# Algoritmos de otimização com meta-heurística

#### Daniel Arruda Ponte - 121048284

08 de Julho de 2025

#### Resumo

Este trabalho compara quatro algoritmos de otimização por meta-heurísticas: Algoritmo Genético (AG), Evolução Diferencial (DE), Otimização por Enxame de Partículas (PSO) e o C-DEEPSO. Os experimentos foram realizados nas funções de benchmark Rosenbrock e Rastrigin, em dimensões 10, 30 e 50, com 30 execuções por cenário. Os parâmetros foram ajustados via **optuna** e os resultados analisados com estatísticas descritivas, teste de Friedman e teste post-hoc Nemenyi. O DE apresentou os melhores desempenhos médios, enquanto o C-DEEPSO destacou-se por sua rápida convergência inicial e maior estabilidade em altas dimensões. O PSO se mostrou competitivo em baixas dimensões, e o AG teve desempenho inferior nos cenários mais desafiadores (dimensões mais altas e função multimodal).

### 1 Introdução

Nesse artigo, será comparada a implementação do algoritmo de otimização com metaheurística C-DEEPSO com os algoritmos DE, PSO e Algoritmo Genético, sendo todas elas implementações autorais. Esses testes serão feitos com as funções de benchmark Rosenbrock e Rastrigin para as dimensões 10, 30 e 50; além disso, os resultados serão validados com os métodos de inferência estatística do teste de Friedman e Nemenyi.

## 2 Algoritmos evolutivos

Algoritmos evolutivos são métodos de otimização originalmente inspirados em comportamentos da natureza, especialmente nos princípios da evolução natural, como seleção, cruzamento e mutação. Um exemplo clássico é o comportamento coletivo de enxames ou populações, em que os indivíduos interagem entre si e com o ambiente para adaptar-se e sobreviver – um princípio que é refletido na forma como as soluções candidatas interagem em busca de melhorias ao longo das gerações. Esses algoritmos operam sobre uma população de soluções e, de forma iterativa, selecionam e modificam os indivíduos com base em seu desempenho em relação a uma função objetivo.

Por serem métodos estocásticos, incorporam elementos de aleatoriedade em seu processo de busca, o que contribui para explorar eficientemente o espaço de soluções. Uma de suas principais vantagens é a flexibilidade: não exigem conhecimento analítico ou derivadas da função a ser otimizada, sendo adequados para problemas complexos, não lineares e com múltiplos ótimos locais. No entanto, por sua natureza heurística, não garantem a obtenção do ótimo global — seu objetivo é fornecer boas aproximações da melhor solução possível. A seguir, serão apresentados individualmente os algoritmos evolutivos abordados neste artigo, com ênfase em suas características distintivas e desempenho comparativo.

#### 2.1 Algoritmo Genético (AG)

O Algoritmo Genético (AG) é uma meta-heurística inspirada nos princípios da evolução natural e seleção biológica. Ele busca encontrar a solução ótima de uma função f(x) por meio da evolução de uma população de soluções candidatas ao longo de várias gerações.

A cada iteração, também chamada de *geração*, o algoritmo executa as etapas de *seleção*, *crossover* e *mutação* para gerar uma nova população. A **seleção** privilegia os indivíduos mais aptos com base nos valores da função objetivo; o **crossover** combina indivíduos para gerar descendentes; e a **mutação** introduz variações aleatórias nos descendentes para manter a diversidade da população.

Na implementação feita neste trabalho, foram utilizados operadores de **seleção por torneio**, **cruzamento BLX-** $\alpha$  e **mutação creep**. A seguir, detalhamos os três operadores aplicados em cada geração do algoritmo.

Seleção por Torneio. A seleção por torneio é um método estocástico que consiste em amostrar aleatoriamente N indivíduos da população atual e selecionar o mais apto entre eles para reprodução. Esse processo é repetido até que a quantidade necessária de indivíduos selecionados seja atingida.

