

Atmospheric Muons with IceCube: Investigating Prompt Muon Normalization and Unfolding the Muon Flux

Pascal Gutjahr

March 18, 2025

Muon Puzzle & Hadronic Uncertainties

- ➤ More muons measured than simulated for E > 40 PeV ~ cms 8 TeV
- Precise pion/kaon ratio measurement needed

Uncertainties at E > 10 PeV

pascal.gutjahr@tu-dortmund.de

2

SFB1491

Muon Flux

 K^{-}

 $p \propto E^{-2.7}$

 $d_{\pi} \propto E$

prompt component:

Prompt Atmospheric Muons & Neutrinos

Analysis Goals

- 1) Measure prompt component of the atmospheric muon flux
- 2) Unfold a muon energy spectrum

Idea:

- New CORSIKA simulations with extended history
- Tag muons by parent -> prompt or conventional
- Scale amount of prompt particles
 - Scaling saves time and resources instead of doing multiple simulations with different interaction models
 - Perform forward fit of the prompt normalization

Future:

- Measure prompt neutrinos
- Combined muon and neutrino fit → pion/kaon ratio

Overview

Simulation Reconstruction **Dataset DNN** reconstructions **CORSIKA 77500** Muon energies Ehist Muon direction SIBYLL 2.3d Track geometry 10 TeV - 100 EeV **Validation** Tag prompt / conv particles MCEq comparisons pascal.gutjahr@tu-dortmund.de

Selection

Level 3

- L2 muon filter
- 500 TeV bundle energy cut at surface
- Add labels

Level 4

Add DNN reconstructions

Level 5

Data-MC quality cuts

Forward fit

Analysis

Fit prompt normalization

Poisson LLH fit

Unfolding

Muon spectrum

Unfold muon flux

Simulation

SFB1491 | SFB149

CORSIKA 7 vs. MCEq

MCEq: tool to numerically solve the cascade equations that describes the evolution of particle densities as they propagate through a gaseous, dense medium

https://github.com/mceq-project/MCEq

Good agreement for inclusive flux

Python package developed – PANAMA

- Execute CORSIKA 7 (multi core)
- Read DAT files → pandas DataFrames
- Parse EHIST option
- Calculate primary weightings

Forward Fit

Cuts: SFB1491 NEUTRINO DBSERVA L2 MuonFilter Bundle energy at entry > 100 TeV

Poisson Likelihood Fit

Tagging allows scaling of prompt by factor n_{pr}

$$p(C_i) = p_{\text{poisson}}(C_i; \lambda(n_{\text{pr}}) = C_i^{\text{MC}}(n_{\text{pr}})) = \frac{\lambda(n_{\text{pr}})^{C_i} e^{-\lambda(n_{\text{pr}})}}{C_i!}$$

➤ Bias starts at a prompt normalization of 0.1

Cuts: SFB1491 NEUTRINO DBSERVAT L2 MuonFilter Bundle energy at entry > 100 TeV

Discovery Potential and Sensitivity

Expectation for 1 year:

- 5 sigma discovery potential: 0.102 ± 0.005
- Sensitivity: 0.024 ± 0.001

Expectation for 10 years:

- 5 sigma discovery potential: 0.032 ± 0.001
- Sensitivity: 0.007 ± 0.000

Caution:

- Limited MC statistics -> events are oversampled in pseudo dataset
- No systematics

Unfolding

491 ICECUBE NEUTRINO OBSERVATOR

Unfolding in a Nutshell

2. maximum likelihod method:

$$\mathcal{L}(\vec{g}|\vec{f}) = \prod_{j=1}^{M} \frac{\lambda_j^{g_j}}{g_j!} \exp(-\lambda_j)$$
$$= \prod_{j=1}^{M} \frac{(A\vec{f})_j^{g_j}}{g_j!} \exp(-(A\vec{f})_j)$$

4. maximize $\log(\mathcal{L}(\vec{g}|\vec{f})) + t(\vec{f})$ with respect to \vec{f} using Markov Chain Monte Carlo (MCMC) or Minuit

3. Thikonov regularization:

folding

1. discretized form: $\vec{q} = A\vec{f} \leftrightarrow \vec{f} = A^{-1}\vec{g}$

$$t(\vec{f}) = -\frac{1}{2} (C\vec{f})^T (\tau 1)^{-1} (C\vec{f})$$

SFB1491 SECUBE NEUTRINO DBSERVATOR

Unfolded Muon Flux at Surface

Conclusion & Outlook

- New CORSIKA simulations with parent information
 - Tag prompt and conventional muons
 - Validation: agreement with MCEq
 - arXiv: 2502.10951
 - github.com/The-Ludwig/PANAMA
- Fit of prompt normalization is promising
 - Include systematics

- Unfolding of muon flux at surface works
 - Fine-tune regularization strength

How ChatGPT illustrates an air shower at a California beach.

Backup

Possible Solutions

R. Ulrich, R. Engel, M. Unger, PRD 83 (2011) 054026

S. Baur, HD, M. Perlin, T. Pierog, R. Ulrich, K. Werner, arXiv:1902.09265

$$R = \frac{E_{\pi^0}}{E_{\text{other hadrons}}}$$

- Only changes to R can solve muon puzzle
- Small changes have large effect,
 R needs to be known to about 5 %

Expected Muons For 10 Years: Leading vs. Bundle Energy (GSF)

- Both leading and bundle energy are sensitive to detect prompt
- Leading muon energy is more sensitive

19

Leading Muon Energy Fraction

- Prompt dominates for energies > 1 PeV
- \triangleright Leading energy sweet spot: 0.1 0.9

Leading Muon Contribution

Figure 10: Surface energy distribution for all and most energetic ("leading") muons in simulated events with a total of more than 1,000 registered photo-electrons in IceCube.

- Muons with energies between 100 TeV and 50 PeV dominate the bundle by more than 90%
- In average conventional muons are more dominant than prompt
- But: at high energies, there are more prompt than conventional events
- High leading energy fraction does not lead to more sensitivity to detect prompt

Poisson Likelihood Fit

➤ Bias starts at a prompt normalization of 0.1

Tau = 0.001

Unfolded Muon Flux at Surface

