

CS-C3240 - Machine Learning D

Feature Engineering

Dariush Salami

Department of Communications and Networking Aalto University, School of Electrical Engineering dariush.salami@aalto.fi

Version 1.0, September 15, 2022

Learning goals

Understand the concepts of

- feature engineering
- feature selection
- challenges with high dimensional feature spaces
- Principle Component Analysis
- Kernel methods

Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

- → Normalisation

Simple normalization: Scaling

For each sample x_i from a set \mathcal{X} , compute the scaled value as

$$x_i' = \frac{x_i - \min(\mathcal{X})}{\max(\mathcal{X}) - \min(\mathcal{X})}$$

- → Normalisation

Simple normalization: Scaling

For each sample x_i from a set \mathcal{X} , compute the scaled value as

$$X_i' = \frac{X_i - \min(\mathcal{X})}{\max(\mathcal{X}) - \min(\mathcal{X})}$$

after scaling, it is common to center the values around e.g. 0 or their arithmetic mean, median, centre of mass etc.

- → Normalisation
- → Detection of outliers
- → Are features independent?

Standardization to zero mean/unit variance

Given a set of values x_i ; $i \in \{1..n\}$ from a set \mathcal{X} with mean μ and standard deviation σ , we derive the standardized values x'_i as

$$\mathbf{x}_i' = \frac{\mathbf{x}_i - \mu}{\sigma}$$

- → Normalisation

Standardization to zero mean/unit variance

Given a set of values x_i ; $i \in \{1..n\}$ from a set \mathcal{X} with mean μ and standard deviation σ , we derive the standardized values x_i' as

$$\mathbf{x}_i' = \frac{\mathbf{x}_i - \mu}{\sigma}$$

Using the variance σ^2 instead of σ is called variance scaling

- → Normalisation

Important:

When normalizing on the training set input, this need to be applied identically of the test set input. Do not normalize the test set input on the test set data.

- → Normalisation

- Detection of outliers

Common pitfalls in outlier handling:

It is not unusual to find values that clearly depart from the rest.

Example: In insurance, most claims are small but a few are large. Removing the large claims will completely invalidate an insurance model.

- Detection of outliers

Common pitfalls in outlier handling:

It is not unusual to find values that clearly depart from the rest.

Example: In insurance, most claims are

small but a few are large. Removing the large claims will completely invalidate an

insurance model

Caution: Do not throw away outliers,

unless you have evidence

that they are errors

Feature pre-processing

- → Detection of outliers

Darell Huff. How to lie with Statistics, 1954

Common pitfalls in outlier handling:

It is not unusual to find values that clearly depart from the rest.

Approach: If outliers are present, use algorithms that are robust to outliers. For instance. covarianceor mean are sensitive to outliers \rightarrow replace mean with median.

- Detection of outliers

Common pitfalls in outlier handling:

It is not unusual to find values that clearly depart from the rest.

> → Outliers behave sometimes. different than the rest → train separate model on outliers

Detection clustering, density estimation,

- → Detection of outliers

Example: walking speed vs. heart rate

(a) Positioning of the sensors

(b) Subject performing the study

- Are features independent?

Feature Selection

A large portion of the performance of Machine Learning algorithms is due to the right choice and processing of features.

Avoid non-important features

- Noisy data
- Non-correlation between features and classes
- Correlated features
- Sometimes, less is better

Feature Selection

A large portion of the performance of Machine Learning algorithms is due to the right choice and processing of features.

Avoid non-important features

- Noisy data
- Non-correlation between features and classes
- Correlated features
- Sometimes, less is better

Choosing the most important features

- Reduces training and evaluation time
- Reduces complexity of a model (easier to interpret)
- Improves prediction/recall of a model
- Reduces overfitting

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Las Vegas Filter

Repeatedly generate random feature subsets $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$, train a classifier $\hat{h}_s(\overrightarrow{\hat{w}_s},\cdot) = \min_{i \in \{\mathcal{X}_s\}} \mathcal{L}\left(h(\overrightarrow{w},\overrightarrow{x}^{(i)}),y^{(i)}\right)$ and validate $\hat{h}_s(\overrightarrow{\hat{w}_s},\cdot)$ for its classification performance

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Focus algorithm

- Train and evaluate a classifier for singleton feature \mathcal{X}_{o}
- 2 Evaluate each set of two features

 $\mathcal{X}_{o}, \mathcal{X}_{o}$

Until consistent solution is found

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Focus algorithm

- 1 Train and evaluate a classifier for singleton feature \mathcal{X}_o
- 2 Evaluate each set of two features $\mathcal{X}_o, \mathcal{X}_p$

÷

Complexity:

$$\begin{pmatrix} |\mathcal{X}| \\ k \end{pmatrix} = \frac{|\mathcal{X}|!}{(|\mathcal{X}| - k)!(k!)} \to \mathcal{O}(2^{|\mathcal{X}|})$$
$$\begin{pmatrix} |\mathcal{X}| \\ 1 \end{pmatrix} \cdot \begin{pmatrix} |\mathcal{X}| \\ 2 \end{pmatrix} \cdots \begin{pmatrix} |\mathcal{X}| \\ |\mathcal{X}| \end{pmatrix}$$

