مطابق شکل یک آهنربا از بالای سیملولهای رها شده و پس از زمان ${
m t}$ از داخل سیملوله با تندی ${
m v}$ خارج میگردد. اگر تعداد حلقههای سیملوله را بیشتر کنیم و زمان و تندی خروج آهنربا در این حالت را با \mathbf{v}' و \mathbf{v}' نشان دهیم، کدام گزینه صحیح است؟

 $(\pi = P)$ قرار دارد. به سیم چه نیرویی و رو به کدام جهت وارد می شود؟ (y

$$\mathbf{v}'>\mathbf{v}$$
 , $\mathbf{t}'>\mathbf{t}$ (Y

 $v' < v \;,\; t' > t \quad (\texttt{P}$

v' < v , t' < t (ε

v' = v, t' = t ()

۱۲۲ دو حلقهٔ مسی (۱) و (۲) مطابق شکل عمود بر میدان مغناطیسی یکنواخت و درون سویی قرار گرفتهاند. اگر شعاع حلقهٔ (۱)، سه برابر شعاع حلقهٔ (۲) باشد و میدان مغناطیسی در مدتزمان Δt قرینه گردد، نسبت جریان الکتریکی القاشده در

٣ (١

۶ (۲

۹ (۳

۱۸ (۴

۱۲۳ یک سیم حامل جریان ۵۰ آمپر به شکل نیمدایرهای به قطر ۲۰ سانتیمتر در داخل میدان مغناطیسی یکنواخت ۴۰ تسلا

 $N \circ \gamma$ ، برونسو (۱

۲) N ۰۰۹، درونسو

 $^{\circ}$ ا $^{\circ}$ برونسو $^{\circ}$

۴) N هه۶، درونسو

کولن میباشد؟

۰/۶ (۱

1/4 (4

میسازد. اگر در مدت $^{\circ}$ سطح حلقهای به مساحت $^{\circ}$ $^{\circ}$ که دارای مقاومت $^{\circ}$ ۲ است با خطوط میدان زاویهٔ $^{\circ}$ میسازد. اگر در مدت $^{\circ}$

ثانیه اندازهٔ میدان از ۰/۰۸ تسلا به ۰/۰۴ تسلا در خلاف جهت اولیه تغییر کند، مقدار بار شارش شده در حلقه چند میلی

- 14 (6

- ۶ (۲