Advanced Transform Methods

Wavelet Transform from Filter Banks

Andy Watson

Wavelet transform from Filter Banks

From Multiresolution Analysis (MRA),

if signal s(t) is in V_m for fininte m, then s(t) determined by

$$s(t) = \sum_{n = -\infty}^{\infty} c_{m,n} \phi_{m,n}(t) \qquad \left[\sum_{k} c_{k}^{j} \phi(2^{j}t - k) \quad \text{in MRA lecture} \right]$$

Since $V_m = V_{m-1} \oplus W_{m-1}$ this can be written

$$s(t) = \sum_{n} c_{m_0,n} \phi_{m_0,n}(t) + \sum_{k=m_0}^{m-1} \sum_{n} d_{k,n} \psi_{k,n}(t) \qquad m > m_0$$

where coefficients $d_{m,n}$ and $c_{m,n}$ are

inner products between $\psi_{m,n}(t)$ and $\phi_{m,n}(t)$ respectively.

Approximating the signal

Using Parseval, we have

$$c_{m,n} = 2^{m/2} \int_{-\infty}^{\infty} s(t)\phi * (2^m t - n)dt$$
$$= \frac{1}{2\pi} 2^{-m/2} \int_{-\infty}^{\infty} S(\omega)\Phi * (2^{-m}\omega)e^{-j2^{-m}\omega n}d\omega$$

For large scale m and $\Phi(0) = 1$ (i.e. $\phi(t)$ normalised), have

$$c_{m,n} \approx \frac{1}{2\pi} 2^{-m/2} \int_{-\infty}^{\infty} S(\omega) e^{-j2^{-m}\omega n} d\omega = 2^{-m/2} s(2^{-m}n)$$

(since $\Phi(\omega/2^m) \approx \Phi(0) = 1$ over the range where $S(\omega)$ exists).

Thus $c_{m,n}$ approximates

s(t) at $t = 2^{-m}n$ with a scaling factor of $2^{-m/2}$.

Recursive computation of coeffs

Let us define

Using the dilation equation
$$\phi(t/2) = 2\sum_{n} h_0[n]\phi(t-n)$$
 we get
$$c_{m-1,n} = \int_{-\infty}^{\infty} s(t)\phi *_{m-1,n}(t)dt = 2^{(m-1)/2} \int_{-\infty}^{\infty} s(t)\phi * \left(\frac{2^m t - 2n}{2}\right)dt$$

$$= 2^{(m-1)/2} \int_{-\infty}^{\infty} s(t)2\sum_{i} h_0[i]\phi * (2^m t - 2n - i)dt$$

$$= \sqrt{2} \sum_{i} h_0[i] \int_{-\infty}^{\infty} s(t) \phi *_{m,2n+i}(t) dt = \sqrt{2} \sum_{i} h_0[i] c_{m,2n+i}$$
i.e.
$$c_{m-1,n} = \sqrt{2} \sum_{i} h_0[i-2n] c_{m,i}$$

i.e.
$$c_{m-1,n} = \sqrt{2} \sum_{i} h_0[i-2n]c_{m,i}$$

Filtering and downsampling

Given this eqn
$$c_{m-1,n} = \sqrt{2} \sum_i h_0[i-2n]c_{m,i}$$

once $c_{m,n}$ is known, we can compute $c_{k,n}$ for k < m, using a low pass filter $H_0 * (\omega)$ and downsampling 2n = i.

$$c_{m,n} \longrightarrow H_0^*(\omega) \longrightarrow \downarrow_2 \longrightarrow c_{m-1,n}$$

Similarly, we can show $d_{m-1,n} = \sqrt{2} \sum_i h_1[i-2n]c_{m,i}$

i.e. a high pass filter $H_1*(\omega)$ and downsampling.

$$c_{m,n} \longrightarrow H_1^*(\omega) \longrightarrow \downarrow 2 \longrightarrow d_{m-1,n}$$

EBU6018

Slide no: 5

Filter Bank for Wavelet Series Coeffs

So for discrete - time samples s[i], can compute wavelet transform directly by applying filter banks. No need to compute the mother wavelet $\psi(t)$.

Signal recovery filterbank

Can also compute high-res coeffs from low-res coeffs:

$$c_{m,n} = \sqrt{2} \left(\sum_{i} h_{0}[n-2i]c_{m-1,i} + \sum_{i} h_{1}[n-2i]d_{m-1,i} \right)$$

$$d_{m-1,n} + 2 - H_{1}(\omega)$$

$$d_{m-2,n} + 2 - H_{1}(\omega)$$

$$d_{m-2,n} + 2 - H_{0}(\omega)$$

$$c_{m-1,n} + 2 - H_{0}(\omega)$$

(For proof, see e.g. Qian)

So – don't need scaling functions or wavelets, just filter banks!

More general filterbanks

Analysis filters H_0, H_1 & synthesis filters G_0, G_1 may differ.

