Healthcare

Week 1

Data Exploration:

```
In [264]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
%matplotlib inline
In [265]: df=pd.read_csv('health care diabetes.csv')
df.head()
```

Out[265]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

1. Perform descriptive analysis.

In [266]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

In [267]: df.describe()

Out[267]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	7
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	

2. Visually explore these variables using histograms. Treat the missing values accordingly.

```
In [268]: plt.figure(figsize=(8,6))
    plt.xlabel('Glucose Class')
    df['Glucose'].plot.hist()
    print("Mean of Glucose level is :-", df['Glucose'].mean())
```

Mean of Glucose level is :- 120.89453125


```
In [269]: df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
In [270]: plt.figure(figsize=(6,4),dpi=100)
    plt.xlabel('BloodPressure Class')
    df['BloodPressure'].plot.hist()
    print("Mean of BloodPressure level is :-", df['BloodPressure'].mean())
```

Mean of BloodPressure level is :- 69.10546875


```
In [271]: df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
In [272]: plt.figure(figsize=(6,4),dpi=100)
    plt.xlabel('SkinThickness Class')
    df['SkinThickness'].plot.hist()
    print("Mean of SkinThickness is :-", df['SkinThickness'].mean())
```

Mean of SkinThickness is :- 20.536458333333332

In [273]: df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())

```
In [274]: plt.figure(figsize=(6,4),dpi=100)
    plt.xlabel('Insulin Class')
    df['Insulin'].plot.hist()
    print("Mean of Insulin is :-", df['Insulin'].mean())
```

Mean of Insulin is :- 79.79947916666667


```
In [275]: df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())
```

```
In [276]: plt.figure(figsize=(6,4),dpi=100)
    plt.xlabel('BMI Class')
    df['BMI'].plot.hist()
    print("Mean of BMI is :-", df['BMI'].mean())
```

Mean of BMI is :- 31.992578124999977


```
In [277]: df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
```

3. There are integer and float data type variables in this dataset. Create a

count (frequency) plot describing the data types and the count of variables.

```
In [278]: df1=pd.DataFrame(df.dtypes.value_counts(),columns = ['Count'])
          df1.reset_index(level=0, inplace=True)
          l=(str(df1['index'][0]),str(df1['index'][1]))
          yy=df1['Count']
          plt.barh(1,yy)
          plt.xlabel('Count')
          plt.ylabel('dtype')
```

Out[278]: Text(0, 0.5, 'dtype')

In [279]: df.head()

Out[279]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.000000	79.799479	33.6	0.627	50	1
1	1	85.0	66.0	29.000000	79.799479	26.6	0.351	31	0
2	8	183.0	64.0	20.536458	79.799479	23.3	0.672	32	1
3	1	89.0	66.0	23.000000	94.000000	28.1	0.167	21	0
4	0	137.0	40.0	35.000000	168.000000	43.1	2.288	33	1

In [280]: df.tail()

Out[280]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
763	10	101.0	76.0	48.000000	180.000000	32.9	0.171	63	0
764	2	122.0	70.0	27.000000	79.799479	36.8	0.340	27	0
765	5	121.0	72.0	23.000000	112.000000	26.2	0.245	30	0
766	1	126.0	60.0	20.536458	79.799479	30.1	0.349	47	1
767	1	93.0	70.0	31.000000	79.799479	30.4	0.315	23	0

In [281]: df.to_csv('week1_treated.csv',index=False)

Week 2

Data Exploration:

```
In [282]: import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
In [283]: | df=pd.read_csv('week1_treated.csv')
          df.head()
```

Out[283]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.000000	79.799479	33.6	0.627	50	1
1	1	85.0	66.0	29.000000	79.799479	26.6	0.351	31	0
2	8	183.0	64.0	20.536458	79.799479	23.3	0.672	32	1
3	1	89.0	66.0	23.000000	94.000000	28.1	0.167	21	0
4	0	137.0	40.0	35.000000	168.000000	43.1	2.288	33	1

1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.

```
In [284]: sns.countplot(df['Outcome'])
    plt.title("Count of Outcomes")
    plt.xlabel('Outcome')
    plt.ylabel("Count")
    df['Outcome'].value_counts()
```

