Лабораторная работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

Симанкович Александр Б01-104

30.03.2022

Цель работы

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Оборудование и приборы

Цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

Теоретическое введение

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды(молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\vec{q}\left[\frac{\mathrm{Br}}{\mathrm{M}^2}\right]$ (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры:

$$\vec{q} = -\kappa \cdot \nabla T$$

где κ — коэффициент теплопроводности.

$$\kappa \sim \lambda \vec{\nu} \cdot nc_v$$

где λ — длина свободного пробега молекул газа, \vec{v} — средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа.

Подставляя формулу для средней скорости движения молекул получаем, что κ не зависит от плотности газа и пропорционален корню из температуры.

Решая задачу при данных условиях и геометрии установки получаем:

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa \cdot \Delta T \tag{1}$$

Считая изменения κ в процессе измерений для каждой отдельной температуры постоянным, получаем зависимость Q(T).

Экспериментальная установка

На оси полой цилиндрической трубки с внутренним диаметром $2r_0$ 1 см размещена металлическая нить диаметром $2r_1 \approx 0.05$ мм и длиной $L \approx 40$ см.

Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через который пропускается вода из термостата, так что их температура поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Рис. 1: Схема установки

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца:

$$Q = UI$$
,

и сопротивление по закону Ома:

$$R = \frac{U}{I}$$

Сопротивление нити является однозначной функцией её температуры R(T). В пределах $20-70~^{\circ}C$ зависимость можно считать линейной $R=R_0(1+\alpha(T-T_0))$. Эта зависимость может быть получена по данным эксперимента в результате экстраполяции R(Q) при $Q\to 0$. Иначе, зная материал нити, можно воспользоваться справочными данными.

Для большинства металлов относительное изменение сопротивления из-за нагрева невелико: при изменении температуры на 1 градус относительное изменение сопротивления нити может составлять приблизительно от 0.2~% до 0.6% (в зависимости от её материала). Следовательно, измерение R важно провести с точностью порядка 0.1%.

На рисунке приведена электрическая схема, используемая в работе.

При фиксированной температуре термостата (и, соответственно, стенок сосуда) будут проведены измерения U и I и получена зависимость R(Q). По экстраполяции каждого набора измерений будет найдено R_0 . Таким образом будет получена зависимость $R_0(T)$, из которой будет найден α . Используя $\alpha = \frac{dR}{dT}$ и $\frac{dQ}{dR}$, получим $\frac{dQ}{d(\Delta T)}$. Учитывая уравнение (1) определим коэффициент κ .

Параметры установки

 $L = (365 \pm 2) \; \text{мм} - \text{длина нити}$

 $2r_1 = (0.05 \pm 0.005)$ мм – диаметр нити

Материал нити – молибден

 $2r_2 = (10 \pm 0.1)$ мм – диаметр колбы

 $R_{\rm 9} = (10.000 \pm 0.001)~{
m Om}$ — эталонное сопротивление

Погрешность вольтметра: $0.0035\% \cdot [$ измерение $] + 0.0005\% \cdot [$ предел измерений]

Максимальное напряжение источника: 4 В

Ход работы

Проведем измерения:

Погрешности измерений:

$$\varepsilon(U) = 4 \cdot 10^{-4}$$
 $\varepsilon(R_{\text{PT}}) = 1 \cdot 10^{-4}$ $\varepsilon(R) = 6 \cdot 10^{-4}$ $\varepsilon(Q) = 6 \cdot 10^{-4}$

