Compatibility of smooth tensor and low-rank tensor

Miaoyan Wang, July 25, 2021

Let $S^r = \{x \in \mathbb{R}^r : ||x||_2 \le 1\}$ be an r-dimensional unit ball. We also use $x = (x(1), \dots, x(r))^T$ to denote the vector in \mathbb{R}^r , where $x(i) \in \mathbb{R}$ denotes i-th element in the vector. Consider the following generative process:

Step 1. Fix an m-variate function

$$f \colon \boldsymbol{S}^r imes \dots imes \boldsymbol{S}^r o [0,1],$$
 $(\boldsymbol{x}_1, \dots, \boldsymbol{x}_m) \mapsto f(\boldsymbol{x}_1, \dots, \boldsymbol{x}_m) = \sum_{i=1}^r \boldsymbol{x}_1(i) \cdots \boldsymbol{x}_m(i).$

By the multilinearlity of f and boundedness of S^r , f is a 1-Lipschitz function.

Step 2. Draw either random or fixed samples x_1, \ldots, x_d from S^r .

Step 3. Define the signal tensor

$$\Theta(i_1, \dots, i_m) = f(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_m}), \text{ for all } (i_1, \dots, i_m) \in [d]^m.$$

By construction, Θ is a rank-r tensor.

Theorem 0.1 (Block approximation to low-rank tensors). Let $\Theta \in [0,1]^m$ be an order-m rank-r tensor generated from steps 1-3. Then, for every $K \in \mathbb{N}_+$, there exists a block-K tensor $\bar{\Theta}$ such that

$$\|\Theta - \bar{\Theta}\|_F^2 \lesssim \frac{d^m}{K^{2/r}}.$$

Proof. Because S^r is a compact set, S^r can be covered by K Euclidean balls with radius $K^{-1/r}$. Let y_1, \ldots, y_K be the center of these balls. Without loss of generality, assume $y_k \in S^r$ for all $k \in [K]$. Then, by definition of covering sets, for every $i \in [d]$, there exists $k = k(i) \in \{1, \ldots, K\}$ such that

$$\|oldsymbol{x}_i - oldsymbol{y}_{k(i)}\|_2 \lesssim rac{1}{K^{1/r}}.$$

By the smoothness of f, we have

$$|f(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_m}) - f(\boldsymbol{y}_{k(i_1)},\ldots,\boldsymbol{y}_{k(i_m)})|^2 \lesssim \frac{1}{K^{2/r}}.$$
 (1)

Notice that there are in total K distinct points $y_{k(i)}$. Therefore, the tensor Θ defined by

$$\bar{\Theta}(i_1,\ldots,i_m):=f(\boldsymbol{y}_{k(i_1)},\ldots,\boldsymbol{y}_{k(i_m)})$$

has at most K blocks on each model. Based on (), we have constructed a block-K tensor $\bar{\Theta}$ such

that

$$\|\Theta - \bar{\Theta}\|_F^2 \le \frac{d^m}{K^{2/r}}.$$