Uzdevumi 2020.g. 21. februāra nodarbībai

Uzdevums 2.1: Determine all positive integers n such that n has a multiple with all non-zero digits in its decimal notation.

Uzdevums 2.2: A *wobbly number* is a positive integer whose digits are alternately nonzero and zero with the units digit being nonzero. Determine all positive integers that do not divide any wobbly numbers.

Uzdevums 2.3: Let n be a given integer with $n \geq 4$. For a positive integer m let S_m denote the set $\{m, m+1, \ldots, m+n-1\}$. Determine the minimum value of f(n) such that every f(n)-element subset of S_m (for every m) contains at least three pairwise relatively prime elements.

Uzdevums 2.4: By $\sigma(k)$ we denote the sum of all positive divisors of k (including 1 and k itself). For every positive integer n, prove that

$$\frac{\sigma(1)}{1} + \frac{\sigma(2)}{2} + \dots \frac{\sigma(n)}{n} \le 2n.$$

Note. In the last two problems let gpf(n) denote the greatest prime factor of an integer n. We also define gpf(1) = gpf(-1) = 1, and gpf(0) is undefined.

Uzdevums 2.5: Show that there exist infinitely many positive integers n such that $gpf(n^4 + 1)$ is greater than 2n.

Uzdevums 2.6: Find all polynomials P(n) with integer coefficients satisfying both properties:

- $P(n^2) \neq 0$ for all integers n = 0, 1, 2, ... and
- There exists M>0 such that $\operatorname{gpf}(P(n^2))-2n\leq M$ for all integers $n=0,1,2,\ldots$