Neural Network Methods for Application in Educational Measurement

Geoffrey Converse

University of Iowa

July 15, 2021

PhD Defense in Applied Mathematical and Computational Sciences

Outline

- 1 Neural Networks
 - Autoencoders
 - Variational Autoencoders
- 2 Item Response Theory
 - IRT Parameter Estimation Methods
- 3 ML2P-VAE for Parameter Estimation
 - ML2P-VAE Method
 - Generalizing to Correlated Latent Traits
 - Method Comparison
 - ML2Pvae R Package
 - Future Work
- 4 Knowledge Tracing
 - Temporal Neural Networks
 - Deep Knowledge Tracing Methods
 - Incorporating IRT into Knowledge Tracing
 - Results
 - Future Work
- 5 Conclusions

Artificial Neural Networks (ANN)

Input x, approximate a true target y via a series of (learned) linear transformations W_l and nonlinear re-scaling $\sigma(\cdot): \mathbb{R}^d \to (0,1)^d$

$$\hat{y} = \sigma(W_3 \sigma(W_2 \sigma(W_1 x + b_1) + b_2) + b_3)$$

LAutoencoders

Autoencoder (AE)

- Encode data into smaller dimension
 - Image compression
 - Non-linear PCA
- Reconstruct original input by minimizing $\mathcal{L} = ||\boldsymbol{x} \hat{\boldsymbol{x}}||$

-Variational Autoencoders

Variational Autoencoder (VAE)

- $lue{z}$ Observed data $oldsymbol{x}$ is generated by some latent code $oldsymbol{z}$
- Latent code is assumed to follow a normal distribution $p_z^*(z) = \mathcal{N}(0, I)$
- If z is high dimensional, the posterior is intractable:

$$p_z^*(oldsymbol{z}|oldsymbol{x}) = rac{p_x^*(oldsymbol{x}|oldsymbol{z})p_z^*(oldsymbol{z})}{\int p_x^*(oldsymbol{x}|oldsymbol{z})p_z^*(oldsymbol{z})doldsymbol{z}}$$

-Variational Autoencoders

Variational Autoencoder (VAE)

- lacktriangle Observed data $m{x}$ is generated by some latent code $m{z}$
- Latent code is assumed to follow a normal distribution $p_z^*(\mathbf{z}) = \mathcal{N}(0, I)$
- If **z** is high dimensional, the posterior is intractable:

$$p_z^*(oldsymbol{z}|oldsymbol{x}) = rac{p_x^*(oldsymbol{x}|oldsymbol{z})p_z^*(oldsymbol{z})}{\int p_x^*(oldsymbol{x}|oldsymbol{z})p_z^*(oldsymbol{z})doldsymbol{z}}$$

Approximate the true posteriors $p_z^*(\boldsymbol{z}|\boldsymbol{x})$ and $p_x^*(\boldsymbol{x}|\boldsymbol{z})$ with neural networks $q_{\alpha}(\boldsymbol{z}|\boldsymbol{x})$ and $p_{\beta}(\boldsymbol{x}|\boldsymbol{z})$

-Variational Autoencoders

Goal: Maximize the log-likelihood
$$\sum_{x \in \mathbb{X}} \log p_x^*(x)$$

$$\log p_x^*(\mathbf{x}) = \int q_\alpha(\mathbf{z}|\mathbf{x}) \log p_x^*(\mathbf{x}) d\mathbf{z}$$

$$= \int q_\alpha(\mathbf{z}|\mathbf{x}) \log \left(\frac{p_z^*(\mathbf{z}|\mathbf{x})p_x^*(\mathbf{x})}{p_z^*(\mathbf{z}|\mathbf{x})}\right) d\mathbf{z}$$

$$= \int q_\alpha(\mathbf{z}|\mathbf{x}) \log \left(\frac{p^*(\mathbf{x},\mathbf{z})}{p_z^*(\mathbf{z}|\mathbf{x})}\right) d\mathbf{z}$$

$$= \int q_\alpha(\mathbf{z}|\mathbf{x}) \left(\log \frac{q_\alpha(\mathbf{z}|\mathbf{x})}{p_z^*(\mathbf{z}|\mathbf{x})} + \log \frac{p^*(\mathbf{x},\mathbf{z})}{q_\alpha(\mathbf{z}|\mathbf{x})}\right) d\mathbf{z}$$

└Variational Autoencoders

VAE Derivation

Goal: Maximize the log-likelihood $\sum_{x \in \mathbb{Y}} \log p_x^*(x)$

$$\begin{split} \log p_x^*(\boldsymbol{x}) &= \int q_\alpha(\boldsymbol{z}|\boldsymbol{x}) \log p_x^*(\boldsymbol{x}) d\boldsymbol{z} \\ &= \int q_\alpha(\boldsymbol{z}|\boldsymbol{x}) \log \left(\frac{p_z^*(\boldsymbol{z}|\boldsymbol{x})p_x^*(\boldsymbol{x})}{p_z^*(\boldsymbol{z}|\boldsymbol{x})}\right) d\boldsymbol{z} \\ &= \int q_\alpha(\boldsymbol{z}|\boldsymbol{x}) \log \left(\frac{p^*(\boldsymbol{x},\boldsymbol{z})}{p_z^*(\boldsymbol{z}|\boldsymbol{x})}\right) d\boldsymbol{z} \\ &= \int q_\alpha(\boldsymbol{z}|\boldsymbol{x}) \left(\log \frac{q_\alpha(\boldsymbol{z}|\boldsymbol{x})}{p_z^*(\boldsymbol{z}|\boldsymbol{x})} + \log \frac{p^*(\boldsymbol{x},\boldsymbol{z})}{q_\alpha(\boldsymbol{z}|\boldsymbol{x})}\right) d\boldsymbol{z} \\ &= \mathcal{D}_{KL} \left[q_\alpha(\cdot|\boldsymbol{x})||p_z^*(\cdot|\boldsymbol{x})| + \int q_\alpha(\boldsymbol{z}|\boldsymbol{x}) \log \left(\frac{p^*(\boldsymbol{x},\boldsymbol{z})}{q_\alpha(\boldsymbol{z}|\boldsymbol{x})}\right) d\boldsymbol{z} \\ &= \mathcal{D}_{KL} \left[q_\alpha(\cdot|\boldsymbol{x})||p_z^*(\cdot|\boldsymbol{x})| + \mathbb{E}_{z \sim q_\alpha(\cdot|\boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z}|\boldsymbol{x}) + \log p^*(\boldsymbol{x},\boldsymbol{z})\right] \right. \\ &= \mathcal{D}_{KL} \left[q_\alpha(\cdot|\boldsymbol{x})||p_z^*(\cdot|\boldsymbol{x})| + \mathbb{E}_{z \sim q_\alpha(\cdot|\boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z}|\boldsymbol{x}) + \log p^*(\boldsymbol{x},\boldsymbol{z})\right] \right] \\ &= \mathcal{D}_{KL} \left[q_\alpha(\cdot|\boldsymbol{x})||p_z^*(\cdot|\boldsymbol{x})| + \tilde{\mathcal{L}}_*(\alpha;\boldsymbol{x})\right] \end{split}$$

where $\mathcal{D}_{KL}\left[q\big|\big|p\right] = \int q(x)\log\left(\frac{q(x)}{p(x)}\right)dx$ measures the information lost from using an approximate distribution p instead of true distribution q

-Variational Autoencoders

- KL-Divergence is non-negative, so we look at the evidence lower bound $\tilde{\mathcal{L}}_*$
- Maximize $\tilde{\mathcal{L}}_* \Rightarrow \text{maximize log } p_x^*(x)$

$$\log p_x^*(\boldsymbol{x}) \ge \tilde{\mathcal{L}}_*(\alpha; \boldsymbol{x}) = \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p^*(\boldsymbol{x}, \boldsymbol{z}) \right]$$
$$= \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p_x^*(\boldsymbol{x} | \boldsymbol{z}) + \log p_z^*(\boldsymbol{z}) \right]$$

