# EECS 16A Spring 2023

# Designing Information Devices and Systems I Discussion 6A

### 1. Circuit Components and Ohm's Law

(a) We will look at the I-V characteristics of different circuit components. For each of the components listed below, plot the  $I_{elem}-V_{elem}$  characteristic curves.



**Answer:** 



(b) Use Ohm's Law to find the missing component values in the circuits below. You may assume that each circuit is part of a larger circuit where there is a closed path for current to flow.



## **Answer:**

i. 
$$R = \frac{5V}{10A} = 0.5\Omega$$
  
ii.  $I = \frac{4V}{2\Omega} = 2A$   
iii.  $V = 2A \times 1\Omega = 2V$ 

ii. 
$$I = \frac{4V}{20} = 2A$$

iii. 
$$V = 2A \times 1\Omega = 2V$$

### 2. Passive Sign Convention and NVA Basics

The following question is a modified version of Spring 2022 Midterm 2 Question 1 Suppose we have the following circuit:



(a) Following passive sign convention, **label** the missing currents and the missing voltages for each element in the circuit, including the voltage source.

**Answer:** Following the passive sign convention (current flows into the terminal with a positive voltage), we have the missing labels:



(b) Write the KCL expression at node  $u_5$  in terms of currents  $I_3$ ,  $I_4$ , and  $I_6$  as labeled in the circuit diagram.

**Answer:**  $I_3$  flows into the node, and  $I_4$ ,  $I_6$  flow out of the node, so the KCL expression is

$$-I_3 + I_4 + I_6 = 0.$$

Any equivalent expressions (for example,  $I_3 - I_4 - I_6 = 0$ ,  $I_3 = I_4 + I_6$ , etc.) are acceptable.

(c) Find the voltage across  $R_4$ ,  $R_5$ , and  $R_6$  in terms of the node voltages  $u_3$ ,  $u_4$ , and  $u_5$ . Then use Ohm's law to express the currents across  $R_4$ ,  $R_5$ , and  $R_6$  in terms of node voltages and resistances.

#### **Answer:**

Solving for the voltages in terms of node voltages, we have:

$$V_4 = u_5 - u_4$$
$$V_5 = u_4 - u_3 = u_4$$
$$V_6 = u_5 - u_3 = u_5$$

Now for Ohm's law, we have the following:

$$I_4 = \frac{V_4}{R_4}$$

$$I_5 = \frac{V_5}{R_5}$$

$$I_6 = \frac{V_6}{R_6}$$

Combining the equations in terms of node voltages, we get the new set of equations in terms of node voltages and resistors:

$$I_4 = \frac{V_4}{R_4} = \frac{u_5 - u_4}{R_4}$$
$$I_5 = \frac{V_5}{R_5} = \frac{u_4}{R_5}$$
$$I_6 = \frac{V_6}{R_6} = \frac{u_5}{R_6}$$

(d) Write the KVL expression for the loop drawn in the circuit diagram in terms of voltages  $V_S$ ,  $V_1$ , and  $V_2$ .

**Answer:** If we travel in the loop, we will first meet the negative terminal of  $V_S$ , the positive terminal of  $V_1$ , and the negative terminal of  $V_2$ , respectively. So the KVL expression is

$$-V_S + V_1 - V_2 = 0.$$

Any equivalent expressions (for example,  $V_S - V_1 + V_2 = 0$ ,  $V_S + V_2 = V_1$ , etc.) are acceptable.