```
(* we build our own stochastic process *)
(* (a) sequence of independent ups and downs *)
(* (b) sequence of independent, discrete steps up and down *)
(* (c) sequence of independent, normal distributed steps up and down \star)
(* (d) sequence of normal distributed steps up and down,
variance depending on mean of last two steps *)
NN = 1000;
(* do (a) *)
sum1 = {};
For [j = 1, j \le NN - 1, j++, AppendTo [sum1, 2 * (RandomInteger[{1, 2}] - 1.5)]];
ListPlot[sum1]
1.0
0.5
           200
                      400
                               600
                                         800
                                                   1000
-0.5
-1.0
(* do (b) *)
sum1 = \{0\};
For [j = 1, j \le NN - 1, j++,
  AppendTo [sum1, sum1[[j-1]] + 2 * (RandomInteger[{1, 2}] - 1.5)]];
ListPlot[
sum1]
30
20
                                                   1000
                                         800
```

```
(* do (c) *)
sum1 = {0};
For [j = 1, j \le NN - 1, j++,
                  AppendTo[sum1, sum1[[j-1]] + RandomVariate[NormalDistribution[0, 1.0], 1][[1]]]\\
ListPlot[sum1]
     20
       15
       10
                                                                                                                                                                                                                                                                                                                                                                                                                                      1000
                                                                                                                                                                                                                                                                      600
                                                                                                                                                                                                                                                                                                                                                       800
-10
(* do (d) *)
sum1 = \{0, 1\};
\label{eq:for_sum1} \text{For} \left[ \text{j = 3, j \le NN - 1, j++, } \right. \text{ } \\ \text{AppendTo} \left[ \text{sum1, sum1} \left[ \left[ \text{j - 1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1} \left[ \text{sum1, sum1, sum1} \right] \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1, sum1} \right] \right] + \text{RandomVariate} \left[ \text{sum1, sum1, sum1} \right] + \text{RandomVariate} \left[ \text{sum1, sum1, sum1} \right] + \text{RandomVariate} \left[ \text{sum1, sum1, sum1, sum1} \right] + \text{RandomVariate} \left[ \text{sum1, sum1, sum1, sum1, sum1, sum1} \right] + \text{RandomVariate} \left[ \text{sum1, sum1, s
                                                       NormalDistribution [0, Sqrt[Abs[(sum1[[j-1]] + sum1[[j-2]])]]], 1][[1]]]
     ];
ListPlot[sum1]
1000
     20
-20
```


(* check if values are normally distributed *) (* see: http://reference.wolfram.com/language/ref/DistributionFitTest.html *) U = DistributionFitTest[sum1, Automatic, "HypothesisTestData"]; U["TestDataTable", All]

	Statistic	P-Value
Anderson-Darling	102.295	0.
Baringhaus-Henze	176.325	0.
Cramér-von Mises	21.0155	0.
Jarque-Bera ALM	3074.25	0.
Kolmogorov-Smirnov	0.269979	0.
Kuiper	0.421993	0.
Mardia Combined	3074.25	0.
Mardia Kurtosis	47.4804	$4.918248278933914 \times 10^{-492}$
Mardia Skewness	777.368	4.49417×10^{-171}
Pearson χ^2	1681.66	$9.08423035976677 \times 10^{-337}$
Shapiro-Wilk	0.733261	3.37292×10^{-37}
Watson U ²	19.4982	0.