# Relatório I de Projeto de Graduação: Análise e Implementação de Algoritmo de Busca de uma r-Arborescência Inversa de Custo Mínimo em Grafos Dirigidos

Orientador: Mário Leston Lorena Silva Sampaio - 11201812025, Samira Haddad - 11201812350

## 1 Introdução

Este projeto tem como objetivo analisar o artigo "A Simple Algorithm and Min–Max Formula for the Inverse Arborescence Problem", desenvolvido por András Frank e Gergely Hajdu. O foco do estudo é na compreensão do algoritmo exposto pelos autores, o qual consiste na modificação mínima de uma função de custo em um grafo dirigido de modo que uma arborescência de entrada se torne a mais econômica. O artigo introduz uma abordagem conceitualmente mais simples e uma nova fórmula min-max para essa modificação, baseada em um teorema min-max e em um algoritmo guloso de duas fases. O projeto de graduação consiste na compreensão e implementação do problema em linguagem de programação a ser definida e validação da solução por meio de testes práticos.

### 2 Objetivos

- Compreender a teoria por trás das arborescências e o problema da arborescência inversa.
- Implementar o algoritmo proposto no artigo em linguagem de programação a ser definida.
- Validar a implementação através de casos de teste com diferentes grafos.
- Documentar o processo e os resultados obtidos.

### 3 Metodologia

#### 3.1 Estudo Teórico

- Revisão do artigo e análise do trabalho de Frank e Hajdu sobre o problema da arborescência inversa.
- Análise dos teoremas e da nova fórmula min-max proposta, assim como a conexão com o algoritmo guloso de duas fases.

#### 3.2 Implementação

- Desenvolvimento do algoritmo, seguindo a abordagem proposta:
  - Modificação da função de custo das arestas.
  - Aplicação da fórmula min-max para garantir a minimização dos custos.
  - Implementação do algoritmo guloso para encontrar a arborescência mais econômica.

#### 3.3 Validação

- Criação de casos de teste com grafos de diferentes topologias e custos.
- Comparação dos resultados da implementação com as expectativas teóricas e exemplos do artigo.

#### 3.4 Documentação

 Registro do processo de desenvolvimento, incluindo decisões tomadas e resultados obtidos.

#### 4 Divisão de Tarefas

O presente projeto de graduação de curso em ciência da computação será realizado de forma conjunta pelos discentes Lorena Silva Sampaio e Samira Haddad, a atribuição de atividades foi realizada conforme o descrito na tabela 1 abaixo.

| Capítulos — Atribuições                              | Início     | Duração   |
|------------------------------------------------------|------------|-----------|
| 1. Definições — Lorena Sampaio                       |            |           |
| Dígrafo                                              | 2024-12-07 | 1 dia     |
| Função de custo                                      | 2024-12-08 | 1 dia     |
| Arcos de custo zero                                  | 2024-12-09 | 1 dia     |
| Solução ótima                                        | 2024-12-10 | 1 dia     |
| Definição do problema                                | 2024-12-11 | 1 dia     |
| Definição do problema R-Arborescência                | 2024-12-12 | 1 dia     |
| Definição do problema R-Arborescência Inversa        | 2024-12-13 | 1 dia     |
| Revisão das definições                               | 2024-12-14 | 2 dias    |
| Algoritmo de Chu-Liu — Lorena Sampaio                |            |           |
| Descrição                                            | 2024-12-16 | 1 dia     |
| Correção e complexidade do algoritmo                 | 2024-12-17 | 1 dia     |
| Descrição da implementação                           | 2024-12-18 | 3 dias    |
| Algoritmo de Fulkerson — Samira Haddad               |            |           |
| Descrição                                            | 2024-12-27 | 2 dias    |
| Correção e complexidade do algoritmo                 | 2025-01-03 | 2 dias    |
| Descrição da implementação                           | 2025-01-05 | 5 dias    |
| Algoritmo Dual Guloso de Frank — Samira Haddad       |            |           |
| Descrição                                            | 2025-01-13 | 2 dias    |
| Correção e complexidade do algoritmo                 | 2025-01-15 | 2 dias    |
| Descrição da implementação                           | 2025-01-17 | 5 dias    |
| O Problema da Arborescência Inversa — Lorena Sampaio |            |           |
| Descrição                                            | 2025-01-17 | 2 dias    |
| Correção e complexidade do algoritmo                 | 2025-01-19 | 2 dias    |
| Descrição da implementação                           | 2025-01-21 | 2 dias    |
| Implementação de código — Ambas de acordo o capítulo |            |           |
| Definição de estruturas de dados                     | 2025-01-30 | 2 semanas |
| Definição de funções auxiliares                      | 2025-02-13 | 2 semanas |
| Algoritmo de Chu-Liu                                 | 2025-02-27 | 2 semanas |
| Algoritmo de Fulkerson                               | 2025-03-12 | 2 semanas |
| Algoritmo Dual Guloso de Frank                       | 2025-03-27 | 2 semanas |
| O Problema da Arborescência Inversa                  | 2025-04-11 | 2 semanas |
| 7.Corpo do artigo — Ambas                            |            |           |
| Introdução e justificativa                           | 2025-05-01 | 4 horas   |
| Objetivo                                             | 2025-05-01 | 4 horas   |
| Metodologia                                          | 2025-05-02 | 4 horas   |
| Conclusão                                            | 2025-05-02 | 4 horas   |
| Referências                                          | 2025-05-03 | 1 dia     |
| 8.Revisão                                            |            |           |
| Textual                                              | 2025-05-10 | 1 mês     |
| ABNT                                                 | 2025-06-10 | 1 dia     |

Tabela 1: Planejamento de Atividades e Atribuições

# 5 Cronograma



Figura 1: Legenda da imagem.

# 6 Considerações Finais

Este projeto visa a compreensão profunda do problema abordado e o estudo de suas possíveis aplicações em problemas práticos. A colaboração entre os integrantes será fundamental para o sucesso do projeto.

#### Referências

- 1 FRANK, A.; HAJDU, G. A Simple Algorithm and Min–Max Formula for the Inverse Arborescence Problem. *Algorithms*, v. 7, n. 4, p. 637–647, 2014. DOI: 10.3390/a7040637.
- 2 HU, Z.; LIU, Z. A strongly polynomial algorithm for the inverse shortest arborescence problem. *Discrete Applied Mathematics*, v. 82, n. 1–3, p. 135–154, 1998.
- 3 CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms. 3. ed. MIT Press, 2009.
- 4 KLEINBERG, J.; TARDOS, É. Algorithm Design. Addison-Wesley, 2006.
- 5 BONDY, J. A.; MURTY, U. S. R. Graph Theory with Applications. Springer, 2008.
- 6 SCHRIJVER, A. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
- 7 EDMONDS, J. Optimum Branchings. *Journal of Research of the National Bureau of Standards*, v. 71B, p. 233–240, 1967.
- 8 WEST, D. B. Introduction to Graph Theory. 2. ed. Prentice Hall, 2001.
- 9 DIESTEL, R. Graph Theory. 5. ed. Springer, 2017.
- 10 WOLSEY, L. A.; NEMHAUSER, G. L. Integer and Combinatorial Optimization. 1. ed. Wiley-Interscience, 1988.