Discrete Mathematics & Mathematical Reasoning Basic Structures: Sets, Functions and Relations

Colin Stirling

Informatics

Some slides based on ones by Myrto Arapinis

Some important sets

```
\begin{split} \mathbb{B} &= \{\text{true}, \text{false}\} \;\; \text{Boolean values} \\ \mathbb{N} &= \{0,1,2,3,\ldots\} \;\; \text{Natural numbers} \\ \mathbb{Z} &= \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} \;\; \text{Integers} \\ \mathbb{Z}^+ &= \{1,2,3,\ldots\} \;\; \text{Positive integers} \\ \mathbb{R} \;\; \text{Real numbers} \\ \mathbb{R}^+ \;\; \text{Positive real numbers} \\ \mathbb{Q} \;\; \text{Rational numbers} \\ \mathbb{C} \;\; \text{Complex numbers} \\ \emptyset \;\; \text{Empty set} \end{split}
```

Sets defined using comprehension

• $S = \{x \mid P(x)\}$ where P(x) is a predicate

Sets defined using comprehension

- $S = \{x \mid P(x)\}$ where P(x) is a predicate
- Example Subsets of sets upon which an order is defined

$$[a,b] = \{x \mid a \le x \le b\}$$
 closed interval $[a,b) = \{x \mid a \le x < b\}$ $(a,b] = \{x \mid a < x \le b\}$ $(a,b) = \{x \mid a < x < b\}$ open interval

• $x \in S$ membership

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- A = B set equality

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- A = B set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- A = B set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A
- |A| cardinality

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- A = B set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A
- |A| cardinality
- A × B cartesian product (tuple sets)

The set of cats is not a member of itself

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$)?

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$) ?
- $S \in S$ provided that $S \notin S$; $S \notin S$ provided that $S \in S$

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$) ?
- $S \in S$ provided that $S \notin S$; $S \notin S$ provided that $S \in S$
- Modern formulations (such as Zermelo-Fraenkel set theory) restrict comprehension. (However, it is impossible to prove in ZF that ZF is consistent unless ZF is inconsistent.)

• Assume A and B are non-empty sets

- Assume A and B are non-empty sets
- A function f from A to B is an assignment of exactly one element of B to each element of A

- Assume A and B are non-empty sets
- A function f from A to B is an assignment of exactly one element of B to each element of A
- f(a) = b if f assigns b to a

- Assume A and B are non-empty sets
- A function f from A to B is an assignment of exactly one element of B to each element of A
- f(a) = b if f assigns b to a
- $f: A \rightarrow B$ if f is a function from A to B

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?

YES

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

- Is the identity function $\iota_A:A\to A$ injective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?

YFS

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?

YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?

YES

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

Is the identity function ι_A : A → A injective?

YES

• Is the function $\sqrt{\cdot}:\mathbb{Z}^+\to\mathbb{R}^+$ injective?

YES

• Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective?

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

- Is the identity function $\iota_A:A\to A$ injective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?
- Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective?

YES

YFS

NO

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

- Is the identity function ι_A : A → A injective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?
- Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective?
- Is the function $|\cdot|:\mathbb{R}\to\mathbb{R}$ injective?

YFS

NO

Definition

 $f: A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective? YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective? YES

• Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective? NO

• Is the function $|\cdot|:\mathbb{R}\to\mathbb{R}$ injective?

Definition

 $f: A \to B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

- Is the identity function $\iota_A:A\to A$ injective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?
- Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective?
- Is the function $|\cdot|: \mathbb{R} \to \mathbb{R}$ injective?
- Assume m > 1. Is mod $m : Z \rightarrow \{0, \dots, m-1\}$ injective?

YFS

YFS

NO

NO

Definition

 $f: A \to B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A:A\to A$ injective? YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?

• Is the squaring function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ injective? NO

• Is the function $|\cdot|: \mathbb{R} \to \mathbb{R}$ injective?

NO NO

• Assume m > 1. Is mod $m : Z \rightarrow \{0, \dots, m-1\}$ injective?

YFS

Onto or surjective functions

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

Onto or surjective functions

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?

YES

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?

YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?

YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?

YES

• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?

NO

• Is the function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ surjective?

Definition

 $f: A \to B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

- Is the identity function $\iota_A:A\to A$ surjective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?
- Is the function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ surjective?

YES

NO

Definition

 $f: A \to B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

- Is the identity function ι_A: A → A surjective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?
- Is the function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ surjective?
- Is the function $|\cdot|: \mathbb{R} \to \mathbb{R}$ surjective?

