(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-323123 (P2000-323123A)

(43)公開日 平成12年11月24日(2000.11.24)

(51) Int.Cl.7		識別記号	FΙ		ī	7]ド(参考)
H01M	4/02		H01M	4/02	С	5H003
	4/58			4/58		5H014
	10/40			10/40	Z	5 H O 2 9

審査請求 有 請求項の数5 書面 (全 11 頁)

(21)出願番号	特願平11-162866	(71)出願人 000224798 同和鉱業株式会社
(22)出願日	平成11年5月6日(1999.5.6)	東京都千代田区丸の内1丁目8番2号
(22) 山殿口	平成11年5月6日(1993.5.0)	
		(72)発明者 小山内 英世
		東京都千代田区丸の内1丁目8番2号 同
		和鉱業株式会社内
		(72)発明者 西佐古 将
		東京都千代田区丸の内1丁目8番2号 『
		和鉱業株式会社内
		(74)代理人 100075214
		弁理士 丸岡 政彦
		1

最終頁に続く

(54) 【発明の名称】 非水系二次電池用正極活物質および正極

(57)【要約】

【課題】 正極への活物質の充填性を損なうことなく電池の負荷特性の改良が可能な非水系二次電池用正極活物質および正極を提供する。

【解決手段】 Li複合酸化物からなる一次粒子を、仮焼、解粒分散後、噴霧、造粒し、本焼成の工程を経て、多孔質球状二次粒子に調製し、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μmの範囲内で、且つ0.01~1μmの径をもつ細孔の合計容積が0.01cm³/g以上であり、該二次粒子の平均粒子径が4~20μm、タツプ密度1.8g/cm²以上で且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上という特性を有する正極活物質とする。集電体上に形成されたこの正極活物質による正極は、高率充放電時でも容量低下の少ない負荷特性の優れた非水系二次電池を提供する。

【特許請求の範囲】

【請求項1】 CoNiMno群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の粒子であって、水銀圧入法による細孔分布測定での細孔平均径が $0.1\sim1\mu$ mの範囲内であり、 $0.01\sim1\mu$ mの径をもつ細孔の容積の合計が0.01cm³/g以上である粒子からなることを特徴とする非水系二次電池用正極活物質。

【請求項2】 上記粒子が球状二次粒子であって、球状二次粒子の平均粒子径が4~20μmであり、タップ密度が1.8g/cc以上であり、且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上であることを特徴とする請求項1記載の非水系二次電池用正極活物質。

【請求項3】 請求項1または2記載の正極活物質を用いたことを特徴とする非水系二次電池用正極。

【請求項4】 正極活物質がリチウムイオンを可逆的に 挿入・脱着可能なリチウム複合酸化物であり、該正極活物質と炭素系導電材および結着剤の混合物が、集電体上 に膜状に形成された正極において、上記正極活物質が、一次粒子が集合した多孔質の二次粒子塊として、炭素系 導電材の樹状ネットワーク内に保持されていることを特徴とする非水系二次電池用正極。

【請求項5】 請求項1または2記載の正極活物質を用いたことを特徴とする請求項4記載の非水系二次電池用正板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水系二次電池用 の正極活物質と正極の改良に関する。

[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性 能化とコードレス化が進み、これら携帯機器用の駆動電 源として二次電池に関心が集まっている。特にリチウム イオン二次電池に代表される非水系二次電池は高電圧・ 高エネルギー密度を有する電池として期待が大きい。非 水系二次電池に用いられる正極活物質としては、リチウ ムイオンを可逆的に挿入脱着することのできる化合物、 例えばLiCoOoやLiNiOoなどリチウムと遷移 金属を主体とする複合酸化物(以下、リチウム複合酸化 物と記す)が代表的である。このようなリチウム複合酸 化物のうち、すでに実用化されているリチウム二次電池 用正極活物質としては上記のLiCoO₂があるが、こ のLiCoOっはエネルギー密度の向上余地がなく、ま た資源的に希少で高価なコバルトを用いていることから 高価な材料である。そのため代替材料として、高エネル ギー密度を得ることが可能なLiNiO2や、安価で資 源的に豊富なマンガンを用いたLiMn2O4等の材料 開発も精力的に行われている。

【0003】これらのリチウム複合酸化物は、酸化物と

しては比較的高い電子伝導性を有するが、集電体と活物質間の電子伝導性を向上させるために、グラファイト、アセチレンブラック等の導電剤が正極合材中に添加される。また、活物質、導電剤、集電体を接着して活物質層を作製するために結着剤が用いられる。一方、これら非水系二次電池は、水溶媒系に比べ、溶媒の液粘性が高く、導電性が低いため、低温特性や負荷特性が劣るという欠点があった。非水系二次電池の主要用途である携帯機器のうち、ノートパソコンやビデオカムコーダーにおいては放電末期においても高率放電を要求されるため、特に負荷特件の改良は重要課題である。

【0004】非水系二次電池の負荷特性を改良するための従来技術として、以下のような多くの試みがなされている。電池設計面では電極面積の拡大化や電極活物質層の多孔化などの対策がなされている。例えば、特開平6-333558号公報の発明では、正極合剤中の導電材(炭素粉末)をグラファイトと無定形炭素粉末との混合物とすることで、正極板の空孔率を調整し負荷特性を改良している。しかしながら電池の内容積は一定であるから、このような対策は、他方では、電極への活物質の充填量、すなわち電池容量の制約となってしまう。そのため、負荷特性改良には電極構成材料や電解液、セパレータ等の材料側での改良も要望されている。

【0005】正極活物質に関しても、微粒子化により活 物質表面と電解液との接触面積を増大させて負荷特性を 改良する試みがなされている。例えば、特開平9-32 0603号公報の発明においては、可燃性液体中に活物 質原料を乳濁させた溶液を噴霧焼成後、熱処理すること により得られる粉末状活物質は、粒子径がO.1 μm程 度の微粒子の二次集合体であり、高電流密度での充放電 特性が改良されている。しかしながらこのように活物質 を微粒子化すると、導電材や結着剤の必要量も増加して しまい、正極板への活物質の充填率が制約されてしま う。また微粒子化に伴い塗料化時の塗膜の機械的性質が 硬く脆くなり、電池組立時の捲回工程で塗膜の剥離が生 じ易いという問題も生じてしまう。特開平9-1292 30号公報には、SEM観察における定方向径が0.1 ~2μmの微小結晶粒子と、SEM観察における定方向 径が2~20μmの球状二次粒子との混合物を正極活物 質に用いることにより、電池極板への活物質の充填性を 改良する技術が開示されている。しかしながら、このよ うな方法では球状二次粒子内部への電解液の浸透・拡散 経路に対する配慮がなされていないため、一次粒子径の 微粒子化による負荷特性改良効果が発現できないという 問題があった。

[0006]

【発明が解決しようとする課題】以上のように、電池設計面での電極活物質層の多孔化、正極活物質そのものの微粒子化など負荷特性の改良が試みられているが、このような対策は他方では電極への活物質充填量、すなわち

電池容量の制約となる等の課題があった。したがって本 発明の目的は、正極への活物質の充填性を損なうことな く負荷特性の改良が可能な正極活物質及び正極を提供す ることにある。

[0007]

【課題を解決するための手段】本発明者らは上記の課題 について、正極活物質と正極の構造の観点より鋭意検討 を重ねた結果、正極活物質粒子の微粒子化による負荷特 性の改良効果と、微粒子化に伴う導電材・結着剤の必要 量増加の抑制とを両立させるためには、正極活物質粉末 の粒子形態を多孔質の球状二次粒子に制御することが有 効であることを確認した。多孔質の構造とすることで、 微細な一次粒子表面と電解液の固液接触面積が大きくな り、また粒子内部から粒子表面に開口する細孔(オープ ンポアー)の平均径を最適化する事により、細孔内の電 解質の移動拡散を容易にして、高率充放電時の内部抵抗 の増加が抑制できる。また、形状が球状二次粒子である ことから、粉体としての流動性の改善や、有機溶媒を用 いて塗料化した時のスラリー粘度の低減も期待できる。 このような多孔質の球状二次粒子を正極活物質として用 いて、炭素系導電材及び結着剤と混合して集電体上に膜 状に正極合剤層を形成する。得られた正極合剤層は、正 極活物質の多孔質球状二次粒子が、炭素系導電材の樹状 ネットワーク内に保持された構造となる。そのため、集 電体表面から、各々の二次粒子への導電材のネットワー クを形成するのに必要な導電材の量や、正極合剤層の結 着強度を確保するのに必要な結着剤の量を低減でき、そ の結果として正極への活物質の充填量を向上できる。す なわち、本発明は、第1に、Co、Ni、Mnの群から 選ばれる1種以上の元素とリチウムとを主成分とするリ チウム複合酸化物からなる多孔質の粒子であって、水銀 圧入法による細孔分布測定での細孔平均径が0.1~1 μ mの範囲内であり、 $0.01\sim1\mu$ mの径をもつ細孔 の容積の合計が0.01cm3/g以上である粒子から なることを特徴とする非水系二次電池用正極活物質;第 2に、上記粒子が球状二次粒子であって、球状二次粒子 の平均粒子径が4~20μmであり、タップ密度が1. 8g/cc以上であり、且つクーパープロット法による 体積減少率の変曲点が500kg/cm2以上であるこ とを特徴とする前記第1記載の非水系二次電池用正極活 物質:第3に、前記第1または第2記載の正極活物質を 用いたことを特徴とする非水系二次電池用正極;第4 に、正極活物質がリチウムイオンを可逆的に挿入・脱着 可能なリチウム複合酸化物であり、該正極活物質と炭素 系導電材および結着剤の混合物が、集電体上に膜状に形 成された正極において、上記正極活物質が、一次粒子が 集合した多孔質の二次粒子塊として、炭素系導電材の樹 状ネットワーク内に保持されていることを特徴とする非 水系二次電池用正極;第5に、前記第1または第2記載 の正極活物質を用いたことを特徴とする第4記載の非水