Out[284]: 0 500 1 268

Name: Outcome, dtype: int64

2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.

```
In [285]:
         BloodPressure = df['BloodPressure']
          Glucose = df['Glucose']
          SkinThickness = df['SkinThickness']
          Insulin = df['Insulin']
          BMI = df['BMI']
          Pregnancies=df['Pregnancies']
```

In [286]: sns.scatterplot(x= "Glucose" ,y= "BloodPressure",hue="Outcome",data=df);


```
In [287]: sns.scatterplot(x= "BMI" ,y= "SkinThickness",hue="Outcome",data=df);
```



```
In [288]: sns.scatterplot(x= "SkinThickness" ,y= "Insulin",hue="Outcome",data=df);
```


In [289]: sns.pairplot(df)

Out[289]: <seaborn.axisgrid.PairGrid at 0xa46a42f1c8>

3. Perform correlation analysis. Visually explore it using a heat map.

In [290]: df.corr()

Out[290]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
Pregnancies	1.000000	0.127964	0.208984	0.013376	-0.018082	0.021546	-0.033523
Glucose	0.127964	1.000000	0.219666	0.160766	0.396597	0.231478	0.137106
BloodPressure	0.208984	0.219666	1.000000	0.134155	0.010926	0.281231	0.000371
SkinThickness	0.013376	0.160766	0.134155	1.000000	0.240361	0.535703	0.154961
Insulin	-0.018082	0.396597	0.010926	0.240361	1.000000	0.189856	0.157806
ВМІ	0.021546	0.231478	0.281231	0.535703	0.189856	1.000000	0.153508
DiabetesPedigreeFunction	-0.033523	0.137106	0.000371	0.154961	0.157806	0.153508	1.000000
Age	0.544341	0.266600	0.326740	0.026423	0.038652	0.025748	0.033561
Outcome	0.221898	0.492908	0.162986	0.175026	0.179185	0.312254	0.173844

In [292]: plt.subplots(figsize=(7,7))
sns.heatmap(df.corr(),annot=True)

Out[292]: <matplotlib.axes._subplots.AxesSubplot at 0xa46da4d788>

Week 3

Data Modeling:

```
In [293]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
from sklearn import metrics
```

1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

2. Apply an appropriate classification algorithm to build a model. Compare various models with the results from KNN algorithm.

```
df=pd.read_csv('week1 treated.csv')
In [294]:
           df.head()
Out[294]:
               Pregnancies Glucose BloodPressure SkinThickness
                                                                  Insulin
                                                                          BMI DiabetesPedigreeFunction Age Outcome
                             148.0
                                            72.0
                                                               79.799479 33.6
                                                                                                0.627
                                                                                                       50
            0
                        6
                                                                                                                 1
                                                     35.000000
                                                               79.799479
                        1
                              85.0
                                            66.0
                                                     29.000000
                                                                         26.6
                                                                                                0.351
                                                                                                       31
                                                                                                                 0
                                            64.0
                                                                                                       32
            2
                             183.0
                                                     20.536458 79.799479 23.3
                                                                                                0.672
                                                               94.000000 28.1
            3
                              89.0
                                            66.0
                                                     23.000000
                                                                                                       21
                                                                                                                 0
                        1
                                                                                                0.167
                        0
                             137.0
                                            40.0
                                                     35.000000 168.000000 43.1
                                                                                                2.288
                                                                                                       33
                                                                                                                 1
In [295]: x=df.iloc[:,:-1].values
           y=df.iloc[:,-1].values
In [296]:
           from sklearn.model selection import train test split
           x train,x test,y train,y test=train test split(x,y,test size=0.20,random state=0)
In [297]:
           print(x train.shape)
           print(x test.shape)
           print(y_train.shape)
           print(y test.shape)
           (614, 8)
           (154, 8)
           (614,)
           (154,)
```

```
In [298]: from sklearn.preprocessing import StandardScaler
In [299]: Scale=StandardScaler()
    x_train_std=Scale.fit_transform(x_train)
    x_test_std=Scale.transform(x_test)
```

Project Task: Week 4

Data Modeling:

1. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc. Please be descriptive to explain what values of these parameter you have used.

