Кафедра ИУ-4 «Проектирование и технология производства ЭС»

Журнал практических работ

по курсу: «Физические основы микроэлектроники»

	20/	учебный год	
Студент((фамилия, и. о.)	Группа	
	Допуск к экзам ия, и. о.)	ену (зачету)(число)	Подпись

Для студентов приборостроительных специальностей

Москва 2023

Программа

к учебному плану направления подготовки 551100 (654300)

ПРОЕКТИРОВАНИЕ И ТЕХНОЛОГИЯ ЭЛЕКТРОННЫХ СРЕДСТВ, специальностям

220500 Проектирование и технология электронно-вычислительных средств и 200800 Проектирование и технология радиоэлектронных средств.

$N_{\underline{0}}$	№ Виды учебных работ Объем работ в часах			
		Всего	6 сем.	
	На дисциплину	144	144	
1	Аудиторная работа	85	85	
1.1	- лекции	51	51	
1.2	- семинары	17	17	
1.3	- лабораторные занятия	17	17	
1.4	Самостоятельная работа:	59	59	
	Домашние задания:	-	-	
	Курсовая работа	-	-	
	Самостоятельное изучение раздела			
1.5	Виды отчетности по дисциплине			
	Контрольная работа			
	Рубежный контроль			
			PK3 (15)	
	Зачеты	-	-	
	Экзамены	· ·	экзамен	

дата Цели работы:	Оценка	ом равновесии с исполи Бонус за сложность	подпись
Цели работы:		сложность	
Цели работы:			
Задачи работы:			
D			25)
		нус за сложность – max зи расчета высоты потені	
		дельным сопротивление	
изменение потен	циального барьера на	_	напряжения от $+0,15 \text{ B}$ до
<u>5В. Нарисовать з</u>	онные диаграммы.		
Кпаткий конспе	ект теопетической ча	сти (ответы на контроль	ные вопросы)
1.	ekt teopeth teckon ta	ern (ответы на контроль	пые вопросы)
2.			
3			
3			
3			
3			
3			
3			

5			
J	 		
_			
6	 		
7.			
• •			
8	 		
9.			
	 		
10			
10.			
11.			
11.			
		·	
12.			
- - -			

Ознакомление с необходимыми справочными данными:

Постоянная Больцмана k = 1,38*10-23 Дж/К или 8.6173303*10-5 эВ·К-1

Заряд электрона q=1.6*10-19; Кл

T = 300; K

Таблица 1 Справочные данные

Параметр	Обозначе	Si	Ge	GaAs	InSb
	ние				
Ширина запрещенной зоны при 300K, эВ	Eg	1,12	0,61	1,43	0,18
Электронное сродство, эВ	χ	4,05	4,0	4,07	4,6
Удельное сопротивление, Ом*см	ρ	4,5	1,0	2,5 *10 ⁻³	5*10 ⁻³
Подвижность электронов, см2*В-1*с-1	μ_n	1500	3900	8500	78000
Собственная концентрация носителей, см-3	n _i	1,6*10 ¹⁰	2,5*10 ¹³	1,1*10 ⁷	2*10 ¹⁶
	Обозначе	Al	Cu	Au	Pt
	ние				
Работа выхода при 300К, эВ	Ф	4,1	4,4	5,0	5,3

этапы расчетов и представления результатов				

Разработка m.-файла расчета в среде MATLAB

- 1. Согласно руководству пользователя запустите программную среду MATLAB, в окне редактора (EDITOR) вбейте первую строку следующего содержания:
- % Расчет высоты потенциального барьера в диоде Шоттки для различных металлов % контакта при термодинамическом равновесии.
- Это будет заголовок программного модуля в среде MATLAB.
 - 2. Сохраните .m-файл под вашим именем.

Вариант задания соответствует номеру студента в списке группы Приложение 1 Таблица №2 Исходные данные.