Crossover BLX- $\alpha$ . O operador de crossover BLX- $\alpha$  (Blend Crossover) é uma técnica utilizada para gerar um descendente N a partir de dois pais  $x^{(1)}$  e  $x^{(2)}$  no espaço contínuo; essa técnica recebe também um parâmetro  $\alpha$  para o cálculo da distribuição uniforme.

$$N = x^{(1)} + \mathcal{U}(-\alpha, 1 + \alpha) \times (x^{(2)} - x^{(1)})$$

**Mutação Creep.** A mutação *creep* consiste em adicionar uma pequena perturbação aleatória a cada gene de um indivíduo com uma certa probabilidade. Essa perturbação é usualmente amostrada de uma distribuição normal ou uniforme centrada em zero, para essa implementação foi utilizada a distribuição normal.

$$x_i \leftarrow x_i + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2),$$

### 2.2 Evolução Diferencial (DE)

A Evolução Diferencial (DE) é uma meta-heurística estocástica inspirada na recombinação e mutação de vetores direcionada por diferenças entre indivíduos da população.

Assim como o Algoritmo Genético, a cada geração, novos candidatos são criados por meio de três operações principais: **mutação**, **recombinação** e **seleção**. A **mutação** consiste em gerar um vetor perturbado a partir da diferença entre dois ou mais indivíduos da população; a **recombinação** mistura esse vetor mutante com o indivíduo atual para formar uma solução candidata; por fim, a **seleção** escolhe entre a solução atual e a nova, mantendo aquela com melhor valor de função objetivo.

Na implementação feita neste trabalho, utilizou-se a estratégia de mutação  $\mathbf{DE/current-to-best/1}$  e a recombinação do tipo binária. A seguir, detalham-se esses mecanismos utilizados em cada etapa da  $\mathbf{DE}$ .

Mutação Diferencial. A mutação é realizada pela combinação linear de vetores da população. Na implementação deste trabalho, o vetor mutante  $v_i$  é construído utilizando a estratégia **DE/current-to-best/1**, que possui o seguinte cálculo:

$$v_i = x_i + F \cdot (x_{\text{best}} - x_i) + F \cdot (x_{r1} - x_{r2})$$

Nessa expressão, os índices r1, r2 referem-se a vetores distintos escolhidos aleatoriamente da população (diferentes entre si e do vetor-alvo  $x_i$ ), F é o fator de escala e  $x_{\text{best}}$  é o indivíduo mais apto da população atual.

**Crossover Binário.** O operador de *crossover* combina o vetor-alvo  $x_i$  com o vetor mutante  $v_i$  para formar o vetor trial  $u_i$ . Para cada dimensão j, define-se:

$$u_{i,j} = \begin{cases} v_{i,j}, & \text{se } rand_j \le Cr \\ x_{i,j}, & \text{caso contrário} \end{cases}$$

onde Cr é a taxa de recombinação,  $rand_j$  é uma amostra aleatória em [0,1] e  $j_{rand}$  é um índice aleatório que garante que pelo menos um gene venha de  $v_i$ .

Seleção por Substituição Direta. Após gerar o vetor trial  $u_i$  e avaliá-lo, ele substitui o vetor-alvo  $x_i$  apenas se apresentar aptidão melhor (minimização da função objetivo):

$$x_i \leftarrow \begin{cases} u_i, & \text{se } f(u_i) < f(x_i) \\ x_i, & \text{caso contrário} \end{cases}$$

Esse mecanismo garante que a nova população nunca tenha desempenho pior que a anterior, promovendo uma pressão seletiva constante.

#### 2.3 Otimização por Enxame de Partículas (PSO)

A Otimização por Enxame de Partículas (PSO) é uma técnica de otimização populacional inspirada no comportamento coletivo de enxames, como bandos de aves ou cardumes de peixes, ao buscar alimento.

