Ejemplo comparación de resultados predictores in sillico

Cambio de estudio NF1 c.3362A>G (chr17:3123274 A/G, rs757222815 o NM_000267.3:c.3362A>G)

Exón 26 y 27 e intrones adyacentes:

Se ha descrito que este cambio causa la formación de dos transcritos: (1) conteniendo la sustitución y (2) con *skipping* del exón 20. La mutación resulta en la presencia de una isoforma del mRNA con el *splicing* correcto, conteniendo el cambio *missense* correspondiente (p.Glu1121Gly), y otra donde pierde el exón 20¹.

El cambio se encuentra en la primera línea del exón 26 (la **a** en color rojo subrayada en amarillo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

Según el artículo, el cambio de interés está en el exón 20. Sin embargo, el cambio anotado como c.3362A>G en NF1 está en el exón 26, por lo que trabajaremos con este.

NetGene2

The sequence:	wt has the	following	composition:		The sequence:	mut has the	following com	position:	
Length: 1324 33.5% A, 17.4		, 28.9% Т,	0.0% X, 37.6% G	i+C	Length: 1324 n 33.5% A, 17.4%		28.9% T, 0.0	% X, 37.7% G+	+C
Donor splice	sites, direc	t strand			Donor splice s	ites, direct	strand		
	pos 5'->3' 270 326 490 693 1025 1038 1295	. 2 2 2 1 0	rand confidence + 0.41 + 0.37 + 0.34 + 0.76 + 0.83 + 0.51 + 0.00	5' exon intron 3' CATTTACCAG^GTAATATTGC GCTATATCAG^GTAAAATCAT CTATGTAAAG^GTCAGTCTTT CACTCCATAG^GTGAGATCAA TTCTCAGTGG^GTAAGTGATT AGTGATTAGA^GTAAGCGGGG ATTTGATAAG^GTAATTAGGT		pos 5'->3' 270 326 490 693 1025 1038 1295	phase strand 2 + 2 + 2 + 1 + 0 + 1 + - +	confidence 0.41 0.37 0.34 0.69 0.83 0.51 0.00	5' exon intron 3' CATTTACCAG^GTAATATTGC GCTATATCAG^GTAAAATCAT CTATGTAAAG^GTCAGTCTTT CACTCCATAG^GTGAGATCAA TTCTCAGTGG^GTAAGTGATT AGTGATTAGA^GTAAGCGGGG ATTTGATAAG^GTAATTAGGT
Donor splice	sites, compl		nd		Donor splice s	ites, comple	ement strand		
pos 3'->5' 653 Acceptor spli	pos 5'->3' 672 ce sites, di	2	- 0.89	5' exon intron 3' TTGGCATTGA^GTAAGTTTGA	pos 3'->5' 653	672	phase strand 2 -	confidence 0.90	5' exon intron 3' TTGGCATTGA^GTAAGTTTGA H
	pos 5'->3' 510 549 554 560 860 884 890	. 2 1 0 0 1	- rand confidence + 0.25 + 0.19 + 0.18 + 0.07 + 0.18 + 0.19	TATTTCTCAG^ATACTTCACA ATGACTGCAG^TGAAGTTGAA TGCAGTGAAG^TTGAAGATGA GAAGTTGAAG^ATGAAAGTGC TTTATGGAAG^TTCTGACAAA CTTCAACAAG^GCACAGAATT	Acceptor splic	pos 5'->3' 510 549 554 860 884 890		confidence 0.24 0.17 0.07 0.18 0.19 0.19	5' intron exon 3' TATTTCTCAG^ATACTTCACA ATGACTGCAG^TGAAGTTGGA TGCAGTGAAG^TTGGAGATGA TTTATGGAAG^TTCTGACAAA CTTCAACAAG^GCACAGAATT CAAGGCACAG^AATTTGACAC
Acceptor spli		-	F 0.19	CAAGGCACAG^AATTTGACAC		050	- '	0.19	chadenend har Francisc
	ice sites, co	_		CAAGGCACAG AATTTGACAC	Acceptor splic				CARGOCACIO ANTITOREAC

Desaparece un sitio aceptor (en rojo) en la secuencia mutada, coincidiendo con la posición de interés. Sin embargo, este sitio no se utiliza en el *splicing* de la secuencia *wild type*, por lo que no tendrá influencia sobre el proceso.

