

目录

- 1. 系统能力贯通培养
- 2. 操作系统规划设计
- 3. 实验分解以及安排

系统能力贯通培养

- 系统能力的内涵
- 贯通教学课程体系

从提高能力着手,能力是多方面的

分级分层实施,突出能力训练

- 重组6门课
- 新增2门课
- 跨越5~6学期
- · 分成两个层次, 每个层次3个级 别, 互有衔接
- 覆盖不同层次的高校学生

系统能力培养核心课程系列

数字逻辑 可根据教学要求分解或扩展实验

E01: 变量译码器 E02: 七段数码管译码器 E03: 多路选择器及测调环境

E04: 全加器设计 E05: 加减法器和 ALU E06: 锁存器与触发器

E07: 状态机设计 E08: 寄存器与寄存器传输 E09: 计数/定时器设计与应用

E10: 移位寄存器 **E11:** 实验综合 **▽课程设计**

计算机系统结构

▼多周期 CPU 回顾

▼stall 五级流水线实现

▼控制竞争性能改进

▼流水线中断设计

▼基本五级流水线实现

▼Fowarding 的五级流水线实现

▼流水线处理器指令扩展实现

▼Cache 设计实现

▼课程设计:流水线处理器集成 SOC

计算机系统综合实践--硬件篇:标准化硬件设计

三种模式四大阶段

▼ 开源 CPU 核模式 ▼ 自主 CPU 模式 ▼ 第三方硬核模式

▼ 阶段一: 扩展重现前导课的流水线 MIPS CPU, 50 条指令

▼ **阶段二:** 系统总线标准化。替换为标准 Wishbone 总线

▼ **阶段三: 扩展** CPO 功能,在硬件层支持 OS 的各项功能。

▼ 阶段四:添加外存储和文件系统构建。

计算机组成 可分解为课程实验和独立课程设计

▼多路选择器与 CPU 辅助模块设计

▼七段显示部件(设备)设计;

▼建立 CPU 测试和应用环境;

▼ALU、Regs 及 CPU IP 核集成

▼单周期 CPU 设计与集成替换

▼多周期 CPU 设计与集成替换

▼课程设计: CPU 最简单应用-基本总线和 GPIO 设备设计实现

计算机硬件系统综合 简易语

简易计算机系统实现最低要求

▼CPU 优化设计(任选一款组成实验设计的 CPU)

▼扩展简单总线设计

▼PS2 模块设计

▼VGA 模块设计

▼硬件集成

▼命令管理器设计(无盘 DOS/大监控)

▼系统集成: 软硬件集成(含有意义的应用程序设计)

计算机系统综合实践--软件篇:操作系统设计

十大实验实现 OS 内核

▼ 实验环境搭建: mips-gcc 交叉编译器、模拟器

Exp01:系统管理策略规划

Exp02:启动与系统初始框

Exp03:实现 vga 显示功能

Exp04:实现键盘输入功能

Exp05:添加时钟中断

Exp06:添加内存管理

Exp07: 实现进程管理

Exp08:实现文件系统

Exp09: 实现库、shell 程序

Exp10: 完善 bootloader 与系统

操作系统

- •特权资源
 - •虚拟内存
 - •异常与中断
 - •特权指令
- •高速缓存
- 多核系统

编程语言

- ABI
- •编译优化
 - •指令/数据预取
 - 分支预测
- •指令/数据/线程级并行

体系结构

操作系统规划设计

- •规划设计
- 内存管理
- 进程管理

- 文件系统
- 设备驱动
- 应用程序

面向系统能力的操作系统课程设计

- 现有OS课程参考/教材书籍
 - 操作系统原理类
 - 从理论上介绍OS设计与实现所涉及的技术原理
 - 内核剖析类
 - 从代码角度分析OS主要模块的设计与实现
 - 动手实践类
 - 从零开始实现一个小型内核

ZJUNIX

- 动手实践类
- · 简化硬件平台,衍生于逻辑、计组、SoC课程

OS原理类

内核剖析类

动手实践类

建议的OS学习路线

SWORD实验平台

- SWORD 是一款系统能力培养贯通教学实验平台
- 核心芯片为Xilinx生产的Kintex-7系列FPGA
 - Kintex™-7 XC7K325T-1FFG676

