Optyka – dział fizyki, zajmujący się badaniem natury światła, prawami opisującymi jego emisję, rozchodzenie się, oddziaływanie z materią oraz pochłanianie przez materię.

#### **Optyka falowa:**

- światło jest falą elektromagnetyczną
- fundamentem optyki falowej są równania Maxwella opisujące zjawiska elektromagnetyczne
- falowa natura światła ujawnia się w interferencji, dyfrakcji i polaryzacji

#### Optyka geometryczna:

- nie wnika naturę w falową światła
- rozchodzenie się światła opisywane jest jako bieg promieni świetlnych (nieskończenie cienka wiązka światła)
- światło rozchodzi się w ośrodkach jednorodnych po liniach prostych
- na granicy ośrodków występuje odbicie lub załamanie światła

Prawa optyki geometrycznej są prawdziwe tylko dla odległości znacznie większych od długości fali!

#### **Optyka kwantowa:**

• uwzględnia korpuskularną naturę światła (światło opisywane jako foton – cząstka)

# WSPÓŁCZYNNIK ZAŁAMANIA ŚWIATŁA

W próżni światło rozchodzi się z prędkością  $c \approx 3 \cdot 10^8 \frac{m}{s}$ .

W ośrodku materialnym prędkość światła jest mniejsza!

## Bezwzględny współczynnik załamania światła:

$$n = \frac{c}{V}$$

#### Gdzie:

c — prędkość światła w próżni  $\left[\frac{m}{s}\right]$ ,

V — prędkość światła w ośrodku $\left[\frac{m}{s}\right]$ .

# Współczynniki załamania dla światła o długości fali 580 nm

| Ośrodek     | Współczynnik załamania |
|-------------|------------------------|
| próżnia     | 1                      |
| powietrze   | 1,0003                 |
| woda        | 1,33                   |
| szkło crown | 1,52                   |
| szkło flint | 1,66                   |
| diament     | 2,417                  |
| plexiglas   | 1,489                  |



Współczynnik załamania światła i prędkość fali przechodzącej przez ośrodek zależy od długości fali (częstotliwości) światła!

Zwykle ze wzrostem długości (spadkiem częstotliwości) fali świetlnej maleje współczynnik załamania czyli rośnie jej prędkość!

<u>Dyspersja światła</u> – zależność współczynnika załamania ośrodka od częstotliwości fali świetlnej. Dyspersja powoduje, że wiązki światła o różnych długościach fali (barwach), padające na granicę ośrodków pod kątem różnym od zera, załamują się pod różnymi kątami.



# ZJAWISKA ZACHODZĄCE NA GRANICY OŚRODKÓW



#### Gdzie:

 $\alpha$  — kąt padania,

 $\alpha'$  – kąt odbicia,

 $\beta$  — kąt załamania,

 $n_1$ ,  $n_2$  — współczynniki załamania ośrodka 1 i 2.

Padając na granicę dwóch ośrodków światło ulega zarówno odbiciu od tej granicy, jak i załamaniu przy przejściu do drugiego ośrodka!

#### Prawo odbicia:

Promień padający, promień odbity i normalna do granicy ośrodków (w punkcie padania) leżą w jednej płaszczyźnie, a kąt padania jest równy kątowi odbicia.

$$\alpha = \alpha'$$

#### Prawo załamania:

Stosunek sinusa kąta padania do sinusa kąta załamania jest równy stosunkowi bezwzględnego współczynnika załamania ośrodka drugiego  $n_2$  do bezwzględnego współczynnika załamania ośrodka pierwszego  $n_1$ .

$$rac{sinlpha}{sineta} = rac{n_2}{n_1} = n_{2,1}$$
 Względny współczynnik załamania światła

$$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1}$$

$$n_1 = \frac{c}{V_1} \qquad n_2 = \frac{c}{V_2}$$

$$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{V_1}{V_2}$$

Stosunek sinusa kąta padania do sinusa kąta załamania jest równy stosunkowi prędkości światła w ośrodku pierwszym  $V_1$  do prędkości światła w ośrodku drugim  $V_2!$ 



Jeśli światło przechodzi z ośrodka optycznie rzadszego do gęstszego, to kąt załamania jest mniejszy niż kąt padania!

