Optimization with Applications I TP 2

Exercise 1. Implement the Newton algorithm used to find roe minimum of a function. It should be a function with the signature

```
def function newton(f_der, f_der2, x_0, epsi=1.e-6, max_steps=1000):
# your code here
if not converged:
    raise Exception("does not converge")
else:
    return (zero it converged to)
```

Here $f_{-}der$ and $f_{-}der2$ should be the function's first and second derivatives calculated analytically.

Test it on multiple functions with multiple starting values and find good examples of convergence and non-convergence.

Exercise 2. Replace the input of the derivative in the algorithm by the first week's numerical derivative, so the new newton has the signature

```
def function num_newton(f_der, x_0, epsi=1.e-6, max_steps=1000):
# your code here
if not converged:
    raise Exception("does not converge")
else:
    return (zero it converged to)
```

Try to reuse the code from the first exercise.

Can you find an example that converges for the analytical derivative but not for the numerical?

Exercise 3. Implement the golden section algorithm to find a minimum of a given unimodal function f over the interval [a, b].

```
def function golden_section(f, a, b, eps=1.e-6):
# your code here
return minimum
```

Exercise 4. We want to perform linear regression like in Exercise 3 on TD1. In order to produce nice pictures we will do this in dimension 2.

Pick some parameters α_0 , α_1 and a variance σ^2 . Draw n = 50 points $\{x_i\}_{i=1}^n$ at random from some interval you choose. Produce the values $y_i = \alpha_0 + \alpha_1 x_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Now we only treat $\{y_i\}$ as input and want to find the maximum likelihood $\alpha_0, \alpha_1, \sigma^2$. Find these values and plot the x, y plot as well as the line defined by α_0, α .

How does your result compare to the actual variables that created the data?

Important: Every function and exercise must be tested. Plug in some values for which you know the correct answers and compare the output of your function.