



Introduction

Related Work

#### Method

- 1. Data Preprocessing
- 2. Model Architecture
- 3. Loss Function

**Experiments** 

Q&A

#### Introduction

- Challenges
  - Data Modality의 증가
  - IoT 장비 증가로 인한 센서 데이터 급증
  - 데이터의
  - → 데이터의 이상을 "탐지" 하는 것 외에도 그 "원인"을 찾아내는 것도 중요
- Existing Solutions
  - SAND(Statistical Anomaly Detection)
  - openGauss / LSTM-NDT
  - MTAD-GAT / GDN

Etc.

### Related Work

- Classical Methods
  - k-means
  - SVM
  - PCA
  - ARIMA
  - MERLIN
- DL-based Methods
  - LSTM-NDT
  - DAGMM → Autoencoding
  - LSTM-VAE
  - ConvLSTM

- MAD-GAN
- MTAD-GAN
- CAEM
- GDN 등등

## Method

- Data Preprocessing

$$x_t \leftarrow \frac{x_t - \min(\mathcal{T})}{\max(\mathcal{T}) - \min(\mathcal{T}) + \epsilon'},$$

## Method

#### - Model Architecture



Figure 1: The TranAD Model.

### Method

- Loss Function(Adversarial Training)

$$L_1 = \epsilon^{-n} ||O_1 - W||_2 + (1 - \epsilon^{-n}) ||\hat{O}_2 - W||_2,$$

$$L_2 = \epsilon^{-n} ||O_2 - W||_2 - (1 - \epsilon^{-n}) ||\hat{O}_2 - W||_2,$$

- Hyperparameters

- Window size = 10.
- Number of layers in transformer encoders = 1
- Number of layers in feed-forward unit of encoders = 2
- Hidden units in encoder layers = 64
- Dropout in encoders = 0.1

- Datasets
  - Numenta Anomaly Benchmark(NAB)
  - HexagonML(UCR)
  - MIT-BIH supraventricular Arrhythmia Database(MBA)
  - Soil Moisture Active Passive(SMAP)
  - Mars Science Laboratory(MSL)
  - Secure Water Treatment(SWaT)
  - Water Distribution(WADI)
  - Server Machine Dataset(SMD)
  - Multi-Source Distributed System(MSDS)

#### - Metrics

- Anomaly Detection> precision, recall, ROC/AUC
- Anomaly Diagnosis> HitRate@P%

- Result(Detection)

