Periodic Table of the Elements

$\overset{2}{\mathrm{Helium}}$	$\sum_{\substack{\text{Neon}\\20.1797}}^{10}$	$\overset{18}{Ar}_{\text{Argon}}$	$rac{36}{ ext{Krypton}}$	54 Xenon Xenon 131.293	$\mathop{\mathrm{Radon}}_{\text{(222)}}^{86}$	$\bigcup_{(294)}^{118}$
	9 Fluorine 18.998403163	17 Chlorine 35.446	$\Pr_{\text{Promine} \atop 79.901}$	53 ————————————————————————————————————	$\overset{85}{At}_{\overset{\mathrm{Astatine}}{(210)}}$	$\bigcup_{(294)}^{117}$
	8 Oxygen 15.99903	$\overset{16}{\mathbf{S}}$ Sulphur $\overset{32.059}{}$	${\overset{34}{\mathrm{Se}}}_{\mathrm{elenium}}$	$\prod_{\rm 127.60}^{52}$	$\overset{84}{\text{Polonium}}$	$\sum_{(293)}^{116}$
	$\sum_{\substack{\text{Nitrogen}\\14.00643}}^{7}$	$\Pr_{\text{Phosphorus}}$	$^{33}_{ m Arsenic}$	$\overset{51}{\mathbf{Sb}}$ Antimony 121.760	83 Bis Bismuth 208.98040	$\bigcup_{\text{(289)}}^{115}$
	$\bigcap_{\text{Carbon}}^{6}$	14 Silicon 28.084	$\overset{32}{\text{Germanium}}$	$\overset{50}{\mathrm{Sn}}$	$\stackrel{82}{\text{Pb}}$	$\frac{114}{\text{Fl}}$ Flerovium (289)
	$\mathop{\mathbf{E}}_{\text{Boron}}$	$\sum_{26.9815385}^{13}$	$\overset{3.1}{\mathbf{Gallium}}$	$\prod_{\substack{\text{Indium} \\ 114.818}}^{49}$	81 Thallium 204.382	$\mathop{\text{Uu}}\limits_{\text{(286)}}^{113}$
					$\overset{80}{Hg}_{ ext{Mercury}}$	
			$\overset{29}{\mathbf{Copper}}$	$\mathop{Ag}\limits_{\rm Silver}^{47}$	$\mathop{A_{\rm Gold}}^{79}$	$\mathop{Rg}\limits_{\text{(282)}}^{111}$
			$\sum_{\substack{\text{Nickel}\\58.6934}}^{28}$	$\Pr_{\text{Palladium}}^{46}$	78 Pt Platinum 195.084	$ \bigcup_{\mathrm{Darmstadtium}}^{\mathrm{110}} $
	name, saw		$\bigcup_{\substack{\text{Cobalt}\\58.933194}}^{27}$	$\Pr_{\text{Rhodium}}^{45}$	$\prod_{ ext{Iridium}}^{77}$	$\inf_{(278)}^{109}$
			26 Fe Iron 55.845	$\mathop{\mathbf{Rut}}_{101.07}^{44}$	76 OS Osmium 190.23	$\mathop{Hassium}\limits_{(269)}$
	$Z={ m atomic}$ number; Sy = Symbol, Name = element = standard / average atomic weight		$\sum_{\mathrm{Manganese}}^{25}$	$\frac{43}{\Gamma_{\rm Chnetium}}$	${ m \overset{75}{Re}}_{ m Bhenium}$	$\mathop{Bh}\limits_{\text{Bohrium}}$
	$Z={ m atomic}$ number; ${ m Sy}={ m Symbol}$, $={ m standard}$ / average atomic weight		$\mathop{Cr}_{\text{Chromium}}^{24}$	$\bigvee_{\text{Molybdenum}}^{42} \mathbf{O}$	T4 Tungsten 183.84	$\overset{106}{\overset{S}{\mathrm{g}}}_{\mathrm{Seaborgium}}$
	$Z={ m atom}={ m standa}$	_	$\sum_{\text{Nanadium}}^{23}$	$\sum_{\substack{\text{Niobium}\\92.90637}}^{41}$	73 Ta Tantalum 180.94788	$\mathop{Db}\limits_{\text{Dubnium}\atop (268)}$
	$\sum_{\substack{\text{Name}\\\text{saw}}}^{Z}$		$\prod_{ ext{Titanium}}^{22}$	$\sum_{ m Zirconium}^{40}$	72 Halfnium 178.49	$\Pr_{\text{(261)}}^{104}$
			$\overset{2.1}{\mathbf{Sc}}$ Scandium $_{44.955908}$	$\sum_{\substack{\text{Yttrium} \\ 88.90584}}$	57-71 *	89-103 ** Actinides
	$\mathop{\bf Beryllium}_{9.0121831}$	$\displaystyle \sum_{\substack{Magnesium 24.304}}^{12}$	$\overset{20}{\text{Calcium}}$	${\overset{38}{\mathbf{Sr}}}$	56 Barium 137.327	$\mathop{Radium}\limits_{(226)}$
1 Hydrogen 1.00784	$\sum_{\substack{\mathbf{Lithium} \\ 6.938}}^{3}$	$\overset{11}{\overset{\text{Na}}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{N}}}}{\overset{\text{Na}}{\overset{\text{Na}}{\overset{N}}}{\overset{\text{Na}}}}}{\overset{\text{Na}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}}{\overset{N}}}}}}}}$	$\overset{19}{\mathrm{K}}$ Potassium $\overset{39.0983}{}$	$\mathop{Rbbis}_{\text{S5.4678}}^{37}$	55 Cesium 132.90545196	$\Pr_{\text{Francium}}^{87}$

$\overset{57}{\text{Lathanum}}$	58 Ce um Cerium 7.7(7)	$\Pr_{ ext{Praseodymium}}$	$\sum_{\rm Neodymium}^{60}$	$\Pr_{\text{(145)}}^{61}$	$\mathop{\mathrm{Samarium}}_{150.36}$	$\overset{63}{\textbf{Europium}}$	$\mathop{Gadolinium}_{157.25}$	${\displaystyle \prod_{{\tiny { m Terbium}}}^{65}}$	$\bigcup_{\substack{\text{Dysprosium} \\ 162.500}}^{66}$	67 Holmium 164.93033	$\frac{68}{\text{Erbium}}$ Erbium	69 Thulium 168.93422	$\sum_{\text{Ytterbium}\atop{173.045}}^{70}$	$\sum_{\mathrm{Lutetium}}^{71}$
$\overset{89}{\mathop{Ac}_{\text{Ctinium}}}$	C Thorium Thorium 232.0377		92 Uranium 238.02891	$\sum_{\substack{\text{Neptunium} \\ (237)}}^{93}$	Putonium (244)	$\stackrel{95}{\mathrm{Am}}$ Americium (243)	$\overset{96}{Curium}^{\text{Curium}}$	$\mathop{\mathbf{Bkk}}_{\text{Berkelium}}$	$\bigcap_{(251)}^{98}$	99 Einsteinium (252)	$\overset{100}{F}\overset{m}{\mathrm{m}}$	$\overset{101}{\overset{\text{Mendelevium}}{\text$	$\overset{102}{\overset{Nobelium}{\operatorname{Nobelium}}}$	$\sum_{(266)}^{103}$

Standard atomic weights taken from the Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Adapted from Ivan Griffin's LAFX Periodic Table. © 2016 Paul Danese

An asterisk (*) next to a subshell indicates an anomalous (Aufbau rule-breaking) ground state electron configuration.