YFS

NO

Definition

 $f: A \rightarrow B$ is surjective iff $\forall b \in B \ \exists a \in A \ (f(a) = b)$

• Is the function
$$\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$$
 surjective?

• Is the function
$$\cdot^2 : \mathbb{Z} \to \mathbb{Z}$$
 surjective?

• Is the function
$$|\cdot|:\mathbb{R}\to\mathbb{R}$$
 surjective?

YES

NO

NO

Definition

 $f: A \to B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

- Is the identity function ι_A: A → A surjective?
- Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?
- Is the function $\cdot^2: \mathbb{Z} \to \mathbb{Z}$ surjective?
- Is the function $|\cdot|:\mathbb{R}\to\mathbb{R}$ surjective?
- Assume m > 1. Is mod $m : Z \to \{0, \dots, m-1\}$ surjective?

NO NO

YFS

Definition

 $f: A \to B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?	YES
--	-----

• Is the function
$$\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$$
 surjective?

• Is the function
$$\cdot^2 : \mathbb{Z} \to \mathbb{Z}$$
 surjective?

• Is the function
$$|\cdot|:\mathbb{R}\to\mathbb{R}$$
 surjective?

• Assume
$$m > 1$$
. Is mod $m : Z \rightarrow \{0, \dots, m-1\}$ surjective? Y

YES

NO

NO

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

YES

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

YES

• Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

YES

• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

YES

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

YES

• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

YES

• Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection? YES

• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

• Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?

YES

• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

YES

• Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?

NO

• Is the function $|\cdot|: \mathbb{R} \to \mathbb{R}$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?	YES
---	-----

- Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?
- Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?
- Is the function $|\cdot|:\mathbb{R}\to\mathbb{R}$ a bijection?

YES

Function composition

Definition

Let $f: B \to C$ and $g: A \to B$. The composition function $f \circ g: A \to C$ is $(f \circ g)(a) = f(g(a))$

Theorem

The composition of two functions is a function

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two surjective functions is a surjective function

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two surjective functions is a surjective function

Corollary

The composition of two bijections is a bijection

Definition

If $f: A \to B$ is a bijection, then the inverse of f, written $f^{-1}: B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

Definition

If $f: A \to B$ is a bijection, then the inverse of f, written $f^{-1}: B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \to A$?

Definition

If $f: A \to B$ is a bijection, then the inverse of f, written $f^{-1}: B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \to A$?

What is the inverse of $\sqrt{:}\mathbb{R}^+ \to \mathbb{R}^+$?

Definition

If $f: A \to B$ is a bijection, then the inverse of f, written $f^{-1}: B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \to A$?

What is the inverse of $\sqrt{\mathbb{R}^+} \to \mathbb{R}^+$?

What is $f^{-1} \circ f$? and $f \circ f^{-1}$?

The floor and ceiling functions

Definition

The floor function $[\]:\mathbb{R}\to\mathbb{Z}$ is [x] equals the largest integer less than or equal to x

Definition

The ceiling function $\lceil \ \rceil : \mathbb{R} \to \mathbb{Z}$ is $\lceil x \rceil$ equals the smallest integer greater than or equal to x

The floor and ceiling functions

Definition

The floor function $[\]:\mathbb{R}\to\mathbb{Z}$ is [x] equals the largest integer less than or equal to x

Definition

The ceiling function $\lceil \ \rceil : \mathbb{R} \to \mathbb{Z}$ is $\lceil x \rceil$ equals the smallest integer greater than or equal to x

$$\left\lfloor \frac{1}{2} \right\rfloor = \left\lceil -\frac{1}{2} \right\rceil = \left\lfloor 0 \right\rfloor = \left\lceil 0 \right\rceil = 0$$

The floor and ceiling functions

Definition

The floor function $[\]:\mathbb{R}\to\mathbb{Z}$ is [x] equals the largest integer less than or equal to x

Definition

The ceiling function $\lceil \ \rceil : \mathbb{R} \to \mathbb{Z}$ is $\lceil x \rceil$ equals the smallest integer greater than or equal to x

$$\left|\frac{1}{2}\right| = \left[-\frac{1}{2}\right] = \lfloor 0 \rfloor = \lceil 0 \rceil = 0$$

$$|-6.1| = -7$$
 $\lceil 6.1 \rceil = 7$

Useful tips about floors and ceilings

- When showing properties of floors is to let $x = n + \epsilon$ if $\lfloor x \rfloor = n$ where $0 < \epsilon < 1$
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$

