Table of Contents

```
LQR BASED COST: 2
SIMULATION: DT-LQR: 2
PLOTTING RESULTS: PART (B): IC1: 4
STEEPEST DESCENT: 8
PLOTTING RESULTS: STEEPEST DESCENT: 9
EXTERNAL FUNCTION DEFINITION: 12
WRONG NEED TO CHANGE!!! %%% 13
% This script runs a steepest descent based controller for
stabilization of
% a linearized (DLTI) approximation of a CNL system about its
equilibrium
% trajectory.
% Let us first start off by doing an LQR for two time steps:
```

STATE-SPACE:

The given system is linearized about the hovering fixed point/equilibrium. Then a simple discretization process is carried out and the new matrices are denoted by Abar and Bbar.

```
% Simulation Parameters:
t
          = 0.02;
                           % Length of simulation.
                           % Step size.
dt
          = 0.01;
Ν
          = t/dt + 1;
                           % Number of steps.
          = 0:dt:t;
                           % This is our time series vector.
% Other properties:
% mass m = 1; I = 0.01; T1 = g/2; T2 = g/2;
% We can see that T1 and T2 together balance the drone perfectly if
 there
% are no external disturbances.
Abar = [zeros(3,3),eye(3,3); % Discretized system matrix.
       zeros(1,6);
       9.81,0,0,0,-0.1,0;
       0,0,0,0,0,-0.1;
Abar = eye(6,6) + Abar*dt; % 1st order approximation of Ad.
fprintf('\nDiscretized system matrix Abar:\n');
disp(Abar);
% The determinant of Abar is non-zero. Hence invertible.
fprintf('\nDiscretized input matrix Bbar:\n');
```

```
Bbar = [zeros(3,3);
       100,-100,0;
       zeros(1,3);
       1,1,-1];
Bbar = Bbar*dt; % 1st order approximation of Bd.
disp(Bbar);
Discretized system matrix Abar:
    1.0000
               0
                           0
                                 0.0100
                                                          0
         0
             1.0000
                           0
                                           0.0100
                                    0
                                                          Ω
         0
              0
                       1.0000
                                                0
                                                     0.0100
                                 1.0000
         0
                  0
                           0
                                                0
                                                          0
    0.0981
                  0
                            0
                                   0
                                           0.9990
                                                          0
                  0
                            0
                                      Ω
                                                     0.9990
         0
Discretized input matrix Bbar:
         0
                  0
         0
                  0
                            0
         0
                  0
                            0
           -1.0000
    1.0000
                            0
```

LQR BASED COST:

0.0100

0.0100

-0.0100

Here we will describe the LQR associated cost matrices and they will remain constant throught the control time horizon. Meaning our control objective will not change during the simulation.

