AI VIETNAM All-in-One Course (TA Session)

Vectorized Linear Regression

Extra

Dinh-Thang Duong – TA
Yen-Linh Vu – STA

Getting Started

Objectives

Our objectives:

- Revise the simple Linear Regression.
- Discuss a limitation of Simple Linear
 Regression implementation.
- Introduction to Vectorized Linear Regression.
- Implement the vectorized version of Linear Regression using Gradient Descent.

 x_1

AI VIETNAM All-in-One Course (TA Session)

Outline

- > Introduction
- > Vectorized Linear Regression
- > Code Implementation
- > Question

AI VIETNAM All-in-One Course (TA Session)

Introduction

 $error_i = distance(\hat{y}_i, y_i)$

Find w and b whose model has the smallest error, where
$$loss = \sum_{i}^{n} error_{i}$$

***** Recap: Simple Linear Regression

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and **x** is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

***** Recap: Simple Linear Regression

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and **x** is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Find better w and b

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

Recap: Simple Linear Regression

$$\left|\frac{d}{dx}y(x)\right| = \lim_{\Delta x \to 0} \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

$$x_{new} = x_{old} - \eta \left|\frac{d}{dx}y(x_{old})\right|$$

$$learning rate$$

Recap: Simple Linear Regression

$$\widehat{y} = (wx + b)$$

$$Loss = (\widehat{y} - y)^2$$

$$Loss = (\widehat{y} - y)^2$$

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

$$b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$$

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\widehat{y} - y)$$

Initialize

Recap: Simple Linear Regression

	Experience	Salary
1	3	60
2	4	55
3	5	66
4	6	93

$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

$$b_{new} = b_{old} - \eta \frac{\partial L}{\partial b}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \widehat{v}} \frac{\partial \widehat{y}}{\partial w} = 2x(\widehat{y} - y)$$

Update parameters

Compute derivative for each parameter

Compute outputs \hat{y}_i

$$\widehat{\mathbf{y}_i} = wx_i + b$$

Initialize random parameters

Compute Loss

$$Loss = \sum_{i} (\hat{y}_i - y_i)^2 = \sum_{i} error_i$$

AI VIETNAM All-in-One Course (TA Session)

❖ Multivariate Dataset

Multivariate Linear Regression: Experience, Education, Salary

Experience	Education	Salary
3	12	60
4	13	55
5	14	66
6	15	93
7	16	?

Recap: Vector

 $x \sim (1)$

5

Scalar

$$x \sim (4)$$

5 9 2

Vector

$$x \sim (4, 4)$$

5	6	7	9
9	8	7	6
2	3	4	5
1	2	3	4

Matrix

***** Recap: Vector

$$x \sim (4, 5)$$

5	6	7	8	9
9	8	7	6	5
2	3	4	5	6
1	2	3	4	5

$$x \sim (5, 4)$$

5	9	2	1
6	8	3	2
7	7	4	3
8	6	5	4
9	5	6	5

$$x \sim (4, 4)$$

5	6	7	8
9	8	7	6
2	3	4	5
1	2	3	4

Square Matrix

Exercise 01

* Recap: Vector

Some matrix properties:

- $AB \neq BA$
- $(rA)^T = rA^T$
- $(A + B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$
 - A + B = B + A

$$(A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times m})$$

$$(A \in \mathbb{R}^{m \times N})$$

$$(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times n})$$

$$(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k})$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

$$A \in \mathbb{R}^{m \times n}$$
, $B \in \mathbb{R}^{m \times n}$

$$A + B = \begin{bmatrix} (a_{11} + b_{11}) & \cdots & (a_{1n} + b_{1n}) \\ \vdots & \ddots & \vdots \\ (a_{m1} + b_{m1}) & \cdots & (a_{mn} + b_{mn}) \end{bmatrix} = \begin{bmatrix} (b_{11} + a_{11}) & \cdots & (b_{1n} + a_{1n}) \\ \vdots & \ddots & \vdots \\ (b_{m1} + a_{m1}) & \cdots & (b_{mn} + a_{mn}) \end{bmatrix} = B + A$$

Recap: Dot Product

•
$$a \cdot b = ||a|| ||b|| \cos \theta$$

$$\bullet \quad a \cdot b = \sum_{i=1}^{n} a_i b_i$$

•
$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

•
$$a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$$

Recap: Dot Product Example

***** Vectorized Linear Regression: Conception

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{w} \end{bmatrix} \rightarrow \boldsymbol{\theta}^T = [\boldsymbol{b} \ \boldsymbol{w}]$$

$$\hat{y} = wx + b1 = \begin{bmatrix} b & w \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \theta^T x$$
dot product

***** Vectorized Linear Regression: Conception

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial h} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$L(\hat{y}, y) = (\hat{y} - y)^2$$
numbers

What will we do?

