# Nonlinear Optimization

Trust-region methods

#### Niclas Börlin

Department of Computing Science

Umeå University niclas.borlin@cs.umu.se

December 3, 2007

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm Line search and trust-region

he trust-region model he trust-region subproblem

- ► Line search strategies choose the direction first, followed by the distance.
- ➤ Trust-region strategies choose the maximum distance first, followed by the direction.



# Line search and trust-region

- ▶ Line search and trust-region and two examples of *global* strategies that modify a (usually) locally convergent algorithm, e.g. Newton, to become globally convergent.
- ► At every iteration *k*, both global strategies enforce the descent condition

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

by controlling the length and direction of the step.

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm Line search and trust-region
The trust-region model
The trust-region subproblem

# The trust-region model

▶ Trust-region methods use the quadratic model

$$m_k(\rho) = f_k + \rho^T g_k + \frac{1}{2} \rho^T B_k \rho,$$

$$f_k = f(x_k), g_k = \nabla f(x_k).$$

- ▶ Newton-type trust-region methods have  $B_k = \nabla^2 f(x_k)$ .
- ▶ The model is "trusted" within a limited region around the current point  $x_k$  defined by

$$\|p\| \leq \Delta_k$$
.

This will limit the length of the step from  $x_k$  to  $x_{k+1}$ .

▶ The value of  $\Delta_k$  will be adjusted up if the model is found to be in "good" agreement with the objective function, and down if the model is a "poor" approximation.

# The trust-region subproblem

► At iteration *k* of a trust-region method, the following subproblem must be solved:

$$\min_{p} m_{k}(p) = f_{k} + p^{T} g_{k} + \frac{1}{2} p^{T} B_{k} p,$$
s.t.  $||p|| < \Delta_{k}$ 

▶ It can be shown that the solution  $p^*$  of this constrained problem is the solution of the linear equation system

$$(B_k + \lambda I)p^* = -g_k$$

for some  $\lambda \geq 0$  such that the matrix  $(B_k + \lambda I)$  is positive semidefinite.

► Furthermore,

$$\lambda(\Delta_k - \|\boldsymbol{p}^*\|) = 0.$$

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm Line search and trust-region The trust-region model The trust-region subproblem The trust-region algorithm



Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm Line search and trust-region The trust-region model The trust-region subproblem The trust-region algorithm

Note that if  $B_k = \nabla^2 f(x_k)$  is positive definite and  $\Delta_k$  big enough, the solution of the trust-region subproblem is the solution of

$$\nabla^2 f(\mathbf{x}_k) p = -\nabla f(\mathbf{x}_k),$$

i.e. p is a Newton-direction.

Otherwise,

$$\Delta_k \geq \|p_k\| = \|(\nabla^2 f(\mathbf{x}_k) + \lambda I)^{-1} \nabla f(\mathbf{x}_k)\|,$$

so if  $\Delta_k \to 0$ , then  $\lambda \to \infty$  and

$$p_k o -rac{1}{\lambda} 
abla f(x_k).$$

▶ When  $\lambda$  varies between 0 and  $\infty$ , the corresponding search direction  $p_k(\lambda)$  will vary between the Newton direction and a multiple of the negative gradient.

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm Line search and trust-region The trust-region model The trust-region subproblem The trust-region algorithm

### The reduction ratio

▶ To enable adaption of the trust-region size  $\Delta_k$ , the reduction ratio

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)} = \frac{\text{actual reduction}}{\text{predicted reduction}}$$

is defined.

- ▶ If the reduction ratio is large, e.g.  $\rho_k > \frac{3}{4}$ , the trust-region size is increased in the next iteration.
- ▶ If the reduction ratio is small, e.g.  $\rho_k < \frac{1}{4}$ , the trust-region size is decreased in the next iteration.
- ▶ Furthermore, a step  $p_k$  will only be accepted if the reduction ratio is not too small.

# The trust-region algorithm

- ▶ Specify starting approximation  $x_0$ , maximum step length  $\hat{\Delta}$ , initial trust-region size  $\Delta_0 \in (0, \hat{\Delta})$  and acceptance constant  $\eta \in [0, \frac{1}{4})$ .
- For  $k = 0, 1, \dots$  until  $x_k$  is optimal
  - Solve

$$\min_{\rho} m_k(\rho) = f_k + \rho^T g_k + \frac{1}{2} \rho^T B_k \rho,$$
  
s.t.  $\|\rho\| \le \Delta_k$ 

approximately for a trial step  $p_k$ .

