Parallel Algorithms

by

Biing-Feng Wang

炻 王

Department of Computer Science National Tsing Hua University

References:

- [1] J. JáJá, An Introduction to Parallel Algorithms, Addison Wesley, 1992.
- [2] S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, 1997.
- [3] Journals and proceedings

An Example

Problem: Sorting (Odd-Even Transposition Sort)

Input : 7, 6, 2, 1, 3, 5, 4

Output: 1, 2, 3, 4, 5, 6, 7

processor

Linear Processor Array (n = 7)

link

time complexity ???

Theorem: Odd-Even transposition sort produces a sorted sequence of *n* data after *n* steps.

> O(n) time $\Omega(n \log n)$ lower bound

INTRO-3

Outline

Part I

- 1. Introduction
 - Classification of Parallel Computers
 - Performance of Parallel Algorithms
- 2. Shared-Memory Computers, Basic Techniques, and Brent's Theorem

Part II

- 3. Tree Machines
- 4. Linear Processor Arrays
- 5. Mesh-Connected Computers
- 6. Hypercubes
- 7. Perfect Shuffles
- 8. Mesh-Connected Computers with Multiple Broadcasting
- 9. Processor Arrays with Reconfigurable Bus Systems

Part III

- 10. Systolic Architectures
- 11. Randomized Algorithms and P-Completeness

Grading

•	Midterm Examination	50%	
•	Final Examination	40% > =	normalize
•	Image	10%	
•	Phone/Notebook	-5%/each	

Fail if 3⁺ absences

Office Hours: 14:30 ~ 15:30, Monday to Friday (R548, EECS)

Webpage: eLearn

Introduction

■ Classification of Parallel Computers

Flynn's Classification
 (M. J. Flynn, "Very high speed computing systems,"
 Proceedings of the IEEE, vol. 54, 1966, pp. 1901-1909)

Instruction stream (I): a sequence of instructions performed

by a computer

Data stream (D): a sequence of data used to execute

an instruction stream

SISD: single instruction stream, single data stream

One instruction is performed at a time, on one set of data.

practical, INTRO-5 easy to implement

SIMD: single instruction stream, multiple data streams

One type of instruction is performed at a time, possible on different sets of data.

MISD: multiple instruction streams, single data stream

Different instructions on the same data can be performed at a time.

MIMD: multiple instruction streams, multiple data streams

Different instructions on different data can be performed at a time.

- 2. Schwartz's Classification
 - (J. T. Schwartz, "Ultra-computers", *ACM Transactions on Programming Languages and Systems*, vol. 2, no. 4, 1980, pp. 484-521.)
- 1. Paracomputer (shared-memory computer)

- * Communication between any two processors takes O(1) time through the shared memory
- *The SIMD shared-memory computer is also called *Parallel Random Access Machine (PRAM)*
- 2. Ultracomputer

- * The processors communicate with one another through an interconnection network. ⇒ one time unit (as fast as memory access)
 - distributed systems (computer networks)(distributed algorithms)

Examples of widely used interconnection network:

1. Linear Processor Array (n = 7)

diameter maximum degree link complexity

 (P_1) P_2 P_3 P_4 P_5 P_6 P_7

2. Mesh-Connected Computer (2d 3×3 mesh) * k-d mesh: d₁×d₂×...×d_k * 1-d mesh: LPA

most practical 1st popular

3. Tree Machine $(n = 2^1 - 1 = 2^4 - 1, l = lq (n+1))$

4. Hypercube (k-dimension $\Rightarrow n = 2^k$, k = lq n)

5. *Cube-connected Cycle network* (each node of a *k*-cube is replayed by a cycle of *k* processors)

1-8b

diameter : =
$$O(kx(k/2)) = O(k^2)$$

(= $2k - 2 + \lfloor k/2 \rfloor$ for $k \ge 4$)

6. Perfect Shuffle

 $k-d \Rightarrow n = 2^k$

most interesting one

position

7. Shuffle-Exchange Network

diameter = 2k-1

8. Single-channel broadcast communication System

 * Broadcast a data requires O(1) time.

pros: simple, O(1) diameter cons: one at a time

9. Mesh-Connected Computer with Multiple Broadcasting

* Current PC ??? 1-10a

■ Performance of Parallel Algorithms

* Assume that you are familiar with O, θ , Ω

worst-case running time of fastest known sequential algorithm

Speedup =

worst-case running time of parallel algorithm

*A parallel algorithm is said to achieve *linear speedup* if the speedup with p processor is $\theta(p)$.

Question: super linear speedup?

INTRO-11 INTRO-12

```
Cost = (parallel running time)×(number of processors used)
   *A parallel algorithm is said to be cost-optimal if the cost
   matches the (sequential) lower bound to within a constant
                            → fastest known
目前已知最快
(是否 optimal 會隨時間改變)
   multiplicative factor.
  * Which one, speedup or cost, is more important???
                   worst-case running time of fastest known
                             sequential algorithm
Efficiency = -
                                                                     1-11a
                        cost of parallel algorithm
* used only for
  experiments
          = (speedup) / (number of used processors)
          ≤ 1 (100%, used for comparing the real running time)
\theta(1), an optimal algo has an efficiency of \theta(1) Example: Consider the odd-even transposition sort on a linear
array of n processors, which sort n data in O(n) time.
                                               (all in \theta-notation)
         Speedup = (n \log n)/n = \log n
         cost = n \times n = n^2 (non-optimal!)
         efficiency = log n/n
* Note: treat all O as \theta
Another example:
   sort n numbers in O(n^{0.5}) time using O(n^{0.5} \lg n) PEs
```

```
Question 1: cost optimal --> linear speedup?

Question 2: cost optimal <-- linear speedup?

cost optimal <--> linear speedup <--> efficiency = θ(1)
```