Structural Entropic Difference a tree distance metric

Richard Connor Fabio Simeoni Michael Iakovos (Robert Moss)

Main Contributions

- new metric
 - over tree-structured data
 - strongly grounded in information theory
 - adaptable to any structured data
- bounded
 - gives results in [0,1]
- distance metric
 - symmetry, identity, triangle inequality
- directly and "efficiently" computable
 - not an approximation

talk outline

- description of the metric
- qualitative properties
- quantitative properties
- proofs

complexity and similarity

- intuition
 - complexity: think of information content
 - o compare, for two objects:
 - the sum of their complexities
 - C(A) + C(B)
 - the complexity of their union
 - C(AB)

Consider a perfect C

- if A and B are the same:
 - \circ C(A) = C(B) = C(AB)
- if A and B have nothing in common:
 - \circ C(AB) = C(A) + C(B)
- if A and B have some commonality:
 - \circ C(A), C(B) < C(AB) < C(A) + C(B)
 - varying continuously as A and B have more or less in common

given these properties:

$$\frac{C(AB)}{mean(C(A) + C(B))}$$

- ranges between
 - I, if A is identical to B, and
 - 2, if A and B have nothing in common

our "perfect" C (!)

- information content of a data structure:
 - based on navigable paths within the data
 - enter structure at a random point
 - navigate, emitting navigation token
 - leave randomly and reenter
- intuition:

information content of data structure

information content of emitted event stream

event emission....

```
<family>
  <surname>Smith</surname>
  <person>
        <name>Tom</name>
        <age>46</age>
   </person>
   <person>
        <name>Dick</name>
        <age>10</age>
        <shoeSize>37</shoeSize>
  </person>
</family>
Example event stream:
<person> <name> break <shoeSize> break <family> <person> <shoeSize>
  break <name> break <person> <age> break etc...
```

calculating information content

- information content of event stream
 - can be calculated using Shannon's entropy equation
 - can be calculated from structure of tree
- information content of object union
 - equated to the information content of the merged information streams
 - also calculated "statically" from tree structures

the real metric...

$$D(s,t) = \left(\frac{b^{H_b(s \cup t)}}{b^{mean(H_b(s), H_b(t))}}\right) - 1$$

Qualitative Properties

- it is bounded
 - range in [0,1]
- it is a distance metric
 - symmetry
 - (pseudo-) identity
 - triangle inequality
 - (see paper in proceedings...)
- continuity
 - small changes in input give small changes in result

SISAP code plagiarism data set

```
S(T(),Z(Y(),d(Y(),d(Y(),W(),c(),W()),c())))
P(0.400000059604645)
d(Y(), z(T(), b(2)), H())
p(b(-5), Q(a(),b(1)))
p(d(Y(), c(), d(Y())), K(Y(), c()))
(U(U(U(M(),X()),X()),X()),^{(b(1),b(-1))})
d(Y(),V(d(Y()),p(b(0),Q(a(),b(1)))),W())
K(Y(), Q(d(Y()),b(284)))
P(R(K(Y(),W()),P(16.0)),P(1.0))
p(d(Y(), c()), Q(a(),b(-1)))
S(T(),Z(Y(),K(Y(),d(Y(),c(),c())),b(0)))
J(I(8363.0),S(T(),V(H(),S(T(),A(W(),b(12))))))
J(K(Y(), R(K(Y(), d(Y())), W())), P(3.141592653589793))
A(V(U(M(),X()),W()),b(2))
d(Y(), S(T(), d(Y(), Z(Y(), d(Y())))))
```

Results on SISAP code examples:

Rank	Distance	Line no	Source
0			d(Y(), Z(Y(), W()), W(), d(Y(), W(), W(), Z(Y(), W()),
1	0.00	735	W(), d(Y(), U(M(),X()), W())))
			d(Y(), W(), W(), Z(Y(), W()), W(), d(Y(), U(M(),X()),
2	0.06	172608	(W())
			d(Y(), d(Y(), U(M(),X()), Z(Y(), W())), d(Y(), Z(Y(), W()))
3	0.07	94351	(W()))
4	0.08	128977	d(Y(), d(Y(), d(Y(), U(M(),X()), W()), W()))
			d(Y(), Z(Y(), W()), W(), d(Y(), U(W(),X()), d(Y(), Z(Y(), W())))
5	0.11	94338	(W()), W()))
6	0.11	99666	d(Y(), W(), d(Y(), d(Y(), U(M(),X()), d(Y(), W()))))
			d(Y(), W(), W(), W(), d(Y(), U(W(),X()), d(Y(), Z(Y(), U(W(),X())))
7	0.11	21014	(W()), W()))
8	0.11	176190	d(Y(), d(Y(), U(M(),X()), d(Y(), W())))
			d(Y(), W(), W(), d(Y(), U(W(),X()), d(Y(), Z(Y(), W()),
9	0.11	129005	(W()))
10	0.11	106485	d(Y(), d(Y(), d(Y(), U(M(),X())), W()))

Sensitivity

Efficiency

- naïve implementation calculates 225,000 tree comparisons in around a minute
 - 0.25 msec per comparison (from "cold")
- major cost is constructing fingerprint
 - fast indexing (eg AESA) requires
 - *n* fingerprint constructions
 - $\frac{1}{2}(n \times n)$ comparisons
 - fingerprint comparison is I-2 orders of magnitude faster than fingerprint construction

proofs

- Paper gives proofs of distance metric properties
 - symmetry
 - (pseudo)-identity
 - equivalence function = bisimilarity
 - triangle inequality
- inherent tension between boundedness and (non-trivial) triangle inequality
- we are not aware of any other tree functions which are bounded distance metrics

Conclusions

- new distance metric
- bounded, metric properties proved
- grounded in information theory
- efficient to calculate