

Réseaux Bayésiens

Formation CNRS-RISC – 3-4 novembre 2005

Philippe Leray

Philippe.Leray@insa-rouen.fr http://asi.insa-rouen.fr/~pleray/

INSA Rouen – Laboratoire PSI (Perception, Systèmes, Information)

Un peu d'histoire...

- 1763 : An Essay towards solving a Problem in the Doctrine of Chances
 - probabilité conditionnelle :

If there be two subsequent events, the probability of the second b/N and the probability of both together P/N, and it being first discovered that the second event has also happened, the probability I am right [i.e., the conditional probability of the first event being true given that the second has happened] is P/b.

- théorème de Bayes
- Pierre-Simon Laplace (1749–1827))
 - 1774 : Mémoire sur la Probabilité des Causes par les Evénements

Deux siècles plus tard...

RULE037

IF the organism

- 1) stains grampos
- 2) has coccus shape
- 3) grows in chains

THEN

There is suggestive evidence (.7) that the identity of the organism is streptococcus.

- 1970-1990 : L'ère des systèmes experts
 - base de règles
 - si X=vrai et Y=absent alors Z=faux
 - moteur d'inférence (chainage avant, arrière)
- Judea Pearl (19xx–) : les réseaux bayésiens
 - 1982 : Reverend Bayes on inference engines : A distributed hierarchical approach

$$P(X=vrai)=0.3$$
 et $P(Z=faux)=0.2$... $P(Y=absent)=?$

■ 1988: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann

Références

- Les Réseaux Bayésiens P. Naïm, P.H. Wuillemin, Ph. Leray, O. Pourret, A. Becker (Eyrolles)
- Probabilistic reasoning in Intelligent Systems: Networks of plausible inference - J. Pearl (Morgan Kaufman)
- An introduction to Bayesian Networks F. Jensen (Springer Verlag)
- Probabilistic Networks and Expert Systems R.G. Cowell & al. (Springer Verlag)
- Learning Bayesian Networks R. Neapolitan (Prenctice Hall)
- Learning in Graphical Models Jordan M.I. ed. (Kluwer)
- Dynamic Bayesian Networks : Representation, Inference and Learning - K. Murphy - PhD Thesis, Berkeley

Plan - jour 1

- Représentation de l'incertain
- Rappels de probabilités
- Définition d'un réseau bayésien
- Algorithmes d'inférence
 - Bucket Elimination
 - Message Passing (Pearl)
 - Junction Tree (Jensen)
- MATLAB:
 - Création d'un réseau bayésien
 - Quelques exemples d'inférence

Plan - jour 2

- Apprentissage d'un réseau bayésien
 - Apprentissage des probabilités conditionnelles
 - Expertise / données
 - Données complètes / incomplètes
 - Apprentissage de la structure
- MATLAB : apprentissage d'un RB
- Quelques exemples d'extensions
 - Extension aux variables continues
 - Extension causale
 - Extension temporelle
 - Extension à la décision
- Et les modèles non dirigés?

Représenter l'incertain

$$Res \in \{A, B, C, D\}$$

- théorie des ensembles : $Res = \{A \ ou \ B\}$
- théorie des probabilités : $P(Res) = [0.7 \ 0.3 \ 0 \ 0]$ (aléatoire)
- théorie des ensembles flous : Res = faible avec $f(faible) = \begin{bmatrix} 0.7 & 0.3 & 0 & 0 \end{bmatrix}$ (imprécision)
- théorie de Dempster-Shafer

See and the see trees of the see trees o

Rappels de probabilités

- Probabilité conditionnelle
 - A et M deux événements
 - information a priori sur A:

P(A)

 $\blacksquare M$ s'est produit :

$$P(M) \neq 0$$

- lacksquare s'il existe un lien entre A et M, cet événement va modifier notre connaissance sur A
- information a posteriori :

$$P(A|M) = \frac{P(A,M)}{P(M)}$$

PERCEPTION OF THE PROPERTY OF

Rappels de probabilités

- Indépendance
 - $\blacksquare A$ et B sont indépendants ssi :

$$P(A,B) = P(A) \times P(B)$$

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

- Indépendance conditionnelle
 - \blacksquare A et B sont indépendants conditionnellement à C ssi :

$$P(A|B,C) = P(A|C)$$

Rappels de probabilités

 $\{M_i\}$ ensemble complet d'événements mutuellement exclusifs

Marginalisation :

$$P(A) = \sum_{i} P(A, M_i)$$

■ Théorème des probabilités totales :

Un événement A peut résulter de plusieurs causes M_i . Quelle est la probabilité de A connaissant :

- \blacksquare les probabilités élémentaires P(Mi) (a priori)
- \blacksquare les probabilités conditionnelles de A pour chaque Mi

$$P(A) = \sum_{i} P(A|M_i)P(M_i)$$

mais comment répondre à la question inverse?

