الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2014

امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضى

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (07 نقاط)

- 1) مركب عضوي (A) صيغته العامة $C_nH_{2n}O$ و كثافة بخاره بالنسبة للهواء هي 3,45.
 - أ- احسب الكتلة المولية للمركب العضوي (A).
 - ب- جد الصيغة المجملة لـ (A).

 $C = 12 \text{ g.mol}^{-1}$ $H = 1 \text{ g.mol}^{-1}$ $O = 16 \text{ g.mol}^{-1}$

- 2) يتفاعل المركب العضوي (A) مع DNPH ولا يرجع محلول فهلنغ.
 - أ- ما طبيعة المركب العضوي (A) ؟
 - ب- اكتب الصيغ نصف المفصلة الممكنة لـ (A).
 - 3) ينتج الكحول (B) عن عملية إرجاع المركب العضوي (A).
 - أ- ما صنف الكحول (B) ؟
 - ب- ما هو المركب الذي يمكن استعماله في عملية الإرجاع؟
- 4) نزع الماء من الكحول (B) في وسط حمضي وعند درجة حرارة مناسبة يعطي الألسان (C) .
- $(CH_3 CO CH_3)$ المتبوعة بالاماهة تعطى البروبانون (C $H_3 CO CH_3$) بالأوزون (C $H_3 CO CH_3$) المتبوعة بالاماهة تعطى و المركب العضوى (D).
 - أ- استنتج الصيغ نصف المفصلة للمركبات العضوية (A) ، (C) ، (B) ، (A) .
 - ب- اكتب معادلة تفاعل إرجاع كليمنسن للمركب (D).
 - 5) بلمرة الألسان (C) تعطى البوليمير (E).
 - أ- اكتب الصيغة العامة للبوليمير (E).
- ب- إذا كانت الكتلة المولية المتوسطة للبوليمير (E) تساوي $126 \times 10^3 \text{ g.mol}^{-1}$ ، فما هي درجة بلمرته 1?

التمرين الثاني: (07 نقاط)

- 1-I) يعطي التحليل المائي لمول من ثلاثي الغليسيريد 1مول من الغليسرول و 3 مولات من حمض الأولييك. - اكتب صيغة الغليسرول والصيغة العامة لثلاثي الغليسيريد.
 - $C18:1\Delta^9$ حمض الأولبيك عبارة عن حمض دهنى غير مشبع، يرمز له بـ (2
 - أ- أعط الصبغة نصف المفصلة لحمض الأولبيك.
 - ب- استنتج الصيغة نصف المفصلة لثلاثي الغليسيريد واذكر اسمه.
 - : المفصلة كالتالي (Asp-Ala-Ser-Lys) P صيغته نصف المفصلة كالتالي (1-II

أ- هل يعطي رباعي الببتيد P نتيجة إيجابية مع كاشف بيوري؛ علّل إجابتك. P نتيجة إيجابية مع كاشف كز انتوبروتييك؛ علّل إجابتك.

- 2) ينتج عن الإماهة الحامضية لرباعي الببتيد P أربعة أحماض أمينية.
 - أ- اكتب صيغ هذه الأحماض الأمينية.
 - ب- صنف هذه الأحماض الأمينية.
 - ج احسب pH_i لكل حمض أميني.

بعطى:

الحمض الأميني	pKa ₁	pKa ₂	pKa _R
Asp	1,88	9,60	3,66
Ala	2,34	9,69	//////
Ser	2,21	9,15	//////
Lys	2,18	8,95	10,53

د- اكتب صيغة الحمض الأميني Asp و صيغة الحمض الأميني Lys عند Asp

التمرين الثالث: (06 نقاط)

$$\Delta H_f^0ig(C_4H_{10({
m g})}ig)$$
 احسب أنطالبي التشكل لغاز البوتان (1 $\Delta H_{sub}^\circ(C_{(s)})=717kJ.mol^{-1}$ يعطى:

الر ابطة	C-C	С-Н	Н-Н
E (kJ.mol ⁻¹)	348	413	436

(2

أ- اكتب معادلة الاحتراق التام لغاز البوتان عند 25°C.

