5-MA'RUZA. Chekli toʻplamda akslantirish tushunchasi. Ine'ektiv, syur'ektiv, biektiv funksiyalar (2 soat).

REJA

- 1. Akslantirish tushunchasi va uning turlari.
- 2. Inyektiv, suryektiv, biyektiv funksiyalar.
- 3. Funksiyalar kompozitsiyasi.
- 4. Chekli to'plamdagi elementlar soniga ko'ra akslantirishlar.
- 5. Dirixle printsipi.

Kalit so'zlar: Akslantirish, in'yektiv, sur'yektiv, biyektiv funksiyalar, funksiyalar kompozitsiyasi, chekli to'plam, akslantirishlar, Dirixle printsipi.

5.1. Akslantirish tushunchasi va uning turlari.

Ta'rif 1 $f \subset A \times B$ munosabat uchun

- 1) $D_l(f) = A$, $D_r(f) \subseteq B$,
- 2) $(x, y_1) \in f$, $(x, y_2) \in f$ ekanligidan $y_1 = y_2$ ekanligi kelib chiqsa f munosabatga A toʻplamdan B toʻplamga **funksiya** yoki **akslantirish** deyiladi.

Agar $D_l(f) = A$ ni oʻrniga $D_l(f) \subset A$ bajarilsa f ga **qisman funksiya** deyiladi.

A dan B ga funktsiya $f: A \to B$ yoki $A \xrightarrow{f} B$ kabi belgilanadi, agar $(x, y) \in f$ bo'lsa, u holda y = f(x) yoki $f: x \to y$ kabi yoziladi va f funktsiya x elementga y elementni mos qo'yayapti deb o'qiladi.

Misol 1. $g = \{(1, 2), (2, 3), (3, 2)\}$ - munosabat **funksiya** boʻladi.

 $R = \{(1, 2), (1, 3), (2, 3)\}$ - munosabat funktsiya boʻlmaydi.

 $f = \{(x, x^2 - 2 * x + 3), x \in R\}$ - munosabat funktsiya boʻladi va $y = x^2 - 2 * x + 3$ kabi belgilanadi.

5.2. Inyektiv, suryektiv, biyektiv funksiyalar.

Ta'rif 2. Agar f^{-1} munosabat qisman funktsiya bo'lsa, ya'ni $\forall x_1, x_2 \in D_l(f)$ $x_1 \neq x_2$ uchun $f(x_1) \neq f(x_2)$ bajarilsa f funktsiyaga **turli qiymatli in'yektiv (inyeksiya)** yoki **birga- bir funksiya** deyiladi va $f: A \xrightarrow{1-1} B$ kabi belgilanadi.

Ta'rif 3. Agar $D_r(f) = B$ bo'lsa, $f: A \to B$ funktsiya A ning B ga funksiyasi yoki syur'yektiv funksiyasi (syur'yeksiya) deyiladi va $f: A \xrightarrow{ni} B$ kabi belgilanadi.

Ta'rif 4. Agar f funktsiya A ni B ga turli qiymatli akslantirish bo'lsa, u holda f funktsiya A va B to'plamlarning **o'zaro bir qiymatli mosligi** yoki **biyektiv funksiyasi** (**biyeksiyasi**) deviladi.

Shunday qilib funksiya in'yektiv va syur'yektiv bo'lsa, biyektsiya bo'ladi va $f: A \longleftrightarrow B$ kabi belgilanadi.

 $f: A \longleftrightarrow A$ biyektsiya A toʻplamni **oʻrin almashishi** deyiladi. Oʻrin almashishning eng sodda misoli bu id_A funktsiya hisoblanadi.

Misol 2. $f_i: [0,1] \rightarrow [0,1], i = 1, 2, 3, 4$. A = [0,1], B = [0,1] boʻlsin.

f₁ – funksiya

 $D_r(f_1) = \mathbf{B} = [0,1]$ boʻlgani uchun syur'yektiv, $\exists x_1 \neq x_2$ topiladiki $\Rightarrow f_1(x_1) = f_1(x_2)$ shuning uchun in'yektiv emas.

f₂ – funksiya

 $f_2: [0, 1] \longleftrightarrow [0, 1]$ bo'lgani uchun f_2 - o'rin

almashtirish, $\forall x_1 \neq x_2$ uchun $\Rightarrow f_2(x_1) \neq f_2(x_2)$ shuning uchun in'yektiv,

