Proxmox VE 5

Lecture 11 High Availability and CEPH Storage

Instructor: Hadi Alnabriss

Why High Availability?

- Eliminate single point of failure
- Reduce downtime

HA in Proxmox VE

- Proxmox VE make it much easier to reach high availability because they remove the "hardware" dependency.
- It also supports to setup and use redundant storage and network devices.
- So if one host fails, you can simply start services on another host within your cluster.
 - Proxmox VE provides a software stack called ha-manager, which can do that automatically for you

Requirements

- At least three cluster nodes (to get reliable quorum)
- Shared storage for VMs and containers
- Hardware redundancy (everywhere)
- Use reliable "server" components

Why Shared Storage?

All the Hosts have access to the same storage

Why Shared Storage?

CEPH Uses Local Storage as Shared Storage

What is CEPH?

- Ceph is a distributed replicated clustered filesystem
- Ceph is a distributed object store and file system designed to provide excellent performance, reliability and scalability.

Why Ceph?

- Easy setup and management with CLI and GUI support on Proxmox VE
- Thin provisioning
- Snapshots support
- Self healing
- No single point of failure
- Scalable to the exabyte level
- Runs on economical commodity hardware
- No need for hardware RAID controllers
- Easy management
- Open source

- (1) OSDs (Object Storage Device)
 - Corresponds to a physical disk. An OSD is actually a directory that Ceph uses, residing on a regular filesystem
 - (eg. /var/lib/ceph/osd-1)

- (2) Placement Groups
 - Placement groups used for tracking metadata for objects
 - It represents a mostly-static mapping to one or more underlying OSDs.
 - All PGs in a pool will replicate stored objects into multiple OSDs.
 - PG calculator
 - https://ceph.com/pgcalc/

- (3) CRUSH maps
 - Ensures that replicas don't end up on the same disk/host/rack/etc,

▶ (4) Pools

- A pool is the layer at which most user-interaction takes place.
- This is the important stuff like GET, PUT, DELETE actions for objects in a pool.
- Pools contain a number of PGs, not shared with other pools (if you have multiple pools).
- The number of PGs in a pool is defined when the pool is first created, and can't be changed later.
- You can think of PGs as providing a hash mapping for objects into OSDs, to ensure that the OSDs are filled evenly when adding objects to the pool.

Before Installing Ceph

- We are going to use our 3-nodes cluster that we have created in our previous lecture
- On each Proxmox VE host:
 - Add additional Disks (i.e 2 x 2GB)
 - Add additional NIC
 - And make a new subnet for Ceph (i.e 10.0.0.0/24)

Install Ceph

- Install Ceph on each node
 - pveceph install --version luminous
 - This will download some packages from the internet
 - You might face disk space problem if you are using 8GB disk for your host

Configure Ceph Network

- Configure network on one node
 - pveceph init --network 10.0.0.0/24
 - This creates an initial config at /etc/pve/ceph.conf

Create Monitors

- The Ceph Monitor maintains a master copy of the cluster map.
- For HA you need to have at least 3 monitors.
- You can create monitor service using the command:
 - pveceph createmon
- Or from GUI
 - You should run 3 monitors, one on each node

Creating Monitors From GUI

Create OSDs

- Add the required disks (6 disks)
 - Again: Don't use RAID

Create the Pool

▶ The pool == our storgae

Keyring

- To build a trust relationship between ceph and Proxmox VE (Requires for external Ceph)
 - mkdir /etc/pve/priv/ceph
 - cp /etc/pve/priv/ceph.client.admin.keyring /etc/pve/priv/ceph/my-ceph-storage.keyring
- As we use local Ceph, this step is not required

Create Storage

 Create a storage that maps to the created Pool (choos RBD PVE storage)

High Availability

Create a VM and choose the Ceph storage for

its Hard Disk

Migration

Now you can migrate VMs and containers on the shared storage ONLINE, with no down time

What is High Availability?

When one of your Hosts fail, the HA manager will migrate all the HA-enabled VMs to another Host

Enable HA for VMs

Add VM as resource to HA

Active Resources

Test HA

- Power off the Host: node03
- VM 101 must transfer to Another host

Ceph Health

Increase and Decrease Storage

- To add more disks:
 - Add new Disk
 - Create OSD for the new Disk

- ▶ To remove disks:
 - Stop the OSD for the required disk
 - Make the disk out

Discussion

- ▶ The disk is shared, but what about RAM?
- What if the VM has a local ISO for CD-ROM?

Conclusion

- Now you must be able to:
 - Create Ceph shared storage
 - Make Online migrations
 - Enable High Availability for specific VMs

