CHƯƠNG VI VẬT LIỆU TỪ

- §1. Sự từ hóa và phân loại vật liệu từ
- §2. Tính chất từ nguyên tử
- §3. Nghịch từ và thuận từ
- **§4.** <u>Sắt từ</u>

1. Sự từ hóa

- Thanh sắt non bị hút bởi nam châm, sau đó trở thành một thanh nam châm \Rightarrow bị từ hóa!
- Mọi chất trong tự nhiên cũng đều chịu tác động của từ trường ⇔ bị từ hóa, nhưng với mức độ khác nhau.

- ightharpoonup Vật bị từ hóa trong từ trường ngoài \vec{B}_0
 - \Rightarrow có từ trường riêng \vec{B} '
 - \red Từ trường tổng hợp: $\vec{B} = \vec{B}_0 + \vec{B}'$

2. Vector độ từ hóa (từ độ)

Đại lượng vật lý đặc trưng cho mức độ từ hóa của vật liệu, được xác định bằng số các moment từ trong 1 đơn vị thể tích của khối vật liệu:

$$\vec{M} = rac{\sum_{\Delta V} \vec{p}_m}{\Delta V}$$

♦ Đơn vị của từ độ: A/m

 $\mathcal{P} M = \chi_m H$ (với vật liệu nghịch từ và thuận từ)

 \searrow χ : độ cảm từ (magnetic susceptibility)

 \searrow và M thể hiện bản chất bên trong của vật liệu

3. Phân loại vật liệu từ

Nghịch từ

- Vật liệu bị đẩy bởi trường ngoài
- Ví dụ: Bismut, đồng (copper Cu), bạc (silver Ag), vàng (gold Au)....

Thuận từ

- Ví dụ: Ma-nhê (magnesium Mg), Mô-líp (molibdenum - Mo), li-ti (lithium - Li)

3. Phân loại vật liệu từ

Sắt từ

▼ Ví dụ: Sắt (Iron - Fe), ni-ken (nickel - Ni), cô-ban (cobalt – Co), măng-gan (manganese – Mn), các hợp kim của sắt, fer-rít....

- Từ trường do dòng điện sinh ra,
- Dòng điện là dòng chuyển dời có hướng của electron (e⁻).
- [☞] e⁻ là thành phần cấu tạo của nguyên tử, CĐ quanh hạt nhân.

Tính chất từ của vật chất là do sự tồn tại của các moment từ (dipole) hình thành bởi các moment từ spin và moment từ quỹ đạo của các electron bên trong các nguyên tử.

Moment từ quĩ đạo của electron

Tét nguyên tử cô lập ($B_{ngoài}$ = 0) có e CĐ trên quĩ đạo tròn quanh hạt nhân với vận tốc \vec{v}

 $^{\t}$ Chu kỳ quay của e trên quĩ đạo: $\tau = \frac{2\pi r}{v}$

$$Arr$$
Dòng điện do CĐ của e: $i = \frac{e}{\tau} = \frac{v.e}{2.\pi.r}$

Từ định nghĩa moment từ ⇒ moment từ quĩ đạo của e⁻:

$$p_{mqd} = i.S = \frac{ve}{2\pi r} \pi r^2 = \frac{ev.r}{2}$$

Moment (lưỡng cực) từ – Magnetic (dipole) moment

Moment động lượng của electron

Moment động lượng \vec{l} đối với gốc O của e^- khi CĐ trên quĩ đạo với vector vận tốc \vec{v} có chiều ngược với vector moment từ quĩ đạo, có giá trị:

$$l = mv.r = m\omega.r^2$$

Tỉ số giữa moment từ và moment động lượng của e⁻gọi là tỉ số từ-cơ quĩ đạo:

$$.\frac{\vec{p}_{mq\vec{d}}}{\vec{l}} = \frac{-p_{mq\vec{d}}}{l} = -\frac{e}{2m}$$

Moment spin electron

 e^- vừa CĐ trên quĩ đạo quanh hạt nhân vừa tự xoay quanh chính mình \Rightarrow moment động lượng riêng - moment spin (\vec{s}) \Rightarrow moment từ spin riêng (\vec{p}_{ms})