系二次電池用正極を提供するものである。 【0008】

【発明の実施の形態】本発明の非水系二次電池用正極 は、正極活物質がリチウムイオンを可逆的に挿入・脱着 可能なリチウム複合酸化物であり、該正極活物質と炭素 系導電材および結着剤の混合物が、集電体上に膜状に形 成された正極において、上記正極活物質が、一次粒子が 集合した多孔質の二次粒子塊として、炭素系導電材の樹 状ネットワーク内に保持されていることを特徴とし、負 荷特性の優れた非水系二次電池に好適な正極である。こ こで、リチウム複合酸化物とは、Co、Ni、Mnの群 から選ばれる1種以上の遷移元素とリチウムを主成分と する層状あるいは擬層状あるいはスピネル構造を持つ酸 化物のことを示す。正極の構造を上記のように設定する ことにより、活物質と電解液の接触面積を大きくして活 性化分極を低減し、且つ高粘度の有機電解液を用いた場 合でも濃度分極を抑制できる適切な電解液の通路を確保 することができる。その結果として、高率充放電時でも 容量低下の少ない、負荷特性に優れた非水系二次電池を

【0009】このような非水系二次電池用正極を作製す るためには、活物質の選定が重要である。すなわち本発 明の正極活物質は、Со、Ni、Mnの群から選ばれる 1種類以上の遷移元素とリチウムを主成分とする複合酸 化物からなる開口性の細孔を有する球状二次粒子であっ て、水銀圧入法による細孔分布測定での細孔平均径が $0.1 \sim 1 \mu m$ の範囲内であり、 $0.01 \sim 1 \mu m$ の径 をもつ細孔の容積の合計が0.01cm3/g以上であ ることを特徴とする。細孔径分布の測定法としては、水 銀圧入法とガス吸脱着法が代表的なものであり、前者は 数nm~数百μm程度の大きな細孔径の測定に、後者は 数Å~数十mmの微小細孔の測定に有効である。本発明 では水銀圧入法を用いて評価した(測定装置には、カン タクローム社 (米国) 製:商品名 ポアマスター60を 用いた)。なお、水銀圧入法で測定した細孔径分布には 二次粒子間の空隙分も含まれるが、本発明での活物質粉 末の細孔平均径は、この空隙分を除いた二次粒子の内部 細孔についてのみ算出した値である。本発明において、 細孔平均径を $0.1\sim1\mu$ mの範囲に規定するのは、こ の下限末満では負荷特性の改良効果が不十分であり、こ の上限を超えると負荷特性の改良効果は飽和し、また内 部細孔が大き過ぎることによるタップ密度低下の弊害が 生ずるためである。なお、ここでの細孔平均径とは粒子 間空隙を除外するためにO.01から1µmの範囲で細 孔分布を測定した結果から算出したものである。また、 上記範囲の径の細孔の合計容積を0.01 c m³以上に 規定するのは、この数値末満では負荷特性が著しく低下 するためである。

【0010】本発明の正極活物質は、上記球状二次粒子の平均粒子径が4~20μmであり、タップ密度が1.

8g/cc以上であり、且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上であることが、更に望ましい。以下にその理由を説明する。球状二次粒子の平均粒子径が4μm末満であると、粉体としての流動性が悪化したり、有機溶剤と混合して塗料化する際にスラリー粘度が上昇するので好ましくない。また、平均粒子径が20μmを超えると、二次粒子内部への電子伝導性が低下するために負荷特性が劣化する。

【0011】タップ密度が1.8g/cc末満である と、活物質と炭素系導電材及び結着剤を混合した後に加 圧・成形して正極の体積密度を調整する際に、高い加圧 加重を必要とし工業的に不利益となる。本発明の正極活 物質を用いて正極を作製する際の加圧加重は、正極の体 積密度を3g/c cとする場合で、0.3~2ton/ c m² であれば良い。なお、本発明で用いた測定方法 は、タップ密度がJISZ2504に基づくタップ法 で、粒度分布についてはレーザー散乱法である。また、 多孔質の球状二次粒子の形状を、正極の作製工程内で維 持させるためには、この二次粒子を構成する一次粒子間 の凝集力を規定する必要がある。特に、正極合材を塗料 化して集電体上に塗布する場合は、塗料化時の分散工程 で二次粒子が解粒されやすく、負荷特性の改善効果が低 下する恐れがある。顆粒状粉体の凝集状態の評価法とし ては、粉体の圧縮過程での体積減少率(下記式の左項) を加圧圧力(自然対数目盛)でプロットするクーパー (Cooper)プロット法が一般的に用いられる。 [0012]

 $\frac{V_0 - V_P}{V_0 - V_F} = a_1 \times \exp(-kV_P) + a_2 \times \exp(-kV_P)$

P:加圧圧力(kg/cm²) Vo:初期充填体積(cm³)

【式】

Vp: Pkg/cm² 加圧時の充填体積(cm³)

V_F: 最密充填体積(cm³)

定数:k1,k2,a1,a2

【0013】このように粉体の圧縮過程での体積減少率をクーパープロットした際に、直線回帰できない場合、すなわち2本の直線が交差する変曲点を示す場合がある。この場合は、凝集粒子が加圧によって破壊されて、圧縮挙動が変化したことを意味する。本発明では多孔質二次粒子の強度を規定するため、正極活物質粉末を圧縮した時の体積減少率をクーパープロット法で解析した時の体積減少率の変曲点を指標とする。なお、測定条件として、加圧圧力範囲は0~2.5ton/cm²とし、上記式におけるV_Fは2.5ton/cm²での充填体積として体積減少率を算出した。

【0014】上記クーパープロット法による体積減少率

の変曲点が500kg/cm²以上であれば、通常の正極製造工程において、多孔質二次粒子の破壊が生じることはない。なお、体積減少率の変曲点が明確に測定されない場合は、500kg/cm²以上で加圧した成形体を割って、破面のSEM像を観察し、二次粒子の破壊が生じていなければよい。また、本発明での多孔質の球状二次粒子とは、球状二次粒子表面から内部に貫通する多数のオープンボアを有し、且つそのオープンボアの径が通常倍率でのSEM写真で十分観察され得る程度の大きさ、すなわちオープンボアの径が5nm以上であるような粒子を示す。

