第七章 热电式传感器

工业生产过程中,无论是能源的提取,还是各种材料的加工、热处理,温度往往是需要测量和控制的重要参数之一。

本章主要内容

热电阻式传感器 温度 温度 电阻

将温度转换为电阻值的热电式传感器叫热电阻。

将温度转化为电势的热电式传感器叫热电偶。

- 1 热电阻
- 2 热敏传感器
- 3 半导体集成温度传感器
- 4 热电偶

1 金属热电阻 1.1 工作原理

热电阻效应:

物质的电阻率随其本身的温度而变化 的现象.

$$R_T = R_0[1 + \alpha(T - T_0)]$$

 R_T : 元件在温度T时的电阻

 R_0 : 元件在温度 T_0 时的电阻

α: 电阻温度系数,表征电阻的阻

值随温度而变化的程度。

- 1) 在理想的完全规则排列的原子的周期场中, 电子处于确定的k状态, 不会发生跃迁, 因此也无电阻。
- 由于不断的热振动(位移的平方和温度 成正比),原子经常偏离格点,造成电子的 散射。
- 3) 温度升高,金属内部原子晶格的振动加剧,从而使金属内部的自由电子通过金属导体时的阻碍增大,宏观上表现出电阻率变大,电阻值增加,我们称其为正温度系数,即电阻值与温度的变化趋势相同。

注意: 温度升高使得电子的统计分布在k空间的漂移, 没有载流子浓度和迁移率的变化。

1 金属热电阻 1.3 铂热电阻

国际电工委员会(IEC)的751号标准中

规定热电阻在0℃时的标准值为 100.00及其温度测量范围,常说 Pt100热电阻。

也有标准值为500和1000的热电阻温

度传感器。适用温度范围-

200°C~850°C

缺点:易被金属蒸气污染变脆,但可

用保护套管保护;

属贵金属,成本高

铂电阻与温度的关系:

当温度t在 - 200℃≤ t ≤0℃时:

$$R_t = R_0[1 + At + Bt^2 + C(t-100)t^3]$$

当温度t在0℃≤ t ≤650℃时:

$$R_t = R_0 [1 + At + Bt^2]$$

其中: A、B、C为常数

$$A = 3.940 \times 10^{-3} (1/^{0} C)$$

$$B = -5.802 \times 10^{-7} (1/^{0} C^{2})$$

$$C = -4.274 \times 10^{-12} (1/^{0} C^{3})$$

1金属热电阻 1.4铜电阻

铜电阻与温度的关系:

$$R_t = R_0(1 + \cot t)$$

优点:

铜电阻与温度近似呈线性关系,温度系数大, 易加工和 提纯,成本低

缺点:

因铜在250℃以上温度本身易于氧化,故通常工业用铜热电阻其工作温度范围为-40℃~120℃。电阻率小(仅为铂的1/2左右)而体积较大,热响应慢。

汽车用水温传感器

铜热电阻

1 金属热电阻 1.5 连接线路: 两线制热电阻测温线路

问题:

热电阻的二根连接导线,直径和长度及材料均相同,阻值均是r。如果每根导线电阻的变化量是r,测量结果中必然含有绝对误差2r。如100Ω的铂电阻,1Ω的导线电阻就将产生至少2℃的误差。

工作端温度/°C	Pt100
-50	80.31
-40	84.27
-30	88.22
-20	92.16
-10	96.09
0	100.00

1 金属热电阻 1.5 连接线路: 三线制热电阻测温线路

当电桥平衡时: $(R_t + r)R_2 = (R_3 + r)R_1$

此时得: $R_{t} = \frac{R_{3}R_{1}}{R_{2}} + (\frac{R_{1}}{R_{2}} - 1)r$

如果设计满足: $R_1 = R_2$

则: $R_t = R_3$

即消除了导线电阻r的影响。

注意:

三线制要从热电阻感温体的根部引出导线

1 金属热电阻 1.5 连接线路: 四线制热电阻测温线路

1) 四线制

由恒流源提供已知电流I流过热电阻Rt,使其产生压降U,热电阻两端各用两根导线连到电位差计上测量U。

- 2) 因为电位差计测量时不取电流,所以四根导线的电阻r对测量均无影响。
- 3) 四线制和电位差计的配合使用,是测量热电阻比较完善的方法,它不受任何条件的约束,总能消除 连接导线电阻对测量的影响。
- 4) 当然<mark>恒流E</mark>必须保证电流I的稳定不变,而且其精确度应该和Rt的测量精度相适应。

