COMP 546

Lecture 1

Image Formation: Geometry

Thurs. Jan. 11, 2018

Origins of spatial vision (500 million years ago?)

photoreceptor array (eye)

Evolution of eyes

As pit becomes more concave, angular resolution improves (but amount of light decreases)

Radians

$$\theta \ radians = rac{arclength \ on \ circle}{radius \ of \ circle}$$

Radians vs. degrees

$$\theta \ radians \ * \ \frac{180 \ degrees}{\pi \ radians} = \theta * \frac{180}{\pi} \ degrees$$

1 $radian \approx 57 deg$

Small angle approximation

Aperture angle from a few slides ago.... eye camera

"F number" (photography)

"focal length" f

$$F number \equiv \frac{f}{A} \approx \frac{1}{\theta}$$

ASIDE: camera

"focal length" *f* 50 mm

$$F number \equiv \frac{f}{A} = \frac{50}{5} = 10$$

eye (ignore lens)

$$F \ number \equiv \frac{f}{A} = \frac{25}{5} = 5$$

Visual Angle

$$\alpha \approx \frac{object\ height}{distance}$$

Visual Angle

$$\alpha \approx \frac{image\ size\ of\ object}{diameter\ of\ eyeball}$$

Two different concepts

Aperture angle

Visual angle

Visual Angle Example 1

$$\alpha \approx \frac{object\ height}{distance} = \frac{1\ cm}{\frac{180}{\pi}\ cm} = 1\ degree$$

Visual Angle Example 2

$$\alpha \approx \frac{object\ height}{distance} = \frac{\frac{\pi}{10}\ m}{18\ m} = \frac{\pi}{180}\ radians = 1\ degree$$

Example 3: moon

Visual angle of moon is about $\frac{1}{2} deg$.

Units of visual angle

1 radian =
$$\frac{180}{\pi}$$
 deg

1 deg = 60 minutes (or "arcmin")

1 minute = 60 seconds (or "arcsec")

Image position

Pinhole camera

View from side (YZ)

View from above (XZ)

Image position in radians*

Visual direction in radians*

$$\left(\frac{x}{f}, \frac{y}{f}\right) = \left(\frac{X}{Z}, \frac{Y}{Z}\right)$$

Example (ground and horizon)

Image projection (upside down and backwards)

Visual direction

(image plane in front of pinhole)

(image plane behind pinhole)

Depth Map

The mapping Z(x,y) from image positions (x,y) to depth Z values on a 3D surface is called a "depth map".

What is the depth map of a ground plane?

Ground plane

$$Y = -h$$

What is the depth map of a ground plane?

Ground plane Y = -h

$$\frac{y}{f} = \frac{Y}{Z}$$

Thus,
$$Z = \frac{-hf}{y}$$

Visual direction

(image plane in front of pinhole)

Binocular Vision

Assume eyes are separated by T_X in the X direction. T_X is the *interocular distance*.

What is the *difference* in or visual direction (or image position) of each 3D object in the left and right images?

How does this difference depend on depth?

View from above (XZ)

Binocular disparity
$$\equiv \frac{x_l}{f} - \frac{x_{\gamma}}{f}$$

is the difference in visual direction of a 3D point as seen by two eye.

Binocular disparity
$$\equiv \frac{x_l}{f} - \frac{x_r}{f}$$

$$\frac{x_l}{f} = \frac{X_0}{Z_0}$$

$$\frac{x_r}{f} = \frac{X_0 - T_x}{Z_0}$$

Thus, binocular disparity
$$=\frac{T_{\chi}}{Z_0}$$

Superimposing left and right eye images

binocular disparity =

42

Vergence (rotating the eyes)

Here we assume horizontal rotation only ("pan").

Vergence

Let θ_l and θ_r be the rotations of the left and right eyes due to vergence.

The rotations can be *approximated* by a shift in image position.

Binocular disparity
$$\equiv \left(\frac{x_l}{f} - \theta_l\right) - \left(\frac{x_r}{f} - \theta_r\right)$$

= $\left(\frac{x_l}{f} - \frac{x_r}{f}\right) - (\theta_l - \theta_r)$