Misura della curva caratteristica del diodo

Brusini Alessio Ferrari Carola Mirolo Manuele Stroili Emanuele

21 Ottobre 2025

Sommario

L'esperimento consiste nell'ottenere la curva caratteristica del diodo, linealizzarla in scala semilogaritmica, fare un fit e, tramite un'analisi dei dati: ricavare il coefficente η caratteristico del diodo a diverse temperature e individuare il valore del voltaggio build-in (V_0) del diodo

Il primo grafico che viene presentato mostra l'andamento della corrente I in funzione del voltaggio V a diverse temperature. In questo grafico osserviamo che la curva caratteristica del diodo presenta un comportamento esponenziale, che verifica la formula che si trova in letteratura per un diodo ideale:

$$I(V) = I_0 e^{\left(\frac{qV}{\eta kT}\right)} - 1$$

Si può notare come, al diminuire della temperature:

- la derivata prima aumenti
- \bullet l'innalzamento si verifica a valori di di V sempre maggiori

La seconda considerazione ci fa intuire che il passaggio della corrente sia estremamente condizionato dalla temperature, questo perchè a temperature minori vi sarà una minore eccitazione degli elettroni, conseguentemente, per oltrepassare la barriera di potenziale della giunzione essi avranno bisogno in voltaggio maggiore.

Ivi è riportato il grafico della curva caratteristica del diodo in scala semilogaritmica, tramite esso siamo riusciti a ricavare il valore di η , caratteristico per diverse temperature.

 $oxed{\mathbf{T} \mid \eta}$