原子の結合に関する基礎知識

参考資料:「はじめて学ぶ大学の無機化学」(化学同人)

イオン化エネルギー

基底状態にある気体状の原子から真空中で電子1個を取り除いて陽イオンにするのに必要なエネルギー。

電子親和力

基底状態の気体原子に真空中で電子を与え、陰イオンにするときに発生するエネルギー。

電気陰性度

分子中で結合に使われる電子密度をその原子の方に引き寄せる 能力の尺度。

族周期	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H 2.20 2.20			The last														He 5.50
2	-	Be 1.57 1.47	Mari	81						11.7						O 3.44 3.50	F 3.98 4.10	Ne 4.84
3		Mg 1.31 1.23					20 739						A1 1.61 1.47	1		S 2.58 2.44	Cl 3.16 2.83	Ar 3.20
- 4	K 0.82 0.91			Ti 1.54 1.32														
5				Zr 1.33 1.22	100000	5 00				1000				100			I 2.66 2.21	
6		Ba 0.89 0.97		Hf 1.30 1.23					0.00		Mall							Rn 2.06
7		Ra 0.90 0.97			15 21					B/AI								

結合エネルギー

表2.9 原子間の単結合エネルギー(kJ/mol)

	H	С	Si	Ge	N	P	As	0	S	Se	F	C1	Br	I
	436	414	318	285	389	326	297	459	347	317	569	432	366	298
-		347	305	245	305	268	201	358	272	243	490	326	272	240
			226	176	335	_	_	452	226	_	598	402	310	234
				188	255	-	_	360	-	_	473	339	280	213
					159	~200		163		-	280	188	_	-
						239	-	368	-	-	498	322	268	18
							180	331	_	-	464	310	255	18
								142	_	_	185	205	-	20
									264	_	326	255	213	-
	多重	 結合							7	172	285	243	_	_
	1		C=C.8	13 C=	O 107	2, C=C) SUUa)	C=N	616		158	255	238	27
	1					6, Si=						242	218	20
	10000					81, O=			Control of				192	17
	L					01, 0		3-3.	101					15

a) 有機物では745kJ/mol.

Paulingの電気陰性度の考え方

96.5 (kJ/mol) ×
$$(\chi_A - \chi_B)^2 = E_{A-B} - (E_{A-A} \times E_{B-B})^{1/2}$$
 $(F \mathcal{O}_{\chi} = 3.98$ を基準として決める)

イオン結合性

電気陰性度の差が大きい原子同士の結合はイオン性が大きい。

提案されているイオン結合の大きさを見積もる計算式

$$1 - \exp\{-0.25(\chi_A - \chi_B)^2\}$$

結晶の格子エネルギーと融点の推定

(同じ結晶構造同士で比較する場合)

イオン間の静電相互作用の 大きさが、格子エネルギー 推定の根拠となる

格子エネルギーが大きいと、 融点は高くなる傾向にある

ケイ酸塩結晶の構造

Cristobalite (SiO₂) **Framework Silicate**

Enstatite (MgSiO₃) **Chain Silicate**

Fluorophlogopite (KMg₃AlSi₃O₁₀F₂) **Sheet Silicate**

Forsterite (Mg₂SiO₄) **Ring Silicate**

回答は全てLETUSの所定の場所に入力してください。

期限は10月18日0:00とします。

次の結合のイオン結合性を見積もりなさい。

- · Al-O
- Mg-O
- Ca-O

* Paulingの電気陰性度の値から、講義で解説した式を使って計算すること。小数点以下は四捨五入して、整数の%で回答して下さい。

Hの電気陰性度を、単結合強度のデータから、Pauling の式を使って計算しなさい。

*講義で解説した式を使って計算すること。

次の化合物はいずれもNaCI型の結晶構造を持つ。それぞれの格子エネルギーの大きさを推定し、下記の選択肢の中から選びなさい。また、融点が一番高い化合物はどれか、推定しなさい。

- NaCl
- NaF
- LiF
- MgO

格子エネルギーの選択肢: 3824, 1045, 904, 786 (kJ/mol)

ヒント: Shannonのイオン半径からイオン間距離を計算し、静電相互作用の大きさを推定する。

コランダムの結晶構造を調べたところ、下記のデータを得た。このデータをもとに、コランダム $(a-Al_2O_3)$ の理論密度を計算しなさい。

```
コランダムの結晶データ(CIF 1000017)
cell_angle_alpha 90
cell_angle_beta 90
cell_angle_gamma 120
cell_length_a 4.76
cell_length_b 4.76
cell_length_c 12.99
```

アボガドロ数 N_A は 6.02×10^{23} (mol⁻¹)、酸素の原子量は16.00、アルミニウムの原子量は26.98とする。

解答は小数点以下3桁目までで記入してください。 (小数点4桁目を四捨五入。単位はg/cm³とする)

