Dot Patterns Perceptual Grouping: RDG vs K-means

What will we talk about?

- Visual perception of a scene
- Gestalt and Dot Patterns perception
- What is clustering?
- K-Means clustering algorithm
- Algorithm based on the Reduced Delaunay Graph
- Comparison between the two algorithms

How can the perception of Dot Patterns be modeled?

How many groups do we perceive?

Location and Orientation Columns

Neurons in a location column have close receptive fields.

Inside a location column there are orientation columns with certain **preferred orientations**.

The orientation columns are grouped in **pinwheels** alternating with **blobs**.

The ocular dominance columns receive input from an eye or the other via the Lateral Geniculate Nucleus.

Gestalt Laws

The psychology of Gestalt concerns **form** and **representation** in the context of the Human Visual System.

Elements in a group can have properties that emerge from mutual relationships.

Gestalt Law: proximity

The human eye tends to **group nearby elements**, separating them from those farther away.

We want to reproduce this **algorithmically**!

A way to model Gestalt: Clustering

Clustering is a set of unsupervised techniques aimed at selecting and **grouping homogeneous elements** in a data set.

Tipologie:

- Hard clustering: each element is assigned to one and only one cluster.
- **Soft/fuzzy clustering**: an element can belong to multiple clusters with different degrees of membership.
- Partitioning clustering (or not hierarchical or k-clustering): group membership is determined by the distance from a representative point. Example: k-means.
- Hierarchical clustering: uses a hierarchy of partitions characterized by an increasing or decreasing number of groups.

Dot Patterns

K-means clustering

First idea: using the **k-means** algorithm.

Group identification \rightarrow selecting representative centroids that minimize a certain **cost** function: $\sum_{j=1}^{k} E(C_j)$

For example the **Sum of Square Distances** (SSD): $\sum_{cluster i} \sum_{points \ p \ in \ cluster \ i} |p - c_i|^2$

Chicken and egg problem with the groups and corresponding centroids!

K-means clustering

Input: an array of points in the plane characterized by a pair of coordinates [x, y] and the number k of clusters.

Output and effects (typically): the coordinates of centroids for each cluster and the assignment of each input point to a cluster.

- 1. **Randomly** initialize k centroids $c_1, ..., c_k$
- 2. Given the centroids find points for each cluster:
 - a) For each point p find the nearest c_i
 - b) Put *p* in cluster *i*
- 3. Given the found points in each cluster, find c_i and set c_i as the mean of the points in cluster i
- 4. If c_i has changed from the current one go back to 2. otherwise terminate

K-means clustering

We want to model **perception** more accurately!

Voronoi Diagram and Delaunay Triangulation

Given a set $S = \{p_1, ..., p_N\}$ of **N** points in the plane, partition the plane in cells $C_1, ..., C_N$ so that the points belonging to the cell C_j , associated with the point $p_j \in S$, are nearer to p_j than any other point $p_k \in S$, $k \neq j$:

$$q \in C_j \Leftrightarrow d(q, p_j) \le d(q, p_k) \quad \forall q, \ \forall p_j, p_k \in S$$

The dual of the Voronoi Diagram or Tessellation, called the Delaunay Triangulation or Graph, is obtained by **connecting all pairs of points** in set S whose Voronoi Diagram cells **share a boundary**.

Voronoi Diagram

Delaunay Triangulation

Reduced Delaunay Graph

Idea: keep **only some edges** so to highlight nearby zones.

Reduced Delaunay Graph

To select which edges pq to remove, calculate a **normalized distance**:

$$\xi(p,q) = \frac{d(p,q)}{\min_{x \in S} \{d(p,x)\}}; \qquad \xi(q,p) = \frac{d(q,p)}{\min_{x \in S} \{d(q,x)\}}$$

In doing so, two ratios $r_1(e) = \xi(p, q)$ and $r_2(e) = \xi(q, p)$ are assigned to each edge in the graph. Then, reduce them to one quantity, their **geometric average**:

$$r(e) = \sqrt{r_1(e) \cdot r_2(e)}$$

And remove every edge from the graph whose r(e) is greater than a certain **threshold** r_{τ} :

$$V_{RDG} = V_{DG};$$
 $E_{RDG} = \left\{ e \in E_{DG} \middle| r(e) \le r_T \right\}$

Reduced Delaunay Graph

RDG: Algorithm

Input: an array of points in the plane characterized by a pair of coordinates [x, y].

Output: a reduced array of points which form the RDG when connected with edges.

- 1. Compute the **Delaunay Triangulation** on the points given as input
- 2. For each point, compute the distances to its **neighbours**
- 3. **Normalize** the distances with the minimum of the distances to the neighbours
- 4. Compute the **geometric average** between the two ratios found for each edge and assign the result to it
- 5. **Thresholding**: remove the edges whose value is greater than a certain threshold

Similarities:

- Both are **non-supervised** algorithms
- The **tessellation** of the plane can be part of their operations or output
- Both work well with separated **point clouds**

Differences:

- RDG uses a graph to consider the distances between points
- RDG technically doesn't select representatives for the computed groups
- K-means can have elements of randomness

K-means pros:

- **Simple** to implement
- Computationally (pretty) efficient
- Always converges to a local minimum for each cluster

K-means cons:

- Setting *k* is difficult
- Sensitive to random initial centroids and noise
- Suited mainly to **spherical clusters**
- Doesn't model human perception that well

RDG pros:

- Models human perception well
- Can find groups even in **complex shapes**
- Robust to far away outliers

RDG cons:

- Setting the threshold is difficult (especially at different scales)
- Computationally heavy

K-means vs RDG: complexity

K-means: O(ntk), with n as number of points, t as number of iterations for converging to a local minimum, k as chosen number of clusters.

RDG: O(nlog(n)), with n as the number of points.

Complexity deducted empirically.

How could it be improved?

One thing we thought about was introducing a **dynamic threshold**.

Based on the average of the values of each edge.

Based on the area of the **minimum bounding circle**.

Mean vs Area threshold

Mean vs Area threshold

Mean vs Area threshold

External sources

- https://pressbooks.umn.edu/sensationandperception/chapter/columns-and-hypercolumns-in-v1
- https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms
- https://www.cs.rug.nl/~petkov/publications/2005LNCS3704_grouping_dots.pdf