1. For the network below, sketch v_o and i_R

Answer:

Diode will conduct when $v_o = 0.7 \text{ V}$; that is,

$$v_o = 0.7 \text{ V} = \frac{1 \text{ k}\Omega(v_i)}{1 \text{ k}\Omega + 1 \text{ k}\Omega}$$

Solving: $v_i = 1.4 \text{ V}$

For $v_i \ge 1.4 \text{ V}$ Si diode is "on" and $v_o = 0.7 \text{ V}$.

For $v_i < 1.4$ V Si diode is open and level of v_o is determined by voltage divider rule:

$$v_o = \frac{1 \, \mathrm{k} \Omega(v_i)}{1 \, \mathrm{k} \Omega + 1 \, \mathrm{k} \Omega} = 0.5 \, v_i$$

For
$$v_i = -10 \text{ V}$$
:
 $v_o = 0.5(-10 \text{ V})$

When
$$v_o = 0.7 \text{ V}$$
, $v_{R_{\text{max}}} = v_{i_{\text{max}}} - 0.7 \text{ V}$
= $10 \text{ V} - 0.7 \text{ V} = 9.3 \text{ V}$
 $I_{R_{\text{max}}} = \frac{9.3 \text{ V}}{1 \text{ k}\Omega} = 9.3 \text{ mA}$

$$I_{\text{max}}(\text{reverse}) = \frac{10 \text{ V}}{1 \text{ k}\Omega + 1 \text{ k}\Omega} = 0.5 \text{ mA}$$

- 9.3 mA
- 2. **a.** Given $P_{\text{max}} = 14 \text{ mW}$ for each diode at Fig. 2.172, determine the maximum current rating of each diode (using the approximate equivalent model).
 - **b.** Determine *I* max for the parallel diodes.
 - **c.** Determine the current through each diode at V_{imax} using the results of part (b).
 - d. If only one diode were present, which would be the expected result?

Answer:

(a)
$$P_{\text{max}} = 14 \text{ mW} = (0.7 \text{ V})I_D$$

 $I_D = \frac{14 \text{ mW}}{0.7 \text{ V}} = 20 \text{ mA}$

(b)
$$I_{\text{max}} = 2 \times 20 \text{ mA} = 40 \text{ mA}$$

(c)
$$4.7 \text{ k}\Omega \parallel 68 \text{ k}\Omega = 4.4 \text{ k}\Omega$$

 $V_R = 160 \text{ V} - 0.7 \text{ V} = 159.3 \text{ V}$
 $I_{\text{max}} = \frac{159.3 \text{ V}}{4.4 \text{ k}\Omega} = 36.2 \text{ mA}$
 $I_d = \frac{I_{\text{max}}}{2} = 18.1 \text{ mA}$

3. Sketch $v \circ$ for the network below and determine the dc voltage available.

Answer:

Positive pulse of v_i :

Top left diode "off", bottom left diode "on"

$$2.2 \text{ k}\Omega \parallel 2.2 \text{ k}\Omega = 1.1 \text{ k}\Omega$$

$$V_{o_{\text{peak}}} = \frac{1.1 \text{ k}\Omega(170 \text{ V})}{1.1 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 56.67 \text{ V}$$

Negative pulse of v_i:

Top left diode "on", bottom left diode "off"

(a)

$$V_{o_{\text{peak}}} = \frac{1.1 \text{ k}\Omega(170 \text{ V})}{1.1 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 56.67 \text{ V}$$

$$V_{\rm dc} = 0.636(56.67 \text{ V}) = 36.04 \text{ V}$$

4. Determine v_0 for each network shown below, for the input shown.

Answer:

(a) Positive pulse of v_i :

$$V_o = \frac{1.8 \text{ k}\Omega(12 \text{ V} - 0.7 \text{ V})}{1.8 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 5.09 \text{ V}$$

Negative pulse of v_i :

diode "open",
$$v_o = 0 \text{ V}$$

(b) Positive pulse of v_i:

$$V_o = 12 \text{ V} - 0.7 \text{ V} + 4 \text{ V} = 15.3 \text{ V}$$

Negative pulse of v_i :

diode "open",
$$v_o = 0 \text{ V}$$

5. Sketch i R and $v \circ$ for the network shown below for the input shown.

Answer:

For the positive region of v_i :

The right Si diode is reverse-biased.

The left Si diode is "on" for levels of v_i greater than

5.3 V + 0.7 V = 6 V. In fact, $v_o = 6$ V for $v_i \ge 6$ V.

For $v_i < 6$ V both diodes are reverse-biased and $v_o = v_i$.

For the negative region of v_i :

The left Si diode is reverse-biased.

The right Si diode is "on" for levels of v_i more negative than 7.3 V + 0.7 V = 8 V. In fact, $v_o = -8$ V for $v_i \le -8$ V.

For $v_i > -8$ V both diodes are reverse-biased and $v_o = v_i$.

- 6. For the network shown below:
 - a. Calculate 5t.
 - **b.** Compare 5*t* to half the period of the applied signal.
 - **c.** Sketch v_o .

7. Design a clamper to perform the function indicated

Answer:

- **8.** a. Design the network shown below to maintain V_L at 12 V for a load variation (I_L) from 0 mA to 200 mA. That is, determine R s and V_Z .
 - **b.** Determine $P z \max$ for the Zener diode of part (a).

Answer:

(a)
$$V_Z = 12 \text{ V}, R_L = \frac{V_L}{I_L} = \frac{12 \text{ V}}{200 \text{ mA}} = 60 \Omega$$

 $V_L = V_Z = 12 \text{ V} = \frac{R_L V_i}{R_L + R_S} = \frac{60 \Omega (16 \text{ V})}{60 \Omega + R_s}$
 $720 + 12R_s = 960$
 $12R_s = 240$
 $R_s = 20 \Omega$

(b)
$$P_{Z_{\text{max}}} = V_{Z}I_{Z_{\text{max}}}$$

= (12 V)(200 mA)
= 2.4 W