Until consistent solution is found

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Relief algorithm

Given a collection of values x_i ; $i \in \{1..n\}$ of a feature \mathcal{X} , compute

Closest distance to all other samples of the same class

Closest distance to all samples not in that class

Rationale: Feature more relevant the more it separates a sample from samples in other classes and the less it separates from samples in same class

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Relief algorithm

Given a collection of values x_i ; $i \in \{1..n\}$ of a feature \mathcal{X} , compute

Closest distance to all other samples of the same class

Complexity:

Closest distance to all samples not in that class

 $\mathcal{O}(|\mathcal{X}| \cdot n^2)$

Rationale: Feature more relevant the more it separates a sample from samples in other classes and the less it separates from samples in same class

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$r(\mathcal{X}_1, \mathcal{X}_2) = \frac{\mathsf{Cov}(\mathcal{X}_1, \mathcal{X}_2)}{\sqrt{\mathsf{Var}(\mathcal{X}_1)\mathsf{Var}(\mathcal{X}_2)}}$$

 Identifies linear relation between features \mathcal{X}_i

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$r(\mathcal{X}_1, \mathcal{X}_2) = \frac{\mathsf{Cov}(\mathcal{X}_1, \mathcal{X}_2)}{\sqrt{\mathsf{Var}(\mathcal{X}_1)\mathsf{Var}(\mathcal{X}_2)}}$$

• Identifies linear relation between features X_i

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$r(\mathcal{X}_1, \mathcal{X}_2) = \frac{\mathsf{Cov}(\mathcal{X}_1, \mathcal{X}_2)}{\sqrt{\mathsf{Var}(\mathcal{X}_1)\mathsf{Var}(\mathcal{X}_2)}}$$

• Identifies linear relation between features X_i

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\{\mathcal{X}\}_s \subseteq \mathcal{X}\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_i \in \{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$r(\mathcal{X}_1, \mathcal{X}_2) = \frac{\mathsf{Cov}(\mathcal{X}_1, \mathcal{X}_2)}{\sqrt{\mathsf{Var}(\mathcal{X}_1)\mathsf{Var}(\mathcal{X}_2)}}$$

• Identifies linear relation between features X_i

Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Exponential growth Volume of the space grows exponentially with dimension

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space (Problematic for methods that require statistical significance)

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space (Problematic for methods that require statistical significance)

Hughes (peaking) phenomenon

Predictive power of classifier first increases with dimension, then decreases

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

Given by

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

$$\frac{V_D(1)-V_D(1-\varepsilon)}{V_D(1)}=1-(1-\varepsilon)^D$$

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

Given by

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

$$\frac{V_D(1)-V_D(1-\varepsilon)}{V_D(1)}=1-(1-\varepsilon)^D$$

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Issues related to high dimensional input data

Example – Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)

Issues related to high dimensional input data

Example – Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)

Curse of Dimensionality

Mechanisms to efficiently reduce dimensions or classifiers that respect properties of high-dimensional spaces required.

Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

PCA finds k vectors $\overrightarrow{u_1}, \dots, \overrightarrow{u_k}$ onto which to project the data such that the projection error is minimized.

- PCA finds k vectors $\overrightarrow{u_1}, \dots, \overrightarrow{u_k}$ onto which to project the data such that the projection error is minimized.
 - \rightarrow In particular, find $\overrightarrow{z_i} = z_i^{(1)} \dots z_i^{(n)}$ to represent the $\overrightarrow{x_i} = x_i^{(1)} \dots x_i^{(n)}$ in this k-dimensional vector space spanned by the $\overrightarrow{u_i}$

Outpute The covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{\mathbf{n} \times \mathbf{m}\text{-dim.}\mathbf{m} \times \mathbf{n}\text{-dim.}} \underbrace{\mathbf{X}^{\mathbf{T}}}_{\mathbf{m} \times \mathbf{m}\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

Outpute The covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.}m \times n\text{-dim.}} \underbrace{\mathbf{X}^{T}}_{m \times m\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

• Compute the covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.}m \times n\text{-dim.}} \underbrace{\mathbf{X}^{T}}_{m \times m\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

Covariance

A measure of spread of a set of points around their center of mass

Outpute The covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.}m \times n\text{-dim.}} \underbrace{\mathbf{X}}_{m \times m\text{-dim.}}^{\mathsf{T}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

2 The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $(C - \lambda I_m)u = 0$)

When a matrix C is multiplied with a vector u', this usually results in a new vector Cu' of different direction than u'.

When a matrix C is multiplied with a vector u', this usually results in a new vector Cu' of different direction than u'.

 \rightarrow There are few vectors u, however, which have the same direction ($Cu = \lambda u$).

These are the eigenvectors of C and λ are the eigenvalues

• Compute the covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.} m \times n\text{-dim.}} \underbrace{\mathbf{X}^{T}}_{m \times m\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $(C - \lambda I_m)u = 0$)

Eigenvectors and Eigenvalues

The (orthogonal) eigenvectors are sorted by their eigenvalues with respect to the direction of greatest variance in the data.

