KIRAN.N GREAT LEARNING

Table of Contents

Problem 1	5
Executive Summary	5
Data Dictionary	5
Exploratory Data Analysis	5
Q 1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually.	6
Q 1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State when the null hypothesis is accepted or rejected based on the ANOVA results.	
Q 1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. whether the null hypothesis is accepted or rejected based on the ANOVA results	
Q 1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which class means ar significantly different. Interpret the result	
Q 1.5 What is the interaction between the two treatments? Analyze the effects of one variab the other (Education and Occupation) with the help of an interaction plot.	
Q 1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?	10
Q 1.7 Explain the business implications of performing ANOVA for this particular case study	10
Problem 2	11
Executive Summary	11
Data Dictionary	11
Exploratory Data Analysis	12
Q 2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?	13
Q 2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling	21
Q 2.3 Comment on the comparison between the covariance and the correlation matrices from data[on scaled data]	
Q 2.4 Check the dataset for outliers before and after scaling. What insight do you derive here	?23
Q 2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]	24
Q 2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features	
Q 2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors a corresponding features]	nd
Q 2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on to optimum number of principal components? What do the eigenvectors indicate?	

Q 2.9 Explain the business implication of using the Principal Component Analysis for this case
study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal
Components Obtained 27

List Of Figures

Figure 1 : Educational Categories verses Mean Salary Bar Plot	8
Figure 2 : Occupational Categories verses Mean Salary Bar Plot	8
Figure 3: Education and Occupation Interaction Plot	9
Figure 4: Histogram and Box Plot of Apps	14
Figure 5: Histogram and Box Plot of Accept	14
Figure 6 : Histogram and Box Plot of Enroll	14
Figure 7: Histogram and Box Plot of Top10perc	15
Figure 8 : Histogram and Box Plot of Top25perc	15
Figure 9 : Histogram and Box Plot of F.Undergrad	15
Figure 10 : Histogram and Box Plot of P.Undergrad	16
Figure 11 : Histogram and Box Plot of Outstate	16
Figure 12 : Histogram and Box Plot of Room.Board	16
Figure 13 : Histogram and Box Plot of Books	17
Figure 14 : Histogram and Box Plot of Personal	17
Figure 15: Histogram and Box Plot of PhD	17
Figure 16 : Histogram and Box Plot of Terminal	18
Figure 17 : Histogram and Box Plot of S.F.Ratio	18
Figure 18 : Histogram and Box Plot of perc.alumni	18
Figure 19 : Histogram and Box Plot of Expend	19
Figure 20 : Histogram and Box Plot of Grad.Rate	19
Figure 21 : Pair Plot	20
Figure 22 : Correlation Plot	20
Figure 23 : Box Plots after Treating Outliers	21
Figure 24 : Box Plots Before Scaling	23
Figure 25 : Box Plots After Scaling	23
Figure 26 :Cumulative Explained Ratio verses PC Index	27
Figure 27 :Absolute Values of Each Original Feature in Different Principal Components	28
Figure 28 : Correlation Plot of Principal Components	29

List of Tables

Table 2 : One-way ANOVA Table for Education.6Table 3 : One-way ANOVA Table for Occupation.7Table 4 : Educational Categories verses Mean Salary.7Table 5: Occupational Categories verses Mean Salary.8Table 6 : Two-Way ANOVA Table.9Table 7 : Two-Way ANOVA Table with Interaction Variable10Table 8 : Sample Dataset.11Table 9 : Descriptive summary of the data.13Table 10 : Sample Scaled Data22Table 11 : Sample Correlation Matrix After Scaling.22Table 12 : Sample Covariance Matrix After Scaling.22Table 13 : Dataframe of PC and Original Features25Table 14 : Sample Dataset with Principal Components29	Table 1 : Sample Dataset	5
Table 4 : Educational Categories verses Mean Salary.7Table 5: Occupational Categories verses Mean Salary.8Table 6 : Two-Way ANOVA Table.9Table 7 : Two-Way ANOVA Table with Interaction Variable10Table 8 : Sample Dataset.11Table 9 : Descriptive summary of the data.13Table 10 : Sample Scaled Data22Table 11 : Sample Correlation Matrix After Scaling.22Table 12 : Sample Covariance Matrix After Scaling.22Table 13 : Dataframe of PC and Original Features25	Table 2 : One-way ANOVA Table for Education	6
Table 5: Occupational Categories verses Mean Salary.8Table 6: Two-Way ANOVA Table.9Table 7: Two-Way ANOVA Table with Interaction Variable10Table 8: Sample Dataset.11Table 9: Descriptive summary of the data.13Table 10: Sample Scaled Data22Table 11: Sample Correlation Matrix After Scaling.22Table 12: Sample Covariance Matrix After Scaling.22Table 13: Dataframe of PC and Original Features25	Table 3 : One-way ANOVA Table for Occupation	7
Table 6 : Two-Way ANOVA Table	Table 4 : Educational Categories verses Mean Salary	7
Table 7: Two-Way ANOVA Table with Interaction Variable10Table 8: Sample Dataset11Table 9: Descriptive summary of the data13Table 10: Sample Scaled Data22Table 11: Sample Correlation Matrix After Scaling22Table 12: Sample Covariance Matrix After Scaling22Table 13: Dataframe of PC and Original Features25	Table 5: Occupational Categories verses Mean Salary	8
Table 8 : Sample Dataset	Table 6 : Two-Way ANOVA Table	9
Table 9 : Descriptive summary of the data	Table 7: Two-Way ANOVA Table with Interaction Variable	10
Table 10 : Sample Scaled Data	Table 8 : Sample Dataset	11
Table 11 : Sample Correlation Matrix After Scaling	Table 9 : Descriptive summary of the data	13
Table 12 : Sample Covariance Matrix After Scaling	Table 10 : Sample Scaled Data	22
Table 13 : Dataframe of PC and Original Features25	Table 11 : Sample Correlation Matrix After Scaling	22
<u> </u>	Table 12 : Sample Covariance Matrix After Scaling	22
Table 14 : Sample Dataset with Principal Components29	Table 13 : Dataframe of PC and Original Features	25
	Table 14 : Sample Dataset with Principal Components	29

Problem 1

Executive Summary

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals [SalaryData.csv] are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination.

