## Homework 4

Due: 04/14/2022 Devika Chandnani A13H05666

code and leadine in the ZIP file



(A) Dentogram: {0,4,5,20,25,39,43,44}





Cluster  $\pm = \{0, 4, 5\}$ Custor  $\alpha = \{0, 4, 5\}$ 

$$m_2 = \frac{1}{5} \left[ \binom{5}{2} + \binom{6}{2} + \binom{7}{2} + \binom{8}{2} + \binom{9}{2} \right]$$

$$m_2 = \frac{1}{5} \left[ \frac{1}{5} \right]$$

$$= 1/5 \left[ \left( \begin{array}{c} 35 \\ 10 \end{array} \right) \right]$$

$$= \left( \begin{array}{c} 7 \\ 2 \end{array} \right)$$

b) Total Mean (m) = 
$$1/8 \left[ \binom{6}{6} + \binom{85}{10} \right]$$
  
 $m = 1/8 \left[ \binom{41}{16} \right]$ 

$$m = \begin{pmatrix} 5.125 \\ 2 & 3 \end{pmatrix}$$

$$m = \begin{pmatrix} 5.125 \\ 2 \end{pmatrix}$$

$$S_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix}^{T} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix}^{T}$$

$$b_1 = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$$

$$+ \left[ \binom{3}{3} - \binom{2}{2} \right] \left[ \binom{3}{3} - \binom{2}{2} \right]^{T} + \left[ \binom{1}{2} \right] \left[ \binom{1}{3} \right]^{T}$$

$$+ \left[ (\frac{1}{2}) - (\frac{1}{2}) \right] \left[ (\frac{1}{2}) + \left[ (\frac{8}{2}) - (\frac{1}{2}) \right] \left[ (\frac{8}{2}) - (\frac{1}{2}) \right]^{\frac{1}{2}}$$

$$+ \left[ (\frac{9}{2}) - (\frac{7}{2}) \right] \left[ (\frac{9}{2}) - (\frac{7}{2}) \right]^{\frac{1}{2}}$$

$$= \left[ \frac{7}{6} \right] \left[ \frac{7}{6} \right] + \left[ \frac{7}{6} \right] \left[ \frac{7}{6} \right]^{\frac{1}{2}} + \left[ \frac{6}{6} \right] \left[ \frac{8}{6} \right]^{\frac{1}{2}} + \left[ \frac{6}{6} \right] \left[ \frac{8}{6} \right]^{\frac{1}{2}} + \left[ \frac{6}{6} \right] \left[ \frac{8}{6} \right]^{\frac{1}{2}}$$

$$= \left[ \frac{7}{6} \right] \left[ \frac{7}{6} \right] + \left[ \frac{7}{6} \right] \left[ \frac{7}{6} \right] + \left[ \frac{7}{6} \right] \left[ \frac{8}{6} \right] + \left[ \frac{8}{6} \right] \left[ \frac{8}{6} \right] \left[ \frac{8}{6} \right] + \left[ \frac{8}{6} \right] \left[ \frac{8}{6} \right$$

 $S_2 = \left[ \left( \frac{5}{2} \right) - \left( \frac{7}{2} \right) \right] \left[ \left( \frac{5}{2} \right) - \left( \frac{7}{2} \right) \right]^T + \left[ \left( \frac{6}{2} \right) - \left( \frac{7}{2} \right) \right] \left[ \left( \frac{6}{2} \right) + \left( \frac{7}{2} \right) \right]$ 

$$S_2 = \begin{bmatrix} 10 & 0 \\ 0 & 0 \end{bmatrix}$$

d) 
$$S_{\omega} = S_1 + S_2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 10 & 0 \\ 0 & 0 \end{bmatrix}$$
 $S_{\omega} = \begin{bmatrix} 12 & 2 \\ 2 & 2 \end{bmatrix}$ 
e)  $S_{B} = 3 \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} + 5 \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125) \\ 2 & -(5.125) \end{bmatrix} \begin{bmatrix} 2 & -(5.125)$ 

e) 
$$S_{8} = 3\begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 5.125 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 5.125 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 5.125 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 5.125 \\ 2 \end{bmatrix} \end{bmatrix}^{T}$$

$$S_{8} = \begin{bmatrix} 29.3 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 17.6 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 46.9 & 0 \\ 0 & 0 \end{bmatrix}$$

$$tr(S_{8}) = 46.9 + 0 = 46.9$$

$$\begin{cases} 38 = \begin{bmatrix} 29.3 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 17.6 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 46.9 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 46.9 & 0 \\ 12+2 & 14 \end{bmatrix}$$

| 0 | u |
|---|---|
|   |   |
| _ | _ |
| ~ | _ |

| Instance # | True Class Label | Predicted Probability of Positive Class |
|------------|------------------|-----------------------------------------|
| 1          | N                | 0.90 <b>? false</b>                     |
| 2          | P                | 0.82 P True                             |
| 3          | P                | 0.78 <b>P Kue</b>                       |
| 4          | Р                | 0.66 P KUE                              |
| 5          | P                | 0.60 p (rue                             |
| 6          | Р                | 0.52 P True                             |
| 7          | N                | 0.43 N WW                               |
| 8          | N                | 0.42 N HVL                              |
| 9          | P                | 0.41 N Fabe                             |
| 10         | P                | 0.4 N False                             |

1. Confusion Matrix: Predicted Positive

Actual Negative

Reducted Negative

2. Accuracy Recusion = 
$$(TP+TN)+(TP+TN+FP+FN)$$
  
=  $(5+2)+(10)$   
=  $7/10$ 

$$= 5 ( (5+2) = 5/7)$$

4. FI Score = 
$$2 PR (P+R) = 2(0.7)(5/7)/(0.7)(5/7)$$
  
=  $1/0.5$ 

5 Specificity = 
$$TN(TN+FP)$$
  
=  $2/(2+1)$   
=  $2/(3)$