Finite Element Method Homework

By: Zhu YunPeng

日期: 2025年2月5日

目录

1	Gau	iss-Legendre quadrature	3
	1.1	实现 Gauss-Legendre 求积公式	3
2	FEN	A for two-point boundary value problem	4
	2.1	线性元求解一维二阶椭圆方程 (Dirichlet 边界)	4
		2.1.1 收敛阶及各误差计算	5
	2.2	二次元求解一维二阶椭圆方程 (Dirichlet 边界)	6
		2.2.1 收敛阶及各误差计算	7
	2.3	线性元求解一维二阶椭圆方程 (Neumann 边界)	8
		2.3.1 收敛阶及各误差计算	9
	2.4	二次元求解一维二阶椭圆方程 (Neumann 边界)	10
		2.4.1 收敛阶及各误差计算	11
	2.5	线性元求解一维二阶椭圆方程 (Robin 边界)	12
		2.5.1 收敛阶及各误差计算	13
	2.6	二次元求解一维二阶椭圆方程 (Robin 边界)	14
		2.6.1 收敛阶及各误差计算	15
3	FEN	A for 2D second order elliptic equation	16
	3.1	线性元求解二维二阶椭圆方程 (Dirichlet 边界)	16
		3.1.1 收敛阶及各误差计算	17
	3.2	二次元求解二维二阶椭圆方程 (Dirichlet 边界)	18
		3.2.1 收敛阶及各误差计算	19
	3.3	线性元求解二维二阶椭圆方程 (Neumann 边界)	20
		3.3.1 收敛阶及各误差计算	21
	3.4	二次元求解二维二阶椭圆方程 (Neumann 边界)	22
		3.4.1 收敛阶及各误差计算	23
	3.5	线性元求解一维二阶椭圆方程 (Robin 边界)	24
		3.5.1 收敛阶及各误差计算	25
	3.6	二次元求解一维二阶椭圆方程 (Robin 边界)	26
		3.6.1 收敛阶及各误差计算	27

4	FEN	I for 2D heat equation	28
	4.1	线性元求解二维二阶含时抛物方程,Backward Euler 格式	28
		4.1.1 收敛阶及各误差计算	28
	4.2	二次元求解二维二阶含时抛物方程,Backward Euler 格式	29
		4.2.1 收敛阶及各误差计算	30
	4.3	线性元求解二维二阶含时抛物方程,Crank-Nicolson 格式	31
		4.3.1 收敛阶及各误差计算	31
	4.4	二次元求解二维二阶含时抛物方程,Crank-Nicolson 格式	32
		4.4.1 收敛阶及各误差计算	32

1 Gauss-Legendre quadrature

1.1 实现 Gauss-Legendre 求积公式

首先,我们编写求解 n 阶 Gauss-Legendre 型求积节点与求积系数的子函数 **get_gauss_point_weight**,这里求积节点 $x_k(k=1,\cdots,n)$ 与求积系数 $A_k(k=1,\cdots,n)$ 满足:

$$P_{n+1}(x_k) = 0, A_k = \frac{2}{(1 - x_k^2)[P'_{n+1}(x_k)]^2}.$$

其中

$$P_{n+1}(x) = \frac{1}{(n+1)!2^{n+1}} \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}} (x^2 - 1)^{n+1}.$$

Listing 1: get_gauss_point_weight

```
1 % n 为求积阶数
2 function [point,weight] = get_gauss_point_weight(n)
3 syms x;
4 N = 10;% 有效数字位数
5 Poly = diff((x.^2 - 1).^(n + 1),x,n + 1) ./ (factorial(n + 1) .* 2 .^ (n + 1));
6 Poly_d = matlabFunction(diff(Poly,x));
7 point = vpa(solve(Poly),N);
8 weight = vpa(2 ./ ((1 - point.^2).*(Poly_d(point).^2)),N);
9 end
```

调用 get_gauss_point_weight 得到对应求积节点与系数后,下面开始实现 1 维的 Gauss-Legendre 求积函数 gauss_1d:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{k=0}^{n} A_{k} f(\frac{b-a}{2} x_{k} + \frac{b+a}{2}).$$

Listing 2: gauss_1d

```
1 % func need to be a function handle which can feed in x.
2 function result = gauss_1d(func,vertices)
3 [xmax,xmin] = deal(max(vertices),min(vertices));
4 gauss_points =
       [0.9602898565,-0.9602898565,0.7966664774,-0.7966664774,0.5255324099,-0.5255324099,0.18343464
5 gauss_weights =
       [0.1012285363,0.1012285363,0.2223810345,0.2223810345,0.3137066459,0.3137066459,0.3626837834
6 mapped_gauss_points = (xmax - xmin) ./ 2 .* gauss_points + (xmax + xmin) ./ 2;
7 result = (xmax - xmin) ./ 2 * gauss_weights * func(mapped_gauss_points)';
8 end
```

下面取求积节点与求积系数的有效数字位数为默认值 10.

PS: 如遇收敛阶误差突变或有不符,可能是由于求积权重及求积节点处的有效数字截断所导致,提高对应有效数字,重新计算即可.

