Phys 221A – Quantum Mechanics – Lec02

UCLA, Fall 2014

Wednesday 8th October, 2014

1 Introduction

Preliminary notes

• TA (Shahriar) office hours changed: Wednesday 3-4 PM in Knudsen 3-111.

1.1 More on Hilbert spaces

From now on we will be living in Hilbert space G with vectors, for example ψ or ϕ . Recall that in the bra-ket notation we have $\psi = |\psi\rangle$ in the Hilbert space, a "ket". The inner product is given by

$$G \times G \to \mathbb{C} |\phi\rangle, |\psi\rangle \mapsto \langle \phi| \psi\rangle.$$
 (1)

We write elements in the dual space as $\langle \psi |$, a "bra". This is a linear map taking $G \to \mathbb{C}$ and mapping $|\phi\rangle \mapsto \langle \psi | \phi \rangle$.

Consider an operator $O: G \to G$ mapping $|\psi\rangle \mapsto O|\psi\rangle$. For example, $O = |\phi\rangle\langle\psi|$ for some $\phi, \psi \in G$. Then

$$O|\xi\rangle = (|\phi\rangle\langle\psi|)|\xi\rangle = |\phi\rangle\langle\psi||\xi\rangle. \tag{2}$$

Given operators A, B, C we have

$$(AB) |\psi\rangle = A(B |\psi\rangle), \qquad ABC = A(BC) = (AB)C.$$
 (3)

Recall the closure relation

$$1 = \sum_{i} |\alpha_i\rangle \langle \alpha_i| \tag{4}$$

where $\{|\alpha_i\rangle\}$ forms an orthonormal basis (so $\langle \alpha_i | \alpha_j \rangle = \delta_{ij}$).

Given an operator O, we have that O is linear iff

$$O(c_1 |\psi_1\rangle + c_2 |\psi_2\rangle) = c_1 O |\psi_1\rangle + c_2 O |\psi_2\rangle$$
(5)

for all $c_i \in \mathbb{C}$, $|\psi_i\rangle \in G$. The operator O^{\dagger} is the Hermitian conjugate or adjoint of O iff

$$\langle \psi | O\phi \rangle = \langle O^{\dagger}\psi | \phi \rangle \tag{6}$$

for all $\psi, \phi \in G$. If O^{\dagger} is the adjoint then $(O^{\dagger})^{\dagger} = O$ and furthermore $\langle O\phi | \psi \rangle = \langle \phi | O^{\dagger}\psi \rangle$.

If $O^{\dagger}=O$ then O is Hermitian or self-adjoint. If $UU^{\dagger}=1$ (i.e. $U^{\dagger}=U^{-1}$) then U is called unitary. Note that we have

$$\langle O\psi | = \langle \psi | O^{\dagger}, \tag{7}$$

or in other words

$$\langle O\psi | \phi \rangle = \langle \psi | O^{\dagger} | \phi \rangle = \langle \psi | O^{\dagger} \phi \rangle.$$
 (8)

A physical observable, i.e. a dynamical variable, must be represented by a linear operator O. Given a physical state ψ , where $\langle \psi | \psi \rangle = 1$, the "expectation value" of O in the state $|\psi\rangle$ is given by

$$\langle O \rangle = \langle \psi | O \psi \rangle. \tag{9}$$

Note that if O is Hermitian, i.e. $O = O^{\dagger}$, then $\langle O \rangle \in \mathbb{R}$ for any ψ .

1.2 Representation in a basis

In an orthonormal basis $|\alpha_i\rangle$ we have

$$|\psi\rangle = \sum_{i} |\alpha_{i}\rangle \langle \alpha_{i}| \psi\rangle = \sum_{i} c_{i} |\alpha_{i}\rangle$$
 (10)

so we can write

$$O|\psi\rangle = O\sum_{i} c_{i} |\alpha_{i}\rangle = \sum_{i} c_{i} O|\alpha_{i}\rangle$$
 (11)

$$= \sum_{ij} c_i |\alpha_j\rangle \langle \alpha_j| O |\alpha_i\rangle.$$
 (12)

Thus we can write $O|\psi\rangle$ in the basis as $\sum_j b_j |\alpha_j\rangle$ where $b_j = \sum_i O_{ji}c_i$ and

$$O_{ij} = \langle \alpha_i | O | \alpha_j \rangle \tag{13}$$

is called the matrix element.