Splice Site Prediction by Neural Network (NNSplice)

Dono	r site j	predictio	ns for 80.102.13	4.120.15118.0 :	Dono	r site	predictio	ns for 8	0.102.134.120.15129.0:
Start	End	Score	Exon Intron		Start	End	Score	Exon	Intron
263	277	0.71	ttaccag gt aatat	:t	263	277	0.71	ttacca	ag gt aatatt
300	314	0.61	atgaaag gt atact	:a	300	314	0.61	atgaaa	ag gt atacta
319	333	0.90	atatcag gt aaaat	cc	319	333	0.90	atatca	ag gt aaaatc
483	497	0.97	tgtaaag gt cagto	:t	483	497	0.97	tgtaaa	ag gt cagtct
572	586	0.52	caaacaggtggcag	38	572	586	0.52	caaaca	ag g tggcagg
686	700	0.79	tccatag gt gagat	cc	686	700	0.79	tccata	ag gt gagatc
739	753	0.51	ctggcat gt aagag	ga	739	753	0.51	ctggca	at gt aagaga
773	787	0.82	aggccat gt tagta	aa	773	787	0.82	aggcca	at gt tagtaa
1018	1032	0.99	tcagtgg gt aagtg	ga	1018	1032	0.99	tcagtg	g gt aagtga
1031	1045	0.92	gattaga gt aagcg	g	1031	1045	0.92	gattag	ga gt aagcgg
1288	1302	0.99	tgataag gt aatta		1288	1302	0.99	tgataa	ag gt aattag
Acce	ptor si	te predic	tions for 80.102	.134.120.15118.0 :	Acce	ptor si	te predic	tions for	r 80.102.134.120.15129.0 :
Start	End	Score	Intron	Exon	Start	End	Score	Intron	
112	152	0.66	tgttttgtgatttt	ttaa ag aaagtaatatgatcagtgaa	112	152	0.66	tgtttt	gtgattttttaa ag aaagtaatatgatcagtgaa
490	530	0.96	gtcagtcttttatt	tctc ag atacttcacattatttatga	490	530	0.96	gtcagt	ctttttatttctc ag atacttcacattatttatga
672	712	0.95	gtggtctcatgcact	ccat ag gtgagatcaaatgaaagttt	672	712	0.95	gtggtc	tcatgcactccat ag gtgagatcaaatgaaagttt
792	832	0.90	gcatctgtttgtcca	acatt ag gcttaggttaccacaaggat	792	832	0.90	gcatct	gtttgtccacatt ag gcttaggttaccacaaggat
1001	1041	0.84	aatgtggttccttgt	tctc ag tgggtaagtgattagagtaa	1001	1041	0.84	aatgtg	gttccttgttctc ag tgggtaagtgattagagtaa

taggtgatttttcagctgt**ag**ggaagtggttggcaccacta 1153 1193 0.76 taggtgatttttcagctgt**ag**ggaagtggttggcaccacta

No hay cambios entre las predicciones para la secuencia *wild type* y la mutada, por lo que no tendrá efecto en el *splicing*.

GENSCAN → no da resultados para este cambio

1153 1193

0.76

MaxEntScan

MAXENT: -42.21 MDD: -27.71 MM: -28.63 WMM: -22.26 MAXENT: -7.42 MM: -7.61 WMM: -8.09

En los resultados tanto para 5'SS (izquierda) como 3'SS (derecha), las puntuaciones son muuy bajas y negativas, por lo que no debe estar afectando al *splicing*.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
agttg(a/g)agatg	tgaaga	tggaga	25976	49%

En el análisis de la región adyacente al cambio, se obtiene una puntuación no muy elevada (49%) para el cambio A>G, por lo que puede estar afectando al *splicing*.

CRYP-SKIP

Parece que hay varios sitios crípticos de *splicing* dentro del propio exón, pero el cambio de interés no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

