	Aula – Co	mputação G	iráfica		
	Trar	nsformações	3D		
		,			
		o durante o período de aula. Di isciplina é expressamente proil			
1					
	Princípio Básico				
	Segue a mesma sis	temática das transform	ações 2D		
		denadas homogêneas			
) se tornam matrizes 4x4 .] ^T se tornam vértices 3D			
			2		
2					
	Matrizes Básicas	S			
	Similar às matrizes Exceto a rotação	2D			
	Transformação	Matriz	Comentários	I	
	Escala	$\begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Como a versão 2D com o termo s _z adicionado.		
	Rotação	(Ver próximo slide)	Em 2D só existe um eixo de rotação; agora temos infinitos! Todos deve ser considerados		
	Translação	$\begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \end{bmatrix}$	Como a versão 2D com o termo dz adicionado.		

Rotac	

- Em 2D, a rotação sempre ocorre no plano xy
 - Ou seja, se analisarmos o 2D em 3D, em torno do eixo z
- Em 3D, pode-se imaginar uma rotação em torno de qualquer eixo, ou vetor nesse espaço
 - Rotação de θ em torno do vetor $\mathbf{u} = [u_x \ u_y \ u_z]^T$
- A formula de Rodrigues descreve essa rotação

```
\begin{bmatrix} \cos(\theta) + u_x^2(1 - \cos(\theta)) & u_x \ u_y \ (1 - \cos(\theta)) - u_z \ \sin(\theta) & u_x \ u_z \ (1 - \cos(\theta)) + u_y \sin(\theta) \\ u_x \ u_y \ (1 - \cos(\theta)) - u_z \sin(\theta) & \cos(\theta) + u_y^2(1 - \cos(\theta)) & u_y \ u_z \ (1 - \cos(\theta)) + u_x \sin(\theta) \\ u_x \ u_z \ (1 - \cos(\theta)) - u_y \sin(\theta) & u_y \ u_z \ (1 - \cos(\theta)) - u_x \sin(\theta) & \cos(\theta) + u_z^2(1 - \cos(\theta)) \end{bmatrix}
```

• Mas ela não é muito amigável

4

Rotação

- Se pensarmos na rotação como uma composição de rotações
 - Podemos defini-la a partir de matrizes mais simples
 - Elas rotacionam em torno dos eixos básicos
 - Eixo-x no plano yz por ψ
 - Eixo-y no plano xz por θ
 - Eixo-z no plano xy por φ
- · Também conhecidos como ângulos de euler
 - − R_x- rotação em torno de x
 - R_{y} rotação em torno de y
 - R_z rotação em torno de z

	$R_z(\boldsymbol{\phi})$			R	_x (ψ)	$R_{_{Y}}(\theta)$					
$\begin{bmatrix} \cos(\phi) \\ \sin(\phi) \\ 0 \\ 0 \end{bmatrix}$	- sin(φ) cos(φ) 0 0	0 0 0 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$0 \cos(\psi) \sin(\psi)$	0 $-\sin(\psi)$ $\cos(\psi)$ 0		$\begin{bmatrix} \cos(\theta) \\ 0 \\ -\sin(\theta) \\ 0 \end{bmatrix}$	0 1 0 0	$\sin(\theta)$ 0 $\cos(\theta)$ 0	0 0 0 1	

5

Rotação

- · Ainda sim, seria difícil definir 3 ângulos capazes de rotacionar
 - Em torno de um eixo qualquer $\emph{\textbf{u}}$ por um ângulo ψ
- Solução? Transforme o problema em um mais simples

Passo 1: Ache um θ para rotacionar em torno do eixo y colocando u no plano xy Passo 2: Ache o ϕ para rotacionar em torno do eixo z alinhando u com o eixo x Passo 3: Rotacione de ψ em torno do eixo x (agora coincidente com u) Passo 4: Boesfaça as transformações anteriores (inversa)

Matriz de rotação final: $\mathbf{M} = \mathbf{R}_{\mathbf{Y}}^{-1}(\theta)\mathbf{R}_{\mathbf{Z}}^{-1}(\phi)\mathbf{R}_{\mathbf{X}}(\psi)\mathbf{R}_{\mathbf{Z}}(\phi)\mathbf{R}_{\mathbf{Y}}(\theta)$

6

Transformações Inversas

• Similares ao caso 2D

Transformação	Matriz Inversa
Escala	$\begin{bmatrix} 1/S_x & 0 & 0 & 0 \\ 0 & 1/S_y & 0 & 0 \\ 0 & 0 & 1/S_x & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Rotação	$ \begin{bmatrix} \cos(\varphi) & \sin(\varphi) & 0 & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\psi) & \sin(\psi) & 0 \\ 0 & -\sin(\varphi) & \cos(\psi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $
Translação	$\begin{bmatrix} 1 & 0 & 0 & -dx \\ 0 & 1 & 0 & -dy \\ 0 & 0 & 1 & -dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$

