native, 9, 421 — de maganèse argentin, 12, 266 — metallique, 9, 229 Chazollite, 9, 553 Cheleutite, 15, 5, 9 Cheleutite, 16, 763 Chemical action, kinetic theory, 2, 141, 142 — polar theory, 1, 397 — affinity, 1, 1011 — change, 1, 83 — combinations, 1, 658 — composition and refractive index, 1, 677 — surface tension, 1, 853 — combinations, 1, 658 — composition and refractive index, 1, 677 — ergety, 1, 1011 — equilibria, 1, 730 — ergety, 1, 1011 — equilibria, 1, 730 — equivalent, 1, 964 — fogs, 10, 401 — intensity, 1, 1011 — matches, 8, 1059 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — reaction, work, 1, 730 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — matches, 8, 1059 — mist, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — reaction, work, 1, 730 — reaction, work, 1, 730 — reaction, work, 1, 730 — reaction, 2, 209 — properties, 2, 305 Chlorates, 2, 296 — detection, 2, 296 — detection, 2, 296 — detection, 2, 296 — detection, 2, 296 — properties, 2, 305 Chlorides acid, 2, 219 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 — properties, 2, 205 Chlorides acid, 2, 214 — properties, 2, 205 — properties, 2, 205 — properties, 2, 205 — properties, 2, 2	effect molecular weight on, 1. 194	Chessylite, 3. 274
Charon's sewers, 6. 6 Chartolier's law, 2. 147 Chathamite, 9. 76; 15. 5, 9 Chaux arsenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 229 Chazollite, 9. 553 Cheleutite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — — surface tension, 1. 853 — composition and refractive index, 1. 677 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — mixtures, 1. 668 — potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20	Charnock, T., 1. 48	
Chartuz, 3, 296 Chatelier's law, 2, 147 Chathamite, 9, 76; 15, 5, 9 Chaux arsenatée anhydre, 9, 221 — d'antimoine native, 9, 421 — de manganèse argentin, 12, 266 — metallique, 9, 229 Chazollite, 9, 553 Chelentite, 9, 76 Cheleutite, 15, 5, 9 Chelmsfordite, 6, 763 Chemical action, kinetic theory, 2, 141, 142 — polar theory, 1, 397 — affinity, 1, 1011 — change, 1, 83 — combinations, 1, 658 — composition and refractive index, 1	Charoneas scrobes, 6. 6	Chhilua, 2. 808
Chatchier's law, 2. 147 Chathamite, 9. 76; 15. 5, 9 Chaux arsenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 229 Chazellite, 9. 553 Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmisordite, 6. 763 Chemical action, kinotic theory, 2. 141, 142 — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — surface tension, 1. 853 — constant, 1. 434, 737 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — matches, 8. 1059 — mists, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — radiation theory, 4. 44 Chemicocapillary actions, 3. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20	Charon's sewers, 6. 6	
Chathamite, 9. 76; 15. 5, 9 Chaux arsenatée anhydre, 9. 221 — d'antimoine native, 9. 421 — de manganèse argentin, 12. 266 — metallique, 9. 533 Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — surface tension, 1. 853 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — matches, 8. 1059 — mists, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20		
Chaux arsenatée anhydre, 9, 221 — d'antimoine native, 9, 421 — de manganèse argentin, 12, 266 — metallique, 9, 229 Chazollite, 9, 573 Chelentite, 9, 76 Cheleutite, 15, 5, 9 Chelmsfordite, 6, 763 Chemical action, kinetic theory, 2, 141, 142 — — polar theory, 1, 397 — affinity, 1, 1011 — change, 1, 83 — combinations, 1, 658 — composition and refractive index, 1, 677 — — surface tension, 1, 853 — constant, 1, 434, 737 — energy, 1, 1011 — equilibria, 1, 730 — effect of temperature, 1, 732 — equivalent, 1, 964 — fogs, 10, 401 — intensity, 1, 1011 — matches, 8, 1059 — mists, 10, 401 — mixtures, 1, 658 — potential, 1, 1011 — reaction, work, 1, 730 — reactions, 4, 51 — — radiation theory, 4, 44 Chemicocapillary actions, 3, 222 Chemistry, 3 dimension at, 1, 213 — anthropomorphical, 1, 2 — applied, 1, 11 — Arabian, 1, 40 — Aryan, 1, 20 — Biblical, 1, 28 — Byzantium, 1, 38, 39, 44 — Constantinople, 1, 44 — Chaldean, 1, 20 Chill cast pig iron, 12, 596 Chill clast pig iron, 12, 596 Chill cast pig iron, 12, 596 Child cast pig ir		
Chillinite, 9. 589 Chazellite, 9. 553 Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinotic theory, 2. 141, 142 ————————————————————————————————————		
Chill cast pig iron, 12. 596 Chelentite, 9. 553 Chelentite, 9. 76 Chelmisordite, 6. 763 Chemical action, kinotic theory, 2. 141, 142 ————————————————————————————————————		
Chazellite, 9. 553 Chazellite, 9. 553 Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 ————————————————————————————————————		
Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinotic theory, 2. 141, 142 ————————————————————————————————————	de manganese argentin, 12. 266	Chill cast pig iron, 12, 590
Chelentite, 9. 76 Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinotic theory, 2. 141, 142 ————————————————————————————————————	metallique, 9. 229	
Cheleutite, 15. 5, 9 Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 ————————————————————————————————————	Chazeinte, v. 555	
Chelmsfordite, 6. 763 Chemical action, kinetic theory, 2. 141, 142 ————————————————————————————————————	and a contract of the contract	
Chemical action, kinetic theory, 2. 141, 142 — — — polar theory, 1. 397 — affinity, 1. 1011 — change, 1. 83 — combinations, 1. 658 — composition and refractive index, 1. 677 — — surface tension, 1. 853 — constant, 1. 434, 737 — energy, 1. 1011 — equilibria, 1. 730 — effect of temperature, 1. 732 — equivalent, 1. 964 — fogs, 10. 401 — intensity, 1. 1011 — matches, 8. 1059 — mists, 10. 401 — mixtures, 1. 658 — potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — — radiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Arayan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20 — properties, 2. 296 — properties, 2. 305 — properties, 2. 296 — — properties, 2. 305 — properties, 2. 296 — properties, 2. 296 — properties, 2. 298 — properties, 2. 299 — properties, 2. 217		
Combinations, 1. 658	—— change, 1, 83	
Chinkolobwite, 12. 4, 52 ———————————————————————————————————		
		Chinkolobwite, 12. 4, 52
- equilibria, 1. 730 - equivalent, 1. 964 - fogs, 10. 401 - intensity, 1. 1011 - matches, 8. 1059 - mists, 10. 401 - mixtures, 1. 658 - potential, 1. 1011 - reaction, work, 1. 730 - reactions, 4. 51 - madiation theory, 4. 44 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 - anthropomorphical, 1. 2 - applied, 1. 11 - Arabian, 1. 40 - Aryan, 1. 20 - Biblical, 1. 28 - Constantinople, 1. 44 - Chaldean, 1. 20 - Chloanthite, 9. 4, 76, 81; 15. 5, 9 Chloracetic acid and hydrogen, 1. 303 Chloralydrate and hydrogen, 1. 304 Chloratyrite, 3. 390 Chlorates, 2. 296 - detection, 2. 319 - preparation, 2. 297 - electrolytic process, 2. 298 - properties, 2. 305 - uses, 2. 319 - Chloracodalite, 6. 583 Chlorazide, 8. 336 Chloric acid, 2. 296 - constitution, 2. 320 - properties, 2. 305 - complex, 2. 228 - detection, 2. 209 - properties, 2. 217	constant, 1. 434, 737	Chiviatite, 7. 491; 9. 589, 695
	energy, 1. 1011	
equivalent, 1. 964 fogs, 10. 401 intensity, 1. 1011 matches, 8. 1059 mists, 10. 401 mixtures, 1. 658 potential, 1. 1011 reaction, work, 1. 730 reactions, 4. 51 Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 anthropomorphical, 1. 2 applied, 1. 11 Arabian, 1. 40 Aryan, 1. 20 Biblical, 1. 28 Byzantium, 1. 38, 39, 44 Constantinople, 1. 44 Chaldean, 1. 20 Chloral hydrate and hydrogen, 1. 304 Chloracyrite, 8. 390 Chlorates, 2. 296 — detection, 2. 319 — preparation, 2. 297 — electrolytic process, 2. 298 — properties, 2. 305 Chloricacid, 2. 296 — constitution, 2. 320 — properties, 2. 305 Chlorides acid, 2. 219 — complex, 2. 228 — detection, 2. 209 — properties, 2. 209 — properties, 2. 217	—— equilibria, 1 . 730	
	——————————————————————————————————————	
- intensity, 1. 1011 - matches, 8. 1059 - mists, 10. 401 - mixtures, 1. 658 - potential, 1. 1011 - reaction, work, 1. 730 - reactions, 4. 51 - matdiation theory, 4. 44 Chaldean, 1. 20 - Biblical, 1. 28 - Constantinople, 1. 44 - Chaldean, 1. 20 - matches, 8. 1059 - detection, 2. 319 - detection, 2. 297 - preparation, 2. 297 - properties, 2. 305 - uses, 2. 319 - Chloratosodalite, 6. 583 - Chloratosodalite, 6. 583 - Chloratosodalite, 6. 583 - Chloratosodalite, 6. 583 - Chloratosodalite, 6. 718 - chlorates, 2. 296 - constitution, 2. 296 - constitution, 2. 320 - preparation, 2. 296, 299 - complex, 2. 219 - complex, 2. 228 - detection, 2. 209 - preparation, 2. 214 - preparation, 2. 214 - properties, 2. 217		
	matches, 8. 1059	
— potential, 1. 1011 — reaction, work, 1. 730 — reactions, 4. 51 — — radiation theory, 4. 44 Chemicocapillary actions, 3. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20 — lectrolytic process, 2. 298 — properties, 2. 305 — uses, 2. 319 — Chlorazide, 8. 336 Chlorazide, 8. 336 Chloric acid, 2. 296 — constitution, 2. 320 — preparation, 2. 296, 299 — complex, 2. 228 — detection, 2. 209 — preparation, 2. 214 — properties, 2. 217		
	potential, 1. 1011	proportion 9 305
Chemicocapillary actions, 8. 222 Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20 Chlorica acid, 2. 296 — ocnstitution, 2. 320 — preparation, 2. 296, 299 — complex, 2. 219 — complex, 2. 228 — detection, 2. 209 — preparation, 2. 214 — preparation, 2. 214	rediction theory A 44	
Chemistry, 3 dimension at, 1. 213 — anthropomorphical, 1. 2 — applied, 1. 11 — Arabian, 1. 40 — Aryan, 1. 20 — Biblical, 1. 28 — Byzantium, 1. 38, 39, 44 — Constantinople, 1. 44 — Chaldean, 1. 20 — Chlorides acid, 2. 296 — constitution, 2. 320 — properties, 2. 305 Chlorides acid, 2. 219 — complex, 2. 228 — detection, 2. 209 — preparation, 2. 214 — properties, 2. 217	Chamicocapillary actions 8 222	
		preparation, 2, 296, 299
Biblical, 1. 28 complex, 2. 228 detection, 2. 209 preparation, 2. 214 Chaldean, 1. 20 properties, 2. 217	Arvan. 1. 20	Chlorides acid, 2. 219
	——— Biblical, 1, 28	
— Constantinople, 1. 44 — preparation, 2. 214 — properties, 2. 217		detection, 2. 209
— Chaldean, 1. 20 — properties, 2. 217		preparation, 2. 214
		properties, 2. 217
	Chinese, 1. 22	thermochemistry, 2. 218

450 GENERAL	o indua
Chloridizing roast, 3, 31, 307; 4. 415	m-chloroanilinium bromopalladite, 15. 678
Chlorinated potash, 2. 243	- bromosmate, 15. 723
soda, 2. 244	chloroiridate, 15. 771
Chlorination process gold, 8. 499	—— chloropalladite, 15. 670
Chlorine, 11. 368; 12. 528; 13. 615	chlorosmate, 15. 719
Acker's process, 2. 36	o-chloroanilinium chloropalladite, 15. 670
active, 2. 156	p-chloroanilinium bromosmate, 15. 723
and hydrogen, union in light, 2. 148	
atomic weight, 2. 101	
bromine compounds, 2. 114	Chloro-anorthite (hydrated), 6. 700 Chloroapatite, 2. 15; 8. 896
Castner's process, 2. 36 chemical reactions, 2. 90	strontium, 3. 902
—— Deacon's process, 2. 31	Chloroaquomolybdous acid, 11. 617
dioxide, 2. 286	Chloroaquotetrammines, 11. 403
composition, 2. 290	Chloroaquotungstous acid, 11. 841
preparation, 2. 287	
properties, 2. 288	monohydrate, 11. 841
electrolytic processes, 2. 34	Chloroargyrite, 3, 300
fluorine compounds, 2. 113	(tri)chloroarsenatoferric acid, 9. 226
heptoxide, 2. 380	Chloroarsenian, 9. 222
history, 2. 20	Chlorosurates, 8. 593
hydrate, 2. 72 in air, 8. 11	Chlorobromides, 2. 237 Chlorocalcite, 2. 15; 3. 623, 697
iodine compounds, 2. 114	Chlorochabazite, 6. 733
isotopes, 2. 105	— barium, 6. 733
liquefaction, 2. 51	sodium, 6. 733
mol. wt., 2. 107	Chlorochroite, 2. 657
- Mond's process, 2. 34	Chlorochromates, 11. 397
— — monoxide, 2. 240	Chlorochromic acid, 11. 397
composition, 2. 242	—— oxide, 11. 397
properties, 2. 341	Chlorocolumbium, 9. 876
- · — occurrence, 2. 15	Chlorocuprites, 3, 163
- — pentoxide, 2. 293	Chlorodia quetria region 11 463
——————————————————————————————————————	Chlorodiaquotriammines, 11. 463 Chloroform, 16. 275
preparation, 2. 25	and CO ₂ , 6. 32
purification, 2. 26	Chlorogen, 2. 268
solubility, 2. 72	Chlorohydrosulphurous acid, 10. 686
acid soln., 2. 82	Chlorohypoazotique acid, 8. 618
organic solvents, 2. 84	Chlorohypomanganites, 12. 378, 379
salt soln., 2. 82	Chloriodides, 2. 237
water, 2. 71	Chloromagnesite, 4. 298
—— sulphur dioxide, 1. 518	Chloromanganites, 12. 379
tetroxide, 2. 287	Chloromanganokalite, 12. 149, 367
	Chloromarialite, 6, 764
—— valency, 2. 108	Chloromelanite, 6. 623 Chloromelanite, 6. 643
	Chloromercurates, 4. 848
	Chloromercurichloroacetylene, 5. 869
34	Chloromolybdates, 11. 634
— Weldon's process, 2. 28	Chloronitrie acid, 8. 541, 618
Chlorinization gold, 3. 507	Chloronitrous acid, 8. 618
Chlorite, 4. 251; 6. 621	Chloropal, 6. 906; 12. 529
ferrugineuse, 6 . 624	Chloropentammines, 11. 403
iron, 6 . 624	Chloropentamminodiiodide chromicmercuri-
mica, 6 . 622 spar, 6 . 620	iodide, 11. 428 Chloropentaquo-salts, 11. 403
tale, 6. 622	Chloroperosmites, 15. 717
Chlorites, 2. 283; 6. 603	Chloroperruthenites, 15. 529
—— biotitic, 6 , 625	a-, 15. 530
—— constitution, 6 . 624	β-, 15, 5 3 0
—— margaritic, 6 . 625	γ-, 15. 530
phlogopitic, 6 . 625	Chloroperruthenous acid, 15. 526
white, 6. 622	Chlorophane, 2. 3; 3. 693
Chloritis, 6. 621	Chlorophanerite, 6. 919
Chloritaid 6 624	Chlorophenylammonium bromoplatinate,
Chloritoid, 6. 620; 12. 529 Chloroaluminates, 5. 321	16. 375 Chlorophoenicite, 9. 221, 222
Chloroamide, 8. 604	Chlorophyll, 6. 12
Chloroamine, 8. 604	Chlorophyllite, 6. 811

Chloropite, 6, 624; 12, 529	Chromic acmite, 6. 914
Chloroplasts, 6. 12	ammonium chloropentaquodichloro-
Chloroplatinates, 16. 305	sulphate, 11. 468
Chloroplatinites, 16, 255 Chloroplumbates, 7, 734	chloropentaquodisulphate, 11.
Chloroplumbites, 7, 734	468
Chlororuthenates, 15. 533	chloropentaquosulphatohydrosulphate, 11. 468
Chlororuthenites, 15. 529	dichloro-hydrosulphatotrisul-
Chloros, 296	phate, 11. 469
Chloroselenic acid, 10. 912	dichlorotetraquochlorotrisul-
Chlorosilicomethane, 6. 970	phate, 11. 469
Chlorosmates, 15. 718	———— dichlorotetraquodisulphate, 11.
Chlorosmites, 15. 717	468
Chlorosmous acid, 15, 716 Chlorospath, 7, 740	heptamminoctonitrate, 11. 409,
Chlorospinel, 5. 298	478
Chlorostannates, 7. 447	hexachloride, 11, 417, 418
Chlorosulfure sulfazotique, 10. 646	——————————————————————————————————————
Chlorosulphonates, 10. 688	I I I I I I I I I I I I I I I I I I I
Chlorosulphonic acid, 10. 686; 13. 615	
Chlorosulphuric acid, 10. 686	trichlorodisulphate, 11. 468
Chlorothorite, 12, 52	—— anhydride, 11. 211
Chlorotile, 9. 4	—— aquochlorotetramminochromate, 11.
Chlorotitanates, 7. 85	306
Chlorotite, 9 . 158 Chlorotribromosilane, 6 . 980	aquochlorotetramminodichlorotris-
Chlorotriiodide, 6 . 983	mercurichloride, 11. 419 —— aquopentamminobromoplatinate, 16.
Chlorous acid, 2. 281	379
	aquopentamminodithionate, 10. 595
Chloro-wagnerite, 4. 388	aquopentamminohydrotetranitrate,
Chloroxiphite, 7. 743	11. 476
Chlorozirconates, 7. 143	—— aquopentamminosulphate, 11. 465
Chlorozone, 2. 268	aquopentamminotribromide, 11. 423
Chlorure de soufrebiammoniacal, 10. 646	aquopentamminotrichloride, 11. 411
Chocolate stone, 6, 899	aquopentamminotrichlorotrismercuri- chloride, 11. 419
Choke-damp, 6. 7	aquopentamminotrifluoride, 11. 363
Choline bromoplatinate, 16. 375	- aquopentamminotriiodide, 11. 427
Chondransenite, 12. 149	aquopentamminotrinitrate, 11. 477
Chondrarsenite, 9. 4, 218	
Chondrites, 12. 523	arsenite, 9. 131
Chondrodite, 6. 812	—— augites, 6 . 818
Chondrules, 12. 523	bisethylenediaminopropylenediami-
Christofe, 45, 693, 730	notribromide, 11. 423
Christoffe, 15. 209 Christophite, 12. 529; 14. 167	bisethylenediaminopropylenediami- notriiodide, 11, 427
Christophle metal, 15. 209	borate, 5. 107
Chroman, 15. 245	bromide, 11. 421
Chromate de plomb brun, 9. 809	octohydrate, 11. 421
Chromates, 11. 240	hexahydrate, 11. 422
Chromatocobaltammines, 11. 312	bromoaquobisethylenediaminodibro-
Chromatoglaserite, 11. 258	mide, 11. 424
Chromato-iodic acid, 2, 363	bromoaquotetramminodibromide, 11.
Chromatomolybdates, 11. 571	424 bromoaquotetramminodichloride, 11.
Chromatoselenic acid, 10. 876 Chromatosodalite, 6. 866	414
Chromatosodalites, 6. 583	bromodiaquotriamminodibromide, 11.
Chromatosulphuric acid, 11. 449	424
Chromatovanadate, 9. 780	bromodiaquotriamminodichloride, 11.
Chromax, 15, 245	424
Chrome-brown, 11. 309	bromodiaquotriamminosulphate, 11.
diopside, 6 . 410	466
iron ore, 11. 123; 12. 529	bromopentamminobromoplatinate, 16.
ochres, 6 . 865; 11 . 185 ore, 11 . 123	379 bromopentamminochromate, 11. 307
red, 11. 123	bromopentamminodibromide, 11. 424
spinel, 5. 154; 11. 199	
tin pink. 7. 421: 11. 290	bromopentamminodinitrate, 11. 477
tourmalines, 6 . 742	bromopentaquosulphate, 11. 466
Chromic acid, 11. 211, 213, 240	cæsium selenate, 10. 876

Chromic carbamidochloroplatinate, 16. 331 ———————————————————————————————————	Chromic decahydroxytetramminosulphate,
complex salts, 11. 410	decamminodihydroxydithionate, 10.
	596 decamminohydroxydithionate, 10. 596
hemitrihydrate, 11. 374	—— diammines, 11. 406
hexahydrate, 11. 375	—— diamminodihydroxydinitrate, 11. 478
blue, 11. 381	—— diamminohydroxide, 11. 189
dark green, 11. 375 greyish-blue, 11. 381	diamminonitrate, 11. 409 diamminopentahydroxynitrate, 11. 478
pale green, 11. 376	- diamminoxalate, 11. 409
violet, 11. 381	cis-diaquobisethylenediaminotribro-
tetrahydrate, 11. 374	mide, 11. 424
chlorides hydrated, 11. 374	trans-salt, 11, 424
chloroaquotetramminochloroplatinate, 16. 330-1	
chloroaquotetramminodibromide, 11.	
chloroaquotetramminodichloride, 11.	—— diaquotetramminohydrotetranitrate, 11. 477
413	—— diaquotetramminotribromide, 11. 423
chloroaquotetramminidiiodide, 11. 428	diaquotetramminotrichloride, 11. 4H
	—— dibromoaquotriamminobromide, 11.
chloroaquotetramminofluosilicate, 6.	— dibromoaquotriamminoiodide, 11. 428
956	dibromoaquotriamminonitrate, 11. 477
chloroaquotetramminosulphate, 11.	dibromoaquotriamminosulphate, 11.
chlorodiaquotriamminodichloride, 11.	cis-dibromobisethylenediaminobro-
415 —— chlorodiaquotriamminosulphate, 11.	mide, 11. 425 trans-salt, 11. 425
466 —— chloradichromate, 11. 343	—— dibromobisethylenediaminobromo- mercuribromide, 11. 425
chloropentamminobromoiridate, 15.	cis-dibromobisethylenediaminodithio-
776	nate, 10 . 596
chloropentamminochloroiridate, 15.	
chloropentamminochloroplatinate, 16.	cis-dibromobisethylenediaminoiodide,
331	11. 428
chloropentamminochromate, 11. 306	trans-salt, 11. 428
chloropentamminodibromide, 11. 424	trans-dibromobisethylenediamino-
chloropentamminodibromomercuri- bromide, 11. 425	nitrate, 11. 478 dibromodiaquodiamminobromide, 11.
chloropentamminodichloride, 11. 412	425
chloropentamminodichlorotrismer-	dibromodiaquodipyridinobromide, 11.
curichloride, 11. 419	425
chloropentamminodiiodide, 11. 428	- — dibromodiaquodipyridinoiodide, 11.
chloropentamminodiiodide mercuri- iodide, 11. 428	428 dibromodiaquodipyridinonitrate, 11.
chloropentamminodinitrate, 11. 477	478
chloropentamminofluosilicate, 6. 956	dibromohexaquobromide, 11. 422
- chloropentamminohydrosulphate, 11.	dibromotetraquoaluminohexaquodi-
466	sulphate, 11. 468
chloropentamminopentasulphide, 11.	dibromotetra quochloride, 11. 425
chloropentamminoselenate, 10. 877	—— dibromotetraquochromihexaquodisul- phate, 11. 468
	dibromotetraquoferrihexaquosul-
hydrate, 11. 377	phate, 11. 468
	dibromotetraquosulphate, 11. 466
chloropentaquosulphate, 11. 466, 467	dibromotetraquovanadihexaquodisul-
chloroplatinate, 16, 330	phate, 11. 468
chloroplatinite, 16. 284 chlorosulphate (green), 11. 467	dichloroaquotriamminochloride, 11.415 dichloroaquotriamminochloroiridate,
hexahydrate, 11, 467	15. 772
octohydrate, 11. 467	dichloroaquotriamminoiodide, 11. 428
	- dichloroaquotriamminonitrate, 11. 478
(violet), 11, 467	dichloroaquotriamminosulphate, 11.
hexabydrate, 11, 468	466
	cis-dichlorobisethylenediaminobro-
	mide, 11. 425
Consider Pontantiuorius, 17. 000	trans-salt, 11. 425

Chromic cie-dichlorobisethylanodiammina	Chromia dibudrovadio questivalenadioreiro
Chromic cis-dichlorobisethylenediammino- chloride, 11. 415	Chromic dihydroxydiaquoethylenediamino- chloride, 11. 415
trans-salt, 11. 415	- dihydroxydiaquoethylenediamino-
cis-dichlorobisethylenediamino-	iodide, 11. 428
chloroantimonate, 11. 420	dihydroxyhexacetatotripyridinonitrate, 11. 478
nate, 10. 596	dihydroxyquaterethylenediamino-
cis-dichlorobisethylenediaminohydro-	tetraiodide, 11. 428
sulphate, 11. 466	dihydroxytetraquochloride, 11. 391
cis-dichlorobisethylenediaminoiodide,	dihydroxytetraquosulphate, 11. 444
11. 428 ———————————————————————————————————	diiodobisethylenediaminoiodide, 11.428 diiodobisethylenediaminoiodomercuri-
11. 478	iodide, 11. 428
trans-salt, 11. 478	dinitroxylheptoxypentachloride, 11.
trans-dichlorobisethylendiaminodithi-	394
onate, 10. 596 dichlorodiaquodiamminochloride, 11.	—— diopside, 6 . 818 —— dioxycarbonate, 11 . 473
415	— dioxyheptamminotrinitrate, 11. 478
dichlorodiaquodipyridinobromide, 11.	dioxyhexamminodichloride, 11. 416
425	dioxyhexamminodisulphate, 11. 467
dichlorodiaquodipyridinochloride, 11.	dioxysulphate, 11. 444
dichlorodiaquodipyridinonitrate, 11.	dioxysulphite, 10. 306 cis-dithiocyanatobisethylenediamine,
478	11. 478
—— dichloronitrate, 11. 476	trans-salt, 11. 478
dichloroquaterethylenediaminechloro-	dithiocyanatobisethylenediaminobro-
platinate—cis, 16. 331 —— trans, 16. 331	mide, 11. 425 —— cis-dithiocyanatobisethylenediamino-
— dichlorotetramminoiodide, 11. 428	chloride, 11. 416
dichlorotetramminosulphate, 11. 466	trans-salt, 11. 416
dichlorotetraquoaluminohexaquodi-	cis-dithiocyanatobisethylenediamino-
sulphate, 11. 468 —— dichlorotetraquobromide, 11. 425	hydrosulphate, 11. 466
—— dichlorotetraquochloride, 11. 375,	- dithiocyanatobisethylenediaminoiodo-
377	mercuriiodide, 11. 428
——————————————————————————————————————	dithiocyanatotetramminobromide, 11.
——————————————————————————————————————	425 dithiocyanatotetramminochloride, 11.
phate, 11. 468	416
—— dichlorotetraquohexaquoselenate, 10.	dithiocyanatotetramminonitrate, 11.
dichlorotetraquovanadihexaquodisul-	dithionate, 10. 595
phate, 11. 468	ferric bromosulphate, 14, 350, 353
—— dihydroheptasulphate, 11. 446 —— dihydrotetrasulphate, 11. 446	hydrosulphate, 14. 350 ferrite, 13. 922
hexadecahydrate, 11. 446	ferrous hydrosulphate, 14. 300
tetracosihvdrate, 11, 447	sulphide, 14. 168
green form, 11. 446 violet form, 11. 446	fluopentamminochromate, 11. 306,
violet form, 11. 440 dihydroxybisethylenediaminotetra-	366 —— fluopentamminodichloride, 11. 381
bromide, 11. 425	- — fluopentamminodifluoride, 11. 363
—— dihydroxychloride, 11. 391	
dihydroxydiaquodiamminobromide,	tetrahydrate, 11. 363
11. 425 dihydroxydiaquodiamminochloride,	fluopentamminodinitrate, 11. 477 fluoride, 11. 362
11. 415	hemiheptahydrate, 11. 362
—— dihydroxydiaquodiamminodithionate, 10. 596	—— trihydrate, 11. 362 —— heptahydroxychloride, 11. 391
—— dihydroxydiaquodiamminoiodide, 11.	heptamminonitratoxalate, 11. 409 hexacarbamidobromodichromate, 11.
dihydroxydiaquodipyridinobromide,	343
11. 425	hexacarbamidochlorochromate, 11. 399
dihydroxydiaquodipyridinochloride, 11. 415	hexacarbamidochromate, 11. 307 hexacarbamidodichromate, 11. 343
dihydroxydiaquodipyridinoiodide, 11.	hexacarbamidodichromatopermanga- nate, 12. 336
- dihydroxydiaquodipyridinonitrate, 11.	hexacarbamidodisulphatodichromate, 11. 343
478 — dihydroxydiaquodipyridinosulphate, 11. 466	hexacarbamidonitratodichromate, 11. 343

TO GENERAL	
Chromic hexacarbamidoperchloratodichro-	Chromic hexaquosexiesethylenediamino-
mate, 11. 343	hexabromide, 11. 425
hexacarbamidopermanganate, 12. 336	hexaquotribromide, 11. 422
hexacarbamidoselenate, 10. 877	hexaquotrichloride, 11. 382, 412
- hexacarbamidosulphatopermanganate,	hexaureanitrate, 11. 477
12. 336	hydroxide, 11. 185
hexacarbamidotetraborofluodichro-	cis-hydroxyaquobisethylenediamine-
mate, 11. 343	dithionate, 10. 595
hexacetatodihydroxychloroplatinate,	trans-hydroxyaquobisethylenediam-
16 . 331	minedithionate, 10. 595
decahydrate, 16. 331	cis-hydroxyaquobisethylenediamino-
pentahydrate, 16. 331	dibromide, 11. 424
——— tetrahydrate, 16. 331	trans-salt, 11. 424
hexacetatodihydroxytriammino-	cis-hydroxyaquobisethylenediamino-
chloroplatinate, 16. 331	dichloride, 11. 412
hexacetatodihydroxytriamminoiodide,	hydroxyaquotetramminochloroiridate,
11. 428	15. 772
hexacetatodihydroxytripyridinoiodide,	hydroxyaquotetramminodibromide,
11. 428	11. 424
—— hexacetatodihydroxytrispyridine-	hydroxychloronitrate, 11. 476
chloroplatinate, 16. 331	hydroxydecamminobromoplatinate,
hexacetatohydroxyaquotripyridino-	16. 381
chlorostannate, 11. 419	hydroxydecamminochloroplatinate,
hexaethylenediaminehexahydroxy-	16. 333
dithionate, 10. 596	hydroxydecamminochlorotetraiodide,
hexaethylenediaminohexahydroxy-	11. 428
chromate, 11. 307	hydroxydecamminohydroxydichloro-
hexahydroxysoxiesethylenediamino-	diiodide, 11. 428
hexachloride, 11. 416	
hexahydroxysexiesethylenediamino- hexaiodide, 11. 428	mide, 11. 425
hexahydroxysexiesethylenediamino- hexaiodomercuriiodide, 11. 428	
hexahydroxysexiesethylenediamino-	428
hexanitrate, 11. 478	
hexahydroxysexiesethylenediamino-	478
sulphate, 11. 467	hydroxydecamminosulphate, 11. 466
hexamminobromide, 11. 423	— hydroxydecamminotetrabromide, 11.
hexamminobromoiridate, 15. 776	425
hexamminobromoplatinate, 16. 379	- hydroxydiaquodipyridinodichloride,
—— hexamminochloride, 11. 373	11. 412
hexamminochloroiridate, 15. 772	hydroxydinitrite, 11. 475
hexamminochloroplatinate, 16. 331	hexahydrate, 11. 475
hydroxychlorohexamminochloro-	hydroxylamine chloropentaquochloro-
platinite, 16. 284	sulphate, 11. 468
hexamminohydrotetranitrate, 11. 476	chloropentaquosulphatohydro-
hexamminohydroxychloroiridate, 15.	sulphate, 11 . 468
772	hydroxypentachloride, 11. 391
hexamminoiodosulphate, 11. 468	hydroxypentamminobromide, 11. 424
hexamminonitratobromoiridate, 15.776	hydroxypentamminochloride, 11. 412
—— hexamminonitratochloroperiridite, 15.	hydroxypentamminochromate, 11. 306
787	hydroxypentamminodiiodide, 11. 427
hexamminopermanganate, 12. 336	— hydroxypentamminodinitrate, 11. 477
hexamminophosphate, 11. 481	hydroxypentamminohydroxide, 11.
hexamminoselenate, 10. 877	187
hexaminosulphate, 11. 465	hydroxypentamminosulphate, 11. 465
hexamminosulphatobromoiridate, 15.	hydroxypentaquodichloride, 11. 391
776	hydroxytriaquodiamminosulphate, 11.
hexamminosulphatochloroiridate, 15.	465
785	hydroxytriaquodipyridinosulphate, 11.
	466
11. 419	iodide, 11. 627 enneahydrate, 11. 427
hexamminotriiodide, 11. 427	iodides, 11. 427
hexantipyridinodichromate, 11. 363	iodoaquotetramminodiiodide, 11. 428
hexantipyrinoborofluoride, 11. 363	iodopentamminodichloride, 11. 414
	iodopentamminodicide, 11. 414
hexaquochlorosulphate, 11. 468	—— iodopentamminodinitrate, 11. 477
—— hexaquofluoride, 11. 363	magnesium hydroxycarbonate, 11. 473
	— manganic trisulphate, 12. 431
v,	

Observation and the same of th	
Chromic manganous sulphate, 12. 424	Chromic oxide organosol, 11. 192
mercuric sulphotrithiocyanatodiam-	properties, chemical, 11. 180
mine, 11. 409	physical, 11. 177
—— metaphosphate, 11. 481	oxyaquotrihydroxyhexammino-
—— monammines, 11. 407	chromate, 11. 307
—— nickelous hydrosulphate, 15. 477	—— oxychloride, 11. 391
—— pentafluoride, 15. 405	oxychlorides, 11. 390
nitrate, 11. 474	oxydicarbonate, 11. 472
enneahydrate, 11. 474	oxydichloride, 11. 391
hemienneahydrate, 11. 474	oxydisulphate, 11. 445
hemipentaeosihydrate, 11. 474	oxydithionate, 10. 595
hemipentadecahydrate, 11. 474	
trihydrate, 11. 474	oxyhydroxide, 11. 185
—— nitratodiaquotriamminodinitrate, 11.	oxypentasulphate, 11. 445
477	oxytetrathiocyanatotetrammine, 11.
	409
nitratopentamminodiiodide, 11. 427,	oxytetrathiocyanatotetrapyridine, 11.
477	409
nitratopentamminodinitrate, 11. 477	pentaethylaminochloride, 11. 373
—— nitritopentammines, 8. 498	pentahydroxyaquodecammino-salts,
nitritopentamminobromide, 8. 499	11. 408
nitritopentamminocarbonate, 8. 499;	pentahydroxycarbonate, 11. 472
11. 473	pentahydroxydiaquo-enneammino-
nitritopentamminochloride, 8. 498	salts, 11. 408
nitritopentamminochloroplatinate, 8.	—— pentamethylaminochloride, 11. 373
499	pentamminochloride, 11. 373
- nitritopentamminochromate, 8. 499;	pentamminochlorodithionate, 10. 596
11. 306	pentamminohydroxide, 11. 187
nitritopentamminodibromide, 11, 424	pentamminoxydithionate, 10. 596
— nitritopentamminodichloride, 11. 412	perchlorate, 2. 403
nitritopentamminodichlorobismercuri-	
chloride, 11. 419	permonosulphomolybdate, 11. 653
	— phosphoctochloride, 8. 1017; 11. 372
nitritopentamminodichromate, 8. 499;	potassium carbonate, 11. 473
11. 343	hydroxychromate, 11. 210
nitritopentamminodiiodide, 11. 427	oxysulphite, 10. 306
nitritopentamminodinitrate, 11. 477	——————————————————————————————————————
nitritopentamminodithionate, 8. 499;	selenate, 10. 876
10. 596	selenide, 10. 797
—— nitritopentamminohydroxide, 8. 499	triorthoarsenate, 9. 204
nitritopentamminoiodide, 8. 499	purpureofluosilicate, 6. 956
—— nitritopentamminonitrate, 8. 499	pyroarsenate, 9. 204
nitritopentamminosulphate, 8. 499;	pyrophosphate, 11. 481
11. 466	quaterethylamine, 11. 409
- nitrosyltetrathiocyanatodiammine, 8.	quaterethylenediaminotrichloride, 11.
439	409
orthophosphate, 11. 479	quinquiesethylaminotrichloride, 11.409
colloidal solution, 11. 479	quinquiesmethylaminetrichloride, 11.
dihydrate, 11. 479	409
homizontohydrate 11 470	
	roseofluosilicate, 6. 956
nexanyurate, 11. 479	rubidium selenate, 10. 876
	salts, 11. 602
trinydrate, 11. 479	selenate, 10. 875
oxalatobisethylenediaminobromide, 11.	sodium dimetasilicate, 6. 914
425	hexamminopyrophosphate, 11.
—— oxalatobisethylenediaminoiodide, 11.	482
428	selenate, 10. 876
—— oxalatohemipentamminonitrate, 11.	triorthoarsenate, 9. 204
478	stannate, 11. 290
—— oxalatotetramminobromide, 11. 425	sulpharsenate, 9. 322
oxalatotetramminochloride, 11. 416	sulpharsenite, 9. 301
- oxalatotetramminonitrate, 11. 498	sulphate, 11. 435
— oxalatotriammine acid, 11. 409	enneahydrate, 11. 436
—— oxide, 11. 176	green hydrate, 11. 437
——————————————————————————————————————	henahydrate, 11. 437
a-, 11. 177	
β-, 11. 178	hexadecahydrate, 11. 436
	hovehudnete 44 497
	——————————————————————————————————————
	octobredate 44 497
hydrogel, 11. 194	octohydrate, 11. 437
hyrosol negative, 11. 192	pentahydrate, 11. 437
—— —— positive, 11. 191	tetradecahydrate, 11. 436

Chromic sulphate trihydrate, 11. 436 ————————————————————————————————————	Chromic trisethylenediaminotribromide, 11.
sulphates complex salts, 11. 452	- trisethylenediaminotrichloride, 11. 411
sulphatonitrate, 11. 476	- trisethylenediaminotriiodide, 11. 427,
sulphide, 11. 430	428
—— sulphite, 10. 300	trispropylenediaminotriiodide, 11. 427
—— sulphomolybdate, 11. 652	vanadium dichlorodecaquodisulphate,
—— tellurate, 11. 97	9. 825
—— terethylenediaminotrinitrate, 11. 476	voltaite, 14. 352
tetraethylaminochloride, 11. 373	xantho-nitrites, 8. 498
—— tetraethylenediaminochloride, 11. 373 —— tetrahydropentasulphide, 11. 447	(di)chromic ammines, 11. 407 (tri)chromic ammines, 11. 408
tetrahydroxysulphate, 11. 445	Chromides, 11. 179
tetrahydroxysulphite, 10. 306	Chromidodecamolybdates, 11. 601
—— tetramminodinitrate, 11. 409	Chromidodecamolybdic acid, 11. 602
tetramminosulphate, 11. 409	Chromienneasulphuric acid, 11. 448
—— tetranitratosulphate, 11. 476	Chromiferous ferropicotite, 11. 201
—— tetraquodiamminosulphate, 11. 465	iron ore, 11. 123
tetraquodiamminotribromide, 11. 424	Chromiheptasulphuric acid, 11, 448
	Chromihydragaic acid, 11, 447
tetraquodichlorochloride, 11. 415 tetraquodipyridinohydrosulphate, 11.	Chromihydrazoic acid, 8. 354 Chromioctosulphuric acid, 11. 448
465	Chromipentasulphuric acid, 11. 447
tetraquodipyridinotribromide, 11. 412,	Chromipolysulphuric acid, 11. 448
424	Chromipyrophosphoric acid, 11. 481
tetraquodipyridinotrinitrate, 11. 477	Chromisulphuric acids, 11. 447
—— thallous selenate, 10. 836, 876	Chromite, 5. 296; 7. 896; 11. 123, 125, 199,
cis-thiocyanatobisethylenediamino-	201; 12. 529; 15. 9
iodide, 11. 428 ————————————————————————————————————	Chromites, 11. 196 Chromitetrasulphuric acid, 11. 447
11. 424	Chromitite, 11. 125, 201; 12. 529; 13. 923
thiocyanatopentamminodichloride,	Chromitrisulphatochromic acid, 11. 448
11. 415	Chromitrisulphatochromic acids, 11. 448
thiocyanatopentamminodichromate,	Chromitrisulphatodichromic acid, 11. 448
11. 343	Chromitrisulphatotrichromic acid, 11. 448
thiocyanatopentamminodinitrate, 11.	Chromium, 11. 122; 12. 528
477	a-, 11. 148
thiopyrophosphate, 8. 1070 trianminochlorodibromide, 11. 425	—— β-, 11. 148 —— alcholatochloride, 11. 373
—— triamminodichlorobromide, 11. 425	alloys, 11. 179
triamminotribromide, 11. 425	aluminium alloys, 11. 172
triaquochloride, 11. 381	molybdenum-iron alloys, 13, 626
triaquotriamminodichloronitrate, 11.	steels, 18. 616
477	amalgam, 11. 171
triaquotriamminotribromide, 11. 424	
triaquotriamininotrichloride, 11. 411	amidophosphates, 8. 266, 706 ammines, 11. 400
triaquotrifluoride, 11. 363 trihydrophosphate, 11. 481	ammonium aluminium sulphate, 11.
trihydroxyaquohexamminochlorodi-	463
chloraurate, 11. 419	ferric alums, 14. 350
trihydroxyaquohexamminochloro-	sulphate, 11. 463
platinate, 16. 333	hexafluoride, 11. 363
trihydroxyaquohexamminohemi-	pentafluoride, 11. 363
enneasulphide, 11. 431	phosphate, 11. 482
trihydroxyaquohexamminohydrosul-	
phate, 11. 467 —— trihydroxyaquohexamminotribro-	
mide, 11. 425	tetrachloride, 11. 417
trihydroxyaquohexamminotrichloride,	triammino-oxalatochloride, 11.
11. 416	417
trihydroxyaquohexamminotriiodide,	- antimonioctochloride, 11. 372
11. 428	aquotrihydroxydioldecamminothio-
trihydroxyaquohexamminotrinitrate,	sulphate, 10. 554
11. 478 —— trioxysulphite, 10. 306	atomic disintegration, 11. 169 number, 11. 169
trioxytrisulphate, 11. 445	——— weight, 11. 167
triphosphate, 11. 482	azide, 8. 354
tripyridinochloride, 11. 373	beryllium pentachloride, 11. 419
trisethylenediamidoselenate, 10. 877	—— bismuth alloys, 9 . 639
trisethylenediaminodichromate, 11.343	borotungstate, 5. 110

Chromium bromate, 2. 358	Chromium extraction as oxide or chromate,
bromides, 11. 421	11. 129
—— cadmium alloys, 11. 171	ferrate, 13. 936
cæsium oxypentachloride, 11. 391 pentachloride, 11. 419	ferric aluminium calcium silicate, 6.
monohydrate, 11, 419	fluorides, 11. 361
tetrahydrate, 11. 419	fluosilicate, 6 . 956
sulphate, 11 . 463	gold alloys, 11. 171
——————————————————————————————————————	hemicarbide, 5. 888
carbonates, 11. 471	hemiheptasulphide, 11. 433
chlorate, 2. 357 chlorides, 11. 366	—— hemisilicide, 6 . 191 — hemitrioxide, 11 . 176
ehlorohexacarbamide tetranitritodi-	— hemitriselenide, 10. 797
amminocobaltiate, 8. 510	hemitrisilicide, 6. 189
chromate, 11. 206, 210	hemitrisulphide, 11. 430
chromates, 11. 306	hexa-acid salts, 11. 407
cobalt alloys, 14 . 538	hexacarbamide tetranitritodiammino-
	cobaltiate, 8. 510
nickel alloys, 15. 338	hexitapentadecoxide, 11. 210
colloidal, 11. 139	dodecahydrate, 11. 210
columbate, 9. 867	history, 11. 121
copper alloys, 11 . 170	hydrazine sulphate, 11. 454
nickel aluminium alloys, 15 . 245	hydrosol, 11. 139
	—— cis-hydroxyaquobisethylenediamino- diiodide, 11. 427
pentafluoride, 11. 364 silicon cobalt alloys, 14. 540	trans-salt, 11. 427
	hydroxydecamminopentabromide, 11.
diamidodiphosphate, 8. 711	425
diantimonide, 9 . 410	hydroxydecamminotrichlorodichlor-
diaquotrihydroxydiolenneaminothio-	aurate, 11. 419
sulphate, 10. 554	hydroxydiazide, 8, 354
diarsenide, 9 . 70 	hydroxydihypophosphite, 8, 887 hydroxylamine sulphate, 11, 454
cis-dibromotetramminobromide, 11.	hypophosphate, 8. 939
424	hypophosphite, 8. 887
trans-dibromotetramminobromide, 11.	—— imides, 8 . 266
424	iodate, 2. 358
cis-dibromotetramminochloride, 11.	iridium alloy, 15 . 750 iron alloys, 13 . 586
cis-dibromotetramminoiodide, 11. 424	carbide, 13. 591
dibromotetraquotetranitritodiam-	tungsten carbide, 13. 629
minocobaltiate, 8. 510	isobutylalcosol, 11. 139
—— dichloride, 11. 366	lead alloys, 11. 173
dichlorodiethylenediaminoantimony	lithium pentachloride, 11. 418 luteosalts, 11. 400
pentachloride, 9. 492 —— dichlorotetraquatetranitritodiam-	— magnesium pentachloride, 11. 419
minocobaltiate, 8. 510	manganese-nickel-iron alloys, 15. 330
dichromate, 11. 343	steels, 13. 667
difluoride, 11. 361	—— manganic trisulphatohydrosulphate,
—— dihydrotetraselenite, 10 836	12. 431
	—— mercuric trithiocyanatohexasulpho- diammine, 11. 433
diiodide, 11 . 427 dioxide, 11 . 208	mercury alloy, 11. 191
	metachloroantimonate, 9. 491
——————————————————————————————————————	metantimonate, 9. 459
hemitrihydrate, 11. 208	—— molybdate, 11. 570
—— dioxyamide, 8 . 266	molybdenum alloys, 11. 524 carbide, 13. 620
dioxydichloride, 11. 391	cobalt alloys, 14. 541, 543
dioxydifluoride, 11. 364 dioxyphosphochlorotribroniide, 11.	iron alloys, 13. 626
395	nickel alloys, 15 . 248
—— dipentitacarbide, 5. 888	nickel steels, 15. 330
diselenite, 10. 836	monamidodiphosphate, 8. 710
disilicide, 6 . 191	—— monantimonide, 9. 411 —— monarsenide, 9. 70
ditritaboride, 5. 29 ditritacarbide, 5. 888	—— monoboride, 5 . 28
ditritasilicide, 6. 191	monochloride, 11. 366, 367
electronic structure, 11. 169	hexahydrate, 11. 367
erythro-salts, 11. 408	tetrahydrate, 11. 367
	2 K

Chromium monophosphide, 8. 849	Chromium potassium phosphate, 11. 482
monosulphide, 11. 429	phosphite, 8. 918
—— monoxide, 11. 174	selenatosulphate, 10. 930
nickel alloys, 15. 238	sulphate, 11. 454, 831
—— aluminium alloys, 15. 245	sulphatoselenate, 10. 930
iron alloys 15 328	——————————————————————————————————————
	preparation, 11. 129
steels, 15. 327	
oolumbium steels 45 200	—— properties, chemical, 11. 160
columbium steels, 15. 329	——————————————————————————————————————
copper alloys, 15. 245	purpureo-salts, 11. 403
tin alloys, 15. 245	—— pyridinoazide, 8. 354
iron alloys, 15. 316	—— pyrophoric, 11. 139
manganese alloys, 15. 338 titanium alloys, 15. 328	reactions analytical interest, 11. 163
——————————————————————————————————————	rhodo-salts, 11. 407, 408
	roseo-salts, 11. 401, 403
15. 330	rubidium bromide, 11. 425
steels, 15. 329	—— —— oxypentachloride, 11. 391 —— —— pentachloride, 11. 419 —— —— monohydrate, 11. 419
silicon alloys, 15. 245	—— pentachloride, 11. 419
iron alloys, 15. 328	monohydrate, 11. 419
	sulphate, 11. 463 tetrachloride, 11. 419
—— tungsten alloys, 15. 251	tetrachloride, 11. 419
—————— steels, 15. 330	selenide, 10 . 797
vanadium allovs, 15, 245	selenite, 10. 836
iron alloys, 15. 328	——————————————————————————————————————
nitrates, 11. 473	trihydrate, 10. 836
nitride, 8 . 126	—— selenium alums, 10. 876
nitrosyloxychloride, 8. 439	—— sesquioxide, 11. 176
occurrence, 11. 121	sesquisulphide, 11. 430
octitapentadecoxide, 11. 207	silicododecamolybdate, 6. 871
orthochloroantimonate, 9. 491	silicododecatungstate, 6. 881
oxides, intermediate, 11. 206	silicon steels, 18. 616
oxides, lower, 11. 174	silver alloys, 11. 171
oxybromides, 11. 421	sodium azide, 8. 354
oxyfluorides, 11. 364	hexachloride, 11. 418
oxyheptachloride, 11. 391	pentafluoride, 11. 363
oxyiodides, 11. 421	
oxytetrachloride, 11. 391	—— phosphate, 11. 482 —— phosphite, 8. 918
oxytungstate, 11. 796	pyrophosphate, 11. 482
—— palladium alloys, 15. 650	sulphate, 11. 454
—— paratungstate, 11 . 819	tetrachloride, 11. 418
—— passive, 11. 148	solubility of hydrogen, 1. 306
—— pentaborate, 5. 107	stannates, 7. 421
—— pentammines, 11. 402	steel, 12. 752
—— pentatungstate, 11. 829	sulphates, 11. 434
—— pentahydrate, 11. 829	sulphides, 11. 429
—— pentitadodecoxide, 11. 210	sulphochromate, 11. 448
—— pentitatridecoxide, 11. 206, 210	sulphochromite, 11. 433
—— pentitenneaoxide, 11. 206	—— tantalum alloys, 11. 173
—— enneahydrate, 11. 207	telluride, 11. 62
—— pentoxysulphite, 10. 306	—— tellurite, 11. 81
permanganite, 12. 280	tetrahydropentaselenide, 10. 836
—— phosphates, 11. 479	tetrammines, 11. 404
phosphite, 8. 918	tetratungstate, 11. 796
physiological action, 11. 163	— tetritacarbide, 5. 888; 13. 592
——————————————————————————————————————	tetritaenneaoxide, 11. 210
——————————————————————————————————————	tetritaheptasulphide, 11. 433
copper alloys 16 216	tetroxides complex, 11. 358
——————————————————————————————————————	thallium sulphate, 11. 464
iron alloys, 16. 219	—— thallous enneafluoride, 11. 364
riolal askalt allow 40, 000	
nickel-cobalt alloy, 16. 220	
molybdenum alloy,	thickyroubers bate 8 1064
16. 220	thiohypophosphate, 8, 1064
	thiophosphite, 8. 1062
silver alloys, 16. 216	
- potassium hexachloride, 11. 419	tin alloys, 11. 172
hexafluoride, 11. 364	titanium steels, 13. 616
oxypentachloride, 11. 391	triammines, 11. 406
pentachloride, 11. 418	triamminochloroxalate, 11. 424
——————————————————————————————————————	triamminodichloroaquochloride, 11.417

Chromium triamminodichloroaquoiodide,	Chromosic oxide, 11. 175
11. 417	Chromospinel, 4. 251
triamminodichloroaquonitrate, 11. 417	Chromosulphochromates, 11. 449
triamminodichloroaquosulphate, 11.	Chromosulphochromic acid, 11. 449
417	Chromotelluric acid, 11. 97
triamminotetroxide, 11. 358	Chromous ammonium carbonate, 11. 471
triamminotriaquodichloronitrate, 11.	fluoride, 11. 362
412	
	sulphate, 11. 434
triamminotriaquodihydroxyiodide, 11.	borate, 5 . 107
417	bromide, 11. 421
triamminotriaquotribromide, 11. 417	cæsium sulphate, 11. 435
	corbonate 11 471
—— triamminotriaquotriperchlorate, 11.	—— carbonate, 11. 471
412	chloride, 11. 366
—— triantimoniododecachloride, 11. 372	dihydrate, 11. 370
trichloride, 11. 371	tetrahydrate, 11. 369
trifluoride, 11. 362	trihydrate, 11. 370
	dibuduania abananida 44 401
—— trihydroxytetranitritodiplatinite, 8.	—— dihydrazinobromide, 11. 421
521	—— dihydrazinochloride, 11. 368
triiodide, 11. 427	ferrous sulphate, 14. 300
enneahydrate, 11. 427	fluoride, 11. 361
trioxide, 11. 211	hexaiodoplumbite, 7. 778
properties, chemical, 11. 229 physical, 11. 214	hexamminobromide, 11. 421
physical, 11. 214	hexamminodichloride, 11. 368
trioxyenneaselenite, 10. 836	hexamminodiiodide, 11. 427
trioxyphosphodichlorotribromide, 11.	
	hydrazine sulphate, 11. 435
395	hydrochloride, 11. 368
—— trioxyphosphopentachloride, 11. 395	
trioxytrichloride, 11. 395	· iodide, 11. 427
tripyridinotribromide, 11. 423	lithium carbonate, 11. 471
tritadinitride, 8. 127	—— magnesium carbonate, 11. 472
— tritasilicide, 6 . 191	sulphate, 11. 435
tritatetraoxide, 11. 175	metaphosphate, 11. 479
monohydrate, 11. 175	nitrate, 11. 473
tribudanto 44 175	
trihydrate, 11. 175	oxide, 11. 174
—— tritatetrasulphide, 11. 433	phosphate, 11. 479
—— trithiophosphate, 8. 1067	potassium carbonate, 11. 472
tungstate, 11. 796	fluoride, 11. 362
	gulphate 11 435
tungsten cobalt alloys, 14. 542	sulphate. 11 435
——— hexamminoenneachloride, 11. 842	rubidium sulphate, 11. 435
—— molybldenum cobalt alloys, 14.	salts, 11. 174
543	sodium carbonate, 11. 471
	decahydrate, 11. 471
300018, 10. U42	monohydrata 14 479
vanadium-iron alloys, 13. 643	monohydrate, 11. 472
steels, 13. 642	sulphate, 11 . 435
uranate, 12 . 64	sulphate, 11 . 434
uses, 11. 163	heptahydrate, 11. 434 monohydrate, 11. 434
— valency, 11. 167	monohydrate 11 434
	gulphide 44 490
—— vanadate, 9 . 780	sulphide, 11. 429
vanadates, 9 . 779	sulphite, 10. 306
vanadium-molybdenum-iron alloys,	sulphoaluminate, 11. 430
18. 626	- sulphochromite, 11. 433
	triamminodichloride, 11. 368
steels, 13. 617	
—— xantho-salts, 11. 403	zinc sulphate, 11. 435
zinc alloys, 11 . 171	Chromowulfenite, 11. 566
pentafluoride, 11. 364	Chromyl ammonium difluochromate, 11. 365
zirconium steels, 18. 616	bromide, 11. 426
(1) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- — chloride, 11. 391
(di)chromium calcium triorthosilicate, 6.866	
hexahydrotriorthosilicate, 6. 865	chromate, 11. 208
—— magnesium triorthosilicate, 6. 815	fluoride, 11. 364
Chromobrugnatellite, 11. 473	imide, 8 . 260
	iodide, 11. 428
Chromocyclite, 6. 368	
Chromocyclites, 6. 370	pentitahexachloride, 11. 396
Chromodisilicic(di) acid, 6. 865	phosphodichlorodiiodide, 11. 395
Chromodisulphochromic acid, 11. 449	phosphodichloropentabromide, 11. 395
Chromoferrite, 11. 201; 12. 529; 18. 591	phosphodichlorotriiodide, 11. 395
	sulphate, 11. 449
Chromoglaserite, 11. 258	
Chromohercynite, 11. 201	mononyurate, 11, 449
Chromophores, 6. 592	
	sulphuryl chloride, 11. 469
	sulphuryl chloride, 11. 469
Chromopicotite, 11. 201 Chromopocotite, 15. 9	

500 GENERA	L INDEX
C) '(' W 000	60 331 0 451
Chrysitine, 7. 638	Clay edible, 6. 471
Chrysitis, 7. 644	ironstone, 12. 529; 13. 775; 14. 355
Chrysoberyl, 4. 206; 5. 154, 294; 7. 896	— Kambara, 6 . 496
Chrysocollas, 3. 8; 4. 406; 6. 342	—— plasticity, 6 . 485
Chrysolite, 6. 385; 15. 9	—— properties, chemical, 6. 491
Chrysolithos, 7. 98	physical, 6 . 476
Chrysophane, 6. 816	(see also China clay)
Chrysophrase earth, 6. 933	substance, 6 . 473
Chrysopras, 6. 624	true, 6 . 473
Chrysoprase, 6. 139	Clayite, 6. 467, 476; 9. 292
Chrysotile, 6 . 422, 426	Clays, 5. 155; 6. 467; 15. 9
Chrysotylic acid, 6. 295	
Chrystis, 7. 638	flint, 6 . 477 tallow, 4 . 406; 6 . 442
Chrysulca, 8. 556	Cleavage, 1. 599
Chubutite, 7. 491	and isomorphism, 1. 657
Chumbe Cianco, 7. 797	Cleavelandite, 6. 663
Churchite, 5. 529	Cleiophane, 4. 586
Chydrazaine, 8. 223	Clemen's solution, 9. 40
chloride, 8. 223	
	Clementite, 12. 529
chloroplatinate, 8. 223	Cleveite, 5, 530; 7, 185, 896; 12, 50
	Cleveland ironstone, 12. 529
sulphate, 8. 223	Cliachite, 5. 249, 274
Cider, 13. 615	Cliftonite, 12. 528
Ciment electrique, 6. 559	Climia, 4. 408
—— fondu, 6 . 559 —— noir, 6 . 559	Climax, 15. 257
	Clingmanite, 6. 707
Cimolian earth, 6. 496	Clinoanthophyllite, 6. 398
Cimolite, 6. 495	Clinochlor, 12. 529
Cinchonidine bromoiridate, 15. 777	Clinochlore, 6 . 621, 622
chloroiridate, 15 . 771	Clinoclare, 3. 8
chloroplatinate, 16. 313	Clinoclastite, 9. 4, 161
Cinchonine allylalcoholotrichloroplatinite,	Clinocrocite, 14. 328, 353
16. 273	Clinoedrite, 6. 443, 445
bromoiridate, 15. 777	Clinoenstatite, 6. 395
chloroiridate, 15. 771	Clinohedrite, 9. 291
Cinder notch, 12. 590	Clinohumite, 6. 813
Cinerary urns, 6. 512	Clinophæite, 5. 154; 12. 529; 14. 328, 353
Cineres clavellati, 2. 419	Clinoptilolite, 6. 748
Cinnabar, 4. 696, 943, 944	Clinozoisite, 6. 722
—— hepatic, 4. 696	Clintonite, 6 . 816; 12 . 529
Indian, 4. 942	
X-radiogram, 1. 642	Clintonites, 6. 603
Cinnabaria 7 672	Cluthalite, 6. 645
Cinnabaris, 7. 673	Coalite, 8. 166
Cinnabarite, 4. 696	Coba, 2. 803
Cinnamon-stone, 6. 715	Cobalt, 1. 264; 14. 419
Cipliyte, 3. 903	alcosols, 14. 454
Ciplyte, 6 . 835	allotropes, 14. 458, 464
Circumstantial evidence, 1. 90	—— alloys, 14. 529
Cirite, 7. 896	aluminate, 5. 298
Cirvolite, 3. 623; 5. 155, 370; 8. 733	aluminide, 14. 535
Citric acid, 13. 613, 615	aluminium alloys, 14. 534
Citrine, 6 . 138	molybdenum alloys, 14. 541
Citrongelb, 11. 273	pentafluoride, 14. 607 sulphide, 14. 757
Clapeyron's equation, 1. 429	sulphide, 14. 757
Clarite, 9. 4, 318	tungsten alloys, 14. 542
Clarkeite, 12. 4, 64	amalgams, 14. 533
Clarus hyalinus, 7. 98	amidosulphonate, 8. 644
Classification of elements, 1. 248	amminochlorosmate, 15, 720
Claudelite, 9. 4, 94	amminometasilicate, 6. 932
Claus' blue solution, 15. 571	ammonium azide, 8. 355
Clausius' equation, 1. 431	decamolybdate, 11. 574
gas equation, 1. 761	dithionate, 10. 597
- ionization hypothesis of electrolysis,	lead nitrite, 8. 506
1. 971	
Clausthalie, 10. 787	pentasulphate, 14. 774
Clausthalite, 7. 491, 896; 10. 694, 787; 15.	——————————————————————————————————————
592	
Clay, 5. 531	phosphite, 8. 920 sulphatofluoberyllate, 14. 783
blue, 5. 716	
— colloidal, 6. 487	tetrafluoride, 14. 606
(Continue) 4. 201	analytical reactions, 14. 514

Cobalt antimonite, 9. 433	Cobalt co-ordination number, 14. 525
aquopentamminoamidosulphonate, 8.	copper alloys, 14. 529
644	aluminium alloys, 14. 535
aquopentamminoimidodisulphonate,	molybdenum alloys, 14. 540
8. 659	nickel-iron-magnesium alloys, 15.
aquopentamminonitrilotrisulphonate, 8. 669	337
arsenate colloidal, 9. 229	zinc alloys, 15. 337
	silicon alloys, 14. 536
—— atomic disruption, 14. 527	chromium alloys, 14. 540
—— number, 14. 527	cuprous lead selenide, 10. 800
number, 14. 527 weight, 14. 525	decamminoamidodithionate, 10. 598
auric hexamminochloride, 3. 595	decatungstate, 11. 832
—— pentamminonitratochloride, 3.	deuterohexavanadate, 9. 791
595	diamidodiphosphate, 8. 711
autunite, 12 . 135	diamminoarsenate, 9. 229
azide, 8 . 355	diamminodipyridinoaquo-hydroxydi-
barium sulphide, 14. 757	thionate, 10. 597
——————————————————————————————————————	thionate, 10. 597
bisdiethylenediaminosulphate, 10. 448	diantimonide, 9. 414
- bisethylenediaminoamminochlorodi-	diaquotetramminoamidosulphonate, 8.
thionate, 10. 598	644
bisiodotrichloro-chloride, 14. 628	—— diarsenatoctodecatungstate, 9. 214
bismethylenediaminotetrathionate, 10.	diarsenide, 9. 76
620	1: 6-diazidobisethylenediamine azide,
—— bismuth alloys, 9 . 640	8. 355
nitrate, 9. 710	1: 6-diazidobisethylenediamine chloro-
—— bloom, 9 . 4, 228 ; 14 . 424	aurate, 8. 355
—— blue, 14. 519	1: 6-diazidobisethylenediaminochloro-
	platinate, 8. 355 ———————————————————————————————————
boride, 5 . 31 boron alloy, 14 . 534	10. 598
borotungstate, 5. 111	1: 6-diazidobisethylenediamminoni-
—— bromate, 2. 360	trate, 8. 355
ammino, 2. 360	1: 6-diazidobisethylenediaminothio-
bromide, X-radiogram, 1. 642	cyanate, 8 . 355
bromoplatinate, 16. 380	1: 6-diazidobisethylenedithionate, 8.
bromostannate, 7. 456	355
bronze, 14. 519	diazidotetramminodithionate, 10. 598
eadmium alloys, 14. 533	diazidotetramminonitrate, 8. 355
cæsium amminotetrachlorides, 14. 639	
	diborate, 5. 114
—— calcium alloy, 14. 532 —— magnesium arsenate, 9. 230	diboride, 5 . 32
- carbonatoethylenediaminediaminino-	1: 2-dichlorobisethylenediamine azide,
chloride, 14 . 819	8. 355
carbonatopentamminoamidosul-	1: 6-dichlorobisethylenediamine azide,
phonate, 8. 644	8. 355
catalysis by, 1. 487	- dichlorodiethylenediaminoantimony
—— ceric decafluoride, 14. 607	pentachloride, 9. 492
	dichromate, 11. 344
ammino-, 2. 360	
chloroantimonate, 9. 492	trans-diethylenediamminoaquohy-
	droxydithionate, 10. 597
chloropentamminodihydrosulphate,	- diethylenediaminodinitritodithionate,
10 . 448	10. 598
chloroplatinate, 16. 284	diferride, 14 . 545
chlorostannate, 7. 450	—— dihydrazinohydrosulphite, 10. 315
chromic pentafluoride, 14. 608	dihydrazinosulphite, 10. 314
chromite, 11. 204	—— dihydride, 14. 508.
chromium alloys, 14. 538	dihydroantimonate, 9. 461
	—— dihydroarsenatotrimolybdate, 9. 208 —— dihydrotetrarsenate, 9. 230
molybdenum alloys, 14. 541	dihydroxydecasulphite, 10. 313
nickel alloys, 15. 338	dihydroxydecasulphite, 10. 313
tungsten cobalt alloys, 14. 542 cobaltous trisethylenediaminocto-	dihydroxytriselenate, 10. 883
chloride, 14. 658	—— diiododinitritoplatinite, 8. 523
colloidal, 14. 453	—— diiodotriarsenite, 9. 257

Cobalt cis-dinitritotetramminoamidosul-	Cobalt heptachlorobismuthite, 9. 668
phonate, 8. 644	hexaboratodiiodide, 5. 141
trans-dinitrotetramminoamidosulpho-	hexadecaboratodibromide, 5. 140
nate, 8. 644	—— hexadecaboratodichloride, 5. 140
cis-dinitritotetramminonitrilosulpho-	hexahydroarsenatoctodecamolybdate,
nate, 8. 669	9. 211
trans-dinitritotetramminonitrilotri-	hexahydrodichloride, 14. 627
sulphonate, 8. 669	hexamminoamidosulphonate, 8. 644
dinitrosyldecamminodinitratotetra-	—— hexamminochloroplatinite, 16. 284
nitrate, 8. 443	hexamminochlorostannite, 7. 434
dinitrosyldecamminodinitratotetra-	hexamminodihydroxynitrilomonosul-
perchlorate, 8. 443	phonate, 8. 672
dinitrosylenneamminoiodotetraoxa-	hexamminodisulphatopersulphate, 10.
late, 8. 443	480 —— hexamminoferroheptanitrosyltrisul-
—— dioxide, 14. 598 —— dioxytetrafluomolybdate, 11. 614	phide, 8. 442
dipentarsenide, 9. 75	hexamminofluoborate, 5. 128
cis-dipropylenediaminodichlorodi-	hexamminofluoride, 14. 605
thionate, 10. 598	hexamminofluotitanate, 7. 73
trans-dipropylenediaminodichlorodi-	hexamminoimidodisulphonate, 8. 659
thionate, 10. 598	hexamminonitrilotrisulphonate, 8.
—— diselenide, 10, 800	669
disilicide, 6 . 208	hexamminothiocarbonate, 6. 128
—— disulphide, 14. 756	hexamminotrihydroxydithionate, 10.
dithionate, 10. 597	598
hexahydrate, 10. 597	hexamminotrinitratoaquodihydroxy-
octohydrate, 10. 597	dithionate, 10. 598
—— dithiophosphate, 8. 1068	hexamminoxydiaquohydroxydithio-
—— ditritaphosphide, 8. 859	nate, 10. 598
—— ditritarsenide, 9. 73	hexapermanganite, 12. 280
—— ditritasilicide, 6. 209	—— hexitapentasulphide, 14. 750
—— ditungstate, 11. 810	hexitatungstide, 14. 541
- dodecamminohexahydroxydithionate,	—— higher oxides, 14. 598
10. 598	—— history, 14. 419
electronic structure, 14. 527	hydrazinohydrosulphite, 10. 315
ethylstannonate, 7. 410	hydroarsenatovanadate, 9. 200
extraction, 14. 433	hydrochloride, 14. 628
ferrate, 13. 936	hydrofluocolumbate, 9. 872
ferrous sulphoarsenitobismuthite, 9.	—— hydrofluoride, 14 . 605
696	hydrogel, 14. 453
filaments, 14. 453	hydrosel, 14. 453
fluoberyllate, 14. 607	hydrophosphatodimolybdate, 11. 670
heptahydrate, 14. 607 fluoborate, 5. 128	
—— fluorides, 14. 603	—— hydrosulphide, 14. 754 —— hydroxyazide, 8. 355
—— fluosilicate, 6. 957	—— hydroxychloride, 14. 628
—— fluotitanate, 14. 607	—— hydroxyhydrosulphide, 14. 754
——————————————————————————————————————	hyponitrite, 8. 417
fluovanadate, 14. 607	hypophosphate, 8. 939
fluoxyvanadate, 14. 608	hypophosphite, 8. 890
—— glance, 9. 4, 308; 14. 424	- intermediate oxides between CoO and
—— gold alloy, 14. 532	Co ₈ O ₄ , 14. 577, 582
green, 14, 519, 602	—— intermetallic compounds, 14. 529
—— hemiarsenide, 9. 75	iodate, 2. 361
hemiboride, 5. 32	ammino-, 2. 362
hemiennealuminide, 14. 535	iodoplatinite, 16. 391
hemiheptasulphide, 14. 752	———— dodecahydrate, 16. 391
—— hemihydrazinosulphite, 10. 314	enneahydrate, 16. 391
—— hemipentaluminide, 14. 535	—— iridium alloy, 15 . 750
—— hemiphosphide, 8. 859	iron alloys, 14. 544, 553; 15. 565
—— hemiselenide, 10 . 800	—— aluminium alloys, 14. 553
hemisilicide, 6. 208	chromium alloys, 14. 553
hemistannide, 14. 537	tungsten alloys, 14. 554
hemisulphide, 14. 753	—— — manganese alloys, 14. 554
hemitriarsenide, 9. 75	molybdenum alloys, 14. 554
hemitrichromide, 14. 539	tungsten alloys, 14. 554
hemitrimolybdide, 14. 540	iso-chloropentamminohydroxynitrilo-
hemitriphosphide, 8, 859	disulphonate, 8. 680
hemitriselenide, 10. 800	cis-iso-dinitritotetramminohydroxy-
hemitritelluride tetrahydrate, 11. 73	nitrilodisulphonate, 8. 680

Cobalt trans-iso-dinitritotetramminohy-	Cobalt nitrosotricarbonyl, 5. 957
droxynitrilodisulphonate, 8. 686	— nitrosylpentamminodichloride, 8. 443
- iso-hexamminohydroxynitrilodisul-	nitrosylpentamminodinitrate, 8. 443
phonate, 8. 680	nitrosyltricarbonyl, 8. 436
iso-nitritopentamminohydroxy-	occurrence, 14. 422
	-— ochra nigra, 12. 266
nitrilodisulphonate, 8. 680	
isotopes, 14 . 525	
lead alloys, 14. 538	octamminoamidohydroxydithionate,
—— —— nickel alloys, 15 . 338 —— —— sulphide, 14 . 757	10. 598
———— sulphide, 14. 757	octamminodihydroxydithionate, 10.
magnesia pink, 14. 519	598
—— magnesium alloys, 14. 532	octoborate dodecahydrated, 5. 114
borate, 5. 114	orthogrsenate, 9. 228
malleable, 14 . 453	orthoarsenite, 9. 133
—— manganite, 12. 243	orthoborate, 5. 114
manganese alloys, 14. 543	orthosilicate, 6. 932
	orthostannate, 7. 420
molybdenum alloys, 14. 544 nitrates, 14. 828	orthosulphoantimonite, 9. 555
	osmium alloys, 15. 697
mercury alloys, 14. 533	
metacolumbate, 9. 868	oxyarsenate, 9. 229
—— metallic precipitation, 14. 517	——— monohydrate, 9. 229
— metantimonate, 9, 461 — dihydrate, 9, 461	oxydichloride, 14. 628
dihydrate, 9 . 461	oxyfluoride, 14. 604
——————————————————————————————————————	oxyfluomolybdate, 14. 608
hemipentahydrate, 9. 461	oxyselenide, 10. 780
	oxysulphide, 14. 754
—— pentahydrate, 9. 461	palladium alloys, 15. 651
— metasilicate, 6. 932	pentaborate, 5. 114
	— pentachlorobismuthite, 9. 668
metasulpharsenatoxymolybdate, 9.	portagnoriuminate hantshudgeted 5
332	pentafluoaluminate heptahydrated, 5.
— metatantalate, 9. 910	310
—— metatetrarsenite, 9. 134	pentafluoferrate, 14. 8
—— metatitanate, 7. 60	—— pentafluovanadite, 9. 797
metavanadate, 9 . 791	—— pentamminochlorodithionate, 10. 598
—— mirrors, 14. 453	pentamminohydrocarbonatodithio-
molybdenum alloys, 14. 540	nate, 10. 598
	pentamminohydroxydithionate, 10.
chromium alloys, 14. 543 nickel alloys, 15. 338	597
	pentamminonitratodithionate, 10. 597
molybdide, 14. 540	
	—— pentamminoselenitochloride, 10. 841
monamminorthoarsenate, y. 229	pentitadizincide, 14. 532
monantimonide, 9. 413	—— pentitahexaselenide, 10. 800
—— monarsenide, 9. 75	—— pentitanneahydrazinosulphite, 10. 314
monochromide, 14. 539	—— pentoxysulphate, 14. 769
monosilicide, 6. 208	perborate, 5, 120
monothiophosphate, 8. 1069	perchlorate, 2. 404
monoxide, 14. 558	ammino-, 2. 404
serosol. 14. 561	permanganite, 12. 280
aerosol, 14. 561 preparation, 14. 558	—— permonosulphomolybdate, 11. 654
	μ -peroxodecamminochloroplatinate, 16.
nickel alloys, 15. 332	332
copper alloys, 15. 336	
hydroarsenate, 9. 232	—— perrhenate, 12. 477
iron alloys, 15. 338	persulphate, 10. 480
	phosphatododecamolybdate, 11. 663
titanium alloys, 15. 339	phosphite, 8 . 920
manganese alloy, 15. 338	—— platinum alloys, 16. 219
nitrates, 15. 493	copper alloys, 16 . 219
pyrite, 15. 5	iron alloys, 16. 219
——————————————————————————————————————	nickel chromium alloy, 16. 220
——————————————————————————————————————	————— molybdenum alloy, 16.
	220
sulphide, 15. 448	
sulphoantimonide, 9. 556	
nitride, 8 . 136	plumbite, 7. 669
nitrilotrimetaphosphate, 14. 855	polysulphates, 10. 448
- nitritopentamminoamidosulphonate,	potassium arsenate, 9. 230
8. 644	azide, 8 . 355
nitritopentamminohydroxynitrilodi-	berium nitrite, 8. 505
sulphonate, 8. 680	cadmium nitrite, 8. 505
- nitritopentamminoimidodisulphonate,	decasulphide, 14, 756
8. 659	———— diamminotetranitrite, 8. 502
	

Cobalt potassium dinitrosyldecamminodiio-	Cobalt sulpharsenite, 9. 302
dodinitratoiodide, 8. 443	sulphate, 11. 831; 14. 761
hypophosphate, 8. 939	sulphides, 14 . 750
mercuric nitrite, 8. 505	- sulphoantimonate, 9. 576
nickel nitrite, 8 . 512	sulphochromite, 11, 433
orthosulphoantimonite, 9. 555	sulphomolybdate, 11. 653
persulphate, 10. 480	sulphotellurite, 11. 114 sulphotungstate, 11. 859
phosphite, 8. 920 sulphatofluoberyllate, 14. 783	tellurate, 11. 97
	telluride, 11. 63
	tellurite, 11. 82
trifluoride, 14. 607	monohydrated, 11. 82
triterodecavanadate, 9. 791	terrea fuliginea, 12. 266
zinc nitrite, 8. 505	- teterodecavanadate, 9. 791
- preparation metal, 14. 446	tetraborate decahydrated, 5. 114
properties, chemical, 14. 507	tetracarbonyl, 5. 957 tetraethyldiaminediaquotetrahydroxy-
- — physical, 14. 457	dithionate, 10. 598
— psilomelanes, 12. 266 — pulverulent, 14. 453	tetramminoaquohydroxydithionate,
— pyrite, 14. 424, 756, 737	10. 597
—— pyriticosum, 14. 757	tetramminocarbonatodithionate, 10.
pyroarsenate, 9. 230	598
- — dihydrate, 9 . 230	cis-tetramminochlorodithionate, 10.
pyroarsenite, 9. 134	598
pyrophoric, 14. 453	tetramminoperrhenate, 12. 477 trihydrate, 12. 477
pyroselenite, 10. 841 pyrosulpharsenate, 9. 324	tetrapyridinotetrathionate, 10. 620
pyrosulpharsenatoxymolybdate, 9. 331	tetravanadate, 9. 791
red, 9 . 228	
rex, 14. 421	tetritatrisulphide, 14. 750
rubidium lead nitrite, 8. 506	—— tetroxyorthoarsenite, 9. 133
selenate, 10. 885	tetroxysulphate, 14. 769
ruthenium alloys, 15. 510	decahydrate, 14. 769 tetradecahydrate, 14. 769
salts physiological action, 14. 518 selenide, 10. 800	thallium alloys, 14. 536
selenite, 10. 840	nickel nitrate, 8. 512
——————————————————————————————————————	thiocarbonate, 6 . 128, 129
tritahydrate, 10. 840	amminos, 6. 129
- sesquisulphide, 14. 755	—— thiosulphate, 10. 556
silicate, 6 . 931	tin alloy, 14. 536
silicoarsenide, 9. 68	titanium alloys, 14. 536 hexamminofluoride, 14. 610
silicododecatungstate, 6. 881 silicon aluminium alloys, 14. 536	nickel alloys, 15. 338
- · · silver alloys, 14. 531	triamidodiphosphate, 8. 712
dinitrosyldecamminotetranitra-	triamidopyrophosphate, 14. 854
tonitrate, 8. 443	triamminofluoride, 14. 605
single crystals, 14. 453	triamminorthoarsenate, 9. 229
sodium arsenate, 9. 230	
barium nitrite, 8 . 505	triarsenide, 9. 78 tricarbonyl, 5. 957
disulphate, 14. 780 disulphide, 14. 757	trioxysulpharsenate, 9. 329
heptathiosulphate, 10. 556	trioxysulphate, 14. 769
hexarsenate, 9. 230	triselenite, 10. 841
	- trisethylenediaminohydroselenate, 10.
pentasulphide, 14 . 757	886
percarbonate, 14. 812	trisilicide, 6. 209
persulphate, 10. 480	tritacarbide, 5. 901; 14. 512
——————————————————————————————————————	tritadinitride, 8. 137 tritadistannide, 14. 536
tetrathiosulphate, 10. 556	tritanitride, 8. 137
trifluoride, 14. 607	- tritatetraselenide, 10. 800
solubility of hydrogen, 1. 306	tritatridecaluminide, 14. 535
spar, 14. 424	—— trithionate, 10. 609
speiss, 9. 76_	tritungstate, 11. 81
a-stannate, 7. 420	tungsten alloys, 14. 541
stannic sulphide, 14. 757	— hexamminoenneachloride, 11. 842 — molybdenum chromium
stannide, 14. 536 suboxide, 14. 558	alloys, 14. 543
	tritacarbide, 14. 541
sulpharsenide, 9. 308	tungstide, 14. 541

Cobalt ultramarine, 5. 298; 14. 519	Cobaltic
uranate, 12. 64	diaminechloride, 14. 675
uranium alloys, 14. 543 uses of, 14. 518	- — quaterethylenediamine-
valency, 14. 525	chloroplatinate, 16. 332 quaterethylenediamine-
vitriol, 14. 761	iodide, 14 . 748
voltaite, 14. 353	dextro-salt, 14. 748
—— yellow, 8 . 502; 14 : 519 —— zinc alloy, 14 . 532	
copper alloys, 14 . 533	nitrate, 14. 846
hexachloride, 14. 643	devtro-galt 14 846
mercury alloy, 14. 534	levo-salt, 14. 846
——————————————————————————————————————	μ-aminodecamminonitrate, 14. 844 ammines, 14. 688
(tri)cobalt tetraborate tetrahydrated, 5. 114	ammonium aquopentamminochloro-
Cobaltiarsenates, 9. 230	sulphate, 14, 794
Cobaltibismuth carbonatotetrammino- iodide, 9. 678	aquopentamminomolybdate, 11.
chloropentamminoiodide, 9. 678	- barium decamolybdate, 11, 575
dinitroxyltetramminoiodide, 9. 678	
hexamminoiodide, 9. 678	- · · · · - disulphate, 14. 789
Cobaltic μ-acetato-amino-ol-hexammino- chloroplatinate, 16. 332	dodecamolybdate, 11. 574
—— acetatopentammines, 14. 697	791
acetylacetonatobisethylenediamines,	hexamminosulphate, 14. 791
14. 697	hexanitrite, 8. 504
adipinatobispentammines, 14 . 699 alum, 14 . 789	
aluminium oxide, 14 . 586	- — hydroxytriamminochloroplati-
μ-amidoselenatotetramminohydro-	nate, 16. 333
sulphate, 10. 930 —— μ-amidosulphatoctamminohydro-	silver hexanitrites, 8. 504 tetramminodisulphite, 10. 315
selenate, 10. 930	tetramminotrisulphite, 10. 315
amidosulphonates (cis), 8. 508	· ···· μ-ammonium-peroxo-quaterethylene-
(trans), 8. 508	diaminebromide, 14, 732
$$ μ -amino-decamminobromide, 14. 731 $$ decamminopentachloride, 14. 673	———— monohydrate, 14. 733 ———————————————————————————————————
decamminosulphate, 14. 804	antimony dichlorobisethylenediamine-
————— diol-hexamminobromide, 14. 734	hexachloride, 14. 670
hexamminochloride, 14. 679	aquobisethylenediamineammines, 14.
	693 ——aquobisethylenediamineamminobro-
ol-octamminobromide, 14. 733	mide. 14. 723
tetrahydrate, 14. 733	cis-form, 14 . 723 trans-form, 14 . 723
octamminochloride, 14. 677 octamminonitrate, 14. 847	trans-form, 14. 723 aquobisethylenediamineammino-
octamminosulphate, 14. 674.	chloroplatinate, 16. 332
805	trans-aquobisethylenediamineammino-
peroxohexamminonitrate,	fluoride, 14. 610
14. 848 quaterethylenediamine-	trans-aquobisethylenediamineammino- iodide, 14. 745
bromide, 14. 733	cis-aquobisethylenediamineammino-
quaterethylenediamine-	nitrate, 14. 834
iodide, 14. 748	
——————————————————————————————————————	aquobispyridinetriamminobromide, 14.
octamminochloride, 14. 674	.723
octamminonitrate, 14. 846	aquobromotetramminoselenate, 10.
——————————————————————————————————————	886 —— aquochlorotetramminoselenate, 10.
nexanydrate, 14. 646	886
805	aquoctamminochloride, 14. 660
ol-hexamminobromide, 14.	aquohenamminochloride, 14. 660
734 ————————————————————————————————————	
— — hexamminochloride,	886
14. 680	aquonitratotetramıninohydroselenate,
quaterethylenediaminebro-	10. 886
mide, 14. 733 ———————————————————————————————————	aquonitritotetramminohydroselenate, 8. 507
- Hoxanyulaw, 17. 100	

Cobaltic aquonitritotetramminohydro-	Cobaltic aquopyridinetetramminonitrate,
sulphate, 8. 507 —— aquonitritotetramminomolybdate, 11.	14. 834 —— aquoselenatotetramminochloride, 10.
575 — aquonitritotetramminooxalate, 8. 507	886 —— aquoselenatotetramminohydrosele-
	nate, 10. 886 —— aquoselenatotetramminoselenate, 10.
— aquonitritotetramminotartrate, 8. 507 — aquooctoamminobromide, 14. 723	886 ——— aquoselenatotetramminosulphate, 10.
aquopentadecamminobromide, 14. 723	886, 930 —— aquosulphatotetramminoselenate, 10.
—— aquopentadecamminoiodide, 14. 745 —— aquopentammines, 14. 692	886, 930
—— aquopentamminobromide, 14. 722 —— aquopentamminobromoiridate, 15. 776	aquosulphitotetramminocyanide, 10.
aquopentamminobromoplatinate, 16.	aquosulphitotetramminohydroxide, 10. 316, 317
	aquosulphitotetramminothiocyanate, 10. 317
aquopentamminobromosulphate, 14.	—— barium ammonium octamminohexa- sulphite, 10. 315
794, 795 —— aquopentamminocarbonate, 14. 815	dodecanitrite, 8. 504
—— aquopentamminochloride, 14. 659, 660 —— aquopentamminochlorobromoiridate,	enneamolybdate, 11. 575 ctamminohexasulphite, 10. 315
15. 776	—— oxyoctonitrite, 8. 504 —— benzhydroxamatobisethylenediamines,
aquopentamminochloroplatinate, 16.	14. 698 —— a-benzilmonoximebisdiethylenedi-
aquopentamminochlorosulphate, 14.	amine, 14. 698
794 —— aquopentamminochromatobisdichro-	benzolhexacarbonatopentammines, 14.
mate, 11. 344 aquopentamminodichromate, 11. 344	—— benzolpentacarbonatopentammines, 14. 699
—— aquopentamminofluoride, 14. 610 —— aquopentamminohydronitrate, 14. 834	—— benzylsulphoacetatobisethylenedi- amines, 14. 705
	—— bischromatotetrammines, 14. 705 —— bisdiaminodiethyleneaminotriiodide,
tetrahydrate, 14. 857	14. 744 —— bisdimethylglyoximebisanilines, 14. 703
aquopentamminohydropyrophos- phate, 14. 858	—— bisdimethylglyoximediamines, 14. 667,
—— aquopentamminohydroxide, 14. 595 —— aquopentamminoiodide, 14. 745	699, 703, 705 —— bisdimethylglyoximinebisethylamines,
	14. 703 bisdimethylglyoximinebishydroxyl-
795 aquopentamminomolybdate, 11. 575	amines, 14. 703 — — bisdimethylglyoximinebis-p-tolu-
aquopentamminonitrate, 14. 833	idines, 14. 703 —— bisdimethylglyoximinebispyridines,
8. 682	14 . 703
aquopentamminonitrite, 8. 506 aquopentamminopyrophosphate, 14.	bisdimethylglyoximinodiamminoselenate, 10. 886
858 dodecahydrate, 14. 858	bisethylene-α-phenanthrolines, 14. 692 bisethylenediamine-α-phenanthroline-
aquopentamminorthophosphate, 14.	bromide, 14. 722 —— bisethylenediaminecyclopentaminedi-
—— aquopentamminoselenate, 10. 886 —— aquopentamminosulphate, 14. 793	amines, 14. 692 —— trans-bisethylenediaminecyclopentane
tetrahydrate, 14. 793	diaminenitrate, 14. 833 —— cis-bisethylenediaminecyclopentane-
trihydrate, 14. 793 aquopentamminosulphatobromo-	iodide, 14. 745
iridate, 15. 776 —— aquopentamminosulphatodihydro-	dextro-salt, 14. 743
sulphate, 14. 794 —— aquopentamminosulphatonitrate, 14.	—— bisethylenediaminediammines, 14.
834 aquopentamminosulphatotetrahydro-	cis-bisethylenediaminediamminobro- mide, 14. 722
sulphate, 14. 794	dextro-salt, 14. 722
aquopentamminotrifluorohexahydro- fluoride, 14. 610	trans-bisethylenediaminediammino- bromide, 14. 722

Cobaltic trans-bisethylenediaminediam-	Cobaltic bis-o-nitrophenolatobisethylenedi-		
minochloride, 14. 658 —— cis-bisethylenediaminediammino-	amines, 14. 697 —— bis-p-nitrophenolatobisethylenedi-		
iodide, 14 . 744	amines, 14. 697		
trans-bisethylenediaminediammino- iodide, 14: 744	bispropyldiaminodiamminodichro-		
cis-bisethylenediaminediamminoni-	mate, 11. 344 bispropylenediaminediammines, 14.		
trate, 14 . 833 —— trans-bisethylenediaminediammino-	692		
nitrate, 14. 833 —— cis-bisethylenediaminediamminopen-	mide, 14. 722		
tachloride, 14. 658	chloride, 14. 658		
	bispropylenediaminediamminoiodide,		
— bisethylenediamine-l-cyclopentanedi-	bispropylenediaminediamininonitrate,		
aminebromide, 14. 722 dextro-salt, 14. 722	14. 833 —— bispyropyldiaminodiamminodichro-		
bisethylenediamine-l-cyclopentanedi-	mate, 11. 344		
aminechloride, 14. 659	- bissalicylatobisethylenediamines, 14.		
—— bisethylenediaminephenanthroline- nitrate, 14. 833	701 — bistriaminopropanediamminoiodide,		
bisethylenediaminepropylenediamine,	14. 744		
14. 692	bistriaminopropanes, 14. 692 bistriaminotriethylaminesexiesethyl-		
bisethylenediaminepyridineammines, 14. 692	enediaminechlorosulphate, 14. 793		
bisethylenediaminepyridineammino-	bistriaminotriethylaminesexiesethyl-		
chloride, 14. 658 —— bisethylenediaminodiaminepentane,	enediamineiodide, 14. 745 bistriaminotriethylaminesexiesethyl-		
14. 722	enediaminenitrate, 14. 833		
—— bisethylenediaminodiaminopentane, 14. 692	bistriaminotriethylaminesexiesethyl- enediamines, 14. 692		
bisethylenediamine-trans-cyclopen-	- bistriaminotriethylaminesexiesethyl-		
tanediaminebromide, 14, 722	enediaminesulphate, 14. 793		
——————————————————————————————————————			
bisethylenediamine-trans-cyclopen-	complex salts, 14. 720		
tanediaminechloride, 14. 659	— bromoaquo-μ-amino-octamminobro-		
— bishexamminochloroplatinate, 16. 332 — bishexamminoenneasulphate, 10. 315	mide, 14. 732 bromoaquo-µ-amino-octamminosul-		
bishydroselenatetetramminoselenate,	phate, 14. 804		
10. 886	bromoaquobisethylenediaminebro-		
 bismonomethylglyoximinediammines, 14. 703 	mide, 14. 728 —— bromoaquobisethylenediamineiodide,		
bismuth carbonatotetramminoiodide,	14. 746		
14. 817 ———————————————————————————————————	cis-bromoaquobisethylenediamineni- trate, 14. 839		
746	—— bromoaquobisethylenediamines, 14.		
dichlorobisethylenediaminebro- mide, 14. 729	695 bromoaquotetrammines, 14. 695		
dichlorobisethylenediaminechlo-	bromoaquotetramminobromide, 14.		
ride, 14 . 670	728		
dichlorotetramminosulphate, 14:	cis-bromoaquotetramminobromosul- phate, 14. 799		
	bromoaquotetramminochloride, 14.		
dinitritotetramminoperchlorate, 8. 508	728 cis-bromoaquotetramminonitrate, 14.		
dinitritotetramminoselenate, 8.	839		
508			
hexamminohexabromide, 14.	bromobenzene-3: 4-disulphonatobis-		
hexamminohexaiodide, 14. 743	ethylenediamines, 14. 705		
trisethylenediaminechloride, 14.			
dextro-salt, 14. 657	cis-bromobisethylenediamineammino-		
lævo-salt, 14. 657	bromide, 14. 726		
bismuthyl hexanitrate, 8. 505 pentanitrite, 8. 505			
	minobromide, 14. 726		
bisnitrophenolatobisethylenediamines,	cis-bromobisethylenediamineammino		
14. 701	bromonitrate, 14. 839		

Cobaltic bromobisethylenediamineaminino-	Cobaltic bromopentamminofluosilicate, 6.	
iodide, 14. 747	958 —— bromopentamminohydrosulphate, 14	
nitrate, 14 . 839	799	
trans-bromobisethylenediamineam- minonitrate, 14. 839	bromopentamminoiodide, 14. 746 bromopentamminoiodosulphate, 14.	
	799	
amińes, 14. 694, 725	bromopentamminonitrate, 14. 839 bromopentamminosulphate, 14. 798	
bromobisethylenediaminepyridines, 14. 695	bromopurpureo salts, 14. 695 bromopurpureofluosilicate, 6. 958	
bromochloroaquoethylenediamineam-	- bromopyridinebisethylenediamine-	
mines, 14. 702 bromochloroaquoethylenediamineam-	bromide, 14. 728 ——cadmium aquopentamminoenneabro-	
minobromide, 14. 731	mide, 14 . 703	
bromochloroaquoethylenediamine- amminoiodide, 14. 748	aquopentamminoheptachloride	
bromochloroaquoethylenediamine-	aquopentamminoiodide, 14. 745 chlorobisethylenediamino-	
amminonitrate, 14. 843 —— bromochloroaquotriammines, 14. 702	chloride, 14 . 670	
	dichlorobisethylenediamine- bromide, 14 . 730	
monohydrate, 14. 731	dichlorobisethylenediamine-	
bromochloroaquotriamminoiodide, 14.	iodide, 14 . 747 —— dodecanitrite, 8 . 504	
bromochloroaquotriamminonitrate,		
14. 842 bromochlorobisethylenediaminebro-	656 —— hexamminohexabromide, 14 . 720	
mide, 14 . 731	hexamminoiodide, 14. 743	
	————— hexamminopentachloride, 14. 656 ———————————————————————————————————	
bromochlorobisethylenediamine-	hevenitrite 8 503	
chloride, 14. 731 cis-bromochlorobisethylenediamine-		
nitrate, 14. 842	oxyoctonitrite, 8. 504	
——————————————————————————————————————		
trans-bromochlorobisethylenediamine-	- carbonatobisdiaminopentanes, 14. 704	
nitrate, 14. 842	. carbonatobisdiaminotetrammino- chloride, 14 . 819	
702 cis-bromochlorobisethylenediamine-	carbonatobisethylenediaminebromide, 14. 819	
sulphate, 14. 802	carbonatobisethylenediaminechloride,	
dextro-salt, 14. 803	14. 819 ————————————————————————————————————	
bromohydroxybisethylenediamines,	lævo-salt, 14, 819	
14. 702 bromohydroxylaminebisethylene-	——— monohydrate, 14. 819 ——— carbonatobisethylenediaminehy-	
diaminebromide, 14. 726	droxide, 14. 818	
bromohydroxylaminebisethylene- diaminechloride, 14, 726	carbonatobisethylenediamineiodide, 14. 819	
bromohydroxylaminebisethylenedi-	carbonatobisethylenediaminenitrate,	
amineiodide, 14. 746 —— bromohydroxylaminebisethylenedi- aminenitrate, 14. 839	14. 819 —— carbonatobisethylenediamines, 14. 703	
bromohydroxylaminebisethylene- diamines, 14. 695		
	pentahydrate, 14. 819	
bromonitrotetrammines, 14. 702 bromopentammines, 14. 695		
bromopentamminobromide, 14. 724	carbonatobistrimethylenediamine-	
	chloride, 14. 819 carbonatobistrimethylenediamines, 14.	
- bromopentamminobromosulphate, 14.	704	
799 bromopentamminochloroplatinate, 16.		
382	carbonatohydrosulphitotetrammine,	
bromopentamminochromate, 11. 311	10. 318	

(Inhaltic carbonatarontamminahamida 44	Cabaltia ablamaguahiyathulangdiamina-
Cobaltic carbonatopentamminobromide, 14. 815-6	Cobaltic chloroaquobisethylenediamine- bromide lævo-salt, 14. 727
carbonatopentamminochloride, 14. 815	chloroaquobisethylenediaminechloride,
—— carbonatopentamminoiodide, 14. 816	14. 666
carbonatopentamminonitrite, 8. 506	dextro-salt, 14. 667
carbonatopentamminoselenate, 10. 886	levo-salt, 14. 667
carbonatopentamminosulphate, 14.	—— chloroaquobisethylenediamines, 14. 695 —— chloroaquobisethylenediaminesul-
	phate, 14. 798
carbonatotetrammines, 14. 703	dextro-salt, 14. 798
carbonatotetramminobromide, 14. 817	lævo-salt, 14. 798
carbonatotetramminobromoiridate,	chloroaquotetrammines, 14. 695
15. 776	cis-chloroaquotetramminobromide, 14.
—— carbonatotetramminocarbonate, 14.	727 cis-chloroaquotetramminochloride, 14.
816 ————————————————————————————————————	666
carbonatotetramminochloride, 14. 816,	chloroaquotetramminochloroplatinate,
817	16 . 332
—— carbonatotetramminofluoride, 14. 816	chloroaquotetramminochromate, 11.
carbonatotetramminohydrocarbonate,	311
14. 816	chloroaquotetramminoctochloride, 14.
—— monohydrate, 14. 816 —— carbonatotetramminohydroxide, 14.	666 chloroaquotetramminofluosilicate, 6.
carbonatotetramminohydroxide, 14.	958
carbonatotetramminomethylsulphate,	cis-chloroaquotetramminonitrate, 14.
14.816	839
carbonatotetramminonitrate, 14. 818,	chloroaquotetramminonitrite, 8. 508
840, 842	cis-chloroaquotetramminosulphate,
monohydrate, 14. 818	14. 797 - — chloroaquotriamminonitrate, 14. 839
carbonatotetramminopyrocarbonate,	chloroaurate (cis), 8. 508
14. 816 ——— carbonatotetramminoselenate, 10: 886	chlorobenzylaminebisethylenedi-
— carbonatotetramminosulphate, 14. 817	aminebromide, 14. 726
trihydrate, 14. 817	chlorobenzylaminebisethylenedi-
carbonatotetramminotriiodide, 14. 817	aminechloride, 14. 666
ceric hexamminosulphate, 14. 791	chlorobenzylaminebisethylenedi-
cerous hexamminosulphate, 14. 791	amineiodide, 14. 747 — chlorobenzylaminebisethylenedi-
chloride, 14, 653	aminenitrate, 14. 839
	chlorobenzylaminebisethylenedi-
bromide, 14. 726	amines, 14, 695
trans-chloroallylaminebisethylenedi-	chlorobisethylenediamineammines, 14.
aminebromide, 14. 726	694
chloroallylaminebisethylenediamine-	
chloride, 14. 666	dextro-salt, 14. 726
	lævo-salt, 14. 726
trans-chloroallylaminebisethylenedi-	chlorobisethylenediamineammino-
aminenitrate, 14. 839	chloride, 14 . 665
chloroallylaminebisethylenediamines,	dihydrate, 14. 665
14. 694	
chloroanilinebisethylenediaminebro-	chlorobisethylenediamineammino-
mide, 14. 726 —— chloroanilinebisethylenediamine-	chloroplatinate, 16. 332
chloride, 14. 666	chlorobisethylenediamineammino-
chloroanilinebisethylenediamine-	chloroplatinite, 16. 285
iodide, 14. 747	trans-chlorobisethylenediamineam-
chloroanilinebisethylenediamine-	minochlorosulphate, 14, 797 ——cis-chlorobisethylenediamineammino-
nitrate, 14. 839	nitrate, 14. 838
chloroanilinebisethylenediamines, 14.	trans-chlorobisethylenediamineam-
694 —— chloroaquo-a-phenanthrolinosulphate,	minonitrate, 14. 838
14. 798	chlorobisethylenediaminehydroxyl-
chloroaquo-μ-amino-octammino-	aminebromide, 14, 726
chloride, 14. 674	chlorobisethylenediaminehydroxyl-
chloroaquo-µ-amino-octamminosul-	aminechloride, 14. 665 —— chlorobisethylenediaminehydroxyl-
phate, 14. 804	aminenitrate, 14, 838
	chlorobisethylenediaminehydroxyl-
dextro-salt, 14. 727	amines, 14. 694

ODMERCAL INDEX		
Cobaltic chlorobisethylenediaminepyridine- phosphate, 14. 857	Cobaltic chloropentamminopolyiodide, 14.	
	chloropentamminopyrophosphate, 14.	
	——————————————————————————————————————	
chlorodiaquotriammines, 14. 695 chlorodiaquotriamminobromide, 14.	hydrosulphate, 14. 797 —— chloropentamminosulphatohydrosul-	
728	phate, 14 . 797	
chlorodiaquotriamminochloride, 14.		
chlorodiaquotriamminosulphate, 14.		
chloroethylaminebisdiethylenedi- aminechloride, 14. 666		
chloroethylaminebisethylenediamine- iodide, 14 . 747		
chloroethylaminebisethylenediamines, 14. 694		
chlorohydroxybisethylenediamine-	—— chloropurpureo-salts, 14. 694	
chloride, 14. 671	—— chloropurpureofluosilicate, 6 . 957 —— chloropyridinebisethylenediamine-	
nitrate, 14. 842 dextro-salt, 14. 842	bromide, 14 . 726 —— chloropyridinebisethylenediamine-	
——————————————————————————————————————	chloride, 14 . 66 5	
14 . 702	chloropyridinebisethylenediamine- nitrate, 14. 839	
	chloropyridinebisethylenediamines, 14. 695	
trate, 14. 845 —— ohloronitritodiethylenediamines, 8.		
508 —— chloronitrobisethylenediamines, 14.		
702—— chloronitrobispyridinediammines, 14.		
702	chlorotriamminotetrerosilicate, 6. 932	
chloronitrotetrammines, 14. 702 chloronitrotetramminonitrite, 8. 508		
chloropentammines, 14. 694 chloropentamminobromoiridate, 15.	14. 798 —— chromatoaquotriammines, 14. 705	
776		
382 —— chloropentamminobromosulphate, 14.	chromatopentammines, 14. 698	
797		
chloropentamminocarbonate, 14. 815 hemihenahydrate, 14. 815	312 —— chromatopentamminonitrate, 11. 312	
	chromatotetrammines, 14. 705 chromatotetramminochromate, 11.	
chloropentamminochloroiridate, 15.	312 —— chromatotetramminodichromate, 11.	
chloropentamminochloroplatinate, 16.	344	
332 —— chloropentamminochromate, 11. 311, 312		
chloropentamminodibromide, 14. 725 chloropentamminodichromate, 11. 344	citraconatobispentammines, 14. 699 citratopentammine, 14. 699	
chloropentamminodithionate, 14. 665	cobaltous bispropylenediaminediam-	
chloropentamminofluosilicate, 6. 957 chloropentamminohydropyrophos-	minopentachloride, 14. 659	
phate, 14. 859 ————————————————————————————————————	chloride, 14. 658	
chloropentamminoiodosulphate, 14.		

GENERAL INDEX 511		
Cobaltic copper μ -imino-peroxo-quaterethylenediaminenitrate, 14.	Cobaltic diaquotetramminopyrophosphate, 14. 858	
846	hexahydrate, 14. 858	
—— manganite, 12. 243	—— diaquotetramminorthophosphate, 14.	
	856	
pentamminotrisulphite, 10. 318	—— diaquotetramminoselenate, 10. 886	
trisethylenediaminopenta-	—— diaquotetramminosulphate, 14. 795	
chloride, 14 . 657	— dihydrate, 14. 795	
- croceo-salts, 8. 507; 14. 701	hemipentahydrate, 14, 795	
cyanoaquotetrammines, 14. 697	hemipentahydrate, 14. 795 trihydrate, 14. 795	
- decamminotrisulphite, 10. 315	diaquotetramminosulphatobromo-	
$-\mu$ -diamino-octammino-bromide, 14.	iridate, 15. 776	
732	diaquotetramminosulphatotetrahy.	
tetrahydrate, 14 . 732	drosulphate, 14. 795	
—— diammines, 14 . 706	diaquo-tetrol-quater-ethylenediamine-	
- — diamminosulphite, 10. 314	iodide, 14. 748	
—— diaquo-μ-amino-ol-hexamminonitrate,	diaquo-tetrol-quater-ethylenediamine-	
14. 847	sulphate, 14, 805	
diaquobisethylenediaminebromide, 14.	heptahydrate, 14. 806	
724	diaquotrimethylenediaminenitrate, 14.	
cis-diaquobisethylenediaminebromide, 14. 724	835 dibromo-μ-amino-peroxo-hexamino-	
cis-diaquobisethylenediaminechloride,	bromide, 14, 733	
14. 662	dibromoamminochloride, 14. 729	
- trans-diaquobisethylenediamine-	dibromosquobisethylenediamine-	
chloride, 14. 662	ammines, 14. 701	
- diaquobisethylenediaminehydroxide,	dibromoaquoethylenediamineammino-	
14 . 595	bromide, 14. 730	
cis-diaquobisethylenediaminenitrate,	dibromobisethylenediaminebromide,	
14 . 835	14. 730	
monohydrate, 14. 835	cis-dibromobisethylenediaminebro-	
trans-diaquobisethylenediamineni-	mide, 14. 729	
trate, 14, 835	trans-dibromobisethylenediaminebro-	
diaquobisethylenediamines, 14. 693	mide, 14. 729 dibromobisethylenediaminebromo-	
cis-diaquobisethylenediaminesulphate, 14. 796	platinate, 16. 380	
trans-diaquobisethylenediaminesul-	dibromobisethylenediaminechloro-	
phate, 14 . 796	platinate, 16. 382	
—— diaquobispyridinediammines, 14. 693	cis-dibromobisethylenediamineiodide,	
- diaquobispyridinediamminobromide,	14. 748	
14. 724	cis-dibromobisethylenediaminenitrate,	
—— diaquobispyridinediamminonitrate,	14. 842	
14. 835	trans-dibromobisethylenediamineni-	
diaquobispyridinediamminosulphato-	trate, 14. 842 —— dibromobistrimethylenediaminebro-	
hydrosulphate, 14. 796 —— diaquobistrimethylenediamines, 14.	mide, 14. 730	
693	dibromobistrimethylenediamines, 14.	
diaquochlorotriamminoselenate, 10.	701	
886	- dibromosuccinatobisethylenediamines,	
diaquodichlorodiamminohydro-	14. 704	
selenate, 10 . 886	dibromotetrammines, 14. 700	
—— diaquo-diol-hexamminosulphate, 14.	——— dibromotetramminobromide, 14. 728	
805	dibromotetramminochloroplatinate,	
diaquodipyridinediamminochloride,	16. 382 dibromotetramminodichromate, 11.	
14. 662 —— diaquodipyridinodiamminohydro-	366	
selenate, 10. 886	trans-dibromotetramminoiodide, 14.	
diaquo-pentol-hexamminochloride, 14.	748	
681	trans-dibromotetramminonitrate, 14.	
—— diaquotetrammines, 14. 693	842	
diaquotetramminobromide, 14. 723	dibromotetramminosulphate, 14. 802	
—— diaquotetramminobromosulphate, 14.	—— dichloro-μ-amino-peroxo-hexammino-	
796	chloride, 14. 672, 676	
diaquotetramminochloride, 14. 661	hexamminonitrate, 14. 847	
- diaquotetramminohydroxide, 14. 595	dichloroaquoethylenediamineam-	
diaquotetramminoiodide, 14. 745	mines, 14. 700 trans-dichloroaquoethylenediamine-	
diaquotetramminomolybdatodimolyb- date, 11. 575	amminochloride, 14. 671	
diaquotetramminonitrate, 14. 834	- dichloroaquoethylenediaminediamine-	
—— diaquotetramminonitrite, 8. 508	amminitrate, 14. 842	
•		

Cobaltic trans-dichloroaquoquaterpyridine-	Cobaltic trans-dichlorobispropylenedia-		
nitrate, 14. 841	minenitrate monohydrate, 14. 841		
- dichloroaquotriammines, 14. 700	dichlorobispropylenediamines, 14. 700		
dichloroaquotriamminochloride,14.670	dichlorobispyridinediaminediammino-		
dichloroaquotriamminohydrosulphate,	chloride, 14 . 670		
14 . 802	dichlorobispyridinediammines, 14. 700		
dichloroaquotriamminonitrate, 14. 842	dichlorobispyridinediamminonitrate,		
cis-dichlorobiseyelopentanediamine-	14 . 842		
ehloride, 14 . 670	- dichlorobistrimethyldiamines, 14. 700		
	dichlorobistrimethylenediamine-		
ehloride, 14 . 670	chloroplatinate, 16. 332		
dichlorobiseyelopentanediamines, 14.	dichlorodiaminopentanes, 14. 700		
700	—— dichlorodiaquodiammines, 14. 700		
- dichlorobisdiaminopentanochloride,	—— dichlorodiaquodianıminochloride, 14.		
14. 670	671		
dichlorobisethylenediaminebromide, 14. 730	dichlorodiaquodiamminohydrosul-		
dextro-salt, 14. 730	phate, 14. 802 —— dichlorodiaquodiamminonitrate. 14.		
lævo-salt, 14. 730	dichlorodiaquodiamminonitrate, 14.		
	dichlorodinitrodiamminocobaltates,		
mide, 14. 730	14. 707		
cis-dichlorobisethylenediamine-	trans-dichloroethylenediaminediam-		
chloride, 14. 669	minobromide, 14. 731		
- dextro-salt, 14. 669	trans-dichloroethylenediaminediam-		
lavo-salt, 14. 669	minochloride, 14. 670		
trans-dichlorobisethylenediamine-	trans-dichloroethylenediaminediam-		
chloride, 14. 669	minohydrosylphate, 14. 802		
dichlorobisethylenediaminediam-	trans-dichloroethylenediaminediam-		
mines, 14 . 700	minoiodide, 14, 747		
trans-dichlorobisethylenediamine-	trans-dichloroethylenediaminediam-		
hydrochloride, 14. 670	minonitrate, 14. 842		
trans-dichlorobisethylenediamine-	cis-dichloroethylenediamminobro-		
hydrosulphate, 14. 802	mide, 14. 730		
· cis-dichlorobisethylenediamineiodide,	dichloroquaterpyridine, 14. 700		
14. 747	dichloroquaterpyridinechloroplati-		
trans-dichlorobisethylenediamine-	nate, 16 . 332		
iodide, 14. 747	dichloroquaterpyridinechloroplati-		
	nate, 16. 285 —— trans-dichloroquaterpyridinobromide,		
dextro-salt, 14. 841	14. 730		
lævo-salt, 14. 841	trans-dichloroquaterpyridinehydrosul-		
trans-dichlorobisethylenediamineni-	phate, 14. 806		
trate, 14 . 841	—— dichlorotetrammines, 14. 699		
dichlorobisethylenediamines, 14. 700	cis-dichlorotetramminobromide, 14.		
cis-dichlorobisethylenediaminesul-	730		
phate, 14 . 802			
dextro-salt, 14. 802	730		
læyo-salt, 14. 802	—— dichlorotetramminochloride, 14. 668		
cis-dichlorobisethylenediammino-	trans-dichlorotetramminochloride, 14.		
chloroiridate, 15 . 772	668		
	cis-dichlorotetramminochloroiridate, 15. 772		
- dichlorobisphenylethylenediamino-	dichlorotetramminochloroplatinate,		
chloride, 14. 670	• 16. 332		
trans-dichlorobispropyldiaminebro-	dichlorotetramminochloroplatinite,		
mide, 14 . 730	16 . 285		
- trans-dichlorobispropylenechloride, 14.	dichlorotetramminodichromate, 11.		
670	344		
cis-dichlorobispropylenediamine-	monohydrated, 11. 344		
chloride, 14 . 670	trans-dichlorotetramminofluoride, 14.		
dichlorobispropylenediaminechloro-	668		
platinate, 16 . 332	trans-dichlorotetramminohydrosele-		
dichlorobispropylenediaminechloro-	nate, 10. 886		
platinite, 16 . 285	trans-dichlorotetramminohydrosul-		
dichlorobispropylenediaminehydro-	phate, 14. 801		
chloride, 14. 670	cis-dichlorotetramminoiodide, 14. 747		
trans-dichlorobispropylenediamine-	trans-dichlorotetramminoiodide, 14.		
hydrosulphate, 14. 802 —— trans-dichlorobispropylenediamine-	747 —— cis-dichlorotetramminonitrate, 14.		
nitrate, 14. 841	841		
metwo, gr. ort	UII		

Cobaltic trans-dichlorotetramminonitrate,	Cabaltia dinitritadiathulanadiamina has		
14. 841	Cobaltic dinitritodiethylenediamine bro- mide (cis), 8, 508		
- dichlorotetramminonitrite (cis), 8. 508	(trans), 8. 508		
(trans), 8. 508	chloride (cis), 8. 508		
cis-dichlorotetramminosulphate,14.801	(trans), 8. 508		
trans-dichlorotetrapyridinechloride,	dithionate,(cis), 8. 508		
14. 669	(trans), 8. 508		
trans-dichlorotetrapyridinohydrosele-	iodide (cis), 8 . 508		
nate, 10. 886trans-dichlorotristrimethylenedi-			
aminechloride, 14, 670	dinitritodiethylenediamines, 8. 508		
dichro-salts, 14. 700	dinitritodiethylenediaminonitrite (cis),		
- dichromatopentamminochromate, 11.	8. 508		
344	(trans), 8. 508		
dichromatotetramminodichromate, 11.	- dinitritodiethylenediamminenitrate		
344	(cis), 8. 508		
cis-difluobisethylenediamineiodide, 14.	(trans), 8. 508		
- cis-difluobisethylenediaminenitrate,			
14 . 841	(trans), 8 . 507		
difluobisethylenediamines, 14. 699	tetranitritodiamminocobaltiate		
- diffuorobisethylenediaminebromide,	(cis), 8, 507, 510		
14 . 73 0	(trans), 8 . 507, 510		
- trans-diffuorobisethylenediamine-	dinitritotetrammines, 8. 507		
ehloride, 14, 668	dinitritotetramminobromide (trans), 8.		
- trans-difluorobisethylenediamine- fluoride, 14, 610	507		
trans-difluorobisethylenediamino-	dinitritotetramminochloride, 8, 507 dinitritotetramminochloroaurate (cis),		
chloride, 14. 669	8. 507		
- difluorotetramminochloride, 14. 669	(trans), 8 . 507		
difluotetrammines, 14. 699	cis-dinitritotetramminochloroiridate,		
difluotetramminochloride, 14. 667	15 . 772		
 dihydrated dihydroxyoctamininote- 	- — trans-dinitritotetra mminochloroiri-		
trachloride, 14. 674	date, 15. 772		
dihydroselenatotetrammines, 14. 701	dinitritotetramminochoroplatinate, 8.		
- dihydroxytetrammines, 14. 699 dihydroxytetramminochloride, 14. 670	507; 16 . 332 ———————————————————————————————————		
dihydroxytetramminohydroxide, 14.	(trans), 8. 507		
596	dinitritotetramminochloroplatinite, 8.		
- dihydroxytetramminoiodide, 14. 747	507; 16 . 285		
dihydroxytetramminonitrate, 14. 840	——— (cis), 8 . 507		
— diiodotetramminonitrite (cis), 8. 508	dinitritotetramminochromate, 8. 508		
(trans), 8. 508	(cis), 11 , 311		
— diisothiocyanatobisethylenediamines,	——————————————————————————————————————		
14. 702	(trans), 11. 344		
amines, 14. 702	dinitritotetramininonitrate (cis), 8. 507		
- dimethylmalonatobisethylenedi-	(trans), 8. 507		
amines, 14. 704	- dinitritotetramminonitrilotrisulpho-		
—— dimolybdatotetrammines, 14. 705	nate (cis), 8 . 508, 682		
dimolybdatotetramminotrimolybdate,	(trans), 8. 508, 682		
11. 575	—— dinitritotetramminoperiodide (trans), 8. 507		
dinitratobisethylenediaminehydroni- trate, 14 . 840			
dinitratobisethylenediaminenitrate,	8. 507		
14. 840	(trans), 8. 508		
monohydrate, 14. 840	—— dinitritotetramminoselenate, 8. 509;		
dinitratobisethylenediamines, 14. 701	10. 886		
dinitrato-diol-hexamminonitrate, 14.	(cis), 8 . 507; 10 . 886		
846	(trans), 8. 507; 10. 886		
—— dinitratotetrammines, 14. 701 —— dinitratotetramminonitrate, 14. 840	—— dinitritotetramminosulphate (cis), 8. 507		
——— monohydrate, 14. 840	(trans), 8. 507		
—— dinitritobisethylenediamines, 14. 701	dinitritotetramminotetramminobro-		
dinitritobispyridinediammines, 14. 701	moiridate, 15 . 776		
dinitritobromotriammine, 8. 509	—— dinitroaquotriammines, 14. 701		
dinitritochlorotriammine, 8. 509	dinitrobisdimethylglyoximinocobalt-		
dinitritodiaminopentanes, 14. 696	ates, 14. 707		
dinitritodiamminohydronitrate (cis), 8. 507	—— dinitrobisethylenediamines, 14. 701 —— dinitrobispyridinediammines, 14. 701		
	_		
VOL. XVI.	2 г		

Cabaltia dinitrahiatnimathylanadiamina	Cobaltia digulahodithiawanhonatanguanan
Cobaltic dinitrobistrimethylenediamines, 14, 701	Cobaltic disulphodithiocarbonatoaquopen- tammine, 14. 820
- dinitromalonatodiamminocobaltates, 14. 707	dithiocarbimidobisethylenediamino-
dinitrooxalatodiamminecobaltates, 14.	hydroselenate, 10, 886 - dithiocyanatotetrammines, 14, 702
707	dithiocyanatotriamminotriethylamine,
- dinitrophenolatoaquobisethylenedi- amines, 14. 697	14. 702 dodecamminochloride, 14. 655
dinitropropylenediaminethylenedi-	enneamminochloride, 14. 655
amines, 14 . 701	enneamminodichromate, 11. 344
dinitrosopentammines, 14. 696 dinitrotetrammines, 14. 701	- enneamminoiodide, 14. 743
dinitrotetramminonitrite (cis), 8, 508	enneamminosulphite, 10, 314 ethylenediaminebiscyclopentanedi-
········· (trans), 8. 508	aminechloride, 14. 659
- diol-octamminobromide, 14, 732	ethylenediaminebiscyclopentanedi-
diol-octamminochloroplatinate, 16.332	amineiodide, 14, 745 —— ethylenediaminebiscyclopentanedi-
dioloctamminochloroplatinite, 16. 285	aminobromide, 14. 722
diol-octamminohydrophosphate, 14. 857	ethylenediaminebispropylenediamine-
- hexahydrate, 14, 857	hydroxide, 14, 595 ethylenodiaminediacetylacetonatodi-
diol-octamminoiodide, 14. 748	ammines, 14. 705
diol-octamminonitrate, 14 . 845 diol-octamminosulphate, 14 . 804	ethylenediaminedicyclopentanedi-
diol-peroxo-sexiesallylaminechloride,	amines, 14. 692
14. 678	ferric chloropyridinebisethylenedi- aminechloride, 14, 666
 diol-peroxo-sexiesallylaminenitrate, 14. 847 	oxide, 14. 586
diol-peroxo-sexicopropylamino-	- ferrite, 13 . 925; 14 . 586
chloride, 14 . 679	flavo-salts, 8, 507; 14, 701 fluobisethylenediamineammines, 14.
diol-quaterethylenediaminebromide, 14. 732	694
dihydrate, 14. 732	fluobisethylenediamineamminobro-
tetrahydrate, 14. 732	mide, 14 , 725
 diol-quaterethylenediaminechloride, 14. 677 	(trans), 14. 726
- diol-quaterethylenediamineiodide, 14.	cis-fluobisethylenediamineammino- fluoride, 14 , 610
diol-quaterethylenediaminenitrate, 14. 845	cis-fluobisethylenediamineammino- nitrate, 14 . 838
dioxalatodiamminocobaltates, 14. 707	- fluohydroxytetrammines, 14, 702 fluohydroxytetramminonitrate, 14.
- dioxalatoethylenediaminecobaltate, 14. 707	842
- dioxydecamminodichromate, 11. 344	fluopentammines, 14 . 694 fluopentamminochloride, 14 . 665
···· diozo-triimidodecamminochloride, 14. 673	fluopentamminochloride, 14. 665 fluopentamminochromate, 11. 311
- diozo-triimidodecamminonitrate, 14.	fluopentamminofluoride, 14. 610
844	- fluopentamminonitrate, 14. 838
diozo-triimidodexamminobromide, 14. 733	—— fluoride, 14 . 608 ——— hemiheptahydrate, 14 . 608
diozotriimidecamminonitrate, 8. 274	formatopentamminochloride, 14. 665
- diozotriimidodecamminoctabromide,	sulphate, 14. 674, 803
8. 274	fuscochloride, 14. 674 fusco-salts, 14. 710
8. 274	glutaratobispentammines, 14. 699
- diphosphatobisethylenediaminephos-	glycinebisethylonediamines, 14. 697
phate, 14. 857 diphosphatobispropylenediaminephos-	gold aquopentamminochlorosulphate, 14. 794
phate, 14. 857	aquopentamminohexachloride,
dipotassium silver hexanitrite, 8. 504	14 . 661
disodium potassium nitrite, 8. 504 disulphitoaquotriannines, 14. 705	bisethylenediaminediaminino- enneachloride, 14 . 658
disulphitobisethylenediammines, 14.	
705	hexachloride, 14. 658
disulphitobispropylenediamines, 14.	chloropentamminopentachloride, 14. 665
- disulphitodiamminocobaltates, 14. 707	
disulphitoethylenediaminediamines, 14. 705	chloride, 14. 729
disulphitotetrammines, 14. 705	dichlorobispropylenediamine- tetrachloride, 14. 670
•	· · · · · · · · · · · · · · · · · · ·

Cobaltic gold dichlorotetrapyridinetetra-	Cobaltia havemmingicalida 14 712		
	Cobaltic hexamminoiodide, 14, 742		
chloride, 14. 669	hexamminoiodonitrate, 14. 832		
- hexamminobromosulphate, 14.	- hexamminoiodosulphate, 14. 792		
792	hexamininonitrate, 14. 831		
- hexamminochlorosulphate, 14.791	hexamminonitratobromoiridate, 15.		
sulphodiacetatobisethylonedi-	776		
aminechloride, 14. 671	- hexamminonitratochloroperiridite, 18		
heptamminochloride, 14. 655	787		
heptamminoiodide, 14. 743	hexamminonitrilotrisulphonate, 8. 681		
hexacyanoferripentammine, 14. 699	- hexamminopermanganate, 12. 336		
- hexacyanoferropentammines, 14. 699	hexamminopermanganate, 12, 330 hexamminopyrophosphate, 14, 858		
- hexadecamminiodide, 14. 743	icosihydrate, 14. 858		
hexahydroxydodecamminomolybdate,	hexamminorthophosphate, 14. 856		
11. 575	—— tetrahydrate, 14. 856		
- hexahydroxylaminebromide, 14, 721	hexamminoselenate, 10. 885		
hexahydroxylaminechloride, 14. 656	hexamminosulphate, 14. 790		
hexahydroxylaminenitrate, 14, 832	pentahydrate, 14. 790		
hexahydroxylamines, 14. 691	tetrahydrate, 14, 790		
hexahydroxylaminesulphate, 14, 792	hexamminosulphatobromoiridate. 15.		
hexammines, 14. 690	776		
hexamminobromoiridate, 15, 776	hexamminosulphatodecahydrosul-		
hexamminobromoplatinate, 16. 380	phate, 14. 791		
hexamminobromosulphate, 14, 792	- hexamminosulphatodihydrosulphate,		
hexamminocarbonate, 14, 815	14. 791		
heptahydrate, 14 . 815	pentahydrate, 14, 791		
hexahydrate, 14 . 815	hexamminosulphatonitrate, 14, 832		
hexamminochloride, 14 . 653	hexamminosulphatotetrahydrosul-		
- hexamminochlorocarbonate, 14 . 815	phate, 14 . 791		
- hexamminochlorochromate, 11. 311,	hexamininosulphite, 10. 314		
399	hexamminotrinitrite, 8, 506		
hexamminochloroiridate, 15, 772	hexamminotrisulphite, 10. 315		
hexamminochlorometaphosphate, 14.	hexapotassium octohydrotetrahypo-		
• •	phosphate, 8, 939		
859			
hexamminochloroperiridite, 15 , 760	hexol-dodecamminobromide, 14, 734		
hexamminochloroperrhodate, 15, 579	dihydrates, 14. 734		
- hexamminochloroplatinate, 16, 332	octohydrate, 14. 734		
- hexamminochlororuthenate, 15 , 535	· dodecamminochloride, 14 , 681		
hexamminochlorosulphate, 14. 791	dodecamminochloroplatinate, 16.		
hemilydrate, 14, 791	332		
- trihydrate, 14, 791	dodecamminonitrate, 14. 848		
- hexamminochlorosulphite, 10, 315, 316	dodecamminosulphate, 14, 806		
hexamminochlorothiosulphate, 10, 557			
hexamminochromate, 11, 310	hexahydrate, 14. 806		
hexamminodiamminotetratrinitrito-	- hexamminobromide, 14. 734		
cobaltate, 8 . 506			
hexamminodibromopermanganate, 12.	hexamminochloride, 14. 680		
336	hexamininosulphate, 14. 805		
· · · hexamminodichloropermanganate, 12.	sexiesethylenediaminechloride,		
336	14. 681		
hexamminodichromate, 11. 344	sexiesethylenediamineiodide, 14.		
hexamminodinitratofluosulphonate,	749		
14. 832	sexiesethylenediaminenitrate, 14.		
- · · hexamminoenneaiodide, 14. 743	848		
- hexamminofluodichloride, 14. 655	homophthalatobisethylenediamines,		
hexamminofluonitrate, 14. 832	14. 704		
	hydrocarbonatonitrotetrammines, 14.		
hexamminofluoride, 14. 609	702		
- hexamminofluosilicate, 6. 957			
hexamminoheptafluotetroxyditung-	—— hydrocarbonatopentammines, 14. 697		
state, 11 . 840	hydrocarbonatopentamminobromide,		
hexamminohexanitrite, 8. 506	14. 815		
hexamminohydrocarbonate, 14. 815	hydrocarbonatopentamminoiodide, 14.		
hexamminohydrofluoride, 14. 610	815		
- hexamminohydronitrate, 14, 832	hydrocitratotrispentammines, 14.		
- hexamininohydrophosphate, 14. 857	699		
	hydronitritoimidoctamminenitrate, 8.		
hexamminohydropyrophosphate, 14.	506		
858			
hexamminohydroselenate, 10. 885	- hydronitritoimidoctamminodisul-		
hexamminohydroxide, 14, 594	phate, 8. 273		
hexamminohydroxychloroiridate, 15.	hydronitritoimidoctamminotetra-		
772	chloride, 8. 273		

516	GENERA
Cobaltic hydronitritoimidoctamm	ino-
tetranitrate, 8. 273 - hydronitritoimidohexammine ehloride, 8. 274	otetra-
- hydronitritoimidohexammino chloride, 8, 506	otetra-
- hydrophosphatopentammines hydrosulphatoimidoctammin	
chloronitrate, 8. 273 hydrosulphatoimidoctammin	
disulphate, 8. 273 hydrosulphatoimidoctammin	•
bromide, 8. 273 hydrosulphatoimidoctammin	otri-
chloride, 8. 273	otri-
iodide, 8 . 274 hydrosulphatoimidoctammine	otri-
nitrate, 8. 273	riam-
mine, 14 . 820 	
- hydroxyammino-peroxo-hexa sulphate. 14. 805	mmino-
	iamine-
trans-hydroxyaquobisethylen nminebromide, 14, 727	edi-
 cis-hydroxyaquobisethylened chloride, 14. 667 	
 trans-hydroxyaquobisethylene aminechloride, 14, 667 	
cis-hydroxyaquobisethylened iodide, 14, 747	iamine-
- trans-hydroxyaquobisethylend amineiodide, 14. 747	
- cis-hydroxyaquobisethylened: nitrate, 14 . 838	
chloroiridate (cis), 15	
- hydroxyaquobispyridinediam 14. 694	mines,
 hydroxyaquobispyridinediam bromide, 14, 727 	
	mino-
hydroxyaquodipyridinediamn chloride, 14 . 667	
chloride, 14. 677	
hydroxyaquo-peroxo-ol-hexar nitrate, 14. 846	
hydroxyaquotetramminochlor 667	ride, 14.
— monohydrate, 14 . 667 — hydroxyaquotetramminonitra	ite, 14.
838 hydroxyaquotetramminosulpl	
796	

```
Cobaltic hydroxyaquotetramminosulphato-
        bromoiridate, 15. 776
     hydroxybispyridinetriammines, 14.694

    hydroxybispyridinetriamminobromide, 14, 727

     hydroxybispyridinetriamminonitrate,
       14. 838
     hydroxybromobisethylenediamine-
        bromide, 14. 731
     hydroxychlorobisethylenediamine-
            bromide, 14. 731
         - (cis), 14. 731
---- dextro-salt, 14. 731
    ----- lævo-salt, 14. 731
    - hydroxychlorooctamminochloro-
       platinate, 16. 333
  - hydroxychromatotriammine, 11. 312
   -- hydroxydipyridinetriamminochloride,
        14. 667

    hydroxydipyridinetrianminoiodide,
14. 747

  --- hydroxylaminebisethylenediamine-
       ammines, 14, 691

    hydroxylaminebisethylenediamine-

       amminobromide, 14. 721
     hydroxylaminebisethylenediamine-
       amminochloride, 14. 656
     hydroxylaminebisethylenediamine-
       amminohydroxide, 14. 610
     hydroxylaminebisethylenediamine-
       amminoiodide, 14. 744

    hydroxylaminebisethylenediamine-

       amminonitrate, 14. 832
   - hydroxynitritodisulphonate, 8. 507
--- hydroxynitritomonosulphonate, 8. 507
- - hydroxynitritotetramminobromide, 8.
       508
     hydroxynitritotetranminochloride, 8.
       508
     hydroxynitritotetramminohydrobro-
       mide, 8. 508
     hydroxynitritotetramminohydro-
       chloride, 8. 508
     hydroxynitritotetramminohydro-
       iodide, 8, 508
   - hydroxynitritotetramminonitrate,
       508
     hydroxypentammines, 14. 693
- - hydroxypentamininobromide, 14. 726
----- hydroxypentamminochloride, 14. 667

    hydroxypentamminohydroxide,

       595
 --- hydroxypentamminoiodide, 14. 747
-- -- hydroxypentamminomolybdate,
---- hydroxypentamminonitrate, 14. 837
        - monohydrate, 14. 837
--- hydroxypyridinetetrammines, 14. 694

    hydroxypyridinetriamminonitrate, 14.

       838
     hydroxysulphitotetrammine, 10. 316
     imido-salts, 14. 710
- -- imidoctammine, 8. 273
--- imidoctamminodisulphate, 8. 273
-- imidoctamminotetrabromide, 8. 273
- - imidoctamminotetrachloride, 8. 273
--- imidoctamminotetranitrate, 8. 273
- - imidohexamminotetrabromide, 8. 274
--- imidohexamminotetrachloride, 8. 274
--- imidohexamminotetraiodide, 8. 274
```

Cabultia imidahayayyyinatataa itaata 9	Cabultia malutalia antennia 44 600		
Cobaltic imidohexamminotetranitrate, 8. 274	Cobaltic malatobispentammines, 14, 699 maleatobispentammine 14, 699		
imidosulphonate, 8, 507	maleatopentammines, 14. 698		
- iminobispyridineoctamminotetrabro-	maleinatobisethylenediamines 14. 704		
mide, 14 . 733	malonatobispentammines, 14. 699		
iminobispyridineoctamminotetra-	- malonatotetrammines, 14. 704		
chloride, 14 . 675 —— iminohexamminobromide, 14. 733	manganese chloropentamminofluoride, 12. 346		
iminohexamminoiodide, 14. 748	- manganic pentafluoride, 14. 608		
μ-iminohydrochloro-peroxo-quater-	- melanochloride, 14. 672, 803		
ethylenediaminechloride, 14, 675	- mercuric aquochloropentamminoen-		
μ -imino-peroxo-quaterethylenedi-	neachloride, 14. 661		
aminenitrate, 14, 846	aquopentamminochlorosulphate,		
μ-imino-peroxo-quaterethylenedi-	14. 794		
aminechloride, 14 . 675 iodide, 14 . 742	aquopentamminoenneabromide, 14. 723		
· iodopentammines, 14. 695	aquopentamminopentabromide,		
iodopentamminobromide, 14. 746	14. 723		
iodopentamminochloride, 14. 746	· aquopentamminopentachloride,		
- iodopentamminodichromate, 11. 344	14. 661		
· · · iodopentamminoiodide, 14. 746	— - aquopentamminopentaiodide, 14.		
··· iodopentamminonitrate, 14. 840 iodopentamminosulphate, 14. 799	745		
· iso-hydroxynitritodisulphonate, 8, 507	trans-bisethylenediaminediam- minotridecachloride, 14 , 658		
- iso-nitritodisulphonates (cis), 8, 508	bispropylenediaminediamino-		
(trans), 8 . 508	heptachloride, 14. 659		
isonitritopentamminodichloride, 8. 506	bromopentamminobromohepta-		
isothiocyanatoaquobisethylenedi-	chloride, 14 . 725		
amines, 14. 697	bromopentamminoctobromide,		
isothiocyanatoaquotetrammines, 14.	14. 725 · · · bromopentamminoctochloride,		
isothiocyanatobisethylenediamine-	14. 725		
ammines, 14. 697	carbonatopentamminoiodide, 14.		
- isothiocyanatobromobisethylenedi-	817		
amines, 14. 703	chloropentamminoctochloride,		
isothiocyanatochlorobisethylenedi-	14. 665		
amines, 14. 703 isothiocyanatohydroxybisethylenedi-			
amines, 14. 702	chloropentamminotetrachloride,		
isothiocyanatonitrobisethylenedi-	14. 665		
amines, 14. 703	chloropentamminotetraiodide,		
isothiocyanatonitrotetrammines, 14.	14. 746		
702			
isothioeyanatopentamminenitrate, 8. 506	aminechloride, 14. 666 diaquotetramminochloride, 14.		
- isothiocyanatopentammines, 14. 697	662		
- isothiocyanatopentamminochromate,	dibrombisethylenediaminebro-		
11. 311	mide, 14 . 730		
isoxantho-salts, 14. 696	dichlorobisethylenediaminetri-		
itaconatobisethylenediamines, 14. 704	chloride, 14 , 669 (trans), 14 , 670		
itaconatobispentammines, 14. 699 lanthanous hexamminosulphate, 14.	dichlorobispropylenediamine-		
791	heptachloride, 14. 670		
lead aquopentamminobromide, 14. 723			
dodecanitrite, 8. 505	chloride, 14 . 669		
hexamminohenabromide, 14. 721	dichlorotetramminotrichloride,		
hexamminohenachloride, 14. 656	14. 669		
hexamminoheptabromide, 14.720	dichlorotetrapyridinedodeca-		
	chloride, 14, 669		
744	792		
trishexamminotridecabromide,	hexamminoenneabromide, 14.		
14. 721	720		
lithium hexanitrite, 8. 504	hexamminoenneachloride, 14. 656		
luteochloride, 14. 653			
luteofluosilicate, 6. 957			
luteo-salts, 14. 688, 690 magnesium aquoquinquesbenzyl-			
aminosulphate, 14. 794	hexamminopentachloride, 14.		
	656		

Cobaltic mercuric hexamminopentaiodide, 14. 743	Cobaltic nitratopentammine hexanitritoco- baltiate, 8, 506
hexamminotrichloropentacya-	nitratopentammines, 14. 696
nide , 14 . 656	- · · · nitratopentamminobromide, 14, 837
$ \mu$ -imino-peroxo-quaterethylene-	- nitratopentamminocarbonate, 14, 815
diaminechloronitrate, 14. 846	nitratopentamminochloride, 14. 836
ehloride, 14 . 836	nitratopentamminochromate, 11. 311 nitratopentamminodichromate, 11.
nitratopentamminotetrachloride,	344
14. 836	nitratopentamminohydroselenate, 10.
mercurous hexanitrite, 8. 505	886
mercury carbonatobisethylenodi-	nitratopentamminoiodide, 14, 837
amineiodide, 14. 819	- nitratopentamminomolybdate, 11, 575
- dichlorobisethylenediamine-	nitratopentamminonitrate, 14, 835
iodide, 14 . 747 trisethylenediaminebromide, 14 .	- nitratopentamminosulphate, 14, 837 - nitratopurpureo-salts, 14, 696
722	- nitratotetranminomolybdate, 11, 575
trisethylenediaminochlorides, 14.	nitrite, 8 . 501
157	nitritoaquobisethylenediamines, 14.
mesotartratobisethylenediamines, 14.	696
704	nitritoaquobistrimethylenediamines,
mesotartratobispentammines, 14. 699	14. 696
mesotartropentammines, 14, 698	nitritoaquopentamminobromoiridate,
metaboratopentammines, 14, 697 methionatobisethylenediamines, 14.	15. 776 nitritoaquotetramminetetranitritodi-
705 methionatobisethylenediamines,	amminocobaltiate, 8, 507
methionatobispentammines, 14. 699	- nitritoaquotetrammines, 8. 507; 14.
molybdates, 11, 574	696
- molybdatonitritotetramminomolyb-	nitritoaquotetramminocarbonate, 8.
date, 11. 575	507
molybdatopentamminomolybdate, 11.	nitritoaquotetramminochloroiridate,
575	15. 772 nitritoaquotetramminodibromide, 8.
molybdatotetranmines, 14 , 705 molybdatotetranminomolybdate, 11 .	507
575	- nitritoaquotetramminodichloride, 8.
- molybdatotetramminonitrate. 11. 575	507
	nitritoaquotetramminodiiodide, 8, 507
11. 575	nitritoaquotetramminonitrate, 8, 507
molybdenyl hexamminofluoride, 14.	nitritoaquotetramminosulphate, 8, 507 nitritobisethylenediamineammines, 14.
610 - monammines, 14, 707	696
nickel ethylenediaminochloride, 15.	- nitritochlorodiethylenediaminebro-
422	mide (cis), 8 , 508
· · · · · trisethylenediaminoctochloride.	(trans), 8, 508
14. 658	chloride (cis), 8. 508
nickelie ferrie oxide, 14, 586	(trans), 8 , 508 hydrosulphate (cis), 8 , 508
- nitrate complex salts, 14 , 830 nitrateaque-µ-amine-cetammineni-	nythostipliate (cis); 3. 508
trate, 14. 844	iodide (cis), 8 , 508
nitratoaquo-μ-amino-ol-hexammino-	(trans), 8. 508
nitrate, 14 . 847	nitrate (cis), 8. 508
nitratoaquotetranunines, 14. 696	(trans), 8. 508
nitratoaquotetramminonitrate, 14.	thiocyanate (cis), 8, 508
837 nitratoaquotetramminosulphate, 14.	(trans), 8 , 508 nitritodimethylglyoxionammine, 8 , 509
839	- nitritohydrocarbonatotetramminoni-
nitratobisethylenediamineammines,	trate, 8, 508
14. 696	nitritonitratodiethylenediamine ni-
nitratobisethylenediamineammino-	trate (cis), 8. 508
bromide, 14 . 837	(trans), 8. 508
trans-nitratobisethylenediamineam- minonitrate, 14, 837	nitritopentammine bromonitrate, 8. 507
nitratoimidotriaquohexamminotri-	chloronitrate, 8, 507
chloride, 8, 274	- chromate, 8. 507
- nitratoimidotriaquohexamminotrini-	dibromide, 8 . 507
trate, 8 . 274	- dichromate, 8, 507
nitratonitrobisethylenediamines, 14.	diiodide, 8 , 507
702	fluosilicate, 8 , 507 nitratochloroaurate, 8 , 507
nitratonitrobistrimethylenediamine,	nitratochloroplatinate, 8, 507
14. 701	

GENERAL INDEX 519		
Cobaltic nitritopentammine sulphatoio-	Cobaltic oxide hydrates, 14, 584, 586	
dide, 8, 507	monohydrate, 14. 589	
sulphatoperiodide, 8, 507		
tetranitritodiamminocobaltiate,	tritadihydrate, 14. 589	
8. 506	tritapentahydrate, 14. 589	
- nitritopentammines, 8 . 506 ; 14 . 696	oxobisimidobisoctannminoctachloride,	
nitritopentamminoamidosulphonate,	8. 273	
8. 507	oxobisimidobisoctamminotetrasul-	
nitritopentamminochromate, 11. 311	phate, 8, 273	
nitritopentamminadichloride, 8, 506	oxobisimidobisoctoamminoctanitrate, 8, 273	
mitritopentamminodichromate, 11. 344 nitritopentamminodinitrate, 8. 507	oxobisimidoctamminoctabromide, 8.	
- nitritopentamminodinitrite, 8. 506	273	
mitritopentamminohydrosulphate, 8.	- ozoimidohexamminohydrotrichloride,	
506	8. 274	
nitritopentamminonitrilotrisulpho-	ozoimidohexamminotrinitrate, 8. 274	
nate, 8. 682	ozotrimido-salts, 14. 710	
nitritopentamminonitrite, 8, 506	pæonolobisethylenediamines. 14. 697	
nitritopentamminoselenate, 8, 506; 10.	pentahydrated trioxo-octamminodi-	
886	chloride, 14, 674	
nitritopentamminosulphate, 8, 506 nitritopentamminothioferrocyanide, 8,	- pentammines, 14. 693 pentamminoparamolybdate, 11. 587	
507	- pentamminosulphite, 10. 314	
nitritopentamminothiooxalate, 8, 507	pentamminotrisulphite, 10. 315	
- nitritopentamminothiosulphate, 8.	pentamminotriterodecavanadate.9.791	
507: 10 , 557	peroxo-decamminochlorosulphate, 14.	
nitritopyridinetriammines, 14. 696	804	
nitritosulphitotetrammine, 8, 508; 10.	decamminochlorotetranitrate,	
317	14. 843, 844	
	decamminodisulphate, 14, 803	
nitritothiocyanatodiethyldiammino-	trihydrate, 14, 803	
chloride, 8, 508	decamminohenipentasulphate,	
nitritothiocyanatodiethylenediamines,	14. 803	
8. 508	decamminohydrochloronitrate,	
- nitritothiocyanatotetrammines, 8, 508	14. 843	
- nitritotrisulphonate, 8, 507	decamminohydrochlorosulphate,	
nitritoxalatotriammine, 8, 509	14. 803	
nitrohydroxytetrammines, 14, 702 nitropentammines, 14, 696	decamminohydronitrate, 14, 843 - decamminohydrosulphate, 14, 803	
nitropentamminofluosilicate, 6, 957	monohydrate, 14 . 803	
- p-nitrophenolatoaquobisethylenedi-	pentahydrate, 14 . 803	
ammes, 14 . 697	decamminohydrosulphatonitrate,	
nitrosopentammines, 14, 695	14. 843	
octamminochloride, 14, 655	decamminoiodide, 14, 748	
octamminochroniate, 11, 311	decamminonitratodisulphate, 14.	
decahydrate, 11, 311	844 decompinguentschloride 14 673	
tetrahydrate, 11, 311 orthophosphatopentamminophos-	decumminopentachloride, 14, 673 decumminopentanitrate, 14, 843	
phate, 14 . 856	decamminosulphatodihydrosul-	
oxalatoaquotriammines, 14. 704	phate, 14 . 804	
oxalatobisdiaminopentanes, 14. 704	decamminosulphatomonohydro-	
oxalatobisdinitrobisdiamminocobalt-	sulphate, 14 , 804	
ate, 14, 707	decamminotetrachloride, 14, 673	
- oxalatobisethylenediamines, 14. 704	decamminotrichlorodinitrate, 14.	
oxalatochloroaquotriammine, 14. 705 oxalatodiethylenediaminoselenate, 10.	- phenanthrolinebisethylenediamine-	
886	chlorosulphate, 14. 793	
- oxalatopentammines, 14. 698	a-phenanthrolinebisethylenediamine-	
oxalatopentamminohydroselenate, 10.	iodide, 14 . 745	
886	dextro-salt, 14. 745	
oxalatopentamminonitrite, 8. 506	lævo-salt, 14. 745	
oxalatopentamminoselenate, 10. 886	phenanthroline bisethylene diamine sul-	
oxalatotetrammines, 14, 704	phate, 14. 792	
oxalatotetranuninoselenate, 10. 886		
oxide, 14 , 584, 586, 589	phosphatopentammine, 14, 699, 856 phosphatopentamminochloride, 14, 857	
	phosphatopentamminodihydrophos-	
hemihydrate, 14, 589	phate, 14 . 857	
hydrated properties, 14. 590	dihydrate, 14. 858	
· · ·		

Cobaltic phosphatotetrammine, 14, 705, 856	Cobaltic silicon hexamminofluoride, 14. 610
	silver carbonatobisethylenediamine-
—— phthalatobisethylenediamines, 14. 704	iodide, 14. 819
phthalatobispentammines, 14. 699	
phthalatopentammines, 14. 698	dichloroaquotriamminosulphate,
picratoaquobisethylenediamines, 14.	14. 802
697	———— dichlorobisethylenediaminesul-
picratopentammines, 14. 697	phate, 14 . 802
platinic hexamminocositungstate, 11.	dichlorobispropylenediaminesul-
803	phatonitrate, 14. 841
potassium carbonate, 14. 815	dichlorotetramminosulphate, 14.
	801
decamolybdate, 11. 574, 598	· ·
disilver hexanitrite, 8. 504	hexanitrite, 8. 504
disulphate, 14 . 789	\mu_imino-peroxo-quaterethylene-
dodecamolybdate, 11. 574	diaminenitrate, 14. 846
hexamminochlorodipermanga-	mitritopentamminotrinitrite, 8.
nate, 12. 336	506
- hexamminosulphate, 14. 791	oxyhexanitrite, 8. 504
nitrite, 8, 502	trisethylenediamineiodide, 14.
	744
oxyoctonitrite, 8 . 502	
sulphite, 10. 315	sodium aquopentanuninopyrophos-
praseo-salts, 14 . 688, 699, 700	phate, 14. 858
praseochloride, 14. 729	aquopentamminotrisulphite, 10.
propionatopentammines, 14. 697	316
propionylacetonatobisethylenedi-	dipotassium nitrite, 8, 504
amines, 14. 697	hexamminohexasulphite, 10. 318
propylenediaminebisethylenediamine-	hexamminohypophosphate, 8.
iodide, 14 . 745	939
	, , , , , , , , , , , , , , , , , , , ,
purpureo-salts, 14 . 688, 696	858
pyridinebisethylenediamineammino-	hexanitrite, 8, 503
bromide, 14 . 722	octamminohexasulphite, 10. 318
pyridinebisethylenediamineammino-	oxyoctonitrite, 8. 502
chloride, 14. 659	pentamminotrisulphite, 10. 315
- pyridinebisethylenediamineammino-	percarbonate, 14. 820
iodide, 14 . 745	pyrophosphatopentammino-
	cobaltate, 14. 859
pyridinebisethylenediamineamminoni-	
trate, 14, 833	
pyrophosphatopentammines, 14. 699	sulphitopentamminotrisulphite,
quinquiesbenzidinopyridinohydroxy-	10. 316
bromostannate, 14. 722	trisethylenediamineheptachlo-
rhodium trisethylenediaminobromide,	ride, 14. 657
15. 580	stannic dichlorobisethylenediamine-
trisethylenediaminochloride, 15.	bromide, 14. 729
576	dichlorobisethylenediaminechlo-
	ride, 14 . 670
trisethylenediamminoiodide, 15.	
582	stannous bispropylenediaminediamni-
rosco-salts, 14 . 692, 693	noheptachloride, 14. 659
roseobromide, 14 . 722	chloropyridinebisethylenedi-
roseochloride, 14. 659	aminechloride, 14. 666
roseotetrammine salts, 14. 693	- dichlorobisethylenediamine-
- rubidium disulphate, 14, 789	chloride, 14. 670
hexanitrite, 8. 503	hexamminodecachloride, 14. 656
silver hexanitrites, 8, 504	decahydrate, 14. 656
salicyatobisethylenediamines, 14. 705	octohydrate, 14. 656
	—— hexamminoiodide, 14. 743
— salicylatotetrammines, 14. 704	
salts, 11. 602; 14. 593	strontium dodecanitrite, 8. 504
selenate, 10 . 882	
selenatoaquotetrammines, 14. 698	—— succinatobisethylenediamines, 14. 704
selenatopentammines, 14. 698	succinatobisethylenediaminobromide,
selenatopentamminobromide, 10. 886	14. 722
selenatopentamminochloroplatinate,	succinatobisethylenediaminonitrate,
	14. 833
10. 886	sulphate, 14. 787
selenatopentamminohydroselenate, 10.	
886	complex salts, 14. 787
- selenatopentamminonitrate, 10. 886	sulphato-μ-amino-octamminobromide,
	14. 804
selenatopentamminoselenate, 10. 886	14. 804 ———————————————————————————————————
selenatopentamminoselenate, 10. 886	14. 804
	14. 804 ———————————————————————————————————
selenatopentamminoselenate, 10. 886	14. 804

Cobaltic sulphato-µ-amino-octaminino-	Cobaltic sulphodiacetatobisethylenedia-
iodide, 14 . 804	minechloride, 14. 671
octamminonitrate, 14. 845	sulphodithiocarbonatohexammine, 14.
quaterethylenediaminebromide, 14. 804	819
quaterethylenediaminenitrate,	amines, 14. 705
14. 845	tartartopentamminonitrate, 14, 839
sulphatoaquotetrammines, 14. 698	tetrabromo-μ-amino-hexammino-tro-
sulphatoaquotetramminohydrosul- phate, 14 . 800	mide, 14. 732
sulphatoaquotetramminosulphate, 14.	tetrachloro-µ-aminohexamminochlo-
800	ride, 14 . 674
dialcohlate, 14 . 800	tetrammines, 14. 699
——————————————————————————————————————	- tetramminochlorosulphite, 10. 315 - tetramminodiaquofluosilicate, 6. 958
sulphatoaquotriamminonitrate, 14.840	tetramminotetrerosilicatohydroxide,
sulphatobisdinitritobistriammine, 8.	6 . 932
509 sulphatobisethylenediaminebromide,	tetramminotrisulphite, 10. 315
14. 803	6. 932
sulphatobisethylenediamines, 14. 703	tetranitrobis-p-toluidinecobaltates, 14.
sulphatodiaquotriammines, 14. 698 sulphatodiaquotriamminosulphate, 14.	707
801	706
sulphatoimidoctamminodichloride, 8.	tetraquodiammines, 14. 693
273 —— sulphatoimidoctamminodinitrate, 8.	
273	- tetrathiocyanatodiamminochromates,
sulphatoimino-octamminonitrate, 14.	11. 311
844 —— sulphatopentammines, 14. 698	tetrerosilicate, 6, 932 tetrol-diaquoquaterethylenediamine-
sulphatopentamminobromide, 14. 800	chloroplatinate, 16. 332
sulphatopentamminobromoiridate, 15.	tetrol-quaterethylenediaminochloride,
776 sulphatopentamminocarbonate, 14.816	14. 680 thallium hexamminosulphate, 14. 791
—— sulphatopentamminochloride, 14. 800	hexanitrite, 8. 505
sulphatopentamminohydrosulphate,	- silver hexanitrites, 8. 504
14. 799 dihydrate, 14. 800	thiocarbimidopentamminoselenate, 10. 886
sulphatopentamminoiodide, 14. 800	- — thiocarbonates, 14. 710
sulphatopentamminonitrite, 8. 506	- thiocyanatopentamminomolybdate,
sulphatopentamminoselenate, 10 . 886 sulphatopentamminosulphate, 14 . 799	11. 575 - thiosulphatobisethylenediamines, 14.
sulphatopentamminosulphatobromo-	703
iridate, 15 . 776	thiosulphatopentammines, 14. 698
sulphatopurpureo-salts, 14. 698	thiosulphatopentamminobromide, 10.
	557 thiosulphatopentamminochloride, 10.
— sulphite, 10. 314	557
- — sulphitoaquotetrammines, 14. 698	thiosulphatopentamminochromate, 10.
— sulphitoaquotriammines, 14. 703 — sulphitobisethylenediamines, 14. 703	557; 11. 311 thiosulphatopentamminodithionate,
sulphitohydroxytetrammine, 14. 705	10. 557
sulphitonitrotetrammine, 14. 705	thiosulphatopentamminoiodide, 10.557
	thiosulphatopentamminonitrate, 10. 557
- — sulphitopentamminobromide, 10. 316	thiosulphatopentamminothiosulphate,
sulphitopentamminochloride, 10. 315,	10. 557
316	- triammines, 14. 706
sulphitopentamminohydrochloride, 10.	triaquotriammines, 14. 693 cis-triaquotriamminochloride, 14. 662
sulphitopentamminonitrate, 10. 316	trans-triaquotriamminochloride, 14.
sulphitopentamminosulphite, 10. 316	662 triaquotriamminochloroplatinate, 16.
sulphitopentamminothiosulphate, 10. 316, 557	332
sulphoacetatobisethylenediamines, 14.	triaquotriamminonitrate, 14. 835
705 —— sulphoacetatopentammines, 14. 698	tribromotriammine, 14. 731 tricarbonatohexammine, 14. 819
o-sulphobenzoatobisethylenediamines,	trichloro-μ-amino-hexamminochloride,
14. 705	14. 672

Cobaltic trichloroaquo-µ-hexamminodi-	Cobaltic trisethylenediaminosclenate, 10.
chloride, 14 . 674 trichlorohydroxy-peroxo-hexammino-	886 —— trisethylenediamminochloroiridate, 15.
chloride, 14 . 673	772
	- trisethylenediamminothiosulphate, 10.
nitrate, 14 . 845	trisphenylenediaminechloride, 14, 722
trichlorotriammine, 14, 671	trisphenylenediamines, 14, 692
trichromatotetrannnine, 11, 312	trispropylenediaminebronide, 14, 722 dextro-salt, 14, 722
14. 658	lævo-salt, 14. 722
tetrahydrate, 14 , 658 - trihydrate, 14 , 658	trispropylenediaminehydroxide, 14.595
- trinythate, 14, 658	trispropylenediamineiodide, 14. 744
10 . 886	trispropylenediaminenitrate, 14, 833
trinitratotriammine, 14 , 843 trinitritoethylenediaminammine, 8 ,509	trispropylenediamines, 14, 692 trispropylenediaminochloride, 14, 658
trinitritotriammine, 8. 508	tristri-aminopropanechloride, 14, 658
- triol-hexamminobromide, 14, 733	dextro-salt, 14. 658
- hexamminochloride, 14 , 678 hexamminonitrate, 14 , 847	- trisulphitotriamminocobaltate, 10 .
- dihydrate, 14. 847	- tritrans-cyclopentanediaminochloride,
hexamminosulphate, 14, 805	14. 658
sexiesbenzylaminechloride, 14. 679	tetrahydrate, 14 , 658 - trihydrate, 14 , 658
trisbutylenediamineiodide, 14, 744	tungstyl hexamminofluoride, 14, 610
	uranyl hexamminofluoride, 14, 710 vanadyl hexamminofluoride, 14, 610
- trischromatobistetrammines, 14. 705	violeo-salt, 14 . 699, 7 00
trans-triscyclopentanediaminenitrate,	xantho-salts, 14. 696
14. 833 dextro-salt, 14. 833	- xanthofluosilicate, 6 , 957 zine aquopentamminobromide, 14 , 723
lævo-salt, 14 , 833	aquopentamminoiodide, 14. 745
	aquopentamminopentachloride,
trihydrate, 14, 833 triscyclopentanediamines, 14, 692	14. 661 chloropyridinebisethylenedi-
trisdiaminopentanenitrate, 14, 833	aminechloride, 14, 666
trisdiaminopentanes, 14, 692 trisdiaminopentanobromide, 14, 722	hexamminoiodide, 14. 743 hexamminopentachloride, 14.
trisdiaminopentanochloride, 14. 659	656
trisdiaminopentanoiodide, 14 , 745	oxytrinitrite, 8 . 504
trisethylenediaminechloride, 14. 356	(di)cobaltic µ-amidohydroxyoctanıminose- lenate, 10 , 887
monohydrate, 14 . 657	μ -amidonitrito-octamminoselenate, 10.
- trihydrate, 14 , 656 - trisethylenediaminechloroiodomer-	887 μ-amidoperoxyoetamminoselenate, 10 .
curate, 14 . 744	887
trisethylenediaminechloroplatinate, 16. 332	μ-amidoselenato-octamminohydrosul- phate, 10 . 886
trisethylenediaminechloroplatinite, 16.	μ-amidosulphato-octaniminohydro-
285	selenate, 10. 887
trisethylenediaminechlorosulphate, 14. 792	- — dihydroxyoctamminoselenate, 10 . 887 —— μ-nitritodihydroxyhexamminosele-
trisethylenediamineheptaiodide, 14.	nate, 10. 887
744 trisethylenediaminehydrosulphate, 14.	tetranitrito-μ-selenatohexammine, 10 . 886
792	—— trihydroxyhexamminoselenate, 10.
trisethylenediaminehydroxide, 14, 595	887
trisethylenediamineiodide, 14. 744 monohydrate, 14. 744	(tetra)cobaltic hexahydroxydodecammino- selenate, 10. 887
	Cobaltidichloroaquotriammine tetranitrito-
744 dextro-salt, 14, 744	diamminocobaltiate, 8, 510 Cobaltiferous manganese ore, 15, 9
- levo-salt, 14. 744	Cobaltihexammine tetranitritodiammino-
trisethylenediaminenitrate, 14, 832	cobaltiate, 8, 510
- trisethylenediamines, 14. 691 trisethylenediaminesulphate, 14. 792	Cobaltine, 9. 308 Cobaltinitratopentammine tetranitritodi-
- trisethylenediaminesulphatohydrosul-	amminocobaltiate, 8, 510
phate, 14, 792	Cobaltinitritoaquotetrammine tetranitrito-
· · · · trisethylenediaminofluoride, 14. 610	diamminocobaltiate, 8. 510

Continue	
Cobaltinitritochlorotetrammine dinitritodi-	Cobaltous bromide dihydrate, 14, 712
chlorodiamminocobaltiate, 8, 510	hemihenahydrate, 14. 712
dinitrito-oxalatodiamminocobaltiates,	- hemihydrate, 14. 712
8. 510	
Cobaltinitritopentammine tetranitritodi-	monohydrate, 14. 712
amminocobaltiate, 8, 510	pentahydrate, 14, 712
Cobaltite, 9, 4, 308	- proporties, chemical, 14. 714
X-radiogram, 1. 641	
Cobaltites, 14. 424, 593	tetrahydrate, 14. 712
Cobaltocadamite, 9, 181	cadmium carbonates, 14. 813
Cobaltocalcite, 3, 814	hexachloride, 14. 644
Cobaltomenite, 10, 694; 14, 424	octopyridinohexachloride, 14.
Cobaltomentite, 10, 841	645
Cobaltosic nitrite, 8, 501	casium chromate, 11 . 312
octamminopentasulphite, 10, 315	disulphate, 14 . 778
- oxide, 14 , 558, 577	hexahydrate, 14, 778
oxyhexanitritodinitrite, 8, 501	hexahydrate, 14 , 778 - pentabromide, 14 , 718
oxynitritonitrate, 14. 831	- pentachloride, 14 . 639
oxysulphate, 14 . 783	tetrabromide, 14, 718
pyridine , 14, 6 82	tetrachloride, 14. 639
sulphide, 14 , 755	tetraiodide, 14 . 741
Cobaltous acetylide, 5, 902	trichloride, 14, 639
· amide, 8 . 273	calcium chloride, 14. 641
amminocarbonate, 14, 810	carbide, 5 . 902
ammonium amminotrichloride, 14, 637	carbonate, 14 . 808
carbonate, 14. 811	hexahydrate, 14 . 809
- dodecahydrate, 14, 811	tritadihydrate, 14 , 809
enneahydrate, 14, 811	- ceric nitrate, 14, 828
tetrahydrate, 14, 811	· · · · cerous nitrate, 14. 828
chromate, 11, 312	chloride, 14. 611
copper sulphate, 14, 781	dihydrate, 14. 610
diamminomolybdate, 11, 574	- double salts, 14. 637
- ··· diamminoquaterochromate, 11.	hemitrihydrate, 14, 610
312	hexahydrate, 14 , 610
dichromate, 11, 344	monohydrate, 14, 610
dihydrophosphate, 14, 853	octohydrate, 14, 611
dihydrophosphatohemipenta-	properties, chemical, 14, 627
molybdate, 11 , 670 - disulphate, 14 , 772	physical, 14 , 613 tetrahydrate, 14 , 611
disulphite, 10, 313	a., 14. 611
ferrous sulphate, 14, 783	$\frac{\alpha}{\beta}, \frac{14}{14}, \frac{611}{611}$
hexamninoselenate, 10, 885	chloriodide, 14, 739
- hexasulphitocobaltate, 10, 315	- chloronitrate, 14. 826
- hydrocarbonate, 14, 811	chloroplatinate, 16, 331
hemienneahydrate, 14. 811	hexahydrate, 16. 331
tetrahydrate, 14. 811	chromate, 11 . 310
- magnesium sulphate, 14, 781	- dihydrate, 11. 310
- manganous sulphate, 14, 782	cobalt trisethylenediaminoctochloride,
- · · · nickelous sulphate, 15 , 478	14. 658
- ·· - nickelous sulphate, 15 , 478 orthophosphate, 14 , 852	cobaltie cis-bisethylenediaminediam-
dodecahydrate, 14 . 852	minopentachloride, 14. 658
hexahydrate, 14, 852	trans-bisethylenedianinediam-
···· monohydrate, 14. 852	minopentachloride, 14. 658
paramolybdate, 11 . 587	- bispropylenediaminediammino-
pentamolybdate, 11. 594	pentachloride, 14. 659
phosphatohemipentamolybdate, 11. 670	oxynitritonitrate, 8, 505
11. 670	trisethylenediaminepentachlo-
- sulphatofluoberyllate, 14. 781	ride, 14. 658
trichloride, 14. 637	cobaltite, 14, 594
- trisulphite, 10, 313	copper dioxysulphate, 14, 781
- zine sulphate, 14. 782	
aquodipyridinetriammines, 14, 693	sulphate, 14. 780
aquohemiamminofluoride, 14 . 606 - aquomonamminofluoride, 14 . 606	trioxydibromide, 14, 718
aquopentamminochloride, 14. 630	trioxydichloride, 14, 641
aquopentamminofluoride, 14. 606	trioxydisulphate, 14, 781
barium chloride, 14. 642	trihydroxynitrate, 14. 828
bisethylenediaminochromate, 11, 310	decahydroxydinitrate, 14. 826
bismuth nitrate, 14, 828	- decamminochloride, 14, 630
bromide, 14 . 711	- decamminochloroplatinate, 16, 332

VI AND THE STATE OF THE STATE O	
Cobaltous decamminoiodide, 14, 739	Cobaltous hydrophosphate hemipenta-
- decamminosulphate, 14, 770	hydrate, 14. 853
diamminobromide, 14. 715	hemitriphosphate, 14. 853
diamminochloride, 14. 631	hydrosulphate, 14. 770
a- (unstable), 14. 631	hydroxide, 14. 567
β- (stable), 14. 631	a-, 14. 569
cis-, 14. 631	β-, 14. 569
	colloidal, 14 . 570
diamminoiode, 14, 740	properties, 14, 570
diamminomolybdate, 11. 574 diamminosulphate, 14. 770	hypophosphitemolybditomolybdate, 8.
diaquohydroxylaminesulphate, 14. 771	iodide, 14 . 737
diaquotetramminosulphate, 14. 770	a-, 14. 737
diaquotetrapyridine fluoride, 14. 606	β, 14. 737
didymium nitrate, 14. 828	dihydrate, 14. 737
dihydrazinodibromide, 14. 716	enneahydrate, 14. 737
dihydrazinodichloride, 14. 632	hexahydrate, 14 . 737
dihydrazinoiodide, 14. 740	tetrahydrate, 14. 737
dihydrazinotetrachloride, 14. 632	lanthanum nitrate, 14, 828
- · · dihydrophosphate, 14. 853	lead hexaiodide, 14. 741
dihydroxycarbonate, 14. 811	lithium henachloride, 14, 641
tetrahydrate, 14. 811 dihydroxydicarbonate, 14. 811	
dihydroxylaminochloride, 14. 632	
- dimetaphosphate, 14. 854	
- dimelybdate, 11. 581	
dihydrate, 11. 581	trisulphite, 10. 314
dioxychromate, 11. 310	magnesium sulphate, 14. 781
dodecamminochloroplatinate, 16. 332	tetrachloride, 14 . 642
enneamminonitrate, 14. 826	manganese chloride, 14. 646
ferric chloride, 14 . 647	—— manganic pentafluoride, 12. 346
	manganous carbonates, 14. 813
	cobaltimanganite, 12, 243
	mercuric bromide, 14, 718
sulphate, 14. 783	
fluocolumbate, 14. 607	tetrachloride, 14. 645
fluoride, 14 . 603	
· dihydrate, 14. 604	metatungstate, 11. 827
hexahydrate, 14. 604	molybdate, 11. 574
tetrahydrate, 14 . 604	monohydrate, 11. 574
trihydrate, 14 . 604	—— monamminobromide, 14. 716
fluostanate. 14. 607	—— monamminochloride, 14. 632
gadolinium nitrate, 14. 828	monamminoiodide, 14. 740
- hemiamminosulphate, 14, 771	monometaphosphate, 14, 854
- hemipentamininodibromide, 14, 716 - hexahydroxycarbonate, 14, 810	neodymium nitrate, 14, 828 nickelous sulphate, 15, 477
monohydrate, 14. 810	nitrate, 14. 821
hexahydroxydicarbonate, 14. 811	——————————————————————————————————————
hexahydroxydinitrate, 14. 826	
hexaiodoplumbite, 7. 779	
hexametaphosphate, 14. 855	pentahydrate, 14. 822
hexamminobromide, 14. 715	tetradecahydrate, 14. 822
hexamminochloride, 14. 630	tetrahydrate, 14, 822
hexamminofluoborate, 14. 606	
hexamminofluosulphonate, 14. 606	nitrite, 8. 501
hexamminoiodide, 14. 739	octodecamminochloroplatinate, 16.
	332 orthophosphate, 14. 851
hexamminosulphate, 14. 770	oxide, 14. 558
hexapyridinonitrite, 8. 501	properties, 14. 561
hexasulphitodicobaltate, 10. 315	oxychromate, 11. 310
hexol-sexiesethylenediamine-obro-	—— monohydrate, 11. 310
mide, 14 . 734	oxyiodide, 14. 739
hydrazine disulphate, 14. 774	oxyquaterochromate, 11. 312
hydrazinochloride, 14. 637	paratungstate, 11. 820
tetrachloride, 14. 637	pentahydrazinoctochloride, 14. 632
hydrazonium tetrabromide, 14. 718	pentamminochloride, 14. 629
hydrocarbonate, 14, 810	pentaminiosulphate, 14, 770
hydrophosphate, 14. 853	percobaltite, 14 . 602

Cobaltous perdicobaltite, 14. 602	Cobaltous sodium dodecamolybdate, 11. 603
dihydrate, 14. 602	hydrophosphate, 14. 853
monohydrate, 14. 602	orthophosphate, 14, 852
tetrahydrate, 14. 602	paramolybdate, 11. 587
trihydrate, 14. 602	parating state, 11. 820
phosphates, 14, 851	pyrophosphate, 14. 854
dihydrate, 14. 852	- tetraiodide, 14. 741
octohydrate, 14. 852	tetrasulphate, 14. 780
tetrahydrate, 14. 852	trimolybdate, 11. 590
phosphatohemipentamolybdate, 11.	triphosphate, 14. 853
669	dodecahydrate, 14. 853
platinous trans-sulphitodiamminosul-	stannic hexabromide, 14. 718
phite, 10. 321	hexachloride, 14. 646
polyiodide, 14 . 739	- strontium chloride, 14. 642
potassium carbonate, 14. 812	sulphate, 14 . 761
tetrahydrate, 14. 812	dihydrate, 14 . 762
chloride, 14 . 637	· · · · · double salts, 14. 772
chromate, 11. 312	ethylphosphonium, 14. 771
copper sulphate, 14. 781	· · · · · · monohydrate, 14. 762
dihydrophosphatohemipenta-	hexahydrate, 14. 762
molybdate, 11 . 670	pentahydrate, 14. 762
dinitrite, 8. 502	tetrahydrate, 14. 762
disulphate, 14. 774	trihydrate, 14. 762
hexahydrate, 14. 774	- sulphide, 14. 750
disulphite, 10. 314	— colloidal, 14 . 752
ferrous sulphate, 14. 783	hydrated, 14. 751
hexamminodibromosulphate, 14.	sulphite, 10. 313
	1
771	tetrahydroxycarbonate, 14. 811
	tetramminobromide, 14, 715
hexasulphitodicobaltate, 10. 315	tetramminochloride, 14, 630
hydrocarbonate, 14. 812	tetramminoiodide, 14. 739
magnesium sulphate, 14. 782	- tetramminosulphate, 14, 770
- · · - manganous sulphate, 14, 783	- tetranitritoplatinite, 8, 521
nickelous sulphate. 15. 478	tetrasodium trimetaphosphate, 14.
orthophosphate, 14 . 852	854
oxyquaterochromate, 11. 312	
pentasulphate, 14 . 775	- thallic octochloride, 14, 646
- · · · - · · percobaltite, 14. 601	thallium sulphite. 10, 314
phosphatohemipentamolybdate,	thallous disulphate, 14. 782
11. 670	- thorium nitrate, 14. 828
selenate, 10. 884	triamminosulphate, 14. 770
	- · · · trihydrazinecarbonate, 14. 810
sulphatofluoberyllate, 14. 781	trihydrazinenitrate, 14. 826
sulphatoselenate, 10. 930	- trihydrazinesulphate, 14, 771
- tetranitrite, 8. 501	trimetaphosphate, 14. 854
trinitrite, 8. 502	- trimolybdate, 11. 590
trisulphate, 14. 775	- triphosphate, 14. 853
zinc sulphate, 14. 782	tripyridinonitrite, 8. 501
praseodymium nitrate, 14. 828	- trisethylenediaminochloroplatinite, 16.
- pyrophosphate, 14. 853	284
quaterpyridinochloroplatinite, 16. 284	— tungstate, 11. 802 — dihydrate, 11. 802
rubidium disulphate, 14. 777	1
hexahydrate, 14. 777	uranyl phosphate, 14, 853
tetrachloride, 14. 638	zine earbonate, 14. 813
	orthophosphate, 14. 852
salts, colour of solutions, 14. 613	sulphate, 14. 782
samarium nitrate, 14. 828	tetrachloride, 14. 644
sarcosine bisethylenediamines, 14. 697	Cobaltovanadium, 9. 726
—— selenate, 10 . 882	Cobaltsmithsonite, 14. 813
	Cobaltum, 9. 2
hexahydrate, 10. 882	—— acido arsenico mineralisatum, 9. 228
pentahydrate, 10. 882	arsenico mineralisatum, 9. 76
—— silver hexasulphitodicobaltate, 10. 315	ceneraceum, 9 . 76
—— sodium carbonate, 14 . 812	cum ferro sulfurato et arsenicato
decahydrate, 14. 812	mineralisatum, 9. 308
	ferro sulphurato mineralisatem, 14.
chloride, 14. 639	757
dimetaphosphate, 14. 854	nigrum, 12. 266
disulphate, 14. 779	purissimum, 14 . 452

disulphite, 10. 314	—— testaceum, 9. 3

520 GENERA	L INDEX
Cobaltyl sodium sulphate, 14, 790	Colloidal solutions, freezing points, 1, 774
	osmotic pressure, 1. 774
Cobel, 14. 419	- preparation, 3. 551
Cobold's ore, 15. 1	specific gravities, 1. 774
Cobre blanco, 9. 633	volumes, 1. 774
Cochrome, 14, 519	surface tension, 1. 774
Coccinite, 2. 17; 4. 697, 901	thermal expansion, 1. 774
Coccolite, 6. 409	
Cockscomb barytes, 3, 763 - pyrites, 12, 529	state, 1. 771
Cocoa powder, 2. 828	· tellurium disulphide, 11. 110
Codazzite, 12. 529; 14. 369	Colloidoscope, 1, 774
Coefficient absorption, 1. 527	Colloids, 1. 770
expansion gases, 1. 159	Avogadro's constant, 1. 778
Coercive force, 13. 246	collision frequency, 1. 776
Coercivity, 13. 246	diflocculation, 3, 536
Cocruleite, 9. 186	distribution of particles, 1, 776
Caruleolactite, 5 . 366 Caruleum, 6 . 586	flocculation, 3, 536 gold numbers, 3, 547
— berolinense, 14 . 390	molecular weight, 1, 773
Coeuleum montanum, 6. 343	peptization, 3. 538
Coffee, 13. 615	precipitation, 3. 542
Cohenite, 5, 897; 12, 528, 529	Hardy's rule, 3. 543
Cohesion, 1, 292, 821; 8, 1	Schulze's rule, 3, 543
specific, 1 . 848	protective, 3 . 539, 547
Cohesive attraction, 1, 841	velocity of particles, 1, 776
	Collophane, 3 , 623 ; 8 , 733 Collophanite, 3 , 866, 880; 8 , 735
Coke, 5, 749; 12, 585	Collyrite, 5 . 359; 6 . 497
absorption, oxygen, 1. 371	Collyrum, 6, 497
- hard, 5 . 749	Cologne earth, 13. 887
soft, 5 . 749	Colophonite, 6. 921
Coking, 5, 749	Coloradate, 4. 697
Colchotar, 13, 782	Colorado silver, 15. 210
Colcothar, 10 , 351; 13 , 781, 782, 783 Cold-working steel, 12 , 670	Coloradoite, 11. 2 Colour changes on heating, 2. 221
Coldshare iron, 13. 61	of cupric chloride soln., 3. 173
Coldshore iron, 13. 61	Colours temper, 12, 696
Colemanite, 3, 623; 5, 4, 90	Colsar, 13. 61
(neo), 5 . 90	Colshire iron, 13, 61
Colerainite, 6. 622	Columbates, 9. 862
Coleshire iron, 13. 61	Columbic acid, 9 , 857 Columbite, 5 , 530; 7 , 100, 255, 896; 9 , 839,
Collidinium bromopalladate, 15, 678 bromopalladite, 15, 678	868, 906, 907; 12 , 529
bromosmate, 15 . 723	tantalite, 12 . 149
chloroiridate, 15 . 771	Columbium, 5. 504; 7. 837
- · · chloropalladate, 15. 673	atomic number, 9. 853
· · · chloropalladite, 15. 670	weight, 9 . 853
chlororhodate, 15. 580	bromides, 9 . 880
chlorosmate, 15. 719	- carbide, 5. 888
collidinepentachloroplatinate, 16, 313 Collinsite, 14, 396	carbonate, 9 . 882
Collision-frequency colloidal particles, 1. 776	chloride, 9 . 875
of molecules, 1. 751	chromate, 11. 306
Colloid, irreversible, 1. 771	dichloride, 9. 875
—— reversible, 1 . 771	dioxide, 9 . 855
Colloidal clay, 6. 477	—— dioxyfluoride, 9. 872
cupric oxide, 3, 142	electronic structure, 9, 853
euprous oxide, 3, 727 	
phase, 1. 771	hydride, 9 . 855
silver bromide, 3. 418	hydroxydichloride, 9, 876
carbonate. 3. 457	iodides, 9 . 880
- orthophosphate, 3. 486	iron alloys, 13. 586
solution, 16, 398	- isotopes, 9 . 853
solutions, boiling points, 1, 774	- molybdate, 11 , 570
	mononitride, 8 , 125 nickel alloys, 15 , 238
diffusibility, 1. 774	chromium steels, 15 . 329
electrical conductivity, 8. 543	—— fluoride, 15 . 405

Columbium nickel zirconium alloys, 15. 238	Compounds isoelectric, 4, 201
nitrate, 9. 882	isosterie, 4. 200
occurrence, 9. 838	— — molecular, 2. 223; 4. 195
oxide extraction, 9. 840	naming, 1. 116
oxides lower, 9 . 856	—— saturated, 1 . 208; 4 . 191
- oxybromides, 9 . 880	second order, 1. 400
oxycarbonitride, 8. 126	unsaturated, 1. 208; 4. 191
- oxychloride, 9. 875	Compressibilities colloids, 1. 774
oxyfluorides, 9 . 870	Compressibility, 1, 820
	and surface tension, 1. 851
oxytribloride, 9, 880	Compression gases, thermal effects, 1, 862
- oxytrichloride, 9 . 878 - oxytrifluoride, 9 . 872	Comte's la loi des trois états, 1. l Comptonite, 6. 709, 748
pentabromide, 9. 880	Conarite, 6. 931
pentachloride, 9. 896	Concentrate, 3, 22
pentafluoride, 9 . 890	Concentration, 1. 299, 1003
pentasulphide, 9. 881	and decomposition voltage, 1. 1039
pentoxide, 9 . 856, 857	
	854
	· · · · cells, 1. 1021
colloidal, 9. 860	eritical, 1, 523
perhydroxide, 9 . 869	solutions and osmotic pressure, 1. 543
phosphate, 9, 882	Conchite, 3, 816
preparation, 9. 846	Concurrent reactions, 1, 360
	Condensation, binary mixtures gases, 1, 167
physical, 9, 847	gases, 1, 165, 167
reactions, 9, 850, 852	retrograde, 1, 168 Condensed oxide, 7, 224
- selenide, 10. 796 sulphate, 9. 880, 881	Conductivity electrical, 3, 52
tetrachloride, 9. 876	electrolytic of solutions, 1, 977
tetroxide, 9, 856, 857	equivalent, 1. 978
tetroxysulphate, 9, 881	measurement electrical, 1, 979
trichloride, 9, 875	molecular, 1. 978
- trihydroxytrichloride, 9, 876	- — of solutions, effect of agitation, 1. 982
- trioxide, 9 . 856	light, 1. 982
tritaheptachloride, 9, 876	magnetism, 1.
tritaheptoxide, 9. 857, 876	982
tritahexachlorobromide, 9, 876	pressure, 1. 982 temperature, 1.
tritahexachlorohydroxide, 9. 876	temperature, 1.
tritapentanitride, 8, 125	982
tritapentexide, 9, 856, 857	
valency, 9 . 853 zirconium, 7 . 117	specific electrical, 1, 978
Columbous sulphate, 9, 882	Confitello, 2, 711
Columbyl chloride, 9. 878	Confolensite, 6. 498
Comarite, 6 . 931	Congelation, aqueous, 8, 565
Combination, chemical, 4, 1085	
- electronic hypothesis, 4. 183	Conichalcite, 9. 4, 173
— principle of (spectrum lines), 4. 922	Conite, 4. 371
Combined carbon, 5, 895	Conjelo, 2. 803
Combining capacity, 1. 224	Connarite, 6. 931; 15. 5
weights, 1. 99	Consecutive reactions, 1, 359
Combustion, 1, 60, 68	Conservation energy and matter, 1, 695
- fractional, 1 . 488 heat of, 1 . 710	Constant, chemical, 1, 737 ———————————————————————————————————
Comet alloy, 15. 321	thermochemical, 1. 710
Complex compounds, 4, 195	Constantan, 15. 179
Components, 1, 445	Contacts of crystals, 1, 615
of spectrum, 4. 7	Constantinople, 1. 44
Composition, chemical and solubility, 1, 585	Constituents, vicarious, 1, 651
law of chemical, 1. 95	Contact action, 2. 143
constant, 1, 76, 78	differences of potential, 1, 1015, 1016
· · · · · · · · · · · F. Wald on, 1. 80	Continuity, law of, 1. 14
Compounds, 1. 85	liquid and gaseous states, 1, 167
chemical, 1 . 78	Contracid, 15. 245
complex, 4 , 195	Contravalencies, 4, 179
first order, 1, 400	Converter, 3. 25
first order, 1, 400 	

	2412223
Cookeite, 2. 426; 6. 607	Copper arsenitomolybdate, 9, 131
	arsenochloride, 9. 244
Cooling approx 1, 450	atomic number, 8, 112
Cooling curve, 1, 450	
curves, 1. 518	weight, 8 . 110
Cooperite, 16. 5, 393	aurides, 3. 573
Co-ordination number, 8. 235	autunite, 12. 135
theory nomenclature, 8. 237	barium ammonium nitrite, 8. 488
Copal, 13. 615	potassium nitrite, 8 . 488
varnish, 13. 615	silicate, 6. 373
Coperite, 3 . 210	—— beryllium alloys, 4. 668
Copiapite, 12 . 529; 14 . 328, 329, 333	beta, or β, 3. 115
α-, 14. 329	bisethylenediaminodithionate, 10. 587
β-, 14 . 328, 329	bisethylenediamminonitrite, 8. 480
Copper, allotropic forms of, 3, 113	bisethylenediaminopersulphate, 10.478
· alpha or α-, 3 . 115	bisethylenediaminosulphite, 10. 274
aluminide, 5 . 230	- bisethylenediaminotetrathionate, 10.
aluminium alloys, 5 . 229	618
cobalt alloys, 14 . 535	bisethylenediaminothiosulphate, 10.
decahydroxyorthoarsenate, 9.	535
162	bisethylenediaminotrithionate, 10. 609
iron alloys, 13. 557	bismuth alloys, 9. 635
magnesium alloys, 5. 237	arsenate, 9. 798
nickel alloys, 15 . 231	nitrate, 9. 710
nickel alloys, 15 . 231	thiosulphate, 10. 554
pentadecahydroxypentarsenate,	- bistrimethylaminechloroplatinate, 16.
9. 186	326
	black, 3, 72, 131
tetroxydiarsenate, 9, 186	blister, 3 . 25
aluminoarsenatosulphate, 9, 162	blue, 3. 7
aluminosilicate, 6 . 344	—— boride, 5 . 23
aluminotungstate, 11. 789	boronized, 5. 17
- · · amalgam colloidal, 4. 1023	bromate, 2. 343
amalgains, 4, 1022	ammino-, 2. 343
amidosulphonate, 8. 641	bromoarsenite, 9. 249
amminochlorosmate, 15. 720	bromoplatinate, 16 . 379
- amminopermanganate, 12. 332	octohydrate, 16 . 379
amminoxythiocarbonate, 6. 125	burning, 3 . 71
ammonium, ammoniohydroxyantimo-	cadmium alloys, 4. 683
nate, 9. 454	tetrachloride, 4 . 559
calcium tetrasulphate, 3. 811	cæsium lead hexanitrite, 8 . 500
cerous nitrite, 8 . 496	selenate, 10 . 860
· chromate, 11. 262	calcium alloys, 4 . 684
cobaltous sulphate, 14 . 781	ammonium nitrite, 8 . 488
- · · · · · · diamminochromate, 11. 262	tetrasulphate, 3. 811
diamininomolybdate, 11. 559	arsenate, 9. 173
dithionate, 10 . 587	carbonato-arsenate, 9. 173
ferrous sulphate, 14. 297	
fluotitanate, 7. 72	—— — hydroxyorthoarsenate, 9. 173
hexahydrotrisdiarsenitodimolyb-	hydroxyorthovanadate, 9. 767
date, 9. 131	metadimetasilicate, 6. 372
lead nitrite, 8. 498	orthovanadate, 9. 767
molybdate, 11 . 559	potassium nitrite, 8. 488
nickel sulphate, 15. 474	tetrasulphate, 3. 811
octohydrobisdiarsenitodimolyb-	pyrovanadate, 9 . 767
date, 9. 131	
pentafluodioxytungstate, 11. 839	tungstate, 11. 818 uranyl carbonate, 12. 116
phosphatohemipentamolybdate,	vanadate, 9. 772
11. 669	carbonate, 13. 615
selenate, 10. 859	—— carbonyl, 5 . 951
tellurite, 11. 99	
tungstate, 11. 782	catalysis by, 1. 487
tungstate, 11. 762 tungsten tetramminoenneachlo-	catalytic, 3. 32
	cement, 8. 30
ride, 11. 842	cerium alloys, 5. 605
and thallium, 5. 426	chemical properties, 8 . 69
antimonatotungstate, 9. 459	chloride, 18. 609, 615
antimonides, 3. 98	chloroantimonite, 9. 481
antimonyl oxytriiodide, 9. 508	chlorometavanadate, 9. 809
aquoethylenediaminosulphite, 10. 274	chloroplatinite, 16. 281
arsenatotrimolybdate, 9. 209	chloroplumbite, 7. 730
arsenides, 3 . 98; 9 . 62	chlorostannate, 7. 449

Copper chromate, 11. 260	Copper diplatinous hexasulphoplatinate,
	16. 396 —— distannide, 7. 351
iron alloys, 15. 327, 337	—— disulphitotetramminocobaltate, 10.
pentafluoride, 11. 364	317
steels, 13. 616	disulphoselenide, 10. 919
coarse, 3 . 25	dithiophosphate, 8. 1068
cobalt alloys, 14, 529	ditritantimonide, 9. 403
— nickel alloys, 15 . 337	ditritaphosphide, 8. 839
silicon alloys, 14. 536	ditritarsenide, 9. 64
zinc alloys, 14. 533	ditritasilicide, 6. 172
cobaltic dichlorobisethylenediamine- chloride, 14 . 670	ditungstate, 11. 809 dodecafluoaluminate octohydrated, 5.
hexamminopentachloride, 14.	308
656	dry, 3. 26
$-\mu$ -imino-peroxo-quaterethylene-	- electrotyping, 3. 13
diaminenitrate, 14. 846	enneaiodide, 3 . 207
manganite, 12 , 243	enneamminodithionate, 10. 587
nitrite, 8. 504	ethylenediaminosulphamidate, 8. 662
pentamminotrisulphite, 10. 318	extraction, 3. 21
- trisethylenediaminopentachlo-	
ride, 14. 657 cobaltite, 14. 594	30
- cobaltous dioxysulphate, 14. 781	ferrate, 13. 934
hydrosulphate, 14, 781	ferric alum, 14. 347
nitrate, 14. 828	oxytetrarsenate, 9. 227
sulphate, 14 . 780	phosphate, 14. 410
· · · · · trihydroxynitrate, 14. 828	pyrophosphate, 14. 415
trioxydibromide, 14. 718	
trioxydichloride, 14. 641	tetrasulphate, 14. 347
trioxydisulphate, 14. 781	
colloidal, 3 . 31, 554, 563 compounds reduction, 3 . 10	ferrous ferric heptasulphate, 14. 351
decafluodicerate, 5. 638	decahydrate, 14. 351
- decahydroxyorthoarsenate, 9. 162	sulphate, 14. 296
decamminomonoxybischromate, 11.	- ferryl arsenate, 9, 227
262	- — filiform, 3 . 34
- — dendritie, 3. 33	finely divided, 3. 31
- deuterotetravanadate, 9. 767	flowers of, 3, 70, 117
- dialuminide, 5. 231	- fluoaluminate, 5 , 308 - fluoantimonate, 9 , 468
	fluorides, 3. 154
diamminodisilicate, 6. 341	fluostannate, 7, 423
diamminohexanitrite, 8. 479	fluosulphonate, 10. 685
diamminomolybdate, 11. 559	fluotitanite, 7. 72
diamminonitrite, 8. 479	germanium sulpharsenite, 9. 298
- diamminotungstate, 11. 782	glance, 3. 7
- diantimonide, 9, 404	gold alloys, 3 , 573
diethyldiamminoselenate, 10, 859	— green, 3 . 270 — grey sulphuret, 9 . 291
diheptitasilicide, 6 , 172 dihydroarsenatomolybdate, 9 , 208	hair, 3. 34
dihydroxymanganate, 12. 288	- hemialuminide, 5. 230
dihydroxyorthovanadate, 9. 767, 778	- — hemiantimonide, 9. 403
dihydroxytetrachloroplatinic acid, 16.	hemiarsenide, 9. 64
334	hemienneapermanganite, 12. 276
diiodeciesdimethylaminechloroplati-	hemiheptammino-chromate, 11. 261
nate, 16. 326	—— hemimanganite, 12 . 242 —— hemiphosphide, 8 . 838
diiodeviciesmethylamininechloroplati-	hemisilicide, 6. 172
nate, 16. 326	- hemistannide, 7. 351
dioxide, 3. 116, 149 monohydrated, 3. 147	—— hemitelluride, 11. 62
dioxyarsenite, 9. 121	hemitrisethylenediaminothiosulphate,
—— dioxychromate, 11. 261	10. 535
dioxyorthotetravanadate, 9. 767	- — hemitrisilicide, 6 . 172
dioxytetrafluomolybdate, 11. 614	- hemitritelluride, 11. 42
dipentitantimonide, 9. 403	— heptachloroaluminate, 5. 322 — heptafluoaluminate undecahydrated,
dipentitaphosphide, 8, 838	5. 308
dipentitasinide, 9. 64	heptafluotantalate, 9. 917
—— dipentitasilicide, 6 . 172 —— diphosphide, 8 . 839	—— hexafluoferrate, 14. 8
	2 м
VOL. XVI.	

Copper hexahydroarsenatoctodecamolybdate, 9. 211	Copper manganous disulphate, 12. 421 dihydrate, 12. 421
hexahydrorthoarsenate, 9. 161	monohydrate, 12. 421
hexahydroxydinitrite, 8. 479	oxysulphate, 12. 422
hexaiodide, 3. 207	permanganite, 12. 276
hexamminometatungstate, 11. 825	trioxydichloride, 13. 368
hexantimonate, 9. 444	tetrahydrate, 12. 368
hexitantimonide, 9. 403	trihydrate, 12. 368
hexoxychromate, 11. 262	trioxynitrate, 12. 445
highly purified, 3. 31	matte, 3. 23
history, 3. 1	- melanterite, 14. 295
hydrazine selenate, 10. 859	mercuride, 4. 1022
hydride, 3 . 72	- metacolumbate, 9. 865
	dihydrate, 9. 865
hydroarsenite, 9. 121	metantimonate, 9. 453
hydrofluocolumbate, 9. 872	metantimonite, 9. 432
- hydrohexafluoaluminate octohy-	metaphosphates, 3. 292
drated, 5. 308	metarsenite, 9. 122
hydroselenite, 10. 824	dihydrated, 9 . 122
monohydrate, 10 . 824	metasilicate dihydrated, 6. 343
hydroxynitrosylsulphonic acid, 8. 694	metasulpharsenatoxymolybdate, 9. 332
hydroxyorthoarsenate, 9. 159	metasulphoantimonite, 9. 536
hemienneahydrate, 9. 160	metasulphobismuthite, 9 , 690
heptahydrate, 9 . 160	metatungstate, 11. 825
trihydrate, 9. 160	metavanadate, 9. 767
	mica, 9. 4, 162
· · · hypophosphite, 8. 882	- molybdate, 11. 558
berezes determine, 8, 883	molybdenum alloys, 11. 522
hypovanadatovanadate, 9. 793	cobalt alloys, 14 . 540
iodate, 2. 343 ammino-, 2. 344	
hydrated, 2. 343	
iridium alloy, 15 . 750	monantimonide, 9. 404 monobismuthide, 9. 635
iron alloys, 13. 527	- monophosphide, 8. 839
—— manganese alloys, 13 . 666	monostannide, 7. 351
nickel-aluminium alloys, 15. 314	monothiophosphate, 8, 1069
tin alloys, 15. 314	—— moss, 3. 34
silicon alloys, 13. 570	muriate white, 3. 157
zinc alloy, 13. 545	native, 3. 6
 lead aluminosulphate, 7, 822 	·· nickel, 15 . 5
chromate, 11. 304	alloys, 15. 178
ferric trioxydisulphate, 14. 350	aluminium alloys, 15 . 225
hexahydroxytetrasulphate, 7.	- beryllium alloys, 15. 206
819	bismuth alloys, 15. 202
- hydroxyarsenate, 9 . 196 - hydroxychloride, 7 . 742	cadmiun alloy, 15. 222
hydroxyorthovanadate, 9. 777	chromium-aluminium alloys, 15.
hydroxysulphate, 7. 820	245 molybdenum-iron alloys,
iron alloys, 13 . 579	15. 330
nickel allovs, 15, 236	tin alloys, 15, 245
octohydroxyhexaorthoarsenate,	cobalt alloys, 15. 336
9. 196	· · · · · · · iron-magnesium alloys, 15.
orthosulphoantimonite, 9. 550	337
oxyphosphate, 7. 877	· · · · · lead alloys, 15. 337
silver orthosulphotetrabismu-	zinc alloys, 15. 337
thite, 695	dioxychloride, 15 . 419
tetrahydroxydichloride, 7. 743	gold alloys, 15 . 205
tetrahydroxyorthovanadate, 9.	hydroxysulphatarsenate, 9. 334
778	iron alloy, 15 . 312
tetroxychloride, 7. 742	aluminium alloys, 15. 313
trionydichloride, 7, 743	manganese alloys, 15. 313,
trioxydichloride, 7. 743	330
magnesium alloys, 4. 668	zinc alloys, 15. 313
carbonate, 4, 370	lead-tin-zinc alloys, 15. 237
manganate, 12 . 288 manganese alloys, 12 . 200	magnesium alloys, 15. 207
silicon alloys, 12. 200	
sulphide, 12. 397	manganese alloys, 15 . 252, 255
Transportation to Audit 17 U.S.	aluminium allows 15 955
manganite, 12. 242	aluminium alloys, 15. 255 molybdenum alloys, 15. 247

Copper nickel molybdenum tantalum alloys,	Copper oxysulphides, 3, 226
15 . 247	oxytetranitritoplatinite, 8. 519
——————————————————————————————————————	palladium alloys, 15 . 642
silver alloys, 15 . 203	gold alloys, 15. 648
sulphide, 15 . 442	silver alloys, 15. 646
tantalum alloys, 15. 238	paratungstate, 11. 817
——————————————————————————————————————	passivity, 3. 95
eilicon ellove 15 925	pentafluovanadite, 9. 797
——————————————————————————————————————	pontahovitastannida 7 251
triangle 45 400	— pentahexitastannide, 7. 351
	pentamminometachloroantimonate, 9.
——————————————————————————————————————	491
——————————————————————————————————————	pentastannide, 7. 351
——————————————————————————————————————	pentathionate, 10 . 627
vanadium alloys, 15 . 238	pentitatritelluride, 11. 43
zinc-tungsten alloys, 15 . 251	pentoxybischromate, 11. 262
	pentoxyodosulphodiantimonate, 9.
nickelous dihydropentasulphate, 15.	579
474	— periodates, 2. 412
dioxysulphate, 15. 474	permanganate, 12. 331
trioxydisulphate, 15. 474	—— permolybdate, 11. 608
dodecahydrate, 15. 474	permonosulphomolybdate, 11. 653
trisulphate, 15. 473	- peroxide, 3. 116
dihydrate, 15 . 473	perrhenate, 12. 477
- henicosihydrate, 15. 473	hemihydrate, 12 . 477
· · · · · heptahydrate, 15. 473	—— pentahydrate, 12. 477
- trihydrate, 15 . 473	tetrahydrate, 12. 477
nitrates, 3 . 280	persulphate, 10 . 478
nitratoplumbite, 7. 866	peruranate, 12. 73
nitratotungstate, 11. 862	phosphatodimolybdate, 11. 670
— nitrite, 8. 479	——— phosphatododecamolybdate, 11. 663
nitrosylbromide, 8 . 426	phosphatododecatungstate, 11. 867
chloride, 8. 426, 617	phosphatoenneamolybdate, 11. 667
sulphate, 8, 423, 426	phosphatoenneatungstate, 11. 871
tetrabromide, 8. 426	phosphatofluosilicate, 6. 950
occurrence, 3. 5	t act
octochloroaluminate, 5. 322	669
octodecamminochloroplatinate, 16.326	- phosphatohexatungstate, 11, 872
- octohydroxyorthoarsenate, 9. 162	phosphide colloidal, 8, 836
· · Old Nick's, 15 . 1	—— phosphides, 3 . 97; 8 . 835
ore, 3 . 7	phosphite, 8 . 914
blistered, 3 . 7	phosphitotungstate, 8, 919
grey, 3. 7	— phosphor, 3. 97
livery, 3 . 117	physical properties, 3, 33
olive, 9 . 159	—— platinic cositungstate, 11, 803
green, 9 . 159	—— molybdate, 11. 576
purple, 3. 7	platinum alloys, 16 . 194
red, 3 . 117	chromium alloys, 16. 216
variegated, 3. 7	cobalt alloys, 16 . 219
valvet, 5. 353	———— gold alloys, 16 . 205
	eilver alloys 16 205
yellow, 3. 7	
ores, 15 . 9	inon allow 48, 210
orthoantimonate, 9. 453	iron alloy, 16 . 219
	manganasa allam 46 016
orthoarsenite, 9. 121	manganese alloys, 16. 216
dihydrated, 9. 12	nickel alloys, 16 , 220
dihydrated, 9 . 12 orthotellurate, 11 . 92	
dihydrated, 9 . 12 orthotellurate, 11 . 92	
dihydrated, 9. 12 orthotellurate, 11. 92 orthovanadate, 9. 766	
	nickel alloys, 16 , 220 silicide, 6 , 213 silver alloys, 16 , 201 zinc alloy, 16 , 207 zinc alloy, 16 , 207 polyiodides, 3 , 206

Copper potassium oetohydrotetrahypophos-	Copper sodium dihydropentarsenate, 9. 163
phate, 8. 936	dioxydichromate, 11. 339
oxyquadrichromate, 11. 263	hydrobisdihydrodecapentarse-
oxytrischromate, 11. 263	nate, 9. 163
phosphatohemipentamolybdate,	1
11. 669	hydroennearsenate, 9. 163
	orthoarsenate, 9. 162
- selenatosulphate, 10, 929	paratungstate, 11. 818
sulphatoselenate, 10. 929	tetraorthoarsenate, 9. 163
	solubility of hydrogen, 1. 305, 306
triterohexavanadate, 9. 767	strontium ammonium nitrite, 8 . 488
tungsten tetramminoenneachlo-	potassium nitrite, 8 . 488
ride, 11. 842	silicato, 6. 373
··· precipitation from compounds, 3. 10	subchloride, 3. 157
metallic, 3. 14	suboxides, 3 . 116
psilomelanes, 12 . 266	- sulpharsenatosulphomolybdate, 9. 323
- purple, 3. 7	- sulpharsenide, 9. 306
pyridinopermanganate, 12. 332	sulphate, 13. 615
- pyridinopersulphate, 10. 478	sulphatoaluminate, 5. 353
- pyrites, 3. 7; 12. 529; 15. 9	
	sulphide complex salts, 3. 227
- pyroarsonite, 9, 121	
pyrophoric, 3 . 69	colloidal, 3. 225
- pyrophosphatotungstate, 11. 874	- sulphimide, 8 . 664
pyroselenite, 10 . 824	sulphite, 10 . 273
pyrosulpharsenatoxymolybdate, 9.	sulphoaluminate, 5. 331
331	— sulphoantimonites, 9. 535
pyrovanadate, 9. 767	- sulphochromite, 11. 432
trihydrate, 9. 767	sulphocobaltite, 14. 757
quadrantoxide, 3. 116	sulphotellurite, 11. 113
quaterethylenediaminochloroplatinite,	sulphotungstate, 11. 859
16 . 282	
- quaterpyridinochloroplatinite, 16. 282	
quinquiesmethylaminechloroplatinate,	telluride, 11. 42
16. 326	
	tellurite, 11 . 79
red, 3 . 117	tetrachloroaluminate, 5. 322
refining, 3. 26	tetrafluodioxytungstate, 11. 839
by electrolysis, 3. 27	tetrahydrodiarsenatoctodecatung-
rhodium alloy, 15 . 564	state, 9. 214
" rubidium selenate, 10, 860	· — tetrahydroxyorthoarsenate, 9. 161
rust, 3 . 270	enneahydrate, 9 . 161
ruthenium alloy, 15 . 510	pentahydrate, 9. 161
· · selenate, 10. 858	
dihydrate, 10. 858	tetraiodide, 3. 207
monohydrate, 10. 858	tetramagnesium hexaluminide, 5.
selenite, 10. 823	237
separation from compounds, 3. 10	- tetramininochloropalladite, 15. 670
sesquioxide, 3 . 116, 149	—— tetramminochloroplatinite, 16. 281
sexiesdimethylaminechloroplatinate,	tetramminochromate, 11. 261
16 . 326	tetramminodithionate, 10. 587
silicates, 6 . 340	tetramminomolybdate, 11. 559
	tetramminonitrite, 8. 480
silicoarsenide, 9. 63, 68	tetramminoperrhenate, 12. 477
——————————————————————————————————————	tetramminopersulphate, 10. 478
manganese alloys, 12. 215	tetramminopyroantimonate, 9. 453
silver alloys, 3 . 572	tetramminoselenate, 10. 858, 859
amalgam, 4. 1027	—— monohydrate, 10. 858
gold alloys, 3. 576	tetramminosulphamidate, 8. 662
nickel alloys, 15. 205 relations, 3. 617	——— tetramminosulphite, 10. 273
relations, 3. 617	tetramminotungstate, 11. 782
iron alloys, 13. 540	tetranitritoplatinite, 8. 519
lead octoxyhenacosichloride, 7.	tetranitrohexamminocobaltiate, 8.
743	510
	tetrantimonate, 9. 443
selenide, 10. 773	tetrapermanganite, 12. 276
smelting, 3. 3	
sodium alloy, 3. 571	
	tetrapyridinotetrathionate, 10. 618
arsonate, 9. 163	—— tetrasilicide, 6 . 171, 172
- · · · · · bishydrodecatetrarsenate, 9. 163	tetratotriamminochromate, 11. 261
	4-
calcium arsenate, 9. 174	tetritantimonide, 9. 403
chlorotetraorthoarsenate, 9. 263	tetritaoxide, 8. 116

VI 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1 444 1	
Copper tetritastannide, 7. 351	Copper wood, 9. 160
tetritatritelluride, 11. 43	wool, 3 . 32
thallium cerous nitrite, 8. 496	world's production, 3. 6
- — thallous nitrite, 8. 496	X-radiogram, 1. 641
selenate, 10. 870	zinc alloys, 4. 670
thiocarbamate, 6. 132	aluminium alloys, 5. 240
- thiohypophosphate, 8, 1063	amminochloride, 4. 648
tin alloys, 7. 347	carbonate, 4 . 648
and aluminium, 7. 361	dihydroxyhexametoarsenite, 9.
antimony, 7. 362	127
bismuth, 7, 362	hydrosulphate, 4 . 640
	———— manganese alloys, 12 . 207
calcium, 7. 361	nickel alloys, 15. 208
chromium, 7. 361	oxychloride, 4. 546
	phosphate, 4. 664
	phosphatoarsenate, 9. 182
nickel, 7. 362	
	basic, 4 . 640
phosphorus, 7. 362	zirconate, 7. 136
sodium, 7. 361	zirconium, 7. 116
vanadium, 7, 362	(tetra)copper ennealuminide, 5. 231
zinc, 7. 361	Copperas, 12. 529; 14. 245, 248
——————————————————————————————————————	white, 4 . 613
triamidodiphosphate, 8. 712	Coppite, 3, 623; 9, 291
triamminometantimonate, 9. 454	Coprolite, 3. 623
triamminoselenate, 10. 859	Coprolites, 2. 1
tetrahydrate, 10, 859	Cognimbite 12 520 : 14 202 207
	Coquimbite, 12, 529; 14, 303, 307 Coquina, 3, 815
- triarsenatotetravanadate, 9. 201	Coracite, 12. 4, 52
	Coral, 3. 622
trimolybdate, 11. 589	Coralline earth, 4. 696
trioxychromate, 11. 261	limestone, 3 . 815
trisilieide, 6. 172	Corandite, 7. 896
tristannide, 7. 351	Cordierite, 6. 809
tritaheptastannide, 7. 351	α-, 6 . 809
—— tritaluminide, 5. 230, 231	β-, 6 . 809
tritamanganite, 12. 242	X-radiogram, 1. 642 Cordylite, 5. 522
tritantimonide, 9. 403 tritaphosphide, 8. 837	Corindite, 5. 271
tritarsenide, 9. 63	Corindon, 5. 247
tritastannide, 7. 350	Corkite, 7. 877; 9. 334; 12. 529; 14. 412
triterodecavanadate, 9. 767	Cornetite, 3. 289
——————————————————————————————————————	Corneus crystallosatus, 6. 821
dodecammine, 9 . 767 hexaminine, 9 . 768	fissilis, 6 . 821
hexaminine, 9 . 768	solidus, 6 . 821
—— trithionate, 10 . 609	Cornish stone, 6. 467
trithiophosphate, 8. 1067	Cornuite, 6. 342
	Cornwallite, 9. 4, 161
tritungstate, 11. 811	Coronadite, 12. 279, 529 Corondite, 12. 149
tough pitch, 3. 27 tungstate, 11. 782	Coronguite, 9. 343
——————————————————————————————————————	Coronium, 4. 21; 5. 617; 8. 6
- tungsten alloys, 11. 741	Corpse candles, 8, 803
——— iron-nickel alloys, 15. 330	Corpuscles ignées, 1. 60
nickel-tantalum alloys, 15. 251	Corresponding states, 1. 759
—— uranate, 12 . 63	Corrosion acid theory, 13. 408
uraniomica, 9. 216	colloid theory, 13 . 435
uranite, 9. 216; 12. 43	—— effect of compressed strains on, 18, 466
uranium alloys, 12. 38	
uranyl arsenate, 9. 215	tensile strains on, 18. 465 torsion strains on, 13. 465
—— phosphate, 12. 133 —— sulphate, 12. 110	electrochemical theory, 13. 412
—— uses, 8. 104	factors affecting, 13. 426
vanadates, 9. 766	fatigue of iron, 13. 467
vanadide, 9 . 733	figures, 1. 611
vitreous, 8. 7	and isomorphism, 1. 658
voltameter, 1. 964	hydrogen dioxide theory, 13. 433
—— white, 15. 208	—— intercrystalline, 13. 423

534	GENERAL INDEX
Common innia humothoris 12 403	Crooks martin 18 781
Copper ionic hypothesis, 13, 405 steel, see Iron	Crocus martis, 13. 781 aperitivus, 13. 890
water-line, 13 . 449	- metallorum, 9. 577
Corrosiron, 13. 559	Crofting, 2. 243
Corrosive sublimate, 4. 797	Cromfordite, 7, 491, 852
Corsican furnace, 12, 582	Crompton's formula, 1. 835
Corubin, 5 . 271	Cronstedtite, 6, 623; 12, 529
Corundelite, 6, 708	Crookes' dark space, 4. 24
Corundophilite, 6 . 623; 12 . 529	spinthariscope, 4. 80
Corundum, 5, 154, 247; 7, 896	Crookesite, 3. 7; 10. 694, 782
	Cross-stone, 6. 458 Crossite, 6. 913; 12. 529
Corynite, 9 , 4, 555; 15 , 5 Cosalite, 7 , 491; 9 , 589, 694	Crucible steel, 12. 753
Cosmetic white, 9 . 707	Crucilite, 6. 909
Cosmochlore, 6. 865	Crushers, 3. 497
Cosmochromite, 6. 865	Cryohydrates, 1. 517
Cossaite, 6 . 607	Cryolite, 2. 1; 5. 154, 303, 304; 7. 896
Cossyrite, 6, 836; 7, 3; 12, 529	alumina-fluospar fusibility, 5, 167
Costra, 2, 803	
Cottaite, 6, 663	fusibility, 5 . 167
Cotton-stone, 6, 751	
Cotunnite, 2. 15; 7. 707 Coulomb, 1. 963	glass, 5. 304
Count Palma's powder, 4, 249	Cryolithionite, 5, 303, 306
Counterfey, 4, 401	Cryophillite, 6. 607
Coupholite, 6, 717	Cryophylite, 2. 426
Couseranite, 6, 763	Cryosel, 1 . 517
Covalence, 4, 191	Cryosol, 7. 882
Covellite, 3, 7, 220	Cryphiolite, 4. 388
Covolume atomic, 1, 240	Cryptohalite, 6, 945
molecules, 1 , 239, 755 Cradles, 3 , 496	Cryptolin, 6 , 562 Cryptolite, 5 , 523
Craie de Briançon, 6. 430	Cryptomorphite, 5, 4, 89, 93
Craig gold, 15 . 210	Cryptoperthites, 6, 663
Craterites, 7. 98	Cryptosiderites, 12, 523
Crayon de mine, 5, 713	Cryptotile, 6 . 571, 605
Cream of lime, 3, 676	Cryptotite, 6, 812
Crednerite, 12, 149, 242	Cryptovalencies, 1. 208
Creedite, 5, 309	('rystal, 5. 711 axes, 1. 614
Crême de chaux, 3, 620 Crested barytes, 3, 763	- boundaries, 12, 899
Crestmoreite, 6. 359	constants, 1. 615
Creta Brianzonia, 6, 429	form and molecular complexity, 1, 622
· · · · cimolia, 6. 496	glass, 6 . 522
- fullonia, 6 , 496	growth of, 1, 630
Hispanica, 6 , 429	
Sartoria, 6 , 429	- · · habit, 1. 597, 598
Crichtonite, 7, 2, 57; 12, 529	ideal, 1. 598 indices, 1. 615
Crispite, 7 , 2, 30, 34 Cristobalite, 6 , 139	- mimicry, 1. 595
a-, 6 , 240	notation, Miller's, 1. 614
analyses, 6 . 242	parameturs, 1. 615
β-, 6 . 240	skeleton, 12 . 886
preparation, 6 . 237	systems, 1. 616
Crith, 1. 174	volume, 1. 656
Critical constants and molecular v	
762	Crystallites, 1. 628 Crystallization, 3. 546
density, 1. 165, 762 opalescence, 1. 166	
—— pressure, 1. 165	fractional, 1. 590, 591; 5. 538
solution temperature, 1. 523	with separating element, 5. 540
state, 1. 164, 165	from solutions, 1. 589
temperature, 1. 165, 436	iron, 12. 875
volume, 1. 165	carbon alloys, 12. 875
Crocalite, 6, 573, 653	magnesium and potassium chlorides,
Crocidolite, 6. 913; 12. 529	2. 432 ———————————————————————————————————
Crocoisé, 11. 290 Crocoisite, 11. 125, 290	multiple, 6 . 612
Crocoite, 7. 491; 11. 125, 290	of mixed salts, 2. 431
Crocus antimonii, 9, 577	solids, 1, 602
· ·	

('rystallization of solutions of magnesium	Cupellation, German furnace, 3, 302
and potassium chlorides and	gold, 3. 507
sulphates, 2. 434	Cuprane, 3. 157
ponds, 2. 525	Cupranea, 3. 157
rhythmie, 1. 599	Cuprates, 3. 149
speed of, 1. 455	Cupreïn, 3. 210
synchronous figures, 12. 890	
- zone of rapid, 1. 456	Cupri reging 3, 157
	Cupri resina, 3, 157
Crystallochemical analysis, Fedoroff's, 1.	Cupric acetylide, 5. 853
616	acid, 3. 149
Crystallography, 1. 616	a-stannate, 7. 418
Crystallo-luminescence, 1, 600; 2, 531	tetrahydrate, 7. 418
Crystalloids, 1. 770	aluminate, 5. 289
Crystals, 1. 593	amminoazide, 8. 348
— — acicular, 1 . 597	amminometasilicate, 6. 341
æolotropic, 1. 610	amminopyrophosphate, 3. 291
· · · · allotrimorphie, 12. 876	ammonium α-stannate, 7. 418
anisotropic, 1. 610	amminosulphite, 10 . 278
architecture, 1. 616	- diammino-iodide, 3. 209
biaxial, 1. 607	dichromate, 11. 337
birth of, 1. 627	dimetaphosphate, 3. 292-3
Curie's capillarity theory, 1, 628	sulphate, 3. 255
dendritic, 1. 597	— — anhydride, 3 . 149
distortion, 1. 598	azide, 8 . 348
grain-size, 12 . 903	
growth, 1. 623	
	barium chloride, 3, 720
idiomorphie, 12 . 876	beryllium sulphate, 4, 241
impurities in, 1 . 576	- bromide, 3 , 192, 196
inclusions, 1, 592	hydrated, 3. 196
interfacial angles, 1. 593	properties, 3. 196
- isotropic, 1. 610	cadmide, 4. 683
liquid, 1 . 642	calcium decachloride, 3, 719
Bose's swarm theory, 1 , 649	disulphate, 3. 812
mixed, 1. 658; 2. 224	oxycarbonatophosphate, 3. 897
formulæ, 1 . 668, 670	tetrachloride, 3. 719
Law of, 1. 658	carbide, 5 . 853
regeneration, 1. 631	—— carbonatosilicates, 6. 343
structure, 1. 623, 633	chlorate, 2. 342
analysis by X-rays, 1. 633	ammino-, 2 . 343
symmetry of, 1. 613	hydrated, 2. 342
trichitie, 1. 597	chloride, 3 . 157, 168
twinning, 1. 595	BaCl ₂ -KCl-H ₂ O, 3, 716, 720
uniaxial, 1. 607	BaCl ₂ -NaCl-H ₂ O, 3. 716, 720
X-radiograms, 1. 634	BaCl ₂ -NH ₄ Cl-H ₂ O, 3, 716, 720
Crystolites, 7, 185	colour of soln., 3 . 173
Crytholite, 7. 185	· complex salts, 3, 180
Crytolite, 7. 100	hexol, 3. 178
Cuban, 14. 192	hydrated, 3 . 168, 170
	preparation, 3. 168
Cubanite, 3 . 7; 12 . 529; 14 . 183, 192	properties, chemical, 3, 177
Cube ore, 9, 4, 226; 12, 529	physical, 3, 169
Cubic election 4 830	
Cubic elasticity, 1. 820	
—— system, 1. 616	decamminobromide, 3. 198
Cuivre arsenaté ferrifère, 9. 224	decamminochloride, 3, 189, 190
gris, 9 . 291	—— decamminoiodide, 3 . 208, 209
- hydrosiliceux, 6. 343	diamminobromide, 3. 198
nitré, 8 . 544	- — diamminocarbonate, 3. 275
velouté, 5 . 353	diamminochloride, 3. 190
Cullinan diamond, 5. 711	diamminohydroarsenate, 9. 159
Culsageeite, 6. 608	monohydrate, 9. 159
Cumengeïte, 2. 15	diammino-hydroxide, 3. 151
Cumengite, 7. 742; 9. 437	— — diamminohydroxyfluoride, 3. 156
ψ-cumidinium bromosmate, 15. 723	- diammino-iodide, 3 . 209
chloroiridate, 15. 771	—— diamminometasilicate, 6. 341
chlorosmate, 15. 719	—— diamminooxybromide, 3. 198
Cummingtonite, 6. 391, 917	diamminosulphate, 3. 252
Cumulative evidence, 1. 90	diborate, 5 . 84
Cumulites, 1. 628	- dichromate, 11. 339
Cupellation, 3. 302	dihydro-orthosilicate, 6. 342
English furnace, 3. 302	dihydrotetraehloride, 3. 183

Cupric dibydrotetraertheargenate 9 150	Cupric magnesium chloride, 4. 308
Cupric dihydrotetraorthoarsenate, 9. 159	manganous chloride, 12. 368
dihydrate, 9. 159	mercuric chloride, 4. 860
hemitricosihydrate, 9. 159	
dihydroxylamine sulphate, 3. 256	oxychloride, 4. 860
diiododinitritoplatinite, 8. 522	oxynitrate, 4. 995, 998
dimetaphosphate, 3. 292	sulphite, 10. 300
dioxycarbonate, 3. 269	tetramminohexaiodide, 4. 936
dioxysulphate, 3 . 264	tetramminotetrabromide, 4. 887
dioxythiocarbonate, 6. 124	tetramminotetraiodide, 4. 936
—— dioxytricarbonate, 3. 269	metaborate, 5. 84
dipotassium pyrophosphate, 3. 292	metaplumbate, 7. 698
tetrametaphosphate, 3. 293	metasilicate, 6. 341
disodium dicarbonate, 3. 276	hemihydrated, 6. 341
dipyrophosphate, 3. 291	hydrated, 6 . 342
tetrametaphosphate, 3. 293	monohydrated, 6. 341
dithiobate, 10, 586	nitrate, 3. 281
	onneahydrated, 3. 281
hydrate, 10. 587	
- — pontahydrate, 10. 586	hexahydrated, 3, 281
tetrahydrate, 10 . 586	properties, chemical, 8, 283
enneaoxysulphate, 3. 261	——————————————————————————————————————
enneaoxytetrasulphate, 3. 265	trihydrated, 3. 281
ferric disulphide, 14. 192	nitride, 8 . 100
ferrite, 13 . 906	nitrogen iodide, 3 . 209
ferrous ferric hexasulphide, 14. 192	—— octochlorodithallate, 5. 447
sulphide, 14 . 167	——— hexahydrated, 5. 447
fluoborate, 5 . 128	octofluozirconate, 7. 141
fluoride, 3. 154	octoxytrisulphate, 3. 265
——————————————————————————————————————	- orthoarsenate, 9. 158
fluosilicate, 6. 949	hexahydrate, 9. 158
hexahydrated, 6 . 949	monohydrate, 9. 158
tetrahydrated, 6. 950	pentahydrate. 9. 159
heptafluoride, 3. 154	tetrahydrate, 9. 158
	trihydrate, 9. 159
heptoxycarbonate, 3, 268	
heptoxydisulphate, 3, 264	orthocarbonate, 3, 270
heptoxytrisulphate, 3. 266	orthophosphate, 3. 287
hexachromite, 11. 198	orthosulpharsenate, 9. 318
hexahydroxytetrasulphite, 10. 278	orthosulpharsenite, 9. 293
——— hexametaphosphate, 3. 293	orthosulphoantimonate, 9. 574
—— hexamminobromide, 3. 198	orthosulphoantimonite, 9. 537
hexamminochloride, 3. 189	
hexamminoiodide, 3. 208	chemical properties, 3. 133
—— hexamminonitrate, 3. 284	colloidal, 3. 142
hexasodium dipyrophosphate, 3. 292	
hexasulphide, 3 . 226	physical properties, 3. 133
hexoxychromite, 11. 198	preparation, 3. 131
hydrazine chloride, 33. 191	oxyazide, 8 . 348
nitrate, 3. 286	oxybromide, 3, 198
sulphate, 3. 256	oxycarbonate, 3. 290
hydroarsenate, 9. 159	oxychlorate, 3. 342
- · hydrobromide, 3. 198	oxychlorides, 3. 178
hydrophosphate, 3. 288	oxydisulphide, 3. 226
	oxydisulphite, 10. 278
hydrosulphide, 3. 225	
hydrotetrathionate, 10. 618	oxydithiocarbonate, 6. 124
hydrotrichloride, 3. 181	oxyfluoride, 3. 156
hydrotriorthoarsenate, 9. 159	oxymonosulphide, 3. 226
	oxyoctochromite, 11. 198
hemienneadecahydrate, 9. 159	—— oxypentasulphide, 3. 226
hydroxide, 3 . 142	oxysulphate, 3 . 266
properties, 3 . 144	oxysulphite, 10 . 278
hydroxybromide, 3. 198	pentaborate, 5. 84
hydroxydicarbonate, 3. 274	pentahydroxydicarbonate, 3. 269
hydroxyfluoride, 8. 156	pentahydroxylamine sulphate, 8. 256
hydroxyhyponitrite, 8. 411	pentametaphosphate, 3. 293
hydroxylamine sulphate, 3. 256	pentamminobromide, 3. 198
hydroxyorthophosphate, 3. 289	pentamminochloride, 3. 190
- hydroxypyrophosphate, 8. 291	pentamminohexaiodide, 3. 209
hypochlorite, 2. 271	pentamminonitrate, 3. 284
hypophosphate, 8. 936	—— pentamminosulphate, 3. 251
iodide, 3 . 206	—— pentasulphide, 3 . 225, 226

Cupric pentoxycarbonate, 3. 268	Cupric tetramminotetraborate, 5, 85
pentoxydicarbonate, 3. 269	—— tetramminotetraiodide, 3. 209
pentoxydisulphate, 3. 265	- tetramminothiosulphate, 10. 535
perborate, 5. 120	
	tetraoxysulphate, 3. 262
perchlorate, 2. 399	tetrasulphide, 3. 225
ammino-, 3 . 399	tetrathionate, 10. 618
phosphates basic, 3. 288	thallous sulphate, 5. 466
platinous trans-sulphitodiamminosul-	sulphite, 10. 301
phite, 10 . 321	hexahydrate, 10. 302
plumbite, 7. 668	thiosulphate, 10 . 549
- — polysulphide, 3 . 225	thiocarbonate, 6 . 124
potassium carbonate, 3. 278	thiophosphate, 8, 1065
nitrite, 8 . 480	thiophosphite, 8. 1062
	thiopyrophosphate, 8, 1070
thiosulphate, 10. 534	thiosulphate, 10. 535
trisulphite, 10. 276	triamminorthoarsenate, 9. 158
- pyrophosphates, 3. 290	- tridecoxychromite, 11. 198
pyrosulpharsenate, 9. 318	trihydropentachloride, 3. 183
pyrosulpharsenite, 9. 293	
	trihydroxynitrate, 3. 284
	trimetaphosphate, 3. 293
selenide, 10 . 770	trioxychromite, 11. 198
silicododecatungstate, 6. 877	trioxydicarbonate, 3. 268
silver nitrate, 3. 481	— trioxysulphate, 3. 262
sulphide, 3 . 447	triphosphate, 3. 292
sodium amminosulphite, 10. 279	trisulphide, 3 . 226
chlorophosphates, 3. 290	— - zinc ferrous sulpharsenate, 9. 324
hexametaphosphate, 3. 293	
phosphate, 3 . 290	(tetra)cupric sodium(tetra) octodecaborate,
silicate, 6 . 341	5. 84
sulphate, 3. 256	Cuprifluorides, 3. 156
trimetaphosphate, 3. 292	Cuprite, 3. 7, 117; 7. 896
sulphate, 3. 234	X-radiogram, 1. 641
basic, 3. 261	Cuprites, 3. 145
dihydrated, 3. 237	
	Cuproacetyloxide, 5. 851
	Cuproadamite, 9. 181
enneahydrated, 3. 237	Cuproautunite, 12. 4
heptohydrated, 3. 237	Cuprobismuthite, 3, 7; 9, 691
hexahydrated, 3. 237	Cuprobismutite, 9. 589
——— monohydrated, 3. 235	Cuprobromides, 3. 195
	Cuprocalcite, 3. 274
$ Na_2SO_4-H_2SO_4-H_2O_7$ 3. 257	Cuprocassiterite, 7. 283, 417, 476
——————————————————————————————————————	Cuprodescloizite, 7. 491; 9. 715, 777
properties, chemical, 3. 246	Cuproferrite, 14. 295
physical, 3. 238	Cuprogoslarite, 4. 640
solubility, 3 . 237	Cuproiodargyrite, 3. 426
trihydrated, 3. 235	Cuprojarosite, 14. 343
——— sulphide, 3. 220	Cupromagnosite, 4. 252
	Cupromartial arsenate, 9. 224
alcosol, 3 . 225	Cupronickel, 15. 179
	Cuproplatinum, 16. 6
——————————————————————————————————————	Cuproplumbites, 9. 196
preparation, 3 . 220	Cupropyrite, 14, 192
properties, chemical, 3. 223	Cuproscheelite, 3, 623; 11, 678, 782, 818
physical, 3. 222	Cuprosic amminosulphothiosulphate, 10.
sulphite, 10 . 278	536
sulphomolybdate, 11. 652	ammonium sulphite, 10. 278
tetraborate, 5. 85	——————————————————————————————————————
tetradecafluodizirconate, 7. 141	pentahydrate, 10. 278
tetrametaphosphate, 8. 293	oxide, 3 . 126
- tetramminochloride, 3. 190	oxyoctosulphite, 10. 278
tetramminohexaiodide, 3. 209	potassium heptasulphite, 10. 278
tetrammino-hydroxides, 3. 151	
— tetrammino-iodide, 3. 209	hexasulphite, 10. 278 tetrasulphite, 10. 278
- totramminonitrate, 3. 284	
tetrammino-octoiodothallate, 5. 461	sodium octosulphite, 10. 278
terramminoorthophosphate, 3, 290	pentamminotetrathiosulphate,
tetrammino-oxyfluoride, 8. 156	10. 535
tetramminopyrophosphate, 8. 291	tetramminotetrathiosulphate, 10.
tetramminosulphate, 3. 251	535
hydrated, 3 . 253	dihydrate, 10. 535

938 GENERAL INDEA		
Character to the state of the s	Currous dibudrodichlorida 2 169	
Cuprosic sodium tetrasulphite, 10. 278	Cuprous dihydrodichloride, 3, 162	
sulphite, 10 . 277	enneoxysulphite, 10, 274	
sulphotrithiocarbonate, 6, 125	ferrie disulphide, 14 , 184 hexasulphide, 14 , 192	
tetramminochloride, 3, 165		
- thallous sulphite, 10 . 302		
tungstate, 11, 782 Cuprosilicon, 6, 170	tetrahydrate, 14. 104	
Cuprosilicotitanium, 7. 12, 24	trisulphide, 14. 189	
Cuprosocupric chloride, 3, 157	ferrite, 13 . 906	
oxide, 3 . 116	- ferrous chloride, 14. 33	
Cuprotitanium, 7, 12, 20, 24	heptasulphide, 14 . 167	
Cuprotungsite, 3. 8	pentasulphide, 14. 167	
Cuprotungstate, 11, 782	stannic sulphide, 7, 475; 14, 189	
Cuprotungstite, 11, 678	- sulpharsenate, 9. 324	
Cuprouranite, 7, 896; 12, 2, 4, 133	trisulphide, 14 . 167	
Cuprous acetylide, 5, 850	fluoride, 3 . 154	
allylenide, 5 . 853	fluosilicate, 6 . 949	
a-stannate, 7, 417	gas, 1. 123	
amide, 8 . 259	- hemiamminoiodide, 3, 205	
- amminobromide, 3. 194	- hemipentamminopotassioamide, 8. 259	
· · · anuninocarbonate, 3. 267	- hexamminochloride, 3, 164	
amminochloride, 3, 164	hydrazine thiosulphate, 10, 530	
- amminonitrate, 3, 281	- hydrobromide, 3. 194	
- ammonium cyanidothiosulphate, 10.	hydrocarbonate, 3, 267	
533	hydrosulphate, 3 . 232	
dibromotetrathiosulphate, 10.533	hydroxide, 3 . 127	
dichlorotetrathiosulphate, 10 .	hydroxybromide, 3, 194	
533	- hydroxydichloride, 3, 164	
diiodotetrathiosulphate, 10. 533	hydroxyiodide, 3, 201	
dithiocyanatotetrasulphate, 10.	hyponitrite, 8 , 412 dihydrate, 8 , 412	
533	iodide, 3 . 201	
orthophosphate, 3, 287	properties, 3 , 201	
pentathiosulphate, 10, 530 sodium hexamminoctothiosul-	iodocarbide, 5, 853	
phate, 10. 533	iodosulphobismuthite, 9, 703	
sulphite, 10 . 274	lanthanum disulphite, 10. 302	
thiocarbonate, 6 . 125	- lead cobalt selenide, 10, 800	
thiocyanatothiosulphate, 10. 533	deuterosulphohexabismuthite, 9.	
thiosulphate, 10. 530	695	
- trithiosulphate, 10. 530	dithiosulphate, 10, 552	
azide, 8 . 348	ferrous enneasulphodiantimonite,	
barium trithiosulphate, 10. 545	9. 554	
heptahydrate, 10. 545	– metasulphohexabismuthide, 9.	
tetrahydrate, 10 , 545	694	
bromide, 3 , 192	orthosulpharsenite, 9, 298	
properties, 3 . 192	orthosulphobismuthite, 9. 693	
bromosulphobismuthite, 9 . 703	sulphate, 7, 820	
cadmium hexachloride, 4. 559	suppartocarbonate, 7, 315 tetrerosulphodecabismuthite, 9.	
tribromide, 4, 572	sulphatocarbonate, 7, 819	
casium dithiosulphate, 10, 535	- triterosulphodecabismuthite, 9.	
calcium thiosulphate, 10. 544	695	
carbide, 5 . 850 colloidal, 5 . 851	lithium sulphite, 10 . 275	
carbonate, 3. 267	——————————————————————————————————————	
cerium disulphite, 10. 302	manganous chloride, 12. 368	
dithiosulphate, 10. 549	mercuric diamminotriiodide, 4, 936	
chloride, 3. 157	hemiheptamminotetraiodide, 4.	
carbonyl, 3. 162	935	
non-aqueous soln., 3. 176	hexaiodide, 4 . 936	
phosphine, 3 . 162	hexamminohexaiodide, 4. 936	
preparation, 3. 157	octamminotetraiodide, 4. 935	
properties, chemical, 3 . 160	tetraiodide, 4 . 935	
physical, 3. 159	tetramminopentaiodide, 4. 936	
chlorobismuthite, 9. 667		
chlorocarbide, 5 . 853	triiodide, 4. 935	
chlorosulphobismuthide, 9. 703	mercurous octothiosulphate, 10. 549	
chromite, 11 . 197, 198	mesosulphoctobismuthite, 9. 691	
diacetylide, 5, 852	metaphosphate, 3. 287	
diamminoiodide, 3 . 205	metasulpharsenite, 9, 293	
diarsenate, 9 . 157	— metasulphotetrabismuthite, 9. 691	