【0015】以下に、本発明における多孔質の球状二次 粒子の製造法について説明する。特開平7-37576 号公報には、本発明の二次粒子と類似した、球状あるい は楕円体状の二次粒子が開示されている。このような粒 子は、硫酸塩をアルカリで中和して得られた板状の一次 粒子が集合した球状の水酸化物を、リチウム塩と混合焼 成して得られる。一般に、硫酸塩を用いて得られる水酸 化物においては、タップ密度が高く、平均粒径は1~5 nm程度であり、また水酸化物中に微量に残留する硫酸 根の存在により、焼成時の一次粒子間の焼結が抑制さ れ、出発原料である水酸化物の形骸を保持するため、得 られる焼成物の細孔平均径は5 nm以下となる。しか し、このような方法においても、特に硫酸塩を中和する 際の液温、pH、液中塩濃度、中和速度等を制御するこ とにより、本発明の正極活物質粉末の調製が可能であ る。すなわち、硫酸塩を中和する際の液温、pH、液中 塩濃度、中和速度等を制御することにより、タップ密度 が比較的低く、0.1~1μm以上の平均径を有し、か つ細孔の合計容積が0.01cm3/g以上の水酸化物 を調製することができる。また、これをリチウム塩と混 合焼成することにより、細孔を残したまま、焼結により タップ密度を改善し、上記したような特徴をもつ正極活 物質粉末を調製することが可能になる。また、このよう な方法の他にも、遷移元素とリチウムの各化合物の混合 物を直接、あるいは仮焼したものを造粒し、本焼成する 方法によっても、上記したような特徴をもつ正極活物質 粉末の調製は可能である。その具体的な方法と一つとし ては、Mn、Co、Niの群から選ばれる1種以上の遷 移元素とリチウムの各化合物の混合物を500~800 ℃で5~20時間仮焼し、次いで仮焼した焼成物を解粒 分散後、噴霧、造粒し、仮焼温度より30℃以上高く且 つ900℃以下の温度で1~5時間本焼成することによ って、多孔質の球状二次粒子を製造することができる。 【0016】上記の多孔質球状二次粒子からなる正極活 物質で構成される非水系二次電池用正極は次の方法によ って製造できる。この正極は、その集電体がアルミニウ ム箔であり、それに活物質として上記多孔質球状二次粒 子が保持されたものである。このような正極は、湿式法 の場合、結着剤であるポリフッ化ビニリデン3~6重量 %と導電剤である炭素3~9重量%とを上記多孔質二次 粒子の正極活物質85~94重量%と共に混合して溶媒 であるNーメチルピロリドン(NMP)を適宜加えてペ ースト状に調製した後、集電体材料の両面に塗布、乾 燥、プレスして製造する。また、乾式法の場合は、結着 剤であるポリテトラフルオロエチレン(PTFE)3~ 6重量%と導電剤である炭素3~9重量%とを上記多孔 質球状二次粒子の正極活物質85~94重量%と混練・ 成形した後、得られた成形物を圧延して製造する。

【0017】上記正極活物質の電池特性の評価は、上記 正極に加え、負極に金属リチウムを、セパレータにはポ リプロピレンのフィルムを用いて行う。電解液には炭酸 エチレンと炭酸ジエチレンを体積比で1:1に混合した 液に電解質としてLiPF₆を1mol/dm³の濃度 で溶解させたものを用いる。充放電は0.5mA/cm 2 の電流密度で行い、4.3 Vまで充電し、その後2. 7 Vまで放電して正極活物質の単位重量当たりの放電容 量とする。負荷特性は電流密度O.5mA/cm2で充 電した後、放電を電流密度5.0mA/cm2、10m A/c m² でそれぞれ行う。評価の指標は電流密度 O. 5mA/cm2で放電したときの放電容量を100%と した場合のそれぞれの電流密度での放電容量を容量保持 率(%)とする。以下、実施例をもって詳細に説明する が、本発明の範囲はこれらによって限定されるものでは ない。

[0018]

【実施例1】水酸化リチウム、水酸化ニッケル、水酸化 コバルトを各金属のモル比が105:90:10の割合 で、ボールミルで混合粉砕し、得られた混合粉末を1t on/cm²の圧力下で加圧成形し、この成型体を焼成 用原料とした。この原料を770℃で10時間、空気気 流中で焼成(仮焼)した。得られた焼成物を純水に40 重量%の濃度になるように懸濁させた後、後工程の本焼 成後の粒子が多孔質になるように硝酸および硝酸リチウ ムを添加、表面改質し、湿式ビーズミルで2時間解粒粉 砕し、噴霧乾燥法により球状に乾燥造粒した。この造粒 粉を、800℃で2時間、酸素気流中で焼成(本焼成) し、臼式解砕機で解粒した後、スクリーン分級機で整粒 した。このようにして得られたリチウム複合酸化物は、 細孔平均径0.363μm、0.01~1μmの径をも つ細孔の合計容積が8. 4×10⁻² c m³/gである 多孔質の球状二次粒子であった。図2は実施例1のリチ ウム複合酸化物を正極活物質として用いて正極板を作製 し、750kg/cm2の圧力でプレスした場合の切断 破面写真である。すなわち、多孔質球状二次粒子は破壊 されておらず、十分な負荷特性が得られた。

[0019]

【実施例2】実施例1に対し、仮焼温度を650℃に条件を変更して行った。実施例1に比べ仮焼温度を下げることで一次粒子の結晶性を低下させ、一次粒子間の焼結

を促進させ、細孔容積をコントロールした。このようにして得られたリチウム複合酸化物は、細孔平均径0.137 μ m、 $0.01\sim1\mu$ mの径をもつ細孔の合計容積が 1.8×10^{-2} cm³/gである多孔質の球状二次粒子であった。図3に、実施例2で得られたリチウム複合酸化物のSEMによる外観写真を示す。

[0020]

【比較例1】実施例1に対し、水酸化ニッケルおよび水酸化コバルトをそれぞれの硫酸塩を中和して調製したものを用いて行った。このようにして得られた正極活物質は、細孔平均径0.053 μ m、0.01 \sim 1 μ mの径をもつ細孔の合計容積が1.8 \times 10 $^{-3}$ cm 3 /gである多孔質の球状二次粒子であった。

[0021]

【比較例2】実施例1に対し、湿式ビーズミルでの解粒分散時間を4時間にして行った。実施例1に比べ解粒分散時間を長くすることで一次粒子の結晶性を低下させ、なおかつ表面を活性化させる(アモルファス化)ことで、一次粒子間の焼結を促進させ、細孔容積を意図的に小さくコントロールした。このようにして得られた正極活物質は、一次粒子の焼結が進み、細孔平均径0.21 $1 \mu m$ 、0.01~ $1 \mu m$ 0径をもつ細孔の合計容積が5.0× 10^{-3} c m^3 /g である多孔質の球状二次粒子であった。

[0022]

【比較例3】実施例1に対して、仮焼粉を懸濁させた水溶液に、過剰の硝酸および硝酸リチウムを添加(実施例1の場合の2倍)することにより、さらに表面改質したのものである。実施例1に比べ硝酸および硝酸リチウムを多く添加することで、一次粒子間の焼結を促進させ、細孔容積を意図的に小さくコントロールした。このようにして得られた正極活物質は、細孔平均径0.300 μ m、0.01 \sim 1 μ mの径をもつ細孔の容積が1.6 \times 10 $^{-3}$ cm 3 /gで、焼結の進んだ球状の二次粒子であった。

[0023]

【比較例4】水酸化リチウム、水酸化ニッケル、水酸化コバルトを各金属のモル比が105:90:10の割合で、ボールミルで粉砕混合し、得られた混合粉末を1ton/cm²の圧力下で加圧成形し、この成型体を焼成用原料とした。この原料を770℃で10時間、空気気流中で焼成した。この焼成粉を、臼式解砕機で解粒した後、スクリーン分級機で整粒した。このようにして得られた正極活物質は、細孔平均径0.085μm、0.01~1μmの径をもつ細孔の容積が3.2×10⁻³cm³/gで、一次粒子が凝集した形の二次粒子であった。

[0024]

【比較例5】実施例1に対し、水酸化リチウム、水酸化ニッケル、水酸化コバルトを各金属のモル比を105:

87:13に、仮焼温度を800℃、湿式ビーズミルでの解粒分散時間を30分、本焼成温度を830℃にして行った。実施例1に比べ仮焼温度を高く、なおかつ、解粒分散時間を短くすることで、一次粒子径が大きく、見かけ密度の低い状態の二次粒子を意図的に調製した。このようにして得られた正極活物質は、焼結の進んでいない一次粒子で構成された多孔質の球状二次粒子であった。図4は比較例5の正極活物質をもとに正極板を作製し、750kg/cm²の圧力でプレスした場合の切断破面写真である。この写真から多孔質二次粒子は破壊が進んでいることがわかる。実施例1~2と比較例1~4の細孔分布の測定結果と負荷特性について表1に示す。この表から細孔平均径が0.1μm~1μmの範囲内に

あり、 0.01μ m~ 1μ mの径を持つ細孔の容積が活物質単位重量(1g)あたり $0.01cm^3$ 以上の場合のみ、高い負荷特性を示し、それ以外は負荷特性が劣ることがわかる。また、実施例1~2と比較例5の平均粒径、タップ密度、クーパープロット法による体積減少率の変曲点について表2に示す。この表から実施例1~2の場合、タップ密度が $1.8g/cm^3$ 以上で、なおかつ、クーパープロットの体積減少率の変曲点が両者とも $500kg/cm^2$ 以上であり、前述の数値以下である比較例5に比べて高い負荷特性を示すことがわかる。

[0025]