Cada solução candidata é representada por uma **partícula**, que se move em um espaço de busca multidimensional. As partículas possuem memória da melhor posição que encontraram individualmente (personal best position) e são também influenciadas pela melhor posição já encontrada por todo o enxame (global best position). A movimentação das partículas é controlada por duas equações principais: a atualização de **velocidade** e a atualização de **posição**.

**Atualização da Velocidade.** A velocidade de cada partícula é atualizada a partir de três componentes: inércia, atração pela melhor posição pessoal e atração pela melhor posição global. A equação de atualização da velocidade é dada por:

$$v_{i,j} \leftarrow w \cdot v_i + c_1 \cdot r_1 \cdot (p_i - x_i) + c_2 \cdot r_2 \cdot (g - x_i)$$

Nessa expressão:  $v_i$  é a velocidade da partícula i;  $x_i$  é a posição atual;  $p_i$  é a melhor posição pessoal da partícula; g é a melhor posição global do enxame; w é o coeficiente de inércia;  $c_1$  e  $c_2$  são os coeficientes de aceleração cognitiva e social, respectivamente;  $r_1, r_2 \sim \mathcal{U}(0, 1)$  são variáveis aleatórias uniformes.

**Atualização da Posição.** Com a nova velocidade calculada, a posição da partícula é atualizada simplesmente somando-se a nova velocidade à posição atual:

$$x_i \leftarrow x_i + v_i$$

Seleção por Atualização de Memória. Ao final de cada iteração, o valor da função objetivo da nova posição  $x_i$  é comparado com o da melhor posição já encontrada pela partícula,  $p_i$ . Caso a nova posição seja superior (menor valor da função objetivo, no caso de minimização), a memória da partícula é atualizada:

$$p_i \leftarrow \begin{cases} x_i, & \text{se } f(x_i) < f(p_i) \\ p_i, & \text{caso contrário} \end{cases}$$

Além disso, a melhor posição global g do enxame é atualizada com base na melhor posição pessoal entre todas as partículas. Esse mecanismo de atualização assegura que a informação sobre boas soluções seja preservada ao longo das iterações, guiando o movimento coletivo do enxame para regiões promissoras do espaço de busca.

### 2.4 C-DEEPSO

O Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) é uma meta-heurística híbrida que combina elementos dos algoritmos Particle Swarm Optimization (PSO) e Differential Evolution (DE). Proposto por Marcelino (2017), o C-DEEPSO estende a abordagem DEEPSO de Miranda e Alves (2013), incorporando conceitos como memória coletiva, macrogradiente direcional, mutações nos pesos de movimentação e operadores do DE para guiar a atualização das partículas.

As partículas no C-DEEPSO possuem posição e velocidade como no PSO, mas não mantêm memória individual. Em vez disso, utilizam uma **memória coletiva** que armazena as  $k_{\text{mem}}$  melhores soluções encontradas até o momento. A trajetória de cada partícula é determinada por três componentes: **inércia**, **macrogradiente direcional** e **comunicação com a melhor solução global**. Cada um desses componentes é ponderado por pesos adaptativos sujeitos à mutação gaussiana, promovendo diversidade nas partículas geradas. A comunicação entre partículas é modulada por uma matriz estocástica binária, gerada com base na probabilidade  $p_{\text{com}}$ .

Vetor de estratégias. A cada iteração, para cada partícula  $x_i$ , são gerados dois vetores guias: um vetor  $x_{DE}$  obtido por meio de operadores do DE (mutação e recombinação) e um vetor  $x_r$  amostrado aleatoriamente da população ou da memória coletiva. O vetor  $x_{st}$  é então definido como o melhor entre  $x_{DE}$  e  $x_r$  de acordo com a avaliação da função objetivo:

$$x_{st} \leftarrow \begin{cases} x_{DE}, & \text{se } f(x_{DE}) < f(x_r) \\ x_r, & \text{caso contrário} \end{cases}$$

Essa escolha permite utilizar a melhor entre uma solução gerada por variações direcionadas e uma alternativa aleatória, equilibrando exploração e intensificação.

