Load Dataset In [2]: import numpy as np import pandas as pd df_wine=pd.read_csv("WineQT.csv") print(df_wine) fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.700 0.00 1.9 0.076 1 7.8 0.880 0.00 2.6 0.098	
2 7.8 0.760 0.04 2.3 0.092 3 11.2 0.280 0.56 1.9 0.075 4 7.4 0.700 0.00 1.9 0.076 1138 6.3 0.510 0.13 2.3 0.076 1139 6.8 0.620 0.08 1.9 0.068 1140 6.2 0.600 0.08 2.0 0.090 1141 5.9 0.550 0.10 2.2 0.062 1142 5.9 0.645 0.12 2.0 0.075 free sulfur dioxide total sulfur dioxide density pH sulphates \ 0 11.0 34.0 0.99780 3.51 0.56 1 25.0 67.0 0.99880 3.20 0.68	
2 15.0 54.0 0.99700 3.26 0.65 3 17.0 60.0 0.99800 3.16 0.58 4 11.0 34.0 0.99780 3.51 0.56 1138 29.0 40.0 0.99574 3.42 0.75 1139 28.0 38.0 0.99651 3.42 0.82 1140 32.0 44.0 0.99490 3.45 0.58 1141 39.0 51.0 0.99512 3.52 0.76 1142 32.0 44.0 0.99547 3.57 0.71 alcohol quality Id 0 9.4 5 0 1 9.8 5 1	
2 9.8 5 2 3 9.8 6 3 4 9.4 5 4 1138 11.0 6 1592 1139 9.5 6 1593 1140 10.5 5 1594 1141 11.2 6 1595 1142 10.2 5 1597 [1143 rows x 13 columns]	
Analyse Dataset In [3]: df=df_wine.drop(labels='Id', axis=1) In [4]: df.shape Out[4]: (1143, 12) In [5]: df.head()	
Out[5]: fixed acidity volatile acidity citric acid residual sugar chloride free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality 7 7.4 0.70 0.00 1.9 0.076 1.10 3.40 0.9978 3.51 0.56 9.4 5 7 7.8 0.88 0.07 0.07 0.00 2.6 0.098 2.50 6.70 0.9986 3.20 0.698 3.20 0.6	
Maria Mari	
50% 7.900000 0.520000 0.250000 2.200000 0.079000 13.000000 0.996680 3.310000 0.620000 10.200000 6.000000 75% 9.100000 0.640000 0.420000 2.600000 0.090000 21.000000 61.000000 0.997845 3.400000 0.730000 11.100000 6.000000 max 15.900000 1.580000 1.000000 15.500000 0.611000 68.000000 289.000000 1.003690 4.010000 2.000000 14.900000 8.000000 In [7]: df.info() <pre></pre>	
# Column Non-Null Count Dtype	
In [8]: In [8]: Out[8]: outing acidity 0 coloride co	
total sulfur dioxide 0 density 0 pH 0 sulphates 0 alcohol 0 quality 0 dtype: int64 In [9]: df['quality'].unique() Out[9]: array([5, 6, 7, 4, 8, 3], dtype=int64)	
<pre>import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(6,4)) sns.countplot(df['quality']) plt.show() c:\users\asus\appdata\local\programs\python\python39\lib\site-packages\seaborn\decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will varnings.warn(</pre> 500	.l be `data
400 - 100 -	
In [11]: plt.figure(figsize=(6,4)) sns.barplot(x='quality',y='pH',data=df,palette='inferno') plt.show() 3.5 3.0 2.5 2.0	
In [12]: plt.figure(figsize=(6,4)) sns.barplot(x='guality',y='alcohol',data=df,palette='inferno')	
plt.show() 12 10 10 10 10 10 10 10 10 10	
In [13]: cols=['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides','density','pH','sulphates','alcohol','quality'] sns.pairplot(df[cols],height=2) plt.tight_layout() plt.show()	
15.0 20.0 7.5 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	
10025 10000 10005 100000 10000	
3.75 3.50 3.00 2.75 2.0 8 15 8 10	
To complete the control of the contr	
<pre>print("HEAT MAP") cm=np.corrcoef(df[cols].values.T) sns.set(font_scale=1.5) hm=sns.heatmap(cm,</pre>	
