高等概率论讨论班 (第 **8**、**9**次) 随机变量的收敛

统计 91 董晟渤 西安交通大学数学与统计学院

日期: 2022年5月

目录

1	几乎	必然收敛与依概率收敛	2
	1.1	几乎必然收敛与依概率收敛的定义	2
	1.2	Borel-Cantelli 引理	2
2	淡收	淡收敛	
	2.1	淡收敛及其等价命题	5
	2.2	次概率测度的列紧性	7
	2.3	随机变量的依分布收敛	8
3	3 矩收敛		12
	3.1	矩收敛及其基本性质	12
	3.2	随机变量序列的一致可积	14

1 几乎必然收敛与依概率收敛

1.1 几乎必然收敛与依概率收敛的定义

考虑随机变量序列 $\{X_n, n \geq 1\}$, 并设随机变量 $X < \infty$, a.s..

定义 1.1 (几乎必然收敛). 如果

$$\mathbb{P}\left(\lim_{n\to\infty} X_n = X\right) = 1, \quad \vec{\mathbb{R}} \quad \mathbb{P}\left(\lim_{n\to\infty} X_n \neq X\right) = 0,$$

则称 X_n **几乎必然收敛**于 X, 记作 $X_n \xrightarrow{\text{a.s.}} X$.

命题 1.1 (几乎必然收敛的等价命题). $X_n \xrightarrow{\text{a.s.}} X$ 当且仅当对任意的 $\varepsilon > 0$, 有

$$\mathbb{P}\left\{\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}\{|X_n-X|\geq\varepsilon\}\right\}=0,\quad \text{ if }\quad \mathbb{P}\left\{\bigcup_{m=1}^{\infty}\bigcap_{n=m}^{\infty}\{|X_n-X|<\varepsilon\}\right\}=1.$$

定义 1.2 (依概率收敛). 如果对任意的 $\varepsilon > 0$, 都有

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \le \varepsilon) = 1, \quad \vec{\mathbb{R}} \quad \mathbb{P}(|X_n - X| \le \varepsilon) = 0,$$

则称 X_n 依概率收敛于 X, 记作 $X_n \stackrel{p}{\to} X$.

定理 1.2 (Riesz). 设 $X_n \stackrel{p}{\to} X$, 则存在子列 $\{X_{n_k}\}$, 使得 $X_{n_k} \stackrel{\text{a.s.}}{\longrightarrow} X$.

命题 **1.3** (蕴含关系). 若 $X_n \xrightarrow{\text{a.s.}} X$, 则 $X_n \xrightarrow{p} X$.

定义 1.3 (依 r 阶矩收敛). 设 $X_n \in L^r(\Omega)$, 如果

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^r = 0,$$

则称 X_n 依 r 阶矩收敛于 X, 记作 $X_n \stackrel{L^r}{\longrightarrow} X$.

命题 **1.4** (蕴含关系). 若 $X_n \xrightarrow{L^r}$, 则 $X_n \xrightarrow{p} X$.

命题 1.5.
$$X_n \xrightarrow{p} X$$
 当且仅当 $\frac{|X_n|}{1+|X_n|} \xrightarrow{L^r} 0$.

除了蕴含关系以外,也请留意各种经典的反例.

1.2 Borel-Cantelli 引理

将事件列 $\{E_n\}$ 的上极限, 也即

$$\limsup_{n \to \infty} E_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_n$$

记作 E_n , i.o., 表示 $\{E_n\}$ 发生无穷多次.

定理 1.6 (Borel-Cantelli 引理). 对于事件列 $\{E_n\}$, 有

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \implies \mathbb{P}(E_n, \text{i.o.}) = 0.$$

证明. 由概率的次可加性得

$$\mathbb{P}\left(\bigcup_{n=m}^{\infty} E_n\right) \le \sum_{n=m}^{\infty} \mathbb{P}(E_n),$$

因此

$$\mathbb{P}(E_n, \text{i.o.}) = \lim_{m \to \infty} \mathbb{P}\left(\bigcup_{n=m}^{\infty} E_n\right) \le \lim_{m \to \infty} \sum_{n=m}^{\infty} \mathbb{P}(E_n) = 0,$$

这便证明了该结论.

以下设 $\{X_n\}$ 是随机变量序列, X 几乎处处有限.

推论. $X_n \xrightarrow{\text{a.s.}} X$ 当且仅当对任意的 $\varepsilon > 0$, 有

$$\mathbb{P}(|X_n - X| > \varepsilon, \text{i.o.}) = 0.$$

证明. 应用前述结论.

推论. 若 $X_n \xrightarrow{p} X$, 则存在子列 $\{X_{n_k}\} \subset \{X_n\}$, 使得 $X_{n_k} \xrightarrow{\text{a.s.}} X$.

证明. 由 $X_n \stackrel{p}{\to} X$, 知对任意的 $k \in \mathbb{N}$, 都有

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n - X| > \frac{1}{2^k}\right) = 0.$$

从而对任意的 $k \in \mathbb{N}$, 都存在 n_k , 使得

$$\mathbb{P}\left(|X_{n_k} - X| > \frac{1}{2^k}\right) \le \frac{1}{2^k} \implies \sum_{k=1}^{\infty} \mathbb{P}\left(|X_{n_k} - X| > \frac{1}{2^k}\right) \le 1 < \infty,$$

根据 Borel-Cantelli 引理,知

$$\mathbb{P}\left(|X_{n_k}| > \frac{1}{2^k}, \text{i.o.}\right) = 0,$$

因此 $X_{n_k} \xrightarrow{\text{a.s.}} X$.

