

### AGENDA

- 1. Introduzione
- 2. Modello
- 3. Verifica
- 4. Validazione
- 5. Simulazione
- 6. Modello Migliorativo
- 7. Considerazioni sul personale
- 8. Considerazione sugli accessi
- 9. Risultati



### 1. INTRODUZIONE

#### Contesto

### Funzione:

- Assistenza urgente e non programmabile
- Gestione pazienti in arrivo diretto o tramite ambulanza

#### Processo di Gestione:

- Triage Iniziale: Assegnazione priorità (Rosso, Arancione, Azzurro, Verde, Bianco)
- Prima Visita Medica: Valutazione e pianificazione trattamenti
- Ulteriori Esami: Svolgimento ed ulteriore visita
- Esito: Dimissione o ricovero per cure specialistiche

### 1. INTRODUZIONE

#### Problema

Dati di Attesa (Anno 2022) per il Pronto Soccorso del Policlinico Tor Vergata:

- Livello 2 (Arancione): 57 minuti
- Livello 3 (Azzurro): 164 minuti
- Livello 4 (Verde): 154 minuti
- Livello 5 (Bianco): 148 minuti

#### Criticità Identificate:

- Tempi di attesa superiori ai limiti stabiliti dalle linee guida nazionali
- Disallineamento tra domanda di servizi e capacità di risposta
- Impatto negativo su qualità delle cure e sui risultati clinici, specialmente per urgenze intermedie

### 1. INTRODUZIONE

#### Obiettivo

### Rispettare le Nuove Linee Guida (2019):

- Livello 1 (Rosso): Accesso immediato
- Livello 2 (Arancione): Accesso entro 15 minuti
- Livello 3 (Azzurro): Accesso entro 60 minuti
- Livello 4 (Verde): Accesso entro 120 minuti
- Livello 5 (Bianco): Accesso entro 240 minuti

### Strategie di Miglioramento:

- Analizzare e ottimizzare i processi interni del Pronto Soccorso
- Implementare miglioramenti senza aumentare il numero di medici
- Migliorare l'efficienza operativa e la gestione dei flussi di pazienti

#### Modello concettuale



#### Astrazione:

- Job = Paziente
- Sistema = Insieme delle aree
- Server Triage = Infermieri
- Server Area di trattamento = Medici
- Server Area di analisi = Specialisti

#### Eventi:

- Ingresso in un centro
- Uscita da un centro

#### Procedura:

- 1. Assegnazione codice
- 2. Prima visita
  - Assegnazione Esami
  - Dimissioni / Ospedalizzazione
- 3. Svolgimento Esami
- 4. Visita
  - Ulteriori esami -> 3.
  - Dimissioni / Ospedalizzazione

Modello delle specifiche



$$\lambda_{2} = \lambda_{1} \cdot p_{2}$$

$$\lambda_{3} = \lambda_{1} \cdot p_{3}$$

$$\lambda_{4} = \lambda_{1} \cdot p_{4}$$

$$\lambda_{5} = \lambda_{1} \cdot p_{5}$$

$$\lambda_{6} = \lambda_{1} \cdot p_{6}$$

$$\lambda_{7} = \lambda_{1} \cdot (1 - p_{7}) + \lambda_{14}$$

$$\lambda_{8} = \lambda_{7} \cdot p_{8}$$

$$\lambda_{9} = \lambda_{7} \cdot p_{9}$$

$$\lambda_{10} = \lambda_{7} \cdot p_{10}$$

$$\lambda_{11} = \lambda_{7} \cdot p_{11}$$

$$\lambda_{12} = \lambda_{7} \cdot p_{12}$$

$$\lambda_{13} = \lambda_{7} \cdot p_{13}$$

$$\lambda_{14} = \lambda_{7} \cdot p_{15}$$

$$p_{8} + p_{9} + p_{10} + p_{11} + p_{12} + p_{13} = p_{15}$$

$$p_{14} + p_{15} = 1$$

### Modello computazionale

#### Struttura:

- Directory controller: Logica della simulazione (gestione del Triage, del Trattamento e delle Aree di Analisi).
- Directory model: Implementazione del singolo job come classe.
- Directory utility: Facility e librerie esterne utilizzate.

#### Pseudo Random Numbers Generator:

- Algoritmo di Lehmer
- Approccio multi stream

### Tempi di Servizo:

Normale Troncata

```
def idfTruncatedNormal (m, s, lower_bound, upper_bound)
    a = cdfNormal(m, s, lower_bound)
    b = 1.0-cdfNormal(m, s, upper_bound)
    u = idfUniform(a, 1.0-b, random())
    return idfNormal(m, s, u)
```

### Modello computazionale

### Logica degli eventi

### Selezione prossimo evento

```
def next_event(current_triage, current_queue, t_analisi):
    prox_evento = INFINITY
    for i in range(len(t_analisi)):
        if t_analisi[i].current > 0:
            prox_evento = min(prox_evento, t_analisi[i].current)
    if current_queue > 0:
        prox_evento = min(prox_evento, current_queue)
    if current_triage > 0:
        prox_evento = min(prox_evento, current_triage)
    if prox_evento >= INFINITY:
        prox_evento = -1
    return prox_evento
```