FEM for two-point boundary value problem

线性元求解一维二阶椭圆方程 (Dirichlet 边界) 2.1

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\frac{d}{dx}\left(e^x\frac{du(x)}{dx}\right) = -e^x[\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], x \in \Omega, \\ u(0) = 0, u(1) = \cos(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 1: $\frac{1}{32}$ 网格下解析解与数值解对比

图 2: 1/32 网格下有限元节点误差分析

2.1.1 收敛阶及各误差计算

图 3: 收敛阶可视化

Now starting					
Completed task n	num: 1, time	passed:	0.45504180 s	, Total: 7	
Completed task r	num: 2, time	passed:	0.81365030 s	, Total: 7	
Completed task n	num: 3, time	passed:	0.86567780 s	, Total: 7	
Completed task n	num: 4, time	passed:	0.94708620 s	, Total: 7	
Completed task n	num: 5, time	passed:	1.02182640 s	, Total: 7	
Completed task n	num: 6, time	passed:	1.10857340 s	, Total: 7	
Completed task r	num: 7, time	passed:	1.20531670 s	, Total: 7	
h Max	Absolute E	rror L	`infty Error	L^2 Error	H^1(semi) Error
1/2	0.0093567		0.054162	0.029088	0.20889
1/4	0.002334		0.015207	0.0071969	0.10528
1/8	0.00058317		0.0040047	0.0017951	0.052731
1/16	0.00014645		0.0010256	0.00044854	0.026376
1/32	3.6675e-05		0.00025936	0.00011212	0.013189
1/64	9.17e-06		6.5204e-05	2.8029e-05	0.0065949
1/128	2.2929e-06		1.6346e-05	7.0072e-06	0.0032975
onvergence Orde					
Max Absolute	e Error L	infty Er	ror L^2 E	rror H^1(semi	i) Error
2.0032	2	1.8326	2.0	15 0.98	3847
2.0008	3	1.9249	2.00	33 0.99	9753
1.9936	3	1.9653	2.00	08 0.99	9941
1.9975	5	1.9834	2.00	02 0.99	9985
1.9998	3	1.9919		2 0.99	9996
1.9997	7	1.996		2 0.99	9999

2.2 二次元求解一维二阶椭圆方程 (Dirichlet 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

$$\begin{cases} -\frac{d}{dx} \left(e^x \frac{du(x)}{dx} \right) = -e^x [\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], & x \in \Omega, \\ u(0) = 0, u(1) = \cos(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 4: 1/32 网格下解析解与数值解对比

图 5: 1/32 网格下有限元节点误差分析

2.2.1 收敛阶及各误差计算

图 6: 收敛阶可视化

low start	ing										
Completed	Ü	ım: 1.	time	passed:	0.0448	1590 s.	Total:	7			
Completed				_							
Completed		-		•		•					
Completed				_							
Completed				_							
Completed				_							
Completed	l task nı	ım: 7,	time	passed:	0.4933	8200 s,	Total:	7			
h	Max	Absol	ute E	rror	L^infty	Error	L^2	Error	H^1(semi)	Error	
1/2		0.000	68819		0.003	3372	0.0	017218	0.021	808	
1/4		4.659	7e-05		0.0004	0105	0.0	002104	0.0054	212	
1/8		2.991	8e-06		4.8471	e-05	2.61	44e-05	0.0013	534	
1/16		1.890	1e-07		5.9371	e-06	3.26	31e-06	0.00033	823	
1/32		1.186	9e-08		7.34	e-07	4.07	74e-07	8.455e	-05	
1/64		7.434	9e-10		9.1226	e-08	5.09	62e-08	2.1137e	-05	
1/128	3	4.598	5e-11		1.1369	e-08	6.37	01e-09	5.2842e	-06	
Convergen											
Max A	bsolute	Error	L	^infty E	rror	L^2 Er	ror 1	H^1(semi)	Error		
			-								
	3.8845			3.0567		3.032	7	2.008	2		
	3.9611			3.0486		3.008		2.00	2		
	3.9845			3.0293		3.002	2	2.000	5		
	3.9932			3.0159		3.000	5	2.000	1		
	3.9968			3.0083		3.000	1		2		
	4.0151			3.0043			3		2		

线性元求解一维二阶椭圆方程 (Neumann 边界) 2.3

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\frac{d}{dx} \left(e^x \frac{du(x)}{dx} \right) = -e^x [\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], x \in \Omega, \\ u(0) = 0, u'(1) = \cos(1) - \sin(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 7: 1/32 网格下解析解与数值解对比

图 8: $\frac{1}{32}$ 网格下有限元节点误差分析

2.3.1 收敛阶及各误差计算

图 9: 收敛阶可视化

ow startir	ng									
ompleted t	task nur	n: 1,	time	passed:	0.16174	400 s,	Total:	7		
ompleted t	task nur	n: 2,	time	passed:	0.30225	570 s,	Total:	7		
ompleted t	task nur	n: 3,	time	passed:	0.35420	350 s,	Total:	7		
ompleted t	task nur	n: 4,	time	passed:	0.43063	3220 s,	Total:	7		
ompleted t	task nur	n: 5,	time	passed:	0.52794	800 s,	Total:	7		
ompleted t	task nur	n: 6,	time	passed:	0.63661	.270 s,	Total:	7		
ompleted t	task nur	n: 7,	time	passed:	0.75037	850 s,	Total:	7		
h	Max	Absol	ute E	rror	L^infty	Error	L^2	Error	H^1(semi)	Error
1/2		0.0	27383		0.077	324	0.	044866	0.21	018
1/4		0.0	06794		0.021	.542	0.	011205	0.10	542
1/8		0.00	16953		0.0056	3463	0.0	028009	0.052	748
1/16	(0.000	42362		0.0014	427	0.0	007002	0.026	378
1/32	(0.000	10589		0.00036	3445	0.00	017505	0.01	319
1/64	:	2.647	3e-05		9.1578e	-05	4.37	62e-05	0.0065	949
1/128	(6.618	1e-06		2.2952e	-05	1.0	94e-05	0.0032	975
onvergence	e Order									
Max Abs	solute l	Error		·				H^1(semi)	Error	
	2.0109			1 0420		2 001		0.005	45	
	2.0109			1.9318		2.001		0.995		
	2.0027			1.9686				0.999		
	2.0007			1.985			2	0.999		
-	2.0002			1.9927			2	0.999		
	2			1.9964			2	0.000	1	