Jeśli światło przechodzi z ośrodka optycznie gęstszego do rzadszego, to kąt załamania jest większy niż kąt padania!

### **ZASADA FERMATA**

Zasada Fermata – promień świetlny biegnie zawsze po takiej drodze, żeby czas potrzebny na jej pokonanie był najkrótszy.

Zgodnie z zasadą Fermata światło w określonym ośrodku będzie poruszało się po linii prostej!

Wykorzystując zasadę Fermata można wyprowadzić prawo odbicia i załamania światła!

## Przykład 1.

Po jakiej drodze powinien wracać jeździec do domu, aby drogę pokonać w najkrótszym czasie? Warunek: musi wcześniej napoić konia!



### Przykład 2.

A po jakiej drodze teraz (dom znajduje się po drugiej stronie rzeki) powinien wracać jeździec do domu, aby drogę pokonać w najkrótszym czasie?



W każdej sytuacji jeździec powinien przemieszczać się tak, jak zgodnie z zasadą Fermata, zachowywało by się światło!

### ZJAWISKO CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA



- 1. Zjawisko może zajść, jeśli promień świetlny przechodzi z ośrodka gęstszego optycznie do ośrodka rzadszego.
- 2. Dla pewnej wartości kąta padania (kąt graniczny), kąt załamania wynosi 90° i promień załamany biegnie wzdłuż granicy ośrodków.
- 3. Dla kątów padania większych niż kąt graniczny promień nie ulega załamaniu, tylko odbija się od granicy ośrodków.

# **KAT GRANICZNY**



$$\frac{sin\alpha_{gr}}{sin90^{\circ}} = \frac{n_2}{n_1}$$

$$\frac{sin\alpha_{gr}}{1} = \frac{n_2}{n_1}$$

$$sin\alpha_{gr} = \frac{n_2}{n_1} = n_{2,1}$$

Przykład 3. Promień świetlny pada na kwadratową płytkę szklaną jak na rysunku poniżej. Jaki musi być jej współczynnik załamania, ażeby na prostopadłej ściance mogło zajść całkowite, wewnętrzne odbicie?

## Z prawa załamania:

$$\frac{\sin 45^{\circ}}{\sin \alpha} = \frac{n_2}{n_1}$$

$$\frac{\sin\beta}{\sin 90^{\circ}} = \frac{n_1}{n_2}$$

$$sin\beta = sin(90^{\circ} - \alpha) = cos\alpha$$

$$\frac{\cos\alpha}{\sin 90^{\circ}} = \frac{n_1}{n_2}$$

$$\frac{\sin 45^{\circ}}{\sin \alpha} = \frac{\sin 90^{\circ}}{\cos \alpha}$$



$$\frac{\sin 45^{\circ}}{\sin \alpha} = \frac{\sin 90^{\circ}}{\cos \alpha}$$

$$\frac{\frac{\sqrt{2}}{2}}{\sin\alpha} = \frac{1}{\cos\alpha}$$

$$\frac{\sin\alpha}{\cos\alpha} = \frac{\sqrt{2}}{2}$$

$$tg\alpha = \frac{\sqrt{2}}{2} \approx 0.7$$

$$\alpha = arctg(0,7) \approx 35^{\circ}$$

$$\frac{n_2}{n_1} = \frac{\sin 45^{\circ}}{\sin \alpha} = \frac{\sin 45^{\circ}}{\sin 35^{\circ}} = \frac{\frac{\sqrt{2}}{2}}{0,57} \approx 1,23$$

$$\frac{n_2}{n_1} \approx 1,23$$

# **Dla powietrza**:

$$n_1 = 1$$

$$n_2 = 1,23$$

## **ZWIERCIADŁA**

<u>Zwierciadło</u> – powierzchnia, która (niemal) całkowicie odbija padające na nią światło w jednym kierunku, nie rozpraszając go ani nie absorbując.