 $D_r(f_2) = B = [0, 1]$ bo'lgani uchun syur'yektiv. Ham in'yektiv, ham syur'yektiv bo'lgani uchun biyektiv bo'ladi.

 f_3 – **funksiya**: $\forall x_1 \neq x_2$ uchun $\Rightarrow f_2(x_1) \neq f_2(x_2)$ shuning uchun in'yektiv, lekin $D_r(f_1) \subset B = [0,1]$ bo'lgani uchun syur'yektiv emas.

 f_4 -funksiya: $\exists x_1 \neq x_2$ topiladiki $\Rightarrow f_1(x_1) = f_1(x_2)$ shuning uchun in'yektiv emas, $D_r(f_4) \subset B = [0,1]$ bo'lgani uchun syur'yektiv ham emas.

Misol 3. $f_i: \mathbb{R} \to \mathbb{R}$, i = 1, 2, 3, funksiyalarni qaraylik.

- 1) $f_1(x) = e^x$ funksiya in'yektiv, lekin syur'yektiv emas.
- 2) $f_2(x) = x * \sin x$ funksiya in'yektiv emas, lekin syur'yektiv.
- 3) $f_3(x) = 2 * x 1$ funksiya ham in'yektiv, ham syur'yektiv shuning uchun biyektiv bo'ladi.

Teorema. 1) Agar $f: A \to B$, $g: B \to C$ bo'lsa, u holda $f*g: A \to C$

- 2) Agar $f: A \rightarrow B$ boʻlsa, u holda $id_A * f = f$, $f * id_B = f$.
- 3) Agar $f: A \xrightarrow{ni} B$, $g: B \xrightarrow{ni} C$ boʻlsa, u holda $f*g: A \xrightarrow{ni} C$.
- 4) Agar f va g turli qiymatli akslantirish boʻlsa, u holda f * g turli qiymatli akslantirish boʻladi.
- 5) Agar $f: A \longleftrightarrow B$, $g: B \longleftrightarrow C$ boʻlsa, u holda $f*g: A \longleftrightarrow C$ boʻladi.
 - 6) Agar $f: A \longleftrightarrow B$ boʻlsa, u holda $f^{-1}: B \longleftrightarrow A$, $f*f^{-1} = id_A$, $f^{-1} * f = id_B$.

Agar f - akslantirish va $X \subset D_l(f)$ boʻlsa, u holda $\{f(x) : x \in X\}$ toʻplam X toʻplamning f akslantirishi natijasida tasviri deyiladi va f(X) kabi belgilanadi.

 $f: \mathbb{N} \to \mathbb{B}$ funksiya ketma-ketlik deyiladi va uni f(1), f(2), yoki $b_1, b_2,, b_n, ...b_n \in f(n)$, $n \in \mathbb{N}$ kabi belgilanadi.

A ni B ga akslantiruvchi barcha funksiyalar toʻplami B^A bilan belgilanadi.

$$B^A = \{f : f : A \to B\}.$$

 $f: A^n \to B$ funksiya A dan B ga n- **oʻrinli funksiya** deyiladi, agar $\mathcal{Y} - \mathcal{N}$ - oʻrinli f funksiyaning $(x_1, x_2,..., x_n)$ argument qiymatidagi qiymati boʻlsa $y = f(x_1, x_2,..., x_n)$ kabi yoziladi.

 $f: A^n \to A$ funksiya A toʻplamda n - oʻrinli algebraik amal deyiladi. n = 1 da f - unar amal, n = 2 da f - binar amal deyiladi. n = 0 boʻlganda $f: A^0 \to A$ amal $\{(\emptyset,a)\}$ biror bir $a \in A$ uchun boʻladi. Koʻp hollarda A da 0-oʻrinli amal $\{(\emptyset,a)\}$ ni A da **konstanta** deb ataladi va a element bilan ifodalanadi.

Misol 4. Haqiqiy sonlarni qoʻshish amali 2 oʻrinli yaʻni binar amal $+: R^2 \to R$ boʻladi, chunki bir juft (a, b) songa a+b sonni mos qoʻyadi.

R – to 'plamning ixtiyoriy ajratib ko 'rsatilgan elementi, masalan $\sqrt{2}$ 0-o 'rinli amaldir, ya 'ni R da konstantadir.

Ta'rif 5. {0, 1} qiymatlardan ixtiyoriy birini qabul qiladigan funksiyaga **binar funksiya** deyiladi.

Mantiq algebrasida binar funksiyalar **predikatlar** yoki **fikrlar funksiyalari** deb qaraladi va ularning qiymatlari mos ravishda **"yolg'on"** yoki **"rost"** deb interpretatsiyalanadi.

