

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Image Processing
- Document classification in WWW
- Marketing
- Land use
- Insurance
- City-planning
- Earth-quake studies etc..

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - low <u>inter-class</u> similarity

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with random shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data Structures

- Data matrix
 - (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - (one mode)

```
\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal
- Ordinal
- ratio variables
- Variables of mixed types

Interval-valued variables

- Interval scale is a scale which represents quantity.
- Examples of interval data:
 - -Temperature (Degrees F)
 - -Dates
 - -Dollars
 - -Years
 - -Sea Level etc....

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf}).$$

■ Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{S}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: *Minkowski distance*:

$$d(i,j) = \sqrt{\left(\left|x_{i_1} - x_{j_1}\right|^q + \left|x_{i_2} - x_{j_2}\right|^q + \dots + \left|x_{i_p} - x_{j_p}\right|^q\right)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \ge 0$
 - -d(i,i)=0
 - d(i,j) = d(j,i)
 - $d(i,j) \le d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures

Binary Variables

A contingency table for binary data

	Object j			
	1	0	sum	
1	а	b	a+b	
0	С	d	c+d	
sum	a+c	b+d	p	
	1 0 sum	1	1 0 1 a b 0 c d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Object i

Distance measure for symmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c}$$

■ Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0
 to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Nominal (Categorical) Variables

■ For example, gender is a categorical variable having two categories (male and female

 Hair color is also a categorical variable having a number of categories (blonde, brown, brunette, red, etc.)

Nominal (Categorical) Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

Ordinal Variables

■ An ordinal variable is similar to a categorical variable. The difference between the two is that there is a clear ordering of the variables. For example, suppose you have a variable, economic status, with three categories (low, medium and high).

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

• map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Ratio-Scaled Variables

- These are continuous positive measurements on a nonlinear scale
- Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale Ae^{Bt} or Ae^{-Bt}
- A typical example is the growth of bacterial population (say, with a growth function Ae^{Bt}.). In this model, equal time intervals multiply the population by the same ratio.

Ratio-Scaled Variables

- Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables—the scale can be distorted
 - apply logarithmic transformation and treat as interval-scaled

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as intervalscaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - Interval-scaled, symmetric binary, asymmetric
 - binary, nominal, ordinal and ratio
- Bring all variables onto a common scale

Variables of Mixed Types

Bring all variables onto a common scale [0.0,1.0]

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• if x_{if} or x_{jf} is missing or $x_{if} = x_{jf}$ and variable f is asymmetric otherwise 1.

$$\delta_{ij}^{(f)} = 0$$

Variables of Mixed Types

 \bullet $d_{ii}^{(f)}$ is computed based on its type

- f is interval-based: $d_{ij}^{(f)} = |x_{if} x_{jf}|/(\max_h x_{hf} \min_h x_{hf})$
- *f* is binary or nominal:

$$d_{ij}^{\,\,(f)}=0$$
 if $x_{if}^{\,}=x_{jf}^{\,}$, or $d_{ij}^{\,\,(f)}=1$

$$Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

- f is ordinal: compute ranks r_{if} and
- f is ratio-scaled: perform logarithmic transformation and treat as interval-scaled or ordinal data

Major Clustering Approaches/Methods (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects)
 using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches (II)

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit
 of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: pCluster

User-guided or constraint-based:

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering

Partitioning Algorithms: Basic Concept

- Partitioning method: Given D, a data set of n objects, and k, the number of clusters to form, a partitioning algorithm organizes the objects into k partitions(k<=n), where each partition represents a cluster.
- Given a D, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u>: Each cluster is represented by the center of the cluster.
 - <u>k-medoids</u> or PAM (Partition Around Medoids): Each cluster is represented by one of the objects in the cluster.

The K-Means Clustering Algorithm

• Given k, the k-means algorithm is implemented in four steps:

Step 1: Partition objects into *k* nonempty subsets

Step 2: Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)

Step 3: Assign each object to the cluster with the nearest seed point

Step4: Go back to Step 2, stop when no more new assignment.

The K-Means Clustering Method

Example

- Problem: Cluster the following 8 points into 3 clusters
- A1(2,10), A2(2,5), A3(8,4), A4(5,8), A5(7,5), A6(6,4), A7(1,2), A8(4,9).

Three cluster centers A1(2,10) A4(5,8) A7(1,2)

The distance function between two points a=(x1,y1) and b=(x2,y2) is defined as

P(a,b) = |x2-x1| + |y2-y1|. Use k-means algorithm to find the three cluster centers after the second iteration.

Solution:

■ Iteration

		(2,10)	(5,8)	(1,2)	
	Point	Distance Mean 1	Distance Mean 2	Distance Mean 3	Cluster
A1	(2,10)				
A2	(2,5)				
A3	(8,4)				
A4	(5,8)				
A5	(7,5)				
A6	(6,4)				
A7	(1,2)				
A8	(4,9)				

Point	mean1	
x1, y1	x2, y2 p(a,	b) = x2-x1 + y2-y1
(2, 10)	(2, 10)	= 2 - 2 + 10 - 10
D(a 1)-1-) +11 ± 1+0 +	$1 \mid - \cap \perp \cap - \cap$

		(2,10)	(5,8)	(1,2)	
	Point	Distance Mean 1	Distance Mean 2	Distance Mean 3	Cluster
A1	(2,10)	0	5	9	1
A2	(2,5)	5	6	4	3
A3	(8,4)	12	7	9	2
A4	(5,8)	5	0	10	2
