El Problema d'interpolació de Pick—Nevanlinna Daniel Benages

Resum

L'anàlisi complexa sol destacar per l'elegància i finor dels seus teoremes i demostracions, des del Teorema de representació en sèries de potències fins al Teorema global de Cauchy. Aquest treball, però, busca resoldre un problema molt més concret. Allunyem-nos de teoremes omnipotents, de resultats que ressonen per tot el món complex. Centrem-nos en un petit disc de radi 1. Mirem dos conjunts finits de punts. Hi pot haver una funció holomorfa que els aparelli?

El camí que recorre aquest treball acaba amb el resultat que va donar Georg Pick l'any 1917. Veurem com l'anàlisi complexa, amb la seva elegància habitual, redueix el problema a l'estudi del signe d'una forma quadràtica. Això serà gràcies al Lema de Schwarz-Pick, una generalització natural del conegut Lema de Schwarz que enunciarem després de parlar d'homografies i d'automorfismes del disc. La funció que resoldrà el problema serà un producte de Blaschke finit, una classe de funcions molt útils per a la interpolació i aproximació de funcions dins \mathbb{D} .

Índex

1	Introducció	1
2	Homografies	1
3	Automorfismes al Disc Unitat	6
4	El Teorema de Pick 4.1 Productes de Blaschke finits	
5	El treball de Nevanlinna	18

1 Introducció

L'objectiu d'aquest treball és donar un resultat sobre el següent problema d'interpolació:

Problema 1. Siguin z_1, \ldots, z_n punts diferents dins el disc unitat \mathbb{D} . Quines condicions han de complir w_1, \ldots, w_n per tal de que existeixi una funció holomorfa $f: \mathbb{D} \to \mathbb{D}$ amb

(1.1)
$$f(z_j) = w_j, \quad j = 1, \dots, n$$

La resposta ens la donarà el Teorema de Pick (1917), anomenat per Georg Pick, matemàtic austríac jueu que després de tota una vida dedicada a l'estudi de les matemàtiques va perdre la seva plaça a la Academia Txeca de les Arts i les Ciències amb l'arribada del nazisme al poder. Va morir als 82 anys al camp de concentració de Theresienstadt.

Per poder enunciar i demostrar aquest teorema, començarem amb un breu estudi de les homografies. Aquestes ens permetran endinsar-nos en els automorfismes de D i demostrar el famós Lema de Schwarz. Ens serà més útil una generalització feta junt amb el propi Georg Pick, el Lema de Schwarz-Pick.

Posteriorment parlarem de l'última peça clau: els productes de Blaschke finits. Aquesta classe de funcions del disc són precisament les solucions del Problema 1. Finalment, arribarem al teorema final:

Teorema (Pick). Existeix solució per al problema 1 si i només si la forma quadràtica

$$Q_n(t_1, \dots, t_n) = \sum_{i,k=1}^n = \frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} t_j \overline{t_k}$$

és semidefinida positiva. En aquest cas, existeix un producte de Blaschke finit de grau com a molt n que resol el problema 1.

Aquesta tasca, però, és inabordable sense fer algunes concessions. La més important és que donarem per fetes la majoria de nocions que s'obtindrien en un curs elemental d'anàlisi complexa. Si més no, fins al teorema del mòdul màxim (tot i que l'enunciarem per refrescar la memòria).

2 Homografies

Aquesta secció del treball està basada en les primeres seccions del capítol 1 del llibre [1], amb alguns resultats del capítol 14 de [3]. Sigui Ω un domini de \mathbb{C} i $f:\Omega\to\Omega$ una funció holomorfa, diem que f és **conforme** si $f'(z)\neq 0$ $\forall z\in\Omega$.

Diem **esfera de Riemann** a la compactificació del pla complex per un punt. La manera usual de pensar en aquest espai topològic és considerar una esfera on el pol nord és ∞ . La denotem per S^2 .

Figura 1: L'esfera de Riemann.

No ens cal preocupar-nos per les propietats topològiques de S^2 . Per al que a nosaltres ens ocupa, l'esfera de Riemann es comporta com \mathbb{C} , però ens permet tractar ∞ estalviant-nos límits. Entendrem que $1/0 = \infty$ i que $1/\infty = 0$.

De fet, aquest és el motiu principal per introduir el concepte de S^2 , ja que serveix de "cèrcol" per no deixar escapar els punts que habitualment hauríem de considerar pols de funcions altrament holomorfes.

Siguin $a, b, c, d \in \mathbb{C}$. Una **homografia** és una aplicació de la forma

$$T(z) = \frac{az+b}{cz+d}, \quad ad-bc \neq 0.$$

Observem que T és holomorfa a $\mathbb{C} \setminus \{-d/c\}$ i $ad - bc \neq 0$ ens dona conformitat.

Proposició 2.1. Les homografies són invertibles i la seva inversa és una homografia.

Demostració. Si
$$w = \frac{az+b}{cz+d}$$
, podem aïllar z i obtenim $z = \frac{-dw+b}{cw-a}$.

Corol·lari 2.1.1. Les homografies són bijeccions meromorfes de \mathbb{C} .

Lema 2.2. Si una funció f té un pol d'ordre igual o superior a 2, f no pot ser injectiva.

Demostració. Considerem la funció 1/f. Com f és injectiva si i només si 1/f ho és. És suficient demostrar la no injectivitat de 1/f.

Sigui a un pol d'ordre m > 1 de f. Llavors a és un zero d'ordre m de 1/f, per tant

$$\frac{1}{f} = (z - a)^m h(z), \quad h(a) \neq 0$$

per a una certa funció holomorfa h en un entorn del punt a.

Considerem $g(z) = (z - a)h(z)^{1/m}$. Aquesta funció és holomorfa i ben definida a un entorn del punt a. La seva derivada és

$$g'(z) = \frac{1}{m}(z-a)h(z)^{\frac{1}{m}-1}h'(z) + h(z)^{\frac{1}{m}}$$

per tant $g'(a) \neq 0$. Tenim, doncs, un entorn de a on g és una funció holomorfa i invertible que envia a al zero. Amb el canvi de coordenades w = g(z), veiem que localment

$$w^m = \frac{1}{f(g^{-1}(z))}$$

per tant en un entorn de a la funció 1/f es comporta com la funció $z \to z^m$, que per m > 1 no és injectiva.

Teorema 2.3. Sigui una $f: S^2 \to S^2$ una bijecció conforme a tot S^2 tret, potser, d'un nombre finit de punts. Llavors f és una homografia.

Demostració. Sigui f aquesta bijecció i q_1, \ldots, q_n els punts exclòsos. Com f és conforme, f és holomorfa tret de en q_i . Aquests punts només poden ser pols, singularitats essencials o evitables.

La possibilitat de que siguin essencials queda descartada, ja que pel Gran Teorema de Picard, en tot entorn d'una discontinuïtat d'aquest tipus la funció f pren com a valors tots els punts de $\mathbb C$ un nombre infinit de vegades, per tant f no podria ser bijectiva. Com les discontinuïtats de f són o evitables o pols, podem assegurar que f es una funció racional.

A més, per la injectivitat a S^2 , només un dels punts pot ser un pol, el qual pel lema anterior seria d'ordre 1. Si aquest es troba en un punt finit q_k ,

$$f(z) = \frac{A_1}{z - q_k} + A_0 = \frac{A_0 z + A_1 - A_0 q_k}{z - q_k}, A_1 \neq 0.$$

Si $q_k = \infty$,

$$f(z) = A_1 z + A_0, A_1 \neq 0.$$

Sigui com sigui, la funció és una homografia.

Proposició 2.4. La composició finita d'homografies és una sola homografia.

Demostració. És suficient demostrar-ho per la composició de dues homografies. Siguin

$$T(z) = \frac{az+b}{cz+d},$$

$$S(z) = \frac{a'z + b'}{c'z + d'}.$$

Llavors

$$(T \circ S)(z) = \frac{a\frac{a'z+b'}{c'z+d'} + b}{c\frac{a'z+b'}{c'z+d'} + d} = \frac{aa'z+ab'+bc'z+bd'}{ca'z+cb'+dc'z+dd'} = \frac{(aa'+bc')z+(ab'+bd')}{(ca'+dc')z+(cb'+dd')},$$

que clarament és una homografia.

Degut a això, podem descompondre totes les homografies en combinacions de tres classes fonamentals:

Teorema 2.5. Tota homografia és composició finita de translacions, rotacions, homotècies i inversions.

Demostració. Totes aquestes transformacions són clarament homografies. Veiem que podem crear una cadena de composicions que ens porti a qualsevol homografia:

Si c = 0, simplement $z \to az \to az + b \to \frac{az+b}{d}$. Si $c \neq 0$, llavors

$$z \to cz \to cz + d \to \frac{1}{cz+d} \to \frac{\frac{bc-ad}{c}}{cz+d}$$

$$\to \frac{\frac{bc-ad}{c}}{cz+d} + \frac{a}{c} = \frac{bc-ad}{c(cz+d)} + \frac{a}{c} = \frac{bc-ad+azc+ad}{c(cz+d)} = \frac{az+b}{cz+d}.$$

 \Box

En qualsevol dels casos, arribem a l'homografia.