二次元求解一维二阶椭圆方程 (Neumann 边界) 2.4

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\frac{d}{dx} \left(e^x \frac{du(x)}{dx} \right) = -e^x [\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], x \in \Omega, \\ u(0) = 0, u'(1) = \cos(1) - \sin(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 10: $\frac{1}{32}$ 网格下解析解与数值解对比

图 11: 🗓 网格下有限元节点误差分析

2.4.1 收敛阶及各误差计算

图 12: 收敛阶可视化

ow start:	ing											
ompleted	task n	um: 1	, t	ime j	passed	: 0.0	3712940	s, 7	Cotal	: 7		
completed	task n	um: 2	2, t	ime j	passed	: 0.0	7630160	s, 7	Cotal	: 7		
Completed	task n	um: 3	8, t	ime j	passed	: 0.1	2439200	s, 7	Cotal	: 7		
Completed	task n	um: 4	, t	ime j	passed	: 0.1	9806800	s, 7	Cotal	: 7		
Completed	task n	um: 5	, t	ime j	passed	: 0.2	7941540	s, 7	Cotal	: 7		
Completed	task n	um: 6	, t	ime j	passed	: 0.3	7548220	s, 7	Cotal	: 7		
completed	task n	um: 7	', t	ime j	passed	: 0.4	8702320	s, I	Cotal	: 7		
h	Max	Absc	lut	e Er	ror	L^in	fty Err	or	L^2	Error	H^1(semi)	Error
1/2		0.00	075	606		0.	0033712		0.	0017257	0.0218	313
1/4		4.88	842e	-05		0.0	0040215		0.	0002105	0.00542	213
1/8		3.06	41e	-06		4.8	506e-05		2.6	147e-05	0.00135	534
1/16		1.91	.55e	-07		5.9	382e-06		3.2	632e-06	0.000338	323
1/32		1.19	82e	-08		7.3	403e-07		4.0	774e-07	8.455e-	-05
1/64		7.56	54e	-10		9.1	227e-08		5.0	963e-08	2.1137e-	-05
1/128		7.4	04e	-11		1.	137e-08		6.3	703e-09	5.2842e-	-06
onvergen	ce Orde	r:										
Max A	bsolute	Erro	r	L^:	infty	Error	L^2	Erro	or	H^1(semi)	Error	
			_									
	3.9523				3.067	5	3.	0353		2.008	5	
	3.9946				3.051	5	3.	0091		2.002	1	
	3.9997				3.030	1	3.	0023		2.000	5	
	3.9987				3.016	1	3.	0006		2.000	1	
	3.9853				3.008	3	3.	0001			2	
	3.353				3.004	2		3			2	

线性元求解一维二阶椭圆方程 (Robin 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\frac{d}{dx} \left(e^x \frac{du(x)}{dx} \right) = -e^x [\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], x \in \Omega, \\ u'(0) + u(0) = 1, u(1) = \cos(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 13: ½ 网格下解析解与数值解对比

图 14: 🗓 网格下有限元节点误差分析

2.5.1 收敛阶及各误差计算

图 15: 收敛阶可视化

ow starting					
ompleted task	num: 1, tim	ne passed: 0.03	3884990 s,	Total: 7	
ompleted task	num: 2, tim	ne passed: 0.07	7852350 s,	Total: 7	
ompleted task	num: 3, tim	ne passed: 0.13	3343780 s,	Total: 7	
ompleted task	num: 4, tim	ne passed: 0.20	0902300 s,	Total: 7	
ompleted task	num: 5, tim	ne passed: 0.29	9120930 s,	Total: 7	
ompleted task	num: 6, tim	ne passed: 0.37	7522040 s,	Total: 7	
ompleted task	num: 7, tim	ne passed: 0.47	7304150 s,	Total: 7	
h Ma	ax Absolute	Error L^int	fty Error	L^2 Error	H^1(semi) Error
1/2	0.07189	92 0	.069974	0.036087	0.22012
1/4	0.01830	05 0	.018061	0.0095582	0.10673
1/8	0.00459	0.0	0045673	0.0024222	0.052914
1/16	0.001150	0	.001147	0.00060759	0.026399
1/32	0.0002878	0.00	0028733	0.00015202	0.013192
1/64	7.1958e-0	7.18	398e-05	3.8014e-05	0.0065953
1/128	1.799e-0	1.79	982e-05	9.5041e-06	0.0032975
onvergence Oro	dor				
_		L^infty Error	L^2 Err	or H^1(semi)	Error
1.97	36	1.954	1.9167	1.044	3
1.993	31	1.9834	1.9804	1.012	3
1.998	83	1.9934	1.9952	1.003	2
1.999	96	1.9972	1.9988	1.000	8
1.999	99	1.9987	1.9997	1.000	2
	2	1.9994	1.9999		1

二次元求解一维二阶椭圆方程 (Robin 边界) 2.6

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\frac{d}{dx} \left(e^x \frac{du(x)}{dx} \right) = -e^x [\cos(x) - 2\sin(x) - x\cos(x) - x\sin(x)], x \in \Omega, \\ u'(0) + u(0) = 1, u(1) = \cos(1), \\ \Omega = [0, 1]. \end{cases}$$

该问题的解析解为: $u(x) = x \cos(x)$.

