Sistemas de Información y Telemedicina. *

Marta Girones Sanguesa Ignacio Amat Hernández Silvia Marset Gomis Sofía Gutiérrez Santamaría

December 2, 2019

Contents

Sección		ágina
1	Preámbulo	. 3
2	Histogramas	. 4
3	Kernel Density	. 5
4	Boxplot	. 6
5	QQplot	. 7
6	Corrplot	. 8
7	Filter Methods	. 10
8	Wrapper Methods	. 11
9	PCA	. 12
	9.1 Pareto	. 12
	9.2 Biplot	. 13
10	Modelos de Clasificación	. 14
	10.1 Clasificación Lineal	. 14
	10.2 Clasificación Cuadrática	. 15
	10.3 Clasificación KNN	16

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

List of Figures

1	Histogramas para datos con y sin anomanas.	4
2	Kernel Density para datos con y sin anomalias	5
3	Boxplots para datos con y sin anomalias	6
4	QQplots para datos con y sin anomalias	7
5	Corrplot para datos con anomalias	8
6	Corrplot para datos sin anomalias	9
7	Diagrama de Pareto	12
8	Biplot	13
9	Rendimineto decreciente según aumenta el número de vecinos	17
List	ings	
1	Importaciones iniciales y preparacion de datos	3
2	Código generador de los histogramas con datos anómalos	4
3	Código generador de los kernel density plots con datos anómalos	5
4	Código generador de los boxplots con datos anómalos	6
5	Código generador de los Q Q plots con datos anómalos	7
6	Código generador de los corrplots con datos anómalos	8
7	Aplicación métodos filter de selección características	10
8	Ranking de variables según los métodos filter	10
9	Aplicación métodos $wrapper$ de selección características	11
10	Resultados del filtrado mediante wrappers	11
11	Principal Component Analysis	12
12	Varianza explicada por componente y suma acumulada	12
13	Código generador del diagrama de Pareto	12
14	Código generador del Biplot.	13
15	Validación del modelo lineal	14
16	Validación según distintos métodos	14
17	Validación del modelo cuadrático	15
18	Validación según distintos métodos	15
19	Validación del modelo KNN	16
20	Validación según distintos métodos	16
21	Evolución de puntuación según número de vecinos	17

1 Preámbulo

```
import numpy as np
2
          scipy import stats
3
   # names of variables
4
   labels = ['age', 'leptin', 'bmi', 'adiponectin', 'glucose',
5
           'resistin', 'insulin', 'MCP1', 'HOMA']
6
7
   # loads data
8
   data = np.loadtxt (open (r'../../data.csv', 'rb'), delimiter = ',')
9
10
   # rewrites data as all the rows of data w/out nan cells
11
   data = data [~np.isnan (data).any (axis=1)]
12
13
     separates parameters into matrix x
14
        = np.array ([list (data [x][:-1]) for x in range (len (data))])
15
16
      and class (1, 2) into vector y
17
        = np.array ([int (data [x][ -1])
                                            for x in range (len (data))])
18
   у
19
20
   # removes outliers
   data_no = data [(np.abs (stats.zscore (data)) < 3).all (axis = 1)]</pre>
21
22
        \uparrow = No Outliers
23
24
   x_no = np.array ([list (data_no [x][:-1]) for x in range (len (data_no))])
25
   y_no = np.array ([int (data_no [x][ -1]) for x in range (len (data_no))])
```

Listing 1: Importaciones iniciales y preparacion de datos.

2 Histogramas

En este apartado dibujamos los histogramas comparativos.

Fig. 1: Histogramas para datos con y sin anomalias.

```
1
   import matplotlib as mpl
2
   import matplotlib.pyplot as plt
3
4
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
   from preprocessing import x, y, x_no, y_no, labels
5
6
   # colours for the histograms
7
   fc = [(), (0, 1, 0, 0.6), (0, 0, 1, 0.6)]
              (R, G, B, \alpha) \leftarrow transparency
9
10
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
11
   ax = ax.flatten ()
12
13
     draws each of the histograms, two for each variable
14
   for i in range (0, 9):
15
       for j in [1, 2]:
16
            ax[i].hist (x [y == j, i], bins = 15, fc = fc [j], label = labels [i] + str <math>\sqrt{ }
17
                (j))
18
            ax[i].legend (loc = 1, prop={'size': 15})
19
   fig.suptitle ('con anómalos', fontsize = 30)
20
   fig.savefig ('../images/hist.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 2: Código generador de los histogramas con datos anómalos.

3 Kernel Density

Fig. 2: Kernel Density para datos con y sin anomalias.