KNN

```
In [305]: from sklearn.neighbors import KNeighborsClassifier
knn_model = KNeighborsClassifier(n_neighbors=25)
knn_model.fit(x_train_std,y_train)
knn_pred=knn_model.predict(x_test_std)
```

```
In [306]: print("Model Validation ==>\n")
          print("Accuracy Score of KNN Model::")
          print(metrics.accuracy score(y test,knn pred))
          print("\n","Classification Report::")
          print(metrics.classification report(y test,knn pred),'\n')
          print("\n","ROC Curve")
          knn_prob=knn_model.predict_proba(x_test_std)
          knn prob1=knn prob[:,1]
          fpr,tpr,thresh=metrics.roc curve(y test,knn prob1)
          roc auc knn=metrics.auc(fpr,tpr)
          plt.figure(dpi=80)
          plt.title("ROC Curve")
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc auc knn)
          plt.plot(fpr,fpr,'r--',color='red')
          plt.legend()
          Model Validation ==>
          Accuracy Score of KNN Model::
          0.8181818181818182
```

Classification Report::

	precision	recall	f1-score	support
0	0.85	0.90	0.87	107
1	0.73	0.64	0.68	47
accuracy			0.82	154
macro avg	0.79	0.77	0.78	154
weighted avg	0.81	0.82	0.81	154

Logistic Regression

```
In [308]: print("Model Validation ==>\n")
          print("Accuracy Score of Logistic Regression Model::")
          print(metrics.accuracy score(y test,lr pred))
          print("\n","Classification Report::")
          print(metrics.classification report(y test,lr pred),'\n')
          print("\n","ROC Curve")
          lr_prob=lr_model.predict_proba(x_test_std)
          lr prob1=lr prob[:,1]
          fpr,tpr,thresh=metrics.roc_curve(y_test,lr_prob1)
          roc auc lr=metrics.auc(fpr,tpr)
          plt.figure(dpi=80)
          plt.title("ROC Curve")
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc auc lr)
          plt.plot(fpr,fpr,'r--',color='red')
          plt.legend()
          Model Validation ==>
          Accuracy Score of Logistic Regression Model::
          0.8116883116883117
```

Classification Report::

	precision	recall	f1-score	support
0	0.82	0.93	0.87	107
1	0.78	0.53	0.63	47
accuracy			0.81	154
macro avg	0.80	0.73	0.75	154
weighted avg	0.81	0.81	0.80	154

Out[308]: <matplotlib.legend.Legend at 0xa46fe01688>

RandomForest

```
In [309]: from sklearn.ensemble import RandomForestClassifier
    rf_model = RandomForestClassifier(n_estimators=1000,random_state=0)
    rf_model.fit(x_train_std,y_train)
    rf_pred=rf_model.predict(x_test_std)
```

```
In [310]: print("Model Validation ==>\n")
          print("Accuracy Score of Logistic Regression Model::")
          print(metrics.accuracy score(y test,rf pred))
          print("\n","Classification Report::")
          print(metrics.classification report(y test,rf pred),'\n')
          print("\n","ROC Curve")
          rf_prob=rf_model.predict_proba(x_test_std)
          rf prob1=rf prob[:,1]
          fpr,tpr,thresh=metrics.roc_curve(y_test,rf_prob1)
          roc auc rf=metrics.auc(fpr,tpr)
          plt.figure(dpi=80)
          plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_rf)
          plt.title("ROC Curve")
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.plot(fpr,fpr,'r--',color='red')
          plt.legend()
          Model Validation ==>
          Accuracy Score of Logistic Regression Model::
          0.8246753246753247
           Classification Report::
```

	precision	recall	†1-score	support
0	0.88	0.87	0.87	107
1	0.71	0.72	0.72	47
accuracy			0.82	154
macro avg	0.79	0.80	0.79	154
weighted avg	0.83	0.82	0.83	154

Out[310]: <matplotlib.legend.Legend at 0xa471009508>

https://public.tableau.com/profile/jois.vishwesh#!/vizhome/HealthcareCapstoneVishwesh/Dashboard?publish=yes (https://public.tableau.com/profile/jois.vishwesh#!/vizhome/HealthcareCapstoneVishwesh/Dashboard?publish=yes)