### TEAM ID PNT2022TMID14851

```
import numpy #for numerical analysis
import tensorflow #open source ml tool by google
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow import keras
from tensorflow.keras.optimizers import Adam
from keras.utils import np_utils
LOADING DATASET
(x_train,y_train),(x_test,y_test)=mnist.load_data()
print(x_train.shape)
print(y_train.shape)
     (60000, 28, 28)
     (60000,)
print(x_test.shape)
print(y_test.shape)
     (10000, 28, 28)
     (10000,)
ANALYZE THE DATA
```

```
x_train[3]
```

```
0,
     0],
0,
     0,
           0,
                 0,
                       0,
                             0,
                                   0,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                0,
                                                                      0,
         60, 228, 251, 251,
                                 94,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                0,
                                                                      0,
0,
     0,
0,
     0],
           0,
                 0,
                       0,
                             0,
                                   0,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                0,
                                                                      0,
                                                                      0,
     0, 155, 253, 253, 189,
0,
                                        0,
                                              0,
                                                    0,
0,
     0],
                 0,
                       0,
                                              0,
                                                    0,
                                                                0,
                                                                      0,
           0,
                             0,
                                   0,
                                        0,
    20, 253, 251, 235,
                                                                0,
0,
                           66,
                                   0,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                      0,
     0],
0,
                 0,
                       0,
                             0,
                                   0,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                0,
                                                                      0,
           0,
```

|          |                   | SPRINT2 PNT20221 MID14907.ipynb - Colaboratory |         |        |    |    |    |     |      |      |      |      |
|----------|-------------------|------------------------------------------------|---------|--------|----|----|----|-----|------|------|------|------|
| 32<br>0  | , 205, 2<br>, 0], | 53,                                            | 251,    | 126,   | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| [ 0      | _                 | 0.                                             | 0.      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
|          | , 251, 2          |                                                |         |        | -  | 0, | -  |     | 0,   |      |      |      |
| 0        | , 0],             |                                                |         |        | -  | -  | -  |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     |    | 0, |    |     | 0,   | 0,   | 0,   | 80,  |
| 240      | , 251, 1          | 93,                                            | 23,     | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | , 0],             |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 32,  | 253, |
|          | , 253, 1          | 59,                                            | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | _                 |                                                |         |        |    |    |    |     |      |      |      |      |
|          | , 0,              |                                                |         |        | 0, | -  | -  | -   | -    | 0,   |      | -    |
| 251      | , 251,            | 39,                                            | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | _                 |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      |                   | 0,                                             |         | 0,     | 0, | 0, | 0, | -   | -    | -    |      | 251, |
| 251      | , 172,            | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | , 0],             |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 234, | 251, | 251, |
| 196      | , 12,             | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        |                   |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 253, | 251, | 251, |
| - 89     |                   |                                                | 0,      | 0,     | 0, | 0, |    |     |      | 0,   |      |      |
| 0        |                   |                                                | •       | -      |    |    |    |     | •    | _    |      | -    |
| [ 0      | _                 | 0,                                             | 0.      | 0,     | 0. | 0, | 0, | 0.  | 159. | 255, | 253. | 253. |
| 31       |                   | 0,                                             |         | 0,     | -  | 0, |    |     |      | 0,   |      |      |
| 0        |                   | •,                                             | •,      | •,     | •, | ٠, | •, | •,  | ,    | ,    | •,   | ٠,   |
| [ 0      | _                 | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 48. | 228. | 253. | 247. | 140, |
| 8        |                   | -                                              |         | 0,     | -  | -  | -  | -   | -    | 0,   |      | -    |
| 0        |                   | •,                                             | ٠,      | ٠,     | ٠, | ٠, | •, | ٠,  | ٠,   | ٠,   | ٠,   | ٠,   |
| [ 0      | _                 | 0,                                             | 0,      | a      | 0, | 0, | а  | 64  | 251  | 253, | 220  | 0,   |
| 0        |                   |                                                | 0,      | -      | -  | 0, |    |     |      | 0,   |      |      |
|          |                   | 0,                                             | 0,      | Ο,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | Ο,   |
| 0<br>[ 0 | _                 | 0,                                             | а       | 0,     | а  | а  | а  | 64  | 251  | 253, | 220  | 0,   |
| _        |                   |                                                |         |        |    |    |    |     |      |      |      |      |
|          | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | _                 |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      |        |    |    |    | -   | -    | 253, | -    | 0,   |
| 0        | -                 | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | , 0],             |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        | , 0],             |                                                |         |        |    |    |    |     |      |      |      |      |
| [ 0      | , 0,              | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| . 0      |                   |                                                | 0,      |        | -  | -  |    |     |      |      |      |      |
| 0        |                   | ,                                              | ,       | ,      | •  | •  |    | ,   | ,    | ,    | ,    |      |
| [ 0      | _                 | 0,                                             | 0,      | 0,     | 0, | 0, | 0, | 0,  | 0,   | 0,   | 0,   | 0,   |
| 0        |                   | 0.                                             | 0.      | 0,     |    | 0, | 0, | 0,  |      | -    | -    | 0,   |
| 0        |                   |                                                | /pe=u:  |        | ٠, | ٠, | -, | -,  | -,   | -,   | -,   | -,   |
| O        | ر[[٥              | acy                                            | , pc-u. | -1100) |    |    |    |     |      |      |      |      |

y\_train[3]

