<u>Лабораторна робота №2. Дискретна змінна. Графіки.</u> Виконання завдання "Арифметичний цикл"

Mema:

- набути навиків перекладу циклічного з параметром алгоритму розв'язання задачі з мови блок-схем на вхідну мову MathCAD;
- навчитися використовувати дискретну змінну для табулювання функцій і побудування графіків при програмуванні в робочому листку;
- засвоїти прийоми форматування двовимірних графіків;
- вивчити правила застосування оператора арифметичного циклу **for** при програмуванні в тілі програм-функцій;
- виконати індивідуальне завдання "Арифметичний цикл".

Теоретичні відомості

Дискретна змінна (Range Variable)

Дискретна змінна (ДЗ) - спеціальна змінна, яка приймає при кожному її використанні обмежений ряд значень, що змінюються з однаковим кроком, тобто рівномірно розподілені в деякому діапазоні. ДЗ використовується для табулювання функцій, для побудування графіків, для організації циклів із параметром (арифметичних циклів) і для присвоєння та виведення значень елементів вектора або матриці.

Визначення дискретної змінної

Формат ДЗ:

< ім'я > := < перше значення > [, < друге значення >] .. < останн ϵ значення >

Тут елементи формату мають такі значення:

- < перше значення > перше значення x_1 діапазону визначення ДЗ;
- [, < друге значення >] друге значення x_2 діапазону визначення ДЗ, яке може бути задане (повний формат ДЗ) або ні (скорочений формат ДЗ);
- .. горизонтальна двокрапка, яка є суцільним символом діапазону, уводиться кнопкою Range Variable (Дискретна змінна, діапазон) на панелі інструментів Matrix (Матриці), або гарячою клавішею Semicolon (Крапка з комою), і не може бути введена із клавіатури клавішею Point (Крапка).
 - **< останн** ε **значення > -** останн ε значення $\mathbf{x}_{\mathbf{n}}$ діапазону визначення ДЗ.

Якщо друге значення необхідно задавати (повний формат ДЗ), то його можна представити:

- а) власним значенням, тоді **MathCAD** обчислює значення кроку як різницю між заданими другим і першим значенням: $\Delta x = x_2 x_1$;
- b) як суму першого значення та кроку зміни ДЗ $\mathbf{x_2} = \mathbf{x_1} + \Delta \mathbf{x}$, щоб крок зміни ДЗ дорівнював заданому нами $\Delta \mathbf{x}$.

Якщо крок зміни ДЗ за умовами задачі дорівнює 1 чи -1, то друге значення не задають (скорочений формат ДЗ). У цьому випадку **MathCAD** крок зміни ДЗ за умовчанням установлює рівним 1, якщо $\mathbf{x_1} < \mathbf{x_n}$, у протилежному випадку значення кроку дорівнює -1.

Приклад.

$$\mathbf{x} := -2 ... 2$$
 $\mathbf{x} =$ $\mathbf{x} := 2 ... -2$ $\mathbf{x} =$

$$\Delta \mathbf{x} = 1$$

$$\begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\Delta \mathbf{x} = -1$$

$$\begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$$

У загальному випадку повний формат ДЗ використовується для визначення дійсної ДЗ. Як правило, скорочений формат ДЗ використовується для визначення цілої ДЗ. Наприклад, оператор i := 1...5 створює цілу ДЗ зі значеннями $i = \{1, 2, 3, 4, 5\}$.

Щоб задати ДЗ, необхідно зробити наступне:

- 1. Надрукувати ім'я ДЗ.
- 2. Увести оператор присвоювання ":=" кнопкою Definition (Визначення) на панелі інструментів Calculator (Калькулятор) або клавішами Shift + :).
 - 3. Сформувати діапазон зміни ДЗ:
 - а) надрукувати перше значення ДЗ;
- b) натиснути клавішу , **Comma** (Кома команда на створення списку значень) і ввести друге значення ДЗ (у випадку скороченого формату цей пункт пропустити);
- с) ввести символ діапазону ".." горизонтальну двокрапку кнопкою Range Variable (Дискретна змінна, діапазон) на панелі інструментів Matrix (Матриці), або клавішею ; ;
 - d) надрукувати останнє значення ДЗ.

Для зручності формування ДЗ доцільно представляти друге значення як суму першого значення та кроку зміни ДЗ. Наприклад,

$$x := x_{.1}, x_{.1} + \Delta x ... \underline{x_{.n}}$$

де використані тільки прості змінні з нижніми літеральними індексами, набраними за допомогою клавіші . Point (Крапка).