Definim la **raó doble** entre quatre nombres complexos z_1, z_2, z_3, z_4 per

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_2 - z_3)(z_1 - z_4)}.$$

Ens serà útil considerar que algun d'aquests punts sigui ∞ . En aquest cas, ometrem els termes que l'incloguin. Per exemple, si $z_1 = \infty$, llavors

$$(\infty, z_2, z_3, z_4) = \frac{z_2 - z_4}{z_1 - z_3}.$$

Donats $z_1, z_2, z_3 \in \mathbb{C}$, la funció donada per la raó doble

$$(2.1) (z, z_1, z_2, z_3) = \frac{(z - z_2)(z_1 - z_3)}{(z - z_3)(z_1 - z_2)} = \frac{(z_1 - z_3)z - z_2(z_1 - z_3)}{(z_1 - z_2)z - z_3(z_1 - z_2)}$$

és una homografia que envia $z_1 \to 1, z_2 \to 0$ i $z_3 \to \infty$.

A més, si algun z_i és ∞ , utilitzant la raó doble que pertoca es segueix complint aquesta afirmació.

Proposició 2.6. Les homografies conserven la raó doble.

Demostració. Pel Teorema 2.5, és suficient veure que per a tota inversió es conserva la raó doble. És a dir, que

$$\left(\frac{1}{z_1}, \frac{1}{z_2}, \frac{1}{z_3}, \frac{1}{z_4}\right) = (z_1, z_2, z_3, z_4), \text{ per a tot } z_1, z_2, z_3, z_4 \in \mathbb{C}.$$

Això es comprova fent un càlcul senzill.

Teorema 2.7. L'única homografia que deixa fixos més de dos punts és la identitat.

Demostració. Donada l'homografia $\frac{az+b}{cz+d}$, els seus punts fixos compleixen

$$\frac{az+b}{cz+d} = z \implies cz^2 + (d-a)z + b = 0.$$

Si hi ha més de dos punts fixos, deduïm que $c=b=0,\,d=a$ i, per tant, l'aplicació és la identitat. \Box

Això ens porta al teorema de caracterització de les homografies.

Teorema 2.8. Tota homografia està definida per les imatges de tres punts diferents. Dit d'una altra manera, donats $z_1, z_2, z_3, z_1', z_2', z_3' \in \mathbb{C}$, existeix una única homografia T tal que $T(z_1) = z_1'$, $T(z_2) = z_2'$, $T(z_3) = z_3'$.

Demostració. Demostrem primer la unicitat. Siguin S, T dues homografies tals que $S(z_i) = T(z_i) = z'_i$. Llavors, per Proposició 2.4, $S^{-1}T$ és una homografia que compleix

$$S^{-1}T(z_i) = S^{-1}(z_i') = z_i i = 1, \dots 3.$$

Com té tres punts fixos, pel Teorema 2.7 $S^{-1}T = id$. Per tant, T = S.

Per veure l'existència, recordem que per (2.1), la rao doble (z,z_1,z_2,z_3) ens envia $z_1 \to 1, z_2 \to 0, z_3 \to \infty$.

Siguin $S(z)=(z,z_1',z_2',z_3')$ i $T(z)=(z,z_1,z_2,z_3)$ Llavors, la composició

$$S^{-1} \circ T$$

és la homografia que busquem.

Per últim, estudiem les rectes i circumferències a \mathbb{C} . Donates $p, q \in \mathbb{C}$, la mediatriu del segment que va de p a q és

$$|z - p| = |z - q|.$$

Elevant al quadrat i reordenant termes, obtenim

$$(\bar{p} - \bar{q})z + \bar{z}(p - q) + |p|^2 + |q|^2 = 0$$

Diem $\beta=\bar{p}-\bar{q},\,\gamma=\left|p\right|^{2}-\left|q\right|^{2},$ les rectes del pla són de la forma

$$\beta z + \bar{\beta}\bar{z} + \gamma = 0.$$

Veiem que les circumferències són de la forma

$$|z - p| = \rho |z - q|,$$

per $\rho \neq 1$. Sigui z = w + q, c = p - q. Llavors

$$|w - c| = \rho |w|$$
.

Com abans, quadrats i reordenant

$$(2.3) (1 - \rho^2)|w|^2 - w\bar{c} - \bar{w}c + |c|^2 = 0.$$

Completem quadrats

$$0 = (1 - \rho^2)|w|^2 - w\bar{c} - \bar{w}c + |c|^2$$
$$= |w|^2 - \frac{w\bar{c} - \bar{w}c}{(1 - \rho^2)} + \frac{|c|^2(1 - \rho^2)}{(1 - \rho^2)^2}$$

i per tant

$$|w|^{2} - \frac{w\bar{c} - \bar{w}c}{(1 - \rho^{2})} + \frac{|c|^{2}}{(1 - \rho^{2})^{2}} = \frac{|c|^{2}\rho^{2}}{(1 - \rho^{2})^{2}}$$

$$\implies \left|w - \frac{c}{1 - \rho^{2}}\right| = |c|\frac{\rho}{1 - \rho^{2}},$$

que és una circumferència. Siguin $\alpha = 1 - \rho^2$, $\beta = -c$, $\gamma = |c|^2$, a (2.3) tenim

(2.4)
$$\alpha z\bar{z} + \beta z + \bar{\beta}\bar{z} + \gamma = 0, \quad \alpha, \gamma \in \mathbb{R}, \beta \in \mathbb{C}.$$

Com el radi ha de ser positiu, és necessari que $|\beta|^2 > \alpha \gamma$.

Tenim doncs que si $\alpha=0$, (2.4) ens l'equació d'una recta. Si $\alpha\neq 0$, (2.4) és l'equació d'una circumferència.

Teorema 2.9. Les homografies envien rectes i circumferències a rectes i circumferències.

Demostraci'o. És suficient veure-ho per translacions, rotacions, homotècies i inversions. Les tres primeres és evident que envien rectes a rectes i circumferències a circumferències. Les inversions no, però sigui $w=\frac{1}{z}$, podem veure que fer la inversió a (2.4) ens dona

$$\alpha w\bar{w} + \beta w + \bar{\beta}\bar{w} + \gamma = 0,$$

que és una equació del mateix tipus.

3 Automorfismes a \mathbb{D}

Aquesta secció del treball conté resultats de la secció 12 del primer capítol del llibre [1], del capítol 12 de [3] i del primer capítol de [4], amb les demostracions adaptades a D. Com ja hem comentat prèviament, centrarem la nostra atenció exclusivament a D. Per tant, els teoremes i proposicions que enunciarem a partir d'ara seran sempre en aquesta regió. Recordem que definim com Disc Unitat

$$\mathbb{D} := \{ z \in \mathbb{C} \colon |z| < 1 \}.$$

Observem que \mathbb{D} és un domini acotat de \mathbb{C} .

Enunciem ara el Teorema del Mòdul Màxim que, tot i que no el demostrarem, ens serà indispensable per als propers resultats.

Teorema 3.1 (Teorema del Mòdul Màxim). Sigui K la clausura d'una regió acotada Ω . Si f és continua en K i holomorfa en Ω , llavors

(3.1)
$$|f(z)| \le \sup\{|f(w)| : w \in \partial\Omega\}, \text{ per a tot } z \in \Omega.$$

Si es dona la igualtat per a algun $z \in \Omega$, llavors f és constant.

Anomenarem \mathbb{D} -holomorfisme o funció \mathbb{D} -holomorfa a totes aquelles funcions holomorfes que envien \mathbb{D} en si mateix.

Enunciem ara el Teorema de caracterització dels automorfismes holomorfs de D:

Teorema 3.2. Una funció T \mathbb{D} -holomorfa és bijectiva si i només si

(3.2)
$$T(z) = \lambda \frac{a-z}{1-\overline{a}z}, \ amb \ a \in \mathbb{D} \ \ i \ |\lambda| = 1.$$

Dit d'una altra manera, els automorfismes del disc són una classe molt concreta d'homografies.

Demostració. Pel que ja hem vist, sabem que $T(z) = \lambda \frac{a-z}{1-\bar{a}z}$ és automorfisme holomorf de \mathbb{C} . Només cal veure que és bijectiu a \mathbb{D} .

Sigui $z \in \mathbb{D}$. Tenim

$$\frac{|a-z|}{|1-\overline{a}z|} < 1 \iff |a-z|^2 < |1-\overline{a}z|^2$$

$$\iff |a|^2 + |z|^2 - 2\Re a\overline{z} < 1 + |\overline{a}z|^2 - 2\Re \overline{a}\overline{z} \iff$$

$$\iff (|z|^2 - 1) (1 - |a|^2) < 0$$

$$\iff |a| < 1.$$

Per tant $\mathbb{D} \xrightarrow{T} \mathbb{D}$ és automorfisme holomorf.

Vegem ara la implicació contraria. Sigui T un \mathbb{D} -holomorfisme bijectiu. Suposem primer que T(0)=0. Com T és holomorfa, és una serie de potencies i si deixa el 0 fix, $\frac{T(z)}{z}$ és holomorfa en \mathbb{D} . Considerem $\left|\frac{T(z)}{z}\right|$ en un disc U de radi r<1 centrat a l'origen. Pel Teorema del Mòdul Màxim 3.1, |T(z)/z| és màxim en |z|=r. Llavors en U tenim

$$\left| \frac{T(z)}{z} \right| \le \frac{1}{r}.$$

Fent tendir $r \to 1$, deduïm que $|T(z)| \le |z|$. Sigui S la inversa de T. Pel mateix raonament tenim $\left|\frac{S(z)}{z}\right| \le 1$ per a tot $z \in \mathbb{D}$. Si notem z' = T(z), llavors

$$1 \ge \left| \frac{S(z')}{z'} \right| = \left| \frac{z}{T(z)} \right| \implies \left| \frac{T(z)}{z} \right| = 1, \text{ per a tot } z \in \mathbb{D}.$$

i com el valor absolut és constant, també ho és la funció (pel fet de ser holomorfa). Llavors

(3.3)
$$\frac{T(z)}{z} = e^{i\alpha} \implies T(z) = e^{i\alpha}z$$

per una $\alpha \in \mathbb{R}$ constant. Per tant, un automorfisme bijectiu de \mathbb{D} que fixa l'origen és una rotació.

