Вопросы по лаб 1.

1. Как формулируется общая задача линейного программирования?

Задача линейного программирования - это поиск минимального или максимального элемента некоторой линейной функции, аргументы, которой ограниченны некоторой системой линейных ограничений.

2. Когда задача линейного программирования называется имеющей каноническую форму?

Задача линейного программирования имеющая каноническую форму, это задача на максимум, система ограничений состоит только из равенств (уравнений), и содержит только неотрицательные переменные ($x_i \ge 0$).

3. Какая форма задачи линейного программирования называется стандартной?

Стандартная задача линейного программирования , **это задача на максимум**, система ограничений состоит из только **неравенств вида** \leq , и содержит только **неотрицательные переменные (** $\mathbf{x}_i \geq \mathbf{0}$ **).**

4. С помощью которых приемов производятся преобразования моделей линейного программирования?

Систему ограничений задачи можно изменять при помощи эквивалентных преобразований матрицы:

- перестановка строк в матрице.
- умножение строки на число отличное от нуля.
- прибавление к строке любую другую, домноженную на отличное от нуля число.

Если в исходной задаче некоторое ограничение (например, первое) было неравенством, то оно преобразуется в равенство введением в левую часть некоторой неотрицательной переменной.

Наконец, если исходная задача была задачей на минимум, то введением новой целевой функции $z_1 = -z$ мы преобразуем нашу задачу на минимум функции z в задачу на максимум функции z_1 .

5. Дайте определения базисного и допустимого базисного вида системы линейных уравнений, базисного и опорного решений такой системы?

Система уравнений называется имеющей **базисный вид**, если среди столбцев коэффицентов при неизвестных столько *различных* единичных столбцев сколько уравнений в системе.

Базисное решение - решение при котором свободные переменные $b_i = 0$.

Опорное решение(допустимое базисное решение) системы - все свободные переменные неотрицательны.

6. Когда по базисному виду системы ограничений можно заключить, что задача ЛП в канонической форме не имеет решений по причине неограниченности целевой функции на области допустимых значений?

Если все коэффиценты a_{ij} при отрицательны, то задача ЛП в канонической форме не имеет решений по причине неограниченности целевой функции на ОДЗ.

7. Опишите алгоритм метода Гаусса-Жордана с произвольным выбором разрешающего элемента.

Метод Гаусса-Жордана состоит из ряда однотипных шагов. Опишем первый шаг алгоритма. Он состоит из трех этапов:

- среди коэффициентов а_{іј} выбирается отличное от нуля число, которое в дальнейшем мы называем разрешающим элементом шага метода.
- 2. строка разрешающего элемента делится на разрешающий элемент и полученная строка, становясь основным инструментом для преобразования матрицы, называется нами в дальнейшем ведущей строкой шага алгоритма.
- 3. ведущая строка преобразует остальные строки матрицы путем прибавления ее к этим строкам после умножения на так подобранные числа, чтобы после преобразований в столбце бывшего разрешающего элемента стояли нули на всех местах, кроме места самого разрешающего элемента (на котором находится единица).

Исключительные ситуации:

- 1. нулевая строка вида $(0\ 0\ 0\ 0\ \dots\ 0\ |\ 0)$ вычеркнуть из системы, продолжить работу.
- 2. строка вида $(0\ 0\ 0\ \dots\ 0\ |\ b),\ b\neq 0$ остановить алгоритм вывести сообщение о несовместимости системы.

8. Базисные и свободные переменные, отвечающие данному базисному виду системы уравнений. Операция замещения.

Базисные переменные - переменные отвечающие единичным (базисным) столбцам.

Свободные переменные - остальные переменные системы.

Операция замещения - переход от одного базисного вида к другому. Операция представляет собой шаг алгоритма Гаусса-Жордана с особым выбором разрешающего элемента.

9. Сформулируйте фундаментальную теорему симплекс-метода.

Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением.