Faculty of Exact Sciences and Informatics

Mathematics Department

Année Universitaire: 2019/2020 Level: 2^{nd} Master/ Option: A.M.S.

Module: Stochastic Processes 3 FINAL EXAM

1. $(B_t)_{t\geq 0}$ is a Brownian motion on the space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$.

(a) Show that If f in $L^2([0,T])$ then

$$\mathbb{E}\left[\exp\left(\int_0^t f(s)dB_s\right)\right] = \exp\left(\frac{1}{2}\int_0^t f^2(s)ds\right); \text{ for every } t \in [0,T].$$

(b) Let τ to be a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ and $X \in L^2_{ad}([0,T] \times \Omega)$. Show that

$$\mathbb{E}\left(\int_0^{t\wedge\tau} X_s dB_s\right) = 0; \text{ for every } t \in [0,T].$$

(c) Prove that, for every t > 0:

$$\int_{0}^{t} e^{B_{s}} ds \stackrel{\mathcal{L}}{\sim} t \int_{0}^{1} e^{\sqrt{t}B_{s}} ds. (use \ scaling \ propertiy \ of \ Brownian \ motion)$$

2. $(B_t)_{t\geq 0}$ is a Brownian motion on the space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$.

(a) Compute
$$Z = \int_{0}^{1} 1_{\{B_t=0\}} dB_t$$
.

(b) Let
$$Z = \int_0^1 1_{\{B_t \geq 0\}} dB_t$$
. Compute $\mathbb{E}(Z)$ and $\mathbb{V}ar(Z)$.

3. Let X be the solution (geometric Brownian motion) of the SDE:

$$\begin{cases} dX_t = bX_t dt + \sigma X_t dB_t \\ X_0 = 1. \end{cases}$$

- (a) In this part we will determine, by two ways, a real number α such that $(X_t^{\alpha})_{t\geq 0}$ is a martingale:
 - i. The first one by using Ito's formula to calculate stochastic differential of X_t^{α} .
 - ii. The second one by resolving the above SDE.
- (b) Let α takes the value found in (a) and Let τ the exit time of X out of the interval $]\frac{1}{2}$, 2[, that is $\tau = \inf \left\{ t \ge 0; \ X_t = \frac{1}{2} \ or \ X_t = 2 \right\}.$
 - i. Express $\mathbb{E}(X_{\tau}^{\alpha})$ in terms of α and $\mathbb{P}(X_{\tau}=2)$.
 - ii. Show that $\mathbb{E}(X_{\tau \wedge t}^{\alpha}) = 1$.
 - iii. Prove that $t \mapsto X_{\tau \wedge t}^{\alpha}$ is bounded and deduce that $\lim_{t \to \infty} \mathbb{E}(X_{\tau \wedge t}^{\alpha}) = \mathbb{E}(X_{\tau}^{\alpha}).$ (use Monotone Convergence Theorem)
 - iv. Deduce that $\mathbb{P}(X_{\tau}=2) = \frac{1-2^{-\alpha}}{2^{\alpha}-2^{-\alpha}}$.
- 4. Let us consider the SDE which is assumed admitting a unique solution.

$$\begin{cases} dX_t = \left(\sqrt{1 + X_t^2} + \frac{1}{2}X_t\right)dt + \sqrt{1 + X_t^2}dB_t. \\ X_0 = x \in \mathbb{R}. \end{cases}$$
 (1)

- (a) Give the stochastic differential of $Y_t = \ln\left(\sqrt{1 + X_t^2} + X_t\right)$.
- (b) Deduce an explicit solution of (1).

Hint: $z \mapsto \ln \left(\sqrt{1+z^2} + z \right)$ is the inverse function of $y \mapsto sh(y)$.

5. Prove by two ways (by definition and by Ito's formula) that $X_t = B_t^3 - 3tB_t$ is a martingale.