Probabilistic Functional Programming

Donnacha Oisín Kidney July 17, 2018 Modeling Probability

An Example

Unclear Semantics

Underpowered

Monadic Modeling

The Erwig And

Kollmansberger Approach

Other Interpreters

Theoretical Foundations

Stochastic Lambda Calculus

Giry Monad

Other Applications

Differential Privacy

Conclusion

Modeling Probability

How do we model stochastic and probabilistic processes in programming languages?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Is the answer to 2 $\frac{1}{3}$ or $\frac{1}{2}$?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Is the answer to $2\frac{1}{3}$ or $\frac{1}{2}$?

Part of the difficulty in the question is that it's ambiguous: can we use programming languages to lend some precision?

An Ad-Hoc Solution i

Using normal features built in to the language.

```
from random import randrange, choice

class Child:
    def __init__(self):
        self.gender = choice(['boy', 'girl'])
        self.age = randrange(18)
```

An Ad-Hoc Solution ii

```
from operator import attrgetter
def mr_jones():
    child_1 = Child()
    child_2 = Child()
    eldest = max(child_1, child_2,
                key=attrgetter('age'))
    assert eldest.gender == 'girl'
    return [child_1, child_2]
```

An Ad-Hoc Solution iii

Unclear semantics

What contracts are guaranteed by probabilistic functions? What does it mean *exactly* for a function to be probabilistic? Why isn't the following¹ "random"?

¹Randall Munroe. *Xkcd: Random Number*. en. Title text: RFC 1149.5 specifies 4 as the standard IEEE-vetted random number. Feb. 2007. URL: https://xkcd.com/221/ (visited on 07/06/2018).

What about this?

```
children_1 = [Child(), Child()]
children_2 = [Child()] * 2
```

How can we describe the difference between children_1 and children_2?

Underpowered

There are many more things we may want to do with probability distributions.

```
What about expectations?
def expect(predicate, process, iterations=100):
    success, tot = 0, 0
    for _ in range(iterations):
        try:
            success += predicate(process())
            t.ot. += 1
        except AssertionError:
            pass
    return success / tot
```

The Ad-Hoc Solution

```
p_1 = expect(
     lambda children: all(child.gender == 'girl'
                              for child in children),
     mr_jones)
p_2 = expect(
     lambda children: all(child.gender == 'boy'
                              for child in children),
     mr_smith)
                             p_{-}1 \approx \frac{1}{2}
p_{-}2 \approx \frac{1}{3}
```

Monadic Modeling

What we're approaching is a DSL, albeit an unspecified one.

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

• Why should we implement it? What is it useful for?

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

- Why should we implement it? What is it useful for?
- How should we implement it? How can it be made efficient?

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

- Why should we implement it? What is it useful for?
- How should we implement it? How can it be made efficient?
- Can we glean any insights on the nature of probabilistic computations from the language? Are there any interesting symmetries?

The Erwig And Kollmansberger Approach

First approach²: newtype Dist a = Dist runDist :: [(a, Rational)] A distribution is a list of possible events, each tagged with a probability.

²Martin Erwig and Steve Kollmansberger. "Functional Pearls: Probabilistic Functional Programming in Haskell". In: *Journal of Functional Programming* 16.1 (2006), pp. 21–34. ISSN: 1469-7653, 0956-7968. DOI: 10.1017/S0956796805005721. URL: http:

^{//}web.engr.oregonstate.edu/~erwig/papers/abstracts.html%5C#JFP06a (visited on 09/29/2016).

We could (for example) encode a die as: die :: Dist Integer die = Dist [$(1,frac\ 1\ 6)$, $(2,frac\ 1\ 6)$, $(3,frac\ 1\ 6)$, $(4,frac\ 1\ 6)$, $(5,frac\ 1\ 6)$, $(6,frac\ 1\ 6)$]

This lets us encode (in the types) the difference between: $children_1 :: [DistChild] children_2 :: Dist[Child]$

```
def mr_smith():
    child_1 = Child()
    child_2 = Child()
    assert child_1.gender == 'boy' or \
           child_2.gender == 'boy'
    return [child_1, child_2]
 1. = (assignment)
 2. assert
```

```
def mr_smith():
    child_1 = Child()
    child_2 = Child()
    assert child_1.gender == 'boy' or \
        child_2.gender == 'boy'
    return [child_1, child_2]
```

