Ai in Drug Discovery

Al in Drug Discovery (D²)

Ultra-HT screening using in silico methods AM

⁷⁹Au

Target identification

- Multi-omics analysis
- Bio-informatics/biostatistics
- Structure-based (PDB, Alphafold2, OmegaFold, Openfold, RoseTTAFold, ESMFold)

Location

Ligand libraries

- Commercial: ZINC, Chembridge, Maybridge, Enamine
- GenAI: MegaMolBART, molformer, chemGPT, drugGPT

Pan

Molecular modeling

- Cavity Search: <u>Fpocket</u>, <u>Mdpocket</u>, <u>PocketMiner</u>
- Docking: <u>Autodock4</u>, <u>Vina</u>, <u>SMINA</u>, <u>GNINA</u>, <u>Glide</u>, <u>GOLD</u>, <u>DiffDock</u>
- qSAR: <u>DeepChem</u>, <u>MPNN</u>, <u>SPMM</u>, <u>ChemBERTa</u>

Protein structure & function prediction

<u>alphafold: Open source</u> <u>code for AlphaFold.</u>

openfold: Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2

baker-laboratory/RoseTTAFold-All-Atom

<u>esm: Evolutionary Scale Modeling (esm):</u>
<u>Pretrained language models for proteins</u>

Molecular docking with GenAl

ketatam/DiffDock-PP: Implementation of

<u>DiffDock-PP: Rigid Protein-Protein Docking</u>

Reverse diffusion process

pose selection

<u>DiffDock: Implementation of DiffDock: Diffusion</u> <u>Steps, Twists, and Turns for Molecular Docking</u>

protein structures

Generative library design

Al qSAR models (e.g. SPMM) A TEXAS A&M

Multimodal learning for chemical domain, with SMILES and properties.

Al qSAR models (e.g. SPMM) AM TEXAS A&M

Multimodal learning for chemical domain, with SMILES and properties.

Multi-task ADMET prediction

In silico workflow

