How To - Configure a Prometheus Monitoring Server with a Grafana Dashboard

Installing Prometheus Monitoring Server with a Grafana Dashboard:-

Prometheus:- is a flexible monitoring solution that is in development since 2012.

The software stores all its data in a time series database and offers a multi-dimensional data-model and a powerful query language to generate reports of the monitored resources.

Grafana :- is an open-source platform for data visualization, monitoring and analysis. Its allows users to create dashboards with panels, each representing specific metrics over a set time-frame.

There are five steps to use Prometheus with Grafana:

Preparing your Environment

Downloading and Installing Node Exporter Downloading and Installing Prometheus Configuring Prometheus Downloading and Installing Grafana

Preparing your Environment

we use an instance running on Ubuntu Xenial (16.04).

1. To run Prometheus safely on our server, we have to create a user for Prometheus and Node Exporter without the possibility to log in. To achieve this, we use the parameter --no-create-home which skips the creation of a home directory and disable the shell with --shell /usr/sbin/nologin.

```
sudo useradd --no-create-home --shell /usr/sbin/nologin prometheus sudo useradd --no-create-home --shell /bin/false node_exporter
```

2. Create the folders required to store the binaries of Prometheus and its configuration files:

```
sudo mkdir /etc/prometheus
sudo mkdir /var/lib/prometheus
```

3 . Set the ownership of these directories to our prometheus user, to make sure that Prometheus can access to these folders:

```
sudo chown prometheus:prometheus /etc/prometheus sudo chown prometheus:prometheus /var/lib/prometheus
```

Downloading and Installing Node Exporter

As your Prometheus is only capable of collecting metrics, we want to extend its capabilities by adding **Node Exporter**, a tool that collects information about the system including <u>CPU</u>, <u>disk</u>, <u>and memory usage</u> and exposes them for scraping.

1 . Download the latest version of Node Exporter:

```
wget https://github.com/prometheus/node_exporter/releases/download/v0.16.0/node_exporter-0.16.0.linux-amd64.tar.gz
```

2 . Unpack the downloaded archive. This will create a directory node_exporter-0.16.0.linux-amd64, containing the executable, a readme and license file:

```
tar xvf node_exporter-0.16.0.linux-amd64.tar.gz
```

3. Copy the binary file into the directory /usr/local/bin and set the ownership to the user you have created in step previously:

```
sudo cp node_exporter-0.16.0.linux-amd64/node_exporter /usr/local/bin
sudo chown node_exporter:node_exporter /usr/local/bin/node_exporter
```

4. Remove the leftover files of Node Exporter, as they are not needed any longer:

```
rm -rf node_exporter-0.16.0.linux-amd64.tar.gz node_exporter-0.16.0.linux-amd64
```

5. To run Node Exporter automatically on each boot, a Systemd service file is required. Create the following file by opening it in Nano:

```
sudo nano /etc/system/node_exporter.service
```

6. Copy the following information in the service file, save it and exit Nano:

```
[Unit]
Description=Node Exporter
Wants=network-online.target
After=network-online.target

[Service]
User=node_exporter
Group=node_exporter
Type=simple
ExecStart=/usr/local/bin/node_exporter

[Install]
WantedBy=multi-user.target
```

- 7. Collectors are used to gather information about the system. By default a set of collectors is activated. You can see the details about the set in the README-file. If you want to use a specific set of collectors, you can define them in the ExecStart section of the service. Collectors are enabled by providing a--collector.<name> flag. Collectors that are enabled by default can be disabled by providing a --no-collector.<name> flag.
- 8 . Reload Systemd to use the newly defined service:

```
sudo systemctl daemon-reload
```

9 . Run Node Exporter by typing the following command:

```
sudo systemctl start node_exporter
```

10 . Verify that the software has been started successfully:

```
sudo systemctl status node_exporter
```

You will see an output like this, showing you the status $active\ (running)$ as well as the main PID of the application:

```
• node_exporter.service - Node Exporter

Loaded: loaded (/etc/systemd/system/node_exporter.service; disabled; vendor preset: enabled)

Active: active (running) since Mon 2018-06-25 11:47:06 UTC; 4s ago

Main PID: 1719 (node_exporter)

CGroup: /system.slice/node_exporter.service

L1719 /usr/local/bin/node_exporter
```

11 . If everything is working, enable Node Exporter to be started on each boot of the server:

```
sudo systemctl enable node_exporter
```

Downloading and Installing Prometheus

1. Download and Unpack Prometheus latest release of Prometheus. As exemplified, the version is 2.2.1:

```
sudo apt-get update && apt-get upgrade
 wget https://github.com/prometheus/prometheus/releases/download/v2.2.1/prometheus-2.2.1.linux-amd64.tar.gz
 tar xfz prometheus-*.tar.gz
 cd prometheus-*
      The following two binaries are in the directory:
       Prometheus - Prometheus main binary file
       promtool
   The following two folders (which contain the web interface, configuration files examples and the license) are in the directory:
      consoles
       console_libraries
2 . Copy the binary files into the /usr/local/bin/directory:
 sudo cp ./prometheus /usr/local/bin/
 sudo cp ./promtool /usr/local/bin/
3 . Set the ownership of these files to the prometheus user previously created:
 sudo chown prometheus:prometheus /usr/local/bin/prometheus
 sudo chown prometheus:prometheus /usr/local/bin/promtool
4 . Copy the consoles and console_libraries directories to /etc/prometheus:
 sudo cp -r ./consoles /etc/prometheus
 sudo cp -r ./console_libraries /etc/prometheus
5 . Set the ownership of the two folders, as well as of all files that they contain, to our prometheus user
 sudo chown -R prometheus:prometheus /etc/prometheus/consoles
 sudo chown -R prometheus:prometheus /etc/prometheus/console_libraries
6 . In our home folder, remove the source files that are not needed anymore:
 cd .. && rm -rf prometheus-*
```

