# Аппаратные средства телекоммуникационных систем

Вычислительные сети

## Основные понятия

Аппаратные средства телекоммуникационных систем. Вычислительные сети

#### Вычислительные сети

• Вычислительная сеть - система, состоящая из двух или более удаленных ЭВМ, соединенных с помощью специальной аппаратуры и взаимодействующих между собой по каналам



#### Вычислительные сети

- Лока́льная вычисли́тельная сеть (ЛВС, локальная сеть; Local Area Network, LAN) компьютерная сеть, покрывающая относительно небольшую территорию или небольшую группу ЭВМ (дом, офис, фирма, институт).
- Глобальная вычислительная сеть, ГВС (Wide Area Network, WAN) компьютерная сеть, охватывающая большие территории и включающая большое число узлов.
  - Глобальные вычислительные сети служат для объединения разрозненных сетей.
    - MAN (Metropolitan Area Network). соединение систем в пределах города или страны.
    - WAN (Wide Area Network). Сеть нескольких стран.
    - VAN (Virtual Area Network). Сеть виртуально созданного сегмента

#### Локальные сети

• Ethernet стал самой распространённой технологией ЛВС в середине 1990-х годов, вытеснив технологии Token Ring, FDDI и ARCNET.

| Характеристики                       | FDDI         | DXI Ethernet    | Token Ring    | ArcNet        |
|--------------------------------------|--------------|-----------------|---------------|---------------|
| Скорость передачи                    | 100 Мбит/с   | 10 (100) Мбит/с | 16 Мбит/с     | 2,5 Мбит/с    |
| Топология                            | кольцо       | шина            | кольцо/звезда | шина, звезда  |
|                                      |              | коаксиальный    |               | коаксиальный  |
| Среда передачи                       | оптоволокно, | кабель, витая   | витая пара,   | кабель, витая |
| Среда передачи                       | витая пара   | пара,           | оптоволокно   | пара,         |
|                                      |              | оптоволокно     |               | оптоволокно   |
| Метод доступа                        | маркер       | CSMA/CD         | маркер        | маркер        |
| Максимальная протяженность<br>сети   | 100 км       | 2500 м          | 4000 м        | 6000 м        |
| Максимальное<br>количество узлов     | 500          | 1024            | 260           | 255           |
| Максимальное расстояние между узлами | 2 км         | 2500 м          | 100 m         | 600 m         |

# Беспроводные сети WLAN, WMAN, Mobile WMAN

| Название | Стандарт | Тип                     | Скорость                                        | Расстояние | Частота         |
|----------|----------|-------------------------|-------------------------------------------------|------------|-----------------|
|          | 802.11a  |                         | 54Мбит/с                                        |            | 5,0 ГГц         |
|          | 802.11b  |                         | 11Мбит/с                                        |            | 2.4.55.         |
|          | 802.11g  |                         | 54Мбит/с                                        |            | 2,4 ГГц         |
| Wi-Fi    | 802.11n  | WLAN                    | 300 -450-600 Мбит/с                             | 100m       | 2.4-5.0ГГц      |
|          | 802.11ac |                         | 3.39 Гбит/с - клиент;<br>6.77 Гбит/с - АР       |            | 2.4-5.0ГГц      |
| WiMax    | 802.16d  | WMAN                    | 75 Мбит/с                                       | 6-10 км    | 1,5—11<br>ГГц   |
|          | 802.16e  | Mobile<br>WMAN          | 40 Мбит/с                                       | 1—5 км     | 2,3—13,6<br>ГГц |
|          | 802.16m  | WMAN,<br>Mobile<br>WMAN | 1 Гбит/с (WMAN),<br>100 Мбит/с<br>(Mobile WMAN) | в разра    | ботке           |

## Беспроводные сети WPAN

| Название             | Стандарт  | Скорость          | Расстояние                                  | частота                                                                         |
|----------------------|-----------|-------------------|---------------------------------------------|---------------------------------------------------------------------------------|
| Bluetooth v. 1.1     | 802.15.1  | 0,7 Мбит/с        | 10 M                                        |                                                                                 |
| Bluetooth v. 2.0     | 802.15.3  | 3 Мбит/с          | 100                                         | 2,4 ГГц                                                                         |
| Bluetooth v. 3.0     | 802.11    | 3 -24 Мбит/с      | 100 m                                       |                                                                                 |
| UWB                  | 802.15.3a | 110—480<br>Мбит/с | 10 M                                        | 3,1—10,6 ГГц                                                                    |
| ZigBee               | 802.15.4  | 20 -250 Кбит/с    | 1—100 m                                     | 2,4 ГГц<br>(16 каналов),<br>915 МГц<br>(10 каналов),<br>868 МГц<br>(один канал) |
| Инфракрасный<br>порт | IrDa      | 16 Мбит/с         | 5-50 см,<br>односторонняя<br>связь— до 10 м |                                                                                 |

# Эталонные модели и стеки протоколов вычислительных сетей

Аппаратные средства телекоммуникационных систем. Вычислительные сети

#### Открытые системы и модель OSI

- OSI open systems interconnection basic reference model —
   Базовая Эталонная Модель Взаимодействия Открытых Систем (ЭМВОС)
- Модель взаимодействия устройств в сети друг с другом на разных уровнях, определяющим соответствующим функционалом.

 OSI представляет единый унифицированный стандарт, который определят алгоритм передачи информации в сетях.



#### Открытые системы и модель OSI

- физический уровень физические (механические, электрические, оптические) характеристики линий связи;
- канальный уровень правила использования физического уровня узлами сети;
- сетевой уровень адресация и доставка сообщений;
- транспортный уровень контроль очередности прохождения компонентов сообщения;
- сеансный уровень координация связи между двумя прикладными программами, работающими на разных рабочих станциях;
- уровень представления преобразование данных из внутреннего формата компьютера в формат передачи;
- прикладной уровень обеспечивает интерфейс связи сетевых программ пользователя.

#### Модель OSI

| Данные | Прикладной<br>доступ к сетевым службам                  |
|--------|---------------------------------------------------------|
| Данные | Представления представление и кодирование данных        |
| Данные | Сеансовый<br>Управление сеансом связи                   |
| Блоки  | Транспортный безопасное и надёжное соединие точка-точка |
| Пакеты | Сетевой<br>Определение пути и IP (логическая адресация) |
| Кадры  | Канальный<br>МАС и LLC<br>(Физическая адресация)        |
| Биты   | Физический кабель, сигналы, бинарная передача данных    |

#### Стек коммуникационных протоколов

- В вычислительных сетях, как правило, применяются наборы протоколов, а не все функциональные уровни модели взаимодействия открытых систем.
- Стек коммуникационных протоколов набор протоколов, используемый для организации взаимодействия оборудования в сети.
  - —Стек протоколов позволяет использовать во всей сети одну и ту же аппаратуру.
  - Примеры стеков протоколов:
    - TCP/IP (Ethernet),
    - IPX/SPX (Token Ring),
    - NetBEUI/NetBIOS (FDDI).
  - -стеки протоколов на физическом и канальном уровнях используют стандартизованные протоколы, а также некоторые свои,
  - —На физическом и канальном уровнях стеки используют единые протоколы OSI.
  - На верхних уровнях все стеки работают со своими собственными протоколами.

#### Стек протоколов ТСР/ІР

- TCP/IP набор протоколов передачи данных, получивший название от двух принадлежащих ему протоколов: TCP( *Transmission Control Protocol*) и IP *Internet Protocol*)
- HTTP (Hyper Text Transfer Protocol) протокол передачи гипертекста.
  - используется при пересылке Web-страниц.
- FTP (File Transfer Protocol) протокол передачи файлов с файлового сервера на компьютер пользователя.
- POP3 (Post Office Protocol) протокол почтового соединения.
  - Серверы РОР обрабатывают входящую почту, протокол РОР для обработки запросов на получение почты от почтовых программ.
- SMTP (Simple Mail Transfer Protocol) протокол передачи почты.
  - Сервер SMTP возвращает подтверждение о приеме, сообщение об ошибке, или запрашивает дополнительную информацию.
- **TELNET** протокол удаленного доступа к ПК.