Eliminem la restricció de que l'origen sigui fix. Sigui $T(z) = a \neq 0$. Considerem l'homografia

$$R = \lambda \frac{a - z}{1 - \overline{a}z}$$

amb $\lambda = e^{i\beta}$, $\beta \in \mathbb{R}$. La composició $R^{-1}T$ és un automorfisme holomorf de \mathbb{D} que deixa fix l'origen. Per tant és una rotació, diguem-li $e^{i\alpha}$.

Llavors

$$R^{-1}T = e^{i\alpha} \implies T = Re^{i\alpha} \implies T(z) = e^{i(\alpha+\beta)} \frac{a-z}{1-\overline{a}z} = \lambda' \frac{a-z}{1-\overline{a}z}.$$

A partir d'ara, denotarem

(3.4)
$$\varphi_a(z) := \frac{a-z}{1-\overline{a}z}.$$

Vegem ara un resultat clàssic de l'anàlisi complexa.

Teorema 3.3 (Lema de Schwarz). Sigui $f: \mathbb{D} \to \mathbb{D}$ una funció holomorfa amb f(0) = 0.

Aleshores

(i)
$$|f(z)| \le |z|$$
 per a tot $z \in \mathbb{D}$.

(ii)
$$|f'(0)| \le 1$$
.

A més, si hi hagués igualtat en algun dels dos casos, llavors $f(z) = e^{i\alpha}z$ per a algun $\alpha \in \mathbb{R}$ i per a tot $z \in \mathbb{D}$.

Demostració. Demostrarem primer (i).

Com f(0) = 0 i és holomorfa, tenim que h(z) = f(z)/z és holomorfa en tot \mathbb{D} . Pel Teorema del mòdul màxim 3.1,

(3.5)
$$\sup_{|z| \le r} |h(z)| = \sup_{|z| = r} |h(z)| = \frac{1}{r} \sup_{|z| \le r} |f(z)|$$

per a 0 < r < 1. Com $|f(z)| \le 1$ per a tot $z \in \mathbb{D}$, fem tendir r a 1 i tenim

(3.6)
$$\sup_{z \in \mathbb{D}} |h(z)| \le 1 \implies |f(z)| \le |z|.$$

Veiem també que si $|f(z_0)| = |z_0|$ per a algun $z_0 \in \mathbb{D} \setminus \{0\}$, llavors $|h(z_0)| = 1$ i, pel teorema del mòdul màxim, h és constant de mòdul 1. Així, existeix $\alpha \in \mathbb{R}$ tal que

$$f(z) = zh(z) = ze^{i\alpha}, \ \forall z \in \mathbb{D}.$$

Vegem ara (ii).

Com f(z)/z = h(z) i f(0) = 0, llavors

(3.7)
$$|f'(0)| = \lim_{z \to 0} \frac{|f(z)|}{|z|} = \lim_{z \to 0} |h(z)| = |h(0)| \le 1.$$

A més, si |f'(0)| = |h(0)| = 1, pel teorema del mòdul màxim un altre cop tenim $h = e^{i\alpha}$ per a un cert $\alpha \in \mathbb{R}$ i per tant $f(z) = e^{i\alpha}z$, per a tot $z \in \mathbb{D}$.

No tan famosa és una generalització d'aquest lema, on es relaxen les hipòtesis i no es suposa que f(0) = 0. Aquest és el lema de Schwarz-Pick:

Teorema 3.4 (Lema de Schwarz-Pick). Sigui $f: \mathbb{D} \to \mathbb{D}$ una funció holomorfa. Llavors

(i)
$$\left| \frac{f(z) - f(w)}{1 - f(z)\overline{f(w)}} \right| \le \left| \frac{z - w}{1 - z\overline{w}} \right|$$
, per a tot $z, w \in \mathbb{D}$.

(ii)
$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2} per \ a \ tot \ z \in \mathbb{D}.$$

La igualtat en tots dos casos es dona si f és automorfisme de \mathbb{D} . Si la igualtat de (i) es compleix per a uns z, w amb $z \neq w$, o si es dona en (ii) per a algun z, llavors f és automorfisme de \mathbb{D} .

Demostració. Sigui $g = \varphi_{f(w)} \circ f \circ \varphi_{-w}$. En particular tenim $g(0) = \varphi_{f(w)}(f(w)) = 0$. Pel lema de Schwarz 3.3, $|g(\xi)| \leq |\xi|$ per a tot $\xi \in \mathbb{D}$ i deduïm que

$$|\varphi_{f(w)}(f(z))| \le |\varphi_w(z)|.$$

Substituint cada terme per la seva definició

(3.8)
$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right|.$$

Si tenim igualtat per uns $z \neq w$, llavors $|g(\varphi_w(z))| = |\varphi_w(z)|$ i pel lema de Schwarz, $g(z) = ze^{i\alpha}$. Per tant, g és un automorfisme de $\mathbb D$ i deduïm que $f = \varphi_{-f(w)} \circ g \circ \varphi_w$ també ho és.

Veiem ara (ii).

$$\frac{|f'(z)|}{1 - |f(z)|^2} = \lim_{w \to z} \left(\left| \frac{f(z) - f(w)}{z - w} \right| \frac{1}{\left| 1 - \overline{f(w)}f(z) \right|} \right) \le \lim_{w \to z} \left| \frac{1}{1 - \overline{w}z} \right| = \frac{1}{1 - |z|^2}.$$

Si tenim igualtat a (ii), considerem z = w i com $\varphi'_a(z) = \frac{1 - |a|^2}{(1 - \overline{a}z)^2}$, tenim

$$|g'(0)| = |\varphi'_{f(w)}(f \circ \varphi_{-w}(0))| |f'(\varphi_{-w}(0))| |\varphi'_{-w}(0)|$$

$$= |\varphi'_{f(w)}(f(w))| |f'(w)| (1 - |w|^2)$$

$$= \frac{|f'(w)|}{1 - |f(w)|^2} (1 - |w|^2) = 1$$

i, pel Lema de Schwarz, g és automorfisme i $f = \varphi_{-f(w)} \circ g \circ \varphi_w$ també. Finalment, si f és automorfisme de \mathbb{D} , apliquem (i) a f i f^{-1} i obtenim

per tant hi ha igualtat. De la mateixa manera, per a (ii) tenim

(3.10)
$$\frac{1}{1-|z|^2} = \frac{|(f^{-1} \circ f)'(z)|}{1-|(f^{-1} \circ f)(z)|^2} \le \frac{f'(z)}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}$$

aconseguint novament la igualtat.

Per últim, definim la distància pseudohiperbòlica a \mathbb{D} com

$$\rho(z,w) = \left| \frac{z - w}{1 - \bar{w}z} \right|.$$

Pel Lema 3.4, la distància $\rho(z, w)$ és invariant per homografies, i.e.

$$\rho(z, w) = \rho(\tau(z), \tau(w)).$$

La distància pseudohiperbòlica ens ajudarà molt més endavant, però és convenient deixar-la ja definida.

4 El Teorema de Pick

Aquesta part del treball està basada en les seccions 1 i 2 del llibre [2].

4.1 Productes de Blaschke finits

L'última peça clau per al problema d'interpolació són els productes de Blaschke. No ens caldrà anar més enllà del cas finit.

Un producte de Blaschke finit és una funció de la forma

$$B(z) = e^{i\alpha} \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z_j}z}, \quad |z_j| < 1.$$

Ens seran útils les següents propietats:

Proposició 4.1. Si B és un producte de Blaschke, és compleix:

- (i) B és continua en $\partial \mathbb{D}$.
- (ii) |B| = 1 en $\partial \mathbb{D}$.
- (iii) B té un nombre finit de zeros en D.

Aquestes propietats, junt amb on són aquestes zeros, determinen B tret d'una constant de mòdul 1.

Demostració. Les propietats (i), (ii), (iii) són evidents. Veurem la part final.

Sigui una funció f que compleix les tres i B un producte de Blaschke amb els mateixos zeros. Pel principi del mòdul màxim, $|f/B| \le 1$ i $|B/f| \le 1$ en \mathbb{D} . Per tant f/B és constant.

Els productes de Blaschke, a més de ser útils en la interpolació (com veurem pròximament), juguen un paper important en l'aproximació de funcions del disc.

Teorema 4.2 (Carathéodory). Sigui f un \mathbb{D} -holomorfisme. Existeix $\{B_k\}$ una successió de productes de Blaschke que convergeixen puntualment a f.

Demostració. Com f és holomorfa, és una serie de potencies. Siguin $\{c_k\}$ els seus coeficients. Demostrarem el teorema per inducció, trobant un producte de Blaschke amb com a molt n zeros tal que els n primers coeficients coincideixen amb els de f, i.e.,

$$B_n = c_0 + c_1 z + \dots + c_{n-1} z^{n-1} + d_n z^n \dots$$

Com $|c_0| \le 1$, podem fixar $B_0 = \frac{z+c_0}{1+\overline{c_0}z}$. Si $|c_0| = 1$, llavors $B_0 = c_0$ és un producte de Blaschke de grau 0.