SIMULATION: DT-LQR:

```
B62 = zeros(n,m-1,N); % Time-series of truncated input matrix.
A(:,:,1) = Abar; % State-space is constant in time.
% We know that our third input is uncontrollable ACCELERATION DUE TO
GRAVITY!
% Hence choosing only B6x2 block:
B(:,:,1) = Bbar;
B62(:,:,1) = Bbar(:,1:m-1); % This will give me the 6x2 block.
x(:,1,1) = [-20,-20,10,-10,-5,-3]'; Let us attempt without
 considering the final
                            % state for now.
                            % Literally dropping my drone from a
height of
                            % 10 meters.
u(:,1,1) = [0,0,9.81];
                           % Initial input.
K = zeros(m-1,n,N); % Coefficient of Optimal input. Third state unc!!
P = zeros(n,n,N); % Coefficient of Optimal cost.
J = zeros(1,N); % Our scalar cost at each time.
Q = zeros(n,n,N); % State-Cost time series.
R = zeros(m,m,N); % Input-Cost time series.
R22 = zeros(m-1,m-1,N); % Input-comp-Cost time series. 2x2
% Iteratively find our value for P and K matrix backwards:
for i = N:-1:1
    if i == N
        P(:,:,i) = p; % Cost associated with final state.
        K(:,:,i) = zeros(m-1,n); % Optimal input coefficient at final
 time.
    else
        Q(:,:,i) = q*dt; % Discretized Q and R.
        R(:,:,i) = r*dt;
        R22(:,:,i) = R(1:m-1,1:m-1,i); % Computing recursive block.
        A(:,:,i) = A(:,:,1);
        B(:,:,i) = B(:,:,1);
        B62(:,:,i) = Bbar(:,1:m-1,1);
        K(:,:,i) = (R22(:,:,i) + transpose(B62(:,:,i))*P(:,:,i)
+1)*B62(:,:,i))\...
        transpose(B62(:,:,i))*P(:,:,i+1)*A(:,:,i);
        P(:,:,i) = transpose(A(:,:,i) - B62(:,:,i)*K(:,:,i))*P(:,:,i)
+1)*(A(:,:,i)...
        -B62(:,:,i)*K(:,:,i)) +
 transpose(K(:,:,i))*R22(:,:,i)*K(:,:,i) + Q(:,:,i);
    end
end
% Start Simulation:
% Here we might not know all of our states. We only kno
for i = 1:N
    if i == 1
        % Initial state is already defined.
```

```
u(1:m-1,1,i) = -K(:,:,i)*x(:,1,i); % Calculating intial
 optimal input.
        % Here we know exactly what my initial states is.
        u(m,1,i) = 9.81; % Uncontrolled q!
                = 0.5*transpose(x(:,1,i))*P(:,:,i)*x(:,1,i);
        % I will be zeroing out my gravity if the deviation is smaller
 than
        % 1cm from my nominal trajectory. We don't want the
 stabilization
        % inputs in that range.
        if ((x(3,1,i) > -10^{(-2)}) \&\& (x(3,1,i) < 10^{(-2)})) \&\&
 (x(2,1,i) > -10^{(-2)}) \&\& (x(2,1,i) < 10^{(-2)})
            u(m,1,i) = 0;
        end
    else
        x(:,1,i) = A(:,:,i-1)*x(:,1,i-1) + B(:,:,i-1)*u(:,1,i-1); %DT
 system.
        u(1:m-1,1,i) = -K(:,:,i)*x(:,1,i);
        u(m,1,i) = 9.81; % Uncontrolled q!
        if ((x(3,1,i) > -10^{(-2)}) \&\& (x(3,1,i) < 10^{(-2)})) \&\&
 (x(2,1,i) > -10^{(-2)}) \&\& (x(2,1,i) < 10^{(-2)})
            u(m,1,i) = 0;
        end
        J(1,i)
                 = 0.5*transpose(x(:,1,i))*P(:,:,i)*x(:,1,i);
    end
end
```

PLOTTING RESULTS: PART (B): IC1:

Now let us plot the results we just obtained.

```
theta = zeros(1,N);
H = zeros(1,N);
V = zeros(1,N);
T1= zeros(1,N); % Input 1 - Thrust 1.
T2 = zeros(1,N); % Input 2 - Thrust 2.
for j = 1:N
    theta(1,j) = x(1,1,j); % Angular position fo drone.
    H(1,j) = x(2,1,j); % Horizontal position of drone.
    V(1,j) = x(3,1,j); % Vertical position of drone.
    T1(1,j) = u(1,1,j); % Total drone Left thrust.
    T2(1,j)=u(2,1,j); % Total drone Right thrust.
end
% Progression of states:
figure()
plot(T,theta,'LineWidth',1.2);
hold on; grid on;
plot(T,V,'LineWidth',1.2);
plot(T,H,'LineWidth',1.2);
xlabel('Time');
ylabel('Magnitude');
```

```
title('State Progression: IC1');
legend('Angular Position of Drone. \theta', 'Vertical Position of
Drone. H', 'Horizontal Position of Drone. V');
% Trajectory taken by the drone:
figure()
plot(H(1),V(1),'rx','LineWidth',1.5);
hold on; grid on;
plot(H,V,'b','LineWidth',1.5);
xlabel('Horizontal position. H');
ylabel('Vertical position. V');
title('Drone trajectory: IC1');
legend('Starting position','Trajectory taken');
% Progression of inputs:
figure()
plot(T,T1,'LineWidth',1.2);
xlabel('Time');
ylabel('Magnitude');
title('Inputs T1&T2 Progression: IC1');
% Progression of Cost:
figure()
plot(T,J,'LineWidth',1.2);
xlabel('Time');
ylabel('Cost');
title('Progression of Cost: IC1');
```


STEEPEST DESCENT:

```
% State space definition/initialization:
n = 6;
                  % Number of states.
m = 3;
                  % Number of inputs.
x2 = zeros(n,1,N); % Time-series of states.
1 = zeros(1,m,N); % Co-state/Lagrange multiplier.
J2 = zeros(1,N);
                    % Re-defining our cost.
x2(:,1,1) = [-20,-20,10,-10,-5,-3]'; % Matching the initial condition
 with
                            % the IC of previous method.
                            % Let us attempt without considering the
 final
                            % state for now.
                            % Literally dropping my drone from a
height of
                            % 10 meters.
u2 = rand(m,1,N); % Time-series of randomly applied inputs.
u2(m,1,:) = 9.81; % Uncontrolled input.
% The system and input matrices are the same as last case.
A = Abar;
B = Bbar;
% Cost definitions used from previous LQR formulation.
% Input perturbation magnitude:
a = 0.0001;
% Descent iteration variable:
iter = 1;
titer = 5; % Total descent iterations.
% Start simulation:
for i = 1:N
    if i == 1
        iter = 1; % Resetting the descent counter.
        while iter < titer</pre>
            DuJ = Jacobiu(x2,u2,i,N,Q,R,J2,P,A,B);
            u2(:,1,i) = u2(:,1,i) - a*transpose(DuJ);
            iter = iter + 1;
        end
        iter = 1; % Resetting the descent counter.
        % Checking if our drone's V and H position is close to zero:
        if x2(3,1,i) < 10^{-2} \&\& x2(3,1,i) > -1*(10^{-2}) \&\& x2(2,1,i) <
 10^{-2} \&\& x2(2,1,i) > -1*(10^{-2})
            u2(m,1,i) = 0;
        else
            u2(m,1,i) = 9.81;
        J2(1,i) = 0.5*transpose(x2(:,1,i))*Q(:,:,i)*x2(:,1,i)...
            + 0.5*transpose(u2(:,1,i))*R(:,:,i)*u2(:,1,i);
```

```
elseif i == N
        x2(:,1,i) = A*x2(:,1,i-1) + B*u2(:,1,i-1);
        u2(:,1,i) = 0;
        if x2(3,1,i) < 10^{-2} \&\& x2(3,1,i) > -1*(10^{-2}) \&\& x2(2,1,i) <
10^{-2} \& x2(2,1,i) > -1*(10^{-2})
            u2(m,1,i) = 0;
        else
            u2(m,1,i) = 9.81;
        end
        J2(1,i) = 0.5*transpose(x2(:,1,i))*P(:,:,i)*x2(:,1,i) +
 sum(J2);
   else
        x2(:,1,i) = A*x2(:,1,i-1) + B*u2(:,1,i-1);
        % Iteratively finding the optimal input:
        while iter < titer
            DuJ = Jacobiu(x2,u2,i,N,Q,R,J2,P,A,B);
            u2(:,1,i) = u2(:,1,i) - a*transpose(DuJ);
            iter = iter + 1;
        end
        iter = 1; % Resetting the descent counter.
        if x2(3,1,i) < 10^{-16} \&\& x2(3,1,i) > -1*(10^{-16})
            u2(m,1,i) = 0;
        else
            u2(m,1,i) = 9.81;
        end
        J2(1,i) = 0.5*transpose(x2(:,1,i))*Q(:,:,i)*x2(:,1,i)...
            + 0.5*transpose(u2(:,1,i))*R(:,:,i)*u2(:,1,i) + sum(J2);
    end
end
```

PLOTTING RESULTS: STEEPEST DESCENT:

Now let us plot the results we just obtained.

```
theta1 = zeros(1,N);
H1 = zeros(1,N);
V1 = zeros(1,N);
T1= zeros(1,N); % Input 1 - Thrust 1.
T2 = zeros(1,N); % Input 2 - Thrust 2.
for j = 1:N
    theta1(1,j) = x2(1,1,j); % Angular position of drone.
    H1(1,j) = x2(2,1,j); % Horizontal position of drone.
    V1(1,j) = x2(3,1,j); % Vertical position of drone.
    T1(1,j) = u2(1,1,j); % Total drone Left thrust.
    T2(1,j) = u2(2,1,j); % Total drone Right thrust.
end
% Progression of states:
figure()
plot(T,theta1,'LineWidth',1.2);
hold on; grid on;
plot(T,V1,'LineWidth',1.2);
```

```
plot(T,H1,'LineWidth',1.2);
xlabel('Time');
ylabel('Magnitude');
title('State Progression: STEEPEST DESCENT');
legend('Angular Position of Drone. \theta','Vertical Position of
 Drone. H', 'Horizontal Position of Drone. V');
% THE ANGULAR POSITION IS APPROXIMATELY 0. HENCE NOT VISIBLE IN THE
PLOT.
% Trajectory taken by the drone:
figure()
plot(H1(1),V1(1),'rx','LineWidth',1.5);
hold on; grid on;
plot(H1,V1,'b','LineWidth',1.5);
xlabel('Horizontal position. H');
ylabel('Vertical position. V');
title('Drone trajectory: STEEPEST DESCENT');
legend('Starting position','Trajectory taken');
% Progression of inputs:
figure()
plot(T,T1,'LineWidth',1.2);
xlabel('Time');
ylabel('Magnitude');
title('Inputs T1&T2 Progression: STEEPEST DESCENT');
```


