

Probabilistic logic and statistical inference

Repeats of 50 measurements of petal length

Let's practice!

Random number generators and hacker statistics

Hacker statistics

Uses simulated repeated measurements to compute probabilities.

The np. random module

- Suite of functions based on random number generation
- np.random.random(): draw a number between o and 1

The np. random module

- Suite of functions based on random number generation
- np.random.random():

 draw a number between o and 1

Bernoulli trial

 An experiment that has two options, "success" (True) and "failure" (False).

Random number seed

- Integer fed into random number generating algorithm
- Manually seed random number generator if you need reproducibility
- Specified using np.random.seed()

Simulating 4 coin flips

```
In [1]: import numpy as np
In [2]: np.random.seed(42)
In [3]: random_numbers = np.random.random(size=4)
In [4]: random_numbers
Out[4]: array([ 0.37454012, 0.95071431, 0.73199394,
0.59865848])
In [5]: heads = random_numbers < 0.5</pre>
In [6]: heads
Out[6]: array([ True, False, False, False], dtype=bool)
In [7]: np.sum(heads)
Out[7]: 1
```


Simulating 4 coin flips

```
In [1]: n_all_heads = 0 # Initialize number of 4-heads trials
In [2]: for _ in range(10000):
        heads = np.random.random(size=4) < 0.5
   n_heads = np.sum(heads)
   ...: if n_heads == 4:
   ...: n_all_heads += 1
    • • • •
    . . . .
In [3]: n_all_heads / 10000
Out[3]: 0.0621
```


Hacker stats probabilities

- Determine how to simulate data
- Simulate many many times
- Probability is approximately fraction of trials with the outcome of interest

Let's practice!

Probability distributions and stories: The Binomial distribution

Probability mass function (PMF)

The set of probabilities of discrete outcomes

Discrete Uniform PMF

Tabular

•	•		• •		
1/6	1/6	1/6	1/6	1/6	1/6

Graphical

Probability distribution

A mathematical description of outcomes

Discrete Uniform distribution: the story

 The outcome of rolling a single fair die is Discrete Uniformly distributed.

Binomial distribution: the story

• The number *r* of successes in *n* Bernoulli trials with probability *p* of success, is Binomially distributed

The number r of heads in 4 coin flips with probability
 o.5 of heads, is Binomially distributed

Sampling from the Binomial distribution

```
In [1]: np.random.binomial(4, 0.5)
Out[1]: 2
In [2]: np.random.binomial(4, 0.5, size=10)
Out[2]: array([4, 3, 2, 1, 1, 0, 3, 2, 3, 0])
```


The Binomial PMF

In [1]: samples = np.random.binomial(60, 0.1, size=10000)

4

The Binomial CDF

```
In [1]: import matplotlib.pyplot as plt
In [2]: import seaborn as sns
In [3]: sns.set()
In [4]: x, y = ecdf(samples)
In [5]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [6]: plt.margins(0.02)
In [7]: _ = plt.xlabel('number of successes')
In [8]: _ = plt.ylabel('CDF')
In [9]: plt.show()
```


The Binomial CDF

Let's practice!

Poisson processes and the Poisson distribution

Poisson process

• The timing of the next event is completely independent of when the previous event happened

Examples of Poisson processes

- Natural births in a given hospital
- Hit on a website during a given hour
- Meteor strikes
- Molecular collisions in a gas
- Aviation incidents
- Buses in Poissonville

Poisson distribution

- The number r of arrivals of a Poisson process in a given time interval with average rate of λ arrivals per interval is Poisson distributed.
- The number *r* of hits on a website in one hour with an average hit rate of 6 hits per hour is Poisson distributed.

Poisson PMF

Poisson Distribution

- Limit of the Binomial distribution for low probability of success and large number of trials.
- That is, for rare events.

The Poisson CDF

```
In [1]: samples = np.random.poisson(6, size=10000)
In [2]: x, y = ecdf(samples)
In [3]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [4]: plt.margins(0.02)
In [5]: _ = plt.xlabel('number of successes')
In [6]: _ = plt.ylabel('CDF')
In [7]: plt.show()
```


The Poisson CDF

Let's practice!