#### Стек протоколов. Сравнение OSI

• Соответствие архитектуры наиболее распространенных стеков протоколов стандартной модели OSI (упрощенная схема)

| Модель OSI          | TCP/IP                                               | NetBIOS/SMB | AppleTalk | IPX/SPX  |
|---------------------|------------------------------------------------------|-------------|-----------|----------|
| 7. Прикладной       | WWW, FTP                                             | SMB         | AFP, PAP  | NCP, SAP |
| 6. Представительный | 440004,116                                           |             |           |          |
| 5. Сеансовый        |                                                      |             |           |          |
| 4. Транспортный     | TCP, IP                                              | NetBIOS     | ATP, ADSP | SPX, IPX |
| 3. Сетевой          |                                                      |             |           |          |
| 2. Канальный        | FDDI, Fast Ethernet, Ethernet, Token Ring, PPP и др. |             |           |          |
| 1. Физический       | Оптоволокно, радиоволны, коаксиал, витая пара        |             |           |          |

#### Стек протоколов. Сравнение OSI

• Соответствие архитектуры наиболее распространенных стеков протоколов стандартной модели OSI (упрощенная схема)





# Виды и типы подключений локальных сетей

Аппаратные средства телекоммуникационных систем. Вычислительные сети

#### Сетевая карта

- С точки зрения аппаратных средств основой для организации локальной сети являются карты расширения сетевые карты.
  - Псевдосеть РС соединяются с помощью кабеля нуль-модема (интерфейс RS-232).
- Чаще всего сетевые карты работают по протоколу Ethernet



#### Локальная сеть Ethernet

- Локальная сеть Ethernet семейство технологий пакетной передачи данных между устройствами.
- модели OSI в стандартах Ethernet определяют
  - проводные соединения и электрические сигналы на физическом уровне.
  - формат кадров и протоколы управления доступом к среде — по канальному уровню.
- Ethernet описывается стандартами IEEE группы 802.3.

#### Витая пара

- Витая пара (Twisted Pair) это два изолированных скрученных медных провода.
- Для Ethernet используется 8-жильный кабель- 4-х витых пары

Вариант по стандарту ТІА/ЕІА-568А



#### Витая пара

- Каждая пара состоит из проводов Ring и Tip,
  - паре соответствует номер и цвет (Ring1, Tip1, Ring2, Tip2 и т. Д).
    - 1-я пара синий и белый с синими полосками;
    - 2-я пара оранжевый и белый с оранжевыми полосками;
    - 3-я пара зеленый и белый с зелеными полосками;
    - 4-я пара коричневый и белый с коричневыми полосками.



Кабели витая пара: a — UTP категории 3–5,  $\delta$  — UTP категории 6,  $\epsilon$  — ScTP, FTP,  $\epsilon$  — SFTP,  $\delta$  — STP Type 1,  $\epsilon$  — PIMF. 1 — провод в изоляции, 2 — внешняя оболочка, 3 — сепаратор, 4 — экран из фольги, 5 — дренажный провод,  $\epsilon$  — экранирующая оплетка

#### Витая пара. Расположение проводов

• Варианты расположения проводов в кабеле распиновка (тип А) устарела - использовалась для одноранговых устройств В настоящее время используется вариант В





#### Витая пара. Разъем RJ45

- Каждый ПК должен быть подключен к хабу.
- Длина сегмента кабеля Ethernet хаб-пк до 100 м.
- Стандартный разъем Ethernet Rj-45 (8ми контактный разъем)



#### Витая пара. Типы витой пары

код перед чертой тип экрана для кабеля, код после черты тип индивидуального экранирования

| Обозначение<br>ISO/IEC 11801 | Общий экран     | Экран пар |
|------------------------------|-----------------|-----------|
| U/UTP                        | нет             | нет       |
| U/FTP                        | нет             | фольга    |
| F/UTP                        | фольга          | нет       |
| S/UTP                        | оплётка         | нет       |
| SF/UTP                       | оплётка, фольга | нет       |
| F/FTP                        | фольга          | фольга    |
| S/FTP                        | оплётка         | фольга    |
| SF/FTP                       | оплётка, фольга | фольга    |



## Витая пара. Категории

| Катег<br>ория | Полоса<br>частот,<br>МГц | Применение                        | Примечания                                                                                                                                                                                    |
|---------------|--------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | 0,1                      | Телефонные и<br>старые модемы     | 1 пара передача голоса или данных при помощи модема(не используется для сетей)                                                                                                                |
| 2             | 1                        | Старые<br>терминалы<br>(IBM 3270) | 2 пары проводников, скорость до 4 Мбит/с, сетями tokenring и archnet, телефонные сети, (не подходит для современных систем).                                                                  |
| 3             | 16                       | 10BASE-, 100<br>BASE-T4Ethernet   | 4-парный кабель, телефонные и локальные сетей 10BASE-T и token ring, скорость 10 Мбит/с -100 Мбит/с, расстояние до 100 м. Отвечает требованиям IEEE 802.3. Используется для телефонных линий. |
| 4             | 20                       | <u> </u>                          | 4-парный кабель, сети token ring, 10BASE-T, 100BASE-<br>Т4, скорость до 16 Мбит/с по одной паре.                                                                                              |

# Витая пара. Категории

| Катего<br>рия | Полоса<br>частот,<br>МГц | Применение                                                         | Примечания                                                                                                                                          |
|---------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5             | 100                      | Fast Ethernet<br>(100BASE-TX),<br>Gigabit Ethernet<br>(1000BASE-T) | 4-парный кабель, сети 10BASE-T, 100BASE-<br>TX и 1000BASE-T и телефонные линии, скорость до 100<br>Мбит/с (2 пары) и до 1000 Мбит/с (4 пары).       |
| 5e            | 100                      | Fast Ethernet<br>(100BASE-TX),<br>Gigabit Ethernet<br>(1000BASE-T) | 4-парный кабель. Скорость до 100 Мбит/с (2 пары) и до 1000 Мбит/с (4 пары). самый распространённый, используется для построения компьютерных сетей. |
| 6             | 250                      | 10 Gigabit Ethernet (10GBASE-T)                                    | неэкранированный кабель (UTP) 4 пары проводников, скорость до 10 Гбит/с (до 55 м).                                                                  |
| 6A            | 500                      | 10 Gigabit Ethernet<br>(10GBASE-T)                                 | 4 пары проводников, скорости до 10 Гбит/с на расстояние до 100 метров. (F/UTP общий экран), (U/FTP - экраны вокруг каждой пары).                    |

# Витая пара. Категории

| Катего<br>рия  | Полоса<br>частот,<br>МГц | Применение                             | Примечания                                                                                                                                                                                     |
|----------------|--------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7              | 600                      | 10 Gigabit<br>Ethernet<br>(10GBASE-T)  | Скорость до 10 Гбит/с.<br>Экраны общий и для каждой пары (F/FTP или S/FTP).                                                                                                                    |
| 7 <sub>A</sub> | 1000                     | 10 Gigabit<br>Ethernet<br>(10GBASE-T)  | Скорость до 10 Гбит/с.<br>Экраны общий и для каждой пары (F/FTP или S/FTP).                                                                                                                    |
| 8/8.1          | 1600-<br>2000            | 100 Gigabit<br>Ethernet<br>(40GBASE-T) | В разработке. Совместим с кабелем 6А. Скорость до 40 Гбит/с при использовании стандартных коннекторов 8Р8С. Кабель либо общий экран, либо экраны вокруг каждой пары (F/UTP или U/FTP).         |
| 8.2            | 1600-<br>2000            | 100 Gigabit<br>Ethernet<br>(40GBASE-T) | В разработке. совместим с кабелем категории 7А. Скорость до 40 Гбит/с при использовании стандартных коннекторов 8Р8С либо GG45/ARJ45 и TERA. Экраны общий и для каждой пары (F/FTP или S/FTP). |

#### Коаксиальный кабель

- **Коаксиальный кабель** (coaxial cable, или coax) передача сигналов по центральной жиле и экранирующей оплетке.
  - Материал и сечение проводников и изоляции определяют потери сигнала в кабеле и его импеданс.
    - электрическое и магнитное поля, образующиеся при прохождении сигнала, почти полностью остаются внутри кабеля,
      - » Почти не создает электромагнитных помех.
      - » Низкая чувствительность к помехам в однородном ЭМ поле.

Толстый кабель









SFP+ - Rj45 Twinaxial cabel (Gigabit Ethernet)







#### Коаксиальный кабель

- используется при асимметричной передаче сигналов.
- Диаметр жилы и оплетки и диэлектрическая проницаемость изоляции между ними определяют частотные свойства кабеля.
  - недостаток пропускная способность д 10 Мбит/с
    - достигнут в технологии Ethernet 10Base2 и 10Base5.
  - R кабеля 50 Ом Ethernet (стандарт EIA/TIA-568A),
    - 75 Ом передача радио- и телевизионных сигналов,
    - 93 Ом в ЛВС ARCnet.



#### Оптическое волокно

- Оптоволокно проводник света из оптически прозрачного материала (стекло, пластик),
- используется переноса света посредством полного внутреннего отражения.
- По виду траектории распространения света одномодовое и многомодовое волокно.
- Внутренняя часть сердцевина (core),
- внешняя **оптическая оболочка** (cladding).
- оптическое волокно световод (сердцевина в оболочке) с защитным покрытием.





#### Оптическое волокно

- Внутренняя стеклянная сердцевина (1) из стекла
- внешняя оболочка (2) из стекла с другим показателем преломления.
- Световой сигнал отражается от ее краев под маленьким углом
  - не может выйти за пределы сердцевины
    - эффект, полного внутреннего отражения.
  - Обшивка (3) обеспечивает физическую защиту,



. Коннектор ST



#### Оптическое волокно. Одномодовые и многомодвые волокна

- Одномодовые волокна с узкой сердцевиной (А)
  - позволяют посылать сигналы на больше расстояния без искажений.
- Многомодовые волокна с широкой сердцевиной (В)
  - происходит большее число отражений,
    - приводит к сливанию соседних световых импульсов.
      - » между импульсами должно быть большее расстояние,
        - ограничивает объем передаваемой информации.



## Классическая сеть Ethernet

Аппаратные средства телекоммуникационных систем. Вычислительные сети

#### Вычислительные сети. Технология Ethernet.

- Классический Ethernet скорости от 3 до 10 Мбит/с.
- Коммутируемый Ethernet сети работают на скоростях 100 Мбит/с — 100 Гбит/с
  - 100 Мбит/с Fast Ethernet,
  - 1000 Мбит/с Gigabit Ethernet,
  - 10 000 Мбит/с 10-Gigabit Ethernet,
  - 40 000 Мбит/с 40-Gigabit Ethernet,
  - 100 000 Мбит/с 100-Gigabit Ethernet
  - В настоящее время используется только коммутируемый Ethernet.
- Стандарты Ethernet
  - IEEE 802.3 группа стандартов
    - Ethernet тип A классический,
    - Ethernet тип Б коммутируемый.
  - DIX Ethernet устарел (первоначальный стандарт)

#### Классический Ethernet. Физический уровень

- Классический Ethernet это один длинный кабель,
   обвивающий здание, к которому подключаются компьютеры.
- Кодировка манчестерского кода.
- **повторители** (ретрансляторы **repeaters**) построения больших стей.
  - два приемопередатчика должны располагаться на расстоянии не более 2,5 км и между ними должно быть не более четырех повторителей.



#### Классический Ethernet. Физический уровень

- «Толстый» коаксиальный кабель Ethernet (thick Ethernet),
  - Максимальная длина 500 м.
  - Поддержка 100 машин.
- «Тонкий» коаксиальный кабель Ethernet (thin Ethernet);
  - дешевле и проще в установке
  - длина сегмента не более 185 метров
  - каждый сегмент поддерживал не более 30 машин

# Толстый кабель



#### Классический Ethernet. Кодирование данных

- Все пакет в вычислительных сетях кодируются.
  - Это необходимо для повышения достоверности передачи данных по сети.
  - Так, например при передачи большого числа 1 или 0 на фоне постоянных помех, то есть фактически постоянного уровня напряжения, приемник может сбиться со счету сколько точно 0 или 1 пришло.
  - Решение этой проблемы кодирование данных.

#### Классический Ethernet.Код Манчестер II

- Манчестерское кодирование (manchester encoding, код Манчестер-II)
- Логическое состояние определяется направлением смены состояния в середине битового интервала;
  - от -V к +V лог.«1»,
  - от +V к -V лог.«0».
  - Переход позволяет синхронизировать приемник и передатчик.
  - Переход в начале интервала может быть, а может и не быть.
- Самосинхронизирующаяся система кодировки за счет постоянных перепадов напряжения.
- Недостаток работа передатчика и приемника на удвоенной частоте.



#### Классический Ethernet.

#### Проблема одновременной передачи сообщений

- Устройства должны передавать кадры только если кабельный сегмент не занят другими устройствами.
- Проблема: Из-за отсутствия каких либо дополнительных сигналов несколько устройств могут совершить попытку передачи сигнала одновременно.
  - Критерий: отсутствие сигнала в течение 9,6 мксек.



#### Классический Ethernet.

#### Проблема одновременной передачи сообщений

- **Коллизия (столкновение)** ситуация, когда попытку передачи совершат два или более устройства в одно время.
  - Столкновения механизм регулирования трафика в сети.
  - Минимальная длина пакета определяется временем распространения сигнала на максимальную дальность и обратно.
- При обнаружении столкновения станция прерывает передачу.
  - Попытка передать снова может быть произведено после случайной выдержки (двоичная экспоненциальная выдержка) алгоритм CSMA/CD



## Классический Ethernet. Стандарты

| Стандарт    | Год  | Тип        | Скорость<br>, Mbps | длина сегмента, м | Тип кабеля     |
|-------------|------|------------|--------------------|-------------------|----------------|
| IEEE 802.3  | 1983 | 10Base5    | 10                 | 500 м             | коаксиальный   |
| IEEE 802.3a | 1985 | 10Base2    | 10                 | 185 M             |                |
| IEEE 802.3b | 1985 | 10Broad36  | 10                 | 3600 м            |                |
| IEEE 802.3e | 1987 | 1Base5     | 1                  | 250 м             | UTP            |
| IEEE 802.3e | 1987 | StarLan 10 | 10                 | 250 м             | UTP            |
| IEEE 802.3d | 1987 | FOIRL      | 10                 | 1000              | оптоволоконный |
| IEEE 802.3i | 1990 | 10Base-T   | 10                 | 100 M             | UTP cat 3,5    |
| IEEE 802.3j | 1993 | 10Base-F   | 10                 | 2км               | оптоволоконный |

#### Классический Ethernet. Типы Ethernet

Формат типа: XX<NAME>-YY

- XX
  - - скорость передачи, Мбит/с.
- <NAME>:
  - Base прямая (немодулированная) передача,
  - Broad использование широкополосного кабеля с частотным уплотнением каналов.
- YY:
  - длина кабеля (10Base2 185 м, 10Base5 500 м, lBase5 250 м)
  - или среда передачи:
    - T, TX, 72, T4 витые пары,
    - FX, FL, FB, SXu IX оптоволокно,
    - CX твинаксиальный кабель для Gigabit Ethernet).

#### Классический Ethernet. Формат кадра

- Preamble (преамбула, заголовок) 8 байт,
  - 1-7 байт 10101010
  - 8 байт 10101011 разделитель кадра (в стандарте 802.3).
    - Start of Frame (Начало кадра).
- Адреса получателя и отправителя по 6 байт.
- Длина или тип данных (напр. 0x0800 lpv4, 0x86DD lPv6, и т.д)
- Поле данных (целые кадры от 46 до 1500 байт)
  - В случае, если полезной нагрузки менее 46 бит данные дополняются полем наполнителя
- Checksum контрольная сумма (4 байта 32-битный код CRC).

Байты 7 6 2 0-1500 Разграничитель Контрольная Наполнитель назначения Треамбула Адрес сумма Минимальный размер кадра

Максимальный размер кадра 1500 байт.

64 байта.

#### Классический Ethernet. MAC адрес

- MAC (Media Access Control (Hardware) Address) глобальный адрес, присваиваемый каждой единице активного оборудования или некоторым их интерфейсам в компьютерных сетях Ethernet.
  - централизованно назначаются IEEE,
    - 48-битный (6 байт) номер
      - гарантирует, что один и тот же глобальный адрес не используется двумя устройствами.
    - первые 3 байта OUI (Organizationally Unique Identifier).
      - назначаются IEEE и определяют производителя.
        - » Производителям выделяются **блоки по 2<sup>24</sup>** (3 байта) адресов для устройств.



#### Технология Ethernet. Форматы кадров

по стандартам IEEE в сети Ethernet может использоваться только единственный

вариант кадра канального уровня, образованный комбинацией заголовков МАС и LLC подуровней. 8 bytes 6 bytes 46 - 1500 bytes E-TYPE Preamble DA SA PAYLOAD FCS Ethernet II (Ethernet DIX ) 6 bytes 2 bytes 4 bytes 8 bytes 6 bytes 4 bytes 3 bytes Ethernet 802.3/LLC Preamble DA SA Length PAYLOAD FCS 2 bytes 46 - 1497 bytes 6 bytes 8 bytes 6 bytes 46 - 1500 bytes F Preamble DA SA PAYLOAD FCS Length **RAW 802.3** D 2 bytes 6 bytes 4 bytes 8 bytes 46 - 1492 bytes 6 bytes 3 bytes 802.3/SNAP Preamble F DA Length SNAP FCS SA PAYLOAD

2 bytes

5 bytes

6 bytes

4 bytes

#### Технология Ethernet. Форматы кадра LLC

- Стандарт IEEE Ethernet определяет кадра канального уровня, образованный комбинацией заголовков МАС и LLC подуровней.
- Logical Link Control (LLC) подуровень управления логической связью по стандарту IEEE 802
  - Верхний подуровень канального уровня модели OSI
    - управление передачей данных;
    - обеспечивает проверку и правильность передачи информации по соединению.



## Коммутация сетей Ethernet

Аппаратные средства телекоммуникационных систем. Вычислительные сети

## Коммутируемые сети Ethernet.

#### • Проблема классической сети Ethernet:

- поиск обрывов или ведущих в пустоту соединений.
- Большое число устройств приводит к большой вероятности коллизий

#### • Коммутируемая сеть Ethernet

 Каждое станция соединяется с центральным устройством отдельным кабелем.



