答题纸上写清楚学号、班级、姓名、题号

注意: 所有题目都必须写出解题过程,只写答案,即使正确未必得高分。

1、下图是从线路上接收到的一串传输码,分别计算将其看作曼彻斯特编码和差分曼彻斯特编码所对应的 12 位二进制数字序列。

【答案要点】

- (1)根据曼彻斯特编码规则: 0—位中间上跳,1—位中间下跳,由图可得 12 位二进制序列为 011011100011。
- (2)根据差分曼彻斯特编码规则: 0—位起始跳变,1—位起始不跳变,由图可得 12 位二进制序列为 010110010010。
- 2、某 CRC 的生成多项式 $G(x)=x^3+x+1$,待发送信息为 101010101,求实际发送的信息是什么? 要求写出详细计算过程。

【答案要点】

被除数: C(x)* 2³ =101010101000

除数 G(x)=1011

1010101010000 模 2 除 1011 = 100111101 余 111

实际发送的信息为 101010101111

3、现在 B 收到其相邻路由器 C 发来的路由信息,请画出 B 更新后的路由表。

要求: (1) 写出 C 路由表修改情况; (2) 写出 B 路由表更新结果,给出更新后 B 路由表中每个条目的存在原因。

C 的路由信息			
目的网络	距离		
N ₂	1		
N ₃	3		
N ₆	5		
N ₉	2		

B的路由表			
目的网络	距离	下一跳	
N_1	1	-	
N ₂	3	E	
N_3	3	G	
N_6	4	С	

【答案要点】

C 的路由信息修改		
目的网络	距离	下一跳
N_2	1+1=2	С
N ₃	3+1=4	С
N_6	5+1=6	С
N ₉	2+1=3	С

B 的路由表更新			
目的网络	距离	下一跳	
N_1	1	-	保持不变
N_2	2	С	被跳数更少的条目替代
N_3	3	G	没有找到更好的,保持不变
N ₆	6	C	新的替代旧的
N ₉	3	C	新增条目

4、某学校申请了一个 CIDR 地址块: 200.165.68.0/22。请按照表中学校内部各院系对 IP 地址的需求,设计一个**地址利用效率最高**的地址块分配方案。要求写出设计过程。

单位	子单位	主机数	分配的地址块
	计一系	230	
计算机学院	计二系	240	
	理一系	126	
理学院	理二系	100	
文学院	-	80	

【答案要点】

学校拥有的 CIDR 地址块中的地址数为 232-22=210=1024

计算机学院的主机数为 230 + 240 = 470

 $2^8 = 256 < 470 + 2 + 1 < 2^9 = 512$

计一系

 $2^7 = 128 < 230 + 2 + 1 < 2^8 = 256$

计二系

 $2^7 = 128 < 240 + 2 + 1 < 2^8 = 256$

理学院的主机数为 理一系

 $2^8 = 256 < 326 + 2 + 1 < 2^9 = 512$ 126 + 100 = 326

 $2^7 = 128 < 126 + 2 + 1 < 2^8 = 256$

理二系

 $2^6 = 64 < 100 + 2 + 1 < 2^7 = 128$

文学院的主机数为

80

 $2^6 = 64 < 80 + 2 + 1 < 2^7 = 128$

CIDR 地址块 200.165.68.0/22 将第三字节 68 展开,即为

200.165.01000100.0,

其地址范围为: 200.165.01000100.0~200.165.01000111.255

第一次划分将整个 200.165.68.0/22 地址块一分为二得:

200.165.68.0/23 和 200.165.70.0/23。

即: 200.165.01000100.0~200.165.01000101.255

和 200.165.01000110.0~200.165.01000111.255

将 200.165.68.0/23 地址块分给计算机学院,

200.165.70.0/23 地址块分给理学院和文学院。

第二次划分将计算机学院 200.165.68.0/23 地址块再一分为二得:

200.165.68.0/24

和

200.165.69.0/24

即: 200.165.0100010<mark>0.0~200.165.01000100.255</mark>

和 200.165.01000101.0~200.165.01000101.255 各有 256 个地址。

将 200.165.68.0/24 地址块分给计一系, 200.165.69.0/24 地址块分给计二系

第三次划分将理学院和文学院地址块200.165.70.0/23 再一分为二得:

200.165.70.0/24

200.165.71.0/24

即: 200.165.0100011<mark>0.0~200.165.01000110.255</mark>

和 200.165.01000111.0~200.165.01000111.255 各有 256 个地址。

将 200.165.70.0/24 地址块分给理一系

第四次划分将分给理二系和文学院的地址块200.165.71.0/24 再一分为二得

200.165.71.0/25

和 200.165.71.128/25

即: 200.165.01000111.00000000~200.165.01000111.127

各有 128 个地址

和 200.165.01000111.10000000~200.165.01000111.255 将 200.165.71.0/25 地址块分给理二系, 200.165.71.128/25 地址块分给文学院

