

A Scalable, Full-Custom Memory Design in CMOS 0.18 μm

Karl Leboeuf Supervisor: Dr. Roberto Muscedere

Research Centre for Integrated Microsystems
University of Windsor

Outline

- Introduction
- Problem Outline
- Full-Custom RALUT Architecture
- Full-Custom Architecture Implementation
- Simulation Results
- HDL and Standard Cells vs. a Full-Custom Design
- Chip Design Goals and Methodology
- Additional Improvements
- Conclusion

Introduction to Range Addressable Look Up Tables

- Look up tables
 - A memory architecture where each storage element has a unique address
- Range Addressable Look Up Tables (RALUTs)
 - A non-linear memory storage element
 - Stored values are matched to a range of addresses
 - Each address row performs the following comparison:
 - Address (N) ≤ A ≤ Address (N+1)
 - Only one comparison will match, enabling the correct output

Introduction to Range Addressable Look Up Tables

Standard LUT

Address	Data	
0000	0	
0001	0	
0010	0	
0011	4	
0100	4	
0101	4	
0110	4	
0111	4	
1000	4	
1001	7	
1010	7	
1011	7	
1100	7	
1101	7	
1110	8	
1111	8	

RALUT

Address	Data	
Address	Data	
0000	0	
	0	
	0	
0011	4	
	4	
	4	
	4	
	4	
	4	
1001	7	
	7	
	7	
	7	
	7	
1110	8	
	8	

Problem Outline

- The primary motivation for developing RALUTs was to improve number conversion, addition, and subtraction in Multi-Dimensional Logarithmic Number System (MDLNS) and Double Base Number System (DBNS) processors
- RALUTs are used instead of standard look-up tables, as significant area savings can be achieved
- The problem:
 - The existing RALUT design was implemented in CMOS 0.35 μm, an older technology
 - The design was not fabricated; real-world performance data is unavailable
 - Can a full custom RALUT design beat a commercial logic synthesizer in terms of area, speed, power, or all three?

Full Custom RALUT Architecture: Overview

- RALUT designed using domino logic
- Domino logic
 - Significantly faster than static CMOS (~+70%)
 - Reduced area (~ -20%)
 - Sensitive to loading
 - Cells must be custom designed
- Design consists of the following elements:
 - Address decode circuit
 - Clock and input buffer rows
 - Output lines

- The address decode must compare the input address and determine if it is greater than or equal to each row address
- To eliminate problems arising from charge sharing, charge leakage, and long pre-charge time, small chains of NMOS transistors are used
- This breaks up the address decode into stages
- On the following slide is a schematic of the first decode stage

- As many "middle" stages as necessary are used to evaluate all but the first and last groups of bits
 - The clock signal only goes to the first stage to work the pre-charge and evaluate transistors
 - Subsequent pre-charge and evaluate transistors are controlled by the previous stage's GT and EQ lines
 - This greatly reduces transistor switching, and by extension, power consumption
- It is pictured in the following slide

The final address decode stage is shown below

Full Custom RALUT Architecture: Clock and Input Buffers

- Clock and input buffers occupy entire rows of the design
- The amount of clock and input buffering is easily scalable by changing a design parameter
- Placement of buffer rows is determined by the Bresenham line algorithm
 - Raster algorithm used to draw lines in MSPaint and many other applications
 - Allows buffer lines to be relatively evenly placed in non-power-of-two configurations

Full Custom RALUT Architecture: Output Lines

- The address decode circuit will enable a single output line
- Scalable design allows for any number of output bits

Full-Custom RALUT Design Implementation: Full-Custom P-Cells and SKILL Code

- All of the aforementioned circuit elements were designed in CMOS 0.35 µm, making heavy use of full-custom p-cells
- A p-cell is a parameterized design cell
 - Example of parameters include NMOS / PMOS transistor sizes, special even/odd row and first/last row settings
- SKILL code is the programming language used by the Cadence Design Framework II environment
 - SKILL code was developed to automatically parameterize and place all of the cells and IO pins

Advancing the State of the Art: Migration to CMOS 0.18 µm

- First, the CMOS 0.35 μm design was ported to a more recent node;
 CMOS 0.18 μm
- All custom cells were rescaled by hand
 - Simple not an option, as many design rules changed between nodes
- Immediate area, speed, and power improvements
- The following results are based on post place-and-route simulations comparing the 0.35 μm design to the new 0.18 μm design

	Un-routed	Routed	Critical	Power
	Area	Area	Fath	Consumption
	(μm^2)	(μm^2)	(ns)	(µW/MHz)
[2]	71786	257400	4.45	52
Proposed	44118	44118	2.70	25
Savings	42.7%	82.7%	39.3%	52.0%

0.18 µm RALUT Design

128 rows, 16 address bits, 64 output bits

Design Alternatives: HDL and Logic Synthesis

- As opposed to using a full-custom design, standard cell libraries may be used to implement RALUTs
- Standard cells employ static CMOS logic; they are slower and larger than domino, but far less sensitive to loading
- This reduces the complexity in performing logic synthesis and placementand-routing

Design Alternatives: HDL and Logic Synthesis

- verilog code for the RALUT was written, synthesized, and tested
- Post-place-and-route results were compared to the custom cell RALUT
- Results highly dependant on the design size (number of rows, address bits, output bits)
- Larger designs can take from days to weeks to synthesize, requiring very large amounts of RAM
- Full-custom vs. verilog / standard-cell comparison:
 - Standard cell approach requires much less area for small designs than the RALUT
 - Standard cell design critical path delay and area varies wildly depending on the exact bit patterns used for addressing and outputs
 - Larger designs yield comparable area requirements
 - Simulations showed that the custom design was faster for medium/large designs