Human Splicing Finder

SVM-BPfinder

seq_id	agez 28	489	t bp_seq bp_scr	y_cont ppt_off ppt_len ppt_s -3.76483546755 0.47107438016		,	16	-7.79725	seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off ppt_len ppt_	scr svm_sc	r		
wt	28	489 484	atatcaggt			7	16	-7.79725 -6.4003314	wt _	28	489	atatcaggt	-3.76483546755 0.4710743801	65 111 [—]	7	16	-7.79725
wt		484 479	aggtaaaat	-1.00779112132 0.47390396659		7	16		wt	28	484	aggtaaaat	-1.00779112132 0.4739039665	97 106	7	16	-6.4003314
wt	28		aaatcatgt	-1.30108950588 0.47468354430				-6.1984282	wt	28	479	aaatcatgt	-1.30108950588 0.4746835443	94 101	7	16	-6.1984282
wt	28	458	acttcataa	-2.57975429871 0.47019867549		7	16	-5.3712697	wt	28	458	acttcataa	-2.57975429871 0.4701986754	97 80	7	16	-5.3712697
wt	28	455	tcataataa	-1.19180287359 0.47111111111		7	16	-4.6376314	wt	28	455	tcataataa	-1.19180287359 0.4711111111	11 77	7	16	-4.6376314
wt	28	452	taataagcc	-0.174280982488 0.47203579418		7	16	-4.0490299	wt	28	452	taataagcc	-0.174280982488 0.4720357941	83 74	7	16	-4.0490299
wt	28	438	ggctgatta	0.572428480237		7	16	-2.8715193	wt	28	438	ggctgatta	0.572428480237 0.4688221709	91 60	7	16	-2.8715193
wt	28	435	tgattatcg	-1.76949310508 0.46744186046			16	-3.5990431	wt	28	435	tgattatcg	-1.76949310508 0.4674418604	65 57	7	16	-3.5990431
wt	28	410	cagttaacc	-2.07426918077 0.48148148148		7	16	-2.1313849	wt	28	410	cagttaacc	-2.07426918077 0.4814814814	81 32	7	16	-2.1313849
wt	28	409	agttaaccc	1.74887646245 0.48267326732		7	16	-0.57075946	wt	28	409	agttaaccc	1.74887646245 0.4826732673		7	16	-0.57075946
wt	28	395	cattcacac	1.03288935766 0.47948717948		7	16	0.034045243	wt	28	395	cattcacac	1.03288935766 0.4794871794		7	16	0.034045243
wt	28	379	atatgattg	-1.23149393381 0.47860962566		7	16	0.15992187	wt	28	379	atatgattg	-1.23149393381 0.4786096256		7	16	0.15992187
wt	28	358	tggttagct	-2.14376425571 0.47308781869		10	18	-0.24372509	wt	28	358	tggttagct	-2.14376425571 0.4730878186		10	18	-0.24372509
wt	28	345	agttgatac		647058824	23	18	35 -0.58671356	wt	28	345	agttgatac		7647058824	23	18	35 -0.58671356
wt	28	334	ccttcacta	-0.131686086113 0.46200607902		18	35	0.065905686	wt	28	334	ccttcacta	-0.131686086113 0.4620060790		18	35	0.065905686
wt	28	326	atgtaaagg	-1.1562561675 0.46105919003		18	35	0.17081881	wt	28	326	atgtaaagg	-1.1562561675 0.4610591900		18	35	0.17081881
wt	28	320	aggtcagtc	-1.80826386605 0.46349206349		14	34	0.033593527	wt	28	320	aggtcagtc	-1.80826386605 0.4634920634		14	34	0.033593527
wt	28	311	tttttattt	-4.34020649867 0.45424836601		8	14	-2.2231555	wt	28	311	tttttattt	-4.34020649867 0.4542483660		8	14	-2.2231555
wt	28	304	ttctcagat	-0.318828248584 0.44481605351		8	14	-0.20855393	wt	28	304	ttctcagat	-0.318828248584 0.4448160535		8	14	-0.20855393
wt	28	295	acttcacat	-1.16577152797 0.44137931034		8	14	0.028402687	wt	28	295	acttcacat	-1.16577152797 0.4413793103		8	14	0.028402687
wt	28	290	acattattt	-3.83760197771 0.43859649122		19	27	-17.544996	wt	28	290	acattattt	-3.83760197771 0.4385964912		19	27	-17.544996
wt	28	286	tatttatga	-2.93857085709 0.43416370106		19	27	-16.941222	wt	28	286	tatttatga	-2.93857085709 0.4341637010		19	27	-16.941222
wt	28	283	ttatgaacc	-0.714942389566 0.43525179856		19	27	-15.88032	wt	28	283	ttatgaacc	-0.714942389566 0.4352517985		19	27	-15.88032
wt	28	274	ttttgaatg	-0.846179518138 0.42750929368		19	27	-15.364521	wt	28	274	ttttgaatg	-0.846179518138 0.4275092936		19	27	-15.364521
wt	28	270	gaatgactg	1.54243150168 0.43018867924		19	27	-14.175208	wt	28	279	gaatgactg	1.54243150168 0.4301886792		19	27	-14.175208
wt	28	261	cagtgaagt	-0.45226479169 0.4296875	237	19	27	-14.386703	wt	28	261	cagtgaagt	-0.45226479169 0.4296875	237	19	27	-14.386703
wt	28	255	agttgaaga	-1.86208982377 0.432 231	19	27		558179	wt	28	249	agatgaaag	-2.12587065779 0.4385245901		19	27	-14.279565
wt	28	249	agatgaaag	-2.12587065779 0.43852459016		19	27	-14.279565	wt	28	197	gcatcactg	-0.813053919666 0.45833333333		19	27	-10.467625
wt	28	197	gcatcactg	-0.813053919666 0.45833333333	3 173	19	27	-10.467625	wt	28	193	cactgaggc	0.860058583981 0.4574468085		19	27	-9.5596151
wt	28	193	cactgaggc	0.860058583981 0.45744680851		19	27	-9.5596151	wt	28	167	atgtcaaac	-2.18114612138 0.4444444444		19	27	-9.1088335
wt	28	167	atgtcaaac	-2.18114612138 0.44444444444	4 143	19	27	-9.1088335	wt	28	161	aacttactc	0.294735630281 0.4423076923		19	27	-7.760309
wt	28	161	aacttactc	0.294735630281 0.44230769230	8 137	19	27	-7.760309	wt	28	157	tactcaatg	0.348549399332 0.4342105263		19	27	-7.4886602
wt	28	157	tactcaatg	0.348549399332 0.43421052631	6 133	19	27	-7.4886602	wt	28	133	gtctcatgc	1.69622963776 0.4296875	109	19	27	-5.4432808
wt	28	133	gtctcatgc	1.69622963776 0.4296875	109	19	27	-5.4432808	wt	28	117		-1.71186269188 0.4196428571		19	27	-5.768181
wt	28	117	aggtgagat	-1.71186269188 0.41964285714	3 93	19	27	-5.768181	wt	28	112	aggtgagat agatcaaat	-3.65894545244 0.4205607476		19	27	-6.2137679
wt	28	112	agatcaaat	-3.65894545244 0.42056074766		19	27	-6.2137679	wt	28	107	•	-1.35512054508 0.4313725490		19	27	-4.991728
wt	28	107	aaatgaaag	-1.35512054508 0.43137254902	83	19	27	-4.991728		28 28	99	aaatgaaag			19	27	-4.991/28 -4.5538342
wt	28	99	gtttcatat	-1.52523129633 0.42553191489	4 75	19	27	-4.5538342	wt		64	gtttcatat	-1.52523129633 0.4255319148			27	-4.5538342 -2.3010681
wt	28	64	atgtaagag	-1.47035922721 0.47457627118	6 40	19	27	-2.3010681	wt	28	49	atgtaagag	-1.47035922721 0.4745762711		19	27	-2.3010681
wt	28	49	aaattactt	-1.11026062717 0.56818181818	2 25	19	27	-1.1803658	wt	28 28	49	aaattactt	-1.11026062717 0.5681818181		19	27	-1.1803658 -1.2365905
wt	28	44	acttcagca	-2.03765209265 0.53846153846	2 20	19	27	-1.2365905	wt		30	acttcagca	-2.03765209265 0.5384615384		19 27	-1.1646	
wt	28	30	atgttagta	-4.16638534879 0.6 6	19	27	-1.16	40385	wt	28 28	26	atgttagta	-4.16638534879 0.6 6	19	19	-1.1646	
wt	28	26	tagtaaatt	-0.668958690687 0.6666666666	7 2	19	27	0.4800939	WC	28	20	tagtaaatt	-0.668958690687 0.6666666666	0/ 2	19	21	0.4800939