Variational Autoencoders

- KL-Divergence is non-negative, so we look at the evidence lower bound $\tilde{\mathcal{L}}_*$
- Maximize $\tilde{\mathcal{L}}_* \Rightarrow \text{maximize log } p_x^*(x)$

$$\log p_x^*(\boldsymbol{x}) \geq \tilde{\mathcal{L}}_*(\alpha; \boldsymbol{x}) = \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p^*(\boldsymbol{x}, \boldsymbol{z}) \right]$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p_x^*(\boldsymbol{x} | \boldsymbol{z}) + \log p_z^*(\boldsymbol{z}) \right]$$

$$\approx \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p_\beta(\boldsymbol{x} | \boldsymbol{z}) + \log p_z^*(\boldsymbol{z}) \right]$$

$$= -\mathcal{D}_{KL} \left[q_\alpha(\cdot | \boldsymbol{x}) \big| \big| p_z^*(\cdot) \big] + \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[\log p_\beta(\boldsymbol{x} | \boldsymbol{z}) \right]$$

$$= \tilde{\mathcal{L}}(\alpha, \beta; \boldsymbol{x})$$

- KL-Divergence is non-negative, so we look at the evidence lower bound $\tilde{\mathcal{L}}_*$
- Maximize $\tilde{\mathcal{L}}_* \Rightarrow \text{maximize log } p_x^*(x)$

$$\log p_x^*(\boldsymbol{x}) \ge \tilde{\mathcal{L}}_*(\alpha; \boldsymbol{x}) = \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p^*(\boldsymbol{x}, \boldsymbol{z}) \right]$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p_x^*(\boldsymbol{x} | \boldsymbol{z}) + \log p_z^*(\boldsymbol{z}) \right]$$

$$\approx \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[-\log q_\alpha(\boldsymbol{z} | \boldsymbol{x}) + \log p_\beta(\boldsymbol{x} | \boldsymbol{z}) + \log p_z^*(\boldsymbol{z}) \right]$$

$$= -\mathcal{D}_{KL} \left[q_\alpha(\cdot | \boldsymbol{x}) \big| \big| p_z^*(\cdot) \big] + \mathbb{E}_{\boldsymbol{z} \sim q_\alpha(\cdot | \boldsymbol{x})} \left[\log p_\beta(\boldsymbol{x} | \boldsymbol{z}) \right]$$

$$= \tilde{\mathcal{L}}(\alpha, \beta; \boldsymbol{x})$$

- We've replaced all unknown distributions $p_{\cdot}^{*}(\cdot)$ with assumed or approximate distributions
- VAE loss is given as $\mathcal{L}(\alpha, \beta; \mathbf{x}) = -\hat{\mathcal{L}}(\alpha, \beta; \mathbf{x})$ where α and β reference the trainable parameters in the encoder and decoder

_Variational Autoencoders

- Binary data: $\boldsymbol{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$
 - $p_{\beta}(\boldsymbol{x}|\boldsymbol{z})$ is a Bernoulli distribution:
 - $\hat{\boldsymbol{x}} = (p_{\beta}(x_1 = 1 | \boldsymbol{z}), \dots, p_{\beta}(x_n = 1 | \boldsymbol{z}))^{\top}$

-Variational Autoencoders

- Binary data: $\boldsymbol{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$
 - $p_{\beta}(\boldsymbol{x}|\boldsymbol{z})$ is a Bernoulli distribution:
 - $\hat{x} = (p_{\beta}(x_1 = 1 | z), \dots, p_{\beta}(x_n = 1 | z))^{\top}$

$$\mathcal{L}(\alpha, \beta; \boldsymbol{x}) = -\tilde{\mathcal{L}}(\alpha, \beta; \boldsymbol{x})$$

$$= -\mathbb{E}_{\boldsymbol{z} \sim q_{\alpha}(\cdot | \boldsymbol{x})} \left[\log p_{\beta}(\boldsymbol{x} | \boldsymbol{z}) \right] + \mathcal{D}_{KL} \left[q_{\alpha}(\cdot | \boldsymbol{x}) \middle| \middle| p_{z}^{*}(\cdot) \right]$$

$$= \sum_{i=1}^{n} -x_{i} \log p_{\beta}(x_{i} = 1 | \boldsymbol{z}) - (1 - x_{i}) \log p_{\beta}(x_{i} = 0 | \boldsymbol{z})$$

$$+ \mathcal{D}_{KL} \left[q_{\alpha}(\cdot | \boldsymbol{x}) \middle| \middle| p_{z}^{*}(\cdot) \right]$$

Variational Autoencoders

VAE Derivation

- Binary data: $\boldsymbol{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$
 - $p_{\beta}(\boldsymbol{x}|\boldsymbol{z})$ is a Bernoulli distribution:
 - $\hat{\boldsymbol{x}} = (p_{\beta}(x_1 = 1 | \boldsymbol{z}), \dots, p_{\beta}(x_n = 1 | \boldsymbol{z}))^{\top}$

$$\mathcal{L}(\alpha, \beta; \boldsymbol{x}) = -\tilde{\mathcal{L}}(\alpha, \beta; \boldsymbol{x})$$

$$= -\mathbb{E}_{\boldsymbol{z} \sim q_{\alpha}(\cdot | \boldsymbol{x})} \left[\log p_{\beta}(\boldsymbol{x} | \boldsymbol{z}) \right] + \mathcal{D}_{KL} \left[q_{\alpha}(\cdot | \boldsymbol{x}) \middle| \middle| p_{z}^{*}(\cdot) \right]$$

$$= \sum_{i=1}^{n} -x_{i} \log p_{\beta}(x_{i} = 1 | \boldsymbol{z}) - (1 - x_{i}) \log p_{\beta}(x_{i} = 0 | \boldsymbol{z})$$

$$+ \mathcal{D}_{KL} \left[q_{\alpha}(\cdot | \boldsymbol{x}) \middle| \middle| p_{z}^{*}(\cdot) \right]$$

■ VAE loss is the binary cross-entropy loss function with a KL-divergence regularizer on the latent code

-Variational Autoencoders

VAE Architecture

- Fit encoded space to $z \sim \mathcal{N}(0, I)$
- Given input x_0 , the encoder outputs a distribution $q_{\alpha}(z|x_0) = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\sigma}_0^2)$

Variational Autoencoders

VAE Architecture

- Fit encoded space to $z \sim \mathcal{N}(0, I)$
- Given input x_0 , the encoder outputs a distribution $q_{\alpha}(z|x_0) = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\sigma}_0^2)$
- Sample $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, I)$, set $\boldsymbol{z}_0 = \boldsymbol{\mu}_0 + \boldsymbol{\varepsilon} \odot \boldsymbol{\sigma}_0$
- Feed z_0 through decoder to obtain reconstruction $\hat{x}_0 \sim p_{\beta}(\cdot|z_0)$

-Variational Autoencoders

VAE Applications

- VAE are used as a generative model
- Train on a set of images, then generate *new* images which are similar to the training data by sampling form the latent space

Item Response Theory (IRT)

- Goal: Explain relationship between student ability and exam performance
- Each student has a latent "ability" value $\theta \in \mathbb{R}$

Item Response Theory (IRT)

- Goal: Explain relationship between student ability and exam performance
- Each student has a latent "ability" value $\theta \in \mathbb{R}$
 - θ is not directly observable
 - Naive solution: $\theta \approx \frac{\text{questions answered correctly}}{\text{total number of questions}}$

Item Response Theory (IRT)

- Goal: Explain relationship between student ability and exam performance
- Each student has a latent "ability" value $\theta \in \mathbb{R}$
 - θ is not directly observable
 - Naive solution: $\theta \approx \frac{\text{questions answered correctly}}{\text{total number of questions}}$
- What is the probability that student j answers item i correctly?

$$P(u_{ij} = 1 | \theta_j) = f(\theta_j; \Lambda_i)$$

- $\theta_j = \text{latent ability of subject } j$
- Λ_i = set of parameters for item i (e.g. difficulty)

2-Parameter Logistic Model (2PL)

Probability of a correct response follows the logistic equation:

$$P(u_{ij} = 1 | \theta_j; a_i, b_i) = \frac{1}{1 + e^{-a_i(\theta_j - b_i)}}$$

2-Parameter Logistic Model (2PL)