## Коммутируемые сети Ethernet. Особенности Концентраторов

- **Хаб (концентратор)** соединяет все провода в электрическую схему, как если бы они были спаяны вместе.
- максимальная длина кабеля между ПК и концентратором до 100 м
- Использовались витые пары
- легко удалять и добавлять станции
- Проще находить разрывы кабеля.





## Коммутируемые сети Ethernet. Особенности коммутаторов

- **Коммутатор** (switch), содержит высокоскоростную плату,
- Получив пакет от одного ПК, коммутатор направляет по адресу именно тому компьютеру, с которым необходимо установить контакт.
  - За счет буфера задержки пакетов предотвращение коллизий.
    - Коммутатор решение проблемы числа устройств на кабеле.
    - разные станции могут посылать свои кадры одновременно.



# Коммутируемые сети Ethernet. Особенности.

- **Концентратор** все станции находятся в одном и том же **пространстве столкновений** (**collision domain**).
  - Для планирования пересылки кадров алгоритм CSMA/CD.
- Коммутатор каждый порт находится в своем пространстве столкновений.
  - когда передача по кабелю осуществляется в дуплексном режиме, и станция, и порт могут одновременно посылать кадры, не беспокоясь о других станциях и портах.
    - В дуплексном режиме коммутатора столкновения невозможны,
      - CSMA/CD не требуется.

• В полудуплексном режиме используется CSMA/CD для каждых двух портов



# Коммутируемые сети Ethernet. Особенности.

- Большинство интерфейсов локальных сетей (сетевых адаптеров) работают в «**неразборчивом режиме**» (**promiscuous mode**),
  - *все* кадры передаются на все компьютеры, а не только адресату.
  - лучше шифровать трафик.
- **Если применяется концентратор**, то каждый подключенный к нему компьютер может видеть трафик, пересылаемый между всеми остальными компьютерами.
- Коммутатор передает трафик только на порты адресатов.
  - лучше изоляция.
  - Если коммутатор подсоединён к концентратору, то преимущество теряется.



### Сети Fast Ethernet

Аппаратные средства телекоммуникационных систем. Вычислительные сети

#### Сети Fast Ethernet

- Скорости до 100 МБит.
- Использование 4 витых
- Запрещение конфигураций без коммутатора или хаба.
- Введено двойное кодирование
  - Логическое кодирование зависит от стандарта
    - 4B/5B для Fx и Tx, 8B/6T для 100Base-T4
  - Линейное кодирование (физическое) зависит от стандарта
    - NRZI для FX, MLT3 для T4 и TX

| Наиболее распространённые виды Fast ethernet |             |       |                                                          |  |  |
|----------------------------------------------|-------------|-------|----------------------------------------------------------|--|--|
| Название                                     | Тип кабеля  | Длина | Особенности.                                             |  |  |
| 100Base-T4                                   | Витая пара  | 100   | Использование не экранированной витой пары категории 3   |  |  |
| 100Base-TX                                   | Витая пара  | 100   | Полный дуплекс при 100 Мбит/с (витая пара 5 категории)   |  |  |
| 100Base-FX                                   | Оптоволокно | 2000  | Полный дуплекс при 100 Мбит/с;<br>большая длина сегмента |  |  |

#### Сети Fast Ethernet

•

| Стандарт         | Год  | Тип          | Скорость, | длина, м                                 | Тип кабеля       |
|------------------|------|--------------|-----------|------------------------------------------|------------------|
| IEEE 802.3u 1995 |      | 100Base-FX   | 100 Mbps  | Одномод<br>— 2 км<br>Многомод<br>— 400 м | оптоволоконный   |
|                  |      | 100Base-T    | 100 Mbps  | 100 M                                    | UTP/STP cat 5    |
|                  |      | 100Base-T4   | 100 Mbps  | 100 M                                    | UTP/STP cat >= 3 |
|                  |      | 100Base-TX   | 100 Mbps  | 100 M                                    | UTP/STP cat 5    |
| IEEE 802.12      | 1995 | 100Base-VG   | 100 Mbps  | 100 M                                    | UTP cat 3,5      |
| IEEE 802.3y      | 1998 | 100Base-T2   | 100 Mbps  | 100 M                                    | UTP cat 3,5      |
| TIA/EIA-785      | 2001 | 100Base-SX   | 100 Mbps  | 300 M                                    | оптоволоконный   |
| IEEE 802.3ah     | 2004 | 100Base-LX10 | 100 Mbps  | 10 км                                    |                  |
| IEEE 802.3ah     | 2004 | 100Base-BX10 | 100 Mbps  | 10 км                                    |                  |

# Сети Fast Ethernet. Модель OSI. Отличия классического и Fast Ethernet

Канальный уровень разделен на LLC и MAC подуровни

Физический уровень на уровень согласования, МІІ и РНҮ подуровни.



Устройство физического уровня (Physical layer device, PHY)

## Сети Fast Ethernet. Модель OSI.

- Интерфейс MII (Media Independent Interface) независимый от используемой физической среды способ обмена данными между МАС-подуровнем и подуровнем РНҮ.
- MAC (media access control) расширение модели OSI.
- LLC (Logical Link Control) подуровень управления логической

связью

- управление передачей данных;
- проверка правильности передачи информации по соединению.
- Подуровень согласования согласования с классическим Ethernet.



#### Сети Fast Ethernet. Физический уровень РНҮ

- PHY (трансивер, контроллер Ethernet)
- обеспечивает:
  - кодирование данных, от МАС-подуровня
  - передачу по физическому кабелю,
  - синхронизацию передаваемых данных,
  - прием и декодирование данных.
  - Автоматическое согласование скорости.





- Микросхема трансивера реализует функции устройства РНҮ и устройства согласования
- Канал передачи данных от МАС к РНҮ
  - 4-битная параллельная шина данных
  - синхронизируется тактовым сигналом, генерируемым РНҮ,
  - Работает по сигналу "Передача", генерируемым МАС-подуровнем.

#### • Канал передачи данных от РНҮ к МАС

- 4-битная параллельная шина данных,
- синхронизируется тактовым сигналом
- сигнал "Прием", генерируются РНҮ.

#### Сигналы управления

- двухпроводная шина
- Конфигурация РНҮ, скорости
- Контроль состояния портов и линий



- **Аппаратное обеспечение** Сетевая интерфейсная плата (NIC),
  - Микросхемы МАС уровня,
  - MII-интерфейс
  - Микросхему трансивера
    - подуровень согласования,
    - устройство физического уровня РНҮ



- Программное обеспечение (драйвера) сетевые и транспортные протоколы,
  - Драйвера реализуют модули высших уровней OSI
    - сеансовый,
    - представления,
    - прикладной.



Физический

ровень

- Настройки сетевой карты хранятся:
- Perистр управления (Control Register) конфигурация PHY
  - Установка скорости порта
    - Функция Auto-negotiation
- Peructpe ctatyca (Status Register) контроль линий и портов.
  - Режимы работы портов Fast ethernet:
    - 100Base-T4;
    - 100Base-TX full-duplex;
    - 100Base-TX half-duplex;
    - 10 Mb/s full-duplex (полнодуплексный);
    - 10Mb/s half-duplex (полудуплексный);
    - ошибка на дальнем конце линии.



#### Сети Fast Ethernet. Полнодуплексные режимы

- Полнодуплексная работа возможна только при соединения сетевого адаптера с коммутатором или соединения двух коммутаторов
- Каждый производитель сам определяет способы управления потоком кадров в полнодуплексном режиме.
- Проблема: заполнении буфера устройства
- Решение: служебные сообщения заполнения/очистки буфера
  - При заполнении буфера принимающее устройство посылает передающему сообщение о временном прекращении передачи (XOFF).
  - При освобождении буфера посылается сообщение о возможности возобновить передачу (XON).

#### Сети Fast Ethernet. Особенности 100Base-FX

- Спецификация 100Base-FX (многомодовое оптоволокно)
- полудуплексный и полнодуплексный режимы
  - логическое кодирование 4B/5B
    - Уровень кодирования PCS
    - символ Idle (11111) обозначения незанятого состояния
    - Состояние JK начало потока J(11000), К(10001)
    - Т конец потока
  - физическое кодирование NRZI.
    - Полоса уже чем у манчестер II
    - Уровень кодирования PMD



## Сети Fast Ethernet. Кодировка 4B/5B

- Избыточное кодирование 4В/5В
- В результирующем коде 16 комбинаций, которые не содержат большого количества нулей полезные
  - остальные запрещены (code violation).
  - Код 4-5 гарантирует не более трех нулей подряд
  - позволяют приемнику распознавать искаженные биты.
    - Если приемник принимает запрещенный код, значит, на линии произошло искажение сигнала.
- для передачи кодов 4B/5B со скоростью 100 Мб/с передатчик должен работать с тактовой частотой 125 МГц.

