Exercício 1:

1. Decimal: 329

Para converter o número decimal 329 para as outras bases, vamos usar as divisões sucessivas.

Binário:

Dividimos 329 por 2 e anotamos os restos.

- $329 \div 2 = 164$, resto 1
- $164 \div 2 = 82$, resto 0
- $82 \div 2 = 41$, resto 0
- $41 \div 2 = 20$, resto 1
- $20 \div 2 = 10$, resto 0
- $10 \div 2 = 5$, resto 0
- $5 \div 2 = 2$, resto 1
- $2 \div 2 = 1$, resto 0
- $1 \div 2 = 0$, resto 1

Agora, pegamos os restos de baixo para cima: 101001001.

Então, o número binário correspondente a 329 é **101001001**.

Octal:

Agora, agrupamos o número binário em grupos de 3 bits (da direita para a esquerda) e convertemos cada grupo para octal.

Binário: 101001001

Agrupamos: 1 010 010 001 (adicionei zeros à esquerda para completar os grupos)

Agora, convertemos cada grupo:

- 001 (binário) = 1 (octal)
- 010 (binário) = 2 (octal)
- 010 (binário) = 2 (octal)
- 1 (binário) = 1 (octal)

Então, o número octal correspondente a 329 é 1221.

Hexadecimal:

Agrupamos o número binário em grupos de 4 bits (da direita para a esquerda) e convertemos cada grupo para hexadecimal.

Binário: **101001001**

Agrupamos: **0001 0100 1001** (adicionei zeros à esquerda para completar os grupos)

Agora, convertemos cada grupo:

- 0001 (binário) = 1 (hexadecimal)
- 0100 (binário) = 4 (hexadecimal)
- 1001 (binário) = 9 (hexadecimal)

Então, o número hexadecimal correspondente a 329 é **149**.

2. Binário: 11011101010

Agora, vamos converter o número binário **11011101010** para as outras bases.

Decimal:

Para converter para decimal, multiplicamos os valores dos bits por 2 elevado à posição do bit, da direita para a esquerda.

110111010102=1·210+1·29+0·28+1·27+1·26+1·25+0·24+1·23+0·22+1·21+0·20

Calculando:

1.1024+1.512+0.256+1.128+1.64+1.32+0.16+1.8+0.4+1.2+0.1=1106

Então, o número decimal correspondente a **11011101010** é **1106**.

Octal:

Primeiro, agrupamos o número binário em grupos de 3 bits (da direita para a esquerda).

11011101010 \rightarrow Agrupamos: **001 101 110 101 0** (adicionei zero à esquerda para completar o último grupo)

Agora, convertemos cada grupo para octal:

- 001 (binário) = 1 (octal)
- 101 (binário) = 5 (octal)
- 110 (binário) = 6 (octal)
- 101 (binário) = 5 (octal)
- 0 (binário) = 0 (octal)

Portanto, o número octal correspondente a **11011101010** é **15650**.

Hexadecimal:

Agora, agrupamos o número binário em grupos de 4 bits (da direita para a esquerda).

11011101010 → Agrupamos: **0001 1011 1010 1010**

Agora, convertemos cada grupo para hexadecimal:

- 0001 (binário) = 1 (hexadecimal)
- 1011 (binário) = B (hexadecimal)
- 1010 (binário) = A (hexadecimal)
- 1010 (binário) = A (hexadecimal)

Então, o número hexadecimal correspondente a **11011101010** é **1BAA**.

3. Octal: 1465

Agora, vamos converter o número octal **1465** para as outras bases.

Decimal:

Para converter o número octal para decimal, multiplicamos cada dígito pelo valor da base elevada à sua posição (da direita para a esquerda):

14658=1.83+4.82+6.81+5.80

Calculando:

1.512+4.64+6.8+5.1=512+256+48+5=821

Então, o número decimal correspondente a **1465** é **821**.

Binário:

Agora, convertemos o número octal para binário. Para isso, convertemos cada dígito octal para seu equivalente binário de 3 bits.

- 1 (octal) = 001 (binário)
- 4 (octal) = 100 (binário)
- 6 (octal) = 110 (binário)
- 5 (octal) = 101 (binário)

Portanto, o número binário correspondente a 1465 é 001100110101.

