Décimo Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

30 de setembro de 2022

Sumário

1 Introdução

1 Introdução

Difracao de Fraunhofer

		Tabela de dados inicial		
3		les de difracao		
	3.1	Sistema com rede de difração conhecida		
	3.2	Sistema utilizando CD como rede de		
		difração		
4	Dec	composicao espectral		
		4.0.1 Tabela de cores		

Neste relatório, vamos discutir difração de fendas simples, redes de difração, e decomposição espectral.

Todos arquivos utilizados para criar este relatório, é o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Difracao de Fraunhofer

2.1 Tabela de dados inicial

Paquimetro	PrimeiroMinimo
$(0.10 \pm 0.05) mm$	$(1.55 \pm 0.05) cm$
$(0.20 \pm 0.05) mm$	$(1.15 \pm 0.05) cm$
$(0.30 \pm 0.05) mm$	$(0.50 \pm 0.05) cm$
$(0.40 \pm 0.05) mm$	$(0.40 \pm 0.05) cm$
$(0.50 \pm 0.05) mm$	$(0.35 \pm 0.05) cm$

2.2 Analise Teorica

E seu percentual de desvio foi de 10% aproximadamente.

Para prosseguirmos precisamos lembrar das seguintes relações:

$$a * \sin \theta = m\lambda$$

$$m = 1$$

$$a * \sin \theta = \lambda$$

$$\sin \theta = \frac{\lambda}{a}$$
(1)

Que nos dá uma relação linear se consideramos ao invés de a, consideramos seu inverso $\gamma=1/a$.

$$\sin \theta = \lambda \gamma \tag{2}$$

2.3 Tabela de dados estendida

a	1/a	y	x	$\sin \theta$
$(0.10 \pm 0.05) mm$	$(10.0 \pm 2)mm^{-1}$	$(1.55 \pm 0.05) cm$	$(217 \pm 5) cm$	(0.0071 ± 0.0005)
$(0.20 \pm 0.05) mm$	$(5.0 \pm 2) mm^{-1}$	$(1.15 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0053 ± 0.0005)
$(0.30 \pm 0.05) mm$	$(3.3 \pm 2)mm^{-1}$	$(0.50 \pm 0.05) cm$	$(217 \pm 5) cm$	(0.0023 ± 0.0005)
$(0.40 \pm 0.05) mm$	$(2.5 \pm 2)mm^{-1}$	$(0.40 \pm 0.05) cm$	$(217 \pm 5) cm$	(0.0018 ± 0.0005)
$(0.50 \pm 0.05) mm$	$(2.0 \pm 2)mm^{-1}$	$(0.35 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0016 ± 0.0005)

2.4 Grafico de $\sin \theta$ vs 1/a

Grafico de Sen(theta) por 1/a Autor: Henrique Pedro da Silva

Podemos ver de fato, que como esperado obtemos uma relação linear entre $\sin \theta$ e 1/a.

E o coeficiente angular da reta, encontrado foi de 717.4. Porém, com erro na ordem de 100.

Logo podemos afirmar que o comprimento de onda encontrado foi de 700 ± 100 nm. Que está dentro do esperado.

2.5 Difração de objeto mi- 3 croscópico

Nós medimos uma abertura de 3.1cm ou seja. Nosso x e y são os mesmos do caso da abertura de 0.1mm do paquímetro.

Logo, convenientemente pelo princípio de Babinet podemos reutilizar todos dados que obtivemos para a abertura de 0.1mm do paquimero.

Havíamos obtido os seguintes resultados:

$$a = (0.10 \pm 0.05) mm$$

$$\frac{1}{a} = (10.0 \pm 2)mm^{-1}$$

$$y = (1.55 \pm 0.05) cm$$

$$x = (217 \pm 5)cm$$

$$\sin \theta = (0.0071 \pm 0.0005)$$

$$\theta = (0.41 \pm 0.05) graus$$
(3)

Podemos também simplesmente usar a relação:

$$a = \frac{\lambda}{\sin \theta} \tag{4}$$

Que nos da: 0.09 ± 0.02 **mm**

Está dentro do esperado. Já que a mesma abertura do laser tinha sido observada com o paquímetro aberto em 0.1mm.

3 Redes de difração

3.1 Sistema com rede de difração conhecida

Obtivemos $Y_1 = (7.15 \pm 0.05)cm$ e $l = (20 \pm 1)cm$.

$$\theta_1 = \frac{Y_1}{l} = (0.358 \pm 0.007) rad$$
 (5)

Utilizando as seguintes relações:

$$d\sin(\theta) = m\lambda$$

$$f = \frac{1}{d} \tag{6}$$

Temos que $d=(1805\pm 8)nm$ e $f=(554\pm 5)\frac{nm}{mm}$

O valor do fabricante foi de $540 \frac{nm}{mm}$.

Então a ordem do erro seria aproximadamente 2%.

3.2 Sistema utilizando CD como rede de difração

Temos que $l=10.3\pm0.1cm$ e $Y_1=5.2\pm0.1cm$

Tirando das relacoes (6) temos:

$$d = 1404 \pm 5nm$$

$$f = 712 \pm 5\frac{nm}{mm} \tag{7}$$

O cd tem 545 fendas por mm. E encontrei o valor de 712 fendas por mm. Logo o erro seria de aproximadamente 30%.

4 Decomposicao espectral

Encontraremos o valor λ a partir da seguinte relação:

$$\lambda = d * \sin \arctan \left(\frac{Y_1}{l}\right) \tag{8}$$

Com o d'encontrado anteriormente de $1805\pm 8nm$, e valor de l $(40\pm 1)cm$

4.0.1 Tabela de cores

Cor	Y_1	λ
Azul	$(10\pm2)cm$	$(440 \pm 20) nm$
Verde	$(12\pm2)cm$	$(520 \pm 20) nm$
Amarelo	$(13\pm2)cm$	$(560 \pm 20) nm$
Vermelho	$(15\pm2)cm$	$(630 \pm 20) nm$

Os valores estão bem próximos aos valores reais. Com uma tendência a serem subestimados.

Isto provavelmente ocorreu devido ao erro d que ficou superestimado em relação ao valor real(de acordo com o fabricante).