【表1】

実施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果

	平均細孔径	細孔容積	負荷特性(容量保持率(%))		
	(μm)	(cm³/g)*	5mA/cm²放電	10mA/cm²放電	
実施例1	0.363	8.4×10 ⁻²	97.1	79.1	
実施例 2	0.137	1.8×10 ²	95.6	79.9	
比較例1	0.053	1.8×10 ⁻³	91.1	65.2	
比較例 2	0.211	5.0×10 ⁻³	89.5	68.4	
比較例3	0.300	1.6×10 ⁻³	92.3	67.1	
比較例4	0.085	3.2×10 ³	95.8	66.5	

*活物質単位重量当たりの細孔径 0.01 µm~1 µm の細孔容積を示している。

[0026]

【表2】

実施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果

	平均細孔径	細孔容積	負荷特性(容量保持率(%))		
	(μm)	(cm ³ /g)*	5mA/cm ² 放電	10mA/cm²放電	
実施例1	0.363	8.4×10 ⁻²	97.1	79.1	
実施例 2	0.137	1.8×10 ⁻²	95.6	79.9	
比較例1	0.053	1.8×10 ⁻³	91.1	65.2	
比較例 2	0.211	5.0×10 ⁻³	89.5	68.4	
比較例3	0.300	1.6×10 ⁻³	92.3	67.1	
比較例4	0.085	3.2×10 ⁻³	95.8	. 66.5	

*活物質単位重量当たりの細孔径 0.01 µm~1 µm の細孔容積を示している。

実施例1~2と比較例5の平均粒径、タップ密度、クーパープロット法による体積減少率の変極点

	平均粒径	タップ 密度	体積減少率の	1	设荷特性 (保持率(%))	
	(µm)	(g/cm³)	変曲点(kg/cm²)	5mA/cm ² 放電	10mA/cm ² 放電	
実施例 1	10.1	1.88	730	97.1	. 79.1	
実施例2	9.72	2.15	1500	95.6	79.9	
比較例 5	12.1	1.35	310	91.2	69.9	

【0027】図1は実施例1, 2および比較例5で得られた正極活物質の圧縮過程での体積減少率を示すクーパープロット図であり、変曲点が500 k g/c m 2 に達しない比較例5の場合に対して、実施例1の場合は500 k g/c m 2 を超える730 k g/c m 2 であり、実施例2の図示されていない変曲点は1500 k g/c m 2 である。

[0028]

【発明の効果】以上述べたように、本発明の非水系二次電池用正極においては、正極活物質がLiイオンを可逆的に挿入・脱着可能なLi複合酸化物から調製された一次粒子が集合した多孔質の球状二次粒子であって、水銀圧入法による細孔分布測定での細孔平均径が $0.1\sim1$ μ mの範囲内で、 $0.01\sim1$ μ mの径をもつ細孔の合計容積が0.01 cm³/g以上であり、該球状二次粒子として平均粒子径が $4\sim2$ 0 μ m、2 μ m 2 μ m 2

少率の変曲点が500kg/cm²以上という特性を有するので、上記正極活物質と炭素系導電剤および結着剤の混合物が集電体状に膜状に形成された正極として、高率充放電時でも容量低下の少ない負荷特性の優れた非水系二次電池に好適である。

【図面の簡単な説明】

【図1】実施例1,2および比較例5で得られた正極活物質粉末の圧縮過程での体積減少率を示すクーパープロット図である。

【図2】実施例1で得られた正極活物質をもとに正極板を作製し、 $750 \, \mathrm{kg/cm^2}$ の圧力でプレスした場合のSEMによる切断破面写真である。

【図3】実施例2で得られたりリチウム複合酸化物のSEMによる外観写真である。

【図4】比較例5で得られた正極活物質をもとに正極板を作製し、 $750 \, k \, g / c \, m^2$ の圧力でプレスした場合のSEMによる切断破面写真である。

【図1】

【図2】

図面代用写真

【図3】

図面代用写真

【図4】

図面代用写真

【手続補正書】

【提出日】平成12年3月7日(2000.3.7) 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 Co、Ni、Mnの群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の球状二次粒子であって、<u>該球状二次粒子は</u>、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μmの範囲内にあり、0.01~1μmの径をもつ細孔の容積の合計が0.01cm³/g以上であると共に、平均粒子径が4~20μmであり、タップ密度が1.8g/cc以上であり、且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上であることを特徴とする非水系二次電池用正極活物質。

【請求項2】 請求項1記載の正極活物質を用いたこと を特徴とする非水系二次電池用正極。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0007

【補正方法】変更

【補正内容】

[0007]

【課題を解決するための手段】 本発明者らは上記の課 題について、正極活物質と正極の構造の観点より鋭意検 討を重ねた結果、正極活物質粒子の微粒子化による負荷 特性の改良効果と、微粒子化に伴う導電材・結着剤の必 要量増加の抑制とを両立させるためには、正極活物質粉 末の粒子形態を多孔質の球状二次粒子に制御することが 有効であることを確認した。多孔質の構造とすること で、微細な一次粒子表面と電解液の固液接触面積が大き くなり、また粒子内部から粒子表面に開口する細孔(オ ープンポアー)の平均径を最適化する事により、細孔内 の電解質の移動拡散を容易にして、高率充放電時の内部 抵抗の増加が抑制できる。また、形状が球状二次粒子で あることから、粉体としての流動性の改善や、有機溶媒 を用いて塗料化した時のスラリー粘度の低減も期待でき る。このような多孔質の球状二次粒子を正極活物質とし て用いて、炭素系導電材及び結着剤と混合して集電体上 に膜状に正極合剤層を形成する。。得られた正極合剤層 は、正極活物質の多孔質球状二次粒子が、炭素系導電材 の樹状ネットワーク内に保持された構造となる。そのた め、集電体表面から、各々の二次粒子への導電材のネッ トワークを形成するのに必要な導電材の量や、正極合剤 層の結着強度を確保するのに必要な結着剤の量を低減で き、その結果として正極への活物質の充填量を向上でき る。すなわち、本発明は、第1に、Co、Ni、Mnの群から 選ばれる1種以上の元素とリチウムとを主成分とするリ

BEST AVAILABLE COPY

チウム複合酸化物からなる多孔質の球状二次粒子であって、該球状二次粒子は、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μmの範囲内であり、0.01~1μmの径をもつ細孔の容積の合計が0.01cm³/g以上であると共に、平均粒子径が4~20μmであり、タップ密度

が1.8g/cc以上であり、且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上であることを特徴とする非水系二次電池用正極活物質;第2に、前記第1に記載の正極活物質を用いたことを特徴とする非水系二次電池用正極を提供するものである。

【手続補正書】

【提出日】平成12年7月24日(2000.7.24)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 CoNiMnの群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の球状二次粒子であって、該球状二次粒子は、水銀圧入法による細孔分布測定での細孔平均径が0.1~1 μ mの範囲内にあり、0.01~1 μ mの径をもつ細孔の容積の合計が0.01 μ mのと共に、平均粒子径が4~20 μ mであり、 μ mのを放った。と共に、平均粒子径が4~20 μ mであり、 μ mのであり、 μ mのであり、 μ mの変態点が500kg/cm²以上であることを特徴とする非水系二次電池用正極活物質。

【請求項2】 1 0mA/cm²放電時の容量保持率が7 9.1%以上である請求項1記載の非水系二次電池用正 極活物質。

【請求項3】 Co、Ni、Mnの群から選ばれる1種以上の元素とリチウムの各化合物の混合物を500~800での仮焼温度で仮焼し、これを解粒分散して、噴霧乾燥法により造粒した後、該仮焼温度より30℃以上高く且つ900℃以下の温度で焼成して得られる請求項1または2記載の非水系二次電池用正極活物質。

【請求項4】 <u>仮焼された粒子に硝酸と硝酸リチウムを添加して該粒子の表面改質を行う請求項3記載の非水系二次電池用正極活物質。</u>

【請求項5】 <u>正極活物質がリチウムイオンを可逆的に挿入・脱着可能なリチウム複合酸化物であり、該正極活物質と炭素系導電材および結着剤の混合物が、集電体上に膜状に形成された正極において、請求項1~4のいずれか1項に記載の多孔質二次粒子の正極活物質が該炭素系導電材の樹状ネットワーク内に保持されていることを特徴とする非水系二次電池用正極。</u>

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0007

【補正方法】変更

【補正内容】

[0007]