### Esecuzione prossimo evento

```
def switch(prox_operazione, t_triage, t_queue, t_analisi):
   t_triage.current = prox_operazione
   t_queue.current = prox_operazione
   for i in range(len(t_analisi)):
        t_analisi[i].current = prox_operazione
   if prox_operazione == t_triage.arrival:
        processa_arrivo_triage()
   elif prox_operazione == t_triage.min_completion:
        processa_completamento_triage()
   elif prox_operazione == t_queue.min_completion:
        processa_completamento_queue()
    else:
        for i in range(len(t_analisi)):
            if prox_operazione == t_analisi[i].min_completion:
                processa_completamento_analisi(i)
                break
```

# 3. VERIFICA

#### Assunzioni

- Tempi di servizio esponenziali.
- Code uniche senza distinzione di colore.
- Il paziente non può spostarsi tra i vari centri di analisi.

### Risultati analitici

| CENTRI              | ρ    | <i>E</i> [ <i>Tq</i> ] (min) | E[Ts] (min) |
|---------------------|------|------------------------------|-------------|
| Triage              | 0.5  | 5.65                         | 11.15       |
| Area di Trattamento | 0.23 | 52.42                        | 68.42       |
| ECG                 | 0.07 | 0.02                         | 5.02        |
| Emocromo            | 0.17 | 1.02                         | 6.02        |
| Radiografia         | 0.29 | 2.27                         | 27.27       |
| Tac                 | 0.18 | 5.52                         | 30.52       |
| Ecografia           | 0.1  | 0.19                         | 15.19       |
| Altro               | 0.43 | 0.79                         | 35.79       |

### Risultati simulazione

| CENTRI              | ρ    | E[Tq] (min) | E[Ts] (min) |
|---------------------|------|-------------|-------------|
| Triage              | 0.5  | 5.35        | 10.85       |
| Area di Trattamento | 0.93 | 52.62       | 68.62       |
| ECG                 | 0.07 | 0.08        | 5.08        |
| Emocromo            | 0.17 | 1.07        | 6.07        |
| Radiografia         | 0.33 | 1.69        | 26.69       |
| Tac                 | 0.18 | 6.18        | 31.18       |
| Ecografia           | 0.11 | 0.59        | 15.59       |
| Altro               | 0.54 | 0.79        | 39.02       |

### 4. VALIDAZIONE

### Considerazioni

La complessità del sistema con molteplici centri e feedback rende necessarie delle semplificazioni.

La differenza tra i dati del report e i risultati della simulazione è attribuibile a variabilità e fattori non simulabili.

### Report

Codice rosso: 0 minuti

Codice arancione: 57 minuti

Codice azzurro: 164 minuti

Codice verde: 154 minuti

Codice bianco: 148 minuti

### Risultati simulazione

Codice rosso:  $0 \pm 0$  minuti

Codice arancione: 67.94 ± 6.03 minuti

Codice azzurro: 124.60 ± 7.23 minuti

Codice verde: 251.32 ± 8.99 minuti

Codice bianco: 541.64 ± 79.74 minuti

### Analisi del transitorio

• Verifichiamo se il sistema converge allo stato stazionario

• La variabile di riferimento è il tempo di attesa del centro di trattamento

- Effettuiamo più simulazioni:
  - Stesse condizioni iniziali
  - Seed indipendenti

### Analisi del transitorio





### Analisi del transitorio





#### Simulazione ad orizzonte finito

### In generale:

• Obiettivo: Studio del comportamento del sistema durante il transitorio

### Nel nostro caso:

- Qos da verificare dopo aver raggiunto lo stato stazionario
- Simulazione ad orizzonte finito non adatta al raggiungimento dei nostri obiettivi

Simulazione ad orizzonte infinito

Tecnica batch means

• Elementi per batch(k): 4096

• Numero di batch(b): 512

• Intervallo di confidenza: 95%

Table 1: Tempi di attesa e risposta nelle code

| Colore    | Attesa                | Risposta             |
|-----------|-----------------------|----------------------|
| Rosso     | 0.0005 + / - 0.0003   | 16.5329 +/- 0.0187   |
| Arancione | 67.9448 + / - 6.0376  | 84.5434 +/- 6.0391   |
| Azzurro   | 124.6084 + / -7.2344  | 141.833 +/- 7.2399   |
| Verde     | 251.3208 + / - 8.9988 | 270.7792 + / -9.0096 |
| Bianco    | 541.6481 + / -79.7361 | 565.7939 +/- 80.0485 |

#### Simulazione ad orizzonte infinito





#### Simulazione ad orizzonte infinito





#### Considerazioni

Elevata percentuale di pazienti non trattati entro i tempi limite stabiliti:

❖ Codice arancione: 45.50%

❖ Codice azzurro: 40.29%

❖ Codice verde: 61.33%

❖ Codice bianco: 66.35%

#### Introduzione

- Risorse inalterate
- Nuova policy di scheduling
- Nuovo tempo limite

#### Analisi del transitorio

• Verifichiamo se il sistema converge allo stato stazionario

• La variabile di riferimento è il tempo di attesa del centro di trattamento

- Effettuiamo più simulazioni:
  - Stesse condizioni iniziali
  - Seed indipendenti

