CS6140: Machine Learning – Homework 4

Name: Vishal Rajpal

Problem 1:

Algorithm	n=500			n=1000			
	Params	$Acc(\mathcal{D}_2)$	M	Params	$Acc(\mathcal{D}_2)$	M	
Perceptron ($\gamma = 0$)	$\gamma = 0, \eta = 1.0$	97.74%	1200	$\gamma=0, \eta=1.0$	96.85%	1521	
Perceptron ($\gamma > 0$)	$\gamma = 1.0, \eta = 0.001$ 98.24% 949		$\gamma=1.0, \eta=0.25$	97.42%	1442		
Winnow ($\gamma = 0$)	$\gamma = 0, \eta = 1.1$	98.97%	751	$\gamma = 0, \eta = 1.1$	98%	950	
Winnow $(\gamma > 0)$	$\gamma = 2.0, \eta = 1.1$	99.05%	716	$\gamma = 0.3, \eta = 1.1$	98.38%	807	

Instance versus Mistakes N = 500

Instance versus Mistakes N = 1000

Problem 2:

		Perceptron	Perceptron (γ)	Winnow	Winnow (γ)	
n = 40	Params	$\gamma = 0$, $\eta = 1.0$	$\gamma=1.0, \eta=0.25$	$\gamma = 0, \eta = 1.1$	$\gamma=2.0, \eta=1.01$	
	$Acc(\mathcal{D}_2)$	99.65%	99.65%	99.98%	100%	
	M	456	317	228	94	
	Params	$\gamma = 0, \eta = 1.0$	$\gamma = 1.0, \eta = 0.25$	$\gamma = 0, \eta = 1.1$	$\gamma = 2.0, \eta = 1.01$	
n = 80	$Acc(\mathcal{D}_2)$	98.47%	98.72%	99.87%	99.95%	
	M	530	677	353	486	
	Params	$\gamma = 0, \eta = 1.0$	$\gamma = 1.0, \eta = 1.5$	$\gamma = 0, \eta = 1.1$	$\gamma = 0.3, \eta = 1.1$	
n = 120	$Acc(\mathcal{D}_2)$	97.97%	97.97%	99.95%	99.98%	
	M	377	377	420	477	
	Params	$\gamma = 0, \eta = 1.0$	$\gamma = 1.0, \eta = 1.5$	$\gamma = 0, \eta = 1.1$	$\gamma = 0.04, \eta = 1.1$	
n = 160	$Acc(\mathcal{D}_2)$	97.39%	97.39%	99.77%	99.98%	
	M	423	423	500	498	
n = 200	Params	$\gamma = 0, \eta = 1.0$	$\gamma = 1.0, \eta = 0.25$	$\gamma = 0, \eta = 1.1$	$\gamma = 2.0, \eta = 1.1$	
	$Acc(\mathcal{D}_2)$	95.74%	96.74%	100%	100%	
	M	300	531	528	729	

Convergence/Mistakes Chart

Problem 3:

Algorithm	m = 100			m	= 500		1	n = 1000	
	Params	$Acc(\mathcal{D}_2)$	M	Params	$Acc(\mathcal{D}_2)$	M	Params	$Acc(\mathcal{D}_2)$	M
Perc.	$\gamma = 0$	81.69%	2286	$\gamma = 0$	78.74%	4311	$\gamma = 0$	83.66%	860
	$\eta = 1.0$			$\eta = 1.0$			$\eta = 1.0$		
Perc. (γ)	$\gamma = 1.0$	86.44%	2291	$\gamma = 1.0$	88.05%	4791	$\gamma = 1.0$	88.26%	445
	$\eta = 0.001$			$\eta = 0.001$			$\eta = 0.001$		
Winnow	$\gamma = 0$	83.35%	1743	$\gamma = 0$	87.87%	1086	$\gamma = 0$	85.75%	1026
	$\eta = 1.1$			$\eta = 1.0001$			$\eta = 1.01$		
Winnow(γ)	$\gamma = 0.001$	83.35%	2074	$\gamma = 2.0$	87.98%	1065	$\gamma = 0.001$	85.75%	1026
	$\eta = 1.1$			$\eta = 1.0001$			$\eta = 1.01$		

Problem 4: Naïve Bayes

Algorithm	m = 100		m = 500		m = 1000	
	Accuracy on Testing	M	Accuracy on Testing	M	Accuracy on Testing	M
Naïve	93.28%	673	93.61%	672	62.79%	3721
Bayes						

Findings:

Performance Discussion: Winnow with Margin performed best in all the cases and Perceptron Without Margin performed worst. The results were consistent in all the experiments. Winnow generally performed better than Perceptron as it ignores the irrelevant features, on the other hand Perceptron cannot ignore the irrelevant features due to the presence of parameter bias in the calculation, which leads it to be prone to noise and make larger mistakes, compared to Winnow which makes logarithmic mistakes in the number of irrelevant features.

Convergence: All the algorithms were converging with S=1000. The only case i.e. Winnow with Margin was not able to converge when n=40. It just stopped learning and the best predictions it could make 791. Even I produce a different data set, this number stayed same. In all the other values of n, Winnow with Margin was able to converge with S=1000.