Misol 5. Aytaylik $A \times B$ 4×4 elementlar dekart koʻpaytmasi va $\langle x, y \rangle \in A \times B$ boʻlsin $\Phi(z)$ ($z = \langle x, y \rangle$) funksiyani quyidagicha aniqlaymiz:

$$\Phi(z) = \begin{cases} 1, _agar_x = y_bolsa, \\ 0, _aks_holda \end{cases}$$

 $\Phi(z)$ fikrlar funksiyaning 1 ga teng boʻladigan qiymatlarini aniqlaydigan $\langle x,y \rangle$ lar toʻplamini Z deb olsak, u holda $Z=\{\langle 1,1 \rangle,\langle 2,2 \rangle,\langle 3,3 \rangle,\langle 4,4 \rangle\}$ boʻlib, X ni Y ga chiziqli biyeksiyasini tashkil qiladi.

5.3. Funksiyalar kompozitsiyasi.

Ta'rif. $R_1 \subset A \times B$ va $R_2 \subset B \times C$ Funksiyalar kopaytmasi yoki kompozitsiyasi deb,

 $R_1 \circ R_2 = \{(x, y) : x \in A, y \in C$ ва $\exists z \in B$ topiladiki $(x, z) \in R_1$ va $(z, y) \in R_2 \}$ toʻplamga aytiladi.

Teorema. Ixtiyoriy P, Q, R binar munosabatlar uchun quyidagi xossalar oʻrinli.

1)
$$(P^{-1})^{-1} = P$$

2)
$$(P \circ Q)^{-1} = Q^{-1} \circ P^{-1}$$

3)
$$(P \circ Q) \circ R = P \circ (Q \circ R)$$

Munosabatlarning turlarini ularning matritsalari orqali aniqlash qulay. Buning uchun biror $A=\{1,2,3,4\}$ to'plamni olamiz. Bu to'plamning dekart kvadratidan biror R munosabatni olamiz.

 $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(3,3),(4,3),(4,4)\}$. Bu munosabatni tekislikda belgilab olamiz. Buning uchun x oʻqqa va y oʻqqa toʻplam elementlarini joylashtirib chiqamiz. Munosabat bor oʻrinni • bilan, munosabat yoʻq oʻrinni x bilan belgilaymiz:

Munosabat tekislikdagi ifodasiga asosan munosabat matritsasini tuzamiz. Buning uchun x oʻqdagi elementlarni satr, y oʻqdagi elementlarni ustun nomerlari sifatida olamiz. •lar oʻrniga 1 lar, x lar oʻrniga 0 lar qoʻyib, quyidagi matritsani, bu matritsani transponirlab unga teskari matritsani hosil qilamiz:

5.4. Chekli to'plamdagi elementlar soniga ko'ra akslantirishlar.

Ta'rif 1 $f \subset A \times B$ munosabat uchun

1)
$$D_l(f) = A$$
, $D_r(f) \subseteq B$,

2) $(x, y_1) \in f$, $(x, y_2) \in f$ ekanligidan $y_1 = y_2$ ekanligi kelib chiqsa f munosabatga A toʻplamdan B toʻplamga **funksiya** yoki **akslantirish** deyiladi.

Agar $D_l(f) = A$ ni oʻrniga $D_l(f) \subset A$ bajarilsa f ga **qisman funksiya** deyiladi.

A dan B ga funktsiya $f: A \to B$ yoki $A \xrightarrow{f} B$ kabi belgilanadi, agar $(x, y) \in f$ bo'lsa, u holda y = f(x) yoki $f: x \to y$ kabi yoziladi va f funktsiya x elementga y elementni mos qo'yayapti deb o'qiladi.

Misol 1. $g = \{(1, 2), (2, 3), (3, 2)\}$ - munosabat **funksiya** boʻladi.

 $R = \{(1, 2), (1, 3), (2, 3)\}$ - munosabat funktsiya boʻlmaydi.

 $f = \{(x, x^2 - 2 * x + 3), x \in R\}$ - munosabat funktsiya boʻladi va $y = x^2 - 2 * x + 3$ kabi belgilanadi.

Ta'rif 2. Agar f^{-1} munosabat qisman funktsiya bo'lsa, ya'ni $\forall x_1, x_2 \in D_l(f)$ $x_1 \neq x_2$ uchun $f(x_1) \neq f(x_2)$ bajarilsa f funktsiyaga **turli qiymatli in'yektiv (inyeksiya)** yoki **birga- bir funksiya** deyiladi va $f: A \xrightarrow{1-1} B$ kabi belgilanadi.

