Rank-65633 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 65633

General information

Number of lines	2
Number of points	9
Number of singular points	0
Number of Eckardt points	0
Number of double points	0
Number of single points	6
Number of points off lines	3
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{2}
Type of lines on points	$1^6, 0^3$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_2 = \mathbf{Pl}(1,0,0,0,1,0)_{10}$$

$$\ell_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0,0,1,1,1,1)_{32}$$

Rank of lines: (2, 12)

Rank of points on Klein quadric: (10, 32)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

 $1: P_4 = (1, 1, 1, 1)$ lies on line ℓ_1

2 : $P_5 = (1, 1, 0, 0)$ lies on line ℓ_1

 $3: P_{10} = (0, 1, 0, 1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 3 points not on any line:

The points on the surface but not on lines are:

 $0: P_7 = (0, 1, 1, 0)$ $1: P_8 = (1, 1, 1, 0)$ $2: P_9 = (1,0,0,1)$

4: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_0 5: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_1

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line in point

Line 1 intersects

Line in point

The surface has 9 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$4: P_8 = (1, 1, 1, 0)$	$8: P_{12} = (0,0,1,1)$
$1: P_4 = (1, 1, 1, 1)$	$5: P_9 = (1,0,0,1)$	
$2: P_5 = (1, 1, 0, 0)$	$6: P_{10} = (0, 1, 0, 1)$	
$3: P_7 = (0, 1, 1, 0)$	$7: P_{11} = (1, 1, 0, 1)$	