定理 1.7 (Borel-Cantelli 引理). 对于独立事件列 $\{E_n\}$, 有

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty \implies \mathbb{P}(E_n, \text{i.o.}) = 1.$$

证明. 由 $\{E_n\}$ 独立知 $\{E_n^C\}$ 独立, 因此

$$\mathbb{P}\left(\bigcap_{n=m}^{\infty} E_n^C\right) = \prod_{n=m}^{\infty} \mathbb{P}\left(E_n^C\right) = \prod_{n=m}^{\infty} \left(1 - \mathbb{P}(E_n)\right) \le \exp\left(-\sum_{n=m}^{\infty} \mathbb{P}(E_n)\right) = 0,$$

因此

$$\mathbb{P}(E_n, \text{i.o.}) = 1 - \lim_{m \to \infty} \mathbb{P}\left(\bigcap_{n=m}^{\infty} E_n^C\right) = 1 - 0 = 1,$$

这便证明了该结论.

定理(1.6)和(1.7)分别称为 Borel-Cantelli 引理的收敛部分和发散部分, 前者对 $\{E_n\}$ 无任何要求, 而后者要求 $\{E_n\}$ 是独立的. 事实上, 后者的条件可以退为 $\{E_n\}$ 是两两独立的.

定理 1.8. 对于两两独立的事件列 $\{E_n\}$, 有

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty \implies \mathbb{P}(E_n, \text{i.o.}) = 1.$$

证明. 记 $I_n := I_{E_n}$,则 $\{E_n\}$ 两两独立等价于对任意的 $m \neq n$,都有

$$\mathbb{E}(I_m I_n) = \mathbb{E}(I_m) \cdot \mathbb{E}(I_n).$$

考虑级数 $\sum_{n=1}^{\infty} I_n(\omega)$,它发散到 ∞ 等价于有无限多项 $I_n(\omega)=1$,等价于 $\omega\in E_n$,i.o.,因此只需证明

$$\sum_{n=1}^{\infty} \mathbb{E}(I_n) = \infty \implies \sum_{n=1}^{\infty} I_n = \infty, \quad \text{a.s..}$$

记部分和 $J_k = \sum_{n=1}^k I_n$, 应用 Chebyshev 不等式, 对任意的 A > 0, 都有

$$\mathbb{P}\left(|J_k - \mathbb{E}(J_k)| \le A \cdot \sqrt{\operatorname{Var}(J_k)}\right) \ge 1 - \frac{\operatorname{Var}(J_k)}{A^2 \cdot \operatorname{Var}(J_k)} = 1 - \frac{1}{A^2}.$$

其中, 由 I_1, I_2, \cdots, I_k 不相关, 且任意阶矩都相等, 得

$$\operatorname{Var}(J_k) = \sum_{n=1}^k \operatorname{Var}(I_n) = \sum_{n=1}^k \mathbb{E}(I_n^2) - \sum_{n=1}^k (\mathbb{E}(I_n))^2 \le \sum_{n=1}^k \mathbb{E}(I_n) = \mathbb{E}(J_k),$$

从而 $\sqrt{\operatorname{Var}(J_k)} = o(\mathbb{E}(J_k))$, 因此当 k 充分大时, 有

$$\mathbb{P}\left(J_k > \frac{1}{2} \cdot \mathbb{E}(J_k)\right) \ge 1 - \frac{1}{A^2}.$$

$$\mathbb{P}\left(\lim_{k\to\infty}J_k=\infty\right)\geq 1-\frac{1}{A^2},$$

由 A 的任意性得知

$$\sum_{n=1}^{\infty} I_n = \lim_{k \to \infty} J_k = \infty, \quad \text{a.s.},$$

这便证明了该结论.

推论 (0-1) 律的一个例子). 对于两两独立的事件列 $\{E_n\}$, 有

$$\mathbb{P}(E_n, \text{i.o.}) \in \{0, 1\}.$$

(1) 若
$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty$$
, 则 $\mathbb{P}(E_n, \text{i.o.}) = 0$;

(2) 若
$$\sum_{n=1}^{n=1} \mathbb{P}(E_n) = \infty$$
, 则 $\mathbb{P}(E_n, \text{i.o.}) = 1$.

2 淡收敛

2.1 淡收敛及其等价命题

淡收敛是对概率测度而言的一种性质.

定义 2.1 (次概率测度). 设 μ 是 $(\mathbb{R}, \mathcal{S}_{\mathbb{R}})$ 上的测度, 如果 $\mu(\mathbb{R}^1) \leq 1$, 则称 μ 为次概率测度.

以下为了方便, 对次概率测度 μ 及 $a,b \in \mathbb{R}$, 记 $\mu(a,b] := \mu((a,b])$, 类似的记号还有 $\mu[a,b), \mu(a,b)$ 和 $\mu[a,b]$, 并约定当 a > b 时, 上述的值均为 0.

定义 2.2 (淡收敛). 设 { μ_n }, μ 是次概率测度, 如果存在 \mathbb{R} 的稠密子集 D, 使得对任意的 $a,b \in D, a < b$, 都有

$$\mu_n(a,b] \to \mu(a,b],$$

则称 μ_n **淡收敛**到 μ , 称 μ_n 为 μ 的**淡极限**, 记作 $\mu_n \stackrel{v}{\rightarrow} \mu$.

定义 2.3 (连续性区间). 设 μ 是次概率测度, $a, b \in \mathbb{R}$, 若 $\mu(a, b) = \mu[a, b]$, 或者 a, b 均不是 μ 的原子, 则称 (a, b) 是 μ 的**连续性区间**.

定理 2.1. 设 $\{\mu_n\}$, μ 是次概率测度, 下列命题等价:

(1) 对任意的有限区间 (a,b) 和 $\varepsilon > 0$, 存在 n_0 , 使得对任意的 $n > n_0$, 都有

$$\mu(a+\varepsilon,b-\varepsilon)-\varepsilon \le \mu_n(a,b) \le \mu(a-\varepsilon,b+\varepsilon)+\varepsilon;$$

(2) 对任意的 μ 的连续性区间 (a,b], 都有

$$\mu_n(a,b] \to \mu(a,b].$$

在这里, (a, b] 可以用 (a, b), [a, b] 或 [a, b) 代替;

(3) $\mu_n \xrightarrow{v} \mu$.