Cuprous metasulphotetrantimonite, 9. 537	Cuprous sodium decathiosulphate hemi-
metasulphotrisantimonitobismuthite,	pentadecahydrate, 10.
9. 691	532
molybdates, 11. 558	
neodymium disulphite, 10. 302	octohydrate, 10. 532
nitrate, 3 . 281	diamminodithiosulphate, 10. 532
nitrates, 14. 378	dichlorotrithiosulphate, 10. 533
nitride, 8 . 99	disulphatoctothiosulphate, 10.
- mitrosyl chloride, 8. 617	534
- orthoarsenate, 9. 318	dithiocyanatopentathiosulphate,
orthophosphate, 3. 287	10. 533
orthosilicate, 6. 341	
	dibrulate, 10, 532
orthogulphoentimonite 9 536	
- orthogulphoantimonite, 9, 536	hemipentahydrate, 10. 532 monohydrate, 10. 532
orthogulphobismuthite, 9, 690	
orthosulphotetrabismuthite, 9. 691	dithiosulphatodisulphide, 10. 534
orthosulphotetranitimonite, 9. 537	dithiosulphatosulphide, 10. 534
orthosulphovanadate, 9, 817	dodecathiosulphate, 10. 532
oxide, 3 . 116, 117	——————————————————————————————————————
chemical properties, 3. 124	ferric tetrasulphide, 14. 192
colloidal, 3. 127	ferrosic sulphite, 10. 312
hydrated, 3 . 127	heptathiosulphate, 10. 532
physical properties, 3, 122	enneahydrate, 10. 532
preparation, 3. 117	hexahydrate, 10. 532
oxybromide, 3 . 194	
- oxychloride, 3. 164	———— iodobromopentathiosulphate, 10.
· · oxychlorocarbide, 5. 853	533
oxydichloride, 3. 164	octochlorotetradecathiosulphate,
- oxydisulphide, 3 . 226	10. 533
- oxyiodide, 3 . 201	pentathiosulphate, 10. 531, 533
oxysulphate, 3. 232	hexahydrate, 10. 531
(penta)mmonium trisulphite, 10. 275	octohydrate, 10. 531
- (penta)sodium trisulphite, 10. 276	pentahydrate, 10. 531
phosphinochloride, 8. 817	silver hexamminoctothiosul-
- plumbite, 7. 668	phate, 10. 539
potassium amide, 8. 259	sulphite, 10. 276
amminoamide, 8. 259	tetrachloropentathiosulphate, 10.
amminotrithiosulphate, 10. 535	533
dicyanothiocarbanate, 6. 124	
dithiosulphate, 10. 534	dihydrated, 10. 532
ferric tetrasulphide, 14. 192	
iodide, 3 . 210	thiosulphate, 10. 530
orthosulphoantimonite, 9. 537	trithiosulphate, 10. 532
sulphite, 10. 276	stannic ferrous sulphide, 14. 168
- tetrathiosulphate, 10. 535	—— stannous chlorides, 7. 433
thiocarbonate, 6. 125	stannate, 7. 418
trithiosulphate, 10, 534 dihydrate, 10, 534	
tetrahydrate, 10. 534	————— alcohosol, 3 . 225
trihydrate, 10. 534	and ferrous sulphide, 3. 24
praseodymium disulphite, 10. 302	preparation, 3. 210
	proporties chamical 3 216
dithiosulphate, 10 . 550	properties, chemical, 3, 216 physical, 3, 214
pyroarsenate, 9. 157	sulphite, 10. 274
pyrosulpharsenite, 9. 293	sulphoantimonate, 9. 573
rubidium dithiosulphate, 10, 535	
tetrathiosulphate, 10. 535	
	telluride, 11. 40
salt, 3 . 127	tetraborate, 5. 84
— selenide, 10 . 769	tetrachloroferrate, 14, 104
selenite, 10. 823	tetrahydrothiosulphate, 10. 529
sesquiamminobromide, 3. 194	tetramminosulphate, 3. 232
sesquiamminochloride, 3. 164	hydrated, 8. 233
sesquiamminoiodide, 3. 205	tetrathionate, 10. 618
sodium bromodecathiosulphate, 10. 533	thioaurites, 3. 614
bromopentathiosulphate, 10. 533	thicarbonate, 6, 124
chlorodithiosulphatosulphide, 10.	—— thiophosphate, 8. 1065
534	thiophosphite, 8, 1062
chloropentathiosulphate, 10. 533	thiopyrophosphate, 8, 1070
decathiosulphate, 10. 532	thorium dithiosulphate, 10. 550
enneahydrate, 10. 532	—— triamminobromide, 3. 194

OIM MINI	II INDEX
Cuprous triamminochloride, 3. 164	Daltonides, 1. 519
triamminoiodide, 3. 205	
	Dalton's atomic theory, 1. 103
tungstate, 11. 782	Law, 1. 93
zirconium trithiosulphate, 10. 550	———— partial pressures, 1. 155
(di)cuprous (dodec)ammonium tetrasul-	and kinetic theory, 1.
phite, 10. 275	744
dihydrate, 10. 275	(solubility gases), 1. 533
pentahydrate, 10. 277	Damarium, 5. 504
—— (tetra)ammonium trisulphite, 10. 235	Damascene, 12. 853
(deca)cuprous (tetra)sodium heptasulphite,	Damascus steel, 12. 853
10. 276	Damourite, 6. 606
(hepta)cuprous sodium sulphite, 10. 276	Danaite, 9. 4, 309; 14. 424; 15. 9
(tetra) cuprous ammonium tetrasulphite, 10.	Danalite, 4. 206; 6. 382; 12. 149
275	Danburite, 5. 531; 6. 448
	Daniell's cell, 1. 1019
pentahydrate, 10. 275	
(di)ammanium trigulahita 10 275	Dannemorite, 6, 391, 917; 12, 149
(di)ammonium trisulphite, 10. 275	Daourite, 6, 741
— (hexa)sodium pentasulphite, 10. 276	Daphnite, 6 . 623; 12 . 529
potassium trihydrotetrasulphite, 10.	Darapskite, 2. 656, 804, 816
276	Darurnite, 3. 7
(tri)cuprous potassium dihydrotrisulphite,	Darco, 5. 750
10. 276	Dark lines, 4. 5
Cuprovanadite, 9. 778	space, Crookes', 4. 24
Cuprovanadium, 9. 726	Faraday's, 4. 24
Cuprozincite, 4. 648	Darwinite, 9. 62
Cuprum gummatsosum, 3. 157	Datholite, 6. 449
—— nicolai, 9. 80; 15. 2	Datolite, 5. 4; 6. 449
sulphure mineralisatum, 3. 210	Datolitic acid, 6. 294, 449
—— vitreum, 3 . 210	
	Dauberite, 12, 106
Curie's capillarity theory of crystals, 1. 628	Daubréeite, 9, 680; 11, 125
constant, 18. 267	Daubréelite, 11. 433; 12. 528, 529; 14. 168
law, 13. 267	Daubreïte, 2. 15
Curite, 7. 491; 12. 4, 68	Daubreite, 9. 589
Current of electricity unit, 1. 963	Dauphinite, 7. 30
Curves, breaks in solubility, 1. 513	Davidite, 5. 513; 7. 2, 30; 12. 6
Cyanide process, 3. 499, 504	Davidsonite, 4. 204; 6. 803
——— gold, 8 . 305	Daviesite, 7. 740
silver, 3. 305	Davina, 6. 569
Cyanite, 5. 155; 6. 458	Davite, 5. 333
X-radiogram, 1. 642	Davyn, 6. 569
Cyaroinochte, 2. 657; 3. 257	Davyne, 6. 580, 584
Cyanochrome, 2. 657	Davy's electrical theory chemical action, 1.
	398
Cyanoferrite, 14. 295	
Cyanogen and CO ₂ , 6. 32	Dawsonite, 5. 154
Cyanolite, 6. 362	Dead-burnt plaster, 3. 775
Cyanosite, 8. 7	space in reactions, 2. 312
Cyanotetrazote, 8. 339	Debye's constant, 1. 816
Cyanotrichite, 5 . 154, 353; 6 . 344	theory, atomic heat, 1. 815
Cyanurtriamide salts, 16. 314	Decaboron tetradecahydride, 5. 37
Cyanus, 6 . 586	Decabromosilicobutane, 6. 981
Cyclic reactions, 16. 152	Decabromotetrasilane, 6. 981
Cycloborene, 5. 34	Decachlorosilicobutane, 6. 960, 973
Cyclohexasiltrioxene, 6. 233	Decachlorotetrasilane, 6. 960, 973
~ ` `	Decachlorotetrasiloxane, 6. 975
Cyclopeite, 6, 916	
Cyclopite, 6. 693	Decahydrodecasiloctoxane, 6. 232
Cylindrite, 7. 283, 491; 9. 552	Decalcium phosphate, 3. 880
Cymophane, 4. 206; 5. 294	Decametaphosphates, 8. 989
Cyprian vitriol, 3. 234	Decammine-ol-dichromic salts, 11. 407
Cyprine, 6 . 726	Decamolybdate, 11. 595
Cyprusite, 5 . 154; 14 . 328, 335	Decaphosphoric acid, 8, 991
Cyptolite, 5. 512	Decarburization of iron, 12. 725
Cyrtolite, 4. 206; 6. 846; 7. 167, 896; 12. 4	Decavanadates, 9. 202
Czermak and Spirek's furnace, 4. 701	Decavanadyl sodium hexasulphite, 10. 305
, , , , , , , , , , , , , , , , , , , ,	Dechenite, 7. 49; 9. 777
	Decipia, 5. 502
D	
D	Decomposition voltage, 1. 965, 1030
Dogusomotyma synosom 9 410	——————————————————————————————————————
Daguerrotype process, 8, 416	Decoration on glaze, 6. 514
Dahllite, 3. 623, 896; 8. 733	— under glaze, 6. 514
Dalarnite, 9. 306	Decoylcholinechloroplatinate, 16. 312

012122412	
Deduction, 1. 17	Devonite, 5. 274
Dee, J., 1. 48	Dew curve, 1. 166
Deeckite, 6. 747	Dewalquite, 6. 836; 9. 715
Deflocculation colloids, 3. 536	Deweyhite, 5. 531
Degeröite, 6. 908 Degradation of energy, 1 . 711, 712	Deweylite, 6, 423
and entropy, 1. 726	Dewindite, 7. 491 Dewindtite, 12. 4, 136
Degree of dispersion, 1. 769	Dewpoint, 8. 9
Degrees of freedom, 1. 791	Dextro rotatory, 1. 608
and two specific heats of	Dhobies earth, 2. 710
gases, 1. 790	Diabantachronnyn, 6. 623
of system, 1. 445, 446	Diabantite, 6. 623
Delafossite, 12. 529; 13. 908	Diaboleite, 7. 743
Delanarite, 6. 663 Delanonite, 6. 498	Diabolus metallorum, 7. 279; 16. 2 Diacetylorthonitric acid, 8. 564
Delessite, 6 . 624; 12 . 529	Diachylon, 7. 591
Deliquescence, 1. 81, 502	Diaclasite, 6. 392
Delorenzite, 5. 512; 7. 3, 59; 12. 6	Diadelphite, 5. 155; 9. 4, 220
Delphinite, 6. 721	Diadochite, 8. 733; 12. 529; 14. 412
Delta metal, 4. 671	Diagonite, 6. 758
rays or δ-rays, 4. 85	Diallage, 6. 818
Delvauxone, 14. 411	métalloïde, 6. 391
Delvauxite, 8 . 733 ; 14 . 408 Demantoid, 6 . 921	variété verte, 6 . 822 verte, 6 . 392
Demidoffite, 6 . 344	Diallogite, 12. 432
Demidovite, 6. 344	Dialogite, 12. 432; 14. 359
Demonium, 5. 504	Dialuminium calcium dimesotrisilicate, 6.
Dendrite, 12. 267, 885	759
Dendritic crystals, 1. 597	Dialuminodisilicie acid, 6. 474
Denebium, 5. 498	Dialysis, 1. 771
Density, critical, 1, 164, 762	
current, 1. 1032 gases, 1. 175	Diamagnetism, 13. 244 Diamant brut, 7. 98
limiting, Berthelot's law, 1. 196	Diamantine, 5. 271
reticular, 1. 628	Diameters, law of rectilinear, 1. 169
Dental alloys, 16. 197	Diamide, 8 . 308
— amalgams, 4 . 1027	Diamidodiphosphoric acid, 8, 710
Dentrite, 12. 149	Diamidophosphoric acid, 8, 706
Dephlogisticated muriatic acid, 2, 21	Diamidotetraphosphoric acid, 8, 715
—— nitrous air, 8, 385 Depolarizer, 1, 1028; 3, 415	Diamidothiophosphoric acid, 8, 725 Diamminoborobutane, 5, 36
Deposit active, 4. 97, 106	Diamminometachloroantimonic acid, 9, 490
of rapid change, 4. 107	Diammonium sodium triselenatouranate,
slow change, 4, 107, 112	10. 878
Deposition pressure, 1. 1017	Diamond action heat, 5. 724
Derbylite, 7. 3; 9. 46; 12. 529	anthracitic, 5 . 719
Dermatine, 6. 423	— — black, 5. 720
Dermatol, 9. 670	Cullinan, 5. 711 Excelsior, 5. 711
Dernbachite, 9. 334; 14. 412 Desaulesite, 15. 5	Florentine, 5. 711
Deschenite, 9. 715	- — Genesis, 5 . 731
Descloizite, 9. 715, 777	Grand Mogul, 5. 711
Deselvizite, 7. 491	—— monographs on, 5. 712
Desilverization of lead, 3. 311	—— occurrence, 5 . 716
	Orloff, 5. 711
	Pitt, 5. 711 polymorphic, 5. 757
	properties, physical, 5, 755
Desmine, 6 . 575, 758	Regent, 5. 711
Desmotropism, 10. 240	Sancy, 5. 711
Destinezite, 12. 529; 14. 412	Star of South Africa, 5. 711
Detonating gas, 1. 137, 483	the South, 5. 711
Deutazophosphoric acid, 8. 717	Victoria, 5. 711
Deuteroheptavanadic acid, 9. 758	—— X-radiogran, 1. 640
Deuterohexavanadic acid, 9, 758, 764	Diamonds, 12. 859 —— Matura, 7. 98
Deuteropolyvanadic acid, 9, 758 Deuterosiliac acids, 6, 308	synthesis, 5. 730
Deville's hot and cold tube, 1. 922	Diana's earth, 6. 471
Devilline, 3. 263	Dianite, 9 . 906
Devolution of elements, 4. 156	Diaphorite, 9 . 343, 551

OI2 GENERAL	
Diaquobisethylene cobaltic diaminehydroxide, 14, 595	Dichromyl ammonium tetrafluochromate,
Diaquobisethylenediamines, 11, 402 Diaquochloroperruthenous acid, 15, 527	11. 365 Dickinsonite, 12. 149, 455; 14. 396 Dicksbergite, 7. 230
Diaquotetramido-salts, 11. 402 Diaquotetrammines, 11. 402	Dicobaltic μ-acetato-amino-ol-hexammines, 14. 710
Diaquotetrapyridine cobaltous fluoride, 14.	diol-hexammines, 14. 710
—— nickelous fluoride, 15. 404	acetatoaquo-µ-acetato-ol-hexammines,
Diaspore, 5. 154, 273, 274 Diasporite, 5. 249	μ-amidonitrito-octamminoselenate, 8. 510
Diastatite, 6 . 821 Diatomaceous earth, 6 . 289	μ -amino-decammines, 14. 708 diol-hexammines, 14. 710
Diatomite, 6. 142 Diazobenzene, 8. 308	——————————————————————————————————————
——, iso-, 8 . 297 Diazodisulphonic acid, 8 . 683	14. 709 ol-octamnines, 14. 709
Diazomonosulphonic acid, 8, 683 Diazonium hexachloroplumbates, 7, 721	peroxo-hexammines, 14 .
Dibenzylammonium chloroiridate, 15, 770 Diborane, 5, 36, 37	quaterethylenediamines,
Diboron dihydroxide, 5. 40 —— hexahydride, 5. 37	— peroxo-octammines, 14 , 709 — μ-ammonium-peroxo-quaterethylene-
——— monobromohydride, 5 . 37 ——— monochlorohydride, 5 . 37	diamines, 14. 709 — bromoaquo-µ-amino-octammines, 14.
Dibromoaquotriammines, 11. 405 Dibromobisethylenediamines, 11. 405	708 —— chloroaquo-µ-amino-octammines, 14.
—— cis-salts, 11. 405 —— trans-salts, 11. 405	708
Dibromodiaquodiammines, 11. 405	chloronitrate-μ-amino-octaminines, 14.
Dibromodiaquopyridines, 11, 405 Dibromodichlorosilane, 6, 980	—— μ-diamino-octammines, 14, 709 —— diaquo-μ-acetato-amino-hexammines,
Dibromodihydroxyiridic acid, 15, 775 Dibromodiiodosilane, 6, 984	14. 709 — μ -amino-ol-hexammines, 14. 709
Dibromosilicomethane, 6. 979	—— diol-hexammines, 14. 708 —— dibromo-μ-amino-peroxo-hexam-
Dibromotetraquo-salts, 11. 405 Dicadmium nickel hexachloride, 15. 420	mines, 14 . 709 μ-nitro-ol-hexammines, 14 . 709
—— sodium trithiosulphate, 10. 547 Dicarbonyl ruthenium diiodide, 15. 539	dichloro-μ-amino-nitrohexammines, 14. 709
Diceroso-octoceria sulphate, 5. 661 Dicerosoceric sulphate, 5. 660	709 peroxo-hexaminines, 14.
Dieerosotetraceric sulphate, 6, 660 Diehloroamidosulphonates, 8, 641	
Dichloroanilinium bromosmate, 15, 723 Dichloroaquotrianimines, 11, 404, 405	µ-dinitro-ol-hexammines, 14, 710 diol-octammines, 14, 708
Dichlorobisdiaminodiethylaminohydrochlo- ride rhodium rhodiochloride, 15 . 577	quaterethyleno-diamines, 14.
Dichlorobisdimethylglyoximorhodous acid, 15. 577	708
Dichlorobisethylenediamines, 11. 404 ——— dextro-cis salts, 11. 404	mines, 14. 709 μ -imino-peroxo-quator-ethylenedi-
—— inactive salts, 11 , 404	amines, 14. 709 —— nitratoaquo-µ-amino-octammines, 14.
	708 ol-hexammines, 14 . 709
Dichlorobisphenylselenine, 15, 666 Dichlorodiaquodiammines, 11, 405	$$ diol-hexammines, 14, 709 $$ μ -nitritodihydroxyhexamminosele-
Dichlorodiaquodipyridines, 11, 405 Dichlorodihydroxyiridic acid, 15, 760	nate, 8. 511 —— μ -nitro-diol-hexammines, 14. 710
Dichlorodiiodosilane, 6 , 983 Dichlorohydroxyaquodipyridine, 11 , 406	peroxo-decammines, 14. 707, 708 diol-sexiesallylamines, 14. 710
2: 4-dichlorophenylammonium bromoplati- nate, 16. 375	
Dichlorosilane, 6 . 960, 970 Dichlorosilicomethane, 6 . 970	salts, 14. 707 selenato-µ-amino-octammines, 14. 708
Diehlorotetraquo-salts, 11. 404, 405 Diehlorothiocyanatotriammine, 11. 406	sulphato-μ-amino-octammines, 14. 708 quaterethylenediamines, 14.
Dichroite, 6. 808 Dichromates, 11. 323	708 μ -imino-octammines, 14, 708
Dichromic acid, 11. 214	— tetrabromo-μ-hexammines, 14. 708

Dicobaltic tetrachloro-μ-amino-hexammine,	Diethyl thiocarbonate, 6, 120
14. 708	
	Diethylammonium bromoiridate, 15. 776
tetranitrito- μ -selenatohexammine, 8.	bromopalladate, 15. 178
510	bromoperruthenite, 15. 538
—— thiocyanatochloro-μ-amino-octam-	—— bromoruthenate, 15. 538
mines, 14. 708	—— bromosmate, 15 . 722
 trichloroaquo-μ-amino-hexammines, 	
14 . 708 [†]	chloropalladate, 15. 673
trichlorohydroxy-peroxo-hexammines,	chloroperruthenite, 15. 532
14. 708	chlororhodate, 15. 579
	- chlororuthenate, 15. 534
— trichloronitrato-μ-amino-hexammines,	shlorosmate 45 710
14. 708	— chlorosmate, 15. 719
—— triol-hexammines, 14. 709	Diethylanilinium bromopalladite, 15. 677
Didjumolite, 6 . 767	—— bromosmate, 15 . 723 —— chloropalladite, 15 . 670
Didrimite, 6, 607	—— chloropalladite, 15 . 670
Didymia, 5 . 501	Diethyldithiophosphinic acid, 8, 873
Didymite, 6, 607	Diethyl-phosphate, 8, 966
Didymium, 15 . 492	Diethylphosphoric acid, 8, 966
- - apatite, 5 . 675	Dieterici's gas equation, 1, 758
bismuth sulphate, 9. 701	Dietrichite, 5. 154; 12. 149, 529
borate, 5 . 104	Dietzeite, 2. 347; 11. 125, 270
	Diferrous triferric oxide, 13, 807
bromate, 2, 354	Differential acration of metals, 13, 421
carbonate, 5 . 665	Diffusion and entropy, 1, 725
- — chloride, 5 . 642	kinetic theory, 1. 744
chloroplatinite, 5 . 643 ; 16 . 284	coefficient, 1. 339
chromate, 11. 287	· (colloids), 1, 777
cobaltous nitrate, 14, 828	colloids, 1. 774
——————————————————————————————————————	Fiek's law, 1. 537
dithionate, 10, 594	gases in liquids, 1, 530
dodecanitritotriplatinite, 8, 521	Graham's law, 1. 340
ferrous dodecanitrate, 14. 378	—— of carbon in iron, 12. 738
fluosilicate, 6 , 954	gases, 1. 338
hexahydroenneasclenite, 10, 831	separation gases by, 1. 341
hexaiodohexanitritotriplatinite, 8. 523	Difluodioxyphosphoric acid, 8, 997
hydroarsenate, 9, 187	Digenite, 3. 210
hydroarsenite, 9. 128	Digermane, 7, 264
- hydroazide, 8, 352	Digester, 1. 437
hydrofluoride, 5. 638	Digestive salt of Sylvius, 2, 420
- lead sulphate, 7. 822	Dihydrated ammonium tetranitritoplati-
mercuric chloride, 5 . 643	nite, 8. 518
- diborocyanide, 5. 643	cobaltic dihydroxyoctamminotetra-
metatungstate, 11. 826	chloride, 14 . 674
metavanadate, 9 . 755	- potassium palladous tetranitrite, 8
nickel bromide, 15 . 429	514
nitrite, 8 . 496	tetranitritoplatinite, 8, 518
	rubidium tetranitritoplatinite, 8. 519
- oxyoctoselenite, 10. 831	
paratungstate, 11 . 819	Dihydrite, 3, 289; 8, 733
perchlorate, 2, 402	Dihydrodecaboric acid, 5, 47
- permanganate, 12. 335	Dihydrodiboric acid, 5. 47
platinic chloride, 5. 643	Dihydrododecaboric acid, 5, 47
platinous chloride, 5. 643	Dihydrohexaboric acid, 5, 47, 48
potassium chromate, 11. 287	Dihydrohexadecaboric acid, 5. 48
sulphite, 10 . 302	Dihydrol, 1. 461
— selenate octohydrated, 10. 872	Dihydro-octoboric acid, 5, 47
silicate, 6 . 826	Dihydrotetraboric acid, 5, 47
sodium tungstate, 11. 791	Dihydroxyammonia, 8. 307, 404
spodiosite, 5 . 675	Dihydroxydiaquodiammines, 11. 404
—— sulphide, 5 . 648	Dihydroxydiaquodipyridines, 11. 404
—— sulphite, 10 . 3 02	Dihydroxydiaquoethylenediamines, 11. 404
trihydromolybdate, 11. 564	Dihydroxydichloropalladic acid, 15, 670
tungstate, 11. 791	Dihydroxyhydrazine, 8. 682
vanadate, 9. 775	Dihydroxylamine amminomolybdate, 11.552
Didymolite, 6. 767	Dihydroxyldiimide, 8, 288
Die-casting alloys, 7. 362	Dihydroxylhydrazine, 8. 288
Dielectric constant and refractive index, 1.	Dihydroxymethyl sulphone, 10. 163
683	Dihydroxyplatinie acid, 16, 245
Dienerite, 9 . 79	Dihydroxyquatorethylenediamines, 11, 408
Diethyl aa-dithiocarbonate, 6, 120	Dihydroxytetrabromoplatinic acid, 16. 380
—— β-thiocarbonate, 6. 120	Dihydroxytetrachloroplatinic acid, 16. 333
μ-ιπουατροπαίο, υ. 120	Dinyarony voiras morogramma acia, 10. 333

Dihydroxytetraiodoplatinates, 16. 391	Dimetaphosphates, 8. 985
Dihydroxytetraiodoplatinic acid, 16. 391	Dimetaphosphimic acid, 8, 717
Diimide, 8 . 329	Dimethyl-o-toluidinium bromopalladite, 15.
hydrochloride, 8. 329	677
Diimidodiamidotetraphosphoric aicd, 8, 715	- bromosmate, 15, 723
Diimidodiphosphoamidic acid, 8, 714	chloroiridate, 15. 77
Diimidodiphosphoric acid, 8, 713	chloropalladite, 15. 670
Diimidodiphosphorylmonaminie acid, 8. 714	p-toluidinium bromosmate, 15. 723
Diimidomonamidophosphoric acid, 8. 714	Dimetaphosphoric acid, 8, 985
Diimidopentathiodiphosphoric acid, 8, 727	Dimethylammonium bromoiridate, 15, 776
Diimidopentathiopyrophosphoric acid, 8.	- bromopalladate, 15. 678
1056	bromoperruthenite, 15. 538
Diiodates, 2. 324	bromoruthenate, 15. 538
Diiodobisethylenediamines, 11, 405	- bromosmate, 15 , 722
Diiodylamine, 8, 606	chloroiridate, 15 . 770
Diisopropyl stannone, 7, 410	ehloropalladate, 15. 673
Dilithium sodium chloroperiridite, 15, 765	- chloroperruthenite, 15, 532
Dillnite, 6 . 473	chlororhodate, 15. 579
Dilution law, failure of, 1. 993	chlororuthenate, 15, 534
Ostwald's, 1. 992	- chlorosmate, 15 . 719
Dimagnetite, 12. 529; 13. 743	- ferric fluorides, 14. 7
Dimanganese potassium oxyoctofluoride,	- fluoferrate, 14. 8
12. 347	· · · heptachloroferrate, 14. 101
Dimercuriammonium amminochloride, 4.	hexachloroperrhodite, 15, 579
869	pentachloroferrate, 14. 101
Dimercuriammonium amminoxide, 4. 790	tetrachloroferrate, 14. 101
-·· ammonium chloride, 4 . 845 -·· chromate, 11 . 284	uranyl tetrachloride, 12. 89
nitrate, 4 . 999	Dimethylanilinium bromosmate, 15, 723
dihydrated, 4, 1000, 1001	Dimethylpyrazinium-2, 5-dimethylpyra-
sulphate, 4. 978, 979	zinepentachloroplatinate, 16, 313 Dimethylpyridinium bromoplatinate, 16,
dodecahydrated, 4. 978, 979	Dimethylpyridinium bromoplatinate, 16. 376
bromide, 4 . 888, 889	2, 5-dimethyl-3-ethylpyrazinepentachloro-
- — dihydrated, 4. 886	platinic acid, 16. 313
hemilydrated, 4, 890	Dimolybdates, 11, 580, 582
monohydrated, 4. 889	Dimorfina, 9. 266
bromomercuriate, 4. 889	Dimorphism, 1, 590
carbonate, 4. 982	Dimorphite, 9. 266
chloride, 4 . 869	Dinickel cadmium hexachloride, 15, 420
hydrates, 4 . 870	Diogenite, 6, 392
chloromercuriate, 4, 889	Diol-diplumbous bromide, 7, 754
chromate, 11 . 283	Diopside, 1, 521; 6, 390, 409
diammonium nitrate, 4. 1001	baryta, 6. 412
——————————————————————————————————————	chrome, 6 . 410
—— dibromomercuriate, 4. 888	chromic, 6 . 818
hemiamminobromide, 4. 890	—— strontia, 6 . 412
hexabromomercuriate, 4. 889	—— X-radiogram, 1. 642
hydrobromide, 4, 890	Diopsides, 6, 410
hydrophosphate, 4, 1004	Dioptase, 3, 8; 6, 342
hydroxybromoamide, 4 . 890	Dioscorides, 1. 37
iodide, 4 . 923	Dioxalatodiammines, 11, 407
	Dioxalatodiquo-salts, 11. 407
— mercuric hydroxyamidonitrate, 4.	Dioxalatoethyldiammines, 11. 407
1002	Dioxides, 1. 958 Dioxogen, 1. 946
tetroxynitrate, 4 . 1001	Dioxydichloroplatinic acid, 16, 334
—— monoaquochloride, 4. 867	Dioxydisulpharsenic acid, 9. 326
nitrate, 4. 1000	Dioxyhydroxychloroplatinic acid, 16, 333
nitrite, 8 . 495	Dioxylite, 7. 818
oxide, 4. 789	Diparaphosphoric acid, 8. 948
dihydrated, 4. 790	Diperchromates, 11. 357
hemienneahydrated, 4. 791	Diperehromic acid, 11. 361
monohydrated, 4. 790	Dipertungstic acid, 11. 835
pentahydrated, 4. 791	Diphanite, 6. 709
	Diphenylsilicoethylene, 6. 226
trihydrated, 4 . 790	Diphosphamidic acid, 8, 710
- — selenate, 10 . 869	Diphosphatoferric acid, 14, 410
sulphate dihydrated, 4. 978	Diphosphatomanganic acid, 12. 461
monohydrated, 4. 978	Diphosphodiamidic acid, 8, 710
Dimesoiodic acid, 2. 324	Diphosphoric acid, 8, 948

	5 III 5 II
Diphosphoryl anhydrosulphatohexachlo-	Disilylammonia, 8. 262
ride, 10 . 346	Disodium lithium chloroperiridite, 15.
— titanium decachloride, 7. 85	765
Diphosphotriamidie acid, 8, 711	potassium cobaltie nitrite, 8. 504
Diplasites plumbicus, 7. 681 Diplatinie ammonium triacontatungstate,	
11. 803	Disomose, 9. 310
barium triacontatungstate, 11. 803	Disperse phase, 1. 769
mercurous triacontatungstate, 11. 803	Dispersion and refractive index, 1. 677
potassium triacontatungstate, 11. 803	atomic, 1. 673
— thallous hexasulphoplatinate, 16. 396	—— degree of, 1. 769
Diplatinous cadmium hexasulphoplatinate, 16. 396	—— medium, 1. 769 —— molecular, 1. 673
copper hexasulphoplatinate, 16. 396	specific, 1. 673
dinitritodihydrazinodiamminosul-	Dispersive power, 1. 673
phate, 8. 517	—— molecular, 1, 673 —— specific, 1, 673
dinitritodihydroxylaminodihydrazino-	
sulphate, 8. 517	Dispersoid system, 1, 772
dinitritodihydroxylaminoethylenedi- aminodiammine, 8 . 517	Dispersoids, 1. 770, 772 —— ionie, 1. 773
ferrous hexasulphoplatinate, 16. 396	molecular, 1. 773
lead hexasulphoplatinate, 16. 396	Displacement rule radioactive elements, 4.
manganese hexasulphoplatinate, 16.	129
396	Dissipation of energy, 1. 704, 711
silver hexasulphoplatinate, 16. 396	Dissociation, 1. 492, 707; 2. 143
zinc hexasulphoplatinate, 16. 396	pressure, 1. 348
Diplosis of gold, 1. 49	Distance energy, 1. 712
Diplumbie acid, 7. 685	Disterrite, 6. 816
Dipotassium silver cobaltic hexanitrite, 8.	Disthene, 6. 458
504	manganese, 6, 836
—— sodium cobaltic nitrite, 8, 504 Dippel, J. K., 1, 52	Distillation, 1, 553
Dipropyl stannone, 7, 410	in vacuo, 1. 437 per ascensum, 4. 403
Dipropylammonium bromopalladate, 15.	descensum, 4. 403, 701
678	with reduced pressure, 1. 437
bromoperruthenite, 15, 538	Distortion of crystals, 1. 598
bromoruthenate, 15 . 538	Distribution, colloidal particles, 1. 776
—— bromosmate, 15 . 723 —— chloroiridate, 15 . 770	of molecular velocities, 1. 792 Boltzmann's theorem,
chloropalladate, 15. 673	1. 792
chloroperruthenite, 15. 532	Maxwell's theorem, 1.
chlororhodate, 15 . 579	792
chlororuthenate, 15. 534	Disulphammonic acid, 8, 647, 667
—— chlorosmate, 15. 719	Disulphatoferric acid, 14, 319
Dipyre, 6 . 763 Dipyridyl, 16 . 273	Disulphitotetrammines, 10. 317 Disulphoxylic acid, 10. 163
Direct metal, 12, 709	Disulphuric acid, 10. 357, 359
—— process iron, 12. 635	Dithiocarbonic acid, 6. 119
Directed valencies, 4. 186	αα-, 6 . 119 αβ-, 6 . 119
Discenite, 9. 4	
Discharge electric in gases, 4. 24	Dithiocyanatobisethylenediamines, 11. 405 —— cis-salts, 11. 405
potential, 1. 1031 Discontinuous spectrum, 4. 5	trans-salts, 11. 405
Discrase, 9, 404	Dithiocyanatotetrammines, 11, 405
Diselenatouranic acid, 10. 877	Dithiodiimide, 8. 250
Diselenotrithionate acid, 10. 928	Dithiolearbonic acid, 6. 119
Diselenotrithionic acid, 10. 925	Dithiolthionearbonic acid, 6. 120 Dithionates, 10. 582
Disglomeration, 7: 302	Dithionic acid, 10. 570
Disilane, 6 . 216, 222 Disilanic acid, 6 . 216	—— anhydride, 10. 579
Disilene, 6. 216	Dithionoxyl, 10. 184
Disilenyl, 6 . 216	Dithiopersulphuric acid, 10. 481
Disilicane, 6. 222	Dithiophosphoric acid, 8, 1062, 1067
Disiloxane, 6. 233	Dithiophosphorous acid, 8, 1062
Disilver potassium cobaltic hexanitrite, 8.	Dithiothioncarbonic acid, 6, 119 Dittmarite, 4, 385
504 Disilyl, 6 . 216	Ditungstates, 11. 773, 809
Disilylamine, 8 . 262	Diuranic acid, 12. 58
VOL. XVI.	2 N

oio dinimi	L INDER
Diuranyl ammonium pentacarbonate, 12.	Doublet electric, 4. 187 Doubling, 9. 350
sulphate, 12. 17	
trisulphate, 12. 108	Doueil, 6. 576
trisulphite, 10. 308	Douglasite, 2, 15, 430; 12, 529; 14, 32
barium dicarbonate, 12. 116	Draco, 4. 797
	—— mitigatus, 4 . 797 Dragon, fiery, 9 . 341
calcium orthovanadate, 9. 789	Dravite, 6. 741
hydroxylamine trisulphate, 12. 108	Dreelite, 3. 802
lead phosphate, 12. 136	Drop-black, 5. 749
potassium disulphite, 10. 308	Drummond's light, 1. 326
enneafluoride, 12. 79	Dry bone, 4. 408
heptafluoride, 12. 79	—— copper, 3. 26 —— white stone, 6. 467
orthovanadate, 9. 788	white stone, 6 . 467
	Drying gases, 1. 288
sodium trisulphite, 10. 308	Dubhuim, 5. 498
strontium dicarbonate, 12. 116	Dudleyite, 6, 608
Divanadatoctodecatungstic acid, 9, 785	Dürfeldtite, 7, 491; 9, 343, 536
Divanadatotungstic acid, 9. 785 Divanadal appropriate trisulphate 9. 824	Dufrenite, 12. 529; 14. 407 Dufrénoysite, 7. 491; 9. 4, 292, 298, 299
Divanadyl ammonium trisulphate, 9, 824 —— cæsium tetrasulphite, 10, 305	Duftile, 9. 4
—— chloride, 9 . 805	Duftite, 9. 162, 196
lithium hexasulphite, 10. 305	Duhem and Margules' vapour pressure law,
potassium trisulphate, 9. 824	1. 555
rubidium trisulphite, 10. 305	Duka, 2. 711
sodium trisulphate, 9. 824	Dulong and Petit's constant, 1. 809
Diver's liquid, 2. 843	law, 1. 798
Dixenite, 6 . 835	rule and atome weights, 1.
Dizine potassium sulphate, 4. 637	804
Dobschauite, 9. 310	quantum theory
Dodecachloroctosiloxane, 6, 975	of energy, 1.
Dodecachloropentasilane, 6, 960, 973	811
Dodecachlorosilicopenlane, 6, 960, 973	Durag' process appears density 4, 184
Dodecamolybdates, 11. 582, 599 Dodecatungstates, 11. 773	Dumas' process vapour density, 1, 184 Dumesite, 6, 624
Dodecavanadates, 9. 202	Dumontite, 12. 4
Dodekammine-hexol-tetrakobalt (111)-	Dumortierite, 6. 462
salze, 14. 681	Dumreicherite, 4. 252; 5. 154, 354
Döbereiner's triads, 1. 253	Dundasite, 7. 855
Dognacskaite, 9. 691	Dunite, 6. 386
Dognacskite, 9. 589	Duralumin, 1. 279; 5. 237
Dog's tooth spar, 3. 814	Durangite, 5. 155; 9. 4, 259
Dolerophanite, 3. 266	Durdenite, 11. 2; 12. 529
Dolomie, 4. 371	tetrahydrate, 11. 82
Dolomite, 3, 622; 4, 251, 371	Duriron, 13, 559
cobaltiferous, 4, 371	Dussertite, 9. 227
	Dust in air, 8. 1 Dutch motel 4, 671
—— formation in nature, 4. 371	Dutch metal, 4. 671 Dyad, 1. 224
—— manganiferous, 4. 371	Dyads, 1. 206
nickeliferous, 4. 371	Dycrasite, 9. 343
properties, 4 . 373	Dynamic allotropy, 5. 723
separation magnesia from, 4. 281	Dynamical electronic hypothesis valency, 3.
solubility, 4. 374	1091
spar, 4. 371	Dynamite, 2. 829; 6. 289
strontian, 4 . 376	l. Dyne, 1. 692
synthesis, 4 . 372	Dysanalyte, 7. 3; 9. 863, 867
- X-radiogram, 1. 641	Dyscrasite, 3. 300; 9. 404
Dolomitic calcite, 3. 814	Dyskrasit, 9. 404
marbles, 4. 371	Dysluite, 5, 154, 296, 297; 12, 149
Domanganowolframites, 11. 798	Dyslytite, 8. 860
Domeykite, 3. 7; 9. 4, 63; 15. 9	Dysprosia, 5, 499, 702
Domingite, 7. 491; 9. 343, 554 Donacargyrite, 9. 551	—— isolation, 5. 696 Dysprosium, 5. 696
Donarium, 5 . 501; 7 . 174	ammonium carbonate, 5. 704
Donium, 4. 205	atomic number, 5. 700
Donovan's solution, 4. 916; 9. 40	——— weight, 5 . 699
Dororite, 6. 729	bromate, 2. 354
Double refraction, 1. 607	bromide, 5 . 703
· ·	

GENERAL INDEX 947	
Dysprosium carbonate, 5, 704	Egyptian blue, 6. 373
—— chloride, 5 . 703	Ehlite, 3. 289; 8. 733
	Ehrenbergite, 6. 495
—— hydroxide, 5 . 703	Ehrenwerthite, 13. 877
isolation, 5 . 553	Eichbergite, 9. 691
nitrate, 5. 704	Eichwaldite, 5. 100
occurrence, 5. 696	Einstein's theory atomic heat, 1. 811
—— oxide, 5. 702	Eisen gefeintes, 12. 709
oxychloride, 5. 703	Eisenamianth, 6. 240
phosphate, 5. 704	Eisenantimonglanz, 9. 553
properties, 5. 698	Eisenchrom, 11. 201
sulphate, 5. 703	Eisenerz hexaderat, 7. 56
Dysonite, 6 . 898	Eisen glenz, 13. 775
Dyssyntribite, 6. 619	Eisenglimmer, 14. 390
Dystomglanz, 9. 550	schiefer, 13. 775, 877
-	Eisenkiesel, 6. 138
	Eisenmohr, 13. 762
${f E}$	Eisenmulm, 18. 923
	Eisenniere, 13. 775
Eakleite, 6. 360	Eisenpecherz, 12. 1; 13. 886
Earth, 3. 619	Eisenphyllite, 14. 390
—— alkali-alkaline tungsten-bronzes, 11.	Eisenrahm, 13. 775
751	Eisenrosen, 7. 57
alkaline chlorosmates, 15. 720	Eisenschefferite, 6. 396
chrysopras, 6 . 624	Eisenspath, 14. 355
—— cimolian, 6 . 496	Eisenstassfurtite, 5. 137
coralline, 4. 696	Eisenstein, Blau, 6, 913
Diana's, 6. 471	magnetischer, 18. 731
diatomaceous, 6. 142	Eisensteinmark, 6. 473
(element), 1. 31	Eisentalk, 6. 431
fuller's, 6 . 496	Eisstein, 5. 304
inflammable, 1. 64	Eka-aluminium, 1. 261; 5. 373
—— Lemnian, 6 . 471	boron, 1. 261 silicon, 1. 261
mercurial, 1. 64	Ekdemite, 9. 257
—— porcelain, 6. 472	Ekebergite, 6 . 762
—— porcellana, 6 . 472 —— sinopisian, 6 . 472	Ekedemite, 7. 491
Earthenware, 6. 514	Ekmanite, 6 . 624; 12 . 529
Earths, 5. 494	Ekonovite, 12. 529
	Ektropite, 6. 918
history, 1, 383	Elæolite, 6. 569
—— history, 1. 383 —— rare, 5. 494	Elasmose, 11. 114
Earthy cobalt, 14. 424	Elastic constants and isomorphism, 1. 657
— manganese ochre, 12. 267	limit, 1. 819; 13. 533
Eau de chaux, 3. 676	Elasticity, 1. 819
——————————————————————————————————————	adiabatic, 1. 820
——————————————————————————————————————	cubic, 1 . 820
oxygenée, 1. 936	—— isothermal, 1. 820
regale, 8. 618	longitudinal, 1. 820
Ebelmenite, 12. 266	—— modulus, 1. 820
Ebers' papyrus, 1. 26	volume, 1. 820
Ebigite, 12. 4	Elbaite, 6 . 742
Ebullition, see Boiling	Electric acid, 1. 137
Ecdemite, 7. 491; 9. 4, 257	calamine, 4. 408, 643; 6. 442
Echellite, 6. 717	charges within molecule, 4. 188
Ectogan, 4. 531	discharge glow, 1. 882
Ecume de mer, 6. 427	
Edelite, 6. 718	invisible, 1. 881
Edelpatina, 3. 78	non-luminous, 1. 881
Edenite, 6. 391, 821; 12. 149	
Edingtonite, 8, 625; 6, 575, 751	doublet, 4. 187
Edisonite, 7. 30	field, action on spectral lines, 4. 19
Edwardsite, 5. 523	smelting iron, 12. 598
Effect, 1. 13	spectrum of atoms, 4. 50 ——steel furnaces, 12. 656
Efforescence, 1. 81, 502	Electrical and thermal energy, relation, 1.
Effusion gases, 1. 342 Egeran, 6. 726	1036
Eggonite, 6. 442	conduction, velocity of, 1. 967
Eglestonite, 2. 15; 4. 697, 805	—— conductivity, 3. 52
Egypt, 1. 24	
melko, r. mr	

GENERAL INDEA	
Electrical discharge brugh 1 889	Flamouts Anaximedes 1 39
Electrical discharge brush, 1. 882	Elements, Anaximedes, 1. 32 Aristotle, 1. 33
energy, 1. 712	asteroidal, 4. 3
—— flame, 1. 882	—— Bridge, 1. 257
—— pressure, 1. 963	—— classification, 1, 249, 263
resistance, 1. 963	—— common, 4. 3
theory chemical action, 1. 398	devolution, 4. 156
—— units, 1. 963	—— distribution of, 1. 272
Electricity, 1. 89	electrochemical series, 1. 1013
—— quantity of, 1. 963	electronegative, 4. 176
Electrite, 5. 271	electropositive, 4. 176
Electroaffinity, 1. 1000, 1015; 2. 227	Empedocles, 1. 33
Electrocapillary actions, 3. 222	evolution, 4. 156
Electrochemical equivalent, 1. 964	Lockyer on, 4. 21
——————————————————————————————————————	extinct, 1. 257; 4. 3, 156
Electrochemistry, 1. 711	Four Theory of, 1. 33 Five Theory of, 1. 33
Electrode, 1, 92 —— potential, 1, 1016	Five Theory 01, 1. 33
Electrolysis, 1. 92, 962	—— group, 1. 257 —— Heracleitus, 1. 32
Clausius' ionization hypothesis, 1.	heterologous, 1. 267
971	isotopie, 4. 50, 130
effect of solvent, 1. 968	missing, 1. 261
Faraday's laws, 1. 963	mixed, 4. 158
fractional, 1. 1039	multiple growth hypothesis, 4. 173
Grotthus' chain hypothesis, 1. 969	multivalent, 1. 267; 4. 174
— Helmholtz's strain hypothesis, 1. 971	mutability, 4. 155
ion hypothesis, 1. 969	naming, 1. 114
of water, Bell cells, 1. 278	new, 4. 51
—— refining copper by, 3. 27	occurrence and periodic law, 1. 272
multiple system, 3. 27	Pherecydes, 1. 31
parallel system, 3. 27	—— pleiadic, 4. 130
	primal, 4. 1
—— water, diaphragm cells, 1. 278	—— pure, 4 . 158
——————————————————————————————————————	scarcer, 4. 3
	—— Thales, 1. 31
Electrolyte, 1. 92	twin, 1. 266
Electrolytes, Hall effect. 1. 982	typical, 1. 257
Electrolytic gas, 1. 137, 483	transition, 1. 257
induction, 8 . 585	transmutation, 4. 147
process desilverization lead, 8. 313	Eleonorite, 8, 733; 14, 408
solution pressure, 1. 1017	Elf-candles, 8. 803
Electromagnetic mass, 4. 160	
Electrometer, capillary, 1, 1016	Elfstorpite, 9. 223
Electromotive force, 1. 963	Elhuyarite, 6. 497
and chemical affinity, 1, 1012	Elianite, 13. 559
——————————————————————————————————————	Eliasite, 12 . 4, 52
—— back, 1. 1029 Electron, 4 . 29, 164; 5 . 237	Elinvar, 15. 257 Elixir of life, 1. 49
mass, 4. 30	vitæ, 1. 49
positive, 4 . 29	Ellsworthite, 9. 866, 903; 12. 6
Electronegative elements, 4. 176	Elpasolite, 5. 306
Electrons, mobile, 4. 167	Elpidite, 6 . 855; 7 . 100
Ramsay's theory rotating, 4. 186	Emanation, 4. 95
—— valency, 4. 167, 190	radium, see Niton
fixing, 4 . 190	Embolite, 2. 16; 3. 300, 418; 7. 896
Electroplate, 15. 209	Embrithite, 7 . 491; 9 . 544
Electropneumatic fire-producers, 8. 1058	Emerald, 4. 204; 6. 803
Electropositive elements, 4. 176	—— nickel, 15 . 5
Electrostatic separation ores, 3. 22	Emery, 5. 247
Electrothermic smelting, 3. 23	Emerylite, 6. 708
Electrotype, 7. 362	Emission spectrum, 4. 7
Electrotyping, 3. 13	Emmonite, 8 . 834, 846
Electrozone, 2. 96	Emmonsite, 11. 2, 82; 12. 529
Electrum, 3. 493; 15. 208, 210; 16. 1	Empedocles, 1. 33
Element, 1. 74; 4. 2, 158	Empirical facts, 1. 8
Elément séparateur, 5. 541	Emplectite, 8. 7; 9. 589, 690
Elementi primi, 1. 60	Empressite, 11. 2, 44
secundi, 1. 60 tertii, 1. 60	Emptiness, optical, 1. 768 ———————————————————————————————————
Elements Anaxagoras, 1. 32	Emulsions, 1. 769
Incincina Alianagoras, 1. 02	

```
Emulsoids, 1. 770
                                                    Enneamercuric heptoxy-bromide, 4. 885
Enantiomorphic allotropy, 5. 723
                                                    Enneamolybdates, 11. 595
Enantiomorphism, 1, 596; 5, 723
                                                    Enneathiosulphate sodium silver acetylide,
Enargite, 8. 7; 9. 4, 317
Enceladite, 7. 54
                                                         10. 540
                                                    Ennerohexaphosphoric acid, 8, 992
Encre sympathetique, 14. 421
                                                    Enophite, 6. 423; 12. 529
Endeiolite, 5. 520; 6. 830
Endellione, 9. 550
                                                    Enstatite, 1. 521; 6. 390, 391, 408
                                                    Eötvös' rule, 1. 855
Eolide, 10. 915
Endellionite, 9. 550
Endeolite, 7. 100
                                                    Eosite, 9. 715
Endlichite, 7. 491; 9. 4. 261, 809
                                                    Eosphorite, 5. 155, 370; 8. 733; 12. 149,
                                                         455, 529 ; 14. 397
Endosmosis, 1. 539
Endothermal compounds, 1. 707
Endrometer, Volta, 1. 144
                                                    Epiboulangerite, 7. 491; 9. 343, 544; 15. 9
                                                    Epichlorite, 6. 624; 12. 529
Energetic hypothesis of matter, 1. 691
                                                    Epidesmine, 6. 759
Energetics, first law of, 1. 693, 694
                                                    Epididymite, 4. 206; 6. 382
     - second law, 1. 713
                                                    Epidote, 5. 531; 6. 722
Energy, 1. 688, 689
—— atomic, 1. 785
                                                     --- aluminium, 6. 722
                                                    ---- cerium, 5. 510
---- iron, 6. 722
--- available, 1. 717
---- bound, 1. 716
                                                    --- magnesia, 6. 722
--- capacity factor, 1. 712
                                                    --- manganese, 6. 768
------ chemical, 1. 1011
                                                    --- manganésoifère, 6. 768
-- conservation matter and, 1. 695
                                                    ---- orthates, 5. 510
- cost of reaction, 1. 716
                                                     ---- X-radiogram, 1. 642
                                                   Epidymite, 6. 380
Epigenite, 8. 7; 6. 894; 9. 4, 324; 12. 529
-- degradation and eutropy, 1. 726
     of, 1. 711, 712
---- dissipation of, 1. 704, 711
                                                    Epinatrolite, 6. 654
---- distance, 1. 712
                                                    Epiphanite, 6. 62; 12. 529
----- electricity, 1. 712
----- factors of, 1. 712, 1011
                                                    Episomorphs, 1, 662
Epistilbite, 6, 575, 760
                                                    Epistolite, 6. 838; 7. 3; 9. 839, 867
--- forms of, 1. 9, 688
---- free, 1. 716
                                                    Éponge métallique, 12. 767
                                                   Epsom salts, 4. 249, 252, 321
Epsomite, 2. 430; 4. 252, 321
Epsornite, 15. 9
--- and eutropy, 1. 726
—— intensity factor, 1. 712
—— internal, 1. 695, 717
---- of gases, 1. 792
                                                   Equation building, 1. 361
---- intra-atomic, 4. 150, 155
                                                       -- characteristic, 1. 161
---- kinetic, 1. 696, 712
                                                   ---- gas, 1. 161, 754
                                                   --- Clausius', 1. 761
--- Dieterici's, 1. 758
----- energy of gases, 1. 744
----- latent of reaction, 1. 728
                                                   ----- Van der Waals', 1. 756
- law of conservation, 1. 692
---- persistence, 1. 692
                                                   —— of State, 1. 161
---- transformation, 1. 689
                                                   ---- of solids, 1. 834
                                                   - — state solids, Guldberg's, 1. 836
- — — Van der Waals', 1. 836
 — mass factor, 1. 712
—— nonproductive, 1. 721
—— potential, 1. 696, 727
                                                   Equations, chemical, 1. 202
                                                   Equilibria: chemical, effect of pressure, 2.
- quantity factor, 1. 712
    – quantum theory, 1.811
                                                                                146
                                                                        - temperature, 2. 145
--- relation of electrical and thermal, 1.
                                                    Equilibrium, 2. 141
        1036
—— stability function, 1. 727
                                                      --- apparent, 1. 715
 ---- strength factor, 1. 712
                                                       - chemical, 1. 730
 ---- surface, 1. 712, 846, 847
                                                              - effect of temperature, 1. 732
                                                   - --- conditions of, 1. 445, 714; 2. 141
 ---- total, 1. 717

    effect of temperature on chemical, 1.

--- transformations of, 1. 689
—— units of, 1. 693
—— volume, 1. 712
                                                            732
                                                       - false, 1. 715; 2. 162
Engelhardite, 6. 857
                                                   -- law: J. H. van't Hoff's, 2. 145
Engel's magnesia potash process, 4. 369
                                                   ---- metastable, 1. 715
                                                   —— pressure, 1. 348
—— stable, 1. 714
Equivalent, 1. 187
English drops, 2. 781
    – red, 10. 351
    - salts, 4. 249
Enneabromodiperrhodite pepridinium acid,
                                                       chemical, 1. 964
                                                       — electrochemical, 1. 964
                                                   ---- transparency, 4. 32
Enneachloroditungstic acid, 11. 842
Enneachloromolybdous acid, 11. 618
                                                      --- weights, 1. 79, 99
                                                   Equla, 10. 1
Enneamercuriammonium iodide, 4. 924
                                                   Erbia, 5. 497, 702
Enneamercuric ammonium cicosichloride, 4.

    isolation, 5. 696

    851
```

Erbium, 5. 696	Estano, 7. 276
ammonium sulphate, 5. 704	Estrichgyps, 3. 774
atomic number, 5. 700	Etain, 7. 276
weight, 5. 699	Etch figures, 1. 611
bromate, 2. 354	Ethane and CO ₂ , 6. 32
chlorate, 2. 354	Ether, 13. 615
chloroplatinate, 16. 330	and CO ₂ , 6. 32
chloroplatinite, 16. 284	solubility in water, 1. 523
chromate, 11. 288	Etherine theory, 1. 217
dihydrotetraselenite, 10. 831	Ethers, 1. 389
dioxysulphate, 5. 704	Ethoxyorthodisilicate (hexa), 6. 310
dithionate, 10. 594	Ethyl acetate and hydrogen, 1. 304
dodecanitritotriplatinite, 8. 521	alcohol, 16. 277
earths isolation, 5. 696	————— and hydrogen, 1. 303
hexaiodohexanitritotriplatinite, 8. 523	amidosulphinate, 8. 634
hydroxide, 5. 703	ammonium(tetra) metasilicate, 6. 329
iodate, 2. 354	antimony pentabromide, 9. 493
isolation, 5 . 554 nitrate, 5 . 704	chloride, 13. 615
—— nitride, 8 . 115	chloro-β-thiocarbonate, 6. 120
occurrence, 5. 696	ferrisulphate, 14. 319 ferrodinitrosylsulphide, 8. 442
oxide, 5. 702	
oxychloride, 5. 703	
—— peroxide, 5 . 703	metasilicate, 6. 309
potassium sulphate, 5. 704	orthosilicate, 6. 309, 972
properties, 5 . 698	orthothiocarbonate, 6. 119
selenate enneahydrated, 10. 872	silicic acid, 6. 309
—— octohydrated, 10. 872	silicon(di) dichloride, 6. 309
—— selonite, 10. 831	oxide, 6 . 309
enneahydrate, 10. 831	
pentahydrate, 10. 831	hydroxide, 6 . 309
silicododecatungstate, 6 . 880 sodium pyrophosphate, 5 . 704	
tungstate, 11. 791	stannic bromide, 7, 455
solubility of hydrogen, 1. 307	
—— sulphate, 5 . 703	stannone, 7. 410
—— sulphite, 10 . 302	stibonium iodomercuriate, 9. 407
Ercinite, 6 . 766	sulphide, 15. 762
Erdmannite, 4, 206; 5, 509; 6, 451; 7, 100	sulphite symmetrical, 10. 240
Eremite, 5. 523	———— unsymmetrical, 10. 240
Erg, 1. 692	—— sulphone, 10. 162, 238
Erikite, 5. 529; 6. 835	sulphonic acid, 10. 239
Erinite, 6 . 498; 9 . 4, 161, 162 Eriochalcite, 3 . 168	
Erionite, 6. 768	
Errite, 6 . 896	
Error, probable, 1. 131	—— trithiocarbonate, 6. 120
Ersbyite, 6. 763	ultramarine, 6. 590
Erubescene, 14. 189	Ethylallylaminetrichloroplatinous acid, 16.
Erubescite, 12. 529; 14. 189	273
Eryophylite, 2. 426	Ethylamine, 15. 762
Erythrite, 6. 663	uranyl phosphate, 12. 132
Erythrine, 9. 228	Ethylammonium bromoiridate, 15. 776
Erythrite, 9. 4, 228; 14. 424; 15. 9 Erythrochromic dithionate, 10. 596	—— bromopalladate, 15. 678 —— bromoperruthenite, 15. 538
Erythroconite, 9. 291	bromoruthenate, 15. 538
Erythronium, 9. 714	bromosmate, 15. 722
Erythro-salts, 11. 408	chloroiridate, 15. 770
Erythrosiderite, 2. 15; 12. 529	chloropalladate, 15. 673
Erzalum, 4. 613	chloropalladite, 15. 670
Escarboucle, 8. 730	chloroperruthenite, 15. 532
Escherite, 6. 721	chlororhodate, 15. 579
Eschewegite, 12. 6	chlororuthenate, 15. 534
Eschimite, 9. 839	chlorosmate, 15. 719
Eschwegeite, 9. 839 Esmarkite, 6. 449, 811	ferric fluorides, 14. 7
Esmarkite, 6. 449, 811 Esmeraldaite, 12. 529	fluoferrate, 14. 8 heptachloroferrate, 14. 101
Esmeraldite, 13. 895	
Espumilla, 2. 711	—— tetrachloroferrate, 14. 101
Essonite, 6. 715	Ethylanilinium bromopalladite, 15. 677
	•

GBI(BIVI)	. III.D.II. 001
Ethylanilinium bromosmate, 15, 723	Europium isolation, 5, 551
chloropalladite, 15. 670	occurrence, 5 . 686
Ethylbenzylanilinium bromosmate, 15. 723	oxide, 5 . 692
Ethylene, effect on catalysis, 1. 487	oxychloride, 5 . 694
	properties, 5 . 688
	- — solubility of hydrogen, 1. 307
Ethylenediamine aquoheptachloroperruthe-	sulphate, 5. 694
nite, 15 : 533 	Europous chloride, 5. 694 Eurosamarium, 5. 503
hydroxyheptachloroperruthenite, 15.	Euscenite, 9. 839
533	Eusynchite, 7. 491; 9. 715, 778
mickel disulphate, 15. 469	Eutectics, 1, 517
uranyl chloride, 12 . 89	Eutectoid, 1. 518
disulphate, 12. 109	Eutexia, 1. 517
	Euthallite, 6. 644
Ethylenediaminoammonium pentafluofer- rate, 14 . 8	Eutropic series, 1, 654 Eutropy, 1, 721
Ethylenediaminomonosulphonic acid, 8. 683	
Ethylenediammonium bromoiridate, 15. 777	and degradation of energy, 1, 726
bromoperruthenite, 15. 538	
bromoruthenate, 15. 539	free energy, 1. 726
- bromosmate, 15 . 723	law of maximum, 1, 725
chloroiridate, 15. 771	- measurement, 1, 722
chloroperruthenite, 15. 533 chlororuthenate, 15. 534	Euxenerde, 7, 99 Euxenia, 7, 99
- chlorosmate, 15, 719	Euxenite, 5, 518; 7, 3, 100, 185, 896; 9.
heptachloroperrhodite, 15, 578	904; 12.4
heptachloroperruthenite, 15, 533	Euxenium, 5, 504; 7, 99
Ethylnitrolic acid, 8. 297	Euzeolite, 6. 755
Ethylphosphoric acid, 8, 966	Evansite, 5, 155, 367; 8, 733
Ethyloxyphenylammonium bromoplatinate, 16. 375	Evaporation, cooling during, 1, 426
Etromeyerite, 9. 343	
Etruscan ware, 6. 513	Evasion coefficient, 6. 49
Ettringite, 3, 623; 5, 154	Evidence, circumstantial, 1, 90
Eucairite, 3. 300; 10. 694, 773	· — cumulative, 1. 90
Euchlorite, 6. 608	
Euchroite, 9 . 4, 160	Evigtokite, 5. 309
Euclase, 4 , 205; 6 , 802 Eucolite, 5 , 511; 6 , 855, 857; 7 , 100; 9 , 839	Evolution chemistry, 1, 119 ——elements, Lockyer's hypothesis, 4, 21
titanite, 6. 840; 7. 3	- nomenclature, 1, 119
Eucolitic titanite, 5, 512	of elements, 4. 156
Eucrasite, 5. 515	Excelsior diamond, 5, 711
Eucryptite, 2. 425; 6. 569	Excited radio activity, 4. 97
Eudeiolite, 9. 839	Exciting X-rays, 4, 32
Eudialite, 7 . 896 Eudialyte, 5 . 511 ; 6 . 855, 857 ; 7 . 100 ; 9 . 839	Exitèle, 9. 421 Exitelite, 9. 421
Eudidymite, 4 . 206; 6 . 380, 381	Exosmosis, 1. 539
Eudiometer, 8. 3	Exothermal compounds, 1, 707
Eudnophite, 6. 645	Expansion and isomorphism, 1. 658
Eudomophite, 6. 575	coefficient and heat fusion, 1. 837
Eugenesite, 15 . 592	- gases, thermal effects. 1. 862
Eugenglanz, 9. 540 Eukamptita 6 600 12 520	(thermal) of colloids, 1, 774 Experience, 1, 5
Eukamptite, 6 . 609 ; 12 . 529 Eulytine, 6 . 836	Experiment, 1. 5, 12
Eulytite, 9. 589	Experiments, blank, 1. 57
Eumanite, 7. 31	control, 1. 57
Euphyllite, 6. 607	dummy, 1 . 57
Eupyrion, 8, 1059	Explosion wave, velocity of, 1. 486
Eupyrochroite, 3, 896 Eurolite, 6, 623, 12, 529	Explosions, 1, 485, 705 Expoliation, 12, 747
Euralite, 6 . 623 ; 12 . 529 Europia, 5 . 503, 693	External work, 1. 695
isolation, 5. 686	Extinct elements, 4. 3, 156
Europium, 5. 686	Extinction, angle of optical, 1. 608
atomic number, 5. 690	coefficient, 3. 47, 175
———— weight, 5 . 690	oblique, 1. 608
	parallel, 1. 608 straight, 1. 608
chloride, 5 . 693 dichloride, 5 . 693	Extraordinary ray, 1, 607
hydroxide, 5 . 693	Eytlandite, 5. 516
	•

552 GENERA	II INDEX
7.0	+ Felmon structure & 606 707
F.	Felspar structure, 6. 696, 707
E104- 9 571	—— uses of, 6 . 683 —— zinc, 6 . 662
Facellite, 6. 571	Folgrand 5 155
Factor, capacity of energy, 1. 712	Felspars, 5. 155
intensity of energy, 1. 712	alkali constitution, 6. 665
mass of energy, 1. 712	
quantity of energy, 1. 712	analysis, 6. 664
strength of energy, 1. 712	—— physical properties, 6 , 668
Factors of energy, 1. 712, 1011	—— properties, physical, 6 . 668 —— chemical, 6 . 680
Facts, 1. 5	Kalamath anyma & 459
	Felspath apyre, 6, 458
Fältspath, 6. 661	décompose, 6 . 468 du Forez, 6 . 458
Fahlerz, 3 . 7; 4 . 406; 9 . 4, 291, 589; 15 . 9	
—— mercurial, 9. 291	Felsspath, 6. 661 For arsenical, 9. 306
Fahlite, 9. 291 Fahlkupfererz, 9. 291	I
Fahlores mercurial, 4. 697	—— minéralisé par l'acide arsenique, 9. 226 —— soude, 12. 709
Fahlun brilliants, 7. 630 Faience, 6. 513	
Fairfieldite, 8 . 623; 8 . 733; 12 . 149, 454;	sulphure blane, 14, 130
14. 396 Folorta 9 201	Ferberite, 11. 678, 798; 12. 529
Falerts, 9. 291 Falkenhaynita 9. 201 536	Ferganite, 9, 715
Falkenhaynite, 9. 291, 536	Ferghanite, 9. 787
Falksteinmark, 6. 472	Fergusonite, 5. 516; 7. 100, 255, 896; 9.
False equilibrium, 1. 715	839, 866; 12. 4
ore, 15. 419 Furnation 3. 7. 0. 242, 572	
Famatinite, 3. 7; 9. 343, 573	Ferment, nitric, 2, 807
Farad, 1. 963	nitrous, 2. 807
Faraday's dark space, 4. 24	Ferments, inorganic, 1. 937
	Fermorite, 9. 4, 171
—— gold, 3 . 554	Fernandinite, 9, 715, 793
laws electrolysis, 1. 963	Ferrates, 18. 702, 929, 930
Faratsihite, 6. 907	Ferrazite, 7. 491, 877
Furgite, 6. 652	Ferri liquor, 13. 831
Farina arsenicalis, 9. 90	
Faroelite, 6. 709	E
Faserblende, 4. 408	Ferriallophane, 12, 529
Faserkiesel, 6. 455	Ferric acid, 18, 929, 930
Fasserzeolith, 6. 758	alumina, 14. 95
Fassaite, 6 , 390, 817	—— aluminate, 13. 919
Faujasite, 6. 575, 747	alumium calcium oxyphosphate, 14.
Fauserite, 4. 252; 14. 149, 422	411
Fava, 7. 124 Favalita & 286 006 . 12 520	
Fayalite, 6 . 386, 906; 12 . 529	chromium calcium silicate, 6. 866
manganese, 6 . 906	
—— zinc, 6 . 906, 909	amidowlphonata 9 844
Feather-alum, 14. 299	
—— mica, 6. 613	amminophosphate, 14, 410
Fedoroff's crystallochemical analysis, 1. 616 Fehling's solution, 3. 120	ammonium aluminium alums, 14. 349 antimony chloride, 14. 102
Feldspar, 6 . 662	
Feldspath krummblättiger, 6. 663 Felite, 6. 556	
Felsite, 6 . 663	
Felsobanyite, 5. 154, 338	sulphate, 11. 463
Felspar, 6 . 661	disulphate, 14. 336
aventurine, 6. 693	disdipliate, 14. 330
	dodecamolybdate, 11. 602
—— blue, 3. 274; 5. 370	dodecatingstate, 11. 832
	ferrous octosulphate, 14. 351
ferric, 6 . 695	
—— glassy, 6 . 662	
—— Kapnik, 6 . 896	heptachloride, 14. 99
Labrador, 6. 693	heptacosichlorotrihypoantimo-
lazur, 6 . 663	nate, 9. 486
——————————————————————————————————————	hate, 3 . 486
——————————————————————————————————————	
rubidia, 6. 662, 668	
Succiona, 6. 002, 000, 101	—— pentabromiodide, 14. 135

pentadecoxysoxieschromate, 11. 310 phosphate, 14. 410 pyrophosphate, 14. 410 pyrophosphate, 14. 411 sulphate, 11. 831 sulphate, 11. 831 sulphate, 11. 831 sulphate, 14. 123 tetrachloride, 14. 191 tetrachloride, 14. 193 anorthite, 6. 698 antimony cotechloride, 14. 125 aquohypophosphites, 8. 889 arsenate colloidal, 9. 224 arsenate, 9. 73 azide, 8. 354 barium chlorides, 14. 104 borate, 5. 114 borotungstate, 5. 111 bromate, 2. 359 bromide, 14. 117. 122 preparation, 14. 122 proporties, chemical, 14. 124 physical, 14. 125 calmium chlorides, 14. 104 disulphate, 14. 336 collabous chloride, 14. 351 dechydrate, 14. 351 dechroing, 13. 609 ehlorobsmuthite, 8. 890 chlorobsimuthite, 8. 890 chlorosulphate, 14. 317 chlorosulphate, 14. 317 chlorosulphate, 14. 350 collabous chloride, 14. 350 collabous chloride, 14. 586 mikelic oxide, 14. 586 mikelic oxide, 14. 586 cobaltous chloride, 14. 686 mikelic oxide, 14. 351 decaphate, 14. 347 sulphide, 14. 194 tetrachloride, 14. 193 dechorobsprephate, 14. 410 disulphate, 14. 337 proporties, chemical, 14. 124 physical, 14. 125 dechorobsprephate, 14. 410 dechorobromothypophosphite, 8. 890 chlorosulphate, 14. 350 collabous chloride, 14. 351 collabous chloride, 14. 686 mikelic oxide, 14. 350 collabous chloride, 14. 686 mikelic oxide, 14. 351 dechorobromothypophosphite, 14. 435 pentaleoride, 14. 104 decaphorate, 14. 122 proporties, chemical, 14. 124 physical, 14. 123 triplydrate, 14. 337 sulphide, 14. 137 mikelic oxide, 14. 351 decaphorate, 14. 410 propophosphite, 14. 410 decaphorate, 14. 137 thetal original original original original original original original o	T1	. 77 - 1-17-11
mytophosphate, 14. 410 mytophosphate, 14. 134 mulphate, 14. 182 mulphate, 14. 182 metrabromide, 14. 193 morthite, 6. 698 mantimony cotechloride, 14. 125 mulphide, 19. 324 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 8. 889 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 8. 889 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 14. 104 morter, 5. 114 morter, 5. 114 morter, 5. 114 morter, 5. 114 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 118, 118 morter, 6. 118	Ferric ammonium pentachloride, 14. 99	Ferric chloride, preparation, 14, 40
mytophosphate, 14. 410 mytophosphate, 14. 134 mulphate, 14. 182 mulphate, 14. 182 metrabromide, 14. 193 morthite, 6. 698 mantimony cotechloride, 14. 125 mulphide, 19. 324 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 8. 889 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 8. 889 marsenate colloidal, 9. 224 marsenate, 9. 73 maide, 8. 354 martimorphorphosphite, 14. 104 morter, 5. 114 morter, 5. 114 morter, 5. 114 morter, 5. 114 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 117, 122 morter, 6. 118, 118 morter, 6. 118		properties, enemical, 14. 70
sulphate, 14. 418 sulphate, 14. 331 sulphate, 14. 323 sulphate, 14. 324 tetrachloride, 14. 199 trideoachloride, 14. 101 trisulphate, 14. 336 anhydride, 13. 930 anorthite, 6. 698 antimony octochloride, 14. 125 aquohypohosphite, 8. 889 arsenate colloidal, 8. 224 arsende, 9. 73 azide, 8. 354 barium chlorides, 14. 104 berate, 5. 114 borate, 117, 122 propertingical, 14. 123 trihydrate, 14. 194 caesium alum, 14. 345 decleachloride, 14. 103 dichlorotribromide, 14. 105 dichlorotromide, 14. 105 dichlorotromide, 14. 105 decachloride, 14. 103 declehorotromide, 14. 125 disulphate, 14. 345 central malum, 14. 345 decachloride, 14. 103 coctocholride, 14. 103 selenate, 10. 882 tetrabromide, 14. 125 question alum, 14. 345 pentachloride, 14. 103 coctocholride, 14. 103 coctocholride, 14. 103 coctocholride, 14. 104 disulphate, 14. 346 complex in representation of the pentachloride, 14. 125 calcium chlorides, 14. 104 calcium chlorides, 14. 105 coctocholride, 14. 105 coctocholride, 14. 105 coctocholride, 14. 105 coctocholride, 14. 106 disulphate, 14. 345 diphydrate, 14. 412 garnet, 6. 921 corporation, 14. 125 coctocholride, 14. 104 cocholrides, 14. 105 coctocholride, 14. 10		
sulphate, 14. 182 sulphatophoryllate, 14. 353 sulphatophoryllate, 14. 353 sulphatophoryllate, 14. 353 sulphatophoryllate, 14. 182 tetrabromide, 14. 193 anhydride, 13. 930 annorthite, 6. 698 antimony octochloride, 14. 182 cotodecachloride, 14. 182 arsenide, 9. 73 azide, 8. 354 barium chlorides, 14. 194 tungstate, 11. 801 borotungstate, 5. 111 bromate, 2. 359 bromide, 14. 117, 122 preparation, 14. 122 bromohypephosphite, 8. 890 chloride, 14. 193 disulphate, 14. 360 coctocheride, 14. 103 dichlorotromide, 14. 104 disulphate, 14. 345 decachloride, 14. 103 pentabromide, 14. 103 pentabromide, 14. 103 coctochloride, 14. 103 pentabromide, 14. 125 tetrachloride, 14. 103 pentabromide, 14. 125 tetrachloride, 14. 103 pentabromide, 14. 125 calcium chlorides, 14. 104 fluophosphate, 14. 315 calcium chloride, 14. 103 pentabromide, 14. 125 pentachloride, 14. 103 pentabromide, 14. 125 calcium chlorides, 14. 104 fluophosphate, 14. 125 calcium chlorides, 14. 104 fluophosphate, 14. 125 calcium chlorides, 14. 104 fluophosphate, 14. 126 calcium chlorides, 14. 104 calcium chlorides, 14. 104 fluophosphate, 14. 125 calcium chlorides, 14. 104 fluophosphate, 14. 125 calcium chlorides, 14. 104 calcium chlorides, 14. 105 chlorotedphate, 14. 350 covetarasemate, 9. 227 manganese triarsenate, 9. 228 chloride, 14. 103 covetarasemate, 9. 228 chloride, 14. 104 calcium chlorides, 14. 105 chlorotedphate, 14. 347 chlorosulphate, 14. 350 colaltic chloropypridinebisethylenedi-aminechloride, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chlorosulphate, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chloropytridinebisethylenedi-aminechloride, 14. 350 colaltic chloropyt	pyrophosphate. 14. 414	trihydrate, 14, 43
sulphiatofluoberyllate, 14, 353 sulphide, 14, 182 tetrarbornide, 14, 194 tetrachloride, 14, 190 trideacalloride, 14, 101 trisulphate, 14, 336 anhydride, 13, 930 anorthite, 6, 698 antimony octochloride, 14, 125 aquohypophosphites, 8, 889 arsenate colloidal, 9, 224 arsenide, 9, 73 azide, 8, 354 barium chlorides, 14, 104 borate, 5, 114 borate, 5, 114 borotungstate, 5, 111 bromate, 2, 359 bromide, 14, 117, 122 horandydrate, 14, 122 properties, chemical, 14, 124 physical, 14, 123 trihydrate, 14, 122 properties, chemical, 14, 124 prophysical, 14, 123 trihydrate, 14, 122 prophosphite, 8, 890 chlorostibnohypophosphite, 14, 350 cobaltous chloride, 14, 350 cobaltous chloride, 14, 586 cobaltous chloride, 14, 668 colemate, 9, 868 cobaltous chloride, 14, 4351 chlorostibnohypophosphite, 8, 890 chlorostibnohypophosphite, 8, 890 chlorostibnohypophosphite, 8, 890 chlorostibnohypophosphite, 14, 350 cobaltous chloride, 14, 350 cobaltous chloride, 14, 668 colemate, 9, 868 cobaltous chloride, 14, 668 colemate, 9, 826 cobaltous chloride, 14, 4351 clear trioxydisulphate, 14, 351 clear trioxydisulphate, 14, 361 clear	sulphate, 11, 831	
tetrabromide, 14. 182 tetrabromide, 14. 193 trideacabloride, 14. 191 trisulphate, 14. 336 anhydride, 13. 930 anorthite, 6. 698 antimony octoehloride, 14. 125 aquohypophosphite, 8. 889 arsenate colloidal, 9. 224 arsenate, 9. 73 azide, 8. 354 barium chlorides, 14. 137 barium chlorides, 14. 194 tungstate, 11. 891 beryllium pentachloride, 14. 104 borate, 5. 114 borotan, 2. 359 bromide, 14. 117, 122 horante, 11. 122 horante, 2. 359 bromohypophosphite, 8. 890 butylammonium fluorides, 14. 124 physical, 14. 123 trihydrate, 14. 122 preparation, 14. 122 phomohypophosphite, 8. 890 butylammonium fluorides, 14. 104 cesium alum, 14. 345 cedenium chloride, 14. 103 cetecabloride, 14. 103 pentachloride, 14. 103 cetecabloride, 14. 103 pentachloride, 14. 103 pentachloride, 14. 103 pentachloride, 14. 103 retrabplate, 14. 347 calcium chloride, 14. 103 pentachloride, 14. 103 pentachloride, 14. 103 retrabplate, 14. 346 calcium chloride, 14. 103 pentachloride, 14. 103 pentachloride, 14. 103 pentachloride, 14. 103 retrabplate, 14. 347 calcium chloride, 14. 103 pentachloride, 14. 103 cotochoride, 14. 103 pentachloride, 14. 103 pentach	sulphatofluoberyllate, 14. 353	
tetrachloride, 14. 101 tridescalloride, 14. 101 trisulphate, 14. 336 anhydride, 13. 930 anorthite, 6. 698 antimony octochloride, 14. 82 coctodecachloride, 14. 125 aquohypophosphites, 8. 889 arsenate colloidal, 9. 224 arsenide, 9. 73 azide, 8. 354 barium chlorides, 14. 104 borate, 5. 114 borate, 5. 114 borotungstate, 5. 111 bromate, 2. 359 bromide, 14. 117. 122 hexallydrate, 14. 122 properties, chemical, 14. 124 physical, 14. 123 trihydrate, 14. 122 properties, chemical, 14. 124 prophysical, 14. 123 trihydrate, 14. 122 prophysibite, 8. 890 butylarmonium fluorides, 14. 104 disulphate, 14. 346 cadinium chloride, 14. 103 dichlorotrimoide, 14. 103 dichlorotrimoide, 14. 103 cotochloride, 14. 103 pentabromide, 14. 103 cotochloride, 14. 103 pentabromide, 14. 103 pentabromide, 14. 103 cotochlorides, 14. 103 cotochlorides, 14. 103 pentabromide, 14. 125 tetrachloride, 14. 103 cotochlorides, 14. 103 cotochlorides, 14. 103 pentabromide, 14. 125 disulphate, 14. 125 calcium chlorides, 14. 103 cotochlorides, 14. 104 fluophosphate, 14. 125 diaminechloride, 14. 104 tetralphide, 14. 189 menaneacyarate, 14. 350 cotolatic elhoropyridinebisethylenediaminechloride, 14. 350 colalius chlorides, 14. 350 colalius chloride, 14. 437 mentafloride, 14. 47 mentafloride, 14. 47 mentafloride, 14. 47 mentaflorides, 14. 351 mentaflorides, 14. 352 mentaflorides, 14. 353 millydrate, 14. 353 mi	sulphide, 14, 182	chlorohypophosphite, 8. 890
tridecachloride, 14. 101 trisulphate, 14. 336 anhydride, 13. 930 anorthite, 6. 698 antimony octochloride, 14. 125 aquohypophosphites, 8. 889 arsenate colloidal, 9. 224 arsenide, 9. 73 azide, 8. 354 barium chlorides, 14. 104 disulphate, 14. 347 sulphide, 14. 184 tungstate, 11. 801 beryllium pentachloride, 14. 104 borottnigstate, 5. 111 bromate, 2. 359 bromide, 14. 117, 122 hemitrihydrate, 14. 122 preparation, 14. 122 preparation, 14. 122 preparation, 14. 122 proportios, chemical, 14. 124 physical, 14. 123 trihydrate, 14. 122 bromohypophosphite, 8. 890 chloride, 14. 103 dichlorotribromide, 14. 103 dichlorotribromide, 14. 103 hexachloride, 14. 103 cotochloride, 14. 103 pentabromide, 14. 125 disulphate, 14. 345 dichlorotribromide, 14. 125 tetrachloride, 14. 103 cotochloride, 14. 103 cotochloride, 14. 103 pentabromide, 14. 125 tetrachloride, 14. 103 cotochloride, 14. 104 dichlorotribromide, 14. 125 dichlorotribromide, 14. 125 dichlorodibromide, 14. 126 dichlorotribromide, 14. 127 dichlorodide, 14. 104 dichlorotribromide, 14. 125 dichlorodide, 14. 104 dichlorotribromide, 14. 105 dichlorotribromide, 14. 103 cotochloride, 14. 104 dichlorotribromide, 14. 105 dichlorotribromide, 14. 105 dichlorotribromide, 14. 106 dichlorotribromide, 14. 107 dichlorotribromide, 14. 108 dichlorotribromide, 14. 109 dichlorotr	tetrabromide, 14 . 124	
chlorosulphate, 14, 336 anhydride, 13, 930 anorthite, 6, 698 antimony octodenachloride, 14, 82 — octodecachloride, 14, 125 aquohypophosphites, 8, 889 arsenate colloidal, 9, 224 arsenide, 9, 73 azide, 8, 336 barium chlorides, 14, 104 but ungstate, 11, 801 beryllium pentachloride, 14, 104 borate, 5, 114 borotungstate, 5, 111 bromate, 2, 359 bromide, 14, 117, 122 hexalnydrate, 14, 122 hexalnydrate, 14, 122 hexalnydrate, 14, 122 properties, chemical, 14, 124 priyeids, 14, 122 properties, chemical, 14, 124 properties, chemical, 14, 124 properties, chemical, 14, 125 disulphate, 14, 345 dodecachloride, 14, 103 dichlorotribromide, 14, 103 dichlorotribromide, 14, 103 hexalchloride, 14, 103 pentabromide, 14, 103 hexalchloride, 14, 103 coctodenacy, 14, 125 mentabromide, 14, 125 pentachloride, 14, 103 coctodenacy, 14, 125 mentabromide, 14, 125 pentachloride, 14, 103 coctodenacy, 14, 125 mentabromide, 14, 125 pentachloride, 14, 103 coctodenacy, 14, 126 disulphate, 14, 345 dodecachloride, 14, 103 hexalchloride, 14, 103 pentabromide, 14, 125 pentachloride, 14, 103 coctodenacy, 14, 125 mentabromide,	tetrachloride, 14 . 99	
chromate, 13. 393 anothite, 6, 698 antimony octochloride, 14. 82 aquohypophosphites, 8, 889 arsenate colloidal, 9, 224 arsenide, 9, 73 azide, 8, 354 barium chlorides, 14, 104 borotungstate, 14, 347 tungstate, 11, 801 beryllium pentachloride, 14, 104 borotungstate, 5, 111 borotungstate, 5, 111 borotungstate, 5, 111 borotungstate, 14, 122 hexahydrate, 14, 122 hexahydrate, 14, 122 preparation, 14, 122 preparation, 14, 122 trihydrate, 14, 122 bromohypophosphite, 8, 800 butylammonium fluorides, 14, 104 casium alum, 14, 345 cadmium chloride, 14, 103 dichlorotribromide, 14, 103 dichlorotribromide, 14, 103 cottochoride, 14, 103 cottochoride, 14, 103 pentabromide, 14, 125 pentachloride, 14, 103 cottochoride, 14, 103 cottochor	tridecachloride, 14. 101	
anorthite, 6. 698 antimony octochloride, 14. 82 — octodecachloride, 14. 82 — aquohypophosphites, 8. 889 arsenate colloidal, 9. 224 arsenide, 9. 73 azide, 8. 354 — barium chlorides, 14. 104 — disulphate, 14. 347 — sulphide, 14. 117, 122 — hexahydrate, 14. 122 — hexahydrate, 14. 122 — properties, chemical, 14. 124 — physical, 14. 122 — bromohypophosphite, 8. 800 — butylammonium fluorides, 14. 82 — disulphate, 14. 359 — decachloride, 14. 104 — disulphate, 14. 359 — decachloride, 14. 103 — dichlororthromide, 14. 103 — dichlorothromide, 14. 103 — decachloride, 14. 103 — decachlori	trisulpnate, 14, 336	
antimony octochloride, 14. 125 aquohypophosphitos, 8. 889 arsenate colloidal, 9. 224 arsenide, 9. 73 azide, 8. 354 barium chlorides, 14. 104 barium chlorides, 14. 104 burde, 14. 11. 801 beryllium pentarhloride, 14. 104 borate, 5. 114 borotungstate, 5. 111 boromate, 2. 359 bromide, 14. 117, 122 homitrihydrate, 14. 122 proparties, chemical, 14. 123 trihydrate, 14. 122 proporties, chemical, 14. 123 trihydrate, 14. 122 bromohypophosphite, 8. 800 butylammonium fluorides, 14. 80 butylammonium fluorides, 14. 80 disulphide, 14. 194 casium alum, 14. 345 dedecahloride, 14. 103 dichlorotribromide, 14. 103 hexachloride, 14. 103 coctobloride, 14. 103 pentabromide, 14. 125 pentabloride, 14. 103 coctobloride, 14. 103 pentabromide, 14. 125 pentabloride, 14. 103 coctobloride, 14. 103 dichlorotribromide, 14. 125 dichlorotodide, 14. 103 coctobloride, 14. 103 coctobloride, 14. 103 coctobloride, 14. 103 coctobloride, 14. 103 dichlorotribromide, 14. 125 dichlorotodide, 14. 103 coctobloride, 14. 103 dichlorotribromide, 14. 125 dichlorotodide, 14. 103 coctobloride, 14. 103 dichlorotodide, 14. 103 dichlo		
cobaltée chloropyridine bisethylenediaronypophosphites, 8. 889 arsenate colloidal, 9. 224 arsenide, 9. 73 azide, 8. 354 barium chlorides, 14. 104 borate, 5. 114 borotungstate, 11, 801 beryllium pentachloride, 14. 104 borate, 5. 114 borotungstate, 5. 111 bromate, 2. 359 bromide, 14. 117, 122 hemitrihydrate, 14. 122 hemitrihydrate, 14. 122 preparation, 14. 122 preparation, 14. 122 proporties, chemical, 14. 124 plysical, 14. 123 trihydrate, 14. 122 bromohypophosphite, 8. 800 butylammonium fluorides, 14. 80 disulphide, 14. 194 cesium alum, 14. 345 decaehloride, 14. 103 dichlorotribromide, 14. 125 dodecachloride, 14. 103 hexachloride, 14. 103 pentabromide, 14. 125 pentachloride, 14. 103 cotechloride, 14. 103 pentabromide, 14. 125 pentachloride, 14. 103 cotechloride, 14. 103 cotechloride, 14. 103 pentabromide, 14. 125 pentachloride, 14. 103 cotechloride, 14. 103 cotechloride, 14. 103 cotechloride, 14. 105 pentachloride, 14. 105 pentachloride, 14. 105 pentachloride, 14. 105 calcium chlorides, 14. 104 disulphate, 14. 325 pentachloride, 14. 103 cotechloride, 14. 104 disulphate, 14. 325 pentachloride, 14. 105 columbate, 9. 888 couplated, 14. 409 conplex inordinal pentachloride, 14. 347 pentabromide, 14. 124 puppide, 14. 192 columbate, 14. 410 pyrophosphate, 14. 411 diamminochloride, 14. 192 cuprous disulphide, 14. 192 cuprous disulphide, 14. 192 pentasulphide, 14. 192 pentasulphide, 14. 192 dichlorotroride, 14. 104 tetrahydrate, 14. 320 dichlorotroride, 14. 104 dichlorotroride, 14. 105 dichlorobromide, 14. 125 dichlorobromide, 14. 125 dichlorobromide, 14. 125 dichlorotrodide, 14. 77, 135 dichlorobromide, 14. 125 dichlorotrodide, 14. 77, 135 dichlorobromide, 14. 125 dichlorotrodide, 14. 77, 135 dichlorotrodide, 14. 77, 135 dichlorotrodide, 14. 77, 135 dichlorotrodide, 14. 34 dihydrate, 14. 334 dihydrate, 14. 339 dinydrate, 14. 341 ecolum chloride, 14. 103 dichlorotrodide, 14. 341 diphydrate, 14. 334 dichlorotrodide, 14. 77, 135 dichlorotrodide, 14. 334 didydrate, 14. 349 didydrate, 14. 336 didydrate, 14. 349 didoceammino		
aquohypophosphites, 8, 889 arsenate colloidal, 9, 224 arsenide, 9, 73 azide, 8, 354 barium chlorides, 14, 104 disulphate, 14, 347 sulphide, 14, 194 tungstate, 11, 801 beryllium pentachloride, 14, 104 borate, 5, 114 borotungstate, 5, 111 boromate, 2, 359 bromide, 14, 117, 122 hemitrihydrate, 14, 122 hexahydrate, 14, 122 proporties, chemical, 14, 124 privial, 14, 122 proporties, chemical, 14, 124 disulphide, 14, 125 bromohypophosphite, 8, 890 butylammonium fluorides, 14, 89 cadmium chloride, 14, 103 dichlorotribromide, 14, 103 dichlorotribromide, 14, 103 dichlorotribromide, 14, 103 hexachloride, 14, 103 coctochloride, 14, 103 pentabromide, 14, 125 tetrachloride, 14, 103 coctochloride, 14, 103 coctochloride, 14, 103 pentabromide, 14, 125 tetrachloride, 14, 103 cottochloride, 14, 103 cottochloride		
	— arsenate colloidal, 9. 224	
barium chlorides, 14. 104	arsenide, 9. 73	
	barium chlorides, 14. 104	
- beryllium pentachloride, 14. 104 - borate, 5. 111 - boromate, 2. 359 - bromide, 14. 117, 122 - hemitrihydrate, 14. 122 - hemitrihydrate, 14. 122 - properties, chemical, 14. 124 - plysical, 14. 123 - trihydrate, 14. 122 - bromohypophosphite, 8. 890 - butylammonium fluorides, 14. 88 - disulphide, 14. 194 - casium alum, 14. 345 - decachloride, 14. 103 - dichlorotribromide, 14. 125 - disulphate, 14. 345 - dodecachloride, 14. 103 - hexachloride, 14. 103 - hexachloride, 14. 103 - pentabromide, 14. 125 - pentabromide, 14. 125 - pentabromide, 14. 125 - tetrabromide, 14. 125 - pentabromide, 14. 125 - disulphate, 14. 345 - dodecachloride, 14. 103 - beat tricxydisulphate, 14. 320 - disulphate, 14. 347 - tetracosihydrate, 14. 347 - cupric disulphide, 14. 192 - proprose saluphide, 14. 192 - pentasulphide, 14. 192 - pentasulphide, 14. 193 - disulphate, 14. 345 - disulphate, 14. 345 - disulphate, 14. 345 - disulphate, 14. 345 - disulphate, 14. 125 - disulphate, 14. 126 - disulphate, 14. 127 - heptahydrate, 14. 347 - tetracosihydrate, 14. 347 - cupric disulphide, 14. 192 - pentasulphide, 14. 192 - pentasulphide, 14. 192 - pentasulphide, 14. 192 - decahloride, 14. 103 - disulphate, 14. 125 - disulphate, 14. 320 - dichlorobromide, 14. 125 - dichlorodide, 14. 103 - dichlorotromide, 14. 125 - dichlorodide, 14. 103 - dichlorobromide, 14. 125 - dichlorodide, 14. 103 - di		
- bromate, 2. 359 - bromide, 14. 117, 122 - hexahydrate, 14. 122 - preparation, 14. 122 - properties, chemical, 14. 124 - physical, 14. 123 - trihydrate, 14. 122 - bromohypophosphite, 8. 890 - butylammonium fluorides, 14. 8 - cadmium chloride, 14. 104 - disulphide, 14. 194 - casium alum, 14. 345 - decachloride, 14. 103 - dichlorotribromide, 14. 125 - disulphate, 14. 345 - dodecachloride, 14. 103 - pentabromide, 14. 103 - pentabromide, 14. 125 - pentachloride, 14. 103 - pentabromide, 14. 125 - tetrachloride, 14. 103 - calcium chlorides, 14. 104 - fluophosphate, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 410 - calcium chorides, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 411 - sulphide, 14. 194 - calcium chorides, 14. 410 - chlorate, 2. 359 - chloride, 18. 615; 14. 40 - complex inorganic salts, 14. 83 - dihydrate, 14. 43 - hemipentahydrate, 14. 347 - tetracosihydrate, 14. 347 - cupric disulphate, 14. 347 - cupric disulphate, 14. 192 - cuprous disulphate, 14. 192 - cuprous disulphide, 14. 192 - cuprous disulphate, 14. 192 - cuprous disulphide, 14. 192 - tetracoshydrate, 14. 192 - cuprous disulphate, 14. 192 - cuprous disulphate, 14. 192 - cuprous disulphate, 14. 192 - derous hexasulphide, 14. 192 - disulphate, 14. 192 - disulphate, 14. 192 - disulphate, 14. 193 - dichlorotribromide, 14. 103 - dichlorotribromide, 14. 103 - dichlorotribromide, 14. 103 - dichlorotribromide, 14. 125 - dichlorotribromide,		
	· · bromate, 2 . 359	
		pyrophosphate, 14. 415
— preparation, 14. 122 — properties, chemical, 14. 124 — physical, 14. 123 — trihydrate, 14. 122 — bromohypophosphite, 8. 890 — butylammonium fluorides, 14. 8 — cadmium chloride, 14. 104 — disulphide, 14. 194 — casium alum, 14. 345 — chlorobromide, 14. 103 — dicallorotribromide, 14. 125 — disulphate, 14. 345 — docachloride, 14. 103 — dicallorotride, 14. 103 — hexachloride, 14. 103 — decachloride, 14. 103 — hexachloride, 14. 103 — hexachloride, 14. 103 — pentabydrate, 14. 345 — disulphate, 14. 345 — docachloride, 14. 103 — hexachloride, 14. 103 — pentabydrate, 14. 125 — disulphide, 14. 192 — pentasulphide, 14. 194 — diamminochloride, 14. 104 — diamminochloride, 14. 80 — diamminochloride, 14. 80 — diamminochloride, 14. 80 — diamminochloride, 14. 320 — dichlorobromide, 14. 125 — dichlorobromide, 14. 33 — dichlorobromide, 14. 125 — dichlorobromide, 1		
	nexallydrate, 14, 122	
		tetracosihydrate, 14, 347
- trihydrate, 14. 122 - bromohypophosphite, 8. 890 - butylammonium fluorides, 14. 8 - cadmium chloride, 14. 104 - disulphide, 14. 194 - casium alum, 14. 345 - chlorobromide, 14. 77 - decachloride, 14. 103 - disulphate, 14. 345 - disulphate, 14. 103 - dichlorobride, 14. 103 - dichlorobride, 14. 103 - pentachloride, 14. 103 - pentachloride, 14. 103 - pentachloride, 14. 103 - sclenate, 10. 882 - tetrachloride, 14. 103 - sclenate, 10. 882 - tetrachloride, 14. 103 - trichlorodibromide, 14. 125 - dichlorobromide, 14. 125 - dich		
botomohypophosphite, 8, 890 butylammonium fluorides, 14, 8 cadmium chloride, 14, 104 cessium alum, 14, 345 cebororide, 14, 103 decachloride, 14, 103 dichlorotribromide, 14, 125 didhorotribromide, 14, 103 dichlorotribromide, 14, 103 dichlorotride, 14, 125 dichlorobromide, 14, 125 dichlorotromide, 14, 133 dichlorotromide, 14, 125 dichlorotromide, 14, 125 dichlorotromide, 14, 125 dichlorotromide, 14, 125 dichlorotromide, 14, 133 dichlorotromide, 14, 125 dichlorot	trihydrate, 14, 122	
- butylammonium fluorides, 14. 104 - cadmium chloride, 14. 104 - disulphide, 14. 194 - cesium alum, 14. 345 - chlorobromide, 14. 103 - decachloride, 14. 103 - disulphate, 14. 345 - dodecachloride, 14. 103 - dodecachloride, 14. 103 - hexachloride, 14. 103 - octochloride, 14. 103 - pentabromide, 14. 103 - cotochloride, 14. 103 - pentabromide, 14. 103 - pentabromide, 14. 103 - tetrachloride, 14. 103 - cotochloride, 14. 103 - dichlorobromide, 14. 125 - dichlorotetraquochloride, 14. 83 - dihydroarsenate, 9. 226 - dihydrate, 14. 410 - dimethylammonium fluorides, 14. 7 - diorthophosphate, 14. 409 - decahydrate, 14. 334 - dioxysulphate, 14. 334 - hexahydrate, 14. 334 - hexahydrate, 14. 43 - dioxysulphate, 14. 334 - dioxysulphite, 10. 312 - dodecamminosulphate, 14. 300 - diehlorobromide, 14. 125 - dichlorotetraquochloride, 14. 40 - dihydroarsenate, 9. 226 - dihydroarsenate, 9. 227 - diorthophosphate, 14. 409 - decahydrate, 14. 409 - decahydrate, 14. 334 - dioxysulphate, 14. 334 - hexahydrate, 14. 334 - hexahydrate, 14. 334 - hexahydrate, 14. 330 - dioxysulphate, 14. 334 - hexahy		
	—— butylammonium fluorides, 14. 8	
- cessium alum, 14, 345 - chlorobromide, 14, 177 - decachloride, 14, 103 - dichlorotribromide, 14, 125 - disulphate, 14, 345 - dodecachloride, 14, 103 - dodecachloride, 14, 103 - hexachloride, 14, 103 - pentabromide, 14, 125 - pentabromide, 14, 125 - pentabromide, 14, 125 - pentabromide, 14, 125 - tetrabromide, 14, 125 - tetrachloride, 14, 103 - richlorodibromide, 14, 125 - diaphrophase, 14, 141 - garnet, 6, 921 - hexahydraxytetrarsenate, 9, 227 - manganese triarsenate, 9, 228 - oxyphosphate, 14, 411 - sulphide, 14, 194 - complex inorganic salts, 14, 98 - dihydrate, 14, 334 - chloride, 18, 615; 14, 40 - complex inorganic salts, 14, 98 - dihydrate, 14, 334 - dioxysulphate, 14, 334 - dioxysulphate, 14, 334 - dioxysulphate, 14, 334 - dioxysulphate, 14, 334 - diphosphoctochloride, 8, 1017 - dodecamanganite, 12, 280 - dodecamminosulphate, 14, 320 - diamido diphosphate, 8, 711 - diamminosulphate, 14, 82 - dichlorobromide, 14, 80 - dichlorobromide, 14, 125 - dichlorotetraquochloride, 14, 47 - dichlorotrodide, 14, 77, 135 - (di)chlorotetraquochloride, 14, 83 - dihydroarsenate, 9, 226 - dihydroarsenate		
- chlorobromide, 14. 77 - decachloride, 14. 103 - dichlorotribromide, 14. 125 - disulphate, 14. 345 - dodecachloride, 14. 103 - hexachloride, 14. 103 - octochloride, 14. 103 - pentabromide, 14. 125 - pentabromide, 14. 125 - pentachloride, 14. 103 - cotrachloride, 14. 103 - sclenate, 10. 882 - tetrabromide, 14. 125 - tetrachloride, 14. 103 - trichlorodibromide, 14. 125 - calcium chlorides, 14. 104 - fluophosphate, 14. 412 - garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - complex inorganic salts, 14. 98 - dihydrate, 14. 369, 370 - chloride, 13. 189 - diamido diphosphate, 8. 711 - diamimochloride, 14. 320 - dichlorobromide, 14. 320 - dichlorobromide, 14. 333 - dichlorobromide, 14. 125 - dichloroidide, 14. 13 - dichloroidide, 14. 41 - dihydroarsenate, 9. 226 - dihydroarsenate, 9. 226 - dihydroarsenate, 9. 226 - dihydrophosphate, 14. 410 - dimethylammonium fluorides, 14. 70 - diorthophosphate, 14. 409 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - hexahydrate, 14. 334 - dioxysulphite, 10. 312 - diphosphoetochloride, 8. 1017 - dodecamanganite, 12. 280 - dodecamminosulphate, 14. 320 - diphosphoetochloride, 14. 80 - dihydrate, 14. 43 - dihydrate, 14. 334 - dioxysulphate, 14. 320 - dichlorobromide, 14. 125 - dichloroidide, 14. 75 - dichloroidide, 14. 125 - dihydroarsenate, 9. 226 - diydroarsenate, 9. 226	distipnide, 14, 194	
		——— diamminosulphate, 14. 320
	dodecachloride, 14, 103	
- — pentabromide, 14. 125 - pentachloride, 14. 103 - sclenate, 10. 882 - tetrabromide, 14. 125 - tetrachloride, 14. 103 - trichlorodibromide, 14. 125 - calcium chlorides, 14. 104 - fluophosphate, 14. 412 - garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 18. 615; 14. 40 - complex inorganic salts, 14. 98 - dihydrate, 14. 42 - formation, 14. 40 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180 - dichromate, 13. 43 - dichromate, 11. 343 - dichylalcoholochloride, 14. 83 - dihydropentachloride, 14. 75 - dihydrophosphate, 14. 410 - dimethylammonium fluorides, 14. 7 - diorthophosphate, 14. 409 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamminosulphate, 14. 80 - dodecamminosulphate, 14. 320 - enneaoxyarsenite, 9. 133 - ethyl mercaptide, 14. 180	hexachloride, 14 . 103	
- — pentachloride, 14. 103 - — sclenate, 10. 882 - — tetrabromide, 14. 125 - — tetrachloride, 14. 103 - — trichlorodibromide, 14. 125 - — calcium chlorides, 14. 104 - — fluophosphate, 14. 412 - — garnet, 6. 921 - — hexahydroxytetrarsenate, 9. 227 - — manganese triarsenate, 9. 228 - — oxyphosphate, 14. 411 - — sulphide, 14. 194 - — carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - — organic salts, 14. 98 - — dihydrate, 14. 334 - — complex inorganic salts, 14. 98 - — dihydrate, 14. 320 - — dodecamminochloride, 14. 80 - — hemiheptahydrate, 14. 43 - — hemipentahydrate, 14. 43 - — hemipentahydrate, 14. 43 - — hemipentahydrate, 14. 43 - — ethyl mercaptide, 14. 180		
- tetrabromide, 14. 125 - tetrachloride, 14. 103 - trichlorodibromide, 14. 125 - calcium chlorides, 14. 104 - fluophosphate, 14. 412 - garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - complex inorganic salts, 14. 98 - dihydrate, 14. 334 - complex inorganic salts, 14. 98 - dihydrate, 14. 334 - complex inorganic salts, 14. 98 - dihydrate, 14. 334 - chemiheptahydrate, 14. 43 - hemipentahydrate, 14. 43 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180 - dihydropentachloride, 14. 410 - dihydrate, 14. 410 - dihydrate, 14. 409 - decahydrate, 14. 409 - decahydrate, 14. 409 - decahydrate, 14. 409 - dioxysulphate, 14. 334 - dihydrate, 14. 334 - dioxysulphate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamminosulphate, 14. 80 - dodecamminosulphate, 14. 320 - enneaoxyarsenite, 9. 133 - ethyl mercaptide, 14. 180		
- tetrachloride, 14. 103 - trichlorodibromide, 14. 125 - calcium chlorides, 14. 104 - fluophosphate, 14. 412 - garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 18. 615; 14. 40 - organic salts, 14. 83 - dihydrate, 14. 34 - dinthylammonium fluorides, 14. 7 - decahydrate, 14. 409 - decahydrate, 14. 409 - dioxysulphate, 14. 334 - dioxysulphate, 14. 334 - trihydrate, 14. 335 - pentahydrate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamanganite, 12. 280 - diodecamminosulphate, 14. 320 - dodecamminosulphate, 14. 320 - enneaoxyarsenite, 9. 133 - ethyl mercaptide, 14. 180		
- trichlorodibromide, 14. 125 - calcium chlorides, 14. 104 - fluophosphate, 14. 412 - garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - organic salts, 14. 98 - dihydrate, 14. 34 - dioxysulphate, 14. 334 - hexahydrate, 14. 335 - pentahydrate, 14. 334 - dioxysulphate, 14. 335 - pentahydrate, 14. 334 - dioxysulphite, 10. 312 - dioxysulphite, 14. 334 - dioxysulphite, 14. 335 - dioxysulphate, 14. 409 - decahydrate, 14. 409 - dioxysulphate, 14. 409 - decahydrate, 14. 409 - dioxysulphate, 14. 334 - dioxysulphate, 14. 409 - dioxysulphate, 14. 334 -		
- garnet, 6. 921 - hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - complex inorganic salts, 14. 98 - dihydrate, 14. 33 - dihydrate, 14. 334 - complex inorganic salts, 14. 98 - dihydrate, 14. 42 - formation, 14. 40 - hemipentahydrate, 14. 43 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180		
- hexahydroxytetrarsenate, 9. 227 - manganese triarsenate, 9. 228 - oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 1. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - organic salts, 14. 98 - dihydrate, 14. 334 - dioxysulphate, 14. 334 - pentahydrate, 14. 334 - trihydrate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamanganite, 12. 280 - dihydrate, 14. 42 - formation, 14. 42 - hemiheptahydrate, 14. 43 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180		
	garnet, 6 . 921	
- oxyphosphate, 14. 411 - sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - organic salts, 14. 83 - dihydrate, 14. 334 - trihydrate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamanganite, 12. 280 - dihydrate, 14. 42 - formation, 14. 40 - hemiheptahydrate, 14. 43 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180	manganaga trianganata 9 228	dioxysulphate 14 334
- sulphide, 14. 194 - carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - complex inorganic salts, 14. 98 - dihydrate, 14. 42 - formation, 14. 40 - hemipentahydrate, 14. 43 - hemipentahydrate, 14. 43 - carbonate, 14. 369, 370 - trihydrate, 14. 334 - dioxysulphite, 10. 312 - diphosphoctochloride, 8. 1017 - dodecamminochloride, 14. 80 - dodecamminosulphate, 14. 320 - enneaoxyarsenite, 9. 133 - ethyl mercaptide, 14. 180	oxyphosphate. 14. 411	
- carbonate, 14. 369, 370 - chlorate, 2. 359 - chloride, 13. 615; 14. 40 - complex inorganic salts, 14. 98 - dihydrate, 14. 42 - formation, 14. 40 - hemipentahydrate, 14. 43 - hemipentahydrate, 14. 43 - carbonate, 14. 369, 370 - mentahydrate, 14. 334 - methydrate, 14.	——————————————————————————————————————	hexahydrate, 14. 335
- chlorate, 2. 359 - chloride, 13. 615; 14. 40 - complex inorganic salts, 14. 98 - dinysulphite, 10. 312 - diphosphoetochloride, 8. 1017 - dodecamanganite, 12. 280 - dihydrate, 14. 42 - formation, 14. 40 - hemiheptahydrate, 14. 43 - hemipentahydrate, 14. 43 - ethyl mercaptide, 14. 180	carbonate, 14. 369, 370	pentahvdrate, 14, 334
	chlorate, 2. 359	trihydrate, 14. 334
		dioxysulphite, 10. 312
	complex inorganic salts, 14. 98	
formation, 14. 40 dodecamminosulphate, 14. 320 hemiheptahydrate, 14. 43 ethyl mercaptide, 14. 180	dibudrete 14 49	
— hemiheptahydrate, 14. 43 — enneaoxyarsenite, 9. 133 — ethyl mercaptide, 14. 180		—— dodecamminosulphate, 14. 320
hemipentahydrate, 14. 43 ethyl mercaptide, 14. 180		enneaoxyarsenite, 9. 133
——————————————————————————————————————	hemipentahydrate, 14. 43	ethyl mercaptide, 14. 180
	hexahydrate, 14. 43	ethylammonium fluorides, 14. 7

Ferric felspar, 6. 695	Ferric magnesium trihydrodisulphate, 14.
ferrate, 13. 936	348
ferrous alum, 14 . 350	manganese phosphite, 14. 411
decasulphate, 14 . 351	manganic hydrosulphate, 14. 350
tetracosihydrate, 14. 350	tetraphosphate, 12. 463
tetradecahydrate, 14. 350	manganous chloride, 14, 105
tetrahydrohesasulphate, 14. 351	hydrosulphate, 14. 350
tridecahydrate, 14. 351	mercuric bromide, 14. 121
tetrasulphate, 14 . 350	- metabromoantimonate, 9. 497
ferryl ferrous barium decametasilicate,	metahydroxide, 13 . 880
6. 922	metantimonate, 9. 461
fluochloride, 14. 7	metaoxide, 13 . 863, 864
fluoride, 14 . 3	metasilicate, 6 . 907
hemienneahydrate, 14. 4	metatitanate, 7. 60
trihydrate, 14. 4	metatungstate, 11 . 827
fluosilicate, 6 . 957	metavanadate, 9 . 791
fluotitanate, 7. 73	methylammonium fluorides, 14. 7
—— guanidinium paratungstate, 11. 820	molybdate, 11 . 573
heminitrosylchloride, 14. 81	monamidodiphosphate, 8. 710
hemipentahydrohemihennachloride,	nickel chloride, 15 . 42 1
14. 75	nickelous fluoride, 15, 406
- hemiphosphorylchloride, 14. 82	———— hydrosulphate, 15 . 477
hemitrihydroheniennachloride, 14. 75	nitrate, 14. 375, 378
heptoxysulphite, 10. 312	hydrates, 14. 379
hexacolumbate, 9. 868	properties, chemical, 14. 384, 385
- hexahydroxypentasulphate, 14, 329	physical, 14, 380
hexaiodohexanitritotriplatinite, 8. 523	nitratohypophosphite, 8. 890
hexametaphosphate, 14, 415	- nitride, 8. 134
hexamminobromide, 14, 124	nitrite, 8 , 500
hexamminochloride, 14. 79	nitrosylchloride, 8, 617
hexamminosulphate, 14, 320	nitrosyldodecachloride, 8, 425
- hexantipyridinoborofluoride, 14. 8	nitrosylhexachloride, 8, 425
	nitrosylsulphate, 8, 424
	nitroxylchloride, 14. 81
hydroarsenate, 9, 226 hydrodiselenite, 10, 840	octoxysulphite, 10 . 312 orthoantimonate, 9 . 461
——————————————————————————————————————	- orthoarsenate, 9. 224
hemiheptahydrate, 10. 840	dihydrate, 9. 224
hydropyrophosphate, 14. 413	hemihydrate, 9. 224
hydroselenite, 10 . 840	- · · hemipentahydrate, 9. 224
hydrotetrachloride, 14. 76	monohydrate, 9. 224
hydrotetranitrate, 14. 379	tetrahydrate, 9. 224
hydroxide, 13 . 859, 893	orthochloroantimonate, 9. 492
	orthoclase, 6, 662, 668
hydroxybishydrosulphate, 14. 319	orthohydroxide, 13, 880
hydroxycarbonate, 14. 370	orthosilicate, 6. 905
hydroxyhypophosphites, 8. 889	orthotitanate, 7. 59
hydroxylaminochloride, 14. 81	orthoxide, 13. 863
hydroxytetrasulphate, 14. 329	oxide, 18 . 702, 774, 775
hypochlorite, 2. 275	α-, 13. 863
	——— β-, 13. 863 ————————————————————————————————————
hypophosphis, 8 . 880	aerosol, 13. 781
—— hypophosphite, 8. 889	alcoholsols, 13, 837
iodate, 2 . 359	——————————————————————————————————————
iodide, 14 . 133	colloidal soln., 13. 831
—— iodosulphate, 14 . 317	————— dihydrated, 13 . 892
——————————————————————————————————————	—————— ferromagnetic, 13 . 780
dodecarsenate, 9. 228	films, 13. 781
hydroxysulphatophosphatarse-	Graham's solution, 13. 831
nate, 9. 334	————— Grimaux' solution, 13. 832
hydroxytetrasulphate, 14. 349	
oxytrisulphate, 14. 349	
leucite, 6 . 649, 919	
—— lithium chloride, 14 . 102	——————————————————————————————————————
manganous phosphate, 14. 412	—— jellies, 18 . 862
magnesium alum, 14. 348	monohydrated, 13. 878
ferrous trisulphate, 14, 353	
hydroxysulphide, 14, 194	preparation, 13. 776
tetrahydrotrisulphate, 14. 348	properties, chemical, 18. 805 physical, 18. 782
tetrasulphate, 14 . 348	рауысы, 10. 102

Ferric oxide, St. Gilles solution, 13. 831	Ferric potassium dodecatungstate, 11. 832
——————————————————————————————————————	enneadecaoxybischromate, 11.
trihydrated, 18. 893	310
tritapentahydrate, 13. 890	enneaoxyquaterchromate, 11.
oxybisdichromate, 11. 343	310
oxybromide, 14 . 123	———— heptasulphate, 14 . 339
oxychloride, 14. 72	hexafluoride, 14 . 8
oxydiselenite, 10 . 840	hydrophosphite, 8. 920
oxydisulphate, 14, 330	hydroxytetrasulphate, 14. 343
monohydrate, 14 . 331	metasilicate hydrated, 6. 920
	nitrate, 14. 387
trihydrate, 14 . 331 oxydithionate, 10 . 597	oxyseptieschromate, 11. 310 pentachloride, 14. 102
oxyfluorides, 14 . 6	pentadecoxydecieschromate, 11.
oxyhydroxide, 13 . 878	310
oxyoctoselenite, 10. 840	pentoxydecieschromate, 11. 310
oxypentasulphate, 14. 329	
- oxyphosphate, 14, 407	pyroarsenate, 9. 227
oxytetrahydrohexaselenite, 10. 840	selenatosulphate, 10. 930
oxytungstate, 11 . 801	
paraoxide, 13. 864	sulphide, 14 . 182
pentaminiochloride, 14. 80	- triorthoarsenate, 9. 227
pentoxysulphate, 14. 335	trioxynovieschromate, 11. 310
heptahydrate, 14 . 335	
hexahydrate, 14. 335	hexahydrate, 11. 310
octohydrate, 14. 335	
- pentoxytetrasulphate, 14. 334	trisulphate, 14, 339, 344
decahydrate, 14, 334	
	—— propylammonium fluorides, 14. 7 —— pyridine chromate, 11. 310
pentoxytritatetrasulphate, 14. 333 perchlorate, 2. 403	pyridine enromate, 11. 310
perchloratohypophosphites, 8 . 890	pyromophosphate, 17. 410
periodate, 2. 416	
permanganite, 12 . 280	pyrophosphate, 14. 412
permonosulphomolybdate, 11. 654	— rubidium alum, 14. 344
phosphate, 14, 401	
colloidal, 14 . 404	dichlorotribromide, 14. 125
dihydrate, 14. 401, 403	disulphate, 14. 344
— tetritaheptahydrate, 14. 401	pentachloride, 14, 103
trihydrate, 14. 401	trichlorodibromide, 14. 125
phosphatododecamolybdate, 11. 663	selenide, 10 . 799
phosphatoenneamolybdate, 11. 667	sclenite, 10. 839
phosphatohemipentamolybdate, 11.	decahydrate, 10. 840
669	enneahydrate, 10 . 840
phosphite, 8. 919	——————————————————————————————————————
phosphoctochloride, 14. 81	
potassium alum, 14 . 339 aluminium alums, 14 . 349	
amminochlorides, 14 . 103	selenium dioxyheptachloride, 10. 910
	silicododecamolybdate, 6. 871
bromide, 14. 124	silicododecatungstate, 6: 881
	- — silver chloride, 14. 104
copper sulphide, 14 . 167	disulphide, 14, 193
cuprous tetrasulphide, 14. 192	hydrotetrasulphate, 14. 347
decatungstate, 11, 832	- — metaphosphate, 14. 415
diffuotrichloride 14, 77	nyrophognhata 14 415
dihydrodisulphate, 14. 340	— tetrasulphide, 14. 193
——————————————————————————————————————	sodium amminopyrophosphates, 14.
dioxydihydrotrisulphite, 10. 312	415
dioxydodecasulphate, 14. 341	bromide, 14. 125
decahydrate, 14. 342	chloride, 14. 102
pentanydrate, 14. 342	
	dihydroxypyrophosphate, 14.
dioxytrisulphite, 10. 312	414
disulphate 14 339	dimetasilicate, 6. 913 diorthophosphate, 14. 410
	morthophosphate, 14. 410
dihydrate, 14. 340 dodecahydrate, 14. 339	
tetrahydrate, 14. 340	fluoride, 14. 8
———— dodecamolybdate, 11. 603	hemihydrate, 14. 8
	√ ··· · · / =·

Ferric sodium hydrodisulphate, 14. 345	Ferric trihydrohexachloride, 14. 75
	- trihydroxydiphosphate, 14. 408
hydroxypyrophosphate, 14. 414	- trihydroxyhexaphosphite, 8. 920
hemitrihydrate, 14. 414	trihydroxyphosphate, 14. 408
pentahydrate, 14. 414	trihydroxytriarsenate, 9. 226
hydroxytetrasulphate, 14. 346	trimetaphosphate, 14. 415
metaphosphate, 14. 415	——————————————————————————————————————
oxyquinquieschromate, 11. 310	trihydrate, 14. 415
pyroarsenate, 9. 227	trimethylammonium fluoride, 14. 7
——————————————————————————————————————	triorthophosphate, 14. 409
	- trioxytriselenite, 10. 840
triorthophosphate, 14, 410	— trioxytrisulphate, 14. 333
	hemihydrate, 14. 333
strontium chlorides, 14. 104	heptahydrate, 14. 333
- sulpharsenate, 9. 324	trioxytrisulphite, 10. 312
sulpharsenite, 9. 301	trioxytungstate, 11. 801
sulphate, 14. 245, 302	—— uranate, 12. 64
——————————————————————————————————————	vanadyltrifluoride, 9. 801
complex salts, 14. 336	zinc alum, 14. 348
decahydrate, 14. 303, 307	chloride, 14. 104
dihydrate, 14. 303, 308	tetrasulphate, 14. 348
——————————————————————————————————————	tetracosihydrate, 14. 348
enneahydrate, 14. 303, 307	tetradecahydrate, 14. 348
———— hemihydrate, 14. 303	(di)ferric calcium aluminohydroxytriortho-
———— hemipentahydrate, 14. 308	silicate, 6 . 722
heptahydrate, 14. 303	triorthosilicate, 6. 921
hexahydrate, 14. 303, 308	(tetra)ferric calcium enneahydroxyarsenate,
preparation, 14. 303 properties, chemical, 14. 316	9. 228
properties, chemical, 14, 310	(tri)ferric calcium enneahydroxydiarsenate,
——————————————————————————————————————	9. 227
	dihydroxyhexahypophosphitehypo-
sulphatohypophosphites, 8. 890	phosphite, 8. 889
—— sulphatophosphate, 14. 412	hydroxyhexaphosphitodihypophos-
sulphide, 14 . 179	phite, 8. 889
colloidal, 14. 181	trihydroxypentahypophosphitohypo-
hydrated, 14. 180	phosphite, 8, 889
	Ferrierite, 6. 749
sulphoantimonate, 9. 575	Ferrikalite, 14. 344
sulphoheptachloride, 10. 647; 14.	Ferrimolybdite, 11. 573
78	Ferrinatrite, 14. 346
sulphomolybdate, 11. 682	Ferripyrophosphates, 14, 413 Ferrisulphatosulphites, 10, 312
sulphotellurite, 11. 114	Ferrisulphurie acid, 14. 319, 320
—— sulphotungstate, 11. 859	Ferrisymplesite, 12. 529
	Ferrite, 6. 388; 12. 776, 797, 863
—— tellurite, 11. 82	a-, 12. 776
tetrametaphosphate, 14. 415	β-, 12 . 776
tetramethylammonium fluoride, 14. 7	γ-, 12. 776
tetramminosulphate, 14. 320	δ-, 12. 776
tetranitrosylchloride, 14. 81	Ferrites, 13. 702, 905
——— tetrasulphate, 14. 318	Ferritungstate, 11. 801
enneahydrate, 14. 318	Ferritungstite, 11. 678; 12. 529
—— monohydrate, 14. 319	Ferro alloys, 12. 711
tetravanadate, 9. 791	anthophyllite, 6. 916
—— thallous alum, 14. 349	cobaltum sulphurato mineralisatem,
disulphate, 14. 349	14. 757
pentachloride, 14. 105	fucinato, 12, 709
thiocarbonate, 6. 128	
thiophosphate, 8. 1066	Ferroaxinite, 6. 911 Ferroboron, 5. 17
thiosulphate, 10. 556	Ferrobrucite, 14. 369
tourmalines, 6. 742	Ferrocalcite, 3. 814
—— triamminochloride, 14. 80 —— trichlorohexabromide, 14. 125	Ferro-carbo-titanium, 7. 11
trienforonexabromide, 14. 125 triethylammonium chlorotribromide,	Ferrochromium, 18. 586
14. 125	carbides, 5, 900
	Ferrochromomolybdenum carbide, 5. 900
trihydrodiarsenate, 9. 226	Ferrochromotungsten carbide, 5. 900

Ferrochromotungstenovanadium carbide, 5.	Ferrous annonium hydrophosphate, 14.
Ferrocobaltite, 9. 308; 14. 424	397 — magnesium sulphate, 14. 297
Ferrogoslavite, 4. 613	manganous sulphate, 14. 301
Ferroilmenite, 9. 906	nickelous sulphate, 15. 477
Ferromagnetism, 13. 244	persulphate, 10. 480
Ferromanganese, 12. 194 ————————————————————————————————————	
Ferromanganowolframites, 11. 798	
Ferromolybdenum, 13. 617	sulphate electrolysis, 1. 962
carbide, 5 . 900	sulphatofluoberyllate, 14. 301
Ferronatrite, 2. 656; 12. 529; 14. 328, 346	sulphite, 10. 312
Ferro-nickel, 15. 257 —— enneacarbonyl, 5. 960	tetrachloride, 14. 31
Ferropallidite, 12. 529; 14. 245, 251	tetrafluoride, 14. 3 trifluoride, 14. 3
Ferropicolite, 13. 732	zinc sulphate, 14. 298
Ferroplatinum, 16. 5, 6, 216	antimonatosilicate, 6. 836
Ferrorhodonite, 12. 149	- antimonite, 9. 433
Ferrosic arsenate, 9, 223	- antimony sulphide, 14. 168
bromide, 14 . 117, 125 decahydrate, 14 . 125	aquoanminofluoride, 14, 3
	aquohemianiminofluoride, 14. 3 — aquopentamminofluoride, 14. 2
carbonate, 14 . 370	arsenate colloidal, 9. 223
chloride, 14. 40, 106	hydrogel, 9 . 223
—— oxide, 13 . 702, 731, 732	arsenide, 9. 73
	arsenite, 9. 133
—— phosphate, 14 . 399 —— potassium bromide, 14 . 126	—— auric iodide, 14. 133
sulphite, 10. 312	azide, 8. 354 barium ferric ferryl decametasilicate,
rubidium bromide, 14. 126	6. 922
—— sodium cuprous sulphite, 10. 312	orthosilicate, 6 . 908
—— sulphide, 14 . 137	beryllium sulphate, 14. 297
— tetrasulphate, 14. 350	— - bismuth chloride, 14. 35
Ferrosilicine, 6, 198 Ferrosilicon, 6, 198, 108, 12, 558	nitrate, 9. 710
Ferrosilicon, 6. 136, 198; 13. 558 Ferrosilicotitanium, 7. 12	
Ferrosilizium, 6 . 198	- bromate, 2. 359
Ferrostibian, 9. 343, 461; 12. 149	bromide, 14 . 117
Ferrosol, 15. 262	dihydrate, 14. 117
— taenite, 15. 262	———— hemihydrate, 14. 117
Ferrotantalite, 9. 906 Ferrotally vita 44 07 . 49 520	hexahydrate, 14. 117
Ferrotellurite, 11. 97; 12. 529 Ferrotitanite, 6. 846	monohydrate, 14, 117
Ferrotitanium, 7. 11, 24; 13. 571	——————————————————————————————————————
Ferrotungsten, 13. 626	
carbide, 5 . 900	- — cadmium hexachloride, 14. 35
Ferrous acetaminopyridinechloride, 14. 28	
acetylide, 5. 894 aluminium bromide, 14. 121	—— sulphide, 14 . 167, 194 —— cæsium selenate, 10 . 881
fluoride, 14. 3	
	tetrachloride, 14. 32
oxychloride, 14. 35	trichloride, 14. 32
———— phosphates, 14. 395, 397	calcium aluminium manganese borato-
	silicate, 6. 911
amidosulphonate, 8. 644	silicate, 6 . 911
amminobromide, 14. 120	———— mesozirconate, 7. 136
ammonium aquopentamminosulphate,	———— metasilicate, 6 . 915
14. 290	orthosilicate, 6. 908
——————————————————————————————————————	
	carbide, 5. 894
carbonate. 14. 369	
cobaltous sulphate, 14 . 783	colloidal, 14. 357
———— copper sulphate, 14 . 297	complex, 14. 369
dithionate, 10. 597	complex, 14. 369 formation, 14. 357 preparation, 14. 357
,	1 0

Ferrous chlorate, 2. 359	Ferrous fluoberyllate, 14. 3
chloride, 14 . 9	—— fluoferrite, 14 . 4
——————————————————————————————————————	fluoride, 14 . l
formation, 14. 10	octohydrate, 14. l
hexahydrate, 14. 12	
preparation, 14. 10	fluosilicate, 6 . 957; 14 . 3
properties, chemical, 14, 20	- fluotitanate, 7. 73; 14. 3
physical, 14. 13	
	hominitrosylchloride, 14. 26
	hemitrinitrosylsulphate, 14. 275
—— chloroplatinite, 16. 284	- heptacarbonylbromide, 14. 121
chlorostannate, 7. 450	heptachlorodibismuthite, 9. 668
—— chromate, 11. 309	hexadecaboratodibromide, 5, 140
—— chromic hydrosulphate, 14. 300	- hexadecaboratodichloride, 5, 140
	hexaiodoplumbite, 7. 779
chromite, 11. 201	
chromous sulphate, 14. 300	hexamethylaminochloride, 14. 25
cobalt sulphoarsenitobismuthite, 9.	hexamethylenetetramminochloride,
696	14. 28
cobaltous chloride, 14. 647	hexamminobromide, 14, 120
hydrosulphate, 14 . 783	hexamminochloride, 14. 24
——————————————————————————————————————	hexamminoiodide, 14. 131
—— columbatotantalate, 9. 905	—— hexamminonitrate, 14. 378
copper ferric heptasulphate, 14. 351 docahydrate, 14. 351	hexamminosulphate, 14. 273
	hexantipyrinoborofluoride, 14. 3
	hydrazinochloride, 14. 25, 32
cupric ferric hexasulphide, 14. 192	hydroarsenate, 9. 223
sulphide, 14. 167	hydrochloride, 14. 22
zinc sulpharsenate, 9. 324	hydrofluocolumbate, 9. 872
cuprous chloride, 14. 33	hydrophosphate, 14 . 394, 397
heptasulphide, 14. 167	
lead enneasulphodiantimonite, 9.	
554 pentasulphide, 14. 167	
stannic sulphide, 14. 168, 189	hydroxide, 13 . 718
	hydrosol, 13. 720
trisulphide, 14. 167	hydroxyhydrosulphate, 14. 251
decamminochloride, 14. 24	hydroxylaminochloride, 14, 25
— dialuminium triorthosilicate, 6. 910	
—— diamminobromide, 14. 120	hydroxytrichloride, 14. 21
diamminochloride, 14. 25	——- hyponitrite, 8 . 417
—— diamminoiodide, 14. 132	hypophosphite, 8. 889
——— diamminosulphate, 14. 274	—— iodate, 2 . 359
dianilinechloride, 14. 28	iodide, 14 . 127, 133
didymium dodecanitrate, 14. 378	complex salts inorganic, 14. 132
—— dihydroarsenate, 9. 224	organic, 14. 133
dihydrophosphate, 14. 397	
diiododinitritoplatinite, 8. 523	——————————————————————————————————————
diiodotriarsenite, 9. 257	
dimethylaminochloride, 14. 25	
dinitrosylhexabromide, 8, 426	——————————————————————————————————————
——— dinitrosyltrisulphide, 8. 440 ——— diplatinous hexasulphoplatinate, 16.	—— iodoplatinate, 16. 391
396	—— lead ferrite, 18. 924
—— dipyridinechloride, 14. 29	hexaiodide, 14. 133
(di)pyridylchloride, 14. 28	—— manganese metatitanate, 7. 56
—— dithionate, 10. 597	orthovanadate, 9, 778
—— ditungstate, 11. 810	sulphide, 14. 168
—— ethylenebromide, 14. 121	- tetrodecasulphohexantimonite,
—— ethylenechloride, 14. 27	9 . 55 4
ferrate, 13. 936	lithium phosphate, 14. 396
ferric alum, 14 . 350	sulphate, 14. 293
——————————————————————————————————————	
tetracosihydrate, 14. 350	— magnesium aluminium sulphate, 14.
tetradecahydrate, 14. 350	300
tetrahydrohexasulphate, 14. 351	——————————————————————————————————————
tetrasulphate, 14. 350	ferric trisulphate, 14. 353
tridecahydrate, 14. 351	— metasilicate, 6 . 917 — orthosilicate, 6 . 908
ferrite, 18. 732, 923	orthosilicate, 6. 908

Ferrous magnesium sulphate, 14. 297	Ferrous orthoferrite, 13. 732
tetrachloride, 14. 33	—— orthophosphate, 14. 391
manganese antimonate, 9. 461	orthosilicate, 6 . 905, 906
antimonatosilicate, 6. 836	orthosulphoantimonite, 9. 553
	orthotitanate, 7. 59
896	oxide, 13. 702
metacolumbate, 9. 907	——————————————————————————————————————
metasilicate, 6. 917	
metatantalate, 9. 907	oxynitrate, 14. 377
pentasulphide, 14. 168	oxysulphate, 14. 268
trimetasilicate, 6 . 624	paratungstate, 11. 820
manganous calcium metasilicate, 6.917	—— pentacarbonylbromide, 14. 121
———— chlorides, 14 . 35	pentacarbonylchloride, 14. 27
chlorophosphate, 14 . 396	pentafluoaluminate heptahydrated, 5.
fluophosphate, 14. 396	310
orthosilicate, 6 . 909	—— pentafluoferrate, 14. 8
——————————————————————————————————————	pentahydrosulphatosulphate, 14, 273
sulphate, 14. 300	pentaluminoxyaluminotrimesosilicate,
mercuric hexaiodide, 14. 133	6 . 620
iodide, 14 . 133	pentaluminoxyaluminotriorthosilicate,
tetrachloride, 14. 35	6. 620
metacolumbate, 9. 868	pentametatitanatodimetantimonate,
— metantimonate, 9. 460	9. 461
—— metaphosphate, 14. 398	pentamminosulphate, 14. 274
tetrahydrate, 14. 398	- perchlorate, 2, 403
— metarsenite, 9. 133	· periodate, 2. 416
metasilicate, 6 . 912	permanganite, 12 . 280
metasulpharsenatoxymolybdate, 9.	permonosulphomolybdate, 11. 654
332	peroxyhydroxide, 13. 725
metasulphoantimonite, 9, 553	phenantrolinechloride, 14. 28
metatantalate, 9. 905	phosphate, 14. 390
—— metatitanate, 7. 58	colloidal, 14, 392, 394
	hexahydrate, 14. 392
metatungstate, 11 . 827	monohydrate, 14, 900
metavanadate, 9. 791	monohydrate, 14, 392
methylalcoholochloride, 14. 27	octohydrate, 14, 392
—— molybdate, 11. 573	trihydrate, 14. 392
monamminochloride, 14. 25	phosphite, 8 . 919
monamminoiodide, 14. 132	platinosic sulphate, 16, 403
monamminosulphate, 14. 274	potassium carbonate, 14. 369
monothiophosphate, 8. 1069	cobaltous sulphate, 14. 783
nickel chloride, 15. 421	copper sulphate, 14. 297
pentasulphide, 15. 446	——— magnesium sulphate, 14. 297
	manganous sulphate, 14. 301
tetrasulphide, 15. 445	nickelous sulphate, 15. 477
trisulphide, 15 . 446	orthosulphoantimonite, 9. 553
nickelous hydrosulphate, 15. 477	selenate, 10. 881
sulphate, 15. 477	dibrulanta 40 001
nitrate, 14 . 315, 376, 378	
decahydrate, 14. 377	nexanydrate, 10, 881
————— enneahydrate, 14 . 377	— selenatoselenate, 10. 930
———— hexahydrate, 14 . 376	sodium titanium orthosilicate, 6.
octohydrate, 14 . 377	843
pentahydrate, 14 . 377	
preparation, 14. 376	dihydrate, 14 . 291
———— properties, chemical, 14. 377	hexahydrate, 14. 290
physical, 14, 377	tetrahydrate, 14, 291
nitride, 8 . 134	sulphatoselenate, 10 . 930
nitrite, 8 . 500	
	tetrachloride, 14. 32
—— nitrosylbromide, 14. 121	dihydrate, 14. 32
nitrosyldichloride, 8, 425	
dihydrated, 8. 425	totrofluorida 44 9
- nitrosylhydrophosphate, 8. 426; 14.	
397	trichloride, 14. 32
—— nitrosylpentamminochloride, 14. 26	zinc sulphate, 14. 298
nitrosylpentamminonitrate, 14. 378	pyroantimonate, 9. 461
—— nitrosylpentaquonitrate, 14. 378	pyrophosphate, 14 . 398
nitrosylselenate, 10. 880	pyrosulphate, 10. 447; 14. 273
nitrosylsulphate, 8. 424; 14. 275	rubidium selenate, 10. 881
orthoarsenate, 9. 223	sulphate, 14. 292
octohydrate, 9. 223	tetrachloride, 14. 32
	the state of the s

000	
Ferrous rubidium trichloride, 14. 32	Ferrous tetracarbonyliodide, 14. 132
	tetrametaphosphate, 14. 398
	tetramminosulphate, 14. 274
pentahydrate, 10. 880	tetramolybdite, 11. 488
selenide, 10 . 799	tetrapyridinochloride, 14. 28
—— selenite, 10. 839	—— tetravanadate, 9. 791
silver henasulphide, 14. 193	tetritanitroxylbromide, 14. 121
octosulphide, 14. 193	—— tetritanitroxylchloride, 14. 26
pentasulphide, 14. 193	thallium sulphite, 10. 312
sulphide, 14. 167	voltaite, 14. 353
trisulphide, 14. 193	—— thallous selenate, 10. 882
sodium calcium manganous phosphate,	sulphate, 14. 300
12. 455	thiocarbonate, 6. 128
tetrantimonate, 9. 461	thiophosphate, 8. 1066
	thiophosphite, 8, 1062
metaphosphate, 14. 398	thiopyrophosphate, 8, 1070
pentasulphide, 14 . 166	thiosulphate, 10. 555
persulphate, 10 . 480	—— titanium sodium trimetasilicate, 6 . 843 —— tourmaline, 6 . 742
pyrophosphate, 14 . 398 sulphate, 14 . 294	triamminosulphate, 14. 274
	monohydrate, 14. 274
	tricalcium tetrametasilicate, 6. 405
sulphide, 14. 165	triferric oxide, 13. 807
tetrasulphate, 14 . 295	—— trihydrosulphatosulphate, 14. 273
	trimetaphosphate, 14. 398
titanometasilicate, 6. 845	trioxydodecanitritohexaplatinite, 8.
triphosphate, 14. 398	521
tripotassium hexachloride, 14. 32	trioxysulpharsenate, 9. 329
stannie bromide, 14. 122	tungstate, 11. 798, 801
cuprous sulphide, 9. 475	trihydrate, 11 . 801
hexachloride, 14. 35	ultramarine, 6. 590
stannous sulphide, 14, 168	
strontium chlorides, 14. 33 suboxide, 13. 702	batotantalate, 9. 906
sulpharsenate, 9. 323	- – zinc chlorides, 14. 34
sulpharsenatosulphomolybdate, 9. 323	hydrosulphate, 14. 298
sulpharsenite, 9. 301	orthosilicate, 6. 909
sulphate, 14. 242	sulphate, 14. 297
dihydrate, 14. 250	sulphide, 14. 167
heptahydrate, 14 . 248	trisulphate, 14. 298
hexahydrate, 14. 249	dihydrate, 14. 298
hydrates, 14. 246	octodecahydrate, 14. 298
monohydrate, 14. 249, 250	(di)ferrous calcium aluminohydroxydiortho-
——————————————————————————————————————	silicate, 6 . 919 Ferrovanadium, 9 . 726; 13 . 579
properties, chemical, 14. 264	Ferrovanite, 12. 529
physical, 14. 251	Ferro-wagnerite, 4. 388
tetrahydrate, 14. 249, 250	Ferrowolframites, 11. 798
	Ferruginous limestone, 3. 815
	manganese ores, 12. 150
sulphide, 14 . 136, 140	Ferrum arsenico mineralisatum, 11. 673
and cuprous sulphide, 3. 24	—— calciforme, 11. 673
complex salts, 14. 165	candidum, 15. 178 cum magnesio et terra calcarea arido
formation, 14. 141 nature, 14. 9, 137	aereo mineralisatum, 14. 355
——————————————————————————————————————	intractibile albicans spathosum, 14.355
——————————————————————————————————————	liquidum, 13. 831
——————————————————————————————————————	—— mineralisatum, 12. 140
	— nigricans spledens wolstersdorfi, 12.
sulphoantimonate, 9. 575	140
sulphochromite, 11. 433	reductum, 12. 758; 14. 303
sulphomolybdate, 11. 653	Ferryl barium ferric ferrous decametasili-
sulphosilicate, 6. 987	cate, 6 . 922
sulphotellurite, 11. 114	
sulphotungstate, 11. 859	—— copper arsenate, 9. 227 —— metasilicate, 6. 921
	metatitanate, 7. 60
	(di)ferryl lead orthodisilicate, 6. 889
tetracarbonylbromide, 14. 121	Fettling, 12. 637
—— tetracarbonylchloride, 14. 27	Fettstein, 6. 569
•	

01314
Feuerblende, 9. 539
Feuerstein, 6. 140
Feux follets, 8, 803
Feux follets, 8. 803 Fibroferrite, 12. 529; 14. 328, 333
Fibrolite, 6. 455
Fick's law of diffusion, 1, 536
Fiedlerite, 2. 15; 7. 737
Field of force about molecules, 4. 187
Fieldite, 9 . 291
Fierroso, 4 . 697
Figures, corrosion, 1. 611
— etch, 1. 611 — interference, 1. 610 Fillowite, 3. 623; 8. 733; 14. 149, 455
—— interference, 1. 610
Fillowite, 8 . 623; 8 . 733; 14 . 149, 455
Finnemanite, 9. 5, 257, 262
Fire, 1. 55, 59 ————————————————————————————————————
air, 1. 344
astrai, 1, 04
—— blende, 3 . 300; 9 . 539
(element), 1. 32
—— elemental, 1. 64 —— marble, 3. 815
matter, 1. 384 sacred, 1. 59
Fischaugenstein, 6. 368
Fischerite, 5 . 155, 3 66; 8 . 733
Fittig's reaction, 6, 966
Fittig's reaction, 6. 966 Fixed alkalies, 2. 420
Fixing soln., 13. 615
Fizelyite, 9. 55
Flajolotite, 9. 461; 12. 529
Flame, 1. 56, 61
electrical, 1. 882
musical, 1. 127
philosopher's, 1. 126
spectruin, 4. 7
Flamel, N., 1. 48
Flames in nitrous oxide, 8. 396 Flatus, 1. 61, 122
Flavite, 12. 745
Flêches d'amour. 7. 34 : 13. 877
Flêches d'amour, 7, 34; 13, 877 Fleurs de Diane, 5, 2
phosphore, 8 . 891, 940
——————————————————————————————————————
Fliegelstein, 9. 3
Fliegengift, 9. 3
Flinkite, 9 . 5, 220; 12 . 149 Flint, 6 . 140
Flint, 6, 140
Flints, liquor of, 6 . 317 oil of, 6 . 317
Float tin 7 394
Float tin, 7. 394 Flocculation colloids, 3. 536
Flokite, 6 . 748
Flooring plaster, 3. 774
Florencite 7 877
Florentine diamond, 5. 711
Flores antimonii, 9. 378, 420, 421
vomitivi albi, 9 . 504
— bismuthi, 9 . 646
—— cupri, 3 . 70, 117 —— jovis, 7 . 395 —— plumbi, 7 . 563, 639
plumbi. 7. 563, 639
salis ammonici martiales, 14. 98
stannic, 7, 395
sulfuris, 10. 3, 19
sulfuris, 10. 3, 19 zinci, 4. 507
Flos cobalti, 9. 228
ferri, 3 . 815
Flotation of ores, 3. 22
VOIC VVI

VOL. XVI.

```
Flouring of mercury, 3. 498
Flourspar, 3, 623, 688
Flow lines, 12. 898
Flowers of copper, 3. 70, 117
Fluid magnesia, 4. 361
Flume, 8, 498
Fluoadelite, 9. 258
Fluoaluminates, 5. 303
Fluoarsenates, 9. 235
Fluoborates, 5. 125
Fluoboryl lead barium calcium diorthotri-
silicate, 6. 890
Fluocerite, 5. 520, 637
Fluochlore, 5. 519
Fluochromic acid, 11. 365
Fluocolumbates, 9. 851
Fluodichromates, 11. 365
Fluodioxytungstates, 11. 838
Fluohypomanganites, 12. 342
Fluomanganites, 12. 342, 347
Fluomimetite, 9. 259
Fluopentammines, 11. 403
Fluoperborates, 5, 129
Fluoperboric acid, 5. 129
Fluopyromorphite, 7. 882
Fluor, 2. 1
---- acid, 2. 3
-- apatite, 2. 1
 ---- lapis, 2. 3
Fluorencite, 5. 529
Fluorescence spectrum, 12. 19
Fluorescent spectrum, 4. 7
— X-rays, 4. 35
Fluorides, 2. 137
---- acid, 2. 138
---- complex, 2. 738
-- detection, 2. 135
---- determination, 2. 135
---- - double, 2. 138
--- etching test, 2. 135
--- hydroxy-, 2. 139
--- oxy-, 2. 139
---- thermochemistry, 2. 218
---- uses, 2. 134
Fluorine, 2. 3, 4
---- action acetone, 2. 13
---- trichloride, 2. 12
----- borates, 2. 13
---- boric oxide, 2. 12
---- boron, 2. 12
             - trichloride, 2. 12
---- bromides, 2. 13
----- bromine, 2. 12
   ---- calcium carbide, 2. 3
  ——— carbon, 2. 12, 13
  ---- dioxide, 2. 13
   ---- disulphide, 2. 13
   ---- carbonates, 2. 13
   - -- carbonyl chloride, 2. 13
   - ---- chlorides, 2. 13
```

Fluorine action chlorine, 2. 11	Fluorine smell, 2. 9
———— chloroform, 2. 13	spectrum, 2. 10
cyanides, 2. 13	spectrum, 2. 10 transport number, 2. 10
cvanogen, 2. 13	Fluorite, 2. 1, 3; 8. 688; 12. 149
ethylene tetrachloride, 2. 13	stinking, 3. 692
glass, 2. 12	Fluorium, 2. 4
hydrofluoric acid, 2. 12	Fluoroapatite, 3. 896
hydrogen 2 11	barium, 3. 901
———— bromide, 2 . 12	strontium, 3. 901
chloride, 2. 12	Fluorocuprates, 3. 156
	Fluoroheavy spar, 3. 802
sulphide, 2. 11	Fluoro-iodic acid, 2. 363
iodides, 2. 13	Fluorspar, 2. 1, 3; 5. 530, 531; 7. 896;
iodine, 2. 12	12. 6
——— metals, 2. 13	catalysis by, 1. 487
nitrates, 2. 13	coloration, 3. 692
nitrides, 2. 13	cryolite-aluminia fusibility, 5. 167
nitrogen, 2. 12	
————— peroxide, 2, 12	sp. gr., 5. 168
——————————————————————————————————————	stinking, 3. 692
oxides, 2, 13	X-radiogram, 1. 640
oxygen, 2. 11	Fluosilicates, 6. 934, 940, 944
ozone, 2. 11	Fluostannates, 9. 422
phosphates, 2. 13	
phosphides, 2. 13	Fluosulphonic acid 10, 684
phosphorus, 3. 12	Fluosulphonic acid, 10. 684
ovvetnoride 9 19	Fluotantalates, 9. 851, 914
	Fluotellurites, 11. 98
pentachioride, 2. 12	Fluotitanates, 7. 69; 9. 851
——— pentafluoride, 2. 12	Fluotitanites, 7. 66
pentoxide, 2. 12	Fluotitanous acid, 7, 66
	Fluotrichromates, 11. 366
selenium, 2. 11	Fluovanadatapatite, 9. 801
silica, 2. 12	Fluovanadinite, 9. 801
Silicon, 2. 12	Fluozirconates, 7. 137, 138
——————————————————————————————————————	Fluss, 2. 3
suipnates. 2. 13	Flusspath, 2. 3
——————————————————————————————————————	Flusssäure, 2. 3
	Flussspath, hepatic, 2. 1
	stink, 2. 1
suipnurie acid, 2. 11	Flutherite, 12. 5
tellurium, 2. 11	Flux density of magnetism, 13. 245
——— water, 2. 11	Fætid limestone, 3. 815
atomic weight, 2. 13	Fogs, chemical, 10. 401
—— boiling point, 2. 10	Foie d'arsenic, 9. 116
bromine compounds, 2. 113	Foliated tellurium, 3. 494
capillarity, 2. 10	Folgerite, 15. 5, 445
chlorine compounds, 2. 113	Fondant de Rotrou, 9. 420
—— colour, 2. 9	Fondon process extraction silver, 3. 303
—— decomposition voltage, 2. 10	Fonte, 12. 708
density (relative), 2. 10	—— blanche, 12. 708
—— dispersion, 2. 10	en gneuse, 12 . 708
elementary nature, 2. 9	épurée, 12 . 709
expansion (thermal), 2. 10	—— grise, 12 . 708
—— history, 2. 3	malléable, 12 . 709
in bones, 2. 2	mazée, 12. 709
—— index of refraction, 2. 10	truitée, 12 . 708
—— iodine compounds, 2. 114	Food-pastes, 13. 615
—— magnetic susceptibility, 2. 114	Footeîte, 2. 15
—— melting point, 2. 10	Footeite, 8. 178
—— mineral waters, 2. 2	Forbesite, 9. 5, 232; 14. 424; 15. 5
—— molecular weight, 2. 13	Force, 1. 689
occurrence, 2. 1	Foresite, 4. 206; 6. 759
preparation, 2. 7	Formaldehyde, 18. 615
Arago's process, 2. 9	Formatosodalite, 6. 583
Arago's process, 2. 9 Moissan's process, 2. 8	Formic acid, 6. 72; 13. 613, 615
Poulence and Meslans' process, 2.	Formula weight, 1. 179
9	Formulæ chemical compounds, 1, 223
properties, chemical, 2. 10	constitutional, 1. 206
	empirical for properties of solids, 1. 834
- refraction, 2. 10	graphic, 1. 206
τ.	Probano, 1. 200

Formulæ minerals, 1. 668	Fulminating silver, 3. 381
— mixed crystals, 1. 668, 670	Fulminic acid, 4. 993
—— of compounds, 1. 179	Fulminoplatinums, 16. 336
—— structural, 1. 206	Fume (lead furnace), 7. 503
Forsterite, 6 . 384, 385	zine, 4. 411
Foshagite, 6. 363	Furning acids, 2. 190
Fossil red ore, 12. 530	sulphuric acid, 10. 351
Fosterite, 12. 529	Furnace, 4. 701
Foucherite, 12. 529; 14. 411	Aludel, 4 . 701
Foundry iron, 12. 597	—— blast, 12 . 584 —— (lead), 7 . 502
—— metal, 4. 671 Fouquéite, 6. 721	Rustamenta's 4 701
Fourmarierite, 12. 67	—— Bustamente's, 4 . 701 —— Catalan, 12 . 582
Fourth state matter, 3. 936; 4. 28	Corsican, 12. 582
Fouthmarierite, 12. 5	Czermak-Spirek's, 4. 701
Fowlerite, 6. 391, 898; 12. 149	—— Flintshire, 7. 541
Fowler's solution, 9. 40	fume. 9. 90
Fractional crystallization, see crystallization	—— Jumbo, 7, 502
electrolysis, 1. 1039	—— Moffat hearth, 7. 502
precipitation, see precipitation	ore hearth (lead), 7. 502
Fractionation, controlling, 5. 541	Pilz, 7. 503
Franckeite, 7. 255, 283, 491; 9. 553	——— Raschette, 7. 503
Franckenite, 9. 343	—— reverberatory, 3 . 25; 7 . 501
Francolite, 3. 896	
Frankfurt black, 5, 749 Frankfurdite 2, 622, 5, 4, 94	Scotch hearth, 7. 502 shaft (lead), 7. 502
Franklandite, 3 . 623; 5 . 4, 94 Franklinite, 4 . 408; 5 . 296; 12 . 149, 529;	Litchfield's, 4. 701
18. 917	Novak's, 4. 701
Fraunhofer's lines, 4. 5	Scott's, 4. 701
Fredricite, 9. 291	Furnaces, zinc, 4. 413
Free energy, 1. 716	Fuscite, 6. 762
and entropy, 1. 726	Fusible white precipitate, 4, 786, 845, 862
—— path of molecules, 1. 748	Fusion curve, 1. 445
Freezing constant, 1. 566	—— heat of, 1. 426
curves, 1. 519	—— oxidizing, 3. 26
mixture, Thilorier's, 6. 33	—— reducing, 3 . 26
— mixtures, 8 . 701, 710	
point and molecular weight, 1. 565	G
and osmotic pressure, 1. 568 vapour pressure, 1. 565	· ·
colloids, 1. 774	Gabbro, 15. 9
——————————————————————————————————————	Gabbronite, 6 . 569, 762
Beckmann's process, 1. 567	Gabronite, 6. 569
pressure, 1. 457	Gadilonite, 4. 206
temperature, 1. 457	Gadolinia, 5. 502, 693
Freiberg vitriolization process silver, 3. 305	isolation, 5. 686
Freibergite, 9. 291	Gadolinite, 5. 508; 7. 185, 255, 896; 12. 529
Freieslebenite, 7. 491; 9. 343, 551	Gadolinium, 5. 686
Freirinite, 9. 162, 174	ammonium nitrate, 5. 695
French metal, 9. 350	atomic number, 5. 690
Frenching, 9. 350	—— weight, 5. 690 —— bromide, 5. 694
Frenzelite, 9. 589; 10. 694, 795	carbonate, 5. 695
Freyalite, 5. 515; 7. 185 Friabilis magnesia terriformis, 12. 267	
Friction-lights, 8. 1059	chloroaurate, 8. 595
Friedelite, 6 . 895; 12 . 149	chloroplatinum, 16. 330
Frieseite, 14. 193	chromate, 11. 288
Frigidite, 9. 291; 15. 9	—— cobaltous nitrate, 14. 828
Fritscheite, 9. 716	dihydrotetraselenite, 10. 831
Fritzcheite, 12. 5	dithionate, 10. 594
Frugardite, 6. 726	fluoride, 5 . 693
Fruit juices, 18. 613	hydrazine sulphate, 5. 695
Fuchsite, 6. 605, 607	hydroxide, 5693
Fuggerite, 6. 713	hydroxycarbonate, 5. 695
Fullancium 6 496	hyposulphite, 10. 183
Fullencium, 6. 496	
	isolation, 5 . 551
Fuller's earth, 6. 496	isolation, 5. 551 magnesium nitrate, 5. 695
Fuller's earth, 6. 496 Fullonite, 18. 877	isolation, 5. 551 magnesium nitrate, 5. 695 manganous nitrate, 12. 446
Fuller's earth, 6. 496	isolation, 5. 551 magnesium nitrate, 5. 695

04441	
Gadolinium nitrate, 5. 695	Callous nickel alloys, 15. 231
occurrence, 5. 686	nitrate, 5. 386
oxychloride, 694	nitrite, 8 . 495
oxysulphate, 5. 694	occurrence, 5. 374
paratungstate, 11. 819	oxide, 5. 382 oxychloride, 5. 383
potassium chromates, 11. 288	phosphate, 5. 386
properties, 5 . 688	properties, chemical, 5. 380
sesquoxide, 5. 693	physical, 5. 377
	selenate, 10. 869
	docosihydrate, 10. 869
solubility of hydrogen, 1. 307	sesquioxide, 5 . 382
sulphate, 5. 694	silicododecatungstate, 6. 880
sulphide, 5. 694	solubility of hydrogen, 1. 307
	sulphate, 5 . 384
dodecahydrate. 10. 302	sulphide, 5 . 384
	sulphite, 10 . 301
vanadate, 9. 775	thallous disulphate, 5. 467
zinc nitrate, 5 . 695	
Gageite, 6. 894	trichloride, 5. 383
Gahnite, 4. 408; 5. 154, 296; 6. 726	triiodide, 5. 384
Galacite, 6 . 652	trioxide, 5. 382
Galactite, 6, 752	Gallitzenite, 4, 613
Galapectite, 6. 494	Gallitzenstein, 4, 613 Gallous bromide, 5, 384
Galbantimonerz, 9. 435 Galen C., 1. 38	chloride, 5. 383
Galena, 5 . 713; 7 . 491	- — iodide, 5 . 384
	oxide, 5. 382
	Galmei, 4, 408, 642; 6, 442
pictoris, 5. 713	Galmeja, 6. 442
pseudo-, 5 . 713	Galvanized iron, 4. 495
storilis, 5. 713	Galvanizing, 4. 494
Galenite, 7, 780	dry, 4 . 454
Galenobismuthite, 7. 491; 9. 693	Gamma-rays or γ-rays, 4. 86
Galenobismutite, 9. 589	Gamsigradite, 6 . 821 ; 12 . 149
Galenoceratite, 7. 852	Gangue, 3. 5
Gallie bromide, 5. 384	Ganister, 6. 140
— chloride, 5 . 383	
- disulphate ammonium, 5. 385	Ganomalite, 6, 888; 7, 491; 12, 149
	Ganomatite, 12, 529
	Ganophyllite, 6 , 901; 12 , 149, 150
hydroxide, 5 . 382	Garbyite, 9. 318 Garkupfer, 15. 19
iodide, 5 . 384	Garnet, 5 . 155
oxide, 5. 382	black, 6. 921; 7. 30
sulphate, 5 . 384	Bohemian, 6. 815
	calcium ferric, 6. 921
thallous alum, 5 . 467	common, 6 . 921
alliferous zine Blende, 7. 896	manganese, 6. 901
allilei, Gallileo, 1. 47	oriental, 16. 910
allium, 5. 373	precious, 6 . 910
— analytical reactions, 5. 380	schörl-like, 7. 30
arsenate, 9. 187	syrian, 6 . 910
arsenide, 9. 68	X-radiogram, 1. 642
atomic number, 5. 381	yttria, 6. 921
— — weight, 5 . 381 — cæsium selenate, 10 . 870	Garnets alkali, 6. 582
- carbonate, 5. 386	Garnierite, 6. 933; 7. 896; 15. 5
— dibromide, 5 . 384	Garnitic acid, 6. 295
dichloride, 5 . 383	Garrisonite, 13. 629 Garschaumgraphite, 12. 859
- diiodide, 5 . 384	Gas, 1. 122
— extraction, 5. 375	analogy hypotheses, osmotic pressure
— fluoride, 5 . 383	1. 557
	analysis, 1. 144
halides, 5 . 383	
- history, 5. 373	and vapour, 1. 435
history, 5 . 373 hydroxide, 5 . 383	—— and vapour, 1. 435 —— calcareus, 6. 2
history, 5. 373 hydroxide, 5. 383 iron alloys, 13. 557 isotopes, 5. 381	—— calcareus, 6 . 2 —— carbonum, 6 . 1 —— cells, 1 . 1033
history, 5 . 373 hydroxide, 5 . 383	

0.132,122	
Gas detonating, 1. 137	German silver, grades of best-best, 15. 209
—— electrolytic, 1. 137	extra white metal, 15
equation, 1. 161, 754	209
	fifths, 15 . 209
fluoborique, 5. 121	
fulginosum, 1. 122 laws and osmotic pressure, 1. 543	seconds, 15. 209
- musti, 6. 1	special first, 15 . 209
pingue, 1. 122	
sicum, 1. 122	white metal, 15. 209
sylvestre, 1. 122	Germanic fluoride, 7, 268
uvarum, 6 . 1	iodide, 7 . 272
vinorum, 6 . 1	oxide, 7. 265
Gases, Are molucules alike? 1. 342	
density, 1. 175	Germanite, 7, 255, 275
diffusion, 1. 338 drying, 1. 288	Germanites, 7, 265 Germanium, 1, 261; 7, 254
effusion, 1. 342	analytical reaction, 7, 261
equilibrium, 1. 152	atomic number, 7. 262
kinetic theory, 1. 742	weight, 7. 261
liquefaction, 1. 868	bromide, 7. 271
molecular heat, 1. 795	—— carbide, 5 . 885
of, effect of pressure, 1. 796 temperature,	—— carbonates, 7 . 275
	chloride, 7. 269
1. 796	chloroform, 7, 263, 270
	—— copper sulpharsenite, 9. 298 —— difluoride, 7. 268
separation by diffusion, 1. 341	—— diiodide, 7. 272
solubility, and volume of solvent, 1.	- dioxide, 7. 265
527	—— discovery, 7. 254
effect of pressure, 1. 529	disulphide, 7. 274
in salt solutions, 1. 535	colloidal, 7. 274
of mixed, 1. 533	electronic structure, 7. 262
specific gravity, 1. 175	extraction, 7. 256
heat, constant pressure, 1. 786,	—— fluorides, 7. 268
787 ———————————————————————————————————	—— glass, 6 . 522 —— hydrides, 7 . 263
thermal effects, compression, 1, 862	— hydrotrichloride, 7, 270
	—— hydroxide, 7. 265
two specific heats, 1. 786	—— iodide, 7. 271
Gastaldite, 6 . 643; 12 . 529	iron alloys, 13. 576
Gaunajuatite, 10. 694	—— isotopes, 7. 262
Gavite, 6 . 430	lead silver sulphantimonite, 7. 255
Gay Lussac's law, 1. 171	——————————————————————————————————————
Gaylussite, 8. 622	monosulphide, 7. 273 colloidal, 7. 273
Gaz acide sulfureux, 10. 187 —— fluoborique, 5. 126	
Gearksutite, 8 . 623; 5 . 154, 309	occurrence, 7. 254
Geber, 1. 40	oxide, 7. 265
—— latin, 1. 40	oxychloride, 7 . 271
pseudo-, 1. 40	—— oxysulphide, 7. 274
Gedrite, 391 . 396	phosphate, 7. 275
Geekis, 14. 183	platinum alloys, 16. 211
Gehlenite, 6, 713, 728	potassium sulphate, 7. 269 preparation, 7. 256
Geikielite, 7. 3, 54; 12. 529 Gel. 1. 771	properties chemical 7 259
Gelbbleierz, 11. 566	—— properties, chemical, 7 . 259 —— physical, 7 . 257
Gelbeisenerz, 14. 343	sulpharsenite, 9. 301
Gelbeisenstein, 13. 886	—— sulphates, 7. 275
Gelberde, 6 . 472	sulphide, 7 . 273
Gelberz, 11. 1, 2	tetrabromide, 7. 271
Gemmahuzi, 6. 498	tetrachloride, 7. 269
Genthite, 6. 932; 15. 5	tetrafluoride, 7. 268
Geocoronium, 8. 6	tetrahydride, 7. 263 tetraiodide, 7. 272
Geocronite, 7. 491; 9. 545 Geokronite, 9. 343, 545	
Georgiadesite, 9. 5, 263	Germanochloroform, 7. 270
Gerhardtite, 3. 285	Germanoethane, 7. 264
German silver, 4. 671; 15. 208	Germanoformic acid, 7. 265
grades of bests, 15. 209	Germanomethane, 7. 263
•	

000 (1311121121	n mpun
C	Class bridge tod & 991
Germanomolybdic acid, 11. 605	Glass hydrated, 6. 321
Germanopropane, 7. 264	Jena, 6 . 522
Germanous fluoride, 7. 268	—— malleable, 6. 520
—— hydroxide, 7. 265	manufacture, 6. 522
—— iodide, 7. 272	muscovy, 6 . 606
phosphate, 7 . 275	ore, 3 . 300
oxide, 7 . 265	permeability to gases, 1. 305
sulphide, 7. 273	oxygen, 1. 371
Germanyl chloride, 7. 271	—— phosphatosilicate, 6. 522
Germarite, 6. 392	—— potash-lead, 6. 522
Gersbyite, 5. 370	——————————————————————————————————————
Gersdorffite, 9. 4, 310; 14. 424; 15. 5	pots, 6 . 522
Geyserite, 6. 141	properties, physical, 6. 524
Ghisa, 12. 708	ruby, 3 . 564
	soda-lime, 6 . 522
affinita, 12. 709	solubility of hydrogen, 1. 309
—— bianca, 12. 708	
grigia, 12. 708	thallium, 6 . 826
	toughened, 6 . 531
Gialliolino, 9. 457	Glasses, germanium, 6. 522
Giallo di barite, 11. 273	Glasspat, 2. 3
stronziana, 11. 271	Glassschörl, 6. 911
Gibbs' adsorption equation, 1. 854	Glasstein, 6. 911
—— and Helmholtz's equation, 1. 1038	Glasurite, 6. 907
phase rate, 1. 444, 446	Glauber, J. R., 1. 52
Gibbsite, 5. 154, 155, 249, 273, 274; 8. 733	Glauberite, 2. 430; 3. 623, 805
Gieseckite, 6. 619	Glauber's iron tree, 14. 10
Giftkies, 9. 306	Glauchroite, 12, 149
Gigantolite, 6. 619	Glaucochroite, 6. 894
Gignatolite, 6. 812	Glaucodidymia, 5. 502
Gilbertite, 6. 600	Glaucodote, 9. 4; 12. 529; 14. 424; 15. 9
Gillespite, 6. 908; 12. 529	Glaucodotite, 9. 309
Gillingite, 6. 908; 12. 529	Glaucodymia, 5. 502
	Glaucolite, 6. 762
Gilpinite, 12. 5, 106	
Giltstein, 6. 430	Glauconite, 6. 582, 919; 12. 529
Gilumin, 6. 184	soda, 6 . 920
Gioberite, 6. 427	Glauconitic limestone, 3. 815
Giobertite, 4. 349	Glaucophane, 6, 391, 643; 12, 529
Giolitti's cement, 12. 737	lithia, 6 . 644
Giorgiosite, 4. 365	Glaucopyrite, 9. 74, 308
Gismondite, 6 . 575, 711	Glaucosiderit, 14. 390
Giufite, 6 . 746	Glaze salt, 6. 514
Gjutjern, 12 . 708	Glazed pig, 13 . 558
Gjutstähl, 12. 711	Glazerz, 3. 438
Glâce-du-fond, 1. 464	Gleba, 10 . l
Glacies mariæ, 3. 761	Glimmer, 6 . 604
Gladite, 9. 694	Glinkite, 6 . 385
Glagerite, 6. 495	Globosite, 14. 411
Glance ore, 3. 300	Globulites, 1. 628
spar, 6. 456	Glockerite, 11. 530; 14. 328, 335
Glantz, 5. 713	Glossecollite, 6. 495
Glantzkobolt, 9. 308	Glottalite, 6. 752
Glanzarsenikkies, 9. 306	Glucinates, see Beryllonates
Glanzersenstein, 18. 886	Glucine, 4. 205
Glanzmanganerz, 12. 238	Glucinium, see Baryllium
Glanzspath, 6. 456	Glucinum, see Beryllium
Glaser, C., 1. 52	Glucose and hydrogen, 1. 304 Glühen, 12. 673
Glaserite, 2. 430, 657, 688	
Glaserz, 8. 300	Glycerol and hydrogen, 1. 304
Glassy felspar, 6. 662	Glycerophosphoric acid, 8. 964
Glaskopf, 18. 877, 885	Glycine, 4. 205
Glasköpfe, 18 . 774, 775	Glycocol and hydrogen, 1. 304
Glass, 6. 520; 12. 19	Glycozone, 1. 946
—— Bohemian, 6 . 522	Gmelinite, 6. 575
—— borosilicate, 6. 522	—— potassium, 6 . 735
bottle, 6 . 522	—— sodium, 6 . 735
catalysis by, 1, 487	Gneiss, 15. 9
crown, 6. 522	Gnomium, 14. 421, 525
cryolitic, 5. 304	Goblet-fiend, 9. 2
crystal, 6 . 522	Goethite, 12. 530; 18. 877
flint, 6. 522	a-, 13. 880
	1 .,

Goethite y-, 13. 880	Gold colloidal, 3. 554
—— colloidal, 13 . 887	copper alloys, 3. 573
Gökumite, 6 . 726	silver-nickel alloys, 15. 205
Gogkelgut, 4. 613 Gold, 3. 491	—— dialuminide, 5 . 233 —— diantimonide, 9 . 405
allotropie, 3 . 568	—— dibromide, 3. 405
alluvial, 3. 491	dicadmium stannide, 7. 384
—— aluminide, 5 . 233	—— dioxide, 3 . 577, 579
aluminium alloys, 5. 233	—— diplosis of, 1. 49
nickel alloys, 15 . 231	distannide, 7. 371
amalgam, 3. 494; 4. 696, 1027	distribution, 3. 491
colloidal, 4. 1028	disulphide, 8. 612
ammonium amminophosphatomolyb-	disulphitotetramminocobaltate, 10.
date, 11. 671 —— sodium pyrophosphatohemihena-	317 —— ditelluride, 11. 48
molybdate, 11. 671	extraction, 3. 495
- and silver parting, 3. 508	amalgamation process, 3. 455
——————————————————————————————————————	chlorination, 3. 499
thallium, 5. 427	——————————————————————————————————————
antimonite, 9. 432	Faraday's, 3. 554
arsenate, 9. 164	
	fulminating, 3 . 582
weight, 3. 535	hall-marked, 3. 533
azide, 8. 349	—— hemialuminide, 5. 233
barium thiosulphate, 10. 545	—— hemiarsenide, 9. 65
bismuth alloys, 9 . 636	—— hemibismuthide, 9. 636
black, 3. 531; 9. 636	hemimercuride, 4. 1028
borate, 5. 85	hemitelluride, 11. 48
	hemitriphosphide, 8, 841 hexabromocerate, 5, 645
distannide, 7. 384	hexabromodidymate, 5. 645
calx, 3 . 579	hexabromolanthanate, 5. 645
catalysis by, 1. 487	hexabromosamarate, 5. 645
cerium alloys, 5 . 606	hexachlorocerate, 5. 640
chlorides, 3. 586	hexachloropraseodymate, 5. 643
chloroantimonate, 9, 491	highly purified, 3. 509
	history, 3 . 295 hydride, 3 . 526
chloroplumbite, 7. 730	hydrosols, 3. 557
	hypochlorite, 2. 271
chromium alloys, 11. 171	imitation, 4. 671
—— cobalt alloy, 14. 532	iodate, 2. 342
cobaltic aquopentamminobromosul-	
phate, 14. 795 aquopentamminochlorosulphate,	—— iron alloys, 13 . 540 —— lead sulphide, 7 . 796
14. 794	sulphotellurantimonite, 11. 114
aquopentamminohexachloride,	magnesium alloys, 4. 669
14. 661	manganese alloys, 12. 205
bisethylenediaminediammino-	
enneachloride, 14. 658	— mercurious sulphide, 4. 957
bisethylenediaminediammino-	—— mining, 3. 495 —— molybdate, 11. 560
hexachloride, 14 . 658 —— ehloropentamminopentachloride,	molybdenum alloys, 11. 522
14. 665	—— monamidodiphosphate, 8. 710
dibromotetramminotetrachlo-	monantimonide, 9. 405
ride, 14 . 729	— monarsenide, 9. 64
dichlorobispropylenediamine-	—— monobromide, 3. 606
tetrachloride, 14. 670	—— monochloride, 3 . 587 —— monoiodide, 3 . 608
dichlorotetramminotetrachlo-	monorhognhide 8 840
ride, 14. 669 ———————————————————————————————————	—— monophosphide, 8. 840 —— monostannide, 7. 370
ride, 14. 669	— monosulphide, 3. 610
hexamminobromosulphate, 14.	—— monotelluride, 6. 49
792	monoxide, 3 . 577, 578
hexamminochlorosulphate, 14.	mosaic, 4. 671; 7. 469
791	
sulphodiacetatobisethylenedi- aminechloride, 14. 671	
çoinage, 3. 532	——————————————————————————————————————
Pontago, o. oos	

Gold nickel palladium alloys, 15. 652	Gold silver telluride, 11. 46
silicon alloys, 15. 231	— tellurobismuthite, 11. 62
silver alloys, 15. 205	sodium alloy, 3. 571
nitrates, 3 . 615	amminophosphatomolybdate, 11.
nitride, 8 . 101	671
pentahydrated, 8, 101	—— solubility of hydrogen, 1, 305, 306
Nürnberg, 5. 234	—— Soviet, 3. 493
numbers, 3. 547	standard, 8. 532
occurrence, 3 . 491	sterling, 3. 532
ore, grey, 11. l	suboxide, 3. 578
—— white, 11. 1 —— orthosulpharsenate, 9. 320	sulpharsenite, 9. 295 sulphates, 3. 615
osmium alloy, 15 . 697	
oxide ammoniacal, 3. 582	sulphoantimonite, 9. 542
—— oxides, 3 . 577	sulphoheptachloride, 10. 647
palladium alloys, 15. 646, see Palla-	sulphomolybdate, 11. 652
dium	sulphotungstate, 11. 859
copper alloys, 15 . 648	tellurate, 11 . 93
nickel alloy, 15 . 648	tetraluminide, 5. 233
silver alloy, 15. 648	tetramercuride, 4. 1028
zinc alloys, 15. 648	tetramininoxide, 3. 583
—— parting cementation process, 3. 508	tetrastannido, 7. 371
pentaheminercuride, 4. 1028	tetroxide, 3 . 577, 579
—— pentoxide, 3 . 577, 579	thiocarbonate, 6 . 125
—— permanganite, 12. 277 —— permonosulphomolybdate, 11. 653	tin alloys, 7 . 368 trialuminide, 5 . 233
phosphite, 8. 914	tribromide, 3. 606
—— placer, 3. 491	trichloride, 3 . 586, 589
plating, 8. 359	triiodide, 3 . 609
platinum alloys, 16. 201	trioxide, 3 . 577, 579
aluminium alloy, 16. 210	trisulphide, 3 . 613
	tritetritarsenide, 9. 64
	—— uses, 3 . 532
tungsten alloy, 16 . 216	white alloys, 15. 651; 16. 219
iron alloys, 10. 219	world's production, 3, 493
—— mercury alloys, 16 . 205 —— nickel alloys, 16 . 220	X-radiogram, 1, 641
——————————————————————————————————————	zinc alloys, 4. 682 zincide, 4. 682
	zireonium, 7. 116
aluminium alloy, 16, 210	Goldfieldite, 11. 2
copper alloys, 16 . 205	Goldglätte, 7. 644
zine alloys, 16 . 205, 207	Goldscheidewasser, 8. 618
potassium amidosulphonate, 8. 642	Goldschmidt and Wright's law, 1. 612
precipitation from cyanide soln., 3. 502	Goldschmidtite, 11. 2, 47
—— properties, chemical, 3. 525	Golitzstein, 4. 613
	Golle, 3 . 296
purification, 3. 507	Gongylite, 6 , 619, 812
purple, 7. 418 oxide, 8. 578	Gonnardite, 6. 768
pyrosulpharsenate, 9. 320	Goongardite, 9. 695 Gorceixite, 5. 370, 529
red carat, 8. 532	Gordaite, 14. 346
reef, 3 . 491	Goschenite, 4. 204
refining, 3 . 507	Goshenite, 6. 803
chlorination, 3, 507	Goslarite, 4. 408, 613; 15. 9
cupellation, 3 . 507	Gottardite, 9. 299
electrolysis, 3 . 507	Goyazite, 3. 623; 5. 155
oxidation, 3 , 507	Grängesite, 6 . 624
sulphurization, 3. 507	Grafio, 5. 713
rhodium alloys, 15. 565	—— piombino, 5. 713
ruthenium alloy, 15 . 510	Grafite, 5, 714
selenate, 10 . 861	Graftonite, 12. 454, 530; 14. 412
	Grahamite, 6 . 392; 12 . 523 Graham's diffusion law and kinetic theory,
—— silicates, 6 . 349	1. 744
	law of diffusion, 1. 340
	Grain growth, 12. 903
amalgam, 4. 1029	size, 12. 903
copper alloys, 3, 576	Gram-calorie, 1. 699
relations, 3. 617 monotelluride, 11. 49	—— molecule, 1. 392
monotelluride, 11. 49	Gramenite, 6. 907; 12. 530

Grammatite, 6. 404 Griqualandite, 6. 913 Grammite, 6. 353 Gris lamelleux, 11, 1 Granaten, weisse of, 6. 648 Grochanite, 6. 622 Granatite, 6. 909 Grochanites, 6. 621 Granatus, 6. 714 Groddeckite, 6. 734 Grand Mogul diamond, 5. 711 Groppite, 6. 812 Grandidierite, 6. 917 Groroilite, 12, 149, 267 Grandite, 6. 714 Grossular, 6, 714, 715 Granite, 7. 896 Grothite, **6**. 840; **7**. 3 ware, 6. 515 Grotthus' chain hypothesis, electrolysis, 1. Graphic tellurium, 3. 494 Graphite, 5. 714, 790; 12. 859 Grotto di alume, 5. 342 action of heat, 5. 725 Groups of elements, 1, 255 — amorphous, 5. 720 Grove's cell, 1. 1028 Growing face of crystals, 1. 629 --- carbon, 5. 895 -- colloidal, 5, 753 Growth of crystals, 1, 623 Grünbleierz, 7. 883 --- genesis, **5**. 738 Grüneisen's formula, 1.834 --- in iron (steel), **12**. 800 --- separation, 13. 800 Grünerite, 12, 530 - metal, 7. 362 Grünlingite, 9. 589; 11. 2, 60 nickel, 5. 900 Grunorde, 6. 920 occurrence, 5. 716 Grunerite, 6. 912 - - properties, physical, 5, 755 Guadalcazarite, 4. 957; 10. 780 -- spheroidization, 12. 725 Guadaleazite, 4, 697; 10, 780 Guanajuatite, 10. 795 ----- supercooled, **12**. 802 --- X-radiogram, 1. 642 Guanajucitite, **9**. 589 Graphitic acid, 5, 828 Graphitite, 5, 720 Guanidine arsenitomolybdates, 9. 131 -- bromoplatinate, 16. 376 Graphititis, 13. 445 disulphatochromiate, 11, 454 Graphitization, 12, 714; 13, 445 hypophosphate, 8. 932 ---- manganous disulphate, 12. 416 Graphitoid, 5. 718 --- parasulphomolybdate, 11. 651 Graphon, 5. 719 - phosphitohexamolybdate, 8. 919 Graphtonite, 12, 149 --- salt, 12. 461 Grastite, 6. 622 - -- salts, 16. 314 Graubraunstein, 12. 238 Graubraunsteinerz, 12, 238 - — sulphomolybdate, 11. 651 Grauerts, 9. 291 -- sulphovanadatomolybdate, 11. 652 Graugolderz blätterige, 11. l uranyl disulphate, 12. 109 Guanidinium bromopalladate, 15. 677 Graugültigerz, 9. 291 ---- bromosmate, **15**. 723 Graukobalterz, 14. 750 Graumanganerz, 12: 238, 245 --- chloroiridate, 15. 771 – chloropalladite, **15**. 670 Gravitation, 1. 292 Gravity, 1. 785 - - chloroperruthenite, 15. 533 --- acceleration of, 1. 693 ---- chlororhodate, **15**. 580 chlorosmate, 15. 719 Greases, 13. 613 dichlorobisdimethylglyoximorhodite, Greece, 1. 29 Green earth, 6. 920 **15**. 577 --- hexahydrate, 11, 422 --- ferric paratungstate, 11. 820 ---- john, 3. 688 --- pentafluoferrate, 14. 8 ---- salt, 11. 667 --- span, **8**. 270 ---- thoridecamolybdate, 11. 598 --- ultramarine, **6**. 591 vitriol, 14, 245, 248 --- trichloropalladite, 15. 671 Guanite, 4. 384 Greenalite, 6. 907 Guarinite, 5. 531; 6. 857; 7. 3, 100 Greenlandite, 9. 906 Greenockite, 4. 409, 587 Guarnaccino, 6. 715 Greenovite, 6. 830; 7. 3; 12. 141, 149 Guayacanite, 9. 318 Greenstone, 6. 405 Gudmundite, 12. 149, 530 Gregorite, 9, 704 Guejarite, 9. 343, 536, 537 Gümbelite, 6. 500 Grenat, 6. 714 – Fahlun, **6**. 910 Guignet's green, 11. 188 Guildite, 14. 328, 347, 351 ---- résinite, 6. 921 Guitermanite, 7. 491; 9. 4, 299 ---- syriam, **6**. 715 Guldberg and Waage's law, 1. 300 Grenats blancs, 6. 648 Guldberg's equation of state for solids, 1. Grengesite, 6. 624; 12. 530 Gres de Thiviers, 13. 783 Gulth, 3. 296 Grey cobalt ore, 14. 424 Gummispath, 7. 877 - gold, **13**. 541 - pig iron, 12. 596 Gummite, 6. 494; 7. 491; 12. 5, 52 Gun-cotton, 2. 829 Grignard's reaction, 6. 966 - metal, Admiralty, 4. 671 Griphite, 12. 455

570 GENERA	L INDEX
•	
Gun metals, 7. 347	Hafnyl chloride, 7. 172
Gunnarite, 15 . 5, 445	dihydrophosphate, 7. 172
Gunpowder, 2. 820, 825	hydrophosphate, 7. 172
Gurhofite, 4. 371	— metaphosphate, 7. 172
Gurolite, 6. 362	Hagatalite, 12. 6
Gusseisen, 12. 708	Hagemannite, 5. 309
schmiedbares, 12. 709	Hahnemann's soluble mercury, 4. 988
Gussstahl, 12 . 711	Haidingerite, 3, 673; 9, 5, 169, 553
Gutzeit's test, 9. 39	Hainite, 6. 855; 7. 3, 100
Gymnite, 5. 531; 6. 420, 423	Hair-salt, 14. 299
—— iron, 6 . 423	Halazone, 2. 97
nickel, 6 . 932	Halide salts, 2. 1
C 0 400 9 602 760	
Gypsum, 2. 430; 8. 623, 760	Halides, 2. 1
arte factum, 3. 762	Halite, 2. 15, 430, 522
denydration, 3. 707	Halitus, 1. 122
rehydration of dehydrated, 3. 767	Hall effect with electrolytes, 1, 982
—— spathosum, 3. 620	marked gold, 3. 533
—— uses, 3. 802	Hallite, 5. 338; 6. 609
X-radiogram, 1. 642	Halloysite, 6. 493
Gyrolite, 6. 362	Halobolite, 12. 149
	Halogenosulphonates, 10. 684
	Halogenosulphonic acids, 10. 684
H	Halogens, 2. 1
	binary compounds, 2. 113
Haarkies, 15. 435	Haloid salts, 2. 6
Habit of crystals, 1. 597, 598; 6. 670	Halotrichine, 14. 299
adularia 6 670	Halotrichite, 5. 154, 333; 12. 530; 14. 299
adularia, 6 . 670 Baveno, 6 . 674	
Baveno, 0. 074	Hamartite, 5. 522
sanidine, 6 . 670	Hambergite, 4. 206; 5. 4, 95
prismatic, 1. 597	X-radiogram, 1. 642
tabular, 1. 597	Hamlinite, 4. 206; 5. 370; 7. 877; 8. 733
Hackmanite, 6. 583	Hammarite, 9. 695
Haddainite, 9. 839	Hammer slag, 12. 637
Hæmafibrite, 9. 219	Hammochryos, 6. 604
Hæmatite, 7. 896; 13. 774, 874	Hammoniaeum, 8. 144
—— brown, 13. 886	Hamphirite, 6. 431
columnar, 13. 775	Hancockite, 6. 722; 7. 491; 12. 149
compact, 13. 775	Hanksite, 2. 656
—— fibrous, 13. 775, 785	Hannayite, 4. 252, 385; 8. 733
—— hemisphoericus, 13. 885	Haplome, 6. 921
—— micaceous, 13. 775	Haplotypite, 7. 57
red, 13 . 774, 775 specular, 13 . 774, 775	Harborite, 14. 411
specular, 13. 774, 775	Hard finish plasters, 3. 776
Hæmatolite, 5 . 155 ; 9 . 220	—— head, 7. 289
Hæmatophanite, 12. 530; 13. 922; 14. 105	—— lead, 3. 311
Hæmatostibirte, 9. 460	X-rays, 4. 33
Hæmoglobin, 6. 11	Hardening, 12. 675
Hæmatites, 12. 139, 530	carbon, 5 . 895
	—— theories of, 12. 682
—— X-radiogram, 1. 642	
Haff sickness, 9. 43	
Hafnefiordite, 6. 693	amorphous state, 12. 683
Hafnia, 7. 166	carbo-allotropic, 12. 684 carbon, 12. 684
—— extraction, 7. 167	carbon, 12. 684
Hafnium, 5. 708; 7. 166	distorted lattice, 12. 688 fine-grained, 12. 687
—— atomic weight, 7 . 172	fine-grained, 12. 687
history, 7. 166	interstrain, 12. 685
—— iodide, 7 . 172	slip interference, 12, 685
	slip interference, 12. 685 solid solution, 12. 684
nitride, 8 . 120	atmos 49 888
occurrence, 7. 166	
oxalate, 7. 172	subcarbide, 12. 684
oxychloride, 7. 172	Hardenite, 12. 830
phosphide, 8 . 847	Hardness, 2. 453; 13. 14
—— properties, 7, 170	abrasive, 13. 26
—— salicylate, 7. 172	and isomorphism, 1. 657
salts, 7. 170	Hardy's rule precipitation colloids, 2. 543
aulahata 7 170	Hardystonite, 6. 444
sulphate, 7. 172	Harkise, 15. 435
—— sulphide, 7. 172	Harmonicon, chemical, 1. 127
tetrachloride, 7. 172	Harmotome, 3. 625; 6. 575, 738, 766
thorium zirconium orthosilicate, 7. 167	—— baryte, 6. 766

Harmotome calcium, 6. 736, 766	Heat, specific, of molecules, solids, 1. 798
potassium. 6. 767	— theorem, Nernst's, 1. 735
—— potassium, 6 . 767 —— sodium, 6 . 767	
Harmotomic acid, 6. 295, 767	— vaporization and boiling point, 1. 440
Harringtonite, 6. 749	work value of, 1. 719
Harstigite, 6 . 896; 12 . 149	Heating curve 4 450
	Heating curve, 1. 450
Hartbraunstein, 12. 236	—— curves, 1. 518
Härten, 12. 675	Heats, molecular, and atomic weights, 1. 807
Hartmannite, 9. 415	Heavy spar, 3. 762
Hartmann's lines, 12. 898	Heazlewoodite, 15. 5, 445
Harttantalerz, 9. 906	Hebetine, 6. 438
Härtungskohlenstoff, 12. 860	Hebronite, 5. 367
Hastingsite, 6. 821; 12. 530	Hecatolite, 6. 663
Hatchettolite, 5. 519; 9. 839, 867, 904;	Hectorite, 6. 821
12. 5	Hedenbergite, 6 . 390, 915; 12 . 530
Hauchecornite, 9. 589; 14. 424; 15. 5	—— mangano-, 6 . 915
Hauerite, 12. 149, 398	— mangano-, 6 . 915 — titano-, 6 . 916
X-radiogram, 1. 641	Hedyphane, 7. 491; 9. 5, 261, 262
Haüyne, 6 . 580, 584	Heintzite, 5. 4, 99
Haüynite, 6. 584	Heinzite, 2. 430
Haüy's law, 1. 594	Helides, 4. 156, 157
rational indices, 1. 615	Helidor, 6. 803
Haughtonite, 6. 605, 609	Heliolite, 6. 663
Hauscolite, 7. 797	Heliophyllite, 9. 258
Hausmannite, 12. 149, 231	Heliotrope, 6. 139
Haut fourneau, 12. 585	Helium, 7. 889
Hautefeuillite, 4. 382	
Haydenite, 6. 729	
Hayesine, 5. 92	atomic weight, 7. 947
	electronic structure, 7. 949
Haytonte, 6. 449	front radium, 4. 97
Head of band spectrum, 4. 7	history, 7. 890
Heat, atomic, 1. 798, 811, 812, 813	—— hydride, 7. 945
and atomic weights, 1. 804 Debye's theory, 1. 815	—— isotopes, 7. 948
	— metastable, 7. 922
effect of pressure, 1. 799	—— occurrence, 7. 892
	—— preparation, 7. 902
	—— properties, chemical, 7. 941
fusion and coefficient expansion, 1. 837	
— vitration frequency, 1. 833	Hellandite, 5. 512; 12. 149
mechanical equivalent, 1. 693	Helmholtz and Gibbs' equation, 1. 1036
— molecular, 1. 805	—— double layer, 1. 1016
of gases, 1. 795	equation, 1. 720
effect of pressure, 1.	
796	Helminthe, 6. 622
tempera-	Helmont, J. B. van, 1. 51
ture, 1.	Helvetan, 6. 609
796	Helvine, 6. 382
— of combustion, 1. 710	Helvite, 4. 206; 6. 382; 12. 149
———— fusion, 1. 426	Hemafibrite, 9. 219; 12. 149
	Hematite, 13. 775
———— ionization, 1. 1007	Hematolite, 9. 220; 12. 149
reaction 1 698	Hematostibiite, 9. 460; 12. 149
	Hematostibnite, 9. 343
isomerism 1 700	Hemichalcite, 9. 690
	Hemihedral symmetry, 1. 613
temperature coefficient, 1.	Hemihydrate, 9. 818
702	Hemihydrated mercurous nitrite, 8. 492
solution and osmotic pressure, 1.	Hemimorphite, 4. 408, 642, 643; 6. 442
547	—— X-radiogram, 1. 642
vaporization, 1. 426	Henametaphosphimic acid, 8, 720
and surface tension; 1. 851	Henathiosulphate sodium silver acetylide,
external, 1, 427	10. 540
internal, 1. 427	Hengleinite, 14. 424; 15. 5, 449
resisting alloys, 18. 457	Henicosihydrate, 9. 211
specific and surface tension, 1. 852	Henryite, 11. 2
——————————————————————————————————————	Henry's law, kinetic theory of, 1. 531
gases, constant pressure, 1. 786,	———— (solution of gases), 1. 527
787	Henwoodite, 5. 155; 8. 733; 9. 5
volume, 1. 786, 787	Hepar sulphuris calcarem, 8. 740, 757
———— of molecules, 1. 832	Hepatinerz, 6. 343
	-

Hepatopyrites, 14. 200 Heptachlorodibismuthous acid. 9, 667 Heptachloromolybdous acid, 11. 61. Heptacosihydrate, 9. 211 Heptad camolybdous acid, 11. 618 Heptahydrododecamolybdates, 11. 582 Heptahydrododecatungstates, 11. 773 Heptahydrosilicodecatungstic acid, 6. 881 Hexagonal system, 1. 617 Heptamercuriammonium tetraiodide, 4. 924 Heptametaphosphimic acid, 8. 716 Hexahedrites, 12. 528 Heptamolybdates, 11. 591 Heptaphosphonitrilic chloride, 8. 724 Heptasulphates, 10, 448 Hepterophosphoric acid, 8. 992 Heracleitus, 1. 32 Herapathite, 4, 625 Hercules metal, 15, 225 Hercynite, 5. 154, 297; 11. 199; 12. 530; **13**. 919 Herderite, 2. 2; 3. 623; 4. 206, 247; 8. 733 Hermannite, 6, 897; 9, 906 Hermes Trismegisters, 1. 24 Hermesite, 4. 697; 9. 4, 291 Hermite's fluid, 2, 96 409 Hero, 1. 37 Hexaiododisilane, 6. 984 Herrengrundite, 3, 265, 266, 812 Herrerite, 4, 643 Herschelite, 6, 729 Herschel's crystals, 3, 757 Hesiod, 1, 19, 31 Hexammines, 11. 400 Hess' law of heat of reaction, 1. 708 --- thermoneutrality, 1. 1007 Hessenbergite, 6, 381 Hessite, 3, 300, 494; 11, 2, 46 Hessonite, 6, 715 Hetaerolite, 12, 149, 242 Hexaquo-salts, 11. 402 Hexasilane, 6. 225 Hetairite, 12. 242 Heterocline, 6. 897 Hexasilicane, 6. 225 Heterogenite, 14, 424, 586 Heterokline, 12. 236 Heteromerite, 6, 726 Hexasulphamide, 8, 250 Heteromorphite, 7. 491; 9. 547 Hexasulphates, 10, 448 Heteropolyacids, 6, 866, 867 Heteropolysulphates, 10. 440 Hexatellurous acid, 11. 77 Heterosite, 2. 426; 12. 403, 530 Hexathionates, 10. 628 Hetopazote, 12. 530 Hexathionic acid, 10, 628 Heubachite, 14. 424, 586; 15. 5 Hexatungstates, 11, 773 Heulandite, 6. 575, 755 Hexaurea salts, 11. 401 - ammonium, **6**. 757 Hexavanadates, 9. 202 - potassium, **6**. 757 Hexavanadic acid, 9, 753 ----- acid, **9**. 758 - sodium, **6**. 757 Heulanditic acid, 6, 295, 755 Heuslen's alloys, 12, 194, 211 Hewetite, 9. 715 Hewettite, 9. 770 Hexa-antipyrino-salts, 11. 402 Hexaboron, decahydride, 5, 36 dodecahydride, 5. 36 Hexabromodimethyl trisulphide, 6. 93 Hexites, 6. 312 Hexabromodisilane, 6. 981 Hexabromosilicoethane, 6. 981 Hexolcupric chloride, 3. 178 Hexacarbamides, 11. 401 Heynite, 12. 842 Hexacetatodihydroxytriammines, 11. 408 Hibernium, 4. 68 Hiddenite, 2. 425; 6. 640 Hexacetatodihydroxytripyridines, 11. 408 Hielmite, 5, 516; 12, 149 Hieratite, 2, 2; 6, 946 Hexachlorochromic acid, 11. 386 Hexachlorodimethyl disulphide, 6. 93 Higginsite, 9. 5, 174 trisulphide, 6. 93 High-speed steels, 18. 634 Hexachlorodisilane, 6. 960, 971 Hexachlorodisiloxane, 6. 974

Hexachlorododecamminodisilane, 6. 972

Hexachloroperrhodites, 15. 577 Hexachlorosilicoethane, 6. 960, 971 Hexachlorostannites, 7, 429 Hexacosiboron hexatriacontihydride, 5. 36 Hexadecavanadates, 9: 202 Hexaethylsilicoethane, 6. 226 Hexaformatodihydroxy-salts, 11. 409 Hexagonite, 6. 404; 12. 149 Hexahydroarsenatoenneamolybdates, 9. 210 Hexahydroctosiltridecoxane, 6. 232 Hexahydrododecamolybdates, 11. 582 Hexahydrododecatungstates, 11. 773 Hexahvdrohexaboric acid, 5. 47 Hexahydrohexamolybdates, 11. 582 Hexahydrohexatungstates, 11. 773 Hexahydro-octoboric acid. 5. 47 Hexahydrotetraboric acid, 5, 47 Hexahydroxydodecammines, 11. 409 Hexahydroxyplatinic acid, 16. 245 Hexahydroxyplumbic acid, 7, 685 Hexahydroxysexiesethylenediamines, 11. Hexaiodosilicoethane, 6. 984 Hexametaphosphates, 8. 988 Hexametaphosphimic acid, 8, 719 Hexamethylsilicoethane, 6. 226 Hexamolybdates, 11. 582, 591 Hexaphenylsilicoethane, 6. 226 Hexaphosphoheptanitrilie chloride, 8, 724 Hexaphosphonitrilic chloride, 8, 724 Hexapropionatohydroxyfluoro-salts, 11.409 Hexasodium manganous tetrasulphate, 12. Hexasulphitodicobaltic acid, 10. 315 ---- tetrabasic, **9**. 758 Hexavanadyl ammonium tetrasulphite, 10. potassium tetrasulphite, 10. 305 ---- thallium tetrasulphite, 10. 305 Hexerohexaphosphoric acid. 8, 992 Hexeropolyvanadic acid, 9. 758 n-hexolcholinechloroplatinate, 16, 312 Hilgenstockite, 3. 903 Hillängsite, 6. 917

Hillebrandite, 6. 358 Horn mercury, 4. 798 Himbeerspat, 12, 432 Hinsdalite, 7, 491, 897, 878 Hiörldahlite, 7. 100 Hiortdahlite, 6. 855, 857 Hippocrates, 1. 32 Hiranya, 3. 296 Hisingerite, 6. 908; 12. 530 - mangan-, 6. 908 Hislopite, 3. 814 History of chemistry, 1. 1 — kinetic theory, 1. 767 Hitchcockite, 5. 155; 7. 877 Hittorf's transport numbers, 1. 985 Hjelmite, 5. 516; 9. 839; 12. 6 Hoar-frost curve, 1. 444 Hochofen, 12. 585 Hodgkinsonite, 6. 894 Hoeferite, 6. 907; 13. 530 Högbomite, 5. 298; 7. 3, 57 Hœmafibrite, 9. 5 Hæmatolite, 9. 5 Hœrnesite, 4. 252; 9. 5, 176 Hoffmannite, 9. 73 Hofmann and Marburg's theory mercurynitrogen compounds, 4. 785 Hofmann's process vapour density, 1, 185 vitriolization process silver, 3. 305 Hohlspath, 6. 458 Hohmannite, 14. 332 Hokutolite, 7, 821 Holdenite, 9. 221, 222 Hollandite, 12. 149, 279, 530 Hollands, 2. 243 Hollines, 4. 698 Holmia, 5. 702 isolation, 5. 696 452 Holmite, 6. 816 Holmium, 5, 498, 696 - - atomic number, **5**. 700 ----- weight, **5**. 699 ---- carbide, **5**. 873 ——— chloride, **5**. 703 ----- hydroxide, **5**. 703 --- isolation, **5**. 553 --- nitrate, **5**. 704 - occurrence, 5, 696 — oxide, 5. 702 ---- properties, **5**. 698 solubility of hydrogen, 1. 307
——sulphate, 5. 703 Holmquisite, 6. 644 Holmquistite, 12. 530 Holohedral symmetry, 1. 613 Holosiderites, 12. 523 Homberg's phosphorus, 3. 697, 740 Homichlin, 14. 208 Homilite, 5. 4, 514; 6. 450 Homitite, 12. 530 Homœomeriæ, 1. 33 Homogeneous substances, 1. 86, 95 Homologous spectra, 4. 13 Homomorphism, 1. 663 Hooke's law, 1. 819 Hopealcite, 5. 945 Hopeite, 4. 408, 658; 8. 733 —— a, 4. 658 —— β, 4. 658 Horbachite, 14, 136, 758; 15, 5 Horn lead, 7, 706, 852

quicksilver, 4. 697, 798silver, 2. 15; 3. 300, 390 Hornblende, 6. 391, 821; 12. 149 --- asbestos, 6. 426 --- Labrador, 6. 391 - soda, 6. 916 Hornmangan, 6. 897 Hornstein, 6. 821 Hornstone, 6. 140 Horse-flesh ore, 12, 530 - radish cream, 13. 615 Horsfordite, **8**. 7; **9**. 343 Hortonolite, **6**. 386, 908; **12**. 149 Hot-cast porcelain, 5. 304 — metal, 12. 709 -- working steel, 12. 670 Houghite, 4, 376; 5, 296 Howlite, 5, 4; 6, 451 Hudsonite, 6, 821; 12, 530 Hübnerite, 11. 678, 798; 12. 149 Hügelite, 7. 491; 9. 778 Huelvite, **6**. 899; **12**. 433 Hüttenbergite, **9**. 73 Huile de tartre, 4. 250 Hüllite, 6, 624 Humboldite, 6. 449 Humbolditite, 6. 752 Humidity, 8. 6 --- absolute, 8. 9 -- - relative, 8. 9 --- specific, 8. 9 Humite, 6. 813 Hunterite, 6. 495 Huntilite, 4. 698; 9. 4, 64 Hureaulite, 4. 660; 8. 733; 12. 149, 448, Hurka, 2. 711 Huronite, 6. 693 Hussakite, 5. 528 Hutchinsonite, 5, 406; 7, 491; 9, 4, 30 Hverlera, 6. 921 Hversalt, 12. 530; 14. 299 Hyacinte blanche de la Somma, 6. 762 – de Visuve, **6**. 726 - volcanique, **6**. 726 Hyacinth, 7, 98, 100 Hyacinthe blanche, 6. 766 - - cruciforme, **6**. 766 Hyacinthica figura, 6. 766 Hyacinthine, 6. 726 Hyacinthus, 7. 98 octodecahedricus, 6. 726 Hyalite, 6. 141 Hyalophane, 3. 625; 6. 662 Hyalosiderite, 6. 908 Hyalotecite, 6. 889 Hyalotekite, 7. 491 Hydracids, 1. 386 Hydrargillite, 5. 154, 274 Hydrargyri subchloridi ungentum, 4. 813 subchloridum, 4. 813 Hydrargyrum, 4. 695 Hydrargyrus calcinatus ruber, 4. 771 Hydrated cerous selenide, 10. 782 – lead manganite, 12. 242 ---- lime, **3**. 673 -- salt, 1. 397 - salts, 1. 498 - - vapour pressure, 1. 501

574 GENERA	L INDEA
Hydrates, 1. 397, 498	Hydragina mathyl alashol 8 316
chemical 7 129	Hydrazine methyl alcohol, 8. 316 —— monobromide, 8. 324
distinction hydroxides, 1. 499	—— monofluoride, 8. 323
Hydraulic mining, 3. 496	monoiodide, 8. 324
Hydrazine, 8. 308	mononitrate, 8. 327
amidosulphonate, 8. 641	monosulphate, 8. 326
ammonium dihydrohypophosphate, 8.	—— monohydrate, 8 . 326
933	neodymium sulphate, 5. 659
analytical reactions, 8. 320	nickel disulphate, 15. 469
anhydrous, 8, 310	tetrachloride, 15, 419
arsenochloride, 9. 242 bisdihydrophosphate, 8. 328	nickelous tetrabromide, 15. 428 nitrite, 8. 472
bromoplatinate, 16. 376	nitrohydroxylaminate, 8. 305
	— pentauranate, 12. 68
carboxylatedihydrazinate, 8. 317	phosphate, 8. 328
cerium sulphate, 5. 659	phosphite, 8. 912
chloroacetatobismuthite, 9. 682	—— properties, chemical, 8. 312
chromium sulphate, 11. 454	physical, 8. 311
chromous sulphate, 11. 435	—— pyrosulphite, 10 . 328
cobaltous disulphate, 14. 774	salts. 8. 322
	scandium sulphate, 5. 492
——————————————————————————————————————	selenate, 10. 854
—— constitution, 8. 520 —— copper selenate, 10. 859	silver thiosulphate, 10. 537 sulphamide, 8. 660
cupric nitrate, 3. 286	
sulphate, 3. 256	— sulphide, 8 . 325
cuprous thiosulphate, 10. 530	—— sulphite, 10. 259
dibromide, 8 . 324	—— sulphonic acid, 8 . 314
dichloride, 8 . 323	sulphuryl hydrazide, 8, 666
—— diphoride, 8 . 323	—— tetrachlorostannite, 7. 432
dihydrohypophosphate, 8. 932	—— thiosulphate, 10. 514
dihydrophosphate, 8. 328	tribromomercuriate, 4. 881
diiodide, 8. 324	
—— dinitrate, 8 . 327 —— dinitrite, 8 . 473	tribudrohypophosphate 8 032
—— disulphate, 8 . 325	trihydrohypophosphate, 8. 932 uranite, 12. 43
disulphinic acid, 8. 314	uranium hydroxydisulphotetraura-
—— disulphuric acid, 8. 314	nate, 12. 98
—— dithionate, 10. 583	hydroxyhydrodisulphotetraura-
ditritaiodide, 8. 324	nate, 12. 98
—— ferroheptanitrosyltrisulphide, 8. 441	red, 12 . 98
—— fluosilicate, 6. 946	—— uranyl tetrachloride, 12. 90
—— fluotitanate, 7. 70	—— yttrium sulphate, 5. 682
—— gadolinium sulphate, 5. 695	zine, 8. 314
—— hexachloroantimonite, 9. 479 —— hexachlorobismuthite, 9. 666	——————————————————————————————————————
	tetrachloromercuriate, 4. 852
drated, 5. 81	Hydrazinium chloroplatinate, 16. 319
	— disulphatochromiate, 11. 454
—— hydrazinocarboxylate, 8. 682	α -hydrazino- β -aminoethane, 8. 671
	Hydrazinocarboxylic acid, 8. 682
— hydrodisulphate, 8. 326	Hydrazinodisulphonic acid, 8. 682
hydrodithionate, 10. 583	Hydrazinomonosulphonic acid, 8. 683
hydrophosphite, 8. 912	Hydrazinosulphonic acid, 8. 682
	Hydrazoates, 8. 344
hydrosulphide, 8 . 337 lanthanum sulphate, 5 . 659	Hydrazobenzene, 8. 308 Hydrazoic acid, 8. 328, 329, 330
—— lead sulphuryl hydrazide, 8. 666	analytical reactions, 8. 342
——————————————————————————————————————	——————————————————————————————————————
— manganous disulphate, 12. 416	properties chemical 8 335
—— pentachloride, 12. 365	
—— mercuric bromide, 4, 881	Hydrazonium, 8. 335
	cobaltous tetrabromide, 14. 718
hydrochloride, 4. 874	salts, 8. 322
iodide, 4. 915	selenite, 10. 821
	sulphate, 8. 325, 326
	Hydrides, 1. 326
mercurous nitrate, 4. 784	—— and periodic law, 1. 328 Hydriodic acid, preparation, 2. 170
- HOAVORD MARKOVO, T. 10T	Light four acts, proparation, 2. 170

Hydriodic acid, properties, 2, 182	Hydrodichloroxyplatinic acid, 16. 254
——————————————————————————————————————	Hydrodioxysulphatoplatinic acid, 16. 405
Hydriodomercuric acid, 4. 926	Hydrodiphosphatoferric acid, 14, 403
Hydriodoplatinic acid, 16. 389	
—— enneahydrate, 16. 389	
Hydriodotitanic acid, 7. 89	Hydrodisulphatozirconylic acid, 7. 154, 155
Hydroantimonatobromotriiodic acid, 9, 511	Hydrododecachlorotrimercuric acid, 4. 849
Hydroantimonyloxytriiodic acid, 9. 508	Hydrodolomite, 4. 375
Hydroapatite, 3. 896	Hydroencryplite, 6. 573
Hydroarsenatododecamolybdic acid, 9. 211	Hydrofluoaluminic acid, 6. 943
Hydroarsenatoenneamolybdic acid, 9. 209	Hydrofluoarsenic acid, 9. 235
	Hydrofluoboric acid, 5. 123, 125
	Hydrofluogermanic acid, 7. 268
Hydroarsenatomolybdic acid, 9. 209	Hydrofluomesodisilicic acid, 6. 937
Hydroarsenatotrimolybdic acid, 9. 207	Hydrofluophosphorous acid, 8, 997
	Hydrofluoplumbic acid, 7, 704
Hydrobariosulphuric acid, 3. 785	Hydrofluoplumbous acid, 7, 703
Hydrobiotite, 6. 609	Hydrofluoric acid, 2. 127; 13. 615
Hydroboracite, 2. 430; 3. 623; 4. 252; 5.	preparation, 2. 127
4, 100	——————————————————————————————————————
Hydroborododecatungstic acid, 5, 108	physical, 2. 129, 130
octocosihydrate, 5. 108	Hydrofluorite, 5. 521
Hydroborons, 5. 33	Hydrofluosilicic acid, 6. 934, 940
Hydrobromic acid, preparation, 2, 167	——————————————————————————————————————
——————————————————————————————————————	monohydrate, 6. 942 tetrahydrate, 6. 942
Hydrobromoauric acid, 3, 606	Undroflucaternous acid 7 429
Hydrobromodichlorothallic acid, 5, 453	Hydrofluostannous acid, 7, 422 Hydrofluotitanic acid, 7, 69
Hydrobromomolybdous acids, 11. 635	Hydrofluozirconic acid, 7. 138
Hydrobromoplatinic acid, 16, 376	Hydrogel, 1. 771
Hydrobromoplumbic acid, 7. 754	Hydrogen, 1. 264; 13. 606
Hydrobromostannic acid, 7, 456	action on oxides, 1. 328
Hydrobromotitanic acid, 7. 88	salt solutions, 1. 328
Hydrocalcite, 3. 822	activated, 1. 321, 322
Hydrocarbonates, 6. 72	allotropic, 4. 51
Hydrocastorite, 6. 652	—— amalgam, 4. 753
Hydrocerite, 5. 521	amide, 8. 229
Hydrocerussite, 7, 491, 837	amidoide, 8 . 229
Hydrochloric acid, 13, 609, 615	—— amminophosphide, 8. 832
———— and hydrogen, 1. 303	and chlorine, union in light, 2. 148
——————————————————————————————————————	——————————————————————————————————————
preparation, 2. 158	arsenide, 9. 48
- — properties, 2. 182	—— atom, 4. 169
—— — purification, 2. 165	atomic, 1. 336
——————————————————————————————————————	——————————————————————————————————————
Hydrochloroargentic acid, 3. 397	retraction, 1. 310
Hydrochloroauric acid, 8, 593	volume, 1. 313
Hydrochloroimidotrithiophosphoric acid, 8.	—— weight, 1. 335, 380 —— autocombustion process, 1. 282
727 Hydrophloroiridia acid 15 768	azide, 8. 323
Hydrochloroiridic acid, 15. 768 Hydrochloropalladic acid, 15. 672	boiling point, 1. 315
Hydrochloropalladous acid, 15. 668	bromide hydrates, 2. 184
Hydrochloroperiridous acid, 15. 765	non-ag soln 2 197
Hydrochloroperruthenous acid, 15. 526	——————————————————————————————————————
Hydrochloroplatinic acid, 16. 302	preparation, 2, 167
Hydrochloroplatinosic acid, 16. 286	properties, chemical, 2. 200
Hydrochloroplatinous acid, 16. 254	solubility, 2. 182
Hydrochloroplumbic acid, 7, 720	by-product, 1. 286
Hydrochlorostannic acid, 7, 439, 447	—— calx, 1. 128
Hydrochlorosulphomercuric acid, 4. 961	carbophosphide, 8. 847
Hydrochlorotitanic acid, 7. 85	—— chloride, 11. 368
Hydroctofluoplumbic acid, 7. 705	and CO ₂ , 6. 32
Hydroctonitritotriplatinous acid, 8. 514	composition, 2. 208
Hydrocupricarbonic acid, 3. 273	——————————————————————————————————————
Hydrocuprite, 8. 127	non-aq. soln., 2. 196
Hydrocyanite, 3. 234	physical properties, 2, 173
Hydrodiarsenatoctodecatungstic acid, 9. 213	preparation, 2. 158 properties, chemical, 2. 200
Hydrodiarsenatoenneatungstic acid, 9. 213 Hydrodiarsenitodimolybdic acid, 9. 131	
Try arodiar semivodimory bute acid, 7. 131	BOMBINE, 2. 102

Hydrogen chlorobromide, 2. 234	Hydrogen-oxygen-iron system, 12. 619
—— combustibility, 1. 325	—— ozonized, 1. 321
compressibility, 1. 314	palladium alloys, 15. 616
critical pressure, 1. 315	pentasulphide, 10. 160
——————————————————————————————————————	perbromide, 2. 234
volume, 1. 315	—— perchloride, 2. 234
—— degree ionization, 1. 320	—— periodide, 2. 234
density, 1. 313	permeability of metals, 1. 304
detection, 1. 334	peroxide, 1. 277
—— determination, 1. 334	action alcohols monohydric, 1.
—— diarsenide, 9. 50	946
—— dielectric constant, 1. 322	polyhydric, 1. 946
dioxide in air, 8 . 10	alkali bromides, 1. 940
diphosphide, 8. 802, 830	chlorides, 1. 940
discharge tension, 1. 319	alkaloids 1 946
—— discovery, 1. 125	aluminium, 1. 942
disulphide, 10. 158	ammonia, 1. 94
ditritaphosphide, 8. 803	animal extracts, 1. 938
electrode, 1. 320	antimony, 1. 941
entropy, 1. 315	
— ferroheptanitrosylsulphide, 8. 440	
—— fluoride, 2 . 127	
chemical properties, 2. 133	
	Distriction 4 041
mol mt 9 194	
———— mol. wt., 2. 134 ————— physical properties, 2. 129	sulphide, 1, 943
physical properties, 2, 129	blood, 1. 938, 946
preparation, 2. 127	
free energy ionization, 1. 321	bromone, 1 . 939
—— from decomposition water, 1. 278	cadmium hydroxide, 1. 943
—— metal hydrides, 1, 283	carbon, 1. 942
———— metals and acids, 1. 282	——————————————————————————————————————
alkalies, 1. 213	carbonyl chloride, 1. 946
—— heat combustion, 1. 489	dioxide, 1. 946 — carbonyl chloride, 1. 946 — catalase, 1. 938
ionization, 1. 321	cerium oxide, 1. 943
—— hemienneaphosphide, 8. 802, 832	salts, 1. 942
hemipentaphosphide, 8, 802, 833	chlorates, 1. 939
hemiphosphide, 8 . 802, 828	chloric acid, 1. 940
hexasulphide, 10 . 159	
hydroxytetraphosphide, 8. 833	chromic oxides, 1, 944
hydriodide, 8 . 833	cobalt hydroxide, 1. 943
in air, 8 . 10	
—— index of refraction, 1. 316	cupric hydroxide, 1. 943
iodide, hydrates, 2. 185	salts, 1. 943
non-aq. soln., 2. 197	diastase, 1. 938
preparation, 2. 170	
—— physical properties, 2. 173	enzymes, 1. 938
properties, chemical, 2. 200	- · · · · · · · · · · ferrous salts, 1. 943
——————————————————————————————————————	fibrin, 1. 946
———— solubility, 2. 182	gallic acid, 1, 946
ionization of gas, 1. 319	
——————————————————————————————————————	
—— latent heat fusion, 1. 316	cold 1 941
——————————————————————————————————————	— — — oxide, 1. 942 — — guaiacum, 1. 946 — — hæmoglobin, 1. 938
magnetic susceptibility, 1. 322	guaineum 1 946
magneto-optic rotation, 1. 316	hamodohin 1 028
—— melting point, 1. 316	
molecular heat, 1. 315	hydrogen bromide, 1. 939
rotation, 1. 316	
—— molecule, collision frequency, 1. 313	selenide, 1. 941
——————————————————————————————————————	sulphide, 1. 941
dissociation, 1. 335	hydroxylamine sulphate, 1.
free path, 1. 313	941
	hypochlorous acid, 1. 939
volume of, 1. 313	hyposulphites, 1. 941
molecules, velocity of, 1. 313	indigo, 1. 946
monoarsenide, 9. 49	iron, 1. 943
nascent, 1. 331	sulphide, 1. 943
occurrence, 1. 270	iodates, 1. 940
overvoltage, 1. 333; 16. 109	iodic acid, 1. 940
oxygen-iron-carbon system, 12. 630	iodine, 1. 939

Hydrogen peroxide action lanthanum oxide,	Hydrogen peroxide action vanadium salts,
1. 943 lead, 1. 941	1. 942
dioxide, 1. 943	
sulphide, 1. 943	yttrium oxide, 1. 943
magnesium, 1. 941	zine hydroxide, 1. 943
hydroxide, 1. 943	oxide, 1, 943
manganese compounds, 1.	zirconia, 1. 943
944	boiling point, 1. 929
mannite, 1. 946	catalytic decomposition boron, 1.
mercuric oxide, 1. 943	938
mercury, 1. 941, 942	iridium, 1. 938
sulphide, 1, 943 metals, 1, 941	manganese dioxide, 1.
	938 minerals, 1. 938
molybdenum, 1. 943	palladium, 1. 938
salts, 1. 942	
	wood charcoal, 1. 938
nickel, 1. 941	chemical properties, 1. 936
hydroxide, 1. 943	colour, 1. 929
nicotine, 1. 946	composition, 1. 952
nitric oxide, 1. 941	concentration of solutions, 1. 927
nitrous acid, 1. 941	constitution, 1. 952
oxalic acid, 1. 946	decomposition action pressure, 1.
porchloric and 1, 939	938
	catalytic, 1. 934, 936
	dielectric constant, 1. 931
phenyl carbonate, 1. 946	dihydrate, 1. 939
phosphorus, 1. 941	electrical conductivity, 1. 931
platinum, 1. 941	fractional distillation, 1. 927
potassium cyanide, 1. 942,	
946	— — heat of formation, 1. 930
ferricyanide, 1. 943	neutralization, 1. 929
ferrocyanide, 1. 943	solution, 1. 930
fluoride, 1. 940	
quinine, 1. 946	index of refraction, 1. 931
samarium oxide, 1. 943	melting point, 1. 929
selenium, 1. 941	monohydrate, 1. 939
serum. 1. 946	occurrence, 1, 891, 892
silver, 1. 941, 942	partition coefficient with organic
carbonate, 1. 943	solvents, 1. 932
chloride, 1. 940	physical properties, 1. 929
—— —— dioxide, 1. 942	preparation, 1. 922
nitrate, 1. 942	949 quantitative determination, 1.
peroxynitrate, 1, 942	solubility acetophenone, 1. 932
peroxynitrate, 1. 942 sulphide, 1. 943	amyl acetate, 1. 932
sodium periodate, 1. 940	aniline, 1. 932
stannous salts, 1. 943	benzene, 1. 932
starch, 1. 938	chloroform, 1, 932
sugars, 1. 946	ether, 1. 932
sulphides, 1. 941	ethyl acetate, 1. 932
tonnin 4 046	in petroleum etner, 1. 932
tannin, 1. 946 tellurium, 1. 941	water, 1. 932 isoamyl propionate, 1. 932
dioxide, 1. 941	isobutyl alcohol, 1. 932
tetrathionates, 1. 941	butyrate, 1. 932
——————————————————————————————————————	nitrobenzene, 1. 930
tin, 1. 941	phenol. 1, 932
	propyl butyrate, 1, 932
titanium salts, 1. 942	formate, 1. 932
tungsten, 1. 943	quinoline, 1. 932
	sodium carbonate, 1. 932
uranium salts, 1. 942	
voi vvi	heat, 1. 929

910	
Hydrogen peroxide surface tension, 1. 929	Hydrogen spectrum, Paschen's series, 1.318
tests, 1. 951	
thermochemistry of, 1. 931	storage, 1. 288
uses, 1. 946	sulphide, 10. 114
persulphide, 10. 154	analytical reactions, 10. 142
phosphide liquid, 8, 828	effect on catalysis, 1. 487
solid, 8 . 830	hexahydrated, 10. 132
———— yellow, 8 . 830	history, 10. 114
polysulphides, 10 . 154	
preparation, 1. 125, 275	of crystallization, 10. 141
primordial, 4. 2 properties, 1. 126	——————————————————————————————————————
purification, 1. 275, 287	physiological action, 10. 145
reducing power, 1. 332	properties, chemical, 10. 128
selenide, 10. 757	properties, chemical, 10. 128 physical, 10. 123
sical process, 1. 279	sulphoxide, 10 . 161
siliciuretted, 6. 216	surface tension, 1. 314
—— silicol process, 1. 284	telluride, 11. 36
amyl acetate, 1. 304	—— thermal conductivity, 1. 314
aniline, 1. 304	
	tritaphosphide, 8, 802
carbon disulphide, 1. 304	-— tritarsenide, 9. 50
	—— valency, 1. 335
	— vapour pressure, 1. 315
alcohol, 1. 303	Verdet's constant, 1. 316
—— glucose, 1. 304	viscosity, 1. 313
— glycerol, 1. 304	weight of atoms, 1. 313
glycocoll, 1. 304	
solubility in acetamide, 1. 304	Zeeman effect, 1. 318
acetic acid, 1. 303	Hydrogène arsenie, 9, 50 Hydrogenite, 1, 285
amidopropionic acid, 1. 304	Hydrogenium, 1. 309
ammonium chloride, 1. 303	Hydroglockerite, 14. 328, 335
hydrochloric acid, 1. 303	Hydrogoethite, 12, 530; 13. 884
magnesium sulphate, 1. 303	Hydrohæmatite, 12. 530; 13. 874
metals, 1. 305	Hydroheptachloromercuric acid, 4. 848
methyl alcohol, 1. 303	Hydrohexachloroplatinic acid, 16. 302
nitrobenzene, 1. 304	Hydrohexachloroplumbic acid, 7, 720
petroleum, 1. 304	Hydrohexafluoboric acid, 5, 125
potassium carbonate, 1. 303	Hydrohexafluotantalic acid, 9, 916
chloride, 1. 303 hydroxide, 1. 305	Hydrohexanitritoiridic acid, 8, 514
nytroxide, 1. 303	Hydroidmenite, 7. 57 Hydroiddauric acid, 3. 610
propionic acid, 1. 303, 304	Hydroiodosmous acid, 15. 724
serum, 1. 304	Hydroiodostannie acid, 7. 463
sodium carbonate, 1. 303	Hydroiodostannous acid, 7. 460
chloride, 1. 303	Hydrol, 1. 461
hydroxide, 1. 303	Hydrolanthanite, 5. 521
nitrate, 1. 303	Hydrolite, 6. 734
sulphate, 1. 303	Hydrolith, 1. 283
sugar, 1. 304	Hydrolysis, 1. 391, 495, 1009 Hydromagnesite, 4. 252, 365
sulphuric acid, 1. 303	Hydromanganocalcite, 4. 375
urea, 1. 304	Hydromelanthallite, 2. 15
water, 1. 301, 302	Hydromercurthiosulphuric acid, 10. 548
xylene, 1. 304	Hydrometallurgical processes extraction
xylene, 1. 304 zinc sulphate, 1. 303	copper, 8 . 29
isobutyl acetate, 1. 304	chemical, 3. 29
alcohol, 1. 303	
lithium chloride, 1. 303	Hydromica, 6. 606
- specific gravity, 1. 313	Hydromicas, 6. 603
heat, 1. 315	Hydrone, 1. 279 Hydronepholite, 6, 573, 575
	Hydronickelmagnesite, 4. 375
	Hydronitratoauric acid, 3. 616
absorption, 1. 319 Balmer's series, 1. 318	Hydronitric acid, 8. 330, 341
Lynman's series, 1. 318	Hydronitrilomonosulphonic acid, 8. 669
y	•

Hydronitrous acid, 8. 330 Hydropentabromobismuthous acid, 9. 672 Hydropentachlorobismuthous acid, 9. 663, Hydropentachlorodimercuric acid, 4. 849 Hydropentachloroplatinic acid, 16, 302 Hydropentachloroplumbic acid, 7, 720 Hydropentatantalic acid, 9. 901 Hydroperoxide, 1. 956 Hydrophane, 6. 141 Hydrophile, 1. 771 Hydrophite, 6. 423 Hydrophlogopite, 6. 609 Hydrophobe, 1. 771 Hydrophosphatoferric acid, 14, 403 - dihydrate, **14**. 403 Hydrophosphatoplumbic acid, 7, 886 Hydrophylite, 3. 697; 6. 619 Hydropite, 6. 897 Hydroplumbite, 7. 491 Hydropneumatic lamps, 8, 1058 Hydropyrites, 14, 200 Hydropyroantimonic acid, 9, 435 Hydroquinone, 18. 615 Hydrorhodonite, 6, 897; 12, 149 Hydroselenites, 10. 820 Hydrosiderum, 8, 853 Hydrosilicododecamolybdic acid, 6, 867, 868 Hydrosilicododecatungstie acid, 6, 874 ---- docosihydrate, 6. 871 -- -- icosihydrate, 6. 871 ---- octocosihydrate, **6**. 871 - - - pentadecahydrate, **6**. 871 Hydrosilicons, 6, 215 unsaturated, 6. 226 Hydrosol, 1. 771 Hydrostannous acid, 7, 390 Hydrosulphates, 10. 440 Hydrosulphatoaluminic acid, 5. 336 Hydrosulphatobaric acid, 3, 785 Hydrosulphatoceric acid, 5. 660 Hydrosulphatoplumbic acid, 7, 823 Hydrosulphatothallic acid, 5, 469 Hydrosulphatozireonic acid, 7, 154 Hydrosulphides, 10. 141 Hydrosulphitoiridous acid, 10. 323 Hydrosulphochromous acid, 11. 431 Hydrosulphocupric acid, 3. 226 Hydrosulphotetrachromous acid, 11, 432 Hydrosulphure sulfuré de soude, 10. 485 Hydrosulphuric acid, 10. 141 Hydrosulphurous acid, 10. 166 Hydrotalc, **6**. 430, 622 Hydrotalcite, **4**. 251, 376; **5**. 296 Hydrotellurites, 11. 77 Hydrotephroite, 6. 894 Hydrotetrabromothallic acid, 5. 452 Hydrotetrachlorobismuthous acid, 9. 663 Hydrotetrachloromercuric acid, 849, 891 Hydrotetrachlorostannous acid, 7, 429 Hydrotetrachlorothallic acid, 5. 444 Hydrotetranitritoplatinous acid, 8. 514 Hydrotetraphosphatoferric acid, 14, 403 Hydrotetrasulphocupric acid, 3. 229 Hydrothiocarbonsäure, 6. 119 Hydro-thomsonite, 6. 711 Hydrotitanite, 7.3; 9.867 Hydrotribromomercuric acid, 4. 891 Hydrotrichloroferriphosphoric acid, 14. 404 Hydrotrichloromercuric acid, 4. 848

Hydrotrichlorostannous acid, 7, 429 Hydrotrifluothallous acid, 5. 437 Hydrotrisdibromobismuthphosphonium bromide, 8, 852 Hydrotrisulphatometaplumbic acid, 7, 601 Hydrotrisulphatoplumbic acid, 7, 823 Hydrotroilite, 12. 530 Hydrotropism, 1. 493 Hydrovanaditodisulphuric acid, 9, 819 Hydroxamic acids, 8, 296 Hydroxaquopentammines, 11. 462 Hydroxides, 1. 395 distinction hydrates, 1. 499 Hydroximinic acid, 8. 306 Hydroxyaminodisulphonic acid, 8, 672 Hydroxyapatite, 3. 903 Hydroxyaquobisethylenediamines, 11. 402 --- cis-salts, 11. 403 - - trans-salts, 11. 403 Hydroxyaquotetrachloroplatinic acid, 16. Hydroxydecammines, 11, 407 Hydroxydiaquotriammines, 11, 403 Hydroxyfluopertitanic acid, 7, 68 Hydroxyiodide, 7, 767 Hydroxylamic acids, 8, 296 Hydroxylamine, 8, 279, 280 — alum, **5**. 344 aluminium sulphate, 5, 345 amidosulphonate, 8. 641 ammonium paramolybdate, 14, 552 -- - phosphite, 8. 912 ---- tungstate, 11. 773 ---- bromide, **8**. 301 --- carbonate, 8. 303 -- cerium sulphate, 5. 659 chloride, 8. 300 - - chlorite, 2. 284 -- chlorohydrate, 8. 300 -- chromic chloropentaquochlorosulphate, 11. 468 ---- chloropentaquosulphatohydrosulphate, 11. 648 chromium sulphate, 11. 454 -- - columbate, 9. 863 ---- constitution, 8. 295 - cupric sulphates, 3. 256 - - diamminotrihydroxylaminometavanadate, 9. 470 --- diamminouranate, 12. 62 -- dihydrohypophosphate, 8, 932 -- dihydrophosphate, 8. 303 --- disulphatoaluminate, 5. 345 --- disulphatochromiate, 11. 454 --- aβ-disulphonic acid, 8. 678 --- dithionate, 10. 583 ----- detritaiodide, 8. 302 ---- diuranyl trisulphate, 12. 108 --- ferroheptanitrosyltrisulphide, 8. 412 --- - fluosilicate, 6. 946 — hemibromide, 8. 301 · -- hemichloride, 8. 301 --- -- hemiiodide, **8.** 302 ---- hydrochloride, 8. 300; 11. 831 - - hydromonamidophosphate, 8, 705 ---- hydrophosphite, 8, 912 --- hydrosulphate, 8. 303 – hypophosphite, **8**. 880 --- iodide, 8. 301

321.2212	
Hydro.:ylamine isolation, 8. 284	Hypobismuthates, 9. 655
— magnesium chloride, 4. 305	Hypoborates, 5. 38, 39
manganous dichloride, 12. 365	Hypobromites, 2. 250, 267
—— mercuric chloride, 4 . 847, 872	preparation, electrical processes, 2. 280
	—— uses, 2. 256
hydrochloride, 4. 873	Hypobromous acid, preparation, 2. 243, 245
	properties, 2. 250
nitrate, 8. 303	
nitrite, 8 . 472	— constitution, 2. 257
orthoarsenate, 9. 156	preparation, electrical processes, 2. 276
··· orthophosphate, 8. 303	—— uses, 2. 256
paramolybdate, 11. 584	Hypochloronitric acid, 8. 618
—— phosphite, 8. 912	Hypochlorous acid, preparation, 2. 243, 244
—— potassium hydrouranate, 12. 62	
	Hypoeutectic, 1. 518
—— properties, chemical, 8. 286	iron (steel), 12. 799
physical, 8. 284	Hypoiodique anhydride, 2. 291
- salts, 8. 300	Hypoiodites, 2. 250, 267
preparation, 8, 280	Hymologlaus acid propagation 9, 212, 248
sodium hydrouranate, 12. 62 uranate, 12. 62	Hypoiodous acid, preparation, 2. 243, 246 ———————————————————————————————————
sulphate, 8. 302	
tribromomercuriate, 4. 881	Hypomanganous acid, 12. 225
trichloromereuriate, 4. 852	Hypomercuromercurosic sulphite, 10. 287
tritaiodide, 8 . 302	Hypomercurosic sulphite, 10. 287
tritungstate, 11. 810	Hyponitrites, 8, 407, 410
uranate, 12. 61 monohydrate, 12. 61	Hyponitritosulphates, 8, 687, 688
uranyl tetrachloride, 12. 90	Hyponitritosulphuric acid, 8, 687, 688 Hyponitrosylic acid, 8, 407
(deca)hydroxylamine dimercuric hydro-	Hyponitrous acid, 8. 382, 405
chloride, 4. 873	constitution, 8. 408
enneachloromercuriate, 4. 852	——————————————————————————————————————
(di)hydroxylamine mercuric chloride, 4. 873	———— properties, 8 . 407
(tetra) hydroxylamina marcuric dihydro	anhydride, 8, 394
(tetra)hydroxylamine mercuric dihydro- chloride, 4 . 873	
	Hypophosphates, 8. 931
Hydroxylamites, 8. 291	Hypophosphites, 8. 873
Hydroxymimetite, 9. 192	Hypophosphoric acid, 8. 924
Hydroxynitrilodisulphonic acid, 8, 672	
Hydroxynitrilo-iso-disulphonates, 8. 678	dihydrated, 8, 928
disulphonic acid, 8. 678 monosulphonic acid, 8. 670	monohydrate, 8. 930 monohydrated, 8. 928
Hydroxynitrilomonosulphonic acid, 8. 670	anhydride, 8. 923
Hydroxynitrosylsulphonic acid, 8. 692	Hypophosphorous acid, 8. 870
Hydroxypentachloroplatinic acid, 16. 335	Hyporuthenites, 15. 517
Hydroxypentammines, 11. 402	Hyposelerite, 5. 531; 6. 663
Hydroxysodalite, 6, 583	Hyposiderite, 18. 886
Hydroxysulphatoplatinic acids, 16. 405 Hydroxytriaquodiammines, 11. 403	Hypostilbite, 6 . 759 Hyposulfite de soude, 10 . 485
Hydroxytriaquodipyridines, 11. 403	Hyposulphites, 10 . 166, 180
Hydroxytrichloroplatinosic acid, 16. 206	Hyposulphitosodalite, 6. 583
Hydroxytrichloroplatinous acid, 16. 285	Hyposulphuric acid, 10. 576
Hydrozincite, 4. 408, 646	Hyposulphurous acid, 10. 166
Hydrozone, 1. 946	———— constitution, 10, 176
Hygroscopicity, 1. 81 Hylotropic mixture, 1. 556	—— preparation, 10. 166 —— properties, chemical, 10. 170
Hyocinths, 6. 715	——————————————————————————————————————
Hypargyrite, 9. 539	anhydride, 10. 184
Hypereutectic, 1. 518	Hypotellurites, 11. 71
Hyperol, 1. 932	Hypotheses, 1. 57, 58, 59
Hyperoxygenized muriatic acid, 2. 286	rival, 1. 16
Hypersthene, 6, 390, 391	Hypothesis, 1. 13
Hypo-, 1. 118 Hypoantimonates, 9. 434	—— verification, 1. 15, 30 Hypotribromites, 2. 252
Hypoantimonic acid, 9. 437	Hypotri-iodites, 2. 252
oxide, 9. 434	Hypotyphite, 9. 3
Hypoazoic acid, 8. 340	Hypovanadates, 9. 743, 745