2 热敏传感器 2.1 多种规格

- ●材料:铁、镍、锰、铂、钛、镁、铜等的氧化物,碳酸盐、硝酸盐、氯化物等。热敏电阻有负温度系数 (NTC) 和正温度系数 (PTC) 之分。
- ●优点:具有大的负电阻温度系数(-6%~-3%),灵敏度高,电阻率大,体积小,热惯性小。
- ●缺点:同种热敏电阻的电阻温度特性分散性大,非线性严重,性能不稳定, 互换性差、精度较低。
- ●测温范围: 100~300℃。

2 热敏传感器 2.3 三种热敏传感器特性

1 NTC

特点: 电阻率随温度增加比较均匀的减小;

用途:一定范围的温度量值的检测;

2 CTR

特点: 有一个阻值突变点, 当温度变化到此点

附近(约68℃)时,电阻率产生突变,突变数量级

为2-4; 用途: 与PTC类似

3 PTC

特点: 当温度超过某一数值后, 电阻率才

随温度的增加迅速地增大;

用途: 用于某一特定温度窄范围的检测;

1 NTC

2 CTR

3 PTC

4金属

3半导体集成温度传感器:基本原理

- 1) PN结是集成温度传感器的最 基础的测温原件。
- 2)温度不同,载流子浓度不同, 对应的PN结内电场不同,反映 为PN结正向压降随温度的变化 趋势。
- 3)二极管的正向电压降UD以 2mV/℃ 的趋势变化。

3 半导体集成温度传感器: LM35/45

LM35/45构成的摄氏温度测量电路

组装成的测温传感器

4热电偶

1) 热电效应:

将两种不同的导体A和B连成闭合回路 ,当两个接点处的温度不同时,回路 中将产生热电势。

- 2) 把两种不同导体的组合称热电偶, 称A、B两种导体为热电极、结点一为 工作端或称热端,结点二为自由端或 称冷端
- 3) 热电势的大小与两端的温度有关,这也表明测量的并不是测量端的温度T+ΔT, 而是测量温度差ΔT。

德国物理学家托马斯·约翰·塞贝克

热电效应: 热电偶回路总热电势

对于由导体A、B组成的热电偶回路, 当 $T > T_0$, $n_A > n_B$ 时,闭合回路中 产生的接触电势和温差电势如图所示。

设回路电流顺时针方向为正,则闭合回路总的热电动势为:

$$E_{AB}(T, T_0) = [e_{AB}(T) - e_{AB}(T_0)] + [-e_A(T, T_0) + e_B(T, T_0)]$$

其中: 温差热电势

$$e_{A}(T, T_{0}) = \int_{T_{0}}^{T} \sigma_{A} dT$$

$$e_{B}(T, T_{0}) = \int_{T_{0}}^{T} \sigma_{B} dT$$

接触热电势

$$e_{AB}(T) = \frac{KT}{e} \cdot \ln \frac{n_A}{n_B}$$
$$e_{AB}(T_0) = \frac{KT_0}{e} \cdot \ln \frac{n_A}{n_B}$$

热电效应

1) 温差电势是指同一热电极两端因温度不同而产生的电势。

在热电偶中,温差电势相对于接触电势非常小,工程上常将其忽略不计,起决定作用的是接触电势。但热电偶作为检测计量使用时要加以考虑。

温差电势的大小:

$$e_{A}(T,T_{0}) = \int_{T_{0}}^{T} \sigma dT$$

2)接触电势是指两热电极由于材料不同 而具有不同的自由电子密度,而热电极接 点接触面处就产生自由电子的扩散现象, 当达到动态平衡时,在热电极接点处便产 生一个稳定电势差。

接触电势 $E_{AB}(7)$ 的大小:

$$e_{AB}(T) = \frac{kT}{e} \ln \frac{N_A}{N_B} = f\left(T, \frac{N_A}{N_B}\right)$$

3.3 测量电路: 热电偶基本定律1-中间导体

在热电偶回路中接入第三种金属材料,只要该第三种金属材料两端温度相同,则热电偶所产生的热电势保持不变。即不受第三种金属材料接入的影响。

推论:连接热电偶的许多引线,只要新形成的各个连结点均处于同一温

度下, 就不会影响被测热电势的精度。

3.3 测量电路: 热电偶基本定律2-标准电极定律

如果将电极C(一般为纯铂丝)作为参考电极(也称标准电极),并已知参考电极与各种热电极面对的热电势,那么在相同接点适度(T,T₀)下,任意两热电极A、B配对热电势可按下式求得:

$$E_{AB}(T, T_0) = E_{AC}(T, T_0) + E_{CB}(T, T_0)$$

= $E_{AC}(T, T_0) - E_{BC}(T, T_0)$

3.3 测量电路: 热电偶基本定律3-连接导线定律

在热电偶回路中,如果热电极A、B分别与连接导线A'、B'相连接,接点温度分别为T, T_n , T_0 ,那么回路的总热电热等于热电偶电势 $E_{A'B'}$, (T_n, T_0) 与连接导线热电势 E_{AB} , (T, T_n) 代数和。