Obraz rzeczywisty – obraz, który otrzymamy, gdy przetną się promienie świetlne po przejściu przez układ optyczny.

Obraz pozorny – obraz, który otrzymamy, gdy przetną się przedłużenia promieni świetlnych po wyjściu z układu optycznego.

### **ZWIERCIADŁO PŁASKIE**

<u>Zwierciadło</u> – odbijająca płaska powierzchnia (np. metalu, szkła), daje obraz pozorny, położony symetrycznie do przedmiotu względem zwierciadła.



## ZWIERCIADŁO SFERYCZNE WKLĘSŁE

<u>Zwierciadło sferyczne (kuliste) wklęsłe</u> – odbijająca wewnętrzna powierzchnia czaszy kulistej.



Ognisko – punkt skupienia promieni równoległych padających na zwierciadło.

## **ZWIERCIADŁO SFERYCZNE WYPUKŁE**

<u>Zwierciadło sferyczne (kuliste) wypukłe</u> – odbijająca zewnętrzna powierzchnia czaszy kulistej.



# **RÓWNANIE ZWIERCIADŁA**

$$\frac{1}{x} + \frac{1}{y} = \frac{2}{R} = \frac{1}{f}$$

#### Gdzie:

x — odległość przedmiotu,

y – odległość obrazu,

R — promień krzywizny,

f — ognisko zwierciadła.

$$\frac{1}{f} = \frac{2}{R}$$

$$R = 2f$$

### **SOCZEWKI**

<u>Soczewka</u> – ciało przezroczyste ograniczone dwoma powierzchniami o promieniach krzywizny  $R_1$  i  $R_2$ .

## Założenia:

- 1. Soczewka jest cienka = grubość soczewki jest znacznie mniejsza od promieni krzywizn  $R_1$  i  $R_2$  ograniczających soczewkę.
- 2. Promienie świetlne padające na soczewkę tworzą małe kąty z osią soczewki (prosta przechodząca przez środki krzywizn obu powierzchni).
- 3. Każdy promień przechodzący przez soczewkę ulega dwukrotnemu załamaniu na obu powierzchniach soczewki (wyjątek: promienia biegnący wzdłuż osi soczewki).

<u>Soczewka skupiająca</u> – promienie biegnące równoległe do osi soczewki odchylane są w kierunku tej osi.

<u>Soczewka rozpraszająca</u> – promienie biegnące równoległe do osi soczewki odchylane są od osi.

Ognisko soczewki (F) – miejsce, gdzie skupiają się promienie biegnące równoległe do osi soczewki po przejściu przez soczewkę skupiającą.

Ogniskowa soczewki (f) – odległość ogniska od soczewki.

# KONSTRUKCJA OBRAZÓW DLA SOCZEWEK



- 1. Promień równoległy do osi soczewki przechodzi przez ognisko.
- 2. Promień przechodzący przez środek soczewki nie zmienia swojego kierunku.



- 3. Obraz rzeczywisty powstaje w wyniku przecięcia promieni.
- 4. Obraz pozorny powstaje, gdy promienie po przejściu przez soczewkę są rozbieżne. Obraz otrzymujemy wówczas z przecięcia przedłużeń promieni.

# **RÓWNANIE SOCZEWKI**

### Bieg promienia świetlnego w soczewce zależy od:

- promieni  $R_1$  i  $R_2$  krzywizn ograniczających soczewkę (kształtu soczewki),
- współczynnika załamania n materiału z jakiego wykonano soczewkę,
- współczynnika załamania  $n_0$  ośrodka, w którym znajduje się soczewka.

$$\frac{1}{f} = \left(\frac{n}{n_0} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

#### Gdzie:

 $R_1$  — promień pierwszej powierzchni, na którą pada światło,

 $R_2$  — promień drugiej powierzchni, na którą pada światło.