ب- احسب أنطالبي الاحتراق. هل التفاعل ماص أو ناشر للحرارة ؟ علَّل إجابتك.

$$\Delta H_{f}^{0}\left(H_{2}O_{(\ell)}\right) = -286\,kJ.mol^{-1} \qquad \text{,} \quad \Delta H_{f}^{0}\left(CO_{2(g)}\right) = -393kJ.mol^{-1}$$
يعظى:

. ΔU عند عند عند عند البوتان عند ΔU المحتر الم ΔU عند عند ΔU

$$R = 8,314 \ J.moI^{-1}.K^{-1}$$
:

3) عند أي درجة حرارة تكون أنطالبي احتراق غاز البوتان مساوية لـ:

$$\Delta H_{comb}(C_4 H_{10(g)}) = -2870 kJ.mol^{-1}$$

يعطى:

المركب	$C_4H_{10(g)}$	$O_{2(g)}$	$CO_{2(g)}$	$H_2O_{\left(\ell' ight) }$
$C_p\left(J.moI^{-1}.K^{-1}\right)$	100,6	29,37	37,20	75,30

4) يتمدد 0.5 mol من غاز البوتان تمددا عكسيا عند درجة حرارة 298 K من حجم 3L إلى حجم 10L مع اعتبار أن البوتان غاز مثالي.

- احسب عمل التمدد.

الموضوع الثاني

التمرين الأول: (07 نقاط)

1) مركب عضوي A صيغته $R-C\equiv N$ يحوي 69,56% من الكربون و10,14% من الهيدروجين. أ– جدْ الصيغة المجملة للمركب A.

ب- استنتج الصيغ نصف المفصلة الممكنة للمركب A.

$$C = 12 \text{ g.mol}^{-1}$$
 $H = 1 \text{ g.mol}^{-1}$ $N = 14 \text{ g.mol}^{-1}$

2) انطلاقا من المركب A، نجري سلسلة التفاعلات التالية:

1) A + CH
$$_3$$
MgBr \longrightarrow B

4) D
$$\frac{\text{LiAlH}_4}{\text{H}_2\text{O}}$$
 E

6)
$$F + Mg \xrightarrow{\text{ether}} G$$

7) G + D
$$\xrightarrow{\text{H}_2\text{O}}$$
 H + MgClOH

8)
$$H = \frac{Al_2O_3}{400 \, ^{\circ}C}$$
 $I + H_2O$

9)
$$\mathbf{n}(I)$$
 \longrightarrow $\begin{bmatrix} H_3C-CH-CH_3 & CH_3 \\ C & C \\ CH_3 & H_3C-CH-CH_3 \end{bmatrix}_{\mathbf{n}}$

 $I \cdot H \cdot G \cdot F \cdot E \cdot D \cdot C \cdot B \cdot A$ استنتج الصيغ نصف المفصلة لـ $I \cdot H \cdot G \cdot F \cdot E \cdot D \cdot C \cdot B \cdot A$ ب – ما نوع البلمرة في التفاعل (9)؟

التمرين الثاني: (07 نقاط)

 $256~\mathrm{g.mol}^{-1}$ حمض دهني مشبع كتلته المولية (1 -I

- ما هي صيغته نصف المفصلة؟

$$C = 12 \text{ g.mol}^{-1}$$
 $H = 1 \text{ g.mol}^{-1}$ $O = 16 \text{ g.mol}^{-1}$

- 2) يدخل هذا الحمض الدهني في تركيب ثلاثي غليسيريد متجانس (A).
 - أ- أعط الصبيغة نصف المفصلة لثلاثي الغليسيريد (A).
- ب- اكتب معادلة تصبن ثلاثي الغليسيريد (A) مع هيدر وكسيد البوتاسيوم KOH.

II - لديك الأحماض الأمينية التالية:

CH ₂ -CH-COOH NH ₂	H ₂ N-(CH ₂)-CH-COOH NH ₂	HOOC-(CH ₂) ₂ -CH-COOH NH ₂
Phe فنيل ألانين	ليزين Lys	حمض الغلوتاميك Glu

- 1) صنّف الأحماض الأمينية السابقة.
- 2) أعط الصيغة نصف المفصلة للببتيد Lys Phe Glu واذكر اسمه.
 - اميني. احسب pH_i لكل حمض أميني.