  Таблица 1.1. Кодирование 4B/5B

| 4В Код          | 5В Символ |
|-----------------|-----------|
| Ожидание        | 11111     |
| Начало потока   | 11000     |
| Начало потока   | 10001     |
| Конец потока    | 01101     |
| Конец потока    | 00111     |
| Ошибка передачи | 00100     |
| Недопустимый    | 00000     |
| Недопустимый    | 00001     |
| Недопустимый    | 00010     |
| Недопустимый    | 00011     |
| Недопустимый    | 00100     |
| Недопустимый    | 00101     |
| Недопустимый    | 00110     |
| Недопустимый    | 01000     |
| Недопустимый    | 10000     |
| Недопустимый    | 11001     |

| Входной<br>символ | Выходной<br>символ | Входной<br>символ | Выходной<br>символ | Служебный<br>символ | Выходной<br>символ |
|-------------------|--------------------|-------------------|--------------------|---------------------|--------------------|
| 0000 (0)          | 11110              | 1000 (8)          | 10010              | Idle                | 11111              |
| 0001 (1)          | 01001              | 1001 (9)          | 10011              | J                   | 11000              |
| 0010 (2)          | 10100              | 1010 (A)          | 10110              | K                   | 10001              |
| 0011 (3)          | 10101              | 1011 (B)          | 10111              | Т                   | 01101              |
| 0100 (4)          | 01010              | 1100 (C)          | 11010              | R                   | 00111              |
| 0101 (5)          | 01011              | 1101 (D)          | 11011              | S                   | 11001              |
| 0110 (6)          | 01110              | · 1110 (E)        | 11100              | Quiet               | 00000              |
| 0111 (7)          | 01111              | 1111 (F)          | 11101              | Halt                | 00100              |

#### Сети Fast Ethernet.

#### Особенности 100Base-TX и Т4. MLT3 кодирование

- Подуровень РМА
  - соединяет два 5-ти битных символа в один 10-битный,
- Подуровень PMD метод кодирования MLT-3.
  - использует потенциальные сигналы трех уровней кодирования «-1», «0», «+1»
  - при передаче лог. «0»-сигнал не меняется;
- В остальном совпадает с **100Base -FX**



#### Сети Fast Ethernet. Особенности 100Base - Т4

- Схема кодирования 8B/6T Вместо кодирования 4B/5B
  - Каждые 8 бит информации уровня МАС кодируются 6-ю троичными цифрами
  - Троичные цифры три состояния (+1, 0, -1)
    - Передаются по 3-м витым парам
    - 4 пара обнаружение коллизий
  - Кодирование\декодирование на подуровне PCS
  - Преимущество сужение полосы (3 бита вместо 4)



## Сети Fast Ethernet. Авто-переговоры

- Переговорный процесс происходит при включении питания устройства,
  - инициирован модулем управления.
- Узлы, поддерживающие функцию Auto- negotiation, посылают пачки импульсов, Fast Link Pulse burst (FLP).
  - 8-битное слово кодирующее предлагаемый режим взаимодействия
  - Режимы начинаются с меньшего приоритета
    - Режим 10Base-TX имеет самый низкий приоритет,
    - режим 100Base-T4 самый высокий.
  - Если узел не поддерживает FLP, то используются служебные сигналы проверки целостности линии технологии 10Base-T link test pulses.

## Сети Gigabit и 10,40,100 Gigabit Ethernet

Аппаратные средства телекоммуникационных систем. Вычислительные сети

## Сети Gigabit Ethernet

- Все конфигурации по принципу «точка-точка»
- «Нормальный» полнодуплексный режим используется, когда имеется центральный коммутатор.
  - Полудуплексный режим работы используется тогда, когда компьютеры соединены с концентратором.
- Коммутаторы могут работать на смешанных скоростях
  - автоматически выбирают оптимальную скорость.

| Наиболее распространённые виды Gigabit Ethernet |                                  |       |                                                                 |  |  |  |
|-------------------------------------------------|----------------------------------|-------|-----------------------------------------------------------------|--|--|--|
| Название                                        | Тип кабеля                       | Длина | Особенности.                                                    |  |  |  |
| 1000Base-SX                                     | Оптоволокно                      | 550   | Многомодовое волокно (50, 62,5 мкм)                             |  |  |  |
| 1000Base-LX                                     | Оптоволокно                      | 5000  | Одномодовое (10 мкм) или<br>многомодовое (50, 62,5 мкм) волокно |  |  |  |
| 1000Base-CX                                     | 2 экранированные<br>витые пары   | 25    | Экранированная витая пара 5-й<br>категории                      |  |  |  |
| 1000Base-T                                      | 4 неэкранированные<br>витые пары | 100   | Стандартная витая пара 5-й категории                            |  |  |  |

## **Gigabit Ethernet (GbE)**

| Стандарт     | Год  | Тип           | Скорость<br>Mbps | длина, м                           | Тип кабеля                   |  |
|--------------|------|---------------|------------------|------------------------------------|------------------------------|--|
| IEEE 802.3z  | 1998 | 1000Base-CX   | 1000             | 25 м                               | UTP/STP cat 5,5e,6           |  |
|              |      | 1000Base-LX   | 1000             | Одномод — 5 км<br>Многомод — 550 м | оптоволоконный               |  |
|              |      | 1000Base-SX   | 1000             | 550 M                              |                              |  |
| IEEE 802.3ab | 1999 | 1000Base-T    | 1000             | 100 м                              | UTP/STP cat 5,5e,6,7         |  |
| TIA 854      | 2001 | 1000BASE-TX   | 1000             | 100 M                              | UTP/STP cat 6,7              |  |
| IEEE 802.3ah | 2004 | 1000BASE-LX10 | 1000             | 10 км                              | оптоволоконный               |  |
| IEEE 802.3ah | 2004 | 1000BASE-BX10 | 1000             | 10 км                              |                              |  |
| IEEE 802.3ap | 2007 | 1000BASE-KX   | 1000             | 1 M                                | для объединительной<br>платы |  |
| non-standard |      | 1000BASE-EX   | 1000             | 40 км                              | оптоволоконный               |  |
| non-standard | ?    | 1000BASE-ZX   | 1000             | 70 км                              |                              |  |

#### Сети Gigabit Ethernet. Проблема длины кабеля

• Работа на скорости 1 Гбит/с - отправки бита каждую наносекунду.

#### • Витая пара:

- Для 2х витой пары максимальная длина кабеля 25 м
  - Так как скорость большая длина кабеля для гарантии отсутствия коллизий уменьшена.

#### • Оптоволокно:

- Передача сигналов с помощью коротких волн возможна с дешевыми светодиодами. применяется с многомодовым волокном.
  - для 50-мкм волокна допустимая длина не более 500м.
  - Передача сигналов на длинных волнах требует более дорогих лазеров.
  - в сочетании с одномодовым (10 мкм) волокном разрешается длина кабеля до 5 км.
    - Более поздние вариации стандарта допускали даже более длинные связи на одномодовом волокне.

#### Сети Gigabit Ethernet. Проблема длины кабеля

- Расширение носителя (carrier extension).
  - аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт.
  - поле добавляется после CRC не учитывается ПО.
  - Длина кабеля расширена до 200 м.
    - тратить 512 байт на передачу 64 байт не эффективно.



#### Сети Gigabit Ethernet. Проблема длины кабеля

- Пакетная передача кадров (пакетная перегруженность frame bursting).
- Увеличение допустимой длины сегмента,
  - короткие кадры накапливаются и передаются вместе.
  - Передающая станция заполняет интервал между кадрами битами расширения несущей,
    - другие станции будут воздерживаться от передачи, пока она не освободит линию.
  - Длина пакета кадров до 65536 бит (8192 байт).
    - Длина включает полные пакеты от преамбулы до CRC
- Если полная длина пакета оказывается менее 512 байт, то, производится аппаратное заполнение фиктивными данными.
- Режим актуален для полудуплексной работы
  - Так как в полнодуплексном режиме CSMA/CD не нужен.

# Сети Gigabit Ethernet. Проблема длины кабеля

- в сетях Gigabit Ethernet допустимы **Джамбо-пакеты** ( **Jumbo frames**) допускают кадры длиной более 1500 байт, обычно до 9 Кбайт.
  - Не везде используются
  - Не являются стандартом IEEE 802.3
  - Определяются на уровне сетевой карты (сетевой уровень должен позволять работать с кадрами до 9000 байт).



# Сети Gigabit Ethernet. Архитектура стандарта

- Логическое кодирование 8В/10В
- Линейное кодирование NRZI
- Функция кодирования PCS
- среданезависимый интерфейс GMII.
  - Расширенный интерфейс MII



# Сети Gigabit Ethernet. Архитектура стандарта

- GMII интерфейс. Независимый от среды интерфейс (gigabit media independent interface) расширение MII
  - обеспечивает взаимодействие между уровнем МАС и физическим уровнем.
- отдельные 8 битные шины для приемника и передатчика (Rx и Tx)
  - может поддерживать как полудуплексный, так и дуплексный режимы.
- Расширенная шина управления
  - синхронизации (clock signal Tx и Rx),
  - два сигнала состояния линии –
  - наличие сигнала на линии (En/Dv)
  - об отсутствии коллизий (Er)





# Сети Gigabit Ethernet. Архитектура стандарта



## Сети Gigabit Ethernet. Система кодирования 8B/10B

- система кодирования 8В/10В,
  - Используется 256 комбинаций из 1024
- Кодовые слов сбалансировано
  - —позволяет избежать более 4 идентичных бит подряд, и ни в одном коде не должно быть более 6 нулей или 6 единиц.
  - Для синхронизации.
  - Представляет собой сумму 5В6В и 3В4В
  - Используется 2 варианта кодирования
    - » D7.0 = 1110001011 (Current RD-)
    - » D7.0 = 0001110100 (Current RD+)

| inpu     | ıt  | RD = -1 | RD = +1 | inpu      | t   | RD = -1 | RD = +1 |
|----------|-----|---------|---------|-----------|-----|---------|---------|
|          | HGF | fg      | hj      |           | HGF | fg      | hj      |
| D.x.0    | 000 | 1011    | 0100    | K.x.0     | 000 | 1011    | 0100    |
| D.x.1    | 001 | 10      | 01      | K.x.1‡    | 001 | 0110    | 1001    |
| D.x.2    | 010 | 01      | 0101    |           | 001 | 1010    | 0101    |
| D.x.3    | 011 | 1100    | 0011    | K.x.3     | 011 | 1100    | 0011    |
| D.x.4    | 100 | 1101    | 0010    | K.x.4     | 100 | 1101    | 0010    |
| D.x.5    | 101 | 10      | 10      | K.x.5 ‡   | 001 | 0101    | 1010    |
| D.x.6    | 110 | 01      | 10      | K.x.6 ‡   | 001 | 1001    | 0110    |
| D.x.P7 † | 111 | 1110    | 0001    |           |     |         |         |
| D.x.A7 † | 111 | 0111    | 1000    | K.x.7 † ‡ | 111 | 0111    | 1000    |

K.28 11100

001111 110000

5B/6B code

## Сети Gigabit Ethernet. Система кодирования 8B/10B

- Код 8В10В представляет собой сумму 5В6В и 3В4В
  - Используется 2 варианта кодирования
    - D7.0 = 1110001011 (Current RD-)
    - D7.0 = 0001110100 (Current RD+)

| D3.0 | 000 00011 | 110001 1011 | 110001 0100 |
|------|-----------|-------------|-------------|
| D4.0 | 000 00100 | 110101 0100 | 001010 1011 |
| D5.0 | 000 00101 | 101001 1011 | 101001 0100 |

#### — Использование специальных символов разделителей

| K28.2 | 010 11100 | 001111 0101 | 110000 1010 |
|-------|-----------|-------------|-------------|
| K28.3 | 011 11100 | 001111 0011 | 110000 1100 |
| K28.4 | 100 11100 | 001111 0010 | 110000 1101 |

## Сети Gigabit Ethernet. Система кодирования 8B/10B

- Код 8В10В представляет собой сумму 5В6В и 3В4В
  - Используется 2 варианта кодирования
    - D7.0 = 1110001011 (Current RD-)
    - D7.0 = 0001110100 (Current RD+)

| 0101010011011001 | 1100000101 | 0110111010 | 010100100 | 1110100110 | 0100111010011 | 11001 |
|------------------|------------|------------|-----------|------------|---------------|-------|
| ??.?             | K28.5      | D16.2      | D31.3     | D11.3      | D0.0          |       |

- Comma characters K28.1/K28.5/K28.7 are used <u>word</u> alignment
- Create "ordered sets"
  - For example Fibre Channel Start Of Frame (SOF) = K28.5/D21.5/D23.0/D23.0
  - K30.7 = Error Propagate
  - K28.3 = Carrier Extend

### Сети Gigabit Ethernet. PAM5 кодирование

- Сигнал имеет 5 уровней {-2, -1, 0, +1, +2}.
- Четыре уровня {-2, -1, +1, +2} кодирование информации {00, 01, 10 и 11}.
- Уровень 0 (Forward Error Correction, FEC) для коррекции ошибок.
  - реализуется кодером Треллиса и декодером Витерби.
  - позволяет увеличить помехоустойчивость приемника на 6 дБ.
- Битовая скорость в два раза больше бодовой.
  - в одном дискретном состоянии кодируется два бита,
  - кабель 5-й кат. частота 125 МГц (Мбод/с), скорость 250 Мбит/с.
  - 4 кабеля 1000 Мбит/с,

#### Кодирование РАМ5



# Сети Gigabit Ethernet. Подключение 1000Base T



# Сети 10 Gigabit Ethernet.

- Используется дата-центрах и точках обмена трафиком с выскоскоростными маршрутизаторами, коммутаторамии, серверами, а также в других сильно загруженных магистральных каналах.
  - . Сеть 10GBase-ER
- только полнодуплексная передача данных
- автоматическое согласование скорости по принципу максимально возможного значения для обоих концов линии.

| тип         | длина | среда                                            |
|-------------|-------|--------------------------------------------------|
| 10GBase-SR  | 300 M | Многомодовое волокно(0,85 мкм)                   |
| 10GBase-LR  | 10 км | Одномодовое (1,3 мкм) волокно                    |
| 10GBase-ER  | 40 км | Одномодовое (1,5 мкм) волокно                    |
| 10GBase-CX4 | 15 M  | 4 пары биаксиального кабеля (твниксального, TWC) |
| 10GBase-T   | 100 м | 4 пары неэкранированной витой пары кат. 6А       |

SFP+ - Rj45



**TWC** 





# 10 Gigabit Ethernet (10GbE)

| стандарт     | Год  | Тип         | Скорость<br>Gbps | длина сегмента                      | Тип кабеля          |
|--------------|------|-------------|------------------|-------------------------------------|---------------------|
| IEEE 802.3ae | 2003 | 10GBASE-SR  | 10               | 26-300 м                            | оптоволоконный      |
|              | 2003 | 10GBASE-LX4 | 10               | Одномод — 10 км<br>Многомод — 300 м |                     |
|              | 2003 | 10GBASE-LR  | 10               | 10 км                               |                     |
|              | 2003 | 10GBASE-ER  | 10               | 40 KM                               |                     |
|              | 2003 | 10GBASE-SW  | 10               | 26 м — 40 км                        |                     |
|              | 2003 | 10GBASE-LW  | 10               |                                     |                     |
|              | 2003 | 10GBASE-EW  | 10               |                                     |                     |
| IEEE 802.3ak | 2004 | 10GBASE-CX4 | 10               | 15M                                 | медный кабель СХ4   |
| IEEE 802.3an | 2006 | 10GBASE-T   | 10               | 100 M                               | UTP/STP cat 6,6a,7  |
| IEEE 802.3aq | 2006 | 10GBASE-LRM | 10               | 220 M                               | оптоволоконный      |
| IEEE 802.3ap | 2007 | 10GBASE-KX4 | 10               | 1 M                                 | для объединительной |
| IEEE 802.3ap | 2007 | 10GBASE-KR  | 10               | 1 M                                 | платы               |
| IEEE 802.3av | 2009 | 10GBASE-PR  | 10               | 20 км                               | оптоволоконный      |

# 40,100 и дт Gigabit Ethernet (40GbE)

| Стандарт      | Год  | Тип                          | Скорость,<br>Gbps | длина<br>сегмента | Тип кабеля                           |
|---------------|------|------------------------------|-------------------|-------------------|--------------------------------------|
| IEEE 802.3ba  | 2010 | 40GBase-KR4<br>100GBase-KP4  | 40<br>100         | 1 M               | для объединительной платы            |
|               |      | 100GBase-KR4                 | 100               | 1 M               | для улучшенной объединительной платы |
|               |      | 40GBase-CR4<br>100GBase-CR10 | 40<br>100         | 7 M               | медный биаксиальный кабель           |
|               |      | 40GBase-T                    | 40                | 30 M              | UTP cat 8                            |
|               |      | 40GBase-SR4<br>100GBase-SR10 | 40<br>100         | 100 м<br>125 м    | оптоволоконный                       |
|               |      | 40GBase-LR4<br>100GBase-LR4  | 40<br>100         | 10 км             |                                      |
|               |      | 100GBase-ER4                 | 100               | 40 км             |                                      |
| IEEE 802.3bg  | 2011 | 40GBase-FR                   | 40                | 2 км              |                                      |
| IEEE P802.3bs | 2020 | 200GBASE                     | 200               | ?                 | В разработке                         |
| IEEE P802.3bs | 2020 | 400GBASE                     | 400               | ?                 | В разработке                         |
| В разработке  | 3    | 1TBASE                       | 1000              | 3                 | В разработке                         |

## Сети 10 Gigabit Ethernet.

- 10GBase-CX4 TWC, 10GBase-X,
  - кодирование 8В/10В.
  - скорости 3,125 Гсимволов/с, скорость передачи данных 10 Гбит/с.
- 10GBase-T неэкранированная витая пара
  - кодировка РАМ16.
- 10Gbase-R и 10GBasc-W
  - кодирование 64В/66В.
- Стандарт 10-гигабитного Ethernet 7 стандартов физической среды для LAN, MAN и WAN физического уровня.

• .

# Сети 10 Gigabit Ethernet.



- Стандарты отличаются взаимодействием с уровнем МАС.
- единый интерфейс XGMII (eXtended Gigabit Medium Independent Interface расширенный интерфейс независимого доступа к гигабитной среде),
- предусматривает параллельный обмен 4 байтами,
  - 4 параллельных потока данных

# Особенности беспроводных вычислительных сетей

Аппаратные средства телекоммуникационных систем. Вычислительные сети

## Беспроводные сети

- Беспроводные технологии подкласс информационных технологий, служат для передачи информации между двумя и более точками на расстоянии, не требуя проводной связи. Для передачи информации могут использоваться радиоволны, а также инфракрасное, оптическое или лазерное излучение.
- Примеры: IrDA, WiFi, WiMAX, Bluetooth, RFID, GPRS, ZigBee, Lora.
- Основные отличия сетей дальность действия и максимальная скорость.
- Описываются стандартами IEEE 802.1X



- **Беспроводные персональные сети** (WPAN Wireless Personal Area Networks).
  - Примеры технологий Bluetooth.
- Беспроводные локальные сети (WLAN Wireless Local Area Networks).
  - Примеры технологий Wi-Fi.
- Беспроводные сети масштаба города (WMAN Wireless Metropolitan Area Networks).
  - Примеры технологий WiMAX.
- Беспроводные глобальные сети (WWAN Wireless Wide Area Network).
  - Примеры технологий GPRS, EDGE, LTE.



- WiMAX сеть покрытия километры пространства,
- использует лицензированные спектры частот (возможно и использование нелицензированных частот)
- для предоставления соединения с интернетом типа точка-точка провайдером конечному пользователю.
  - Основной стандарт 802.16
- Wi-Fi система короткого действия (локальные беспроводные сети),
  - десятки метров, использует нелицензированные диапазоны частот для обеспечения доступа к сети.
  - Часть используется для доступа к локальной сети
    - Локальная сеть может быть и не подключена к Интернету.
  - Основной стандарт 802.11



#### • По топологии:

- «Точка-точка» (ad-hoc).
- «Точка- точка подключения».



#### • По области применения:

- Корпоративные (ведомственные) беспроводные сети создаваемые компаниями для собственных нужд.
- Операторские беспроводные сети создаваемые операторами связи для возмездного оказания услуг.
- Промышленные используемые в рамках коммерчесеких проектов
- Бытовые



#### • Предотвращение коллизий в канале:

- CSMA/CA "множественный доступ с контролем несущей и предотвращением коллизий").
  - » Для предотвращения заторов источник посылает jam сигналы
  - » отличается от CSMA/CD тем, что коллизиям подвержены не пакеты данных, а только jam-сигналы.
- Механизм (CSMA/CA) призван выявлять коллизии в сети
- Проблему нельзя решить с помощью коммутаторов, как в проводных сетях

#### • Время доставки сообщений не нормировано:

Механизм случайного доступа к каналу (CSMA/CA) не гарантирует доставку в заранее известное время

- Помехозащищенность ниже чем в проводных сетях:
  - Беспроводные сети подвержены влиянию
     электромагнитных помех сильнее, чем проводные;
  - Больше помех, а также такие волновое явления, как переотражение сигналов и их интерференция
- Надежность связи падает при движении или изменении обстановки:
  - Связь может исчезнуть при изменении расположения узлов сети или появлении объектов вызывающих паразитные сигналы.

#### • Нет полнодуплексного режима:

- Беспроводные трансиверы не могут передавать и принимать сигнал на одном канале.
  - Это связано с быстрым уменьшением плотности мощности излучения от расстояния
  - Сигнал собственного передатчика оказывается на порядки сильнее принимаемого сигнала и заглушает его.

#### • Сеть физически не защещена (Безопасность):

- Возможность утечки информации,
- Незащищенность от искусственно созданных помех,
- Возможность незаметного вторжения враждебными лицами.

- Ограниченная дальность связи:
  - Чем выше диапазон частот тем меньше дальность
    - Проблема решается использованием ретрансляторов;
  - Не все диапазоны частот можно использовать.
    - Часто в одном и том же диапазоне могут работать разные устройства
      - Например микроволновки и wifi работают в одном диапазоне частот.
- Пропускная способность сети и проблема сильного сигнала:
  - Как правило устройства выбирают канал с лучшим сигналом
    - канал может быть перегружен
      - Решается специальными алгоритмами распределения пропускной способности.

## Физический уровень WIFI

- Скремблер псевдослучайным шумом,
  - Код Баркера 11 или ССК
- Кодировка с прямой коррекцией ошибок (FEC).
- Чередование бит (перемеживание)
  - устранения блочных ошибок
- Подмодуляция сигнала (цифровая)
  - Напр. 64 QAM
- Аналоговая модуляция
  - OFDM
- Разнесенные антенн (МІМО)
- Сигналы подтверждения ASK
  - ARQ
- Мультитрансляция пакетов
  - HARQ ARQ с голосованием
- Циклическое кодирование CRC32



Пример .Структурная схема передатчика 802.11n

# Сети стандарта 802.11.

802.11 b и b+ (22 МГц)

| 802.11 | g | = a | + | b |
|--------|---|-----|---|---|
|--------|---|-----|---|---|

| Скорость передачи, Мбит/с |               | орость передачи, Мбит/с Метод кодирования Модул |       | Скорость<br>сверточного<br>кодирования | Символьная<br>скорость,<br>10 <sup>6</sup> символов<br>в секунду | Количество<br>бит в одном<br>символе |  |
|---------------------------|---------------|-------------------------------------------------|-------|----------------------------------------|------------------------------------------------------------------|--------------------------------------|--|
| 1                         | (обязательно) | Код Баркера                                     | DBPSK | 1.70                                   | 1                                                                | 1                                    |  |
| 2                         | (обязательно) | Код Баркера                                     | DQPSK | 7.47                                   | 1                                                                | 2                                    |  |
|                           | (обязательно) | CCK                                             | DQPSK |                                        | 1,375                                                            | 2                                    |  |
| 5,5                       | (опционально) | PBCC                                            | DBPSK | 1/2                                    | 11                                                               | 0,5                                  |  |
| 11                        | (обязательно) | CCK                                             | DQPSK | 3.50                                   | 1,375                                                            | 8                                    |  |
| 110                       | (опционально) | PBCC                                            | DQPSK | 1/2                                    | 11                                                               | 1                                    |  |
| 22*                       | (обязательно) | PBCC                                            | DQPSK | 3/4                                    | 11                                                               | 2                                    |  |

#### 802.11 a

| Скорость,<br>Мбит/с | Тип<br>модуляции | Скорость<br>сверточного<br>кодирования | Количество битов<br>в одном символе<br>в одном подканале | Общее количество<br>битов в символе<br>(48 подканалов) | Количество битов<br>данных в символе |
|---------------------|------------------|----------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| 6                   | BPSK             | 1/2                                    | 1                                                        | 48                                                     | 24                                   |
| 9                   | BPSK             | 3/4                                    | 1                                                        | 48                                                     | 36                                   |
| 12                  | QPSK             | 1/2                                    | 2                                                        | 96                                                     | 48                                   |
| 18                  | QPSK             | 3/4                                    | 2                                                        | 96                                                     | 72                                   |
| 24                  | 16-QAM           | 1/2                                    | 4                                                        | 192                                                    | 96                                   |
| 36                  | 16-QAM           | 3/4                                    | 4                                                        | 192                                                    | 144                                  |
| 48                  | 64-QAM           | 2/3                                    | 6                                                        | 288                                                    | 192                                  |
| 54                  | 64-QAM           | 3/4                                    | 6                                                        | 288                                                    | 216                                  |

| Скор | оость передачи,<br>Мбит/с | Метод<br>кодирования | Модуляция |
|------|---------------------------|----------------------|-----------|
| 1    | (обязательно)             | Код Баркера          | DBPSK     |
| 2    | (обязательно)             | Код Баркера          | DQPSK     |
|      | (обязательно)             | CCK                  | DQPSK     |
| 5,5  | (опционально)             | PBCC                 | DBPSK     |
| 6    | (обязательно)             | OFDM                 | BPSK      |
| ь    | (опционально)             | CCK-OFDM             | BPSK      |
| 9    | (опционально)             | OFDM,<br>CCK-OFDM    | BPSK      |
|      | (обязательно)             | CCK                  | DQPSK     |
| 11   | (опционально)             | PBCC                 | DQPSK     |
| 40   | (обязательно)             | OFDM                 | QPSK      |
| 12   | (опционально)             | CCK-OFDM             | QPSK      |
| 18   | (опционально)             | OFDM,<br>CCK-OFDM    | QPSK      |
| 22   | (опционально)             | PBCC                 | DQPSK     |
| 0.4  | (обязательно)             | OFDM                 | 16-QAM    |
| 24   | (опционально)             | CCK-OFDM             |           |
| 33   | (опционально)             | PBCC                 |           |
| 36   | (опционально)             | OFDM,<br>CCK-OFDM    | 16-QAM    |
| 48   | (опционально)             | OFDM,<br>CCK-OFDM    | 64-QAM    |
| 54   | (опционально)             | OFDM,<br>CCK-OFDM    | 64-QAM    |

