南山人壽:理賠客戶再購與商品推薦

指導業師 陳仕龍

指導老師石百達、張智星

工管系大四 胡進揚 財金所碩一 張芮綺 財金系大四 馮啟倫 生醫電資所碩一 曾煒翔

研究方向

- 1. 何謂理賠客戶再購
- 2. 理賠客戶再購預測模型
- 3. 理賠客戶商品推薦模型
- 4. 家庭關係與再購

本次專案完成的目標並著重於第一個研究方向

目錄

再購定義

- 資料基本分析
- 理賠後再購定義詳細說明

再購預測模型

- 模型簡介 Random Forest, SVM, NN
- 階段一:模型預測結果
- 階段二:模型預測結果與修改

結果分析與修改方向

- 6/25 階段三:模型預測結果與修改
- 本次專案結果分析

分工與資料連結

- 分工表
- GitHub連結

再購定義

- 資料基本分析
 - o 理賠檔、再購檔資料說明
 - 0 關鍵發現
- 理賠後再購定義詳細說明
 - o 理賠檔資料篩選
 - o 再購檔資料篩選
 - 再購定義篩選

資料基本分析

資料表分析-理賠檔

- 客戶ID相關欄位(與人有關)
 - INJURED_RK
 - INSURED_RK
 - POLICY_HOLDER_RK
 - MATURITY_BENEFICIARY_RK
 - DEATH_BENEFICIARY_RK

- 客戶理賠資訊欄位(與事件有關)
 - Claim_RK
 - Policy_RK
 - BundleSubtype2
 - illness_code
 - illness_desc
 - DiagnosisCode_DESC
 - claim_settle_dt
 - REIMBURSED_YR_TW

資料表分析-再購檔

- 客戶ID相關欄位(與人有關)
 - INSURED_RK
 - POLICY_HOLDER_RK
 - MATURITY_BENEFICIARY_RK
 - DEATH_BENEFICIARY_RK

- 客戶再購資訊欄位(與產品有關)
 - RRKER_CD
 - Policy_RK
 - payment_period
 - AFYP_NT
 - SHORT_NAME
 - EFFECTIVE_DT

資料表分析-重要資訊

● 理賠檔重要資訊

- 受理理賠期間為2014/12/31至2017/12/31
- 一位客戶可以具有多次理賠紀錄
- 一位客戶可能在一天中有多筆理賠紀錄
- 在理賠檔中的客戶為INSURED RK(被保險人)

● 再購檔重要資訊

- 保險在購期間為2017/12/31至2018/12/31
- 一個客戶可以有多筆再購紀錄
- 一位各課可以在一天中有多筆再購紀錄
- 在再購檔中的客戶為INSURED RK(被保險人)與POLICY HOLDER RK(要保人)

理賠後再購定義詳細說明

再購定義(一)

- 理賠檔資料篩選準則
- 1. 挑選於<mark>2017/1/1至2017/12/31</mark>間有發生理賠事件的顧客
- 2. 若一個人有多筆理賠紀錄,則挑選理賠時間最晚發生者
- 3. 若仍有多筆理賠紀錄時,則挑選具有最高理賠金額者
- 4. 若理賠金額依然相同,則挑選第一筆被觀察之理賠事件

再購定義(二)

- 再購檔資料篩選準則
- 1. 挑選於<mark>2018/1/1至2018/12/31發生再購行為</mark>的客戶
- 2. 若有一位客戶具有比再購紀錄,則挑選時間最早的再購紀錄
- 3. 若最早的在購紀錄有多筆,則以最早觀察到的在購紀錄為準

再購定義(三)

- 再購檔與理賠檔連接準則
 - 理賠檔中的INSURED_RK與再購檔中的INUSURED_RK相同 (被對被)
 - 兩陪檔中的INSURED_RK與再購檔中的POLICY_HOLDER_RK相同 (被對要)

再購定義(四)