Para este trabalho, foram escolhidas as estratégias  $\mathbf{DE/current\text{-}to\text{-}best/1}$  para a geração do vetor  $x_{DE}$  e Pb para amostragem do vetor  $x_r$  da memória coletiva.

Macrogradiente. O C-DEEPSO utiliza uma espécie de gradiente local que atua na mudança de sinal da diferença entre vetores guias. O chamado **macrogradiente direcional** é definido como o **sinal da direção** do vetor mais promissor (melhor aptidão) que corrige a direção da diferença entre  $x_{st}$  e a partícula atual  $x_i$ , ou seja:

$$\hat{\nabla}(x_{st}, x_i) \leftarrow \begin{cases} 1, & \text{se } f(x_{st}) < f(x_i) \\ -1, & \text{caso contrário} \end{cases}$$

Esse vetor de sinais indica a direção componente a componente em que a partícula deve se mover para se aproximar da melhor alternativa disponível, sem depender de derivadas analíticas da função objetivo.

**Mutação.** Os pesos de inércia  $(w_I)$ , macrogradiente  $(w_A)$  e comunicação  $(w_C)$ , assim como a melhor posição global  $x_{gb}$ , são perturbados a cada iteração por ruído gaussiano, com intensidade controlada pela taxa de mutação  $\tau_{\text{mut}}$ . Essa mutação adaptativa visa evitar a estagnação prematura, mantendo a diversidade do enxame.

**Equação de movimento.** A velocidade de cada partícula é atualizada pela seguinte equação vetorial:

$$v_i' \leftarrow \tilde{w}_I v_i + \tilde{w}_A \cdot \hat{\nabla}(x_{st}, x_i) \cdot (x_{st} - x_i) + \tilde{w}_C \cdot C \cdot (\tilde{x}_{ab} - x_i)$$

em que  $\tilde{w}_I, \tilde{w}_A, \tilde{w}_C$  são os pesos mutados, C é a matriz de comunicação binária, e  $\tilde{x}_{gb}$  é a versão perturbada da melhor solução global. A posição é então atualizada por:

$$x_i' \leftarrow x_i + v_i'$$

com projeção para dentro dos limites do espaço de busca, se necessário.

Seleção e Memória Coletiva. Após avaliar  $f(x_i')$ , a partícula adota a nova posição apenas se esta apresentar melhor desempenho (menor valor da função objetivo). As melhores soluções da população são utilizadas para atualizar a memória coletiva, que armazena as  $k_{\text{mem}}$  melhores soluções encontradas até então. A melhor solução global  $x_{gb}$  também é atualizada a cada geração, garantindo que o conhecimento coletivo seja constantemente refinado.

## 3 Descrição das Funções de Benchmark

#### 3.1 Rosenbrock

A função de Rosenbrock é definida como:

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[ (1 - x_i)^2 + 100(x_{i+1} - x_i^2)^2 \right].$$

É uma função **não convexa**, **diferenciável** e **unimodal**. O mínimo global ocorre em  $\mathbf{x}^* = \mathbf{1}$ , com  $f(\mathbf{x}^*) = 0$ . Para os experimentos, considera-se  $x_i \in [-2.048, 2.048]$ .

#### 3.2 Rastrigin

A função Rastrigin é definida como:

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)].$$

É uma função **não convexa**, **diferenciável** e altamente **multimodal**. O mínimo global ocorre em  $\mathbf{x}^* = \mathbf{0}$  com  $f(\mathbf{x}^*) = 0$ . Para os experimentos, considera-se  $x_i \in [-0.5, 0.5]$ .