【課題を解決するための手段】 本発明者らは上記の課 題について、正極活物質と正極の構造の観点より鋭意検 討を重ねた結果、正極活物質粒子の微粒子化による負荷 特性の改良効果と、微粒子化に伴う導電材・結着剤の必 要量増加の抑制とを両立させるためには、正極活物質粉 末の粒子形態を多孔質の球状二次粒子に制御することが 有効であることを確認した。多孔質の構造とすること で、微細な一次粒子表面と電解液の固液接触面積が大き くなり、また粒子内部から粒子表面に開口する細孔(オ ープンポアー)の平均径を最適化する事により、細孔内 の電解質の移動拡散を容易にして、高率充放電時の内部 抵抗の増加が抑制できる。また、形状が球状二次粒子で あることから、粉体としての流動性の改善や、有機溶媒 を用いて塗料化した時のスラリー粘度の低減も期待でき る。このような多孔質の球状二次粒子を正極活物質とし て用いて、炭素系導電材及び結着剤と混合して集電体上 に膜状に正極合剤層を形成する。得られた正極合剤層 は、正極活物質の多孔質球状二次粒子が、炭素系導電材 の樹状ネットワーク内に保持された構造となる。そのた め、集電体表面から、各々の二次粒子への導電材のネッ トワークを形成するのに必要な導電材の量や、正極合剤 層の結着強度を確保するのに必要な結着剤の量を低減で き、その結果として正極への活物質の充填量を向上でき る。すなわち、本発明は、第1に、Co、Ni、Mnの 群から選ばれる1種以上の元素とリチウムとを主成分と するリチウム複合酸化物からなる多孔質の球状二次粒子 であって、該球状二次粒子は、水銀圧入法による細孔分 布測定での細孔平均径が0.1~1µmの範囲内にあ り、0.01~1 µmの径をもつ細孔の容積の合計が O. 01cm3/g以上であると共に、平均粒子径が4~2 Oμmであり、タップ密度が1.8g/cc以上であり、且 つクーパープロット法による体積減少率の変曲点が50 OKg/cm²以上であることを特徴とする非水系二次電池 用正極活物質;第2に、10mA/cm²放電時の容量保持 率が79.1%以上である請求項1記載の非水系二次電 池用正極活物質;第3に、Co、Ni、Mnの群から選 ばれる1種以上の元素とリチウムの各化合物の混合物を 500~800℃の仮焼温度で仮焼し、これを解粒分散 して、噴霧乾燥法により造粒した後、該仮焼温度より3 0℃以上高く且つ900℃以下の温度で焼成して得られ る請求項1または2記載の非水系二次電池用正極活物

質;第4に、仮焼された粒子に硝酸と硝酸リチウムを添 加して該粒子の表面改質を行う請求項3記載の非水系二 次電池用正極活物質;第5に、正極活物質がリチウムイ オンを可逆的に挿入・脱着可能なリチウム複合酸化物で あり、該正極活物質と炭素系導電材および結着剤の混合

物が、集電体上に膜状に形成された正極において、請求 項1~4のいずれか1項に記載の多孔質二次粒子の正極 活物質が該炭素系導電材の樹状ネットワーク内に保持さ れていることを特徴とする非水系二次電池用正極、を提 供するものである。

フロントページの続き

(72) 発明者 仁科 正行 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内

Fターム(参考) 5H003 AA01 BB01 BB05 BB11 BB15 BCO1 BCO5 BDO0 BD02 BD05 5H014 AA01 AA02 AA06 CC01 EE07 EE10 HH01 HH06 HH08 5H029 AJ03 AK03 AL06 AM03 AM04 AM06 AM07 DJ08 DJ16 EJ04 HJ00 HJ05 HJ07 HJ08

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-323123

(43) Date of publication of application: 24.11.2000

(51)Int.CI.

H01M 4/02

H01M 4/58

H01M 10/40

(21)Application number : 11-162866

(71)Applicant: DOWA MINING CO LTD

(22)Date of filing:

06.05.1999

(72)Inventor: OSANAI HIDEYO

NISHISAKO SUSUMU

NISHINA MASAYUKI

(54) POSITIVE ELECTRODE ACTIVE MATERIAL AND POSITIVE ELECTRODE FOR NON-AQUEOUS SECONDARY BATTERY

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the load characteristic of a battery without hindering the active material filling performance to a

positive electrode.

SOLUTION: This positive electrode active material is obtained by processing the primary grains of the Li compound oxide into the porous spherical secondary grains through a calcining process, a grain decomposing and dispersing process, an atomizing process, a granulating process and a baking process. The porous spherical secondary grains has characteristic of pore mean diameter in a range at 0.1-1 μm at the time of measuring the pore distribution with the mercury penetration method, 0.01 cm3/g or more of total volume of the pores having diameter at 0.01-1 μm, 4-20 μm of mean grain diameter of the secondary grains, 1.8 g/cm2 or more of tap density, and 500 kg/cm2 or more of inflection

point of the volume reduction ratio by the Cooper plot method. A positive electrode of the positive electrode active material formed on a collector is used so as to obtain a non-aqueous secondary battery having excellent load characteristic while preventing the capacity lowering even at the time of high efficient charge and discharge time.

LEGAL STATUS

[Date of request for examination]

02.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3110728

[Date of registration]

14.09.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

CLAIMS

[Claim(s)]

[Claim 1] Positive active material for nonaqueous rechargeable batteries characterized by the sum total of the volume of pore with the path which it is the particle of the porosity which consists of a lithium multiple oxide which uses as a principal component one or more sorts of elements chosen from the group of Co, nickel, and Mn and a lithium, and the pore pitch diameter in the pore distribution measurement by the method of mercury penetration is within the limits which is 0.1-1 micrometer, and is 0.01-1 micrometer consisting of a particle which is more than 0.01cm3/g.

[Claim 2] Positive active material for nonaqueous rechargeable batteries according to claim 1 characterized by for the above-mentioned particle being a spherical aggregated particle, for the mean particle diameter of a spherical aggregated particle being 4-20 micrometers, and for tap density being 1.8g/cc or more, and the point of inflection of the rate of a volume decrease by the Cooper plotting method being 500kg/cm2 or more. [Claim 3] The positive electrode for nonaqueous rechargeable batteries characterized by using positive active material according to claim 1 or 2.

[Claim 4] The positive electrode for nonaqueous rechargeable batteries with which positive active material is characterized by being the lithium multiple oxide in which insertion and desorption are possible reversibly, and holding the lithium ion in the arborescence network of carbon system electric conduction material as a porous aggregated particle lump with which primary particles gathered [the above-mentioned positive active material] in the positive electrode with which the mixture of this positive active material, carbon system electric conduction material, and a binder was formed in the shape of film on the charge collector.

[Claim 5] The positive electrode for nonaqueous rechargeable batteries according to claim 4 characterized by using positive active material according to claim 1 or 2.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the positive active material for nonaqueous rechargeable batteries, and amelioration of a positive electrode. [0002]

[Description of the Prior Art] In recent years, the formation of small high performance and cordless-izing of an electronics device progress, and interests have gathered for the rechargeable battery as a drive power source for these pocket devices. The nonaqueous rechargeable battery represented by especially the rechargeable lithium-ion battery has great expectation as a cell which has a high voltage and a high energy consistency. The multiple oxide (it is hereafter described as a lithium multiple oxide) which makes a subject lithiums, such as the compound 2 which can carry out insertion desorption of the

lithium ion reversibly, for example, LiCoO, and LiNiO2, and transition metals as positive active material used for a nonaqueous rechargeable battery is typical. Although there is above LiCoO2 as positive active material for lithium secondary batteries already put in practical use among such lithium multiple oxides, this LiCoO2 is an expensive ingredient from there being no improvement room of an energy density, and using cobalt rare in resource, and expensive. Therefore, ingredient development of LiNiO2 as alternate material which can obtain a high energy consistency, and the LiMn2O4 grade using manganese cheap and abundant in resource is also performed energetically. [0003] Although these lithium multiple oxides have electronic conduction nature comparatively high as an oxide, in order that they may raise the electronic conduction nature between a charge collector and an active material, electric conduction agents, such as graphite and acetylene black, are added in positive-electrode plied timber. Moreover, a binder is used, in order to paste up an active material, an electric conduction agent, and a charge collector and to produce an active material layer. On the other hand, compared with the aqueous intermediation system, these nonaqueous rechargeable battery had the high liquid viscosity of a solvent, and since conductivity was low, it had the fault that a low-temperature property and a load characteristic were inferior. Since high rate discharge is required also in the discharge last stage among the pocket devices which are the main applications of a nonaqueous rechargeable battery in a notebook computer or a video camcorder, especially amelioration of a load characteristic is an important problem. [0004] The attempt of following many is made as a conventional technique for improving the load characteristic of a nonaqueous rechargeable battery. In respect of the cell design, cures, such as expansion-izing of an electrode surface product and porosity-izing of an electrode active material layer, are made. invention of JP,6-333558,A -- a positive electrode -- a mixture -- by using inner electric conduction material (carbon powder) as the mixture of graphite and amorphous carbon powder, the void content of a positiveelectrode plate is adjusted and the load characteristic is improved. However, since the content volume of a cell is fixed, on the other hand, such a cure will become constraint of the fill of the active material to an electrode, i.e., cell capacity. Therefore, the amelioration by the side of ingredients, such as an electrode component, and the electrolytic solution, a separator, is also requested from load characteristic amelioration. [0005] The attempt which the touch area of an active material front face and the electrolytic solution is increased by atomization, and improves a load characteristic is made also about positive active material. For example, in invention of JP,9-320603,A, the powdered active material obtained by heat-treating the solution made to emulsionize an active material raw material in a flammable liquid after spraying baking is the secondary aggregate of the particle whose particle diameter is about 0.1 micrometers, and the charge-and-discharge property in high current density is improved. However, if an active material is atomized in this way, the initial complement of electric conduction material or a binder will also increase, and the filling factor of the active material to a positiveelectrode plate will be restrained. Moreover, the mechanical property of the paint film at the time of coating-izing will become weak firmly with atomization, and the problem of being easy to produce exfoliation of a paint film at the winding process at the time of cell assembly will also be produced. The technique of improving the restoration nature of the active material to a cell plate is indicated by JP,9-129230,A by using for positive active material the mixture of the minute crystal grain child whose unidirectional particle

