Auditory Segmentation and Unvoiced Speech Segregation

DeLiang Wang & Guoning Hu

Perception & Neurodynamics Lab
The Ohio State University

Outline of presentation

- Introduction
 - Auditory scene analysis
 - Unvoiced speech problem
- Auditory segmentation based on event detection
- Unvoiced speech segregation
- Summary

Speech segregation

- In a natural environment, speech is usually corrupted by acoustic interference. Speech segregation is critical for many applications, such as automatic speech recognition and hearing prosthesis
- Most speech separation techniques, e.g. beamforming and blind source separation via independent analysis, require multiple sensors. However, such techniques have clear limits
 - Suffer from configuration stationarity
 - Can't deal with single-microphone mixtures
- Most speech enhancement developed for monaural situation can deal with only stationary acoustic interference

Auditory scene analysis (ASA)

- The auditory system shows a remarkable capacity in monaural segregation of sound sources in the perceptual process of auditory scene analysis (ASA)
- ASA takes place in two conceptual stages (Bregman'90):
 - **Segmentation**. Decompose the acoustic signal into 'sensory elements' (segments)
 - **Grouping**. Combine segments into streams so that the segments of the same stream likely originate from the same source

Computational auditory scene analysis

- Computational ASA (CASA) approaches sound separation based on ASA principles
- CASA successes: Monaural segregation of voiced speech
- A main challenge is segregation of unvoiced speech, which lacks the periodicity cue

Unvoiced speech

- Speech sounds consist of vowels and consonants, the latter are further composed of voiced and unvoiced consonants
- For English, the relative frequencies of different phoneme categories are (Dewey'23):

• Vowels: 37.9%

• Voiced consonants: 40.3%

• Unvoiced consonants: 21.8%

- In terms of time duration, unvoiced consonants account for about 1/5 in American English
- Consonants are crucial for speech recognition

Ideal binary mask as CASA goal

- Key idea is to retain parts of a target sound that are stronger than the acoustic background, or to mask interference by the target
 - Broadly consistent with auditory masking and speech intelligibility results
- Within a local time-frequency (T-F) unit, the ideal binary mask is 1 if target energy is stronger than interference energy, and 0 otherwise
 - Local 0 SNR criterion for mask generation

Ideal binary masking illustration

Utterance: "That noise problem grows more annoying each day" Interference: Crowd noise with music (0 SNR)

Outline of presentation

- Introduction
 - Auditory scene analysis
 - Unvoiced speech problem
- Auditory segmentation based on event detection
- Unvoiced speech segregation
- Summary

Auditory segmentation

- Our approach to unvoiced speech segregation breaks the problem into two stages: segmentation and grouping
 - This presentation is mainly about segmentation
- The task of segmentation is to decompose an auditory scene into contiguous T-F regions, each of which should contain signal from the same event
 - It should work for both voiced and unvoiced sounds
- This is equivalent to identifying onsets and offsets of individual T-F regions, which generally correspond to sudden changes of acoustic energy
- Our segmentation strategy is based on onset and offset analysis of auditory events

What is an auditory event?

- To define an auditory event, two perceptual effects need to be considered:
 - Audibility
 - Auditory masking
- We define an auditory event as a collection of the audible T-F regions from the same sound source that are stronger than combined intrusions
- Hence the computational goal of segmentation is to produce segments, or contiguous T-F regions, of an auditory event
 - For speech, a segment corresponds to a phone

Cochleogram as a peripheral representation

- We decompose an acoustic input using a gammatone filterbank
 - 128 filters centered from 50 Hz to 8 kHz
 - Filtering is performed in 20-ms time frames with 10-ms frame shift
- The intensity output forms what we call a cochleogram

Cochleogram and ideal segments

Scale-space analysis for auditory segmentation

- From a computational standpoint, auditory segmentation is similar to image segmentation
 - Image segmentation: Finding bounding contours of visual objects
 - Auditory segmentation: Finding onset and offset fronts of segments
- Our onset/offset analysis employs scale-space theory, which is a multiscale analysis commonly used in image segmentation
- Our proposed system performs the following computations:
 - Smoothing
 - Onset/offset detection and matching
 - Multiscale integration

Smoothing

- For each filter channel, the intensity is smoothed over time to reduce the intensity fluctuation
- An event tends to have onset and offset synchrony in the frequency domain. Consequently the intensity is further smoothed over frequency to enhance common onsets and offsets in adjacent frequency channels
- Smoothing is done via dynamic diffusion

Smoothing via diffusion

• A one-dimensional diffusion of a quantity v across the spatial dimension x is governed by:

$$\frac{\partial v}{\partial t} = \frac{\partial}{\partial x} [D(v) \cdot \frac{\partial v}{\partial x}]$$

- D is a function controlling the diffusion process. As t increases, v gradually smoothes over x
- The diffusion time t is called the scale parameter and the smoothed v values at different times compose a scale space

Diffusion

• Let the input intensity be the initial value of ν , and let ν diffuse across time frames, m, and filter channels, c, as follows:

$$v(c, m, 0, 0) = I(c, m)$$

$$\frac{\partial v(c, m, 0, t_m)}{\partial t_c} = \frac{\partial}{\partial m} [D_m(v) \cdot \frac{\partial v}{\partial m}]$$

$$\frac{\partial v(c, m, t_c, t_m)}{\partial t_c} = \frac{\partial}{\partial c} [D_c(v) \cdot \frac{\partial v}{\partial c}]$$