Recall z - transform: $H(z) = \sum_{n=0}^{N} h[n]z^{-n}$ (DFT with $z = e^{j\omega}$)

Note e.g. $\omega = 0 \rightarrow z = 1$ and $\omega = \pi \rightarrow z = -1$.

Assuming no processing, we typically want

Perfect Reconstruction (PR) - i.e. that $\hat{X}(z)$ is equal to X(z)

with a + ve delay only, i.e. $\hat{X}(z) = z^{-l}X(z)$ for some $l \ge 0$.

Perfect Reconstruction Filterbanks

It turns out that (see e.g. Qian, sec 6.1)

$$X(z) = \frac{1}{2} [G_0(z)H_0(z) + G_1(z)H_1(z)]X(z)$$
$$+ \frac{1}{2} [G_0(z)H_0(-z) + G_1(z)H_1(-z)]X(-z)$$

For PR, want 2nd ("alias") term to be zero:

 $G_0(z)H_0(-z)+G_1(z)H_1(-z)=0$ biorthogonal filter bank a possible solution is

$$G_0(z) = H_1(-z)$$
 and $G_1(z) = -H_0(-z)$

For PR, also want 1st term to be a delay, e.g.

$$2z^{-l} = G_0(z)H_0(z) + G_1(z)H_1(z) = G_0(z)H_0(z) - H_0(-z)G_0(-z)$$
 i.e.

$$P_0(z) - P_0(-z) = 2z^{-l}$$
 where $P_0(z) = H_0(z)G_0(z)$

Daubechies Wavelet family

So, wavelet design method is:

- 1) Design product filter $P_0(z)$ to satisfy $P_0(z) P_0(-z) = 2z^{-l}$
- 2) Factorize $P_0(z)$ into $H_0(z)$ and $G_0(z)$

Example: The kth order Daubechies wavelets ("dbk"),

$$H_0(z) = (1+z^{-1})^k \prod_{i=1}^{k-1} (z_i - z^{-1})$$

$$G_0(z) = (1+z^{-1})^k \prod_{i=1}^{k-1} (\frac{1}{z_i} - z^{-1})$$

where z_i and $1/z_i$ are roots of a polynomial of degree 2k-2

Daubechies Wavelet

Using k = 1 for dbk wavelet we get

$$H_0(z) = G_0(z) = (1+z^{-1})$$
 or $H_0(\omega) = (1+e^{-j\omega n})$

i.e. the Haar wavelet (apart from a scaling factor).

Using k = 2 for dbk wavelet we get

$$H_0(z) = (1+z^{-1})^2(c-z^{-1})$$
 and $G_0(z) = (1+z^{-1})^2(\frac{1}{c}-z^{-1})$

where $c = 2 - \sqrt{3}$ and 1/c are the roots of the polynomial

$$Q(z) = -1 + 4z^{-1} - z^{-2}$$

Daubechies wavelets are actually orthogonal.

(E.g. check the power complementary condition)

Orthogonal filter banks

Orthogonal filter banks are orthogonal in the sense that

$$\sum_{n} h_i[n-2k]h_i[n] = \delta(k) \text{ and } \sum_{n} h_i[n-2k]h_i[n] = 0 \text{ for } i \neq l$$

which can be achieved by e.g. (given without proof)

$$H_1(z) = (-z)^{-N} H_0(-z^{-1})$$

i.e. that high-pass analysis filter h_1 is alternating flip of h_0 :

$$(h_1[0], h_1[1], h_1[2], \dots, h_1[N]) = (h_0[N], -h_0[N-1], h_0[N-2], \dots)$$

Now, since $G_0(z) = H_1(-z)$ and $G_1(z) = -H_0(-z)$, we get e.g

$$G_0(z) = z^{-N} H_0(z^{-1})$$

so e.g. the resynthesis filter $\gamma_0[n] \Leftrightarrow G_0(z)$ is flip of $h_0[n]$:

$$(\gamma_0[0], \gamma_0[1], \gamma_0[2], \dots, \gamma_0[N]) = (h_0[N], h_0[N-1], \dots, h_0[0])$$

Example: Daubechies for k=2

Daubechies wavelet: analysis filters

$$h_0[n] = (h_0[0], h_0[1], h_0[2], h_0[3]) = \left(\frac{1+\sqrt{3}}{4\sqrt{2}}, \frac{3+\sqrt{3}}{4\sqrt{2}}, \frac{3-\sqrt{3}}{4\sqrt{2}}, \frac{1-\sqrt{3}}{4\sqrt{2}}\right)$$

$$h_1[n] = (h_1[0], h_1[1], h_1[2], h_1[3]) = (h_0[3], -h_0[2], h_0[1], -h_0[0])$$

Synthesis filters:

$$\gamma_0[n] = (h_0[3], h_0[2], h_0[1], h_0[0])$$

$$\gamma_1[n] = (h_1[3], h_1[2], h_1[1], h_1[0]) = (h_0[0], -h_0[1], h_0[2], -h_0[3])$$

Example (cont)