Data Dictionary

- 1. Education: Education category High School Graduate, Bachelor or Doctorate.
- 2. Occupation: Occupation category Administrative and clerical, Sales, Professional or specialty, and Executive or managerial.
- 3. Salary: Salary details.

Sample of the dataset

	Education	Occupation	Salary
0	Doctorate	Adm-clerical	153197
1	Doctorate	Adm-clerical	115945
2	Doctorate	Adm-clerical	175935
3	Doctorate	Adm-clerical	220754
4	Doctorate	Sales	170769

Table 1 : Sample Dataset

Dataset has 3 columns with 40 rows. Each row in the dataset corresponds to one individual with their education, occupation and their salary details.

Exploratory Data Analysis

Let us check the types of variables in the data frame.

Education object Occupation object Salary int64

There are total 40 rows and 3 columns in the dataset. Out of 3, 2 columns are of object type and rest 1 is of integer data type.

Check for missing values in the dataset

```
RangeIndex: 40 entries, 0 to 39
Data columns (total 3 columns):
# Column Non-Null Count Dtype
0 Education 40 non-null object
1 Occupation 40 non-null object
2 Salary 40 non-null int64
```

From the above results we can see that there is no missing value present in the dataset.

Q 1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually.

- 1) Let us formulate the hypothesis for conducting one-way ANOVA by considering only education as categorical field on which salary is dependent:
 - H0 (null hypothesis): Mean salaries remain same across various educational categories doctorate, bachelors and HS-grade.

$$\mu_D = \mu_B = \mu_H$$

• H1 (alternate hypothesis): Mean salaries aren't same across various educational categories

$$\mu_{\rm D} != \mu_{\rm B} != \mu_{\rm H}$$

- 2) Let us formulate the hypothesis for conducting one-way ANOVA by considering only occupation as categorical field on which salary is dependent:
 - H0 (null hypothesis): Mean salaries remain same across various occupational categories Prof-specialty, Sales, Adm-clerical and Exec-managerial.

$$\mu_{P} = \mu_{S} = \mu_{A} = \mu_{E}$$

• H1 (alternate hypothesis): Mean salaries aren't same across various occupational categories

$$\mu_{P} != \mu_{S} != \mu_{A} != \mu_{E}$$

Q 1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

Let us define a formula stating Salary is a o/p variable dependent on Categorical Variable Education.

```
formula1 = 'Salary ~ C(Education)'
```

Using the above formula, we will construct one-way ANOVA table as follows:

```
df sum_sq mean_sq F PR(>F)
C(Education) 2.0 1.026955e+11 5.134773e+10 30.95628 1.257709e-08
Residual 37.0 6.137256e+10 1.658718e+09 NaN NaN
```

Table 2 : One-way ANOVA Table for Education

From the above table p-value for Education is 1.25e-08. Since the p-values for Education is less than 0.05 we reject the Null Hypothesis, this means that Education has a statistically significant effect on Salary.

Q 1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

Let us define a formula stating Salary is a o/p variable dependent on Categorical Variable Occupation.

formula2 = 'Salary ~ C(Occupation)'

Using the above formula, we will construct one-way ANOVA table as follows:

	df	sum_sq	mean_sq	F	PR(>F)
C(Occupation)	3.0	1.125878e+10	3.752928e+09	0.884144	0.458508
Residual	36.0	1.528092e+11	4.244701e+09	NaN	NaN

Table 3: One-way ANOVA Table for Occupation

From the above table p-value for Occupation is 0.46. Since the p-values for Occupation is more than 0.05 we cannot reject the Null Hypothesis, this means that Occupation doesn't have a statistically significant effect on Salary.

Q 1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which class means are significantly different. Interpret the result.

We have rejected the null hypothesis in 1.2.

Let us compute the mean salaries across educational categories.

	Education	Mean Salary
0	Bachelors	165152.933333
1	Doctorate	208427.000000
2	HS-grad	75038.777778

Table 4 : Educational Categories verses Mean Salary

Figure 1 : Educational Categories verses Mean Salary Bar Plot

Let us compute the mean salaries across occupational categories.

	Occupation	Mean Salary
0	Adm-clerical	141424.300000
1	Exec-managerial	197117.600000
2	Prof-specialty	168953.153846
3	Sales	157604.416667

Table 5: Occupational Categories verses Mean Salary

Figure 2 : Occupational Categories verses Mean Salary Bar Plot

From the above tables and plots we infer Mean Salaries across various educational categories are significantly different.

Q 1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.

Let us now perform the Two-Way ANOVA. We will now analyse the effect of both the treatments Education and Occupation on the 'Salary' variable using following formula:

formula = 'Salary ~ C(Education) + C(Occupation)'

Using the above formula, we will construct two-way ANOVA table as follows:

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	31.257677	1.981539e-08
C(Occupation)	3.0	5.519946e+09	1.839982e+09	1.120080	3.545825e-01
Residual	34.0	5.585261e+10	1.642724e+09	NaN	NaN

Table 6: Two-Way ANOVA Table

From the above table p-value for Education 1.98e-08 is less than 0.05, this means that Education has a statistically significant effect on Salary.

And p-value for Occupation 3.55e-01 is greater than 0.05, this means that Occupation doesn't have a statistically significant effect on Salary.

Let us check whether there is any interaction effect between the treatments.

Figure 3: Education and Occupation Interaction Plot

From the above intersection plot we can see that there is some sort of interaction between the two treatments.

Q 1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?