Для визначення діапазону $\overline{\mbox{\sc I}3}$ можна використовувати довільні скалярні вирази. Тому може так трапитися, що вказане у форматі ДЗ останнє значення буде більше суми першого значення ДЗ і цілого числа ${\bf n}$ кроків, і менше аналогічної суми для $({\bf n}+1)$ кроків:

$$x_{.1} + n \cdot \Delta x < x_{.n} < x_{.1} + (n+1) \cdot \underline{\Delta x}$$

тоді сума $\mathbf{x}_{.1} + \mathbf{n} \cdot \Delta \mathbf{x}$ і буде насправді останнім значенням ДЗ. Наприклад, останнім значенням ДЗ $\mathbf{x} := 2, 5... 10$ буде сума $\mathbf{x}_{.3} := \mathbf{x}_{.1} + 2 \cdot (5 - 2) = 8 < 10$.

Приклад. Задати ДЗ із множиною значень

$$a = \{ 1,2; 1,4; ...; 2 \}.$$

Тут $\mathbf{a_1} = \mathbf{1}, \mathbf{2}$ - < перше значення >; $\Delta \mathbf{a} = \mathbf{1}, \mathbf{4}$ - $\mathbf{1}, \mathbf{2} = \mathbf{0}, \mathbf{2}$ - крок зміни; $\mathbf{a_n} = \mathbf{2}$ - < останнє значення >. Лістинг виконання цього прикладу має вигляд:

Початкові дані

$$egin{aligned} a_{.1} &:= & 1.2 \end{bmatrix}$$
 - перше значення ДЗ. $egin{aligned} a_{.2} &:= & 1.4 \end{bmatrix}$ - друге значення ДЗ. $\Delta a := a_{.2} - a_{.1} = & 0.2 \end{bmatrix}$ - крок, з яким змінюється ДЗ. $egin{aligned} a_{.n} &:= & 2 \end{bmatrix}$ - останнє значення ДЗ. 3 дадати ДЗ можна одним із способів:

$$\boxed{ \mathbf{a} := \mathbf{1.2} \ , \mathbf{1.4} \ .. \ \underline{\mathbf{2}} } \qquad \boxed{ \mathbf{a} := \mathbf{a.1} \ , \mathbf{a.2} \ .. \ \underline{\mathbf{a.n}} } \qquad \boxed{ \mathbf{a} := \mathbf{a.1} \ , \mathbf{a.1} + \Delta \mathbf{a} \ .. \ \underline{\mathbf{a.n}} }$$

Використання дискретної змінної

Дискретна змінна, хоча зовнішньо й схожа на вектор, але принципово відрізняється від нього: не можна звернутися до окремого значення ДЗ і скористатися ним. ДЗ завжди опрацьовується в **MathCAD** як нероздільна множина чисел, для кожного з яких один раз розраховується результат.

При виведенні ДЗ оператором обчислення значень = , у робочому листку завжди з'являється **Output Table** (Таблиця результатів), у якій за умовчанням виключений показ номерів рядків та стовпчиків. Це наочно показує відмінність ДЗ від векторів та матриць. Таблиця значень ДЗ може містити максимум 16 рядків. Якщо ж ДЗ має більше 16 значень, то в 16-му рядку з'являється символ **Ellipsis** (Три крапки), а праворуч від таблиці - смуга прокрутки для перегляду наступних значень ДЗ.

Дискретна змінна не може бути використана для визначення значень іншої змінної. Наприклад, якщо після оператора i:=1..5 розмістити визначення j:=i+1, змінна і буде виділена червоним кольором, і спливе повідомлення про помилку: "This value must be a scalar or a matrix" (Ця величина повинна бути скаляром чи матрицею).

Дискретну змінну можна використовувати у виразах. У результаті вираз буде мати множину значень, розрахованих у відповідності до значень ДЗ, тобто сам стане дискретною змінною, але в загальному випадку вже нерівномірно розподіленою у своєму діапазоні. Наприклад, для дискретної змінної i:=1...5 вираз i^2+1 сформує нерівномірну дискретну множину значень $\{2,5,10,17,26\}$. Цю множину не можна занести в нову змінну, але можна використовувати в подальших виразах.