GENERAL INDEX 581	
Hypovanadatovanadates, 9. 792	Illudorido 8 710
	Illuderite, 6, 719
Hypovanadatovanadatophosphates, 9. 826 Hypovanadic acid, 9. 744	Ilmenite, 7. 2, 56, 57, 896; 12 . 530
— oxide, 9 . 739, 743	β -, 7. 59
salts, 9. 475	Ilmenorutite, 7. 2, 30; 9. 839, 905; 12. 530
selenate, 10. 875	Ilsemannite, 11. 488, 530, 658
Hypovanadite, 9. 740	Ilvaite, 6. 918; 12. 149, 530
Hypovanadous ammonium sulphate, 9. 818	Image latent, 3. 412
—— hydroxide, 9 . 740	Imagination in chemistry, 1. 9
—— oxide, 9. 739	Imides, 8. 224, 252, 329
potassium sulphate, 9. 818	Imidodiphosphamic acid, 8, 712
rubidium sulphate, 9. 818	Imidodiphosphamidic acid, 8, 712
—— sulphate, 9 . 818	Imidodiphosphoric acid, 8, 772
Hyrgol, 4 . 708 Hystatite, 7 . 2; 12 . 530	Imidodisulphonates, 8. 647
Hysteresis, 1. 152	Imidomonosulphurie acid, 8. 647 Imidonitrous acid, 8. 269
—— magnetic, 13. 247	Imidophosphoric acid, 8, 708
,	Imidopyrophosphoric acid, 8, 712, 713
	Imidosulphamide, 8. 664
I	Imidosulphates, 8. 647
	Imidosulphinic acid, 8. 645
Ianthinite, 12 . 5, 60	Imidosulphinites, 8. 645
latro-chemistry, 1. 50	Imidosulphonates, 8. 647
1berite, 6 , 619, 812	Imidosulphonic acid, 8, 647
lce, anchor, 1. 464	Imidosulphurous acid, 8, 645
better 1 464	Imidotrithiophosphoric acid, 8, 727
bottom, 1. 464 curve, 1. 445	<i>µ</i> -imino-salt, 14 . 672 Impure substances, 1 . 80, 82
crystalloluminescence, 1. 465	Incandescent mantle, 7. 213
elasticity, 1. 466	Incidence, angle of, 3. 47
flow of, 1. 466	Incognitum, 5. 497, 500
frazil, 1. 464	Indefinite compounds, 1. 658
friction, 1. 467	Index of absorption, 3. 47
ground, 1. 464	crystals, 1. 615
hardness, 1. 466	refraction, 1. 670, 671; 3. 47
——— plasticity, 1. 466	and specific gravity, 1. 672
(see water), 1. 435	India, 1. 21
sheet, 1. 464	Indian cinnabar, 4. 942
slush, 1. 464 spar, 6. 662	red, 13 . 782, 887 steel, 13 . 550
stone, 5. 304	tin, 4 . 403
X-radiogram, 1. 465	yellow, 14 . 519
Young's modulus, 1. 466	Indianite, 6. 495
Iceland spar, 3. 814	Indiarubber, permeability to gases, 1. 309
Ichthyophthalmite, 6. 368	oxygen, 1. 371
Icosivanadates, 9. 202	Indicator, 1. 389
Iddingsite, 6. 388	Indicators and boric acid, 5. 59
Ideal crystals, 1. 598	Indices of crystals, 1. 615
Idiomorphic crystals, 12. 876	
Idiomorphs, 1. 595 Idocrase, 6. 726	Indicolite, 6 . 741 Indiferous zinc blende, 7 . 896
	Indigo copper, 3. 220
Idrialine, 4. 696	Indigolite, 6. 741
Idrialite, 4. 696	Indilation, 15. 257
Idrizite, 14. 328, 353	Indiosoindic oxide, 5. 397
Idrociano, 8. 234	Indium, 5. 387
Idunium, 9. 714	acetylacetonate, 5. 398
Igelströmite, 6. 908; 18. 895, 916	—— alum ammonia, 5. 404
Iglésiasite, 7. 491, 829, 855	amalgam, 5. 395
Igneous corpuscles, 1. 56	amminochloride, 5. 399
Ignis cælestis, 1. 64	analytical reactions, 5. 394 and thallium, 5. 429
fatuus, 8 . 803 subtilis, 1 . 64	and thamum, 5. 429 arsenate, 9. 187
—— tenuis, 1. 64	arsenide, 9. 68
Ignition temperatures, 1. 485	atomic number, 5. 396
Ihleite, 12. 530; 14. 303, 307	—— weight, 5 . 395
Ildeforsite, 9. 906	cæsia alum, 5. 404
Ilesite, 12. 149	—— carbonate, 5. 405
Iliorite, 7. 896	chloroiodide, 5. 402
Illium, 15. 245, 251	—— chloroplatinate, 16. 329

Indium chloroplatinite, 16, 284	Inflammable match-boxes, 8, 1059
chromate, 11. 285	Infusible white precipitate, 4. 786
- dibromide, 5 . 401	Infusorial earth, 6. 289
- dichloride, 5 . 400	Ingot iron, 12. 710
dichromate, 11. 342	metal, 12. 710
diiodide, 5 . 402	steel, 12. 710
dioxide, 5. 398	
disulphide, 5 . 403	Inhibitors of catalysis, 16. 154
	Ink, silver, 6. 620
extraction, 5. 388	
halides, 5. 399	Inks, 13. 615
- hexahydroenneaselenite, 10. 830	Inoculation solutions, 1, 451
history, 5, 387	Inorganic ferments, 1. 937
hydride, 5 . 393	Insoluble substances, 1. 508
hydroselenite, 10. 830	Instantaneous light boxes, 8. 1059
hydrosulphate, 5. 404	Intensity chemical, 1, 104
hydrosulphide, 5, 403	factor of energy, 1. 712
- hydroxide, 5 . 398	Intercrystalline cement, 1. 605; 12. 899
- hydroxyselenite, 10. 830	Interference figures, 1. 610
iodate, 2. 355	Intermediate oxides, 1, 394
- isotopes, 5 . 396	Intermolecular attraction, 1. 525; 4. 187
lead alloys, 7. 625	—— ionization, 4 . 189
metavanadate, 9. 775	Internal energy, 1. 695, 717
molybdate, 11 . 563	of gases, 1. 792
monobromide, 5 . 400	friction, 1. 749
monochloride, 5, 400	pressure, 1. 841
monoiodide, 5 . 402	work, 1. 695
monosulphide, 5 . 403	Intra-atomic energy, 4, 150, 155
nitrate, 5 . 405	—— molecular attraction, 4, 187
nitride, 8 . 114	Intrinsic pressure, 1. 841
nitrite, 8 . 4 95	and latent heat, 1. 843
occurrence, 5 . 387	and latent heat, 1, 843
oxybromide, 5 . 400	surface tension, 1. 842
oxychloride, 5 . 399	liquids, 1. 841
oxysulphite, 10 . 301	Invar steels, 15. 257
perchlorate, 2. 402	Invariant systems, 1. 446, 447
phosphate, 5 . 405	Invasion coefficient, 6. 49
— — platinum alloy, 16 . 210	Inverarite, 14. 136; 15. 445
properties, chemical, 5, 393	Inversion temperature, 1, 866
physical, 5. 390	Invoite, 5. 91
rubidia alum, 5 . 404	Iodamide, 8. 605
·· selenate, 10 . 870	Iodammonium iodide, 2. 620
	ammine, 2. 620
selenite, 10 . 830	Iodargyrite, 3. 426
sesquioxide, 5 . 397	Iodates, 2. 296
- · solubility of hydrogen, 1. 307	acid, 2. 324, 335
	complex, 2 . 324
telluride, 11 . 54	detection, 2. 319
tribromide, 5 . 401	preparation, 2. 301
— — trichloride, 5 . 399	properties, 2. 305
trifluoride enneahydrated, 5 . 399	—— uses, 2. 319
trihydrated, 5 . 399	Iodatosodalite, 6. 583
trihydroxytetranitritoplatinite, 8. 521	Iodatosulphuric acid, 10. 689
triiodide, 5 . 402	trihydrate, 10. 689
—— trioxide, 5 . 397	Iodic acid, 2. 296
trisulphide, 5 . 403	
colloidal, 5. 403	
tungstate, 11. 789	fluoro-, 2. 363
uranate, 12. 64	molybdato-, 2. 363
Induced radioactivity, 3. 1005; 4. 97	phosphate, 2. 363
Induction, 1. 17	———— preparation, 2. 296, 301
electrolytic, 8. 585	———— properties, 2. 305
magnetic, 13. 245	selenato-, 2. 363
period, 1 . 295; 2 . 149	sulphato-, 2. 363
of photochemical, 2. 149	tellurato-, 2: 363
Inert gases, 1. 263; 7. 889	
occurrence, 7. 892	tungstato-, 2. 363 vanadato-, 2. 363
preparation, 7. 902	— beryllium chloride, 4. 233
properties, physical, 7. 906	Iodides, acid, 2. 220
Inertia, 4. 160	complex, 2. 229
Inesite, 6. 894; 12. 149	detection, 2. 209
	•

Iodides, preparation, 2. 214	Iodobromite, 2. 16, 17; 3. 426
	Iodocarnallite, 4. 317
—— thermochemistry, 2. 218	Iodocuprites, 3. 205
Iodine 1. 264; 13. 615	Iododiammine, 8. 610
—— acetate, 2. 292	Iodoembolite, 2. 16
a-monochloride, 2. 116	Iodogallicine, 9. 630
β-monochloride, 2. 116	Iodohemipentammine, 8. 610
anhydrosulphate, 10. 683 atomic weight, 2. 101, 106	Iodolaurionite, 7. 767 Iodomercuriates, 4. 925
bromine compounds, 2. 122	Iodominetite, 9. 263
chemical reactions, 2. 90	Iodomonammine, 8. 610
chlorine compounds, 2. 114	Iodonium, 2. 108
colloidal, 2. 98	
——————————————————————————————————————	—— phenyl derivatives, 2. 108
dioxide, 2 . 1291	Iodopentammines, 11. 404
preparation, 2. 291	lodoplatinates, 16. 389
properties, 2. 292	Iodosobenzene, 2. 108
extraction from caliche, 2. 43	lodosodalites, 6. 583
fuoring compounds 2, 114	Iodostannates, 7, 463
fluorine compounds, 2. 114 hemianhydrosulphate, 10. 683	Iodostannites, 7. 460 Iodosulphinic acid, 10. 690
- heptoxide, 2. 380	lodosulphonic acid, 10. 689
history, 2. 20, 23	Iodotellurites, 11. 106
—— hydrosol, 2. 98	Iodotitanates, 7. 89
in air, 8 . 11	Iodous acid, 2. 285
iodate, 2 . 285, 292	lodyrite, 2. 17; 8. 426; 7. 896
—— isotopes, 2. 107	Iolite, 6. 808
—— mol. wt., 2. 107	Ion, 1. 93, 965
monobromide, 2. 122	hypothesis, electrolysis, 1. 969
monochloride, 2. 116	
preparation, 2. 116 properties, 2. 117	precipitation 1 996
	——————————————————————————————————————
nitrate, 2. 292; 8. 621	unit charge, 1. 965
——— occurrence, 2. 16	Ionic dispersoids, 1. 773
oxyfluoride, 2. 292	hypothesis, analysis, 1. 1009
pentafluoride, 2. 114	Jonium, 4. 123; 5. 498, 500
—— pentitanhydrosulphatopentoxide, 10.	Ionization, 1. 971; 4. 177
683	and osmotic pressure, 1. 990
pentoxide, 2. 293	by a-rays, 4. 73
	collision hypothesis, 1. 973 constant, 1. 992
— physical properties, 2. 46	— dielectric hypothesis, 1. 974
— preparation, 2. 41	heat of, 1. 1007
purification, 2. 44	intermolecular, 14. 189
recovery, 2. 44	—— mechanism of, 1. 973
solubility, 2. 72	—— modes of, 1. 991
acid soln., 2. 82	—— percentage, 1. 981, 992
organic solvents, 2. 84	—— solvent attraction hypothesis, 1. 974
salt soln., 2. 82 water, 2. 71	Ionizing potentials, 4. 16 Ions concentration, 1. 981
solutions, colour, 2. 110	—— effect hydration on speed, 1. 989
— sulphate, 2. 285, 292	—— migration of, 1. 983
——— Millon's, 2. 292	nature, 2. 226
sulphite, 2. 292	number in solution, 1. 978
sulphoctochloride, 10. 646	strong, 1. 1015
- sulphodecachloride, 10. 647	
sulphoheptachloride, 10. 647	Iozite, 12. 530; 18. 702
tetroxide, 2. 291	Iridic barium chloronitrite, 8. 514 —— bromide, 15. 775
	chloride, 15. 766
trichloride, 2. 119	chloropentamminohydroxide, 15. 768
trioxide, 2. 281, 285	dichlorotetramminochloride, 15. 768
uses, 2. 96	—— dichlorotetramminonitrate, 15. 787
—— valency, 2. 108	hydroxypentamminochloride, 15. 768
Iodite, 3. 426	iodide, 15. 778
Iodoaquotetrammines, 11. 404	potassium chloronitrite, 8. 514
Iodoargyrite, 8. 300	
Iodoazide, 8. 337	sodium chloronitrite, 8. 514 hexanitrite, 8. 514
Iodoboracites, 5. 9	HOARIBUTIO, O. OLY

Iridic sulphate, 15 . 785 sulphide, 15 . 782	Iridium chloropentamminohydroxide, 15. 762, 787
Iridiosmium, 15. 686; 16. 6	chloropentamminoiodide, 15. 778
Iridium, 14. 519; 15. 730; 16. 1, 3, 6	chloropentamminonitrate, 15. 787
—— alums, 15. 785	chloropentamminosulphate, 15. 783
	chloropyridinotetramminochloride, 15.
	763
—— ammonium disulphate, 15. 785	chloropyridinotetramminosulphate,
——— hexachlorodihydrosulphite, 10.	15 . 783
324	——————————————————————————————————————
sulphide, 15. 783	—— cobalt alloy, 15. 750
trisulphite, 10. 324	—— colloidal, 15. 734
analytical reactions, 15. 747	—— copper alloy, 15 . 750
aquobispyridinotriamminochloride,	crystalline, 15. 734
15. 763	diamnines, 15. 780, 781
	diaquodichlorobispyridine, 15. 762
—— aquohydroxydibromide, 15 . 775 —— dihydrate, 15 . 775	—— dibromide, 15 . 773 —— dichloride, 15 . 758
aquohydroxydichloride, 15. 760	—— dichloro-diaquobispyridine-salt, 15.
	763
aquopentamminochloride, 15. 761	- dichlorobispyridinodiammino-salt, 15.
—— aquopentamminochloroplatinate, 15.	763
761	dichlorobispyridinodiamminobromide,
aquopentamminoiodide, 15. 778	775
—— aquopentamminonitrate, 15. 787	dichlorobispyridinodiamminochloride,
aquopentamminotrihydroxide, 15. 754	15. 763
aquotribromide, 15. 776	—— dichlorobispyridinodiamminohydro-
aquotrichloride, 15. 760	sulphate, 15. 783
aquotriodide, 15. 779	dichlorobispyridinodiamminoiodide, 15. 778
	dichlorobispyridinodiamminosulphate,
- atomic disruption, 15. 749	15. 783
number, 15. 749	——— dichlorotetramminobromide, 15. 775
number, 15. 749 weight, 15. 749	monohydrate, 15. 775
barium ammonium disulphate, 15. 786	—— dichlorotetramminochloride, 15. 762,
——————————————————————————————————————	763
— bis-a-picolinotetrachloride, 15. 768	dichlorotetramminochloroperiridite,
bisethylenediaminobromide, 15. 774	15. 763
	—— dichlorotetramminoiodide, 15 . 778 —— dichlorotetramminosulphate, 15 . 784
bromides, 15. 773	— diiodide, 15 . 777
bromopentamminobromide, 15. 774	dinitritobisethylenediaminobromide,
bromopentamminosulphate, 15. 783	15 . 775
cæsium disulphate, 15. 785	dextro-, 15. 775
carbide, 5 . 902	lævo-, 15 . 775
—— carbonate, 15 . 787	—— dinitritobisethylenediaminoiodide, 15.
carbonatopentamminocarbonate, 15.	778
787	dinitritobisethylenediaminonitrate,
—— catalysis by, 1. 487 —— chlorides, 15. 757	15. 787 —— dinitritotetramminobromide, 15. 775
chloroaquobispyridinodiamminocar-	— dinitritotetramminoiodide, 15. 778
bonate, 15 . 787	—— dinitritotetramminosulphate, 15. 784
chlorobispyridinotriammino-salt, 15.	dioxide, 15. 754
763	colloidal, 15. 755
chlorobispyridinotriamminobromide,	dihydrate, 15. 755
15. 775	dioxyoctobromide, 15. 775
	distannide, 15. 750 disulphate, 15. 785
chlorobispyridinotriamminoiodide, 15.	—— disulphide, 15 . 782
778	—— electronic structure, 15. 749
chlorobispyridinotriamminosulphate,	explosive, 15. 734
15. 783	——————————————————————————————————————
chloropentamminobromide, 15. 774	filaments, 15. 734
chloropentamminochloride, 15. 763	films, 15. 734
chloropentamminochloroperiridite, 15.	
chloropentamminochloroplatinate, 15.	fluorides, 15. 757 gold alloy, 15. 750
762	hemiphosphide, 8. 861
chloropentamminohydrosulphate, 15.	—— hemitrioxide, 15. 753
783	hydrate, 15. 754

	•
Iridium hemitrisulphate, 15, 783	Iridium potassium sulphide, 15. 783
—— hemitrisulphide, 15. 782	——————————————————————————————————————
	trisulphite, 10. 324
—— hexafluoride, 15. 757	
	preparation, 15. 731
hexammines, 15 . 780, 781	—— properties, chemical, 15. 743
hexamminocarbonate, 15. 787	physical, 15. 735
hexamminochloride, 15. 761	rhenium alloy, 15 . 750
hexamminochloroperiridite, 15. 761	—— rhodium alloy, 15 . 750
hexamminoiodide, 15. 778	—— rubidium disulphate, 15. 785
hexamminonitrate, 15. 787	ruthenium alloys, 15 . 747, 750
hexamminotribromide, 15. 774	— — sesquioxide, 15 . 753
hexamminotrichloride, 15. 763	hydrate, 15 . 754
hexamminotrihydroxide, 15. 754	sesquisulphate, 15. 783
hydride, 15 . 744	sesquisulphide, 15. 782
hydrosol, 15 . 734	silver alloy, 15 . 750
hydrotribromide, 15. 774	sodium ammonium disulphate, 15. 876
—— hydroxide, 15. 752	enneamminohexasulphite, 10.
hydroxyaquodichlorobispyridine, 15.	324
763	
- hydroxypentamminochloride, 15. 762	sponge, 15. 734
hydroxypentamminohydroxide, 15.	sulphates, 15. 781
754	sulphatopentamminosulphate, 15. 783
hydroxypentamminonitrate, 15. 787	
iodides, 15 . 777	—— tetrabromide, 15 . 775
iodopentamminoiodide, 15. 778	tetrachloride, 15. 766
iron alloy, 15 . 750	tetrachlorobispicoline, 15. 763, 768
isotopes, 15. 749	tetrachlorobispyridine, 15. 763, 768
lead alloy, 15 . 750	—— tetrahydroxide, 15 . 755, 756
——————————————————————————————————————	tetraiodide, 15. 778
mercury alloy, 15 . 750	—— tetrammines, 15. 780, 781
monammines, 15. 781	tetroxide, 15 . 756
monobromide, 15. 773	thallous ammonium disulphate, 15. 786
monochloride, 15. 757	———— disulphate, 15 . 785, 786
	thiocarbonate, 6. 129
monosulphide, 15 . 781	ammine, 6 . 129
monoxide, 15 . 752	tin alloy, 15 . 750
nickel alloy, 15 . 750	triammines, 15. 780, 781
—— nitrate, 15 . 787	tribromide, 15. 774
- nitratopentamminochloronitrate, 15.	tetrahydrate, 15. 774
787	trichloride, 15. 758
nitratopentamminonitrate, 15. 787	hemitrihydrate, 15. 759
nitritopentamminoiodide, 15. 778	tetrahydrate, 15. 759
nitritopentamminosulphate, 15. 783	trichloro-1, 2, 3-trispyridine, 15, 762
occurrence, 15 . 730	trichlorodiaquopicoline, 15. 763
osmium alloys, 15 . 747, 751	trichlorotriammine, 15. 763
—— oxide blue, 15 . 753	trichlorotriammino-salt, 15. 763
- oxides, 15. 752	trichlorotrispicoline, 15.,762, 763
oxychloride, 15 . 764	trichlorotrispyridine, 15. 763
—— oxysulphate, 15 . 785	—— trihydroxide, 15 . 754
oxysulphite, 10 . 324	triiodide, 15 . 777
—— palladium alloys, 15. 751	trioxide, 15. 756
pentafluorioide, 15. 757	triphosphododecabromide, 8. 1033
pentammines, 15 . 780, 781	triphosphododecachloride, 8. 1007,
phosphate, 15. 787	1016
—— phosphide, 8 . 861	triphosphopentadecachloride, 8. 1007
phosphoarsenochloride, 15. 760	- trisethylenediaminobromide, 15. 776
—— phosphobromides, 15. 774	trisethylenediamminoiodide, 15. 778
—— phosphochloride, 15. 760	trisethylenediamminonitrate, 15. 787
phosphochlorobromide, 15 . 775	trispyridinotetramminochloride, 15.
	763
—— phospholexabromide, 8, 1033, 1035	trisulphide, 15. 783
phosphosulphochloride, 15. 760	
platinum alloy, 16. 226	uses, 15. 747
osmium alloys, 16 . 228	zinc alloy, 15. 750
rhodium alloy, 16. 228	Iridosmine, 15. 751
tin alloy, 16. 228	Iridosmium, 15. 751
potassium ammonium disulphate, 15.	Iridous chloride, 15. 758
786	diamminohydroxide, 15. 752
chlorotrisulphite, 10. 324	—— dicarbonyldichloride, 15. 758, 760
disulphate, 15. 785, 786	dichlorodiammine, 15. 758
pentachlorodisulphite, 10. 324	hydrosulphite, 10. 323

JOO GEMEIKA	L INDEX
Iridous hydroxide, 15. 752	Iron Barklawson offeet 19 961
	Iron Barklawsen effect, 12. 261
iodide, 15. 777	
—— oxide, 15 . 752	
	- beryllium alloy, 13. 542
—— sulphite, 10. 323	birefringence, 13. 171
sulphatodiammine, 15. 783	- bismuth, action, 13. 353
— tetramminochloride, 15. 758	
tetramminohydroxide, 15. 752	salts, action, 13. 353
—— tetramminonitrate, 15. 787	black, 13. 7
—— tetramminosulphate, 15. 783	bleaching powder, action, 13. 321
Iridyl sulphite, 10. 324	bloomary, 12. 709
Iron, 12 . 482, 530; 15 . 9	—— boiling point, 13 . 157
—— a-, 12. 776	— boracite, 5 . 137
β-, 12 . 776	boron, action, 13. 364
γ-, 12 . 776	alloys, 13. 548
δ-, 12. 776	trichloride, action, 13. 364
absorption spectrum, 18. 177	bromides, 14. 117
accumulator, 13. 225	bromine, action of, 13. 314
acetonosol, 12. 770	bromonaphthalene, sol, 12 . 770
acoustic properties, 13. 34	—— bushelled, 12 . 709
action, aerated water, 13, 409	cadmium alloys, 18, 545
——————————————————————————————————————	ealcium alloys, 13 . 541 titanatocolumbate, 9 . 867
on water, 1. 134	uranium deuterohexacolumbate,
——————————————————————————————————————	9. 905
sea-water, 13 . 445	cancer, 13. 445
——— water on, 13. 404	carbide, 5 . 894
active, 13. 777	carbides, action, 13. 353
affinity, 13. 495	carbon, action, 13. 353
age, 1. 19	alloys, constituents in, 12. 819
—— air, action of, 13. 309	crystallization, 12. 875
—— alcohol sols, 12 . 770	alloys, see Iron
—— alcosols, 12 . 769	————— dioxide, action, 13. 356
alkali hydroxides, action, 13. 365	————— monoxide, action, 13. 354
	system, 12 . 796
allotropes, 12. 775, 776 alloys, 13. 526	
—— aluminium alloy, 18 . 549	carbonates, 14. 355 carbonization, 12. 725
chromium-molybdenum alloys,	cast, 12. 708
13. 626	
copper alloys, 18. 557	malleable, 12. 724 American, 12. 724
—— magnesium alloys, 13 . 557	European, 12. 724
	—— —— Réaumur's, 12. 724
	casting shrinkage, 13. 139
amalgams, 13. 545	castings, 12. 708
amines, action, 18. 342	catalyses, by, 1. 487
—— ammonia, action, 13. 340 —— ammonium azide, action, 13. 342	
—— persulphate, action, 13. 335	
	cerium alloys, 18. 557
—— amorphous, 12. 898	chalcanthite, 14. 296
and steam, 1. 297	charcoal, 12. 708
anomalous dispersion, 13. 171	—— chemical properties, 13. 297
—— anthophyllite, 6 . 912	chloric acid, action, 18. 321
antimony, action of, 13. 353	chlorides, 14. 9, 40
	chlorite, 6. 624
arc discharge, 13. 236	chlorine, action of, 13. 314
	trifluoride, action of, 13. 314
armeo, 12. 656, 757	chrome, 11. 201 chromium alloys, 13. 586
	cobalt alloys, 14, 540
—— atomic disruption, 13. 496	molybdenum alloys, 12. 626
number 13 406	molybdenum alloys, 12. 626 nickel-titanium alloys, 15. 328
radius, 18. 14	——————————————————————————————————————
	vanadium alloys, 12. 643
——— weight, 18. 494	Cleveland, 12. 708
—— barium alloy, 13. 541	atummum, 17. 000

Iron cobalt chromium alloys, 14. 553	Iron dipentitaphosphide, 8, 856
tungsten alloys, 14 . 554	—— dipentitasilicide, 6 . 200
manganese alloys, 14. 554	——— direct process, 12 . 635
molybdenum alloys, 14 . 554	diselenide, 10. 799
tungsten alloys, 14. 554	disilicide, 6 , 201
coercive force, 12 . 259	- distannide, 13 . 576
colloidal, 12 . 769	disulphide, 14, 199, 202
colour, 13. 169	colloidal, 14. 208
columbium alloys, 13. 586	preparation, 14, 204
compressibility, 13. 98	— — disulphitotetramminocobaltate, 10.
compressive strains, effect on corro-	317
sion, 13. 466	ditritantimonide, 9, 412
cooling shrinkage, 13. 139	ditritaphosphide, 8, 857
- co-ordination number, 18, 495	ditritarsenide, 9, 72 ditritasilicide, 6, 200
copper alloys, 13, 527	ditungstide, 13. 629
	- dodecazincide, 13. 544
	dodecitacarbide, 5. 897
——— molybdenum alloys, 13. 626	ductility, 13. 67
nickel alloy, 15. 312	earth, blue, 14 . 390
aluminium alloys, 15. 313	effect carbon content on corrosion, 13.
cobalt-magnesium alloys,	461
15. 337	vibrations, 13. 84
	elastic after-effect, 13. 68
silicon alloys, 13. 570	modulus, 13. 35
sulphur, ternary system, 3. 24	recovery, 18. 68
tin-lead alloys, 13. 579	
tungsten-nickel alloys, 15. 330	clasticity in shear, 13. 76
zinc alloy, 13. 545	electrical conductivity, 13. 189
corbino-effect, 13. 235	properties, 13, 189
corrodibility of different kinds of, 13.	resistance, 13, 135, 190
458	- electroaffinity, 13. 221
corrosion, 13. 403	- electrochemical series, 13. 212
———— by bacteria, 13. 429	- electrode potential, 13, 205
coment, 13. 449	electrodeposited, 12. 760
coal gas, 13. 430	electrolytic volte action, 13. 224 electromotive force, 13. 213
concrete, 13. 449	electronic structure, 13. 496
	electrons and, 13. 180
soils, 13. 430	electrostenolysis, 13. 228
- creep, 13. 68, 93	emissivity, 13 . 172
critical point A ₀ , 12. 812	endurance limit, 13. 87
A ₁ , 12 . 811	enhanced lines, 13. 176
A ₂ , 12. 777, 811	enneacarbonyl, 5. 960
A ₃ , 12. 779, 811	- — enneadecazincide, 13. 544
A ₄ , 12. 781, 811	— — ennitastannide, 13. 576
—— potentials, 13. 181	entropy, 13. 162
temperatures, 12. 776	epidote, 6 . 722
cryolite, 14. 8	ethersol, 12. 770
crystallization, 12. 875	Ettingshausen effect, 13, 235
——— Curie point, 13. 267	
cycle, 12 . 547	- extinction coefficient, 13. 171
- decarburization, 12. 725	extraction, 12. 580
decitaceride, 13, 558	Faraday effect, 13. 173
decomposition voltage, 13. 225	fatigue, 18. 67, 88
dialuminide, 13. 550	- fireclay, action, 13. 364
dialyzed, 13 . 831 diantimonide, 9 . 412	flame spectrum, 13. 173
diarsenide, 9. 73	flexibility, 13. 71
diberyllide, 18. 542	fluorides, 14. l
diboride, 5 . 31	——————————————————————————————————————
dicarbide, 5. 894, 896	fluosulphonic acid, action, 13. 327
— dichroism, 13. 171	free energy, 13. 162
dichromide, 13. 587	—— friction, 13. 33
dielectric constant, 13. 236	internal, 13. 28
diffusion, 13. 28	molecular, 13. 28
dihydride, 13. 309	frictional electricity, 13. 189
dimolybdide, 13. 619	- gallium alloys, 13 . 557
—— dioxide, 13. 702, 925	galvanized, 4 . 494

300 GENERAL	H HIDDH
. 11 40 ***	1 To
Iron germanium alloys, 18. 576	Iron ingot, 12. 710
glance, 8 . 860 ; 12 . 530	—— intermetallic compounds, 13. 526
——— glass, action, 13. 364	—— internal friction, 13. 28
glycerol sol, 12 . 770	———— pressure, 13. 27
——— gold alloys, 13 . 5 4 0	iodic acid, action, 13. 321
——— growth of cast, 13. 142	—— iodides, 14 . 127
gymnite, 6 . 423	iodine, action of, 13. 314
—— Hall effect, 13. 234	ionization energy, 18. 205
—— hardness, 13. 14	iridium alloy, 15. 750
abrasive, 18. 26	—— isotopes, 13 . 496
heat ionization, 18. 205	— Joule effect, 13. 278
	Kerr effect, 13. 173
of fusion, 13. 157 vaporization, 13. 158	knebelite, 6. 908
halium action of 12 207	
homiomorida 9 72	lag, 13. 68
—— hemiarsenide, 9. 72	lanthanum alloy, 13, 557
—— hemiboride, 5 . 3 1	l
hemicarbide, 5 . 896	lead alloys, 13. 579
hemiceride, 13 . 557	hydroxysulphatarsenate, 9. 334
hemichromide, 13 . 587	potassium nitrite, 8. 501
hemimolybdide, 13 . 619	Leduc effect, 13. 236
heminitride, 8. 133	- limit of proportion, 13. 68
hemioxide, 13 . 702	restitution, 13. 68
hemipentaluminide, 13. 551	liquor, 14. 386
hemipentasilicide, 13. 561	— — lithium nitride, action, 13. 342
hemipentoxide, 13. 926	luminescence spectrum, 13. 176
hemiphosphide, 8. 856	— magnesia spinel, 5. 154, 297
hemiselenide, 10. 799	magnesium alloy, 13. 543
hemisilicide, 6 . 199	zinc alloys, 13, 545
—— hemistannide, 13. 576	—— magnetic hardness, 13. 259
	properties, 13, 135, 244
hemitriselenide, 10 . 799	viscosity, 13 . 259
hemitrisilicide, 6 . 200	magnetostriction, 13. 278
hemitristannide, 13. 576	—— manganese alloy, 13. 644
hemitungstide, 13. 627	aluminium alloys, 13. 667
	carbide, 13. 648 chromium-nickel alloys, 15. 330
hexaboratodiiodide, 5. 141	chromium-nickel alloys, 15. 330
hexahydride, 13 . 309	copper alloys, 13. 666
	——————————————————————————————————————
hexitacarbide, 5. 896	tritasilicide, 6. 199
hexitaeeride, 13. 558	tungsten alloys, 13. 668
hexitaphosphide, 8. 855	uranium alloys, 13. 668
—— history, 12. 482	vanadium alloys, 13. 668
—— hydrazine, action, 13. 342	- — manganiferous ores, 12. 150
hydrazoic acid, action, 13. 342	Matteucci effect, 13. 278
hydride, 13. 309	mechanical properties, 13. 1, 34
	— melting point, 13. 155
hydrobronic acid, action of, 13. 314	mercury alloys, 13. 545
hydrocarbons, action, 13. 354	tin alloys, 13. 579
hydrochloric acid, action of, 13. 314	metal action, 13. 364
hydrofluoric acid, action of, 13. 314	salts, action, 18. 367, 368, 369,
—— hydrogen, action of, 13. 297	370, 371
chloride, action of, 18. 314	—— meteoric, 15. 260
dioxide, action of, 18. 313	cubic, 15. 261
fluoride, action of, 13. 314	octahedral, 15 . 261
overvoltage, 18. 223	methane, action, 13. 353
selenide, action, 13. 336	— microstructure, 12. 791
	—— mirrors, 12 . 769
telluride, action, 13. 336	—— modulus of transverse elasticity, 13. 76
hydrosol, 12. 769	molecular friction, 18. 28
hydroxides of metal, action, 13. 365,	molybdenum alloy, 13. 617
366, 367	——— carbide, 18. 619
hypochlorous acid, action, 18. 321	——— manganese-nickel alloys, 15. 330
	tritacarbide, 13. 620
hypophosphate, 8, 939	tungeten ellere 40 849
—— hysteresis loss, 13 . 259	tungsten alloys, 18. 643
(magnetic), 18 . 259	vanadium alloys, 13. 626
imides, action, 18. 342	—— molybdide, 18. 618
impact strains, effect on corrosion, 13.	—— monantimonide, 9. 412
466	—— monarsenide, 9. 72
	monoboride, 5. 30
—— index of refraction, 13. 170	—— monophosphide, 8. 857

Iron monoselenide, 10. 799	Iron passivity, 13. 498
—— monosilicide, 6 . 200 ; 18 . 561	Peltier effect, 18. 233
—— monoxide, 13. 702	pentacarbonyl, 5. 958
—— naphthalene sol, 12. 770	—— pentahemiboride, 5. 31
—— natrolite, 6. 653	pentaiodide, 14. 134
neutrons and, 13 . 180	pentastannide, 13 . 576
— — nickel alloys, 15 . 255, 565	pentitacarbide, 5. 896
aluminium-copper alloys, 15. 314	pentitadiceride, 13. 557
——————————————————————————————————————	pentitadinitride, 8. 133
boron alloys, 15. 314	—— pentitahexastannide, 13. 576
chromium alloys, 15 . 316	pentitazincide, 13. 544
aluminium alloys, 15. 328	— perchloric acid, action, 13. 321
beryllium alloys, 15. 327	periodic dissolution, 13. 515
manganese alloys, 15. 338	permanent set, 13. 68
manganese anoys, 10: 000	
molybdenum-copper alloys,	— permeability (magnetic), 13. 263
330	to gas, 13. 4
	peroxide, 13 . 925
vanadium alloys, 15 . 328	phosphide, 8 . 853
cobalt alloys, 15. 338	phosphoric acid, action, 13, 350
manganese alloys, 15 . 338	phosphorus action, 13. 347
titanium alloys, 15 . 339	———— compounds, action, 13. 350
manganese alloys, 15 . 330	silicon alloys, 13 . 571
copper alloys, 15 . 330	photoelectric effect, 13. 181
phosphide, 8 . 860	
	photophoresis, 13, 182
pyrites, 15. 444	photovoltaic effect, 13, 205
silver alloys, 15 . 313	physiological, action, 13. 375
tantalum alloys, 15 . 315	pig, 12 . 596
tin-copper alloys, 15. 314	chill cast, 12. 596
	grey, 12. 596
	machine cast, 12. 596
—— nitrates, 14. 375	mottled, 12 . 596
nitric acid, action, 13. 342	sand cast, 12 . 596
oxide, action, 13. 342	white, 12. 596
mitrogen, action, 13. 336	plastic flow, 13 . 32
——————————————————————————————————————	strain, 13. 68
nitrosopentadecacarbonyl, 5. 960	plasticity, 13 . 32
— nitrosyl chloride, action, 13. 342	platinie, 16 . 6
— - nitrous oxide, action, 13. 342	platinum-chromium alloys, 16. 219
nomenclature, 12. 707	
	cobalt alloys, 16 . 219
— Noric, 12. 499	copper alloy, 16. 219
normal potentials Fe→Fe···, 13. 207	gold alloys, 16. 219
—— Fe··→ Fe···, 13 . 208	——— manganese alloys, 16 . 219
——— Fe→Fe······, 13. 210	ničkel alloys, 16 . 220
—— occurrence, 12 . 520	silver alloys, 16. 219
octitacarbide, 5. 894	Poissan's ratio, 13. 74
—— olivine, 12 . 530	— polarization, 13 . 226
—— optical properties, 13. 169	Pole effect, 13. 176
—— ore, calcarious, 14. 355	—— porosity, 13. 4
——— pitehy, 9 . 227	positive ions and, 13, 180
	potassamide, action, 13. 342
spathic, 14. 355	—— potassium alloys, 18 . 526
———— titaniferous, 7. 2	antimonide, 9. 413
ores, 12 . 150	barium nitrite, 8 . 501
electric smelting, 12. 598	chlorate, action, 13. 321
	diselenide, 10. 800
organic compounds, action, 13. 358,	
359, 360, 361, 362, 363	perchlorate, action, 13. 321
osmium alloys, 15. 697	peroxide, action of, 13. 313
overstrain, 13. 68	———— persulphate, action, 18. 335
oxide, black, 13. 736	—— psilomelanes, 12. 266
——— magnetic, 13 . 731	—— purified, 12 . 757
oxides of metals, action, 13. 364, 367	pyrites, 12. 530
reduction, 12. 618	pyrophoric, 12. 768
	radioactivity, 13. 181
oxygen-carbon, 12. 621	radiodetector, 13. 233
hydrogen eyetem 19 620	rate of solidification, 12. 721
nyarogen system, 12. 019	a-rays and, 18. 180
overvoltage, 18. 224	β -rays and, 13. 180
ozone, action of, 13. 312	γ-rays and, 13. 180
—— palladium alloys, 15. 650	—— X-rays, 13. 179
—— passive, 18. 499	spectra, 13. 178
Paparro, 10, 100	apocora, 10. 110

000	
Iron reactions of analytical interest, 13. 371	Iron stark effect, 13. 176
recovery, 13. 68	starvation, 13. 376
reflecting power, 13 . 171	— stellar spectra, 13 . 177
- refraction equivalents, 13. 171	strontium alloys, 13. 541
reluctivity, 13 . 259	subcarbide, 5. 896
residual rays, 13 . 176	subsulphides, 14. 138
rhodium alloys, 15 . 565	sulphides, 14 . 136, 199
rigidity, 13. 74	sulphur, action, 13 . 32
rust, 13 . 890	dioxide, action, 13. 327 monochloride, action, 13. 327
rusting effect acidity, 13. 436	
aeration, 13. 421	sulphuric acid, action of, 13. 328
H'-ion cone., 18, 436	sulphurous acid, action, 13, 327
ruthonium allows 45 510	
ruthenium alloys, 15 . 510 scale, 18 . 734	
- Scythian, 12. 499	Swedish, 12. 708
selenic acid, action, 13. 335	
selenium, action, 13. 335	tantalum alloy, 13. 585
monobromide, action, 13. 336	tarnishing in air, 13. 451
monochloride, action, 13. 336	tellurium, action, 18. 335
oxybromide, action, 13. 336	tensile strains, effect on corrosion, 13.
—— sensitiveness of spectrum, 13. 176	465
—— series spectra, 13 . 177	strength, 18. 35
sesquicarbide, 5. 894	tetracarbonyl, 5. 960
sesquioxide, 13. 775	—— tetrapentitarsenide, 9. 73
sesquiphosphide, 8. 857	tetrarsenide, 9, 73
shearing stress, 13. 72	tetratriantimonide, 9. 412
shock test, 13. 78	tetratritaphosphide, 8, 857
silicates, 6 . 905	
of metals, action, 13, 364	- tetritanitride, 8. 133
silicon, action, 13. 364	tetritapentastannide, 13. 576
alloys, 13. 558	tetritaphosphide, 8. 855
tetrachloride, action, 13. 364	tetritastannide, 13. 576
silver alloys, 13. 359, 539	tetritoxide, 13. 702
copper alloys, 13 . 540	tetroxide, 13. 702, 936
nitrate, action, 13. 346	thallium alloys, 13. 557
selenide, 10 . 800	thermal changes during transforma-
sinter, 9. 227; 12. 530; 13. 889	tions, 13. 159
arsenical, 9. 227	limit, 13. 68
sodamide, action, 13. 342	properties, 13 . 130
—— sodium alloys, 13 . 526	- thermoelectric force, 13. 229
	thin filaments, 12. 769
dioxide, action of, 13, 313	thiocarbonate hexammine, 6 . 129
silicate action, 13. 364	Thomson effect, 13. 173, 234
sulphide action, 13. 326	tin alloys, 18. 576
thiosulphate, action, 13. 335	bismuth alloys, 13. 579
xanthate, action, 13. 326	titanium alloys, 13. 571
- — solar spectrum, 13 . 176	fluoride, action, 13. 364
solubility of hydrogen, 1. 305, 306	nitride, action, 13. 340
—— solution pressure, 13. 221	tetrachloride, action, 13. 364
—— spark spectrum, 13 . 174	vanadium alloys, 13. 585
specific cohesion, 13. 27	torsion modulus, 13. 74
gravity, 13. 1	torsional strain, effect on corrosion, 13.
———— heat, 13. 150	465
volume, 13. 11	
spectrum-arc, 13. 175	transformation points 12, 530
——————————————————————————————————————	
sensitiveness of, 13. 176	
	transport number, 13. 205
spark, 13. 174	transverse strength, 13. 71
——————————————————————————————————————	trialuminide, 13 . 550
——————————————————————————————————————	triamidodiphosphate, 8. 712
spinel, 4. 251; 5. 54	triantimonide, 9. 412
spongy, 12. 635, 767	triboelectric effect, 13. 205
stannic chloride, action, 13, 364	triboelectricity, 13. 189
stannide, 13 . 576	tricarbide, 5. 894

Iron trioxide, 13. 702, 929, 930	Ironstone clay jaspery, 13. 775
— trisilicide, 6 . 201	oolitic, 13. 886
tritacarbide, 5. 894, 896	Irreversible cells, 1. 1022
tritadecazincide, 13. 544	colloid, 1. 771
—— tritadialuminide, 13. 550	processes, 1. 717
tritadimolybdide, 13. 618, 619	steels, 15. 264
tritadinitride, 8. 134	Irvingite, 2, 425; 6, 606
tritadisilicide, 6. 200; 13. 560	Isaac of Holland, 1. 48
tritaditungstide, 13. 628	1serin, 7. 56
tritadizirconide, 18. 574	Iserine, 1. 2
tritaphosphide, 8. 856	Iserite, 7. 30
—— tritarsenide, 9. 72	Ishikawaite, 5, 516; 9, 839, 866
tritasilicide, 6 . 199; 13 . 560	Island's furnace, 8. 376
tritastannide, 13. 576	Isobutyl acetate and hydrogen, 1. 304
tritatetraselenide, 10 . 799, 800	Iso-cinchonidine chloroplatinate, 16, 313
tritatetrastannide, 13. 576	Isoclase, 3. 623, 902; 8. 733
- — tritatetroxide, 13. 732	Isodimorphism, 1, 664
tritatungstide, 13. 628	Isoelectric compounds, 4. 201
tritazincide, 13. 544	Isogonism, 1. 663
tritetritaphosphide, 8. 856	Isohydroborododecatungstic acid, 5. 109
tritetritasilicide, 6. 200	Isohydrosilicododecatungstic acid, 6. 892
tritoxide, 13. 702	Isomerides dynamic, 10. 49
trizincide, 13. 544	Isomerism, 5. 721
tungsten alloy, 13. 626	and heat of reaction, 1. 700
carbide, 13. 629	refractive index, 1. 685
phosphide, 8. 850	Iso-monosulphonic acid, 8, 679
	Isomorphism, 1. 651
	and atomic weights, 1. 668
vanadium alloys, 13, 626	cleavage, 1. 657
ultimate rays, 13. 176	corrosion figures, 1. 658
ultra-red spectrum, 13. 176	elastic constants, 1, 657
— ultra-violet spectrum, 13. 176	——— hardness, 1. 657
uranate, 12. 64	magnetic properties, 1. 658
uranium alloys, 13. 643	optical properties, 1. 658
calcium titanocolumbate, 9. 905	specific gravity, 1. 657
deuterotetracolumbate, 9. 905	thermal conductivity, 1. 658
metacolumbate, 9. 905	expansion, 1. 658
valency, 13. 494	Mitscherlich's law, 1. 651, 652
vanadates, 9. 790	Isomorphous mixtures, 1. 658
	Isopolyacids, 6. 867
—— vanadium, 1. 520	Isopolyvanadic acid, 9. 794
alloys, 13. 579	Isopropyl(di)stannie chloride, 7. 446
chromium-molybdenum alloys,	stannic bromide, 7. 455
13. 626	ehloride, 7. 446
vanadyl trichloride, action, 13. 353	stannonic acid, 7. 410
vapour pressure, 13. 157	Isoquinine chloroplatinate, 16. 313
velocity sound in, 13. 34	chloroplatinate, 16. 313
vibration frequency, 13. 181	Iso-quinolinium bromoplatinate, 16. 376
—— Villari reversal, 13. 275	Isosteric compounds, 4. 200
viscosity, 13. 28	Isotachiol, 6. 951
volatilization, 13. 157	Isothermal compression gases, 1. 863
volta effect, 13. 205	electricity, 1. 820
water, action of, 13. 312; see Corrosion	expansion gases, 1. 863
of iron	Isotonic solutions, 1. 539
—— white pyrites, 12. 531	Isotopic elements, 4, 50, 130
Wiedemann's effect, 13. 278	Isotopism, 4. 131
wrought, 12. 634, 709	Isotopy, 4. 130
X-radiogram, 1. 642	pseudo-, 4 . 193
Zoeman effect, 13. 176	Isotropic crystals, 1. 610
zine alloys, 13. 543	— solids, 1. 820
	Isotungstic acid, 11. 764
	Itabirite, 13. 775
zirconium, 7. 117	Itabiryte, 18. 775
	Itacolumite, 6. 140
zoisite, 6 . 720	Ittnerite, 6. 584
	Ivaarite, 6. 846; 7. 3
Ironac, 13, 559 Ironatone brown, 18, 886	Iviglite, 6. 606
Ironstone brown, 13. 886 ———————————————————————————————————	Ivory black, 5. 750
—— clay, 13. 880 —— china, 6. 515	Ixiolite, 9. 839, 909
	Ixionlite, 9. 909
clay, 13. 775; 14. 355	· maiorition, v. 000

Jacinta la bella, 6, 715

T.

Jacinth, 7. 98 Jack-o'-lanterns, 8. 803

Jacksonite, 6. 718

Jacobsite, 12. 149; 13. 933 Jacoby metal, 7. 362

Jacupirangite, 7, 124

Jade, 6, 405, 455, 694

---- de Saussure, 6. 694 ---- Swiss, 6. 694

--- tenace, 6. 694

Jadeite, 6. 405, 643 Jaipurite, 14. 424, 750

Jalpaite, 3, 300, 447

Jamesonite, 7. 491; 9. 343, 547 Janosite, **12**. 530; **14**. 303, 307 Japanese red, **13**. 782

Jargon, 7. 18, 100

de Cevlon, 7. 98

Jargonia, 7. 99 Jargonium, 7. 99

Jarosite, 12, 530; 14, 328, 343, 344

Jasper, 6. 140, 515

– Egyptian, **6**. 140 Jaspery clay ironstone, 13, 775

Jaspohämatite, 13. 775

Jaune brilliant, 4, 593
—— de baryte, 11, 273

- - - cadmium, 4, 593 --- strontiane, 11. 271

-- -- zinc, 11. 278

Jefferisite, 6. 609

Jeffersonite, 6. 390, 916; 12. 149

Jelletite, 6. 921 Jenite, 6. 918 Jenkinsite, 6. 423

Jeremejeffite, 5. 100

Jeremejewite, **5**. **4**, 155 Jeromite, **10**. 792

Jevreinovite, 6. 726

Jeypoorite, 14. 750 Jezekite, 5. 370

Jig, 3. 22

Jigging of ores, 3. 22

Joaquinite, 6. 843 Joeseite, 9. 589

Johannite, 12. 5, 106

Johnsonite, 7. 491 Johnstonite, 7. 793

Johnstrupite, 5. 513; 6. 844; 7. 3, 100

Jollyite, 6. 908; 12. 530 Jordanite, 9. 4, 298, 299

Jordisite, 11. 488 Jordiste, 11. 640

Jordonite, 7. 491

Josëite, 11. 2

Joseite, 10. 694; 11. 60.

Josephinite, 12. 530; 15. 5, 256

Jossaite, 11. 125

Jossoite, 11. 304 Joule, 1. 693

- Kelvin effect, 1. 864, 866

Thomson effect, 1, 864, 866

Joule's law, 1. 864 - rule, 1. 805

Juan blanco, **12.** 149

Juddite, 12. 149

Judex ultimus, 9. 341

Judgements, influence temperament on, 3. 526

Julianite, 9. 4, 291

Julienite, 14. 424, 826 Junckérito, 14. 355

Junonium, 4. 404; 5. 504

Jurinite, 7. 2

Jurupaite, 6, 420

Jval, 3. 296

Jvalita, 3, 296

K

K-radiations, 4. 36

Kämmererite, 6. 622; 15. 9

Kärarfvetite, 5. 523

Kaersutite, **6**. 821, 823 Kainite, **2**. 430, 657; **4**. 252, 343; **7**. 896

Kakochlor, 12. 266 Kakoxen, 12. 530

Kakoxene, 8. 733

Kalaite, 5. 155 Kalbaite, 6. 742

Kalgoorlite, 3. 494; 11. 2, 53

Kaliborite, 5. 4, 99

Kali carbonicum e tartan, 2. 714

- magnesia, 2. 660

Kalinite, 2. 657; 5. 154, 342

Kaliophilite, 6. 571 Kaliophilites hydrated, 6. 574

Kaliphite, 13. 886

Kalk flusssäurer, 2. 3

Kalklabrador, 6. 763

Kalkmilch, 3. 676

Kalkowskite, 7. 60 Kalkschaum, 3. 822

Kalkwasser, 3. 676

Kallais, 5. 362

Kallilite, 9. 696; 15. 5

Kallochrom, 11. 290

Kaluszite, 3. 623, 808

Kamacite, 12. 528; 15. 260 Kamasite, 12. 530

Kammkies, 14. 218

Kampylite, 7. 491

Kanaka, 1. 22

Kancelstein, 6, 715 Kaneite, 2. 149

Kane's salt, 4. 788

- theory mercury-nitrogen compounds, 4. 785

Kaolin, 6. 467

- α -, $\mathbf{6}$. 470 - β -, $\mathbf{6}$. 470 - δ -, $\mathbf{6}$. 470 - γ -, $\mathbf{6}$. 470

Kaolinic acid, 6. 474, 569

Kaolinite, 6. 467, 476 Kaolinization, 6. 468

Kapnik felspar, 6. 896

Kapnikite, 6. 896

Kapnite, 4. 643 Kara, 2. 711

Karelinite, 9. 699

Karinthine, 6. 821

Karpholite, 6. 900

Karstenite, 2. 430; 3. 761

Karyinite, 4. 252; 7. 491

GENERA	ш
Karynite, 9. 222	, 1
Kasolite. 7. 491 : 12. 5	1 *
Kasolite, 7 . 491; 12 . 5 Kastira, 7 . 277	1 -
Katabolic metabolism, 6. 11	١.
Kataphoresis, 3. 541	-
Katungite, 6. 342	-
Katzonauge, 6. 139	1 -
Katzensilber, 6. 604	-
Keatingite, 6. 898	-
Keeleyite, 9. 549	1 -
Keene's alloy, 15. 210	
cement, 3. 776	-
Keffekil tartarorum, 6. 921	I
Keffekill, 6. 427	I
Keffeklite, 6. 921	1
Kehoeite, 5. 371	I
Keifun, 4. 799	I
Keilhauite, 5. 513; 6. 840; 7. 3, 896	I
Kelley, E., 1. 48	1
Kelp ash, 2. 437	I
—— char, 5. 750	1
Kelvin's equation, 1. 1038	1
—— rule, 1. 1037	ŀ
Kempite, 12, 149, 357, 378	J
Kenotime, 5. 527	
Kentrolite, 6, 889; 7, 491; 12, 149	H
Keottigite, 9. 5 Kepler Johann, 1. 47	ŀ
Keramohalite, 5. 154, 333; 12. 149, 424	ŀ
Keramyl, 6. 945	1
Kerargyrite, 3. 300, 390	l a
Kerasine, 7. 739, 852	li
Kermes, 9. 513, 577	li
—— mineral, 9 . 448, 513	Ì
	Î
Kermesite, 9. 343, 577	1
Kerrite, 6, 609, 619, 622	Ì
Kerstenite, 7, 491; 9, 76; 10, 697, 873	1
Kertschenite, a., 14. 391	-
β-, 14 . 391	I
Kerzinite, 14. 424; 15. 5	1
Keweenaurite, 9. 81	F
Keweenswite, 9. 64; 14. 424	1 =
Kharpara, 4. 401	F
Kharsivan, 9. 40	I
Khespet, 7. 277	ŀ
Kibdelophane, 7. 2, 57; 12, 530	ŀ
Kidney ore, 12. 530; 18. 775	I
Kies, 14. 199	I
Kieselguhr, 6. 142, 289	F
Kieselkupfer, 6. 343	F
Kieselmalachite, 6. 343 Kieselmangan, 6. 896	F
Kieselzinkerz, 6. 442	F
Kieselzinkspath, 6. 442	İ
Kieserite, 2. 430; 4. 252, 321, 322; 7.	F
896	l F
Kilbrickenite, 7. 491; 9. 546	F
Kilbruckenite, 9. 343	ŀ
Killenite, 6. 619	F
Killinite, 6. 643	F
Kilmacooite, 7. 797	F
Kiln charcoal, 5. 748	1
Kilogram-calorie, 1. 699	ŀ
Kimitotantalate, 9. 909	F
Kinetic energy, 1. 696	F
of gases, 1. 744	F
theory and Avogadro's hypothesis, 1.	H
748 Charles' law 4 747	H
Charles' law, 1. 747	1 1

```
Kinetic theory and Dalton's law, partial
                    pressures, 1. 744
  ---- --- diffusion, 1. 744
  ---- solution, 1. 524, 528
  ---- atoms, 1. 782
  --- gases, 1. 742
  ---- and Boyle's law, 1. 743
  history, 1. 767
  King's blue, 14. 519
  Kirchhoff's equation, 1. 702
  Kirk narduban, 12. 853
  Kirwanite, 6. 821
  Kis, 14. 199
  Kischtimite, 5. 522
  Kischtim-parisite, 5. 522
  Kish, 12. 800, 859
Kiss' wet-process silver, 3. 306
  Kjerulfine, 4. 388
  Klaprothite, 3. 274; 5. 370; 9. 589, 691
  Klaprothium, 4. 404; 12. 1
  Klaprotholite, 3.7; 9.691
  Kleinite, 4. 697
  Klein's solution, 5. 110
  Klementite, 6. 623
  Kliachite, 5. 275
  kliachite, 5. 275
  Klinophaite, 4. 252
  Klipsteinite, 6. 897
  Kljakite, 5. 275
  Klockmann, 10. 771
  Klyphite, 6. 816
  Knall gläser, 6. 530
  Knallplatine, 16. 336
  Knebelite, 6. 908; 12. 149
     - iron, 6. 908
  Knebetite, 12. 530
  Knopite, 5. 513; 7. 3, 52
Knowledge, empirical, 1. 8
     - scientific, 1.8
  Kobald, 14. 419
Kobalt, 14. 419
  Kobaltarsenikies, 9. 309
  Kobaltbleierz, 10. 787
  Kobaltfahlerz, 9. 291
  Kobaltwismuthfahlerz, 9. 291
  Kobellite, 7. 491; 9. 343, 589, 693
  Kobelt, 14. 419
Kobold, 14. 419
  Koboldblüthe, 9. 228
  Koboldin, 14. 757
  Kobolt, 14. 419
  Koboltblomma, 9. 228
  Kobolterz, 9. 308
  Koboltglantz, 9. 76
  Koboltkies, 9. 308
  Koboltmalm, 9. 76, 308
  Kochelite, 5. 517; 9. 839, 904; 12. 6
  Kochite, 6. 454
  Kodolite, 2. 2
  Koechlinite, 11. 570
  Kolbingite, 6. 845
  Koeltigito, 14. 424
  Koenenite, 2. 431
  Königwasser, 8. 618
  Köttigite, 9. 180, 181; 15. 9
Koh-i-noor, 5. 711
```

Kohl, 9. 341 Kohlenschwefelwasserstoffsäure, 6. 119 Kohlenstoffcalcium, 5. 856 Kohlenstoffkalium, 5. 847 Kohlrausch's conductivity equation, 1. 987 · law, 1. 987 —— law, 1. 979 Kohol, 9. 339 Kokscharoffite, 6. 821 Kolm, 12. 6 Kolophonite, 6. 921 Kolovratite, 9. 791 Konel, 15. 343 Kongsbergite, 4. 1024 Konichalcite, 3. 623 Koninckite, 12. 530; 14. 401 Konstrastin, 7. 121 Koppar-lazur, 14. 189 Koppite, 5. 519; 9.,839, 904 Korginite, 9. 222 Kornelite, 12. 530; 14. 303, 308 Kornerupine, 6. 812 Korynite, 9. 343 Kosmium, 5. 504 Kossel's hypothesis valency, 4. 183 Kotschubeite, 6. 622 Kowalsky and Moscicky's furnace, 8. 375 Krablite, 6. 663 Kraflite, 6. 663 Kraurite, 8. 733; 12. 530; 14. 407 Krausite, 12. 530; 14. 340 Kreittonnite, 5. 296 Kremersite, 2. 15; 12. 530 Krennerite, 3. 494; 11. 2, 46 Kreuzbergite, 12. 530; 14. 411 Kreuzkristalle, 6. 766 Kreuzstein, 6. 766 Krisoberil. 5. 294 Krisurigite, 4. 639 Kroeberite, 14. 136 Kröhnkite, 8. 256, 257 Krokalite, 6. 573 Krugite, 2. 430, 657; 8. 623; 4. 252, 344; 7. 896 Kryolite, 5. 304 Kryolith, 5. 304 Kryptol, 5. 833 Krypton, 7. 889 atomic weight, 7. 947 - electronic structure, 7. 949 history, 7. 890 ---- hydrate, 7. 943 - isotopes, 7. 948 — occurrence, 7. 892 - preparation, 7. 902 - properties, chemical, 7. 941 physical, 7. 906 Ktypeite, 3. 815 Kubizite, 6. 644 Kuboid, 6. 644 Kuboizite, 6. 729 Kühnite, 9. 221 Kuld, 8. 296 Kunckel, J., 1. 52 Kunheim metal, 5. 610 Kunzite, 2. 425; 6. 640 Kupaphrite, 9. 161 Kupferacetylen, 5. 853. Kupferantimonglanz, 9. 536 Kupferblau, 6. 343

Kupferglanz, 3. 210 prismatoidischer, 9. 550 Kupferglas, 3. 210, 220 Kupferglaserz, 3. 210 Kupferglimmer, 9. 162 Kupfergrün, 6. 343 Kupferkis, 14. 183 Kupferlasur, 3. 274 Kupfer-lazul, 14. 189 Kupfernickel, 9. 80; 15. 1, 5 Kupferpeckerz, 6. 343 Kupferphyllite, 9. 162 Kupferschaum, 9. 161 Kupferschwärze, 3. 131 Kupfersmaragd, 6. 342 Kupferwismutherz, 9, 690 Kupferwismuthglanz, 9. 690 Kupfferite, 6. 396 Kuphite, 6. 574 Kuphonspars, 6. 574 Kuprite, 7. 349 Kutnohorite, 4. 371; 12. 149, 433 Kyanite, 6. 458 Kylindrit, 9. 552 Kylindrite, 9. 343 Kyrosite, 14. 200

L

L-radiations, 4. 36 Labile states, 1. 454 Labrador, 6. 693 felspar, **6**. 693 Labradorite, 6. 662, 693 - baryte, **6**. 707 - strontia, **6**. 707 Labradorstein, 6. 693 Labrodorite, 3. 901 Lac argenti, 3. 391 morcurii, 4. 797, 862 sulphuris, 10. 29, 30 Lacroicite, 5. 370 Lacroisite, 6. 899; 12. 433 Lactic acid, 13. 615 Längbanite, **6**. 837 Lävenite, **6**. 857; **7**. 100 Levorotatory, 1. 608 Laffroffite, 9. 716 Lagonite, 5. 4; 12. 530 Lagoriolite, 6. 580, 714 Lait de chaux, 3. 676 Lake ore, 12. 530 Lambertite, 12. 5, 60 Lambert's law, 3. 175 Lamotte's gold drops, 14. 10 Lamp, Nernst's, 7. 112, 120 —— perpetual, 1. 50 Lampadite, 12. 149, 266 Lampblack, 5. 750 Lamprophyllite, 6. 843; 7. 3; 12. 149 Lanarkite, 7. 491, 818, 854 Lancasterite, 4. 365 Landesite, 12. 149, 455; 14. 411 Langbanite, 9. 343; 12. 149 Langbeinite, 2. 430; 4. 338; 7. 896 rubidium, 4. 339 Langite, 8. 7, 263 Langmuir's octet theory atoms, 4. 196 - theory liquids, 1. 642

OBTIDITAL INDEX		
Langmuir's theory solids, 1. 642	Lanthanum magnesium nitrate, 5. 672	
Lansfordite, 4. 252, 357	—— manganous nitrate, 12. 445	
Lanthana, 5. 501, 625	metaborate, 5. 104	
—— preparation, 5 . 587	metaphosphate, 5. 675	
Lanthanates, 5. 628	metatungstate, 11. 826	
Lanthania isolation, 5. 550	molybdate, 11. 564	
Lanthanite, 5, 507, 521, 665	—— nickel bromide, 15 . 429	
Lanthanocerite, 5. 507	nitrate, 15. 492	
Lanthanous ammonium molybdate, 11. 587	nitrate, 5. 668	
—— cobaltic hexamminosulphate, 14. 791 Lanthanum ammonium carbonate, 5. 666	nitride, 8 . 115 occurrence, 5 . 586	
hexachromate, 11, 287	orthophosphate, 5. 675	
nitrate, 5. 671	oxalatonitrate, 5. 690	
———— selenate, 10 . 872	oxybromide, 5. 645	
sulphate, 5 . 659	oxydicarbonate, 5. 665	
sulphite, 10. 302	—— paratungstate, 11. 819	
tungstate, 11. 790	pentoxide, 5. 634	
analytical reactions, 5. 608	perchlorate, 2, 402	
atomic number, 5. 622 weight, 5. 621		
barium tungstate, 11. 791	potassium carbonate, 5. 665	
bismuth sulphate, 9. 701	heptachromate, 11. 287	
borate, 5 . 104	nitrate, 5. 670	
bromate, 2. 354	orthophosphate, 5. 675	
bromide, 5 . 645	selenate, 10. 872	
—— heptabromide, 5 . 645	sulphate, 5. 658	
calcium carbonate, 5. 666	preparation, 5 . 590	
—— carbide, 5. 873	-— properties, chemical, 5. 601	
carbonate, 5 . 664	physical, 5. 591	
ceric sulphate, 5. 662	—— pyridine sulphate, 5 . 6 59	
chloride, 5. 641	quinoline sulphate, 5. 659	
	rubidium hydronitrate, 5. 670	
chloroplatinate, 16. 330		
chloroplatinite, 16. 284	selenite, 10. 831	
chromate, 11. 286	sesquioxide, 5 . 625	
octohydrate, 11. 286	silicate, 6. 826	
monohydrate, 11. 287	silicododecatungstate, 6. 880	
cobaltous nitrate, 14. 828 cuprous disulphite, 10. 302	silver tungstate, 11. 791 sodium carbonate, 5. 665	
dithiosulphate, 10. 549	· molybdates, 11, 564	
—— dioxide, 5 . 630	nitrate, 5 . 670	
—— dioxymonocarbonate, 5. 665	——————————————————————————————————————	
—— dioxysulphate, 5. 651	———— selenate, 10 . 872	
disulphide, 5 . 649	sulphate, 5. 657	
dithionate, 10. 594		
—— fluoride, 5 . 638	basic, 5. 651	
fluosilicate, 6. 954	——————————————————————————————————————	
—— hexaiodohexanitritotriplatinite, 8. 523	hexadecahydrate, 6. 654	
hexamminonitrate, 5. 669	hexahydrate, 5. 654	
hydrazine sulphate, 5. 659	sulphatocerate, 5. 660	
	sulphatostannate, 7. 479 sulphide, 5. 648	
- hydroarsenite, 9. 128	sulphite, 10. 302	
—— hydroazide, 8 . 352	tetrahydropentaselenite, 10. 831	
— hydrofluoride, 5. 638	—— tetraluminide, 5. 608	
hydropyrophosphate, 5. 675	thallous nitrate, 5. 671	
	trihydromolybdate, 11. 564	
bydraulphate, 5, 656	tungstate, 11. 790 uranyl sulphite, 10. 309	
	zine nitrate, 5. 672	
hydroxytetraselenite, 10. 831	(di)lanthanum ammonium octosulphate	, 5.
iodate, 2. 355	659	
—— iodide, 5. 646	—— potassium hexasulphate, 5. 658	
iron alloy, 18. 557	octosulphate, 5. 658	

596 GENERA	L INDEX
(hexa)lanthanum cæsium henasulphate, 5. 658 — rubidium hexasulphate, 5. 658 (tetra)lanthanum anmonium henasulphate, 5. 659 Lapides stanniferi spathacei, 11. 673 Lapis ardens, 10. 1 — basanitis, 6. 140 — bononiensis, 8. 729 — calaminaris, 4. 401, 642; 6. 442 — colubrinus, 6. 420 — crucifer, 6. 458, 909 — electricus, 6. 740 — infernalis, 3. 459 — lazuli, 6. 585 — false, 5. 370 — pseudo-, 3. 274 — lydius, 6. 140 — magnes, 12. 139 — manganensis, 12. 140 — ollaris, 6. 429, 430 — plumbaris, 7. 638	Laumontite, 6. 738 — vanadio, 6. 739 Laurionite, 2. 15; 7. 738 Lauriorite, 7. 491 Laurite, 15. 498, 540, 686; 16. 5 Lausenite, 12. 530; 14. 303, 308 Lautarite, 2. 347 Lautite, 9. 305, 318 Lavendulan, 9. 159 Lavendulane, 14. 424 Lavendulanite, 9. 159 Lavendulite, 9. 5; 15. 9 Lavendule, 6. 855; 9. 839; 12. 149, 530 Lavenstein, 6. 430 Lavoesium, 4. 672 Lavoisier and Laplace, law of, 1. 698 Lavroffite, 6. 818 Lavrovite, 6. 409, 818 Law, 1. 10, 13, 31 — continuity, 1. 14 — of chemical composition, 1. 95 —— compound proportion, 1. 100
—— plumbarius, 5 . 713 ; 7 . 781 ; 11 . 484	constant composition, 1. 76, 78
ponderosus, 11. 674 rubeus, 4. 943	——————————————————————————————————————
	equivalent ratios, 1. 79 indestructibility of matter, 1. 101
solaris, 3. 619, 740	mass action, 1. 933
Lapiz, 5. 714	proportionality, 1. 79 reciprocal proportions, 1. 97
Laplace's constant, 1. 841	reciprocal proportions, 1. 97 three states, 1. 1
Lapparentite, 14. 349	—— Proust's, 1. 76
Laque minérale, 11. 290 Larbasis, 9. 339	—— Richter's, 1. 79, 97 Lawrencite, 2. 15; 12. 528, 530; 14. 10;
Larderellite, 5. 3	15. 5
Lardite, 6. 499	Lawroffite, 6, 409, 818
Lasallite, 6. 825 Lasurite, 8. 274	Lawrowite, 6 . 409; 9 . 716 Laws, 1 . 157
Latent energy of reaction, 1. 728	Lawsonite, 6. 708
—— heat and intrinsic pressure, 1. 843 —— image, 3. 412	Laxmannite, 8, 733; 11, 125
Laterite, 12. 530	Lazulite, 3 . 274; 4 . 252; 5 . 154, 370; 6 . 587; 8 . 733; 12 . 530; 14 . 396
Laterites, 5. 248	calcium, 5. 370
Latialine, 6. 584 Latrobite, 6. 693	Spanish, 6 . 808 Lazur felspar, 6 . 663
Latten ware, 7. 630	Lazurapatite, 3. 896
Lattice, clinorhombic prism, 1. 626	Lazurite, 6. 580, 587
cubic, body-centred, 1. 625 face-centred, 1. 625	Lazurstein, 6 . 586 Lead, 7 . 484; 15 . 9
double, 1. 625	—— acetylpyrophosphate, 7. 880
	alcosol, 7. 509
	—— allotropic, 7. 520 —— alloys, 12. 217
rectangular prism, 1. 626	—— aluminate, 5. 297
	aluminium alloys, 7. 624 oxydodecamolybdate, 11. 600
	aluminophosphate, 7. 877
rhombohedron, 1. 626	amalgams, 1. 3; 7. 618
	amminoxide, 7. 668
face-centred, 1. 626 triclinic, 1. 626	ammonium chromate, 11. 304 cobalt nitrite, 8. 506
Laubanite, 6 . 739	copper nitrite, 8 . 498
L'aude hydrosulfureux, 10. 166	————— dimetaphosphate, 7. 881
Laue's spots, 1. 634 —— X-radiograms, 1. 634	
Laumonite, 6. 575	imidochromate, 8. 266

Lead ammonium imidomolybdate, 8. 267	Lead calcium orthoantimonate, 9. 459
nickel nitrite, 8. 512	
nitrilotrisulphonate, 8. 669	
phosphatopentadecamolybdate,	433
11. 671	phosphatomolybdate, 11. 671
pyrophosphate, 7. 880	sulphatohydrosilicate, 6, 890
rhodium chloronitrate, 15. 591	sulphide, 7. 797
trithiosulphate, 10. 551	
—— analytical reactions, 7. 585	trithiosulphate, 10. 552
anorthophosphate, 7. 880	carbide, 5 . 885
antimonate, 9. 457	carbonate, 7. 828
antimonatosilicate, 6. 836	——————————————————————————————————————
antimonial, 7. 505	colloidal, 7. 831
antimonides, 9. 409	preparation, 7, 830
antimonious enneaiodide, 7. 762	——————————————————————————————————————
antimony heptoxytetrachloride, 9. 507	physical, 7, 832
antimonyl oxychloride, 9. 507	carbonatochromate, 11. 473
arsenate, 9. 189	cerous orthophosphate, 7. 877
colloidal, 9 . 191 arsenides, 9 . 68	chamber crystals, 8. 696
arsenious enneaiodide, 7. 762	chambers, theory of, 10. 372
arsenite, 9. 129	chemical assay, 7. 505
çolloidal, 9 . 129	chlorate, 2. 356
arsenoenneadiiodide, 9. 254	— chloride, 7. 706
ash, 7. 563, 639	colloidal, 7. 708
atomic number, 7. 602	properties, chemical, 7. 712 physical, 7. 708
—— weight, 4. 128; 7. 600	
autunite, 12. 135	
azide, 8 . 353	chloroarsenite, 9. 130
- barium calcium fluoboryl diorthotri-	chlorobishydrophosphate, 7. 885
silicate, 6 . 890	—— chlorobromide, 7. 750
chromates, 11. 304	chlorocarbonate, 7. 852
iodide. 8. 738	chlorodiorthophosphate, 7. 885
orthophosphate, 7, 876	chloroferrite, 18. 922
oxychloride, 7. 744	chloroiodide, 7. 765
— — orthophosphate, 7. 876 — — oxychloride, 7. 744 — sulphide, 7. 797	——————————————————————————————————————
thiosulphate, 10. 552	——————————————————————————————————————
baryte peritomous, 7. 740	chlorometavanadate, 9. 809
—— benzylsulphinate, 10. 163	chloroplatinate, 16. 330
—— bismuth alloys, 9. 639	chloroplatinite, 16. 284
——————————————————————————————————————	chlorostannate, 7. 450
—— bismuthide, 9 . 639	chlorosulphate, 7. 817
—— boratodichloride, 5. 140	chlorosulphobismuthite, 9. 703
borosilicate, 6. 451	—— chlorotrimetarsenate, 9. 262
borotungstate, 5. 111	—— chlorotriorthoarsenate, 9. 260
bromate, 2. 356	chlorotriorthoarsenite, 9. 257
—— bromide, 7. 745	chlorotriorthophosphate, 7. 883
properties, chemical, 7 . 748 physical, 7 . 746	——————————————————————————————————————
bromponent on the O 062	chlorotriorthophosphatoarsenate, 9.
bromoarsenatoapatite, 9. 263	262
	chlorotriorthovanadate, 9. 809
bromofluoride, 7. 750	
	——————————————————————————————————————
bromoplatinate, 16. 379	whromic rydodocomoly blots 44 802
bromosulphobismuthite, 9. 703	
bromotriorthoarsenate, 9. 262	
bromotriorthophosphate, 7. 885	
bromotriorthovanadate, vanadatobro-	dinitrosyldecamminotetranitra-
mapatite, 9.813	tonitrate, 8. 443
bullion, 7. 503, 504	
cadmium alloys, 7. 617	
cæsium copper hexanitrite, 8, 500	723
dithiosulphate, 10, 552	
dithiosulphate, 10. 552 trithiosulphate, 10. 552	hexamminohenabromide, 14. 721
calcium alloys, 7. 613	hexamminohenachloride, 14, 656
chlorovanadatophosphate. 9, 827	hexamminoheptabromide, 14. 720
chromates, 11. 304	hexamminopentachloride, 14, 656
iodide, 3 , 738	trisethylenediaminoiodide, 14.
molybdate, 11. 566, 569	744

Lead dibromodiodide, 7, 769 cobaltous hexaiccide, 14, 741 coloidal, 7, 508 copper alloys, 7, 509 aluminophosphate, 7, 878 aluminosulphate, 7, 878 aluminosulphate, 7, 822 chromate, 11, 304 hate, 14, 350 beach phydroxytetrasulphate, 7, 819 hydroxyarsenate, 9, 196 hydroxyarbovanadate, 9, 777 hydroxyasulphate, 7, 820 iron alloys, 13, 579 nickel-cobalt alloys, 15, 337 octohydroxytetrasulphate, 7, 879 corthosulphoantimonite, 9, 550 oxyhosphate, 7, 877 red, 7, 515 silver octoxyhonacosichloride, 7, 742 tetrahydroxydichloride, 7, 743 tetrahydroxydichloride, 7, 743 tetrahydroxyorthovanadate, 9, 778 tetroxydichloride, 7, 742 tetroxydichloride, 7, 743 tini-iron alloys, 13, 579 trioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydrogen dioxide theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 694 orthosulpharsenite, 9, 299 sulphate, 7, 820 sulphate, 7		
cobloids, 7. 508 copper alloys, 7. 609 aluminophosphate, 7. 878 aluminosulphate, 7. 822 chromate, 11. 304 ferric trioxydisulphate, 7. 819 hydroxyarsenate, 9. 196 dihydroxyarsenate, 9. 195 dihydroxyarsenate, 9. 195 dihydroxyarbosphase, 7. 879 red, 7. 515 silver octoxyhenacosichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetroxydelecalhoride, 7. 743 tetroxydelecalhoride, 7. 743 tetroxydelecalhoride, 7. 743 tetroxydichoride, 7. 743 tetroxydichoride, 7. 743 tetroxydichoride, 7. 743 corneous, 7. 852 orrosion, 7. 565 electrolythotexabismuthite, 9. 694 orthosulphate, 10. 552 uproue costs selenide, 10. 800 deutesulphotexabismuthite, 9. 694 orthosulphate, 7. 819 sulphate, 7. 820 sulphate, 7. 820 sulphate, 7. 786 deterosulphotecabismuthite, 9. 694 decoxytetraicide, 7. 786 desilverization, 3. 311; 7. 505 electrolytic process, 3. 312; 7. 505 dederosulphoterabismuthite, 9. 696 decoxytetraicide, 7. 786 desilverization, 3. 311; 7. 505 electrolytic process, 3. 312; 7. 505 dederosulphoterabismuthite, 9. 696 decoxytetraicide, 7. 789 dialuminodiorthosilicate, 6. 889 diamminodicheloride, 7. 716 dialuminodrothosilecate, 8. 89 diamminodicheloride, 7. 716 diamminodrothosile, 7. 719 dialuminodotrothosilecate, 8. 214 didydroxycatenate, 9. 214 dihydroxycatenate, 9. 216 dihydroxycatenate, 9. 216 dihydroxycatenate, 9. 195 dihydroxycatenate, 1. 399 dihydroxycatenate, 9. 218 dihydroxycatenate, 9. 218 dihydroxycatenate, 1. 309 dihydroxycatenate, 1. 309 dihydroxycatenate, 1. 309	Lead cobaltic trishexamminotridecabro-	Lead dibromodiiodide, 7. 769
copper alloys, 7, 609 copper alloys, 7, 609 aluminophosphate, 7, 878 aluminosuphate, 7, 878 aluminosuphate, 7, 872 chromate, 11, 304 ferric trioxydisulphate, 14, 350 hexahydroxytetrasulphate, 7, 819 hydroxyrshovanadate, 9, 777 hydroxysulphate, 7, 820 iron alloys, 13, 579 nickol-cobait alloys, 15, 337 octohydroxytenacosichloride, 7, 743 octohydroxytenacosichloride, 7, 730 orthosulphotetrabismuthite, 9, 695 ctetrahydroxychloride, 7, 742 tetroxychloride, 7, 742 tetroxydichloride, 7, 743 tetrahydroxychloride, 7, 743 tetrahydroxychloride, 7, 743 tetrahydroxychloride, 7, 743 tetrioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydrogon dioxide theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphohexabismuthite, 9, 694 orthosulphates, 10, 800 deuterosulphohexabismuthite, 9, 694 orthosulphates, 7, 820 sulphate, 7, 786 decoxytetracidide, 7, 786 desilver, 7, 565 hydrated, 11, 342 didymium sulphate, 7, 822 dihydroxytetrachosphite, 8, 918 dihydroxytetrobnate, 7, 839 dihydroxytetrachonate, 7, 836 dihydroxytetrachloride, 7, 733 dihydroxytetrachloride, 7, 735 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 738 dihydroxytetrachloride, 7, 738 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 736 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 738 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 738 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 737 dihydroxytetrachloride, 7, 738 dihydroxytetrachloride, 7, 739 dihydroxytetrachloride, 7, 7	mide, 14 . 721	dicalcium trimetasilicate, 6. 888
copper alloys, 7. 609 aluminopeophate, 7. 878 aluminopeophate, 7. 822 chromate, 11. 304 ferric trioxydisulphate, 14. 350 hexahydroxytetrasulphate, 7. 819 hydroxyothoride, 7. 742 hydroxyothoryo	cobaltous hexaiodide, 14. 741	—— dichlorochromate, 11. 399
ecopper alloys, 7. 609 alluminopsophate, 7. 878 alluminosulphate, 7. 822 chromate, 11. 304 ferric trioxydisulphate, 14. 350 hexahydroxytetrasulphate, 7. 819 hydroxyorthovanadate, 9. 777 hydroxyouthphate, 7. 820 iron alloys, 13. 579 nickel-cobalt alloys, 15. 337 octohydroxyhexaorthoarsenate, 9. 196 oxyhhosphate, 7. 877 red, 7. 515 silver octoxyhenacosichloride, 7. 743 tetrahydroxyorthovanadate, 9. 777 tetrahydroxyorthovanadate, 9. 778 tetrahydroxyorthovanadate, 9. 778 tetrahydroxyorthovanadate, 9. 782 corrosion, 7. 515 silver octoxyhenacosichloride, 7. 743 tetrahydroxyorthovanadate, 9. 778 tetroxydecaphoride, 7. 743 tin-iron alloys, 13. 579 trioxydichloride, 7. 743 corneous, 7. 892 corrosion, 7. 516 electrolyn dioxide theory, 7. 565 ciptostope deuteroulphohexabismuthite, 9. 695 odenteroulphohexabismuthite, 9. 695 decoxyetrasiolide, 7. 796 tetrerosulphodecabismuthite, 9. 695 decoxyetrasiolide, 7. 796 tetrerosulphodecabismuthite, 9. 695 decoxyetrasiolide, 7. 796 desilvered, 7. 505 Pattinson's process, 3. 312; 7. 505 Pattinson's process, 3. 312; 7. 505 electrolytic process, 3. 312; 7. 505 decorrosionlyhodecabismuthite, 9. 694 deuterotetraphosphate, 7. 879 dialuminodiorthosikcate, 6. 889 diamminobromide, 7. 776 dialuminodiorthosikcate, 6. 889 diamminobromide, 7. 716 diamminobromide, 7. 716 diamminobromide, 7. 716 diamminobromide, 7. 716 diamminodichloride, 7. 716 diamminodichoride, 5. 140 diarsenatohexatungstates, 9. 214 dibracked, 5. 140	—— colloidal, 7. 508	dichlorotetraorthoarsenate, 9. 263
aluminophosphate, 7, 878 aluminosulphate, 7, 822 chromate, 11, 304 ferrie trioxydisulphate, 14, 350 hexahydroxytetrasulphate, 7, 819 hydroxyarsenate, 9, 196 hydroxyarsenate, 9, 197 hydroxyarsenate, 9, 196 hydroxyorshovanadate, 9, 777 hydroxysulphate, 7, 820 iron alloys, 13, 579 mickel-cobalt alloys, 15, 337 octohydroxyhexoorthoarsenate, 9, 196 oxylphosphate, 7, 877 red, 7, 515 silver octoxyhenacosichloride, 7, 743 tetrahydroxyorthovanadate, 9, 778 tetroxydecachloride, 7, 743 tetrahydroxyorthovanadate, 9, 279 trioxydichloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 dinitriodial phate, 10, 552 metasulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphohexabismuthite, 9, 695 desilvered, 7, 596 tetrerosulphodecabromuthite, 9, 694 desilvered, 7, 596 desilvered, 7, 778 dialuminodiorthosikeate, 6, 889 diamminobromide, 7, 779 dialuminodiorthosikeate, 6, 889 diamminobromide, 7, 779 dialuminodiorthosikeate, 6, 889 diamminodichoride, 7, 716 diarsenato-kevatungstates, 9, 214 didroxydiadiodintrino, 8, 819 dihydroxydiadiodintrinophalinite, 8, 85 dihydroxydiaphate, 7, 819 dihydroxystulphate, 7, 881 dihydroxystulphate, 7, 8		—— dichromate, 11. 342
didymium sulphate, 7. 822 chromate, 11, 304 ferrie trioxydisulphate, 7, 819 hydroxydretrasulphate, 7, 819 hydroxydretrasulphate, 7, 819 hydroxyorthovanadate, 9, 777 hydroxysulphate, 7, 820 iron alloys, 13, 579 nickel-cobat slloys, 15, 337 octohydroxyhexaorthoarsenate, 9, 196 orthosulphoantimonite, 9, 550 oxyphosphate, 7, 875 red, 7, 515 silver octoxyhenacosichloride, 7, 743 orthosulphotetrabismuthite, 9, 695 tetrahydroxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydrosulphohexabismuthite, 9, 695 cottishiosulphate, 10, 800 deuterosulphohexabismuthite, 9, 695 culprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 desilveriation, 3, 311; 7, 505 deuterosulphotetrabismuthite, 9, 696 desilverd, 7, 565 deuterosulphotetrabismuthite, 9, 696 desilverd, 7, 565 deuterosulphotecabismuthite, 9, 696 desilverd, 7, 565 deuterosulphoterabismuthite, 9, 696 desilvertiation, 3, 311; 7, 505 deuter		
diferryl orthodialicate, 6. 889 ferrie trioxydisulphate, 7. 819 hydroxydresnate, 9. 195 hydroxychloride, 7. 742 hydroxysulphate, 7. 820 iron alloys, 13. 579 nickel-cobalt alloys, 15. 337 octohydroxyhexoorthoarsenate, 9. 196 oxyphosphate, 7. 877 red, 7. 515 silver octoxyhenacosichloride, 7. 743 tetrahydroxyorthovanadate, 9. 778 corneous, 7. 852 cornosion, 7. 565 electrolytic theory, 7. 565 hydrogen dioxide theory, 7. 565 cuprous cobalt selenide, 10. 800 deuterosulphohexabismuthite, 9. 695 dithiosulphate, 10. 552 metasulphohexabismuthite, 9. 695 dicthosulphate, 7. 820 sulphate, 7. 820 sulphate, 7. 820 sulphate, 7. 786 desilvered, 7. 596 desilveroteravanadate, 9. 777 dialuminodiorthosikeate, 6. 889 diamminodicide, 7. 778 dialuminotorthosikeate, 6. 889 diamminodicide, 7. 778 dialuminodiorthosikeate, 8. 89 dimydroxydienlonate, 8. 89 dihydroxydienlopsphite, 8. 918 dihydroxydienlopsphite, 8. 912 dihydroxydienlopsphite, 8. 822 dihydroxydienlopsphite, 8. 822 dihydroxydienlopsphite, 8. 892 dihydroxydienlopsphite, 8. 893 dihydroxydienlopsphite, 8. 893 dihydroxydienlopsphite, 8. 893 dihydroxydienlopsphite, 8. 892 dihydroxydienlopsphite, 8. 893 dihydroxydienlopsphite, 8. 892 dihydroxydienlopsphite, 8. 892 dihydroxydienlopsphite, 8. 892 dihydroxydienlopsphite, 8. 893 dihydroxydienlopsphite, 7. 893 dihydroxydienlopsphite, 8. 989 dihydroxydienlopsphite, 8. 989 dihydroxydienlopsphi		didymium sulphate, 7, 822
ferrie trioxydisulphate, 14. 350 hexahydroxytetrasulphate, 7. 819 hydroxyorthovanadate, 9. 777 hydroxyothphate, 7. 820 iron alloys, 13. 579 nickel-cobat alloys, 15. 337 octohydroxyhexorthoarsenate, 9. 196 orthosulphontimonite, 9. 550 oxyphosphate, 7. 879 inickel-cobat alloys, 15. 337 octohydroxyhexorthoarsenate, 9. 196 orthosulphontimonite, 9. 550 oxyphosphate, 7. 879 inickel-cobat alloys, 16. 337 orthosulphotetrabismuthite, 9. 695 totrahydroxydichloride, 7. 743 internative form of the first orthosulphotetrabismuthite, 9. 695 totrahydroxydichloride, 7. 743 tetroxydichloride, 7. 743 tetroxydichloride, 7. 743 tetroxydichloride, 7. 743 corneous, 7. 852 corrosion, 7. 565 hydrogen dioxide theory, 7. 565 cuprous cobalt selenide, 10. 800 duterosulphotexabismuthite, 9. 695 dithiosulphate, 10. 592 metasulphohexabismuthite, 9. 695 dithiosulphate, 10. 595 metasulphohexabismuthite, 9. 694 desilverd, 7. 595 desilverization, 3. 311; 7. 505 electrolytic process, 3. 312; 7. 505 pattinson's process, 3. 312; 7. 505 desilverization, 3. 311; 7. 505 desilveri		
hexahydroxytetrasulphate, 7. 819 hydroxyarsente, 9. 196 hydroxychloride, 7. 742 hydroxychloride, 7. 720 hydroxysulphate, 7. 820 iron alloys, 13. 579 mickel-cobalt alloys, 15. 337 coctohydroxyhexnorthoarsenate, 9. 196 orthosulphoantimonite, 9. 550 oxylphosphate, 7. 877 red, 7. 513 silver octoxyhenacosichloride, 7. 743 corthosulphatetrabismuthite, 9. 695 totrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetroxydichloride, 7. 743 tin-iron alloys, 13. 579 trioxydichloride, 7. 743 corneous, 7. 852 corrosion, 7. 565 hydrogen dioxide theory, 7. 565 cuprous cobalt selenide, 10. 800 deuterosulphohexabismuthite, 9. 695 dithidisulphate, 10. 552 metasulphohexabismuthite, 9. 694 cutriosulphate, 7. 820 sulphate, 7. 820 desilvered, 7. 505 desilverization, 3. 311; 7. 505 desilverization, 3. 311; 7. 505 dedecoxytetraiodide, 7. 768 desilverization, 3. 311; 7. 505 desilverization, 3. 311; 7. 505 deuterosulphodecabismuthite, 9. 694 desilvered, 7. 505 dedecoxytetraiodide, 7. 768 desilverization, 3. 311; 7. 505 deuterosulphoterabismuthite, 9. 694 desilvered, 7. 505 deuterosulphotecabismuthite, 9. 694 desilvered, 7. 505 dedecoxytetraiodide, 7. 768 desilverization, 3. 311; 7. 505 deuterosulphoterabismuthite, 9. 694 deuterotetrayhosphate, 7. 895 deuterosulphotevabismuthite, 9. 694 deuterotetrayhosphate, 7. 895 deuterosulphotevabismuthite, 9. 695 desilverization, 3. 311; 7. 505 deuterosulphotevabismuthite, 9. 695 desilverization, 9. 213 diludroxydisulphate, 7. 819 dihydroxydichloropalladate, 16. 673 dihydroxydichlorate, 7. 819		
hydroxyarsenate, 9. 196 hydroxyorthovanadate, 9. 777 hydroxysulphate, 7. 820 iron alloys, 13. 579 nickel-cobat alloys, 15. 337 octohydroxyhexaorthoarsenate, 9. 196 orthosulphoantimonite, 9. 550 oxyphosphate, 7. 877 red, 7. 315 silver octoxyhenacosichloride, 7. 736 octohydroxydinhoropalladate, 15. 673 dihydroxydichloropalladate, 16. 373 dihydroxydichloropalladate, 16. 373 dihydroxydichloropalladate, 16. 374 dihydroxydichloropalladate, 16. 374 dihydroxydichloropalladate, 16. 384 dihydroxydichloropalladate, 16. 384 dihydroxydichloropalladate, 16. 384 dihydroxydichloropalladate, 16. 384 dihydroxydichlor	hexahydroxytetrasulphate 7, 819	
hydroxychloride, 7, 742 hydroxysulphate, 7, 820 iron alloys, 13, 579 nickel-cobalt alloys, 15, 337 octohydroxychexorthoarsenate, 9, 196 orthosulphoantimonite, 9, 550 oxyphosphate, 7, 877 red, 7, 515 silver octoxyhenacosichloride, 7, 733 orthosulphoantimonite, 9, 550 in oxyphosphate, 7, 877 red, 7, 515 silver octoxyhenacosichloride, 7, 743 orthosulphotetrabismuthite, 9, 695 tetrahydroxycrichloride, 7, 743 tetrahydroxycrichloride, 7, 743 tetrahydroxycrichloride, 7, 743 tetrahydroxycrichloride, 7, 743 tetroxydeloride, 7, 743 corneous, 7, 852 electrolytic theory, 7, 565 hydrogen dioxide theory, 7, 565 hydrogen dioxide theory, 7, 565 hydrogen dioxide theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphohe, 7, 899 sulphate, 7, 890 sulphate, 7, 890 sulphate, 7, 786 deterrosulphodecabismuthite, 9, 694 triterosulphodecabismuthite, 9, 695 decoxytetraiodide, 7, 788 desilveria, 7, 505 dedecoxytetraiodide, 7, 788 desilveria, 7, 891 diuminodiorthosilcate, 6, 889 deminodichloride, 7, 779 dialuminodiorthosilcate, 6, 889 diamminodethoride, 7, 716 diamminotetrachloride, 7, 719 diarsenatochokeatungstate, 9, 214 diarsenatochokeatungs		
— hydroxyothovanadate, 9.777 hydroxysulphate, 7. 820 — iron alloys, 13. 579 — nickel-cobat alloys, 15. 337 — octohydroxyhexaorthoarsenate, 9. 196 — orthosulphaentimonite, 9. 550 — oxyphosphate, 7. 877 — red, 7. 515 — silver octoxyhenacosichloride, 7. 743 — orthosulphotetrabismuthite, 9. 695 — tetrahydroxydichloride, 7. 743 — tetroxyderachloride, 7. 743 — tetroxyderachloride, 7. 743 — tetroxyderachloride, 7. 742 — tetroxyderachloride, 7. 742 — tetroxyderachloride, 7. 743 — dihydroxysulphate, 7. 819 — dihydroxysulphate, 7. 819 — dihydroxysulphate, 7. 819 — dihydroxysulphate, 7. 859 — dihydroxysulphatediarbonate, 7. 859 — dihydroxysulphate, 7. 859 — d		
miydroxysulphate, 7, 820 iron alloys, 13, 579 iron alloys, 13, 579 iron alloys, 14, 537 octohydroxyhexaorthoarsenate, 9, 196 orthosulphoantimonite, 9, 550 oxyphosphate, 7, 879 isiver octoxyhenacosichloride, 7, 743 isiver octoxyhenacosichloride, 7, 743 orthosulphotetrabismuthite, 9, 695 tetrahydroxydichloride, 7, 743 totrioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydroxyelphate, 7, 895 deuterosulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphohexabismuthite, 9, 694 triterosulphodecabismuthite, 9, 694 deuterosulphodecabismuthite, 9, 695 decoxytetraiodide, 7, 768 desilvered, 7, 505 desilverization, 3, 311; 7, 505 Pattinson's process, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 deuterotetraphosphate, 7, 879 deuterotetraphosphate, 7, 789 diamminodichloride, 7, 719 dialuminodichloride, 7, 719 dialuminodichloride, 7, 719 dialuminodichloride, 7, 719 diarsenatochexatungstate, 9, 214 diarsenatohexatungstate, 9, 214 diarsenatohexatung		
- minckel-cobat alloys, 15. 337 - octohydroxyhexaorthoarsenate, 9. 196 - orthosulphoantimonite, 9. 550 - oxyphosphate, 7. 877 - red, 7. 515 - silver octoxyhenacosichloride, 7. 743 - orthosulphotetrabismuthite, 9. 695 - ottorahydroxycichloride, 7. 743 - tetrahydroxycichloride, 7. 743 - tetrahydroxycichloride, 7. 743 - tetroxydeloride, 7. 742 - tetroxydeloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydeloride, 7. 743 - toriosulphotetrabismuthite, 9. 695 - didydroxysulphatedicarbonate, 7. 850 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - deterosulphohexabismuthite, 9. 695 - dithiosulphate, 10. 852 - metasulphohexabismuthite, 9. 694 - triterosulphodecabismuthite, 9. 694 - triterosulphodecabismuthite, 9. 695 - deterotytic process, 3. 312; 7. 505 - Patkinson's process, 3. 312; 7. 505 - Patkinson's process, 3. 312; 7. 505 - Rezan's process, 3. 312; 7. 505 - deterosulphotetrabismuthite, 9. 695 - desilverization, 3. 311; 7. 505 - Patkinson's process, 3. 312; 7. 505 - deterosulphotetrabismuthite, 9. 695 - Rezan's process, 3. 312; 7. 505 - deterosulphotetrabismuthite, 9. 695 - Rezan's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deimminodichotosikeate, 6. 889 - diamminodichotosikeate, 6. 889 - diamminodic		
— niekel-cobalt alloys, 15. 337 — octohydroxyhexaorthorasenate, 9. 196 — orthosulphoantimonite, 9. 550 — silver octoxyhenacosichloride, 7. 743 — orthosulphotetrabismuthite, 9. 695 — tetrahydroxydichloride, 7. 743 — tetrahydroxydichloride, 7. 743 — tetroxydichloride, 7. 743 — tetroxyelloride, 7. 742 — tetroxyelloride, 7. 743 — trin-iron alloys, 13. 579 — trioxydichloride, 7. 743 — trioxydichloride, 7. 743 — trioxydichloride, 7. 743 — tetroxyelloride, 7. 743 — tin-iron alloys, 13. 579 — totoxyelloride, 7. 743 — dihydroxydishlorate, 10. 595 — hydroxydisulphate, 7. 819 — dihydroxydisulphate, 7. 819 — dihydrox		
- octobydroxyhexaorthoarsenate, 9. 196 - orthosulphoantimonite, 9. 550 - oxyphosphate, 7. 877 - red, 7. 515 - silver octoxyhenacosichloride, 7. 743 - tetra, 6. 695 - ottosulphotetrabismuthite, 9. 695 - tetrahydroxydichloride, 7. 743 - tetroxydeloride, 7. 742 - tetroxydecachloride, 7. 743 - tetroxydichloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydecachloride, 7. 743 - tetroxydeloloride, 7. 743 - dihydroxytichloride, 7. 737 - dihydroxydilphate, 7. 819 - dihydroxysulphate, 7. 819 - dihydroxysulphate, 7. 755 - dihydroxysulphate, 7. 755 - dihydroxysulphate, 7. 755 - dihydroxysulphate, 7. 755 - dihydroxydichloride, 7. 755 - dihydroxydiphated, 7. 819 - dihydroxydiphated, 7. 755 - dihydroxydiphated, 7. 781 - dihydroxydiphated, 7. 881 - dihydroxydiphated		
9. 196 o orthosulphoantimonite, 9. 550 oxyphosphate, 7. 877 red, 7. 515 silver octoxyhenacosichloride, 7. 743 otterahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetrahydroxydichloride, 7. 743 tetroxychloride, 7. 743 corneous, 7. 852 corneous, 7. 852 corrosion, 7. 565 hydrogen dioxide theory, 7. 565 cuprous cobalt selenide, 10. 800 deuterosulphohexabismuthite, 9. 695 dithiosulphate, 10. 552 metasulphohexabismuthite, 9. 694 custivered, 7. 796 tetrorosulphodecabromuthite, 9. 694 desilvered, 7. 505 partinson's process, 3. 311; 7. 505 desilverization, 3. 311; 7. 505 deuterosulphotetrabismuthite, 9. 705 deuteroterphosphate, 7. 879 deuterotetraphosphate, 7. 879 deuterotetraphosphate, 7. 879 deuterotetraphosphate, 7. 879 dialuminodiorthosilicate, 8. 889 diamminothoromide, 7. 7761 dialuminodiorthosilicate, 8. 889 diamminotehoride, 7. 716 diamminotehoride, 7. 716 diamminotehoride, 7. 716 diamminotehoride, 7. 716 diamminotehoride, 5. 140 diarsenatochoexatungstates, 9. 214 diarsenatochoexatungstates, 9. 216 diphosphatoctovanadatodeca- molybdate, 9. 835 diphospha		
- orthosulphoantimonite, 9. 550 - oxyphosphate, 7. 877 - red, 7. 515 - silver octoxyhenacosichloride, 7. 743 - orthosulphotetrabismuthite, 9. 695 - tetrahydroxydichloride, 7. 743 - tetrakydroxyorthovanadate, 9. 778 - tetroxyehloride, 7. 742 - tetroxyehloride, 7. 743 - torixyehloride, 7. 785 - electrolytic theory, 7. 565 - desilverd, 7. 505 - desilverd, 7. 505 - electrolytic process, 3. 311; 7. 505 - desilverd, 7. 505 - Pattinson's process, 3. 311; 7. 505 - deuterosulphotecabismuthite, 9. 695 - deuterotetraynosphate, 7. 879 - deuterotetraynosphate, 7. 879 - deuterotetraynosphate, 7. 789 - diamminodichoride, 7. 716 - diamminodicide, 7. 761 - diamminodicide, 5. 140 - diamminotebroxide, 7. 781 - diamminotebroxide, 5. 140 - diamminotebroxide, 7. 781 - diamminotebroxide, 7. 7		
523 - red, 7. 515 - silver octoxyhenacosichloride, 7. 743 - orthosulphotetrabismuthite, 9. 695 - tetrahydroxydichloride, 7. 743 - tetrahydroxyorthovanadate, 9. 778 - tetroxychoride, 7. 742 - tetroxychloride, 7. 743 - tetroxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - corneous, 7. 852 - corrosion, 7. 565 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - dithiosulphate, 10. 562 - dithiosulphate, 10. 552 - metasulphohexabismuthite, 9. 694 - orthosulpharsenite, 9. 299 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 788 - desilvered, 7. 568 - desilvered, 7. 568 - desilverization, 3. 311; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Pattinson's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 605 - Rozan's process, 3. 312; 7. 505 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 881 - dioxydichloride, 7. 768 - dioxydichloride, 7. 755 - dioxydichloride, 7. 755 - dioxydichloride, 7. 755 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 7. 881 - diioxydiphosphite, 7. 755 - dioxydiphosphite, 7. 755 - dioxydiphosphite, 7. 755 - dioxydiphosphite, 7. 781 - diamminodichloride, 7. 716 - diamminotedicate, 7. 719 - diarenatoctodecatungstate, 9. 213 - diboratodichloride, 5. 140 - diarenatoctodecatungstate, 9. 213 - diphoratodichloride, 5. 140 - diphydraxytetrachloroplatinate, 16. 391 - dihydroxytetrachloroplatinate, 16. 304 - dihydroxytetrachloroplatinate, 16. 391 - dihydroxytetra		
- red, 7. 515 - silver octoxyhenacosichloride, 7. 743 - orthosulphotetrabismuthite, 9. 695 - tetrahydroxyorthovanadate, 9. 778 - tetravydroxyorthovanadate, 9. 778 - tetroxydeloride, 7. 742 - tetroxydecachloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tetroxydichloride, 7. 743 - tetroxydichloride, 7. 743 - tetroxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - orneous, 7. 852 - hydrogen dioxide theory, 7. 565 - deuterosulphohexabismuthite, 9. 695 - orthosulphare, 10. 552 - metasulphohexabismuthite, 9. 694 - orthosulpharenite, 9. 299 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 786 - tetrerosulphodecabismuthite, 9. 695 - decoxytetraiodide, 7. 788 - desilverization, 3. 311; 7. 505 - desilverization, 3. 311; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Pattinson's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 787 - dialuminodiorhosilicate, 6. 889 - diamminobromide, 7. 786 - diamminotehloride, 7. 716 - diamminotehloride, 7. 716 - diamminotehloride, 7. 716 - diamminotehloride, 7. 716 - diamminotehloride, 7. 718 - diphydroxytetrabromoplatinate, 16. 334 - dihydroxytetrachloride, 7. 880 - dihydroxytetrachoride, 7. 881 - dihydroxytetrachoride, 7. 880 - diintricdinitrate, 8. 498 - dioxyenbaphite, 7. 683 - dioxyenbaphite, 8. 498 - dioxyelrom		
- silver octoxyhenacosichloride, 7. 743 - Orthosulphotetrabismuthite, 9. 695 - tetrahydroxydichloride, 7. 743 - tetrahydroxyorthovanadate, 9. 778 - tetroxyheloride, 7. 742 - tetroxyheloride, 7. 742 - tetroxyheloride, 7. 743 - trioxydichloride, 7. 743 - tetroxyheloride, 7. 743 - dihydroxytetrachloroplatinate, 16. 381 - dihydroxytetrac		
dihydroxypentabromide, 7, 755 orthosulphotetrabismuthite, 9, 695 otetrahydroxyorthovanadate, 9, 778 tetrayydroxyorthovanadate, 9, 778 tetroxydecachloride, 7, 742 tetroxydecachloride, 7, 743 otetrahydroxyorthovanadate, 9, 758 tetroxydecachloride, 7, 743 otetroxydecachloride, 7, 743 othiopartic for fill dihydroxytetrachloride, 7, 788 othiopartic for fill dihydroxytetrachloride, 7, 788 dihydroxytetrachloride, 7, 881 dihydroxytetrachloride, 7, 881 dihydroxytetrachloride, 7, 788 dihydroxytetrachloride, 7, 881 dihydroxytetrachloride, 7, 881 dihydroxytetrachloride, 7, 881 dihydroxytetrachloride, 7, 881 dih		
dihydroxysulphato, 7, 819 tetrahydroxyorthovanadate, 9, 778 tetroxychloride, 7, 742 tetroxychloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydeloride, 7, 743 tetroxydeloride, 7, 743 tetroxydeloride, 7, 743 tetroxydecachloride, 7, 743 tetroxydeloride, 7, 743 tetroxydecachloride, 7, 743 dihydroxytetrachloroplatinate, 16, 334 dihydroxytetrachloroplatinate, 16, 391 dihydroxytetrachloroplatinate, 16, 391 dihydroxytetrachloroplatinate, 16, 391 dihydroxytetrachloroplatinate, 16, 391 dihydroxytetrachloride, 7, 391 dihydroxytetrachloroplatinate, 16, 394 dihydroxytetrachloroplate, 7, 881 dihydroxytetrachloroplate, 7, 881 dihydroxytetrachloroplate, 8, 498 dimanganyl orthodisilicate, 6, 889 dioxide, 7, 681 corrosion, 7, 582 dihydroxytetrachloroplatinate,		
dihydroxysulphatodicarbonate, 7, 852 tetrahydroxyorthovanadate, 9, 778 tetroxyderachloride, 7, 742 tetroxydecachloride, 7, 743 tin-iron alloys, 13, 579 trioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydroxytetrachloroplatinate, 16, 391 dihydroxytetrarchloroplatinate, 16, 391 dihydroxytetrarchloride, 7, 737 dihydroxytetrarchloroplatinate, 16, 391 dihydroxytetrarchlorode, 7, 380 dihydroxytetrarchlorode, 7, 880 dihydroxytetrarchlorode, 7, 880 dihydroxytetrarchlorde, 7, 880 dihydroxytetrarchlorde, 8, 992 dihydroxytetrarchlorde, 8, 992 dihydroxytetrarchlorde, 8, 992 dihydroxyte		—— dihydroxypentabromide, 7. 755
dihydroxysulphatodicarbonate, 7, 852 tetrahydroxyorthovanadate, 9, 778 tetroxyderachloride, 7, 742 tetroxydecachloride, 7, 743 tin-iron alloys, 13, 579 trioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 hydroxytetrachloroplatinate, 16, 391 dihydroxytetrarchloroplatinate, 16, 391 dihydroxytetrarchloride, 7, 737 dihydroxytetrarchloroplatinate, 16, 391 dihydroxytetrarchlorode, 7, 380 dihydroxytetrarchlorode, 7, 880 dihydroxytetrarchlorode, 7, 880 dihydroxytetrarchlorde, 7, 880 dihydroxytetrarchlorde, 8, 992 dihydroxytetrarchlorde, 8, 992 dihydroxytetrarchlorde, 8, 992 dihydroxyte	orthosulphotetrabismu-	dihydroxysulphate, 7. 819
tetrahydroxyorthovanadate, 9. 778 - tetroxydeloride, 7. 742 - tetroxydecachloride, 7. 743 - tetroxydecachloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - corneous, 7. 852 - corrosion, 7. 565 - hydrogen dioxide theory, 7. 565 - deuterosulphohexabismuthite, 9. 695 - dithiosulphate, 10. 552 - metasulphohexabismuthite, 9. 694 - orthosulpharsenite, 9. 299 - sulphate, 7. 820 - deuterosulphodecabismuthite, 9. 694 - triterosulphodecabismuthite, 9. 695 - decoxytetraiodide, 7. 768 - desilvered, 7. 505 - electrolytic process, 3. 312; 7. 505 - Patkinson's process, 3. 312; 7. 505 - Patkinson's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. diaurminodiorthosilicate, 6. 889 - diamminodiorthosilicate, 6. 889 - diamminodiorthosile, 7. 718 - diamminoterachoride, 7. 718 - diamminoterachoride, 7. 719 - diarsenatoctodecatungstates, 9. 214 - diarsenatotodecatungstates, 9. 214 - diarsenatotodecatungstates, 9. 214 - diarboxoxytetrachloroide, 7. 733 - dihydroxytetrachloroplatinate, 16. 394 - dihydroxytetrachloroplatinate, 18. 394 - dihydroxytetrachloride, 7. 880 - dimydroxytetrachloride, 7. 880 - dimydroxytetrachloriste, 8. 899 - di	thite, 9 . 695	—— dihydroxysulphatodicarbonate, 7. 852
tetrahydroxyorthovanadate, 9. 778 - tetroxychloride, 7. 742 - tetroxydecachloride, 7. 743 - tin-iron alloys, 13. 579 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - corneous, 7. 852 - corrosion, 7. 565 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - hydroxytetranoloplatinate, 16. 391 - dihydroxytetrarodoplatinate, 16. 391 - dihydroxytetrarodooplatinate, 16. 391 - dihydroxytetrarodoplatinate, 18. 391 - dihydroxytetrarodoplatinate, 18. 391 - dihydroxytetraro	tetrahydroxydichloride, 7. 743	dihydroxytetrabromoplatinate, 16.
- tetroxychloride, 7. 742 - tetroxyclecachloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - trioxydichloride, 7. 743 - tin-iron alloys, 13. 579 - electrolytic theory, 7. 565 - electrolytic theory, 7. 565 - hydrogen dioxide theory, 7. 565 - hydrogen dioxide theory, 7. 565 - cuprous cobalt selenide, 10. 800 - deuterosulphohexabismuthite, 9. 695 - dithiosulphate, 10. 552 - metasulphohexabismuthite, 9. 694 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 786 - teterrosulphodecabromuthite, 9. 694 - triterosulphodecabismuthite, 9. 695 - decoxytetraiodide, 7. 768 - desilvered, 7. 505 - desilverization, 3. 311; 7. 505 - desilverization, 3. 311; 7. 505 - Pattinson's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deuterotetravanadate, 9. 217 - dialuminodiorthosikeate, 6. 889 - diamminobromide, 7. 789 - deuterotetravanadate, 9. 217 - dialuminodiorthosikeate, 6. 889 - diamminobromide, 7. 789 - diarsenatoctodecatungstate, 9. 214 - diarsenatotodecabromidate, 9. 213 - dibydroxytetrachloride, 16. 381 - dihydroxytetrachloride, 7. 881 - dihydroxytetrachloride, 7. 881 - dihydroxytetrachloride, 7. 881 - dihydroxytetrachloride, 7. 881 - dihydroxytetrachloride, 16. 391 - dihydroxytetrachloride, 7. 881 - dimanganyl orthodisilicate, 6. 889 - dioxydiphosphate, 7. 810 - diintritodinitrate, 7. 881 - dioxydiphormide, 7. 754 - dioxydiphormide, 7. 755 - dioxydiphormide, 7. 755 -	tetrahydroxyorthovanadate, 9.	
tetroxychloride, 7, 742 tetroxydecachloride, 7, 743 tin-iron alloys, 13, 579 trioxydichloride, 7, 743 cornecus, 7, 852 corrosion, 7, 565 hydrogen dioxide theory, 7, 565 hydrogen dioxide theory, 7, 565 hydrogen dioxide theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 metasulphohexabismuthite, 9, 694 metasulphide, 7, 796 sulphate, 7, 820 desilvered, 7, 796 deterrosulphodecabromuthite, 9, 694 tetrerosulphodecabismuthite, 9, 694 desilvered, 7, 505 desilvered, 7, 505 desilverization, 3, 311; 7, 505 desilverization, 3, 311; 7, 505 Pattinson's process, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 deuterosulphotetrabismuthite, 9, 694 desilvered, 7, 505 desilvered, 7, 505 desilvered, 7, 505 desilvered, 7, 505 desilverization, 3, 311; 7, 505 desilvered, 7, 505 desilverization, 3, 311; 7, 505 desilverization, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 deuterosulphotetrabismuthite, 9, 694 deuterosulphotetrabismuthite, 9, 694 desilvered, 7, 505 desilverization, 3, 311; 7, 505 desilverization, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 desilvered, 7, 756 desilverization, 3, 311; 7, 505 desilverization, 3, 311; 7, 505 desilverization, 3, 311; 7, 505 desilverization, 3, 312; 7, 5		dihydroxytetrachloride, 7, 737
tetroxydecachloride, 7, 743 tin-iron alloys, 13, 579 trioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 electrolytic theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 dithiosulphate, 10, 552 metasulphokazismuthite, 9, 694 orthosulpharesmite, 9, 299 sulphate, 7, 820 sulphate, 7, 820 sulphate, 7, 786 sulphate, 7, 786 teterosulphodecabromuthite, 9, 694 teterosulphodecabismuthite, 9, 695 decoxystetraiodide, 7, 768 desilvered, 7, 505 desilvered, 7, 505 Pattinson's process, 3, 312; 7, 505 electrolytic process, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 deuterototraynosphate, 7, 789 deuterototraynosphate, 7, 789 diamminobromide, 7, 749 diamminobromide, 7, 779 dialuminodiorthosilicate, 6, 889 dioxydiphosphate, 8, 498 dioxydiphosphate, 8, 918 dioxychopathoromide, 7, 765 dioxyidochloride, 7, 786 dioxysulphate, 7, 881 dihydroxytterisodoplatinate, 9, 689 dimanganyl orthodisilicate, 6, 889 dimanganyl orthodisilicate, 8, 889 dimanga	tetroxychloride, 7, 742	
dihydroxytetarsenate, 9, 192 trioxydichloride, 7, 743 corneous, 7, 852 corrosion, 7, 565 electrolytic theory, 7, 565 cuprous cobalt selenide, 10, 800 deuterosulphohexabismuthite, 9, 695 deuterosulphohexabismuthite, 9, 694 orthosulpharsenite, 9, 299 sulphate, 7, 820 descaytetraiodide, 7, 768 descaytetraiodide, 7, 768 desilvered, 7, 505 desilverization, 3, 311; 7, 505 Partisson's process, 3, 312; 7, 505 deuterosulphotetrabismuthite, 9, 694 deuterotetraynosphate, 7, 879 deuterotetraynosphate, 7, 879 deuterotetraynosphate, 7, 879 deuterotetraynosphate, 7, 880 diamminobromide, 7, 749 diamminotormide, 7, 749 diamminotormide, 7, 716 diamminotormide, 7, 719 diarsenatoctodecatungstate, 9, 214 diboratodichloride, 5, 140		
corneous, 7. 852 corrosion, 7. 565 corrosion, 7. 565 clettrolytic theory, 7. 565 cuprous cobalt selenide, 10. 800 deuterosulphohexabismuthite, 9. 695 corthosulpharsenite, 9. 299 sulphate, 7. 820 sulphate, 7. 796 cuphate arbitectrolythe process, 3. 311; 7. 505 desilverization, 3. 311; 7. 505 deuterosulphotetrabismuthite, 9. desilverization, 3. 311; 7. 505 deuterosulphotetrabismuthite, 9. deuterotetrayanadate, 9. 777 dialuminodiorthosilkcate, 6. 889 dinanganyl orthodisilicate, 6. 889 dimanganyl orthodisilicate, 6. 889 dimiratophosphate, 7. 881 dimiratophosphate, 7. 881 dimiratophosphate, 7. 881 dioxide, 7. 683 dioxide, 7. 683 dioxycarbonate, 7. 683 dioxycarbonate, 7. 754 dioxydiphoride, 7. 754 dioxydiphoride, 7. 754 dioxydiphoride, 7. 754 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 989 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphotynitrite, 8. 498 dioxydiphosphite, 8. 498 dioxydiphosphite, 8. 918 dioxydiphosphite, 7. 768 dioxybeptabromide, 7. 755 dioxybeptabromide, 7. 788 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 880 dioxydiphosphite, 8. 99 dioxydiphosphite, 8. 918 dioxydiphosphate, 7. 880 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphite, 8. 918 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 768 dioxydiphosphate, 7. 788 dioxydiphosphate, 7. 789 dioxydiphosphate, 7.	tin-iron alloys, 13, 579	
corneous, 7. 852 corrosion, 7. 565 count as electrolytic process, 8. 319 corrosion, 7. 565 corrosion, 7. 565 count as electrolytic process, 8. 318 corrosion, 7. 565 corrosion, 7. 565 count as electrolytic process, 8. 318 corrosion, 7. 681 count at phosphate, 7. 881 countratophosphite, 8. 917 colinitrited, 8. 498 colioxychromate, 7. 683 colioxychromate, 7. 683 colioxychromate, 7. 683 colioxydiroride, 7. 754 colioxydiroride, 7. 754 colioxydiroride, 7. 754 colioxydiroride, 7. 754 colioxydiroride, 7. 768 colioxydiroride, 7. 768 colioxydiroride, 7. 754 colioxydiroride, 7. 755 colioxydiroride, 7. 768 colioxydiroride, 7. 768 colioxydiroride, 7. 768 colioxydiroride, 7. 768 colioxydiroride, 7. 755 colioxydiroride, 7. 766 colioxydiroride, 7. 766 colioxydiroride,		
- corrosion, 7, 565 - electrolytic theory, 7, 565 - hydrogen dioxide theory, 7, 565 - cuprous cobalt selenide, 10, 800 - deuterosulphohexabismuthite, 9, 695 - dithiosulphate, 10, 552 - metasulphohexabismuthite, 9, 694 - orthosulpharsenite, 9, 299 - sulphate, 7, 820 - sulphate, 7, 820 - sulphate, 7, 819 - sulphide, 7, 796 - tetrerosulphodecabromuthite, 9, 694 - triterosulphodecabismuthite, 9, 695 - decoxytetraiodide, 7, 768 - desilverization, 3, 311; 7, 505 - electrolytic process, 3, 312; 7, 505 - Parkes' process, 3, 312; 7, 505 - deuterosulphotetrabismuthite, 9, 694 - deuterotetraynandate, 9, 777 - dialuminodiorthosikcate, 6, 889 - diamminobromide, 7, 749 - diamminobromide, 7, 781 - diamminotoride, 7, 781 - diamminototraechloride, 7, 718 - diarsenatohexatungstates, 9, 213 - diboratodichloride, 5, 140 - dimertaphosphate, 7, 881 - hemitrihydrate, 7, 881 - dinitritodinitrate, 8, 498 - dioxide, 7, 681 - colloidal, 7, 683, 685 - hydrated, 7, 683 - dioxycarbonate, 7, 683 - dioxycarbonate, 7, 683 - dioxycarbonate, 7, 836 - dioxydibromide, 7, 754 - dioxydibromide, 7, 754 - dioxydinitrite, 8, 498 - dioxide, 7, 681 - colloidal, 7, 683, 685 - hydrated, 7, 683 - dioxycarbonate, 7, 683 - dioxycarbonate, 7, 881 - dioxydibromide, 7, 754 - dioxydibromide, 7, 739 - dioxydinitrite, 8, 498 - dioxide, 7, 681 - colloidal, 7, 683 - dioxycarbonate, 7, 683 - dioxycarbonate, 7, 886 - dioxydibromide, 7, 754 - dioxydibromide, 7, 739 - dioxydihydroxide, 7, 868 - dioxydiphosphite, 8, 917 - dioxydibromide, 7, 756 - dioxydibromide, 7, 755 - dioxydiphosphite, 8, 917 - dioxydibromide, 7, 756 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 7, 868 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 9, 818 -		
- electrolytic theory, 7, 565 - hemitrihydrate, 7, 881 - hydrogen dioxide theory, 7, 565 - cuprous cobalt selenide, 10, 800 - deuterosulphohexabismuthite, 9, 695 - dithiosulphate, 10, 552 - metasulphohexabismuthite, 9, 694 - orthosulpharsenite, 9, 299 - sulphate, 7, 820 - sulphate, 7, 889 - sulphide, 7, 789 - tetrerosulphodecabromuthite, 9, 694 - triterosulphodecabismuthite, 9, 695 - decoxytetraiodide, 7, 768 - desilverization, 3, 311; 7, 505 - Parkes' process, 3, 312; 7, 505 - Parkes' process, 3, 312; 7, 505 - deuterosulphotetrabismuthite, 9, 694 - deuterotetraynosphate, 7, 879 - deuterotetraynosphate, 7, 879 - deuterotetraynosphate, 7, 779 - dialuminodiorthosilicate, 6, 889 - diamminobromide, 7, 749 - diarsenatoctodecatungstate, 9, 213 - diboratodichloride, 5, 140		
- hydrogen dioxide theory, 7. 565 - cuprous cobalt selenide, 10. 800 - deuterosulphohexabismuthite, 9. 695 - dithiosulphate, 10. 552 - metasulphohexabismuthite, 9. 694 - orthosulphate, 7. 820 - sulphate, 7. 796 - sulphate, 7. 796 - tetrerosulphodecabromuthite, 9. 694 - triterosulphodecabismuthite, 9. 695 - desilvered, 7. 505 - desilvered, 7. 505 - Pattinson's process, 3. 311; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Rozan's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - diamminobromide, 7. 749 - diamminobromide, 7. 749 - diamminotetrachloride, 7. 719 - diarsenatoctodecatungstate, 9. 214 - diarsenatotexatungstates, 9. 213 - diboratodichloride, 5. 140 - dinitritodinitrate, 8. 498 - dioxide, 7. 681 - dioxide, 7. 681 - metasulphotexabismuthite, 9. dioxycarbonate, 7. 836 - dioxycarbonate, 7. 836 - dioxydibromide, 7. 754 - dioxydibromide, 7. 754 - dioxydibromide, 7. 757 - dioxydibromide, 7. 766 - dioxydibromide, 7. 766 - dioxydibromide, 7. 766 - dioxydibromide, 7. 766 - dioxydibromide, 7. 768 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 768 - dioxydibromide, 7. 768 - dioxydibromide, 7. 766 - dioxydibromide, 7. 754 - dioxydibromide, 7. 755 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 768 - dioxydibromide, 7. 766 - dioxydibromate, 7. 836 - dioxydibromide, 7. 754 - dioxydibromide, 7. 757 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 767 - dioxydibromide, 7. 767 - dioxydibromide, 7. 756 - dioxydibromide, 7. 755 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 756 - dioxydibromide, 7. 756 - dioxydibromide, 7. 756 - dioxydibromide, 7. 755 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 755 - dioxydiphosphite, 8. 918 - dioxydibromide, 7. 755 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 9. 918 - dioxy		
- cuprous cobalt selenide, 10. 800 - deuterosulphohexabismuthite, 9. 695 - dithiosulphate, 10. 552 - metasulphohexabismuthite, 9. 694 - orthosulpharsenite, 9. 299 - sulphate, 7. 820 - sulphate, 7. 820 - sulphate, 7. 819 - sulphide, 7. 796 - tetrerosulphodecabromuthite, 9. 694 - decoxytetraiodide, 7. 768 - desilvered, 7. 505 - Parkes' process, 3. 311; 7. 505 - Parkes' process, 3. 312; 7. 505 - Parkes' process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - diamminodiorhosikeate, 6. 889 - diamminodidie, 7. 761 - diamminotodide, 7. 761 - diamminotodide, 7. 761 - diarsenatotexatungstates, 9. 214 - diarsenatotexatungstates, 9. 213 - diboratodichloride, 5. 140 - dintritodinitrate, 8. 498 - dioxide, 7. 685 - we colloidal, 7. 685 - properties, chemical, 7. 687 - physical, 7. 683 - dioxyderbonate, 7. 683 - dioxydibromide, 7. 754 - dioxydibloride, 7. 754 - dioxydibloride, 7. 767 - dioxydibloride, 7. 768 - dioxydibloride, 7. 767 - dioxydibloride, 7. 767 - dioxydibloride, 7. 768 - dioxydibloride, 7. 767 - dioxydibloride, 7. 768 - dioxydibloride, 7. 768 - dioxydibloride, 7. 767 - dioxydibloride, 7. 767 - dioxydibloride, 7. 768 - dioxydibloride, 7. 768 - dioxydibloride, 7. 768 - dioxydibloride, 7. 768 - dioxydibloride, 7. 767 - dioxydibloride, 7. 768 - dioxydibloride, 7. 765 - dioxydibloride, 7. 765 - dioxydibloride, 7. 755 -		
deuterosulphohexabismuthite, 9. 695 dithiosulphate, 10. 552 metasulphohexabismuthite, 9. 694 sulphate, 7. 796 sulphodecabromuthite, 9. 694 tetrerosulphodecabismuthite, 9. 695 desilverization, 3. 311; 7. 505 Pattinson's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. 694 diauminodiorthosilicate, 6. 889 diamminotetrachloride, 7. 716 diarsenatotedecatungstate, 9. 214 diarsenatotedecatungstates, 9. 213 diboratodichloride, 5. 140 dividate, 7. 683 molydated, 7. 683 dioxydarbonate, 7. 883 dioxydiormate, 11. 302 dioxycarbonate, 7. 836 dioxycarbonate, 7. 836 dioxycarbonate, 7. 836 dioxycarbonate, 7. 839 dioxydibromide, 7. 754 dioxydibromide, 7. 754 dioxydibromide, 7. 754 dioxydibromide, 7. 768 dioxydibromide, 7. 754 dioxydibromide, 7. 768 dioxydibromide, 7. 755 dioxydibromide, 7. 768 dioxydibromide, 7. 754 dioxydibromide, 7. 768 dioxydibromide, 7. 768 dioxydibromide, 7. 768 dioxydibromide, 7. 768 dioxydibromide, 7. 755 dioxydichloride, 7. 768 dioxydibromide, 7.		
- dithiosulphate, 10. 552 - metasulphohexabismuthite, 694 - orthosulpharsenite, 9. 299 - sulphate, 7. 820 - sulphate, 7. 796 - sulphide, 7. 796 - tetrerosulphodecabromuthite, 9. 694 - directorization, 3. 311; 7. 505 - electrolytic process, 3. 312; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Rozan's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deuterotetraphosphate, 7. 879 - deuterotetravanadate, 9. 777 - dialuminodiorthosilicate, 6. 889 - diamminotetrachloride, 7. 716 - diarsenatoctodecatungstate, 9. 214 - diarsenatoctodecatungstates, 9. 213 - diboratodichloride, 5. 140 - metasulphohexabismuthite, 9. mproperties, chemical, 7. 687 - properties, chemical, 7. 687 - properties, chemical, 7. 687 - dioxycarbonate, 7. 836 - dioxycarbonate, 7. 836 - dioxycarbonate, 7. 754 - dioxydibromide, 7. 754 - dioxydibromide, 7. 767 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 755 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 755 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 768 - dioxyloidochloride, 7. 788 - dioxyloidochloride, 7. 768 - dioxyloidoc		dioxide, 7, 081
- metasulphohexabismuthite, 694 - orthosulpharsenite, 9. 299 - sulphate, 7. 820 - sulphate, 7. 819 - sulphide, 7. 796 - sulphodecabromuthite, 9. 694 - dioxydibromide, 7. 754 - dioxydichloride, 7. 768 - desilvered, 7. 768 - desilvered, 7. 505 - electrolytic process, 3. 311; 7. 505 - Pattinson's process, 3. 312; 7. 505 - Rozan's process, 3. 312; 7. 505 - deuterosulphotetrabismuthite, 9. dioxydibromide, 7. 755 - deuterotetraphosphate, 7. 879 - diauminodichloride, 7. 776 - dioxydiodide, 7. 768 - dioxydiphosphite, 8. 918 - dioxydiphosphite, 8. 918 - dioxydisulphotungstate, 11. 861 - dioxyheptabromide, 7. 755 - dioxydiodchloride, 7. 768 - dioxydiodchloride, 7. 768 - dioxydiodchloride, 7. 768 - dioxydiodchloride, 7. 755 - dioxy		colloidal, 7. 083, 083
		nydrated, 7. 080
		properties, chemical, 7. 087
		physical, 7. 683
- sulphatocarbonate, 7, 819 - sulphide, 7, 796 - tetrerosulphodecabromuthite, 9, 694 - triterosulphodecabismuthite, 9, 695 - decoxytetraiodide, 7, 768 - desilverization, 3, 311; 7, 505 - electrolytic process, 3, 312; 7, 505 - Pattinson's process, 3, 311; 7, 505 - Rozan's process, 3, 312; 7, 505 - deuterosulphotetrabismuthite, 9, 694 - deuterotetraynosphate, 7, 879 - deuterotetravanadate, 9, 777 - dialuminodiorthosilicate, 6, 889 - diamminobromide, 7, 749 - diamminotetrachloride, 7, 716 - diamminotetrachloride, 7, 716 - diarsenatoctodecatungstates, 9, 214 - diboratodichloride, 5, 140 - dioxydibromide, 7, 754 - dioxydilodide, 7, 766 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 8, 498 - dioxydiphosphite, 9, 7, 755 - dioxydiphosphite, 9, 835 - dioxydiphosphite, 9, 835		
- sulphide, 7, 796 - tetrerosulphodecabromuthite, 9. 694 - triterosulphodecabismuthite, 9. 695 - decoxytetraiodide, 7, 768 - desilvered, 7, 505 - desilverization, 3, 311; 7, 505 - electrolytic process, 3, 312; 7, 505 - Parkes' process, 3, 312; 7, 505 - Pattinson's process, 3, 311; 7, 505 - Rozan's process, 3, 312; 7, 505 - deuterosulphotetrabismuthite, 9, 694 - deuterotetravanadate, 9, 777 - dialuminodiorthosilicate, 6, 889 - diamminobromide, 7, 761 - diamminotetrachloride, 7, 716 - diamminotetrachloride, 7, 716 - diarsenatotedecatungstate, 9, 214 - diarsenatothexatungstates, 9, 213 - diboratodichloride, 5, 140 - dianydichloride, 7, 767 - dioxydiiodide, 7, 767 - dioxydiintrate, 7, 868 - dioxydiphosphite, 8, 998 - dioxydiphosphite, 8, 998 - dioxydiphosphite, 8, 998 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 918 - dioxydiphosphite, 8, 998 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 7, 765 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 7, 765 - dioxydiphosphite, 7, 765 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 7, 765 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 7, 765 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 7, 755 - dioxydiphosphite, 9, 918 - dioxydiphosphite, 9, 918 -		
tetrerosulphodecabromuthite, 9. 694 triterosulphodecabismuthite, 9. 695 decoxytetraiodide, 7. 768 desilvered, 7. 505 desilverization, 3. 311; 7. 505 Parkes' process, 3. 312; 7. 505 Pattinson's process, 3. 311; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorhosilicate, 6. 889 diamminobromide, 7. 749 dialuminodioride, 7. 761 diamminodichloride, 7. 761 diarsenatoctodecatungstate, 9. 214 diarsenatoctodecatungstates, 9. 213 diboratodichloride, 5. 140 dioxydinitrate, 7. 786 dioxydinitrate, 7. 868 dioxydinitrite, 8. 498 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 498 dioxydiphosphite, 9. 918 dioxyd		
dioxydihydroxide, 7. 661 triterosulphodecabismuthite, 9. decoxytetraiodide, 7. 768 desilvered, 7. 505 desilverization, 3. 311; 7. 505 desilverization, 3. 311; 7. 505 Parkes' process, 3. 312; 7. 505 Pattinson's process, 3. 312; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 749 diamminodichloride, 7. 716 diamminodichloride, 7. 716 diamminotetrachloride, 7. 719 diarsenatoctodecatungstates, 9. 214 diarsenatoctodecatungstates, 9. 213 diboratodichloride, 5. 140 dioxydinitrate, 7. 868 dioxydiphosphite, 8. 918	sulphide, 7. 796	——————————————————————————————————————
	tetrerosulphodecabromuthite, 9.	dioxydichloride, 7. 739
decoxytetraiodide, 7. 768 desilvered, 7. 505 desilverization, 3. 311; 7. 505 electrolytic process, 3. 313 Parkes' process, 3. 312; 7. 505 Pattinson's process, 3. 311; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. 694 deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminobromide, 7. 749 diamminobromide, 7. 761 diamminoiodide, 7. 761 diarsenatotecodecatungstate, 9. 214 diarsenatothexatungstates, 9. 213 diboratodichloride, 5. 140 desilveriz, 7. 868 dioxydinitrate, 7. 898 dioxydinitrate, 7. 898 dioxydiphosphite, 8. 998 dioxydisulphotungstate, 11. 861 dioxyheptabromide, 7. 755 dioxypentabromide, 7. 768 dioxypentabromide, 7. 755 dioxyselenate, 10. 874 dioxysulphate, 7. 818 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 755 dioxypentabromide, 7. 755 dioxyselenate, 10. 874 dioxysulphate, 7. 818 dioxydinitrate, 7. 868 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 9. 918 dioxydiphosphite, 9. 895 dioxydiphosphite, 7. 755 dioxyheptabromide, 7. 755 dioxypentabromide, 7. 755 dioxypentabromide, 7. 788 dioxydiphotungstate, 11. 861 dioxydiphotungstate, 11. 861 dioxyheptabromide, 7. 755 dioxypentabromide, 7. 755 dioxypentabromide, 7. 755 dioxypentabromide, 7. 755 dioxypentabromide, 7. 788 dioxydiphotungstate, 11. 861 dioxydintrite, 8. 498 dioxydintrate, 7. 868 dioxydintrate, 7. 868 dioxydinitrite, 8. 498 dioxydiphotungstate, 11. 861 dioxydintrite, 8. 498 dioxydiphotenabromide, 7. 755 dioxypentabromide, 7. 768 dioxypentabromide, 7. 768 dioxydintrate, 7. 868 dioxydintrate, 7. 868 dioxydintrate, 7. 868 dioxydintrate, 7. 891	694	dioxydihydroxide, 7. 661
 decoxytetraiodide, 7. 768 desilvered, 7. 505 desilverization, 3. 311; 7. 505 electrolytic process, 3. 313 Parkes' process, 3. 312; 7. 505 Pattinson's process, 3. 311; 7. 505 deuterosulphotetrabismuthite, 9. 694 deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 749 diamminodichloride, 7. 761 diamminotetrachloride, 7. 779 diarsenatoctodecatungstate, 9. 214 diarsenatoctodecatungstates, 9. 213 diboratodichloride, 5. 140 dioxydintrite, 8. 498 dioxydiphosphite, 8. 918 dioxydiphosphite, 8. 918 dioxydiphosphite, 7. 755 dioxydiphosphite, 8. 918 dioxydiphosphite, 7. 755 dioxydiphosphite, 7. 755 dioxyheptabromide, 7. 755 dioxypentabromide, 7. 755 dioxyselenate, 10. 874 dioxyselenate, 10. 874 dioxyselenate, 10. 874 dioxyselenate, 7. 818 dioxyselenate, 17. 881 dioxyselenate, 10. 874 dioxyselen	triterosulphodecabismuthite, 9.	—— dioxydiiodide, 7. 767
 desilvered, 7. 505 desilverization, 3. 311; 7. 505 electrolytic process, 8. 313 Parkes' process, 8. 312; 7. 505 Pattinson's process, 3. 311; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. 694 deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 746 diamminodichloride, 7. 716 diamminodichloride, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstates, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 dioxydiphosphite, 8. 918 dioxydiphosphite, 7. 755 dioxyheptabromide, 7. 755 dioxyheptabromide, 7. 768 dioxypentabromide, 7. 755 dioxysulphate, 7. 818 dioxysulphate, 7. 818 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 881 diphosphatoctovanadatodecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 	695	—— dioxydinitrate, 7. 868
 desilvered, 7. 505 desilverization, 3. 311; 7. 505 electrolytic process, 8. 313 Parkes' process, 8. 312; 7. 505 Pattinson's process, 3. 311; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. 694 deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 746 diamminodichloride, 7. 716 diamminodichloride, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstates, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 dioxydiphosphite, 8. 918 dioxydiphosphite, 7. 755 dioxyheptabromide, 7. 755 dioxyheptabromide, 7. 768 dioxypentabromide, 7. 755 dioxysulphate, 7. 818 dioxysulphate, 7. 818 dioxytrimetaphosphate, 7. 881 dioxytrimetaphosphate, 7. 881 diphosphatoctovanadatodecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 	decoxytetraiodide, 7. 768	
	desilvered, 7. 505	—— dioxydiphosphite, 8. 918
— Parkes' process, 3. 312; 7. 505 — Pattinson's process, 3. 311; 7. 505 — Rozan's process, 3. 312; 7. 505 — deuterosulphotetrabismuthite, 9. 694 — deuterotetraphosphate, 7. 879 — dialuminodiorthosilicate, 6. 889 — diamminobromide, 7. 716 — diamminobromide, 7. 716 — diamminoidide, 7. 761 — diamminoidide, 7. 761 — diarsenatotetrachloride, 7. 719 — diarsenatotetodecatungstate, 9. 214 — diarsenatohexatungstates, 9. 213 — diboratodichloride, 5. 140 — diphosphatoctovanadatopentadecamolybdate, 9. 835 — diphosphatoctovanadatopentadecamolybdate, 9. 835 — diphosphatoctovanadatotetradeca-		—— dioxydisulphotungstate, 11. 861
— Parkes' process, 3. 312; 7. 505 — Pattinson's process, 3. 311; 7. 505 — Rozan's process, 3. 312; 7. 505 — deuterosulphotetrabismuthite, 9. 694 — deuterotetraphosphate, 7. 879 — dialuminodiorthosilicate, 6. 889 — diamminobromide, 7. 716 — diamminobromide, 7. 716 — diamminoidide, 7. 761 — diamminoidide, 7. 761 — diarsenatotetrachloride, 7. 719 — diarsenatotetodecatungstate, 9. 214 — diarsenatohexatungstates, 9. 213 — diboratodichloride, 5. 140 — diphosphatoctovanadatopentadecamolybdate, 9. 835 — diphosphatoctovanadatopentadecamolybdate, 9. 835 — diphosphatoctovanadatotetradeca-	electrolytic process, 3, 313	
- Pattinson's process, 3. 311; 7. 505 Rozan's process, 3. 312; 7. 505 deuterosulphotetrabismuthite, 9. 694 deuterotetraphosphate, 7. 879 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 749 diamminodichloride, 7. 716 diamminoiodide, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstate, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 — dioxyiodochloride, 7. 768 — dioxyintrite, 8. 497 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 768 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 768 — dioxyiodochloride, 7. 755 — dioxyiodochloride, 7. 788 — dioxyiodochloride, 7. 818 — dioxyiodochloride, 7. 788 — dioxyiodochloride, 7. 881 — dioxyiodochloride, 7. 881 — dioxyiodochloride, 7. 881 — dioxyiodochloride, 7. 789 — dioxy	Parkes' process, 3, 312 : 7, 505	
	Pattinson's process, 3. 311: 7.	—— dioxviodochloride, 7. 768
- Rozan's process, 8. 312; 7. 505 - deuterosulphotetrabismuthite, 9. 694 - deuterotetraphosphate, 7. 879 - dialuminodiorthosilicate, 6. 889 - diamminobromide, 7. 749 - diamminodichloride, 7. 716 - diamminodichloride, 7. 761 - diamminotetrachloride, 7. 719 - diamminotetrachloride, 7. 719 - diamenatotecatungstate, 9. 214 - diarenatothexatungstates, 9. 213 - diboratodichloride, 5. 140 - dioxyselenate, 10. 874 - dioxyselenate, 10. 874 - dioxysulphate, 7. 881 - dioxystrisulphate, 7. 881 - diphosphatoctodecavanadatohexamolybdate, 9. 835 - diphosphatoctovanadatopentadecamolybdate, 9. 835 - diphosphatoctovanadatotetradeca-		
- deuterosulphotetrabismuthite, 9. 694 - deuterotetraphosphate, 7. 879 - deuterotetraphosphate, 7. 879 - dialuminodiorthosilicate, 6. 889 - diamminobromide, 7. 749 - diamminodichloride, 7. 716 - diamminodichloride, 7. 761 - diamminotetrachloride, 7. 719 - diarsenatoctodecatungstate, 9. 214 - diarsenatohexatungstates, 9. 213 - diboratodichloride, 5. 140 - dioxyselenate, 10. 874 - dioxysulphate, 7. 881 - dioxystrisulphate, 7. 881 - diphosphatoctodecavanadatohexamolybdate, 9. 835 - diphosphatoctovanadatopentadecamolybdate, 9. 835 - diphosphatoctovanadatotetradeca-		dioxypentabromide, 7, 755
 deuterotetraphosphate, 7. 879 deuterotetravanadate, 9. 777 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 749 diamminodichloride, 7. 716 diamminoiodide, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstate, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 dioxysulphate, 7. 818 dioxysulphate, 7. 881 dioxysulphate, 7. 881 dioxysulphate, 7. 881 dioxysulphate, 7. 818 dioxysulphate, 7. 881 dioxysulphate, 7. 818 dioxysulphate		dioxyselenate, 10, 874
- deuterotetravanadate, 9. 777 - dialuminodiorthosilicate, 6. 889 - diamminobromide, 7. 746 - diamminodichloride, 7. 716 - diamminoiodide, 7. 761 - diamminotetrachloride, 7. 719 - diarsenatoctodecatungstates, 9. 214 - diarsenatohexatungstates, 9. 213 - diboratodichloride, 5. 140 - dioxytrimetaphosphate, 7. 881 - dioxytrimetaphosphate, 7. 819		
 dialuminodiorthosilicate, 6. 889 diamminobromide, 7. 749 diamminodichloride, 7. 716 diamminodide, 7. 761 diamminotetrachloride, 7. 719 diarenatoctodecatungstate, 9. 214 diarenatohexatungstates, 9. 213 diboratodichloride, 5. 140 dioxytrisulphate, 7. 819 diphosphatoctodecavanadatohexamolybdate, 9. 835 diphosphatoctovanadatopentadecamolybdate, 9. 835 diphosphatoctovanadatopentadecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 		
 diamminobromide, 7. 749 diamminodichloride, 7. 716 diamminoiodide, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstate, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 diphosphatoctodecavanadatohexatmolybdate, 9. 835 diphosphatoctovanadatododecamolybdate, 9. 835 		
 diamminodichloride, 7. 716 diamminoiodide, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstate, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 molybdate, 9. 835 diphosphatoctovanadatopentadecamolybdate, 9. 835 diphosphatoctovanadatotetradecamolybdate, 9. 835 		
 diamminoiodide, 7. 761 diamminotetrachloride, 7. 719 diarsenatoctodecatungstate, 9. 214 diarsenatohexatungstates, 9. 213 diboratodichloride, 5. 140 diphosphatoctovanadatodecamolybdate, 9. 835 diphosphatoctovanadatopentadecamolybdate, 9. 835 diphosphatoctovanadatopentadecamolybdate, 9. 835 		
diboratodichloride, 5. 140 — diphosphatoctovanadatotetradeca-		
inolyposte, 8. 850		
	dibromociondoride, 1. 190	mory number, 3. 830

Lead diphosphatoctovanadatotrideca-	Lead fluoaluminate, 5. 310
molybdate, 9. 835	fluoborate, 5 . 128
diphosphatohexavanadatotrideca-	fluochloride, 7 . 732
molybdate, 9. 835	—— fluochlorotriorthoarsenate, 9. 261
diphosphatotetradecavanadatohena-	fluoiodide, 7 . 7 65
molybdate, 9 . 835	fluoiridate, 15. 757
diphosphide, 8 . 849	fluonitrate, 7. 862
- diplatinous hexasulphoplatinate, 16.	fluoride, 7. 701
396	
diselenide, 10. 786	dihydrate, 6. 955
—— disulphatarsenite, 9. 333	tetrahydrate, 6. 955
disulphate, 7. 822	fluostannate, 7. 424
disulphide, 7. 794, 795	fluosulphate, 7. 817
disulphopyrosulpharsenite, 9. 298	fluotitanate, 7. 73
disulphopyrosulphoantimonite, 9. 546	
disulphopyrosulphobismuthite, 9. 695	- fluotriorthoarsenate, 9. 259
disulphorthosulpharsenate, 9. 69	
	fluotriorthophosphate, 7. 882
	fluotriorthophosphatoarsenates, 9. 259
· · · dithionate, 10. 594	fluotriorthovanadate, 9. 801
ditungstate, 11. 810	formaldehyde hydrosulphoxylate, 10.
diuranate, 12. 67	162
diuranyl phosphate, 12. 136	germanium sulphoantimonite, 9. 552
dodecabromodiiodide, 7. 766	gold alloys, 7. 611
- double refined, 7. 505	sulphide, 7. 796
earth, 7. 638	sulphotellurantimonite, 11. 114
electrodeposition, 7. 542	granulated, 7. 505
electronic structure, 7. 602	hard, 3. 311; 7. 504, 505
enneadecasulphoctoantimonite, 9. 547	chemical, 7. 505
enneaiodoantimonite, 9, 502	- hemiamminoiodide, 7. 762
enneaiodobismuthite, 9. 677	hemiamminomotesilicate, 6. 887
enneaoxytetraiodide, 7, 767	hemiarsenide, 9. 69
enneatitarsenide, 9. 69	hemicosisulphoctoantimonite, 9. 548
ennoauranate, 12. 68	hemihexamminobromide, 7. 749
ethyl alcosol, 7. 509	hemihexaphosphate, 7. 882
extraction, 7. 495, 501	homimercuride, 7. 619
air reduction process, 7, 496	hemioxide, 7, 636
- precipitation process, 7. 496	hemisulphide, 7, 780
reduction process, 7, 496	hemitrianminodichloride, 7. 716
Brittany process, 7, 502	hemitrimereuride, 7. 619
Corinthian process, 7, 502	
Cornish process, 7, 502	hemitritelluride, 11. 58
dry process, 7. 501	totrahydrate, 11. 58
flowing-furnace process, 7. 502	- henasulphohexantimonite, 9. 549
French process, 7. 502	henasulphotetrantimonite, 9. 544
Silesian process, 7. 501	henicosoxydocosinitrite, 8. 498
· · · wet, 7. 504	heptadecasulphoctantimonite, 9. 547
chloridizing roast, 7. 504	heptadecasulphoctobismuthite, 9. 695
H. E. Fry's process, 7. 504	- — heptoxydichloride, 7. 742
felspar, 6 . 662, 698	heptoxyhexanitrite, 8. 497
ferrate, 13 . 936	heptoxypentaiodide, 7. 768
ferric chloride, 14 . 105	hexaborate, 5 . 106
dodecarsenate, 9. 228	hexachlorodiiodide, 7. 765
hydroxysulphatophosphatarse-	hexahydroarsenatoctodecamolybdate,
nate, 9. 334	9. 211
	hexahydroxydinitrate, 7. 867
oxytrisulphate, 14, 349	hexahydroxydisulphate, 7. 819
ferrite, 18. 921	hexametaphosphate, 7. 882
ferrous chloride, 14. 35	hydrate, 7. 882
cuprous enneasulphodianti-	hexanitritodinitrate, 7. 870; 8. 498
monite, 9. 554	—— hexaphosphate, 7. 882
ferrite, 18. 924	hexasulphodichloride, 7. 795
	hexoxydibromide, 7. 755
	hexoxydichloride, 7. 742
manganese metatitanate, 7. 56	dihydrate, 7. 742
	hexoxydiiodatohexachloride, 7. 768
o esa	
9. 554 Clements 7 507	hexoxytetraiodide, 7. 768
—— filaments, 7. 507	hom 7, 707, 852
films, 7. 508	horn, 7. 707, 852
flowers of, 7: 563	hydrazine sulphuryl hydrazide, 8. 666

332122	
Lead hydrazine thiosulphate, 10. 551	Lead manganous sulphide, 12. 397
hydrazinodisulphinate, 8. 682	tetrasulphide, 12. 397
	matte, 7. 503
hydriodide, 7. 764	—— mercuric bromide, 4. 894
- hydroarsenate, 9. 193	mercuride, 7. 619
- hydroimidodisulphonate, 8, 659	—— mercurous oxyhexanitrate, 7. 869 —— mercury alloys, 7. 619
- hydromonamidophosphate, 8. 706 - hydrophosphate, 7. 878	mesohexabismuthite, 9. 651
hydroplumbite, 7. 662	mesosulphohexabismuthite, 9. 695
- · · · hydrosol, 7. 508	metaborate, 5. 106
hydrosulphate, 7. 812	—— metallic precipitation, 7. 506
hydrotellurate, 11. 96	metantimonite, 9. 433
hydroxide, 7. 661	— metaoctobismuthite, 9. 651
	—— metaphosphate, 7. 881 —— metaplumbate, 7. 670
hydroxychloride, 7. 738	metarsenate, 9. 195
- · · · hydroxychlorocarbonate, 7. 852	metarsenite, 9. 130
hydroxychloroplatinite, 16. 285	metasilicate, 6. 886
hydroxydioxysulphate, 7. 818	—— metasulpharsenite, 9. 300
hydroxyhydroplumbite, 7. 664	metasulphoantimonite, 9, 549
- — hydroxyiodide, 7. 767 — hydroxynitrate, 7. 868, 869	—— metasulphobismuthite, 9. 693 —— metasulphotetrabismuthite, 9. 695
	—— metatetrarsenite, 9. 130
- hydroxynitrilodisulphonate, 8. 678	metatitanate, 7. 56
hydroxynitrilotrisulphonate, 8. 681	metatungstate, 11. 827
hydroxypentachloroplatinate, 16. 335	——— pentahydrate, 11. 827
hydroxysulphocarbonate, 7. 848, 852	metavanadate, 9. 777
hydroxytriarsenate, 9. 192	methyl alcosol, 7. 509 molybdate, 11. 566
hyperiridite, 15 . 756 hyponitrite, 8 . 416	——————————————————————————————————————
hypophosphate, 8. 938	molybdenum alloys, 11. 523
hypophosphite, 8. 886	monamidodiphosphate, 8. 710
hypophosphitomolybditomolybdate,	monamidophosphate, 8. 706
8. 888	monamminobromide, 7, 750
hypovanadate, 9. 747	monamminodichloride, 7. 716 monamminoiodide, 7. 762
imide. 8 . 265 indium alloys, 7 . 625	monarsenide, 9. 69
iodate, 2. 356	monothiophosphate, 8. 1069
iodide, 7 . 757	monochloride, 7. 706, 745
colloidal, 7. 758	monohydroxide, 7. 637
properties, chemical, 7. 760	monoiodide, 7. 757
physical, 7. 758	monotelluride, 11. 56
iodoarsenatoapatite, 9. 263 iodocarbonate, 7. 852	monoxide, 7. 638 properties, 7. 650
iodoimidoamide, 8. 265	physical, 7. 644
iodosulphate, 7. 817	native, 7. 490
—— iodosulphobismuthite, 9. 703	—— nickel alloys, 15 . 235
iodotriorthoarsenate, 9. 263	———— antimony alloys, 15. 237
iodotriorthophosphate, 7, 885	cadmium alloys, 15. 237
iridium alloy, 15 . 750 iron alloys, 18 . 579	cobalt alloys, 15. 338 copper alloys, 15. 236
	disulphide, 15. 444
potassium nitrite, 8. 501	
isobutyl alcosol, 7. 509	tin-zinc-copper alloys, 15. 237
isotopes, 7. 603	trisethylenediaminoiodide, 15.
	433
lithium alloys, 7. 606	nitrate, 7. 856; 11. 831 properties, chemical, 7. 862
chromate, 11. 304 dithiosulphate, 10. 551	properties, chemical, 7. 802
magnesium dihydroxymetasilicate, 6.	X-radiogram, 1. 642
888	nitrates, basic, 7. 867
orthosilicate, 6. 888	nitratobisdihydrophosphate, 7. 885
malachite, 3. 274	nitratohypophosphite, 8. 887
—— manganate, 12. 289	nitratometatungstate, 11. 827, 862
manganese arsenite, 9. 133	mitratorthophosphate, 7, 885
magnesium calcium orthoarse- nate, 9. 222	nitratotellurate, 11. 120 nitride, 8. 122
tetravanadate, 9. 791	nitrilodithiophosphate, 8. 727
manganite hydrated, 12. 242	nitrite, 8 . 497
manganous chloride, 12. 370	- nitritonitrate, 7. 869

Lead nitrohydroxylaminate, 8. 306	Lead oxyorthoarsenate, 9. 190
mitrosonitrate, 7, 869	oxyorthophosphate, 7. 875, 877 oxyorthovanadate, 9. 776
nitrosylsulphonate, 8. 695 occurrence, 7. 487	oxypentaiodide, 7. 768
ochre, 7. 638	monohydrate, 7. 768
octamminobromide, 7. 749	oxypentanitrite, 8. 498
octamminodichloride, 7. 716	oxypyrovanadate, 9. 776
- cetamminoiodide, 7. 761	oxyselenate, 10. 874
octofluochloride, 7. 732	oxysulphate, 7. 818
octofluodiiodide, 7. 765	
octosulphodiantimonite, 9. 546	oxysulphates, 7. 817 oxytetrachloride, 7. 737
octoxydiodide, 7. 768 of the philosophers, 9. 341	
	monohydrate, 7. 737
oleate, 7. 591	oxytetrachlorodiarsenite, 9. 258
- orthoantimonate, 9. 458	oxytetrametaphosphate, 7. 881
orthoarsenate, 9. 190	oxytetranitrate, 7. 869
- orthoarsenite, 9. 129	oxytungstate, 11. 794
monohydrated, 9. 130	—— palladium alloys, 15. 649
orthohexavanadate, 9. 876 orthophosphate, 7. 876	paratungstate, 11. 819 decahydrate, 11. 819
	parkesized, 7. 505
trihydrate, 7. 876	pattinized, 7. 505
orthoplumbate, 7. 697	pentahydroxychloroplatinate, 16. 333
orthosulpharsenate, 9. 322	pentahydroxyimidodisulphonate, 8.
orthosulpharsenite, 9. 299	659
orthosilicate, 6 . 886, 887	pentamminoiodide, 7. 761
orthogulphoantimonate, 9, 575	pentamolybdate, 11. 594 pentapermanganite, 12. 279
orthosulphoantimonite, 9. 544 orthosulphobismuthite, 9. 693	pentaphosphide, 8. 849
- orthosulphodiantimonohexantimonite,	pentasulphide, 7. 794
9. 544	pentathionate, 10. 628
orthosulphosilicate, 6. 987	pentauranite, 12. 68
orthosulphotetrantimonite. 9. 546, 554	pentitaheptoxide, 7. 670
- orthosulphotetrarsenite, 9. 300	pentitahexoxide, 7. 670
orthovanadate, 9. 776	pentitoctoxide, 7. 670 pentoxybischromate, 11. 302
osmate, 15. 706 osmiamate, 15. 728	— pentoxybischloride, 7. 742
oxide brown, 7. 681	pentahydrate, 7. 742
—— oxides higher, 7. 669	pentoxydiiodide, 7. 767
oxybischromate, 11. 303	heptahydrate, 7. 767
oxybromídes, 7. 754	—— pentoxydinitrate, 7. 867
oxycarbonate, 7. 836	hydrate, 7. 867
oxychlorides, 7. 736	pentoxydisulphopyrovanadate, 9. 818 pentoxyorthoarsenate, 9. 192
oxychromate, 11. 302 oxydecabromide, 7. 755	pentoxyorthophosphate, 7. 875, 877
oxydibromide, 7. 754	pentoxyorthovanadate, 9. 776
hemitrihydrate, 7. 754	perchlorate, 2. 402
—— —— monohydrate, 7. 754	periodate, 2. 415, 416
trihydrate, 7. 754	permanganate, 12. 336
oxydichloride, 7 . 737	——— permanganite, 12. 279
	—— permonosulphomolybdate, 11. 653 —— pervanadate, 9. 795
hemitrihydrate, 7. 738 monohydrate, 7. 738	peroxide, 7. 681
oxydihydroxide, 7. 661, 664	persulphate, 10. 480
oxydiiodide, 7. 766	trihydrate, 10. 480
hemihydrate, 7. 767	phosphate, 7. 875
—— monohydrate, 7. 767	fava, 7. 877
oxydinitrite, 8. 498	phosphatoctotungstate, 11. 872
oxydiphosphite, 8. 918	phosphatododecamolybdate, 11. 663
oxydiselenitoplumbate, 10. 833	phosphatododecatungstate, 11. 867 phosphatoenneatungstate, 11. 871
oxydisulphate, 7. 819 oxydithionate, 10. 595	phosphatohexatungstate, 11. 873
oxyditmonave, 10. 355 oxyfluoride, 7. 703	—— phosphatophosphates, 7. 882
oxyhexachloride, 7. 736	phosphide, 8. 849
oxyhexahydroxytetranitrate, 7. 868	phosphite, 8 . 917
oxyiodide, 7. 766	—— phosphorous enneaiodide, 7. 762
oxymolybdate, 11. 568	physiological action, 7. 588
oxymolybdatochloroarsenate, 9. 263;	—— platinous trans-sulphitodiamminosul-
11. 568	phite, 10 . 321

Lead platinum alloys, 16. 213	Lead silicododecatungstate, 6, 881
thallium alloy, 16. 215	silver alloys, 7. 610
plumbite, 7. 662, 669	germanium sulphantimonite, 7.
porous, 7. 507	255
potassium arsenate, 9. 195	metasulphoantimonite, 9. 551
chromate, 11. 504	orthosulphobismuthite, 9. 695
cobaltic nitrite, 8. 405	pyrosulphobismuthite, 9. 694
copper hexanitrite, 8. 498	
dimetaphosphate, 7, 881.	sulphoctoantimonite, 9. 551
— dinitritodinitrate, 7, 872	thallium metasulpharsenite, 9.
dioxychromate, 11. 304	301
heptanitrite, 8 . 498	slag, 7. 502
heptapyrophosphate, 7. 880	воар, 7. 591
hydroxynitrilodisulphonate, 8.	sodium arsenate, 9 . 195
678	chlorophosphate, 7. 885
molybdate, 11. 569	chromate, 11. 304
- nickel nitrite, 8. 512	dihydroxytetraearbonate, 7. 855
nitrilotrisulphonate, 8. 669	dioxybischromate, 11. 304
cotonitritotetranitrate, 7. 872; 8.	heptathiosulphate, 10 . 551 hydroxychlorosulphate, 7 . 739
498	- hydroxychlorosulphate, 7. 735
orthophosphate, 7. 876 orthosulphoantimonite, 9. 552	orthophosphate, 7. 876
pyrophosphate, 7. 880	paratungstate, 11. 819
tetranitrite, 8. 498	pentapyrophosphate, 7. 880
- trithiosulphate, 10. 552	pentathionate, 10. 628
powdered, 7. 507	pentathiosulphate, 10. 552
- praseodymium chlorovanadate, 9. 809	pyrophosphate, 7. 880
properties, chemical, 7, 561	· sulphide, 7. 796
physical, 7. 515	tetrathiosulphate, 10. 552
- purification, 7. 504	triphosphate, 7. 882
electrolytic, 7. 505	tripyroarsenate, 9, 195
purified, 7 . 508	trithiosulphate, 10. 551
pyroantimonate, 9. 458	zinc iodoazide, 8. 337
dihydrate, 9. 458	soft, 3 . 311; 7 . 505
- hemitrihydrate, 9. 458	- softening, 7. 504
hexahydrate, 9 . 458	solubility of hydrogen, 1, 306
monohydrate, 9 . 458	spar, 7. 829
pentahydrate, 9 , 458'	(yellow), 11 . 566
- tetrahydrate, 9. 458	spongy, 7. 507
- pyroarsenate, 9. 195	- stannate, 7. 420
pyroarsenite, 9. 130	- strontium chromates, 11. 304
- pyrobismuthite, 9. 651	iodide, 3 . 738
pyrolignite, 7, 591	oxychloride, 7, 744
- pyrophosphate, 7, 880	subbromide, 7, 637
pyroplumbite, 7, 670	subchloride, 7 , 637, 706, 745
- pyrosilicate, 6 . 887 - pyrosulphantimonite, 9 . 548	subhydroxide, 7. 637 subiodide, 7. 637, 757
pyrosulpharsenate, 9. 322	- suboxide, 7. 636
pyrosulpharsenite, 9. 299	subsulphate, 7. 803
pyrosulphate, 10 . 447	subsulphide, 7. 780
pyrosulphobismuthite, 9. 694	sulphamide, 8 . 663
pyrovanadate, 9. 776	sulpharsenite, 9. 298
- quadrantosulphide, 7. 780	sulphate, 7. 803
red, 7. 672	colloidal, 7. 805
rhodium alloy, 15 . 565	properties, chemical, 7. 808
- rubidium cobalt nitrite, 8. 506	sulphates basic, 7. 817
trithiosulphate, 10. 552	
ruthenium alloys, 15. 510	sulphatostannate, 7. 478
sacred, 9. 341	- — sulphatotricarbonate, 7. 853
selenate, 10. 873	sulphide, 7. 779, 780
selenide, 10. 786	colloidal, 7. 784
selenite, 10. 833	
selenosulphohexabismuthite, 9. 695	
sesquioxide, 7. 670	
sesquisulphide, 7 . 793 silicide, 6 . 187	reduction of, 7. 497
silicite, 6 . 236	
Services de miro	surprivoismuviiivo, 7. 002

Lead sulphochromite, 11. 433	Lead tin alloys, 7. 626
—— sulphoctoiodide, 7. 794	colloidal, 7. 627
sulphodiantimonotetrantimonite, 9.	transmutation to silver, 7. 604
555	tree, 7. 516
	triamidodiphosphate, 8. 712 triamminobromide, 7. 749
	tribromoiodide, 7, 766
—— sulphofluoride, 7. 794	trichloride, 7. 718
—— sulphohalides, 7. 794	trichlorobromide, 7. 750
sulphohexabismuthite, 9. 695	trichlororthioarsenate, 9. 263
	trihydroxide, 7. 670
sulphometastannate, 7. 477	trihydroxyimidodisulphonate, 8. 659
sulphomolybdate, 11. 652	trimetaphosphate, 7. 881
sulphostannitantimonite, 9. 553	trioxychromate, 11. 302
sulphotellurite, 11. 114 sulphotungstate, 11. 809	trioxydibromide, 7, 755 trioxydiehloride, 7, 741
super-refined, 7. 505	
supersulphuretted, 7. 793	monohydrate, 7. 741
tellurate, 11. 96	tetrahydrate, 7. 741
tellurite, 11. 8l	trihydrate, 7. 741
tempered, 7. 607	trioxydiiodide, 7. 767
tetraborate tetrahydrated, 5, 106	dihydrate, 7. 767
tetrabromide, 7, 753	monohydrate, 7, 767
	trioxydinitrate, 7. 868
tetrachloride, 7. 718	
tetrachlorodiiodide, 7. 765	868
tetrafluoride, 7. 704	trioxyorthophosphate, 7, 877
tetrahydride, 7. 262	trioxypentacarbonate, 7, 836
tetrahydroxydichloroplatinate, 16. 335	trioxysulphate, 7. 818
tetrahydroxydinitritodinitrate, 7. 890	
tetrahydroxydithionate, 10. 595	tripermanganite, 12. 279
	- triselenitodecamolybdate, 10, 836 - trisulphobispyrosulpharsenite, 9, 299
- — quinoline, 7. 764	trisulphodichloride, 7. 794
- tetrametaphosphate, 7. 881	trisulphorthosulphobismuthite, 9. 692
octohydrate, 7. 881	tritadiarsenide, 9. 69
tetramminochloroplatinite, 16. 284	— - tritamercuride, 7. 619
tetramminoiodide, 7. 761	tritatetrarsenide, 9. 69
tetramminotetrachloride, 7, 719	trithionate, 10. 609
tetranitritoplatinite, 8. 521	tritungstate, 11. 811
-— tetrapermanganite, 12. 279	triuranate, 12. 67
tetrasulphodiiodide, 7. 795	tungstate, 11. 792
tetratellurate, 11. 96	ultramarine, 6 . 590
—— tetrathionate, 10. 619	blue, 6. 889
tetratungstate, 11. 826	
	ultraphosphates, 7. 882 uranate, 12. 64
	uranyl chromate, 11. 308
tetritasulphide, 7. 780	pentafluoride, 12. 79
—— tetroxybromide, 7. 754	uses, 7. 591
tetroxychromate, 11. 302	valency, 7. 600
tetroxydichloride, 7. 742	vanades, 9. 775
——————————————————————————————————————	vanadium spar, 9. 809
tetroxydihydroxydinitrate, 7. 867	white, see white-lead
	wool, 7. 507 works, 7. 504
—— thallium alloys, 7. 625	X-radiogram, 1. 641
thallous nickel nitrite, 8. 512	zinc alloys, 7. 616
nitrite, 8 . 500	——————————————————————————————————————
sulphide, 7. 797	hydroxyorthovanadate, 9. 777
—— thiocarbamate, 6. 132	orthovanadate, 9. 778
thiocarbonate, 6. 128	oxychloride, 4. 546
thiohydrophosphite, 8, 1063	
thiohypophosphate, 8. 1064 thiophosphate, 8. 1065	zirconate, 7. 136
thiopyrophosphate, 8, 1000 thiopyrophosphate, 8, 1070	zirconium, 7. 117
thiosulphate, 10. 550	(dodeca)lead tetrahenicosichloride, 7. 736
•	

(hexa)lead tetracalcium dihydroxytriortho-Leucite soda, 6. 647, 648, 649 silicate, 6. 888 thallium, 6. 65 (octo)lead oxyhexadecachloride, 7. 736 thallo-, 6. 826 (penta)lead oxyenneachloride, 7. 736 Leucitic acid. 6. 294, 648 (tetra)lead oxyheptachloride, 7. 736 Leucitohedron, 6. 649 (tri)lead imidosulphonate, 8. 658 Leucoargilla, 6. 472 pentasulphosilicate, 6. 987 Leucoargyrite, 9. 291 Leadhillite, 7. 491, 853 Leucochalcite, 9. 5, 160 Le alcool de soufre, 6, 94 Leucocyclite, 6. 368, 370 Least effort, principle of, 2. 146 Leucoglaucite, 14. 320 Leberblende, 4. 408 Lebererz, 14. 200 Leucolite, 6. 560, 763 Leucomanganite, 12, 149, 454 Leberkies, 14. 136 Leucone, 6. 227 pyrites fuscus, 14. 218 Leucophane, 4. 206; 6. 380 Leberkise, 14. 136 Leucophoenicite, 6. 894; 12. 149 Leucophosphate, 14. 411 Leucophyllite, 6. 606 Leucopyrite, 9. 4, 73; 12. 530 Leucosphenite, 6. 844; 7. 3, 54, 100 Leclanche's cell, 1. 1029 Ledeburite, 12. 800, 863 Ledererite, 6. 734 Lederite, 6. 840; 7. 3 Leucoxene, 6. 840; 7. 3 Leduc's molecular volume method molecular or atomic weights, 1. 763 Leudouxite, 14. 424 Leelite, 6. 663 Leukonium, 9. 451 Lehmanite, 6. 694 Leuteoarsenatomolybdic acid, 9. 206 Leverrierite, 6. 478, 492 Lehmannite, 11. 290 Lehnerite, 12. 530; 14. 395 Levgue, 6. 735 Lehrbachite, 4. 697; 7. 49; 10. 788 Lehuntite, 6. 653 Leviglianite, 4. 697; 10. 780 Levynite, 6. 575 Leidyite, 6. 624 Leithner's blue, 5. 298 Lewis' cubical atom, 4. 195 Lewisite, 7. 3; 9. 433 Lembergite, 6, 574 Leyden blue, 5. 298 - papyrus, 1. 26 Lemberg's solution, 4. 376 Lemery, N., 1. 52 Lherzolite, 5. 298 Lemnian earth, 6. 471 Libavius, A., 1. 51 ____ fuming spirit, 7. 436 Libethenite, 3. 289; 8. 733 Lemon, 13. 615 yellow, 11. 271, 273 Lenard rays, 4. 25, 28 black, 3. 8, 961 Lengenbachite, 7. 491; 9. 4, 299 Lichtes uranpecherz, 12. 52 Lennæite, 14. 424 Liebenerite, 6. 619 Lennilite, 6. 609, 624, 663 Liebigite, 12. 5, 115 Lenzinite, 6. 494 Liesegang's rings, 1. 537 Lievrite, 6. 918; 12. 530 Lenzite, 6. 494 Light, action magnetic field on polarized, 4. Leonardo da Vinci, 1. 47 Leonhardite, 6. 738 19 - a-, **6**. 738 - β-, **6**. 738 - black, 4. 53 calcium, 1. 326 Leonite, 2. 430, 657; 4. 339 - Drummond's, 1, 326 Lepidochlorite, 6. 622 --- lime, 1. 326 - magnesium, 4. 259 Lepidocrocite, 12. 530; 13. 877, 884, 886 Lepidokrokite, 18. 877 --- matter of, 1. 56 Lepidolite, 2. 2, 425; 6. 604, 607; 7. 896 – red silver ore, 9. 4 Lepidomelane, 6. 608 ---- syringe, **8**. 1058 Lepidomorphite, 6. 606 - zircon, 1. 326 Lignes de glissement, 12. 895 Lepidophacite, 12. 149 Lepidophœite, 12. 266, 276 Lignite, absorption oxygen, 1. 371 Ligurite, 6. 840; 7. 3 Lepitochlorites, 6. 623 Lepolite, **6**. 693 Lilalite, **6**. 607 Lepor, 6. 918 Lilianite, 9. 693 Leptochlorites, 6. 622, 623 Lillhammerite, 15. 5, 444 Leptonematite, 12. 236, 266 Lillianite, 7. 491; 9. 589 Lerbachite, 4. 697; 10. 694 Lillite, 6. 624; 12. 530 Lerch's rule radioactivity, 4. 114 Lime, 8. 672; 18. 615 Lessbergite, 4. 371 - burning, **3.** 653 - burnt, **3**. 653 Lettsomite, 5. 154, 353 Leucaugite, 6. 817, 819 – cancrinite, 6. 582 Leuchtenbergite, 6. 622 caustic, 3. 653 Leucite, 6. 648 cream of, 8. 676 beryllia, 6. 649, 803ferric, 6. 649, 919 high calcium, 3. 653 hydrated, 8. 673juice, 18. 615 --- lithia, 6, 649 light, 1. 326 -- pseudo-, **6**. 651

Lime, live, 8. 653	Liquor silicum, 6. 135
—— malachite, 3. 274	Liroconite, 3. 8; 5. 155; 9. 5
—— mica, 6 . 707	Lirokonmalachite, 9. 186
—— milk of, 3 . 676	Liskeardite, 5. 155; 9. 5, 186; 12. 530
olivine, 6 . 386	Litchfield's shaft furnace, 4. 701
psilomelanes, 12. 266	Lithammonium, 8. 245
	Litharge, 7. 639
slaking, 3. 673	absorption oxygen, 1. 371
—— thomsonite, 6 . 710	flake, 7. 639
uranite, 12. 134	levigated, 7. 639
water, 3. 676	—— sublimed, 7. 639
Limestone, 3. 622, 814; 12. 151; 18. 615	Litheophorus, 8. 729
coralline, 3 . 815	Litheosphorus, 8. 729
Fontainebleau, 3. 814	Lithia alum, 5. 342
lithographic, 3. 815	
— oolitic, 3 . 815	felspar, 6. 662, 668
Oolide, 5. 615	leucite, 6. 649
	—— mica, 6 . 607
Limestones argillaceous, 3. 815	psilomelanes, 12 . 266
bituminous, 3 . 815	sodalite, 6. 583
ferruginous, 3. 815	Lithiojarosite, 14. 343
—— fetid, 8 . 815	Lithion-psilomelane, 12. 266
glauconitic, 3. 814	Lithionite. 6. 607
phosphatic, 3, 815	
	Lithiophilite, 12, 149, 453; 14, 396
sandy, 8. 815	Lithiophorite, 12. 266; 15. 9
Limnite, 12. 530; 18. 886, 893	Lithiophylite, 2. 426
Limonite, 12. 530; 13. 886; 15. 9	Lithite, 6. β51
boxwork, 13 . 887	Lithium a-, 2. 458
Linarite, 7. 491, 820	acetylene diamminocarbide, 5. 849
Lincolnite, 6. 755	aluminium dimesosilicate, 6. 652
Lindackerite, 9. 5, 334; 15. 5	dimetasilicate, 6. 640
	hantitahramarthasilisata 6 573
Lindesite, 6, 915	heptitabromorthosilicate, 6. 573 mesotrisilicate, 6. 641, 668
Lindsayite, 6 . 693	inesotristicate, b. 041, 008
Lindströmite, 9 . 694, 695	orthosilicate, b. 569
Line spectrum, 4. 5, 7, 915	
Linear absorption coeff. X-rays, 4. 33	paratetrasilicate, 6. 641 phosphate, 5. 367
Linnæite, 14. 757; 15. 5, 9	phosphate, 5, 367
Linotype metal, 7. 362	sulphate, 5. 342
Linsenerz, 5. 155	tetrametasilicate, 6. 641
	aluminosilicate, 6. 569
Lintonite, 6 . 709	
Linzenerz, 9. 186	amalgams, 4. 1012
Linzenkupfer, 9. 186	amide, 8 . 253
Lion, red, 9. 341	amidochromate, 8 . 266
Lionite, 11. 793	amidosulphonate, 8. 641
Liparite, 6 . 431	ammine, 8. 244
Lipilite, 7 . 896	—— amminotritantimonide, 9. 341
Liquefaction gases, 1. 868	ammonium chromate, 11. 244
——————————————————————————————————————	cis-disulphitotetramminocobalt-
Toule Thomson offset 4 972	
Joure-Hombon check, 1.072	ate, 10. 317
rapid evaporation, 1. 871	hydrorthophosphate, 2. 876
Joule-Thomson effect, 1.872 rapid evaporation, 1. 871 cascade method, 1. 871	———— pentametaphosphate, 2. 878; 8.
Liquid air, see Air, liquid	988
	sulphate, 2. 705 trimetaphosphate, 2. 877
———— Bose's swarm theory, 1. 649	trimetaphosphate, 2. 877
Liquids, amsotropic, 1. 645	antimonatotriiodobromide, 9. 512
associated, 1. 856	argentoiodides, 8. 433
	arsenatotrimolybdate, 9. 209
association of, 1. 858, 860	alsonacourinory base, 2. 200
— birefringent, 1. 645	at. wt., 2. 470
—— intrinsic pressure, 1. 841	azide, 8. 345
kinetic theory, 1. 840	——— hydrate, 8 . 345
Langmuir's theory, 1. 642	azodithiocarbonate, 8. 338
normal, 1. 856	β-, 2 . 458
—— polymerized, 1. 860	barium silicate, 6. 371
solubility in liquids, 1. 522	cis-bischromatotetramminocobaltiate,
	11. 311
Liquor argenti vivi sublimati, 7. 436	
arsenicalis, 9. 40	borosilicate, 6. 448
arsenici hydrochloricus, 9. 40	bromate, 2. 330
arsenii et hydrargyri iodidi, 4. 916	—— bromide, 2. 577
—— fumens ex stanno, 7. 437	ammines, 2. 586
—— magnesia carbonates, 4. 361	properties, chemical, 2. 586
—— plumbi subacetatis, 7. 591	physical, 2. 579
*	

Lithium bromobisarsenite, 9. 256	Lithium dihydroarsenatotrimolybdate, 9.
bromostannate, 7. 456	208
cadmide, 4. 668	dihydrohypophosphate, 8. 933
cadmium alloys, 4. 668	—— dihydromanganidiorthophosphate, 12.
	461
	pentahydrate, 12. 461
casium alloys, 2. 481	trihydrate, 12. 461
calcium carbonate, 8. 844	dihydrophosphatohemipentamolybdate, 11. 669
metasilicate, 6 . 366	dihydrophosphite, 8. 912, 913
	dihydrorthophosphate, 2. 858
carbamate, 2. 796	dijododinitritoplatinite, 8. 522
carbides, 5. 847	dimolybdate, 11. 581
carbonate, preparation, 2. 725	dioxide, 2. 487
properties, chemical, 2. 767	—— dioxyorthosilicate, 6. 332
	- diphosphate, 2. 862
chlorate, 2. 325	diselenitopentamolybdate, 10. 837
ammino-, 2. 329	disodium chloroperiridite, 15. 765
chloride ammino-, 2. 554	disulphide, 2. 632
and hydrogen, 1. 303	disulphuryliodide, 10. 690 dithionate, 10. 583
sulphate crystallization, 2.	dithiophosphate, 8. 1068
hydrated, 2. 542	ditritamercuride, 4. 1012
preparation, 2. 528	ditritastannide, 7. 346
properties, chemical, 2. 552	ditungstate, 11. 809
physical, 2. 529	—— divanadyl hexasulphite, 10. 305
chlorite, 2. 284	—— docosibromoaluminate, 5. 326
chloroaurate, 3. 593	enneafluodiantimonite, 9. 465
chlorochromate, 11. 397	enneahydropentalanthanate, 5. 628
chlorocolumbite, 9. 876	ferrate, 13. 934
	formite 12 006
chloroiridate, 15. 771	ferrite, 13. 906 ferroheptanitrosyltrisulphide, 8. 441
dihydrate, 15 . 771 hexahydrate, 5 . 771	ferrous phosphate, 14. 396
chloropentaquodichloride, 11. 418	
	trichloride, 14. 32
- chloroperohodite, 15. 579	—— fluoaluminate, 5. 303
chloroplatinate, 16. 324	—— fluoborate, 5 . 126
hexahydrate, 16. 324	fluoride, 2. 512
chloroplatinite, 16. 281	—— fluosilicate, 6. 946
chloroplumbite, 7. 727	fluostannate, 7. 423
chlorostannate, 7. 448	fluosulphonate, 10. 685
chlorotrifluoantimonite, 9. 466	fluotitanate, 7. 70
—— chromate, 11. 243 —— dihydrate, 11. 243	glaucophane, 6. 644
—— chromite, 11. 196	hemimercuride, 4. 1012
chromium pentachloride, 11. 418	—— hemipentastannide, 7. 346
chromous carbonate, 11. 471	hexaborate hexahydrated, 5. 66
cobaltic hexanitrite, 8. 504	hexabromoselenate, 10. 901
cobaltous henachloride, 14. 641	hexachloroindate, 5. 400
heptachloride, 14. 641	hexachlorothallate octohydrated, 5.
———— hexachloride, 14. 641	445
	hexadecamolybdate, 11. 603
trickleride 44 840	hexafluoaluminate, 5. 303
—— —— tetrachloride, 14. 641 —— —— trichloride, 14. 640 —— trisulphite, 10. 314	—— hexafluotantalate, 9, 916 —— hexahydroarsenatoctodecamolybdate,
—— cuprous sulphite, 10. 275	9. 211
——————————————————————————————————————	hexamercuride, 4. 1012
decaborate decahydrated, 5. 66	—— history, 2. 421
decahydropentaselenitododecavana-	hydrides, 2. 481
date, 10. 835	hydrocarbonate, 2. 773
deuteroctovanadate, 9. 761	hydrometaluminate, 5. 287
deuterododecavanadate, 9. 761	hydro-orthophosphate secondary, 2.
deuterohexavanadate, 9. 761	851
deuterotetravanadate, 9. 761	hydropentafluoantimonite, 9. 465
—— dialuminium orthosilicate, 6. 569	hydrophosphite, 8, 912
—— pentametasilicate, 6. 641 —— diborate, 5. 65	hydropyrotellurate, 11. 89 hydropyrotellurite, 11. 78
—— dichromate, 11. 325	hydrosulphates, 2. 678, 679
dihydroarsenate, 9. 149	—— 'hydrated, 2. 687
2001) 200 CALLOTTEN #1 # # # # # # # # # # # # # # # # # #	

Lithium hydrosulphide, 2. 641	Lithium nickel metaphosphate, 15. 496
hydrosulphite, 10 . 260	trichloride, 15. 419
— — hydrotellurate, 11. 89	nickelous sulphate, 15. 472
hydroxide, 2. 495	nitrate, 2. 802
properties, 2. 500	hydrates, 2. 815
hydroxyiodide, 2. 600	properties, chemical, 2. 820
hydroxypentachloroplatinate, 16. 335	physical, 2. 808
hypochlorites, 2. 269	- nitratosulphate, 2. 816
hypomolybditotetramolybdate, 11.593	nitride, 8. 98
hypophosphate, 8. 933	nitrito, 8. 474
hypophosphite, 8. 880	hemihydrate, 8. 474
	monohydrate, 8. 474
	octoborate hydrated, 5. 66
iodate, 2. 332	octofluozirconate, 7. 139
	- — octomolybdate, 11. 595
- — iodatophosphate, 2. 851	octosulphate, 10. 447
—— iodide, 2, 596	orthoarsenate, 9. 149
hydrated. 2. 602	— orthodisilicate, 6. 330
properties, chemical, 2. 605	orthododecacolumbate, 9. 685
physical, 2. 598	orthophosphate, normal, 2. 847
iodobisarsenite, 9. 256	
iridium alloys, 15 . 750	
isotetrahydroborododecatungstate, 5.	- orthosilicate, 6. 329
109	orthosulpharsenate, 9. 317
lead chromate, 11. 304	orthosulphoantimonite, 9. 533
dithiosulphate, 10. 551	orthotellurate, 11. 89
— magnesium alloys, 4. 666	orthotetravanadate, 9. 761
carbonate, 4. 367	orthovanadate, 9. 760
metasilicate, 6. 407	enneahydrate, 9. 760
manganate, 12. 288	hexahydrate, 9. 760
- manganitomanganate, 12. 290	osmium alloy, 15. 697
manganous ferric phosphate, 14. 412	oxyorthovanadate, 9. 760
	— monohydrate, 9. 760
	tetradecahydrate, 9. 760
mercuric bromodichloride, 4, 892	tetrahydrate, 9. 760
———— hexanitrite, 8 . 495	palladium alloys, 15. 642
tetrabromide, 4. 891	—— paramolybdate, 11. 584
tetraiodide, 4. 927	dodecahydrate, 11. 584
hexahydrated, 4. 927	octocosihydrate, 11. 584
octohydrated, 4. 927	paratungstate, 11. 814
tribromide, 4. 891	percarbonate, 6. 84
- — trinitrite, 8 . 495	- — pentachloroantimonite, 9. 479
metaborate, 5 . 65, 79	hexahydrate, 9. 479
octohydrated, 5 . 65	———— pentahydrate, 9. 479
—— metabromoantimonate, 9. 497	pentachlorodiplumbite, 7. 727
—— metachloroantimonate, 9. 491	pentaiodoplumbite, 7. 776
metadizirconate, 7. 136	pentahydrate, 7. 776
metaluminate, 5 . 287	
—— metantimonate, 9, 450	pentamercuride, 4. 1012
metaphosphate, 2. 867	pentamolybdatodisulphite, 10. 307
— metaplumbate, 7. 696	pentasilicate, 6. 329
metarsenite, 9. 116	pentatantalate, 9. 901
— metasilicate, 6. 329	—— perchlorate, 2, 395
	—— perdichromate, 11. 359
	perditungstate, 11. 835
—— metasulpharsenate, 9. 317	- perdiuranate, 12. 72
metasulphoantimonite, 9. 533	
metasulphotetrantimonite, 9. 534	perferrite, 18. 926
metatungstate, 11. 822	periodate, 2. 406, 408, 409
—— metavanadate, 9. 761	ammonium, 2. 409
metazirconate, 7. 135	permanganate, 12. 302
molybdate, 11. 552	permonosulphomolybdate, 11. 653
trioctohydrate, 11. 553	persulphate, 10. 476
—— molybdenum dioxydibromide, 11. 638	pertetratungstate, 11. 836
oxytetrabromide, 11. 638	—— peruranate, 12. 72
—— monamidophosphate, 8. 705	—— pervanadate, 9 . 795
monomercuride, 4. 1012	—— phosphatoenneamolybdate, 11. 666
monosulphide, 2. 621	phosphatohexamolybdate, 11. 667
properties, chemical, 2. 627	phosphatohexatungstate, 11. 872
physical, 2. 624	phosphide, 8. 834
monoxide, 2. 486	phosphitododecamolybdate, 8. 918

oo	III III/III
Lithium platinum alloys, 16. 194	Lithium sulphatocuprate, 3. 256
plumbate, 7. 698	sulphatopertitanate, 7. 95
trihydrate, 7. 698	sulphite, 10. 260
potassium alloys, 2. 480	sulphomolybdate, 11. 651
	sulphoniodide, 2. 607
	sulphotellurite, 11. 113
cate, 6. 608	tellurate, 11. 89 telluride, 11. 40
hydrotrialuminotriorthosilicate,	
6. 608	tetraborate, 5. 65
molybdate, 11. 558	pentahydrated, 5. 66
silicate, 6 . 337	tetrabromoaluminate, 5. 326
sulphate, 2. 687	tetrachloroaluminate, 5. 321
	—— tetrachloromercuriate, 4. 852
	tetrachromate, 11. 352
— properties, chemical, 2, 468	tetraiodoplumbite, 7. 776
	tetrametaphosphate, 2. 867 tetramolybdate, 11. 592
—— pyridinepentachloroplatinate, 16. 312,	tetranitritoplatinite, 8. 519
324	— tetratellurate, 11. 89
pyrophosphate, 2 . 862	tetratellurite, 11. 77
—— pyrophosphatododecamolybdate, 11.	tetritastannide, 7. 346
671	thallic disulphate, 5. 469
pyrosulpharsenate, 9, 316	thallous chlorides, 5. 441
— pyrosulphoantimonite, 9. 533 — pyrotellurite, 11. 77	dithionates, 10. 594
pyrovanadate, 9. 761	thiocarbonate, 6. 123
	thiosulphate, 10. 514 thorium hexachloride, 7. 235
tetrahydrate, 9. 761	
rhodium alloy, 15. 564	nitrate, 7. 251
rubidium alloys, 2. 481	oxychloride, 7. 232
sulphate, 2. 688	
ruthenium alloy, 15. 510	sulphate, 7. 246
salts extraction, 2. 442, 443, 444	tourmaline, 6. 742
selenate, 10. 855	trialuminium hexahydroxydimetasili-
	cate, 6. 607, 652
tetritatrihydrate, 10. 821	triantimonate, 9, 443 triantimonide, 9, 341
selenotrithionate, 10. 926	trichlorocuprate, 3. 183
silicide, 6 . 169	trichloroferrite, 14. 32
	—— trichloromercuriate, 4. 852
nitrate, 3 . 479	trichromate, 11 . 350
nitrite, 8 . 484	trimercuride, 4 . 1012
orthosulphoantimonite, 9. 542 sulphate, 3. 454	trimolybdate, 11. 588
surpliate, 3. 454 sodium alloys, 2. 480	heptahydrate, 11. 588
	—— monohydrate, 11, 588 —— octohydrate, 11, 588
fluoaluminate, 5. 306	tetrahydrate, 11. 588
molybdate, 11. 556	trisulphatochromiate, 11. 464
selenate, 10. 856	tritamide, 8. 258
silicate, 6 . 337	tritammonium, 8. 259
sulphate, 2. 687	tritarsenide, 9. 61
sulphite, 10. 260	—— triterodecavanadate, 9. 761
trioxysulpharsenate, 9. 329	—— tungstate, 11. 773
tungstate, 11 . 779 1 : 3-tungstate, 11 . 779	tungsten bronzes, 11. 751
solubility of hydrogen, 1. 307	—— ultramarine, 6 . 589 —— uranate, 12 . 62
stannate, 7. 417	uranium pyrophosphate, 12. 132
stannic tungstate, 11. 792	uranous hexachloride, 12. 82
strontium pentabromide, 3. 731	uranyl disulphate, 12. 109
	hexafluoride, 12. 79
subchloride, 2. 530	nitrate, 12 . 126
sulphamidate, 8 . 662	——— phosphate, 12. 132
sulphate hydrates, 2. 667	
preparation, 2. 660	X-radiogram, 1. 642
	zinc silicate, 6. 444
— sulphates, 12. 416	——————————————————————————————————————
- sulphatoaluminate, 5. 342	(di)lithium imidosulphonate, 8. 650
, , , , , , , , , , , , , , , , , , , ,	\

(di)lithium silicododecatungstate, 6. 875 (octo)lithium trizirconium pentorthosilicate, 6. 854 (tetra)lithium silicododecamolybdate, -- silicododecatungstate, 6, 875 Lithographic limestone, 3. 815 Lithomarge, 6. 472 green, 6, 472 Lithophone, 4, 600 Lithophosphorus, 2. 3 Lithosiderites, 12, 523 Live lime, 3. 653 Liveingite, 7, 491; 9, 4, 300 Liver of sulphur, 2, 621 soda, 2, 621 volatile, 2. 645 Livingstonite, 4, 697; 9, 343, 543 Llicteria, 9, 553 Loaisite, 9. 225 Loboite, 6, 726 Lockyer's evolution hypotheses elements, 4. Lodestone, 12, 530 Loffebikobelt, 9. 3 Löllingite, 9, 4, 73; 12, 530 Lowigite, 5, 353 Löwite, 2, 430; 4, 252 Loganite, 6, 622, 821 Logronite, 6, 392 Lomonite, 6, 738 Lonchidite, 14, 200 Longbanite, 6, 836 Longitudinal elasticity, 1, 820 Longulites, 1, 628 Looking-glass ore, 12, 530 Lophoite, 6, 622 Lorandite, 5, 407; 9, 4, 297 Loranscite, 5, 481, 516, 519; 9, 903 Loranskite, 7, 100 Lorenzenite, 6, 842; 7, 3, 100 Lorettoite, 7, 491, 742 Lossenite, 7, 491; 9, 334; 12, 530 Loseyite, **12**, 149, 439 Lotalite, **6**, 915 Lotrite, 6, 722 Louderbackite, 14, 328, 351 Louisite, **6**. 368 Loxoclase, 6, 662, 663 L'oxyde de fer noir, 13. 736 Lubeckite, 12. 243; 14. 424, 586 Lubricating oils, 13, 613, 615 Lucasite, 6. 609 Lucianite, 6, 432 Lucifer matches, 8, 1059 Lucinite, 5. 363 Luckite, 12. 149; 14. 245 Lucretius, 1, 19, 37 - atomic theory, 1. 107 Ludlamite, 8, 733; 12, 530; 14, 395 Ludwigite, 5, 4, 114; 12, 530 Lüder's lines, 12. 898 Lüneberg sedative spar, 5. 137 Lünebergite, 5. 147 Lueneburgite, 4, 252; 5, 4; 8, 733 Lully, Raymond, 1. 47 Lumen constans, 8, 730 ---- philosophicum, 1. 126 Luminescence, crystallo., 1. 601 – tribo-, **1**. 601

Luna cornea, 3, 391 Lunar caustic, 3, 459, 461, 474 Lunnites, 3. 289 Lupi spuma, 11. 673 Lupis jobis, 11. 673 Lupus erythematosus, 10. 541 repax, 9. 341 ---- spuma, 11. 673 Lusakite, 14. 424 Lussatite, 6. 247 Lustres, 6. 515 Lutecia, 5, 707 isolation, 5. 705 Lutecin, 15, 210 Lutecite, 6, 139 Lutecium, 5, 498, 705 ---- atomic number, **5**. 706 ---- weight, 5. 706 ----- chloride, **5**. 707 ----- hydroxide, **5**. 707 --- isolation, 5. 555 - properties, 5, 706 sulphate, 5, 707 Luteoarsenatotungstic acid. 9, 213 Luteocobaltic fluoborate, 5, 128 permanganate, 12, 336 Luteophosphomolybdic acid, 11, 665 -- tetracosihydrate, 11. 666 - -- tetratricontihydrate, 11, 666 Luteophosphotungstic acid, 11, 870 Luteovanadatophosphates, 9, 827 Luteus, 9, 827; 11, 665 Lutidinium bromopalladate, 15. 678 bromopalladite, 15, 677 bromosmate, 15, 723 --- chloroiridate, 15, 771 ----- chloropalladate, 15. 673 ----- ehloropalladite, 15. 670 — chlororhodate, 15, 580 -- chlorosmate, 15. 719 - lutidine, pentachloroplatinate, 16, 312 Lux (luces), 10. 725 Luzonite, 3. 7; 9. 4, 318 Lychnis, 5, 295 Lydian stone, 6, 140 Lvdite, 6, 140 Lyman's spectrum, 4, 169 Lyncurium, 6. 740 Lyndochite, 9, 867; 12, 6 Lyonite, 11, 793 Lyophite, 1. 771 Lyophobe, 1. 771 Lysol, 13. 615 Lythrodes, 6, 619

M

Macfarlanite, 9, 64
Machine cast pig iron, 12, 596
Mackensite, 6, 921; 12, 530
Mackintoshite, 5, 515; 6, 883; 7, 185; 12, 5
Mack's cement, 3, 776
Macle, 6, 458
Macluerite, 6, 817
Maconite, 6, 619, 622
Macrolepidolite, 6, 615
Macromolecular, 1, 657
Macupite, 5, 531
Mänaken, 7, 56

	oid Genr	ILA	I' INDEY
	Magalaca sitiens, 12. 140		Magnesium aluminium phosphate, 5, 370
	Maghemite, 12. 530: 13. 780		silicates, 6. 808
	Magisterium ceraunochryson, 3. 582		sulphate, 5 . 353
	- — plumbi, 7 . 706		amalgams, 4. 1035
	Magisterum bismuthi, 9. 707		amide, 8 . 260
	Duflos, 9 . 708		—— amidochromate, 8. 266
	Magistral, 3, 234, 304		—— amidosulphonate, 8. 643
	Magnalium, 5. 237		amminopermanganate, 12. 335
	Magnasia, 4. 250		ammonium arsenate, 9. 177
	Magne, 12. 140		hexahydrate, 9. 177
	Magneferrite, 13. 914		bromide, 4 . 314
	Magnes, 12. 139		carbonate, 4. 370
	- luminaris, 8 . 729		
	Magnesia, 4. 250, 280		chromate, 11. 275
	alba, 4 . 249, 282, 358, 364; 12 . 140	,	cobaltous sulphate, 14. 781
	alcosol, 4, 290		
	alum, 4 . 252; 5 . 154, 354		dithiophosphate, 8, 1068
	calcined, 4. 280		iodide, 4 . 317
	- carbonates, liquor, 4. 361		manganous sulphates, 12. 423
	cobalt pink, 14. 519		molybdate, 11. 562
	- epidote, 6 . 722		monothiophosphate, 8. 1069
	felspar, 6 . 662, 698		nickelous sulphate, 15. 475
	fluid, 4. 361		orthosulpharsenate, 9. 321
	friabilis terriformis, 12. 267		paratungstate, 11. 818
	indurata, 12. 265		
-	iron spinel, 5 . 154, 297		phosphate, 4, 384
-	- muriata, 4. 298	į	monohydrated, 4. 386
	- · · · nigra, 4 . 249, 250; 12 . 140		selenate, 10 . 863
	potash process, Engel's, 4. 369		sulphate, 4. 342
	Röd, 6. 768		sulphite, 10. 285
			telluride, 11 . 50
	sodalite, 6 . 583		thiosulphate, 10. 545
			vanadate, 9 . 773 voltaite, 14 . 353
	- squamosa, 12. 140		and potassium chlorides, crystalliza-
	- striata, 12. 140		tion, 2. 432
	tessulate, 12 . 140		and sulphates, crystal-
	usta, 4 . 280, 282		lization, 2. 434
	· · · vitriariorum, 12. 140		sulphates, crystallization
	dagnesian pharmacolite, 9, 221		2. 432
	tourmalines, 6 . 741, 742		antimonide, 4 . 270
	Magnésie, 4. 280; 12. 140	1	antimonite, 9. 432
	hydratée, 4 . 290 Aagnesii carbones, 4 . 364		argentide, 4. 669
-		1	
	Jagnesioanthophyllite, 6. 916	ı	—————— weight, 4 . 277
	Magnesiochromite, 11. 199, 201	- 1	aurate, 3. 584
	Magnesioferrite, 4. 251; 12. 530; 13. 914	Į .	auride, 4, 669
	Ingnesious azide, 8. 350		autunite, 12. 135
A	Jagnesite, 4 . 251, 349; 6 . 427	1	azide, 8 . 350
	burnt, 4 . 280		barium dithionate, 10. 592
	—— caustic, 4 . 350		cis-bischromatotetramminocobaltiate,
-	crude, 4 . 3 50	- 1	11. 311
	dead-burnt, 4 . 350	- 1	trans-bischromatotetramminocobalti-
	- raw, 4. 350		ate, 11. 311
	spar, 4. 349 Lagrasium, 12, 141		octohydrate, 11. 311
.,	lagnesium, 12. 141 action on water, 1. 135	- 1	bishexaethylenetetraaminopersul-
	aluminate, 5 . 295		phate, 10. 479 bishexamethylenetetraminotetrathio-
	- aluminium alloys, 5 . 235	- 1	nate, 10. 619
	- aluminatorthosilicate, 6. 812		—— bismuth nitrate, 9. 710
-	carbonate, 5 . 359	- 1	—— bismuthide, 4. 270; 9. 636
	copper alloys, 5 . 237		boratoferrite, 5. 114
	- iron alloys, 13 . 557		—— boratophosphate, 5. 147
	mesopentasilicate, 6. 826		boratosulphate hydrated, 5. 147
	nickel alloys, 15. 231	1	boride, 5 . 25
	copper alloys, 15. 231	12	borite, 5. 39
	pentaluminatorthosilicate, 6.8	10	—— borohydrates, 5. 40

ne 1 1 11 11 1 n n n n	
Magnesium borosilicate, 6, 451	Magnesium chloride diammino, 4. 305
—— borotitanate, 7. 54	——————————————————————————————————————
borotungstate, 5 . 110	dodecahydrated, 4. 302
brass, 4 . 253	hexaethylalcoholate, 4. 305
bromate, 2 . 350	hexahvdrated, 4, 303
—— bromide, 4 . 312	hexamethylalcoholate, 4, 305
ammino-, 4. 314	
diammino-, 4. 314	monohydrated, 4. 303
hexahydrated 4 313	
——————————————————————————————————————	
hromoallylanida 5 967	octohydrated, 4. 302
bromoallylenide, 5. 867	properties, chemical, 4. 300
bromoarsenate, 9. 258	physical, 4. 300, 303
bromoarsenatowagnerite, 9. 258	solubility, 4 . 302
—— bromocarbide, 5 . 867	——————————————————————————————————————
—— bromoplatinate, 16. 379	tetrammino, 4. 305
—— bromostannate, 7. 456	chloroarsenate, 9. 258
cadmide, 4. 688	chloroarsenatowagnerite, 9. 258
cadmium alloys, 4. 688	chloroaurate, 3. 595
hexachloride, 4. 559	chlorochromate, 11. 398
sulphate, 4. 641	pentahydrate, 11. 398
—— cæsium bromide, 4. 315	
	chloroiridate, 15. 772
carbonate, 4. 370	chloropalladate, 15. 673
——————————————————————————————————————	··· chloropalladite, 15. 670
chromate, 11. 277	chloroplatinate, 16. 328
perorthocolumbate, 9. 870	—— dodecahydrate, 16 . 328
selenate, 10 . 844	heptahydrate, 16. 328
sulphate, 4 . 340	hexahydrate, 16. 328
thiosulphate, 10. 565	chloroplatinite, 16. 283
calcium alloys, 4. 685	chlorostannate, 7. 449
aluminatoferrite, 18. 921	chlorostannite, 7. 434
arsenate, 9 . 179	chlorovanadate, 9. 809
carbonate, 4. 371	chromate, 11. 274
ehloride, 4. 309	pentahydrate, 11. 275
cobalt arsenate, 9. 230	chromic hydroxycarbonate, 11. 473
dialuminium dihydrotriorthosili-	chromite, 11 . 199
cate, 6 . 718	chromium pentachloride, 11. 419
dihydro-orthodisilicate, 6. 420	chromous carbonate, 11. 472
dimetasilicate, 6 . 410	sulphate, 11. 435
cnnealumonoxyaluminotrisili-	cobalt alloys, 14. 532
cate, 6.816	——— borate, 5. 114
————————fluorthoarsenate, 9. 258	cobaltic aquoquinquesbenzylaminosul-
hexaborate hexabydrated, 5. 100	phate, 14 . 794
	hexanitrite, 8. 504
orthosilicate, 6 . 408	
sodium fluoaluminate, 6. 309	cobaltite, 14. 594
(tri)orthosilicate, 6 . 409	cobaltous sulphate, 14. 781
trihydrohexaluminoxyalumino-	——————————————————————————————————————
triorthosilicate, 6. 817	colloidal, 4. 256
carbide, 5 . 867	copper alloys, 4 . 668
carbonate, 4. 349	carbonate, 4. 370
action heat, 4, 352	nickel allovs, 15, 207
colloidal, 4. 351 dihydrated, 4. 354	——————————————————————————————————————
dihydrated 4 354	cobalt-iron alloys, 15, 337
hydroted 4 354	—— cupric chloride, 4. 308
hydrated, 4. 354	
———— heavy, 4. 365	cupride, 4. 669
light, 4. 364	decitamercuride, 4. 1036
—— monohydrated, 4. 354	deuterohexavanadate, 9. 773
pentadecatetritahydrated, 4. 356	enneadecahydrate, 9. 773
pentahydrated, 4. 356	—— deuterotetravanadate, 9. 773
preparation, 4. 350	—— enneahydrate, 9. 773
properties, physical, 4. 351 solubility, 4. 358	octohydrate, 9. 773
solubility, 4. 358	—— dialuminium triorthosilicate, 6. 815
tetrahydrated, 4. 356	dialuminylaluminium orthopentasili-
	cate, 6 . 809
	diamidodiphosphate, 8, 711
carbonatosulphate, 4. 360	— diamminopotassamide, 8. 260
ceric nitrate, 5. 674	
cerous nitrate, 5. 671	diborate 5, 07
chabazite, 6 . 733	diborate, 5. 97
chlorate, 2. 349	octohydrated, 5. 98 trihydrated, 5. 97
—— chloride, 4. 298; 13. 615	
ammino, 4. 305	—— diboride, 5 . 25

Magnesium diborohexahydroxide, 5. 40	Magnesium hemiheptapermanganite, 12. 278
dibromocarbide, 5. 867	-— hemimercuride, 4. 1036
dibromophenylarsine, 9. 57	— hemiplumbide, 7. 615
—— dicalcium silicate, 6 . 403	
	hemisilicide, 6 . 180, 181
dichromate, 11. 341	—— hemistannide, 7. 373
dichromium triorthosilicate, 6. 815	hemithallide, 5. 427
dihydroantimonate, 9. 455	heptachlorodibromuthite, 9. 667
—— dihydroarsenate, 9. 177	hexaborate heptahydrated, 5. 98
hexahydrate, 9 . 177	octohydrated, 5. 98
dihydroarsenatomolybdate, 9. 208	hexabromoplumbite, 7. 750
dihydrodiphosphite, 8. 916	hexachloroplumbite, 7. 731
— dihydrohypophosphate, 8. 938	
	hexadecaboratodibromide, 5. 140
dihydrophosphate, 4. 392	hexadecaboratodichloride, 5. 137
dihydrated, 4. 302	hexadecaboratodiiodide, 5. 141
dihydropyrophosphate, 4. 394	hexadecamolybdate, 11. 603
—— dihydrotetrasilicate, 6. 429	hexahydroarsenatoctodecamolybdate,
—— dihydroxybisphosphoryltrichloride, 8.	9. 211
1026	hexahydrotetrasulphate, 4. 325
dihydroxycarbonate, 4. 355	hexaiodoplumbite, 7. 778
diiododinitriloplatinite, 8. 523	hexadecallydrate, 7. 778
diiodotriarsenite, 9. 257	hexamercuride, 4. 1035
dimercuric hexaiodide, 4. 940	
	hexametaphosphate, 4. 396
heptahydrate, 4. 940	hexammine, 8 . 249
dimercuride, 4, 1035	history, 4 . 249
dimetaphosphate, 4. 395	hydride, 4 . 266
hydrated, 4. 395	hydroarsenate, 9. 176
—— dioxydisulphomolybdate, 11. 654	· hemihydrate, 9. 176
- · · dioxydisulphotungstate, 11. 861	heptahydrate, 9. 176
dioxynitrate, 4. 380	pentahydrate, 9. 176
hydrated, 4. 380	hydroarsenatovanadate, 9. 200
dioxyorthotantatate, 9. 904	- · · hydrocarbonate, 4. 360
dithionate, 10. 591	- — hydrodioxydiselenophosphate, 10. 932
dithiophosphate, 8. 1068	
—— ditritaluminide, 5. 235	hydrodisulphate, 4. 325
- ditritamercuride, 4. 1036	- hydrophosphate, enneahydrated, 4.
	390
ditritantimonide, 9, 406	heptahydrated, 4. 390
ditritathallide, 5. 427	monohydrated, 4. 390
ditungstate, 11. 810	trihydrated, 4. 390
diuranate, 12. 66	hydroselenide, 10. 776
dodecaborate octodecahydrated, 5. 99	- · · hydroselenite, 10. 826
- forrate, 13 . 935	
ferric alum, 14 . 348	hydrosulphide, 4. 320
—— hydroxysulphide, 14 . 194	hydrosulphite, 10 . 285
tetrahydrotrisulphate, 14. 348	hydrotellurate, 11. 94
· · — · tetrasulphate, 14. 348	hydrotetrasulphate, 4. 325
trihydrodisulphate, 14. 348	hydroxide, 4. 290
ferrite, 13. 914	colloidal, 4. 290
- ferroheptanitrosyltrisulphide, 8. 442	properties, physical, 4. 291
ferrous aluminium sulphate, 14. 300	hydroxycarbonate, 4. 366
carbonate, 14. 369	dihydrated, 4. 366
ferric trisulphate, 14 . 353	hydroxylamine chloride, 4. 305
metasilicate, 6. 917	—— hydroxyorthoborate, 5 . 97
orthosilicate, 6 . 908	
sulphate, 14. 297	hydroxysulphate, 4. 332
	hydroxythiocarbonate, 6. 115
	hypoborate, 5. 38
fluoaluminate, 5. 310	hypobromite, 2. 274
fluoarsenatoapatite, 9. 259	— hypochlorite, 2. 273
fluoborate, 5. 128	hypoiodite, 2. 274
fluoride, 4. 296	hypomolybdate, 11. 529
fluosilicate, 6. 953	hyponitrite, 8. 414
hexahydrated, 6 . 953	hypophosphate, 8. 937
fluostannate, 7. 424	tetrahydrate, 8. 938
fluotantalate, 9. 917	hypophosphite, 8. 885
fluotitanate, 7. 72	hyposulphite, 10: 182
hexahydrated, 7. 72	imidodiphosphate, 8. 713
fluotriorthoarsenate, 9. 259	iodate, 3. 350
fluozirconate, 7. 141	iodide, 4. 314
—— gadolinium nitrate, 5. 695	diammino, 4. 317
—— gold alloys, 4. 669	hexammino, 4. 317
— hausmannite, 12. 242	iodochloride, 4. 317
	2500emorius, r. oti

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Magnesium iodoplatinate, 16. 390	Magnesium nitrate hexahydrated, 4. 379
iron alloy, 13. 543	monohydrated, 4. 379 solubility, 4. 379
isotetrahydroborododecatungstate, 5.	
isotopes, 4 . 278	- nitride, 8 . 104
—— lanthanum nitrate, 5. 672	nitrite, 8 . 489
—— lead dihydroxymetasilicate, 6. 888	- nitritoperosmite, 15. 728
manganese calcium orthoarse-	occurrence, 4. 251
nate, 9. 222	octoborate trihydrated, 5. 99
orthosilicate, 6 . 888	octobromoaluminate, 5. 327
—— light, 4 . 259	octochloroaluminate, 5. 322
lithium alloys, 4. 666	• · · octochlorodithallate, hexahydrated, 5.
carbonate, 4. 367	447
	octochloromercuriate, 4. 861 - octodiantimonite, 9. 481
aluminium alloys, 12. 215	octoiododibismuthite, 9. 677
arsenate, 9. 222	octomolybdate, 11. 597
calcium arsenate, 9. 222	orthoarsenate, 9. 175
—— metasilicate, 6 . 898	decahydrate, 9. 176
nitrate, 12. 445	heptahydrate, 9 . 176
sodium metasilicate, 6. 916	octohydrate, 9. 176
manganite, 12. 242	orthoarsenate, 9. 126
manganous aluminium sulphate, 12.	orthoborate, 5. 96 enneahydrated, 5. 96
chloride, 12 . 368	orthocolumbate, 9. 866
dipermanganite, 12. 278	orthohexatantalate, 9. 903
hexabromide, 12. 383	orthophosphate, 4. 382
	orthosilicate, 6. 384, 420
sulphates, 12 . 422	orthosulpharsenate, 9. 321
— mercurie hexabromide, 4. 894	orthosulpharsenite, 9. 296
imidodisulphonate, 8. 658	orthogulphoantimonate, 9. 574
	orthotitanate, 7. 54 oxide, 4. 280
	colloidal, 4 . 285
mercuride, 4. 1036	hydration, rate of, 4. 288
metaborate, 5. 97	properties, chemical, 4. 286
metaindate, 5 . 398	———— hydraulic, 4 . 288
metantimonate, 9. 455	physical, 4. 283
· metaphosphate, 4. 395	solubility, 4. 289
metaplumbate, 7 . 700 metasilicate, 6 . 390, 391	oxybisphosphoryltrichloride, 8. 1026 oxybromides, 4. 314
α-, 6 . 391	oxycarbonate, 4. 364
$-\cdots$ β -, 6 . 391	oxychlorides, 4. 305
——— hydrated, 6 . 420	oxychlorovanadate, 9. 809
metasulpharsenatoxymolybdate, 9.332	oxychromite, 11. 200
metasulpharsenite, 9. 296	oxydecachromite, 11. 200
— metatetrarsenite, 9. 126	oxyoctochromite, 11, 200
— metatitanate, 7. 54	oxyorthocolumbate, 9. 866 oxypyrophosphorylchloride, 8. 1028
—— metatungstate, 11. 826 ——— octohydrate, 11. 826	oxysulphide, 4. 318
— metavanadate, 9. 773	oxytetrachromite, 11. 200
molybdate, 11. 561	—— oxytrisphosphoryltrichloride, 8. 1026
—— —— heptahydrate, 11. 561	oxytrisulphomolybdate, 11. 654
pentahydrate, 11. 561	oxytrisulphotungstate, 11. 860
— — molybdenum alloys, 11. 523	palladium alloy, 15. 648
— molybdenyl pentabromide, 11. 638	paramolybdate, 11. 586
—— monothiophosphate, 8. 1069	—— paratungstate, 11. 818 —— passivity, 4. 262, 272
neodymium nitrate, 5. 672 nickel alloys, 15. 206	pentabromoantimonite, 9. 496
——————————————————————————————————————	pentachloride, 14. 104
arsenate, 9. 231	—— pentachloroantimonite, 9. 481
————— dihydrorthosilicate, 6. 932	—— pentachlorobismuthite, 9. 667
——— metasilicate, 6 . 932	pentachloroferrate, 14. 104
orthophosphate, 15. 495	—— pentachlorovanadite, 9. 805
orthotrisilicate; 6. 932	—— penterasulphotetrarsenate, 9. 321 —— pentoxyferrite, 13. 916
——————————————————————————————————————	—— perhoxylerite, 13. 510 —— perborate, 5. 120
— nitrate, 4. 379	—— perchlorate, 2. 400
——————————————————————————————————————	percobaltite, 14. 602
enneahydrated, 4. 379	perdichromate, 11. 359

OH CHICAGO	
Magnesium periodate, 2. 414	Magnesium properties, chemical, 4. 265
permanganate, 12. 334	physical, 4. 257
—— tetrahydrate, 12. 335	pyroarsenate, 9. 177
—— permanganite, 12 . 278	pyroarsenite, 9. 126
permolybdate, 11. 608	—— pyrochloroantimonate, 9. 491
permonosulphomolybdate, 11. 653	pyrocolumbate, 9. 866
pernickelite, 15. 401	pyrophosphate, 4 . 393 trihydrated, 4 . 393
peroxide, 4. 292	pyrosulpharsenate, 9. 321
—— persulphate, 10. 479 —— pertetratungstate, 11. 836	—— pyrosulpharsenatoxymolybdate, 9. 331
perthicarbonate, 6. 131	pyrosulpharsenite, 9. 246
pharmacolite, 9. 179	pyrosulphate, 10. 447
phosphatodecatungstate, 11. 870	pyrosulphophosphate, 4. 393
phosphatohexatungstate, 11. 873	quinidine chromate, 11. 276
—— phosphide, 8 . 842	reactions of analytical interest, 4. 276
phosphite, 8 . 916	regulinum, 12. 141
	rubidium carbonate, 4. 370
plumbite 7 660	
—— plumbite, 7. 669 —— polysulphide, 4. 320	orthopertantalate, 9. 914
potassium alloys, 4. 666	perorthocolumbate, 9. 870
	phosphate, 4 . 383
calcium sulphates, 4. 344, 345	selenate, 10. 864
carbonate, 4 , 368, 369	sulphates, 4. 340
chloride, 4: 307	——— thiosulphate, 10. 545
chlorosulphate, 4. 343	ruthenate, 15 . 518
chromate, 11. 276	salts, 11. 602
	samarium nitrate, 5. 672
cobaltous sulphate, 11. 276	selenate, 10, 863
dihydrotriorthoarsenate, 9. 179	——————————————————————————————————————
————— dimetaphosphate, 4. 395	selenatosulphate, 10. 929
———— disulphatochromate, 11. 465	selenide, 10 . 775
ferrous sulphate, 14. 297	selenite, 10. 826
fluoride, 4. 297	——————————————————————————————————————
fluosilicates, 6 . 953	heptahydrate, 10. 826
henadecaborate enneahydrated,	———— hexahydrate, 10. 826
5. 99	——— monohydrate, 10. 826 ——— trihydrate, 10. 826
	selenium trioxyoctochloride, 10. 910
hydrodiorthoarsenate, 9. 179	sesquialuminide, 5. 235
	silicates complex, 6. 405
	higher, 6 , 403
pentahydrate, 9. 179	——————————————————————————————————————
	silicododecamolybdate, 6. 871
hydrophosphate, 4. 384	silicododecatungstate, 6. 879
hydrosulphate, 4. 342	silicotitanate, 7. 54
iodide, 4 . 317 manganous sulphates, 12 . 423	silver alloys, 4 . 669 nitrite, 8 . 489
—— metasilicate, 6 . 407	sodium alloys, 4. 666
molybdate, 11. 562	ammonium pyrophosphate, 4.394
nickelous sulphate, 15. 475	arsenate, 9, 178
nickelous sulphate, 15. 475 nitrite, 8. 489	
orthopertantalate, 9. 914	octohydrate, 9. 179
paratungstate, 11. 818	carbonate, 4. 367, 368
perothocolumbate, 9. 870	
persulphate, 10. 479	chromate trihydrate, 11. 276
phosphate, 4. 383, 384 selenate, 10. 864	——————————————————————————————————————
——————————————————————————————————————	fluoaluminate, 5, 309
tetrahydrate, 10. 864	fluoride, 4, 297
sodium diorthoarsenate, 9. 179	——————————————————————————————————————
sulphate, 4. 342	hydrocarbonate, 4. 367
	metasilicate, 0. 407
thiosulphate, 10. 545	octometaphosphate, 4. 397
trisilicate, 6 . 408	orthopertantalate, 9. 914
tungstate, 11. 788	paratungstate, 11. 818 perorthocolumbate, 9. 870
zinc sulphate, 4. 641 praseodymium nitrate, 5. 672	persulphate, 10. 479
preparation, 4. 253	——————————————————————————————————————
- •	

Magnesium sodium pyrophosphate, 4. 394	Magnesium thallous sulphate, 5. 467
sulphates, 4 . 335, 336, 337	thiocarbonate, 6. 127
- tetradecametaphosphate, 8. 990	thiosulphate, 10. 545
	thoridodecamolybdate, 11. 601
vanadatotungstate, 9. 787	- thorium hexanitrate, 7. 251
solubility of hydrogen, 1. 306 stannate (a-), 7. 419	titanide, 7. 20
strontium carbonate, 4. 376	triamidodiphosphate, 8. 712 triarsenatotetravanadate, 9. 201
suboxide, 4 . 280	trihemialuminide, 5. 235
sulphaluminate, 5. 332	- trihemimercuride, 4. 1036
- sulphate, 4. 321; 13. 615	trimetaphosphate, hydrated, 4. 396
a-heptahydrated, 4. 323	trimolybdate, 11. 590
- β-heptahydrated, 4. 323	trioxydisulphomolybdate, 11. 855
a-hexahydrated, 4. 323	trioxynitrate, 4. 380
—— β-hexahydrated, 4 . 323	trioxyorthoarsenite, 9. 126
and hydrogen, 1. 303	trioxysulphotungstate, 11. 861
diaquodiammine, 4. 543	— tripentitasilicide, 6. 180
dihydrated, 4. 323	trisulphide, 4. 317
- dodecahydrated, 4. 324	tritamercuride, 4. 1036
hydrates, 4. 321	triterodecavanadate, 9. 773
monohydrated, 4. 322	tritetritaaluminide, 5, 236
octohydrated, 4, 323	tritetritasilicide, 6, 181
	trithellide, 5. 427
pentatetritahydrated, 4, 322 properties, chemical, 4, 331	trithionate, 10. 609
physical, 4. 326	trithiophosphate, 8, 1067 tritungstate, 11, 811
tetra-aquodiammine, 4. 343	tungstate, 11. 787
tetrahydrated, 4, 323	heptahydrate, 11. 787
tri-aquo-triammine, 4, 343	trihydrate, 11. 787
trihydrated, 4. 329	- uranate, 12. 63
sulphatocarbonate, 4. 360	- uranium alloys, 12. 38
sulphatoselenate, 10. 929	uranyl disulphate, 12, 110
sulphide, 4. 318	orthodisilicate, 6, 883
sulphite, 10. 285	sulphate, 12. 17
hexahydrate, 10, 285	vanadates, 9. 772
trihydrate, 10. 285	vanadyltrifluoride, 9. 801
sulphosilicate, 6. 987	··· X-radiogram, 1. 642
—— sulphotellurite, 11. 113	- zinc alloys, 4. 687
- sulphotrimolybdate, 11. 652	aluminide, 5, 240
sulphotungstate, 11. 859	aluminium alloys, 5. 240
tellurate, 11. 94	iron alloy, 13, 545
telluride, 11. 50	manganous sulphate, 12. 423
tellurite, 11. 80	sulphates, 4. 640
decitaenneahydrate, 11, 80	
pontitaenneahydrate, 11. 80 tetraborate, 5. 97, 98	zirconate, 7. 136 zirconium, 7. 116
tetrachloroferrite, 14. 33	(di)magnesium diborate, 5. 97
— tetrachloromercuriate, 4. 861	hexaborate, 5. 98
tetrachloroplumbite, 7. 731	—— pentacalcium silicate, 6. 404
tetrachromite, 11. 200	potassium hydrodecaluminotriortho-
tetrahydrodisilicate, 6. 421	silicate, 6. 608
hydrosilicododecatungstate, 6. 879	thallous sulphate, 5. 467
tetrahydrotriorthosilicate, 6. 423	(tetra)magnesium copper hexaluminide, 5.
tetrahydrotriselenite, 10. 826	237
trihydrate, 10. 826	(tri)magnesium calcium silicate, 6. 404
tetrahydrotrisilicate, 6. 427	octoborate, 5. 98
tetramercuride, 4. 1035	potassium dihydroaluminotriorthosili-
tetrametaphosphate, 4. 396	cate, 6. 608
decahydrated, 4. 396	Magnesius lapis, 4. 249
tetrammonium diphosphate, 4. 385	Magneso-manganous alum, 12. 424
tetramolybdate, 11. 593	Magnetic alloys, 12. 194
tetranitritoplatinite, 8. 520	field, action on polarized light, 4. 19
	spectrum, 4. 17
tetraphosphate, 4. 394	moment, 13. 245
tetrasulphatoaluminate, 5. 354 thallium voltaite, 14. 353	properties and isomorphism, 1, 658 pyrites, 12, 530
thallous carbonate, 5. 472	rotatory power and refractive index,
chloride, 5, 441	1. 682
	separation of ores, 3. 22
selenate, 10. 871	Magnetis, 6. 428
•	-

GENERA	LINDEX
	. 12
Magnetism, 13. 244	Manganes, 4. 250
permanent, 13 . 246	Manganese, 1. 520; 4. 250; 12. 139, 140,
residual, 13 . 246	141
Magnetite, 5. 296; 12. 530; 13. 731; 15. 9	allotropes, 12. 169
—— X-radiogram, 1. 640	alloys, 12 . 200, 216, 217, 218
Magnetites titaniferous, 7. 11	alum, 5. 154, 354
smelting, 7 . 11	—— aluminium alloys, 12. 208
Magnetization intensity, 13. 245	vanadatosilicate, 6. 836
specific, 13. 245	amalgam, 12. 208
—— saturation value, 13 . 246	- amide, 8. 272
Magnetkies, 14. 136	amidosulphonate, 8, 644
Magnetoferrite, 12. 530	ammonium arsenate, 9. 221
Magnetoplumbite, 12. 530; 13. 922	dithionate, 10. 596
Magnets, Mayer's floating, 4. 164	oxytrifluoride, 12. 347
Magnium, 4. 251	sodium pyrophosphatotungstate,
Magnites, 12. 139	11. 874
Magnitudes of molecules, 1. 766	amphibole, 6 . 897
Magnochromite, 11. 125, 199, 201	analytical reactions, 12. 189
Magnoferrite, 12. 530; 13. 914	apatite, 12 . 449
Magnolia, 7. 362	aquoamminodifluoride, 12. 343
Magnolite, 4. 697; 11. 2, 94	aquohemiamminodiffuoride, 12. 343
Magnosia, 4. 250	aquopentamminodifluoride, 12. 343
Magnus' green salt, 15. 257	argentin, 12 . 234
rule, 1. 1039	arsenate, 9 . 217
Maier, M., 1. 48	
Maillechort, 15. 208, 210	colloidal, 9. 217 arsenatometasilicate, 6. 836
Maitlandite, 12. 5	
Majolica, 6. 513	- arsenitometasilicate, 6. 836
Majorana effect, 12, 693	atomic disruption, 12 . 199
	number, 12 , 199
Malachite, 3. 270 lead, 3. 274	autunite, 12 . 135
	barium metasilicate, 6. 898
lime, 3. 274	—— beryllium orthosilicate, 6 , 381
	—— bishexamethylenetetraminopersul-
properties, 3 . 272	phate, 10. 480
zinc, 4. 648	bismuth alloys, 9. 639
Malacone, 5. 530; 6. 836; 7. 100, 167, 896	nitrate, 9. 710
Malaconite, 3, 7; 6, 409	—— bismuthide, 9 . 639
Malanterite, 4. 252	boracite, 5 . 140
Maldonite, 3, 494, 531; 9, 589, 636	borotungstate, 5. 111
Malinowskite, 9. 291	brass, 4. 670
Mallardite, 12. 149, 403	bromate, 2. 359
Malleus metallorum, 4. 797	bromides, 12. 381
Malloydium, 15. 210	bromoapatite, 12 . 450
Malonic anhydride, 5. 905	- bromoarsenate, 9. 258
Maltesite, 6. 458	bromoarsenatoapatite, 9. 262
Malthacite, 6. 496	bromoarsenatowagnerite, 9, 258
Mamanite, 4. 344	bromoaurate, 3 . 607
Mameloné de Cornouailles, 5. 529	bromopalladite, 15. 677
Manaccanite, 7. 56	bromoplatinate, 16 . 379
Manandonite, 6. 451	dodecahydrate, 16. 379
Manderite, 6. 426	hexahydrate, 16. 380
Manebach twinning, 6. 671	bromostannate, 7. 456
Mangadesum, 4. 250	bromotriorthoarsenate, 9. 262
Mangan-brucite, 12. 225	—— bronze, 4. 670, 671; 12. 194
grossularite, 12. 149	—— calcium alloy, 12 . 205
vesuvianite, 12. 149	arsenate, 9 . 221
Manganaise cristallisée, 12. 238	ferrous aluminium boratosilicate,
gris, 12. 140	6. 911
Manganandalusite, 6. 458; 12. 149	——————————————————————————————————————
Manganapatite, 12. 149	222
Manganates, 12. 281	metasilicate, 6 . 897
Manganato periodic acid, 2. 416	orthodisilicate, 6 . 895
Manganblende, 12. 387	orthosilicate, 6 . 894
Manganbrucite, 12. 149	carbide, 5 . 892
Manganchlorite, 12. 149	carbonates, 12. 432
Mangandiaspore, 12. 149	chlorate, 2. 359
Mangandisthene, 6. 836	ammino-, 2. 359
Mangandolomite, 12. 149	chlorides, higher, 12. 374
Manganerz Kupferhaltiger, 12. 241	chloroantimonate, 9. 492
schwarz, 12. 231	chloroarsenate, 9. 258

	7. 0 0 0 m
Manganese chloroarsenatowagnerite, 9. 258	Manganese diiodotriarsenite, 9. 257
chloroaurate, 8 . 595	dioxide, 12. 245 action heat, 1. 359
	hydrochloric acid, 2. 27
chloroheptahydrotetrorthosilicate, 6. 895	hydrated, 12. 259
chloropalladate, 15. 673	colloidal, 12. 261
chloropalladite, 15. 670	- dioxyarsenite, 9. 132
- chlorophosphate, 12. 449	—— dipentitaphosphide, 8. 853
chloroplatinate, 16. 331	diphosphide, 8. 853
dodecahydrate, 16. 331	diplatinous hexasulphoplatinate, 16.
hexahydrate, 16. 331	396
chloroplatinite, 16. 284	disilicide, 6 . 197
chloroplumbite, 7. 731	disulphate, 12. 431
chromite, 11. 201	disulphide, 12. 398 ditelluride, 11. 63
- — chromium-nickel-iron alloys, 15 . 330	dithionate, 10. 596
cobalt alloys, 14. 543	hexahydrate, 10. 596
iron alloys, 14. 554	trihydrate, 10. 596
· molybdenum alloys, 14. 544	- ditritantimonide, 9. 411
nitrates, 14. 828	- ditritaphosphide, 8, 853
cobaltic chloropentamminofluoride,	ditritasilicide, 6. 197
12. 346	dwi-, 12, 465
cobaltiferous ore, 15. 9	earthy ochre, 12, 267
eobaltous chloride, 14, 646	eka-, 12. 465 electronic structure, 12. 199
colloidal, 12 . 167	- enneaoxydichloride, 12. 379
copper alloys, 12 . 200 nickel alloys, 15 . 255	enneazincide, 12. 206
iron alloys, 15. 313	ethylstannate, 7. 410
silicon alloys, 12. 204	- fayalite, 6 . 900
sulphide, 12 . 397	ferrate, 13. 936
corneous, 6 . 897	—— ferric calcium triarsenate. 9. 228
decahydroxydimanganidiarsenate, 9.	ferrous antimonate, 9. 461
220	antimonatosilieate, 6. 836 ehloroheptahydrotetrorthosíli-
decatungstate, 11. 832	cate, 6. 896
- deuterohexavanadate, 9, 790	
diammine, 9 . 790	metasilicate, 6 . 917
hexammine, 9. 790	metatantalate, 9. 907
dialuminium tetrahydroxydimetasili-	pentasulphide, 14. 168
cate, 6. 900	trimetasilicate, 6. 624
triorthosilicate, 6. 901	——————————————————————————————————————
diarsenite, 9 . 132	—— fluorides, 12. 342
diborate, 5 . 113	— fluosilicate, 6 . 956 —— fluostannate, 7 . 424
diboride, 5. 29	fluotianate, 7. 73
dibromide, 12 . 381	hexahydrated, 7. 73
	- — fluozirconate, 7. 142
tetrahydrate, 12. 381	garnet, 6 . 901
dicarbide, 5. 892	—— gold alloys, 12 . 205
——— dichloride, 12. 348	green, 12. 289
dihydrate, 12. 350	hemiantimonide, 9. 411
———— hexahydrate, 12. 349	hemiarsenide, 9. 69
pentahydrate, 12. 351	hemisilicide, 6. 196
tetrahydrate, 12. 350	- hemitrioxide hydrated, 12. 238
tritapentahydrate, 12. 351	- heptachloride, 12, 380
dichlorotripermanganite, 12. 357	heptachlorodibismuthite, 9. 668
——— dichromate, 11. 343 ——— difluoride, 12. 342	heptahydrotriarsenate, 9. 218
tetrahydrate, 12. 342	—— heptazincide, 12 . 206
—— dihydroarsenate, 9. 218	heptitadinitride, 8. 130
monohydrate, 9. 218	heptoxide, 12. 282
—— dihydroarsenatotrimolybdate, 9. 208	hexaboratodilodide, 5, 141
dihydrorthosilicate, 6. 894, 900	
dihydrotetrametasilicate, 6. 900	
dihydroxydisulphite, 10. 310	9. 211
dihydroxytriorthosilicate, 6. 894 diiodide enneahydrate, 12. 384	hexahydroxymanganiarsenate, 9. 221
hexahydrate, 12. 384	hexazincide, 12. 206
tetrahydrate, 12. 384	hexoxydichloride, 12. 379
—— diiododinitritoplatinite, 8. 523	—— humite, 12. 149
•	