يعطى:

الحمض الأميني	pKa ₁	pKa ₂	pKa _R
Glu	2,19	9,67	4,25
Lys	2,18	8,95	10,53
Phe	1,83	9,13	/////

- ب- اكتب صيغ حمض الغلوتاميك Glu عند تغير الpH من pH إلى pH
- pH = 5.5 نضع مزيجا من الأحماض الأمينية السابقة على شريط الهجرة الكهربائية في وسط ذي pH = 5.5 ثم نشغل الجهاز.
 - حدّد مواضع الأحماض الأمينية السابقة على شريط الهجرة الكهربائية مع التعليل.

التمرين الثالث: (06 نقاط)

1) ليكن تفاعل تشكل الألكان التالى:

$$nC_{(s)} + (n+1)H_{2(g)} \longrightarrow C_nH_{2n+2(g)}$$

. n بدلالة $\Delta {
m H}_{f}^{0} \; (C_{n} H_{2n+2({
m g})})$ بدلالة أ- عبّر عن أنطالبي تشكل الألكان

علما أن: عدد الروابط C-C هو (n-1) و عدد الروابط C-C هو (2n+2)

 $\Delta H_{sub}^{0}(C_{(s)}) = 717 \text{kJ.mol}^{-1}$ يعطى:

الر ابطة	С-Н	C-C	Н-Н
E (kJ.mol ⁻¹)	413	348	436

 $\Delta H_f^0 (C_n H_{2n+2(g)}) = -84,6 \text{ kJ.mol}^{-1}$: ب- استنتج الصيغة المجملة للألكان السابق علما أن

2) لديك عند 2°25 تفاعلات الاحتراق لكل من الهيدروجين والإيثان والإيثيلين التالية:

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_{2}O_{(\ell)} \Delta H_{1}^{0} = -285,8 \text{ kJ.mol}^{-1}$$
 $CH_{3} - CH_{3(g)} + \frac{7}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_{2}O_{(\ell)} \Delta H_{2}^{0} = -1559,8 \text{ kJ.mol}^{-1}$
 $CH_{2} = CH_{2(g)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 2H_{2}O_{(\ell)} \Delta H_{3}^{0} = -1411,3 \text{ kJ.mol}^{-1}$
 -1

ب- استنتج الأنطالبي ΔH_4^0 لتفاعل هدرجة الإيثيلين.

 $T_0=25$ °C من خلال تفاعل احتراق الهيدروجين عند (3

أ- احسب (E(O-H) طاقة الرابطة (O-H).

 $\Delta H_{vap}^{0}\left(H_{2}O\right)=44\ kJ.mol^{-1}$ ، $E\left(O=O\right)=498\ kJ.mol^{-1}$: يعطى

ب- كم يصبح أنطالبي هذا التفاعل عند T=80°C ؟

يعطى:

المركب	$H_2O_{(\ell)}$	$O_{2(g)}$	$H_{2(g)}$
$C_P\left(J.mol^{-1}.K^{-1}\right)$	75,30	29,37	28,84

