THÉORIES DES LANGAGES

Mr,HEMIOUD hemourad@yahoo,fr Université de Jijel Département d'informatique

LES AUTOMATES A PILES

LES AUTOMATES À ÉTATS FINI

- Un automate est une machine abstraite qui permet de lire un mot et de répondre à la question : "un mot w appartient-il à un langage L?" par oui ou non.
- Un automate est composé de :

Limite des automates finis

• Certains langages ne peuvent pas être reconnus par les automates finis (ne peuvent être générés par une grammaire régulière)

Exemple: $L = \{a^nb^n \mid n \ge 0\}$

- Il faut $m\acute{e}moriser$ le nombre de a que l'on a lu pour vérifier que le mot possède autant de b.
- Pour mémoriser un nombre potentiellement infini de
 a, il faut un ensemble *infini* d'états!

AUTOMATES À PILE

Principe: Les AuP fonctionnent sur le même principe que les AEF: depuis un état p, ils consomment un caractère du mot et effectue la transition correspondante qui les amène dans un nouvel état q

À la différence des AEF, à chaque transition ils mettent à jour une pile et peuvent ainsi enregistre des informations utiles pour la reconnaissance.

Généralités

- Forme simple de *mémoire* : une **pile**.
 - Mode de stockage Last In First Out.
 - on accède à la pile **uniquement** par son sommet
- Deux *opérations* possibles :
 - empiler : ajouter un élément au sommet.
 - **dépiler** : enlever l'élément se trouvant au sommet.
- La pile permet de stocker de l'information sans forcément multiplier le nombre d'états.

Configurations

Configuration initiale

- L'unité de contrôle est dans un état initial
- La tète est au début de la bande
- La mémoire contient un **élément initial**.(la pile est vide)

Configuration d'acceptation

- L'unité de contrôle est dans un état d'acceptation
- La tète de lecture est à **la fin** de la bande
- La mémoire se trouve dans un état d'acceptation (la pile est vide)

Un automate à pile non-déterministe (APN) est un septuple (Q,A,P,δ,q_0,Z,Q_F) avec :

- **Q**: ensemble fini d'états
- A : alphabet fini des symboles d□ entrée
- P: alphabet fini des symboles de pile (a priori $P \cap A = \emptyset$)
- $\mathbf{q_0}$: état initial
- $\mathbf{Z} \in \mathbf{P}$: symbole initial de pile
- $Q_F \subseteq Q$: ensemble des états terminaux
- **8** est l'ensemble des règles de transition

- une règle $\delta(\mathbf{p}, \mathbf{a}, \alpha) = (\mathbf{q}, \beta)$ de transition considère :
 - l'état courant **p** de l'automate
 - le caractère lu a sur le ruban (ou peut-être pas : ϵ)
 - le symbole α de **sommet** de pile (ou peut-être pas : Z)
- une **règle** indique:
 - le prochain état q de l'automate
 - la suite de symboles β à **empiler** à la place du **sommet** de pile

Configurations et mouvement

- Configuration : $(q, w, \alpha) \in Q \times A^* \times P^*$ où :
 - q représente l'état courant de l'unité de contrôle
 - w est la partie du mot à reconnaitre non encore lue. Le premier symbole de w (le plus à gauche) est celui qui se trouve sous la tète de lecture. Si w = ε alors tout le mot a été lu.
 - α représente le contenu de la pile. Le symbole le plus à gauche est le sommet de la pile. Si $\alpha = \mathbf{Z}$ alors la pile est vide.

- Configuration **initiale** : (q_0, w, Z) où w est le mot à reconnaitre
- Configuration d'acceptation : (q, ε, Z) avec $q \in Q_F$

• Mouvement :

- $(p, aw, B) \vdash (q, w, AB)$ (si $\delta(p, a, B) = (q, AB)$)
- $(p, aw, AB) \vdash (q, w, B)$ (si $\delta(p, a, A) = (q, \epsilon)$)
- $(p, aw, A) \vdash (q, w, A)$ (si $\delta(p, a, B) = (q, A)$)

• Représentation graphique