Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе $\mathbb{N}2$

Анализ выбросов в распределениях

Студент: Швачко Никита Андреевич Преподаватель: Баженов Александр Николаевич Группа: 5030102/20202

Санкт-Петербург 2025

1 Формулировка задания и его формализация

Для 4 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- \bullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$

Необходимо:

- 1. Сгенерировать выборки размером 20, 100 и 1000 элементов.
- 2. Построить для каждой выборки боксплоты Тьюки.
- 3. Определить количество выбросов в каждой выборке.
- 4. Представить данные в таблице и сделать выводы.

2 Boxplot-диаграммы распределений

Рис. 1: Боксплот Тьюки для нормального распределения

Рис. 2: Боксплот Тьюки для распределения Коши

Рис. 3: Боксплот Тьюки для распределения Пуассона

Рис. 4: Боксплот Тьюки для равномерного распределения

3 Результаты анализа выбросов

Таблица 1: Количество выбросов в выборках различных распределений

Распределение	n=20	n=100	n=1000
Нормальное	2	1	6
Коши	4	10	160
Пуассон	2	0	5
Равномерное	0	0	0

4 Выводы

- Нормальное распределение имеет небольшое количество выбросов, что ожидаемо.
- Распределение Коши демонстрирует значительное количество выбросов из-за тяжелых хвостов.
- Пуассоновское распределение имеет мало выбросов, так как значения сосредоточены около 10.
- Равномерное распределение не имеет выбросов, так как его значения строго ограничены интервалом.