ЗАЧЕМ НАМ ПРОИЗВОДНАЯ И ИНТЕГРАЛ, КОГДА ОСТЫВАЕТ ВОДА В ЧАШКЕ ТАЛИПОВ С.Н., г. Павлодар, 2021

Что мы имеем:

- 1) Стакан с горячей водой (42,5 °C)
- 2) Градусник (водный, можно аквариумный)
- 3) Таймер (можно взять кухонный таймер)
- 4) Ручка, блокнот
- 5) Крутой калькулятор Casio fx-991EX (если нет, то возьмите эмулятор для ПК или телефона, а лучше купите!)
- 6) Программы построения графиков для ПК:
 - a. Advanced Grapher: https://www.alentum.com/files/AGrapherSetup.exe
 - b. Graph: https://www.padowan.dk/bin/SetupGraph-4.4.2.exe

Что мы хотим:

- 1) Узнать, когда конкретно остынет вода в нашем стакане (до 24 °C)
- 2) Понять, зачем нам нужна производная и интеграл, когда мы ждем остывание

1. ИСХОДНЫЕ ДАННЫЕ

Время	Температура, °С		Время, мин dT (комнатная- текущая), °C	
0	42,50		<mark>0,00</mark>	<mark>18,50</mark>
1:10	42,00		<mark>1,17</mark>	<mark>18,00</mark>
2:47	41,00		<mark>2,78</mark>	<mark>17,00</mark>
6:00	40,00		<mark>6,00</mark>	<mark>16,00</mark>
14:18	38,00		<mark>14,30</mark>	<mark>14,00</mark>
18:20	37,00		<mark>18,33</mark>	<mark>13,00</mark>
34:00	34,00	>	<mark>34,00</mark>	<mark>10,00</mark>
41:15	33,00		<mark>41,25</mark>	<mark>9,00</mark>
48:00	32,00		<mark>48,00</mark>	<mark>8,00</mark>
58:20	30,90		<mark>58,33</mark>	<mark>6,90</mark>
1:02:30	30,50		<mark>62,50</mark>	<mark>6,50</mark>
Температура в комнате: 24,00 °C				

Перевод времени с обычного на минутное производим с помощью специальной функции калькулятора <u>и округлим до 2 знаков после запятой</u>:

1.166666667

2. НАЧАЛО АНАЛИЗА – ПОИСК ФОРМУЛЫ

Определяем с помощью программы Advanced Grapher или нашего калькулятора формулу остывания воды в нашем стакане (регрессионный анализ экспоненциальной зависимостью 1): f(x)=17.9326166*exp(-0.016578201*x), где x- время от начала остывания (минуты), f(x) — разница между текущей температурой воды и комнатной температурой (°C).

С помощью программы Graph посмотрим график нашей функции:

Вычислим таблицу значений найденной функции с шагом 30 минут. Это можно сделать с помощью программы Graph или функции построения таблиц у калькулятора.

Из таблицы видно, что на 355 минуте (это 5 часов 55 минут, или 5,92 часа) вода практически стала комнатной:

х	f(x)
0	17,9326
30	10,9056
60	6,6322
90	4,0333
120	2,4528
150	1,4917
180	0,9071
210	0,5517
240	0,3355
270	0,204
300	0,1241
330	0,0755
<mark>355</mark>	0,0499

Сверим контрольные точки расчета и реальных показаний (учтем, что у градусника есть погрешности в крайних значениях):

х, мин	f(x), °C	Наши реальные замеры, °С	
0	17,9326	<mark>18,50</mark>	
6	16,2347	<mark>16,00</mark>	
34	10,2059	<mark>10,00</mark>	
48	8,0919	<mark>8,00</mark>	

Хм, Ньютон был прав, все сходится!

¹ В конце 17 века британский ученый Исаак Ньютон изучал охлаждение тел. Эксперименты показали, что скорость охлаждения примерно пропорциональна разнице температур между нагретым телом и окружающей средой. Этот факт описывается в виде экспоненциальной зависимости.

