Automated Switch Validation with P4 Models

Afruz Bakhshiyeva & Luis Jira

Agenda

- P4 Introduction
- P4 for Formal Models
- Automated Validation based on P4 Models

P4 Introduction

Why does 24 exist?

Programmable Switch Architecture

P4 Parsing

Parser

Control

Deparser

```
• • •
 1 header Ethernet_h{
     bit<48> dstAddr;
     bit<48> srcAddr;
     bit<16> etherType;
 5 }
 7 struct headers {
     Ethernet_h ethernet;
 9 }
10
11 parser MyParser(packet_in packet, out headers hdr) {
12
       state start {
          packet.extract(hdr.ethernet);
13
14
          transition accept;
15 }
```

P4 Control

Parser

Control

Deparser

```
• • •
 1 control MyControl(inout headers hdr,
                     inout standard_metadata_t standard_metadata) {
      action drop() {
           mark_to_drop(standard_metadata);
      action forward(bit<9> egress_port) {
           standard_metadata.egress_spec = egress_port;
11
12
       table dmac {
13
           key = {hdr.ethernet.dstAddr: exact;}
           actions = {forward; drop;}
15
           size = 256;
           default_action = drop;
17
      apply {
           dmac.apply();
21
22 }
```

P4 Deparser

Parser

Control

Deparser

```
1 control MyDeparser(in headers hdr, packet_out packet) {
2    apply {
3        packet.emit(hdr.ethernet);
4    }
5 }
```

P4 for Formal Models

Google's unorthodox (mis)use of P4 programming language

State of the Art

Switch Abstraction

Automated Validation from P4 Model

Automated Control Plane API Validation

Automated Data Plane Validation

Bugs Found Across All Layers

P4 Program (13)

P4 Toolchain (2)

In a Nutshell

- P4 is a data plane programming language
- P4 can model a fixed-function switch
- Can automatically generate test inputs for:
 - Control Plane API
 - Data Plane
- Automatic validation eliminates dilemma of quantity vs quality
- Dare to think outside of the box! Tools can be used outside of their scope of use!

Thank You!

Q & A

References

- <u>Kinan Dak Albab et al. 2022. SwitchV: automated SDN switch validation with P4 models. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM '22). [ACM]</u>
- SwitchV: Automated SDN Switch Validation with P4 Models (TS 5, SIGCOMM'22) [YouTube]
- <u>Leveraging P4 to Automatically Validate Network Switches Stefan Heule, Google ONF Connect 19 [YouTube]</u>
- P4₁₆ Language Specification
- https://www.svd.se/a/EoBWK/aret-utan-sommar-fodde-varldsberomt-monster

Grading Criteria

- timing: The presentation's length is between 6:30-7:30 minutes (hard limit)
- well-structured: Structure is announced and graphically visible
- motivation: The presentation contains a good, motivating introduction telling why this presentation is important
- technical: The presentation contains one part that is deeply technical
- code: The presentation contains valuable and readable code snippets
- originality: The presentation contains one part that is original (eg less than 100 results on Google on this topic)
- reflection: The presentation contains a reflective part
- sota: There is one good slide positioning the presentation in the state of the art
- take-home: The last slide contains a good and concise take-home message
- loudly: The speakers talk loudly and clearly
- engagement: The speakers engage with the audience humour: The speakers are fun, have humour
- readable-slides. The slides don't have too much text
- illustration: The slides contain nice illustrations