МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1
по дисциплине «Качество и метрология программного обеспечения»
ТЕМА: «Расчет метрических характеристик качества разработки
программ по метрикам Холстеда»

Студент гр. 6304	 Рыбин А.С.
Преподаватель	 Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать, как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении A. Измеримые характеристики рассчитанные вручную представлены в таблице 1.

Таблица 1 – Измеримые характеристики программы на Pascal (ручной ... \

подсчёт)

					подсчет
No	Оператор	Количество	No	Операнд	Количество
1	program	1	1	X	2
2	procedure	1	2	y	1
3	linfit	1	3	y_calc	1
4	0	2	4	a	2
5	•	27	5	b	1
6	:=	20	6	n	6
7	real	4	7	linear_fit	1
8	integer	2	8	i	6
9	for do	2	9	sum_x	7
10	+	6	10	sum_y	7
11	*	9	11	sum_xy	5
12	/	6	12	sum_x2	5
13	begin	4	13	sum_y2	4
14	end	4	14	xi	5
15	[]	4	15	yi	5
16		1	16	SXX	3
	Всего	94	17	syy	1
			18	sxy	2
			19	0.0	5
Bcero 70				70	

Измеримые характеристики рассчитанные с помощью программы представлены в таблице 2. Файл с результатами программных расчётов представлен в приложении Б.

Таблица 2 – Измеримые характеристики программы на Pascal (программный расчёт)

		1	1 1		расчет
No	Оператор	Количество	No	Операнд	Количество
1	0	6	1	0.0	5
2	*	9	2	1	2
3	+	6	3	a	3
4	-	4	4	b	3
5	/	6	5	i	5
6	;	40	6	linear_fit	1
7	=	18	7	n	7
8	[]	4	8	sum_x	8
9	for	2	9	sum_x2	6
10	integer	2	10	sum_xy	6
11	linfit	1	11	sum_y	8
12	procedure	1	12	sum_y2	5
13	program	1	13	SXX	4
14	real	4	14	sxy	3
	Всего	105	15	syy	2
			16	X	3
			17	xi	6
			18	у	2
			19	y_calc	2
			20	yi	6
				Всего	88

Определение расчетных характеристик представлено в таблице 3.

Таблица 3 – Расчётные характеристики программы на Pascal

Характеристика	Ручной подсчёт	Программный расчёт
Число простых операторов n ₁	16	14
Число простых операндов n ₂	19	20
Общее число всех операторов N ₁	94	105
Общее число всех операндов N_2	70	88
Словарь п	35	34
Длина N _{опыт}	164	193
Теоретическая длина N _{теор}	133.86	150.84
Объём V	841.16	997.80
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.020	0.020
Оценка уровня программы L~	0.034	0.032
Интеллектуальное содержание I	28.54	31.75
Работа программирования Е	35993.94	50662.60
Оценка времени программирования Т^	3600.76	1361.63
Время программирования Т	2479.20	2814.59
Уровень языка λ	0.39	0.39
Ожидаемое число ошибок в программе В	1	1

2. Определение метрических характеристик для программы на **Си.**

Код программы представлен в приложении В. Измеримые характеристики рассчитанные вручную представлены в таблице 4.

Таблица 4 – Измеримые характеристики программы на Си (ручной подсчёт)

No	Оператор	Количество Количество	N ₂	и программы на Си Операнд	(ручной подсчет) Количество
1	void	1	1	0	3
2	linfit	1	2	0.0	5
3	0	5	3	a	2
4	{}	3	4	b	2
5	float	6	5	i	10
6	int	5	6	n	6
7	;	23	7	sum_x	7
8	=	20	8	sum_x2	5
9	for	2	9	sum_xy	5
10	++	2	10	sum_y	7
11	<	2	11	sum_y2	4
12	[]	4	12	SXX	3
13	+	10	13	sxy	2
14	-	4	14	syy	1
15	/	6	15	X	2
16	*	9	16	xi	5
	* –				
17	разыменование	4	17	y	1
	указателя				
18	* указатель	5	18	y_calc	1
	Всего	114	19	yi	5
			Всего		76

Измеримые характеристики рассчитанные с помощью программы представлены в таблице 5. Файл с результатами программных расчётов представлен в приложении Γ .