Suposem que per a qualsevol g \mathbb{D} -holomorfisme tenim construït el seu $B_{n-1}(z)$. Sigui

$$g = \frac{1}{z} \frac{f - f(0)}{1 - \overline{f(0)}f}$$

i sigui $B_{n-1}(z)$ el producte de Blaschke de grau com a màxim n-1 tal que $g-B_{n-1}$ té un zero d'ordre n-1 en z=0. Llavors $zg-zB_{n-1}$ té un zero d'ordre n en 0. Sigui

$$B_n(z) = \frac{zB_{n-1}(z) + f(0)}{1 + \overline{f(0)}zB_{n-1}(z)}.$$

Llavors $B_n(z)$ és un producte de Blaschke, grau $(B_n) = \operatorname{grau}(zB_{n-1}) \le n$ i

$$f(z) - B_n(z) = \frac{zg(z) + f(0)}{1 + \overline{f(0)}zg(z)} - \frac{zB_{n-1}(z) + f(0)}{1 + \overline{f(0)}zB_{n-1}(z)} = \frac{(1 - |f(0)|^2)z(g(z) - B_{n-1}(z))}{(1 + \overline{f(0)}zg(z))(1 + \overline{f(0)}zB_{n-1}(z))}$$

Per tant $f - B_n$ té un zero d'ordre n en z = 0 i llavors

$$B_n(z) = c_0 + c_1 z + \dots + c_n z^n + d_{n+1} z^{n+1} + \dots$$

Finalment, és suficient veure que per a tota parcial de B_n que convergeix uniformement sobre els compactes de \mathbb{D} a una funció g, aquesta funció g és exactament f. Llavors, en particular, $B_n(z)$ convergirà puntualment a f(z) per a tot $z \in \mathbb{D}$. Efectivament, si B_{n_k} tendeix cap a g uniformement sobre compactes, llavors les derivades de B_{n_k} també. Fixant $1 \le j \le n_k$,

$$B_{n_k}^{(j)}(0) \xrightarrow[n_k \to \infty]{} g^{(j)}(0),$$

però com $j \leq n_k$, llavors $B_{n_k}^{(j)}(0) = f^{(j)}(0)$ i per tant $g^{(j)}(0) = f^{(j)}(0)$. Pel Principi de Prolongació Analítica,

$$q \equiv f$$
.

Per últim, un lema que ens ajudarà amb la demostració del Teorema de Pick.

Lema 4.3. Siguin $z_1, z_2 \in \mathbb{D}$ diferents i siguin $w_1, w_2 \in \mathbb{C}$. Les següents afirmacions són equivalents:

- (i) Existeix f un \mathbb{D} -holomorfisme tal que $f(z_1) = w_1$, $f(z_2) = w_2$.
- (ii) La forma quadràtica $Q_2(t_1, t_2) = \sum_{j,k=1}^{2} \frac{1 w_j \overline{w_k}}{1 z_j \overline{z_k}} t_j \overline{t_k} \ge 0.$

$$(iii) \left| \frac{w_2 - w_1}{1 - \overline{w_1} w_2} \right| \le \left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right|.$$

(iv)
$$\frac{(1-|w_2|^2)(1-|w_1|^2)}{|1-\overline{w_1}w_2|^2} \ge \frac{(1-|z_1|^2)(1-|z_2|^2)}{|1-\overline{z_1}z_2|^2}.$$

Demostració. Veurem $(i) \iff (ii) \iff (iv) \iff (ii)$.

 $(i) \implies (iii)$ És el Lema de Schwarz-Pick 3.4.

 $(iii) \implies (i)$ Construïm $f = \tau_3^{-1} \circ \tau_2 \circ \tau_1$ a partir de la figura (2).

$$\tau_1(z) = \frac{z - z_1}{1 - \overline{z_1}z}, \quad \tau_2(z) = z \frac{\frac{w_2 - w_1}{1 - \overline{w_1}w_2}}{\frac{z_2 - z_1}{1 - \overline{z_1}z_2}}, \quad \tau_3(w) = \frac{w - w_1}{1 - \overline{w_1}w}.$$

 τ_1 i τ_3 són automorfismes del disc. Com (iii) es compleix, t_2 porta $\mathbb D$ en $\mathbb D$ i per tant f és el $\mathbb D$ -holomorfisme de (i).

Figura 2: $f = \tau_3^{-1} \circ \tau_2 \circ \tau_1$

 $(iii) \iff (iv)$ És un càlcul. Efectivament,

$$\frac{|w_2 - w_1|}{|1 - \overline{w_1}w_2|} \le \frac{|z_2 - z_1|}{|1 - z_2\overline{z_1}|} \iff 1 - \left|\frac{w_2 - w_1}{1 - \overline{w_1}w_2}\right|^2 \ge 1 - \left|\frac{z_2 - z_1}{1 - \overline{z_1}z_2}\right|^2 \\
1 - \left|\frac{w_2 - w_1}{1 - \overline{w_1}w_2}\right|^2 = \frac{|1 - \overline{w_1}w_2|^2 - |w_1 - w_2|^2}{|1 - \overline{w_1}w_2|^2} = \frac{1 - |w_1|^2 - |w_2|^2 + |w_1w_2|^2}{|1 - \overline{w_1}w_2|^2}.$$

D'altra banda,

$$\frac{(1-|w_1|^2)(1-|w_2|^2)}{|1-\overline{w_1}w_2|^2} = \frac{1-|w_1|^2-|w_2|^2+|w_1w_2|^2}{|1-\overline{w_1}w_2|^2}.$$

Pel mateix càlcul ho tenim per $\left| \frac{z_2 - z_1}{1 - \overline{z_1} z_2} \right|$, per tant $(iii) \iff (iv)$.

$$(ii) \iff (iv)$$

$$(ii) = \sum_{j,k=1}^{2} \frac{1 - w_{j}\overline{w_{k}}}{1 - z_{j}\overline{z_{k}}} t_{j}\overline{t_{k}} \ge 0 \iff \begin{pmatrix} \frac{1 - |w_{1}|^{2}}{1 - |z_{1}|^{2}} & \frac{1 - w_{1}\overline{w_{2}}}{1 - z_{1}\overline{z_{2}}}\\ \frac{1 - w_{2}\overline{w_{1}}}{1 - z_{2}\overline{z_{1}}} & \frac{1 - |w_{2}|^{2}}{1 - |z_{2}|^{2}} \end{pmatrix} \text{ \'es definida positiva.}$$

$$\iff \begin{cases} \frac{1 - |w_{1}|^{2}}{1 - |z_{1}|^{2}} \ge 0 \text{ (cert).} \\ \mathbf{i} \\ \frac{1 - |w_{1}|^{2}}{1 - |z_{1}|^{2}} \frac{1 - |w_{2}|^{2}}{1 - |z_{2}|^{2}} - \left| \frac{1 - w_{2}\overline{w_{1}}}{1 - z_{2}\overline{z_{1}}} \right|^{2} \ge 0.$$

Aquesta última desigualtat ens porta a

$$\frac{1 - |w_1|^2}{1 - |z_1|^2} \frac{1 - |w_2|^2}{1 - |z_2|^2} - \left| \frac{1 - w_2 \overline{w_1}}{1 - z_2 \overline{z_1}} \right|^2 \ge 0$$

$$\iff \frac{(1 - |w_1|^2)(1 - |w_2|^2)}{(1 - |z_1|^2)(1 - |z_2|^2)} \ge \frac{|1 - \overline{w_1}w_2|^2}{|1 - \overline{z_1}z_2|^2}$$

$$\iff \frac{(1 - |w_1|^2)(1 - |w_2|^2)}{|1 - \overline{w_1}w_2|^2} \ge \frac{(1 - |z_1|^2)(1 - |z_2|^2)}{|1 - \overline{z_1}z_2|^2},$$

que és la condició (iv). Això acaba la demostració del lema.

4.2 El Problema d'interpolació

Per fi sóm en condicions de resoldre el problema que dóna nom a aquest treball. Siguin $\{z_1, \ldots, z_n\}$ un conjunt finit de punts diferents de \mathbb{D} . Pick va determinar $\{w_1, \ldots, w_n\}$ per als quals el problema d'interpolació

$$(4.1) f(z_j) = w_j, \ j = 1, 2, \dots, n$$

té una solució \mathbb{D} -holomorfa f(z).

Teorema 4.4 (Pick). Existeix f \mathbb{D} -holomorfisme que satisfà la interpolació (4.1) si i només si la forma quadràtica

$$Q_n(t_1, \dots, t_n) = \sum_{j,k=1}^n = \frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} t_j \overline{t_k} \ge 0$$

per a tot $t_1, \ldots, t_n \in \mathbb{R}$. En aquest cas, existeix un producte de Blaschke finit de grau com a molt n que resol (4.1).

Demostració. Farem inducció sobre n. Si n=1, cal veure que existeix f $\mathbb{D}\text{-}$ holomorfa tal que

$$f(z_1) = w_1 \iff \frac{1 - |w_1|^2}{1 - |z_1|^2} |t_1|^2 \ge 0.$$

Com $1-|z_1|^2 \geq 0$, és equivalent dir que $|w_1| \leq 1$. Per tant s'ha de veure que existeix f \mathbb{D} -holomorfisme amb $f(z_1) = w_1$ si i només si $|w_1| \leq 1$. La necessitat és evident, ja que $||f||_{\infty} \leq 1$. Recíprocament, si $|w_1| \leq 1$, podem triar f la funció constant igual a w_1 .

