ZK-SNARKs & Elliptic curves

Youssef El Housni

ConsenSys, LIX and Inria, Paris, France

Séminaire — Rennes le 16/09/2022

PhD Thesis

Overview

- Preliminaries
 - Zero-knowledge proof (ZKP)
 - ZK-SNARK
 - proof composition
- Choice of elliptic curves
 - SNARK curves
 - Implementations

Zero-Knowledge Proofs

Alice Bob

I know x such that $g^x = y$

Alice Bob

I know x such that $g^x = y$ $A = g^r$

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice

Bob

I know x such that $g^x = y$

$$r \stackrel{\text{random}}{\longleftarrow} \mathbb{Z}_{p}$$

$$A = g^{r}$$

$$c = H(A, y)$$

$$s = r + c \cdot x$$

$$\pi = (A, c, s)$$

$$g^{s}$$

$$c \stackrel{?}{=}$$

$$g^s \stackrel{?}{=} A \cdot y^c$$

 $c \stackrel{?}{=} H(A, y)$

ZKP families

- specific statement vs general statement
- interactive vs non-interactive protocol
- transparent setup vs trapdoored setup vs no setup
- Any verifier vs given verifier
- prover complexity (Alice)
- verifier complexity (Bob)
- communication complexity (size of the proof and the setup)
- security assumptions, cryptographic primitive...
- ...

Blockchains and ZKP

A blockchain is a public peer-to-peer *decentralized*, *transparent*, *immutable*, *paying* ledger.

- Transparent: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

ZKP literature landmarks

- First ZKP paper [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]
- Succinct NIZK without the PCP Theorem [Groth10]
- "SNARK" terminology and characterization of existence [BCCT11]
- Succinct NIZK without PCP Theorem and Quasi-linear prover time [GGPR13]
- Succinct NIZK without with constant-size proof and constant-time verifier (Groth16)
- First succinct NIZK with universal and updatable setup [Sonic19]
- Active research and implementation on SNARK with universal and updatable setup [PLONK19]

• ...

Zero-knowledge proof

What is a zero-knowledge proof?

"I have a *sound*, *complete* and *zero-knowledge* proof that a statement is true". [GMR85]

Sound

False statement \implies cheating prover cannot convince honest verifier.

Complete

True statement \implies honest prover convinces honest verifier.

Zero-knowledge

True statement \implies verifier learns nothing other than statement is true.

Zero-knowledge proof

ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof that a statement is true and that I know a related secret".

Succinct

Honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: $(pk, vk) \leftarrow S(F, \tau, 1^{\lambda})$

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: (pk, vk) \leftarrow $S(F, \tau, 1^{\lambda})$ Prove: π \leftarrow P(x, z, w, pk)

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: (pk, vk) \leftarrow $S(F, \tau, 1^{\lambda})$ Prove: π \leftarrow P(x, z, w, pk)Verify: false/true \leftarrow $V(x, z, \pi, vk)$

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:
$$(pk, vk)$$
 \leftarrow $S(F, \tau, 1^{\lambda})$
Prove: π \leftarrow $P(x, z, w, pk)$
Verify: false/true \leftarrow $V(x, z, \pi, vk)$

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F|+|x|+|z|)$, where $O_{\lambda}(.)$ is some polynomial in the security parameter λ .

ZK-SNARKs in a nutshell

main ideas:

- Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
- Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.
- Use homomorphic hiding cryptography to blindly verify the polynomial equation.
- Use Fiat-Shamir transform to make the protocol non-interactive.

Arithmetization of the statement

Statement \rightarrow Arithmetic circuit \rightarrow Rank 1 Constraint System (R1CS) \rightarrow Quadratic Arithmetic Program (QAP) \rightarrow zkSNARK Proof

Instead of verifying the QAP on the whole domain $\mathbb{F} \to \text{verify}$ it in a single random point $\tau \in \mathbb{F}$.

Schwartz-Zippel lemma

Any two distinct polynomials of degree d over a field $\mathbb F$ can agree on at most a $d/|\mathbb F|$ fraction of the points in $\mathbb F$.

Let's take the example of polynomial U:

- Alice can send U to Bob and he computes $U(\tau) \to \text{This breaks the zero-knowledge}$.
- Bob can send τ to Alice and she computes $U(\tau) \to \text{This}$ breaks the soundness.