AI VIETNAM

All-Pichea Genreple (x, y) from training data (TA Session)

2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

Vectorized Linear Regression

***** Vectorization idea

$$\hat{y} = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y) = 2 \times (\hat{y} - y) \times 1$$
$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) = 2 \times (\hat{y} - y) \times x$$

$$\begin{bmatrix} 2 \times (\hat{y} - y) \times 1 \\ 2 \times (\hat{y} - y) \times x \end{bmatrix} = 2(\hat{y} - y) \begin{bmatrix} 1 \\ x \end{bmatrix} = 2(\hat{y} - y)x = \begin{bmatrix} \frac{\partial L}{\partial b} \\ \frac{\partial L}{\partial w} \end{bmatrix} = L'_{\theta} \qquad \rightarrow \qquad L'_{\theta} = 2x(\hat{y} - y)$$
common factor

***** Vectorized Linear Regression: Conception

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial z}$$

$$\hat{y} = wx + b$$

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$L'_{\theta} = \begin{bmatrix} \frac{\partial L}{\partial b} \\ \frac{\partial L}{\partial w} \end{bmatrix}$$

$$\theta = \begin{bmatrix} b \\ w \end{bmatrix}$$

$$\rightarrow \boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

***** Comparison

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L_{\boldsymbol{\theta}}' = 2\boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\theta = \theta - \eta L_{\theta}'$$

 η is learning rate

Example

Linear Regression in 3D space

$$\hat{y} = b + w_1 x_1 + w_2 x_2$$

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix}$$

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \quad \rightarrow \quad \boldsymbol{x}^T = \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix}$$

$$\hat{y} = b + w_1 x_1 + w_2 x_2 = \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} = x^T \theta$$

$$\text{dot product}$$

N-samples vectorization

Experience	Education	Salary
3	12	60
4	13	55
5	14	66
6	15	93
7	16	?

$$x^{(1)} = \begin{bmatrix} 1 \\ x_1^{(1)} \\ x_2^{(1)} \end{bmatrix}$$

$$x = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \end{bmatrix}$$

$$x^{(2)} = \begin{bmatrix} 1 \\ x_1^{(2)} \\ x_2^{(2)} \end{bmatrix}$$

N-samples vectorization

Experience	Education	Salary
3	12	60
4	13	55
5	14	66
6	15	93
7	16	?

$$\hat{y}^{(1)} = b + w_1 x_1^{(1)} + w_2 x_2^{(1)}$$

$$\hat{y}^{(2)} = b + w_1 x_1^{(2)} + w_2 x_2^{(2)}$$

$$\mathbf{x} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix}$$

$$\widehat{y} = x\theta = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} b + w_1 x_1^{(1)} + w_2 x_2^{(1)} \\ b + w_1 x_1^{(2)} + w_2 x_2^{(2)} \end{bmatrix} = \begin{bmatrix} \widehat{y}^{(1)} \\ \widehat{y}^{(2)} \end{bmatrix}$$

N-samples vectorization

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = x\theta$$

3) Compute loss

$$L(\widehat{y}, y) = \frac{1}{N} (\widehat{y} - y)^T \odot (\widehat{y} - y)$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y}) \qquad L'_{\boldsymbol{\theta}} = \mathbf{x}^T \mathbf{k}$$

5) Update parameters

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta \frac{L_{oldsymbol{ heta}}'}{N}$$
 η is learning rate

❖ Forward # 1

Backpropagation #1

Initialize $w_1 = 3$ $w_2 = 2$ b = 10 $\eta = 0.001$ N = 4 $N_EPOCH = 2$

Input Vector

$$x = \begin{bmatrix} 1 & 3 & 12 \\ 1 & 4 & 13 \\ 1 & 5 & 14 \\ 1 & 6 & 15 \end{bmatrix}$$

