Conversão de binário para decimal

Muito simples, é só executar esta ideia:

Conversão de decimal para binário

Parte inteira:

Muito simples, é só executar estas ideias: Parte inteira à esquerda, parte fracionária à direita

33 2
1 16 2
0 8 2
0 4 2
0 2 2
0,5625
$$\times$$
 2 = 1,1256 \rightarrow 1
0,1256 \times 2 = 0,2512 \rightarrow 0
0,2512 \times 2 = 0,5024 \rightarrow 0
0,5024 \times 2 = 1,0048 \rightarrow 1
0,0048 \times 2 = 0,0096 \rightarrow 0
0,0096 \times 2 = 0,0192 \rightarrow 0

Aritmética do ponto flutuante:

- $50 = \frac{50}{2^5} \times 2^5 = 1,5625 \times 2^5;$
- Transformando em binário o expoente da potência: $(5)_{10}$ = $(101)_2$;
- Transformando em binário o valor que o multiplica a potência de base $2: (1,5625)_{10} \cong (1,1001)_2;$
- Tem-se então que $(50)_{10} = (1,1001 \times 2^{101})_2$ em ponto flutuante;

$$0.3125 = \frac{0.3125}{2^{-2}} \times 2^{-2} = 1.25 \times 2^{-2}$$

- Transformando em binário o expoente da potencia $(2)_{10} = (10)_2$
- Transformando em binário o valor que o multiplica a potência de base 2, $(1,25)_{10} \cong (1,01)_2$;
- Tem-se então que: $(0.3125)_{10} = (1.01 \times 2^{-10})_2$ em ponto flutuante;

Padrão IEEE 754 – Precisão dupla:

Precisão dupla

$$\pm \ 1, m_1 m_2 \dots m_{52} {\cdot} 2^E$$

1 bit	11 bits	52 bits
SINAL	E + 1023	m ₁ m ₂ m ₅₂

64 bits