## Quantum Science with Superconducting Circuits

#### **HS 2019**

Lectures: Christopher Eichler

Exercise class: Jean-Claude Besse

offices: HPF D 2 (CE), D 17 (JB)

ETH Hoenggerberg

email: christopher.Eichler@phys.ethz.ch

web: www.qudev.ethz.ch

moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=11511



### What is this lecture about?

#### Central Questions:

- What makes quantum physics a vibrant research topic a century after its theoretical foundation?
- How does one use quantum systems to store and process information?
- How do we build and operate physical systems for this purpose?
- What makes superconducting circuits one of today's most versatile experimental systems to study quantum information science?

# **Superconducting Circuits**



Circuit QED



Josephson effect

Josephson 1962 Rowell 1962 Macropscopic quantum tunneling

Devoret, Clark, Martinis 1985

Coherent oscillations

Nakamura, et al. 1999 Vion et al., 2002 Strong Light-matter coupling

Wallraff et al., 2004





### Goals of the Lecture

- Understand the physical concepts underlying superconducting circuit experiments
  - Superconductivity and the Josephson effect
  - Quantization of electrical circuits
  - Design and fabrication of superconducting quantum devices
  - Control and measurement techniques
  - Experimental setup
- Understand how superconducting circuits are used ...
  - ... to address questions in basic science and quantum information processing
  - ... to develop quantum computers, implement basic algorithms, and correct for errors



# Skills and Competencies to be Developed

#### You ...

- ... know basic requirements and concepts for performing quantum control experiments.
- ... learn how to design, build and control quantum coherent devices based on superconducting circuits.
- ... gain practical skills in the modelling and simulation of quantum systems.
- ... develop ability to apply this knowledge in different physical implementations **not discussed in the** lecture.
- ... are able to judge the state of the art of quantum technology.
- ... are able to critically evaluate prospects of practical use of quantum physics for information processing.
- ... acquire a basis to decide if you want to **work in this field** of research.
- ... come up with your **own ideas** of how to do an interesting QIP project.

## Tell us about yourself!

- Help us to adjust the lecture to your interests and needs.
- Who are you?
  - Introduce yourself.
  - Which degree program are you in? (EduApp)
    - 1 Physics
    - 2 Micro- and Nanosystems
    - 3 Electrical Engineering & Information Technology
    - 4 Mechanical Engineering
    - 5 PhD
    - 6 Others
  - Where did you complete your Bachelor degree? (vote)
    - At ETH Zurich or at another university?

## Tell us about yourself!

- Do you attend (have you previously attended) classes on Quantum Physics (Exp/Theo) or Quantum Information (Exp/Theo)? (EduApp)
  - 1 Introduction to Quantum Physics (e.g. @ ETH: Physics III, ...)
  - 2 Theoretical Quantum Physics (e.g. @ ETH : QM 1, QM 2, ...)
  - 3 Quantum Information Processing (e.g. @ ETH : Renner, del Rio, Home, Wallraff, Imamoglu)
  - 4 Quantum Information Theory (QIT)
  - 5 No prior courses (come and ask for advice)
- Do you have prior experience with programming in ... ? (EduApp)
  - 1 Python
  - 2 Mathematica
  - 3 Others or None



## Reading

- Quantum computation and quantum information Michael A. Nielsen & Isaac L. Chuang Cambridge: Cambridge University Press, 2000 676 S. ISBN 0-521-63235-8
- Circuit QED: superconducting qubits coupled to microwave photons, S. M. Girvin Department of Physics, Yale University, New Haven, CT 06520, USA
- Additional reading material will be provided throughout the lecture and on moodle.



### **Exam & Credits**

- Aural exam (20 minutes) during summer or winter exam session
- Exam dates as required by your program of study
- 6 credit points (KP) can be earned by successfully completing this class (individually counting as an elective course)
- Content of exam:
  - see goals of lecture
  - active contribution to lecture and exercise will be a bonus



# Registration & Contact Information

### Your registration and contact information

- please register online for the class
- in this way we are able contact you
- you will get automatic access to the material on the moodle platform

#### Our contact information

- Christopher.Eichler@phys.ethz.ch
- www.qudev.ethz.ch (will be updated constantly)
- moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=11511

# 1) Introduction to Quantum Information processing

- 1.1 Quantum Computing: Why interesting?
- 1.2 Quantum bit: One, two, many.
- 1.3 Quantum logics and quantum circuit model of quantum computing
- 1.4 Requirements for physical implementation of quantum computers
- 1.5 Physical realization of qubits



## Components of a Generic Quantum Information Processor



### The challenge:

Quantum information processing requires excellent qubits, excellent gates, excellent readout ...

Conflicting requirements: perfect isolation from environment while maintaining perfect addressability

# 1.4 Requirements for physical implementation

Compare DiVincenzo's criteria (2000):

- 1) Scalable, physical realization of a qubit
- 2) Ability to initialize qubits in a fiducial state, e.g. the ground state
- 3) Coherence time needs to be much greater than the gate time
- 4) Need universal set of gates
- 5) Need high-fidelity measurement of qubits

And two more criteria related to the transmission of quantum information between different nodes of a network.

- 6) The ability to interconvert stationary and mobile (or flying) qubits.
- 7) The ability to faithfully transmit mobile qubits between specified locations.

David P. DiVincenzo, The Physical Implementation of Quantum Computation, arXiv:quant-ph/0002077 (2000)



### **Outlook**

#### This week (lecture 1):

- Organization of the course
- Brief introduction to Quantum Information Science and Quantum Computing

#### Next week (lecture 2):

- Quantization of electrical circuits
  - First step: "Given an electrical circuit composed of inductors and capacitors, find the corresponding system Hamiltonian."