3. Последовательно введите значения справочных данных, соблюдая следующие обозначения:

```
% Расчет высоты потенциального барьера в диоде Шоттки %исходные данные: 
F_Au = 5; % эВ, работа выхода электрона для Au

Ksi_Ge = 4; % эВ Энергия сродства атома к электрону (электронное сродство)

Eg_Ge = 0.66; % эВ Ширина запрещенной зоны для Ge

Ro_Ge= 1 %Ом*см удельное сопротивление германия

%k=1.38*1e-23; %Дж/К
```

```
k =8.6173303*1e-5 %эВ·К-1 Постоянная Больцмана
% 1 Дж = 1 кг·м?/с? = 1 Н·м = 1 Вт·с = Кл·В
q=1.6*1e-19; %Кл Заряд электрона
Mn_Si = 1000 %см2*В-1*с-1 подвижность электронов
Mn_Ge = 3900 %см2*В-1*с-1 подвижность электронов
T = 300; %К Температура
ni_Ge = 2.5*1e13 %см-3 Собственная концентрация носителей
```

вместо многоточия необходимо вставить конкретные значения для других пар контактов, взятые из справочника Таб.1

4. Введите расчетные формулы, используя следующие обозначения:

```
% формулы для расчета

ND_Ge=1/(q*Mn_Ge*Ro_Ge) %размерность см-3 концентрация легирующего вещества (донорная концентрация)

Fi_0_Ge = k*T*log(ND_Ge/ni_Ge) объемное положение уровня Ферми для Ge

Fi_Ge = Ksi_Ge+ Eg_Ge/2 - Fi_0_Ge работа выхода электрона из Ge

Delta_Fi_Ge = F_Au - Ksi_Ge - Eg_Ge/2 + Fi_0_Ge контактная разность потенциалов для пары Ge-Au

или Delta Fi Ge = F Au - Fi Ge
```

Аналогично ввести расчетные формулы для других пар контактов из Таб.1

При вводе формул обратить особое внимание на необходимость соблюдения размерности всех значений в одной системе.

5. Осуществить необходимые расчеты и полученные значения записать в таблицу №2 для каждой пары контактов:

Таблица 2. Контактная разность потенциалов

Параметр	Si	Ge	GaAs	InSb
Al				
Cu				
Au				
Pt				

6. Построить точечный график для данных из таб.1 и таб.2 в осях - вертикальная ось - контактная разность потенциалов, горизонтальная - работа выхода из соответствующего металла (таб.1)

7. Вклеить или нарисовать полученный график.				
Место для вклеивания или рисования графика				

8. Вклеить листинг программного кода

Место для вклеивания листинга Пример листинга программного кода (вклеить свой)

```
% Расчет высоты потенциального барьера в диоде Шоттки
%исходные данные:
F_Au = 5; % ∍B
Ksi_Ge = 4; % ∋B
Eg_Ge = 0.66; % 9B
Ro_Ge= 1 %Ом*см удельное сопротивление германия
%k=1.38*1e-23; %Дж/К
k = 8.6173303*1e-5 \%9B \cdot K?1
% 1 Дж = 1 кг·м?/с? = 1 Н·м = 1 Вт·с = Кл·В
q=1.6*1e-19; %Кл
Mn_Si = 1000 %см2*B-1*c-1 подвижность электронов
Mn_Ge = 3900 %см2*B-1*c-1 подвижность электронов
T = 300; %K
ni_Ge = 2.5*1e13 %cm-3
% формулы для расчета
ND_Ge=1/(q*Mn_Ge*Ro_Ge) %pasmephoctb cm-3
Fi_0_Ge = k*T*log(ND_Ge/ni_Ge)
Fi_Ge = Ksi_Ge+ Eg_Ge/2 - Fi_0_Ge
Delta_Fi_Ge = F_Au - Ksi_Ge - Eg_Ge/2 + Fi_0_Ge
.....
.....
```

9. Сформулируйте выводы по работе
<u>. </u>

Контрольные вопросы

- 1. Какой функцией описывается распределение свободных электронов по степеням свободы в полупроводнике?
- 2. Какой ток называется током термоэлектронной эмиссии?
- 3. Что такое электронное сродство?
- 4. Какие виды контактов различают при контакте металл полупроводник?
- 5. От чего зависит тип контакта металл-полупроводник?
- 6. Какому закону подчиняется невыпрямляющий омический контакт металл-полупроводник?
- 7. Какую характеристику имеет выпрямляющий контакт металл-полупроводник?
- 8. В каком случае реализуется нейтральный контакт металл-полупроводник?
- 9. В каком случае реализуется омический контакт металл-полупроводник?
- 10. В каком случае реализуется блокирующий контакт металл-полупроводник (барьер Шоттки)?