Probability of a correct response follows the logistic equation:

$$P(u_{ij} = 1 | \theta_j; a_i, b_i) = \frac{1}{1 + e^{-a_i(\theta_j - b_i)}}$$

- $a_i = \text{discrimination parameter (slope)}$
 - Quantifies the capability of item *i* in differentiating between students with sufficient/insufficient ability
- $b_i = \text{difficulty parameter (intercept)}$

Item Characteristic Curve (ICC)

Item 1 has higher discrimination than Item 2

Multidimensional IRT

- Now assume that an assessment is testing K skills
 - For example, a math exam can test skills add, subtract, multiply, divide
 - Student j has a vector of skills $\boldsymbol{\Theta}_{i} = (\theta_{i1}, ..., \theta_{iK})^{T}$
 - Multiple skills can be assessed by a single item

Multidimensional IRT

- \blacksquare Now assume that an assessment is testing K skills
 - For example, a math exam can test skills add, subtract, multiply, divide
 - Student j has a vector of skills $\mathbf{\Theta}_j = (\theta_{j1}, ..., \theta_{jK})^T$
 - Multiple skills can be assessed by a single item
- Binary Q-matrix defines relationship between items and skills
 - $Q \in \mathbb{R}^{n \times K}$,

$$q_{ik} = \begin{cases} 1 & \text{if item } i \text{ requires skill } k \\ 0 & \text{otherwise} \end{cases}$$

Multidimensional Logistic 2-Parameter (ML2P) Model

■ Probability of correct response given by:¹

$$P(u_{ij} = 1 | \mathbf{\Theta}_j; \mathbf{a}_i, b_i) = \frac{1}{1 + \exp\left[-\mathbf{a}_i^{\top} \mathbf{\Theta}_j + b_i\right]}$$
$$= \frac{1}{1 + \exp\left[-\sum_{k=1}^{K} q_{ik} a_{ik} \theta_{jk} + b_i\right]}$$

¹da Silva et al., 2018

Multidimensional Logistic 2-Parameter (ML2P) Model

■ Probability of correct response given by:¹

$$P(u_{ij} = 1 | \mathbf{\Theta}_j; \mathbf{a}_i, b_i) = \frac{1}{1 + \exp\left[-\mathbf{a}_i^{\mathsf{T}} \mathbf{\Theta}_j + b_i\right]}$$
$$= \frac{1}{1 + \exp\left[-\sum_{k=1}^{K} q_{ik} a_{ik} \theta_{jk} + b_i\right]}$$

- $a_{ik} = \text{discrimination parameter between item } i \text{ and skill } k$
- $b_i = \text{difficulty parameter}$

¹da Silva et al., 2018

IRT Parameter Estimation Methods

Estimating IRT Parameters

- In application, given only binary matrix of N response sets $U \in \mathbb{R}^{N \times n}$
 - $u_j \in \mathbb{R}^n$ details student j's correct/incorrect responses to n items
- How to obtain the item parameters a_i and b_i and student ability parameters Θ_i ?

²Baker and Kim, 2004

IRT Parameter Estimation Methods

Estimating IRT Parameters

- In application, given only binary matrix of N response sets $U \in \mathbb{R}^{N \times n}$
 - $u_j \in \mathbb{R}^n$ details student j's correct/incorrect responses to n items
- How to obtain the item parameters a_i and b_i and student ability parameters Θ_i ?
- Maximize the log-likelihood of the data

$$\log L = \sum_{i=1}^{N} \sum_{i=1}^{n} u_{ij} \log P(u_{ij} = 1) + (1 - u_{ij}) \log P(u_{ij} = 0)$$

²Baker and Kim, 2004

IRT Parameter Estimation Methods

Difficulties of Estimating IRT Parameters

High dimensional IRT is hard

- Joint Maximum Likelihood Estimation (JMLE)³
 - Newton-Raphson iterations
 - Large matrix inversions
 - Possibly unbounded estimates
 - Requires anchoring procedure

³Chen et al., 2019

⁴Bock and Aitken, 1981

IRT Parameter Estimation Methods

Difficulties of Estimating IRT Parameters

High dimensional IRT is hard

- Joint Maximum Likelihood Estimation (JMLE)³
 - Newton-Raphson iterations
 - Large matrix inversions
 - Possibly unbounded estimates
 - Requires anchoring procedure
- Marginal Maximum Likelihood Estimation (MMLE)⁴
 - EM algorithm requires computing a high-dimensional integral:
 - $\Theta \in \mathbb{R}^{20} \Longrightarrow$ 20-dimensional integral
 - 3 quadrature points per dimension \implies 3²⁰ = 3, 486, 784, 401
 - Separate estimation of student parameters

³Chen et al., 2019

⁴Bock and Aitken, 1981

ML2P-VAE for Parameter Estimation

Similarities between IRT and VAE

- IRT and VAE assume normally distributed latent space
 - Observed data is generated from latent code

Similarities between IRT and VAE

- IRT and VAE assume normally distributed latent space
 - Observed data is generated from latent code
- ML2P model and sigmoidal activation function:

$$P(u_{ij} = 1 | \mathbf{\Theta}_j) = \frac{1}{1 + \exp[-\sum_{k=1}^K a_{ik} \theta_{jk} + b_i]}$$
$$\sigma(z) = \sigma(\mathbf{w}^\top \mathbf{a} + b) = \frac{1}{1 + \exp[-\sum_k w_k a_k - b]}$$

Similarities between IRT and VAE

- IRT and VAE assume normally distributed latent space
 - Observed data is generated from latent code
- ML2P model and sigmoidal activation function:

$$P(u_{ij} = 1 | \mathbf{\Theta}_j) = \frac{1}{1 + \exp[-\sum_{k=1}^K a_{ik} \theta_{jk} + b_i]}$$
$$\sigma(z) = \sigma(\mathbf{w}^\top \mathbf{a} + b) = \frac{1}{1 + \exp[-\sum_k w_k a_k - b]}$$

Log-likelihood and binary cross-entropy loss

ML2P-VAE for Parameter Estimation

ML2P-VAE Method

Model Description⁵

- $n \text{ items} \Rightarrow n \text{ input/output nodes}$
- K latent abilities \Rightarrow K-dimensional encoded distribution $\mathcal{N}(0, I)$

 $^{^5\}mathrm{First}$ presented at the International Joint Conference on Neural Networks (IJCNN) 2019

ML2P-VAE for Parameter Estimation

ML2P-VAE Method

Model Description⁵

- \blacksquare *n* items \Rightarrow *n* input/output nodes
- K latent abilities \Rightarrow K-dimensional encoded distribution $\mathcal{N}(0,I)$
- No hidden layers in the VAE decoder
- Restrict nonzero weights in the decoder according to Q-matrix
- Require decoder weights to be nonnegative
 - Avoids reflection $\theta \cdot (-a) = (-\theta) \cdot a$

 $^{^5\}mathrm{First}$ presented at the International Joint Conference on Neural Networks (IJCNN) 2019

ML2P-VAE Method

Model Description⁵

- \blacksquare *n* items \Rightarrow *n* input/output nodes
- K latent abilities \Rightarrow K-dimensional encoded distribution $\mathcal{N}(0,I)$
- No hidden layers in the VAE decoder
- Restrict nonzero weights in the decoder according to Q-matrix
- Require decoder weights to be nonnegative
 - Avoids reflection $\theta \cdot (-a) = (-\theta) \cdot a$
- Sigmoidal activation function in output layer

 $^{^5\}mathrm{First}$ presented at the International Joint Conference on Neural Networks (IJCNN) 2019

ML2P-VAE Method

Model Description⁵

- \blacksquare *n* items \Rightarrow *n* input/output nodes
- K latent abilities \Rightarrow K-dimensional encoded distribution $\mathcal{N}(0,I)$
- No hidden layers in the VAE decoder
- Restrict nonzero weights in the decoder according to Q-matrix
- Require decoder weights to be nonnegative
 - Avoids reflection $\theta \cdot (-a) = (-\theta) \cdot a$
- Sigmoidal activation function in output layer
- Decoder interpreted as the ML2P model

⁵First presented at the International Joint Conference on Neural Networks (IJCNN) 2019