(مة	العلا	عناصر الإجابة
مجموع	مجزأة	حاصر الإجابة
		<u>التمرين الأول</u> : (07 نقاط)
1.25		1) أ- حساب الكتلة المولية للمركب العضوي (A):
1.23	0.25	$d = \frac{M_A}{29} \Rightarrow M_A = d \times 29$
	0.25	$M_A = 3.45 \times 29 = 100.05 \ g.mol^{-1}$
		ب- إيجاد الصيغة المجملة للمركب العضوي (A):
	0.25	$\mathrm{M_A} = 14n + 16$ ومنه $\mathrm{M_A} = 12n + 2n + 16$
	0.25	$n = \frac{100.05 - 16}{14} = 6$
	0.25	$C_6H_{12}O$
1.75	0.25	2) أ- طبيعة المركب العضوي (A) : سيتون.
5744 - 2000 - 302000	Con. 19 Construent & Collection	ب- الصيغ نصف المفصلة الممكنة للمركب العضوي (A):
		$\begin{array}{c} O \\ O \\ II \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \\ \end{array} \qquad \begin{array}{c} CH_3 - CH_2 - CH - C - CH_3 \\ \end{array}$
		CH_3
	0.55	
	0.25 x	CH_3 - CH_2 - CH_2 - CH_2 - CH_3 CH_3 - CH_3 - CH_2 - CH_3
	6	$_{-}^{\mathrm{CH_{3}}}\mathrm{O}$
		$CH_3 - C - CH_3$ $CH_3 - CH - C - CH_2 - CH_3$
		$_{\mathrm{CH_{3}}}^{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}^{\mathrm{CH_{3}}}$
0.50	0.25	3) أ- صنف الكحول (B): كحول ثانوي.
	0.25	ب- يمكن استعمال في عملية الإرجاع إحدى المركبات LiAlH ₄ أو H ₂ /Ni
		4) أ- استنتاج صيغ المركبات العضوية D ، C ، B ، A:
		CH_3 - CH - CH_2 - CH_3 CH_3 - CH - CH - CH_2 - CH_3 CH_3 CH_3 OH
	0.50	$CH_3 - CH - C - CH_2 - CH_3$ $CH_3 - CH_4 - CH_5$
2.50	X	(A) $^{\text{CH}_3}$ (B)
	4	$CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - CH_2 - CHO$
		$CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - CH_2 - CHO$ (C) CH_3 (D)

دورة: جوان 2014

الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا المحتبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي المدة: 4 سا و 30 د

*		
		ب) معادلة التفاعل:
	0.50	$CH_3 - CH_2 - CHO \xrightarrow{Zn/H_3O^+} CH_3 - CH_2 - CH_3 + H_2O$
		5) أ- الصيغة العامة للبوليمير E:
1	0.50	:E الصيغه العامه للبوليمير: E
		(E)
		ب- درجة بلمرة البوليمير E :
	0.25	$M_C = 6 \times 12 + 12 \times 1 = 84 \text{ g.mol}^{-1}$
	0.25	$\mathbf{n} = rac{\mathbf{M}_{polymere}}{\mathbf{M}_{monomere}} = rac{126 imes 10^3}{84} = 1500$
		التمرين الثاني: (07 نقاط)
0.50		<u> حريل ، حي.</u> (
0.50		ا ۱-۱) صبعه العليسرون.
		CH ₂ -OH
	0.25	сн — он
		CH ₂ -OH
		2
		 الصيغة العامة لثلاثي الغليسيريد:
		O
		$CH_2 - O - C$
	0.25	Ö
	0.23	CH — O—C
		R
		CH ₂ O C
		R
	<u> </u>	

1	0.50	2) أ- الصيغة نصف المفصلة لحمض الأولييك:
	0.50	H ₃ C—(CH ₂) ₇ —CH—CH—(CH ₂) ₇ —COOH
		ب- الصيغة نصف المفصلة لثلاثي الغليسيريد:
	0.25	$\begin{array}{c} \text{CH}_2 - \text{O} - \text{C} \\ & \text{CH}_2)_7 - \text{CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ & \text{CH} - \text{O} - \text{C} \\ & \text{CH}_2)_7 - \text{CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ & \text{CH}_2 - \text{O} - \text{C} \\ & \text{CH}_2)_7 - \text{CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ & \text{CH}_2 - \text{O} - \text{C} \\ & \text{CH}_2)_7 - \text{CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ & \text{CH}_2 - \text{O} - \text{C} \\ & \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 \\ & \text{CH}_2 - \text{CH}_3 -$
	0.25	اسم ثلاثي الغليسيريد: ثلاثي الأوليين.
1	0.25 x 2 0.25	1-II) أ- يعطي رباعي الببتيد P نتيجة إيجابية مع كاشف بيوري (لون بنفسجي) لأنه يحتوي على الروابط الببتيدية. ب- لا يعطى رباعى الببتيد P نتيجة إيجابية مع كاشف كزانتوبروتييك لأنه لا يحتوي على
	x 2	حمض أميني عطري (أروماني). 2) أ- كتابة صيغ الأحماض الأمينية:
4.50	0.25 x 4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0.25 x 4	ب- تصنيف الأحماض الأمينية: Asp: حمض أميني حامضي. Ala: حمض أميني بسيط. Ser: حمض أميني هيدروكسيلي (حمض أميني كحولي).
		Lys: حمض أميني قاعدي.