| Method      | NAB    |        |        |        |        | UCR    |        |        |        | MBA    |        |        |  |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|             | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     |  |
| MERLIN      | 0.8013 | 0.7262 | 0.8414 | 0.7619 | 0.7542 | 0.8018 | 0.8984 | 0.7773 | 0.9846 | 0.4913 | 0.7828 | 0.6555 |  |
| LSTM-NDT    | 0.6400 | 0.6667 | 0.8322 | 0.6531 | 0.5231 | 0.8294 | 0.9781 | 0.6416 | 0.9207 | 0.9718 | 0.9780 | 0.9456 |  |
| DAGMM       | 0.7622 | 0.7292 | 0.8572 | 0.7453 | 0.5337 | 0.9718 | 0.9916 | 0.6890 | 0.9475 | 0.9900 | 0.9858 | 0.9683 |  |
| OmniAnomaly | 0.8421 | 0.6667 | 0.8330 | 0.7442 | 0.8346 | 0.9999 | 0.9981 | 0.9098 | 0.8561 | 1.0000 | 0.9570 | 0.9225 |  |
| MSCRED      | 0.8522 | 0.6700 | 0.8401 | 0.7502 | 0.5441 | 0.9718 | 0.9920 | 0.6976 | 0.9272 | 1.0000 | 0.9799 | 0.9623 |  |
| MAD-GAN     | 0.8666 | 0.7012 | 0.8478 | 0.7752 | 0.8538 | 0.9891 | 0.9984 | 0.9165 | 0.9396 | 1.0000 | 0.9836 | 0.9689 |  |
| USAD        | 0.8421 | 0.6667 | 0.8330 | 0.7442 | 0.8952 | 1.0000 | 0.9989 | 0.9447 | 0.8953 | 0.9989 | 0.9701 | 0.9443 |  |
| MTAD-GAT    | 0.8421 | 0.7272 | 0.8221 | 0.7804 | 0.7812 | 0.9972 | 0.9978 | 0.8761 | 0.9018 | 1.0000 | 0.9721 | 0.9484 |  |
| CAE-M       | 0.7918 | 0.8019 | 0.8019 | 0.7968 | 0.6981 | 1.0000 | 0.9957 | 0.8222 | 0.8442 | 0.9997 | 0.9661 | 0.9154 |  |
| GDN         | 0.8129 | 0.7872 | 0.8542 | 0.7998 | 0.6894 | 0.9988 | 0.9959 | 0.8158 | 0.8832 | 0.9892 | 0.9528 | 0.9332 |  |
| TranAD      | 0.8889 | 0.9892 | 0.9541 | 0.9364 | 0.9407 | 1.0000 | 0.9994 | 0.9694 | 0.9569 | 1.0000 | 0.9885 | 0.9780 |  |
| Method      | SMAP   |        |        |        | MSL    |        |        |        | SWaT   |        |        |        |  |
|             | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     |  |
| MERLIN      | 0.1577 | 0.9999 | 0.7426 | 0.2725 | 0.2613 | 0.4645 | 0.6281 | 0.3345 | 0.6560 | 0.2547 | 0.6175 | 0.3669 |  |
| LSTM-NDT    | 0.8523 | 0.7326 | 0.8602 | 0.7879 | 0.6288 | 1.0000 | 0.9532 | 0.7721 | 0.7778 | 0.5109 | 0.7140 | 0.6167 |  |
| DAGMM       | 0.8069 | 0.9891 | 0.9885 | 0.8888 | 0.7363 | 1.0000 | 0.9716 | 0.8482 | 0.9933 | 0.6879 | 0.8436 | 0.8128 |  |
| OmniAnomaly | 0.8130 | 0.9419 | 0.9889 | 0.8728 | 0.7848 | 0.9924 | 0.9782 | 0.8765 | 0.9782 | 0.6957 | 0.8467 | 0.8131 |  |
| MSCRED      | 0.8175 | 0.9216 | 0.9821 | 0.8664 | 0.8912 | 0.9862 | 0.9807 | 0.9363 | 0.9992 | 0.6770 | 0.8433 | 0.8072 |  |
| MAD-GAN     | 0.8157 | 0.9216 | 0.9891 | 0.8654 | 0.8516 | 0.9930 | 0.9862 | 0.9169 | 0.9593 | 0.6957 | 0.8463 | 0.8065 |  |
| USAD        | 0.7480 | 0.9627 | 0.9890 | 0.8419 | 0.7949 | 0.9912 | 0.9795 | 0.8822 | 0.9977 | 0.6879 | 0.8460 | 0.8143 |  |
| MTAD-GAT    | 0.7991 | 0.9991 | 0.9844 | 0.8880 | 0.7917 | 0.9824 | 0.9899 | 0.8768 | 0.9718 | 0.6957 | 0.8464 | 0.8109 |  |
| CAE-M       | 0.8193 | 0.9567 | 0.9901 | 0.8827 | 0.7751 | 1.0000 | 0.9903 | 0.8733 | 0.9697 | 0.6957 | 0.8464 | 0.8101 |  |
| GDN         | 0.7480 | 0.9891 | 0.9864 | 0.8518 | 0.9308 | 0.9892 | 0.9814 | 0.9591 | 0.9697 | 0.6957 | 0.8462 | 0.8101 |  |
| TranAD      | 0.8043 | 0.9999 | 0.9921 | 0.8915 | 0.9038 | 0.9999 | 0.9916 | 0.9494 | 0.9760 | 0.6997 | 0.8491 | 0.8151 |  |
| Method      | WADI   |        |        |        | SMD    |        |        |        | MSDS   |        |        |        |  |
|             | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     | P      | R      | AUC    | F1     |  |
| MERLIN      | 0.0636 | 0.7669 | 0.5912 | 0.1174 | 0.2871 | 0.5804 | 0.7158 | 0.3842 | 0.7254 | 0.3110 | 0.5022 | 0.4353 |  |
| LSTM-NDT    | 0.0138 | 0.7823 | 0.6721 | 0.0271 | 0.9736 | 0.8440 | 0.9671 | 0.9042 | 0.9999 | 0.8012 | 0.8013 | 0.8896 |  |
| DAGMM       | 0.0760 | 0.9981 | 0.8563 | 0.1412 | 0.9103 | 0.9914 | 0.9954 | 0.9491 | 0.9891 | 0.8026 | 0.9013 | 0.8861 |  |
| OmniAnomaly | 0.3158 | 0.6541 | 0.8198 | 0.4260 | 0.8881 | 0.9985 | 0.9946 | 0.9401 | 1.0000 | 0.7964 | 0.8982 | 0.8867 |  |
| MSCRED      | 0.2513 | 0.7319 | 0.8412 | 0.3741 | 0.7276 | 0.9974 | 0.9921 | 0.8414 | 1.0000 | 0.7983 | 0.8943 | 0.8878 |  |
| MAD-GAN     | 0.2233 | 0.9124 | 0.8026 | 0.3588 | 0.9991 | 0.8440 | 0.9933 | 0.9150 | 0.9982 | 0.6107 | 0.8054 | 0.7578 |  |
| USAD        | 0.1873 | 0.8296 | 0.8723 | 0.3056 | 0.9060 | 0.9974 | 0.9933 | 0.9495 | 0.9912 | 0.7959 | 0.8979 | 0.8829 |  |
| MTAD-GAT    | 0.2818 | 0.8012 | 0.8821 | 0.4169 | 0.8210 | 0.9215 | 0.9921 | 0.8683 | 0.9919 | 0.7964 | 0.8982 | 0.8835 |  |
| CAE-M       | 0.2782 | 0.7918 | 0.8728 | 0.4117 | 0.9082 | 0.9671 | 0.9783 | 0.9367 | 0.9908 | 0.8439 | 0.9013 | 0.9115 |  |
| GDN         | 0.2912 | 0.7931 | 0.8777 | 0.4260 | 0.7170 | 0.9974 | 0.9924 | 0.8342 | 0.9989 | 0.8026 | 0.9105 | 0.8900 |  |
| TranAD      | 0.3529 | 0.8296 | 0.8968 | 0.4951 | 0.9262 | 0.9974 | 0.9974 | 0.9605 | 0.9999 | 0.8626 | 0.9013 | 0.9262 |  |