系统架构

指令列表

指令类型(共87)	指令列表				
算术运算(22)	add, addi, addiu, addu, sub, subu, slt, slti, sltiu, sltu, mul, mult, multu,				
J1717~2J1 ()	madd, maddu, msub, msubu, div, divu, clo, clz, lui				
逻辑运算(13)	揖运算(13) and, andi, or, ori, xor, xori, nor, sll, sllv, srl, srlv, sra, srav				
内存访问(12)	lb, lbu, lh, lhu, lwl, lwr, lw, sb, sh, swl, swr, sw				
跳转(12)	beq, bne, blez, bgez, bltz, bgtz, bltzal, bgezal, j, jal, jr, jalr				
移动(6)	movz, movn, mfhi, mthi, mflo, mtlo				
陷入(12)	\(12) tge, tgei, tgeiu, tgeu, tlt, tlti, tltiu, tltu, teq, teqi, tne, tnei				
COP0(7)	mfc0, mtc0, tlbr, tlbwr, tlbp, eret				
其他(3)	syscall, break, cache				

系统架构升级说明

- 升级目的:
 - 尽可能与MIPS32规范兼容
 - 充分利用现有MIPS工具链和软件资源
- COPO(协处理器0):
 - 17个COPO寄存器,全部与MIPS32规范兼容
- 虚拟地址空间映射:
 - 与MIPS32规范兼容的TLB MMU设计
 - 与MIPS32规范兼容的虚拟地址划分
- 高速缓存(Cache):
 - 修改了强制写回方式,提升性能

代码结构

代码类型	数量
C文件	6478行
H文件	1189行
汇编文件	520行

ZJUNIX整体架构

sł	nell	ls	cd		pwd	ps	kill	
	用户库ulib							
	系统调用API							
内存管理			进程管理		文件:	系统		
	Slub		多线程		缓存气	管理		
Buddy		进程调度		FAT 32				
中断异常管理								
UART驱动 VGA驱动		键盘驱动	键盘驱动 SD卡驱动		时钟中断			
硬件			MIPS SO	C	MIPS模拟器	3	软件	
	调试		SWORD平	台	PC平台		调试	

ZJUNIX模块规划

应用程序

内存管理

进程管理

文件系统

中断与异常机制

设备驱动

内存管理

物理地址映射

虚拟地址空间

内存管理

- 虚拟地址空间划分、物理地址映射已经过升级,与原书设 计不同
- 目前的设计与MIPS32规范兼容
- 实验时请以实验材料和软件代码为准

内存管理-模块划分

进程管理

```
struct task_struct
      struct task_struct
   struct task_struct
struct task_struct
context context;
int ASID;
unsigned int counter;
char name[32];
unsigned long start_time;
```


文件系统

- 结构简单
- 易于实现
- 跨平台通用性好
- 适合作为启动分区

设备驱动

- PS/2键盘驱动程序
- VGA显示驱动程序
- ·SD卡驱动程序
- UART串口驱动程序

应用程序

- Shell: 集成终端
- myvi: 文本编辑器
- Is、cat、ps等实用工具

实验分解及安排

操作系统整体规划与设计								
整体规划	内存管理设计	进程管理 策略	文件系统选择	设备驱动种类	应用程序设计			
操作系统启动与初始化								
系统启动流程		Bootloader设计		内核初始化流程				
中断与异常设计实现								
MIPS325	早常机制	异常机制	刮初始化	异常处	理代码			

设备驱动设计与实现							
设备驱动架构	显示驱动	存储驱动	键盘驱动	其他设备			
内存管理设计与实现							
整体设计	Bootmm 设计	Buddy设计	Slab设计	应用接口			
进程管理设计与实现							
虚拟内存与地址翻译		进程结构	进程调度				

文件系统设计与实现							
文件系统初始化	文件控制	· リ 块	FAT缓存机制		件内容存机制	文件操作	
应用程序设计							
用户态机制		C库与系统调用		应用程序示例			

