

IPv6 Hacking Tools

Jeffrey L Carrell

Network Trainer

jeff.carrell@teachmeipv6.com
Twitter: @JeffCarrell_v6

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

IPv6 Hacking Tools

- IPv6 operational basics you NEED to know and understand this!!
- IPv6 security
- Wireshark basics
- IPv6 in Wireshark
- IPv6 hacking demonstration

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

IPv6: Trivia

- In modern day operating systems, is IPv6 an enabled protocol?
- Generally, will an IPv6 enabled interface have more than one IPv6 address assigned to it? YES!

IPv6: Trivia

- How many IPv6 GUA addresses can a network interface have that are in the same Up to 4! network?
- How many IPv6 GUA addresses can a network interface have that are in different networks? Almost infinite!
- Can the IPv6 Link-Local address be the same address for all network interfaces in a host? YES!

IPv6: Trivia

- How does an IPv6 enabled host derive its default gateway?
 Via the RA!
- Does DHCPv6 have a configurable option to provide an IPv6 default gateway?
 NO!
- Does an IPv6 host use its LL or GUA address to communicate to its default gateway?

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

5

IPv6: Trivia

- If an IPv6 enabled host has autoconfigured privacy extension addresses and a statically assigned address, which one gets used for off-net communications? Temporary!
- If attempting to communicate on-net using your GUA to another IPv6 host, will the communication be successful if the v6 router is not on-net?

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

IPv6 – a bit more than basics

- Quick IPv6 history
- IPv6 Address basics
- IPv6 Address Autoconfiguration

IPv6 Brief History

- Fall 1992 IPv4 addresses will run out someday
- Oct 1993 DHCP RFC 1531 easier IPv4 address management
- Dec 1993 IPng RFC 1550 basic specification for next version IP
- May 1994 NAT RFC 1631 temporary solution before IPng available
- Dec 1995 RFC 1883 Basic specifications of IPv6
- Feb 1996 RFC 1918 Private Iv4 addresses
- Dec 1998 RFC 2460 Full IPv6 defined
- May 2005 RFC 3927 APIPA (IPv4)

Comparing IPv4 & IPv6 Addresses

- IPv4 addresses $2^{32} = 4,294,967,296$
- IPv6 addresses 2¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
 - which is 340 undecillion
 - 340 trillion trillion
 - 79,228,162,514,264,337,593,543,950,336 times more v6 addresses than v4
- If IP addresses weighed one gram each:
 - IPv4 = half the Empire State Building
 - IPv6 = 56 billion earths

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

9

What is an IPv6 Address?

- IPv6 addresses are very different than IPv4 addresses in the size, numbering system, and delimiter between the numbers
 - 128bit -vs- 32bit
 - · colon-hexadecimal -vs- dotted-decimal
 - colon and double colon -vs- period (or "dot" for the real geeks)

Valid IPv6 addresses are comprised of hexadecimal numbers (0-9 & a-f), with colons separating groups of four numbers, with a total of eight groups

(each group is known as "quibble" or "hextet")

2001:0db8:1010:61ab:f005:ba11:00da:11a5

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

IPv6 default for subnet

- Based on the default definition an IPv6 address is logically divided into two parts: a 64-bit network prefix and a 64-bit interface identifier (IID)
- Therefore, the default subnet size is /64
- 2001: Odb8: 1010: 61ab: f005: ba11: 00da: 11a5/64

 64bits for Network Identifier 64bits for Interface Identifier Prefix Length
- A single /64 network yields 18 billion-billion possible addresses

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

Address types

Address Type	IPv4	IPv6
Unicast - One-to-one communication	Yes	Yes
Broadcast - One-to-many communication local	Yes	No
Multicast - One-to-many communication local/remote	Yes	Yes
Anycast - One-to-many communication nearest	Yes	Yes

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

Address scopes

Address Scope	IPv4	IPv6
Link-Local - Not routable	Yes (is temp, APIPA)	Yes
Global Unicast - Routable to Internet	Aka public	Yes
Unique Local - Routable only within domain	Aka private RFC 1918	RFC 4193