Rappels de probabilités

 $\{M_i\}$ ensemble complet d'événements mutuellement exclusifs

■ Théorème de Bayes :

Un événement A s'est produit. Quelle est la probabilité que ce soit la cause M_i qui l'ait produit?

$$P(M_i|A) = \frac{P(A|M_i) \times P(M_i)}{P(A)}$$

- ightharpoonup P(Mi|A): probabilité a posteriori
- $\blacksquare P(A)$: constante (pour chaque M_i) cf. th. probas tot.

Théorème de Bayes généralisé (Chain rule)

$$P(A_1 ... A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2)...P(A_n|A_1 ... A_{n-1})$$

Définition d'un réseau bayésien

Principe:

- prendre en compte les indépendances conditionnelles entre les variables pour simplifier la loi jointe donnée par le théorème de Bayes généralisé.
- Un réseau bayésien est défini par
 - la description qualitative des dépendances (ou des indépendances conditionnelles) entre des variables

graphe dirigé sans circuit (DAG)

■ la description quantitative de ces dépendances

probabilités conditionnelles (CPD)

Exemple

ordre topologique : C, S, A, R, T (non unique)

RB et indépendance conditionnelle

- Les RB représentent graphiquement les indépendances conditionnelles
- Exemple sur 3 nœuds
 - \blacksquare 3 types de relations (simples) entre A, B et C:
 - $\blacksquare A \to C \to B$: connexion série
 - $\blacksquare A \leftarrow C \rightarrow B$: connexion divergente
 - $\blacksquare A \rightarrow C \leftarrow C$: connexion convergente (V-structure)

Connexion série

$$S_2$$
 $A = Séisme$
 $C = Radio$
 $B = Télévision$

- \blacksquare A et B sont dépendants
- \blacksquare A et B sont indépendants conditionnellement à C
 - lacksquare si P(C) est connue, A n'intervient pas dans le calcul de P(B)
 - $P(S_5|S_4, S_2) = P(S_5|S_4) = P(S_5|parents(S_5))$

Connexion divergente

- $\blacksquare A$ et B sont dépendants
- \blacksquare A et B sont indépendants conditionnellement à C
 - si P(C) est connue, A n'intervient pas dans le calcul de P(B)
 - $P(S_4|S_2,S_3) = P(S_4|S_2) = P(S_4|parents(S_4))$

Connexion convergente – V-structure

- $\blacksquare A$ et B sont indépendants
- \blacksquare A et B sont dépendants conditionnellement à C
 - si P(C) est connue, P(A) intervient pas dans le calcul de P(B)
 - $P(S_3|S_1, S_2) = P(S_3|parents(S_3))$

Conséquence

- \blacksquare RB = représentation compacte de la loi jointe P(S)
- Théorème de Bayes généralisé :

$$P(S) = P(S_1) \times P(S_2|S_1) \times P(S_3|S_1, S_2) \times \cdots \times P(S_n|S_1 \dots S_{n-1})$$

■ Dans un RB, $P(S_i|S_1...S_{i-1}) = P(S_i|parents(S_i))$ d'où

$$P(S) = \prod_{i=1}^{n} P(S_i | parents(S_i))$$

La loi jointe (globale) se décompose en un produit de lois conditionnelles locales

Exemple

$$P(Cambriolage, Seisme, Alarme, Radio, Tele) =$$
 $P(S_1)P(S_2|S_1)P(S_3|S_1, S_2)P(S_4|S_1, S_2, S_3)P(S_5|S_1, S_2, S_3, S_4)$
 $P(S_1) P(S_2) P(S_3|S_1, S_2) P(S_4|S_2) P(S_5|S_4)$

La d-séparation

• Principe

déterminer si 2 variables quelconques sont indépendantes conditionnellement à un ensemble de variables instantiées

Définition

- deux variables A et B sont d-séparées si pour tous les chemins entre A et B, il existe une variable intermédiaire V différente de A et B telle que
 - la connexion est série ou divergente et *V* est instancié
 - Ia connexion est convergente et ni V ni ses descendants ne sont instanciés
- Si A et B ne sont pas d-séparés, ils sont d-connectés

