Proof that the square root of 2 is irrational

David Meyer

dmm@{1-4-5.net,uoregon.edu}

Last update: January 31, 2016

1 Introduction

Here we prove by contradiction that $\sqrt{2} \notin \mathbb{Q}$. This approach to proving the irrationality of $\sqrt{2}$ is sometimes called "Proof by infinite descent, not involving factoring" [1].

Theorem 1.1. $\sqrt{2} \notin \mathbb{Q}$

Proof: As mentioned above, in this proof we assume that, for contradiction, $\sqrt{2} \in \mathbb{Q}$. Then $\exists a, b \in \mathbb{Z}$ such that $\frac{a}{b} = \sqrt{2}$ and we assume that $\frac{a}{b}$ is simplified to *lowest terms*. The contradiction we will find is that $\frac{a}{b}$ cannot be in lowest term and in fact, our assumptions imply that 2 divides a (written 2|a) and 2 divides b. Ok, but why?

Well, consider our assumption $\sqrt{2} \in \mathbb{Q}$, which implies that for some $a, b \in \mathbb{Z}, b \neq 0$

$$\frac{a}{b} = \sqrt{2}$$

Then

$$a=\sqrt{2}b$$

and therefore

$$a^2 = 2b^2 \tag{1}$$

So $2|a^2$. So a^2 is even which implies that a is even¹. Now, since a is even we can write

Note that if a is not even, then a^2 is not even.

$$a = 2n (2)$$

for some $n \in \mathbb{Z}$. If we plug this into Equation 1 we get

$$4n^2 = 2b^2$$

and therefore $2n^2 = b^2$. So b^2 and hence b is even. So we can write

$$b = 2m \tag{3}$$

for some $m \in \mathbb{Z}$. So for some $a, b \in \mathbb{Z}$ and $b \neq 0$ our assumption implies

$$\sqrt{2} \in \mathbb{Q} \quad \Rightarrow \quad \frac{a}{b} = \sqrt{2} \qquad \text{\# assume } \frac{a}{b} \text{ is in lowest terms} \\ \Rightarrow \quad a = 2n \qquad \text{\# Equation 2} \\ \Rightarrow \quad b = 2m \qquad \text{\# Equation 3} \\ \Rightarrow \quad \frac{a}{b} = \frac{2n}{2m} \qquad \text{\# substitute for a and b} \\ \Rightarrow \quad 2|a \ and \ 2|b \quad \text{\# the contradiction } \left(\frac{a}{b} \ \text{not in lowest terms}\right)$$

So we assumed that $\frac{a}{b}$ was in lowest terms and we showed that this leads to a contradiction, namely that 2 divides both a and b and thus $\frac{a}{b}$ is not in lowest terms (the contradiction). Hence our original assumption that $\sqrt{2} \in \mathbb{Q}$ is false and $\sqrt{2} \notin \mathbb{Q}$. \square

2 Acknowledgements

References

[1] Wikipedia contributors. Square root of 2 — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Square_root_of_2&oldid=897400199, 2019. [Online; accessed 30-May-2019].