- 11. В результате чего в области контакта металл-полупроводник может происходить изгиб энергетических зон?
- 12. Вследствие какого эффекта возникает потенциальный барьер на границе контакта металл-полупроводник, высота которого равна разности термодинамических работ выхода электронов?

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев В.В., Столяров А.А. Физические основы наноинженерии. М.: Изд-во МГТУ им.Н.Э.Баумана. 2011.
- 2. Гуртов В.А. Твердотельная электроника.-М.: Техносфера. 2005.
- 3. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Новосибирск: Изд-во НГТУ, 2000.
- 4. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем, СПб, Наука, 2001.
 - 5. Пасынков В.В., Сорокин В.С. Материалы электронной техники, СПб, 2003.
 - 6. Степаненко И.П. Основы микроэлектроники: учебное пособие для вузов. 2-е изд. М.: Лаборатория базовых знаний, 2001.
- 7. Старосельский В.И. Физика полупроводниковых приборов микроэлектроники: учебное пособие. М.: Юрайт, 2011.
 - 8. Зиненко, В.И. Основы физики твердого тела [Текст]: учеб. пособие для вузов / В.И. Зиненко, Б.И. Сорокин, Р.И. Турчин. М.: Издательство физикоматематическойлитературы, 2001. 336с.
- 9. Электронные, квантовые приборы и микроэлектроника: Учебное пособие для вузов / Под ред. Н.Д. Федорова. М.: Радио и связь, 2002.
 - 10. Зегря Г.Г., Перель В.И. Основы физики полупроводников. М.: Физматлит, 2009. Н.А. Афанасьева, Л.П. Булат. Физические основы электроники. Учебное пособие. СПб.: СПБ ГУНиПТ, 2010. -181c.
 - 11. Андреев В.В., Балмашнов А.А., Корольков В.И., Лоза О.Т., Милантьев В.П. Физическая электроника и ее современные приложения. Учеб. пособие. М.: РУДН, 2008. 383 с.

Приложение 1

Таблица №2 Исходные данные. Вариант задания соответствует номеру студента в списке группы

	ца муг исхо
№	Темпера
вари	турв, Т,
анта	град.
	Кельвин
	a
1	135
2	145
3	155
4	165
5	175
6	185
7	195
8	100
9	110
10	120
11	130
12	140
13	150
14	160
15	170
16	180
17	190
18	200
19	210
20	220
21	230
22	240
23	250
24	260
25	270
26	280
27	290
28	300
29	310
30	330

% Расчет высоты потенциального барьера в диоде Шоттки %исходные данные:

F Au = 5; % эB, работа выхода электрона для Au

KSI Ge = 4; % эВ Энергия сродства атома к электрону (электронное сродство)

Ед Ge = 0.66; % эВ Ширина запрещенной зоны для Ge

Ro Ge= 1 %Ом*см удельное сопротивление германия

%k=1.38*1e-23; %Дж/К

k =8.6173303*1e-5 %эВ·К-1 Постоянная Больцмана

% 1 Дж = 1 кг·м?/с? = 1 $H \cdot M = 1 B T \cdot C = K \pi \cdot B$

q=1.6*1e-19; %Кл Заряд электрона

 $Mn_Si = 1000 \%cm2*B-1*c-1$ подвижность электронов

Mn Ge = 3900 %см2*B-1*c-1 подвижность электронов

Т = 300; %К Температура (Студент берет температуру согласно варианту задания)

ni Ge = 2.5*1e13 %см-3 Собственная концентрация носителей

% формулы для расчета

ND_Ge=1/(q*Mn_Ge*Ro_Ge) %размерность см-3 Fi_0_Ge = k*T*log(ND_Ge/ni_Ge) %объемное положение уровня Ферми для Ge

 $Fi_Ge = Ksi_Ge + Eg_Ge/2 - Fi_0_Ge \%$ работа выхода электрона из Ge

Delta_ $Fi_Ge = F_Au - Ksi_Ge - Eg_Ge/2 + Fi_0_Ge %$ контактная разность потенциалов