### Analisi del transitorio





### Analisi del transitorio





Simulazione ad orizzonte infinito

Tecnica batch means

• Elementi per batch(k): 4096

• Numero di batch(b): 512

• Intervallo di confidenza: 95%

Table 4: Tempi di attesa e risposta nelle code

| Colore    | Attesa                   | Risposta                 |
|-----------|--------------------------|--------------------------|
| Rosso     | 0.0002 + / - 0.0001      | 16.53 + / - 0.1934       |
| Arancione | 11.9988 + / - 0.1295     | 28.5612 + / - 0.1311     |
| Azzurro   | 50.9357 + / -0.8525      | 68.0385 + / - 0.8603     |
| Verde     | 204.3922 + / - 6.8145    | 224.5949 + / - 6.8523    |
| Bianco    | 1531.8898 + / - 149.6749 | 1570.3316 + / - 150.1254 |

### Simulazione ad orizzonte infinito





Simulazione ad orizzonte infinito





### Risultati

### Il modello migliorativo:

- Ottimizza la gestione delle risorse.
- Riduce le violazioni dei tempi di attesa.
- Miglioramenti differenziati per livello di priorità, ma con riduzione complessiva delle attese.

Table 6: Violazioni

| Coda      | Numero violazioni | Percentuale              |
|-----------|-------------------|--------------------------|
| Rossa     | 11                | $8.11 \times 10^{-3} \%$ |
| Arancione | 112692            | 26.71~%                  |
| Azzurra   | 289113            | 35.03~%                  |
| Verde     | 372405            | 56.43~%                  |
| Bianco    | 67891             | 60.8 %                   |

Considerazioni finali

Il modello migliorativo ci permette di realizzare un sistema di pronto soccorso più efficiente e reattivo per tutti i codici di gravità. Miglioramento:

**❖** Arancione: 41.2967%

**❖** Azzurro: 13.0769%

❖ Verde: 8%

**❖** Bianco: 5.55%

### 7. CONSIDERAZIONI SUL PERSONALE

Considerazioni sul personale

Scenario: Aggiunto un medico per turno

L'incremento del personale ha consentito di ridurre significativamente le violazioni, portandole vicine a 0.

Table 7: Violazioni

| Coda      | Numero violazioni | Percentuale              |
|-----------|-------------------|--------------------------|
| Rossa     | 2                 | $1.47 \times 10^{-3} \%$ |
| Arancione | 7848              | 1.86~%                   |
| Azzurra   | 2078              | 0.25~%                   |
| Verde     | 2246              | 0.34~%                   |
| Bianco    | 295               | 0.26~%                   |

# 8. CONSIDERAZIONI SUGLI ACCESSI

Considerazioni sugli accessi

Scenario: Dimezzare il numero di accessi in codice bianco

Dimezzare gli accessi evitabili, identificati tramite il codice bianco, ci permette ridurre significativamente il numero di violazioni

Table 8: Violazioni

| Coda      | Numero violazioni | Percentuale               |
|-----------|-------------------|---------------------------|
| Rossa     | 10                | $7.376 \times 10^{-3} \%$ |
| Arancione | 92046             | 21.82 %                   |
| Azzurra   | 197807            | 23.97 %                   |
| Verde     | 259664            | 39.35 %                   |
| Bianco    | 22385             | 40.13 %                   |

### 9. RISULTATI

### Conclusioni

- Con una gestione differente dello scheduling abbiamo un miglioramento che va dal 5% fino al 41%
- Fondamentale, se il numero di accessi resta inalterato o aumenta nei prossimi anni, è aumentare il personale
- Si evidenzia la necessità di diminuire gli ingressi mediante iniziative che facciano comprendere l'importanza di una struttura così importante che dovrebbe essere utilizzata solo in determinate circostanze

Table 9: Numero di violazioni per colore delle code per i vari modelli

| Colore    | Standard                | Migliorativo            | Aumento Personale       | Bianchi dimezzati        |
|-----------|-------------------------|-------------------------|-------------------------|--------------------------|
| Rosso     | $1.47 \times 10^{-2}\%$ | $8.11 \times 10^{-2}\%$ | $1.47 \times 10^{-3}\%$ | $7.376 \times 10^{-3}\%$ |
| Arancione | 45.50%                  | 26.71%                  | 1.86%                   | 21.82%                   |
| Azzurro   | 40.3%                   | 35.03%                  | 0.25%                   | 23.97%                   |
| Verde     | 61.34%                  | 56.43%                  | 0.34%                   | 39.35%                   |
| Bianco    | 66.35%                  | 60.8%                   | 0.26%                   | 40.13%                   |



# GRAZIE PER L'ATTENZIONE

Eugenio Di Gaetano – Marco Lorenzini Università degli Studi di Roma "Tor Vergata" Facoltà di Ingegneria

https://github.com/MarcoLor01/PMCSN\_Project