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

15

IPv4/IPv6 special addresses

Address Type	IPv4	IPv6
Default Route	0.0.0.0/0	::/0
Unspecified	0.0.0.0/32	::/128
Loopback	127.0.0.1/8	::1/128
Multicast	224.0.0.0/4	ff00::/8
Link-Local	169.254.0.0/16	fe80::/10
Global Unicast	All others	2000::/3
Unique Local	10.0.0.0/8 172.16.0.0/12 192.168.0.0/16	fc00::/7
Documentation	192.0.2.0/24 198.51.100.0/24 203.0.113.0/24	2001:db8::/32

Copyright © 2019 Jeffrey L. Carrell

Interface ID from Random Number

- RFC4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6
- Initial IID is derived based on mathematical computation to create a "random 64bit number" and appended to prefix to create a GUA
- An additional but different 64bit number is computed, appended to prefix, and tagged "temporary" for a 2nd GUA
- Temporary GUA should be re-computed on a frequent basis
- Temporary GUA is used as primary address for communications, as it is considered "more secure"

19

Lifetime states of an IPv6 address

- Tentative address is in process of verification for uniqueness and is not yet available for regular communications
- Valid address is valid for use in communication based on Preferred and Deprecated status
- Preferred address is usable for all communications
- Deprecated address can still be used for existing sessions, but not for new sessions
- Invalid an address is no longer available for sending or receiving

 | Prob Hacking Tools v1.0 Copyright © 2019 Jeffrey L. Carrell

Comparing IPv4 & IPv6 Neighbor Discovery Protocols

IPv4	IPv6	
ARP Request	Neighbor Solicitation	
ARP Reply	Neighbor Advertisement	
Router Solicitation	Router Solicitation	
Router Advertisement	Router Advertisement	
Gratuitous ARP	Duplicate Address Detection	
ARP Cache	Neighbor Cache	

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

21

IPv6 Neighbor Discovery Protocol

- Neighbor Discovery Protocol (NDP) is defined in RFC 4861
- NDP provides the following basic IPv6 functions per node
 - · Discover what link they are one
 - Learn link prefix addresses
 - · Discover the on-link router
 - Discover on-link neighbors
 - Keep track of active neighbors

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

NDP ICMPv6 message types

- ICMPv6 type 133 Router Solicitation (RS)
- ICMPv6 type 134 Router Advertisement (RA)
- ICMPv6 type 135 Neighbor Solicitation (NS)
- ICMPv6 type 136 Neighbor Advertisement (NA)

IPv6 NDP - Router Solicitation

 A node sends a multicast Router Solicitation message to the "all-routers" address ff02::2 to determine if there are any IPv6 routers on-link

IPv6 NDP - Router Advertisement

- Routers send RAs periodically (appx every 6-10 minutes [is adjustable]) and in reply to an RS (generally sent by a node coming on-link)
- RA informs nodes of status and may contain such information as:
 - Network prefix
 - Link MTU
 - Valid and preferred lifetimes
 - Flags that inform the node method of address autoconfiguration to invoke:
 - SLAAC, Stateful, Stateless-DHCPv6
 - Router on-link status

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

IPv6 NDP - Neighbor Solicitation

- NS is used to find or verify the link-layer address of an on-link node
- NS is used for Duplicate Address Detection
- NS is used for Neighbor Unreachability Detection

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

Duplicate Address Detection (DAD)

- When a node initially assigns an IPv6 address to its interface, it must check whether the selected address is unique
- If unique, the address is configured on interface
- To verify uniqueness, the node sends a multicast Neighbor Solicitation message with the:
 - dest MAC of 33:33:
 last 32bits of IPv6 mcast addr>
 - dest IPv6 addr of ff02::1:ff<last 24bits of proposed IPv6 addr>
 - source IPv6 of "::" (IPv6 unspecified addr)

