Practice Problems

Online Problems

Problem 1 Find the Cartesian coordinates of the point $(\pi/2, \pi, 2)$, given in cylindrical coordinates.

$$(x, y, z) = (0, -\pi/2, 2)$$

Problem 2 Find cylindrical coordinates for the point (0,-1,3), written in Cartesian coordinates. Your answer should satisfy $0 \le r$ and $0 \le \theta < 2\pi$.

$$(r,\theta,z) = (1,\pi,3)$$

Problem 3 Consider the surface described in Cartesian coordinates by

$$2z^2 = x^2 + y^2.$$

Describe this surface with an equation in cylindrical coordinates, of the form $0 = f(r, \theta, z)$.

$$0 = \boxed{r^2 - 2z^2}$$

FIGURE OUT HOW TO HANDLE THIS!!! What type of shape is this?

Multiple Choice:

- (a) Plane
- (b) Cylinder
- (c) Sphere

Learning outcomes: Author(s):

(d)	Cone	√

(e) Other

Problem 4 Consider the following region in \mathbb{R}^3 .

IMAGE

This region is the set of points $(r, \theta z)$, in cylindrical coordinates, satisfying the inequalities

$$\boxed{1} \leq r \leq \boxed{2}$$

$$\boxed{\pi/2} \le \theta \le \boxed{\pi}$$

$$\boxed{-1} \le z \le \boxed{1}$$

$$-1 \le z \le \boxed{1}$$

Problem 5 For each of the following equations in cylindrical coordinates, select the type of shape they define.

FIGURE OUT CORRECT ANSWERS

 $r = \cos \theta$

Multiple Choice:

- (a) plane
- (b) cylinder
- (c) sphere
- (d) other

 $z=r\cos\theta$

Multiple Choice:

- (a) plane
- (b) cylinder
- (c) sphere
- (d) other

z = -r

Multiple Choice:

- (a) plane ✓
- (b) cylinder
- (c) sphere
- (d) other

Problem 6 Find the Cartesian coordinates of the point $(2, \pi, \pi/2)$, given in spherical coordinates.

$$(x, y, z) = (-2, 0, 0)$$

Problem 7 Find spherical coordinates for the point $\left(-\sqrt{2}, sqrt2, 2\sqrt{3}\right)$, written in Cartesian coordinates. Your answer should satisfy $0 \le \rho$, $0 \le \theta \le 2\pi$, and $0 \le \phi \le \phi$.

$$(\rho,\theta,\phi) = \boxed{(4,3\pi/4,\pi/6)}$$

Problem 8 Consider the surface described in Cartesian coordinates by

$$2z^2 = x^2 + y^2.$$

Describe this surface with an equation in spherical coordinates, of the form $0 = f(\rho, \theta, \phi)$.

$$0 = \rho^2 \sin^2 \phi - 2 \cos^2 \phi$$

FIGURE OUT HOW TO HANDLE THIS!!! What type of shape is this?

Multiple Choice:

- (a) Plane
- (b) Cylinder
- (c) Sphere
- (d) Cone ✓

(e)	0+1
e	Other

Problem 9 Consider the following region in \mathbb{R}^3 .

IMAGE

This region is the set of points (ρ, θ, ϕ) , in spherical coordinates, satisfying the inequalities

$$0 \le \rho \le 2$$

$$\boxed{0} \le \theta \le \boxed{pi/2}$$

$$\boxed{0} \le \phi \le \boxed{pi}$$

Problem 10 For each of the following equations in spherical coordinates, select the type of shape they define.

FIGURE OUT CORRECT ANSWERS

$$\rho = \cos \phi$$

Multiple Choice:

- (a) plane
- (b) cylinder
- (c) sphere
- (d) other

 $\rho = \sin \theta$

Multiple Choice:

- (a) plane
- (b) cylinder
- (c) sphere
- (d) other

 $\rho\cos\theta\sin\phi=1$

Multiple Choice:

- (a) plane ✓
- (b) cylinder
- (c) sphere
- (d) other

Written Problems

Problem 11 Consider the surface described by $(r-3)^2 + z^2 = 1$ in cylindrical coordinates, with the restriction r > 0.

- (a) Sketch the intersection of the surface with the half-plane $\theta = 0$.
- (b) Sketch the intersection of the surface with the half-plane $\theta = \frac{\pi}{2}$.
- (c) Sketch the intersection of the surface with the plane z = 0.
- (d) Sketch the surface.

Problem 12 Sketch the region in \mathbb{R}^3 with cylindrical coordinates satisfying the inequality

$$r \le z \le 4 - 2r$$

Problem 13 (a) Given a function f, consider the graphs of the equations $r=f(\theta)$ and $r=2f(\theta)$, in polar coordinates. How are these graphs related?

- (b) Given a function f, consider the graphs of the equations $\rho = f(\theta, \phi)$ and $\rho = 2f(\theta, \phi)$, in spherical coordinates. How are these graphs related?
- (c) Given a function f, consider the graphs of the equations $r = f(\theta)$ and $r = -f(\theta)$, in polar coordinates. How are these graphs related?
- (d) Given a function f, consider the graphs of the equations $\rho = f(\theta, \phi)$ and $\rho = -f(\theta, \phi)$, in spherical coordinates. How are these graphs related?