Since we saw that there was some sort of interaction between the two treatments, we will introduce a new interaction term Education*Occupation while performing the Two-Way ANOVA.

formula = 'Salary ~ C(Education) + C(Occupation) + C(Education):C(Occupation)'

Using the above formula, we will construct two-way ANOVA table as follows:

	df	sum_sq	mean_sq	F	PR (>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	72.211958	5.466264e-12
C(Occupation)	3.0	5.519946e+09	1.839982e+09	2.587626	7.211580e-02
C(Education):C(Occupation)	6.0	3.634909e+10	6.058182e+09	8.519815	2.232500e-05
Residual	29.0	2.062102e+10	7.110697e+08	NaN	NaN

Table 7: Two-Way ANOVA Table with Interaction Variable

Let us formulate the Hypothesis:

- H0 (null hypothesis):
 - Mean salaries remain same across various educational categories.
 - Mean salaries remain same across various occupation categories.
 - There is no interaction between Education and Occupation.
- H1 (alternate hypothesis):
 - Mean salaries aren't same across various educational categories.
 - Mean salaries aren't same across various occupational categories.
 - There is interaction between Education and Occupation.

From the above table p-values for both Education 5.46e-12 and the interaction term 2.23e-05 are less than 0.05 so we can reject the Null Hypothesis, this means that Education has a statistically significant effect on Salary and there is interaction between Education and Occupation.

And p-value for Occupation 7.21e-02 is greater than 0.05 so we cannot reject the Null Hypothesis, this means that Occupation doesn't have a statistically significant effect on Salary.

Q 1.7 Explain the business implications of performing ANOVA for this particular case study.

From the above ANOVA analysis on give case study we observe Salary of an individual is not dependent on his Occupation Level. Salary is dependent on the educational level of an individual. Also, there is some sort of dependency of Salary on the interaction between Educational and Occupational Level.

People with higher educational level can expect better salary to be paid irrespective of the Occupational level they work.

Higher the Educational level better you get paid.

Problem 2

Executive Summary

The dataset contains information on various colleges. Here we will be performing Principal Component Analysis for this case study according to the instructions given.

Data Dictionary

- 1) Names: Names of various university and colleges
- 2) Apps: Number of applications received
- 3) Accept: Number of applications accepted
- 4) Enroll: Number of new students enrolled
- 5) Top10perc: Percentage of new students from top 10% of Higher Secondary class
- 6) Top25perc: Percentage of new students from top 25% of Higher Secondary class
- 7) F. Undergrad: Number of full-time undergraduate students
- 8) P. Undergrad: Number of part-time undergraduate students
- 9) Outstate: Number of students for whom the particular college or university is Out-of-state tuition
- 10) Room. Board: Cost of Room and board
- 11) Books: Estimated book costs for a student
- 12) Personal: Estimated personal spending for a student
- 13) PhD: Percentage of faculties with Ph.D.'s
- 14) Terminal: Percentage of faculties with terminal degree
- 15) S.F.Ratio: Student/faculty ratio
- 16) perc. alumni: Percentage of alumni who donate
- 17) Expend: The Instructional expenditure per student
- 18) Grad.Rate: Graduation rate

Sample of the Dataset

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.aluı
•	Abilene O Christian University		1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1	
	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2	
:	2 Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9	
:	Agnes 3 Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7	
	Alaska 4 Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9	

Table 8 : Sample Dataset

Dataset consists of 777 rows and 18 columns.

Exploratory Data Analysis

Let us check the types of variables in the data frame.

Names	object
Apps	int64
Accept	int64
Enroll	int64
Top10perc	int64
Top25perc	int64
F.Undergrad	int64
P.Undergrad	int64
Outstate	int64
Room.Board	int64
Books	int64
Personal	int64
PhD	int64
Terminal	int64
S.F.Ratio	float64
perc.alumni	int64
Expend	int64
Grad.Rate	int64

There are total 18 columns in the dataset. Out of which 16 columns are of integer type, 1 column is of object type and 1 column is of float type.

Check for missing values in the dataset

```
RangeIndex: 777 entries, 0 to 776
Data columns (total 18 columns):
     Column Non-Null Count
                                      Dtype
 0
     Names
                   777 non-null
                                      object
 1
     Apps
                   777 non-null
                                      int64
     Accept
Enroll
                  777 non-null
                                      int64
                 777 non-null
 3
     Enroll
                                     int64
     Top10perc 777 non-null Top25perc 777 non-null
                                     int64
 5
                                     int64
     F.Undergrad 777 non-null
                                     int64
 7
     P.Undergrad 777 non-null
                                     int64
     Outstate 777 non-null
 8
                                     int64
     Room.Board 777 non-null
 9
                                     int64
10 Books 777 non-null
11 Personal 777 non-null
12 PhD 777 non-null
13 Terminal 777 non-null
14 S.F.Ratio 777 non-null
                                     int64
                                     int64
                                     int64
                                     int64
                                      float64
 15 perc.alumni 777 non-null
                                      int64
                   777 non-null
 16 Expend
                                      int64
     Grad.Rate
                   777 non-null
                                      int64
 17
```

From the above results we can see that there is no missing value present in the dataset.

Q 2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

EDA is an approach to analyse data using both nonvisual and visual techniques.

Let us have a look at descriptive summary of the data.

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Table 9 : Descriptive summary of the data

As part of EDA Univariate analysis, we will plot histogram or distplot to view the distribution of data and the box plot to view 5-point summary and outliers if any for each numeric column present in the dataset.

1) Apps 0.00040 0.00035 0.00025 0.000015 0.000015 0.0000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000

Figure 4: Histogram and Box Plot of Apps

From the above figure we observe data in Apps column is right skewed and outliers are present.

Figure 5: Histogram and Box Plot of Accept

From the above figure we observe data in Accept column is right skewed and outliers are present.

Figure 6 : Histogram and Box Plot of Enroll

From the above figure we observe data in Enroll column is right skewed and outliers are present.

4) Top10perc

Figure 7: Histogram and Box Plot of Top10perc

From the above figure we observe data in Top10perc column is right skewed and outliers are present.

5) Top25perc

Figure 8: Histogram and Box Plot of Top 25 perc

From the above figure we observe data in Top25perc column is normally distributed and outliers are not present.

