Machine Learning Assignment 1 (Linear Regression + Logistic Regression) Chun Kit, Tsoi 140300468

Part 1

Task 1: hypothesis = X(i,:)*theta';

Replace by hypothesis = calculate_hypothesis(X,theta,i);
Left is linear regression plot. Right is cost

When Alpha is 0.01, the linear regression line fit well, and the cost function converge to 0 after about cost=5.7. Meanwhile, When Alpha is large, the linear regression line does not fit the data, the cost function will converge to infinity, after a long time zero-cost iteration.


```
Alpha=0.01 t=1.0e+05* 2.1581 0.6138 0.2027

Alpha=0.1 t=1.0e+05* 3.4040 1.0991 -0.0593

Alpha=1 t=1.0e+05* 3.4041 1.1063 -0.0665

Alpha=10 t=1.0e+120* -0.0000 -1.4175 -1.4175

Alpha=100 t=1.0e+222* -0.0000 -6.4281 -6.4281
```

When Alpha=0.01, the cost tends to be zero. It seems to be the best learning rate.

Add result1 = t(1) + t(2)*1650 + t(3)*3 in mllab2 result1 = 1.0156e+08

Add result2 = t(1) + t(2)*3000 + t(3)*4 in mllab2 result2 = 1.8445e+08

```
function theta = gradient_descent(X, y, theta, l, alpha, iterations, do_plot)
   %GRADIENT DESCENT do Gradient Descent for a given X, y, theta, alpha
   %for a specified number of iterations
   %if less than 6 arguments was given, then set do plot to be false
   if nargin < 6</pre>
       do plot = false;
   end
   if (do plot)
       plot hypothesis(X, y, theta);
       drawnow; pause(0.1);
   end
   m = size(X, 1); %number of training examples
   num col theta = size(theta,2); %number of coefficients
   cost vector = []; %will store the results of our cost function
   for it = 1:iterations
       % gradient descent
       theta temp = theta;
       for t = 1:num col theta
       sigma = 0.0;
       for i = 1:m
           hypothesis = calculate hypothesis(X, theta, i);
           output = y(i);
           sigma = sigma + (hypothesis - output) * X(i, t);
       end
       %new cost function (regularized)
       if t == 1
           theta temp(t) = theta temp(t) - ((alpha * 1.0) / m) * sigma;
           theta temp(t) = theta temp(t) - ((alpha * 1.0) / m) * sigma -
theta temp(t) *((alpha * 1)/m);
       end
       end
       %update theta
       theta = theta temp;
       %update cost vector
       cost vector = [cost vector; compute cost regularised(X, y, theta,
1)];
       if do plot
```

```
plot_hypothesis(X, y, theta);
                drawnow; pause(0.1);
           end
     end
     disp 'Gradient descent is finished.'
     if do_plot
           disp 'Press enter!'
          pause;
     end
     plot_cost(cost_vector);
     disp 'Press enter!';
     pause;
end
Alpha=8
  0.28
  0.24
  0.22
 ts 0.2
  0.18
  0.16
  0.14
  0.12
                                         -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
              400 500 600
itarations
                100 200 300 400 500 600 700 800 900
Alpha=0.1
```

Alpha=0.6

Alpha=10

The learning rate is the best at 0.6, since cost lowest.

Lamda= 0.1, 1, 10, 15, 20, 100

We know that if Lambda gets higher, the shape of hypothesis becomes a straight-like-line, which also causing the case of under-fit.

Part B

Task 1function output=sigmoid(x)

end

Uncomment [X, mean, std] = normalise_features(X);
The scale is smaller than un-normalized.

Task3

The final error is 0.40545.

```
% modify this:
    y1 = -(theta(2)*min_x1-1)/theta(3);
    % modify this:
    y2 = -(theta(2)*max_x1-1)/theta(3);
Uncomment plot_data_function(X, y)
```


Training error: 0.033891 Test error: 0.76183

Training error: 0.20109 Test error: 0.49358

When the training data and testing data points get close the better line and lower cost we have. Training error and test error are close to each other. As a result, the bottom graphs and better than the top graphs.

Task7

end

The Final error is 0.38567 lower and close the previous one. This is because we have normalized the data. We are just scaling the parameters that we have.

Task8

Assignment1- Chun Kit, Tsoi - 140300468

```
cost array(it) = compute cost(X, y, theta);
           % add code here: to update cost array training and
cost array test
 cost array training(it) = compute cost(X, y, theta);
 cost array test(it) = compute cost(test X, test y, theta);
  0.55
                                        0.7
   0.5
                                        0.65
 cost
                                        0.6
  0.45
                                        0.55
                                        0.5
   0.4
                                        0.45
                                        0.4
  0.35
                              90
                   50
                         70
                           80
                 iterations
   2.5
                  0
   2
   1.5
   0.5
                                      0.65
                                      0.55
                                      ts 0.5
  -1.5
```

Training:0.32742

Test:0.4793

Task9

```
% Step 2. Hidden deltas (used to change weights from input --> output).
            hidden deltas = zeros(1,length(nn.hidden neurons));
            % hint... create a for loop here to iterate over the hidden
neurons and for each
            % hidden neuron create another for loop to iterate over the ouput
neurons
for j = 1:length(nn.hidden neurons)
                for i = 1:length(outputs)
sum over outputs(j,i)=nn.hidden weights(j,i)*output deltas(i);
                end
hidden deltas(j)=sigmoid derivative(nn.hidden neurons(j)*sum over outputs(j,i
));
end
   % Step 3. update weights output --> hidden
            for i=1:length(nn.hidden neurons)
                for j=1:length(output deltas)
                    nn.output weights(i,j) =nn.output weights(i,j) -
(output_deltas(j) * nn.hidden_neurons(i) * learning_rate);
                end
            end
                              0.12
                             15 O.1
```

When learning rate=1000, the actual output tend to be closer to each other, 0.13327, 0.65614, 0.65834, 0.65718 and the cost is converged faster than the others which is 0.088539.

Learning rate=1000, 100, 0.01

Using AND, the function is seemed to be converged faster than XOR, since we can use either conditions.

For logistic regression, we will identify 3 species of Iris by their mean, std, min, %, 50%,75% and max of sepal length, sepal width, petal length, and petal width. Then we will group their group to make a pivot table of their mean. We limit the distance between the mean and different points. Finally we draw a decision boundary of each kind. Meanwhile, Neural network runs a kind 4 times each to group them up, either yes or no happens on each node. Neural network can also solve XOR too.

Task12

iris.m not-found!!!!

There is no way I am able to do it.

Do not deduce my marks please.