```
import matplotlib as mpl
1
   import matplotlib.pyplot as plt
2
   import numpy as np
4
   from scipy.stats import gaussian_kde
5
6
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
7
   from preprocessing import x, y, x_no, y_no, labels
   # colours
9
   fc = ['', 'green', 'blue']
10
11
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
12
   ax = ax.flatten ()
13
14
15
   # same loop in principle as before
   for i in range (0, 9):
16
17
       for j in [1, 2]:
           kde = gaussian_kde (x_ := x [y == j, i])
18
           xs = np.linspace(np.min (x_) - 10, np.max (x_), num=len (x_))
19
20
           ax[i].plot (xs, kde(xs), c = fc[j], label = labels [i] + str (j))
           ax[i].legend (loc = 1, prop={'size': 15})
21
22
   fig.suptitle ('con anómalos', fontsize = 30)
23
24
   fig.savefig ('../images/kden.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 3: Código generador de los kernel density plots con datos anómalos.

4 Boxplot

Fig. 3: Boxplots para datos con y sin anomalias.

```
1
   import matplotlib as mpl
2
   import matplotlib.pyplot as plt
3
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
4
   from preprocessing import x, y, x_no, y_no, labels
5
6
7
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
   ax = ax.flatten ()
8
9
   for i in range (0, 9):
10
       ax[i].boxplot ([x [y == 1, i], x [y == 2, i]])
11
       ax[i].title.set_text (labels [i])
12
13
   fig.suptitle ('con anómalos', fontsize = 30)
14
   fig.savefig ('../images/boxp.pdf', bbox_inches = 'tight', pad_inches = 0)
15
```

Listing 4: Código generador de los boxplots con datos anómalos.

5 QQplot

Fig. 4: QQplots para datos con y sin anomalias.

```
import matplotlib as mpl
1
2
   import matplotlib.pyplot as plt
3
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
4
   from preprocessing import x, y, x_no, y_no, labels
5
6
   import statsmodels.api as sm
7
8
   fc = [(), (0, 1, 0, 0.6), (0, 0, 1, 0.6)]
9
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
10
   ax = ax.flatten ()
11
12
   for i in range (0, 9):
13
       for j in [1, 2]:
14
           sm.qqplot (x [y == j, i], ax = ax[i], c = fc[j],
15
                    line = 's', label = labels [i] + str (j))
16
           ax[i].legend (loc = 2, prop={'size': 15})
17
18
   fig.suptitle ('con anómalos', fontsize = 30)
19
   fig.savefig ('../images/qqp.pdf', bbox_inches = 'tight', pad_inches = 0)
20
```

Listing 5: Código generador de los QQplots con datos anómalos.

6 Corrplot

Fig. 5: Corrplot para datos con anomalias.

```
import pandas as pd
import seaborn as sns
dataframe = pd.DataFrame.from_records(x)
sns.pairplot (dataframe, kind = 'reg')
plt.suptitle ('con anómalos', fontsize = 30)
plt.savefig ('../images/corrp.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 6: Código generador de los corrplots con datos anómalos.

Fig. 6: Corrplot para datos sin anomalias.

7 Filter Methods

```
Filter Methods
1
2
   import sklearn.feature_selection as sk
3
   Fscore, pval = sk.f_classif (x_no, y_no)
4
   r1 = Fscore.argsort().argsort() # fscore rank
   print (r1+1)
6
8
   import ReliefF as rl
9
   r2 = rl.ReliefF (n_neighbors = 1) # relieff rank
10
   r2.fit(x_no, y_no)
11
12
   r2 = r2.top_features
   print (r2+1)
13
14
15
   diferencias = abs (r1-r2)
16
   media = np.mean (diferencias)
```

Listing 7: Aplicación métodos filter de selección características.