Outpute The covariance matrix from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.}m \times n\text{-dim.}} \underbrace{\mathbf{X}^{T}}_{m \times m\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

- The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $(C \lambda I_m)u = 0$)
- \odot Choose the k eigenvectors with largest eigenvalues to represent the projection space U

• Compute the <u>covariance matrix</u> from the $x^{(i)}$:

$$C = \frac{1}{n} \underbrace{\mathbf{X}}_{n \times m\text{-dim.} m \times n\text{-dim.}} \underbrace{\mathbf{X}^{\mathsf{T}}}_{m \times m\text{-dim.}}$$

(We assume that all features are mean-normalized and scaled into [0, 1])

- 2 The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $(C \lambda I_m)u = 0$)
- Ohoose the k eigenvectors with largest eigenvalues to represent the projection space U
- These k eigenvectors in U are used to transform the inputs x_i to z_i :

$$z^{(i)} = U^T x^{(i)}$$

How to choose the number k of dimensions?

We can calculate

as the accuracy of the projection using k principle components as a function of the eigenvalues

$$\frac{\sum_{i=1}^{k} \sqrt{\lambda_i}}{\sum_{j=1}^{m} \sqrt{\lambda_j}} = d$$

How to choose the number *k* of dimensions?

We can calculate

Average squared projection error Total variation in the data
$$\Rightarrow \frac{\sum_{i=1}^{k} ||x^{(i)} - x_{\text{approx}}^{(i)}||^2}{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2}$$

as the accuracy of the projection using k principle components as a function of the eigenvalues

$$\frac{\sum_{i=1}^{k} \sqrt{\lambda_i}}{\sum_{j=1}^{m} \sqrt{\lambda_j}} = d$$

We say that $100 \cdot (1 - d)\%$ of variance is retained.

(Typically, $d \in [0.01, 0.05]$)

Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Classifier may search an objective function of sufficient dimension

Classifier may search an objective function of sufficient dimension

Alternative for complex non-linear decision boundaries:

Change dimension of input space so that linear separation is possible

Example: Mapping into linear separable space

Hypothesis = 1 if

Hypothesis = 1 if

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \cdots \ge 0$$

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$

Kernel Define kernel via landmarks

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$
Gaussian: $k(x, l_i) = e^{-\frac{||x-l_i||^2}{2\sigma^2}}$

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$
Gaussian: $k(x, l_i) = e^{-\frac{||x - l_i||^2}{2\sigma^2}}$

$$x \approx l_i \Rightarrow k(x, l_i) \approx 1 \text{ (towards 0 else)}$$

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$
Gaussian: $k(x, l_i) = e^{-\frac{||x - l_i||^2}{2\sigma^2}}$

$$x \approx l_i \Rightarrow k(x, l_i) \approx 1 \text{ (towards 0 else)}$$

$$\Rightarrow w_0 + w_1 k_1 + w_2 k_2 + w_3 k_3 + \dots$$
Gaussian: $k(x, l_i) = e^{-\frac{||x - l_i||^2}{2\sigma^2}}$

$$x \approx l_i \Rightarrow k(x, l_i) \approx 1 \text{ (towards 0 else)}$$

Example:
$$w_0 = -0.5$$
, $w_1 = 1$, $w_2 = 1$, $w_3 = 0$
 $h(x) = w_0 + w_1 k(x, l_1) + w_2 k(x, l_2) + w_3 k(x, l_3)$

$$\sigma = 1$$

Example:
$$w_0 = -0.5$$
, $w_1 = 1$, $w_2 = 1$, $w_3 = 0$
 $h(x) = w_0 + w_1 k(x, l_1) + w_2 k(x, l_2) + w_3 k(x, l_3)$

 $\sigma = 1$

Example:
$$w_0 = -0.5$$
, $w_1 = 1$, $w_2 = 1$, $w_3 = 0$
 $h(x) = w_0 + w_1 k(x, l_1) + w_2 k(x, l_2) + w_3 k(x, l_3)$

$$\sigma = 0.5$$

Example:
$$w_0 = -0.5$$
, $w_1 = 1$, $w_2 = 1$, $w_3 = 0$

$$h(x) = w_0 + w_1 k(x, l_1) + w_2 k(x, l_2) + w_3 k(x, l_3)$$

$$\sigma = 1$$
 $\sigma = 0.5$

$$\sigma = 2$$

Kernels – placement of landmarks

Possible choice of initial landmarks: All training-set samples Training of w_i

$$f_i = \left[\begin{array}{c} k(x_i, l_1) \\ \vdots \\ k(x_i, l_m) \end{array} \right]$$

$$\min_{W} C \sum_{i=1}^{m} y_{i} \text{cost}_{y_{i}=1}(W^{T} f_{i}) + (1 - y_{i}) \cdot \text{cost}_{y_{i}=0}(W^{T} f_{i}) + \frac{1}{2} \sum_{i=1}^{m} w_{i}^{2}$$

Questions?

Dariush Salami dariush.salami@aalto.fi

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