A5	(7,5)	10	5	9	2
A6	(6,4)	10	5	7	2
A7	(1,2)	9	10	0	3
A8	(4,9)	3	2	10	2

- Next we recomputed the new cluster centers(means).
- For Cluster 2, (8+5+7+6+4)/5, (4+8+5+4+9)/5=(6,6)
- For Cluster 3, (2+1)/2, (5+2)/2 = (1.5, 3.5)
- Repeat same iteration with new cluster centers until clusters remain unchanged

Comments on the *K-Means* Method

- Strength: Relatively efficient:
- Comment: Often terminates at a *local optimum*.
- Weakness
 - Applicable only when *mean* is defined.
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and outliers
 - Not suitable to discover clusters with different size.

The *K-Medoids* Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters which is the **most centrally located** object in a cluster.
- PAM (Partitioning Around Medoids)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - *PAM* works effectively for small data sets, but does not scale well for large data sets

A Typical K-Medoids Algorithm (PAM)

- The initial representative objects(or seeds) are chosen arbitrarily.
- The iterative process of replacing representative objects by non-representative objects continues as long as the quality of the resulting clustering is improved.
- This quality is estimated using a cost function that measures the average dissimilarity between an object and rep. object of its cluster.

■ Case 1: p currently belongs to representative object, oj. If oj is replaced by o random as a representative object and p is closest to one of the other representative objects oi, i!= j, then p is reassigned to Oi.

1. Reassigned to Oi

■ Case 2: p currently belongs to representative object, oj. If oj is replaced by orandom as a representative object and p is closest to orandom then p is reassigned to orandom.

2. Reassigned to Orandom

■ Case 3: p currently belongs to representative object, oi i!=j. If oj is replaced by Orandom as a representative object and p is still closest to oi then the assignment does not change.

3. No change

■ Case 4: p currently belongs to representative object, oi i!=j. If oj is replaced by orandom as a representative object and p is closest to orandom then p is assigned to orandom.

3. No change

CLARA (Clustering LARge Applications)

- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM (Partitioning Around Medoids)

Weakness:

- Efficiency depends on the sample size
- A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

Hierarchical Clustering

- Works by grouping data objects into a tree of clusters
- Classified as:
 - Agglomerative(bottom-up)
 - Divisive(top-down)
- No backtracking is possible

Agglomerative hierarchical clustering

- Follows bottom up strategy
- Place each objects in its own cluster and then merges this atomic clusters into larger clusters.
- AGNES is an example for agglomerative hierarchical clustering.

Divisive hierarchical clustering

- Follows top down strategy.
- Reverse of agglomerative strategy
- Subdivides the cluster into smaller and smaller pieces.
- DIANA is an example for divisive hierarchical clustering

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (AGglomerative NESting)

Employee	Skill X	Skill Y
1	2	8
2	8	15
3	3	6
4	6	9
5	8	7
6	10	10

Iterati on numb er(i)	No of cluster s	Nearest Clusters	Centroid of nearest clusters	Distance b/w nearest clusters	Set of clusters after meging nearest clusters
1	6	C1,C3	(2.5,7)	2.236	C13,C2,C4,C5,C6
2	5	C4,C5	(7,8)	2.828	C13,C2,C45,C6)
3	4	C45,C6	(8,8.7)	3.600	C13,C2,C456
4	3	C456,C2	(8,10.3)	6.300	C13,C4562
5	2	C4562,C13	(6.2,9.2)	6.414	C134562

AGNES (AGglomerative NESting)

- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity.
- Single-Linkage Clustering process is terminated when the distance between nearest clusters exceeds an arbitrary threshold.

Dendrogram: Shows How the Clusters are Merged

Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), called a <u>dendrogram</u>.

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.

Dendrogram: Shows How the Clusters are Merged

DIANA (DIvisive ANAlysis)

Inverse order of AGNES

Eventually each node forms a cluster on its own

Recent Hierarchical Clustering Methods

- Major weakness of previous clustering methods
 - do not scale well
 - Can never undo what was done previously
- Integration of hierarchical with distance-based clustering
- BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies
 - uses CF-tree(clustering feature tree) and incrementally adjusts
 the quality of sub-clusters
- ROCK: RObust Clustering using links
 - clustering categorical data by neighbor and link analysis
- <u>CHAMELEON</u>: hierarchical clustering using dynamic modeling

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points or based on an explicitly constructed density function.
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition

Density-Based Clustering Methods

- Several interesting studies:
 - <u>DBSCAN</u> algorithm that grows clusters according to a density based connectivity analysis
 - <u>OPTICS</u> algorithm that extends DBSCAN to produce a cluster ordering obtained from a wide range of parameter settings
 - <u>DENCLUE</u>- algorithm that clusters objects based on a set of density distribution functions

Density-Based Clustering: Background

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - *MinPts*: Minimum number of points in an Eps-neighbourhood of that point
- $N_{Eps}(p)$: { $q \ belongs \ to \ D \ / \ dist(p,q) <= Eps$ }
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* wrt. *Eps*, *MinPts* if
 - 1) p belongs to $N_{Eps}(q)$
 - 2) core point condition:

$$|N_{Eps}(q)| >= MinPts$$

MinPts = 5

Eps = 1 cm

Density-Based Clustering: Background (II)

Density-reachable:

■ A point p is density-reachable from a point q wrt. Eps, MinPts if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

■ A point *p* is density-connected to a point *q* wrt. *Eps*, *MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* wrt. *Eps* and *MinPts*.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- If p ia not a core point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.