We need a homomorphic hiding cryptographic primitive to evaluate U(x) at τ without Bob learning U nor Alice learning τ .

$$U(\tau) = u_0 + u_1\tau + u_2\tau^2 + \dots + u_d\tau^d$$

$$HH(U(\tau)) = u_0 + u_1HH(\tau) + u_2HH(\tau^2) + \dots + u_dHH(\tau^d)$$

Homomorphic hiding function w.r.t.:

- d additions (arbitrary d)
- 1 multiplication (for $U \cdot V$ and $H \cdot T$).

bilinear pairings

A non-degenerate bilinear pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

non-degenerate: $\forall P \in \mathbb{G}_1$, $P \neq \mathcal{O}$, $\exists Q \in \mathbb{G}_2$, $e(P,Q) \neq 1_{\mathbb{G}_T}$

 $orall Q \in \mathbb{G}_2, \ Q
eq \mathcal{O}, \ \exists P \in \mathbb{G}_1, \ \mathsf{e}(P,Q)
eq 1_{\mathbb{G}_T}$

bilinear: $e([a]P, [b]Q) = e(P, [b]Q)^a = e([a]P, Q)^b = e(P, Q)^{ab}$

¹Courtesy of Diego F. Aranha.

Blind evaluation can be achieved with *black-box* pairings:

$$e(H(\tau)G_{1}, T(\tau)G_{2}) \cdot e(W(\tau)G_{1}, G_{2}) = e(U(\tau)G_{1}, V(\tau)G_{2})$$

$$e(G_{1}, G_{2})^{H(\tau)T(\tau)} \cdot e(G_{1}, G_{2})^{W(\tau)} = e(G_{1}, G_{2})^{U(\tau)V(\tau)}$$

$$C_{te}^{H(\tau)T(\tau)+W(\tau)} = C_{te}^{U(\tau)V(\tau)}$$

Notations

Pairing-based zkSNARK

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q+1-t$, t Frobenius trace.
- -D CM discriminant, $4q = t^2 + Dy^2$ for some integer y.
- d degree of twist.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- $\mathbb{G}_1 \subset E(\mathbb{F}_q)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ two groups of order r.
- $\mathbb{G}_T \subset \mathbb{F}_{q^k}^*$ group of *r*-th roots of unity.
- pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$.

Proof composition

A proof

Example: Groth16 [Gro16]

Given an instance $\Phi = (a_0, \dots, a_\ell) \in \mathbb{F}_r^\ell$ of a public NP program F

• $(pk, vk) \leftarrow S(F, \tau, 1^{\lambda})$ where

$$\mathit{vk} = (\mathit{vk}_{lpha,eta}, \{\mathit{vk}_{\pi_i}\}_{i=0}^\ell, \mathit{vk}_\gamma, \mathit{vk}_\delta) \in \mathbb{G}_{\mathcal{T}} imes \mathbb{G}_1^{\ell+1} imes \mathbb{G}_2 imes \mathbb{G}_2$$

• $\pi \leftarrow P(\Phi, w, pk)$ where

$$\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \qquad (O_{\lambda}(1))$$

• $0/1 \leftarrow V(\Phi, \pi, vk)$ where V is

$$e(A,B) = vk_{\alpha,\beta} \cdot e(vk_x, vk_\gamma) \cdot e(C, vk_\delta) \qquad (O_\lambda(|\Phi|)) \qquad (1)$$

and $vk_{\times} = \sum_{i=0}^{\ell} [a_i]vk_{\pi_i}$ depends only on the instance Φ and $vk_{\alpha,\beta} = e(vk_{\alpha}, vk_{\beta})$ can be computed in the trusted setup for $(vk_{\alpha}, vk_{\beta}) \in \mathbb{G}_1 \times \mathbb{G}_2$.

Recursive ZK-SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over \mathbb{G}_1 (and \mathbb{G}_2) (of order r)
- V verification (eq. 1) is done in $\mathbb{F}_{q^k}^*$
- \digamma_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

Recursive ZK-SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over \mathbb{G}_1 (and \mathbb{G}_2) (of order r)
- V verification (eq. 1) is done in $\mathbb{F}_{q^k}^*$
- F_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r
- 1st attempt: choose a curve for which q = r (impossible)
- ullet 2nd attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations ($imes \log q$ blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [CFH⁺15, BCTV14a, BCG⁺20]

Recursive ZK-SNARKs

A proof of a proof

Given q, search for a pairing-friendly curve E_1 of order $h \cdot q$ over a field \mathbb{F}_s