图 16: $\frac{1}{32}$ 网格下解析解与数值解对比

图 17: $\frac{1}{32}$ 网格下有限元节点误差分析

2.6.1 收敛阶及各误差计算

图 18: 收敛阶可视化

ow start:	ing										
ompleted	O	um: 1	, time	e passed	: 0.03	326900	s, To	tal: 7			
ompleted				_							
ompleted	task ni	um: 3	, time	passed	: 0.13	254820	s, To	tal: 7			
ompleted				_							
ompleted				_							
ompleted				_							
ompleted	task ni	um: 7	, time	- e passed	: 0.48	460520	s, To	tal: 7			
h	Max	Abso	lute 1	Error	L^inf	ty Erro	r	L^2 Err	ror	H^1(semi)	Error
							-				
1/2		0.00	052753	3	0.0	029022		0.0016	8195	0.021	825
1/4		3.28	34e-05	5	0.00	037121		0.00020	714	0.0054	215
1/8		2.04	98e-06	3	4.65	16e-05		2.6042	e-05	0.0013	534
1/16		1.27	92e-07	7	5.81	21e-06		3.2599	e-06	0.00033	823
1/32		7.83	32e-09	9	7.26	26e-07		4.0764	e-07	8.455e	-05
1/64		4.52	04e-10)	9.	09e-08		5.096	e-08	2.1137e	-05
1/128		1.86	68e-10		1.15	11e-08		6.3711	e-09	5.2842e	-06
nvergen			I	L^infty	Emmon	T ^0	Emmon	ш^4	l (gomi)	Emmon	
	4.006			2.966	۵	2 C	0660		2.0092	2	
	4.0016			2.996			9917		2.003		
	4.0022			3.000					2.000!		
	4.0295			3.000			9995		2.000		
	4.1151			2.998		2.9				2	
	1.2759			2.981			9998			2	
	1.2103			2.501		2.0			•		

FEM for 2D second order elliptic equation 3

线性元求解二维二阶椭圆方程 (Dirichlet 边界) 3.1

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

M 求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\nabla \cdot (\nabla u) = -y(1-y)(1-x-\frac{x^2}{2})e^{x+y} - x(1-\frac{x}{2})(-3y-y^2)e^{x+y}, x \in \Omega, \\ u = -1.5y(1-y)e^{-1+y}, x = -1, \\ u = 0.5y(1-y)e^{1+y}, x = 1, \\ u = -2x(1-\frac{x}{2})e^{x-1}, y = -1, \\ u = 0, y = 1, \\ \Omega = [-1,1]^2. \end{cases}$$

该问题的解析解为: $u(x,y) = xy(1-\frac{x}{2})(1-y)e^{x+y}$.

图 19: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 20: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.1.1 收敛阶及各误差计算

图 21: 收敛阶可视化

Now starting				
Completed task num: 1, t	ime passed: 0.281	29400 s, Total: 8		
Completed task num: 2, t	ime passed: 0.554	25210 s, Total: 8		
Completed task num: 3, t	ime passed: 0.932	34800 s, Total: 8		
Completed task num: 4, t	ime passed: 1.732	48420 s, Total: 8		
Completed task num: 5, t	ime passed: 3.399	34570 s, Total: 8		
Completed task num: 6, t	ime passed: 6.943	84890 s, Total: 8		
Completed task num: 7, t	ime passed: 19.95	738220 s, Total:	8	
Completed task num: 8, t	ime passed: 63.32	076950 s, Total:	8	
hx hy Ma:	x Absolute Error	L^infty Error	L^2 Error	H^1(semi) Error
1/2 1/2	0.024879	0.24398	0.097643	0.70659
	0.0066922		0.026648	
1/8 1/8	0.00173	0.02362	0.00683	0.18774
	0.00043521	0.0063421	0.0017189	0.094167
1/32 1/32	0.00010902	0.001643		0.047121
1/64 1/64	2.727e-05	0.0004181	0.00010767	
1/128 1/128		0.00010546		
1/256 1/256	1.7046e-06	2.6481e-05		
2, 200				
Convergence Order:				
Max Absolute Error	L^infty Error	L^2 Error H^	1(semi) Error	
1.8944	1.5766	1.8735	0.93022	
1.9517	1.7922	1.964	0.98193	
1.991	1.8969	1.9904	0.99544	
1.9971	1.9487	1.9975	0.99886	
1.9992	1.9744	1.9993	0.99971	
1.9999	1.9872	1.9998	0.99993	

1.9999 1.9936 1.9999 0.99998

二次元求解二维二阶椭圆方程 (Dirichlet 边界) 3.2

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

M 求解如下问题,并给出对应误差及收敛阶:
$$\begin{cases} -\nabla \cdot (\nabla u) = -y(1-y)(1-x-\frac{x^2}{2})e^{x+y} - x(1-\frac{x}{2})(-3y-y^2)e^{x+y}, x \in \Omega, \\ u = -1.5y(1-y)e^{-1+y}, x = -1, \\ u = 0.5y(1-y)e^{1+y}, x = 1, \\ u = -2x(1-\frac{x}{2})e^{x-1}, y = -1, \\ u = 0, y = 1, \\ \Omega = [-1,1]^2. \end{cases}$$

该问题的解析解为: $u(x,y) = xy(1-\frac{x}{2})(1-y)e^{x+y}$.

图 22: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 23: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.2.1 收敛阶及各误差计算