Useful tips about floors and ceilings

- When showing properties of floors is to let $x = n + \epsilon$ if $\lfloor x \rfloor = n$ where $0 < \epsilon < 1$
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$
- Prove

$$\forall x \in \mathbb{R} \left(\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor \right)$$

Useful tips about floors and ceilings

- When showing properties of floors is to let $x = n + \epsilon$ if $\lfloor x \rfloor = n$ where $0 < \epsilon < 1$
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$
- Prove

$$\forall x \in \mathbb{R} \left(\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor \right)$$

Proof in book

Prove $\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$

Prove
$$\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$$

False; counterexample x = 1/2 and y = 1/2

The factorial function

Definition

The factorial function $f : \mathbb{N} \to \mathbb{N}$, denoted as f(n) = n! assigns to n the product of the first n positive integers

$$f(0) = 0! = 1$$

and

$$f(n) = n! = 1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n$$

Definition

Definition

A binary relation R on sets A and B is a subset $R \subseteq A \times B$

• R is a set of tuples (a, b) with $a \in A$ and $b \in B$

Definition

- R is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$

Definition

- R is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

Definition

- R is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

Definition

A binary relation R on sets A and B is a subset $R \subseteq A \times B$

- R is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

Definition

Given sets A_1, \ldots, A_n , a subset $R \subseteq A_1 \times \cdots \times A_n$ is an n-ary relation

Examples

• Divides $|: \mathbb{Z}^+ \to \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ \ (m = kn)\}$

Examples

- Divides $|: \mathbb{Z}^+ \to \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ \ (m = kn)\}$
- Let m > 1 be an integer. $R = \{(a, b) \mid a \mod m = b \mod m\}$

Examples

- Divides $|: \mathbb{Z}^+ \to \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ \ (m = kn)\}$
- Let m > 1 be an integer. $R = \{(a, b) \mid a \mod m = b \mod m\}$
- Written as $a = b \pmod{m}$

A binary relation R on A is called

• reflexive iff $\forall x \in A (x, x) \in R$

- reflexive iff $\forall x \in A (x, x) \in R$
- $\bullet \le$, =, and | are reflexive, but < is not

- reflexive iff $\forall x \in A (x, x) \in R$
- $\bullet \le$, =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- ullet = is symmetric, but \leq , <, and | are not

- reflexive iff $\forall x \in A (x, x) \in R$
- $\bullet \le$, =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- ullet = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$

- reflexive iff $\forall x \in A (x, x) \in R$
- $\bullet \le$, =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- ullet = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$
- $\bullet \leq$, =, <, and | are antisymmetric

- reflexive iff $\forall x \in A (x, x) \in R$
- $\bullet \le$, =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- ullet = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$
- $\bullet \leq$, =, <, and | are antisymmetric
- transitive iff $\forall x, y, z \in A (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$
- $\bullet \leq$, =, <, and | are transitive

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

• Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s,t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

- Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s,t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation
- on integers is not an equivalence relation.

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

- Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s,t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation
- on integers is not an equivalence relation.
- For m > 1 be an integer the relation = (mod m) is an equivalence relation on integers

Equivalence classes

Definition

Let R be an equivalence relation on a set A and $a \in A$. Let

$$[a]_R = \{s \mid (a, s) \in R\}$$

be the equivalence class of a w.r.t. R

If $b \in [a]_R$ then b is called a representative of the equivalence class. Every member of the class can be a representative

Theorem

Result

Let R be an equivalence on A and $a, b \in A$. The following three statements are equivalent

- aRb
- $a_{R} = [b]_{R}$
- **③** $[a]_R \cap [b]_R \neq \emptyset$

Theorem

Result

Let R be an equivalence on A and $a, b \in A$. The following three statements are equivalent

- aRb
- $a_{R} = [b]_{R}$

Proof in book

Partitions of a set

Definition

A partition of a set A is a collection of disjoint, nonempty subsets that have A as their union. In other words, the collection of subsets $A_i \subseteq A$ with $i \in I$ (where I is an index set) forms a partition of A iff

- **1** $A_i \neq \emptyset$ for all $i \in I$

Result

Theorem

- If R is an equivalence on A, then the equivalence classes of R form a partition of A
- **2** Conversely, given a partition $\{A_i \mid i \in I\}$ of A there exists an equivalence relation R that has exactly the sets A_i , $i \in I$, as its equivalence classes

Result

Theorem

- If R is an equivalence on A, then the equivalence classes of R form a partition of A
- **2** Conversely, given a partition $\{A_i \mid i \in I\}$ of A there exists an equivalence relation R that has exactly the sets A_i , $i \in I$, as its equivalence classes

Proof in book