Vist el cas n=1, suposem que n>1. Suposem que existeix la funció f que resol el problema d'interpolació. Com és \mathbb{D} -holomorfa, llavors $|w_n| \leq 1$. Si $|w_n| = 1$, llavors pel principi del mòdul màxim, $f \equiv w_n$ i $w_j = w_n$ per a tot j.

Suposem que $Q_n \ge 0$. Si fixem $t_n = 1$, $t_j = 0$ j < n Tenim

$$0 \le \sum_{j,k=1}^{n} \frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} t_j \overline{t_k} = \frac{1 - |w_n|^2}{1 - |z_n|^2} \implies |w_n|^2 \le 1.$$

Si $|w_n|=1$, llavors fixem un k_0 i $t_j=0 \ \forall j\neq k_0,n$. Llavors $Q_n(0,\ldots,0,t_{k_0},0,\ldots,0,t_n)$ és equivalent a $Q_2(t_{k_0},t_n)$. Pel lema anterior tenim

$$\left| \frac{w_n - w_{k_0}}{1 - \overline{w_{k_0}} w_n} \right| \le \left| \frac{z_n - z_{k_0}}{1 - \overline{z_{k_0}} z_n} \right|.$$

Com $\frac{z-z_{k_0}}{1-\overline{z_{k_0}}z}$ és automorfisme del disc i $|z_n|<1$, tenim

$$\left| \frac{z_k - z_{k_0}}{1 - \overline{z_{k_0}} z_n} \right| < 1.$$

D'altra banda, $\frac{z-w_{k_0}}{1-\overline{w_{k_0}}z}$ és un producte de Blaschke per tant té mòdul 1 a $\partial \mathbb{D}$. Com $|w_n|=1$,

$$\left| \frac{w_n - w_{k_0}}{1 - \overline{w_{k_0}} w_n} \right| = 1.$$

Llavors

$$1 = \left| \frac{w_n - w_{k_0}}{1 - \overline{w_{k_0}} w_n} \right| < 1.$$

Aquest quocient no té sentit i l'única opció és $w_n = w_{k_0}$. Com aquest argument es pot aplicar a qualsevol $1 \le k_0 \le n$, tenim que $w_j = w_n \ \forall j$. Així doncs, si $|w_n| = 1$, triem $f \equiv w_n$. f és producte de Blaschke.

Queda clar que sempre $|w_j| \leq 1$ i que el cas amb igualtat és trivial, per tant podem assumir que $|w_n| < 1$.

Volem reduir-nos a n-1 per tal d'aplicar les hipòtesis d'inducció. Per a això, movem z_n i w_n al 0 amb automorfismes del disc (3).

Figura 3

Sigui

$$z_j' = \frac{z_j - z_n}{1 - \overline{z_n} z_j}, \ 1 \le j \le n; \quad w_j' = \frac{w_j - w_n}{1 - \overline{w_n} w_j}, \ 1 \le j \le n.$$

Definim

$$g := \frac{f\left(\frac{z+z_n}{1-\overline{z_n}z}\right) - w_n}{1 - \overline{w_n}f\left(\frac{z+z_n}{1-\overline{z_n}z}\right)}.$$

Llavors existeix f \mathbb{D} -holomorfa que resol (4.1) si i nomès si g és \mathbb{D} -holomorfa i resol

(4.2)
$$g(z'_j) = w'_j, \quad 1 \le j \le n.$$

A més, f és un producte de Blaschke de grau com a molt n si i només si g també ho és.

D'altra banda, la forma quadràtica Q'_n corresponent als punts $\{z'_1, ..., z'_n\}$ i $\{w'_1, ..., w'_n\}$ té una forta relació amb Q_n . Definim

$$\alpha_j = \frac{(1 - |z_n|^2)^{1/2}}{1 - \overline{z_n} z_i}, \quad \beta_j = \frac{(1 - |w_n|^2)^{1/2}}{1 - \overline{w_n} w_i}.$$

Llavors

$$(4.3) \quad \frac{1 - z_j' \overline{z_k'}}{1 - z_j \overline{z_k}} = \frac{1 - \frac{z_j - z_n}{1 - \overline{z_n} z_j} \overline{\left(\frac{z_k - z_n}{1 - \overline{z_n} z_k}\right)}}{1 - z_j \overline{z_k}} = \frac{(1 - \overline{z_n} z_j)(1 - z_n \overline{z_k}) - (z_j - z_n)(\overline{z_k} - \overline{z_n})}{(1 - z_j \overline{z_k})(1 - \overline{z_n} z_j)(1 - z_n \overline{z_k})}.$$

Veiem que $\alpha_j \overline{\alpha_k} = \frac{1 - |z_n|^2}{(1 - z_j \overline{z_n})(1 - \overline{z_k} z_n)}$ és igual a (4.3):

Efectivament,

$$\frac{(1-\overline{z_n}z_j)(1-z_n\overline{z_k})-(z_j-z_n)(\overline{z_k}-\overline{z_n})}{(1-z_j\overline{z_k})(1-\overline{z_n}z_j)(1-\overline{z_n}\overline{z_k})} = \frac{1-|z_n|^2}{(1-\overline{z_n}z_j)(1-\overline{z_n}\overline{z_k})}$$

$$\Rightarrow \frac{1-\overline{z_n}z_j-\overline{z_n}\overline{z_k}+|z_n|^2z_j\overline{z_k}+\overline{z_j}\overline{z_n}-z_j\overline{z_k}+\overline{z_k}\overline{z_n}-|z_n|^2}{(1-z_j\overline{z_k})} = 1-|z_n|^2$$

$$\Rightarrow \frac{1-|z_n|^2+z_j\overline{z_k}|z_n|^2-z_j\overline{z_k}}{(1-z_j\overline{z_k})} = \frac{(1-|z_n|^2)(1-\overline{z_j}\overline{z_k})}{(1-z_j\overline{z_k})} = 1-|z_n|^2.$$

Pel mateix càlcul tenim $\beta_j \overline{\beta_k} = \frac{1 - |w_n|^2}{(1 - \overline{w_n} w_i)(1 - \overline{w_k})}$

Per tant,

$$\frac{1 - w_j' \overline{w_k'}}{1 - z_j' \overline{z_k'}} t_j \overline{t_k} = \frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} \left(\frac{\beta_j}{\alpha_j}\right) t_j \overline{\left(\frac{\beta_k}{\alpha_k}\right)} t_k$$

i

(4.4)
$$Q'_n(t_1, \dots, t_n) = Q_n \left(\frac{\beta_1}{\alpha_1} t_1, \dots, \frac{\beta_n}{\alpha_n} t_n \right).$$

Així doncs, $Q'_n \ge 0 \iff Q_n \ge 0$ i hem reduït el problema al cas $z_n = w_n = 0$. Suposem, per tant, $z_n = w_n = 0$. Existeix una f \mathbb{D} -holomorfa tal que f(0) = 0 i

$$f(z_j) = w_j, \quad 1 \le j \le n - 1$$

si i només si existeix $g(z) = \frac{f(z)}{z}$ un \mathbb{D} -holomorfisme tal que

(4.5)
$$g(z_j) = \frac{w_j}{z_j}, \quad 1 \le j \le n - 1.$$

A més, f és producte de Blaschke de grau d si i només si g ho és de grau d-1. Per la hipòtesi d'inducció, (4.5) té solució si i només si

$$\tilde{Q}_{n-1}(s_1,\ldots,s_{n-1}) = \sum_{i,k=1}^{n-1} \frac{1 - \left(\frac{w_j}{z_j}\right) \overline{\left(\frac{w_k}{z_k}\right)}}{1 - z_j \overline{z_k}} s_j \overline{s_k} \ge 0,$$

per a tot $s_1, \ldots, s_{n-1} \in \mathbb{R}$. El teorema es redueix a veure que

$$Q_n \ge 0 \iff \tilde{Q}_{n-1} \ge 0$$

sota la condició $w_n = z_n = 0$.

 $Com z_n = w_n = 0,$

$$Q_n(t_1,\ldots,t_n) = |t_n|^2 + 2\operatorname{Re}\sum_{j=1}^{n-1} \overline{t_j}t_n + \sum_{j,k=1}^{n-1} \frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} t_j \overline{t_k}.$$

Si completem quadrats per a t_n , tenim

$$Q_n(t_1, \dots, t_n) = \left| t_n + \sum_{j=1}^{n-1} t_j \right|^2 + \sum_{j,k=1}^{n-1} \left(\frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} - 1 \right) t_j \overline{t_k}.$$

Ara bé,

$$\frac{1 - w_j \overline{w_k}}{1 - z_j \overline{z_k}} - 1 = \frac{z_j \overline{z_k} - w_j \overline{w_k}}{1 - z_j \overline{z_k}} = \frac{1 - \left(\frac{w_j}{z_j}\right) \overline{\left(\frac{w_k}{z_k}\right)}}{1 - z_j \overline{z_k}} z_j \overline{z_k}$$

i per tant

$$Q_n(t_1,\ldots,t_n) = \left|\sum_{j=1}^n t_j\right|^2 + \tilde{Q}_{n-1}(z_1t_1,\ldots,z_{n-1}t_{n-1}).$$

Llavors
$$\tilde{Q}_{n-1} \ge 0 \implies Q_n \ge 0$$
.
Finalment, fixant $t_n = -\sum_{j=1}^{n-1} t_j$ veiem que $Q_n \ge 0 \implies \tilde{Q}_{n-1} \ge 0$.

