Q. 1.6

year	tech	clock spee	d ipc/ core	cores	dram b	andwidth sp float	ting cahe	
	2010	32	3.33	4	2	17.1	107	4
	2013	22	3.9	6	4	25.6	250	8
	2015	14	4.2	8	4	34.1	269	8
	2017	14	4.5	8	4	38.4	288	8
	2019	14	4.9	8	8	42.7	627	12

10-13	-45%	17%	50%	100%	50%	134%	100%
13-15	-36%	8%	33%	0%	33%	8%	0%
15-17	0%	7%	0%	0%	13%	7%	0%
17-19	0%	9%	0%	100%	11%	118%	50%
Imp/year	-8%	4%	8%	20%	11%	27%	15%
double every	8.80	17.63	8.64	3.60	6.75	2.71	4.80

Q. 1.6

proccessor	clock rate	CPI	
p1	3.00E	E+09	1.5
p2	2.50E	E+09	1
p3	4.00E	E+09	2.2

		-					
Performance = Cloc	ck Rate / CPI						
Number of Cycles = Clock Rate \times Time (in seconds)							
Number of Instructi	Number of Instructions = Number of Cycles \times CPI						
Time in sec	10						

		Performance	number of cycles	number of instu.
p1 performance	2.00E+09	instruction/second	3.00E+10 cycles	4.50E+10 instructions
p2 performance	2.50E+09	instruction/second	2.50E+10 cycles	2.50E+10 instructions
p3 performance	1.82E+09	instruction/second	4.00E+10 cycles	8.80E+10 instructions

a. p2 has the highest performance

Q 1.7

Column1	CPI A	CPI B	CPI C	CPI D	Clo	ck Rate
P1		1	2	3	3	2.50E+09
P2		2	2	2	2	3.00E+09
		10%	20%	50%	20%	

Instruction count = 1.00E+06

which is faster? $$global\ cpi\ p1 = 2.6$$ a. what is the global CPI for each $$global\ cpi\ p2 = 2$$

b.Find the clock cylcles for both cases

cpu clock cycle = Instructions X average clock cycles per instruction(cpi)

clock cyles p1 2.60E+06 clock cyles p2 2.00E+06

CPU execution time = clock cycles / Clock Rate

Execution time P1	1.04E-03 seconds	since P2 has a faster clockrate as well as a lower global Clock cycle per
Execution time P2	6.67E-04 seconds	instruction (CPI), it has a shorter execution time.

Q. 1.10.1

Column1	CPI	clocl	c rate	# of instruction	1. clock cycles	2 ins. Time	4. instr. Time	8. inst time
arithmitic		1	2.00E+09	2.56E+09	2.56E+09	1.83E+09	9.14E+08	4.57E+08
Load/Store		12	2.00E+09	1.28E+09	1.54E+10	1.10E+10	5.49E+09	2.74E+09
branch		5	2.00E+09	2.56E+08	1.28E+09	1.28E+09	1.28E+09	1.28E+09
					1.92E+10	1.41E+10	7.68E+09	4.48E+09

0.7 X # of processor 1.10.1 1.10.2

program is parallel

l		# of instructions can handle		doubled execution time
	1	0.7	9.60	10.88
	2	1.4	7.04	7.95
	4	2.8	3.84	4.30
	8	5.6	2.24	2.47

by changing the value of b49 the cpi we can see the effect of the execution time reduce to 3.84 do when the load and store is reduced to 3 cpi

Q. 1.14

execution time	fp execution time	l/s execution time	branch time	INT
250	70	85	40	55
236	56	85	40	55
200	70	85	40	5
200	70	85	-10	55
	250 236 200	250 70 236 56 200 70	250 70 85 236 56 85 200 70 85	250 70 85 40 236 56 85 40 200 70 85 40

the total time is reduce to 236 seconds

the int is reduce to 5 second because we get a negative number it is not possible.

Q 1.15	Clock rate	2.0E+09			
Program a	Fp execution	INT	L/S	Branch	total time
# of Instructions	5.0E+07	1.1E+08	8.0E+07	1.6E+07	
cpi	1	1	4	2	
execution time	0.03	0.06	0.16	0.02	0.26
2x faster fp					
inprovement	-0.10	0.06	0.16	0.02	0.13
2x faster 1/s					
improvement	0.025	0.055	0.03	0.016	0.13

It would need to be at -4 cpi, but this is -4.12 not possible.

cpi. The cpi of the ls would need to be 0.80 .8

0.015	0.033	0.112	0.0112	0.1712

1.495327103 The new time is about 1.5 times faster than the original.

Q. 2.1

c-code	f = g + (h - 5)		temp x0	
Column1	Column2	Column3	Column4	Column5
assembly code	addi	x7	x7	-5
	add	x5	х6	x7