6) F.Undergrad

Figure 9: Histogram and Box Plot of F. Undergrad

From the above figure we observe data in F. Undergrad column is right skewed and outliers are present.

7) P.Undergrad

Figure 10: Histogram and Box Plot of P. Undergrad

From the above figure we observe data in P. Undergrad column is right skewed and outliers are present.

8) Outstate

Figure 11 : Histogram and Box Plot of Outstate

From the above figure we observe data in Outstate column is normally distributed and one outlier is present.

9) Room.Board

Figure 12: Histogram and Box Plot of Room.Board

From the above figure we observe data in Room. Board column is almost normally distributed and few outliers are present.

10) Books

Figure 13: Histogram and Box Plot of Books

From the above figure we observe data in Books column is right skewed and outliers are present.

11) Personal

Figure 14: Histogram and Box Plot of Personal

From the above figure we observe data in Personal column is right skewed and outliers are present.

12) PhD

Figure 15: Histogram and Box Plot of PhD

From the above figure we observe data in PhD column is left skewed and outliers are present.

13) Terminal

Figure 16: Histogram and Box Plot of Terminal

From the above figure we observe data in Terminal column is left skewed and outliers are present.

14) S.F.Ratio

Figure 17: Histogram and Box Plot of S.F.Ratio

From the above figure we observe data in S.F.Ratio column is right skewed and outliers are present.

15) perc.alumni

Figure 18: Histogram and Box Plot of perc.alumni

From the above figure we observe data in perc.alumni column is right skewed and outliers are present.

16) Expend

Figure 19: Histogram and Box Plot of Expend

From the above figure we observe data in Expend column is right skewed and outliers are present.

17) Grad. Rate

Figure 20 : Histogram and Box Plot of Grad.Rate

From the above figure we observe data in Grad.Rate column is almost normally distributed and few outliers are present.

Observations

- There are total 17 numeric columns.
- Outliers present needs to be treated.
- In the given dataset different columns have different weights, so scaling the data is necessary.

Multivariate Analysis

Pairplot shows the relationship between the variables in the form of scatterplot and the distribution of the variable in the form of histogram.

Correlation Plot help us to visualize the correlation between continuous variables.

Pair Plot

Figure 21: Pair Plot

Correlation Plot

Figure 22 : Correlation Plot

From the correlation plot, we can see the correlation among different variables. Correlation values near to 1 or -1 are highly positively correlated and highly negatively correlated respectively. Correlation values near to 0 are not correlated to each other.

From the above plot we observe following columns are highly positively correlated:

- Apps and Accept
- Accept and Enroll
- Enroll and F.Undergrad

Q 2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling.

Scaling or standardisation of variables is must before applying PCA because it will give more emphasis to those variables having higher variances than to those variables with very low variances while identifying the right principal component.

Here in our dataset few columns like Apps, Accept, Enroll have information in terms of count, few columns like Top10perc, Top25pers, Terminal have information in terms of percentages, few columns like Room.Board, Books, Personal have information in terms of cost and there are columns like S.F.Ratio have information in terms of ratios.

Since the data present in different columns are on different units scaling is necessary.

Consider Apps column and Enroll column, both columns have information in terms of count. Values in Apps column may lie in the region 81 - 84094 while values in Enroll column lie in the region 35 - 6392 since Apps column is having higher variance compared to Enroll column PCA will give more weight to Apps. Here standardization is required to tackle these issues.

First, we will treat the outliers and then scale the data.

Figure 23: Box Plots after Treating Outliers

Z-score technique is used to perform scaling of data.

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.R
0	-0.376493	-0.337830	0.106380	-0.246780	-0.191827	-0.018769	-0.166083	-0.746480	-0.968324	-0.776567	1.438500	-0.174045	-0.123239	1.070
1	-0.159195	0.116744	-0.260441	-0.696290	-1.353911	-0.093626	0.797856	0.457762	1.921680	1.828605	0.289289	-2.745731	-2.785068	-0.489
2	-0.472336	-0.426511	-0.569343	-0.310996	-0.292878	-0.703966	-0.777974	0.201488	-0.555466	-1.210762	-0.260691	-1.240354	-0.952900	-0.304
3	-0.889994	-0.917871	-0.918613	2.129202	1.677612	-0.898889	-0.828267	0.626954	1.004218	-0.776567	-0.736792	1.205884	1.190391	-1.679
4	-0.982532	-1.051221	-1.062533	-0.696290	-0.596031	-0.995610	0.297726	-0.716623	-0.216006	2.219381	0.289289	0.202299	-0.538069	-0.568

Table 10 : Sample Scaled Data

Q 2.3 Comment on the comparison between the covariance and the correlation matrices from this data[on scaled data]

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Termiı
Apps	1.000000	0.955307	0.896883	0.321342	0.364491	0.861002	0.519823	0.065337	0.187475	0.236138	0.229948	0.463924	0.4344
Accept	0.955307	1.000000	0.935277	0.223298	0.273681	0.897034	0.572691	-0.005002	0.119586	0.208705	0.256346	0.427341	0.4034
Enroll	0.896883	0.935277	1.000000	0.171756	0.230434	0.967302	0.641595	-0.155655	-0.023846	0.202057	0.339348	0.381540	0.3543
Top10perc	0.321342	0.223298	0.171756	1.000000	0.913875	0.111215	-0.180009	0.562160	0.357366	0.153452	-0.116730	0.544048	0.5067
Top25perc	0.364491	0.273681	0.230434	0.913875	1.000000	0.181196	-0.099295	0.489569	0.330987	0.169761	-0.086810	0.551461	0.5276
F.Undergrad	0.861002	0.897034	0.967302	0.111215	0.181196	1.000000	0.696130	-0.226166	-0.054476	0.207879	0.359783	0.361564	0.3350
P.Undergrad	0.519823	0.572691	0.641595	-0.180009	-0.099295	0.696130	1.000000	-0.354216	-0.067638	0.122529	0.344053	0.127663	0.1221
Outstate	0.065337	-0.005002	-0.155655	0.562160	0.489569	-0.226166	-0.354216	1.000000	0.655489	0.005110	-0.325609	0.391321	0.4125
Room.Board	0.187475	0.119586	-0.023846	0.357366	0.330987	-0.054476	-0.067638	0.655489	1.000000	0.108924	-0.219554	0.341469	0.3792
Books	0.236138	0.208705	0.202057	0.153452	0.169761	0.207879	0.122529	0.005110	0.108924	1.000000	0.239863	0.136390	0.1593
Personal	0.229948	0.256346	0.339348	-0.116730	-0.086810	0.359783	0.344053	-0.325609	-0.219554	0.239863	1.000000	-0.011684	-0.0319
PhD	0.463924	0.427341	0.381540	0.544048	0.551461	0.361564	0.127663	0.391321	0.341469	0.136390	-0.011684	1.000000	0.8629
Terminal	0.434478	0.403409	0.354379	0.506748	0.527654	0.335054	0.122152	0.412579	0.379270	0.159318	-0.031971	0.862928	1.0000