Ta'rif 3. Agar $D_r(f) = B$ bo'lsa, $f: A \to B$ funktsiya A ning B ga funksiyasi yoki syur'yektiv funksiyasi (syur'yeksiya) deyiladi va $f: A \xrightarrow{ni} B$ kabi belgilanadi.

Ta'rif 4. Agar f funktsiya A ni B ga turli qiymatli akslantirish bo'lsa, u holda f funktsiya A va B to'plamlarning **o'zaro bir qiymatli mosligi** yoki **biyektiv funksiyasi** (**biyeksiyasi**) deyiladi.

Shunday qilib funksiya in'yektiv va syur'yektiv bo'lsa, biyektsiya bo'ladi va $f: A \longleftrightarrow B$ kabi belgilanadi.

 $f: A \longleftrightarrow A$ biyektsiya A toʻplamni **oʻrin almashishi** deyiladi. Oʻrin almashishning eng sodda misoli bu id_A funktsiya hisoblanadi.

Misol 2. $f_i: [0,1] \rightarrow [0,1], i = 1, 2, 3, 4$. A = [0,1], B = [0,1] boʻlsin.

f 1 – funksiya

 $D_r(f_1) = B = [0,1]$ boʻlgani uchun syur'yektiv, $\exists x_1 \neq x_2$ topiladiki $\Rightarrow f_1(x_1) = f_1(x_2)$ shuning uchun in'yektiv emas.

f₂ – funksiya

 $f_2: [0, 1] \longleftrightarrow [0, 1]$ bo'lgani uchun f_2 - o'rin

almashtirish, $\forall x_1 \neq x_2$ uchun $\Rightarrow f_2(x_1) \neq f_2(x_2)$ shuning uchun in'yektiv,

 $D_r(f_2) = B = [0, 1]$ boʻlgani uchun syur'yektiv. Ham in'yektiv, ham syur'yektiv boʻlgani uchun biyektiv boʻladi.

 f_3 – **funksiya**: $\forall x_1 \neq x_2$ uchun $\Rightarrow f_2(x_1) \neq f_2(x_2)$ shuning uchun in'yektiv, lekin $D_r(f_1) \subset B = [0,1]$ bo'lgani uchun syur'yektiv emas.

 f_4 -**funksiya:** $\exists x_1 \neq x_2$ topiladiki $\Rightarrow f_1(x_1) = f_1(x_2)$ shuning uchun in'yektiv emas, $D_r(f_4) \subset B = [0,1]$ bo'lgani uchun syur'yektiv ham emas.

Misol 3. $f_i: \mathbb{R} \to \mathbb{R}$, i = 1, 2, 3, funksiyalarni qaraylik.

- 1) $f_1(x) = e^x$ funksiya in'yektiv, lekin syur'yektiv emas.
- 2) $f_2(x) = x * \sin x$ funksiya in'yektiv emas, lekin syur'yektiv.
- 3) $f_3(x) = 2 * x 1$ funksiya ham in'yektiv, ham syur'yektiv shuning uchun biyektiv bo'ladi.

Teorema. 1) Agar $f: A \to B$, $g: B \to C$ bo'lsa, u holda $f*g: A \to C$

- 2) Agar $f: A \to B$ bo'lsa, u holda $id_A * f = f$, $f * id_B = f$.
- 3) Agar $f: A \xrightarrow{ni} B$, $g: B \xrightarrow{ni} C$ boʻlsa, u holda $f*g: A \xrightarrow{ni} C$
- 4) Agar f va g turli qiymatli akslantirish boʻlsa, u holda f * g turli qiymatli akslantirish boʻladi.
- 5) Agar $f: A \longleftrightarrow B$, $g: B \longleftrightarrow C$ boʻlsa, u holda $f*g: A \longleftrightarrow C$ boʻladi.
 - 6) Agar $f: A \longleftrightarrow B$ bo'lsa, u holda $f^{-1}: B \longleftrightarrow A$, $f*f^{-1}=id_A$, $f^{-1}*f=id_B$.

Agar f - akslantirish va $X \subset D_l(f)$ boʻlsa, u holda $\{f(x) : x \in X\}$ toʻplam X toʻplamning f akslantirishi natijasida tasviri deyiladi va f(X) kabi belgilanadi.