图 24: 收敛阶可视化

Now starting											
Completed task num: 1, t	ime passed: 0.267	36150 s, Total:	8								
Completed task num: 2, t	ime passed: 0.498	15530 s, Total:	8								
Completed task num: 3, t	ime passed: 0.820	32410 s, Total:	8								
Completed task num: 4, t	ime passed: 1.460	33190 s, Total:	8								
Completed task num: 5, t	ime passed: 2.981	38070 s, Total:	8								
Completed task num: 6, t	ime passed: 8.439	23400 s, Total:	8								
Completed task num: 7, time passed: 31.80906340 s, Total: 8											
Completed task num: 8, t	ime passed: 154.4	0946730 s, Tota	1: 8								
hx hy Ma	x Absolute Error	L^infty Erro	r L^2 Error	H^1(semi) Error							
1/2 1/2	0.0018989	0.015945	0.0071914	0.13206							
1/4 1/4	0.00020116	0.0024361	0.00093065	0.03507							
1/8 1/8	1.7836e-05	0.00033678	0.00011705	0.0089192							
1/16 1/16	1.3528e-06	4.4273e-05	1.4637e-05	0.0022414							
1/32 1/32	9.3471e-08	5.6752e-06	1.8289e-06	0.00056131							
1/64 1/64	6.1462e-09	7.1839e-07	2.2853e-07	0.00014042							
1/128 1/128	3.9406e-10	9.0366e-08	2.856e-08	3.5114e-05							
1/256 1/256	2.4944e-11	1.1331e-08	3.5695e-09	8.7795e-06							
Convergence Order:											
Max Absolute Error	L^infty Error	L^2 Error	H^1(semi) Error								
3.2388	2.7104	2.95	1.9129								
3.4955	2.8547	2.9911	1.9753								
3.7208	2.9273	2.9911	1.9755								
3.8553	2.9637	3.0006	1.9925								
3.8553	2.9818	3.0006	1.9975								
3.9267	2.9818	3.0005	1.9991								
3.9032	2.9909	3.0003	1.9990								

3.9816 2.9955 3.0002 1.9998

3.3 线性元求解二维二阶椭圆方程 (Neumann 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

$$\begin{cases}
-\nabla \cdot (\nabla u) = -2e^{x+y}, x \in \Omega, \\
u = e^{-1+y}, x = -1, \\
u = e^{1+y}, x = 1, \\
\nabla u \cdot \vec{n} = -e^{x-1}, y = -1, \\
u = e^{x+1}, y = 1, \\
\Omega = [-1, 1]^2,
\end{cases}$$

该问题的解析解为: $u(x,y) = e^{x+y}$.

图 25: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 26: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.3.1 收敛阶及各误差计算

图 27: 收敛阶可视化

Completed task num: 1, time passed: 0.30794330 s, Total: 8 Completed task num: 2, time passed: 0.57837320 s, Total: 8 Completed task num: 3, time passed: 1.05729290 s, Total: 8 Completed task num: 4, time passed: 1.59865150 s, Total: 8 Completed task num: 5, time passed: 2.68071490 s, Total: 8 Completed task num: 6, time passed: 5.51959700 s, Total: 8 Completed task num: 7, time passed: 5.51959700 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
Completed task num: 3, time passed: 1.05729290 s, Total: 8 Completed task num: 4, time passed: 1.59865150 s, Total: 8 Completed task num: 5, time passed: 2.68071490 s, Total: 8 Completed task num: 6, time passed: 5.51959700 s, Total: 8 Completed task num: 7, time passed: 16.08474890 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 The passed: 57.6080
Completed task num: 4, time passed: 1.59865150 s, Total: 8 Completed task num: 5, time passed: 2.68071490 s, Total: 8 Completed task num: 6, time passed: 5.51959700 s, Total: 8 Completed task num: 7, time passed: 16.08474890 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
Completed task num: 5, time passed: 2.68071490 s, Total: 8 Completed task num: 6, time passed: 5.51959700 s, Total: 8 Completed task num: 7, time passed: 16.08474890 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
Completed task num: 6, time passed: 5.51959700 s, Total: 8 Completed task num: 7, time passed: 16.08474890 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
Completed task num: 7, time passed: 16.08474890 s, Total: 8 Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
Completed task num: 8, time passed: 57.60809370 s, Total: 8 hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
hx hy Max Absolute Error L^infty Error L^2 Error H^1(semi) Error 1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838
1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/2 1/2 0.0058377 0.17681 0.083561 0.74881 1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/4 1/4 0.0016426 0.050127 0.020574 0.37129 1/8 1/8 0.0004235 0.013358 0.0051224 0.18523 1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/8
1/16 1/16 0.00010633 0.0034487 0.0012793 0.092559 1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/32 1/32 2.6609e-05 0.00087622 0.00031973 0.046273 1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/64 1/64 6.6554e-06 0.00022084 7.9928e-05 0.023136 1/128 1/128 1.664e-06 5.5433e-05 1.9982e-05 0.011568 1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
1/128
1/256 1/256 4.1599e-07 1.3886e-05 4.9954e-06 0.0057838 Convergence Order:
Convergence Order:
W 40 7
Max Absolute Error L^infty Error L^2 Error H^1(semi) Error
1.8294 1.8186 2.022 1.012
1.9556 1.9079 2.0059 1.0033
1.9939 1.9536 2.0015 1.0008
1.9985 1.9767 2.0004 1.0002
1.9993 1.9883 2.0001 1.0001
1.9999 1.9942 2 1

3.4 二次元求解二维二阶椭圆方程 (Neumann 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

$$\begin{cases}
-\nabla \cdot (\nabla u) = -2e^{x+y}, x \in \Omega, \\
u = e^{-1+y}, x = -1, \\
u = e^{1+y}, x = 1, \\
\nabla u \cdot \vec{n} = -e^{x-1}, y = -1, \\
u = e^{x+1}, y = 1, \\
\Omega = [-1, 1]^2,
\end{cases}$$

该问题的解析解为: $u(x,y) = e^{x+y}$.