Table 11 : Sample Correlation Matrix After Scaling

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD
Apps	1.001289	0.956538	0.898039	0.321756	0.364961	0.862111	0.520493	0.065421	0.187717	0.236442	0.230244	0.464522
Accept	0.956538	1.001289	0.936482	0.223586	0.274033	0.898190	0.573429	-0.005009	0.119740	0.208974	0.256676	0.427891
Enroll	0.898039	0.936482	1.001289	0.171977	0.230731	0.968549	0.642422	-0.155856	-0.023876	0.202317	0.339785	0.382031
Top10perc	0.321756	0.223586	0.171977	1.001289	0.915053	0.111358	-0.180241	0.562884	0.357826	0.153650	-0.116880	0.544749
Top25perc	0.364961	0.274033	0.230731	0.915053	1.001289	0.181429	-0.099423	0.490200	0.331413	0.169980	-0.086922	0.552172
F.Undergrad	0.862111	0.898190	0.968549	0.111358	0.181429	1.001289	0.697027	-0.226457	-0.054546	0.208147	0.360246	0.362030
P.Undergrad	0.520493	0.573429	0.642422	-0.180241	-0.099423	0.697027	1.001289	-0.354673	-0.067725	0.122686	0.344496	0.127827
Outstate	0.065421	-0.005009	-0.155856	0.562884	0.490200	-0.226457	-0.354673	1.001289	0.656334	0.005117	-0.326029	0.391825
Room.Board	0.187717	0.119740	-0.023876	0.357826	0.331413	-0.054546	-0.067725	0.656334	1.001289	0.109065	-0.219837	0.341909
Books	0.236442	0.208974	0.202317	0.153650	0.169980	0.208147	0.122686	0.005117	0.109065	1.001289	0.240172	0.136566
Personal	0.230244	0.256676	0.339785	-0.116880	-0.086922	0.360246	0.344496	-0.326029	-0.219837	0.240172	1.001289	-0.011699
PhD	0.464522	0.427891	0.382031	0.544749	0.552172	0.362030	0.127827	0.391825	0.341909	0.136566	-0.011699	1.001289

Table 12 : Sample Covariance Matrix After Scaling

Complete covariance matrix and correlation matrix after scaling is present in ipynb file.

Covariance is when two variables vary with each other, whereas Correlation is when the change in one variable results in the change in another variable.

Covariance values will not be standardized. Correlation values will be standardized.

Since our data is already scaled [standardised] both covariance and correlation matrix will be almost same.

Q 2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?

Let us analyse the outliers with the help of Box Plot.

Figure 24: Box Plots Before Scaling

Figure 25: Box Plots After Scaling

Scaling does not have any impact on outliers. Only values in the dataset will be scaled, as part of it even outliers also get scaled and they still continue to remain as outliers.

Q 2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]

Eigen Vectors are as follows:

```
array([[ 0.262, 0.231, 0.189, 0.339, 0.335, 0.163, 0.022, 0.284,
         0.244, 0.097, -0.035, 0.326, 0.323, -0.163, 0.187, 0.329,
        0.239],
       [0.314, 0.345, 0.383, -0.099, -0.06, 0.399, 0.358, -0.252,
        -0.132, 0.094, 0.232, 0.055, 0.043, 0.26, -0.257, -0.16,
       -0.168],
       [-0.081, -0.108, -0.086, 0.079, 0.051, -0.074, -0.04, -0.015,
        0.021, 0.697, 0.531, -0.081, -0.059, -0.274, -0.104,
       -0.245],
       [ 0.099, 0.118, 0.009, -0.369, -0.417, 0.014, 0.225,
                                                              0 263.
        0.581, -0.036, -0.115, -0.147, -0.089, -0.259, -0.224,
                                                              0.214,
       -0.036],
       [ 0.22 , 0.19 , 0.162, 0.157, 0.144, 0.103, -0.096, 0.037,
       -0.069, 0.035, -0. , -0.551, -0.59 , -0.143, 0.128, -0.022,
        0.357],
       [0.002, -0.017, -0.068, -0.089, -0.028, -0.052, -0.025, -0.02]
        0.237, 0.639, -0.381, 0.003, 0.035, 0.469, 0.013, -0.232,
       [-0.028, -0.013, -0.015, -0.257, -0.239, -0.031, -0.01, 0.095,
        0.095, -0.111, 0.639, 0.089, 0.092, 0.153, 0.391, -0.151,
        0.469],
       [-0.09, -0.138, -0.144, 0.29, 0.346, -0.109, 0.124, 0.011,
        0.39, -0.24, 0.277, -0.034, -0.09, 0.243, -0.566, -0.119,
        0.18],
       [-0.131, -0.142, -0.051, 0.122, 0.194, -0.001, 0.635, 0.008,
        0.221, -0.021, -0.017, -0.167, -0.113, 0.154, 0.539, -0.024,
       -0.316],
       [-0.156, -0.149, -0.065, -0.036, 0.006, -0.
       -0.255, 0.091, -0.128, 0.101, 0.086, -0.471, -0.148, -0.08,
        0.488],
       [-0.086, -0.043, -0.044, 0.002, -0.102, -0.035, 0.252, 0.593,
        -0.475, 0.044, 0.015, -0.039, -0.085, 0.363, -0.174, 0.394,
        0.087],
       [-0.09, -0.159, 0.035, 0.039, -0.146, 0.134, -0.05, -0.56]
        0.107, -0.052, -0.009, 0.072, -0.164, 0.24, 0.049, 0.69,
        0.159],
       [-0.089, -0.044, 0.062, -0.07, 0.097, 0.087, -0.045, -0.067,
        -0.018, -0.035, 0.012, -0.703, 0.662, 0.048, -0.036, 0.127,
        0.063],
       [-0.549, -0.292, 0.417, -0.009, 0.011, 0.571, -0.146, 0.212,
        0.101, 0.029, -0.034, 0.064, -0.099, -0.062, -0.028, -0.129,
        0.007],
       [ 0.005, 0.014, -0.05 , -0.724, 0.655, 0.025, -0.04 , -0.002, -0.028, -0.008, 0.001, 0.083, -0.113, 0.004, -0.007, 0.145,
       -0.003],
       [0.599, -0.661, -0.233, -0.022, -0.032, 0.368, -0.026, 0.081,
       -0.027, -0.01, -0.005, -0.013, 0.018, -0.018, 0. , -0.056,
       -0.015],
       [-0.182, 0.391, -0.717, 0.056, -0.02, 0.543, -0.03, -0.001,
        -0.01, -0.004, 0.011, -0.013, -0.007, -0.009, 0.024, -0.011,
        0.00311)
```

