

Global United Technology Services Co., Ltd.

Report No.: GTS201905000229F01

Test Report

ETI Solid State Lighting (Zhuhai) Ltd Applicant:

Address of Applicant: No.1, Zhongzhu Road South, Science & Technology

Innovation Coast, High Tech District Zhuhai City Guangdong

519085 China

ETI Solid State Lighting (Zhuhai) Ltd Manufacturer/Factory:

Address of No.1, Zhongzhu Road South, Science & Technology

Innovation Coast, High Tech District Zhuhai City Guangdong Manufacturer/Factory:

519085 China

Equipment Under Test (EUT)

Product Name: LED Downlight

Model No.: 538211XX, 531993XX, 538171XX, 538181XX

Trade Mark: ETI, Commercial Electric

FCC ID: XZH-2019538211

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: July 02, 2019

Date of Test: July 03-12, 2019

Date of report issued: July 15, 2019

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 15, 2019	Original

Prepared By:	Jer. Ohr	Date:	July 15, 2019
	Project Engineer		
Check By:	Reviewer	Date:	July 15, 2019

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6 7.6.1	BAND EDGES 1 Conducted Emission Method	
	7.6.2 7.6.2		
	7.0.2 7.7	SPURIOUS EMISSION	
	7.7.		
	7.7.2		-
8	TES	T SETUP PHOTO	38
9	EUT	CONSTRUCTIONAL DETAILS	38

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes	
Radiated Emission	9kHz ~ 30MHz	± 4.64dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.64dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz ± 3.68dB		(1)	
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.44dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 General Description of EUT

Product Name:	LED Downlight
Model No.:	538211XX, 531993XX, 538171XX, 538181XX
Test model:	538211XX
	identical in the same PCB layout, electrical circuits and similar interior only difference is the model name for commercial purpose.
Test sample(s) ID:	GTS201905000229-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	V1
Software Version:	T3.01.M00.B001
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Declare by applicant)
Power Supply:	AC 120V

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
			•	• !			• !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020			
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.

7.2 Conducted Emissions

FCC Part15 C Section 15.207									
ANSI C63.1	ANSI C63.10:2013								
150KHz to	150KHz to 30MHz								
Class B	Class B								
RBW=9KHz	RBW=9KHz, VBW=30KHz, Sweep time=auto								
Frequency range (MHz) Limit (dBuV)									
Frequen	cy range (IVII	1Z) (Quasi-peak	Av	erage				
).15-0.5		66 to 56*	56	to 46*				
	0.5-5		56		46				
	5-30		60		50				
* Decreases	s with the log	arithm of th	e frequency.						
Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m									
Refer to sec	ction 5.2 for o	details	1		Refer to section 5.2 for details				
Temp.: 25 °C Humid.: 52% Press.: 1012mbar									
10111611					1012mbar				
AC120V 60					1012mbar				
	ANSI C63.1 150KHz to 3 Class B RBW=9KHz Frequen * Decrease * Decrease LISN Aux Equipmen Test table Remark E.U.T. Equipment LISN Line Imped Test table height= Refer to see Refer to see	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30K Frequency range (MH 0.15-0.5 0.5-5 5-30 * Decreases with the log Reference LISN AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Net Test table height=0.8m Refer to section 6.0 for condition of the condition	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep to the second s	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment LISN Filter AC EU.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Refer to section 6.0 for details Refer to section 5.2 for details	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX EQUIPMENT EQUIPMENT Filter AC power EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Refer to section 6.0 for details				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Report No.: GTS201905000229F01

Mode: Transmitting mode Probe: Line

Freq	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0. 18 0. 18 0. 31 0. 31 0. 84 0. 84 1. 80 1. 80 3. 84 3. 84 7. 25 7. 25	41.02 29.16 41.77 23.18 45.56 24.97 42.23 17.80 40.96 16.19 38.89 13.92	0. 40 0. 40 0. 39 0. 39 0. 23 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20	0. 09 0. 09 0. 10 0. 10 0. 14 0. 14 0. 17 0. 17 0. 18 0. 18 0. 19 0. 19	41.51 29.65 42.26 23.67 45.93 25.34 42.60 18.17 41.34 16.57 39.28 14.31	64. 68 54. 68 59. 84 49. 84 56. 00 46. 00 56. 00 46. 00 60. 00 50. 00	-23.17 -25.03 -17.58 -26.17 -10.07 -20.66 -13.40 -27.83 -14.66 -29.43 -20.72 -35.69	QP Average QP Average QP Average QP Average QP Average QP Average