diameter in SEM observation is 0.1-2 micrometers, and the spherical aggregated particle whose unidirectional particle diameter in SEM observation is 2-20 micrometers. However, by such approach, since the consideration to osmosis / diffusion path of the electrolytic solution inside a spherical aggregated particle was not made, there was a problem that the load characteristic amelioration effectiveness by atomization of the diameter of a primary particle could not be discovered. [0006]

[Problem(s) to be Solved by the Invention] As mentioned above, although amelioration of load characteristics, such as porosity-izing of the electrode active material layer in respect of a cell design and atomization of the positive active material itself, was tried, such a cure had technical problems, such as becoming constraint of the active material fill to an electrode, i.e., cell capacity, on the other hand. Therefore, the purpose of this invention is to offer the improvable positive active material and the improvable positive electrode of a load characteristic, without spoiling the restoration nature of the active material to a positive electrode.

[0007]

[Means for Solving the Problem] this invention persons checked that it was effective to control the shape of particle of positive-active-material powder to a porous spherical aggregated particle, in order to reconcile the amelioration effectiveness of the load characteristic by atomization of a positive-active-material particle, and control of the increment in an initial complement of the electric conduction material and binder accompanying atomization about the above-mentioned technical problem, as a result of repeating examination wholeheartedly from the viewpoint of the structure of positive active material and a positive electrode. By considering as porous structure, by optimizing the pitch diameter of the pore (opening pore) which the solid-liquid touch area of a detailed primary particle front face and the electrolytic solution becomes large, and carries out opening to a particle front face from the interior of a particle, migration diffusion of the electrolyte in pore is made easy, and the increment in the internal resistance at the time of high charge and discharge can be controlled. Moreover, since a configuration is a spherical aggregated particle, the fluid improvement as fine particles and reduction of the slurry viscosity when coating-izing using an organic solvent are also expectable. Using the spherical aggregated particle of such porosity as positive active material, it mixes with carbon system electric conduction material and a binder, and a positive-electrode binder layer is formed in the shape of film on a charge collector. The obtained positive-electrode binder layer serves as the structure where the porosity spherical aggregated particle of positive active material was held in the arborescence network of carbon system electric conduction material. Therefore, the amount of electric conduction material required to form the network of the electric conduction material from a current collection body surface to each aggregated particle and the amount of a binder required to secure the binding reinforcement of a positive-electrode binder layer can be reduced, and the fill of the active material to a positive electrode can be improved as the result. Namely, this invention is the particle of the porosity which consists of a lithium multiple oxide which uses as a principal component one or more sorts of elements chosen as the 1st from the group of Co, nickel, and Mn, and a lithium. It is within the limits whose pore pitch diameter in the pore distribution measurement by the method of mercury penetration is 0.1-1 micrometer. Positive active material for nonaqueous

rechargeable batteries characterized by the sum total of the volume of pore with a 0.01-1micrometer diameter consisting of a particle which is more than 0.01cm3/g; to the 2nd The above-mentioned particle is a spherical aggregated particle, and the mean particle diameter of a spherical aggregated particle is 4-20 micrometers. Positive active material for nonaqueous rechargeable batteries of said 1st publication characterized by for tap density being 1.8g/cc or more, and the point of inflection of the rate of a volume decrease by the Cooper plotting method being 500kg/cm2 or more; to the 3rd The positive electrode for nonaqueous rechargeable batteries characterized by using the positive active material of said 1st or 2nd publication; to the 4th In the positive electrode with which positive active material is the lithium multiple oxide in which insertion and desorption are possible reversibly about a lithium ion, and the mixture of this positive active material, carbon system electric conduction material, and a binder was formed in the shape of film on the charge collector The above-mentioned positive active material as a porous aggregated particle lump with which primary particles gathered The positive electrode for nonaqueous rechargeable batteries characterized by being held in the arborescence network of carbon system electric conduction material; the positive electrode for nonaqueous rechargeable batteries of the 4th publication characterized by using the positive active material of said 1st or 2nd publication for the 5th is offered. [8000]

[Embodiment of the Invention] In the positive electrode with which the positive active material of the positive electrode for nonaqueous rechargeable batteries of this invention is the lithium multiple oxide in which insertion and desorption are possible reversibly about a lithium ion, and the mixture of this positive active material, carbon system electric conduction material, and a binder was formed in the shape of film on the charge collector The above-mentioned positive active material is a suitable positive electrode for the nonaqueous rechargeable battery which was characterized by being held in the arborescence network of carbon system electric conduction material as a porous aggregated particle lump with which primary particles gathered, and was excellent in the load characteristic. here, let one or more sorts of the transition elements and lithiums which are chosen from the group of Co, nickel, and Mn be principal components with a lithium multiple oxide -- stratified -- or -- pseudo--- the thing of stratified or an oxide with Spinel structure is shown. By setting up the structure of a positive electrode as mentioned above, even when the touch area of an active material and the electrolytic solution is enlarged, and activation polarization is reduced and the hyperviscous organic electrolytic solution is used, the path of the suitable electrolytic solution which can control concentration polarization can be secured. As the result, the nonaqueous rechargeable battery excellent in the load characteristic with few capacity falls is producible also in the time of high charge and discharge.

[0009] In order to produce such a positive electrode for nonaqueous rechargeable batteries, selection of an active material is important. That is, the positive active material of this invention is a spherical aggregated particle which has the pore of opening nature which consists of a multiple oxide which uses as a principal component one or more kinds of transition elements chosen from the group of Co, nickel, and Mn, and a lithium, and is characterized by for the pore pitch diameter in the pore distribution measurement by the method of mercury penetration being within the limits which is 0.1-1 micrometer, and the sum total of the volume of pore with the path which is 0.01-1 micrometer being

more than 0.01cm3/g. As a measuring method of pore volume distribution, a method of mercury penetration and a gas adsorption-and-desorption method are typical, and the latter of the former is effective in measurement of several angstroms - dozens of nm minute pore to measurement of several nm - about hundreds of micrometers big pore size. This invention estimated using the method of mercury penetration (the : trade name pore master 60 made from can TAKUROMU (U.S.) was used for the measuring device). In addition, although a part for the opening between aggregated particles is also contained in the pore volume distribution measured with the method of mercury penetration, the pore pitch diameter of the active material powder in this invention is the value computed only about the internal pore of the aggregated particle except a part for this opening. In this invention, when this minimum Suemitsu of the amelioration effectiveness of a load characteristic is [specifying a pore pitch diameter in the range of 0.1-1 micrometer] insufficient and this upper limit is exceeded, it is to saturate the amelioration effectiveness of a load characteristic and for the evil of the tap density fall by internal pore being too large to arise. In addition, with a pore pitch diameter here, in order to except particle interspace spare time, it computes from the result of having measured pore distribution in 0.01 to 1 micrometer. Moreover, the sum total volume of the pore of the path of the above-mentioned range is specified for a load characteristic falling remarkably in this numerical Suemitsu or more [0.01cm] to three. [0010] As for the positive active material of this invention, it is still more desirable for the mean particle diameter of the above-mentioned spherical aggregated particle to be 4-20 micrometers, and for tap density to be 1.8g/cc or more, and for the point of inflection of the rate of a volume decrease by the Cooper plotting method to be 500kg/cm2 or more. The reason is explained below. Since slurry viscosity goes up in case the fluidity as fine particles gets worse that the mean particle diameter of a spherical aggregated particle is 4-micrometer Suemitsu, or it mixes with an organic solvent and coating-izes, it is not desirable. Moreover, if mean particle diameter exceeds 20 micrometers, in order for the electronic conduction nature inside an aggregated particle to fall, a load characteristic will deteriorate.