Manganese hydroarsenate, 9. 217	Manganese nickel nitrates, 15, 493
 hydrocarbonate, 12. 438 	- nitrates, 12. 441
hydrodisulphate, 12, 411	- nitrosyl chloride, 8. 617
- hydrofluocolumbate, 9. 872	occurrence, 12 . 143
- hydroselenite, 10. 838	ochre, 12 . 238, 267
hydrosulphite, 10 . 310	- octofluozirconate, 7. 142
monohydrate, 10 . 310	octohydroxydearsenate, 9. 219
trihydrate, 10. 310	ores, 12 . 150
- hydrotetrasulphate, 12. 411	
	prismatoidal, 12. 238
- hydrotetrathionate, 10, 619	- orthoarsenate, 9. 217
hydroxide colloidal, 12. 226	
hydroxyarsenate, 9, 218	orthography 5, 112
hydroxyazide, 8. 354	orthoborate, 5, 113
hyponitrite, 8 . 417	orthosilicate, 6. 893
hypophosphate, 8. 939	dihydrated, 6 . 894
hypophosphite, 8, 889	ditritahydrated, 8 . 894
- hypovanadate, 9. 747	hydrated, 6 . 894
intermetallic compounds, 12. 200	orthosulphoantimonite, 9, 553
—— iodate, 2 . 359	- orthotitanate, 7. 56
iodides, 12 . 384	- oxide, 12 . 141
iodoplatinate, 16 . 391	red, 12 . 232
iron alloy, 13. 644	- oxyantimonates, 9. 460
aluminium alloys, 13. 667	oxychloride, 12, 357, 379
carbide, 13 . 648	- oxyde argentin, 12, 266
copper alloys, 13. 666	- carbonaté, 12, 432
	metalloïde, 12. 238
isotopes, 12 . 199	violet silicifère, 6, 768
- lead arsenite, 9. 133	oxydichloride, 12, 357
ferrous metatitanate, 7. 56	oxydihydroxide, 12. 259
orthovanadate, 9. 778	oxydisulphate, 12, 410
tetravanadate, 9. 791	exypyrophosphorylchloride, 8, 1028
	- oxyselenide, 10 . 780
- · · · magnesium alloy, 12. 206	oxysulphate, 12. 431
aluminium alloys, 12. 215	oxysulphide, 12 . 396
arsenate, 9. 222	1 1 1 1 1 1 1 0 1000
calcium arsenate, 9. 222	- oxytrisphosphoryitrichloride, 8, 1020
metasilicate, 6 . 898	palladium alloys, 15 , 650
nitrate, 12 . 445	- paramolybdates, 11. 587
sodium metasilicate, 6. 916	paratungstate, 11. 819
metaborate, 5. 113	tetratriacontahydrate, 11. 820
- metacolumbate, 9. 868	- pentaborate, 5. 113
· metasilicate, 6 . 897	pentitadinitride, 8, 130
metasulpharsenatoxymolybdate, 9.	pentitasilicide, 6. 195
332	permanganites, 12. 280
metatantalate, 9. 905	permonosulphomolybdate, 11. 654
metatetrarsenite, 9. 132	- persulphate, 10. 480
metatitanate, 7. 56	phosphatododecamolybdate, 11. 663
— metavanadate tetrahydrate, 9. 790	— phosphatoenneamolybdate, 11. 667
mica, 6 . 6 08	- phosphatohemipentamolybdate, 11.
mirrors, 12. 167	669
molybdenum alloys, 12. 217	physiological action, 12. 191
iron alloys, 13. 668	—— platinum alloys, 16. 216
nickel alloys, 15. 330	copper alloys, 16. 216
monamidodiphosphate, 8. 710	iron alloys, 16. 219
— monantimonide, 9. 411	silver alloys, 16. 216
monarsenide, 9. 69	plumbite, 7. 669
monoboride, 5 . 30	potassium arsenate, 9. 221
manaphaphida 9 859	diamminoamide, 8. 272
- monophosphide, 8, 853	dodecachloride, 12 . 379
—— monosulphide, 12 . 387	hexachloride, 12. 380
— monotelluride, 11 . 63	
monothiophosphate, 8. 1069	
monoxide, 12 . 220	nitrosyleyanide, 8. 427
—— nickel alloys, 15 . 251, 252	octofluoride, 12. 347
brasses, 15. 211	orthosulphoantimonite, 9, 553
cobalt alloy, 15. 338	oxytetrafluoride, 12. 347
iron alloys, 15 . 338	penterotetradecavanadate, 9. 791
copper alloys, 15. 252	selenatosulphate, 10. 930
aluminium alloys, 15 . 255	selenide, 10. 799
iron alloys, 15 . 330	sulphatoselenate, 10. 930
	tetrahydrodihypophosphate, 8.
	939

Marine and the state of the sta	
Manganese potassium triterodecavanadate,	Manganese tetrahydroxydimanganiarsen-
9. 790 hexadecahydrate, 9. 790	ate, 9. 220 — tetrahydroxypentasulphite, 10. 310
pentadecahydrate, 9. 790	henahydrate, 10. 310
preparation, 12. 163	octohydrate, 10. 310
properties, chemical, 12. 185	tetraiodide, 12. 386
physical, 12 . 168	tetramesosilicate, 6. 896
- · pyrites, 12. 398	—— tetranitritoplatinite, 8. 521
pyroarsenate, 9. 219	tetrapermanganite, 12. 276
— — dihydrate, 9 . 219 — pyroselenite, 10 . 838	
——————————————————————————————————————	thallium alloy, 12. 215
pyrosulpharsenate, 9. 323	thiocarbonate, 6. 128
pyrosulpharsenatoxymolybdate, 9. 331	thiophosphate, 8. 1066
— — pyrovanadate, 9 . 790	triarsenatotetravanadate, 9. 201
rouge, 6 . 768	tribromide, 12. 383
salts, catalysis by, 1. 487	trichloride, 12. 374
selenate, 10. 878	trifluoride, 12. 342, 344
selenide, 10 . 798	trioxide, 12. 281, 282
selenite, 10. 838	trioxychloride, 12. 380
dihydrate, 10. 838	trioxydichloride, 12. 379
monohydrate, 10. 838	trioxyfluoride, 12. 347
sesquiborate, 5. 113	trioxysulpharsenate, 9. 329
sesquisilicate, 6 , 898	tritadarpide, 5, 892
	tritadiarsenide, 9. 71 tritadinitride, 8. 131
silicododecatungstate, 6. 881	tritaphosphide, 8. 853
—— silicon steels, 13. 667	- tritatetrasulphate, 12, 397
——————————————————————————————————————	tritatetroxide, 12. 231, 243
silver alloys, 12 . 204	triterodecacolumbate, 9. 868
aluminium alloys, 12. 215	trizincide, 12 . 206
sodium arsenate, 9. 221	tungsten-iron alloys, 13. 668
	ultramarine, 6 , 590 uranium alloys, 12 , 218
diorthoarsenate, 9. 221	
——————————————————————————————————————	uses, 12. 194
pyrophosphatotungstate, 11. 874	vanadates, 9 . 790
solubility of hydrogen, 1. 306	vanadium-iron alloys, 13. 668
spar, 6. 896; 12. 432; 14. 359	vitriol, 12 . 403
spinel, 5 . 297	—— voltaite, 14. 352
stannate (a-), 7, 420 steels. 12 , 194, 752	—— wagnerite, 12. 449 —— zinc alloys, 12. 206
strontium metasilicate, 6. 897	arsenate. 9, 222
— sulpharsenatosulphomolybdate, 9. 323	arsenate, 9. 222 dihydroxyorthosilicate, 6. 894
sulpharsenite, 9. 301	——————————————————————————————————————
sulphates, higher, 12 . 427	—— hydrocarbonate, 12. 439 —— tetradecahydroxyarsenate, 9. 221
sulphides, 12 . 387, 397	tetradecahydroxyarsenate, 9. 221
sulphite, 1. 520; 10. 309	(di)manganese calcium aluminohydroxytri-
hemipentahydrate, 10. 309	orthosilicate, 6. 768
sulphoantimonate, 9. 575 sulphochromite, 11. 433	Manganesia, 12. 140 Manganesis, 4. 250
sulphotellurite, 11. 114	Manganhedenbergite, 12. 149, 530
sulphotungstate, 11. 859	Manganhisingerite, 6. 908
—— tellurate, 11. 97	Manganic acid, 12. 281
telluride, 11. 63	aluminium trisulphate, 12. 430
—— tellurite, 11. 82	alums, 12. 427
tetrarsenate, 9. 219	ammonium alum, 12. 429
——————————————————————————————————————	——————————————————————————————————————
	——————————————————————————————————————
	——————————————————————————————————————
tetrabromide, 12. 383	————— pentachloride, 12. 378
—— tetrachloride, 12. 374	—— pentafluoride, 12, 345
tetrafluodioxytungstate, 11. 84	perphosphate, 12. 463
tetrafluoride, 12. 342, 346	—— pyrophosphate, 12 . 462
tetrahydro-orthoborate monohydra-	
ted. 5. 112 tetrahydroxydiarsenate, 9. 219	tridecamolybdate, 11. 602
to the state of th	oracionario-y Dittere, 11, 000

Manganic ammonium tungstate, 11. 797	Manganic sodium pyrophosphate, 12. 462
anhydrous alum, 12. 429	- sulphate, 12. 428
antimonate, 9. 460	- sulphite, 10. 309
arsenate, 9. 219	tetraselenite, 10. 839
—— barium dodecamolybdate, 11. 602	thallous alum, 12. 430
pyrophosphate, 12. 463	pentachloride, 12. 579
cæsium alum, 12 . 430	pentafluoride, 12. 346
pentachloride, 12. 379	tetracosihydrate, 12. 430
tetrasulphate, 12. 450	tetrasulphate, 12. 430
tetracosihydrate, 12. 430	trihydrodiorthophosphate, 12. 461
calcium ferric permanganite, 12. 280	triselenite, 10. 839
chromium trisulphate, 12. 431	zinc pentafluoride, 12. 346
trisulphatohydrosulphate, 12.431	Manganidiorthophosphoric acid, 12. 461
cobaltous pentafluoride, 12. 346; 14.	Manganiferous iron ores, 12. 150
608	silver ores, 12. 150
dihydrotetrasulphate, 12. 429	zinc ores, 12. 151
diselenite, 10. 839	Manganige Säure, 12. 275
ferric hydrosulphate, 14. 350	Mangani-iodic acid, 2. 359
tetraphosphate, 12. 463	Manganimanganates, 12. 290
ferrite, 18. 923	Manganin, 15. 252
fluoride, 12. 342, 344	Manganite, 12. 149, 238
hydrated, 12. 344	Manganites, 12. 241
hemitrioxide, 12. 236	Manganitomanganates, 12. 290
hexoxydichloride, 12. 378	Manganivoltaite, 12. 430
hydropyrophosphate, 12. 462	Mangankies, 12. 398
metaphosphate, 12. 463	Mangano-axinite, 6. 911
hydrate, 12 . 463	Manganocalcite, 3. 622, 814; 6. 894; 12.
molybdate, 11. 572	149, 150, 433; 14. 359
- niekel pentafluoride, 12. 346; 15. 406	Manganochlorite, 6. 622
nitrate, 12. 446	Manganocolumbite, 9. 906
orthophosphate, 12. 460	—— manganotantalite, 12. 149
oxide, 12. 236	Manganodolomite, 12. 432
colloidal, 12. 239	Manganoferrite, 12. 149; 13. 651
hydrated, 12. 238	Manganohedenbergite, 6. 915
organosol, 12. 237	Mangano-idocrase, 6. 726
oxydiselenite, 10. 839	Manganolangbeinite, 12. 149, 420
periodate, 2. 416	Manganomagnetite, 12. 149
—— phosphates, 12. 460	Manganomossite, 9. 910
potassium alum, 12. 430	Manganopectolite, 6. 366; 12. 149
tetracosihydrate, 12. 430	Mangano-vesuvianite, 6. 726
dodecamolybdate, 11. 602	Mangano-wagnerite, 4. 388
henicosisulphate, 12. 431	Mangano-zeolite, 6. 901
—— — molybdate, 11. 572	Manganosic oxide, 12. 231
pentachloride, 12. 579	hydrated, 12. 234
pentafluoride, 12. 345	sulphate, 12. 428
	sulphide, 12. 397
	thallous tridecafluoride, 12. 346
trihydrate, 12. 463	Manganosiderite, 12. 149, 433; 14. 369
	Manganosite, 12. 149, 220
selenium alum, 10 . 880	Manganosphärite, 14. 369
	Manganospinel, 4. 251; 12. 279
tetraselenate, 10. 880	Manganostibiite, 9. 5, 460; 12. 149
tetrasulphate, 12. 430	Manganostibnite, 9. 343
tridecamolybdate, 11. 602	Manganotantalite, 9. 906
pyridine pentachloride, 12. 379	Manganotitanium, 7. 12, 24
pyrophosphate, 12. 461	Manganous acetylide, 5. 893
octohydrate, 12. 461	—— acid, 12. 225, 248, 274
———— tetradecahydrate, 12. 462	alum, 12. 423
- quinoline pentachloride, 12. 379	—— aluminate, 5. 297
—— rubidium alum, 12. 430	— aluminium bromide, 12. 383
	chloride, 12. 370
tetrasulphate, 12. 430	phosphate, 12. 455
tetracosihydrate, 12. 430	sulphate, 12. 423
tridecamolybdate, 11. 602	sulphide, 12. 397
silver dodecamolybdate, 11. 602	ammonium beryllium fluosulphate, 12.
pentafluoride, 12. 346	422
pyrophosphate, 12. 463	carbonate, 12. 439
sodium ammonium tridecamolybdate,	chromate, 11. 309
11. 602	cobaltous sulphate, 14. 782
pentafluoride, 12. 345	decamolybdate, 11. 598
•	****

Manganaus ammanium dibudaanhaanhata	Mangapana aphaltana ambanatas 44, 813
Manganous ammonium dihydrophosphato- hemipentamolybdate, 11. 669	Manganous cobaltous carbonates, 14. 813 ————————————————————————————————————
dimetaphosphate, 12. 458	copper disulphate, 12. 421
disulphate, 12. 414	- dihydrate, 12. 421
	monohydrate, 12. 421
dodecamolybdate, 11. 602 ferrous sulphate, 14. 301	oxysulphate, 12. 422
fluoride, 12. 344	permanganite, 12. 276
heptachloride, 12. 364	trioxydichloride, 12. 368
hexachloride, 12. 364	
hexamminotetrachloride, 12. 365	trihydrate, 12. 368
hydroxylaminochlorides, 12. 365	trioxynitrate, 12. 445
magnesium sulphates, 12. 423	cupric chloride, 12 . 368
molybdate, 11. 571	cuprous chloride, 12. 368 decametaphosphate, 12. 459
——————————————————————————————————————	decameraphosphate, 12. 459
permanganitomolybdate, 11. 573	decamminochloride, 12. 359
phosphate, 12. 452	diamminobromide, 12. 382
heptahydrate, 12. 453	diamminochloride, 12. 359
phosphatohemipentamolybdate,	diamminoiodide, 12. 386
11 . 669	diamminosulphate, 12. 412
potassium permanganitomolyb-	dihydrazinochloride, 12. 359
date, 11, 573	dihydrazinonitrate, 12. 444
- pyrophosphatomolybdate, 11.671	- dihydrazinosulphate, 12. 412
	dihydrophosphate, 12, 451
sodium pyrophosphate, 12. 457	dihydropyrophosphate, 12, 456
sulphite, 10. 311	- dihydrotetraorthophosphate, 12, 451, 452
	pentahydrate, 12. 452
dihydrate, 12. 364	dihydroxylaminochloride, 12. 359
monohydrate, 12. 364	diiodoctochloride, 12. 358
- tetramminotridecachloride, 12.	- dimetaphosphate, 12. 457
364	tetrahydrate, 12. 457
trichloride, 12 . 363	- diphenylhydrazinosulphate, 12. 414
trischromate, 11 . 309	dipyridinochloride, 12. 361
· · · · trisulphate, 12. 415	- dodecamminochloride, 12. 359
zinc sulphate, 12. 423	enneamminonitrate, 12. 444
- aquopentamminosulphate, 12. 412	ethylenediaminosulphate, 12. 414
arsenitomolybdate, 9. 131	ferric chloride, 14. 105 * hydrosulphate, 14. 350
auric octochloride, 12, 368	phosphate, 14. 411
	ferrite, 13. 923
beryllium sulphates, 12. 422	ferrous calcium metasilicate, 6. 917
bismuth nitrate, 12. 446	chlorides, 14. 35
boroheptachloride. 12. 360	· chlorophosphate, 14, 396
- · · borophosphate, 12. 451	fluophosphate, 14. 396
bromide, 12 . 381	orthosilicate, 6. 909
bromostannate, 12 , 383	phosphate, 14. 396
bromotriorthophosphate, 12. 450	
cadmium hexachloride, 12, 369	fluoride, 12 . 342
cæsium disulphate, 12. 421 tetrachloride, 12. 368	gadolinium nitrate, 12. 446
dihydrate, 12. 368	guanidine disulphate, 12, 416
selenate, 10. 879	hemitrihydroxylaminochloride, 12. 360
	- heptahydrotriorthophosphate, 12. 452
ealcium carbonate, 12. 439	- hexahydrotetrasulphate, 12. 411
chloride, 12. 368	hexahydroxysulphide, 12. 396
dialuminium boratotetrorthosili-	hexaiodoplumbite, 7. 779
cate, 6 . 911	hexametaphosphate, 12. 459
——————————————————————————————————————	hexamminobromide, 12. 382
	hexamminochloride, 12. 359 hexamminoiodide, 12. 385
carbide, 5. 893	- hexamminosulphate, 12. 412
carbonate hydrated, 12. 433	hexantinyrinoborofluoride, 12. 343
ceric nitrate, 12. 446 cerous nitrate, 12. 445	hexasodium tetrasulphate, 12. 416
chloride, 12. 348	- hydrazine disulphate, 12. 416
chlorostannate, 12. 370	pentachloride, 12. 365
chlorotriorthophosphate, 12. 449	- hydrazinodihydrosulphite, 10. 310
chromate, 11. 308	- hydrophosphate, 12. 450
chromic sulphate, 12. 424	hydrosulphate, 12. 411
cobaltite, 14. 594	hydroxide, 12. 220, 225

•	
Manganous hydroxylamine dichloride, 12.	Manganous permanganates, 12. 268, 336
365	phosphates, 12. 447
	phosphite, 8 . 919
— hypomanganite, 12 . 231	platinous trans-sulphitodiamminosul-
iodide, 12 . 384	phite, 10 . 321
lanthanum nitrate, 12. 445	potassium bischromate, 11. 309
lead chloride, 12 . 370	bromide, 12. 383
sulphide, 12. 397	carbonate, 12. 439
tetrasulphide, 12. 397	cobaltous sulphate, 14. 783
- lithium ferric phosphate, 14. 412	———— dimetaphosphate, 12. 458
phosphate, 12 . 453	disulphate, 12. 418
trichloride, 12. 366	dihydrate, 12. 418
- magnesium aluminium sulphate, 12.	hexahydrate, 12. 419
424	tetrahydrate, 12. 419
	formana anlahata 44 201
	——————————————————————————————————————
dipermanganite, 12 . 278	fluoride, 12. 343
hexabromide, 12 . 383	hexachloride, 12. 367
hexachloride, 12 . 369	hexamminotrichloride, 12. 366
sulphates, 12. 422	magnesium sulphates, 12. 423
zinc sulphate, 12 , 423	- — nickelous sulphate, 15. 477
	orretnianly hate 19 420
manganates, 12 . 268, 290	oxytrisulphate, 12 . 420
manganite, 12 . 243, 267	paratungstate, 11 . 820
mercuric bromide, 12 . 383	permanganitomolybdate, 11. 573
hexachloride, 12 . 370	phosphate, 12. 454
hexaiodide, 12. 386	phosphatohemipentamolybdate,
iodide, 12 . 386	11. 669
———— oxynitrate, 12. 445	pyrophosphate, 12. 457
——————————————————————————————————————	octohydrate, 12. 457
	- — selenate, 10. 878
trihydrate, 12. 445	hexahydrate, 10. 879
tetrachloride, 12. 370	sulphite, 10. 311
	totrochloride 19 267
metantimonate, 9. 460	tetrachloride, 12. 367
——————————————————————————————————————	tetrasulphide, 12. 397
—— heptahydrate, 9 . 460	trichloride, 12. 366
hexahydrate, 9 . 46 0	——————————————————————————————————————
	trihydrodiphosphate, 12. 454
—— metasilicate, 6. 900	tripyrophosphate, 12. 457
	trisulphate, 12. 420
	trisulphide, 12. 397
—— metatungstate, 11. 827	trisulphite, 10 . 311
molybdate, 11 . 471	zinc sulphate, 12 . 423
decahydrate, 11. 571	—— praseodymium nitrate, 12, 446
tritapentahydrate, 11. 571	pyrophosphate, 12. 456
monamminobromide, 12. 382	
	enneahydrate, 12, 456
monamminochloride, 12. 359	trihydrate, 12. 456
monamminosulphate, 12. 412	rubidium disulphate, 12. 420
neodymium nitrate, 12. 446	——————————————————————————————————————
—— nitrate, 12. 441	
enneahydrate, 12. 441	selenate 10 879
hemihydrate, 12. 441	tetrachloride, 12. 367
hexahydrate, 12. 441	——————————————————————————————————————
monohydrate, 12. 441	trisulphate, 12. 420
pentahydrate, 12. 441	samarium nitrate, 12. 446
trihydrate, 12. 441	—— sodium calcium ferrous phosphate, 12.
nitrite, 8 . 500	455
	l
orthomanganite, 12. 231	chloride, 12. 366
orthophosphate, 12. 447	———— dihydrodiphosphate, 12. 454
———— hemiheptahydrate, 12 . 448	dimetaphosphate, 12. 458
heptahydrate, 12. 447	diorthophosphate, 12. 454
——— monohydrate, 12, 447	enneadecasulphate, 12. 417
	——————————————————————————————————————
——————————————————————————————————————	
17 49 990	
oxide, 12. 220	hexachloride, 12. 367
	—— molybdate, 11 . 572
oxycarbonate, 12. 439	octometaphosphate, 12. 459
oxychromate, 11. 309	oxytrisulphate, 12. 418
oxyiodide, 12 . 385	——————————————————————————————————————
oxynitrate, 12. 444	pentapyrophosphate, 12. 457
pentahydroheptafluoride, 12. 343	pentasulphite, 10. 311
—— perchlorate, 2. 403	permanganitomolybdate, 11. 573

Manganous sodium potassium permanga-	1 Mangaphyllita & 605 600 . 19 140
	Mangophyllite, 6, 605, 609; 12, 149
nitomolybdate, 11. 573	Manheimite, 4. 643
phosphate, 12 . 454	Manna metallorum, 4. 797
pyrophosphate, 12 . 456	of St. Nicholas, 9. 42
	Mansjocite, 6. 409
tetrahydrate, 12, 456	Mantle, incandescent, 7. 213
nuronhoguhatomolyhdata 11 671	
pyrophosphatomolybdate, 11.671	— Welsbach's, 7. 218
sulphate, 12. 416	Maranite, 6 . 458
dihydrate, 12. 416	Marble, 3, 622, 814, 815
tetrahydrate, 12, 416	Carrara, 3. 815
sulphite, 10. 311	fire, 3 . 815
totrasulphate, 12 . 418	onyx, 3 . 815
dihydrate, 12. 418	
	panno di morti, 3. 815
· · · tetrasulphide, 12. 396	parian, 3. 815
· · · · · tribromide, 12 . 383	· puddingstone, 3. 815
trimetaphosphate, 12. 458	verd antique, 3. 815
- · · triphosphate, 12, 459	Marbles, dolomitic, 4, 371
trisulphide, 12, 397	Marcasite, 9. 587; 12. 530; 14. 199, 200,
trithiosulphate, 10, 555	
	202; 15. 9
stannic chloride, 12 , 370	comparison pyrite, 14 . 221
hexabromid e, 12. 383	properties, chemical, 14. 221
stannous chloride, 12 . 370	physical, 14. 218
strontium chloride, 12, 368	Marçassites rhomboïdales, 14, 136
tetrabromides, 12. 383	Marceline, 6. 897; 12. 236
sulphate, 12, 401, 416	
	Marchesita, 14. 199
——————————————————————————————————————	Marchasite aurea, 4, 401
heptahydrate, 12 . 403	Marga porcellana, 6, 472
hexahydrate, 12 . 403	Margarite, 6. 708; 12. 530
monohydrate, 12 . 402	Margarites, 1. 628
	Margarodite, 6. 606
tetrahydrate, 12. 403	Margarosanite, 6, 888; 7, 491
sulphide, 12 . 387	Margules and Duhem's vapour-pressure law,
colloidal, 12 . 392	1. 555
green, 12. 389	Marialite, 6. 762
red, 12 . 389	Marialitic acid, 6, 764
sulphomolybdate, 11. 653	Marienglas, 3. 761
tetrametaphosphate, 12. 458	Marignacite, 5. 519; 7. 3; 9. 903
docahydrate, 12 . 458	Marionite, 4. 646
tetramminosulphate, 12. 411	Mariposite, 6. 608
thallic octochloride, 12, 570	Mariupolite, 9. 839
- thallium sulphite, 10. 311	Marjatskite, 12, 149
thallous disulphate, 12. 424	Markaschite, 9. 587
hexahydrate, 12. 424	Markus's alloy, 15. 210
selenate, 10 . 879	Marmairolite, 6. 916
thiosulphate, 10 . 555	Marmatite, 4. 408; 12. 530; 14. 167
thorium nitrate, 12. 446	Marmolite, 6. 422
trihydrazinoehloride, 12. 359	Marmor metallicum, 3. 620
trimetaphosphate, 12. 458	serpentinum, 6. 420
enneahydrate, 12. 458	zeblicium, 6 . 420
henahydrate, 12 . 458	Marquashitha, 14. 199
—— tritadiamminofluoride, 12. 343	Marsh ore, 13. 886
tritungstate, 11 . 812	Marshite, 2. 17; 3. 201
- tungstate, 11. 797	Marsh's test arsenic, 9. 39
uranate, 12. 64	Martensite, 12. 822
yttrium nitrates, 12. 446	
	α-, 12. 835
—— zinc chloride, 12. 369	α'-, 12 . 838
sulphates, 12 . 423	β-, 12 . 835
sulphide, 12 . 397	γ-, 12. 841
(di)manganous calcium dialuminium, 6.	ε-, 12. 841
896	η-, 12. 841
	θ-, 12. 842
6. 896	Martensitizing, 12. 673
Manganovolaite, 12. 420	Martinite, 3. 623, 880; 4. 252; 8. 733
Manganowolframite, 11. 798	Martin's cement, 3. 776
Manganschaum, 12. 267	Martite, 12. 530
Manganspat, 12. 432	Martites, 13. 702; 788
Mangantantalite, 9. 906	Martocirite, 9. 553
Manganyl hydroarsenite, 9. 218	Masitite, 14. 359
(di)manganyl lead orthodisilicate, 6. 889	Maskelynite, 6. 694
Mangolite, 6. 897	Masonite, 12. 149
	•

Masrite, 12. 530 Masrium, 5, 504; 14, 421 Mass action, law of, 1. 933 -- active, 1. 299 --- brown, 13. 782 --- chemical, 1. 299 --- electromagnetic, 4. 160 - - factor of energy, 1. 712 --- of matter, 4. 160 --- red, 13. 782 ---- violet, 13. 782 --- yellow, 13. 782 Massicot, 7. 639 Massicottite, 7, 638 Masurium, 12, 465 --- - electronic structure, 12, 472 ---- isolation of, 12. 467 -- -- occurrence, 12. 466 --- properties, chemical, 12. 471 --- physical, 12. 469 Matches, 8. 1058; 10. 1 --- chemical, 8. 1059 chlorate, 8. 1059 lucifer, 8, 1059 --- oxymuriate, 8, 1059 - --- safety, 8, 1060 Materia celestis, 1, 60, 64 ignis, 1. 64 perlata kerkringii, 9, 420 subtilis, 1.61 Matildite, 9, 589, 691 Matlockite, 2, 15; 7, 491, 736, 737 Matricite, 6. 388 Matrix turquoise, 5, 369 Matte, 5, 24 - - copper, 3, 23 -- to blister copper, 3. 25 ---- - lead, 7. 503 Matter, 1, 688 - - annihilation, 4, 159 conservation energy and, 1, 695 ---- corpuscular hypothesis, 4. 163 creation of, 4. 159 - electronic hypothesis, 4. 163 - --- Thomson's, 4. 164 - energetic hypotheses, 1. 691 fourth state, 4. 28 law of indestructibility, 1, 101 - molecular structure, 1. 740 - - perdurability of, 1, 100 - radiant, 4. 28 - unitary theory, 4. l ---- weight of, 1. 64 Maucherite, 14, 424; 15, 5 Maufite, 15. 5 Maus' salt, 14. 341 Mausite, 14. 341 Mauzeliite, 9. 433 Mauzelite, 7. 3 Maximum entropy, law of, 1, 725 work, principle of, 1, 703 Maxite, 7. 853 Maxwell's distribution theorem, 1. 792 Mayaite, 6. 643 Mayer's equation, 1. 787 - floating magnets, 4. 16! Mazapilite, 3. 623; 9. 5, 227; 12. 530 Meadow ore, 13, 886 Measurement of entropy, 1. 722 Mechanical equivalent of heat, 1. 693

Medicine, universal, 1, 49 Medico-chemistry, 1, 50 Medium dispersion, 1. 769 Medjidite, 12. 5, 110 Meerschalumite, 6, 473 Meerschaum, 6. 420, 426 Megabar, 1, 149 Megabasite, 11. 798 Megabromite, 3, 418 Megalaise, 12. 140 Mehl zeolite, 6. 758 Meiler, 5. 748 Meionite, 6. 762 Meizonite, 6, 763 Melaconise, 3, 131 Melaconite, 3, 7, 131 Melanargyrite, 9, 540 Melanglanz prismatischer, 9, 540 Melanites, 6. 921 Melanocerite, 5, 514, 529 Melanochalcite, 6, 343 Melanochroite, 11, 125, 302, 303 Melanolite, 6, 624; 12, 530 Melanosiderite, 6. 908 Melanotecite, 6, 889 Melanotekite, 7, 491; 12, 530 Melanothallite, 2, 15 Melanovanadate, 9, 770 Melanovanadite, 9. 793 Melanteria, 3. 3 Mélantérie, 14, 243, 245 Melanterite, 14, 245; 15, 9 Melanterites, 4, 639; 12, 403, 530 Melichrysos, 7, 98 Melilite, 6, 403, 713, 752 Melinophane, 2. 2; 4. 206; 6. 380 Melinose, 11. 566 Melinum, 4. 404 Meliphane, 4, 206 Meliphanite, 4. 206 Mellephanite, 7. 896 Mellite, 5. 155 Mellitic anhydride, 5. 906 Mellonite, 7, 729 Melnikoffite, 14, 208 Melnikovite, 14. 208 Melnikowite, 12. 530; 14. 208 Melonite, 11. 2, 64; 15. 5 Melopsite, 6. 423 Melting point and solubility, 1, 585 ---- surface tension, 1. 852 Memaphyllite, 6. 423 Membrane semipermeable, 1. 539 Memilite, 6, 141 Menacanite, 7, 1, 3 Menaccanite, 7, 56, 57; 12, 530 Menacconite, 7. 56 Menakanite, 7. 56 Menakeisenstein, 7. 56 Mendeléeffite, 9, 868 : 12, 5 Mendeleeff's periodic law, 1. 255 Mondeléefite, 9. 906 Mendipite, 2, 15; 7, 491, 736, 739, 740 Mendozite, 2, 656; 5, 154, 341 Meneghinite, 7, 491; 9, 343, 546 Mengite, 5, 523; 9, 906 Monnige, 7. 491 Menstruum sine strepitu, 3. 526 Mephites, 6. 2 Mephitic air, 8, 45, 46

Mercurammonium potassium hydroxysul-	Mercuric azide, 8. 351
phonate, 8. 643	—— barium heptanitrite, 8. 495
Mercure antimonite, 9. 437	hexabromide, 4. 894
—— doux natif, 4. 798	———— hexaiodide, 4. 939
Mercurial fahlores, 4. 697	imidodisulphonate, 8. 658
Mercuriammonium chloride, 4. 862	——————————————————————————————————————
dimercuriammonium sulphate, 4.	octamminotetraiodide, 4. 940
980	
	nexanydrated, 4. 800
—— mercuric diamminonitrate, 4. 1001	——————————————————————————————————————
dihydrated, 4. 1001 hydrated, 4. 1001	
hydroxyamidonitrate, 4. 1000	
mercurihydroxysulphatoamide, 4. 977	
———— hydrated, 4. 977	pentahydrate, 4. 940
- oxidimercuriammonium sulphate, 4.	beryllium chloride, 4. 860
979	borate, 5. 100
oxydimercuriammonium nitrate, 4.	—— borotungstate, 5. 110
1000	bromate, 2. 352
oxymercuriammonium phosphate, 4.	bromide, 1. 520
1005	ammonia compounds, 4. 885
——————————————————————————————————————	basic, 4. 884
oxynitrate, 4. 1002	properties, chemical, 4. 879
oxysulphate, 4. 978	——————————————————————————————————————
dihydrated, 4. 978	bromodisulphide, 4. 963
Mercuriammonium(di), see Dimercuriam-	
monium (mono)mercuriammonium nitrate, 4. 1000	bromosulphide, 4. 789
(tetra)mercuriammonium bromide, 4. 889	—— cadmium chlorides, 4. 861
— chloride, 4 . 869	———— hexabromide, 4 . 894
Mercuric acid, 4. 779	hexamminotetraiodide, 4. 923,
allylenide, 5 . 869	941
amide, 4. 784	oxybromide, 4. 894
—— amidochromate, 11. 284	
amidonitrate, 4. 1001	tetrabromide, 4. 894
hemihydrated, 4 . 1001	tetraiodide, 4. 940
amidosulphonate, 8. 643	tetramminotetraiodide, 4. 923,
ammidochloride, 4 . 786	941
—— ammines, 4 . 786 —— amminochlorides, 4 . 845	
amminoidide, 4. 786	——————————————————————————————————————
amminoiododisulphide, 4. 963	———— dichlorodibromide, 4. 893
—— amminooxysulphite, 10. 292	— dichlorodiiodide, 4, 935
amminosulphite, 10. 292	nitrate, 4. 997
ammonium bromosulphite, 10. 296	——————————————————————————————————————
—— bromotetrachloride, 4. 882	pentabromide, 4. 893
——————————————————————————————————————	————— pentachloride, 4 . 859
dibromochloride, 4. 882	—— pentaiodide, 4 . 934
———— dibromodiiodide, 4 . 918	
dibromotrichloride, 4. 882	tetrachloride, 4. 859
—— imidodisulphonate, 8. 657 —— — nitrates, 4. 999	tetraiodide, 4. 934 tribromide, 4. 893
———— nitrates, 4. 999 ———— nitratotetrachloride, 4. 997	tribromide, 4. 893 tribromodiiodide, 4. 934
——————————————————————————————————————	trichloride, 4, 859
nentabromide, 4, 891	
pentaiodide, 4. 927	triiodide, 4. 934
—— pentathiosulphate, 10. 548	—— calcium carbonate, 4. 983
sulphatochloride, 4. 978	dodecachloride, 4. 860
—— sulphite, 10. 292, 294	octohydrated, 4. 860
tetraiodide, 4. 927	——— heptanitrite, 8. 495
——————————————————————————————————————	———— hexabromide, 4 . 894
tribromotetraiodide, 4. 917	hexachloride, 4. 860
triiodide, 4. 926	horniedide 4 029
hydrated, 4. 926	hexaiodide, 4. 938
tungstate, 11. 788	imidochlorosulp onate, 8. 658 imidosulphonate, 8. 658
antimonite, 9. 432 arsenatotrimolybdates, 9. 207	imidosurphonate, 8. 657
arsenide, 9. 67	oxynitrate, 4. 997
arsenite colloidal, 9. 127	————— tetrabromide, 4. 894
	0 ~

Mercuric calcium tetraiodide, 4, 939 — cotobytated, 4, 939 — carbide, 5, 888 — carbide, 5, 888 — carbide, 5, 888 — carbide, 5, 888 — colloidal, 4, 982 — chloramide, 4, 785, 882, 869 — chloramide, 4, 785, 882, 869 — chlorate, 2, 351 — choride, 4, 816, 819 — colloidal, 4, 816, 819 — physical, 4, 818 — properties, chemical, 4, 825 — physical, 4, 818 — chlorodeabromide, 4, 893 — chlorodisulphide, 4, 961 — chlorododeabromide, 4, 893 — chlorodisulphide, 4, 961 — chloroplatinate, 16, 329 — chlorodisulphide, 4, 961 — chloroplatinate, 16, 329 — chlorodephide, 4, 961 — chloroplatinate, 16, 329 — chlorodisulphide, 4, 961 — chloroplatinate, 16, 329 — chlorodisulphide, 4, 961 — chromium trithiocyanatodiammine, 11, 433 — cobalt aquopentamminopentachloride, 14, 661 — nitratopentamminopentachloride, 14, 661 — nitratopentamminopentachloride, 14, 661 — trans-bisethylenediaminediamminotrideachloride, 14, 659 — bromopentamminopentacidide, 14, 745 — chloropentamminopentacidide, 14, 745 — trans-bisethylenediaminediamminotride, 14, 659 — bromopentamminoctochloride, 14, 665 — chloropentamminoctochloride, 14, 665 — chloropentamminoctochloride, 14, 665 — chloropentamminoctochloride, 14, 665 — chloropentamminoctochloride, 14, 666		
carbide, 5. 868 carbonate, 4. 982 colloidal, 4. 982 chloramide, 4. 785, 882, 869 chlorate, 2. 351 chloride, 4. 816; 181 99 colloidal, 4. 816, 819 colloidal, 4. 816 colloidal, 4. 816, 819 colloidal, 4. 816 colloi	Mercuric calcium tetraiodide, 4. 939	Mercuric cobaltic dichlorobisethylene-
aminetrichloride, 14. 670 chlorate, 2. 351 chloride, 4. 816; 13. 609 colloidal, 4. 816; 18. 609 colloidal, 4. 816; 18. 609 colloidal, 4. 816, 819 hydrazine compounds, 4. 872 hydroxylamine compounds, 4. 872 preparation, 4. 816 properties, chemical, 4. 825 physical, 4. 818 chloride, 2. 284 chloroantimonite, 9. 482 chlorodeabromide, 4. 893 chlorodisulphide, 4. 961 chloroideded, 4. 866, 977 chloroideoulphide, 4. 961 chloroideoulphide, 4. 963 chloroitride, 2. 886, 977 chloroideoulphide, 4. 961 chloroident, 4. 868, 977 chloroideoulphide, 4. 961 chromate, 11. 282 choronic sulphotrithiocyanatodiammine, 11. 433 cobaltic aquochloropentamminopentachloride, 14. 661 nitratopentamminopentamonide, 14. 723 aquopentamminopentamonide, 14. 724 aquopentamminopentamonide, 14. 728 cobaltic aquochloropentamminopentachloride, 14. 661 nitratopentamminopentachloride, 14. 661 chloride, 14. 661 suppreplenediaminediamminentorideoulphate, 14. 723 carbonatopentamminopentachloride, 14. 665 chloropentamminoctorbomide, 14. 725 bromopentamminoctorbomide, 14. 726 chloropentamminoctorbomide, 14. 665 chloropentamminoctorbomide, 14. 666 chloropentamminoctorbomide, 14		
colloidal, 4, 982 chlorate, 2, 351 chloride, 4, 816, 113, 609 colloidal, 4, 816, 819 hydrazine compounds, 4, 872 preparation, 4, 816 properties, chemical, 4, 825 physical, 4, 818 chloride, 2, 284 chlorotantimonite, 9, 482 chlorotantimonite, 9, 482 chlorotidulphide, 4, 961 chloridisulphide, 4, 961 chloroidide, 4, 806, 963 chlorotidisulphide, 4, 961 chloroidide, 4, 808, 870 chloroidide, 4, 808, 870 chloroidisulphide, 4, 961 chloroiditel, 4, 866 chloromit rithiocyanatodiammine, 11, 409 chromium trithiocyanatodiammine, 11, 406 chromate, 11, 282 chromic sulphotrithiocyanatodiammine, 11, 406 chromium trithiocyanatodiammine, 11, 406 charamminopentamminoenneachloride, 14, 661 aquopentamminopentabromide, 14, 723 aquopentamminopentabromide, 14, 725 bromopentamminopentabromide, 14, 725 bromopentamminopentabromide, 14, 725 bromopentamminopentamminochoride, 14, 658 bisproylenediaminediamminopentachoride, 14, 669 dichlorotetrapyridinedeca-chloride, 14, 669 dichlorotetrapyridinedeca-chloride, 14, 729 hexamminopentachloride, 14, 729 hexamminopentachloride, 14, 729 hexamminopentacidide, 14, 729 hexamminopentacidide, 14, 729 hexamminopentacidide, 14, 721 cobaltous bromide, 14, 718 tetrachloride,		
chloratic, 2. 351 chloride, 4. 816; 13. 609 cololidal, 4. 816, 819 hydrazine compounds, 4. 872 hydroxylamine compounds, 4. 872 hydroxylamine compounds, 4. 872 properties, chemical, 4. 825 physical, 4. 818 properties, chemical, 4. 825 physical, 4. 818 chlorodeathromide, 4. 893 chlorodisulphide, 4. 963 chlorodisulphide, 4. 965 chlorodisulphide, 4. 967 chloroidesulphide, 4. 968 chloromitride, 4. 869, 870 chlorosulphide, 4. 961 chromete, 11. 282 chromete, 11. 282 chromic sulphotrithicoyanatodiammine, 11. 433 cobalt aquopentamminoenneachloride, 14. 661 nitratopentamminoenneachloride, 14. 661 nitratopentamminoethoromide, 14. 723 aquopentamminoenneabromide, 14. 726 bromopentamminoenneabromide, 14. 726 bromopentamminoenneabromide, 14. 725 bromopentamminoetobromide, 14. 726 bromopentamminoetobromide, 14. 726 bromopentamminoetobromide, 14. 726 chloropentamminoetorhoride, 14. 665 chloropentamminoetorhoride, 14. 665 chloropentamminoetoride, 14. 666 chlorominous phabetal phabetal phabetamminoetoride, 14. 667 chloropentamminoetoride, 14. 668 chlorominous phabetal phabetamminoe		
chlorate, 2. 351 chloride, 4. 816, 13. 609 colloidal, 4. 816, 819 hydrazine compounds, 4. 872 hydroxylamine compounds, 4. 872 preparation, 4. 816 properties, chemical, 4. 825 physical, 4. 818 chlorote, 2. 284 chlorote, 2. 284 chlorote, 2. 284 chlorotedisulphide, 4. 963 chloroidisulphide, 4. 961 chloroidisulphide, 4. 963 chloroidisulphide, 4. 961 chloroidisulphide, 4. 963 chloroidisulphide, 4. 966 chloropolatianse, 16. 329 chlorosulphide, 4. 966 tramate, 11. 282 chromic sulphotrithiocyanatodiam- mine, 11. 403 cobalt aquopentamminopentachloride, 14. 661 nitratopentamminopentachloride, 14. 661 nitratopentamminopentachloride, 14. 673 cobaltus bromide, 14. 718 cobaltus bromide, 14. 710 copy composition bromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 725 bromopentamminopentabromide, 14. 725 bromopentamminopentabromide, 14. 725 bromopentamminochoride, 14. 658 bisproylenediaminediamminobrehelachloride, 14. 659 bromopentamminoctorhoride, 14. 655 chloropentamminoctorhoride, 14. 665 chloropentamminoctorhoride, 14. 665 chloropentamminottoride, 14. 666 chloropentamminottor		
coloidal, 4. 816, 819 hydrazine compounds, 4. 872 hydroxylamine compounds, 4. 872 proparation, 4. 816 proporties, chemical, 4. 825 physical, 4. 818 chloroide, 2. 284 chloroantimonite, 9. 482 chlorodeabromide, 4. 893 chloroidisulphide, 4. 963 chloroidisulphide, 4. 963 chloroiditide, 4. 866, 917 chloroiodisulphide, 4. 963 chlorointiride, 4. 869, 870 chloroiltide, 4. 868 chloromitride, 4. 869, 870 chlorointiride, 4. 861 chromate, 11. 282 chromate, 11. 282 chromate, 11. 282 chromate, 11. 493 cobalt aduopentamminoenneachloride, 14. 861 nitratopentamminototrate, 14. 836 minochlorointirate, 14. 836 minochloroide, 14. 836 minochloroid		
colloidal, 4. 816, 819 hydrazine compounds, 4. 872 hydroxylamine compounds, 4. 872 proparation, 4. 816 properties, chemical, 4. 825 physical, 4. 818 chlorotetrapyridinedodeca-chloride, 14. 669 chlorotidiulphide, 4. 893 chlorotidiulphide, 4. 981 chlorotidiulphide, 4. 983 chlorotide, 14. 885 chlorotidiulphide, 4. 983 chlorotidiulphide, 4. 983 chlorotide, 14. 885 chlorotide, 14. 885 chlorotide, 14. 895 hexamminoenneabromide, 14. 720 hexamminoenneabromide, 14. 783 hexamminoepentabromide 14. 836 cobaltic aquochloropentamminoenneachloride, 14. 681 aquopentamminoenneabromide, 14. 784 aquopentamminoenneabromide, 14. 784 aquopentamminoenneabromide, 14. 785 bromopentamminoenneabromide, 14. 785 bromopentamminoetoride, 14. 689 bisproylenediaminediamminoheptachloride, 14. 689 bromopentamminoetoride, 14. 817 chlorotottampide, 4. 983 chlorotide, 14. 836 chlorotide, 14. 825 hexamminoenneabromide, 14. 783 hexamminoenneabromide, 14. 836 hexamminoenneabromide, 14. 836 hexamminoenterioride, 14. 836 hexamminoenterioride, 14. 836 hexamminoenterioride, 14. 836 hexamminoenneabromide, 14. 836 hexamminoenterioride, 14. 836 hexamminoente		
s72 - hydroxylamine compounds, 4. 872 - preparation, 4. 816 - proporties, chemical, 4. 825 - physical, 4. 818 - chloriote, 2. 284 - chloroidide, 4. 961 - chloroidide, 4. 961 - chloroidide, 4. 963 - chloroidide, 4. 961 -		
street properties, chemical, 4. 825 proparties, chemical, 4. 825 proposties, chemical, 4. 825 physical, 4. 818 chlorote, 2. 284 chlorodeabromide, 4. 893 chlorodisulphide, 4. 961 chloroicdiculphide, 4. 963 chloroidide, 4. 868, 870 chloroidide, 4. 868, 870 chloroidide, 4. 868, 870 chloroidide, 4. 961 chloroidide, 4. 961 chromate, 11. 282 chromate, 11. 282 chromate, 11. 282 chromate, 11. 483 choromate, 11. 483 chromate, 11. 484 chromate, 11. 486 chromate, 11. 486 chromate, 11. 486 chromate, 11. 486 chromate, 1		
S72		
preparation, 4. 818 propostics, chemical, 4. 825 physical, 4. 818 chlorote, 2. 284 chlorotatimonito, 9. 482 chlorotatimonito, 9. 482 chloroticolosulphide, 4. 961 chloroticolosulphide, 4. 963 chloronitride, 4. 869, 870 chloroplatinato, 16. 329 chlorosulphide, 4. 961 chromate, 11. 422 chromic sulphotrithiceyanatodiammine, 11. 409 chromium trithiceyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 mitratopentamminopentachloride, 14. 661 nitratopentamminopentachloride, 14. 661 aquopentamminopentachloride, 14. 673 cobaltic aquochloropentamminoenneachloride, 14. 794 aquopentamminopentachloride, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 725 biroticolosulphide, 14. 659 bromopentamminopentabromide, 14. 725 bromopentamminotobromoheptachloride, 14. 655 chloride, 14. 659 bromopentamminotobromoheptachloride, 14. 725 carbonatopentamminocohoride, 14. 656 chloropentamminotobromide, 14. 725 chloropentamminototochloride, 14. 665 chloropentamminototochloride, 14. 666 chloropentamminototraiodide, 14. 746 chloropyridinebisethylenediaminediamninochloride, 4. 886 diamminochloride, 4. 886 d		
properties, chemical, 4. 825 — physical, 4. 818 — chloric, 2. 284 — chlorodeabromide, 9. 482 — chlorodeabromide, 4. 893 — chlorodisulphide, 4. 961 — chloroidide, 4. 866, 870 — chlorodealphide, 4. 963 — chloroidide, 4. 869, 870 — chlorosulphide, 4. 961 — chloroidide, 4. 869, 870 — chlorosulphide, 4. 961 — chloroidide, 1. 4. 801 — chloroidide, 1. 4. 961 — chloroidide, 1. 4. 836 — nitratopentamminotenachloride, 14. 836 — proxo-decamminotenachloride, 14. 836 — proxo-decamminotenachlorid		
chlorite, 2. 284 chloroantimonite, 9. 482 chlorodisulphide, 4. 963 chloroidisulphide, 4. 961 chloroidisulphide, 4. 963 chloroidisulphide, 4. 964 chloroidisulphide, 4. 963 chloroidisulphide, 4. 963 chloroidisulphide, 4. 964 chl		1
chloride, 2. 284 chlorodecabromide, 4. 893 chlorodisulphide, 4. 961 chloroidodeulphide, 4. 963 chloroidide, 4. 806, 917 chloroidosulphide, 4. 961 chloromitride, 1. 859 chloroimitride, 1. 859 chloromitride, 1. 859 chloroimitride, 1. 850 chloroimitride, 1. 850 chloroimitride, 1. 851 cobalt aquopentamminoenneachloride, 14. 661 mitratopentamminoenneachloride, 14. 663 cobaltic aquochloropentamminoenneachloride, 14. 836 cobaltic aquochloropentamminoenneachloride, 14. 723 cobaltoide, 14. 859 cobaltic aquochloropentamminoenneachloride, 14. 723 cobaltoide, 14. 731 cobaltic aquochloropentamminoenneachloride, 14. 723 cobaltic aquochloropentamminoenneachloride, 14. 725 cobaltic aquochloropentamminoenneachloride, 14. 725 cobaltic aquochloroide, 14. 658 cobaltic aq		
chlorodisulphide, 4. 961 chloroiodide, 4. 806, 917 chloroiodide, 4. 869, 870 chloroiodide, 4. 869, 870 chloroiodide, 4. 961 chromate, 11. 282 chromate, 11. 282 chromic sulphotrithiocyanatodiammine, 11. 409 chromium trithiocyanatodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 miratopentamminopentachloride, 14. 661 miratopentamminopentachloride, 14. 661 miratopentamminopentachloride, 14. 661 miratopentamminopentachloride, 14. 673 miratopentamminotencachloride, 14. 673 miratopentamminotencachloride, 14. 725 chloropentamminopentalodide, 14. 743 mopentamminopentalodide, 14. 658 mopentamminopentachloride, 14. 658 mopentamminopentalodide, 14. 748 mopentamminopentalodide, 14. 748 mopentamminopentalodide, 14. 673 miratopentamminopentalodide, 14. 728 mopentamminopentalodide, 14. 718 mopentamminopentalodide, 14. 728 mopentamminopentalodide, 14. 728 mopentamminopentalodide, 14. 658 mopentamminopentalodide, 14. 658 mopentamminopentalodide, 14. 748 mopentamminopentalod	chlorite, 2 . 284	
chloroiodide, 4. 866, 870 chloroiodide, 4. 869, 870 chloroiodide, 4. 869, 870 chloroplatinate, 16. 329 chlorosulphide, 4. 961 chromate, 11. 282 chromic sulphorithiceyanatodiammie, 11. 409 chromium trithiceyanatodiammine, 11. 409 chromium trithiceyanatodiammine, 11. 483 cobalt aquopentamminopentachloride, 14. 681 nitratopentamminopentachloride, 14. 681 cobaltic aquochloropentamminoenneachloride, 14. 794 aquopentamminoenneabromide, 14. 794 aquopentamminopentachloride, 14. 794 aquopentamminopentachloride, 14. 783 cobaltic aquochloropentamminoenneachloride, 14. 794 aquopentamminopentachloride, 14. 794 aquopentamminopentachloride, 14. 794 chloropentamminopentachloride, 14. 745 choropentamminoctobromide, 14. 723 bromopentamminoctobromide, 14. 725 bromopentamminoctobromide, 14. 725 bromopentamminoctobromide, 14. 725 carbonatopentamminoctobromide, 14. 725 chloropentamminoctobromide, 14. 685 chloropentamminoctobromide, 14. 686 chloropentamminototraiodide, 14. 686 chloropentamminotot		
chloroiodosulphide, 4. 963 chloroiodosulphide, 4. 963 chlorosulphide, 4. 961 chromate, 11. 282 chromic sulphortihiocyanatodiammine, 11. 409 chromium trithiocyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 mitratopentamminopentachloride, 14. 661 mitratopentamminoenneachloride, 14. 673 cobaltic aquochloropentamminoenneachloride, 14. 794 aquopentamminoenneabromide, 14. 794 aquopentamminoenneabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 725 bromopentamminopentaimminontoridexachloride, 14. 659 bromopentamminocomoheptachloride, 14. 725 bromopentamminocomoheptachloride, 14. 725 chloropentamminocomoheptachloride, 14. 659 bromopentamminocomoheptachloride, 14. 659 chloropentamminocomoheptachloride, 14. 665 chloropentamminocomoheptachloride, 14. 665 chloropentamminohexaiodide, 14. 726 chloropentamminototrachloride, 14. 665 chloropentamminototrachloride, 14. 665 chloropentamminototrachloride, 14. 665 chloropentamminototrachloride, 14. 665 chloropentamminototrachloride, 14. 666 chloropentamminototrachloride, 14. 666 chloropentamminototrachloride, 14. 666 chloropentamminototrachloride, 14. 662 diamminochloride, 14. 666 diaquotetramminotitriachide, 14. 662 diamminochloride, 14. 673 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 14. 997 diamminochromate, 4. 997		
chloroiotiosulphide, 4, 963 chloronitride, 4, 869, 870 chloropatinate, 16, 329 chloromate, 11, 282 chromic sulphorithiceyanatodiammine, 11, 499 chromium trithiceyanatodiammine, 11, 433 cobalt aquopentamminopentachloride, 14, 661 nitratopentamminochlorosulphate, 14, 746 chorometamminoenneachloride, 14, 723 aquopentamminoenneabromide, 14, 723 aquopentamminoenneabromide, 14, 723 aquopentamminopentabromide, 14, 725 bromopentamminoenneabromide, 14, 725 bromopentamminoctochloride, 14, 725 carbonatopentamminoctochloride, 14, 725 chloropentamminoctochloride, 14, 725 chloropentamminoctochloride, 14, 725 chloropentamminoctochloride, 14, 726 chloropentamminoctochloride, 14, 726 chloropentamminotetrachloride, 14, 746 chloropentamminotetrachloride, 14, 746 chloropentamminotetrachloride, 14, 746 chloropentamminotetrachloride, 14, 665 chloropentamminotetrachloride, 14, 666 chlor		
chloronitride, 4. 869, 870 chloroplatinate, 18. 329 chlorosulphide, 4. 961 chromate, 11. 282 chromic sulphotrithiocyanatodiammine, 11. 409 chromium trithiocyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 nitratopentamminopentachloride, 14. 661 nitratopentamminoenneachloride, 14. 836 cobaltic aquochloropentamminoenneachloride, 14. 783 cobaltic aquopentamminoenneachloride, 14. 723 aquopentamminoenneabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 725 bispropylenediaminediamminoheptachloride, 14. 659 bromopentamminobromoheptachloride, 14. 725 bromopentamminoctochloride, 14. 725 chloropentamminoctochloride, 14. 665 chloropentamminohexaiodide, 14. 746 chloropentamminohexaiodide, 14. 746 chloropentamminohexaiodide, 14. 746 chloropentamminotetrachloride, 14. 665 chloropentamminotetrachloride, 14. 665 chloropentamminotetrachloride, 14. 666 chlorop		
chloroplatinate, 16, 329 chlorosulphide, 4, 961 chromate, 11, 282 chromic sulphotrithiocyanatodiammine, 11, 409 chromium trithiocyanatohexasulphodiammine, 11, 409 chromium trithiocyanatohexasulphodiammine, 11, 433 cobalt aquopentamminopentachloride, 14, 661 nitratopentamminopentachloride, 14, 673 cobaltic aquochloropentamminoenneachloride, 14, 836 cobaltic aquochloropentamminoenneachloride, 14, 661 aquopentamminochlorosulphate, 14, 794 aquopentamminoenneabromide, 14, 794 aquopentamminopentabromide, 14, 723 aquopentamminopentabromide, 14, 745 trisethylenediaminediammin notridecachloride, 14, 685 bispropylenediaminediammin-heptachloride, 14, 659 bromopentamminotobromoheptachloride, 14, 725 bromopentamminotobromoheptachloride, 14, 725 carbonatopentamminotobromoheptachloride, 14, 746 chloropentamminototochloride, 14, 665 chloropentamminotetrachloride, 14, 746 chloropyridinebisethylenediaminebromide, 14, 746 chloropyridinebisethylenediaminebromide, 14, 622 diamminotimotynitrate, 4, 997 diamminonynitrate, 4, 999 diamminonynitrate, 4, 997 diamminonynitrate, 4, 9		
chromate, 11, 282 chromic sulphotrithiocyanatodiammine, 11, 499 chromium trithiocyanatohexasulphodiammine, 11, 493 cobalt aquopentamminopentachloride, 14, 661 nitratopentamminoenneachloride, 14, 661 aquopentamminochlorosulphate, 14, 794 aquopentamminoenneabromide, 14, 723 aquopentamminopentabromide, 14, 723 aquopentamminopentabromide, 14, 723 aquopentamminopentabromide, 14, 723 aquopentamminopentabromide, 14, 723 bisproylenediaminediamminoheridecachloride, 14, 659 bromopentamminobromoheptachloride, 14, 725 bromopentamminotobromoheptachloride, 14, 725 carbonatopentamminotobromoheptachloride, 14, 746 chloropentamminototroide, 14, 665 chloropentamminotetraiodide, 14, 746 chloroportidinebisethylenediaminebromide, 14, 766 diaquotetramminochloride, 14, 662 diaguotetramminochloride, 14, 663 diaguotet		
chromic sulphotrithiocyanatodiammine, 11. 409 chromium trithiocyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 nitratopentamminoenneachloride, 14. 661 chloride, 14. 661 aquopentamminoenneabromide, 14. 794 aquopentamminoenneabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentaiodide, 14. 745 trans-bisethylenediaminediamminotrideeachloride, 14. 659 bispropylenediaminediamminotrideeachloride, 14. 659 bromopentamminobromoheptachloride, 14. 725 bromopentamminotobromide, 14. 725 carbonatopentamminotochloride, 14. 725 carbonatopentamminotochloride, 14. 725 chloropentamminotochloride, 14. 665 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropyridinebisethylenediamineoliporide, 14. 662 diaquotetramminobromide, 14. 662 diaguotetramminochloride, 14. 666 diaquotetramminochloride, 14. 666 diaquotetramminochloride, 14. 662 dibromobisethylenediaminebromide, 14. 886 diamminochloride, 4. 977 diamminocynitrate, 4. 997 diamminomonoxysulphate, 4. 977 diamminocynitrate, 4. 977 diamminomonoxysulphate, 4. 977 diamminomium dinitratodichloride, 4. 986 diamminodide, 4. 936		
mine, 11. 409 chromium trithiocyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 461		
chromium trithiocyanatohexasulphodiammine, 11. 433 cobalt aquopentamminopentachloride, 14. 661 mitratopentamminoenneachloride, 14. 836 cobaltic aquochloropentamminoenneachloride, 14. 836 cobaltic aquochloropentamminoenneachloride, 14. 861 aquopentamminochlorosulphate, 14. 794 aquopentamminoenneabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentaiodide, 14. 723 aquopentamminopentaiodide, 14. 738 trans-bisethylenediaminediamminotherachloride, 14. 658 bispropylenediaminediammino-heptachloride, 14. 659 bromopentamminobromoheptachloride, 14. 725 bromopentamminotobromide, 14. 725 bromopentamminototochloride, 14. 725 carbonatopentamminototochloride, 14. 725 chloropentamminototochloride, 14. 665 chloropentamminotetraiodide, 14. 746 chloropentamminotet		
- cobal ta aquopentamminopentachloride, 14. 661 - nitratopentamminoenneachloride, 14. 836 - cobaltic aquochloropentamminoenneachloride, 14. 661 - aquopentamminochlorosulphate, 14. 794 - aquopentamminoenneabromide, 14. 723 - aquopentamminopentabromide, 14. 723 - aquopentamminopentaloidide, 14. 745 - trans-bisethylenediaminediamminothecachloride, 14. 658 - bispropylenediaminediamminoheptachloride, 14. 725 - bromopentamminotromoheptachloride, 14. 725 - bromopentamminotobromide, 14. 725 - bromopentamminotobromide, 14. 725 - bromopentamminotobromide, 14. 725 - bromopentamminotobromide, 14. 725 - carbonatopentamminotochloride, 14. 725 - chloropentamminototochloride, 14. 665 - chloropentamminototochloride, 14. 746 - chlorop		
- cobalt aquopentamminopentachloride, 14. 661 - cobaltic aquochloropentamminoenneachloride, 14. 861 - cobaltic aquopentamminoenneachloride, 14. 661 - aquopentamminoenneabromide, 14. 724 - aquopentamminopentabromide, 14. 723 - aquopentamminopentabromide, 14. 723 - aquopentamminopentaiodide, 14. 745 - trans-bisethylenediaminediamminoheptachloride, 14. 659 - bispropylenediaminediamminoheptachloride, 14. 725 - bromopentamminobromoheptachloride, 14. 725 - bromopentamminoctobromide, 14. 725 - carbonatopentamminoctochloride, 14. 725 - chloropentamminotexiodide, 14. 665 - chloropentamminotexiodide, 14. 665 - chloropentamminotexiodide, 14. 665 - chloropentamminotexiodide, 14. 746 - chloropentamminotetraiodide, 14. 746 -		
14. 661 — nitratopentamminoenneachloride, 14. 836 — cobaltic aquochloropentamminoenneachloride, 14. 661 — aquopentamminochlorosulphate, 14. 794 — aquopentamminoenneabromide, 14. 723 — aquopentamminopentabromide, 14. 723 — aquopentamminopentabromide, 14. 723 — aquopentamminopentalodide, 14. 745 — trans-bisethylenediaminediamminorhidecachloride, 14. 658 — bispropylenediaminediamminorheptachloride, 14. 658 — bispropylenediamineotobromide, 14. 725 — bromopentamminobromoheptachloride, 14. 725 — bromopentamminoctobromide, 14. 725 — carbonatopentamminoctochloride, 14. 665 — chloropentamminoctochloride, 14. 665 — chloropentamminotetraiodide, 14. 665 — chloropentamminotetraiodide, 14. 746 — chloropentamminotetraiodide,		
cobaltic aquochloropentamminoennea- chloride, 14. 661 aquopentamminochlorosulphate, 14. 793 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentaiodide, 14. 745 bispropylenediaminediamminotheloride, 14. 658 bromopentamminotobromide, 14. 725 bromopentamminoctochloride, 14. 725 carbonatopentamminoctochloride, 14. 665 chloropentamminotetrachloride, 14. 665 chloropentamminotetraiodide, 14. 746 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 4. 977 diamminochromate, 4		cobaltous bromide, 14. 718
- cobaltic aquochloropentamminoennea- chloride, 14. 665 - aquopentamminochlorosulphate, 14. 794 - aquopentamminoenneabromide, 14. 723 - aquopentamminopentabromide, 14. 723 - aquopentamminopentaiodide, 14. 745 - aquopentamminopentaiodide, 14. 745 - bispropylenediaminediammin- notridecachloride, 14. 658 - bispropylenediaminediammino- heptachloride, 14. 659 - bromopentamminobromohepta- chloride, 14. 725 - carbonatopentamminoctochloride, 14. 725 - carbonatopentamminoctochloride, 14. 765 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 766 - chloropentamminotetrachloride, 14. 767 - chloropyridinebisethylenedi- aminechloride, 14. 666 - diaquotetramminochloride, 14. 766 - diaminotetrachloride, 14. 766		
chloride, 14. 661 aquopentamminochlorosulphate, 14. 794 aquopentamminoenneabromide, 14. 723 aquopentamminopentabromide, 14. 723 aquopentamminopentabromide, 14. 725 bispropylenediaminediamminoheptachloride, 14. 659 bromopentamminotoromoheptachloride, 14. 725 bromopentamminototohloride, 14. 725 carbonatopentamminototohloride, 14. 665 chloropentamminotetraiodide, 14. 817 chloropentamminotetraiodide, 14. 665 chloropentamminotetraiodide, 14. 666 diaquotetramminochloride,		
- aquopentamminochlorosulphate, 14. 794 - aquopentamminoenneabromide, 14. 723 - aquopentamminopentabromide, 14. 723 - aquopentamminopentabromide, 14. 725 - bispropylenediaminediamminoheride, 14. 725 - bromopentamminobromoheptachloride, 14. 725 - bromopentamminoctobromide, 14. 725 - bromopentamminoctobromide, 14. 725 - carbonatopentamminoiodide, 14. 817 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 665 - chlorope		
- aquopentamminoenneabromide, 14. 723 - aquopentamminopentabromide, 14. 723 - aquopentamminopentaiodide, 14. 745 - aquopentamminopentaiodide, 14. 745 - tetramminotetrabromide, 4. 936 - tetramminotetrabromide, 4. 936 - tetramminotetrabromide, 4. 936 - tetramminotetrabromide, 4. 936 - tetramminotetraiodide, 4. 936 - tetramminotetraiodide, 4. 936 - tetramminotetraiodide, 4. 936 - cuprous diamminotetraiodide, 4. 936 - hexaiodide, 4. 936 - hexainminohexaiodide, 4. 936 - diamminopentaiodide, 4. 936 - diam		
- aquopentamminopentaloromide, 14. 723 - aquopentamminopentalodide, 14. 745 - trans-bisethylenediaminediamminotridecachloride, 14. 658 - bispropylenediaminediamminoheptaloride, 14. 725 - bromopentamminoctobromide, 14. 725 - bromopentamminoctochloride, 14. 725 - carbonatopentamminoctochloride, 14. 665 - chloropentamminotexaiodide, 14. 746 - chloropentamminotetraiodide, 14. 746 - chloropentamminotetraiodide	aquopentamminoenneabromide,	
14. 723 aquopentamminopentaiodide, 14. 745 trans-bisethylenediaminediamminotridecachloride, 14. 658 bispropylenediaminediamminoheptachloride, 14. 659 bromopentamminotromoheptachloride, 14. 725 bromopentamminoteobromide, 14. 725 bromopentamminoteobromide, 14. 725 bromopentamminoteobromide, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoteothloride, 14. 665 chloropentamminotetraiodide, 14. 746 chloropentamminotetraiodide, 14. 746 chloropentamminotetraiodide, 14. 746 chloropentamminotetraiodide, 14. 746 diamminochromate, 11. 282 diamminochromate, 14. 999 diamminosuplate, 4. 977 diamminosuplate, 4. 936 diamminosuplate, 4. 936 because detramminotetraiodide, 4. 936 because detramminotetrai		
- aquopentamminopentaiodide, 14. 745 - bispropylenediaminediamminoheptachloride, 14. 659 - bromopentamminobromoheptachloride, 14. 725 - bromopentamminoctochloride, 14. 725 - bromopentamminoctochloride, 14. 725 - carbonatopentamminoiodide, 14. 817 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 666 - diaquotetramminochloride, 14. 666 - diaquotetramminochloride, 14. 666 - dibromobisethylenediaminebro- diarmsinoxynitrate, 4. 1001 - diarrsenatoctodecatungstate, 9. 214		
- tetramminotetraiodide, 4. 936 - trans-bisethylenediaminediamminotridecachloride, 14. 658 - bispropylenediaminediamminoheptachloride, 14. 659 - bromopentamminotetobromide, 14. 725 - bromopentamminoctobromide, 14. 725 - bromopentamminoctochloride, 14. 725 - carbonatopentamminoidide, 14. 817 - chloropentamminotetochloride, 14. 665 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetraiodide, 14. 665 - chloropentamminotetraiodide, 14. 666 - diaquotetramminochloride, 14. 666 - diaquotetramminochloride, 14. 666 - diaquotetramminochloride, 14. 666 - diapuotetramminochloride, 14. 666 - diapuotetramminoctochloride, 14. 666 - diapuotetramminochloride, 14. 666 - d		
- trans-bisethylenediaminediamminotridecachloride, 14. 658 - bispropylenediaminediamminoheptachloride, 14. 659 - bromopentamminotromoheptachloride, 14. 725 - bromopentamminoctobromide, 14. 725 - bromopentamminoctochloride, 14. 725 - carbonatopentamminoidide, 14. 817 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 665 - diamminomirrate, 4. 997 - diamminomirrate, 4. 997 - diamminomirrate, 4. 997 - diamminosulphate, 4. 977 - diamminosulphate, 4. 936 - tetraiodide, 4. 936 - diamminosulphate, 8. 711 - diamminochromate, 11. 282 - diamminochromate, 11. 282 - diamminominosulphate, 4. 977 - diamminosulphate, 4. 977 - di		
notridecachloride, 14. 658 bispropylenediaminediammino- heptachloride, 14. 659 bromopentamminobromohepta- chloride, 14. 725 bromopentamminoctobromide, 14. 725 bromopentamminoctochloride, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoctochloride, 14. 665 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 11. 282 diamminochromate, 4. 977 diamminomomoxysulphate, 4. 977 diamminomitrate, 4. 999 diamminosulphate, 4. 977 diamminosulphate, 4. 936 diamminosulphate, 4. 977 diamminosulphate		
heptachloride, 14. 659 bromopentamminobromoheptachloride, 14. 725 bromopentamminoctobromide, 14. 725 bromopentamminoctochloride, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoctochloride, 14. 665 chloropentamminohexaiodide, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 diamminominominominomice, 14. 888 diamminoidide, 4. 936 chloropentamminotetrachloride, 14. 746 diamminominominomice, 4. 786, 840 diamminoonimeabromoamide, 4. 888 diamminoidide, 4. 922 diamminomoxysulphate, 4. 977 diamminosulphate, 4. 977 diamminoxynitrate, 4. 1001	notridecachloride, 14. 658	
bromopentamminobromohepta- chloride, 14. 725 bromopentamminoctobromide, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoctochloride, 14. 665 chloropentamminotochloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 diamminodioxysulphate, 4. 977 diamminoonidide, 4. 986 diamminochloride, 4. 977 diamminomonoxysulphate, 4. 977 diamminomonoxysulphate, 4. 977 diamminosulphate, 4. 977 diamminosulpha		
chloride, 14. 725 bromopentamminoctobromide, 14. 725 bromopentamminoctochloride, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoctochloride, 14. 665 chloropentamminotetrachloride, 14. 746 diamminomirrate, 4. 997 diamminomirrate, 4. 997 diamminomirrate, 4. 997 diamminosulphate, 4. 977 diamminosulphate, 4. 935 diamminosulphate, 4. 936 diamminosulphate, 4. 977 diamminosulphate, 4.		
- bromopentamminoctobromide, 14. 725 - bromopentamminoctochloride, 14. 725 - carbonatopentamminoidide, 14. 817 - chloropentamminoctochloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - chloropentamminotetrachloride, 14. 746 - diamminominominominominominominominominomin		
14. 725 bromopentamminoctochloride, 14. 725 carbonatopentamminoidide, 14. 817 chloropentamminoctochloride, 14. 665 chloropentamminohexaiodide, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 chloropentamminotetrachloride, 14. 746 diamminominominominominominominominominomin		
- bromopentamminoctochloride, 14. 725 - carbonatopentamminoiodide, 14. 817 - chloropentamminotochloride, 14. 665 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetrachloride, 14. 666 - diaquotetramminochloride, 14. 666 - diaquotetramminochloride, 662 - dibromobisethylenediaminebro diabromobisethylenediaminebro diarsenatoctodecatungstate, 9. 214		tetramminopentaiodide, 4. 936
		·· triamminopentaiodide, 4. 936
sl7 chloropentamminoctochloride, 14. 665 chloropentamminohexaiodide, 14. 746 chloropentamminotetrachloride, 14. 665 chloropentamminotetrachloride, 14. 665 chloropentamminotetraiodide, 14. 746 chloropentamminotetraiodide, 14. 746 chloropyridinebisethylenediaminebrohloride, 14. 666 diaquotetramminochloride, 14. 666 diaquotetramminochloride, 14. 662 diamminosymitrate, 4. 1001 diamminoxymitrate, 4. 1001 diamminosymitrate, 4. 1001	== :::	
14. 665 — chloropentamminohexaiodide, 14. 746 — chloropentamminotetrachloride, 14. 665 — chloropentamminotetraiodide, 14. 746 — chloropentamminotetraiodide, 14. 746 — chloropyridinebisethylenediamineehoride, 14. 666 — diaquotetramminochloride, 14. 666 — diaquotetramminochloride, 14. 662 — dibromobisethylenediaminebro- diamminochromate, 11. 282 — diamminochromamide, 4. 977 — diamminochromate, 11. 282 — diamminoch		diamminopromide, 4, 580
- chloropentamminohexaiodide, 14. 746 - chloropentamminotetrachloride, 14. 665 - chloropentamminotetraiodide, 14. 746 - chloropentamminotetraiodide, 14. 746 - chloropyridinebisethylenediaminebrohoride, 14. 666 - diaquotetramminochloride, 14. 666 - diaquotetramminochloride, 14. 662 - dibromobisethylenediaminebro- diarsenatoctodecatungstate, 9. 214		
14. 746 — chloropentamminotetrachloride, 14. 665 — chloropentamminotetraiodide, 14. 746 — chloropyridinebisethylenediaminebloride, 14. 666 — diaquotetramminochloride, 14. 666 — diaquotetramminochloride, 14. 662 — dibromobisethylenediaminebro- diamminoenneabromoamide, 4. 888 — diamminoidide, 4. 977 — diamminosulphate, 4. 977 — monohydrated, 4. 977 — diamminosulphate, 4		
14. 665		
	chloropentamminotetrachloride,	diamminoiodide, 4. 922
14. 746 — chloropyridinebisethylenediaminebisethylenediaminebisethylenediaminebisethylenediaminebisethylenediaminebro- — diamminosulphate, 4. 977 — monohydrated, 4. 977 — diamminosulphate, 4. 977		
- — chloropyridinebisethylenediamineboro- chloropyridinebisethylenediaminebro- monohydrated, 4. 977 - — monohydrated, 4. 977 - — diamminoxynitrate, 4. 1001 - diamminoxynitrate, 4. 1001 - diamminoxynitrated, 4. 977 - — diamminoxynitrate, 4. 1001 - diamminoxynitrated, 4. 977 - — diamminoxynitrate, 4. 1001 - diamminoxynitrated, 4. 977 - — diamminoxynitrated, 9. 917		
aminechloride, 14. 666		
662		
	662	
mide, 14. 730 diarsenite, 9. 128		
	mide, 14 . 730	—— diarsenite, y. 128

Mercuric dibromoamide, 4. 888	Mercuric hemithallide, 5. 428
dibromoiodide, 4. 915	—— henapermanganite, 12. 279
dichloratosulphide, 4. 964	hexachlorodioxyhexasulphide, 4. 963
—— dichloroacetylene, 5. 869	hexacyanotrichlorocerate, 5. 640
	hexacyanotrichlorolanthanate, 5. 642
dichlorodisulphide, 4. 963	hexadecachlorocerate, 5. 640
dichloroiodide, 4. 915	hexadecachlorolanthanate, 5. 642
—— dichromate, 11. 342	hexahydroarsenatoctodecamolybdate,
—— didymium chloride, 5. 643	9. 211
chlorocyanide, 5. 643	hexaiodide, 4. 914
difluoroamide, 4. 796	hexaiodoiodatohexoxydodecasulphate,
—— dihydrazine hydrochloride, 4. 874	4. 976
——————————————————————————————————————	
	horografic 14 646
dihydrobromosulphate, 4, 975	hexoxytetrachloride, 14. 646
dihydrochlorosulphate, 4. 975	hydrazine bromide, 4. 881
dihydropentaselenite, 10. 828	
dihydroxyhypochloroamide, 4. 871	hydrochloride, 4. 874
dihydroxylamine chloride, 4. 873	iodide, 4. 915
sulphate, 4. 978	sulphate, 4. 978
dihydroxylaminochloride, 4. 847	trichloride, 4. 852
dihydroxytetrabromoplatinate, 16.381	triiodide, 4 . 927
dihydroxytetraiodoplatinate, 16. 391	hydrated, 4. 927
—— diiododinitritoplatinite, 8. 523	hydrazinochloride, 4. 847
diiododisulphide, 4. 963	hydroazidochloride, 4. 874
- — diiodotrioxyhexasulphate, 4. 976	hydrochloride, 4. 807
dimercuriammonium hydroxyamido-	—— hydrochlorosulphate, 4, 975
nitrate, 4. 1002	hydrofluocolumbate, 9. 872
———— tetroxynitrate, 4. 1001	hydroimidodioxysulphonate, 8. 656
dinitratodisulphide, 4. 964	hydroselenite, 10. 823
dioxide, 4. 781	hydrosulphite, 4. 829; 10. 292
—— dioxychromate, 11. 283	hydroxide, 4 . 780
- dioxydiamidochromate, 8. 266	hydroxyamidocarbonate, 4. 982
— dioxyhexahydrobromosulphate, 4. 975	hydroxyamidonitrate, 4. 1000
dioxyhexahydrochlorosulphate, 4. 975	
· · · · dioxynitrate, 4. 994	
	hydroxyamidophosphate, 4. 1005
monohydrated, 4, 994	
dioxyselenate, 10. 868	hydroxybromoamide, 4. 888
dioxysulphate, 4, 972	
hemihydrated, 4. 972	—— hydroxycarbide, 5 . 869
—— dipotassium imidodisulphonate, 8. 658	hydroxychloroamide, 4. 867, 869
—— diselenodibromide, 10. 914	— hydroxydichloroamide, 4. 871
—— diselenodichloride, 10. 914	hydroxyiodoamine, 4. 924
diselenodifluoride, 10. 914	hydroxyimidochromate, 11. 284
diselenodiiodide, 10. 914	hydroxyimidoiodide, 4. 789
——— disodium imidodioxysulphonate, 8.657	—— hydroxylamine hydrochloride, 4. 873
imidodisulphonate, 8. 657	
imidoxysulphonate, 8. 657	trichloride, 4. 852
disulphatosulphide, 4. 974	hydroxynitrite, 8. 494
——————————————————————————————————————	hydroxysulphatoamide, 4. 979
——————————————————————————————————————	hyponitrite, 8 . 415
ditritantimonide, 9. 407	imide, 4. 784
ditungstate, 11. 810	imidohydroxychloroamide, 4. 867
dodecamminochloride, 4. 847	- — imidosulphonate, 8. 656
—— dotritaamminoxide, 4. 777	iodate, 2. 352
enneaselenite, 10. 828	iodide, 1. 520; 4. 901
ethylamidochloride, 4. 787	ammines, 4. 921
ethyldiamminochloride, 4. 786	———— amminobasic salts, 4. 921
— ferrie bromide, 14. 121	aquoamminobasic salts, 4. 921
ferrous hexaiodide, 14. 133	preparation, 4. 901
——————————————————————————————————————	properties, chemical, 4. 911
——————————————————————————————————————	
fluobromide, 4. 796	physical, 4. 903
fluochloride, 4. 796	red, 4. 904 yellow, 4. 904
	yellow, 4. 904
fluoiodide, 4. 916	iodoamide, 4. 923
—— fluoride, 4. 794	iododioxytetrasulphate, 4. 975
——————————————————————————————————————	iododisulphide, 4. 963
—— fluoroamide, 4. 796	—— iodonitride, 4. 789
fluosilicate, 6. 954	iodosulphate, 4. 975 iodosulphide, 4. 961, 963
hexahydrated, 6. 954	iodosulphide, 4. 961, 963
trihydrated, 6 . 954	iodotetrasulphate, 4. 975

Mercuric iodotrisulphate, 4. 975	Mercuric nitrosyl chloride, 8. 617
iodoxydisulphate, 4. 976 lead bromide, 4. 894	octobromoaluminate, 5. 327
lead bromide, 4 . 894	orthoarsenate, 9. 184
—— lithium bromodichloride, 4. 892	colloidal, 9. 184
	orthoarsenite, 9. 127
	orthohexatantalate, 9. 904
tetrachloride, 4. 852	orthosulpharsenate, 9. 321
tetraiodide, 4. 927	orthosulphoantimonate, 9. 575
	orthotellurate, 11. 95
——————————————————————————————————————	ormiomete 45 799
tribromide 4 801	osmiamate, 15. 728
	oxide, 4. 771
	action heat, 1. 347
mamarium hanabamida 4 004	colloidal, 4. 772
magnesium hexabromide, 4. 894	
imidodisulphonate, 8. 658 octochloride, 4. 861	properties, chemical, 4. 775
octochioride, 4. 801	——————————————————————————————————————
tetrabromide, 4. 894	red, 4. 773
tetrachloride, 4. 861	yellow, 4 . 773
	oxvamidoarsenate. 9. 184
enneahydrate, 4 . 940	oxyamidophosphate, 4. 1005
manyanous promide, 12, 555	oxyamidosulphonate, 8. 643
——— hexachloride, 12. 370	oxybromides, 4 . 884
——————————————————————————————————————	oxybromoamide, 4. 888
iodide, 12. 386	——————————————————————————————————————
oxynitrate, 12, 445	oxychlorides, 4. 839
——————————————————————————————————————	oxychloroamide, 4. 867
	oxychloroarsenate, 9. 263
trihydrate, 12, 445	oxydimercuriammonium oxyquadri-
tetrachloride, 12. 370	chromate, 11. 284
— mercuriammonium diamminonitrate,	oxydiselenide, 10. 780
4. 1001	
	oxydisulphotrisulphate, 4. 974
dihydrated, 4. 1001 hydrated, 4. 1001	tetrahydrated, 4. 974
——————————————————————————————————————	oxyfluoride, 4. 795
	oxyhydroxyamidonitrate, 4. 1001
mercuriimidonitrite, 8. 495	oxyhydroxychloroamide, 4. 868
hemihydrate, 8. 495	oxyiodoaluminate, 5. 329
monohydrate, 8. 495	oxyiodotrisulphate, 4. 975
metantimonate, 9. 456	oxymercuriammonium phosphate, 4.
pentahydrate, 9. 456	1005
metasulpharsenite, 9. 297	
—— metasulphotetrantimonite, 9. 543	
—— metatungstate, 11. 826	oxysulphatosulphides, 4. 973
metavanadate, 9. 774	oxysulphite, 10. 294
molybdate, 11. 563	oxysulphosulphate, 4, 974
—— monamminochloride, 4. 845	
	oxytetrasulphite, 10. 296
monamminoiodide, 4. 922	oxytetrasulphite, 10. 296
	 oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4.
monomercuriammonium hydroxyami-	
—— monomercuriammonium hydroxyami- donitrate, 4. 1000	
— monomercuriammonium hydroxyamidonitrate, 4. 1000 — monoxydisulphate, 4. 973 — monoxysulphate, 4. 973	
— monomercuriammonium hydroxyamidonitrate, 4. 1000 — monoxydisulphate, 4. 973 — monoxysulphate, 4. 973	
monomercuriammonium hydroxyamidonitrate, 4. 1000 monoxydisulphate, 4. 973 monoxysulphate, 4. 973 monoxytrisulphate, 4. 973	
monomercuriammonium hydroxyamidonitrate, 4. 1000 monoxydisulphate, 4. 973 monoxysulphate, 4. 973 monoxytrisulphate, 4. 973 nickel amminoiodides, 15. 433	- oxytetrasulphite, 10. 296 - oxytrimercuriammonium nitrate, 4. 1001 - oxytriselenite, 10. 828 - pentachloropyridinoiridate, 15. 768 - pentachloropyridinoperiridite, 15. 766 - pentahydroxychloroplatinate, 16. 333 - pentatungstate, 11. 829
monomercuriammonium hydroxyamidonitrate, 4. 1000 monoxydisulphate, 4. 973 monoxysulphate, 4. 973 monoxytrisulphate, 4. 973 nickel amminoiodides, 15. 433 monoxydisulphate, 4. 973	- oxytetrasulphite, 10. 296 - oxytrimercuriammonium nitrate, 4. 1001 - oxytriselenite, 10. 828 - pentachloropyridinoiridate, 15. 768 - pentachloropyridinoperiridite, 15. 766 - pentahydroxychloroplatinate, 16. 333 - pentatungstate, 11. 829 - pentoxytrihyponitrite, 8. 416
monomercuriammonium hydroxyamidonitrate, 4. 1000 monoxydisulphate, 4. 973 monoxysulphate, 4. 973 monoxytrisulphate, 4. 973 nickel amminoiodides, 15. 433 monoxydisulphate, 4. 973	- oxytetrasulphite, 10. 296 - oxytrimercuriammonium nitrate, 4. 1001 - oxytriselenite, 10. 828 - pentachloropyridinoiridate, 15. 768 - pentachloropyridinoperiridite, 15. 766 - pentahydroxychloroplatinate, 16. 333 - pentatungstate, 11. 829 - pentoxytrihyponitrite, 8. 416 - perbromide, 4. 881
	- oxytetrasulphite, 10. 296 - oxytrimercuriammonium nitrate, 4. 1001 - oxytriselenite, 10. 828 - pentachloropyridinoiridate, 15. 768 - pentachloropyridinoperiridite, 15. 766 - pentahydroxychloroplatinate, 16. 333 - pentatungstate, 11. 829 - pentoxytrihyponitrite, 8. 416 - perbromide, 4. 881 - perchlorate, 2. 400
	- oxytetrasulphite, 10. 296 - oxytrimercuriammonium nitrate, 4. 1001 - oxytriselenite, 10. 828 - pentachloropyridinoiridate, 15. 768 - pentachloropyridinoperiridite, 15. 766 - pentahydroxychloroplatinate, 16. 333 - pentatungstate, 11. 829 - pentoxytrihyponitrite, 8. 416 - perbromide, 4. 881 - perchlorate, 2. 400 - perchloratobromide, 4. 882
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratochloride, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perblorate, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchlorate, 2. 415 periodite, 4. 914
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoidide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratochloride, 4. 882 perchloratochloride, 4. 827 periodate, 2. 415 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perblorate, 4. 881 perchlorate, 2. 400 perchloratochloride, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxydate, 4. 781 peroxydate, 4. 781 perrhenate, 12. 477
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781 peroxydate, 4. 781 perrhenate, 12. 477 phenylamide, 4. 784
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoidide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781 peroxydate, 4. 781 pernylamide, 4. 784 phosphate, 4. 1003
monomercuriammonium hydroxyamidonitrate, 4. 1000 monoxydisulphate, 4. 973 monoxysulphate, 4. 973 monoxytrisulphate, 4. 973 mickel amminoiodides, 15. 433 bromide, 15. 429 hexaiodide, 15. 433 tetraiodide, 15. 433 nitramidate, 8. 269 nitrate, 4. 991 basic, 4. 994 complex salts, 4. 995 hemihydrated, 4. 992 monohydrated, 4. 992 properties, chemical, 4. 993 physical, 4. 992 nitratobromide, 4. 997 nitratochloride, 4. 997 nitratodisulphide, 4. 996	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781 peroxydate, 4. 781 perrhenate, 12. 477 phenylamide, 4. 784
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoidide, 4. 918 periodate, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxide, 4. 781 peroxydate, 4. 781 pernylamide, 4. 784 phosphate, 4. 1003
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perbromide, 4. 881 perchlorate, 2. 400 perchloratochloride, 4. 882 perchloratochloride, 4. 827 periodide, 4. 918 periodide, 2. 415 periodide, 4. 914 permonosulphomolybdate, 11. 653 peroxydate, 4. 781 peroxydate, 4. 781 perhenate, 12. 477 phenylamide, 4. 784 phosphate, 4. 1003 phosphatododecamolybdate, 11. 663
	oxytetrasulphite, 10. 296 oxytrimercuriammonium nitrate, 4. 1001 oxytriselenite, 10. 828 pentachloropyridinoiridate, 15. 768 pentachloropyridinoperiridite, 15. 766 pentahydroxychloroplatinate, 16. 333 pentatungstate, 11. 829 pentoxytrihyponitrite, 8. 416 perblorate, 4. 881 perchlorate, 2. 400 perchloratobromide, 4. 882 perchloratochloride, 4. 827 perchloratoiodide, 4. 918 periodate, 2. 415 periodate, 2. 415 permonosulphomolybdate, 11. 653 peroxydate, 4. 781 peroxydate, 4. 781 perhenate, 12. 477 phenylamide, 4. 784 phosphate, 4. 1003 phosphatododecamolybdate, 11. 663 phosphatododecatungstate, 11. 867

Mercuric phosphide, 8. 844	Mercuric sodium diiododithiosulphate, 10.
— phosphohexadecachloride, 8. 1017	549
— phosphoiodide, 4. 915	
—— platinum molybdate, 11. 576	heptanitrite, 8. 494
polychromate, 11. 351	
—— polyiodide, 4 . 914	pentachioride, 4. 804
potytodide, 4. 514 potassium amidosulphonate, 8. 643	pentachloride, 4. 854 selenite, 10. 829 tetrabromide, 4. 892
bromosulphite 10 200	tetrabromide, 4. 892
bromosulphite, 10. 300	tetrachloride, 4. 853
carbonate, 4. 983	tetraiodide, 4. 927
	tetrahydrated, 4. 928
chold mitrit. 0 505	tetranitrite, 8. 495
cobalt nitrite, 8. 505	thiosulphate, 10. 548
	————- tribromide, 4. 892
495	
dibromodichloride, 4. 892	——————————————————————————————————————
hexathiosulphate, 10. 548	triphosphate, 4. 1004
hydroamidosulphonate, 8. 644	triphosphate, 4. 1004 trisulphite, 10. 296
———— nickel nitrite, 8 . 512	stannate (a-), 7. 419
octothiosulphate, 10. 548	strontium heptanitrite, 8. 495
oxydisulphite, 10 . 296	hexabromide, 4. 894
monohydrate, 10. 296	
———— oxytrisulphite, 10 . 296	hexaiodide, 4, 939
	——————————————————————————————————————
——————————————————————————————————————	sulphite, 10. 300
pentanitrite, 8. 494	—— tetrabromide, 4. 894
phosphatohenatungstate, 11. 868	tetraiodide 4 939
sulphite, 10. 296	octohydrated, 4, 939
monohydrate, 10. 296	——————————————————————————————————————
tetrabromide, 4. 892	—— sulpharsenatosulphomolybdate, 9. 323
tetrachloride, 4, 856	sulphate, 4. 969
monohydrated, 4. 856	——— basic. 4. 972
tetraiodide, 4. 931	——————————————————————————————————————
tetranitrite, 8. 494	sulphates sulphobasic, 4. 973
tetrathiosulphate, 10. 548	sulphatodisulphide, 4. 974
——————————————————————————————————————	sulphatoiodide, 4. 971
hydrated, 4. 892	
trichloride, 4. 856	—— sulphatoperiridite, 15 . 784 —— sulphatosulphides, 4 . 973
———— monohydrated, 4, 856	sulphatotrisulphide, 4. 974
————— monohydrated, 4. 856 ————————————————————————————————————	sulphide, 4. 944
hydrated, 4. 930	———— colloidal, 4 . 948
trinitrite, 8. 494	noteggium 4 956
pyroarsenite, 9. 128	
—— pyrophosphate, 4. 1004	monohydrated, 4, 956
pyrosulpharsenate, 9. 321	pentahydrated, 4, 956
pyrosulpharsenite, 9. 296	— properties, chemical, 4. 951 — — physical, 4. 949 — sodium, 4. 956
rubidium dibromodiiodide, 4. 933	physical. 4. 949
tetrahydrated, 4. 857	sodium. 4. 956
tetraiodide, 4. 933	sulphite, 10. 291
trichloride 4 857	—— sulphochloride, 4. 954
	—— sulphomolybdate, 11. 652
selenate, 10. 868	sulphoselenide, 10. 780
monohydrate, 10. 868	sulphotellurite, 11. 113
	sulphotungstate, 11. 859
	—— tellurate, 11. 95, 96
selenochloride, 10 . 779	dihydrate, 11. 95
selenotrithionate, 10. 928	— tellurite, 11. 81
	tetrabromoamide, 4. 888
sesquiamminochloride, 4. 845	tetrabromodichloride, 4. 882
silicate, 6. 444	—— tetrachloroamide, 4. 870
silicododecatungstate, 6. 880	
silver dichlorodiiodide, 4. 938	tetrachlorodiiodide, 4. 917 tetrachloroplumbite, 7. 731
nitrate, 4. 995	
oxynitrate, 4. 995, 998	tetrahydroxydichloroplatinato, 16. 335
oxysulphate, 4. 976, 995	tetrahydroxylamine dihydrochloride,
——————————————————————————————————————	4. 873
suipnatocnioride, 4. 995	hydrobromide, 4. 890
	tetrametaphosphate, 4. 1004
sodium amidosulphonate, 8. 644	tetramminochloride, 4. 847
	tetramminoiodide, 4. 922
dichlorobromide, 4. 892	— tetramminopersulphate, 10. 479

Mercuric tetramminosulphite, 10. 292	(penta)mercuric calcium tetradecaiodide, 4.
tetraselenodibromide, 10. 914	939
tetraselenodichloride, 10. 914	—— henicosichloride, 4. 852
tetravanadate, 9. 774	rubidium henadecachloride, 4. 857
thallium nickel nitrite, 8. 512	strontium dodecaiodide, 4. 939
thallous bromide, 5. 451	octohydrated, 4. 939
chloride, 5 . 442	tetraoxychloride, 4. 843
————— dibromonitrate, 5. 476	tetroxybromide, 4. 885
- dichloronitrate, 5. 476	(tetra)mercuric rubidium henadecachloride,
iodide, 5 . 4 59	4. 857
nitrate, 5. 476	———— monohydrated, 4. 857
	trioxybromide, 4. 884
thiodiimide, 8 . 261	trioxychloride, 4. 842
thiohypophosphate, 8. 1064	(tri)mercuric ammonium octochloride, 4.851
thiophosphate, 8. 1065	sulphate, 4. 978
thiophosphite, 8. 1062	barium decaiodide, 4. 940
thiopyrophosphate, 8, 1070	hexadecahydrate, 4. 940
thiosulphate, 10. 547	cadmium octoiodide, 4. 941
triamminochloride, 4. 847	diamminochloride, 4. 845
trichloroamide, 4. 871	dioxybromide, 4, 884
triovyersenete 9 184	- — dioxychloride, 4, 841
trioxydrsenate, 9. 184	oxychloride, 4. 839
trioxybisdithionate, 10. 593 trioxycarbonate, 4. 982	—— potassium sulphate, 4, 976 Mercuridiammonium chloride, 4, 786
trioxydichloride, 14. 645	Mercurihydroxyammonium (di) chloride, 4.
trioxyhyponitrite, 8. 416	787
	hydroxide, 4 . 792
trioxysulpharsenate, 9. 329	Mercurius animalis, 2. 780
— trioxytetraselenite, 10. 828	calcinatus per se, 4. 771
— – trisulphatosulphide, 4. 974	cinereus Blackii, 4. 988
— trithionate, 10 . 609	Edinburgensium, 4. 988
trithiophosphate, 8. 1067	—— dulcis, 4. 797
tritungstate, 11. 811	—— philosophorum, 10. 331
——— heptahydrate, 11. 811	—— præcipitatus albus, 4. 797, 845
tungstate, 11. 788	—— per se, 4 . 771
uranate, 12. 64	ruber, 4. 771
yttrium chloride, 5. 681	solubilis Hahnemanni, 4. 988
zinc amminochloride, 4. 861	sublimatus, 4 . 797
	vitæ, 9 . 502
hexabromide, 4 . 894	Mercurosic hydroxynitrites, 8. 494
oxybromide, 4 . 894	imidoxysulphonate, 8. 658
oxynitrate, 4. 998	iodide, 4 . 903
sulphide, 4 . 957	—— nitrite, 8. 493
tetrabromide, 4 . 894	oxychloroplatinite, 16. 283
tetraiodide, 4 . 940	oxynitrate, 4 . 996
tetramminotetraiodide, 4. 923,	oxyphosphate, 4. 1004
941	oxysulphate, 4. 975
(di)mercuric ammonium pentachloride, 4.	pyrophosphate, 4. 1003
852	sulphate, 4. 975
cæsium pentachloride, 4. 859	—— sulphite, 10. 289
—— pentaiodide, 4. 934 —— decahydroxylamine enneachloride, 4.	Mercurous acetylide, 5. 869
852	—— aluminotungstate, 11 . 789 —— amidoarsenate, 8 . 26; 9 . 183
decahydroxylamine hydrochloride, 4.	amidosulphonate, 8. 643
873	amminochloride, 4. 809
magnesium hexaiodide, 4. 940	amminofluoride, 4. 793
	amminonitrate, 4. 988
oxybromide, 4. 884	ammonia compounds, 4. 784
oxychloride, 4. 840	ammonium diamminoxysulphate, 4.
—— potassium sulphide, 4. 956	968
rubidium heptachloride, 4. 857	nitrate, 4. 988
dihydrated, 4. 857	persulphate, 10. 480
pentachloride, 4. 857	antimonatotungstate, 9. 459
(penta)mercuric barium dodecaiodide, 4. 939	antimonite, 9. 432
octohydrated, 4. 939	antimonitotungstate, 9. 433
hexadecaiodide, 4. 940	arsenatotrimolybdates, 9. 207
hexadecahydrate, 4. 940	arsenide, 9. 67
easium henadecachloride, 4. 859	arsenitoarsenatotungstate, 9. 214
calcium dodecaiodide, 4. 939	arsenitotungstate, 9, 132
octohydrated, 4. 939	azide, 8. 351

Maraumana haringa agamitanta 4 007	1 M 0. 000
Mercurous barium oxynitrate, 4. 997 bismuth tungstate, 11. 795	Mercurous metacolumbate, 9. 866 —— metantimonate, 9. 456
borate, 5 . 100	metarsenate, 9. 183
borododecatungstate, 5. 110	metarsenite, 9. 127
$-$ - bromate, 2. $35\overline{2}$	metatungstate, 11. 826
bromide, 4 . 874	metavanadate, 9. 774
carbide, 5 . 867, 869	—— molybdate, 11. 563
carbonate, 4. 981	monothiophosphate, 8 . 1069
chloride, 4. 796 colloidal, 4. 801	nitrate, 4. 984, 985 basic, 4. 988
preparation, 4. 798	properties, chemical, 4. 986
properties, chemical, 4. 804	physical, 4, 985
physical, 4. 801	nitratoarsenite, 9. 128
ehlorite, 2. 284	nitratometatungstate, 11. 826, 862
chloroantimonite, 9. 482	· · · · nitratophosphate, 4, 1002
- chloroperiridite, 15. 765 chloroplatinate, 16. 329	nitratotellurate, 11, 120 nitrite, 8, 491, 492
chromate, 11. 281	——————————————————————————————————————
chromipentoxydodecamolybdate, 11.	orthoarsenate, 9. 183
602	orthoarsenite, 9. 127
cobaltic hexanitrite, 8. 505	orthohexatantalate, 9. 904
cuprous octothiosulphate, 10. 549	orthosulpharsenate, 9. 321
diarsenatoctodecatungstate, 9. 214	orthosulphoantimonate, 9, 575
dichromate, 11. 342 dihydroxytrinitrate, 4. 990	orthotellurate, 11. 94 osmiamate, 15. 70
dihypovanadatoheptadecatungstate,9.	oxide, 4. 768
747	oxybischromate, 11. 282
dinitratarsenate, 9. 337	oxybromide, 4. 876
dioxychromate, 11. 282	oxychloride, 4. 805
dioxynitrate, 4. 989	oxydiiodonitritoplatinite, 8. 523
	oxydinitrate, 4, 989
diplatinic triacontatungstate, 11. 803 — dithionate, 10. 593	hydrated, 4. 989 oxydiselenite, 10. 828
dithiophosphate, 8. 1068	- — pentahydrate, 10. 828
ferrate, 13. 936	oxyditellurate, 11. 94
— fluoride, 4 . 793	—— oxyhexaselenite, 10. 828
fluosilicate, 6. 954	- — oxyimidosulphonate, 8. 655
gold sulphide, 4. 957	oxynitratophosphate, 4, 1002
— hemihydrated nitrite, 8, 492 —— hexahydroarsenatoctodecamolybdate,	oxypentaselenate, 10. 868 oxytetranitritoplatinite, 8. 520
9. 211	- oxytrimetaphosphate, 4, 1002
hexametaphosphate, 4. 1003	oxytrischromate, 11. 281
hydrazine chloride, 4. 809	paratungstate, 11. 819
nitrate, 4. 784	— pentachloropyridinoiridate, 15. 768
hydroarsenate, 9. 183	—— pentachloropyridinoperiridite, 15. 766
hydrofluoride, 4. 794 hydropentanitrate, 4. 987	
hydroselenite, 10. 828	permonosulphomolybdate, 11. 653
hydrosulphate, 4. 966, 967	phosphate, 4. 1002
hydrotellurate, 11. 94	—— phosphatoctotungstate, 11. 872
trihydrate, 11. 95	phosphatododecamolybdate, 11. 663
hydroxydinitrate, 4. 989	phosphatododecatungstate, 11. 867
hydroxynitrate, 4. 989 hydroxytrinitrate, 4. 990	phosphatoenneamolybdate, 11. 667 phosphatohemipentamolybdate, 11.
—— hyponitrite, 8 . 414	669
hypophosphitotungstate, 8. 888	phosphatohexatungstate, 11. 872
	—— phosphatovanadatomolybdate, 9. 835
826	phosphatovanadatotungstates, 9. 835
hypovanadato-vanadatotungstate, 9.	—— phosphide, 8. 844
793 imidosulphonate, 8. 655	—— phosphitotungstate, 8. 919 —— platinic cositungstate, 11. 803
iodate, 2. 352	—— platinum molybdate, 11. 576
—— iodide, 4. 895	potassium chromate, 11. 282
colloidal, 4. 897	—— pyroarsenate, 9. 183
preparation, 4. 895	—— pyrophosphate, 4. 1002
properties, chemical, 4. 899	pyrophosphatotungstate, 11. 874
——————————————————————————————————————	
luteovanadatophosphate, 9. 828	rhodium chloride, 15. 579
manganate, 12. 289	salt, Soubeiran's, 4. 988
-	

UDINE III	
Mercurous selenate, 10. 868	Mercury chloroantimonate, 9. 491
—— selenide, 10 . 778	chlorophosphide, 8. 818
selenite, 10. 828	chloroplatinite, 16. 283
silicate, 6 . 444	chromium alloy, 11. 171
silicododecatungstate, 6. 879	—— cobalt alloys, 14. 533
silver phosphate, 4. 1002	ammonium alloy, 14. 534 zinc alloy, 14. 534
sodium thiosulphate, 10. 548	zinc alloy, 14. 534
stannate (a-), 7. 419	— cobaltic carbonatobisethylenediamine-
strontium oxynitrate, 4. 997	iodide, 14. 819
subchloride, 4. 804, 808	dichlorobisethylenediamine-
sublimatus corrosivus, 4. 797 sulphate, 4. 964	iodide, 14. 747 ———————————————————————————————————
	657
basic, 4. 966 dihydrated, 4. 966	colloidal, 4. 707
properties, chemical, 4, 967	decahalide, 7. 943
properties, chemical, 4. 967 physical, 4. 965	disulphitotetramminocobaltate, 10.
sulphatoarsenite, 9. 128	317
— sulphatoperiridite, 15. 784	dithallide, 5. 428
sulphide, 4. 944	—— ditritaluminide, 5. 240
—— sulphite, 10. 287	electrodeposition, 4. 705
sulphomolybdate, 11. 652	—— (element), 1. 34
sulphotellurite, 11. 113	ethylstannonate, 7. 410
sulphotungstate, 11. 859	extraction, 4. 700
	electrolytic processes, 4. 702 wet processes, 4. 702
—— tellurite, 11. 81	fahlerz, 9. 4
tetrabromoaluminate, 5. 327	ferrate, 13. 936
tetranitritodiamminocobaltiate, 8. 510	flouring of, 3. 498
tetraselenite, 10. 828	—— fulminate, 4. 993
tetravanadate, 9. 774	glance, 10. 780
thallous nitrate, 5. 476	gold-platinum alloys, 16, 205
thiophosphite, 8. 1062	—— Hahnemann's soluble, 4. 988
thiopyrophosphate, 8. 1070	hexargentodistannide, 7. 380
thiosulphate, 10. 547	—— hexitathallide, 5. 428
titanidodecamolybdate, 11. 601	—— history, 4. 695
triselenitodecamolybdate, 10. 836	horn, 4. 798
tritungstate 11 811	
	hydroxylamine bromide, 4. 881
—— ultramarine, 6 . 590	hypoantimonate, 9. 437
—— uranyl chromate, 11. 308	—— hypochlorite, 2. 274
vanadatomolybdate, 9. 784	hypoiodite, 2. 274
vanadatotungstate, 9. 787	hypophosphite, 8. 885, 938
(do)mercurous ammonium chloride, 4. 809	imide, 8 . 261
(octo)mercurous silicododecamolybdate, 6.	iodophosphide, 8. 818
867	iodoplumbite, 7. 778
Mercury, 1. 521; 4. 695	iridium alloy, 15 . 750
absorption oxygen, 1. 371	iron alloys, 13. 545
aluminium alloys, 5. 240	—— isotopes, 4. 767 —— mercaptide nitrite, 4. 963
	— metallic precipitation, 4. 703
ammine, 8. 249	— mol. wt., 4. 766
ammonium rhodium chloronitrate, 15.	—— monochromide, 11. 172
591	monohalide, 7. 945
tetrachloride, 4. 849	monotelluride, 11. 52
trichloride, 4. 851	—— nickel alloy, 15 . 222
monohydrated, 4. 851	—— nitratohypophosphite, 8. 885
analytical reactions, 4. 761	—— nitratophosphide, 8. 818
antimonyl oxytriiodide, 9. 508	—— nitrogen compounds, 4. 785
at. number, 4. 767	constitution, 4. 785
——————————————————————————————————————	Hofmann and Mar-
	burg's theory, 4, 785
bismuth alloys, 9. 637	Rammelsborg's theory
black oxide, 4. 768	4. 785 Rammelsberg's theory,
bromophosphide, 8, 818	occurrence, 4. 695, 696
bromoplumbite, 7. 753 cadmium, 1. 520	octopermanganite, 12. 279
catalysis by, 1. 487	osmium alloy, 15. 697
cerium alloys, 5. 607	oxyphosphide, 8. 844
	W * **********************************

Mercury phosphates, 4. 1002	Messing, 4. 399
phosphite, 8. 917	Meta-alumina, 5. 282
—— platinum alloys, 16. 207	Meta-aluminates, 5. 285
	Meta-aluminic acid, 5, 274, 285
——————————————————————————————————————	Meta-arsenatomolybdic acid, 9. 206 Meta-autunite, 12. 135
—— plumbite, 7. 669	Metabismuthic acid, 9. 655
preparation, 4. 700	Metabismuthous acid, 9. 651
properties, chemical, 4. 752	Metaboric acid, 5. 47, 48
physical, 4. 711 purification, 4. 706	Metabromoantimonic acid, 9. 497
red oxide, 4. 771	Metabrushite, 3. 880, 882 Metacarbonates, 6. 72
reduction compounds to, 4. 702	Metacarbonic acid, 6. 72
sickening of, 3. 498	Metaceria, 5. 501
—— silicate, 6. 438	Metachlorite, 6. 623
silicide, 6, 438	Metachloroantimonic acid, 9. 490
silicide, 6 . 782 solubility of hydrogen, 1 . 307	Metachroite, 12. 530 Metachromatism, 2. 221
subazide, 8. 351	Metachromic acid, 11. 240
sulphamide, 8. 663	Metachromites, 11. 196
sulphammonium, 4. 954	Metachromous acid, 11. 196
sulphides, 4 . 944	Metacinnabarite, 4. 697, 944
sulphoselenide, 10. 919 sulphosilicate, 6. 987	Metacolloidal state, 6. 576 Metadiphosphoric acid, 8. 948
—— supprosincate, 6 . 967 —— superphlogisticated, 10 . 205	Metadisulphuric acid, 10. 360, 444
— tetratritaphosphide, 8. 844	Meta-elements, 5. 495
thorium octoiodide, 7. 239	Metaferric acid, 13. 905
tetradecaiodide, 7. 238	
—— tin-iron alloys, 13. 579	Metaferrites, 18. 905
	Metaheulandite, 6. 755, 757 Metahewettite, 9. 770
uranium alloys, 12. 38	Metahewittite, 9. 715
uranyl nitrate, 12. 127	Metahypophosphoric acid, 8. 928
valency, 4. 766	Metaindates, 5. 398
vanadide, 9 . 733	Metaindic acid, 5. 398
vanaditotungstate, 9. 742	Metaiodic acid, 2. 322, 324
yttrium alloys, 5. 680	Metal, 1. 248
zinc-iron system, 13. 548 zirconium, 7. 116	—— ammines, 8. 243; 14. 690 ——— Blomstrand and Jörgensen's
Meretrix metallorum, 3. 69	theory, 14. 690
Mérimée's yellow, 9. 460	Werner's co-ordination theory, 14.
Meroxenes, 6. 611	690
Merwinite, 6. 409	Werner's nucleus theory, 14. 690
Mesitenspath, 14. 369	
Mesitine, 4. 349; 14. 369 Mesitite, 4. 349; 12. 530; 14. 369	antifriction, 4. 671
Mesoboric acid, 5. 48	Base 358, 3 . 525
Mesodiphosphoric acid, 8. 948	carbonyls, 5. 950
Mesodisilicic acid, 6. 294	—— foundry, 4. 671
Mesohexasilicic acid, 6. 294	noble, 8 . 525
Mesoiodic acid, 2. 322	—— of salt, 2. 421 —— white, 3. 25
Mesole, 6 . 709 Mesolin, 6 . 729	Metalanthanates, 5. 628
Mesolite, 6. 749	Metallo defosforato, 12. 709
—— soda, 6 . 652	Metallography, 12. 791
thallium, 6. 751	etching, 12. 791
—— thallo-, 6. 826	electrolytic, 12. 794
Mesoperiodic acid, 2. 386	—— polish, 12 . 791 —— heat relief, 12 . 791
Mesosiderite, 12. 523 Mesosilicic acids, 6. 308	——————————————————————————————————————
Mesotetrarsenious acid, 9. 117	—— polish attack, 12. 791
Mesotetrasilicic acid, 6. 294	etching, 12. 791
Mesothorium, 7. 186	Metalloids, 1, 248, 250
	Metallorum rex, 8. 500
	Metallum problematicum, 11. l
Mesotype 6 749	—— rex, 8. 297 Metalonchidite, 14. 200
Mesotype, 6. 749 —— épointée, 6. 368	Metals base, 1. 248
soda, 6 . 652	cellular structure, Quincke's theory, 1.
Messelite, 8. 733	603

OUT CHARLES	
Metals, influence of planets on, 1, 3, 21	Meta-uranocircite, 12. 136
noble, 1. 248	Métaux malades, 3. 76
perfect, 1. 248	Metavanadic acid, 9. 753
permeability of hydrogen, 1. 304	Metavauxite, 12. 550; 14. 396
porosity, 13 . 4 23	Metavoltine, 12. 530; 14. 328, 341
sacrificial, 1. 1025	a-metavoltine, 14. 342
semi-, 1. 240	β -metavoltine, 14. 342
solubility in potas. cyanide, 3. 500	Metaxito, 6. 423
- transmutation, 1. 49	Meta-zirconates, 7. 134
Metaluteotungstic acid, 11. 770	Meta-zirconic acid, 7, 129, 134, 148
Metamagnetic alloys, 18. 245	Meteoric iron, 12, 523; 15, 260
Metamerism, 5. 722	cubic, 15. 261 octahedral, 15. 261
Metamolybdic acid, 11, 545 Metanatrolite, 6, 654	Methanides, 5. 846
Metantimonic acid, 9. 442	Methoxyporthodisilicate (hexa), 6. 310
Metantimonious acid, 9. 429	Methoxyphenylammonium bromoplatinate,
Metapercolumbic acid, 9. 869	16. 375
Metaperiodic acid, 2. 386	Methyl alcohol and hydrogen, 1. 303
Metaperowskite, 7. 53	amidosulphonate, 8. 641
Metapertantalic acid, 9. 913	chloride and CO ₂ , 6. 32
Metaphosphimic acid, 8. 716	—— cyanide, 15 . 576
Metaphosphoric acid, 8. 948, 977	hypophosphate, 8, 932
hydration, 8 . 979	orthosilicate, 6. 309
properties, chemical, 8. 981	silicic acid, 6. 309
——————————————————————————————————————	stannic bromide, 7. 455
Metaphosphorous acid, 8, 921	chloride, 7, 446
Metaphosphoryl chloride, 8, 1019, 1028	iodide, 7, 463
Metaplatinic acid, 16. 244 Metaplumbic acid, 7. 685	stannonic acid, 7. 410 sulphimide, 8. 664
Metargon, 7. 890	- sulphone, 10. 162
Metarossite, 9. 769	sulphoxide, 10. 161
Metarsenic acid, 9. 140	— thiolcarbamate, 6. 132
Metarsenious acid, 9, 102	thioncarbamate, 6. 132
Metascolecite, 6. 750	xanthic acid, 6. 120
Metasericite, 6. 606	(di)methyl sulphamide, 8. 663
Metasilicalosodalite, 6. 583	sulphinate, 8. 634
Metasilicic acid, 6. 293, 294	Methylamine nitratobismuthate, 9. 710
acids, 6 . 308	tetrahydroxylaminotetramolybdate,
Metastable equilibrium, 1. 715	11. 592
states, 1. 454	—— uranyl phosphate, 12. 132
Metastannic acid, 7. 406	3-methyl-2-aminomethyl-4-ethylquinoline
Metastibnite, 9. 343	chloroplatinite, 16. 274
Metasulfamidique acide, 8. 670	Methylammonium bromoiridate, 15. 776
Metasulfazilique acide, 8. 670 Metasulpharsenatosulphomolybdates, 9.	bromopalladate, 15. 678 bromopentachlorosmate, 15. 724
Metasulpharsenatosulphomolybdates, 9. 322	bromoperruthenite, 15. 538
Metasulpharsenic acid, 9. 315	bromoruthenate, 15. 538
Metasulpharsenious acid, 9. 289	
Metasulphatoplumbic acid, 7. 823	—— chloroiridate, 15 . 770
Metasulphennearsenious acid, 9. 289	chloropalladate, 15. 673
Metasulphoantimonious acid, 9. 532	chloroperruthenite, 15. 532
Metasulphoctoantimonious acid, 9. 532	chlororuthenate, 15. 534
Metasulphoctarsenious acid, 9. 289	—— chlorosmate, 15 . 719
Metasulphoctodecarsenious acid, 9. 289	dihydroxytetrachlororuthenate, 15.
Metasulphosilicic acid, 6. 987	536
Metasulphotetrarsenious acid, 9. 289	ferric fluorides, 14. 7
Metasulphotriarsenious acid, 9. 289	fluoferrate, 14. 8
Metasulphoxylic acid, 10. 165	heptachloroferrate, 14. 101
Metasulphuric acid, 10. 357	heptachloroperrhodite, 15. 578
Metasulphurous acid, 10. 238	heptachloroperruthenite, 15, 533
Metatantalic acid, 9. 898	hexachloroperrhodite, 15. 579 hydroxypentabromosmate, 15. 724
Metatelluric acid, 11, 83, 87, 88	- hydroxypentablomosmate, 15. 720
Metathiocarbonic acid, 6. 119 Metathoric acid, 7. 224	tetrachloroferrate, 14. 101
Metatetrarsenious acid, 9. 117	- trichlorotribromosmate, 15. 724
Metatitanic acid, 7. 40	— uranyl tetrachloride, 12. 89
Metatorbernite I, 12. 134	Methylanilinium bromopalladite, 15. 677
—— II, 12. 134	— bromosmate, 15. 723
Metatungstates, 11. 773, 821	chloropalladite, 15. 670
Metatungstic acid, 11. 764, 768	Methylarsinic acid, 9. 101

GENERAL INDEA 030	
Methylbenzylanilinium bromosmate, 15.	Microweighing, 1. 184
723	Miedziankite, 9. 296
Methyldiphenylammonium chloropalladite,	Miemite, 4. 371
15. 670	Miersite, 3, 426
Methylene nitratobismuthate, 8, 272 3-methylypyridinium bromoplatinate, 16.	Microtica of ions 4 082
3-methylypyridinium bromoplatinate, 16.	Migration of ions, 1. 983 Migsite, 14. 329
Metillkalk, 11. 122	Milanite, 6. 495
Métillure, 18. 559	Milarite, 6. 746
Metolhydroquinone, 13. 615	Milchquartz, 6. 138
Meyerhofferite, 5. 91	Mild alkali, 2. 495
Meyer's process vapour density, 1. 185 Meymacite, 11. 764	alkalies, 2. 421
Miargyrite, 9 . 343, 539	purple stone, 6 . 468 Milk, 13 . 615
Mica, 6. 604	of lime, 3 . 676
baryta, 6 . 607	sulphur, 10. 30
——— biaxial, 6 . 606	Millerite, 15. 5, 435
—— border, 6 . 612	Miller's system, crystal notation, 1, 614
	Millibar, 1, 150 Millimol, 1, 392
- · · · feather, 6 . 613	Millival, 1. 392
green, 12. l	Millon's base, 4. 787, 792
lime, 6 . 708	anhydride first, 4. 788
- lithia, 6. 607	second, 4, 788
manganese, 6 . 608	
oblique, 6 . 606 pearly, 6 . 708	— — nitrate, 4, 1000 — — salts of, 4, 788
potash, 6 . 606, 607	
ribbon, 6 . 613	iodine sulphate, 2. 292
ruled, 6 . 613	Miloschite, 6. 865
—— sericitic, 6 . 470	Mimetère, 9. 260
soda, 6 . 608	Minetesite, 7, 491; 9, 5, 260 Minetesite twinning 1, 505
uranium, 12 . 2 usos, 6 . 619	Mimetic twinning, 1, 595 Mimetite, 2, 15; 9, 260, 261
vanadium, 6 . 836	Minargent, 15. 225
· · · · viridis, 12. 1	Minasragrite, 9. 716, 823
water, 6 . 606	Minckin metal, 15. 225
Micaceous iron ore, 11, 485; 12, 530	Mine d'antimoine en plumes, 9. 577
Micanite, 6, 620	grise tenant argent, 9, 551 d'argent blanche antimoniale, 9, 404
Micaphilite, 6 . 458 Micaphyllite, 6 . 458	- de bismuth calciforme, 9. 646
Micarelle, 6. 619	
Micas, 5. 155; 6. 603	——————————————————————————————————————
brachydiagonal, 6. 613	
brittle, 6 . 603	arsenicosulfureuse, 9. 308 sulfureuse, 14. 757
— — macrodiagonal, 6 . 613 Michaelsomite, 7 . 100	
Michaelsonite, 5. 509	volatile, 4. 798
Microbalance, 1. 184	
Microbromite, 8. 418	noire, 5. 713
Micrococeus nitrificans, 8. 357	— waters, 13. 611
Microclase, 6, 664	Minera antimonii plumosa, 9. 546 —— argenti alba, 9. 291
Microcline, 6. 662, 663 —— albite, 6. 664	rubra pellucida, 9. 294
— macroperthite, 6. 663	blue, 11. 745
oligoclase, 6 . 664	— - ferri alba spathiformis, 14. 355
—— perthite, 6 . 663	attractoria, 13. 731
Microclines soda, 6. 669	——————————————————————————————————————
Microlepidolite, 6 . 615 Microlite, 5 . 519; 7 . 896; 9 . 839, 903; 12 . 6	palustris, 13 . 885
Microlith, 8 . 623	
Microorganisms in air, 8. 2	fuliginea, 12. 140
Microperthite, 6. 663	—— plumbi rubra, 11. 122, 290
microcline, 6. 663	viridis, 9 . 260
Microscope polarizing, 1. 608	Mineral alkali, 2. 420 —— de Coromandel, 6. 831
Microsommite, 6. 580, 584 Microstructure iron, 12. 791	green, 3 . 270; 9 . 122
steel, 12. 791	lac, 11. 290
Microtine, 6. 693	turbite, 4. 964
Microns, 1. 769	turpeth, 4 . 964, 972

de d	n mbra
Minoral vallow 7 749	Molecules compounds A 105
Mineral yellow, 7. 742	Molecular compounds, 4. 195
Minerals mohr, 4. 943	
Minerals, formulæ, 1. 668	—— dispersoids, 1. 773
opening up, 5 . 545 synthesis, 6 . 313	heat, see Heat, molecular
	magnitudes, 1. 766
Minervite, 5. 155, 362; 8. 733	models, 1. 783
Mines d'antimoine aux plumes, 9. 546	motion, source of, 1. 785
Minette, 12. 530	structure matter, 1. 740
Minguetite, 6. 624; 12. 530	volume, affinity and, 1. 233
Mining gold hydraulic, 3, 496	chemical activity and, 1. 237
——————————————————————————————————————	compressibility and, 1. 234
reef, 3. 497 vein, 3. 497	density and, 1. 234
	volumes, 1. 176, 195, 228
Minium, 4. 942; 7. 672, 673	and atomic weights, 1. 763
nativum, 7. 673	molecular weights, 1. 763 Traube's theory, 1. 233
Mirabilite, 2, 656	Traube's theory, 1. 233
Miriquidite, 7. 491; 9. 228	weight, 1. 202
Mischmetall, 5. 608	and boiling point, 1. 561 critical constants, 1. 762
Mispickel, 9. 4, 306; 12. 530	critical constants, 1. 762
Mispikkel, 9. 306	
Mistpickel, 9. 306	solubility, 1. 568
Mists, chemical, 10. 401	
Misy, 8. 3; 14. 243, 329	——————————————————————————————————————
Misylite, 14. 329	weights, abnormal, 1. 569
Mitchellite, 11. 201	and molecular volumes, 1. 763 volumes, 1. 201
Mitis green, 9. 122	volumes, 1. 201
Mitscherlich's law isomorphism, 1. 652	ratio of two specific heats and, 1.
salt, 4. 788, 1000	788
Mixed crystals, 1. 658	Molecule, electric charges within, 4. 188
——————————————————————————————————————	Molecules, 1. 174, 740
—— Kuster's rule, 1. 660	—— activation, 16. 153
law of, 1. 658	are all alike ?, 1. 342
Retger's colour test, 1. 659	average diameter, 1. 752, 755
law, 1. 659	—— collision frequency, 1. 751
	—— élémentaires, 1. 173
Mixer metal, 12. 708	—— field of force, 4 . 187
Mixing limit, 1. 665	—— free path, 1. 748
Mixite, 9. 5, 198, 589	intégrantes, 1. 173
Mixture, eutectic, 1. 517	kinetic theory, 1. 765
law and refractive index, 1. 678	nonpolarized, 4. 187
Mixtures, 1. 85	number per c.c., 1. 753
law of, 1. 88	polar, 4. 187
Mizonite, 6. 763	—— polarized, 4. 187
Mizzonite, 6. 763	specific heat, 1. 832
Mobius' process gold refining, 3. 508	velocity of, 1. 744
Mochastone, 6. 139	vibration frequency, 1. 828
Mock lead, 11. 673	weights of, 1. 174 with multiple charges, 4. 50
Modderite, 14. 750	Molengraaffite, 6. 843; 7. 3
Models, molecular, 1. 783	Molisite, 14. 40
Modererz, 13. 886	Mollite, 5. 370
Modulus bulk, 1. 820	Moltramite, 7. 491
of elasticity, 1. 820	Molybdan, 11. 485
	Molybdæna, 5. 713; 7. 638
—— Young's, 1. 820 Modulvar, 15. 257	Molybdändichlorid, 11. 619
Moching' electrolytic process siles 9 200	Molybdänglanz, 11. 485
Moebius' electrolytic process silver, 3. 308	edler, 11. 114
Mohawkite, 3. 7; 9. 62, 63; 14. 424	Molybdaenite, 7. 897
Mohsine, 9. 73	Molybdänocker, 11. 535
Mohsite, 7. 57 Moissanite, 12. 528	Molybdantetrachlorid, 11. 624
	Molybdaenum tritura coerulescente, 11. 484
Moist salt, 13. 616 Moisture, effect on catalysis, 1, 487	Molybdansilber, 11. 60
Moisture, effect on catalysis, 1. 487	Molybdanyl chloride, 11. 627
—— in air, 8. 9 Mol. 1, 302	Molybdates higher, 11. 599
Mol. 1. 392	hyperacid, 11. 605
Molecular asymmetry 14 657	Molyhdeto iodia said 9 363
Molecular asymmetry, 14. 657	Molybdato-iodic acid, 2. 363
attraction, 1. 755, 822, 841	Molybdato-periodates, 2, 406, 417
gases, 1. 865 —— complexity and crystal form, 1. 622	Molybdatopermanganates, 12. 336 Molybdatopotash.godelite 6 583
complexity unit of your form, 1. 022	Molybdatopotash-sodalite, 6. 583

Molybdato-sodalite, 6. 583, 871	Molybdenum copper alloys, 11. 532
Molybdatosulphites, 10. 307	
Molybdatovanadates, 9. 780	iron alloys, 13. 626
Molybdena membranacea nitens, 11. 484	pentafluomolybdate, 11. 611
—— pentitatrinitride, 8. 129	—— decamminotriamidotrichloride, 8. 267
textura granulata, 11, 484	—— dialuminide, 11. 523
—— micacea, 11. 484	—— dibromide, 11. 634
Molybdenated lead ore, 11. 566	—— dichloride, 11. 616
Molybdenite, 11. 485, 488, 640	dichlorotetrabromide, 11. 639
Molybdenoferrite, 18. 620	dichromate, 11. 343
Molybdenum, 11. 484, 485	diffuotetrabromide, 11. 639
alcoholotetrachlorodinitrate, 11. 659	dihydroxytetrabromide, 11. 635
—— alloys, 11. 524	dibydrata 11 835
aluminide, 11. 523	—— —— dihydrate, 11. 635 —— —— octohydrate, 11. 635
— aluminium alloys, 11. 523	dibredmovestate chlorida 44 822
	dihydroxytetrachloride, 11. 633
	octohydrate, 11. 633
	diiodide, 11. 639
amalgams, 11. 523	dimanganeside, 12. 217
amidodipotassimide, 8. 267	dimercuride, 11. 523
amidodisodimide, 8. 267	—— dioxide, 11. 526
ammonium amminopentachloride, 11.	—— —— hemiheptadecahydrate, 11. 528 —— —— monohydrate, 11. 528 —— —— trihydrate, 11. 528
622	monohydrate, 11. 528
——————————————————————————————————————	
dioxytetrachloride, 11. 632	—— dioxydibromide, 11. 638
	—— dioxydichloride, 11. 631
—— hemipentoxide, 11. 532	—— dioxydifluoride, 11. 612
heptachloride, 11. 621	—— dioxysulphate, 11. 658
—— hexachloride, 11 . 621	dioxysulphide, 11. 654
oxypentabromide, 11. 637	diphosphotetradecachloride, 8. 1017;
—— pentabromide, 11. 635	11. 632
	—— diselenide, 10 . 797
——————————————————————————————————————	—— disilicide, 6 . 192
tetrachlorotetraiodide, 11. 640	—— disulphate, 11. 657
tetradecachloride, 11. 623	—— disulphide, 11. 640
tetrachlorotetraiodide, 11. 640 tetrachloride, 11. 623 tetrafluoride, 11. 609	ditelluride, 11. 63
trioxytetradecanuoride, 11. 011	ductile, 11. 497
tungstate, 11. 796	—— electronic structure, 11. 521
atomic disruption, 11. 521	enneachloroctosulphide, 11. 656
number, 11. 521	enneamercuride, 11. 523
weight, 11. 520	extraction, 11. 492
barium hemipentoxide, 11. 532	—— fluochloride, 11. 639
bishydroarsenate, 9. 205	fluorides, 11. 609
—— bismuth alloys, 9. 639	fluosilicate, 6 . 956
—— blue (natural), 11. 530	—— gold alloys, 11. 522
boride, 5 . 29	halides mixed, 11. 639
bromides, 11. 634	hemicarbide, 5 . 888
cadmium alloys, 11. 523	—— hemimanganeside, 12. 218
cæsium dioxytetrachloride, 11. 632	—— hemipentaselenide, 10. 797
dioxytrichloride, 11, 632	hemipentoxide, 11. 531
	——— hemitrihydrate, 11. 531
pentabromide, 11, 635	trihydrate, 11. 531
——————————————————————————————————————	hemitrimercuride, 11. 523
calcium oxytetrabromide, 11. 638	hemitrioxide, 11. 525
—— carbide, 5. 888	—— hemitriselenide, 10. 797
	hemitrisilicide, 6. 192
carbonates, 11. 659	hemitrisulphide, 11. 640
	—— heptaluminide, 11. 523
—— chlorides, 11. 616	heptamolybdate, 11. 571
	hexachloride, 11. 626
	hexafluoride, 11. 610
achelt allows 14 541 543	hexamanganeside, 12. 217
	history, 11. 484
iron allows 12 898	hydride, 11, 512
nielral allove 45 949	hydroxypentachloride, 11. 618
——————————————————————————————————————	hydroxypentachoride, 11. 636
achelt allows 14 540	hydroxytetrachlorobromide, 11. 640
cobalt alloys, 14. 540	icositaluminide, 11. 523
	—— imidonitride, 8. 267
manganese alloys, 14. 344 nickel alloys, 15. 338	intermetallic compounds, 11. 524
	—— iodides, 11. 639
colloidal, 11. 497	

de d	IL INDEX
Molybdenum iron alloy, 13. 617	Molybdenum potassium hexabromide, 11.
carbide, 13. 619	635
tritacarbide, 13. 620	hexachloride, 11. 621
vanadium alloys, 13. 626	dihydrate, 11, 622
isobutylalcosol, 11. 497	———— pentabromide, 11. 635
lead alloys, 11. 523	pentachloride, 11. 622
lithium dioxydibromide, 11. 638	tetrachlorotetrabromide, 11. 640
oxytetrabromide, 11. 638	tetrachlorotetraiodide, 11. 640
magnesii, 12. 140	tetrafluoride, 11. 610 trioxytetradecafluoride, 11. 611
—— magnesium alloys, 11. 523	trioxytetradecaffuoride, 11. 611
manganese alloys, 12. 217	preparation of metal, 11. 494
iron alloys, 13. 668 nickel alloys, 13. 330	properties, chemical, 11. 512
— manganeside, 12. 217	puridinium avumenta bramida 11 627
	pyridinium oxypentabromide, 11. 637
monoxide, 11. 525	— quaterdihydroarsenate, 9. 205
nickel alloys, 15. 245	quinolinium oxypentabromide, 11. 637
aluminium alloys, 15. 247	oxytetrabromide, 11. 638
	reactions of analytical interest, 11. 516
	rubidium dioxytetrachloride, 11. 632
	dioxytrichloride, 11 . 632
copper alloys, 15. 247	——————————————————————————————————————
tantalum alloys, 15. 247	pentabromide, 11. 635
steels, 15. 328	
tin alloys, 15. 248	silver alloys, 11. 522
nitrate, 11. 659	—— sodium alloys, 11. 522
nitrates, 11. 659	———— hemipentoxide, 11. 532
nitride, 8 . 128	
nitrogen tetrasulphopentachloride, 11.	solubility of hydrogen, 1. 306
625	steel, 12 . 752
occurrence, 11. 486	sulpharsenite, 9. 301
oxides, 11. 525 oxybromides, 11. 634	—— sulphates, 11. 656 —— sulphide colloidal, 11. 641
oxychlorides, 11. 627	sulphides, 11 . 640
oxydihydroxydichloride, 11. 633	
oxyfluorides, 11. 610	—— tantalum alloys, 11. 524
oxyhydroxydibromide, 11, 636	nickel alloys, 15. 248
oxyhydroxytrichloride, 11. 633	tetrabromide, 11 . 635
oxyhypophosphite, 8. 887	tetrabromochromate, 11. 307
oxytetrachloride, 11. 632, 634	tetrabromodiiodide, 11. 640
oxytetrafluoride, 11. 611	tetrachloride, 11. 623
	tetrachlorodiaquodichloride, 11. 618 tetrachlorodibromide, 11. 639
pentachloride, 11. 624	hexahydrate, 11. 639
pentafluoride, 11. 610	trihydrate, 11. 639
pentasulphide, 11. 647	tetrachlorodiiodide, 11. 640
hemitrisulphohydrate, 11. 647	hexahydrate, 11 . 640
trihydrate, 11. 647	trihydrate, 11. 640
pentitatetranitride, 8. 129	—— tetrachlorodinitrate, 11. 609
—— pentitetradecaoxide, 11. 532	tetrafluoride, 11. 610
	tetrahydroxide colloidal, 11. 528
pentoxyoctochloride, 11. 632	
permanganites, 12. 280	tetramminde, 11. 323 tetramanganeside, 12. 217
	tetrasulphide, 11. 648
phosphide, 8 . 850	tetrathionate, 10. 617, 619
- phosphodecachloride, 8. 1017	tetritaluminide, 11. 523
phosphorus decachloride, 11. 625	tetroxyhydroxychloride, 11. 631
—— phosphoryl hexachloride, 8. 1026	—— thallium alloys, 11. 523
octochloride, 11. 625	thallous oxypentafluomolybdate, 11.
platinates, 16 . 248	611
platinum alloys, 16. 216	thiosulphate, 10555
— — nickel-cobalt-chromium alloy, 16 .	tin alloys, 11. 523 titanium-tungsten alloys, 11. 744
potassium dichloride, 11. 628	triamidotrichloride, 8. 267
dioxytetrachloride, 11. 632	triamminotrioxide, 8. 267
— dioxytrichloride, 11. 632	tribromide, 11. 635
enneafluoride, 11. 610	trichloride, 11. 619

Molybdenum trifluoride, 11. 609	Molybdic sulpharsenate, 9. 322
trihydroxide, 11. 525	
	sulphate, 11. 656
colloidal, 11. 525	—— sulphide, 11. 640
trihydroxytribromide, 11. 638	Molybdin, 11. 535
—— trimolybdate, 11. 571	Molybdite, 11. 488, 535
trioxide, 11. 535	Molybditis, 7. 638
trioxybishydrochloride, 11. 633	Molybdœna, 7 . 780, 781
trioxyheptachloride, 11. 632	Molybdomenite, 10. 694, 833
trioxyhexachloride, 11. 632	Molybdophyllite, 6 . 888; 7 . 491
trioxysulphate, 11. 657	Molybdosic ammonium sulphate, 11. 657
	arsenate, 9. 205
	hypophosphite, 8. 888
—— trioxytetrafluoride, 11. 611	phosphate, 11. 671
triselenide, 10 . 797	- potassium sulphate, 11. 657
trisulphate, 11. 658	sulphate, 11 . 657
trisulphide, 11 . 647	Molybdous amminobromide, 11. 635
—— tritadinitride, 8. 129	ammonium heptachloride, 11. 619
tritaluminide, 11. 523	octochloride, 11. 618
trithionate, 10. 607	borate, 5. 107
	bromide, 11. 634
colloidal, 11 . 530	chloride, 11. 616
tungstate, 11. 796	diamminochloride, 11. 617
tungsten chromium cobalt alloys, 14.	hemienneahydrate, 11. 617
543	hexahydrate, 11. 617
iron alloys, 12 . 643	monohydrate, 11 . 617
—— uranium alloys, 12. 38	trihydrate, 11. 617
uses, 11. 518	- diaquotetrachlorodihydroxide, 11. 618
valency, 11. 520	diaquotetrachloroxide, 11. 618
vanadium alloys, 11. 524	hydroxide, 11. 525
chromium-iron alloys, 13. 626	iodide, 11. 639
nickel alloys, 15. 248	oxide, 11. 525
—— zinc alloys, 11. 523	—— potassium heptachloride, 11. 619
oxypentafluomolybdate, 11. 611	octochloride, 11. 618
Molybdenyl ammonium pentabromide, 11.	tetrabromosulphate, 11. 658
637	Molybdyl decamminotriamidotrichloride, 8.
pentachloride, 11. 629	267
—— bromide, 11. 636	diamide, 8. 267
eæsium pentabromide, 11. 637	pentamide, 8. 267
cobaltic hexamminofluoride, 14. 610	triimide, 8 . 267
dihydroxydichloride, 11. 633	Molybdyldibromide, 11. 637
hydroxytrichloride, 11. 633	Molysite, 2. 15; 12. 530; 14. 40
—— magnesium pentabromide, 11. 638	Monacite, 5. 523
—— molybdate, 11 . 571	Monad, 1. 224
—— paramolybdate, 11 . 571	Monads, 1. 35, 111, 206
phosphate, 11 . 659	Monamidodiphosphorie acids, 8. 710, 712
potassium pentabromide, 11. 637	Monamidophosphoric acid, 8, 705
pentachloride, 11. 630	Monazite, 5. 523; 7. 100, 896; 8. 733; 12. 6.
	sand, 7. 185
pyridine pentachloride, 11. 631	Monazitoid, 5. 523
rubidium pentabromide, 11. 637	Mondstein, 6. 663
——————————————————————————————————————	Monetite, 3, 880, 881; 8, 733
sulphate, 11 . 658	Monel metal, 15, 179
—— tribromide, 11 . 637	Monheimite, 4. 408; 14. 359
trichloride, 11. 629	Monimidotetramidotetraphosphoric acid, 8.
trimethylammonium tetrachloride, 11.	715
631	Monimolite, 9. 343, 458; 12. 150
Molybdic acid colloidal, 11. 543, 545	Monium, 5. 501
monohydrate, 11. 545	Monoborane, 5. 36
α-, 11. 545	Monobromosilane, 6. 979
	Monocalcium phosphate, 3. 886
soluble, 11. 545	Monochlorobisethylthiolacetoplatinous acid,
alums, 11. 572	16. 276
— borate, 5. 108	Monochlorosilane, 6. 960, 970
bromide, 11. 635	Monochromates, 11. 240
chloride, 11. 619	Monoclinic system, 1. 621
	Monoethyl phosphate, 8. 966
—— metaphosphate, 11. 659	Monofluo-orthophosphoric acid, 8. 998
— ochre, 11. 488, 535	Monogermane, 7. 263
oxide, 11. 525	Monometaphosphates, 8. 981, 984
sodium pyrophosphate, 11. 671	· a-, 8 . 985
LA-Limbingo, va.	

Monometaphosphates β -, 8. 985 Monomolybdates, 11. 551 Monoperchromates, 11. 357 Monoperchromic acid, 11. 361 Monoperoxycarbonates, 6. 86 Monoperoxydicarbonates, 6. 86 Monoperstannic acid, 7. 413 Monopertungstic acid, 11, 833 Monophane, 6. 761 Monophosphamide, 8. 709 Monoselenotetrathionic acid, 10. 925 Monosilandiol, 6. 216 Monosilane, 6. 216 Monosilanic acid, 6. 216 Monosilanol, 6. 216 Monosilicopropane, 6. 216 Monosulphammonic acid, 8. 667 Monothio-orthophosphoric acid, 8. 1068 Monothiophosphoric acid, 8. 1062 Monothiophosphorous acid, 8. 1062 Monotropic allotropy, 5. 723 Monotungstates, 11. 773 Monouranates, 12. 61 Monox, 6. 235 Monoxodioxydisiloxane, 6. 235 Monradite, 6. 821 Monrolite, 6. 456 Montanin, 6. 945 Montanite, 9. 589; 11. 2, 97 Montebrasite, 5. 155, 367 Monticellite, 6. 385, 408 Montmorillonite, 6. 497 Montroydite, 4. 697, 771 Moonstone, 6. 662 Morasterz, 13. 886 Moravite, 6. 623; 12. 530 Mordant d'alumine, 5. 352 Mordenite, 6. 575, 748 Mooreite, 12. 423 - δ-, **12**. 423 Morenosita, 15. 454 Morenosite, 15. 5, 454 Moresnetite, 6. 442; 15. 9 Morganite, 6. 803. Morinite, 5. 367 Mormorion, 6. 138 Mornite, 6. 693 Morocochite, 9. 691 Moronolite, 12. 530; 14. 343 Moroxite, 3. 896 Morphine bromoplatinate, 16. 376 Morphotropic series, 1. 654 Morphotropy, 1. 655 Mors metallorum, 4. 797 Mortar bodies, 6. 515 Morvenite, 6. 766 Mosaic gold, 4. 671; 7. 469 Mosandra, 5. 502 Mosandrite, 5. 513; 6. 844; 7. 3, 100 Mosesite, 4. 697, 842 Mossite, 9. 839, 909; 12. 530 Motion perpetual, 1. 50 Motochemistry, 1. 227 Mottled jug iron, 12. 596 Mottramite, 9. 715, 778 Motus caloris, 1. 60 ignis, 1. 60 Moufette atmospherique, 1. 68 Mountain blue, 5. 370; 6. 343 - butter, 14. 299

Mountain cork, 6. 825 green, 6. 343; 9. 122 leather, **6**. 825 воар, 6. 498 Mousse de platine, 16. 50 Mud. 8. 27 Müllerin, 11. 45 Müllerine, 8. 494 Müllerite, 6. 907; 11. 2; 12. 530 Muldan, 6. 663 Mullanite, 7. 491; 9. 545 Mullicite, 14. 590 Mullite, 6. 454 Multiple growth hypothesis of elements, 4. Multivalent elements, 4. 174 Mundic, 12. 530; 14. 199 Muntz metal, 4. 671 Murate, 6. 896 Murclisonite, 6. 663 Muriacite, 8. 761 Muriate de mercure des chimistes, 4. 798 Muriatic acid, 2. 20, 21 Muromonite, 4. 206; 5. 509 Muscovite, 6. 603, 604, 606 — gold, 7. 469 Muscovy glass, 6. 606 Musenite, 14. 757 Mushet steel, 18. 634 Musite, 5. 521 Mussite, 5. 521; 6. 409 Muthmannite, 11. 2, 49 Myelin, 6. 472 Mysorine, 8. 267, 269 Mythological chemistry, 1. 2

N

Naak, 7. 277 Nacrite, 6. 477, 606 Nadeleisenerz, 13. 877 Nadelerz, 9. 693 Nadorite, 7. 491; 9. 343, 507 Naëgite, 6. 857; 7. 167; 12. 5 Näpchenkobold, 9. 2, 3 Näpfchenbobelt, 9. 3 Naga, 7. 277 Nagiakererz, 11. 114 Nagyager erz, 11. l silber, 11. 45 Nagyagite, 3. 494; 7. 491; 11. 2, 114 Nagygite, 11. 1, 5 Nail-head spar, 3. 814 Namaqualite, 5. 154 Nantokite, 2. 15; 8. 157 Nantoquite, 8. 157 Naphthylamine bromopalladite, 15. 677 hydrochloride, 11. 831 a-naphthylamine chloropalladite, 15. 670 β -naphthylamine chloropalladite, 15. 670 Naphthylammonium bromoplatinate, 16.375 a-naphthylammonium chlorosmate, 15. 719 β -naphthylammonium chlorosmate, 15. 719 Naples red, 9. 157 yellow, 9. 457 Narcoticus knielii, 4. 943 Narsarsukite, 6. 843; 7. 3; 12. 530 Nascent state, 1. 331 Nasonite, 6. 889; 7. 491

Nasturan, 12. 5, 50	Neodymium dioxide, 5. 630
Natar, 2. 419	—— dioxymonocarbonate, 5. 665
Natroalun, 5. 341	—— dioxysulphate, 5. 651
Natroalunite, 14. 344	—— dodecamminochloride, 5. 644
Natroamblygonite, 2. 426	fluoride, 5 . 638
Natrocalcite, 3. 622	hydrazine sulphate, 5. 659
Natrochalcite, 8, 257	henadecamminochloride, 5. 644
Natrojarosite, 12. 530; 14. 343, 344	
Natrolite, 6 . 575, 652, 762	hydroxide 5, 638
—— meta-, 6 . 654	hydroxide, 5. 628 iodide, 5. 646
—— palaeo-, 6 . 652	isolation, 5. 551
potash, 6 . 654	- magnesium nitrate, 5. 672
thallo-, 6 . 826	manganous nitrate, 12. 446
Natromicrocline, 6. 664	—— metaborate, 5 . 104
Natron, 2. 710	molybdate, 11. 564
Natronehabazite, 6. 734	—— monamminochloride, 5. 644
Natrophylite, 2. 426; 12. 149, 454	nickel nitrate, 15. 492
Natrophyllite, 8, 733	- nitrate, 5. 669
Natroxonotlite, 6. 360	nitride, 8. 115
Natural alloy, 15. 179	occurrence, 5 . 586
smelt, 5. 370	octamminochloride, 5. 644
Naumannite, 3. 300; 10. 771	oxalatonitrate, 5. 670
Nebulæ spectra, 4. 19	
Nebulium, 4. 21, 171; 5. 617	oxydicarbonate, 5. 665
Nectronite, 6, 663	pentamminochloride, 5. 644
Needle ironstone, 12. 530; 13. 877	—— pentoxide, 5. 634 —— perchlorate, 2. 402
ore, 9 . 589, 693 tin ore, 7 . 394	— perchetate, 2. 477
Nefedieffite, 6. 825	potassium carbonate, 5. 666
Nefedjewite, 6. 825	
Negative, 3. 412	preparation, 5 . 590
catalysts, 1. 938	- properties, chemical, 5. 601
corpuscles, 4. 28	physical, 5. 591
evidence, 1. 83	rubidium nitrate, 5. 671
glow, 4. 24	selenate, 10. 872
—— valence, 4. 191	dodecahydrate, 10. 872
Nemalite, 4 . 290	octohydrate, 10. 872
Nemaphyllite, 6. 407	pentahydrate, 10. 872
Nematolite, 4. 290	— - selenite, 10. 831
Neocolemanite, 5. 90	sesquioxide, 5. 625
Néoctèse, 9. 224	
Neocyanite, 6. 341	
Needymia 5 625	solubility of hydrogen, 1. 307 sulphate, 5. 650
Neodymia, 5. 625 —— preparation, 5. 588	basic, 5. 651
Neodymium, 5. 501	octohydrated, 5. 654
ammonium carbonate, 5. 666	pentahydrated, 5. 654
—— molybdate, 11. 587	sulphatocerate, 5, 660
nitrate, 5. 671	sulphide, 5. 648
analytical reactions, 5. 608	tetramminochloride, 5. 644
—— atomic number, 5. 622	tungstate, 11 . 791
weight, 5. 621	—— triuranate, 12 . 67
—— barium tungstate, 11. 791	—— uranyl sulphite, 10 . 309
bromate, 2. 354	zinc nitrate, 5. 672
—— bromide, 5 . 64 5	Neogen, 15. 210, 235
cæsium sulphate, 5. 658	Neoholmium, 5. 698
carbide, 5. 873	Neokosmium, 5. 504
carbonate, 5. 664	Neolite, 6. 428
ceric sulphate, 5. 662	Neomolybdenum, 11. 485
chloride, 5. 643	Neon, 4. 50; 7. 889 —— atomic disruption, 7. 948
——————————————————————————————————————	—— atomic disruption, 7. 948 —— weight, 7. 947
—— mononydrated, 5. 643	—— electronic structure, 7. 949
	—— history, 7. 891
—— cobaltous nitrate, 14. 828	—— isotopes, 7. 948
—— cuprous disulphite, 10. 302	occurrence, 7. 892
dithiosulphate, 10. 550	preparation, 7. 902
— diamminochloride, 5. 644	properties, chemical, 7. 941
TOT WIT	

V. T.	
Neon, properties, physical, 7. 906	Nickel aluminium steels, 15. 314
Neophase, 14. 348	
Neo-platonists, 1. 39	sulphate, 10. 470
	——————————————————————————————————————
Neosalvarsan, 9. 40	
Neotantalite, 5. 519; 9. 839	
Neotesite, 6. 894	amide, 8. 273
Neo-thorium, 7. 209	amminochloronitrate, 15. 490
Neotocite, 6. 897; 12. 150	amminochlorosmate, 15. 720
Neotungsten, 11. 674	amminohypophosphite, 8. 890
Neotype, 3. 625, 814, 834, 846	—— amminometasilicate, 6. 932
Neoytterbium, 5. 498	— — amminopermanganate, 12. 336
Nepaulite, 9. 291	ammonium azide, 8. 355
Nephelina, 6. 569	barium nitrite, 8 . 511
Nephelene X-radiogram, 1. 642	cadmium nitrite, 8. 512
Nepheline (see Nephelite), 6. 569	
Nephelite, 6. 569	carbonate, 15. 486
—— baryta, 6 . 571	chromate, 11. 313
hydrated, 6 . 574	copper sulphate, 15. 474
silver, 6 . 570	diamminochromate, 11. 313
strontia, 6 . 571	dihydrophosphatohemipenta-
Nephrite, 6 . 405; 15 . 9	molyhdata 44 670
	molybdate, 11. 670
Neponite, 15. 5	dihydroxyquaterchromate, 11.
Neptunite, 6. 843; 7. 3; 12. 150, 530	313
Nernst's heat theorem, 1. 735	
lamp, 7. 112, 120	disulphate, 15. 467
vapour pressure formula, 1. 434	dithionate, 10. 598
Nertschinskite, 6. 495	hexamminosulphate, 15. 468
Nesquehonite, 4 . 251, 355	lead nitrite, 8. 512
Nessler's solution, 4. 933	nitritobismuthite, 8. 572
Neter, 2. 419	orthophosphate, 15. 495
Neumann's bands, 12. 893	dihydrate, 15. 495
———— figures, 12 . 892	hexahvdrate, 15, 495
lamelle, 12, 892	persulphate, 10. 480
	phosphatohemipentamolybdate,
rule, 1. 805	11. 670
Neurolite, 6. 500, 921	phosphite, 8. 920
Neusilber, 15. 209	selenate, 10. 887
Neutral salts, 1. 388	strontium nitrite, 8. 511
Neutrality, Richter's law of, 1. 391	sulphate electrolysis, 1. 962
Neutralization, 1. 389, 391	sulphatofluoberyllate, 15. 478
—— ion theory, 1. 1007	sulphide 45 442
of acids and bases, 1. 1007	
	sulphite, 10. 319
Nevada silver, 15. 208	tetrafluoride, 15. 404
Nevyanskite, 15. 686; 16. 6	——————————————————————————————————————
New silver, 15. 208	
Newberyite, 4. 252, 390; 8. 733	hexamminochloride, 15. 418
Newjanskite, 15. 751	—— analytical reactions, 15. 161
Newkirkite, 12. 238	antimonite, 9. 433
Newland's law of octaves, 1. 252, 254	aquohemiamminofluoride, 15. 404
Newportite, 6. 620	aquomonamminofluoride, 15. 404
Newton, Isaac, 1. 47	aquopentamminofluoride, 15. 404
Newtonite, 6. 492	aquopentamminosulphate, 15. 464
Niccolanum, 14. 421	arsenical, 9. 80
Niccoline, 9. 80	arsenitomolybdate, 9. 131
Niccolite, 9. 4, 80; 15. 2, 5	atomic disruption, 15. 177
Niccolum ferro et cobalto arsenicatis et	number, 15. 177
sulphuratis, 9. 80, 310	weight, 15 . 175
Nickel, 1. 264, 520; 15. 1	autunite, 12. 135
acetonesol, 15. 41	arida Q 255
—— Admirality, 15. 235	
aerosols, 15. 41	barium alloy, 15. 205
	—— pentasulphide, 15. 444 —— tetranitrite, 8. 511
allove 15 179	because of 45
	benzenosol, 15. 41
aluminide, 15. 223	beryllium alloys, 15. 205
aluminium alloys, 15. 223	
bromide, 15. 429	fluoride, 15 . 405
magnesium alloys, 15. 231, 314	biarseniet, 9. 76
	bisdiacetyldioximosulphate, 15. 466
pentafluoride, 15. 405	bisethylenediaminechloroplatinate, 16.
	Discoury to the control of pasternate, 20.

Nickel bishexamethylenediaminotetrathio-	Nickel chloride monohydrate, 15. 407
nate, 10 . 620	——————————————————————————————————————
bishexamethylenetetraminopersul-	physical, 15. 407
phate, 10. 480	chlorogurate 2 505
bismethylhydroxyglyoximosulphate, 15. 466	
—— bismuth alloys, 9 . 640	chloropalladate, 15. 673
——————————————————————————————————————	—— chloropalladite, 15. 670
— bisphenylenediaminosulphate, 15. 465	- chloroplatinate, 16. 332
bisquinolinosulphate, 15. 465	—— hexahydrate, 16. 332
—— bissulphoarsenoantimonide, 9. 556	chloroplatinite, 16. 285
—— bistriaminopropanoiodide, 15. 433	chlorostannate, 7. 450
— bistriaminopropanosulphate, 15. 466	chromate, 11. 313
— bistriaminopropylaminoiodide, 15. 433	chromite, 11. 204
— bistriaminotriethylenebromide, 15. 429	chromium alloys, 15. 238
bistriaminotriethylenoiodide, 15. 433	aluminium alloys, 15. 245
bistriaminotripropylaminohydroxyio-	——————————————————————————————————————
dide, 15. 433 —— bistrimethylenediaminosulphate, 15.	
—— bistrimethylenediaminosulphate, 15.	cobalt alloys, 15. 338
— blende, 15. 435	copper alloys, 15 . 245
—— bloom, 9. 5; 15 . 5	tin alloys, 15. 245
boracite, 5 . 140	iron alloys, 15. 316
boride, 5 . 31	titanium alloys, 15. 328
boron alloys, 15. 223	molybdenum alloys, 15. 248
borotungstate, 5. 111	iron-copper alloys, 15. 330 steels, 15. 329
— bournonite, 9 . 550	steels, 15. 329
—— brass, 4. 676	
prasses, 10. 210	iron alloys, 15 . 328
bromate, 2. 360	
ammino-, 2. 361	- vanadium alloys, 15. 245
—— bromide, 15. 425	iron alloys, 15. 328
	cobalt alloys, 15. 332
	- — copper alloys, 15. 336
—— bronzes, 15. 235	——————————————————————————————————————
cadmium alloys, 15. 222	iron alloys, 15. 338
trisethylenediaminobromide, 15.	manganese alloys, 15 . 338
429	
——————————————————————————————————————	manganese alloy, 15. 338
417	nitrates, 15. 493
———— trisethylenediaminoiodide, 15.	
433	pyrites, 14. 757 separation, 14. 440
cæsium amminotrichloride, 15. 419	sulphide 15, 448
barium nitrite, 8. 512 chromate, 11. 313	sulphide, 15. 448 sulphoantimonide, 9. 556
iodide 15, 433	cobaltic ethylenediaminochloride, 15.
iodide, 15. 433 nitritobismuthite, 8. 513	422
selenate, 10. 889	trisethylenediaminoctochloride,
tribromide, 15. 429	14. 658
trichloride, 15. 419	cobaltide, 15. 333
—— calcium alloys, 15 . 205	cobaltite, 14. 594
arsenate, 9. 231	—— colloidal soln., 15. 41
sulphate, 15. 475	columbate, 9. 868
carbonate, 15. 483	columbium alloys, 15. 238
—— hexahydrate, 15. 483	chromium steels, 15. 329
trihydrate, 15. 483	zirconium alloys, 15. 238
carbonyl, 5. 953	copper alloys, 15. 178
catalysis by, 1. 487	aluminium alloys, 15. 225, 231
	————— bervllium alloys, 15, 206
cerium alloys, 15. 232	bismuth alloys, 15. 202
cerous nitrate, 15. 492	cadmium alloy, 15. 222
chlorate, 2. 360	bismuth alloys, 15. 202 cadmium alloy, 15. 222 chromium aluminium alloys, 15.
ammino-, 2. 360	240
chloride, 15. 406	iron alloys, 15. 327, 337
dihydrate, 15. 407	——————————————————————————————————————
dodecahydrate, 15 . 407	iron-magnesium alloys, 15.
heptahydrate, 15. 407	337
hexahydrate, 15. 407	lead alloys, 15. 337

Nickel copper cobalt zinc alloys, 15. 337	Nickel dipentitaphosphide, 8. 859
———— dioxychloride, 15 . 419	dipentitarsenide, 9. 79
hydroxysulphatarsenate, 9. 334	—— diselenide, 10. 801
iron alloy, 15. 312 aluminium alloys, 15. 313	—— disulphide, 15. 442
manganese alloys 15 313	disulphitotetramminocobaltate, 10.
zinc alloys, 15. 313	ditelluride, 11. 64
magnesium alloys, 15 . 207	dithionate, 10. 598
aluminium allovs, 15, 231	—— ditritantimonide, 9. 414
———— manganese alloys, 15 . 255 ———— molybdenum alloys, 15 . 247	ditritaphosphide, 8. 860
molybdenum alloys, 15. 247	ditritarsenide, 9. 79
	ditritasilicide, 6. 207
	ditritastannide, 15. 232 ditungstate, 11. 810
sulphide, 15. 443	dodecabromodidymate, 5. 645
tantalum alloys, 15, 238	dodecabromolanthanate, 5. 645
	dodecametavanadate, 9. 792
silicon alloys, 15. 235	dodecamminochloroplatinate, 16. 332
	electrodeposition, 15. 33, 96
trioxychloride, 15. 419	electronic structure, 15. 177 enneaamminonitrate, 15. 490
	ethylenediamine disulphate, 15. 469
——————————————————————————————————————	ethylstannonate, 7. 410
iron alloys, 15 . 330 tantalum alloys, 15 . 251	extraction, 15, 15
tantalum alloys, 15. 251	
vanadium alloys, 15. 238	Browne's, 15. 25
zine-tungsten alloys, 15. 251 corrosion, 15. 144, 156, 159	
decamminochloroplatinate, 16. 332	Mond's process, 15, 18
—— decatungstate, 11. 832	——— Mond's process, 15. 18 ——— Orford process, 15. 18
decatungstate, 11. 832 deuterotetravanadate, 9. 792	smelting process, 15. 16
—— dialuminide, 15 . 223	——— wet processes, 15. 20
diamidodiphosphate, 8. 711	ferrate, 18. 936 ferric chloride, 15. 421
—— diamminochloride, 15. 415 —— diamminorthoarsenate, 9. 231	
diamminosulphate, 15. 463	ferrous chloride, 15 . 421 pentasulphide, 15 . 446
—— diaquobisbenzylaminosulphate, 15.466	
- diaquobisethylenediaminosulphate, 15.	
465	
—— diaquotetramminonitrate, 15. 490	—— films, 15 . 40
diagnost at adapt un gatata 9 214	fluoberyllate, 15. 405 fluoride, 15. 402
diarsenatoctodecatungstate, 9. 214 diarsenide, 9. 81	fluosilicate, 6 . 958
diboride, 5 . 32	fluostannate, 7. 423
dicadmium hexachloride, 15. 420	fluotitanate hexahydrated, 7. 73
dichromate, 11. 344	—— fluozirconate, 7. 142
—— dichromide, 15. 238	—— gadolinium nitrate, 15. 492
didymium bromide, 15. 429	—— gallium alloys, 15. 231
	—— glance, 9. 310; 15. 6
dihydrazinoiodide, 15. 432	gold alloys, 15. 203 aluminium alloys, 15. 231
dihydrazinosulphite, 10. 319	——————————————————————————————————————
—— dihydride, 15 . 140	
dihydroantimonate, 9. 461	
dihydroarsenatotrimolybdate, 9. 208	——————————————————————————————————————
dihydrotetraorthoarsenate, 9. 231	graphite, 5 . 900
—— dihydroxydisulphite, 10. 319 —— diiododinitritoplatinite, 8. 523	—— green, 15. 6
— diiodohexachloride, 15. 413	—— gymnite, 6 . 932; 15 . 6. —— hemialuminide, 15 . 211
— diiodotriarsenite, 9. 257	hemiamminosulphate, 15. 464
dimagneside, 15. 206	—— hemiarsenide, 9. 78
—— dimetaphosphate, 15. 496	hemiboride, 5. 32
——————————————————————————————————————	—— hemiferride, 15. 259
dimolybdenosilicide, 15. 247	hemimagneside, 15. 206
—— dinitrosyl, 8. 436	hemioxide, 15, 373
dioxide, 15. 398 hydrated, 15. 400	hemipentoxide, 15. 373, 401 hemiphosphide, 8. 860
dioxyarsenate, 9. 231	hemiselenide, 10. 801
dioxytetrafluotetrafluomolybdate, 11.	—— hemisilicide, 6 . 207
614	—— hemistannide, 15. 234

Nickel hemisulphide, 15. 434	Nickel hypophosphite, 8. 890
hemi-tricobaltide, 15. 333	— impurities in, 15. 26
hemitrioxide, 15. 373	intermetallic compounds, 15. 178
hemitriphosphide, 8. 860	—— iodate, 2. 362
hemitriselenide, 10. 801	ammino-, 2. 363
hemitrisilicide, 6. 207	alimino, 2. 505
hemitritelluride, 11. 64	
	indida 4E 420
heptacadmide, 15. 222	iodide, 15 . 430
heptachlorobismuthite, 9. 668	iodoplatinate, 16. 391
hexaaluminide, 15. 223	
hexadecaboratodibromide, 5. 140	hexanydrate, 16. 391
hexadecaboratodichloride, 5. 140	iridium alloy, 15, 750
hexadecaboratodiiodide, 5. 141	iron alloys, 15. 255, 565
hexadecitatungstide, 15. 248	aluminium-copper alloys, 15. 314
hexahydroarsenatoctodecamolybdate.	beryllium alloys, 15. 313
9. 211	——————————————————————————————————————
—— hexahydroxylaminosulphate, 15. 464	chromium-manganese alloys, 15.
hexametaphosphate, 15. 497	338
hexamminochloride, 15. 414	manganese alloys, 15. 330 copper alloys, 15. 330
hemihydrate, 15, 415	——————————————————————————————————————
hexamminochloroplatinite, 16. 285	phosphide, 8. 860
hexamminochromate, 11. 313	pyrites, 15. 444
hexamminodecafluoride, 15. 404	—— silver alloys, 15. 313
hexamminodithionate, 10. 598	tantalum alloys, 15. 315
hexamminofluoborate, 15. 418	tin-copper alloys, 15. 314
hexamminofluoride, 15. 404	
hexamminofluosulphonate, 15. 413	vanadium alloys, 15. 315
hexamminometachloroantimonate, 9.	
492	lanthanum bromide, 15. 429
hexamminonitrate, 15. 490	
hexamminoperrhenate, 12. 477	lead alloys, 15. 235
- hexamminopersulphate, 10. 480	——————————————————————————————————————
hexamminopotassamide, 8. 273	cadmium alloys, 15. 237
hexamminoselenate, 10. 887	———— cobalt alloys, 15. 338
hexamminosulphate, 15. 463	———— copper alloys, 15. 236
hexamminotetrathionate, 10. 619	—— —— disulphide, 15. 444 —— hexaiodide, 15. 433
hexamminotungstate, 11. 802	———— hexaiodide, 15. 433
—— hexanilinosulphate, 15. 466	—— tin-zinc-copper alloys, 15. 237
hexapermanganite, 12. 280	trisethylenediaminoiodide, 15.
hexapotassium octohydrotetrahypo-	433
phosphate, 8. 940	lithium metaphosphate, 15. 496
hexitapentasulphide, 15. 435	—— trichloride, 15. 419
hexitatungstide, 15. 248	—— magnesium alloys, 15. 206
—— history, 15. l	
—— hydrazine disulphate, 15. 469	dihydrorthosilicate, 6, 932
tetrachloride, 15. 419	
	metasilicate, 6. 932
hydrazinosulphate, 15. 464	
 hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrofluocolumbate, 9. 872 hydrofluoride, 15. 404 hydrogel, 15. 4 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydrophosphatodemolybdate, 11. 670 	
 hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrochloride, 15. 413 hydrofluocolumbate, 9. 872 hydrofluoride, 15. 404 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydrophosphatodemolybdate, 11. 670 hydroselenite, 10. 841 	
 hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrofloride, 15. 413 hydrofluocolumbate, 9. 872 hydrofluoride, 15. 404 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydroselnite, 10. 841 hydroselenite, 10. 841 hydrosulphate, 15. 463 	
hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrofluocolumbate, 9. 872 hydrofluocide, 15. 404 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydrophosphatodemolybdate, 11. 670 hydroselenite, 10. 841 hydrosulphate, 15. 463 hydrotrimetasilicate, 6. 931	
hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrofluoride, 15. 413 hydrofluoride, 15. 404 hydrogel, 15. 404 hydrogel, 15. 4 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydrophosphatodemolybdate, 11. 670 hydroselenite, 10. 841 hydrosulphate, 15. 463 hydrotrimetasilicate, 6. 931 hydroxide, 15. 383	
hydrazinosulphate, 15. 464 hydrazinotriaquosulphate, 8. 326 hydroarsenate, 9. 231 hydrocarbonate, 15. 484 hydrofluocolumbate, 9. 872 hydrofluocolumbate, 9. 872 hydrofluoride, 15. 404 hydrogel, 15. 4 hydrogen occlusion, 15. 140 hydrophosphatodemolybdate, 11. 670 hydroselenite, 10. 841 hydrosulphate, 15. 463 hydrotrimetasilicate, 6. 931 hydroxide, 15. 383 — colloidal, 15. 384 — properties, 15. 385 — tetritahydrate, 15. 385 — tetritahydrate, 15. 385 — hydroxyarsenate, 9. 231 hydroxyaride, 8. 355 hydroxyarsenate hydroxylamine, 15. 484	

Nickel metantimonate hexahydrate, 9. 461	Nickel oxynitrate, 15. 490
metasilicate, 6. 932	oxynitrite, 8 . 511
metasulpharsenatoxymolybdate, 9.332	oxyselenide, 10. 780
metatetrarsenite, 9. 134	oxysulphate, 15. 462
metatitanate, 7. 60	palladium alloy, 15. 657
—— metatungstate, 11. 827	—— patent, 15. 179
metavanadate, 9. 791	pentachlorobismuthite, 9. 668
—— mirrors, 15. 40	—— pentafluoaluminate heptahydrated, 5.
— molybdenodisilicide, 15. 247	310
molybdenum alloys, 15. 245	
aluminium alloys, 15. 247	—— pentafluoferrate, 14. 8
	pentafluovanadite, 9. 797
steels, 15. 330	—— pentapermanganite, 12. 280
achalt allows 45 220	pentatetritantimonide, 9. 414
cobalt alloys, 15. 338	pentitadiantimonide, 9. 415
dioxytetrafluoride, 15. 406	pentitahenicosicadmide, 15. 222
manganese-iron alloys, 15. 330	—— pentitahenicosizincide, 15 . 207
silicon alloys, 15. 247	—— pentitahexaselenide, 10. 801
steels, 15. 328	perborate, 5. 120
——————————————————————————————————————	—— perchlorate, 2. 403
——————————————————————————————————————	ammino-, 2. 404
——— vanadium alloys, 15. 248	periodate, 2. 416
—— monamidodiphosphate, 8, 710	permonosulphomolybdate, 11. 654
—— monamminorthoarsenate, 9. 231	peroxide, 15 . 398
—— monamminosulphate, 15. 464	perrhenate, 12. 477
monantimonide, 9. 415	pentahydrate, 12. 477
monarsenide, 9 . 79	tetrahydrate, 12. 477
monobismuthide, 9. 640	—— peruranate, 12. 73
—— monosilicide, 6 . 207	phenylhydrazinosulphate, 15. 466
monotelluride, 11. 64	—— phosphates, 15. 494
tetrahydrate, 11. 64	phosphatododecamolybdate, 11. 663
monothiophosphate, 8. 1069	phosphatoenneamolybdate, 11. 667
monoxide, 15. 373, 374	phosphatohemipentamolybdate, 11.
preparation, 15, 374	670
— — preparation, 15. 374 — properties, chemical, 15. 578 — — physical, 15. 375	phosphite, 8. 920
	physiological action, 15. 163
native, 15. 435	platinous trans-sulphitodiamminosul-
neodymium nitrate, 15. 492	phite, 10. 321
nitrate, 11. 831	platinum alloy, 16. 219
—— nitrates, 15. 487	cobalt-chromium alloy, 16. 220
nitride, 8 . 137	molybdenum alloy,
occurrence, 15. 3	18. 220
ochre, 15. 6	copper alloys, 16. 220
octitoaluminide, 15. 223	———— gold alloys, 16. 220
octoborate decahydrated, 5. 115	iron allova 16, 220
octochloriodide, 15. 432	——————————————————————————————————————
—— octofluozirconate, 7. 142	chromium alloy, 16. 220
oreide, 15 . 210	
organosol, 15. 41	—— plumbite, 7. 669
orthoarsenate, 9. 230	polyhalite, 15 . 475
dihydrate 9, 230	—— polyiodide, 15 . 431
octohydrate, 9. 230	—— polylodide, 15 . 438
orthoarsenite, 9. 134	
orthoborate, 5. 115	phate, 15. 465
	priato, 10. 400
orthophosphate, 15. 494	azide, 8. 355
orthosilicate, 6. 932 orthostannate, 7. 420	barium nitrite, 8. 511
	cadmium nitrite, 8. 512
orthogulphartimonite, 9, 555	calcium nitrite, 8. 512
orthogulpharsenate, 9. 324	sulphate, 15. 475
orthovanadate, 9. 791	carbonate, 15. 486
osmium alloys, 15. 697	
oxalatodinitritodecamminocobaltiate,	
8. 510	dihydrate, 11. 313
oxide aerosol, 15. 385	hexahydrate, 11. 313
oxides, higher, 15. 398	——————————————————————————————————————
intermediate, 15. 395	copper sulphate, 15. 474
oxyarsenate, 9. 231	decasulphide, 15. 443
oxychloride, 15. 412	deuterodecavanadate, 9. 792
oxychromate, 11. 313	dihydrophosphatohemipenta-
oxydul-magnesia, 15. 401	molybdate, 11. 670
oxyfluoride, 15 . 404	——————————————————————————————————————

Nickel potassium dimolybdatotetratung-	Nickel sodium carbonate, 15. 486
state, 11. 796	dihypophosphate, 8 . 940
disulphate, 15. 469	dimetaphosphate, 15. 496
hypophosphate, 8 . 940	octometaphosphate, 15. 497
lead nitrite, 8. 512	orthophosphate, 15. 495
mercuric nitrite, 8, 512	———— heptahydrate, 15. 495
nitritobismuthite, 8. 512 nitrosylthiosulphate, 10. 558	——————————————————————————————————————
orthophosphate, 15. 495	
orthosulphoantimonite, 9. 555	tetradecametaphosphate, 8. 990
penteroheptadecavanadate, 9.	
792	trifluoride, 15 . 405
persulphate, 10. 481 phosphatohemipentamolybdate,	trimetaphosphate, 15. 496 triphosphate, 15. 495
11. 670	solubility of hydrogen, 1. 306
phosphite, 8 . 920	—— speise, 9 . 79
selenate, 10. 888	- stannate(a -), 7. 420
selenatosulphate, 10. 930	stannic bromide, 15. 429
strontium nitrite, 8. 512 sulphatofluoberyllate, 15. 478	
sulphatoselenate, 10. 930	stannide, 15. 233
	stannous tetrachloride, 15. 420
tetrasulphide, 15. 443	steels, 12. 751
trichloride, 15. 419	stibine, 15. 6
trifluoride, 15. 405	—— suboxides, 15. 373
trisulphate, 15. 470 — triterodecavanadate, 9. 792	sulfoarsèniure, 9. 310 sulphate, 15. 453, 466
zinc nitrite, 8. 512	properties, chemical, 15. 461
zirconium dodecafluoride, 15 405	physical, 15. 455
praseodymium nitrate, 15. 492	
preparation, 15. 33	
	sulphide, 15. 436
purification, 15. 27	a, 15. 437 β, 15. 437
pyridinopermanganate, 12. 336	γ, 15. 437
pyridinosulphate, 15. 465	colloidal, 15, 438
pyrites, 15. 435	— — hydrated, 15. 436 — — properties, chemical, 15. 440 — — physical, 15. 438
red, 15 . 435 yellow, 15 . 435	properties, chemical, 10. 440
—— pyrophoric, 15 . 40	sulphides, 15. 434
—— pyrophosphate, 15. 495	sulphoantimonate, 9. 576
pyrosulpharsenate, 9. 324	sulphantimonide, 9. 555
pyrosulpharsenatoxymolybdate, 9. 331	
rubidium chromate, 11. 313 disulphate, 15. 471	
nitritobismuthite, 8, 513	sulphite, 10. 318
	tetrahydrate, 10. 318
	sulphoarsenoantimonide, 9. 555
ruthenium alloys, 15. 510	—— sulphobismuthite, 9. 696 —— sulphochromite, 11. 633
samarium nitrate, 15. 492 selenate, 10. 887	sulphomolybdate, 11. 653
	sulphotellurite, 11. 114
selenite, 10. 841	sulphotungstate, 11. 859
——————————————————————————————————————	tantalum alloys, 15. 237
hemihydrate, 10. 841	zirconium alloys, 15. 238 tellurate, 11. 97
	tellurite, 11. 82
—— silicododecatungstate, 6. 881	——— monohydrated, 11. 82
—— silicon alloys, 15 . 231	tetraborate hexahydrated, 5. 115
steels, 15. 314	
silver alloys, 15. 202	tetracobaltide, 15. 333
solders, 15 . 209 aluminium alloys, 15 . 231	tetradecamolybdate, 11. 603 tetrafluodioxytungstate, 11. 840
copper alloys, 15. 203	—— tetrahydroxycarbonate, 15. 485
zinc alloys, 15. 222	tetrametaphosphate, 15. 496
	dodecahydrate, 15. 497
smaragol, 15. 6	tetramminochloroplatinite, 16. 285

OHO OHIVEION	II INDER
Nickel tetramminodinitrite, 8. 511	Nickel tris-aa'-dipyridyliodide, 15. 433
tetramminoperrhenate, 12. 477	tris-aa'-dipyridylnitrate, 15. 492
tetramminosulphate, 15. 463	trisbutylenediaminobromide, 15. 429
tetramminothiosulphate, 10. 557	trisbutylenediaminoiodide, 15. 433
tetranitritohexamminocobaltiate, 8.	trisbutylenediaminosulphate, 15. 466
510	- trisethylenediaminechloroplatinate,
tetranitritoplatinite, 8. 521	16. 332
- tetraphenylhydrazinonitrate, 15. 491	trisethylenediaminobromide, 15. 429
tetrapyridinotetrathionate, 10. 620	trisethylenediaminoiodide, 15. 433
tetraquoethylenediaminosulphate, 15.	trisethylenediaminonitrate, 15. 491
465	trisethylenediaminosulphate, 15. 465
tetraselenite, 10. 841	trispropylenediaminobromide, 15. 429
tetrasulphide, 15. 443	trispropylenediaminoiodide, 15. 433
tetrathionate, 10. 619	trispropylenediaminosulphate, 15. 466
—— tetravanadate, 9. 792	trispyridinosulphate, 15. 465
	tritacarbide, 5. 901
tetritacobaltide, 15. 333	tritadinitride, 8. 137
tetritantimonide, 9, 414	tritadioxide, 15. 374
tetritaoxide, 15. 373 tetritasilicide, 6. 207	tritadisulphide, 15. 435 tritamanganide, 15. 252
tetritasineide, d. 207 —tetritastannide, 15. 232	tritaniangamite, 15. 252
— tetritatrihydrazinosulphite, 10. 319	tritaphosphide, 8. 859
tetroxide, 15. 373, 402	tritarsenide, 9. 79
—tetroxysulphate, 15. 462	tritasilicide, 6. 207
decahydrate, 15, 462	tritastannide, 15. 232
	- tritatetraselenide, 10. 801
thallic octochloride, 15. 420	——————————————————————————————————————
—— thallium alloys, 15. 231	triterodecavanadate, 9. 792
cadmium nitrite, 8. 512	———— decammine, 9. 792
cerous nitrite, 8 . 512	
	—— hexammine, 9 . 792 —— tetrammine, 9 . 792
uranyl nitrite, 8. 512	— trithionate, 10. 609
thallous lead nitrite, 8. 512	tritungstate, 11. 812
	trizincide, 15. 207
——————————————————————————————————————	—— tungstate, 11. 802
selenate, 10. 889	hexahydrate, 11. 802
sulphite, 10 . 319	———— trihydrate, 11. 802
thiocarbamidophenylhydrazinonitrate,	—— tungsten alloys, 15. 248
15. 491	chromium alloys, 15. 251
thiocarbonate, 6. 128	dioxytetrafluoride, 15. 406
thichesphate 8 1066 15 406	
thiophosphate, 8. 1066; 15. 496 thiophosphite, 8. 1062	
—— thiopyrophosphate, 8. 1070	uranium alloys, 15. 237
thiosulphate, 10. 557	—— uranyl nitrate, 15. 492
—— thorium alloy, 15. 232	—— uses, 15. 165
nitrate, 15 . 492	valency, 15 . 175
—— tin alloys, 15. 232	vanadium alloys, 15. 238
——————————————————————————————————————	pentafluoride, 15. 405
titanium alloys, 15. 232	vandyl tetrafluoride, 15. 405
	viktril, 15. 454 vitriol, 15. 454
trialuminide, 15. 224	voltaite, 14. 352
triamminoarsenate, 9. 231	xanthogenonitrate, 15. 492
triamminofluoride, 15. 404	X-radiogram, 1. 642
triamminosulphite, 10. 319	zinc alloy, 15. 207
triamminothiocarbonate, 6. 128; 15.	copper alloys, 15. 208
441, 486	hydrosulphate, 15. 476
triaquotriamminochloride, 15. 415	nitrates, 15. 492
triarsenatotetravanadate, 9. 201	orthophosphate, 15. 495
triarsenide, 9. 81	silicate, 6 . 933
	zirconium, 7. 117
	————— alloys, 15 . 232 —————— hexafluoride, 15 . 405
trihydrazinodithionate, 10. 598	octofluoride, 15 . 405
trihydrazinonitrate, 15. 491	(di)nickel diborate, 5. 115
trihydrazinosulphite, 10. 319	Nickelarsenikglanz, 8. 310
trioxide, 15. 373, 401	Nickelarsenikkies, 9. 310
trioxysulpharsenate, 9. 329	Nickelates, 15. 401

Nickelerz, 9. 230	Nickelous dihydroxybrophosphoryltrichlor-
Nickelfahlerz, 9. 291	ide, 8. 1026
Nickelic ammonium tridecamolybdate, 11.	enneaoxydiiodide, 15. 431
602	ferric fluoride, 15. 406
tungstate, 11. 802	
barium tungstate, 11. 802	ferrite, 13. 925
chloride, 15. 422	ferrous hydrosulphate, 15. 477
cobaltic ferric oxide, 14. 586	sulphate, 15. 477
fluoride, 15. 406	fluoride, complex salts of, 15. 404
oxide, 15. 373, 392	hexaiodoplumbite, 7. 779
hexahydrate, 15. 393	hexamminobromide, 15. 427
——————————————————————————————————————	hexamminoiodide, 15. 432
——————————————————————————————————————	hexamminomolybdate, 11. 575
properties, 15 . 393	- hydrazine tetrabromide, 15. 428
tetrahydrate, 15. 393	hydroxide, 15. 383
sulphate, 15. 478	colloidal, 15. 384
Nickelin, 15. 208, 210	iodide, 15. 430
Nickeline, 9. 4; 15. 6	lithium sulphate, 15. 472
Nickelkies, 15. 435	—— magnesium sulphate, 15. 475
Nickelodomeykite, 9. 63	molybdate, 11. 575
Nickelosic oxide, 15. 373, 391	pentahydrate, 11. 575
sulphide, 15. 442, 447	nitrate, 15. 487
Nickelous acetylide, 5. 901	dihydrate, 15. 487
aluminium hydrosulphate, 15. 476	enneahydrate, 15. 487
amminobromide, 15. 428	hexahydrate, 15. 487
ammonium beryllium fluosulphate, 15.	tetrahydrate, 15. 487
475	nitrite, 8. 511
——————————————————————————————————————	oxide, 15. 373, 374
decamolybdate, 11. 598	- paratungstate, 11. 820
diamminomolybdate, 11, 576	pernickelite, 15. 396, 401
enneamolybdate, 11. 597	potassium, 15. 396, 400
———— ferrous sulphate, 15 . 477	——————————————————————————————————————
henitricontamolybdate, 11. 604	phenylenediaminochloride, 15, 417
hexadecamolybdate, 11. 603, 604	— potassium beryllium fluosulphate, 15.
—— —— magnesium sulphate, 15. 475	475
—— — manganous sulphate, 15. 477	cobaltous sulphate, 15. 478
pentasulphate, 15. 468	ferrous sulphate, 15. 477
tetratricontamolybdate, 11, 604	hexadecamolyhdate, 11, 604
zinc sulphate, 15. 476	magnesium sulphate, 15. 475 manganous sulphate, 15. 477
beryllium sulphate, 15. 475	manganous sulphate, 15. 477
heptahydrate, 15. 475	zinc sulphate, 15. 476
hexahydrate, 15 . 475	quater-o-phenylenediaminochloride,
tetrahydrate, 15. 475	15. 417
bisethylenediaminochloride, 15. 417	quaterpyridinochloride, 15. 417
—— bromide, 15 . 42 5	—— sodium disulphate, 15. 472
	hexamolybdate, 11. 594
enneahydrate, 15 . 426	—— sulphate, 15 . 4 53
hexahydrate, 15. 426	———— hexahydrate, 15. 455
cadmium sulphate, 15. 476	a, 15. 455 β, 15. 455
cæsium disulphate, 15. 472	β, 15 . 455
———— hexahydrate, 15. 472	——————————————————————————————————————
carbide, 5. 901	monohydrate, 15. 454
ceric decaffuoride, 15, 405	sulphide, 15. 436
chromic hydrosulphate, 15. 477	thallous disulphate, 15. 476
pentaffuoride, 15. 405	trihydrazinobromide, 15, 428
cobaltous sulphate, 15. 477	trimolybdate, 11. 590
copper dihydropentasulphate, 15. 474	tris-aa'-dipyridylcarbonate, 15. 484
dioxysulphate, 15. 474	trisbutylenediaminochloride, 15. 417
trioxydisulphate, 15. 474	trisethylenediaminochloride, 15. 417
dodecahydrate, 15. 474	- trispropylenediaminochloride, 15. 417
trisulphate, 15. 473	zinc sulphate, 15. 476
	Nickelovanadium, 9. 726
henicosihvdrate, 15, 473	Nickelspiessglanzerz, 9. 555
	Nickelspiessglaserz, 9. 555
trihydrate, 15. 473	Nickelwismuthglanz, 9. 696; 15. 447
diamminobromide, 15. 428	Nicoline bromoplatinate, 16. 376
diamminoiodide, 15. 432	Nicomelane, 15. 6
diamminomolybdate, 11. 575	Nicopyrite, 15. 6, 444
diaquotetrapyridine fluoride, 15. 404	Niebeckite, 6. 391
—— dihydrazinobromide, 15. 428	Niello work, 3. 447

O and the same	
Nigrica fabilis, 5. 713	Nitrites, 8. 470
Nigrine, 7. 2, 30	analytical reactions, 8. 464
Nigrum, 7. 99	constitution, 8, 466
Nihil, 11. 484	preparation, 8, 455
Nihilum album, 4. 506	
Niobates, see Columbates	(di)nitritodichlorodiamminocobaltiates, 8.
Niobite, 9. 839, 868, 906; 12. 530	510
Niobium (see Columbium), 9. 837	(di)nitritodimethylglyoximinocobaltiates,
Nipponium, 7. 177; 11. 485	8. 510
Niton, 4. 95, 96, 127; 7. 889	(di)nitritodimethylglyoximinocobaltic acid,
—— properties, chemical, 4. 101	8. 510
———— physical, 4 . 99	Nitritopentammines, 11. 403
rapid decay, 4. 105	Nitritoperosmous acid, 15. 728
Nitramidates, 8. 269	Nitritosulphamide, 8. 660, 662
Nitramide, 8, 268, 382	m-nitroanilinium chloropalladite, 15. 670
Nitratin, 2. 802	o-nitroanilinium chloropalladite, 15. 670
Nitratochabazite silver, 6. 733	p-nitroanilinium chloropalladite, 15. 670
thallium, 6. 733	Nitrobacterine, 8. 360 Nitrocalcite, 3. 623, 849
Nitratodiaquotriammines, 11. 403 Nitratopentammines, 11. 403	Nitrocellulose, 2. 829
Nitratopentasulphuric acid, 8, 572, 691	Nitrocobalt, 8. 545
Nitratosilicic acid, 6. 345	Nitrocopper, 8. 544
Nitratosodalites, 6. 583	Nitrogen, 1. 69; 8. 360; 11. 611; 15.
(di)nitratosulphato-octosulphuric acid, 8.	151
691	absorption coeff., 8. 75
Nitratosulphurie acid, 8. 691	activated, 8. 85
Nitre, 2. 419	allotropie, 8. 58, 83
—— basin, 2. 803	α-, 8. 58
beds, 2. 808 cake, 2. 657	β-, 8. 58
cake, 2. 657	1- , 8 . 58
cubic, 2 . 808	····· II-, 8 . 58
meal, 2. 807	—— amminotriiodide, 8. 607
prismatic, 2. 808	and CO ₂ , 6. 32
plantations, 2. 808	
rhombohedral, 2. 808 volatile, 1. 56	arsenide, 9. 69
Nitrie acid, 8, 555, 556; 13, 612, 615	atomic disintegration, 8 . 95
action on metals, 8. 589	weight, 8. 94
	bromide, 8 . 605
———— composition, 8 . 563	carbide, 5. 887
———— fuming, 8 . 563	chloride, 8 . 599
	cycle, 8 . 361
	diamminotetrasulphide, 8. 628
nitroxyl, 8 . 564	dibromopentasulphide, 8. 627
phlogisticated, 8. 454 preparation, 8. 558	dioxide, 8 . 382 discovery, 8 . 45
properties, chemical, 8. 582	disruption of atom of, 4. 152
	—— disulphide, 8 . 629
physical, 8 . 568 trihydrate, 8 . 565	—— electronic structure, 8. 96
anhydride, 8 . 551	—— fixation by direct oxidation, 8. 365
ferment, 2. 807	electric discharges, 8. 367
oxide, 8. 417, 418; 13, 612	Birkeland and
hydrate, 8 . 306	Edye, 8. 374 Island, 8. 376
preparation, 8. 418	Kowalsky and
——————————————————————————————————————	Moscicky, 8.
solubility, 8 . 423	375
sulphuric acid, 13. 615	
Nitrides, 8. 97	Schönherr, 8. 375
Nitrilodiphosphorie acid, 8, 714	Scott, 8. 376
Nitrilodithiophosphoric acid, 8, 726	organisms, 8. 357
Nitrilohydroxydisulphonates, 8. 672	halides, 8 . 598
Nitrilohydroxydisulphonic acid, 8. 672	hexabromotetrasulphide, 8. 627
Nitrilosulphates, 8. 667	herdentstrandshatenestaride 10 345
Nitrilosulphinic acid, 8, 667	hydrotetrasulphatopentoxide, 10. 345
Nitrilosulphonates, 8, 667	iodide, 8 . 605
Nitrilosulphonic acid, 8, 666, 667 Nitrilotrimetaphosphoric acid, 8, 720	—— in air, 8 . 3 —— isopentoxide, 8 . 530
Nitrilotrisulphonates, 8. 680	isotopes, 8. 95
Nitrilotrisulphonic acid, 8. 680	— manufacture from liquid air, 1. 874

Nitrogen, manufacture from liquid air,	Nitrosodiethylammonium bromosmate, 15.
Claude's pro-	723
cess, 1 . 875	Nitroso-iodic acid, 2. 291; 8. 621
	Nitrosonitrogen trioxide, 8. 383
1. 874	Nitrosulfure de fer, 8. 440
—— mercury compounds, 4. 785	et de sodium, 8. 440
molybdenum tetrasulphopentachlo-	Nitrosulphates, 8. 687
ride, 11. 625	Nitrosulphinic acid, 8. 666
—— monotelluride, 11. 58	Nitrosyl, 8, 300
monoxide, 8. 382	bromide, 8 , 619
occurrence, 8. 46	chloride, 8. 612
oxides, 8. 382	
in air, 8. 11	
—— oxysulphides, 8. 631 —— pentasulphide, 8. 630	bismuth, 8. 617
	copper, 8 . 617
peroxide, 8 . 529, 530	
——————————————————————————————————————	- — manganese, 8. 617
——— hydrated, 8. 540	mercurie, 8 . 617
— — properties, chemical, 8. 536	
—— —— physical, 8. 531	stannic, 8. 617
persulphide, 8 . 629	thallous, 8. 617
—— phosphide, 8. 851	titanic, 8. 617
—— preparation, 8. 48	chloroanhydrosulphite, 10. 345
—— properties, chemical, 8. 79	· dibromide, 8. 620
——— physical, 8. 53	ferrous hydrophosphate, 14. 397
selenide, 10 . 788	fluoride, 8 . 612
—— solubility, 8 . 75	fluosulphonate, 8. 612
—— stannic chlorosulphide, 7. 444	- — halides, 8. 612
	persulphate, 8 . 541
sulphide, 8. 624	silver, 8. 412
	—— sulphur trioxide, 8. 434
tetrachlorododecasulphide, 8. 627 tetrachlorotetrasulphide, 8. 627	
tetrasulphide, 8. 624	(di)nitrosyl titanium hexachloride, 7. 84
——————————————————————————————————————	nitrosylarsenic acid, 8. 435
	nitrosyldiethylammonium bromoplatinate,
titanium hexachlorotetrasulphide, 7.	16. 375
77	nitrosyldi-iso-butyl-ammonium bromoplati-
sulphotetrachloride, 7. 84	nate, 16. 375
———— sulphotrichloride, 7. 84	nitrosyldimethylammonium bromoplati-
trihydrazinide, 8. 339	nate, 16. 375
trihydrotrinitride, 7. 761	nitrosyldipropylbromoplatinate, 16, 375
—— trioxide, 8 . 449	nitrosylnitroxylpyrosulphuryl, 8, 703
——————————————————————————————————————	nitrosylphosphoric acid, 8, 435
	(mono)nitrosylpyrosulphuric acid, 8, 703
tungsten tetrachlorotetrasulphide, 11.	(di)nitrosylpyrosulphuryl, 8, 702
843	Nitrosylpyrosulphyl, 8, 703
valency, 8. 89	Nitrosylselenic acid, 8. 696
Nitrogène, 8. 46	Nitrotoluene, 2. 829
Nitroglauberite, 2, 691, 803, 816	Nitrotyl, 8 . 306 Nitrous acid, 8 . 454, 455 ; 13 . 615
Nitroglycerol, 2, 829 Nitrohydrochloric acid, 8, 618	air, 8. 529
Nitrohydroxylamic acid, 8, 582	an, 8. 023
Nitrohydroxylaminic acid, 8, 305	constitution, 8. 466
Nitroiron, 8. 545	preparation, 8. 455
Nitromagnesite, 4. 252, 379	properties, 8. 459
Nitromuriatic acid, 8. 618	air, 8. 417
Nitron, 3. 419; 5. 1	dephlogisticated, 8. 385
bromoiridate, 15. 777	ferment, 2. 807
Nitronamblygonite, 5. 367	oxide, 8 . 382, 385
Nitronickel, 8. 545	and CO ₂ , 6. 32
Nitronium hydrosulphate, 8, 567	hexahydrated, 8 . 391
oxyperchlorate, 8. 567	- physiological action, 8, 399
—— perchlorate, 8. 567	properties, chemical, 8, 393
pyrosulphate, 8 . 567, 703	
Nitrosic acid, 8, 540	
Nitrosisulphonic acid, 8. 692	turpeth, 4. 989

002	GENT
Nitroxan, 8. 212	
Nitroxyl amide, 8 . 268, 382 —— bromide, 8 . 623	
chloride, 8 . 623	
—— fluoride, 8 . 623 —— halides, 8 . 622 —— iodide, 8 . 623	
—— iodide, 8 . 623 —— oxide, 8 . 552	
tetrantimonyltetrachloride	9 . 476
(di)nitroxyl dinitric acid, 8. 542 — selenyl, 8. 696	
Nitroxylphosphoric acid, 8. 542 Nitroxylsulphonates, 8. 699	
Nitroxylsulphonic acid, 8. 696, 6	98
—— anhydride, 8 . 699 Nitroyl, 8 . 306	
— hydrate, 8 . 307 (di)nitroyl, 8 . 306	
Nitrozone, 8. 88	
Nitrum, 2. 419; 5. 1 ————————————————————————————————————	
vitriolatum, 2. 656	
Nitryl bromide, 8 . 623 —— chloride, 8 . 623 —— fluoride, 8 . 623	
fluoride, 8 . 623 halides, 8 . 622	
—— iodide, 8 . 623	
Nivenite, 7. 491; 12. 5, 50 Nix alba, 4. 506	
—— stibii, 9 . 378 Nixes' ore, 15 . 1	
Nobel metal, 3. 525	
Nobilite, 3 . 494; 11 . 114 Nocerine, 2 . 2	
Nocerine, 2. 2 Nocerite, 3. 623; 4. 252 Nocerity a series 8, 730	
consistens, 8. 730	
Noctiluca aërea, 8. 730 —— consistens, 8. 730 —— constans, 8. 730 —— glacialis, 8. 730 —— gummosa, 8. 730	
—— gummosa, 8 . 730	
Noegite, 7. 100 Noheet metal, 7. 607	
Nohlite, 5. 516; 9. 839; 12. 5 Noir d'acetylene, 5. 752	
——— de fume, 5 . 751	
——————————————————————————————————————	
Nomenclaturé chemistry, 1. 114 —— chemist's, evolution, 1. 119	1
Werner's, 1. 209	
Non-corrosive steels, 13. 606 —— metals, 1. 248	
polarized molecules, 4. 187 valence, 1. 206	
Nonproductive energy, 1. 721	
Nontronite, 6 . 906; 12 . 530 Nora minera plumbi, 11 . 290	
Noralite, 6. 821 Nordenskiöldine, 5. 105	•
Nordenskioldite, 5. 105	
Nordenskjöldine, 7. 283, 419 Nordenskjöldite, 6. 404	
Nordhausen sulphuric acid, 10. 3 Nordmarkite, 6, 909; 12, 530	51
Norerde, 7. 99	
Noria, 7. 99 Noric acid, 12. 499	
Norite, 5. 750	
Normal liquids, 1. 856	

Normal salts, 1. 387 —— steel, 12. 675 valencies, 4. 178, 179 Normalglühen, 12. 674 Normaline, 6. 736 Northupite, 4. 368 Norton, T., 1. 48 Nosean, 6. 580, 584 - hydrate, **6**. 585 Nosian, 6. 584 Nosine, 6. 584 Notation crystals, Miller's system, 1, 614 Noumeaite, 6. 933; 15. 6 Noumeite, 6. 933; 15. 6 Novak's shaft furnace, 4. 701 Novarsenobillon, 9. 40 Nucleus theory, 1. 218 Nürnberg gold, 5. 234 Null-valency, 4. 176 Number co-ordination, 8, 235 — of molecules per c.c., 1, 753 --- Polar, 1. 211 Numbers, atomic, 4.38 Numeite, 6. 933 Numerical prefixes, 1. 117 Numite, 15. 6 Nussicrite, 7. 883 Nuttalite, 6. 763

o

Oatremer jaune, 11. 273 Obach's formula, 1, 835 Oblique extinction, 1. 608 Obriza, 8. 525 Obrussa, 3, 301, 525 Obryza, 3, 525 Observation, 1. 5 Occlusion, 1. 306 Oceanium, 7. 2 Ochra cobalt nigra, 12. 266 ---- cobalti rubra, 9. 228 --- nativa, 13. 885 --- Wismuthi, 9. 646 Ochran, 6. 472 Ochre, 12. 530 - brown, 13. 886 -- burnt, 13. 782 --- chrome, **6**. 865 --- mortiale bleue, 14. 390 --- red, 13. 874 - vanadium, 8. 127 Ochrematite, 11. 488 Ochres, 13. 885, 887 Ochröite, 5. 507 Ochroite, 5. 496, 501; 9. 343 Ochrolite, 7. 491; 9. 506 Octachlorosilicopropane, 6. 960 Octachlorotrisilane, 6. 960 Octahedrite, 7. 2, 30 Octahedrites, 12. 528 Octaves, law of, 1. 252, 254 Octazone, 8. 329 Octerohexaphosphoric acid, 8. 992 Octibbehite, 12. 530; 15. 4, 6, 256 Octobromosilicopropane, 6. 981 Octobromotrisilane, 6. 981 Octochloromolybdous acid, 11. 618 Octochloropropane, 6. 972

Octochlorotetrasilane, 6. 975 Opal fire, 6. 141 Octochlorotrisilane, 6. 216, 972 -- glass, 6. 141 Octocosivanadates, 9. 202 ----- iron, **6**. 141 Octodecatungstic arsenic acid, 11. 832 ---- jasper, **6**. 141 Octodecavanadates, 9. 202 --- milk, 6. 141 Octohydroctosiltridecoxane, 6. 232 Octometaphosphates, 8. 989 -- wax, 6. 141 Octometaphosphoric acid, 8, 989 Octomolybdates, 11, 582, 595 Octomolybdic acid, 11. 548 Opalus, 6, 141 Octovanadates, 9, 202 Octovanadatohexadecatungstic acid, 9. 785 Opheret, 7, 484 Odontolite, 5. 368 Oedelite, 6. 718 Ophiolite, 6. 422 Ophites, 6. 420 Oerstedite, 6. 847; 7. 100 Opsimose, 6. 896 Oersted's reaction, 5. 313 Optic axes, 1, 607 Oetotungstates, 11. 773 Optical activity, 1. 608 Oeuil de chat, 6. 139 Offa Helmonti, 2. 800 ---- emptiness, 1. 768 Offretite, 6. 729 Ohm, 1, 963 - - extinction, 2. 155 Oildag, 5. 753 Oisanite, **6**. 721; **7**. 30 Okenite, **6**. 360, 361 Or, 3. 296 --- des chats, 6. 604 Olafite, 6. 663 --- graphique, 11. l Olata pina, 3. 304 Old Nick's Copper, 15. 1 Orange borrite, 14, 167 Oleic acid, 13. 615 Orangeite, 7, 896 Oleum, 10. 351 Oranges, 13. 615 --- glaciale vitroli, 10. 332 --- silicum, 6. 135 — sulphuris, 10. 332 Ordinary ray, 1. 607 --- vini, **2**. 21 Ore, 3. 5 Oligiste, 13. 775 --- ball-metal, 7. 475 Oligoclase, **6**. 662, 693 – baryta, **6**. 707 --- fahl, 3. 7 ---- horseflesh, 3. 7 --- microcline, 6. 664 - strontia, 5. 707 ---- peacock, 3. 7 Oligonite, 12. 150; 14. 355, 369 --- potter's, 7. 781 Oligonspath, 14. 355 - ruby, 3. 7 Oligosiderites, 12. 523 Oliveiraite, 7. 56, 100 --- tile, 3. 117 ---- tinder, 7. 491 Olivenerz strahliges, 9. 161 Oreide, 4. 671 Olivenite, **8**. 8; **9**. 5, 159 Olivine, **6**. 385; **12**. 530; **15**. 9 — Lime-, **6**. 386 --- flotation, 3. 22 —— peridote, **6**. 385 —— titano-, **6**. 846 ---- jigging, 3. 22 Ollacherite, 6. 607 Ollae fossiles, 6. 512 Ol-salt, 14. 672 Orientite, 6. 895 Orileyite, 9. 64; 12. 530 Oltremare giallo, 11. 273 Orloff diamond, 5. 711 Omphacite, 6.818 Omphazite, 6. 818 Ornithite, 8. 623, 866 Orpiment, 9. 1, 4 Oncophyllite, 8. 607 Ondanique, 12. 853 One Thing, 1. 48 Oneyite, 12. 530; 13. 877 Orthites epidote, 5. 510 Ongoite, 6. 622 Onkoite, 6. 622 Onocsine, 6. 606 Onofrite, 4. 697; 10. 694, 780, 919 Orthoarsenic acid, 9. 141 Ontariolite, 6. 763 Onyx, 6. 139 marble, **3.** 815 Orthocarbonates, 6. 72 Ookitic limestone, 3. 815 ore, 5. 249; 13. 775
Oosite, 6. 619, 812
Opacity X-rays, specific, 4. 33 Orthochlorite, 12. 530 Orthochlorites, 6. 622 Opal, 6. 300, 141

- mother-of-pearl, 6. 141 Opalescence of gases, 1. 166 -critical, 1. 166 Open-hearth steel, 12, 653 - constants and isomorphism, 1. 658 --- Tyndall's test, 1. 768 angle of, 1. 608 --- gris lamelleux, 11. 114 Orangite, 7, 175, 185; 12, 6 Oranito, 6, 695 - livery copper, 3. 117 Ores, concentration of, 3. 22 --- electrostatic separation, 3. 22 -- magnetic separation, 3. 22 Organic liquids and CO₂, 6. 32 Orichalcum, 4. 398, 399, 400 Orthite, 6. 722; 7. 897; 12. 6
——allanite, 7. 185 Orthoantimonic acid, 9. 443 Orthoantimonious acid, 9. 429 Orthoarsenatomolybdic acid, 9. 206 Orthobismuthous acid, 9. 650 Orthoboric acid, 5. 47, 48 preparation, 5. 49 Orthocarbonic acid, 6. 72 Orthochloroantimonic acid, 9. 490

Orthochromic acid, 11. 240, 302	Osmium atomic number, 15. 702
Orthochromites, 11. 196	weight, 15. 700
Orthochromous acid, 11. 196	black, 15. 690
Orthoclase, 6. 662; 7. 897	—— blue oxide, 16. 703
—— ferric, 6 . 662	bromides, 15. 722
Orthodiphosphoric acid, 8. 948	catalysis by, 1. 487
Orthodisilicie acid, 6. 310	
Orthodivanadic acid, 9. 758	cobalt alloys, 15. 697
	colloidal, 15. 690
Orthoferric acid, 13. 905 Orthoferrites, 18. 905	
	copper anoy, 15. 697
Orthohexaphosphoric acid, 8, 991	crystalline, 15. 690
Orthohypophosphoric acid, 8. 928	diamminodihydroxide, 15. 703
Orthoiodic acid, 2. 322	dichloride, 15. 716
Orthomanganous acid, 12. 231	dihydroxide, 15 . 702 diiodide, 15 . 724
Orthomolybdic acid, 11. 547	
Orthoperiodic acid, 2. 386	dioxide, 15. 703
Orthophosphates, 8. 966	colloidal, 15. 704, 705
Orthophosphimic acid, 8. 716	dihydrate, 15. 704
Orthophosphoric acid, 8. 947. 948	—— —— monohydrate, 15. 704
action of heat, 8 . 961	——————————————————————————————————————
——————————————————————————————————————	diselenide, 10. 802
chloride, 8 . 1019	—— disulphate, 15. 726
Orthoplumbic acid, 7. 685	—— disulphide, 15. 725
Orthopyrophosphoric acid, 8, 948	—— ditelluride, 11. 65
Orthopolyvanadic acid, 9. 758	electronic structure, 15. 702
Orthose, 6. 662	explosive, 15. 690
Orthosilicic acid, 6. 293, 294, 308	extraction, 15, 687
Orthostannic acid, 7. 408	films, 15 . 690
Orthosulpharsenic acid, 9. 315	fluorides, 15. 714
Orthosulpharsenious acid, 9. 289	gold alloy, 15. 697
Orthosulphoantimonious acid, 9. 532	hemipentasulphide, 15. 726
Orthosulphoctoantimonious acid, 9. 532	hemitrioxide, 15. 703
Orthosulphosilicic acid, 6. 987	hydrated, 15. 703
Orthosulphotetrantimonious acid, 9. 532	— hexachloride, 15. 720
Orthosulphotetrarsenious acid, 9. 289	hevefluoride 15 715
Orthosulphoxylic acid, 10. 165	
Orthosulphuric acid, 10. 357	—— hydrosol, 15 . 690
Orthosulphurous acid, 10. 238	
Orthotelluric acid, 11. 83, 87, 88	—— iodides, 15. 724
Orthotetrarsenious acid, 9, 117	iridium alloys, 15 . 747, 751
Orthothicearbonic acid, 6, 119	iron alloys, 15 . 697
Orthothiophosphoric acid, 8. 1062	isotopes, 15 . 702
Orthotitanic acid, 7. 39	——————————————————————————————————————
Orthotungstic acid, 11. 764	—— mercury alloy, 15. 697
Orthozirconic acid, 7. 128	—— monoselenide, 10 . 802
Oruetite, 11. 2, 60	—— monotelluride, 11. 65
Orvillite, 6. 844; 7. 100	—— monoxide, 15. 703
Oryzite, 6. 755	———— hydrated, 15. 702
Osannite, 6. 917; 12. 530	—— nickel alloys, 15 . 697
Osman, 15. 727	nitrate, 15. 727
Osman-osmic acid, 15. 727	nitrite, 15. 728
Osmelite, 6 . 366	—— nitrogen compounds, 15. 727
Osmiamic acid, 15. 727	—— occurrence, 15. 686
Osmic acid, 15. 705, 707	octochloride, 15. 721
—— barium sulphide, 10. 324	octofluoride, 15. 714
hexathiocarbamidohydroxytrichloride,	—— oxides, 15. 702
15 . 718	—— oxychloride, 15 . 718
—— potassium decasulphide, 10. 324	—— oxydiamminochloride, 15. 720
tetradecasulphite, 10. 325	oxydiamminodihydroxide, 15. 704
silver sulphide, 10. 324	oxydiamminonitrate, 15. 727
Osmichlorides, 15. 718	oxydiamminosulphate, 15. 726
Osmious potassium dihydropentasulphite,	oxydihydrosulphide, 15. 726
10. 324	—— oxyfluoride, 15 . 715, 722
sulphite, 10. 324	oxyiodide, 15. 725
Osmiridium, 15. 686, 751; 16. 6	oxysulphide, 15. 726
Osmium, 15. 686; 16. 1, 3	—— palladium alloys, 15. 697
—— amalgam, 15. 697	—— phosphide, 8 . 861
ammonium dodecachloride, 15. 720	—— physiological action, 15. 698
analytical reactions, 15. 697	—— platinum alloys, 16. 225
— atomic disruption, 15. 702	——— iridium alloys, 16. 228
	IIIdidili dilova. 10. 220

Osmium platinum palladium alloys, 16. 226	Osmyl hydroxide, 15. 705
notossium disulphite 10 224	
potassium disulphite, 10. 324	oxysalts, 15. 705
——————————————————————————————————————	—— potassium bromide, 15. 724
preparation, 15. 687	chloride, 15 . 721
properties, chemical, 15. 695	— - — dihydrate, 15. 721
physical, 15. 691	———— nitrite, 15 . 729
rhodium alloys, 15 . 697	oxydichloride, 15. 721
ruthenium alloys, 15. 697	oxynitrite, 15. 729
—— sesquioxide, 15 . 702	—— silver oxynitrite, 15. 729
silver alloy, 15 . 697	sodium oxynitrite, 15 . 729
sodium dodecachloride, 15. 720	strontium oxynitrite, 15. 729
sulphite, 10. 325	
	tetramminochloride, 15. 721
	tetramminochloroplatinate, 15. 721
sulphates, 15 . 725	tetramminohydroxide, 15. 706
—— sulphide, 15. 725	
	tetramminonitrate, 15. 727
sulphides, 15 . 725	tetramminonitrite, 15. 729
tetrabromide, 15 . 722	tetramminosulphate, 15. 726
—— tetrachloride, 15. 717	Osteolite, 3. 623, 896
tetrafluoride, 15 , 715	Ostranite, 6 . 857; 7 . 100
tetrahydroxide, 15. 704	Ostranium, 7. 99
tetraiodide, 15 . 724	
	Ost's solution, 3. 273
tetrasulphide, 15 . 725	Ostwald and Walden's basicity rule, 1.
tetroxide, 15 . 7 07	1002
solubility of hydrogen, 1. 308	Ostwald's dilution law, 1. 992
tribromide, 15 . 722	- law of successive reactions, 2. 371
tricarbonyldichloride, 15. 716, 717	Otavite, 4. 409, 647
trichloride, 15. 716	
	Ottrelite, 6. 620; 12. 150, 530
trioxide, 15 . 705	Oustite, 12. 267
uses, 15 . 699	Outremer, 6 . 586
valency, 15. 700	Ouvaroffite, 6. 866
zinc alloy, 15 . 697	Ouvarovite, 6. 714
Osmochlorides, 15. 717	Ouwarovite, 6. 866
	1
Osmondite, 12. 841	Overgrowths, 1. 661
Osmosis, 1. 539	Overvoltage, 1. 333
negative, 1. 541	Owarowite, 6. 866
—— positive, 1. 541	
	Owenite, 6: 622
—— reversed, 1. 541	Owyheeite, 9. 554
Osmotic pressure, 1. 538	Oxalatobisethylenediamines, 11, 406
—— abnormal, 1. 990	Oxalatofluoantimonites, 9. 466
and boiling point, 1. 568	Oxalatosodalite, 6. 583
——————————————————————————————————————	Oxalatotetrammines, 11. 405
Treezing ponts, 1. 506	Oxalatotriamminochromic acid, 11. 409
gas laws, 1. 543	Oxalie acid, 13 . 613, 615
heat of solution, 1. 547	Oxalite, 12. 530
ionization, 1. 990	Oxhaverite, 6. 368
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
solubility, 1. 569	Oxidation, 1. 64, 69, 117, 210
temperature, 1. 545	—— process gold refining, 3 . 507
vanour pregure 1 550	Oxide, 1. 69
——————————————————————————————————————	of common block 9 #
enemical theory, 1. 570	of copper, black, 3. 7
colloids, 1. 774	red, 3. 7
electromotive force, 1. 1020	Oxides, 1. 117, 374, 393; 9. 589
man amalama hamatharia 4 557	
——— gas analogy hypothesis, 1. 557	amphoteric, 1. 394
—— general formula, 1. 552	condensed, 7. 224
	—— heat of formation, 1. 374
558	—— higher, 1. 268
——————————————————————————————————————	—— intermediate, 1. 394
theories of, 1. 557	—— preparation, 1. 374
	Oxidized ores, 9. 589, 715
558	Oxidizing fusion, 3. 26
pressures abnormal, 1. 570, 573	Oximidosulphonates, 8. 673
	Oximidosulphonic acid, 8. 672
Osmous sulphate, 15. 726	
sulphite, 15. 726	Oxiodic acid, 2. 293
Osmund furnace, 12. 582	Oxoferrite, 13. 704
Osmyl, 15. 705	Oxolith, 2. 253
ammonium bromide, 15. 724	Oxomonosilane, 6. 234
chloride, 15. 721	Oxomonosiloxane, 6. 234
oxypromide, 15. /24	Oxonium hydroxide, 1. 920
oxydichloride, 15. 721	salts, 1. 919
	——————————————————————————————————————

- chloride, 4. 887 - chromate, 11. 284 - fluoride, 4. 796 - iodide, 4. 924 - mercuriammonium nitrate, 4. 1000 sulphate, 4. 979 - mercuric oxyquadrichromate, 11. 284 - oxytrimercuriammonium sulphate, 4. 980 - sulphate, 4. 977, 979 Dxydimercuric amidochloride, 4. 787 Dxydisiline, 6. 232 Dxyfluomolybdates, 11. 612 Dxyfluopermolybdates, 11. 614 Dxyfluopertitanates, 7. 68 - absorption by solids, 1. 370 - allotropic forms, 1. 366 - weight, 1. 386 - weight, 1. 386 - weight, 1. 386 - combustion, 1. 374 - calcium, 1. 374 - calcium, 1. 374 - charcoal, 1. 374 - magnesium, 1. 374 - sulphur, 1. 374 - sodium bromide, 1. 370 - sodium bromide, 1. 370 - sodium bromide, 1. 370 - solimbromide, 1. 370 - sol	out of the state o	141 2222
Description Section	Oxyacids of chlorine substitution of bromine,	Oxygen ionizing potential, 1. 368
Dayslumina, 5, 271	2 . 385	iron carbon, 12. 621
Dayslumina, 5, 271		
Sampatica 3, 904		hydrogen-carbon system, 12. 630
Oxyapstite, 3. 904 Oxyaustentices, 13. 702, 704 Oxybronides, 11. 109 Oxychlorine acids, thermochemistry, 2. 379 Oxychlorine acids, the fill or oxychlorine acids, the fill oxych		latent heat fusion 1 366
Oxyastenites, 13. 702, 704 Oxybronides, 11. 109 Oxychlorides, 12. 380 Oxychlorides, 12. 380 Oxychlorides acids, thermochemistry, 2. 379 Oxychloride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxyde d'azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxydel azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxydel azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxydel azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxychoride acids, thermochemistry, 2. 379 Oxydel azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxydel azot, 8. 418 Oxychoride acids, thermochemistry, 2. 379 Oxychoride, 4. 363 Oxychoride, 4. 364 Oxydecammines, 11. 122 Oxyderamines, 11. 342 Oxychoride, 4. 363 Occurrence, 1. 351 Occurrence, 1. 351 Occurrence, 1. 356 Occurrence, 1. 351 Occurrence, 1. 352 Overvoitage, 16. 10 Oxidization potential, effect of hydrogen peroxide, 1. 330 Occurrence, 1. 352 Overvoitage, 16. 10 Oxidization potential, effect of hydrogen peroxide, 1. 330 Occurrence, 1. 352 Overvoitage, 16. 10 Oxidization potential, effect of hydrogen peroxide, 1. 363 Occurrence, 1.		vaporization 1 365
Oxyboronides, 14. 109 Oxychlorine acids, thermochemistry, 2. 379 Oxycholorine acids, thermochemistry, 2. 379 Oxycholorice acids, 14. 648 Oxycholorice alts, 14. 647 Oxycholorice alts, 14. 647 Oxyde d'azote, 8. 418 — de plomb sur oxygène, 11. 122 — manganèse argentin, 12. 286 Oxydiceanmines, 11. 408 Oxydimeric minomium amidonitrate, 4. 1000 — ammonium dichromate, 11. 342 — chloride, 4. 986 — chromate, 11. 284 — mercuriammonium mitrate, 4. 1000 — sulphate, 4. 979 — mercuriammonium mitrate, 4. 1000 — sulphate, 4. 979 — mercuric oxyquadrichromate, 11. 284 — oxytrimercuria amidochloride, 4. 787 Oxydisiline, 6. 322 Oxyferrites, 13. 702, 704 Oxyfluoperritianates, 7. 68 — xygen, 1. 69; 11. 388 — absorption by solids, 1. 370 — weight, 1. 380 — weight, 1. 380 — weight, 1. 380 — weight, 1. 386 — weight, 1. 386 — weight, 1. 386 — chaclium, 1. 374 — charcoal, 1. 374 — charcoal, 1. 374 — sulphur, 1. 374 — magnesium, 1. 386 — determination, 1. 380 diselectric constant, 1. 380 diselectric constant, 1. 389 diffusion coefficient, 1. 389 diffusion coefficient, 1. 389 diffusion coefficient, 1. 388 diselectric constant, 1. 389 diffusion coefficient, 1. 389 diffusion coefficient, 1. 389 diffusion coefficient, 1. 388 diselectric constant, 1. 389 — suphate, 1. 379 — suphare, 1. 389 — suphate, 1. 370 — sodium bromide, 1. 370 — sodium bromide, 1. 370 — sodium bromide, 1.		liquid absorution fluoring 1 371
magnetic moment, 1, 369		
Oxychlorine acids, thermochemistry, 2, 379 Oxycholtarioure de plomb, 7, 768 Oxycobaltammine nitrate, 14, 843 Oxycobaltammine nitrate, 14, 843 Oxycobaltammine nitrate, 14, 843 Oxydeammines, 11, 408 — de plomb sur oxygène, 11, 122 — manganèse argentin, 12, 266 Oxydeammines, 11, 408 Oxydiemeruriammonium amidonitrate, 4, 1000 — ammonium dichromate, 11, 342 — chioride, 4, 867 — chromate, 11, 284 — fluoride, 4, 1946 — iodide, 4, 1949 — mercuriammonium nitrate, 4, 1000 — sulphate, 4, 979 — mercuric oxyquadrichromate, 11, 284 — oxytrimercuriammonium sulphate, 4, 980 — sulphate, 4, 977, 979 Oxydimercuric amidochloride, 4, 787 Oxydisiline, 6, 232 Oxyferrites, 13, 702, 704 Oxyfluomolybdates, 11, 612 Oxyfluopermolybdates, 11, 612 Oxyfluopermolybdates, 11, 612 Oxyfluopertitanates, 7, 68 — absorption by solids, 1, 370 — active, 1, 285 — allotropic forms, 1, 366 — weight, 1, 380 — weight, 1, 380 — weight, 1, 380 — calcium, 1, 374 — calcium, 1, 374 — charcoal, 1, 374 — sulphur, 1, 374 — sulphur, 1, 374 — sulphur, 1, 374 — sodium, 1, 374 — sodium, 1, 374 — sulphur, 1, 376 — sulphur, 1, 368 — spark, 1, 369 specific cohesion, 1, 368 — surface tension, 1, 368 — surface tension, 1, 365 — surfac		
Oxycobaltine salts, 14. 672 Oxycobaltine salts, 14. 672 Oxyde d'azote, 8. 418 — de plomb sur oxygène, 11. 122 — manganèse argentin, 12. 266 Oxyde d'azote, 8. 418 — de plomb sur oxygène, 11. 122 — manganèse argentin, 12. 266 Oxydecammines, 11. 408 Oxydimercuriammonium amidonitrate, 4. 1000 — ammonium dichromate, 11. 342 — chloride, 4. 867 — chromate, 11. 284 — duride, 4. 979 — mercuriammonium nitrate, 4. 1000 — sulphate, 4. 979 — mercuric oxyquadrichromate, 11. 284 — oxytrimercuriammonium sulphate, 4. 980 — sulphate, 4. 977, 979 Oxydisiline, 6. 232 Oxyferrites, 13. 702, 704 Oxydiumercurianates, 11. 612 Oxyfluopermolybdates, 11. 612 Oxyfluopermolybdates, 11. 612 Oxyfluoperitinantes, 7. 68 Oxygen, 1. 69; 11. 368 — weight, 1. 386 — weight, 1. 386 — weight, 1. 380 boiling point, 1. 374 — calcium, 1. 374 — calcium, 1. 374 — realerium, 1. 374 — magnesium, 1. 374 — magnesium, 1. 374 — sulphur, 1. 374 — magnesium, 1. 374 — magnesium, 1. 374 — sulphur, 1. 374 — temperature, 1. 365 — volume, 1. 366 — determination, 1. 380 dislectric constant, 1. 369 diffusion coefficient, 1. 371 discharge potential, 1. 368 — sulphate, 4. 979 — mercuric oxyquadrichromate, 11. 284 quadrivalency, 1. 919 — rate of solution in water, 1. 369 — relative density, 1. 369 — solubility, 1. 369 — sectione, 1. 370 — septroleum, 1. 370 — sectione, 1. 370 —		
Oxycobaltammine nitrate, 14, 843 Oxycobaltammine nitrate, 14, 875 Oxyde d'azote, 8, 418 — de plomb sur oxygène, 11, 122 — manganèso argentin, 12, 266 Oxydeamnines, 11, 408 Oxydimercuriammonium amidonitrate, 4, 1000 — ammonium dichromate, 11, 342 — chloride, 4, 887 — chromate, 11, 284 — fluoride, 4, 796 — iodide, 4, 924 — mercuriammonium nitrate, 4, 1000 — sulphate, 4, 979 — mercurie oxyquadrichromate, 11, 284 oxytrimercuriammonium sulphate, 4, 980 — sulphate, 4, 977, 979 Oxydimercurie amidochloride, 4, 787 Oxydisiline, 6, 232 Oxyferrites, 13, 702, 704 Oxyfluonoptybdates, 11, 612 Oxyfluopermolybdates, 11, 614 Oxyfluoperitanates, 7, 68 Oxygen, 1, 69; 11, 368 — absorption by solids, 1, 370 — active, 1, 925 — allotropic forms, 1, 366 — weight, 1, 380 — weight, 1, 380 — weight, 1, 380 — occurrence, 1, 351 — vervoltage, 16, 110 — oxidization potential, effect of hydrogen peroxide, 1, 378 — preparation, 1, 362 — prevenves, 1, 364 — quadrivalency, 1, 919 — rate of solution in water, 1, 369 — section, 1, 369 — ammonium chloride, 1, 370 — section, 1, 369 — ammonium chloride, 1, 370 — barium chloride, 1, 370 — barium chloride, 1, 370 — barium chloride, 1, 370 — casium chloride, 1, 370 — casium chloride, 1, 370 — oxidization potential, effect of hydrogen peroxide, 1, 363 — solubility, 1, 369 — section, 1, 369 — ammonium dichromate, 11, 284 — numbiam point, 1, 363 — solubility, 1, 363 — solubility, 1, 369 — section, 1, 369 — ammonium dichromate, 11, 284 — preparation, 1, 352 — preparation, 1, 352 — preparation, 1, 352 — preparation, 1, 353 — solubility, 1, 369 — active, 1, 370 — barium chloride, 1, 370 — casium chloride, 1, 370 — casium chloride, 1, 370 — casium chloride, 1, 370 — magnesium chloride, 1, 370 — percolum, 1, 374 — charca, 1, 374 — phosphorus, 1, 374 — phosphorus, 1, 374 — soldium choride, 1, 370 — soldium		
Oxycobaltiae salts, 14. 672		Claude's process 1
Oxyde d'azote, 8. 418 — de plomb sur oxygène, 11. 122 — manganèso argentin, 12. 266 Oxydeammines, 11. 408 Oxydimercuriammonium amidonitrate, 4. 1000 — ammonium dichromate, 11. 342 — chloride, 4. 867 — chromate, 11. 284 — fluoride, 4. 796 — iodide, 4. 924 — mercuriammonium nitrate, 4. 1000 — sulphate, 4. 979 — mercurie oxyquadrichromate, 11. 284		
— de plomb sur oxygène. 11. 122 — manganèse argentin, 12. 266 Oxydeanmines, 11. 408 Oxydimercuriammonium amidonitrate, 4. 1000 — ammonium dichromate, 11. 342 — chloride, 4. 867 — chromate, 11. 284 — fluoride, 4. 796 — iodide, 4. 924 — mercuriammonium nitrate, 4. 1000 — sulphate, 4. 979 — mercuriammonium sulphate, 4. 980 — sulphate, 4. 977, 979 Oxydimercuria amidochloride, 4. 787 Oxydimercuria amidochloride, 4. 787 Oxydimercuria amidochloride, 4. 787 Oxydimercuria midochloride, 4. 787 Oxydimercuria midochloride, 4. 787 Oxydimercuria midochloride, 4. 787 Oxydimercuria amidochloride, 4. 787 Oxydimercur		
Oxydecammines, 11. 408 Oxydimercuriammonium amidonitrate, 4. 1000 — sulphate, 4. 979 — mercuric oxyguadrichromate, 4. 1. 284 — oxytrimercuriammonium sulphate, 4. 980 — sulphate, 4. 977, 979 Oxydimercuric amidochloride, 4. 787 Oxydisilne, 6. 232 Oxyferrites, 13. 702, 704 Oxyfluopermolybdates, 11. 612 Oxyfluopermolybdates, 11. 614 Oxyfluopermolybdates, 11. 363 — absorption by solids, 1. 370 — active, 1. 925 — allotropic forms, 1. 366 — weight, 1. 380 — boiling point, 1. 374 — calcium, 1. 374 — calcium, 1. 374 — magnesium, 1. 374 — phosphorus, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — solium, 1. 375 — temperature, 1. 365 — volume, 1. 365 — volume, 1. 365 — volume, 1. 365 — volume, 1. 365 — sea-water, 1. 370 — sulphate, 1. 370 — sulphat		
Oxydimercuriammonium amidonitrate, 4. 1000 — ammonium dichromate, 11. 342 — chloride, 4. 867 — chromate, 11. 284 — fluoride, 4. 796 iodide, 4. 924 — mercuriammonium nitrate, 4. 1000 — sulphate, 4. 979 — mercuric oxyquadrichromate, 11. 284 Oxytrimercuriammonium sulphate, 4. 380 — sulphate, 4. 977, 979 Oxydimercuriammonium sulphate, 4. 380 — oxytrimercuriammonium intrate, 4. 1000 — relative density, 1. 369 — acetone, 1. 370 — seasulm chloride, 1. 370 — oxitive density, 1. 369 — acetone, 1. 370 — seasulm chloride, 1. 370 — oxitive density, 1. 369 — acetone, 1. 370 — seasulm chloride, 1. 370 — oxitive density, 1. 369 — acetone, 1. 370 — seasulm chloride, 1. 370 — oxitive density, 1. 369 — acetone, 1. 370 — seasulm chloride, 1. 370 — oxidia, 1. 369 — oxidia, 1. 369 — oxidial effect of hydrogen physiological effects, 1. 370 — relative density, 1. 369 — acetone, 1. 370 — seavity, 1. 363 — oxidia, 1. 369 — oxidia, 1. 369 — oxidial effect, 1. 370 — oxidiation potential, 1. 370 — oxidiation potential, 1. 369 — oxidiation potential, 1. 369 — oxidiation potential, 1. 368 — oxidiation potential, 1. 369 — oxidiation potential, 1. 370 — oxidiation potential, 1. 370 — oxiditivalen		
1000		overvoltage, 16, 110
ammonium dichromate, 11. 342 chloride, 4. 867 chromate, 11. 284 fluoride, 4. 796 iodide, 4. 924 mercuriammonium nitrate, 4. 1000 mercuriammonium nitrate, 4. 1000 mercuriammonium sulphate, 4. 979 mercuric oxyquadrichromate, 11. 284 oxytrimercuriammonium sulphate, 4. 980 sulphate, 4. 977, 979 Oxydimercuric amidochloride, 4. 787 Oxydisiline, 6. 232 Oxyferrites, 13. 702, 704 Oxyfluonelrolybdates, 11. 612 Oxyfluoperitamates, 7. 68 Oxygon, 1. 69; 11. 368 absorption by solids, 1. 370 active, 1. 925 allotropic forms, 1. 366 atomic, 1. 366 — weight, 1. 380 boiling point, 1. 385 combustion, 1. 374 — calcium, 1. 374 — calcium, 1. 374 — magnesium, 1. 374 — sodium, 1. 374 — sulphur, 1. 376 — volume, 1. 366 detection, 1. 380 discovery, 1. 344 dispersion, 1. 366 detection, 1. 380 discovery, 1. 344 dispersion, 1. 366 electric constant, 1. 368 discovery, 1. 344 dispersion, 1. 366 electrode, 1. 386 electric constant, 1. 368 discovery, 1. 344 dispersion, 1. 365 — volume, 1. 366 electrade, 1. 388 entropy, 1. 365 free path, 1. 363 in air, 8. 3 gen peroxide, 1. 378 preparation, 1. 362 pre-curves, 1. 364 quadrivalency, 1. 919 rate of solution in water, 1. 369 acide, 1. 369 — actone, 1. 370 acids, 1. 369 — actone, 1. 370 — barium chloride, 1. 370 — barium chloride, 1. 370 — casium chloride, 1. 370 — casium chloride, 1. 370 — ethyl alcohol, 1. 370 — magnesium bromide, 1. 370 — petroleum, 1. 370 — petroleum, 1. 370 — petroleum, 1. 370 — petroleum, 1. 370 — potassium bromide, 1. 370 — petroleum, 1. 370 — potassium bromide, 1. 370 — petroleum, 1. 370 — solium richloride, 1. 370 — petroleum, 1. 370 — potassium bromide, 1. 370 — petroleum, 1. 370 — petroleum, 1. 370		- oxidization potential, effect of hydro-
	—— ammonium dichromate, 11. 342	gen peroxide, 1. 930
- fluoride, 4, 796	ehloride, 4 . 867	
	chromate, 11. 284	preparation, 1. 352
— mercuriammonium nitrate, 4. 1000 — — sulphate, 4. 979 — mercuric oxyquadrichromate, 11. 284 — oxytrimercuriammonium sulphate, 4. 980 — sulphate, 4. 977, 979 Oxydisiline, 6. 232 Oxyferrites, 18. 702, 704 Oxyfluopertites, 18. 702, 704 Oxyfluopertitanates, 7. 68 — absorption by solids, 1. 370 — active, 1. 925 — allotropic forms, 1. 366 — atomic, 1. 366 — weight, 1. 380 — expansium, 1. 374 — calcium, 1. 374 — eaclium, 1. 374 — in, 1. 373 — iron, 1. 374 — phosphorus, 1. 374 — phosphorus, 1. 374 — sodium, 1. 374 — sulphur, 1. 375 — volume, 1. 365 — volume, 1. 365 — water, 1. 369 diffusion coefficient, 1. 371 discharge potential, 1. 368 discovery, 1. 344 dispersion, 1. 368 — electroce, 1. 368 — electroce, 1. 368 — electrocy, 1. 344 dispersion, 1. 365 — free path, 1. 365 — electrocy, 1. 365 — electrocy, 1. 365 — electrocy, 1. 365 — electrocy, 1. 365 — in sir, 8. 3	—— fluoride, 4 . 796	pv-curves, 1. 364
	iodide, 4 . 924	
	mercuriammonium nitrate, 4. 1000	
	sulphate, 4 . 979	—— relative density, 1. 363
	mercuric oxyquadrichromate, 11. 284	—— solubility, 1 . 369
		acetone, 1. 370
Dayferrites, 13. 702, 704 Dayfluopermolybdates, 11. 612 Dayfluopermolybdates, 11. 614 Dayfluopertitanates, 7. 68 Daygen, 1. 69; 11. 368 — absorption by solids, 1. 370 — active, 1. 925 — allotropic forms, 1. 366 — atomic, 1. 366 — weight, 1. 380 — boiling point, 1. 365 — combustion, 1. 374 — calcium, 1. 374 — charcoal, 1. 374 — in, 1. 373 — in, 1. 373 — magnesium, 1. 374 — magnesium, 1. 374 — phosphorus, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — critical pressure, 1. 365 — volume, 1. 365 — crystals of, 1. 366 — detection, 1. 380 — detection, 1. 380 — diameter molecule, 1. 363 — discovery, 1. 344 — dispersion, 1. 368 — discovery, 1. 344 — dispersion, 1. 368 — electrode, 1. 368 — electrode, 1. 368 — entropy, 1. 365 — repeath, 1. 363 — in air, 8. 3		acids, 1. 369
Dayferrites, 13. 702, 704 Dayfluopermolybdates, 11. 612 Dayfluopermolybdates, 11. 614 Dayfluopertitanates, 7. 68 Daygen, 1. 69; 11. 368 — absorption by solids, 1. 370 — active, 1. 925 — allotropic forms, 1. 366 — atomic, 1. 366 — weight, 1. 380 — boiling point, 1. 365 — combustion, 1. 374 — calcium, 1. 374 — charcoal, 1. 374 — in, 1. 373 — in, 1. 373 — magnesium, 1. 374 — magnesium, 1. 374 — phosphorus, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — critical pressure, 1. 365 — volume, 1. 365 — crystals of, 1. 366 — detection, 1. 380 — detection, 1. 380 — diameter molecule, 1. 363 — discovery, 1. 344 — dispersion, 1. 368 — discovery, 1. 344 — dispersion, 1. 368 — electrode, 1. 368 — electrode, 1. 368 — entropy, 1. 365 — repeath, 1. 363 — in air, 8. 3		ammonium chloride, 1. 370
Dayferrites, 13. 702, 704 Dayfluopermolybdates, 11. 612 Dayfluopermolybdates, 11. 614 Dayfluopertitanates, 7. 68 Daygen, 1. 69; 11. 368 — absorption by solids, 1. 370 — active, 1. 925 — allotropic forms, 1. 366 — atomic, 1. 366 — weight, 1. 380 — boiling point, 1. 365 — combustion, 1. 374 — calcium, 1. 374 — charcoal, 1. 374 — in, 1. 373 — in, 1. 373 — magnesium, 1. 374 — magnesium, 1. 374 — phosphorus, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — sodium, 1. 374 — critical pressure, 1. 365 — volume, 1. 365 — crystals of, 1. 366 — detection, 1. 380 — detection, 1. 380 — diameter molecule, 1. 363 — discovery, 1. 344 — dispersion, 1. 368 — discovery, 1. 344 — dispersion, 1. 368 — electrode, 1. 368 — electrode, 1. 368 — entropy, 1. 365 — repeath, 1. 363 — in air, 8. 3		barium chioride, 1. 370
Dayfluopermolybdates, 11. 612		——————————————————————————————————————
Dxyfluopertiolybdates, 11. 614		cæsium chloride, 1. 370
Dxyfluopertitanates, 7. 68 Dxygen, 1. 69; 11. 368 Sygen, 1. 69; 11. 368 Sygen, 1. 69; 11. 368 Sygen, 1. 369 Sygen, 1. 366 Sygen, 1. 368 Sygen, 1. 369 Sygen, 1. 366 Sygen, 1. 367 Sygen, 1. 367 Sygen, 1. 368 Sygen, 1. 366 Sygen,		
Daygen, 1. 69; 11. 368		lithium chloride 4 270
		magnegium chloride 4 270
		magnesium emoride, 1. 370
		netroleum 1 370
- atomic, 1. 366 - — weight, 1. 380 - boiling point, 1. 365 - combustion, 1. 374 - — calcium, 1. 374 - — charcoal, 1. 374 - — in, 1. 373 - — iron, 1. 374 - — magnesium, 1. 374 - — phosphorus, 1. 374 - — sodium, 1. 374 - — sodium, 1. 374 - — sodium, 1. 374 - — sulphur, 1. 374 - — sulphur, 1. 374 - — sulphur, 1. 374 - — temperature, 1. 365 - — volume, 1. 365 - — volume, 1. 366 - detection, 1. 380 - determination, 1. 380 - determination, 1. 380 - determination, 1. 363 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - entropy, 1. 363 - in air, 8. 3		potassium bromide, 1, 370
Second State Seco		chloride, 1, 370
Dolling point, 1, 365		cvanide, 1, 370
- combustion, 1, 374 - calcium, 1, 374 - charcoal, 1, 374 - in, 1, 373 - iron, 1, 374 - phosphorus, 1, 374 - sodium, 1, 374 - sodium, 1, 374 - sodium, 1, 374 - sulphur, 1, 370 - critical pressure, 1, 365 - volume, 1, 365 - crystals of, 1, 366 - detection, 1, 380 - detection, 1, 380 - detection, 1, 380 - diameter molecule, 1, 363 - discovery, 1, 344 - dispersion, 1, 366 - electrode, 1, 368 - electrode, 1, 368 - entropy, 1, 365 - free path, 1, 363 - in air, 8, 3		nvdroxide, 1, 309
- charcoal, 1. 374 - in, 1. 373 - iron, 1. 374 - magnesium, 1. 374 - phosphorus, 1. 374 - sodium, 1. 374 - sodium, 1. 374 - sodium, 1. 374 - sulphur, 1. 370 - critical pressure, 1. 365 - volume, 1. 365 - volume, 1. 365 - crystals of, 1. 366 - detection, 1. 380 - determination, 1. 380 - diameter molecule, 1. 363 - discharge potential, 1. 368 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - entropy, 1. 365 - free path, 1. 363 - in air, 8. 3		iodide, 1. 370
- charcoal, 1. 374 - in, 1. 373 - iron, 1. 374 - magnesium, 1. 374 - phosphorus, 1. 374 - sodium, 1. 374 - sodium, 1. 374 - sodium, 1. 374 - sulphur, 1. 370 - critical pressure, 1. 365 - volume, 1. 365 - volume, 1. 365 - crystals of, 1. 366 - detection, 1. 380 - determination, 1. 380 - diameter molecule, 1. 363 - discharge potential, 1. 368 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - entropy, 1. 365 - free path, 1. 363 - in air, 8. 3	calcium, 1. 374	nitrate, 1. 370
- in, 1, 373 - iron, 1, 374 - magnesium, 1, 374 - phosphorus, 1, 374 - sodium, 1, 374 - sodium, 1, 374 - sodium, 1, 374 - sulphur, 1, 374 - critical pressure, 1, 365 - temperature, 1, 365 - volume, 1, 365 - crystals of, 1, 366 - detection, 1, 380 - diameter molecule, 1, 363 - discharge potential, 1, 368 - discovery, 1, 344 - dispersion, 1, 366 - electrode, 1, 368 - entropy, 1, 365 - entropy, 1, 365 - free path, 1, 363 - in air, 8, 3		sulphate, 1, 370, 379
	in, 1. 373	rubidium chloride, 1. 370
	iron, 1. 374	sea-water, 1. 370
- — phosphorus, 1. 374 - — sodium, 1. 374 - — sulphur, 1. 374 - — critical pressure, 1. 365 - — temperature, 1. 365 - — volume, 1. 366 - detection, 1. 380 - dielectric constant, 1. 369 - diffusion coefficient, 1. 371 - discharge potential, 1. 368 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - free path, 1. 363 - — sulphuric acid, 1. 370 - — sulphuric acid, 1. 369 - — water, 1. 369 - — water, 1. 369 - — specific cohesion, 1. 364 - — heat, 1. 365 - — volume, 1. 363 - — spark, 1. 367 - stark effect, 1. 368 - — storage, 1. 356 - — surface tension, 1. 364 - — thermal conductivity, 1. 365 - — expansion, 1. 365 - — vapour pressure, 1. 363	magnesium, 1. 374	sodium bromide, 1. 370
	phosphorus, 1. 374	—— —— chloride, 1 . 370
- critical pressure, 1. 365 - temperature, 1. 365 - volume, 1. 365 - crystals of, 1. 366 - detection, 1. 380 - determination, 1. 380 - diameter molecule, 1. 363 - diffusion coefficient, 1. 371 - discharge potential, 1. 368 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - entropy, 1. 365 - free path, 1. 363 - many sugar, 1. 370 - sulphuric acid, 1. 369 - material, 1. 369 - material, 1. 369 - material, 1. 363 - material, 1. 363 - material, 1. 365 - material, 1. 369 - mater	sodium, 1. 374	hydroxide, 1, 370
- critical pressure, 1. 365 - temperature, 1. 365 - volume, 1. 365 - crystals of, 1. 366 - detection, 1. 380 - determination, 1. 380 - diameter molecule, 1. 363 - diffusion coefficient, 1. 371 - discharge potential, 1. 368 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - entropy, 1. 365 - free path, 1. 363 - many sugar, 1. 370 - sulphuric acid, 1. 369 - material, 1. 369 - material, 1. 369 - material, 1. 363 - material, 1. 363 - material, 1. 365 - material, 1. 369 - mater	sulphur, 1. 374	sulphate, 1. 370
	—— critical pressure, 1. 365	sugar, 1. 370
	temperature, 1. 365	sulphuric acid, 1. 369
		——— water, 1. 369
	crystals of, 1. 366	
- diameter molecule, 1. 363 - dielectric constant, 1. 369 - diffusion coefficient, 1. 371 - discharge potential, 1. 368 - discovery, 1. 344 - dispersion, 1. 366 - electrode, 1. 368 - entropy, 1. 365 - free path, 1. 363 - in air, 8. 3 - electromabsorption, 1. 368 - spark, 1. 367 - stark effect, 1. 368 - storage, 1. 356 - surface tension, 1. 364 - thermal conductivity, 1. 365 - expansion, 1. 365 - uses, 1. 379 - vapour pressure, 1. 365 - velocity of molecules, 1. 363		
	— dielectric constant, 1. 369	
	diffusion coefficient, 1. 371	
electrode, 1. 368 uses, 1. 379 vapour pressure, 1. 365 uses, 1. 379 in air, 8. 3 velocity of molecules, 1. 363	discharge potential, 1. 368	
electrode, 1. 368 uses, 1. 379 vapour pressure, 1. 365 uses, 1. 379 in air, 8. 3 velocity of molecules, 1. 363	discovery, 1. 344	
electrode, 1. 368 uses, 1. 379 vapour pressure, 1. 365 uses, 1. 379 in air, 8. 3 velocity of molecules, 1. 363	dispersion, 1. 366	
	electrode, 1. 368	
— in air, 8. 3 — velocity of molecules, 1. 363		
— in air, 5. 3 —— velocity of molecules, 1. 363 —— sound, 1. 364		
index retraction, 1. 300	in day refraction 4 200	
	mqex retraction, 1. 306	sound, 1. 304

Oxygen, Verdat's constant, 1. 367	Ozone action dynamite, 1. 911
	ethyl peroxide, 1. 911
viscosity, 1. 364 weight of atom, 1. 363	ethylene, 1. 911
litro, 1. 363	ferric salts, 1. 911
Oxygenated potassium chlorate, 2. 371	ferrochromium, 1. 908
Oxyhemoglobin, 6, 11	ferrocyanides, 1. 911
Oxyhydrogen flame, 1. 326	ferrous salts, 1. 910
Oxyhydrohexanitritoplatinous acid, 8. 515 Oxyiodine, 2. 293	fluorine, 1. 904 gold, 1. 908
Oxykerkchenite, 14. 391	gold, 1. 908
Oxymeionite, 6. 764	sulphide, 1. 910
Oxymercuriammonium diamminonitrate, 4.	hydrazine sulphate, 1. 907
1001	hydrogen, 1, 901
diammonium nitrate dihydrated, 4.	chloride, 1, 904
1001	fluoride, 1, 904
mercuriammonium phosphate, 4. 1005	halides, 1. 904
decanydrated, 4. 1005	peroxide, 1. 903
mercuric phosphate, 4. 1005	sulphide, 1 . 905
Oxymercurosic hydroxynitrate, 4. 995	iodine, 1. 904
Oxymuricite matches, 8, 1059	iron, 1. 908 lead, 1. 909
Oxysulpharsenates, 9, 325 Oxysulpharsenic acids, 9, 326	salts, 1. 910
Oxysulpharsenious acids, 9, 325	
Oxysulpharsenites, 9. 325	manganese dioxide, 1. 910
Oxysulphazotate, 8. 684	sulphide, 1. 909
Oxysulphomolybdates, 11. 650	manganic sulphate, 1. 910
Oxysulphoparamolybdates, 11. 654	manganous salts, 1. 910
Oxysulphoperrhenates, 12, 480	mercurous salts, 1. 910
Oxysulphoselenium compounds, 10. 922	———— mercury, 1. 909
Oxytetrachloroplatinic acid, 16. 333	methane, 1. 911
Oxythiophosphates, 8. 1066	nickel, 1. 909
Oxytrimercuriammonium mercuric nitrate,	nitrate, 1. 911 sulphide, 1. 909
4. 1001	
nitrate, 4. 1001 oxydimercuriammonium sulphate, 4.	nitrogen, 1. 906
980	
Oxytrimercuridiammonium sulphate, 4. 977	iodide, 1 . 911
Oxytrisulpharsenie acid, 9. 326	tetroxide, 1, 906
Ozarkite, 6. 709	
Ozobenzene, 1. 899, 911	nitroglycerol, 1. 911
Ozobutylene, 1. 899	palladium salts, 1. 911
Ozoethylene, 1. 899	sulphide, 1. 909
Ozomolybdic acid, 11. 605	permanganates, 1. 910
Ozonates, 1. 908	
Ozone, 1. 277	phosphine, 1, 907 phosphorus, 1, 907
absorption spectrum, 1. 895 action alcohol, 1. 911	
alkali hydroxides, 1. 908	pentabromide, 1. 907
alkaline earth hydroxides, 1. 908	pentachloride, 1, 907
aluminium, 1. 908	pentoxide, 1. 907
ammonia, 1. 907	tribromide, 1. 907
aniline, 1. 911	trichloride, 1. 907
antimony, 1. 907	platinum, 1. 908
arsenie, 1. 907	potassium carbonyl ferrocyanide,
trichloride, 1. 907	1.911
	iodide solutions, 1. 904
hongane 1 011	acid, 1. 905
——————————————————————————————————————	——————————————————————————————————————
brass, 1. 908	rubber, 1. 911
bromine, 1. 904	selenium, 1. 906
carbon, 1. 907	silicochloroform, 1. 908 silver, 1. 909
monoxide, 1. 907	silver, 1. 909
chlorine, 1. 904	sulphide, 1. 909
chromic salts, 1. 911	sodium sulphide, 1. 905
cobalt sulphate, 1. 911	thiosulphate, 1. 905 stannous chloride, 1. 910
sulphide, 1. 909	stannous chloride, 1. 910
copper, 1. 909	stibine, 1. 907
- Cupit Suits, 1. 010	9 77

VOL. XVI.