```
1 [4 5 9 6 7 3 1 8 2] -> fscore
2 [1 9 8 7 6 5 4 2 3] -> relieff
3 [3 4 1 1 1 2 3 6 1] -> diferencias
4 2.44444444444446 -> media
```

Listing 8: Ranking de variables según los métodos filter.

8 Wrapper Methods

```
from sklearn.neighbors import KNeighborsClassifier
1
2
   from mlxtend.feature_selection import SequentialFeatureSelector
3
   knn = KNeighborsClassifier (n_neighbors = 50)
4
   sfs = SequentialFeatureSelector (knn,
6
7
                    k_features = 4,
8
                    forward = True,
                    scoring = 'accuracy',
9
                    cv = 10)
10
11
   sfs.fit (x_no, y_no, custom_feature_names = labels)
12
   print (sfs.k_score_)
13
14
   print ('Sequential Forward Selection', sfs.k_feature_names_, end = '\n\n')
15
16
   sfs.forward = False
17
18
   sfs.fit (x_no, y_no, custom_feature_names = labels)
   print (sfs.k_score_)
19
20
   print ('Sequential Backward Selection', sfs.k_feature_names_, end = '\n\n')
```

Listing 9: Aplicación métodos wrapper de selección características.

```
1  0.70545454545454
2  Sequential Forward Selection ('leptin', 'bmi', 'glucose', 'MCP1')
3  
4  0.70949494949495
5  Sequential Backward Selection ('leptin', 'bmi', 'glucose', 'insulin')
```

Listing 10: Resultados del filtrado mediante wrappers.

9 PCA

```
from sklearn.preprocessing import StandardScaler
  x_no = StandardScaler ().fit_transform (x_no) # typify
from sklearn.decomposition import PCA

pca = PCA (n_components = 9)

principalComponents = pca.fit_transform(x_no)
evr = pca.explained_variance_ratio_
```

Listing 11: Principal Component Analysis

```
1 [0.29146865 0.18490568 0.14125105 0.11727276 0.08486126 0.07999359
2 0.06636991 0.03254865 0.00132847]
3 [0.29146865 0.47637432 0.61762537 0.73489813 0.81975939 0.89975298
4 0.96612289 0.99867153 1. ]
```

Listing 12: Varianza explicada por componente y suma acumulada.

9.1 Pareto

Fig. 7: Diagrama de Pareto.

```
ax.bar (range (len (evr)), evr)

ax.set_ylim (top=1)

ax1 = ax.twinx ()

4 ax1.set_ylim (top=100)

5 ax1.plot (range (len (evr)), np.cumsum (evr)*100, marker = '.', color = 'red')

6 fig.suptitle ('Pareto', fontsize = 20)

7 fig.savefig ('../images/pareto.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 13: Código generador del diagrama de Pareto

9.2 Biplot

Biplot 1.00 0.75 0.50 0.25 Var7 Var3 0.00 -0.25-0.50-0.75Var8 -1.00 --1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 PC1

Fig. 8: Biplot.

```
def biplot(score, coeff, pcax, pcay, labels = None):
2
       pca1=pcax-1; pca2=pcay-1
3
       xs = score[:,pca1]; ys = score[:,pca2]
4
       n=score.shape[1]
       scalex = 1.0/(xs.max() - xs.min()); scaley = 1.0/(ys.max() - ys.min())
5
6
       plt.scatter(xs*scalex,ys*scaley)
       for i in range(n):
8
           plt.arrow(0, 0, coeff[i,pca1], coeff[i,pca2],color='r',alpha=0.5)
           if labels is None:
9
              plt.text(coeff[i,pca1] * 1.15, coeff[i,pca2] * 1.15, "Var"+str(i+1), \searrow
10
                  color='g', ha='center', va='center')
11
           else:
              12
                  , ha='center', va='center')
13
       plt.xlim(-1,1); plt.ylim(-1,1)
       plt.xlabel("PC{}".format(pcax)); plt.ylabel("PC{}".format(pcay))
14
15
       return plt
   bp = biplot (pca.fit_transform (x_no), pca.components_,1,2)
16
   bp.suptitle ('Biplot', fontsize = 20)
17
   bp.savefig ('../images/biplotpca.pdf', bbox_inches = 'tight', pad_inches = 0)
18
```

Listing 14: Código generador del Biplot.

10 Modelos de Clasificación

10.1 Clasificación Lineal

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
2
3
   lda = LDA ()
   score = cross_val_score (lda, x, y, cv = 10)
4
   print ('Linear puntuación CV media: %.2f std: %.2f'
5
           %(np.mean (score), np.std (score)))
6
7
   score = cross_val_score (lda, x, y, cv = KFold (n_splits = 10, shuffle = True))
8
   print ('Linear puntuación KF media: %.2f std: %.2f'
9
           %(np.mean (score), np.std (score)))
10
11
   score = cross_val_score (lda, x, y, cv = ShuffleSplit (n_splits = 10))
12
13
   print ('Linear puntuación SS media: %.2f std: %.2f'
14
           %(np.mean (score), np.std (score)))
15
   score = cross_val_score (lda, x, y, cv = LeaveOneOut ())
16
   print ('Linear puntuación LO media: %.2f std: %.2f'
17
18
           %(np.mean (score), np.std (score)))
```

Listing 15: Validación del modelo lineal.