Hexadecimal:

Agora, vamos converter o número octal **1465** para hexadecimal. Para isso, convertemos primeiro para binário e depois para hexadecimal.

Binário: **001100110101**

Agora, agrupamos em 4 bits e convertemos para hexadecimal:

- 0011 (binário) = 3 (hexadecimal)
- 0011 (binário) = 3 (hexadecimal)
- 0101 (binário) = 5 (hexadecimal)

Portanto, o número hexadecimal correspondente a **1465** é **335**.

4. Hexadecimal: 33BD

Por fim, vamos converter o número hexadecimal **33BD** para as outras bases.

Decimal:

Para converter hexadecimal para decimal, multiplicamos cada dígito pelo valor da base elevada à sua posição (da direita para a esquerda):

33BD16=3·163+3·162+11·161+13·160

Calculando:

3.4096+3.256+11.16+13.1=12288+768+176+13=13045

Então, o número decimal correspondente a 33BD é 13045.

Binário:

Agora, convertemos o número hexadecimal para binário. Cada dígito hexadecimal é convertido para 4 bits:

- 3 (hexadecimal) = 0011 (binário)
- 3 (hexadecimal) = 0011 (binário)
- B (hexadecimal) = 1011 (binário)
- D (hexadecimal) = 1101 (binário)

Portanto, o número binário correspondente a 33BD é 0011001110111101.

Octal:

Agora, convertemos o número hexadecimal para octal. Primeiro, convertemos para binário:

Binário: **0011001110111101**

Agora, agrupamos em 3 bits e convertemos para octal:

- 001 (binário) = 1 (octal)
- 100 (binário) = 4 (octal)
- 111 (binário) = 7 (octal)
- 110 (binário) = 6 (octal)
- 101 (binário) = 5 (octal)

Portanto, o número octal correspondente a 33BD é 14765.

Respostas finais:

- 1. Decimal **329**:
 - o Binário: **101001001**
 - o Octal: **1221**
 - o Hexadecimal: **149**
- 2. Binário **11011101010**:
 - o Decimal: **1106**
 - o Octal: **15650**
 - o Hexadecimal: 1BAA
- 3. Octal **1465**:
 - o Decimal: **821**
 - o Binário: **001100110101**
 - Hexadecimal: 335
- 4. Hexadecimal **33BD**:
 - o Decimal: **13045**
 - o Binário: **0011001110111101**
 - o Octal: **14765**

Exercício 2:

Passo a passo:

- 1. Converter 45 para binário: 00101101
- 2. Como o número é negativo, o bit de sinal é 1.
- 3. Resultado final: 10101101

Exercício 3:

1. Converter 584 para binário: 1001001000

2. Representar na forma normalizada: 1.001001000×2^9

3. Expoente com bias (9 + 15 = 24): 11000

4. Mantissa: 0010010000

Resultado final: 0 11000 0010010000

Exercício 4:

Α	В	В	A . B	A . <i>B</i>	(A . B) + (A . B)
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1

Α	В	С	Ā	A + B	Ā + C	(A + B) . (Ā + C)
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	0	1	0	0
1	1	1	0	1	1	1

c) A . (B + \overline{A} . C)

Α	В	С	Ā	Ā.C	B+Ā.	A . (B + Ā . C)
0	0	0	1	0	0	0
0	0	1	1	1	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	1	1

Exercício 5:

Circuito (a)

1. A primeira porta lógica é uma AND com entradas A e B:

X=A·B

2. A saída de **X** é conectada a uma porta **OR** junto com B:

$$S=X+B=(A\cdot B)+B$$

3. Como B+(A·B)=B, a expressão final simplificada é:

S=B

Circuito (b)

1. Primeira AND tem três entradas A,B,C:

 $X=A \cdot B \cdot C$

2. Segunda **AND** recebe A e C (C negado):

Y=A·C

3. Terceira **AND** recebe AAA e BBB:

$$S=X+Y+Z=(A\cdot B\cdot C)+(A\cdot C)+(A\cdot B)$$

Circuito (c)

- 1. Primeira **NOT** inverte A, gerando A
- 2. Segunda porta **OR** recebe A e B:

X=A+B

3. Segunda AND recebe C e B:

Y=B·C

4. Uma AND recebe X e Y, resultando em:

$$S=X\cdot Y=(A+B)\cdot (B\cdot C)$$