

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano <jmorale@ethz.ch>

Assignment 6 Due date: Thursday, 31 October 2024, 23:59

Exercise 6.5, Countability

(8 Points)

Prove that for all $l \in \mathbb{N}$ with $l \geq 1$ the set

$$A_l := \left\{ f : \mathbb{N} \to \{0, 1\} \middle| \sum_{i=0}^k f(i) \le \frac{k}{l} + 1 \quad \forall k \in \mathbb{N} \right\}.$$

is uncountable.

Hint: For all $l \geq 1$, explicitly write an injection from a known uncountable set into A_l .

Following the hint, an injection from an uncountable set to A_l is going to be built. Notice that to belong to $A_l \forall l \geq 1$, it is sufficient that the function f satisfies the following conditions: yielding either always 0 for any input or a limited number of 1s following the bound pattern.

So, imagining the string presented above divided in chuncks of length l, every l characters there can be a f(n) = 1 for some n indexed within the chunk. Since this holds for any size of k, the condition of A_l stating $\sum_{i=0}^k f(i) \leq \frac{k}{l} + 1 \quad \forall k \in \mathbb{N}$ is satisfied. This means that **at most** 1 of $(f(0), f(1), \ldots, f(l))$ can be 1, for every l sized chunk in order for all such function to belong to A_l .

The construction of binary sequences denoting results of $f(i) \forall i \in \mathbb{N}$ satisfying the above condition are a valid candidate for the injection construction into A_l : it allows for the function to yield 1s for the i-th positions with $i \equiv_l 0$. Such binary construction can be graphically denoted as:

$$(\alpha_i 0^{l-1})^m \quad \alpha_i \in \{0, 1\}, \ \forall i \in \mathbb{N}, \ \forall m \in \mathbb{N}$$

Thus, encoding the possible image of a valid function $f \in A_l$ along arbitrary $m \cdot l$ sized bit string.

From Theorem 3.23, the set $\{0,1\}^{\infty}$ is uncountable. Building an injection from $\{0,1\}^{\infty}$ to such above construction enconding f functions in A_l is proposed. Let's define the function g:

$$g: \{0,1\}^{\infty} \to A_l, \quad \alpha \in \{0,1\}^{\infty}, \quad f \in A_l, \quad \alpha_i \in \{0,1\}$$
$$\alpha \mapsto f, \quad \forall j \in \mathbb{N}: \ f(j) = \begin{cases} \alpha_i, & \text{if } j = l \cdot i & i \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

So we have α corresponding to a semi infinite binary string, and α_i denoting the i-th bit of the string. Hence, using the mapping defined, **every possible semi infinite binary sequence has a valid function** f **mapping in** A_l . This injective map denoting $\{0,1\}^{\infty} \leq A_l$, i.e. A_l dominates $\{0,1\}^{\infty}$, implies that A_l is uncountable.

To prove the injectivity of the function, let $\alpha, \beta \in \{0, 1\}^{\infty}$ be two different semi infinite binary sequences. Let i be the position where $\alpha_i \neq \beta_i$. Let $g(\alpha) = f_{\alpha}$, $g(\beta) = f_{\beta}$. By construction of f_{α} , f_{β} : $f_{\alpha}(l \cdot i) = \alpha_i \neq \beta_i = f_{\beta}(l \cdot i) \implies f_{\alpha} \neq f_{\beta}$