COL351 Assignment 1

Mallika Prabhakar, 2019CS50440 Sayam Sethi, 2019CS10399

August 2021

Contents

1	Question 1	1
	1.a Unique MST	
	1.b Algorithm Sketch	3
2	Question 2	5
	2.a Optimal Huffman Encoding	5
	2.b two point two	7
3	Question 3	7
	3.a three point one	7
	3.b three point one	7

1 Question 1

Let G be an edge-weighted graph with n vertices and m edges satisfying the condition that all the edge weights in G are distinct.

1.a Unique MST

Question 1.a

Question. Prove that G has a unique MST.

Proof. We will prove this by induction on the size of G using an idea similar to Kruskal's algorithm discussed in the class.

Hypothesis:

$$h(n): \forall G = (V, E): |V| = n \implies MST(G) \text{ is unique}$$
 (1)

Base case: n=1 is true since there is no edge and $MST(G)=(V,\phi)$ is unique.

```
Induction Step: Assume h(n-1) is true for n \ge 2, now for h(n): (Note: This proof assumes each edge to be an unordered pair of vertices)
```

Consider Kruskal's algorithm,

Algorithm 1 Recursive MST Routine – Kruskal's algorithm

```
1: procedure MST(G)
 2:
        e_0 \leftarrow (x, y) be edge with least weight
        H \leftarrow G
 3:
        remove x, y from H and add new vertex z
 4:
        for all v such that v is neighbour of x or y do
 5:
            add (v,z) to H
 6:
            wt(v,z) \leftarrow \min(wt(v,x), wt(v,y))
 7:
           if wt(v,x) < wt(v,y) then
 8:
               map(v,z) \leftarrow (v,x)
 9:
            else
10:
                map(v,z) \leftarrow (v,y)
11:
            end if
12:
        end for
13:
        T_H \leftarrow MST(H)
14:
        T_G \leftarrow (V, \{e_0\})
15:
        for all e \in T_H do
16:
            if e is not incident on z then
17:
                add e to T_G
18:
            else
19:
                add map(e) to T_G
20:
21:
            end if
        end for
22:
        return T_G
23:
24: end procedure
```

In the above algorithm, it is clear that H has n-1 vertices. Thus, by our assumption, h(n-1) is true and hence T_H is unique. Also, we know that T_G is a valid MST, from the correctness of Kruskal's algorithm. Now, assume by contradiction that T_G is not unique. Then there exists an MST, say $T' \neq T_G$.

Claim 1.1. e_0 cannot be in T'

Proof. This is because, if e_0 were in T', then $T \setminus \{e_0\} \neq T' \setminus \{e_0\}$ and thus, there would be two different MSTs for H which would be a contradiction to our assumption. Thus, $e_0 \notin T'$.

Consider the path from x to y in T'. Since $e_0 = (x, y)$ is not present in T', there exists a different path, say $P = (f_1, f_2 \cdots, f_k)$ where $f_i \in E(T'), 1 \le i \le k$. We know that

 $wt(f_i) > wt(e_0), 1 \le i \le k.$

Swap any of the f_i with e_0 and let the subgraph formed be T'', i.e., $T'' = T' \setminus \{f_i\} \cup \{e_0\}$. We know T'' is a spanning tree of G since V(T'') = V(G) and there are no cycles formed on performing the swap operation (this can be proven using contradiction as discussed in the lecture).

Now, consider the weight of T'':

$$wt(T'') = wt(T') - wt(f_i) + wt(e_0)$$

$$\implies wt(T'') < wt(T')$$
(2)

We have shown that the total weight of T'' is lesser than the weight of T'. However, this is a contradiction to the fact that T' is the MST of G. Thus our assumption that T_G is not the unique MST of G was wrong. Therefore, h(n) is true.

This completes the induction and the proof that if all edge weights in a graph are distinct, then its MST is unique.

Algorithm Sketch 1.b

Question 1.b

Question. If it is given that G has at most n+8 edges, then design an algorithm that returns a MST of G in O(n) running time.

