

Mineração e Análise de Dados de Bioinformática Estrutural: Análise de Estruturas de Interações Proteína-RNA Modeladas por Métodos Computacionais

João Pedro Braga Ennes

BANCO DE DADOS PROTÍNA-RNA

No último semestre construímos um banco de dados de estruturas de interações proteína-rna, com informações do PDB, obtidas de forma experimental.

Inicialmente coletamos informações de 309 estruturas e após realizar algumas análises, removemos algumas que não se encaixavam no nosso grupo de interesse e obtivemos ficando no final com 198 estruturas.

HISTOGRAMA AMINOÁCIDOS

HISTOGRAMA NUCLEOTÍDEOS

BANCO DE DADOS PROTÍNA-RNA

	Structure	Number of amino acids	Number of nucleotides		
0	1a4t	19	15		
1	1biv	17	28		
2	1aud	101	30		
3	1exy	16	33		
4	1etf	23	34		
	***	***			
165	7zpi	705	55		
166	8fti	737	97		
167	8e28	690	15		
168	8e2a	686	15		
169	8acc	231	.5		

Ao final de todos os filtros, ficamos com um total de **170** estruturas no nosso banco

Frequência por Aminoácido

Frequência por Nucleotídeo

ATUALIZANDO DADOS

MÉTODO DE COLETA

BANCO DE DADOS ESTRUTURAL

Após filtrar nossas estruturas de interesse, com apenas uma molécula de RNA e uma de Proteína, ficamos com um total de 204 estruturas

	Structure	Number of amino acids
0	1a4t	19
1	1aud	101
2	1biv	17
3	1d6k	94
4	1ekz	76
199	8pdl	351
200	8pdm	351
201	8pzp	470
202	8qgt	1289
203	8sxu	726
04 r	ows × 2 colu	umns

HISTOGRAMA AMINOÁCIDOS

HISTOGRAMA NUCLEOTÍDEOS

Frequência por Aminoácido

Frequência por Nucleotídeo

BANCO DE DADOS ESTRUTURAL

Ao final de todos os filtros, ficamos com um total de 175 estruturas no nosso banco atualizado

	Structure	Number of amino acids	Number of nucleotides
0	1a4t	19	15
1	1aud	101	30
2	1biv	17	28
3	1d6k	94	37
4	1ekz	76	30
	***		***
170	8fti	737	97
171	8pdl	351	7
172	8pdm	351	7
173	8pzp	470	12
174	8sxu	726	10

MODELANDO ESTRUTURAS

ALPHAFOLD 3

Inicialmente utilizariamos o RosettaFoldNA para realização deste estudo, porém no último dia 8 de Maio, foi lançado o **AlphaFold 3** com a possibilidade de modelar estruturas de DNA e RNA.

ΔΙ

AlphaFold 3 predicts the structure and interactions of all of life's molecules

Introducing AlphaFold 3, a new Al model developed by Google DeepMind and Isomorphic Labs. By accurately predicting the structure of proteins, DNA, RNA, ligands and more, and how they interact, we hope it will transform our understanding of the biological world and drug discovery.

May 08, 2024 6 min read

APHAFOLD SERVER

MODELAGEM DE ESTRUTURAS

TOTAL DE ESTRUTURAS MODELADAS

Com o AlphaFold Server, foi possível modelar **159** estruturas, visto que algumas tinham apenas **3** nucleotídeos, o que impossibilitou a modelagem com o AlphaFold 3

TRATAMENTO DOS DADOS

- Remoção de cabeçalho
- Remoção de resíduos gerados durante o processo de sequenciamento