5 El treball de Nevanlinna

No oblidem, però, que el problema d'interpolació (1) porta el nom d'un altre matemàtic, Rolf Nevanlinna.

Nevanlinna, tot i publicar els seu treball més tard, dona uns resultats molt rellevants. Amb una construcció basada en l'algorisme de Schur, construeix les solucions del problema i, amb unes hipòtesis extra, construeix també les solucions per la problema amb un nombre infinit de punts. Dit d'una altra manera, amb una condició addicional, Nevanlinna descriu totes les funcions f que són \mathbb{D} -holomorfes i tals que

(5.1)
$$f(z_j) = w_j, \quad j = 1, 2, \dots$$

Abans d'enunciar aquest teorema, introduïm una mica de notació. Al conjunt del tots els \mathbb{D} -holomorfismes el denotarem per B, i al conjunt de les solucions del problema de Pick-Nevanlinna per n punts el denotarem per E_n .

$$B = \{f : f \text{ \'es un } \mathbb{D}\text{-holomorfisme}\}$$

$$E_n = \{f \in \mathbb{B}: f(z_j) = w_j, \ 1 \le j \le n\}$$

Seguint aquesta notació, les solucions de (5.1) formen el conjunt E_{∞} . Aquesta secció requerirà d'una lleugera noció d'anàlisi funcional i teoria de la mesura. Parlarem de **gairebé en tot punt** per dir que una propietat és compleix tret d'un conjunt de mesura nul·la.

Per últim, introduïm un concepte nou. Diem que una funció $f \in B$ és **inner** function si $|f(e^{i\theta})| = 1$ gairebé per a tot $\theta \in \mathbb{R}$.

Teorema 5.1 (Nevanlinna). Si hi ha dues funcions de Bque satisfan la interpolació (5.1), llavors hi ha una inner function que també satisfà (5.1).

Seguint la Secció 6 de Capítol IV d'en Garnett [2], la demostració d'aquest teorema serà orgànica. Anirem veient els resultats auxiliars conforme els anem necessitant. Començarem parametritzant E_n (i per tant resolent el problema per a n punts) i posteriorment farem el pas a $E_{\infty} = \bigcap_n E_n$ per veure finalment que aquest conjunt conté inner functions.

Comencem per E_1 . Aprofitem la idea que va sortir a la demostració del Teorema de Pick 4.4. Per mitjà d'homografies, el problema de trobar $f \in B$ tal que $f(z_1) = w_1$ es redueix a trobar $h \in B$ tal que f(0) = 0.

Figura 4: Reduïm el problema enviant z_1 i w_1 al 0

Llavors $h(z) = zg_1(z)$ per a algun $g_1 \in B$.

$$f = \tau_{w_1}^{-1} \circ h \circ \tau_{z_1} \iff \tau_{w_1} \circ f = h \circ \tau_{z_1}$$

Com $h(z) = zg_1(z)$, tenim que $h \circ \tau_{z_1} = \tau_{z_1} \cdot (g_1 \circ \tau_{z_1})$. Reescrivim $(g_1 \circ \tau_{z_1})(z)$ com $(\tau_{-c_1} \circ f_1)(z)$ per a un cert $c_1 \in \mathbb{D}$ i $f_1 \in \mathbb{B}$, que podríem escriure en termes de g_1 i c_1 si fos necessari (no ho serà). El c_1 ens serà útil triar-lo més endavant. Tenim, doncs,

(5.2)
$$\frac{f - w_1}{1 - \bar{w}_1 f} = \frac{f_1 + c_1}{1 + \bar{c}_1 f_1} \frac{z - z_1}{1 - \bar{z}_1 z}.$$

Siguin

$$A_1(z) = w_1(1 - \bar{z}_1 z) + c_1(z - z_1),$$

$$B_1(z) = \bar{c}_1 w_1(1 - \bar{z}_1 z) + (z - z_1),$$

$$C_1(z) = (1 - \bar{z}_1 z) + c_1 \bar{w}_1(z - z_1),$$

$$D_1(z) = \bar{c}_1(1 - \bar{z}_1 z) + \bar{w}_1(z - z_1),$$

llavors per a tota $f_1 \in B$, (5.2) defineix una funció $f \in E_1$,

(5.3)
$$f(z) = \frac{A_1(z) + B_1(z)f_1(z)}{C_1(z) + D_1(z)f_1(z)}$$

i aquesta es la parametrització de E_1 .

Suposem ara $f \in E_n$, $n \geq 2$. Llavors (5.2) determina $f_1(z_j)$ per $2 \leq j \leq n$. Resolent (5.2) obtenim

(5.4)
$$f_1(z_j) = w_j^{(1)}, \quad 2 \le j \le n.$$

És clar que $\left|w_{j}^{(1)}\right| \leq 1$, ja que $f_{1} \in \mathbb{B}$. A més, el cas $\left|w_{j}^{(1)}\right| = 1$ per a algun j no és possible, ja que llavors pel principi del mòdul máxim $f_{1}(z) \equiv w_{j}^{(1)}$, |z| < 1 i per (5.2) E_{n} conté només una funció. Tenim doncs

$$\left| w_j^{(1)} \right| < 1, j = 2, 3, \dots$$

Hem aconseguit poder ignorar el valor $f_1(z_1)$, i ara E_n està definit només per les n-1 equacions (5.4), en lloc de les n originals. Repetint el raonament, per a un cert $c_2 \in \mathbb{D}$, escrivim

(5.5)
$$\frac{f_1 - w_2^{(1)}}{1 - \bar{w}_2^{(1)} f_1} = \frac{f_2 + c_2}{1 + \bar{c}_2 f_2} \frac{z - z_2}{1 - \bar{z}_2 z}.$$

Ara $f \in E_2$ si i només si $f_1(z_2) = w_2^{(1)}$, la qual cosa succeeix si i només si (5.5) es compleix per a alguna $f_2 \in \mathbb{B}$. A més, quan n > 2, $f \in E_n$ si i només si

$$f_2(z_j) = w_j^{(2)}, \quad 3 \le j \le n,$$

on $w_j^{(2)}$ queda determinat per (5.5). També tenim $\left|w_j^{(2)}\right| < 1$ pel mateix raonament que ens donava $\left|w_j^{(1)}\right| < 1$.

Continuem per inducció, sempre assumint que E_n conté més d'una funció. Per $k \leq n, f \in E_n$ si i només si hi ha $f_0, f_1, \ldots, f_k \in B$ tals que $f_0 = f$ i

$$f_k(z_j) = w_j^{(k)}, \quad k+1 \le j \le n$$

amb $\left|w_{j}^{(k)}\right|<1$ i $w_{j}^{(0)}=w_{j}$ i tals que

(5.6)
$$\frac{f_{k-1} - w_k^{(k-1)}}{1 - \bar{w}_k^{(k-1)} f_{k-1}} = \frac{f_k + c_k}{1 + \bar{c}_k f_k} \frac{z - z_k}{1 - \bar{z}_k z}.$$

on $c_k \in \mathbb{D}$ que den per determinar. Els valors concrets de $w_j^{(k)}$ no ens són rellevants. De finim

(5.7)
$$\alpha_{k}(z) = w_{k}^{(k-1)}(1 - \bar{z}_{k}z) + c_{k}(z - z_{k}),$$

$$\beta_{k}(z) = \bar{c}_{k}w_{k}^{(k-1)}(1 - \bar{z}_{k}z) + (z - z_{k}),$$

$$\gamma_{k}(z) = (1 - \bar{z}_{k}z) + c_{k}\bar{w}_{k}^{(k-1)}(z - z_{k}),$$

$$\delta_{k}(z) = \bar{c}_{k}(1 - \bar{z}_{k}z) + \bar{w}_{k}^{(k-1)}(z - z_{k}),$$

i reescrivim (5.6) a l'estil de (5.3),

(5.8)
$$f_{k-1}(z) = \frac{\alpha_k(z) + \beta_k(z) f_k(z)}{\gamma_k(z) + \delta_k(z) f_k(z)}.$$

Per inducció, (5.8) i (5.3) ens donen

(5.9)
$$f(z) = \frac{A_n(z) + B_n(z)f_n(z)}{C_n(z) + D_n(z)f_n(z)}$$

on

(5.10)
$$A_{n}(z) = \gamma_{n}(z)A_{n-1}(z) + \alpha_{n}(z)B_{n-1}(z),$$

$$B_{n}(z) = \delta_{n}(z)A_{n-1}(z) + \beta_{n}(z)B_{n-1}(z),$$

$$C_{n}(z) = \gamma_{n}(z)C_{n-1}(z) + \alpha_{n}(z)D_{n-1}(z),$$

$$D_{n}(z) = \delta_{n}(z)C_{n-1}(z) + \beta_{n}(z)D_{n-1}(z),$$

són polinomis de grau com a molt n en z. Queda demostrat

Lema 5.2. Siguin A_n, B_n, C_n, D_n els polinomis definits per (5.10) i (5.7). Llavors $f(z) \in E_n$ si i només si f compleix (5.9) per a algun $f_n \in B$.

És hora de parlar dels c_k . Fixem $c_k = \bar{z}_k w_k^{(k-1)}$. Això famosa

$$\delta_k(0) = 0, \quad k = 1, 2, \dots, n.$$

A més, com $D_1(0) = z_1 \bar{w}_1(1-0) + \bar{w}_1(0-z_1) = 0$ i $D_k(0) = \delta_k(0)C_{k-1}(0) + \beta_k(0)D_k - 1(0)$ tenim

$$D_k(0) = 0, \quad k = 1, 2, \dots, n.$$

Ens serà important en particular que $\delta_n(0) = D_n(0) = 0$.