ML2P-VAE Method

Model Description⁵

- \blacksquare n items \Rightarrow n input/output nodes
- \blacksquare K latent abilities \Rightarrow K-dimensional encoded distribution $\mathcal{N}(0,I)$
- No hidden layers in the VAE decoder
- Restrict nonzero weights in the decoder according to Q-matrix
- Require decoder weights to be nonnegative
 - Avoids reflection $\theta \cdot (-a) = (-\theta) \cdot a$
- Sigmoidal activation function in output layer
- Decoder interpreted as the ML2P model
 - Activation of nodes in encoded layer ⇒ latent ability estimates
 - Weights in decoder \Rightarrow discrimination parameter estimates
 - Bias of output nodes \Rightarrow difficulty parameter estimates
 - Output layer \Rightarrow probability of answering items correctly

 $^{^5\}mathrm{First}$ presented at the International Joint Conference on Neural Networks (IJCNN) 2019

ML2P-VAE Method

ML2P-VAE

- Trainable weights in decoder are item parameter estimates
- Feed responses u_0 through encoder to obtain ability estimates $\Theta_0 = \mu_0$

ML2P-VAE Method

Advantages of ML2P-VAE Approach

For the IRT application:

- No trouble for high-dimensional Θ
- Doesn't directly optimize Θ
 - Large number of students isn't a computational burden
- Learning a function that maps responses to latent abilities
 - Encoder: $u_0 \mapsto \Theta_0$

LML2P-VAE Method

Advantages of ML2P-VAE Approach

For the IRT application:

- No trouble for high-dimensional Θ
- Doesn't directly optimize Θ
 - Large number of students isn't a computational burden
- Learning a function that maps responses to latent abilities
 - Encoder: $u_0 \mapsto \Theta_0$

In the machine learning field:

- Ability to interpret a hidden neural layer
- Less abstract encoded latent space
- Explainable trainable parameters in decoder

Generalizing to Correlated Latent Traits

Correlated Latent Traits in IRT

- In real applications, independent skills are not realistic:
 - $\Theta \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, not $\mathcal{N}(0, I)$.
 - Example: students who are good at addition are also good at subtraction

Generalizing to Correlated Latent Traits

Correlated Latent Traits in IRT

- In real applications, independent skills are not realistic: $\Theta \sim \mathcal{N}(\mu, \Sigma)$, not $\mathcal{N}(0, I)$.
 - Example: students who are good at addition are also good at subtraction
- Covariance matrix is symmetric, positive definite matrix

$$\Sigma = \begin{bmatrix} \sigma_1^2 & c_{12} & \cdots & c_{1k} \\ c_{21} & \sigma_2^2 & \cdots & c_{2k} \\ \vdots & \ddots & \vdots \\ c_{k1} & \cdots & c_{k(k-1)} & \sigma_k^2 \end{bmatrix}$$

• With variances σ_i^2 and covariances $c_{ij} = c_{ji}$

Generalizing to Correlated Latent Traits

Correlated Latent Code in VAE

- In most VAE applications, it is convenient to assume latent code **z** is *independent*
 - Forces each dimension of z to measure different features
 - z is abstract, with no real-world understanding

Generalizing to Correlated Latent Traits

Correlated Latent Code in VAE

- In most VAE applications, it is convenient to assume latent code **z** is *independent*
 - Forces each dimension of z to measure different features
 - z is abstract, with no real-world understanding
- For ML2P-VAE, we know that latent code z approximates latent traits Θ
 - We may have **domain knowledge** of the distribution of Θ

Generalizing to Correlated Latent Traits

KL-Divergence for Multivariate Gaussians

■ KL-Divergence between two K-dimensional multivariate Gaussian distributions:

$$\mathcal{D}_{KL}\left[\mathcal{N}(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0})||\mathcal{N}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1})\right] = \frac{1}{2}\left(\operatorname{tr}(\boldsymbol{\Sigma}_{1}^{-1}\boldsymbol{\Sigma}_{0}) + (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T}\boldsymbol{\Sigma}_{1}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) - K + \ln\left(\frac{\det \boldsymbol{\Sigma}_{1}}{\det \boldsymbol{\Sigma}_{0}}\right)\right)$$

Generalizing to Correlated Latent Traits

KL-Divergence for Multivariate Gaussians

■ KL-Divergence between two K-dimensional multivariate Gaussian distributions:

$$\mathcal{D}_{KL}\left[\mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0) || \mathcal{N}(\boldsymbol{\mu}_1, \Sigma_1)\right] = \frac{1}{2} \left(\operatorname{tr}(\Sigma_1^{-1} \Sigma_0) + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \Sigma_1^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) - K + \ln\left(\frac{\det \Sigma_1}{\det \Sigma_0}\right) \right)$$

- When fitting a VAE, $\mathcal{N}(\boldsymbol{\mu}_1, \Sigma_1)$ is assumed to be known, so $\boldsymbol{\mu}_1$ and Σ_1 are constant
- μ_0 and Σ_0 obtained from feeding one sample through the encoder

Generalizing to Correlated Latent Traits

Implementation Requirements for Correlated VAE

1 KL Divergence calculation uses μ_0 , Σ_0 , and $\ln \det \Sigma_0$

2 Sample from a multivariate Gaussian $\mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$:

Generalizing to Correlated Latent Traits

Implementation Requirements for Correlated VAE

- **11** KL Divergence calculation uses μ_0 , Σ_0 , and $\ln \det \Sigma_0$
 - Require $\det \Sigma_0 > 0$ for any input u_0
 - Σ_0 is a function of the input u_0 and every encoder weight
- **2** Sample from a multivariate Gaussian $\mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$:

Generalizing to Correlated Latent Traits

Implementation Requirements for Correlated VAE

- **11** KL Divergence calculation uses μ_0 , Σ_0 , and $\ln \det \Sigma_0$
 - Require det $\Sigma_0 > 0$ for any input u_0
 - Σ_0 is a function of the input u_0 and every encoder weight
- **2** Sample from a multivariate Gaussian $\mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$:
 - Find a matrix G such that $GG^T = \Sigma_0$
 - Sample $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_k)^T$ with each $\varepsilon_i \sim \mathcal{N}(0, 1)$
 - Generate sample $z_0 = \mu_0 + G\varepsilon$

Generalizing to Correlated Latent Traits

- Architecture: Encoder outputs K + K(K+1)/2 nodes
 - K nodes for μ_0 , and K(K+1)/2 nodes for L_0 lower triangular

⁶Published in *Machine Learning*, 2021

Generalizing to Correlated Latent Traits

- Architecture: Encoder outputs K + K(K+1)/2 nodes
 - K nodes for μ_0 , and K(K+1)/2 nodes for L_0 lower triangular
- Sampling: Calculate $G_0 = e^{L_0}$
 - Note G_0 is lower triangular, nonsingular
 - Send sample $z = \mu_0 + G_0 \varepsilon$ through decoder

⁶Published in *Machine Learning*, 2021

Generalizing to Correlated Latent Traits

- Architecture: Encoder outputs K + K(K+1)/2 nodes
 - K nodes for μ_0 , and K(K+1)/2 nodes for L_0 lower triangular
- Sampling: Calculate $G_0 = e^{L_0}$
 - Note G_0 is lower triangular, nonsingular
 - Send sample $z = \mu_0 + G_0 \varepsilon$ through decoder
- KL Divergence: Calculate $\Sigma_0 = G_0 G_0^T$

⁶Published in *Machine Learning*, 2021

Generalizing to Correlated Latent Traits

- Architecture: Encoder outputs K + K(K+1)/2 nodes
 - K nodes for μ_0 , and K(K+1)/2 nodes for L_0 lower triangular
- Sampling: Calculate $G_0 = e^{L_0}$
 - Note G_0 is lower triangular, nonsingular
 - Send sample $z = \mu_0 + G_0 \varepsilon$ through decoder
- KL Divergence: Calculate $\Sigma_0 = G_0 G_0^T$
 - Claim: Σ_0 is has positive determinant and is symmetric positive definite

⁶Published in *Machine Learning*, 2021

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\top}$ is symmetric, positive definite, and has positive determinant.

Proof.

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\top}$ is symmetric, positive definite, and has positive determinant.

Proof.

