

Close 2

Interphase Mass Transport
Separation processes involve transport between phases.
What experience do you have describing interphale transfer?
Mass Transfer Coefficients
Please answer the following T/F questions:
1. Mass transfer coefficients are used to describe interphase transport
2. Mass transfer coefficients assume that the concentration varies linearly through a film at the surface.
surface.
3. Mass transfer coefficients are typically determined experimentally.
4. Mass transfer coefficients can be determined theoretically under some conditions.
5. The correlations you used in Heat/Mass transfer are all empirical.
6. Mass transfer coefficients vary with flow conditions and fluid properties because of the impact of these variables on the concentration profile
Variables on the concentration profile

Interp	phase 1	Mass T	ransfer	
Object betwee appropr	ive: De n two	escribe phases us tran	mass t in term s for com	ransfer as of the efficients
	lo we wa phases			
	gas/liqu			
NA, Z, g	as = NA	,g., =	ky (YA.6 - Y
NA, IITU		Kx		- XA,
YAIL Y		12 Terran	_	
_			ا، عُ سدد	L
0	YM,E Y:	E 7 7	şΣ	
		1		-XA, L
Two ves	sistances	in seri	es.	
		W		

Driving Force (Gos) = YA,6 - YA,6 Driving Force (Liquid) = XA,1 - XA,6 Flux (Na) is analogous to current (I) Driving Force is analogous to roltage (V) Ohm's Law V = IR or I = V NA = Driving Force Resistance IR = V, -V2 Resistance IR = V, -V3 Ciquid: Ky I (R,+Rz) = V, -V3 Liquid: Kx If we know the two resistances, then we should be able to determine the transfer rate. Problem - we don't know the interformal Values! Also, driving forces different.	
Flux (NA) is analogous to current (I) Driving Force is analogous to voltage (V) Ohm's Law V = IR or I = V NA = Driving Force Resistance IR = V1 - V2 Resistance IR = V2 - V3 Cas: ky I (R+Rz) = V1 - V3 Liquid: Kx If we know the two resistances, then we should be able to determine the transfer rate. Problem - we don't know the interfocial	e (Gos) = YA, b - YA, I
Ohm's Law $V = IR$ or $I = V$ $I = V_1 - V_2 = V_2$ $I = V_1 - V_2$ I	
Resistance Resistance TR = V, -V2 Resistance TR = V, -V3 TR = V,	s and ogous to voltage (V)
Resistance TR = V1 - V2 TR = V2 - V3 Gas: Liquid: Kx Tf we know the two resistances, then we should be able to determine the transfer rate. Problem - we don't know the interfacion	Driving Force
Gas: Ky I (R,+Rz) = V1 - V3 Liquid: Kx If we know the two resistences, then We should be able to determine the transfer rate. Problem - we don't know the interfacial	$IR = V_1 - V_2$
Liquid: Kx If we know the two resistences, then we should be able to determine the transfer rate. Problem - we don't know the interfacial	
If we know the two resistences, then we should be able to determine the transfer rate. Problem - we don't know the interfacial	
Problem - we don't know the interfacial	the two resistances, then
	ite.
Y	¥±
gas — Mo	× _E ×
	II week

If the driving forces were in the same "units", I then we could simply add the two resistances to get a total resistance and express the flux in terms of a total resistance and overall driving force The interfacial concentrations YAII and XAII are in equilibrium At equilibrium: MYAFT YA = MXA+b NA, gas = Ky (Ya) YA,I) Let XA = XA value in equilibrium with YA, b NA, gas = ky (mxx - mxxx) = ky (YA) - YAI) NA, gas = mky (x nt - x n, x) Total Resistance

	Total Driving Force: XA - XA
	$N_A = \frac{\chi_A^* - \chi_A}{\frac{1}{m k_y} + \frac{1}{k_x}}$
	= X4* - X4
<	$N_A = \chi_{\times} (\chi_{A}^* - \chi_{A})$
	What assumptions did we make?
	Generalize:
	YA - YA, I = SYA = 3XA SXA
	= m \(\triangle \triangle A
	$= m(x_A^* - x_{A,\pm})$
	Just need local slope of equilibrium curve.
	Summary: 1) Mass transfer coefficients 2) Relationships for liquid and gas
	Summary: 1) Mass transfer coefficients 2) Relationships for liquid and gas phases 3) Correlation connection 4) Interphase transport and overall K