Configuring Prometheus

1 . Open the file prometheus.yml in a text editor:

sudo nano /etc/prometheus/prometheus.yml

```
global:
    scrape_interval: 15s
    evaluation_interval: 15s

rule_files:
    # - "first.rules"
    # - "second.rules"

scrape_configs:
    - job_name: 'prometheus'
    scrape_interval: 5s
    static_configs:
        - targets: ['localhost:9090']
```

We add the following part below the configuration for scrapping Prometheus:

```
- job_name: 'node_exporter'
scrape_interval: 5s
static_configs:
- targets: ['localhost:9100']
```

2 . Set the ownership of the file to our Prometheus user:

sudo chown prometheus:prometheus /etc/prometheus/prometheus.yml

Running Prometheus

1 . Start Prometheus directly from the command line with the following command, which executes the binary file as our Prometheus user:

sudo -u prometheus /usr/local/bin/prometheus --config.file /etc/prometheus/prometheus.yml --storage.tsdb.path /var/lib/prometheus/ --web.console.templates=/etc/prometheus/consoles --web.console.libraries=/etc/prometheus/console_libraries

The server starts displaying multiple status messages and the information that the server has started:

```
level=info ts=2018-04-12T11:56:53.084000977Z caller=main.go:220 msg="Starting Prometheus" version="(version=2.2.1, branch=HE AD, revision=bc6058c81272a8d938c05e75607371284236aadc)"
level=info ts=2018-04-12T11:56:53.084463975Z caller=main.go:221 build_context="(go=go1.10, user=root@149e5b3f0829, date=2018 0314-14:15:45)"
level=info ts=2018-04-12T11:56:53.084632256Z caller=main.go:222 host_details="(Linux 4.4.127-mainline-rev1 #1 SMP Sun Apr 8 10:38:32 UTC 2018 x86_64 scw-041406 (none))"
level=info ts=2018-04-12T11:56:53.084797692Z caller=main.go:223 fd_limits="(soft=1024, hard=65536)"
level=info ts=2018-04-12T11:56:53.09190775Z caller=web.go:382 component=web msg="Start listening for connections" address=0.0.0.0:9090
level=info ts=2018-04-12T11:56:53.091908126Z caller=main.go:504 msg="Starting TSDB ..."
level=info ts=2018-04-12T11:56:53.102833743Z caller=main.go:514 msg="TSDB started"
level=info ts=2018-04-12T11:56:53.103343144Z caller=main.go:588 msg="Loading configuration file" filename=/etc/prometheus/prometheus.yml
level=info ts=2018-04-12T11:56:53.104047346Z caller=main.go:491 msg="Server is ready to receive web requests."
```

- 2 . Open your browser and type http://IP.OF.YOUR.SERVER:9090 to access the Prometheus interface. If everything is working, we end the task by pressing on CTRL + C on our keyboard.
- 3 . The server is working now, but it cannot yet be launched automatically at boot. To achieve this, we have to create a new systemd configuration file that will tell your OS which services should it launch automatically during the boot process.

sudo nano /etc/systemd/system/prometheus.service

4 . Copy the following information in the file and save it, then exit the editor:

```
[Unit]
 Description=Prometheus Monitoring
  Wants=network-online.target
 After=network-online.target
[Service]
 User=prometheus
 Group=prometheus
 Type=simple
  ExecStart=/usr/local/bin/prometheus \
 --config.file /etc/prometheus/prometheus.yml \
  --storage.tsdb.path /var/lib/prometheus/ \
 --web.console.templates=/etc/prometheus/consoles \
  --web.console.libraries=/etc/prometheus/console_libraries
 ExecReload=/bin/kill -HUP $MAINPID
[Install]
 WantedBy=multi-user.target
```

5 . To use the new service, reload systemd:

```
sudo systemctl daemon-reload
```

```
sudo systemctl enable prometheus
```

6 . Start Prometheus:

```
sudo systemctl start prometheus
```

Prometheus provides a basic web server running on http://novartis.devops.altimetrik.io:9090/

Moreover, do some queries in the data that has been collected.

The interface is very lightweight, and the Prometheus team recommend to use a tool like Grafana if you want to do more than testing and debugging the installation.

Installing Grafana

1 . Install Grafana on our instance which queries our Prometheus server.

```
wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana_5.0.4_amd64.deb
sudo apt-get install -y adduser libfontconfig
sudo dpkg -i grafana_5.0.4_amd64.deb
```

2 . Enable the automatic start of Grafana by systemd:

```
sudo systemctl daemon-reload && sudo systemctl enable grafana-server && sudo systemctl start grafana-server
```

Grafana is running now, and we can connect to it at http://novartis.devops.altimetrik.io: 3000/

Now you have to create a Prometheus data source:

- Click on the Grafana logo to open the sidebar.
- Click on "Data Sources" in the sidebar.
- · Choose "Add New".
- Select "Prometheus" as the data source.
- Set the Prometheus server URL (in our case: http://novartis.devops.altimetrik.io:9090)
- Click "Add" to test the connection and to save the new data source.

Your settings should look like this:

You are now ready to create your first dashboard from the information collected by Prometheus. You can also import some dashboards from a collection of shared dashboards

Here is an example of a Dashboard that uses the CPU usage of our node and presents it in Grafana:

