<u>Problem statement Mini Project, Analog IC Lab (ECP316)</u> Two-Stage Operational Amplifier at 1 um technology.

If K_N '=120 μ A/V², K_P '= 25 μ A/V², VTN = |VTP| = 0.5, λ n= 0.06V⁻¹, and λ p = 0.08V⁻¹, Design a two-stage, CMOS op amp that meets the following specifications. Assume the channel length is to be 1 μ m and the load capacitor is CL = 10pF.

Note: For 1um design consider the standard model used in the lab.

Av	> 3000V/V	<i>VDD</i> =2.5V	GB = 5MHz	$SR > 10V/\mu s$
6	00° phase margin	0.5V <vout 2v<="" <="" range="" th=""><th><i>ICMR</i> = 1.25V to 2V</th><th>Pdiss 2mW</th></vout>	<i>ICMR</i> = 1.25V to 2V	Pdiss 2mW

The useful formula and tentative circuit diagram for calculation unknown parameters is described below:

- (A) Calculate sizing of each transistor and mention the values in the final circuit.
- (B) AC Response (dB vs Frequency)
- (C) Transient Response
- (D) Prepare the table for obtained simulated results vs given specification.