[0011] In case it pressurizes and fabricates and the volume density of a positive electrode is adjusted after mixing an active material, carbon system electric conduction material, and a binder as tap density is 1.8g [/cc] Suemitsu, a high pressurization load is needed and it becomes disadvantageous industrially. The pressurization load at the time of producing a positive electrode using the positive active material of this invention should just be 0.3 - 2 ton/cm2 in the case where volume density of a positive electrode is carried out in 3g/cc. In addition, tap density is the tap method based on JISZ2504, and the measuring method used by this invention is the laser scattering-about method about particle size distribution. Moreover, in order to maintain the configuration of a porous spherical aggregated particle within the production process of a positive electrode, it is necessary to specify the cohesive force between the primary particles which constitute this aggregated particle. Especially when coating-izing positive-electrode plied timber and applying on a charge collector, an aggregated particle is easy to **** at the distributed process at the time of coating-izing, and there is a possibility that the improvement effect of a load characteristic may fall. Generally as an appraisal method of the state of aggregation of granularity fine particles, the Cooper (Cooper) plotting method which plots the rate of a volume decrease in the compression process of fine particles

(**** of the following type) by the pressurization pressure (natural-logarithm graduation) is used.
[0012]
[Formula]

[Formula] $\frac{\mathbf{V_0 - V_P}}{\mathbf{V_0 - V_1}} = a_1 \times \exp^{-k_1 t} p + a_2 \times \exp^{-k_2 t} p$

P:加圧圧力(kg/cm²) V₀:初期充填体積(cm³)

Vp:Pkg/cm²加圧時の充填体積(cm³)

 V_F : 最密充填体積(cm³)

定数:k₁,k₂,a₁,a₂

[0013] Thus, when the Cooper plot of the rate of a volume decrease in the compression process of fine particles is carried out and linear regression cannot be carried out, the point of inflection where two straight lines cross may be shown. In this case, it means that floc was destroyed by pressurization and compression behavior changed. In this invention, in order to specify the reinforcement of a porosity aggregated particle, let point of inflection of the rate of a volume decrease when analyzing the rate of a volume decrease when compressing positive-active-material powder by the Cooper plotting method be an index. In addition, as a Measuring condition, the pressurization pressure range was made into 0 - 2.5 ton/cm2, and VF in the above-mentioned formula computed the rate of a volume decrease as restoration volume in 2.5 ton/cm2.

[0014] If the point of inflection of the rate of a volume decrease by the above-mentioned Cooper plotting method is 500kg/cm2 or more, destruction of a porosity aggregated particle will not arise in the usual positive-electrode production process. In addition, when the point of inflection of the rate of a volume decrease is not measured clearly, it is good, if the Plastic solid pressurized by 500kg/cm2 or more is broken, the SEM image of the fracture surface is observed and destruction of an aggregated particle has not arisen. Moreover, the spherical aggregated particle of the porosity in this invention shows a particle [as / whose magnitude of extent with which it has the opening pore of a large number penetrated inside from a spherical aggregated particle front face, and the path of the opening pore may usually be enough observed with the SEM photograph in a scale factor, i.e., the path of opening pore, is 5nm or more].

[0015] Below, the manufacturing method of the spherical aggregated particle of the porosity in this invention is explained. similar to JP,7-37576,A with the aggregated particle of this invention -- the aggregated particle of the shape of spherical or an ellipsoid is indicated. Such a particle carries out mixed baking of the spherical hydroxide with which the tabular primary particles which neutralized the sulfate with alkali and were obtained gathered with lithium salt, and is obtained. Sintering between the primary particles at the time of baking is controlled by existence of the sulfuric-acid root which tap density is high in the hydroxide obtained using a sulfate, and mean particle diameter is generally about 1-5nm, and remains in a hydroxide at a minute amount, and in order to hold the skeleton of the hydroxide which is a start raw material, the pore pitch diameter of the baking object obtained is set to 5nm or less. However, also in such an approach,

preparation of the positive-active-material powder of this invention is possible by controlling the solution temperature at the time of neutralizing especially a sulfate, pH, liquid Nakashio concentration, a neutralization rate, etc. That is, by controlling the solution temperature at the time of neutralizing a sulfate, pH, liquid Nakashio concentration, a neutralization rate, etc., tap density is comparatively low, and it has the pitch diameter of 0.1-1 micrometers or more, and the sum total volume of pore can prepare the hydroxide more than 0.01cm3/g. Moreover, it becomes possible to prepare the positive-active-material powder which improves tap density by sintering and has the description which was described above, leaving pore by carrying out mixed baking of this with lithium salt. Moreover, preparation of positive-active-material powder with the description which described above the mixture of each compound of a transition element and a lithium other than such an approach also by the approach of corning direct or the thing which carried out temporary quenching, and carrying out actual baking is possible. Temporary quenching of the mixture of each compound of the concrete approach, one or more sorts of transition elements chosen from the group of Mn, Co, and nickel as one, and a lithium is carried out at 500-800 degrees C for 5 to 20 hours. Subsequently, a porous spherical aggregated particle can be manufactured by spraying and corning the baking object which carried out temporary quenching after **** distribution, and carrying out actual baking at the temperature of 900 degrees C or less for 1 to 5 hours more highly 30 degrees C or more than temporary-quenching temperature. [0016] The positive electrode for nonaqueous rechargeable batteries which consists of positive active material which consists of the above-mentioned porosity spherical aggregated particle can be manufactured by the following approach. That charge collector is aluminium foil and, as for this positive electrode, the above-mentioned porosity spherical aggregated particle is held as an active material at it. After such a positive electrode mixes 3 - 6 % of the weight of polyvinylidene fluorides which are a binder, and 3 - 9 % of the weight of carbon which is an electric conduction agent with 85 - 94 % of the weight of positive active material of the above-mentioned porosity aggregated particle in the case of a wet method, adds suitably N-methyl pyrrolidone (NMP) which is a solvent and prepares it in the shape of a paste, it is applied, dried and pressed in both sides of a charge collector ingredient, and is manufactured to them. Moreover, in the case of dry process, the obtained moldings is rolled out and manufactured after kneading and fabricating 3 - 6 % of the weight (PTFE) of polytetrafluoroethylenes which are a binder, and 3 - 9 % of the weight of carbon which is an electric conduction agent with 85 - 94 % of the weight of positive active material of the above-mentioned porosity spherical aggregated particle.

[0017] In addition to the above-mentioned positive electrode, evaluation of the cell property of the above-mentioned positive active material is performed to a negative electrode by using the film of polypropylene for a separator for a metal lithium. What dissolved LiPF6 in the liquid which mixed ethylene carbonate and carbonic acid diethylene to 1:1 by the volume ratio by the concentration of 1 mol/dm3 as an electrolyte is used for the electrolytic solution. Charge and discharge are performed with the current density of 0.5 mA/cm2, charge to 4.3V, discharge to after that 2.7V, and are taken as the discharge capacity per unit weight of positive active material. A load characteristic performs discharge by current density 5.0 mA/cm2 and 10 mA/cm2, respectively, after charging by current density 0.5 mA/cm2. The index of evaluation makes discharge

capacity in each current density at the time of making discharge capacity when discharging by current density 0.5 mA/cm2 into 100% capacity retention (%). Hereafter, although explained to a detail with an example, the range of this invention is not limited by these.

[0018]

[Example 1] The mole ratio of each metal carried out preferential grinding of a lithium hydroxide, nickel hydroxide, and the cobalt hydroxide with the ball mill at a rate of 105:90:10, pressing of the obtained mixed powder was carried out under the pressure of 1 ton/cm2, and this molding object was used as the raw material for baking. This raw material was calcinated in the air air current at 770 degrees C for 10 hours (temporary quenching). After making the obtained baking object suspend so that it may become 40% of the weight of concentration to pure water, it added and surface treatment of a nitric acid and the lithium nitrate was carried out so that the particle after this baking of a back process might become porosity, **** grinding was carried out with the wet bead mill for 2 hours, and desiccation granulation was spherically carried out by the spray drying method. this granulation powder -- 800 degrees C -- the inside of 2 hours and an oxygen air current -- baking (this baking) -- carrying out -- a mortar -- after ****(ing) with type disintegrator, the particle size regulation was carried out with the screen classifier. Thus, the obtained lithium multiple oxide was the spherical aggregated particle of the porosity whose sum total volume of pore with the pore pitch diameter of 0.363 micrometers and a 0.01-1-micrometer diameter is 8.4x10-2cm3/g. Drawing 2 is the cutting fractograph at the time of producing a positive-electrode plate, using the lithium multiple oxide of an example 1 as positive active material, and pressing by the pressure of 750kg/cm2. That is, the porosity spherical aggregated particle was not destroyed but sufficient load characteristic was acquired.