Oxygen action sulphur trioxide, 1. 906	Pagenstecher's salt, 4. 1001
	Pagodite, 6. 498, 619
sulphurous acid, 1. 905	Pai-l'ung, 15. 209
tellurium, 1. 906	Painterite, 6. 609
	Pajasbergite, 6. 897
vegetable colours, 1. 911	Pakfond, 15. 209 Pak-tong, 15. 209
water, 1. 903	Palacheite, 14. 348
zine, 1. 908	Palæonatrolite, 6. 652
as oxidizing agent, 1. 905-910	Palaite, 12. 452
	tetrahydrate, 12. 452
—— boiling point, 1. 894	Palau, 15. 647
chemical properties, 1. 901 colour, 1. 894	Paligorscite, 6. 825 a-, 6. 825
	β-, 6 . 825
constitution, 1. 917	—— calcis, 6. 825
—— formula of, 1. 918	Palladic bispyridinochloride, 15. 671
free energy, 1. 895	bispyridinochlorobromide, 15. 678
heat formation, 1. 895	bispyridinodiiododiehloride, 15. 681
history, 1. 877 hydrate, 1. 908	
in air, 8. 10	— diaminochloride, 15. 671
luminescence, 1. 901	ethylenediaminochloride, 15. 671
occurrence, 1. 891	—— potassium hexanitrite, 8 . 514
—— physical properties, 1. 893	sulphide, 15. 682
—— preparation, 1. 878	Palladioplatinum, 16. 6
quantitative determination, 1. 949 solubility acetic acid, 1. 897	Palladious ammonium selenate, 10. 890 —— arsenate, 9. 234
carbon tetrachloride, 1. 898	Palladium, 15. 592; 16. 1
	absorption oxygen, 1. 370
essential oils, 1. 897	alloys, 15. 642
ethereal oils, 1. 897	aluminates, 15. 656
	aluminium alloys, 15. 649
in alkaline solutions, 1. 897	amalgam, 15. 649 hydrosol, 15. 649
salt solutions, 1. 897	—— ammonitrite, 8. 514
sulphuric acid. 1. 897	ammonium polysulphide, 15. 682
water, 1. 896	—— analytical reactions, 15. 633
solutions action acetaldehyde, 1. 897	antimonide, 15. 629
oxalic acid, 1. 897	arsenic alloys, 9. 81
paraldehyde, 1. 897 quinine salts, 1. 897	asbestos, 15. 597 atomic disruption, 15. 641
stabilizing, 1. 897	number, 15. 641
specific gravity, 1. 894	weight, 15. 640
heat, 1. 895	barium alloy, 15. 648
—— magnetization, 1. 896	—— bismuth alloys, 9. 641
tests, 1: 951	black, 15. 597
uses, 1. 911 —— water, 1. 898	—— bromides, 15. 675 —— cadmium alloy, 15. 648
Ozonic acid, 1. 906, 908	carbonate, 15. 684
Ozonides, 1. 897, 899	
Ozonite, 5. 119	carbonatodiammine, 15. 684
Ozonizer, Babo's, 1. 885	catalysis by, 1. 487
Brodie's, 1. 886	chlorides, 15 . 660
—— Siemens', 1. 886	chromium alloys, 15 . 650
Ozonous acid, 1. 908 Ozonwasserstoff, 1. 321	cobalt alloys, 15 . 651 colloidal, 15 . 598
Ozo-salt, 14. 672	copper alloys, 15. 642
Ozozobutylene, 1. 899	crystalline, 15. 597
Ozozonides, 1. 899	cupride, 15. 643
	—— diamminotrichloride, 15. 671
T.	—— diantimonide, 9. 416; 15. 629
P	dibromide, 15. 675
Pacherite, 9. 779	dichloride, 15. 660
Pachnolite, 2. 1; 3. 623; 5. 303, 309	15. 668
Pacite, 9. 308; 12. 530	dichlorodiamminochlorosmate, 15. 668,
Packfong, 15. 2, 209	719
Packtong, 15. 209	dichlorodiamminopirate, 15. 668

To 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Dalladium abadium allera 15 652
Palladium difluoride, 15. 658 ——— diiodide, 15. 679	Palladium rhodium alloys, 15. 652 —— ruthenium alloys, 15. 652
—— monohydrate, 15. 679	selenide, 10 . 801
dinitrosyldichloride, 8. 427	sesquioxide, 15 . 657
—— dinitrosylsulphate, 8. 427	——————————————————————————————————————
——— dioxide, 15. 657	—— silver alloys, 15. 644
—— diplumbide, 15 . 649	solubility of hydrogen, 1.
disulphide, 15. 682	307
—— ditelluride, 11. 64	copper alloys, 15. 646
——— dithiocarbamidosulphide, 15. 682	single crystals, 15. 597
—— electrodeposition, 15. 596	sodium alloys, 15. 642
—— electronic structure, 15. 641	—— solubility of hydrogen, 1. 305, 306
explosive, 15 . 598	spluttering, 15. 598
	spongy, 15. 597 stannate- β , 7. 420
films, 15 . 598 fluorides, 15 . 658	stannic oxide purples, 15. 598
gold, 15 . 592	subchloride, 15. 660
alloys, 15. 646	suboxide, 15. 654
solubility of hydrogen, 1.	—— subsulphide, 15. 681
307	—— sulphates, 15. 681
copper alloys, 15. 648	—— sulphides, 15. 681
—— nickel alloys, 15. 648, 652	——- tantalum alloys, 15 . 650
silver alloy, 15 . 648	telluride, 11. 64
zinc alloys, 15. 648	tetrabromide, 15. 678
—— hemioxide, 15 . 654	tetrachloride, 15. 671
—— hemiplumbide, 15. 650	tetritaselenide, 10. 801
hemisilicide, 6 . 214	tin alloy, 15. 649
—— hemisulphide, 15. 681	triantimonide, 9. 416; 15. 629
—— hemitrioxide, 15 . 657	—— trichloride, 15. 671 —— trichlorodiammine, 15. 671
- hydride, 15. 618	trifluoride, 15. 659
—— hydrogel, 15 . 598 —— hydrogen alloys, 15 . 616	- tripentitantimonide, 9. 416
—— hydrosol, 15 . 598	tritaferride, 15. 650
intermetallic compounds, 15. 642	tritaplumbide, 15. 650
iodides, 15 . 679	—— tungsten alloy, 15. 650
iridium alloys, 15. 751	—— uses, 15 . 635
—— iron alloys, 15. 650	valency, 15. 640
isotopes, 15 . 641	zinc alloys, 15. 648
——————————————————————————————————————	——————————————————————————————————————
—— lithium alloys, 15. 642	Palladous ammonium sulphatoselenate, 10.
magnesium alloy, 15. 648	930
manganese alloys, 15 . 650	bisdibenzylaminodibromide, 15. 677 bisdibenzylaminodichloride, 15. 668
—— manganide, 15. 650	bisethylenediaminobromide, 15. 676
— molybdenum alloys, 15. 650	bisethylenediaminochloride, 15. 668
—— monantimonide, 9. 416 —— monochloride, 15. 660	bisethylenediaminochloropallidate, 15.
— monosilicide, 6 . 214	672
—— monosulphide, 15. 681	bisethylenediaminochloropalladate, 15.
—— monoxide, 15 . 655	668
nickel alloy, 15. 651	bisethylenediaminohydroxide, 15. 657
—— nitrates, 15. 684	bisethylenediaminoiodide, 15. 681
nitride, 8 . 137	bispropylenediaminebromide, 15. 677
occurrence, 15 . 592	bispropylenediaminochloride, 15. 668
organosol, 15. 598	bispropylenediaminolydroxide, 15.657
osmium alloys, 15. 697	bispropylenediaminoiodide, 15. 681 bispyridinodiamminochloride, 15. 668
—— oxides, 15. 654	— monohydrate, 15. 668
	bispyridinodiamminochloropalladite,
phosphide, 8. 861	15. 668
—— phosphae, 5. 635 —— physiological action, 15. 635	- bispyridinodiamminochloroplatinite,
—— platinum alloy, 16. 223	16. 285
gold alloys, 16. 225	bistriaminopropaniodide, 15. 680
gold alloys, 16. 225 osmium alloys, 16. 226	—— bromide, 15 . 675
rhodium alloys, 16, 225	chloride, 15. 660
solubility of hydrogen, 1. 307	chloroamidobisethylphosphite, 15. 666
—— plumbide, 15. 650	chloropentammine chloromercurite, 15.
preparation, 15. 594	668
properties, chemical, 15. 616	- diamminodiodide, 15. 679
—— physical, 15 . 599 —— pyroarsenite, 9 . 134	—— diamminonitrite, 8. 514
	diamminotrioxydichloride, 15. 661

Dalladana diaminadiahlari la 45 000	/ 15 11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Palladous diarsinodichloride, 15. 666 —— dibromo-1.3.4-toluylenediamine, 15.	Palladous dichlorobis-o-phenylenediamine, 15. 666
676	· iso-propylamine, 15. 666
o-phenylenediamine, 15. 676	quinoline, 15 . 666
dibromobis-iso-amylamine, 15. 676 butylamine, 15. 676	- 1.2.3-xylidine, 15 , 666
quinoline, 15. 676	- dichlorobisbenzalaniline, 15. 666
n-butylamine, 15. 676	dichlorobisbenzidylamine, 15. 666
——————————————————————————————————————	dichlorobisbenzylamine, 15, 665 dichlorobisbutylselenine, 15, 666
a-naphthylamine, 15. 676	- dichlorobisearbamide, 15. 666
β -naphthylamine, 15. 676	dichlorobiscollidine, 15. 666
α-picoline, 15 . 676	dichlorobisdi-iso-amylamine, 15. 666
$β$ -picoline, 15 . 676 1.2.4-xylidine, 15 . 676	butylamine, 15. 666 dichlorobisdiethylsulphine, 15. 666
1.3.4-xylidine, 15 . 676	dichlorobisdipropylamine, 15. 666
- 1.4.5-xylidine, 15. 676	dichlorobisethylenediamine, 15. 666
dibromobisbenzidylamine, 15, 676	dichlorobisethylphenylamine, 15, 666
—— dibromobisbenzylamine, 15. 676 —— dibromobisbenzylbromoamine, 15. 676	dichlorobisethylphosphite, 15, 666 dichlorobisethylselenine, 15, 666
dibromobisbutylselenine, 15. 676	dichlorobislutidine, 15. 666
dibromobiscollidine, 15. 676	dichlorobismethylphenylamine, 15.666
dibromobisdibenzylbromoamine, 15.	dichlorobismethylphosphite, 15, 666 dichlorobismethylselenine, 15, 666
dibromobisdiethylsulphine, 15. 676	dichlorobispentylselenine, 15. 666
dibromobisdi-iso-amylamine, 15. 676	dichlorobisphenylamine, 15. 666
—— dibromobisdipropylamine, 15. 676	dichlorobispicoline, 15. 666
dibromobisethylphenylamine, 15. 676 dibromobisethylselenine, 15. 676	- dichlorobispiperidine, 15 . 666 - dichlorobispropylselenine, 15 . 666
dibromobislutidine, 15. 676	dichlorobispyridine, 15. 665
dibromobismethylethylsulphine, 15.	dichlorobisquinoline, 15. 665, 666
676	
dibromobismethylphenylamine, 15.	—— diehlorodiammine, 15 . 663 —— diehlorodiamminoethylphosphite, 15 .
—— dibromobismethylselenine, 15. 676	666
—— dibromobispentylselenine, 15. 676	 dichlorodiamminomethylphosphite,
dibromobisphenylamine, 15. 676	15. 666
dibromobisphenylselenine, 15. 676 dibromobispiperidine, 15. 676	- dichlorodibenzylchloroamine, 15. 666 - dichlorodiethyltrimethyleneselenide,
—— dibromobispropylselenine, 15. 676	15. 666
dibromobispyridine, 15. 676	dichlorodihydroxylamine, 15. 665
dibromobisquinoline, 15. 676 dibromobistolylamine, 15. 676	dichloroethylenebisdiethylsulphine,
—— dibromobisxylylamine, 15. 676	dichloroethylenediamine, 15. 666
—— dibromodiammine, 15. 675	—— dichlorohydrazine, 15. 665
dibromodiethyltrimethyleneselenide,	dehloropyridinoethylphosphite, 15. 666
15. 676 dibromoethylenebisdiethylsulphine,	dichloropyridinomethylphosphite, 15.
15. 676	—— dichlorotoluidinoethylphosphite, 15.
—— dicarbaylchloride, 15. 662	666
dichloro-1.3.4-bistolulyenediamine, 15.	dichlorotoluidinomethylphosphite, 15.
dichloroamidobismethylphosphite, 15.	666 —— dichlorotoluyldiamine, 15. 666
666	—— difluorodiammine, 15. 658
dichlorobenzylamine, 15. 666	dihydrated potassium tetranitrite, 8.
dichlorobenzylchloroamine, 15. 666 dichlorobioxylylamine, 15. 666	514
—— dichlorobis-iso-amylamine, 15. 666	dihydroxybispyridine, 15. 656 dihydroxydiammine, 15. 656
p-anisylamine, 15. 666.	—— diiodo-a-picoline, 15. 680
n-butylamine, 15. 666	β-picoline, 15 . 680
iso-butylenediamine, 15. 666	$ββ'β''$ -triaminotriethylamine, 15.
	ethylenebisdiethylsulphine, 15.
a-napthylamine, 15. 666	680
β-naphthylamine, 15. 666	diiodobis-iso-amylamine, 15. 680
—— —— m-nitraniline, 15. 666 —— o-nitraniline, 15. 666	n-butylamine, 15 . 680 iso-propylamine, 15 . 680
p-nitraniline, 15, 666	diiodobisbutylselenine, 15. 680
—— p-phenetidine, 15. 666	diiodobisdiethylsulphine, 15. 680

Palladous diiodobisethylselenine, 15, 680	Palladous tetramminochloride, 15. 667
—— diiodobismethylethylsulphine, 15. 680	monohydrate, 15. 667
——— diiodobismethylselenine, 15. 680	tetramminochloropalladate, 15, 668
diiodobispentylselenine, 15 . 680	692
diiodobispropylselenine, 15 . 680	tetramminochloropalladite, 15. 667
diiodobispyridine, 15. 680	tetramminochloroplatinite, 16. 285
diiodocollidine, 15 . 680	tetramminofluoride, 15. 658
— — diiodolutidine, 15 . 680	tetramminofluosilicate, 6. 958
diodopiperidine, 15. 680	tetramminohydroxide, 15. 656
dinitratobispicoline, 15. 684	tetramminoiodide, 15. 680
dinitratobispyridine, 15, 684	tetramminoiodopalladite, 15. 681
— dinitratodiammine, 15, 684	tetramminonitrate, 15, 684
ditritrosylchloride, 8 , 439 dinitrosylsulphate, 8 , 439; 15 , 683	tetramminosulphate, 15 . 683 — thiocarbazidochloride, 15 . 668
- dinitroxylchloride, 15. 628	- thiocarbazidosulphate, 15. 683
diphosphinodichloride, 15. 666	$$ $\beta\beta'\beta\beta''$ triaminotriethylaminchloro-
disalicylaldoximinochloride, 15. 666	palladate, 15. 666
disulphinodichloride, 15. 666	trimethylethyleneochloride, 15. 666
ethylenediaminobispyridinochloride,	trimethylstibinochloride, 15. 666
15 . 668	trioxydichloride, 15. 661
ethylenediaminodiamminochloride, 15.	Pallas, 16. 225
668	Pallasite, 15. 9
ethylenediaminodiamminochloropalla-	Pallasites, 12. 523
dite, 15 . 668	Palma, sec Count Palma
hemitricarbonylchloride, 15, 662	Palmierite, 7, 491, 821
—— hexamminoxychloride, 15. 661	Palorium, 15 . 647
hydroxide, 15 . 656	Pan acid, 2. 730
—— iodide, 15 . 679	- gas, 2. 730
——— monohydrate, 15 . 679	washing, 3. 496
- α-β-isobutylenediaminochloropalla-	Panabas, 9, 291
dite, 15. 668	Panacea collectis, 4, 797
—— monoarsinodichloride, 15. 667	mercurialis, 4. 797
monophosphinodichloride, 15. 667	Panacoea duplicata, 2, 656
nitrate, 15. 684	Panchymachogum minerale, 4, 797
- · - nitrite, 8. 514	
	Pandermite, 3, 623; 5, 3, 89 Panning, 3, 496
- phosphopentachloride, 8 . 1007	Panno di morti marble, 3. 815
phosphorus octochloride, 15. 662	Pantogen, 3, 911; 4, 3
pentachloride, 15 . 662, 675	Papin's autoclave, 1. 437
potassium iodonitrite, 8. 514	—— digester, 1. 437
oxalalonitrite, 8 . 514	Paposite, 14, 328, 332, 333
quater-iso-amylaminobromopalladite,	Papyrus, Ebers', 1. 26
15. 676	Leyden, 1. 26
amylaminochloropalladite,	Rhind, 1. 26
15 . 668	Parabayldonite, 9. 196
propylaminobromopalla-	Paracelsian, 6. 707
dite, 15 . 676	Paracelsus, 1, 50
propylaminochloropalla-	Paraceric oxide, 5, 673
dite, 15. 668	Parachlorite, 6, 609
n-butylaminobromopalladite, 15.	Parachronic acid, 11, 240, 302
676	Parachrosbaryt isometricher, 12. 432
n-butylaminochloropalladite, 15.	makrotyper, 12. 432
668	Paracolumbite, 7, 57; 9, 906
- quaterpyridinochloride, 15. 668	Paracoquimbite, 14, 309
quaterpyridinochloropalladite, 15. 668	Paradiphosphoric acid, 8, 948 Paradisulphuric acid, 10, 360
quaterpyridinohydroxide, 15. 657 quaterthiocarbamidochloride, 15. 668	Paradisulphuric acid, 10. 360 Paradoxite, 6. 663
silver tetranitrite, 8. 514	Paraffin, 13. 613, 615
sodium tetrasulphite, 10. 325	Paragenesis of salts, 4. 346
sulphate, 15 . 683	Paragonite, 6 . 606, 607, 608
—— sulphatodiammine, 15. 683	Parahelium, 7. 922
	Parailmenite, 7. 57
—— sulphodiammine, 15 . 682	Paralaurionite, 2. 15; 7. 491, 739
telluride, 11. 64	Parallel extinction, 1. 608
tetrahydroxylamine hydroxide, 15.656	Paralogite, 6. 763
tetrahydroxylaminochloride, 15. 668	Paraluminate, 5. 338
— tetramminobromide, 15. 676	Paraluminite, 5. 154
tetramminobromopalladite, 15. 676	Paramagnetism, 13. 244
tetramminocarbonate, 15. 684	Parameters of crystals, 1. 615

Parameters topic, 1. 656 Paramolybdates, 11. 580, 581, 582 Paramolybdic acid, 11. 546 Paramontmorillonite, 6. 498 Paramontmoullonite, 6. 825 Paranthine, 6. 762 Paraperiodic acid, 2. 386 Paraphite, 6. 619 Paraphosphoric acid, 8. 948 Parasepiolite, 6. 428, 825 Parasilicie acids, 6. 308 Parasite, 5. 137 Parastannic dichloride, 7, 443 Parastilbite, 6. 761 Parasulfatammon, 8. 647, 648 Parasulphuric acid, 10, 357 Paratacamite, 3. 179 Paratelluric acid, 11. 97 Paratetrarsenious acid, 9. 117 Paratungstates, 11. 773, 812 Paratungstic acid, 11, 764, 770 Paraurichalcites, 4. 648 Paravauxite, 12. 530; 14. 395 Paravivianite, 14. 391 Parchnolite, 5. 154 Paregoric compound, 13, 615 Pargasite, 6. 391, 821 Parian, 6. 514 cement, 3. 776 - marble, **3**. 815 Paris green, 9. 122 Parisite, 5. 521, 666 Parker's alloy, 15. 210 - cement, **6**. 554 - process desilverization lead, 3. 312 Parorthoclase, 6. 664 Parrot green, 9, 122 Parsettensite, 6. 896 Parsonite, 12. 5, 136 Parsonsite, 7, 491 α-particles, scattering of, 4. 166 Particulæ igniæ, 1. 56 nitro-aeræ, 1. 56 Partinium, 11. 743 Partition coeff., 2. 75 - law, 2. 75 - Berthelot and Jungfleisch, 2. 75 Partschinite, 12, 150 Partschite, 6. 901 Partzite, 9. 343, 437 Paschen's spectrum, 4. 169 Pascoite, 9. 770 Pascolite, 9. 715 Passive resistance, 1. 152 Passivity of copper, 3. 95 iron, 13, 498 Paste, 6. 521 Pastreite, 14. 328, 333 Patent nickel, 15. 179 Patenting steel, 12. 691 Pateraite, 11. 488, 574; 14. 424 Patera's process silver, 3. 305 Paternoite, 5. 97 Patina, 3. 70, 76; 7. 357 - antiqua, **7**. 357 – noble, **3**. 78 — red, **3**. 70 Pateo, 3. 304 process extraction silver, 3. 303 Patrinite, 9. 589, 693

Patronite, 9, 715, 815 Pattersonite, 6. 609, 622; 12. 530 Pattinson's process desilverization lead, 3. Pauling's furnace, 8. 376 Paulite, 6. 391 Pavonado blanco, 7. 797 Pearceite, 9. 4, 306 Pearl dust, 5. 219 spar, 4. 371 white, 9. 707 Pearlash, 2. 438 Pearlite, 5. 897; 12. 799, 848 granular, 12. 847 sorbitic, 12. 847 Pearlitizing, 12. 673 Pearls, 8. 814 Pearly constituent of steel, 5. 897; 12. 848 Peat bacterized, 8. 360 Pebble ore, 5. 249 Pechblende, 12. 1 Pecheisenstein, 13. 886 Pechgranat, 6, 921 Peckhamite, 6. 392 Pectolite, 6. 366, 390 - ammonia, 6. 367 ---- mangano, 6. 366 - potash, **6**. 367 - silver, **6**. 368 Pectolitic acid, 6. 295 Peganite, 5, 155, 366; 8, 733 Pegmatolite, 6. 663 Pehtung, **15**. 209 Pelagite, **12**. 150 Pelhamine, 6. 423 Pelhamite, 6, 423; 12, 530 Pelikanite, 6. 495 Peliome, 6. 809 Peloconite, 12. 150 Pelokonite, 12. 266 Pelosiderite, 14. 355 Pencatite, 4. 371 Pencil-stone, 6. 499 Penetrating power X-rays, 4. 33 Penfieldite, 2. 15; 7. 49), 737 Pennine, 6. 622; 12. 530 Penninite, 6. 622 Pennite, 4. 375; 15. 9 Penroseite, 10. 697, 800; 14. 424 Pentaboron enneahydride, 5. 36 Pentabromodisilane, 6. 981 Pentachlorobismuthous acid, 9. 667 Pentachlorochromic acid, 11. 386 Pentachlorocupric acid, 3. 183 Pentachloroguanineplatinic acid, 16. 314 Pentachlorohydrazinoiridic acid, 15. 763 Pentachloroperrhodites, 15. 577 Pentachloropyridinoiridic acid, 15. 768 Pentadecachloromolybdous acid, 11. 618 Pentahydrated cobaltic trioxo-octamminodichloride, 14. 674 Pentahydrohexamolybdate, 11. 582 Pentahydrotungstates, 11. 773 Pentahydroxychloroplatinic acid, 16. 333 Pentametaphosphates, 8. 988 Pentametastannic acid, 7. 406 Pentamolybdates, 11. 591 Pentaphosphonitrilic chloride, 8. 723 Pentasilane, 6. 225 Pentasilicane, 6. 225

Pentastannyl decahydroxide, 7. 406	Percylite silver.
Pentasulphammonic acid, 8. 666	Perdichromic a
Pentasulphitotetrammine, 8. 636	Perdimolybdic
Pentathionates, 12. 626	Perdiphosphori
Pentathionic acid, 10. 621	Perdistannic ac
anhydride, 10. 623	Perdisulphates,
Pentathiopyrophosphoric acid, 8, 1062, 1070	preparatio
Pentatungstates, 11. 828	properties
Pentazene, 8. 329	Perdisulphomol
Penterapolyvanadic acid, 9. 758	Perdisulphuric
Penterasulphotetrarsenic acid, 9. 315	
Penterasulphotriarsenic acid, 9, 315	
Penterohexaphosphoric acid, 8. 991	Perditungstic a
Penterosilicic acids, 6. 308	Perdiuranic aci
Pentitaamminotellurous acid, 11. 74	Perdurability o
Pentites, 6. 312	Perfectum præd
Pentlandite, 12. 530; 15. 6, 444	Perferrates, 13.
Penwithite, 6. 900	Perferric acid,
Peplolite, 6. 812	anhydride
Peptization colloids, 3, 538	Perferrites, 13.
Per-, 1. 118	Perferrowolfran
Peracids, 1. 956	Perhydral, 1. 9
and periodic law, 1. 960	Perhydrol, 1. 9
Perarsenates, 9. 147	Periclase, 4, 25
Perauric acid, 3 . 597, 579	Pericline, 6, 66
Perborates, 5. 115	twinning,
Perboric acid, 5. 115	Peridote, 6 . 38
Perborin, 5. 119	titaniferou
Perbromates, 2. 384	Period of accele
Perbromie acid, 2. 384	indu
Perbromides, 2. 233	phot
Percarbonates, 6. 82	Periodates, 2. 3
Percarbonic acid, 6. 82, 86	– – molybdate
Percerie ammonium carbonate, 5. 668	nomenclat
—— potassium carbonate, 5. 666	preparatio
—— rubidium carbonate, 5. 667	tungstato-
sodium carbonate, 5. 668	Periodic acid do
Perchlorates, 2. 370, 395; 11. 368	deter
detection, 2. 381	meso
determination, 2. 381	meta
—— preparation, 2. 371	nome
electrolytic processes, 2. 3	ortho
—— properties, 2. 381	para-
Perchloratosodalite, 6. 583	acids, 2. 3
Perchloric acid, 2. 370	basic
	prepe
constitution, z. 382	prope
nydrates, Z. 3/6	law, 4. 172
preparation, 2. 371	and c
——————————————————————————————————————	——————————————————————————————————————
	misfit
Perchlorides, 2. 233	occur
Perchloromethylmercaptan, 6. 110	— table elem
Perchlorosilicoethane, 6. 971, 981	Periodides, 2. 2
Perchlorotrisilane, 6. 216	Periods of eleme
	1 eriods or eleme
Perchromates, 11. 353	
—— blue, 11. 357	Parisanda 1 200
—— blue, 11. 357 —— red, 11. 356	Perissads, 1. 208
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356	Peristerite, 6. 60
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 —— constitution, 11. 359	Peristerite, 6. 66 Perlatum, 2. 85
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 ——— constitution, 11. 359 Percivalite, 6. 643	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 ————— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11.	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 —— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11. 597	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase —— yellow, 11.
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 ——— constitution, 11. 359 Percivalite, 6. 643 Percobaltite potassium enneamolybdate, 11. 597 Percobaltites, 14. 600	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase —— yellow, 11. Permanganates,
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 ———— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11. 597 Percobaltites, 14. 600 Percolumbates, 9. 869	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase ——yellow, 11. Permanganates, Permanganic ac
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 —— —— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11. 597 Percobaltites, 14. 600 Percolumbates, 9. 869 Percolumbic acid, 9. 856	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase —— yellow, 11. Permanganates, Permanganic ac —— anhydride,
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 —— —— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11. 597 Percobaltites, 14. 600 Percolumbates, 9. 869 Percolumbic acid, 9. 856 ———— colloidal, 9. 869	Peristerite, 6. 64 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase — yellow, 11. Permanganates, Permanganic ac — anhydride, — sodium tu
—— blue, 11. 357 —— red, 11. 356 Perchromic acid, 11. 353, 356 —— —— constitution, 11. 359 Percivalite, 6. 643 Percobaltic potassium enneamolybdate, 11. 597 Percobaltites, 14. 600 Percolumbates, 9. 869 Percolumbic acid, 9. 856	Peristerite, 6. 66 Perlatum, 2. 85 Permalloy, 15. 2 Permanent gase —— yellow, 11. Permanganates, Permanganic ac —— anhydride,

r, **7.** 742 acid, 11. 359 acid, 11, 606 ie acid, 8. 993 cid, 7. 413 , **10**. 475 on, 10. 453 s, 10. 459 olybdic acid, 11, 654 acid, 10. 449 paration. 10. 453 perties, 10. 459 acid, **11**. 834 id. 12. 71 of matter, 1, 100 cipitatum, 4. 862 . 702 13. 936 e, **13**. 936 . 702, 905, 925 mites, 11. 798 946 332 51, 280 33 6, 670 35; **15**. 9 ous, **6**. 386 leration, **2**. 150 action, **1**. 295; **2**. 149, 311 tochemical, **2**. 149 386, 406 to-, 2. 417 ture, 2. 386 on, 2. 387 -, 2. 417 letection, 2. 393 rmination, 2, 393 o-, **2**. 386 a-, 2. 386 enclature, 2. 386 o-, 2. 386 ., 2. 386 386 city of, 2. 391 paration, 2. 387 erties, 2. 389 occurrence of elements, 1.272 phic representation of, 1. 260 deleeff's, 1. 255 its, 1. 263 arrence of elements, 1. 273 nents, 1. 256 33 ents, 1. 255 long, 1. 257 short, 1. 257 63 51 258 es, **1**. 869 . 273 , **12**. 301 cid, 12. 281, 291, 293 , 12. 292 ingstate, 11. 797 12. 241, 267, 275 nolybdates, 11. 572

Permanganous molybdate, 11, 572 potassium octomolybdate, 11. 597 Permanganowolframites, 11. 798 Permeability magnetic, 13. 245 Permetavanadate, 9. 794 Permetavanadic acid, 9. 794 Perminvar, 15. 341 Permolybdates, 11. 605 Permolybdic acid, 11. 605 Permonomolybdic acid, 11. 606 Permonophosphoric acid, 8, 993 Permonosulphate, 10. 482 Permonosulphomolybdate, 11. 653 Permonosulphomolybdic acid, 11. 653 Permonosulphuric acid, 10. 449, 482 Permonouranic acid, 12, 71 Permutite, 6. 576 Pernickelates, 15, 401 Pernickelic ammonium enneamolybdate, 11. - - barium enneamolybdate, 11. 597 --- potassium enneamolybdate, 11. 597 Pernickelites, 15, 400 Pernitric acid, 8, 382, 384 Pernitrides, 8. 341, 344 Perofskite, 7. 52 Perosmic acid, 15. 707, 709 - anhydride, **15**. 707 Perovskite, 7. 52 Perowskite, 3. 623; 7. 2, 52; 9. 867 Perowskyn, 12. 453 Peroxal, 1. 946 Peroxide, 1. 956 Peroxides, 1. 394, 956, 958 and periodic law, 1.960 Peroxite, 4. 531 Peroxo-salt, 14. 672 Peroxyamidodisulphonates, 8. 684 Peroxyamidodisulphonic acid, 8. 684, 685 Peroxydate, 4. 531 Peroxydisulphates, 10. 450 Peroxylamidosulphonie acid, 8. 685 Peroxylamine, 8. 685 Peroxymonosulphates, 10. 450 Peroxysulphates, 10. 450 Perpetual lamp, 1. 50 — motion, 1. 50, 693 law of excluded, 1. 694 Perphosphoric acid, 8. 992 Perpyrosulphates, 10. 465 Perpyrovanadates, 9. 795 Perpyrovanadatic acid, 9. 795 Perrhenates, 12. 476 Perrhenic acid, 12. 474 anhydride, 12. 473 Perruthenic anhydride, 15. 518 Perruthenites, 15. 516 Persalts, 1. 960 Perselenic acid, 10. 852 Persia, 1. 20 Persil, 5. 119 Persilicates, 6. 277 Persilicie acid, 6. 278 hydrogel, 6. 278 Perstannates, 7. 412 Perstannic acid, 7. 404, 412 Persulphates, 10. 475 Persulphuric acid, 1. 276; 10. 419, 448, 449 Pertantalates, 9. 913 Pertantalic acid, 9, 913

Perthiocarbonates, 6, 130 Perthiocarbonic acid, 6, 131 Perthite, 6, 662, 663 microcline, 6, 663 Pertitanates, 7. 50 Pertitanic acid, 7, 27, 63 --- phosphate, 7. 97 ---- potassium sulphate, 7. 65 Pertungstates, 11. 833 Pertungstic acids, 11. 833 Peru silver, 15. 209 Peruranates, 12. 69 Peruranic acid, 12, 71 Peruvite, 9, 691 Pervanadate, 9. 794 Pervanadates, 9. 794 Pervanadic acid, 9, 794 Perzincic acids, 4, 531 Perzirconates, 7. 34 Pesillite, 6. 897; 12. 236, 266 Petalite, 2, 425; 6, 651 Petong, 15. 209 Petrifying springs, 3. 814 Petrol, 13. 613, 615 Petroleum and hydrogen, 1, 304 Pettenkofer's series, 1. 253 Petterdite, 7. 740 Pettkoite, 14. 353 Petzite, 3. 300, 494; 11. 2, 49; 14. 424 Pewter, 7. 630 Peyrone's chloride, 16. 263 Pezzi fusi dighisa malleabile, 12. 709 Pfaffite, 9, 458, 555 Pfennigerz, 13. 886 Phacolite, 6. 729 Phaeactinite, 6. 821 Phästine, **6**. 392 Pharmacocholzite, 9. 159 Pharmacolite, 3, 623; 9, 5, 169 - magnesian, **9**. 221 Pharmacolzite, 9. 159 Pharmacopyrite, 9. 73 Pharmacosiderite, 9. 4, 226; 12. 530 Phase colloidal, 1. 771 disperse, 1. 769 --- rule, 1. 444 -- and solutions, 1. 514 ---- derivation of, 1. 447 --- Gibbs', 1. 444, 446 - - modifications, 1. 449 - object of, 1. 448 Phases, 1. 445 Phenacelite, 6. 571 Phenacellite, 6. 571 Phenacite, 4. 205; 6. 380; 7. 897 —— X-radiogram, 1. 642 o-phenetidinium bromosmate, 15. 723 chloropalladite, 15. 670 Phengites, 6. 605, 607 phlogopites, 6. 608 p-phenitidinium bromosmate, 15. 723 chloropalladite, 15. 670 Phenyl carbamazide, 8. 339 ferrodinitrosylsulphide, 8. 442 sulphonic acid, 10. 239 Phenylammonium bromoplatinate, 16. 375 chlorosmate, 15. 719 Phenylbenzylammonium bromoplatinate, 16. 375

Phenylbenzylmethylammonium bromopla-Phosphatic acid, 8, 899, 924, 925 tinate, 16. 375 limestone, 3. 815 Phenyldiethylammonium bromoplatinate. Phosphatoctotungstates, 11. 872 **16**. 375 Phosphatoctotungstic acid, 11, 862, 872 Phenyldimethylammonium bromoplatinate, Phosphatodecamolybdic acid, 11. 664 Phosphatodecatungstic acid, 11, 862, 869 Phenyldimethylarsine tetraiodobismuthite. Phosphatodimolybdate, 11. 670 9. 676 Phosphatodimolybdic acid, 11, 670 Phosphatododecatungstic acid, 11. 862, 863 m-phenylenediamine bromopalladite, - docosihydrate, 11. 863 677 enneadecahydrate, 11.863 ferroheptanitrosyltri----hydrate -19, 11. 863 ---- -20, 11. 863 Phenylenediammonium bromoplatinate, 16. m-phenylenediammonium bromosmate, 15. -- Phenylethylammonium bromoplatinate, 16. - --- --- -27 $\frac{7}{2}$, 11. 863 Phenylhydrazine, 8. 308 ---- ferroheptanitrosyltrisulphide, 8. 442 - -- hydrochloride, **11**. 831 Phosphatododecimolybdic acid, 11. 661 bromoplatinate, --- docosihydrate, 11. 662 Phenylmethylammonium | 16. 375 - - dodecahydrate, 11. 662 ---- chlorosmate, 15. 719 --- octocosihydrate, 11. 662 Phenylsilicanediol (di), 6. 309 Phosphatoenneamolybdic acid, 11. 665 Phosphatoenneatungstic acid, 11. 862, 870 Phenylsilicic acid, 6. 309 Phenylthiotetrazoline, 8. 339 Phosphatohemicositungstic acid, 11. 862 Phenylultramarine, 6. 590 Phosphatohemihenicositungstic acid, 11.868 Pherecydes, 1. 31 Phosphatohemiheptadecamolybdic acid, 11. Philadephite, 6. 609 667 Phosphatohemiheptadecatungstic acid, 11. Philathes erenasus, 1. 48 - eupenius, 1. 48 862, 871 Philippia, 5. 560 Phosphatohemiheptatungstic acid, 11. 862 Philippium, 5. 497 Phosphatohemipentamolybdic acid, 11. 668 Philipstadite, 6, 821 Phosphatohenamolybdic acid, 11. 664 Phosphatohenatungstic acid, 11. 862, 867 Phillipite, 12. 530 Phosphatohexatungstic acid, 11, 862, 872 Phosphato-iodic acid, 2, 363; 8, 963 Phillipsite, 6, 575, 736, 738; 14, 189 Philosopher's salt, 10. 331 stone, 4. 148 Phosphatomolybdic acids, 11. 659, 670 Philosophical chemistry, 1. 3 Phosphatomolybdosic acid, 11. 659 Phosphatonitroxyl, 8. 709 Phlogeston, 1. 64, 70, 72, 125 Phosphatopotash-sodalite, 6. 583 Phlogisticated air, 8. 45 sulphuric acid, 10. 187 Phosphatosodalites, 6. 583 Phlogopite, 6. 604, 605, 608 Phosphatotritungstic acid, 11. 862, 873 Phœnicia, 1. 28 Phosphatotungstic acids, 11. 862 Phosphatovanadatomolybdates, 9. 829 Phœnicite, 7, 491; 11, 125, 303 Phœnicochroite, 11. 125, 303 Phosphatovanadic acids, 9. 827 Pholerite, 6. 477 Phosphides, 8. 833 Phonolite, **5**. 531; **7**. 897 Phosgene, **5**. 962 Phosphine, 8. 802 --- cuprous chloride, 3. 162 - physiological action, 8. 819 spar, 7. 852 Phospenite, 2. 15; 7. 491, 852 Phospham, 8. 269, 708 - preparation, 8. 803 -- properties, chemical, 8. 810 Phosphamic acid, 8. 705, 716 Phosphamide, 8. 708 physical, 8. 807 Phosphinotribromosilane, 6. 979 Phosphamidic acid, 8. 716 Phosphites, 8. 911 Phosphaminic acid, 8. 708 - ammonium, **8**. 911 Phosphate bone, 3. 904 ---- primary, 8. 911 - boulder, **8**. 735 pebble rock, 8. 736 - rock, 8. 735 Phosphocerite, 5. 523 - soft, 8. 736 Phosphochalcite, 3. 8, 289 Phosphodiamic acid, 8. 707 – soil, **8**. 905 Phosphodiamidic acid, 8. 707 Phosphated baryte, 8. 841 Phosphoferrite, 12. 530; 14. 396, 399 · lime, 8. 841 Phosphographitic acid, 8. 956 Phosphates, 8, 948 Phosphomellogen, 8. 956 - primary, **8**. 948 secondary, 8. 948 Phosphomolybdic acids, 11. 659 Phosphon yellow, 8. 748 — tertiary, **8**. 948

Phosphon yellow a, 8. 748	Phosphorus, Brand's, 8, 730
β, 8 . 748 colloidal, 8 . 749	bromomercuriate, 8. 1033
colloidal, 8, 749	Canton's, 3. 740
Phosphonitrilic bromides, 8, 724	- carburet (carbide), 8. 846
Phosphonitryle, 8 . 721	chloronitrides, 8. 721 colourless, 8. 744
Phosphonium amalgam, 8, 822	cycle in nature, 8 . 736
bromide, 8 . 824	diamidotrifluoride, 8. 707
chloride, 8 . 822	diantimony pentadecachloride, 9. 489
chlorotitanate, 7. 85	dibromide, 8 . 1030
compounds, 8 , 822	—— dibromonitride, 8. 724
hydroxide, 8 . 822	dichloride, 8 . 998
iodide, 8 . 824	dichloroheptabromide, 8. 1044
Phoepharbullita 12 550	dichloronitride, 8, 723
Phosphophyllite, 12, 550 Phosphor bronze, 7, 347	dichloropentabromide, 8. 1043 dichlorotribromide, 8. 1043
copper, 3 . 97	diiodide, 8 . 1038
tin, 8 . 848	diiodotriselenide, 10. 791
Phosphorearburetted hydrogen, 8, 847	dinitroxylpentafluoride, 8. 997
Phosphore de Homberg, 3. 697	dioxytrisulphide, 8, 1061
noir, 8. 747	disulphide, 8 . 1054
Phosphorescence spectrum, 12, 19	disulphoselenide, 10, 922
Phosphorescopes, 3, 745	dithiodiiodide, 8, 1079
Phosphorgummite, 12, 52	dithiopentachloride, 8, 1073
Phosphoric acid, 8, 947; 13, 613, 615	ditritanhydrosulphatotetroxide, 10.
	ditroxylpentafluoride, 8, 542
hemihydrate, 8. 952	dodecasulphide, 8. 1047
hydrates, 8. 951	emanation, 8. 779
monohydrate, 8, 952	English, 8. 730
—— nitrosyl, 8 . 435	enneabromide, 8. 1033
physiological action, 8. 965	enneamminotetrabromide, 8. 1035
properties, physical, 8. 953	enneamminotribromide, 8. 1032
anhydride, 8. 940	flowers of, 8, 891, 940
	—— fluorides, 8 . 993
ether, 8 . 966 fluoride, 8 . 996	fulgurans, 8. 730 granulated, 8. 743
	—— hemioxide, 8 . 869
	—— hemipentamminofluoride, 8. 997
—— spar, 2. 3	hemiselenide, 10 . 790
tapers, 8 . 1059	hemisulphide, 8. 1047
titanium enneachloride, 1. 85	hemitriselenide, 10. 790
Phosphorite, 2. 1; 8. 623, 896; 8. 734	heptabromide, 8, 1035
Phosphorogia oxide 8, 922, 923	
Phosphorosic oxide, 8, 922, 923 Phosphorosophosphoric oxide, 8, 923	hexachloroiodide, 8. 1045
Phosphorous acid, 8. 899	hexamminotrichloride, 8. 1004
amidosulphuryl tetrachloride, 8. 662	—— hexasulphide, 8 . 1047
anhydride, 8 . 891	—— history, 8. 729
chloride, 8 . 999	hydrohydroxide, 8. 832
—— fluoride, 8 . 994	—— hydrohydroxyhydroiodide, 8. 832
—— lead enneaiodide, 7. 762	hyposulphides, 8. 1047
oxide, 8 . 891	igneus, 8 . 730
	ignition temp., 8. 772
Phosphorphyllite, 14. 396	imide, 8 . 271 imidoamide, 8 . 271
Phosphors alumina rhodium, 15. 565	imidonitride, 8. 269
Phosphorus, 8. 729; 12. 528	—— iodides, 8. 1037
allotropes, 8. 744	iodobisiodomercuriate, 8. 1041
—— amide, 8. 271, 704 —— antimonide, 9. 409	iron-silicon alloys, 18. 571
	Kraft's, 8. 730
antimony decachloride, 9. 489	—— Kunckel's, 8 . 730
	liquid, 8. 747
atomic weight, 8, 799	— metallic, 8. 747 — mirabilis, 8. 730
—— Baldwin's, 3. 740; 8. 729 —— black, 8. 747, 748	molybdenum decachloride, 11. 625
borotribromodiiodide, 8. 1039, 1040	mononitride, 8. 122, 123
bottles, 8. 1059	nitride, 8. 123
boxes, 8 . 1059	occurrence, 8. 732
Boyle's, 8 . 7 3 0	octamminopentachloride, 8. 1014

Phosphorus octamminotrichloride, 8. 1004	Phosphorus trichloride and CO ₂ , 6, 32
octitahenasulphide, 8. 1047	properties, chemical, 8. 1002
oxidation, 8. 771	
oxides, 8 . 866	trichloroctobromide, 8. 1044
—— oxybromide, 8 . 1036 —— oxychloride, 8 . 1019	trichlorodibromide, 8, 1043
	trichlorodiiodide, 8. 1045 trichloromercuriate, 8. 1007
	hemihydrate, 8. 1007
oxysulphides, 8. 1061	trichloropentabromide, 8. 1044
oxytrifluoride, 8. 997	trichlorotetrabromide, 8. 1044
pentabromide, 8 . 1033	—— trifluodibromide, 8. 1042
- — pentachloride, 8. 1009	trifluodichloride, 8. 1042
——— properties, chemical, 8. 1012	trifluodiiodide, 8. 1042
	trifluoride, 8 . 994
pentafluoride, 8, 996	trihydride, 8, 802
—— pentaiodide, 8. 1038	
pentasulphide, 8. 1055	trisiodomercuriate, 8. 1041
—— pentathiodichloride, 8. 1074	tritahexasulphide, 8. 1054
pentoxide, 8. 940	tritahydroxide, 8. 869
preparation, 8. 941	tritapentanitride, 8. 123
properties, chemical, 8. 944	tritapentasulphide, 8, 1047
physical, 8. 942	- trithiodiiodide, 8, 1079
—— pentoxydecachloride, 8. 1015	— · · · uses, 8. 795
—— persulphide, 8 . 1047	— valency, 8, 799
physiological action, 8. 794	violet, 8. 747
preparation, 8. 740 properties, chemical, 8. 782	- — white, 8. 747 zirconium oxyhenichloride, 7. 145
	tridecachloride, 7. 145
purification, 8. 743	Phosphoryl antimony octochloride, 9. 489
pyropus, 8 . 730	—— bromide, 8 . 1035
red, 8. 744	chloride, 8. 1019
colloidal, 8. 749	properties, chemical, 8, 1023
rhombie, 8 . 747	physical, 8. 1021
scarlet, 8. 746	chlorodibromide, 8. 1046
—— selenides, 10 . 930	dichloroamide, 8, 1024
selenoxide, 10 . 931	- — dichlorobromide, 8, 1045
sesquisulphido, 8. 1049	diimidosulphide, 8. 727 fluoride, 8. 997
silicate, 6 . 835 silicide, 6 . 188	hexamminotrichloride, 8. 1024
—— sulphates, 8. 1071	hydrasulphide, 8. 1071
sulphatodecachloride, 8. 1017	imidoamide, 8. 708
sulphides, 8. 1047	molybdenum octochloride, 11. 625
sulphoselenide, 10. 791, 920	monochloride, 8 . 1019, 1026
—— tetrachlorobromide, 8. 1043	—— monofluoride, 8. 998
—— tetracosisulphotriiodide, 10. 95	—— nitrile, 8 . 709
tetracosithiotriiodide, 8. 1040, 1078	sulphate, 8. 1071
tetramminotetritadecasulphide, 8.	titanium heptachloride, 7. 85
1056	- — triamide, 8. 707 - — trichloride, 8. 1019
—— tetratritaiodide, 8 . 1038 —— tetritadecasulphide, 8 . 1055	Phosphosiderite, 12. 530; 14. 401
tetritaheptoxide, 8. 1053	Phosphotungstic acids, 11. 862, 863
tetritahexasulphide, 8. 1052	Phosphouranylite, 12. 130
tetritaiodide, 8. 1038	Phosphuranylite, 8, 733; 12, 5
tetritapentasulphide, 8. 1047	Photicite, 6. 897
tetritaselenide, 10. 790	Photizite, 6. 897
tetritasulphide, 8. 1047	Photochemical equivalence, 2. 153
—— tetritatriselenide, 10. 790	——————————————————————————————————————
tetritatrisulphide, 8. 1048	—— extinction, 2. 155 —— induction, 2. 149
tetroxide, 8 . 866, 922, 923	Photoelectric action, 2. 152
	normal, 4. 43
thiototides, 8. 1079	selective, 4 . 43
triamide, 8. 271	Photographic plate, 3. 411
tribismuthodibromide hydrobromide,	Photography, 8. 411
9. 672	Photolite, 6. 366
tribromide, 8. 1030	Photoluminescence, 3. 745
trichloride, 8 . 998, 999	Photolysis, 2. 154

Phototropic reactions, 4. 963	Pig iron all mine, 12. 708
Phyllinglanz, 3. 494	———— basic, 12 . 709
Phyllite, 6 . 620; 12 . 150	Bessemer, 12. 709
Physalite, 6, 560	
Physical change, 1. 83	cinder, 12 . 708
Picite, 12. 530; 14. 409	hæmatite, 12. 708
Pickel Greek, 9, 122	machine cast, 12 . 596
Pickles, 13. 615	
Pickeringite, 4. 252; 5. 154, 354	sand-cast, 12 . 596
Pickering's spectrum, 4. 170	—— moulds, 12 . 708
Picolinium chloropalladate, 15. 673	Pigeonite, 6. 916
chloropalladite, 15 . 67 0	Pigs, 12. 596, 597
pentachloropicolinoiridate, 15. 768	Pilarite, 6 . 344
β-picolinepentachloroplatinate, 16. 312	Pilasonite, 11. 2
a-picolinium bromoiridate, 15. 777	Pilbarite, 5. 515; 7. 491; 12. 5
bromopalladate, 15 . 678	Pilolite, 6 . 423
bromoplatinate, 16 . 376	a, 6. 825
bromoruthenate, 15. 539	β, 6 . 825
bromosmate, 15 . 723	Pilsenite, 11. 60
chloriridate, 15 . 77I	Pilula hydrargyri subchloridi composita, 4.
——————————————————————————————————————	813
β-picolinium bromopalladate, 15. 678	Pimelite, 6 . 624, 933; 15 . 6
bromopalladite, 15. 677	Pinakiolite, 5 . 113; 12 . 150
bromoperruthenite, 15. 538	Pinakolite, 5. 4
bromosmate, 15. 723	Pinehbeck, 4. 671
chloroiridate, 15 . 771	Pingos d'agoa (drops of water), 6. 562
chloroperruthenite, 15. 533	Pingiute, 6. 907; 12. 530
chlororhodate, 15. 580	Pinite, 6, 619, 812
chlororuthenate, 15. 534	Pinitoid, 6. 619
chlorosmate, 15. 719	Pink chrome-tin, 7, 421
Picotite, 4. 251; 5. 154, 298; 11. 199, 201	salt, 7. 447
Picranalcime, 6. 644	Pinnoite, 2, 430; 4, 252; 5, 495
Pierie acid, 13. 615	Pintadoite, 9. 769
Picroalluminite, 5. 354	Piombo muriato corneo, 7. 706
Picroallumogene, 5. 354	l'iotine, 6. 432
Picroallumogin, 5. 354	Piperidinium bromopalladite, 15. 677
Picroalumogen, 5. 154	bromoplatinate, 16. 376
Picrochromite, 11. 199	bromosmate, 15 . 723
Picroilmenite, 7. 2, 57	chloroiridate, 15. 771
Picrolite, 6. 422; 15. 9	chloropalladite, 15. 670
Picromerite, 2. 430, 657; 4. 252, 338, 339	chloroperruthenite, 15 . 533
Picropharmacolite, 8 . 623; 4 . 252; 9 . 5, 179	chlororuthenate, 15. 534-5
Pierophyll, 6 . 416	
Picrosmine, 6. 423	Piperno, 6 . 762
	Pirodmalite, 6. 896
Picrotephroite, 6, 893	Pirssonite, 3. 844
Picrothomsonite, 6, 710	
Picrotitanite, 7. 57	Pisanite, 12, 530; 14, 295 Pisekite, 12, 6
Pictet's formula, 1. 834	
Pictite, 6. 840; 7. 3	Pisilomelane, 3. 625
Piddingtonite, 6 , 396	Pisolitic ore, 5, 249
Piedmontite, 6 . 722, 768; 12 . 148, 150	Pissophane, 5. 338
Piedra mineral de plomb, 5. 714	Pistacite, 6, 721 Distance 12, 721 Distance 14, 340 . 12, 530 . 14, 360
Pieropidote, 6, 722	Pistomesite, 4, 349; 12, 530; 14, 369
Pierre à feu, 6. 140	Pit carantite, 6. 416
savon, 6 . 498	—— charcoal, 5. 748
eruciforme, 6 . 766	Pitchblende, 5. 530; 7. 896; 12. 1, 5, 49
d'aimant, 13. 734	Pitt diamond, 5, 711
—— d'azure, 6 . 586	Pitticite, 9. 5, 227; 12. 530
——— de amazones, 6. 663	Pittinite, 12. 5, 52
croix, 6 . 766, 909	Pittizite, 9. 227; 13. 886
——— grasse, 6 . 569	Placer deposits, 3. 496
Labrador, 6. 693	—— gold, 3 . 491
lune, 6 . 662	mining, 3. 496
macle, 6. 458	Placodine, 9. 79
savon, 6. 427, 432	Placodite, 15. 6
soleil, 6. 663	Plagioclase, 6. 694
— élastique, 6. 140	— barium, 6. 707
Piezoelectricity, 1. 648	Plagiocitrite, 4. 252; 5. 154; 12. 530; 14.
Pig boiling, 12. 636	328, 353
—— iron, 12. 596, 708	Plagionite, 7. 491; 9. 343, 547

Plagionite α-, 9, 547	Platinic bisallylaminehydroiodide, 16, 389
β-, 9 . 547	bisamylaminehydrochloride, 16. 310
Plait point, 1. 168	bisanilinehydrobromide, 16. 376
Plakodine, 15. 6	bisanilinehydrochloride, 16, 312
Planchéilate, 3. 8	- bisanilinehydroiodide, 16. 389
Plancheite, 6. 341, 344	biscarbamidehydrochloride, 16. 313
Planck's constant, 1. 811	—— dihydrate, 16. 313
Plane of symmetry, 1. 614	biscollidinehydrobromide, 16. 376
— polarization of light, 1. 607	bisdiamylaminehydrochloride, 16. 311
Planerite, 5. 366, 367	
	bisdiethylallylaminehydrochloride, 16.
Planets, influence on metals, 1, 3, 21	311
Planoferrite, 12, 530; 14, 328, 334	bisdiethylaminehydrobromide, 16. 375
Plants, metabolism, 6. 10, 11	bisdiethylaminehydrochloride, 16, 309
Plasma, 6 . 139	—— bisdiethylaminehydroiodide, 16. 389
Plaster dead burnt, 3. 775	bisdiethyldipropylammoniumchloride,
flooring, 3 . 774	16. 310
hard finish, 3 . 776	bisdiethylhydrazinehydrochloride, 16.
of Paris, 3. 763, 767	311
setting of, 3 . 770	bisdiethylphosphinehydrochloride, 16.
Plasters, cement, 3. 775	315
Plasticity, 1, 819	bisdiethylpropylaminehydrochloride,
- of clay, 6 . 485	16. 310
Platalargan, 16. 210	
	bisdiethylpropylsulphoniumchloride,
Plate iron, 12, 709	16. 314
	bisdi-iso-amylaminehydrobromide, 16.
Platimoor, 16. 48	375
Platina, 16. 2	bisdi-iso-butylaminehydrobromide, 16.
Platinan chlorostannite, 7, 434	375
Plating gold, 3. 359	- bisdimethylaminehydrobromide, 16.
silver, 3 . 359	375
Platinic allylacetic trichloride, 16, 286	bisdimethylaminehydrochloride, 16.
allylmalorietrichloride, 16. 286	309
amidobromotetramminobromide, 16.	bisdimethylaminehydroiodide, 16. 389
381	- bisdimethylarsinehydrochloride, 16.
amidochlorotetramminobromide, 16.	315
381	bisdimethylbenzylselenoniumehloride,
- amidochlorotetramminochloride, 16.	16. 315
306	bisdimethylbenzylsulphoniumehlo-
aminochlorotetramminonitrate, 16.413	ride, 16. 314
ammonium arsenite, 9. 134	bisdimethyldiethylanınoniumbro-
arsenate, 9, 234	mide, 16. 375
barium molybdate, 11. 576	bisdimethyldiethylammoniumchloride,
bis-a-methyl-a'-ethylpyridinehydro-	16 . 309
chloride, 16 . 313	bisdimethyldiethylarsoniumchloride,
bis-α-methyl-β'-ethylpyridinehydro-	16. 315
chloride, 16 . 313	bisdimethyldiethylphosphoniumchlo-
bis-a-methyl-γ-ethylpyridinehydro-	ride, 16 . 315
chloride, 16. 313	bisdimethyldipropylammoniumehlo-
bis-a-picolinehydrochloride, 16. 312	ride, 16 . 310
——————————————————————————————————————	bisdimethylethylaminehydrochloride,
	16 . 309
bis-a-picolinehydroiodide, 16. 389	bisdimethylethylpropylammonium-
bis-a-propylpyridinehydrochloride, 16.	chloride, 16. 310
313	— bisdimethylothylsulphoniumchloride,
	16. 314
bis-aβy-trimethylpyridinehydro-	
chloride, 16, 312	bisdimethylhydrazinehydrochloride,
bis-aya'-trimethylpyridinehydro-	16. 311
chloride, 16 . 312	bisdipropylallylaminehydrochloride,
bis-aγβ'-trimethylpyridinehydro-	16. 311
chloride, 16 . 312	bisdipropylaminehydroiodide, 16. 389
— bis-β-methyl-γ-ethylpyridinehydro-	—— bisethylallylaminehydrochloride, 16.
chloride, 16. 313	311
bis-β-picolinehydrochloride, 16. 312	bisethylaminehydrobromide, 16. 375
bis-γ-isopropylpyridinehydrochloride,	bisethylaminehydrochloride, 16. 309
16. 313	bisethylaminehydroiodide, 16. 389
bis-γ'-isopropylpyridinehydrochloride,	—— bisethylaminochloride, 16. 309
16. 313	bisethyldipropylaminehydrochloride,
bis-γ-picolinehydrochloride, 16. 312	16. 310
	bisethyl-i-amylaminehydrochloride,
bisallylaminehydrobromide, 16, 375 bisallylaminehydrochloride, 16, 311	
	16. 311

Platinic bisethyl-i-butylaminehydrochlo- ride, 16. 310	Platinic bismethyldi-i-propylsulphonium- chloride, 16. 314
bisethyl-i-dibutylaminehydrochloride, 16. 310	—— bismethyldi-n-propylsulphoniumchlo- ride, 16. 314
bisethyl-i-propylaminehydrochloride, 16. 310	bismethyldiethylaminehydrochloride, 16. 309
—— bisethyl-iso-butylaminehydrobromide, 16. 375	
bisethyl-n-butylaminehydrochloride, 16. 310	—— bismethyldiethylpropylammonium- chloride, 16 . 310
bisethyl-n-propylaminehydrochloride,	bismethyldiethylsulphoniumchloride,
16. 310	16. 314
bisethylpropyl-i-butylaminehydro-	chloride, 16. 314 ——bismethylethylbenzylsulphonium-
chloride, 16. 310	chloride, 16. 314
ride, 16. 310 —— bisethylthioglycolatodiamminonitrate,	chloride, 16 . 310
16. 412 bisethyltribenzylphosphoniumchlo-	chloride, 16. 311 bismethylethyl-i-butylaminehydro-
ride, 16 . 315 —— bisethyltri-i-butylammoniumchloride,	chloride, 16 . 310 ——bismethylethyl-i-butylsulphonium-
16. 310 —— bisethyltripropylammoniumchloride,	chloride, 16. 314
bis.i-butylaminehydrochloride, 16. 310	chloride, 16. 314
bis-i-dibutylaminehydrochloride, 16.	chloride, 16. 314 bismethylethyl-n-propylsulphonium-
bis-i-dipropylaminehydrochloride, 16.	chloride, 16. 314
bis-i-propyl-i-butylaminehydrochlo- ride, 16. 310	niumchloride, 16 . 310 ——bismethylethylpropylaminehydro-
bis-i-propyl-n-propylamine-hydro- chloride, 16, 309	chloride, 16 . 310 bismethyltribenzylarsoniumchloride,
bis-i-propylaminehydrochloride, 16. 309, 375	16. 315 — bismethyltriethylammoniumbromide,
bis-i-tetrabutylammoniumchloride, 16.	16. 375 —— bismethyltriethylammoniumchloride,
bis i-tributylaminehydrochloride, 16.	16. 309 bismethyltriethylphosphoniumchlo-
bis-iso-amylaminehydrobromide, 375	ride, 16 . 315 —— bismethyltripropylammoniumbro-
—— bis-iso-butylaminehydrobromide, 16.	mide, 16 . 375 —— bismethyltripropylammoniumchlo-
bis-iso-quinolinehydrochloride, 16. 313 bislutidinehydrobromide, 16. 376	ride, 16. 310 —— bis-n-butylaminehydrobromide, 16.
bis-m-toluidinehydrochloride, 16. 312 bismethyl-i-amylaminehydrochloride,	375
16. 311 — bismethyl-i-butylaminehydrochloride,	bis-n-dibutylaminehydrochloride, 16.
16. 310 —— bismethyl-i-dipropylaminehydro-	bis-n-dipropylaminehydrochloride, 16.
chloride, 18. 310 —— bismethyl i propylaminehydrochlo-	bis-n-propyl-i-butylaminehydrochlo- ride, 16. 310
ride, 16. 310 bismethyl-i-propylbenzylsulphonium-	bis-n-propylaminehydrobromide, 16.
chloride, 16. 314 —— bismer and his mental characteristics and the characteristics and the characteristics are characteristics.	bis-n-propylaminehydrochloride, 16.
16. 310 —— bismethyl-n-dipropylaminehydrochlo-	bisnaphthylaminehydrobromide, 18.
ride, 16 . 310 —— bismethylen propyiaminehydrochlo-	bis-p-toluidinehydrochloride, 16. 312 bispicolinehydrobromide, 18. 376
ride, 16. 310 —— bismethylaminehydrobromide, 16. 375	
bismethylaminehydroiddide, 16, 309 bismethylaminehydroiddide, 16, 389	
bismethyldi-i-butylsulphoniumchlo- ride, 16. 314	ride, 16. 310 —— bispropylallyaminehydrochloride, 16.
—— hydrate, 16. 314	311

Platinic bispropyltri-i-butylammoniumchlo-	Platinic bistriethylpropylammoniumbro-
ride, 16. 310 bispyridinehydrobromide, 16. 376	mide, 16. 375 —— bistriethylpropylammoniumchloride,
— bispyridinehydrochloride, 16. 312	16 . 310
— bispyridinehydroiodide, 16. 389	bistricthylpropylphosphoniumchlo-
— bisquinolinehydrochloride, 16. 313, 376	ride, 16. 315
	bistricthylsulphoniumchloride, 16. 314
—— bisquinolinehydroiodide, 16. 389	bistriethylsulphoniumiodide, 16. 389 bistri-iso-amylaminehydrobromide, 16.
bis-tertiary-butylaminehydrochloride,	375
16 . 310	bistri-iso-butylaminehydrobromide,
—— bistetrabenzylarsoniumchloride, 16.	16. 375
315 —— bistetrabutylarsoniumchloride, 16 . 315	—— bistrimethylallylammoniumchloride, 16. 311
—— bistetraethylammoniumbromide, 16.	- bistrimethylaminehydrobromide, 16.
375	375
bistetraethylammoniumchloride, 16.	bistrimethylaminehydrochloride, 16.
309	309 —— bistrimethylaminehydroiodide, 16. 389
bistetraethylammoniumiodide, 16. 389 bistetraethylarsoniumehloride, 16. 315	bistrimethylamylammoniumchloride,
— bistetraethylphosphoniumchloride, 16.	16 . 311
315	bistrimethylamylphosphoniumchlo-
—— bistetraethylstiboniumehloride, 16. 315	ride, 16 . 315
bistetra-i-propylarsoniumchloride, 16.	bistrimethylethylammoniumbromide, 16. 375
315 — bistetrallylammoniumchloride, 16 . 311	bistrinethylethylammoniumchloride,
—— bistetramethylammonium bromide,16.	16. 309
375	— bistrimethylethylphosphoniumchlo-
—— bistetramethylammoniumehloride, 16.	ride, 16. 315
309	bistrimethyl-i-butylammoniumchlo- ride, 16 . 310
bistetramethylammoniumiodide, 16 .	bistrimethyl-i-dipropylammonium-
bistetramethylphosphoniumchloride,	chloride, 16 . 310
16. 315	bistrimethyl-n-butylammoniumchlo-
bistetramethylstiboniumchloride, 16.	ride, 16 . 310
315 bistetramylanımoniumehloride, 16.311	—— bistrimethyl-n-propylammoniumchlo- ride, 16 . 310
bistetra-n-propylarsoniumchloride, 16.	bistrimethylphosphinehydrochloride,
315	16. 315
bistetrapropylammoniumbromide, 16.	—— bistrimethylselenoniumchloride, 16.
375	315 bistrimethylsulphoniumchloride, 16.
—— bistetrapropylammoniumiodide, 16.	bistrimethylsulphoniumchloride, 16.
bistetrapropylstiboniumchloride, 16.	—— bistrimethylsulphoniumiodide, 16. 389
315	— bistrimethyltelluroniumchloride, 16.
— bisthiocarbamidehydrochloride, 16.	315
314	bistripropylaminehydrobromide, 16.
—— bistoluidinehydrobromide, 16. 376 —— bistriallyaminehydrochloride, 16. 311	bistripropylaminehydrochloride, 16.
bistriamylaminehydrochloride, 16. 311	309
bistributylsulphoniumchloride, 16. 314	bistripropylbutylammoniumchloride,
bistriethylallylammoniumchloride, 16.	16. 310
311 bistriethylallylphosphoniumehloride,	—— bistripropylsulphoniumchloride, 16.
16. 315	bisxylidinehydrobromide, 16. 376
bistriethylaminehydrobromide, 16. 375	— bisxylidinehydrochloride, 16. 312
bistriethylaminehydrochloride, 16. 309	bromide, 16. 373
bistriethylaminehydroiodide, 16 . 389	bromoamidotetramminobromide, 16.
—— bistriethylamylphosphoniumchloride, 16 . 315	bromocarbonatotetramminocarbonate,
bistriethylbutylammoniumbromide,	16. 408
16 . 375	bromocarbonatotetramminocarbonate-
bistriethyl-i-amylammoniumchloride,	dibromotetramminonitrate, 16. 414
16. 311	bromochlorotetramminochloride, 16.
bistriethyl-i-butylammoniumchloride, 16. 310	bromodinitratotriamminobromide, 16.
bistriethyl-n-butylammoniumchloride,	414
16 . 310	—— bromoiodides, 16. 392
bistriethylphosphinehydrochloride, 16.	bromonitratoquaterpyridinehydro-
315	nitrate, 16. 414

Platinic bromonitratotetramminonitrate, 16. 414	Platinic chloropentamminochloroplatinate, 16. 305
bromonitratotetramminosulphate, 16.	chloropentamminohydroxide, 16. 306 chloropentamminonitrate, 16. 412
bromopentamminobromide, 16. 381	chloropentamminosulphate, 16, 404
bromosulphatotetrainminosulphate, 16. 406	chlorosulphatotetramminosulphate, 16. 405
bromosulphatotriamminobromide, 16.	chlorotribromobisethylselenine, 16.381
bromotriiododiethylselenine, 16. 392	chlorotriiodide, 16. 392 chlorotriiodobisethylselenine, 16. 392
carbonatonitratotetramminocarbo-	chromatobisethylsulphide, 11. 314
nate, 16. 414	cobaltic hexamminocositungstate, 11.
carbylaminohydrazinochloride, 16. 312	803
carbylaminohydrazinonitrate, 16. 412	copper cositungstate, 11. 803
- — chloride, 16 . 292	molybdate, 11. 576
decahydrate, 16, 293	- decahydroxyammine, 16. 245
heptahydrate, 16 . 293	decahydroxypyridine, 16. 245
monohydrate, 16 . 293	- dibromobisglycine, 16. 376
octohydrate, 16 . 293 pentahydrate, 16 . 293	dibromobismethylethylglyoxime, 16.
	376
chloroamidonitritopyridinoethylene-	dibromobispropylenediaminochloride, 16. 381
diaminochloride, 16. 309	dibromodichloroethylphosphate, 16.
chloroamidotetramminobisdihydro-	381
phosphate, 16. 417	- dibromodiiodobisamidoacetate, 16.392
chloroamidotetramminobromide, 16.	—— dibromodiiododethylsulphinediethyl-
374	selenine, 16. 392
chloroamidotetramminochloride, 16.	dibromodiiododiethylselenine, 16. 392
306, 311	dibromodiiodomethylsulphine, 16. 392
chloroamidotetramminodichloride, 16.	dibromodinitratobisethylselenine, 16.
308	414
chloroamidotetramminohydroxydihy-	cis-dibromodinitritodiammine, 16. 383
drophosphate, 16. 417 chloroamidotetramminonitrate, 16.	—— trans-dibromodinitritodiammine, 16.
414	- dibromodinitritoethylsulphincethyl-
chlorobromotetramminochloride, 16.	selenine, 16. 383
381	— dibromohexammine-μ-diaminosul-
chlorocarbonatotetramminocarbonate,	phate, 17. 406
16. 408	 - dibromohexammino-μ-diaminochlo-
chlorodibromoethylmercaptidoethyl-	ride, 16 . 381
sulphine, 16. 383	··· dibromonitratotriamminoiodide, 16.
chlorodinitratodiammine, 16. 413	414
chlorodinitratotriamminochloride, 16.	
chlorodinitritonitratodiamminė, 16.	chloride, 16. 381 - — dibromoquaterpyridinehydronitrate,
415	16. 414
chlorodinitritopyridinoethylenedi-	dibromoquaterpyridinenitrate, 16. 414
aminochloride, 16. 309	dibromotetramminobromide, 16. 374
chlorodinitritopyridinoethylenedi-	dibromotetramminochloride, 16. 381
aminohydroxide, 16. 309	dibromotetramminodihydrophos-
chloroethylenediaminotriammino-	phate, 16. 416
chloride, 16 . 306	—— dibromotetramminonitrate, 16. 413
chloroethylenediaminotriammino-	dibromotetramminosulphate, 16. 406
nitrate, 16. 412 —— chloroethylenediaminotriamminosul-	—— dichloro-ββ'β"-triaminotriethylamino- chloride, 16. 311
phate, 16 . 405	— dichloro- $\beta\beta'\beta''$ -triaminotriethylamino-
chlorohydrophosphatoamidotriam-	chloroplatinate, 16. 311
mine, 16. 417	—— dichloro-ββ'β''-triaminotriethylamino-
chlorohydrophosphatotetrammino-	iodide, 16. 389
hydroxide, 16. 417	dichloroamidotriamminonitrate, '16.
chloroiodotetramminechloride, 16. 392	414
chloronitratotetramminonitrate, 16.	dichlorobisethylenediaminechloride,
413	16. 311
chloronitritoethylenediaminodiam-	—— dichlorobisethylenediaminechloro-
minochloride, 16. 309	cuprate, 16. 311
chloronitritopyridinoethylenediamino- ammoniochloride, 16. 309	dichlorobis i phonylmathylathyltri
	dichlorobis-i-phenylmethylethyltri- chloropyrazol, 16. 313
chloropentamminocarbonate, 16. 408	— dichlorobis-1-ethyl-3, 5-dimethylpyra-
chloropentamminochloride, 16. 305	zol, 16. 313
•	,

Platinic dichlorobis-1-phenyl-3, 5-dimethyl- pyrazol, 16, 313	Platinic dichloronitritopyridinoethylene- diaminohydroxide, 16. 309
—— dichlorobis-1-phenyl-3-methylpyrazol,	—— dichloro-p-tolypyrazol, 16. 313
16. 313 dichlorobis-1-phenyl-4-methylpyrazol,	dichloroquaterethylaminechloride, 16.
16. 313	dichloroquaterethylaminechloroplati-
dichlorobis-I-phenylpyrazol, 16. 313	nite, 16. 309 —— dichloroquatermethylaminechloride,
— dichlorobis-1-phenyltetrachloropyra- zol, 16. 313	16. 309
dichlorobis-3, 5-methylpyrazol, 16. 313	dichloroquatermethylaminenitrate, 16.
	dichloroquatermethylpseudolutido-
16. 313	styrilchloride, 16. 314
dichlorobis-1-phenyl-3-methyl 1, 3-tri- azol, 16. 314	—— dichloroquaterpyridinechloride, 16.312 —— dichloroquaterpyridinechloroplatinate,
dichlorobis-1-phenyl-3-methyl-3-tri-	16. 312 —— dichloroquaterpyridinechloroplatinite,
azolone, 16. 314 —— dichlorobispropylenediaminechloride,	16. 312
16. 311	dichloroquaterpyridinehydronitrate,
dichlorobispyrazol, 16. 313 dichlorobispyridinephenylpyrazol, 16.	16. 413 —- dichloroquaterpyridinenitrate, 16. 413
313	dichlorotetramminobromide, 16. 381
	—— dichlerotetramminochloride, 16. 306 ———— monohydrate, 16. 306
- dichlorodibromobisethylamidoacetate,	dichlorotetramminochloroplatinate,
16. 383 dichlorodibromobisethylphosphine,	16. 307 dichlorotetramminochloroplatinite, 16.
16. 381 ——— dichlorodibromobisethylphosphite, 16.	306 —— dichlorotetramminochromate, 11. 313
383	—— dichlorotetramminodichromate, 11.
—— diehlorodibromobisethylselenine, 16.	345
——— dichlorodibromobisethylsulphine, 16.	phosphate, 16. 417
376, 381 —— dichlorodibromobismethylsulphine,	dichlorotetramminonitrate, 16. 412 dichlorotetramminosulphate, 16. 405
16. 381	dihydrate, 16. 405
——— dichlorodibromobispyridine, 16. 381 ——— dichlorodibromobutylsulphine, 16. 381	—— dihydrotrisulphide, 16. 398 —— dihydroxydiamidohexamminodichro-
—— diehlorodibromoethylphosphate, 16.	mate, 11. 345
383 — dichlorodibromoethylphosphite, 16.	dihydroxydichlorobisamidohexammi- nochloride, 16 . 308
383	—— dihydroxydinitratobisethylselenine,
—— dichlorodibromoethylsulphinoethyl- selenine, 16. 323, 381	16. 412 —— dihydroxydinitratobispropylsulphine,
dichlorodibromomethylphosphate, 16.	16 . 412
383 — dichlorodibromopropylsulphine, 16.	trans-dihydroxydinitratodiammine, 16. 411
381	dihydroxyheptamminotetracarbonate,
—— dichlorodicarbonylbispyridine, 16. 312 —— dichlorodiiodide, 16. 392	16. 407 — - dihydroxyhexammino-μ-diaminesul-
—— dichlorodiiodobisbutylsulphine, 16.392	phate, 16. 404
—— dichlorodiiodobisethylphosphine, 16.	dihydroxylaminediamminosulphate, 16. 405
392 —— dichlorodiiodobisethylselenine, 16. 392	dihydroxynitratotriamminonitrate,
—— dichlorodiiodobismethylsulphine, 16.	16. 411 —— cis-dihydroxysulphatodiammine, 16.
392 —— dichlorodinitratodiammine, 16. 413	404
cis-dichlorodinitritodiammine, 16. 335	—— trans-dihydroxysulphatodiammine,16.
335	dihydroxysulphatohexamminochro-
—— dichloroethylenediaminodiammine, 16.	matodichromate, 11. 467 —— dihydroxysulphide, 16. 399
311 dichloroethylenediaminodiammino-	dihydroxytetramminobromide, 16. 380
chloride, 16. 309 dichloroethylenediaminopyridinoam-	dihydroxytetramminochloride, 16. 305 dihydroxytetramminoiodide, 16. 391
minochloride, 16. 309	dihydroxytetramminonitrate, 16, 411
—— dichloronitritoethylenediaminoammi- nochloride, 16. 309	dihydroxytetramminosulphate, 16.404
—— dichloronitritopyridinoethylenediami-	tetrahydrate, 16. 404
nochloride, 16. 309	diiodobisglycine, 16. 389

Platinic diiodobispyridinediamminoiodide,	Platinic fluoride, 16. 250
16. 389 diiododinitritoethylsulphinoethylsele-	fluosilicate, 6 . 958 hexachlorobispyridinediammine, 16 .
nine, 16. 392	312
diiodohexammine-µ-diimidosulphato- tetramminoplatinous sulphate, 16.	hexaiododiammine, 16. 389 hexamminobromide, 16. 374
406	hexamminocarbonate, 16. 407
diiodohexammino-μ-diamineiodide,	hexamminohydroxide, 16. 245
16 . 388	hexamminonitrate, 16. 411
diiodohexammino-μ-diaminosulphate,	hexamminosulphate, 16. 404
16. 406	hexamminotetrachloride, 16. 305
diiodohexammino-μ-diimidoiodide, 16 . 389	hydrazinocarbylaminoiodide, 16. 389 hydrosulphide, 16. 398
diiodotetramminoiodide, 16. 388, 392	hydroxyacetatotetramminochloride,
diiodotetramminoiodomercurate, 16.	16. 314
388 - diiodotetramminonitrate, 16. 414	hydroxyacetatotetramminochloro- platinite, 16, 314
- diiodotetramminosulphate, 16. 406	- hydroxyacetatotetramminodichro-
dimethylaminedimethylpropylamine-	mate, 11. 345
hydrochloride, 16. 310	hydroxyacetatotetramminonitrate, 16.
dimethylaminedipropylaminehydro-	412
chloride, 16 . 310	- — hydroxyacetatotetramminosulphate,
dimethyldiethylaminchydrobromide,	16. 405
16. 375 ————————————————————————————————————	hydroxyaquochlorotetramminochlo- ride, 16, 306
16. 312	- hydroxybromotetramminobromide,
a-β'-dimethylpyridinehydrochloride,	16. 380
16. 312	- hydroxybromotetramminochloride, 16.
dihydrate, 16 . 312	382
ay-dimethylpyridinehydrochloride, 16 . 312	hydroxybromotetramminonitrate, 16.
ββ'-dimethylpyridinehydrochloride,	hydroxychlorodinitritodiammine, 16.
16. 312	335
	hydroxychlorotetramminobromide,
312	16. 382
dinitrate tetramani yanklarida 16 412	hydroxychlorotetramminocarbonate,
dinitratotetramminochloride, 16. 412 monohydrate, 16. 412	16. 408 hydroxychlorotetramminochloride, 16.
dinitratotetramminochloroplatinate,	307
16. 412	hydroxychlorotetramminochromate,
dinitratotetramminochromate, 11. 313	11. 314
dinitratotetramminodichromate, 11.	hydroxychlorotetramminodichromate,
345	11. 345
dinitratotetramminonitrate, 16. 411 dinitritochloroethylenediamino-	hydroxychlorotetramminonitrate, 16.
methylaminochloride, 16. 311	hydroxydinitratotriamminobromide,
dinitritochloroethylenediaminopyri-	16. 414
dinochloride, 16. 311	hydroxyiodotetramminoiodide, 16.
dinitritodinitratodiammine, 16. 415	391-2
dinitritotetramminodichromate, 11.	
345	406
— — dinitritotetramminonitrate, 16. 415 — — dioxytetraiodotetrammine, 16. 391	—— hydroxynitratotetramminonitrate, 16.
disulphoallylsulphine, 16. 398	hydroxynitratotetramminopyrophos-
- disulphoallylsulphineallylchloroplati-	phate, 16. 417
nate, 16 . 315	hydroxypentamminocarbonate, 16.
disulphatodiammine, 16. 404	408
trihydrate, 16. 404	—— hydroxypentamminochloride, 16. 305
disulphovinylsulphine, 16. 398	hydroxypentamminonitrate, 16. 412
disulphovinylsulphinechloroplatinite, 16. 398	hydroxysulphatotetramminobromide, 16. 406
disulphovinylsulphinevinylchloroplati-	hydroxysulphatotetramminochloride,
nate, 16. 315	16 . 405
ethylenediaminehydrobromide, 16. 376	dihydrate, 16. 405
ethylenediaminehydrochloride, 16. 311	- hydroxysulphatotetramminochloro-
ethylenediaminobispyridinotetra-	platinate, 16. 406
chloride, 16. 312	hydroxysulphatotetramminochro-
α-ethylpyridinehydrochloride, 16. 312 β-ethylpyridinehydrochloride, 16. 312	mate, 11. 314
y-ethylpyridinehydrochloride, 16. 312	hydroxysulphatotetramminodichro- mate, 11. 345, 467
, and It's remined as a constant of the arm	and an earl and

	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
Platinic hydroxysulphatotetrammino-	(Platinic silver melybelete 11 578
nitrate, 16. 414	Platinic silver molybdate, 11, 576
	- sodium cositungstate, 11, 803
hydroxysulphatotetramminosulphate,	decatungstates, 11. 802
16. 404	heptatungstate, 11. 803
iodide, 16 . 387	molybdate, 11. 576
iodonitritotetramminonitrate, 16. 415	· · · oxydisulphite, 10. 323
iodotrimethylaminodiammine, 16. 389	- triacontatungstate, 11. 803
iron, 16 . 6	- sulpharsenate, 9. 324
mercurous cositungstate, 11. 803	- sulphate, 16. 403
methylethylaminedipropylaminehy-	tetrahydrate, 16. 403
drochloride, 16. 310	sulphatodinitritotetrammine, 16. 406
methylethylaminehydrochloride, 16.	sulphatotetramminohydroxide, 16. 404
309	sulphatotetramminosulphate, 16. 404
methylethylpropyl-i-amylammonium-	sulphatotetrapyridinochromate, 11.
chloride, 16 . 311	314
methylethylpropylphenylammonium-	sulphatotetrapyridinodichromate, 11.
	345
iodide, 16 . 389	l .
- · · methyl-i-propyl-i-butylsulphonium-	
chloride, 16 . 314	- sulphite, 11. 320
methyl-n-propyl-i-butylsulphonium-	tetrabromobisbenzonitrile, 16. 376
chloride, 16 . 314	tetrabromobisdiamidoacetate, 16. 376
 methyltri-i-butylammoniumchloride, 	tetrabromobisethylphosphate, 16 . 381
16 . 310	tetrabromobisethylsulphine, 16. 376
metoxyhydrochloride, 16. 332	tetrabromobismethylphosphate, 16.
nitrate, 16 , 410, 412	381
nitratoethylthioglycocolatoammine,	tetrabromobismethylsulphine, 16.
16 . 410	376
nitritochloroethylenediaminodiam-	- tetrabromobispropylsulphine, 16. 376
mine, 16 . 311	- tetrabromobispyridine, 16. 376
nitritodichloroethylenediaminomethyl-	cis-tetrabromodiammine, 16. 374
aminochloride, 16. 311	
	trans-tetrabromodiammine, 16. 374
- mitrosyltetramminohydronitrate, 16.	tetrabromoethylselenine, 16. 376
411	tetra bromoethylseulphineethylsele-
orthoarsenite, 9. 134	nine, 16 . 376
· · · · oxide, 16. 242	tetrabromonitrosylbromide, 16, 374
· dihydrate, 16. 243	- tetrabromotriaminopropanemono-
hemitrihydrate, 16 . 243	hydrochloride, 16, 376
monohydrate, 16 , 243	tetrachloro- $\beta\beta$ -dimethyldipyridine, 16.
tetrahydrate, 16. 244	313
trihydrate, 16. 244	tetrachloro-ββ'β''-triaminopropane-
oxydihydroxydisulphide, 16. 399	monohydrochloride, 16. 311
oxysulphide, 16. 399	tetrachloro-ββ'β''-triaminopropane-
- pentanminobromide, 16. 374	monohydrochloroplatinate, 16. 311
perstannate, 7. 413	- tetrachlorobis-a-methylisoxazol, 16.
phosphate, 16 . 416	314
phosphatododecatungstate, 11. 867	tetrachlorobis-a-naphthyl-1, 3-triazol,
- phosphatotetranminobromide, 15, 416	16. 314
- phosphatotetramminochloride, 16. 416	- tetrachlorobis-α-naphthyl-2, 3-triazol,
—— phosphatotetamminonitrate, 16. 417	16. 314
potassium decoxido, 16. 248	—— tetrachlorobis-β-hydroxyethylpyri-
molybdate, 11. 576	dine, 16. 314
———— oxydisulphite, 10. 323	tetrachlorobis-β-lutidine, 16. 312
propylenedaminehydrobromide, 16.	tetrachlorobis-β-naphthyl-1, 3-triazol,
376	16. 314
propylenediaminehydrochloride, 16.	tetrachlorobis-β-naphthyl-2, 3-triazol-
311	1, 16. 314
pyrophosphate, 16 . 417	tetrachlorobis-β-pyridine-α-lacetate,
pyroarsenite, 9. 134	16. 314
- quaterethylaminechloroplatinite. 16.	tetrachlorobis-2, 5-dimethyl-3-ethyl-
286	pyrazine, 16 . 313
—— quaterethylaminobromide, 16. 375	tetrachlorobis-2, 5-dimethylpyrazine,
- quatertetraethylstiboniumchloride,	16. 313
	tetrachlorobis-3, 5-dimethylpyrazol,
16. 315	16. 313
quatertriethylphosphinechloroaurate,	
16. 327	- tetrachlorobis-4, 5-dimethylpyrimi-
- silver cositungstate, 11. 803	dine, 16. 313
	—— tetrachlorobis-3, 5-dimethyltetra-
chloride, 15. 308	chloropyrazol, 16. 313
hydroxytriamidodiammino-	tetrachlorobis-3, 5-methylchloropyra-
hydroxide, 16 . 245	zol, 16. 313

Platinic tetrachlorobis-4, 5-methylethyl- pyrimidine, 16 , 313	Platinic tetrachlorobismethylethylsulphine, 16. 314
tetrachlorobis-3, 5-methylpyrazol, 16.	tetrachlorobisphosphoripentachloride, 16. 304
tetrachlorobis-1-phenyl-3-imidotriazo- line, 16. 314	tetrachlorobispicoline, 16, 312 tetrachlorobispropionitrile, 16, 313
tetrachlorobis-1-phenyl-3-methyl-1, 3- triazol, 16. 314	totrachlorobispyrazine, 16. 313 tetrachlorobispyrazol, 16. 313
tetrachlorobis-1, 3, 4-triazol, 16, 313	
tetrachlorobis-1-phenyl-1, 3-triazol, 16.	cis-tetrachlorobispyridine, 16. 312
313	trans-tetrachlorobispyridine, 16, 312 tetrachlorobisquinoline, 16, 313
tetrachlorobis-1-phenyl-2, 3-triazol, 16.	—— tetrachlorobistetrahydroquinoline, 16.
- — tetrachloro-o-phenylenebiguanidine, 16. 313	tetrachlorobistetrazoline, 16. 314 tetrachlorobistrichloropyridine, 16.313
dihydrate, 16. 313	tetrachlorobistriethylphosphite, 16.
tetrachlorobis-o-tolyl-2, 5-dimethyl-2,	315
3-triazol, 16 , 314	tetrachlorobistrimethylenethiocarba-
tetrachlorobis-o-tolyl-1, 3-triazol, 16.	mide, 16. 314
tetrachlorobis-o-tolyl-2, 3-triazol, 16.	314
313	tetrachloroeinnamylpyridazine, 16.313
tetrachlorobis-p-dimethyloxyphos-	tetrachlorodiallylhexasulphine, 16, 315
phinebenzoate, 16, 315	tetrachlorodiaminodiethylaminohy-
tetrachlorobis-p-tolyl-3-imidotriazo-	drochloride, 16. 311
line, 16. 314	tetrachlorodiaminodiethylaminohy-
tetrachlorobis-p-tolyl-1, 3-triazol, 16.	drochloridechloroplatinate, 16. 311
313	cis-tetrachlorodiammine, 16. 308
tetrachlorobis-p-tolyl-2, 3-triazol, 16.	trans-tetrachlorodiammine, 16. 307
313-4	tetrachlorodibenzylsulphine, 16. 314
tetrachlorobis-p-tolylpyrazol, 16. 313	tetrachlorodiethylseleninediethylsul-
tetrachlorobis-μ-imidoazolylmercap-	phine, 16 . 315
tan, 16 . 314	
tetrachlorobis-v-a-naphthylimido-	tetrachlorojaborine, 16. 313
azolyl-µ-mereaptan, 16 . 315 ——tetrachlorobis-v-methylimidozaolyl-µ-	tetrachlorophosphorotrichloride, 16.
mercaptan, 16 . 314	tetrachloropicoline, 16. 312
tetrachlorobis-ν-phenylimidoazolyl-μ-	tetrachloropilocarpidine, 16. 313
mercaptan, 16 . 314	trans-tetrachloropiperidinepyridine,
tetrachlorobis-ν-m-xylylimidoazolyl-μ-	16 . 313
mercaptan, 16 . 315	tetrachloropropylenediamine, 16. 311
tetrachlorobis-ν-p-tolylimidoazolyl-μ-	- — tetrachloropyridineammine, 16. 312
mercaptan, 16. 314	tetrachlorotetrammine, 16. 308
- tetrachlorobisamidoacetate, 16. 314	tetrachlorotriaminopropanes, 16, 310
tetrachlorobisbenzonitrile, 16. 313	tetrachlorotriethylphosphate, 16. 315
tetrachlorobiscollidine, 16, 312	tetrachlorotriethylphosphite, 16. 315
	tetracthylaminechloride, 16. 309
mide, 16, 314	tetrahydroxydiammine, 16. 245
tetrachlorobisdiethylselenine, 16. 315	
tetrachlorobisdiethylsulphine, 16. 314	tetraiodobisethylselenine, 16. 389
tetrachlorobisdi-i-butysulphine, 16.	tetraiodobisethylsulphine, 16. 389
314	tetraiodobis-i-butylsulphineiodide, 16.
tetrachlorobisdimethylselenine, 16.	389 ——— tetraiodobis-i-propylsulphine, 16, 389
tetrachlorobisdimethylsulphine, 16.	tetraiodobismethylsulphine, 16. 389
314	—— tetraiodobispyridine, 16. 389
tetrachlorobisdimethyltriazoline, 16.	cis-tetraiododiammine, 16. 389
314 tetrachlorobisdi-n-butylsulphine, 16.	trans-tetraiododiammine, 16. 388 tetraiodoethylselenine, 16. 389
314	tetramethylammoniumtrimethylethyl-
tetrachlorobisdipropylsulphine, 16.314	ammoniumchloride, 16. 309
tetrachlorobisethylamidoacetate, 16.	tetramminodisulphite, 10. 321
314	tetramminoiodomercurate, 16. 391
totrachlorobisethylenesulphine, 16.314	tetranitratobisethylselenine, 16. 412
tetrachlorobisglyoxal, 6. 313	tetranitratodiammine, 16. 411
tetrachlorobisimidoazolylmercaptan,	tetrapropylammoniumchloride, 16.310
16. 314	tetrasulphotrisamylsulphide, 16. 370
tetrachlorobisjaborinate, 16. 314	thallous cositungstate, 11. 803
tetrachlorobisjaborine, 16. 313	—— thiocarbide, 16. 398

Platinic tribromoiodobisethylselenine, 16.	Platinosic hydroxytetramminosulphate, 16.
392 trichloroamminoethylenediamino-	402·3 iodide, 16 . 386
chloride, 16 . 311	nitratohexammino-μ-diamidonitrate,
trichlorodiaminodiethylamine, 16. 311	16. 410
trichloroethylenediaminoammino- chloride, 16 . 309	oxynitrate, 16 . 410 pentaiodotetramnine, 16 . 386
triehloronitratodiammine, 16. 413	p-phenylenediaminotrichloride, 16.286
trichloronitritodiammine, 16. 335	piperidinotrichloride, 16. 286
trichloropyridinoethylenediamino- chloride, 16 . 309	potassium sulphate, 16, 403 pyridineamminotrichloride, 16, 286
trichlorotriamminochloride, 16. 307	quaterpyridinotrichloride, 16. 286
· trichlorotrisbenzyloxyphosphine-	silver sulphate, 16. 403
chloride, 16. 315 —— triethylselenoniumchloride, 16. 315	· · · sodium sulphate, 16 . 403 · · · sulphate acid, 16 . 403
trihydroxynitratodiammine, 16. 411	thallous sulphate, 16. 403
trimethyl chloride, 16. 302	triethylenedisulphinotrichloride, 16.
	286 - trisethylenediaminetriethylenetrisul-
· iodide, 16, 392	phinochloride, 16. 286
sulphate, 16 . 405	Platinous acid, 16. 230
trinethylethylammoniumdimethyl-	allylaleoholdiamminobromide, 16 . 372 allylphosphites, 16 . 361
ethylammoniumchloride, 16 . 309 trisethylenediaminochloride, 16 . 311	- allylsulphines, 16. 368
trisethylenediaminonitrate, 16. 411	ammines, 16 . 360, 362
trispropylenediaminobromide, 16 . 376	amminothiocarbonate, 16, 408
trispropylenediaminochloride, 16. 311 trispropylenediaminoidide, 16. 389	phitodiamminosulphite, 10. 321
— trispropylenediaminonitrate, 16. 412	arsenite, 9. 134
trispropylenediaminosulphate, 16. 405	cis-chloroamminosulphitodium-
vinylacetietrichloride, 16 . 280 Platiniridium, 16 . 6	minosulphite, 10 . 321
Platinite, 15. 258	diehlorodiamminochloride, 16.
Platinites, 16. 230	263
Platinized asbestos, 16. 49	
carbon, 16 . 49 clay, 16 . 50	potassium chlorodisulphite, 10.
—— magnesium, 4 . 273	323
—— platinum, 16 , 49	
pumice, 16 . 49 silica, 16 . 50	10. 321
Platinmohr, 16, 48	trans-sulphitodiamminosulphite,
Platinoid, 15. 210, 211	10. 320 tetramminohydrophosphate, 16.
Platinosic barium sulphate, 16, 403 ————————————————————————————————————	416
—— bispyridinetrichloride, 16. 286	
—— chloride, 16 . 285	trihydrate, 10. 322
chloroquaterethylaminedichloride, 16.	
enneaiodoctammine, 16. 386	anilinetriethylphosphite, 16. 359
— dibromohexammino-μ-diamidonitrate,	anilinetrimethylphosphite, 16. 359
16. 410 — dibromohexammino- μ -diimidonitrate,	aquotriammines, 16. 350
16 . 410	aquotriamminochloride, 16. 260
—— dihydroxyhexammino-μ-diamido-	- aquotriamminochloroplatinite, 16. 260
hydrophosphate, 16. 416	barium <i>cis</i> -sulphitodiamminosulphite, 10. 321
—— dihydroxyhexammino-μ-diamido- nitrate, 16 . 410	trans-sulphitodiamminosulphite,
diiodohexammino-μ-diamidohydro-	10. 321
phosphate, 16. 416	—— benzonitrites, 16 . 356 —— benzylsulphines, 16 . 360
—— diiodohexammino-μ-diamidonitrate, 16. 410	bisacetamides, 16. 358
diiodohexammino-μ-diimidonitrate,	bisacetonitriles, 16. 356
16. 410	
—— dihydroxyhydrosulphate, 16. 402 —— ferrous sulphate, 16. 403	274
hexaiodotetrammine, 16. 386	bisamidoacetals, 16. 356
hydroxydihydrosulphate, 16. 402	bisamidoacetates, 16, 356, 358, 366
hydroxyquaterethylaminodichloride, 16. 271	bisamidoethylacetates, 16, 356, 366 bisamidomethylacetates, 16, 356
10. 2/1	wereness and appropriately and have

Platinous bis-a-amilopropriorate, 16, 338	riatinous bis-a-amidoproprionate, 16. 338	Dl. 42 12. 12. 41
bisaminoacetaldiamminochloride, 16. 274, 276 bisaminoacetaldiamminochloroplatinite, 16. 274, 276 bisaminoacetaldiamminochloroplatinite, 16. 274, 276 bis-3-aminopyridines, 16. 356 bisamilinebisethylphosphites, 16. 354 bisamilinebisethylphosphites, 16. 355 bisamilinebismethylphosphites, 16. 355 bisamilinediamminochloride, 16. 277 bisamilinediamminochloride, 16. 273 rema-bisamilinediamminochloroplatinite, 16. 273 bisamilinediamminochloroplatinite, 16. 276 bisamilinediamminochloroplatin	hisaminoacetalchloride 16 272	Platinous bisdiethylenesulphinechloride, 16.
bisaminoacetaldiamminochloroldatinite, 16. 274, 276 bis-3-amino-1-acetylpyridines, 16. 356 bis-3-aminopyridines, 16. 356 bis-3-aminopyridines, 16. 356 bis-3-aminopyridines, 16. 356 bisamilinebisethylphosphitechloride, 16. 277 bisamilinebisethylphosphitechloride, 16. 277 bisamilinebisemethylphosphitechloride, 16. 277 bisamilinediamminochloride, 16. 273 trans-bisamilinediamminochloride, 16. 273 trans-bisamilinediamminochloroplatine, 16. 273 trans-bisamilinediamminochloroplatine, 16. 273 trans-bisamilinediamminochloroplatine, 16. 273 trans-bisamilinediamminochloroplatine, 16. 276 bisamilinediamminochloroplatine, 16. 276 bisamilinediamminochloride, 16. 273 trans-bisamilinediamminochloride, 16. 273 trans-bisamilinediamminochloride, 16. 273 bisamilinediamminochloride, 16. 273 bisamilinediamminochloride, 16. 273 bisamilinediamminochloride, 16. 273 bisamilinediamminochloride, 16. 365 bisbenzylsulphines, 16. 365 bisbenzylsulphines, 16. 365 bisbenzylsulphines, 16. 367 bisbenzylsulphines, 16. 367 bisbenzylsulphines, 16. 357 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 365 bisbutylaminediamminochloride, 16. 365 bisbutylaminediamminochloride, 16. 365 bisbutylaminediamminochloride, 16. 365 bisbutylaminediamminochloride, 16. 276 bisdictyldimines, 16. 356 bisdictyldimines, 16. 357 bisdictyldimines, 16. 357 bisdictyldimines, 16. 358 bisdictyldimines, 16. 355 bisdictyldimines, 16. 355 bisdictyldimines, 16. 355 bisdictyldimineshines, 16. 355 bisdictyldimineshineshineshineshineshineshineshinesh		
bisaminoacetaldiamminochloroplatinite, 16. 273 bisa-amminop-lacetylpyridines, 16. 356 bisa-amminop-lacetylpyhosphites, 16. 356 bisanilinebisethylphosphites, 16. 357 bisanilinebisethylphosphites, 16. 357 bisanilinebismethylphosphites, 16. 358 bisanilinebismethylphosphites, 16. 358 cis-bisanilinediamminochloride, 16. 277 bisanilinediamminochloride, 16. 273 trans-bisamilinediamminochloride, 16. 273 trans-bisamilinediamminochloroplatinite, 16. 366 bisamilinediamminosulphate, 16. 409 bisamilinediamminosulphate, 16. 366 bisamilinediamminochloride, 16. 366 bisbenzonitriles, 16. 365 bisbenzonitriles, 16. 365 bisbenzolitylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 365 bisbenzolitylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 365 bisbenzolitylaminediamminochloride, 16. 366 bisdiphopylylaminediamminochloride, 16. 276 bisdibutylalithioethyleneglycolatochloroplatinite, 16. 276 bisdibutylalithioethyleneglycolatochloroplati	bisaminoacetaldiamminochloride, 16.	bisdiethylthioethyleneglycolbromo-
nite, 16. 274. 276 bis-2-amino-leactylpyridines, 16. 356 bisanlinebisethylphosphites, 16. 354 bisanlinebisethylphosphites, 16. 354 bisanlinebisethylphosphitechloride, 16. 277 bisanlinediammines, 16. 353 cis-bisanlinediamminochloride, 16. 273 cis-bisanilinediamminochloride, 16. 273 cis-bisanilinediamminochloroplatinite, 16. 273 cis-bisanilinediamminochloroplatinite, 16. 273 cis-bisanilinediamminochloroplatinite, 16. 273 cis-bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 409 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 403 bisanilinediamminosulphate, 16. 403 bisanilinediamminosulphate, 16. 403 bisanilinediamminosulphate, 16. 403 bisanilinediamminosulphate, 16. 373 —pentahydrate, 16. 273 bisanilinediamminosulphate, 16. 373 bisanilinediamminosulphate, 16. 373 bisanilinediamminosulphate, 16. 373 bisanilinediamminosulphate, 16. 373 bisanilinediamminochloride, 16. 273 bisanilinediamminochloride, 16. 273 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 373 bisanilinediamminochloride, 16. 375 bisanilinediamminochloride, 1		
bis-2-amino)-lacetylpyridines, 16. 356 bisanilinebisethylphosphites, 16. 354 bisanilinebisethylphosphites, 16. 354 bisanilinebisethylphosphites, 16. 354 bisanilinebismethylphosphites, 16. 355 bisanilinebismethylphosphites, 16. 357 bisanilinebismethylphosphites, 16. 357 bisanilinediamminochloride, 16. 273 trans-bisanilinediamminochloride, 16. 273 trans-bisanilinediamminochloroplatinite, 16. 366 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 365 bisanilinediamminosulphate, 16. 365 bisbenzonitriles, 16. 365 bisbenzonitriles, 16. 365 bisbenzylselenines, 16. 355 bisbenzylselenines, 16. 355 bisbenzylselenines, 16. 355 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminosulphate, 16. 366 bisdimethylaminediamminochloride, 16. 366 bisdimethylam		
bisa-3-aminopyridines, 16. 356 bisanilinebisethylphosphites, 16. 354 bisanilinebisethylphosphites, 16. 354 bisanilinebisemethylphosphites, 16. 355 bisanilinediammines, 16. 353 cis-bisanilinediammines, 16. 353 cis-bisanilinediamminochloride, 16. 273 cis-bisanilinediamminochloroplatinite, 16. 273 cis-bisanilinediamminochloroplatinite, 16. 273 cis-bisanilinediamminonitrate, 16. 409 cis-bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 352 bisbutylamines, 16. 356 bisbutylamines, 16. 356 bisbutylamines, 16. 357 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 275 bisbutylaminediamminochloride, 16. 275 bisbutylaminediamminochloride, 16. 275 bisbutylaminediamminochloride, 16. 276 bisbutylaminediamminochloride, 16. 276 bisdicthylamines, 16. 357, 367 biscorbonyldiamminochloride, 16. 276 bisdicthylamines, 16. 355 bisdicthylamines, 16. 355 bisdicthylaminechloride, 16. 276 bisdicthylaminechl		
bisanilinebisethylphosphites, 16, 354 bisanilinebismethylphosphites, 16, 355 bisanilinebismethylphosphites, 16, 354 bisanilinebismethylphosphites, 16, 355 bisanilinediamminos, 16, 353 cris-bisanilinediamminochloride, 16, 273 cris-bisanilinediamminochloride, 16, 273 cris-bisanilinediamminochloroplatinite, 16, 275 bisanilinediamminochloride, 16, 275 bisanilinediamminochloroplatinite, 16, 276 bisanilinediamminochloroplatinite, 16, 2		I
bisanilinebismethylphosphites, 16. 354 bisanilinebismethylphosphitochloride, 16. 277 bisanilinediammines, 16. 353 cts-bisanilinediamminochloride, 16. 273 cts-bisanilinediamminochloroplatinite, 16. 276 bisbutylaminodiamminochloroplatinite, 16. 276 bisbutylaminodiamminochloroplatinite, 16. 276 bisbutylaminodiamminochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiochyleneglycolatochloroplatinite, 16. 276 bisdiethyldit	—— bisaniline bisethylphosphites, 16. 354	
bisanilinebismethylphosphitos, 16, 354 bisanilinediammines, 16, 353 cris-bisanilinediamminechloride, 16, 273 trans-bisanilinediamminechloride, 16, 273 trans-bisanilinediamminechloroplatinite, 16, 273 trans-bisanilinediamminechloroplatinite, 16, 273 trans-bisanilinediamminechloroplatinite, 16, 273 cris-bisanilinediamminonoploroplatinite, 16, 273 cris-bisanilinediamminoniloroplatinite, 16, 273 cris-bisanilinediamminoniloroplatinite, 16, 273 cris-bisanilinediamminoniloroplatinite, 16, 273 cris-bisanilinediamminonilorate, 16, 400 bisanilinediamminosulphate, 16, 400 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 273 cris-bisanilinediamminonilorate, 16, 273 cris-bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 273 cris-bisanilinediamminosulphate, 16, 400 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 271 bisaliethylaminediamminosulphate, 16, 273 bisaliethylaminediamminosulphate, 16, 273 bisaliethylaminediamminosulphate, 16, 273 bisaliethylaminediamminosulphate, 16, 273	bisanilinebisethylphosphitochloride,	
bisanilinediamminochloride, 16. 273 ctis-bisanilinediamminochloride, 16. 273 ctis-bisanilinediamminochloroplatinite, 16. 273 ctis-bisanilinediamminonitrate, 16. 400 bisanilinediamminosulphate, 16. 401 bisanilinediamminochloride, 16. 273 pentahydrate, 16. 273 bishenzylselenines, 16. 356 bisbenzylselenines, 16. 357 bisbenzylselenines, 16. 357 bisbenzylselenines, 16. 358 bisbenzylselenines, 16. 357 bisbutylaminodiamminochloride, 16. 273 bisbutylaminodiamminochloride, 16. 273 bisbutylaminodiamminochloride, 16. 273 bisbutylaminodiamminochloride, 16. 275 bisdibutyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdibutyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdicthyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdicthyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdicthyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdicthyldithoethyleneglycolato-chloroplatinite, 16. 276 bisdicthyldithiocthyleneglycolato-chloroplatinite, 16. 27		
noplatinite, 16. 273 rojasinilinediamminoshloride, 16. 273 rojas-bisanilinediamminochloride, 16. 273 rojas-bisanilinediamminochloroplatinite, 16. 274 rojas-bisanilinediamminochloroplatinite, 16. 276 rojas-bisanilinediamminochloroplat	bisanilinebismethylphosphitochloride	
bisanilinediamminochloride, 16. 273 trans-bisanilinediamminochloroplatinite, 16. 273 trans-bisanilinediamminochloroplatinite, 16. 273 trans-bisanilinediamminochloroplatinite, 16. 273 trans-bisanilinediamminochloroplatinite, 16. 273 trans-bisanilinediamminonitrate, 16. 409 bisanilinediamminosulphate, 16. 401 bisanilines, 16. 356 bisanilines, 16. 356 bisanilines, 16. 356 bisanilines, 16. 357, 367, 367 bisbariumthioglycollate, 16. 358 bisbenzylselenines, 16. 357 bisbutylaminediammines, 16. 353 bisbutylaminediammines, 16. 355 bisbutylaminediammines, 16. 356 bisanilinediamminochloride, 16. 276 bisdibutylalphate, 16. 401 bisanilinediamminochloride, 16. 276 bisdibutylalphate, 16. 401 bisdibutylalphines, 16. 355 bisdibutylalphines, 16. 356 bisdibutylalphine	16 . 277	
- trans-bisanilinediamminochloroplatinite, 16. 273 - cis-bisanilinediamminochloroplatinite, 16. 273 - trans-bisanilinediamminochloroplatinite, 16. 273 - cis-bisanilinediamminonitrate, 16. 409 - trans-bisanilinediamminonitrate, 16. 409 - bisanilinediamminosulphate, 16. 401 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 373 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 373 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 273 - bisanilinediamminosulphate, 16. 375 - bisanilinediamminosulphate, 16. 401 - bisalimthylauphyrazine, 16. 366 - bisalimthylauphinediamminochloride, 16. 273 - bisbenzylsulphines, 16. 357, 367 - bisbenzylsulphines, 16. 357, 367 - bisbenzylsulphines, 16. 356 - bisbutylaminediamminochloride, 16. 260 - bisdibutylalimineshioride, 16. 366 - bisdibutylalimineshioride, 16. 366 - bisdibutylalimineshioride, 16. 366 - bisdibutylalimineshioride, 16. 260 - bisdibutylalimineshioride, 16. 260 - bisdibutylalimineshioride, 16. 276 - bisdibutylalimineshioride, 16. 272 - bisdibutylalimineshioride, 16. 273 - bisdibutylalimineshioride, 16. 276 - bisdibutylalimine		
273 16. 273 173		
cis-bisanilinediamminochloroplatinite, 16. 273 trams-bisanilinediamminochloroplatinite, 16. 273 trams-bisanilinediamminonitrate, 16. 409 trams-bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 401 bisanilinediamminosulphate, 16. 305 bisanilinediamminosulphate, 16. 401 bisanilinediamminonitrate, 16. 273 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 273 bisanilinediamminosulphate, 16. 273 bisanilinediamminochloride, 16. 273 bisanilinediamminos, 16. 358 bisalimethylaliphediamminochloride, 16. 273 bisidimethylaliphediamminochloride, 16. 273 bisidimethylaliphice, 16. 356 bisidimethylaliphice, 16. 356 bisidimethylaliphice, 16. 356 bisidimethylaliphice, 16. 356 bisidiphenylhioglycolate, 16. 356 bisidiphenylhioglycolate, 16. 358 bisidiphenylhioglycolate, 16. 358 bisidippenylhioglycolate, 16. 356 bisidippenylhioglycolate, 16. 356 bisidippenylhioglycolate, 16. 356 bisidippenylhioglycolate, 16. 356 bisidippenylhiogly		
trans-bisanilinediamminochloroplatinite, 16, 273 trans-bisanilinediamminomitrate, 16, 409 trans-bisanilinediamminomitrate, 16, 401 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 276 bisanilinediamminosulphate, 16, 273 bisanilinediamminosulphate, 16, 276 bisanilinediamminosulphate, 16, 401 bisanilinediamminosulphate, 16, 276 bisdiethylalinediamminosulphate, 16, 276 bisdiethyldithioethyleneglycolate-chloroplatinite, 16, 276 bisdiethyldithioethyleneglycolate-ch		
trans-bisanilinediamminonitrate, 16. 409 trans- bisanilinediamminonitrate, 16. 409 bisanilinediamminonitrate, 16. 401 bisanilinediamminonitrate, 16. 401 bisanilinediamminonitrate, 16. 273 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 273 bisanilinediamminosulphate, 16. 276 bisbariumthioglycollate, 16. 276 bisbariumthioglycollate, 16. 352 bisbariumthioglycollate, 16. 356 bisbariumthioglycollate, 16. 356 bisbutylaulphines, 16. 357, 367 bisbariumthioglycollate, 16. 355 bisbutylaulphines, 16. 357, 367 bisbariumthioglycollate, 16. 355 bisbutylaulphines, 16. 356 bisbutylaulphines, 16. 356 bisbutylaulphines, 16. 356 biscarbonyldiammines, 16. 356 biscarbonyldiammines, 16. 356 biscarbonyldiammines, 16. 356 biscallidines, 16. 356 biscarbonyldiammines, 16. 356 biscarbonyldiammines, 16. 356 biscallidines, 16. 356 bisdiphenylthioglycolate- chloroplatinite, 16. 276 bisdibutyldithioethyleneglycolate- chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolate- chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolate- chloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolate- chloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolate		
cis-bisanilinediamminonitrate, 16. 409 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 401 bisanilinediamminosulphate, 16. 273 — pentahydrate, 16. 273 — bisanilines, 16. 356 bisbenzulsulphines, 16. 358 bisbenzylselenines, 16. 365 bisbenzylselenines, 16. 367 bisbenzylselenines, 16. 367 bisbenzylselenines, 16. 367 bisbenzylsulphines, 16. 357, 367 bisbutylaminediamminoshloride, 16. 273 bisbutylaminediammines, 16. 356 bisbutylaminediammines, 16. 356 bisbutylaminediammines, 16. 356 bisbutylaulphines, 16. 357 bisbutylaminediammines, 16. 356 bisbutylsulphines, 16. 356 bisbistylsulphines, 16. 356 bisbitylsulphines, 16. 356 bisbitylsulphines, 16. 356 bisdiphenylthioglycolato-chloroplatinite, 16. 276 bisdiphenylthioglycolato-chloroplatinite, 16. 276 bisdibutyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopropylene	trans-bisanilinediamminochloroplati-	
- brans-bisanlinediamminonitrate, 16. 409 - bisanilinelydrochloride, 16. 273 - pentahydrate, 16. 365 - bisanilinelydrochloride, 16. 273 - pentahydrate, 16. 365 - bisanilinelydrochloride, 16. 358 - bisanilinelydrochloride, 16. 358 - bisbenzylsulphines, 16. 365 - bisbenzylsulphines, 16. 357, 367 - bisbenzylsulphines, 16. 357, 367 - bisbenzylsulphines, 16. 357, 367 - bisbutylaminediamminochloride, 16. 273 - bisbutylaminediammines, 16. 356 - bisbutylaminediammines, 16. 356 - bisbutylaminediamminochloride, 16. 273 - bisdiphenylthiogylycolate, 16. 358 - bisdiphenylthiogylycolate, 16. 356 - bisdiphenylthiogylycolate, 16. 366 - bisdiphenyl		bis-2, 5-dimethylpyrazine, 16. 366
- bisanilinediamminosulphate, 16, 401 - bisanilinediamminosulphate, 16, 401 - bisanilinediamminosulphate, 16, 273 - pentahydrate, 16, 273 - bisanilines, 16, 356 - bisanilines, 16, 356 - bisbenzonitriles, 16, 365 - bisbenzylselenines, 16, 357 - bisbenzylselenines, 16, 357 - bisbutylaminediamminos, 16, 357 - bisbutylaminediamminos, 16, 357 - bisbutylaminediamminos, 16, 357 - bisbutylaminediamminos, 16, 357 - bisbutylsulphines, 16, 357 - bisbutylaminediamminos, 16, 357 - bisbutylsulphines, 16, 356 - bisbutylsulphines, 16, 357 - bisdierbonyldiamminochloride, 16, 270 - bisdiennamenylpyridazine, 16, 366 - bisdipropyldithioethyleneglycols, 16, 352 - bisdiethyldithioethyleneglycolato-chloroplatinite, 16, 276 - bisdiethyldithioethyleneglycol		
bisanilinelydrochloride, 16. 273 bisanilinelydrochloride, 16. 273 bisanilinelydrochloride, 16. 273 bisanilinelydrochloride, 16. 358 bisanilinelydrochloride, 16. 358 bisanilinelydrochloride, 16. 358 bisbenzylsulphines, 16. 355 bisbenzylsulphines, 16. 357, 367 bisbenzylsulphines, 16. 357, 367 bisbutylaminediammines, 16. 358 bisbutylaminediammines, 16. 356 bisdiamninohydroxytriodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolsoloshidiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatini		
 bisanlinelydrochloride, 16. 273 — pentahydrate, 16. 273 bisanlines, 16. 356 bisbariumthioglycollate, 16. 358 bisbenzonitriles, 16. 365 bisbenzylselenines, 16. 367 bisbenzylselenines, 16. 367, 367, 362 bisbutylaminediamminos, 16. 356 bisbutylaminediamminos, 16. 356 bisbutylaminediamminos, 16. 356 bisbutylaminediamminos, 16. 356 bisbutylsulphines, 16. 357, 367 bisbutylsulphines, 16. 357, 367 biscarbonyldiamminochloride, 16. 256 biscollidines, 16. 365 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldimines, 16. 355 bisdiethyldimines, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotymethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotymethylenegl		
bisanlitnos, 16. 356 bisberzonitriles, 16. 365 bisbenzylsulphines, 16. 357, 367, 372 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 358 bisberzylsulphines, 16. 356 bisbutylaminediamminochloride, 16. 273 bisbutylaminediamminochloride, 16. 358 bisbutylaminediamminochloride, 16. 358 bisbutylathines, 16. 356 bisbutylathines, 16. 356 bisbutylsulphines, 16. 356 bisbutylsulphines, 16. 357 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdibutyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylamines, 16. 355 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiothyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiot	—— bisanilinehydrochloride, 16. 273	
 bisbariumthioglycollate, 16. 358 bisbenzylstelenines, 16. 367 bisbenzylsulphines, 16. 357, 367, 372 bisbutylaminediammines, 16. 353 bisbutylaminediammines, 16. 356 bisbutylaminediammines, 16. 356 bisbutylamines, 16. 357, 367 bisbutylamines, 16. 357, 367 bisbutylamines, 16. 357, 367 biscarbonyldiammines, 16. 356 biscarbonyldiammines, 16. 366 biscalimminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyldithiothyld		
 bisbenzylselenines, 16. 367 bisbenzylselenines, 16. 367 bisbenzylselphines, 16. 357, 367, 372 bisbutylaminediammines, 16. 353 bisbutylaminediammines, 16. 356 bisbutylamines, 16. 357, 367 bisbutylsulphines, 16. 357, 367 bisbutylsulphines, 16. 357, 367 bisbutylsulphines, 16. 358 biscarbonyldiammines, 16. 358 biscarbonyldiammines, 16. 366 biscinnamenylpyridazine, 16. 366 biscilidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 355 bisdiethylamines, 16. 355 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethy		
 bisbenzylselenines, 16. 367 bisbutylaminediamminos, 16. 353 bisbutylaminediamminos, 16. 356 bisbutylaminediamminos, 16. 356 bisbutylaminediamminos, 16. 357 bisbutylamines, 16. 357 bisbutylamines, 16. 357 bisbutylaulphines, 16. 357 biscarbonyldiammines, 16. 353 biscarbonyldiamminochloride, 16. 260 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscilinamenylpyridazine, 16. 366 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibityldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethylamines, 16. 355 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotymydithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioptomydithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioptomydithioethylen		
 bisbenzylsulphines, 16, 357, 367, 372 bisbutylaminediamminochloride, 16, 273 bisbutylamines, 16, 356 bisbutylsulphines, 16, 357, 367 biscarbonyldiamminochloride, 16, 260 biscarbonyldiamminochloride, 16, 260 biscarbonyldiamminochloride, 16, 260 biscollidines, 16, 365 bisdiamminochloride, 16, 260 bisdiamminohylroxytriiodobisnitrosylhydroiodide, 8, 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16, 276 bisdiethylaminechloride, 16, 272 bisdiethyldimines, 16, 355 bisdiethyldithioethyleneglycolatochloroplatinite, 16, 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16, 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16, 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16, 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16, 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16, 276 bisdiethyldithiopropyleneglyco		
bisbutylaminediamminochloride, 16. 353 bisbutylarbylamines, 16. 356 bisbutylsulphines, 16. 357, 367 biscarbonyldiamminos, 16. 358 biscarbonyldiamminochloride, 16. 260 biscarbonyldiamminochloride, 16. 260 biscarbonyldiamminochloride, 16. 260 biscildines, 16. 355 biscildines, 16. 355 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldimines, 16. 355 bisdiethyldimines, 16. 355 bisdiethyldimines, 16. 355 bisdiethyldimines, 16. 355 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiophydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneg	—— bisbenzylsulphines, 16. 357, 367, 372	bisdipropyldithioethyleneglycolato-
bisbutylcarbylamines, 16. 356 bisbutylsulphines, 16. 357, 367 biscarbonyldiammines, 16. 353 biscarbonyldiammines, 16. 356 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 352 bisdiethyldimines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioptyneglycolatochloroplatinite, 16. 276 bisdieth		chloroplatinite, 16. 276
 bisbutylearbylamines, 16. 356 bisbutylsulphines, 16. 357, 367 biscarbonyldiammines, 16. 353 biscarbonyldiammines, 16. 366 biscinnamenylpyridazine, 16. 366 biscilines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethylamineshloride, 16. 272 bisdiethylamineshloride, 16. 272 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioptyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopt		
 bisbutylsulphines, 16. 357, 367 biscarbonyldiammines, 16. 353 biscarbonyldiamminechloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscildidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethylaminechloride, 16. 272 bisdiethylaminechloride, 16. 272 bisdiethyldiminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiophyleneglycolatochloroplatinite, 16. 276 b		
 biscarbonyldiammines, 16. 353 biscinnamenylpyridazine, 16. 366 biscinnamenylpyridazine, 16. 365 bisdidamminohydroxytriiodobisnitrosylhydidithioethyleneglycolatochloride, 16. 276 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 b		
 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 352 bisdiethylaminechloride, 16. 272 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 355 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrime		
 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethylaminechloride, 16. 272 bisdiethylaminechloride, 16. 272 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioppropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioppropylene	biscarbonyldiammines, 16. 353	—— bisdipropyldithiotrimethyleneglycols,
 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioppropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochlor	biscarbonyldiamminochloride, 16. 260	352
sylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolato- chloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithiopdroxyethylenegly- colatochloroplatinite, 16. 276 bisdiethyldithiopdroxyethylenegly- colatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 bisethylaminediamminochloro- platinite, 16. 271 cis-bisethylaminediamminochloro- platinite, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 trans-bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloro- platinite,	— biscarbonyldiamminochloride, 16, 260 — biscinnamenylpyridazine, 16, 366	352 —— bisdipropylsulphines, 16 . 357
 bisdibutyldithioethyleneglycols, chloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 352 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiothydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochlorop	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367
 bisdibtyldithioethyleneglycols, 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopyroyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopyroyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopyroyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopyroyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopyroylene	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitro- 	352
	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatos 	352
 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochlor	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 	352
 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiohydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiohydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276<td> biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. </td><td>352 — bisdipropylsulphines, 16. 357 — bisethylalcohols, 16. 367 — cis-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine-</td>	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 	352 — bisdipropylsulphines, 16. 357 — bisethylalcohols, 16. 367 — cis-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine-
 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolato-chlorole, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiopyropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopyropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopyropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 355 bisdiethyldithioxydiethylglycols, 16. 355 bisethylaminediamminochloride, 16. 271 cis-bisethylaminediamminochloride, 16. 271 cis-bisethylaminediamminochloride, 16. 271 cis-bisethylaminediamminochloro-platinite, 16. 271 bisethylaminediamminochloro-platinite, 16. 271 bisethylaminediammino	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 	352
 bisdiethyldithioethyleneglycolato-chloride, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinate, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiohydroxyethylenegly-colato-chloroplatinite, 16. 270 bisdiethyldithiopropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 bisethylamines, 16. 355 bisethylamines, 16. 356 bisethylaminediamminochloro-platinite, 16. 271 trans-bisethylaminediamminochloro-platinite, 16. 271 bisothylaminediamminochloro-platinite, 16. 271 bisothylaminediamminochloro-platinite, 16. 271 bisothylaminediamminonitrate, 16. 409 trans-bisethylaminediamminochloro-platinite, 16. 271 bisothylaminediamminonitrate, 16. 271 bisothylaminediamminochloro-platinite, 16. 271 bisothylaminediamminochloro-platinite, 16. 271 bisothylaminediamminochloro-platinite, 16. 271 bisothylaminediamminonitrate, 16. 270 bisothylaminediamminonitrate, 16. 270 bisothylaminediamminonitrate, 16. 271 bisothylaminediamminonitrate, 16. 270 bisothylaminediamminonitrate, 16. 270 bisothylaminediammin	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 352 bisdiethylaminechloride, 16. 272 	352
chloride, 16. 276 bisdiethyldithioethyleneglycolato- chloroplatinate, 16. 276 bisdiethyldithioethyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiopropyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 16. 352	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 	352
 bisdiethyldithioethyleneglycolato-chloroplatinate, 16. 276 bisdiethyldithioethyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiopydroxyethylenegly-colato-chloroplatinite, 16. 276 bisdiethyldithiopyropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiopyropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 355 bisdiethyldithioxydiethylglycols, 16. 355 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminosul-platinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 271 <	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 	352 — bisdipropylsulphines, 16. 357 — bisethylalcohols, 16. 367 — cis-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 — bisethylaminebispropylamines, 16. 353 — bisethylaminediammines, 16. 353 — cis-bisethylaminediammines, 16. 353 — cis-bisethylaminediammines, 16. 353
chloroplatinate, 16. 276 bisdiethyldithioethyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiohydroxyethylenegly- colatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolato- chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 352 cis-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- pl	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldimines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatobisdiethyldithioethyleneglycolato- 	352 — bisdipropylsulphines, 16. 357 — bisethylalcohols, 16. 367 — cis-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloride, 16. 272 — trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 — bisethylaminebispropylamines, 16. 353 — bisethylaminediammines, 16. 353 — cis-bisethylaminediamminochloride, 16. 271 — hemihydrate, 16. 271
chloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiohydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 bisdiethyldithioxydiethylglycols, 16. 356 bisdiethyldithioxydiethylglycols, 16. 356 bisdiethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 409 colatochloroplatinite, 16. 276 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 409 colatochloroplatinite, 16. 276 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 409 colatochloroplatinite, 16. 276 bisethylaminediamminochloroplatinite, 16. 355 bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminosul- phate, 16. 401 bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminochloroplatinite, 16. 271 bisethylaminediamminochloroplatinite, 16. 409 colatochloroplatinite, 16. 355 bisethylaminediamminochloroplatinite, 16. 355 bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminosul- bisethylaminediamminosul- bisethylamines, 16. 355 bisethylamines, 16. 355 bisethylamines, 16. 356 bisethylaminediamminochloroplatinite, 16. 401 bisethylamines, 16. 355 bisethylamines, 16. 355 bisethylamines, 16. 356 bisethylaminediamminosul- bisethylamines, 16. 356 bisethylamines, 16. 356 bisethylamines, 16. 356	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloride,
 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiohydroxyethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 356 bisethylamines, 16. 271 bisethylaminediamminonitrate, 16. 401 bisethylamines, 16. 355 bisethylamines, 16. 355 bisethylamines, 16. 356 <l< td=""><td> biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloride, 16. 276 </td><td>352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloride, 16. 271</td></l<>	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloride, 16. 276 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloride, 16. 271
352	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminediammines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloride, 16. 271 trans-bisethylaminediamminochloride, 16. 271 cis-bisethylaminediamminochloro- platinate, 16. 271
 bisdiethyldithiohydroxyethylenegly-colatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolato-chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 bisdiethyldithioxydiethylglycols, 16. 356 bisethylamines, 16. 356 	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro-
colatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 355 352	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 355 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chas-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloroplatinate, 16. 271 trans-bisethylaminediamminochloroplatinate, 16. 271 trans-bisethylaminediamminochloroplatinate, 16. 271
chloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 354 bisethylamines, 16. 354 bisethylamines, 16. 356	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271
 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 352 bisethylamines, 16. 355 bisethylamines, 16. 356 bisethylamines, 16. 355 bise	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiothyleneglycols, 16. 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminonitrate, 16.
16. 352 — bisdiethyldithioxydiethylglycols, 352 — bisethylaminobispyridines, 16. 354 — bisethylamines, 16. 356 — bis-1-ethyl-3, 5-dimethylpyrazoles, 16.	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscillidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithioptopyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioptopyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloropyleneglycolatochl	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminonitrate, 16. 409
bisdiethyldithioxydiethylglycols, 16. — bisethylcarbylamines, 16. 356 — bis-1-ethyl-3, 5-dimethylpyrazoles, 16.	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 18. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiophyleneglycols, 16. 352 bisdiethyldithiophyleneglycols, 16. 352 bisdiethyldithiophyleneglycols, 16. 352 bisdiethyldithiophyleneglycols, 16. 352 bisdiethyldithiophyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiophyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiophyleneglycolatochloroplatinite, 16. 276 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminosul- phate, 16. 401
352 bis-1-ethyl-3, 5-dimethylpyrazoles, 16.	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscollidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, bisdiethyldithiotrimethyleneglycols, 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminochloro- platinite, 16. 401 hexahydrate, 16. 401 bisethylamines, 16. 355
	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscilidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycols, 16. 352 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 352 	352 bisdipropylsulphines, 16. 357 bisethylalcohols, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminosul- phate, 16. 401 bisethylamines, 16. 355 bisethylamines, 16. 355 bisethylamines, 16. 355
	 biscarbonyldiamminochloride, 16. 260 biscinnamenylpyridazine, 16. 366 biscilidines, 16. 365 bisdiamminohydroxytriiodobisnitrosylhydroiodide, 8. 443 bisdibutyldithioethyleneglycolatochloroplatinite, 16. 276 bisdibutyldithioethyleneglycols, 16. 352 bisdiethylaminechloride, 16. 272 bisdiethylamines, 16. 355 bisdiethyldiselenotrimethyleneglycols, 16. 352 bisdiethyldithioethyleneglycolatochloride, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinate, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithioethyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiopropyleneglycolatochloroplatinite, 16. 276 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithiotrimethyleneglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 352 bisdiethyldithioxydiethylglycols, 16. 	bisdipropylsulphines, 16. 357 bisdipropylsulphines, 16. 367 cis-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloride, 16. 272 trans-bisethylaminebispropylamine- chloroplatinite, 16. 272 bisethylaminebispropylamines, 16. 353 bisethylaminediammines, 16. 353 cis-bisethylaminediamminochloride, 16. 271 hemihydrate, 16. 271 trans-bisethylaminediamminochloro- platinate, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 trans-bisethylaminediamminochloro- platinite, 16. 271 bisethylaminediamminonitrate, 16. 409 trans-bisethylaminediamminosul- phate, 16. 401 bisethylamines, 16. 355 bisethylamines, 16. 355

Platinous bisethylenediaminebromocuprate,	Pletinous his 4 5 moth dath descriptions
16. 372	Platinous bis-4, 5-methylethylpyrimidines, 16. 365
bisethylenediaminechloride, 16. 272 bisethylenediaminechlorocobaltate,	—— bis-ν-methylimidazolyl-μ-mercaptan, 16. 366
16. 272 bisethylenediaminechlorocuprate, 16.	bismethyl-iso-butylgloximine, 16. 358 bis-α-methylisoxazols, 16. 365
272 —— bisethylenediaminechlorocupriplati-	bismethyloxyphosphinebenzoates, 16.
nate, 16. 272	- hismethylphognhatog 16 367
bisethylenediaminechloroplatinite, 16.	bismethylpropylglyoximine, 16. 358 bis-3, 5-methylpyrazol, 16. 366
bisethylenediamines, 16. 351	- bis-3, 5-methylpyrazols, 16. 367
bisethylenediaminoiodide, 16. 385, 388 bisethylenesulphinebromide, 16. 372	bismethylselenines, 16. 367
bisethylenesulphinedihydroxide, 16.	bismethylsulphine, 16. 367 bismethylsulphinedihydroxide, 16. 239
239	— bismethylsulphinodiammines, 16. 353
bisethylenesulphineiodide, 16, 386 bisethylenesulphines, 16, 352, 367	 bismethylthioglycollate, 16. 358 bis-β-methyltrimethylenediamines, 16.
bisethylenesulphinesulphate, 16, 401	353
- bisethylenethiocarbamide, 16, 367	- bis-β-methyltrimethylenediaminobro-
- bisethylenethioglycollate, 16. 358 - bisethylmethylglycollate, 16. 357	mide, 16. 372
- bisethylphosphines, 16. 367	bis-β-methyltrimethylenediamino- iodide, 16 . 385
bisethylphosphinodiammines, 16, 353	- bis-β-methyltrimethylenediamino-
- bisethylphosphites, 16. 367 - bisethylphosphitodiamminochloride,	nitrate, 16. 409
16 . 277	bis-ν-naphthylimidazolyl-μ-mercap- tan, 16. 367
bisethylselenines, 16. 367	bis-1-naphthyltriazole, 18. 366
bisethylsulphine, 16. 367	bisphenylcarbylamines, 16. 356
bisethylsulphinedihydroxide, 16. 239 bisethylthioglycolate, 16. 358	bis-1-phenyl-3, 5-dimethylpyrazoles, 16. 368
- — bisethylthioglycolatodiamminosul-	bis-ν-phenylimidazolyl-μ-mercaptan,
phate, 16 . 401	16. 366
bisethylthioglycollate, 16. 358 bisethylthioglycollic acid, 16. 357	- bis-1-phenyl-3-imidotriazoline, 16. 366
· bisglycines, 16. 367	bisphenylmethylethylpyrazoles, 16.
bisglyoxaline, 16. 366	bis-1-phenylmethylethyltrichloro-
— bis-β-hydroxyethylpyridines, 16. 366 — bisimidazolylmercaptan, 16. 366	pyrazoles, 16. 368
- bis-μ-imidazolylmercaptan, 16. 366	bis-1-phenylmethylpyrazoles, 16. 368 bis-1-phenyl-3-methyl-1, 3-triazole,
	16. 366, 368
—— bisisobutylsulphinedihydroxide, 16. 239	bis-1-phenyl-3-methyl-1, 3-triazolone,
- · · · bisjaborinates, 16. 366	16. 368
bisjaborines, 16 . 365	- bis-l-phenyltetrachloropyrazols, 16.
—— bislutidines, 16. 365 —— cis-bismethylaminebisethylamine-	367
chloride, 16. 271	bis-1-phenyltriazole, 16. 366 - bisphosphamidodiammines, 16. 353
trans-bismethylaminebisethylamine-	bisphosphaminodiamminechloride, 16.
ehloride, 16. 271	278
	bisphosphorichlorides, 16. 367 bisphosphorus acid, 16. 358
trans-bismethylaminebisethylamine-	bisphosphorustribomide, 16. 358
chloroplatinite, 16. 271	— — bisphosphorustrichloride, 16. 358
	—- bispicolines, 16 . 365 —- bispiperidines, 16 . 356
chloroplatinite, 16. 272	bispiperidinochloride, 16. 274
trans-bismethylaminebispropylamine-	— bispotassiumthioglycollate, 16. 357
chloroplatinite, 16. 272 —— bismethylaminebispropylamines, 16.	bispropionitrilediamines, 16. 353 bispropionitriles, 16. 356, 365
353	bispropylaminediammines, 16. 353
bismethylaminediammines, 16. 352	cis-bispropylaminediamminochloro
cis-bismethylaminediamminochloro- platinite, 16. 271	platinite, 16. 272 trans-bispropylaminediamminochloro-
trans-bismethylaminediamminochloro-	platinite, 16 . 272
platinite, 16. 271	bispropylamines, 16. 355
bismethylamines, 16, 355	- bispropylenediaminebromide, 16, 372
bismethylcarbylamines, 16. 356 bis-3, 5-methylchloropyrazols, 16. 366	bispropylenediaminechloride, 16 . 272 bispropylenediaminehydroxide, 16 .239
bismethylethylglyoximine, 16. 358, 367	bispropylenediamineiodide, 16. 385

Platinous bispropylenediaminenitrate, 18.	Platinous bis-αβγ-triaminopropanobromide,
409 —— bispropylenediamines, 16. 351	16. 372, 385 — bis-αβy-triaminopropanochloride, 16.
— bispropylenediaminesulphate, 16. 401	272
bispropylsulphinedihydroxide, 16. 239	bis-1, 3, 4-triazole, 16, 366
	bistrichloropyridines, 16. 366 bistricthylarsines, 16. 358
—— bis-β-pyridine-α-lacetates, 16. 366	bistriethylphosphinediammino-
cis-bispyridinebisdimethylamine-	chloride, 16 . 277
chloroplatinite, 16. 274 —— cis-bispyridinebisdimethyleneamine-	bistriethylphosphinediamminochloro- platinite, 16. 277
chloride, 16 . 274	bistriethylphosphines, 16. 358
trans-bispyridinebisethylaminechloro- platinite, 16. 274	bistriethylphosphite, 16, 358
cis-bispyridinebismethyldiamine-	bistriethylstibines, 16. 358 bistrimethylphosphines, 16. 358
chloroplatinite, 16. 274	bistrimethylphosphite, 16. 358
bispyridinebisthiocarbamides, 16. 354 bispyridinediammines, 16. 353	bistrimethylenethiocarbamide, 16. 367
cis-bispyridinediamminochloride, 16.	bistriphenylphosphite, 16. 358 bis-tripropylaminehydrochloride, 16.
274	272
trans-bispyridinediamminochloride, 16. 273	bistrithioformaldehydes, 16. 367
- · cis-bispyridinediamminochloroplati-	bisxanthogenates, 16. 359 bisxylidines, 16. 356
nite, 16. 274	bis-ν-xylylimidazolyl-μ-mercaptan, 16.
trans-bispyridinediamminochloroplati- nite, 16. 274	366
bispyridinedihydroxylaminechloro-	bromide, 16. 370 bromoamidotetrammines, 16. 362
platinite, 16. 273	- bromobisbariumthioglycolate, 16. 372
bispyridinedihydroxylamines, 16. 353 bispyridinehydrochloride, 16. 274	bromobispotassiumthioglycolate, 16.
bispyridinephenylpyrazoles, 16. 368	bromobisthiodiglycolate, 16. 372
—— bispyridines, 16 . 356, 365	bromocarbonatotetrammines, 16. 364
—— bispyridinodiamminoiodide, 16. 385 —— bisquinolines, 16. 356, 365	bromodiaminodiethylaminobromide,
bissilverphosphite, 16. 358	16. 372 bromoiodobisethylselenine, 16. 386
bissodiumthioglycollate, 16. 357	bromopentammines, 16. 362
bistetrahydroquinolines, 16. 365 bistetrazolines, 16. 366	bromosulphatotetrammines, 16. 364
bisthioacetamides, 16. 356	bromotriamminobromoplatinite, 16.
bisthiocarbamidebispyridinechloride,	carbonatobismethylsulphine, 16. 407
16. 277 — bisthiocarbamidebispyridine-	carbonatobispyridine, 16, 407
hydroxide, 18. 239	
bisthiocarbamidediamminochloride,	—— carbonylethylenes, 16. 360
16. 276 —— bisthiocarbamides, 16. 356	
bisthiocarbamidiammines, 16. 353	—— carbonylpyridines, 16. 360 —— carbonyls, 16. 360
—— bisthiocarbamidodiammines, 16. 353	carbonyltriethylphosphite, 16. 360
bisthiodiglycollate, 16. 358 bisthioglycollate, 16. 358	
—— bisthioglycollic acid, 16. 357	chloroamidonitritopyridinoethylene- diaminochloride, 16. 364
bistoluidinebisethylphosphites, 16.354	—— chloroamidotetrammines, 16. 362
 bistoluidinebisethylphosphitochloride, 16. 278 	chloroaminotetrammines, 16. 363
bistoluidinebismethylphosphites, 18.	
354	chloroanilinediammines, 16. 355
	chloroanilinediamminochloride, 16.273
bistoluidines, 16. 356	chloroanilinediamminochloroplatinite, 16. 273
bis-1-tolyl-2, 5-dimethyl-2, 3-triazole,	
16. 366 his an-tolylenediaminochloride 16. 274	chlorobisethylthioglycollate, 16. 358
bis-m-tolylenediaminochloride, 16. 274 bis-m-tolylenediaminines, 16. 359	 α-chlorobispyridinoamminochloride, 16. 273
bis-ν-tolylimidazolyl-μ-mercaptan, 16.	a-chlorobispyridinoamminochloro-
366 —— bis-1-tolyl-3-imidotriazoline, 16. 366	platinate, 16. 273
bis-p-tolylpyrazole, 16. 366	chlorobistoluidineethylphosphite, 16.
— bistolylpyrazols, 16. 367	chlorobromobisethylselenine, 16. 285
bis-1-tolyltriazole, 16. 366 bis-m-tolynediamine, 16. 401	chlorobromoethylsulphineethylsele-
Juodianiiiio, 10. 401	nine , 16 . 285

V 3421 24 24 24 24 24 24 24 24 24 24 24 24 24	
Platinous chlorobromotetrammines, 16. 363	Platinous chloromercaptammine, 16. 275
chlorocarbonatotetrammines, 16. 364	chloromercaptide, 16. 275
chlorocarbonyldiammines, 16. 355	chloromethoxydicyclopentadiene, 16.
chlorocarbonyldiamminochloride, 16.	274 —— chloronitratobisbutylsulphine, 16. 413
273	chloronitratobisethylselenine, 16. 410
chloride, 16. 272	chloronitratoethylphosphite, 16. 410
- chlorodiamminoethylphosphites, 16.	chloronitratoethylsulphine-ethylsele-
355	nine. 1 . 410
chlorodiethylsulphinediamminochlo-	chloronit atotetramminosulphate, 16.
ride, 16. 275	414
chlorodiethylsulphinediamminochloro-	
platinite, 16. 275 —— chlorodiethylsulphinediamminoethyl-	chloronitritoethylenediaminodiam-
mercaptide, 16. 275	minochloride, 16, 362
chlorodinitritopyridinodiammino-	chloronitritohydroxylaminoammine-
chloride, 16 . 364	(trans), 8. 517
chlorodinitritopyridinoethylenedia-	- chloronitritopyridinoethylenediamino- amminochloride, 16, 362
minochloride, 16. 364	chloronitritopyridinotriamminochlo-
—— chlorodinitritopyridinoethylenedia- minohydroxide, 16 . 364	ride, 16 , 362
chlorodinitritopyridinomethylamino-	chloronitritotetramminochloride, 16.
amminochloride, 16. 364	362
chlorodinitritotriamminochloride, 16.	chloreoxypentahydroxyphosphite, 16.
364	278 chloropentammines, 16, 362
chlorodioxytrihydroxyphosphite, 16.	- chlorophosphaminediaminine, 16. 355
278 —— chlorodithioglycolate, 16. 277	chlorophosphaminediamminochloride,
chlorodithiopotassiumdithioglycolate,	16. 278
16. 277	heptahydrate, 16. 278
—— chloroethoxydicyclopentadiene, 16. 274	ehlorophosphorotrihydroxidodihydro-
chloroethylenediaminotriammines, 16.	phosphite, 16. 253
362	—— chloroplatinites, 16 . 285 —— <i>trans</i> -chloropyridinediethylselenine,
- — chloroethylmercaptidediethylsulphine, 16, 275	16. 277
chloroethylenesulphines, 16. 353	a-chloropyridinodiamminochloride, 16.
— chloroethylmercaptidodiammine, 16.	273
277	chlorosulphatotetrammines, 16. 364
chloroethylmercaptidodiammino-	
chloroplatinite, 17. 277	- chlorotriamminochloride, 16. 260
— chloroethylphosphitobisanilinochlo- ride, 16 , 278	chlorotriamminochloropalladite, 16.
chloroethylphosphitobistoluidine-	259
chloride, 16 , 278	- chlorotriamminochloroplatinate, 16.
—— chloroethylphosphitodiamminochlo-	261 — chlorotriamminochloroplatinite, 16.
ride 16, 278	260
chloroethylphosphitodiamminochloro-	chlorotriamminotrichloroamminoplati-
platinate, 16 . 278 —— chloroethylphosphitotriamminochloro-	nite, 16. 261
platinate, 16 , 277	chlorotricarbonyls, 16. 354
chloroethylphosphitotriamminochloro-	chlorotrimethylsulphines, 16. 355
pletinite 16, 277	— chlorotrisdiethylenedisulphinechlo- ride, 16. 275
chloroethylsulphinediammines, 16. 355	chlorotrisdiethylseleninechloroplati-
	nite 16, 277
cis-chlorohydrosulphatodiammine, 10.	—— chlorotrisdiethylsulphinechloride, 16.
321	275
trans-chlorohydrosulphitodiammine,	chlorotrisethylsulphines, 16. 355
10. 320	—— chlorotrismethylsulphinechloroplati- nite, 16. 274
chlorohydroxydipropylsulphine, 16.	ehlorovinylcarbonyl, 16, 273
275 —— chlorohydroxytoluidinethylphosphite,	cobaltous trans-sulphitodiamminosul-
16. 278	phite 10 321
chlorojodides, 16, 386	—— cupric trans-sulphitodiamminosul-
chloroiodobisethylselenine, 16. 386	nhite, 10, 321
cis-chloroiodobispropylsulphine, 16.	diallylhexasulphines, 16, 368 diammines, 16, 355, 365
398	diamminohismethylphosphite, 10, 505
chloroiodoethylsulphine-ethylselenine,	diamminodiethylthioglycollate, 10. 303
16. 386 ——— chloroiodotetrammines, 16. 363	—— diamminodiiodide, 16. 387
Chiorologotenamimes, 10. 000	,

UEIVIIIIA.	L INDEX
Platinous diamminodinitrite (cis), 8. 516	Platinous dichloroacetylenediethylsulphine, 16. 276
diamminodinitritonitrosylphydro-	dichloroamidoacetates, 16. 361 dichloroamidopropionates, 16. 361
chloride, 8. 443 ——— diamminonitritochloronitrosylphydro-	dichloroaminoacetate, 16. 274
ehloride, 8. 443	dichloro-β-aminodicthylsulphide, 16.
nitrate, 8. 443 —— diamminotetranitritoplatinite, 8. 515	dichloroammine, 16. 266, 275 dichloroanilinemethylphosphite, 16.
diaquodiamminochloride, 16. 263	278 dichloroanilinethylene, 16. 273
cis-dibromoanilinetriethylphosphite, 16. 372	dichloroanilinethylphosphite, 16. 278
	dichlorobisacetonitrite, 16. 274
dibromobisamidoacetate, 16. 372 dibromobisbenzonitrile, 16. 372	16. 274 - dichlorobis-3-aminopyridine, 16. 274
— – dibromobisbutylsulphine, 16. 372	—— dichlorobisaniline, 16. 273 —— dichlorobisbenzonitrite, 16. 274
- dibromobisdimethylamine, 16. 372 - dibromobisdimethylaminediammine,	dichlorobisbenzyltelluride, 16. 277
16. 372 dibromobisethylamidoacetate, 16. 372	- dichlorobisbenzyltellurine, 16 , 277 dichlorobisbutylearbylamine, 16 , 276
—— cis-dibromobisethylamine, 16. 372 —— dibromobisethylenediamines, 16. 363	dichlorobisehlorocarbonyl, 16. 273 — trans-dichlorobisdibenzylsulphine, 16.
—— dibromobisethylsulphine, 16. 372	275-6
	trans-dichlorobisdicthylselenine, 16.
dibromobismethylsulphine, 16. 372 dibromobisphenylcarbylamine, 16. 372	277
dibromobisphosphorotribromide, 16.	curate, 16. 277 dichlorobisdiethylseleninechloroplati-
—— dibromobispotassiumthioglycolate, 16.	nite, 16. 277 —— dichlorobisdiethylsulphine—cis, 16. 275
- — dibromobispropylenediamines, 16. 363	trans-, 16. 275
	diehlorobisdi-iso-amylsulphine—cis, 16. 275
—— trans-dibromobispyridine, 16. 372 —— dibromobisthiodiglycolate, 16. 372	dichlorobisdi-iso-propylsulphine trans, 16. 275
—— dibromobistriethylphosphine, 16. 372 —— dibromocarbonyl, 16. 372	—— dichlorobisdimethylamine, 16. 271—— dichlorobisdimethylethylpyrazole, 16.
—— dibromocarbonylpyridine, 16. 372	274
	—— dichlorobisdimethylsulphine—cis, 18.
	dichlorobisdi-n-butylsulphine—cis, 16.
372 — dibromoethylamineammine, 16. 372	275
dibromoethylenesulphine, 16. 372	dichlorobisdipropylsulphine-cis, 16.
dibromoethylphosphite, 16. 372 dibromoethylpropylsulphine, 16. 372	trans, 16. 275
- dibromoethylselenine, 16. 372 - dibromoethylseleninebromoplatinite,	 dichlorobisdipropylsulphinechloromer- curate, 16. 275
16. 372 —— dibromoethylseleninepyridine, 16. 372	—— dichlorobisdipropylsulphinechloropla- tinate, 16. 275
dibromoethylsulphineethylselenine, 16. 372	—— diehlorobisdipropylsulphinechloro- stannite, 16 . 275
—— dibromohexammine-μ-diamines, 16.	—— dichlorobisethylamine—cis, 16. 271 —— trans, 16. 271
369 —— dibromohexammine-μ-diimines, 16. 369	
dibromo-oxycacodyl, 16. 372	16. 276 dichlorobisethylphosphite, 16. 278
—— dibromophosphorobromide, 16. 372 —— dibromophosphorotribromide, 16. 371	—— dichlorobis-iso-undecylthiocarbamide,
dibromopropylenediaminediammines, 16. 364	16. 277 —— dichlorobismethylamine, 16. 271
—— dibromoquaterpyridines, 16. 363 —— dibromotetrammines, 16. 362	—— dichlorobismethylcarbylamine, 16. 276—— dichlorobismethylphenylpyrazole, 16.
dibromotriethylphosphite, 16. 372	274 dichlorobismethylphosphite, 13. 278
dibutylthioethyleneglycols, 16. 357 dicarbonyls, 16. 356	- dichlorobismethylthioethylglycolate,
—— dichloro-β, 16. 274	16. 277

Platinous dichlorobisphenylearbylamine, 16.	Platinous dichlorodiamminedichlorotetram-
274, 276	minoplatinite, 16. 257
—— dichlorobisphenylcyanide, 16. 276	—— dichlorodianiminobisethylthiolacetate,
dichlorobisphenyldiethylphosphine-	16. 276
trans, 16. 277	— dichlorodiamminochlorocarbonate, 16.
dichlorobisphenylphosphite, 16. 278	403
dichlorobisphosphorotrichloride, 16.	dichlorodiamminotrithiocarbonatodi-
253	ammine, 16 . 277
dichlorobisphosphorotrihydroxide, 16.	dichlorodicarbonyl, 16. 273
253	- dichlorodiethylaminoethylsulphine,
—— dichlorobispiperidine, 16. 274	16 . 275
—— dichlorobispropylamine—cis, 16. 272	—— dichlorodiethylenedisulphine, 16. 275
diehlorobispropylenediamines, 16. 363	—— dichlorodiethylsulphine, 16, 275
dichlorobispyridine, 16. 274	dichlorodiethylsulphinedibutylsul-
cis, 16. 274	phine—trans, 16. 275
	dichlorodiethylsulphinediethylsele-
dichlorobisquinoline, 16. 274	nine—cis, 16. 277
dichlorobisquinolinehydrochloride, 16.	trans, 16. 277
274	dichlorodiethylsulphinediethylsele-
—— dichlorobisthiobariumglycolate, 16.	ninechloroplatinite, 16. 277
277	— dichlorodiethylsulphinedipropylsul-
dichlorobisthiocarbamide, 16. 276	phine—trans, 16. 275
dichlorobisthioethylglycolate, 16. 276,	dichlorodiethylsulphinepyridine-cis,
277	16. 275
dichlorobisthioglycolate, 16. 277	trans, 16. 275
—— dichlorobisthiomethylglycolate, 16.277	— dichlorodihydroxylamine—cis, 16. 269
dichlorobisthiopotassiumglycolate, 16.	trans, 16. 269
277	dichlorodi-iso-butylsulphinecis, 16.
dichlorobistolidine, 16. 273	275
dichlorobistoluidine, 16. 273	
	—— dichlorodimethylaniline, 16. 273
dichlorobistributylarsine, 16, 278	dichlorodimethylsulphinediethylsul-
dichlorobistributylphosphine - cis, 16.	
277	phine, 16. 275
	- dichlorodimethyltrimethylencethyl-
dichlorobistributylstibine, 16. 278	sulphine, 16. 276
—— dichlorobistriethylamine—cis, 16 . 278	dichlorodi-n-propylsulphinedi-iso-pro-
trans, 16. 278	pylsulphine, 16, 275
—— dichlorobistriethylphosphine—cis, 16.	dichlorodisilverphosphite, 16, 278
277	dichlorodithioacetamide, 16. 277
trans, 16. 277	dichlorodithioethylenebutylglycolate,
dichlorobistriethylstibine, 16. 278	16. 276
dichlorobistriethylthiocarbamide, 16.	—— dichlorodithioethyleneethylglycolate,
277	16. 276
trans-dichlorobistrimethylphosphine,	dichlorodithioethylenemethylglyco-
16. 277	late, 16. 276
—— dichlorobistriphenylstibine, 16. 278	dichlorodithioethylenepropylglycolate,
—— dichlorobistripropylphosphine—cis,	16. 276
16. 277	—— dichlorodithiooxytrimethyleneethyl-
trans, 16. 277	glycolate, 16 . 276
—— dichlorocarbonyl, 16. 273	dichlorodithiopropyleneethylglyco-
—— dichlorocarbonylethylene, 17. 272	late, 16. 276
—— dichlorocarbonylethylphosphite, 16.	—— dichlorodithiopropylenepropylglyco-
278	late, 16. 276
—— dichlorocarbonylphenylhydrazine, 16.	—— dichloroerythritylethylsulphine, 16.
273	276
dichlorocarbonylpyridine, 16. 274	dichloroethylamine, 16. 271
dichlorodiacetonitrile, 16. 276	—— dichloroethylamineammine, 16. 271
—— dichlorodiamidoacetal, 16. 277	—— dichloroethylene, 16. 272
—— dichlorodiamidoacetate, 16. 277	—— dichloroethyleneammine, 16. 272
dichlorodiamidoethylacetate, 16. 277	—— dichloroethylenediamine—cis, 16. 272
—— dichlorodiamidomethylacetate, 16. 277	trans, 16. 272
dichlorodiaminodiethyleneamino-	dichloroethylenediaminodiammines,
hydrochloride, 16. 272	16. 363
— dichlorodiaminodiethyleneamino-	dichloroethylenediaminodiammino-
hydrochloridechloroplatinite, 16. 272	chloride, 16 . 362
— dichlorodiammine—cis, 16. 263	——— dichloroethylenediethylamine, 16. 271
trans, 16. 261	—— dichloroethylenethioglycolate; 16. 277
a-dichlorodiammine, 16. 261	dichloroethylenethiopotassiumglyco-
β-dichlorodiammine, 16. 263	late, 16. 277
—— γ-dichlorodiammine, 16. 265	dichloroethylphosphite, 16. 278
• • • • • • • • • • • • • • • • • • • •	• • •

Platinous dichloroethylphosphitechloro-	Platinous dichloroxymesityl, 16. 274
platinite, 16 . 278	—— didymium chloride, 5 . 643
dichlorohydrochloro-aβγ-triaminopro-	—— diethylaminoethylsulphines, 16. 357
pane, 16 . 272	diethyldithiodimethylpropanochloride,
—— dichlorohydroxydiammine, 16. 267	16 . 275
dichlorohydroxylaminepyridine, 16.	—— diethyldithioethyleneglycols, 16. 357
274	diethyldithioxydiethylsulphines, 16.
dichlorohydroxylaminoammine, 16.	357
270	—— diethylenedisulphines, 16. 360
——— dichloro-iso-butylenediamine, 16. 274	diethylenedisulphinetriamminochlo-
dichloromesityloxide, 16. 274	ride, 16. 275
dichloromethylphosphite, 16. 278	diethylpropylenesulphines, 16. 357
dichloromethylphosphitoethylphos-	diethylsulphinetriamminochloride, 16.
phite, 16 . 278 —— dichloromonoallylphosphite, 16 . 278	275
- dichloronitriteethylenediaminoam-	——— monohydrate, 16. 275 —— diethylsulphinetriamminochloroplati-
minochloride, 16. 364	nite, 16. 275
dichloronitritoethylenediaminoammi-	difluorobispyridine, 16. 250
nohydroxide, 16. 365	——————————————————————————————————————
—— dichloronitritopyridinodiammino-	dihydrazinediamminochloridecis, 16.
chloride, 16 . 364	270
dichloronitritopyridinoethylenedi-	trans, 16. 270
aminochloride, 16. 364	- dihydrazinediamminochloroplatinite-
dichloronitritopyridinomethylamino-	cis, 16. 270
amminochloride, 16. 364	– — dihydrazinediamminodihydrochloride
dichloronitritotriamminochloride, 16.	—cis, 16 . 270
364	trans, 16. 270
dichlorophosphorotrichloride, 16. 253	—— dihydrazines, 16 . 355
dichloriphosphorotrichloroplatinite,	dihydrazinoctocarbylaminochloride.
16. 253	16. 276
dichlorophosphorotrihydroxide, 16. 253	chloride, 16 . 276
- dichlorophosphorustrichloridethyl-	dihydrazinoctoethylcarbylamino-
phosphide, 16. 278	iodide, 16, 385
- dichlorophosphorustrioxidethylphos-	eihydrazinoctoethylcarbylaminoni-
phite, 16. 278	trate, 16. 410
—— dichloropiperidinepyridine, 16. 274	—— dihydrazinoctomethylcarbylamino-
dichloropropylenediamine-cis, 16. 272	iodide, 16 , 585
dichloropropylphosphite, 16. 278	—— dihydrazinodiammines, 16. 350 —— dihydrazinodiamminochloroplatinite,
- dichloropyridineammine—cis, 16. 274 - trans, 16. 274	16. 270
dichloropyridinethylphosphite, 16. 278	—— dihydrazinodiamminoiodide, 16. 385
- dichloropyridinoethylenediaminoam-	dihydrazinodihydrochlorotetracarbyl-
minochloride, 16. 362	amminochloride, 16, 276
dichloroquaterethylamines, 16, 363	dihydrazinodihydrochlorotetraethyl-
dichloroquaterethylaminochloro-	carbylamminochloride, 16. 276
aurate, 16. 270	dihydrazinohydrochlorotetracarbyl-
—— dichloroquatermethylamines, 16. 363	amines, 16. 369
dichloroquatermethylpseudolutido-	dihydrazinohydrochlorotetraethyl-
styril, 16. 363	carbylamines, 16. 369 dihydrazinooctocarbylamines, 16. 369
dichloroquaterpyridines, 16. 363 dichlorosilverphosphite, 16. 253	dihydrazinooctoethylcarbylamines,
dichlorotetrammine, 16. 255, 362	16 . 369
dichlorotetramminothiocarbonate, 16,	dihydrohexasulphoplatinate, 16. 395
408	—— dihydrotetrachloride, 16. 254
—— diehlorothioearbamide, 16. 276	- dihydroxoctoethylcarbylammino-
dichlorotoluidinemethylphosphite, 16.	chloroplatinate, 16. 276
278	—— dihydroxybispyridine, 16. 239
—— dichlorotoluidinethylphosphite, 16.	——————————————————————————————————————
278	
—— dichlorotoluylenediamine—cis, 16. 272	dihydroxydiammine, 16. 238
dichlorotolylenediamine, 16. 274	dihydroxydihydroxylamine, 16. 239
—— dichloro-m-tolylenediamine, 16. 274	— dihydroxyhexammine-μ-diamines, 16.
 dichloro-ββ'β"-triaminotriethylamino- chloroplatinite, 16. 272 	369 —— dihydroxylaminebispyridine-
dichlorotrihydroxyphosphorous acid,	hydroxide, 16. 239
16. 278	—— dihydroxylaminediammine, 16. 352
cis-dichlorotrimethylphosphine, 16.277	dihydroxylaminediamminochloride-
—— dichlorotrisilverphosphite, 16. 278	cis, 16. 269
dichloroxycaeodyl, 16. 278	trans, 16. 268

Platinous dihydroxylaminediamminochloroplatinite—is, 16, 269 — trans, 16, 269 dihydroxylaminediamminohydroxide, 16, 239 dihydroxylaminediamminohydroxide, 16, 239 dihydroxylamines, 16, 355 dihydroxylaminobiapyridines, 16, 350 dihydroxylaminobiapyridines, 16, 350 dihydroxylaminobiamminos, 16, 350 dihydroxylaminodiamminohydroxide, 16, 273 dihydroxylaminodiamminohydroxide, 16, 233 dihydroxylaminodiamminohydroxide, 16, 236 dihydroxylaminodiamminohydroxide, 16, 238 dihydroxylaminodiamminohydroxide, 16, 238 dihydroxylaminopyridimammino-chloride, 16, 239 dihydroxylaminopyridimammino-chloride, 16, 236 dihydroxylaminopyridimammino-chloride, 16, 236 dihydroxylaminopyridimammino-chloride, 16, 285 dihydroxylaminopyridimammino-chloride, 16, 285 dihydroxylaminopyridimammino-chloride, 16, 385 diiodobisamiducestae, 16, 385 diiodobisamiducestae, 16, 385 diiodobisamiducestae, 16, 385 diiodobishurylsulphine, 16, 385 diiodobishurylsulphine, 16, 385 diiodobishurylsulphine, 16, 385 diiodobishurylsulphine, 16, 385 diiodobisproylsulphine,		
platinite—cis, 16, 269 dihydroxylaminediamminohydroxide, 16, 239 dihydroxylaminediamminohydroxide, 16, 230 dihydroxylamines, 16, 355 dihydroxylamines, 16, 355 dihydroxylaminobispyridine, 16, 356 dihydroxylaminobispyridine, 16, 356 dihydroxylaminodiamminohydroxide, 16, 273 dihydroxylaminopyridinoannino-chloride, 16, 273 dihydroxylaminopyridinoannino-chloride, 16, 273 dihydroxytetrammines, 16, 365 dihydroxytetrammines, 16, 365 dihydroxytetrammines, 16, 365 dihydroxytetrammines, 16, 385 diiodobisamidaactate, 16, 386 diiodobisamidaactate, 16, 386 diiodobisamidaactate, 16, 386 diiodobisamidaactate, 16, 385 diiodobishutylsulphine, 16, 385 diiodobishutylsulphine, 16, 385 diiodobishutylsulphine, 16, 385 diiodobishutylsulphine, 16, 385 diiodobispropylsulphine, 16, 385 d	Platinous dihydroxylaminediamminochloro-	Platinous dimethylaminetriamminochloro-
dihydroxylaminediamminohydroxide, 16. 239 dihydroxylaminediamminohitrate, 16. 409 dihydroxylamines, 16. 350 dihydroxylaminobispyridines, 16. 350 dihydroxylaminobispyridines, 16. 350 dihydroxylaminobispyridine- chloride, 16. 273 dihydroxylaminodiamminohydro- palladite, 16. 269 dihydroxylaminodiamminohydro- phosphate, 16. 369 dihydroxylaminodiamminohydro- phosphate, 16. 369 dihydroxylaminodiamminohydro- phosphate, 16. 369 dihydroxylaminodiamminohydro- phosphate, 16. 369 dihydroxylaminodiamminohydro- phosphate, 16. 363 dihydroxylaminodiamminohydro- phosphate, 16. 363 dihydroxylaminodiamminohydro- phosphate, 16. 373 dihydroxylaminodiamminohydro- phosphate, 16. 363 dihydroxylaminodiamminohydro- phosphate, 16. 363 dihydroxylaminohydroxide, 16. 275 dimethylalphine-(16. 410 dimitratobisethylselenine, 16. 410 dimitratobisethylselphine, 16. 365 dihydroxylaminohydroxide, 16. 275 dimethylalphine-(16. 400 dimitratobisethylselphine, 16. 410 dimitratobisethylselphine, 16. 400 dimitratobisethylselphine, 16. 365 dihydroxylaminohydroxide, 16. 275 dimitratobisethylselphine, 16. 410 dimitratobisethylselphine, 16. 400 dimitratobisethylselphine, 16. 305 dimitratobisethylselp		platinite, 16. 271
dihydroxylaminediamminonitrate, 16. 409 dihydroxylamines, 16. 355 dihydroxylaminobispyridines, 16. 350 dihydroxylaminodiammines, 16. 350 dihydroxylaminodiammines, 16. 350 dihydroxylaminodiammines, 16. 350 dihydroxylaminodiamminohydrophosphate, 16. 416 dihydroxylaminodiamminohydroxide, 16. 238 dihydroxylaminodiamminohydroxide, 16. 238 dihydroxylaminopyridinoamminohydroxide, 16. 239 dihydroxylaminopyridinoamminohydroxylaminodiammines, 16. 365 dihydroxylaminopyridinoamminohydroxylaminopyridinoamminohydroxylaminopyridinoamminohydroxylaminopyridinoamminos, 16. 362 dihydroxylaminopyridinoamminos, 16. 362 dihydroxylaminopyridinoamminos, 16. 363 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 385 diiodobismethylathylamine, 16. 385 diiodobistrichylathine, 16. 385 diiodobistrichylathylathine, 16. 385 diiodobistrichylathylathine, 16. 385 diiodobistrichyl		$-$ - $\beta\beta$ -dimethyldipyridyls, 16. 365
dihydroxylaminodiamminonitrate, 16. 409 dihydroxylaminosispyridino, 16. 350 dihydroxylaminobispyridino- chloride, 16. 273 dihydroxylaminodiamminochloro- palladite, 16. 269 dihydroxylaminodiamminohydro- palladite, 16. 269 dihydroxylaminodiamminohydro- palladite, 16. 275 dihydroxylaminodiamminohydro- phosphate, 16. 416 dihydroxylaminodiamminohydroxide, 16. 238 didydroxylaminopyridinoammino- chloride, 16. 273 dihydroxylaminodiamminohydroxide, 16. 238 didydroxylaminopyridinoammino- chloride, 16. 273 dihydroxylaminopyridinoammino- chloride, 16. 273 didydroxylaminodiamminos, 16. 365 dihydroxytoluidinothylphophite, 16. 239 diiodobisamilinoammine, 16. 385 diiodobishudylsulphine, 16. 385 diiodobishudylsulphine, 16. 385 diiodobishudylsulphine, 16. 385 diiodobishudylsulphine, 16. 385 diiodobishundylsulphine, 16. 385 diiodobishundylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobisp		
dolydroxylamines, 16. 355	dibuduosulominaliamainaita 40	
dihydroxylamines, 16. 355 dihydroxylaminobispyridine, 16. 350 dihydroxylaminodianmines, 16. 350 dihydroxylaminodianmines, 16. 350 dihydroxylaminodianminohydropaladite, 16. 269 dihydroxylaminodianminohydropaladite, 16. 273 dihydroxylaminodianminohydroxide, 16. 238 dihydroxylaminodianminohydroxide, 16. 239 dihydroxylaminopyridinoanminohydroxide, 16. 273 dihydroxylaminotyridinoanminohydroxide, 16. 273 dihydroxylaminotyridinoanminohydroxide, 16. 273 dihydroxylaminopyridinoanminohydroxide, 16. 273 dihydroxytoludinethylphosphite, 16. 385 diiodobisamile, 16. 385 diiodobisamile, 16. 385 diiodobisamile, 16. 385 diiodobishudylalphine, 16. 385 diiodobishudylalphine, 16. 385 diiodobishudylalphine, 16. 385 diiodobispropylamine,	dinydroxylaminediamminonitrate, 16.	
dihydroxylaminobispyridinos, 16, 350 a-dihydroxylaminodiamminos, 16, 350 dihydroxylaminodiamminos, 16, 350 dihydroxylaminodiamminohydroxide, 16, 278 dihydroxylaminodiamminohydroxide, 18, 238 a-dihydroxylaminodiamminohydroxide, 18, 238 a-dihydroxylaminopyridinoamminos, 16, 362 dihydroxylaminopyridinoamminos, 16, 362 dihydroxytoturiatotriamminos, 16, 362 dihydroxytotudinethylphosphite, 16, 299 diodoanilineammine, 16, 385 diiodobisemdylsulphine, 16, 385 diiodobisethylsulphine, 16, 385 diiodobisethylsulphine, 16, 385 diiodobisethylsulphine, 16, 385 diiodobisethylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobispropylsulphine, 16, 385 diiodobisp		2, 5-dimethyl-3-ethylpyrazine, 16, 366
- a-dihydroxylaminobispyridino- chloride, 16. 273 dihydroxylaminodiamminochloro- palladite, 16. 269 cix-dihydroxylaminodiamminohydro- phosphate, 16. 416 dihydroxylaminodiamminohydroxide, 16. 238 - a-dihydroxylaminodiamminohydroxide, 16. 273 dihydroxylaminopyridinoammino- chloride, 16. 273 dihydroxylatriamminos, 16. 365 dihydroxyntratoriamminos, 16. 365 dihydroxystetrammines, 16. 365 dihydroxytetrammines, 16. 362 dihydroxytetrammines, 16. 363 diiodobismilioaemmine, 16. 385 diiodobismilioaemmine, 16. 385 diiodobismilioaemmine, 16. 385 diiodobismilioaemmine, 16. 385 diiodobismethylathyline, 16. 385 diiodobismethylathylamine, 16. 385 diiodobismethylathylamine, 16. 385 diiodobispropylamine,		
chloride, 16. 273		
 — dihydroxylaminodiammines, 16. 350 dihydroxylaminodiamminohydropalladite, 16. 269 cis. dihydroxylaminodiamminohydrophosphate, 16. 416 dihydroxylaminodiamminohydrophosphate, 16. 416 dihydroxylaminopyridineamminochloride, 16. 238 dihydroxylaminopyridineamminochloride, 16. 362 dihydroxylaminopyridineamminos, 16. 362 dihydroxytotriammines, 16. 363 dihydroxytotriammines, 16. 385 diiodobismidoacetate, 16. 386 diiodobismidoacetate, 16. 385 diiodobishenzylaulphine, 16. 385 diiodobishenzylaulphine, 16. 385 diiodobismidoacetate, 16. 385 diiodobismethylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobispropylaulphine, 16. 385 diiodocthylaulphine, 16. 385 diiodobispropylaulphine, 16. 385 diiodocthylaulphine, 16. 385 diiodocthylaulph		
 dihydroxylaminodiamminochloropalladite, 16, 269 cis-dihydroxylaminodiamminohydrophosphate, 16, 416 dihydroxylaminodiamminohydrozide, 16, 238 a-dihydroxylaminopyridinoamminochloride, 16, 273 a-dihydroxylaminopyridinoamminochloride, 16, 273 dihydroxytohuidinothylphosphine, 16, 365 dihydroxytohuidinethylphosphine, 16, 365 dihydroxytohuidinethylphosphine, 16, 385 diiodobisamiline, 16, 385 diiodobisbertysluphine, 16, 385 diiodobisbertysluphine, 16, 385 diiodobisbertylsulphine, 16, 385 diiodobismethylethylsulphine, 16, 385 diiodobismethylethylsulphine, 16, 385 diiodobispropylamine, 1		
palladite, 16. 269 cics-dihydroxylaminodiamminohydrophosphate, 16. 416 dihydroxylaminodiamminohydroxide, 18. 238 didroxytotrauminopyridinoamminochloride, 16. 273 dihydroxylaminopyridinoamminochloride, 16. 273 dihydroxylaminopyridinoamminochloride, 16. 386 dihydroxytotrammines, 16. 362 dihydroxytotrammines, 16. 362 dihydroxytotrammines, 16. 362 dihydroxytotrammines, 16. 386 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 385 diiodobisentylaphine, 16. 385 diiodobisentylaphine, 16. 385 diiodobisentylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobismethylaphine, 16. 385 diiodobispropylaulphine, 16. 385 diiodobispropylaulphine, 16. 385 diiodobispropylaulphine in 16. 386 d	dihydroxylaminodiamminochloro-	
cis-dihydroxylaminodianuminohydro- phosphate, 16. 416 dihydroxylaminodianuminohydroxide, 16. 238 -a-dihydroxylaminopyridinoanumino- chloride, 16. 273 dihydroxytoturinethylphosphite, 16. 365 dihydroxytoturinethylphosphite, 16. 365 dihydroxytoturinethylphosphite, 16. 385 diiodobisamline, 16. 385 diiodobisamline, 16. 385 diiodobisamline, 16. 385 diiodobisethylaphine, 16. 385 diiodobisethylaphine, 16. 385 diiodobisethylaphine, 16. 385 diiodobisethylaphine, 16. 385 diiodobismethylethylaphine, 16. 385 diiodobismethylethylaphine, 16. 385 diiodobispropylaulphine, 16. 385 diiodobisphenylae, 16. 385 d	palladite, 16 . 269	
 dihydroxylaminodiamminohydroxide, 16. 238 a-dihydroxylaminopyridinoamminochloride, 16. 273 dihydroxytotrammines, 16. 365 dihydroxytotrammines, 16. 385 diiodobisamline, 16. 385 diiodobisamline, 16. 385 diiodobisamline, 16. 385 diiodobisamline, 16. 385 diiodobisenzylsulphine, 16. 385 diiodobisenzylsulphine, 16. 385 diiodobisenthylsulphine, 16. 385 diiodobisenthylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobispopylsulphine, 16. 386 diiodobispopylsulphine, 16. 386 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 386 diiodobispopylsulphine, 16. 386 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 386 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 385 diiodobispopylsulphine, 16. 386 <	cis-dihydroxylaminodiamminohydro-	
 dintratobromotrianmines, 16. 365 dihydroxylaminopyridinoamminochloride, 16. 273 dihydroxytotrammines, 16. 362 dihydroxytoluidinethylphosphite, 16. 239 diliodosinime, 16. 385 diliodobisamiloacetate, 16. 386 diliodobisamiloacetate, 16. 385 diliodobisamiloacetate, 16. 385 diliodobisethylsulphine, 16. 385 diliodobisethylsulphine, 16. 385 diliodobisethylsulphine, 16. 385 diliodobismethylsulphine, 16. 385 diliodobismethylsulphine, 16. 385 diliodobismethylsulphine, 16. 385 diliodobisproylsulphine, 16. 386 diliodobisproylsulphine, 16. 386 diliodobisproylsulphine, 16. 385 diliodobisproylsulphine, 16. 386 diliodobisproylsulphine, 16. 386 diliodobisproylsulphine, 16. 386 diliodobisproylsulphine, 16. 386 diliodobisp		
- a-dihydroxylaminopyridinoaumino-chloride, 16, 273 - dihydroxynitratoriammines, 16, 365 - dihydroxytotrammines, 16, 362 - dihydroxytotrammines, 16, 365 - dihydroxytotrammines, 16, 385 - diiodobisamiloacetate, 16, 386 - diiodobisamiloacetate, 16, 385 - diiodobisemylsulphine, 16, 385 - diiodobisethylsulphine, 16, 385 - diiodobisethylsulphine, 16, 385 - diiodobisethylsulphine, 16, 385 - diiodobisethylsulphine, 16, 385 - diiodobismethylsulphine, 16, 385 - diiodobismethylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 385 - diiodobispropylsulphine, 16, 386 - diiodobispropylsulphine, 16		dinitratobistriethylphosphine, 16. 410
chloride, 16. 273 dihydroxyntetatoriannnines, 16. 365 dihydroxyntetatoriannnines, 16. 362 dihydroxytotuldinethylphosphite, 16. 239 diiodobisimenthylene, 16. 385 diiodobisamiline, 16. 385 diiodobisamiline, 16. 385 diiodobisethylsulphine, 16. 385 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 3		
 dihydroxyntratotriannines, 16, 362 dihydroxytotuidinethylphosphite, 16. dilydroxytotuidinethylphosphite, 16. diiodonallineammine, 16, 385 diiodobisamidoacetate, 16, 386 diiodobisamidoacetate, 16, 386 diiodobisaniline, 16, 385 diiodobishutylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobispropylsulphine, 16, 386 diiodobispropylsulphine, 16, 386 diiodobispropylsulphine, 16, 385 diiodocthylsulphine, 16, 385 diiodocthylsulphine, 16, 385 diiodocthylsulphine, 16, 385 diiodobispropylsulphine, 16, 386 diiodobispropylsulphine, 16, 386 diiodobispropylsulphine, 16, 386 diiodobispropylsulphine, 16, 386 		
dihydroxytotrammines, 16. 362 diidydroxytotuidinethylphosphite, 16. 239 diiodonilineammine, 16. 385 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 385 diiodobisamiline, 16. 385 diiodobisamiline, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobismethylethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine indentify and intratopyridine-cis, 16. 410 dinitratotexammino-μ-diamines, 16. 364 diiodobispropylsulphine indentify amines, 16. 364 diiodobispropylsulphine indentify anines, 16. 364 diiodobistrichylphosphines, 16. 385 diiodobistrichylphosphines, 16. 385 diiodobistrichylphosphines, 16. 385 diiodobistrichylsulphine, 16. 385 diiodocacodyloxide, 16. 385 diiodocthylsulphineammine, 16. 385 di		
dilydroxytoluidinethylphosphite, 18. 239 diiodonilineammine, 16. 385 diiodobisamidoacetate, 16. 386 diiodobisamidoacetate, 16. 385 diiodobisamidoacetate, 16. 385 diiodobisamidoacetate, 16. 385 diiodobisenzylsulphine, 16. 385 diiodobisenzylsulphine, 16. 385 diiodobisethylselenine, 16. 385 diiodobisethylselenine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispridinediammines, 16. 386 diiodobispridinediammines, 16. 386 diiodocacodyloxide, 16. 385 diiodocthylsulphine, 16. 385 diiodoct		
- diiodobismiloacetate, 16. 386 - diiodobismiloacetate, 16. 386 - diiodobismiloacetate, 16. 386 - diiodobismiloacetate, 16. 386 - diiodobishvlysluphine, 16. 385 - diiodobishvlysluphine, 16. 385 - diiodobishvlysluphine, 16. 385 - diiodobisethylsulphine, 16. 385 - diiodobismethylamine, 16. 385 - diiodobismethylsulphine, 16. 385 - diiodobismethylsulphine, 16. 385 - diiodobismethylsulphine, 16. 385 - diiodobispenylsulphine, 16. 385 - diiodobisphenylamine, 16. 385 - diiodobispropylsulphine ine, 16. 385 - diiodobispryridine, 16. 385 - diiodobispryridine, 16. 385 - diiodobispryridine, 16. 385 - diiodobispryridine, 16. 385 - diiodocacodyloxide, 16. 386 - diiodocacodyloxide, 16. 386 - diiodocthylsulphine, 16. 385 - diiodocthylsulphine ine, 16. 385 - diiodocthylsulphine, 16. 385 - diiodocthylsul	dilydroxytoliidinathylahombita 18	
 diiodobismilinearmine, 16. 385 diiodobisaniline, 16. 385 diiodobisaniline, 16. 385 diiodobishulylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobisphroylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispridine, 16. 385 diiodobispridine, 16. 385 diiodobispridine, 16. 385 diiodocabolylsulphine, 16. 385 diiodocabolylsulphine, 16. 385 diiodocabolylsulphine, 16. 385 diiodochylsulphine, 16. 385 diiodocthylsulphine, 16. 385 diiodocthylsulphine, 16. 385 diiodochylsulphine, 16.		
 diiodobisamidoacetate, 16. 386 diiodobisamiline, 16. 385 diiodobisaberzylsulphine, 16. 385 diiodobisbutylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobisethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine in 16. 385 diiodobispropylsulphine in 16. 385 diiodobispropylsulphine in 16. 385 diiodobispropylsulphine in 16. 385 diiodobispridinediammines, 16. 364 diiodobispridinediammines, 16. 364 diiodobistriethylstibine, 16. 385 diiodobistriethylstibine, 16. 386 diiodocacodyloxide, 16. 385 diiodocacodyloxide, 16. 385 diiodocthyleneulphine, 16. 385 diiodocthyleneulphine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphine, 16. 385 diiodocthylsulphi		dinitratoethylphosphite 16 410
diiodobisaniline, 16. 385 diiodobisatulysluphine, 16. 385 diiodobisethylselenine, 16. 385 diiodobisethylselenine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylamine, 16. 385 diiodobispropylamine, 16. 385 diiodobispridine, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylamineamine, 16. 38		
 diiodobisenzylsulphine, 16. 385 diiodobisethylselenine, 16. 385 diiodobisethylselenine, 16. 385 diiodobis-tanylsulphine, 16. 385 diiodobis-tanylsulphine, 16. 385 diiodobis-tanylsulphine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobismethylsulphine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylsulphine odoplatinite, 16. 385 diiodobispryridine odoplatinite, 16. 385 diiodobispryridine odoplatinite, 16. 385 diiodobispryridine odoplatinite, 16. 386 diiodobispryridine, 16. 385 diiodobispryridine odoplatinite, 16. 386 diiodobispryridine odoplatinite, 16. 386 diiodobispryridine odoplatinite, 16. 386 diiodobispryridine, 16. 385 diiodobispryridine, 16. 386 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 385 diiodocacodyloxide, 16. 386 diiodocacodyloxide, 16. 385 diiodocacodyloxide, 16. 385 diiodocacodyloxide, 16. 385 diiodocacodyloxide, 16. 386 diiodobispropylsul		
diiodobisethylselphine, 16. 385 diiodobisethylselphine, 16. 385 diiodobisethylselphine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylethylsulphine, 16. 385 diiodobismethylethylsulphine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylsulphine, 16. 386 diiodobispropylsulphine, 16. 38		
 diiodobisethylsulphine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylamine, 16. 385 diiodobismethylamine, 16. 385 diiodobisphenylamine, 16. 386 diiodobisphenylamine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylsulphine (16. 385) diiodobispridine, 16. 385 diiodobispridine, 16. 385 diiodobispridine, 16. 385 diiodobispridine, 16. 386 diiodobistriethylshophines, 16. 386 diiodobistriethylshophines, 16. 386 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylsulphine (16. 385) diiodocthylsulphine (16. 385) diiodocthylsulphine (16. 385) diiodocthylsulphine (16. 386) diiodocthylsulphine (16. 386)<td>—— diiodobisbutylsulphine, 16. 385</td><td></td>	—— diiodobisbutylsulphine, 16. 385	
 diiodobis-i-ainylsulphine, 16, 385 diiodobismethylamine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobismethylsulphine, 16, 385 diiodobisphenylcarbylamine, 16, 385 diiodobisphenylcarbylamine, 16, 385 diiodobispropylamine, 16, 385 diiodobispropylsulphine iodoplatinite, 16, 385 diiodobispropylsulphine iodoplatinite, 16, 385 diiodobispropylsulphine iodoplatinite, 16, 385 diiodobispropylsulphine iodoplatinite, 16, 385 diiodobispridine, 16, 385 diiodobispridine, 16, 385 diiodobispridine in /li>		dinitratohexammino-μ-diamines, 16.
 diiodobismethylamine, 16. 385 diiodobismethylamlphine, 16. 385 diiodobismethylaulphine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylsulphine iodoplatinite, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphines, 16. 386 diiodobispropylsulphines, 16. 386 diiodobispropylsulphines, 16. 386 diiodobispropylsulphines, 16. 386 diiodobispropylsulphines, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylamineanmine, 16. 385 diiodocthylamineanmine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodochylsulphinebutylsulphine, 16. 385 diiodochylsulphinepropylsulphine, 16. 386 diiodochylsulphinepropylsulphine, 16. 386 diiodopyridine-thylselenine, 16.		1
 diiodobismethylethylsulphine, 16. 385 diiodobisphenylcarbylamine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine in intext 16. 385 diiodobispropylsulphine intext 16. 385 diiodobispropylsulphine intext 16. 385 diiodobispotassiumthioglycolate, 16. 385 diiodobispyridine, 16. 385 diiodobispyridine intext 16. 385 diiodobistriethylphosphines, 16. 386 diiodobistriethylphosphines, 16. 386 diiodocacodyloxide, 16. 385 diiodocacodyloxide, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphine intext 16. 386 diiodocth		
 diiodobismethylsulphine, 16. 385 diiodobispropylamine, 16. 385 diiodobispropylsulphine, 16. 385 diiodobispropylsulphine inc, 16. 385 diiodobispyridine, 16. 385 diiodobispyridine, 16. 385 diiodobispyridine inc, 16. 386 diiodobistriethylphosphines, 16. 386 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylamineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphinepropylsulphine, 16. 385 diiodochylsulphinepropylsulphine, 16. 385 diiodochylsulphinepropylsulphine, 16. 386 diiodochylsulphinepropylsulphine, 16. 389 diiodochylsulphine, 16. 389 diiodochylsulphine, 16. 389 diiodochylsulphine, 16. 389 diiodochylsulphine, 16. 38		
 — diiodobispropylamine, 16. 386 — diiodobispropylsulphine, 16. 385 — diiodobispropylsulphine iodoplatinite, 16. 385 — diiodobispropylsulphine iodoplatinite, 16. 385 — diiodobispotassiumthioglycolate, 16. 385 — diiodobispyridine, 16. 385 — diiodobispyridine diamnines, 16. 364 — diiodobispyridine diamnines, 16. 386 — diiodobistriethylphosphines, 16. 386 — diiodocacodyloxide, 16. 386 — diiodocacodyloxide, 16. 385 — diiodochylamineanmine, 16. 385 — diiodochylamineanmine, 16. 385 — diiodochylsulphine inebutylsulphine, 16. 386 — diiodochylsulphine inebutylsulphine, 16. 386 — diiodochylsulphine inebutylsulphine, 16. 385 — diiodochylsulphine inebutylsulphine, 16. 386 — diiodochylsulphine inebutylsulphine, 16. 385 — diiodochylsulphine inebutylsulphine, 16. 386 — diiodochylsulphine inebutylsulphine, 16. 385 — diiodochylsulphine inebutylsulphine, 16. 386 — diiodochylaminopyridine citylenediaminopyridine citylenediamine, 16. 363 — diintritochlorocthylenediaminopyridines, 16. 363 — diintritochlorocthylenediamine, 16. 363 — diintritodiydraxylamine (ris), 8. 516 — diintritodiydraxylamine (ris), 8. 516 — diintritochlorocthylenediamine, 16.		
 diiodobispropylsulphine, 16, 385 diiodobispropylsulphine iodoplatinite, 16, 385 diiodobispotassiumthioglycolate, 16, 385 diiodobispyridine, 16, 385 diiodobispyridine, 16, 385 diiodobispyridine, 16, 385 diiodobisthioglycolate, 16, 386 diiodobistriethylphosphines, 16, 386 diiodobistriethylphosphines, 16, 386 diiodocarbonyl, 16, 385 diiodocarbonyl, 16, 385 diiodocthylsulphine minine, 16, 385 diiodocthylsulphine pine, 16, 385 diiodoethylsulphine pine, 16, 385 diiodoethylsulphine pine, 16, 385 diiodoethylsulphine propylsulphine, 16, 385 diiodoethylsulphine propylsulphine, 16, 385 diiodoethylsulphine propylsulphine, 16, 385 diiodoethylsulphine propylsulphine, 16, 386 diiodoethylsulphine propylsulphine, 16, 385 diiodoethylsulphine propylsulphine, 16, 386 diiodoethylsulphine propylsulphine, 16, 385 diiodoethylsulphine propylsulphine, 16, 386 diiodoethylsulphine propylsulphine, 16, 386 diiodoethylsulphine propylsulphine, 16, 389 diiodoethylsulphine, 16, 389 diiodoethylsulphine, 16, 389 diiodo		
 diiodobispropylsulphine, 16. 385 diiodobispropylsulphineiodoplatinite, 16. 385 diiodobispotassiumthioglycolate, 16. 385 diiodobispyridine, 16. 385 diiodobispyridinediammines, 16. 364 diiodobistriethylphosphines, 16. 386 diiodobistriethylphosphines, 16. 386 diiodocacodyloxide, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodohexammine-μ-diamines, 16. 369 diiodopyridineethylselenine, 16. 386 diibiocyanatobisethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoethylenediaminoeth		
 diiodobispropylsulphineiodoplatinite, diiodobispropylsulphineiodoplatinite, diiodobispotassiumthioglycolate, 16. 385 diiodobispyridine, 16. 385 diiodobispyridinediammines, 16. 364 diiodobistrioglycolate, 16. 385 diiodobistrioglycolate, 16. 386 diiodobistriothylphosphines, 16. 386 diiodocacodyloxide, 16. 386 diiodocacodyloxide, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylamineammine, 16. 385 diiodocthylamineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodochylsulphineethylselenine, 17. 385 diiodochylsulphineethylselenine, 16. 369 diiodochylsulphineethylselenine, 16. 369 diiodochylsulphineammines, 16. 363 diiodochylsulphineammines, 16. 369 diiodocacacodyloxide, 16. 385 diiodocacacacyloxide, 16. 385 diintritochlorocthylenediaminochoctrammines, 16. 363 din	—— dijodobispropylsulphine, 16, 385	
16. 385 diiodobispotassiumthioglycolate, 16. 385 diiodobispyridine, 16. 385 diiodobispyridinediammines, 16. 364 diiodobisthioglycolate, 16. 386 diiodobistriethylphosphines, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodoethylsulphinerpopylsulphine, 16. 369 diiodoethylsulphinethylselenine, 16. 369 diiodoethylsulphinethylselenine, 16. 369 diiodoethylsulphinethylselenine, 16. 369 diiodoethylsulphinethylselenine, 16. 386 diiodoethylsulphinethylselenine, 16. 369		
 diiodobispyridine, 16. 385 diiodobispyridinediammines, 16. 364 diiodobispyridinediammines, 16. 385 diiodobisthioglycolate, 16. 386 diiodobistriethylphosphines, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 386 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 389 diiodopyridineethylselenine, 16. 380 diiodopyridineethylselenine, 16. 380 diiodopyridineethylselenine, 16. 380<td></td><td></td>		
diiodobispyridine, 16. 385 diiodobispyridinediammines, 16. 364 diiodobispyridinediammines, 16. 364 diiodobistriethylphosphines, 16. 386 diiodobistriethylstibine, 16. 386 diiodocacodyloxide, 16. 385 diiodocarbonyl, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 369 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 359 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselen	diiodobispotassiumthioglycolate, 16.	mines, 16. 364
 diiodobispyridinediammines, 16. 364 diiodobisthioglycolate, 16. 385 diiodobistricthylphosphines, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodochylamine-cis, 16. 385 diiodocthylamineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphineammine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodocthylsulphinepropylsulphine, 16. 386 diiodocthylsulphinepropylsulphine, 16. 386 diiodohexammine-μ-diamines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodopyridineethylsele		
 diiodobistribnioglycolate, 16. 385 diiodobistricthylphosphines, 16. 386 diiodobistricthylstibine, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 385 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodoetrammines, 16. 363 diiodoetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodoetrammines, 16. 363 diiodoetrammines, 16. 363 diiodoetrammines, 16. 363 diiodoethylsulphines 16. 369 diiodoethylsulphinepropylsulphine, 16. 369 diiodoethylsulphinesthylselenine, 16. 369 diiodoethylsulphinesthylselenine, 16. 369 diiodoethylsulphinesthylselenine, 16. 369 diiodoethylsulphinesthyls		
 diiodobistriethylphosphines, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diamines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 369 diiodoethylsulphines, 16. 363 diiodopyridineethylselenine, 16. 359 diiodoethylsulphines, 16. 359 diiodoethylsulphinepropylsulphine, 16. 359 diiodoethylsulphinepropylsulphine, 16. 359 diiodoethylsulphinepropylsulphine, 16. 369 diiodoethylsulphines, 16. 369<td></td><td></td>		
 diiodobistricthylstibine, 16. 386 diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocthylamine—cis, 16. 385 diiodocthylamineanmine, 16. 385 diiodocthylsulphine, 16. 385 diiodocthylsulphineamnine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodocthylsulphinebutylsulphine, 16. 385 diiodocthylsulphinepropylsulphine, 16. 385 diiodochylsulphinepropylsulphine, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodotetrammines, 16. 363 diiodotetrammines, 16. 369 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 369 diiodotetrammines, 16. 363 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diithiocyanates, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 		dines, 16, 304
diiodocacodyloxide, 16. 386 diiodocarbonyl, 16. 385 diiododiammine— cis , 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodoethylsulphinepropylsulphine, 16. 369 diiodopyridineethylselenine, 16. 369 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 369 diiodoethylsulphines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 369 diiodoethylsulphines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 369 diiodoethylsulphinepropylsulphine, 16. 369 diiodoethylsulphineethylselenine, 16. 369 diiodoethylsulphineethylselenine, 17. 385 diiodoethylsulphineethylselenine, 17. 385 diiodoethylsulphineethylselenine, 18. 369 diiodoethylsulphineethylselenine, 18. 369 diiodoethylsulphineethylselenine, 18. 385 diiodoethylsulphineethylselenine, 18. 359 diiodoethylsulphineethylselenine, 18. 385 diiodoethylsulphineethylselenine, 18. 369 diiodo		
 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodocarbonyl, 16. 385 diiodochylamineammine, 16. 385 diiodochylamineammine, 16. 385 diiodochylamineammine, 16. 385 diiodochylaulphineammine, 16. 385 diiodochylaulphinebutylaulphine, 16. 385 diiodochylaulphinebutylaulphine, 16. 386 diiodochylaulphineochylaulphine, 16. 386 diiodochylaulphinepropylaulphine, 16. 386 diiodochylaulphinepropylaulphine, 16. 385 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodohexammine-μ-diimines, 16. 386 diiodopyridineethylaelenine, 16. 386 diiodotetrammines, 16. 363 diiodocarbylamine (cis), 8. 516 dinitritohydroxylamine (cis), 8. 516 dinitriothyleroxylamine (cis), 8. 516 dinitriothyleroxylamine, 16. 363 dinitriothyleroxylamine, 16. 363 diphosyleroxylamine, 16. 363 diphosyleroxylamine (cis), 8. 516 dinitriothyleroxylamine, 16. 363 diphosyleroxylamine, 16. 363 diphosyleroxyleroxyleroxyleroxylerosyl		
 diiododiammine—cis, 16. 385 diiodoethylamineammine, 16. 385 diiodoethylsulphine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodoethylsulphinepropylsulphine, 16. 389 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodohexammines, 16. 363 diiodoetrammines, 16. 386 diiodoetrammines, 16. 363 diiodoetrammines, 16. 369 diiodoetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodoetrammines, 16. 363 diidiocyanatobispyridine, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 		
 — trans, 16. 385 — diiodoethylamineanmine, 16. 385 — diiodoethylenesulphine, 16. 385 — diiodoethylsulphineamnine, 16. 385 — diiodoethylsulphinebutylsulphine, 16. 385 — diiodoethylsulphineethylselenine, 385 — diiodoethylsulphinepropylsulphine, 16. 369 — diiodohexammine-μ-diamines, 16. 369 — diiodohexammine-μ-diamines, 16. 369 — diiodotetrammines, 16. 363 — diiodohexammine-μ-diamines, 16. 365 — diiodotetrammines, 16. 369 — diiodotetrammines, 16. 363 — diiodopyridineethylselenine, 16. 369 — diiodotetrammines, 16. 363 — diiodopyridineethylselenine, 16. 369 — diiodotetrammines, 16. 363 — diihiocyanates, 16. 359 — dithiocyanatobispyridine, 16. 359 — dithiocyanatodiammine, 16. 359 		
 diiodoethylamineammine, 16. 385 diiodoethylsulphine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodoethylsulphinepropylsulphine, 16. 369 diiodoethylsulphinepropylsulphine, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodoethylsulphines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodoethylsulphines, 16. 363 diiodopyridineethylselenine, 16. 359 diidiocyanates, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatociammine, 16. 359 dithiocyanatocitylenediamine, 8. 517 diphosphoctochloride, 8. 1007 diphosphoctochloride, 16. 357 diphosphoctochloride, 8. 1007 diphosphoctochloride, 8. 1007 diphosphoctochloride, 8. 1007 diphosphoctochloride, 8. 1007 diphosphoctochloride, 16. 357 diphosphoctochloride, 16. 359 dithiocyanatobisphyldinethylaediamine, 16. 359 dithiocyanatobisphyldinethylaediamine, 16.		
 diiodoethylenesulphine, 16. 385 diiodoethylsulphineammine, 16. 385 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 17. 386 diiodoethylsulphinepropylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodotetrammines, 16. 363 diiodopyridineethylselenine, 16. 386 diiodopyridineethylselenine, 16. 359 diidiocyanatobispyridine, 16. 359 dithiocyanatobispyridine, 16. 359 		
 diiodoethylsulphinebutylsulphine, 16. 385 diiodoethylsulphineethylselenine, 386 diiodoethylsulphinepropylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 369 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodotetrammines, 16. 383 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatodiammine, 16. 359 		- dinitrohydroxylaminopyridine (trans),
diaminochloride, 16. 272 diphosgenes, 16. 356 diiodoethylsulphinepropylsulphine, 16. 369 diiodohexammine- μ -diamines, 16. 369 diiodohexammine- μ -diamines, 16. 369 diiodohexammine- μ -diamines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodoethylsulphinepropylsulphine, 16. 357 diiodohexammine- μ -diamines, 16. 369 diiodotetrammines, 16. 363 diidiodopyridineethylselenine, 16. 386 diiodoethylsulphinepropylsulphine, 16. 359 diiodohexammine- μ -diamines, 16. 369 diidiodopyridineethylselenine, 16. 359 diibiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatothylenediamine, 16. 359 dithiocyanatothylenediamine, 16. 359 dithiocyanatothylenediamine, 16. 359 dithiocyanatothylenediamine, 16. 359		8. 517
 diiodoethylsulphineethylselenine, 17. diiodoethylsulphinepropylsulphine, 16. 385 diiodoethylsulphinepropylsulphine, 16. 385 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 386 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatothylenediamine, 16. 359 	——— diiodoethylsulphinebutylsulphine, 16.	
 386 diiodoethylsulphinepropylsulphine, 16. 385 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodo-ββ'β'-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 		
 diiodoethylsulphinepropylsulphine, 16. 385 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 		
385 — diiodohexammine-μ-diamines, 16. 369 — diiodohexammine-μ-diimines, 16. 386 — diiodopyridineethylselenine, 16. 386 — diiodotetrammines, 16. 363 — diiodo-ββ'β''-triaminotriethylamine, 17. 385 — dimethylaminetriammines, 16. 352, 359 — dimethylaminetriamminochloride, 16. 359 — dithiocyanatobispyridine, 16. 359 — dithiocyanatodiammine, 16. 359 — dithiocyanatothylenediamine, 16. 359		
 diiodohexammine-μ-diamines, 16. 369 diiodohexammine-μ-diimines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatothylenediamine, 16. 359 		
 diiodohexammine-μ-diimines, 16. 369 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatothylenediamine, 16. 359 		
 diiodopyridineethylselenine, 16. 386 diiodotetrammines, 16. 363 diiodo-ββ'β'-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359<td></td><td></td>		
 diiodotetrammines, 16. 363 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatobispyridine, 16. 359 dithiocyanatodiammine, 16. 359 		
 diiodo-ββ'β''-triaminotriethylamine, 17. 385 dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatothylenediamine, 16. 359 dithiocyanatothylenediamine, 16. 359 dithiocyanatothylenediamine, 16. 359 		
17. 385 — dimethylaminetriammines, 16. 352, 359 — dimethylaminetriamminochloride, 16. 359 — dithiocyanatodiammine, 16. 359 — dithiocyanatoethylenediamine, 16. 359 — dithiocyanatoethylenediamine, 16. 359 — dithiocyanatoethylenediamine, 16. 359 — dithiocyanatoethylenediamine, 16. 359		
dimethylaminetriammines, 16. 352, 359 dimethylaminetriamminochloride, 16. 359 dimethylaminetriamminochloride, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatodiammine, 16. 359 dithiocyanatodiammine, 16. 359		1
359 —— dithiocyanatoethylenediamine, 16. 359 —— dithioglycolesters, 16. 352		
	359	—— dithiocyanatoethylenediamine, 16. 359
271 — dithionate, 10. 598		
	271	aithionate, 10. 598

Platinous dithiophenyldiethylsulphine, 16.	Platinous hydronitrite, 8, 514
275	hydrosulphite, 10 . 320
ethylamineammines, 16, 359	hydrotrichloride, 16. 254
ethylaminehydroxylamines, 16. 359	- hydrotrisulphoplatinate, 16. 396
ethylamines, 16. 360	hydroxide, 16 . 236
ethylbutylsulphines, 16, 360	colloidal, 16 . 236
ethylcarbylaminohydrazinoiodide, 16 . 386	monohydrate, 16 . 236 hydroxyacetatotetrammines, 16 . 363
ethyleneammines, 16. 359	
ethyleneanilines, 16. 359	hydroxyaquodiamminochloride, 16.
ethylenediaminebisethylene, 16. 359	hydroxybispyridinedihydroxylamine-
ethylenediaminediammines, 16. 353	chloroplatinite, 16. 274
ethylenediaminediamminochloride, 16.	hydroxybromotetrammines, 16. 363
272	hydroxychlorodiammine, 16. 263
ethylenediaminediamminochloroplati-	hydroxychlorohydroxylamine, 16. 270
nate, 16. 272	hydroxychlorophosphoanilidephos-
- ethylenediaminediamminochloroplati-	phoxyanilido, 16. 278
nite, 16 . 272	hydroxychlorophosphoanilidephos-
ethylenediaminedihydrochloride, 16.	phoxytoluidide, 16, 278
272	hydroxychlorophosphotrianilide, 16.
dihydrate, 16 . 272	278
ethylenediaminehydrochloroplatinite,	- hydroxychlorophosphotritoluidide, 16.
16. 272	278
ethylenediaminepropylenediammines,	hydroxychlorotetrammines, 16. 363
16. 353	hydroxydinitratotriaminines, 16, 365
ethylenediamines, 16 . 356, 365	hydroxyloningammines, 16, 363
ethylenediaminium ethylenediamine-	hydroxylamineammines, 16, 359
hexachloroplatinite, 16, 272	- hydroxylaminehydroxide, 16. 238
ethylenediethylamines, 16. 359	hydroxylamines, 16, 360 hydroxylaminoammines, 16, 355
- ethylenedisulphines, 16. 357	a-hydroxylaminobispyridinoammino-
ethylenepotassiumthioglycollate, 16.	chloride, 16. 273
358	- α-hydroxylaminopyridinechloride, 16.
ethylenes, 16 . 360	273
ethylenesulphineamminosulphate, 16.	- hydroxylaminotriammines, 16. 350
401	hydroxylaminotriamminochloride, 16.
ethylenesulphinetriamminosulphate,	269
16 . 401	hydroxylaminotriamminochloroplati-
ethylenesulphinodiammines, 16. 353	nite, 16 . 269
ethylenesulphinotriammines, 16. 350	 a-hydroxylaminotrispyridinochloride,
ethylenethioglycollate, 16. 358	16. 273
ethylenethioglycollic acid, 16. 358	hydroxynitratobisbenzylsulphine, 16.
ethylenetriethylphosphite, 16 . 360	410
ethylmercaptide, 16. 368 ethylphosphates, 16. 368	hydroxynitratopropylsulphine-trans, 16. 410
- ethylphosphitedihydroxide, 16 . 239	hydroxynitratosilverphosphite, 16.
ethylphosphites, 16. 368	410
— ethylphosphitochloride, 16 . 277	hydroxynitratotetrammines, 16. 363
ethylpropylsulphines, 16. 360	hydroxynitritohydroxylaminoam-
ethylsulphineammines, 16. 359	mine, 8. 516
cthylsulphineethylselenines, 16. 360,	- — hydroxypentammines, 16. 362
368	hydroxysulphatobispyridine, 16. 401
—— ethylsulphines, 16. 361	- hydroxysulphatotetrammines, 16. 364
ethylsulphinosulphate, 16. 406	hydroxytriammines, 16. 354
ethylsulphinotrianmines, 16. 352	hydroxytriamminohydroxide, 16. 238
fluoride, 16 . 249	hypophosphite, 8. 890
— glycinodiamminochloride, 16. 273	—— iodide, 16 . 384, 387
—— hemitricarbonylchloride, 16. 273	— iodoethylenesulphineamminoiodide,
hexachlorobispyridinediammine, 16.	16. 385
369	- iodoethylenesulphineamminoiodo-
hexachloroethylenediamines, 16. 361	chloroplatinite, 16. 386
hexammines, 16 . 362	iodoethylenesulphinediaminines, 16.
hexamminohydroxyhydrophosphate,	355
16. 416	- iodoethylmercaptidodiammine, 16, 385
hexamminoiodide, 16. 384	iodomercaptanodiammine, 16. 386
hexamminosulphatodihydrosulphato-	- iodotrichloroiodoammine, 16. 386
dinitrosylhydrosulphatohydrochlo-	$a\beta$ -isobutylenediamines, 16. 365
ride, 8 . 444 	jaborinates, 16. 368 jaborines, 16. 368
	lead phosphites, 16. 361
The second of second se	-swa Imoshinesii zai oor