Figura 1: Função Rosenbrock

Figura 2: Função Rastrigin

## 4 Experimentos

Os experimentos foram conduzidos utilizando as funções Rosenbrock e Rastrigin descritas na Seção 3, sendo testadas nas dimensões 10, 30 e 50, com respectivas limitações de quantidade de avaliações de função: 10.000, 30.000 e 50.000. Além disso, o tamanho da população de todos os testes foi fixado em 100 indivíduos e foram computadas 30 execuções de cada cenário de teste.

Em relação aos parâmetros de execução dos algoritmos, para cada cenário de teste —tripla (Algoritmo, Função, Dimensão) —foram otimizados usando a biblioteca **optuna**; segue a tabela abaixo com os resultados:

| Tabela 1: Parâmetros do AG |          |              |           |            |               |         |  |  |  |
|----------------------------|----------|--------------|-----------|------------|---------------|---------|--|--|--|
| Função                     | Dimensão | $tx\_recomb$ | $tx\_mut$ | $t\_elite$ | $t\_torneios$ | var_mut |  |  |  |
| Rosenbrock                 | 10       | 0.31         | 0.64      | 8          | 2             | 0.16    |  |  |  |
| Rastrigin                  | 10       | 0.66         | 0.49      | 7          | 7             | 0.26    |  |  |  |
| Rosenbrock                 | 30       | 0.79         | 0.75      | 3          | 10            | 0.12    |  |  |  |
| Rastrigin                  | 30       | 0.40         | 0.37      | 7          | 1             | 0.12    |  |  |  |
| Rosenbrock                 | 50       | 0.26         | 0.58      | 8          | 1             | 0.15    |  |  |  |
| Rastrigin                  | 50       | 0.37         | 0.58      | 2          | 5             | 0.14    |  |  |  |

| Tabela 2: Parâmetros do CDEEPSO |          |                     |          |       |            |      |      |      |  |
|---------------------------------|----------|---------------------|----------|-------|------------|------|------|------|--|
| Função                          | Dimensão | $\operatorname{Cr}$ | $t\_mut$ | p_com | $k\_{mem}$ | wi   | wa   | wc   |  |
| Rosenbrock                      | 10       | 0.61                | 0.38     | 0.21  | 5          | 0.33 | 0.73 | 0.30 |  |
| Rastrigin                       | 10       | 0.13                | 0.53     | 0.86  | 4          | 0.32 | 0.40 | 0.85 |  |
| Rosenbrock                      | 30       | 0.63                | 0.22     | 0.33  | 9          | 0.13 | 0.68 | 0.90 |  |
| Rastrigin                       | 30       | 0.68                | 0.34     | 0.90  | 2          | 0.12 | 0.28 | 0.74 |  |
| Rosenbrock                      | 50       | 0.13                | 0.13     | 0.90  | 7          | 0.13 | 0.48 | 0.52 |  |
| Rastrigin                       | 50       | 0.32                | 0.54     | 0.86  | 4          | 0.25 | 0.50 | 0.22 |  |

5

| Tabela 3: Parâmetros do PSO |          |      |      |      | Tabela 4: Parâmetros do |          |                     |
|-----------------------------|----------|------|------|------|-------------------------|----------|---------------------|
| Função                      | Dimensão | w    | c1   | c2   | Função                  | Dimensão | $\operatorname{Cr}$ |
| Rosenbrock                  | 10       | 0.61 | 1.61 | 1.74 | Rosenbrock              | 10       | 0.17                |
| Rastrigin                   | 10       | 0.41 | 1.50 | 1.53 | Rastrigin               | 10       | 0.74                |
| Rosenbrock                  | 30       | 0.49 | 2.05 | 1.58 | Rosenbrock              | 30       | 0.19                |
| Rastrigin                   | 30       | 0.46 | 2.37 | 1.50 | Rastrigin               | 30       | 0.90                |
| Rosenbrock                  | 50       | 0.48 | 1.74 | 1.71 | Rosenbrock              | 50       | 0.27                |
| Rastrigin                   | 50       | 0.53 | 2.22 | 1.57 | Rastrigin               | 50       | 0.90                |

0.58 0.54 0.62 0.49 0.63 0.47

Ao final das execuções, foram calculadas as seguintes métricas estatísticas para avaliar o desempenho dos algoritmos: Média dos valores de função obtidos, Desvio padrão, Melhor (menor) valor encontrado e Pior (maior) valor encontrado. Também foram gerados gráficos de curva de convergência e gráficos boxplot dos resultados que serão exibidos na seção abaixo.