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

IPv6 NDP - Neighbor Advertisement

 NA is sent as a reply to a Neighbor Solicitation

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

NDP – Neighbor cache

- A node's neighbor cache maintains mappings of IPv6 link-local and GUA addresses for each of it's link-layer addresses
- The neighbor cache also maintains the reachability state for each neighbor using Neighbor Unreachability Detection (NUD)

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

33

NDP – Neighbor cache state

- A Neighbor Cache entry can be in one of five states:
 - INCOMPLETE Address resolution is in progress and the link-layer address is not yet known
 - REACHABLE Neighbor is known to be reachable within the last reachable time interval
 - STALE Neighbor requires re-resolution and traffic may flow to this neighbor
 - DELAY Neighbor is pending re-resolution and traffic might flow to this neighbor
 - PROBE Neighbor re-resolution is in progress and traffic might flow to this neighbor

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

IPv6 Security concerns

- If M-EUI-64 based address, can determine manufacturer of interface, which may lead to what type of device it is, and where in the network in may be located
- Since IPv6 is enabled by default in many operating systems and devices, simple scan of network will provide tons of info
- Many "tools" already available for exploitation of devices/systems
- Easy to spoof clients with rogue RA
- If there is a "Temporary" IPv6 address (in addition to a "regular" configured IPv6 address), it is used for outbound communications by the client. "Temporary" IPv6 addresses can change frequently

IPv6 Threats to access networks

- IPv6 uses ICMPv6 for many LAN operations
 - · Stateless auto-configuration
 - IPv6 equivalent of IPv4 ARP
- New multicast addresses that can enable an attacker to identify key resources on a network
- Spoofed RAs can renumber hosts, have hosts "drop" an IPv6 address, or initiate a MITM attack with redirect
- DHCPv6 spoofing
 - Force nodes to believe all addresses are on-link

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carre

IPv6 attacks

- Neighbor Discovery attacks
 - NDP Spoofing
 - DAD DoS attack
- Router Advertisement attacks
 - RA flooding
 - Rogue RA
- DHCPv6 spoofing
 - Force nodes to believe all addresses are on-link

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

IPv6 Network scanning

- 2001: 0db8: 1010: 61ab: f005: ba11: 00da: 11a5/64

 64bits for Network Identifier 64bits for Interface Identifier Prefix Length
- Since prefix is defined, don't scan there, need only scan lower 64 bits (18BB #'s!!!!!!)
- Scan last section for IPv4 looking addresses (0-254)
- Scan middle of IID for "fffe", then scan for known OID
- Scan for known hex words
- Scan for IPv4 address converted to hex notation
 - 10.1.1.1 = 0a01:0101 -or- a01:101 -or- 10:1:1:1

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

41

Wireshark

- Basics
- Color rules
- Display filters
- Columns
- Configuration profiles
- Packet annotation

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrel

Disclaimer

DO NOT execute these security assessment tools on a network without proper authorization.

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

IPv6 Attack tools

- Attack Toolkits
 - THC-IPv6
 - https://github.com/vanhauser-thc/thc-ipv6
 - SI6 Networks IPv6 Toolkit
 - https://github.com/fgont/ipv6toolkit
- Scanners
 - Nmap, halfscan6 (older)
- Packet forgery
 - Scapy
 - Chiron

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

RA attack - Windows 10 result

Ethernet adapter VMware Network Adapter VMnet9:

Windows 10 v1809

Connection-specific DNS Suffix . : ipv6sandbox.com Description : VMware Virtual Ethernet Adapter for VMnet9 Physical Address. : 00-50-56-C0-00-09 DHCP Enabled. No Autoconfiguration Enabled : Yes Temporary IPv6 Address . . . : 2001:db8:74c:2bad:bc85:ff77:73c1:3033(Preferred)
Link-local IPv6 Address . . . : fe80::7541:ed0d:3d78:a192%37(Preferred) IPv4 Address. : 10.1.0.25(Preferred) Subnet Mask : 255.255.255.0 Default Gateway : fe80::20c:29ff:fe17:957b%37 fe80::20c:29ff:fe87:99ba%37 10.1.0.1 DHCPv6 IAID : 1459638358 DHCPv6 Client DUID : 00-01-00-01-20-6A-6C-49-48-0F-CF-D9-1F-62 DNS Servers : 2001:db8:1ab:ba5e::2000 2001:db8:74c:2bad::53 2001:db8
NetBIOS over Tcpip. : Enabled Connection-specific DNS Suffix Search List : ipv6sandbox.com