Platinous lead trans-sulphite diamminosulphite, 10, 321 manganous trans-sulphite diamminosulphite, 10, 321 methyle-2-uninomethyl-4-ethyl-quinolines, 16, 386 methylearbylaminehydrazinoiodide, 16, 386 methylethylsulphines, 16, 357, 360, 367 methylethylsulphines, 16, 357, 360, 367 methylethylsulphines, 16, 358 methylsulphines, 16, 368 methylsulphines, 16, 368 methylsulphines, 16, 368 methylsulphines, 16, 369 monoxide, 16, 235 monominines, 16, 369 monoxide, 16, 236 mitratoriammines, 16, 361 mitratoriammines, 16, 363 mitratoriammines, 16, 363 mitratochyletholacetatomines, 16, 363 mitratochylethiolacetatomines, 16, 365 mitratochylethiolacetatomines, 16, 365 mitratochylethiolacetatomines, 16, 365 mitratochylethiolacetatomines, 16, 365 mitratochylethiolacetatomines, 16, 368 mitratochylethiolacetatomines, 16, 368 mitratochylethiolacetatomines, 16, 368 mitratochylethiolacetatomines, 16, 369 mitratochylethiolacetatomines, 16, 369 mitratochylethiolacetatomines, 16, 369 mitratochylethylenediamine, 16, 410 mitritochydroxylamines, 16, 361 mitritochydroxylamines, 16, 364 mitritochyleroxylamines, 16, 364 mitritochyleroxylaminoammines, 16, 365 mitritochyleroxylaminopyridinoammines, 16, 360 mit	\\\ 121\\ 22	
manganous trans-sulphito (alammino- sulphite, 10, 321 3-methyl-2-aninomethyl-4-ethyl- quinolines, 16, 365 methylearbylaminelydrazinoiodide, 16, 386 methylethylsulphines, 16, 367, 360, 367 methylsulphines, 16, 368 methylsulphines, 16, 368 methylsulphinotriammines, 16, 352 monammines, 16, 369 monoxide, 18, 235 mintate, 18, 408 mitratobromoquaterpyridines, 16, 363 nitratocarbonatoanmines, 16, 363 nitratocarbylthioglycollatoanmines, 16, 368 nitratochlylthioglycollatoanmines, 16, 368 nitratochylthioglycollatoanmines, 16, 368 nitratochylthioglycollatoanmines, 16, 368 nitratochylthioglycollatoanmines, 16, 368 nitratochylthiolacetatomonammine, 16, 410 nitratochylthioglycollatoanmines, 16, 368 nitratochylthioglycollatoanmines, 16, 368 nitratochylthylioglycollatoanmines, 16, 369 nitratochylthiolacetatomonammine, 16, 410 nitratochylthylioglycollatoanmines, 16, 368 nitratochylthylioglycollatoanmines, 16, 369 nitratochylthioglycollatoanmines, 16, 369 nitratochylthylioglycollatoanmines, 16, 369 nitratochylthylioglycollatoanmines, 16, 369 nitratochylthiolacetatomonammine, 16, 410 nitritochiorietiilyllogylaminea, 16, 369 nitritochlorietiilyllogylaminea, 16, 369 nitritochlorietiilyllogylaminea, 16, 360 nitritochlorietiilyllogylaminea, 16, 360 nitritochlorietiilyllogylaminea, 16, 364 nitritochlorietiilyllogylaminea, 16, 364 nitritochlorietylamines,		
- 3-methyl-2-aninomethyl-4-rthyl-quinolines, 16, 355 methylearbylaminelydrazinoiodide, 16, 386 methylethylsulphines, 16, 357, 360, 367 methylphosphatos, 16, 368 methylsulphinotriammines, 16, 352 mennammines, 16, 369, 368 — (acidic), 16, 361 monoxide, 18, 235 mintate, 16, 408 mitratobromoquaterpyridines, 16, 363 mitratochlorotetrammines, 16, 363 mitratochlylthioglycollatoiammine, 16, 368 mitratochlylthioglycollatoiammine, 16, 368 mitratochlylthioglycollatoiammine, 16, 368 mitratothylthiolacetatodiammine, 16, 369 mitratochylthiolacetatodiammine, 16, 410 mitratotriammines, 16, 364 mitratochylthiolacetatodiammine, 16, 360 mitratochylthiolacetatodiammine, 16, 360 mitratochylthiolacetatomonammine, 16, 410 mitratochylthiolacetatomonammine, 16, 410 mitratochylthylioglycollatoiammine, 16, 369 mitratochylthiolacetatomonammine, 16, 410 mitratochylthiolacetatodiammine, 16, 361 mitritochlorotetrame, 16, 364 mitritochlorotetrame, 16, 364 mitritochlorotetrame, 16, 364 mitritochlorotetrame, 16, 364 mitritochloroteylammines, 16, 364 mitritochlorotylammines,		
quinolines, 16, 366 methylethylsulphines, 16, 357, 360, 367 methylethylsulphines, 16, 368 methylsulphinotriammines, 16, 352 monammines, 16, 368 methylsulphinotriammines, 16, 352 monammines, 16, 368 methylsulphinotriammines, 16, 352 mickel trans-sulphitodiamminosulphite, 10, 321 mitrate, 18, 408 mitratobromoquaterpyridines, 16, 364 mitratobromotetrammines, 16, 363 mitratocarbonatoammines, 16, 363 mitratocarbonatoammines, 16, 363 mitratocarbonatoammines, 16, 365 mitratocthylthioglycolateammines, 16, 369 mitratothylthiolacetatodiammine, 16, 410 mitratotriammines, 16, 354 mitratotriammines, 16, 354 mitratotriammines, 16, 354 mitratotriammines, 16, 356 mitratotriammines, 16, 356 mitratotothylthiolacetatodiammine, 16, 410 mitratotriammines, 16, 354 mitratotriammines, 16, 354 mitratotriammines, 16, 354 mitratothylthiolacetatomnammine, 16, 410 mitritoamminedicthylenediamine, 8, 517 mitritohydroxylammines, 16, 354 mitritothydroxylammines, 16, 354 mitritothydroxylaminopyridinoammines, 16, 354 mitritothydroxylaminopyridinoammines, 16, 354 mitritothydroxylaminopyridinoammines, 16, 356 mitritothydroxylaminopyridinoammines, 16, 356 mitritothydroxylaminopyridinoammines, 16, 360 mitritothydroxylaminopyridinoammines, 16, 360 mitritothydroxylaminopyridinoammines, 16, 360 mitritothydroxylaminopyridinoammines, 16, 360 mitritothydroxylaminopyridinoammines, 16, 361 mitritopyridinodiammines, 16, 354 mitritothydroxylaminopyridinoammines, 16, 364 mitritothydroxylaminopyridinoammines, 16, 365 mitritothydroxylaminopyridinoammines, 16, 366 mitritothydroxylaminopyridinoammines, 16, 369 phosphorotricies, 16, 369 phosphorotricies, 16, 360 phosphorotricies, 16, 361 phosphorotricies, 16, 360 phosphorotricies, 16, 3		
- chemical properties, 16. 237 - methylethylsulphines, 16. 357, 360, 367 - methylphosphates, 16. 368 - methylphosphates, 16. 368 - methylphosphates, 16. 368 - methylphosphates, 16. 369, 369 - (acidie), 16. 235 - monamunes, 16. 360, 368 - (acidie), 16. 235 - monamunes, 16. 360, 368 - (acidie), 16. 235 - monamunes, 16. 363 - mickel trans-sulphitediamminosulphite, 10. 321 - mitrate, 16. 408 - mitratobromoterammines, 16. 363 - mitratochylomotriammines, 16. 363 - mitratochylomotriammines, 16. 363 - mitratochylothioglycolatoliammines, 16. 369 - mitratochylthioglycolatoliammines, 16. 358 - mitratochylthiolacetatodiammine, 16. 410 - mitratochylthiolacetatodiammine, 16. 410 - mitratotriamminodichylenediaminohydroxide, 8. 517 - mitritohydroxylammines, 16. 354 - mitritochydroxylamminommines, 16. 354 - mitritochydroxylaminomyridinoammines, 16. 356 (trans), 8. 516 (trans), 8. 516 (trans), 8. 516 (trans), 8. 516 (trans), 8. 517 - mitritopyridinodiamminonyridinoamminentirite (trans), 8. 517		
methylethylsulphines, 16. 368 methylsulphinestriammines, 16. 368 methylsulphinotriammines, 16. 369 monoxide, 16. 235 nickel trans-sulphitodiamminosulphito, 10. 321 nitrate, 18. 408 nitratobromoquaterpyridines, 16. 364 nitratobromoquaterpyridines, 16. 364 nitratobromoquaterpyridines, 16. 363 nitratodibromotetrammines, 16. 363 nitratodibylthioglycolatodiammines, 16. 368 nitratodthylthioglycolatodiammines, 16. 369 nitratotothylthioglycolatodiammines, 16. 369 nitratotothylthiolacetatodiammine, 16. 410 nitratotothylthiolacetatodiammine, 16. 410 nitratotothylthiolacetatodiammine, 16. 410 nitratotriamminomitrate, 16. 409 nitratotriamminomitrate, 16. 409 nitratotriamminomitrate, 16. 410 nitritoamminodiethylenediaminomine, 16. 351 nitritochlorotetylenediaminomines, 16. 363 nitritochlorotetylenediaminomines, 16. 364 nitritochlorotetylenediaminomines, 16. 365 nitritochlorotydroxylammine, 16. 364 nitritochlydroxylaminommines, 16. 364 nitritodihydroxylaminommines, 16. 364 nitritochlydroxylaminommines, 16. 364 nitritochlydroxylaminommines, 16. 365 nitritochlydroxylaminomyridinoammines, 16. 366 nitritochlydroxylaminopyridinoammines, 16. 367 nitritochlydroxylaminopyridinoammines, 16. 368 nitritochlydroxylaminopyridinoammines, 16. 369 phosphorotriamilides, 16. 369 phosphorotriamilides, 16. 360 phosphorotriamilides,		
methylphosphates, 16, 368 methylsulphinotrianmines, 16, 362 mononamines, 16, 360, 368 — (acidic), 16, 361 monoxide, 16, 235 nickel trans-sulphitodiamminosulphite, 10, 321 nitrate, 16, 408 nitratobromoquaterpyridines, 16, 364 nitratobromoquaterpyridines, 16, 364 nitratobromoquaterpyridines, 16, 364 nitratochlomotetrammines, 16, 363 nitratochlyntholycolatediammine, 16, 369 nitratochlythiolycolatediammine, 16, 369 nitratochlythiolycolatediammine, 16, 369 nitratochlythiolacetatodiammine, 16, 410 nitratocthylthiolacetatodiammine, 16, 410 nitratotriammines, 16, 354 nitratochlythiolacetatodiammine, 16, 410 nitratotriamminomitrate, 16, 409 nitritochlorocethylenediaminomine, 16, 351 nitritochlorocethylenediaminomines, 16, 363 nitritochlorocethylenediaminomines, 16, 363 nitritochlorocethylenediaminomines, 16, 364 nitritochlorocethylenediaminomines, 16, 364 nitritochlorocylaminomines, 16, 354 nitritochlorocylaminomines, 16, 354 nitritochlydroxylaminomines, 16, 364 nitritochlydroxylaminomines, 16, 354 nitritochlydroxylaminomines, 16, 356 nitritochlorotrichyldroxylaminomines, 16, 410 nitritochlorotrichyldroxylaminomines, 16, 410 nitritochlorotrichyldroxylaminomines, 16, 410 nitritochlorotrichyldroxylaminomines, 16, 410 nitritochlorotrichyldroxylaminomines, 16, 350 nitritochlorotrichyldroxylaminomines, 16, 410 nitritochlorotrichyldroxylaminomines, 16,		
methylphosphates, 16. 368 methylsubplinotriammines, 16. 352 monamunines, 16. 360, 368 —— (accidie), 16. 235 monoxide, 16. 235 mickel trans-subplitediamminosulphite, 10. 321 mitrate, 16. 408 mitratobromoquaterpyridines, 16. 364 mitratobromotetrammines, 16. 363 mitratocarbonatoammines, 16. 363 mitratocarbonatoammines, 16. 365 mitratochlorotetrammines, 16. 365 mitratochlorotetrammines, 16. 365 mitratochlorotetrammines, 16. 365 mitratochlythioglycolatodiammine, 16. 410 mitratothylthiolacetatodiammine, 16. 410 mitratotriamminomitrate, 16. 409 mitratotriarmminomitrate, 16. 409 mitratotriarminomitrate, 16. 409 mitratotriarminomit		
- methylsulphinotriammines, 16, 362 - monamines, 16, 360, 388 - — (acidic), 16, 361 - monoxide, 18, 235 - nickel trans-sulphitodiamminosulphite, 10, 321 - nitrate, 16, 408 - nitratobromoquaterpyridines, 18, 363 - nitratochromotetrammines, 16, 363 - nitratochrylthioglycollatoammines, 16, 358 - nitratochrylthioglycollatoammines, 16, 369 - nitratotriammines, 16, 364 - nitratotriammines, 16, 364 - nitratochromotetrammines, 16, 365 - nitratochromotetrammines, 16, 366 - nitratochromotetrammines, 16, 366 - nitratochromotetrammines, 16, 366 - nitratochromotetrammines, 16, 367 - nitritochlorochylenediaminoammines, 16, 368 - nitritochlorochylenediaminoammines, 16, 364 - nitritochlorochylenediaminoammines, 16, 364 - nitritochromotylenediaminoammines, 16, 364 - nitritochromotrammines, 16, 364 - nitritochromotrammines, 16, 365 - nitritochromotrammines, 16, 410 - nitritochromotrammines, 16, 364 - nitritochromotrammines, 16, 364 - nitritochromotrammines, 16, 365 - nitritochromotrammines, 16, 364 - nitritochromotrammines, 16, 365 - nitritochromotrammines, 16, 369 - phosphorotramines, 16, 361 - phosphorotramines, 16, 361 - phosphorotramines, 16, 360 - phosphorotramines, 16, 360 - phosphorotramines, 16, 369 - phosphorotramines, 16, 369 - p		
monoxide, 16. 361 mitrate, 16. 408 mitratobromoquaterpyridines, 16. 363 mitratobromoquaterpyridines, 16. 363 mitratobromotetraumines, 16. 363 mitratochromotetraumines, 16. 363 mitratodibromotriaumines, 16. 365 mitratodibromotriaumines, 16. 365 mitratodibromotriaumines, 16. 365 mitratotilphioglycollatodiammine, 16. 409 mitratotrialphioglycollatodiammine, 16. 410 mitratotriammines, 16. 354 mitratotriammines, 16. 354 mitratotriammines, 16. 354 mitratotriammines, 16. 354 mitratotriammines, 16. 356 mitratotriammines, 16. 354 mitratotherolammines, 16. 356 mitritochlorosthylenediamino- hydroxide, 8. 517 mitritochlorosthylenediaminosthyl- amines, 16. 356 mitritodhydroxylaminoammines, 16. 354 mitritodhydroxylaminoammines, 16. 354 mitritodhydroxylaminoammines, 16. 354 mitritohydroxylaminopyridinoammines, 16. 354 mitritohydroxylaminopyridinoammines, 16. 361 mitritohydroxylaminopyridinoammines, 16. 368 mitritohydroxylaminopyridinoammines, 16. 369 mitritohydroxylaminopyridinoammines, 16. 360 mitritohydroxylaminoammines, 16. 361 mitritohydroxylaminoammines, 16. 364 mitrit		- oxydihydrotetranitritoplatinite, 8, 514
monoxide, 16. 236 nickel trans-sulphitodiamminosulphite, 10. 321 nitrate, 16. 408 nitratobromoquaterpyridines, 16. 364 nitratobromotetrammines, 16. 363 nitratochlorotetrammines, 16. 363 nitratochlorotetrammines, 16. 363 nitratochlorotetrammines, 16. 363 nitratochlorotetrammines, 16. 363 nitratochloritedinymnines, 16. 365 nitratochlythioglycollatoammines, 16. 368 nitratochlythioglycollatoammines, 16. 358 nitratochlythioglycollatoammines, 16. 358 nitratochlythiolacetatodiammine, 16. 410 nitratocthylthiolacetatodiammine, 16. 410 nitratotriammines, 16. 354 nitratotriamminonitrate, 16. 409 nitratotrischlysitylphimenitrate, 16. 410 nitratotrischlysitylphimenitrate, 16. 410 nitritoamminedicthylenediamine, 5. 517 nitritochlorotylenediaminommines, 16. 363 nitritochlorotylenediaminommines, 16. 364 nitritochlorotylenediaminomethylamines, 16. 365 nitritochlorotylenediaminomethylamines, 16. 354 nitritochlydroxylammines, 16. 354 nitritochlydroxylammines, 16. 354 nitritochlydroxylammines, 16. 354 nitritochlydroxylamminos, 16. 354 nitritochlydroxylamminosyridinoammines, 16. 354 nitritochydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 364 nitritohydroxylaminopyridinoammines, 16. 365 nitritopyridinodiamminonitrite (cis), 8. 516 nitritopyridinodiamminonitrite (cis), 8. 516 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodiammi		- oxyhydroxylaminoethylamineoxide,
mickel trans-sulphitodiamminosulphito, 10. 321 mitrate, 16. 408 mitratobromoquaterpyridines, 16. 363 mitratocarbonatoammines, 16. 363 mitratochlorotetrammines, 16. 363 mitratochlylinglycollatodiammine, 16. 409 mitratochlylthiolacetatomonammine, 16. 410 mitratoriammines, 16. 354 mitratotriammines, 16. 364 mitratotriammines, 16. 367 mitratotriammines, 16. 369 mitratothydroxylaminoammine, 16. 410 mitratommines, 16. 361 mitritochloridedihydroxylammines, 16. 369 mitratotriammines, 16. 369 mitratotriammines, 16. 369 mitratotriammines, 16. 369 mitratotriammines, 16. 369 pentachloroquines, 16. 368 pentachloroquines, 16. 369 pentachlorodinethylpyrazine, 16. 369 pentachlorodinethylpreines, 16. 369 pentachlorodiphice, 16. 369 pentachlorodiph		
phite, 10. 321 nitrate, 16. 408 nitratobromoquaterpyridines, 16. 364 nitratobromotetrammines, 16. 363 nitratoerbonatoammines, 16. 363 nitratoellorotetrammines, 16. 363 nitratoethythioglycolatodiammine, 16. 409 nitratoethythioglycolatodiammine, 16. 358 nitratoethythioglycolatodiammine, 16. 358 nitratoethythioglycolatodiammine, 16. 358 nitratoethythioglycolatodiammine, 16. 358 nitratoethythiolacetatomonammine, 16. 358 nitratoethythiolacetatomonammine, 16. 369 nitratotrisethythiolacetatomonammine, 16. 361 nitratorisethythythiolacetatomonammine, 16. 361 nitritoellorotythythiolacetatomonammine, 16. 361 nitritoellorotythiolacetatomonammine, 16. 361 nitritoellorotythiolacetatomonammine, 16. 361 nitritoellorotythiolacetatomonammine, 16. 360 pentachlorocylidines, 16. 369 pentachloroguanines, 16. 368 pentachloroguanines, 16. 369 pentachloroguanines, 16. 369 pentachloroguanines, 16. 368 pentachloroguanines, 16. 369 pentachloroguanines, 1		
mitrato, 16. 408 mitratobromoquaterpyridines, 16. 363 mitratobromoquaterpyridines, 16. 363 mitratocarbonatoammines, 16. 363 mitratochydrhoglycolatodiammine, 16. 409 mitratochylthioglycolatodiammine, 16. 368 mitratochylthioglycolatodiammine, 16. 368 mitratochylthioglycolatodiammine, 16. 368 mitratochylthioglycolatodiammine, 16. 368 mitratochylthioglycolatodiammine, 16. 369 mitratochylthiolacetatodiammine, 16. 369 mitratotriammines, 16. 354 mitratotriamminoitrate, 16. 409 mitratotriamminoitrate, 16. 409 mitratotriamminoitrate, 16. 410 mitritoamminoidethylenediaminohydroxide, 8. 517 mitritoamminoidethylenediaminohydroxide, 8. 516 mitritodihlydroxylamminoammines, 16. 363 mitritodihlydroxylamminos, 16. 354 mitritodihydroxylamminoammine, 16. 364 mitritodhydroxylaminoammine, 16. 364 mitritodhydroxylaminoammine, 16. 364 mitritodhydroxylaminoammine, 16. 364 mitritodhydroxylaminoammine, 16. 364 mitritohydroxylaminopyridinoammine, 16. 360 mitr		
mitratoerabonatomines, 16. 363 nitratoerabonatomines, 16. 363 nitratoerabonatomines, 16. 363 nitratoethylthioglycolatodiammines, 16. 409 nitratoethylthioglycolatodiammine, 16. 409 nitratoethylthiolacetatodiammine, 16. 368 nitratoethylthiolacetatodiammine, 16. 368 nitratoethylthiolacetatodiammine, 16. 369 nitratoethylthiolacetatomonammine, 16. 410 nitratoethylthiolacetatomonammine, 16. 410 nitratoriammines, 16. 354 nitratoriamminoirate, 16. 409 nitratoriaethylaulphinenitrate, 16. 409 nitratoriaethylaulphinenitrate, 16. 410 nitritoamminodiethylenediamine, 8. 517 nitritoehloridedihydroxylaminoammines, 16. 363 nitritoehloridedihydroxylaminoammines, 16. 363 nitritodihydroxylaminoammine, 16. 364 nitritodihydroxylaminoammine, 16. 364 nitritodihydroxylaminoammine, 16. 364 nitritodhydroxylaminoammine, 16. 364 nitritohydroxylaminopyridinoammine, 16. 360 phosphorotriamilidephosphoroxyamilide, 16. 360 phospho		pentachloro-2, 5-dimethyl-3-ethyl-
mitratochlorotetrammines, 16. 364 mitratochlorotetrammines, 16. 365 mitratochlorotetrammines, 16. 365 mitratochlylthioglycolatodiammine, 16. 409 mitratochtylthioglycolatodiammine, 16. 358 mitratochtylthioglycolatodiammine, 16. 358 mitratochtylthioglycolatodiammine, 16. 358 mitratochtylthioglycolatodiammine, 16. 358 mitratochtylthiolacetatodiammine, 16. 359 mitratotriammines, 16. 354 mitratotriammines, 16. 354 mitratotriamminenitrate, 16. 409 mitratotriamminenitrate, 16. 409 mitratotriamminenitrate, 16. 410 mitritotminenitrate, 16. 409 mitratotriothylsulphimenitrate, 18. 369 pentachloropyrazines, 16. 368 pentachloropiculines, 16. 368 pentachloropyrazines, 16. 369 pentachloroculphic, 10. 323 pentachlorosulphic, 10. 323 pentachloroculphic, 10. 323 pentachlorosulphic, 10. 325 pentachlorosulphic, 10. 326 pentachlorosulphic, 1		
mitratochlorotetrammines, 16. 363 mitratochlythioglycolatodiammines, 16. 409 mitratochlythioglycolatodiammines, 16. 358 mitratochythioglycolatodiammines, 16. 368 mitratochythioglycolatodiammines, 16. 368 mitratochythiolacetatodiammine, 16. 369 mitratochythiolacetatomonammine, 16. 410 mitratochythiolacetatomonammine, 16. 410 mitratotriammines, 16. 354 mitratotriamminemitrate, 16. 409 mitratotrisethylsulphinenitrate, 16. 410 mitritoamminediethylenediamine hydroxide, 8. 517 mitritochloridedihydroxylaminoammines, 16. 364 mitritochloroethylenediaminomethylamines, 16. 364 mitritochloroethylenediaminomethylamines, 16. 364 mitritodihydroxylaminoammines, 16. 364 mitritodydroxylaminoammines, 16. 354 mitritohydroxylaminopyridinoammines, 16. 361 mitritohydroxylaminopyridinoammines, 16. 364 mitritohydroxylaminopyridinoammines, 16. 357 mitritohydroxylaminopyridinoammines, 16. 361 mitritohydroxylaminopyridinoammines, 16. 361 mitritohydroxylaminopyridinoammines, 16. 364 mitritohydroxylaminopyridinoammines, 16. 365 mitritopyridinodiammines, 16. 364 mitritohydroxylaminopyridinoammines, 16. 360 mitritopyridinodiammines, 16. 354 m		
mitratodihromotriammines, 16. 365 mitratoethylthioglycollatoammines, 16. 368 mitratoethylthioglycollatoammines, 16. 358 mitratoethylthioglycollatoammines, 16. 358 mitratoethylthiolacetatodiammine, 16. 369 mitratoethylthiolacetatomonammine, 16. 410 mitratotriammines, 16. 354 mitratotriammines, 16. 354 mitratotrisethylsulphinemitrate, 16. 410 mitratotrisethylsulphinemitrate, 16. 410 mitratotrisethylsulphinemitrate, 16. 410 mitritoamminodiethylenediamine hydroxide, 8. 517 nitritoehloridedihydroxylammineammines, 16. 363 mitritoehloridedihydroxylammines, 16. 364 mitritodihloroethylenediaminodiammines, 16. 363 mitritodihloroethylenediaminomethylamines, 16. 364 mitritodihydroxylammines, 16. 354 mitritodihydroxylammines, 16. 354 mitritodydroxylaminoammines, 16. 361 mitritohydroxylaminopyridinoammine, 16. 360 — (trans), 8. 516 — chloroplatinite, 8. 516 mitritopyridinodiammines, 16. 354 mitritopyridinodiammines, 16. 356 mitritopyridinodiammines, 16. 356		
16. 409 nitratoethylthiolacetatodiammines, 16. 358 nitratoethylthiolacetatodiammine, 16. 410 nitratotethylthiolacetatomonammine, 16. 410 nitratotriammines, 16. 354 nitratotriammines, 16. 354 nitratotriamminodicthylenediamine, 16. 369 nitratotriamminodicthylenediamine, 16. 369 nitritoamminodicthylenediamine, 16. 369 nitritoamminodicthylenediamine, 16. 369 nitritochloridedihydroxylaminoammine, 16. 363 nitritochloroethylenediaminodiammines, 16. 363 nitritochloroethylenediamines, 16. 363 nitritodihydroxylammines, 16. 354 nitritodihydroxylammines, 16. 354 nitritodihydroxylammines, 16. 354 nitritodihydroxylaminoammine, 16. 360 nitritohydroxylaminopyridinoammine, 16. 364 nitritohydroxylaminopyridinoammine, 16. 366 — hosphorotritoluidides, 16. 360 — phosphorotritoluidides,	· · · nitratodibromotriammines, 16. 365	pentachloropicolines, 16. 368
- nitratoethylthiolacetatodiammines, 16. 358 - nitratoethylthiolacetatomonammine, 16. 410 - nitratoethylthiolacetatomonammine, 16. 410 - nitratotriammines, 16. 354 - nitratotriammines, 16. 354 - nitratotriamminomitrate, 16. 409 - nitratotriamminodiethylenediamine, 16. 317 - nitritoamminodiethylenediamino- hydroxide, 8. 517 - nitritochlorodedihydroxylammine, 8. 516 - nitritochlorodydroxylammine, 8. 516 - nitritochlorodydroxylammine, 8. 516 - nitritodihydroxylamminoammines, 16. 364 - nitritodihydroxylamminoammine, 16. 354 - nitritothydroxylamminoammine, 16. 354 - nitritothydroxylaminoammine, 16. 354 - nitritothydroxylaminoammine, 16. 354 - nitritodydroxylaminoammine, 16. 354 - nitritohydroxylaminopyridinoammine, 16. 354 - nitritohydroxylaminopyridinoammine, 16. 354 - nitritohydroxylaminopyridinoammine, 16. 354 - nitritohydroxylaminopyridinoammine, 16. 354 - nitritopyridinodiammines, 16. 356 - chloroplatinite, 8. 516 - ch		
- nitratoethylthiolacetatodiammine, 16. 369 - nitratoethylthiolacetatomonammine, 16. 410 - nitratotriammines, 16. 354 - nitratotriammines, 16. 354 - nitratotriamminonitrate, 16. 409 - nitratotriamminodiethylenediamine, 16. 360 - nitritoamminodiethylenediamine, 16. 361 - nitritochloridedihydroxylaminoammine, 16. 363 - nitritochlorotethylenediaminoammines, 16. 363 - nitritochlorotethylenediaminomethylamines, 16. 363 - nitritodihoroethylenediaminomethylamines, 16. 364 - nitritodihoroethylenediaminomethylamines, 16. 364 - nitritodihoroethylenediaminomethylamines, 16. 364 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminoammines, 16. 364 - nitritodihydroxylaminommines, 16. 354 - nitritohydroxylaminopyridinoammine, 16. 364 - nitritohydroxylaminopyridinoammine, 16. 365 (trans), 8. 516 - nitritohydroxylaminopyridinoammine, 16. 364 - nitritohydroxylaminopyridinoammine, 16. 366 (trans), 8. 516 - nitritohydroxylaminopyridinoammine, 16. 360 - phosphorotritoluidide, 16. 360 - phosphorobromides, 16. 364 - phosphorobromides, 16. 361 - phosphorobromides, 16. 361 - phosphorobydroxyteithylphosphite, 16. 360 - phosphorotritoluidide, 16. 360 - phosphorobydroxyteithylphosphite, 16. 360 - phosphorotritoluidide, 16.		
- mitratoethylthiolacetatomonammine, 16. 410 - mitratotriammines, 16. 354 - mitratotriammines, 16. 409 - mitratotriamminedicthylenediamine, 16. 410 - mitritoamminodicthylenediamine, 16. 369 - mitritochloridedihylenediamine- hydroxide, 8. 517 - mitritochloridedihylenediamine- mines, 16. 363 - mitritochlorothylenediaminomines, 16. 364 - mitritodichloroethylenediaminomines, 16. 364 - mitritodichloroethylenediaminomines, 16. 364 - mitritodichloroethylenediaminomines, 16. 364 - mitritodihydroxylaminoammines, 16. 354 - mitritodiydroxylaminoammines, 16. 354 - mitritohydroxylaminoammines, 16. 354 - mitritohydroxylaminopyridinoammines, 16. 354 - mitritopyridinodiammines, 16		
nitratoethylthiolacetatomonammine, 16, 410 nitratotriammines, 16, 354 nitratotriamminonitrate, 16, 409 nitratotrixethylsulphinenitrate, 16, 410 nitritoanuminodiethylenediamine, 8, 517 nitritoanuminodiethylenediamino- hydroxide, 8, 517 nitritochloridedihydroxylaminoam- mineehloroplatinite, 8, 516 nitritochlorotydroxylammine, 8, 516 nitritodihydroxylammine, 8, 516 nitritodihydroxylammine, 8, 516 nitritodihydroxylammines, 16, 354 nitritodihydroxylammines, 16, 354 nitritodihydroxylammines, 16, 354 nitritodihydroxylamminoammines, 16, 354 nitritohydroxylaminoammine, 16, 354 nitritohydroxylaminopyridinoammine, 16, 357 nitritohydroxylaminopyridinoammine, 16, 357 nitritohydroxylaminopyridinoammine, 16, 357 nitritohydroxylaminopyridinoammine, 16, 358 nitritopyridinodiammines, 16, 354 nitritopyridinod		1
- nitratotriammines, 16. 354 - nitratotriammines, 16. 409 - nitratotrisethylsulphinenitrate, 16. 410 - nitritoamminediethylenediamine, 8. 517 - nitritochloroethylenediamino- hydroxide, 8. 517 - nitritochloroethylenediamino- mineehloroplatinite, 8. 516 - nitritodichloroethylenediaminomines, 16. 363 - nitritodichloroethylenediaminomines, 16. 364 - nitritodichloroethylenediaminomines, 16. 364 - nitritodihydroxylaminoammines, 16. 364 - nitritodydroxylaminoammines, 16. 364 - nitritohydroxylaminoammines, 16. 366 (trans), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoammines, 16. 356 - chloroplatinite, 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiammines, 16. 354 - nitritopyridinodiammines, 16. 356 - nitritopyridinodiammines, 16. 354 - nitritopyridinodiammin		
- nitratotriammines, 16. 354 - nitratotrischylsulphinenitrate, 16. 410 - nitritoamminodiethylenediamine, 8. 517 - nitritoamminodiethylenediamino-hydroxide, 8. 517 - nitritochlorodedihydroxylaminoammines, 16. 363 - nitritochlorodethylenediaminomethylamines, 16. 364 - nitritochlorodethylenediaminomethylaminos, 16. 364 - nitritodihydroxylaminoammines, 16. 364 - nitritohydroxylaminoammines, 16. 364 - nitritohydroxylaminommines, 16. 364 - nitritohydroxylaminopyridinoammines, 16. 366 (trans), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 364 - nitritohydroxylaminopyridinoammines, 16. 364 - nitritohydroxylaminopyridinoammines, 16. 364 - nitritohydroxylaminopyridinoammines, 16. 366 (trans), 8. 516 chloroplatinite, 8. 516 - nitritopyridinodiammines, 16. 354 - nitritopyridinodiammines,		
nitratotrisethylsulphinenitrate, 16. 410 nitritoamminodicthylenediamine, 8. 517 nitritoamminodiethylenediamino- hydroxide, 8. 517 nitritochloridedihydroxylaminoam- mineehloroplatinite, 8. 516 nitritochlorothylenediaminodiam- mines, 16. 363 nitritochlorothylenediaminomethyl- amines, 16. 364 nitritochlorothylenediaminomethyl- amines, 16. 364 nitritochlorothylenediaminomethyl- amines, 16. 364 nitritodihydroxylaminoammine, 8. 516 nitritodihydroxylaminoammines, 16. 354 nitritohydroxylaminodiamminonitrite (cis), 8. 516 nitritohydroxylaminopyridinoammine s, 16. 354 nitritohydroxylaminopyridinoammine nochloride, 8. 517 nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritohydroxylaminopyridinoammine nitritopyridinodiammines, 16. 354 nitritopyridinodiammines, 16. 354 nitritopyridinodiammines, 16. 354 nitritopyridinodiamminochloride (trans), 8. 517 hitritopyridinodiamminomitrite (cis), 8. 517 hitritopyridinodiamminomitrite (cis), 8. 517 nitritopyridinodiamminomitrite (cis), 9hosphorotritoluididephosphoroxyaniidide, 16. 360 phosphorotritoluididephosphorotoluidide, 16. 360 phosphorot		
- nitritoamminodiethylenediamine, 517 - nitritoamminodiethylenediaminohydroxide, 8. 517 - nitritochloridedihydroxylaminoamminechloroplatinite, 8. 516 - nitritochloroethylenediaminomethylamines, 16. 363 - nitritodichloroethylenediaminomethylamines, 16. 364 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminodiamminonitrite (cis), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoammines, 16. 356 chloroplatinite, 8. 516 chloroplatinite, 8. 517 - nitritopyridinodiamminonitrite (cis), 8. 517 - nitritopyridinodiamminomitrite (cis), 8. 517 - phosphorotrianilidephosphoroxyamilide, 16. 360 - phosphorotrianilides, 16. 360		
- nitritoamminodiethylenediaminohydroxide, 8, 517 - nitritochloridedihydroxylaminoammineehloroplatinite, 8, 516 - nitritochloroethylenediaminodiammines, 16, 363 - nitritochlorohydroxylammine, 8, 516 - nitritochlorohydroxylammine, 8, 516 - nitritodihydroxylammines, 16, 354 - nitritodihydroxylaminoammines, 16, 364 - nitritodihydroxylaminoammines, 16, 364 - nitritodihydroxylaminoammines, 16, 364 - nitritohydroxylaminoammines, 16, 354 - nitritohydroxylaminodiamminonitrite (cis), 8, 516 - nitritohydroxylaminopyridinoammines, 16, 354 - nitritohydroxylaminopyridinoammines, 16, 356 - chloroplatinite, 8, 516 - nitritopyridinodiammines, 16, 354 - nitritopyridinodiammines, 16, 355		
- nitritoamminodiethylenediaminohydroxide, 8. 517 - nitritochloroledihydroxylammoammines, 16. 363 - nitritochloroethylenediaminodiammines, 16. 363 - nitritochloroethylenediaminomethylamines, 16. 364 - nitritodichloroethylenediaminomethylamines, 16. 364 - nitritodihydroxylammines, 8. 516 - nitritodihydroxylaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritohydroxylaminodiamminominitrite (cis), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritopyridinodiammines, 16. 354 - nitritopyridinod		
- nitritochloridedihydroxylaminoam- mineehloroplatinite, 8, 516 - nitritochloroethylenediaminodiam- mines, 16, 363 - nitritochloroethylenediaminomethyl- amines, 16, 364 - nitritodichloroethylenediaminomethyl- amines, 16, 364 - nitritodihydroxylaminoammine, 8, 516 - nitritodihydroxylaminoammines, 16, 354 - nitritoethylenediaminoammines, 16, 354 - nitritoethylenediaminoammines, 16, 354 - nitritohydroxylaminodiamminonitrito		phosphatotetrammines, 16. 364
minechloroplatinite, 8. 516 nitritochloroethylenediaminodiammines, 16. 363 nitritochlorobydroxylammine, 8. 516 nitritodichloroethylenediaminomethylamines, 16. 364 nitritodihydroxylaminoammine, 8. 516 nitritodihydroxylaminoammines, 16. 354 nitritoethylenediaminoammines, 16. 354 nitritothydroxylaminodiamminonitrite (cis), 8. 516 nitritohydroxylaminopyridinoammines, 16. 357 nitritohydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 357 nitritohydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 354 nitritohydroxylaminopyridinoammines, 16. 356 nitritopyridinodiammines, 16. 354 nitritopyridinodiammines, 16. 354 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodydroxylaminoammines, 16. 356 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodydroxylaminoammines, 16. 354 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodydroxylaminoammines, 16. 356 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodiamminonitrite (cis), 8. 517 nitritopyridinodiamminoamminoammines, 16. 360 - phosphorochlorides, 16. 361 - phosphorothydroxylaminopyridinoammine, 16. 360 - phosphorotrichlorides, 1	hydroxide, 8. 517	- phosphopentabromide, 8, 1935
- nitritochloroethylenediaminodiammines, 16. 363 nitritochlorohydroxylammine, 8. 516 - nitritodichloroethylenediaminomethylamines, 16. 364 - nitritodihydroxylaminoammine, 8. 516 - nitritodihydroxylaminoammines, 16. 354 - nitritohydroxylaminodiamminonitrite (cis), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 360 - nitritohydroxylaminopyridinoammines, 16. 360 - nitritohydroxylaminopyridinoammines, 16. 360 - nitritohydroxylaminopyridinoammines, 16. 360 - phosphorotydroxytriethylphosphite, 16. 360 - phosphorotrianilides, 16. 361 - phosphorotydroxytriethylphosphite, 16. 360 - phosphorotrianilides, 16. 360	minechloroplatinite, 8, 516	- phosphopentafluoride, 16. 249
- nitritochlorohydroxylammine, 8. 516 - nitritodichloroethylenediaminomethylamines, 16. 364 - nitritodihydroxylaminoammine, 8. 516 - nitritodihydroxylaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritohydroxylaminodiamminonitrito (cis), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammine, 8. 517 - nitritohydroxylaminopyridinoamminenelloride, 8. 517 - nitritohydroxylaminopyridinoamminenitrite (trans), 8. 516 chloroplatinite, 8. 516 - nitritopyridinodiamminoitrite (cis), 8. 517 - chloroplatinite, 8. 517 - chloroplatinite, 8. 517 - nitritopyridinodiamminoitrite (cis), 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - nitritopyridinodiamminoitrite (cis), and citrans (cis), and		- phosphorobromides, 16. 361
- nitritodichloroethylenediaminomethylamines, 16. 364 - nitritodihydroxylaminoammines, 16. 354 - nitritodihydroxylaminoammines, 16. 354 - nitritohydroxylaminodiamminonitrito (cis), 8. 516 - (trans), 8. 516 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoamminenchloride, 8. 517 - nitritohydroxylaminopyridinoamminentitito (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiamminoitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinodiamminoitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - ritritopyridinodiamminoitrite (cis), 8. 517 - ritritopyridinohydroxylaminoammines, 16. 356 - propylenediaminediammines, 16. 356 - propylenediaminediammines, 16. 356 - propylenediaminetimethylenediaminetrimethy		- — phosphorochlorides, 16. 361
amines, 16. 364 — nitritodihydroxylaminoammine, 8. 516 — nitritoethylenediaminoammines, 16. 354 — nitritohydroxylaminodiamminonitrito (cis), 8. 516 — nitritohydroxylaminopyridinoammine, 8. 517 — nitritohydroxylaminopyridinoammine, 8. 517 — nitritohydroxylaminopyridinoammine, 16. 354 — nitritohydroxylaminopyridinoammine, 16. 354 — nitritohydroxylaminopyridinoammine, 16. 354 — nitritohydroxylaminopyridinoammine, 16. 354 — nitritopyridinodiammines, 16. 354 — nitritopyridinodiammines, 16. 354 — nitritopyridinodiammines, 16. 354 — nitritopyridinodiamminochloride (trans), 8. 517 — nitritopyridinodiamminoitrite (cis), 8. 517 — chloroplatinite, 8. 517 — nitritopyridinodydroxylaminoammine, 8. 516 — chloroplatinite, 8. 517 — chloroplatinite, 8. 517 — nitritopyridinohydroxylaminoammine, 8. 516 — ritritopyridinodiamminoitrite (cis), 8. 517 — nitritopyridinodiamminoitrite (cis), 8. 517 — nitritopyridinodiamminoitrite (cis), 8. 517 — phosphorotrianilidephosphoroxyanilide, 16. 360 — phosphorotrianilidephosphoroxyanilide, 16. 360 — phosphorotrianilidephosphoroxyanilide, 16. 360 — phosphorotrianilidephosphoroxyanilide, 16. 360 — phosphorotrichlorides, 1		
- nitritodihydroxylaminoammine, 8. 516 - nitritodihydroxylaminoammines, 16. 354 - nitritoethylenediaminoammines, 16. 354 - nitritohydroxylaminodiamminonitrito (cis), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammine. 8. 517 - nitritohydroxylaminopyridinoamminenenenenenenenenenenenenenenenenenen		—— phosphorohydroxides, 16. 361
- nitritoethylenediaminoammines, 16. 354 - nitritohydroxylaminodiamminonitrito (cis), 8. 516 - (trans), 8. 516 - nitritohydroxylaminopyridinoammine. 8. 517 - nitritohydroxylaminopyridinoammine nochloride, 8. 517 - nitritohydroxylaminopyridinoammine nitrite (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiamminochloride (trans), 8. 517 - chloroplatinite, 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - chloroplatinite, 8. 517 - nitritopyridinodiamminoitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - ritritopyridinodiamminoitrite (cis), 9. 517 - phosphorotrianilidephosphoroxyanilide, 16. 360 - phosphorotrichlorides, 16. 368 - phosphorotrichlorides, 16. 369 - piolicarpides, 16. 368 - pilocarpides, 16. 368 - pilocarpides, 16. 368 - pilocarpides, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 351 - propylenediaminediammines, 16. 353 - propylenediaminethylenediaminechlorides, 16. 368 - pilocarpides, 16. 368 - pilocarpides, 16. 368 - pilocarpides, 16. 368 - pilocarpi		phosphorohydroxytriethylphosphite,
Signature Sign		
- nitritohydroxylaminodiamminonitrito (cis), 8. 516 (trans), 8. 516 - nitritohydroxylaminopyridinoammine. 8. 517 - nitritohydroxylaminopyridinoamminonitrito (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiamminochloride (trans), 8. 517 - nitritopyridinodiamminochloride (trans), 8. 517 - chloroplatinite, 8. 517 - chloroplatinite, 8. 517 - chloroplatinite, 8. 517 - nitritopyridinodiamminonitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinodiamminomminochloride (trans), 8. 517 - chloroplatinite, 8. 517 - chloroplatinite, 8. 517 - nitritopyridinodydroxylaminoammine, 8. 516 - chloroplatinite, 8. 517 - phosphorotrichlorides, 16. 360 - phosphorotritoluidides, 16. 360 - phosphorotrianilides, 16. 368 - phosphorotritoluidides, 16. 360 - phosphorotrichlorides, 16. 360 - phosphorotrichlorides, 16. 360 - phosphorotrichlorides, 16. 360 - phosphorotritoluidides, 16. 360 - phosphorotricluidides, 16. 360 - phosphorotriclouidies, 16. 368 -		
(cis), 8. 516 — (trans), 8. 516 — nitritohydroxylaminopyridinoammine. 8. 517 — nitritohydroxylaminopyridinoammines, 16. 354 — nitritohydroxylaminopyridinoamminen nitrite (trans), 8. 516 — chloroplatinite, 8. 516 — nitritopyridinodiamminochloride (trans), 8. 517 — nitritopyridinodiamminochloride (trans), 8. 517 — chloroplatinite, 8. 517 — chloroplatinite, 8. 517 — nitritopyridinodiamminomminochloride (trans), 8. 517 — chloroplatinite, 8. 517 — nitritopyridinodiamminomminomminochlorominic, 8. 517 — chloroplatinite, 8. 517 — nitritopyridinohydroxylaminoammine, 8. 516 — phosphorotritoluididephosphorotoluidide, 16. 360 — phosphorotritoluididen, 16. 360 — picolines, 16. 368 — pilocarpines, 16. 368 — piloca	nitritohydroxylaminodiamminonitrite	phosphorotrianilides, 16. 360
mitritohydroxylaminopyridinoammine. 8. 517 mitritohydroxylaminopyridinoammines, 16. 354 mitritohydroxylaminopyridinoammines, 16. 354 mitritohydroxylaminopyridinoammines, 16. 368 mitritopyridinodiammines, 16. 354 mitritopyridinodiammineshloride (trans), 8. 517 mitritopyridinodiamminenitrite (cis), 8. 517 mitritopyridinohydroxylaminoammine, 16. 368 mitritopyridinodiammines, 16. 368 mitritopyridinodiammines, 16. 354 mitritopyridinodiammines, 16. 354 mitritopyridinodiamminenitrite (cis), 8. 517 mitritopyridinodiamminonitrite (cis), 8. 518 mitritopyridinodiamminonitrite (cis), 8. 518 mitritopyridinodiamminonitrite (cis), 8. 518 mitritopyridinodiamminonitrite (cis), 8. 518 mitritopyridinodiamminonitrite (cis), 9. 518 mitritopyridinodiam	(cis), 8. 516	
8. 517 - nitritohydroxylaminopyridinoammines, 16. 354 - nitritohydroxylaminopyridinoamminechloride, 8. 517 - nitritopyridinodiammines, 16. 354 - nitritopyridinodiammineshloride (trans), 8. 517 - nitritopyridinodiamminoitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - nitritopyridinodiamminoitrite (cis), 6. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - phosphorotritoliulides, 16. 368 - pilocarpides, 16. 368 - pilocarpides, 16. 368 - potassium decasulphite, 10. 323 - phosphorotritoliulides, 16. 368 - pilocarpides, 16. 368 - potassium decasulphite, 10. 323 - phosphorotritoliulides, 16. 368 - pilocarpides, 16. 368 - potassium decasulphite, 10. 323 - phosphorotritoliulides, 16. 368 - pilocarpides, 16. 368 - potassium decasulphite, 10. 323 - phosphorotritoliulides, 16. 368 - pilocarpidines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 353 - propylenediaminediammines, 16. 353 - propylenediamines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - potassium decasulphite, 10. 323 - propylenediaminediammines, 16. 368 - propylenediaminediammines, 16. 368 - propylenediamines, 16. 368 - propylenediamines, 16. 353 - propylenediamines, 16. 356 - propylenediamines, 16. 272 - propylenediaminetrimethylenediamines, 16. 353	(trans), 8. 516	
- nitritohydroxylaminopyridinoam- mines, 16. 354 - nitritohydroxylaminopyridinoammin- nochloride, 8. 517 - nitritohydroxylaminopyridinoammino- nitrite (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiamminochloride (trans), 8. 517 - nitritopyridinodiamminoitrite (cis),		
mines, 16. 354 nitritchydroxylaminopyridinoamminochloride, 8. 517 nitritopyridinodiamminochloride (trans), 8. 516 nitritopyridinodiamminochloride (trans), 8. 517 nitritopyridinodiamminoitrite (cis), 8. 517 nitritopyridinohydroxylaminoammine, 8. 516 nitritopyridinodiamminoitrite (cis), and the state of the stat		picolines, 16. 368
nochloride, 8. 517 - nitritohydroxylaminopyridinoamminonitrite (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiamminos, 16. 354 - nitritopyridinodiamminochloride (trans), 8. 517 - nitritopyridinodiamminonitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - potassium decasulphite, 10. 323 - oxyphosphites, 16. 361 - tetrasulphite, 10. 323 - trichlorosulphite, 10. 323 - trichlorosulphite, 10. 323 - propylenediaminediammines, 16. 353 - propylenediaminediamminochloroplatinite, 16. 273 - propylenediaminetrimethylenediaminechloride, 16. 272 - propylenediaminetrimethy	mines, 16 . 354	pilocarpidines, 16, 368
- nitritohydroxylaminopyridinoamminonitrite (trans), 8. 516 - chloroplatinite, 8. 516 - nitritopyridinodiammines, 16. 354 - nitritopyridinodiamminochloride (trans), 8. 517 - nitritopyridinodiamminonitrite (cis), 8. 517 - chloroplatinite, 8. 517 - nitritopyridinohydroxylaminoammine, 8. 516 - phosphites, 16. 361 - tetrasulphite, 10. 322 - propylenediaminediammines, 16. 353 - propylenediaminediamminochloroplatinite, 16. 273 - propylenediaminetrimethylenediaminethoride, 16. 272 - propylenediaminetrimethyle	nitritohydroxylaininopyridinoamimi-	
nitrite (trans), 8. 516 — chloroplatinite, 8. 516 — nitritopyridinodiammines, 16. 354 — nitritopyridinodiamminochloride	- nitritohydroxylaminopyridinoammino-	oxyphosphite, 16 . 239
nitritopyridinodiammines, 16. 354 nitritopyridinodiamminochloride (trans), 8. 517 nitritopyridinodiamminonitrite (cis), 8. 517 chloroplatinite, 8. 517 nitritopyridinohydroxylaminoammine, 8. 516 propylenediaminetrimethylened	nitrite (trans), 8. 516	
	chloroplatinite, 8. 516	
(trans), 8. 517 — nitritopyridinodiamminonitrite (cis), 8. 517 — chloroplatinite, 8. 517 — nitritopyridinohydroxylaminoammine, 8. 516 — propylenediaminetrimethylenediaminethioride, 16. 272 — propylenediaminetrimethylenediaminethioride, 16. 272 — propylenediaminetrimethylenediaminethioroplatinite, 16. 273 propylenediaminediaminechloroplatinite, 16. 273 propylenediaminediaminechloroplatinite, 16. 273 propylenediaminethioride, 16. 273 propylenediaminethioride, 16. 356, 365 propylenediaminethioride, 16. 273	nitritopyridinodiamminochloride	
nitritopyridinodiamminonitrite (cis), 8. 517 — chloroplatinite, 8. 517 — nitritopyridinohydroxylaminoammine, 8. 516 mine, 8. 516 platinite, 16. 273 propylenediaminets, 16. 356, 365 propylenediaminetrimethylenediaminethioride, 16. 272 propylenediaminetrimethylenediaminethylenediaminetrimethylenediaminet	(trans), 8. 517	- propylenediaminediamminochloro-
- — chloroplatinite, 8. 517 — nitritopyridinohydroxylaminoam- mine, 8. 516 - propylenediaminetrimethylenedi- aminechloride, 16. 272 — propylenediaminetrimethylenedi-	nitritopyridinodiamminonitrite (cis),	
—— nitritopyridinohydroxylaminoam- mine, 8. 516 aminechloride, 16. 272 —— propylenediaminetrimethylenedi-		
mine, 8. 516 — propylenediaminetrimethylenedi-		aminechloride, 16. 272
nitritotriammines, 16. 354 amines, 16. 353	mine, 8. 516	propylenediaminetrimethylenedi-
	—— nitritotriammines, 16. 354	amines, 10. 353

Platinous propylenediaminodiamminochlo-	Platinous quaterethylaminochloride di-
ride, 16. 273	hydrate, 16. 271
	- quaterethylaminochloroplatinite, 16.
	270
chloride, 16. 273 $$ n -propyl-i-propylsulphines, 16. 360	quaterethylphosphinechloroplatinate, 16. 286
—— pyrazine, 16 . 366	quaterethylselenines, 16. 352, 401,
—— pyridineammines, 16 . 359, 368	409
—— pyridineethylselenines, 16. 360	quaterethylsulphines, 16. 352
pyridineethylsulphines, 16. 360	quaterethylsulphinochloride, 16. 275
pyridinehydroxylamines, 16. 359	quaterethylthiocarbamide, 16. 351
—— pyridinepiperidines, 16. 360, 368	- quaterisobutylaminechloroplatinite,
pyridines, 16 . 359, 360	16 . 273
—— pyridinetriammines, 16. 352	quater-iso-butylsulphinechloroplati-
—— pyridinetriamminochloride, 16. 273	nite, 16. 275
pyridinetriamminochloroplatinite, 16.	quater-iso-undecylthiocarbamide, 16.
273	351
pyridinetriethylphosphite, 16. 360 pyridinoammines, 16. 365	quatermethylaminechloride, 16. 270
quateraminoacetalchloride, 16. 274,	quatermethylamines, 16, 350
276	quatermethylaminesulphinosulphate, 16. 401
quateraminoacetalchloroplatinite, 16.	quatermethylaminonitrate, 16. 409
274, 276	quatermethylcarbylaminechloroplati-
quateraminoacetals, 16. 351	nite, 16. 276
quateramylaminechloroplatinite, 16.	quatermethylcarbylamines, 16. 351
273	- quatermethylsulphinebromoplatinite,
— — quateramylamines, 16. 351	16 . 372
quateranilinechloride, 16. 273	—— quatermethylsulphinechloride, 16. 274
quateranilinoammines, 16. 351	
quaterbenzylaminechloride, 16. 272	16. 274, 286
quaterbenzylamines, 16. 351	quatermethylsulphinechloroplatinite,
quaterbenzylaminochloride, 16. 273	16. 274
- quaterbenzylsulphinochloride, 16. 276	quatermethylsulphinenitrate, 16. 409
quaterbutylaminechloride, 16 . 273 quaterbutylaminechloroplatinite, 16 .	quatermethylsulphines, 16. 351
273	—— quatermethylthiocarbamide, 16. 351 quatermonoethylthiocarbomidechlo-
quaterbutylamines, 16. 351	ride, 16. 277
quaterbutylcarbylaminechloride, 16.	
276	midechloride, 16. 277
quaterbutylcarbylaminechloroplati-	quatermonomethylthiocarbamide-
nite, 16 . 276	chloride, 16. 277
—— quaterbutylcarbylamines, 16. 351	quaterphenylearbylaminebromoplati-
quaterbutylsulphines, 16. 352	nite, 16 . 372
quaterdiethylseleninechloride, 16. 277	quaterphenylcarbylaminechloroplati-
quaterdiethylseleninechloroplatinite,	nite, 16. 276
16. 277 ——— quaterdiethylthiocarbamide, 16. 351	-— quaterphenylcarbylamines, 16. 351
- quaterdiethylthiocarbamidechloride,	—— quaterpropylaminechloroplatinite, 16.
16. 277	quaterpropylamines, 16. 350
quaterdi-iso-undecylthiocarbamide,	- quaterpropylaminochloride, 16. 270,
16. 351	272
quaterdi-iso-undecylthiocarbamide-	quaterpropylsulphines, 16. 352
chloride, 16 . 277	quaterpyridineamminotrichloroplati-
—— quaterdimethylaminechloride, 16. 271	nite, 16. 273
quaterdimethylaminechloroplatinite,	quaterpyridinebromide, 16. 372
16. 271	———— pentahydrate, 16. 372
quaterdimethylamines, 16. 351	trihydrate, 16. 372
nite, 16 . 275	quaterpyridinechloride, 16. 273
quaterdipropylsulphinechloroplatinite,	quaterpyridinechlorocadmate, 16. 273 quaterpyridinechlorocobaltate, 16. 273
16 . 275	—— quaterpyridinechlorocuprate, 16. 273
quaterethylaminebromide, 16. 372	- quaterpyridinechloroplatinate, 16.273,
quaterethylaminechloroplatinite, 16.	286
270, 271	quaterpyridinechloroplatinite, 16. 273
quaterethylaminenitrate, 16. 409	- quaterpyridinechlorozincate, 16. 273
- quaterethylaminepyridinetrichloro-	quaterpyridinehydronitrate, 16. 409
platinite, 16. 274	quaterpyridinehydrosulphate, 16. 401
quaterethylamines, 16, 350	quaterpyridinehydroxide, 16. 239
quaterethylaminesulphate, 16, 401	quaterpyridineiodide, 16. 385
quaterethylaminochloride, 16. 270, 271	quaterpyridinenitrate, 16. 409

Distinguish and the second in the latest the second in the	/ TDI-45 1-1-4- 48, 400
Platinous quaterpyridinepyridinetrichloro-	Platinous sulphate, 16, 400
platinite, 16. 274	sulphates, 16. 400
quaterpyridines, 16. 351 quaterpyridinesulphate, 16. 401	sulphatobisbutylsulphine, 16. 401 sulphatobisethylselenine, 16. 401
quaterpyridinesulphatocuprate, 16. 401	sulphatobisethylsulphine, 16. 401
quaterpyridinesulphatozincate, 16. 401	sulphatobismethylsulphine, 16. 401'
quaterpyridinetetramminocarbonato-	sulphatobispropylsulphine, 16. 401
hydrocarbonate, 16. 407	sulphatobispyridine—cis, 16. 401
hexahydrate, 16. 407	trans, 16. 401
tetrahydrate, 16 . 407	sulphatobromotriammines, 16. 365
—— quaterpyridinochlorocuprate, 16. 282	sulphatobutylsulphines, 16. 355
quaterpyridinoethylaminetrichloro-	—— sulphatodiammino—cis, 16. 401
platinite, 16 . 273	trans, 16. 401
—— quaterthioacetamidechloride, 16. 276	sulphatodiamminobisethylthiolace-
quaterthioacetamidechloroplatinate,	tate—trans, 16. 401
16. 276	sulphatodibenzylsulphine, 16. 401
—— quaterthioacetamides, 16. 351, 401	sulphatoethylenediamine, 16. 401
quaterthiocarbamidebromide, 16. 372	- — sulphatoethylsulphinepyridine, 16, 401
quaterthiocarbamidechloroplatinite, 16. 286	sulphatoethylsulphinoethylselenine, 16. 401
—— quaterthiocarbamides, 16. 351, 353,	sulphatotetrammines, 16. 363
401	sulphatotriammines, 16. 354
quaterthiocarbamidesulphate, 16. 401	—— sulphatotrisethylselenine, 16. 401
—— quaterthiocarbamidochloride, 16. 276	— sulphatotrisethylsulphines, 16. 355
quaterthiocarbamidochloroplatinate,	sulphatoxycacodyl, 16. 401
16. 276	sulphide, 16. 393
quaterthiocarbamidoiodide, 16. 385	sulphite, 10. 320
quatertriethylarsinechloride, 16. 278	trans-sulphitodiammine, 10. 320
—— quartertriethylarsines, 16. 352	sulphobis-i-butylsulphine, 16. 394
- quatertriethylphosphinechloride, 16.	sulphocarbonyl, 16. 394
277	sulphoplatinate, 16. 396
quatertriethylphosphinechloroaurate,	sulphostannate, 16 . 395
16. 277	tetrachloroethylenebisethylphosphite,
—— quatertriethylphosphinechloroplati-	16. 278
nate, 16. 277	tetrachloroethylenediaminebis-
—— quatertriethylphosphines, 16. 352	ethylene, 16. 272
quatertriethylthiccarbamide, 16. 351	tetrachloroleadphosphite, 16. 278
quatertriethylthiocarbamidechloride,	—— tetrachlorotristhioformaldehyde, 16.
16. 277	370
16. 277 —— quatertrimethylphosphinechloride, 16.	370 tetraethylaminochloroplatinite, 16.259
16. 277 —— quatertrimethylphosphinechloride, 16. 277	370 tetraethylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350
16. 277 —— quatertrimethylphosphinechloride, 16.	370 tetraethylaminochloroplatinite, 16.259
16. 277 —— quatertrimethylphosphinechloride, 16. 277 —— quatertrimethylphosphines, 16. 352	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinohydrochloride, 16. 270
16. 277 — quatertrimethylphosphinechloride, 16. 277 — quatertrimethylphosphines, 16. 352 — quaterxanthogenamidechloride, 16.	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinohydrochloride, 16. 270
16. 277 — quatertrimethylphosphinechloride, 16. 277 — quatertrimethylphosphines, 16. 352 — quaterxanthogenamidechloride, 16. 277	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270
16. 277 — quatertrimethylphosphinechloride, 16. 277 — quatertrimethylphosphines, 16. 352 — quaterxanthogenamidechloride, 16. 277 — quaterxanthogenamidechloroplatinate, 16. 277, 286 — quaterxanthogenamides, 16. 351	370 — tetractylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinohydrochloride, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydrohexasulphide, 16. 395 — tetrahydroxylaminebromide, 16. 371
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16.	370 tetractylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinohydrochloride, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminebloride, 16. 268
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinohydrochloride, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydrokasulphide, 16. 395 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminechloride, 16. 268 — tetrahydroxylaminechloroplatinate,
16. 277 — quatertrimethylphosphinechloride, 16. 277 — quatertrimethylphosphines, 16. 352 — quaterxanthogenamidechloride, 16. 277 — quaterxanthogenamidechloroplatinate, 16. 277, 286 — quaterxanthogenamides, 16. 351 — quaterxanthogenamidesulphate, 16. 401 — quinquiesethylaminetrichloroplatinite,	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydrohexasulphide, 16. 395 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminechloride, 16. 268 — tetrahydroxylaminechloroplatinate, 16. 268
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272	370 tetrachylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinohydrochloride, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrohexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite,	370 tetraetylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinohydrochloride, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273	370 tetraethylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268
16. 277 — quatertrimethylphosphinechloride, 16. 277 — quatertrimethylphosphines, 16. 352 — quaterxanthogenamidechloride, 16. 277 — quaterxanthogenamidechloroplatinate, 16. 277, 286 — quaterxanthogenamides, 16. 351 — quaterxanthogenamidesulphate, 16. 401 — quinquiesethylaminetrichloroplatinite, 16. 272 — quinquiespyridinetrichloroplatinite, 16. 273 — salicylaldoximechloride, 16. 274	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydrazinosulphate, 16. 395 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminebromide, 16. 268 — tetrahydroxylaminechloroplatinate, 16. 268 — tetrahydroxylaminehydroxide, 16. 239 — tetrahydroxylaminehydroxychloride, 16. 268 — tetrahydroxylaminehydroxychloride, 16. 268 — tetrahydroxylaminenitrate, 16. 409
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361	370 — tetracthylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydrokasulphide, 16. 395 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminechloride, 16. 268 — tetrahydroxylaminechloroplatinate, 16. 268 — tetrahydroxylaminehydroxide, 16. 239 — tetrahydroxylaminehydroxychloride, 16. 268 — tetrahydroxylaminenitrate, 16. 409 — tetrahydroxylaminephosphate, 16. 416
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10.	370 tetraethylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321	370 tetraethylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinoshloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminehloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 268 tetrahydroxylaminehydroxychloride, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 401
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10.	370 tetraethylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 trans-sulphitodiamminosulphite,	370 — tetraethylaminochloroplatinite, 16.259 — tetrahydrazines, 16. 350 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloride, 16. 270 — tetrahydrazinochloroplatinite, 16. 270 — tetrahydrazinosulphate, 16. 401 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminebromide, 16. 371 — tetrahydroxylaminechloride, 16. 268 — tetrahydroxylaminehloroplatinate, 16. 268 — tetrahydroxylaminehydroxide, 16. 239 — tetrahydroxylaminehydroxide, 16. 239 — tetrahydroxylaminehydroxychloride, 16. 268 — tetrahydroxylaminehydroxychloride, 16. 469 — tetrahydroxylamines, 16. 350 — tetrahydroxylamines, 16. 350 — tetrahydroxylaminosulphate, 16. 401 — tetramminepyridinetrichloroplatinite, 16. 274 — tetrammines, 16. 350, 362
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 trans-sulphitodiamminosulphite, 10. 321	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrazinosulphate, 16. 371 tetrahydrokexasulphide, 16. 371 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylamineshloroplatinite, 16. 409 tetrahydroxylamineshloroplatinite, 16. 401 tetrahydroxylamineshloroplatinite, 16. 274
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 heptathiosulphate, 10. 558 oxyphosphite, 16. 239	370 tetractylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrohexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylaminephosphate, 16. 416 tetrahydroxylamines, 16. 350 tetrahydroxylaminesulphate, 16. 401 tetramminepyridinetrichloroplatinite, 16. 274 tetrammines, 16. 350, 362 tetrammines, 16. 273
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 heptathiosulphate, 10. 558 oxyphosphite, 16. 239 pentathiosulphate, 10. 558	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxydhoride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 401 tetrammines, 16. 350, 362 tetrammineallylalcoholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamides 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 heptathiosulphate, 10. 558 — oxyphosphite, 16. 239 — pentathiosulphate, 10. 558 — phosphites, 16. 361	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokvasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 401 tetramminepyridinetrichloroplatinite, 16. 274 tetrammines, 16. 350, 362 tetramminoallylalcoholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenitotungstate, 9. 132
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamides 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrazinosulphate, 16. 395 tetrahydroxylaminechloride, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylaminephosphate, 16. 416 tetrahydroxylaminosulphate, 16. 401 tetrammines, 16. 350, 362 tetrammines, 16. 350, 362 tetrammines, 16. 273 tetramminoallylalcoholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenitotungstate, 9. 132 tetramminobishydrosulphite; 10. 321
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 heptathiosulphate, 10. 558 oxyphosphite, 16. 239 pentathiosulphate, 10. 558 phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 sodium disulphate, 10. 558 phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321	370 tetrachylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrohexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminephosphate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylaminosulphate, 16. 401 tetramminepyridinetrichloroplatinite, 16. 274 tetramminoslylalecholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenatomolybdate, 9. 131 tetramminobishydrosulphite; 10. 321 dihydrate, 10. 321
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321 trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 heptathiosulphate, 10. 558 oxyphosphite, 16. 361 cis-sulphitodiamminosulphite, 10. 321 pentathiosulphate, 10. 558 phosphites, 16. 361 cis-sulphitodiamminosulphite, 10. 321	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrohexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylaminosulphate, 16. 401 tetramminepyridinetrichloroplatinite, 16. 274 tetramminos, 16. 350, 362 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenitotungstate, 9. 132 tetramminoarsenitotungstate, 9. 132 tetramminobishydrosulphite; 10. 321 dihydrate, 10. 321 tetrahydrate, 10. 321
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamides 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 — heptathiosulphate, 10. 558 — oxyphosphite, 16. 239 — pentathiosulphate, 10. 558 — phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 320	Tetrachylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxydhoride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylaminesylate, 16. 401 tetrammines, 16. 350, 362 tetramminoallylalcoholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenitotungstate, 9. 132 tetramminobishydrosulphite; 10. 321 dihydrate, 10. 321 tetramminobromide, 16. 371
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamides, 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361	370 tetracthylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydroxinosulphate, 16. 395 tetrahydroxylaminechloride, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloroplatinate, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylaminephosphate, 16. 416 tetrahydroxylaminosulphate, 16. 401 tetrammines, 16. 350, 362 tetrammines, 16. 350, 362 tetramminosulphate, 16. 401 tetramminosulphate, 16. 371 dihydrate, 10. 321 tetramminobromide, 16. 371 hemitrihydrate, 16. 371
16. 277 quatertrimethylphosphinechloride, 16. 277 quatertrimethylphosphines, 16. 352 quaterxanthogenamidechloride, 16. 277 quaterxanthogenamidechloroplatinate, 16. 277, 286 quaterxanthogenamides, 16. 351 quaterxanthogenamides 16. 351 quaterxanthogenamidesulphate, 16. 401 quinquiesethylaminetrichloroplatinite, 16. 272 quinquiespyridinetrichloroplatinite, 16. 273 salicylaldoximechloride, 16. 274 silver phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 321 sodium disulphite, 10. 322 — heptathiosulphate, 10. 558 — oxyphosphite, 16. 239 — pentathiosulphate, 10. 558 — phosphites, 16. 361 — cis-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 321 — trans-sulphitodiamminosulphite, 10. 320	Tetrachylaminochloroplatinite, 16.259 tetrahydrazines, 16. 350 tetrahydrazinochloride, 16. 270 tetrahydrazinochloride, 16. 270 tetrahydrazinochloroplatinite, 16. 270 tetrahydrazinosulphate, 16. 401 tetrahydrokexasulphide, 16. 395 tetrahydroxylaminebromide, 16. 371 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminechloride, 16. 268 tetrahydroxylaminehydroxide, 16. 239 tetrahydroxylaminehydroxydhoride, 16. 268 tetrahydroxylaminehydroxychloride, 16. 268 tetrahydroxylaminenitrate, 16. 409 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylamines, 16. 350 tetrahydroxylaminesylate, 16. 401 tetrammines, 16. 350, 362 tetramminoallylalcoholtrichloroplatinite, 16. 273 tetramminoarsenatomolybdate, 9. 131 tetramminoarsenitotungstate, 9. 132 tetramminobishydrosulphite; 10. 321 dihydrate, 10. 321 tetramminobromide, 16. 371

Platinous tetramminocarbonate, 16. 407	Platinous thiocarbonatodiammine, 16. 408
tetramminocarbonatohydrocarbonate,	thioformaldehydechloride, 16. 276
16. 407	thiolacetatochlorides, 16. 277
tetramminochlorobarytate. 16. 257	toluidine-ethylphosphitedihydroxide,
tetramminochlorocobaltate, 16. 257	16. 239
tetramminochlorocobaltite, 16. 284 tetramminochlorocuprate, 16. 257, 281	——toluidinetriethylphosphate, 16. 359 ——toluidinetrimethylphosphite, 16. 359
tetramminochloromercurate, 16. 257, 281	toluylediamines, 16. 356
tetramminochloropalladite, 16. 259	m -tolylenediammines, 16. 356
— tetramminochloroplatinate, 16. 259	aβy-triaminopropanes, 16. 356
— tetramminochloroplatinite, 16. 257	triammines, 16. 354, 364
tetramminochloroplumbate, 16. 257	triamminosulphite, 1. 321
tetramminochlorostannate, 16. 257	triamminotriethylphosphites, 16. 352
tetramminochlorostannite, 16. 257	trianilinediamminochloride, 16, 275
tetramminochlorozincate, 16. 257, 283	trianilinodiammines, 16. 350
tetramminochromate, 11. 313	tribromoallylaleohols, 16. 362
—— tetramminodichloride, 16. 255	tribromocarbonyls, 16. 362
tetramminodichloro-dichloronitrosyl-	trichloroacetonitritotetrammine, 16.
hydrochloride, 8. 443	274
- — tetramminodichlorodinitrosylhydro-	trichloroallylaleohols, 16, 362
sulphate, 8. 443	trichloroallylamines, 16. 361
- tetramminodichloronitrosylhydro-	trichloroammines, 16. 361 trichlorobisthiocarbamide, 16. 276
chloride, 8. 443tetramminodichromate, 11. 344	- trichloroearbonyls, 16. 361
	trichlorodiethylallylamines, 16. 361
- tetramminodihydroxide, 16. 235, 239	trichlorodipropylallylamines, 16. 361
tetramminodinitratonitrosylhydro-	- trichloroethylallylamines, 16. 361
nitrate, 8. 443	trichloroethylamines, 16. 361
- tetramminodinitratotetrammino-	trichloroethylenediaminoanmino-
chloroplatinate, 16. 260	chloride, 16 . 364
tetramminodinitrite, 8. 514	trichloroethylenes, 16. 361
- · · · tetramminodisulphite, 10. 321	trichlorophosphotrianilides, 16. 361
tetramminoethylaminetrichloroplati-	—— trichlorophosphotritoluidides, 16. 361
nite, 16. 271	trichloropyridineethylenediamino-
tetramminoethylenedichloroplatinite,	hydroxide, 16 . 364
16. 272	trichloropyridines, 16. 361
tetramminohexachloroarsenitotung-	trichloropyridinoethylenediamino-
state, 9. 132	chloride, 16. 364
tetramminohydrocarbonate, 16, 407	trichlorotriammine, 16. 266 trichlorotriammines, 16. 364
tetramminohydrophosphate, 16. 416 tetramminohydrosulphate, 16. 400	trichlorotristribenzyloxyphosphines,
- tetramminohydroxide, 16. 238	16 . 365
tetramminoiodide, 16. 385	trichlorothiocarbamides, 16. 361
- tetramminoiodomercurate, 16. 385	trichlorotrimethylamines, 16. 361
tetramminonitrate, 16. 408	triethylphosphites, 16. 361
- tetramminosulphate, 16. 400	trihydroxylaminoammines, 16. 350
tetramminosulphatohydroxychloro-	- trihydroxylaminoamminochloride, 16.
platinite, 16 . 406	269
- tetramminosulphite, 10. 321	trihydroxylaminoamminochloropalla-
tetramminosulphitochloroplatinite, 16.	dite, 16. 269
260	trihydroxylaminoamminochloroplati-
tetramminotetrachloroamminoplati-	nite, 16. 269
nate, 16, 323	tri-iodocarbonyls, 16. 362
tetramminotetranitritoplatinate, 8.575	triiodophenylearbylamine, 16, 386
tetramminotrichloroallylalcoholoplati-	trimethylaminetrichloroplatinite, 16.
nite, 16. 260	272 trimethylphosphites, 16 . 361
tetramminotrichloroamminoplatinite, 16. 260	trimethylphosphitetriethylphosphite,
tetramminotrichloroethylamineplati-	16. 360
nite, 16. 260	trimethylstibinochloroplatinate, 16.
- tetramminotrichloroethyleneplatinite,	315
16. 260	trinitritotoluidines, 16. 361
tetramminotrichloropyridineplatinite,	trioxydichloride, 16. 285
16. 260	triphosphate, 16. 416
tetrathioerythritochloride, 16. 275	tripropylphosphites, 16. 361
tetritasulphoplatinate, 16. 395	trisanilinediamminosulphate, 16. 401
thiocarbamides, 16. 360	triscarbonyltetrachloride, 16. 370
— thiocarbazidochloride, 16. 275	— trisethylsulphinesulphate, 16. 401
thiocarbazidochloroplatinite, 16. 275	tris-i-butylsulphinesulphate, 16. 401
thiocarbazidosulphate, 16. 401	trispropylenediammines, 16. 362

Platinous tristetrahydroxylaminetetra-	Platinum dichloride, 16. 251
hydroxydichloride, 16. 268	—— difluoride, 16. 249
trithiocyanatocarbonyls, 16. 362	dihydrodiphosphide, 8. 861
ultraphosphate, 16. 416	dihydroxytetrahydrocarbonate-
uranyl trans-sulphitodiamminosul- phite, 10. 321	heptammine, 16. 369
vinylsulphines, 16. 368	dihydroxytetrammine nitrite, 8. 517 diiodide, 16. 384, 387
zine trans-sulphitodiamminosulphite,	diodohexammino-μ-diimiodonitrate,
10. 321	16. 414
Platinschwann, 16. 50	
Platinschwarz, 16. 44	— dinitratohexammino-μ-diimidosul-
Platinum, 15. 9; 16. 2	phate, 16. 414
absorption oxygen, 1. 370	dinitritodibromobisdimethylselenide,
—— aerosol, 16. 55	8. 518
aluminium alloys, 16. 209	dinitritodibromodiammine (cis), 8. 518
	(trans), 8. 518
	dinitritodibromotetraethylsulphosele-
antimonitotungstate, 9. 433	nide, 8. 518 — dinitritodichlorobisdimethylselenide,
arsenates, 9. 234	8. 518
arsenitophosphatomolybdate, 9. 131	dinitritodichlorodiammine (cis), 8. 518
arsenitophosphatotungstate, 9. 132	(trans), 8. 518
atomic disruption, 16. 192	dinitritodiiodobisdimethylselenide, 8.
—— number, 16 . 192	518
weight, 16. 190	dinitritodiiodotetraethylsulphosele-
azide, 8 . 355	nide, 8 . 518
barium alloy, 16. 205	dinitritohydroxychlorodiammine, 8.
bisethylaminediamminehexabromide, 16. 372	518
bismuth alloys, 9. 640	—— dinitritonitratochlorodiammine, 8. 518 —— dinitritosulphatodiammine (cis), 8. 518
bistetramethylarsoniumchloride, 16.	(trans), 8. 518
315	- dinitritotetrammine nitrite, 8. 517
bisthiocarbamidotetrahydroxysul-	dioxide, 16 . 242
phide, 16 . 394	dihydrate, 16. 243
black, 16. 47, 48	hemitrihydrate, 16. 243
—— boride, 5 . 32	monohydrate, 16. 243
cadmium alloy, 16 . 207	
—— calcium alloy, 16 . 205 —— carbonates, 16 . 407	dipentitantimenide 9 416
catalysis by, 1. 487	dipentitantimonide, 9, 416 diphosphide, 8, 861
cerium alloys, 16. 211	diplumbide, 16. 214
chlorides, 16. 251	dipropylsulphinodithiosulphate, 10.
chlcrostannate, 7. 450	558
chromide, 16 . 215	diselenide, 10. 801
—— chromium alloys, 16. 215	distannide, 16. 212
copper alloys, 16. 216	distannyl stannate $(a \cdot)$, 7. 420
———— gold alloys, 16. 216	stannic oxide, 7. 393
——————————————————————————————————————	disulphide, 16. 396 ditelluride, 11. 64
—— cobalt alloys, 16. 219	ditritasilicide, 6. 212
	dizincide, 16. 206
iron alloys, 16. 219	dodecasilicide, 6. 212
————— silver alloys, 16. 219	electrode potential, 16. 102
colloidal, 1. 937; 16. 54	electrodeposition, 16. 116
copper alloys, 16. 194	electromotive force, 16. 107
	electronic structure, 16. 192
silver-zinc alloy, 16. 207	enneaiodoctammine, 16. 369
—— zinc alloy, 16 . 207 —— decahydroxyammine, 16 . 370	ethylsulphinobenzylamminomono-
decahydroxypyridine, 16. 370	chloride, 16. 251 —— ethylsulphinobispyridinomonochlo-
—— diantimonide, 9. 416	ride, 16 . 251
—— diargentide, 16. 197	ethylsulphinoethylaminochloride, 16.
diarsenide, 9. 82	251
dibismuthide, 9. 641	ethylsulphinomonochloride, 16. 251
dibromide, 16. 370	explosive, 16. 49
dibromodicarbonylbispyridine, 16. 372	—— extraction, 16. 22
dicadmide, 16. 207	dry processes, 16. 25
dicarbide, 5. 902	sulphide ores, 16. 22
—— dicarbonylbispyridines, 16. 369 —— dicarbonyldichloride, 16. 253	
dicar ponylatementae, 10. 200	10171do, 10. 210

Platinum films, 16. 50, 51	Platinum mealleable, 16. 46
—— fluorides, 16 . 249	—— mercaptidobromide, 16. 315
forms of, 16. 46	— mercaptidochloride, 16. 315
—— fulminochloride, 16. 337	— mercuric molybdate, 11. 576
fulminodichloride, 16. 337	mercurous molybdate, 11. 576
fulminotetrachloride, 16. 336 fulminotrichloride, 16. 336	mercury alloys, 16. 207
germanium alloys, 16 . 211	— metals occurrence, 16. 5 — qualitative recognition, 16. 35
gold alloys, 16. 201	quantitative determination, 16.
aluminium alloy, 16, 210	37
——————————————————————————————————————	—— methylmercaptidochloride, 16. 315
tungsten alloy, 16: 216	mirrors, 16. 51
	molybdate, 11. 576
	—— molybdenum alloys, 16 . 216
copper alloys, 16, 205	monamidodiphosphate, 8. 710 monantimonide, 9. 416
—— zine alloys, 16. 205, 207	monochloride, 16 . 251
—— hemichromide, 16 . 215	monophosphide, 8. 861
hemienneacadmide, 16. 207	monosilicide, 6 . 212
hemiethylsulphinopyridinomono-	—— monosulphide, 16 . 393
chloride, 16 . 251 —— hemioxide, 16 . 235	monotelluride, 11. 64
hemipentachloride, 16. 285	
hemiphosphide, 8. 861	cobalt-chromium alloy, 16. 220
hemisilicide, 6. 212	——————————————————————————————————————
hemitriargentide, 16. 197	220
hemitriarsenide, 9. 82	copper alloys, 16 . 220
hemitrioxide, 16. 241	gold alloys, 16. 220
	iron alloys, 16. 220
—— hemitriplumbide, 16. 214	
hemitristannide, 16. 212	nitrates, 16. 408
—— hemitrisulphide, 16. 396	—— nitride, 8. 137
hemitrizincide, 16. 206	—— nitritoiodo-tetrammine nitrate, 8. 518
heptabromopraseodymate, 5. 645	nitritonitrosylchlorodiammine hydro-
hexabromobisethylaminediammine, 16. 369	chloride, 8. 518
hexachloroxyhypovanadate, 9. 806	— nitritotrichlorodiammine, 8. 518 — osmium alloys, 16. 225
hexaiodotetrammine, 16. 369	organosol, 16. 55
—— higher oxides, 16. 242	—— oxides (lower), 16. 235
hydride, 16. 141	hydrates of lower oxides, 16. 235
	oxyarsenide, 9. 59
—— hydrogel, 16 . 55 —— hydrosol, 16 . 54	palladium alloy, 16223
	alloys, see Palladium ogold alloys, 16. 225
hypotritrite, 8. 417	osmium allovs. 16, 226
—— impurities, 16. 44	
—— indium alloy, 16 . 210	passivity, 16. 113
intermetallic alloys, 16. 194	—— pentitatriphosphide, 8. 861
—— iridium alloy, 16. 226	—— permanganite, 12. 280
	—— permonosulphomolybdate, 11. 654 —— phosphates, 16. 416
——————————————————————————————————————	—— phosphatomolybdate, 11. 671
iron-chromium alloys, 16. 219	—— plating, 16. 50
copper alloy, 16. 219	nistinized 16 49
gold alloys, 16. 219 — manganese alloys, 16. 219 — silver alloys, 16. 219	—— plumbide, 16. 214
manganese alloys, 16. 219	potassium alloys, 16. 194
isotopes, 16. 192	—— properties, chemical, 16. 136 ——— electric, 16. 97
—— lamp, 8. 1059 —— Döbereiner's, 8 . 1059	——— magnetic, 16, 97
———— Döbereiner's, 8 . 1059	mechanical, 16. 62
lead alloys, 16. 213	—— mechanical, 16. 62 —— optical, 16. 80
—— lithium alloys, 16 . 194	thermal, 16. 68
lustres, 16. 50	purification, 16. 34
magnesium alloys, 16. 206 manganese alloys, 16. 216	reactions of analytical interest, 16. 171
	recovery, 16 . 30 rhenium alloy, 16 . 216
silver alloys, 16. 216	rhodium alloys, 16. 221
• '	

Platinum ruthenium alloy, 16. 221	Platinum trichloride, 16. 285
——————————————————————————————————————	trichlorotriammine, 16. 369
	— trichromide, 16. 215
	triiodide, 16. 386, 387
——————————————————————————————————————	trioxide, 16. 248
	tristannyl 7 303
—— sesquisulphide, 16. 396	
—— sesquisarprinde, 10. 330 —— silicide, 6 . 211	
silicoarsenide, 9. 81	tritaplumbide, 16. 213
silver alloys, 16. 197	
	tungsten alleve 16 216
	tungsten alloys, 16. 216
——————————————————————————————————————	uranium alloy, 16. 216 uses, 16. 174
	valency, 16. 190
—— sodium alloys, 16 . 194	
solubility of hydrogen, 1. 305, 306	- vanaditotungstate, 9. 742
spitting, 16. 73	vanadium alloy, 16. 215
— spluttering, 16. 117	zinc alloys, 16. 206
	zincide, 16. 206
$-$ stannate (β -), 7. 420	Platnik, 16. 220
stannide, 16 . 211	Plato, 1. 35
	Plâtre, 3. 763
	Plattnerite, 7. 681
—— suboxide, 16. 235	Platynite, 10. 694, 796
	Plazolite, 6. 713
- sulpharsenite, 9. 302	Pleiades, 4. 130
	Pleiadic elements, 4. 130
	Plenargyrite, 9. 589
—— sulphomolybdate, 11. 653	Pleonaste, 4. 251; 5. 154, 297
sulphotellurite, 11. 114	Pleonectite, 9. 262
sulphotungstate, 11. 859	Plessite, 9. 310; 12. 528; 15. 260
—— tantalum alloys, 16. 215	Pleurasite, 9. 222
tetrabromide, 16. 373	Pleuroclase, 4. 388
tetrachloride, 16 . 292	Plinian, 9. 306
decahydrate, 16. 293	Plinthite, 6. 473; 12 . 530
———— heptahydrato, 16. 293	Pliny, 1. 38
	Plomb antimoinó sulfuré, 9. 544
octohydrate, 16. 293	— carbonaté rhomboidal, 7. 853
——————————————————————————————————————	chromaté, 11. 290
——————————————————————————————————————	de mer, 5. 713
tetrachlorotriaminopropanemono-	—— gomme, 5 . 297
hydrochloride, 16. 311	—— hydroalumineux, 7. 877
tetrafluoride, 16 . 250	—— jaune, 11. 566
tetraiodide, 16. 387	rouge, 11. 122, 290
—— tetrammine, 16. 369	spathique, 7. 829
pentachlorohydrazinoiridate, 15.	—— terreuse, 7. 638
763	vitriol de, 7. 803
tetramminosubnitrate, 16. 408	Plombagina, 5. 714
—— tetrastannide, 16. 212	Plombièrite, 6. 360
—— tetritatristannide, 16. 212	Plumbago, 5, 713; 7, 780, 781
tetroxide, 16. 248	anglica, 5 . 713
thallide, 16. 210	scriptoria, 5 . 713
thallium alloys, 16. 210	Plumballophane, 6. 497
amalgam, 16. 211	Plumbates, 7. 695
lead alloy, 16 . 215	Plumbea graphis, 5. 713
mercury alloy, 16. 211	Plumbeine, 7. 782
	(di)plumbhydroxyl hydroxynitrilodisulpho-
	nate, 8 . 678
thallous molybdate, 11. 576	(tetra)plumbhydroxylacetobishydroxy-
thiocarbonate, 6. 129	nitrilodisulphonate, 8. 678
ammine, 6 . 129	(tri)plumbhydroxylhydroxynitrilodiaul-
(di), 6 . 129	phonate, 8. 678
(di), 6 . 129 (tetra), 6 . 129	Plumbi minera spathacea, 7. 829
—— tin alloy, 16. 211	Plumbie acid, 7. 685
amalgam, 16, 213	colloidal, 7. 685
	bishydrophosphate, 7. 886
—— trialuminide, 16. 210	chromate, 11. 293
triamidodiphosphate, 8. 712	dichromate, 11. 342
—— tribromide, 16. 373	dihydrophosphate, 7. 886
· · · · · · · · · · · · · · · · · · ·	

OH CHINITA	L INDEX
Plumbic hexoxydisulphate, 7, 823	Poisson's ratio 1 820
iodide, 7 . 575	Poisson's ratio, 1, 820 Polar molecules, 4, 187
monoxysulphate, 7. 823	number, 1. 211
nitrate, 7. 857	theory chemical action, 1, 397
nitroxyl chloride, 8. 617	valency, 1. 211
orthoplumbate, 7. 676	Polarity, 1. 211
phosphates, 7. 885	Goldschmidt and Wright's law, 1. 611
plumbite, 7 . 676	Polarization, 1. 1028
—— sulphate, 7. 822	—— of light, 1. 607
tetroxysulphate, 7. 823	plane, 1. 607
(di)plumble hexaborate tetrahydrated, 5.	rotary, 1. 608
106	Polarized light action magnetic field, 4. 19
Plumbism, 7. 589	—— molecules, 4. 187
Plumbites, 7, 662, 665	Polarizing microscope, 1. 608
Plumblonite, 9, 839	Polianite, 12, 150, 245
Plumbo aichloroïoduro, 7, 768	Pollucite, 2, 426
Plumbohiamuth glange 7, 401	Polonium 4 114 127
Plumbobismuth glance, 7, 491 Plumbocalcite, 3, 622, 814; 7, 855	Polonium, 4. 114, 127 —— beta (β), 4. 114
Plumbocolumbite, 7. 491, 897	hydride, 4 . 117, 118
Plumbocuprite, 7. 796	Polyacids, 6, 867
Plumboferrite, 7. 491; 12. 530; 13. 922	Polyadelphite, 6. 921
Plumboformic acid, 7, 665	Polyargite, 6. 619
Plumboiodite, 7. 768	Polyargyrite, 9. 343, 540
Plumbojarosite, 7. 491; 12. 530; 14. 343,	Polyarsenite, 9. 5
344, 349	Polybasite, 8, 300; 9, 4, 343, 540
Plumbomalachite, 3. 274	Polyborates, 5. 47
Plumbomanganite, 12. 150, 397	Polyboric acids, 5. 47
Plumbonacrite, 7. 838	Polychroilite, 6. 812
Plumboresinate, 7. 877	Polychrom, 7. 883
Plumbosite, 7. 491	Polycrase, 5. 518; 7. 4; 9. 839, 904; 12. 5
Plumbostannite, 7. 283, 491; 9. 343, 553	Polycrasilites, 7. 99
Plumbostib, 9. 544	Polyadelphite, 12. 150
Plumbostibite, 9. 544	Polydymite, 14. 424, 757; 15. 6, 447
Plumbostibnite, 7. 491	Polyferrites, 18. 905
Plumbous acid, 7. 665	Polyhalite, 2. 430, 657; 3. 623; 4. 252, 344;
—— iodide, 7 . 757	7. 897
metaplumbate, 7. 671	Polyiodides, 2. 233; 14. 747
—— nitrate, 7. 856	Polylithionite, 6, 606, 607
orthophosphate, 7. 876	Polymerism, 5. 721
Plumbum acido aero mineralisatum, 7. 829	Polymerization in solution, 1. 570, 573
vitriolico mineralisatum; 7. 803	Polymerized liquids, 1. 860
—— album, 7. 276, 515	Polymetaphosphates, 8, 984
—— arsenico mineralisatum, 9. 260 Plumbum candidum, 7. 276, 277, 484; 16. 1	Polymetaphosphoric acid, 8, 984
cinereum, 9 . 587	Polymigmite, 7. 100 Polymignite, 5. 517; 6. 859; 7. 3; 9. 839
commune, 4. 129	Polymorphism, 1. 596
corneum, 7 . 706	Polyoxides, 1. 958
nativum, 7. 490	Polypermanganites, 12. 274
nigrum, 5. 713; 7. 276, 277, 484, 515	Polyphosphoric acids, 8. 990
scriptorum, 11. 484	Polysiderites, 12. 523
spatosum flavorubrum, 11. 566	Polysphärite, 3. 623; 7. 491, 883; 8. 733;
- sulphure et argento mineralisatum, 7.	9. 261
781	Polysulphates, 10. 440, 447
ustum, 7. 782	Polysulphosilicie acid, 6. 987
Plumite, 9. 546	Polytelite, 7. 491; 9. 291
Plummer's pill, 4. 813	Polytherms, 4. 343
Plumosite, 9. 546	Polythionic acids, 10. 563
Plusinglanz, 7. 254	constitution, 10. 570
Plutonium, 8. 620	——— reactions of, 10. 569
Pneumatic chemistry, 1. 122	Polyuranates, 12. 65
	Polyxenite, 16. 5
Preumatogen, 2. 480	Pompholyx, 4. 506
Pocket luminaries, 8. 1059	Ponite, 12. 433
Podolite, 8 . 896 Pöchite, 6 . 918	Populair ashestos 6 426
Poikilite, 14. 189	Porcelain asbestos, 6. 426 ——Bottger's red. 6. 471
Poikilopyrite, 14. 189	catalysis by, 1. 487
Poison flower, 9. 91	—— Chinese, 1. 23
meal, 9. 90	earth, 6. 472

Porcelain felspathic, 6, 515	Potassium aluminoborate, 5. 103
fritted, 6 . 515	aluminorthosilicate, 6. 571
hard, 6 . 515	amalgam, action on water, 1. 135
hot-cast, 5. 304	amalgams, 4. 1014
Marquart's, 6 . 515	amide, 8 . 253
—— permeability to gases, 1. 305	amidoacetatodichloroplatinite, 16.
properties, chemical, 6. 518	277
———— physical, 2. 516	amidoaluminatė, 5. 212
soft, 6 . 515	— - amidoargentate, 8. 259
spar, 6 . 763, 766	amidobariate, 8. 260
Porcelaine dur, 6. 515	amidochlorosmate, 15. 718
par devitrification, 6. 513	amidochromate, 8. 266
tendre, 6 . 515	amidohydrochlorosmate, 15. 718
Porcellophite, 6. 422	amidopropionatodichloroplatinite, 16.
Porosity metals, 13, 423	277
Porpezite, 15 . 593	amidosulphonate, 8, 641
Porpizite, 15 . 648	amidothioimidosulphonate, 8. 636
Porricine, 6. 818	ammine, 8. 244
Portable fire-boxes, 8, 1059	amminoaluminate, 5. 289
Portite, 6 . 921	amminoarsenide, 9. 61
Portland cement, 6, 554	ammoniocadmiate, 8, 261
Porzellanite, 6, 763	ammoniomolybdite, 8, 267
Porzellanspath, 6. 763	- amminopentachloroplatinate, 16, 323
Positive, 3, 412	amminotetrarsenide, 9, 61
· chemistry, 1, 4	amminotrichloroplatinite, 16. 267
column, 3 . 932	ammoniotungstite, 8. 268
election, 3 . 937	ammonium arsenatodecavanadato-
- rays, 3. 955, 956	hexadecamolybdate, 9, 202
- · analysis, 3. 958	arsenatododecavanadatodeca-
valence, 4 . 191	molybdate, 9, 202
Potarite, 15 . 592; 16 . 5	arsenatotetradecavanadatodo-
Potash, 2. 420, 438	decamolybdate, 9, 202
	arsenatotetradecavanadatotri-
alum, 5 . 343 ; 13 . 609	decamolybdate, 9, 833
anorthite, 6 . 662, 698, 706	calcium disulphate, 3, 812
gallic alum, 5 . 385	chloroplumbite, 7. 729
mica, 6 . 606	chromate, 11. 257
natrolite, 6 . 654	chromium sulphate, 11, 463
pectolite, 6 . 366	
process, Engel's magnesia, 4. 369	——— decamolybdatotrisulphite, 10.
salt beds, 2. 427	307
thallic alum, 5. 467	diphosphatoctovanadatotetra-
thomsonite, 6 . 711	decamolybdate, 9. 833
Potashsodalite, 6. 583	diphosphatodecavanadatotri-
Potassamide, 8. 253	decamolybdate, 9. 833
Potassammonium, 8. 244	
Potassiophosphine, 8, 816	decamolybdate, 9. 833
Potassium acetylene carbide, 5. 849	
—— action on water, 1. 135	decamolybdate, 9. 833
—— allylalcoholotrichloroplatinite, 16. 273	diphosphatohexavanadatocto-
allylalcoholtribromoplatinite, 16. 372	decamolybdate, 9. 833
aluminate, 5 . 289	diphosphatohexavanadatopenta-
- — aluminium alloys, 5. 229	decamolybdate, 9. 833
amide, 8. 262	diphosphatotetradecavanadato
carbonate, 5 . 359	enneamolybdate, 9. 833
decamolybdate, 11. 598	diphosphatotetradecavanadato-
——————————————————————————————————————	henamolybdate, 9. 833
dodecamolybdate, 11. 599	——— diphosphatotetravanadatoicosi-
ferric alums, 14. 349	molybdate, 9. 833
hydroxysulphate, 5. 553	disulphatocuprate, 3. 259
——— mesotrisilicate, 6 . 665	
nitrate, 5. 361	
orthosilicate, 6. 571	9. 784
——————————————————————————————————————	imidochromate, 8. 266
selenate, 10. 869	———— iridium disulphate, 15 . 786
selenatosulphate, 10 . 930	manganous permanganitomolyb-
sulphate, 5. 343	date, 11. 573
	metatetravanadate, 9. 766
tellurate, 11. 96	monamidophosphate, 8. 706
triorthoarsenate, 9. 186	orthophosphates, 2. 875

Potassium ammonium pentametaphosphate, 2. 877; 8. 988	Potassium arsenatotetradecavanadatotri- decamolybdate, 9. 202
permanganitomolybdate, 11. 573	- arsenatotetravanadatohemipenta-
platinous chlorodisulphite, 10.	molybdate, 9. 202
323	arsenatotrimolybdate, 9. 209
trichlorosulphite, 10. 323	arsenious thiosulphate, 10. 553
pyrophosphate, 2. 876	arsenitoarsenatotungstate, 9. 137
— pyrophosphate, 2. 876 — silicovanadatodecatungstate, 6.	arsenitotetraphosphatotungstate, 9.
838	132
silicovanadatomolybdates, 6. 837	arsenitotungstate, 11. 817
sulphitochloroiridite, 15. 758	astracanite, 2. 430
tetravanadatotetramolybdate, 9.	
784	at. wt., 2. 470
triselenitodecamolybolate, 10. 836	aurate, 3. 584
triterodecavanadate, 9. 766 uranyl trisulphate, 12. 108	auric octosulphite, 10. 281 tetramminohexasulphite, 10. 281
zinc sulphate, 4. 641	—— aurochloride, 3. 589
ammonomagnesiate, 8. 260	aurous disulphite, 10. 281
amylenetrichloroplatinite, 16. 273	autunite, 12. 135
—— and magnesium chlorides : crystalliza-	azide, 8. 347; 11. 368
tion 2. 432	azidodithiocarbonate, 8. 338
and sulphates : crystal-	azidoplatinite, 16. 254
lization, 2, 434	barium ammonium silicovanadato-
sulphates: crystallization,	decatungstate, 6. 838
2. 432	arsenate, 9. 173 calcium carbonate, 3. 846
sodium sulphates and chlorides:	calcium carbonate, 3. 846
crystallization, 2. 689	carbonate, 3. 845
antimonatotriiodobromide, 9. 511	
antimonatotungstate, 9. 459	chromidodecamolybdate, 11. 602
antimonide, 9. 403	cobalt nitrite, 8. 505
antimonious thiosulphate, 10. 553	dimetaphosphate, 3. 894 diphosphatotetravanadatocto-
antimonite, 9. 431 antimonitophosphatotungstate, 9. 433	decamolybdate, 9. 834
- antimonitotungstate, 11. 817	hydroxynitrilodisulphonate, 8.
—— antimony henasulphate, 9. 583	677
antimonyl pentachloroantimonate, 9.	hyponitrilosulphate, 8. 690 imidodisulphonate, 8. 655
506	iron nitrite, 8 . 501
aquochloroperiridite, 15. 765	nickel nitrite, 8, 511
aquochloroperruthenite, 15. 531	nitrilotrisulphonate, 8. 669
aquopentaboroiridate, 15. 777	nitrite, 8 . 488
aquopentahypophosphitoferrate, 8.889	oxytrisulpharsenate, 9. 330
aquopentasulphitosmate, 10. 325 argento iodide, 3. 432	——————————————————————————————————————
arsenatoctodecavanadatopentamolyb-	——————————————————————————————————————
date, 9. 202	phosphatohenatungstate, 11. 868
arsenatoctoicosivanadatoheptamolyb-	silicododecatungstate, 6. 878
date, 9. 202	silicovanadatoenneatungstate, 6.
arsenatoctovanadatodimolybdate, 9.	838
202	sulphatochloride, 3. 813
arsenatodecavanadatohexadecamolyb-	— - — sulphatonitrate, 3. 813 — tetrachloride, 3. 719; 4. 310
date, 9. 202	tetrachloride, 8. 719; 4. 310
arsenatodioxydichromate, 9. 205	trichromate, 11. 351
arsenatodivanatate, 9. 200	
date, 9. 202	beryllium carbonate, 4. 244
arsenatododecavanadatoheptamolyb-	dimetasilicate, 6. 803
date, 9. 202	fluoride, 4. 230
arsenatohemipentamolybdate, 9. 207	hvdrosulphate, 4, 241
arsenatohexadecavanadatododeca-	nickelous fluosulphate, 15. 475
molybdate, 9. 202	—— nickelous fluosulphate, 15. 475 —— oxydiorthoarsenate, 9. 175
arsenatohexavanadatopentadeca-	pyrophosphate, 4 . 247
molybdate, 9. 202	
arsenatoicosivanadatohexamolybdate,	
9. 202	trisulphite, 10. 285
arsenatoicosivanadatopentamolyb-	trans-bischromatotetramminocobalti-
date, 9. 202	ate, 11. 311 —— bishypoantimonate, 9. 437
arsenatotetracosivanadatoctomolyb-	bismuth chromate, 11. 305
date, 9. 202	hydroxydichromate, 11. 343
	and and and and and and a district a

Determine himself Lab. 11 L.L. 0	1. Determine a Justine 1. 114 40, 207
Potassium bismuth hydroxydisulphate, 9.	Potassium cadmium sulphite, 10. 287
701 —— nitrite, 8 . 499	
	tetraiodide, 4 . 583
	tetrameterhognhate 4 664
—— bismuthate, 9 . 657	
—— bismuthotungstate, 9. 651	tribromide, 4. 572
—— bismuthyl dichromate, 11. 343	trichloride, 4. 556
metantimonate, 9. 460	
—— boratofluoride, 5. 125	
boride, 5 . 23	tungsten tetramminoenneachlo-
borohydrates, 5. 40	ride 11. 842
borylphosphate, 5. 147	cæsium alloys, 2 . 481
—— bromate, 2 . 330	—— calcium aluminates, 5. 294
bromide, 2. 577; 11. 368	aluminium trimesodisilicate, 6.
————— impurities of, 2. 578	746
properties, chemical, 2. 586	arsenate, 9. 173
——————————————————————————————————————	——————————————————————————————————————
X-radiogram, 1. 638	——————————————————————————————————————
	——————————————————————————————————————
bromoaurate, 8. 607	cobalt nitrite 8 505
	deuterotetravanadate 9 771
bromochromate, 11. 426	deuteroteravanadate, 9. 771 dialuminium pentamesodisilicate,
bromocuprate, 3. 200	6. 747
bromoiodide, 2. 610	dimeterhosphete 8 894
bromoiodoplumbite, 7. 775	disulphate, 3. 807 — hexasulphate, 3. 808 — hydrodimetasilicate, 8. 369
— bromoiodostannate, 7. 463	
—— bromoiridate, 15. 776	hydrodimetasilicate. 6. 369
bromomagnesiate, 4. 314	nickel nitrite, 8. 512
—— bromopalladate, 15. 678	gulphate 15 475
—— bromopalladite, 15. 677	- nitrite, 8. 488, 501 - orthopertantalate, 9. 914
——————————————————————————————————————	orthopertantalate, 9. 914
— bromoperiridite, 15. 775	
—— —— trihydrate, 15 . 775	—— perorthocolumbate, 9. 870
bromoperruthenite, 15. 538	perorthocolumbate, 9. 870 phosphate, 3. 877 phosphatohemipentamolybdate,
—— bromoplatinate, 16. 377	phosphatohemipentamolybdate,
—— bromoplatinite, 16. 373	11. 009
——————————————————————————————————————	—— phosphatoplumbate, 7. 886
bromopyroselenite, 10. 913	phosphatostannate, 7. 483
bromoruthenate, 15. 538	phosphatothorate, 7, 253
—— bromoemate, 15. 723	
bromostannate, 7. 456	—— phosphatozirconate, 7, 165
bromotrinitritoplatinite, 8 . 522 cadmiate, 4 . 530	—— pyrophosphate, 3. 892 —— quinquemonochromate, 11. 270
cadmide, 4. 667	——————————————————————————————————————
cadmium alloys, 4 . 667	———— selenate, 10. 862
———— amide, 8 . 261	seximonochromate, 11. 270
arsenate, 9. 183	sulphatochromates, 11. 269
chromates, 11. 281	thiosulphate, 10. 544
cobalt nitrite, 8, 505	—— tribromide, 3. 732
cobalt nitrite, 8. 505 deuterohexavanadate, 9. 774	
—— dichromate, 11. 341	trisulphate, 3. 806
heyachloride 4 557	—— triterosilicate, 6. 445
	carbamate, 2. 796
tetranitrite, 8 . 49 0	carbide, 5 . 847
—— — trinitrite, 8 . 490	carbonate and hydrogen, 1. 303
octothiosulphate, 10. 547	sodium nitrate reaction, 2.
persulphate, 10. 479	804
—— phosphate, 4 . 661 —— pyrophosphate, 4 . 663	
pyrophosphate, 4. 663	preparation, 2. 713
selenate, 10. 868	——————————————————————————————————————
	physical, Z. 747
seienatosuiphate, 10. 930	
sulphate, 4. 638	carbonyl, 2. 450; 5. 951 carburet, 5. 847
heroitzibudated 4 829	
	ceric nitrate, 5. 673
——————————————————————————————————————	—— cerous carbonate, 5. 665
Buspando, E. VVE	

Potassium cerous (di) hexasulphate, 5. 658	Potassium chlorosulphatoaluminate, 5. 352
	chlorosulphatostannite. 7. 478
pentasulphate, 5. 658	—— chlorotetrabromide, 9. 673
nickel nitrite, 8 . 512	chlorotrifluoantimonite, 9. 466
	chlorotrinitritoplatinite, 8. 521
orthophosphate, 5. 675	chlorozirconate, 7. 145
sulphate, 5 . 658 sulphite, 10 . 302	chromate, 11. 249
	chromatoselenate, 10. 876 chromatosulphate, 11. 450
chlorate, 1. 591; 2. 326	chromic carbonate, 11. 473
action heat, 1. 349, 360	hydroxychromate, 11. 210
chlorates, 2. 297	oxysulphite, 10. 306
- · · chloride, 1. 521, 591	pyrophosphate, 11. 482
and hydrogen, 1. 303	
sodium sulphate crystalliza-	selenide, 10. 797
tion, 2. 689	triorthoarsenate, 9. 204
BaCl ₂ -CuCl ₂ -H ₂ O, 3 . 716, 720	chromidodecamolybdate, 11. 601
BaCl ₂ -NaCl, 3. 720	chromihexasulphate, 11, 465
CaCl ₂ -NaCl, 3. 720	- chromioxydodecamolybdates, 11. 601
extraction from carnallite, 2, 526	chromipentasulphate, 11, 465
mol. wt., 2, 555	chromipyrophosphate, 11. 481
NaCl-SrCl ₂ , 3 , 720	chromitetrasulphate, 11. 464
preparation, 2, 528	
properties, 2. 529	chromitrisulphatochromate, 11, 465
	chromitrisulphatodichromate, 11, 465 chromitrisulphatotrichromate, 11, 465
	- chromium hexachloride, 11. 419
purification, 2. 527	hexafluoride, 11. 364
X-radiogram, 1. 636	oxypentachloride, 11 . 391
- · chlorite, 2. 283	pentachloride. 11. 418
chloroamidosulphonate, 8. 641	pentafluoride, 11 , 363
chloroaquoperruthenite, 15. 532	phosphate, 11. 482
chloroarsenite, 9. 255	phosphite, 8 . 918
chloroaurates, 3. 593	selenatosulphate, 10. 930
chloroaurites, 3. 588	sulphate, 11. 454, 831
chlorobisarsenite, 9. 255	sulphatoselenate, 10 . 930
chlorobromoplatinates, 16, 381	tellurate, 11. 97
chlorochromate, 11. 397 chlorocolumbite, 9. 876	tetrachloride, 11, 418
chloroimidodisulphonate, 8. 653	chromochromate, 8. 546; 11. 210
chloroiodide, 2. 610, 611	—— chromotellurate, 11. 97 —— chromous carbonate, 11. 472
chloroiridate, 15. 768	
chloroiridiosmate, 15. 772	fluoride, 11, 362 sulphate, 11, 435
chloromanganite, 12. 380	cobalt arsenate, 9. 230
chloropalladate, 15. 672	azide, 8. 355
chloropalladite, 15. 668	decasulphide, 14. 756
chloropentabromoplatinate, 16. 382	————— diamminotetranitrite, 8. 502
—— chloroperiridite, 15. 763	dinitrosyldecamminodiiododini-
	tratoiodide, 8. 443
	hypophosphate, 8 . 939
chloroperosmite, 15. 717	nickel nitrite, 8 . 512
chloroperpalladite, 15. 671	orthosulphoantimonite, 9. 555 persulphite, 10. 480
chloroperruthenite, 15. 529	persuipnite, 10. 480
	phosphite, 8 . 920 sulphatofluoberyllate, 14 . 783
$$ β -, 15. 530	tetrafluoride, 14. 607
	teterotetradecavanadate, 9. 791
chloroplatinate, 16. 319	
chloroplatinite, 16. 279	triterodecavanadate, 9. 791
chloroplumbate, 7. 735	cobaltic carbonate, 14. 815
chloropyroselenite, 10. 913	——————————————————————————————————————
—— chlororhenate, 12. 479	- dinitritotetramminonitrate(cis),
chlororuthenate, 15. 533	8. 507
pentahydrate, 15. 534	disulphate, 14. 789
chlorosmate, 15. 718	dodecamolybdate, 11. 574
chlorosmite, 15 . 716	hexamminochlorodipermanga-
chlorostannate, 7. 448	nate, 12 . 336
monohydrated, 7. 449	hexamininosulphate, 14. 791
chlorosulphate, 2. 691	———— nitrite, 8 . 502

Potassium cobaltic oxyoctonitrite, 8. 502	Potassium cuprous amide, 8, 259
	amminoamide, 8, 259 amminotrithiosulphate, 10, 535
—— cobaltite, 14. 593, 594	amminotrithiosulphate, 10. 535
—— cobaltous carbonate, 14. 812	chlorocarbide, 5. 853
——————————————————————————————————————	dicvanothiocarbonate, 4, 124
chloride, 14. 637	dithiosulphate, 10. 534
chromate, 11 . 312	ferric tetrasulphide, 14. 192
dihydrophosphatohemipenta	———— iodide, 3 . 210
molybdate, 11. 670	orthosulphoantimonite, 9. 537
——————————————————————————————————————	sulphite, 10. 276
disulphate, 14. 774	
hexahydrate, 14. 774	thiocarbonate, 6. 125
————— disulphite, 10. 314	trithiosulphate, 10. 534
hexamminodibromosulphate, 14.	dihydrate, 10. 534
771	tetrahydrate, 10. 534
hexamminodiiodosulphate, 14.	
771	cyanide, solubility metals in, 3. 500
hexasulphitodicobaltate, 10. 315	decaborate octohydrated, 5. 78
——————————————————————————————————————	decahydroarsenatoenneamolybdate, 9.
nickelous sulphate, 15. 478	210
orthophosphate, 14. 852	decahydropentaselenitododecavana-
oxyquaterochromate, 11. 312	date, 10. 835
pentasulphate, 14. 775	decahydrotetraselenitohexavanadate,
percobaltite, 14. 601	10. 834
phosphatohemipentamolybdate,	decaiodoplumbite, 7. 774
11. 670	—— decaiodotriplumbite, 7. 774
selenate, 10. 884	- — decamercuride, 4. 1014
selenatosulphate, 10. 930	decamolybdate, 11. 598
	enneahydrate, 11. 598
sulphatoselenate, 10. 930	pentadecahydrate, 11. 598
	decamolybdatotrisulphite, 10. 307
trinitrite, 8 . 502	decasulphatoarsenite, 9. 333
trisulphate, 14. 775	decasulphotricuprate, 3. 229
copper alloy, 3 . 571	decoxytrifluotetracolumbate, 9. 874
arsenate, 9. 163	deuteroctocolumbate, 9. 864
	deuterohexatantalate, 9. 901
calcium nitrite, 8. 488	deuterohexavanadate, 9. 765
totrasulphate, 3. 811	hexahydrate, 9. 765
cerous nitrite, 8. 496	deuterotetracolumbate, 9. 864
cobaltous sulphate, 14. 781	deuterotetracosivanadate, 9. 765
diamminochromate, 11. 263	deuterotetratantalate, 9. 901
ferrie sulphide, 14. 167	deuterotetravanadate, 9. 765
ferrous sulphate, 14. 297	decahydrate, 9. 765
lead hexanitrite, 8. 498	hemiheptahydrate, 9. 765
mercuric octochlorotetranitrite,	hevelydrate 9 765
8. 495	totrohydrate 0 785
nickel sulphate, 15. 474	tribydrate, 9, 765
octohydrotetrahypophosphate, 8. 936	——————————————————————————————————————
	— dialuminium dihydropentamesodisili-
oxyquadrichromate, 11. 263	
oxytrischromate, 11. 263	cate, 6. 748 —— dialuminohexasilicate, 6. 665
phosphatohemipentamolybdate,	
11. 669	dialuminyl orthosilicate, 6. 567
selenatosulphate, 10. 929	diamidodiphosphate, 8, 711
strontium nitrite, 8. 488	diamidophosphate, 8, 707
sulphatoselenate, 10. 929	diamminomonoxide, 8. 245
triorthoarsenate, 9. 163	diagrantologide, 8. 432
triterohexavanadate, 9. 767	diamenatoheptadecatungstate, 9. 213
tungsten tetramminoenneachlo-	diarsenatohexatungstate, 9. 213
ride, 11. 842	diarsenitoctomolybdate, 9. 131
cupric carbonate, 3. 278	diarsenitopentamolybdate, 9. 131
nitrite, 8. 490	diazodisulphonate, 8. 683
phosphate, 8 . 290	—— diazomonosulphonate, 8. 683
selenate, 10. 859	dibarium trimetasilicate, 6. 371
tetrametaphosphate, 8. 293	dibismuthide, 9 . 635
thiosulphate, 10. 534	diborate, 5. 77
trisulphite, 10. 276	trans-dibromodiamidosulphonatopla-
cuprosic heptasulphite, 10. 278	tinite, 8. 644
	dibromodiiodostannite, 7. 461
tetrasulphite, 10. 278	—— dibromodinitritoplatinite, 8. 522

Potassium dibromotetranitritoplatinate, 8.	Potassium trans-diiododiamidosulphonato-
524	diplatinite, 8. 645
	— diiododinitritopalladite, 15. 681
dicadmium sulphate, 4. 638	
dicalcium cadmium sulphate, 4. 640	—— diiododinitritoplatinite, 8. 522
zinc sulphate, 4. 640	—— dimagnesium hydrodialuminotriortho-
——— dichloroalaninoplatinite, 16. 267	silicate, 6 . 608
dichlorocuprite, 3. 163	—— dimanganese oxyoctofluoride, 12. 347
—— dichlorodiamidosulphonatoplatinite, 8.	—— dimercuric sulphide, 4. 956
644	— dimercuride, 4. 1015
	— dimetaphosphate, 8. 985
cis-dichlorodiamidosulphonatoplati-	
nite, 8. 644	—— dimolybdate, 11. 581
trans-dichlorodiamidosulphonatoplati-	—— dimolybdatotetratungstate, 11. 796
nite, 8 . 645	—— dimolybditomolybdate, 11. 593
—— dichlorodinitritoplatinite, 8. 522	—— dinitratotellurate, 11. 119
—— dichloroglycineplatinite, 16. 267	—— dinitrosylsulphide, 8. 441
—— dichlorotetrabromoplatinate, 16. 382	—— dinitrosylsulphite, 8. 434
—— dichlorotetranitritoplatinate, 8. 524	dinitroxyltetranitritoplatinite, 8. 518
—— dichromate, 11. 328	—— dioxide, 2. 487
didicovanadate, 9. 802	—— dioxydifluochromate, 11. 365
hexahydrate, 9. 802	—— dioxydisulpharsenate, 9. 329
didymium chromate, 11. 287	—— dioxydisulphomolybdate, 11. 654
sulphite, 10. 302	dioxydisulphotungstate, 11. 860
diferride, 13. 527	—— dioxyenneasulphodicuprate, 3. 229
diferrisulphatotetrasulphite, 10. 313	—— dioxytetraiodotricarbonatotetraplum-
difluodithionate, 10. 599	bite, 7. 854
difluohexavanadate, 9. 802	—— dioxytetramolybdate, 11. 613
—— difluopentachlorodithallate, 5. 447	—— dioxytrifluomolybdate, 11. 613
diffustallurate 44 100	
difluotellurate, 11. 108	dipalladite, 15 . 657
—— difluotetravanadate, 9. 802	—— diperchromate, 11. 357
—— dihydrated palladous tetranitrite, 8.	—— diperhydroxycarbonate, 6.85
514	dipermanganite, 12. 275
tetranitritoplatinite, 8. 518	dipermolybdate, 11. 607
	diphosphate, 2. 862
dihydroantimonate, 9. 447, 448	
dihydroarsenate, 9. 154	diphosphatoctodecavanadatoennea-
dihydroarsenatomolybdate, 9. 206	molybdate, 9. 833
—— dihydroarsenatotrimolybdate, 9. 208	diphosphatoctovanadatotetradeca-
dihydroarsenitopentamolybdate, 9.131	molybdate, 9. 833
dihydrochromiarsenate, 9. 205	diphosphatodecavanadatoctodeca-
dodoobydrote 0 905	
	molybdate, 9. 833
neptanyarate, 9. 205	—— diphosphatodecavanadatohenamolyb-
—— dihydroferriarsenate, 9. 227	date, 9. 833
—— dihydrohexasilicate, 6. 337	diphosphatodecavanadatotrideca-
dihydrohexasulphitosmate, 10. 325	molybdate, 9. 833
—— dihydrohypophosphate, 8. 935	diphosphatodivanadatoheptatung-
dihydromanganidiorthophosphate, 12.	state, 9. 835
461	diphosphatododecavanadatododeca-
dihydro-octosilicate, 6. 337	molybdate, 9. 833
dihydrophosphatohemipentamolyb-	diphosphatoheptadecavanadatoennea-
date, 11. 668	molybdate, 9. 833
dihydrophosphatomolybdate, 11. 670	diphosphatohexavanadatopentadeca-
dihydrophosphide, 8. 834	
	molybdate, 9. 833
dihydrophosphite, 8. 914	—— diphosphatotetradecavanadatohena-
— dihydropyroantimonate, 9. 449	molybdate, 9. 833
—— dihydropyrophosphate, 2. 865	- diphosphatotetravanadatoicosimolyb-
dihydropyrophosphite, 8. 922	date, 9. 832
—— dihydrorthophosphate, 2. 858	diplatinic triacontatungstate, 11. 803
—— dihydrotetrachlorotetrasulphite, 10.	—— diplumbide, 7. 608
325	—— diselenitododecamolybdate, 10. 837
—— dihydrotetraselenitohexavanadate, 10.	—— diselenitopentamolybdate, 10. 837
835	dihydrate, 10. 837
—— dihydrotetrasilicate, 6. 337	pentahydrate, 10. 837
— dihydrotrialuminotriorthosilicate, 6.	—— disilicate, 6 . 336
608	dihydrated, 6. 33.7
— dihydrotrioxysulpharsenate, 9. 328	——————————————————————————————————————
dihydroxydiiodotriarsenite, 9. 257	—— disilicozirconate, 6. 854
—— dihydroxylaminsulfate, 8. 676	- disilver cobaltic hexanitrite, 7. 504
dihypovanadatoctovanadate, 9. 793	- trihydroxydiamidophosphate, 8.
dihypovanadatovanadate, 9. 793	704
—— diimidomonosulphonate, 8. 683	—— disodium cobaltic nitrite, 8. 504
di-iodate, 2. 335	—— distannide, 7. 345

Potassium disulphatoaluminate, 5. 343	Potassium ethylaminetrichloroplatinite, 16.
	271
	—— ethylenetrichloroplatinite, 16. 272
—— disulphatoaurate, 3. 615	—— monohydrate, 16. 272
disulphatobismuthite, 9. 701	—— ethylxanthate, 6 . 119 —— ferrate, 18 . 930
disulphatochromiate, 11. 454	—— ferrate, 18 . 930
disulphatocuprate, 3. 257	ferric alum, 14. 339
—— disulphatodiplumbite, 7. 820	———— amminochlorides, 14. 103 ————————————————————————————————————
—— disulphatoindate, 5. 405	arsenate, 9. 227
disulphatophosphate, 8, 948	bromide, 14. 124
disulphatoplumbite, 7. 820	chromate, 11. 309, 310
disulphatovanadite, 9. 820	decatungstate, 11. 832
disulphide, 3. 630, 632	———— difluotrichloride, 14. 77
cis-disulphitotetramminocobaltate, 10.	——————————————————————————————————————
317	dimetasilicate, b. 914, 919
disulphohydroxyazotate, 8. 675	dioxydihydrotrisulphite, 10. 312
dithioaurite, 8. 612	dioxydodecasulphate, 14. 341
dithionate, 10. 584	decanydrate, 14. 342
dithiophosphate, 8. 1068	decahydrate, 14, 342 ————————————————————————————————————
—— ditungstate, 11. 809 —— dihydrate, 11. 809	diovytriaulahite 10 212
	dioxytrisulphite, 10. 312 dioxyundecieschromate, 11. 310
diuranate, 12. 66	disulphate, 14. 339
	dibudrate 14 340
trihydrate, 12. 66	dihydrate, 14. 340 dodecahydrate, 14. 339 tetrahydrate, 14. 340
— diuranyl disulphite, 10. 308	tetrahydrate 14 340
——— enneafluoride, 12. 79	dodecamolybdate, 11. 603
———— heptafluoride, 12. 79	dodecating state, 11, 000
orthovanadate, 9. 788	—— dodecatungstate, 11. 832 —— enneadecaoxybischromate, 11.
pentahypophosphite. 8, 889	310
——————————————————————————————————————	enneaoxyquaterchromate, 11.310
—— divanadatodimolybdate, 9. 783	heptasulphate, 14. 339
- divanadatododecamolybdate, 9. 783	hexafluoride, 14, 8
divanadatohexamolybdate, 9. 783	——————————————————————————————————————
divanadatophosphate, 9. 828	——— hydroxytetrasulphate, 14. 343
—— divanadatotetratungstate, 9. 786	—— metasilicate hydrated, 6. 920
divanadatotrimolybdate, 9. 783	nitrate, 14, 387
- divanadium dihydroaluminotriortho-	oxygentieschromate 11 310
silicate, 6.836	pentchloride; 14. 102
—— divanadyl trisulphate, 9. 824	—— pentadecoxydecieschromate, 11.
divanadyldodecafluovanadate, 9. 801	310
—— divanadylhydrodecafluoride, 9. 799	—— pentoxydecieschromate, 11. 310
—— divanadylpentafluoride, 9. 800	——————————————————————————————————————
—— divanadyltrihydrohenafluoride, 9. 799	pyroarsenate, 9. 227 selenatosulphate, 10. 930
dizinc sulphate, 4. 637	—— selenatosulphate, 10. 930
—— dodecaborate decahydrated, 5. 78	
—— dodecamercuride, 4. 1014	——————————————————————————————————————
—— dodecatitanate, 7. 51	triorthoarsenate, 9. 227
enneahydrated, 7. 51	trioxynovieschromate, 11. 310
—— dodecavanadatohexadecamolybdate,	decahydrate, 11. 310 hexahydrate, 11. 310 trioxysexieschromate, 11. 310
9. 783	————— hexahydrate, 11. 310
—— dodeciesmethylaminosexiesdimethyl-	trioxysexieschromate, 11. 310
aminochloroplatinate, 16. 323	trisulphate, 14, 339, 344
—— dotricontapermanganite, 12. 276	tungstate, 11. 801
—— enneabromodiperrhodite, 15. 581	—— ferrite, 13. 908
enneabromothallate trihydrated, 5.	ferrisulphatodisulphite, 10. 313
452	—— ferrisulphatosulphite, 10. 312
enneachlorodialuminate, 5. 322	—— ferrodinitrosylsulphide, 8. 442
enneachlorodiantimonite, 9. 479	ferroheptanitrosylsulphide, 8. 440
enneaiododiantimonite, 9. 502	ferronitrosylthiosulphate, 8. 442
enneahydrododecaselenitohexavana-	ferrosic bromide, 14. 126
date, 10. 835	
—— enneafluoaluminate, 5. 307	ferrous carbonate, 14. 369
enneahydropentalanthanate, 5. 628	
—— enneaiodothallate trihydrated, 5. 461	
	selenate, 10. 881
ethyl aβ-dithiocarbonate, 6. 120	dihydrate 10 881
- a-thiocarbonate, 6. 120	
u-viiiooui ooiiavo, v. 120	areamajumo, av. oca

Potassium ferrous selenatoselenate, 10. 930	Potassium heptahydrotriphosphite, 8. 914
sulphate, 14. 290	—— heptaiodobismuthite, 9. 677
dihvdrate, 14, 291	heptaiododibismuthite, 9. 677
hexahydrate, 14. 290	heptaiodoplumbite, 7. 774
hexahydrate, 14. 290 tetrahydrate, 14. 291	heptamercuride, 4. 1015
	heptanhydrosulphatosulphate, 10. 345
sulphide, 14. 166	heptavanadatododecavanadatotetra-
tetrachloride, 14. 32	cosiphosphate, 9. 826
——————————————————————————————————————	hepteroctodecavanadate, 9. 765
—— —— monohydrate, 14. 32	heptoxyenneasulphotatramolybdate,
tetrafluoride, 14. 3 trichloride, 14. 32	11. 655
trichioride, 14. 32	hove bornto 5, 78
	hexaborate, 5. 78 hexabromoiridate, 15. 777
fluobismuthate, 9. 660 fluobismuthite, 9. 659	— hexabromoselenate, 10. 901
fluoborate, 5. 126	hexabromotellurite, 11. 104
fluochromate, 11. 365	hexachloroaluminate, 5. 322
——— fluodidymates, 5. 638	hexachloroantimonite, 9. 480
.— fluodivanadate, 9. 802	hexachlorobismuthite, 9. 677
fluogermanate, 7. 269	hexachlorohypoantimonate, 9. 485
fluoiridate, 15. 757	hexachloroindate dehydrated, 5. 400,
—— fluomanganite, 12. 347	402
fluopalladite, 15 . 658	hexachloropalladite, 15. 669
fluoperborate, 5. 129	hexachloroperrhodite, 15. 578
fluoplatinate, 16 . 250	hexahydrate, 15 . 578
——————————————————————————————————————	
—— fluoride, 2. 512; 11. 368	—— hexachloroperruthenite, 15. 531
fluorometaphosphate, 2. 867	hexachloroplatinatohypoantimonate,
fluorophosphate, 2. 850	9. 485
fluorosulphate, 2. 691	hexachlorostannatohypoantimonate,
fluoscandate, 5. 489	9. 485
fluosilicate, 6. 947	hexachlorostannite, 7, 433 hexachlorotellurite, 11, 102
	hexachlorothallate dehydrated, 5. 445
β-salt, 7. 423	hexachlorotribromodiantimonite, 9.
—— fluostannite, 7. 423	511
—— fluosulphonate, 10. 685	hexadecabromoplumbite, 7. 751
fluotetravanadate, 9. 802	hexadecabromotriantimonite, 9. 496
—— fluotitanate, 7. 71	hexadecachlorotriantimonite, 9. 480
hydrated, 7. 71	
fluozirconate, 7. 140	- hexadecapermanganite, 12. 276
- gadolinium chromates, 11. 288	hexafluoaluminate, 5. 307
germanium sulphate, 7. 269	
—— gmelinite, 6 . 735 —— gold amidosulphonate, 8 . 642	hexafluoferrate, 14. 8
harmotome, 8. 767	hexafluohafmate, 7. 171
hemicosihydrodecaselenitohexavana-	hexahydroarsenatoctodecamolybdate,
date, 10. 835.	9. 211
hemienneamercuride, 4. 1015	hexahydroarsenatohemipentamolyb-
hemimercuride, 4. 1015	date, 9. 207
—— hemipentaphosphide, 8. 835	hexahydrotetraselenitohexavanadate,
—— hemiplumbide, 7. 608	10. 835
—— hemistannide, 7. 345	
hemithallide, 5. 426	353
—— hemitritelluride, 11. 41 —— henachlorodihypoantimonate, 9. 485	hexahydroxydisulphatoindate, 5. 405
— henadecamercuride, 4. 1014	—— hexahydroxyplatinate, 7. 409; 16. 246
heptabismuthite hemihydriodide, 9.	hexahypovanadatododecavanadato-
677	tetracosiphosphate, 9. 826
—— heptabromoaluminate, 5. 326	hexaiodobismuthite, 9. 677
heptadecahydroctoselenitohexavana-	hexaiodostannite, 7. 460
date, 10 . 835	enneahydrated, 7. 460
heptaennitabismuthide, 9. 635	hexaiodotellurite, 11. 106
heptafluoantimonate, 9. 468	hexamercuride, 4. 1015
heptafluoarsenate, 9. 236	hexamidostannate, 8. 265
heptafluocolumbate, 9. 872	—— hexanitritobismuthite, 8. 499 —— hexaphosphatoctovanadatoctodeca-
—— heptafluodithallate, 5 . 437 —— heptafluotantalate, 9 . 916	tungstate, 9. 835
—— heptafluozirconate, 7. 141	
—— heptahydrododecamolybdate, 11. 596	hexarsenite, 9. 120
I A A	

Potassium hexaselenitoheptadecamolyb-	Potassium hydrotetroxytrisulphodi-
date, 10. 836	molybdate, 11 . 655
hexasilicate, 6 . 328	—— hydrotrifluothallite, 5. 437
hexasulphide, 2 . 630, 640	hydrotriiodotrichlorostannite, 7. 461
hexatellurite, 11. 79	hydrotrioxysulpharsenate, 9. 328
hexathionate, 10. 628	- — hydroxide, 1. 521; 2. 495
—— hexatitanate, 7. 51	and hydrogen, 1. 303
hexatungstate, 11. 829	properties, 2. 500
hexauranate, 12. 68	purification, 2. 499
decahydrate, 12. 68	uses, 2. 509
hexahydrate, 12. 68	hydroxychlororuthenate, 15, 531
hexavanadatododecatungstate, 9. 786	hydroxylamine hydrouranate, 12. 62
hexavanadatoicosimolybdate, 9. 783	
	——————————————————————————————————————
	hydroxylaminopentahydromolybdate,
	11. 552
	hydroxynitrilodisulphonate, 8. 675
hydrazinomonosulphonate, 8. 683	hydroxynitrilomonosulphonate, 8, 671
hydride, 2 . 481	hydroxypentabromoruthenate, 15, 538
hydroarsenate, 9, 154	hydroxypentachloroplatinate, 16. 335
hydroarsenatodimolybdate, 9, 206	- hydroxypentachlororuthenate, 15. 536
hemiheptahydrate, 9. 206	- hydroxypentachlorosmate, 15, 720
hydroarsenatoctomolybdate, 9, 209	- hydroxyperosmate, 15. 713
hydrobromide, 2 . 587	hydroxyperoxylamidosulphonate, 8.
hydrocarbonate, 2, 763, 774, 778	686
hydrochloroplatinite, 16, 285	- bydroxytetrasulphatocuprate, 3, 259
hydrochlorosulphitosmate, 15. 726	—— hyperditungstate, 11, 836
hydrochlorotetranitritoplatinite, 8, 521	hyperiridite, 15 . 756
hydroctofluoplumbate, 7, 705	hyperoxypertitanate, 7. 65
hydrodiffuodiselenate, 10. 903	hypertungstate, 11, 836
hydrodiiodotrichlorostannite, 7. 461	hypoantimonate, 9. 437
hydrodioxydisulphoantimonite, 9, 578	hypoborate, 5, 38, 120
hydrodiphosphatotellurate, 11, 120 heptadecallydrate, 11, 120	hypobromite, 2, 269 hypoiodite, 2, 269
tetrahydrate, 11, 120	hypomolybdatomolybdate, 11. 604
hydrodisilicate, 6. 336	hypomolybditopentamolybdate, 11.
hydroheptafluotantalate, 9. 916	593
hydrohypophosphate, 8, 935	- hyponitrite, 8. 411
hydrometasulphotetrantimonite, 9.535	hyponitritosulphate, 8, 688
hydromonamidophosphate, 8. 706	- hypophosphate, 8, 935
hydronitrate, 2 , 821	hypophosphite, 8, 882
hydro-orthophosphate: secondary, 2.	hypophosphitomolybdate, 8, 888
851	hypophosphitotungstate, 8, 888
hydro-oxypentafluocolumbate, 9. 874	hyporuthenite, 15, 517
hydropentasulphatocolumbate, 9, 882	hyposmate, 15. 728
hydropermonosulphomolybdate, 11.	- hyposulphite, 10, 182
hydrophosphatodimolybdate, 11, 670	- hypovanadato-vanadatotungstate, 9.
hydroplumbite, 7. 666	hypovanadous sulphate, 9, 818
hydropyrosulphate, 10. 446	icosihydrodecaselenitohexavanadate,
	10. 835
hydropyrotellurite, 11. 79	imidomolybdate, 8. 267
hydroselenate, 10. 858	imidomonosulphonate, 8. 647
hydroselenatouranate, 10. 877	imidosulphinite, 8. 646
—— hydroselenide, 10 . 768	iodate, 2. 332
— hydroselenite, 10, 822	- hydrated, 2. 335
—— hydroselenophosphite, 10. 931	iodatophosphate, 2. 851
hydrostannite, 7. 391	iodatosulphate, 2. 691
	iodide, 2. 596; 11. 368 impurities, 2. 598
hydrosulphates, 2. 677, 678, 679, 682	properties, chemical, 2, 605
	- — properties, chemical, 2, 500
hydrosulphite, 10. 268	X-radiogram, 1. 638
—— hydrosulphitochlorosmate, 15. 719	iodoarsenite, 9. 256
hydrosulphoplatinite, 16. 395	iodoaurate, 3. 610
hydrotellurate, 11. 91	iodobisarsenite, 9. 256
hydrotetramidophosphate, 8. 716	iodochromate, 11. 429
hydrotetraselenitohexavanadate, 10.	iodoiridate, 15 . 779
835	iodopalladite, 15. 681

	· · · · · · · · · · · · · · · · · · ·
Potassium iodoperiridite, 15. 778 —— iodoplatinate, 15. 390	Potassium luteodivanadatophosphate, 9.
iodoplatinite, 16. 386	magnesium alloys, 4. 666
iodosmate, 15. 725	arsenate, 9. 179 heptahydrate, 9. 179
iodosmite, 15. 724	———— heptahydrate, 9. 179
iodostannate, 7. 463	mononydrate, y. 179
iodosulphate, 2. 691	
—— iodosulphonate, 10. 689 —— iridate, 15. 756	
iridic chloronitrite, 8. 514	chloride 4 307
hexanitrite, 8 . 514	———— chlorosulphate, 4, 343
—— iridite, 15 . 753	chromate, 11, 276
iridium chlorotrisulphite, 10. 324	——————————————————————————————————————
——————————————————————————————————————	nexanydrate, 11. 276
——————————————————————————————————————	——————————————————————————————————————
	dimetaphosphate, 4. 395
	digulphatochromate 11 465
—— iridous sulphite, 10. 323	
iron antimonide, 9. 413	fluoride, 4. 297
diselenide, 10 . 800 lead nitrite, 8 . 501	
isopropylstannonate, 7, 410	5. 99
isotetrahydroborododecatungstate, 5.	hexarsenate, 9. 179
110	hydrocarbonate, 4. 367
—— lanthanum carbonate, 5. 665	hydrodiorthoarsenate, 9, 179
(di)hexasulphate, 5. 658	dihydrate, 9. 179
——————————————————————————————————————	— — pentadecahydrate, 9, 179
nitrate, 5, 670	pentahydrate, 9, 179 tetrahydrate, 9, 179
orthophosphate, 5. 675	hydrophosphete 4 284
	hydrosulphate, 4. 342
	——————————————————————————————————————
	manganous sulphates, 12. 423
tetrachromate, 11. 287 lead arsenate, 9. 195	———— metasilicate, 6 . 407
	—— molybdate, 11. 562 —— nickelous sulphate, 15. 475
cobaltic nitrite, 8. 505, 506	nitrite, 8 . 489
dimetaphosphate, 7. 881	—— mitrosylcyanide, 8. 427 —— orthopertantalate, 9. 914
dinitritodinitrate, 7. 872	orthopertantalate, 9. 914
	paratungstate, 11. 818 perorthocolumbate, 9. 870
	persulphate, 10. 479
	—— phosphate, 4. 383, 384
678	selenate, 10. 864
—— molybdate, 11. 569 —— nickel nitrite, 8. 512	—— —— hexahydrate, 10. 864 —— —— tetrahydrate, 10. 864
nickel nitrite, 8, 512	tetrahydrate, 10. 864
— nitrilotrisulphonate, 8. 669 — octonitrilotetranitrate, 7. 872; 8.	
498	
orthophosphate, 7. 876	tungstate, 11. 788
orthosulphoantimonite, 9. 549,	—— zinc sulphate, 4. 641
552	manganate, 12. 283
——————————————————————————————————————	—— manganatoperiodate, 2. 416 —— manganatopermanganate, 12. 331
trithiosulphate, 10, 552	—— manganese arsenate, 9. 221
—— lithium alloys, 2. 480	diamminoamide, 8. 272
carbonate, 2. 748, 768	—— dodecachloride, 12. 379
chromate, 11. 257	———— hexachloride, 12. 380
hydrotrialuminotriorthosilicate,	hexafluoride, 12. 347
6. 608 ————————————————————————————————————	octofluoride, 12. 347 orthosulphoantimonite, 9. 553
cate, 6 . 608	oxytetrafluoride, 12. 347
molybdate, 11. 558	penterotetradecavanadate, 9. 791
silicate, 6. 337	selenatosulphate, 10. 730
	sulphatoselenate, 10. 930 tetrahydrodihypophosphate, 8.
——————————————————————————————————————	939
—— luteodivanadatodiphosphate, 9. 828	triterodecavanadate, 9. 790

Potassium manganese triterodecavanadate	Potassium mercuria oxytrisulphite, 10. 296
hexadecahydrate, 9, 790	—— pentanitrite, 8. 494 —— phosphatohenatungstate, 11. 868
——————————————————————————————————————	
dodecamolybdate, 11. 602	monohydrated, 6. 956
henicosisulphate, 12. 431	pentahydrated, 4. 956
—— — molybdate, 11. 572	sulphite, 10. 296
———— pentachloride, 12. 379	monohydrate, 10. 296
——————————————————————————————————————	tetrabromide, 4. 892
pyrophosphate, 12. 462	
pentahydrate, 12. 463	tetrathiosulphate, 10. 548
	hydrated, 4. 892
sulphatoselenate, 10. 930	triiodide, 4 . 929
tetraselenate, 10. 880	hydrated, 4. 930
——————————————————————————————————————	
	mercurous chromate, 11. 282
manganous bichromate, 11, 309 bromide, 12, 383	mesodistannate, 7. 417 metaborate, 5. 77
earbonate, 12. 439	netabromoantimonate, 9. 497
cobaltous sulphate, 14, 783	metachloroantimonate, 9, 491
	metachromite, 11. 197
disulphate, 12. 418	- metacolumbate, 9, 863
——————————————————————————————————————	··· metantimonate, 9. 451
hexahydrate, 12, 419	— metaphosphate, 2, 867 — metaphosphatometaborate, 5, 79
tetrahydrate, 12, 419 ferrous sulphate, 14, 301	nietaplumbate, 7. 695
——————————————————————————————————————	metarsenite, 9, 119
	metaselenoarsenate, 10. 874
hexamminotrichloride, 12. 366	· · · · metasilicate, 6. 333
—— — nickelous sulphate, 15. 477	
———— oxytrisulphate, 12, 420	hemihydrated, 6, 333
——————————————————————————————————————	monohydrated, 6. 334 tetrahydrated, 6. 334
permangantomoryodate, 11. 979 phosphate, 12. 454	—— metasulfazate, 8. 675
phosphatohemipentamolybdate,	metasulpharsenate, 9. 317
11. 669	—— metasulpharsenatosulphomolybdate,
pyrophosphate, 12. 457	9. 322
octohydrate, 12. 457	metasulpharsenatoxymolybdate, 9.
selenate, 10. 878 hexahydrate, 10. 879	metasulpharsenite, 9. 290
sulphite, 10. 311	metasulphazilate, 8. 680
tetrachloride, 12. 367	- metasulphoantimonite, 9. 534
tetrasulphide, 12. 397	metasulphobismuthite, 9. 689
trichloride, 12. 366	metasulphotetrantimonite, 9. 535
dihydrated, 12, 366	
	metatantalate, 9. 901
——————————————————————————————————————	metatetrarsenite, 9. 119
——————————————————————————————————————	metatitanate, 7. 50
trisulphite, 10. 311	tetrahydrated, 7. 51
mephite, 6 . 2	—— metatungstate, 11. 824
mercurammonium hydroxysulphonate,	octohydrate, 11. 824
8. 643	——————————————————————————————————————
—— mercuriate, 4. 779 —— mercuria amidosulphonate, 8. 643	——— heptahydrate, 9. 765
bromosulphite, 10. 300	—— methyl stannonate, 7. 410
carbonate, 4. 982	—— molybdate, 11. 556
chlorosulphite, 10. 300	totritatrihydrate, 11. 556
chromate, 11. 284	— molybdatodecatungstate, 11, 796
cobalt nitrite, 8. 505	—— molybdatopentatungstate, 11. 796 —— molybdatosulphate, 11. 658
dibromodichloride, 4. 892 hexathiosulphate, 10. 548	— molybdatotetratungstate, 11. 796
hydroamidosulphonate, 8. 644	molybdatotrisulphate, 11. 658
nickel nitrite, 8. 512	—— molybdatotritungstate, 11. 596
octothiosulphate, 10. 548	—— molybdenum dichloride, 11. 628
oxydisulphite, 10. 296	dioxytetrachloride, 11, 632
monohydrate, 10. 296	dioxytrichloride, 11. 632
VOL. XVI.	2 L

Potassium molybdenum enneafluoride, 11.	Potassium nickel trifluoride, 15, 405
610	- trisulphate, 15, 470
hexabromide, 11. 635	- triterodecavanadate, 9, 792
	- nickelate, 15, 401
pentabromide, 11. 635	nickelous hoxadecamolybdate, 11, 604 pernickelite, 15, 396
pentachloride, 11, 622	nitrate, 2. 802; 13. 615
- tetrachlorotetrabromide, 11. 640	hydrogen, 1. 303
tetrachlorotetraiodide, 11. 640	nitrates, properties, chemical, 2, 820
tetrafluoride, 11. 610	physical, 2. 808
- trioxytetradecafluoride, 11, 611	- nitratoaurate, 3, 616
molybdenyl pentabromide, 11, 637 pentachloride, 11, 630	nitratoplumbite, 7, 865 nitratosilicate, 6, 345
tetrabromide, 11. 638	nitratosulphite, 8, 692
- molybdosic sulphate, 11, 657	nitratosulphotungstate, 11, 862
- molybdous heptachloride, 11, 619	nitride, 8 , 99
- octochloride, 11. 618	nitrilodiphosphate, 8, 714
monamidodiphosphate, 8, 710	nitrilodithiophosphate, 8, 727
monamidophosphate, 8, 706 monobismuthide, 9, 635	nitrilomolybdate, 8, 267
monobismuthide, 9 . 635 monofluotrihydrorthophosphate, 8 .998	nitrite, 8, 473
- monomercuride, 4. 1015	hemihydrated, 8, 474
monopermolybdate, 11. 607	nitritodichromate, 11, 476
monoselenothiosulphate, 10. 925	nitritoperosmite, 15. 728
- monoselenotrithionate, 10. 927	nitritoplatinite, 8, 518
monostannide, 7. 345	- nitritotrichromate, 11. 476
- monosulphide, 2. 622	nitrodichromate, 8, 546 nitrohydroxylaminate, 8, 305
hydrated, 2, 624 properties, chemical, 2, 627	nitrosylbromoperruthenite, 15. 537-8
	nitrosylbromoruthenate, 15. 537
- monothiophosphate, 8. 1060	nitrosylbromosmate, 15, 723
- monoxide, 2. 485	nitrosylchloroperruthenite, 15, 532
neodymium carbonate, 5. 666	dihydrate, 15, 532
chromate, 11. 287	- nitrosylchlororuthenate, 15, 536
- nickel aquoquinquiespyridinosulphate, 15. 465	
- azide, 8, 355	nitrosyliodosmate, 15, 725
cadmium nitrite, 8. 512	nitroxyldichromate, 8, 546
carbonate, 15 . 486	nitroxyldisulphonate, 8, 684
	nitroxylsulphate, 10, 345
dihydrate, 11. 313	- mitroxylsulphonate, 8, 699
	occurrence, 2, 423
deuterodecavanadato, 9. 792	- octoborate, 5. 78 octobromodiplumbite, 7. 752
- dihydrophosphatohemipenta-	octobromotriplumbite, 7, 751
molybdate, 11. 670	octodecamercuride, 4, 1014, 1015
dimetaphosphate, 15, 496	octofluodecavanadate, 9. 802
dimolýbdatotetratungstate, 11.	octofluodivanadate, 9. 802
796 disulphate, 15 . 469	octomolybdate, 11, 596 octopermanganite, 12, 276
fluozireonate, 7. 142	octosulphate, 10. 447
hexanitrite, 8. 511	octotungstate, 11. 830
hydrocarbonate, 15. 486	orthoarsenate, 9, 154
hypophosphate, 8. 940	· · · orthoarsenite, 9. 117
nitritobismuthite, 8. 512	orthochromite, 11. 197
nitrosylthiosulphate, 10. 558	orthocolumbate, 9, 863
	orthoctovanadate, 9. 765 orthododecacolumbate, 9. 865
penteroheptadecavanadate. 9.792	orthodexacolumbate, 9. 864
persulphate, 10. 481	orthohexatantalate, 9. 902
phosphatohemipentamolybdate,	orthopertantalate, 9. 914
11. 670	——— hemihydrate, 9. 914
	orthophosphate: normal, 2. 847
	properties, chemical, 2. 849 physical, 2. 848
selenatosulphate, 10, 930 sulphatofluoberyllate, 15, 478	orthoselenoantimonite, 10. 834
sulphatoselenate, 10. 930	orthoselehoantmonte, 10. 334
tetrafluoride, 15 . 4 05	orthosulpharsenite, 9. 290
tetrasulphide, 15 . 443	orthosulphoantimonate, 9. 572
trichloride, 15. 419	enneahydrate, 9. 572

Potassium orthosulphoantimonate hemi-	Potassium paratrititanate, 7, 51
enneahydrate, 9, 572	paratrizirconate, 7. 135
	- paratungstate, 11. 816
pentahydrate, 9. 572	decahydrate, 11. 816
trihydrate, 9, 572	henahydrate, 11. 816
orthosulphoantimonite, 9, 534	
orthosulphocolumbate, 9. 881	nontabarium octomotociliante 6 271
	pentabarium octometasilicate, 6. 371
	pentaborate, 5. 78
orthosulphotetrarsenite, 9. 291	pentabromobismuthite, 9, 673
orthosulphovanadate, 9. 817	pentabromodiplumbite, 7, 751
orthotetracolumbate, 9. 684	pentabromoperrhodite, 15. 581
orthovanadate, 9. 764	pentacalcium tetrafluohexametosili-
hexahydrate, 9 . 764	cate, 6. 369
- osmate, 15 . 706	pentachloroantimonite, 9. 480
osmiamate, 15 . 727	pentachloroaquoperrhodite, 15. 578
osmic decasulphide, 10, 324	pentachlorobismuthite, 9. 666
tetradecasulphide, 10. 325	hemipentahydrate, 9. 666
osmious dihydropentasulphite, 10. 324	pentachlorobromobismuthite, 9. 673
osmium disulphite, 10. 324	pentachlorobromoplatinate, 16. 382
dodecachloride, 15 , 720	pentachlorodiplumbite, 7. 728
··· osmyl bromide, 15, 724	pentachloroferrate, 14, 102
chloride, 15. 721	pentachloromercuriate, 4. 856
dihydrate, 15 . 721	
nitrite, 15 . 729	pentachloronitritoplatinate, 8. 524
oxydichloride, 15 . 721	— — pentachloroperrhodite, 15 . 578
oxynitrite, 15 . 729	dihydrate, 15 . 578
oxalatodinitritoplatinate, 8, 514	monohydrate, 15 . 578
oxalatotriamminochromate, 11. 409	pentachloropyridinoiridate, 15, 768
oximidosulphonate, 8, 695	pentachloropyridinoperiridite, 15. 765
oxychloroperruthenite, 15. 524	pentachlorothallate, 5, 446
oxydihydrophosphide, 8 . 833	pentachlorovanadite, 9. 804
- oxydiiodocarbonatoplumbite, 7. 854	pentacyanidothiosulphate, 10. 557
	pentafluoaluminato, 5. 306
oxydiiodohexadecaantimonite, 9 . 508	pentafluoantimonite, 9, 465
oxydodecaffuodiarsenate, 9, 237	pentafluoferrate, 14. 8
oxyfluoperplumbate, 7, 705	pentafluotellurite, 11. 98
oxyfluopertitanate, 7. 69	pentafluotitanite, 7. 66
oxyhexafluocolumbate, 9. 873	pentafluovanadite, 9 . 797
oxyhexafluoride, 9 . 679	pentafluozirconate, 7. 140
- oxyhexafluotantalate, 9. 918	pentahydrohpyophosphate, 8. 935
oxyhexafluotetratantalate, 9. 918	pentahydrosilicododecamolybdate, 6.
oxyhexanitritoplatinite, 8. 515	870
- oxyhexasulphopyrovanadate, 9 . 817	pentaiodobismuthite, 9. 677
oxyhydroheptafluotantalate, 9. 918	pentaiodonitritoplatinate, 8. 524
	pentamercuride, 4. 1015
oxyhydrotetraphosphide, 8, 833	
oxyiodoantimonite, 9 . 425, 585	pentamolybdate, 11. 593
oxynitrosotetrasulphite, 10. 326	pentamolybdatodisulphite, 10. 307
oxyoctonitritotriplatinite, 8. 514	pentanitratothallate, 5. 477
— — oxyorthovanadate, 9. 764	pentapermanganite, 12. 275
oxypentachlorotungstite, 11. 849	pentaphosphide, 8. 834
oxypentafluocolumbate, 9. 873	pentaselenatodiarsenate, 10. 875
monohydrate, 9. 873	pentaselenatodiphosphate, 10. 932
—— oxypentafluomolybdate, 11. 611, 612	pentaselenide, 10 . 768
oxyphosphatostannate, 7. 482	pentasilicate, 6 . 328
oxyphosphatotiranate, 7. 96	tetradecahydrated, 6. 337
oxysulfazotinate, 8. 685	pentasulphide, 2. 630, 636
oxytetrabromide, 11. 638	pentasulphocuprite, 3. 227
	—— pentatantalate, 9. 902
	—— pentathionate, 10. 627
	— pentatungstate, 11. 828
oxytrisulpharsenate, 9. 330	
—— oxytrisulphotungstate, 11. 860	penterotetradecatantalate, 9. 901
—— ozonate, 1. 908	—— pentoxydifluopernolybdate, 11. 615
— palladic hexanitrite, 8, 514	—— pentoxyfluodicolumbate, 9. 873
palladous iodonitrite, 8. 514	perborate hemiperhydrate, 5. 119
oxalatonitrite, 8. 514	———— hemihydrated, 5. 119
tetranitrite, 8. 514	—— percarbonate, 6. 833
paramolybdate, 11. 585	—— perceric carbonate, 5. 666
- parastannate, 7. 417	perchlorate, 1. 361, 591; 2. 393
parasulphomolybdate, 11. 652	percobaltic enneamolybdate, 11. 597
paratetrarsenite, 9. 119	—— perdecatungstate, 11. 836
paracottatistimo, v. 110	Transmitted and a way

Potassium perdiborate, 5, 120	Potassium platinic decoxide, 16. 248
perdicarbonate, 6. 86	
perdichromate, 11. 359	oxydisulphite, 10. 323
perdistannate, 7. 413	platinite, 16. 236
—— perdisulphomolybdate, 11. 654	platinosic sulphate, 16. 403
—— perferrate, 13 . 936	platinous decasulphite, 10. 323
perfluocolumbate, 9. 872	oxyphosphite, 16. 239
perhydroxycarbonate, 6. 85	tetrasulphite, 10. 322
periodates, 2. 407, 409, 410	dihydrate, 10. 323
—— periridite, 15 . 753	tetrahydrate, 10. 323
—— permanganate, 12, 303	relativem allows 16, 104
permanganitomolybdate, 11. 572, 573 permanganous octomolybdate, 11. 597	platinum alloys, 16. 194
- permetacolumbate, 9. 869	plumbide, 7. 608 plumbite, 7. 665
permolybdate, 11. 607	- potassamidosulphonate, 8. 642
permonostannate, 7, 413	
permonosulphomolybdate, 11. 653	praseodymium carbonate, 5. 665
permonouranate, 12. 73	chromate, 11. 287
trihydrate, 12. 73	(di) hexasulphate, 5. 658
pernickelate, 15, 401	sulphate, 5. 658
pernickelic enneamolybdate, 11. 597	preparation, 2. 445, 447
pernitrate, 8 . 384	properties, chemical, 2, 468
perorthocolumbate, 9. 869	· · physical, 2. 451
perosmite, 15 . 705	propylenetrichloroplatinite, 16. 272
peroxylamidosulphonate, 8. 685	purpureodocosivanadatodiphosphate,
peroxylaminosulphonate, 8, 685	9. 829
peroxypentafluocolumbate, 9. 874	purpureododecavanadatophosphate, 9.
peroxypentafluotantalate, 9. 918	829
perpyrocolumbate, 9, 869	purpureopentacosivanadatodiphos-
—— perpyrovanadate, 9. 795	phate, 9. 828
—— perrhenate, 12. 476 —— perrhodite, 15. 571	—— pyridinepentachloroplatinate, 16 . 312, 323
	- pyridinetrichloroplatinite, 16. 274
perselonate, 10. 852	pyroantimonate, 9. 449
— persulphate, 10. 477; 15. 151	pyroarsenate, 9. 154
perthiocarbonate, 6. 31	pyroarsenite hexahydrated, 9. 118
pertitanic sulphate, 7. 65°	pyrocarbonate, 6. 72
pertrimolybdate, 11. 608	pyrocolumbate; 9. 863
peruranate, 12 . 73	pyrophosphate, 2. 862
pervanadate, 9 . 795	pyrophosphatotungstate, 11. 874
perzirconate, 7. 132	pyroselenate, 10 . 858
phosphamide, 8. 834	pyroselenite, 10 . 823
phosphatoctotungstate, 11. 872	pyrosulpharsenate, 9. 317.
phosphatodecamolybdate, 11. 665	pyrosulpharsenatosulphomolybdate,
	9. 323
phosphatodichromate, 11, 482	pyrosulpharsenatoxymolybdate, 9, 331
phosphatododecamolybdate, 11. 863 phosphatododecatungstate, 11. 867	· decahydrate, 9. 331
hemiheptahydrate, 11. 867 hemitridecahydrate, 11. 867	pyrosulphite, 10 . 329
phosphatoenneamolybdate, 11. 666	pyrosulphoantimonite, 9. 534
phosphatoenneatungstate, 11. 871	—— pyrotellurite, 11. 79
phosphatohemihenacositungstate, 11.	pyrovanadate, 9. 764
869	tetrahydrate, 9. 764
phosphatohemiheptadecamolybdate,	rhenate, 12 . 478
11. 667	rhenium bromide, 12. 480
phosphatohemiheptadecatungstate,	
11. 872	iodide, 12 . 48 0
phosphatohenamolybdate, 11.664	rhodic dodecamolybdate, 11. 603, 604
phosphatohenatungstate, 11. 868	rhodite, 15 . 571
phosphatotetrachromate, 11, 482	rhodium alum, 15. 588
phosphatotritungstate, 11. 873	
phosphide, 8, 834	disulphate, 15. 588
phosphite 9 012	
phosphite, 8, 913	
phosphitopentamolybdate, 8, 918	rubidium alloys, 2. 481
phosphitopentamolybdate, 8, 918 phosphitotungstate, 8, 919	ruthenate, 15. 517 ruthenium dihydroheptanitrite, 8. 513
— platinate, 16. 246	hexanitrite, 8. 513
—— platinates, 16. 245	oxydodecanitrite, 8. 513
1	only and committee of the

Potassium ruthenium oxyoctosulphite, 10.	Potassium sodium arsenitophosphatotung- state, 9, 132
pentanitrite, 8. 513	barium calcium carbonate, 3. 846
ruthenous disulphite, 10. 326	calcium carbonate, 3. 845
salts: extraction, 2. 437	trimetasilicate, 6. 372
blast furnace dust, 2. 440	carbonate, 2. 769
	chlorosulphate, 2. 691
cement kiln dust, 2. 440	chlorothiosulphate, 10. 529
insoluble silicates, 2. 439	chromate, 11. 258
kelp ash, 2. 437	deuterohexavanadate, 9. 766
sea water, 2. 437	dimetaphosphate, 2. 877
suint, 2. 438	dinitratoimidodisulphonate, 8.
	653
438	ferrous titanium orthosilicate, 6.
wood ashes, 2, 437 ———— wool fat, 2, 438	843
samarium carbonate, 5. 666	heptasulphatotetraplumbite, 7.
chromate, 11. 287	821
pentadecasulphate, 5. 658	hexavanadatohexatungstates, 9, 786
scandium sulphate, 5, 492	hydrorthophosphate, 2. 857
—— selenate, 10 . 856	hydrosulphite, 10. 271
—— selenatoaluminate, 10. 869	hydroxynitrilodisulphonate, 8.
	677
selenatochromate, 10. 876	hypophosphate, 8, 936
selenatomonoiodate, 10. 914	magnesium diorthoarsenate, 9.
selenatophosphate, 10. 932	179
selenatosulphate, 10. 925	sulphate, 4. 342
selenatothallate, 10. 871	manganous permanganitomolyb-
selenatotriiodate, 10. 914	date, 11. 573
selenide, 10 . 767	mercuride, 4. 1015
enneadecahydrate, 10. 767	molybdate, 11. 558
enneahydrate, 10. 767	orthohexacolumbate, 9. 865
tetradecahydrate, 10. 767	orthosulpharsenate, 9. 317
selenite, 10. 822	phosphatoctotungstate, 11. 872
monohydrate, 10 . 822	phosphatohemipentamolybdate,
—— selenitometavanadate, 10. 835	11. 667
selenitomolybdate, 10. 837	phosphatotungstate, 11. 873
selenium oxytrichloride, 10. 910	pyrophosphate, 2. 867
—— selenodiphosphite, 10. 931	
selenomolybdate, 10. 797	silicate, 6. 337
	simonytes, 4. 342
—— selenoselenate, 10 , 925	
—— selenostannate, 10, 786	sulphite, 10. 271
—— selenosulphostannate, 10. 921	tetravanadatododecamolybdate, 9. 784
	1
	thiosulphate, 10, 529 trihydrodiorthoarsenate, 9, 153
—— silicide, 6 . 169	2: 1-tungstate, 11. 782
silicodecatungstate, 6. 882	solubility of hydrogen, 1. 308
silicozirconate, 6. 854; 7. 134	stannato (a-), 7. 414
silver amide, 8. 259	pentahydrate, 7, 415
————— amidosulphonate, 8. 642	tetrahydrate, 7. 415
amminoctothiosulphate, 10. 539	trihydrate, 7. 415
bromide, 3 . 424	stannate $(\beta$ -), 7. 417
carbonate, 3. 458	stannic amide, 8. 265
chromidodecamolybdate, 11. 601	sulphoplatinite, 16. 394
hyponitritosulphate, 8. 690	—— stannite, 7. 391
nitrate, 3, 480	stannous amide, 8. 265
——————————————————————————————————————	stilbite, 6 . 760
—— octothiosulphate, 10. 539	strontium arsenate, 9. 173
—— orthosulphoantimonite, 9. 542	cobalt nitrite, 8. 505
silicododecamolybdate, 6. 870	chromate, 11. 271
sulphate, 8 . 454	dimetaphosphate, 3. 894
sulphide, 8 . 447	disulphate, 3. 806
sulphite, 10. 280	hexametaphosphate, 3. 895
tetrathiosulphate, 10. 539	hydroxynitrilodisulphonate, 8.
tritamminothiosulphate, 10. 539	677
sodide, 2. 480	imidodisulphonate, 8. 654
—— sodium alloys, 2. 480	——————————————————————————————————————

Potassium strontium nitrite, 8, 438, 501	Potassium sulphotungstate, 11, 859
pentabromide, 3. 732	sulphurylbromide, 10. 689
- · · pentachloride, 3. 719	sulphurylchloride, 10. 689
phosphate, 8. 877	sulphurylnitrate, 10. 689
pyrophosphate, 3. 892	sulphurylthiocyanate, 10. 689
tetrabromide, 3 . 732	tellurate, 11. 90
tetrachloride, 3. 719 tetrachloride avanadate, 9. 772	dihydrate, 11. 91
thiosulphate, 10. 544	pentahydrate, 11. 90 telluride, 11. 40
trisulphate, 3 . 806	tellurite, 11. 78
subchloride, 2, 530	trihydrate, 11. 79
suboxide, 2. 485	- tellurocuprate, 3. 150
sulfazidate, 8. 671	totraborate tetrahydrated, 5. 77
sulfazilate, 8. 685	tetrabromoaluminate, 5, 326
- — sulfazinate, 8. 676	tetrabromodinitritoplatinate, 8. 524
sulfazite, 8 . 676	- tetrabromoplumbite, 7, 752
sulfazotate, 8. 675	- monohydrate, 7, 752
sulphamidate, 8, 662	- tetrabromostannite, 7, 453
sulphate and sodium chloride, crystal-	- tetrabromothallate dihydrated, 5, 452 tetrachloroaluminate, 5, 322
lization, 2, 689	tetrachloroaluminate, 5, 322 tetrachloroantimonite, 9, 479
	tetrachlorobismuthite, 9, 666
properties, chemical, 2. 672	- tetrachlorobispyridinoperiridate, 15.
physical, 2. 660	766
sulphatohexafluodiantimonite, 9, 466	tetrachlorocuprate, 3. 188
sulphatohypovanadate, 9. 818	- tetrachlorodibromoplatinate, 16, 382
sulphatoperiridite, 15, 784	– - tetrachloroferrite, 14. 32
hydrate, 15. 784	dihydrate, 14 . 32
- sulphatopertitanate, 7, 95	monohydrate, 14, 32
sulphatophosphate, 8, 1071	- tetrachloromercuriate, 4, 856
- sulphatoplatinite, 16. 401	monohydrated, 4, 856
sulphatostannate, 7. 479 sulphatotellurite, 11. 118	
	tetrachlorostannite, 7. 433 monohydrate, 7. 433
sulphatotrifluoantimonite, 9. 466	tetrachlorovanadite, 9. 804
sulphazite, 8 . 680	- tetradecamercuride, 4, 1014
sulphazotate, 8. 673, 674	tetradecarsenitotriphosphatotungstate,
sulphide, 11. 368	9. 132
sulphimide, 8. 663	tetradecasulphuryliodide, 10. 690
— — sulphimidodiamide, 8 . 665	tetradecatungstate, 11. 832
sulphite, 10. 268; 11. 368	- tetrafluoantimonite, 9. 465
dihydrate, 10. 268	tetrafluodioxytungstate, 11. 839
monohydrate, 10. 268	tetrafluodivanadate, 9. 802
	tetrafluoferraté, 14. 8 tetrafluoferrite, 14. 3
sulphoaluminate, 5. 331	- tetrafluolexavanadate, 9. 802
sulphobismuthite basic, 9, 689	tetrafluohypovanadate, 9. 798
- sulphochromite, 11. 432	tetrafluotrioxypertungstate, 11. 840
sulphocuprite, 3. 227	- tetrahydroarsenatododecamolybdate,
sulphodichromite, 11. 432	9. 211
sulphodimolybdate, 11. 651	tetrahydrodiarsenatoctodecutung-
sulphoditungstate, 11. 859	state, 9. 214
sulphoferrite, 14. 182	tetrahydrodiselenatouranate, 10. 877
sulphoindate, 5. 404	tetrahydrophosphatohemipenatmolyb-
sulphometastannate, 7, 475 sulphomolybdate, 11, 651	date, 11. 668
	tetrahydrosulphitopyrosulphite, 10. 331
- sulphopalladate, 15. 683	tetrahydrotriselenatouranyluranate,
sulphopalladite, 15. 682	10. 878
sulphoperrhenate, 12. 480	tetrahydroxylaminotetramolybdate,
sulphoperrhodite, 15. 586	592
sulphoplatinate, 16. 398	—— tetraiodoaluminate, 5. 328
sulphoplatinite, 16. 394	tetraiodoantimonite, 9. 502
sulphorthostannate, 7. 475	tetraiodobismuthite; 9. 677
sulphoselenoantimonite, 10, 922	tetraiodocarbonatoplumbite, 7. 854
sulphoselenoarsenate, 10, 921	tetraiododinitritoplatinate, 8. 524
sulphostannite, 7. 478 sulphotellurate, 11. 115	tetraiodothallate, 5. 461 tetrametaphosphate, 2. 867
sulphotellurite, 11. 113	tetramidocadmiate, 8. 261
sulphotetrachromite, 11. 432	tetramidosulphonatoplatinite, 8. 645
	<u>, </u>

Potassium tetramidozineate, 8. 260	Potassium triamidodiphosphate, 8, 712
· · · tetramolybdate, 11. 592	triamidolithiate, 8, 258
- tetramolybdatoditungstate, 11, 796	triamidoplumbite, 8, 265
- tetranitratoenneafluotriantimonite, 9.	triamidosodiate, 8, 258
466	triamidostrontiate, 8. 260
- tetranitritodiamminocobaltiate, 8, 509	
	triamidothallite, 8. 262
tetranitritoplatmite, 8, 514; 16, 322	triamminochloroaurate, 3, 594
- tetrantimonate, 9, 443	triamminophosphide, 8, 834
tetraphosphatocuprate, 3, 290	triantimonate, 9. 443
- tetrarsemde, 9, 61	– triantimonite, 9 . 431
- tetraselenide, 10. 768	
· · · - tetrasilicate, 6. 328	triazomonosulphonate, 8. 684
tetrastannide, 7. 345	triboratotetraluminotetraorthosili-
tetrasulphammonate, 8, 668	cates, 6. 742
tetrasulphatarsenate, 9, 334	tribromde, 2, 587
- tetrasulphatarsenite, 9, 333	tribromocuprite, 3, 195
tetrasulphide, 2, 630, 634	tribromoplumbite, 7, 752
- tetrasulphocuprate, 3, 228	monohydrate, 7, 752
tetrasulphothallate, 5, 464	tritahydrate, 7, 752
tetratellurate, 11, 92	tribromostannite, 7, 453
tetratellurite, 11, 79	tribromotriiodobismuthite, 9. 679
- tetrathionate, 10, 617	tribromotrinitritoplatinate, 8, 524
tetrauranate, 12, 67	- tribromotrisodoantimomte, 9, 511
 tetrauranyl pentasulphite, 10, 308 	tricadmium sulphate, 4, 638
tetravanadatododecamolybdate, 9, 783	tricarbonatodiplumbite, 7, 854
tetravanadatohexamolybdate, 9. 782	trichloroacetonitrile, 16, 274
tetravanadatopentamolybdate, 9, 783	trichlorobromoantimonite, 9, 511
- tetravanadatotetramolybdate, 9, 783	trichlorocuprate, 3. 187
- tetreroctovanadate, 9, 765	
	1
- tetrerodecavanadate, 9, 765	- trichlorodibromide, 9, 673
- tetroxide, 2, 485, 491	trichloroferrite, 14. 32
tetroxydisulphatodivanadate, 9. 825	trichloromagnesiate, 4, 307
thallate, 5, 435	trichloromercuriate, 4, 856
thallic chromate, 11, 286	monohydrated, 4, 856
disulphate, 5, 470	- trichloroplumbite, 7, 729
- hydroxydisulphate, 5, 470	- tritahydrate, 7, 729
selenate, 10 . 871	trichlorostannite, 7, 432
- thallide, 5, 426	trichlorotribromoantimonite, 9. 510
thallous chlorides, 5, 441	trichlorotribromoplatinate, 16, 382
chromate, 11, 286	- trichlorotrinitritoplatinate, 8, 524
dithionates, 10 , 594	1
thiocarbonate, 6, 122	trichromatododecahydroxyhexarsen-
- thiophosphate, 8, 1065	ate, 9. 205
thorium bromide, 7, 238	tricyanidotriodobismuthite, 9, 679
enneachloride, 7 . 235	tridecafluotetrantimonite, 9, 465
enneafluoride, 7 . 227	tridecafluotrihypovanadate, 9 . 798
hemisulphate, 7. 247	triferride, 13 . 527
hexachloride, 7, 235	trifluodioxytungstate, 11, 837
hexafluoride, 7, 228	trifluorocuprate, 3, 156
- hexanitrate, 7, 251	trifluothallite, 5, 437
hexasulphate, 7, 247	trihydroaquohenasulphitosmate, 10.
hydroxychloride, 7, 232	325
hydroxysulphite, 10, 303	trihydroborododecatungstate, 5, 110
	trihydrodiselenite, 10. 823
orthophosphate, 7, 252	- trihydrohypophosphate, 8, 936
pentacarbonate, 7, 249	
pentachloride, 7, 235	· · · - trihydrophosphatohemipentamolyb-
- pentafluoride, 7, 228	date, 11, 668
pentanitrate, 7, 251	trihydrotriantimonate, 9. 452
phosphate, 7, 253	· trihydrovanadate, 9. 746
tetrasulphate, 7. 246	
	triiodide, 2 . 609
- trisulphate, 7, 247	triiodoplumbite, 7, 774
titanic sulphate, 7, 94	
titanidodecamolybdate, 11, 600	monohydrate, 7, 774
titanium carbonate, 7, 96	triiodostannite, 7, 461
	trimagnesium dihydroaluminotri-
titanous alum, 7, 93	
titanyl sulphate, 7, 95	orthosilicate, 6, 608
trialuminium trimesotrisilicate, 6. 665	trimercuric sulphate, 4, 976
triamidocalciate, 8 , 260	trimercuride, 4, 1015
	trimolybdate, 11. 509

Potassium trimolybdatoditungstate, 11. 796	Potassium uranous pentafluoride, 12. 74
trimolybdatotritungstate, 11. 796	
enneahydrate, 11. 796	
trihydrate, 11. 796	uranyl carbonate, 12. 17
trimolybdenum dioxyheptachloride,	chloride, 12. 17
11. 632	chromate, 11. 308
trinitratotrifluoantimonite, 9. 466	cyanide, 12. 18
triovanadyl disulphite, 10. 305	disulphate, 12. 109
trioxide, 2. 485, 491	dihydrate, 12. 109
trioxypentaselenodiarsenate, 10. 874	
trioxysulpharsenate, 9. 328	disulphite, 10. 308
trioxysulphotungstate, 11. 861	
trioxytetradecafluotricolumbate, 9.874	hexafluoride, 12 . 79
trioxytetrafluopermolybdate, 11. 615	hydroxysulphite, 10. 309
trioxytridecafluotricolumbate, 9. 874	iodate, 2. 358
triperchromates, 11. 356	pentafluoride, 12. 78
	phosphate, 12. 132
tripermanganite, 12. 276	trihydrate, 12. 132
triphosphatostannate, 7. 482	phosphite, 8. 919
	nurenhambate 19 199
triphosphatotitanate, 7. 96	pyrophosphate, 12. 133
triplatinous hexasulphoplatinate, 16.	selenate, 10. 877
395	selenite, 10. 838
triselenide, 10 . 768	sulphate, 12. 17
—— triselenotrithiophosphite, 10. 931	tetrabromide, 12 . 93
trisilicate, 6 . 328	tetrachloride, 12 . 90
trisulphatobismuthite, 9. 701	dihydrate, 12. 90
trisulphatochromiate, 11. 464	tricarbonate, 12. 114
trisulphatodichromate, 11, 449	trinitrate, 12. 126
trisulphatoplumbate, 7, 823	trisulphate, 12. 110
trisulphide, 2 . 630, 633	uranylvanadate, 9. 788
trisulphomolybdate, 11. 652	
	- uses, 2. 470
tritabismuthide, 9. 635	vanadatophosphate, 9. 828
tritadibismuthide, 9. 635	vanadium tetroxydisulphate, 9. 825
trite ntimonide, 9. 403	vanadous sulphate, 9. 820
tritaphosphide, 8. 834	vanadyl disulphate, 9. 824
tritarsenide, 9. 65	disulphite, 10. 305
tritellurate, 11. 92	vanadyldodecafluovanadate, 9. 799
triterodecavanadate, 9. 765	vanadyltrifluoride, 9. 800
triterohexacolumbate, 9. 864	vanadylpentafluoride, 9. 799
triterohexavanadate, 9. 765	yttrium chromate, 11. 288
hexahydrate, 9. 765	
monohydrate, 9. 765	—— zine alloys, 4. 666
pentahydrate, 9, 765	arsenate, 9. 182
trithionate, 10. 607	carbonate, 4. 648
trititanyl pentasulphate, 7. 95	
tritungstate, 11. 811	chromatodichromate, 11. 341
— triuranyl disulphite, 10. 308	——————————————————————————————————————
tungstate, 11, 779	cobaltous sulphate, 14. 782
—— monohydrate, 11, 780	ferrous sulphate. 14, 298
pentahydrate, 11. 780	fluoride, 4. 534
- tungsten bronzes, 11. 751	hyposulphite, 10. 183
enneachloride, 11. 841	imidoamide, 8. 261
hydroxylpentachloride, 11. 843,	
848	nickel nitrite, 8. 512
	nickel morroe, 6, 512
tetrafluoride, 11. 837	—— —— nickelous sulphate, 15. 476
— ultramarine, 6. 589	octohydrotetrahypophosphate, 8.
uranate, 12 . 63	938
uranium hydroxydisulphotetraura-	orthosulphoantimonite, 9. 543
nate, 12. 97	paratungstate, 11. 819
hydroxyhydrodisulphotetraura-	pentanitrite, 8 . 490
nate, 12. 97	persulphate, 10. 479
oxyoctofluoride, 12. 77	phosphate, 4. 661
peroxyfluoride, 12. 79	pyrophosphate, 4. 663
——————————————————————————————————————	pyrophosphate, 4. 003
uranous diphosphate, 12. 130	
———— fluoride, 12. 18	——— selenatosulphate, 10. 930
—— hexabromide, 12. 92	silicate, 6. 444
hexachloride, 12. 83	sulphate, 4. 637
octophosphate, 12. 130	hexahydrated, 4. 637
	•

Potaggium gine culmbatasalanata 40,000	1.74-10-44-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Potassium zine sulphatoselenate, 10. 930	(tri)potassium cuprous dihydrotrisulphite,
sulphide, 4 . 604 sulphite, 10 . 286	- hydroxynitrilodisulphonate, 8. 673
tetrachloride, 4, 555	hydroxynitrilo-iso-disulphonate, 8. 679
tetrametaphosphate, 4. 664 tetranitrite, 8. 490 tetrerotetradecavanadate, 9.	imidodisulphonate, 8. 651 initritohydroxynitrilodisulphonate, 8.
tetrerotetradecavanadate, 9.	nitritohydroxynitrilodisulphonate, 8.
774	pentahydrosilicododecatungstate, 6.
	876
——————————————————————————————————————	Potential, chemical, 1. 1011 ——————————————————————————————————
	differences, 1. 1015
triterodecavanadate, 9. 774	difference, 1. 963
	discharge, 1, 1031
zirconate, 7. 135	electrode, 1, 1016 energy, 1, 696
zirconidodecamolybdate, 11. 601	of energy, 1. 727
zirconium carbonate, 7. 161	thermodynamic, 1. 727
——————————————————————————————————————	Potentials, ionizing, 4. 17 Poterite, 15. 649
tetrasulphate, 7. 159	Potosi silver, 15. 208
triorthophosphate, 7. 164	Potstone, 6. 430
trioxydisulphate, 7, 158	Potter's ore, 7, 781
tungstates, 11, 792 zirconyl dihydropentafluoride, 7, 140	Pottery, 6. 512
(tri) tetrasulphate, 7, 159	Poudre de Chartreux, 9. 513
(deca)potassium octosodium chlorohydroxy-	Pouillet effect, 1, 495
nitrilodisulphonate, 8. 676	Poulad janher der, 12. 853 Pound-calorie, 1. 699
(di)potassium hydroxynitrilo-iso-disulpho- nate, 8, 679	Poussière, 4. 411
imidosulphonate, 8. 652	Powder of Algaroth, 9. 504
mercuric imidodisulphonate, 8. 658	Powellite, 11. 488, 560, 678, 783
nitratohy lroxynitrilodisulphonate, 8. 676	Praeseodidymium, 5, 501 Praseodymia, 5, 625
nitritohydroxynitrilodisulphonate, 8.	preparation, 5. 588
676	Prascodymium, 5. 501
silver trihydroxydiamidophosphate, 8.	ammonium carbonate, 5. 666
704 sodium nitrilotrisulphonate, 8, 669	——————————————————————————————————————
tetrametaphosphimate, 8. 718	tungstate, 11. 791
thorium orthophosphate, 7. 253	analytical reactions, 5, 608
7. 159	atomic number, 5. 622 weight, 5. 621
(ennea)potassium ammonium decameta-	
phosphate, 8. 990	bromate, 2. 354
(hexa)potassium cobalt octohydrotetra-	bromide, 5. 645
hypophosphate, 8. 939 ——nickel octohydrotetrahypophosphate,	
8. 940	earbide, 5. 873
(octo)potassium isosilicododecatungstate, 6.	carbonate, 5. 664
873 —— silicodecatungstate, 6 . 882	—— ceric sulphate, 5. 662 —— chloride, 5. 642
— silicododecatungstate, 6. 876	——————————————————————————————————————
—— silicohenatungstate, 6. 882	hexahydrated, 5. 642
(penta)potassium hydroxybisnitrilodisul-	monohydrated, 5. 642
phonate, 8. 674 (tetra)potassium cuprous trihydrotetrasul-	
phite, 10. 276	chloroplatinate, 16, 330
trans-dichlorodiimidodisulphonato-	chromate, 11. 287
platinite, 8. 659	
	cobaltous nitrate, 14. 828
tetrahydrosilicododecatungstate, 6.	cuprous disulphite, 10. 302
876	dithiosulphate, 10. 550
octodecahydrate, 6 . 876 tridecahydrate, 6 . 876	dihydrotetraselenite, 10. 831 dioxide, 5. 629
tetrahydrosilicohenatungstate, 6. 882	dioxymonocarbonate, 5. 665
tetrametaphosphimate, 8. 718	dioxysulphate, 5. 651
zirconium octohydroxypentasulphate,	disulphide, 5. 649
7. 159	——————————————————————————————————————

772	
Prascodymium fluoride, 5, 638	Pressure dissociation, 1, 348
hydride, 5 . 602	effect on equilibria, 2. 146
hydrosulphate, 5 . 656	solids, 1. 825
hydroxide, 5 . 628	
iodide, 5 . 646	equilibrium, 1. 348
isolation, 5 , 551 lead chlorovanadate, 9 , 809	- · · freezing, 1, 457 - · internal, 1, 841
- magnesium nitrate, 5, 672	- intrinsic, 1, 841
manganous nitrate, 12. 446	of liquids, 1. 841
metaborate, 5. 704	normal, 1. 149, 161
molybdate, 11 . 565	- of surface, 1, 846
nickel nitrate, 15, 492	solution, 1, 538, 539, 1017
- itrate, 5, 669 nitride, 8, 115	
occurrence, 5 . 586	units of, 1. 149
oxychloride, 5 , 642	Pressures, partial, Dalton's law, 1, 155
oxydicarbonate, 5, 665	Pribramite, 4, 587
- oxysulphide, 5, 649	Priceite, 5, 3
pentoxide, 5, 634	Prima materia, 1, 31; 4, 1, 3
perchlorate, 2, 402 potassium carbonate, 5, 665	Primal element, 4, 1
chromate, 11. 287	Primaries, 4, 158
sulphate, 5 . 658	Primary X-rays, 4, 32
preparation, 5 . 590	Princeite, 5, 89
properties, chemical, 5, 601	Prince's metal, 4, 671
	Principium spirituosum, 6, 1 Principle of laust offert, 2, 146
selenite, 10. 831	Principle of least effort, 2, 146
- sesquioxide, 5 . 625	sulphurous, 1, 64
silicododecatungstate, 6, 880	Print, 3, 412
silver tungstate, 11, 791	Priorite, 5, 518; 9, 904; 12, 5
- sodium carbonate, 5 , 665	Prism powder, 2, 826
solubility of hydrogen, 1, 307	Prismatic habit, 1, 597
sulphate, 5 , 650 basic, 5 , 651	Prismatine, 6, 812 Probability, 1, 90
dodecahydrated, 5 . 654	Prochlorite, 6, 621, 622; 12, 530
hexahydrated, 5. 654	Prolectite, 6. 813
octohydrated, 5, 654	Promethians, 8, 1059
	Promotors of catalysis, 16, 154
sulphatocerate, 5. 660 sulphide, 5. 648	Properties, specific, 1, 84
triuranate, 12. 67	Propezite, 3, 494 Propionic acid and hydrogen, 1, 303, 304
tungstate, 11. 791	Propionylcholmechloroplatinate, 16, 312
uranyl sulphite, 10 . 305	Proplatinum, 15, 205
zine nitrate, 5 . 672	Proportion, laws of compound, 1, 100
(di)praseodymium ammonium hexasul-	Proportionality, law of, 1, 79
phate, 5, 659 potassium hexasulphate, 5, 658	Proportions, law of definite, 1, 77
Prasilite, 6 , 432, 624	
Prasiolite, 6, 812	Propyl orthosilicate, 6, 309
Precipitation, 3. 546	stannie bromide, 7, 455
colloids, 3, 542	iodide, 7. 463
fractional, 5. 538	chloroplatinate, 16. 319
- ionic theory, 1. 996	chlororuthenate, 15. 534
rhythmic, 1. 537	ferric fluorides, 14. 7
Precipité blanc, 4, 797	fluoferrate, 14. 8
Predazzite, 4. 371	heptachloroferrate, 14, 101 2
Prefixes, numerical, 1, 117 Pregrattite, 6, 607	tetrachloroferrate, 14, 101 iso-propylammonium bromoiridate, 15, 777
Prehistoric chemistry, 1. 19	bromopalladate, 15, 678
Prehnite, 6, 575, 717	bromopalladite, 15. 677
Prehnitoid, 6. 763	bromoperruthenite, 15, 538
Preslite, 7, 877	bromosmate, 15 . 723
Pressure affinity, 1, 235	chloroiridate, 15, 770
and refractive index, 1, 675 cohesive, 1, 841	
critical, 1. 165	——————————————————————————————————————
deposition, 1. 1017	chlororhodate, 15. 579

ico propylammonium chlorasmate, 45, 719		
- promoperuthenite, 15, 538	iso propularmonium abloromata 45 710	Doguđanskillingita 6 726
- bromosmate, 15, 538 - bromosmate, 15, 579 - chlororiclate, 15, 579 - chlororhodate, 15, 579 - chlorosmate, 15, 538 - bromosmate, 15, 538 - bromosmate, 15, 538 - bromosmate, 15, 538 - bromosmate, 15, 539 - bromosmate, 15, 539 - bromosmate, 15, 539 - bromosmate, 15, 539 - bromosmate, 15, 771 - chlororhodate, 15, 530 - chlorosmate, 15, 771 - chlororhodate, 15, 530 - chlorosmate, 15, 771 - chlorosmate, 15, 719 -		
bromosmate, 15, 723 — chlororhodate, 15, 579 — chlorosmate, 15, 770 — chlorosmate, 15, 779 — heptachloroperruthenite, 15, 533 Propylenediammonium bromorirdate, 15, 538 — bromoruthenate, 15, 538 — bromosmate, 15, 723 — chlororirdate, 15, 538 — bromosmate, 15, 538 — bromosmate, 15, 733 — chlorosmate, 15, 733 — chlorosmate, 15, 538 — bromosmate, 15, 538 — bromosmate, 15, 539 — chlorosmate, 12, 15, 539 — chlorosmate, 12, 15, 539 — chlorosmate, 15, 539 — chlorosmate, 12, 15, 539 — chloros		
chlororhodate, 15, 579 chlorosmate, 15, 579 chlorosmate, 15, 533 Propylenediammonium bromoriarde, 15, 533 bromoruthenite, 15, 538 bromoruthenate, 15, 539 bromosmate, 15, 523 chlorosidate, 15, 711 chlororhodate, 15, 530 chlorosmate, 15, 534 chlorosmate, 15, 534 chlorosmate, 15, 534 chlorosmate, 15, 539 chlorosmate, 15, 534 chlorosmate, 15, 534 chlorosmate, 15, 534 chlorosmate, 15, 539 chlorosmate, 15, 539 chlorosmate, 15, 539 chlorosmate, 15, 534 chlorosmate, 15, 534 chlorosmate, 15, 539 chlorosmate, 15, 533 chlorosmate, 15, 533 chlorosmate, 15, 533 chlorosmate, 15, 539 chlorosmate, 15, 533 chlorosmate, 12, 13, 53 chlorosmate, 12, 13,		
December 15. 538	chlororhodate, 15 . 579	Pscudosommite, 6 , 569, 570
Propylenediammenium bromeiredate, 15. 777	chlorosmate, 15 . 719	Pseudosteatite, 6. 495
Description 15. 538	heptachloroperruthenite, 15, 533	Pseudoternary system, 1, 524
Description 15. 538		
— bromorunthenate, 15, 539 — bromosmate, 15, 723 — chlororindate, 15, 580 — chlororuthemate, 15, 580 — chlorosmate, 15, 749 — beptachloroperruthenite, 15, 533 Propylmonosilanie acid, 6, 216 Prosopite, 2, 1; 3, 623; 5, 154, 309 Protective colloids, 3, 539 Protective colloids, 3, 539 Protobactinium, 4, 135 Protobactinium, 4, 137 Protobilionite, 6, 607 Protonontronite, 6, 977 Protopolyvanadic acid, 9, 758 Protosilicie acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Prousite, 3, 300; 9, 4, 293 Prossian blue, native, 14, 390 Protyle, 1, 257; 4, 1 Prousite, 3, 300; 9, 4, 293 Prussian blue, native, 14, 390 Presudoculite, 5, 577 Psaturose, 9, 540 Pseudopatite, 2, 896 Pseudobolite, 2, 15 Pseudobolite, 2, 15 Pseudocotumnia, 7, 29 Pseudocotumnia, 7, 29 Pseudocotumnia, 7, 29 Pseudocotumnia, 7, 491, 729 Pseudocotumnia, 7, 491, 729 Pseudocotumnia, 7, 491, 729 Pseudocotumnia, 7, 491 Pseudoloucite, 6, 637 Pseudocotumnia, 7, 491 Pseudoloucite, 6, 571 Pseudocotumnia, 7, 491 Pseudoloucite, 6, 572 Pseudoparatic, 3, 289 Pseudonaratic, 3, 289 Pseudonaratic, 3, 289 Pseudocotumnia, 7, 491 Pseudonaratic, 6, 755, 768 Pseudonaratic, 6, 754 Pseudonaratic, 6, 760 Protopolloucite, 6, 667 Protopolloucite, 6, 679 Protopolloucite, 6, 6		
chlorosumate, 15. 534 chlorosumate, 15. 719 heptachloroperuthenite, 15. 533 Propylmonosilanie acid, 6. 216 Prosopite, 2. 1; 3. 623; 5. 154, 309 Protective colloids, 3. 539 Protective colloids, 3. 539 Protective colloids, 3. 539 Protobactinium, 4. 135 Protobactinium, 4. 135 Protobactinium, 4. 135 Protobolydrogen, 4. 171 Protolithionite, 6. 607 Protopolyvanudic acid, 9. 758 Protopolyvanudic acid, 9. 758 Protopolyvanudic acid, 8. 308 Protoverniculite, 6. 609 Protoverniculite, 6. 609 Protoverniculite, 6. 609 Protyle, 1. 257; 4. 1 Prousitie, 3. 300; 9. 4, 293 Protyle, 1. 257; 4. 1 Prousitie, 3. 300; 9. 4, 293 Protyle, 1. 257; 4. 1 Protospiramite, 4. 409; 13. 877 Psaturose, 9. 540 Pseudo-alums, 5. 354		
chlorosmate, 15, 719 heptachloroportuthenite, 15, 533 Propylmonosilanic acid, 6, 216 Prosopite, 2, 1; 3, 623; 5, 154, 309 Proteite, 6, 409 Protocchimium, 4, 135 Protobaskite, 6, 392 Protocchiorites, 6, 624 Protofluorine, 4, 171 Protolithionite, 6, 607 Protopolyvamadic acid, 9, 758 Protosilicic acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 1 Prousilic, 3, 300; 9, 4, 293 Prott's hypothesis, 4, 2		
Propylmonosilanic acid, 6, 216 Prosopite, 2, 1; 3, 623; 5, 154, 309 Protective colloids, 3, 539 Proteite, 6, 409 Protoachtnium, 4, 135 Protobaskite, 6, 392 Protochlorites, 6, 624 Protofluorine, 4, 171 Protolithionite, 6, 607 Protopolyvamadic acid, 9, 758 Protosilicie acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 1 Protosilicie acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 1 Prostine, 3, 300; 9, 4, 293 Protor's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibranite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudoslums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudospatite, 3, 896 Pseudolobelite, 7, 491, 743 Pseudoborskite, 7, 2, 59; 12, 530 ——\$, 7, 60 Pseudo-catalysis, 10, 673 Pseudocutumid, 7, 729 Pseudocutumid, 7, 729 Pseudocutumid, 7, 729 Pseudocutumid, 6, 803 Pseudocutumid, 6, 803 Pseudocutumid, 6, 803 Pseudocutumid, 6, 803 Pseudocutumite, 6, 7, 79, 79 Pseudocutumite, 7, 491, 792 Pseudolobelite, 6, 572 Pseudolobelite, 7, 491 Pseudomorphs, 1, 595 Pseudolobelite, 6, 669 Pyrangilite, 6, 812 Pyragyrite, 3, 300; 9, 294, 343, 537 Pyragyrite, 6, 892 Pyragyrite, 3, 300; 9, 294, 343, 537 Pyragyrite, 3, 300; 9, 294, 343, 537 Pyragyrite, 3, 300; 9, 294, 343, 537 Pyragyrite, 8, 595 Pyragyrite, 8, 596 Pyragophilite, 6, 560 Pyragophylite, 6, 606 Pyragophylite, 6, 560 Pyra		
Prospite, 2. 1; 3, 623; 5, 154, 309 Protoeitie, 6, 409 Protoactinium, 4, 135 Protobactinium, 4, 135 Protobolydrogen, 4, 171 Protohydrogen, 4, 171 Protohydrogen, 4, 171 Protoplydrogen, 4, 171 Protopolyvamadic acid, 6, 607 Protorovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Proustite, 3, 300; 9, 4, 293 Protusian blue, matice, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 — argyrim, 4, 400 — carbon, 5, 721 Pseudopatite, 3, 896 Pseudobolite, 2, 15 Pseudobroskite, 7, 2, 50; 12, 530 — a, 7, 60 Pseudo-catalysis, 10, 673 Pseudocutumite, 7, 491, 743 Pseudocutumite, 7, 491, 729 Pseudocotumite, 7, 729 Pseudocotumite, 8, 58; 5, 713 — nigra compacta, 12, 1 — picca, 12, 1 Pseudoibethenite, 3, 289; 8, 733 Pseudolaumontite, 6, 661 Pseudoibethenite, 3, 289; 8, 733 Pseudomarpheline, 6, 566, 570 Pseudoorpheline, 6, 556, 570 Pseudoorpheline, 6, 566, 570 Pseudoorpheline, 6, 566, 570		
Protective colloids, 3, 539 Prototectinium, 4, 135 Protobaskite, 6, 302 Protobaskite, 6, 392 Protobaskite, 6, 392 Protofiloriers, 6, 624 Protofiloriers, 6, 624 Protofiloriers, 6, 624 Protofiloriers, 6, 624 Protofiloriers, 6, 697 Protopolydrogen, 4, 171 Protolydrogen, 4, 171 Protolydrogen, 4, 171 Protolydrogen, 4, 171 Protosilicie acids, 6, 308 Protoverniculite, 6, 607 Protosilicie acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 1 Protosilicie acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 193 Pront's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Pasturose, 9, 540 Pseudoslums, 5, 354 —— argyrum, 4, 400 —— argyrum, 4, 400 —— carbon, 5, 721 Pseudobolite, 2, 15 Pseudobookite, 7, 491, 743 Pseudobookite, 7, 491, 743 Pseudocumidinium bromopalladite, 15, 673 Pseudoloblete, 7, 491, 729 Pseudocumidinium bromopalladite, 15, 673 Pseudoloblete, 6, 572 Pseudostotopy, 4, 93 Pseudocumontite, 6, 5740 Pseudoloblethenite, 3, 289; 8, 733 Pseudomorphs, 1, 595, 768 Pseudomorphs, 1, 595, 768 Pseudomorphine, 6, 569, 570		
Proteite, 6, 409 Protoachimm, 4, 135 Protobaskite, 6, 392 Protochlorites, 6, 624 Protofluorine, 4, 171 Protohydrogen, 4, 171 Protohydrogen, 4, 171 Protohydrogen, 4, 171 Protonontronite, 6, 607 Protopolyvamadic acid, 9, 758 Protosilicie acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 4, 1 Proustite, 3, 300; 9, 4, 293 Pront's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przishramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-lalums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudopartite, 3, 896 Pseudobolite, 2, 155 Pseudobroskite, 7, 2, 59; 12, 530 ——a, 7, 60 Pseudocutumia, 7, 729 Pseudocutumia, 7, 729 Pseudocutumidinium bromopalladite, 15, 677 Pseudocutumidinium bromopalladite, 15, 677 Pseudocutumidinium bromopalladite, 15, 677 Pseudocutumidinium bromopalladite, 15, 677 Pseudolocutumidinium bromopalladite, 15, 677 Pseudolocutumidinium bromopalladite, 15, 677 Pseudolocutumidinium bromopalladite, 15, 677 Pseudolomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 576, 768 Pseudomorpheline, 6, 576, 768 Pseudomorpheline, 6, 576, 768 Pseudomorpheline, 6, 569, 570	Prosopite, 2. 1; 3. 623; 5. 154, 309	Puddled bars, 12 . 637
Protoactinium, 4, 135 Protobaskite, 6, 392 Protochlorites, 6, 624 Protofluorine, 4, 171 Protolydrogen, 4, 171 Protolydrogen, 4, 171 Protolydrogen, 6, 171 Protolydrogen, 4, 171 Protolydrogen, 6, 171 Protosilicie acids, 6, 308 Protoverniculite, 6, 609 Protyle, 1, 257; 4, 1 Prounstite, 3, 300; 9, 4, 293 Proul's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Presistantice, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudobrokite, 7, 491, 743 Pseudobolite, 8, 669 Pseudobiolite, 6, 609 Pseudocutumite, 7, 491, 743 Pseudobolite, 2, 15 Pseudocotuminite, 7, 729 Pseudocumidinium bromopalladite, 15, 677 ——chloropalladite, 15, 670 Pseudocotumyite, 6, 572 Pseudocotumidinium bromopalladite, 15, 677 ——chloropalladite, 15, 670 Pseudocotumyite, 6, 572 Pseudocotumyite, 6, 572 Pseudocotumyite, 7, 491 Pseudoisotopy, 4, 93 Pseudohalumontite, 6, 740 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570	Protective colloids, 3, 539	Puddler's candles, 12 , 636
Protobaskite, 6, 392 Protochlorites, 6, 624 Protofluorine, 4, 171 Protohydrogen, 4, 184 Purle dagaroti, 9, 504 Pulya slagaroti, 9, 504 Pulpas slagaroti, 9, 504 Pulya slagaroti, 9, 504 Pulpas	Proteite, 6, 409	Puddling, dry, 12 . 636
Protobaskite, 6, 392 Protochlorites, 6, 624 Protofluorine, 4, 171 Protohydrogen, 4, 184 Purle dagaroti, 9, 504 Pulya slagaroti, 9, 504 Pulpas slagaroti, 9, 504 Pulya slagaroti, 9, 504 Pulpas	Protoactinium, 4, 135	wet, 12, 636
Protochlorites, 6, 624 Protofluorine, 4, 171 Protolithionite, 6, 607 Protopolyvanadic acid, 9, 758 Protosilicic acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Prostilite, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——arbon, 5, 721 Pseudobolcite, 7, 491, 743 Pseudobolite, 2, 15 Pseudoboloite, 2, 15 Pseudoboloite, 7, 491, 743 Pseudoboloite, 7, 491, 743 Pseudocotunnia, 7, 729 Pseudocotunniin, 7, 729 Pseudocotunniin, 7, 729 Pseudocotunniin, 7, 729 Pseudocunnidinium bromopalladite, 15, 670 Pseudosholite, 6, 661 Pyralloite, 6, 430 Pyrazgyrite, 3, 3498 Pulvis algaroti, 9, 504 ——carlbusianorum, 9, 513 ——chrysoccaumius, 3, 582 ——hypnoticus, 4, 943 Pumice, catalysis by, 1, 487 Pupus metallorum, 9, 341 Purc elements, 4, 158 ——substancosa, 1, 80, 82 Purification gold, 3, 509 ——of passes by fractional solidification, 3, 172 Purple copper ore, 14, 189 ——of Cassius, 9, 504 ——hypnoticus, 4, 943 Pumice, catalysis by, 1, 487 Pupus metallorum, 9, 341 Purc elements, 4, 158 ——substancosa, 1, 80, 82 Purification gold, 3, 509 ——of passes by fractional solidification, 3, 172 Purple copper ore, 14, 189 ——of Cassius, 3, 564 ——ore, 12, 637 ——red, 11, 283 ——red, 13, 30, 82 Purpurblende, 9, 578 Purpure arubica, 7, 673 Purpu		
Protofluorine, 4, 171 Protolydrogen, 4, 171 Protolonite, 6, 607 Protonontronite, 6, 907 Protopolydvamadic acid, 9, 758 Protosilicic acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Prousitic, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——arphon, 5, 721 Pseudoproksite, 7, 491, 743 Pseudoblolite, 2, 15 Pseudobroksite, 7, 2, 59; 12, 530 ——a., 7, 66 ——b, 7, 7, 60 Pseudo-catalysis, 10, 673 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 6, 803 Pseudocotropy, 4, 93 Pseudolaumontite, 6, 740 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570 Pageodomorpheline, 6, 569, 570 Pupin S, 22, 303, 498 Pulsator Tables, 3, 498 Pulsator Tables, 4, 449 Pumice, catalysis by, 1, 487 Pupus metallorum, 9, 341 Puric elements, 4, 158 Purplic		
Protohydrogen, 4, 171 Protolithionite, 6, 607 Protopolyvamadic acid, 9, 758 Protospicie acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Proustite, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian bine, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudoslums, 5, 354 ——carbon, 5, 721 Pseudospatite, 3, 896 Pseudobolite, 7, 491, 743 Pseudobolite, 7, 491, 743 Pseudocotunnia, 7, 729 Pseudocotunnia, 7, 729 Pseudocotunniin, 7, 491, 729 Pseudocotunniin, 7, 491, 729 Pseudocoundinium bromopalladite, 15, 670 Pseudocenerald, 6, 803 Pseudostopy, 4, 93 Pseudostopy, 4, 93 Pseudolbethenite, 3, 289; 8, 733 Pseudomorphis, 1, 595 Pseudomorphic, 7, 491 Pseudomorphis, 1, 595 Pseudomorphis, 1, 595 Pseudomorphis, 1, 595 Pseudomorphis, 1, 595 Pseudomorphis, 6, 569, 570		
Protolithionite, 6, 607 Protonontronite, 6, 907 Protopolyvamadic acid, 9, 758 Protosilicic acids, 6, 308 Protosilicic acids, 6, 308 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Proustite, 3, 300; 9, 4, 293 Proto's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian bine, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudopolite, 2, 15 Pseudobloite, 7, 491, 743 Pseudobroksite, 7, 2, 59; 12, 530 ——a, 7, 60 Pseudo-catalysis, 10, 673 Pseudobroksite, 7, 29, 12, 530 ——b, 7, 60 Pseudocotunnite, 7, 729 Pseudocotunnite, 7, 729 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 15, 670 Pseudocotunnite, 15, 670 Pseudocotunnite, 6, 740 Pseudolaumontite, 6, 740 Pseudolaumontite, 6, 755, 768 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570		
Protonontronite, 6, 907 Protopolyvamadic acid, 9, 758 Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Proustite, 3, 300; 9, 4, 293 Proul's hypothesis, 4, 2 ——haw, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——arbon, 5, 721 Pseudoapatite, 3, 896 Pseudoblolite, 6, 609 Pseudobolite, 7, 491, 743 Pseudobolite, 7, 491, 743 Pseudobolite, 7, 491, 749 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 8, 863 Pseudonalachite, 3, 289; 8, 733 Pseudolomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudonatrolite, 6, 755, 768 Pseudonepheline, 6, 560, 570		
Protopolyvamadic acid. 9, 758 Protopolivamadic acid. 9, 789 Pupus metallorum, 9, 341 Pupus metallorum, 9, 341 Pupus demalysis by, 1, 487 Pupus metallorum, 9, 341 Pupus demalysis by, 1, 487 Pupus		
Protosilicie acids, 6. 308 Protovermiculite, 6. 609 Protyle, 1, 257; 4, 1 Proustite, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blne, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudobolcite, 7, 491, 743 Pseudobolite, 6, 609 Pseudobolite, 2, 15 Pseudobroskite, 7, 2, 59; 12, 530 ——β, 7, 60 Pseudo-catalysis, 10, 673 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 6, 808 Pseudocoturyptite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——higra compacta, 12, 1 —picca, 12, 1 Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 8, 289 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudonarolite, 6, 755, 768 Pseudonarolite, 6, 755, 768 Pseudonarolite, 6, 566, 570		
Protovermiculite, 6, 609 Protyle, 1, 257; 4, 1 Prousitic, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——aryrum, 4, 400 ——carbon, 5, 721 Pseudobiolite, 8, 896 Pseudobiolite, 6, 609 Pseudobiolite, 6, 609 Pseudobiolite, 7, 491, 743 Pseudocotunnia, 7, 729 Pseudocotunnia, 7, 729 Pseudocotunniin, 7, 749, 7, 60 Pseudocumidinium bromopalladite, 15, 677 ——ehloropalladite, 15, 670 Pseudoeureyptite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——nigra compacta, 12, 1 ——pica, 12, 1 Pseudoisotopy, 4, 93 Pseudoleucite, 6, 661 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289; 8, 733 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570		
Protyle, 1, 257; 4, 1 Prousitic, 3, 300; 9, 4, 293 Prour's hypothesis, 4, 2 ——law, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudopaptite, 3, 896 Pseudobilite, 6, 609 Pseudobolite, 7, 491, 743 Pseudobolite, 7, 2, 59; 12, 530 ——a, 7, 60 ——b, 7, 60 Pseudo-catalysis, 10, 673 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 6, 803 Pseudocoturnite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——nigra compacta, 12, 1 —pieca, 12, 1 Pseudolibethenite, 3, 289; 8, 733 Pseudolibethenite, 3, 289; 8, 733 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570		
Proustite, 3, 300; 9, 4, 293 Prout's hypothesis, 4, 2 ——hw, 1, 76 Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354 ——argyrum, 4, 400 ——carbon, 5, 721 Pseudoapatite, 3, 896 Pseudoboloite, 6, 609 Pseudoboloite, 7, 491, 743 Pseudobroskite, 7, 2, 59; 12, 530 ——a, 7, 60 ——a, 7, 60 ——a, 7, 60 ——b, 7, 60 Pseudo-catalysis, 10, 673 Pseudocotunnia, 7, 729 Pseudocotunnite, 7, 491, 729 Pseudoeumidinium bromopalladite, 15, 677 Pseudoeumrald, 6, 803 Pseudocuryptite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——nigra compacta, 12, 1 ——picca, 12, 1 Pseudoisotopy, 4, 93 Pseudoleucite, 6, 651 Pseudoloeucite, 6, 651 Pseudomorphs, 1, 595 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 560, 570		
Prout's hypothesis, 4. 2 ——law, 1. 76 Prozane, 8. 329 Prussian blue, native, 14. 390 Przibramite, 4. 409; 13. 877 Psaturose, 9. 540 Pseudo-alums, 5. 354 ——carbon, 5. 721 Pseudoapatite, 3. 896 Pseudobolcite, 7. 491, 743 Pseudobolcite, 7. 491, 743 Pseudocatalysis, 10. 673 Pseudocotunnite, 7. 729 Pseudocotunnite, 7. 729 Pseudocotunnite, 7. 491, 729 Pseudocomerald, 6. 803 Pseudocuryptite, 6. 572 Pseudolemerald, 6. 803 Pseudolemerald, 6. 805 Pseudolemerald, 6. 651 Pseudolemethe, 6. 740 Pseudolemethe, 6. 575 Pseudomorphs, 1. 595 Pseudomorphs, 1. 595 Pseudomorpheline, 6. 556, 576 Pseudomorpheline, 6. 566, 570		
Prozane, 8, 329 Prussian blue, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354	Prout's hypothesis, 4. 2	Pure elements, 4, 158
Prussian blne, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354	law, 1. 76	substances, 1 , 80, 82
Prussian blne, native, 14, 390 Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354	Prozane, 8. 329	
Przibramite, 4, 409; 13, 877 Psaturose, 9, 540 Pseudo-alums, 5, 354		· of gases by fractional solidification, 3.
Psaturose, 9, 540 Pseudo-alums, 5, 354		
Pseudo-alums, 5, 354		
carbon, 5, 721 Pseudoapatite, 3, 896 Pseudobiolite, 6, 609 Pseudobolite, 7, 491, 743 Pseudobroskite, 7, 2, 59; 12, 530 α, 7, 60 Pseudocotunnia, 7, 729 Pseudocotunnia, 7, 729 Pseudocotunniite, 7, 491, 729 Pseudocoumidinium bromopalladite, 15, 677 chloropalladite, 15, 670 Pseudoemerald, 6, 803 Pseudocurryptite, 6, 572 Pseudogalena, 4, 586; 5, 713 nigra compacta, 12, 1 Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudolibethenite, 3, 289; 8, 733 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 559, 576 Pseudomorpheline, 6, 569, 570		
carbon, 5, 721 Pseudoapatite, 3, 896 Pseudobiolite, 6, 609 Pseudoboloite, 7, 491, 743 Pseudoboloite, 2, 15 Pseudobroskite, 7, 2, 59; 12, 530 β-, 7, 60 Pseudo-catalysis, 10, 673 Pseudocotunnite, 7, 491, 729 Pseudocotunnite, 7, 491, 729 Pseudocouridinium bromopalladite, 15, 677 chloropalladite, 15, 670 Pseudocuryptite, 6, 572 Pseudogalena, 4, 586; 5, 713 nigra compacta, 12, 1 Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudolibethenite, 3, 289 Pseudomalachite, 3, 289 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570		
Pseudoapatite, 3. 896 Pseudobiolite, 6. 609 Pseudoboleite, 7. 491, 743 Pseudobroskite, 7. 2, 59; 12. 530		
Pseudobiolite, 6, 609 Pseudoboleite, 7, 491, 743 Pseudobroskite, 7, 2, 59; 12, 530		1
Pseudoboleite, 7, 491, 743 Pseudoboleite, 2, 15 Pseudobroskite, 7, 2, 59; 12, 530		
Pseudobolite. 2. 15 Pseudobroskite, 7. 2, 59; 12. 530 α-, 7. 60 β-, 7. 60 Pseudo-catalysis, 10. 673 Pseudocotunnia, 7. 729 Pseudocotunnite, 7. 491, 729 Pseudoemerald, 6. 803 Pseudoemerald, 6. 803 Pseudoemerald, 6. 872 Pseudosotopy, 4. 93 Pseudolaumontite, 6. 740 Pseudolibethenite, 3. 289; 8. 733 Pseudomalachite, 3. 289 Pseudomeralipite, 7. 491 Pseudomorphs, 1. 595 Pseudomorpheline, 6. 569, 570 Pseudomorpheline, 6. 569, 570 Purpurea rubica, 7. 673 Purpurea rubica, 7. 68 Purpurea rubica, 7. 673 Purpurea rubica, 7. 68 Purpurea rubica, 72 Purpurea rubica, 6. 721 Pyenite,		
Pseudobroskite, 7, 2, 59; 12, 530		
α-, 7. 60 β-, 7. 60 β-, 7. 60 β-, 7. 60 Pseudo-catalysis, 10. 673 Pseudocotumnia, 7. 729 Pseudocotumnite, 7. 491, 729 Pseudocoumidinium bromopalladite, 15. 677 chloropalladite, 15. 670 Pseudoemerald, 6. 803 Pseudoemerald, 6. 803 Pseudoemerald, 6. 803 Pseudogalena, 4. 586; 5. 713 nigra compacta, 12. 1 pieca, 12. 1 Pseudoisotopy, 4. 93 Pseudolaumontite, 6. 740 Pseudolibethenite, 3. 289; 8. 733 Pseudomalachite, 3. 289 Pseudomorphs, 1. 595 Pseudomorpheline, 6. 569, 570 Pseudomorpheline, 6. 569, 570 Purpurice, 12. 150, 463, 530 Puschkinite, 6. 721 Pyenite, 6. 560 Pyrallolite, 6. 606 Pyrallolite, 6. 430 Pyrargillite, 6. 812 Pyrazyrite, 3. 300; 9. 294, 343, 537 Pyrauxite, 6. 498 Pyrazynium pyrazinepentachloroplatinate, 16. 313 Pyreneite, 6. 921 Pyragyrite, 3. 300; 9. 294, 343, 537 Pyrainium pyrazinepentachloroplatinate, 16. 313 Pyreneite, 6. 569 Pyrallolite, 6. 560 Pyrargyrite, 3. 300; 9. 294, 343, 537 Pyrazyrite, 8. 313 Pyrazyrite, 8. 313 Pyrazyrite, 12. 150, 463, 530 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrargyrite, 3. 300; 9. 294, 343, 537 Pyrazyrite, 8. 313 Pyrazyrite, 12. 150, 463, 530 Pyrargyrite, 12. 150, 463, 530 Pyrargyrite, 8. 560 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrallolite, 6. 560 Pyrargyrite, 3. 300; 9. 294, 343, 537 Pyrazyrite, 8. 310 Pyrargyrite, 8. 310 Pyrargyrite, 8. 300; 9. 294, 343, 537 Pyrazyrite, 8. 310 Pyrargyrite, 8. 300; 9. 294, 343, 537 Pyrazyrite, 8. 310 Pyrargyrite, 8. 300; 9. 294, 343, 537 Pyrazyrite, 8. 3	Pseudobolite, 2, 15	
β., 7. 60 Pseudo-catalysis, 10. 673 Pseudocotumnia, 7. 729 Pseudocotumnite, 7. 491, 729 Pseudocoumidinium bromopalladite, 15. 677 chloropalladite, 15. 670 Pseudoemerald, 6. 803 Pseudoemeryptite, 6. 572 Pseudogalena, 4. 586; 5. 713 nigra compacta, 12. 1 Pseudoisotopy, 4. 93 Pseudolaumontite, 6. 740 Pseudolibethenite, 3. 289; 8. 733 Pseudomalachite, 3. 289 Pseudomorphs, 1. 595 Pseudomorpheline, 6. 569, 570 Pseudomorpheline, 6. 569, 570 Purpurite, 12. 150, 463, 530 Puschkinite, 6. 721 Pyenite, 6. 560 Pyrallolite, 6. 430 Pyrargillite, 6. 812 Pyrargyrite, 2. 300; 9. 294, 343, 537 Pyrauxite, 6. 498 Pyrazinium pyrazinepentachloroplatinate, 16. 313 Pyrencite, 6. 921 Pyragyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 2. 300; 9. 294, 343, 537 Pyrazinium pyrazinepentachloroplatinate, 16. 313 Pyrencite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 13. 160 Pyrargyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 13. 160 Pyrargyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 13. 160 Pyrargyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 13. 1606 Pyrallolite, 6. 430 Pyrargyrite, 12. 150, 463, 530 Puschkinite, 6. 721 Pycnite, 6. 560 Pyrallolite, 6. 430 Pyrargyrite, 13. 1606 Pyrallolite, 6. 450 Pyrallolite, 6. 498 Pyrargy	Pseudobroskite, 7. 2, 59; 12, 530	Purpurcochromic dithionate, 10, 590
Pseudo-catalysis, 10, 673 Pseudocotumnia, 7, 729 Pseudocotumnitium bromopalladite, 15, 677 ——chloropalladite, 15, 670 Pseudoemerald, 6, 803 Pseudoemerald, 6, 803 Pseudoemeryptite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——nigra compacta, 12, 1 ——picca, 12, 1 Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudoleucite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570 Puschkinite, 6, 721 Pyenite, 6, 560 Pyenophyllite, 6, 606 Pyrallolite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyridine cerium sulphate, 5, 659 —chloromanganite, 12, 379 —ferric chromate, 11, 310 —ferroheptanitrosyltrisulphide, 8, 442 —hydrazinodisulphonate, 8, 683 —lanthanum sulphate, 5, 659 —lead tetraiodide, 7, 764	· α-, 7. 60	
Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 15, 670 Pseudocotumnite, 15, 670 Pseudocotumnite, 15, 670 Pseudocotumnite, 16, 803 Pseudocotumnite, 16, 572 Pseudocotumnite, 12, 1 Pseudogalena, 4, 586; 5, 713	$ \cdot \beta$ -, 7. 60	Purpurite, 12, 150, 463, 530
Pseudocotumnia, 7, 729 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 7, 491, 729 Pseudocotumnite, 15, 670 Pseudocotumnitim bromopalladite, 15, 677 ——chloropalladite, 15, 670 Pseudocotryptite, 6, 803 Pseudocotryptite, 6, 572 Pseudocotryptite, 6, 560 Pyralpilite, 6, 430 Pyrargillite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyrgom, 6, 817 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyrgom, 6, 817 Pyrauxite, 6, 498 Pyrargillite, 6, 606 Pyrallolite, 6, 430 Pyrargillite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 569 Pyrallolite, 6, 430 Pyrargillite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 569 Pyrallolite, 6, 430 Pyrargillite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 569 Pyrallolite, 6, 430 Pyrargillite, 6, 812 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaurite, 13, 895 Pyriaurite, 14, 92 Pyrargyrite, 3, 300; 9, 294, 343, 537 Pyrauxite, 6, 498 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaurite, 13, 895 P	Pseudo-catalysis, 10. 673	Puschkinite, 6, 721
Pseudocotumite, 7, 491, 729 Pseudocumidinium bromopalladite, 15, 677 ——chloropalladite, 15, 670 Pseudoemerald, 6, 803 Pseudocuryptite, 6, 572 Pseudogalena, 4, 586; 5, 713 ——nigra compacta, 12, 1 ——picca, 12, 1 Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudolbethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289; 8, 733 Pseudomorphs, 1, 595 Pseudomorpheline, 6, 556, 768 Pseudomopheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570 Pseudocuryptite, 6, 675 Pyrallolite, 6, 643 Pyrargylite, 6, 849 Pyrargylite, 6, 812 Pyrargylite, 6, 812 Pyrargylite, 6, 812 Pyrargylite, 6, 849 Pyrargillite, 6, 842 Pyrazyrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyrgom, 6, 817 Pyrazinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 13, 895 Pyriaryrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 821 Pyrazyrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 1, 32 Pyrazyrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 1, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 1, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 1, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyracyrite, 3, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyreneite, 6, 921 Pyriaryrite, 1, 300; 9, 294, 343, 537 Pyraxinium pyrazinepentachloroplatinate, 16, 313 Pyriaryrite, 3, 300; praxin, 16, 315 Pyracyrite, 3, 300; praxinium pyrazinepentachloropl		Pycnite, 6, 560
Pseudocumidinium bromopalladite, 15. 677 ——chloropalladite, 15. 670 Pseudoemerald, 6. 803 Pseudoeucryptite, 6. 572 Pseudogalena, 4. 586; 5. 713 ——nigra compacta, 12. 1 ——picca, 12. 1 Pseudoisotopy, 4. 93 Pseudolaumontite, 6. 740 Pseudolibethenite, 3. 289; 8. 733 Pseudomalachite, 3. 289; 8. 733 Pseudomorphs, 1. 595 Pseudomorphs, 1. 595 Pseudomorpheline, 6. 569, 570 Pseudomorpheline, 6. 569, 570 Pyrallolite, 6. 430 Pyralgilite, 6. 320 Pyrargilite, 6. 312 Pyrargilite, 6. 312 Pyrargilite, 6. 30; 9. 294, 343, 537 Pyrauxite, 6. 498 Pyrazinium pyrazinepentachloroplatinate, 16. 313 Pyrencite, 6. 921 Pyrgom, 6. 817 Pyriaurite, 13. 895 Pyridine cerium sulphate, 5. 659 —chloromanganite, 12. 379 —ferric chromate, 11. 310 —ferroheptanitrosyltrisulphide, 8. 442 —hydrazinodisulphonate, 8. 683 —lanthanum sulphate, 5. 659 —lead tetraiodide, 7. 764		Pycnophyllite, 6. 606
		Pyrallolite, 6, 430
Pseudoemerald, 6 . 803 Pseudoemerald, 6 . 803 Pseudoemerald, 6 . 572 Pseudogalena, 4 . 586; 5 . 713		Pyrargillite, 6, 812
Pseudocucryptite, 6, 572 Pseudogalena, 4, 586; 5, 713		Pyrargyrite, 3, 300; 9, 294, 343, 537
Pseudogalena, 4, 586; 5, 713		Pyrauxite, 6, 498
nigra compacta, 12. 1 picca, 12. 1 Pseudoisotopy, 4. 93 Pseudolaumontite, 6. 740 Pseudoleucite, 6. 651 Pseudolibethenite, 3. 289; 8. 733 Pseudomalachite, 3. 289 Pseudomorphs, 1. 595 Pseudomorphs, 1. 595 Pseudonatrolite, 6. 755, 768 Pseudompheline, 6. 569, 570 16. 313 Pyrencite, 6. 921 Pyrgom, 6. 817 Pyriaurite, 13. 895 Pyridine cerium sulphate, 5. 659		Pyrazinium pyrazinepentachloroplatinate,
Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudoleucite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomorphs, 1, 595 Pseudomatrolite, 6, 755, 768 Pseudomorpheline, 6, 569, 570 Pseudomorpheline, 6, 569, 570 Pyriaurite, 13, 895 Pyriaurite		
Pseudoisotopy, 4, 93 Pseudolaumontite, 6, 740 Pseudoleucite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudomatrolite, 6, 755, 768 Pseudomepheline, 6, 569, 570 Pseudomepheline, 6, 569, 570 Pseudoisotopy, 4, 93 Pyrgom, 6, 817 Pyriaurite, 13, 895 Pyridine cerium sulphate, 5, 659 ——chloromanganite, 12, 379 ——ferric chromate, 11, 310 ——ferroheptanitrosyltrisulphide, 8, 442 ——hydrazinodisulphonate, 8, 683 ——lanthanum sulphate, 5, 659 ——lead tetraiodide, 7, 764 ——lead tetraiodide, 7, 764		
Pseudolaumontite, 6, 740 Pseudoleucite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudonepheline, 6, 569, 570 Pseudomendipite, 6, 765 Pseudonepheline, 6, 569, 570 Pseudomendipite, 7, 764 Pseudomendipite, 6, 755, 768 Pseudonepheline, 6, 569, 570 Pseudomendipite, 6, 765, 768 Pseudomendipite, 6, 765, 768 Pseudomendipite, 6, 769, 570 Pseudomendipite, 6, 769, 764 Pseudomendipite, 6, 769, 770		
Pseudoleucite, 6, 651 Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudomatrolite, 6, 755, 768 Pseudomepheline, 6, 569, 570 Pseudomepheline, 6, 569, 570 Pseudomepheline, 6, 764 Pseudomepheline, 6, 765, 768 Pseudomepheline, 6, 765, 768 Pseudomepheline, 6, 769, 570 Pseudomepheline, 6, 769, 570 Pseudomepheline, 6, 769, 770 Pseudomendipite, 7, 764 Pseudomendipite, 7, 768		
Pseudolibethenite, 3, 289; 8, 733 Pseudomalachite, 3, 289 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudomepheline, 6, 569, 570 Pseudomepheline, 6, 569, 570 — chloromanganite, 12, 379 — ferric chromate, 11, 310 — ferroheptanitrosyltrisulphide, 8, 442 — hydrazinodisulphonate, 8, 683 — lanthanum sulphate, 5, 659 — lead tetraiodide, 7, 764		D' 11
Pseudomalachite, 3, 289 ———————————————————————————————————		
Pseudomalachite, 3, 289 Pseudomendipite, 7, 491 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudomepheline, 6, 569, 570 Pseudomepheline, 6, 569, 570 — ferric chromate, 11, 310	Pseudolibethenite, 3, 289; 8, 733	
Pseudomendipite, 7, 491 —— ferroheptantrosyltrisulpinde, 8, 442 Pseudomorphs, 1, 595 Pseudonatrolite, 6, 755, 768 Pseudonepheline, 6, 569, 570		ferric chromate, 11. 310
Pseudomorphs, 1, 595 Pseudomatrolite, 6, 755, 768 Pseudonepheline, 6, 569, 570 — hydrazinodisulphonate, 8, 683 — lanthanum sulphate, 5, 659 — lead tetraiodide, 7, 764 — lead tetraiodide, 7, 764		ferroheptanitrosyltrisulphide, 8, 442
Pseudonatrolite, 6 , 755, 768 Pseudonepheline, 6 , 569, 570 ———————————————————————————————————		—— hydrazinodisulphonate, 8. 683
Pseudonepheline, 6 , 569, 570 ——lead tetraiodide, 7 , 764		lanthanum sulphate, 5, 659
1 10 10 10 10 10 10 10 10 10 10 10 10 10	Pseudonepheline, 6, 569, 570	lead tetraiodide, 7. 764
I Be unoperoxides, I. oro	Psoudoporoxides 1 958	manganic pentachloride, 12. 379
	I BUILD DIGUES, I. OTO	

110 GENERA	II INDIX
Pyridine molybdenyl pentachloride, 11. 631	Pyritic smelting, 3. 23
vanadium sulphate, 9. 819	Pyritolamprite, 9. 64
Pyridinium bromoiridate, 15. 777	Pyroantimonic acid, 9. 442, 443
bromopalladate, 15. 678	Pyroantimonite, 9. 577
bromoperruthenite, 15. 538	Pyroantimonious acid, 9, 429
bromoplatinate, 16. 375-6	Pyroarsenic acid, 9. 140
bromoruthenate, 15. 539	Pyroaurite, 4. 251, 376; 12. 530; 13. 916
· bromosmate, 15. 723	Pyrobelonite, 7, 491; 9, 791
carbonyltribromoplatinite, 16. 372	Pyrobenolite, 7, 491
- carbonyltrichloroplatinite, 16. 274	Pyrobismuthous acid, 9, 650
chloroiridate, 15 . 771 chloropalladate, 15 . 673	Pyrochloro 5 579 • 7 3 100 • 9 839 903
- chloropalladite, 15. 670	Pyrochlore, 5, 579; 7, 3, 100; 9, 839, 903 Pyrochloroantimonic acid, 9, 490
chloroperruthenite, 15. 533	Pyrochroite, 12. 150
chlororhodate, 15. 580	Pyrochrolite, 9. 539
chlororuthenate, 15. 534	Pyrochrotite, 9, 539
chlorosmate, 15 . 719	Pyroclasite, 3. 866
— enneabromodiperrhodite acid, 15. 580	Pyrocolumbate, 5, 516
heptachloroperruthenite, 15. 533	Pyroconite, 5. 309
hexachloroperruthenite, 15. 531, 533	Pyrocrase, 9, 904
molybdenum oxypentabromide, 11.637	Pyroelectricity, 1. 648
oxytetrabromide, 11. 638	Pyroemerald, 2. 3
pentachloropyridinoperiridite, 15. 763 pentachloropyridinoperruthenite, 15.	Pyrogallol, 13, 615, 616 Pyroiodic acid, 2, 324
533	Pyrolusite, 5. 530; 12. 150, 265; 15. 9
pentafluoferrate, 14. 8	Pyromelane, 6. 840; 15. 6
- pyridinepentachloroplatinic acid, 16.	Pyromorphite, 2. 15; 7. 883, 896; 8. 733;
312	9. 261
pyridinetrichloroplatinite, 16. 274	Pyrope, 6. 714, 815
tetrabromobispyridinoperrhodite, 15.	Pyrophanite, 7. 3, 56; 12. 150
580	Pyrophoric alloys, 5. 610
tetrabromotungstite, 11. 854	
tetrachlorobispyridinoperiridite, 15. 763, 766	iron, 2. 768
tetrachlorobispyridinoperruthenite,	Pyrophorus powders, 8, 1058 Pyrophosphates, 8, 975
15 . 533	Pyrophosphatotungstates, 11. 874
tetrachlorohydroxychromanate, 11.391	Pyrophosphodiamic acid, 8, 708, 717
tetrafluoferrate, 14. 8	Pyrophosphoric acid, 8, 948, 971
trichlorobromide, 14. 125	constitution, 8: 973
trioxydichlorosmonate, 15. 721	hydration, 8. 973
Pyrite, 14. 200, 202	properties, chemical, 8, 975
comparison marcasite, 14. 221	
magnétique, 14, 136	Pyrophosphorite, 3, 892
properties, chemical, 14, 221 physical, 14, 209	Pyrophosphorous acid, 8, 921
Pyrites, 14. 199, 202; 15. 9	Pyrophosphoryl bromide, 8, 1036 ————————————————————————————————————
- a, 14. 215	Pyrophyllite, 6, 498
β , 14. 215	pseudo, 6 . 499
albus, 9. 306	Pyrophysalite, 6. 560
aquosus, 14 . 200	Pyroplumbic acid, 7. 685
candidus, 9 . 306	Pyrorthite, 5. 509
capillary, 14. 218; 15. 435	Pyrosclerite, 6. 609
cobalt hard, 9. 78	Pyroselenites, 10. 820, 822
cockscomb, 14 . 218	Pyrosmalite, 2. 15; 6. 896; 12. 150
—— copper, 3 . 7 —— copri griseus, 9 . 291	Pyrosmargyd, 3. 693 Pyrostibite, 9. 577
—— fuscus lamellosus, 14. 136, 200	Pyrostilpnite, 3 . 300; 9 . 343, 539
—— hepatic, 14. 218	Pyrosulphamic acid, 8. 637
magnetic, 14. 136	Pyrosulpharsenatosulphomolybdates, 9. 322
iron, 14. 136	Pyrosulpharsenic acid, 9. 315
nickel, 9. 80; 15. 435	Pyrosulpharsenious acid, 9. 289
red, 9 . 80; 15 . 435	Pyrosulphates, 10. 440, 444
——————————————————————————————————————	Pyrosulphites, 10. 327
radiated, 14. 218	Pyrosulphoantimonious acid, 9. 532
silver, 14, 193	Pyrosulphyria acid. 10, 163
	Pyrosulphuric acid, 10. 351, 357, 444 Pyrosulphurous acid, 10. 327
tin, 7. 475	Pyrosulphuryl chloride, 10. 678
white, 14. 200	Pyrotantalate, 5. 516
X-radiogram, 1. 641	Pyrotelluric acid, 11. 89
-	

Pyrotellurite, 11. 78 Pyrotellurous acid, 11. 77 Pyrotungstic acid, 11, 762 Pyrouranic acid, 12, 58 Pyrovanadic acid, 9, 753 Pyroxene, 6. 390 - ferrugineux, 6. 912 - monoclinie 6. 390 - rhombic, **6**. 390 Pyroxenes, 6. 410, 818 ____ zircon, **6**. 857 Pyroxlerite, **12**. 530 Pyroxmangite, 6, 917; 12, 150, 530 Pyroxone, 1. 946 Pyrrharsenite, 9, 221 Pyrrhite, **5**. 519 ; **9**. 903 Pyrrholite, 6. 619 Pyrrhosiderite, 13. 877 Pyrrhotin, 14. 136 Pyrrhotite, 12, 530; 14, 137; 15, 9 nature of, 14, 137 Pythagoras, 1. 34

Q

Quanidinium uranium tetracarbonate, 12. Quantity factor of energy, 1. 712 Quantivalence, 1. 224 Quantum, 1. 811 ---- theory of energy, 1. 811 Dulong and Petit's rule, 1. 811 Quartz, 6. 37, 138; 7. 897 · · · · α-, 6. 240 - amethyst, **6**. 138 ---- analyses, 6. 242 --- aventurine, **6**. 139 --- β., 6. 240 ---- cubical, **5**. 137 --- en chemise, 6. 138 ---- enfumée, **6**. 138 -- -- ferruginous, **6**. 138 ---- fœtid, **6**. 138 — fused, 6. 288 --- glass, **6**. 288 —— inclusions, **6**. 243 —— laiteaux, **6**. 138 —— milky, **6**. 138 - permeability to gases, 1. 305 — preparation, 6. 237 - X-radiogram, 1. 642 -- yellow, **6**. 138 Quartzine, 6. 139 Quartzites, 6. 140 Quecksilberfahlerz, 9. 291 Quellerz, 13. 886 Quenching, 12. 675 Quenselite, 12. 150, 242 Quenstedite, 14. 303 Quenstedtite, 12. 530; 14. 307 Quetenite, 12. 530; 14. 328, 348 Quicklime, 3. 653 Quicksilver, 4. 696 horn, 4. 697, 798 Quinamine chloroplatinate, 16. 313

Quinidine magnesium chromate, 11, 276 Quinine bromoiridate, 15. 777 - chloroiridate, 15. 771 --- chloroplatinate, 16. 313 - sulphatoperiridite, 15. 784 Quinoline carbonyltrichloroplatinite, 16, 274 — — cerium sulphate, **5**. 659 --- lanthanum sulphate, 5. 659 --- lead tetraiodide, 7. 764 --- manganic pentachloride, 12, 379 Quinolinium bromoiridate, 15. 777 --- bromopalladate, 15. 678 ---- bromoperruthenite, 15. 538 --- bromoplatinate, 16. 376 --- bromoruthenate, 15. 539 ---- chloroiridate, 15. 771 - - chloroperruthenite, 15, 533 ---- chlororhodate, 15. 580 - -- chlororuthenate, 15. 535 - - chlorosmate, 15. 720 --- molybdenum oxypentabromide, 11. 637 -- oxytetrabromide, 11. 638 -- tetrachlorohydroxychromanate, 11. iso-quinolinium bromopalladate, 15, 678 bromopalladite, 15. 677 ----- bromosmate, 15. 723 ---- --- chloroiridate, 15. 771 ----- chloropalladate, 15, 673 ---- -- chloropalladite, **15**. 670 --- chlororhodate, 15. 580 ---- chlorosmate, 15. 720 Quirlkies, 9, 77 Quirogite, 7. 491; 9. 545

ĸ

R-gas constant, 1. 161 Rabdionite, 12, 267 Racewinite, 6, 812 Radauite, 6, 694 Raddle, 13. 887 Radiant matter, 4. 28 Radiation law, Stefan-Boltzmann's, 4, 15 theory, chemical action, 4. 44 Radiations K, 4. 37 L, 4. 37 Radicals, see Radicles Radicle theories, 1. 216, 217, 221 Radicles, 1, 197 Radio-lead, 4, 114 -- tellurium, **4**. 114 -- uranium, 4. 123 Radioactinium, 4. 738 Radioactive bismuth, 4. 114 --- constants radium-uranium series. 4. ---- substances occurrence, 4. 64 Radioactivity, 4. 53, 59, 179
—— artificial, 4. 151 excited, 4. 97 — induced, 4. 97; 7. 194 -- Lerch's rule, 4. 114 Radiolite, 6. 652 Radiothorium, 7. 189 Radiotine, 6. 423 Radium, 4. 59, 60 - A, 4. 105

Radium azide, 4, 94; 8, 350 	Rare earth uranium deuterotetracolumbate, 9, 906
bromide, 4. 93	titanocolumbate, 9. 906
C, 4 , 107	carths, 1, 265; 5, 495
C ₂ , 4 , 107, 111	asteroid theory, 1. 265
carbonate, 4. 93 chloride, 4. 93	history, 5 , 496 isolation of, 5 , 546
chromate, 11, 272, 274	removal thoria, 5. 546
D, 4. 112	resolution into ceria and yttria
decay of, 4 . 97	groups, 5, 548
descendants, 4. 126	separation by fractional crystalli-
E, 4 , 114 emanation, 7 , 889	zation, 5. 557 distillation, 5.
	575 electrolysis, 5 . 75
extraction of, 4. 60	oxidation, 5. 572
F, 4. 115, 127	precipitation, 5 .
	561
nitrate, 4 . 93 nitride, 8 . 103	575
occurrence, 4. 64	physical processes, 5.
progenitors, 4. 118	575
properties, chemical, 4. 93	ceria earths (James' pro-
physical, 4, 90	cess), 5, 549
radiations, analysis, 4, 80 Strutt's clock, 4, 84	yttria earths (James' pro-
sulphate, 4. 93	cess), 5, 552 Rasaka, 4 , 401
uranium ratio in minerals, 4. 67	Raseneisenstein, 13, 885
Rädelerz, 9. 550	Raspite, 7, 491; 11, 678, 792
Ræpperite, 12, 150	Rastolyte, 6. 609
Räuschgal, 9, 267	Rat poison, 9, 90
Rafaelite, 2 . 15; 7 . 491, 739 Raffineradtjern, 12 . 709	Rate of solution gases in liquids, 6. 49 see Velocity
Raimondite, 14, 328, 333	Rathite, 7, 491; 9, 4, 230, 299
Ralstonite, 2, 1; 4, 252; 5, 303, 309	Ratholite, 6. 366
Ramarite, 9. 777	Ratios, law of equivalent, 1, 79
Ramirite, 9, 715	Rauchgelbkies, 9, 306
Rammelsbergite, 9. 4, 81; 14, 424; 15, 6 Rammelsberg's theory mercury-nitrogen	Rauchquartz, 6 , 138 Rauite, 6 , 573
compounds, 4. 785	Raumgitter, 1, 624
Ramsavite, 6, 842	Raumite, 6, 812
Ramsay's theory rotating electrons, 4. 186	Rauschgelb, 9. 267
Rancieite, 12 . 234, 266 Rancierite, 12 . 150, 234, 266	Rauvite, 9, 789; 12, 5
Rancierte, 12, 150	Ray extraordinary, 1. 607 ————————————————————————————————————
Randite, 12. 5, 115	Rayons continuatours, 3, 415
Ranite, 6. 573	excitateurs, 3. 415
Rankins' vapour-pressure formula, 1, 433	Razoumovskyn, 6. 498
Ransomite, 14 . 328, 347 Rapid steels, 13 . 634	Reacting weights, 1. 99 Reaction : himologular 2. 141
Rapidolite, 6. 762	Reaction: bimolecular, 2, 141 —— energy cost, 1, 716
Rare earth calcium columbatotantalate, 9.	heat of, 1. 698
904	—— Landolt's, 2. 311
ferrous uranyl pyrocolum-	unimolecular, 2. 49
batotantalate, 9. 906 orthocolumbatotantalate, 9.	Reactions aluminothermic, 5. 218
904	—— and pressure, 1. 300 —— arrested, 4. 982; 6. 515
fluosilicates, 6 . 954	balanced, 1. 299
group, separation of, 5. 543	catalytic, 1. 358
metals, asteroid theory, 5. 615	chain, 16. 152
electronic structure, 5.	
position in periodic table, 5.	concurrent, 1. 360
	— coupled, 2. 240
———— minerals, opening up, 5. 545 ————— molybdatosulphites, 10. 307	
oxalates, 5. 543	dead space in, 2. 312 incomplete, 1. 299
silicates, 6 . 859	irreversible, 1. 299
thiosulphates, 10. 549	law of successive, 2. 371

