Recommender Systems

Scott Sanner

IR, ML, and Recommendation

- IR
 - Find documents relevant to a query
 - Long tail of queries
 - No labels
- ML
 - Predict on future data given training data
 - Fixed task (spam, topic classification)
 - Requires a lot of labeled data

IR, ML, and Recommendation

- Recommendation
 - "Personalized" machine learning
 - Predict differently for every user (row)
 - Rather than train per user (sparse data)...
 - Leverage similar users (transfer learning)
 - Like ML, have lot's of labeled data
 - Like IR, large output space y to recommend
 - · Not often query-driven

Recommend many Bipartite Relations

- Bipartite Relations
 - Movies, books, store products, news articles → users
 - Questions → students (automated tutoring)
 - Points of interest → tourists
 - Products → stores, vending machines
 - Tags → documents

Note: users here are vending machines, docs... "personalization" is relative

Not just binary relations

- Classes (binary, k-ary), ratings (ordinal, real)
- Combinatorial objects (product quantities)
- Ternary, k-ary relations (tensors)

Fundamental Methods

Types of Recommendations

- · Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- · Tailored to individual users
 - Amazon, Netflix, ...

Extensions to Standard Recommendation Methods

- User and item side information
- Social (and other) side information
- Cold-start
- Implicit Feedback

Can you think of any uses of tensor factorization in recommendation?

Implicit Negatives

- · Also called "one-class" collaborative filtering
- · Only occurs for problems with binary feedback
 - Assume "true" class is observed (liked, purchased, ...)
 - Why doesn't it occur in case of 1-5 rating feedback?
- What if we impute missing values = "false"
 - It throws probabilistic calibration
 - But it is **OK for ranking** under certain conditions
 - C. Elkan and K. Noto. Learning Classifiers from Only Positive and Unlabeled Data. KDD 2008.
- Often Jaccard works as better metric in one-class case

What other sources of side information could be helpful?

How would you integrate it into the recommender system?

Additional Lecture Material

(Not tested)

Note on "Implicit"

- · Used in many contexts (not only missing negatives)
 - Cases where have additional information on items
 - Whether a user rated a movie, book, etc.
 - Whether a user clicked on a movie, book, etc.
 - · How much of a movie a user watched, or a book read
 - Which book pages they read
 - A form of (user, item) side information
 - · Same item space (unlike user, or social side information)
 - · Not clear what time on a page means vs. book purchase
 - Information such as click feedback may be very weak

Additional CF Tricks I

- · User row normalization
 - Subtract user average from each user
 - Add back in before prediction
- · Use of Pearson correlation similarity
 - Reported to work better for Netflix
- · Computer weighted sum
 - I.e., Not weighted average so remove normalizer
 - OK for ranking (but not bounded for RMSE)
 - Prevents low similarity items from being divided by a small weight (=large rating)

Additional CF Tricks II

- Binary view of rating feedback?
 - Not only is a user rating important
 - But the fact that they rated (watched) it is as well
 - Consider users who've seen the same movies?
 - Convert 1-5 ratings to a single value 1 (rated)
 - Use Jaccard to measure user overlap
 - Use to augment cosine/Pearson similarity

Additional CF Tricks III

- · Time sensitive recommendation
 - Item popularity changes over time
 - User preferences change over time
 - · Each handled differently
 - CF ranking approach to handle user drift
 - $$\begin{split} \bullet & \;\; \mathsf{R}(\mathsf{u},\mathsf{i}) = \sum_{j \neq i} \mathsf{Sim}(\mathsf{i},\mathsf{j}) * \mathsf{decay}(\mathsf{u},\mathsf{i},\mathsf{j}) * \mathsf{R}(\mathsf{u},\mathsf{j}) \, / \, (\mathsf{optional normalizer}) \\ \bullet & \;\; \mathsf{Decay}(\mathsf{u},\mathsf{i},\mathsf{j}) = e^{\lambda \, (\mathsf{time_now_or_i_rated_time_when_u_rated_j)} \end{split}$$
 - Assume i rated after j
 - · Or we would not be trying to recommend it!
 - · Weights user's more recent ratings more highly