TD application : circuits électriques en RSF

Impédance équivalente

Déterminer l'impédance complexe équivalente de chacun des dipôles ci-dessous en RSF.

1)

2)

II | Obtention d'une équation différentielle

1) En utilisant les lois de KIRCHHOFF en complexes, montrer que la tension u(t) est solution de l'équation différentielle

$$4\tau^2 \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 5\tau \frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = e(t)$$
 avec $\tau = RC$

III Circuit RL série en RSF

On considère le circuit ci-contre en régime sinusoïdal forcé, e(t) où la source de tension impose $e(t) = E\cos(\omega t)$ avec E > 0.

- 1) Déterminer l'amplitude de u à « très haute » $(\omega \to \infty)$ et « très basse » $(\omega \to 0)$ fréquence.
- 2) Exprimer l'amplitude complexe \underline{U} de u(t) en fonction de $E,\,R,\,L$ et $\omega.$
- 3) Les tensions e et u peuvent-elles être en phase? En opposition de phase? En quadrature de phase? Préciser le cas échéant pour quelle(s) pulsation(s).

IV

Exploitation d'un oscillogramme en RSF

On considère le circuit ci-dessous. On pose $e(t) = E_m \cos(\omega t)$ et $u(t) = U_m \cos(\omega t + \varphi)$. La figure ci-dessous représente un oscillogramme réalisé à la fréquence $f = 1.2 \times 10^3 \,\mathrm{Hz}$, avec $R = 1.0 \,\mathrm{k}\Omega$ et $C = 0.10 \,\mathrm{\mu F}$.

- 1) Déduire de cet oscillogramme les valeurs expérimentales de E_m , U_m et φ .
- 2) Exprimer U_m et φ en fonction des composants du circuit et de la pulsation ω . Donner l'intervalle d'existence de φ et ses limites. Tracer alors l'allure des deux graphiques $U_m(\omega)$ et $\varphi(\omega)$.
- 3) En déduire la valeur numérique de l'inductance L de la bobine.