1	
0.25 2× 0.25 2×	pH_{i} ا لكل حمض أميني: $Ser: pH_{i} = \frac{pKa_{1} + pKa_{2}}{2} = \frac{2,21 + 9,15}{2}$ $pH_{i} = 5,68$ $Ala: pH_{i} = \frac{pKa_{1} + pKa_{2}}{2} = \frac{2,34 + 9,69}{2}$ $pH_{i} = 6,01$
0.25 2×	Asp: $pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{1,88 + 3,66}{2}$ $pH_i = 2,77$
0.25 2×	$Lys: pH_i = \frac{pKa_2 + pKa_R}{2} = \frac{8,95 + 10,53}{2}$ $pH_i = 9,74$ $: pH = 9,74$ عند Asp عند Asp لدينا مزيج من au
0.25	COO - COO - H ₃ N ⁺ —CH H ₂ N —CH
	- صيغة الحمض الأميني Lys عند $pH = 9,74$: $pH = pH_i(Lys)$ لدينا أيون متعادل كهربائيا
0.25	coo - H_2N — CH CH_2 CH_2 CH_3 CH_3

		التمرين الثالث: (06 نقاط)
		$\Delta H_{f}^{0}\left(C_{4}H_{10({ m g})} ight)$ حساب أنطالبي التشكل لغاز البوتان $\left(1 ight)$
		$4C_{(s)} + 5H_{2(g)} \xrightarrow{\Delta H_f^0(C_4 H_{10(g)})} C_4 H_{10(g)}$
1	0.50	$4\Delta H_{\mathrm{su}b}^{\circ}\left(C_{(s)}\right) \left \begin{array}{c} 5E_{H-H} \\ \\ 4C_{(g)} \end{array} \right + 10H_{(g)}$
	0.25	$\Delta H_f^0(C_4 H_{10(g)}) = 4\Delta H_{Sub}^0(C_{(S)}) + 5E_{H-H} - 3E_{C-C} - 10E_{C-H}$
	J.20	$\Delta H_f^0(C_4 H_{10(g)}) = 4(717) + 5(436) - 3(348) - 10(413)$
	0.25	$\Delta H_f^0(C_4 H_{10(g)}) = -126 kJ.mol^{-1}$
		\sim 25°C عادلة الاحتراق التام لغاز البوتان عند \sim 25°C :
	0.50	$C_4H_{10 (g)} + \frac{13}{2} O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(\ell)}$
		ب- حساب أنطالبي الاحتراق:
		$\Delta H_{comb} = \Sigma \Delta H_f^0 (Produits) - \Sigma \Delta H_f^0 (Réactifs)$
2.50	0.50	$ \left \Delta H_{comb} = \left(4\Delta H_f^0 \left(CO_{2(g)} \right) + 5\Delta H_f^0 \left(H_2 O_{(\ell)} \right) \right) - \left(\Delta H_f^0 \left(C_4 H_{10(g)} \right) + \frac{13}{2} \Delta H_f^0 \left(O_{2(g)} \right) \right) \right $
	0.05	$\Delta H_{comb} = 4(-393) + 5(-286) - (-126) - \frac{13}{2}(0)$
	0.25	$\Delta H_{comb} = -2876 \text{ kJ.mol}^{-1}$
	0.25	التفاعل ناشر للحرارة.
	0.25	$\Delta H_{comb} < 0$: التعليل
	0.25	ΔU : 25°C البوتان عند ΔU المحتراق غاز البوتان عند $\Delta H = \Delta U + \Delta n_{\otimes} RT$: $\Delta U = \Delta H - \Delta n_{\otimes} RT$
	0.25	$\Delta n_{(g)} = 4 - (1 + \frac{13}{2}) = -3.5 \text{ mol}$