Tỉ số giữa moment từ spin và moment spin - tỉ số từ-cơ spin của e⁻:

$$\frac{\vec{p}_{ms}}{\vec{s}} = \frac{-p_{ms}}{s} = -\frac{e}{m}$$

Moment từ và moment động lượng nguyên tử

Moment từ nguyên tử:

$$\vec{p}_{m} = \sum_{T\hat{o}ng\ s\hat{o}\ electron} (\vec{p}_{mqd} + \vec{p}_{ms})$$

Moment động lượng nguyên tử:

$$\vec{L} = \sum_{T \hat{o}ng \ s\hat{o} \ electron} (\vec{l} + \vec{s})$$

Tỉ số giữa moment từ và moment động lượng nguyên tử:

$$.\frac{\vec{p}_m}{\vec{L}} \sim -\frac{e}{2m} = -g = const$$

Úng dụng trong kỹ thuật chụp ảnh cộng hưởng từ (MR)

Sử dụng từ trường mạnh để sắp xếp các moment từ của các nguyên tử H₂ trong cơ thế, sau đó, sóng tần số vô tuyến biến đổi sự sắp xếp này \Rightarrow tạo ra tín hiệu điện được nhận biết bởi bộ xử lý thông tin (computer) dưới dạng hình ảnh của vùng được quét trên cơ thể.

Úng dụng chụp ảnh các mô mềm:

Đầu gối

Thận

1. Hiệu ứng nghịch từ

- Xét:
- Nguyên tử có 1 e⁻, CĐ trên quĩ đạo quanh hạt nhân ⇒ có moment từ \vec{P}_m
- Nguyên tử đặt trong từ trường ngoài \vec{B}_0 , tạo với \vec{P}_m góc α

$$\vec{M} = \vec{p}_m \wedge \vec{B}_0$$
 hay: $M = p_m \cdot B_0 \cdot \sin \alpha$

[☞] CĐ của e⁻ trên quĩ đạo quanh hạt nhân giống CĐ của con quay có trục đối xứng

1. Hiệu ứng nghịch từ

Áp dụng đ/l moment động lượng:

$$d\vec{l} = \vec{M}dt$$

Có
$$d\theta = \frac{\left| d\vec{l} \right|}{l \cdot \sin \alpha} = \frac{p_m B_0 \cdot \sin \alpha \cdot dt}{l \cdot \sin \alpha} = \frac{p_m B_0 dt}{l}$$

Vận tốc góc của e⁻ trên quĩ đạo:

$$\omega_L = \frac{d\theta}{dt} = \frac{p_m}{l} B_0 = \frac{e}{2m} B_0$$

$$^{\circ}$$
 CĐ phụ tạo ra dòng điện tròn phụ: $\Delta i = e.v_L = e \frac{\omega_L}{2\pi} = \frac{e^2.B_0}{4\pi m}$

$$4p_m = \Delta i.S' = \frac{e^2 B_0.\pi.r'^2}{4\pi m} = \frac{e^2 r'^2.B_0}{4m}$$

1. Hiệu ứng nghịch từ

 \Rightarrow Do $r' \neq$ const, nên: $\Delta p_m = \frac{e^2 r'^2 B_0}{4m}$.

∜ Nguyên tử có Z e⁻ với các quĩ đạo bán kính r_i :

$$\Delta p_m = \frac{e^2 B_0}{4m} \sum_{i=1}^z \overline{r'_i^2}$$

Trường hợp nguyên tử có đối xứng cầu:

$$\Delta p_m = \frac{e^2 Z \overline{r^2} B_0}{6m}$$
Hay:
$$\Delta \vec{p}_m = -\frac{e^2 Z \overline{r^2}}{6m} \vec{B}_0$$

2. Vật liệu nghịch từ trong từ trường ngoài

Tét khối vật liệu nghịch từ có mật độ nguyên tử n_0 :

Từ độ:
$$\vec{M} = n_0 . \Delta \vec{p}_m = -\frac{n_0 e^2 Z r^2}{6m} \vec{B}_0$$

Mặt khác: $\vec{M} = \chi_m H = \frac{\chi_m}{\mu_0} \vec{B}$

$$\Rightarrow \chi = -\frac{n_0 \mu_0 e^2 Z r^2}{6m}$$

Vector từ độ luôn ngược có

Vector từ độ luôn ngược chiều vector cảm ứng từ và luôn có độ cảm từ χ <0 \Rightarrow quá trình từ hóa với vật liệu nghịch từ rất yếu.

