Röntgen vonalprofil analízis

Olar Alex

2018

Tartalomjegyzék

I.	Bevezetés						
	I.1. Mérésleírás	3					
II.	. Williamson-Hall módszer						
II	I.CMWP módszer	6					
IV	⁷ .Konklúzió	8					

I. Bevezetés

A mérés egy olyan anyagszerkezeti vázsgálatra alkalmas módszer, amivel a minta szemcseméretét, diszlokációsűrűségét tudtuk meghatározni. Ennek során forgóanódos röntgen diffraktométert használtunk, a diffraktogram mentésére pedig imaging plate-et. Az adatokat Originnel értékeltül ki, a vonalkiszélesedést a Williamson-Hall módszerrel vizsgáltuk, részletesen pedig a CMWP módszerrel nyertünk ki adatokat. A jegyzet [1] ezeket részletesen tárgyalja.

I.1. Mérésleírás

Nagy intenzitású röntgen nyalábot bocsátottunk a mintára, a nyaláb $\lambda(\text{CuK}_{\alpha_1}) = 1.15406$ hullámhosszúságú monokromátor segítségével szűrtük meg. A mintától d = 220mm távolságra elhelyezett imaging plate lemezek segítségével rögzítettük a Debye-Scherrer gyűrűket. Az intenzitást a 2θ függvényében ábrázoltuk a laboron használt program segítségével, így egy spektrumot kaptunk.

II. Williamson-Hall módszer

A Williamson-Hall módszerrel megállapíthatjuk a vonalkiszélesedés okát. A csúcsokra Lorentz-görbét illesztettünk a szofver segítségével, majd az illesztésből meghatároztk a $\Delta(2\theta)$ szélesség értékeket. Ezután a félértékszélességet:

$$FWHM = \frac{\Delta(2\theta)\cos(\theta)}{\lambda}$$

A diffrakciós vektor hossza pedig:

$$g = \frac{2\sin\theta}{\lambda}$$

Mivel a Williamson-Hall grafikonon (II. ábra) nem monoton növekedést látunk, ebből következik, hogy kevert típusú diszlokációk okozzák a vonalkiszélesedést. Ezért a félértékszélességet g helyett g^2C függvényében kell ábrázolni, ahol

$$C = C_{h00}(1 - qH^2)$$

az ún. átlagos diszlokáció kontraszt faktor. C_{h00} a h00 síkra vonatkozó átlagos diszlokáció kontraszt faktor,

$$H^2 = \frac{h^2k^2 + h^2l^2 + k^2l^2}{(h^2 + k^2 + l^2)^2}$$

q pedig az anyag rugalmas tulajdonságaiból és a diszlokációk típsától függő paraméter, amit az illesztés alapján kapunk meg.

2θ	hkl	$\Delta 2\theta$	FWHM	g	H^2	g^2C
43.527	111	0.134083	0.808	4.8134	0.333	1.93664
50.304	200	0.231322	1.359	5.5176	0.0	9.28540
74.175	220	0.261849	1.355	7.8285	0.25	8.50501
89.853	311	0.407956	1.874	9.1678	0.15702	16.8600
95.242	222	0.288552	1.262	9.5898	0.333	7.68713
116.853	400	0.771052	2.620	11.060	0.0	37.3102

1. táblázat. 2θ értékek, a hozzájuk tartozó Miller-indexek és a félérték-szélességek.

A mérésből számolt 2θ értékeket, a félérték szélességeket, valamint a kiszámolt g^2C értékeket a II. táblázatban foglaltam össze. A g^2C függvényében ábrázolt pontok, valamint az illesztett parabola a ??. ábrán láthatók.

1. ábra. Cu minta diffrakciós spektruma és a csúcsokhoz tartozó Miller-indexek.

2. ábra. Williamson-Hall ábra illesztés és korrekció nélkül

3. ábra. Williamson-Hall ábra és az illesztett parabola

Az illesztés q=2.078 érték esetében volt a legjobb, ekkor az illesztett ax^2+bx+c egyenletű parabola paraméterei:

- $\bullet \ \ a = -0.0009776 \pm 7 \cdot 10^{-9}$
- $\bullet \ \ b = 0.089647 \pm 1.2 \cdot 10^{-5}$
- $\bullet \ \ c = 0.6370 \pm 6.3 \cdot 10^{-4}$

III. CMWP módszer

A CMWP módszer elvégzésére segítségül szolgált egy szoftver, ami a diffraktogramot automatikusan kiértékelte. Bemeneti paraméterként megadtuk a rácsparamétert (a=0.3615nm), a kontrasztfaktort ($C_{h00}=0.30525$), és a hullámhosszt ($\lambda=0.15406nm$), a program elvégezte az illesztést és kiszámolta a mérérs és az illesztés közötti eltérést is:

Paraméter	Skálázatlan	Skálázott
a	2.0787 ± 0.005	2.07873
b	0.7526 ± 0.001	3.76314
c	1.2683 ± 0.007	0.63415
d	1.3257 ± 0.006	66.2855
e	3.6352 ± 0.050	0.07270

2. táblázat. CMWP algoritmus illesztett paraméterei.

4. ábra. Williamson-Hall ábra és az illesztett parabola

A lognormális eloszlás paraméterei és a diszlokációkat jellemző paraméterek:

- $m = \exp(b) = 43.08 \pm 0.1 \ nm \ \text{átlag}$
- $\sigma = c/\sqrt{2} = 0.44841 \pm 0.004$ szórás
- $\rho = \frac{2}{\pi (bd)^2} = 0.00221779 \pm 0.00002 \; (1/nm)^2$ diszlokáció sűrűség
- $\bullet \ q=a=2.0787$ a diszlokációk típusát jellemző paraméter
- $R_e^* = e^{-1/4}/(2e) = 5.35597 \pm 0.08 \; nm$ külső levágási sugár
- $M^* = (R_e^*) \cdot \sqrt{\rho} = 0.252231 \pm 0.004$ diszlokáció elrendeződési paraméter

Ezen paraméterek ismeretében kiszámítható a szemcsék számtani, felületi és térfogati átlaga:

$$\langle x_{sz} \rangle = m \exp 0.5\sigma^2 = 47.636 \pm 0.25nm$$
 (1)

$$\langle x_f \rangle = m \exp 2.5\sigma^2 = 71.21 \pm 1.2nm$$
 (2)

$$\langle x_{tf} \rangle = m \exp 3.5\sigma^2 = 87.075 \pm 2.3nm$$
 (3)

IV. Konklúzió

A mérés során megismerkedhettünk egy mai is használt anyagfizikai mérési módszerrel. A mérési adataink kellően pontosak és a kiértékelés során körültekintően jártunk el.

Hivatkozások

[1] Gubicza Jenő. Röntgen vonalprofil analízis. http://szft.elte.hu/%7Egubicza/rontgen_vonalprofil_analizis.pdf.