Reactions light: primary, 2, 153	Refractive index and valency, 1, 681
secondary, 2, 153	effect of pressure, 1, 675
opposing, 1, 299	· temperature, 1. 675
phototropic, 4. 963	of gases, 1, 681
radiation theory, 4, 44	
reversible, 1, 299	Refractivity, 1, 673
	Regent diamond, 5, 711
- ·- side, 1 , 360	Regnolite, 9, 4, 324
speed, 1, 294	Regula veneris, 3, 99; 9, 403
thermie, 5, 218	Regulus, 3. 23
trigger, 1, 358	antimonii jovialis. 9. 350
wall, 16. 152	lunaris, 9. 350
- with compressed solids, 1, 826	martialis, 9, 350, 412
solids, 1, 824, 826	· medicinalis, 9. 577
- Spring's experiments, 1, 824	saturninus, 9. 350
Realgar, 9. 4, 266	
Reason, 1, 13	stellatus, 9 . 350, 355
Reaumurite, 6. 354	venerus, 9 . 350
Recoil atoms, 4, 82, 109	vulgaris, 9, 350
Recrystallization iron, 12, 903	stellatus, 9. 340
steel, 12, 903	Reichardite, 4. 321
Rectorite, 6, 492	Reinecke's salt, 11, 406
Red chalk, 13, 775	Reinite, 11, 678, 698; 12, 530
· · · cobalt, 14, 424	Reinsch's test arsenie, 9, 39
fossil ore, 12 , 530	Reisblei, 5, 714
hamatite, 12 , 530	Reiset's chloride, 16, 261
isomer, 16 . 271	first base, 16 , 239
- lead, 7, 672	Reissacherite, 12, 150, 267
colloidal, 7. 677	Reissite, 6, 761
	Rejalgar, 9. 267
physical, 7. 677	Reluctivity magnetic, 13, 245
- lion, 9, 341	Remanence magnetic, 13, 246
liquor, 5 . 352	Remingtonite, 14, 424, 808
nickel ore, 9. 4	Renardite, 12. 5
- ochre, 12 . 530	Reniforite, 9. 69
silver ore, 9 . 294	Rensselacrite, 6, 430
— — ultramarine, 6 . 591	Réseau, 1. 624
vitriol, 14 . 761	Residual current, 1. 1030
	Residues, theory of, 1, 219
i	Resin blende, 4, 408
oxide, 12, 150	
Reddingite, 8, 733; 12, 150, 448; 14, 396	Resina cupri, 3, 157
Reddle, 13, 775	Resistance, chemical, 1, 293
Redingstonite, 11, 125	electrical, 1. 963
Redondite, 5. 362	passive, 1. 152
Redruthite, 3, 210	specific electrical, 1, 978
Reducing fusion, 3. 26	Restormelite, 6, 500
Reduction, 1. 64, 210	Retentivity, magnetic, 13, 246
by hydrogen, 1, 332	Retger's colour test mixed crystals, 1. 660
copper compounds, 3. 10	law mixed crystals, 1 . 660
Reef gold, 3 , 491	Reticular density, 1, 628
Refdanskite, 6. 933	Retinalite, 6, 422
Refining copper by electrolysis, 3, 27	Retort charcoal, 5. 748
Reflecting power, 3. 47	Retorts, zinc, 4, 413
Reflection, X-rays, 4. 34	Retzian, 5, 530; 9, 223; 12, 150
Refraction, atomic, 1. 673	Reuschgeel, 9. 267
double, 1. 607	Reverberatory furnace, 3, 25
index of, 1. 670, 671	
	Reversed spectrum, 4. 6
molecular, 1. 673	Reversibility, principle of, 1. 93, 706
specific, 1. 673	Reversible cells, 1, 1021
Refractive constants, 1. 675	colloid, 1. 771
energy, 1. 673	
specific, 1. 673	
index, 3. 47	
and chemical composition, 1. 677	Rewdanskite, 15. 6
critical temperature, 1. 675	Rey, J., on calcination, 1, 56
dielectric constant, 1. 683	Rezbanyite, 7, 491; 9, 549, 589, 694
dispersion, 1. 677	Rhabdite, 8, 860; 12, 528, 530
isomerism, 1. 685	Rhabdophane, 5. 529
magnetic rotatory power, 1.	Rhaetizite, 6. 458
681	Rhagite, 9. 5, 198, 589
mixture law, 1. 678	Rhaphanosmite, 10. 788
·	

720 GENERA	L INDEX
	L D1 12
Rhaphilite, 6. 821	Rhodium ammonium silver chloronitrate,
Rhapidolite, 6. 762	15. 590
Rhases, A. M., 1. 41	analytical reactions, 15. 565 aquopentamminobromide, 15. 580
Rhenates, 12, 478	aquopentamminochloride, 15. 576
Rhenic acid, 12, 478	aquopentamminohydronitrate, 15. 590
—— anhydride, 12 . 478 Rhenium, 12 . 465	aquopentamminohydroxide, 15, 571
analytical reactions, 12. 472	- aquopentamminonitrate, 15. 589, 590
atomic weight, 12. 472	aquopentamminonitratochloroplati-
bromide, 12 . 479	nate, 15. 590
compounds, 12. 472	aquopentamminophosphate, 15. 591
dioxide, 12. 478	aquopentamminosulphate, 15. 587
dihydrate, 12. 478	aquopentamminosulphatochloroplati-
diselenide, 12. 480	nate, 15. 587
disulphide, 12 . 480	arsenate, 9. 234
electronic structure, 12. 472	arsenic alloys, 9. 81
hemiheptasulphide, 12. 480	atomic disruption, 15 . 568
heptachloride, 12. 479	number, 15 . 568
heptaselenide, 12. 481	weight, 15 . 567
heptasulphide, 12 . 48 0	- — auride, 15 , 565
heptoxide, 12. 473	barium dodecanitrite, 8. 573
hexachloride, 12 . 479	bisdimethylglyoximediamminobro-
iodide, 12 . 479	mide, 15. 581
iridium alloy, 15 . 750	bisdimethylglyoximediamminoiodide,
——— isolation of, 12, 467	15. 582
isotopes, 12, 472	bisdimethylglyoximediamminonitrate,
occurrence, 12. 466	15. 589
	bisdimethylglyoximodiamminochlo-
perrhenate, 12. 478	rides, 15. 577 bisdimethylglyoximodiamminochloro-
—— platinum alloy, 16. 216 —— potassium bromide, 12. 480	platinate, 15. 577
	bismuth alloy, 9. 641
chloride, 12. 480 iodide, 12. 480	— black, 15. 551
properties, chemical, 12, 471	borate, 5. 115
physical, 12. 469	bromopentamminobromide, 15. 580
rhenate, 12. 478	bromopentamminocarbonate, 15. 589
rhodium alloys, 15. 565	bromopentamminochloride, 15. 581
—— sulphate, 12. 479	- bromopentamminohydroxide, 15. 581
tetrachloride, 12 . 479	bromopentamminonitrate, 15. 590
tetroxide, 12 . 472	brownish red sodium sulphite, 10.
—— thallous bromide, 12. 480	326
chloride, 12. 480	——————————————————————————————————————
trioxide, 12 . 477	disulphide, 15 . 588
trisulphide, 12 . 480	dihydrate, 15 . 588 dodecahydrate, 15 . 588
tritaditungstide, 12. 472	Laura hardward 45 588
tungsten alloys, 12. 472	hexahydrate, 15. 588 tetrahydrate, 15. 588
Rheotan, 15. 210, 313	carbonate, 15. 589
Rhind's papyrus, 1. 26	carbonates, 15. 589
Rhizobium leguminosarum, 8. 359	catalysis by, 1. 487
Rhodalite, 6 . 473, 921 Rhodalose, 14 . 424, 761	chloro- $\beta\beta'\beta''$ -triaminotriethylamine,
Rhodic ammonium dodecamolybdate, 11.	15 . 577
603, 604	chloropentamminocarbonate, 15. 589
chloropentamminofluosilicate, 6. 958	chloropentamminochloride, 15. 576
hydrosulphate, 15, 587	chloropentamminochloroplatinate, 15.
—— potassium dodecamolybdate, 11. 603,	577
604	chloropentamminohydrosulphate, 15.
	587
pentahydrate, 15 . 587	chloropentamminohydroxide, 15. 577
tetrahydrate, 15. 587	chloropentamminonitrate, 15. 590
Rhodioplatinum, 16. 6	chloropentamminosulphate, 15. 587
Rhodious sulphate, 15. 587	chloropyridinoperosmate, 15. 721
Rhodite, 8. 494; 15. 545, 565	cobaltic trisethylenediaminobromide,
Rhodium, 15, 545; 16, 1, 3	15. 580
alums, 15. 588	trisethylenediaminochloride, 15.
ammines, 15. 583	576
ammonium alum, 15. 588	
chloronitrate, 15. 590	colloidal, 15. 551
disulphate, 15. 588 mercury chloronitrate, 15. 591	
mercury chioromorave, 10. 081	coppor unoy, zo. our

Rhodium dibromoquaterpyridinobromide,	Rhodium monoxide, 15. 569
15. 580	
· · ·	nitrates, 15. 589
dichloride, 15. 573	nitratopentamminochloride, 15. 590
dichloroaquotrispyridine, 15. 576	nitratopentamminochloroplatinate,
dichlorobisdiaminodiethylaminohy-	15 . 590
drochloride rhodiochloride, 15, 577	- nitratopentamminodithionate, 15. 590
—— dichloroquaterpyridine, 15. 576	- nitratotrichloropyridine, 15. 590
—— dichloroquaterpyridinebromide, 15.	nitratotrichloronumidia un 45 570
581	nitratotrichloropyridines, 15. 576
	nitritopentamminohydrosulphate, 15.
dichloroquaterpyridinechloride, 15.577	587
dichloroquaterpyridinechloroplatinate,	nitritopentamminosulphate, 15. 587
15 . 577	occurrence, 15. 545
- dichloroquaterpyridinehydroxide, 15.	osmium alloys, 15. 697
577	ovides 45 500
	oxides, 15. 569
dichloroquaterpyridinohydroperos-	oxyphosphate, 15. 591
mate, 15. 713	oxysulphate, 15. 587
dichloroquaterpyridinonitrate, 15. 590	— palladium alloys, 15. 652
—— dichlorotetramminonitrate, 15. 590	pentafluoride, 15. 572
- dichlorotetrapyridinosulphate, 15. 587	
—— dihydroxybromide, 15. 580	
dinydroxybromide, 10. 560	phosphate, 15. 591
dioxide, 15. 571	—— phosphates, 15. 589
dihydrate, 15. 571	phosphide, 8. 861
diplumbide, 15 . 565	physiological action, 15. 566
—— 2 : 2'-dipyridylchlorides, 15. 577	— platinum alloys, 16. 221
— disulphide, 15 . 586	iridium alloy, 16. 228
	11 - 11 - 40 000
dizincide, 15. 565	
—— electrodeposition, 15. 558	——————————————————————————————————————
electronic structure, 15. 568	—— potassium alum, 15. 588
explosive, 15 . 550	chloronitrite, 8. 513
extraction, 15. 546	disulphate, 15. 588
	hammitaita 0 512
films, 15 . 541	hexanitrite, 8. 513
—— gold, 15 . 545	trisulphite, 10. 326
———— alloys, 15 . 565	preparation, 15 . 546
hemioxide, 15. 569	properties, chemical. 15. 561
hemipentasulphide, 15. 586	physical, 15. 553
hemipentoxide, 15. 571	
	rhenium alloys, 15. 565
—— hemitrioxide, 15 . 569	rubidium alum, 15. 588
—— hemitrisulphide, 15 . 585	disulphate, 15. 588
hexabromoaquobispyridine, 15. 580	ruthenium alloys, 15 . 565
- hexamminobromide, 15. 580	sesquioxide, 15. 569
hexamminochloride, 15. 575	sesquisulphide, 15. 585
——————————————————————————————————————	silver alloys, 15 . 564
hexamminochloroplatinates, 15. 576	chloride, 15. 579
—— hexamminohydronitrate, 15. 589	sodium aquopentamininopyrophos-
hexamminohydroxide, 15. 571	phate, 15. 591
—— hexamminonitrate, 15. 589	disulphate, 15. 587
hexamminophosphate, 15. 591	hexamminopyrophosphate, 15.
—— hexamminosulphate, 15. 587	591
hexathiocarbamidochlorodinitrate, 15.	———— hexanitrite, 8. 513
590	nitrate, 15 . 590
hydride, 15 . 561	sulphite, 10. 326
hydrophosphate, 15. 591	solubility of hydrogen, 1. 306
—— hydrosulphide, 15 . 585	—— sponge, 15 . 551
hydroxylpentamminobromide, 15. 581	sulphate, 15. 586
hydroxylpentamminonitrate, 15. 590	—— sulphates, 15. 586
	sulphides, 15 . 584
iodopentamminochloride, 15. 582	—— tetrabromide, 15. 581
iodopentamminoiodide, 15. 582	—— tetrachlorobispyridines, 15. 576
	—— tetrafluoride, 15. 572
iodopentamminonitrate, 15. 590	
iodopentamminosulphate, 15. 587	—— tetrahydroxide, 15. 571
trihydrate, 15 . 587	thallous alum, 15 . 588
iridium alloy, 15 . 750	disulphate, 15. 588
iron alloys, 15. 565	thiocarbonate, 6. 129
isotopes, 15 . 568, 641	
—— lead alloy, 15. 565	tin alloy, 15. 565
chloride, 15 . 579	—— triaminocyclopentanobromide, 15. 580
lithium alloy, 15. 564	—— triamminotrichloride, 15. 576
— mercurous chloride, 15. 579	—— tribromide, 15 . 580
monamminotribromide, 15. 581	dihydrate, 15. 580
	tribromotriamminobromide, 15. 581
monochloride, 15. 573	2

```
Rhodium triearbonyloxydichloride, 15. 575
                                                 Richter's law of neutrality, 1. 391
                                                 Ricolito, 6. 422
  — trichloride, 15. 573
        - tetrachloride, 15. 574
                                                 Riebeckite, 6, 913; 7, 100; 12, 530
   - trichloroaquobispyridine, 15. 576
                                                 Riemannite, 6, 497
---- trichlorotrispyridine, 15. 576
                                                 Rigidity solids, 1. 820
                                                 Rings, Liesegang's, 1. 537
Rinkite, 5. 513; 6. 844; 7. 3
   — trifluoride, 15. 572
---- trihydroxide, 15. 570
--- triiodide, 15. 581
                                                 Rinman's green, 14, 519, 602
                                                 Rinneite, 2. 15; 12. 530; 14. 530
Rionite, 9. 291
— triiodotriammine, 15, 582
--- trinitrate, 15. 589
                                                 Ripidolite, 6. 621
    - trinitrosyloxydichloride, 15. 573
---- trioxide, 15. 571
                                                 Ripley, G., 1. 48
                                                 Riponite, 6. 763
                                          15.
- trisaminocyclopentanosulphate,
        587
                                                 Risigallo, 9, 267
                                                 Risorite, 5, 517; 7, 3; 9, 904
--- trisaminopentanochloride, 15. 576
--- trisdiaminocyclopentanochloride,
                                                 Risorite, 9, 839; 12, 6
                                                 Rittingerite, 9, 319
---- trisdiaminopentaneiodide, 15. 582
                                                 River-water, 13, 608
--- trisdiaminopentanobromide, 15. 580
                                                 Riversideite, 6. 359
— trisdiaminopentanonitrate, 15. 589
                                                 Rivotite, 9. 343, 437
--- l-trisethylenediaminobromide, 15. 580
                                                 Roast chloridizing, 3, 31, 306; 4, 415
                                                    - sulphatizing, 3. 30, 306
 --- trisethylenediaminochloride, 15. 576
                                                 Roaster acid, 2, 730
---- trihydrated, 15. 576
--- d-trisethylenediaminochloride, 15. 576
                                                    - smelting, 3, 25
- - l-trisethylenediaminochloride, 15. 576
                                                 Roasting blister, 3, 25
--- trisethylenediaminoiodide, 15. 581
                                                 Robertson's formula, 1, 835
     d-trisethylenediamminoiodide, 15. 581
                                                 Robin's law. 2, 146
- l-trisethylenediaminoiodide, 15. 582
                                                 Rocca, 5, 148
-- trisethylenediaminonitrate, 15. 589
                                                 Roche alum, 5, 148
- - trispyridinotribromide, 15. 580
                                                 Rochelle salt, 3, 120
---- tristannide, 15. 565
---- trisulphite, 10. 325
                                                 Rock alum, 5, 148
                                                 ---- crystal, 6, 135, 138
---- tritatetrasulphide, 15. 585
                                                   --- salt, 2. 430, 522; 7. 897
— tritatetroxide, 15. 569
                                                 -- -- winning, 2. 525
  --- uranyl nitrate, 15. 590, 591
                                                 Rodtguldenerz, 9. 294
- -- uses, 15. 566
                                                 Roeblingite, 6, 890; 7, 491, 821
— valency, 15. 567
Rhodiumgold, 15. 565
                                                 Roemerite, 12, 530; 14, 319, 328, 350
                                                 Röntgen rays, 4. 31
Rhodizite, 3. 426; 4. 206; 5. 4, 102, 155
Rhodoarsenian, 9. 223
                                                 Roepperite, 6, 386, 909; 12, 433, 530; 14.
                                                     359
Rhodochrome, 6. 622
                                                 Roesslerite, 4. 252; 9. 176
Rhodochromicdithionate, 10. 596
                                                 Rössterite, 9. 5
Rhodochrosite, 12. 150, 432; 14. 359 ---- X-radiogram, 1. 641
                                                 Röttisite, 6. 932; 15. 6
                                                 Rogerium, 5. 504
   --- zinc, 13. 433
                                                 Rogersite, 6, 516; 9, 839; 12, 5, 530; 14.
Rhodochrositesiderite, 14. 369
                                                     308
Rhodonite, 6, 391, 896; 7, 897; 12, 150, 530
                                                 Rogna, 3. 76
     blue, 6. 916
                                                 Roheisen, 12. 708
Rhodophyllite, 6. 622
                                                      entphosphortes, 12. 709
Rhodotilite, 6. 894
                                                      graues, 12. 708
Rhodusite, 12. 530
                                                 ---- halbiertes, 12. 708
Rhönite, 6, 845; 12, 530
                                                 ---- weisses, 12. 708
Rhombarsenite, 9. 94
                                                 Rohrbach's solution, 4, 940
Rhombic system, 1, 619
                                                 Roman alum, 5, 343
Rhomboelase, 12, 530; 14, 318
                                                 -- · · · alums, 5. 149
Rhonite, 7. 3
                                                 ---- cement, 6, 554
Rhotanium, 15. 647
                                                 Romanechite, 12, 150, 266, 279
Rhombolite, 9. 343
                                                 Rome, 1. 37
Rhyacolite, 6. 662
                                                 Romeïte, 3. 623
Rhythmic crystallization, 1, 599
                                                 Romeite, 9. 343, 432, 454
     precipitation, 1. 537
                                                 Rongalite, 10. 163
Ribbon mica, 7. 613
                                                 Rosagallum, 9. 267
Ricardite, 11. 2
                                                 Rosasite, 4, 646, 648
Richardite, 2. 430; 3.7; 11.42
                                                 Roscherite, 5, 370; 14, 397
Richards' formula, 1. 835
                                                 Roschgewachs, 9. 540
Richellite, 12, 530; 14, 412
Richmondite, 5, 362; 9, 554
                                                 Roscoelite, 6, 605, 836; 9, 715; 12, 150
                                                 Rose, 5. 711
Richterite, 6. 391, 916; 12. 150, 530
                                                 Rosein, 15. 235
    soda, 6. 916
                                                 Roselite, 4. 252; 9. 5, 230; 14. 424
Richter's law, 1. 79, 97
                                                 Roselith, 3, 623
```

Rosenbuschite, 5. 514; 6. 855; 7. 3, 100	Rubidium bromoaurate, 3, 607
Rosenerite, 12, 530	bromoiodide, 2. 610
Rosenite, 9. 547	bromoiridate, 15. 776
Rosenspat, 12. 432	
Rosentiehl's green, 12. 289	bromopalladate, 15. 678
Pose's special 4 200	bromopalladite, 15. 677
Rose's crucible, 1, 329	bromoperruthenite, 15. 538
Rosgeel, 9. 267	bromoplatinate, 16 . 378
Rosicrucians, Society of, 1. 4	bromoruthenate, 15. 538
Rosieresite, 7. 878	— - bromosmate, 15. 724
Rosite, 9. 536	bromostannate, 7. 456
Rossite, 6 . 619; 9 . 769	cadmium hexabromide, 4. 572
Rosterite, 4. 204; 6. 803	selenate, 10. 868
Rotatory polarization, 1. 608	tetrachloride, 4, 557
power, molecular, 1. 609	tribromide, 4. 572
specific, 1. 609	Aniahlanida 4 557
Rotgass, 15. 235	trichloride, 4. 557
	voltaite, 14. 353
Rothbeise, 5. 352	cæsium alloys, 2. 481
Rothbraunstein, 6. 896	calcium disulphate, 3, 810
Rothes Bleierz, 11, 290	trisulphate, 3, 810, 811
Rothgiltigerz, 9. 294	carbide, 5 . 847
Rothguldenerz, 9. 294	carbonate, 2. 725
Rothoffite, 6. 921; 12. 150	properties, chemical, 2, 767
Rothspath, 6. 896	physical, 2. 747
Rothspiessglanzerz, 9. 577	
Rothspiersglaserz, 9, 577	carnallite, 4. 308
	ceric nitrate, 5, 673
Rothstein, 6. 896	cerous nitrate, 5. 670
Rotzalun, 5, 148	chlorate, 2. 326
Rouge carmine, 13, 782	chloride : mol. wt., 2. 555
de chair, 13 . 782	preparation, 2. 528
— flambé, 11 . 177	properties, chemical, 2. 552
laquex, 13 . 782	physical, 2, 529
sanguine, 18. 782	chloroaurates, 3. 594
violatre, 13. 782	attlandmentides, 0, 500
	chlorobromides, 2, 588
Rouleaux, 6. 476	chloroiodide, 2, 610, 611
Roussin's black salt, 8, 439	— - chloroiridate, 15 . 769
—— red salt, 8 . 440	chloromanganite, 12. 380
Rowlandite, 5. 521; 12. 6	chloropalladate, 15, 672
Royal Society, 1. 5	chloropalladite, 15. 669
Rozan's process desilverization lead, 3, 312	chloroperiridite, 15. 764
Rubellan, 6 . 609	chloroperpalladite, 15. 671
Rubellite, 2. 426; 6. 741	chloroperrhodite, 15, 579
Rubenglimmer, 2. 426; 6. 607	chloroperruthenite, 15, 531
Ruberite, 8. 117	chloroplatinate, 16. 323
Rubicelle, 5. 295	chloroplatinite, 16. 280
Rubidammonium, 8. 247	chloroplumbate, 7 . 733
Rubidia alum, 5. 345	- — chloropyroselenite, 10. 913
felspar, 6 . 662, 668	chlororuthenate, 15. 535
gallic alum, 5. 385	— chlororuthenite, 15. 525
indium alum, 5 . 404	chlorosmate, 15. 719
—— indium alum, 5, 404 Rubidiojarosite, 14, 343	chlorosmate, 15 . 719 chlorostannate, 7 . 449
indium alum, 5. 404 Rubidiojarosite, 14. 343 Rubidium acetylene carbide, 5. 849	chlorosmate, 15. 719 chlorostannate, 7. 449 chlorotitanite, 7. 77
—— Îndium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 —— aluminium selenate, 10, 869	
—— indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 —— aluminium selenate, 10, 869 —— sulphate, 5, 345	
—— Îndium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 —— aluminium selenate, 10, 869	
—— indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 —— aluminium selenate, 10, 869 —— sulphate, 5, 345	
- indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849	
- indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849	
- indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 - aluminium selenate, 10, 869 - sulphate, 5, 345 - amalgams, 4, 1015 - amide, 8, 253 - ammine, 8, 247 - aquochloroperiridite, 15, 765 - aquopentabromoiridate, 15, 777 - argentoiodides, 3, 433 - arsenatotellurate, 11, 96 - at. wt., 2, 470 - azide, 8, 347 - azidodithiocarbonate, 8, 338 - barium dithionate, 10, 591 - bismuth thiosulphate, 10, 554	
- indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 - aluminium selenate, 10, 869 - sulphate, 5, 345 - amalgams, 4, 1015 - amide, 8, 253 - ammine, 8, 247 - aquochloroperiridite, 15, 765 - aquopentabromoiridate, 15, 777 - argentoiodides, 3, 433 - arsenatotellurate, 11, 96 - at. wt., 2, 470 - azide, 8, 347 - azidodithiocarbonate, 8, 338 - barium dithionate, 10, 591 - bismuth thiosulphate, 10, 554 - bromide, 2, 577 - properties, chemical, 2, 586	
Indium alum, 5, 404 Rubidiojarosite, 14, 343 Rubidiojarosite, 14, 343 Rubidium acetylene carbide, 5, 849 Indium aluminum selenate, 10, 869 Indium aluminum selenate, 10, 869 Indium aluminum selenate, 10, 765 Indium aluminum a	

Rubidium cuprous trithiosulphates, 10. 535	Rubidium henadecachlorotetramercuriate,
decasulphotricuprate, 3. 229	4. 857
- deuterocolumbate, 9. 864	monohydrated, 4. 857
——— diamidolithiate, 8. 258	—— henamolybdate, 11. 598
diamidosodiate, 8. 258	heptachlorodiantimonite, 9. 480
—— diarsenoenneabromide, 9. 248	heptachlorodimercuriate, 4. 857
—— dichromate, 11. 338	
difluodithionate, 10. 599	heptafluotantalate, 9. 917
diffuoresmate, 15, 713	—— heptafluozirconate, 7. 141 —— hexabromohypoantimonate, 9. 496
difluotellurate, 11. 108 dihydrated tetranitritoplatinite, 8. 519	hexabromoiridate, 15. 777
	hexabromoselenate, 10. 901
dihydroarsenatotremolybdate, 9. 208	hexabromotellurite, 11. 104
dihydrohypophosphate, 8. 936	hexabromothallate monohydrated, 5.
- dihydroorthophosphate, 2. 858	453
di-iodate, 2. 337	hexachlorobismuthite, 9. 667
—— diiododinitritoplatinite, 8. 522	hexachlorohypoantimonate, 9. 485
dimercuride, 4 . 1015	hexachloroindate, 5. 400
—— dimolybdate, 11. 581	hexachlorotellurite, 11. 102
dioxide, 2. 487	hexachlorothallate, 5. 446
dioxytrifluomolybdate, 11. 613	——————————————————————————————————————
diperhydroxycarbonate, 6. 85	—— hexadecabromotriantimonite, 9. 496
—— diphosphate, 2. 862 —— diselenitopentamolybdate, 10. 837	hexadecachlorobismuthite, 9. 667
——————————————————————————————————————	hexadecachlorotriantimonite, 9. 480
——————————————————————————————————————	hexafluoaluminate, 5. 307
——— disulphatoaluminate, 5. 345	hexafluocolumbate, 9. 872
disulphatochromiate, 11. 463	—— hexafluoplumbate, 7. 705
- disulphatocuprate, 3. 257	hexahydroarsenatoctodecamolybdate,
—— disulphatoindate, 5. 404	9. 211
disulphatovanadite, 9. 820	—— hexaiodotellurite, 11. 106
—— disulphide, 2. 631, 632	hexanitritobismuthite, 8. 499
cis-disulphitotetramminocobaltate, 10.	hexasulphide, 2. 631, 640
317	history, 2. 422
—— dithionate, 10. 585	
hemihydrate, 10. 586 divanadyl trisulphite, 10. 305	
dodecamercuride, 4. 1015	hydrodifluodiselenate, 10. 903
	—— hydronitrate, 2. 821
enneabromodiperrhodite, 15. 581	hydrorthophosphate, 2. 851
enneachlorodiagsenite, 9. 244	hydroparamolybdate, 11. 586
enneafluoaluminate, 5. 308	—— hydropentabromide, 11. 104
enneaiodide, 9 . 253	hydrophosphatotellurate, 11. 121
enneaiododiantimonite, 9. 502	hydroselenate, 10. 858
ferrate, 13. 934	hydroselenite, 10. 823
ferric alum, 14. 344	hydrosulphatohydrotellurate, 11. 118
chlorobromide, 14. 77	
disulphate 14 344	
pentachloride, 14, 103	hydroxide, 2. 495
disulphate, 14. 344 ———————————————————————————————————	properties, 2. 500
—— ferrite, 18. 906	hydroxypentachlorosmate, 15. 720
ferroheptanitrosyltrisulphide, 8. 441	hydroxyperosmate, 15. 713
—— ferrosic bromide, 14. 126	hypophosphate, 8. 936
—— ferrous selenate, 10. 881	hyposulphite, 10. 182
——————————————————————————————————————	hypovanadous sulphate, 9. 818
tetrachloride, 14. 32	iodate, 2. 333
	iodide, 2. 596 properties, chemical, 2. 605
fluoborate, 5. 127	properties, chemical, 2. 508
fluorenganite 12 347	iodoarsenite, 9. 257
fluomanganite, 12. 347 fluoride, 2. 512	—— iodoplatinate, 16. 390
fluorophosphate, 2. 851	iodostannate, 7. 463
fluosilicate, 6. 947	—— iridium disulphate, 15. 785
——— fluostannate, 7. 423	langbeinite, 4. 339
fluosulphonate, 10. 685	lanthanum (hexa) henasulphate, 5. 658
fluotitanate, 7. 72	——————————————————————————————————————
fluozirconate, 7. 141	
hemipentaphosphide, 8. 835	lead cobalt nitrite, 8. 506
henadecachloropentamercuriate, 4.857	trithiosulphate, 10. 552

Rubidium lithium alloys, 2, 481	Rubidium orthohexatantalate, 9. 902
magnesium carbonate, 4. 370	orthopharhata normal 9 817
	orthophosphate normal, 2, 847
chromato 11 977	properties, chemical, 2. 849 physical, 2. 848
orthopertantalate, 9. 914	osmiamate, 15. 728
perorthocolumbate, 9. 870	oxypentabromocolumbate, 9. 880
phosphate, 4: 383	oxypentachlorocolumbate, 9. 879
selenate, 10. 864	oxypentachlorotungstite, 11. 869
sulphate, 4. 340	oxypentafluocolumbate, 9. 874
thiosulphate, 10 . 545	—— paramolybdate, 11. 586
manganate, 12 . 287	paratungstate, 11 . 817
manganic alum, 12 . 43 0	pentaborate, 5. 78
pentachloride, 12 . 379	pentabromoferrate, 14. 124
tetrasulphate, 12 . 430	pentabromoindate monohydrated, 5.
tetracosihydrate, 12. 430	401
tridecamolybdate, 11, 602	pentabromoperrhodite, 15. 581
manganous disulphate, 12. 420	pentabromotriplumbite, 7. 752
dihydrate, 12. 420	
	pentabromotungstite, 11, 854
	pentachloroaquoperrhodite, 15. 578
selenate, 10. 879	pentachlorodimercuriate, 4, 857
tetrachloride, 12. 367	pentachlorodiplumbite, 7, 729
dihydrate, 12, 368	pentachloroferrate, 14, 103
trisulphate, 12 . 420	pentachloroindate monohydrated, 5.
mercuric dibromodiiodide, 4. 933	400
	—— pentachloroperrhodite, 15, 578
triiodide, 4 . 933	pentachloropyridinoiridate, 15. 768
mercuride, 4 , 1015	pentachlorothallate monohydrated, 5.
metachloroantimonate, 9. 491	446
metaphosphate, 2. 867	pentachlorovanadite, 9, 804
metarsenate, 9. 155	pentaiodostannite, 7, 460
metarsenite, 9. 119	pentamminohemipentaphosphide, 8.
metasilicate, 6. 335	835
——— metatungstate, 11. 824	—— pentamolybdatodisulphite, 10. 307
	pentasulphide, 2. 631, 638
molybdenum dioxytetrachloride, 11.	pentatungstate, 11. 829
632	percarbonate, 6. 84
dioxytrichloride, 11. 632	perceric carbonate, 5. 667
hexachloride, 11. 622	—— perchlorate, 2. 395
pentabromide, 11 . 635	—— perdecamolybdate, 11. 609
	—— perhydroxycarbonate, 6. 85
molybdenyl pentabromide, 11. 637	—— periodates, 2. 407
pentachloride, 11. 630	—— permanganate, 12 . 331
monofluotrihydrorthophosphate, 8.998	perorthocolumbate, 9. 870
monosulphide, 2. 622	peroxypentafluocolumbate, 9, 875
—— hydrated, 2. 624	peroxypentafluotantalate, 9. 918
properties, chemical, 2. 627	—— perparamolybdate, 11. 608
physical, 2. 624	perparatungstate, 11. 836
—— monoxide, 2. 486	perrhenate, 12. 476
—— neodymium nitrate, 5. 671	persulphate, 10 . 477
nickel chromate, 11. 313	pertetramolybdate, 11. 609
	pertetratungstate, 11. 836
——— nitritobismuthite, 8 . 513	
	pertrimolybdate, 11, 609
	phosphatodecamolybdate, 11, 665
——————————————————————————————————————	phosphatoenneamolybdate, 11. 667
nitrate, 2. 802	—— phosphatohemipentamolybdate, 11.
properties, chemical, 2. 820	669
——————————————————————————————————————	—— phosphatohenamolybdate, 11. 664
nitratoaurate, 3. 610	phosphatohexitadecamolybdate, 11.
nitride, 8 . 99	671
nitrite, 8 . 478	phosphatotetritaenneamolybdate, 11.
—— nitrosylchloroperruthenite, 15. 532	670
——————————————————————————————————————	phosphide, 8 . 835
octodecachlorodiantimonitohypoanti-	—— potassium alloys, 2. 481
monate, 9. 485	praseodymium nitrate. 5. 670
octomolybdate, 11. 596	preparation, 2. 448
octosulphate, 10. 448	—— properties, chemical, 2. 468
octotungstate, 11. 830	——————————————————————————————————————
orthoborocolumbate 9 864	—— pyridinepentachloroplatinate, 16. 312,
orthohexacolumbate, 9. 864	324

Rubidium pyridinetrichloroplatinite, 16. 274	Rubidium thorium hexanitrate, 7, 251
pyroarsenate, 9. 155	octochloride, 7. 235
pyrophosphate, 2. 862	pentafluoride, 7. 228
pyrosulphate, 10. 446	
rhodium alum, 15 . 588 disulphate, 15 . 588	titanous alum, 7. 95 pentachloride, 7. 77
salts extraction, 2. 442, 444	
selenate, 10. 857	triamidosodiate, 8. 258
selenatoaluminate, 10. 869	tribromide, 2. 587
—— selenatoarsenate, 9. 203; 10. 875	trichloroferrite, 14. 32
—— selenatochromate, 10. 876	trichloromercuriate, 4. 857
selenatoferrate, 10. 882	trichloroplumbite, 7. 730
selenatophosphate, 10, 932	trichromate, 11. 351
selenium oxytrichloride, 10, 910	trifluorocuprates, 3. 156
selenosulphate, 10. 925	trihydrodiselenite, 10. 823
selenotrithionate, 10. 928	triiodate, 2. 338
silver amminodithiosulphate, 10. 539	triiodide, 2. 609
amminoheptathiosulphate, 10.	triiodoplumbate, 7. 775
539	dihydrate, 7. 775
	triiodostannite, 7. 460
chloroaurate, 3. 594	trimolybdite, 11. 589
cobaltic hexanitrites, 8. 504	hemitridecahydrate, 11. 589
	monohydrate, 11, 589
	trihydrate, 11, 589 trioxytetrafluopermolybdate, 11, 615
sulphate preparation, 2. 660	triperhydroxycarbonate, 6 . 85
	trisulphatoplumbate, 7. 824
—— properties, chemical, 2. 672 —— physical, 2. 660	trisulphide, 2. 631, 634
sulphatohypovanadite, 9. 818	trisulphuryliodide, 10. 690
sulphatoperiridite, 15. 784	trithionate, 10. 608
sulphatostannate, 7. 479	— tungsten enneachloride, 11. 842
sulphatotitanite, 7. 93	uranate, 12 . 63
sulphite, 10. 270	uranium oxyoctofluoride, 12. 77
	uranous hexachloride, 12. 83
sulphoniodide, 2, 607	uranyl chloride, 12 . 17 disulphate, 12 . 110
—— syngenite, 3. 810 —— tellurate, 11. 92	
tetraborate, 5. 78	sulphate, 12. 17
hexahydrated, 5. 78	totrachloride, 12. 90
—— tetrabromoplumbite, 7, 752	trinitrate, 12. 126
tetrabromothallate monohydrated, 5.	trisulphate, 12. 110
452	vanaditodisulphate, 9. 820
tetrachlorobismuthite, 9. 666	vanadous sulphate, 9. 820
—— tetrachlorodioxyruthenate, 15. 535	dodecahydrate, 9. 821
	——————————————————————————————————————
tetrachoromercurate, 4. 857	sulphate, 4. 638
tetrachloroplumbite, 7, 730	hexahydrated, 4. 638
—— hemilydrate, 7. 730	tetrachloride, 4. 557
— tetraiodoplumbite, 7. 775	zirconium trioxydisulphate, 7. 158
tetraiodothallate dihydrated, 5. 461	(di)rubidium silicododecatungstate, 6. 877
tetramercuride, 4. 1015	(octo)rubidium silicododecatungstate, 6.876
tetramolybdate, 11. 593	(tetra)rubidium silicododecamolybdate, 6
———— hemihydrate, 11. 593	869
	(tri)rubidium hydrosilicododecatungstate, 6. 897
tetranitritodiamminocobaltiate, 8. 510	Rubiesite, 10. 694, 796
tetranitritoplatinite, 8, 519	Rubinblende, 9 . 294
— tetrasulphide, 2. 631, 634	Rubinglimmer, 12. 530; 13. 877
tetrasulphocuprate, 3. 228	Rubino di rocca, 6. 715
tetrasulphuryliodide, 10. 691	Rubinrotherz Eisenglimmer, 13. 877
—— tetrathionate, 10. 618	Rubinus antimonii, 9. 577
tetroxide, 2. 485, 491	Rubrite, 12. 530; 14. 328, 331
thallic disulphate, 5. 470	Ruby, 5. 154, 247
- thallous chlorides, 5. 441	—— balas, 5. 295
- thiosulphate, 10, 529 - thorium hexachloride, 7, 235	blende, 9. 539
	——————————————————————————————————————
omeanyurate, 1. 200	gado, o. oox

Rubidium mica, 13. 886	Ruthenium dioxide, 15. 515
ore, 3 . 7 ; 9 . 294	—— dioxydiaquodichlorodiammine, 15. 536
silver, 3. 300	—— dioxydihydroxydiammine, 15. 518
(spinel), 5 . 154, 295	—— dipyridinotetrachloride, 15. 533
synthesis, 5 . 259	——— disclenide, 10. 802
Ruddle, 12, 530; 18, 775	disulphide, 15 . 540
Ruled mica, 6, 613	ditelluride, 11. 64
Rumfite, 12, 530	electronic structure, 15. 512
Rumpfite, 6. 624	— — explosive, 15 . 502 — — extraction, 15 . 499
Running water, 13, 616 Rupert's drops, 6, 530	films, 15 . 502
Russell's displacement rule, 4, 114	gold alloy, 15 . 510
— wet process silver, 3. 306	halides, 15 . 522
Russium, 5. 504	hemiheptaamminohexachloride, 15.
Rust, 13. 431	527
—— by-products, 13. 433	hemiheptaamminotribromide, 15. 537
—— nature of, 13. 431	hemiheptamminotriiodide, 15. 539
Rusting action colloids, 13, 451	hemiheptoxide, 15. 518
Rustless steels, 13, 606	hemipentachloride, 15. 525
Rutenite, 14. 750	
Ruthenates, 15. 517	dihydrate, 15. 517
Ruthenic hydroxide, 15 , 516	hemitrioxide, 15. 514
colloidal, 15 . 516	hexamminochloromercurate, 15. 525
oxide, 15 . 515	—— hexamminotrichloride, 15. 527
pentaphosphoenneadecachloride, 8.	hexasulphide, 15. 542
1007	—— hydrotetrachloride, 15. 524, 526
Ruthenium, 16 . 1, 3	hydroxide, 15. 515
- · · · ammines, 15. 543	hydroxybromotetramminobromide,
- analytical reactions, 15, 510	15. 528
atomic disruption, 15, 513	hydroxychloride, 15. 528
number, 15. 512	hydroxychlorobisethylenediamino- chloride, 15. 528
· weight, 15 , 511	
black, 15 , 502	hydroxychloroquaterethylamino- chloride, 15. 528
- earbonyl bromide, 15. 537	hydroxychlorotetranminochloride, 15.
- dichloride, 15, 524	528
chloro- $\beta\beta'\beta''$ -triaminotriethylene- amine, 15. 529	hydroxychlorotetramminoiodide, 15.
- — chlorobisethylenediaminochloride, 15 .	528
528	hydroxychlorotetrapyridinechloride,
chloronitratotetramminonitrate, 15.	15. 528
528, 544	- hydroxydiehloride, 15. 530
cobalt alloys, 15. 510	hydroxyheptamminodichloride, 15.
colloidal, 15. 502	536
copper alloy, 15 . 510	hydroxyheptamminohydrotrichloride,
erystalline, 15, 502	15. 536
diaquotriamminodichloride, 15. 523	hydroxyiodobisethylenediamino-
— dibromide, 15. 537	iodide, 15. 528
dibromotetramminobromide, 15. 528	hydroxyiodotetramminoiodide, 15.
—— dicarbonyl, 5 . 961	528
—— dicarbonyldibromide, 15. 537	- hydroxytrichloride, 15. 535
dicarbonyldichloride, 15. 528	iridium alloys, 15, 747, 750
—— dicarbonyldiiodide, 15. 539	iron alloys, 15, 510
—— dichloride, 15 . 522	—— isotopes, 15. 512, 641 —— lead alloys, 15. 510
dichloroquaterethylaminochloride, 15.	lithium alloy, 15. 510
528	—— monobromide, 15. 537
dichlorotetramminochloride, 15 . 528 dichlorotetrapyridinechloride, 15 . 528	monochloride, 15. 522
diffuoride, 15. 522	monoselenide, 10 . 802
— dihydronitrosylhexamminohydrobro-	monosilicide, 6. 213
mide, 15. 537	monotelluride, 11. 65
dihydronitrosylhexamminohydro-	monoxide, 15. 513
chloride, 15. 537	nickel alloys, 15, 510
—— dihydronitrosylhydrobromide, 15. 537	nitrosylbromobisethylenediamino-
—— dihydronitrosylhydrochloride, 15. 537	iodide, 15, 539
- dihydronitrosylhydroxydichloride, 15.	- nitrosylbromobisethylenediammino-
537	bromide, 15, 538
—— dihydronitrosyltrihydroxide, 15. 537	nitrosylhydroxybisethylenediamino-
dihydroxychloride, 15. 529	iodide, 15 , 539
diiodide, 15 . 539	nitrosylhydroxyethylenediaminoam-
diiodotetramminoiodide, 15. 528	minoiodide, 15, 539

Ruthenium nitrosylhydroxyethylene-	Ruthenium triiodide, 15. 539
diaminobispyridinoiodide, 15. 539	trioxide, 15. 517
nitrosylhydroxyhydrochloridobis-	tristannide, 15. 510
ethylenediaminochloride, 15. 532	
nitrosylhydroxyhydrochlorobisethyl-	trisulphite, 10. 326
enediamminoiodide, 15. 539	—— uses, 15. 511
- — nitrosylhydroxytetramminocar-	valency. 15. 511
bonate, 15. 544	Ruthenochlorides, 15, 529 Ruthenous chloride, 15, 529
nitrosylhydroxytetramminochloro-	Ruthenous chloride, 15. 522
platinite, 15. 537	— dithionate, 10. 599
nitrosylhydroxytetramminodichloride,	hydroxide, 15. 514
15 . 537	potassium disulphite, 10. 326
nitrosylhydroxytetramminonitrate,	tetramminohydroxide, 15. 514
15 . 544	Rutherfordine, 12. 5
— nitrosylhydroxytetramminosulphate,	Rutherfordite, 5. 517; 7. 897; 9. 839, 904;
15 . 5 4 2	12 . 113
nitrosyliodide, 15. 539	Rutherford's atom, 4. 166
nitrosyliodobisethylenediaminobro-	Rutile, 7. 2, 30
mide, 15 . 539	X-radiogram, 1. 641
nitrosyliodobisethylenediaminoiodide,	Ryacolite, 6. 662
15 . 539	,
nitrosyltribromide, 15. 537	
- nitrosyltrichloride, 15. 528	8
monohydrate, 15. 528	Ь
——————————————————————————————————————	Sacabanita & 809
	Saccharite, 6. 693
nitrosyltriiodide, 15. 539	Sacondios, 7. 98
occurrence, 15. 498	Sacrificial metals, 1. 1025
—— osmium alloys, 15. 697	Sätersbergite, 9. 73
oxides, 15. 513	Safflor, 14. 420
—— palladium alloys, 15. 652	Safflorite, 9. 4, 77; 14. 424; 15. 6
—— pentafluoride, 15. 522	Saffra, 14. 420
pentaphosphoenneadecabromide, 8.	Saffran, 14. 420
1033, 1035	—— d'or, 3. 582
pentaphosphoenneadecachloride, 8.	Spiessglanz, 9. 5
1016	Safre, 14. 420
phosphobromide, 15. 537	Sagenite, 7. 2, 30, 34
phosphochloride, 15. 524	Sahlite, 6. 390, 409
platinum alloy, 16. 221	Sajji-mati, 2. 710
—— potassium dihydroheptanitrite, 8. 513	Sal alembroth, 4. 849
———— hexanitrite, 8. 513	amarum, 4. 321
oxydodecanitrite, 8. 513	ammoniac, 2. 15; 8. 144
oxyoctosulphite, 10. 326	ammoniacum, 8. 144
pentanitrite, 8. 513	
preparation, 15. 499	anglicum, 4. 249, 321
properties, chemical, 15. 508	armeniacum, 8. 144
———— physical, 15 . 503	armeniacus, 2. 20
red, 15. 527, 536	catharticum, 4. 249, 321
rhodium alloys, 15 . 565	de duobus, 2. 656
ruthenate, 15. 518	excoctus, 2. 522
sesquioxide, 15 . 514	fossilis, 2 . 522
silver alloy, 15 . 510	—— pellucens, 2 . 522
—— sodium hydrosulphite, 10. 326	gemma, 2 . 522
oxyoctosulphite, 10. 326	——————————————————————————————————————
	marinus, 2. 522
solubility of hydrogen, 1. 307	— microcosmicum, 2. 874
—— spongy, 15. 502	mirabile Glauberi, 2. 656
sulphate, 15. 540, 542	muriaticum, 2. 522
sulphides, 15. 540	petrae, 2. 420
—— tetrabromide, 15. 537, 538	— philosophorum, 10. 331
tetrachloride, 15. 533	—— polychrestum glaseri, 2. 656
tetrahydroxide, 15. 516	prunella, 2. 656
tetramminochloride, 15. 523	sapientiae, 4. 849
tetramminodichloride, 15. 537	sedativrim, 2. 4; 5. 48, 49, 62
	—— Hombergii, 5. 2
	sulphuratum Stahlii; 10. 268
tin alloys, 15. 510	tartari, 2. 656, 714
tribromide, 15 . 537	urinæ fixum, 2. 874
trichloride, 15. 525	volatile, 2. 780
trifluoride, 15. 522	cornu cervi, 2. 781
— — trihydroxide, 15 . 514	olei vitroli, 10 . 332

GENERAL INDEA	
Sala, A., 1. 51	Samarium chloride, 5. 644
Salaccio, 5. 51	
Saldanite, 5. 333	
Salicor, 2. 713	chloroaurate, 3. 595
Salis natura, 2. 20	- chloroplatinate, 16. 330
nitri, 8 . 618	chromate, 11. 287
Salite, 6. 409	
Salmite, 12. 150	octohydrate, 11. 287
Salmonsite, 12. 530; 14. 411	cobaltous nitrate, 14. 828
Salt, 1. 389 · 2. 521	diamminochloride, 5. 644
Armenian, 8. 144	dichloride, 5 . 645
cake, 2. 657, 730, 731	dihydrotetraselenite, 10. 831
cerebros, 2. 526	diiodide, 5 . 646
decrepitating, 2. 533	dioxysulphate, 5. 651
(element), 1. 34 fish, 2. 526	
gardens, 2. 525	hemitricosiamminochloride, 5. 645
— Glauber's, 2. 656	hydride, 5 . 602
glaze, 6. 514	hydropyrophosphate, 5. 675
history, 1. 382, 384	hydrosulphate, 5. 656
—— hydrated, 1. 397	hydroxide, 5 . 628
—— lick, 2 . 522	iodate, 2. 355
—— meadows, 2. 525	isolation, 5. 551
Metal of, 2. 421	magnesium nitrate, 5. 672
neutral, 1. 384	—— manganous nitrate, 12. 446
of Sylvius, 2. 420	metaborate, 5. 104
tartar, 2. 656, 714	metaphosphate, 5. 676
wisdom, 4 . 849	metatungstate, 11. 826
pickling, 2 . 807	molybdate, 11. 565
ponds, 2. 525	monamminochloride, 5. 644
prunella, 2. 656	—— nickel nitrate, 15. 492
solutions and gas solubility, 1. 534	nitrate, 5. 669
	nitride, 8 . 115
Sylvius' digestive, 2. 522	occurrence, 5. 586
	octamminochloride, 5. 644
—— tetragenic, 4. 343 Saltpeter, 6. 497	orthophosphate, 5. 675 oxychloride, 5. 644
Saltpetre, 2. 420	oxyoctoselenite, 10. 831
	pentamminochloride, 5. 644
Bengal, 2. 808	pentoxide, 5 . 634
wall, 3. 849	periodate, 2. 415
Salts, 1. 393; 13' 608	—— potassium carbonate, 5. 666
acid, 1. 387	chromate, 11. 287
—— and acids, reactions, 1. 1002	pentadecasulphate, 5. 658
	selenate, 10. 872
basic, 1. 394	—— preparation, 5. 590
complex, 2 . 223, 224	properties, chemical, 5. 601
compound, 2. 223 constitution theories, 1. 403	
—— double, 2. 223, 224	dodecahydrate, 10. 872
—— hydrated, 1. 498	selenite, 10. 831
mixed, 2. 264	sesquioxide, 5 . 625
neutral, 1. 388	- silicododecatungstate, 6. 880
normal, 1. 387	sodium carbonate, 5. 665
—— paragenesis of, 4. 346	molybdate, 11. 565
Salvadorite, 12. 530; 14. 295	sulphate, 5 . 657
Samaria, 5. 502, 625	——————————————————————————————————————
preparation, 5. 588	solubility of hydrogen, 1. 307
Samarium ammonium carbonate, 5. 666	sulphate, 5. 650
—— molybdenum, 11. 587 —— selenate, 10. 872	basic, 5. 650
seienate, 10. 8/2	octohydrated, 5. 654 sulphide, 5. 648
sulphate, 5. 659	
analytical reactions, 5. 608 atomic number, 5. 622	tetramminochloride, 5. 644
——— weight, 5. 621	triamminochloride, 5. 644
bromate, 2. 354	trichloride, 5. 644
	triiodide, 5. 646
hexahydrated, 5. 645	triterodecavanadate, 9. 775
bromoaurate, 3. 608	tungstate, 11. 791
carbonate, 5. 664	zinc nitrate, 5. 672

Samarous chloride, 5, 645 Scandium atomic number, 5, 487 ---- -- weight, 5. 487 Samarskite, 5, 516; 7, 100, 185, 255, 896; 9. 839, 906; 12. 5 --- - bromate, 2. 353 Samian ware, 6, 513 -- - bromide, **5.** 490 ---- - English, 6, 514 ----- hexahvdrated, 5. 490 Samirescite, 9, 867 --- sesquihydrated, 5, 490 Samiresite, 5, 519; 9, 839, 905; 12, 5 -- carbonate, 5, 492 Sammet-blende, 12, 530; 13, 877, 886 ----- chlorate, 2. 353 Samoite, 6, 497 – chloride, 5, 489- hexahydrated, 5, 490 Sancy diamond, 5, 711 Sand-east pig iron, **12**, 596 Sandaraca, **7**, 672, 673 ---- sesquihydrated, 5, 490 - chloroaurate, 3, 595 Sandarach, 9. 1, 267 - -- extraction, 5. 482 Sandbergite, 9, 4, 291 - -- fluoride, 5. 488 Sandstein biegsame, 6. 140 --- fluosilicate, 6. 954 Sandstone flexible, 6, 140 - halides, 5. 488 Sandy limestone, 3, 815 -- - history, **5**. 480 Sanguinite, 9. 294 - - hydrazine sulphate, 5, 492 Sanidine, 6. 662 - hydroxide, 5, 488 ---- hydroxynitrate, 5. 493 – - habit, **6**. 670 --- hydroxythiosulphate, 10, 545 Sanidinite, 9. 839 --- - iodate. 2. 353 Sanies draconis, 4, 942 --- isotopes, 5. 487 Sanitary ware, 6, 515 Sanocrysin, 10. 541 -- nitrate, **5**. 493 --- nitride, 8, 114 Saphir d'eau, 6. 810 -- occurrence, 5, 480 Saphiros, 5. 247 ---- orthoborate, 5, 104 Sapo vitriariorum, 12, 140 Saponite, **6**, 432, 498 ----- orthodisilicate, 5, 482; 6, 859 Sapphire, 5, 154, 247; 14, 420 - oxide, **5**. 488 – oxynitrate, 5, 493 - Oriental, **5**. 247 -- oxysulphate, **5**. 491 Sapphirin, 6, 584 -- perchlorate, 2, 402 Sapphirine, 6, 813 -- phosphate, 5. 493 Sapphiros, 6, 586 ---- potassium sulphate, 5, 492 Sarawakite, 9, 343, 504 --- properties, physical, 5, 485 Sarcolite, 6, 752 - --- du Vicentin, 6. 734 --- sodium carbonate, 5, 492 Sarcopside, **12**, 530; **14**, 396 Sardinian, **7**, 803 --- sulphate, 5. 492 -- - solubility of hydrogen, 1. 307 Sardonyx, 6. 140 - - sulphate, 5. 491 Sarkinite, **9**. 5, 218 ; **12**. 150 dihydrated, 5, 491 --- hexahydrated, 5. 492 Sarpu. 3, 295 --- pentahydrated, 5. 491 --- tetrahydrated, 5. 491 Sartorite, 7. 491; 9. 4, 299 Sasbachite, 6, 736 Sassolin, 5. 3, 49 sulphide, 5. 491 Sassolite, 5, 3, 49 - sulphite, 10. 302 -- sulphuric acid, 5. 491 Satan, fiery, 9. 341 Satellites of spectrum, 4. 7 – triĥydrosulphate, **5**. 491 Satin spar, 3, 761, 814 Scapolites, 6, 762 Scarboroite, 6. 497 --- white, **5**. 290 Saturated compounds, 4. 191 Scattering X-rays, 4. 34 Schabasite, 6. 729 Saturation, 1. 384 -- - capacity, 1. 224 Schafarzikite, 8, 919; 12, 530 Saturnian atom, 4. 165 Schaffuerite, 9. 777 Saturnism, 7. 589 Schalenblende, 4. 408 Saualpite, 6. 719 Schalenmarcasite, 14, 218 Schallerite, 6. 836 Sauces, 13. 616 Saulesite, 6. 933 Schalstein, 6. 354 Saussurite, 6. 693 Schanyawskite, 5. 275 Schapbachite, 7. 491; 9. 589, 694 Savite, 6. 653 Savon des verriers, 12. 140 Scheelbleispath, 11. 792 Saynite, 9, 589, 696; 14, 424; 15, 6, 447 Scheele's green, 9. 121 Scacchite, 6. 408; 12. 150, 348 Schoelin calcaire, 11, 674 Scæchite, 2. 15 ferruginé, 11. 673 Scheelite, 3, 623; 7, 897; 11, 674, 678, 783 Scandia, 5. 498 Scandium, 5. 480 X-radiogram, 1. 642 ---- ammonium carbonaté, 5. 492 Scheelitine, 11, 792 Scheelium, 11, 674 - - - sulphate, 5. 492 ----- sulphite, 10. 302 Scheelocher, 11, 753 Scheelspath, 11. 674 --- analytical reactions, 5. 486

— — atomic disintegration, 5. 487

Schefferite, 6. 390, 396; 12. 150

	CHAINTAIN
Scharbankahald 9 2 2	
Scherbenkobold, 9, 2, 3 Schertelite, 4, 385	
Schoslerz, 11. 674	
Schilfglaserz, 9. 551	
Schiller, 6. 395	
spar, 6. 392	
Schillerstein, 6. 392 Schirlkobelt, 9. 3	
Schirmerité, 7, 491 : 9, 695	
Schirmerité, 7 . 491 ; 9 . 695 Schirmetite, 9 . 589	
Schist tale, 6. 430	
Schistos, 13, 885	
Schizolite, 6. 900	
Schlippe's salt, 9, 570 Schlorlomite, 7, 3	
Schmelzstein, 6, 763	
Schmiedeisen, 12, 709	
Schmöllnitzite, 14. 251	
Schneebergite, 9, 343, 454	
Schneiderite, 6 . 738 Schönherr's furnace, 8 . 375	
Schönite, 2, 430, 657; 4, 252, 338, 3	40 : 7. 897
Schoepite, 12. 5, 59	,
Schorl, 5. 4; 6. 740, 821	
Hungarian red, 7. 1	
rouge, 7 . 30 Schokoladenstein, 12 . 433	
Schomolnokite, 14. 245	
Schorl, 6. 821	
blanc, 6 . 663	
cruciforme, 6 , 909 indigo blue, 7 , 30	
- octahedral, 7. 30	
rayonnante en gouttière, 6. 8	34()
—— spar, white, 6 . 762	
vort du Dauphiné, 6. 721 volcanie, 6. 726	
Schorlite, 6 . 560	
Schorlomite, 6. 714, 836	
Schreibersite, 8, 860; 12, 528, 531	1
Schriftellur, 11. l	
Schrifterz, 11. 1, 47 Schrifttellur, 11. 47	
Schröckingerite, 12. 115	
Schröckingite, 12. 5	
Schrötterite. 6. 497	E 0
Schuchardtite, 6 . 624; 12 . 531; 1 Schultenite, 9 . 193	.D. 8
Schulzenite, 14. 424	
Schulze's rule precipitation colloid	s, 3 . 543
Schumann's waves, 4. 8	
Schungite, 5 . 718 Schurl, 6 . 740	
Schutzkolloide, 3. 547	
Schwartzembergite, 2. 17; 7. 491,	768
Schwartzite, 9. 291	
Schwarze Salz 14 672	
Schwarze Salz, 14, 672 Schwarzerz, 9, 291, 540	
Schwarzgulden, 9. 540	
Schwarzite, 9. 4	
Schwarzspiessglanzerz, 9. 550 Schwatzite, 4. 697	
Schwazite, 9. 4	
Schwefel, 10. l	
Schwein furt green, 9. 122	
Schweissstahl, 12, 710 Schweizerite, 6, 423	
Schweizer's liquid, 8, 152	:
—— reagent, 3 . 152	

Schwerbleierz, 7, 681 Science, object of, 1. 10 Scientific chemistry, 1. 4 - knowledge, 1. 8 Scleroclase, 9, 4, 301 Sclerodase, 9, 299 Scolecite, 6. 749 - ammonium, 6, 750 ---- silver, 6. 750 --- X-radiogram, 1, 642 Scolesite, 6, 575 Scolexerose, 6. 763 Scolopsite, 6, 584 Scoria argenti, 7, 638 – plumbi, 7. 638 Secondite, 9, 5, 224; 12, 531 Scorza, 6, 721 Scott's furnace, 8, 376 ----- selenitic cement, 3. 776, 800 Scoulereite, 6. 709 Scovillite, 5, 529 Scythian iron, 12, 499 Sea-lead, 5, 714 ---- salt, 2. 522 ---- water, 2. 437; 13. 608, 616 Seamanite, 12, 150, 451 Scarlesite, 6. 448 Seasoning steel, 12, 680 Sebacic acid, 13, 616 Sebkainite, 2, 429 Secondary X-rays, 4. 31 Sedative salt. 5. 2 ---- spar Lünberg, 5, 137 Scebachite, 6, 729; 10, 694 Seebeck's colours, 6. 533 Seeding solutions, 1. 451 Segregation dendritic, 12. 887 ---- figures, 12, 890 -- intercrystalline, 12. 887 Sehta, 14, 750 Seidlitz salt, 4. 249, 321 Seidschütz salt, 4. 321 Seignette's salt, 3, 120 Sekta, 9. 308 Sel alumineux, 5. 150 - ammoniacum, 8. 144 --- blane des alchemistes, 5. 2 — de varec, 2. 713 — febrifuge, 2. 522 ---- gemme, 2. 522 ---- reutre arsenical, 9. 137, 749 ---- sale, 5. 2 --- - sedatif. 5. 2 --- urineux mineral, 5. 1 ---- volatil de borax, 5. 2 Seladonite, 6. 920 Selenates, 10. 853 Selenato di-iodic acid, 2. 363 - Glauber's salt, 10. 855 - monoiodic acid, 2. 363 ---- thénardite, 10. 855 Selenatobaric acid, 10. 863 Selenatodisulphuric acid, 10. 925 Selenatomolybdic acid, 10. 877 ---- hexoxide, 10. 877 — dihvdrate, 10. 877 Selenatosodalite, 6. 583 Selenatosulphates, 10. 929 Sclenatosulphuric acid, 10. 924

Selenatouranic acid, 10, 877	Selenium monochloride, 10. 893
Selenatovanadic acid, 10. 875	—— monoclinic, 10. 704
Selenblei, 10. 787	a-, 10. 704
— mit selenkobalt, 10. 787	β -, 10. 704
	monofluoride, 10. 893
selenquecksilber, 10. 788	
Selenbleiglanz, 10. 787	monoiodide, 10. 901
	monosulphide, 10 . 917
Selenbleikupfer, 10, 788	monoxide, 10 . 808
Selenie acid, 10. 843, 844	—— nitride, 8. 126; 10. 788
monohydrate, 10. 846, 847	—— occurrence, 10. 693
tetrahydrate, 10. 847	oxides, 10 . 808
Scienides, 9, 589; 10, 764, 765	oxydibromide, 10. 911
Selenious acid, 10, 813	hydrated, 10. 913
properties, chemical, 10. 816	oxydichloride, 10 . 903, 913
physical, 10. 814	——————————————————————————————————————
Selenite, 3 . 623, 761, 762	monohydrate, 10. 904
Selenites, 10 , 820	oxyfluoride, 10 . 903
Selenitic cement, 3, 776	oxyhalides, 10 . 903
Selenitomolybdic acid, 10, 836	phosphides, 10. 930
Selenitosodalite, 6, 583	physiological action, 10. 752
Selenitovanadates, 10, 834	potassium manganie alum, 10. 880
Selenitovanadic acid, 10. 834	oxytrichloride, 10. 910
decahydrate, 10. 834	properties, chemical, 10. 746
	physical, 10. 710
hexahydrate, 10. 834	purification, 10. 696
Selenium, 10. 693; 15. 151	rubidium oxytrichloride, 10. 910
allotropes, 10 . 700	sesquioxide, 10. 809
amorphous, 10. 701	stannic dioxyoctochloride, 10. 910
antimony dioxyenneachloride, 10. 906	sulphides, 10. 915
- atomic number, 10, 754	
weight. 10. 753	
	sulphopentoxide, 10. 924
boride, 10 . 780	sulphotrioxide, 10. 923
	—— tetrabromide, 10 . 900
bromotlinitride, 10 . 900	tetrachloride, 10. 893, 898
calcium trioxyoetochloride, 10. 910	tetrafluoride, 10. 893
cell, 10. 725	—— tetraiodide, 10 . 902
hard, 10. 725	tetramminoxydichloride, 10. 906
soft, 10. 725	titanic dioxyoctochloride, 7. 81, 85;
chemical reactions, 10, 751	10 . 910
chloronitride, 10. 895	trioxide, 10. 843
—— colloidal, 10 . 702	tritatetroxide, 10. 809
—— dichloride, 10 . 893	ultramarine, 6 . 590
—— dioxide, 10 . 808; 809	unit, 10. 725
monohydrated, 10 . 813	uses, 10. 754
properties, chemical, 10. 811	valency, 10. 753
physical. 10. 810	vitreous, 10. 701
dioxydichloride, 10. 911	Selenkobaltblei, 10. 787, 800
dioxydihydrochloride, 10. 913	Selenkupfer, 10. 769
dioxypentahydrofluoride, 10, 912	Selenkupferblei, 10. 788
dioxytetrahydrochloride, 10. 913	Selenkupferbleiglanz, 10. 788
	Selenobismutite, 9. 589
colloidal, 10. 917	Selenochromyl chloride, 10. 911
electronic structure, 10. 754	Selenolite, 10. 697, 809
ethide, 10. 902	Selenomium, 10. 753
extraction, 10. 696	Selenophosphates, 10. 930, 931
ferric dioxyheptachloride, 10. 910	Selenophosphites, 10. 930
—— glassy, 10. 701	Selenosilicon, 10, 783
—— glycerol sols. 10. 704	Selenpalladium, 15. 592
halides, 10. 892	Selenquecksilberblei, 10. 788
—— hemitrioxide, 10. 809	Selenquecksilberbleiglanz, 10. 788
hexachloride, 10. 893	Selenschwefelquecksilber, 10. 780
hexafluoride, 10. 892	Selensilber, 10. 771
—— history, 10. 693	Selensilberbleiglanz, 10. 771
hydrodioxyiodide, 10. 913	Selensilberglanz, 10. 771
hydrosol, 10. 762	
in sulphuric acid, 10. 371	Selentellurium 10, 706
	Selentellurium, 10. 796
isotopes, 10. 754 magnesium trioxyoctochloride, 10. 910	Selenwismuthglanz, 10, 795
	Selenyl bromide, 10. 911
—— metallic, 10 . 705 —— monobromide, 10 . 900	
monobromide, 10. 900	dichloride, 10 . 903

Self-hardening steels, 13, 634 Sicklerite, 2. 426; 12. 531; 14. 412 - oxidation, 5. 812 Side reactions, 1. 360 - reduction, 3. 23 Sider-plesite, 12. 931 Seligmannite, 7, 491; 9, 4, 299 Sellaite, 2, 1; 4, 252, 296 Sels mixtes, 2, 525, 657, 658 Siderazote, 8. 131; 12. 531 Siderchrom, 11. 201 Sideretine, 9. 227 Siderite, X-radiogram, 1. 641 Selwynite, 6. 865 Semeline, 6. 840 Siderites, 12, 523, 531; 14, 356 Semi-steel, 12. 711 boxwood, 14, 356 ---- whitneyite, 9. 62 ---- calciferous, 14. 356 Semseyite, 7. 491; 9. 343, 548 - -- dolomite, 14. 356 Senaite, 7. 3, 56; 12. 150, 531 Senarmontite, 9. 343, 421 magnesium, 14. 356 -- manganese, 14. 356 Sendibogius, M., 1. 48 Siderochalcite, 9, 161 Seneca, A., 1. 38 Seng, 4. 399 Siderochrome, 12. 531 Sideroferrite, 12, 522, 531 Sensation, 1. 6 Siderolite, 12. 523 Senses, 1. 6 Siderolithites, 12. 523 Separating element, 5. 541 Sideronatrite, 2. 656; 12. 531; 14. 319, Sepiolite, **6**. 420 ——— a-, **6**. 428 328, 345 Siderophyllite, 6, 605, 609 - β-, **6**. 428 Siderophyrs, 13. 523 para, 6, 428 Sideroplatinum, 16. 5 Sepiolitic acid, 6. 295 Sideroplesite, 14, 355, 359 Serandite, 12. 150 Sideroschisolite, 6. 623 Serbian, 6. 865 Siderose, 14. 355 Serendibite, 6. 462 Siderotantalite, 9. 906 Sericite, 6. 606 Siderotile, 12. 531; 14. 249 - meta-, **6**. 606 Sideroxine, 6. 381 Sericitic mica, 6. 470 Siderum. 8. 853 Series of elements, 1. 255 Sidot's blende, 4, 592 Siegelstein, 13, 731 ---- even, 1. 255 - --- odd, 1. 255 Siegenite, 14, 424 Serium and hydrogen, 1, 304 Siemens-Martin steel, 12, 653 Serpentenstein, 6. 420 ----- ozonizer, 1. 886 Sienna, 12, 531; 13, 887 — burnt, 13, 782 Serpentine, 4. 251; 5. 531; 6. 420; 15. 9 noble, **6**. 422 - precious, **6**. 422, 628 Siglerite, 6. 663 Serpentinic acid, 6. 294 Siglesite, 6. 663 Serpierite, 4. 640 Sliane, 6, 216 Silaonite, 9, 589; 10, 795 Sesquiiodylamine, 8. 606 Sesquimagnesia alum, 5. 354 Silber, 3. 295 Sesqui oxides, 1. 118 wismuthisches, 9. 694 Sesquiselenide, 10. 784 Silberfahlerz, 9. 291 Silberglätte, 7. 644 Settling of particles in water, 1. 774 Séverite, 6. 495 Silberglanz, 3. 438 Sexangalites plumbens, 7. 782 Silberglas, 3. 438 Seybertite, 6. 816 Silberphyllinglanz, 11. 114 Shanyawskite, 5. 275 Silberwismuthglanz, 9. 691 Shattuckite, 3. 8; 6. 341 Silex, 6. 140 Shear modulus, 1. 820 — circonius. 7. 98 - crucifer, **7**. 766 Shell limestone, 3. 815 Shepardite, 6. 392 Silfbergite, 6. 917; 12. 150 Sheradizing, 4. 494 Silfr, 3. 295 Sheridanite, 6. 622 Silfver, 3, 295 Shining ore, 12. 531 Shirl, 6. 740 Silica, 6. 236 – alcogel, **6**. 304 Shorlite, 6. 560 alcosol, 6. 304 - colloidal, 6. 236, 290 Shortness, 13. 61 - blue, 13. 61 etherogel, 6, 304 glass, 6. 288 cold, 13. 61 – hot, **13**. 61 glycerogel, 6. 304 - red, 13. 61 hydrogel, 6. 290 - hydrosol, 6. 291 Shot metal, 7. 578 Shurl, 6. 740 occurrence, 6. 137 properties, chemical, 6. 274 Sialonite, 10. 694 Siberite, 6. 741 resinous, 6. 141 - sulphatogel, 6. 304 Sibiconice, 9. 435 - uses, **6**. 288 Sical process hydrogen, 1, 284 - vitreous, **6**. 288 Sickening of mercury, 3. 498

101	GENERAL INDEA
Silia X-radiogram, 1. 642 Silical, 6. 233	Silicon atomic disintegration, 6. 167
acetate, 6 . 233	β -, 6 . 145, 157
—— bromide, 6 . 233	—— bismuth alloys, 9. 639
chloride, 6. 233	borate, 5. 106
formate, 6. 233	
—— hydroxide, 6 . 233	bromoiodides, 6 . 984
——- sulphate, 6. 233	bromotriiodide, 6. 984
Silicam, 8. 116, 264	bronze, 7. 348
Silicane, 6. 216	carbide, 5 . 875
Silicates, 6. 304; 12. 528	carboxides, 5. 884
constitution, 6. 308	chlorides, 6 . 960
nomenclature, 6 . 308	chlorobromides, 6. 980
temp. formation, 6 . 314	chlorohydrides, 6. 967
Silicia acid a-, 6. 295	—— chloroiodides, 6 , 983
β-, 6 . 295	ehlorotriiodide, 6. 983
hydrogel, 6 . 290	chromium steels, 13. 616
hydrosol, 6 . 291	cobaltic hexamminofluoride, 14. 610
organogels, 6. 304	—— colloidal, 6 . 150
acids, 6. 290	copper chromium cobalt alloys, 14. 540
nomenclature, 6 , 308	cobalt alloys, 14. 536
Tschermak's, 6 . 294	manganese alloys, 12. 215
anhydride, 6. 307	nickel alloys, 15. 231
Silicides, 6. 168	
Silicifluorides, 6. 934	crystallized, 6, 148
Silicity 8 802	- cyanide, 8, 115
Silicite, 6 . 693 Silicites, 6 . 236	decanitridohydrotrichloride, 8, 116 diamidodiimide, 8, 264
Silicium, 6 . 136	
Silieiunwasserstoff, 6. 216	diamidosulphide, 8. 264 - diamminotetrafluoride, 6. 738, 945
Siliciuretted hydrogen, 6. 216	dibromodiiodide, 6. 984
Silicoacetic acid, 6, 309	dibromosulphide, 6, 989
Silicoacetylene, 6. 226	dicarbide, 5, 870
Silicoaluminides, 6. 184	- dicarbonitride, 8, 115
Silicoarsenides, 6, 188	dichlorodiiodide, 6. 983
Silicobenzoic acid, 6, 309	—— diehlorosulphide, 6, 988
Silicobromoform, 6. 979	dihydrotriimide, 8 . 264
Silicobutane, 6. 224	diimide, 8 . 263
Silicobutyric acid, 6, 210	diimidodihydrochloride, 8. 264,
Silicochloroform, 6, 960, 968	dioxide, 6 , 236
Silicocyanogen, 8, 117	preparation, 6 . 237
Silicoenneatungstic acid, 6, 881	properties, physical, 6, 245
Silicoethane, 6, 222, 226	dioxycarbide, 5, 884
Silicoethylene, 6 , 226 Silicofluorides, 6 , 934, 944	dioxysulphide, 6 . 988 dioxytricarbide, 5 . 884
Silicoformic acid, 6. 216, 228	diphosphinetetrachloride, 6. 965
—— anhydride, 6 . 228	disclonide, 10. 783
Silicohenatungstic acid, 6. 882	disulphide, 6 . 985
Silicohexane, 6. 225	ditritoxide, 6 . 233
Silicoiodoform, 6. 982	—— eka, 1. 261
Silicol, 1. 284	fluoride, 6. 934
Silicomanganese, 12. 194	fondu, 6 . 184
Silicomesoxalic acid, 6. 229	γ-, 6 . 157
Silicomolybdates, 11. 565	- gold-nickel alloys, 15 . 231
Silicomethane, 6, 216	graphitoidal, 6 . 146, 152
Silicomethyl bromide, 6. 979	hemihenadecamminochlorotribro-
—— chloride, 6 , 970	mide, 6 . 980
Silicomethylene bromide, 6. 979	hemihenadecamminotrichlorobromide,
chloride, 6 . 670	6. 981
Silicon, 6, 135; 12, 528	hemihenadecamminotrichloroiodide, 6. 983
adamantine, 6. 146, 152	- hemitrinitride, 8. 115
—— allotropic forms, 6 . 145, 157	heptumminotetrabromide, 6 . 978
aluminium cobalt alloys, 14.	hexaboride, 5. 27
	hexaferrocarbide, 5. 884
aluminium-nickel alloys, 15. 2	
amorphous, 6. 146	hexamminotetrachloride, 6. 965
antimonide, 6 . 188	hexanitridodichloride, 8. 116
antimony alloys, 9. 409	history, 6 . 135
arsenide, 9. 68	—— hydrides, 6 . 214

Silicon imidodiamide, 8, 264	Silicon thiourea, 8, 264
—— imidonitride, 8. 264	tin octofluoride, 7. 422
iodides, 6 . 982	transmutation to carbon, 6. 167
—— iron alloys, 13 . 558	
	tribromoiodide, 6. 984
——————————————————————————————————————	tricarbonitride, 8, 115 trichlorohydrosulphide, 6, 988
isotopes, 6 . 167 manganese steels, 13 . 667	trichloroiodide, 6 . 983
	- trioxycarbide, 5. 884
molybdates, 11. 565	triimide, 8, 264
molybdenum-nickel alloys, 15. 247	- tritatetranitride, 8, 117
monocarbide, 5 . 876	- tungsten-iron alloys, 13. 642
—— mononitride, 8. 117	valency, 6. 165
— monosulphide, 6, 987	X-radiogram, 1. 642
nickel alloys, 15 . 231	Silicone, 6. 231
aluminium alloys, 15. 231	Silicononane, 6. 216
chromium alloys, 15, 245	Silico-oxalic acid, 6, 216, 229
iron alloys, 15 . 328	Silicopentane, 6, 225
steels, 15 . 329	Silicophosgene, 6, 973
copper alloys, 15 , 202	Silicophosphoric acid, 6, 835
·· · · steels, 15. 314	Silicopropane, 6. 223
—— nitride, 8 , 115, 117	Silicopropionic acid, 6, 309
nitridihydride, 8 . 263	Silicopyrophosphorie acid, 6, 991
— nitrosylfluoride, 8 . 435	Silicopyrophosphoryl chloride, 6, 991
occurrence, 6 , 139	Sihcospiegel, 12, 194
octamminotetrachloride, 6, 965	Silicothiourea, 6. 989
oxycarbide, 5 , 884	Silicotoluic acid, 6. 309
·· oxychloride, 6 . 974	Silicotungstates, 11. 791
oxychlorides, 6, 973	Silicozirconates, 6, 855
oxydialuminate, 6, 455	Silicum liquor, 6. 317
oxydicarbide, 5, 881	- · oleum, 6. 317
- oxyhexaluminate, 6, 455	Silicyl, 6, 216
oxyhydrides, 6, 227	
oxysulphide, 6, 988	metaphosphate, 6 , 835, 990
- passive, 6 . 146	
pentamminodibromodichloride, 6. 980	Siline, 6 . 216
pentamminodichloroiodide, 6. 983	Siliqua, 5. 712
pentatritacarbide, 5, 875 pentitarsenide, 6, 188	Siliziumeisen, 6 . 198
phosphate, 6, 835	Sillimauite, 5. 155; 6. 455
phosphates, 6 . 990	Siloxanes, 6. 227
phosphide, 6 , 188; 8 , 847	Siloxene, 6. 233
phosphinotetrabrounde, 8, 816	hexabromide, 6. 233
phosphinotetrachloride, 8, 816	monobromide, 6 . 233
phosphinotetvafluoride, 6. 938	· monoiodide, 6. 233
potassioamidonitride, 8. 264	tribromide, 6 . 233
preparation, 6 . 145	Siloxide-T, 6 . 288
properties, chemical, 6, 160	Siloxide-Z, 6 . 288
physical, 6 , 152	Silubr, 3, 295
steel, 12 . 752	Silumin, 13, 570
subfluoride, 6 . 924	Silundum, 5, 879
suboxide, 6 . 233	Silver absorption oxygen, 1. 371
subox des, 6 . 227	allotropic, 3 . 568, 569
sulphides, 6 . 985	- allylenide, 5 . 855
sulphocarbide, 6. 988	alum, 5. 341, 345
sulphodibromide, 6 . 989	aluminide, 5 . 233
sulphodichloride, 6. 988	aluminium-, 5, 233
tetrabromido, 6. 977	alloys, 5 . 232
tetrachloride, 6. 960	
properties, chemical, 6 . 964	oxydodecamolybdate, 11. 600
——————————————————————————————————————	phosphate, 5. 370
	sulphate, 5, 341, 345
properties, enemical, 0. 957	
—— tetrahydride, 6 . 216	amidohexaimidoheptaphosphate, 8.
tetraiodide, 6. 982	720
tetramide, 8. 263	amidosulphonate, 8. 641
	amminobromide, 3. 423
tetratritoxide, 6. 228	diminioni mile, o. 120

Silver amminofluoride, 3. 390	Silver bronze, 15. 210
amminoiodide, 3. 434	—— bullion, 3 . 358
amminonitrates, 3. 477	cadmium alloys, 4. 684
—— amminonitrite, 8. 483	cæsium cobaltic hexanitrites, 8. 304
amminoselenite, 10. 824	nitrite, 8. 484
amminotrichloroplatinite, 16. 268	trithiosulphate, 10. 539
ammonium aluminotungstate, 11. 789	calcium alloys, 4. 685
amidosulphonate, 8. 642	chloride, 3 . 720
——————————————————————————————————————	nitrite, 8. 488
chromate, 11. 267	carbonate, 3 . 456
cobaltic hexanitrites, 8. 504	colloidal, 3. 457
decahydropentaselenitododeca-	potassium, 3 . 458
vanadate, 10. 835	sodium, 3. 458
dibromotetrathiosulphate, 10. 540	—— carbonyl, 5 . 951
dichlorotetrathiosulphate, 10. 539	catalysis by, 1. 487
diiodotetrathiosulphate, 10. 540	ceric dodecamolybdate, 11. 600
heptasulphite, 10. 280	sulphate, 5. 662
heptathiosulphate, 10, 536	cerium alloys, 5. 606
orthosulphoantimonite, 9. 542 phosphatohemiheptatungstate,	chabasite, 6. 683
11. 873	China, 15. 209
rhodium chloronitrate, 15. 590	
sulphite 10 280	ablarida 2 200 408
	chloride, 3 . 390, 408
	colloidal, 8. 393
	nreparation 3 391
—— analcite, 6 . 683	——————————————————————————————————————
—— and thallium, 5 . 426	
antimonatotungstate, 9. 459	sodium, 3 . 404
—— antimonial, 3. 300	chlorite, 2. 283
antimonite, 9. 432	ammino-, 2. 284
—— antimonitotungstate, 9. 433	chloroantimonite, 9. 481
—— antimony sulphate, 9. 583	chloroaurate, 3. 595
arsenatoctodecamolybdate, 9. 210	chlorocarbide, 5. 855
arsenic alloys, 9. 64	chlorodiamidotriamminochloride, 16.
arsenides, 9. 64	308
arsenite, 9. 122	chloroiridate, 15. 771
colloidal, 9. 122	chloromercurite, 4. 812
arsenochloride, 9. 244	chloronitrate, 3. 468
atomic number, 3. 366 weight, 3. 363	chloroperiridite, 15. 765
azide, 8. 348	chloroplatinite, 16, 282
—— barium chloride, 3. 720	
metatungstate, 11. 826	chlorosmate, 15. 720
nitrite. 8 . 488	chlorostannate, 7. 449
phosphatododecatungstate, 11.	chromate, 11. 263
867	colloidal, 11. 264
phosphatohenatungstate, 11. 868	chromidodecamolybdate, 11. 601
trithiosulphate, 10. 545	chromium alloys, 11. 171
— bismuth alloys, 9. 635	cobalt alloys, 14. 531
thiosulphate, 10. 554	————— dinitrosyldecamminotetranitra-
—— bismuthide, 9 . 635	tonitrate, 8. 443
—— black, 8. 359	cobaltic carbonatobisethylenediamine-
blende antimonial, 3. 300	iodide, 14 . 819
	dichloroaquotriamminosulphate,
— boride, 5 . 24	14. 802
	dichlorobisethylenediaminesul-
	phate, 14. 802
	dichlorobispropylenediaminesul-
bromatocarbide, 5. 855	phatonitrate, 14. 841 ————————————————————————————————————
	801
colloidal, 3. 418	
potassium, 3 . 424	μ-imino-peroxo-quaterethylene-
——————————————————————————————————————	diaminenitrate, 14. 846
——————————————————————————————————————	oxyhexanitrite, 8. 504
rubidium, 8 . 424	trisethylenediamineiodide, 14.
bromonitrate, 3. 468	744
bromoplatinate, 16. 379	cobaltous hexasulphitodicobaltate, 10.
bromosmate, 15. 724	315

Silver colloidal, 3. 309, 554, 560	Silver disulphide, 8. 448
copper alloys, 8 . 572	disulphitotetramminocobaltate, 10.317
	dithioaurite, 3. 614
——— gold-nickel alloys, 15. 205	—— dithiophosphate, 8. 1068
relations, 3, 617	ditritaluminide, 5. 232
- lead octoxyhenacosichloride, 7.	ditritamercuride, 4. 1026
743	ditritamminometavanadate, 9. 768
orthosulphotetrabismuthite,	diuranate, 12. 66
9. 695	Doré, 3. 358
manganese alloys, 12. 205	electrochemical eq., 8. 367
selenide, 10. 773	electroplating, 3. 359
cyanodinitrate, 3. 469	— enneadecasulphodecaluminate, 5. 321
cyanotetrazole, 8. 339	enneasulphodiorthosulphantimonite, 9.
decametaphosphate, 3. 489	540
decapermanganite, 12. 276	ethylenediaminechloroplatinite, 16.
decaphosphate, 3. 490	282
	ethylenetrichloroplatinite, 16. 272
diaminyl orthosilicate, 8, 567	
diamidodiphosphate, 8, 711	ethylstannonate, 7. 410
—— diamidophosphate, 8, 707	extraction, 8. 301
diamminochloride, 8. 400	amalgamates, Boss process, 3. 304
diamminochloroplatinate, 16. 327	Cazo process, 3. 303 Patio process, 3. 303
diamminochlorosmate, 15. 720	Patio process, 3. 303
—— diamminohydroxide, 3. 382	
—— diamminoiodide, 3. 435	Fondon process, 8. 303
diamminometachloroantimonate, 9.	cupellation, 3. 302
491	electrolytic process, 3. 308
—— diamminometantimonate, 9. 454	————— Moetrus', 3. 308
—— diamminometasilicate, 6. 345	lead smelting, 3. 301
——— diamminomolybdate, 11. 559	—— — matte smelting, 3. 301
—— diamminonitrate, 3. 478	wet processes, 3. 305
—— diamminonitrite, 8. 483	Augustin's process, 3.
(liamminopermanganate, 12. 333	305
diamminoxide, 3 . 382	Freiberg vitriolization
—— diarsenatoctodecatungstate, 9. 214	process, 3. 305
diarsenide, 9. 65	cyanide process, 3. 305
dibromotetranitritoplatinate, 8. 524	Hofmann's vitrioliza-
—— dichloromercurite, 4. 812	tion process \$ 305
dichromate, 11. 340	Kiss' process, 3. 306
dichromatocarbide, 5. 855	
dihydroarsenate, 9. 164	
dihydrophosphate, 3. 487	306
dihydropyrophosphate, 3. 488	Ziervogel's process, 3.
dihydroxychloroplatinite, 16. 285	305
—— dihydroxydichloropalladate, 15. 673	ferrate, 18. 934
—— dihydroxytetrabromoplatinate, 16. 381	ferric chloride, 14. 104
dihydroxytetrachloroplatinate, 16. 334	disulphide, 14, 193
dihydroxytetraiodoplatinate, 16. 391	hydrotetrasulphate, 14. 347
— diimidodiamidotetraphosphate, 8. 715	metaphosphate, 14. 415
— diiodonitritoplatinite, 8. 522	
	pyrophosphate, 14, 415 tetrasulphide, 14, 193
	ferrite, 13. 910
—— dinitrate, 3. 385, 484	ferrous henasulphide, 14. 193
	octosulphide, 14. 193
dinitratocarbide, 5. 855 dinitratotriorthosilicate, 6. 345	pentasulphide, 14. 193
dinitrite hamonitrite 9 492	
dinitritohyponitrite, 8. 483	sulphide, 14. 167 trisulphide, 14. 193
dioxide, 3. 383	—— fine, 3 . 358
dioxytellurate, 11. 93	fluobromoplatinate, 16. 381
diphosphate, 8. 490	
diphosphide, 8. 840	fluocarbide, 5. 855 ·
—— diplatinous hexasulphoplatinate, 16.	—— fluochloroplatinate, 16. 285
396	—— fluochromate, 11. 365
—— dipotassium cobaltic hexanitrite, 8.504	fluoiodide, 8 . 430
	fluoride, 3. 387
704	
—— diselenide, 10. 771, 772	——————————————————————————————————————
—— disodium imidodisulphonate, 8. 653	——— preparation, 3. 387
distillation, 8. 329	properties, 8 . 387
—— distribution, 3. 298	tetrahydrated, 3. 387
—— disulphatoaluminate, 5. 345	—— fluosilicate, 6 . 950
—— disulphatoaurate, 8. 615	—— fluostannate, 7. 423
VOL. XVI.	3 в
•	

Silver fluotitanate, 7. 72	Silver iodate, 2. 341
frosted, 3 . 359	iodide, 3 . 426
—— fulminate, 4. 993	allotropes, 3. 427
—— fulminating, 3. 381; 8. 101	cæsium, 3 . 433
German, 4. 671	lithium, 3 . 433
germanium lead sulphantimonite, 7.	potassium, 3, 432
glance, 3 . 300, 438 ; 4 . 406	
—— gold alloys, 8 . 575	——————————————————————————————————————
amalgam, 4. 1029	rubidium, 3. 433
copper alloys, 3. 576	sodium, 3. 433
monotelluride, 11. 49	—— iodocarbide, 5. 855
palladium alloy, 15. 648	iododinitrate, 8. 433
	iodonitrate, 3. 468
	iodotetronitrate, 3, 433
halides, action light, 3. 408 hemialuminide, 5. 232	iodotetranitrate, 8. 469 iridium alloy, 15. 750
hemiamminoiodide, 3. 434	iron alloys, 13. 539
hemiantimonide, 9. 405	copper alloys, 13. 540
hemimanganeside, 12. 204	nickel alloys, 15. 313 selenide, 10. 800
hemipentaphosphide, 8. 840	isotetrahydroborododecatungstate, 5.
hemiphosphide, 8. 840	110
hemitelluride, 11. 45	lanthanum tungstate 11 701
hemitrioxide, 3. 368, 385 heptabromoaluminate, 5. 326	lanthanum tungstate, 11. 791 lead henasulphotetrantimonite, 9. 552
heptapermanganite, 12. 276	metasulphoantimonite, 9. 551
heptitatetratelluride, 11. 44	orthosulphobismuthite, 9. 695
hexabromoselenate, 10. 901	pyrosulphobismuthite, 9, 694
hexahydroxyplatinate, 16. 246	sulphide, 7. 796
hexametaphosphate, 3. 489; 8. 989	
sodium, 8. 489	lithium dithiosulphate, 10. 537
hexamineselenate, 10. 861	nitrite, 8. 484 orthosulphoantimonite, 9. 542
hexamminochloroperiridite, 15. 765 hexamminochloroplatinite, 16. 282	—— luteodivanadatodiphosphate, 9. 828
hexasulpharsenide, 9. 306	— magnesium alloys, 4. 669
hexasulphitocobaltate, 10. 315	nitrite, 8. 489
hexitantimonide, 9. 404	manganate, 12. 288
history, 3 . 295	manganese alloys, 12. 204
horn, 3 . 300, 390	
hydrazinodisulphinate, 8. 682 hydrazinomonosulphonate, 8. 683	manganic dodecamolybdate, 11. 602
hydride, 3 . 472	—— pentafluoride, 12. 346 —— pyrophosphate, 12. 463
—— hydroarsenate, 9. 164	manganiferous ores, 12. 150
hydroarsenite, 9. 122	manganite, 12. 242
hydrocarbonate, 3. 456	mercuric dichlorodiiodide, 4, 938
hydroferrite, 13 . 910	nitrate, 4. 995
	oxynitrate, 4. 995, 998
hydroiodide, 3. 432	oxysulphate, 4. 976, 995 sulphate, 4. 995
hydromonamidophosphate, 8. 706 hydrophosphate, 8. 487	
hydrosols, 8. 561	sulphatochloride, 4. 995
—— hydrosulphate, 3. 452	
hydrotellurate, 11. 93	mercuride, 4. 1026
hydroxide, 3 . 380	mercurous phosphate, 4. 1002
hydroxychloroperiridite, 15. 760	metaborate, 5. 85
hydroxychloroplatinite, 16. 285	metacolumbate, 9. 865
	metallic precipitation, 3. 318
hypobromite, 2. 271 hypochlorite, 2. 271	metantimonate, 9, 454
hypoiodite, 2 . 271	
hyponitrite, 8. 412	metasilicate, 6. 345
hypophosphate, 8. 936	metasulpharsenatoxymolybdate, 9.332
hypophosphite, 8. 883	— metasulpharsenite, 9. 295
hypophosphitotungstate, 8. 888	metasulphoantimonite, 9. 539
hypovanadate, 9. 747	— metasulphobismuthite, 9. 691
	—— metasulphosilicate, 6. 987
— imidodiamide, 8. 665	—— metatetrarsenite, 9. 123 —— metatungstate, 11. 825
	metatungstate, 11. 823 — metavanadate, 9. 768

Silver mock, 4. 400	Silven anthonology and a company
— molybdate, 11. 559	Silver orthosulphoantimonite, 9. 537 —— orthosulphodisilicate, 6. 987
—— molybdenum alloys, 11. 522	orthotellurate, 11. 93
monamidodiphosphate, 8. 710	orthovanadate, 9. 768
—— monamidophosphate, 8. 706	osmiamate, 15. 728
—— monammino-hydroxide, 3. 380	osmic sulphide, 10. 324
, — monamminonitrate, 8. 477	—— osmium alloy, 15 . 697
monarsenide, 9. 65	osmyl oxynitrite, 15. 729
monophosphide, 8. 840 monotelluride, 11. 44	oxide, 3 . 371 colloidal, 3 . 372
monothiophosphate, 8. 1069	properties, chemical, 3, 375
—— monoxide, 3. 368, 371	
naphelite, 6 . 570	oxybromide, 8. 423
native, 8. 299	oxyditellurate, 11. 93
natrolite, 6 . 683	
Nevada, 15. 208 new, 15. 208	oxyfluoride, 3. 387 oxyiodoaluminate, 5. 329
—— nickel alloys, 15 . 202	—— palladium alloys, 15. 644
copper alloys, 15, 203	
——————————————————————————————————————	, see Palladium copper alloys, 15. 646
zinc alloys, 15. 222	palladous tetranitrite, 8. 514
nitrate, 1. 521; 3. 459	paratetrarsenate, 9. 164
	paraiungstate, 11. 818
	octocosihydrate, 11. 818 octohydrate, 11. 818
	pectolite, 6 . 368
——————————————————————————————————————	—— pentabromoplumbite, 7. 753
———— electrolysis, 1. 962	pentachlorohydroxyperrhodite, 15.
——————————————————————————————————————	578
——————————————————————————————————————	—— pentachloropicolinoiridate, 15. 768
properties, chemical, 3, 465, 466	pentachloropyridinodiamminoperiri-
physical, 3. 460 rubidium, 3. 481	dite, 15. 766 pentachloropyridinoiridate, 15. 768
— nitratoantimonide, 8. 472	pentachloropyridinoperiridite, 15. 766
—— nitratoarsenate, 9. 164	pentachlorothallate, 5. 446
—— nitratoarsenide, 3. 476; 9. 65	pentafluoferrate, 14. 8
nitratocarbide, 5. 855	pentahydroxychloroplatinate, 16. 333
— nitratochabazite, 6. 733	pentamminotetraiodoplumbite, 7. 777 pentamolybdate, 11. 594
—— nitritoperosmite, 15 . 728 —— nitratophosphide, 3 . 470; 8 . 840	pentanolybulate, 11. 034 pentoxyoctosulphodiantimonate, 9.
—— nitratoplumbite, 7. 866	579
— nitratosilicide, 6. 174	—— perborate, 5 . 120
—— nitratotellurate, 11. 119	—— perbromide, 3 . 423
nitride, 3. 381; 8. 101	perchlorate, 2. 399
—— nitrilodiphosphate, 8. 714 —— nitrite, 8. 490	anmino-, 2. 399
	perchloratocarbide, 5. 855 percylite, 7. 742
a-, 8. 481 β-, 8. 481	—— perdisulphate, 10 . 478
nitritosulphamide, 8. 660	perditungstate, 11. 836
nitrohydroxylaminate, 8. 305	—— periodates, 2. 410, 411, 412
—— nitrosyl, 8. 412	permanganate, 12. 332
occurrence, 3. 298	permanganite, 12. 276 permeability to oxygen, 1. 371
—— octamminochloroplatinate, 16. 327 —— octopermanganite, 12. 276	permeability to oxygen, 1. 371 permolybdate, 11. 608
octovanadatohexadecatungstate, 9.	permonosulphomolybdate, 11. 653
786	pernitrate, 8 . 384
ore, black, 8 . 300	peroxide, 3. 368, 383
brittle, 3 . 300; 9 . 540	—— peroxyfluoride, 3. 387
dark red, 3. 300	peroxynitrate, 3, 482, 484
——————————————————————————————————————	—— peroxysulphate, 3 . 482, 484 —— perrhenate, 12 . 477
——————————————————————————————————————	—— persulphate, 10. 478
orthoarsenite, 9. 122	Peru, 15. 209
orthododecacolumbate, 9. 865	pervanadate, 9. 795
orthohexatantalate, 9. 902	—— phosphates, 3. 485
orthophosphate, 3. 485	phosphatocarbide, 5. 855
colloidal, 3 . 486 orthosulpharsenate, 9 . 319	phosphatodecamolybdate, 11. 665 phosphatodecatungstate, 11. 867, 870
orthosulpharsenite, 9. 293, 294	phosphatododecamolybdate, 11. 663
orthosulphoantimonate, 9. 574	— phosphatoenneatungstate, 11. 871
-	· ·

Silver phosphatohemiheptadecamolybdate,	Silver pyrotellurite, 11. 80
11. 667	pyrovanadate, 9, 768
—— phosphatohemiheptatungstate, 11. 872, 873	—— quadrantoxide, 3. 368 —— refined, 3. 358
phosphatohemipentamolybdate, 11.	refining, 8 . 308
669	rhenate, 12. 478
phosphatohenamolybdate, 11. 664	rhodium alloys, 15. 564
phosphatohexatungstate, 11. 872 phosphide, 8. 840	
phosphite, 8. 914	539
—— plating, 8. 359	amminoheptathiosulphate, 10.
platinic hydroxytriamidodiammino-	539
chloride, 16. 308 hydroxytriamidodiamminohy-	cobaltic hexanitrites, 8. 504 trithiosulphate, 10. 539
droxide, 16. 245	—— ruby, 3 . 300
	ruthenate, 15. 518
platinosic sulphate, 16. 403	
—— platinous cis-sulphitodiamminosul-	
phite, 10 . 321	selenate, 10. 861
trans-sulphitodiamminosulphite,	selenide, 10. 771
10. 321 —— platinum alloys, 16. 197	
aluminium alloy, 16. 210	selenosulphide, 10. 773
	separation from compounds, 3. 314
cobalt alloys, 16. 219	sesquiamminobromide, 8. 422 sesquiamminochloride, 8. 400
	sesquiamminoiodide, 3. 435
zinc alloy, 16. 207 gold alloys, 16. 205	sesquioxide, 3. 368, 385
aluminium alloy, 16. 210 ———————————————————————————————————	silicate, 6 . 344
	silicates, 6 . 340 silicide, 6 . 17 4
——————————————————————————————————————	sodium alloy, 3 . 571
mercury alloys, 16, 209	chlorosulphite, 10. 280
nickel alloys, 16 . 220	cuprous hexamminoctothiosul-
	phate, 10. 539 ————————————————————————————————————
——————————————————————————————————————	enneathiosulphateacetylide, 10.
	540
plumbite, 7. 668	henathiosulphate acetylide, 10.
—— potassium amide, 8. 259 —— amidosulphonate, 8. 642	540 —— heptathiosulphate, 10 . 538
amminoctothiosulphate, 10. 539	monamminothiosulphate, 10, 538
chromidodecamolybdate, 11, 601	nitrite, 8 : 484
	orthosulphoantimonite, 9. 542
octothiosulphate, 10. 539	sulphite, 10 . 280 tetrathiosulphate, 10 . 538
orthosulphoantimonite, 9, 542	
	trithiosulphate, 10. 538
sulphite, 10. 280 tetrathiosulphate, 10. 539	dihydrate, 10. 538 monohydrate, 10. 538
—— triamminothiosulphate, 10. 539	solubility of hydrogen, 1, 305, 306
—— potosi, 15. 208	spitting, 3. 342
præseodymium tungstate, 11. 791	standard, 3. 358
—— properties, chemical, 3 . 342 —— physical, 3 . 321	stannate (a-), 7. 418 (β -), 7. 418
—— purification, 3. 314	
Richards and Wells' process, 3.	trihydrate, 7. 418
308 Stas' process, 3 . 308	sterling, 3. 358
——————————————————————————————————————	strontium chloride, 8 . 720 dithiosulphate, 10 . 545
—— pyridinopermanganates, 12. 333	nitrite, 8 . 488
—— pyrites, 14. 167, 193	subbromide, 3 . 423
pyroarsenite, 9. 123 pyrometaphosphate, 8. 490	
pyrometaphosphate, 3. 480	subfluoride: 3. 386
sodium, 3. 488	subiodide, 3 . 435
	submolybdate, 11, 559
—— pyrosulpharsenite, 9. 295 —— pyrosulphate, 10. 446	subnitrate, 3. 467 suboxide, 3. 368
Pyronuipinato, IV. TTO	advalue, a. ava

011	6 700
Silver subsulphide, 3. 440	Silver tetravanadatohexatungstates, 9. 786
subtungstate, 11. 782	tetritastannide, 7. 369
sulfochlorure, 3. 401	—— tetritatelluride, 11. 44 —— tetritoxide, 3. 368
sulphamide, 8. 662 sulpharsenatosulphomolybdate, 9. 323	—— thallium cobaltic hexanitrites, 8. 504
sulphatarsenate, 9. 334	lead metasulpharsenite, 9. 301
sulphate, 3, 450	—— thallous sulphide, 5. 463
——————————————————————————————————————	thioaurite, 3. 612, 614
——————————————————————————————————————	thiocarbonate, 6. 125
sulphatocarbide, 5. 855	thiocyanatodinitrate, 3. 469
sulphatoperiridite, 15. 784	thiohypophosphate, 8. 1063
sulphatostannato, 7. 479	thiophosphate, 8. 1065
sulphide, 1. 520; 3. 438	thiophosphite, 8 . 1062
antimonial, 9. 542	thiopyrophosphate, 8, 1070
copper, 8. 447	thiopyrophosphite, 8, 1063 thiosulphate, 10, 536
	— thomsonite, 6 . 683, 711
——————————————————————————————————————	thoridodecamolybdate, 11. 601
sodium, 8 . 447	thorium nitrate, 7. 251
sulphimide, 8 . 664	tin alloys, 7. 368
sulphite, 10 . 279	trialuminide, 5. 232
sulphoantimoniobismuthite, 9. 692	triamidodiphosphate, 8. 712
sulphoantimonites, 9. 537	—— triamminobromide, 3. 422
sulphochromite, 11. 432	triamminochloride, 3. 400
sulphogermanate, 7. 254, 275	triamminochloroplatinite, 16. 282
sulphohypobismuthite, 9. 684	triamminonitrate, 3, 479
sulphoindate, 5. 404	triamminonitrite, 8. 483 —— triamminopermanganate, 12. 333
sulphomolybdate, 11. 652	tribromoarsenite, 9. 249
	trichloroplatinite, 16. 282
	trihemimercuride, 4. 1024
sulphostannate, 7. 254	- triimidotetraphosphate, 8. 715
—— sulphotellurite, 11. 113	
sulphotellurobismuthite, 11. 62	triiodoplumbite, 7. 777
sulphotungstate, 11. 859	trimetaphosphate, 3. 489
—— tellurate, 11 . 92	—— trimetaphosphimate, 8. 717
——————————————————————————————————————	trinitratoantimonide, 9. 405
—— telluride, 11. 5	trinitratophosphide, 8, 817
tellurite, 11. 79	triphosphate, 3. 490 triselenitodecamolybdate, 10. 836
telluroargentate, 3 . 150 tetrabromoaluminate, 5 . 326	trisulphorthosulphoantimonite, 9.
tetrasioniosiuminate, 5. 322	540
tetrachlorobispyridinoperiridite, 15.	tritamercuride, 4. 1024
766	tritantimonide, 9. 404
—— tetrafluodioxytungstate, 11. 839	tritarsenide, 9, 64
tetrahydrodiarsenitotetratriconti-	—— tritastannide, 7. 368
molybdate, 9. 131	—— trithionate, 10. 609
—— tetrahydrorthotellurate, 11. 93	—— trithiophosphate, 8. 1067
tetrahydroxydichloroplatinate, 16. 334	tungstate, 11. 783
— tetraiodoplumbite, 7. 777	ultramarine, 6, 589
tetramminocarbonate, 8. 458	—— ultramarines, 6. 683 —— ultraphosphates, 3. 490
	- uranate, 12. 63
tetramminochromate, 11. 266	uranyl carbonate, 12. 115
tetramminodithionate, 10. 588	chromate, 11. 308
tetrammino-orthophosphate, 3. 487	
tetramminopyroarsenite, 9. 123	valency, 3 . 363
tetramminorthoarsenate, 9. 164	vanadide, 9. 733
—— tetramminoselenate, 10. 861	Virginia, 15. 208
—— tetramminoselenite, 10. 824	voltameter, 1. 964
tetramminosulphite, 10. 280	World's production, 8. 299
tetramminotungstate, 11. 783	
tetramolybdate, 11. 593	zine alloys, 4. 681 iodoazide, 8. 337
	sulphide, 4. 604
tetrantificonformopiatinate, 10. 332 tetraphosphate, 3. 489	zincide, 4 . 681
tetraphosphate, 3. 455 ——tetrarsenide, 9. 65	zirconium, 7. 116
tetratellurate, 11. 93	(di)silver potassium trihydroxydiamido-
tetrathionate, 10. 618	phosphate, 8. 704
—— tetratritamercuride, 4. 1026	—— sodium imidodisulphonate, 8. 653

,	
(hepta)silver tetrasulphuryltrimidodiamide,	Skutterudite, 9. 4, 78; 14. 424
8. 666	Slag, 12. 592
(hexa)silver tetrasulphuryltrimidodiamide,	wool, 12. 592
8. 666	Slaked lime, 8. 673
trimetaphosphimate, 8, 717	Slate spar, 3. 814
(octo)silver hexasulphosilicate, 6. 987	
	Slavikite, 12. 531; 14. 328, 346
tetrametaphosphimate, 8. 718	Slime, 8. 27 Slip-bands, 12. 895
(penta)silver diammonium tetrasulphuryl-	Sluice, 3 . 496
triimidodiamide, 8. 666	Smallite, 9. 4
trihydroxydiamidophosphate, 8. 705	Smalt, 6, 933; 14, 420, 519
(tetra)silver hydrotrihydroxydiamidophos-	—— blue, 3 . 274
phate, 8. 704	native, 8. 274
imidodiphosphate, 8. 713	natural, 5. 370
—— tetrahydrosilicododecamolybdate, 6.	Smaltite, 7. 897; 9. 76; 14. 424; 15. 6
870	Smaragd, 6. 803
—— tetrahydrosilicododecatungstate, 6.	Smaragdite, 6. 822
877	Smaragdochalcite, 6. 342
tetrametaphosphimate, 8, 718	Smaragdus, 4. 204
trihydioxydiamidophosphate, 8. 705	Smeetis, 6, 496 Smeetite 8, 495, 496
(tri)silver ammonium trisulphuryldiimido- diamide, 8. 666	Smectite, 6 . 495, 496 Smee's cell, 1 . 1028
imidodiphosphate, 8. 713	Smelter's smoke, 7. 503
—— imidodisulphinite, 8. 646	Smeltine, 9. 76
—— imidodisulphonate, 8. 653	Smelting copper ores, 3. 23
pentahydrosilicododecamolybdate, 6.	
870	blast-furnace, 3, 23 electrothermic, 3, 23
triamidodiphosphate, 8. 712	pyritie, 8 . 23
trihydroxydiamidophosphate, 8. 704	reverberatory, 8. 23
trimetaphosphimate, 8. 717	roaster, 3. 25
Silverine, 15. 210	Smergel, 5. 247
Silvering of mirrors, 3. 359	Smidesjern, 12. 709
Silverite, 15 . 208 Silveroid, 15 . 208	Smirgel, 5. 247
Silverstrite, 8. 131	Smiris, 5. 247 Smith ore, 12. 531
Silvialite, 6. 764	Smithsonite, 4. 642; 6. 442; 12. 150
Similor, 4. 67	Smithy scale, 13. 734
Simlaite, 6. 473	Smoke, 13. 613
Simonyite, 4. 252, 326	Smokeless powders, 2. 829
Simonytes potassium sodium, 4. 342	Snarumite, 6. 396
Sincosite, 9. 826	Snellzünder, 8. 1059
Sines, Law of, 1. 670	Snow, 1. 464
Singles, 9. 350	— white, 4 . 507
Sinopische Earth, 6. 472	Soamine, 9. 40
Sinopite, 6 . 472 Sinopsis, 6 . 472	Soap mountain, 6, 432
Sinter calcareous, 3. 814	Soapstone, 6. 427, 430, 432 Sobralite, 6. 910
siliceous, 6. 141	Society of Rosicrucians, 11. 4
Siphylite, 9. 904	—— Royal, 1. 5
Sipilite, 7. 185	Soda, 2. 421
Sipylite, 4. 206; 5. 517; 7. 100; 9. 839;	alicante, 2. 713
12. 6	alum, 5. 342
Sirium, 5. 504	anorthite, 6. 698
Sismondine, 6. 620	berzeliite, 9. 222; 12. 150
Sismondite, 6. 620	—— Bordeaux, 3. 267
Sitaparite, 12. 150, 280, 531	—— caporcianite, 6. 740
Size of molecules, 1. 752, 755	cartagena, 2. 713
Sjögrufvite, 12. 531	—— glauconite, 6 . 920
Sjogrufvite, 9. 228 Skeleton ervetels, 19. 886	
Skeleton crystals, 12. 886 Skemmetite 12 150 266 531 . 12 816 022	leucite, 6 . 647, 648, 649
Skemmatite, 12. 150, 266, 531; 18. 816, 923 Skiörl, 6. 740	—— lime, 8. 685
Skiorl, 6. 740	—— Malaga, 2. 713
Sklerokles, 9. 300	mesolite, 6 . 652 mesotype, 6 . 652
Sklodoskite, 6. 883	mica. 6. 608
Sklodowskite, 12. 5, 52	microclines, 6. 669
Skörl, 6. 821	richterite, 6. 916
Skogbölite, 9. 839, 909	spodumene, 6. 643, 693
Skotiolite, 6. 908	—— thomsonite, 6. 710, 711

Sodaite, 6 . 762	Sodium aluminium orthosilicate hydrated,
Sodalite, 2. 15; 6. 580, 582	6. 573
acetato-, 6 . 583	phosphate, 5. 367
arsonato-, 6 . 583, 835	pyrophosphate, 5, 367
arsenito-, 6 . 583, 835	selenate, 10. 869
borato-, 6. 583	silicomolybdate, 6. 871
—— bromato-, 6. 583	
—— bromo-, 6 . 583	sulphate, 5. 342 sulphatotriorthosilicate, 6. 584
calcium, 6. 583	triorthoarsenate, 9. 186
	trisulphotriorthosilicate, 6. 587
	aluminiumvanadatotungstate, 9. 787
	aluminathasiliasta 6 570
	aluminorthosilicate, 6. 570
formato-, 6. 583	aluminylorthotrisilicate, 6. 751
hydroxy-, 6 . 583	alunite, 5. 353
hyposulphito-, 6 . 583	amalgam, action on water, 1. 135
—— iodato-, 6. 583	amalgams, 4. 1013
iodo-, 6 . 583	amide, 8 . 253
lead sulpho-, 6. 583	—— amidoaluminate, 5. 212; 8. 262
—— lithia, 6 . 583	amidohexaimidoheptaphosphate, 8.720
bromo-, 6 . 583	amidoheximidoheptaphosphate, 8. 716
sulpho-, 6 . 583	amidoperoxide, 8. 255
magnesia, 6 . 583	amidosulphonate, 8. 641
metasilicato-, 6 . 583	ammine, 8 . 244
—— molybdato-, 6 . 583, 871	amminoarsenide, 9. 62
nitrato-, 6 . 583	amminomonoxide, 8. 245
oxalato-, 6 . 583	ammoniomolybdite, 8. 267
perchlorato-, 6 . 583	ammonium arsenate, 9. 173
	———— bismuth nitratonitrite, 8. 500
—— potash, 6. 583	chromate, 11. 249
	cuprous hexamminoctothicsul-
	phate, 10. 533
sulpĥato-, 6 . 583 sulpho-, 6 . 583	decatungstate, 11. 831
supno-, 0. 565	3: 1-decatungstate, 11. 831
—— selenato-, 6 . 583	———— dimetaphosphate, 2. 877
selenito-, 6 . 583	gold pyrophosphatohemihena-
silver sulpho-, 6 . 583	molybdate, 11. 671
strontia, 6 . 583	hexadecatungstate, 11. 832
sulphito-, 6 . 583	hexanitritobismuthite, 8. 500
sulphohydrosulpho-, 6 . 583	hydroarsenate, 9. 156
—— tin sulpho-, 6 . 58 3	hydrorthophosphate, 2. 874
tungstato-, 6 . 583	——————————————————————————————————————
vanadato-, 6. 583	iridium disulphate, 15. 786
Sodamide, 8. 253	magnesium pyrophosphate, 4.
Sodammonium, 8. 244	394
Soddite, 6 . 883; 12 . 5, 52	manganese pyrophosphatotung-
Sodii hypophosphis, 8. 880	state, 11. 874
Sodiophosphine, 8. 816	manganic tridecamolybdate, 11.
Sodium, 11. 78	602
a-, 2. 458	manganous pyrophosphate, 12.
a-cupricarbonate, 3. 277	457
β -cupricarbonate, 3. 277	1: 3-metatungstate, 11. 824
acetylene carbide, 5. 847, 849	nitratoimidodisulphonate, 8. 651
action on water, 1. 135	octotungstate, 11. 830
action on water, 1. 133	orthophosphates, 2. 875
	orthosulpharsenate, 9. 317
aluminate, 5. 288	1: 3-paratungstate, 11. 816
aluminium alloys, 5. 229	
amide, 8. 262	3: 2-paratungstate, 11. 816
arsenitosilicate, 6. 835	4: 1-paratungstate, 11. 816
carbonate, 5. 359	heptahydrate, 11. 816
chlorotriorthosilicate, 6. 582	pentahydrate, 11. 816
chromatosilicate, 6. 866	
dimetasilicate, 6. 643, 644, 645	3: 2-pentadecatungstate, 11.832
dodecamolybdate, 11. 599	4: 2-pentadecatungstate, 11. 832
fluoarsenate, 9. 259	—— pentametaphosphate, 2. 877; 8.
hydrocarbonatotriorthosilicate,	988
6 . 580	phosphatohemiheptadecamolyb-
hydrotrimetasilicate, 6. 651	date, 11. 667
hydroxyorthosilicate, 6. 574	phosphatomolybdate, 11. 663
——————————————————————————————————————	pyrophosphate, 2. 876
orthosilicate, 6 . 570	pyrophosphatotungstate, 11. 874
Oz ************************************	** * * * *****************************

Sodium ammonium sesquiphosphate, 2. 876	, Sodium barium oxysulphopentarsenate, 9.
——————————————————————————————————————	330
	paratungstate, 11, 818
tetravanadatohexamolybdate, 9.	phosphate, 3. 878
784	——————————————————————————————————————
tetreroctocolumbate, 9. 865	phosphatododecatungstate, 11.
tetrerotetradecavanadate, 9. 765	1 807
trihydrodiorthoarsenate, 9. 153	pyrophosphate, 8. 892
triterodecavanadate, 9. 766	silicate, 6. 371
ammonoaluminate, 8. 262	silicotitanate, 7. 54
and potassium chlorosulphate, 2. 691	titanyl mesodisilicate, 6. 844
erystallization, 2. 689	trimetaphosphate, 8. 894
anhydro-iodate, 2. 337	trioxysulpharsenate, 9, 329 benzylsulphinate, 10, 163
antimonatotriiodobromide, 9. 512	beryllate, 4. 228
antimonide, 9. 402	beryllium ammonium orthophosphate,
antimonious thiosulphate, 10. 553	4. 247
antimonysulphate, 9. 582	
antimonyl tetrafluoride, 9. 503	hydromesotrisilicate, 6. 381
—— aquochloroperiridite, 15. 765	—— hydrosulphate, 4. 241
aquodisulphitotriamminocobaltate,	orthophosphate, 4. 246
10. 318	oxydiorthoarsenate, 9. 175
——————————————————————————————————————	pyrophosphate, 4 . 247
———— hexahydrate, 10. 318	
—— trihydrate, 10. 318 —— aquopentahypophosphitoferrate, 8. 889	
aquopentasulphitosmate, 10. 325	cis-bischromatocobaltiate, 11. 311
—— argentioiodides, 3. 433	trans-bischromatotetramminocobalti-
arsenatodioxydichromate, 9. 204	ate, 11. 311
arsenatododecavanadatododecamolyb-	—— bismuth pyrophosphate, 9. 712
date, 9. 202	thiosulphate, 10. 553
arsenatohexavanadatopentadeca-	bismuthate, 9. 658
molybdate, 9. 202	- — borate basic, 5. 66
arsenatotellurate, 11. 96	—— boratofluoride, 5. 124
arsenatotrimolybdate, 9. 209	boride, 5. 23
	borodimetasilicate, 6. 448
arsenious hyposulphite, 10. 183	borosilicate, 6. 448
	borylphosphate, 5, 147
	borylsulphate, 5. 146 bromate, 2. 330
arsenoctoazidotrichloride, 9. 242	
arsenohyposulphite, 9. 150	
arsenothiosulphate, 10. 552	bromoaurate, 3. 607
at. wt., 2. 47Q	bromobisarsenite, 9. 256
aurate, 3. 584	—— bromoiridate, 15. 776
—— auric sulphite, 10. 281	—— bromopalladite, 15. 677
auroaurichloride, 3. 589	bromoperiridite, 15. 775
—— aurochloride, 8. 589	bromoplatinate, 16. 378
—— aurous disulphite, 10. 280 —— —— dithiosulphate, 10. 540	hexahydrate, 16. 378
dihydrate 10 541	bromosmate, 15. 723 bromostannate, 7. 456
	brownish-red rhodium sulphite, 10. 326
——— heptathiosulphate, 10. 541	cadmiate, 4 . 530
autunitė, 12. 135	cadmide, 4. 667
azide, 8 . 345	cadm'um alloys, 4. 667
azidodithiocarbonate, 8. 338	bromide, 4. 572
β-, 2 . 458	diorthoarsenate, 9. 183
barium arsenate, 9. 173	dithiosulphate, 10. 547
————— calcium carbonate, 3. 846	hyposulphite, 10 . 183
carbonate, 3. 845	—— mercuride, 4. 1039
	paratungstate, 11. 819
cobalt nitrite, 8. 505	persulphate, 10. 479
dithionate, 10. 591	phosphate, 4. 661
	——————————————————————————————————————
	* *** * * * * * * * * * * * * * * * * *
677	dihydrated, 4. 637 sulphide, 4. 604
imidodisulphonate, 8. 655	sulphite, 10, 287
- nitrilotrisulphonate, 8. 669	tetrachloride, 4. 554

tetrametaphosphate, 4. 664 trimetaphosphate, 4. 664 trimpyoraserante, 9. 183 calcium aluminium sulphatotriorthosilicate, 6. 584 and aluminium fluorides, 5. 308 arsenate, 9. 173 carbonate, 3. 844 copper arsenate, 9. 174 dihydroxytetrasulphate, 3. 806 dimetaphosphate, 3. 894 disulphate, 3. 805 disulphate, 3. 805 forrous tetrantimet bydrated, 5. 709 dimetaphosphate, 3. 895 hexametaphosphate, 6. 387 hydrotrimetasilicate, 6. 387 imitedisulphate, 10. 544 cotoxyfluodicolumbate, 9. 877 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabronide, 3. 732 pentametasilicate, 8. 386 pentamedisilicate, 8. 387 pentametasilicate, 8. 388 pentametasilicate, 8. 389 pentametasilicate, 8. 885 titianosilicate, 8. 885 titianosilicate, 8. 885 titianosilicate, 8. 888 titianosilicate, 8. 889 trinydroxyiroronatometasilicate, 6. 858 carbanate, 2. 788 cerium alcunious, 5. 805 cerium alcunious, 6. 855 cerium alcunious,	Sodium cadmium tetraiodide, 4. 583	Sodium carbonatophosphate, 2.851; 8.948
trimetaphosphate, 4. 663 tripyroarsenate, 9. 183 calcium aluminium sulphatotriorthosilicate, 6. 584 and aluminium fluorides, 5. 308 arsenate, 9. 173 carbonate, 3. 844 copper arsenate, 9. 174 dihydroxytetrasulphate, 3. 806 dimetaphosphate, 3. 894 diaulphate, 3. 805 ferrous tetrantimonate, 9. 461 fluozircenatosilicate, 6. 857 hexafluoaluminate hydrated, 5. 709 hexametaphosphate, 3. 895 hexarsenate, 9. 173 hydrotrimetasilicate, 6. 367 imitediauliphate, 3. 805 manganese hydrotrimetasilicate, 6. 367 manganese hydrotrimetasilicate, 6. 300 manganese hydrotrimetasilicate, 9. 415 paratungstate, 11. 818 pentabronide, 3. 732 pentamotasilicate, 8. 845 pentabronide, 8. 857 promitionate, 9. 455 promitionate,		
triphosphate, 4. 664 trispyroarenate, 9. 183 calcium aluminium sulphatotriorthosilicate, 6. 884 and aluminium fluorides, 5. 308 arsenate, 9. 173 carbonate, 3. 844 copper arsenate, 9. 174 dihydroxytetrasulphate, 3. 896 disulphate, 3. 896 disulphate, 3. 895 disulphate, 3. 895 ferrous tetrantimonate, 9. 461 fluozirconatosilicate, 6. 857 hexafluoaluminate hydrated, 5. hexamespathe, 9. 173 hydrotrimetasilicate, 6. 367 hydrotrimetasilicate, 6. 367 imidodisulphonate, 8. 684 maganesium fluoaluminate, 5. 309 manganese hydrotrimetasilicate, 6. 900 manganese hydrotrimetasilicate, 9. 914 octoxyfluodicolumbate, 9. 877 orthopertantalate, 9. 914 operatomythate, 10. 544 octoxyfluodicolumbate, 9. 877 orthoperatosilicate, 8. 366 pentasulphate, 3. 894 pentabromide, 3. 732 pentamotesilicate, 8. 366 pentasulphate, 3. 894 perothocolumbate, 9. 870 phosphate, 3. 892 selenate, 10. 862 silicate, 6. 843 trianosilicate, 6. 843 trianosilicate, 6. 845 cerium alloys, 5. 8605 circonatometasilicate, 6. 867 circonatometasilicate, 6. 867 corprehasilicate, 6. 868 cerium alloys, 5. 8605 cerium alloys, 5. 865 ceriu	trimetaphosphate, 4, 663	—— carbonyl, 5. 951
sulicate, 6. 584 and sluminium fluorides, 5. 308 arsenate, 9. 173 carbonate, 3. 844 dihydroxytetrasulphate, 3. 806 dimetaphosphate, 3. 894 disulphate, 3. 805 disulphate, 3. 805 disulphate, 3. 805 ferrous tetrantimonate, 9. 461 fluozirconatosilicate, 6. 857 hexametaphosphate, 6. 897 hexametaphosphate, 3. 895 hexametaphosphate, 6. 897 hexametaphosphate, 6. 897 hexametaphosphate, 6. 897 hexametaphosphate, 8. 894 magnesium fluoaluminate, 5. 309 manganese hydrotrimetasilicate, 6. 590 manganese hydrotrimetasilicate, 6. 590 manganous ferrous phosphate, 12. 456 nitratodithiosulphate, 10. 544 cotoxyfluodicolumbate, 9. 877 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabromite, 3. 732 pentametalate, 9. 914 perrothocolumbate, 9. 870 phosphate, 3. 878 pyrophosphate, 3. 894 perrothocolumbate, 9. 870 phosphate, 3. 895 thiosulphate, 3. 894 trinulphate, 3. 805 thiosulphate, 10. 564 cashide, 5. 846, 847 carbonate a-heptahydrate, 6. 857 carbonate a-heptahydrate, 6. 857 carbonate a-heptahydrate, 2. 753 ammonia process, 2. 737 and hydrotes, 2. 733 and hydrates, 2. 731 in plant ashes, 2. 713 in plant ashes, 2. 713 proporties, chemical, 2. 767 physical, 2. 747 purification, 2. 724 purification, 2. 727 purification, 2. 727 purification, 2. 724 purification, 2. 724 purification, 2. 724 purification, 2. 724 purification, 2. 727 purification, 2. 728 purification, 2. 728 purification, 2. 728 purification, 2. 72	triphosphate, 4. 664	carnotite, 9. 788
sulicate, 6. 584 and sluminium fluorides, 5. 308 arsenate, 9. 173 carbonate, 3. 844 dihydroxytetrasulphate, 3. 806 dimetaphosphate, 3. 894 disulphate, 3. 805 disulphate, 3. 805 disulphate, 3. 805 ferrous tetrantimonate, 9. 461 fluozirconatosilicate, 6. 857 hexametaphosphate, 6. 897 hexametaphosphate, 3. 895 hexametaphosphate, 6. 897 hexametaphosphate, 6. 897 hexametaphosphate, 6. 897 hexametaphosphate, 8. 894 magnesium fluoaluminate, 5. 309 manganese hydrotrimetasilicate, 6. 590 manganese hydrotrimetasilicate, 6. 590 manganous ferrous phosphate, 12. 456 nitratodithiosulphate, 10. 544 cotoxyfluodicolumbate, 9. 877 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabromite, 3. 732 pentametalate, 9. 914 perrothocolumbate, 9. 870 phosphate, 3. 878 pyrophosphate, 3. 894 perrothocolumbate, 9. 870 phosphate, 3. 895 thiosulphate, 3. 894 trinulphate, 3. 805 thiosulphate, 10. 564 cashide, 5. 846, 847 carbonate a-heptahydrate, 6. 857 carbonate a-heptahydrate, 6. 857 carbonate a-heptahydrate, 2. 753 ammonia process, 2. 737 and hydrotes, 2. 733 and hydrates, 2. 731 in plant ashes, 2. 713 in plant ashes, 2. 713 proporties, chemical, 2. 767 physical, 2. 747 purification, 2. 724 purification, 2. 727 purification, 2. 727 purification, 2. 724 purification, 2. 724 purification, 2. 724 purification, 2. 724 purification, 2. 727 purification, 2. 728 purification, 2. 728 purification, 2. 728 purification, 2. 72		
arsenate, 9. 173 carbonate, 3. 844 copper arsenate, 9. 174 dihydroxytetrasulphate, 3. 806 dimetaphosphate, 3. 894 disulphate, 3. 805 ferrous tetrantimonate, 9. 461 fluozirconatosilicate, 6. 867 hexaffuoaluminate hydrated, 5. 709 hexametaphosphate, 3. 895 hexarsenate, 9. 173 hydritorimetasilicate, 6. 387 hexametaphosphate, 3. 895 hexarsenate, 9. 173 hydritorimetasilicate, 6. 387 himidodisulphonate, 8. 6367 manganese hydrotrimetasilicate, 6. 900 manganese hydrotrimetasilicate, 9. 877 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabomide, 9. 870 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabomide, 3. 732 pentametasilicate, 6. 366 pentasulphate, 3. 804 properties, chemical, 2. 525 pyvophosphate, 3. 892 selenate, 10. 862 silicatozirconatocolumbates, 9. 867 titanus michosilicate, 6. 858 titanus michosilicate, 6. 858 titanus michosilicate, 6. 858 titanus michosilicate, 6. 858 titanus hydroxyzirconatometasilicate, 6. 858 titanus hydroxyzirconatometasilicate, 6. 858 carbonate, 2. 796 chlorotriorthosilicate, 6. 858 carbonate, 2. 796 chlorotriorthosilicate, 6. 858 carbonate, 2. 796 chlorotriorthosilicate, 6. 858 carbonate, 2. 796 chloroperridite, 15. 764 dihydrate, 15. 764 columbatosilicate, 6. 857 chlorotriorthosilicate, 6. 858 carbonate, 2. 796 chloroperridite, 15. 765 photopalladite, 15. 765 dodecahydrate, 15. 765 photopalladite, 15. 765 chloroperridite, 15. 765 c	calcium aluminium sulphatotriortho-	
carsenate, 9. 173		
copper arsenate, 9. 174	and aluminium fluorides, 5. 308	
copper arsenate, 9. 174	arsenate, 9. 173	
dimydroxytetrasulphate, 3. 894 disulphate, 3. 805 ferrous tetrantimonate, 9. 461 fluozirconatosilicate, 6. 857 hexafluoaluminate hydrated, 5. 709 hexametaphosphate, 3. 895 hexametaphosphate, 6. 637 minidodisulphonate, 8. 634 magnesium fluoaluminate, 5. 309 manganous ferrous phosphate, 12. 435 mitrate, 10. 544 magnesium fluoaluminate, 5. 309 manganous ferrous phosphate, 12. 435 mitratedithiosulphate, 10. 544 magnesium sulphate, 10. 545 magnesium sulphate, 10. 546 magnesium sulphate,	conner argenate 9 174	
disuphate, 3. 804	dihydroxytetrasulphate 3, 806	
disulphate, 3. 805	dimetaphosphate, 3, 894	
ferrous tetrantimonate, 9. 461	disulphate, 3. 805	pyrophosphate, 5, 675
— hexafluoaluminate hydrated, 5. 709	—————— ferrous tetrantimonate, 9. 461	
hexafuoaluminate hydrated, 5. 709	—— — fluozirconatosilicate, 6. 857	———— sulphite, 10. 302
- hexametaphosphate, 3. 895 - hexarsenate, 9. 173 - hydrotrimetasilicate, 6. 367 - imidodisulphonate, 8. 654 - magnesium fluoaluminate, 5. 309 - manganous ferrous phosphate, 12. 455 - nitratodithiosulphate, 10. 544 - octoxyfluodicolumbate, 9. 877 - orthopertantalate, 9. 914 - paratungstate, 11. 818 - pentabromide, 3. 732 - pentamunghate, 3. 804 - pentasulphate, 3. 804 - perorthocolumbate, 9. 870 - phosphate, 3. 894 - perorthocolumbate, 9. 870 - phosphate, 3. 894 - pyroantimonate, 9. 455 - pyrophosphate, 3. 892 - selenate, 10. 862 - silicatozirconatocolumbates, 9. 867 - tetrasulphate, 3. 805 - thiosulphate, 3. 805 - titanosilicate, 6. 843 - titanosilicate, 6. 843 - titinosulphate, 3. 894 - zirconatometasilicate, 6. 858 - titanosilicate, 6. 858 - titanosilicate, 6. 857 - zirconium chlorotrimesorisilicate, 6. 857 - columbatosilicate, 6. 857 - columbatosilicate, 6. 858 - carbamate, 2. 796 - heptahydrate, 2. 753 - heptahydrate, 2. 753 - heptahydrate, 2. 753 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 724 - purification, 2. 724 - chloropyrosulphonate, 16. 814 - chloroplatinate, 15. 765 - chloroperruhenite, 15. 531 - chlorate, 2. 325 - chloricte, 13. 616 - carbide, 13. 62 - chlorochromate, 13. 672 - chloroperruhenite, 15. 765 - chloroperruhenite, 15. 765 - chloroperruhenite, 15. 765 - chloroper	——————————————————————————————————————	(tetra) enneasulphate, 5 . 657
- hexarsenate, 9, 173 - hydrotrinetasilicate, 6, 367 - imidodisulphonate, 8, 654 - magnesium fluoaluminate, 5, 309 - manganes hydrotrimetasilicate, 6, 900 - manganous ferrous phosphate, 12, 455 - nitratodithiosulphate, 10, 544 - octoxyfluodicolumbate, 9, 877 - orthopertantalate, 9, 918 - pentabromide, 3, 732 - pentamugstate, 11, 818 - pentabromide, 3, 732 - pentamugstate, 11, 818 - pentabromide, 3, 732 - pentamughate, 3, 804 - perorthocolumbate, 9, 870 - phosphate, 3, 894 - proportine of titanium orthosilicate, 6, 845 - titanium orthosilicate, 6, 855 - titanosilicate, 6, 845 - columbate, 10, 544 - trisulphate, 3, 805 - titanosilicate, 6, 857 - columbatosilicate, 6, 857 - carbonate a-heptahydrate, 2, 753 - β-heptahydrate, 2, 753 - β-heptahydrate, 2, 753 - hydrates, 2, 751 - in plant ashes, 2, 713 - hydrates, 2, 751 - properties, chemical, 2, 767 - physical, 2, 747 - purification, 2, 724 - chloropyrosulphonate, 10, 681	709	
hydrotrimetasilicate, 6. 367 imidodisulphonate, 8. 654 magnesium fluoaluminate, 5. 300 manganese hydrotrimetasilicate, 6. 9.00 manganous ferrous phosphate, 12. 455 mitratodithiosulphate, 10. 544 magnesium sulphate; 10. 544 motoroprotection octoxyfluodicolumbate, 9. 877 orthopertantalate, 9. 914 paratungstate, 11. 818 pentabromide, 3. 732 pentametasilicate, 6. 366 pentasulphate, 3. 804 perotrhocolumbate, 9. 870 phosphate, 3. 878 pyropantimonate, 9. 455 pyrophosphate, 3. 892 selenate, 10. 862 silicatozirconatocolumbates, 9. 867 total control of thiosulphate, 10. 544 titanium orthosilicate, 6. 858 titanosilicate, 6. 858 titanosilicate, 6. 858 titanosilicate, 6. 856 zirconatometasilicate, 6. 857 zirconatometasilicate, 6. 857 zirconatometasilicate, 6. 857 zirconatometasilicate, 6. 858 carbamate, 2. 796 carbide, 5. 846, 847 carbonate a-heptahydrate, 2. 753 hydrates, 2. 751 in plant ashes, 2. 713 properties, chemical, 2. 712 preparation, 2. 714 preparation, 2. 714 preparation, 2. 714 preparation, 2. 715 chloroperrudate, 15. 765 chloroperrudate, 16. 824 chloroplutinite, 16. 281 chloropyrosulptonate, 16. 861		
middedisulphonate, 8, 654		
- magnesium fluoaluminate, 5. 309		
manganese hydrotrimetasilicate, 6. 8. 900		
December 2	magnesium nuosiummate, 5. 309	
Izate, 2. 689 BaClKCl, 8. 720		notassium sulphate : crystal-
BaClKCl, 3. 720		
— nitratodithiosulphate, 10, 544 — ootoxyfluodicolumbate, 9, 877 — orthopertantalate, 9, 914 — paratungstate, 11, 818 — pertabromide, 3, 732 — pentametasilicate, 6, 366 — pentasulphate, 3, 804 — perorthocolumbate, 9, 870 — phosphate, 3, 878 — pyrophosphate, 3, 892 — pyrophosphate, 3, 892 — pyrophosphate, 3, 892 — selenate, 10, 862 — silicatozirconatocolumbates, 9, 867 — tetrasulphate, 10, 544 — titanium orthosilicate, 6, 844 — zirconatosilicate, 6, 843 — trihydroxyzirconatometasilicate, 6, 858 — titanosilicate, 6, 843 — trinustaphosphate, 3, 894 — trinustaphosphate, 3, 895 — carbomate a-heptahydrate, 2, 753 — chlorotriorthosilicate, 6, 857 — columbatosilicate, 6, 858 — carbomate a-heptahydrate, 2, 753 — and hydrogen, 1, 303 — hydrates, 2, 751 — in plant ashes, 2, 713 — preparation, 2, 712 — physical, 2, 747 — physical, 2, 747 — purification, 2, 724 — chloropyrosulphomete, 10, 681 — learning a did hydrate, 16, 726 — Chloropyrosulphomete, 16, 881 — chloropyrosulphomete, 16,		
- octoxyfluodicolumbate, 9, 877		BaCl ₂ -SrCl ₂ , 3. 720
- orthopertantalate, 9, 914	octoxyfluodicolumbate, 9. 877	CuCl ₂ -BaCl ₂ -H ₂ O, 3. 716, 720
— pentabromide, 3. 732 — mol. wt., 2. 555	orthopertantalate, 9. 914	hydrated, 2. 542, 553
pentametasilicate, 6. 366	——————————————————————————————————————	KCl-CaCl ₂ , 3, 720
pertasulphate, 3, 804		
— perorthocolumbate, 9. 870 — phosphate, 3. 878 — pyroantimonate, 9. 455 — pyrophosphate, 3. 892 — selenate, 10. 862 — silicatozirconatocolumbates, 9. 867 — tetrasulphate, 3. 805 — thiosulphate, 10. 544 — zirconatosilicate, 6. 843 — titanosilicate, 6. 843 — titanosilicate, 6. 843 — trihydroxyzirconatometasilicate, 6. 856 — trinetaphosphate, 3. 894 — zirconatometasilicate, 6. 857 — zirconium chlorotrimesotrisilicate, 6. 857 — zirconium chlorotrimesotrisilicate, 6. 857 — columbatosilicate, 6. 858 — carbide, 5. 846, 847 — carbonate a-heptahydrate, 2. 753 — and hydrogen, 1. 303 — hydrates, 2. 751 — in plant ashes, 2. 713 — hydrates, 2. 751 — in plant ashes, 2. 713 — properties, chemical, 2. 552 — physical, 2. 529 — purification, 2. 527 — sea-water, 2. 525 — SrCl₂-KCl, 3. 720 — K-radiogram, 1. 636 — chloroaurates, 3. 593 — chloroaurates, 3. 593 — chloroaurates, 3. 593 — chlorochabazite, 6. 733 — chlorochabazite, 6. 733 — chlorochabazite, 6. 733 — chlorochabazite, 15. 769, 771 — chloropentide, 15. 771 — chloropentide, 15. 764 — a-dihydrate, 15. 765 — dodecahydrate, 15. 765 — dodecahydrate, 15. 765 — chloroperruthenite, 15. 561 — chloroperruthenite, 16. 281 — tetrahydrate, 16. 281		
— phosphate, 3. 878 — pyroantimonate, 9. 455 — pyrophosphate, 3. 892 — selenate, 10. 862 — silicatozirconatocolumbates, 9.	pentasulphate, 3. 804	
— pyronantimonate, 9. 455 — pyrophosphato, 3. 892 — selenate, 10. 862 — silicatozirconatocolumbates, 9. — 867 — tetrasulphate, 3. 805 — thiosulphate, 10. 544 — titanium orthosilicate, 6. 858 — titanosilicate, 6. 858 — titanosilicate, 6. 858 — titinydroxyzirconatometasilicate, 6. 856 — trinydroxyzirconatometasilicate, 6. 857 — zirconium chlorotrimesotrisilicate, 6. 857 — zirconium chlorotrimesotrisilicate, 6. 857 — chlorotriorthosilicate, 6. 858 — chloropentasulphitosmate, 10. 325; 15. — chloropentasulphitosmate, 10. 325; 15. — chloropentasulphitosmate, 10. 325; 15. — dhydrate, 15. 764 — columbatosilicate, 6. 858 — carbanate, 2. 796 — carbide, 5. 846, 847 — carbonate a-heptahydrate, 2. 753 — and hydrogen, 1. 303 — hydrates, 2. 751 — in plant ashes, 2. 713 — hydrates, 2. 751 — in plant ashes, 2. 713 — properties, chemical, 2. 767 — physical, 2. 747 — purification, 2. 724 — purification, 2. 525 — separation from brine, 2. 525 — sea-water, 2. 525 — chloropaurites, 3. 593 — chlorochromate, 11. 397 — chlorocuprocuprate, 3. 184 — chlorocidide, 2. 611 — chloropidide, 15. 769, 771 — chloroperiridite, 15. 770 — chloroperiridite, 15. 770 — dhydrate, 15. 764 — a-dihydrate, 15. 765 — dodecahydrate, 15. 765 — dodecahydrate, 15. 765 — chloroperruthenite, 15. 531 — chloroperruthenite, 15. 531 — chloroperruthenite, 16. 324 — hexahydrate, 16. 324 — chloroplumbite, 7. 727 — chloropyrosulphonate, 10. 681	perorthocolumbate, 9. 870	
- pyrophosphate, 3. 892 - selenate, 10. 862 - silicatezirconatocolumbates, 9. 867 - tetrasulphate, 10. 544 - titanium orthosilicate, 6. 844 - zirconatosilicate, 6. 858 - titanosilicate, 6. 843 - trinydroxyzirconatometasilicate, 6. 856 - trinetaphosphate, 3. 894 - trinetaphosphate, 3. 894 - trinetaphosphate, 3. 895 - zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - chlorotriorthosilicate, 6. 857 - chlorotriorthosilicate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbonate a-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloropyrosulphonate, 10. 681	phosphate, o. 676	physical, 2. 026
	pyrophosphato 3 892	separation from brine, 2, 525
Silicatozirconatocolumbates, 9. 867		
— tetrasulphate, 3. 805 — chlorite, 2. 283 — chloroaurites, 3. 593 — chlorochabazite, 6. 733 — chlorochabazite, 6. 733 — chlorochabazite, 6. 733 — chlorochabazite, 6. 733 — chlorocuprocuprate, 3. 184 — chlorochromate, 11. 397 — chlorocuprocuprate, 3. 184 — chlorocidide, 2. 611 — chloropalladite, 15. 769, 771 — chloropalladite, 15. 769, 771 — chloropalladite, 15. 760 — chloropertiasulphitosmate, 10. 325; 15. 726 — chloroperiridite, 15. 764 — a-dihydrate, 15. 765 — a-dodecahydrate, 15. 765 — a-dodecahyd		SrCl ₂ -KCl, 3, 720
- tetrasulphate, 3. 805 - thiosulphate, 10. 544 - chloroaurates, 3. 593 - titanium orthosilicate, 6. 844 - zirconatosilicate, 6. 858 - trihydroxyzirconatometasilicate, 6. 856 - trinetaphosphate, 3. 894 - trisulphate, 3. 805 - trinuetaphosphate, 3. 894 - trisulphate, 3. 805 - trinuetaphosphate, 3. 894 - trisulphate, 3. 805 - trinetaphosphate, 3. 894 - trisulphate, 3. 805 - zirconium chlorotrimesotrisilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - carbonate, 2. 796 - carbonate, 2. 796 - carbonate α-heptahydrate, 2. 753 - β-heptahydrate, 2. 753 - ammonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - purification, 2. 724 - chloroaurates, 3. 593 - chloroaurates, 3. 593 - chlorochromate, 11. 397 - chlorochromate, 11. 397 - chlorocidide, 2. 611 - chloroidide, 2. 611 - chlorochromate, 15. 779 - chloroperrocuprocuprate, 3. 184 - chlorochromate, 15. 779 - chlorochromate, 11. 397 - chlorochromate, 15. 779 - chlorochromate, 15. 779 - chloroidide, 2. 611 - chlorochromate, 15. 779 - chloroperridite, 15. 770 - chloroperridite, 15. 765 - admente, 15. 765 - dodecahydrate, 15. 765 - dodecahydrate, 15. 765 - dodecahydrate, 15. 765 - chloroperruthenite, 15. 531 - chloroperruthenite, 15. 531 - chloroperruthenite, 16. 324 - chloroidide, 2. 611 - chloroidide, 2. 611 - chloroperridite, 15. 764 - chloroperridite, 15. 765 - dodecahydrate, 15. 765 - dodecahydrate, 15. 765 - dodecahydrate, 15. 765 - dodecahydrate, 15. 765 - chloroperruthen		X-radiogram, 1. 636
- titanium orthosilicate, 6. 844 - zirconatosilicate, 6. 858 - titanosilicate, 6. 858 - trihydroxyzirconatometasilicate, 6. 856 - trimetaphosphate, 3. 894 - chlorochromate, 11. 397 - chlorochromate, 12. 397 - chlorochromate, 11. 397 - chlorochromate, 11. 397 - chlorocuprocuprate, 3. 184 - chlorochromate, 15. 769 - chloropaldidite, 15. 769 - chloropentiate, 15. 764 - dihydrate, 15. 764 - dihydrate, 15. 765 - dodecahydrate, 16. 324 - chloroperricite, 15. 765 - dodecahydrate, 16. 324 - chloroperricite, 15. 765 - dodecahydrate, 16. 324 - chloroperricite, 15.	tetrasulphate, 3. 805	chlorite, 2. 283
- zirconatosilicate, 6. 858 - titanosilicate, 6. 843 - chlorochromate, 11. 397 - chlorocuprocuprate, 3. 184 - chlorocidide, 2. 611 - trisulphate, 3. 805 - zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - chlorotriorthosilicate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbamate, 2. 796 - carbonate α-heptahydrate, 2. 753 - ammonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - purification, 2. 724 - chlorochromate, 11. 397 - chlorocuprocuprate, 3. 184 - chloroidide, 2. 611 - chloroidide, 2. 611 - chloropidide, 15. 769 - chloropentasulphitosmate, 10. 325; 15 726 - chloropentasulphitosmate, 10. 325; 15 726 - chloroperridite, 15. 764 - α-dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 579 - chloroperruthenite, 15. 531 - chloroplatinate, 7. 83 - chlorochromate, 11. 397 - chlorochromate, 15. 769 - chloropentasulphitosmate, 15. 770 - chloroperridite, 15. 760 - dhoroperridite, 15. 764 - α-dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 579 - chloroperruthenite, 15. 531 - chloroperruthenite, 15. 531 - chloroperruthenite, 16. 324 - chloroplatinate, 6. 857 - chloroperruthenite, 16. 281 - chloroplatinate, 16. 832 - chloroplatinate, 16. 832 - chloroplatinate, 16. 832 - chloroplatinate, 16. 838 - chloroperrude, 2. 713 - chloroperruthenite, 15. 765 - α-dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-dodecahydrate, 15. 531 - α-dodecahydrate, 15. 531 - α-doloroperruthenite, 16. 324 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-d	thiosulphate, 10. 544	
- tithydroxyzirconatometasilicate, 6. 856 - trinydroxyzirconatometasilicate, 6. 856 - trinetaphosphate, 3. 894 - trisulphate, 3. 805 - zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - cate, 6. 857 - chlorotriorthosilicate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbonate α-heptahydrate, 2. 753 - carbonate α-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - physical, 2. 747 - chlorochromate, 11. 397 - chlorocuprocuprate, 3. 184 - chloroiridate, 15. 769, 771 - chloropalladite, 15. 769 - chloropentasulphitosmate, 10. 325; 15 chloroperiidite, 15. 764 - chloroperiidite, 15. 765 - dihydrate, 15. 765 - a-dihydrate, 15. 765 - a-dodecahydrate, 15. 765 - a-dodecahydrate, 15. 765 - chloroperruthenite, 15. 579 - chloroperruthenite, 15. 531 - chloroperruthenite, 16. 324 - chloroplatinite, 16. 324 - chloroplatinite, 16. 324 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		
- trihydroxyzirconatometasilicate, 6. 856 - S56 - trimetaphosphate, 3. 894 - trisulphate, 3. 805 - zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - cate, 6. 857 - carbonate, 2. 796 - carbonate a-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 753 - hydrates, 2. 753 - in plant ashes, 2. 713 - in plant ashes, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chlorocuprocuprate, 3. 184 - chloroiodide, 2. 611 - chloropridate, 15. 769, 771 - chloropentasulphitosmate, 10. 325; 15 726 - chloropentasulphitosmate, 10. 325; 15 726 - chloroperiridite, 15. 764 - chloroperiridite, 15. 765 - dihydrate, 15. 765 - dodecahydrate, 15. 765 - a-dodecahydrate, 15. 765 - chloroperritodite, 15. 579 - chloroperritodite, 15. 579 - chloroperritodite, 15. 765 - dihydrate, 15. 765 - a-dodecahydrate, 15. 765 - chloroperritodite, 15. 765 - dihydrate, 15. 764 - chloroperritidite, 15. 765 - chloroperritodite, 15. 765 - dihydrate, 15. 764 - chloroperritidite, 15. 765 - dihydrate, 15. 765 - chloroperritidite, 15. 765 - dihydrate, 15. 765 - dihydrate, 15. 764 - chloroperritidite, 15. 765 - dihydrate, 15. 765 - dihydrate, 15. 764 - chloroperritidite, 15. 765 - dihydrate, 15. 765 - dihydrate, 15. 765 - dihydrate, 15. 765 - dihydrate, 15. 765 - dodecahydrate, 16. 324 - chloroperritidite, 16. 324 - chloroperritidite, 16. 324 - chloroplatinite, 16. 324 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681	zirconatosilicate, 6. 858	chiorochabazite, b. 733
6. 856 — trimetaphosphate, 3. 894 — trisulphate, 3. 805 — zirconatometasilicate, 6. 857 — zirconium chlorotrimesotrisilicate, 6. 857 — chlorotriorthosilicate, 6. 857 — chloropalladite, 15. 670 — chloropentasulphitosmate, 10. 325; 15. 726 — chloroperiridite, 15. 764 — columbatosilicate, 6. 858 — carbamate, 2. 796 — carbonate a-heptahydrate, 2. 753 — and hydrate, 2. 753 — and hydrogen, 1. 303 — hydrates, 2. 751 — in plant ashes, 2. 713 — in plant ashes, 2. 713 — leblanc's process, 2. 728 — origin natural, 2. 712 — properties, chemical, 2. 767 — physical, 2. 747 — purification, 2. 724 — chloroidide, 2. 611 — chloropriladite, 15. 769 — hexahydrate, 15. 764 — dihydrate, 15. 765 — a-dihydrate, 15. 765 — a-dodecahydrate, 15. 765 — a-dodecahydrate, 15. 765 — chloroperritennite, 15. 531 — chloroperritennite, 15. 531 — chloroperritennite, 16. 324 — hexahydrate, 16. 324 — chloroplatinite, 16. 281 — tetrahydrate, 16. 281 — chloroplyrosulphonate, 10. 681	titanosilicate, 0. 843	
- trimetaphosphate, 3. 894 - trisulphate, 3. 805 - zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbamate, 2. 796 - carbide, 5. 846, 847 - carbonate α-heptahydrate, 2. 753 - ammonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - purification, 2. 724 - chloropiridate, 15. 769 - chloropentasulphitosmate, 10. 325; 15 chloroperiridite, 15. 764 - chloroperiridite, 15. 764 - chloroperiridite, 15. 765 - dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 76		
- zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - cate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbonate α-heptahydrate, 2. 753 - carbonate α-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - purification, 2. 724 - chloropalladite, 15. 670 - chloropentasulphitosmate, 10. 325; 15 chloroperridite, 15. 764 - dihydrate, 15. 765 - a-dihydrate, 15. 765 - a-dodecahydrate, 15. 765 - a-dodecahydrate, 15. 765 - chloroperridite, 15. 579 - deloroperridite, 15. 579 - chloroperridite, 15. 531 - chloroperridite, 15. 531 - chloroperritanate, 7. 83 - chloroplatinate, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		
- zirconatometasilicate, 6. 857 - zirconium chlorotrimesotrisilicate, 6. 857 - cate, 6. 857 - chlorotriorthosilicate, 6. 858 - carbamate, 2. 796 - carbonate α-heptahydrate, 2. 753 - carbonate α-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - purification, 2. 724 - chloropalladite, 15. 670 - chloropentasulphitosmate, 10. 325; 15 chloroperridite, 15. 764 - dihydrate, 15. 765 - a-dihydrate, 15. 765 - a-dodecahydrate, 15. 765 - a-dodecahydrate, 15. 765 - chloroperridite, 15. 579 - deloroperridite, 15. 579 - chloroperridite, 15. 531 - chloroperridite, 15. 531 - chloroperritanate, 7. 83 - chloroplatinate, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681	trisulphate 3 805	
- zirconium chlorotrimesotrisilicate, 6. 857 - chlorotriorthosilicate, 6. 857 - columbatosilicate, 6. 858 - carbamate, 2. 796 - carbide, 5. 846, 847 - carbonate α-heptahydrate, 2. 753 - carbonate α-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - in plant ashes, 2. 713 - Izeblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloropertasulphitosmate, 10. 325; 15. 726 - chloroperiidite, 15. 764 - α-dihydrate, 15. 765 - α-dihydrate, 15. 765 - α-dodecahydrate, 15. 765 - α-doloroperrhodite, 15. 579 - chloropertitanate, 7. 83 - chloropertitanate, 7. 83 - chloroplatinite, 16. 324 - chloroplatinite, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681	zirconatometasilicate, 6, 857	
cate, 6. 857 ———————————————————————————————————	zirconium chlorotrimesotrisili-	chloropentasulphitosmate, 10. 325; 15.
- columbatosilicate, 6. 858 - carbamate, 2. 796 - carbide, 5. 846, 847 - carbonate a-heptahydrate, 2. 753 - β-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Ieblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - purification, 2. 724 - dihydrate, 15. 765 - a-dihydrate, 15. 765 - β-diodecahydrate, 15. 765 - β-dodecahydrate, 15. 765 - chloroperruthenite, 15. 579 - chloroperruthenite, 15. 531 - chloroperruthanate, 7. 83 - chloroplatinite, 16. 324 - hexahydrate, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		
- columbatosilicate, 6. 858 - carbamate, 2. 796 - carbide, 5. 846, 847 - carbonate a-heptahydrate, 2. 753 - β-heptahydrate, 2. 753 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Ieblanc's process, 2. 728 - origin natural, 2. 712 - properties, chemical, 2. 767 - purification, 2. 724 - dihydrate, 15. 765 - a-dihydrate, 15. 765 - β-diodecahydrate, 15. 765 - β-dodecahydrate, 15. 765 - chloroperruthenite, 15. 579 - chloroperruthenite, 15. 531 - chloroperruthanate, 7. 83 - chloroplatinite, 16. 324 - hexahydrate, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		chloroperiridite, 15. 764
- carbide, 5. 846, 847 - carbonate a-heptahydrate, 2. 753 - β-heptahydrate, 2. 753 - anmonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 724 - chloroplatinate, 16. 324 - chloroplatinite, 16. 281 - tetrahydrate, 16. 281 - chloroplumbite, 7. 727 - chloroplyrosulphonate, 10. 681	columbatosilicate, 6. 858	——————————————————————————————————————
- carbonate α-heptahydrate, 2. 753 - β-heptahydrate, 2. 753 - anmonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Ieblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - dodecahydrate, 15. 764 - α-dodecahydrate, 15. 765 - α-doloroperruthenite, 15. 531 - α-doloroperruthenite, 15. 531 - α-doloroperruthenite, 16. 324 - α-dolor		a-dihydrate, 15. 765
- β-heptahydrate, 2. 753 - anmonia process, 2. 737 - and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Chloroperruthenite, 15. 531 - chloroperruthenite, 15. 531 - chloroperruthenite, 15. 531 - chloroperruthenite, 16. 324 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - chloroplatinite, 16. 281 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		β-dihydrate, 15. 705
- and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloropertitenite, 15. 579 - chloropertitenite, 15. 531 - chloropertitenite, 16. 324 - chloroplatinite, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		dodecanydrate, 15. 765
- and hydrogen, 1. 303 - hydrates, 2. 751 - in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloropertitenite, 15. 579 - chloropertitenite, 15. 531 - chloropertitenite, 16. 324 - chloroplatinite, 16. 324 - chloroplatinite, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		8 dodeenhydrate, 15, 765
- in plant ashes, 2. 713 - Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloroplatinate, 16. 324 - hexahydrate, 16. 324 - chloroplatinite, 16. 281 - tetrahydrate, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		
- Leblanc's process, 2. 728 - origin natural, 2. 712 - preparation, 2. 713 - properties, chemical, 2. 767 - physical, 2. 747 - purification, 2. 724 - chloroplatinite, 16. 324 - hexahydrate, 16. 324 - hexahydrate, 16. 281 - tetrahydrate, 16. 281 - chloroplumbite, 7. 727 - chloropyrosulphonate, 10. 681		
— preparation, 2. 713 — chloroplatinite, 16. 281 — properties, chemical, 2. 767 — tetrahydrate, 16. 281 — chloroplumbite, 7. 727 — chloropyrosulphonate, 10. 681	Leblanc's process. 2. 728	
— preparation, 2. 713 — chloroplatinite, 16. 281 — properties, chemical, 2. 767 — tetrahydrate, 16. 281 — chloroplumbite, 7. 727 — chloropyrosulphonate, 10. 681	origin natural. 2. 712	
— properties, chemical, 2. 767 — physical, 2. 747 — purification, 2. 724 — chloropyrosulphonate, 10. 681	preparation, 2. 713	
— — physical, 2. 747 — chloroplumbite, 7. 727 — chloropyrosulphonate, 10. 681	properties, chemical, 2. 767	
purification, 2. 724 —— chloropyrosulphonate, 10. 681	——— physical, 2. 747	
	——————————————————————————————————————	
	——————————————————————————————————————	chiororutnenate, 15. 555

Sadium ablanoumata 45 720	Sodium cohaltite 14 503
Sodium chlorosmate, 15. 720 —— chlorostannate, 7. 448	Sodium cobaltite, 14. 593 cobaltous carbonate, 14. 812
—— chlorosulphonate, 10. 688	——————————————————————————————————————
—— chlorotetraquodichloride, 11. 418	decahydrate, 14. 812 tetrahydrate, 14. 812
chlorotrifluoantimonite, 9. 466	chloride, 14. 639
chlorozirconate, 7. 145	
—— chromate, 11. 244	——————————————————————————————————————
——————————————————————————————————————	disulphite, 10. 314
dihydrate, 11. 244	———— dodecamolybdate, 11. 603
———— hexahydrate, 11. 245	
totrahydrate, 11. 245	orthophosphate, 14, 852
chromatosulphate, 11. 450 chromic dimetasilicate, 6. 914	
hexamminopyrophosphate, 11.	
482	tetraiodide, 14. 741
selenate, 10. 876	tetrasulphate, 14. 780
	trimolybdate, 11. 590
chromidodecamolybdate, 11. 601	triphosphate, 14. 853
chromipyrophosphate, 11. 681	dodecahydrate, 14. 853
octohydrate, 11. 481	cobaltyl sulphate, 14. 790
pentahydrate, 11. 481	copper alloy, 3. 571
	arsenate, 9. 163 bishydrodecatetrarsenate, 9. 163
——————————————————————————————————————	chlorotetraorthoarsenate, 9. 263
pentafluoride, 11. 363	chromate, 11. 263
phosphate, 11. 482	dichlorohexaorthoarsenate, 9.263
	dihydropentarsenate, 9. 163
pyrophosphate, 11. 482	————— dioxydichromate, 11. 339
sulphate, 11. 454	hydrobisdihydrodecapent-
tetrachloride, 11. 418	arsenate, 9. 163
chromotellurate, 11. 97	hydroennearsenate, 9. 163
chromous carbonate, 11. 471	orthoarsenate, 9. 162 paratungstate, 11. 818
decahydrate, 14. 471 monohydrate, 11. 472	
——————————————————————————————————————	—— cupric amminosulphite, 10. 279
citrate, 13. 616	chlorophosphates, 3. 290
cobalt arsenate, 9. 230	dicarbonate, 3. 276
————— disulphate, 14. 780	hexametaphosphate, 3. 293
	phosphate, 3 . 290
heptathiosulphate, 10. 556	
henopharhete 9 020	sulphate, 3, 256
	——————————————————————————————————————
	cuprite, 3. 145
	cuprosic octosulphite, 10. 278
——————————————————————————————————————	pentamminotetrathiosulphate,
	10. 535
—— tetrathiosulphate, 10. 556	—— pentasulphite, 10. 278
trifluoride, 14. 607	hexahydrate, 10. 278
—— cobaltic aquopentamminopyrophos-	tetramminotetrathiosulphate, 10.
phate, 14. 858	535
aquopentamminotrisulphite, 10.	dihydrate, 10. 535
hexamminohexasulphate, 10. 318	————— tetrasulphite, 10. 278
hexamminohypophosphate, 8.	cuprous bromodecathiosulphate, 10.
939	533
	——————————————————————————————————————
———— hexanitrite, 8. 503	534
octamminohexasulphite, 10. 318	chloropentathiosulphate, 10. 533
oxyoctonitrite, 8. 503	decathiosulphate, 19. 532
—— pentamminotrisulphite, 10. 315	
——————————————————————————————————————	hemipentadecahydrate, 10.
pyrophosphatopentamminoco- baltate, 14. 859	532 ————————————————————————————————————
sulphite, 10. 315	octohydrate. 10. 532
sulphitopentamminotrisulphite,	——————————————————————————————————————
10. 316	dichlorotrithiosulphate, 10. 533
trisethylenediamineheptachlo-	————— disulphatoctothiosulphate, 10.
ride, 14. 657	534

	,
Sodium cuprous dithiocyanatopentathio-	Sodium diarsenatotritungstate, 9. 212
sulphate, 10. 533	diarsenitodimolybdate, 9. 131
dithiosulphate, 10. 532	diauride, 3. 572
dihydrate, 10. 532	dibenzoyl sulphuryl hydrazide, 8. 666
hemipentahydrate, 10, 532	diborate, 5. 62, 67, 68
	——— monohydrated, 5 . 66
dithiosulphatodisulphide, 10.	octohydrated, 5. 67
534	tetrahydrated, 5. 67
dithiosulphatosulphide, 10. 534	dicadmium trithiosulphate, 10. 547
dodecathiosulphate, 10. 532	
	dicalcium decaborate hexadecahy-
dodecahydrate, 10. 533	drated, 5, 93
ferric tetrasulphide, 14. 192	octohydrated, 5. 94
ferrosic sulphite, 10. 312	dichlorodibromostannite, 7. 453
neptatniosuipnate, 10. 532	—— dichlorotetrasulphitosmate, 10. 325;
	15. 726
— — heptathiosulphate, 10. 532 — — enneahydrate, 10. 532 — hexahydrated, 10. 532	—— dichromate, 11. 325
hydroctosulphite, 10. 276	—— didymium tungstate, 11. 791
iodobromopentathiosulphate, 10.	diferridihydrosulphatotetrasulphite,
533	10 . 313
octochlorotetradecathiosulphate,	—— difluodithionate, 10. 599
10. 533	—— difluotellurate, 11. 109
	—— dihydroaluminoarsenate, 9. 186
hexahvdrate, 10, 531	dihydroantimonate, 9. 448
octohydrate, 10. 531	dihydroarsenate, 9. 153
——————————————————————————————————————	dihydroarsenatomolybdate, 9. 206
silver hexamminoctothiosul-	dihydroarsenatotrimolybdate, 9. 208
phate, 10. 539	dihydrochromiarsenate, 9. 205
	— dihydrodeuterohexavanadate, 9. 764
hemihenahydrate, 10. 275	—— dihydroferriarsenate, 9. 227
total plane and a this mula had a 10	dihydrohypophosphate, 8. 934
tetrachloropentathiosulphate, 10.	
533	dihydromanganidiorthophosphate, 12.
tetrathiosulphate, 10. 532	461
dihydrated, 10. 532	——————————————————————————————————————
hexahydrate, 10. 532	
	—— dihydrophosphatohemipentamolyb-
trithiosulphate, 10. 532	date, 11 . 669
—— decaborate decahydrated, 5. 77	dihydrophosphate, 8. 913
decahydropentaselenitododecavana-	dihydropyroantimonate, 9. 447
date, 10. 835	—— dihydropyrophosphate, 2. 865
decahydrotetraselenitohexavanadate,	——— dihydropyrophosphite, 8. 922
10. 835	dihydrorthophosphate, 2. 858
	dihydrorthoplumbate, 7. 698
—— decamolybdate, 11. 598	dihydrorthotellurate, 11. 89
dodecahydrate, 11. 598	dihydrothoridodecamolybdate, 11. 601
henacosihydrate, 11. 598	dihydrotrialuminotriorthosilicate, 6.
	608
decamolybdatotrisulphite, 10. 307	dihydrotrioxysulpharsenate, 9. 328
	—— dihydrotriselenatouranate, 10. 878
———— hexadecahydrate, 10. 307	—— dihydroxydichlorostannate, 7. 448
decaphosphate, 8. 991	dihydroxytetrabromoplatinate, 16.381
decaselenitotetradocavanadate, 10. 835	
decatungstate, 11. 830	—— dihydroxytetrachloroplatinic acid, 16.
decavanadyl hexasulphite, 10. 305	334
deuterohexavanadate, 9. 763	dihypovanadatodivanadate, 9. 793
hexadecahydrate, 9. 763 octodecahydrate, 9. 764	di-iodate, 2. 337
	diiododinitritoplatinite, 8. 522
deuterotetravanadate, 9. 763	—— dilithium chloroperiridite, 15. 765
——————————————————————————————————————	—— dimercuride, 4. 1014
pentahydrate, 9. 763	—— dimetaphosphate, 2. 867; 8. 985
—— dialuminium dihydropentamesodisili-	——————————————————————————————————————
cate, 6 . 748	—— monohydrate, 11. 581
orthotrisilicate, 6. 653	dimolybditotetramolybdate, 11. 593
—— pentametasilicate, 6. 747	—— dinitratobisethylthiolacetatoplatinite,
tetrametasilicate, 6. 734	16 . 4 10
	—— dinitrosylsulphite, 8. 434
—— dialuminyl antimonate, 9. 456	—— dioxide, 2. 487
orthosilicate, 6. 567	
diamidophosphate, 8. 707	dicarbonate, 6. 86 tricarbonate, 6. 86
diamidotrimetaphosphimate, 8. 720	dioxydisulpharsenate, 9. 329
diammonium orthoarsenate, 9. 155	dioxypentasulphopyrovanadate, 9. 818
triselenatouranate, 10. 878	— dioxytetrafluomolybdate, 11. 613
urisolollatourallato, iv. 676	atory volume on a series

Sodium dioxytetraiodotricarbonatotetra-	Sodium diuranyl pentahypophosphite hexa-
plumbite, 7. 854	hydrate, 8 . 889
dipentitamercuride, 4. 1014	trisulphite, 10. 308
—— dipentitaplumbide, 7. 606	divanadatodecatungstate, 9. 786
dipermolybdate, 11. 607	divanadatohexamolybdate, 9, 783
—— dipertungstate, 11. 835	—— divanadatopentatellurite, 11. 81
diphosphate, 2. 862	divanadatotetradecatungstate, 9. 786
	divanadatotetratellurite, 11. 81
molybdate, 9. 834	divanadatotetratungstate, 9. 786
—— diphosphatoctovanadatotetradeca-	divanadatotritellurite, 11. 81
molybdate, 9. 834	divanadyl trisulphate, 9. 824
	docositungstate, 11. 832
diphosphatodecavanadatotrideca-	
molybdate, 9. 834	dodecaborate, 5. 77
—— diphosphatodistannate, 7. 482	dodecahydropentaselenitohexavana-
diphosphatododecavanadatododeca-	date, 10. 835
molybdate, 9. 833	dodecamolybdate, 11. 599
diphosphatododecavanadatoennea-	—— dodecapermanganite, 12. 275
molybdate, 9. 834	dodeciesmethylaminechloroplatinate,
diphosphatohexadecavanadatodeca-	16. 325
molybdate, 9. 834	enneachlorodialuminate, 5. 322
diphosphatohexavanadatopentadeca-	enneahydropentalanthanate, 5. 628
molybdate, 9. 833	enneaiododiantimonite, 9. 502
diphosphatoicosivanadatoctomolyb-	enneaiododibismuthite, 9. 677
date, 9. 834	enneathionate, 10. 629
—— diphosphatostannate, 7. 482	erbium pyrophosphate, 5. 704
diphosphatotetradecavanadatohena-	tungstate, 11. 791
molybdate, 9. 334	ethyl sulphinate, 10. 163
diplatinous hexasulphoplatinate, 16.	sulphoxylate, 10. 162
395	ferrate, 18. 934
—— diplumbide, 7. 607	ferric amminopyrophosphates, 14. 415
—— dipotassium cobaltic nitrite, 8. 504	
—— nitrilotrisulphonate, 8. 669	
	dihydroxypyrophosphate, 14. 414
diselenide, 10. 768	dimetasilicate, 6. 913
diselentopentamolybdate, 10. 837	diorthophosphate, 14, 410
diselenodisulphoarsenate, 10. 921	diortnophosphate, 14. 410
disilicate, 6. 336	monohydrate, 14. 410 trihydrate, 14. 410
disilver imidodisulphonate, 8. 653	trinydrate, 14. 410
distannide, 7. 346	fluoride, 14. 8
—— disulphatoaluminate, 5. 342	
	hydrodisulphate, 14. 345
——— hexahydrate, 5. 352	——————————————————————————————————————
— - disulphatochromiate, 11. 454	hydroxypyrophosphate, 14. 414
disulphatocuprate, 3 . 256	hemitrihydrate, 14. 414
—— disulphatoindate, 5. 405	pentahydrate, 14. 414
disulphatoplumbite, 7. 821	hydroxytetrasulphate, 14. 346
disulphatovanadite, 9. 820	——— metaphosphate, 14. 415
disulphide, 2. 630, 632	oxyquinquieschromate, 11. 310
disulphitodiamminocobaltate, 10. 318	
cis-disulphitodiethylenediaminocobalt-	
âte, 10. 317	
trihydrate, 10. 317	sulphide, 14. 183
cis-disulphitotetramminocobaltate, 10.	triorthophosphate, 14. 410
317	
trans-disulphitotetramminocobaltate,	
10. 318	ferrisulphatosulphite, 10. 313
—— disulphopersulphate, 10. 481	
disulphopoisaiphate, 10. 401	formedinitrothiographete 8 449
disulphuryliodide, 10. 690	
ditelluride, 11. 41	ferroheptanitrosyltrisulphide, 8. 441
dithioaurate, 3. 612	ferrohexanitrosylthiocarbonate, 8. 441
dithiohydrophosphite, 8. 1063	ferronitrosyltrisulphide, 8. 442
dithionate, 10. 583	ferrous chloride, 14. 32
——————————————————————————————————————	—— metaphosphate, 14. 398
—— dithiophosphate, 8. 1068	pentasulphide, 14. 166
— ditritamercuride, 4. 1014	persulphate, 10. 480
—— ditungstate, 11. 809	
——————————————————————————————————————	sulphate, 14. 294
hexahydrate, 11. 809	dihydrate, 14. 295
—— diuranate, 12. 65	tetrahydrate, 14. 295
hexahydrate, 12. 65	sulphide, 14. 165
—— diuranyl pentahypophosphite, 8. 889	tetrasulphate, 14. 295
	A

Sodium ferrous thiosulphate, 10. 556	Sodium hexahydroxyplatinate, 16. 246
titanium trimetasilicate, 6. 843	hexahydroxyzirconatodimesotrisili-
titanometasilicate, 6. 845	cate, 6 . 855
triphosphate, 14. 398	hexaiodobismuthite, 9. 677
fluoborate, 5. 126	hexamercuride, 4. 1013
—— fluocolumbatotitanosilicate, 6. 838	—— hexametaphosphate, 2. 870; 8. 988,
—— fluodiorthoarsenate, 9. 258	989
fluodivanadate, 9. 799, 801	silver, 3 . 489
—— fluomanganite, 12 . 347	hexamminobromoplatinate, 16. 378
—— fluopalladite, 15 . 658	hexamminochloroplatinate, 16. 325
—— fluoplatinate, 16 . 250	—— hexaselènide, 10 . 768
fluoplumbite, 7. 703	hexasilicate, 6. 328
fluoride, 2. 512	hexasulphide, 2. 630, 640
fluorophosphate, 2. 850	—— hexasulphitosmate, 10. 325; 15. 726
fluorosulphate, 2. 691	hexatelluride, 11. 41
fluoscandate, 5. 489	hexatellurite, 11. 78
—— fluosilicate, 6 . 947	hexatungstate, 11. 829
fluosmate, 15. 715	hexavanadatoctodecamolybdate, 9.784
—— fluostannate, 7. 423	hexavanadatoctomolybdate, 9. 782
—— fluosulphonate, 10. 685	hexavanadatodimolybdate, 9. 783
fluotellurite, 11. 98	hexavanadatododecatungstate, 9. 786
fluotitanate, 7. 70	hexavanadatoheptamolybdate, 9. 783
—— fluozirconate, 7. 139	hexavanadatohexamolybdate, 9. 783
formaldehyde hydrosulphoxylate, 10.	—— hexavanadatohexatungstate, 9. 786,
162	787
formaldehydohyposulphite, 10. 173	hexavanadatomolybdate, 9. 783
gadolinium sulphate, 5. 694	hexavanadatotellurite, 11. 81
——————————————————————————————————————	hexerohexavanadate, 9. 764
glycerylmanganite, 12. 275	
gmelinite, 6. 735	
—— gold alloy, 8. 571	hydrazide, 8. 316, 345
amminophos phatomolybdate, 11.	hydrazinodisulphonate, 8, 683
•	
harmotone, 6. 767	hydrides, 2. 481 hydroarsenate, 9. 150
hemipentaphosphide, 8. 835 hemipentaplumbide, 7. 607	——————————————————————————————————————
—— hemiplumbide, 7. 606	
hemistannide, 7. 345	—— hydrocarbonate, 2, 763, 773
—— hemithallide, 5. 425	hydrodeuterohexavanadate, 9. 764
—— hemitriplumbide, 7. 607	hydrodisulphate, 14. 780
—— hemitritelluride, 11. 41	hydrofluotitanate, 7. 71
—— henafluodivanadite, 9. 797	— hydrohyponitrite, 8. 411
heptabromoaluminate, 5. 326	hydrohypophosphate, 8. 934
heptafluotantalate, 9. 916	—— hydrometaplumbate, 7. 697
heptahydrotriphosphite, 8. 914	hydrometasulphotetrantimonite, 9.535
heptatungstate, 11. 830	—— hydromonamidophosphate, 8. 706
heulandite, 6 . 757	—— hydroorthophosphate, 2. 850
hexaborate, 5 . 70, 76	secondary, 2. 851
hexabromoperrhodite, 15. 581	—— hydrophosphatododecatungstate, 11.
hexachloroaluminate. 5. 322	866
hexachlorobismuthite, 9. 677	—— hydrophosphite, 8. 912
—— hexachlorocalciate, 3. 719	hydroplumbite, 7. 666
—— hexachloroperruthenite, 15. 531	hydropyrotellurate, 11. 90
hexachlororhodate, 15. 579	—— hydropyrotellurite, 11. 78
octodecahydrate, 15. 579	—— hydroselenite, 10. 822
hexachlorothallate dodecahydrated, 5.	hydrostannite, 7. 390
445	hydrosulphatarsenate, 9. 334
hexadecamolybdate, 11. 603	hydrosulphates, 2. 677, 678, 679, 680
hexadecapermanganite, 12. 275	
hexafluoantimonate, 9. 468	hydrosulphide, 2. 641
hexafluoferrate, 14. 8	
hemihydrate, 14. 8	—— hydrosulphoplatinite, 16. 395 —— hydrotellurate, 11. 90
hexafluoplumbate, 7. 704	hydrotetroxytrisulphodimolybdate,
	11. 655
—— hexahydroarsenatoctodecamolybdate, 9. 211	
	—— hydrotrithiophosphate, 8. 1067
	—— hydroxide, 2. 495; 18. 616
	and hydrogen, 1. 303
10. 835	properties, 2. 500
	•

Sodium hydroxide purification, 2. 499	Sodium lead chromate, 11. 304
hydroxides, uses, 2. 509	
hydroxylamine hydrouranate, 12. 62	dioxybischromate, 11. 304
paramolybdate, 11. 552	heptathiosulphate, 10. 551
uranate, 12. 62	hydroxychlorosulphate, 7. 739
hydroxylamite, 8. 290	hydroxynitrilosulphonate, 8. 678
hydroxymethane sulphinate, 10. 163	orthophosphate, 7. 876
—— hydroxymethane sulphonate, 10. 163	paratungstate, 11. 819 pentapyrophosphate, 7. 880
hydroxynitrilomonosulphonate, 8. 672	—— pentapyrophosphate, 7. 880
	nentathionate, 10, 628
	pentathiosulphate, 10. 552 pyrophosphate, 7. 880
hypoantimonate, 9. 437	pyrophosphate, 7. 880
—— hypoborate, 5. 38, 120	sulphide, 7. 796
—— hypobromite, 2. 269	tetrathiosulphate, 10, 552
hypochlorite, 2. 269	
hypomolybdatomolybdate, 11. 604	tripyroarsenate, 9. 195
hypomolybditopentamolybdate, 11.	trithiosulphate, 10, 551
593	zinc jodoszide, 8, 337
hypomolybditotetramolybdate, 11.593	——————————————————————————————————————
hyponitrite, 8 . 411	chloroperrhodite, 15, 579
	——————————————————————————————————————
enneahydrate, 8. 410 pentahydrate, 8. 410	——— molybdate, 11. 556
hymenhorphote 9 022	
hypophosphate, 8, 933	selenate, 10. 856
—— hypophosphatomolybdate, 8, 939	
—— hypophosphatotungstate, 8. 939	suiphate, 2. 007
hypophosphite, 8. 881	sulphite, 10. 260
—— hypophosphitomolybdate, 8, 888	trioxysulpharsenate, 9. 329
hypophosphitomolybditomolybdate,	——————————————————————————————————————
8. 888	1: 3-tungstate, 11. 779
—— hyporuthenite, 15 . 517	magnesium alloys, 4. 666
—— hyposulphite, 10 . 181, 267	arsenate, 9. 178
dihydrate, 10. 181	enneahydrate, 9. 179
hypovanadatohexadecavanadatoicosi-	carbonate, 4. 307, 308
phosphate, 9. 826	
hypovanadato-vanadatotungstate, 9.	chromate, 11. 276
793	trihydrate, 11. 276
imide, 8 . 259	decaborate, 5 . 99 dimetaphosphate, 4 . 395
iodate, 2. 332	——————————————————————————————————————
hydrated, 2. 334	fluoaluminate, 5. 309
iodatophosphate, 2. 851	fluoride, 4 . 297
—— iodide, 2. 596	hexarsenate, 9. 179
hydrated 2 602	hydrocarbonate, 4. 367
properties, chemical, 2, 605	manganese metasilicate, 6. 916
——————————————————————————————————————	metasilicate, 6 . 407
iodoaurate, 3. 610	octometaphosphate, 4, 397
—— iodobisarsenite, 9. 256	
—— iodoiridate, 15 . 779	paratungstate, 11, 818
iodoplatinate, 16. 390	perorthocolumbate, 9. 870
iodostannate, 7. 463	
iodostannite, 7. 460	phosphate, 4, 383, 384
iodosulphonate, 10. 689	phosphate, 4. 383, 384 pyrophosphate, 4. 394
iodotellurite, 11. 106	sulphates, 4. 335
iridic chloronitrite, 8. 514	——————————————————————————————————————
hexanitrite, 8. 514	
	vanadatotungstate, 9. 787
iridium enneamminohexasulphite, 10.	
324	manganate, 12. 288
trisulphite, 10. 324	
isopropylstannonate, 7. 410	
isotetrahydroborododecatungstate, 5.	
109	manganato-periodate, 2. 416
lanthanum carbonate, 5. 665	manganese arsenate, 9. 221
—— molybdates, 11. 564	diorthoarsenate, 9. 221
nitrate, 5. 670	phosphite, 8. 919
	pyrophosphatofungstate, 11. 874
selenate, 10. 872	manganic pentafluoride, 12. 345
	pyrophosphate, 12. 462
——————————————————————————————————————	manganous chloride, 12. 366
lead arsenate, 9. 195	dihydrodiphosphate, 12. 454
	dimetaphosphate, 12. 458

Sodium manganous diorthophosphate, 12.	Sodium metasilicate henahydrated, 6. 334
454 ennoadecasulphate, 12, 417	—— heptahydrated, 6 . 334 —— hexahydrated, 6 . 334
	octohydrated, 6. 334
—— —— heptasulphide, 12. 396	———— pentahydrated, 6 . 334
hexachloride, 12. 367	———— tetradecahydrated, 6. 335
	tetrahydrated, 6. 334
oxytrisulphate, 12. 418	trihydrated, 6. 334 metasulpharsenate, 9. 317
paratungstate, 11. 820	metasulpharsenatosulphomolybdate,
—— pentapyrophosphate, 12. 457	9. 322
pentasulphite, 10. 311	metasulpharsenatoxymolybdate, 9.331
permanganitomolybdate, 11. 573 phosphate, 12. 454	—— metasulpharsenite, 9. 290 —— metasulphoantimonite, 9. 535
——————————————————————————————————————	metasulphobismuthite, 9 . 689
hemienneahydrate, 12. 456	metasulphotetrantimonito, 9. 535
tetrahydrate, 12. 456	metasulphotetrarsenite, 9. 291
	— metasulphotriarsenite, 9. 290
——————————————————————————————————————	metatantalate, 9. 901 metatitanate, 7. 51
tetrahydrate, 12. 416	metatrivanadate, 9. 763
——— sulphite, 10. 311	—— metatungstate, 11 . 822
tetrasulphate, 12. 418	
——————————————————————————————————————	metavanadate, 9 . 762 dihydrate, 9 . 763
——————————————————————————————————————	monohydrate, 9. 763
trimetaphosphate, 12. 458	metazirconate, 7. 135
triphosphate, 12. 459	molybdate, 11. 553
	decahydrate, 11. 554
— mercuriate, 4. 780	——————————————————————————————————————
— mercuric amidosulphonate, 8. 644	molybdenum alloys, 11. 522
——————————————————————————————————————	——— hemipentoxide, 11. 532°
dichlorobromide, 4. 892	——————————————————————————————————————
——————————————————————————————————————	molybdic pyrophosphate, 11, 671 monamidophosphate, 8, 705
	— monoaluminate, 5. 288
selenite, 10. 829	monobismuthide, 9. 634
	monomercuride, 4. 1014
——————————————————————————————————————	monoperditungstate, 11. 834 monoselenoxanthate, 10. 920
tetraiodide, 4. 927	monostannide, 7. 346
tetranitrite, 8. 495	monosulphide, 2. 621
———— thiosulphate, 10 . 548	hydrated, 2. 623
——————————————————————————————————————	— monothiohydrophosphite, 8, 1062
mercurous thiosulphate, 10. 548	monothiophosphate, 8. 1068
—— mesoditritanate, 7. 52	monothiophosphite, 8. 1063
mesotrititanate, 7. 52	monoxide, 2. 485
—— metaborate, 5. 67 —— metachloroantimonate, 9. 491	neodymium carbonate, 5. 665 nickel carbonate, 15. 486
— metachromite, 11. 197	dihypophosphate, 8. 940
—— metacolumbate, 9. 863	dimetaphosphate, 15 . 496
———— heptahydrate, 9. 863	heptathiosulphate, 10 . 557
—— metantimonate, 9. 451 —— metantimonite, 9. 430	
	octometaphosphate, 15 . 497
metapertantalate, 9. 913	orthophosphate, 15. 495
metaphosphate, 2. 867	————— heptahydrate, 15. 495
—— metaphosphatometaborate, 5. 79	
—— metaplatinate, 18. 247 —— metaplumbate, 7. 497	
hexahydrate, 7. 697	tetradecametaphosphate, 8, 990
tetrahydrate, 7. 697	tetrasulphide, 15. 443
trihydrate, 7. 696	trifluoride, 15 . 405
metarsenate, 9. 153 metarsenite, 9. 119	
metasilicate dodecahydrated, 6. 334	niekelate, 15 . 401
enneahydrated, 6. 334	- nickelous disulphate, 15. 472
•	

Sodium nickelous hexamolybdate, 11. 594	Sodium orthovanadate dodecahydrate, 9.
pernickelite, 15. 396	761
nitrate, 1. 521; 2. 802	heptahydrate, 9. 761
and hydrogen, 1. 303	
potassium carbonate re-	
action, 2. 804	orthozirconate, 7. 135
extraction, 2. 804	—— osmate, 15. 706
properties, chemical, 2. 820	osmiamate, 15. 728
	osmictetrasulphite, 10. 324
	osmium dodecachloride, 15. 720
nitratosilicododecatungstate, 6. 875	——————————————————————————————————————
nitratosulphate, 2. 691, 816	
nitratosulphates. 8. 691	oxydiiodocarbonatoplumbite, 7. 854
nitrilodithiophosphate, 8. 727	oxyfluocolumbates, 9. 873
nitrilosulphonate, 8. 668	oxyhexafluocolumbate, 9. 873
nitrilotrisulphonate, 8. 681	oxynitrosotetrasulphite, 10. 326
—— nitride, 8 . 98	oxyorthovanadate, 9. 762
—— nitrite, 8 . 473	oxysulpharsenite, 9. 325
—— nitritoperosmite, 15. 728	oxysulphotetrarsenate, 9. 330
nitrohydroxylaminate, 8. 305	oxytetrasulphitosmate, 10. 325
nitrosylchlororuthenate, 15. 537	oxytriselenophosphate, 10. 932
—— nitroxyltrisulphonate, 8. 478	oxytrisulpharsenate, 9. 330
octuberate 5 70 76	oxytrisulphorthovanadate, 9. 817
octoborate, 5. 70, 76 octofluotantalate, 9. 917	pentahydrate, 9. 817
octofiuovanadate, 9. 802	—— palladium alloys, 15. 642
octomercuride, 4. 1013	—— palladous tetrasulphite, 10. 325 —— paramolybdate, 11. 585
octomolybdate, 11. 595	icosihydrate, 11. 585
heptadecahydrate, 11. 595	—— paratrititanate, 7. 52
octopermanganite, 12. 275	paratungstate, 11. 814
octorhodate, 15. 571	——————————————————————————————————————
octosulphate, 10. 447	hexadecahydrate, 11. 816
octotungstate, 11. 830	octocosihydrate, 11. 814
dodecahydrate, 11. 830	pentacosihydrate, 11. 816
octoxytriselenodiarsenate, 10. 874	pentabismuthite, 9. 666
orthoarsenate, 9. 150	—— monohydrate, 9. 666
orthographics, 9, 117	pentaborate, 5. 76
orthocolumbate, 9. 864	pentabromoperrhodite, 15. 581
orthochromite, 11. 197 orthodecacolumbate, 9. 864	pentachlorodiplumbite, 7. 727
orthodiplumbate, 7. 698	—— pentachloromercuriate, 4. 854 —— pentachloropyridinoiridate, 15. 768
orthododecacolumbate, 9. 865	—— pentalinoropyridinoridate, 15. 768 —— pentalinoferrate, 14. 8
— dotricontahydrate, 9. 865	pentahudiolitate, 11. 0
hemitricontahydrate, 9. 865	pentahydroperoxytriorthoarsenate, 9.
hexatricontahydrate, 9. 865	150
orthohexatantalate, 9. 901	pentaiodide, 2. 610
orthopertantalate, 9. 913	—— pentamercuride, 4. 1013
—— monohydrate, 9. 913 —— tetradecahydrate, 9. 913	—— pentametaphosphimate, 8. 718
	—— pentamminobromoplatinate, 16. 378
orthophosphate normal, 2. 847	pentamminochloroplatinate, 16. 325
properties, chemical, 2. 849 physical, 2. 848	pentamolybdatodisulphite, 10. 307
orthonhombite P 019	—— pentapermanganite, 12. 275
orthophosphite, 8, 912	pentaplatinate, 16. 247
orthoplumbate, 7. 698 orthoselenoantimonite, 10. 834	pentarsenatostannate, 9. 188
orthoselenoarsenate, 10: 874	—— pentaselenide, 10. 768
orthosilicate, 6. 332	
orthosulpharsenate, 9. 316	—— pentasulphide, 2. 630, 637
orthosulpharsenite, 9. 290	—— pentatantalate, 9. 901
orthosulphoantimonate, 9. 570	heptahydrate, 9. 901
	icosihydrate, 9. 901
orthosulphoantimonite, 9. 534	pentathionate, 10. 627
orthosulphotetrantimonite, 9. 534	—— pentatungstate, 11. 828
orthotantalate, 9. 900	—— pentauranate, 12. 68
orthotetradecacolumbate, 9. 864	dodecahydrate, 12. 68
orthotetravanadate, 9. 763	—— pentahydrate, 12. 68
orthotitanate, 7. 51	—— pentoxytrisulphodiarsenate, 9. 330
orthovanadate, 9. 761	perarsenate, 9. 150
——————————————————————————————————————	decahydrate, 9. 151

Sodium perarsenate dodecahydrate, 9. 151	Sadium mlatiniu malala lata 44 FMOI
hamiamanhadanta 0 151	Sodium platinic molybdate, 11. 576'
——— hemienneahydrate, 9. 151	oxydisulphite, 10. 323
—— perborate, 5. 116	- triacontatungstate, 11. 803
percarbonate, 6.84	platinite, 16. 236
—— perceric carbonate, 5. 668	—— platinosic sulphate, 16. 403
perchlorate, 2. 395	platinous disulphite, 10. 322
percobaltite, 14. 601	bantathia alahata 40 550
	heptathiosulphate, 10. 558
perdicarbonate, 6. 86	oxphosphite, 16. 239
—— perdichromate, 11 . 359	
—— perditungstate, 11. 835	
—— perdiuranate, 12. 72	
perferrate, 13. 936	10. 321 ———————————————————————————————————
perhydroxycarbonate, 6. 84	40 220
	10. 320
perhydroxyperdicarbonate, 6. 86	tetrathiosulphate, 10. 558
—— perhydroxypermonocarbonate, 6 . 85	trisulphoplatinate, 16. 396
—— periodates, 2. 406, 407, 409, 410	—— platinum alloys, 16. 194
—— permanganate, 12 . 302	plumbide, 7. 607
permanganic tungstate, 11. 797	plumbite, 7. 665
	nolumbarahata 0 000
—— permolybdate, 11. 607	polyphosphate, 2. 866
—— permonocarbonate, 6. 85	potassium alloys, 2. 480
—— permonostannate, 7. 413	arsenitophosphatotungstate, 9.
—— permonosulphomolybdate, 11. 683	132
permonouranate, 12. 71	barium calcium carbonate, 3. 846
	calcium carbonate, 3. 845
pernickelate, 15 . 401	trimetasilicate, 6. 372
—— perorthocolumbate, 9. 869	carbonate, 2. 769
peroxyhypertitanate, 7. 65	chlorothiosulphate, 10. 529
peroxynitrate, 2. 816	
peroxypentafluocolumbate, 9. 874	deuterohexavanadate, 9. 766
	dinitratainidadimlahanata 0
peroxypertitanate, 7. 65	dinitratoimidodisulphonate, 8.
—— perphosphate, 8, 993	653
—— perrhenate, 12 . 476	ferrous titanium orthosilicate, 6.
perrhodate, 15 . 571	843
perruthenate, 15 . 519	heptasulphatotetraplumbite, 7.
persulphate, 10. 476	821
	1
—— pertetraborate, 5. 120	hexavanadatohexatungstates, 9.
— – perthiocarbonate, 6. 130	786
— — peruranate, 12 . 72	hydroarsenate, 9. 154
pervanadate, 9 . 795	hydrorthophosphate, 2. 857
perzirconate, 7. 132	
phosphamide, 8 . 834	677
phosphatocuprate, 3. 290	—— —— hypophosphate, 8 . 937
phosphatodecamolybdate, 11.663,665	magnesium diorthoarsenate, 9.
	179
phosphatodecatungstate, 11. 869	179
phosphatodecatungstate, 11. 869 phosphatododecatungstate, 11. 866	179 sulphate, 4 . 342
—— phosphatodecatungstate, 11. 869 —— phosphatododecatungstate, 11. 866 —— enneahydrate, 11. 866	179 sulphate, 4. 342 manganous permanganitomolyb-
	179
 phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 enneahydrate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 	179
	179 sulphate, 4. 342 manganous permanganitomolyb-
 phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 enneahydrate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 	179
 phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 enneahydrate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 plosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 	179
 phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 enneahydrate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 plosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 	179
 phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatododecatungstatomolybdate, 11. 866 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 	179
 phosphatodecatungstate, 11. 869 phosphatodedecatungstate, 11. 866 enneahydrate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 	179
 phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 enneahydrate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 868 	179
 phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 enneahydrate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 868 	179
 phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatododecatungstatomolybdate, 11. 866 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 868 phosphatohexatungstate, 11. 872 	179
 phosphatodecatungstate, 11. 869 phosphatodedecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 phosphatodecatungstatomolybdate, 11. 866 phosphatoenneamolybdate, 11. 866 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 	179
 phosphatodecatungstate, 11. 869 phosphatodedecatungstate, 11. 866 phosphatodedecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohenatungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 	179
 phosphatodecatungstate, 11. 869 phosphatodedecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotritungstate, 11. 873 	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatemolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 873 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotritungstate, 11. 873 phosphatotritungstate, 11. 873	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 871 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotritungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 871 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotritungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873	179
phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohenatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitododecamolybdate, 8. 919	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 666 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphatodecamolybdate, 8. 919 phosphitodecamolybdate, 8. 919	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatemolybdate, 11. 877 phosphatoenneamolybdate, 11. 866 phosphatoenneatungstate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 873 phosphatohenatungstate, 11. 872 phosphatotelurate, 11. 120 phosphatotelurate, 11. 120 phosphatotritungstate, 11. 873 phosphide, 8. 834 phosphide, 8. 834 phosphitohexamolybdate, 8. 919 phosphitohexamolybdate, 8. 919	179
phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 877 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitododecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919	179
phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 877 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphide, 8. 834 phosphidodecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835	179
phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 877 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphide, 8. 834 phosphidodecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatomolybdate, 11. 867 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptadecanolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohenatungstate, 11. 873 phosphatohenatungstate, 11. 872 phosphatopertitanates, 7. 97 phosphatotellurate, 11. 120 phosphatotritungstate, 11. 873 phosphatotritungstate, 11. 873 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitodecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835 platinates, 16. 246	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatemolybdate, 11. 877 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotilurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitodecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835 platinates, 16. 246 platinic cositungstate, 11. 803	179
phosphatodocatungstate, 11. 869 phosphatododecatungstate, 11. 866 phosphatododecatungstate, 11. 866 phosphatododecatungstatomolybdate, 11. 867 plosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitododecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835 platinates, 16. 246 platinic cositungstate, 11. 803 — decatungstates, 11. 803	179
phosphatodecatungstate, 11. 869 phosphatodecatungstate, 11. 866 phosphatodecatungstate, 11. 866 phosphatodecatungstatemolybdate, 11. 877 phosphatoenneamolybdate, 11. 871 phosphatohemiheptadecamolybdate, 11. 667 phosphatohemiheptatungstate, 11. 873 phosphatohemiheptatungstate, 11. 873 phosphatohematungstate, 11. 868 phosphatohexatungstate, 11. 872 phosphatohexatungstate, 11. 872 phosphatotellurate, 11. 120 phosphatotilurate, 11. 120 phosphatotungstate, 11. 873 phosphatotungstate, 11. 873 phosphitodecamolybdate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitohexatungstate, 8. 919 phosphitotungstate, 8. 919 phosphocyanide, 8. 835 platinates, 16. 246 platinic cositungstate, 11. 803	179

Sodium prasodymium electrolytic process,	Sodium silver carbonate, 8. 458
Castner's, 2. 447	
properties, chemical, 2. 468	chlorosulphite, 10. 280
physical, 2. 451	dithionate, 10. 588
pyridinepentachloroplatinate, 16. 312,	enneathiosulphate acetylide, 10.
326	540 —— henathiosulphate acetylide, 10.
pyroarsenate, 9. 153 pyroarsenite, 9. 119	540
enneahydrated, 9. 119	heptathiosulphate, 10. 538
pyrocolumbate, 9. 863	monamminothiosulphate, 10, 538
pyrophosphate, 2. 862	monamminothiosulphate, 10. 538 nitrite, 8. 484
silver, 3. 488	orthosulphoantimonite, 9. 542
pyrophosphatododecamolybdate, 11.	sulphide, 3. 447
671	——————————————————————————————————————
pyrosulpharsenate, 9. 317	
—— pyrosulpharsenatosulphomolybdate, 9.	thiosulphate, 10. 538
322	
pyrosulpharsenatoxymolybdate, 9. 331 pyrosulpharsenite, 9. 290	tridecess bite 10 280
pyrosulphate, 10. 445	
pyrosulphite, 10. 328	—— solubility of hydrogen, 1. 308
pyrovanadate. 9. 762	stannate (a-), 7. 416
octodecahydrate, 9. 762	decahydrate, 7. 416
	enneahydrate, 7. 416
—— rhenate, 12. 478	henicosihydrate, 7. 416
rhodium aquopentamminopyrophos-	octohydrate, 7. 416
phate, 15. 591	—————————————————————————————————————
disulphate, 15. 587 hexamminopyrophosphate, 15.	stannatoherevanadate 9 776
591	stannatohexavanadate, 9. 776 stannatopentavanadate, 9. 776
	stannatotetravanadate, 9. 776
——————————————————————————————————————	stannatotrivanadate, 9. 776
——————————————————————————————————————	stannatovanadates, 9. 776
ruthenate, 15. 518	stannite, 7. 391
dihydrate, 15. 518	stannous amide, 8. 265
ruthenium hydrosulphite, 10. 326	stilbite, 6. 760 strontium arsenate, 9. 173
	strontium arsenate, v. 173
samarium carbonate, 5. 665	
molybdate, 11. 565	calcium carbonate, 3. 846
sulphate, 5. 657	carbonate, 3. 846
tungstate, 11. 791	dimetaphosphate, 3. 894
sulphate, 5. 492	677
selenate, 10. 800	imidodisulphonate, 8. 654 oxytrisulpharsenate, 9. 330
	paratungstate, 11. 818
selenide, 10, 766	——————————————————————————————————————
decahydrate, 10. 767	——————————————————————————————————————
	nyronhoenhete X 892
	silicate, 6. 371
	— silicate, 6. 371 — tetrasulphate, 3. 805 — trimetaphase, 3. 894
selenite, 10. 821	trimetaphosphate, 8. 894
—— selenostannate, 10. 786	
selenotetrantimonite, 10. 834	sulphate, 2. 656
—— selenotrithionate, 10. 927	α-, 2. 661
sesquicarbonate, 2. 777	β-, 2. 661
sesquiperhydroxyoxycarbonate, 6.84	and hydrogen, 1. 303
sesquiphosphate, 2. 850	potassium chloride crystalliza-
sexiesdimethylaminechloroplatinate,	tion, 2. 689
16. 325	CuSO ₄ -H ₂ O, 8. 257
—— silicatotitanatocolumbate, 9. 867	CuSO ₄ -H ₂ SO ₄ -H ₂ O, 8. 257 hydrates, 2. 667
	nydrates, 2. 667 occurrence, 2. 656
silico-oxalate, 6. 235	——————————————————————————————————————
silicovanadatodecatungstate, 6. 838	properties, chemical, 2. 672
silver alloy, 8 . 571	solubility, 1. 514

Sodium sulphatoamidosulphonate, 8. 641	Sodium tetraiodoaluminate, 5. 329
sulphatobismuthite, 9. 701	tetraiodobismuthite, 9. 677
	tetraiodocarbonatoplumbite, 7. 854
	tetraiodoplumbite, 7. 776
sulphatotrifluoantimonite, 9. 466 sulphazalinate, 8. 673	hexahydrate, 7, 776 tetrahydrate, 7, 776
gulphide: 49 818	tetramercuride, 4. 1013
—— sulphide, 18, 664	tetrametaphosphates, 2. 867
sulphite, 10. 260	
——————————————————————————————————————	tetramidosulphonatoplatinite, 8. 645
heptahydrate, 10. 261	tetramminochloroplatinite, 16. 281
sulphitosmate, 15. 726	tetramolybdate, 11. 592
—— sulphoaluminate, 5. 331	hemihanahydrate, 11. 592
sulphochromite, 11. 432	hexanydrate, 11. 592
—— sulphocuprite, 3. 227	octomolybdate, 11. 592
sulphodimolybdate, 11. 651	tetranitratodinitrosohydrazinocobalt-
sulphodiselenide, 10. 919	iate, 8. 510
sulphoferrite, 14. 183	tetranitritoplatinite, 8. 519
sulphoindate, 5. 404	tetrantimonate, 9. 443
	tetrantimonite, 9. 431
	tetraphosphate, 8. 991
sulphoniodide, 2. 607 sulphoorthostannate, 7. 474	tetrarsenatostannate, 9. 189 tetrarsenite, 9. 119
	tetraselenide, 10. 768
—— sulphoperrhodite, 15. 586	tetrasilicate, 6. 328
sulphoplatinate, 16. 398	
sulphoplatinite, 16. 395	tetrasulphuryliodide, 10. 690
—— sulphoplumbite, 7. 796	— tetratellurate, 11. 90
—— sulphosilicate, 6. 986	tetratelluride, 11. 41
sulphotellurate, 11. 115	tetratellurite, 11. 78
—— sulphotellurite, 11. 113	tetrathionate, 10. 617
—— sulphotriselenoarsenate, 10. 921	——————————————————————————————————————
sulphotungstate, 11. 858	tetratungstate, 11. 822
	tetrauranyl pentasulphite, 10. 308
—— sulphoxylate, 10. 162	tetravanadatodecatellurite, 11. 81
sulphurylbromide, 10. 689	tetravanadatohexatellurite, 11. 81
—— sulphurylchloride, 10. 689	——————————————————————————————————————
sulphurylnitrate, 10. 689	
sulphurylthiocyanate, 10. 689	tetravanadatopentatellurite, 11. 81
tellurate respect 9 204	tetreroctocolumbate, 9. 864
	tetrerodecavanadate, 9. 764 tetrerohexadecavanadate, 9. 764
—— tellurite, 11. 78	tetrerooctovanadate, 9. 764
hemienneahydrate, 11. 78	tetrerotetravanadate, 9. 764
pentahydrate, 11. 78	tetritaplumbide, 7. 606
—— telluritovanadate, 11. 81	— tetritastannide, 7. 345
tetraborate decahydrated, 5. 68, 70	tetritatritelluride, 11. 41
	thallic disulphate, 5. 469
dihydrated, 5, 74, 672 pentaborate, 5, 70	thallide, 5. 425
—— tetrabromoaluminate, 5. 326	thallous chlorides, 5. 441
—— tetrabromoplumbite, 7. 753	dithionates 10, 594
—— tetrachloroaluminate, 5. 321	——————————————————————————————————————
—— tetrachlorantimonite, 9. 479	trithiosulphate, 10. 549
—— tetrachlorobismuthite, 9. 666	thioaurite, 8. 611
—— tetrachloromercuriate, 4. 853	thiocarbonate, 6. 123
tetrachromate, 11. 352	thiophosphate, 8. 1064
- tetradecafluotrihypovanadate, 9. 798	octohydrate, 8 . 1064
tetrafluoantimonite, 9. 465	thiosesquicarbonate, 6. 114
tetrafluodioxytungstate, 11. 839	—— thiosulphate, 10. 516; 18. 616; 15.
tetrafluohexavanate, 9. 802	159
tetrafluovanadate, 9. 802	dihydrate, 10. 519
—— tetrahydroborododecatungstate, 5. 109	
tetrahydrodiarsenatoctodecatung-	—— р-, 10. 320 —— hemihydrate, 10. 519
state, 9. 214 —— tetrahydrorthotellurate, 11. 89	
decabydrate 11 90	
decahydrate, 11. 90 dihydrate, 11. 89	a-, 10. 520
tetrahydrate, 11. 90	β , 10. 520
tetrahydroxylaminotetramolybdate,	———— pentahydrate, 10, 519
11. 592	a-, 10. 520
*** ***	, -2,

Sodium trioxyselenoarsenate, 10. 874
trioxyselenophosphate, 10. 932
trioxysulpharsenate, 9. 327
trioxysulphomolybdate, 11. 655
trioxysulphorthovanadate, 9. 817
triperchromates, 11. 356
triphosphatostannate, 7. 483
—— triplatinate, 16 . 247 —— - tripotassium ferrous hexachloride, 14 .
32
triplumbide, 7. 607
triselenide, 10. 768
triselenitodecamolybolate, 10. 836
trisulphatochromiate, 11. 464
trisulphide, 2. 630, 633
trisulphitocobaltate, 10. 315
trisulphocuprite, 8. 227
trisulphomolybdate, 11. 651
trisulphoselenoantimonate, 10. 922
trisulphoselenoarsenate, 10. 922
- trisulphuryliodide, 10. 690
tritabismuthide, 9. 634 tritaditelluride, 11. 40
tritaheptatelluride, 11. 40
tritamercuride, 4. 1014
tritantimonide, 9. 402
tritaphosphide, 8. 835
—— tritarsenide, 9. 61
—— tritatitanate, 7. 52
tritellurite, 11. 78
triterohexavanadate, 9. 763
enneahydrate, 9. 763
tritetritastannide, 7. 345
—— trithioaurite, 3 . 612 — trithionate, 10 . 607
trithiophosphate, 8. 1067
tritungstate, 11. 810
triuranate, 12. 67
triuranyl disulphite, 10. 308
trivanadyl disulphite, 10. 305
tungstate, 11. 774
——————————————————————————————————————
tungstatometaphosphate, 11. 862
tungsten bronzes, 11. 751
uranate, 12. 63
uranium hydroxydisulphotetraura-
nate, 12. 97
peroxyfluoride, 12. 79 pyrophosphate, 12. 133
red, 12. 97
tungstate, 11. 797
uranous dioxyhexachloride, 12, 85
hexabromide, 12. 92
hexachloride, 12. 83
octophosphate, 12. 130
pentafluoride, 12. 75
uranyl arsenate, 9. 215
dihypophosphite, 8. 889
disulphate, 12. 109
disulphite, 10. 308
bexafluoride, 12, 79
hydroxysulphite, 10. 309

Sodium uranyl metaphosphate, 12. 18	(di)sodium silver imidodisulphonate, 8. 653
nitrate, 12. 126	thorium orthophosphate, 7, 253
phosphate, 12. 132	
phosphito 9 010	zinc phosphate, 4. 661
phosphite, 8. 919	(hepta)sodium cuprous tetrasulphite, 10.
—— pyrophosphate, 12. 132	276
sulphate, 12. 17	(hexa)sodium (tetra)cuprous pentasulphite,
	10. 275
	—— thallide, 5 . 425
trifluoride, 12, 79	(octo)sodium decapotassium chlorohydroxy-
trisulphate, 12. 109	
uranylyanodota 0 799	nitrilodisulphonate, 8, 676
uranylvanadate, 9. 788	hydroxytrisnitrilodisulphonate, 8. 676
uses, 2. 470	silicododecatungstate, 6. 875
vanadous sulphate, 9. 820	(penta)sodium ammonium imidosulphonate,
—— vanadyl disulphate, 9. 824	8. 650
—— disulphite, 10. 305	hemipentahydrate, 8. 650
—— X-radiogram, 1. 642	
ytterbium pyrophosphate, 5. 708	aurrous tricularities 10 278
j voci bium pytojniospilate, 5. 706	cuprous trisulphite, 10. 276
tungstate, 11. 791	diimidotriphosphate, 8. 715
—— yttrium carbonate, 5 . 683	hydroxybisnitrilodisulphonate, 8. 676
pyrophosphate, 5 . 684	(tetra)sodium (deca)cuprous heptasulphite,
sulphate, 5. 682	10. 276
sulphide, 5. 681	(tetra)cupric octodecaborate, 5. 84
———— tungstate, 11. 791	—— dihydrosilicododecatungstate, 6. 875
zine allove A. see	instate lucilies is a series of the
zinc alloys, 4. 666	isotetrahydrosilicododecatungstate, 6.
arsenate, 9. 182	873
bromoazide, 8. 337	silicododecamolybdate, 6. 869
carbonate, 4. 648	(tri)sodium diimidotriphophate, 8. 714
——————————————————————————————————————	hydroxynitrilodisulphonate, 8. 676
	hydroxynitrilo-iso-disulphonate, 8. 679
——————————————————————————————————————	
hymanichita 40 100	imidodiphosphate, 8. 713
hyposulphite, 10. 183	imidodisulphonate, 8. 649
iodoazide, 8. 337	—— imidotrithiophosphate, 8. 727
nitratochloroazide, 8. 337	pentahydrosilicododecamolybdate, 6.
octometaphosphate, 4, 664	870
paratungstate, 11. 819	trimetaphosphimate, 8. 717
toreulnhete 10 470	Solar pyrites, 12. 531
——————————————————————————————————————	
phosphate, 4. 001	Sölv, 3. 295
pyroarsenate, 9. 182	Soft lead, 3. 311
——————————————————————————————————————	ore, 3. 300 X-rays, 4. 33
sulphate, 4 . 636	X-rays, 4. 33
tetrahydrated, 4. 636	Soil phosphate, 3. 905
sulphide, 4 . 604	Sol, 1. 771
tetrachloride, 4. 554	Solder brazing, 4. 671
totamoratorherabete A COA	
	Solders, 7. 630
	Solfatarite, 5. 333, 341
triiodide, 4. 583	Solfo, 10. 1
trimetaphosphate, 4, 663	Solid solution, 1. 659
triphosphate, 4. 664	solutions, 2. 224; 12. 882
zincate, 4. 528	Solids ærlotropic, 1. 820
zincide, 4. 667	- crystallization of, 1. 602
zirconate, 7. 135	—— effect pressure, 1. 825
zirconium carbonate, 7. 161	empirical formulæ for properties, 1.834
octaorthophosphate, 7. 164	- — equation of state, 1.834
tetraorthophosphate, 7, 164	isotropic, 1. 820
tetrasulphate, 7. 159 triorthophosphate, 7. 164	kinetic theory, 1. 819
triorthophosphate, 7, 164	Langmuir's theory, 1. 642
zirconyl(di) hexasulphate, 7. 159	reactions with, 1. 824, 826
(tri) tetrasulphate, 7. 159	
(di)andiam and minus about 4 001	
(di)sodium cadmium phosphate, 4. 661	Soluble anhydrite, 3. 769
hexahydrosilicododecatungstate, 6.875	Solubility, 1, 506
hydroxynitrilodisulphonate, 8, 676	—— and intrinsic pressure, 1. 852
hydroxynitrilo-iso-disulphonate, 8, 679	—— melting point, 1. 585
imidosulphonate, 8. 650	—— — melting point, 1. 585 —— molecular weight, 1. 568
imidotrithiophosphate, 8. 727	osmotic pressure, 1. 569
	apparent, 1. 996
mercuric imidodioxysulphonate, 8. 657	
imidodisulphonate, 8. 657 imidoxysulphonate, 8. 657	—— chemical composition and, 1. 585
imidoxysulphonate, 8. 657	effect grain-size, 1. 508
nitrite, 8. 478	——————————————————————————————————————
- nitrilohydroxynitrilodisulphonate, 8.	temperature, 1. 510
677	gases in salt solutions, 1. 535

100 GENERA	u indux
Statutilitani in the control of	Casa hunta 9 711
Solubility ion theory, 1. 995	Sosa-bruta, 2. 711
lead, 1. 995 mixed gases, 1. 533	Soubeiran's mercurous salt, 4. 988
	Soude bourde, 2. 713
mixtures with common ion, 1. 995	d'Argues-mortes, 2. 713
no common ion, 1. 999 molecular, 1. 996	de Narbonne, 2. 713
of gases, effect of pressure, 1. 529	douce. 2. 713
	—— douce, 2. 713 —— mélangée, 2. 713
product. 1. 996	Souesite, 12. 531; 15. 4, 6, 256
real, 1. 996	Soufre, 10. l
Solute, 1. 506	Soufre carburé, 6. 94
—— metal, 7. 362	
Solutio calcia antimonii cum sulphure, 9.	—— liquid, 6 . 94 —— nacré, 10 . 26
574	Soumansite, 5. 367
—— mercuria frigide parata, 4. 987 —— mercurii calide parata, 4. 991	Souring, 8. 243
— mercurii calide parata, 4. 991	Soushypoiodique oxyde, 2. 285
Solution and compressibility of solvent, 1.	Soviet gold, 8. 493
529	Sow, 12. 597
dielectric constant of solvent, 1.	Space lattice, 1. 624
529	Spadaite, 6. 368, 420, 428
cause of, 1. 574	Spagyric art, 1. 91
concentration, 1. 507	Spandite, 6, 714; 12, 150
—— definition, 1. 507, 772 —— kinetic theory and, 1. 524, 528	Spangite, 6. 736 Spaniolite, 9. 291
	Spanish black, 5. 749
pressure, 1. 538, 539, 1015, 1017	shirl, 6. 458
electrolytic, 1. 1017	white, 9. 707
	Spanoilite, 4. 697
558	Spar adamantine, 5. 247
rate of, 1. 537	— blue, 3 . 274
solid, 1. 659	chlorite, 6 . 620
solvate theory, 1. 994	—— schiller, 6 . 392
standard, 1, 391	soda table, 6 . 366
temperature, critical, 1. 523	tabular, 6. 354
Solutions, 1. 95	
and Avogadro's hypothesis, 1. 545	Sparable tin, 7. 394
Phase rule, 1. 514	Spark spectrum, 4. 7
compressibility, 1. 581 congruent, 2. 740	Sparry iron ore, 14. 355 Spartaite, 3. 814; 12. 150
effect on solvent, 1. 509	Spartoite, 14. 359
electrolytic conductivity, 1. 977	Spat fusible, 2. 3
freezing, 1. 576	Spath adamentin, 6. 458
—— heat of, 1. 582	en tables, 6. 354
—— incongruent, 2. 740	Spathic ore, 12, 531
—— isotonic, 1. 539	iron ore, 14. 355
molecular volume, 1. 578	Spathiopyrite, 9. 77; 15. 6
—— physical properties, 1. 578	Spatum plumbi, 7, 829
specific gravity, 1. 578	scintillans, 6. 661
surface tension, 1. 853	
thermal expansion, 1. 581	Specific cohesion, 1. 848
viscosity, 1. 581	gravities, colloids, 1. 774
with two boiling points, 2. 327 Solvate theory of solution, 1. 994	gravity, 1. 87 and index of refraction, 1. 672
Solvent, 1. 506	isomorphism, 1. 657
effect on electrolysis, 1. 968	gases, 1. 175
universal, 1. 50	heat gases, ratio of two, 1. 788
Sombrerite, 2. 1; 3. 896	heats of gases, ratio of two, and
Somervillite, 6. 343, 752	degree of freedom, 1.
Sommite, 6 . 56	790
Son of satan, 9. 341	ratio of two, effect of
Sonnenstein, 6. 663	pressure, 1. 788
Sonomaite, 4. 252; 5. 154, 354	ratio of two, effect of
Sonstadt's heavy liquid, 4. 916	temperature, 1. 788
Soot, 2. 426 Sorbite, 12. 846	cular weights, 1. 788
lamellar, 12. 847	volumes, 1. 228
Sorbitizing, 12. 673, 691	——————————————————————————————————————
Soretite, 6. 821	Specificum purgans Paracelsi, 2. 656
Sorption, 1. 311	Speckstein, 6 . 429, 430
Sory, 8. 3; 14. 243	Spectra: halogens, 2. 57
•	-

CHILDRA 195		
Spectra: line, 4. 174	Spiesglanzsilber, 9, 404	
nebulæ, 4. 19	Spiesglasglanz prismatischer, 9. 550	
stars, 4. 19	Spiesglassilber, 9. 404	
Spectrometer, X-ray, 1. 635	Spiessglanz, 9. 341, 513	
Spectrum absorption, 4, 19	Spiessglanzbleierz, 9, 550	
	Spiessglanzblende, 9. 577	
	Spiessglanzbutter, 9. 469	
band, 4. 7	Spiessglanzerz, 9. 513	
——————————————————————————————————————	Spiessglanzglas, 9, 420, 577	
components of, 4. 7	Spiessglanzocker, 9. 435	
continuous, 4. 7	Spiessglanzsafran, 9. 577 Spiessglas, 9. 341, 513	
discontinuous, 4. 5	Spinel, 4. 251; 5. 154, 295; 11. 199; 12.	
electric of atoms, 4. 50	150	
emission, 4 . 7	Spinels, 5. 276	
—— flame, 4. 7		
—— fluorescent, 4. 7		
hydrogen, 4. 169	iron, 4. 251; 5. 154	
—— line, 4. 5, 7	magnesia, 5. 154	
lines, action electric field, 4. 19	—— magnesia, 5. 154, 295	
magnetic field, 4. 17	iron, 5. 297 manganese, 4. 251; 5. 297	
combination principle, 4. 14		
	ruby, 5. 154, 295	
reversed, 4. 6	zinc, 4. 408; 5. 154	
spark, 4. 7	Spinthariscope, Crookes', 4. 80	
X.rav. 1. 636	Spinthere, 6. 840; 7. 3	
— X-rays, 4. 37	Spirit, 1. 122	
Specular iron, 18. 775	—— of hartshorn, 2, 781	
ore, 12 . 531	nitre, 8. 557 salt : rectified, 2. 21	
	salt: rectified, 2. 21	
Specularite, 13. 775	Spiritus, 1. 122	
—— flaky, 18. 785	acidus nitri, 8. 556 aethereus, 6. 1	
Speculite, 11. 48 Speculum metals, 7. 348		
Speed, see Velocity	argenti vivi sublimati, 7. 436	
Speerkies, 14. 218	elasticus, 6. 1	
Speise, 3. 25	fumans, Berguin's, 2. 645	
Speiskobalt, 9. 76	Boyle's, 2. 645	
flasesigen weissen, 9. 77	Boyle's, 2. 645 Libavii, 7. 436	
Speiss cobalt, 9. 4; 14. 424	lethales, 6. 1, 6 mineralis, 6. 1	
(nickel), 15. 19	mineralis, 6. 1	
Spelter, 4. 403	nitri, 8. 555	
	fumans Glauberi, 8. 556	
remary, 4. 403	salis, 2. 20 lotii, 2. 780	
	resuscitatus 9 504	
virgin, 4. 403		
Spencerite, 4. 660	sulfuris acidus, 10. 186	
Sperrylite, 9. 4, 82, 343; 16. 5	sulphureus, 6 . 1, 2	
Spessartite, 6. 714, 901; 12. 150		
Sphärite, 5. 367; 8. 733	urinæ, 2. 780	
Sphærocobaltite, 14. 424, 808	vitrioli coagulabilis, 2. 656	
Sphæro-siderite, 12. 531	volatilis salis armoniaci, 2. 780	
Sphaerostilbite, 6. 759	Spitting of silver, 3. 342	
Sphalerite, 4, 407, 586; 12, 150	Spodiophyllite, 6. 624 Spodiosite, 8. 897	
Sphene, 6 . 840 Sphenodase, 6 . 746; 12 . 150	—— didymium, 5 . 675	
Sphenomanganite, 12. 240	Spodium, 4. 506	
Sphere, 7. 3, 30, 54	Spodos, 4. 506	
Spheroidization of graphite, 12. 725	Spodumene, 2. 425; 6. 390, 640; 7. 897	
Spherosiderite, 14. 355		
Sphragid, 6. 472		
Sphragieite, 6. 472		
Sphragis, 6. 471	soda, 6. 643, 693	
Spialter, 4, 403	Spongy iron, 12. 635, 767	
Spiauter, 4. 403, 587	Sporadosiderites, 12. 523	
Spiauterite, 4. 587 Spiegeleisen, 12. 194	Sporogelite, 5. 275 Sporting powder, 2. 826	
Spiesglance, 9. 564	Spraying, 4. 494	

	A
Spraying, Scoop's process, 4, 494	Stannic bromotriiodide, 7. 464
Spreustein, 6 . 573, 652	—— calcium borate, 5. 105
Spring's experiments on reactions with	
solids, 1. 824	chloride β-, 7. 442
Sprödglaserz, 9. 540	——————————————————————————————————————
Spuma argenti, 7. 638	ethyl, 7. 446
Spurrite, 6. 365	isopropyl, 7. 446
Stabelisen, 12. 709 Stability constant 2 227	(di), 7. 446
Stability constant, 2. 227, ——function of energy, 1. 727	——— methyl, 7. 446
Stable equilibrium, 1. 714	pentahydrated, 7. 457
Stachel, 12. 646	properties, chemical, 7. 448
Stähl, 12. 709	physical, 7. 457
Staffelite, 2. 2; 3. 623, 896; 8. 733	tetrahydrated, 7. 437
Staglerz, 9. 308	trihydrated, 7. 437
Stagmatite, 14. 10, 40	chlorides, 7. 436
Stagno, 7. 276	chloroantimonite, 9. 482
Stahal, 12. 646	chlorodisulphohydrate, 7. 443
Stahel, 12. 646	chlorohypophosphite, 8. 886
Stahelreich Eisen, 14. 355	chloropentasulphohydrate, 7. 443
Stahl, 12. 709	chloroplatinate, 16. 330
Stahl, E., 1. 65	chlorotetrasulphohydrate, 7. 443
Stahlcobalt, 9. 308	chlorotriiodide, 7. 464
Stahlantimonglanz, 9, 546	chromate, 11. 290
Stahl's sulphur salt, 10. 268	cobalt sulphide, 14. 757
Stainerite, 12. 531; 13. 877; 14. 424	cobaltic dichlorobisethylenediamine-
Stainierite, 12. 150; 14. 586	bromide, 14. 729
Stainless invar, 14, 554	dichlorobisethylenediaminechlo-
	ride, 14. 670
Stål, 12. 646	cobaltous hexabromide, 14. 718
Stalactite, 6. 81	
Stalactites, 3. 814	cuprous ferrous sulphide, 14. 168, 189
Stalactitic limestone, 15. 9	—— diamminobromide, 7, 456
Stalagnite, 6. 81	diamminochloride, 7. 445
Stalagmites, 3. 814	diarsenatoctodecatungstate, 9. 214
Stale, 12. 646	diarsonite, 9. 129
Stalle, 12. 646	dibromodichloride, 7. 457 dibromodiiodide, 7. 464
Stamper mills, 3, 497	
Standard gold, 8, 532	dichloride (β -), 7. 443 dichlorodiiodide, 7. 463
silver, 3 . 358 solution, 1 . 391	dihydroxysulphate, 7. 479
man and a siling and a siling	$-$ dinitrate $(\beta$ -), 7. 481
Stangenstein, 6, 560	dinitraxylchloride, 7. 445
Stannates, 7. 414	— diplatinous hexasulphoplatinate, 16.
(a·), 7. 414	396
(β-), 7 . 417	—— disulphododecachloride, 10. 647
Stannic acid, 7. 404	—— disulphotetrachloride, 7. 443
a-; 7. 405	disulphotetraiodide, 10. 655
colloidal, 7, 408	—— ditritaphosphinochloride, 7. 445
	ferrite, 13. 921
B. 7. 405	ferrous bromide, 14. 122
colloidal, 7. 411	cuprous sulphide, 7. 475 hexachloride, 14. 35
——————————————————————————————————————	
ammonium phosphatohenatungstate,	—— fluoride, 7 . 422
11. 868	fluosilicate, 6 . 955
phosphatohexitetradecamolyb-	heptabromocerate, 5. 645
date, 11. 670	hexamminoiodide, 7. 463
phosphatovanaditotungstate, 9.	—— hydroselenite, 10. 833
827	hydroxide, 7. 406, 408
antimonate, 9. 457	hydroxytribromide, 7. 455
barium borate, 5. 105	iodide, 7. 462
bismuth hydroxytrisulphate, 9. 701	——————————————————————————————————————
bromide, 7. 454	—— methyl, 7. 463
ethyl, 7. 455	propyl, 7. 463
isopropyl, 7. 455	lithium tungstate, 11. 792
	manganous chloride, 12, 370
propyl, 7. 455	
tetrahydrated, 7. 455 bromochlorides, 7. 457	—— molybdate, 11. 566 —— nickel bromide, 15. 429
bromotrichloride, 7. 457	
bromowicinoride, 7. 457	hexachloride, 15. 420

•	
Stannic nickel hexafluoride, 15. 405	Stannoformic acid, 7. 390
nitrate, 7. 481	Stannones, 7. 410
nitratochloride, 8. 546	Stannosic chloride, 7. 443
nitrogen chlorosulphide, 7. 444	oxybromide, 7. 453
oxychloride, 7. 445	tetrachlorodiiodide, 7. 461
trioxychloride, 7. 445	Stannostannic chloride, 7. 443
nitrosylchloride, 7. 445; 8. 438, 546,	—— oxybromide, 7. 453
617	Stannous aminochloride, 7. 430
octamminoiodide, 7. 463	and cadmium chlorides, 7. 434
octohydroxyhexaselenite, 10. 833 orthoarsenate, 9. 189	zine chlorides, 7. 434
orthoarsenite, 9. 129	borate, 5. 105
oxide, 7. 386, 394	bromide, 7. 452
colloidal, 7. 395	monohydrated, 7. 453 bromoiodide, 7. 461
palladium purples, 15. 598	chlorate, 2. 356
physical, 7. 396	dihydrated, 7. 425
oxybromide, 7. 455	monohydrated, 7. 425
oxychlorides, 7. 440	properties, chemical, 7 . 427
oxydiphosphate, 7. 482	physical. 7. 425
oxyfluoride, 7. 422	trihydrated, 7. 425
oxytrisulphide, 7. 471	— chloreantimonite, 9. 482
permonosulphomolybdate, 11. 653	chloroarsenate, 9. 258
phosphite, 8 . 917	chlorobromide, 7. 453
phosphorylchloride, 7. 446	chloroiodide, 7. 460, 461
phosphorylhenachloride, 8, 1026	chloroplatinite, 16. 284
phosphorylheptachloride, 8, 1026	chloroplumbite, 7. 732
potassium amide, 8. 265	chromate, 11. 290
sulphoplatinite, 16. 394	cobaltic bispropylenediaminediam-
pyroarsenate, 9. 189	minoheptachloride, 14. 659
pyrophosphate, 7. 482	chloropyridincbisethylenedi-
	aminechloride, 14. 666
	dichlorobisethylenediaminechlo-
selenium dioxyoctochloride, 10. 910	ride, 14. 670
selenoxychloride, 7. 444 silicate, 6. 883	hexamminodecachloride, 14. 656
strontium borate, 5. 105	decahydrate, 14. 656 octohydrate, 14. 656
sulpharsenate, 9. 322	hexamminoiodide, 14. 743
sulphate, 7. 479	cuprous chlorides, 7. 433
dihydrated, 7. 479	stannate, 7. 418
sulphatoplumbate, 7. 822	diamminobromide, 7. 453
sulphide, 7. 469	diamminoiodide, 7. 459
colloidal, 7. 470	diarsenatoctodecatungstate, 9. 214
properties, 7. 471	dihydrazinochloride, 7. 430
—— sulphoiodide, 7. 472	- — dihydrophosphate, 7. 482
sulphomolybdate, 11. 652	dioxysulphate, 7. 478
sulphotellurite, 11. 114	——————————————————————————————————————
sulphotungstate, 11. 859	enneaamminobromide, 7. 453
telluride, 11. 56	enneamminochloride, 7. 430
tetramminochloroplatinite, 16. 284	enneamminoiodide, 7. 459
tetramminoiodide, 7. 463	ferrous sulphide, 14. 168
tetramminopotassamide, 8. 265 tetroxyorthoarsenite, 9. 129	heptoxydithionate, 10. 594
thiocarbonate, 6. 128	hexantimonate, 9, 457
thiohypophosphate, 8. 1064	
thiophosphate, 8. 1065	hydrophosphate, 7. 482
—— thorium tetrasulphate, 7. 247	—— hydrosulphochloride, 7. 466
titanate, 7. 56	—— hydroxide, 7. 386
triamminoiodide, 7, 463	——————————————————————————————————————
tribromochloride, 7, 457	
tribromoiodide, 7, 464	—— hyposulphite, 10. 183
trichloroiodide, 7. 464	iodide, 7. 457
trioxide, 7. 413	alkyl, 7. 459
trioxydinitrate, 7. 481	dihydrated, 7, 458
tungstate, 11. 792 vanadate, 9. 776	monohydrate, 7. 458
vanadate, 9. 776	—— manganous chloride, 12. 370
Stannidodecamolybdic acid, 11. 601	—— metantimonate, 9. 457
Stannite, 6. 883; 7. 283, 394, 475; 12. 531; 14. 168	—— metaphosphate, 7. 482
Stannites, 7, 390	—— metasulphoantimonite, 9. 544
	—— monamminoiodide, 7. 459

Stannous nickel tetrachloride, 15. 420	Stanzaite, 6. 458
nitrate, 7. 480	Star bowls, 9. 350
orthoarsenite, 9. 128	—— metal, 9. 355
orthophosphate, 7. 481	
oxide, 7. 386	of the South diamond, 5. 711 philosopher's signet, 9. 343
——————————————————————————————————————	royal, 9. 340
properties, chemical, 7. 389	—— wonderful, 9. 340
physical, 7. 387	Starch: iodide, 2. 99
oxycarbonate, 7. 480	iodized, 2. 98
oxychloride, 7. 428	Stark effect, 4. 19
oxylodides, 7. 459	Stark's hypothesis valency, 4. 183, 186
oxynitrate, 7. 480	Stars spectra, 4. 19
oxysulphate, 7. 478	Stasite, 7. 491; 12. 136
pentamminobromide, 7, 453	Stassfurt potash beds, 2. 428
pentamminoiodide, 7, 459	
—— pentoxyhexachloride, 7, 428	uses, 2. 435
——————————————————————————————————————	Stassfurtite, 2. 430; 5. 137
permangante, 12. 275 permonosulphomolybdate, 11. 653	Stassite, 12. 5 Stasziate, 9. 161
—— phosphite, 8. 917	State, colloidal, 1. 771
—— phosphorylheptachloride, 8. 1026	
— potassium amide, 8. 265	States, corresponding, 1. 759, 760
pyroantimonate, 9. 457	Van der Waals' theory, 1. 759
pyrophosphate, 7. 482	of aggregation, 1. 164
selenide, 10. 784	Statical electronic hypotheses valency, 4.
sodium amide, 8. 265	183
stannate, 7. 386, 392	Status nascens, 1. 331
sulpharsenate, 9. 322	Staurolite, 6. 766, 909; 12. 150
sulphate, 7. 477	manganese, 6. 909
sulphide, 7. 465	zinc, 6. 909
——————————————————————————————————————	Staurotide, 6. 909
physical, 7. 466	Staurotite, 12. 531
——— trihydrated, 7. 466	Steadite, 3. 903; 6. 835
sulphoantimonate, 9. 575	Steam curve, 1. 444
sulphochromite, 11. 433	decomposition by red-hot iron, 1. 935 electrolysis, 1. 493
sulphomolybdate, 11. 652	electrolysis, 1. 493
	Steargillite, 6. 498
	Steatargillite, 6, 498, 624; 12, 531
—— tetrachloromercuriate, 4. 811	Steatite, 6 . 420, 429, 430 Steel, 12 . 645, 646, 709
— tetradecahydroxytetrachloride, 7. 428	abnormal, 12. 675
tetraiodoplumbite, 7. 778	absorption oxygen, 1. 371
tetramminochloride, 7. 430	acid, 12. 711
tetramminochloroplatinite, 16. 284	ageing, 12. 680
—— tetramminoiodide, 7. 459	—— alloy, 12 . 711
tetraphosphate, 7. 481	aluminium, 12. 752
tetroxydichloride, 7. 428	annealing, 12. 670
thiocarbonate, 6. 128	—— bar, 12. 710 —— basic, 12. 711
thiohypophosphate, 8, 1064	
thiophosphate, 8. 1065 thiosulphate, 10. 550	—— Bessemer, 12. 648, 711
triamminobromide, 7. 453	acid, 12. 649 basic, 12. 649
triamminoiodide, 7. 459	—— blister, 12. 710, 752
trioxytetrachloride, 7. 428	carbon, 12. 711, 712
tristannate, 7. 392	
tungstate, 11, 792	——————————————————————————————————————
vanadate, 9. 776	medium, 12. 712
Stannum, 7. 276, 277	cast, 12. 646, 711
calciforme, 7. 394	cellular structure, 12. 821
—— nativum, 7. 283	cement, 12 . 753
spathosum, 11. 673	———— bar, 12. 710
Stanyl ammonium chloride, 7, 442	cementation, 12. 736
hexastannate, 7. 392	conversed par, 12. 710
- hydroxychloride, 7. 442	crucible, 12. 646, 710, 753
icosistarinate, 7. 392	—— Damascus, 12. 853
selenate, 10. 873	dendrițic structure, 12. 672
(di)stanyl platinum a-stannate, 7. 420	—— electric, 12. 656, 711

WINIDINI.	1 111111111
Steel hardening, 12, 670	Stibiodomcykite, 9. 63
	Stibioferrite, 9. 437
	Stibiogalenite, 9. 458
	Stibiohexargentite, 9. 404
— manufacture, 12. 645	Stibiopalladinite, 15. 592; 16. 5
— microstructure, 12. 791	Stibiotantalate, 9. 904
molybdenum, 12. 752	Stibiotantalite, 9. 460
nickel, 12 . 751	Stibiotriargentite, 9. 404
nomenclature, 12. 707	Stibium, 9. 339, 340, 341
—— normal, 12. 675	Stiblite, 9. 343
—— open hearth, 12. 653, 711	Stiblith, 9. 435
—— patenting, 12. 691	Stibnite, 9. 343, 349, 513
—— pearly constituent, 5. 897	Stichtite, 4. 376; 11. 473
of, 12. 848	Stickstoff, 8. 46
—— pig and ore process, 12. 653	Stickstoffoxybaryt, 8. 485
scrap process, 12. 653	Stickstofftitan, 8, 119
—— plastic, 12. 710	Stilbite, 6. 575, 738, 758
—— plated bars, 12. 710 —— puddled, 12. 710	ammonium, 6 . 760 —— anamorphique, 6 . 755, 758
seasoning, 12. 680	
semi, 12 . 711	—— potassium, 6 . 760
shear, 12. 710	sodium, 6 . 760
double, 12, 710	thallo-, 6. 826
	Stilpnomelane, 6. 624; 12. 531
Siemens-Martin's process, 12. 653	Stilpnosiderite, 18. 886
—— silicon, 12. 752	Stilposiderite, 13. 877
special, 12. 711	Stimmi, 9. 339, 340, 341
spring, 12. 710	Stimulants in chemical actions, 1. 359
——— tempering, 12. 670	Stinkstone, 2. 431; 3. 815
—— Thomas' process, 12. 652	Stirlingite, 4. 506; 6. 909
—— Thomas-Gilchrist's process, 12. 652	Stöchiolith, 9. 404
—— titanium, 12. 752	Stoffertite, 3. 880
tungsten, 12. 752	Stokesite, 6. 883; 7. 283
weld, 12. 710	Stolpenite, 6, 498
Steeleite, 6. 749	Stolzite, 7. 491; 11. 678, 792
Steels irreversible, 15. 264	Stone age, 1. 19
Steenstrupine, 5. 513	baptismal, 6 . 909 buff, 6 . 468
Stefan and Boltzmann's radiation law, 4.15	— Cornish, 6. 467
Steinheilite, 6. 808	dry white, 6 . 468
Steinmannite, 9. 343	—— mild purple, 6 . 468
Steinmark, 6. 472	—— purple, 6 . 467
—— Eisen, 6 . 473	Stoneware, 6. 515
Steinsalz, 2. 430	Stopping power elements for a-rays, 4. 81
Stellerite, 6. 768	Stove charcoal, 5. 748
Stellite, 6. 366; 14. 519	Strahlblende, 4. 408
Stelznerite, 3. 265	Strahlpyrites, 14. 218
Stephanite, 8. 300; 9. 343, 540	Strahlstein, 6. 405
Stercorite, 8. 733	Strahlzeolith, 6. 758
Stere, 1. 237	Strakonitzite, 6. 430
Stereochemistry, 1. 214	Straight extinction, 1. 608
Sterie hindrance, 10. 240	Strain, 1. 819
Sterline, 15. 210	— theory, valency, 1. 215
Sterling gold, 3. 532	Strass, 6. 521, 522 Stratopeite, 6. 897
	Stream tin, 7. 394
Sternbergite, 12. 531; 14. 193	Strengite, 12. 531; 14. 401
Sterro metal, 4. 671; 13. 545	Strength factor of energy, 1. 712
Stetefeldtite, 9. 343, 437	Stress, 1. 819
Stevensite, 6. 430	Striegovite, 6. 623; 12. 531
Stiatile, 9. 461	Strigovite, 12. 150
Stibia femina, 9. 420	Strogonowite, 6. 763
Stibianite, 9. 442	Stromeycrite, 8. 447
Stibiatil, 9. 343; 12. 150	Strong acids, 1. 981
Stibiconite, 9. 343, 435, 437	—— bases, 1. 981
Stibine, 9. 391, 513	ions, 1. 1015
—— decomposition, 9. 394	Strontia, 8. 652
—— properties, chemical, 9. 396	anorthite, 6 . 707
——— physical, 9. 393	—— dolomite, 4. 376
Stibiobismuthinite, 9. 696	—— felspar, 6 . 662, 698, 707

Strontia labradorite, 6. 707	Strontium chlorate hydrated, 2. 345
nephelite, 6 . 571	chloride, 3 . 697
oligoclase, 6 . 707	and fluoride, 3. 718
sodalite, 6 . 583	————— BaCl ₂ -NaCl, 8. 720
water, 3. 676	BaCl ₂ -NaCl, 8. 720 ————————————————————————————————————
Strontian yellow, 11. 271	dihydrated, 8. 705
Strontiocalcite, 3. 814, 846	———— hexahydrated, 8. 705
Strontium, action on water, 1. 135	
—— a-stannate, 7. 419	
aluminium pyrophosphate, 5. 370	preparation, 8. 697
amalgams, 4. 1032	properties, chemical, 8, 714 physical, 3, 700, 706
amide, 8 . 259	physical, 6, 700, 700
amidosulphonate, 8. 642	
	chloroarsenatoapatite, 9. 260
imidosulphonate, 8 . 654	chlorochromate, 11. 398
nickel nitrite, 8. 511	chloroiridate, 15. 772
trioxysulpharsenate, 9. 329	chlorophosphate, 8. 902
analytical reactions, 3. 621	chloroplatinate, 16. 327
antimonious thiosulphate, 10. 553	chloroplatinite, 16. 282
—— antimonite, 9 . 432	chlorostannate, 7. 449
antimony alloys, 9. 406	——————————————————————————————————————
sulphate, 9. 583	chlorotriorthoarsenate, 9. 260
—— arsenatotrimolybdate, 9. 209	chromate, 11. 270
—— arsenide, 9 . 66	chromatosulphate, 11. 450
atomic wt., 8. 646	cobaltic dodecanitrite, 8. 504
azide, 8 . 350	
—— barium calcium hexachloride, 3. 720	cobaltite, 14. 594
	cobaltous chloride, 14. 642 columbate, 9. 866
nitrite, 8 . 488 sulphate, 8 . 763	— copper ammonium nitrite, 8. 488
bisbromoarsenite, 9. 256	
bismuth thiosulphate, 10. 554	potassium nitrite, 8. 488 silicate, 6. 373
tungstate, 11. 795	decaboratodibromide, 5. 141
—— bismuthotungstate, 9. 651	—— decatungstate, 11. 832
boride, 5 . 2 4	—— deuteroctovanadate, 9. 771
—— bromate, 2. 346	deuterovanadate, 9. 770
broinide, 3. 725	dialuminium dimesotrisilicate, 6. 758 diborate, 5. 87
—— properties, chemical, 3, 727 —— physical, 3, 726	——————————————————————————————————————
—— bromopalladite, 15. 677	pentahydrated, 5. 88 tetrahydrated, 5. 88
bromophosphate, 3. 897	dichromate, 11. 341
— bromoplatinate, 16. 379	—— diglycenylpermanganite, 12. 278
—— bromosmate, 15 . 724	—— dihydroarsenate, 9. 172
—— bromostannate, 7. 456	dihydroarsenatotrimolybdate, 9. 208
bromotriorthoarsenate, 9. 262	dihydrohypophosphate, 8. 937
bromotriorthovanadate vanadatobro-	dihydrophosphate, 8, 886
mapatite, 9. 813	—— monohydrated, 3. 887 —— dihydropyrophosphate, 3. 892
	—— dihydropyrophosphite, 8. 922
	dihydroxytetrasulphide, 3. 758
———— tetraiodide, 4 . 584	—— diiodonitritoplatinite, 8. 523
tetrathiosulphate, 10. 547	—— diiodotriarsenite, 9. 257
cæsium enneachloride, 8. 719	—— dimetaphosphate, 3. 893
—— calcium carbonate, 3. 846	——————————————————————————————————————
phosphatoarsenate, 9. 171 sodium carbonate, 8. 846	dioxide, 3 . 666, 668
	diperoxyhydrate, 8. 668
carbamate, 2. 796	—— hydroxyhydrate, 3. 671 —— octohydrated, 3. 667
carbide, 5. 860	dinemanganite 19 977
	—— dipermanganite, 12. 277 —— disilicide, 6. 178
	disulphoniodide, 8. 737
——————————————————————————————————————	—— disulphuryldiiodide, 10. 691
solubility, 3 . 824	dithionate, 10. 589
carbonyl, 5. 951	dithiophosphate, 8. 1068
chlorate, 2. 344	ditungstate, 11. 810

Strontium ditungstate trihydrate, 11. 810	Strontium homoguluhita 40 100
	Strontium hyposulphite, 10. 182
—— diuranate, 12. 66	imide, 8 . 260
diuranyl dicarbonate, 12. 116	iodate, 2. 347
—— dodecaborate, 5. 93	
dodecamercuride, 4. 1032	—— iodide, 3 . 734
—— ferrate, 18. 935	
	hexahydrated, 3. 735
ferric chlorides, 14. 104	iodoarsenatoapatite, 9. 263
—— ferrite, 13 . 913	—— iodochloride, 3. 738
—— ferrous chlorides, 14. 33	iodophosphate, 3. 897
—— fluoaluminate, 5. 308	iodostannite, 7. 460
Augaranataanatita 0 050	
fluoarsenatoapatite, 9. 259	—— iodotriorthoarsenate, 9. 263
fluoride, 3 . 688	iodotriorthovanadate, vanadatioda-
	patite, 9. 814
preparation, 3. 688	iron alloy, 13. 541
properties, chemical, 3. 693	isopropylstannonate, 7. 410
properties, chemical, 0. 000	
——————————————————————————————————————	—— isotetrahydroborododecatungstate, 5.
fluoroapatite, 3. 901	110
—— fluorobromide, 3 . 731	isotopes, 3 . 648
fluorochloride, 3. 718	lead chromates, 11. 304
—— fluoroiodide, 3. 739	
	iodide, 3 . 738
—— fluorophosphate, 3, 901	oxychloride, 7. 744 thiosulphate, 10. 552
—— fluosilicate, 6. 951	thiosulphate, 10. 552
fluostannate, 7 . 423	lithium pentabromide, 3. 731
—— fluotitanate, 7. 72	
dihydrated, 7. 72	
	—— magnesium carbonate, 4. 376
—— fluoti iorthoarsenate, 9. 259	—— manganate, 12. 289
—— fluozirconate, 7. 141	— manganese metasilicate, 6. 897 — manganitomanganate, 12. 290
haidingerite, 9 . 171	manganitomanganate, 12, 290
—— hemiamminobromide, 3. 730	manganous chloride, 12. 368
—— henamercuride, 4. 1032	
nenamercuride, 4. 1032	——————————————————————————————————————
—— heptachlorodibismuthite, 9. 667	—— mercuric heptanitrite, 8. 495
—— heptapermanganite, 12. 277	hexabromide, 4. 894
—— hexaborate, 5. 92	hexaiodide, 4. 939
hexachloromercuriate, 4. 860	—— imidodisulphonate, 8. 658
hexahy droarsenatoctodecamolybdate,	sulphite, 10. 300
nexany moarsenatoctouccamory buste,	sulphite, 10. 500
9. 211	tetrabromide, 4 . 894
hexahydroxythiocarbonate, 6. 126	tetraiodide, 4 . 939
—— hexaiododiplumbite, T. 777	octohydrated, 4, 939
hexamercuride, 4. 1032	thiosulphate, 10. 549
hexametaphosphate, 8. 895	—— mercurous exynitrate, 4. 997
hexammine, 8. 248	—— mesotrititanate, 7. 54
—— hexamminoiodide, 3. 737	metaborate, 5. 87
—— history, 3 . 619	metaluminate, 5 . 293
—— hydrazinosulphonate, 8. 683	metantimonate, 9. 454
—— hydride, 3 . 629, 649	— metaphosphate, 3. 893
hydroarsenate, 9. 170	— metarsenate, 9 . 172
monohydrate, 9. 171	——— metarsenite, 9. 125
hydrodioxydiselenophosphate, 10. 932	——— metasilicate, 6 . 357
hydroimidodisulphonate, 8. 654	———— monohydrated, 6. 360
hydroimidosulphonate, 8. 658	metasulpharsenatoxymolybdate, 9.
hydrophosphate, 3. 880	332
colloidal, 3 . 882	metasulpharsenite, 9. 296
hydroselenite, 10. 825	metatungstate, 11. 825
—— hydrosulphate, 3. 783	— – metavanadate, 9. 769
—— hydrosulphide, 3. 750	tetrahydrate, 9. 769
	metazirconate, 7. 136
—— hydroxide, 3 . 673	
monohydrated, 8. 676	
octohydrated, 3. 675	
properties, chemical, 3. 635	— monometaphosphate, 3. 893
physical, 3. 681	monosulphide, 3. 741
	monothiophosphate, 8. 1069
hydroxyhydrosulphide, 3. 755	—— monoxide, 3 . 653
hydroxypentachloroplatinate, 16. 335	nickelate, 15 . 401
—— hydroxyphosphate, 8. 902	nitrate, 3 . 849
—— hypobromite, 2. 273	properties, chemical, 3, 860
	physical, 3, 856
hypochlorite, 2. 272	
—— hyponitrite, 8. 414	solubility, 3 . 850
pentahydrate, 8. 414	tetrahydrated, 3. 849
hypophosphate, 8. 937	X-radiogram, 1. 642
hypophosphite, 8. 884	—— nitratoplumbite, 7. 866
V 4	•

(1)	
Strontium nitride, 8. 102 —— nitrite, 8. 484	Strontium potassium dimetaphosphate, 3.
	disulphate 8 806
nitritoperosmite, 15. 728	——————————————————————————————————————
	hadaanaitailadianlahanata
occurrence, 3. 622	hydroxynitrilodisulphonate, 8.
octamminochloride, 3. 716	
octoborate heptahydrated, 5. 93	imidodisulphonate, 8. 654
octochlorodithallate hexahydrated, 5.	- nickel nitrite, 8. 512 - nitrite, 8. 488, 501 - pentabronide, 8. 732 - nitrite, 8. 488, 501
447	———— nitrite, 8 , 488, 501
—— octodecachlorodialuminate, 5. 322	———— pentabromide, 3 . 732
— octomercuride, 4. 1032	Dentachoride, 3, 719
octomolybdate, 11. 596	phosphate 8, 877
orthoarsenate, 9. 168	——————————————————————————————————————
orthoarsenite, 9. 125	
orthoborate, 5. 87	tetrerotetradecavanadate, 9. 772
orthopertantalate, 9. 914	thiogulphate 10 544
orthophosphate, 3. 866	trisuipliate, 5. 600
properties, chemical, 3. 868	preparation, 8. 624
physical, 8. 807	properties, chemical, 3. 637
orthoplumbate, 7. 699	——————————————————————————————————————
orthosilicate, 6. 353	—— pyroarsenite, 9. 125
orthosulpharsenate, 9. 320	—— pyrophosphate, 3. 891
orthosulphoantimonate, 9. 574	——————————————————————————————————————
orthosulphoantimonite, 9. 542	———— monohydrated, 3. 891
orthotetravanadate, 9. 769	pyrosulpharsenate, 9. 320
orthovanadate, 9. 768	pyrosulpharsenatoxymolybdate, 9. 331
osmate, 15. 706	pyrosulpharsenite, 9. 295
osmyl oxynitrite, 15 . 729	—— pyrosulphate, 10. 446
	pyrosulphoentimenate 0 574
oxide, higher, 8. 666	pyrosulphoantimonate, 9. 574
	pyrosulphoantimonite, 9. 542
	pyrovanadate, 9. 769
—— oxides, 3 . 652	—— relations Ba, Ca, 3. 907
	ruthenate, 15 . 518
—— oxychloride, 3 . 716, 717	selenate, 10 . 822
oxyiodide, 3 . 738	—— selenide, 10. 774
paramolybdate, 11. 586	selenite, 10, 825
paratungstate, 11. 818	silicododecamoly buate, 6. 870
—— pentachlorobismuthite, 9. 667	silver chloride, 3. 720
—— pentahemimercuride, 4. 1033	dithiogulphate 10 545
pentahydroxychloroplatinate, 16. 333	————— dithiosulphate, 10. 545 ———————————————————————————————————
—— pentamercuric dodecaiodide, 4.	
939	sodium arsenate, 9. 173
	enneahydrate, 9, 173 monohydrate, 9, 173
octohydrated, 4. 939	mononydrate, 9, 173
—— pentamolybdatodisulphite, 10. 307	——————————————————————————————————————
pentapermanganite, 12. 277	dimetaphosphate, 3. 894
pentasulphide, 3. 755	hydroxynitrilodisulphonate, 8.
—— perborate, 5 . 120	677
—— perchlorate, 2. 399	——— imidodisulphonate, 8. 654
percobaltite, 14. 601	oxytrisulpharsenate, 9. 330
perditungstate, 11. 835	paratungstate, 11. 818
—— perferrate, 18. 936	phosphate, 3. 878
perferrite, 18. 926	paratungstate, 11. 818 phosphate, 3. 878 octodecahydrated, 3. 878
periodates, 2. 412, 413	——————————————————————————————————————
permanganate, 12. 334	silicate, 6 . 371
—— permanganite, 12. 277	4-4
pornialiganito, 12. 211	tetrasulphate, 3. 805 trimetaphosphate, 3. 894
—— pernickelite, 15. 400	
persulphate, 10. 478	stannic borate, 5. 105
perthiocarbonate, 6. 131	sulphaluminate, 5. 331
pervanadate, 9. 795	sulphate, 3 . 760, 764
phosphates, 3. 864	colloidal, 3. 764
—— phosphide, 8 . 841	preparation, 3 . 763
phosphite, 8. 915	properties, chemical, 3. 798
—— plumbite, 7. 668	physical, 3. 792
—— polybromide, 8. 730	solubility, 8 . 777
—— polyiodide, 3 . 738	sulphatoperiridite, 15. 784
—— polyselenide, 10 . 775	alphatostannate, 7. 479
polysulphide, 8 . 752	Syllphide photoluminescence, 3. 745
potassium arsenate, 9. 173	morphica chemical 8 749 744
	properties, chemical, 3. 742, 744
	physical, o. 142, 100
coomic morico, d. 500	s _j ulphides, 3. 740

544'	1.4.5.
Strontium sulphite, 10. 283 ————————————————————————————————————	(tri)strontium decaborate heptahydrated, 5.
sulphometastannate, 7. 476	89, 91 —— dialuminate, 5. 291
sulphomolybdate, 11. 652	imidodisulphonate, 8. 654
	trihydroxyimidodisulphonate, 8. 654
sulphotellurite, 11. 113	Structure chemical compounds, 1. 223
sulphotrimolybdate, 11. 652 sulphotungstate, 11. 859	Strüvenite, 2. 656
sulphovanadites, 9. 816	Strüverite, 6 . 620; 7 . 2; 9 . 839, 905 Strutt's radium clock, 4 . 84
tellurate, 11. 93	Struvite, 4. 252, 384
—— telluride, 11. 50	X-radiogram, 1. 642
	Strychnine bromoiridate, 15. 777
tetraborate, 5. 91 ——tetrahydrated, 5. 92	chloroiridate, 15. 771 sulphatoperiridite, 15. 784
tetrachlorobismuthite, 9. 667	Stuckgips, 8. 763
—— tetrachloroplumbite, 7. 730	Studerite, 9. 291
tetrachlorostannite, 7. 434	Stücke, 12. 583
tetradecamercuride, 4. 1032	Stückofen, 12. 583, 584
tetrahydrosilicododecatungstate, 6 .878 tetrametaphosphate, 8 .894	Stützite, 11. 2, 44 Stüvenite, 5. 342
octohydrate, 3. 895	Stupa, 1. 23
tetranitritoplatinite, 8. 520	Stupp, 4. 698
tetrarsenite, 9. 125	Stylobate, 6. 713
—— tetrasulphidedihydrated, 8. 753	Stylotypite, 3. 7; 9. 343, 536
hexahydrated, 8, 753	Stypterite, 5. 333
	Stypticite, 14. 3 Subbromides, 2. 238
tetrathionate, 10. 618	Subchlorides, 2. 238
	Subdelessite, 6. 624
dihydrate, 10. 618	Subiodides, 2. 238
—— tetreroctovanadate, 9. 771	Sublimate water, 4. 817
—— tetrerotetradecavanadate, 9. 771	Sublimation curve, 1. 444
thallous chloride, 5. 441	Sublimé doux, 4, 797
	Suboxides, 1. 118 Subphosphoric acid, 8. 924
— thiophosphate, 8. 1065	Substitution theory, 1. 218
thiosulphate, 10. 543	Succinite, 6. 715
——— monohydrate, 10. 543 ——— pentahydrate, 10. 543	Sugar and hydrogen, 1. 304
	—— charcoal, 5. 747
thorium orthophosphate, 7. 252	Suhler Weisskupfer, 15. 234
titanic sulphate, 7. 94 triantimonate, 9. 444	Suida's reaction, 6. 294 Suint, 2. 425, 438
triarsenatotetravanadate, 9. 201	Sulfamidique acide, 8. 670
trichromate, 11. 351	Sulfammonique acide, 8. 670
trimolybdate, 11. 589	Sulfatammon, 8. 648
triplumbide, 7. 614	Sulfazeux, acide, 8. 670
trisulphatarsenite, 9. 335	Sulfazidique acide, 8. 670
	Sulfazilique acide, 8. 670 Sulfazique acide, 8. 670
triterohexavanadate, 9. 770 trithionate, 10. 609	Sulfazotique acide, 8. 670
	Sulfite sulfuré de soude, 10. 485
tritungstate, 11. 811	Sulfodialuminique hydrate, 5. 337
tungstate, 11. 786	Sulfur apyron, 10. 1
uranate, 12. 63	
uranium hydroxydisulphotetraura- nate, 12 . 98	Sulphalite, 2. 553 Sulphamic acid, 8. 637
red, 12. 98	Sulphamide, 8. 660
uranous diphosphate, 12. 130	Sulphamidinic acid, 8. 647
hexachloride, 12. 83	Sulphammonates, 8. 667
uranyl dihydrotetraphosphate, 12. 136	Sulphammonic acid, 8. 667
oxytetraphosphate, 12. 136	Sulphammonium, 8. 249
uses, 3. 644 vanadatotungstate, 9. 787	—— mercury, 4. 954 Sulphantimonides, 9. 589
	Sulpharsenates, 9. 315
zinc alloys, 4. 686	Sulpharsenic acid, 9. 315
tetrachloride, 4. 558	Sulpharsenide, 9. 589
zincate, 4. 530	Sulpharsenides, 9. 305
(di)strontium diborate, 5. 87	Sulpharsenious acids, 9, 289 Sulpharsenious acids, 46, 402
(tetra)strontium octoaluminyl heptameta- silicate, 6. 734	Sulphate platinosic acid, 16, 403 Sulphates, 10, 440
pillogio, o. 10x	waspendous, sa, zzo

	1112 111
Sulphates, acid; 10. 440	Sulphotellurates, 11, 114
complex, 10. 440	Sulphotelluric acid, 11. 114
—— double, 10. 440	Sulphotellurites, 11. 113
triple, 10 . 44 0	Sulphotellurous acid, 11. 110
Sulphatizing roast, 3. 30, 306	Sulphothiocarbonic acid, 6. 119
Sulphatoallophane, 6. 497	Sulphothionyl chloride, 10. 635
Sulphatoaluminic acid, 5. 336	Sulphotrimolybdates, 11. 654
Sulphatoiodic acid, 2. 363	Sulphotungstates, 11. 857
Sulphatomarialite, 6. 764	Sulphouranic acid, 12. 98
Sulphatomeionite, 6. 764	Sulphovanadates, 9. 816
Sulphatomolybdic acid, 11. 657	Sulphovanadatomolybdates, 11. 652
Sulphatopentaquo-salts, 11. 404	Sulphovanadites, 9. 816
Sulphatopotash-sodalite, 6. 583	Sulphoxylates, 10. 165
Sulphatoselenates, 10. 929	Sulphoxylic acid, 10, 161, 238
Sulphatotitanic acid, 7. 92	Sulphoxytellurie acid, 11. 110, 111
Sulphato-xenotime, 5. 528	Sulphozincate, 4. 607
Sulphazites, 8. 684	Sulphur, 10. 1; 12. 528
Sulphazotates, 8. 673	a-, 10. 23
Sulphyposulfate de potasse, 10. 600	β -, 10. 24
Sulphide ores, 9. 715	γ-, 10 . 25
roasting, 3. 22	δ-, 10. 25
	e-, 10. 25
Sulphides, 9, 589; 10, 141	ζ-, 10. 28
Sulphimide, 8. 663	- η-, 10. 28
Sulphimidodiamide, 8, 664	$-\theta$ -, 10. 28
Sulphinates, 10. 163	λ-, 10. 46
Sulphine acids, 10, 165, 238 Sulphine constitution, 10, 224	μ-, 10 . 46
Sulphites constitution, 10. 234	π-, 10. 49
Sulphitosodalite, 6. 583 Sulpho-lead-sodalite, 6. 583	active, 10. 59
	—— adustilite, 1. 64 —— allotropic forms, 10. 23
—— spinels, 14. 758	amorphous, 10. 29
	- antimonii auratum, 9. 564
Sulphoantimonates, 9, 569	ardens, 1. 64, 67
Sulphoantimonites, 9. 532	
Sulphoarsenides, 9. 305	atomic disintegration, 10. 112
Sulphobismuthite, 9. 694	——————————————————————————————————————
Sulphobismuthites, 9, 589, 689	weight, 10. 110, 112
Sulphoborite, 2. 430; 5. 4	auratum, 9. 564
Sulphocarbonic acid, 6, 119	— bacteria, 10. 7
Sulphochromites, 11. 431	black, 10. 33
Sulphocupric anhydride, 3. 226	—— blue, 10 . 34
Sulphoferric acids, 14, 183	bromides, 10. 649
Sulphogermanates, 7. 274	—— Bungo, 10, 15
Sulphalite, 2. 656	chlorides, 10. 631; 13. 610
Sulphohy irates, 10. 141	colloidal, 10 . 29, 38
Sulphohydrazinium, 8. 314	———— solution, 10. 38
Sulphohydrosulphosodalite, 6. 583	combustible, 1. 64
Sulpholithia-sodalite, 6. 583	compounds in air, 8. 14
Sulphomagnetites, 14, 757	- copper-iron, ternary system, 3. 24
Sulphometaboric acid, 5. 145	—— cycle, 10 . 9
Sulphometastannic acid, 7, 473	diamine, 8. 250
Sulphomolybdates, 11, 650	diamminodichloride, 10. 646
Sulphomolybdatovanadates, 11. 652 Sulphones, 10. 162, 165	dibromide, 10. 652
Sulphonitronic acid, 8. 692	dichlor 10, 10, 632, 644
Sulphophone, 4. 600	—— dioxide, 10 . 186 —— analytical, 10 . 233, 244
Sulphoplatinous acid, 16. 395	and CO ₂ , 6. 32
Sulphopotash-sodalite, 6. 583	
Sulphorthostannic acid, 7, 473	effect on catalysis, 1. 487
Sulphoselenides, 10. 919	hexahydrate, 10. 210
Sulphoselenium enneaoxyoctochloride, 10.	physiological, 10. 242
911	——————————————————————————————————————
tetroxydibromide, 10. 911	———— properties, chemical, 10. 203
trioxytetrabromide, 10. 911	physical, 10, 190
- trioxytetrachloride, 10. 911	——————————————————————————————————————
Sulphosilicates, 6. 986	- dioxydianhydrosulphate, 10. 345
Sulphosilicon, 6. 987	—— ditritaiodide, 10. 653
Sulphostannates, 7. 473	earth, 10. 14
Sulphosulphurous acid, 10. 563	electronic structure, 10. 113

Sulphur electronegative, 10. 419	Sulphate tetroxide, 10. 449
electropositive, 10. 419	Thiogen process, 10. 17
element), 1. 34	trianimine, 8. 250
extraction, 10. 14 ferro mineralisatum, 14. 199	trigonel, 10. 25 trioxide, 10. 331
—— fixed, 1. 64	a-, 10. 340
—— flowers of, 10. 3, 19	β-, 10 . 340
—— fluorides, 10. 630	y-, 10. 340
—— heminitrosyl trioxide, 10. 345	——————————————————————————————————————
heptoxide, 10. 448	formation, 10. 332
hexafluoride, 10. 630	
hexaiodide, 10. 655	hydrates, 10. 351
hexternide 8 250	
	tetritahydrate, 10. 352
holoxide, 10. 449	trihydrate, 10. 352
—— hydrate, 10 . 161	tritetrahydrate, 10. 352
hydrated, 10. 91	trioxytetrachloride, 10. 681
hyperoxide, 10. 449	—— tritadichloride, 10. 635
iodides, 10 . 653	tritatetrachloride, 10. 632
- · isotopes, 10. 112	— volatile, 1. 64
—— metallic, 10 . 33	Sulphurato cobaltum ferro mineralisatem,
milk of, 10. 30 monobromide, 10. 649	14. 757 Sulphuric acid, 10. 351; 13. 610, 616
monochloride, 10. 633	analytical reactions, 10. 441-2
monoclinic, 10. 24	and hydrogen, 1. 303
monofluoride, 10. 630	arsenic in, 10. 370
monoiodide, 10 . 653	chlorohydrated, 10. 686
—— monoxide, 10, 162, 205, 566	concentration cascade system,
—— Muthmann's-I, 10. 23	10. 369
———— II, 10. 23	constitution, 10. 356
——————————————————————————————————————	
nacreous, 10. 25	———— fuming, 10. 351, 444
nitride, 8. 126	— — Gaillard's spray process, 10. 369
nitrides, 8 . 624	history, 10. 362
—— nitroxyltrioxide, 10. 345	Kessler's hot air process, 10. 369
occurrence, 10. 4	—— manufacture, 10. 362
octahedral, 10. 23	chamber process, 10. 362
of Mars, volatile, 1, 125	contact process, 10. 377
wine, 1. 64 wood, 1. 64	theory of, 10.
oxyhalides, 10. 678	372
oxytetrachloride, 10. 681	Na ₂ SO ₄ -CuSO ₄ -H ₂ O, 3. 257
—— pentanhydrosulphatochloride, 10. 344	nitrosylous, 8 . 693
pentoxide, 10. 449	Nordhausen, 10. 351
philosophorum, 10. 331	
phlogistic, 1. 64 physiological action, 10. 104	properties, chemical, 10. 432
prismatic, 10. 24	physical, 10. 384
properties, chemical, 10. 87	——————————————————————————————————————
physical, 10. 53	
—— pump, Frasch's, 10. 15	
—— purgans universale, 9. 564	trihydrate, 10. 352
reflecting power, 2. 222	——————————————————————————————————————
rhombic, 10. 23	
rhombohedral, 10. 25 rock, 10. 19	—— uses, 10. 106
roll, 10. 19	valency, 10. 110
—— selenide, 10 . 796	Sulphurite, 9. 5; 10. 5, 24
—— sesquioxide, 10 . 184 —— sideric, 1 . 64	Sulphurium, 10. l
—— sideric, 1. 64	Sulphurization process gold refining, 3. 507
—— solubility in hydrogen persulphide, 10.	Sulphurous acid, 10, 186, 234; 18, 610
159 tobular 10 95	Sulphurum, 10. l
—— tabular, 10. 25 —— tetrabromide, 10. 652	Sulphuryl amide, 8. 660 —— bromide, 10. 676
tetraplomide, 10. 032	
tetrafluoride, 10. 630	
—— tetramminodichloride, 10. 646	chromyl chloride, 11. 469
tetritadichloride, 10. 635	fluoride, 10 . 665

770 .	GENERAL INDE
Sulphuryl halides, 10. 665	Symmet
- hydroszide, 8. 666	
hydroiodide, 10. 690	her
hyperoxide, 10 . 449	pla
imidodiamide, 8 . 664	teta
iodide, 10 . 676	Sympath
peroxide, 10 . 449	Symples
phosphate, 8. 1071	Synadeli
	Synchisi
	Syngenit
	am
Sulphurylium sulphate, 10. 357	cas
Sulphurs, 1. 64 Sulvanite, 3. 7; 9. 715	rub
Sumpferz, 13. 886	Syntagm Synthesi
Sundtite, 9. 551	Syntheti
Sundvikite, 6 . 693	Syserskit
Sunstone, 6 . 663, 693; 13 . 877	Sysserek
glazes, 13. 780	Syssidere
Supcher, 5. 750	System,
Super, 1. 118	hex
Superiodides, 2. 233	mo
Superoxides, 1. 958	rho
Supersaturation, 1. 450, 451; 6.	49 teti
 - · · · and phase rule, 1. 454 	tric
kinetic theory, 1. 455	trig
Superstition in chemistry, 1. 2	Systems,
Surface energy, 1. 846, 847	Szabsite,
liquids, 1 . 855	Szaibelyi
- pressure, 1. 846	Szecheny
tension, 1. 846, 847	Szecheny
and chemical composi	
compressibility,	1. 850 Szmikite
concentration, 1	. 854 Szomolno
- intrinsic programs	1 849
melting-point, 1.	852
specific heat, 1. 8	852
colloids, 1. 774	
effect of temperature,	1.849 Tabaschi
hypothesis osmotic p	ressure, 1. Tabergite
560	Tabular
solutions, 1. 853	Tachen,
Surfusion, 1. 451	Tachhyd
Suroxigenation, 7. 676	Tachyap
Susannite, 7, 491, 853	Tachyap
Susceptibility magnetic, 13, 246	Tachydri
Suspensoids, 1. 770	Tachyhy
Susserde, 4, 205	Tackjern
Sussexite, 4. 252; 5. 4, 113; 12.	. 150 — grät — half
Sutherland's formula, 1, 835 Svabite, 9, 259, 261	half
Svafel, 10. 1	hwi
Svanbergite, 3. 623; 5. 155, 370;	
733	ferr
Svavite, 9. 5, 259	Tagilite,
Swedenborgite, 9. 456	Tail of be
Swiss jade, 6, 694	Tainiolite
Sychnodymite, 14, 424, 757; 15.	
Syepoorite, 14. 750	Talbot p
Syhedrite, 6 . 759	Talc, 4. 2
Sylvane, 11. 1	blet
- graphique, 11. 1	blue
Sylvanite, 3, 494; 11, 1, 2, 47	ehle
Sylvine, 2. 15, 430, 522; 7. 897	eart
Sylvinite, 2, 431	gran
Sylvite, 2. 430, 522	—— hyd
Sylvius de la Boe, F., 1. 52	iron
Symmetry, axes of, 1. 614 centre of, 1. 614	sehi
contro of, 1. UIT	tale

```
ry, crystals, 1. 613
mihedral, 1. 613
lohedral, 1. 613
ne of, 1. 614
artohedral, 1. 613
hetic ink, 14. 519
site, 9. 5, 223 ; 12. 531
phite, 5. 155; 9. 5, 220; 12. 150
ite, 5. 522
te, 2. 431, 657; 3. 623, 808
monium, 3. 812
sium, 3. 811
bidium, 8. 810
natite, 6. 821, 822
is, 1. 91
ie iron, 12. 635
ite, 15. 686 ; 16. 6
tite, 15. 751
olites, 12. 523
cubic, 1. 616
xagonal, 1. 617
moelinie, 1. 621
ombic, 1. 619
ragonal, 1. 619
chlinic, 1. 621
gonal, 1. 618
, crystal, 1. 616
, 6. 392
ite, 5. 4, 97
yiite, 6. 821
vite, 12. 531
2. 710
, 12. 150, 402
okite, 14. 251
```

 \mathbf{T}

```
ir, 6. 141
             e, 6. 622
             habit, 1. 597
             O., 52
             rite, 2. 15, 430; 4. 252, 298, 309
             halite, 6. 847
             haltite, 7. 100
             ite, 3. 623, 697
            vdrite, 7. 897
n, 12. 708
htt, 12. 708
             fgrätt, 12. 708
            lfhwitt, 12. 708
itt, 12. 708
12. 528, 531; 15. 260
             rosol, 15. 262
             8. 289; 8. 734
             and spectrum, 4. 7
            to, 6. 407
             rocess, 3. 416
             251; 6. 420; 15. 9
             u, 6. 458
             e, 6. 622
             orite, 6. 622; 12. 531 thy, 6. 472
             nuleux, 6. 472
             lrato, 4. 290
             n, 6. 431
             ist, 6. 430
- talcapatite, 3. 896
```

S	
Talchus, 6. 429	Tantalum nitrate, 9. 925
Talcite, 6. 606	—— occurrence, 9 . 838
Talcium, 4. 251	oxide extraction, 9. 840
—— carbonatum, 4 . 349	oxides lower, 9. 885
Talcoid, 6. 430	—— oxybromide, 9 . 922
Talcose slate, 6. 430	oxybromohexachloride, 9. 923
Talcosite, 6. 473	oxychlorides, 9. 919
Talcum, 6, 429	oxydihydroxypentachloride, 9. 921 oxyfluorides, 9. 914
Talkerde, 4. 250, 280; 6. 472	oxyheptachloride, 9. 921
reine, 4 . 349 kohlensaurer, 4 . 349	oxylodides, 9 . 923, 924
Tallingite, 2. 15; 3. 178	oxysulphate, 9. 925
Tallow clays, 4. 406; 6. 442	oxytribromide, 9. 923
Taltalite, 6. 741	— oxytrichloride, 9. 921
Talutiæ, 16. l	oxytrifluoride, 9. 918
Tamarite, 9. 162	—— palladium alloys, 15. 650
Tamarugite, 2. 656; 5. 341	—— pentabromide, 9. 922
Tammeltantalite, 9. 909	—— pentachloride, 9. 920
Tangeite, 9, 772	pentafluoride, 9. 914
Tankite, 6. 693	
Tannenite, 9. 690 Tannic acid, 13. 613, 616	
Tantalate, 9. 868	—— platinum alloys, 16 . 215
Tantalates, 9. 900	preparation, 9. 883
Tantalic acid, 9. 896	properties, chemical, 9. 890
Tantalite, 7. 255; 9. 839, 906, 907, 909	physical, 9. 884
Tantalotungstates, 9. 904	reactions, 9 . 852
Tantalum, 9. 837, 883	sclenide, 10 . 796
amminopentachloride, 9. 921	silicide, 6 . 189
atomic number, 9. 894	solubility of hydrogen, 1. 307
weight, 9 . 883	sulphate, 9 . 924 sulphide, 9 . 924
bromogulphate 9 925	- sulphofluoride, 9 . 925
— bromosulphato, 9 . 925 carbide, 5 . 888	- tetrachloride, 9. 919
	tetroxide, 9 . 885
—— cassiterite, 7. 394	tribromide, 9. 922
chlorides, 9. 919	tribromohexachloride, 9. 923
chlorosulphate, 9. 925	trichloride, 9. 919
chromium alloys, 11. 173	trioxide, 9. 885
—— colloidal, 9. 883	trioxytetrachloride, 9. 921
——copper-tungsten-nickel, 15. 251	tritapentanitride, 8. 126
—— dichloride, 9 , 919	uses, 9. 893
—— dinitride, 8 . 126 —— dioxide, 9 . 895	valency, 9. 893 zirconium, 6. 117
—— dioxychloride, 9 . 921	Tantiron, 13, 559, 570
disulphide, 9. 924	Tanzite, 9. 343, 589
—— electronic structure, 9. 884	Taouisto, 1. 23
fluochlorosulphide, 9. 925	Tap cinder, 12. 638
—— fluorides, 9 . 914	—— water, 13. 608
—— heptatritabromide, 9. 922	Tapalpite, 9. 589; 11. 62
—— heptatritachloride, 9. 920	Tapiolite, 9. 839, 909; 12. 531
hexabromochloride, 9. 923	Taramellite, 6. 922; 12. 531
hexabromoiodide, 9. 924	Taranakite, 12. 531
	Tarapacaite, 11. 125 Tarapacite, 11. 249
	Tarbuttite, 4. 660
colloidal, 9 . 898	Tarnovicite, 7. 855
hydroxyhexabromide, 9, 923	Tarnowitzite, 3. 622; 7. 855
—— iodides, 9 . 923	Tartalite, 12. 531
iron alloy, 13 . 585	Tartaric acid, 13. 613, 616
isotopes, 9. 884	Tartarus vitriolatus, 2. 656
—— molybdate, 11. 570	Tauriscite, 12, 531; 14, 245
	Tautocline, 4. 371
nickel alloys, 15. 248	Tautolite, 5. 509
	Tautomerism, 10. 240 Tavistockite, 8. 623; 5. 155, 370; 8. 734
copper alloys, 15. 238	Tawmawite, 6 . 866
——————————————————————————————————————	Taylorite, 6. 495
iron alloys, 15. 315	Teallite, 7. 283, 477, 491
zirconium alloys, 15. 238	Tectites, 15. 9

Telgstein, 6. 429	Tellurium physiological action, 11. 29
Tellemarkite, 6, 715	properties, chemical, 11. 25
Tellurates, 11. 2, 88	physical, 11. 11
Tellurato-iodie acid, 2. 363	radio, 4. 114
Tellurgoldsilber, 11, 49	selenate, 10. 875
Tellurgoldverbindung, 11. 46	—— selenide, 10. 796
Telluric acid, 11, 83; 15, 151	selenotrioxides, 11. 114
——————————————————————————————————————	sulphotrioxide, 10. 306; 11. 114, 115,
	116
——————————————————————————————————————	tetrabromide, 11 . 103
Tellurides, 9, 589; 11, 2, 40	tetrachloride, 11. 100
Tellurite, 11. 2, 72	tetrafluoride, 11. 98
Tellurites, 11. 2, 77	tetrahydrate, 11. 98
Telluritomolybdates, 11, 81	tetraiodide, 11. 105
Telluritotungstates, 11, 82 Tellurium, 1, 264; 11, 109; 15, 151	- tetramminotetrachloride, 11, 101 - triamminotetrachloride, 11, 101
ammonium sulphite, 10. 306	- trioxide, 11. 83
analytical reactions, 11, 28	- trioxysulphotetrachloride, 11. 118
anhydrosulphatotetroxide, 10. 345	trisulphide, 11 . 110
antimonates, 9. 459	tritaheptoxide, 11. 88
atomic disruption, 11. 35	tritatetranitride, 11. 58
number, 11. 35	—— ultramarine, 6 . 590
——— weight, 11. 32	uses, 11. 30
— — bismuth glance, 11. 2	— · valency, 11. 32
colloidal, 11 . 9	Tellurobismuth, 9. 589
disulphide, 11 . 110	Tellurocupric acid, 3, 150
diamminodichloride, 11. 100	Telluromolybdate, 11. 63
dibromide, 11. 103	Telluronium salts, 11. 32
dichloride, 11 . 99	Tellurosic oxide, 11. 88
diiodide, 11 . 103 dioxide, 11 . 70, 71 ; 15 . 151	Tellurothionates, 11. 97
dioxydihydrodichloride, 11. 109	Tellurothiosulphuric acid, 11, 118 Tellurotungstate, 11, 63
— dioxytrihydrotribromide, 11. 109	Tellurous acid, 11. 72
dioxytrihydrotrichloride, 11. 109	Tellursilber, 11. 44, 49
—— disulphide, 11. 110	Tellursilberblende, 11. 44
—— electronic structure, 11. 35	Tellursilberglanz, 11. 44
extraction, 11. 4	Telluryl bromide, 11. 109
—— foliated, 3. 494	dichloride, 11 . 109
—— graphic, 3. 494	difluoride, 11 . 108
halides, 11. 98	oxyhydroxynitrate, 11. 119
—— heptoxydisulphodibromide, 11. 118 —— hexafluoride, 11. 98	oxysulphate, 11, 117
hexaiodide, 11. 105	Teluspyrine, 14. 200
hexamminosulphate, 11. 118	Temiskamite, 15. 6
hexamminotetrabromide, 11. 104	Temper brittleness, 12. 696
hexamminotetrachloride, 11. 101	carbon, 5. 739
hexoxydisulphotetrachloride, 11. 118	colours, 12. 696
hexoxyoctoflúoride, 11. 108	Temperament, influence on judgments, 3.
history, 11. 1	526
hydropentachloride, 11. 107	Temperature, absolute, 1. 160
hydropentaiodide, 11. 106	action on vol. gases, 1. 158, 160
isotopes, 11. 35 monosulphide, 11. 110	and osmotic pressure, 1. 545 refractive index, 1. 675
	coefficient of reactions, 1. 702
nitrates, 11. 119	critical 1, 165
—— nitride, 8. 126	
nitrite, 8 . 498	effect on chemical equilibrium, 1. 732
occurrence, 11. 1	
—— oxychlorides, 11. 109	equilibria, 2. 145
—— oxydibromide, 11 . 109	cutectic, 1. 517
oxydichloride, 11. 109	freezing, 1. 457
	inversion, 1. 866
oxyhalides, 11. 108 oxyiodides, 11. 109	normal, 1. 161 standard, 1. 161
—— phosphates, 11. 120	Temperatures, transition, 1, 512, 513
—— phosphide, 11. 58	Tempering, 12. 690
phosphoryl heptachloride, 8, 1024	Temperkohle, 12. 858
phosphotridecachloride, 11. 101	Tengerite, 4. 206; 5. 521

Tetracalcium phosphate, 3. 903

Tenn, 7. 276	
Tennantite, 8. 7; 9. 4, 291	
Tonnana 5 507	
Tennspar, 5. 507	
Tenorite, 8. 7, 131	
Tensile strength, 1. 821, 822	
——————————————————————————————————————	
Tepalcate, 2. 711 Tephroite, 6. 386, 892; 12. 150	
Tephroite, 6 . 386, 892; 12 . 150	
Tephrowillemite, 6. 438	
Tequezquite, 2. 711	
Teratolite, 6. 473	
Terbia, 5. 497, 693	
earths isolation, 5. 688	
Terbium, 5. 686	
otomic number E 600	
—— atomic number, 5 . 690 —— weight, 5 . 690	
weight, 5 . 090	
bromide, 5. 694	
carbonate, 5. 695	
chloride, 5. 693	
chromate, 11. 288	
family earths isolation, 5. 686	
hydroxide, 5 . 693	
isolation, 5. 553	
nitrate, 5, 695	
nitrate, 5 . 695 occurrence, 5 . 686	
oxychloride, 5 . 694	
peroxide, 5 . 693	
poroxide, 5. 095	
- properties, 5. 688	
sesquioxide, 5. 693	
silicododecatungstate, 6. 880	
solubility of hydrogen, 1. 307	
Tererite, 6 . 619	
Terlinguaite, 2. 15; 4. 697	
Termierite, 6. 498	
Ternary system, pseudo, 1, 524	
Terne plates, 7. 630	
Terra alkalına, 3. 619	
—— calcaris, 5. 150	
catta & 514	
cotta, 6 . 514	
damnata, 1. 55	
—— di siena, 13. 887	
fluida, 1. 64	
lapida, 1. 64	
mercurialis, 1. 64	
pinguis, 1. 64	
plumbaria citrino, 7. 638	
— rubia, 7. 638	
ponderosa, 3. 620	
porcelanea, 6. 432	
—— porcellana, 6. 472	
porcenana, 0. 472	
rose, 13 . 782	
—— sigillate, 6 . 471 —— vitroscibilis, 1 . 64; 6 . 135, 136	
vitrescibilis, 1. 64; 6. 135, 136	
Terrar, 7. 121	
Terre a foullon, 6. 496	
argilleuse, 5 . 150	
verte di Verone, 6. 920	
Terrea cobalt fuliginea, 12. 266	
Tertiarium, 7. 630	
Tesselite, 6. 368	
Tesserel pyrites, 15. 9	
Testum argentii, 9. 587	
Tetartin, 6. 663	
Tetartohedral symmetry, 1. 613	
Totachago popor 4 050	
Tetrabase paper, 1, 950 Tetraboric acid, 5, 47	
Tetraboron pentoxide, 5, 39	
trioxide; 5. 39	
Tetra bromosilane, 6. 977	

```
Tetrachlorobismuthous acid, 9. 667
Tetrachlorochromic acid, 11. 386
Tetrachlorodioxyruthenic acid, 15. 535
Tetrachlorosilane, 6, 960
Tetrachlorostannites, 7. 429
Tetrachromates, 11. 351
Tetracobaltic hexol-dodecammines, 14. 710
        - sexiesethylenediamines, 14, 710
  - - salts, 14. 710
Tetracosivanadates, 9. 202
Tetracupric trioxydihydroxide, 3. 142
Tetrad. 1. 224
Tetradecachlorohexasilane, 6. 960
Tetradecachlorosilane, 6. 973
Tetradecachlorosilicohexane, 6, 960, 973
Tetradecahydrodecasildecoxane, 6. 232
Tetradecametaphosphoric acid, 8. 990
Tetradecavanadates, 9. 202
Tetrads, 1, 206
Tetradymite, 9, 589; 11, 2, 4, 60
Tetraethylammonium bromoperruthenite,
       15, 538
    - bromosmate, 15. 723
 - - chloroiridate, 15. 770
- - chloropalladate, 15. 673
   - chloroperruthenite, 15, 532
- - chlororuthenate, 15. 534- chlorosmate, 15. 719
   - dimolybdate, 11. 581
--- enneachlorodirhodate, 15, 580
--- ferroheptanitrosyltrisulphide, 8, 442
 – – palladate, 15. 678
---- tetrabromoaquotungstite, 11. 854
- --- tribromopalladite, 15. 678
- - uranyl chloride, 12, 89
Tetraethylmonosilane, 6. 216
Tetraferrous ferric oxide, 13, 807
Tetrafluosilane, 6. 934
Tetragenic salt, 4. 343
Tetragonal system, 1, 619
Tetragophosphite, 5, 370
Tetrahedrite, 4. 406; 9. 4, 291, 343, 536;
Tetrahedron theory, carbon atom, 1. 214
Tetrahydrated dodecamanganite, 12. 275
Tetrahydrododecamolybdates, 11. 582
Tetrahydrododecatungstates, 11. 773
Tetrahydrohexamolybdates, 11. 582
Tetrahydrohexatungstates, 11. 773
Tetrahydroxydichloroplatinie acid, 16. 334
Tetrahydroxysulphatoplatinic acid, 16. 405
l'otraiodosilane, 6. 982
Tetraiodosilene, 6. 984
Tetraiodosilicoethene, 6. 984
Tetraiodosilicolthylene, 6. 984
Tetraiodosilicomethane, 6. 982
Tetrametaphosphimic acid, 8. 718
Tetramethylammonium bromopalladate,
       15. 678
    - bromopalladite, 15. 677
   - bromoperruthenite, 15. 538

    bromosmate, 15. 722

---- chloroiridate, 15. 770
---- chloropalladate, 15. 673
---- chloropalladite, 15. 670
--- chloroperruthenite, 15. 532
---- chloroplatinate, 16. 318
  - chlororuthenate, 15. 534
   - chlorosmate, 15. 719
```

Tetramethylammonium enneachlorodirho-	Thallic ammonium disulphate, 5. 469
date, 15. 580	
ferric fluoride, 14. 7	—— arsenato, 9. 187
ferroheptanitrosyltrisulphide, 8. 442	—— azide, 8. 352
fluochromate, 11. 365	
——————————————————————————————————————	monohydrated, 5, 452
monoperchromate, 11. 358	
tetrachloroferrate, 14. 101	cæsium disulphate, 5. 470 chloride, 5. 442
—— uranyl tetrachloride; 12. 89 Tetramethylarsonium iodostannate, 7. 463	
Tetramethyl paper, 1. 950	monohydrated, 5. 442
Tetramethylphosphonium chloride, 8. 816	totrahydrated, 5. 442
Tetramidodiphosphoric acid, 8, 710	chloroiodide, 5 . 459
Tetramidotetraphosphoric acid, 8. 716	
Tetramolybdates, 11, 582, 591	chromate, 11. 286
Tetramorphism, 1, 596	cobaltous octochloride, 14. 646
Tetranhydrosulphatochlorine monoxide, 10.	decamminosulphate, 5. 469
344	fluodibromide, 5 . 453
Tetranitritodiamminocobaltiates, 8, 509	fluodichloride, 5, 447
Tetranitroxyltrinitric acid, 8, 542	trihydrated, 5 . 447
Tetrantimonic acid, 9. 443	fluoride, 5. 437
Tetra-paper, 1. 950	hydronitrate, 5 . 477
Tetraphosphonitrilic chloride, 8, 723	hydroselenate, 10. 871
hydroxychloride, 8. 723	hydrosulphate, 5. 469
Tetraphosphoric acid, 8, 991	hydroxide, 5 , 431, 435
Tetraphylin, 12, 453	- hydroxyselenate, 10. 871
Tetraplumbic acid, 7, 685	hydroxysulphate, 5. 469
Tetraquodiammines, 11. 402	- iodate, 2. 355
Tetraquodipyridines, 11, 402	iodide, 5, 460
Tetraselenitohexavanadic acid, 10. 835	lithium disulphate, 5, 469
octohydrate, 10. 835	manganous octochloride, 22, 370
tetrahydrate, 10. 835	monobromodichloride tetraliydrated,
Tetraselenitovanadic acid, 10. 835	5. 453
Tetrasilane, 6. 224	nickel octochloride, 15. 420
Tetrasilicane, 6. 224	nitrate, 5. 477
Tetrasiloxane, 6. 235	
Tetrasodium cobaltous trimetaphosphate,	orthophosphate, 5, 479
14. 854	——————————————————————————————————————
——————————————————————————————————————	oxyfluoride, 5 . 437
Tetrasulphammonic acid, 8, 667	oxyhydrosulphate, 5. 469
Tetrasulphates, 10. 448 Tetratellurous acid, 11. 77	- perchlorate, 2, 402
Tetrathiocyanatodiammines, 11. 406	periodate, 2. 415
Tetrathiocyanatodipyridines, 11. 407	permanganite, 12 . 279
Totrathiocyanatoethylenediamine, 11. 407	- peroxide, 5 . 430, 435
Tetrathionates, 10. 610, 617	potash alum, 5. 467
Tetrathionic acid, 10. 610, 611	potassium disulphate, 5. 470
—— anhydride, 10. 611	hydroxydisulphate, 5. 470
Tetrathiophosphoric acid, 8, 1062	selenate, 10. 871
Tetratungstates, 11. 821	rubidium disulphate, 5. 470
Tetrauranyl ammonium pentasulphite, 10.	selenite, 10 . 830
308	sodium disulphate, 5 . 469
calcium tricarbonate, 12, 115	sulphate, 5 . 468
—— potassium pentasulphite, 10. 308	—— heptahydrated, 5. 468
—— sodium pentasulphite, 10. 308	sulphates complex, 5. 469
Tetravanadates, 9. 202	
Tetrazenes, 8. 329	—— sulphuric acid, 5 . 469
Totrazone, 8. 329	tetramminofluodibromide, 5. 453
Tetreropolyvanadic acid, 9. 758	- tetramminofluodichloride, 5. 417
Tetrerosilicic acids, 6. 308	triamminobromide, 5. 452
Texasite, 15. 6	tungstate, 11. 789
Thalackerite, 6. 396	(meta)thallic hydroxide, 5, 431, 434
Thalenite, 5. 512; 6. 859	Thallite, 6. 721
Thales, 1. 31	Thallium, 5. 406
Thalite, 6. 432	
Thalliarsenates, 9, 187	
Thallibromschwefelsäure, 5, 470	amidosulphonato, 8. 044 ammonium hydroxydisulphate, 15. 786
Thallie amminoselenate, 10. 871	analytical reactions, 5, 423
ammonium bromoplumbite, 7, 753	and aluminium, 5. 429
chloroplumbite, 7. 732	title totalismining, v. 100

GENERAL	INDEX
Thallium and cadmium, 5. 428	Thallium nickel alloys, 15. 231
- — copper, 5 . 426	cadmium nitrite, 8. 512
gold, 5 . 4 27	nitrates, 5. 472
indium, 5 . 429	nitratochabazite, 6. 733
	occurrence, 5. 406
zinc, 5. 427	octosulphate, 10 . 448 orthoarsenite, 9 . 128
- arsenatoctovanadatohenicositung- state, 9 . 203	- orthodocavanadate, 9. 775
- arsenatodecavanadatodotriconta-	orthotetravanadate, 9. 775
molybdate, 9, 202	— — orthovanadate, 9 . 775
arsenatovanadatotungstate, 9. 215	- oxides, 5. 430
atomic number, 5. 424	- oxypentafluocolumbate, 9. 874
weight, 5. 424	pontachlorobismuthite, 9. 668
- barum cobalt nitrite, 8, 505	- pentahydrotriphosphate, 5, 478 - pentamminotrichloride, 5, 444
basic sulphates, 5, 469	- pentaselenide, 10. 782
boride, 5. 26 borotungstate, 5. 110	pentasulplude, 5. 464
bromides, 5, 450	pentasulphodiarsenoantimonate, 9.575
cadminn voltaite, 14, 353	pentatritabismuthide, 9. 638
carbonates, 5 . 471	pentitatritelluride, 11. 54
ceric sulphate, 5, 662	- perdisulphomolybdate, 11, 654
- cerous mekel nitrite, 8, 512	phosphates, 5, 477 phosphide, 8, 846
chlorides, 5 . 438	- phosphide, 8. 840 - platinum alloys, 16. 210
- chloroaurate, 3, 595 - chromum sulphate, 11, 464	amalgam, 16, 211
- cobalt alloys, 14. 536	lead alloy, 16, 215
mekel mitrite, 8, 512	mercury alloy, 16. 211
cobaltic hexamnunosulphate, 14. 791	silver alloy, 16. 211
- hexanitrite, 8 , 505	zine alloy, 16 , 211
- — cobaltous sulphite, 10 . 314	—— properties, chemical, 5, 419 —— physical, 5, 411
- colloidal, 5, 410	— pyrovanadate, 9 . 775
copper cerous nitrite, 8 , 496 deuterotetradecavanadate, 9 , 775	sesquibromide, 5. 453
- dibromide, 5, 453, 456	sesquichloride, 5. 447
- dibromochloride tetrahydrated, 5. 453	—— sesquiodide, 5. 460
dichloride, 5, 448	
- dihydrofluoride, 5. 437	—— silicododecatungstate, 6 . 880 — silver cobaltic hexanitrites, 8 . 504
dihydropyrophosphite, 8, 922	solubility of hydrogen, 1, 306, 308
dioxide, 5. 435 - disulphatochromiate, 11 . 464	suboxide, 5. 430
disulphatovanadite, 9. 821	sulphates, 5 . 465
enneachlorodibismuthite, 9. 668	—— sulphide, 5. 462
- extraction, 5. 408	sulphoantimonate. 9, 575
ferrate, 13. 936	- sulphovanadatomolybdate, 11. 652 - thorium carbonate, 7. 249
ferrous voltaite, 14, 353	- enneasulphate, 7. 247
— — fluoride, 5 , 436 — — ferroheptanitrosyltrisulphide, 8 , 442	trisulphate, 7. 247
glasses, 6. 826	trisulphate, 7. 247
- hemiplumbide, 7. 626	tetrahydrate, 7. 247
- hemitelluride, 11. 54	trihydrate, 7, 247
- heptafluotantalate, 9. 917	—— triamminotrichloride, 5. 444 —— trichloride, 5. 442
hexachlorobismuthite, 9, 668	- triodide, 5, 442
hexavanadyl tetrasulphite, 10 . 305	trisclende, 10. 782
—— history, 5 . 406 —— imide, 8 . 262	tritaantimonide, 5, 422
iodides, 5. 458	- tritabismuthide, 5, 422; 9, 638
iron alloys, 13. 557	tritaditelluride, 11. 54
—— isotopes, 5 . 424	tritantimonide, 9, 409
lead alloys, 7. 625	—— tritapentabismuthide, 5, 422 —— trithionate, 10, 609
——————————————————————————————————————	uranyl nickel nitrite, 8. 512
silver metasulpharsenite, 9. 301 ——leucite, 6. 651	——————————————————————————————————————
magnesium voltaite, 14, 353	vanadatomolybdatoarsenate, 9. 212
manganese alloy, 12. 215	—— vanadous sulphate, 9, 821
mercuric nickel nitrite, 8. 512	(tri)thallium hydrosulphate, 5, 468
—— mesolite, 6 . 751	- — tetrabromodichloride, 5. 456 tetrachlorodibromide, 5. 457
—— metavanadate, 9. 775	tetraiodide, 5. 460
molybdenum alloys, 11, 523	— tribromotrichloride, 5 . 457
monochloride, 5. 438 monotelluride, 11. 54	Thalloanalcite, 6. 826
IIIOMATACCIACIONE / AAT ***	

Thallochabazite, 6. 826	Thallous cuprosic sulphite, 10. 302
Thalloleucite, 6. 826	decaborate, 5. 103
Thallomesolite, 6. 826	decafluotriantimonite, 9. 466 diarsenatoctodecatungstate, 9. 214
Thallonatrolite, 6. 826	—— dibromotetrachlorothallate, 5. 454
Thallosic azide, 8. 352 —— bromide, 5. 453	dichromate, 11. 342
	dihydroarsenate, 9. 187
—— chloride, 5. 447	dihydrohypophosphate, 8. 938
chloroselenate, 10. 913	—— dihydronitrate, 5. 475
—— iodide, 5. 460	—— dihydrophosphate, 5. 478
—— nitrate, 5 . 475	—— dihydropyrophosphate, 5. 479
oxide, 5. 430, 432	dihydroxydichloropalladate, 15. 673
selenide, 10 . 782	—— dihydroxytetrabromoplatinate, 16. 381
—— sulphates, 5. 468	dihydroxytetrachloroplatinate, 18. 334
sulphides, 5. 464	—— dihydroxytetraiodoplatinate, 16. 391 —— diiododinitritoplatinite, 8. 523
—— tridecachlorodihypoantimonate, 9. 485 —— trinitrosyl ehloride, 5. 432, 448	dimagnesium sulphate, 5. 467
Thallosothallic sulphates, 5. 468	dioxytetrafluomolybdate, 11. 614
Thallostilbite, 6. 826	dioxytrifluomolybdate, 11. 612
Thallous aluminate, 5. 297, 432	diplatinic hexasulphoplatinate, 16. 396
—— aluminium disulphate, 5. 467	— – dithionate, 10. 593
——— selenate, 10. 871	divanadylpentafluoride, 9. 801
ammonium iridium disulphate, 15. 786	dodecaborate, 5. 103
—— —— phosphate, 5. 478	dodecafluoaluminate, 5. 310
antimonious thiosulphate, 10. 553	—— enneafluoaluminate, 5. 437 —— enneafluoferrate, 14. 8
—— antimonitotungstate, 9. 433	ethoxide, 5. 431
	ferric alum, 14. 349
—— auric nitrate, 5. 476	——————————————————————————————————————
azide, 8. 352	pentachloride, 14. 105
barium chlorides, 5. 441	—— ferrous selenate, 10. 882
	—— —— sulphate, 14. 300
bismuth nitrite, 8. 499	———— sulphite, 10. 312
thiosulphate, 10. 554	fluochromate, 11. 365
	—— fluoride monohydrated, 5. 430
	—— fluosilicate, 6. 954 —— gallie alum, 5. 467
—— bromosulphatothallate, 5. 470	—— gallic alum, 5. 467 —— gallium disulphate, 5. 467
—— cadmium chloride, 5. 441	heptabromoaluminate, 5. 457
—— sulphite, 10. 302	heptachloroaluminate, 5. 442
—— calcium chloride, 5. 441	heptadecafluotrizirconate, 7. 142
——————————————————————————————————————	heptafluodiantimonite, 9. 466
—— carbonate, 5. 471	—— heptafluotetroxyditungstate, 11. 840
cerous nitrate, 5. 671	—— heptafluozirconate, 7. 142
	—— heptanitritobismuthite, 8, 499 —— heptasulphatosulphate, 5, 466
—— chlorate, 2. 355 —— chloride, 5. 438	— hexaborate, 5. 103
chloroaurate, 5. 441	hexachlorothallate, 5. 449
chlorochromate, 11. 399	—— hexahydroxyplatinate, 16. 246
chloro-dioxyvanadate, 9. 809	— hydroarsenate, 9. 187
—— chloroiridate, 15. 772	hydrocarbonate, 5. 472
chloromanganite, 12. 380	hydrochromate, 11. 285
chloropalladite, 15. 670	hydrofluoride, 5. 437
chloroperiridite, 15. 765	hydrohypophosphate, 8 . 938 hydrophosphate, 5 . 478
chloroplatinate, 16. 329 chloroplatinite, 16. 284	
——————————————————————————————————————	hydroselenate, 10. 870
chlorothallate, 5. 447	hydroselenite, 10. 830
chromate, 11. 285	—— hydrosulphate, 5. 467
chromic selenate, 10. 836, 876	hydrosulphite, 10. 301
chromium enneafluoride, 11. 364	hydroxide, 5. 430, 431
hexachloride, 11. 419	bydrowydiaulphata 15 786
cobaltous disulphate, 14. 782	
	hydroxypentachloroplatinate, 16. 335
cupric sulphate, 5. 466	— hypophosphate, 8. 938
——————————————————————————————————————	hypophosphite, 8. 886
hexahydrate, 10. 302	iodate, 2. 355
thiosulphate, 10. 549	iodide, 5 . 458
cuprinitrite, 8. 496	iridium disulphate, 15. 785, 786

Thallous lanthanum nitrate, 5. 671	Thallous pentaiodide, 5. 461
—— lead nickel nitrite, 8. 512	pentaiodobismuthite, 9. 677
	pentasulphocuprate, 5. 463
sulphide, 7. 797	—— perborate, 5 . 120
lithium dithionates, 10. 594	—— perchlorate, 2. 402
magnesium carbonate, 5, 472	periodate, 2. 415
	permanganate, 12. 336
orthophosphate, 5, 478	—— permolybdate, 11. 608
	perrhenate, 12. 477
	perselenate, 10. 852
manganate, 12, 289	—— persulphate, 10. 480
	phosphatodecamolybdate, 11. 665
pentachloride 12, 379	phosphatohexatungstate. 11. 873
——————————————————————————————————————	platinic cositungstate, 11. 803
tetregulphate 12 430	— platinosic sulphate, 16. 403
tetracosihydrate, 12. 430	—— platinum molybdate, 11. 576
manganosic tridecafluoride, 12. 346	— potassium chromate, 11. 286
manganous disulphate, 12. 424	dithionates, 10. 594
	perconhambate 5 479
hexahydrate, 12. 424	—— pyrophosphate, 5. 478 —— dihydrated, 5. 479
selenate, 10. 879	
——————————————————————————————————————	pyrosulpharsenite, 9. 297
mercuric promide, 5. 451	pyrosulphate, 10. 447
chloride, 5, 442	rhenium bromide, 12. 480
chloride, 5. 442 dibromonitrate, 5. 476 dichloronitrate, 5. 476	chloride, 12 . 480
dichloronitrate, 5. 476	rhodium alum, 15 . 588
10dide, 5 , 459	disulphate, 15 . 588
nitrate, 5. 476	selenatoaluminate, 60, 871
—— mercurous nitrate, 5. 476	selenatochromate, 10. 876
metaborate, 5 . 103	sclenide, 10 . 782
metachloroantimonate, 9. 491	selenite, 10 . 830
metantimonate, 9. 457	silicate, 6 . 826
metaphosphate, 5. 479	silicododecamolybdate, 6. 871
metaplumbate, 7. 701	silver sulphide, 5. 463
—— metasulpharsenite, 9. 297	—— sodium dithionates, 10. 594
metatungstate, 11. 826	pentathiosulphate, 10. 549
molybdate, 11. 563	trithiosulphate, 10. 549
molybdenum oxypentafluomolybdate,	strontium chloride, 5. 441
11. 611	——————————————————————————————————————
nickel nitrite, 8. 512	sulphate, 5. 465
—— nitritobismuthite, 8. 513	- — sulphatodithionate, 10. 594
selenate, 10. 889	sulphatoperiridite, 15. 784
——————————————————————————————————————	sulphatothallate, 5. 468
nickelonitrite, 8. 512	sulphide, 5 . 462
nickelous disulphate, 15. 476	colloidal, 5 . 462
	- sulphite, 10. 301
nitrate, 5. 472 nitride, 8. 114	sulphoantimonite, 9. 543
nitrite, 8. 496	
nitrosyl chloride, 8. 617	sulphorthostannate, 7. 476
octoborate, 5. 103	tellurate, 11. 96
orthographete 5 477	tetraborate, 5. 102
orthophosphate, 5. 477	tetrabromoaluminate, 5. 457
orthosulpharsenate, 9. 321	tetrabromodichlorothallate, 5. 456
orthosulpharsenite, 9. 297	tetrachloroaluminate, 5. 442
osmiamate, 15. 728	tetrachlorobispyridinoperiridite, 15.
oxide, 5 . 430, 431	766
paramolybdate, 11. 587	—— tetrachlorothallate, 5. 449
paratungstate, 11. 819	tetrafluoantimonite, 9. 466
—— pentaborate, 5. 103	tetrafluodioxytungstate, 11. 840
—— pentabromobismuthite, 9. 673	tetrafluohypovanadate, 9. 798
—— pentachloroantimonite, 9. 482	tetrafluovanadite, 9. 797
	tetrahydroxydichloroplatinate, 16. 335
—— pentachlorohypoantimonate, 9. 485	tetramminopotassicamide, 8. 262
pentachloropicnoiridate, 15. 768	tetranitritodiamminocobaltiate, 8. 510
pentachloroplumbite, 7. 632	tetranitritoplatinite, 8. 521
pentachloropyridinoiridate, 15. 768	thallisulphate, 5. 468
— pentachloropyridinoperiridite, 15. 766	thiophosphate, 8. 1065
—— pentachlorostannite, 7. 434	thiosulphate, 10. 549
—— pentafluovanadite, 9. 797	—— thorium nitrate, 7. 251
—— pentafluozirconate, 7. 142	triamminobromide, 5. 451
pentahydroxychloroplatinate, 16. 333	triamminochloride, 5. 441

Thallous triamminoiodide, 5. 459	Thiodiimide, 8. 250
	Thiogen process sulphur, 10. 17
	Thiohypophosphates, 8, 1063
tribromotrichlorothallate, 5. 455	
trichloroplumbite, 7, 732	Thiol-compounds, 6, 119
trichlorostannite, 7. 434	Thiolearbonic acid, 6, 119
trichromate, 11. 351	Thiolthioncarbonic acid, 6. 119
trifluodioxytungstate, 11, 840	Thiometaphosphoryl bromide, 8, 1078
trihydronitrate, 5 . 475	Thion-compounds, 6. 119
triiodide, 5 . 461	Thionearbonic acid, 6, 119
triiodoplumbite, 7. 778	Thionamide, 8, 629
trioxysulphoperrhenate, 12, 480	Thionyl, 10. 655
trisulphocuprate, 5. 463	amide, 8 . 660
triterohexavanadate, 9. 775	—— bromide, 10 . 662
tungstate, 11 . 789	chloride, 10 . 656
tungsten enneachloride, 11. 842	ehlorobromide, 10. 664
uranate, 12 . 64	— fluoride, 10 . 655
	- halides, 10 . 655
uranyl disulphate, 12. 110	hemipentamminofluoride, 10. 656
sulphate, 12, 17	
tricarbonate, 12, 116	
trinitrate, 12. 127	iodide, 10 , 664
vanadyl oxychloride, 5. 432	- oxide, 10, 181
—— zinc chloride, 5 . 441	Thioorthophosphates, 8, 1064
— selenate, 10 . 871	Theopermonosulphuric acid, 10, 604
sulphate, 5 . 467	Thiophosgene, 6, 92
sulphite, 10 . 302	Thiophosphates, 8, 1061
zircomum enneasulphate, 7, 160	Thiophosphites, 8, 1062
pentasulphate, 7, 160	Thiophosphoric acids, 8, 1061
tetrasulphate, 7, 160	Thiophosphorous acid, 8, 1062
Tharandite, 4. 371	Thiophosphoryl amide, 8, 725
Thaumasite, 6. 365	—— bromide, 8 . 1076
Theamedes, 6. 740	hydrated, 8 . 1077
	chloride, 8 . 1074
Theophrastite, 15, 447	—— chlorodibromide, 8 . 1078
Thermit, 5, 218	
Thermite reactions, 5, 218	- — diamidochloride, 8 , 707, 1075
Thenardite, 2, 430, 661	diamidofluoride, 8 707, 1073
Thénard's blue, 5, 298; 14, 519	dichlorobromide, 8. 1078
Theophrastite, 9, 696	— fluoride, 8 . 1071
Theophrastus, 1. 36	— halides, 8 . 1071
Theories, 1. 72	- hydrosulphodibromide, 8, 1076
Theory, 1. 13	nitrile, 8 . 726
Thermal analysis, 1, 578	Thiopyrophosphoric acid, 8, 1062
—— and electrical energy : relation, 1, 1036	Thiopyrophosphorous acid, 8, 1062
conductivity, 3. 52	Thiopyrophosphoryl hexabromide, 8, 1077
and isomorphism, 1. 658	tetrabromide, 8, 1077
Thermisilid, 13. 559	Thiorsauite, 6, 693
Thermochemical constant, 1, 710	Thioschwefelsaure, 10, 485
	Thiosesquicarbonic acid, 6. 114
Thermochemistry, 1, 697, 698, 711	
oxychlorine acids, 2, 379	Thiostannates, 7, 473
Thermodynamic potential, 1, 727	Thiosulphates, 10. 514
Thermodynamics, 1. 711	constitution, 10 , 507
—— first law, 1, 693, 694	Thiosulphuric acid, 10, 485
second law, 1. 713	Thiotriazyl bromide, 8, 632
Thermonatrite, 2. 751	Thiotrithiazyl, 8, 631
Thermoneutrality, Hess' law, 1, 1008	chloride, 8 . 631
Thermoneutralitz, Hess' law, 1, 1007	hydrosulphate, 8, 631
Thermophyllite, 6, 422	iodide, 8 . 632
Thilorier's freezing mixture, 6. 32	—— nitrate, 8 . 631
Thio-compound, 6, 119	thiocyanate, 8 . 632
salts, sec Sulpho-salts	Thiozincate, see Sulphozincate
Thiocarbamates, 6. 132	Thiozone, 10. 36
Thiocarbamie acids, 6. 132, 133	Thiozomides, 10. 36
Thiocarbamide, 15, 576	Thixotropy, 13. 852
Thiocarbonates, 6. 119	Thomaite, 14. 355
	Thomas Aquinas, 1, 46
Thiocarbonic acid, 6, 119, 120	Gilchrist steel, 12. 652
a-thiocarbonic acid, 6, 119	Thomasite, 3, 903; 6, 835
β-thiocarbonic acid, 6. 119	
Thiocarbonyl chloride, 6, 91	Thompson, see Kelvin
tetrachloride, 6, 92, 110	Thomsenolite, 2. 1; 3. 623; 5. 154, 303, 309
thiochloride, 6, 93	Thomsonite, 6, 575, 709
Thiocyanatopentammines, 11. 404	hydro, 6. 711

Thomsonite lives 8 710	Therium ablementationity 48 004
Thomsonite lime, 6, 710	Thorium chloroplatinite, 16. 284
—— potash, 8 . 711	chroniate, 11, 289
silver, 6 . 683, 711	monohydrate, 11. 289
soda, 6. 710, 711	trihydrate, 11. 289
Thomson's hypothesis valency, 4. 183	octohydrate, 11. 289
Thonerde, 5 . 150	—— chromatobischromate, 11. 290
Thonichte Erde, 5 . 150	cobaltous mirate, 14. 828
Thoran, 14. 542	colloidal, 7. 204
Thoria, 5. 501; 7. 220	- columbate, 9. 867
extraction, 7 . 178	cuprous dithiosulphate, 10, 550
—— purification, 7. 181	— D, 7. 196
- removal rare earths, 5. 546 .	decahydroenneaselenite, 10. 832
Thorianite, 7, 100, 176, 185, 896; 12, 5	- dihydroarsenate, 9, 188
	· · · · · · · · · · · · · · · · · · ·
Thoric acid, 7, 224	- dihydropentasulphate, 7, 245
Thoridodecamolybdates, 11, 601	dihydroperoxide, 7, 225
Thorine, 5, 501, 527	dihydrotrisulphate, 7, 245
Thorite, 5, 530; 7, 175, 185; 12, 6	dihydroxychromate, 11, 289
- X-radiogram, 1. 642	dihydroxydibromide, 7, 238
Thorum, 7. 194	henahydrate, 7, 238
A, 7 . 194	tetrahydrate, 7, 238
—— active deposit, 7, 194	- — dihydroxydichloride, 7, 232
— – amalgam, 7. 208	octohydrated, 7, 232
amide, 8 . 266	pentahydrated, 7, 232
amminochlorides, 7, 233	— tetrahydrated, 7. 232
ammonium carbonate, 7, 249	- dihydroxyfluosilicate, 6 . 955
dodecachloride, 7, 234	- dihydroxytrisulphite, 10, 303
fluoride, 7. 227	- dumde, 7. 234
hexachloride, 7. 234	dioxide, 7, 220
hexanitrate, 7. 251	— dipotassium orthophosphate, 7, 253
hexasulphate, 7. 246	- disilierde, 6 . 187
hydronitrate, 7, 251	- disodium orthophosphate, 7, 253
pentachloride, 7, 235	- — dithionate, 10 . 594
— pentamitrate, 7, 250	- dodecamminochloride, 7, 234
dihydrate, 7, 251	- E, 7. 200
- pentahydrate, 7. 250	- emanation, 7, 192, 889
pentasulphate, 7. 246	ferrate, 13 . 936
tetrasulphate, 7, 245	— fluoride, 7. 227
trisulphate, 7. 245	tetrahydrated, 7, 227
arsenide, 9 . 69	- hafnium zirconium orthosilicate, 7, 167
—— atomic disintegration, 7, 211	- hemiheptoxide, 7, 225
number, 7. 211	hexaboride, 5 . 28
weight, 7. 210	hexahydroheptaselenite, 10. 832
— В, 7. 194	hexahydropentaselenite, 10, 832
hydride, 7. 196	hexamminochloude, 7. 234
barium orthophosphate, 7, 252	history, 7. 174
— - borde, 5 . 28	- hydride, 7, 207
bromate, 2. 357	- hydroarsenate, 9. 188
	hydrocarbonate, 7, 249
- — bromophosphate, 7. 252	hydronitrate, 7, 250
C, 7, 196	- hydrophosphate, 7, 253
hydride, 7. 196	hydrosulphite, 10 . 303
C ₂ , 7. 196	hydrovanadate, 9 . 776
cæsium fluoride, 7 . 228	hydroxide, 7. 222
hexachloride, 7 . 235	+ colloidal, 7. 224
dodecahydrate, 7. 236	hydroxyhydrochlorides, 7. 233
henahydrate, 7. 235	- hydroxytribromide, 7. 237
octohydrate, 7. 235	hydroxytrichloride, 7. 232
—— - hexanitrate, 7. 251	henahydrated, 7. 232
octochloride, 7. 235	——— monohydrated, 7. 232
trisulphate, 7. 247	hydroxytrihypophosphite, 8, 886
—— carbide, 5. 885	- hydroxytriiodide, 7. 238
——————————————————————————————————————	decahydrate, 7. 238
- cerium sulphate, 7. 247	hypophosphate, 8. 939
chlorate , 2 . 357	hypophosphite, 8, 886
chloride, 7. 228	- mide, 8 . 266
dodecahydrated, 7, 230	individuality of, 7, 209
octohydrated, 7, 230	iodate, 2. 354, 357
chlorophosphate, 7. 252	- 10dide, 7. 238
chloroplatinate, 16. 330	- isotopes, 7. 211
wassing reserve y 4V4 MIV	

m) : 1 t # 200	. When it was a standard of the land of th
Thorium lead, 7, 200	Thorium potassium pentanitrate, 7. 251
lithium hexachloride, 7, 235	——————————————————————————————————————
——————————————————————————————————————	trihydrodecanitrate, 7. 251
	trisulphate, 7. 247
pentachloride, 7. 235	preparation, 7. 203
sulphate, 7. 246	properties, chemical, 7. 207
—— magnesium hexanitrate, 7. 251	———— physical, 7. 205
—— manganous nitrate, 12. 446	pyrophosphate, 7. 253
mercuric octoiodide, 7. 239	pyrovanadate, 9. 776
tetradecaiodide, 7. 238	radiocactivity, 7. 184
— metacarbonate, 7. 248	rubidium hexachloride, 7, 235
— metahydroxide, 7. 224	
—— metanitrate, 7. 250 —— metanitride, 8. 122	hexanitrate, 7, 231
metaoxychloride, 7. 232	
metaoxysulphate, 7. 244	
—— metaphosphate, 7. 253	selenate enneahydrated, 10. 873
metavanadate, 9. 776	octohydrate, 10. 873
—— metoxide, 7 . 223	selenide, 10. 784
—— hydrochlorides of, 7. 233	selenite, 10. 832
molybdate, 11. 565	——————————————————————————————————————
monohydroperoxide, 7. 225	
—— monoxide, 7. 220	silicates, 6 . 859 silicododecatungstate, 6 . 880
—— nickel alloy, 15 , 232 —— — nitrate, 15 , 492	
nitrate, 7. 249	sodium fluoride, 7. 227
——————————————————————————————————————	hexachloride, 7. 235
pentahydrate, 7. 250	—— hydroxytrichloride, 7. 232
——— tetrahydrate, 7. 250	metaphosphate, 7. 253
nitrates, 8 . 497	orthophosphate, 7. 252
nitride, 8. 122	—— pentachloride, 7. 235
occurrence, 7, 174	pentanitrate, 7. 251
octamminochloride, 7. 234	——————————————————————————————————————
octoborate, 5. 104 octodecamminochloride, 7. 234	dodecahydrate, 7, 246
	dodecahydrate, 7. 246 tetrahydrate, 7. 246
——— colloidal, 7. 224	tungstate, 11. 792
oxycarbonate, 7. 248	solubility of hydrogen, 1. 307
oxychloride, 7. 231	stannic tetrasulphate, 7. 247
— oxydibromide, 7. 237	strontium orthophosphate, 7. 252
oxyfluoride, 7. 227	sulphate, 7. 240
—— oxyheptasulphate, 7. 244	dihydrated, 7. 243
oxynitrate, 7. 250	enneahydrated, 7. 241 hemienneahydrated, 7. 242
—— oxysulphate, 7. 244 —— oxysulphide, 7. 240	hexahydrated, 7. 242
- pentatritaoxide, 7. 220	octohydrated, 7. 242
perchlorate, 2. 402	———— tetrahydrated, 7. 243
—— periodate, 2. 416	trihydrated, 7. 243
peroxide, 7. 220, 225	—— sulphatometaphosphate, 7. 253
peroxychloride, 7. 232	sulphatoperindite, 15. 784
peroxysulphate, 7. 244	sulphatostannate, 7. 479
—— phosphate, 7. 252	
phosphide, 8 . 847	sulphite, 10 . 303
—— phosphite, 8. 917 —— potassium bromide, 7. 238	
	tetrabromide, 7. 236
enneafluoride, 7. 227	decahydrate, 7. 237
henasulphate, 7. 247	- — dodecahydrate, 7. 237
———— hexachloride, 7. 235	— heptahydrate, 7. 237 — octohydrate, 7. 237
———— hexafluoride, 7. 228	
hexanitrate, 7. 251	tetrachloride dihydrated, 7. 231
	enneahydrated, 7. 231
hydroxychloride, 7, 232	heptahydrated, 7, 231
	——————————————————————————————————————
	-— tetraiodide, 7. 238
pentactioniate, 7: 245	decalydrate, 7. 238
——————————————————————————————————————	
•	

Thorium tetramminochloride, 7, 234	Tin atomic number, 7. 340
tetroxydisulphide, 7. 240	weight, 7. 339
thallium carbonate, 7. 249	azide, 8 . 352
enneasulphate, 7. 247	—— barium alloys, 7. 372
——— nitrate, 7. 251	—— bismuth alloys, 9. 639
trisulphate, 7. 247	—— bismuthide, 7. 334; 9. 639
	—— black, 7. 287
trihydrate, 7. 247	block, 7. 289
thiosulphate, 10. 550	boride, 5 . 28
trialuminide, 7. 208	brass, 4. 670
triarminobromide, 7. 238	—— butter of, 7. 424, 436
tridecaoxycarbonate, 7. 248 trioxide, 7. 225	—— cadmium alloys, 7. 376
	calcite, 5. 93
	—— calcium alloys, 7. 372 —— carbide, 5. 885
tungstate, 11. 792	carbonate, 7. 480
tungsten bronzes, 11. 752	chloroform, 7. 437
uranyl silicate, 6, 883	chrome pink, 7. 421
valency, 7. 209	chromium alloys 11 172
—— X, 7. 190	
yttrium melatitanate, 7. 59	colloidal, 7. 292
zinc hexanitrate, 7. 251	concentrates, 7. 286
Thorogummite, 5. 515; 6. 883; 7. 185; 12.	copper alloys, see Copper-tin
5, 52	lead-iron alloys, 13. 579
Thoron, 7. 192, 889	nickel alloys, 15 . 234
Thorotungstite, 11. 753	
Thorsubstanz, 6. 473	—— cupride, 7. 351
Thortveitite, 5. 481; 6. 859 Thoryl chloride, 7, 231	—— diantimonide, 7. 334
11101y1 Chiorido, 1. 251	dihydride, 7. 325
—— sulphide, 7. 240	—— dimanganeside, 12. 216
Thraulite, 6, 908; 12, 531	—— dioxide, 7. 386, 394
Thrombolite, 3 . 288; 9 . 432 Thucholite, 12 . 6	——— diphosphide, 8 . 849
Thulia, 5. 702	diphosphohexachloride, 7. 445
isolation, 5. 698	diselenide, 10. 785 disintegration atoms, 7. 340
Thulite, 6 . 719	—— ditelluride, 11. 56
Thulium, 5. 498, 696	—— ditritantimonide, 7. 333; 9. 409
- — atomic number, 5 . 700	ditritaphosphide, 8. 848
weight, 5 . 699	ditritarsenide, 7. 331; 9. 68
—— bromate, 2. 354	electric smelting, 7. 289
carbonate, 5. 704	—— electronic structure, 7. 299
——————————————————————————————————————	—— extraction, 7. 286, 290
hydroxide, 5 . 703	—— filaments, 7, 292 —— float, 7, 394 —— flowers of, 7, 394
isolation, 5 . 554 nitrate, 5 . 704	However of 7 201
occurrence, 5. 696	—— fluorides, 7. 422
—— oxide, 5 . 702	—— grain, 7. 289
—— properties, 5 . 698	—— Grey, 7. 300
solubility of hydrogen, 1. 307	—— gold alloys, 7. 368
sulphate, 5. 704	hemiphosphide, 8. 848
Thumerstein, 6. 911	hemitriarsenide, 7. 331; 9. 68
Thumite, 6 . 911	hemitrioxide, 7, 386, 392
Thuringite, 6. 623; 12. 531	hexitarsenide, 7 . 33 ; 9 . 68
Tico, 15. 257	hexoxytetrachloride, 7, 443
Tiegelflussstahl, 12. 711	— history, 7. 278
Tiemannite, 4, 697; 10, 694, 779	hydride, 7. 324
Tiers-argent, 5, 233 Tigererz, 7, 782	
Tigor's eye, 6 . 913	hyponitrite, 8 . 416 hypophosphites, 8 . 886
Tilasite, 9. 5, 258	—— Indian, 4. 403
Tile ore, 3. 117	—— indium alloys, 7. 384
Tilkerodite, 10. 787; 14. 424	iridium alloy, 15. 750
Tin, 7. 276, 277	iron alloys, 13. 576
alloys, 7. 344 : 12. 216	bismuth alloys, 13. 579
analyses, 7, 292	nickel-copper alloys, 15 . 314
analytical reactions, 7. 336	isotopes, 7 . 340
antimonide, 7 . 332	—— lead alloys, 7. 626
antimonite, 9. 432	
arsenide, 7. 331 —— ash, 7. 394	—— liquation, 7. 289
worth to GAZ	—— lode, 7 . 286

Tin manganeside, 12. 216	Tin tetramanganeside, 12. 216
mercury alloys, 7. 377	tetratritarsenide, 7. 331
———— iron alloys, 13 . 579	tetritatriarsenide, 9. 68
—— metallic precipitation, 7. 338	—— tetritoxide, 7. 392
—— molybdenum alloys, 11. 523	tetroxide, 7. 386
nickel alloys, 15 . 248	thallium alloys, 7. 384
monamidodiphosphate, 8. 710	—— toad's eye, 7. 394
monantimonide, 9. 409	—— tossing, 7. 289
—— monoarsenide, 7. 331; 9. 68	tree, 7. 298, 338
—— monoselenide, 10. 784	trichloride, 7. 424
— monotelluride, 11. 55	triphosphide, 8. 849
—— monoxide, 7. 386	tritadiarsenide, 9. 68
—— nickel alloys, 15 . 232	tritatetrarsenide, 9. 68
aluminium alloys, 15. 235	tritatetroxide, 7. 386
	tritetritaphosphide, 8. 848
chromium-copper alloys, 15. 245 lead-zinc-copper alloys, 15. 237	tritetritarsenide, 7. 331
nitrates, 7. 480	uses, 7. 339
nitride, 8 . 122	wood, 7 . 394
nitrite, 8. 497	X-radiogram, 1. 642
occurrence, 7. 280	—— zinc alloys, 7. 374
—— ore, 7. 394	zirconium, 7. 117
needle, 7. 394	alloys, 7. 385
— oxychloride, 7. 442	Tincal, 5. 1, 3
oxymuriate, 7. 437	Tincar, 5. 1
oxysulphite, 10. 303	Tinder box, pneumatic, 8, 1058
—— palladium alloy, 15 . 649	ore, 7 . 4 91 ; 9 . 555
—— pentaphosphide, 8. 849	Tinzenite, 6. 900
— peroxide, 7 . 386	Tirolit, 9. 161
pest, 7 . 300	Tirolite, 3. 896
—— phosphates, 7. 481	Titanamide, 7. 84
—— phosphatosilicate, 6. 835	Titanate, 7. 54
phosphides, 8. 847	Titanates, 7. 2, 50
physiological action, 7. 336	Titane oxyde, 7. 30
—— platinates, 16. 248	chromifère, 7. 31
—— platinum alloy, 16 . 211	siliceocalcaire, 6. 840
amalgam, 16. 213	Titaneisen, 7. 56
iridium-rhodium alloy, 16. 228	—— axotome, 7. 57
	oxyde octahedral, 7. 56
——————————————————————————————————————	Titaneisenstein, 7. 56
plumbite, 7. 669	Titanerz, 7. 56
—— poling, 7. 289	Titania, see Titanium dioxide
— preparation pure, 7. 293	acid, 7. 27, 31
—— properties, chemical, 7. 323	a-, 7. 39
——————————————————————————————————————	
—— purification, 7. 286	———— meta-, 7. 40
—— pyrites, 7 . 283, 475, 897	ortho-, 7. 39
—— recovery from scraps, 7. 291	—— alcogel, 7. 39
—— reef, 7. 286	—— augites, 6 . 818
refined, 7. 289	- — barium sulphate, 7. 94
refining, 7. 289	bromide, 7. 88
electrical, 7. 289	—— calcium sulphate, 7. 94
rhodium alloy, 15 . 565	etherogel, 7. 39
ruthenium alloys, 15. 510	—— glycerogel, 7 . 39
—— sesquioxide, 7. 386, 392	iron ore, 12. 531
——————————————————————————————————————	nitrosyl chloride, 8. 617
sesquisulphide, 7. 465, 468	nitroxylchloride, 8. 546
hydrated, 7. 468	—— potassium sulphate, 7. 94
silicide, 6 . 187	salts, 7. 27
—— silicon octofluoride, 7. 422	strontium sulphate, 7. 94
silver alloys, 7. 368	sulphatogel, 7. 39
—— slip bands, 7. 297	Titanidodecamolybdates, 11. 600
solubility of hydrogen, 1. 306	Titanidodecamolybdic acid, 11. 600
—— sparable, 7. 394	Titanite, 5. 531; 6. 840; 7. 1, 3, 30
stone, 7. 394	eucolite, 6 . 840
strain disease, 7. 302	eucolitic, 5 . 512 ferro-, 6 . 846
stream, 7 . 394	ferro-, 6. 846
—— strontium alloys, 7. 372	Titanium, 7. 1
—— sulphates, 7. 477	a., 7. 16
sulphochlorides, 7. 472	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
— tetrachloride, 7. 436	γ-, 7. 16

m	m
Titanium alcoholotetrafluoride, 7. 68	Titanium iodides, 7. 89
alloys, 7. 22	iron alloys, 13. 571 isotopes, 7. 24
amminochlorides, 7. 83 ammonium carbonate, 7. 96	manganese-silicon steel, 13. 667
chromate, 11. 288	- mangano-, 7. 12, 24
oxysulphate, 7. 95	molybdate, 11. 565
amorphous, 7. 8	molybdenum-tungsten alloys, 11. 744
analytical reactions, 7. 22	- — mononitride, 8 . 118
argento-, 7. 20	—— monosulphate, 7. 91
—— arsenide, 9. 68	
atomic number, 7, 24	—— monosulphohydrate, 7. 81
	cobalt alloys, 15 . 338
bromonitride, 7. 88; 8. 265	iron alloys, 15. 339
	copper alloys, 15. 232
—– - calcium oxysulphide, 7. 91	hexafluoride, 15 . 405
carbide, 5 . 884	iron alloys, 15. 315
carbonate, 7. 96	- nitrate, 7. 96
chlorides, 7. 74	nitride, 8. 117
	— nitrites, 8. 497 – nitrogen hexachlorotetrasulphide, 7. 77
	sulphotetrachloride, 7. 84
steels, 13. 616	sulphotrichloride, 7. 84
cobalt alloys, 14. 536	occurrence, 7. 2
cobaltic hexamminofluoride, 14. 610	octamminotetrabromide, 7. 88
—— colloidal, 7. 14	octamminotetrachloride, 7. 84
columbate, 9 . 866	oxydichloride, 7. 82
—— cupro-, 7. 12, 18, 24	oxyfluoride, 7. 67
cuprosilico-, 7. 12	oxynitrate, 7. 96
diamminotetrafluoride, 7. 67 dichloride, 7. 74	
dichlorodibromide, 7. 88	——— monohydrate, 7. 94
— difluoride, 7. 66	pentahydrate, 7. 94
dihydroxide, 7. 28	pentitahexanitride, 8. 118
— — dihydroxydichloride, 7. 83	- — pentoxide, 7. 64
—— diimide, 8 . 265	pentoxychromate, 11. 288
—— diiodide, 7. 89	—— phosphate, 7. 96
dinitrosyl hexachloride, 7. 84; 8. 438	—— phosphide, 8 . 847 —— phosphinotetrachloride, 7 . 85; 8 . 816
—— dioxide, 7 . 2 7 , 31 —— – – colloidal, 7 . 39	
extraction, 7. 6	phosphoenneachloride, 8, 1016
preparation, 7. 32	phosphoric enneachloride, 7. 85
properties, chemical, 7. 41	phosphorous heptachloride, 7. 85
——————————————————————————————————————	—— phosphoryl heptachloride, 7. 85
diphosphoryldecachloride, 7. 85; 8.	—— potassioamidonitride, 8. 265
1025	—— potassium carbonate, 7. 96
discovery, 7. 1	- — preparation, 7. 8 — properties, chemical, 7. 18
disilicide, 6. 186 disulphate, 7. 93	——— physical, 7. 14
trihydrated, 7. 93	—— reactions, 9. 852
disulphide, 7. 90	selenide, 10. 784
—— disulphohydrate, 7. 81	selenium dioxyoctachloride, 7. 85
—— dititanite, 7. 28	———— dioxyoctochloride, 7. 81; 10. 910
—— electronic structure, 7. 24	sesquichloride, 7. 75
—— ferrite, 13. 924	
—— ferro-, 7. 11 —— ferrocarbo-, 7. 11	—— sesquisulphate, 7. 91 —— sesquisulphide, 7. 90
ferrosilico, 7. 11	silicate, 6. 839
— ferrous sodium trimetasilicate, 6. 843	sodium calcium orthosilicate, 6. 844
fluochloride, 7. 81	
—— fluorides, 7. 66	zirconatosilicate, 6. 858 dimesotrisilicate, 6. 843
—— fluosilicate, 6 . 955	
—— hemisilicide, 6. 186	potassium ferrous orthosilicate, 6.
—— hemitrisilicide, 6. 186	843
—— hydride, 7. 18 —— hydrotrichloride, 7. 80	
— hydroxytribromide, 7. 88	
hydroxytrichloride, 7. 83	sulphides, 7. 90
•	· -

Titanium sulphochloride, 7. 81, 90	Titanous titanate, 7. 30
sulphoctochloride, 7. 84; 10. 647	Titanyl ammonium sulphate, 7. 95
	arsenate, 9, 88
—— tellurido, 11. 55	—— barium mesotrisilicate, 6. 844
tetrabromide, 7. 88	calcium orthosilicate, 6. 840
disulphohydrate, 7. 88	chloride, 7. 82
sulphohydrate, 7. 88	—— dichloride, 7. 82
tetrachloride, 7. 78, 84	dihydroxyselenate, 10. 873 dihydroxyselenite, 10. 832
dihydrated, 7. 81	dihydroxyselenite, 10. 832
—— pentahydrated, 7. 81	dititanite, 7. 30
——————————————————————————————————————	— metaphosphate, 7. 96 — potassium sulphate, 7. 95
—— physical, 7. 79	—— potassium sulphate, 7. 95
—— tetrafluoride, 7. 67	—— selenate, 10 . 872
dihydrated, 7. 67	selenite, 10. 832
tetraiodide, 7. 89	sodium barium mesodisilicate, 6. 844
tetramide, 7. 84; 8. 265	orthodisilicate, 6 . 842 sulphate, 7 . 95
tetramminotetrachloride, 7. 83	————— sulphate, 7. 95
tetramminotetrafluoride, 7. 67	—— sulphate, 7. 93
tetroxychromate, 11. 288	— tetrarsenite, 9. 128
——————————————————————————————————————	(tri)titanyl potassium pentasulphate, 7. 95
tribromide, 7 . 87	Tithonometer, 2. 148
- — trichloride, 7. 75	Tiza, 5. 93
hexahydrated, 7. 77	Tjuiamunite, 9. 789
trifluoride, 7. 66	Toad's eye tin, 7. 394
trihydroxide, 7. 29	Toberite, 12. 1, 133
trihydroxybromide, 7. 88	Tobermorite, 6. 362
trihydroxychloride, 7. 82	Tobernite, 12. 1, 2
trihydroxyorthophosphates, 7. 97	Toddite, 9. 839, 867; 12. 5
triiodide, 7. 89	Törnebohmite, 5. 509
trioxide, 7. 27	Toluene and hydrogen, 1. 304
hydrated, 7. 63	Toluidine tetranitritodi-p-toluidinocobalti-
trioxychromate, 11. 288	ate, 8. 510
tritatetranitride, 8. 119	Toluidinium bromopalladite, 15. 677
tungstates, 11. 791	chloropalladite, 15, 670
—— uranium alloys, 12. 38	phosphotritoluididetrichloroplatinite,
valency, 7. 23	16. 278
vanadium-iron alloys, 13. 585	m-toluidinium bromosmate, 15. 723
Titanoantimonites, 7. 3	o-toluidinium bromosmate, 15. 723
Titanocerite, 5. 514	p-toluidinium bromosmate, 15. 723
Titanochloroform, 7. 80	p-toluoyl hexathionate, 10. 629
Titanocyanogen, 8. 118	pentathionate, 10. 627
Titanoferrite, 7. 2, 57	1, 2, 4-toluylenediammonium bromosmate,
Titanohedenbergite, 6. 916	15. 723
Titanolivine, 6. 846	1, 3, 4-toluylenediammonium bromosmate,
Titanomagnetite, 7. 27, 28	15. 723
Titanomorphite, 6. 840; 7. 3	Tolylammonium bromoplatinate, 16. 375
Titanonium salts, 7. 82	m-tolylammonium chlorosmate, 15. 719
Titano-olivine, 6.,386; 7. 54	o-tolylammonium chlorosmate, 15. 719
Titanosic oxide, 7. 28	p-tolylammonium chlorosmate, 15. 719
Titanosiderum, 7. 56	Tolyldimethylammonium bromoplatinate,
Titanosilicates, 7. 3	16. 375
Titanosulphuric acid, 7. 92	Tolylenediammonium-1, 2, 4-chloropala-
Titanous acid, 7. 29	dite, 15. 670
ammonium alum, 7. 92	2: 3-tolylenediammonium bromoplatinate,
sulphate, 7. 92	16. 375
bromide, 7. 87	3: 4-tolylenediammonium bromoplatinate,
cæsium alum, 7. 93	16. 375
pentachloride, 7. 77	Tolypite, 6 . 624
chloride, 7. 75	Tombac, 4. 671; 15. 209
hydrosulphate, 7. 91	red, 4. 671
— hydroxide, 7. 29 .	Viennese, 4. 671
—— iodide, 7 . 89	Tombazite, 9. 310
oxide, 7. 28	Tomlinson's formula, 1. 835
oxychloride, 7. 82	Tommalines magnesian, 6, 741, 742
potassium sulphate, 7. 93	Tomosite, 6. 897
rubidium alum, 7. 93	Ton, gross, 3. 6
	long, 3 . 6
sulphate, 7. 92	—— metric, 3. 6
sodium sulphate, 7. 92	net, 8. 6
sulphate, 7. 91	short, 3. 6

Toneisenstein, 13. 775 Tonerde reine, 5. 338 Tong-pack, 15. 209 Tonne, 3. 6 Topaz, 2. 2; 6. 560; 7. 897 -- false, 6. 138 - golden, 6. 562 - - oriental, 5. 247; 6. 562 ----- Spanish, 6. 562 - X-radiogram, 1. 642 Topazius, 6. 560 Topfstein, 8. 430 Tophas, 3. 814 Topic axes, 1. 656 - parameters, 1. 656 Torberite, 12. 5 Torbernite, 12. 5, 133 Torendrikite, 6. 821 Torrelite, 5. 531; 9. 906 Torrensite, 6, 899; 12, 433 Torta, **3**. 304 Totaigite, 6. 423 Total energy, 1, 717 Totan, 4. 401 Totia, 4. 398 Toucas's alloy, 15, 210 Touchstone, 6, 140 Tough pitch copper, 3, 27 Tourmaline, 2. 2: 5. 4; 6. 740; 7. 897 - apyre, 6. 741 --- ferrous, 6. 742 - lithium, 6. 742 --- X-radiogram, 1. 642 Tourmalines alkali, 6. 741, 742 --- chrome, **6**. 742 ---- ferric, **6**. 742 - -- iron, 6. 741 Tourmalinic acid, 6, 742 Towanite, 3. 7; 14. 184 Transition point, 1. 513 - action of pressure, 1, 429 ---- temperature, **3**. 113 Translation banding, 12. 895 lines of, 12, 895 Translations streifung, 12, 895 Transmutation of clements, 4. 147 ---- - metals, 1. 49 Transparency to X-rays, 4. 33 Transport numbers, 1. 985, 986 -- Hittorf's, 1. 985 Transvaalite, 14. 424, 586; 15. 6 Traversellite, 6. 409, 416 Traversoite, 6. 344 Travertine, 3. 814; 6. 81 Treenium, 4. 205 Tremolite, 6. 391, 404 Trevorite, 12. 531; 13. 925; 15. 6 Tria prima, 1. 34 Triad, 1. 224 Triads, 1. 206 - Dobereiner's, 1. 253 Triamide, 8. 329 Triamidodiphosphoric acid, 8. 711 Triamminodichloroaquo-salts, 11. 416 Trianhydrosulphatophosphoric acid, 10. 346 Triantimonic acid, 9. 443 Triaquotriammines, 11. 402 Troaquotribromides, 11. 406 Triarsenatomanganic acid, 9. 220 Triazane, 8. 329

Triazoacetic acid. 8, 308 Triazo-group, 8. 329 Triazoic acid. 8, 330 Triazomonosulphonic acid, 8. 684 Triazone, 8. 88 Tribenzhydroxylamine, 8. 296 Tribenzylammonium bromopalladite, 15. bromoplatinate, 16. 375 bromosmate, 15, 723 chloroiridate, 15, 771 chloropalladite, 15. 670 chlorosmate, 15. 719 Triboluminescence, 1. 600 Triboluminiscope, 1, 601 Triborane, 5. 36 Triborene, 5, 34 Tribromoiodosilane, 6. 984 Tribromoperaridious acid, 15, 774 Tribromosilane, 6, 979, 980 Tricadmium potassium sulphate, 4, 638 sodium sulphate, 4, 637 -- tetrathiosulphate, 10, 547 Tricalcium phosphate, 3, 866 Trichalcite, 9. 5, 159 Trichtic crystals, 1, 597 Trichloroamminoplatinous, 16. 267 Trichloroammonium chloride, 8, 602 Trichloroaquodipyridine, 11. 406 Trichlorocupric acid, 3, 183 Trichlorogermane, 7, 263 Trichloroiodosilane, 6. 983 Trichloromethyl sulphuryl chloride, 6. 110 Trichloromethyldithioformic chloride, 6, 92 Trichloromethylsulphur chloride, 6. 92 Trichloromethylsulphurous chloride, 6, 112 Trichloromethylsulphuryl chloride, 6. 93 Trichloromonosilane, 6. 216 Trichlorophosphatoferric acid, 14, 409 Trichlorosilane, 6. 960, 968 Trichlorotriammine, 11. 406 Trichlorotriaquotrichlorides, 11. 406 Trichlorotripyridine, 11, 406 Trichloro—1, 2, 6- trispyridine, 15, 762 Trichlorotrithiourea, 11, 406 - hemihydrate, 11. 406 Trichopyrite, 15, 435 Trichromates, 11, 349 Triclasite, 6. 812 Triclinic system, 1, 621 Tricobaltic diaquo-pentol-hexammines, 14. 716 tetrol-quaterethylene-diamines, 14. 710 diphosphatobisethylenediamines, 14. 710 - diphosphatobispropylenediamines, 14. 710 - hexol-hexammines, 14. 710 - salts, 14. 710 Tricobaltous disodium trimetaphosphate, 14. 854 ----- henicosihydrate, 14. 854 --- sodium trimetaphosphate, 14. 854 Tridymite a., 6. 240 analyses, 6. 242 β_1 , 6. 240 β_2 , 6. 240 - fibrous, 6. 240 — preparation, 6. 237

Triethoxymonosilane, 6. 218	Trimethyloxyphosphoniumchloroplatinate,
Triethyl phosphates, 8, 966 Triethylammonium bromoiridate, 15, 776	16. 315 2:4:5-trimethylphenylammonium bromo-
—— bromopalladate, 15. 678	platinate, 16. 375
—— bromoperruthenite, 15. 538 —— bromoruthenate, 15. 538	Trimethylpyrazinium 2, 3, 6-trimethylpyrazinepentachloroplatinate, 16. 313
—— bromosmate, 15 . 723	Trimethylpyridinium bromoplatinate, 16.
chloroiridate, 15. 770 chloropalladate, 15. 673	376 Trimolybdates, 11. 580, 582
chloroperruthenite, 15. 532	Trimolybdenum cæsium dioxyheptachlo-
	ride, 11. 632 potassium dioxyheptachloride, 11. 632
chlorosmate, 15. 719	Trimonosilylamine, 8. 262
——— ferrie chlorotribromide, 14 . 125 ——— trichlorobromide, 14 . 125	Trimorphism, 1. 596 Trinitrides, 8. 330, 344
Triethyloxyphosphoniumchloroplatinate,	Trioxalato-salts, 11. 402
16. 315 Triferrous pentaferric, 18. 807	Trioxysulpharsenic acid, 9. 326 Trioxysulphoperrhenic acid, 12. 481
—— tetraferric oxide, 13. 807	Trip, 6. 740
Triggermane, 7. 264 Trigger reactions, 1. 358	Tripelglanz, 9. 550
Trigonal system, 1. 618	Triperchromates, 11, 356 Triperchromic acid, 11, 361
Trigonito, 7, 491; 9, 5, 132	Triphane, 2. 425; 6. 640
Trihydrocalcite, 3, 822 Trihydrol, 1, 461	Triphenylguanidine bromoplatinate, 16. 376 Triphenylguanidinium bromosmate, 15. 723
Trihydroxyaquodiammines, 11. 406	chloroiridate, 15. 771
Trihydroxyaquodipyridines, 11. 406	chlorosmate, 15. 719 Triphoclase, 6. 709
hexahydrate, 11. 406	Triphosphonitrilic amide, 8, 723
Trihydroxyaquo-hexammines, 11. 408, 409 Trihydroxydiamidophosphoric acid, 8. 704	bromide, 8, 724 chloramide, 8, 723
Trihydroxysitane, 6. 227	
Triimide, 8. 329 Triimidediphosphoric acid, 8. 711	——hydroxychloride, 8, 722 Triphosphoric acid, 8, 991
Triimidotetraphosphoric acid, 8, 715	Triphylin, 12. 453
Tri-iodates, 2. 324 Triiodohydroxyiridic acid, 15. 779	Triphyline, 8, 734 Triphylite, 2, 426; 14, 150, 453, 531; 14.
Triiodosilane, 6. 982	396
Triiodylamine, 8. 606 Trimanganous sodium tetrasulphate, 12.	Triphyllen, 7. 897 Triplatinous potassium hexasulphoplati-
416	nate, 16. 395
Trimerite, 4. 200; 6. 380, 381; 12. 150 Trimetaphosphimic acid, 8. 717	Triple point, 1. 446 Triplite, 8. 734; 12. 150, 531; 14. 396
Trimetatelluric acid, 11. 88	Triploidite, 8. 734; 12. 150, 455, 531; 14.
Trimethyl platinic diamminoiodide, 16. 392	396 Triplumbia agid 7, 685
iodide, 16 . 392	Triplumbie acid, 7. 685 Tripoli, 6. 142
Trimethylamine uranyl phosphate, 12. 132	Tripolite, 6. 142
Trimethylaminocarbonyltriiodoplatinite,	Tripotassium sodium ferrous hexachloride, 14. 32
16. 385 Trimethylammenium bromeinidete 15. 776	Trippkeite, 9. 5
Trimethylammonium bromoiridate, 15. 776 —— bromopalladate, 15. 678	Tripropylammonium bromopalladate, 15.
	bromosmate, 15. 723
chloroiridate, 15. 770	—— chloroperruthenite, 15. 532
chloropalladate, 15. 673 chloroperruthenite, 15. 532	
chlorohodate, 15 . 579	—— chlorosmate, 15. 719
	tribromopalladite, 15. 678 trichloropalladite, 15. 670
—— ferric fluoride, 14. 7	Tripropyloxyphosphoniumchloroplatinate,
fluoferrate, 14. 8 hexachloroperrhodite, 15. 579	16. 315 Tripuhite, 12. 531
—— molybdenyl tetrachloride, 11. 631	Tripuhyite, 9. 343, 460
pentachloroferrate, 14. 101 ruthenate, 15. 518	Triselenatochromic acid, 10. 876 Triselenatouranic acid, 10. 878
tetrachloroferrate, 14. 101	Triselenatouranyluranie acid, 10. 878
uranyl tetrachloride, 12. 89	Trisethylalcoholtrichloride, 11. 406

Trisethylenediamines, 11. 401	Tungsten alkali-alkaline earth-bronzes, 11.
Trisilane, 6. 223	751
Trisilicane, 6. 223	alloys, 11. 741; 12. 218
Trisilylammonia, 8. 262	aluminium alloys, 11. 742
Trisodium cadmium tetrathiosulphate, 10. 547	
	-— amidodipotassimide, 8. 268
	ammonium cadmium tetrammino-
Trispropylenediamines, 11. 401	enneachloride, 11. 842
Trisulphamates, 8. 667	copper tetramminoenneachloride,
Trisulphammonic acid, 8. 667	11.842
Trisulphates, 10. 448	tetrafluoride, 11. 837
Trisulphimide, 8. 663	analytical reactions, 11. 734
Trisulphoxyazoate, 8. 680	antimony alloys, 11. 743
Triteropolyvanadic acid, 9. 758 Triterosilicic acids, 6. 308	arsencenneachloride, 9. 59
Trithiocarbonic acid, 6. 119, 120	
Trithiocyanatoaquodiammines, 11. 406	structure, 11. 739
Trithiocyanatotriammine, 11. 406	weight, 11. 738
Trithionates, 10. 607	beryllium alloys, 11. 741
Trithionic acid, 10, 600, 601	—— bismuth alloys, 9. 639; 11. 743
	—— boride, 5 . 29
Trithiophosphoric acid, 8, 1062, 1067	—— bromides, 11. 853 —— bronzes, 11. 750
Trithiophosphorous acid, 8, 1062 Trithiopyrophosphoric acid, 8, 1062, 1070	—— cæsium enneachloride, 11. 842
Tritochorite, 9. 715, 777	calcium alloys, 11. 742
Tritomite, 5. 514; 7. 100	—— carbide, 5. 890
Tritonite, 9. 839	steels, 13. 634
Tritungstates, 11. 773, 809	—— carbonate, 11. 861
Triuranyl ammonium disulphite, 10. 308	carbonates, 11. 861
sodium disulphite, 10. 308	
Trivanadyl ammonium disulphite, 10. 305	
potassium disulphite, 10. 305 sodium disulphite, 10. 305	——————————————————————————————————————
zine disulphite, 10. 305	hexamminoenneachloride, 11.842
Trögerite, 9. 5, 215; 12. 5	steels, 18, 642
Troilite, 12. 528, 531; 14. 136	
Trolleite, 5. 155, 366; 8. 734	steels, 13. 642
Trompe, 12, 582	cobalt alloys, 14. 541
Trona, 2. 425, 710	
Troostite, 6 . 438; 12 . 150 Trootsite, 4 . 408; 12 . 842	
—— A-, 12. 844	tritacarbide, 14. 54 l
Trootsitizing, 12. 673, 691	columbate, 9. 867
Trough, pneumatic, 1. 123	colloidal, 11. 696
Trouton's rule, 1. 440	copper alloys, 11. 741
Tscheffkinite, 5. 514; 6. 831; 7. 3	——————————————————————————————————————
Tscheng, 4. 399	tentalum alloys 15 251
Tschermakite, 6 . 664, 698 Tschermigite, 5 . 154, 342	tantalum alloys, 15. 251
Tschnichewite, 6. 821	—— diamminotrioxide, 8. 267
T-siloxyd, 7. 25	diarsenide, 9. 70
Tsumebite, 7. 877	dibromide, 11. 853
Tuarn, 12. 587	—— dichloride, 11. 840
Tube mills, 8. 497	dichromate, 11. 343
Tubes of force, 4. 191	—— diiodide, 11. 855 —— dinitride, 8. 129
Tue-iron, 12. 587	— dioxide, 11. 747
Tuesite, 6 . 495 Tufa, 3 . 814	——————————————————————————————————————
Tuffa, 7. 897	dioxydibromide, 11. 855
Tuiron, 12. 587	—— dioxydichloride, 11. 851
Tumcaillant's metal, 15. 210	dioxydifluoride, 11. 838
Tungstates, higher, 11. 828	dioxydisulphotungstate, 11. 860
normal, 11. 773	diselenide, 10. 798 disilicide, 6. 193
Tungstatoferrites, 18. 923 ——— periodates, 2. 417	
Tungstatosodalite, 6 . 583	—— ditelluride, 11. 63
Tungstatovanadates, 9. 785	ductile, 11. 695
Tungstein, 5. 496, 507	enneachloroarsenide, 9. 70
Tungsten, 5. 507; 11. 673, 674	extraction, 11. 682

Tungsten fluorides, 11. 837	Tungsten pentitaenneaoxide, 11. 745
—— gold alloys, 11. 741	pentitaoctoxide, 11. 746
hemiamminooxytetrafluoride, 11. 838	- pentitatetradecoxide, 11. 746
hemicarbide, 5. 889	- permanganites, 12. 280
—— hemipentoxide, 11. 747 —— hemiphosphide, 8. 850	- phosphates, 11. 862 - phosphoenneachloride, 8. 1017; 11.
—— hemitrimolybdide, 11. 743	844
—— hemitrinitride, 8. 129	platinates, 16. 248
hemitrioxide, 11. 745	—— platinum alloys, 16. 216
hemitrisilicide, 6. 193	gold-copper alloy, 16. 216
hexabromide, 11 . 854	potassimidamide, 11. 854
—— hexachloride, 11. 844	potassium bronzes, 11. 751
hexachloroenneasulphide, 11. 859	cadmium tetramminoennea-
hexafluoride, 11. 837 hexaiodide, 11. 855	chloride, 11. 842
imide, 8 . 268	copper tetramminoenneachloride, 11. 842
imidonitride, 8 . 267	onneachloride, 11. 841
— - intermetallie compounds, 11. 741	hydroxylpentachloride, 11. 848
iodides, 11 . 855	hydroxypentachloride, 11. 843
— iton alloy, 13 . 626	- totrafluoride, 11. 837
carbide, 13 . 629	preparation, 11 . 689
	properties, chemical, 11. 729
phosphide, 8 . 850	
	reactions, 9. 852 rubidium enneachloride, 11. 842
	silicate, 6. 866
lead alloys, 11. 743	
—— lithium bronzes, 11. 751	—— silver alloys, 11. 741
magnesium alloys, 11. 742	sodium bronzes, 11. 751
manganese-iron alloys, 18. 668	solubility of hydrogen, 1. 306
mercury alloys, 11. 742	steel, 12. 752
inolybdates, 11. 571	sulphate, 11. 861
— molybdenum alloys, 11. 743 —— chromium cobalt alloys, 14. 543	
iron alloys, 13. 643	-— sulphides, 11. 856
titanium alloys, 11. 744	tantalum alloys, 11. 744
—— molybdide, 11. 743	tetrachloride, 11. 843
monophosphide, 8. 850	—— tetrahydroxide, 11. 748
——— monoxide, 11. 745	—— tetraiodide, 11. 856
nickel alloys, 15. 248	tetritahenoxide, 11. 746
	tetritatrioxide, 11. 745 thallous enneachloride, 11. 842
—— dioxytetrafluoride, 15. 406	—— thorium alloys, 11. 743
steels, 15 . 330	——————————————————————————————————————
tritacarbide, 15. 249	thiosulphate, 10. 555
—— nitrates, 11. 861	tin alloys, 11. 743
—— nitrogen tetrachlorotetrasulphide, 11.	triamminotrioxide, 8. 268
843 —— nomenclature, 11. 842	trichloride, 11. 841
occurrence, 11. 675	
ochre, 11. 678	trifluoride, 11. 837
octochloroheptasulphide, 11. 860	trioxide, 11. 753
oxide, 11. 753	——————————————————————————————————————
—— oxides intermediate, 11. 745	heminydrate, 11. 762
lower, 11. 745	hydrates, 11. 762
oxyamidonitride, 8. 268	monohydrate, 11. 762
oxybromides, 11. 853 oxychlorides, 11. 848	trioxyphosphopentaehloride, 8. 1017; 11. 758
	trioxysulphotungstates, 11. 860
	triselenide, 10. 797
oxynitride, 8. 268	trisulphide, 11. 857
oxysulphides, 11. 860	colloidal, 11. 858
oxytetrabromide, 11, 854	tritacarbide, 5. 890
oxytetrachloride, 11. 849	
oxytetrafluoride, 11. 837 oxytrichloride, 11. 848	
oxytrisulphotungstates,-11. 860	tricalinette, 0. 104 tungstates, 11. 796
palladium alloy, 15. 650	unicrystals, 11. 696
—— pentabromide, 11. 853	uranium alloys, 12. 38
pentachloride, 11. 843	—— uses, 11. 735

Tungsten valency, 11. 738
vanadium-iron alloys, 13, 626
zinc alloys, 11. 742 zirconium, 7. 117
zirconium, 7. 117
Tungstenato iodic acid, 2. 363
periodates, 2. 406
Tungstené, 11. 674
Tungstenite, 11, 678, 856
Tungstic acid, 11, 762
colloidal, 11. 765 yellow, 11. 762
chromita 11, 201
Tungstite, 11. 678, 753
Tungstoborique acide, 5. 108
Tungstous chloride, 11, 840
Tungstyl cobaltic hexamminofluoride, 14.
610
Turacine, 3 . 8 Turante, 9 . 715, 767
Turanite, 9. 715, 767
Turbite, 4, 964
Turgite, 12. 531
Turite, 18, 874
Turjite, 13. 874
Turkey red, 13. 782
Turkish boracite, 5. 89
Turmale, 6 . 740
Turmali, 7. 98
Turnerite, 5, 523
Turner's yellow, 2. 716; 7. 741, 742 Turpeth, 4. 964, 972
1 urpetn, 4, 904, 972
—— ammonia, 4. 788, 979 —— nitrous, 4. 989
Turpethum minerale, 4. 964
Turquoise, 5 . 155, 368
bone, 5. 368
green, 14. 519
matrix, 5. 309
Tutanego, 4. 403
Tutenag, 4, 403
Tutenag, 4, 403 Tutenay, 15, 210
Tuteneque, 4, 403
Tutia, 4, 398, 399, 401
alexandrina, 4. 500
blue, 4, 401
green, 4. 401 — white, 4. 401
—— white, 4. 401
Tuttham, 4. 401
Tutthia, 4. 401
Tutty, 14. 419
Tuxtlite, 6. 643
Tuyère, 12. 587
Tvättad, 12. 709
Twin, 1. 595 Twinning, 6. 670; 12. 891
albite, 6. 671
annealing, 12. 891
—— Baveno, 6. 671
— Brazilian, 6 . 246
Carlsbad, 6. 670
congenital, 12, 891
Dauphiné, 6. 246
—— Dauphiné, 6 . 246 —— manebach, 6 . 671
mimetic, 1. 595
of crystals, 1. 595
—— pericline, 6 . 671
Twver, 12. 587
Tychite, 2. 656
Tycho Brahe, 1, 47
Tyndall's test optical emptiness, 1. 768

Type metal, 7. 362, 580

— theory, 1. 217, 218, 220

— of condensed, 1. 220

— mixed, 1. 221

Tyrite, 5. 516; 9. 839; 12. 5

Tyrolite, 9. 5, 161

Tysonite, 2. 1; 5. 522; 12. 5

Tyuamyunite, 9. 716

Tyuyamunite, 9. 789

Tyuyamuyunite, 12. 5, 69

Tzanab, 8. 296

U

Uddevalite, 12, 531 Uddevallite, 7. 57 Uebertragungskatalyse, 10. 673 Uguentum plumbi acetatis, 7. 591 earbonatis, 7. 591
--- iodidi, 7. 591
Uhligite, 6. 855; 7. 100, 137 Uigite, 6. 718 Ulexite, 3. 623; 5. 4, 93 Ullmanite X-radiogram, 1. 641 Ullmannite, 9, 343, 555; 15. 6 Ulrichite, 12. 5, 50 Ultra-red rays, 4. 8 --- violet rays, 4. 8 Ultrabasite, 9. 552 Ultrafiltration, 1. 772 Ultramarine, 6. 586 - - ammonium, 6. 589 - - amyl, 6. 590 - - barium, 6. 590 - benzyl, 6. 590 ---- boron, 6. 590 --- cadmium, **6**. 590 --- calcium, **6**. 589 --- cobalt, 5. 298 --- ethyl, 6. 590 --- ferrous, **6**. 590 --- germanium, **6**. 590 —— green, **6**. 589, 591 —— lead, **6**. 590 --- blue, **6**. 889 --- violet, **6**. 889 ---- manganese, **6**. 590 ---- mercurous, **6**. 590 ----- native, **6**. 430 ---- phenyl, 6. 590 --- potassium, 6. 589 - red, 6. 591 --- selenium, 6. 590 --- silver, 6. 589 ---- tellurium, **6**. 590 -- violet, **6**. 591 -- white, **6**. 591, 594 - yellow, **6**. 591; **11**. 273 - zinc, **6**. 590 Ultramarines silver, 6. 683 Ultramarinum, 6. 586 Ultramicroscope, 1. 769 Ultramicroscopic particles, 1. 768 Ultramicroscopy, 1. 768 Ultramicrous, 1. 769 Ultraphosphates, 8, 991 Umangite, 3, 7; 10, 694, 770 Umber, 12, 531 - burnt, 18. 782

Undercooling, 1. 450	1 Illumium dibuducated conide 19 78
Ungentum Aegyptiacum, 8. 120	Uranium dihydroetofluoride, 12. 76 —— dihydroxide, 12. 39
Unghwarite, 6 . 906 ; 12 . 531	dioxide, 12. 39
Unguentum hydrargyri rubri, 4. 916	
Uniaxial crystals, 1. 607	dihydrate 18 41
Unionite, 6. 720	
Unitary theory matter, 4. 1	díoxytetrasulphide, 12. 95
Units, electrical, 1. 963	—— diselenide, 10. 798
—— of energy, 1. 693	—— disilicide, 6 , 194
Univariant systems, 1, 446, 447	—— disilicide, 6. 194 —— disulphate, 12. 99
Universal medicine, 1. 49	dihydrate, 12. 99, 101
solvent, 1. 50	enneahydrate, 12, 100
Unoxidizable cast iron, 13. 545	
Unsaturated compounds, 4. 191	hexahvdrate, 12, 100
Unstable states, 1. 454	octohydrate 12, 100
Unterniobsaure, 9. 862	— — pentahydrate, 12. 100 — tetrahydrate, 12. 100 — trihydrate, 12. 101
Uraconite, 12. 5, 106	——————————————————————————————————————
Uralite, 6 . 426	trihydrate, 12. 101
Urallite, 6 . 822	disulphide, 12. 94
Uralorthite, 5. 509	—— disulphite, 10. 307
Uranates, 12. 60, 61	extraction, 12. 8
Uranblüthe, 12. 106	—— ferrous yttrium metatitanate, 7. 59
Uranglimmer, 12. 2	—— fluorides, 12. 73
Urangummi, 12. 52	fluosilicate, 6. 956
Uranic acid, 12. 58	—— hemipentoxide, 12. 39, 44
—— hydrated, 12. 59	—— hemitrialuminide, 12. 38
—— oxide, 12 . 54	hemitricarbide, 5. 890
Uraninite, 5. 530; 7. 100, 491; 12. 5, 49	hemitrioxide, 12. 39
Uranisches Gummierz, 12. 52	dihydrate, 12. 39
—— Pittinerz, 12. 52	——————————————————————————————————————
Uranite, 9. 787; 12. 1, 2, 5, 133	hemitriselenide, 10. 798
Ilmonitos anathogus 19 9	hemitrisulphide, 12. 94
Uranites spathosus, 12. 2	
Uranium, 4. 118; 12. 1	
I, 4. 121 II, 4. 121	hydrazina hydrayydiaulnhotatranra
amalgam, 12. 38	hydrazine hydroxydisulphotetraura-
ammonium hydroxydisulphotetraura-	nate, 12. 98 ————————————————————————————————————
nate, 12. 97	nate, 12. 98
hydroxyhydrodisulphotetraura-	hydrodisulphate, 12. 98
nate, 12. 97	—— hydrohypophosphite, 8. 888
oxytrifluoride, 12. 75	
tetracarbonate, 12. 116	—— hydrophosphite, 8. 919 —— hydrosulphatosulphate, 12. 98
——————————————————————————————————————	hypophosphite, 8. 888
—— analytical ractions, 12. 32	—— iodides, 12. 91
—— atomic number, 12. 36	
	iron alloys, 18. 643
——— weight, 12. 35	iron alloys, 13. 643 calcium deuterohexacolumbate,
azide, 8. 354	
azide, 8. 354	
—— azide, 8. 354 —— barium hydroxydisulphotetrauranate, 12. 98	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 mate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 calcium hydroxydisulphotetrauranate, 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 calcium hydroxydisulphotetrauranate, 12. 98 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 calcium hydroxydisulphotetrauranate, 12. 98 metacolumbate, 9, 904 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 calcium hydroxydisulphotetrauranate, 12. 98 metacolumbate, 9. 904 titanocolumbate, 9. 906 	
 azide, 8. 354 barium hydroxydisulphotetrauranate, 12. 98 hydroxyhydrodisulphotetrauranate, 12. 98 borotungstate, 5. 111 bromides, 12. 91 calcium hydroxydisulphotetrauranate, 12. 98 metacolumbate, 9. 904 titanocolumbate, 9. 906 carbide, 5. 846 carbonates, 12. 112 chlorides, 12. 80 	

3,221,22	
Uranium orthoarsenate, 9. 215	Uranium trioxide, 12. 54, 58, 59
oxide, 12. 18	colloidal, 12. 57
— oxides—intermediate, 12. 44	——————————————————————————————————————
lower, 12. 39	hemiheptahydrate, 12. 60
oxychlorides, 12. 85	hemihydrate, 12. 58
— — oxydifluoride, 12 . 75 —— oxyfluorides, 12 . 73	—— monohydrate, 12. 58 —— tritaoctoxide, 12. 45
oxynitride, 8 . 268	tritatetranitride, 8. 130
oxysulphides, 12. 94	trithionate, 10. 609
oxytetrafluoride, 12. 77	tritungstate, 11. 811
—— pentabromide, 12. 92	tungstate, 11. 797
pentachloride, 12. 83	dihydrate, 11. 797
pentitadinitride, 8, 130 pentitatetranitride, 8, 130	tungsten alloys, 12. 38 uses, 12. 34
- pentoxynitride, 12. 62	V, 4. 122
peroxides, 12. 69	valency, 12. 35
 phosphates, 12. 128 	vanadium alloys, 12. 38
phosphite, 8. 919	- X, 4, 119
phosphodecachloride, 8, 1017; 12, 84	X ₁ , 4, 121
 – physiological action, 12, 32 – platinum alloy, 16, 216 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
potassium hydroxydisulphotetraura-	yellow, 12. 65, 66
nate, 12. 97	zinc alloys, 12. 38
hydroxyhydrodisulphotetraura-	Uranmolybdate, 12. 5
nate, 12. 97	Uranniobite, 12, 50
oxyoctofluoride, 12. 77	Uranochalcite, 12. 5, 110; 15. 9
——————————————————————————————————————	Uranochalzit, 12. 110
properties, chemical, 12. 30	Uranocircite, 3, 625; 8, 734; 12, 5, 136 Uranocker, 12, 106
physical, 12. 14	Uranokker, 12. 52
— – pyrophoric, 12 . 13	Uranomobite, 5. 516
quanidinium tetracarbonate, 12. 116	Uranophane, 6. 883; 12. 5, 60
radio-, 4. 122	Uranopilite, 3, 623; 12, 5, 110
rare earth deuterotetracolumbate, 9. 906	Uranopitchblende, 12. 5
titanocolumbate, 9 . 906	Uranopyrochlore, 9, 867 Uranosic oxide, 12, 45, 66
red, 12. 96	
rubidium oxyoctofluoride, 12. 77	hexahydrate, 12. 46
sesquioxide, 12 . 39	——— hydrated, 12. 46
- — sesquisulphide, 12. 94	Uranospathite, 12. 136
—— silicate, 6. 866	Uranosphärite, 9, 589; 12, 5, 67 Uranospinite, 3, 623; 9, 5, 216, 12, 5
—— silicododecatungstate, 6 . 881 —— sodium hydroxydisulphotetrauranate,	Uranotantalite, 5. 516; 9. 839
12 . 97	Uranotemnite, 12. 5
——————————————————————————————————————	Uranothallite, 3. 622; 12. 5, 115
pyrophosphate, 12 . 133	Uranothorite, 7, 175, 185; 12, 5
———— tungstate, 11. 797	Uranotile, 6. 882; 12. 5
	Uranous acetate, 12. 19 —— alkali carbonate, 12. 112
strontium hydroxydisulphotetraura- nate, 12 . 98	- amminotetrachloride, 12. 82
—— sulpharsenite, 9. 301	—— ammonium carbonate, 12. 112
—— sulphates, 12. 98	— hexasulphate, 12. 103
—— sulphides, 12. 94	oxalatofluoride, 12. 74
—— tetrabromide, 12. 92	tetrasulphate, 12. 103
—— tetrachloride, 12. 80 —— tetrafluoride, 12. 74	——————————————————————————————————————
tetraiodide, 12. 93	—— bromide, 12. 18, 92
—— tetravanadate, 9. 787	—— cæsium hexachloride, 12. 83
—— tetroxide, 12. 70	- — calcium diphosphate, 12. 130
——————————————————————————————————————	
hemienneahydrate, 12. 70	
trihydrate, 12. 71 titanium alloys, 12. 38	— decoxytetrachloride, 12. 85
trialuminide, 12. 38	dihydropentasulphate, 12. 103
- triamminotetrachloride, 12. 82	—— dihydrotrisulphate, 12. 103
—— tribromide, 12. 91	—— dioxytetrachloride, 12. 85
trichloride, 12. 80	dithionate, 10. 596
trihydroxide, 12. 39	—— fluoride, 12. 18, 74 —— monohydrate, 12. 74
triiodide, 12. 93	I I I I I I I I I I I I I I I I I I I

0.22112221	, , , , , , , , , , , , , , , , , , , ,
Uranous hexoxytetrasulphate, 12, 102	Uranyl ammonium pentafluoride, 12. 77
hydroarsenate, 9. 215	
hydrophosphate, 12. 128	
dihydrate, 12. 128	potassium trisulphate, 12. 108
pentahydrate, 12. 128	selenate, 10. 877
hydroxide, 12. 41	selenite, 10, 838
—— lithium hexachloride, 12. 82	sulphate, 12. 17
—— metaphosphate, 12. 129	antimonate, 9 . 459
—— molybdate, 11. 571	tetrabromide, 12. 93
nitrate, 12. 19, 117	tetrachloride, 12. 89
octoxytetrachloride, 12. 85	tetranitrate, 12. 125
orthophosphate, 12. 128	
oxydithionates, 10. 596	——————————————————————————————————————
oxyphosphate, 12. 128	——————————————————————————————————————
	phosphate, 12. 136
oxysulphate, 12. 102	tridecahydrate, 12. 136
—— dihydrate, 12. 102	sulphide, 12. 96
pentahydrate, 12. 102	bismuth arsenate, 9. 216
oxysulphite, 10 . 307	chromate, 11. 308
periodate, 2 . 416	————— iodide, 12 . 94
phosphite, 8 . 919	— bromide, 12 . 17, 92
potassium diphosphate, 12, 130	heptahydrate, 12. 92
fluoride, 12. 18 hexabromide, 12. 92	- — cadmium nitrate, 12. 127
- nexabromide, 12. 92	cæsum chloride, 12. 17
hexachloride, 12. 83	disulphate, 12, 110
octophosphate, 12 . 130 pentafluoride, 12 . 74	
	tetrachloride, 12 . 90 tunitrate, 12 . 126
	- — calcium aluminium silicate, 6. 883
pyrophosphate, 12 . 129	arsenate, 9. 216
——————————————————————————————————————	dicarbonate, 12. 115
rubidium hexachloride, 12. 83	
sodium dioxyhexachloride, 12. 85	
diphosphate, 12. 129	dioxytetraphosphate, 12. 136
hexabromide, 12. 92	hydrophosphate, 12. 136
 hexachloride, 12, 83 	dihydrate, 12. 136
- octophosphate, 12. 130	
– pentafluoride, 12, 75	trihydrate, 12. 136
triphosphate, 12, 129	orthodisilicate, 6 . 883
- strontium diphosphate, 12. 130	pentafluoride, 12. 79
hexachloride, 12, 83	phosphate, 12. 18, 134
- sulphate, 12 , 19, 99	
sulphide, 12. 94 tetroxytetrachloride, 12. 85	
	yttrium deuterotetracolumbite,
tridecahydrate, 12. 85	9. 904
trioxypentasulphate, 12. 102	titanocolumbate, 9. 904
decahydrate, 12. 102	carbonate, 12. 112
dotricontahydrate, 12. 102	cerium sulphite, 10. 309
icosihydrate, 12. 102	chloride, 12. 16, 86
pentadecahydrate, 12 . 102	chromate, 11. 307
uranate, 12 . 4 5	trihydrate, 11. 307
Uranphyllite, 12. 2	——— henahydrate, 11. 307
Uranvitriol, 12. 106	citrate, 12. 18
Uranyl acetate, 12. 18	—— cobaltic hexamminofluoride, 14. 610
amidosulphonate, 8. 644	—— cobaltous phosphate, 14. 853
- animonium arsenate, 9. 215	copper arsenate, 9. 215
carbonate, 12, 17	calcium carbonate, 12. 116
chloride, 12, 17	
chromate, 11. 308 hexahydrate, 11. 308	decahydroxytricarbonate, 12. 112
- hexanydrate, 11, 308	decanydroxytricarbonate, 12. 112 deuterohexavanadate, 9. 787
- disulphate, 12. 108	diamminobromide, 12. 93
- dihydrate, 12. 108	diamminochloride, 12. 88
disulphite, 10. 308	diamminodifluoride, 12. 77
fluoride, 12. 16	diamminoiodide, 12. 94
hydroxysulphite, 10. 308	diamminonitrate, 12. 123
V A	

Uranyl diamminosulphate, 12. 107	Uranyl nitrate dihydrate, 12. 118
- — dihydroarsenate, 9. 215	
	hemitriby drate, 12. 118
dihydrophosphate, 12. 131	
dihydrosulphate, 12. 107	——— monohydrate, 12. 118
—— dihydrotriselenite, 10. 838	tetracosihydrate, 12. 117
— — dihydrotrisulphate, 12. 107	tetrahydrate, 12. 117
dimethylammonium tetrachloride, 12.	trihydrate, 12. 117
89	nitrite, 8. 500
dinitroxylnitrate, 12. 124	- nitroxylchloride, 8. 546
dioxysulphate, 12. 106	—— octomolybdate, 11. 597
dihydrate, 12. 106	orthophosphate, 12. 130
tetradecahydrate, 12. 106	oxybischromate, 11. 307
dithionate, 10. 596	oxychromate, 11. 308
ethylamine phosphate, 12, 132	oxymetaphosphate, 12. 131
ethylenediamine chloride, 12. 89	oxynitrate, 12. 123
disulphate, 12. 109	— oxysulphate, 12. 106
nitrate, 12. 126	paramolybdate, 11. 587
fluoride, 12 . 16, 76	perborate, 5 . 120
——————————————————————————————————————	perchlorate, 2. 403
fluosilicate, 6. 956	periodate, 2. 416
formate, 12 . 18	—— permonosulphomolybdate, 11. 653
guanidme disulphate, 12. 109	phosphate, 12. 18
hexahydroxypentasulphite, 10. 307	phosphite, 8. 919
hexamminodichloride, 12. 88	platinous trans-sulphitodianiminosul-
- hydrazine tetrachloride, 12. 90	phite, 10. 321
hydroarsenate, 9. 215	—— potassium carbonate, 12. 17
 – hydrophosphate, 12. 130 	chloride, 12. 17
hemiennoahydrate, 12. 130	chromate, 11. 308
hemitrihydrate, 12, 130	cyanide, 12. 18
handala lad 40 101	(yanide, 12. 16
heptahydrate, 12. 131	——————————————————————————————————————
tetrahydrate, 12 . 130	dihydrate, 12. 109
	trihydrate, 12. 109
hydroselenate, 10. 877	disulphite, 12, 308
hydroselenite, 10. 838	fluoride, 12. 16
- hydrosulphite, 10 . 308	hexafluoride, 12. 79
hydrotrichloride, 12. 86	hydroxysulphite, 10. 309
—— — monohydrate, 12 . 86	iodate, 2. 358
trihydrate, 12. 86	pentafluorido, 12. 78
hydrotriselenate, 10. 877	phosphate, 12. 132
hydroxide, 12 . 18, 58	
	-1Lite 9 010
	phosphite, 8 . 919
— hydroxychloride, 12. 86	——————————————————————————————————————
hydroxylamine tetrachloride, 12. 90	selenate, 10. 877
hypophosphite, 8. 888	selemte, 10 . 838
hydrate, 8 . 888	sulphate, 12. 17
	tetrabromide, 12. 93
iodate, 2. 358	
iodide, 12 . 93	tetrachloride, 12 . 90
lanthanum sulphite, 10 . 309	tetrachloride, 12 . 90
lanthanum sulphite, 10. 309	tetrachloride, 12. 90 dihydrate, 12. 90
lanthanum sulphite, 10. 309 lead chromate, 11. 308	tetrachloride, 12, 90 dihydrate, 12, 90 tricarbonate, 12, 114
lanthanum sulphite, 10. 309 lead chromate, 11. 308 pentafluoride, 12. 79	
lanthanum sulphite, 10. 309 lead chromate, 11. 308 pentafluoride, 12. 79 lithium disulphate, 12. 109	
lanthanum sulphite, 10, 309	
lanthanum sulphite, 10, 309	
lanthanum sulphite, 10. 309	
lanthanum sulphite, 10. 309	
lanthanum sulphite, 10, 309	
lanthanum sulphite, 10, 309	
lanthanum sulphite, 10, 309	

Uranyl salts, 12. 60	Uranyl trimethylammonium tetrachloride,
—— selenate, 10. 877	12. 89
	trioxysulphate, 12. 106
selenide, 10. 798	
selenite, 10 . 837	tritungstate, 11. 812
——————————————————————————————————————	- tungstate, 11. 797
silicate, 6 . 882	—— uranate, 12. 45
silver carbonate, 12. 115	vanadate, 12. 69
	(di)uranyl ammonium pentahypophosphite,
	8. 889
nitrate, 12. 126	
— — sodium arsenate, 9. 215	potassium pentahypophosphite, 8. 889
carbonate, 12. 17	- sodium pentahypophosphite, 8, 889
chromate, 11. 308	hexahydrate, 8 . 889
columbate, 9. 867	Uranylvanadic acid, 9. 788
—— —— dihypophosphite, 8. 889	Urao, 2. 424, 710
pentahydrate, 8 . 889	Urasite, 2. 656
disulphate, 12. 109	Urbaite, 5. 407
disulphite, 10. 308	Urbanite, 6. 915; 12. 150
hexafluoride, 12 . 79	Urdite, 5. 523
hudrovvoulphito 10 200	Urea, 13. 613
hydroxysulphite, 10 . 309	
metaphosphate, 12. 18	and hydrogen, 1, 304
— — nitrate, 12 . 126	Urethane and CO ₂ , 6, 32
phosphate, 12. 132	Urite, 9. 343
—— – phosphite, 8 . 919	Urovolgyite, 3. 265
pyrophosphate, 12 . 132	Urstoff, 4. 3
— — sulphate, 12. 17	Urusite, 12, 531; 14, 346
——————————————————————————————————————	Urvölgyite, 3. 812
trifluoride, 12. 79	Usbekite, 9. 767
trisulphate, 12. 109	Usifur, 4. 943
	Ussingite, 6. 651
strontium dihydrotetraphosphate, 12.	
136	Utabite, 14, 328, 334
—— —— oxytetraphosphate, 12. 136	Uwarowite, 6 . 866
sulpharsenate, 9. 323	
sulphate, 12. 17, 103	
	v
——— monohydrate, 12. 104	'
——————————————————————————————————————	77 14 0 000 004
—— sulphide, 12 . 95	Vaalite, 6. 609, 624
	1 Variation 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sulphite, 10, 308	Vacuum tubes, 4. 24
	Vadj, 8. 295
tetrahydrate, 10. 308 tritahenahydrate, 10. 308	Vadj, 3 . 295 Val, 1 . 392
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575	Vadj, 3 . 295 Val, 1 . 392 Valence, 1 . 205, 224
tetrahydrate, 10. 308 tritahenahydrate, 10. 308	Vadj, 3 . 295 Val, 1 . 392 Valence, 1 . 205, 224 —— negative, 4 . 191
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652	Vadj, 3 . 295 Val, 1 . 392 Valence, 1 . 205, 224 —— negative, 4 . 191
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ———————————————————————————————————
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208 —— dormant, 1. 208
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208 —— dormant, 1. 208 —— electrical doubt, 1. 213
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride,	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208 —— dormant, 1. 208 —— electrical doubt, 1. 213 —— latent, 1. 208, 213
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208 —— dormant, 1. 208 —— electrical doubt, 1. 213 —— latent, 1. 208, 213
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetraminobromide, 12. 93 tetramminobromide, 12. 93	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 —— negative, 4. 191 —— positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 —— contra, 4. 178, 179 —— crypto-, 1. 208 —— dormant, 1. 208 —— electrical doubt, 1. 213 —— latent, 1. 208, 213 —— normal, 4. 178, 179 —— passive, 1. 208 —— residual, 1. 213 —— residual, 1. 213 —— secondary, 1. 213
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminonitrate, 12. 123	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 94 tetramminoitrate, 12. 123 tetramminosulphate, 12. 107	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 94 tetramminoitrate, 12. 123 tetramminosulphate, 12. 107	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——seeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetraminobromide, 12. 93 tetramminobromide, 12. 93 tetramminodifiuoride, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 94 tetramminoitrate, 12. 123 tetramnosulphate, 12. 107	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784
— tetrahydrate, 10. 308 — tritahenahydrate, 10. 308 — sulphoantimonate, 9. 575 — sulphomolybdate, 11. 652 — tartrate, 12. 18 — tellurate, 11. 97 — tellurite, 11. 82 — tetracthylammonium chloride, 12. 189 — tetrahydropentaselenite, 10. 838 — heptahydrate, 10. 838 — pentahydrate, 10. 838 — pentahydrate, 10. 838 — tetramethylammonium tetrachloride, 12. 89 — tetramminobromide, 12. 93 — tetramminochloride, 12. 77 — tetramminodifluoride, 12. 77 — tetramminoidide, 12. 94 — tetramminoidide, 12. 123 — tetramminosulphate, 12. 123 — tetraphosphate, 12. 132 — thallium nickel nitrite, 8. 512	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 123 tetramminosulphate, 12. 107 tetraphosphate, 12. 132 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——deterical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——electrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——seeondary, 1. 213 ——seeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 215
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 77 tetramminodifluoride, 12. 77 tetramminodide, 12. 123 tetramminosulphate, 12. 123 tetramminosulphate, 12. 123 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110 sulphate, 12. 17 tricarbonate, 12. 116 trinitrate, 12. 127	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 215
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 93 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 123 tetramminosulphate, 12. 107 tetraphosphate, 12. 132 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110 sulphate, 12. 17 tricarbonate, 12. 116 trinitrate, 12. 127	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 215 ——Barlow and Pope's theory, 1. 241
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dormant, 1. 208 ——deterical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 215 ——Barlow and Pope's theory, 1. 241 ——bodies, 1. 225
	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 215 ——Barlow and Pope's theory, 1. 241 ——bodies, 1. 225 ——chief, 8. 234
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminosulphate, 12. 123 tetramminosulphate, 12. 123 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110 sulphate, 12. 17 tricarbonate, 12. 127 thiosulphate, 12. 127 thiosulphate, 10. 555 thorium silicate, 6. 883 triamminobromide, 12. 93 triamminodifluoride, 12. 77	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 ——negative, 4. 191 ——positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 ——contra, 4. 178, 179 ——crypto-, 1. 208 ——dectrical doubt, 1. 213 ——latent, 1. 208, 213 ——normal, 4. 178, 179 ——passive, 1. 208 ——residual, 1. 213 ——secondary, 1. 213 ——secondary, 1. 213 ——sleeping, 1. 208 ——unsaturated, 1. 213 Valency, 1. 204, 224, 784 ——Abegg's theory, 1. 212 ——absolute, 1. 209 ——active, 1. 207, 209 ——and refractive index, 1. 681 ——auxiliary, 8. 234 ——Baeyer's strain theory, 1. 241 ——bodies, 1. 225 ——chief, 8. 234 ——contra, 1. 212
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 93 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 107 tetramminoitrate, 12. 123 tetramminosulphate, 12. 107 tetraphosphate, 12. 132 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 116 sulphate, 12. 17 tricarbonate, 12. 116 trinitrate, 12. 127 thiosulphate, 10. 555 thorium silicate, 6. 883 triamminobromide, 12. 93 triamminoididuoride, 12. 77 triamminoidide, 12. 93	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 — negative, 4. 191 — positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 — contra, 4. 178, 179 — crypto-, 1. 208 — dormant, 1. 208 — electrical doubt, 1. 213 — latent, 1. 208, 213 — normal, 4. 178, 179 — passive, 1. 208 — residual, 1. 213 — secondary, 1. 213 — sleeping, 1. 208 — unsaturated, 1. 213 Valency, 1. 204, 224, 784 — Abegg's theory, 1. 212 — absolute, 1. 209 — active, 1. 207, 209 — and refractive index, 1. 681 — auxiliary, 8. 234 — Baeyer's strain theory, 1. 241 — bodies, 1. 225 — chief, 8. 234 — contra, 1. 212 — directed, 4. 186
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminosulphate, 12. 123 tetramminosulphate, 12. 123 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110 sulphate, 12. 17 tricarbonate, 12. 127 thiosulphate, 12. 127 thiosulphate, 10. 555 thorium silicate, 6. 883 triamminobromide, 12. 93 triamminodifluoride, 12. 77	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 — negative, 4. 191 — positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 — contra, 4. 178, 179 — crypto-, 1. 208 — dormant, 1. 208 — electrical doubt, 1. 213 — latent, 1. 208, 213 — normal, 4. 178, 179 — passive, 1. 208 — residual, 1. 213 — secondary, 1. 213 — sleeping, 1. 208 — unsaturated, 1. 213 Valency, 1. 204, 224, 784 — Abegg's theory, 1. 212 — absolute, 1. 209 — active, 1. 207, 209 — and refractive index, 1. 681 — auxiliary, 8. 234 — Baeyer's strain theory, 1. 215 — Barlow and Pope's theory, 1. 241 — bodies, 1. 225 — chief, 8. 234 — contra, 1. 212 — directed, 4. 186 — doctrine, 1. 222
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetracthylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 88 tetramminodifluoride, 12. 77 tetramminoiodide, 12. 94 tetramminoiodide, 12. 123 tetramminosulphate, 12. 107 tetraphosphate, 12. 123 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 110 sulphate, 12. 17 tricarbonate, 12. 127 thiosulphate, 10. 555 thorium silicate, 6. 883 triamminobromide, 12. 93 triamminoiodide, 12. 94 triamminoididuoride, 12. 77 triamminoiodide, 12. 94 triamminoididuoride, 12. 77	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 — negative, 4. 191 — positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 — contra, 4. 178, 179 — crypto-, 1. 208 — dormant, 1. 208 — electrical doubt, 1. 213 — latent, 1. 208, 213 — normal, 4. 178, 179 — passive, 1. 208 — residual, 1. 213 — secondary, 1. 213 — sleeping, 1. 208 — unsaturated, 1. 213 Valency, 1. 204, 224, 784 — Abegg's theory, 1. 212 — absolute, 1. 209 — active, 1. 207, 209 — and refractive index, 1. 681 — auxiliary, 8. 234 — Baeyer's strain theory, 1. 241 — bodies, 1. 225 — chief, 8. 234 — contra, 1. 212 — directed, 4. 186
tetrahydrate, 10. 308 tritahenahydrate, 10. 308 sulphoantimonate, 9. 575 sulphomolybdate, 11. 652 tartrate, 12. 18 tellurate, 11. 97 tellurite, 11. 82 tetraethylammonium chloride, 12. 189 tetrahydropentaselenite, 10. 838 heptahydrate, 10. 838 pentahydrate, 10. 838 tetramethylammonium tetrachloride, 12. 89 tetramminobromide, 12. 93 tetramminobromide, 12. 93 tetramminodifluoride, 12. 77 tetramminoidide, 12. 94 tetramminoidide, 12. 107 tetramminoitrate, 12. 123 tetramminosulphate, 12. 107 tetraphosphate, 12. 132 thallium nickel nitrite, 8. 512 thallous disulphate, 12. 116 sulphate, 12. 17 tricarbonate, 12. 116 trinitrate, 12. 127 thiosulphate, 10. 555 thorium silicate, 6. 883 triamminobromide, 12. 93 triamminoididuoride, 12. 77 triamminoidide, 12. 93	Vadj, 3. 295 Val, 1. 392 Valence, 1. 205, 224 — negative, 4. 191 — positive, 4. 191 Valencianite, 6. 663 Valencies, affini-, 1. 225 — contra, 4. 178, 179 — crypto-, 1. 208 — dormant, 1. 208 — electrical doubt, 1. 213 — latent, 1. 208, 213 — normal, 4. 178, 179 — passive, 1. 208 — residual, 1. 213 — secondary, 1. 213 — sleeping, 1. 208 — unsaturated, 1. 213 Valency, 1. 204, 224, 784 — Abegg's theory, 1. 212 — absolute, 1. 209 — active, 1. 207, 209 — and refractive index, 1. 681 — auxiliary, 8. 234 — Baeyer's strain theory, 1. 215 — Barlow and Pope's theory, 1. 241 — bodies, 1. 225 — chief, 8. 234 — contra, 1. 212 — directed, 4. 186 — doctrine, 1. 222

** *	
Valency, effect of radiant energy, 1. 210	Vanadium atomic disintegration, 9. 738
	number, 9, 738
electronic hypotheses dynamical, 4.	——————————————————————————————————————
hypothesis, 4. 183	— borotungstate, 5. 111
statical, 4. 183	—— bromides, 9. 812
electrons, 4. 167, 190	carbide, 5. 887
fixing, 4 . 190	carbonates, 9. 825
force, 1. 225	
free, 1. 209 history, 1. 216	——————————————————————————————————————
Kossel's hypothesis, 4. 183	chromates, 11. 306
maximum, 1. 207	chromic dichlorodecaquodisulphate, 9.
negative, 1. 211	825
—— normal, 1. 212	chromium-molybdenum-iron alloys,
null, 4. 176	18. 626
Polar, 1. 211 	steels, 18. 617
primary, 8. 234	
secondary, 8. 234	—— cycle in nature, 9. 719
Stark's hypothesis, 4. 183	dichloride, 9. 803
theories of, 1. 225	—— dihydrotrioxytetrabromide, 9. 812
Thomson's hypothesis, 4, 183	dihydrotrioxytetraiodide, 9. 814
volume, 1. 241	dinitride, 8. 125
—— Werner's theory, 8. 234 —— zero, 1. 206	dioxide, 9. 739, 743 dioxychloride, 9. 805
Valentine Basil, 1. 52	dioxyfluoride, 9 . 799
Valentinite, 9. 343, 421	dioxytrisulphate, 9. 824
n-valerylcholinechloroplatinate, 16. 312	tetrahydrate, 9. 824
Valleriite, 12. 531; 14. 136	disilicide, 6 . 189
Vallerite, 14, 167, 192	disulphide, 9. 815
Valuevite, 6. 816	electronic structure, 9. 738 extraction, 9. 722
Van der Waals' vapour pressure formula, 1. 433	- fluorides, oxyfluorides, 9. 796
Vanadates, 9. 757	—— fluosilicate, 7. 955
Vanadanoxide, 9. 739, 748	heminitride, 8 . 125
Vanadatoiodic acid, 2. 363	—— hemioxide, 9 . 739
Vanadatomolybdates, 9. 780	—— hemisilicide, 6 . 189
Vanadatomolybdic acid, 9. 827	heptabromoantimonite, 9. 496, 812
Vanadatophosphoric acids, 9, 827 Vanadatoselenic acid, 10, 875	heptatritoxide, 9. 739 hexamminotribromide, 9. 812
Vanadatosodalite, 6. 583	hexamminotrichloride, 9. 804
Vanadatotungstates, 9. 785; 11. 795	hexamminotrinitrate, 9. 826
Vanadatotungstic acid. 9. 785	
Vanadeoxide, 9. 739, 743	—— iodides, 9. 813
Vanadic anhydride, 9. 748	iron, 1. 520
augites, 6 . 818 nitrate, 9 . 826	——————————————————————————————————————
	isolation of metal, 9. 724
vanadyl sulphate, 9. 825	—— isotopes, 9 . 738
Vanadicovanadates, 9. 792	lead spar, 9. 809
Vanadides, 9. 733	manganese-iron alloys, 13. 668
Vanadiferous augite, 9. 716	mica, 6. 836
—— gummite, 9. 716	
Vanadinbleierz, 9. 809 Vanadinite, 2. 15; 7. 491; 9. 261, 715, 809	——————————————————————————————————————
Vanadiolaumontite, 6. 739	monamminopentoxide, 9. 754
Vanadiolite, 9. 715, 778	mononitride, 8. 124
Vanadioxide, 9. 739, 741	monoxide, 9. 779
Vanadite, 9. 777	—— nickel alloys, 15. 238
Vanadium, 9. 714	
Vanadium acetoselenate, 10. 875 —— alloys preparation, 9. 726	copper alloys, 15. 238
alums, 9. 819	iron alloys, 15. 315
	pentafluoride, 15. 405
ammonium tetroxydisulphate, 9. 825	occurrence, 9. 715
arsenate, 9. 199	ochre, 8 . 127; 9 . 716, 748
——————————————————————————————————————	oxybromide, 9. 813
tetradecabydrate 0 100	oxychloride, 9. 805 oxychlorides, 9. 803
voulauocanyuravo, v. 100	Jayomoridos, v. 000

Vanadium oxydibromide, 9, 812	Vanadous rubidium sulphate hexahydrate,
oxydichloride, 9. 806	9. 821
oxydifluoride, 9, 797	salts, 9. 742
oxytribromide, 9. 813 oxytrichloride, 9. 806	sodium sulphate, 9. 820
oxytrifluoride, 9. 799	
—— pentachloride, 9. 806	enneahydrate, 9, 819
pentafluoride, 9. 798	enneahydrate, 9. 819 trihydrate, 9. 819
—— pentasulphide, 9. 816	thallium sulphate, 9. 821
pentoxide, 9. 748	Vanadyl ammonium carbonate, 9. 825
	disulphate, 9. 824 disulphite, 10. 805
	arsenate, 9. 198
monohydrate, 9. 753	barium trifluoride, 9. 801
permanganite, 12. 279	borate, 5. 107
- phosphatomolybdates, 11. 663	chloride, 9. 805, 806
phosphide, 8 . 852	cobaltic hexamminofluoride, 14. 610
physiological action, 9. 734	dihydrotrisulphate, 9. 823
platinate, 16 . 248 platinum alloy, 16 . 215	——————————————————————————————————————
- potassium tetroxydisulphate, 9. 825	——————————————————————————————————————
properties, chemical. 9. 732	pentahydrate, 9, 823
physical, 9. 728	tetradecahydrate, 9. 823 trihydrate, 9. 823
pyridine sulphate, 9, 819	trihydrate, 9. 823
reactions analytical, 9. 734	dithionate, 10. 595
	fluoride, 9 . 797, 799 fluosilicate, 6 . 955
spar, 9. 809	—— hydroxide, 9. 744
suboxide, 9. 739	hydrated, 9. 744
sulpharsenate, 9. 322	metahexarsenate, 9. 199
sulpharsenite, 9 , 301	metarsenate, 9 . 198
sulphates, 9. 818	nickel tetrafluoride, 15. 405
sulphides oxysulphides, 9. 814 tetrabromide, 9. 812	nitrate, 9. 826
tetrachloride, 9 . 805	orthophosphate, 9. 827 oxide, 9. 743
totrafluodivanadate, 9. 802	—— phosphate, 9. 827
tetrafluoride, 9. 797	potassium disulphate, 9. 824
—— tetroxide, 9. 743	——————————————————————————————————————
	—— pyrophosphate, 9. 827
titanium inan allawa 42 595	salts, 9. 745
titanium-iron-alloys, 13. 585 tribromide hexahydrate, 9. 812	—— silicate, 6 . 837 —— sodium disulphate, 9 . 824
trichloride, 9. 803	disulphite, 10. 305
hexahydrate, 9. 804	—— sulphate, 9. 821
—— trifluoride, 9. 796	————— dihvdrate. 9. 822
trihydrotrioxypentaiodide, 9. 814	hemiheptahydrate, 9. 822
triodide, hexahydrate, 9, 813	hemipentahydrate, 9. 822
	hemitridecahydrate, 9, 822 ——hemitrihydrate, 9, 822
tungsten-iron alloys, 13. 626	pentahydrate. 9. 823
uranate, 12. 64	———— pentahydrate, 9 . 823 ————————————————————————————————————
uranium alloys, 12, 38	—— sulphite, 10 . 305
—— uses, 9 . 735	sulphotungstate, 11. 809
—— valency, 9. 737 —— wagnerite, 4. 388	thallous oxychloride, 5. 432
(di)vanadium potassium dihydroalumino-	trichloride, 9. 806
triorthosilicate, 6. 836	trisulphite, 10. 305 tungstate, 9. 784
Vanadoxide, 9. 739	vanadate, 9. 748
Vanadous ammonium sulphate, 9. 820	vanadic sulphate, 9. 825
——————————————————————————————————————	Vanadylvanadates, 9. 792
hexahydrate, 9. 820	Vanadylvanadiumphosphates, 9, 826
tetrahydrate, 9. 820 cesium sulphate, 9. 821	Vandanite, 5. 141 Venovite 9. 748
- hydrodisulphate, 9. 819	Vanoxite, 9. 748 Vanthoffite, 2. 430; 4. 337
hydrodisulphide, 9 . 819	Vanuscemite, 6. 442
—— hydroxide, 9. 742	Vaporization curve, 1. 444
oxide, 9, 739, 741	—— heat of, 1. 426
potassium sulphate, 9, 820	Vapour and gas, 1. 435
rubidium sulphate, 9, 820	density, abnormal, 1. 192
dodecahydrate, 9. 821	determination, 1. 181

Vapour density, Dumas' process, 1.	1
184 ——— Hofmann's process, 1. 185	Verbium, 9. 714; 11. 489 Vesbine, 9. 777
Meyer's process, 1. 185	Vestalium, 4. 404
pressure, 1. 431	Vestanite, 6. 458, 500
and boiling-point, 1. 561, 565	Vestium, 4. 404; 5. 504
molecular weight of solute,	Vestorian blue, 6. 373
1. 548	Vesuvian, 6. 726
osmotic pressure, 1. 550	Vesuvianite, 6. 726
	Warralyita 9 182
——————————————————————————————————————	Veszelyite, 9. 182 Veszyelyite, 9. 5
558	Vibration frequency, 1. 828; 4.
——————————————————————————————————————	and heat fusion, 1. 83
—— of small drops, 1. 453	atoms, 1. 828
Rankine's formula, 1. 433	molecules, 1. 828
Raoult's law, 1. 550	Vibratory volume, 1. 755
van der Waals' formula, 1.	Vicarious constituents, 1. 651
Vargasite, 6. 430	Vichite, 5 . 362 Vichlovite, 9 . 778
Variables, dependent, 1. 446	Victor metal, 15. 210
independent, 1. 445	Victoria diamond, 5. 711
of a system, 1. 445	Victorite, 6. 392
Variance of system, 1. 445	Victorium, 5. 501
Variscite, 5, 155, 362; 8, 734	Viellaurite, 6, 899; 12, 433
Varro, M. T., 1. 38	Vienna green, 9, 122
Varvacite, 12. 245 Varvicite, 12. 150, 245	Vierzonite, 6, 472 Vietinghofite, 9, 839; 12, 5
Vasheggite, 5. 366	Vilateite, 14. 401
Vasite, 5. 509	Villamaninite, 14. 424; 15. 6
Vaterite, 3. 816	Villamanite, 15. 449
Vaucher's bearing alloy, 4. 671	Villari reversal, 13. 275
Vaughan, T., 1. 48	Villarsite, 6. 388
Vaugrelinite, 7. 491; 11. 125	Villemite, 6. 438
Vauquelin's red salt, 15, 667 Vauxite, 12, 530; 14, 395	Viluito, 6. 720
Vedas, 1. 22	Vinasso, 2. 438 Vine black, 5. 749
Vegasite, 14. 328, 349	Vinegar, 13. 613, 616
Vegetable alkali, 2. 420	Violan, 6. 915; 12. 150
Velardenite, 6 . 692, 728	Violaris, 15. 448
Velocity colloidal particles, 1. 776	Violarite, 14. 424; 15. 6, 448
—— electrical conduction, 1. 967	Violet hexahydrate, 11. 422
— molecules, 1. 744 — of chemical reactions, 1. 294	Violobromide, 14, 729
—— molecular motion, 1. 792	Virginia silver, 15. 208
Boltzmann's theorem,	Viride montanum, 6. 343
1. 792	Viridite, 6, 622, 921; 12, 531
————— Maxwell's theorem, 1.	Virtual work, principle of, 1. 714
792	Viscosities, colloids, 1. 774
Velvet blende, 18. 877	Viscosity coefficient, 1. 749
—— copper ore, 5 . 353 Venasquite, 6 . 620; 12 . 531	fluids, 1. 749 Vitiated air, 1. 344
Veneris crinis, 7. 34	Vitræ lacrymæ, 6. 530
Venerite, 6. 826	Vitreis guttis, 6. 530
Venetian red, 10. 351; 13. 887	Vitreosil, 6. 288
sublimate, 3 . 157	Vitriol, 14, 242
Venus' hair stone, 7. 34	—— blue, 3 . 234
Verd antique marble, 3. 815	—— brown oil of, 10 . 368
Verde antiquo, 7. 357 —— de Corsicaduro, 6. 822	
Verdigris, 3. 76, 270	green, 14. 245, 248
Vergüten, 12. 690	mixto chypre, 4. 639
Vermeille, 6. 715	ochre, 14. 335
Vermiculite, 6. 609	—— of Mars, 14. 243
Vermiculites, 6. 476, 603	red, 14. 761
Vermilion, 4. 944, 945	white, 4. 613
Veronese yellow, 7. 742	zinc, 4. 613
Verre d'antimoine, 9. 513 —— de plomb, 7. 639	Vitriolgelb, 14. 343 Vitriolocker, 14. 335
Vert antique, 6. 422	Vitriole, 1. 383

Vitriolstein, 10. 351	W
Vitriolum album, 4. 613	Wash assetion of state for all de 4 00
argenti, 3. 459	Waals' equation of state for solids, 1. 83
	—— gas equation, 1. 756 —— theory corresponding states, 1. 759
— martis, 14. 244, 245, 248 — veneris, 3. 234	Wackenroder's solution, 10. 563, 621
Vitrolium viride, 14. 245	Wackenrodite, 12. 150, 267
Vitrum antimonii, 9. 420, 577	Wad, 12. 150, 267; 14. 424; 15. 9
—— flexible, 6 . 520	Wällstähl, 12. 710
miscoviticum, 6. 606	Wärmebehandlung, 12. 673
Vitruvius, 1. 37	Wagnerite, 4. 252, 387; 8. 734
Vivianite, 8. 734'; 12. 531; 14. 390	arsenico, 4. 388
Völckerite, 3. 904	—— barium, 4. 388
Voelkerite, 4. 251; 5. 154	bromo, 4. 388
Völknerite, 5. 296	—— calcium, 3. 902; 4. 388
Völlig ergebnislos, 15. 478	chloro, 4, 388
Vogesite, 6. 815	ferro, 4. 388
Voglianite, 12. 5, 106	mangano, 4. 388
Voglite, 12. 5, 116	strontium, 4. 388
Vogtite, 6, 899 Vojetite, 6, 600	—— vanadium, 4. 388
Voigtite, 6. 609 Volatile alkalies, 2. 420	Wahlite, 13. 620 Waldenheimite, 6. 821
	Walkerde, 6. 496
Volbouthite, 3. 623, 625; 9. 715, 767	Walkererde, 6. 496
Volcanite, 6. 817; 10. 915	Walkerite, 6. 366, 496
Volgorite, 9. 343, 437	Walkthon, 6. 496
Volkernite, 4. 376	Wall reactions, 16. 153
Volomit, 14. 542	
Volt, 1. 963	Wallerian, 6. 396, 821
Voltage, 1. 963	Walleriite, 14. 136
—— decomposition, 1. 965, 1031	Walmstedtite, 4. 349
	Walpurgin, 9. 216
Voltaite, 5. 154; 12. 531; 14. 328,	Waldwarite 9. 5, 216, 589; 12. 5
352 Voltameter copper, 1. 964	Waltherite, 9. 704
silver, 1. 964	Waluewite, 6 . 816 Wapplerite, 4 . 252; 9 . 5, 179
Volta's law, 1. 158	Wardite, 5. 367
Voltzine, 4. 408, 587	Warrenite, 9. 343, 554
Voltzite, 4 . 408, 587	Warringtonite, 4. 639
Volume atom, 1. 188	Warthaite, 9. 695
—— critical, 1. 165	Warwickite, 7. 3, 54
crystal, 1 . 656	Washed metal, 12, 709
electricity, 1. 820	Washingtonite, 7. 2, 57
energy, 1. 712	Wasite, 5. 509
gases, 1. 150	Wasmium, 5. 504; 7. 174
effect of temperature, 1. 158, 160	Wasserbleiocker, 11. 535
	Wassereisen, 8, 853
pressure, 1. 150 joint effect temp. and press., 1.	Wasserkies, 9. 306 ; 14. 200 Water, 11. 368
161	absorption spectrum, 1. 474
moist gases, measuring, 1. 438	action aluminium, 1. 494
— molecular, 1. 416	
— of atom, oscillatory, 1. 233	
vibratory, 1. 233	calcium, 1, 130
theory, 1. 188	carbides, 1. 494
valency, 1. 241	chromium oxide, 1. 494
vibratory, 1. 755	esters, 1. 494
Volumes and molecular weights, 1. 201	halogens, 1. 493, 494
—— atomic, 1. 228	hydrides, 1. 494
law of combining, 1. 171	iodine, 1. 494
— molecular, 1. 176, 195, 228	iron, 1. 134
—— specific, 1. 228	magnesium, 1. 135
	manganese oxide, 1. 494
	metal dioxides, 1, 494
Vonsenite, 5. 114; 12. 531	
Vondiestite, 11. 2, 62 Vonsenite, 5. 114; 12. 531 Vorsulite, 5. 370	molybdous chloride, 1, 494
Vonsenite, 5. 114; 12. 531 Voraulite, 5. 370 Vorobyevite, 4. 204; 6. 803	
Vonsenite, 5. 114; 12. 531 Voraulite, 5. 370 Vorobyevite, 4. 204; 6. 803 Vortmann's fuscosulphate, 14. 674	molybdous chloride, 1. 494
Vonsenite, 5. 114; 12. 531 Voraulite, 5. 370 Vorobyevite, 4. 204; 6. 803	molybdous chloride, 1, 494

Water	. TYT
Water action phosphides, 1, 494	Water magnetic susceptibility, 1. 479
	—— magnetization, 1. 479 —— magneto-optic rotation, 1. 479
	maximum density, 1. 413
—— potassium cobaltocyanide, 1. 494	mineral, 1. 406
solenides, 1. 494	—— molecular formula, 1. 460
	diameter, 1. 460
——————————————————————————————————————	—— mean free path, 1. 460
amalgam, 1. 135	number per c.c., 1. 460
	velocity, 1. 460 volume, 1. 416
	molecules collision frequency, 1. 460
uranium oxide, 1 . 494	gasogenic, 1. 410
zine, 1. 134	ice, 1. 411
—— adsorption by solids, 1, 495	liquidogenie, 1. 411
allotropic states, 1. 457	
— bath, 1. 49-	optical properties, 1, 472 ozone-, 1, 898
—— boiling point, 1, 436 —— chalybeate, 1, 406; 12, 545	- photoelectric effect, 1. 480
colour, 1. 473	potable, 1. 408
composition (gravimetric), 1. 129	pressure coefficient, 1. 429
of Cavendish, 1. 138	critical, 1. 438
——————————————————————————————————————	properties, 6 . 319
Watts, 1. 141	purification, 1, 409
- compressibility, 1. 418	rain, 1. 406, 407
conductivity, 1. 410	refractive index, 1. 472 saline, 1. 407
critical temperature, 1, 437 crystals, 1, 464	sea, 1. 407
- crystallization, 1. 463	—— soft, 6 . 78, 79
- cycle in nature, 1, 405	—— softening, 6 . 79
- decomposition, 1, 136, 490	———— Clarke's process, 6 . 79
by metals, 1, 134	——————————————————————————————————————
density, critical, 1, 438	
—— dielectric capacity, 1, 478 —— diffusion, 1, 469	soda-lime process, 6 . 80 specific cohesion, 1 . 46 9
dispersion, 1. 472	gravity, 1. 415
—— dissociation, 1. 492	heat, 1. 469
——————————————————————————————————————	spring, 1. 406
drinking, 1. 408	(steam) and iron, 1. 297
——— electrical conductivity, 1, 475	steel, 12. 545
electrolyses, 1. 136, 277, 356	sulphur, 1. 406
- (element), 1. 31	
	tensile strength, 1. 422
evaporation velocity, 1. 424	thermal expansion, 1. 412
ferruginous, 12 . 545	to earth, transformation, 1. 81
—— formation of, 1. 127	transition point, 1. 429
—— free energy, 1. 490	effect pressure, 1. 429
—— freezing, 1. 463	underground, 1. 406
fresh, 1. 406	uses, 6. 324
fusion heat of, 1. 428 gas, 1. 281	- — vapour pressure, 1, 423, 431, 435
glass, 6. 317	formulæ, 1. 433
boric acid, 5. 75	vaporization, heat of, 1. 426
gravimetric composition, Dumas, 1.130	velocity formation, 1. 483
—— —— Morley, 1. 132	sound, 1. 469
ground, 1. 406	Verdet's constant, 1. 479
hard, 1. 407; 6. 78	viscosity, 1. 465
boot conductivity 1 471	
heat conductivity, 1. 471 formation, 1. 489	temperature, 1. 410, 414 synthesis, 1. 143
——————————————————————————————————————	—————— Cavendish, 1, 143
influence in chemical action, 1. 377	Holmann, 1. 145
—— ionizing constant, 1. 476	volumetric composition, Cavendish, 1.
potential, 1. 476	139
Korr's electro-optic effect, 1. 480	Waterston's hypothesis, 1. 747
—— liquid, constitution, 1. 461	Wattevillite, 3. 623; 4. 252; 15. 9 Wave-length, 4. 7
——— molecular state, 1. 460 ————————————————————————————————————	Wavellite, 5. 155, 274, 366; 8. 734; 15. 9
1. 461	lime, 5. 366
A	,

White lead composition, 7, 840 Wavellite, pseudo-, 5. 366 Weak acids, 1. 981 Dutch process, 7, 842 -- -- bases, 1. 981 electrolytic process, 7, 846 - - ions, 1. 1015 French process, 7. 845 Webnerite, 9, 551 German process, 7. 844 Webskyite, 6, 423 Websterite, 5, 338 Klangenfurth process, 7. 844 W. L. Matheson's process, 7, 845 mild process, 7, 845 Wehrlite, 9. 589; 11. 9, 60 Wehrllite, 6. 918 non-poisonous, 7, 818 Weibulhte, **7**. 491; **10**. 694, 796 Weight, **4**. 160 precipitation process, 7, 845 properties, 7, 847 quick process, 7. 846 W. H. Rowley's process, 7. 845 Stack process, 7. 842 --- formula, 1, 179 - increase during calcination, 1, 55 - - law of persistence, 1. 101 --- molar, 1. 176 --- of matter, 1. 66 sublimed, 7, 818 Venetian process, 7, 841 Weights atomic, 1, 104, 180, 181
— combining, 1, 99 metal, **3**. 25 , **4**. 671 mckel, 15 6 -- equivalent, 1. 99 ore, 9. 4, 310 pig iron, 12, 596 - -- reacting, 1. 99 Weinbergerite, 12, 531 precipitate fusible, 4, 786, 845, 862 Weinbergite, 6. 645 intusible, 4, 786 Weinschenkite, 5. 529 pvintes, 14, 199 Weisgylden, 9. 291 silver, 15, 210 Weissererde, 6. 921 tellurium. 11. 2 Weisserz, 9. 306 ultramarine, 6, 591, 594 Weisses Nichts, 4. 506 vituol, 4, 613 zinc, 4, 507 Whitneyite, 3, 7; 9, 4, 62 Wicklowite, 9, 715, 778 — - speiskobalt, 15. 447 Weissgolderz, 11. l - prismatische, 11. l Weissgültigerz, 9, 201 Widia, 14, 542 -- dunkles, 9. 551 Widmanstatten figures, 12. 888 Weissigite, 6. 663 - structure, **12**. 888 Weissite, **6**. 812; **11**. 40, 43 Weisskupfer, **15**. 179 Wiedemann and Franz's law, 3. 52 Wiesenerz, **13**, 886 Wirkite, **5**, 481, 519; **7**, 100 Weisskupfererz, 14, 200 Weisspiessglanzerz, 9. 421 Wilhelmite, 6, 438 Weld steel, 12. 710 Wilhelmy's law, 1, 294 Weldon mud, 2. 28 Wilkeite, **6**, 890 Wilkite, **7**, 3 Wellsite, 6, 738 Welsbach's mantle, 7, 218 Willcoxite, 6, 609; 12, 531 Welsium, 5, 503, 691 Willemite, 4, 408; 6, 438; 12, 150 Wenzelite, 12, 150, 448, 531; 14, 396 Werkblei, 7, 504 Wilhamite, 15. 6 Williamsite, 6, 422 Wernerite, 6, 619, 762, 913 Will-o'the-Wisps, 8. 803 Weiner's theory, ammines, 8. 234 Willyamite, 9, 556; 14, 424; 15, 6 valency, 8. 234 Wilsonite, **6**. 619, 763 Weslienite. 9. 461 Wiltshireite, 7, 491; 9, 300 Wilinte, **6**, 726 Wessell's silver, 15. 210 Westanite, 6. 456, 458, 500 Winchite, **6**. 821; **12**. 148, 150 Wet processes extraction copper, 3, 29 Winklerite, 14, 424; 15, 6 -- -- -- chemical, 3. 29 --- -- electrolytic, 3. 29 Winkworthite, 6, 451 Wiscrine, 5. 527 Whartonite, 15. 6, 445 Wiserite, 12, 225 Whatonite, 14. 200 Wismat, 9, 588 Wheel ore, 9, 550 Wismuthbleierz, 9, 694 Wismuthglanz, 9. 684 Whotstone Armenian, 5. 247 Whewellite, 3, 623 Wismuthkupfererz, 9. 690 White acid, 2, 135 Wismuthoxyd kohlensaures, 9. 704 ---- antimonial ore, 9, 421 Withamite, 6. 721; 12. 150 Wittichenite, 3. 7; 9. 589, 690 --- - brass, 13. 545 Chinose, 4, 507 Wittingite, 6. 897 Wittite, 9. 695; 10. 694, 798 Wocheinite, 5. 249 copper, 15, 208 copperas, 4. 613 - -- gold alloys, **15**. 647, 651 ; **16**. 219 Wodanite, 6. 609 --- heart cast iron, 12. 725 Wodanium, 14. 421 --- iron pyrites, 12, 531 --- isomer, 16, 271 --- lead, 7, 841 Wodankies, 14. 421 Wohlerite, **6**. 855, 858; **7**. 100; **9**. **839**, 867 Woeibyite, **5**. 523 Wölchite, 9. 550 - G. Bischof's process, 7. 845

Woestyn's rule, 1, 806 Wolchonskorte, 6. 865 Wolf, 11. 673 Wolfachite, 9. 4, 343, 556; 15. 6 Wolfart, 11. 673 Wolferam, 11. 673 Wolffert, 11. 673 Wolffram's red salt, 16. 271 Wolfish, 11. 673 Wolfort, 11. 673 Wolfram, 11. 673, 674, 798 blue, 11. 745 Wolframine, 11. 753 Wolframinum, 11. 742 Wolframite, 5. 530; 7. 897; 11. 678, 798; 12. 150, 531 Wolframum, 11. 674 Wolframocker, 11. 753 Wolfrig, 11. 673 Wolfsbergite, 9. 343, 536 Wolftonite, 12. 242 Wollastonite, 6. 354, 390 ---- α-, **6**. 354 ---- β-, **6**. 354 --- pseudo-, 6. 354 Wood arsenate, 9. 160 --- charcoal, 5. 748 --- iron ore, 12. 531 -- tin, 7. 394 Woodwardite, 3. 7; 5. 154, 353 Wool fat, 2. 425, 438 Woolfram, 11. 673 Wootz, 12. 853; 18. 550 Wooz, 12. 853 Work, 1. 689 ---- external, 1. 695 - -- hardening, 13. 19 -- in changing volume of gases, 1. 690 ---- internal, 1. 699 -- maximum, 1. 703 - - of chemical reaction, 1. 730 — value of heat, 1. 719 - virtual, principle of, 1.714 Worobieffite, 6. 803 Worobyewite, 6. 803 Wrought iron, 12. 634, 709 Wüllner's law, 1. 548 Wüstite, 18. 702, 704 Wulfenite, 7. 491; 11. 488, 566 —— X-radiogram, 1. 642 Wurfelerz, 9. 226 Wyomingite, 5. 531 X

X-ray analyses crystal structure, 1. 633

— spectrometer, 1. 635

— spectrum, 1. 636

— of, 4. 38

X-rays, 4. 31, 86

— absorption coeff., mass, 4. 33, 34

— exciting, 4. 32

— fluorescent, 4. 35

— hard, 4. 33

— opacity to, 4. 33

— penetrating power, 4. 33

— primary, 4. 32

— reflection, 4. 34

X-radiograms crystals, 1. 634

X-rays scattering, 4. 34 secondary, 4. 21 - soft, 4. 33 - transparency to, 4. 33 Xanorthite, 5. 509 Xantharsenite, 12. 150 Xanthic acid, 6. 119 Xanthin, 5. 971 Xanthiosite, 9. 230 Xanthitane, 6. 840; 7. 3 Xanthoarsenite, 9. 218 Xanthochromic dithionate, 10. 596 Xanthoconite, 3. 300; 9. 4, 319 Xanthogenamide, 6. 120 Xanthogenic acid, 6, 119 Xantholite, 6. 909; 12. 531 Xanthophyllite, 6. 816; 12. 531 Xantho-siderite, 12. 531; 13. 886, 892; 14. 329 Xanthoxenite, 12. 531; 14. 409 Xenolite, 6. 456 Xenon, 7. 889 - atomic weight, 7. 947 -- -- electronic structure, 7. 949 - history, 7. 890 - hydrate, 7. 943 - isotopes, 7. 948 occurrence, 7. 892 - preparation, 7. 902 properties, chemical, 7. 941 - physical, 7. 900 Xenotime, 5. 527; 7. 100, 185; 8. 734; 12. 6 sulphato, 5. 528 X-radiogram, 1. 642 Xiphonite, 6. 821 Xonotlite, 6. 360 Xylene and hydrogen, 1. 304 Xylidinium-1.2.4-bromopalladite, 15.677 ___ 1.3.4-bromopalladite, 15.677 - 1.4.5-bromopalladite, 15.677 - 1.2.4-chloropalladite, 15. 670 -- 1.3.4-chloropalladite, 15. 670 1.4.5-chloropalladite, 15.670 1, 2, 4-xylidinium bromosmate, 15.723 1, 3, 4-xylidinium bromosmate, 15. 723 1, 4, 5-xylidinium bromosmate, 15. 723 Xylite, 6. 825 Xylochlore, 6. 368 Xylotile, 6. 825 Xylylammonium bromoplatinate, 16. 375 m-4-xylylammonium chlorosmate, 15. 719 o-4-xylylammonium chlorosmate, 15, 719 p-5-xylylammonium chlorosmate, 15. 719

Y

Yang, 1. 23
Yanolite, 6. 911
Yellow atrament, 14. 329
——cadmium, 4. 593
——Cassel's, 7. 742
——mineral, 7. 742
——Turner's, 7. 741, 742
——ultramarine, 6. 591; 11. 278
——Veronese, 7. 742
Yenite, 6. 918
Yield point, 1. 819
Yin, 1. 23

002 GENERA	LI INDEX
TT	
Youngite, 7. 797; 12. 150, 397	Yttrium fluoborate, 5. 128
Young's modulus, 1. 820	fluoride, 5. 681
Ytterbia, 5. 496, 498, 706	fluosilicate, 6. 954
isolation, 5 . 705	hexaiodohexanitritotriplatinite, 8. 523
Ytterbite, 5. 496, 508	hydrazine sulphate, 5. 682
Ytterbium, 5. 705	—— hydroarsenate, 9. 188
atomic number, 5. 706	—— hydroazide, 8. 352
weight, 5. 706	hydrophosphate, 5. 684
borate, 5. 103	— hydropyrophosphate, 5. 684
	hydrosulphate, 5. 682 hydroxide, 5. 681
carbide, 5. 873	nyuroxido, 5. 061
carbonate, 5. 707	
chloride, 5 . 707	iodate, 2. 354
—— chloroplatinate, 16. 330	iodide, 5. 681
—— chromate, 11. 288	isolation, 5. 553
hydroxide, 5 . 707	isotopes, 5. 680
—— hydroxycarbonate, 5 . 707	- — manganous nitrates, 12. 446
iodate, 2. 355	mercuric chloride, 5. 681
isolation, 5 . 555	mercury alloys, 5. 681
metaphosphate, 5. 708	metacolumbate, 9. 866
metatungstate, 11. 826	—— metaphosphate, 5. 684
	— metavanadate, 9. 775
nitride, 8. 115	molybdate, 11. 565
orthophosphate, 5. 708	- nitrate, 5. 683
oxide, 5. 706	—— nitrites, 8. 496
oxychloride, 5 . 7 07	— occurrence, 5. 676
oxymolybdate, 11. 565	orthoarsenate, 9. 187
oxyorthodecavanadate, 9. 775	orthocolumbate, 9. 866
oxytungstate, 11 . 791	orthodisilicate, 5. 512
- paramolybdate, 11. 587	orthophosphate, 5. 684
—— paratungstate, 11. 819	—— oxide, 5 . 680
	oxynitrate, 5. 683
silicododecatungstate, 6. 880	paratungstate, 11. 819
sodium pyrophosphate, 5. 708	perchlorate, 2. 402
tungstate, 11. 791	periodate, 2. 415
solubility of hydrogen, 1. 307	peroxide, 5. 681
——————————————————————————————————————	—— potassium chromate, 11. 288
— — sulphite, 10 . 302	——————————————————————————————————————
tungstate, 11. 791	—— preparation, 5. 678
Yttria, 5. 497, 680	properties, 5. 679
extraction, 5. 676	pyrophosphate, 5. 684
garnet, 6. 921	selenate enneahydrated, 10. 872
spar, 5. 527	octohydrated, 10. 872
—— stone, 5. 497	selenite, 10. 832
Yttrialite, 5. 508, 512; 12. 6	silicate, 6. 849
Yttriogarnet, 5. 512	silicododecatungstate, 6. 880
Yttrium, 5. 676	—— sodium carbonate, 5. 683
amalgam, 5. 680	pyrophosphate, 5. 684
—— ammonium carbonate, 5. 683	sulphate, 5. 682
——————————————————————————————————————	———— sulphide, 5. 681
——— analytical reactions, 5. 679	tungstate, 11. 791
—— atomic number, 5. 680	—— solubility of hydrogen, 1. 306
weight, 5. 680	sulpharsenate, 9. 322
—— bismuth sulphate, 9. 701	sulpharsenite, 9. 297
—— bromate, 2. 354	sulphate, 5. 682
	— sulphatostannate, 7. 479
	sulphide, 5. 681
—— carbide, 5. 873	
carbonate, 5. 682	sulphite, 10. 302
chlorate, 2. 354	sulphomolybdate, 11. 652
chloride, 5 . 681	—— sulphotungstate, 11. 859
—— chloroaurate, 3. 595	tantalate, 9. 904
—— chloroplatinate, 16. 330	—— tellurate, 11. 96
chloroplatinite, 16. 284	tellurite, 11. 81 .
chromate, 11. 288	—— thorium metatitanate, 7. 59
—— dihydroarsenate, 9. 187	uranyl calcium deuterotetracolumbate,
—— dihydrotetraselenite, 10. 832	9. 904
	titanocolumbate, 9. 904
dithiopate 40 504	Yttrocalcite, 5. 520
dithionate, 10. 594	
—— dodecanitritotriplatinite, 8. 521	Yttrocerite, 2. 2; 3. 623; 5. 520, 638
—— ferrous uranium metatitanate, 7. 59	Yttrocrasite, 5. 513; 7. 3, 59; 12. 6

Yttroersite, 12. 5	Zinc alum, 5. 354
Yttrofluorite, 5. 520	
Yttrogarnet, 9. 839	aluminate, 5. 296 aluminite, 5. 354
Yttrogummite, 5. 515; 12. 5, 52	aluminium allovs, 5, 237
Yttroilmenite, 5. 516; 9. 839	copper alloys, 5. 240
Yttrotantalite, 5. 497, 516; 9. 839; 12. 5	Iron anoys, 15. 557
Yttrotitanite, 5. 512; 6. 831; 7. 3	magnesium alloys, 5. 240
Yukonite, 9. 228; 12. 531	
${f z}$	aluminotungstate, 11. 789
	alunite, 5. 154
Zaffera, 14. 420	amalgams, 4. 1037
Zaffler, 14. 519	amide, 8 . 260
Zaffre, 14. 420, 519	amidosulphonate, 8. 643
Zalium, 5. 239	aminomethyl sulphoxylate, 10. 162
Zamboninite, 6. 907 Zaphara, 14. 420	ammine, 8. 249 amminochloromercuriate, 4. 861
Zapher, 14. 420	amminochlorosmate, 15. 720
Zaphera, 14. 420	amminochromate, 11. 277
Zaratite, 15. 6, 484, 485	monohydrate, 11. 277
Zarn med Kalkjord förenadt, 14. 355	amminometasilicate, 6. 441
Zarnich, 9. I	amminonitrite, 8. 489
Zeagonite, 6. 711	amminopotassamide, 8. 261
Zebedassite, 6. 812 Zeeman effect, 4. 18	amminopyrophosphate, 4. 662
Zellpyrites, 14. 218	amminoselenite, 10. 827 amminosulphite, 10. 286
Zementstahl, 12. 753	ammonium chromate, 11. 279
Zeolilization, 6. 646	cobaltous sulphate, 14. 782
Zeolite en cubes, 6. 729	diamminobischromate, 11. 280
fibrous, 6. 758	dihydrophosphate, 4. 661
—— foliated, 6 . 758	dimetaphosphate, 4, 663
mangano-, 6. 901 mealy, 6. 758	dithionate, 10. 592
nacrée, 6. 758	ferrous sulphate, 14. 298 fluoride, 4. 534
—— of Breisgau, 6. 442	hydroxydicarbonate, 4. 647
Brisgau, 4. 642	hyposulphite, 10. 183
radiated, 6. 758	manganous sulphate, 12, 423
Zeolites, 6. 574	nickelous sulphate, 15, 476
capillaris, 6. 652	oxychlorides, 4. 546 oxydodecachloride, 4. 546 oxyhenachloride, 4. 546
crystalli ad centrum tendentes, 6. 758	oxydodecachioride, 4. 546
prismaticus, 6. 652	oxyoctochloride, 4. 546
Zeolithe cubique, 6. 644	paramolybdate, 11. 586
dur, 6. 644	paratungstate, 11. 819
efflorescente, 6. 738	pentachloride, 4. 551, 552
leucitique, 6 . 744	— — pentachloride, 4. 551, 552 — persulphite, 10. 479 — phosphate, 4. 661
rouge d'Aedelfors, 6. 738 Zeolithus crystallisatus cubicus, 6. 729	phosphate, 4. 661
lamellaris, 6. 368	polyiodide, 4, 581
Zeophyllite, 6. 363, 951	selenate, 10. 865 sulphate, 4. 635 hexahydrated, 4. 635
Zepharoirchite, 5. 155, 362; 8. 734	sulphate, 4. 635
Zerk, 7. 98	hexahydrated, 4. 635
Zermattite, 6. 423	sulphite, 10. 286
Zero absolute, 1. 160	tetrachloride, 4. 552
Zeugite, 8. 889 Zeunerite, 9. 216; 12. 5	tetraiodide, 4. 582 thiosulphate, 10. 546
Zeuxite, 6. 741	
Ziegelerz, 8. 117	triamminosexichromate, 11. 280 tribromide, 4. 571
Ziervogel's process silver, 3. 305	and stannous chlorides, 7. 434
Ziguéline, 8. 117	thallium, 5. 427
Zillerthite, 6. 405	anorthite, 6. 698
Zilver, 8, 295	
Zinc, 4. 398, 401; 18. 616; 15. 510	arrenate hydrogel 9 180
acid fluoride, 4. 534	
alcoholochloride, 4. 547	atomic number, 4. 503
allotropes, 4. 430	—— weight, 4. 501
alloys, 4. 665	azide, 8. 350
7 '	3 F *

Zinc azide basic, 8. 350	Zinc chromite, 11. 200
szurite, 8. 275	chromium alloys, 11, 171
barium tetrachloride, 4. 558	——————————————————————————————————————
tetraiodide, 4. 584	chromous sulphate, 11. 435
beryllium sulphate, 4. 640 bismuth alloys, 9. 636	cobalt alloy, 14. 532
nitrate, 9. 710	copper alloys, 14. 533 hexachloride, 14. 643
Blanc de, 4. 507	nexachioride, 14. 643
—— blende, 4. 407; 7. 255, 897; 12. 150	
——————————————————————————————————————	cobaltic aquopentamminobromide, 14.
bloom, 4. 408, 646	723
boracite, 5. 140	aquopentamminoiodide 14 745
bromate, 2. 350	aquopentamminopentachloride,
ammino-, 2. 350	14.001
bromide, 4 . 564	chloropyridinebisethylenedi-
dihydrated, 4. 567	aminechloride, 14. 666
monohydrated, 4. 566	hexamminoiodide, 14, 743
trihydrated, 4. 567	hexamminopentachloride, 14. 656
bromoaurate, 8. 607	cobaltic oxytrinitrite, 8, 504
	cobaltite, 14. 594
bromopalladite, 15. 677	cobaltous carbonate, 14, 813
bromoplatinate, 16, 379	orthophosphate, 14. 852 sulphate, 14. 782
Buerre de, 4. 535 Butter of, 4. 535	sulphate, 14. 782
cadmium alloys, 4. 688	
dihydrometasilicate, 6. 445	colloidal, 4 . 422
spar, 4. 643	copper alloys, 4. 670
——— cæsium pentabromide, 4. 572	
pentachloride, 4. 557	
pentaiodide, 4. 583	hydrosulphate, 4. 640
selenate, 10. 867	manganese alloys, 12. 207
	nickel-cobalt alloys, 15. 337
calcium alloys, 4. 685	tungsten alloys, 15. 251
(dı) orthodisilicate, 6 . 444	oxychloride, 4. 540
hyposulphite, 10. 183	phosphate, 4, 664
carbide, 5. 867	phosphatoarsenate, 9, 182
carbonate, 4. 642, 643	sulpharsenite, v. 290
hemihydrated, 4. 643	sulphates, 4, 639
monohydrated, 4. 643	basic, 4. 640
carbonates basic, 4. 645	—— cupric sulphide, 4. 604
catalysis by, 1. 487	
ceric nitrate, 5. 674 cerous nitrate, 5. 672	decaffuodicerate, 5. 638
	decamminochromate, 11. 278
ammino-, 2. 349	deuterohexavanadate, 9. 773
—— chloride, 4. 535; 18. 616	diammine, 9. 773
	dodecammine, 9. 773 hexammine, 9. 773
hemipentahydrated, 4. 540	diamidodiphosphate, 8. 711
monohydrated, 4. 540	—— diamminoazide, 8. 350
properties, chemical, 4, 548	diamminobromide, 4. 570
——————————————————————————————————————	diamminochloride, 4. 549
sesquihydrated, 4. 540	—— diamminodiiodotriarsenite, 9, 257
	diamminoiodide, 4. 582
trihydrated, 4. 540	—— diamminomolybdate, 11. 562
chloroaura'e, 8. 595	diamminorthoarsenate, 9. 180
chlorobismuthite, 9. 667	diamminosulphate monohydrated, 4.
chlorochromate, 11. 399	634
	diamminosulphite, 10. 286
chloromercuriate, 4. 861	diamminothiocarbonate, 6. 127
chloropalladate, 15. 673	diamminothiosulphate, 10. 546
chloropalladite, 15. 670	diamminotrioxydibromide, 4. 569
	diamminotrioxydichloride, 4. 545
- chloroplatinite, 16. 283	diampinoxide, 4. 524
chloroplumbite, 7. 731	diarsenatoctodecatungstate, 9. 214 diarsenide, 9. 66
chlorostannate, 7. 449	dibenzylsulphone, 10. 162
	diborate, 5. 100
monohydrate, 11. 277	dichromate, 11. 341
chrome, 11. 278	dihydrazinosulphite, 10. 286
	,

Zinc dihydroarsenatotrimolybdate, 9. 208	Zinc fluoborate, 5. 128
dihydrophosphate, 4. 660	fluoride, 4. 533
dihydrated, 4. 660 dihydrotetrarsenate, 9. 181	tetrahydrated, 4. 533
dihydroxydisilicate, 6. 442, 443	fluosilicate, 6. 953 fluostannate, 7. 424
dihydroxymetasilicate, 6. 443	fluotitanate, 7. 73
dihydroxypyroarsenate, 9. 182	hexahydrated, 7. 73
dihydroxysulphite, 10. 286	fluozirconate, 7. 141
dihydroxytetrachloroplatinate, 16. 334 diiododinitritoplatinite, 8. 523	fume, 4. 411 furnaces, 4. 413
—— diiodotriarsenite, 9. 257	—— gadolinium nitrate, 5. 695
dimetaphosphate, 4. 663	—— glas, 6. 442
dioxycarbonate, 4. 646	gold alloys, 4. 682
	—— palladium alloys, 15. 648 —— green, 14. 519, 602
dioxynitrate hydrated, 4. 654	hausmannite, 12. 242
dioxytetrafluomolybdate, 11. 614	hemiarsenide, 9. 66
diphembide 8 842	henaoxytetrachloride, 4. 545
396	—— heptamminodiiodotriarsenite, 9. 257
disodium phosphate, 4. 661	heptoxycarbonate, 4. 646
——— distillation, 4. 403, 413	
dithionate, 10 . 592 ditritaaluminide, 9 . 238	heptoxydinitrate, 4. 655 heptoxydisulphate, 4. 626
—— ditritantimonide, 9. 406	heptoxynitrate, 4. 655
—— ditritaphosphide, 8. 842	dihydrated, 4, 655
ditritarsenide, 9. 66	
ditungstate, 11. 810 docositungstate, 11. 833	heptoxyoctosulphite, 10. 286 heptoxysulphate, 4. 626
dodecabromolanthanate, 5. 645	hexadecaboratodibromide, 5. 140
—— dodecaiodolanthanate, 5. 646	hexadecaboratodichloride, 5. 140
dodecamminoxychloride, 4. 546	hexadecaboratodiiodide, 5. 141
dodecatungstate, 11. 832 dust, 4. 411	hexahydroarsenatoctodecamolybdate, 9. 211
enneabromodidymate, 5. 645	hexaiodoplumbite, 7. 778
enneamminochloroplatinate, 16. 329	hexamminobromide, 4. 571
enneaoxydichloride, 4. 545	- hexamminochloride, 4. 549
enneaoxydiiodide, 4. 580 —— enneaoxytetrachloride, 4, 545	
ethylstannonate, 7. 410	hexamminonitrate, 4. 656
ethylsulphinate, 10. 163, 238	hexamminopotassamide, 8. 261
extraction, 4. 411	hexamminosulphate, 4, 633
——————————————————————————————————————	—— hexoxydibromide, 4. 569 —— hexaoxydichloride, 4. 545
electric smelting, 4, 414	— history, 4. 398
electrolysis fused salts, 4. 417	hydrazine, 8 . 315
soin., 4, 415	bromide, 4. 570 ————————————————————————————————————
wet process, 4. 415 fayalite, 6. 906, 909	
felspar, 6 . 662	
ferrate, 18. 935	- hydrazinocarboxylate dihydrazinate,
ferric alum, 14. 348	8. 291
chloride, 14. 104 tetrasulphate, 14. 348	hydrazinohydrosulphite, 10. 286 hydroarsenate, 9. 181
tetrogogihydanto 14 248	monohydrate, 9. 181
tetradecahydrate, 14. 348	hydroarsenatovanadate, 9. 200
ferrite, 4. 647; 18. 917	hydroazide, 8. 350
ferrous chlorides, 14. 34 ——————————————————————————————————	hydrocarbonate, 4. 645 hydrochloride, 4. 549
	hydrofluocolumbate. 9, 872
orthosilicate. 6. 909	hydrofluoride, 4. 534
sulphate, 14. 297	hydroperoxide, 4. 531
sulphide, 14. 167 trisulphate, 14. 298	hydrophosphate, 4. 660 hydrophosphide, 8. 843
dihydrate. 14. 298	hydrophosphite, 8. 916
dihydrate, 14. 298 octodecahydrate, 14. 298	hydroselenite, 10, 827
fine, 4. 403	hydrosulphate, 4. 627
flowers of, 4. 404 fluoantimonate, 9. 468	hydrosulphide, 4. 607 hydrosulphite, 10. 286
ALLICALIVITION CO, F. WOO	nyurosurpino, 14. 200

000 033113202	
Zinc hydrotetrathionate, 10. 619	Zinc metantimonate pentahydrate, 9. 456
hydroxides, 4. 521	— metaplumbate, 7. 701
hydroxyszide, 8. 337	metarsenate, 9. 182
hydroxylaminechloride, 4. 551	—— metarsenite, 9. 127
hydroxylamite, 8. 290	—— metasilicate, 6. 440
hydroxynitrate, 4. 650	metasulpharsenate, 9. 321
hydroxyorthoarsenate, 9. 181	— metasulpharsenatoxymolybdate, 9.332
	metatitanate, 7. 55
hypochlorite, 2. 274	metatungstate, 11. 826
hypomolybdate, 11. 529	octohydrate, 11. 826
hyponitrite, 8. 414	molybdate, 11. 562
hypophosphate, 8. 938	—— monohydrate, 11. 562
hypophosphite, 8. 885	—— molybdenum alloys, 11. 523
iodate, 2. 350	oxypentafluomolybdate, 11. 611
	monamminocarbonate, 4. 647
iodide, 4. 574	monamminochloride, 4. 549
dihydrated, 4. 577	monantimonide, 9, 406
	monophosphide, 8. 843 monoxycarbonate, 4. 646
iodocinoride, 4. 661, 561	hydrated, 4. 646
—— iridium alloy, 15 . 750	monoxydicarbonate, 4. 646
—— iron alloys, 13. 543	monohydrated, 4. 646
copper alloy, 13. 545	monoxydichloride, 4. 546
mercury system, 18. 548	— monoxynitrate, 4. 654
spar, 4. 643; 14. 359	trihydrated, 4. 454
isotopes, 4. 503	monoxysulphate, 4. 625
—— lanthanum nitrate, 5. 672	monoxytrinitrate, 4. 654
lead chromate, 11. 304	trihydrated, 4. 654
hydroxyorthovanadate, 9. 777	neodymium nitrate, 5. 672
orthovanadate, 9. 778	nickel alloy, 15. 207
oxychloride, 4. 546	copper alloys, 15, 208
	—— hydrosulphate, 15. 476
sodium iodoszide, 8. 337 — sulphide, 7. 797	—— hydrosulphate, 15. 476 —— lead-tin-copper alloys, 15. 237
sulphide, 7. 797	nitrates, 15. 492
lithium silicate, b. 444	
trichloride, 4. 554	silicate, 6. 933 silver alloys, 15. 222
	pioleologo gulmbato 45 476
iron alloys, 18. 545	—— nickelous sulphate, 15. 476 —— nitrate, 4. 650
manganous sulphate. 12, 423	basic, 4. 654
potassium sulphate, 4. 641 sulphates, 4. 640 tetrachloride, 4. 569	dihydrated, 4, 650
tetrachloride, 4. 559	hemihenadecahydrated, 4. 650
malachite, 4. 648	hemitrihydrated, 4, 650
—— manganese alloys, 12. 206	hexahydrated, 4. 650
dihydroxyorthosilicate, 6. 894	trihydrated, 4. 650
hydrocarbonate, 12. 439	nitride, 8, 106
hydroxyarsenate, 9. 222	nitrite, 8. 489
tetradecahydroxyarsenate, 9. 221	
manganic pentafluoride, 12. 346	trinydrate, 8. 489
manganiferous ores, 22. 151	nitritoperosmite, 25. 729
—— manganite, 12. 242 —— manganous chloride, 12. 369	
manganous chioride, 12. 308	——— monohydrated, 5. 100
sulphates, 12. 423 sulphide, 12. 397	octobromosluminete. 5. 326
mercurio hexabromide, 4. 894	— octochlorodithallate hexahydrated, 5.
oxybromide, 4. 894	447
oxynitrate, 4. 998	octodecachlorotetraluminate, 5. 322
sulphide, 4. 957	octodecoxypentasulphite, 10. 286
tetrabromide, 4. 894	octofluoaluminate, 5, 310
tetraiodide, 4, 940	octoiododibismuthite, 9. 677
	octomolybdate, 11. 597
941	octoxydichloride, 4. 545
mesopentatitanate, 7. 58	ore prismatic, 4. 506
metaborate, 5. 100	red, 4. 408, 506
metacolumbate, 9. 866	orthoarsenate, 9. 180
metantimonate, 9. 456	octohydrate, 9. 180
dihydrate, 9. 456	
hexahydrate, 9. 456	orthoarsenite, 9. 127

Zinc orthoborate, 5. 100	Zine perdichromate, 11. 359
orthodititanate, 7. 55 orthododecacolumbate, 9. 866	perhydrol, 4. 531 periodates, 2. 414
orthophosphate, 4. 658	pernodates, 2. 414 permanganate, 12. 335
orthosilicate, 6. 438	
—— monohydrated, 6. 442, 443	permanganite, 12. 278 permonosulphomolybdate, 11. 653
orthosulphoantimonate, 9. 575	peroxides, 4, 521, 530
orthosulphoantimonite, 9. 543 orthosulpharsenate, 9. 321	— peroxysilicate, 6. 441 — persulphate, 10. 479
orthotitanate, 7. 55	phosphate 4. 658
osmiamate, 15. 728	phosphatohexatungstate, 11. 873
osmium alloy, 15. 697	—— phosphide, 8 . 842
oxalatodinitritohexamminocobaltiate,	— phosphatchexatungstate, 11. 873 — phosphide, 8. 842 — phosphite, 8. 916 — platinous trans substitudian mineral
8. 510 oxide, 4. 506	piatinous wave-surpinousamminosur-
—— properties, chemical, 4. 515	— platinum alloys, 16. 206 — copper alloy, 16. 207 — silver alloy, 16. 207 — gold alloys, 16. 205, 207
physical, 4. 510	
oxybischromate, 11. 279	silver alloy, 16. 207
oxychromate, 11. 279	gold alloys, 16. 205, 207 thallium alloy, 16. 211
	potassium nickelous sulphate, 15, 476
oxydecachromite, 11. 200	—— potassium nickelous sulphate, 15. 476 —— plumbite, 7. 669
oxydibromide, 4. 570	polybromide, 4 . 581
oxydichromite, 11. 200	polyiodide, 4. 581
	potassamide, 8. 260
	potassium alloys, 4. 666
oxypentafluocolumbate, 9. 874	
oxyphosphide, 8. 843	carbonate, 4. 048
oxysulphide, 4. 606	chromate, 11, 277
oxysulphoantimonate, 9. 575	
	cobalt nitrite, 8. 505
oxytrisulphotungstate, 11. 860	dicalcium sulphate 4 640
palladium alloys, 15. 648	ferrous sulphate, 14. 298
couple, 15. 597 gold alloys, 15. 648	- ferrous sulphate, 14. 298 - fluoride, 4. 534 - hyposulphite, 10. 183 - imidoamide, 8. 261
	—— hyposulphite, 10. 183
paramolybdate, 11. 586	manganous sulphate, 12. 423
paratrititanate, 7. 55 paratungstate, 11. 819	nickel nitrite, 8, 512
—— pentaborate, 5. 100	octohydrotetrahypophosphate, 8.
—— pentafluoaluminate heptahydrated, 5.	938
310	orthosulphoantimonite, 9. 543
pentafluorerrate, 14. 8	— — paratungstate, 11. 819 — — pentanitrite, 8. 490 — — persulphate, 10. 479 — — physica 4. 661
pentafluovanadite, 9. 797 pentamminobromide, 4. 571	perministre, 6. 490
—— pentamminochloride, 4. 550	
pentamminodithionate, 10. 592	pyrophosphate, 4. 663
—— pentamminosulphate, 4. 633	
pentamminotetrathionate, 10. 619	horahydrate, 10, 866
pentamminothiosulphate, 10. 546 pentapermanganite, 12. 278	selenatosulphate, 10. 930
pentasulphide, 4. 607	silicate, 6, 444
—— pentathionate, 10. 628	
pentatungstate, 11. 829	hexahydrated, 4. 637
—— pentitahenicosizincide, 18. 544	sulphatoselenate, 10. 930
pentoxydibromide, 4, 569 pentoxydichloride, 4, 545, 546	sulphide, 4. 604 sulphite, 10. 286
pentoxydiiodide, 4. 580	tetrachloride, 4. 555
pentoxyhexachromite, 11. 200	tetrametaphosphate, 4. 664
pentoxynitrate, 4. 655	tetranitrite, 8. 490
heptahydrated, 4. 655	tetrerotetradecavanadate, 9. 774
pentoxysulphate, 4. 626, 634	
pentoxytricarbonate, 4. 646	
hexahydrated, 4. 646	triterodecavanadate, 9. 774
perborate, 5. 120	praseodymium nitrate, 5. 672
perchlorate, 2. 400 percobaltite, 14. 602	primary, 4. 403
Perconstante, 12. 00%	—— properties, chemical, 4. 472

Zinc properties, physical, 4. 425	Zinc stannate (a-), 7. 419
purification, 4. 418	staurolite, 6. 909
pyridinopermanganate, 12. 335	
pyridinopersulphate, 10. 479	subchloride, 4. 548
	—— suboxide, 4 . 505
pyrophoric alloys, 4. 495	subsulphide, 4 . 586
—— pyrophosphate, 4. 661	sulfuré, 5. 529
pyrosulpharsenate, 9. 321	sulpharsenatosulphomolybdate, 9. 323
pyrosulpharsenatoxymolybdate, 9. 331	sulpharsenite, 9. 296
pyrosulphate, 10. 447	—— sulphate, 4. 612; 11. 831
—— pyrovanadate, 9. 773	ammines, 4. 633 and hydrogen, 1. 303
red oxide, 4. 506; 12. 150	
retorts, 4. 413	complexes, 4. 633 dihydrated, 4. 615
Belgian, 4, 413 ————————————————————————————————————	hemiheptahydrate, 4. 615
Silesian, 4. 413	heptahydrated, 4. 614
rhodochrosite, 12. 433	hexahydrated, 4. 615
römerite, 14. 348	monohydrated, 4. 614
rubidium selenate, 10. 866	octotritahydrated, 4. 614
	pentahydrated, 4, 615
	trihydrated, 4. 615
	—— X-radiogram, 1. 642 — sulphates basic, 4. 625
selenate, 10. 865	lithium and, 4. 636
	sulphide, 4. 586
—— pentahydrate, 10. 865	colloidal, 4. 606
	phosphorescent, 4. 592
selenite, 10. 826	properties, chemical, 4. 602
——————————————————————————————————————	
sesquiborate, 5. 100	—— sulphite, 10. 286
	dihydrate, 10. 286 hemipentahydrate, 10. 286
	monohydrate, 10. 286
silicoarsenide, 9. 68	sulphitodihyposulphite, 10. 183
silicoarsenides, 6. 188	sulphomolybdate, 11. 652
silicododecamolybdate, 6. 871	—— sulphone, 10. 162
silicododecatungstate, 6. 879	sulphosilicate, 6. 987
- silver alloys, 4. 681	sulphosilicide, 6. 182
iodoazide, 8. 337	—— sulphotellurite, 11. 113 —— sulphotungstate, 11. 807
	sulphoxylate, 10. 162
arsenate, 9. 182	tellurate, 11. 94
	telluride, 11. 50
carbonate, 4. 648	tellurite, 11. 80
basic, 4. 648	tetraborate tetrahydrated, 5. 100
chloroazide, 8. 337	tetrafluodioxytungstate, 11. 839
muoride, 4. 034	
hyposulphite, 10. 183 iodoazide, 8. 337	decahydrated, 4. 664
nitratochloroazide, 8. 337	tetramminobromide, 4. 571
	tetramminochloride, 4. 549
paratungstate, 11. 819	tetramminochloroplatinite, 16. 283
persulphate, 10. 479	tetramminochromate, 11. 278
phosphate, 4. 661	trihydrate, 11. 278
pyroarsenate, 9. 182	—— pentahydrate, 11. 278 —— tetramminodiiodotriarsenite, 9. 257
pyrophosphate, 4. 662 sulphate, 4. 636	tetramminodithionate, 10. 592
tetrahydrated, 4. 636	- tetramminohexaiodide, 4. 582
sulphide, 4. 604	tetramminoiodide, 4. 582
tetrachloride, 4. 554	tetramminometachloroantimonate, 9.
tetrametaphosphate, 4. 664	491
tribromide, 4. 571	tetramminonitrate, 4. 656
trimetaphosphate, 4. 663	tetramminopermanganate, 12. 335 tetramminopersulphate, 10. 479
	tetramminosmiamate, 15. 728
spar, 4. 408, 642; 6. 442	tetramminosulphate, 4. 634
spinel, 4. 408; 5. 154	
spongy, 4. 417	dihydrated, 4. 634 tetrahydrated, 4. 634

Zine tetramminosulphate trihydrated,	4	Zing triovytetvenitvete tetvedessbydveted
634	7.	Zinc trioxytetranitrate tetradecahydrated, 4. 654
tetramminotetrathionate, 10. 619		tripermanganite, 12. 278
tetramminotrisulphate, 4, 634		triphosphate, 4. 664 trisilicate, 8. 444
tetrahydrated, 4. 634 tetramminotungstate, 11. 788		tritapermanganite, 12. 278
——————————————————————————————————————		—— trithionate, 10. 609
tetramminoxide, 4. 525		trithiophosphate, 8. 1067
tetramolybdate, 11. 593 tetranitritoheptamminocobaltiate,	8.	tritungstate, 11. 811 trivanadyl disulphite, 10. 305
510	٠.	tungstate, 11. 788
tetranitritoplatinite, 8. 520		hydrate, 11. 788
tetraphosphide, 8. 843 — tetrapyridinotetrathionate, 10. 619		—— ultramarine, 6. 590
tetraselenite, 10. 827		uranate, 12. 63 uranium alloys, 12. 38
- tetrathionate, 10. 619	1	vanadaylvanadylheptafluoride, 9. 801
-— tetratritaphosphide, 8. 843	1	vitriol, 4. 613
tetritastannide, 7. 374 tetritatriantimonide, 9. 406		weiss, 4 . 507 white, 4 . 507
tetroxydibromide, 4. 569		yellow, 11. 278
- tetroxydichloride, 4. 545	1	zirconate, 7. 136
tetroxynitrate, 4. 654 pentahydrated, 4. 654	1	(tri)zinc tetraborate, 5. 100 Zincates, 4. 526
tetroxysulphate, 4. 626	1	Zinci flores, 4. 507
thallous chloride, 5. 441	İ	Zincite, 4. 408, 506; 12. 150, 531
- selenate, 10 . 871 sulphate, 5 . 467	1	Zincium naturale calciforme, 6. 442
		Zinckenite, 9. 343, 549 Zinckum, 4. 401–402
- thiocarbamate, 6. 132	- 1	Zincocalcite, 3. 814
thiocarbonate, 6. 127		Zinconise, 4. 408
thiohypophosphate, 8, 1063 thiophosphate, 8, 1065	ļ	Zinconite, 4. 646 Zincosic chloride, 4. 548
thiopyrophosphate, 8. 1070		Zincosite, 4. 408, 613
thiosulphate, 10. 545		Zincous azide, 8. 350
thoridodecamolybdate, 11. 601	ĺ	Zinephyllite, 4. 658
thorium hexanitrate, 7. 251 titanate acid, 7. 55		Zineum acido aero mineralisatum, 4. 642 —— oxydatum, 4. 507
—— titanide, 7. 20		Zinkbutter, 4. 935
toxicity, 4. 494	-	Zinkdibraunite, 12. 267
	- 1	Zinkenite, 7. 491 Zinkgelb, 11. 278
triamminotetrathionate, 10. 619	- 1	Zinkglaserz, 6. 442
triamminothiosulphate, 10. 546	- {	Zinkite, 4. 506
		Zinkmanganerz, 12. 267
trimetaphosphate, 4. 663		Zinkspath, 6. 442 Zinn, 7. 276
· · - trimolybdate, 11. 590		Zinngraupen, 7. 394
		Zinnkies, 7. 475
dihydrated, 4. 646 monohydrated, 4. 646		Zinnkupferglanz, 7. 475 Zinnstein, 7. 394
tetrahydrated, 4. 646		Zinnwaldite, 2. 426; 6. 604
trioxychromate, 11. 279		Zippeite, 12. 5, 106
trihydrate, 11. 279 pentahydrate, 11. 279		Zircon, 5. 530; 6. 846; 7. 98, 100, 897; 12. 6 light, 1. 326
trioxydicarbonate, 4. 646	ļ	Dyroxenes, 6, 857
trihydrated, 4. 646		X-radiogram, 1. 641
		Zirconates, 7. 100, 134
——————————————————————————————————————	1	Zirconerde, 7. 99 Zirconia, 7. 124
trioxyorthoarsenite, 9. 127		extraction, 7. 101
trioxysulpharsenate, 9. 329		Zirconidodecamolybdates, 11. 601
trioxysulphate, 4. 625 decahydrate, 4. 626		Zirconiferous, 7. 896 Zirconite, 7. 99
decahydrate, 4. 626 dihydrate, 4. 626		Zirconium, 7. 98
heptahydrate, 4. 626		amide, 8. 265
		ammonium carbonate, 7: 161
—— pentahydrate, 4. 626 —— trihydrate, 4. 626		octohydroxyhexasulphate, 7. 159 tetrasulphate, 7. 159
trioxytetrachloride, 4. 546	-	tungstate, 11. 791
trioxytetranitrate, 4. 654	. 1	amorphous, 7. 110

7	(i
Zirconium analytical reactions, 7. 118	Zirconium molybdate, 11. 565
arsenide, 9. 68 arsenide, 9. 128	monoxide, 7. 123
atomic number, 7. 118	
weight, 7. 118	
borate, 5. 106	nexamioride, 15, 405
basic, 5. 106	
boride, 5. 28	
borocarbide, 5. 28	nitrate, 7. 161
borotungstate, 5. 110 bromides, 7. 149	pentahydrated, 7. 162
carbonate, 7. 160	nitrites, 8. 497 occurrence, 7. 99
chlorides, 7. 143	octohydroxychromate, 11. 289
chromate, 11. 288	octohydroxydiorthosilicate, 6. 847
chromium steels, 18. 616	octoxytetrachloride, 1, 147
cobalt, 7. 117	orthoarsenate, 9. 188
colloidal, 7. 109 columbate, 9. 867	orthosilicate, 6. 848
columbium, 7. 117	
copper, 7. 116	
crystalline, 7. 110	oxychlorovanadate, 9. 776
cuprous trithiosulphate, 10, 550	oxysulphite, 10. 303
decahydroxychromate, 11. 289	oxytrisulphate, 7. 156
decahydroxytrisulphate, 7. 157	pentoxytrisulphate, 7. 155
dibudented, 7, 156	octohydrated, 7. 155
——————————————————————————————————————	peroxide, 7. 131
dichloride, 7. 143	phosphates, 7. 163 phosphide, 8. 847
—— dihydride, 7. 114	phosphorus oxyhenichloride, 7. 145
—— dihydrotrisulphate, 7. 154	tridecachloride, 7. 145
trihydrated, 7. 154	phosphotridecachloride, 8. 1016
—— dihydrotrisulphide, 7. 154	—— potassium carbonate, 7. 161
monohydrated, 7. 154	(di) octohydroxypentasulphate,
- dihydroxytriorthosilicate, 7. 846	7. 159
dioxide, 7. 124 properties, chemical, 7. 128	diorthophosphate, 7. 164
——————————————————————————————————————	———— nickel dodecafluoride, 15. 405 ————————————————————————————————————
—— disilicide, 6. 186	phate, 7. 159
electronic structure, 7. 118	
ferrite, 18. 921	
—— fluorides, 7. 137	trioxydisulphate, 7, 158
—— fluosilicate, 6 . 955	tungstate, 11. 792
—— gold, 7. 116 —— graphitic, 7. 106, 110	preparation, 7. 106
	—— properties, chemical, 7. 114 —— physical, 7. 110
hemitrinitride, 8. 120	pyrophosphate, 7. 163
heptoxypentasulphide, 7. 155	selenate, 10, 873
dodecahydrate, 7. 155	
hexacosioxypentachromate, 11. 289	selenite, 10. 832
hexahydroxychromate, 11. 289	monohydrate, 10. 832
	sesquioxide, 7. 123
	sodium calcium chlorotrimesotrisili-
hydroarsenate, 9. 188	cate, 6. 857
hydroazide, 8. 352	
—— hydrophosphate, 7. 163	
hydroxide hydrogel, 7. 131	carbonate, 7, 161
—— hydrosol, 7. 130	octa-orthophosphate, 7. 164 tetraorthophosphate, 7. 164 tetrasulphate, 7. 159
	tetraorthophosphate, 7. 164
	triorthopherphate, 7, 184
iodides, 7. 149	sulpharsenate, 9. 322
iron, 7. 117	sulpharsenite, 9. 297
alloy, 18. 574	sulphate, 7. 152
isotopes, 7. 118	monohydrated, 7. 153
lead, 7. 117	tetrahydrated, 7. 153
magnesium, 7. 116 mercury, 7. 116	
	sarpino, 19. 303

Zirconium sulphochloride, 10. 647	Zirconyl diamminonitrate, 7. 162
—— tantalum, 7. 117	——————————————————————————————————————
—— tellurate, 11. 96	dihydrofluoride, 7. 138
tellurite, 11. 81	dihydrated, 7. 138
- — tetra bromide, 7. 149	dihydrophosphate, 7. 163
——————————————————————————————————————	—— disulphatozirconate, 7. 157
tetrammino-, 7. 149	
tetrachloride, 7. 143	fluoride, 7. 138
	——————————————————————————————————————
——————————————————————————————————————	hydrosulphate, 7. 154
totromonino 7 145	
——————————————————————————————————————	hydroxide, 7. 129
————— triammino-, 7. 145	hydroxybromide, 7. 150
tetrafluoride hemipentitammino-, 7.	—— hydroxyiodide, 7. 151
138	hydroxynitrate, 7. 161
trihydrated, 7. 137	————— dihydrated, 7. 161
—— tetraiodide, 7. 150	—— iodate, 2. 357
————— heptammino-, 7. 151	—— iodide octohydrated, 7. 151
—— — hexammino-, 7 . 151	metaphosphate, 7. 163
octammino-, 7. 151	—— nitrate, 7. 161
tetrammino-, 7. 151	——————————————————————————————————————
tetraoxydisulphate, 7. 156	hemiheptanitrate, 7. 161
octohydrate, 7. 156	perchlorate, 2. 402
thallous enneasulphate, 7. 160	potassium dihydropentafluoride, 7. 140
pentasulphate, 7. 160	- — pyroantimonate, 9. 457
- tetrasulphate, 7. 160	— pyroarsenate, 9. 188
- thiosulphate, 10. 550	- — monohydrate, 9. 188
- thorum hafnium orthosilicate, 8. 167	pyrophosphate, 7. 163
tin, 7. 117	- selenate, 10 . 873
titanate, 7. 56	
trichloride, 7. 143	
- trihydroxybromide, 7, 150	dihydrated, 7. 155
- tuoxide, 7, 123, 132	monohydrated, 7. 155
trioxydibromide, 7, 150	tetrahydrated, 7. 155
dodecahydrated, 7, 150	sulphide, 7. 152
trioxydichloride, 7, 147	tetrahydroxychromate, 11. 288
trihydrated, 7. 147	(dı)zirconyl sodium hexasulphate, 7. 154
trioxysulphate, 7. 156	(tetrahydroxy)zirconyl zirconate, 7. 130
octohydrate, 7. 156	(tri)zirconyl ammonium tetrasulphate, 7.
tritaoctonitude, 8, 120	159
tritatetranitride, 8, 120	potassium tetrasulphate, 7. 159
tungstate, 11 . 791	— sodium tetrasulphate, 7. 159
tungsten, 7. 117	Zirkehte, 5. 530; 6. 855; 7. 3, 100; 12. 5
—— uses, 7. 120	Zirkite, 7. 124
—— valency, 7. 117	Zirklerite, 14. 35
vanadate, 9 . 776	Zirne, 9. 1
(di)zirconium dihydroxytrisulphate, 7. 156	Zirnuk, 9. 1
—— pentahydrated, 7. 156	Zisium, 5. 239
(tri)zirconium octolithium pentorthosilicate,	Zoblitzite, 6. 423
6. 854	Zoisite, 6. 719
Zirconopyrophyllite, 7. 136	a-, 6. 720
Zirconyl, 7. 134	aluminium, 6. 720
—— ammonium tetrasulphate, 7. 159	β-, 6. 720
trisulphate, 7. 159	iron, 6 . 720
bromate, 2. 357	Zolfo, 10. 1
bromide, 7. 150	Zonochlorite, 6. 718
hemiheptahydrated, 7. 150	Zootinsalz, 2. 802
- octohydrated, 7. 150	Zorgite, 3. 7; 7. 491; 10. 694, 788
tetrahydrated, 7. 150	Zoronston 4 90
—— carbonate, 7. 160	Zoroaster, 1. 20 Zosimos, 1. 39
	Zufre, 10. 1
chloride, 7. 146	Zundererz, 7. 491; 9. 555
dihydrated, 7. 146	Zunyite, 6. 585
hemiheptahydrated, 7. 146	Zurinite, 7. 30
———— hexahydrated, 7. 146	Zurlite, 6. 752
octohydrated, 7. 146	Zurupaite, 6. 416
	Zwieselite, 12. 531; 14. 396, 397
———— trinydrated, 7. 146	Zwiselite, 14. 396
chloroplatinate, 16. 330	Zwitter, 7. 394
chloroplatinite, 16. 284	Zygadite, 6. 602

DATE OF ISSUE

This book must be returned within 3, 7, 14 days of its itsus. A fine of ONE ANNA per day will be charged if the book is overdue