### 5 Resultados

Neste trabalho, para análise de resultados, foram utilizados os testes não paramétricos de Friedman e Nemenyi para comparar o desempenho de diferentes algoritmos de otimização. O teste de Friedman avalia se há diferenças estatísticas globais entre os algoritmos, enquanto o teste de Nemenyi realiza comparações par a par para identificar quais algoritmos diferem entre si.

Teste de Friedman: Assume dados pareados e independência entre blocos, sem exigir normalidade. Hipóteses:  $H_0$ : As medianas (ou distribuições) dos algoritmos são iguais;  $H_1$ : Pelo menos um algoritmo difere significativamente dos demais. Estatística:

$$\chi_F^2 = \frac{12N}{k(k+1)} \sum_{j=1}^k R_j^2 - 3N(k+1)$$

com  $N=\mathrm{n}^{\mathrm{o}}$  de problemas,  $k=\mathrm{n}^{\mathrm{o}}$  de algoritmos,  $R_{j}=\mathrm{soma}$  dos ranks do algoritmoj.

Como mostrado na tabela a seguir, todos os testes de Friedman apresentaram p-valor < 0.05, indicando que há diferença estatística entre algum dos quatro algoritmos em todos os cenários avaliados.

| Função     | Dimensão | Estatística de Friedman | p-valor                 | Decisão sobre $H_0$ |
|------------|----------|-------------------------|-------------------------|---------------------|
| Rosenbrock | 10       | 73,72                   | 6,814183e-16            | Rejeita             |
| Rastrigin  | 10       | $38,\!12$               | $2,\!665868e\text{-}08$ | Rejeita             |
| Rosenbrock | 30       | $66,\!28$               | $2,\!670068e\text{-}14$ | Rejeita             |
| Rastrigin  | 30       | 66,32                   | 2,617964e-14            | Rejeita             |
| Rosenbrock | 50       | 87,76                   | 6,631522 e-19           | Rejeita             |
| Rastrigin  | 50       | 72,76                   | $1,\!094217e\text{-}15$ | Rejeita             |

Tabela 5: Resultados do teste de Friedman com  $\alpha = 0.05$ 

Teste de Nemenyi (post-hoc): Hipóteses:  $H_0$ : algoritmos i e j têm o mesmo desempenho;  $H_1$ : diferem significativamente. Diferença Crítica:

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

Se  $|R_i - R_j| > CD$ , há diferença significativa.

Para o teste de Nemenyi, temos os resultados da tabela abaixo:



Figura 3: Heatmaps dos resultados do Teste de Nemenyi

A partir disso, temos os resultados dos experimentos realizados, destacando os casos em negrito que possuem uma diferença estatística significante em relação aos demais algoritmos; na Tabela 6 são exibidos os resultados dos experimentos feitos na função Rosenbrock e na Tabela 7 na função Rastrigin. A seguir, também são apresentados os gráficos boxplot e curvas de convergência separados pela função testada e pela dimensão do problema.