证明. $(1) \Longrightarrow (2)$: 设 (a,b) 是 μ 的连续性区间, 由测度的单调性知

$$\lim_{\varepsilon \downarrow 0} \mu(a+\varepsilon,b-\varepsilon) = \mu(a,b) = \mu[a,b] = \lim_{\varepsilon \downarrow 0} \mu(a-\varepsilon,b+\varepsilon),$$

再令 $n \to \infty$, 则有

$$\mu(a,b) \le \liminf_{n \to \infty} \mu_n(a,b] \le \limsup_{n \to \infty} \mu_n(a,b] \le \mu[a,b] = \mu(a,b),$$

这便说明了 $\mu_n(a,b] \to \mu(a,b]$. 对于 (a,b), [a,b] 和 [a,b) 的情形, 也可以类似证明.

 $(2) \Longrightarrow (3)$: 记 $C \subset \mathbb{R}$ 为 μ 的原子所构成的集合, 也即对任意的 $c \in C$, 都有 $\mu(\{c\}) > 0$. 假设 C 是不可数集, 则有

$$\mu(C) = \sum_{c \in C} \mu(\{c\}) = \infty,$$

此与 μ 是次概率测度矛盾, 因此 C 是至多可数集. 记 $D = C^C$, 则 D 是稠密集, 并且对任意的 $a, b \in D$, a < b, 都有 $\mu_n(a, b] \to \mu(a, b]$, 这便说明了 $\mu_n \stackrel{v}{\to} \mu$.

 $(3) \Longrightarrow (1)$: 设 $D \subset \mathbb{R}$ 为满足条件的稠密集, 对任意的有限区间 (a,b) 和 $\varepsilon > 0$, 存在 $a_1, a_2, b_1, b_2 \in D$, 使得

$$a - \varepsilon < a_1 < a < a_2 < a + \varepsilon$$
, $b - \varepsilon < b_1 < b < b_2 < b + \varepsilon$.

由 $\mu_n \stackrel{v}{\to} \mu$ 知, 存在 n_0 , 使得对任意的 $n > n_0$, 都有

$$|\mu_n(a_i, b_i) - \mu(a_i, b_i)| < \varepsilon, \quad \forall i = 1, 2, \quad \forall j = 1, 2,$$

因此

$$\mu(a+\varepsilon,b-\varepsilon)-\varepsilon \le \mu(a_2,b_1]-\varepsilon \le \mu_n(a_2,b_1] \le \mu_n(a,b)$$

$$\le \mu_n(a_1,b_2] \le \mu(a_1,b_2]+\varepsilon \le \mu(a-\varepsilon,b+\varepsilon)+\varepsilon,$$

这便证明了原不等式.

推论. 设 $\{\mu_n\}$ 是次概率测度, 则 $\{\mu_n\}$ 的淡极限是唯一的.

证明. 设 $\mu_n \stackrel{v}{\to} \mu$, 且 $\mu_n \stackrel{v}{\to} \mu'$, 记 $A \to \mu$ 和 μ' 的原子所构成的集合, 则对任意的 $a,b \in A^C$, 都有

$$\mu(a,b] = \mu'(a,b].$$

由 μ 和 μ' 在一个 \mathbb{R} 上稠密的集合 A^C 上相等, 知 $\mu \equiv \mu'$.

将次概率测度推广到概率测度,可以得到如下定理.考虑到本节研究的主要是次概率测度,在这里暂且不给出证明.

定理 2.2. 设 $\{\mu_n\}$, μ 是概率测度, 下列命题等价:

(1) 对任意的 $\delta>0$ 和 $\varepsilon>0$, 存在 n_0 , 使得对任意的 $n>n_0$, 及对任意的区间 (a,b), 都有

$$\mu(a+\delta,b-\delta)-\varepsilon \le \mu_n(a,b) \le \mu(a-\delta,b+\delta)+\varepsilon;$$

(2) 对任意的 μ 的连续性区间 (a,b], 都有

$$\mu_n(a,b] \to \mu(a,b].$$

在这里, (a,b] 可以用 (a,b), [a,b] 或 [a,b) 代替;

(3) $\mu_n \xrightarrow{v} \mu$.

证明,略.

2.2 次概率测度的列紧性

进一步, 我们研究所有次概率测度所构成的集合的结构. 考虑到所有的次概率测度和 [0,1] 是类似的, 并且考虑到 [0,1] 是列紧集, 我们也可以证明次概率测度所构成的集合是列紧的.

定理 2.3. 设 $\{\mu_n\}$ 是次概率测度, 则存在子列 $\{\mu_{n_k}\}$, 使得 $\mu_{n_k} \stackrel{v}{\to} \mu$.

证明. 定义函数

$$F_n(x) = \mu_n(-\infty, x], \quad \forall x \in \mathbb{R}.$$

则 F_n 是 \mathbb{R} 上单调递增的右连续函数, 且 $F_n(-\infty) = 0$, $F_n(\infty) = \mu_n(\mathbb{R}) \le 1$. 设 D 是 \mathbb{R} 的可数稠密子集, $\{r_k, k \ge 1\}$ 是它的排列, 按照如下方式选择 $\{F_n\}$ 的一个子列:

- 数列 $\{F_n(r_1), n \ge 1\}$ 有界, 选取其的一个收敛子列 $\{F_n^{(1)}(r_1), n \ge 1\}$;
- 数列 $\left\{F_n^{(1)}(r_2), n \ge 1\right\}$ 有界, 选取其的一个收敛子列 $\left\{F_n^{(2)}(r_2), n \ge 1\right\}$;
- ...;
- 数列 $\left\{F_n^{(k-1)}(r_k), n \ge 1\right\}$ 有界, 选取其的一个收敛子列 $\left\{F_n^{(k)}(r_k), n \ge 1\right\}$;
-

由此, 我们得到了若干函数列:

$$F_1^{(1)}$$
, $F_2^{(1)}$, \cdots , $F_n^{(1)}$, \cdots , 在 r_1 处收敛; $F_1^{(2)}$, $F_2^{(2)}$, \cdots , $F_n^{(2)}$, \cdots , 在 r_1 , r_2 处收敛; \cdots , \cdots , \cdots , \cdots , \cdots ; $F_1^{(k)}$, $F_2^{(k)}$, \cdots , $F_n^{(k)}$, \cdots , 在 r_1 , r_2 , \cdots , r_k 处收敛; \cdots , \cdots , \cdots , \cdots , \cdots , \cdots , \cdots

选取上述函数列的对角线 $F_1^{(1)}, F_2^{(2)}, \cdots, F_k^{(k)}, \cdots, 则 \lim_{k \to \infty} F_k^{(k)}$ 在所有的 $\{r_k, k \ge 1\}$ 处收敛,也即在 D 上收敛. 记

$$G(r) := \lim_{k \to \infty} F_k^{(k)}(r), \quad \forall r \in D,$$

$$F(x) := \sup_{x < r \in D} G(r), \quad \forall x \in \mathbb{R},$$

则 F(x) 是 \mathbb{R} 上单调递增的右连续函数. 设 C 是 F(x) 的连续点,则 C 在 \mathbb{R} 中稠密. 设 $x \in C$,则对任意的 $\varepsilon > 0$,存在 $r,r',r'' \in D$,使得 r < r' < x < r'',且 $F(r'') - F(r) < \varepsilon$,于是

$$F(r) \le G(r') \le F(x) \le G(r'') \le F(r'') \le F(r) + \varepsilon,$$

且

$$F_k^{(k)}(r') < F_k^{(k)}(x) < F_k^{(k)}(r''),$$

由 ε 的任意性知

$$\lim_{k \to \infty} F_k^{(k)}(x) = F(x), \quad \forall x \in C.$$

我们知道, 存在唯一的概率测度 μ , 使得 $F(x) = \mu(-\infty, x]$. 另外, 设 $F_k^{(k)}$ 所对应的次概率测度为 μ_{n_k} . 由上面的结果, 知对任意的 $a,b\in C$, 都有

$$\lim_{k \to \infty} \mu_{n_k}(a, b] = \mu(a, b],$$

从而 $\mu_{n_k} \xrightarrow{v} \mu$.

推论. 设 $\{\mu_n\}$ 是次概率测度, 如果对任何淡收敛的子列 $\{\mu_{n_k}\}$, 都有 $\mu_{n_k} \stackrel{v}{\to} \mu$, 则 $\mu_n \stackrel{v}{\to} \mu$.

证明. 假设 μ_n 不淡收敛到 μ , 则存在连续性区间 (a,b), 使得 $\mu_n(a,b)$ 不以 $\mu(a,b)$ 为极限. 由 [0,1] 的列紧性, 存在子列 $\{\mu_{n_k}(a,b)\}$, 使得

$$\mu_{n_k}(a,b) \to a \neq \mu(a,b).$$

而由次概率密度的列紧性, $\{\mu_{n_k}\}$ 存在淡收敛的子列 $\{\mu_{n'_k}\}$, 使得 $\mu_{n'_k} \stackrel{v}{\to} \mu$, 因此

$$\mu_{n'_k}(a,b) \to \mu(a,b),$$

此与以上极限矛盾,从而假设不成立.

2.3 随机变量的依分布收敛

最后, 我们来指出这种收敛在分布函数和随机变量上的体现.

定义 2.4 (淡收敛). 设 $\{F_n\}$ 和 F 是分布函数, 对应的概率测度为 $\{\mu_n\}$ 和 μ , 若 $\mu_n \stackrel{v}{\to} \mu$, 则称 F_n 淡收敛于 F, 记作 $F_n \stackrel{v}{\to} F$.

推论. 设分布函数 F 的连续点所构成的集合为 C, 则 $F_n \stackrel{v}{\rightarrow} F$ 当且仅当

$$F_n(x) \to F(x), \quad \forall x \in C.$$

证明. 一方面, 设 $F_n \stackrel{v}{\rightarrow} F$, 则对任意的 μ 的连续性区间 (a,b], 都有

$$\mu_n(a, b] = F_n(b) - F_n(a) \to \mu(a, b] = F(b) - F(a).$$

另外一方面, 由 F(x) 是分布函数知 C 在 \mathbb{R} 中稠密, 若对任意的 $x \in C$, 都有 $F_n(x) \to F(x)$, 则对任意的 $a,b \in C$, 都有

$$\lim_{n \to \infty} \mu_n(a, b] = \lim_{n \to \infty} (F_n(b) - F_n(a)) = F(b) - F(a) = \mu(a, b],$$

这便说明了 $\mu_n \stackrel{v}{\to} \mu$, 从而 $F_n \stackrel{v}{\to} F$.

定义 2.5 (依分布收敛). 设 $\{X_n\}$ 和 X 是随机变量, 对应的分布函数为 $\{F_n\}$ 和 F, 若 $F_n \stackrel{v}{\to} F$, 则称 X_n 依分布收敛于 X, 记作 $X_n \stackrel{d}{\to} X$.

推论. 设 F_n , F 是随机变量 X_n , X 的分布函数, F 的连续点所构成的集合为 C, 则 $X_n \stackrel{d}{\to} X$ 当且仅当

$$F_n(x) \to F(x), \quad \forall x \in C.$$

证明. 应用上述结论即可.

命题 **2.4** (蕴含关系). 若 $X_n \stackrel{p}{\to} X$, 则 $X_n \stackrel{d}{\to} X$.

证明. 设 F_n , F 是随机变量 X_n , X 的分布函数. 一方面, 对任意的 $x \in \mathbb{R}$ 及 $\varepsilon > 0$, 注意到

$$\{X \le x\} = \{X \le x, X_n \le x + \varepsilon\} \cup \{X \le x, X_n > x + \varepsilon\}$$
$$\subset \{X_n \le x + \varepsilon\} \cup \{|X_n - X| > \varepsilon\},$$

因此

$$F(x) \le F_n(x+\varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon).$$

由 $X_n \stackrel{p}{\to} X$ 知 $\mathbb{P}(|X_n - X| > \varepsilon) \to 0$, 令 $n \to \infty$ 得

$$F(x) \le \liminf_{n \to \infty} F_n(x + \varepsilon).$$

另外一方面,有

$$\{X > x\} = \{X > x, X_n > x - \varepsilon\} \cup \{X > x, X_n \le x - \varepsilon\}$$
$$\subset \{X_n > x - \varepsilon\} \cup \{|X_n - X| > \varepsilon\},$$

因此

$$1 - F(x) \le 1 - F_n(x - \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

$$\Longrightarrow F(x) \ge F_n(x - \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon).$$

$$F(x) \ge \limsup_{n \to \infty} F_n(x - \varepsilon).$$

综上有

$$\limsup_{n \to \infty} F_n(x - \varepsilon) \le F(x) \le \liminf_{n \to \infty} F_n(x + \varepsilon),$$

若 $x \in F$ 的连续点, 令 $\varepsilon \to 0$, 则

$$F(x) = \lim_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x) = \liminf_{n \to \infty} F_n(x),$$

这便说明了 $X_n \stackrel{d}{\to} X$.

命题 2.5 (蕴含关系). 设 $c \in \mathbb{R}$, 则 $X_n \stackrel{p}{\to} c$ 当且仅当 $X_n \stackrel{d}{\to} c$.

证明. 只需证明当 $X_n \stackrel{d}{\to} c$ 时有 $X_n \stackrel{p}{\to} c$. 记 c 的分布函数

$$F(x) = \begin{cases} 0, & x < c, \\ 1, & x \ge c, \end{cases}$$

连续点所构成的集合为 $\mathbb{R}\setminus\{c\}$. 设 F_n 是 X_n 的分布函数,则

$$F_n(x) = \mathbb{P}(X_n \le x) \to F(x), \quad \forall x \in \mathbb{R} \setminus \{c\}.$$

对任意的 $\varepsilon > 0$, 计算得

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n < c - \varepsilon) + \mathbb{P}(X_n > c + \varepsilon)$$

$$\leq F_n(c - \varepsilon) + 1 - F_n(c + \varepsilon),$$

令 $n \to \infty$ 可得 $\mathbb{P}(|X_n - c| > \varepsilon) \to 0$, 这便说明了 $X_n \stackrel{p}{\to} c$.

定理 **2.6** (Slutsky 定理). 设 $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{p}{\to} c$.

- (1) $X_n + Y_n \xrightarrow{d} X + c$;
- (2) $Y_n X_n \xrightarrow{d} cX$.

证明. (1) 设 F_n , G_n , F 是 $X_n + Y_n$, $X_n + c$, X + c 的分布函数, 并且根据 $X_n \stackrel{d}{\to} X$, 知 $X_n + c \stackrel{d}{\to} X + c$, 因此 $G_n \stackrel{v}{\to} F$. 设 x 是 F 的连续点, 对任意的 $\varepsilon > 0$, 一方面, 注意到

$$\{X_n + Y_n > x + \varepsilon\} = \{X_n + Y_n > x + \varepsilon, |Y_n - c| \le \varepsilon\} \cup \{X_n + Y_n > x + \varepsilon, |Y_n - c| > \varepsilon\}$$

$$\subset \{X_n + c > x\} \cup \{|Y_n - c| > \varepsilon\},$$

因此

$$1 - F_n(x + \varepsilon) \le 1 - G_n(x) + \mathbb{P}(|Y_n - c| > \varepsilon)$$

$$\implies G_n(x) \le F_n(x + \varepsilon) + \mathbb{P}(|Y_n - c| > \varepsilon),$$

$$F(x) = \lim_{n \to \infty} G_n(x) \le \liminf_{n \to \infty} F_n(x + \varepsilon);$$

另外一方面,注意到

$$\{X_n + Y_n \le x - \varepsilon\} = \{X_n + Y_n \le x - \varepsilon, |Y_n - c| \le \varepsilon\} \cup \{X_n + Y_n \le x - \varepsilon, |Y_n - c| > \varepsilon\}$$
$$\subset \{X_n + c \le x\} \cup \{|Y_n - c| > \varepsilon\},$$

因此

$$G_n(x) \ge F_n(x - \varepsilon) - \mathbb{P}(|Y_n - c| > \varepsilon),$$

$$F(x) = \lim_{n \to \infty} G_n(x) \ge \limsup_{n \to \infty} F_n(x - \varepsilon).$$

考虑到 x 是 F 的连续点, 令 $\varepsilon \to 0$, 则

$$F(x) = \lim_{n \to \infty} F_n(x) = \liminf_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x),$$

这便说明了 $X_n + Y_n \stackrel{d}{\rightarrow} X + c$.

(2) 设 F_n , G_n , $F \in Y_nX_n$, cX_n , cX 的分布函数, 并且根据 $X_n \stackrel{d}{\to} X$, 知 $cX_n \stackrel{d}{\to} cX$, 因此 $G_n \stackrel{v}{\to} F$. 设 $x \in F$ 的连续点, 对任意的 $\varepsilon > 0$, 一方面, 注意到

$$\left\{ Y_n X_n > x + \frac{x}{c} \cdot \varepsilon \right\} = \left\{ Y_n X_n > x + \frac{x}{c} \cdot \varepsilon, |Y_n - c| \le \varepsilon \right\}$$

$$\cup \left\{ Y_n X_n > x + \frac{x}{c} \cdot \varepsilon, |Y_n - c| > \varepsilon \right\}$$

$$\subset \left\{ c X_n > x \right\} \cup \left\{ |Y_n - c| > \varepsilon \right\},$$

因此

$$1 - F_n\left(x + \frac{x}{c} \cdot \varepsilon\right) \le 1 - G_n(x) + \mathbb{P}(|Y_n - c| > \varepsilon)$$

$$\implies G_n(x) \le F_n\left(x + \frac{x}{c} \cdot \varepsilon\right) + \mathbb{P}(|Y_n - c| > \varepsilon)$$

$$F(x) = \lim_{n \to \infty} G_n(x) \le \liminf_{n \to \infty} F_n\left(x + \frac{x}{c} \cdot \varepsilon\right);$$

另外一方面,注意到

$$\left\{ Y_n X_n \le x - \frac{x}{c} \cdot \varepsilon \right\} = \left\{ Y_n X_n \le x - \frac{x}{c} \cdot \varepsilon, |Y_n - c| \le \varepsilon \right\}$$

$$\cup \left\{ Y_n X_n \le x - \frac{x}{c} \cdot \varepsilon, |Y_n - c| > \varepsilon \right\}$$

$$\subset \left\{ c X_n \le x \right\} \cup \left\{ |Y_n - c| > \varepsilon \right\},$$

因此

$$G_n(x) \ge F_n\left(x - \frac{x}{c} \cdot \varepsilon\right) - \mathbb{P}(|Y_n - c| > \varepsilon),$$

$$F(x) = \lim_{n \to \infty} G_n(x) \ge \limsup_{n \to \infty} F_n\left(x - \frac{x}{c} \cdot \varepsilon\right).$$

考虑到 $x \in F$ 的连续点, $\varphi \varepsilon \to 0$, 则

$$F(x) = \lim_{n \to \infty} F_n(x) = \liminf_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x),$$

这便说明了 $Y_nX_n \stackrel{d}{\to} cX$.

依分布收敛的一个重要刻画需要应用到后面介绍的特征函数, 在此简单叙述结论.

定理 2.7 (连续性定理). 设 f_n 和 f 是随机变量 X_n 和 X 对应的特征函数, 则 $X_n \stackrel{d}{\to} X$ 当且 仅当

$$f_n(t) \to f(t), \quad \forall t \in \mathbb{R}.$$

证明,略. □

3 矩收敛

3.1 矩收敛及其基本性质

考虑随机变量序列 $\{X_n, n \geq 1\}$, 并设随机变量 $X < \infty$, a.s.. 首先回忆矩收敛的定义.

定义 3.1 (依 r 阶矩收敛). 设 $X_n \in L^r(\Omega)$, 如果

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^r = 0,$$

则称 X_n 依 r 阶矩收敛于 X, 记作 $X_n \stackrel{L^r}{\longrightarrow} X$.

以下均设 $X_n, X \in L^r(\Omega)$. 为便于研究矩收敛的性质, 在这里引入一个常用的不等式 (来自苏淳的书上).

命题 3.1 (C_r 不等式, 二元情形). 设 r > 0, $x, y \in \mathbb{R}$, 则

$$|x+y|^r \le C_r \cdot (|x|^r + |y|^r),$$

其中

$$C_r = \begin{cases} 1, & 0 < r \le 1, \\ 2^{r-1}, & r > 1. \end{cases}$$

证明. 首先设 $0 < r \le 1$, 若 x = y = 0, 则不等式取等; 否则

$$|x+y|^r \le (|x|+|y|)^r = \frac{|x|}{(|x|+|y|)^{1-r}} + \frac{|y|}{(|x|+|y|)^{1-r}} \le |x|^r + |y|^r;$$

其次设r > 1, 由 Jensen 不等式得

$$\left| \frac{x+y}{2} \right|^r \le \left(\frac{|x|+|y|}{2} \right)^r \le \frac{|x|^r + |y|^r}{2} \implies |x+y|^r \le 2^{r-1} \cdot (|x|^r + |y|^r).$$

这便证明了原不等式.

推论 (C_r 不等式, n 元情形). 设 r > 0, $x_1, x_2, \dots, x_n \in \mathbb{R}$, 则

$$\left| \sum_{i=1}^{n} x_i \right|^r \le C_r \cdot \sum_{i=1}^{n} |x_i|^r,$$

其中

$$C_r = \begin{cases} 1, & 0 < r \le 1, \\ n^{r-1}, & r > 1. \end{cases}$$

证明. 分别应用数学归纳法或 n 元 Jensen 不等式即可.

命题 3.2. 设 r > 0, $X_n \xrightarrow{L^r} X$, 则 $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$.

证明. 由 C_r 不等式得

$$|X_n|^r = |X_n - X + X|^r \le C_r \cdot (|X_n - X|^r + |X|^r),$$

对上式取期望,并令 $n \to \infty$,可得

$$\mathbb{E}(|X_n|^r) - \mathbb{E}(|X|^r) = C_r \cdot \mathbb{E}|X_n - X|^r \to 0,$$

因此 $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$.

当 $X_n \xrightarrow{\text{a.s.}} X$ 或 $X_n \xrightarrow{d} X$ 时, 保证矩收敛的条件是有用的, 以下将分别叙述.

命题 3.3. 设 r > 0, $X_n \xrightarrow{\text{a.s.}} X$, 则

$$\mathbb{E}|X|^r \le \liminf_{n \to \infty} \mathbb{E}|X_n|^r.$$

证明. 由 $X_n \xrightarrow{\text{a.s.}} X$ 知 $|X_n|^r \xrightarrow{\text{a.s.}} |X|^r$, 应用 Fatou 引理得

$$\mathbb{E}|X|^r = \mathbb{E}\left(\lim_{n \to \infty} |X_n|^r\right) \le \liminf_{n \to \infty} \mathbb{E}|X_n|^r.$$

这便证明了该定理.