Таблица 5 – Измеримые характеристики программы на Си (программный расчёт)

	<u> </u>				расчету
N₂	Оператор	Количество	N₂	Операнд	Количество
1	()	6	1	0	3
2	*	9	2	0.0	5
3	+	6	3	a	3
4	++	2	4	b	3
5	,	15	5	i	10
6	-	4	6	n	7
7	/	6	7	sum_x	8
8	;	28	8	sum_x2	6
9	<	2	9	sum_xy	6
10	=	20	10	sum_y	8
11	[]	4	11	sum_y2	5
12	* –	4	12	SXX	4
13	_[]_	1	13	sxy	3
14	*	6	14	syy	2
15	char	1	15	X	3
16	const	2	16	xi	6
17	float	6	17	у	2
18	for	2	18	y_calc	2
19	int	5	19	yi	6
20	linfit	1		Всего	92
21	void	1			1
	Всего	131			

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчётные характеристики программы на Си

	Ручной подсчёт	ристики программы на Си Программный расчёт	
Характеристика	Ручнои подсчет	ттрограммный расчет	
Число простых операторов	18	21	
n_1	10	21	
Число простых операндов	10		
n.	19	19	
n ₂ Общее число всех			
Оощее число всех	114	131	
операторов N_1		_	
Общее число всех	T 2	0.5	
операндов \mathbf{N}_2	76	92	
Словарь п	37	40	
Длина Попыт	190	223	
Теоретическая длина N _{теор}	155.77	196.28	
Объём V	989.71	1239.29	
Потенциальный объём V*	19.65	19.65	
Уровень программы L	0.020	0.016	
Оценка уровня программы			
	0.028	0.019	
L°			
Интеллектуальное	27.49	24.08	
содержание I	_,	55	
Работа программирования	40.405.50	70454	
E	49485.50	78154	
Оценка времени			
	4984.86	3064.49	
программирования Т^	2-22-22		
Время программирования Т	3562.96	4341.89	
Уровень языка λ	0.39	0.31	
Ожидаемое число ошибок в	1	1	
программе В	1	1	
F F			

3. Определение метрических характеристик для программы на **Ассемблере**.

Код программы представлен в приложении Д. Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Измеримые характеристики программы на Ассемблере (ручной подсчёт)

No	Оператор	Количество	N₂	Операнд	Количество
1	push	1	1	rbp	3
2	mov	23	2	rsp	1
3	pxor	5	3	rdi	1
4	movss	40	4	rsi	1
5	jmp	2	5	rdx	1
6	cdqe	4	6	rcx	1
7	lea	4	7	r8	1
8	add	6	8	r9d	1
9	addss	6	9	xmm0	75
10	mulss	9	10	eax	8
11	jl	2	11	rax	24
12	cvtsi2ss	4	12	xmm1	25
13	divss	6	13	0	6
14	movaps	3	14	xmm2	2
15	subss	4	15	1	2
16	nop	2	16	linfit	1
17	pop	1	17	.L3	2
18	ret	1	18	.L2	2
	Всего	123	19	.L4	2
			20	.L5	2
				Всего	161

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 – Расчётные характеристики программы на Ассемблере

Характеристика	Ручной расчёт
Число простых операторов n ₁	18
Число простых операндов n ₂	20
Общее число всех операторов N₁	123
Общее число всех операндов N ₂	161
Словарь п	38
Длина N _{опыт}	284
Teopeтическая длина N _{теор}	161.50
Объём V	1490.43
Потенциальный объём V*	19.65
Уровень программы L	0.013
Оценка уровня программы L~	0.014
Интеллектуальное содержание I	20.87
Работа программирования Е	114648.46
Оценка времени программирования Т^	11362.57
Время программирования Т	10798.20
Уровень языка λ	0.26
Ожидаемое число ошибок в программе В	2

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов для всех языков

	таолица 9— Сводная таолица расчетов для всех языков Ассембле						
]	Pascal		Си			
	Dunnaŭ	Программии	Ручной	Программи	р Ручной		
Характеристика	Ручной	Программны		Программны			
	подсчёт	й расчёт	подсчёт	й расчёт	подсчёт		
Число простых	16	14	18	21	18		
операторов n ₁	10	1.	10		10		
Число простых	19	20	19	19	20		
операндов n ₂	19	20	19	19	20		
Общее число всех	0.4	105	444	101	400		
операторов N_1	94	105	114	131	123		
Общее число всех							
операндов N ₂	70	88	76	92	161		
Словарь п	35	34	37	40	38		
Длина N _{опыт}	164	193	190	223	284		
Теоретическая							
длина N _{теор}	133.86	150.84	155.77	196.28	161.50		
длина ту _{теор} Объём V	841.16	997.80	989.71	1239.29	1490.43		
Потенциальный	0-1.10 007.00 000.71 1200.20 1400.40						
объём V*			19.65				
Уровень программы	0.020	0.020	0.020	0.016	0.013		
Оценка уровня	0.020	0.020	0.020	0.010			
	0.034	0.032	0.028	0.019	0.014		
программы L~ Интеллектуальное							
_	28.54	31.75	27.49	24.08	20.87		
содержание I Работа	25002.0						
Раоота	35993.9	50662.60	49485.50	78154	114648.46		
программирования Е	4						
Оценка времени							
программирования	3600.76	1361.63	4984.86	3064.49	11362.57		
T^{\wedge}							
Время							
программирования Т	2479.20	2814.59	3562.96	4341.89	10798.20		
Уровень языка х	0.39	0.39	0.39	0.31	0.26		
Ожидаемое число							
ошибок в программе	1	1	1	1	2		
	1	1	1	1			
В							

В результате сравнения видно, что уровень программы самый низкий у программы на Ассемблере (на порядок меньше чем у Си и Pascal), а самый высокий у программы на Pascal. Наибольшие показатели времени программирования, работы программирования и ожидаемого числа ошибок, наоборот, соответствуют Ассемблеру, а наименьший – Pascal. Показатели для Си практически не отличаются от Pascal за исключением высокого ожидаемого числа ошибок в программе, однако во всех случаях они хуже.

Выводы

В результате выполнения данной лабораторной работы была изучена система метрик Холстеда. Было проведено сравнение программ, реализующих алгоритм линеаризации, на языках Pascal, Си и Ассемблер.

В результате сравнения видно, что уровень программы самый низкий у программы на Ассемблере (на порядок меньше чем у Си и Pascal), а самый высокий у программы на Pascal. Наибольшие показатели времени программирования, работы программирования и ожидаемого числа ошибок, наоборот, соответствуют Ассемблеру, а наименьший – Pascal. Показатели для Си практически не отличаются от Pascal за исключением высокого ожидаемого числа ошибок в программе, однако во всех случаях они хуже.

ПРИЛОЖЕНИЕ А

КОД ПРОГРАММЫ НА Pascal.

```
procedure linfit(const x,y: array of real; var y calc: array of real; var a,b
: real; n : integer);
{ fit a straight line (y_calc) through n sets of x and y pairs of points }
var i : integer;
sum x, sum y, sum xy, sum x2, sum y2, xi, yi, sxx, syy, sxy : real;
begin
  sum x := 0.0:
  sum y := 0.0;
  sum_xy := 0.0;
  sum x2 := 0.0;
  sum^{-}y2 := 0.0;
  for i := 1 to n do
    begin
      xi := x[i];
      yi := y[i];
      sum x := sum x + xi;
      sum_y := sum_y + yi;
      sum xy := sum xy + xi * yi;
      sum_x2 := sum_x2 + xi * xi;
      sum_y^2 := sum_y^2 + yi * yi;
    end;
  sxx := sum x2 - sum x * sum x / n;
  sxy := sum_xy - sum_x * sum_y / n;
  syy := sum y2 - sum y * sum y / n;
  b := sxy / sxx;
  a := ((sum_x2 * sum_y - sum_x * sum_xy) / n) / sxx;
  for i := 1 to n do
    begin
      y_{calc[i]} := a + b * x[i];
    end;
end;
```