定義篩選結果

• 2017發生理賠總人數: 95,408

2017理賠後再購人數: 10,097

再購預測模型

- 模型簡介 Random Forest, SVM, NN
- 階段一:模型預測結果
- 階段二:模型預測結果與目標調整並修正

模型簡介 — Random Forest, SVM, NN

Random Forest - 隨機森林模型

特點:

- -利用隨機抽取sample跟feature建構許多決策樹
- -離散跟連續型資料都可以使用
- -結果可視化程度高

SVM - 支持向量機

特點:

- -將資料投影至高維度
- -非線性投影方式(kernel)有多種選擇
- -可在高維度空間處理原始空間無法 處理的問題

NN - 深度學習模型

特點:

- -利用多個非線性回歸方程式捕捉資料特性
- -善於解決多維度的資料
- -可藉由梯度下降的方式找出解答

應用在再購模型優勢:

- -客戶資料為多維度(70維)資料
- -目標為分類問題

模型階段一

資料型態與目標

- 訓練目標: 根據客戶理賠資訊, 預測客戶未來是否有再購行為, 並以追求高<mark>整體預測率(total accuracy)為目標</mark>
- **預測任務:**為二元分類問題,預測未來是否有再購行為發生
 - 若預測值為1: 未來<mark>有</mark>再購需求
 - 若預測值為0: 未來無再購需求
- 解釋因子:客戶理賠檔資訊欄位、客戶屬性檔資訊欄位
 - 數值型態資料: 進行Z-Normalization
 - 多類別型態資料: 轉換成Dummy Variable

Random Forest 預測結果

訓練結果:

-train set: 90.33%

-test set: 89.85%

repurchase customer : 3146

predict repurchase customer: 293 actuallyrepurchase customer: 199

SVM 預測結果

【linear kernel】, C=1 預設值

- -training set: 89.66%正確, $P(\hat{y}=1 \mid Y=1) = 763/(763+6321) \sim 10.77\%$
- -testing set:89.67%正確, P(ŷ=1 | Y=1) =317/(317+2696)~10.52%

【rbf kernel】, C=1 預設值

- -training set: 90.26%正確, $P(\hat{y}=1 \mid Y=1) = 811/(811+6273) \sim 11.45$ %
- -testing set :89.76%正確, $P(\hat{y}=1 \mid Y=1) = 258/(258+2755) \sim 8.56\%$

NN 預測結果

訓練結果:

-training set:90.27%正確

-testing set :89.36%正確

-測試集19000筆資料有2058筆再購的實際案件,模型預測其中有456筆為再購案件

*model code:https://reurl.cc/xZK384

模型預測結果

	Random Forest	sv	NN		
kernel		linear kernel	rbf kernel		
Training set Accuracy	90.33%	89.66%	90.26%	90.27%	
Testing set Accuracy	89.85%	89.67%	89.76%	89.36%	
Precision Rate	67.91%	10.52%	8.56%		
Recall Rate	6.32%			22.2%	

模型階段二

階段二目標調整與修正

調整後訓練目標:除了追求高整體預測率(Total accuracy),提高成功預測再購需求用戶的比率(Precision rate)更為重要。

(註: Precision rate = 模型實際抓到再購入數 / 樣本再購的總人數)

修正:

- 1. bootstrap: 樣本資料的比例嚴重失衡, 不再購的資料較多, 可能影響到模型預測的結果
- 2. 進行理賠檔欄位、客戶屬性檔欄位分類,並分成三種資料進行模型訓練:
- Behavior data, ex: 過去持有保單紀錄、VIP等級
- Personal data, ex: 年齡、性別、理賠原因
- Oringinal data (behavior data + personal data + 未能分類的欄位)

bootstap sampling, 不再購:再購=1:1

Random Forest & Decision Tree 預測結果

	Behavioral	Personal	All data	
Random Forest Testing set Accuracy	65.87%	58.22%	67.43%	
Decision tree Testing set Accuracy	64.90%	56.31%	64.29%	
Random Forest Precision Rate	69.60%	58.89%	64.96%	
Decision tree 60.31% Precision		59.47%	62.28%	