- 1. = (assignment)
- 2. assert
- 3. return

Assignment i

Assignment expressions can be translated into lambda expressions: let $x = e_1 ine_2 == (--> e_2)e_1$ In the context of a probabilistic language, e_1 and e_1 are distributions. So what we need to define is application: this is encapsulated by the "monadic bind": (ii=):: Dist a -¿ (a -¿ Dist b) -¿ Dist b For a distribution, what's happening inside the λ is e_1 given x. Therefore, the resulting probability is the product of the outer and inner probabilities. xs ii = f = Dist [(y, xp * yp) - (x, xp) i - runDist xs, (y, yp) i runDist $(f \times)$]

Assertion

Assertion is a kind of conditioning: given a statement about an event, it either occurs or it doesn't. guard :: Bool - ι Dist () guard True = Dist [((), 1)] guard False = Dist []

Return

Return is the "unit" value for a distribution; the certain event, the unconditional distribution. return :: a - ξ Dist a return x = Dist [(x, 1)]

Putting it all Together

```
mrSmith :: Dist [Child] mrSmith = do child1 _i- child child2 _i- child guard (gender child1 == Boy —— gender child2 == Boy) return [child1, child2] expect :: (a -_i Rational) -_i Dist a -_i Rational expect p xs = frac (sum [ p x * xp — (x,xp) _i- runDist xs ]) (sum [ xp — (,xp) < -runDistxs]) probOf :: (a -_i Bool) -_i Dist a -_i Rational probOf p = expect (-_i if p x then 1 else 0)
```

```
probOf (all ((==) Girl . gender)) mrJones == frac 1 2 probOf (all ((==) Boy . gender)) mrSmith == frac 1 3
```

Alternative Interpreters

Once the semantics are described, different interpreters are easy to swap in.

Monty Hall i

```
data Decision = Decision stick :: Bool , switch :: Bool montyHall :: Dist Decision montyHall = do car ;- uniform [1..3]  \text{choice}_1 < -\text{uniform}[1..3] \text{letleft} = [\text{door}|\text{door} < -[1..3], \text{door}/= \text{choice}_1] \text{letopen} = \text{head}[\text{door}|\text{door} < -\text{left}, \text{door}/= \text{car}] \text{letchoice}_2 = \text{head}[\text{door}|\text{door} < -\text{left}, \text{door}/= \text{open}] \text{return}(\text{Decisionstick} = \text{car} = = \text{choice}_1, \text{switch} = \text{car} = = \text{choice}_2)
```

Monty Hall ii

While we can interpret it in the normal way to solve the problem: probOf stick montyHall == frac 1 3 probOf switch montyHall == frac 2 3

Monty Hall iii

We could alternatively draw a diagram of the process.

Figure 1: AST from Monty Hall problem. 1| is a win, 0| is a loss. The first column is what happens on a stick, the second is what happens on a loss.

Theoretical Foundations

Stochastic Lambda Calculus

It is possible³ to give measure-theoretic meanings to the operations described above.

$$\mathcal{M} \ return \ x(A) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases} \tag{1}$$

$$\mathcal{M} dk(A) = \int_{X} \mathcal{M} k(x)(A) d\mathcal{M} d(x)$$
 (2)

³Norman Ramsey and Avi Pfeffer. "Stochastic Lambda Calculus and Monads of Probability Distributions". In: 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Vol. 37. ACM, 2002, pp. 154–165. URL: http://www.cs.tufts.edu/~nr/cs257/archive/norman-ramsey/pmonad.pdf (visited on 09/29/2016).

The Giry Monad

Giry⁴ gave a categorical interpretation of probability theory.