RA attack – Windows 10 result

Ethernet adapter Ethernet0:

Windows 10 v1803

Connection-specific DNS Suffix . : ipv6sandbox.com Description . . : Intel(R) PRO/1000 MT Network Connection Physical Address . . : 00-0C-29-4D-60-50
 Physical Address.
 : 00-0C-29-4D-60-50

 DHCP Enabled
 : Yes

 Autoconfiguration Enabled
 : Yes

 IPv6 Address
 : 2001:db8:1ab:ba5e::109(Preferred)

 Lease Obtained
 : Monday, February 18, 2019 2:55:20 AM

 Lease Expires
 : Monday, February 18, 2019 3:10:20 AM

 IPv6 Address
 : 2001:db8:74c:2bad:6105:a7b6:28a2:d0f7(Preferred)

 Temporary IPv6 Address
 : 2001:db8:74c:2bad:d452:5d0a:17c0:2c71(Preferred)

 Link-local IPv6 Address
 : fe80::6105:a7b6:28a2:d0f7%6(Preferred)

 IPv4 Address
 : 10.1.0.101(Preferred)

 Subnet Mask
 : 255.255.255.0

 Lease Obtained
 : Monday, February 18, 2019 2:55:18 AM

 Lease Expires
 : Monday, February 18, 2019 3:25:18 AM
 Lease Expires : Monday, February 18, 2019 3:25:18 AM
Default Gateway : fe80::20c:29ff:fe17:957b%6 fe80::20c:29ff:fe87:99ba%6 10.1.0.1 DHCP Server : 10.1.0.200 : 67111977

DHCPv6 Client DUID. : 00-01-00-01-23-02-DB-52-00-0C-29-4D-60-50 DNS Servers : 2001:db8:1ab:ba5e::2000

NetBIOS over Tcpip. : Enabled Connection-specific DNS Suffix Search List : ipv6sandbox.com

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

RA attack - Windows 7SP1 result

RA attack – Ubuntu Desktop result

```
GENERAL.DEVICE:
                                              ens33
GENERAL.TYPE:
                                              ethernet
                                                                     Ubuntu Desktop v16.04
GENERAL.HWADDR:
GENERAL.MTU:
                                              00:0C:29:17:A8:67
                                              1500
GENERAL.STATE:
GENERAL.CONNECTION:
                                              Wired connection 1
                                              /org/freedesktop/NetworkManager/ActiveConnection/11
GENERAL.CON-PATH:
WIRED-PROPERTIES.CARRIER:
                                              on
10.1.0.103/24
IP4.ADDRESS[1]:
IP4.GATEWAY:
                                              10.1.0.1
IP4.DNS[1]:
IP4.DOMAIN[1]:
                                              10.1.0.200
                                              ipv6sandbox.com
IP6.ADDRESS[1]:
IP6.ADDRESS[2]:
                                              2001:db8:74c:2bad:ad9d:1d87:6075:6dfc/64
2001:db8:1ab:ba5e::101/128
IP6.ADDRESS[3]:
                                              fe80::8146:5985:1023:590e/64
                                              fe80::20c:29ff:fe17:957b dst = 2001:db8:74c:2bad::/64, nh = ::, mt = 100
TP6.GATEWAY:
IP6.ROUTE[1]:
IP6.ROUTE[2]:
                                              dst = 2001:db8:1ab:ba5e::/64, nh = ::, mt = 100
                                              2001:db8:74c:2bad::53
IP6.DNS[1]:
IP6.DNS[2]:
                                              2001:db8:1ab:ba5e::2000
```

IPv6 Hacking Tools v1.0 - Copyright © 2019 Jeffrey L. Carrell

