第一章

第二节

无穷小与无穷大

- 一、无穷小
- 二、无穷大

三、无穷小与无穷大的关系

四、无穷小量阶的比较

一、无穷小

定义1. 若 $x \to x_0$ 时,函数 $f(x) \to 0$,则称函数 f(x)

例如:

$$\lim_{x\to 1} (x-1) = 0$$
, 函数 $x-1$ 当 $x\to 1$ 时为无穷小;

$$\lim_{x\to\infty}\frac{1}{x}=0$$
, 函数 $\frac{1}{x}$ 当 $x\to\infty$ 时为无穷小;

$$\lim_{x \to -\infty} \frac{1}{\sqrt{1-x}} = 0$$
,函数 $\frac{1}{\sqrt{1-x}}$ 当 $x \to -\infty$ 时为无穷小.

定义1. 若 $x \to x_0$ (或 $x \to \infty$) 时,函数 $f(x) \to 0$,则

则称函数 f(x) 为 $x \to x_0$ (或 $x \to \infty$) 时的无穷小.

说明:除0以外任何很小的常数都不是无穷小!

因为

显然 C 只能是 0!

定理 1.(无穷小与函数极限的关系)

$$\lim_{x \to x_0} f(x) = A \iff f(x) = A + \alpha$$
,其中 α 为 $x \to x_0$ 时的无穷小量.

$$\lim_{x \to x_0} f(x) = A$$

$$\underbrace{\alpha = f(x) - A}_{x \to x_0} \lim_{\alpha \to x_0} \alpha = 0$$

对自变量的其它变化过程类似可证。

定理2. (1) 有限个无穷小的和还是无穷小

(2) 有限个无穷小之积仍为无穷小?

说明: 无限个无穷小之和不一定是无穷小!

例如,

$$\lim_{n \to \infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right) = 1$$

定理3.有界函数与无穷小的乘积是无穷小.

证: 设
$$\forall x \in \bigcup (x_0, \delta_1), |u| \leq M$$

又设
$$\lim_{x\to x_0} \alpha = 0$$
,即 $\forall \varepsilon > 0$, $\exists \delta_2 > 0$, $\exists \kappa \in \bigcup (x_0, \delta_2)$

时,有
$$|\alpha| \leq \frac{\varepsilon}{M}$$

取 $\delta = \min{\{\delta_1, \delta_2\}}$,则当 $x \in \bigcup (x_0, \delta)$ 时,就有

$$|u \alpha| = |u| |\alpha| \le M \cdot \frac{\varepsilon}{M} = \varepsilon$$

故 $\lim_{x\to x_0} u\alpha = 0$,即 $u\alpha$ 是 $x\to x_0$ 时的无穷小.

推论 1. 常数与无穷小的乘积是无穷小.

推论 2. 有限个无穷小的乘积是无穷小.

例1. 求
$$\lim_{x\to\infty}\frac{\sin x}{x}$$
.

$$|\mathbf{x}| \leq 1$$

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

利用定理 2 可知
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$
.

说明:
$$y = 0$$
 是 $y = \frac{\sin x}{x}$ 的渐近线.

二、无穷大

定义2. 若任给 M > 0, 总存在 $\delta > 0$ (正数 X), 使对

一切满足不等式
$$0 < |x - x_0| < \delta(|x| > X)$$
 的 x , 总有

则称函数 f(x) 当 $x \to x_0$ $(x \to \infty)$ 时为无穷大, 记作

$$\lim_{x \to x_0} f(x) = \infty. \qquad \left(\lim_{x \to \infty} f(x) = \infty\right)$$

若在定义中将①式改为 f(x) > M(f(x) < -M),

则记作
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = +\infty$$
 ($\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = -\infty$)

注意:

- 1. 无穷大不是很大的数, 它是描述函数的一种状态.
- 2. 函数为无穷大,必定无界.但反之不真!

例如, 函数
$$f(x) = x \cos x, x \in (-\infty, +\infty)$$

$$f(2n\pi) = 2n\pi \to \infty \ (\stackrel{\text{def}}{=} n \to \infty)$$

$$\mathbf{\underline{(}} f(\frac{\pi}{2} + n\pi) = 0$$

所以 $x \to \infty$ 时, f(x) 不是无穷大!

例2.证明
$$\lim_{x\to 1}\frac{1}{x-1}=\infty$$

证: 任给正数
$$M$$
, 要使 $\left| \frac{1}{x-1} \right| > M$, 即 $\left| x-1 \right| < \frac{1}{M}$,

只要取
$$\delta = \frac{1}{M}$$
,则对满足 $0 < |x-1| < \delta$ 的一切 x ,有

$$\left| \frac{1}{x-1} \right| > M$$

所以
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$
.

说明: 若
$$\lim_{x \to x_0} f(x) = \infty$$
,则直线 $x = x_0$

为曲线 y = f(x) 的铅直渐近线

三、无穷小与无穷大的关系

定理4. 在自变量的同一变化过程中,

若
$$f(x)$$
 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小;

若
$$f(x)$$
 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小;
若 $f(x)$ 为无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大.

(自证)

说明:据此定理,关于无穷大的问题都可转化为 无穷小来讨论.

再看例2

例3. 求
$$\lim_{x\to\infty} \frac{4x^2 - 3x + 9}{5x^2 + 2x - 1}$$
.

解: $x \to \infty$ 时, 分母 $\to \infty$, 分子 $\to \infty$.

