2.1.1 Linear regression

We have already seen linear regression in the <u>What is Data Science? Introduction</u> but we will consider a more general setting here.

We define

- the input space $\mathcal{X} := \mathbb{R}^n$ and the output space $\mathcal{Y} := \mathbb{R}^m$
- and the hypothesis class

$$\mathcal{H} := \{\hat{f}: \mathbb{R}^n
ightarrow \mathbb{R}^m | \exists W \in \mathbb{R}^{m imes n}, \hat{f}(x) = Wx \}$$

To determine \hat{f} from $N \in \mathbb{N}$ data points (x_i, y_i) for $i = 1, \dots, N$ we consider the problem

$$\min_{W \in \mathbb{R}^{m imes n}} rac{1}{2} \sum_{i=1}^N ||Wx_i - y_i||^2$$

Let us define the data matrix $X \in \mathbb{R}^{N \times n}$ with $X_{ij} := (x_i)_j$, the matrix $Y \in \mathbb{R}^{N \times m}$ with $Y_{ij} := (y_i)_j$, and $\beta := W^T$, then we can rewrite this problem as

2.1.1

$$\min_{eta \in \mathbb{R}^{n imes m}} rac{1}{2} ||Xeta - Y||_{ ext{Fro}}^2$$

where the Frobenius norm of a matrix $A \in \mathbb{R}^{N \times m}$ is defined as

$$||A||_{ ext{Fro}}^2 := \sum_{i=1}^N \sum_{j=1}^m |A_{ij}|^2 = ext{Tr}(AA^T)$$

(The sum of squares of all elements in the matrix)

We will first examine the solvability of the optimization problem

Proposition 2.1.1

If the matrix $X^TX \in \mathbb{R}^{n \times n}$ is invertible, then the unique solution of <u>2.1.1</u> is given by

2.1.2

$$\hat{\beta} := (X^T X)^{-1} X^T Y$$

Otherwise, there are infinitely many solutions.

Proof. We define the objective function $f(\beta) := \frac{1}{2} ||X\beta - Y||_{Fro}^2$. Since f is a convex function of β , β solves the minimization problem (2.1.1) if and only if $\nabla f(\beta) = 0$. From Exercise 1.3.2, we know that the gradient of f is given by

$$\nabla f(\beta) = X^T (X\beta - Y).$$

Thus, $\nabla f(\beta) = 0$ is equivalent to $X^T X \beta = X^T Y$. This linear equation system has the unique solution $\hat{\beta} := (X^T X)^{-1} X^T Y$ if $X^T X$ is invertible, and infinitely many solutions otherwise.

Remark 2.1.1 (Invertibility of X^TX)

Let us denote the columns of the matrix $X \in \mathbb{R}^{N \times n}$ by $a_i \in \mathbb{R}^N$ for $i=1,\dots,n$. A fact from linear algebra states that X^TX is **invertible if and only if the vectors** $(a_i)_{i=1}^n$ are linearly **independent** in \mathbb{R}^N . If n >> N, this is a "very likely" event and is referred to in data science as "independent features".

It is also important to note that the size of the matrix $X^TX \in \mathbb{R}^{n \times n}$ is independent of the number of data points. Thus, the difficulty of inversion does not increase with more data.

Next we will try to understand the case where X^TX is not invertible and to construct a "meaningful" solution for <u>2.1.1</u>. To do this we recall

Definition 2.1.1 (Singular Value Decomposition)

A singular value decomposition of a matrix $X\in\mathbb{R}^{N\times n}$ is a decomposition of the form $X=U\Sigma V^T$ with orthogonal matrices $U\in\mathbb{R}^{N\times N}$ and $V\in\mathbb{R}^{n\times n}$ and a matrix $\Sigma\in\mathbb{R}^{N\times n}$ of the form

$$\Sigma = egin{pmatrix} \sigma_1 & \dots & \dots & \dots & \dots & \dots \\ \dots & \ddots & \dots & \dots & \dots & \vdots \\ \dots & \dots & \sigma_k & \dots & \dots & 0 \\ \dots & \dots & \dots & 0 & \dots & \vdots \\ \dots & \dots & \dots & \ddots & \vdots \\ \dots & \dots & \dots & \dots & \dots & 0 \end{pmatrix}$$

with $k \le n$ singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k > 0$ (Singular values are ordered by largest to smallest along the diagonal).

We define the pseudo inverse of \boldsymbol{X} as

$$X^\dagger = V \Sigma^\dagger U^T$$

where $\Sigma^\dagger \in \mathbb{R}^{n imes N}$ is given by

$$\Sigma^{\dagger} = egin{pmatrix} rac{1}{\sigma_1} & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \ddots & \cdots & \cdots & \cdots & \vdots \\ \cdots & \cdots & rac{1}{\sigma_k} & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & 0 & \cdots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Remark 2.1.2 The existence of the SVD can be proven by applying the Spectral Theorem to the matrix X^TX

Proposition 2.1.2. The following holds:

$$XX^\dagger X = X, \quad X^\dagger X X^\dagger = X^\dagger$$

 $X^{\dagger}X$ and XX^{\dagger} are symmetric

We observe that for the SVD $X = U\Sigma V^T$, it holds that

$$X^TX = (U\Sigma V^T)^TU\Sigma V^T = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T$$

Definition of an Orthogonal matrix

An orthogonal matrix U is a **square matrix** whose columns (and rows) form an orthonormal set. This means:

- Orthonormal columns: Each column vector has a unit length ($||u_i||=1$) and any two distinct columns are perpendicular ($u_i \cdot u_j = 0$ for $i \neq j$)
- Inverse property: The inverse of U is equal to its transpose: $U^T = U^{-1}$
 - if $i=j:u_i\cdot u_j=1$ (unit vectors)
- Orthogonal matrices represent rotations or reflections in space

Back to the previous definition

Thus, we have found a diagonalization (and in particular, a singular value decomposition) of X^TX . The positive eigenvalues of X^TX are exactly given by σ_i^2 for $i=1,\ldots,k$. In the case that k=n, i.e. there are n singular values, X^TX is invertible with $(X^TX)^{-1}=VDV^T$ where $D=\mathrm{diag}(\sigma_1^{-2},\ldots,\sigma_n^{-2})$. Otherwise, we can use the pseudoinverse of X^TX to calculate the solution of 2.1.1 with minimal norm.

Proposition 2.1.3

If the matrix $X^TX \in \mathbb{R}^{n \times n}$ is not invertible, then the solution of <u>2.1.1</u> with minimal norm is given by

$$\hat{\beta} := (X^T X)^{\dagger} X^T Y$$

(similarly see 2.1.2)

where $(X^TX)^\dagger = VDV^T$ with (D := squares of the singular values of X)

$$D:=egin{pmatrix} rac{1}{\sigma_1^2} & \cdots & \cdots & \cdots \ & \ddots & \ddots & \cdots \ & \ddots & \cdots & rac{1}{\sigma_k^2} & \cdots \ & \cdots & \cdots & 0_{n-k,n-k} \end{pmatrix}$$

How do we know if X^TX is invertible?

$$X = egin{pmatrix} \dots & x_1^T & \dots \ & dots \ \dots & x_N^T & \dots \end{pmatrix}$$

 $C=X^TX$ is the covariance matrix. If you have data for which the variance of one direction is zero, you know that the eigenvalue for this direction will be 0 and C will not be invertible.

--> A (covariance?) Matrix with an eigenvalue of 0 is not invertible