引理 3.4 (Helly 第二定理). 设 F_n , F 是分布函数, 且 $F_n \stackrel{v}{\to} F$, 则对任意的有界连续函数 $q: \mathbb{R} \to \mathbb{R}$, 都有

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) dF_n(x) = \int_{\mathbb{R}} g(x) dF(x).$$

证明. 设 $\Omega = (0,1), \omega \in \Omega$, 定义

$$X_n(\omega) = \inf\{x \in \mathbb{R} : F_n(x) \le \omega\}, \quad X(\omega) = \inf\{x \in \mathbb{R} : F(x) \le \omega\},$$

则 X_n , X 的分布函数是 F_n , F, 且根据 F 的连续点在 \mathbb{R} 中稠密, 知 $F_n \xrightarrow{\text{a.s.}} F$, 从而 $X_n \xrightarrow{\text{a.s.}} X$, 进而对有界连续函数 g, 有 $g(X_n) \xrightarrow{\text{a.s.}} g(X)$. 由 Lebesgue 控制收敛定理 (或者称为有界收敛定理), 得

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) dF_n(x) = \lim_{n \to \infty} \mathbb{E}g(X_n) = \mathbb{E}g(X) = \int_{\mathbb{R}} g(x) dF(x),$$

这便证明了该结论.

命题 3.5. 设 r > 0, $X_n \stackrel{d}{\rightarrow} X$, 如果存在 p > 0, 使得

$$\sup_{n\geq 1} \mathbb{E}|X_n|^p < \infty,$$

则对任意的 r < p, 都有 $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$.

证明. 设 F_n , F 分别是 X_n , X 的分布函数, 则 $F_n \stackrel{v}{\to} F$. 对于 A > 0, 定义函数

$$f_A(x) = \begin{cases} |x|^r, & |x| \le A, \\ A^r, & |x| > A, \end{cases}$$

则 f_A 是有界连续函数, 根据 Helly 第二定理得

 $\lim_{n\to\infty} \int_{\mathbb{R}} f_A(x) dF_n(x) = \int_{\mathbb{R}} f_A(x) dF(x),$

并且

$$\int_{\mathbb{R}} |f_A(x) - |x|^r |dF_n(x) \leq \int_{|x| > A} |x|^r dF_n(x)$$

$$= \mathbb{E} \left(|X_n|^r \cdot I_{\{|X_n| > A\}} \right)$$

$$\leq \frac{1}{A^{p-r}} \cdot \mathbb{E} \left(|X_n|^p \cdot I_{\{|X_n| > A\}} \right)$$

$$\leq \frac{M}{A^{p-r}},$$

因此当
$$A \to \infty$$
 时, $\int_{\mathbb{R}} f_A(x) dF_n(x)$ 对 n 一致收敛于 $\int_{\mathbb{R}} |x|^r dF(x) = \mathbb{E}(|X|^r)$,进而有
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |x|^r dF_n(x) = \lim_{n \to \infty} \int_{-\infty}^{\infty} |x|^r dF_n(x)$$

$$= \lim_{n \to \infty} \lim_{n \to \infty} \int_{-\infty}^{\infty} f_A(x) dF_n(x)$$

$$= \lim_{A \to \infty} \lim_{n \to \infty} \int_{-\infty}^{\infty} f_A(x) dF_n(x)$$

$$= \lim_{A \to \infty} \int_{-\infty}^{\infty} f_A(x) dF(x)$$

$$= \int_{\mathbb{R}} |x|^r dF(x),$$

也即 $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$.

3.2 随机变量序列的一致可积

现在开始探讨 $X_n \stackrel{p}{\to} X$ 与 $X_n \stackrel{L^r}{\longrightarrow} X$ 之间的关系. 我们需要对 $\{X_n\}$ 加一些条件. 对随机变量序列 $\{X_n\}$, 在此引入一个新的定义.

定义 3.2 (一致可积). 设 $\{X_n\}$ 是随机变量序列, 如果

$$\lim_{A \to \infty} \sup_{n > 1} \mathbb{E}\left(|X_n| \cdot I_{\{|X_n| > A\}}\right) = 0,$$

则称 $\{X_n\}$ 一致可积.

一致可积也可以写成

$$\lim_{A \to \infty} \mathbb{E}\left(|X_n| \cdot I_{\{|X_n| > A\}}\right) = 0, \quad \forall n \ge 1.$$

接下来给出一致可积的等价形式.

定理 3.6. 设 $\{X_n\}$ 是随机变量序列,则 $\{X_n\}$ 一致可积当且仅当以下两条性质同时成立:

(1) 一致有界, 也即存在 M > 0, 使得

$$\sup_{n \ge 1} \mathbb{E}|X_n| < M;$$

(2) 一致绝对连续, 也即对任意的 $\varepsilon>0$, 存在 $\delta>0$, 使得对任意的满足 $\mathbb{P}(E)<\delta$ 的 $E\in\mathcal{F}$, 都有

$$\sup_{n>1} \mathbb{E}\left(|X_n|\cdot I_E\right) < \varepsilon.$$

证明. 一方面, 设 $\{X_n\}$ 一致可积, 则对任意的 $n \ge 1$, 都有

$$\lim_{A \to \infty} \mathbb{E}\left(|X_n| \cdot I_{\{|X_n| > A\}}\right) = 0,$$

从而存在 A, 使得 $\mathbb{E}\left(|X_n|\cdot I_{\{|X_n|>A\}}\right)<1$, 进一步有

$$\mathbb{E}|X_n| = \mathbb{E}\left(|X_n| \cdot I_{\{|X_n| \le A\}}\right) + \mathbb{E}\left(|X_n| \cdot I_{\{|X_n| > A\}}\right)$$

$$\leq A \cdot \mathbb{P}(|X_n| \le A) + 1$$

$$\leq A + 1,$$

上式与 n 无关, 这便说明了 $\{X_n\}$ 一致有界; 同时, 对任意的 $\varepsilon > 0$, 存在 A > 0, 使得

$$\mathbb{E}\left(|X_n|\cdot I_{\{|X_n|>A\}}\right)<\frac{\varepsilon}{2}.$$

取 $\delta = \frac{\varepsilon}{2A}$, 设 $E \in \mathcal{F}$, 且 $\mathbb{P}(E) < \delta$, 则

$$\mathbb{E}(|X_n| \cdot I_E) = \mathbb{E}(|X_n| \cdot I_E \cdot I_{\{|X_n| \le A\}}) + \mathbb{E}(|X_n| \cdot I_E \cdot I_{\{|X_n| > A\}})$$

$$\leq A \cdot \mathbb{P}(E) + \mathbb{E}(|X_n| \cdot I_{\{|X_n| > A\}})$$

$$\leq A \cdot \frac{\varepsilon}{2A} + \frac{\varepsilon}{2} = \varepsilon,$$

上式与n无关,说明了 $\{X_n\}$ 一致绝对连续.

反之, 设 $\{X_n\}$ 一致有界且一致绝对连续, 则对任意的 $n \ge 1$, 应用 Chebyshev 不等式得

$$\mathbb{P}(|X_n| > A) \le \frac{\mathbb{E}|X_n|}{A} < \frac{M}{A},$$

对任意的 $\delta > 0$, 只要 $A > \frac{M}{\delta}$, 就有 $\mathbb{P}(|X_n| > A) < \delta$. 取 $E = \{|X_n| > A\}$, 对任意的 $\varepsilon > 0$, 都存在 δ 以及 $A > \frac{M}{\delta}$, 使得

$$\mathbb{E}\left(|X_n|\cdot I_E\right) = \mathbb{E}\left(|X_n|\cdot I_{\{|X_n|>A\}}\right) < \varepsilon,$$

这便说明了 $\{X_n\}$ 绝对可积.

介绍一致可积性是为了在 $X_n \stackrel{p}{\to} X$ 的情况下, 探究加入 $X_n \stackrel{L^r}{\longrightarrow} X$ 的条件所能得到的结果. 以下设 $X_n, X \in L^r(\Omega)$.

定理 3.7. 设 r > 0, $X_n \stackrel{p}{\to} X$, 下列命题等价:

(1) $\{|X_n|^r\}$ 一致可积;

- (2) $X_n \xrightarrow{L^r} X$;
- (3) $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$.

证明. (1) \Longrightarrow (2): 设 $\{|X_n|^r\}$ 一致可积, 对任意的 $n \ge 1$, 由 C_r 不等式得

$$|X_n - X|^r \le 2^{r-1} \cdot (|X_n|^r + |X|^r)$$
,

因此 $\{|X_n - X|^r\}$ 也一致可积. 设 $\varepsilon > 0$, 由 $X_n \stackrel{p}{\to} X$ 得 $\mathbb{P}(|X_n - X| > \varepsilon) \to 0$, 并且存在 M > 0, 使得 $|X_n - X| < M$, a.s.. 计算得

$$\mathbb{E}|X_n - X|^r = \mathbb{E}\left(|X_n - X|^r \cdot I_{\{|X_n - X| \le \varepsilon\}}\right) + \mathbb{E}\left(|X_n - X|^r \cdot I_{\{|X_n - X| > \varepsilon\}}\right)$$

$$\leq \varepsilon^r + \mathbb{E}\left(|X_n - X|^r \cdot I_{\{|X_n - X| > \varepsilon\}}\right)$$

$$\leq \varepsilon^r + M^r \cdot \mathbb{P}(|X_n - X| > \varepsilon)$$

$$\to \varepsilon^r,$$

再令 $\varepsilon \to 0$ 即可得 $X_n \xrightarrow{L^r} X$.

- $(2) \Longrightarrow (3)$: 这是已经证明的结论.
- $(3) \Longrightarrow (1)$: 设 $\mathbb{E}|X_n|^r \to \mathbb{E}|X|^r$, 对于 A > 0, 由 Fatou 引理得

$$\mathbb{E}\left(\left|X\right|^r \cdot I_{\left\{|X\right|^r \le A\right\}}\right) \le \liminf_{n \to \infty} \mathbb{E}\left(\left|X_n\right|^r \cdot I_{\left\{|X_n\right|^r \le A\right\}}\right),$$

因此

$$\lim \sup_{n \to \infty} \mathbb{E}\left(|X_n|^r \cdot I_{\{|X_n|^r > A\}}\right) \le \mathbb{E}\left(|X|^r \cdot I_{\{|X|^r > A\}}\right).$$

由 $X \in L^r(\Omega)$ 知, 当 $A \to \infty$ 时有 $\mathbb{E}\left(|X|^r \cdot I_{\{|X|^r > A\}}\right) \to 0$, 因此对任意的 $\varepsilon > 0$, 存在 $A_0 > 0$ 及 n_0 , 使得当 $A > A_0$ 时, 有

$$\sup_{n>n_0} \mathbb{E}\left(|X_n|^r \cdot I_{\{|X_n|^r>A\}}\right) < \varepsilon.$$

又当 $n \leq n_0$ 时, 根据 $X_n \in L^r(\Omega)$ 知, 当 $A \to \infty$ 时有 $\mathbb{E}\left(|X_n|^r \cdot I_{\{|X|^r > A\}}\right) \to 0$, 因此

$$\lim_{A\to\infty} \sup_{n\geq 1} \mathbb{E}\left(|X_n|^r \cdot I_{\{|X_n|^r>A\}}\right) = 0,$$

也即 $\{|X_n|^r\}$ 一致可积.

推论. 设 $\{X_n\}$ 一致可积, 则 $X_n \stackrel{p}{\to} X$ 当且仅当 $X_n \stackrel{L^r}{\longrightarrow} X$.

证明. 直接应用上述结论即可.