1

import matplotlib.pyplot as plt

plt.imshow(x\_train[3])





# RESHAPING THE DATA.

```
x_train=x_train.reshape(60000,28,28,1).astype('float32')
x_test=x_test.reshape(10000,28,28,1).astype('float32')
```

### APPLY ONE HOT ENCODING

```
no_of_classes=10
y_train=np_utils.to_categorical(y_train,no_of_classes)
y_test=np_utils.to_categorical(y_test,no_of_classes)
```

y\_test[3]

# CREATE THE MODEL

```
model=Sequential()
model.add(Conv2D(64,(3,3),input_shape=(28,28,1),activation='relu'))
model.add(Conv2D(32,(3,3),activation='relu'))
model.add(Flatten())
model.add(Dense(no_of_classes,activation='softmax'))
```

# COMPILING THE MODEL

model.compile(loss='categorical\_crossentropy',optimizer='Adam',metrics=['accuracy'])

#### TRAIN THE MODEL

```
model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=32)
```

### **METRICS ARE NOTED**

```
metrics=model.evaluate(x_test,y_test,verbose=0)
print("metrics-score=>test loss & accuracy")
print(metrics)

metrics-score=>test loss & accuracy
[0.11036540567874908, 0.9764000177383423]
```

# TEST THE MODEL

```
prediction=model.predict(x_test[:5])
print(prediction)
```

```
1/1 [======= ] - 0s 84ms/step
[[6.25657795e-15 1.05156142e-18 1.22086008e-09 2.45196552e-09
 1.33981165e-17 9.07641993e-17 4.98111414e-19 1.00000000e+00
 2.75971468e-11 2.33391622e-11]
 [1.02854422e-12 5.58150123e-11 1.00000000e+00 9.26562091e-11
 2.58257417e-17 1.22140988e-20 3.76503646e-12 2.03179154e-18
 2.17259214e-11 2.70688090e-21]
 [2.85233637e-09 9.99993920e-01 5.40673739e-07 3.44808820e-10
 2.74280274e-06 1.12679146e-07 4.11499196e-10 7.90978660e-09
 2.64735422e-06 2.92728147e-10]
 [9.99999881e-01 5.13201010e-16 9.24923071e-08 8.89283981e-13
 1.56655305e-14 1.21902911e-12 6.39609754e-11 1.28959387e-12
 8.11355072e-09 2.94187679e-08]
 [8.81784663e-12 1.38155817e-13 5.78738706e-12 1.68293005e-10
 9.99999285e-01 4.03126352e-16 3.91080943e-18 3.06052591e-15
 4.98500893e-11 7.03791216e-07]]
```

import numpy as np

```
print(np.argmax(prediction,axis=1))

[7 2 1 0 4]

print(y_test[:5])

[[0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
      [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
      [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
      [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
      [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]

SAVING THE MODEL

model.save('models/mnistcnn.h5')
```

### TEST THE SAVED MODEL

```
print('x_train:' +str(x_train.shape))
print('y_train:' +str(y_train.shape))
print('x_test:' +str(x_test.shape))
print('y_test:' +str(y_test.shape))
from matplotlib import pyplot
for i in range(9):
    pyplot.subplot(330+1+i)
    pyplot.imshow(x_train[i],cmap=pyplot.get_cmap('gray'))
    pyplot.show()
```

x\_train:(60000, 28, 28)

y\_train:(60000,)

```
x_test:(10000, 28, 28)
  y_test:(10000,)
   10
   10
   0
   10
   10
   0
from tensorflow.keras.models import load model
model=load_model('models/mnistcnn.h5')
from PIL import Image
for index in range(9):
 img=x_train[index].reshape((28,28))
 imgarray=np.array(img)
 imgarray=imgarray.reshape(1,28,28,1)
 y_pred=model.predict(imgarray)
 print(np.argmax(y_pred))
```

1/1 [=======] - 0s 22ms/step

```
1/1 [=======] - 0s 19ms/step 1
1/1 [=======] - 0s 17ms/step 3
1/1 [=======] - 0s 18ms/step 1
```

Colab paid products - Cancel contracts here0s

completed at 10:16 PM

X