Reflecting screens

The ecological balance of a wooden screen (storage of CO²) compared to a non-wood screen (production of CO2), plus the fact that it is treated with a fully recyclable product, make this acoustic system the best suited to the environmenta quality required today.

Guaranteed

high performance Insulating locations

to preserve rural environments

The reflecting barrier is used in preference to the absorbing barrier whenever there is no disadvantage in sending sound back towards its source.

The optimization of its inherent performance depends on its location (length, height, position in relation to the source and the receiver).

- The warmth of wood is combined with acoustic performance tested according to European standards.
- Its dimensions are small comparing to other systems.
- The lightness/performance ratio considerably reduces the costs of structures and foundations.
- Its ease of installation puts it within reach of small, local contractors.

Standards

All TERTIL wooden screens

All TERTU wooden screens have been tested according to standard EN 1793 by the Laboratoire Européen d Essais Acoustiques du CSTB (CSTB European laboratory for acoustic testing), Marne la Vallée, France In order to guarantee on-site compliance with the performance tested in the lab, it is essential to follow the assembly procedure described in the manual enclosed with the delivery.

Reflecting screens

EUROPEAN STANDARD EN 1793

Technical description

The reflective screens come in standard modules of 4.00 m in length for a height of 1.00 m. These modules are stacked to obtain heights of 2.00 m, 3.00 m and 4.00 m.

The panels are covered with 1/2 logs, diameter 120 mm positioned alternately at 45° right/left. They slide into HEA type galvanized steel posts, the size of which depends on the height of the panel and the "snow-wind" conditions in the considered region .

Reflective screens tested according to standard EN 1793

Reflecting screens

Front view

Back view

Block diagram

- 1 Ridge piece : 1/2 round log, diameter 160 mm
- 2 Tongue and groove board
- 3 Decoration : 1/2 round log, diameter 120 mm
- 4 Stiffener
- 5 Clamping screw

insulation against aerial noises DL_R

f	R	
100	20,5	
125	19,4	
160	19,8	
200	20,6	
250	22,4	
315	24,8	
400	23,4	
500	24,6	
630	26,0	
800	26,8	
1000	28,6	
1250	28,7	
1600	27,6	
2000	26,9	
2500	28,3	
3150	30,6	
4000	32,1	
5000	30,2	
Hz	dB	

$DL_R = 26 dBA$

category DL_{R} in dB

ВО	B1	B2	В3
ND	<15	15 à 24	>24

Classification **B3**