Volatile acidity volatile acidity volatile acidity volatile acidity volatile acidity citric acid residual sugar chlorides u17-010 18 18 100 007 038 -012 002 008 020 000 density pH sulphates alcohol quality u2-0.41 024 022 014 0.04 023 000 010 048 cutoff acidity volatile acidity u2-0.45 100 018 025 037 032 031 011 024 controlled acidity u37-010 18 100 017 038 -012 020 035 012 020 050 u1 006 025 007 100 021 028 037 023 012 u2-0.41 024 022 015 010 048 u2-0.41 024 022 010 048 u2-0.41 024 022 012 018 005 020 048 u2-0.41 024 022 012 018 005 020 048 u2-0.45 024 023 009 u2-0.48 035 010 048 u2-0.45 024 023 009 u2-0.48 035 017 014 016 020 020 u2-0.48 035 017 014 017 017 018 018 018 018 018 018 018	
In [15]: x=df.iloc[:,:-1].values y=df.iloc[:,:-1].values print(x) print(x) print(x) print(x) print(x, shape)	
print (y.shape) [[7.4	
<pre>In [20]:</pre>	
In [22]: from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score Implement three Models with hyperParameter tuning In [24]: #Random forest	
<pre>from sklearn.ensemble import RandomForestClassifier forest=RandomForestClassifier(criterion='entropy', max_features=3,n_estimators=180,n_jobs=3) forest.fit(x_train_sc,y_train) print("Accuracy of random forest on training dataset: ",forest.score(x_train_sc,y_train)) y_pred_forest=forest.predict(x_test_sc) forest_score=accuracy_score(y_test,y_pred_forest) forest_results = confusion_matrix(y_test, y_pred_forest).sum()) print('Miscalssified samples: %d'%(y_test!=y_pred_forest).sum()) print('Accuracy score of Random forest on test datset: %.2f'%forest_score) print("Result of Confusion matrix: \n",forest_results)</pre>	
Accuracy of random forest on training dataset: 1.0 Miscalssified samples: 36 Accuracy score of Random forest on test datset: 0.69 Result of Confusion matrix: [[0 0 1 0 0 0] [0 0 3 9 13 0 0] [0 0 39 13 0 0] [0 0 11 33 1 0] [0 0 0 5 7 0] [0 0 0 0 2 0]] In [25]: #tuning of Hyperoarameter	
<pre>from sklearn.model_selection import GridSearchCV import numpy as np max_features_range = np.arange(1,12,1) n_estimators_range = np.arange(10,210,10) param_grid = dict(max_features=max_features_range,n_estimators_range)</pre> In [26]: rf=RandomForestClassifier() grid = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5)	
<pre>In [27]: grid.fit(x_train_sc,y_train) Out[27]: GridSearchCV(cv=5, estimator=RandomForestClassifier(),</pre>	
In [30]: grid_results = pd.concat([pd.DataFrame(grid.cv_results_["params"]),pd.DataFrame(grid.cv_results_["mean_test_score"], columns=["Accuracy"])],axis=1) Out[30]: max_features	
In [31]: #Decision tree from sklearn.tree import DecisionTreeClassifier tree=DecisionTreeClassifier(criterion='entropy', max_depth=3) tree.fit(x_train_sc,y_train) Out[31]: DecisionTreeClassifier(criterion='entropy', max_depth=3) In [32]: u_read_tree=tree=predict(v_train_sc)	
print("Accuracy of Decision tree model on training set: ", tree.score(x_train_sc,y_train)) tree_results=confusion_matrix(y_test,y_pred_tree) tree_score=accuracy_score(y_test,y_pred_tree) print('Miscalssified samples: %d'%(y_test!=y_pred_tree).sum()) print('Accuracy score of Decision Tree model on test set: %.2f'%tree_score) print("Result of Confusion matrix: \n",tree_results) Accuracy of Decision tree model on training set: 0.5963035019455253 Miscalssified samples: 49 Accuracy score of Decision Tree model on test set: 0.57 Result of Confusion matrix:	
[[0 0 0 1 0 0]	
In [35]: grid2 = GridSearchCV(tree, param_grid=param_grid2, cv=10, n_jobs=-1) In [35]: grid2.fit(x_train_sc,y_train) c:\users\asus\appdata\local\programs\python\python39\lib\site-packages\sklearn\model_selection_split.py:676: UserWarning: The least populated class in y has only 5 members, which is less than n_splits=10. warnings.warn(GridSearchCV(cv=10,	