$$E_{ABB'A'}(T, T_n, T_0) = E_{AB}(T, T_n) + E_{A'B'}(T_n, T_0)$$

指导意义: 工业测温中使用补偿导线提

供了理论基础。

3.3 热电偶基本定律4-中间温度定律(分度表应用基础)

$$E_{AB}(T, T_n, T_0) = E_{AB}(T, T_n) + E_{AB}(T_n, T_0)$$

中间温度定律

热电偶回路两结点温度为T和T₀的 热电势,等于热电偶在结点温度为 T和T_n时的热电势与结点温度为T和 T_n时的热电势代数和,其中温度T_n 介于T和T₀之间。 热电势 $E_{AB}(T,T_0)$ 是温度T和 T_0 的双值函数,这在使用中很不方便,因此在标定热电偶时,使 T_0 为常数。即: $e_{AB}(T_0) = f(T_0) = C$

$$E_{AB}(T, T_0) = e_{AB}(T) - e_{AB}(T_0)$$

= $e_{AB}(T) - c$

即回路总热电势 $E_{AB}(T_1,T_0)$ 看成温度T的单值函数,方便工程测量。 实际通常使 $T_0 = 0$ °C ,对热电偶进行标定。

4 热电偶 4.2 分度表

如何由热电偶的热电势查热端温度值? 设冷端为0°C,根据以下电路中的毫伏表的 示值及热电偶的分度表,查出热端的温度*t*_x。

实际中由于热电偶工作端与冷端距离很近,冷端又暴露于空间,容易受到周围环境波动的影响,因而冷端温度难以保持恒定。

自由端为0°C

工作端 温度/ C	热电势/ mV	工作端 温度/ で	热电势/ mV
270	10.971	540	22.350
280	11.382	550	22.776
290	11.795	560	23.203
300	12.209	570	23.629
310	12.624	580	24.055
320	13.040	590	24.480
330	13,457	600	24.905
340	13.874	610	25.330
350	14.293	620	25.755
360	14.713	630	26.179
370	15.133	640	26.602
380	15.554	650	27.025
390	15.975	660	27.447
400	16.397	670	27.869
410	16.820	680	28.289
420	17.243	690	28.710
430	17.667	700	29.129
440	18.091	710	29.548
450	18.516	720	29.965

4 热电偶冷端补偿: 冰浴法

把热电偶的参比端置于冰水混合物容器里,使 T₀=0℃。 为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。 这种办法仅限于科学实验中使用。

4 热电偶冷端补偿: 冷端温度计算校正法

由于热电偶的分度表是在冷端温度保持在0度的情况下得到,与它配套使用的仪表又是根据分度表进行刻度的,因此,尽管已采用了补偿导线使热电偶冷端延伸到温度恒定的地方,但只要冷端温度不等于0度,就必须对仪表表示值加以修正。

$$E(t, 0^{\circ}) = E(t, t_0) + E(t_0, 0^{\circ})$$

例:用铜-康铜热电偶测某一温度T,参比端在室温环境 $T_{\rm H}$ 中,测得热电动势 $E_{\rm AB}(T,T_{\rm H})$ =1.979 ${\rm mV}$,又用室温计测出 $T_{\rm H}$ =21 ${^\circ}{\rm C}$,查此种热电偶的分度表可知, $E_{\rm AB}(21,0)$ =0.84 ${\rm mV}$,故得

 $E_{AB}(T, 0)=E_{AB}(T, 21)+E_{AB}(21, 0) =1.979+0.84 =2.819 (mV)$

再次查分度表,与2.819mV对应的热端温度T=69°C。

热电偶式传感器的冷端补偿 2). 补偿导线法

$$E_{ABB'A'}(T_1, T_2, T_0) = E_{AB}(T_1, T_2) + E_{A'B'}(T_2, T_0)$$

当导体A与A', B与B'具有相同的热电特性时

$$E_{ABB'A'}(T_1, T_2, T_0) = E_{AB}(T_1, T_2) + E_{A'B'}(T_2, T_0)$$

$$= E_{AB}(T_1, T_2) + E_{AB}(T_2, T_0)$$

$$= E_{AB}(T_1, T_0)$$

热电偶的材料通常为贵重 金属,由于受到材料价格 的限制不可能做很长。而 要使其冷端不受测温对象 的温度影响,必须使冷端 远离温度对象。

采用补偿导线可以做到这一点,所谓补偿导线,实际上是一对材料化学成分不同的导线,在0~100℃温度范围内与配接的热电偶有一致的热电特性,但价格相对要便宜。

本章作业

- 1、习题:例7-1、7-2、7-3、7-4
- 2、举例说明PTC的用途
- 3、说明二线制、三线制、四线制热电阻测量电路的原理。