- Result(Diagnosis)

Table 4: Diagnosis Performance.

| Method      |        | SN     | MD.    |        | MSDS   |        |        |        |  |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Wellou      | H@100% | H@150% | N@100% | N@150% | H@100% | H@150% | N@100% | N@150% |  |
| MERLIN      | 0.5907 | 0.6177 | 0.4150 | 0.4912 | 0.3816 | 0.5626 | 0.3010 | 0.3947 |  |
| LSTM-NDT    | 0.3808 | 0.5225 | 0.3603 | 0.4451 | 0.1504 | 0.2959 | 0.1124 | 0.1993 |  |
| DAGMM       | 0.4927 | 0.6091 | 0.5169 | 0.5845 | 0.2617 | 0.4333 | 0.3153 | 0.4154 |  |
| OmniAnomaly | 0.4567 | 0.5652 | 0.4545 | 0.5125 | 0.2839 | 0.4365 | 0.3338 | 0.4231 |  |
| MSCRED      | 0.4272 | 0.5180 | 0.4609 | 0.5164 | 0.2322 | 0.3469 | 0.2297 | 0.2962 |  |
| MAD-GAN     | 0.4630 | 0.5785 | 0.4681 | 0.5522 | 0.3856 | 0.5589 | 0.4277 | 0.5292 |  |
| USAD        | 0.4925 | 0.6055 | 0.5179 | 0.5781 | 0.3095 | 0.4769 | 0.3534 | 0.4515 |  |
| MTAD-GAT    | 0.3493 | 0.4777 | 0.3759 | 0.4530 | 0.5812 | 0.5885 | 0.5926 | 0.6522 |  |
| CAE-M       | 0.4707 | 0.5878 | 0.5474 | 0.6178 | 0.2530 | 0.4171 | 0.2047 | 0.3010 |  |
| GDN         | 0.3143 | 0.4386 | 0.2980 | 0.3724 | 0.2276 | 0.3382 | 0.2921 | 0.3570 |  |
| TranAD      | 0.4981 | 0.6401 | 0.4941 | 0.6178 | 0.4630 | 0.7533 | 0.5981 | 0.6963 |  |

- Result(Training Time)

Table 5: Comparison of training times in seconds per epoch.