[0019]

[Example 2] To the example 1, conditions were changed into 650 degrees C and temporary-quenching temperature was performed at them. The crystallinity of a primary particle was reduced by lowering temporary-quenching temperature compared with an example 1, sintering between primary particles was promoted, and pore volume was controlled. Thus, the obtained lithium multiple oxide was the spherical aggregated particle of the porosity whose sum total volume of pore with the pore pitch diameter of 0.137 micrometers and a 0.01-1-micrometer diameter is 1.8x10-2cm3/g. The appearance photograph by SEM of the lithium multiple oxide obtained in the example 2 by drawing 3 is shown.

[0020]

[The example 1 of a comparison] Nickel hydroxide and cobalt hydroxide were performed to the example 1 using what neutralized each sulfate and was prepared. Thus, the obtained positive active material was the spherical aggregated particle of the porosity whose sum total volume of pore with the pore pitch diameter of 0.053 micrometers and a 0.01-1-micrometer diameter is 1.8x10-3cm3/g.

[0021]

[The example 2 of a comparison] **** distribution time amount in a wet bead mill was performed over 4 hours to the example 1. the crystallinity of a primary particle is fallen by lengthening **** distribution time amount compared with an example 1 -- making -in addition -- and by what a front face is activated for (amorphous-izing), sintering

between primary particles was promoted and pore volume was controlled small intentionally. Thus, the obtained positive active material advanced and its sintering of a primary particle was the spherical aggregated particle of the porosity whose sum total volume of pore with the pore pitch diameter of 0.211 micrometers and the path which is 0.01-1 micrometer is 5.0x10-3cm3/g. [0022]

[The example 3 of a comparison] It is a carrying-out [to the water solution which made temporary-quenching powder suspend / by adding a superfluous nitric acid and a superfluous lithium nitrate (twice in the case of an example 1) / further]-to example 1-surface treatment thing. By adding many nitric acids and lithium nitrates compared with an example 1, sintering between primary particles was promoted and pore volume was controlled small intentionally. Thus, the volume of pore with the pore pitch diameter of 0.300 micrometers and a 0.01-1-micrometer diameter was 1.6x10-3cm3/g, and the obtained positive active material was the spherical aggregated particle to which sintering progressed.

[0023]

[The example 4 of a comparison] The mole ratio of each metal carried out grinding mixing of a lithium hydroxide, nickel hydroxide, and the cobalt hydroxide with the ball mill at a rate of 105:90:10, pressing of the obtained mixed powder was carried out under the pressure of 1 ton/cm2, and this molding object was used as the raw material for baking. This raw material was calcinated in the air air current at 770 degrees C for 10 hours. this baking powder -- a mortar -- after ****(ing) with type disintegrator, the particle size regulation was carried out with the screen classifier. Thus, the volume of pore with the pore pitch diameter of 0.085 micrometers and a 0.01-1-micrometer diameter was 3.2x10-3cm3/g, and the obtained positive active material was the aggregated particle of the form which the primary particle condensed.

[The example 5 of a comparison] an example 1 -- receiving -- a lithium hydroxide, nickel hydroxide, and cobalt hydroxide -- whenever [glost firing Nariatsu] was made [temporary-quenching temperature] into 830 degrees C for the **** distribution time amount in 800 degrees C and a wet bead mill for 30 minutes, and the mole ratio of each metal was performed to 105:87:13. an example 1 -- comparing -- temporary-quenching temperature -- high -- in addition -- and by shortening **** distribution time amount, the diameter of a primary particle was large and prepared intentionally the aggregated particle of the condition that apparent density gravity is low. Thus, the obtained positive active material was the spherical aggregated particle of the porosity which consisted of primary particles to which sintering is not progressing. Drawing 4 is the cutting fractograph at the time of producing a positive-electrode plate based on the positive active material of the example 5 of a comparison, and pressing by the pressure of 750kg/cm2. As for a porosity aggregated particle, this photograph shows that destruction is progressing. The measurement result and load characteristic of pore distribution of examples 1-2 and the example 1-4 of a comparison are shown in Table 1. Only when the volume of the pore which is in within the limits whose pore pitch diameter is 0.1 micrometers - 1 micrometer from this table, and has a 0.01 micrometers - 1 micrometer diameter is active material unit weight (1g) 0.01 cm [3 or more], a high load characteristic is shown and it turns out except it that a load characteristic is inferior. [

about] Moreover, the point of inflection of the mean particle diameter of examples 1-2 and the example 5 of a comparison, tap density, and the rate of a volume decrease by the Cooper plotting method is shown in Table 2. the case of this table to the examples 1-2 -- tap density -- three or more 1.8 g/cm -- it is -- in addition -- and it turns out that the point of inflection of the rate of a volume decrease of the Cooper plot shows a high load characteristic compared with the example 5 of a comparison which both are 500kg/cm2 or more and is below the above-mentioned numeric value.

[Table 1]

実施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果

美施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果						
	平均細孔径	細孔容積	負荷特性(容量保持率(%))			
	(μm)	(cm ³ /g)*	5mA/cm²放電	10mA/cm²放電		
実施例1	0.363	8.4×10 ⁻²	97.1	79.1		
実施例 2	0.137	1.8×10 ⁻²	95.6	79.9		
比較例1	0.053	1.8×10 ⁻³	91.1	65.2		
比較例2	0.211	5.0×10 ⁻³	89.5	68.4		
比較例3	0.300	1.6×10 ⁻³	92.3	67.1		
比較例4	0.085	3.2×10 ⁻³	95.8	. 66.5		

^{*}活物質単位重量当たりの細孔径 0.01 µm~1 µm の細孔容積を示している。

[0026] [Table 2]

実施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果

	平均細孔径 細孔容積		負荷特性(容量保持率(%))		
	(μm)	(cm ³ /g)*	5mA/cm ² 放電	10mA/cm²放電	
実施例1	0.363	8.4×10 ⁻²	97.1	79.1	
実施例 2	0.137	1.8×10 ⁻²	95.6	79.9	
比較例1	0.053	1.8×10 ⁻³	91.1	65.2	
比較例 2	0.211	5.0×10 ⁻³	89.5	68.4	
比較例3	0.300	1.6×10 ⁻³	92.3	67.1	
比較例4	0.085	3.2×10 ³	95.8	. 66,5	

^{*}活物質単位重量当たりの細孔径 0.01μm~1μm の細孔容積を示している。

The strange pole of the mean particle diameter of examples 1-2 and the example 5 of a comparison, tap density, and the rate of a volume decrease by the Cooper plotting method

	平均 粒径	タップ 密度	体積減少率の		5特性 持率(%))
	(µm)	(g/cm³)	変曲点(kg/cm²)	5mA/cm²放電	10mA/cm²放電
実施例1	10.1	1.88	730	97.1	. 79.1
実施例2	9.72	2.15	1500	95.6	79.9
比較例 5	12.1	1.35	310	91.2	69.9

[0027] <u>Drawing 1</u> is the Cooper plot showing the rate of a volume decrease in the compression process of the positive active material obtained in examples 1 and 2 and the example 5 of a comparison, it is 730kg/cm2 to which it exceeds 500kg/cm2 to the case of the example 5 of a comparison to which point of inflection does not amount to 500kg/cm2 in the case of an example 1, and the point of inflection where an example 2 is not illustrated is 1500kg/cm2.

[Effect of the Invention] As stated above, it sets to the positive electrode for nonaqueous rechargeable batteries of this invention. Positive active material Li ion by within the limits whose pore pitch diameter in the pore distribution measurement by the method of mercury penetration it is the spherical aggregated particle of the porosity to which the primary particles reversibly prepared from Li multiple oxide in which insertion and desorption are possible gathered, and is 0.1-1 micrometer The sum total volume of pore with a 0.01-1-micrometer diameter is more than 0.01cm3/g. Mean particle diameter as this spherical aggregated particle with 4-20 micrometers and the tap density of 1.8g/cc or more And since the point of inflection of the rate of a volume decrease by the Cooper plotting method has the property of 500kg/cm2 or more The mixture of the abovementioned positive active material, a carbon system electric conduction agent, and a binder is suitable for the nonaqueous rechargeable battery which excelled [time / of high charge and discharge] in the load characteristic with few capacity falls as a positive

electrode formed in the shape of film in the shape of a charge collector.

[0028]

Drawing 3 図面代用写真

Drawing 4

図面代用写真

