Integer Programming

Lecture 3

Alternative Formulations

- Recall our definition of a valid formulation from the last lecture.
- A key concept in the rest of the course will be that every mathematical model has many alternative formulations.
- Many of the key methodologies in integer programming are essentially automatic methods of reformulating a given model.
- The goal of the reformulation is to make the model easier to solve.
- There is a tradeoff between how difficult the reformulation itself is to perform and the effectiveness of the resulting simplification.
- Some reformulations may also dramatically increase the size of the problem description in their exact form.

Simple Example: Knapsack Problem

- We are given a set $N = \{1, \dots n\}$ of items and a capacity W.
- There is a profit p_i and a size w_i associated with each item $i \in N$.
- We want to choose the set of items that maximizes profit subject to the constraint that their total size does not exceed the capacity.
- The most straightforward formulation is to introduce a binary variable x_i associated with each item.
- x_i takes value 1 if item i is chosen and 0 otherwise.
- Then the formulation is

$$\max \sum_{j=1}^{n} p_j x_j$$
s.t.
$$\sum_{j=1}^{n} w_j x_j \le W$$

$$x_i \in \{0, 1\} \quad \forall i$$

Is this formulation correct?

An Alternative Formulation

- Let us call a set $C \subseteq N$ a cover if $\sum_{i \in C} w_i > W$.
- Further, a cover C is *minimal* if $\sum_{i \in C \setminus \{j\}} w_i \leq W$ for all $j \in C$.
- Then we claim that the following is also a valid formulation of the original problem.

$$\max \sum_{j=1}^{n} p_{j} x_{j}$$

s.t.
$$\sum_{j \in C} x_{j} \leq |C| - 1 \text{ for all minimal covers } C$$

$$x_{i} \in \{0, 1\} \qquad i \in N$$

• Which formulation is "better"?

Compact Formulations

- A formulation is *compact* if the number of variables and constraints is polynomial in the "size" of the original problem description.
- This is only a rough definition, since the original problem may itself be described in multiple equivalent ways.
- To be more precise, we could say that the number of variables and constraints should be polynomial in the number of original "structural" variables.
- The second formulation for the knapsack problem is then not compact and this is a fundamental issue in solving MILPs in practice.
- Not all problems even have compact (linear) formulations.
- For example, we can prove that there is no compact formulation for optimization over the set of binary n-vectors with an even number of 1's.
- We will see other examples.

Back to the Facility Location Problem

- Recall our earlier formulation of this problem.
- Here is another formulation for the same problem:

$$\min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i$$

$$x_{ij} \leq y_j \qquad \forall i, j$$

$$x_{ij}, y_j \in \{0, 1\} \qquad \forall i, j$$

- Notice that the set of integer solutions contained in each of the polyhedra is the same (why?).
- However, the second polyhedron is strictly included in the first one (how do we prove this?).
- Therefore, the second polyhedron will yield a better lower bound.
- The second polyhedron is a better approximation to the convex hull of integer solutions.

Formulation Strength and Ideal Formulations

- Consider two formulations A and B for the same MILP.
- Denote the feasible regions corresponding to their LP relaxations as \mathcal{P}_A and \mathcal{P}_B .
- Formulation A is said to be at least as strong as (informally, we say "tighter than") formulation B if $\mathcal{P}_A \subseteq \mathcal{P}_B$.
- If the inclusion is strict, then A is stronger than B.
- If S is the set of all feasible integer solutions for the MILP, then we must have $conv(S) \subseteq \mathcal{P}_A$ (why?).
- A is *ideal* if $conv(S) = \mathcal{P}_A$.
- If we know an ideal formulation (of small enough size), we can solve the MILP (why?).
- How do our formulations of the knapsack problem compare by this measure?

Strengthening Formulations

- <u>Idea</u>: Can we simply combine the two formulations for the knapsack problem to get the best of both worlds?
- Answer: Yes!
- Often, a given formulation can be strengthened with additional inequalities satisfied by all feasible integer solutions.
- We call these valid inequalities and will formally define the concept later in the course.
- As in the knapsack case, it is often easy to identify an exponential class of such inequalities.
- From a computational standpoint, the key is to only add the inequalities that are most "relevant."

Example

- Example: The Perfect Matching Problem
 - We are given a set of n people that need to be paired in teams of two.
 - Let c_{ij} represent the "cost" of the team formed by persons i and j.
 - We wish to minimize total cost of all assignment.
 - We can represent this problem on an undirected graph G = (N, E).
 - The nodes represent the people and the edges represent pairings.
 - We have $x_e = 1$ if the endpoints of e are matched, $x_e = 0$ otherwise.

$$\min \sum_{e=\{i,j\} \in E} c_e x_e$$
s.t. $\sum_{\{j | \{i,j\} \in E\}} x_{ij} = 1, \ \forall i \in N$
 $x_e \in \{0,1\}, \quad \forall e = \{i,j\} \in E.$

Valid Inequalities for Matching

- Consider the graph on the left above.
- The optimal perfect matching has value L+2.
- The optimal solution to the LP relaxation has value 3.
- This formulation can be extremely weak.
- Add the *valid inequality* $x_{24} + x_{35} \ge 1$.
- Every perfect matching satisfies this inequality.

The Odd Set Inequalities

- We can generalize the inequality from the last slide.
- ullet Consider the cut S corresponding to any odd set of nodes.
- \bullet The *cutset* corresponding to S is

$$\delta(S) = \{\{i, j\} \in E | i \in S, j \notin S\}.$$

- An *odd cutset* is any $\delta(S)$ for which |S| is odd.
- Note that every perfect matching contains at least one edge from every odd cutset.
- Hence, each odd cutset induces a possible valid inequality.

$$\sum_{e \in \delta(S)} x_e \ge 1, S \subset N, |S| \text{ odd.}$$

Using the New Formulation

- If we add all of the odd set inequalities, the new formulation is ideal.
- Hence, we can solve this LP and get a solution to the IP.
- However, the number of inequalities is exponential in size, so this is not really practical, i.e., the formulation is not compact.
- Recall that only a small number of these inequalities will be active at the optimal solution.
- Later, we will see how we can efficiently generate these inequalities on the fly to solve the IP.