Loss

AI VIETNAM All-in-One Course (TA Session)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Experienc	e Education	Salary	Khởi	tao	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 3	12	60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4	13	55			
$\begin{array}{c} \text{Dù liệu} \\ \text{huấn luyện} \\ \text{Chọn tất cả N} \\ \text{mẫu dữ liệu (x,y)} \\ \end{array}$ $\widehat{\boldsymbol{y}} = x\boldsymbol{\theta}$	2 5	14	66		Kho	ới tạo các tham số ngâu nhi
Chọn tất cả N mẫu dữ liệu (x,y) $\widehat{y} = x\theta$	3 6	15	93	Dữ liêu		
$k = 2(\widehat{y} - y)$ Tính Gradient cho tất cả các mẫu $L(\widehat{y}, y) = \frac{1}{-}(\widehat{y} - y)$					Tính Output ŷ	$\hat{y} = x\theta$
tất cả các mẫu Loss $L(\widehat{\mathbf{y}}, \mathbf{v}) = \frac{1}{-}(\widehat{\mathbf{y}} - \mathbf{v})$		$\mathbf{k} = 2(\widehat{\mathbf{v}})$	$-\mathbf{v}$	Tính Gradient cho	Tính	1
$L(y,y) = \lim_{x \to x} (y + y)$, , , , , , , , , , , , , , , , , , ,	tất cả các mẫu	Loss	$ L(\widehat{y}, y) = \frac{1}{N} (\widehat{y} - y)^{T} \odot $

Experier	ce Education	Salary	Khởi tạo		
0 3	12	60	w và b		
4	13	55	W va D		
2 5	14	66		→ Khô	ời tạo các tham số ngẫu nhi
3 6	15	93	Dữ liệu		
	$\theta = \theta - \eta$	th	ập nhật nam số ính Gradient cho	Tính Output 🍞	
	$k = 2(\widehat{y})$ $L'_{\theta} = x^{T}$	- y)	tất cả các mẫu	Loss	$ (L(\widehat{y}, y) = \frac{1}{N} (\widehat{y} - y)^{T} \odot $
	T		tat oa oao maa		$\langle \mathcal{L}(\mathcal{J})\mathcal{J}\rangle = \chi_{\mathcal{I}}(\mathcal{J})\mathcal{J}$

AI VIETNAM All-in-One Course (TA Session)

QUIZ

AI VIETNAM All-in-One Course (TA Session)


```
1 import numpy as np
 3 def predict(X, theta):
       return X.dot(theta)
 6 def compute_loss(y_hat, y):
      N = y.shape[0]
       return np.sum((y_hat - y) ** 2) / N
10
11 def compute_gradient(y_hat, y, X):
12
      N = y.shape[0]
       k = 2 * (y_hat - y)
13
14
15
       return X.T.dot(k) / N
16
17 def update_gradient(theta, gradient, lr):
18
       theta = theta - lr * gradient
19
                                         39
20
       return theta
```



```
1 import numpy as np
 3 def predict(X, theta):
       return X.dot(theta)
6 def compute_loss(y_hat, y):
      N = y.shape[0]
       return np.sum((y_hat - y) ** 2) / N
11 def compute_gradient(y_hat, y, X):
12
      N = y.shape[0]
      k = 2 * (y_hat - y)
13
14
15
       return X.T.dot(k) / N
16
17 def update_gradient(theta, gradient, lr):
18
      theta = theta - lr * gradient
19
                                         40
20
       return theta
```



```
1 import numpy as np
 3 def predict(X, theta):
       return X.dot(theta)
 6 def compute_loss(y_hat, y):
      N = y.shape[0]
       return np.sum((y_hat - y) ** 2) / N
10
11 def compute_gradient(y_hat, y, X):
12
      N = y.shape[0]
13
       k = 2 * (y_hat - y)
14
15
       return X.T.dot(k) / N
17 def update_gradient(theta, gradient, lr):
18
       theta = theta - lr * gradient
19
                                         41
20
       return theta
```



```
1 import numpy as np
 3 def predict(X, theta):
       return X.dot(theta)
 6 def compute_loss(y_hat, y):
      N = y.shape[0]
       return np.sum((y_hat - y) ** 2) / N
10
11 def compute_gradient(y_hat, y, X):
12
      N = y.shape[0]
       k = 2 * (y_hat - y)
13
14
15
       return X.T.dot(k) / N
16
17 def update_gradient(theta, gradient, lr):
18
       theta = theta - lr * gradient
19
                                         42
20
       return theta
```


AI VIETNAM All-in-One Course (TA Session)

Summarization and QA

Summarization

Summarization

In this lecture, we have discussed:

- 1. Introduction to Vectorized Linear Regression.
- Discuss about how the Vectorized Linear Regression works.
- 3. Implement Vectorized Linear Regression.

Question