Eigen Values are as follows:

```
array([5.663, 4.895, 1.126, 1.004, 0.872, 0.766, 0.585, 0.545, 0.424, 0.381, 0.247, 0.147, 0.134, 0.099, 0.075, 0.038, 0.022])
```

Q 2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features

Following is the dataframe of Principal Components with original features.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	PC16	PC17
Apps	0.262	0.314	-0.081	0.099	0.220	0.002	-0.028	-0.090	-0.131	-0.156	-0.086	-0.090	-0.089	-0.549	0.005	0.599	-0.182
Accept	0.231	0.345	-0.108	0.118	0.190	-0.017	-0.013	-0.138	-0.142	-0.149	-0.043	-0.159	-0.044	-0.292	0.014	-0.661	0.391
Enroll	0.189	0.383	-0.086	0.009	0.162	-0.068	-0.015	-0.144	-0.051	-0.065	-0.044	0.035	0.062	0.417	-0.050	-0.233	-0.717
Top10perc	0.339	-0.099	0.079	-0.369	0.157	-0.089	-0.257	0.290	0.122	-0.036	0.002	0.039	-0.070	-0.009	-0.724	-0.022	0.056
Top25perc	0.335	-0.060	0.051	-0.417	0.144	-0.028	-0.239	0.346	0.194	0.006	-0.102	-0.146	0.097	0.011	0.655	-0.032	-0.020
F.Undergrad	0.163	0.399	-0.074	0.014	0.103	-0.052	-0.031	-0.109	-0.001	-0.000	-0.035	0.134	0.087	0.571	0.025	0.368	0.543
P.Undergrad	0.022	0.358	-0.040	0.225	-0.096	-0.025	-0.010	0.124	0.635	0.546	0.252	-0.050	-0.045	-0.146	-0.040	-0.026	-0.030
Outstate	0.284	-0.252	-0.015	0.263	0.037	-0.020	0.095	0.011	0.008	-0.232	0.593	-0.560	-0.067	0.212	-0.002	0.081	-0.001
Room.Board	0.244	-0.132	0.021	0.581	-0.069	0.237	0.095	0.390	0.221	-0.255	-0.475	0.107	-0.018	0.101	-0.028	-0.027	-0.010
Books	0.097	0.094	0.697	-0.036	0.035	0.639	-0.111	-0.240	-0.021	0.091	0.044	-0.052	-0.035	0.029	-0.008	-0.010	-0.004
Personal	-0.035	0.232	0.531	-0.115	-0.000	-0.381	0.639	0.277	-0.017	-0.128	0.015	-0.009	0.012	-0.034	0.001	-0.005	0.011
PhD	0.326	0.055	-0.081	-0.147	-0.551	0.003	0.089	-0.034	-0.167	0.101	-0.039	0.072	-0.703	0.064	0.083	-0.013	-0.013
Terminal	0.323	0.043	-0.059	-0.089	-0.590	0.035	0.092	-0.090	-0.113	0.086	-0.085	-0.164	0.662	-0.099	-0.113	0.018	-0.007
S.F.Ratio	-0.163	0.260	-0.274	-0.259	-0.143	0.469	0.153	0.243	0.154	-0.471	0.363	0.240	0.048	-0.062	0.004	-0.018	-0.009
perc.alumni	0.187	-0.257	-0.104	-0.224	0.128	0.013	0.391	-0.566	0.539	-0.148	-0.174	0.049	-0.036	-0.028	-0.007	0.000	0.024
Expend	0.329	-0.160	0.184	0.214	-0.022	-0.232	-0.151	-0.119	-0.024	-0.080	0.394	0.690	0.127	-0.129	0.145	-0.056	-0.011
Grad.Rate	0.239	-0.168	-0.245	-0.036	0.357	0.314	0.469	0.180	-0.316	0.488	0.087	0.159	0.063	0.007	-0.003	-0.015	0.003

Table 13: Dataframe of PC and Original Features

Q 2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

From the above dataframe we will be able to write following linear equations:

PC1 = 0.26 Apps + 0.23 Accept + 0.19 Enroll + 0.34 Top 10 perc + 0.33 Top 25 perc + 0.16 F. Undergrad + 0.02 P. Undergrad + 0.28 Outstate + 0.24 Room. Board + 0.18 books - 0.04 Personal + 0.33 PhD + 0.32 Terminal - 0.16 S.F. Ratio + 0.19 perc. alumni + 0.33 Expend + 0.24 Grad. Rate