In [36]: grid2.best_score_ Out[36]: 0.5875975632971635 In [37]: grid2.best_params_ Out[37]: ('criterion': 'entropy', 'max_depth': 3) In [38]: print("The best parameter are %s with a score of %0.2f"	
<pre>% (grid2.best_params_,grid2.best_score_)) The best parameter are ('criterion': 'entropy', 'max_depth': 3) with a score of 0.59 In [39]: #Knn</pre>	
<pre>knn_results = confusion_matrix(y_test,knn_pred) knnacc_score = accuracy_score(y_test, knn_pred) print("The Accuracy of Knn model for k=",k,"is:%0.4f"%knnacc_score) print("The confusion matrix is: \n", knn_results) knn_scorelist.append(knnacc_score) The Accuracy of Knn model for k= 1 is:0.6348 The confusion matrix is: [[0 0 1 0 0 0] [0 0 3 3 0 0] [0 1 38 13 0 0]</pre>	
[0 0 13 29 3 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 2 is:0.6174 The confusion matrix is: [[0 0 1 0 0 0 0] [0 2 1 0 0 0] [0 2 2 8 0 0] [0 0 19 24 2 0] [0 0 3 6 3 0] [0 0 0 2 0 0]] The Accuracy of Knn model for k= 3 is:0.5826 The confusion matrix is:	
[[0 0 1 0 0 0] [0 1 0 2 0 0] [0 0 34 17 1 0] [0 0 14 28 3 0] [0 0 2 6 4 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 4 is:0.5913 The confusion matrix is: [[0 0 1 0 0 0] [0 1 1 0 0] [0 1 2 5 5 0]	
[0 0 0 1 1 0]] The Accuracy of Knn model for k= 5 is:0.5826 The confusion matrix is: [[0 0 1 0 0 0] [0 0 32 18 2 0] [0 0 13 29 3 0] [0 0 2 4 6 0] [0 0 0 1 1 0] The Accuracy of Knn model for k= 6 is:0.6087 The confusion matrix is: [[0 0 1 0 0 0] [0 0 1 2 0 0]	
[0 0 39 11 2 0] [0 0 15 27 3 0] [0 0 1 7 4 0] [0 0 1 1 0]] The Accuracy of Knn model for k= 7 is:0.6000 The confusion matrix is: [[0 0 1 0 0 0] [0 0 1 2 0 0] [0 1 36 14 1 0] [0 0 1 32 8 4 0] [0 0 1 6 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 8 is:0.6435	
The confusion matrix is: [[0	
[0 0 1 6 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 10 is:0.6609 The confusion matrix is: [[0 0 1 0 0 0] [0 0 0 3 0 0] [0 0 0 38 14 0 0] [0 0 13 2 0] [0 0 1 6 5 0] [0 0 1 6 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 11 is:0.6609 The confusion matrix is: [[0 0 1 0 0 0]	
[0 0 0 3 0 0] [0 0 37 15 0 0] [0 0 8 35 2 0] [0 0 1 7 4 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 12 is:0.6609 The confusion matrix is: [[0 0 1 0 0 0] [0 0 0 3 0 0] [0 0 0 3 0 0] [0 0 39 13 0 0] [0 0 39 13 0 0] [0 0 1 7 4 0] [0 0 1 7 4 0] [0 0 0 1 7 4 0]	
The Accuracy of Knn model for k= 13 is:0.6435 The confusion matrix is: [[0 0 1 0 0 0] [0 0 3 3 0 0] [0 0 8 35 2 0] [0 0 1 7 4 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 14 is:0.6609 The confusion matrix is: [[0 0 1 0 0 0] [0 0 0 3 0 0] [0 0 0 3 0 0] [0 0 0 3 0 0]	
[0 0 8 34 3 0] [0 0 1 6 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 15 is:0.6261 The confusion matrix is: [[0 0 1 0 0 0] [0 0 3 0 0] [0 0 34 18 0 0] [0 0 13 2 3 0] [0 0 15 6 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 16 is:0.6348 The confusion matrix is:	
[[0 0 1 0 0 0] [0 0 3 3 0 0] [0 0 35 17 0 0] [0 0 133 2 0] [0 0 10 33 2 0] [0 0 1 6 5 0] [0 0 1 1 0]] The Accuracy of Knn model for k= 17 is:0.6174 The confusion matrix is: [[0 0 1 0 0 0] [0 0 0 3 0 0] [0 0 36 16 0 0] [0 0 36 16 0 0] [0 0 12 30 3 0] [0 0 12 30 3 0] [0 0 0 7 5 0] [0 0 0 1 1 0]]	