图 28: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 29: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.4.1 收敛阶及各误差计算

图 30: 收敛阶可视化

Now starting											
Completed task num: 1, t	ime passed: 0.2431	0570 s, Total:	8								
Completed task num: 2, t	ime passed: 0.4990	8680 s, Total:	8								
Completed task num: 3, t	ime passed: 0.8331	7690 s, Total:	8								
Completed task num: 4, t	ime passed: 1.5681	6370 s, Total:	8								
Completed task num: 5, t	ime passed: 3.1789	6920 s, Total:	8								
Completed task num: 6, t	ime passed: 8.7291	1110 s, Total:	8								
Completed task num: 7, time passed: 30.10485850 s, Total: 8											
Completed task num: 8, t	ime passed: 120.76	316790 s, Total	.: 8								
hx hy Ma	x Absolute Error	L^infty Error	L^2 Error	H^1(semi) Error							
1/2 1/2	0.00092076	0.0059728		0.048064							
1/4 1/4	0.00011609	0.00083036		0.011963							
1/8 1/8	1.463e-05	0.00010956									
1/16 1/16	1.8384e-06	1.4074e-05	4.9015e-06	0.00074668							
1/32 1/32	2.3048e-07	1.7835e-06	6.1243e-07	0.00018667							
1/64 1/64	2.8854e-08	2.2447e-07	7.6549e-08	4.6667e-05							
1/128 1/128	3.6636e-09	2.8155e-08	9.5686e-09	1.1667e-05							
1/256 1/256	4.7139e-10	3.5254e-09	1.1961e-09	2.9167e-06							
Convergence Order:											
Max Absolute Error	L^infty Error	L^2 Error H	I^1(semi) Error								
2.9875	2.8466	3.0406	2.0064								
2.9883	2.922	3.0111	2.0016								
2.9924	2.9607	3.0027	2.0003								
2.9958	2.9802	3.0006	2								
2.9978	2.9901	3.0001	2								
2.9775	2.995	3	2								

3.5 线性元求解一维二阶椭圆方程 (Robin 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

$$\begin{cases}
-\nabla \cdot (\nabla u) = -2e^{x+y}, x \in \Omega, \\
u = e^{-1+y}, x = -1, \\
u = e^{1+y}, x = 1, \\
\nabla u \cdot \vec{n} + u = 0, y = -1, \\
u = e^{x+1}, y = 1, \\
\Omega = [-1, 1]^2.
\end{cases}$$

该问题的解析解为: $u(x,y) = e^{x+y}$.

图 31: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 32: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.5.1 收敛阶及各误差计算

图 33: 收敛阶可视化

Now starting				
Completed task num: 1, t	ime passed: 0.267	76540 s, Total:	8	
Completed task num: 2, t	ime passed: 0.566	31140 s, Total:	8	
Completed task num: 3, t	ime passed: 0.959	89400 s, Total:	8	
Completed task num: 4, t	ime passed: 1.616	56230 s, Total:	8	
Completed task num: 5, t	ime passed: 3.043	40740 s, Total:	8	
Completed task num: 6, t	ime passed: 6.115	54930 s, Total:	8	
Completed task num: 7, t	ime passed: 16.75	621310 s, Total:	8	
Completed task num: 8, t	ime passed: 58.80	878620 s, Total:	8	
hx hy Ma:	x Absolute Error	L^infty Error	L^2 Error	H^1(semi) Error
1/2 1/2	0.0082415	0.17681	0.083324	0.74881
	0.0002413	0.050127		
1/8 1/8	0.0021047	0.030127		0.18523
1/16 1/16	0.00034000	0.0034487		0.092559
1/32 1/32	3.4236e-05	0.00087622		0.046273
1/64 1/64	8.5614e-06	0.00022084		
1/128 1/128	2.1404e-06	5.5433e-05		
1/256 1/256	5.3509e-07	1.3886e-05		
1,200 1,200	0.00000	1.00000	1.00200	0.0001000
Convergence Order:				
Max Absolute Error	L^infty Error	L^2 Error H	^1(semi) Error	
1.9287	1.8186	2.0217	1.012	
1.9849	1.9079	2.0058	1.0033	
1.998	1.9536	2.0015	1.0008	
1.9996	1.9767	2.0004	1.0002	
1.9996	1.9883	2.0001	1.0001	
2	1.9942	2	1	

3.6 二次元求解一维二阶椭圆方程 (Robin 边界)

下面使用 FEM 求解如下问题,并给出对应误差及收敛阶:

$$\begin{cases}
-\nabla \cdot (\nabla u) = -2e^{x+y}, x \in \Omega, \\
u = e^{-1+y}, x = -1, \\
u = e^{1+y}, x = 1, \\
\nabla u \cdot \vec{n} + u = 0, y = -1, \\
u = e^{x+1}, y = 1, \\
\Omega = [-1, 1]^2.
\end{cases}$$

该问题的解析解为: $u(x,y) = e^{x+y}$.

图 34: $(\frac{1}{8}, \frac{1}{8})$ 网格下解析解与数值解对比

图 35: $(\frac{1}{8}, \frac{1}{8})$ 网格下有限元节点误差分析

3.6.1 收敛阶及各误差计算

图 36: 收敛阶可视化

Now starting				
Completed task num: 1, t	ime passed: 0.2560	04020 s, Total:	8	
Completed task num: 2, t	ime passed: 0.5316	0370 s, Total:	8	
Completed task num: 3, t	ime passed: 0.8774	8830 s, Total:	8	
Completed task num: 4, t	ime passed: 1.5800	5730 s, Total:	8	
Completed task num: 5, t	ime passed: 3.1787	'3810 s, Total:	8	
Completed task num: 6, t	ime passed: 8.9562	27680 s, Total:	8	
Completed task num: 7, t	ime passed: 32.086	885930 s, Total:	8	
Completed task num: 8, t	ime passed: 132.06	3159540 s, Total	: 8	
hx hy Ma:	x Absolute Error	L^infty Error	L^2 Error	H^1(semi) Error
1/2 1/2	0.00079892	0.0059729	0.0025993	0.048064
1/4 1/4	0.00010773	0.00083036		0.011963
1/8 1/8	1.4076e-05	0.00010956		
1/16 1/16	1.8025e-06	1.4074e-05	4.9012e-06	0.00074668
1/32 1/32	2.2819e-07	1.7835e-06	6.1243e-07	0.00018667
1/64 1/64	2.8709e-08	2.2447e-07	7.6549e-08	4.6667e-05
1/128 1/128	3.6709e-09	2.8155e-08	9.5686e-09	1.1667e-05
1/256 1/256	4.7146e-10	3.5254e-09	1.1961e-09	2.9167e-06
Convergence Order:				
Max Absolute Error	L^infty Error	L^2 Error H	^1(semi) Error	
2.8906	2.8466	3.0379	2.0064	
2.9361	2.922	3.0104	2.0016	
2.9652	2.9607	3.0025	2.0003	
2.9817	2.9802	3.0005	2	
2.9906	2.9901	3.0001	2	
2.9673	2.995	3	2	