	0.25	T = 25 + 273 = 298K $\Delta U = -2876 - (-3.5).8,314.10^{-3}.298$ $\Delta U = -2867,33 \text{ kJ.mol}^{-1}$
		$:\Delta H_{comb}(C_4H_{10(g)})=-2870 kJ.mol^{-1}$ حساب درجة الحرارة عندما تكون (3
	0.25	$\Delta H_T = \Delta H_{T_0} + \int_{T_0}^T \Delta C_P dT$
	0.25	$\Delta H_T = \Delta H_{T_0} + \Delta C_P (T - T_0)$
1.50	0.25	T - $T_0 = rac{\Delta H_T - \Delta H_{T_0}}{\Delta C_D}$ \Rightarrow $T = rac{\Delta H_T - \Delta H_{T_0}}{\Delta C_D} + T_0$
	0.25	$\Delta C_P = (4C_{PCO_2(g)} + 5C_{PH_2O_{(l)}}) - (C_{PC_4H_{10(g)}} + 1\% C_{PO_2(g)})$
		A.C. (A., 27, 20 , E., 7E, 20) (100 C , 124, 20, 27)
	0.25	$\Delta C_p = (4 \times 37, 20 + 5 \times 75, 30) - (100, 6 + \frac{13}{2} \times 29, 37)$ $\Delta C_p = 233,79 \text{ J.mol}^{-1}.K^{-1}$
	0.25	
		$T = \frac{-2870 - (-2876)}{233,79 \times 10^{-3}} + 298$
	0.25	$T = 323,7 \text{K} = 50,7 ^{\circ}\text{C}$
		4) حساب عمل التمدد:
		عند درجة حرارة ثابتة يعطى العمل بالعلاقة:
1	0.5	$W = -nRTIn\frac{V_2}{V_1}$
	0.25	$W = -0.5 \times 8.314 \times 298 In \frac{10}{3}$
		W = -1491,46 J
	0.25	W = -1,49 kJ

<u></u>	العلا	(21.50
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأولى: (07 نقاط) $A: A: A$: (1) أ- إيجاد الصيغة المجملة للمركب $A: M(C_XH_VN)=12x+y+14$
	0.25	N% = 100 - (69, 56 + 10, 14) = 20, 3
	0.25	$ \begin{array}{c} M \longrightarrow 14 \\ 100 \longrightarrow 20,3 \end{array} \Rightarrow M = \frac{14 \times 100}{20,3} = 69g / mol $
2.25	0.25	$\begin{cases} 69 $
	0.25	$ \begin{vmatrix} 69 & \longrightarrow y \\ 100 & \longrightarrow 10,14 \end{vmatrix} \Rightarrow y = \frac{10,14 \times 69}{100} = 7 $
	0.25	(A) C_4H_7N \Rightarrow C_3H_7-C \equiv N $+$ الصيغ نصف المفصلة الممكنة للمركب A هي:
	0.50 x 2	CH_3 - CH - $C\equiv N$ CH_3 - CH_2 - $C\equiv N$ CH_3 CH_3 : I ، H ، G ، F ، E ، D ، C ، B ، A الصيغ نصف المفصلة لـ C
4.75	9×0.50	A: CH_3 - CH - $C\equiv N$ CH_3 - CH - $C=NMgBr$ CH_3 - CH - $C=NH$ CH_3 - CH - $C=NH$ CH_3 - CH - $C=NH$ CH_3 - CH - CH - CH - CH CH_3 - CH
		G: CH ₃ -CH-CH·MgCl CH ₃ CH ₃ H: H ₃ C-CH-CH-CH-CH ₃ CH ₃
	0.25	I: H ₃ C-CH-C=CCH-CH ₃ CH ₃ CH ₃ CH ₃ ب- نوع البلمرة في التفاعل (9): بلمرة بالضم.