7

Exemplo em 3D

- Imagine um objeto 3D (uma esfera) centrada em (3, 3, 3)
 - Transforme o objeto em torno do seu centro
 - Rotacione o objeto de 60° em torno de z, 45° em y, e 120° em x
 - Escale o objeto de 2, 5 e 6 em x, y e z
 - Translade o objeto de (2, 3, 4) no SC do mundo
 - Transformações: $T_0^{-1}TS_{xyz}R_xR_yR_zT_0$

0 0 0	0 1 0 0	0 0 1 0	$\begin{bmatrix} 3 \\ 3 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	0 0 1 0	2 3 4 1	0 0 0	0 5 0 0	0 0 6 0	0 0 0 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 cos(120) - sin(120) 0	0 sin(120) cos(120) 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	•••
					_					-					

COS(45)	U	sin(45)	0	COS(bU)	sin(60)	U	U	ΙIΙ	U	U	-3
 0	1	0	0	-sin(60)	cos(60)	0	0	0	1	0	-3
-sin(45)	0	cos(45)	0	-sin(60) 0	0	1	0	0	0	1	-3
0	0	0	1]	l o	0	0	1 .	Llo	0	0	1 .

8

Transformações e o Grafo de Cena

- Objetos podem ser complexos
- Cenas 3D são geralmente armazenadas grafos acíclicos dirigidos
 - Chamado Grafos de Cena (Scene Graphs)
- Grafos de cena típicos armazenam
 - Objetos (cubos, esferas, cones, ...)
 - Atributos (cor, textura, etc.)
 - Transformações

	Transf	formações e	o Graf	fo d	le Cena
--	--------	-------------	--------	------	---------

- Uma transformação afeta todas as sub-árvores
- Somente os nós folhas são objetos
- Todos os nós que não são transformações
 - São nós de grupos de objetos
- Sequencia de passos
 - Várias transformações são aplicadas a cada um dos nós folhas
 - Transformações são aplicadas a grupos de objetos
 - Assim continua até a raiz
 - Juntas, essa hierarquia forma a cena

10

10

Transformações e o Grafo de Cena

- Essa abordagem permite
 - Reusar partes de objetos
 - Construir objetos mais complexos a partir de objetos simples

11

Derivação de Transformações Genéricas

- Usar conceito visto na aula de transformações 2D
 - Vetores coluna da matriz de transformação linear L são
 - Os vetores base transformados
 - $-\,$ A translação T é o delta entre as origens
 - A transformação final é uma composição

Derivação de Transformações Genéricas

- · Usar conceito visto na aula de transformações 2D
 - Vetores coluna da matriz de transformação linear *L* são
 - Os vetores base transformados
 - A translação T é o delta entre as origens
 - A transformação final é uma composição

$$H = \begin{bmatrix} L & T \\ 0 & 1 \end{bmatrix}$$

13

Derivação de Transformações Genéricas

- Usar conceito visto na aula de transformações 2D
 - $-\,$ Vetores coluna da matriz de transformação linear $L\,$ são
 - Os vetores base transformados
 - $-\,$ A translação T é o delta entre as origens
 - A transformação final é uma composição

$$p = Hp' = H \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$H = \begin{bmatrix} x'_x & y'_x & o_x \\ x'_y & y'_y & o_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 3 \\ -1 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$p = Hp' = \begin{bmatrix} 0 & 1 & 3 \\ -1 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

14

Derivação de Transformações Genéricas

- Para inverter H basta fazer o análogo na direção oposta
- Opcionalmente
 - $-\,$ Pode-se decompor H em transformações básicas e invertê-las $H=TR\gg H^{-1}\text{=}R^{-1}T^{-1}$

$$p' = H^{-1}p = H^{-1}\begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

$$H^{-1} = \begin{bmatrix} x_{xy} & y_{xy} & o_{xy} \\ x_{yy} & y_{yy} & o_{yy} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 5 & 5 \\ 1 & 0 & -3 & 5 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

$$p' = H^{-1}p = \begin{bmatrix} 0 & -1 & 5 \\ 1 & 0 & -3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Derivação de Transformações Genéricas

- Exemplo com objetos mais complexos
 - Dado uma função d(H) que, com H = I, desenha um canhão
 - · Alinhado com o eixo x
 - · Com a base na origem
 - Com a mira na direção y
 - Ache a matriz H que faça desenhar o canhão do tanque em relação a 3 pontos (com a base em p1, apontando para p2 e com a mira orientada por p3)

16

Derivação de Transformações Genéricas

• Exemplo com objetos mais complexos

- Ache o SC do canhão em relação aos pontos

- Ache os vetores base transformados - Monte a matriz H

$$x' = (p2-p1)/\|p2-p1\|$$

$$z' = \frac{(x' < *> (p3 - p1))}{\|(x' < *> (p3 - p1))\|}$$

 $y'=z'<\!\!*>x'$

<*> - Produto Vetorial

17

Derivação de Transformações Genéricas

· Exemplo com objetos mais complexos

- Ache o SC do canhão em relação aos pontos

- Ache os vetores base transformados

- Monte a matriz H

Perguntas ?????		
	_	
	'	
	,	
,	19	