 $f: \mathbb{N} \to \mathbb{B}$ funksiya ketma-ketlik deyiladi va uni f(1), f(2), yoki $b_1, b_2,, b_n, ...b_n \in f(n)$ $n \in \mathbb{N}$ kabi belgilanadi.

A ni B ga akslantiruvchi barcha funksiyalar toʻplami B^A bilan belgilanadi.

$$B^A = \{f : f : A \to B\}.$$

 $f: A^n \to B$ funksiya A dan B ga n- **o'rinli funksiya** deyiladi, agar $\mathcal{Y} - \mathcal{U}$ o'rinli f funksiyaning $(x_1, x_2, ..., x_n)$ argument qiymatidagi qiymati bo'lsa $y = f(x_1, x_2, ..., x_n)$ kabi yoziladi.

5.5. Dirixle printsipi.

 $f:A\to B$ funktsiya A chekli to'plamni B chekli to'plamga akslantirsin. Deylik, A to'plam n ta elementdan iborat bo'lsin: $A=\{a_1,a_2,...,a_n\}$.

Dirixle printsipi: Agar |A| > |B| bo'lsa, u holda hech bo'lmaganda f ning bitta qiymati bir martadan ortiq uchraydi, ya'ni $a_i \neq a_j$ elementlar juftligi topiladiki, ular uchun $f(a_i) = f(a_j)$ bo'ladi.

Oddiy qilib aytadigan bo'lsak, Dirixle printsipining ma'nosi: 10 ta quyonni 9 katakka har bir katakda bittadan quyon o'tiradigan qilib joylash mumkin emas.

Misol 1. Avtobusda 15 nafar yo'lovchi ketyapti. Ulardan hech bo'lmaganda 2 tasining tug'ilgan kuni bir xil oyda bo'lishi mumkinligini ko'rsating.

Yechilishi: Avtobusdagi odamlar to'plamini A, 12 ta oy nomlarini esa B deb belgilaymiz. $f: A \to B$ funktsiya avtobusdagi har bir kishiga uning tug'ilgan oyini mos qo'ysin. |A| = 15, |B| = 12 demak, |A| > |B|. Dirixle printsipiga ko'ra, f funktsiya takrorlanuvchi qiymatga ega. Bundan esa, hech bo'lmaganda 2 ta kishining tug'ilgan kuni bir xil oyda bo'lishi kelib chiqadi.

Misol 2. Agar hech bo'lmaganda 2 ta kishining familiyasi bir xil harfda boshlanib, bir xil harf bilan tugaydigan bo'lsa, telefon ma'lumotnomasiga yozilgan familiyalarning minimal soni qanday bo'ladi?

Yechilishi: A - ma'lumotnomadagi familiyalar to'plami,

B - o'zbek alifbosi 26 ta harfidan olingan harflar juftligi to'plami. $f: A \rightarrow B$ bir xil familiyalarning birinchi va oxirgi harflarini mos qo'yuvchi funktsiya. Masalan, f (Abdullayev)=(a,v).

B to'plam $26 \cdot 26 = 676$ juft harfdan iborat. Dirixle printsipiga ko'ra, agar |A| > |B| = 676 bo'lsa, familiyasi bir xil harfda boshlanib, bir xil harf bilan tugaydigan hech bo'lmaganda 2 ta kishi topiladi. Shuning uchun telefon ma'lumotnomasi 676 tadan kam bo'lmagan familiyadan tuzilgan bo'lishi kerak.

Nazorat savollari

- 1. Akslantirish tushunchasiga ta'rif bering?
- 2. Qisman funksiyaga tushunchasi. Bering?
- 3. Birga-bir yoki in'yektiv funksini ta'riflang?

- 4. Syur'yektiv funksiyaga ta'rif bering?
- 5. Biyektiv funksiyaga ta'rif bering?
- 6. Funksiya kompozitsiyasi va uning xossalarini keltiring?