Tabela 6: Resultados dos algoritmos para a função Rosenbrock

| Algoritmo       | Dimensão | Média      | Desvio Padrão | Mínimo    | Máximo      |
|-----------------|----------|------------|---------------|-----------|-------------|
| C-DEEPSO        | 10       | 8.915419   | 0.986863      | 5.035167  | 9.936764    |
| PSO             | 10       | 5.030057   | 1.532106      | 0.005172  | 8.021951    |
| DE              | 10       | 3.638633   | 1.182451      | 1.184446  | 5.584688    |
| $\overline{AG}$ | 10       | 8.878965   | 0.971119      | 5.463885  | 10.147080   |
| C-DEEPSO        | 30       | 29.114159  | 0.270088      | 28.488425 | 29.572643   |
| PSO             | 30       | 34.001103  | 25.303426     | 20.962230 | 144.182200  |
| DE              | 30       | 20.919153  | 1.409679      | 18.694685 | 24.960480   |
| $\overline{AG}$ | 30       | 38.998634  | 26.672334     | 28.205904 | 167.215489  |
| C-DEEPSO        | 50       | 48.665503  | 0.065242      | 48.527660 | 48.800284   |
| PSO             | 50       | 198.226438 | 202.812370    | 58.242394 | 1124.518155 |
| DE              | 50       | 40.030239  | 1.596904      | 37.863213 | 45.663233   |
| $\overline{AG}$ | 50       | 68.137100  | 17.171135     | 51.499594 | 134.876731  |

Tabela 7: Resultados dos algoritmos para a função Rastrigin

| Algoritmo       | Dimensão | Média      | Desvio Padrão | Mínimo     | Máximo     |
|-----------------|----------|------------|---------------|------------|------------|
| C-DEEPSO        | 10       | 22.067741  | 15.250379     | 0.360426   | 49.586991  |
| PSO             | 10       | 11.215701  | 6.154812      | 1.064827   | 28.853742  |
| DE              | 10       | 8.908251   | 1.621703      | 5.399575   | 12.548462  |
| $\overline{AG}$ | 10       | 30.191672  | 17.855001     | 9.882670   | 79.747599  |
| C-DEEPSO        | 30       | 6.777418   | 18.236059     | 0.192364   | 92.018961  |
| PSO             | 30       | 63.164682  | 17.836375     | 32.835540  | 96.501044  |
| DE              | 30       | 43.163548  | 4.012954      | 34.850333  | 52.665680  |
| $\overline{AG}$ | 30       | 89.946344  | 25.415220     | 31.655010  | 152.626958 |
| C-DEEPSO        | 50       | 4.037647   | 3.004185      | 0.502139   | 14.412273  |
| PSO             | 50       | 199.245308 | 39.136429     | 111.608895 | 300.547412 |
| DE              | 50       | 121.398369 | 8.538013      | 105.299928 | 138.637603 |
| $\overline{AG}$ | 50       | 125.160492 | 71.516076     | 34.121064  | 349.997535 |



Rosenbrock, Dimension 10

— CDEEPSQ-Rosenbrock-10
— PSQ-Rosenbrock-10
— DE-Rosenbrock-10
— AG-Rosenbrock-10
— AG-Rosenbrock-10
— Valor ôtimo (fx\*) = 0

1000

1000

2000
Geração

Geração

Figura 4: Boxplot para Rosenbrock (10)

Figura 5: Curvas de convergência Rosenbrock (10)





Figura 6: Boxplot para Rastrigin (10)

Figura 7: Curvas de convergência Rastrigin (10)



Figura 8: Boxplot para Rosenbrock (30)



Figura 9: Curvas de convergência Rosenbrock (30)



Figura 10: Boxplot para Rastrigin (30)



Figura 11: Curvas de convergência Rastrigin (30)



Figura 12: Boxplot para Rosenbrock (50)



Figura 13: Curvas de convergência Rosenbrock (50)





Figura 14: Boxplot para Rastrigin (50)

Figura 15: Curvas de convergência Rastrigin (50)

## 6 Conclusões e Considerações Finais

Este trabalho avaliou comparativamente o desempenho de quatro algoritmos de otimização com meta-heurística — Algoritmo Genético (AG), Evolução Diferencial (DE), Otimização por Enxame de Partículas (PSO) e C-DEEPSO — em cenários envolvendo as funções de benchmark Rosenbrock (unimodal) e Rastrigin (multimodal) em dimensões de 10, 30 e 50. Além disso, foram feitos os ajustes de hiperparâmetros com optuna, a execução de 30 rodadas independentes por cenário e a validação estatística com os testes de Friedman e Nemenyi.