| Method      | NAB    | UCR    | MBA    | SMAP    | MSL     | SWaT   | WADI    | SMD     | MSDS    |
|-------------|--------|--------|--------|---------|---------|--------|---------|---------|---------|
| MERLIN      | 3.28   | 4.09   | 20.19  | 6.89    | 5.12    | 10.12  | 132.69  | 72.32   | 42.22   |
| LSTM-NDT    | 10.64  | 8.71   | 27.80  | 27.62   | 26.24   | 26.43  | 297.12  | 373.14  | 361.12  |
| DAGMM       | 25.38  | 20.78  | 74.62  | 19.05   | 16.41   | 18.51  | 178.17  | 204.36  | 187.54  |
| OmniAnomaly | 38.27  | 27.96  | 109.86 | 27.05   | 21.31   | 28.39  | 212.99  | 276.97  | 277.10  |
| MSCRED      | 258.86 | 262.45 | 592.13 | 16.13   | 33.47   | 183.67 | 1349.05 | 237.66  | 109.63  |
| MAD-GAN     | 39.80  | 25.71  | 160.29 | 29.49   | 26.27   | 27.79  | 293.60  | 314.82  | 285.25  |
| USAD        | 31.21  | 21.10  | 120.86 | 23.63   | 21.22   | 22.72  | 242.86  | 250.97  | 232.82  |
| MTAD-GAT    | 145.00 | 97.12  | 233.08 | 1015.03 | 1287.42 | 103.92 | 9812.13 | 6564.11 | 1304.09 |
| CAE-M       | 22.48  | 19.42  | 67.44  | 187.35  | 575.96  | 41.25  | 5525.62 | 3102.12 | 552.83  |
| GDN         | 83.84  | 58.78  | 159.01 | 62.33   | 96.71   | 59.40  | 4063.05 | 809.94  | 585.34  |
| TranAD      | 1.25   | 0.84   | 4.08   | 3.55    | 5.27    | 0.87   | 115.91  | 43.56   | 17.15   |

- Ablation Studies

Table 6: Ablation Study - F1 and F1\* scores for TranAD and its ablated versions.

| Method                   | N      | AB                      | U      | CR     | MBA    |        |  |
|--------------------------|--------|-------------------------|--------|--------|--------|--------|--|
| Mediod                   | F1     | F1*                     | F1     | F1*    | F1     | F1*    |  |
| TranAD                   | 0.9364 | 0.8421                  | 0.9694 | 0.9399 | 0.9780 | 0.9617 |  |
| w/o transformer          | 0.8850 | 0.8019                  | 0.8466 | 0.5495 | 0.9749 | 0.9584 |  |
| w/o self-condition       | 0.8887 | 0.8102                  | 0.9191 | 0.9028 | 0.9770 | 0.9617 |  |
| w/o adversarial training | 0.9012 | 0.8102                  | 0.9634 | 0.9289 | 0.9752 | 0.9592 |  |
| w/o MAML                 | 0.9068 | 68 0.8210 0.9689 0.9304 |        | 0.9304 | 0.9756 | 0.9617 |  |
| Method                   | SM     | IAP                     | M      | SL     | SWaT   |        |  |
| Treditor.                | F1     | F1*                     | F1     | F1*    | F1     | F1*    |  |
| TranAD                   | 0.8915 | 0.8889                  | 0.9494 | 0.9172 | 0.8151 | 0.8094 |  |
| w/o transformer          | 0.8643 | 0.8147                  | 0.9137 | 0.9037 | 0.8143 | 0.6360 |  |
| w/o self-condition       | 0.8894 | 0.8153                  | 0.9175 | 0.8913 | 0.7953 | 0.8094 |  |
| w/o adversarial training | 0.8906 | 0.8476                  | 0.9455 | 0.9172 | 0.8028 | 0.7832 |  |
| w/o MAML                 | 0.8915 | 0.8899                  | 0.9466 | 0.6732 | 0.8143 | 0.8079 |  |
| Method                   | WA     | ADI                     | SN     | ИD     | MSDS   |        |  |
| Wediod                   | F1     | F1*                     | F1     | F1*    | F1     | F1*    |  |
| TranAD                   | 0.4951 | 0.0649                  | 0.9605 | 0.9478 | 0.9262 | 0.8391 |  |
| w/o transformer          | 0.2181 | 0.0037                  | 0.9071 | 0.9032 | 0.8867 | 0.8389 |  |
| w/o self-condition       | 0.3620 | 0.0631                  | 0.9502 | 0.8847 | 0.8748 | 0.8214 |  |
| w/o adversarial training | 0.3820 | 0.0621                  | 0.9177 | 0.8667 | 0.9181 | 0.8389 |  |
| w/o MAML                 | 0.4815 | 0.0553                  | 0.9433 | 0.8164 | 0.8870 | 0.8389 |  |
|                          |        |                         |        |        |        |        |  |

- Ablation Studies



Figure 6: F1 score, ROC/AUC score and training times with dataset size.



Figure 7: F1 score, ROC/AUC score and training times with window size.



Q&A

[Github] https://github.com/microsoft/Swin-Transformer