CHAPTER 2

INVERSE TRIGONOMETRIC FUNCTIONS

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Write the principal value of

(i)
$$\sin^{-1}\left(-\sqrt{3}/2\right)$$

(ii)
$$\cos^{-1}(\sqrt{3}/2)$$
.

(iii)
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

(iv)
$$cosec^{-1} (-2)$$
.

(v)
$$\cot^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
.

(vi)
$$sec^{-1} (-2)$$
.

(vii)
$$\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{-1}{2}\right) + \tan^{-1}\left(-1/\sqrt{3}\right)$$

2. What is value of the following functions (using principal value).

(i)
$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
. (ii) $\sin^{-1}\left(-\frac{1}{2}\right) - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

(iii)
$$tan^{-1}(1) - cot^{-1}(-1)$$
.

(iii)
$$tan^{-1} (1) - cot^{-1} (-1)$$
. (iv) $cosec^{-1} (\sqrt{2}) + sec^{-1} (\sqrt{2})$.

(v)
$$tan^{-1}(1) + cot^{-1}(1) + sin^{-1}(1)$$
.

(vi)
$$\sin^{-1}\left(\sin\frac{4\pi}{5}\right)$$
.

(vii)
$$\tan^{-1} \left(\tan \frac{5\pi}{6} \right)$$
.

(viii)
$$\csc^{-1}\left(\csc\frac{3\pi}{4}\right)$$
.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

3. Show that
$$\tan^{-1} \left(\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \right) = \frac{\pi}{4} + \frac{x}{2}$$
. $x \in [0, \pi]$

4. Prove

$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)-\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)=\frac{\pi}{4}\qquad x\in\left(0,\pi/2\right).$$

5. Prove
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right) = \sin^{-1}\frac{x}{a} = \cos^{-1}\left(\frac{\sqrt{a^2-x^2}}{a}\right).$$

6. Prove

$$\cot^{-1} \left[2 \tan \left(\cos^{-1} \frac{8}{17} \right) \right] + \tan^{-1} \left[2 \tan \left(\sin^{-1} \frac{8}{17} \right) \right] = \tan^{-1} \left(\frac{300}{161} \right).$$

7. Prove
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2.$$

8. Solve
$$\cot^{-1} 2x + \cot^{-1} 3x = \frac{\pi}{4}$$
.

9. Prove that
$$\tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right) = \frac{\pi}{4}, m, n > 0$$

10. Prove that
$$\tan \left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left(\frac{1-y^2}{1+y^2} \right) \right] = \frac{x+y}{1-xy}$$

11. Solve for
$$x$$
, $\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \frac{1}{2}\tan^{-1}\left(\frac{-2x}{1-x^2}\right) = \frac{2\pi}{3}$

12. Prove that
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

13. Solve for
$$x$$
, $\tan(\cos^{-1}x) = \sin(\tan^{-1}2)$; $x > 0$

14. Prove that
$$2 \tan^{-1} \left(\frac{1}{5} \right) + \tan^{-1} \left(\frac{1}{4} \right) = \tan^{-1} \left(\frac{32}{43} \right)$$

15. Evaluate
$$\tan \left[\frac{1}{2} \cos^{-1} \left(\frac{3}{\sqrt{11}} \right) \right]$$

16. Prove that
$$\tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) = \tan^{-1} \left(\frac{a}{b} \right) - x$$

17. Prove that
$$\cot\left\{\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right)\right\} + \cos^{-1}\left(1 - 2x^2\right) + \cos^{-1}\left(2x^2 - 1\right) = \pi, \ x > 0$$

18. Prove that
$$\tan^{-1} \left(\frac{a-b}{1+ab} \right) + \tan^{-1} \left(\frac{b-c}{1+bc} \right) + \tan^{-1} \left(\frac{c-a}{1+ca} \right) = 0$$
 where $a, b, c > 0$

- Solve for x, 2 tan⁻¹(cos x) = tan⁻¹ (2 cosec x) 19.
- $\sin^{-1}(x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^2})$ in simplest form. 20.
- If $\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi$, then 21. prove that a + b + c = abc
- If $\sin^{-1} x > \cos^{-1} x$, then x belongs to which interval? 22.

ANSWERS

1. (i)
$$-\frac{\pi}{3}$$

(ii)
$$\frac{\pi}{6}$$

(ii)
$$\frac{\pi}{6}$$
 (iii) $\frac{-\pi}{6}$

(iv)
$$\frac{-\pi}{6}$$

(v)
$$\frac{\pi}{3}$$

(vi)
$$\frac{2\pi}{3}$$

(vi)
$$\frac{2\pi}{3}$$
 (vii) $\frac{\pi}{6}$.

(ii)
$$\frac{-\pi}{3}$$

(ii)
$$\frac{-\pi}{3}$$
 (iii) $-\frac{\pi}{2}$

(iv)
$$\frac{\pi}{2}$$

(vi)
$$\frac{\pi}{5}$$

(vi)
$$\frac{\pi}{5}$$
 (vii) $\frac{-\pi}{6}$

(viii)
$$\frac{\pi}{4}$$
.

13.
$$\frac{\sqrt{5}}{3}$$

$$19. \quad x = \frac{\pi}{4}.$$

22.
$$\left(\frac{1}{\sqrt{2}}, 1\right]$$

21. *Hint:* Let
$$tan^{-1} a = \alpha$$

$$\tan^{-1} b = \beta$$

$$tan^{-1} c = \gamma$$

then given, $\alpha + \beta + \gamma = \pi$

$$\alpha + \beta = \pi - \gamma$$

take tangent on both sides,

$$\tan (\alpha + \beta) = \tan (\pi - \gamma)$$

11.
$$\tan \frac{\pi}{12} = 2 - \sqrt{3}$$

15.
$$\sqrt{\frac{\sqrt{11}-3}{3+\sqrt{11}}}$$

20
$$\sin^{-1} x - \sin^{-1} \sqrt{x}$$
.