Previsão do sucesso de chamadas de telemarketing sobre vendas de depósito bancário a longo prazo

E. S. Ito*

*Ciência da Computação - Mestrado E-mail: e159086@dac.unicamp.br T. E. NAZATTO †

† Ciência da Computação - Mestrado E-mail: t074388@dac.unicamp.br

Resumo – Aqui avaliamos a eficiência da promoção de vendas de depósitos bancários a longo prazo para um banco português por meio de chamadas de telemarketing. Os dados utilizados foram doados e agora publicamente disponíveis para pesquisa no sítio UCI Machine Learning Repository [1]. Os dados possuem 20 variáveis (features) que potencialmente poderiam influenciar a subscrição do cliente ao programa de depósito bancário. Os mesmos serão utilizados submetidos às fases da abordagem do aprendizado de máquina: extração dos dados, preparação dos dados, seleção de features, treinamento dos dados utilizando Regressão Logística. Esses 3 modelos foram treinados com uma amostra com 90% dos dados e treinado com uma amostra de teste com 10% dos dados, disponibilizados pela UCI. A acurácia para os 3 modelos foram de 85% (???). Apenas 7% (foram influenciados pela promoção (???)

Palavras-chave - Machine Learning (ML), dataset (DS), Regressão Logística (RL).

I. INTRODUÇÃO

Regressão Logística em Machine Learning é uma técnica de aprendizado supervisionado que consiste na regressão de um modelo matemático que relaciona variáveis de entrada $X_i (i=1,2,...,n)$ a diferentes grupos de classificação. Para isso, é usada a função Sigmoid para determinar a probabilidade de um determinado conjunto de variáveis a pertencerem a determinado grupo:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \tag{1}$$

Como já visto anteriormente em Regressões Lineares, na Regressão Logística o melhor modelo de classificação é encontrado através da utilização do algoritmo de Gradiente Descendente, atualizando os valores de θ_j até encontrar o minímo da função custo J:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))$$
(2)

Quando o melhor modelo de classificação é encontrado, tal classificação está relacionado apenas a uma classe, sendo considerado um modelo de classificação binária por apenas determinar se um dado pode ser considerado da classe em questão ou não.

A escolha do tema de eficiência da campanha de vendas de depósitos bancários a termo foi baseado no artigo de Moro et al [2] e da disponibilidade dos dados no Repositório de Dados de Machine Learning da UCI [1]. O artigo refere-se à campanha de um banco português para obter mais clientes para um produto oferecido sobre depósitos bancários a termo, uma espécie de CDB do Brasil, cuja taxa de juro é baseada no euribor3m, que é uma taxa interbancária entre bancos da União Européia, com duração de 3 meses. A campanha foi realizada por meio de chamadas telefônicas ao telefone fixo residencial ou ao celular do potencial cliente. Uma abordagem ao cliente é realizada com uma certa duração onde são explicado o produto de venda em questão e anotados uma série de dados do perfil do cliente e também do momento sócio econômico. Alguns aceitam a subscrição bancária em troca do pagamento do juros após 3 meses, baseado na taxa euribor3m, outros simplesmente não aceitam.

Assim o banco gostaria de saber o que influencia o cliente na subscrição ao produto de venda em questão, se há possibilidade de predição de subscrição ao produto e quais dados do perfil do cliente ou quais dados do momento sócio econômico influenciam essa predição, porque se o custo-benefício de contratar uma empresa de telemarketing não compensar, poderia simplesmente diminuir o gasto com propaganda de acordo com Moro et al. [2].

O artigo de Moro et al [2] e a disponibilidade pública do dataset na UCI [1], também encontrado no sítio kaggle.com, junto com conteúdo dado nas aulas de Inteligência Artificial (MO416A), nos encorajaram a exercitar o tópico de machine learning.

Nos dados disponibilizados no sítio da UCI [1], observou-se que se tratava de uma caso típico de aprendizado supervisionado, onde a variável dependente é simplesmente aceitação ou não da subscrição bancária e os dados independentes eram valores categóricos (e.g. profissão, estado conjugal, educação, etc.) e dados numéricos (e.g. idade, número de contatos, valor do euribor3m, etc.).