Дискретну змінну можна використовувати в якості фактичного параметра функції. При цьому **MathCAD** знаходить значення функції для кожного значення ДЗ, і в результаті функція повертає також дискретну змінну. Це дозволяє дуже просто складати таблиці функцій, інакше кажучи, табулювати функції.

Побудування графіків функцій

Для побудування графіків в **MathCAD** передбачено використання різноманітних шаблонів, які доступні за командою головного меню **Insert/Graph** (Вставка/Графік), або кнопкою **Graph Toolbar** (панель інструментів "Графік") на панелі інструментів **Math** (Математика) (рис. 1).

На панелі інструментів **Graph** (Графік) розташовані кнопки для введення шаблонів графіків у робочий листок. Для виконання даної лабораторної роботи необхідно скористатися кнопкою **X-Y Plot** (X-Y Графік), або натиснути гарячі клавіші **Shift** + **@**, щоб увести в робочий листок шаблон для побудування графіка у двовимірній декартовій системі координат (прямокутній системі координат) (рис. 2).

Puc. 1. Кнопка **Graph Toolbar** i панель **Graph**

Розглянемо основні елементи шаблону Х-У Графік.

- **1, 3** поля для введення границь вертикальної осі ординат **Y**, які **MathCAD** заповнює автоматично з аналізу діапазону значень зображуваної функції. У ці поля користувач потім може ввести власні значення.
 - 2 поле для введення імені функції з аргументом у круглих дужках.
- **4,** 7 поля для введення границь горизонтальної осі абсцис **X**, які **MathCAD** заповнює автоматично наступними величинами: за умовчанням це -10 та 10, якщо аргумент функції в робочому листку не визначений, або це мінімальне та максимальне значення з діапазону значень аргументу (незалежної змінної) зображуваної функції. У ці поля користувач потім може ввести власні значення.
 - 6 поле для введення імені аргументу функції.
- **5, 8, 9** маркери границь області графіка, призначені для зміни його розмірів за допомогою миші.

Рис. 2. Шаблон **X-Y Plot** (X-Y Графік)

Швидкий X-Y графік функції (QuickPlot)

Для побудування швидкого Х-У графіка функції необхідно:

- 1) вставити в робочий листок шаблон "Х-Ү Графік";
- 2) у полі введення аргументу функції (рис. 2, 6) надрукувати будь-яке ім'я змінної, що не визначена у робочому листку (наприклад, t);
- 3) у полі введення імені функції (рис. 2, 2) надрукувати ім'я зображуваної функції з тим самим аргументом у дужках (наприклад, **tan(t)**);
 - 4) клацнути ЛКМ за межами графіка.

Графік функції буде побудований, за умовчанням, у діапазоні значень аргументу [-10, 10] (рис. 3). Аналіз створеного графіка дозволяє вивчити поведінку даної функції, установити наявність розривів та екстремумів.

Рис. 3. Швидкий **X-Y Plot** (X-Y Графік) функції **tg x**

Х-Ү графік функції у визначеному діапазоні

Для візуалізації поведінки функції на деякому відрізку значень аргументу використовується другий спосіб побудування X-Y графіка. Для цього необхідно:

1) визначити аргумент функції як дискретну змінну, наприклад:

$$x = 0, 0.1 ... \pi$$

- 2) вставити в робочий листок шаблон "Х-Ү Графік";
- 3) у полі введення аргументу функції надрукувати \mathbf{x} ;
- 4) у полі введення імені функції (рис. 2, 2) надрукувати ім'я зображуваної функції з аргументом \mathbf{x} у дужках, наприклад $\mathbf{tan}(\mathbf{x})$;
 - 5) клацнути ЛКМ за межами графіка.

Визначений діапазон $[0, \pi]$ містить точку розриву другого роду $\mathbf{x_d} = \pi/2$, але **MathCAD** вважає, що функція неперервна і тому з'єднує відрізком дві точки на графіку, які розташовані по різні боки від розриву (рис. 4).