Calculate the reduction ratio

$$\rho_{k} = \frac{f(x_{k}) - f(x_{k} + p_{k})}{m_{k}(0) - m_{k}(p_{k})}$$

for  $p_k$ .

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm

# The Levenberg-Marquardt algorithm

- ➤ The first trust-region algorithm was developed for least squares problems by Levenberg (1944) and Marquardt (1963).
- ▶ The original algorithm uses the approximation  $B_k = J_k^T J_k$  and solves

$$(B_k + \lambda_k I)p = -g_k$$

for different values of  $\lambda_k$ .

► The original algorithm adapts by modifying the  $\lambda$  value, i.e. if the reduction produced by p is good enough,  $\lambda_{k+1} = \frac{1}{10}\lambda_k$ , otherwise  $\lambda_{k+1} = 10\lambda_k$  and the step is rejected.

Update the current point

$$\mathbf{x}_{k+1} = \left\{ egin{array}{ll} \mathbf{x}_k + \mathbf{p}_k & ext{if } \mathbf{p}_k > \mathbf{\eta}, \\ \mathbf{x}_k & ext{otherwise}. \end{array} 
ight.$$

Update the trust-region radius

$$\Delta_{k+1} = \begin{cases} \frac{1}{4} \Delta_k & \text{if } \rho_k < \frac{1}{4}, \\ \min(2\Delta_k, \hat{\Delta}) & \text{if } \rho_k > \frac{3}{4} \text{ and } \|p_k\| = \Delta_k, \\ \Delta_k & \text{otherwise.} \end{cases}$$

© 2007 Niclas Börlin, CS, UmU

Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm

- ► The Levenberg-Marquardt algorithm was put into the trust-region framework (△-parameterized) in the early 80-ies (Moré, 1981).
- ▶ The  $\Delta$  version of Levenberg-Marquardts has a number of advantages over the  $\lambda$  version:
  - λ is nontrivially related to the problem. Δ is related to the size of x. E.g. Δ<sub>0</sub> = ||x<sub>0</sub>|| is often a reasonable choice.
  - ▶ The transition to  $\lambda = 0$  is handled transparently.
  - ▶ The  $\lambda$  algorithm need to re-solve

$$(B_k + \lambda_k I)p = -g_k$$

when a step is rejected and  $\lambda$  is reduced. The  $\Delta$  algorithm has ways to avoid that.

▶ However, many popular implementation of Levenberg-Marquardt still use the original,  $\lambda$ -parameterized, formulation.

# The Dogleg algorithm

► The trust-region subproblem

$$\min_{\rho} m_k(\rho) = f_k + \rho^T g_k + \frac{1}{2} \rho^T B_k \rho,$$
  
s.t.  $\|\rho\| \le \Delta_k$ 

is a hard problem.

If the unconstrained solution

$$p^B = -B_k^{-1}g_k$$

is too long,  $\|p^B\| > \Delta_k$ , we have to find a  $\lambda$  such that

$$\|p_k(\lambda)\| = \|(B_k + \lambda I)^{-1}g_k\| = \Delta_k.$$

▶ This is a non-linear equation in  $\lambda$ .

© 2007 Niclas Börlin, CS, UmU Nonlinear Optimization; Trust-region methods

Trust-region methods Least Squares; Levenberg-Marquardt The Dogleg algorithm

- ▶ The dogleg algorithm solves this problem by approximating the function  $p_k(\lambda)$  with a piecewise linear polygon  $\tilde{p}(\tau)$  and solving  $\|\tilde{p}(\tau)\| = \Delta_k$ .
- ▶ The polygon  $\|\tilde{p}(\tau)\|$  is defined as

$$ilde{
ho}( au) = \left\{ egin{array}{ll} au 
ho^U, & 0 \leq au \leq 1, \ 
ho^U + ( au - 1)(
ho^B - 
ho^U), & 1 \leq au \leq 2. \end{array} 
ight..$$

▶ The point  $p^U$  is the Cauchy point, i.e. the minimizer of *m* along the steepest descent direction

$$ho^U = -rac{g^Tg}{g^TBg}g.$$

ightharpoonup The dogleg algorithm works only if  $B_k$  is positive definite, e.g. for least squares problems.

© 2007 Niclas Börlin, CS, UmU



Nonlinear Optimization; Trust-region methods