-	, د	المحتبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي المدة: 4 سا و 30
		التمرين الثاني: (07 نقاط)
		$: \mathrm{C_nH_{2n}O_2}$ حمض دهني مشبع صيغته العامة $: \mathrm{C_nH_{2n}O_2}$
	0.25	$M = 12n + 2n + 2 \times 16 = 14n + 32$
0.50		$256 = 14n + 32 \Rightarrow n = \frac{256 - 32}{14} = 16$
		14
	0.25	$CH_3 - \left(CH_2 ight)_{14} - COOH$ صيغته نصف المفصلة –
		2) أ- الصيغة نصف المفصلة لثلاثي الغليسيريد (A):
		$H_2C - O - C - C - C + C + C + C + C + C + C + C$
	0.50	HÇ-O-C—(CH ₂) ₁₄ -CH ₃
		H ₂ C-O-C—(CH ₂) ₁₄ -CH ₃
1.00		H ₂ Ċ-O-Ć ′ —(CH ₂) ₁₄ -CH ₃
		ب- معادلة تصبن ثلاثي الغليسيريد مع هيدروكسيد البوتاسيوم KOH:
		H ₂ Ç-O-C'_(CH ₂) ₁₄ -CH ₃ H ₂ C-OH
	0.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		H ₂ C-O-C'_(CH ₂) ₁₄ -CH ₃
		$H_2C-O-C-(CH_2)_{14}-CH_3$ $(1-II)$
0.75	0.25	عد ۱) حدیث الله الله الله الله الله الله الله الل
	0.25	حمض أميني قاعدي Lys
	0.25	حمض أميني حامضي Glu
		2) الصيغة نصف المفصلة للببتيد LysPhe Glu :
		0 40
0.75	0.50	$H_2N-CH-C-NH-CH-COOH$ $(CH_2)_4$ CH_2 $(CH_2)_4$ $COOH$
#20 (#20 kg 90 kg	0.50	$(CH_2)_4$ CH_2 $(CH_2)_2$
		NH ₂ COOH
	0.25	- اسم الببتيد: ليزيل فنيل ألانيل غلوتاميك.

		الكل حمض أميني: pH_i لكل حمض أميني:
		pH_i الحمض الأميني
	2×0.25	$pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{2,19+4,25}{2} = 3,22$ Glu
2.50	2×0.25	$pH_i = \frac{pKa_R + pKa_2}{2} = \frac{10,53+8,95}{2} = 9,74$ Lys
	2×0.25	$pH_i = \frac{pKa_1 + pKa_2}{2} = \frac{1,83 + 9,13}{2} = 5,48$ Phe
	4×0.25	: 12 من 1 إلى 12 pH عند تغير الـ pH عند تغير الـ pKa ₁ = 2,19 pHi pKa _R = 4,25 pKa ₂ = 9,67 12 pKa ₃ + OH
1.50	3×0.25	4) تحديد مواضع الأحماض الأمينية عند pH=5,5 على شريط الهجرة الكهربائية: + Lys Phe Glu
	0.25	التعليل: pH=5,5 عند Phe عند pH=5,5 : pH=pHi غان Phe فإن متعادل كهربائيا) لا يهاجر . COO - H ₃ N + CH

الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا دورة: جوان 2014 الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا المدة: 4 سا و 30 د اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

