

A SIMPLE MIXED $\mathcal{H}_2/\overline{\mathcal{H}_{\infty}}$ CONTROL PROBLEM

Clément Roos

Information Processing and Systems Department
ONERA Toulouse

The \mathcal{H}_2 norm

Frequency-domain definition

$$\|G(s)\|_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} \operatorname{Trace}\left(G^*(j\omega)G(j\omega)\right) d\omega\right)^{1/2}$$

 $\|G(s)\|_2$ is only finite for **stable** and **strictly proper** (i.e. D=0) systems. Otherwise, $\|G(s)\|_2=\infty$.

Interpretation:

- ▶ If G(s) is a SISO system, $||G(s)||_2^2$ is the energy of y when u is an impulse.
- ▶ In the general case, $\|G(s)\|_2^2$ is the variance of y when u is a centered normalized white noise, *i.e.* a random signal such that $U(j\omega)U^*(j\omega)=I$.

Practical computation of the \mathcal{H}_2 norm

Let G(s) be a stable and strictly proper transfer: $G(s) = C(sI-A)^{-1}B$. The Parseval's theorem is applied, noting that $\mathcal{F}(Ce^{At}B) = G(j\omega)$, where $\mathcal{F}(.)$ denotes the Fourier transform.

Time-domain definition

$$\|G(s)\|_2 = \left(\operatorname{Trace} \int_0^{+\infty} B^T e^{A^T t} C^T C e^{At} B\right)^{1/2}$$

 $Q_o = \int_0^\infty e^{A^T t} C^T C e^{At} dt$ is called the **Observability Gramian**. It is a definite positive (symmetric) matrix solution of the Lyapunov equation:

$$A^T Q_o + Q_o A + C^T C = 0$$

$$\Rightarrow \|G(s)\|_2^2 = \mathsf{Trace}(B^T Q_o B)$$
 (Matlab function **norm**)

Noises in theory and practice

Using **centered normalized white noises** allows to derive many important theoretical results. But such signals **do not exist**. Indeed, they are characterized by a **constant power spectral density** (PSD = power distribution as a function of frequency):

$$\phi(\omega) = 1 \ \forall \omega \ge 0$$

which implies that their power $P=\frac{1}{2\pi}\int_{-\infty}^{+\infty} \;\phi(\omega)d\omega$ is infinite!

In practice, noises have a **finite power**, for example $\phi(\omega) = \frac{1}{1+\omega^2}$.

- ▶ Replacing $j\omega$ by s gives the complex spectrum: $\phi(s) = \frac{1}{1-s^2}$.
- ▶ The later can then be factorized: $\phi(s) = \underbrace{F(s)}_{stable} \times \underbrace{F(-s)}_{unstable} = \frac{1}{1+s} \times \frac{1}{1-s}$.
- \blacktriangleright By filtering a centered normalized white noise by F(s), a random signal with the same PSD as the considered noise is finally obtained.

An academic spring-mass example

Let us consider a spring-mass system, where u is the control signal (force) and p is a disturbance (force). The measurement y of the position of the mass m_2 is perturbed by a random signal b ($y=x_2+b$) with a power spectral density (PSD) $\phi(\omega)=\frac{1}{1+\omega^2}$.

Let
$$x_1 = \tilde{x}_1 + \Delta x_{eq}$$

- ▶ compression if $x_1 x_2 > 0$
- extension if $x_1 x_2 < 0$

Specifications:

- ightharpoonup actuator fatigue alleviation: minimize the variance of \dot{u} (the time-derivative of the control signal) in response to the measurement noise b
- disturbance rejection: $|\mathcal{T}_{p \to x_2}(j\omega)| < A \ \forall \omega \ge 0$

Construction of the weighted standard form $P_W(s)$

System equations:

$$\ddot{x}_1 = \frac{1}{m_1} (u - k (x_1 - x_2))$$

$$\ddot{x}_2 = \frac{1}{m_2} (p + k (x_1 - x_2))$$

$$y = x_2 + b$$

Inclusion of the specifications:

- ▶ addition of the transfer function $F(s)=\frac{1}{s+1}$, so that $b=F(s)w_1$ is a random signal with PSD $\phi(\omega)=\frac{1}{1+\omega^2}$ obtained from the centered normalized white noise w_1
- lacktriangledown addition of a pseudo-derivator $H(s)=rac{s}{0.01s+1}$, so that $z_1=H(s)u$ is a good approximation of \dot{u} inside the system bandwidth
- ▶ addition of a static weighting function $W = A^{-1}$, so that $|\mathcal{T}_{p \to x_2}(j\omega)| < A$ $\forall \omega \geq 0$ is equivalent to $||\mathcal{T}_{w_2 \to z_2}(s)||_{\infty} < 1$, where $w_2 = p$ and $z_2 = Wx_2$

Construction of the weighted standard form $P_W(s)$

Improved weighted standard form

$$\mathcal{T}_{w_1 \to z_1}(s) = \frac{s}{0.01s+1} \mathcal{T}_{y \to u}(s) \frac{1}{s+1}$$

= $\frac{1}{0.01s+1} \mathcal{T}_{y \to u}(s) \frac{s}{s+1}$

The filter $\frac{1}{0.01s+1}$ was only introduced for regularization and is no longer needed $\Rightarrow \mathcal{T}_{w_1 \to z_1}(s) = \mathcal{T}_{y \to u}(s) \frac{s}{s+1}$ is preferred.

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control problem

Let $\mathcal{F}_l(P_k(s),K(s))$ denote the closed-loop transfer function $\mathcal{T}_{w_k\to z_k}(s)$.

Control problem

Find a stabilizing controller $\widehat{K}(s)$ such that:

$$\widehat{K}(s) = \arg\min_{K(s) \in \mathcal{K}} ||F_l(P_1(s), K(s))||_2 \qquad \text{(soft constraint)}$$

where $K = \{K(s) : ||F_l(P_2(s), K(s))||_{\infty} \le 1\}$ (hard constraint)