# Рекуррентные нейронные сети. Часть 2.

Павел Остяков pavelosta@gmail.com

#### Проблема долговременных зависимостей



#### Проблема долговременных зависимостей



### Стандартный модуль RNN



## Модуль LSTM



#### Модуль LSTM. Основная идея









Operation







## Модуль LSTM. "Слой забывания"



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$











### Модуль LSTM. Слой запоминания



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$



#### Модуль LSTM. Обновление скрытого состояния



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$











#### Модуль LSTM. Выход ячейки



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$



#### Модуль LSTM





#### Проблемы LSTM

• Очень медленно обучаются

Быстро переобучаются

```
ETA: 65s - loss: 0.4846 - acc: 0.8287

ETA: 43s - loss: 0.4845 - acc: 0.8288

ETA: 21s - loss: 0.4843 - acc: 0.8288

38439s - loss: 0.4842 - acc: 0.8289 - val_loss: 1.3238 - val_acc: 0.5104
```

#### Модуль GRU



$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$



#### Модуль GRU. Особенности

- Обучаются быстрее, чем LSTM
- Меньше переобучаются
- Зачастую помогают достичь такого же (или даже лучше) качества

#### Модуль SRU

$$\begin{aligned}
\tilde{\mathbf{x}}_t &= \mathbf{W} \mathbf{x}_t \\
\mathbf{f}_t &= \sigma(\mathbf{W}_f \mathbf{x}_t + \mathbf{b}_f) \\
\mathbf{c}_t &= \mathbf{f}_t \odot \mathbf{c}_{t-1} + (1 - \mathbf{f}_t) \odot \tilde{\mathbf{x}}_t \\
\mathbf{h}_t &= g(\mathbf{c}_t)
\end{aligned}$$

Здесь д - некоторая функция активации

#### Модуль SRU.

$$\begin{aligned}
\tilde{\mathbf{x}}_t &= \mathbf{W} \mathbf{x}_t \\
\mathbf{f}_t &= \sigma(\mathbf{W}_f \mathbf{x}_t + \mathbf{b}_f) \\
\mathbf{r}_t &= \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{b}_r) \\
\mathbf{c}_t &= \mathbf{f}_t \odot \mathbf{c}_{t-1} + (1 - \mathbf{f}_t) \odot \tilde{\mathbf{x}}_t \\
\mathbf{h}_t &= \mathbf{r}_t \odot g(\mathbf{c}_t) + (1 - \mathbf{r}_t) \odot \mathbf{x}_t
\end{aligned}$$

#### SRU. Результаты

| OpenNMT default setup       | # layers | Size |     | Test BLEU | Time in RNNs |
|-----------------------------|----------|------|-----|-----------|--------------|
| Klein et al. (2017)         | 2        | -    | _   | 17.60     |              |
| Klein et al. (2017) + BPE   | 2        | -    | .=  | 19.34     |              |
| cuDNN LSTM (wd = 0)         | 2        | 85m  | 10m | 18.04     | 149 min      |
| $cuDNN LSTM (wd = 10^{-5})$ | 2        | 85m  | 10m | 19.99     | 149 min      |
| Our setup                   |          |      |     |           |              |
| cuDNN LSTM                  | 2        | 84m  | 9m  | 19.67     | 46 min       |
| cuDNN LSTM                  | 3        | 88m  | 13m | 19.85     | 69 min       |
| cuDNN LSTM                  | 5        | 96m  | 21m | 20.45     | 115 min      |
| SRU                         | 3        | 81m  | 6m  | 18.89     | 12 min       |
| SRU                         | 5        | 84m  | 9m  | 19.77     | 20 min       |
| SRU                         | 6        | 85m  | 10m | 20.17     | 24 min       |
| SRU                         | 10       | 91m  | 16m | 20.70     | 40 min       |

Table 5: English-German translation results (Section 4.4). We list the total number of parameters and the number excluding word embeddings. Our setup disables  $\mathbf{h}_{t-1}$  input, which significantly reduces the training time. Timings are performed on a single Nvidia Titan X Pascal GPU.

#### **Bidirectional RNN**



#### Дополнительные трюки

- Сортировка батчей по длине
- Recurrent dropout
- Batch Normalization
- Data augmentation
- Residual connections

#### Ссылки

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://arxiv.org/abs/1412.3555
- https://arxiv.org/pdf/1709.02755.pdf
- https://arxiv.org/pdf/1507.06228.pdf
- https://hardfish82.github.io/posts/2015-09-NN-Types-FP/