Consider the matrix exponential

$$G_0 := e^{L_0} = \sum_{n=0}^{\infty} \frac{L_0^n}{n!} = I + L_0 + \frac{1}{2}L_0^2 + \cdots$$

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\perp}$ is symmetric, positive definite, and has positive determinant.

Proof.

Consider the matrix exponential

$$G_0 := e^{L_0} = \sum_{n=0}^{\infty} \frac{L_0^n}{n!} = I + L_0 + \frac{1}{2}L_0^2 + \cdots$$

 G_0 is lower triangular, since addition and multiplication preserve lower triangular. G_0 is also nonsingular:

$$\det G_0 = \det e^{L_0} = e^{\operatorname{tr} L_0} \neq 0$$

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\perp}$ is symmetric, positive definite, and has positive determinant.

Proof.

Consider the matrix exponential

$$G_0 := e^{L_0} = \sum_{n=0}^{\infty} \frac{L_0^n}{n!} = I + L_0 + \frac{1}{2}L_0^2 + \cdots$$

 G_0 is lower triangular, since addition and multiplication preserve lower triangular. G_0 is also nonsingular:

$$\det G_0 = \det e^{L_0} = e^{\operatorname{tr} L_0} \neq 0$$

Set $\Sigma_0 := G_0 G_0^T$. Now for any nonzero $y \in \mathbb{R}^k$,

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\perp}$ is symmetric, positive definite, and has positive determinant.

Proof.

Consider the matrix exponential

$$G_0 := e^{L_0} = \sum_{n=0}^{\infty} \frac{L_0^n}{n!} = I + L_0 + \frac{1}{2}L_0^2 + \cdots$$

 G_0 is lower triangular, since addition and multiplication preserve lower triangular. G_0 is also nonsingular:

$$\det G_0 = \det e^{L_0} = e^{\operatorname{tr} L_0} \neq 0$$

Set $\Sigma_0 := G_0 G_0^T$. Now for any nonzero $y \in \mathbb{R}^k$,

$$\langle \Sigma_0 y, y \rangle = y^T \Sigma_0 y = y^T G_0 G_0^T y = \langle G_0^T y, G_0^T y \rangle = ||G_0^T y||_2^2 > 0$$

Generalizing to Correlated Latent Traits

Correlated VAE Implementation

Theorem

Let L_0 be any lower triangular matrix. Then $\Sigma_0 = e^{L_0} \cdot (e^{L_0})^{\perp}$ is symmetric, positive definite, and has positive determinant.

Proof.

Consider the matrix exponential

$$G_0 := e^{L_0} = \sum_{n=0}^{\infty} \frac{L_0^n}{n!} = I + L_0 + \frac{1}{2}L_0^2 + \cdots$$

 G_0 is lower triangular, since addition and multiplication preserve lower triangular. G_0 is also nonsingular:

$$\det G_0 = \det e^{L_0} = e^{\operatorname{tr} L_0} \neq 0$$

Set $\Sigma_0 := G_0 G_0^T$. Now for any nonzero $y \in \mathbb{R}^k$,

$$\langle \Sigma_0 y, y \rangle = y^T \Sigma_0 y = y^T G_0 G_0^T y = \langle G_0^T y, G_0^T y \rangle = ||G_0^T y||_2^2 > 0$$

Further,

$$\det \Sigma_0 = \det \left(G_0 \, G_0^\top \right) = \det G_0 \cdot \det G_0^\top = e^{\operatorname{tr} L_0} \, \cdot e^{\operatorname{tr} L_0} \, > 0$$

Generalizing to Correlated Latent Traits

VAE architecture for correlated latent traits

Encoder structure for a VAE fit to latent space $\mathcal{N}(\boldsymbol{\mu}, \Sigma)$

Lemethod Comparison

- MH-RM
- MC-EM
- QMC-EM

Lemethod Comparison

- MH-RM
- MC-EM
- QMC-EM
- ML2P-VAE $_{full}$
 - Assume full knowledge of correlation matrix Σ_1
 - Fit VAE with $\mathcal{N}(\mathbf{0}, \Sigma_1)$

└Method Comparison

- MH-RM
- MC-EM
- QMC-EM
- ML2P-VAE $_{full}$
 - Assume full knowledge of correlation matrix Σ_1
 - Fit VAE with $\mathcal{N}(\mathbf{0}, \Sigma_1)$
- ML2P-VAE $_{est}$
 - Unknown correlation matrix $\Sigma_1 \Rightarrow$ estimate it with Σ_1
 - Fit VAE with $\mathcal{N}(\mathbf{0}, \tilde{\Sigma}_1)$

└Method Comparison

- MH-RM
- MC-EM
- QMC-EM
- ML2P-VAE $_{full}$
 - Assume full knowledge of correlation matrix Σ_1
 - Fit VAE with $\mathcal{N}(\mathbf{0}, \Sigma_1)$
- ML2P-VAE $_{est}$
 - Unknown correlation matrix $\Sigma_1 \Rightarrow$ estimate it with Σ_1
 - Fit VAE with $\mathcal{N}(\mathbf{0}, \tilde{\Sigma}_1)$
- $ML2P-VAE_{ind}$
 - Unknown correlation matrix $\Sigma_1 \Rightarrow \text{assume independent } \Theta$
 - Fit VAE with $\mathcal{N}(\mathbf{0}, I)$

Lemented Comparison

Datasets

	Items	Skills	Students
ECPE	28	3	2,922
Sim-6	50	6	20,000
Sim-20	200	20	50,000
Sim-4	27	4	3,000

- ECPE is a real-world dataset no true parameter values
- Sim-6 and Sim-20 have randomly and highly correlated latent skills
- Sim-4 has smaller and more particular correlations

Lemented Comparison

Sim-6 Discrimination Parameter Estimates

Correlation plots of discrimination parameter estimates -50 items assessing 6 latent traits.

True

Method Comparison

Sim-4 Discrimination Parameter Estimates

Correlation plots for discrimination parameters – 27 items assessing 4 latent skills.

True

True

Method Comparison

Sim-20 Parameter Estimates

Discrimination and Ability Parameter Estimates

Correlation plots for item and student parameters – 200 items assessing 20 latent traits. Traditional methods fail to return estimates on assessments of this size.

Lemethod Comparison

Correlated ML2P-VAE Results

Data Set	Method	$a.\mathrm{RMSE}$	$a.\mathrm{BIAS}$	$a.\mathrm{COR}$	$b.\mathrm{RMSE}$	$b.{ m BIAS}$	b.COR
	MHRM	0.0693	0.0319	0.9986	0.0256	-0.0021	0.9999
(i)	QMCEM	0.149	-0.067	0.9939	0.0376	-0.002	0.9998
6 abilities	MCEM	0.1497	-0.0633	0.9936	0.0383	0.0035	0.9997
Sim-6	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{full}$	0.0705	0.0255	0.9985	0.0471	-0.0079	0.9996
	$\mathrm{ML2P\text{-}VAE}_{est}$	0.1803	0.0871	0.9891	0.064	-0.0131	0.9993
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{ind}$	0.1218	-0.0004	0.9944	0.0597	-0.0145	0.9994
	MHRM*	0*	0*	1*	0*	0*	1*
(ii)	QMCEM	0.0159	0.0035	0.9999	0.0067	-0.0005	1
3 abilities	MCEM	0.0228	0.0148	0.9998	0.0064	-0.0008	1
ECPE	$\mathrm{ML2P\text{-}VAE}_{full}$	N/A	N/A	N/A	N/A	N/A	N/A
	$ ext{ML2P-VAE}_{est}$	0.2794	0.2152	0.9713	0.148	0.0951	0.993
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{ind}$	0.3208	0.2184	0.9504	0.154	0.0872	0.9932
	MHRM	N/A	N/A	N/A	N/A	N/A	N/A
(iii)	QMCEM	N/A	N/A	N/A	N/A	N/A	N/A
20 abilities	MCEM	N/A	N/A	N/A	N/A	N/A	N/A
Sim-20	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{full}$	0.078	0.0473	0.9983	0.0608	0.0054	0.9996
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{est}$	0.2992	-0.1304	0.9822	0.1655	0.1215	0.9987
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{ind}$	0.2043	0.0592	0.9792	0.0958	-0.0029	0.9992
	MHRM	0.0953	-0.0158	0.9966	0.0614	-0.0101	0.9988
(iv)	QMCEM	0.0938	-0.0160	0.9967	0.0614	-0.0179	0.9989
4 abilities	MCEM	0.0951	-0.0138	0.9966	0.0644	-0.0199	0.9987
Sim-4	$\mathrm{ML2P\text{-}VAE}_{full}$	0.1326	0.0780	0.9960	0.0872	-0.0311	0.9978
	$ ext{ML2P-VAE}_{est}$	0.2526	0.2106	0.9883	0.1035	-0.0337	0.9980
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{ind}$	0.1658	0.1099	0.9939	0.0944	-0.0254	0.9976

