Álgebra lineal – Semana 10 Isomorfismos e isometrías

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Definición 1 (uno a uno)

Una transformación lineal $T:V\to W$ se dice que es *inyectiva* o *uno a uno* (1–1) si para cada par de vectores ${\bf u}$ y ${\bf v}$ en V,

$$\mathbf{u} \neq \mathbf{v}$$
 implica $T(\mathbf{u}) \neq T(\mathbf{v})$.

Observación 1

(a) T no es uno a uno

(b) T es uno a uno

Propiedad 1

 $T:V\to W$ es **uno** a **uno** si

$$T(\mathbf{u}) = T(\mathbf{v})$$
 implica $\mathbf{u} = \mathbf{v}$.

Definición 1 (uno a uno)

Una transformación lineal $T: V \to W$ se dice que es *inyectiva* o *uno a uno* (1–1) si para cada par de vectores \mathbf{u} y \mathbf{v} en V,

$$\mathbf{u} \neq \mathbf{v}$$
 implica $T(\mathbf{u}) \neq T(\mathbf{v})$.

Propiedad 1

 $T:V \to W$ es **uno** a **uno** si

$$T(\mathbf{u}) = T(\mathbf{v})$$
 implies $\mathbf{u} = \mathbf{v}$.

Propiedad 2

Sea $T:V\to W$ transformación lineal. Entonces Tes uno a uno si y sólo si

$$nu T = {0}.$$

Transformaciones lineales uno a uno y no uno a uno

Propiedad 2

Sea $T:V\to W$ transformación lineal. Entonces Tes uno a uno si y sólo si

$$\operatorname{nu} T = \{\mathbf{0}\}.$$

Ejemplo 1

Considere la transformación lineal $T: M_{mn} \to M_{nm}$ definida por

$$T(A) = A^T$$
.

Demuestre que T es uno a uno.

Sea $T:V\to W$ transformación lineal. Entonces Tes uno a uno si y sólo si

$$\operatorname{nu} T = \{\mathbf{0}\}.$$

Ejemplo 2

Considere la transformación lineal cero $T:\mathbb{R}^2\to\mathbb{R}^2$ definida por

$$T(\mathbf{v}) = \mathbf{0}$$
, para todo \mathbf{v} en \mathbb{R}^2 .

Demuestre que T no es uno a uno.

Definición 2 (sobre)

Una transformación lineal $T: V \to W$ se dice que es **sobreyectiva** o **sobre** si todo vector en W tiene una preimagen en V. Es decir, para todo \mathbf{w} en W, existe al menos un \mathbf{v} en V tal que $T(\mathbf{v}) = \mathbf{w}$.

Observación 2

Propiedad 3

 $T:V\to W$ es \boldsymbol{sobre} si v sólo si

$$\operatorname{im} T = W$$
.

 $T:V\to W$ es sobre si y sólo si

$$\operatorname{im} T=W.$$

Propiedad 4

Sea $T:V\to W$ una transformación lineal y Wun espacio vectorial de dimensión finita. Entonces T es sobre si y sólo si

$$\rho(T) = \dim W.$$

Propiedad 5

Sea $T:V\to W$ una transformación lineal, con V y W ambos espacios vectoriales de dimensión n. Entonces T es uno a uno si y sólo si T es sobre.

Transformaciones lineales uno a uno y sobre

Ejemplo 3

Para cada una de las matrices A dadas a continuación, encuentre la nulidad y el rango de la transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^m$ definida por $T(\mathbf{x}) = A\mathbf{x}$.

Determine en cada caso si la transformación lineal es uno a uno y/o sobre.

Transformaciones lineales uno a uno y sobre

Propiedad 6

Sea V y W espacios vectoriales de dimensión finita y $T:V\to W$ una transformación lineal.

- \bullet Si dim $V > \dim W$, entonces T no es uno a uno.
- Si $\dim V < \dim W$, entonces T no es sobre.

Sea V y W espacios vectoriales de dimensión finita y $T:V\to W$ una transformación lineal.

- Si $\dim V > \dim W$, entonces T no es uno a uno.
- \bullet Si dim $V < \dim W$, entonces T no es sobre.