### Konwencja znaków dla równania soczewki cienkiej:

Promienie pierwszej i drugiej powierzchni, na które pada światło ( $R_1$  i  $R_2$ ) są dodatnie, jeśli ich środek krzywizny znajduje się po stronie R soczewki. W przeciwnym wypadku są ujemne.



Jeśli ogniskowa f jest dodatnia, to soczewka jest skupiająca, a jeśli ujemna to rozpraszająca!



## Zależność między ogniskową, a odległością przedmiotu (x) i obrazu (y):

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{y}$$

#### Powiększenie liniowe obrazu:

$$P = \frac{z'}{z} = \left| \frac{y}{x} \right|$$

Gdzie:

z' — wielkość obrazu,

z – wielkość przedmiotu,

y, x — odległości obrazu i przedmiotu od soczewki.

## **ZDOLNOŚĆ SKUPIAJĄCA SOCZEWKI**

Zdolność skupiająca soczewki – odwrotność ogniskowej soczewki

$$D = \frac{1}{f}$$

Jednostką zdolności skupiającej soczewki jest dioptria  $[D] = \left[\frac{1}{m}\right]$ .

Zdolność skupiająca układu blisko położonych soczewek:

$$D = D_1 + D_2$$

#### **WADY SOCZEWEK**

<u>Aberracje</u> – zjawiska zniekształcające obrazy i pogarszające ich ostrość w soczewkach rzeczywistych.

<u>Aberracja sferyczna</u> – promienie biegnące dalej od osi optycznej załamują się bardziej niż biegnące przyosiowo. W efekcie ich ognisko znajduje się bliżej soczewki.



<u>Aberracja chromatyczna</u> – światło o różnych barwach (różnych częstotliwościach) ma różne współczynniki załamania w ośrodku. Współczynnik załamania maleje z długością fali, a rośnie z częstotliwością fali, dlatego światło niebieskie będzie załamywane w soczewce silniej niż światło czerwone.



### Soczewka idealna

# Soczewka z aberracją chromatyczną



#### <u>LUPA</u>

<u>Lupa</u> – soczewka (zespół blisko siebie położonych soczewek) skupiająca dająca co najmniej trzykrotne powiększenie. Tworzy obraz prosty, pozorny i powiększony.



### Powiększenie lupy:

$$P = \frac{z_2}{z_1} = \frac{\delta}{x}$$

Zwykle  $\delta \approx 25~cm$ , ale większą wartość osiąga u dalekowidzów.

Z powiększenia lupy bardziej korzysta dalekowidz!

#### **MIKROSKOP**

#### **Elementy mikroskopu:**

- 1. Kondensor soczewka skupiająca światło na obserwowanym przedmiocie
- 2. Obiektyw soczewka skupiająca, dająca rzeczywisty, odwrócony i powiększony obraz przedmiotu
- 3. Okular lupa, przez która oglądamy obraz



### Powiększenie mikroskopu:

$$P = P_1 \cdot P_2$$

Gdzie:

 $P_1$  – powiększenie obiektywu,

 $P_2$  – powiększenie okularu.

$$P_1 \approx \frac{l}{f_1}$$

$$P_2 \approx \frac{\delta}{f_2}$$

$$P = \frac{l}{f_1} \cdot \frac{\delta}{f_2}$$

Dla typowego mikroskopu:

$$\delta \approx 250 \, mm, \, l \approx 160 - 180 \, mm, \, f_1 \approx 2 - 15 \, mm, \, f_2 \approx 15 - 50 \, mm.$$

Zatem powiększenia mikroskopów optycznych mieszczą się w zakresie  $P \approx 50-1500$ .

### **BUDOWA OKA**



### **WADY WZROKU**

Widzenie prawidłowe

Krótkowzroczność

Dalekowzroczność







### **KOREKTY WAD WZROKU**

Soczewki rozpraszające krótkowzroczność Soczewki skupiające - dalekowzroczność