Dois artigos, em especial, nos serviram de guia para a elaboração deste artigo. O primeiro foi um artigo da Susan Li [3] que descreve como a preparação dos dataset de treinamento deve ser feito, balanceamento de amostra com a utilização da

técnica SMOTE (Synthetic Minority Over-sampling Technique) onde se mostra como balancear amostras com respostas positivas à subscrição e com respostas negativas à subscrição, bem como redução de features por meio da técnica RFE (Recursive Feature Elimination), técnicas segundo as quais diminuiria casos de Falsos Positivos. E o artigo Nelson Chris [4] que utiliza um técnica de Feature Engineering, onde se cria um novo campo a partir do campo pdays para representar se ouve contato anterior ou não. Este campo tem uma valor específico 999 que é usado para quando nunca ouve um prévio contato com o cliente, e em outras vezes os valores representam dias passados desde o último contato. Ambos os artigos mostram como tratar de variáveis dummy para variáveis categóricas.

Este artigo está dividido da seguinte forma. A Seção II descreve como será abordado os problemas que queremos tratar, sobre as bibliografias utilizadas como referência. A Seção III descreve a proposição do trabalho, de como será tratado a análise dos dados e como medir o desempenho da campanha de promoção de vendas de depósitos bancários. A Seção IV será descrito os materiais e métodos utilizados para aquisição, formatação dos dados, criação e teste do modelo. A Seção V mostrará os resultados dos experimentos e uma breve discussão dos resultados da análise. A Seção VI descreverá as principais conclusões do experimento.

II. ABORDAGEM DO PROBLEMA

A abordagem do problema será por meio das fases do Machine Learning (ML approach), como descritos nas seguintes subseções.

A. Extração dos Dados

Os dados serão extraídos da UCI [1], onde o ds bank-additional-full.csv contém 90% dos dados e será utilizado na fase de treinamento dos dados. O mesmo contém 41188 linhas e 20 colunas (features). E o ds bank-additional.csv contém 10% dos dados, com 4199 linhas e 20 features ,e será utilizado para teste do modelo. Há outros dois ds, com menos dados, que não serão utilizados para este projeto. São o bank-full.csv e bank.csv.

As variáveis dos datasets (ds) extraídos da UCI [1] são as seguintes:

- Dados bancários do cliente:
 - 1) age: idade (numérico)
 - 2) **job:** tipo de trabalho (categórico: 'admin.', 'bluecollar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
 - 3) **marital:** estado conjugal (categórico: 'divorced', 'married', 'single', 'unknown'. Nota: 'divorced' significa divorciado ou viuvez).
 - 4) **education:** educação (categórico: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
 - 5) **default:** está insolvente? (categórico: 'no','yes','unknown')

- 6) **housing:** tem empréstimo de habitação? (categórico: 'no','yes','unknown')
- 7) **loan:** tem empréstimo pessoal? (categórico: 'no', 'yes', 'unknown') relativo ao último contato da campanha corrente.
- 8) **contact** tipo de contato realizado (categórico: 'cellular', 'telephone').
- 9) **month:** mês do ano do último contato (categórico: 'jan', 'feb', 'mar', ..., 'nov', 'dec').
- 10) day_of_week: dia da semana do último contato (categórico: 'mon', 'tue', 'wed', 'thu', 'fri').
- 11) duration: duração do último contato em segundos (numeric). Nota importante. Este atributo afeta altamente a variável dependente (e.g. se duration=0, então y='no'). A variável duration não é conhecida antes que a chamada seja concluída. Também, após o fim da chamada, "y"é obviamente conhecido. Dessa forma, esta variável poderia ser somente incluída para propósito de benchmark e poderia ser descartado se a intenção fosse para aplicar num modelo de predição realístico.
- Atributos do contexto social e econômico:
 - 13) **emp.var.rate**: indicador trimestral da taxa de variação do emprego (numérico).
 - 14) cons.price.idx: índice de preço mensal de preço ao consumidor (numérico) - semelhante ao inpc/ipca do Brasil.
 - cons.conf.idx: índice de confiança do consumidor indicador mensal (numérico) - semelhante ao ICC da FGV.
 - 16) **euribor3m:** Taxa euribor 3 meses indicador diário (numérico).
 - 17) **nr.employed:** número de pessoas empregadas indicator trimestral (numérico).
- Outros atributos:
 - 18) **campaign:** número de contatos realizados durante a campanha e para este cliente (numérico, inclui o último contato).
 - 19) **pdays:** número de dias que se passaram após o último contato com o cliente desde a última campanha (numérico; 999 significa que o cliente não foi previamente contactado).
 - 20) **previous:** número de contatos realizados antes desta campanha e para este cliente (numérico).
 - 21) **poutcome:** resultado da campanha de marketing prévia (categórica: 'failure', 'nonexistent', 'success')
- Variável dependente (saída do modelo/objetivo desejado):
 - 21) **y:** o cliente se subscreveu ao plano de depósito a termo (binário: 'yes', 'no').