# Сети стандарта 802.11n

• Примеры вариантов стандарта MCS (Modulation & Coding Scheme)

| Модуляция | скорость<br>кодирования | Полоса, МГц | Количество<br>поднесущих<br>OFDM | Число<br>каналов<br>МІМО | Скорость при<br>СР = 800 нс | Скорость при<br>СР = 400 нс |
|-----------|-------------------------|-------------|----------------------------------|--------------------------|-----------------------------|-----------------------------|
| BPSK      | 1/2                     |             |                                  | 1                        | 6,5                         | 7,2                         |
| 64-QAM    | 5/6                     |             |                                  | 1                        | 65                          | 72,2                        |
| BPSK      | 1/2                     |             |                                  | 2                        | 13                          | 14,4                        |
| 64-QAM    | 5/6                     | 20          | EO                               |                          | 130                         | 144                         |
| BPSK      | 1/2                     | 20          | 52                               | 3                        | 19,5                        | 21,7                        |
| 64-QAM    | 5/6                     |             |                                  | 5                        | 195                         | 216,7                       |
| BPSK      | 1/2                     |             |                                  | 4                        | 26                          | 28,9                        |
| 64-QAM    | 5/6                     |             |                                  |                          | 260                         | 288,9                       |
| BPSK      | 1/2                     |             |                                  | 1                        | 13,5                        | 15                          |
| 64-QAM    | 5/6                     |             |                                  | 1                        | 135                         | 150                         |
| BPSK      | 1/2                     |             |                                  | 2                        | 27                          | 30                          |
| 64-QAM    | 5/6                     | 40          | 108                              | _                        | 270                         | 300                         |
| BPSK      | 1/2                     | 40          | 100                              | 3                        | 40,5                        | 45                          |
| 64-QAM    | 5/6                     |             |                                  | 3                        | 405                         | 450                         |
| BPSK      | 1/2                     |             |                                  | 4                        | 54                          | 60                          |
| 64-QAM    | 5/6                     |             |                                  | 4                        | 540                         | 600                         |

# Сети стандарта 802.11

| 0             | WIFI 1                                                         | WIFI 2                                                                                                                                                                                                                                                                                            | WIFI 3                                                                                                                                                                                                                                                                                                                                                                                                                                       | WIFI 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WIFI 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WIFI 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 802.11        | 802.11b                                                        | 802.11a                                                                                                                                                                                                                                                                                           | 802.11g                                                                                                                                                                                                                                                                                                                                                                                                                                      | 802.11n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 802.11ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 802.11ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1997          | 1999                                                           | 1999                                                                                                                                                                                                                                                                                              | 2003                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2017-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.4 GHz/IR    | 2.4 GHz                                                        | 5 GHz                                                                                                                                                                                                                                                                                             | 2.4 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4/5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4/5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20 MHz        | 20 MHz                                                         | 20 MHz                                                                                                                                                                                                                                                                                            | 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20/40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20/40/80/160<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20/40/80/16<br>0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 Mbps        | 11 Mbps                                                        | 54 Mbps                                                                                                                                                                                                                                                                                           | 54 Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600 Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.8 Gbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 Gbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1             | 1                                                              | 1                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NA            | NA                                                             | NA                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DSSS,<br>FHSS | DSSS, CCK                                                      | OFDM                                                                                                                                                                                                                                                                                              | OFDM                                                                                                                                                                                                                                                                                                                                                                                                                                         | OFDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OFDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OFDM,<br>OFDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DQPSK         | сск                                                            | 64-QAM, 3/4                                                                                                                                                                                                                                                                                       | 64-QAM, 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64-QAM, 5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 256-QAM,<br>5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1024-QAM,<br>5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NA            | NA                                                             | 64                                                                                                                                                                                                                                                                                                | 64                                                                                                                                                                                                                                                                                                                                                                                                                                           | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA            | NA                                                             | 312.5 kHz                                                                                                                                                                                                                                                                                         | 312.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                    | 312.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 312.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.125 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 1997  2.4 GHz/IR  20 MHz  2 Mbps  1  NA  DSSS, FHSS  DQPSK  NA | 802.11         802.11b           1997         1999           2.4 GHz/IR         2.4 GHz           20 MHz         20 MHz           2 Mbps         11 Mbps           1         1           NA         NA           DSSS, FHSS         DSSS, CCK           DQPSK         CCK           NA         NA | 802.11         802.11b         802.11a           1997         1999         1999           2.4 GHz/IR         2.4 GHz         5 GHz           20 MHz         20 MHz         20 MHz           2 Mbps         11 Mbps         54 Mbps           1         1         1           NA         NA         NA           DSSS, FHSS         DSSS, CCK         OFDM           DQPSK         CCK         64-QAM, 3/4           NA         NA         64 | 802.11         802.11b         802.11a         802.11g           1997         1999         1999         2003           2.4 GHz/IR         2.4 GHz         5 GHz         2.4 GHz           20 MHz         20 MHz         20 MHz         20 MHz           2 Mbps         11 Mbps         54 Mbps         54 Mbps           1         1         1         1           NA         NA         NA         NA           DSSS, FHSS         DSSS, CCK         OFDM         OFDM           DQPSK         CCK         64-QAM, 3/4         64-QAM, 3/4           NA         NA         64         64 | 802.11         802.11b         802.11a         802.11g         802.11n           1997         1999         1999         2003         2009           2.4 GHz/IR         2.4 GHz         5 GHz         2.4 GHz         2.4/5 GHz           20 MHz         20 MHz         20 MHz         20/40 MHz           2 Mbps         11 Mbps         54 Mbps         600 Mbps           1         1         1         4           NA         NA         NA         NA           DSSS, FHSS         DSSS, CCK         OFDM         OFDM         OFDM           DQPSK         CCK         64-QAM, 3/4         64-QAM, 3/4         64-QAM, 5/6           NA         NA         64         64         128 | 802.11         802.11b         802.11a         802.11g         802.11n         802.11ac           1997         1999         1999         2003         2009         2014           2.4 GHz/IR         2.4 GHz         5 GHz         2.4 GHz         5 GHz         5 GHz           20 MHz         20 MHz         20 MHz         20/40 MHz         20/40/80/160 MHz           2 Mbps         11 Mbps         54 Mbps         54 Mbps         600 Mbps         6.8 Gbps           1         1         1         4         8           NA         NA         NA         NA         4           DSSS, FHSS         DSSS, CCK         OFDM         OFDM         OFDM           DQPSK         CCK         64-QAM, 3/4         64-QAM, 3/4         64-QAM, 5/6         256-QAM, 5/6           NA         NA         64         64         128         512 |

Стандарт **802.11** известен как WIFI, но WIFI это бренд Wi-Fi Alliance.

# Bluetooth. Стек протоколов

- Стек Bluetooth был разработан, для того, чтобы различные коммуникационные приложения могли использовать Bluetooth в своих целях.
- По этому Bluetooth представляет собой набор различных протоколов, в общем случае, не описываемых моделью OSI.
  - Каждое приложение Bluetooth используется один или несколько вертикальных срезов



# Bluetooth. Доступ к пикосетям

- Все подчинённые устройства пикосети имеют:
  - Одинаковую последовательность перестройки частоты FHSS
    - определяется адресом ведущего устройства (FDMA)
  - Временную синхронизацию с ведущим устройством (TDD)
    - Определяет последовательность TDMA внутри пикосети
  - Код доступа к каналу CDMA
    - определяемый адресом ведущего устройства
      - Позволяет разделить пикосети с другими сетями в том же диапазоне
    - Код доступа к каналу присутствует вначале каждого пакета.
      - Корреляция принимаемого сигнала с этим кодом наряду с последовательностью перестройки частоты и временной синхронизацией определяет присутствие полезного сигнала в данном физическом канале.