Exemple

- \blacksquare exemple de d-séparation : $S_1 \dots S_4$?
 - $V = S_3$ sur le chemin entre S_1 et S_4 .
 - \blacksquare la connexion est convergente en V
 - V n'est pas instancié
 - \rightarrow S_1 et S_4 sont d-séparés

(si S_3 était mesuré, S_1 et S_4 seraient d-connectés)

Exemple

- \blacksquare autre exemple de d-séparation : $S_2 \dots S_5$?
 - $V = S_4$ sur le chemin entre S_2 et S_5 .
 - \blacksquare la connexion est série en V
 - V n'est pas instancié
 - \rightarrow S_2 et S_5 sont d-connectés (si S_4 était mesuré, S_2 et S_5 seraient d-séparés)

Plan - jour 1

- Représentation de l'incertain
- Rappels de probabilités
- Définition d'un réseau bayésien
- Algorithmes d'inférence
 - Bucket Elimination
 - Message Passing (Pearl)
 - Junction Tree (Jensen)
- MATLAB :
 - Création d'un réseau bayésien
 - Quelques exemples d'inférence

RB = modèle génératif

- \blacksquare RB = représentation compacte de la loi jointe P(S)
 - Utilisation de méthodes d'échantillonnage pour générer des données qui suivent cette loi

■ Exemple : *forward sampling*

- \blacksquare si rand1 < 0.001, C = O, sinon N
- \blacksquare si rand2 < 0.0001, S = O, sinon N
- si rand3 < P(A = O | C = ..., S = ...), A = O, sinon N
- ...

P(Radio|Séisme)

Inférence

= calcul de n'importe quelle $P(S_i|S_j=x)$ (NP-complet) NB : l'observation $\{S_j=x\}$ est appelée l'évidence (soft evidence $S_j=x|_{0.3}$ $y|_{0.7}$)

- Algorithmes exacts
 - Bucket Elimination
 - Message Passing (Pearl 88) pour les arbres
 - Junction Tree (Jensen 90)
 - Shafer-Shenoy (1990)

Problème = explosion combinatoire de ces méthodes pour des graphes fortement connectés.

- Algorithmes approchés
 - Echantillonnage
 - Méthodes variationnelles

THE STATE OF THE PARTY OF THE P

Bucket Elimination

$$P(S_i|S_j = x) = \frac{P(S_i, S_j = x)}{P(S_j = x)} = \frac{\sum_{\{s_k\}_{k \neq i, j} P(S_1 = s_1, \dots, S_i, S_j = x, \dots S_n = s_n)}}{\sum_{\{s_k\}_{k \neq j} P(S_1 = s_1, \dots, S_j = x, \dots S_n = s_n)}}$$

- Principe
 - grâce à la décomposition de P(S), simplifier le calcul de $P(S_i, S_i = x)$
- Exemple
 - évidence $E = \{S_4 = O\}$, on cherche $P(S_2|E)$

$$P(S, E) = P(S_1)P(S_2)P(S_3|S_1S_2)P(S_4 = O|S_2)P(S_5|S_4 = O)$$

$$P(S_2, E) = \sum_{S_1, S_3, S_5} P(S, E)$$

 \blacksquare et si on choisit l'ordre des S_i pour la marginalisation?

Bucket Elimination

 $lue{}$ Commençons par S_5

$$\sum_{S_5} P(S_1, S_2, S_3, S_4 = O, S_5) = P(S_1)P(S_2)P(S_3|S_1, S_2) \dots$$

...
$$P(S_4 = O|S_2) \sum_{S_5} P(S_5|S_4 = O)$$

 \blacksquare Cette dernière somme vaut 1 ! On a éliminé S_5

$$P(S_1, S_2, S_3, S_4 = O) = P(S_1)P(S_2)P(S_3|S_1, S_2)P(S_4 = O|S_2)$$

 \blacksquare Au tour de S_1

Bucket Elimination

$$\sum_{S_1} P(S_1, S_2, S_3, S_4 = O) = P(S_2)P(S_4 = O|S_2)\dots$$

...
$$\sum_{S_1} P(S_1)P(S_3|S_1,S_2)$$

■ Cette dernière somme nous rend une table dépendant de S_2 et S_3 : $T(S_2, S_3)$

$$P(S_2, S_3, S_4 = O) = P(S_2)P(S_4 = O|S_2)T(S_2, S_3)$$

■ Idem avec S_3 pour obtenir $P(S_2, S_4 = O)$

Marginalisation = série de produits locaux de matrices et de marginalisations locales