Ŋguyên nhân: Không tồn tại moment từ nguyên tử do đặc điểm kết cặp của các điện tử.

3. Vật liệu thuận từ trong từ trường ngoài

- Trong khối vật liệu thuận từ có tồn tại moment từ nguyên tử (hoặc phân tử) nhưng xắp xếp hỗn loạn do chuyển động nhiệt \Rightarrow moment từ tổng cộng bị triệt tiêu khi từ trường ngoài $B_0 = 0$
 - $\vec{B}_0 \neq 0$: moment từ sẽ sắp xếp theo phương của trường ngoài \Rightarrow khối vật liệu bị từ hóa nhưng sẽ trở lại trạng thái cũ khi $\vec{B}_0 = 0$

$$\overline{p}_{mB_0} = p_m \cos \alpha = \frac{p_m^2}{3kT} B_0$$

$$\overline{p}_{mB_0} = p_m \cos \alpha = \frac{p_m^2}{3kT} B_0$$

$$\vec{M} = n_0 \cdot \overline{p}_{mB_0} = \frac{n_0 p_m^2}{3kT} \vec{B}_0 \implies \text{Độ cảm từ: } \chi = \frac{n_0 p_m^2 \mu_0}{3kT}$$

→ Kết luận:
 + Độ cảm từ > 0 và nhỏ
 + Quá trình từ hóa phụ thuộc nhiệt độ
 + Không có từ dư

4. Từ trường tổng hợp trong vật liệu nghịch từ và thuận từ

- Thi bị từ hóa, xuất hiện từ trường phụ $B' \Rightarrow \vec{B}'$ có mối liên hệ với \vec{M}
- $\ ^{\circ}$ Mỗi nguyên tử sinh ra một dòng điện $i\Rightarrow$ cảm ứng từ phụ B' do các dòng điện này sinh ra trong lòng khối vật liệu : $B'=\mu_0.n_0.i$
- Độ từ hóa của khối vật liệu = Moment từ của toàn bộ khối vật liệu Thể tích 1 đơn vị dài của khối vật liệu

Tức là:
$$M = \frac{n_0 i.S}{S.I} = n_0 i \implies B' = \mu_0 M$$
 hay: $\vec{B}' = \mu_0 \vec{M}$

Từ trường tổng hợp trong khối vật liệu: $\vec{B} = \vec{B}_0 + \vec{B}' = \vec{B}_0 + \mu_0 \vec{M}$

Với:
$$\overrightarrow{M} = \frac{\chi_m}{\mu_0} \overrightarrow{B}_0$$
 nên: $\overrightarrow{B} = \overrightarrow{B}_0 + \chi_m \overrightarrow{B}_0 = (1 + \chi_m) \overrightarrow{B}_0$

Đặt
$$1 + \chi_m = \mu$$
 \Rightarrow $\vec{B} = \mu \vec{B}_0 = \mu \mu_0 \vec{H}$

1. Đặc điểm của vật liệu sắt từ

Vật liệu thể hiện tính chất từ mạnh nhất (lực từ hay các đáp ứng với từ trường) \Rightarrow được sử dụng để tạo ra nam châm vĩnh cửu hoặc các cấu trúc mạch dẫn từ. M(A/m)

- Dộ từ hóa tỉ lệ phi tuyến với trường ngoài.
- Từ thẩm phụ thuộc phi tuyến vào trường ngoài.
- Cảm ứng từ phụ thuộc
 phức tạp vào trường ngoài
 ⇒ đường cong từ hóa.

12

2. Đường cong từ hóa của vật liệu sắt từ

- F H ngoài tăng từ H=0 cho đến khi B đạt giá trị bão hòa B_s tại H_a .
- Đổi chiều H ngoài và tiếp tục tăng từ H = 0 đến khi B = 0 ứng với giá trị $H = H_c \Rightarrow$ cường độ trường khử từ lực kháng từ.