Lemethod Comparison

Correlated ML2P-VAE Results

Data Set	Method	Θ.RMSE	Θ.BIAS	Θ.COR	Runtime
	MHRM	0.714	-0.0033	0.7006	1110s
(i)	QMCEM	0.7206	0.0023	0.6939	322s
6 abilities	MCEM	0.7206	-0.0016	0.6938	1009s
Sim-6	1	0.6649	-0.0010	0.7476	343s
51111-0	$ML2P-VAE_{full}$				
	ML2P-VAE _{est}	0.7109	0.0772	0.7082	364s
	ML2P-VAE _{ind}	0.7222	0.0316	0.6928	252s
()	MHRM*	0*	0*	1*	162s
(ii)	QMCEM	0.0111	0.0007	0.9999	33s
3 abilities	MCEM	0.0132	0.0026	0.9998	192s
ECPE	$\mathrm{ML2P\text{-}VAE}_{full}$	N/A	N/A	N/A	N/A
	$ML2P-VAE_{est}$	0.443	-0.0628	0.8237	61s
	$ML2P-VAE_{ind}$	0.3063	0.01	0.9017	49s
	MHRM	N/A	N/A	N/A	N/A
(iii)	QMCEM	N/A	N/A	N/A	N/A
20 abilities	MCEM	N/A	N/A	N/A	N/A
Sim-20	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{full}$	0.6145	0.0065	0.7893	$1292\mathrm{s}$
	$ML2P-VAE_{est}$	0.7364	-0.0276	0.7257	961s
	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{ind}$	0.7054	0.0747	0.7135	$850 \mathrm{s}$
	MHRM	0.6325	0.0118	0.7697	94s
(iv)	QMCEM	0.6326	0.0154	0.7696	29s
4 abilities	MCEM	0.6326	0.0150	0.7696	196s
Sim-4	$\mathrm{ML2P} ext{-}\mathrm{VAE}_{full}$	0.6384	0.0210	0.7648	$37\mathrm{s}$
	$ML2P-VAE_{est}^{fait}$	0.6897	-0.0256	0.7182	38s
	$\mathrm{ML2P\text{-}VAE}_{ind}^{cor}$	0.6474	-0.0397	0.7579	30s

ML2P-VAE for Parameter Estimation

LML2Pvae R Package

ML2Pvae Package in R

- Software package on CRAN⁷ for easy implementation of ML2P-VAE methods
 - For IRT researchers requires no knowledge of neural networks or TensorFlow

⁷https://cran.r-project.org/web/packages/ML2Pvae

☐ML2P-VAE for Parameter Estimation

└ML2Pvae R Package

ML2Pvae Package in R

- Software package on CRAN⁷ for easy implementation of ML2P-VAE methods
 - For IRT researchers requires no knowledge of neural networks or TensorFlow
- Package functions:
 - Construct ML2P-VAE model to desired architecture
 - Independent latent traits or full covariance matrix
 - Wrapper function to train neural network
 - Simple functions to obtain parameter estimates after training

⁷https://cran.r-project.org/web/packages/ML2Pvae

☐ ML2P-VAE for Parameter Estimation ☐ Future Work

Extending ML2P-VAE to other IRT models

■ 3-parameter logistic model uses a "guessing" parameter:

$$P(u_{ij} = 1 | \boldsymbol{\Theta}_j; \boldsymbol{a}_i, b_i, c_i) = c_i + \frac{1 - c_i}{1 + \exp\left[-\boldsymbol{a}_i^{\top} \boldsymbol{\Theta}_j + b_i\right]}$$

ML2P-VAE for Parameter Estimation

Future Work

Extending ML2P-VAE to other IRT models

■ 3-parameter logistic model uses a "guessing" parameter:

$$P(u_{ij} = 1 | \mathbf{\Theta}_j; \mathbf{a}_i, b_i, c_i) = c_i + \frac{1 - c_i}{1 + \exp\left[-\mathbf{a}_i^{\top} \mathbf{\Theta}_j + b_i\right]}$$

■ Samejima's graded response model allows for partial credit:

$$P(u_{ij} \ge \frac{0}{3} | \mathbf{\Theta}_{j}; \mathbf{a}_{0i}, b_{0i}) = 1$$

$$P(u_{ij} \ge \frac{1}{3} | \mathbf{\Theta}_{j}; \mathbf{a}_{1i}, b_{1i}) = \frac{1}{1 + \exp\left[-\mathbf{a}_{1i}^{\top} \mathbf{\Theta}_{j} + b_{1i}\right]}$$

$$P(u_{ij} \ge \frac{2}{3} | \mathbf{\Theta}_{j}; \mathbf{a}_{2i}, b_{2i}) = \frac{1}{1 + \exp\left[-\mathbf{a}_{2i}^{\top} \mathbf{\Theta}_{j} + b_{2i}\right]}$$

$$P(u_{ij} = \frac{3}{3} | \mathbf{\Theta}_{j}; \mathbf{a}_{3i}, b_{3i}) = \frac{1}{1 + \exp\left[-\mathbf{a}_{3i}^{\top} \mathbf{\Theta}_{j} + b_{3i}\right]}$$

Lagrange Work Lagrange Work

Other Application Areas

IRT has been applied to other psychometric applications outside of education

- Beck Depression Inventory (BDI)
 - 21 item self-reported assessment to diagnose depression
 - Could incorporate other non-response features of respondents (e.g. gender, age)

⁸Work presented at Conference on Fuzzy Systems and Data Mining (FSDM), 2019

Lagrange Work Lagrange Work

Other Application Areas

IRT has been applied to other psychometric applications outside of education

- Beck Depression Inventory (BDI)
 - 21 item self-reported assessment to diagnose depression
 - Could incorporate other non-response features of respondents (e.g. gender, age)
- Personality Questionnaires
 - Big Five, Myers-Briggs
 - Incorporate Samejima's graded response model for items on a Likert scale

⁸Work presented at Conference on Fuzzy Systems and Data Mining (FSDM), 2019

Lagrange ML2P-VAE for Parameter Estimation
Lagrange Work

Other Application Areas

IRT has been applied to other psychometric applications outside of education

- Beck Depression Inventory (BDI)
 - 21 item self-reported assessment to diagnose depression
 - Could incorporate other non-response features of respondents (e.g. gender, age)
- Personality Questionnaires
 - Big Five, Myers-Briggs
 - Incorporate Samejima's graded response model for items on a Likert scale
- Sports analytics and player evaluation⁸
 - Latent athletic ability influences measurable in-game performance

⁸Work presented at Conference on Fuzzy Systems and Data Mining (FSDM), 2019

Knowledge Tracing⁹

- In online learning environments, students have many items available to help learn material
 - AI tutoring systems can suggest which items to present next
- Dynamically track student's knowledge as they progress through questions

⁹Corbett and Anderson, 1995

Knowledge Tracing⁹

- In online learning environments, students have many items available to help learn material
 - AI tutoring systems can suggest which items to present next
- Dynamically track student's knowledge as they progress through questions
- Given a sequence of student interactions (q_t, c_t)
 - q_t indicates the item answered
 - $c_t \in \{0,1\}$ indicates correctness
 - Embed each interaction with trainable $W_e \in \mathbb{R}^{2n \times d}$