Рис. 4. **X-Y Plot** (X-Y Графік) функції **tg x** у діапазоні $[0, \pi]$

Для коректного зображення розривної функції слід будувати її графік окремо до точки розриву, і окремо після точки розриву (рис. 5). При цьому необхідно на одному графіку побудувати дві різні частини функції, для чого після імені $tan(x_{DL})$ слід натиснути клавішу , (Кома), і в новому полі введення внизу ввести друге ім'я $tan(x_{DR})$. Аналогічно вводиться список незалежних змінних у поле введення аргументу функції нижче осі $X: x_{DL}, x_{DR}$. Безумовно, ці дискретні змінні повинні бути визначені перед графіком операторами:

$$x_{DL} := 0,0.1..\frac{\pi}{2} - 0.1$$
 $x_{DR} := \frac{\pi}{2} + 0.1, \frac{\pi}{2} + 0.2..\pi$

За умовчанням **MathCAD** зображує кожну функцію різним кольором і різним типом лінії. Зразки цих ліній показуються під іменами функцій біля осі **Y**.

Рис. 5. **X-Y Plot** (X-Y Графік) функції **tg x** у діапазоні $[0, \pi]$ з виключеною точкою розриву

Форматування Х-Ү графіка функції

Виділений за допомогою ЛКМ X-Y графік функції можна відформатувати командою головного меню **Format/Graph/X-Y Plot...** (Форматувати/Графік/X-Y графік...), яка відкриває діалогове вікно **Formatting Currently Selected X-Y Plot** (Форматування вибраного X-Y графіка). Це вікно швидше можна відкрити подвійним клацанням ЛКМ на графіку (рис. 6).

За умовчанням у цьому вікні активна вкладка **X-Y Axes** (X-Y осі). Для виконання даної лабораторної роботи слід знати наступні елементи цієї вкладки.

- 1. Прапорець **Grid Lines** (Лінії сітки) дозволяє показати на графіку лінії сітки замість поділок шкали для відповідної осі координат.
- 2. Колір ліній сітки (за умовчанням зелений) можна вибрати з палітри кольорів, яка відкривається подвійним клацанням ЛКМ на віконці з кольором навпроти прапорця **Grid Lines.**
- 3. Кількість поділок шкали кожної осі координат можна задати, якщо зняти прапорець **Auto Grid** (Автоматична шкала). Тоді стане активне поле введення **Number of grids** (Кількість поділок) і в ньому можна буде змінити значення за умовчанням 2 на необхідне.

Вкладка **Traces** (Сліди) дозволяє змінювати спосіб представлення на графіку зображуваної функції (рис. 7). На одному графіку через кому можна зобразити максимум 16 функцій. Кожній функції відповідає один рядок на вкладці де в стовпчиках можна змінювати параметри зображення цієї функції.

У стовпчику **Symbol** (Символ) можна клацнути ЛКМ поле зі списком, потім навести покажчик миші на штовхач **□**, що з'явився, натиснути ЛКМ і в списку наявних символів вибрати бажаний (рис. 7).

Formatting Currently Selected X-Y Plot				
X-Y Axes Traces Number Format Labels Defaults				
Enable secondary Y axis X-Axis Log scale Grid lines Numbered Auto scale Show markers Auto grid Number of grids:	Primary Y Axis Secondary Y Axis Log scale Grid lines V Numbered Auto scale Show markers Auto grid Number of grids:			
Axis Style Boxed Crossed None OK Отмена Применить Справка				

Рис. 7. Вкладка **X-Y Axes** (X-Y oci)

Рис. 8. Вкладка **Traces** (Сліди): список **Symbol** (Символ)

Стовпчик **Symbol Weight** (Розмір символу) призначений для зміни розміру символу.

У стовпчику **Line** (Лінія) вибирається тип лінії:

```
— суцільна · · · пунктирна – - штрихова - · · штрих-пунктирна
```

Стовпчик Line Weight (Товщина лінії) містить список товщини ліній.

У стовпчику Color (Колір) вибирається колір лінії.

Стовпчик **Туре** (Тип) дозволяє вибрати тип графіка: **lines** (лінії), **points** (точки) та ін.

Слід зауважити, що за умовчанням **MathCAD** автоматично вибирає для зображення декількох функції на одному графіку різний тип лінії та колір, щоб їх було легко візуально розрізнити.

Оператор арифметичного циклу for

Оператор арифметичного циклу **for** (для), інакше кажучи, оператор циклу з параметром, застосовується для організації обчислювального процесу із заданим числом повторень виконання однієї й тієї ж послідовності операторів, яка являється його *тілом*. Такий обчислювальний процес коротко називається *арифметичним циклом*. Формат оператора **for** має наступну структуру:

Оператор **for** вводиться в програму-функцію (ПФ) кнопкою **For Loop** (Цикл Для) на панелі інструментів *Програмування*. При цьому в ПФ з'являється шаблон із трьома полями для введення його операндів:

У поле 1 вводиться ім'я параметра циклу, який буде змінюватися після завершення кожного циклу обчислень. У поле 2 вводиться діапазон зміни параметра циклу:

< перше значення >, < друге значення > .. < останнє значення >, тобто така сама структура, як при визначенні дискретної змінної. Наприклад,

1 .. 5 (крок зміни за умовчанням дорівнює 1), або $x_1, x_1 + \Delta x ... x_n$. Число повторень циклу визначається за формулою:

$$\mathbf{n} = \left[\frac{\mathbf{x}_{\mathbf{n}} - \mathbf{x}_{\mathbf{1}}}{\Delta \mathbf{x}} \right] + \mathbf{1} ,$$

де квадратні дужки [...] позначають цілу частину виразу.

У поле 3 вводиться будь-який оператор, або оператор **Add Line** для створення багатьох полів введення, у яких розміщується послідовність операторів, тобто тіло оператора **for**.

Дія оператора:

- 1) параметру циклу присвоюється перше значення;
- 2) якщо значення параметра циклу не перевищує останнього значення, то цикл виконується; у протилежному випадку цикл завершується;
- 3) значення параметра циклу збільшується на крок його зміни, і здійснюється перехід до пункту 2.

Після завершення обчислень параметр циклу дорівнює: $\mathbf{x} = \mathbf{x_n} + \Delta \mathbf{x_n}$ За межами ПФ параметр циклу не визначений.

виконання лабораторної роботи

Умова. Скласти блок-схему та програму для обчислення значень функції:

$$y(x) = \frac{\operatorname{arctg}(b \ x)}{1 + \sin^2 x}; \ b = 0.75; \ x = \{1, 35; 1, 4; 1, 45; ...; 2, 0\},$$

де \mathbf{x} змінюється від \mathbf{x}_1 до \mathbf{x}_n із кроком $\Delta \mathbf{x}$. Результати обчислень вивести у вигляді таблиці значень \mathbf{x} та \mathbf{y} . Значення \mathbf{y} вивести із чотирма знаками після коми.

Порядок виконання роботи

1. Складіть циклічний алгоритм із параметром х для обчислення значень функції y(x), та накресліть його блок-схему.

- 2. Перекладіть алгоритм із мови блок-схем на вхідну мову **MathCAD**.
- 3. Відкрийте документ попередньої
- 4. Відредагуйте першу текстову область: а) змініть номер лабораторної роботи з №1 на №2; б) замініть речення "Лінійний алгоритм" на "Арифметичний цикл". Іншу частину робочого листка можна очистити.
 - 5. У розділі "Початкові дані" задайте значення вхідних параметрів:

$$\mathbf{b} := 0.75$$
 $\mathbf{x_1} := 1.35$ $\Delta \mathbf{x} := 0.05$ $\mathbf{x_n} := 2$

де крок зміни аргументу **х** знайдений як різниця між його другим і першим значенням: $\Delta x = x_2 - x_1 = 1,4 - 1,35 = 0,05$.

6. У наступному рядку створить дискретну змінну та опис однорядкової функції користувача, яка буде обчислювати значення **у**(**x**) відповідні значенням **x**:

$$x := x_1, x_1 + \Delta x ... x_n$$
 $y(x) := \frac{atan(b \cdot x)}{1 + sin(x)^2}$

7. Після цього можна вивести значення \mathbf{x} , та викликати функцію $\mathbf{y}(\mathbf{x})$ для виведення її значень.

8. У наступному розділі побудуйте швидкий графік функції **у(х)** для візуального аналізу її поведінки. Якщо в заданому діапазоні зміни **х** у функції існують точки розриву, знайдіть їхні координати з виразу функції.

Побудування графіка функції у(х)

- 9. Далі побудуйте графік функції $\mathbf{y}(\mathbf{x})$ у визначеному діапазоні зміни \mathbf{x} (рис. 9).
- 10. Як показує аналіз виразу зображуваної функції, вона не має точок розриву, тому її графік існує у всьому заданому діапазоні зміни аргументу **х**.
- 11. Тепер слід від форматувати графік, щоб надати йому вигляду, відповідному до вимог представлення графінної інформації в прукова

Рис. 9. Графік функції у визначеному діапазоні за умовчанням

представлення графічної інформації в друкованих роботах.

