1. For the logic circuit shown, the simplified expression for output y is

2. The output F in terms of x & y for the 4-1 MUX shown in figure is

4-1 MUX is used to implement a 3 input Boolean function as shown in figure.
The Boolean function F(A,B,C) implemented is _______
{Write in terms of F(A,B,C)=Σ(x, x, x, ..., x)}

4. A 3-bit code converter is required which would cyclically add 3 to input code. i.e. 000 should be converted to 011, ..., 111 to 010. Assume that input and output codes to be 'CBA' and 'RQP' respectively.

Inputs			Outputs			
	С	В	Α	R	Q	Р
	0	0	0	0	1	1
		:			:	
	1	1	1	0	1	0

- a. Write the truth table for input and output conditions
- b. Obtain the minimized function using K-Map (Hint: for 3 K-Maps function output R, Q & P)