Graph Theory: Homework #7

Lin Hung Cheng B01902059

Problem 1

定義n維超立方(n-dimensionalhypercube)之點集為所有長度為n 的二進字串,而兩個頂點相鄰若且唯若它們的字串恰有一位不同。如果把頂點的二進字串看作是這些頂點在n 維空間中的座標, 那麼就容易看出Qn 其實就相當於是n 維空間中的單位立方塊, 故名。 證明對於n 2, Q_n 至少有 $2^{2^{n+2}}$ 種完美匹配。

設 $\mathbf{n} = \mathbf{m}$ 時, Q_n 至少有 $2^{2^{n-2}}$ 種完美匹配,則當 $\mathbf{n} = \mathbf{m} + 1$ 時,可以將 Q_{m+1} 分成2個 Q_m ,每一個 Q_m 都至少有 $2^{2^{m-2}}$ 種完美匹配,在二個 Q_m 不互相匹配的情況下, Q_{m+1} 至少有 $(2^{2^{m-2}})^2 = (2^{2^{m-1}})$ 種完美匹配。由歸納法得證,在 $\mathbf{n} \geq 2$,至少有 $2^{2^{n-2}}$ 種完美匹配

Problem 2

4.7 假設二分圖G 的二部份為X 和Y。如果X 中每個點的度數至少為2, 而且—N(S)— —S— 對所有S X 恆成立, 則G 最少有兩個不同的X-完美匹配。

若將定理4.7中的假設「每點的度數至少為2」改為「每點的度數至少為r」, 則可以得到什麼結論

Solution

同定理4.5的第一種證明。

第一種情況,v有r種選法,而對應的r種G'皆有完美匹配,因此就得到G至少有r個X-完美匹配。

第二種情況, G_1 有r個 X_1 -完美匹配,其中對 $\mathbf{x} \in S^*$ 皆有d(G1(x)) = d(G(x));而 G_2 至少有一個 X_2 -完美匹配,其中對 $\mathbf{x} \in X^*S^*$ 有可能d(G2(x)) < d(G(x)), 所以合起來G至少也有r個X-完美匹配

Problem 3

兩個人在圖G 上玩遊戲, 規則如下: 第一個人先選取任一點開始,之後兩人輪流選取一個未被選過、但和前一次對方選的點相鄰的點。無法繼續選取的人算輸。

試證明:若G 有完美匹配, 則第二個人有必勝策略; 否則第一個人有必勝策略。

Proof. 令第一個人為 p_1 ,第二個人為 p_2 。

若G有完美匹配,則當 p_1 每選一個 \mathbf{w} , p_2 選擇 \mathbf{w} 的匹配 \mathbf{x} ,可知只要 p_1 可以選擇一點, p_2 必可選擇對應的一點, p_2 必不敗(必勝)。

若G無完美匹配,則 p_1 選取不屬於G的最大匹配的點v,之後 p_2 每選一點w, p_1 選擇w的匹配x。

設 p_2 選一點 \mathbf{w} , p_1 無法找到匹配,則選過的點產生的路徑(\mathbf{v} ... \mathbf{w})是一個 \mathbf{G} 一可擴展路徑(\mathbf{v} \mathbf{n} w都不屬於匹配中的點),代表還可以擴張,與無法找到匹配的假設矛盾。

因此,只要 p_2 可以選擇一點, p_1 必可選擇對應的一點, p_1 必不敗(必勝)。

Problem 4

一個每行每列和都是1 的非負實數矩陣稱為雙重隨機矩陣(doubly stochasticmatrix),這樣的矩陣中若其元素為0 或1,則稱為置換矩陣(permutationmatrix)。試證明, 任一雙重隨機矩陣Q 都可以表示成Q = $c1P1+c2P2+\ldots+cmPm$, 其中 $c1, c2,\ldots,cm$ 是和為1 的非負實數, $P1, P2,\ldots,Pm$ 為置換矩陣。

Proof. 令G的行組成的點集為R, doubly stochastic matrix 為 M 設 所完美匹配,不失一般性,設 R有一子集r使 |N(r)|<|r| 根據doubly stochastic matrix的性質,屬於r行的元素和應為|r|,屬於N(r)列的元素和應為|N(r)|;因為r連接到所有非0的鄰居, $\sum_{i\in r,j\in N(r)}M_{ij}=|r|$ 。 而N(r)只連接到屬於r的鄰居, $\sum_{i\in r,j\in N(r)}M_{ij}\leq |N(r)|$ 。

此時 $\sum_{i \in r, j \in N(r)} M_{ij} \leq |N(r)| < |r| = \sum_{i \in r, j \in N(r)} M_{ij}$,矛盾,所以G有完美匹配。 找到M的完美匹配所對應的元素集S,若其中的最小值為v,則令P為位於S的元素值皆為1的matrix,可找到一個 doubly stochastic matrix M' 使 M = vP + (1-v)M'。再尋找M'的完美匹配……,直到 M_n 為permutation matrix。 因為M'至少比M少一個非零元素,必能找到 M_n 。

Problem 5

- (a) 證明任一圖G 中的一點集S 是獨立集若且唯若S bar是一個點覆蓋, 因此, α (G) + β (G) = -V (G)—。
- (b) 證明任一沒有孤立點的圖G 恆有a'(G) + b'(G) = -V(G)—。
- (c) 證明若二分圖G 沒有孤立點, 則 α (G) =b'(G)

Proof. (a)

 \Rightarrow

設Sbar不是一個點覆蓋,則G中至少有一邊 $e=\{x,y\}$, $x,y\notin V(\bar{s})$, 此時x, y相鄰且 $x,y\in S$, S非獨立集,矛盾。

 \Leftarrow

設S不是一個獨立集,則S會包含二點x, y 使 $(x,y) \in G(e)$, 此時 \bar{S} 不包含x, y, 無法覆蓋邊(x, y), 矛盾。 max |S| 會産生 min $|\bar{S}|$,即 α 和 β ,所以 α (G) + β (G) = |V(G)|。

考慮a'(G)以外的點集C,點集中的點互不相鄰,否則a'(G)加上兩個相鄰的點會產生更大的matching。 考慮b'(G),若使用a'(G)+C來覆蓋,則最小值為 $|a(G)|+|C| \leq |a(G)|+(|V(G)|-2a(G))=|V(G)|-a(G)$ 。 a'(G)+b'(G)=a'(G)+(|V(G)|-a'(G))=|V(G)|

若沒有孤立點,二分圖的minimum edge cover邊數 = minimum vertex cover點數,由(a)可知maximum independent set = minimum vertex cover,在二分圖中也等同於minimum edge cover的邊數,得證。