First Periodical Test, July-December, 2021

Class	M.Sc. I SEMESTER	•••••	
Subjec	ctCHEMISTRY		
Paper ((with code)CHEM408 PHYSICAL CHEMISTRY		
Max M	Max Marks. 10 No. of Students: 40		
Note: S	Students are required to attempt Three questions. Question No. 1 is con	ipulsory.	
Q.1 (a)	a) "Unimolecular reactions are not always of first order." –Justify the stat Lindmann mechanism.	ement using [2]	
(b)	Calculate the fraction of the molecule having sufficient energy to decorand at 227°C.		
Q.2 (a)	a) Arrhenius factor "A" always have the same unit as the rate constant. Co	omment. [1]	
(b)) The rate of reaction is given by		
	$\log k = A - \frac{B}{T} + C \log T.$		
	Find the value of activation energy.	[2]	
	OR		
Q.3	The gas phase reaction CO+Cl ₂ \rightarrow COCl ₂ is second order (first order in If $P^0_{co}=P^0_{Cl2}=0.1$ atm and $t_{1/2}$ is 1 hour at 25 0 C but 30 min and 35 0 C. the k at 25 0 C (b) Calculate E and A of the Arrhenius equation and $\Delta S^{\#}$ transition state theory.	en (a) Calculate	
Q.4(a)) Why is the transition state theory also termed as the absolute theory of	reaction rates. [1]	
(b)	All collisions between activated molecule may not be successful. Why	? [1]	
(c)) Calculate the rate constant for decomposition of HI at 500K, if energy 15 kJmol ⁻¹ and collision diameter of HI is 3.5A.	of activation is [1]	

Q.5(a) For the mechanism,

$$A+B \stackrel{k_1}{\rightleftharpoons} C$$

$$k_2$$

$$k_3$$

$$C \rightarrow D$$

- (i) Derive the rate law assuming the steady state approximation to eliminate the concentration of C.
- (ii) Assuming that k₃<<k₂, express the pre-exponential factor A and the overall activation energy E for the formation of D in terms of A₁,A₂ and A₃ and E₁,E₂ and E₃ for the three steps [2]
- (b) The value of $\Delta S^{\#}$ for a reaction has been obtained as $-80.5 Jk^{-1} mol^{-1}$ at 400K. Find the value of A for the reaction. [1]