TESTLAR

- 1. $A=\{1,2\}$ va $B=\{a,b\}$ to plamlar dekart ko paytmasida aniqlangan $R=\{(1,a),(1,b),(2,a)\}$ munosabat funktsiya bo ladimi?
- A) Funktsiya boʻladi. Isbotlang.
- B) Funktsiya boʻlmaydi. Isbotlang.
- C) Qisman funktsiya boʻladi. Isbotlang.
- D) Qisman funktsiya boʻlmaydi. Isbotlang.
- E) Biyektiv funktsiya.
 - 2. $A=\{a_1,a_2,a_3\}$, $B=\{b_1,b_2,b_3\}$ to plamlar dekart ko paytmasida aniqlangan $R=\{(a_1,b_1), (a_2,b_2), (a_3,b_2)\}$ munosabat funktsiya bo ladimi? Funktsiya bo ladimi? Funktsiya bo ladimi?
- A) In'yektiv funktsiya, syur'yektiv funktsiya emas
- B) Funktsiya boʻlmaydi.
- C) In'yektiv funktsiya emas, syur'yektiv funktsiya emas
- D) In'yektiv funktsiya emas, syur'yektiv funktsiya.
- E) Biyektiv funktsiya.
 - 3. $A=\{1, 2, 3, 4\}$ to plam dekart ko paytmasida berilgan $R=\{(1,4),(2,3),(3,2),(4,1)\}$ munosabat qanday funktsiya bo ladi?
- A) In'yektiv funktsiya, syur'yektiv funktsiya emas
- B) Funktsiya boʻlmaydi.
- C) In'yektiv funktsiya emas, syur'yektiv funktsiya emas
- D) In'yektiv funktsiya emas, syur'yektiv funktsiya.
- E) Biyektiv funktsiya.
 - 4. Kutubxonaning barcha kitoblar toʻplamida R munosabat quyidagicha aniqlansin: a va b kitoblar juftligi R ga tegishli boʻladi, faqat va faqat agarda ushbu kitoblarda bir xil adabiyotlarga murojaat qilingan boʻlsa. R qanday munosabat boladi?
- A) Refleksiv munosabat
- B) Simmetrik munosabat
- C) Tranzitiv munosabat
- D) Ekvivalent munosabat
- E) A va B javoblar.
 - 5. Internetda kerakli ma'lumotni topish uchun qandaydir kalit soʻzlar toʻplamida R munosabat quyidagicha aniqlangan boʻlsin: *a* va *b* kalit soʻzlar juftligi R munosabatga tegishli boʻladi, faqat va faqat agar bu soʻzlar bir xil simvoldan boshlansa. R qanday munosabat boʻladi?

- A) Refleksiv va simmetrik, lekin tranzitiv emas
- B) Refleksiv va tranzitiv, lekin simmetrik emas
- C) Simmetrik va Tranzitiv, lekin refleksiv emas
- D) Refleksiv va simmetrik emas, lekin tranzitiv
- E) Ekvivalent munosabat
 - 6. R munosabat K va P toʻplamlar dekert koʻpaytmasida aniqlangan boʻlsin. Bunda K kalit soʻzlar toʻplami, P Web sahifalar toʻplami. (x,y) juftlik R ga tegishli hisoblanadi, agar x kalit soʻz y web-sahifada qatnashgan boʻlsa. R qanday funktsiya boʻladimi?
- A) In'yektiv funktsiya emas, syur'yektiv funktsiya.
- B) Biyektiv funktsiya.
- C) In'yektiv funktsiya emas, syur'yektiv funktsiya emas
- D) In'yektiv funktsiya, syur'yektiv funktsiya emas
- E) Funktsiya boʻlmaydi.
 - 7. R munosabat B va P toʻplamlar dekert koʻpaytmasida aniqlangan boʻlsin. Bunda B kitob doʻkonidagi barcha kitoblar toʻplami, P baholar toʻplami. (*x*, *y*) juftlik R ga tegishli hisoblanadi, agar *x* kitobning bahosi *y* boʻlsa. R funktsiya boʻladimi? Funktsiya boʻlsa qanday funktsiya boʻladi?
- A) Funktsiya boʻlmaydi.
- B) In'yektiv funktsiya, syur'yektiv funktsiya emas
- C) In'yektiv funktsiya emas, syur'yektiv funktsiya emas
- D) Biyektiv funktsiya.
- E) In'yektiv funktsiya emas, syur'yektiv funktsiya.
 - 8. [0,1] segmentning quvvati nimaga teng? Isboti?

A)
$$|[0,1]| = B) |[0,1]| = C$$
 $|[0,1]| = D) |[0,1]| = E$ $|[0,1]| = 0$

9. [1, 3] segmentning quvvati nimaga teng? Isboti?

A)
$$|[1,3]| = B|[1,3]| = 3$$
 C) $|[1,3]| = D|[1,3]| = E|[1,3]| = 0$

10. (a, b) oraliq quvvati nimaga teng?

A)
$$|(a,b)| = B|(a,b)| = b$$
 C) $|(a,b)| = \frac{a+b}{2}$ D) $|(a,b)| = E|(a,b)| = \hat{C}$