Fix n i $z \in \mathbb{D}$,

$$\tau_{n,z}(w) = \frac{A_n(z) + B_n(z)w}{C_n(z) + D_n(z)w}$$

és una homografia. Triant $f_n(w) = w$ a (5.9), tenim

$$\tau_{n,z}(\bar{\mathbb{D}})\subseteq\bar{\mathbb{D}}.$$

Com $\tau_{n,z}$ és una homografia, $\tau_{n,z}(\partial \mathbb{D})$ és una recta o una circumferència, i com ha de ser dins $\bar{\mathbb{D}}$, $\tau_{n,z}(\partial \mathbb{D})$ és necessàriament una circumferència. Llavors $\tau_{n,z}(\bar{\mathbb{D}})$ és un disc dins \mathbb{D} , diem-li $\Delta_n(z)$.

Per |z| < 1 tenim doncs que $\{f(z) \colon f \in E_n\}$ és un disc tancat $\Delta_n(z) \subseteq \overline{\mathbb{D}}$ definit per

(5.11)
$$\left\{ \frac{A_n(z) + B_n(z)w}{C_n(z) + D_n(z)w} \colon |w| \le 1 \right\}.$$

Per |z|=1 la fórmula té sentit, tot i que potser algun $f \in E_n$ no és definit a z.

Busquem ara el radi i centre de $\Delta_n(z)$. Per trobar el centre raonarem geomètricament. L'antiimatge de ∞ per $\tau_{n,z}$ és $-C_n/D_n$. Per simetría, la seva reflexió respecte $\partial \mathbb{D}$ serà el centre de $\Delta_n(z)$. Per tant, $\tau_{n,z}(-\overline{D_n/C_n})$ és el centre de $\Delta_n(z)$.

Per trobar el radi $\rho_n(z)$, observem que per a qualsevol |w|=1,

$$\rho_n(z) = \left| \tau_{n,z} \left(-\frac{D_n}{C_n} \right) - \tau_{n,z}(w) \right|$$

triem w = 1 i tenim

$$\rho_n(z) = \left| \frac{A_n \bar{C}_n - B_n \bar{D}_n}{|C_n|^2 - |D_n|^2} - \frac{A_n + B_n}{C_n + D_n} \right| = \left| \frac{A_n D_n - B_n C_n}{|C_n|^2 - |D_n|^2} \right| \left| \frac{\bar{C}_n + \bar{D}_n}{C_n + D_n} \right|$$
$$= \left| \frac{A_n D_n - B_n C_n}{|C_n|^2 - |D_n|^2} \right|.$$

Observem que $\Delta_n(z)$ degenera en un sol punt si i només si $z=z_j$ per a algun $1\leq j\leq n$, ja que

$$(5.12) A_n D_n - B_n C_n = (\gamma_n \beta_n - \alpha_n \delta_n) (A_{n-1} D_{n-1} - B_{n-1} C_{n-1})$$

$$= \prod_{k=1}^n (1 - |z_k|^2 |w_k^{(k-1)}|^2) (1 - |w_k^{(k-1)}|^2) (z - z_k) (1 - \bar{z}_k z).$$

El següent pas serà normalitzar A_n, B_n, C_n, D_n . Per a això ens calen dos lemes:

Lema 5.3. Si $E_n \neq \emptyset$, llavors quan |z| = 1, $\Delta_n(z) = \bar{\mathbb{D}}$, $\rho_n(z) = 1$ i

$$|B_n(z)| = |C_n(z)|$$

$$|A_n(z)| = |D_n(z)|$$

$$\frac{A_n(z)}{C_n(z)} = \overline{\left(\frac{D_n(z)}{B_n(z)}\right)} = \lambda_n(z), \quad amb \ |\lambda_n(z)| < 1.$$

Demostració. És suficient demostrar que $\Delta_n(z) = \bar{\mathbb{D}}$, $\rho_n(z) = 1$. Ho provarem per inducció. Fix $z = e^{i\theta}$ i $\xi \in \bar{\mathbb{D}}$. Per n = 1, existeix una constant c_1 i $f_1 \in \mathbb{B}$ tals que

(5.13)
$$\frac{f_1(e^{i\theta}) + c_1}{1 + \bar{c}_1 f_1(e^{i\theta})} = \left(\frac{\xi - w_1}{1 - \bar{w}_1 \xi}\right) / \left(\frac{e^{i\theta} - z_1}{1 - \bar{z}_1 e^{i\theta}}\right).$$

i 5.2) ens dona $f \in E_1$ tal que $f(e^{i\theta}) = \xi$. Per n > 1, el conjunt

$$\left\{ f_1 \in \mathtt{B} \colon f_1(z_j) = w_j^{(1)}, \ j = 2, \dots, n \right\}$$

és no-buit, ja que $E_n \neq \emptyset$. Per inducció aquest conjunt conté una funció f_1 que satisfà (5.13). Com abans, per (5.2), tenim $f \in E_n$ tal que $f(e^{i\theta}) = \xi$.

Lema 5.4. $C_n(z)$ no té zeros en $|z| \leq 1$.

Demostració. Si $C_n(z)=0$, per a $\xi=0$ en (5.11) veiem que $A_n(z)=0$. Llavors $A_n(z)D_n(z)-B_nC_n(z)=0$ i per tant $z=z_j$ per a algun $j=1,2,\ldots,n$. Com per (5.12) només té zero d'ordre 1, tenim

$$A'_n(z_i)D_n(z_i) - B_n(z_i)C'_n(z_i) \neq 0$$

quan $C_n(z_j) = A_n(z_j) = 0$. Mantenint $\xi = 0$ en (5.12),

$$w_j = \lim_{z \to z_j} \frac{A_n(z)}{C_n(z)} = \lim_{z \to z_j} \frac{A'_n(z)}{C'_n(z)}.$$

Si $C'_n(z_j) = 0$, llavors $A'_n(z_j) = 0$, mentre que si $C'_n(z_j) \neq 0$, $A'_n(z_j)/C'_n(z_j) = w_j$.

$$A'_n(z_j) = w_j C'_n(z_j).$$

D'altra banda, si $\xi = 1$ en (5.11), ens surt

$$B_n(z_j) = w_j D_n(z_j).$$

Per tant $A'_n(z_j)D_n(z_j) - B_n(z_j)C'_n(z_j) = 0$, una contradicció.

Vist això, podem normalitzar. La tria és

$$\psi_n(z) = \left(\prod_{k=1}^n \frac{|z_k|}{-\bar{z}_k} \left(1 - |z_k|^2 |w_k^{(k-1)}|^2 \right) \left(1 - |w_k^{(k-1)}|^2 \right) (1 - \bar{z}_k z)^2 \right)^{1/2}.$$

Com $\psi_n(z)$ no té zeros a $\bar{\mathbb{D}}$, definim

$$P_n(\frac{A_n}{\psi_n}), \quad Q_n = \frac{B_n}{\psi_n}, \quad R_n = \frac{C_n}{\psi_n}, \quad S_n = \frac{D_n}{\psi_n}$$

i són funcions racionals analítiques en $|z| \le 1$. A més,

$$f(z) = \frac{P_n(z + Q_n(z)f_n(z))}{R_n(z) + S_n(z)f_n(z)}, \quad f_n \in \mathbf{B}$$

és la nova parametrització de E_n .

l'avantatge és que aquesta parametrització és que

$$P_n(z)S_n(z) - Q_n(z)R_n(z) = \prod_{k=1}^n \frac{-\bar{z}_k}{|z_k|} \frac{z - z_k}{1 - \bar{z}_k z} =: \Pi_n(z)$$

és un producte de Blaschke amb zeros z_1,\dots,z_n i també tenim

$$\rho_n(z) = \frac{|\Pi_n(z)|}{|R_n(z)|^2 - |S_n(z)|^2},$$

que pel Lema 5.3

$$(5.14) |R_n(z)|^2 - |S_n(z)|^2 = 1, si |z| = 1.$$

Pel Lema 5.4, R_n no té zeros en $\mathbb D$ i de l'expressió anterior s'obté

$$\frac{1}{|R_n(z)|} \le 1, \quad |z| \le 1.$$

Pel Principi del Mòdul Màxim, les identitats del Lema 5.3 ens donen

(5.15)
$$|P_n(z)| \le |R_n(z)| |Q_n(z)| \le |R_n(z)| |z| \le 1. |S_n(z)| \le |R_n(z)|$$

Teorema 5.5. Suposem $E_{\infty} = \cap E_n$ conté dos funcions amb diferents valors a z = 0. Llavors hi ha una parcial $n_j \to \infty$ tal que tots

$$P(z) = \lim_{j \to \infty} P_{n_j}(z)$$

$$Q(z) = \lim_{j \to \infty} Q_{n_j}(z)$$

$$R(z) = \lim_{j \to \infty} R_{n_j}(z)$$

$$S(z) = \lim_{j \to \infty} S_{n_j}(z)$$

existeixen i no són idènticament nuls. A més,

$$P(z)S(z) - Q(z)R(z) = \Pi(z)$$

el producte de Blaschke amb zeros $\{z_j\}$. Si $f \in B$, llavors $f \in E_{\infty}$ si i només si

(5.16)
$$f(z) = \frac{P(z) + Q(z)f_{\infty}(z)}{R(z) + S(z)f_{\infty}(z)}, \quad |z| < 1$$

per a algun $f_{\infty} \in B$.