Ejemplo 4

Determine si la transformación lineal dada a continuación es uno a uno.

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Sea V y W espacios vectoriales de dimensión finita y $T:V\to W$ una transformación lineal.

- \bullet Si dim $V > \dim W$, entonces T no es uno a uno.
- **6** Si dim $V < \dim W$, entonces T no es sobre.

Ejemplo 5

Determine si la transformación lineal dada a continuación es sobre.

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Definición 3 (Isomorfismo)

Sea $T:V\to W$ un transformación lineal. Se dice que T es un ${\it isomorfismo}$ si T es uno a uno y ${\it sobre}.$

Definición 4 (Espacios isomorfos)

Sean V y W espacios vectoriales. Se dice que V y W son isomorfos si existe una transformación lineal $T:V\to W$ que es isomorfismo.

Observación 3

Sean V y W espacios vectoriales.

- **Q** Cuando V y W son isomorfos escribimos $V \cong W$.
- Los espacios vectoriales isomorfos son "esencialmente iguales" en el sentido que tienen la misma dimensión (teorema).

Definición 3 (Isomorfismo)

Sea $T:V\to W$ un transformación lineal. Se dice que T es un isomorfismosi T es uno a uno y sobre.

Definición 4 (Espacios isomorfos)

Sean V y W espacios vectoriales. Se dice que V y W son isomorfos si existe una transformación lineal $T:V\to W$ que es isomorfismo.

Ejemplo 6

Demuestre que $T: \mathbb{R}^3 \to P_2$ definida por $T(a, b, c) = a + bx + cx^2$ es un isomorfismo.

Demostración.

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal. Las siguientes afirmaciones son equivalentes (si una es verdadera, todas las otras también son verdaderas).

- T es invertible.
- \bullet T es un isomorfismo.

Propiedades de los isomorfismos

Propiedad 7

Sea A una matriz $n \times n$. Las siguientes afirmaciones son equivalentes (si una es verdadera, todas las otras también son verdaderas).

- A es invertible (no singular).
- La única solución al sistema homogéneo $A\mathbf{x} = \mathbf{0}$ es la solución trivial $\mathbf{x} = \mathbf{0}$.
- \bullet El sistema $A\mathbf{x} = \mathbf{b}$ tiene solución única para cada vector columna \mathbf{b} .
- A es equivalente por renglones a la matriz identidad I_n .
- A se puede expresar como el producto de matrices elementales.
- Las columnas (y renglones) de A son linealmente independientes.
- $\det A \neq 0$.
- $\nu(A) = 0.$
- **1** La transformación lineal $T(\mathbf{x}) = A\mathbf{x}$ es un isomorfismo.

Sea $T: V \to W$ un isomorfismo.

- \bullet Si $\mathbf{v}_1, \ldots, \mathbf{v}_n$ generan a V, entonces $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)$ generan a W.
- \bullet Si $\mathbf{v}_1, \ldots, \mathbf{v}_n$ son LI en V, entonces $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)$ son LI en W.
- \bullet Si $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ es una base para V, entonces $\{T(\mathbf{v}_1),\ldots,T(\mathbf{v}_n)\}$ es una base para W.
- \bullet Si V tiene dimensión finita, entonces W también y dim $V = \dim W$.

Propiedad 9

Sean V y W espacios vectoriales de dimensión finita. Entonces V y W son isomorfos $(V \cong W)$ si y solo si dim $V = \dim W$.

Matrices ortogonales

Definición 1

Una matriz cuadrada Q se dice que es ${\it ortogonal}$ si es invertible y si

$$Q^{-1} = Q^T.$$

Observación 1

Si Qes una matriz cuadrada $n\times n$ invertible y

$$Q^T Q = I_n,$$

entonces Q es ortogonal.

Una matriz cuadrada Q se dice que es ortogonal si es invertible y si

$$Q^{-1} = Q^T.$$

Ejemplo 1

Determine cuáles de las siguientes matrices son ortogonales.

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}, C = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, D = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Propiedades de las matrices ortogonales

Propiedad 1

Una matriz cuadrada Q es ortogonal si y sólo si sus vectores columnas forman un conjunto **ortonormal**.