⁴Michèle Giry. "A Categorical Approach to Probability Theory". In: *Categorical Aspects of Topology and Analysis*. Ed. by A. Dold, B. Eckmann, and B. Banaschewski. Vol. 915. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 68–85. ISBN: 978-3-540-11211-2 978-3-540-39041-1. DOI: 10.1007/BFb0092872. URL:

$$X \xrightarrow{f} Y$$

$$\downarrow^{g}$$

$$Z$$

Objects Ob(C) =
$$\{X, Y, Z\}$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$
Composition \circ

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
& \downarrow g \\
& \downarrow g \\
Z
\end{array}$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$

Arrows form a monoid under composition

Composition o

$$W \xrightarrow{f} X$$

$$\downarrow g \qquad h \circ g$$

$$Y \xrightarrow{h} Z$$

$$(h \circ g) \circ f = h \circ (g \circ f) \quad (3)$$

$$A \supset id_A$$

$$\forall A.A \in \mathbf{Ob}(\mathbf{C}) \exists id_A : \mathbf{hom}_{\mathbf{C}}(A, A)$$
(4)

$$X \xrightarrow{f} Y \downarrow_{g \text{ } g \text{ } f} Z$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$

Arrows form a monoid under composition

Composition o

$$W \xrightarrow{f} X$$

$$\downarrow^{g \circ f} \downarrow^{h \circ g} \qquad (h \circ g) \circ f = h \circ (g \circ f) \quad (3)$$

$$Y \xrightarrow{h} Z$$

$$A \supset id_A$$
 $\forall A.A \in \mathbf{Ob}(\mathbf{C}) \exists id_A : \mathbf{hom}_{\mathbf{C}}(A, A)$ (4)

Example

Set is the category of sets, where objects are sets, and arrows are functions.

28

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

These can be thought of as ways to "embed" one category into another.

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

These can be thought of as ways to "embed" one category into another.

Functors which embed categories into themselves are called Endofunctors.

Monads

In the category of Endofunctors, **Endo**, a Monad is a triple of:

- 1. An Endofunctor m,
- 2. A natural transformation:

$$\eta: A \to m(A) \tag{5}$$

This is an operation which embeds an object.

3. Another natural transformation:

$$\mu: m^2(A) \to m(A) \tag{6}$$

This collapses two layers of the functor.

Meas is the category of measurable spaces.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (\mathcal{P}) , which, for any given measurable space \mathcal{M} , is the space of all possible measures on it.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given measurable space \mathcal{M} , is the space of all possible measures on it.

 $\mathcal{P}(\mathcal{M})$ is itself a measurable space: measuring is integrating over some variable \boldsymbol{a} in \mathcal{M} .

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given measurable space M, is the space of all possible measures on it.

 $\mathcal{P}(\mathcal{M})$ is itself a measurable space: measuring is integrating over some variable \boldsymbol{a} in \mathcal{M} .

In code (we restrict to measurable functions): newtype Measure a = Measure ((a - $\frac{1}{2}$ Rational) - $\frac{1}{2}$ Rational)

```
We now get \eta and \mu:
integrate :: Measure a -¿ (a -¿ Rational) -¿ Rational integrate
(Measure m) f = m f

return :: a -¿ Measure a return x = Measure (-¿ measure x)

(¿¿=) :: Measure a -¿ (a -¿ Measure b) -¿ Measure b xs ¿¿= f = Measure (-¿ integrate xs (-¿ integrate (f x) (-¿ measure y)))
```

Other Applications

Differential Privacy

It has been shown⁵ that the semantics of the probability monad suitable encapsulate *differential privacy*.

⁵Jason Reed and Benjamin C. Pierce. "Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy". In: *ACM Sigplan Notices*. Vol. 45. ACM, 2010, pp. 157–168. URL: http://dl.acm.org/citation.cfm?id=1863568 (visited on 03/01/2017).

PINQ

 LINQ^6 is an API which provides a monadic syntax for performing queries (sql, etc.)

PINQ⁷ extends this to provide *differentially private* queries.

⁶Don Box and Anders Hejlsberg. *LINQ: .NET Language Integrated Query.* en. Feb. 2007. URL:

 $[\]label{library/bb308959.aspx} \ (visited on \ 07/09/2018).$

⁷Frank McSherry. "Privacy Integrated Queries". In: Communications of the ACM (Sept. 2010). URL: https://www.microsoft.com/en-us/research/publication/privacy-integrated-queries-2/.

Conclusion