2. Đường cong từ hóa của vật liệu sắt từ

Tiếp tục tăng H đến khi B lại đạt giá trị bão hào $-B_s$ và khi giảm $\rightarrow 0 \Rightarrow$ có giá trị $-B_r$ rồi lại tăng để có giá trị H_c và B_s ban đầu \Rightarrow khép kín một chu trình \Rightarrow đường cong từ trễ.

 \mathcal{P}_{max} , B_{s} và H_{c} là các đặc trưng cơ bản của sắt từ.

 \mathcal{P}_s và H_c quyết định dạng đường cong từ trễ.

2. Đường cong từ hóa của vật liệu sắt từ

[™] Căn cứ đặc điểm đường cong từ trễ ⇒ phân loại vật liệu sắt từ.

 $\begin{aligned} & \begin{aligned} & \begin{ali$

3. Thuyết miền từ hóa tự nhiên (thuyết domain)

PIERRE-ERNEST WEISS (1865 - 1940)

Trong cấu trúc vật liệu, các của moment từ spin của từng nguyên tử sắp xếp song song với nhau trong từng vùng nhỏ (domain), nhưng moment từ tổng cộng của từng vùng nhỏ này có chiều khác nhau trong toàn bộ khối thể tích \Rightarrow moment từ tổng cộng = 0.

 4 Kích thước 1 domain $\sim 10^{-3}$ - 10^{-5} mm, chứa $\sim 10^{6}$ - 10^{9} nguyên tử.

3. Thuyết miền từ hóa tự nhiên (thuyết domain)

Biên giới giữa các vùng – vách domain

2 cơ chế:

Dịch vách domain

Domain có moment từ

≡ phương trường ngoài
chiếm ưu thế

H

Domain

Vách

domain

Quay moment từ của domain theo phương trường ngoài

Định hướng

Bão hòa

3. Thuyết miền từ hóa tự nhiên (thuyết domain)

4. Tính chất từ phụ thuộc nhiệt độ của sắt từ

Tại nhiệt độ tới hạn $T_c \Rightarrow$ tính chất từ dư của sắt từ biến mất \Rightarrow nhiệt độ Curie. $\chi \sim \frac{1}{T-T_c}$

 $> T > T_c \implies$ sắt từ trở thành thuận từ khi đặt trong trường ngoài \implies mất các tính chất đặc trưng của sắt từ cũng như một số tính chất vật lý khác (nhiệt dung, độ dẫn điện...).

 $rightharpoonup T < T_c \Rightarrow$ các tính chất đặc trưng của sắt từ được khôi phục.

Vật liệu	Nhiệt độ Curie (⁰ C)
Sắt	770
Cô-ban	1127
Ni-ken	357
Gadolini	16

5. Ứng dụng quá trình từ hóa và vật liệu sắt từ trong kỹ thuật

Kỹ thuật ghi âm trên băng từ

5. Ứng dụng quá trình từ hóa và vật liệu sắt từ trong kỹ thuật

- Bếp từ:
- ♦ Cuộn dây tạo trường điện từ tần số cao;
- Từ trường xuyên qua đáy nổi làm bằng vật liệu từ (sắt từ) ⇒ đóng kín mạch từ ⇒ hình thành dòng điện xoáy, nguồn gốc tạo ra nhiệt;

- ♦ Nhiệt sinh ra từ đáy nồi được truyền cho thức ăn đựng trong nồi.
- Ngoài ra, nhiệt còn được sinh ra do các tổn hao từ trễ trong vật liệu có độ từ thẩm μ_r lớn dùng để chế tạo xoong, nồi, chảo...).

6. Hiệu ứng từ giảo (magnetostriction)

- Hiện tượng vật liệu sắt từ bị biến dạng (dãn ra, co lại) trong quá trình từ hóa (tương tự hiệu ứng áp điện của vật liệu điện môi).
- Đặc trưng bởi tỉ số thay đổi kích thước tương đối (biến dạng) theo phương của từ trường \Rightarrow tỉ lệ bình phương độ từ hóa:

$$\frac{\Delta l}{l} \sim M^2 \sim 10^{-5} \div 10^{-6}$$

- [™] Cũng có hiệu ứng nghịch: khi vật liệu bị biến dạng ⇒ trạng thái từ hóa của vật liệu bị thay đổi.
- " Úng dụng: làm máy phát siêu âm, tạo bộ rung, bộ lọc, thiết bị ổn định tần số,...