分子分母同除以 x^2 ,则

"抓大头"

原式 =
$$\lim_{x \to \infty} \frac{4 - 3\frac{1}{x} + 9\frac{1}{x^2}}{5 + 2\frac{1}{x} - \frac{1}{x^2}} = \frac{4}{5}$$

一般有如下结果:

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n}$$

$$(a_0 b_0 \neq 0, m, n)$$

$$= \begin{cases} \frac{a_0}{b_0}, & \exists n = m \\ 0, & \exists n > m \end{cases}$$

$$\infty, & \exists n < m$$

四、无穷小的比较

引例. $x \to 0$ 时, 3x, x^2 , $\sin x$ 都是无穷小, 但

$$\lim_{x \to 0} \frac{x^2}{3x} = 0, \qquad \lim_{x \to 0} \frac{\sin x}{3x} = \frac{1}{3},$$

$$\lim_{x \to 0} \frac{\sin x}{x^2} = \infty,$$

可见无穷小趋于 0 的速度是多样的.

定义3. 设 α , β 是自变量同一变化过程中的无穷小,

若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 0$, 则称 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$

若 $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$, 则称 β 是比 α 低阶的无穷小;

若 $\lim_{\alpha} \frac{\beta}{\alpha} = C \neq 0$,则称 β 是 α 的同阶无穷小;

若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha^k} = C \neq 0$,则称 β 是关于 α 的 k 阶无穷小;

若 $\lim_{\alpha} \frac{\beta}{\alpha} = 1$,则称 β 是 α 的等价无穷小,记作 $\alpha \sim \beta$ 或 $\beta \sim \alpha$

例如, 当 $x \to 0$ 时

$$x^3 = o(6x^2)$$
; $\sin x \sim x$; $\tan x \sim x$
arcsin $x \sim x$

又如,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4(\frac{x}{2})^2} = \frac{1}{2}$$

故 $x \to 0$ 时 $1 - \cos x$ 是关于x 的二阶无穷小,且

$$1 - \cos x \sim \frac{1}{2}x^2$$

例4. 证明: 当 $x \to 0$ 时, $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$

in:
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{\frac{1}{n}x}$$

$$\begin{vmatrix} a^n - b^n = (a-b) & (a^{n-1} + a^{n-2}b + \dots + b^{n-1}) \\ = \lim_{x \to 0} & \frac{(\sqrt[n]{1+x})^n - 1}{\frac{1}{n}x \left[(\sqrt[n]{1+x})^{n-1} + (\sqrt[n]{1+x})^{n-2} + \dots + 1 \right]}$$

$$= 1$$

 $\therefore \stackrel{\text{u}}{=} x \to 0 \text{ 时}, \quad \sqrt[n]{1+x} - 1 \sim \frac{1}{x}$

定理5. $\alpha \sim \beta \iff \beta = \alpha + o(\alpha)$

iii:
$$\alpha \sim \beta \iff \lim \frac{\beta}{\alpha} = 1$$

$$\implies \lim(\frac{\beta}{\alpha} - 1) = 0, \text{ Ep } \lim \frac{\beta - \alpha}{\alpha} = 0$$

$$\beta - \alpha = o(\alpha), \ \exists \beta = \alpha + o(\alpha)$$

例如, $x \to 0$ 时, $\sin x \sim x$, $\tan x \sim x$, 故

$$x \to 0$$
 时, $\sin x = x + o(x)$, $\tan x = x + o(x)$

定理6.设 $\alpha \sim \alpha'$, $\beta \sim \beta'$, 且 $\lim \frac{\beta'}{\alpha'}$ 存在,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta'}{\alpha'}$

$$\lim \frac{\beta}{\alpha} = \lim \left(\frac{\beta}{\beta'} \frac{\beta'}{\alpha'} \frac{\alpha'}{\alpha} \right)$$

$$= \lim \frac{\beta}{\beta'} \lim \frac{\beta'}{\alpha'} \lim \frac{\alpha'}{\alpha} = \lim \frac{\beta'}{\alpha'}$$

例如,
$$\lim_{x\to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x\to 0} \frac{2x}{5x} = \frac{2}{5}$$

例5. 求
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}.$$

解: 原式 =
$$\lim_{x \to 0} \frac{\tan x (1 - \cos x)}{x^3}$$

$$= \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^3} = \frac{1}{2}$$

原式
$$\lim_{x\to 0} \frac{x-x}{x^3}$$

例6. 求 $\lim_{x\to 0} \frac{(1+x^2)^{\frac{1}{3}}-1}{\cos x-1}$.

解:
$$\exists x \rightarrow 0$$
时,

$$(1+x^2)^{\frac{1}{3}} - 1 \sim \frac{1}{3}x^2$$
$$\cos x - 1 \sim -\frac{1}{2}x^2$$

$$\therefore \quad \text{原式} = \lim_{x \to 0} \frac{\frac{1}{3}x^2}{-\frac{1}{2}x^2} = -\frac{2}{3}$$

内容小结

1. 无穷小与无穷大的定义

2. 无穷小与函数极限的关系

3. 无穷小与无穷大的关系

4. 无穷小的比较

设 α , β 对同一自变量的变化过程为无穷小, 且 $\alpha \neq 0$

$$\lim \frac{\beta}{\alpha} = egin{cases} 0, & eta 是 lpha 的高阶无穷小 \ \infty, & eta 是 lpha 的低阶无穷小 \ C(\neq 0), & eta 是 lpha 的同阶无穷小 \ 1, & eta 是 lpha 的等价无穷小 \end{cases}$$

$$\lim \frac{\beta}{\alpha^k} = C \neq 0$$
, $\beta \in \alpha$ 的 k 阶无穷小

常用等价无穷小: $当 x \rightarrow 0$ 时,

$$\sin x \sim x$$
, $\tan x \sim x$, $\arcsin x \sim x$,

$$1 - \cos x \sim \frac{1}{2}x^2$$
, $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$

5. 等价无穷小替换定理

作业

P56 12 (1),(2); 13 16(1)(3)

