Week 4 - AYU - Individual

Random Walks

Problem 1 (Sample - Question 4) You are given:

i) The random walk model

$$y_t = y_0 + c_1 + c_2 + c_3 + \dots + c_t,$$

where c_i , (i = 1, 2, ..., t) denote observations from a white noise process.

ii) The following ten observed values of c_t :

t	1	2	3	4	5	6	7	8	9	10
y_t	2	5	10	13	18	20	24	25	27	30

iii)
$$y_0 = 0$$

Calculate the standard error of the 9 step-ahead forecast, \hat{y}_{19} .

- (A) 4/3
- (B) 4
- (C) 9
- (D) 12
- (E) 16

Problem 2 (Sample - Question 55) You are given the following eight observations from a time series that follows a random walk model:

\overline{t}	0	1	2	3	4	5	6	7
y_t	3	5	7	8	12	15	21	22

You plan to fit this model to the first five observations and then evaluate it against the last three observations using one-step forecast residuals. The estimated mean of the white noise process is 2.25.

Let F be the mean error (ME) of the three predicted observations.

Let G be the mean square error (MSE) of the three predicted observations.

Calculate the absolute difference between F and G, F-G

- (A) 3.48
- (B) 4.31
- (C) 5.54
- (D) 6.47
- (E) 7.63

Problem 3 (Sample - Question 21) A random walk is expressed as

$$y_y = y_{t-1} + c_t$$

where

$$E(c_t) = \mu_t$$
 and $Var(c_t) = \sigma_c^2$

Determine which statements is/are true with respect to a random walk model.

I. If $\mu_c \neq 0$, then the random walk is nonstationary in the mean.

II. If $\sigma_c^2 = 0$, then the random walk is nonstationary in the variance.

III. If $\sigma_c^2 > 0$, then the random walk is nonstationary in the variance.

- (A) None
- (B) I and II only
- (C) I and III only
- (D) II and III only
- (E) The correct answer is not given by (A), (B), (C), or (D).

Problem 4 (Sample - Question 31) Determine which of the following indicates that a nonstationary time series can be represented as a random walk

- I. A control chart of the series detects a linear trend in time and increasing variability.
 - II. The differenced series follows a white noise model.
- III. The standard deviation of the original series is greater than the standard deviation of the differenced series.
- (A) I only
- (B) II only
- (C) III only
- (D) I, II and III
- (E) The correct answer is not given by (A), (B), (C), or (D).

Autoregressive

Problem 5 (Sample - Question 22) A stationary autoregressive model of order one can be written as

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon, t = 1, 2, \dots$$

Determine which of the following statements about this model is false

- (A) The parameter β_0 must not equal 1.
- (B) The absolute value of the parameter β_1 must be less than 1.
- (C) If the parameter $\beta_1 = 0$, then the model reduces to a white noise process.
- (D) If the parameter $\beta_1 = 1$, then the model is a random walk.
- (E) Only the immediate past value, y_{t-1} , is used as a predictor for y_t .

Problem 6 (Sample - Question 58) You are given the following six observed values of the autoregressive model of order one time series

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$
, with $Var(\epsilon_t) = \sigma^2$.

\overline{t}	1	2	3	4	5	6
$\overline{y_t}$	31	35	37	41	45	51

The approximation to the conditional least squares method is used to estimate β_0 and β_1 Calculate the mean squared error s^2 that estimates σ^2

- (A) 13
- (B) 21
- (C) 22
- (D) 26
- (E) 35

Problem 7 (Sample - Question 64) You are given a stationary AR(1) model,

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t, t = 1, 2, ..., T.$$

Determine which or the following is always true.

- (A) $\beta_0 \neq 0$
- (B) $\beta_0 = 1$
- (C) $\beta_1 = 0$
- (D) $\beta_1 = 1$
- (E) $|\beta_1| < 1$

Problem 8 You are given

$$y_t = .6y_{t-1} - 5 + \epsilon$$

$$y_T = 7$$

Calculate the three step ahead forecast of y_{T+5}

Smoothing

Problem 9 (Sample - Question 46) A time series was observed at times 0, 1, ..., 100. The last four observations along with estimates based on exponential and double exponential smoothing with w = 0.8 are:

Time (t)	97	98	99	100
Observation (y_t) Estimates $(\hat{s}^{(1)}_t)$	96.9	98.1 94.1	99.0 95.1	100.2
Estimates $(\hat{s}^{(1)}_t)$	93.1 88.9	94.1 89.9	90.1	

All forecasts should be rounded to one decimal place and the trend should be rounded to three decimal places.

Let F be the predicted value of y_{102} using exponential smoothing with w = 0.8.

Let G be the predicted value of y_{102} using double exponential smoothing with w=0.8.

Calculate the absolute difference between F and G, F-G

- (A) 0.0
- (B) 2.1
- (C) 4.2
- (D) 6.3
- (E) 8.4