[0 0 0 1 1 0]] The Accuracy of Knn model for k= 18 is:0.6348 The confusion matrix is: [[0 0 1 0 0 0] [0 0 3 0 0] [0 0 3 0 0] [0 0 12 32 1 0] [0 0 0 7 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 19 is:0.6435 The confusion matrix is: [[0 0 1 0 0 0] [0 0 0 3 0 0] [0 0 0 3 0 0] [0 0 0 3 0 0] [0 0 0 3 1 0 0] [0 0 0 3 1 0 0]	
[0 0 37 15 0 0] [0 0 11 32 2 0] [0 0 0 7 5 0] [0 0 0 1 1 0]] The Accuracy of Knn model for k= 20 is:0.6261 The confusion matrix is: [[0 0 1 0 0 0] [0 0 37 15 0 0] [0 0 37 15 0 0] [0 0 12 31 2 0] [0 0 12 31 2 0] [0 0 0 8 4 0] [0 0 0 8 4 0] [0 0 0 1 1 0] The Accuracy of Knn model for k= 21 is:0.6435 The confusion matrix is:	
[[0 0 1 0 0 0] [0 0 3 0 0] [0 0 11 33 1 0] [0 0 0 8 4 0] [0 0 0 1 1 0]] In [46]: print("Maximum accuracy using knnmodel is: %0.4f " %max(knn_scorelist)) Maximum accuracy using knnmodel is: 0.6609 In [42]: curve=pd.DataFrame(knn_scorelist)	
Out[42]: curve=pd.DataFrame(knn_scorelist) curve.plot() 0.66 0.64 0.62	
0.60 0.58 0 5 10 15 20 In [47]: from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier (n_neighbors=10, p=2) knn.fit(x_train_sc,y_train) Out[47]: KNeighborsClassifier(n_neighbors=10)	
Out[47]: KNeighborsClassifier(n_neighbors=10) In [48]: knn_pred=knn.predict(x_test_sc) print('misclassified samples: %d'%(y_test!=knn_pred).sum()) from sklearn.metrics import accuracy_score knn_score=accuracy_score(y_test,knn_pred) print('Accuracy:%.2f'%knn_score) misclassified samples: 39 Accuracy:0.66	
Ensemble Models In [49]: #Ensemble model #	
In [50]: ada_pred=ada.predict(x_test_sc) ada_results=confusion_matrix(y_test,ada_pred) ada_score=accuracy_score(y_test,ada_pred) ada_score=accuracy_score(y_test,ada_pred) print("Accuracy of Decision tree model on training set: ", ada.score(x_train_sc,y_train)) print("Miscalssified samples: %d'%(y_test!=ada_pred).sum()) print("Accuracy score of Decision Tree model on test set: %.2f'%ada_score) print("Result of Confusion matrix: \n",ada_results) Accuracy of Decision tree model on training set: 0.5369649805447471 Miscalssified samples: 41 Accuracy score of Decision Tree model on test set: 0.64	
<pre>bag.fit(x_train_sc,y_train) Out[51]: BaggingClassifier(n_estimators=100, random_state=0) In [52]: bag_pred=ada.predict(x_test_sc) bag_results=confusion_matrix(y_test,bag_pred) bag_score=accuracy_score(y_test,bag_pred) print("Accuracy of Decision tree model on training set: ", bag.score(x_train_sc,y_train)) print('Miscalssified samples: %d'%(y_test!=bag_pred).sum()) print('Accuracy score of Decision Tree model on test set: %.2f'%bag_score) print("Result of Confusion matrix: \n",bag_results)</pre>	
Accuracy of Decision tree model on training set: 1.0 Miscalssified samples: 41 Accuracy score of Decision Tree model on test set: 0.64 Result of Confusion matrix: [[0 0 0 1 0 0] [0 0 1 2 0 0] [0 0 45 7 0 0] [0 0 0 15 28 0 2] [0 0 0 2 6 0 4] [0 0 0 1 0 1]] Comparing the Accuracy of models on test datasets	
Comparing the Accuracy of models on test datasets In [53]: names = ["Random_forest", "Knn", "Decision_tree", "Adaboost", "Bagging"] classifiers = [rf, knn, tree, ada, bag] scores = [forest_score, knn_score, tree_score, ada_score, bag_score] In [54]: df = pd. DataFrame() df('name') = names df('Accuracy score') = scores df	
Out[54]: name Accuracy score	
In [57]: cm = sns.light_palette("yellow", as cmap=True)	
A daboost 0.643478 Bagging 0.643478 In [59]: sns.set(style="dark") ax = sns.barplot(y="name", x="Accuracy score", data=df) Random_forest Knn	