3	MOTA	3	C4"	G	A	4	11.190	6.700	5.875	1.00	8.88	C
4	ATOM	4	04"	G	A	4	12.365	5.959	5,435	1.00	0.00	0
5	MOTA	5	C3*	G	A	4	10.264	5.544	4.657	1.00	0.00	C
6	ATOM	6	03"	G	A	4	9.300	7.705	4.620	1.00	0.00	0
7	ATOM	7	C2"	G	A	4	11.235	6.678	3.482	1.00	0.80	C
8	ATOM	8	02"	G	A	4	11.451	7.949	2.868	1.00	8.88	0
9	ATOM	9	C1'	G	A	4	12.534	6.100	4.016	1.00	0.00	C
10	MOTA	10	N9	G	Α	4	12.901	4.816	3.367	1.00	0.00	N
11	ATOM	11	C8	G	A	4	12.912	3.591	3.921	1.00	0.00	C
12.	ATOM	12	N7	G	А	4	13.279	2.521	3.121	1.00	0.00	N
13	MOTA	13	C5	G	A	4	13.534	3,248	1.930	1.00	0.00	C
14	MOTA	14	C6	G	A	4	13.958	2.683	0.720	1.00	0.00	C
15	MOTA	15	06	G	Α	4	14.185	1.483	0.537	1.00	0.00	0
16	MOTA	16	N1	G	A	4	14.106	3.675	-0.294	1.00	0.00	N
17	ATOM	17	C2	G	А	4	13.870	5.055	-0.145	1.00	0.00	C
18	ATOM	18	N2	G	A	4	14.093	5.754	-1.293	1.00	0.00	N
19	ATOM	19	N3	G	A	4	13.460	5.557	1.052	1.00	0.00	N
20	ATOM	20	C4	G	A	4	13.311	4,522	2.034	1.00	0.00	C
21	ATOM	21	H5 "	G	A	4	10.263	5.022	6.937	1.00	0.00	H
22.	MOTA	22	H5' "	G	A	4	11.408	6.001	7.924	1.00	0.00	H
23	MOTA	23	H4 °	G	A	4	11.546	7.732	6.079	1.00	0.00	H
24	MOTA	24	H3 *	G	A	4	9.785	5.642	4.630	1.00	0.00	Н
25	ATOM	25	H2*	G	A	4	10.853	5.939	2.744	1.00	0.00	H
26	ATOM	26	H02"	G	A	4	11.848	7.896	1,998	1.00	0.00	H

Próximos Passos

- Finalizar modelagem das estruturas faltantes
- Passar estruturas geradas pelo AlphaFold 3 pelas mesmas análises feitas com os dados do PDB
- Comparar estruturas nativas coletadas do PDB com aquelas gerados pelo AphaFold

REFERÊNCIAS BIBLIOGRÁFICAS

Abramson, J., Adler, J., Dunger, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024). https://doi.org/10.1038/s41586-024-07487-w

BERMAN, Helen M; BATTISTUZ, Tammy; BHAT, Talapady N; et al. The Protein Data Bank. Acta Crystallographica Section D-biological Crystallography, v. 58, n. 6, p. 899–907, 2002. Disponível em: https://scripts.iucr.org/cgi-bin/paper?an0594>. Acesso em: 11 set. 2023.

DE ARAÚJO, Nilberto Dias et al. A era da bioinformática: seu potencial e suas implicações para as ciências da saúde. Estudos de biologia, v. 30, n. 70/72, 2008. Disponível em: https://biblat.unam.mx/hevila/Estudosdebiologia/2008/vol30/no70-72/16.pdf. Acesso em: 12 set. 2023.

HERBERT, Katherine G; JUNILDA SPIROLLARI; WANG, Jianli; et al. Bioinformatic Databases. Wiley Encyclopedia of Computer Science and Engineering, 2007. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse561. Acesso em: 13 set. 2023.

MARIANO, D. C. B.; BARROSO, J. R. P. M.; CORREIA, T. S.; de MELO-MINARDI, R. C. . Introdução à Programação para Bioinformática com Biopython. 3. ed. North Charleston, SC (EUA): CreateSpace Independent Publishing Platform, 2015. v. 1. 230p .

PIRES, Douglas E V; RAQUEL; CARLOS; et al. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics, v. 29, n. 7, p. 855–861, 2013. Disponível em: https://academic.oup.com/bioinformatics/article/29/7/855/253252. Acesso em: 11 set. 2023.

WU, Cathy H; YEH, Lai-Su L; HUANG, Hongzhan; et al. The Protein Information Resource. Nucleic Acids Research, v. 31, n. 1, p. 345–347, 2003. Disponível em: https://academic.oup.com/nar/article/31/1/345/2401247>. Acesso em: 13 set. 2023.

Obrigado!