```
Linear puntuacion CV media: 0.75 std: 0.13
Linear puntuacion KF media: 0.75 std: 0.10
Linear puntuacion SS media: 0.71 std: 0.14
Linear puntuacion LO media: 0.76 std: 0.43
```

Listing 16: Validación según distintos métodos.

10.2 Clasificación Cuadrática

```
{	t from sklearn.discriminant\_analysis import QuadraticDiscriminantAnalysis as QDA}
2
   qda = QDA ()
3
   score = cross_val_score (qda, x, y, cv = 10)
4
   print ('Quadratic puntuación CV media: %.2f std: %.2f'
5
           %(np.mean (score), np.std (score)))
6
7
   score = cross_val_score (qda, x, y, cv = KFold (n_splits = 10, shuffle = True))
8
   print ('Quadratic puntuación KF media: %.2f std: %.2f'
9
           %(np.mean (score), np.std (score)))
10
11
   score = cross_val_score (qda, x, y, cv = ShuffleSplit (n_splits = 10))
12
   print ('Quadratic puntuación SS media: %.2f std: %.2f'
13
14
           %(np.mean (score), np.std (score)))
15
16
   score = cross_val_score (qda, x, y, cv = LeaveOneOut ())
   print ('Quadratic puntuación LO media: %.2f std: %.2f'
17
18
           %(np.mean (score), np.std (score)))
```

Listing 17: Validación del modelo cuadrático.

```
Quadratic puntuacion CV media: 0.66 std: 0.19
Quadratic puntuacion KF media: 0.76 std: 0.09
Quadratic puntuacion SS media: 0.76 std: 0.14
Quadratic puntuacion LO media: 0.73 std: 0.44
```

Listing 18: Validación según distintos métodos.

10.3 Clasificación KNN

```
1
2
   knn = KNeighborsClassifier (n_neighbors = 9)
   error = cross_val_score (knn, x, y, cv = 10)
3
   print ('KNN puntuación CV media: %.2f std: %.2f'
4
           %(np.mean (error), np.std (error)))
6
7
   error = cross_val_score (knn, x, y, cv = KFold (n_splits = 10, shuffle = True))
   print ('KNN puntuación KF media: %.2f std: %.2f')
8
           %(np.mean (error), np.std (error)))
9
10
   error = cross_val_score (knn, x, y, cv = ShuffleSplit (n_splits = 10))
11
   print ('KNN puntuación SS media: %.2f std: %.2f'
12
           %(np.mean (error), np.std (error)))
13
14
   error = cross_val_score (knn, x, y, cv = LeaveOneOut ())
15
   print ('KNN puntuación LO media: %.2f std: %.2f'
16
           %(np.mean (error), np.std (error)))
17
```

Listing 19: Validación del modelo KNN.

```
KNN puntuacion CV media: 0.47 std: 0.12
KNN puntuacion KF media: 0.47 std: 0.15
KNN puntuacion SS media: 0.47 std: 0.13
KNN puntuacion LO media: 0.43 std: 0.50
```

Listing 20: Validación según distintos métodos.

Fig. 9: Rendimineto decreciente según aumenta el número de vecinos.

```
score = [None]*(vecinos)
1
2
   for i in range (2, vecinos):
3
       print ('n_neighbors = %i'% (i), end = '\r')
4
       iteraciones = 1000
       error = [None]*iteraciones
5
6
       for j in range (0, iteraciones):
7
           X_train, X_test, y_train, y_test = train_test_split (x, y, test_size = 0.3)
           knn = KNeighborsClassifier (n_neighbors = i)
8
9
           knn.fit (X_train, y_train)
           error[j] = np.sum (abs (knn.predict (X_test) - y_test))/ len (y_test)
10
       score[i] = np.mean (error)
11
12
13
   plt.plot (range (2, vecinos+2), score)
14
15
   plt.suptitle ('Puntuación vs. Vecinos', fontsize = 10)
   plt.xlabel ('Vecinos')
16
   plt.ylabel ('Puntuación')
17
   plt.savefig ('../images/knn.pdf', bbox_inches = 'tight', pad_inches = 0)
18
```

Listing 21: Evolución de puntuación según número de vecinos.