Calculating the difference between the inputs: SD:

```
U = zeros(1,N); % To store the norm of the difference between the inputs.

for c = 1:2
    for b = 1:N
        U(c,b) = abs(u(c,1,b) - u2(c,1,b));
    end
end

figure()
plot(T,U(1,:),'r','LineWidth',1.5);
grid on; hold on;
plot(T,U(2,:),'b','LineWidth',1.5);
xlabel('Time');
ylabel('Magnitude of difference');
title('Norm of the difference in inputs: U1 and U2');
legend('Input 1 difference','Input 2 difference');
```


EXTERNAL FUNCTION DEFINITION:

We will now compute the Jacobian of cost with respect to the two inputs:

WRONG NEED TO CHANGE!!! %%%

```
function DuJ = Jacobiu(x2,u2,i,N,Q,R,J2,P,A,B)
DuJ = zeros(1,3); % Initializing the Jacobian.
% Changing inputs so that we don't lose data:
ii = i;
x22 = x2;
u22 = u2;
J22 = J2;
% Get our initial final cost for the first set of inputs:
while ii < N+1
    if ii == 1
        J22(1,ii) = 0.5*transpose(x22(:,1,ii))*Q(:,:,i)*x22(:,1,ii)...
            + 0.5*transpose(u22(:,1,ii))*R(:,:,i)*u22(:,1,ii);
    e1se
        if ii == N
            J22(1,ii)
                        =
 0.5*transpose(x22(:,1,ii))*P(:,:,N)*x22(:,1,ii) + sum(J22);
            u22(:,1,ii) = 0;
        end
        x22(:,1,ii) = A*x22(:,1,ii-1) + B*u22(:,1,ii-1);
        J22(1,ii) = 0.5*transpose(x22(:,1,ii))*Q(:,:,i)*x22(:,1,ii)...
            + 0.5*transpose(u22(:,1,ii))*R(:,:,i)*u22(:,1,ii) +
 sum(J22);
    end
    ii = ii+1;
end
Jf1 = J22(1,N);
ii = i; % Reset step number.
uf1 = u22(:,1,ii); % Initial input.
% Now let us get our perturbed set of initial cost:
u22(:,1,ii) = u22(:,1,ii) + 0.1*randn(3,1);
u22(3,1,ii) = 9.81;
uf2 = u22(:,1,ii); % Perturbed input.
% Repeat the process:
while ii < N+1
    if ii == 1
        J22(1,ii) = 0.5*transpose(x22(:,1,ii))*Q(:,:,i)*x22(:,1,ii)...
            + 0.5*transpose(u22(:,1,ii))*R(:,:,i)*u22(:,1,ii);
    else
        if ii == N
            J22(1,ii)
 0.5*transpose(x22(:,1,ii))*P(:,:,N)*x22(:,1,ii) + sum(J22);
            u22(:,1,ii) = 0;
        end
        x22(:,1,ii) = A*x22(:,1,ii-1) + B*u22(:,1,ii-1);
        J22(1,ii) = 0.5*transpose(x22(:,1,ii))*Q(:,:,i)*x22(:,1,ii)...
            + 0.5*transpose(u22(:,1,ii))*R(:,:,i)*u22(:,1,ii) +
 sum(J22);
    end
    ii = ii+1;
end
Jf2 = J22(1,N);
```

```
% Let us take the gradient of our final cost:
Jf = Jf2 - Jf1;

% Change in input:
uf = uf2 - uf1;

% Overall effect on Final cost:
DuJ(1)= Jf/uf(1);
DuJ(2)= Jf/uf(2);
DuJ(3)= 0; % Uncontrolled input g.
end
```

Published with MATLAB® R2018b