Demostració. La hipòtesi que en $\cap E_n$ conté dues funcions amb diferents valors a z=0 implica que $\lim \rho_n(0)>0$. Aquest límit existeix ja que $E_{n+1}\subset E_n, \, \rho_{n+1}\leq \rho_n$. Com $D_n(0)=0$, per la tria dels c_n de (5.6) tenim

$$|R_n(0)|^2 = \frac{|\Pi_n(0)|}{\rho_n(0)},$$

per tant

$$\lim_{n \to \infty} |R_n(0)| < \infty.$$

Triem n_j tal que la seqüència acotada $\{1/R_{n_j}(z)\}$ convergeixi en \mathbb{D} . Com $1/R_n(z)$ no té zeros en |z| < 1, la funció límit és idènticament 0 a \mathbb{D} o no és zero mai. Per (5.17) tenim que no és idènticament 0, per tant no és zero en cap punt de \mathbb{D} . En conseqüència, $R_{n_j}(z)$ convergeix uniformement en compactes de \mathbb{D} cap a una funció analítica R(z), que no té zeros en \mathbb{D} . Per (5.15) podem fer una tria més fina del $\{n_j\}$ tal que

$$P(z) = \lim_{j \to \infty} P_{n_j}(z)$$

$$Q(z) = \lim_{j \to \infty} Q_{n_j}(z)$$

$$S(z) = \lim_{j \to \infty} S_{n_j}(z)$$

també existeixin. Llavors

$$P(z)S(z) - Q(z)R(z) = \lim_{j \to \infty} \Pi_{n_j}(z) = \Pi(z)$$

i aquestes funcions límit no són idènticament zero.

Si $f \in \cap E_n$, pel Lema 5.2 hi ha $f_n \in B$ tal que

$$f = \frac{P_n + Q_n f_n}{R_n + S_n f_n} -$$

Refinem $\{n_j\}$ tal que $f_{n_j}(z)\to f_\infty(z),\,|z|<1$ amb $f_\infty\in \mathtt{B}.$ Això dona

$$f = \frac{P + Qf_{\infty}}{R + Sf_{\infty}}.$$

Anàlogament, si $f_{\infty} \in \mathbb{B}$, llavors

$$f^{(n)} = \frac{P_n + Q_n f_{\infty}}{R_n + S_n f_{\infty}} \in E_n$$

i $f^{(n)}$ té limit $f \in E_{\infty}$.

Aquest últim resultat ens determina totes les solucions del problema d'interpolació tant per a un nombre finit de punts com per a un nombre infinit, suposant que sapiguem que hi ha dues o més solucions diferents.

No hem acabat, però. El Teorema de Nevanlinna donava un resultat més fort. Abans, un parell de comentaris. Es pot veure que P, Q, R, S no depenen de $\{n_j\}$ i són únicament determinats pel problema original i la tria de c_n que es fa a (5.6). Aquest fet no ens és rellevant i no el demostrarem.

Una conseqüència de la caracterització de f que dona el teorema és que com $E_{n+1} \subseteq E_n$, els discs $\Delta_n(z)$ disminueixen al disc límit $\Delta_\infty(z) = \{f(z) : f \in E_\infty\}$ i

$$\Delta_{\infty}(z) = \left\{ \frac{P(z) + Q(z)\xi}{R(z) + S(z)\xi} : |\xi| < 1 \right\}.$$

Com $P(z)S(z) - Q(z)R(z) = \Pi(z)$, $\Delta_{\infty}(z)$ és no-trivial per a $z \notin \{z_j\}$. El radi és

$$\rho_{\infty}(z) = \lim_{n \to \infty} \rho_n(z) = \frac{|\Pi(z)|}{|R(z)|^2 - |S(z)|^2}.$$

Tornem al teorema que ha iniciat aquesta secció. El podem reescriure com

Teorema 5.6. Si E_{∞} conté dos funcions diferents i $e^{i\varphi}$ és una constant de mòdul 1, llavors

(5.18)
$$f(z) = \frac{P(z) + Q(z)e^{i\varphi}}{R(z) + S(z)e^{i\varphi}}$$

és una inner function dins E_{∞} .

Demostració. Pel teorema anterior 5.5, $f \in E_{\infty}$ i, en particular, $||f||_{\infty} \leq 1$. Suposem que existeix $E \subset \partial \mathbb{D}$, $|E| \cong \int \chi_E(\theta) d\theta/(2\pi) > 0$ (una regió del cercle unitat amb mesura positiva) tal que

$$|f(e^{i\theta})| \le \alpha < 1, \quad \theta \in E.$$

i busquem una contradicció.

Per alleugerar la notació, ometrem n_j reindexant $\{n\}$ tal que $R_n(z) \to R(z)$, $P_n(z) \to P(z), Q_n(z) \to Q(z), S_n(z) = S(z)$.

Fixem M > |R(0)|. Pel Lema 5.4, $R_n(z)$ no té zeros a $\bar{\mathbb{D}}$. Tenim

(5.20)
$$\log M > \log |R_n(0)| = \frac{1}{2\pi} \int \log |R_n(e^{i\theta})| \ge 0.$$

Per la Desigualtat de Markov, (5.20) ens dona

$$\left|\left\{\theta \colon \log\left|R_n(e^{i\theta})\right| > 2\log M/|E|\right\}\right| \le \frac{|E|}{2\log M} \frac{1}{2\pi} \int \log\left|R_n(e^{i\theta})\right| d\theta \le \frac{|E|}{2},$$

per $n > n_0$. Llavors

$$E_n = \left\{ \theta \in E : \left| R_n(e^{i\theta}) \right| < M^{2/|E|} \right\}$$

satisfà $|E_n| \geq |E|/2$, $n > n_0$.

Per (5.14) i el Lema 5.3, també tenim

$$\left| \frac{P_n(e^{i\theta})}{R_n(e^{i\theta})} \right|^2 = 1 - \frac{1}{|R_n(e^{i\theta})|^2},$$

que ens porta a

(5.21)
$$\left| \frac{P_n(e^{i\theta})}{R_n(e^{i\theta})} \right| = \left(1 - M^{-4/|E|} \right)^{1/2} = \beta < 1$$

per $\theta \in E_n$, $n > n_0$.

Com que $f \in E_n$, existeix $f_n \in B$ tal que

$$f(z) = \frac{P_n(z) + Q_n(z)f_n(z)}{R_n(z) + S_n(z)f_n(z)}.$$

Com P_n, Q_n, R_n, S_n són continues a $\bar{\mathbb{D}}$ o $|P_n S_n - Q_n R_n| = 1$ a $\partial \mathbb{D}$, $f_n(z)$ té límit radial $f_n(e^{i\theta})$ sempre que f(z) el tingui a $f(e^{i\theta})$. Llavors en $e^{i\theta} \in E$, $f_k(e^{i\theta})$ existeix i

$$(5.22) f(e^{i\theta}) = \frac{P_n(e^{i\theta}) + Q_n(e^{i\theta})f_n(e^{i\theta})}{R_n(e^{i\theta}) + S_n(e^{i\theta})f_n(e^{i\theta})}.$$

Pel Lema 5.3, la homografia

$$\xi \to \frac{P_n(e^{i\theta}) + Q_n(e^{i\theta})\xi}{R_n(e^{i\theta}) + S_n(e^{i\theta})\xi}$$

preserva la distància pseudohiperbòlica. Llavors $|f_n(e^{i\theta})| = \rho(f_n(e^{i\theta}), 0) = \rho(f(e^{i\theta}), P_n(e^{i\theta})/R_n(e^{i\theta}))$. Per $n > n_0$ i per $e^{i\theta} \in E_n$, (5.19) i (5.21) ens porten a

$$\left| f_n(e^{i\theta}) \right| \le \frac{\left| f(e^{i\theta}) \right| + \left| P_n(e^{i\theta}) \right| / \left| R_n(e^{i\theta}) \right|}{1 + \left| f(e^{i\theta}) \right| / \left| R_n(e^{i\theta}) \right|} \le \frac{\alpha + \beta}{1 + \alpha\beta} = \gamma < 1.$$

En conseqüència,

$$|f_n(0)| \le \frac{1}{2\pi} \int |f_n(e^{i\theta})| d\theta \le (\gamma |E_n| + (1 - |E_n|)) \le \left(\gamma \frac{|E|}{2} + \left(1 - \frac{|E|}{2}\right)\right) = \eta < 1.$$

Prenem una subseqüència $\{f_{n_j}\}$ tal que $f_{n_j}(0) \to \xi$, $|\xi| \le \eta < 1$. Llavors

(5.23)
$$f(0) = \lim_{j \to \infty} \frac{P_{n_j}(0) + Q_{n_j}(0) + f_{n_j}(0)}{R_{n_j}(0) + S_{n_j}(0)f_{n_j}(0)} = \frac{P(0) + Q(0)\xi}{R(0) + S(0)\xi}.$$

Com $P(0)S(0) - Q(0)R(0) \neq 0$, a partir de (5.18) concloem que $\xi = e^{i\theta}$, fet que contradiu $|\xi| \leq \eta < 1$. Per tant $|f(e^{i\theta})| = 1$ gairebé per a tot $|e^{i\theta}| = 1$.

Referències

- [1] Lester R. Ford. Automorphic functions. Chelsea Publications, 1972.
- [2] John B. Garnett. Bounded Analytic Functions. Springer New York, 2007.
- [3] Walter Rudin. Real and complex analysis. McGraw-Hill, 1974.
- [4] Dineen Seán. The Schwarz lemma. Dover Publications, Inc., 2016.