Pumping Lemma

#fall2023 #COSC-455

The Basics

The Pumping Lemma is a tool used to prove that a given language is not regular. It says that for any regular language L, there exists a constant p (the "pumping length") such that any string s in L with length at least p can be divided into three parts s=xyz, satisfying:

- 1. xy^iz is in L for all $i \geq 0$.
- 2. |y| > 0 (i.e., *y* is not empty).
- 3. $|xy| \leq p$.

If you find a string s in L that violates any of these conditions, then L is not a regular language.

Examples

Example 1: $L = \{a^nb^n|n \geq 1\}$

- 1. Choose a string $s = a^p b^p$ where p is the pumping length.
- 2. Try to divide s into xyz to satisfy the conditions.
- 3. You'll find that no matter how you divide it, you can't satisfy all three conditions.
- 4. Conclusion: *L* is not a regular language.

Example 2: $L=\{a^n|n\geq 0\}$

- 1. Choose a string $s = a^p$ where p is the pumping length.
- 2. Divide $s = xyz = a^{p-1}a^1$ where $x = a^{p-1}$, $y = a^1$, $z = \epsilon$.
- 3. All conditions are met:
 - $xy^iz = a^{p-1}a^i$ is in L for all $i \ge 0$.
 - |y| = 1 > 0.
 - $|xy|=p\leq p$.
- 4. Conclusion: *L* could be a regular language (Pumping Lemma is not violated).

The Pumping Lemma is mainly used for proving non-regularity. If a language satisfies the Pumping Lemma, it doesn't necessarily mean it's regular; it just means it hasn't been proven non-regular by this method.