

Problem 1-1

$$f(x) = -x^2$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \to -(2 \cdot x)$$

The function is NOT eventually nondecreasing

Problem 1-2

$$f(x) \coloneqq x^2 + 2 x + 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \to 2 \cdot x + 2$$

The function is eventually nondecreasing

from the graph it started decreasing on $(-\infty,0)$ but eventually increasing on the $[0,\infty)$

also observing the derivative, the slope of the tangent is -ve for -ve values of x and +ve for +ve values of x

 $-1.2 \cdot 10^3$

 \boldsymbol{x}

130 -120 -110 -100 -90 -80 -

70

60 -50 -40 -

30-

20

-10-8-6-4-2 0 2 4 6 8 10

 \boldsymbol{x}

$x^3 + x$

 $x^2 + 2 x + 1$

Problem 1-3

$$f(x) \coloneqq x^3 + x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \to 3 \cdot x^2 + 1$$

The function is increasing (monotonous)

from the graph and also from the derivative, the slope of the tangent is positive for all x belongs to \mathbb{R}