Homework 8

Problem 1. Show that, for constant $p \in (0,1)$, almost no graph in G(n,p) has a separating complete subgraph.

Solution. This is a simple application of the 'almost always true of property $P_{i,i}$ '.

Detail:

- **Separating subgraph**: Given G = (V, E), and some $X \subseteq V \cup E$, we call X a separating subgraph if there exists two vertices $u, v \in V(G X)$ such that u, v are in the some component of G, while u, v lie in two disconnected components of G X (i.e., X separates u and v).
- **Separating complete subgraph**: If the above subgraph *X* is also a complete graph.

Now consider a graph G = (V, E) with property $\mathcal{P}_{2,1}$. We claim that a graph with property $\mathcal{P}_{2,1}$ has the following property: For any pair of vertices $u, v \in G$, there exists a pair of vertices w_1, w_2 such that

$$(w_1, u) \in E, (w_1, v) \in E$$

 $(w_2, u) \in E, (w_2, v) \in E$
 $(w_1, w_2) \notin E.$

To prove the claim: consider vertices u, v and an arbitrary vertex x. By property $\mathcal{P}_{2,1}$, there exists a vertex w_1 which is neighbor to u and v, but not to x. Now using property $\mathcal{P}_{2,1}$ again (with x replaced by w_1) it follows that there exists a vertex w_2 which is neighbor to u and v, but not to w_1 . Thus the claim holds.

Finally, consider a complete subgraph $H \subset G$ and two arbitrary vertices u and v in G - V(H). By the claim above, there are two non-adjacent vertices w_1 and w_2 in G which are both neighbors of both u and v. Since H is complete, it follows that w_1 and w_2 cannot both belong to H, therefore remove H will not separate u and v. In another word, H does not separate G. The statement now follows since almost all graphs in G(n, p) have property $\mathcal{P}_{2,1}$ for any constant $p \in (0, 1)$.

Problem 2. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. By Cayley's formula and the linearity of expectation, it is $\binom{n}{k}k^{k-2}p^{k-1}$

Problem 3. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Solution. The portion of the graphs have both properties equals 1 minus the portion of the graphs which does not have property \mathcal{P}_1 or \mathcal{P}_2 . However the portion of the graph does not have property \mathcal{P}_1 or \mathcal{P}_2 is bounded by the sum of the portion of the graphs does not have property \mathcal{P}_1 and the portion of the graphs does not have property \mathcal{P}_2 , which both tend to 0 as n approaches ∞ . The claim in the question then follows.

Problem 4. (Optional)

- 1. Prove that the threshold for the existence of cycles in $\mathcal{G}(n,p)$ is $p=\frac{1}{n}$.
- 2. Search the World Wide Web to find some real world graphs in machine readable form or data bases that could automatically be converted to graphs.
 - (a) Plot the degree distribution of each graph.
 - (b) Compute the average degree of each graph.
 - (c) Count the number of connected components of each size in each graph.
 - (d) Describe what you find.
- 3. Create a simulation (an animation) to show the evolution of the $\mathcal{G}(n,p)$ (Erdös-Rényi) random graph as its density p is gradually increased. Observe the phase transitions for trees of increasing orders, followed by the emergence of the giant component, etc.