12. Уведіть нові границі для осей координат, заміняючи зазначені **MathCAD** автоматично за умовчанням як мінімальні та максимальні значення в діапазонах зміни **x** та **y**:

вісь X: замість **1.35** введіть
$$x_1 - \Delta x$$
; вісь Y: замість **0.406** введіть **0.4**; замість **2** введіть $x_1 + \Delta x$; замість **0.538** введіть **0.55**.

13. Розрахуйте кількість проміжків у сітках за формулами:

$$\mathbf{n}_{x} := \dfrac{\left(x_{n} + \Delta x\right) - \left(x_{1} - \Delta x\right)}{\Delta x} = 15\,$$
 - кількість проміжків у сітці по осі X

$${f n}_{y} := rac{0.55 - 0.4}{0.05} = 3$$
 - кількість проміжків у сітці по осі Y

де кількості повинні бути цілими числами; якщо якась кількість не ϵ цілою, то слід зменшувати на крок нижню границю відповідної осі до тих пір, доки ця кількість не стане цілою.

- 14. Двічі клацніть ЛКМ на графіку, щоб відкрити діалогове вікно **Formatting Currently Selected X-Y Plot** (Форматування вибраного X-Y графіка.
- 15. На вкладці **X-Y Axes** (X-Y осі) зніміть прапорці **Auto Grid** (Автоматична шкала), уведіть у поля введення **Number of grids** (Кількість поділок) знайдені кількості $\mathbf{n}_{\mathbf{x}}$ та $\mathbf{n}_{\mathbf{y}}$.
 - 16. Установіть прапорці **Grid Lines** (Лінії сітки).
 - 17. Клацніть ЛКМ вкладку **Traces** (Сліди)
- 18. У стовпчику **Symbol** (Символ) клацніть ЛКМ поле зі списком, наведіть покажчик миші на штовхач **∑**, що з'явився, натисніть ЛКМ і в списку наявних символів виберіть символ □ (Пустий квадрат).
 - 19. Натисніть кнопку ОК
- 20. За допомогою маркерів рамки області графіка змініть його розміри таким чином, щоб клітини сітки стали квадратними.
- 21. Натисніть на графіку ПКМ, у контекстному меню виберіть пункт **Properties...** (Властивості...), установіть прапорець **Show Border** (Показати рамку).
 - 22. Клацніть ЛКМ за межами графіка й отримайте:

Рис. 10. Відформатований графік функції у визначеному діапазоні

Реалізація завдання за допомогою оператора for

- 23. Спочатку сформуйте опис програми-функції з ім'ям **MakeMxy**(\mathbf{x}_1 , \mathbf{x}_n , $\Delta \mathbf{x}$) (Створити Матрицю значень \mathbf{x} та \mathbf{y}). Зверніть увагу на те, що нижні індекси у формальних параметрах \mathbf{x}_1 та \mathbf{x}_n є літеральними, тобто їх слід набирати за допомогою клавіші . (Крапка).
- 24. Перший оператор $\Pi\Phi$: **i** \leftarrow **0** ініціалізує лічильник номерів рядків створюваної матриці.
- 25. Другий оператор організує арифметичний цикл **for**, тіло якого містить наступні оператори:
 - $i \leftarrow i + 1$ (лічильник рядків матриці);

 - \circ **M**ху_{i,2} \leftarrow у(х) (визначення елемента в **i**-му рядку другого стовпчика значенням функції х(х)); оскільки це останній рядок ПФ, то результатом функції буде матриця **M**ху.
 - 26. Викличте ПФ **MakeMxy**(x_1 , x_n , Δx) і виведіть результати розрахунків.
- 27. Виділите з матриці **Мху** кнопкою **Маtrix Column** (Стовпець матриці) на панелі інструментів **Matrix** (Матриці, див. рис. 2.15 на с. 37) перший, а потім другий стовпець, і занесіть їх у змінні **vx** та **vy**, відповідно.
 - 28. Побудуйте графік залежності vy від vx.

Дискретна змінна

29. Лістинг виконання зразка лабораторної роботи з MathCAD №3 наведений на рис. 11.1 - 11.3.

