

Curso "Especialización en loT"

Módulo 6: Plataformas Clase 2

Docentes:
Sebastián Valerio Guerrero
Jonattan Silva Castillo

Bases de Datos

Qué es una Base de Datos?

Según Oracle:

"Una base de datos es una recopilación organizada de información o datos estructurados, que normalmente se almacena de forma electrónica en un sistema informático. Normalmente, una base de datos está controlada por un sistema de gestión de bases de datos (DBMS).

En conjunto, los datos y el DBMS, junto con las aplicaciones asociadas a ellos, reciben el nombre de sistema de bases de datos, abreviado normalmente a simplemente base de datos."

Modelo Relacional

- Almacenan y organizan puntos de datos con relaciones definidas para un acceso rápido.
- Usan tablas con datos organizados en filas (que contienen entidades) y columnas (que contienen atributos de entidad). Este proceso se conoce como normalización.
- Cada fila contiene un identificador único o una clave que une las tablas para establecer una relación.
- Altamente estructurado y representado mediante un esquema (lógico y físico).

Structured Query Language: SQL

Lenguaje de consulta estándar **SQL** es la interfaz estándar.

- Instrucciones SQL:
 - CREATE DATABASE se utiliza para crear una nueva base de datos vacía.
 - SELECT se utiliza cuando quieres leer (o seleccionar) tus datos.
 - INSERT se utiliza cuando quieres añadir (o insertar) nuevos datos.
 - UPDATE se utiliza cuando quieres cambiar (o actualizar) datos existentes.
 - DELETE se utiliza cuando quieres eliminar (o borrar) datos existentes.
 - TRUNCATE se utiliza cuando quieres vaciar (o borrar) todos los datos de la plantilla.

```
SQLQuery1.sql - (local).tempdb (1M\Pinal (52))* - Microsoft SQL Server Management Studio
File Edit View Query Project Debug Tools Window Help
🛅 🕶 🗃 🕳 🛃 🗿 🔔 New Query 🛅 📸 📸 🦝 🔏 👛 📇 🔊 🗸 🗎 🖼 🕒 🕨
                        🕶 🕴 Execute 🕨 Debug 💷 🥒 🔡 🗐 🔡 🥞 🥞
 # tempdb
SQLQuery1.sql - (lo...pdb (1M\Pinal (52))* X
  □ CREATE TABLE SampleTable (ID INT, Col1 VARCHAR(100));
  □INSERT INTO SampleTable (ID, Col1)
    VALUES (1, 'One'), (2, 'Two'), (3, 'Three');
   □SELECT *
    FROM SampleTable;
    DROP TABLE SampleTable;
100 % -
Results Messages
      ID Col1
         One
```


Bases de Datos SQL

NoSQL

No SQL, Not only SQL. Hace referencia a lo No relacional o No estructurado.

Según AWS:

"Las bases de datos NoSQL están diseñadas específicamente para modelos de datos específicos y tienen esquemas flexibles para crear aplicaciones modernas. Las bases de datos NoSQL son ampliamente reconocidas porque son fáciles de desarrollar, por su funcionalidad y el rendimiento a escala."

Ejemplo

Relacional

 Un registro de libros a menudo se normaliza y se almacena en tablas separadas, y las relaciones se definen mediante restricciones de claves primarias y externas. La tabla Libros tiene las columnas ISBN, Título del libro y Número de edición, la tabla Autores tiene las columnas IDAutor y Nombre de autor y, finalmente, la tabla Autor-ISBN tiene las columnas IDAutor e ISBN.

NoSQL

• El registro de un libro generalmente se almacena como un **documento JSON**. Para cada libro, el elemento, ISBN, Título del libro, Número de edición, Nombre autor y IDAutor se almacenan como atributos en un solo documento. En este modelo, los datos están optimizados para un desarrollo intuitivo y escalabilidad horizontal.

Tipos de NoSQL

- Clave-valor: altamente divisibles y permiten escalado horizontal a escalas que otros tipos de bases de datos no pueden alcanzar. Los casos de uso como juegos, tecnología publicitaria e loT se prestan particularmente bien con este modelo.
- **Documentos**: los datos se representan a menudo como un objeto o un documento de tipo JSON porque es un modelo de datos eficiente e intuitivo para los desarrolladores.
- Gráficos: facilitan la creación y la ejecución de aplicaciones que funcionan con conjuntos de datos altamente conectados. Los casos de uso típicos para una base de datos de gráficos incluyen redes sociales, motores de recomendaciones, detección de fraude y gráficos de
- Columnar: creadas para tareas de consultas complejas y altamente analíticas. A diferencia de las bases de datos relacionales, las bases de datos en columnas almacenan sus datos por columnas, en lugar de por filas. Estas columnas se agrupan para formar subgrupos.

Column-Family

conocimiento.

