Paradoxical Performance for Monetary Incentives

Vikram S. Chib

Behavioral Responses to Incentives

(Lazear, 2000)

Behavioral Responses to Incentives

+ + / -

\$\$\$
$$\Rightarrow$$
 Effort / \Rightarrow Performance
Incentives Motivation

(Ariely et al., 2009)

Psychology and Neuroscience of "Choking Under Pressure"

• "Overmotivation" hypothesis (Baumeister, 1984; Beilock et al., 2004; Mobbs et al., 2009)

 Poor neuroscientific understanding of skilledtask performance for incentives

Ventral Striatum (vSTR)

ventral striatum = nucleus accumbens + ventral putamen

(O'Doherty et al., 2003; Haber et al., 2000; Haber and Knutsen., 2010)

Ventral Striatum: Neural Interface Between Motivation and Action

• Encoding of rewards and punishments (Knutson et al., 2000; Yacubian et al., 2006; Tom et al., 2007)

• Regulation of instrumental motor responses (Tanaka, et al., 2008; Tricomi et al., 2009; Wunderlich et al., 2012)

 Mediates the effects of rewards on increases in motor effort (Kurniawan et al., 2010; Pessiglione et al., 2007; Schmidt et al., 2012) What are the neural mechanisms underlying paradoxical performance for incentives?

Task Requirements

Novel to subjects

• Standardizable difficulty across subjects

MRI Setup

Infrared cameras track subjects' reaching movements in the scanner.

Control of a Spring-Mass System

$$M_o \ddot{r_o} + K_o(r_o - r_h) = 0$$

 r_h hand position r_o mass position M_o Object Mass K_o Object stiffness

Day I:Training

500 self-paced repeated movements

Before Learning

After Learning

Training Data

Following training subjects are able to control the system.

Day I:Thresholding

Varying target size

Psychometric Function

Difficulty levels were customized to individual subjects.

Day 2: Incentivized Motor Task (fMRI)

A random trial was selected and subjects were paid based on performance on that trial.

Behavioral Performance

Subjects' performance peaked over the range of incentives.

Behavioral Performance

Subjects 'choked' in the hard difficulty condition.

Overview of fMRI Methods

Statistical Parametric Map

Overview of fMRI Methods

For our experiment we generated a linear model of the form:

Experiment Prediction

 The larger a subject's neural sensitivity to incentive the larger their performance decrements

Neural Responses

vSTR is activated at the time of incentive presentation and deactivated during motor performance.

Neural Sensitivity to Incentive

Units: %signal change/\$

Neural Responses and Performance

Incentive Presentation

Neural sensitivity to incentive did not correlate with performance decrements.

Why does vSTR striatum deactivate?

$$EV = P_{gain}G + P_{loss}L$$

= 0.5(22)+0.5(-20)
= +\$1

Loss Aversion

Losses loom larger than gains. (Kahneman & Tversky, 1979)

Loss Aversion

vSTR striatum activity predicts loss aversion.

(Tom et al., 2007)

fMRI Guided Predictions

I. vSTR deactivation predicts performance decrements

2. Activity in vSTR during the motor task is related to an individual's loss aversion

3. An individual's loss aversion is predictive of behavioral performance

I. vSTR deactivation predicts performance decrements

2. Activity in vSTR during the motor task is related to an individual's loss aversion

3. An individual's loss aversion is predictive of behavioral performance

Motor Task

Summary of Results

 High incentive levels led to the paradoxical consequence of poor performance

- Rapid switching in vSTR response between incentive presentation and task performance
- vSTR deactivations and performance decrements are predicted by loss aversion

Reappraisal of incentives during task performance

Applications

fMRI can inform theories in economics and psychology

- Incentive mechanism design
- Cognitive strategies to prepare for high stakes conditions (e.g., hazardous environments, education, rehabilitation)

Questions?