Лабораторна робота з MathCAD "Арифметичний цикл" Варіант№0 (Зразок) Група, Прізвище

Початкові дані

$$\mathbf{b} := 0.75$$
 $\mathbf{x_1} := 1.35$ $\Delta \mathbf{x} := 0.05$ $\mathbf{x_n} := 2$

Застосування дискретної змінної

 $\mathbf{x} := \mathbf{x_1}, \mathbf{x_1} + \Delta \mathbf{x} ... \mathbf{x_n}$ $\mathbf{y}(\mathbf{x}) := \frac{\mathbf{atan}(\mathbf{b} \cdot \mathbf{x})}{\mathbf{1} + \mathbf{atan}(\mathbf{x})^2}$

Однорядкова функція

Рис. 11.1. Лістинг виконання зразка ЛР з MathCAD №2: початкові об'єкти

Результати розрахунку

MathCAD

x =	y(x) =
1.35	0.4055
1.40	0.4108
1.45	0.4167
1.50	0.4231
1.55	0.4303
1.60	0.4382
1.65	0.4470
1.70	0.4566
1.75	0.4673
1.80	0.4790
1.85	0.4918
1.90	0.5059
1.95	0.5212
2.00	0.5380

Швидкий графік функції (t - невизначена змінна)

Графік функції у визначеному діапазоні за умовчанням

Рис. 11.2. Продовження лістингу виконання зразка ЛР з MathCAD №2: застосування дискретної змінної для табулювання функції та побудування **X-Y** графіка функції

Форматування графіка функції

$$\mathbf{n_x} := \dfrac{\left(\mathbf{x_n} + \Delta\mathbf{x}\right) - \left(\mathbf{x_1} - \Delta\mathbf{x}\right)}{\Delta\mathbf{x}} = \mathbf{15} \, \cdot \,$$
 кількість проміжків у сітці по осі X

$${f n}_y := rac{0.55 - 0.4}{0.05} = 3$$
 - кількість проміжків у сітці по осі Y

Застосування оператора арифметичного циклу for

$$ORIGIN := 1$$

$$\begin{aligned} \mathbf{MakeMxy} \big(\mathbf{x_1} \,, \mathbf{x_n} \,, \Delta \mathbf{x} \big) &\coloneqq & & \mathbf{i} \leftarrow \mathbf{0} \\ & & \mathbf{for} \quad \mathbf{x} \in \mathbf{x_1} \,, \mathbf{x_1} + \Delta \mathbf{x} \,... \, \mathbf{x_n} \\ & & & \mathbf{i} \leftarrow \mathbf{i} + \mathbf{1} \\ & & & \mathbf{Mxy_{i,1}} \leftarrow \mathbf{x} \\ & & & & \mathbf{Mxy_{i,2}} \leftarrow \mathbf{y}(\mathbf{x}) \end{aligned}$$

<u>Матриця</u>
(таблиця)
значень
функції

$$\mathbf{M}\mathbf{x}\mathbf{y} \coloneqq \mathbf{M}\mathbf{a}\mathbf{k}\mathbf{e}\mathbf{M}\mathbf{x}\mathbf{y}\big(\mathbf{x_1}\,,\mathbf{x_n}\,,\boldsymbol{\Delta}\mathbf{x}\big) =$$

		1	2
	1	1.35	0.4055
	2	1.4	0.4108
	3	1.45	0.4167
	4	1.5	0.4231
	5	1.55	0.4303
	6	1.6	0.4382
=	7	1.65	0.447
	8	1.7	0.4566
	9	1.75	0.4673
	10	1.8	0.479
	11	1.85	0.4918
	12	1.9	0.5059
	13	1.95	0.5212
	14	2	0.538

<u>Вектори</u> <u>значень</u> <u>аргументу</u> vx <u>та</u> <u>функції</u> vy

$$\mathbf{v}\mathbf{x} := \mathbf{M}\mathbf{x}\mathbf{y}^{\langle 1 \rangle}$$

 $\mathbf{v}\mathbf{y} := \mathbf{M}\mathbf{x}\mathbf{y}^{\langle 2 \rangle}$

Побудування графіка функції, заданої в табличному вигляді

Рис. 11.3. Закінчення лістингу виконання зразка ЛР з MathCAD №2: застосування оператора **for** для табулювання функції та побудування графіка функції, заданої в табличному вигляді

- 30. Оформіть звіт про виконання лабораторної роботи за наступними пунктами: Назва роботи, Тема роботи, Варіант, Група, Прізвище; Умова варіанту, Схема алгоритму, Результати розрахунків; Висновки: перелік засвоєних елементів вхідної мови **MathCAD**.
 - 31. Захистіть роботу у викладача, давши відповіді на контрольні запитання.