Graph

Document

Bases de Datos NoSQL

Document Database	Graph Databases	
Couchbase "MarkLogic" mongoDB	Neo4j InfiniteGraph The Distributed Graph Database	
Wide Column Stores	Key-Value Databases	
redis amazon DynamoDB **riak	HYPERTABLE Cassandra HIBASE Amazon SimpleDB	

@cloudtxt http://www.aryannava.com

MongoDB

- Es una base de datos **NoSQL** orientada a documentos que apareció a mediados de la década de 2000.
- Se utiliza para almacenar volúmenes masivos de datos.
- No se basa en tablas y columnas. Los datos se almacenan como colecciones y documentos.
- Los documentos no tienen un esquema predefinido y los campos pueden añadirse a voluntad, con esto se facilita la representación de relaciones jerárquicas u otras estructuras complejas.
- Una característica importante es la elasticidad de sus entornos.
 Muchas empresas tienen clusters de más de 100 nodos para bases de datos que contienen millones de documentos.

{ name: mongo, type: DB }

Conceptos de MongoDB

- Una base de datos es un contenedor de colecciones. Cada uno tiene su propio conjunto de archivos en el sistema de archivos. Un servidor MongoDB puede almacenar múltiples bases de datos.
- Una colección es un grupo de documentos de MongoDB. No tiene una estructura predefinida.
- Un documento es el equivalente a un registro en una base de datos tradicional. Se compone de campos de nombre y valor.
- «_id» es un campo obligatorio para cada documento.
 Representa un valor único y puede considerarse como la clave principal del documento para identificarlo dentro de la colección.

Conceptos de MongoDB

- **JSON** (JavaScript Object Notation) es un formato de texto plano para expresar datos estructurados.
- Está soportado por muchos lenguajes de programación.

```
"_id": "5cf0029caff5056591b0ce7d",
"firstname": "Jane",
"lastname": "Wu",
"address": {
 "street": "1 Circle Rd",
 "city": "Los Angeles",
 "state": "CA",
  "zip": "90404"
"hobbies": ["surfing", "coding"]
```


Ejemplo 1

Habilitar nuestro entorno de trabajo:

- Vamos a crear una cuenta MongoDB Cloud:
 - https://www.mongodb.com/cloud/atlas/register
- Vamos a crear un Cluster Gratis de prueba.
- Agregar el paquete pymongo en PyCharm.

Cluster Compartido => Gratis

CLUSTERS > CREATE A SHARED CLUSTER

Create a Shared Cluster

Autentificación: usuario y contraseña

Security Quickstart

To access data stored in Atlas, you'll need to create users and set up network security controls. Learn more about security setup

1 How would you like to authenticate your connection?

Your first user will have permission to read and write any data in your project.

Username and Password

Certificate

Acceso al cluster: Agregar mi IP actual

Where would you like to connect from?

Enable access for any network(s) that need to read and write data to your cluster.

Add entries to your IP Access List

Conexión a DB: MongoDB Drivers

Connect to ClusterTest

Python: copiar la URI(Uniform Resource Identifier)

Select your driver and version

- 2 Add your connection string into your application code
 - ☐ Include full driver code example

```
mongodb+srv://mongoUser:<password>@clustertest.xj97szq.mongodb.net/?
retryWrites=true&w=majority
```

Replace <password> with the password for the mongoUser user. Ensure any option params are URL encoded.

PyCharm: agregar pymongo

Ejemplo 1

Utilizando Python y la librería pymongo:

 Vamos a crear una aplicación que guarde documentos en una Mongo DB.

Series de tiempo

Los *datos de series de tiempo* son una colección de observaciones (comportamiento) para un solo sujeto (entidad) en *diferentes intervalos de* tiempo

Por ejemplo: temperatura máxima, humedad y viento (los tres comportamientos) en la ciudad de Nueva York (entidad única) recopilados el primer día de cada año (múltiples intervalos de tiempo) 23

Esto SI es una serie de Tiempo

Esto NO es una serie de Tiempo

Los datos de series de tiempo se pueden clasificar en dos tipos:

- Mediciones recopiladas a intervalos de tiempo regulares (métricas)
- Mediciones recopiladas en intervalos de tiempo irregulares (eventos)

Un punto de medida se denomina *Data Point* y está compuesto por:

- *Time*: almacena marcas de tiempo. Muestra la fecha y la hora, en formato RFC3339 UTC, asociada con datos particulares.
- Los Fields se componen de Field Key y Field Value.
 - Field Key: String que indica a que corresponde cada valor obtenido.
 - *Field Value*: son los datos; pueden ser string, float, enteros o booleanos. Un field value **siempre** está asociado con una marca de tiempo
- https://www.epochconverter.com/

Un punto de medida se denomina *Data Point* y está compuesto por:

- Los Tags se componen de Tag Key y Tag Value
 - Los *tags* son opcionales. No se necesita tener *tags* en la estructura de datos, pero generalmente es una buena idea usarlas porque, a diferencia de los *fields*, los *tags* están indexadas.