		* الصيغة السائدة لــ Lys عند Lys عند pH=5,5
		coo
		H ₃ N ⁺ CH
	0.25	
		(CH ₂) ₄
		⁺ NH ₃
		يهاجر نحو القطب السالب.
		pH=5,5 عند Glu عند $*$
		coo-
		H ₃ N ⁺ CH
	0.25	
		(CH ₂) ₂
		coo
		يهاجر نحو القطب الموجب.
		التمرين الثالث: (06 نقاط)
		: n بدلالة الشكل المثلكان $M_f^0\left(C_nH_{2n+2(g)} ight)$ بدلالة ا $\Delta H_f^0\left(C_nH_{2n+2(g)} ight)$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.50	$n\Delta H_{sub}^{0}(C_{(S)})$ $(n+1)E_{H-H}$ $-(n-1)E_{C-C}$ $-(2n+2)E_{C-H}$
		$-(2n+2)E_{C-H}$
1.75		$n^{\prime}C_{(g)} + (2n+2) \stackrel{\cdot}{H}_{(g)}$
	0.25	$\Delta H_f^0(C_n H_{2n+2(g)}) = n\Delta H_{sub}^0(C_{(s)}) + (n+1)E_{H-H} - (n-1)E_{C-C} - (2n+2)E_{C-H}$
	0.25	$\Delta H_f^0 \left(C_n H_{2n+2(g)} \right) = n(717) + (n+1)(436) - (n-1)(348) - (2n+2)(413)$
		$\Delta H_f^0 \left(C_n H_{2n+2(g)} \right) = 717n + 436n + 436 - 348n + 348 - 2(413)n - 2(413)$
		$\Delta H_f^0 (C_n H_{2n+2(g)}) = 1153n - 1174n + 784 - 826$
	0.25	$\Delta H_f^0 (C_n H_{2n+2(g)}) = (-21n - 42) \text{kJ.mol}^{-1}$
	7	

		ب- استنتاج الصيغة المجملة للألكان:
		$\Delta H_f^0 (C_n H_{2n+2(g)}) = -21n - 42$
	0.25	$-84.6 = -21n - 42 \implies n = \frac{-84.6 + 42}{-21}$
	0.25	$n = 2 \Rightarrow C_2 H_6$
		2) أ- كتابة معادلة تفاعل هدرجة الإيثيلين:
1.75	0.50	$CH_2 = CH_{2(g)} + H_{2(g)} \longrightarrow CH_3 - CH_{3(g)}$
		$(\Delta ext{H}_4^0)$: ب $-$ استنتاج أنطالبي تفاعل هدرجة الإيثيلين
	0.25	$H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(\ell)}$ ΔH_1^0
	0.25	$2CO_{2(g)} + 3H_2O_{(\ell)} \longrightarrow CH_3 - CH_{3(g)} + \frac{7}{2}O_{2(g)} - \Delta H_2^0$
	0.25	$\underbrace{\mathrm{CH_2} = \mathrm{CH_2}_{(\mathrm{g})} + 3\mathrm{O}_{2(\mathrm{g})} \longrightarrow 2\mathrm{CO}_{2(\mathrm{g})} + 2\mathrm{H}_2\mathrm{O}_{(\ell)}}_{(\ell)} \Delta H_3^0$
		$CH_2=CH_2(g) + H_2(g) \longrightarrow CH_3-CH_3(g)$ ΔH_4^0
	0.25	$\Delta H_4^0 = \Delta H_1^0 - \Delta H_2^0 + \Delta H_3^0$
	0.25	$\Delta H_4^0 = -285, 8 + 1559, 8 - 1411, 3$
	0.25	$\Delta H_4^0 = -137, 3 \text{kJ.mol}^{-1}$
		3) أ- حساب طاقة الرابطة (O-H) :
		$H_{2(g)} + \frac{1}{2} O_{2(g)} \xrightarrow{\Delta H_f^0 (H_2 O_{(\ell)})} H_2 O_{(\ell)}$
	0.50	$ \begin{array}{c cccc} E_{\text{H-H}} & \frac{1}{2} E_{\text{O=O}} \\ 2H_{(g)} & + O_{(g)} & \xrightarrow{-2E_{\text{O-H}}} & H_2O_{(g)} \end{array} $
2.50		$2H_{(g)} + O_{(g)} \xrightarrow{-2E_{O-H}} H_2O_{(g)}$
	0.25	$\Delta H_f^0 (H_2 O_{(\ell)}) = E_{H-H} + \frac{1}{2} E_{O=O} - 2E_{O-H} - \Delta H_{vap}^0 (H_2 O)$
		$-285,8 = 436 + \frac{1}{2}(498) - 2E_{O-H} - (44)$
		$2E_{O-H} = 436 + 249 - 44 + 285,8$
	0.25	$E_{O-H} = 463,4 \text{ kJ.mol}^{-1}$

بتطب