 $PC2 = 0.31 \\ Apps + 0.34 \\ Accept + 0.38 \\ Enroll - 0.1 \\ Top 10 \\ perc - 0.06 \\ Top 25 \\ perc + 0.4 \\ F. \\ Undergrad + 0.36 \\ P. \\ Undergrad - 0.25 \\ Outstate - 0.13 \\ Room. \\ Board + 0.09 \\ Books + 0.23 \\ Personal + 0.06 \\ PhD + 0.04 \\ Terminal + 0.26 \\ S. \\ F. \\ Ratio - 0.26 \\ perc. \\ alumni - 0.16 \\ Expend - 0.17 \\ Grad. \\ Rate$

PC3 = -0.08 Apps - 0.11 Accept - 0.09 Enroll + 0.08 Top 10 perc + 0.05 Top 25 perc - 0.07 F. Undergrad - 0.04 P. Undergrad - 0.01 Outstate + 0.02 Room. Board + 0.7 Books + 0.53 Personal - 0.08 PhD - 0.06 Terminal - 0.27 S.F. Ratio - 0.1 perc. alumni + 0.18 Expend - 0.25 Grad. Rate

 $PC4 = 0.1 \\ Apps + 0.12 \\ Accept + 0.01 \\ Enroll - 0.37 \\ Top 10 \\ perc - 0.42 \\ Top 25 \\ perc + 0.01 \\ F. \\ Under grad + 0.23 \\ P. \\ Under grad + 0.26 \\ Outstate + 0.58 \\ Room. \\ Board - 0.04 \\ Books - 0.11 \\ Personal - 0.15 \\ PhD - 0.09 \\ Terminal - 0.26 \\ S. \\ F. \\ Ratio - 0.22 \\ perc. \\ alumni + 0.21 \\ Expend - 0.04 \\ Grad. \\ Rate$

```
PC5 = 0.22 Apps + 0.19 Accept + 0.16 Enroll + 0.16 Top 10 perc + 0.14 Top 25 perc + 0.1F. Undergrad - 0.1P. Undergrad + 0.04 Outstate - 0.07 Room. Board + 0.04 Books - 0.0 Personal - 0.55 PhD - 0.59 Terminal - 0.14 S.F. Ratio + 0.13 perc. alumni - 0.02 Expend + 0.36 Grad. Rate
```

 $PC6 = 0.0 \\ Apps - 0.02 \\ Accept - 0.07 \\ Enroll - 0.09 \\ Top 10 \\ perc - 0.03 \\ Top 25 \\ perc - 0.05 \\ F. \\ Undergrad - 0.02 \\ P. \\ Undergrad - 0.02 \\ Outstate + 0.24 \\ Room. \\ Board + 0.64 \\ Books - 0.38 \\ Personal + 0.0 \\ PhD + 0.04 \\ Terminal + 0.47 \\ S. \\ F. \\ Ratio + 0.01 \\ perc. \\ alumni - 0.23 \\ Expend + 0.31 \\ Grad. \\ Rate$

PC7 = -0.03 Apps - 0.01 Accept - 0.02 Enroll - 0.26 Top 10 perc - 0.24 Top 25 perc - 0.03 F. Undergrad - 0.01 P. Undergrad + 0.09 Outstate + 0.09 Room. Board - 0.11 Books + 0.64 Personal + 0.09 PhD + 0.09 Terminal + 0.15 S.F. Ratio + 0.39 perc. alumni - 0.15 Expend + 0.47 Grad. Rate

 $PC8 = -0.09 \\ Apps - 0.14 \\ Accept - 0.14 \\ Enroll + 0.29 \\ Top 10 \\ perc + 0.35 \\ Top 25 \\ perc - 0.11 \\ F. \\ Under \\ grad + 0.01 \\ Outstate + 0.39 \\ Room. \\ Board - 0.24 \\ Books + 0.28 \\ Personal - 0.03 \\ PhD - 0.09 \\ Terminal + 0.24 \\ S.F. \\ Ratio - 0.57 \\ perc. \\ alumni - 0.12 \\ Expend + 0.18 \\ Grad. \\ Rate$

PC9 = -0.13 Apps - 0.14 Accept - 0.05 Enroll + 0.12 Top 10 perc + 0.19 Top 25 perc - 0.0 F. Undergrad + 0.63 P. Undergrad + 0.01 Outstate + 0.22 Room. Board - 0.02 Books - 0.02 Personal - 0.17 PhD - 0.11 Terminal + 0.15 S.F. Ratio + 0.54 perc. alumni - 0.02 Expend - 0.32 Grad. Rate

PC10 = -0.16 Apps - 0.15 Accept - 0.06 Enroll - 0.04 Top 10 perc + 0.01 Top 25 perc - 0.0 F. Undergrad + 0.55 P. Undergrad - 0.23 Outstate - 0.26 Room. Board + 0.09 Books - 0.13 Personal + 0.1 PhD + 0.09 Terminal - 0.47 S.F. Ratio - 0.15 perc. alumni - 0.08 Expend + 0.49 Grad. Rate

PC11 = -0.09 Apps - 0.04 Accept - 0.04 Enroll + 0.0 Top 10 perc - 0.1 Top 25 perc - 0.03 F. Under grad + 0.25 P. Under grad + 0.59 Outstate - 0.48 Room. Board + 0.04 Books + 0.02 Personal - 0.04 PhD - 0.08 Terminal + 0.36 S.F. Ratio - 0.17 perc. alumni + 0.39 Expend + 0.09 Grad. Rate

PC12 = -0.09 Apps - 0.16 Accept + 0.04 Enroll + 0.04 Top 10 perc - 0.15 Top 25 perc + 0.13 F. Undergrad - 0.05 P. Undergrad - 0.56 Outstate + 0.11 Room. Board - 0.05 Books - 0.01 Personal + 0.07 PhD - 0.16 Terminal + 0.24 S.F. Ratio + 0.05 perc. alumni + 0.69 Expend + 0.16 Grad. Rate

PC13 = -0.09 Apps - 0.04 Accept + 0.06 Enroll - 0.07 Top 10 perc + 0.1 Top 25 perc + 0.09 F. Undergrad - 0.04 P. Undergrad - 0.07 Outstate - 0.02 Room. Board - 0.04 Books + 0.01 Personal - 0.7 PhD + 0.66 Terminal + 0.05 S.F. Ratio - 0.04 perc. alumni + 0.13 Expend + 0.06 Grad. Rate

PC14 = -0.55 Apps - 0.29 Accept + 0.42 Enroll - 0.01 Top 10 perc + 0.01 Top 25 perc + 0.57 F. Undergrad - 0.15 P. Undergrad + 0.21 Outstate + 0.1 Room. Board + 0.03 Books - 0.03 Personal + 0.06 PhD - 0.1 Terminal - 0.06 S. F. Ratio - 0.03 perc. alumni - 0.13 Expend + 0.01 Grad. Rate

 $PC15 = 0.01 \\ Apps + 0.01 \\ Accept - 0.05 \\ Enroll - 0.72 \\ Top 10 \\ perc + 0.66 \\ Top 25 \\ perc + 0.03 \\ F. Undergrad - 0.04 \\ P. Undergrad - 0.00 \\ Undergrad - 0.00 \\ Undergrad - 0.00 \\ Undergrad - 0.00 \\ Enroll + 0.08 \\ PhD - 0.11 \\ Terminal + 0.05. \\ F. Ratio - 0.01 \\ perc. \\ alumni + 0.15 \\ Expend - 0.0 \\ Grad. \\ Rate$

PC16 = 0.6 Apps - 0.66 Accept - 0.23 Enroll - 0.02 Top 10 perc - 0.03 Top 25 perc + 0.37 F. Under grad - 0.03 P. Under grad + 0.08 Outstate - 0.03 Room. Board - 0.01 Books - 0.0 Personal - 0.01 PhD + 0.02 Terminal - 0.02 S.F. Ratio + 0.0 perc. alumni - 0.06 Expend - 0.01 Grad. Rate

PC17 = -0.18 Apps + 0.39 Accept - 0.72 Enroll + 0.06 Top 10 perc - 0.02 Top 25 perc + 0.54 F. Undergrad - 0.03 P. Undergrad - 0.00 Undergrad - 0.01 Room. Board - 0.08 pooks + 0.01 Personal - 0.01 PhD - 0.01 Terminal - 0.01 F. Ratio + 0.02 perc. alumni - 0.01 Expend + 0.06 Grad. Rate

Q 2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

Let us use cumulative explained variance ratio to find a cut off for selecting the number of PC's.

Following is the cumulative explained variance ratio:

```
array([0.33266084, 0.62021429, 0.68638592, 0.74536736, 0.79660629, 0.84159268, 0.8759551, 0.90794357, 0.93282465, 0.95520861, 0.96972018, 0.97837162, 0.98626408, 0.99207036, 0.99645823, 0.99868442, 1. ])
```


Figure 26: Cumulative Explained Ratio verses PC Index

From the above array and plot if k = 6, cumulative proportion is 84.15%. Although there are 17 observed variables, the first 6 principal components can explain more than 80% of the total variation. Hence it is sufficient to use the first 6 PCs instead of the original 17 variables.

The eigenvectors and eigenvalues of a covariance matrix represent the "core" of a PCA: The eigenvectors determine the directions of the new feature space, and the eigenvalues determine their magnitude.

Q 2.9 Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

For a model building activity, too much of data can be a bad thing. At a certain point, more features or dimensions can decrease a model's accuracy since there is more data that needs to be generalized this is known as the curse of dimensionality.

Principal Component Analysis (PCA) is an unsupervised linear transformation technique. PCA aims to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace with equal or fewer dimensions than the original one.

In the current case-study we have total 17 continuous columns which are 17 different dimensions. If we intend to build a model, we have to consider all 17 features for model building. As mentioned earlier model building with a greater number of features will be a complex task.

So, after applying PCA on current dataset we obtain 17 principal components. From the cumulative explained variance ratio we observe first 6 Principal components contain more than 80% of variance information which is sufficient. Hence it is sufficient to use the first 6 PCs in new subspace instead of the original 17 variables.

Each Principal component obtained is the linear combination of 17 original features.

Let us check as to how the original features matter to each PC by considering the absolute values.

Figure 27 : Absolute Values of Each Original Feature in Different Principal Components

Going further we can use these 6 Principal components instead of 17 features.

Let us obtain the scores as the dot product between the loadings and features. And using these scores we will create a dataframe out of fit transformed scaled data above.

	PC1	PC2	PC3	PC4	PC5	PC6
0	-1.602499	0.993683	0.030045	-1.008422	-0.366886	-0.697476
1	-1.804675	-0.070415	2.122128	3.138941	2.453212	0.994858
2	-1.608283	-1.382792	-0.501513	-0.036373	0.765997	-1.026237
3	2.803644	-3.367395	0.367768	-0.632914	-1.192601	-1.457080
4	-2.200868	-0.099348	3.122523	0.657707	-1.828044	0.140915
5	-0.730164	-1.998741	0.237171	-0.312879	0.062740	-0.821044
6	0.004516	-1.884603	0.237183	0.857612	-1.878437	-0.132645
7	1.836067	-1.733341	-0.995891	-0.521397	-0.996700	-0.117335
8	0.619231	-2.459100	-1.823771	0.329401	-0.341261	-0.977575
9	-2.934353	-1.106131	2.142631	0.235399	1.926359	-0.320840

Table 14: Sample Dataset with Principal Components.

All the Principal Components obtained will be orthogonal to each other and there won't be any correlations among them.

Figure 28 : Correlation Plot of Principal Components