A análise estatística, por meio do teste de Friedman, confirmou com alta significância (p < 0.05) a existência de diferenças de desempenho entre os algoritmos em todos os cenários. Para complementar, o teste post-hoc de Nemenyi e as métricas de desempenho destacaram a Evolução Diferencial (DE) como o algoritmo mais eficaz na maioria das situações, apresentando os melhores resultados médios na função Rosenbrock em todas as dimensões e na função Rastrigin em dimensão 10. O PSO demonstrou desempenho bom, especialmente em dimensões mais baixas, mas seus resultados pioraram consideravelmente em problemas de dimensões maiores, onde apresentou alto desvio padrão nos resultados.

O C-DEEPSO revelou um funcionamento bom com problemas complexos, superando com significância estatística os demais algoritmos na função multimodal Rastrigin em altas dimensões (30 e 50). Uma característica notável, observada nas curvas de convergência, foi sua velocidade superior nas iterações iniciais. Mesmo nos cenários em que não obteve a melhor média, como na função Rosenbrock de 50 dimensões, o C-DEEPSO se destacou por sua estabilidade (menor desvio padrão), superando todos os outros nesse quesito. Em contrapartida, o Algoritmo Genético (AG), foi o terceiro melhor algoritmo para todas experimentações da Rosenbrock e o pior algoritmo para todos experimentos conduzidos na Rastrigin, o que mostra uma dificuldade dessa implementação do algoritmo convergir numa função multimodal como a Rastrigin.

Em resumo, o DE se mostrou um algoritmo muito bom e robusto, o C-DEEPSO implementado se mostrou como uma ferramenta que desempenhou bem para problemas multimodais de alta dimensão. O PSO permanece como uma opção viável para problemas mais simples, e o AG requereria modificações na sua implementação para competir nestes benchmarks.

#### Referências

- [1] S. Surjanovic and D. Bingham, "Virtual Library of Simulation Experiments: Test Functions and Datasets," Acessado em 7 de julho de 2025, em https://www.sfu.ca/~ssurjano/optimization.html.
- [2] Y. Zhang, J. Liu, and H. Wang, "A Comparative Study of Recent Multi-objective Optimization Algorithms for Solving Engineering Problems," in 2022 IEEE Congress on Evolutionary Computation (CEC), 2022, pp. 1-8.
- [3] C. L. Hwang and A. S. M. Masud, "A survey of multiobjective optimization methods for engineering," *Lecture Notes in Economics and Mathematical Systems*, vol. 164, pp. 1-34, 1979.

- [4] A. Gaspar-Cunha, R. Takahashi, and C. H. Antunes, Eds., Manual de Computação Evolutiva e Metaheurísticas. Belo Horizonte: Editora UFMG, 2013.
- [5] R. H. C. Takahashi, "Otimização Escalar e Vetorial Volume 2: Otimização Escalar," Notas de Aula, Departamento de Matemática, Universidade Federal de Minas Gerais, 2007.
- [6] Optuna Development Team, "Optuna: A hyperparameter optimization framework," Acessado em 7 de julho de 2025, em https://optuna.org/.
- [7] DATAtab, "Friedman Test Tutorial," Acessado em 7 de julho de 2025, em https://datatab.net/tutorial/friedman-test.
- [8] D. Wallis, "Comparing Classifiers: Friedman and Nemenyi Tests," Acessado em 7 de julho de 2025, em https://medium.com/@diogeneswallis/comparing-classifiers-friedman-and-nemenyi-tests-32294103ee12.
- [9] Baylor.AI, "Friedman Test and Nemenyi Post-hoc Test," Acessado em 7 de julho de 2025, em https://baylor.ai/?p=2665.