B. Preparação dos Dados

O notebook Project3.ipynb ¹ dá mais detalhes de como foi realizado a preparação dos dados.

¹https://github.com/edbkei/MO416PROJ3/tree/master/Projeto3

A variável dependente y foi transformado em dados binários, em vez dos dados categóricos yes e no. Bem como feito também na variável independente contact, onde o cellular ficou 0, e o telephone ficou 1.

Foi criado uma nova variável independente pdays_no_contact derivado do pdays, de forma que o valor 999 ficou com o valor 1 (não houve contato) e 0 (houve contato), seguindo orientação do Nelson Chris [4].

Foi verificado inicialmente que houve 11.26% de subscrição e 88.72% de não subscrição no ds de treinamento. Se utilizado o ds de treinamento sem balanceamento, haveria o risco de o modelo fazer predição com maior número de FP. Seguindo a recomendação da Susan Li [3], o dataset de treinamento foi balanceado utilizando o algoritmo SMOTE (Synthetic Minority Oversampling Tecnique).

As variáveis categóricas job, marital, education, default, housing, loan, month, day_of_week, poutcome foram transformadas em variáveis dummy, cujos valores viraram binários por meio da rotina get_dummies da módulo pandas. Assim como exemplo, a variável categórica marital, que tem valores married, single, unknown, viraram novas variáveis binárias marital_married, marital_single, marital_married. Tanto Nelson Chris como Susan Li utilizaram a técnica de criação de variáveis dummy para variáveis categóricas.

Fizemos a separação do ds de treinamento em ds da variável independente ("y") e variáveis independentes ("X") por meio do atributo loc do módulo pandas.

Realizamos também a normalização do ds das variáveis independentes ("X") por meio do algoritmo StandardScaler do módulo sklearn.

C. Seleção das Features

Com a utilização do get_dummies, o número de variáveis aumentou de 20 para 54 variáveis independentes. Assim, Susan Li [3] utilizou a técnica RFE (Recursive Feature Elimination) para reduzir a quantidade de features, basicamente lista-se as variáveis independente com os seus pValue por meio do aplicativo summary2 do módulo Logit. Aquelas features que tiveram o pValue maiores que 5% seriam retirados manual da amostra. Durante o treinamento e no cross-validation (CRV), tiveram ótimo desempenho, com accuracy maior que 90%. Porém na utilização do modelo de Regressão Logística na amostra de teste, o resultado foi pífio. Houve aumento significativo de False Positive (FP), apenas 1 caso de True Positive (TP). Resolvemos fazer como Nelson Chris [4], i.e. manter todas as 54 variáveis independentes.

D. Treinamento dos Dados

Se precisar, você pode usar listas, tais como

E. Validação do Modelo

Se precisar, você pode usar listas, tais como

F. Teste do Modelo

Se precisar, você pode usar listas, tais como

III. TRABALHO PROPOSTO

Nesta seção descreva de forma abrangente, porém clara e organizada, o seu trabalho.

A. Tabelas

Uma tabela pode ser posicionada em qualquer lugar no texto, como no exemplo seguinte.

	Texto		Sem #21	
X	Y	z	\mathcal{A}	valor- z
1	0,491	3,66	0,367	2,46
2	0,732	4,21	0,354	1,50
3	0,000	-	0,000	-
4	0,000	-	0,000	-
5	0,421	1,94	0,668	2,79
6	0,421	1,94	0,668	2,79
7	0,938	3,92	1,295	4,67
8	0,000	-	0,000	-
9	0,356	1,40	0,491	1,87

Para citar esta tabela, em qualquer ponto no texto, como Tabela I.