Solution. The idea is to use the previous result along with the fact that the number of edges to be removed to form a spanning tree is at most (n+8)-(n-1)=9, assuming that G was initially connected (else no MST exists). The algorithm is as follows:

Algorithm 2 Compute MST for 1.b

```
if |E(G)| equals |V(G)|-1 then
        return G
3:
```

1: procedure MST(G)

 \triangleright since G is acyclic and hence a tree

end if 4:

 $C \leftarrow findCycle(G)$ 5:

 $e \leftarrow \text{edge}$ with largest weight in C

remove e from G7:

8: $T_G \leftarrow MST(G)$

9: return T_G

10: end procedure

The procedure findCycle calls a DFS function on G which uses graph colouring and returns the first cycle it finds:

Algorithm 3 findCycle

```
1: procedure FINDCYCLE(G)
         v \leftarrow \text{any vertex of } G
         colour \leftarrow map of vertices initialised to zero
 3:
         parent ← map of vertices initialised to null
 4:
         (u, v) \leftarrow \mathrm{dfs}(G, v, \mathrm{colour}, \mathrm{parent}, \mathrm{null})
 5:
                                   ▷ returns the bottommost and topmost vertex of the cycle
 6:
         C \leftarrow \text{empty array of edges}
 7:
         add (u, v) to C
 8:
 9:
         while u \neq v do
             add (u, parent(u)) to C
10:
             u \leftarrow \operatorname{parent}(u)
11:
         end while
12:
         return C
13:
14: end procedure
```

The DFS function looks as follows:

Algorithm 4 Identify cycle using colouring and DFS

```
1: procedure DFS(G, v, colour, parent, p)
        parent(v) \leftarrow p
 2:
 3:
        \operatorname{colour}(v) \leftarrow 1
        for all u such that u is neighbour of v in G do
 4:
            if colour(u) is 2 then
 5:
                return (u, v)
 6:
            else if colour(u) is 0 then
 7:
                value \leftarrow dfs(G, u, colour, parent, v)
 8:
                if value is not null then
 9:
                     return value
10:
                end if
11:
            end if
12:
13:
        end for
14:
        \operatorname{colour}(v) \leftarrow 2
15: end procedure
```

2 Question 2

2.a Optimal Huffman Encoding

Question 1.b

Question. What is the optimal binary Huffman encoding for n letters whose frequencies are the first n Fibonacci numbers? What will be the encoding of the two letters with frequency 1, in the optimal binary Huffman encoding?

Solution. We begin by observing the property of Fibonacci numbers:

$$f_n = f_{n-1} + f_{n-2} \ \forall n \ge 3$$

and, $f_1 = f_2 = 1$ (3)

We are given an alphabet $A = (a_1, a_2, \ldots, a_n)$ such that it has a frequency vector $F = (f_1, f_2, \ldots, f_n)$. Before finding the encoding, consider the sum of first k Fibonacci numbers, call it s_k :

$$s_k = f_1 + f_2 + \dots + f_{n-2} + f_{n-1} + f_n
 \Longrightarrow s_k = f_1 + f_2 + \dots + f_{n-2} + f_{n+1}
 \Longrightarrow s_k = s_{k-2} + f_{n+1}
 \Longrightarrow s_k - s_{k-2} = f_{n+1}$$
(4)

On performing telescopic summation over Equation 4 (for k > 2), we get the following:

$$s_{k} - \underline{s_{k-2}} = f_{k+1} \\
+ s_{k-1} - \underline{s_{k-3}} = f_{k} \\
+ \underline{s_{k-2}} - \underline{s_{k-4}} = f_{k-1} \\
\vdots \\
+ \underline{s_{4}} - s_{2} = f_{5} \\
+ \underline{s_{3}} - s_{1} = f_{4} \\
\Longrightarrow s_{k} + s_{k-1} - s_{2} - s_{1} = s_{k+1} - f_{3} - f_{2} - f_{1} \\
\Longrightarrow (s_{k} + 1) + (s_{k-1} + 1) = (s_{k+1} + 1)$$
(5)

This Equation 5 takes a form similar to Equation 3 and thus, $s_k + 1 = f_m$ for some m. On substituting value of k = 1:

$$s_1 + 1 = f_m$$

$$\implies f_m = 2$$

$$\implies m = 3$$

$$\implies s_k + 1 = f_{k+2}$$

$$\implies s_k = f_{k+2} - 1$$
(6)

Now consider the Huffman tree for |A| = n. Each of the frequency f_i $(1 \le i \le n-2)$ is less than f_n and sum of all frequencies f_i $(1 \le i \le n-2)$, i.e., $s_{k-2} = f_n - 1$ is less than f_n . We also know that a_i is merged at the same time or before a_j for any i < j. From this, we can formulate the merging strategy with the help of the following inductive claim:

Claim 2.1. The optimal Huffman tree for A with frequency vector F is constructed in a way such that (a_1, a_2, \ldots, a_i) is merged in the first i-1 steps $\forall i: 1 \leq i \leq n$.

