VLSI Devices Lecture 1

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Course

- Course number: EC4313 (SE3101)
- Credits: 3
- Schedule: 09:00~10:15 every Monday/Wednesday
- Instructor: Sung-Min Hong

Prerequiste and references

- Semiconductor Materials and Devices (EC3206) or an equivalent course
- Textbook
 - Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices
 - -2nd edition (and 3rd edition)

Prof. Yuan Taur (UCSD)

Resources

Presentation materials

https://github.com/hi2ska2/vlsidevices2025s

- Homework submission and notice
 - -GIST LMS system
- YouTube channel

https://www.youtube.com/@TCADHong

Grading and policies

Attendance: 10 %

Mid-term examination: 40 %

• Final examination: 50 %

- Homework
 - Some assignements may be given. However, they will not contribute to the total score.

Recorded lectures

- Week 2 (Mar. 10 and Mar. 12)
 - Business trip to Hong Kong
 - Lecture 2: Recorded video, available at 09:00 on Mar. 10 (on my YouTube channel)
 - Lecture 3: Recorded video, available at 09:00 on Mar. 12 (on my YouTube channel)
 - Attendance: Leave a comment under the video.
- Additionally, Week 15 (Jun. 9 and Jun. 11)
 - Business trip to Kyoto
 - Additional recorded videos? (To be decided)

My own lecture material in 2014

"Digital design" course

Die shot

More than 40 years between them

Die size: 12 sq mm

Min. feature size: 10 micron Max. clock speed: 740 kHz

Die size: 177 sq mm Min. feature size: 22 nm Intel 4004, 1971, 2.3k transistors

Intel Core i7 4770K, 2013, <u>1.4B</u> transistors

As of 2025,

What is the state-of-the-art?

- It is no longer a CPU. It is no longer an Intel chip.

Nvidia B200, 2024, 208B transistors

What is the magic behind it?

- Increasing the die size helps a lot.
 - -Still, the main driver is the transistor scaling.
 - -Intel 22nm: 16.5M transistors/mm²
 - (Wikipedia, "22 nm process")
 - -TSMC N5: 138.2M transistors/mm² (Wikipedia, "5 nm process")

Standard cell and feature size (H. Goto, PC Watch article, 2017)

9

Copyright (c) 2017 Hiroshige Goto All rights reserved.

Lego

- Fantastic Lego creation
 - Numerous Lego bricks
 - Creative ideas

Hogwarts castle (Lego homepage)

Layout versus 3D structure

Example) NAND gate

Output is electrically connected

to GND only when both inputs are 1.

Layout and 3D structure of a CMOS NAND gate (Cogenda)

Transistors

- Inverter example
 - Electrical conductiondetermined by siliconregions
 - Controlled by input signal (Switch)

3D structure of a CMOS inverter (P. Fleischmann, Ph. D. dissertation, 1999)

Scaling roadmap

- Transistor scaling is extremely difficult.
 - "It ain't over till it's over."

IMEC's roadmap

CFET

- Stacking NMOSFET and PMOSFET
 - Actively under development

In addition to transistor area,

• We must consider other two factors, <u>power</u> & <u>performance</u>.

Device engineers

How can they develop the next-generation technology?

-They know various ways to improve the technology.

Alchemist (Image generated by ChatGPT)

Thank you!