3. ДЕЛАЕМ КАСАТЕЛЬНЫЕ К ГРАФИКУ НАШЕЙ ФОРМУЛЫ

Делаем касательные к нашим точкам графика с помощью программы Graph и определяем значение f(x) для точки x, для которой мы сделали касательную:

Найдем аппроксимированные значения производной нашей функции с помощью калькулятора

для конкретных х ($\underline{e}\underline{\partial}$ иница измерения $\underline{FPA}\underline{J}\underline{V}\underline{C}\underline{I}$) -0. 2972905223 -0. 2972905223 , а также арктангенсы производной:

$$|\tan^{-1}\left(\frac{d}{dx}(17.93261)\right)|_{x=0}^{x} |\cos^{-0.016578201}|_{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x} |\cos^{-0.016578201}|_{x=0}^{x$$

х, мин	f(x), °C	Найдем аппроксимированные значения производной функции f(x): f'(x), °C/мин ЭТО СКОРОСТЬ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ НА МОМЕНТ x	Найдем арктангенсы аппроксимированного значения производной arctan(f'(x)), градусы ЭТО УГОЛ КАСАТЕЛЬНОЙ НА МОМЕНТ х
0	17,9326	-0,2973	-16.6
6	16,2347	-0,2691	-15.1
34	10,2059	-0,1692	-9.6
48	8,0919	-0,1341	-7.7
100	3,4171	-0,0566	-3.2
300	0,1241	-0,0021	-0.1
355	0,0499	-0,0008	0

Найдем значения производной, ее график и формулу для нашей функции с помощью программы Graph:

Производная нашей функции определилась такой: f'(x)=-0.29729052*exp(-0.0165782*x):

Вычисленные данные производных в программе Graph совпали со значениями, полученными на калькуляторе! Можете сами проверить! Отлично!

4. ЗАЧЕМ НАМ ИНТЕГРАЛ

Давайте посмотрим площадь нашей функции f(x) с помощью программы Graph:

Ничего ценного... А теперь давайте посмотрим площадь нашей функции f'(x), т.е. производной с помощью программы Graph:

Что мы увидели? Что площадь фигуры с производной для x от 0 до 355 равна -17,9 °C, а это есть наше значение для начала отсчета! Таким образом, это означает, что за 355 минут наша вода остыла на 17,9 °C. Вот такс!

Найдем площадь от 34 °C до 48 °C. Что мы увидели? Что площадь фигуры с производной для х от 34 до 48 равна -2.1 °C, а это соответствует 10.2059-8,0919=2.144. Таким образом, это означает, что с 34 по 48 минуту наша вода остыла на 2,1 °C.

х, мин	f(x), °C
34	10,2059
48	8,0919

5. ИТОГИ

t, мин	f(t), °C	Производная $\frac{\mathrm{d}}{\mathrm{d}x}$ функции f(t): f'(t), °C/мин ЭТО СКОРОСТЬ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ НА МОМЕНТ t	arctan(f'(t)), градусы <mark>ЭТО УГОЛ КАСАТЕЛЬНОЙ</mark> <mark>НА МОМЕНТ</mark> t	Интеграл
0	17,9326	-0,2973 (остывает 18 °C в час)	-16.6	0
6	16,2347	-0,2691 (остывает 16 °C в час)	-15.1	-1,7 (уже остыла на 2 °C с 18 °C)
34	10,2059	-0,1692 (остывает 10 °C в час)	-9.6	-7,7 (уже остыла на 8 °C с 18 °C)
48	8,0919	-0,1341 (остывает 8 °C в час)	-7.7	-9,8 (уже остыла на 10°C с 18°C)

Нахождение производной $\overline{\mathbf{dx}}$ основной функции f(t) для заданной температуры показывает, с какой скоростью изменяется температура в это время. Отрицательное значение означает уменьшение температуры.

Арктангенс значения производной $\overline{\mathbf{d}\boldsymbol{z}}$ основной функции f(t) для заданной температуры показывает угол касательной для данной температуры. Отрицательное значение означает уменьшение температуры.