Ejemplo 2

Determine si el conjunto de vectores dado a continuación es ortonormal.

$$S = \left\{ \underbrace{\begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}}_{\mathbf{v}_1}, \underbrace{\begin{pmatrix} -\frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}}_{\mathbf{v}_1}, \underbrace{\begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}}_{\mathbf{v}_1} \right\}$$

Observación 2

Si los vectores $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ de \mathbb{R}^n los representamos como vectores columna, entonces el **producto punto** o **producto escalar** de ellos se puede expresar como el producto de matrices

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + \cdots + u_n v_n.$$

Propiedad 2

Sea A una matriz $m \times n$ con entradas reales. Entonces para todo vector \mathbf{x} en \mathbb{R}^n y todo vector \mathbf{y} en \mathbb{R}^m ,

$$(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \left(A^T \mathbf{y} \right)$$

Sea A una matriz $m \times n$ con entradas reales. Entonces para todo vector \mathbf{x} en \mathbb{R}^n y todo vector **y** en \mathbb{R}^m ,

$$(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \left(A^T \mathbf{y} \right)$$

Propiedad 3

Sea Q una matriz $n \times n$. Las siguientes afirmaciones son equivalentes (si una es verdadera, todas las otras también son verdaderas).

- Q es ortogonal.

Definición 2 (Isometría)

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice que es una *isometría* si para todo vector \mathbf{x} en \mathbb{R}^n ,

$$||T(\mathbf{x})|| = ||\mathbf{x}||.$$

Observación 3

Si $T:\mathbb{R}^n\to\mathbb{R}^n$ es una isometría, entonces para todo vector \mathbf{x} y \mathbf{y} en $\mathbb{R}^n,$

$$||T(\mathbf{x}) - T(\mathbf{y})|| = ||\mathbf{x} - \mathbf{y}||.$$

Definición 2 (Isometría)

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice que es una *isometría* si para todo vector \mathbf{x} en \mathbb{R}^n ,

$$||T(\mathbf{x})|| = ||\mathbf{x}||.$$

Propiedad 4

Si $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría, entonces para todo vector \mathbf{x} y \mathbf{y} en \mathbb{R}^n ,

$$T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}.$$

Definición 2 (Isometría)

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice que es una *isometría* si para todo vector \mathbf{x} en \mathbb{R}^n ,

$$||T(\mathbf{x})|| = ||\mathbf{x}||.$$

Ejemplo 3

Determine si función $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida a continuación es isometría.

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Caracterización de las isometrías

Propiedad 5

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si y sólo si su matriz de representación estándar A_T es ortogonal.

Observación 4

Toda isometría es un isomorfismo.

Sean $\{\mathbf u_1,\dots,\mathbf u_n\}$ y $\{\mathbf w_1,\dots,\mathbf w_n\}$ bases ortogonormales de $\mathbb R^n$ y $T:\mathbb R^n\to\mathbb R^n$ la transformación lineal definida por

$$T(\mathbf{u}_i) = \mathbf{w}_i,$$

para $i=1,\ldots,n.$ Entonces T es una isometría.

Propiedades de las isometrías

Propiedad 7

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una isometría. Si $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ es una base ortonormal de \mathbb{R}^n , entonces $\{T(\mathbf{u}_1), \dots, T(\mathbf{u}_n)\}$ es una base ortonormal de \mathbb{R}^n .

Si $T: \mathbb{R}^2 \to \mathbb{R}^2$ es una isometría, entonces T es:

una transformación de rotación,

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

 \bullet o bien una reflexión respecto al eje x,

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix},$$

seguida de una transformación de rotación.

Bibliografía

- Clara Mejía
 Álgebra lineal elemental y aplicaciones
 Ude@, 2006.
- Stanley Grossman
 Álgebra lineal
 McGraw-Hill Interamericana, Edición 8, 2019.
- David Poole Álgebra lineal: una introducción moderna Cengage Learning Editores, 2011.
- Bernard Kolman Álgebra lineal Pearson Educación, 2006.
- Ron Larson
 Fundamentos de Álgebra lineal
 Cengage Learning Editores, 2010.