Extended Formulations

- We have now seen two examples of strengthening formulations using additional constraints.
- However, changing the set of variables can also have a dramatic effect.
- We call a formulation with additional variables not appearing in the original model an "extended formulation."
- Example: A Lot-sizing Problem
 - We want to minimize the costs of production, storage, and set-up.
 - Data for period $t = 1, \ldots, T$:
 - * d_t : total demand,
 - * c_t : production set-up cost,
 - * p_t : unit production cost,
 - * h_t : unit storage cost.
 - Variables for period $t = 1, \ldots, T$:
 - * y_t: prodution quantity
 - * St: storage quantity
 - * X_t: a binary variable, whether to produce

Lot-sizing: The "natural" formulation

• Here is the formulation based on the "natural" set of variables:

$$\min \sum_{t=1}^{T} (p_t y_t + h_t s_t + c_t x_t)$$
s.t. $y_1 = d_1 + s_1$,
$$s_{t-1} + y_t = d_t + s_t, \quad \text{for } t = 2, \dots, T,$$

$$y_t \le \omega x_t, \quad \text{for } t = 1, \dots, T,$$

$$s_T = 0,$$

$$s, y \in \mathbb{R}_+^T,$$

$$x \in \{0, 1\}^T.$$

• Here, $\omega = \sum_{t=1}^{T} d_t$, an upper bound on y_t .

Lot-sizing: The "extended" formulation

- Suppose we split the production lot in period t into smaller pieces.
- Define the variables q_{it} to be the production in period i designated to satisfy demand in period $t \geq i$.
- Now, $y_i = \sum_{t=i}^{T} q_{it}$.
- With the new set of variables, we can impose the tighter constraint

$$q_{it} \leq d_t x_i$$
 for $i = 1, \ldots, T$ and $t = 1, \ldots, T$.

- The additional variables strengthen the formulation.
- Again, this is contrary to conventional wisdom for formulating linear programs.

Strength of Formulation for Lot-sizing

- Although the formulation from the previous slide is much stronger than our original, it is still not ideal.
- Consider the following sample data.

```
# The demands for six periods
DEMAND = [6, 7, 4, 6, 3, 8]
# The production cost for six periods
PRODUCTION\_COST = [3, 4, 3, 4, 4, 5]
# The storage cost for six periods
STORAGE\_COST = [1, 1, 1, 1, 1, 1]
# The set up cost for six periods
SETUP\_COST = [12, 15, 30, 23, 19, 45]
# Set of periods
PERIODS = range(len(DEMAND))
```

Strength of Formulation for Lot-sizing (cont'd)

Optimal Total Cost is: 171.42016761

Period 0: 13 units produced, 7 units stored, 6 units sold 0.38235294 is the value of the fixed charge variable

Period 1: 0 units produced, 0 units stored, 7 units sold 0.0 is the value of the fixed charge variable

Period 2: 4 units produced, 0 units stored, 4 units sold 0.19047619 is the value of the fixed charge variable

Period 3: 6 units produced, 0 units stored, 6 units sold 0.35294118 is the value of the fixed charge variable

Period 4: 11 units produced, 8 units stored, 3 units sold 1.0 is the value of the fixed charge variable

Period 5: 0 units produced, 0 units stored, 8 units sold 0.0 is the value of the fixed charge variable

- In period 0, it appears that we produced the full amount required to satisfy demand, but the fixed charge variable doesn't have value 1.
- What is happening here?

Strength of Formulation for Lot-sizing (cont'd)

Let's take a more detailed look:

```
production in period 0 for period 0 : 2.2941176 production in period 0 for period 1 : 2.6764706 production in period 0 for period 2 : 1.5294118 production in period 0 for period 3 : 2.2941176 production in period 0 for period 4 : 1.1470588 production in period 0 for period 5 : 3.0588235
```

What is the problem?

An Ideal Formulation for Lot-sizing

- We are only requiring that we have enough units on hand at time t to satisfy demand at time t.
- This was enough in the old formulation since units were not reserved for specific time periods.
- Now, some of the units we have on hand at time t may be reseved for sale in a future period.
- We can further strengthen the formulation by adding the constraint

$$\sum_{i=1}^{t} q_{it} \ge d_t \text{ for } t = 1, \dots, T$$

- In fact, adding these additional constraints makes the formulation ideal.
- If we *project* into the original space, we will get the convex hull of solutions to the first formulation.
- How would we prove this?

Geometry of Extended Formulation

- By adding variables, we are "lifting" the formulation \mathcal{P} into a higher-dimensional space to obtain \mathcal{Q} .
- When we project \mathcal{Q} back into the original space, the resulting projected formulation is tighter, i.e., $\operatorname{proj}_x(\mathcal{Q}) \subset \mathcal{P}$.
- It is possible that the number of inequalities needed to describe Q is actually smaller than the number needed to describe P.
- In some cases, the extended formulation is compact, whereas there is no compact formulation in the original space.

Contrast with Linear Programming

- In linear programming, the same problem can also have multiple formulations.
- In LP, however, conventional wisdom is that bigger formulations take longer to solve.
- In IP, this conventional wisdom does not hold.
- We have already seen two examples where it is not valid.
- Generally speaking, the size of the formulation does not determine how difficult the IP is.