Übungen zu Analysis I für Ingenieure und Informatiker

(Abgabe bis Freitag, 23.05.2014 um 08:20 Uhr, H3)

1. (a) Gebe für die folgenden Cauchyfolgen $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} für jedes $\varepsilon > 0$ eine Konstante $n_0(\varepsilon) \in \mathbb{N}$ an, so dass für alle $n, m \in \mathbb{N}$ mit $n, m \geq n_0(\varepsilon)$ gilt: $|x_n - x_m| < \varepsilon$.

i.
$$x_n:=\sum_{k=1}^n\frac{1}{k^2}$$
 ii. $x_n:=\sum_{k=2}^n\frac{\sqrt{k}}{k^4-2}$ Es lässt sich zeigen, dass $\frac{1}{k^2}\leq \frac{1}{k-1}-\frac{1}{k}$ für $k\in\mathbb{N}, k\geq 2$

(b) Gebe für die Cauchyfolge $(x_n)_{n\in\mathbb{N}}$, mit $x_n:=\sum_{k=3}^n\frac{k-3}{k(k^5-2k+1)}$ für alle $n\in\mathbb{N}$, eine Konstante $n_0\in\mathbb{N}$ an, so dass der Abstand beliebiger Folgenglieder mit größerem Index als n_0-1 kleiner als $\frac{1}{1000}$ ist.

(7+3 Punkte)

- 2. (a) Es seien $1 < q \in \mathbb{N}$ und $(a_k)_{k \in \mathbb{N}}$ eine Folge mit $a_k \in \{0, 1, \dots, q-1\}$ für alle $k \in \mathbb{N}$. Für $n \in \mathbb{N}$ sei $s_n := \sum_{k=1}^n a_k q^{-k}$. Zeige, dass $(s_n)_{n \in \mathbb{N}}$ gegen eine reelle Zahl konvergiert.
 - (b) Zeige, dass $0, \overline{9} = 0, 99\overline{9} = 1$.

(4+2 Punkte)

- 3. Untersuche die Reihe mit dem angegebenen Kriterium auf Konvergenz.
 - (a) $\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^{k+1}$ mit dem notwendigen Kriterium,
 - (b) $\sum_{k=1}^{\infty} \frac{(-1)^k k}{(k+1)(k+2)}$ mit dem Leibnizkriterium,
 - (c) $\sum_{k=0}^{\infty} \frac{2^k}{k!}$ mit dem Quotientenkriterium,
 - (d) $\sum_{k=0}^{\infty} \frac{k^k}{3^k}$ mit dem Wurzelkriterium.

(8 Punkte)

4. Untersuche die folgenden Reihen auf Konvergenz und absolute Konvergenz. Gebe bei einer Reihe den Grenzwert an.

(a)
$$\sum_{k=1}^{\infty} \left(\frac{7}{8}\right)^{k-1}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}$$

(c)
$$\sum_{k=1}^{\infty} \frac{(\sqrt{k}-2)^2}{k^2 + \sqrt{k^4 + 1}}$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k \left(\sqrt{k+1} - \sqrt{k} \right)$$

(e)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)^n \cdot n!}$$

(f)
$$\sum_{n=1}^{\infty} n^5 \left(\frac{3}{2}\right)^{-(n+1)}$$

(15 Punkte)