ПРИЛОЖЕНИЕ Б

РЕЗУЛЬТАТЫ РАБОТЫ ПАРСЕРА parser_pas.exe

Statistics for module linfit_pas_parsed.lxm							
The number of different operators The number of different operands The total number of operators The total number of operators	:== : 15 : 21 : 105						
Time estimation (^T) Programming language level (lambo Work on programming (E)	: 150.842 : 997.796 : 19.6515 : 38.2071 : 0.0196949 : 0.0318182 : 31.748 : 2814.59 : 1361.63 da) : 0.387034 : 50662.6 : 0.456391						

Table:

_____ Operators: 1 | 6 | () 2 9 j * 6 i + 3 4 4 5 | / 6 40 | ; 6 18 j = 7 8 4 [[] 9 | 2 | for 10 | 2 | integer 1 | linfit 11 12 1 | procedure 1 | program 13 İ j real 14 j 4 15 İ 1 | writeln Operands: | 'Hello world!' 1 1 5 2 2 j 0.0 | 1 3 4 3 | a 5 3 | b 5 6 | i 1 7 | linear_fit 8 7 l n | sum_x 9 | 8 10 j 6 | sum_x2 11 6 | sum_xy | sum_y | sum_y2 12 8 5 13 İ 14 4 | sxx

I	15	3	sxy
	16	2	syy
Ì	17	3	X
Ì	18	6	xi
Ì	19	2	ĺУ
	20	2	y_calc
Ì	21	6	lvi

Summary:

The number of different operators The number of different operands		:	15 21
The total number of operators		:	105
The total number of operands		:	88
·			
Dictionary	(D)	:	36
Length	(N)	:	193
Length estimation	(^N)	:	150.842
Volume	(V)	:	997.796
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0196949
Programming level estimation	(^L)	:	0.0318182
Intellect	(I)	:	31.748
Time of programming	(T)	:	2814.59
Time estimation	(^T)	:	1361.63
Programming language level	(lambda)	:	0.387034
Work on programming	(E)	:	50662.6
Error	(B)	:	0.456391
Error estimation	(^B)	:	0.332599

ПРИЛОЖЕНИЕ В

КОД ПРОГРАММЫ НА Си

```
void linfit(const float* x, const float* y, float* y calc, float* a, float*
b, int n) {
    float sum x, sum y, sum xy, sum x2, sum y2, xi, yi, sxx, syy, sxy;
    sum x = 0.0;
    sum_y = 0.0;
    sum xy = 0.0;
    sum x^2 = 0.0;
    sum v2 = 0.0;
    for (int i = 0; i < n; i++) {
        xi = x[i];
        yi = y[i];
        sum x = sum x + xi;
        sum y = sum y + yi;
        sum_xy = sum_xy + xi * yi;
        sum x2 = sum x2 + xi * xi;
        sum y2 = sum y2 + yi * yi;
    }
    sxx = sum_x^2 - sum_x * sum_x / n;
    sxy = sum_xy - sum_x * sum_y / n;
    syy = sum y2 - sum y * sum y / n;
    *b = sxy / sxx;
    *a = ((sum_x2 * sum_y - sum_x * sum_xy) / n) / sxx;
    for (int i = 0; i < n; i++) {
        y calc[i] = *a + *b * x[i];
}
```

ПРИЛОЖЕНИЕ Г

РЕЗУЛЬТАТЫ РАБОТЫ ПАРСЕРА parser_c.exe

Statistics for module linfit_c_parsed.lxm

The number of different operators : 23
The number of different operands : 21
The total number of operators : 133
The total number of operands : 94