单位	子单位	主机数	地址块
计算机学院	一系	230	200.165.68.0/24
1 异似子院	二系	240	200.165.69.0/24
理学院	一系	126	200.165.70.0/24

	二系	100	200.165.71.0/25
文学院	-	80	200.165.71.128/25

5、某网络拓扑如下图所示,路由器 RI 通过接口 E1、E2 分别连接局域网 1、局域网 2,通过接口 LO 连接路由器 R2,并通过路由器 R2 连接域名服务器与互联网。R1 的 LO 接口的 IP 地址是 202.118.2.1; R2 的 LO 接口的 IP 地址是 202.118.2.2, L1 接口的 IP 地址是 130.11.120.1, EO 接口的 IP 地址是 202.118.3.1;域名服务器的 IP 地址是 202.118.3.2。

R1、R2 路由表的结构为:

目的网络 IP 地址	子网掩码	下一跳IP地址	接口

- 1)将 IP 地址空间 202.118.1.0/24 划分为两个子网,分别分配给局域网 1、局域网 2,每个局域网需分配的 IP 地址数不少于 120 个,请给出子网划分结果,说明理由或给出必要的计算过程。(提示: CIDR 中的子网号可以全 0 或全 1,但主机号不能全 0 或全 1。)
- 2)按照 1)问中子网的划分方法,请给出 R1 的路由表,使其明确包括到局域网 1 的路由、局域网 2 的路由、域名服务器的主机路由和互联网的路由。(提示:图中 R1 为域名服务器设定了一个特定路由)
 - 3)请采用路由聚合技术,给出R2到局域网1和局域网2的路由。

【答案要点】

1) CIDR 中的子网号可以全 0 或全 1, 但主机号不能全 0 或全 1。

因此若将 IP 地址空间 202.118.1.0/24 划分为 2 个子网,且每个局域网需分配的 IP 地址个数不少于 120 个,子网号至少要占用一位。

由 $2^6-2<120<2^7-2$ 可知, 主机号至少要占用 7 位。

由于原 IP 地址空间的网络前缀为 24 位,因此主机号位数+子网号位数=8。综上可得主机号位数为 7,子网号位数为 1。

因此子网的划分结果为子网 1: 202.118.1.0/25, 子网 2: 202.118.1.128/25。

地址分配方案:

子网 1 分配给局域网 1, 子网 2 分配给局域网 2;

或子网 1 分配给局域网 2, 子网 2 分配给局域网 1。

2)由于局域网 1 和局域网 2 分别与路由器 R1 的 E1、E2 接口直接相连,因此在 R1 的路由表中,目的网络为局域网 1 的转发路径是直接通过接口 El 转发的,目的网络为局域网 2 的转发路径是直接通过接口 El 转发的。由于局域网 1、2 的网络前缀均为 25 位,因此它们的子网掩码均为 255.255.255.128。

R1 专门为域名服务器设定了一个特定的路由表项,因此该路由表项中的子网掩码应为255.255.255.255(只有和全1的子网掩码相与才能完全保证和目的IP地址一样,从而选择该特定路由)。对应的下一跳转发地址是202.118.2.2,转发接口是LO。

R1 到互联网的路由实质上相当于一个默认路由(即当某一目的网络 IP 地址与路由表中其他任何一项都不匹配时,则匹配该默认路表项),默认路由一般写作 0/O,即目的地址为 0.0.0.0,子网掩码为 0.0.0.0。对应的下一跳转发地址是 202.118.2.2,转发接口是 LO。

综上可得到, 若子网 1 分配给局域网 1, 子网 2 分配给局域网 2, 则路由器 R1 的路由表为:

目的网络地址	子网掩码	下一跳地址	接口
202.118.1.0	255.255.255.128		E1
202.118.1.128	255.255.255.128		E2
202.118.3.2	255.255.255.255	202.118.2.2	LO
0.0.0.0	0.0.0.0	202.118.2.2	LO

若子网 1 分配给局域网 2, 子网 2 分配给局域网 1, 则路由器 R1 的路由表为:

目的网络地址	子网掩码	下一跳地址	接口
202.118.1.128	255.255.255.128		E1
202.118.1.0	255.255.255.128	♦	E2
202.118.3.2	255.255.255.255	202.118.2.2	L0
0.0.0.0	0.0.0.0	202.118.2.2	L0

3)由于局域网1和局域网2的地址可以聚合为202.118.1.0/24,而对于路由器R2来说,通往局域网1和局域网2的转发路径都是从L0转发,因此利用路由聚合技术后,路由器R2到局域网1和局域网2的路由为:因此它们的子网掩码均为255.255.255.128。

目的网络地址	子网掩码	下一跳地址	接口
202.118.1.0	255.255.255.0	202.118.2.1	L0