2.3. Homomorfismos de grupos

Una aplicación $\varphi: G \to G'$ entre los grupos (G, *) y (G', \cdot) es un homomorfismo de grupos si para todos $x, y \in G$ se verifica que

$$\varphi(x * y) = \varphi(x) \cdot \varphi(y)$$

Si $\varphi:G\to G'$ es un homomorfismo de grupos, se llama **núcleo** de φ al conjunto

$$\ker(\varphi) = \{a \in G : \varphi(a) = e_{G'}\} = \varphi^{-1}(\{e_{G'}\})$$

Y se llama **imagen de** φ al conjunto

$$\varphi(G) = \{ \varphi(a) : a \in G \}$$

Propiedades

Sean (G, *) y (G', \cdot) grupos y $\varphi : G \to G'$ homomorfismo. Se tiene que:

- 1. $\varphi(e_G) = e_{G'}$ siendo $e_G \in G$ y $e_{G'} \in G'$ los elementos neutros de (G, *) y (G', \cdot) respectivamente
- 2. $\varphi(a)^{-1}=\varphi(a^{-1})$ para todo $a\in G$
- 3. φ es inyectivo $\Leftrightarrow \ker(\varphi) = \{e_G\}$
- 4. φ es suprayectivo $\Leftrightarrow \varphi(G) = G'$

Subgrupo núcleo y subgrupo imagen

Si $\varphi: G \to G'$ es un homomorfismo de grupos entonces:

- 1. $\ker(\varphi) \leq G$
- 2. $\varphi(G) \leq G'$

Primer teorema de Isomorfía

Sea $\varphi:G\to G'$ un homomorfismo de grupos, entonces

$$G/\ker(\varphi) \approx \varphi(G)$$

Corolario 1

Si (G,*) y (G',\cdot) son dos grupos finitos y $\varphi:G\to G'$ es un homomorfismo de grupos entonces:

$$|\varphi(G)|$$
 divide a $|G'|$ y también divide a $|G|$

Corolario 2

La aplicación $\varphi: \mathbb{Z}_n \to \mathbb{Z}_m$ es un homomorfismo entre los grupos $(\mathbb{Z}_n, +_n)$ y $(\mathbb{Z}_m, +_m)$ si y sólo si

$$\varphi([a]_n) = [ak]_m$$
 siendo $nk \equiv 0$ mód m

2.3.14. Problemas

1. Estudiar si son homomorfismos de grupos y en caso afirmativo encontrar el núcleo, la imagen y establecer el isomorfismo dado por el primer teorema de isomorfía.

a)
$$\varphi: \mathbb{R}^* \to GL_2(\mathbb{R}), \ \varphi(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$$

b)
$$\varphi : \mathbb{R} \to GL_2(\mathbb{R}), \ \varphi(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$$

c)
$$\varphi: GL_2(\mathbb{R}) \to \mathbb{R}, \ \varphi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = a + d$$

d)
$$\varphi: GL_2(\mathbb{R}) \to \mathbb{R}^*, \ \varphi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = ad - bc$$

$$e) \ \varphi : \mathbb{Z} \to \mathbb{Z}, \ \varphi(n) = 7n$$

- 2. Sea $\varphi : \mathbb{Z}_{30} \to \mathbb{Z}_{30}$ un homomorfismo cuyo núcleo es $\ker(\varphi) = \{[0]_{30}, [10]_{30}, [20]_{30}\}.$ Si $\varphi([23]_{30}) = [9]_{30}$ determinar todos los elementos que se transforman en $[9]_{30}$
- 3. Sea $\varphi: \mathbb{Z}_{30} \to G$ un homomorfismo suprayectivo de grupos. Sabiendo que |G| = 5, calcular $\ker(\varphi)$
- 4. Sea $\varphi:\mathbb{Z}_{17}\to G$ un homomorfismo de grupos que no es inyectivo. Determinar φ
- 5. ¿Cuántos homomorfismo existen de $(\mathbb{Z}_{20}, +_{20})$ en $(\mathbb{Z}_8, +_8)$?, ¿cuántos de ellos son suprayectivos?
- 6. Sean (G, *) y (G', \cdot) dos grupos de órdenes 24 y 7 respectivamente. Estudiar si existe un homomorfismo suprayectivo de G en G' y si existe un homomorfismo invectivo de G' en G.
- 7. Estudiar si existe algún homomorfismo inyectivo $\varphi: D_4 \to \mathbb{Z}_{16}$
- 8. Describir los homomorfismos $\varphi: \mathbb{Z}_{24} \to \mathbb{Z}_{18}$
- 9. Construir un homomorfismo de grupos cuyo núcleo sea isomorfo a \mathbb{Z}_3 , otro con núcleo isomorfo a \mathbb{Z}_4 y otro con núcleo isomorfo a \mathbb{Z}_6 .