• I(c, m) is the logarithmic intensity in channel c at frame m

Diffusion, continued

- Two forms of $D_m(v)$ are employed in the time domain:
 - $D_m(v) = 1$, which reduces to Gaussian smoothing:

$$v(c,m,0,t_m) = v(c,m,0,0) * G(0,2t_m)$$

• Perona-Malik ('90) anisotropic diffusion:

$$D_m(v) = 1/[1+|\frac{\partial v}{\partial m}|^2/\lambda^2]$$

Compared with Gaussian smoothing, the Perona-Malik model may identify onset and offset positions bettter

• In the frequency domain, $D_c(v) = 1$

Diffusion results

Top: Initial intensity. Middle and bottom: Two scales for Gaussian smoothing (dash line) and anisotropic diffusion (solid line)

Onset/offset detection and matching

- At each scale, onset and offset candidates are detected by identifying peaks and valleys of the first-order time-derivative of *v*
- Detected candidates are combined into onset and offset fronts, which form vertical curves
- Individual onset and offset fronts are matched to yield segments

Multiscale integration

- The system integrates segments generated with different scales iteratively:
 - First, it produces segments at a coarse scale (more smoothing)
 - Then, at a finer scale, it locates more accurate onset and offset positions for these segments. In addition, new segments may be produced
- The advantage of multiscale integration is that it analyzes an auditory scene at different levels of detail so as to detect and localize auditory segments at appropriate scales

Segmentation at different scales

Input: Mixture of speech and crowd noise with music Scales (t_c, t_m) are: (a). (32, 200); (b). (18, 200); (c). (32, 100). (d). (18, 100)

Evaluation

- How to quantitatively evaluate segmentation results is a complex issue, since one has to consider various types of mismatch between a collection of ideal segments and that of computed segments
- Here we adapt a region-based definition by Hoover *et al.* ('96), originally proposed for evaluating image segmentation systems
- Based on the degree of overlapping (defined by threshold θ), we label a T-F region as belonging to one of the five classes
 - Correct
 - Under-segmented. Under-segmentation is not really an error because it produces larger segments good for subsequent grouping
 - Over-segmented
 - Missing
 - Mismatching

Illustration of different classes

Ovals (Arabic numerals) indicate ideal segments and rectangles (Roman numerals) computed segments. Different colors indicate different classes

Quantitative measures

- Let E_C , E_U , E_O , E_M , and E_I be the summated energy in all the regions labeled as correct, under-segmented, oversegmented, missing, and mismatching respectively. Let E_{GT} be the total energy of all ideal segments and E_S that of all estimated segments
 - The percentage of correctness: $P_C = E_C / E_{GT} \times 100\%$.
 - The percentage of under-segmentation: $P_U = E_U / E_{GT} \times 100\%$.
 - The percentage of over-segmentation: $P_O = E_O / E_{GT} \times 100\%$.
 - The percentage of mismatch, $P_I = E_I / E_S \times 100\%$.
 - The percentage of missing, $P_M = (1 P_C P_U P_O) \times 100\%$.

Evaluation corpus

- 20 utterances from the TIMIT database
- 10 types of intrusion: white noise, electrical fan, rooster crowing and clock alarm, traffic noise, crowd in playground, crowd with music, crowd clapping, bird chirping and waterflow, wind, and rain

Results on all phonemes

Results are with respect to θ , with 0 dB mixtures and anisotropic diffusion

Results on stops, fricatives, and affricates

Results with different mixture SNRs

 P_C and P_U are combined here since P_U is not really error

Comparisons

Comparisons are made between anisotropic diffusion and Gaussian smoothing, as well as with the Wang-Brown model (1999), which deals with mainly with voiced segments using cross-channel correlation. Mixtures are at 0 dB SNR

Outline of presentation

- Introduction
 - Auditory scene analysis
 - Unvoiced speech problem
- Auditory segmentation based on event detection
- Unvoiced speech segregation
- Summary

Speech segregation

- The general strategy for speech segregation is to first segregate voiced speech using the pitch cue, and then deal with unvoiced speech
- Voiced speech segregation is performed using our recent model (Hu & Wang'04):
 - The model generates segments for voiced speech using cross-channel correlation and temporal continuity
 - It groups segments according to periodicity and amplitude modulation
- To segregate unvoiced speech, we perform auditory segmentation, and then group segments that correspond to unvoiced speech

Segment classification

- For nonspeech interference, grouping is in fact a classification task to classify segments as either speech or non-speech
- The following features are used for classification:
 - Spectral envelope
 - Segment duration
 - Segment intensity
- Training data
 - Speech: Training part of the TIMIT database
 - Interference: 90 natural intrusions including street noise, crowd noise, wind, etc.
- A Gaussian mixture model is trained for each phoneme, and for interference as well which provides the basis for a likelihood ratio test

Demo for fricatives and affricates

Demo for stops

Summary

- We have proposed a model for auditory segmentation, based on a multiscale analysis of onsets and offsets
- Our model segments both voiced and unvoiced speech sounds
- The general strategy for unvoiced (and voiced) speech segregation is to first perform segmentation and then group segments using various ASA cues
- Sequential organization of segments into streams is not addressed
- How well can people organize unvoiced speech?