Mode: Transmitting mode Probe: Neutral

MHz	level dBuV	factor dB/m	loss dB	Level dBuV	level dBuV	limit dB	Remark
0. 18 0. 18 0. 32 0. 32 0. 84 0. 84 1. 73 1. 73 3. 80 3. 80 6. 49 6. 49	40. 69 29. 41 42. 68 24. 32 47. 26 23. 99 43. 33 19. 15 42. 16 17. 82 39. 80 15. 15	0. 40 0. 40 0. 39 0. 23 0. 23 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20	0.09 0.09 0.10 0.10 0.14 0.14 0.17 0.17 0.18 0.18 0.18	41. 18 29. 90 43. 17 24. 81 47. 63 24. 36 43. 70 19. 52 42. 54 18. 20 40. 18 15. 53	64.59 54.59 59.80 49.80 56.00 46.00 56.00 46.00 60.00 50.00	-23.41 -24.69 -16.63 -24.99 -8.37 -21.64 -12.30 -26.48 -13.46 -27.80 -19.82 -34.47	QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	9.53		
Middle	9.15	30.00	Pass
Highest	8.68		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result		
Lowest	0.677				
Middle	0.684	>500	Pass		
Highest	0.674				

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Took Donninger out	FOO Dest45 O Continue 45 047 (a)		
Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-3.60		
Middle	-3.70	8.00	Pass
Highest	-4.00		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	radiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measuremen	t Distance:	3m				
Receiver setup:	Frequency Detector RBW VBW Value						alue
	Above 1GH	Above 1GHz Peak RMS			3MHz 3MHz		eak erage
Limit:	Fred				m @3m)		alue
				54.0		_	erage
	Abov	e 1GHz		74.0	0	Р	eak
	Tum Tab	DICH EUT			Antenna- Am > Preampli	ifier _t	
Test environment:	Temp.:	25 °C	Humid	l.: 52%	Pro	ess.:	1012mbar
Test Instruments:	Refer to sect	ion 6.0 for d	etails			•	
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data

Report No.: GTS201905000229F01

Test channel: Lowest channel Polarization: Horizontal

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
2310.000	30.11	27. 21	2. 81	30. 43	29.70	54.00	-24.30	Average
2310.000	43.01	27. 21	2. 81	30. 43	42.60	74.00	-31.40	Peak
2390.000	17.47	27. 41	2. 91	0. 00	47.79	54.00	-6.21	Average
2390.000	29.48	27. 41	2. 91	0. 00	59.80	74.00	-14.20	Peak
2397.890	18.29	27. 43	2. 91	0. 00	48.63	54.00	-5.37	Average
2397.890	31.95	27. 43	2. 91	0. 00	62.29	74.00	-11.71	Peak

Test channel: Lowest channel Polarization: Vertical

Test channel: Highest channel Polarization: Horizontal

Test channel: Highest channel Polarization: Vertical

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB 	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
2483,500	46.29	27.66	2.99	30.12	46.82	54.00	-7.18	Average
2483,500	68.53	27.66	2.99	30.12	69.06	74.00	-4.94	Peak
2500,000	40.00	27.70	3.01	30.13	40.58	54.00	-13.42	Average
2500,000	54.09	27.70	3.01	30.13	54.67	74.00	-19.33	Peak

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

Report No.: GTS201905000229F01

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector		RBW		Value		
•			ıasi-peak 20		00Hz 60		. Quasi-peak		
			ıasi-peak	9KHz		30KHz	-		
	30MHz-1GHz	Qι	ıasi-peak	120K	(Hz 300KH		z Quasi-peak		
	Al 4011		Peak	1MHz 3		3MHz	lz Peak		
	Above 1GHz		Peak	1MHz		10Hz	Average		
Limit:	Frequency		Limit (u\	//m) V		'alue	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(KHz)		QP		300m		
	0.490MHz-1.705MHz		24000/F(KHz)		QP		30m		
	1.705MHz-30MHz		30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MH	Z	200		QP		3m		
	960MHz-1GHz	500		QP		JIII			
	Above 1GHz		500 5000		Average				
	ABOVE TOTIZ				F	Peak			
Test setup:	For radiated emiss	EUT	< 3m	******	······································	z 			
	< 80cm > 4								

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Mode:	Transmitting mode	Polarization:	Horizontal	
-------	-------------------	---------------	------------	--

Mode: Transmitting mode Polarization: Vertical

■ Above 1GHz

Report No.: GTS201905000229F01

Test channel: Lowest channel Polarization: Horizontal

Test channel: Lowest channel Polarization: Vertical

Test channel: Middle channel Polarization: Horizontal

Test channel: Middle channel Polarization: Vertical

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
4880.000 4880.000 7320.000	30.70 44.00 24.65	31.48 31.48 36.17	4.69 4.69 6.63	37.59 37.59 35.47	29.28 42.58 31.98	54.00 74.00 54.00	-24.72 -31.42 -22.02	Average Peak
7320,000 7320,000 9760,000 9760,000	24.65 37.29 22.56 32.62	36.17 36.17 38.07 38.07	6.63 8.03 8.03	35. 47 35. 09 35. 09	44.62 33.57 43.63	74.00 54.00 74.00	-29. 38 -20. 43 -30. 37	Average Peak Average Peak

Test channel: Highest channel Polarization: Horizontal

Test channel: Highest channel Polarization: Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----