Guiding electromagnetic systems

Design project

Project no. 9

Group members: \$282502, \$282847, \$282197, \$288224, \$288280

Layout due: May 31, 2021

(send it by e-mail to paola.pirinoli@polito.it and andrea.massaccesi@polito.it)

Report due: July 18, 2021

Using a circuit board dielectric material with $\varepsilon_r = 4.4$, h = 1.6 mm, design a microstrip filter according to the specifications in Table 1. In particular:

- a) Design the prototype filter and apply the required frequency and impedance transformations (consider both a T and π network).
- b) Design the filter using the *stepped-impedance* technique with the characteristic impedance of the transmission line segments between 15 Ω and 120 Ω . Please allow a segment of input and output microstrip line for the connection to the connectors.
- c) Simulate the frequency response of the filter.
- d) Using AWR, print the GERBER file of both the top and the bottom layers of the microstrip circuit.
- e) Measure the frequency response of the filter (amplitude of S_{11} and S_{21}).

Table 1

Filter type	Low-pass
Response type	Maximally flat
f_1 [GHz]	2.4
R_0 $[\Omega]$	50
Insertion loss [dB] @ $f = 5.28$ [GHz]	> 30 dB