There is a one-to-one map from vectors ψ to column vectors $\mathbf{c} = (c_1, \dots, c_n)^{\top}$ (where $n = \dim G$) such that $\psi = \sum_i c_i |\alpha_i\rangle$, as well as a map from operators O to $n \times n$ matrices $\hat{O} = (O_{ij})$. Thus we can write $G \cong \mathbb{C}^n$ (note that n is not necessarily finite). Note that given a vector ϕ represented by \mathbf{b} , we can write $\langle \phi | \psi \rangle = \mathbf{b}^{\dagger} \cdot \mathbf{c}$. Furthermore if $|\phi\rangle = O |\psi\rangle$ then $\mathbf{b} = \hat{O}\mathbf{c}$.

A Hermitian operator O corresponds to a Hermitian matrix \hat{O} , and similarly a unitary operator U corresponds to a unitary matrix \hat{U} . Thus given Hermitian O and unitary U we have $O_{ij} = O_{ji}^*$ and $\hat{U}\hat{U}^{\dagger} = \hat{1}$. Given two orthonormal bases $\{|\alpha_i\rangle\}$ and $\{|\alpha_i'\rangle\}$ we can always write $\hat{O}' = \hat{U}^{\dagger}\hat{O}\hat{U}$ where $U_{ij} = \langle \alpha_i | \alpha_j' \rangle$ and happens to be unitary. We can show this last statement:

$$(\hat{U}\hat{U}^{\dagger})_{ij} = \sum_{k} U_{ik} U_{jk}^{*} = \sum_{k} \langle \alpha_{i} | \alpha_{k}' \rangle \langle \alpha_{k}' | \alpha_{j} \rangle = \langle \alpha_{i} | \alpha_{j} \rangle = \delta_{ij}.$$
(14)

A little more on operators. We define

$$[A, B] = AB - BA$$
, the commutator, and (15)

$${A, B} = AB + BA$$
, the anti-commutator. (16)

Then we have

$$AB = \frac{1}{2}[A, B] + \frac{1}{2}\{A, B\} \tag{17}$$

$$=BA = -\frac{1}{2}[A,B] + \frac{1}{2}\{A,B\} \tag{18}$$

Notice that $\{A, B\}$ is Hermitian and [A, B] is anti-Hermitian $(O^{\dagger} = -O)$. Furthermore, if A and B are Hermitian then

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA \neq AB. \tag{19}$$

Finally we can split any operator O into a Hermitian part ζ_+ and an anti-Hermitian part ζ_- :

$$O = \frac{1}{2}(\zeta_{+} + \zeta_{i}), \quad \zeta_{+} = O + O^{\dagger}, \quad \zeta_{-} = O - O^{\dagger}.$$
 (20)

1.3 Onward to physics

The eigenvectors of a Hermitian operator yield a complete orthonormal basis. If A and B are Hermitian operators and [A,B]=0 then the operators yield a complete set of simultaneous eigenvectors (which form an orthonormal basis). When this happens we call A,B compatible observables.

In the hydrogen atom we have quantum numbers:

- principle quantum number $n=1,2,\ldots$ where $E\sim -1/n^2$, eigenvalues of the Hamiltonian H,
- angular momentum quantum number $\ell = 0, 1, \dots, n-1$, eigenvalues of L^2 ,
- magnetic quantum number $m = -\ell, \ldots, \ell$, eigenvalues of L_z ,
- spin quantum number $s = \pm 1/2$, eigenvalues of S_z .

We can show that

$$[H, L^2] = [L^2, L_z] = [H, L_z] = 0$$
 (21)

so that H, L^2, L_z , and S_z are compatible observables uniquely identified by their quantum numbers (n, ℓ, m, s) .

Generally, a complete set of compatible observables whose eigenvalues, or quantum numbers, uniquely label their common eigenvectors (resolving all degeneracies). Thus each $|\alpha_i\rangle$ in the corresponding orthonormal basis is labelled by the set of quantum numbers. Typically this complete set is provided by H and corresponding symmetry generators.