How to Debug Slow Spark Jobs?

Slow Spark jobs can burn through compute resources and frustrate engineers. Debugging performance issues requires a structured approach using **profiling** (**Spark UI**) and **logs** to pinpoint bottlenecks.

1. Understanding the Symptoms

Before diving into logs or tuning parameters, start by identifying performance symptoms:

- a. Long job execution time (Jobs taking hours instead of minutes)
- **b. Straggler tasks** (Some tasks significantly slower than others)
- **c. High shuffle read/write** (Spilling data to disk, causing I/O overhead)
- **d. Memory consumption issues** (Out-of-memory errors or excessive garbage collection)
- e. Driver bottlenecks (High CPU usage on the driver node).

Case Study: EMR to Databricks Migration — Job Running 4x Slower

We were helping a retail client **migrate their ETL workloads from AWS EMR to Databricks**. The job, which processed **1 billion transactions daily**, ran in **30 minutes on EMR** but **took 2+ hours on Databricks**.

The immediate question: Why was the job suddenly 4x slower?

2. Identifying the Bottlenecks

To debug Spark performance, break it down into:

A. Task Execution Time

If some tasks take much longer, it could indicate data skew.

If **all tasks are slow**, look at shuffle performance or inefficient transformations.

B. Shuffle and Data Skew

Large shuffle writes can lead to disk I/O bottlenecks.

Uneven shuffle distribution can create **straggler tasks**.

C. Memory and Garbage Collection

Frequent task failures → Check for executor OOM errors.

Excessive GC time (>10% of job duration) → Memory-intensive operations like large joins.

D. Driver Bottlenecks

If the driver CPU is high, check for collect() or large dataset broadcasting.

3. Using Spark UI for Profiling in Databricks

Databricks provides deep insights into job execution through the Spark UI.

Here's how we used it for debugging:

A. Checking Stage Execution Timeline

Databricks UI → Jobs → Completed Jobs → Stages

- 1. We found **one stage taking 70% of the total job time**.
- 2. The **task distribution was uneven**, with some tasks finishing in 2 minutes while others took 15 minutes.

Root Cause: Severe data skew in a key column used for joining fact and dimension tables.

B. Analyzing DAG Visualization

The DAG (Directed Acyclic Graph) Visualization in Databricks UI revealed:

Multiple wide transformations (shuffle-heavy operations). A large join operation with a skewed key (causing straggler tasks).

Fix: We applied **salting to balance partitions** and used **broadcast joins** to reduce shuffle.

Copyfrom pyspark.sql.functions import monotonically_increasing_id

df = df.withColumn("salt", monotonically_increasing_id() % 10)

df_joined = df1.join(df2, ["common_column", "salt"])

C. Monitoring Executors and Storage

We checked the "Executors" tab in Spark UI and found:

Executors were frequently restarting due to OOM errors. **Shuffle spill exceeded memory limits**, causing disk writes.

Fix: We optimized shuffle memory allocation:

Copyspark.sql.shuffle.partitions=200 # Reduce partitions from 2000 to 200

spark.memory.fraction=0.6 # Allocate more memory for execution

4. Digging into Logs for Root Cause Analysis in Databricks

Databricks provides **detailed logs** in the **Driver Logs (stderr/stdout)** and execution history.

A. Checking Executor Logs for OOM Errors

We found **OutOfMemoryErrors** in the executor logs:

Copygrep -i "OutOfMemoryError" driver-logs.log

Fix: Increased executor memory:

Copyspark.executor.memory=6g

spark.executor.memoryOverhead=2g

B. Debugging Shuffle Performance Issues

The shuffle logs indicated excessive spill to disk:

Copygrep -i "shuffle" stderr.log

Fix: Reduced shuffle partition size and used broadcast joins.

Copyfrom pyspark.sql.functions import broadcast

df = df1.join(broadcast(df2), "common_column")

C. Identifying Long-Running Tasks

We ran a log analysis script:

Copygrep -i "task" executor-logs.log | sort -nk3 | tail -10

Fix: Repartitioned based on skewed keys.

Copydf = df.repartition(100, "key_column")

5. Final Optimizations and Performance Gains

After applying **targeted fixes**, the job execution time **dropped from 2+ hours to 28 minutes**, slightly better than EMR.

Key Improvements:

Balanced partitions to avoid skew Reduced shuffle operations using broadcast joins Increased executor memory to handle large datasets Optimized memory management to reduce GC time

Conclusion

Debugging slow Spark jobs in **Databricks** requires:

- 1. **Using Spark UI** to identify slow stages and tasks.
- 2. **Checking logs** for OOM errors, shuffle performance, and executor restarts.
- 3. Applying optimizations like repartitioning, broadcasting, and memory tuning.

By following these steps, **80% of performance issues** can be resolved with **minimal tuning**.