⁹Corbett and Anderson, 1995

Knowledge Tracing⁹

- In online learning environments, students have many items available to help learn material
 - AI tutoring systems can suggest which items to present next
- Dynamically track student's knowledge as they progress through questions
- Given a sequence of student interactions (q_t, c_t)
 - q_t indicates the item answered
 - $c_t \in \{0,1\}$ indicates correctness
 - Embed each interaction with trainable $W_e \in \mathbb{R}^{2n \times d}$
- Goal: predict the probability of success on the next item:

$$p_{t+1} = P(c_{t+1} = 1 | (q_1, c_1), \dots, (q_t, c_t), (q_{t+1}, ?))$$

⁹Corbett and Anderson, 1995

Knowledge Tracing⁹

- In online learning environments, students have many items available to help learn material
 - AI tutoring systems can suggest which items to present next
- Dynamically track student's knowledge as they progress through questions
- Given a sequence of student interactions (q_t, c_t)
 - q_t indicates the item answered
 - $c_t \in \{0,1\}$ indicates correctness
 - Embed each interaction with trainable $W_e \in \mathbb{R}^{2n \times d}$
- Goal: predict the probability of success on the next item:

$$p_{t+1} = P(c_{t+1} = 1 | (q_1, c_1), \dots, (q_t, c_t), (q_{t+1}, ?))$$

Most recent methods use neural networks, similar to NLP application

⁹Corbett and Anderson, 1995

Temporal Neural Networks

RNN and LSTM

$$h_t = \tanh \left(W_{hh} h_{t-1} + W_{hx} x_t + b_h \right)$$

$$\begin{split} &f_t = \sigma(W_f[x_t, h_{t-1}]) \\ &a_t = \left(\sigma(W_u[x_t, h_{t-1}]) \times \tanh(W_a[x_t, h_{t-1}])\right) \\ &c_t = c_{t-1} \times f_t + a_t \\ &h_t = \tanh(c_t) \times \sigma(W_h[x_t, h_{t-1}]) \end{split}$$

- In NLP, x_t represents a word
- The sequence x_0, x_1, \ldots, x_T represents a sentence

Knowledge Tracing
Temporal Neural Networks

Attention Networks¹⁰

Given sequence of T observations $\boldsymbol{x}_t \in \mathbb{R}^d$, calculate queries, keys, and values:

$$oldsymbol{q}_t = W^Q oldsymbol{x}_t, \quad oldsymbol{k}_t = W^K oldsymbol{x}_t, \quad oldsymbol{v}_t = W^V oldsymbol{x}_t$$

Organize into matrices $Q, K, V \in \mathbb{R}^{d \times T}$

Temporal Neural Networks

Attention Networks¹⁰

■ Given sequence of T observations $x_t \in \mathbb{R}^d$, calculate queries, keys, and values:

$$oldsymbol{q}_t = \mathit{W}^{\mathit{Q}}oldsymbol{x}_t, \quad oldsymbol{k}_t = \mathit{W}^{\mathit{K}}oldsymbol{x}_t, \quad oldsymbol{v}_t = \mathit{W}^{\mathit{V}}oldsymbol{x}_t$$

- Organize into matrices $Q, K, V \in \mathbb{R}^{d \times T}$
- Calculate correlation between current and other timesteps:

$$\boldsymbol{c}_t = \operatorname{softmax}\left(\frac{K\boldsymbol{q}_t}{\sqrt{d}}\right) \in \mathbb{R}^T$$

Temporal Neural Networks

Attention Networks¹⁰

Given sequence of T observations $\mathbf{x}_t \in \mathbb{R}^d$, calculate queries, keys, and values:

$$oldsymbol{q}_t = W^Q oldsymbol{x}_t, \quad oldsymbol{k}_t = W^K oldsymbol{x}_t, \quad oldsymbol{v}_t = W^V oldsymbol{x}_t$$

- Organize into matrices $Q, K, V \in \mathbb{R}^{d \times T}$
- Calculate correlation between current and other timesteps:

$$c_t = \operatorname{softmax}\left(\frac{Kq_t}{\sqrt{d}}\right) \in \mathbb{R}^T$$

• Attention given as $\boldsymbol{a}_t = V\boldsymbol{c}_t \in \mathbb{R}^d$,

$$A = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right) \cdot V \in \mathbb{R}^{T \times d}$$

Knowledge Tracing
Temporal Neural Networks

Attention Networks¹⁰

Given sequence of T observations $x_t \in \mathbb{R}^d$, calculate queries, keys, and values:

$$oldsymbol{q}_t = W^Q oldsymbol{x}_t, \quad oldsymbol{k}_t = W^K oldsymbol{x}_t, \quad oldsymbol{v}_t = W^V oldsymbol{x}_t$$

- Organize into matrices $Q, K, V \in \mathbb{R}^{d \times T}$
- Calculate correlation between current and other timesteps:

$$\boldsymbol{c}_t = \operatorname{softmax}\left(\frac{K\boldsymbol{q}_t}{\sqrt{d}}\right) \in \mathbb{R}^T$$

• Attention given as $\boldsymbol{a}_t = V\boldsymbol{c}_t \in \mathbb{R}^d$,

$$A = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right) \cdot V \in \mathbb{R}^{T \times d}$$

Feed each a_t through feed-forward network to obtain contextual representation $f_t = FFN(a_t)$

¹⁰Vaswani et al., 2017

Lep Knowledge Tracing Methods

DKT and SAKT

- Deep Knowledge Tracing (DKT)¹¹
 - Use RNN or LSTM to approximate $P(c_{t+1} = 1 | \text{evidence})$

$$p_{t+1} = \text{FFN}(\text{LSTM}(\boldsymbol{x}_t, \boldsymbol{x}_{t-1}, \dots, \boldsymbol{x}_1))$$

¹¹Piech et al., 2015

¹²Pandey and Karypis, 2019

└─Knowledge Tracing
└─Deep Knowledge Tracing Methods

DKT and SAKT

- Deep Knowledge Tracing (DKT)¹¹
 - Use RNN or LSTM to approximate $P(c_{t+1} = 1 | \text{evidence})$

$$p_{t+1} = \text{FFN}(\text{LSTM}(\boldsymbol{x}_t, \boldsymbol{x}_{t-1}, \dots, \boldsymbol{x}_1))$$

- Self-Attentive Knowledge Tracing (SAKT)¹²
 - Use attention networks to approximate $P(c_{t+1} = 1 | \text{evidence})$
 - Attention between interactions quantifies similarity between items

$$p_{t+1} = \text{FFN}(\text{Attention}(\boldsymbol{x}_t, \boldsymbol{x}_{t-1}, \dots, \boldsymbol{x}_1))$$

 $^{^{11}}$ Piech et al., 2015

 $^{^{12}}$ Pandey and Karypis, 2019

Incorporating IRT into Knowledge Tracing

- Best performing deep models: DKT, SAKT, DKVMN¹³
 - Input (q_t, c_t) and q_{t+1} , output p_{t+1}

Incorporating IRT into Knowledge Tracing

- Best performing deep models: DKT, SAKT, DKVMN¹³
 - Input (q_t, c_t) and q_{t+1} , output p_{t+1}
 - Not interpretable
 - No explicit quantification of "knowledge"
 - Post hoc methods to quantify skill mastery

Incorporating IRT into Knowledge Tracing

- Best performing deep models: DKT, SAKT, DKVMN¹³
 - Input (q_t, c_t) and q_{t+1} , output p_{t+1}
 - Not interpretable
 - No explicit quantification of "knowledge"
 - Post hoc methods to quantify skill mastery
- How can we utilize deep methods, while explicitly tracing student knowledge?