Real World Performance: Chip Design and Fabrication

- No "real data" on performance is available for the full-custom or standard cell designs
- Must fabricate a chip comparing designs

Chip Design Goals

- Determine maximum (correct) operating frequency of both designs
- Determine average power consumption
- Perform a fair comparison on the same chip, where both designs are subject to the same process variation effects and temperature

Chip Design Considerations and Parameters

- 128 rows were used, this was the largest number of rows that could be accommodated by the available design space
- 16 address bits and 64 output bits were used
- Random bit patterns were used for the address and output bit patterns
- As few I/O pins as possible are desired; this design will be highly I/O bound
- Simple interfacing with a generic microcontroller or FPGA will be used to configure the chip, and read the output
 - The design will use 8 input pins, 8 output pins, as well as some additional pins for status signals and external clocks

Chip Design: Overview

Chip Design: Automatic Test Pattern Generator (ATPG) Block

- The automatic test pattern generator (ATPG) block generates the address bits for both RALUT designs
- It is desirable that all the input bits switch randomly to approximate typical use
- A counter cannot be used because higher order bits do not switch as often as low order bits
- The ATPG employs a linear feedback shift register (LFSR) to generate "better", pseudo-random bit patterns
- The LFSR will cycle through all 65535 possible input patterns

Chip Design: Clock Block

- The "Clock" block in the chip overview performs several functions
 - Selects between an external clock, and an internal ring-oscillator clock
 - Selects which clock signal is sent to the clock output pin
 - Selects the number of inverters to use in the ring-oscillator
 - If desired, scales the clock signal by 2, 4, 8, 16, or 32 by using a counter
 - Disables the clock to various parts of the chip to assist in estimating power consumption

Chip Design: Control Block

- The controller is a finite state machine which uses an external, low-speed clock
- The chip's 8-bit input bus goes directly to the controller
 - Control words and instructions are loaded using this bus
- It communicates with, and configures, the ATPG, CLOCK, and places data on the output bus
- If the compare fails between the custom and standard cell designs, the controller immediately halts the clock so that the failing system can be identified

Chip Design Methodology

- The following steps were carried out in creating the chip
 - verilog code was written for the ATPG, controller, clock, comparator, the HDL version of the RALUT, and other components not shown, such as registers and glue logic
 - The verilog code was synthesized using Synopsys, synthesis parameters were chosen to yield the fastest design possible
 - A variable-frequency ring oscillator was designed
 - Works by selecting the number of inverters to include in the ring
 - Should provide a clock frequency between approximately 750MHz and 50 MHz (exact values depend significantly on PVT)

Chip Design Methodology

- The ring oscillator was extracted with parasitic capacitances, and simulated using Spectre
- An abstract view of the oscillator was created for use in Encounter, the place and route tool
- Extraction, simulation, and abstract generation was also performed on the full-custom RALUT
- Encounter was used to perform power ring and stripe placement, cell and macro placement and routing, clock-tree generation for the standard cell logic, and metal filling
- Final design was exported from Encounter, and DEFIN was used to import back to Virtuoso; final DRC checks were performed using Calibre
- Final design submitted to CMC for fabrication

Final Chip Design

Final Chip Design

Final Chip Design

Chip Results

- Fabricated chip received at the end of February
- Testing scheduled for April

Additional Improvements: Area Reduction

- Several more improvements to reduce area are nearly complete
 - Power and ground rails are now superimposed over the design, create a significant height reduction
 - Output bits are now pushed closer together, reducing overall design width
 - Typical design area is reduced by approximately 30%
 - Operating frequency may be reduced due to increased parasitic capacitances

Additional Improvements: Area Reduction

Additional Improvements: Power Consumption

- Currently working on a pre-decode system
- Divide RALUT into a series of 2^N sub-RALUTs
- Would tentatively function by taking the N most significant address bits, and use them in a one-hot decoder scheme, enabling the clock for only one of the sub-tables
- This will greatly reduce power consumption, as well as aid in "squaring up" the design; currently most practical design parameters will implement a very tall and skinny table

Conclusions

- Once the chip is tested, real-world performance data will be available for this type of design
- Additional improvements to reduce area and power consumption are underway
- These advances will greatly enhance any system which can make use of RALUTs, such as MDLNS processors and non-linear function generation circuits
- The state of the art of RALUT design has been advanced significantly

References

- Muscedere, R.; Leboeuf K., "A Dynamic Address Decode Circuit for Implementing Range Addressable Look-Up Tables "IEEE International Symposium on Circuits and Systems (ISCAS) 2008, Accepted February 2008.
- 2. R. Muscedere, "Difficult Operations in the Multidimensional Logarithmic Number System," PhD thesis, Univ. of Windsor, 2003.
- 3. R. Muscedere, V. Dimitrov, G. A. Jullien, and W. C. Miller, "Efficient techniques for binary-to-multidigit multidimensional logarithmic number system conversion using range-addressable look-up tables," *Computers, IEEE Transactions on,* vol. 54, pp. 257-271, 2005.
- 4. P. Srivastava, A. Pua, and L. Welch, "Issues in the design of domino logic circuits," in *VLSI*, 1998. Proceedings of the 8th Great Lakes Symposium on, 1998, pp. 108-112.