Desaparece un BP en la secuencia mutada, justo el que incluye la posición de interés, por lo que no es probable que haya una alteración del *splicing* porque está dentro del exón y tiene puntuación negativa.

IntSplice

SNV at chr17:3123274 can't be predicted by IntSplice.

Prediction shows either Abnormal or Normal.

Prediction Genomic Mutation Ensembl 64 Transcript ID and Exon No.

Input queries: hg19, chr17, 3123274

Variant Effect Predictor tool

Se trata de una variante que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal. Esto se observa porque el resultado dice que es una variante NMD, lo que quiere decir que está activando un proceso que solo se da para degrada mRNAs mal generado. Además, dice que es una variante *missense*, lo que generará un cambio en la proteína.

Uploaded variant	Location	Allele	Consequence	Symbol	Gene	Feature type	Feature	Biotype
ENST00000358273.4:c.3362A>G	17:31232747- 31232747	G	missense_variant	NF1	ENSG00000196712	Transcript	ENST00000356175.7	protein_coding
ENST00000358273.4:c.3362A>G	<u>17:31232747-</u> <u>31232747</u>	G	missense_variant	NF1	ENSG00000196712	Transcript	ENST00000358273.9	protein_coding
ENST00000358273.4:c.3362A>G	<u>17:31232747-</u> <u>31232747</u>	G	missense_variant	NF1	ENSG00000196712	Transcript	ENST00000456735.6	protein_coding
ENST00000358273.4:c.3362A>G	<u>17:31232747-</u> <u>31232747</u>	G	upstream_gene_variant	NF1	ENSG00000196712	Transcript	ENST00000466819.5	nonsense_mediated_decay
ENST00000358273.4:c.3362A>G	17:31232747- 31232747	G	upstream_gene_variant	NF1	ENSG00000196712	Transcript	ENST00000479614.1	nonsense_mediated_decay
ENST00000358273.4:c.3362A>G	17:31232747- 31232747	G	non_coding_transcript_exon_variant	NF1	ENSG00000196712	Transcript	ENST00000493220.5	retained_intron
ENST00000358273.4:c.3362A>G	17:31232747- 31232747	G	3 prime UTR variant, NMD_transcript_variant	NF1	ENSG00000196712	Transcript	ENST00000495910.6	nonsense_mediated_decay
ENST00000358273.4:c.3362A>G	17:31232747- 31232747	G	missense_variant, NMD_transcript_variant	NF1	ENSG00000196712	Transcript	ENST00000579081.5	nonsense_mediated_decay

ESEfinder

De los resultados donde se encuentra la posición de interés, en cuanto a los sitios de *splicing*, tiene puntuación positiva en las matrices de 5'SS en un único resultado (AAGTTGAAGATGAAAGTGCGCAAACAGGTG) con puntuaciones 4.26180 y 4.56120, pero también da una puntuación positiva en un único resultado (TTTGAATGACTGCAGTGAAGTTGAAGATGA) en las matrices de 3'SS (0.44860 y 0.18690). Si vamos a los resultados equivalentes en la secuencia mutada, para la primera, los valores casi no se han visto alterados (4.41830 y 4.72050), igual que en la segunda, aunque haya aumentado un poco más (0.83560 y 0.52410). Por lo tanto, no se pueden sacar conclusiones para ninguno.

Si buscamos los ESE de la secuencia, para la puntuación de interés, solo hay un fragmento con esta que tiene puntuación positiva en más de una matriz: AAGATGA (1.31395 y 0.07210). El equivalente en la secuencia mutada tiene puntuaciones más altas en esas mismas matrices (2.24182 y 0.30965) por lo que el cambio puede tener un efecto de alteración de este sitio en el *splicing*.

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	3	3	0	32	440.0425	16	-25.6582	11	23	52	569.6720	52	79.9040	54	138	0.39
mut	3	3	0	32	448.1299	16	-26.3825	8	22	53	560.6457	52	79.5217	54	135	0.40

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP

ccatgacaggactaggataggaaaataactgtgttttgtgatttttttaaaggaaagtaatatgatcagtgaaattttgct tataataaaacccagattgcttcattaagtcatttacaaaagtgacattgtctaagctgtttggaccactaattttatat actaacattaaaagtgacacatttaccaggtaatattgcatctatttgatgctaatgttatgaaaggtatactaggctat ttaacccagggccattcacaccatgcacatatgattgttttggaatgtctggttagctttctagttgatacggccttcac tatgtaaaggtcagtcttttatttctcagATACTTCACATTATTTATGAACCTTTTGAATGACTGCAGTGAGTTGAAG ATGAAAGTGCGCAAACAGGTGGCAGGAAACGTGGCATGTCTCGGAGGCTCACTGAGGCACTGTACGGTCCTTGCA ATGTCAAACTTACTCAATGCCAACGTAGACAGTGGTCTCATGCACTCCATAGgtgagatcaaatgaaagtttcatataga tgtccacattagGCTTAGGTTACCACAAGGATCTCCAGACAAGAGCTACATTTATGGAAGTTCTGACAAAAATCCTTCAA CÄAGGCACAGAÄTTTGACACACTTGCAGAAACAGTATTGGCTGATCGGTTTGAGAGATTGGTGGAACTGGTCACAATGAT GGGTGATCAAGGAGAACTCCCTATAGCGATGGCTCTGGCCAATGTGGTTCCTTGTTCTCAGTGGgtaagtgattagagta ctagtgttctgtatcatttcatcctactaaaaaaattccatttaaacgcattaaaaatcactgatctactctggtgtcttc

Mutation(s) E+42A>T, E+98C>G and E+13A>T have the highest probability of exon skipping.

La posición de estudio está marcada en rosa fuerte, por lo que puede estar implicada en el *splicing* (0.25).