Dictionary : 44 D) N) : 227 Length Length estimation ^N) : 196.281 (V) Volume : 1239.29 (*V) Potential volume : 19.6515 : 38.2071 Limit volume (**V) Programming level (L) : 0.015857 : 0.0194265 : 24.075 Programming level estimation (^L) Intellect I) Time of programming : 4341.89 : 3064.49 T) (^T) Time estimation Programming language level (lambda): 0.311614 Work on programming (E) : 78154 Error B) : 0.609321 Error estimation (^B) : 0.413097

Table:

Operators: 1 | 6 | () 2 9 3 6 4 2 | ++ 5 15 | , 6 4 | -7 6 | / 8 28 | ; 9 2 | < 10 20 | = i [] 11 | 4 4 12 İ 13 1 14 İ 6 char 15 İ 1 i const 16 2 17 6 | float 18 | | for 2 19 | | int 5 20 | 1 | linfit 21 | 1 | main 22 | return 1 1 | void 23 | Operands: 3 | 0 1 2 5 | 0.0

2 | 5 | 0.0 3 | 3 | a 4 | 1 | argc 5 | 1 | argv 6 | 3 | b

```
10 | i
7 | n
8 | sum_x
7 |
8 |
9 |
9 | 8 | sum_x

10 | 6 | sum_x2

11 | 6 | sum_xy

12 | 8 | sum_y

13 | 5 | sum_y2

14 | 4 | sxx
              3 2 3
15 j
                     Sxy
16 j
                     syy
17 j
                     | X
17 | 3 | X

18 | 6 | Xi

19 | 2 | y

20 | 2 | y_calc

21 | 6 | yi
```

Summary:

The number of different operators The number of different operands The total number of operators The total number of operands		:	23 21 133 94
Dictionary Length Length estimation Volume Potential volume Limit volume Programming level Programming level estimation Intellect Time of programming Time estimation	(D) (N) (^N) (V) (*V) (**V) (L) (^L) (T) (T)		44 227 196.281 1239.29 19.6515 38.2071 0.015857 0.0194265 24.075 4341.89 3064.49
Programming language level Work on programming Error Error estimation	(lambda) (E) (B) (^B)	:	0.311614 78154 0.609321 0.413097

приложение д

КОД ПРОГРАММЫ НА Ассемблер

```
linfit:
                 rbp
        push
        mov
                rbp, rsp
        mov
                QWORD PTR [rbp-56], rdi
        mov
                QWORD PTR [rbp-64], rsi
                QWORD PTR [rbp-72], rdx
        mov
                QWORD PTR [rbp-80], rcx
        mov
                QWORD PTR [rbp-88], r8
        mov
                DWORD PTR [rbp-92], r9d
        mov
                xmm0, xmm0
        noxg
                DWORD PTR [rbp-4], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-8], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-12], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-16], xmm0
        movss
        pxor
                xmm0, xmm0
                DWORD PTR [rbp-20], xmm0
        movss
                DWORD PTR [rbp-24], 0
        mov
                 .L2
        jmp
.L3:
        mov
                eax, DWORD PTR [rbp-24]
        cdae
                rdx, [0+rax*4]
        lea
                rax, OWORD PTR [rbp-56]
        mov
                rax, rdx
        add
                xmm0, DWORD PTR [rax]
        movss
                DWORD PTR [rbp-44], xmm0
        movss
        mov
                eax, DWORD PTR [rbp-24]
        cdae
        lea
                rdx, [0+rax*4]
                rax, QWORD PTR [rbp-64]
        mov
                rax, rdx
        add
                xmm0, DWORD PTR [rax]
        movss
                DWORD PTR [rbp-48], xmm0
        movss
        movss
                xmm0, DWORD PTR [rbp-4]
                xmm0, DWORD PTR [rbp-44]
        addss
                DWORD PTR [rbp-4], xmm0
        movss
                xmm0, DWORD PTR [rbp-8]
        movss
                xmm0, DWORD PTR [rbp-48]
        addss
                DWORD PTR [rbp-8], xmm0
        movss
                xmm0, DWORD PTR [rbp-44]
        movss
                xmm0, DWORD PTR [rbp-48]
        mulss
                xmm1, DWORD PTR [rbp-12]
        movss
                xmm0, xmm1
        addss
                DWORD PTR [rbp-12], xmm0
        movss
                xmm0, DWORD PTR [rbp-44]
        movss
        mulss
                xmm0, xmm0
        movss
                xmm1, DWORD PTR [rbp-16]
        addss
                xmm0, xmm1
        movss
                DWORD PTR [rbp-16], xmm0
                xmm0, DWORD PTR [rbp-48]
        movss
                xmm0, xmm0
        mulss
                xmm1, DWORD PTR [rbp-20]
        movss
        addss
                xmm0, xmm1
                DWORD PTR [rbp-20], xmm0
        movss
```

```
bbs
                DWORD PTR [rbp-24], 1
.L2:
                eax, DWORD PTR [rbp-24]
        mov
                eax, DWORD PTR [rbp-92]
        cmp
        įΙ
                .L3
                xmm0, DWORD PTR [rbp-4]
        movss
                xmm0, xmm0
        mulss
                         xmm1, DWORD PTR [rbp-92]
        cvtsi2ss
        divss
                xmm0, xmm1
        movaps
                xmm1, xmm0
                xmm0, DWORD PTR [rbp-16]
        movss
        subss
                xmm0, xmm1
        movss
                DWORD PTR [rbp-32], xmm0
        movss
                xmm0, DWORD PTR [rbp-4]
        mulss
                xmm0, DWORD PTR [rbp-8]
        cvtsi2ss
                         xmm1, DWORD PTR [rbp-92]
        divss
                xmm0, xmm1
        movaps
                xmm1, xmm0
                xmm0, DWORD PTR [rbp-12]
        movss
        subss
                xmm0, xmm1
                DWORD PTR [rbp-36], xmm0
        movss
                xmm0, DWORD PTR [rbp-8]
        movss
                xmm0, xmm0
        mulss
                         xmm1, DWORD PTR [rbp-92]
        cvtsi2ss
                xmm0, xmm1
        divss
                xmm1, xmm0
xmm0, DWORD PTR [rbp-20]
        movaps
        movss
                xmm0, xmm1
        subss
                DWORD PTR [rbp-40], xmm0
        movss
                xmm0, DWORD PTR [rbp-36]
        movss
        divss
                xmm0, DWORD PTR [rbp-32]
                rax, OWORD PTR [rbp-88]
        mov
                DWORD PTR [rax], xmm0
        movss
                xmm0, DWORD PTR [rbp-16]
        movss
        mulss
                xmm0, DWORD PTR [rbp-8]
                xmm1, DWORD PTR [rbp-4]
        movss
                xmm1, DWORD PTR [rbp-12]
        mulss
        subss
                xmm0, xmm1
        cvtsi2ss
                         xmm1, DWORD PTR [rbp-92]
        divss
                xmm0, xmm1
        divss
                xmm0, DWORD PTR [rbp-32]
                rax, QWORD PTR [rbp-80]
        mov
                DWORD PTR [rax], xmm0
        movss
        mov
                DWORD PTR [rbp-28], 0
        jmp
.L5:
        mov
                rax, QWORD PTR [rbp-80]
                xmm1, DWORD PTR [rax]
        movss
                rax, QWORD PTR [rbp-88]
        mov
                xmm2, DWORD PTR [rax]
        movss
                eax, DWORD PTR [rbp-28]
        mov
        cdae
        lea
                rdx, [0+rax*4]
                rax, QWORD PTR [rbp-56]
        mov
                rax, rdx
        add
        movss
                xmm0, DWORD PTR [rax]
        mulss
                xmm0, xmm2
        mov
                eax, DWORD PTR [rbp-28]
        cdge
        lea
                rdx, [0+rax*4]
                rax, QWORD PTR [rbp-72]
        mov
                rax, rdx
        add
```

```
addss xmm0, xmm1
movss DWORD PTR [rax], xmm0
add DWORD PTR [rbp-28], 1

.L4:

mov eax, DWORD PTR [rbp-28]
cmp eax, DWORD PTR [rbp-92]
jl .L5
nop
nop
pop rbp
ret
```