Най-кратък път в Граф

Лекция 11 по СДА, Софтуерно Инженерство Зимен семестър 2018-2019г д-р Милен Чечев

От миналият път

Видове графи

- насочен/ненасочен
- с тегла по ребрата/без тегла по ребрата

Представяне на графи

- с матрица на съседство
- със списък на съседи

Обхождане на графи

- dfs
- bfs

Минимален път в непретеглен граф

Намира се с bfs!

Минимален път в претеглен граф?

Задачи

- 1. Изчисляване на най-къс път от връх до друг връх
- 2. Изчисляване на най-късите пътища от връх до всички други върхове
- 3. Изчисляване на най-късите пътища от всеки до всеки връх

Edge-weighted digraph: adjacency-lists representation

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93

shortest path from 0 to 6 $0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51(0.26 + 0.34 + 0.39 + 0.52)

Алгоритъм на Дийкстра

Основна идея: Подобен на търсене в ширина, но вместо с опашка с приоритетна опашка.

```
function Dijkstra(Graph, source):
create vertex set Q
for each vertex v in Graph:
                                              // Initialization
                                              // Unknown distance from source to v
     dist[v] \leftarrow INFINITY
                                              // Previous node in optimal path from source
     prev[v] \leftarrow UNDEFINED
                                              // All nodes initially in Q (unvisited nodes)
     add v to Q
                                              // Distance from source to source
dist[source] \leftarrow 0
while Q is not empty:
     u \leftarrow \text{vertex in } Q \text{ with min dist}[u]
                                              // Node with the least distance
                                              // will be selected first
     remove u from Q
     for each neighbor v of u:
                                              // where v is still in Q.
         alt \leftarrow dist[u] + length(u, v)
         if alt < dist[v]:</pre>
                                              // A shorter path to v has been found
              dist[v] \leftarrow alt
              prev[v] \leftarrow u
return dist[], prev[]
```

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, distTo[v] = $d^*(v)$.

length of shortest $s \rightarrow v$ path

- Pf. [by induction on |T|]
 - Let w be next vertex added to T.
 - Let P be the $s \rightarrow w$ path of length distTo[w].
 - Consider any other $s \rightarrow w$ path P'.
 - Let $x \rightarrow y$ be first edge in P' that leaves T.
 - P' is no shorter than P:

by construction

non-negative

length(P) = distTo[w] $Dijkstra\ chose \\ w\ instead\ of\ y \longrightarrow \leq distTo[y]$

relax vertex $x \rightarrow \leq distTo[x] + weight(x, y)$

induction \rightarrow \leq distio[x] + weight induction \rightarrow = $d^*(x)$ + weight(x, y)

 $\leq \operatorname{length}(P')$

Shortest paths: quiz

What is the order of growth of the running time of Dijkstra's algorithm in the worst case when using a binary heap for the priority queue?

- A. V + E
- \mathbf{B} . $V \log V$
- C. $E \log V$
- **D.** $E \log E$

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	Insert	DELETE-MIN	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^{\dagger}$	1 †	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- · Fibonacci heap best in theory, but not worth implementing.

Algorithm for shortest paths

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat V-1 times.
- Dijkstra: relax vertices in order of distance from s.

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	EV	~	~
Dijkstra	$E \log V$		V

Какво следва

- Домашна работа 8 17.12.2020 05.01.2020
- Лекция 12 Минимално покриващо дърво
- Домашна работа 9 07.01 14.01.2020
- Лекция 13 (Ойлеров и Хамилтонов цикъл. NP complete задачи)
 - + Контролна работа 6
- Допълнителни задачи за домашна работа 14.01.2020 23.01.2020
- Изпит 24.01.2020