$T = 22.0 ^{\circ}C$					$T = 30.0 \ ^{\circ}C$				
R, Om	Q, Br	$U_{\text{\tiny 9T}}, \mathrm{B}$	$U_{\text{нить}}, \mathbf{B}$		R, Om	Q, B_{T}	$U_{\scriptscriptstyle \operatorname{\operatorname{9T}}}, \operatorname{B}$	$U_{\text{нить}}, \mathbf{B}$	
14.5452	0.0082	0.2370	0.3448		14.9133	0.0083	0.2365	0.3527	
14.5751	0.0162	0.3337	0.4864		14.9372	0.0165	0.3327	0.4969	
14.6082	0.0242	0.4072	0.5949		14.9630	0.0246	0.4056	0.6070	
14.6261	0.0321	0.4688	0.6856		14.9968	0.0327	0.4667	0.6999	
14.6591	0.0400	0.5226	0.7661		15.0178	0.0406	0.5201	0.7810	
14.6821	0.0479	0.5709	0.8382		15.0449	0.0485	0.5679	0.8544	
14.7117	0.0556	0.6150	0.9048		15.0720	0.0564	0.6115	0.9217	
14.7370	0.0634	0.6559	0.9666		15.0997	0.0642	0.6520	0.9845	
14.7658	0.0711	0.6939	1.0246		15.1313	0.0719	0.6895	1.0433	
14.7938	0.0788	0.7297	1.0795		15.1463	0.0796	0.7251	1.0982	
14.8209	0.0864	0.7634	1.1315		15.1747	0.0873	0.7583	1.1507	
14.8432	0.0940	0.7958	1.1813		15.1987	0.0949	0.7902	1.2010	
14.8762	0.1016	0.8264	1.2294		15.2310	0.1025	0.8203	1.2494	
14.8983	0.1091	0.8558	1.2750		15.2496	0.1100	0.8492	1.2950	
	$T = 40.0 ^{\circ}C$						50.0 °C		
R, O_{M}	Q, B_T	U_{eff}, B	$U_{\text{\tiny HMTb}}, \mathrm{B}$		R, O_{M}	Q, B_T	$U_{\text{\tiny PT}}, \mathrm{B}$	$U_{\text{\tiny HUTL}}, \mathrm{B}$	
15.3532	0.0085	0.2359	0.3621		15.8044	0.0087	0.2352	0.3718	
15.3796	0.0169	0.2303 0.3314	0.5021 0.5097		15.8336	0.0007	0.2392 0.3301	0.5227	
15.4098	0.0251	0.4038	0.6222		15.8605	0.0256	0.4019	0.6374	
15.4353	0.0333	0.4642	0.7166		15.8861	0.0230 0.0339	0.4617	0.7335	
15.4629	0.0413	0.5170	0.7994		15.9120	0.0420	0.5139	0.8177	
15.4892	0.0493	0.5642	0.8739		15.9388	0.0501	0.5605	0.8934	
15.5138	0.0572	0.6074	0.9423		15.9656	0.0581	0.6031	0.9629	
15.5414	0.0651	0.6471	1.0057		15.9908	0.0660	0.6423	1.0271	
15.5664	0.0729	0.6842	1.0651		16.0158	0.0738	0.6789	1.0873	
15.5915	0.0806	0.7191	1.1212		16.0406	0.0816	0.7131	1.1439	
15.6177	0.0883	0.7518	1.1742		16.0642	0.0892	0.7453	1.1973	
15.6422	0.0959	0.7831	1.2250		16.0913	0.0969	0.7761	1.2488	
15.6674	0.1035	0.8128	1.2734		16.1140	0.1045	0.8052	1.2975	
15.6922	0.1110	0.8411	1.3199		16.1387	0.1120	0.8331	1.3445	
$T = 60.0 ^{\circ}C$					$T = 70.0 ^{\circ}C$				
R, O_{M}	Q, Br	$U_{\text{\tiny 9T}}, \mathrm{B}$	$U_{\text{нить}}, \mathbf{B}$		R, O_{M}	Q, Br	$U_{\scriptscriptstyle \operatorname{9T}}, \operatorname{B}$	$U_{\text{нить}}, \mathbf{B}$	
16.2669	0.0089	0.2346	0.3815		16.7245	0.0091	0.2339	0.3912	
16.2950	0.0176	0.3288	0.5358		16.7481	0.0180	0.3276	0.5486	
16.3192	0.0261	0.4000	0.6528		16.7733	0.0266	0.3981	0.6678	
16.3452	0.0345	0.4592	0.7506		16.7988	0.0350	0.4568	0.7673	
16.3730	0.0427	0.5108	0.8363		16.8229	0.0434	0.5078	0.8542	
16.3964	0.0508	0.5569	0.9131		16.8486	0.0516	0.5533	0.9322	
16.4226	0.0589	0.5988	0.9835		16.8741	0.0597	0.5947	1.0034	
16.4467	0.0669	0.6375	1.0486		16.8958	0.0677	0.6329	1.0693	
16.4729	0.0747	0.6735	1.1095		16.9210	0.0756	0.6683	1.1309	
16.4960	0.0825	0.7072	1.1666		16.9435	0.0834	0.7015	1.1885	
16.5223	0.0902	0.7388	1.2207		16.9697	0.0911	0.7326	1.2432	
16.5436	0.0979	0.7691	1.2724		16.9929	0.0988	0.7623	1.2954	
16.5697	0.1054	0.7977	1.3218		17.0138	0.1063	0.7904	1.3447	
16.5945	0.1129	0.8249	1.3689		17.0388	0.1138	0.8173	1.3925	

