Математический анализ (осенняя минисессия 2016-2017 уч.год)

Лектор Шипина Т.Н.

Теоретические разделы

- 1. Элементы теории множеств
- 2. Натуральные числа, индукция, бином Ньютона
- 3. Аксиоматика множества вещественных чисел
- 4. Ограниченные множества. Теорема о верхней грани. Принцип Архимеда.
- 5. Три принципа математического анализа: принцип Кантора о вложенных отрезках, принцип Больцано-Вейерштрасса, принцип Бореля-Лебега о покрытии.
- 6. Понятие функции. График функции. Обзор элементарных функций.
- 7. Последовательности. Предел последовательности и его свойства.
- 8. Теоремы о существовании предела последовательности: критерий Коши, теорема Вейерштрасса о существовании предела монотонной последовательности.
- 9. Подпоследовательности. Частичный предел последовательности. Верхний и нижний пределы.
- 10. Предел функции. Предел функции и арифметические операции. Предел функции и неравенства. Теоремы о существовании предела функции (критерий Коши, предел монотонной функции).
- 11. Первый и второй замечательные пределы.
- 12. Односторонние пределы функции. Асимптотическое поведение функций.

Из представленных разделов нужно знать все определения и формулировки теорем.

Теоремы с доказательствами

- Принцип Кантора о вложенных отрезках.
- Принцип Больцано-Вейерштрасса.
- Принцип Бореля-Лебега.
- Критерий Коши сходимости числовой последовательности.
- Теорема Вейерштрасса о сходимости монотонной последовательности.
- Критерий Коши существования предела функции.

Практические задания

- 1. Доказать, что при каждом $n \in N$ верно равенство $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{(n+1)n(2n+1)}{6}$.
- 2. Доказать, что при каждом $n \in N$ верно неравенство $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$.
- 3. Доказать, что при каждом $n \in N$ выражение $6^{2n-2} + 3^{n+1} + 3^{n-1}$ делится на 11.
- 4. Найти наибольший и наименьший элементы, точную верхнюю и точную нижнюю грани множеств

A)
$$\left\{2 + \frac{(-1)^n}{3n}\right\}$$
, $n \in \mathbb{N}$,
 $S(n) = \sum_{k=1}^n \frac{1}{5^k}$, $n \in \mathbb{N}$.

- 5. Доказать или опровергнуть утверждения.
 - Если множество Х ограничено сверху, то оно имеет точную верхнюю грань.
 - Если множество X не содержит максимального элемента, то множество не имеет точной верхней грани.

- Если множество X ограничено снизу, то оно имеет точную нижнюю грань.
- \bullet Если множество X не содержит минимального элемента, то множество не имеет точной нижней грани.
- Если точная верхняя грань множества X существует, то она всегда является предельной точкой множества X.
- 6. Доказать, что $\lim_{n\to\infty} \frac{3}{n+1} = 0$.
- 7. Доказать, что последовательность $\{x_n\}$ расходится, если:

A)
$$x_n = \sin\left(\frac{\pi n}{2}\right)$$
,

$$\mathbf{E}(\mathbf{x}_n) = (1)^n \cdot \mathbf{n}.$$

- 8. Доказать, что $\lim_{n\to\infty}\left(\frac{5}{n}\right)^n=0.$
- 9. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1, a > 1$.
- 10. Доказать , что $\lim_{n\to\infty} \sqrt[n]{n} = 1$, a>1.
- 11. Доказать , что $\lim_{n \to \infty} \frac{n}{a^n} = 0$, a > 1.
- 12. Доказать, что $\lim_{n\to\infty} (n+5) = +\infty$.
- 13. Задания на вычисления пределов числовых последовательностей из задачника [1] (§8. №26, №34-36, №39, №53, №57, №58, №66, №68)
- 14. Доказать, что последовательность $x_n = a + a \cdot q + a \cdot q^2 + \dots + aq^{n-1}$, где |q| < 1, $n \in \mathbb{N}$. является фундаментальной.
- 15. Для последовательности $\{x_n\}$ найти все частичные пределы, верхний и нижний пределы, $\sup\{x_n\}$, $\inf\{x_n\}$.

A)
$$x_n = (-1)^n \cdot \frac{3n-1}{n+2}$$
, B) $x_n = \sin(\frac{\pi n}{4})$,

$$\mathbf{E}(\mathbf{x}_n) = \sin\left(\frac{\pi n}{4}\right)$$

B)
$$x_n = 3^{(-1)^n}$$
.

- 16. Доказать или опровергнуть утверждения.
 - Если последовательность $\{x_n\}$ сходиться, то она ограничена.
 - Если последовательность $\{x_n\}$ ограничена, то она сходиться.
 - Если последовательность $\{x_n\}$ ограничена, а последовательность $y_n \rightarrow$ 0 при $n \to \infty$, то $x_n \cdot y_n \to 0$ при $n \to \infty$.
 - Если последовательность $x_n \to 0$, при $n \to \infty$, и последовательность $y_n \to 0$, при $n \to \infty$, то $\frac{x_n}{v_n} \to 0$, при $n \to \infty$.
 - Если последовательность $x_n \to 0$, при $n \to \infty$, и последовательность $y_n \to 0$, при $n \to \infty$, то $\frac{x_n}{y_n} \to \infty$, при $n \to \infty$.
- 17. Доказать, что $\lim_{x\to 1} \frac{x^2+1}{2} = 1$.
- 18. Задания на вычисления пределов функций из задачника [1] (§9 № 20-32)

Список литературы

1. Л.Д. Кудрявцев и др. Сборник задач по математическому анализу. Том1. –Москва: ФИЗМАТЛИТ. 2003. (http://math.sfu-kras.ru/sites/default/files/kudr_zad_v1.pdf)

2. А.М.Кытманов и др. Математический анализ с элементами алгебры, геометрии и функционального анализа (учебное пособие) (http://math.sfu-kras.ru/sites/default/files/matananaliz2.pdf).

ОБРАЗЕЦ

ВАРИАНТ 0

- 1. Дать определение ограниченного множества.
- 2. Доказать или опровергнуть утверждения:
- А) Если последовательность $\{x_n\}$ ограничена, то она сходиться.
- Σ Если множество X не содержит максимального элемента, то множество не имеет точной верхней грани.
- 3. Сформулировать и доказать принцип Кантора о вложенных отрезках.
 - 4. Найти $\lim_{n\to\infty} x_n$.

A)
$$x_n = \left(\frac{n+1}{n-1}\right)^n$$
, B) $x_n = \frac{\sqrt{n^2+1} - n}{\sqrt{n+1} - \sqrt{n}}$.

5. Доказать по определению $\lim_{x\to 1} (x^2 + 1) = 2$.