Нахождение интеграла $^{\int_{34}}$ производной функции f'(t) для заданного диапазона времени показывает, как изменилась температура за это время. Отрицательное значение означает уменьшение температуры.

6. А ЕСЛИ ЕСТЬ ТОЛЬКО КАЛЬКУЛЯТОР?

С помощью калькулятора можно все рассчитать даже быстрее чем на компьютере, если знать хорошо его возможности и функции. Не верите? Приступим...

1) Вводим в ячейку C значение 24 (°C): **2 4** sto **x** 24 - C 24

и вводим туда входные данные в удобном естественном виде, как было во время нашего эксперимента:

Время, минуты и секунды - х	Температура, °C - у
0 🚍	42.5 — SHIFT STO \$\mathbb{X}^1 =
1 •••• 10 •••• =	42 - SHIFT STO ZT =
2 •••• 47 •••• =	41 — SHIFT STO x
6 •••• 0 •••• =	40 — SHIFT STO X =
14 •••• 18 •••• =	38 — SHIFT STO x
18 •••• 20 •••• =	37 — SHIFT STO X =
34 •••• 0 •••• 🖃	34 — SHIFT STO X =
41 •••• 15 •••• =	33 - SHIFT STO X =
48 •••• 0 •••• =	32 — SHIFT STO x
58 ••• 20 ••• =	30.9 — SHIFT STO x =
60 + 2 ••• 30 ••• =	30.5 — SHIFT STO X " =

Получаем формулу регрессии:

$f(t) = 17.93268596 \exp(-0.016577964 t)$

Формула немного отличается от той, что была ранее, потому что теперь наше время задано <u>более точно</u> в минутах без округлений, как это было в самом начале в первой таблице.

Сохраним теперь а и b в одноименные ячейки калькулятора:

2) Создаем таблицу значений найденной функции и таким образом узнаем, когда вода остынет:

Тут мы использовали наши ячейки А и В, и это круто!

3) Находим для желаемых точек значения производной с помощью $\frac{d\mathbf{x}}{d\mathbf{x}}$ - т.е. узнаем скорость изменения температуры в нужные нам моменты времени. КСТАТИ!!! Можно делать также таблицы производных, вот так задавая функцию:

$$f(x) = \frac{d}{dx} (A \times e^{B \times x}) \Big|_{x=x}$$
 или даже так
$$f(x) = \frac{d}{dx} (A e^{Bx}) \Big|_{x=x}$$

Хитрость в х=х и получается цикл с разным х, как нам и надо!

А вот и результаты производных для разного времени:

 $\int_{0}^{355} AB e^{Bx} dx$

4) Мы не сможем найти нужные нам интегралы, пока не узнаем формулу производной. Методом регрессии она не подберется. Остается воспользоваться правилами нахождения производных (смотрим учебник с правилами нахождения производных) и самим выводим формулу:

```
f(t) = 17.93268596*exp(-0.016577964*t) \\ f'(t) = (17.93268596*-0.016577964)*exp(-0.016577964*t) = -0.29728742226819*exp(-0.016577964*t)
```

Производная получилась практически такая же, как и ранее через программу Graph! Математика рулит! Ура!

- 5) Находим нужные нам интегралы через т.е. узнаем, насколько вода остыла за выбранный промежуток времени, например:
 - насколько вода остыла с начала остывания до 355 минут:

Ответ: -17.88282666 на 18°C. Сверим данные с таблицей исходных данных: 42.5°C - 24°C = 18.5°C. Небольшое расхождение связано с большей погрешностью использованного термометра в его крайних измеряемых значениях;

- насколько вода остыла с 6 минут от начала остывания до 48 минут:

$$\int_{6}^{48} ABe^{Bx} dx$$
Ответ: -8.142747751 на 8°C. Сверим данные для указанного времени с таблицей исходных данных: 40 °C - 32 °C = 8°C. Тут все сходится! На этом все! Всем добра!