Q. 2.2

translate to c code					
assembly	add	f	g	h	
	add	f	I	f	

c-code	f = I + (g+h)	

Q. 2.3

c-code	B[8] = A[I - J]					
f	G	Н	I	J	array a	array b
X5	X6	X7	X28	X29	x10	x11

assembly code					
	sub	x5	x28	x29	
	slli	x5	x5		2
	addi	x6	x5	x10	
	lw	x7	0(x6)		
	addi	x9	x7		32
	sw	x7	0(x9)		
				<u>.</u>	

calculae [i-j] and store in x5 multiply j by 4 to get off set add offset to array a load value of a[i-j] in x28 calculate addre of b[8] store value of a[i-j] in b[8]

Q. 2.5

0xabcdef12	show how	show how the value would be arranged In memory little/big indian					
big endian							
address		0	1	2	3		
	ab	cd	ef		12		
		•	•				
little endiian							
address		3	2	1	0		
	ab	cd	ef		12		

Q. 2.6

Translate 0xabcdef12 into decimal.

ab	cd	ef		12			
10 11	12 13	14 15	1 2				
10	11	12	13	14	15	1	2
2684354560	184549376	12582912	851968	57344	3840	16	2

2882400018 decimal value

Q. 2.7

$$B[8] = A[i] + A[j];$$
 f g h i j base a base b x5 x6 x7 x28 x29 x10 x11

slli 5x, x28, 2

add x5,x5, x10 //a[i]

lw x7, 0(x5)

slli x5, x29, 2

add x5, x5, x10 //a[j]

lw x6, 0(x5)

add x5, x7, x6

save b[8] =

sw x5, 32(x11) a[i]+a[j]

Q. 2.10

add x30, x5, x6

registers

x5	0x8000000000000000	
х6	0xD000000000000000	
		this is strored in
x30	0x5000000000000000	register x30.

	This is not the desired value this	
	is because there	
	has been an	
Q 2.10.2	overflow.	0x15
Q 2.10.3	For sub x30, x5, x6. register x30 contains.	0x5
	yes, this is the	
Q 2.10.4	desired result.	

Q 2.10.4 Q. 2.10.5

		0x50000000000000	
add x30, x5, x6	//x30 =	000	
add x30, x30, x5	//x30 = x30 + x5	x30 results in	0xD80000000000000

Q. 2.13 of the following instruction:

sw x5, 32(x30)

Hex value = 0x025f2023 Format S-type

Q 2.17 Assume the following register contents:

x5 = 0x000000000AAAAAAAA

x6 = 0x1234567812345678

Q 2.17.1 For the register values shown above, what is the value of x7 for

the following sequence of instructions?

//shift left logical immediate on value in x5 by 4 bits and saving it

slli x7, x5, 4 in x7

// bit wise or between x7 and x6, stores back into x7

or x7, x7, x6 into x7.

after slli x7 = 0x0000000AAAAAAAA

0x1234567812345

or with x6 678

result of x7 after or 0x1abefef5b315aff20

Q. 2.17.2

//shift value by 4

slli x7, x6, 4 bits

0x2345678123456

value of x7 after or 780

Q. 2.17.3

//shift right by 3

srli x7, x5, 3 bits

//and the x7 and

andi x7, x7, 0xFEF oxfef

55555 after srli x7 = 1010101010101010101010101010101 0x0000000000000 000FEF now oxFEF 0000000000000000010101000101 result of x7 after 0x545 andi Assume x5 holds the value 0x0000000001010000. What is the value of x6 after the following instructions? //if x5 is greater than or equal to, bge x5, x0, ELSE do else //when bge, not true execute this jal x0, DONE line ELSE: ori x6, x0, DONE: Since bge is greater we jump to ELSE and do the ori x6, x0, 2 x5 = 0x00000000010100002= 0x00000000000000010 result of x6= 0x2 Suppose the program counter (PC) is set to 0x20000000. the max jal is 0x3fffffff the max beq current $pc = -2^15$ to $pc + 2^14$

0x0000000155

Q. 3.1

Q. 2.22

Q. 2.21

5ED4

5ED4 - 07A4

unsiged subtaction

hex value = 5730

Q. 3.6

185–122. Is there overflow, underflow, or neither?

	8 bit decimal	binary
	185	10111001
-	122	01111010
=	63	00111111

Q.3.9

Assume 151 and 214 are signed 8-bit decimal integers stored in two's complement format. Calculate 151 + 214 using saturating arithmetic. The result should be written in decimal. Show your work.

	decimal	invert			
151	10010111	01101000	+1 =	01101001	
214	11010110	00101001	+1 =	00101010	add
				1001001	1

decimal value

147