2.9609 2.9975 3 2

4 FEM for 2D heat equation

4.1 线性元求解二维二阶含时抛物方程,Backward Euler 格式

$$\begin{cases} u_t - \nabla \cdot (2\nabla u) = -3e^{x+y+t}, x \in \Omega \times T, \\ u(\partial \Omega, t = 0) = e^{x+y}, \\ u = e^{y+t}, x = 0, \\ u = e^{2+y+t}, x = 2, \\ u = e^{x+t}, y = 0, \\ u = e^{x+1+y}, y = 1, \\ \Omega = [0, 2] \times [0, 1], T = [0, 1]. \end{cases}$$

取差分格式为:

$$\left[\frac{M}{\Delta t} + \theta A\right] X^{m+1} = \theta b(t_{m+1}) + (1 - \theta)b(t_m) + \left[\frac{M}{\Delta t} X^m - (1 - \theta)A\right] X^m.$$

其中 $\theta = 1, \Delta t = 4h^2$, 该问题的解析解为: $u(x, y) = e^{x+y+t}$.

4.1.1 收敛阶及各误差计算

图 37: 收敛阶可视化

```
Now starting...

Completed task num: 1, time passed: 0.12670550 s, Total: 6

Completed task num: 2, time passed: 0.36313200 s, Total: 6

Completed task num: 3, time passed: 0.78502040 s, Total: 6

Completed task num: 4, time passed: 1.56430120 s, Total: 6

Completed task num: 5, time passed: 4.59556850 s, Total: 6

Completed task num: 6, time passed: 43.94506580 s, Total: 6
```

	hx	hy	ht	Max Absolute	Error	L^infty Error	L^2 Error	H^1(semi) Error
	1/2	1/2	1	0.281	.83	1.3065	0.68523	5.2336
	1/4	1/4	1/4	0.0957	19	0.37039	0.19449	2.5875
	1/8	1/8	1/16	0.0259	37	0.098704	0.050853	1.2865
	1/16	1/16	1/64	0.00670	94	0.025483	0.012871	0.64214
	1/32	1/32	1/256	0.00168	886	0.0064745	0.0032279	0.32092
	1/64	1/64	1/1024	0.000422	269	0.0016318	0.00080763	0.16044
Conv	ergence	Order:						
	Max Abso	olute Er	ror L^i	nfty Error	L^2 Error	H^1(semi) E	rror	
	1	. 5579		1.8186	1.8169	1.0162		
	1	. 8838		1.9079	1.9353	1.0081		
	1	.9508		1.9536	1.9822	1.0025		
	1	.9904		1.9767	1.9954	1.0007		
	1	. 9982		1.9883	1.9988	1.0002		

4.2 二次元求解二维二阶含时抛物方程,Backward Euler 格式

$$\begin{cases} u_t - \nabla \cdot (2\nabla u) = -3e^{x+y+t}, x \in \Omega \times T, \\ u(\partial \Omega, t = 0) = e^{x+y}, \\ u = e^{y+t}, x = 0, \\ u = e^{2+y+t}, x = 2, \\ u = e^{x+t}, y = 0, \\ u = e^{x+1+y}, y = 1, \\ \Omega = [0, 2] \times [0, 1], T = [0, 1]. \end{cases}$$

取差分格式为:

$$\left[\frac{M}{\Delta t} + \theta A\right] X^{m+1} = \theta b(t_{m+1}) + (1 - \theta)b(t_m) + \left[\frac{M}{\Delta t} X^m - (1 - \theta)A\right] X^m.$$

其中 $\theta = 1, \Delta t = 8h^3$, 该问题的解析解为: $u(x, y) = e^{x+y+t}$.

4.2.1 收敛阶及各误差计算

图 38: 收敛阶可视化

Now starting										
Completed task	npleted task num: 1, time passed: 0.14833690 s, Total: 6									
Completed task	k num: 2, time passed: 0.43047710 s, Total: 6									
Completed task	num: 3, t	ime passed: 1.493	passed: 1.49390740 s, Total: 6							
Completed task	num: 4, t	ime passed: 6.593	29080 s, To	tal: 6						
Completed task	num: 5, t	ime passed: 169.1	7579220 s,	Total: 6						
Completed task	num: 6, t	ime passed: 6228.3	39032600 s,	Total: 6						
hx h	ny ht	Max Absolu	te Error	L^infty Error	L^2 Error	H^1(semi) Error				
1/2 1/	/2 1	0.3	3348	0.34233	0.23517	0.95886				
1/4 1/	/4 1/8	0.05	3672	0.055658	0.03918	0.17096				
1/8 1/	/8 1/64	0.007	0092	0.0072844	0.005084	0.028364				
1/16 1/	/16 1/51	2 0.00088	8166	0.00092169	0.00063901	0.0057212				
1/32 1/	/32 1/40	0.0001	1034	0.00011532	7.9966e-05	0.0013298				
1/64 1/	/64 1/32	1.3791	e-05	1.4425e-05	9.9993e-06	0.00032586				
C										
Convergence Or		T.O. 1. 7		77.4.4						
Max Absolu	ite Error	L^infty Error	L^2 Error	H~1(semi) Er	rror					
2.63	354	2.6208	2.5855	2.4876						
2.93	368	2.9337	2.9461	2.5915						
2.99			2.992	2.3097						
2.99		2.9986	2.9984	2.1051						
3.00		2.9991	2.9995	2.0289						
3.00	701	2.3331	2.3333	2.0209						