- Comment bien choisir l'ordre de marginalisation?
 - problème lui aussi N-P complet :-)
 - quelques heuristiques efficaces
 - minimum deficiency search (Bertele and Brioschi 1972, Kjærulff 1990)
 - maximum cardinality search (Tarjan and Yannakakis 1984)

Message Passing (Pearl 1988)

- Chaque nœud envoie des messages à ses voisins
- L'algorithme ne marche que dans le cas des arbres ((mais est généralisable au cas des poly-arbres)
- E = ensemble de variables instanciées. $E = N_x \cup D_x$

- 2 types de messages λ et π serviront à calculer
 - lacksquare $\lambda(X) \propto P(D_x|X)$
 - $\blacksquare \pi(X) \propto P(X|N_x)$
- et ensuite on peut montrer que

$$P(X|E=e) \propto \lambda(X)\pi(X)$$

THE STATE OF THE S

Message Passing

- $lue{}$ Les messages λ
 - \blacksquare Pour chaque enfant Y de X,

$$\lambda_Y(X=x) = \sum_y P(Y=y|X=x)\lambda(Y=y)$$

- Comment calculer λ en chaque nœud?
 - Si X instancié, $\lambda(X) = [001 \dots 0]$ (la position du 1 correspond à la valeur donnée à X
 - sinon
 - \blacksquare si X est une feuille, $\lambda(X) = [1 \dots 1]$
 - sinon

$$\lambda(X = x) = \prod_{Y \in Enf(X)} \lambda_Y(X = x)$$

THE STATE OF THE PROPERTY OF T

Message Passing

- $lue{}$ Les messages π
 - Pour Z l'unique parent de X,

$$\pi_X(Z=z) = \pi(Z=z) \prod_{U \in Enf(Z) \setminus \{X\}} \lambda_U(Z=z)$$

- \blacksquare Comment calculer π en chaque nœud?
 - Si X instancié, $\lambda(X) = [001 \dots 0]$ (la position du 1 correspond à la valeur donnée à X
 - sinon
 - \blacksquare si X est la racine, $\pi(X) = P(X)$
 - sinon

$$\pi(X = x) = \sum_{z} P(X = x | Z = z) \pi_X(Z = z)$$

Junction Tree (Jensen 1990)

- Message Passing ne s'applique bien qu'aux arbres
 - Besoin d'un algorithme plus général
 - Principe
 - Transformer le graphe en un arbre (non orienté)...
 - Arbre = arbre de jonction des cliques maximales du graphe moralisé et triangulé
 - Moralisation = marier les parents et "désorienter" le graphe
 - Triangulation = éviter les cycles dans le graphe non orienté.

Moralisation : marier les parents de chaque nœud

- Triangulation : tout cycle de longueur au moins 4 doit contenir une corde (arête reliant deux sommets non consécutifs sur le cycle)
- (= aucun sous-graphe cyclique de longueur > 3).
- Triangulation optimale pour des graphes non-dirigés = NP-difficile (comment choisir les meilleures cordes ?)

- Clique = sous-graphe du RB dont les nœuds sont complétement connectés
- Clique maximale = l'ajout d'un autre nœud à cette clique ne donne pas une clique

Théorème : Si le graphe est moralisé et triangulé, alors les cliques peuvent être organisées en un arbre de jonction

$$S_1S_2S_3$$
 S_2 S_4 S_4 S_4 S_5 $P(S) = \Phi(S1, S2, S3)\Phi(S2, S4)\Phi(S4, S5)$

■ L'inférence se fait au niveau des Φ

THE STANDARD OF THE STANDARD O

Inférence abductive

- Autres types d'inférence
 - *MPE* (Most Probable Explanation) la configuration de TOUTES les variables la plus probable sachant l'évidence
 - MAP (Maximum A Posteriori) la configuration d'un ENSEMBLE de variables la plus probable sachant l'évidence
- En général $MPE(S|E) \neq \{argmax \ P(S_i|E)\}_i$
- idem $MAP(S_i, S_j|E) \neq MPE(S|E)|_{S_i, S_j}$
- Adaptation des algorithmes d'inférence classiques

Plan - jour 1

- Représentation de l'incertain
- Rappels de probabilités
- Définition d'un réseau bayésien
- Algorithmes d'inférence
 - Bucket Elimination
 - Message Passing (Pearl)
 - Junction Tree (Jensen)
- MATLAB:
 - Création d'un réseau bayésien
 - Quelques exemples d'inférence