InfluixDB

InfluxDB Internals

InfluxDB

Measurement #1

cpu_metrics

Sensor	Temperature	time
Sensor 1	40	12/14 @ 15:16 pm
Sensor 1	38	13/14 @ 11:16 am
Sensor 1	41	12/11 @ 11:16 am
Sensor 1	38	11/11 @ 12:14 am

SELECT * FROM cpu_metrics WHERE temperature='40'

Tags vs Fields

Tags vs Fields

Measurement #1

Sensor	Temperature	time
Sensor 1	40	12/14 @ 15:16 pm
Sensor 1	38	13/14 @ 11:16 am
Sensor 1	41	12/11 @ 11:16 am
Sensor 1	38	11/11 @ 12:14 am

Location

USA

France

USA

Luxembourg

+

tag? field?

In a SQL world, would this column be indexed?

tag

no

yes

tag

res

tag

symmetric tag

symmetric tag

no

field

Ejemplo 2: Configuración InfluxDB

Para utilizar InfluxDB existen dos formas.

La primera es descargar la BBDD e instalarla en algún sistema operativo.

InfluxDB soporta los siguientes SO:

Platform

Ejemplo 2: Configuración InfluxDB

Para utilizar InfluxDB existen dos formas.

La segunda forma es utilizar InfluxDB Cloud. En esta actividad utilizaremos esta opción.

Para lo anterior, vaya a "https://www.influxdata.com/" y haga click en *Log In*. Escoga la opción *InfluxDB Cloud 2.0* y acceda con sus credenciales de Google.

Ejemplo 2

Utilizando Python y la librería influxdb-client:

 Vamos a crear una aplicación que guarde datos en una Influx DB.

Trabajo Grupal

Grupos de trabajo P3

Grupo	Nombre	Apellido Paterno	Apellido Materno	Sala
1	CHANTAL ALEJANDRA	SALCEDO	BURGOS	1
	SERGIO ISMAEL	MORAN	VALDES	
	BRIAN LANTANO	GARCIA	SIMONTTI	
	VALENTIN ANTONIO	SEPULVEDA	PIZARRO	2
1	MIGUEL ANTONIO	soто	VEGA	
_	GABRIEL ALEJANDRO BENITO	SAAVEDRA	RAMIREZ	
	ANDRES ESTEBAN	ORELLANA	RIQUELME	
	ARLETTE IVONNE	ARAYA	ARAYA	3
2	HECTOR EDUARDO	MEZA	SALGADO	
	ALVARO RODRIGO	HENRIQUEZ	PACHECO	
2	VICTOR	REYES	DURAN	4
	JULIO CESAR	ESPARZA	HENRIQUEZ	
	RENATO HUMBERTO	VARGAS	DIAZ	
	ALEX EDUARDO	VEGA	PROVOSTE	
3	GUSTAVO ADOLFO	CORDOVA	CATALAN	5
	CHRISTIAN DANIEL	SILVA	BARRERA	
	ITALO IVAN	IBACACHE	VARGAS	
3	ADRIAN MICHEL	TAPIA	COLL	6
	VICTOR ANDRES	ESPINOZA	MONARES	
	JOSE LUIS	MENDEZ	VASQUEZ	

Grupo	Nombre	Apellido Paterno	Apellido Materno	Sala
4	FELIPE EDUARDO ALEXIS	ARCOS	ZAMORA	
	DAVID ALEXANDRO	GIRALT	CHACANA	7
	RICARDO ANTONIO	PEZO	FRIAS	
	ROGELIO EDGARDO	MORENO	ARANEDA	
4	MARIO ERNESTO	VILLANUEVA	GUTIERREZ	8
	RUBEN ANTONIO	CONTRERAS	OTAIZA	
	JAVIER ANTONIO	SILVA	RUIZ	
5	CARLOS IGNACIO	VALDERRAMA	GUERRA	9
	CARLOS ALBERTO	ASTUDILLO	VASQUEZ	
	JOSUE ALEXANDER	ISTURIZ	PEREZ	
5	ADOLFO ALBERTO	BRAVO	SILVA	10
	KENY OSCAR	CORTES	GONZALEZ	
6	CLAUDIO ANDRES	JERALDO	PASTEN	
	JOSE DANIEL	CASTRO	CERDA	11
	HUMBERTO ALEJANDRO	CHAVEZ	PINO	
6	PATRICIO ERNESTO	MORENO	TORRES	
	ARIEL FRANCISCO	MARTINEZ	GAVILAN	12
	LUIS HUGO	BONILLA	YANEZ	

Ejercicio 1

En Salas de Grupo:

- En el dispositivo Wemos deben publicar en un mensaje MQTT la temperatura ambiente con el sensor DS18B20 cada 15 segundos.
- En **Python** deben crear una aplicación tipo "**microservicio ETL**" que **extraiga** los mensajes desde el servicio MQTT, **transforme** los mensajes recibidos y los **almacene** como datos en InfluxDB.
- Para MQTT, vamos a utilizar estos parámetros:
 - broker = "test.mosquitto.org"
 - port = 1883
 - topic = "pucv/iot/m6/pX/gY" #reemplazar X e Y por paralelo y sala correspondiente

Feedback

Cierre

En esta clase vimos:

- 1. Distintos servicios de bases de datos NoSQL.
- 2. Aprendimos, ejercitando en grupo, cómo inyectar datos usando librerías de Python.