Pис. 2: Зависимость R(Q)

По методу наименьших квадратов рассчитаем R_0 и $\frac{dR}{dQ}$ и внесем в итоговую таблицу. Построим график $R_0(T)$:

По методу наименьших квадратов рассчитаем dR/dT считая зависимость линейной (y=ax+b).

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
$4.53e{+01}$	$2.76\mathrm{e}{+02}$	15.57	5.65e-01	$1.25\mathrm{e}{+01}$	0.04528	0.00014	13.520	0.007

Таблица 2: Параметры регрессии $R_0(T)$

Рассчитаем $\alpha=\frac{1}{R_{273}}\cdot\frac{dR}{dT}=(3.349\pm0.011)\cdot10^{-3}$ 1/K и сравним с табличным значением $\alpha_{\rm табл}=4.579\cdot10^{-3}$. Вероятнее всего в качестве материала нити используется некоторый сплав, который имеет отличную от чистого молибдена.

Приведем итоговую таблицу:

T,° C	$\frac{dR}{dQ}, \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{Br}}$	$\frac{dR}{dQ}, \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{Br}}$	R_0 , OM	$\sigma(R_0)$, Om	$\frac{dQ}{dT}$, $\frac{\text{MBT}}{\text{\circ C}}$	$\sigma(\frac{dQ}{dT}), \frac{\text{MBT}}{\text{\circ}\text{C}}$	$\kappa, \frac{MBT}{M \cdot K}$	$\sigma(\kappa)$, $\frac{MBT}{M \cdot K}$
22.0	3.493	0.023	14.5177	0.0016	12.96314	0.09557	30.0	0.6
30.0	3.348	0.028	14.8836	0.0019	13.52423	0.11957	31.3	0.7
40.0	3.306	0.007	15.3254	0.0005	13.69605	0.05094	31.7	0.6
50.0	3.230	0.006	15.7771	0.0004	14.01794	0.05139	32.4	0.6
60.0	3.141	0.010	16.2379	0.0007	14.41685	0.06517	33.3	0.6
70.0	3.016	0.013	16.6937	0.0009	15.01181	0.07868	34.7	0.7

Таблица 3: Итоговая таблица

Построим графики $\kappa(T)$ и $\ln \kappa$ ($\ln T$):

Рис. 3: Зависимость $R_0(T)$

Рис. 4: Зависимость $\kappa(T)$

Рис. 5: Зависимость $\ln \kappa \, (\ln T)$

Из $\ln \kappa(\ln T)$ получим $\beta = (0.9 \pm 0.1)$, что плохо согласуется с теоретической оценкой $\beta_{\text{теор}} = 0.5$, предполагающей взаимодействие молекул как упругих шариков

Вывод

Метод, используемый в работе, позволяет определить коэффициент теплопроводности воздуха и его зависимость от температуры. Также в работе была получена зависимость сопротивления нити от температуры, что позволяет использовать её в дальнейшем для измерения температуры.

Значение β определяется зависимостью $\sigma(T)$, где σ – эффективное сечение столкновений молекул. Значение σ убывает с ростом температуры, так как кинетическая энергия начинает преобладать над потенциальной энергией притяжения молекул. Это согласуется с тем, что $\beta > \beta_{\text{теор}}$.