Proof. Base case: i = 1 is trivially true since a_1 is a leaf node and is *merged* in 0 merges.

Induction Step: Assume the claim is true for i-1. After i-2 merges, $(a_1, a_2, \ldots, a_{i-1})$ have been merged into $tree(a_1, a_2, \ldots, a_{i-1})$, and the frequency vector will be as follows,

$$F = (f_1 + f_2 + \dots + f_{i-1}, f_i, f_{i+1}, \dots, f_n)$$

$$F = (s_{i-1}, f_i, f_{i+1}, \dots, f_n)$$

$$F = (f_{i+1} - 1, f_i, f_{i+1}, \dots, f_n), \text{ from Equation 6}$$
(7)

It is easy to see that the least two frequencies in the frequency vector are f_i , $f_{i+1} - 1$ which correspond to a_i and $tree(a_1, a_2, \ldots, a_{i-1})$. Therefore the $(i-1)^{th}$ merge will merge these two into $tree(a_1, a_2, \ldots, a_i)$.

We have shown that a_i is merged in the $(i-1)^{\text{th}}$ step and from induction we know that $(a_1, a_2, \ldots, a_{i-1})$ are merged before (i-1) steps and thus, (a_1, a_2, \ldots, a_i) are merged in i-1 steps. This completes the induction and proves the claim.

Therefore, from Claim 2.1, we know that a_n is merged in the last step (which is the $(n-1)^{\text{th}}$ step) and hence it is encoded using a single bit. We can now inductively define the encoding for each alphabet (for n > 1):

Claim 2.2.
$$a_i$$
 is encoded as $\underbrace{11\ldots 1}_{n-i \text{ times}} 0$ for $n \geq i > 1$ and a_1 is encoded as $\underbrace{11\ldots 1}_{n-1 \text{ times}}$

Proof. For i > 1, we will prove the claim using induction.

Base case: From Claim 2.1, we know that a_n will be merged in the last step and thus it is encoded using a single bit, we can choose this bit to be 0 and thus $enc(a_n) = \underbrace{11 \dots 1}_{0} 0 = 0$ and the claim is true for n.

Induction Step: Assume the claim is true for i+1, i.e., $enc(a_{i+1}) = \underbrace{11 \dots 1}_{n-(i+1) \text{ times}} 0$

From the proof of the previous claim, we know that a_{i+1} and $tree(a_1, a_2, ..., a_i)$ are siblings and thus, the encoding of the root of $tree(a_1, a_2, ..., a_i)$ will be $\underbrace{11...1}$.

From the base case, we know that a_n is encoded using a single bit with respect to the root of the tree. Therefore, with respect to $tree(a_1, a_2, \ldots, a_i)$, we know that a_i is

encoded using a single bit. Let that bit be 0. We then have the complete encoding of a_i as:

$$enc(a_i) = enc(tree(a_1, a_2, \dots, a_i)).0$$
 (. denotes concatenation)
= $\underbrace{11 \dots 1}_{n-i \text{ times}} 0$ (8)

This completes the induction for i > 1 and we now show the correctness of the claim for i = 1.

We know that a_1 and a_2 are siblings in the Huffman tree and thus they differ in their representation in exactly the last bit. Therefore, $enc(a_1) = \underbrace{11...1}_{1...1}$. This completes

the proof of the claim.

Thus, we have computed the optimal Huffman encoding for the alphabet $A = (a_1, a_2, \ldots, a_n)$ which has frequency vector as $F = (f_1, f_2, \ldots, f_n)$ and we restate Claim 2.2:

In the optimal Huffman encoding for A with frequency F such that |A| = n, a_i is encoded as $\underbrace{11\ldots 1}_{n-i \ times} 0$ for $n \geq i > 1$ and a_1 is encoded as $\underbrace{11\ldots 1}_{n-1 \ times}$ (and for n = 1,

 $a_n = a_1 = 0$ trivially).

2.b two point two

file for 2b

3 Question 3

3.a three point one

file for 3a

3.b three point one

file for 3b