Solution 1

Using the Master Method, recurrence relations have the following form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

the question in the homework has a=4, b=2, and f(n) is $\Theta(1)$. There are three cases for the Master Method,

- i) If $f(n) = O(n^{\log_b a \varepsilon})$, for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- ii) If $f(n) = O(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- iii) If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and $af\left(\frac{n}{b}\right) \le cf(n)$, for some c < 1 and for all n greater than some value n', then $T(n) = \Theta(f(n))$.

In order to match the requirement that $f(n) = \Theta(1)$ and if needed, $\varepsilon > 0$, f(n) must be (i), while $\varepsilon = 2$. Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 4}) = \Theta(n^2)$. Q.E.D.

Reference: http://goo.gl/lipThF

Solution 2

Since we know that $T(n) = 4T\left(\frac{n}{2}\right) + \Theta(1)$, so we know that $T(n) = 4T\left(\frac{n}{2}\right) + O(1)$ and so there is a c > 0, such that

$$T(n) \le 4T\left(\frac{n}{2}\right) + c$$

for all n sufficiently large. I hereby named my guess (not quite guess-y though) $T(n) = O(n^2)$, so that my guess will be that $T(n) \le kn^2$, since I know that there will be a constant left, I made a minor modification: $T(n) \le kn^2 + d$, d is an arbitrary number, for some k > 0 and all n sufficiently large.

During the try-n-error, for the k enlisted above, we have

$$T(n) \le 4T\left(\frac{n}{2}\right) + c$$

$$\le 4\left(k\left(\frac{n}{2}\right)^2 + d\right) + c = kn^2 + 4d + c$$

$$\le kn^2 + d$$

for $c \le -3d$, our case is valid. As for the $T(n) = 4T\left(\frac{n}{2}\right) + \Omega(1)$ (the Ω counterpart of the O), the entire proof is almost the same, but the equalities are reversed. Therefore, it's easy to see that $T(n) = \Theta(n^2)$. Q.E.D.

Reference: http://goo.gl/kt39kK and my roommate B03901057