4.3 线性元求解二维二阶含时抛物方程, Crank-Nicolson 格式

$$\begin{cases} u_t - \nabla \cdot (2\nabla u) = -3e^{x+y+t}, x \in \Omega \times T, \\ u(\partial \Omega, t = 0) = e^{x+y}, \\ u = e^{y+t}, x = 0, \\ u = e^{2+y+t}, x = 2, \\ u = e^{x+t}, y = 0, \\ u = e^{x+1+y}, y = 1, \\ \Omega = [0, 2] \times [0, 1], T = [0, 1]. \end{cases}$$

取差分格式为:

$$\left[\frac{M}{\Delta t} + \theta A\right] X^{m+1} = \theta b(t_{m+1}) + (1 - \theta)b(t_m) + \left[\frac{M}{\Delta t}X^m - (1 - \theta)A\right] X^m.$$

其中 $\theta = \frac{1}{2}$, $\Delta t = h$, 该问题的解析解为: $u(x,y) = e^{x+y+t}$.

4.3.1 收敛阶及各误差计算

图 39: 收敛阶可视化

Now starting			
Completed task num:	1, time passed: 0.15244930 s,	Total: 6	
Completed task num:	2, time passed: 0.44037240 s,	Total: 6	
Completed task num:	3, time passed: 0.87612820 s,	Total: 6	
Completed task num:	4, time passed: 1.50573120 s,	Total: 6	
Completed task num:	5, time passed: 2.57012760 s,	Total: 6	
Completed task num:	6, time passed: 6.75857230 s,	Total: 6	
hx hy	ht Max Absolute Error	L^infty Error L^2	Error H^1(semi) Error
1/2 1/2	1/2 0.00020131	1.3065	0.58511 5.193
1/4 1/4	1/4 1.7863e-05	0.37039	0.14423 2.5748
1/8 1/8	1/8 1.2042e-06	0.098704 0	.035921 1.2845

	1/16	1/16	1/16	7.6275e-08	0	.025483	0.0089715	0.64187
	1/32	1/32	1/32	4.7846e-09	0.0	0064745	0.0022423	0.32089
	1/64	1/64	1/64	3.0079e-10	0.0	0016318	0.00056055	0.16044
Con	vergence	Order:						
	Max Abs	olute Er	ror L	^infty Error	L^2 Error	H^1(semi) E	Error	
	3	.4944		1.8186	2.0204	1.0121		
	3	.8909		1.9079	2.0055	1.0033		
	3	.9807		1.9536	2.0014	1.0008		
	3	.9947		1.9767	2.0003	1.0002		
	3	.9916		1.9883	2.0001	1.0001		

4.4 二次元求解二维二阶含时抛物方程, Crank-Nicolson 格式

$$\begin{cases} u_t - \nabla \cdot (2\nabla u) = -3e^{x+y+t}, x \in \Omega \times T, \\ u(\partial \Omega, t = 0) = e^{x+y}, \\ u = e^{y+t}, x = 0, \\ u = e^{2+y+t}, x = 2, \\ u = e^{x+t}, y = 0, \\ u = e^{x+1+y}, y = 1, \\ \Omega = [0, 2] \times [0, 1], T = [0, 1]. \end{cases}$$

取差分格式为:

$$\left[\frac{M}{\Delta t} + \theta A\right] X^{m+1} = \theta b(t_{m+1}) + (1 - \theta)b(t_m) + \left[\frac{M}{\Delta t} X^m - (1 - \theta)A\right] X^m.$$

其中 $\theta = \frac{1}{2}, \Delta t^2 \approx h^3$, 该问题的解析解为: $u(x, y) = e^{x+y+t}$.

4.4.1 收敛阶及各误差计算

图 40: 收敛阶可视化

Now starting									
Completed task num:	ompleted task num: 1, time passed: 0.15499190 s, Total: 6								
Completed task num:	2, time p	assed: 0.42463	3920 s, Tota	al: 6					
Completed task num:	3, time p	assed: 0.88384	1030 s, Tota	al: 6					
Completed task num:	4, time p	assed: 2.15469	9710 s, Tota	al: 6					
Completed task num:	5, time p	assed: 11.6514	16850 s, To	tal: 6					
Completed task num:	6, time p	assed: 124.09	508500 s, To	otal: 6					
hx hy	ht	Max Absolute I	Error L^:	infty Error	L^2 Error	H^1(semi) Error			
1/2 1/2	1/3	0.012758	3	0.044395	0.018065	0.33455			
1/4 1/4	1/8	0.0012194	1 (0.0061549	0.002283	0.083065			
1/8 1/8	1/23	0.00015408	0	.00081024	0.00028702	0.020725			
1/16 1/16	1/64	1.8672e-05	5 0	.00010403	3.6236e-05	0.0051789			
1/32 1/32	1/181	2.3399e-06	5 1	.3179e-05	4.5451e-06	0.0012946			
1/64 1/64	1/512	2.8912e-07	7 1	.6587e-06	5.6913e-07	0.00032363			
Convergence Order:									
Max Absolute Er	ror L^i	nfty Error	L^2 Error	H^1(semi)	Error				
3.3872		2.8506	2.9842	2.0099					
2.9844			2.9917						
3.0447		2.9613		2.0023					
2.9964		2.9807	2.9951	2.0002					

2.9975

2

3.0167

2.9902