Course Name: Mathematics-I Course Code: 18B11MA111

L-T-P scheme: 3-1-0 Credits: 4

Prerequisite: Students should have basic knowledge of Algebra and calculus.

Objective: This course is aimed:

• To introduce the calculus of functions of two variables and applicability of derivatives and integrals of vector functions to Analytical geometry and physical problems.

• To make students aware of the basic mathematical concepts and methods which will help them in learning courses in engineering and Technology.

Learning Outcomes:

Course	Description		
Outcome			
CO1	Understand the rank, eigen values, eigen vectors, diagonalization of matrix; compute inverse of matrix by Caley-Hamilton theorem.		
CO2	Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, and solve it by Gauss elimination method.		
CO3	Interpret derivatives and integrals of multivariable functions geometrically and physically; implement multivariable calculus tools in engineering, science, optimization, and understand the architecture of surfaces in plane and space etc.		
CO4	Know about piecewise continuous functions, Laplace transforms and its properties; use of Laplace transform and inverse transform for solving initial value problems.		
CO5	Realize importance of line, surface and volume integrals, Gauss and Stokes theorems and apply the concepts of vector calculus in real life problems.		
CO6	Formulate mathematical models in the form of ordinary differential equations and learn various techniques of getting solutions of linear differential equations of second order.		

Course Contents:

Unit 1: Algebra of matrices, Determinants, Rank, Gauss elimination method, Eigen values and vectors. Quadratic forms.

Unit 2: Partial differentiation. Taylor's series. Maxima and minima. Jacobians, Double integrals,

- **Unit 3:** Differential Equations with constants coefficients.
- **Unit 4:** Gradient, divergence and curl. Line and surface integrals, Normal and tangent to a surface. Gauss and Stokes theorems, Equations to a line, plane, curve and surfaces.

Unit 5: Laplace transforms.

Methodology:

The course will be covered through lectures supported by tutorials. There shall be 3 Lectures per week where the teacher will explain the theory, give some examples supporting the theory and its applications. About 12 Tutorial Sheets covering whole of the syllabus shall be given. Difficulties and doubts shall be cleared in tutorials. Apart from the discussions on the topics covered in the lectures, assignments/ quizzes in the form of questions will also be given.

Evaluation Scheme:

Exams	Marks	Coverage
Test-1	15 Marks	Syllabus covered upto Test-1
Test-2	25 Marks	Syllabus covered upto Test-2
Test-3	35 Marks	Full Syllabus
Assignment	10 Marks	
Tutorials	5 Marks	
Quiz	5 Marks	
Attendance	5 Marks	
Total	100 Marks	

Learning Resources:

Tutorials, lecture slides and books on mathematics-1 will be available on the JUET server.

Books

- 1. Erwin Kreyszig: Advanced Engineering Mathematics, Wiley Publishers.
- 2. Lipshuts, S., Lipsom M.: Linear Algebra, 3rd Ed, Schaum series 2001.
- 3. B. V. Raman: Higher Engineering Mathematics, McGraw-Hill Publishers.
- 4. R.K. Jain, S.R.K. Iyenger: Advanced Engineering Mathematics, Narosa Publishing House, New Delhi.
- 5. Thomas, G.B., Finney, R.L.: Calculus and Analytical Geometry, 9th Ed., Addison Wesley,1996.
- 6. Grewal, B.S.: Higher Engineering Mathematics, Khanna Publishers Delhi.