

MDEADRRLRRCRRLV
EELQVDQLWDVLLSRELFRPHMIEDIQRAGSGSRRDQA
RQLIIDLETRGSQAL
PLFISCLEDTGQDMLASFLRTNRQAGKLSKPTLENLTPVVL
RPEIRKPEVLRPETPR
PVDIGSGGFGDVG
ALESLRGNADLAYILSMEPCGHCLII
NNVNFCRESGLRTG
SNIDCEKLRRRFSSL
HFMVEVKGDLTAK
KMVLALLELARQDHGALDCCVV
VILSHGCQASHLQFPGAVY
GTDGCPVSVEKIVNI
FNGTSCPSLGGKPK
LFFIQACGGEQKD
HGFEVASTSPEDESPGSNPEP
DATPFQEGLRTFDQLDA
ISSL
TPSDIFVSYSTFPG
FVSWRDPKSGSWY
VETLDDIFEQWAH
SEDLQSLLRV
ANAVSVKG
IYKQMPGCFN
FLRKKLFFKTS

FIG. 1

1 GCCATGGACG AAGCGGATCG GCGGCTCCTG CGGCGGTGCC GGCTGCGGCT
51 GGTGGAAGAG CTGCAGGTGG ACCAGCTCTG GGACGTCTG CTGAGCCCG
101 AGCTGTTCAAG GCCCCATATG ATCGAGGACA TCCAGCGGGC AGGCTCTGGA
151 TCTCGGCGGG ATCAGGCCAG GCAGCTGATC ATAGATCTGG AGACTCGAGG
201 GAGTCAGGCT CTTCTTTGT TCATCTCCTG CTTAGAGGAC ACAGGCCAGG
251 ACATGCTGGC TTGCTTTCTG CGAACTAACAA GGCAAGCAGG AAAGTTGTCG
301 AAGCCAACCC TAGAAAACCT TACCCCAGTG GTGCTCAGAC CAGAGATTGCG
351 CAAACCAGAG GTTCTCAGAC CGGAAACACC CAGACCAGTG GACATTGGTT
401 CTGGAGGATT CGGTGATGTC GGTGCTCTTG AGAGTTTGAG GGGAAATGCA
451 GATTGGCTT ACATCCTGAG CATGGAGCCC TGTGGCCACT GCCTCATTAT
501 CAACAATGTG AACTTCTGCC GTGAGTCCGG GCTCCGCACC CGCACTGGCT
551 CCAACATCGA CTGTGAGAAG TTGCGGCGTC GCTTCTCCTC GCTGCATTTC
601 ATGGTGGAGG TGAAGGGCGA CCTGACTGCC AAGAAAATGG TGCTGGCTTT
651 GCTGGAGCTG GCGCGGCAGG ACCACGGTGC TCTGGACTGC TGCCTGGTGG
701 TCATTCTCTC TCACGGCTGT CAGGCCAGCC ACCTGCAGTT CCCAGGGGCT

FIG. 2A

751 GTCTACGGCA CAGATGGATG CCCTGTGTCG GTCGAGAAGA TTGTGAACAT
801 CTTCAATGGG ACCAGCTGCC CCAGCCTGGG AGGAAAGCCC AAGCTTTT
851 TCATCCAGGC CTGTGGTGGG GAGCAGAAAG ACCATGGGTT TGAGGTGGCC
901 TCCACTTCCC CTGAAGACGA GTCCCCTGGC AGTAACCCCG AGCCAGATGC
951 CACCCCGTTC CAGGAAGGTT TGAGGACCTT CGACCAGCTG GACGCCATAT
1001 CTAGTTGCC CACACCCAGT GACATCTTGT TGTCCTACTC TACTTTCCCA
1051 GGTTTTGTTT CCTGGAGGGGA CCCCCAAGAGT GGCTCCTGGT ACGTTGAGAC
1101 CCTGGACGAC ATCTTGAGC AGTGGGCTCA CTCTGAAGAC CTGCAGTCCC
1151 TCCTGCTTAG GGTGCGCTAAT GCTGTTCGG TGAAAGGGAT TTATAAACAG
1201 ATGCCTGGTT GCTTTAATTCT CCTCCGGAAA AAACTTTCT TTAAAACATC
1251 ATAAGGCCAG GGCCCCCTCAC CCTGCCTTAT CTTGCACCCCC AAAGCTTCC
1301 TGCCCCAGGC CTGAAAGAGG CTGAGGCCTG GACTTTCTG CAACTCAAGG
1351 ACTTTGNAGC CGGCACAGGG TCTGCTTTT CTCTGCCAGT GACAGACAGG
1401 CTCTTAGCAG CTTCCAGATT GACGACAAGT GCTGAACAGT GGAGGAAGAG
1451 GGACAGATGA ATGCCGTGGA TTGCACGTGG NCTCTTGAGC AGTGGCTGGT

FIG. 2B

1501 CCAGGGCTAG TGACTTGGTG TCCCAGTATC CCTGTGTTGG TCTCTAGGAG

1551 CAGGGATTAA CCTCTGCAC TACTGACAT

FIG. 2C

CTGACTGCCAAGAAAATGGTGTGGCTTGCTGGAGCTGG 40
CGCGGCAGGACCACGGTGTCTGGACTGCTGCGTGGTGGT 80
CATTCTCTCACGGCTGTCAAGGCCAGCACCTGCAGTTC 120
CCAGGGGCTGTCTACGGCACAGATGGATGCCCTGTGTCGG 160
TCGAAAAGATTGTGAACATCTTCAATGGGACCAGCTGCC 200
CAGCCTGGGAGGGAAGCCAAGCTCTTTCATCCAGGCC 240
TGTGGTGGGAGCAGAAAAGACCATGGTTTGAGGTGGCCT 280
CCACTTCCCTGAAGACGAGTCCCCTGGCAGTAACCCGA 320
GCCAGATGCCACCCCGTCCAGGAAGGTTGAGGACCTTC 360
GACCAGCTGGACGCCATATCTAGTTGCCACACCCAGTG 400
ACATCTTGTGTCTACTCTACTTCCCAGGTTTGTTC 440
CTGGAGGGACCCAAGAGTGGCTCTGGTACGTTGAGACC 480
CTGGACGACATCTTGTAGGAGCTGGCTCACTCTGAAGACC 520
TGCAGTCCCTCTGCTTAGGGTCGCTAATGCTGTTCGGT 560
GAAAGGGATTATAAACAGATGCCCTGGTGTAAATTTC 600
CTCCGGAAAAAACCTTTCTTTAAAACATCATAAGGCAG 639

FIG. 3

MVLALLELARQDHGALDCCV 20
VVLSHGCQASHLQFPGAVY 40
GTDGCPVSEKIVNIFNGTS 60
CPSLGGKPKLFFIQACGGEQ 80
KDHGFEVASTSPEDESPGSN 100
PEPDATPFQEGLRTFDQLDA 120
ISSLPTPSDIFVSYSTFPGF 140
VSWRDPKSGSWYVETLDDIF 160
EQWAHSEDLQSLLRVANAV 180
SVKGIIYKQMPGCFNFLRKKL 200
FFM 203

FIG. 4

FIG. 5

FIG. 6