Incorporating IRT into Knowledge Tracing

- Best performing deep models: DKT, SAKT, DKVMN¹³
 - Input (q_t, c_t) and q_{t+1} , output p_{t+1}
 - Not interpretable
 - No explicit quantification of "knowledge"
 - Post hoc methods to quantify skill mastery
- How can we utilize deep methods, while explicitly tracing student knowledge?
 - Multidimensional Item Response Theory already provides a framework for computing $P(u_{ij} = 1)$

¹³Zhang et al., 2017

Incorporating IRT into Knowledge Tracing

IRT-inspired Knowledge Tracing¹⁴

- IRT already provides models of the probability of correct response
 - Utilize this in computing p_{t+1}

¹⁴First presented at the Conference on Artificial Intelligence in Education (AIED), 2021

Incorporating IRT into Knowledge Tracing

IRT-inspired Knowledge Tracing¹⁴

- IRT already provides models of the probability of correct response
 - Utilize this in computing p_{t+1}
- Inject domain-knowledge of Q-matrix and IRT into knowledge tracing framework
 - Output *n* nodes, representing probability of success on each item
 - Second-to-last layer has K nodes representing K skills
 - Similar to ML2P-VAE, restrict non-zero weights in final layer according to Q-matrix

¹⁴First presented at the Conference on Artificial Intelligence in Education (AIED), 2021

Knowledge Tracing
Incorporating IRT into Knowledge Tracing

IRT-inspired Knowledge Tracing¹⁴

- IRT already provides models of the probability of correct response
 - Utilize this in computing p_{t+1}
- Inject domain-knowledge of Q-matrix and IRT into knowledge tracing framework
 - Output *n* nodes, representing probability of success on each item
 - Second-to-last layer has K nodes representing K skills
 - Similar to ML2P-VAE, restrict non-zero weights in final layer according to Q-matrix
- Knowledge tracing model + IRT parameter estimation method
- Presents trade-off between explainability and predictive power

¹⁴First presented at the Conference on Artificial Intelligence in Education (AIED), 2021

Incorporating IRT into Knowledge Tracing

IRT-inspired Knowledge Tracing

L Results

Datasets

Dataset	Items	Skills	Students	Interactions
Synth5	50	5	4,000	20K
Sim 200	200	20	50,000	10M
Statics2011	987	61	316	$135\mathrm{K}$
Assist2017	$4,\!117$	102	1,709	392K

- Synth5 is generated by Rasch model with guessing
 - Difficulty parameters are publicly available
- Sim200 has all item and student parameters available
- Statics2011 and Assist2017 have no true parameters

L_{Results}

Results

Method	Synth5	Sim200	Statics2011	Assist2017
DKT	0.803	0.838	0.793	0.731
SAKT	0.801	0.834	0.791	0.754
DKVMN	0.827	0.829	0.805	0.796
DKT-IRT	0.799	0.824	0.777	0.724
SAKT-IRT	0.798	0.833	0.775	0.728

Test AUC values for various models on each dataset.

Results

Recovery of IRT parameters

Discrimination parameters from Sim200 data

Difficulty parameters from Synth5

Results

Tracing Student Knowledge

DKT-IRT tracing of student knowledge

SAKT-IRT tracing of student knowledge

 Θ estimates taken from the final timestep

Knowledge Tracing Future Work

Utilizing more domain knowledge

- Use Q-matrix in attention calculation
 - Mask out previous interactions from unrelated skills

$$\text{score}_{i,t} = \begin{cases} \frac{\boldsymbol{k}_i^\top \boldsymbol{q}_t}{\sqrt{d}} & \text{if interaction } i \text{ shares a skill} \\ & \text{with interaction } t \end{cases}$$

└Knowledge Tracing └Future Work

Utilizing more domain knowledge

- Use Q-matrix in attention calculation
 - Mask out previous interactions from unrelated skills

$$ext{score}_{i,t} = egin{cases} m{k}_i^ op m{q}_t \ \hline \sqrt{d} \end{cases} ext{ if interaction } i ext{ shares a skill} \ \hline ext{with interaction } t \ \hline -\infty ext{ otherwise} \end{cases}$$

- Extend embedding of interactions to static assessments
 - Deal with unanswered items (missing data)

- ML2P-VAE
 - Variational autoencoder for confirmatory IRT

- IRT-inspired knowledge tracing
 - Uses ML2P model to predict probability of the next success

- ML2P-VAE
 - Variational autoencoder for confirmatory IRT
 - Competitive with traditional methods
 - Scalable: capable of estimating high-dimensional Θ

- IRT-inspired knowledge tracing
 - Uses ML2P model to predict probability of the next success

- ML2P-VAE
 - Variational autoencoder for confirmatory IRT
 - Competitive with traditional methods
 - Scalable: capable of estimating high-dimensional Θ
 - Novel VAE architecture for correlated latent code
 - Interpretable hidden layer and trainable weights
- IRT-inspired knowledge tracing
 - Uses ML2P model to predict probability of the next success

ML2P-VAE

- Variational autoencoder for confirmatory IRT
- Competitive with traditional methods
- Scalable: capable of estimating high-dimensional Θ
- Novel VAE architecture for correlated latent code
- Interpretable hidden layer and trainable weights
- IRT-inspired knowledge tracing
 - Uses ML2P model to predict probability of the next success
 - Explicit tracing of student knowledge
 - Recover IRT item parameters
 - Interpretability vs. accuracy trade-off

LAcknowledgements

Thank you!

- My committee: Suely, Mariana, Jonathan, David, and Colleen
- The Mathematics and Computer Science departments

Thank you!

- My committee: Suely, Mariana, Jonathan, David, and Colleen
- The Mathematics and Computer Science departments
- ACT specifically Scott and Yuchi
- FineTune Learning

Thank you!

- My committee: Suely, Mariana, Jonathan, David, and Colleen
- The Mathematics and Computer Science departments
- ACT specifically Scott and Yuchi
- FineTune Learning
- My parents, Ken and Karna
- The rest of my family and friends
- My wife, Danielle

References

- da Silva, Liu, Huggins-Manley, Bazan. "Incorporating the Q-matrix into Multidimensional Item Response Models." Journal of Educational and Psychological Measurement, 2018.
- Baker and Kim. "Item Response Theory: Parameter Estimation Techniques." CRC Press, 2004.
- Chen et al. "Joint Maximum Likelihood Estimation for high-dimsensional Exploratory Item Factor Analysis." Psychometrika, 84: 124-146, 2019.
- Bock and Aitken. "Marginal Maximum Likelihood Estimation of Item Parameters: Application of an EM Algorithm." Psychometrika, 1981.
- Li Cai. "Metropolis-Hastings Robins-Monro Algorithm for Confirmatory Item Factor Analysis." Journal of Educational and Behavioral Statistics, 35: 307–335, 2010.
- Q. Guo, M. Cutumisu, Y. Cui. "A Neural Network Approach to Estimate Student Skill Mastery in Cognitive Diagnostic Assessments." In: 10th International Conference on Educational Data Mining. 2017.
- Corbett and Anderson. "Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge." User Modeling and User-Adapted Interaction, 4: 253–278, 1995.
- Vaswani et al. "Attention is All You Need." Advances in Neural Information Processing Systems, 5998–6008, 2017.
- Piech et al. "Deep Knowledge Tracing." Advances in Neural Information Processing Systems, 505–513, 2015.
- Pandey and Karypis. "A Self-Attentive Model for Knowledge Tracing." *International Conference on Educational Data Mining*, 2019.
- Zhang et al. "Dynamic Key-Value Memory Networks for Knowledge Tracing." 26th international World Wide Web Conference, 765-774, 2017.

References

- Curi, Converse, Hajewski, Oliveira. "Interpretable Variational Autoencoders for Cognitive Models." In Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2019.
- Converse, Curi, Oliveira. "Autoencoders for Educational Assessment." In Proceedings of the Conference on Artifical Intelligence in Education (AIED), 2019.
- Converse, Curi, Oliveira, Arnold. "Variational Autoencoders for Baseball Player Evaluation." In Proceedings of the Fuzzy Systems and Data Mining Conference (FSDM), 2019.
- Geoffrey Converse. "ML2Pvae: Variational Autoencoder Models for IRT Parameter Estimation." R package version 1.0.0. The Comprehensive R Archive Network (CRAN), 2020.
- Converse, Curi, Oliveira, Templin. "Estimation of Multidimensional Item Response Theory Models with Correlated Latent Variables using Variational Autoencoders." Machine Learning, 110: 1463-1480, 2021.
- Converse, Oliveira, Pu. "Incorporating Item Response Theory into Knowledge Tracing." In Proceedings of the Conference on Artificial Intelligence in Education (AIED), 2021.
- Pu, Converse, Huang. "Deep Performance Factors Analysis for knowledge Tracing." In Proceedings of the Conference on Artificial Intelligence in Education (AIED), 2021.

Neural Network Methods for Application in Educational Measurement

Geoffrey Converse

University of Iowa

July 15, 2021