IV. MATERIAIS E MÉTODOS

Todo trabalho deve ser submetido a algum tipo de teste para que possa ser avaliado. Na verdade, buscamos aqui uma validação com um caráter mais científico de seu trabalho (validação de hipótese). Busca-se identificar quais os seus pontos fortes e fracos. Nesta seção você deve descrever claramente quais foram e como foram conduzidos os testes, quais os materiais e as metodologias empregadas.

Uma figura pode ser posicionada em qualquer lugar no texto, como no exemplo seguinte da Figura ??.

Use o comando "cite" para citar itens na sua lista de referências através dos seus rótulos. Exemplo: [2][1].

V. RESULTADOS E DISCUSSÃO

Nesta seção você deve apresentar claramente os resultados obtidos para os testes efetuados. Procure organizar os dados utilizando uma linguagem científica. Algumas opções são o uso de tabelas e gráficos, para que a compreensão seja fácil e rápida.

VI. CONCLUSÕES

Nesta seção, faça uma análise geral de seu trabalho, levando em conta todo o processo de desenvolvimento e os resultados. Quais os seus pontos fortes? Quais os seus pontos fracos? Quais aspectos de sua metodologia de trabalho foram positivas? Quais foram negativas? O que você recomendaria (ou não recomendaria) a outras pessoas que estejam realizando trabalhos similares aos seus?

A campanha de promoção de vendas de depósito bancário à prazo, por meio de telemarketing, obteve subscrição de apenas 11 % dos potenciais clientes abordados. Possivelmente,

PRAZO: 09/08/2020

devido ao fato que a abordagem para determinadas classes ou condições sociais econômicas sejam impeditivas ou não entenderem o tipo de investimento que lhes são propostos. Depósito bancário à prazo pode ser interessante se os juros pagos no resgate forem também interessantes. O euribor3m é a é taxa interbancária contra a qual um grupo representativo de bancos europeus contrai empréstimos mutuamente cuja duração é de 3 meses, muito similar o CDB do Brasil, o ajuste de juros de empréstimos, conta poupança, hipoteca, etc seguem essa taxa. O nosso modelo indicou o eurobor3m como feature importante, como esperado que fosse. Algumas pessoas veem valor com esse tipo de transação bancária, pois pode emprestar o dinheiro por um tempo para o banco em troca de juros, como é o caso de aposentados (job_retired) e estudantes (job_student), pois tem nível universitário (education_university.degree) e portanto é de se esperar que entendam o mecanismo da aplicação financeira. O clima econômico parece favorecer potenciais clientes para aquisição da aplicação como indica a média trimestral do número total de cidadãos empregados (nr.employed) e a taxa de variação de empregabilidade trimestral (emp.var.rate). A enquete durante a campanha mostra que potenciais clientes escondem se os mesmos tem algum problema com débitos pendentes (default_unknown). Contato por meio de telefone ou celular (contact), ou mais de um contato (campaign), com o cliente, também se já houve um contato prévio bem sucedido (poutcome_success) ou não existente (poutcome_nonexistent), com uma certa duração (duration), parecem influir na aquisição do plano do depósito à prazo. Alguns meses no ano tiveram melhor aceitação da campanha como março, maio, julho, agosto, setembro, novembro e dezembro. O melhor dia da semana para abordar clientes foi quarta-feira.

+-----+

REFERÊNCIAS

- [1] M. L. Repository, Bank Marketing Data Set, 2014 (accessado Julho 18, 2020). [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Bank+Marketing 1, 2, 3
- [2] P. Moro, Sergio; Cortez and P. Rita, "A data-driven approach to predict the success of bank telemarketing," *Decision Support Systems*, vol. 62, pp. 22–31, 2014. 1, 3
- [3] S. Li, Building A Logistic Regression in Python, Step by Step, 2019 (acessado Julho 24, 2020). [Online]. Available: https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8
- [4] N. Chris, Bank Marketing campaign prediction using logistic regression, 2019 (acessado Julho 24, 2020). [Online]. Available: https://medium.com/@ogbeide331/bank-marketing-campaign-prediction-using-logistic-regression-d3a1072ac155

SUBMISSÃO

Seu trabalho deve ser submetido via Google ClassRoom.