Random Forest — Feature Importance

Decision Tree — Feature Importance

bootstap sampling, 不再購:再購=2:1

SVC 預測結果

【linear kernel】, C=1 預設值

- Orginal : 82.10%正確, num(ŷ=1)=15050, P(ŷ=1 | Y=1) = 4036/10097 ~39.97%

- Behavioral:82.10%正確, num(ŷ=1)=15050, P(ŷ=1 | Y=1) = 4036/10097 ~39.97%

- Personal : 89.42%正確, $num(\hat{y}=1)=2$, $P(\hat{y}=1 \mid Y=1) = 1/10097 \sim 0\%$

【rbf kernel】, C=1 預設值

- Orginal : 86.16%正確, num(ŷ=1)=10042, P(ŷ=1 | Y=1) = 3468/10097 ~34.35%

- Behavioral: 84.73%正確, num(ŷ=1)=11528, P(ŷ=1 | Y=1) = 3526/10097 ~34.92%

- Personal : 89.37%正確, $num(\hat{y}=1)=83$, $P(\hat{y}=1 \mid Y=1)=19/10097$ ~ 0.19%

Neural Network 實驗設置

- 利用bootstrap調整label 0與 1的資料比例, 並且從label 0的資料抽取十份降低整體bias
- Model setting: 三層NN, CE loss, Adam, ReLU, Ir = 0.01, epoch = 30(但是會train10份資料)
- testing樣本為19082筆資料(佔總資料20%), 其中 label=1的資料為2033筆

Neural Network 預測結果

	_	Behavioral + Personal		Behavioral			Personal			
7	再購:再購	1:1	1.5:1	2:1	1:1	1.5:1	2:1	1:1	1.5:1	2:1
	Predict number	7800	4674	2053	9998	4075	2214	9591	2441	0
	Total acc	59%	76%	86%	54%	78%	85%	54%	81%	89%
	Repurchase acc	74%	53%	33%	78%	46%	34%	61%	19%	0%

階段二結論

• Behavior data 對再購預測的影響較 Personal data 大, precision rate 明顯較大

- Total accuracy 與 Precision rate 存在 trade-off
- Neural Network :
- 1. All data較有價值(dimension較多)
- 2. 當資料比例在1:1至1:5時,效果最佳

結果分析與修改方向

- 6/25 階段三:模型預測結果與修改
- 本次專案結果分析

6/25 階段三

目標:整體預測率 total accuracy & 成功預測到再購需求用戶的比率 precision rate

修正:

- 1. 再購資料重新定義並抓取 (原本為2017理賠並於2018再購)
- 2. 透過 Logistic Regression 找出再購資料的特色
- 3. 呈現 ROC curve or DET curve
- 4. 模型 k-fold Cross Validation

本次專案結果分析

- bootstrap sampling 調整再購與不再購的樣本比例後, 能更準確捕獲再購者的特徵
- Behavior data 對再購預測的影響較 Personal data 大, 應著重探討該行為(Behavior)類別資料
- Total accuracy 與 Precision rate 存在 trade-off
 (precision rate = 模型實際抓到再購入數 / 樣本再購的總人數)
- 從Random Forest和Decision Tree可發現:

客戶年收入、客戶年齡、客戶戶齡和理賠金額對再購與否的預測有較大的影響

分工與資料連結

- 分工表
- GitHub連結

分工表

名字	分工內容
胡進揚	再購定義以及資料前處理和 EDA
張芮綺	模型建構與設計實驗及結果分析
馮啟倫	模型建構與設計實驗及結果分析
曾煒翔	模型建構與設計實驗及結果分析

GitHub連結

GitHub:

https://github.com/chiluen/Fintech_NanShan