Proof composition

cycles and chains of pairing-friendly elliptic curves

Definition

An *m*-chain of elliptic curves is a list of distinct curves

$$E_1/\mathbb{F}_{q_1},\ldots,E_m/\mathbb{F}_{q_m}$$

where q_1, \ldots, q_m are large primes and

$$\#E_2(\mathbb{F}_{q_2}) = q_1, \ldots, \ \#E_i(\mathbb{F}_{q_i}) = q_{i-1}, \ldots, \ \#E_m(\mathbb{F}_{q_m}) = q_{m-1} \ .$$
 (2)

Definition

An m-cycle of elliptic curves is an m-chain, with

$$\#E_1(\mathbb{F}_{q_1}) = q_m . \tag{3}$$

Choice of elliptic curves

ZK-curves

- SNARK
 - E/\mathbb{F}_q BN, BLS12, BW12?, KSS16? ... [FST10]
 - pairing-friendly
 - r-1 highly 2-adic (efficient FFT)
- Recursive SNARK (2-cycle)
 - E_1/\mathbb{F}_{q_1} and E_2/\mathbb{F}_{q_2}

MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

- both pairing-friendly
- $r_2 = q_1$ and $r_1 = q_2$
- $r_{\{1,2\}} 1$ highly 2-adic (efficient FFT)
- $q_{\{1,2\}} 1$ highly 2-adic (efficient FFT)
- Recursive SNARK (2-chain)
 - E_1/\mathbb{F}_{q_1}

BLS12 (seed $\equiv 1 \mod 3 \cdot 2^{large}$) [BCG⁺20], ?

- pairing-friendly
- $r_1 1$ highly 2-adic
- $q_1 1$ highly 2-adic
- E_2/\mathbb{F}_{q_2} • pairing-friendly

Cocks–Pinch algorithm

• $r_2 = q_1$

Choice of elliptic curves

Curve E_2/\mathbb{F}_{q_2}

- q is a prime or a prime power
- t is relatively prime to q

```
• r is prime

• r divides q+1-t

• r divides q^k-1 (smallest k\in\mathbb{N}^*)
• 4q-t^2=Dv^2 (for D<10^{12}) and some integer v
```

Algorithm 1: Cocks-Pinch method

- 1 Fix k and D and choose a prime r s.t. k|r-1 and $\left(\frac{-D}{r}\right)=1$;
- 2 Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$;
- 3 Compute $y = (t-2)/\sqrt{-D} \mod r$;
- 4 Lift t and y in \mathbb{Z} ;
- 5 Compute $q = (t^2 + Dy^2)/4$ (in \mathbb{Q});
- 6 back to 1 if q is not a prime integer;

2-chains

Limitations and improvements

- $\rho = \log_2 q / \log_2 r \approx 2$ (because $q = f(t^2, y^2)$ and $t, y \xleftarrow{\$} \operatorname{mod} r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm 2: Brezing-Weng method

- 1 Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient 1 s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_k are in $K = \mathbb{Q}[x]/r(x)$;
- 2 Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_k + 1$ in K;
- 3 Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in K;
- 4 Compute $q(x) = (t^2(x) + Dy^2(x))/4$ in $\mathbb{Q}[x]$;
 - $\bullet \ \rho = 2 \max(\deg t(x), \deg y(x)) / \deg r(x) < 2$
 - r(x), q(x), t(x) but does $\exists x_0 \in \mathbb{Z}^*, r(x_0) = r_{\text{fixed}}$ and $q(x_0)$ is prime ?

¹conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces infinitely many primes for infinitely many integers.

2-chains

Suggested construction: combines CP and BW

- Cocks-Pinch method
 - k=6 and $-D=-3 \Longrightarrow 128$ -bit security, \mathbb{G}_2 coordinates in \mathbb{F}_q , GLV multiplication over \mathbb{G}_1 and \mathbb{G}_2
 - restrict search to size(q) \leq 768 bits \implies smallest machine-word size
- ② Brezing-Weng method
 - choose $r(x) = q_{\text{BLS } 12-377}(x)$
 - $q(x) = (t^2(x) + 3y^2(x))/4$ factors $\implies q(x_0)$ cannot be prime
 - lift $t = r \times h_t + t(x_0)$ and $y = r \times h_y + y(x_0)$ [FK19, GMT20]

2-chains [CANS2020]

The suggested curve: BW6-761

 $E: y^2 = x^3 - 1$ over \mathbb{F}_q of 761-bit with seed $x_0 = 0$ x8508c00000000 and polynomials:

Our curve,
$$k = 6$$
, $D = 3$, $r = q_{BLS 12-377}$
 $r(x) = (x^6 - 2x^5 + 2x^3 + x + 1)/3 = q_{BLS 12-377}(x)$
 $t(x) = x^5 - 3x^4 + 3x^3 - x + 3 + h_t r(x)$
 $y(x) = (x^5 - 3x^4 + 3x^3 - x + 3)/3 + h_y r(x)$
 $q(x) = (t^2 + 3y^2)/4$
 $q_{h_t=13,h_y=9}(x) = (103x^{12} - 379x^{11} + 250x^{10} + 691x^9 - 911x^8 - 79x^7 + 623x^6 - 640x^5 + 274x^4 + 763x^3 + 73x^2 + 254x + 229)/9$

Inner curves [EC2022]

SNARK-0

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T and pairing
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large input $L \in \mathbb{N}^*$ (FFTs)

 \rightarrow BLS (k=12) family of roughly 384 bits with seed $x\equiv 1 \mod 3 \cdot 2^L$

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient G₁, ¼¼//¼/ and pairing
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large $L \in \mathbb{N}^*$ (FFTs)

→ BLS (k = 24) family of roughly 320 bits with seed $x \equiv 1 \mod 3 \cdot 2^L$

Outer curves [EC2022]

SNARK-1

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T and pairing
- $r' = p (r' 1 \equiv 0 \mod 2^L)$

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T and pairing
- \bullet $r' = p (r' 1 \equiv 0 \mod 2^L)$

 \rightarrow BW (k=6) family of roughly 768 \rightarrow BW (k=6) family of roughly 704 bits with $(t \mod x) \mod r \equiv 0$ or 3 bits with $(t \mod x) \mod r \equiv 0$ or 3 \rightarrow CP (k = 8) family of roughly 640 bits \rightarrow CP (k = 12) family of roughly

All \mathbb{G}_i formulae and pairings are given in terms of x and some $h_t, h_v \in \mathbb{N}$.

640 bits

Implementation and benchmark

Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice engineering properties

Groth16: BLS12-377 and BW6-761

Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. n=number of multiplication gates, a=number of addition gates and $\ell=$ number of public inputs. $M_{\mathbb{G}}=$ multiplication in \mathbb{G} and P=pairing.

	S	Р	V
Groth16	$3n\ \mathrm{M}_{\mathbb{G}_1}$, $n\ \mathrm{M}_{\mathbb{G}_2}$	$(4n-\ell)$ $M_{\mathbb{G}_1}$, n $M_{\mathbb{G}_2}$	3 P, ℓ M _{G1}
Universal	$d_{\geq n+a}$ $\mathtt{M}_{\mathbb{G}_1}$, 1 $\mathtt{M}_{\mathbb{G}_2}$	$9(n+a)$ $M_{\mathbb{G}_1}$	2 P, 18 M $_{\mathbb{G}_1}$

Implementation and benchmark

https://github.com/ConsenSys/gnark (Go)

 F_V : program that checks V (eq. 1) ($\ell=1, \hbar/\#/9000$ n=19378) [Housni22] "Pairings in R1CS"

Table: Groth16 (ms)

	S	P	V
BLS12-377	387	34	1
BLS24-315	501	54	4
BW6-761	1226	114	9
BW6-633	710	69	6
BW6-672	840	74	7

Table: Universal (ms)

	S	P	V
BLS12-377	87	215	4
BLS24-315	76	173	1
BW6-761	294	634	9
BW6-633	170	428	6
BW6-672	190	459	7

Play with gnark!

Write SNARK programs at https://play.gnark.io/ Example: Proof of Groth16 V program (eq. 1)

Conclusion

```
papers Optimized and secure pairing-friendly elliptic curvE2 suitable
            for one layer proof composition (CANS 2022)
            Families of SNARK-friendly 2-chains of elliptic curves
            (EUROCRYPT 2022)
            A survey of elliptic curves for proof systems (DCC 2022)
implementations github/ConsenSys/gnark-crypto (Go)
            gitlab/inria/snark-2-chains (SageMath/MAGMA)
other papers Co-factor clearing and subgroup membership on
            pairing-friendly elliptic curves (AFRICACRYPT 2022)
            Pairings in Rank-1 Constraint System (In submission)
```

THANK YOU!

References I

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014*, *Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

References II

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture.

In Kevin Fu and Jaeyeon Jung, editors, *USENIX Security 2014*, pages 781–796. USENIX Association, August 2014.

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.

SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

References III

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015.

ePrint 2014/976.

Georgios Fotiadis and Elisavet Konstantinou.

TNFS resistant families of pairing-friendly elliptic curves.

Theoretical Computer Science, 800:73–89, 31 December 2019.

David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224–280, April 2010.

References IV

Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation.

Des. Codes Cryptogr., 88:1047-1081, March 2020.

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016, Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.