Logical Agents

- Knowledge-based agents
- Logic in general
- Propositional logic
- Inference rules and theorem proving
- First order logic

Knowledge-based agents

 Inference engine
 → Domain-independent algorithms

 Knowledge base
 → Domain-specific content

- Knowledge base (KB) = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
- Then it can ask itself what to do answers should follow from the KB
- Distinction between data and program
- Fullest realization of this philosophy was in the field of expert systems or knowledge-based systems in the 1970s and 1980s

What is logic?

- Logic is a formal system for manipulating facts so that true conclusions may be drawn
 - "The tool for distinguishing between the true and the false" (Averroes)
- Syntax: rules for constructing valid sentences
 - E.g., $x + 2 \ge y$ is a valid arithmetic sentence, $\ge x2y + is$ not
- Semantics: "meaning" of sentences, or relationship between logical sentences and the real world
 - Specifically, semantics defines truth of sentences
 - E.g., $x + 2 \ge y$ is true in a world where x = 5 and y = 7

Propositional logic: Syntax

- Atomic sentence:
 - A proposition symbol representing a true or false statement
- Negation:
 - If P is a sentence, ¬P is a sentence
- Conjunction:
 - If P and Q are sentences, P ∧ Q is a sentence
- Disjunction:
 - If P and Q are sentences, P \(\times \) Q is a sentence
- Implication:
 - If P and Q are sentences, P ⇒ Q is a sentence
- Biconditional:
 - If P and Q are sentences, P ⇔ Q is a sentence
- \neg , \land , \lor , \Rightarrow , \Leftrightarrow are called *logical connectives*

Propositional logic: Semantics

- A model specifies the true/false status of each proposition symbol in the knowledge base
 - E.g., P is true, Q is true, R is false
 - With three symbols, there are 8 possible models, and they can be enumerated exhaustively
- Rules for evaluating truth with respect to a model:

```
\neg P is true iff P is false

P \land Q is true iff P is true and Q is true

P \lor Q is true iff P is true or Q is true

P \Rightarrow Q is true iff P is false or Q is true

P \Leftrightarrow Q is true iff P \Rightarrow Q is true and Q \Rightarrow P is true
```

Truth tables

 A truth table specifies the truth value of a composite sentence for each possible assignments of truth values to its atoms

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

 The truth value of a more complex sentence can be evaluated recursively or compositionally

Logical equivalence

 Two sentences are logically equivalent} iff true in same models: α ≡ ß iff α ⊨ β and β ⊨ α

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Entailment

 Entailment means that a sentence follows from the premises contained in the knowledge base:

$$KB \models \alpha$$

• Knowledge base KB entails sentence α if and only if α is true in all models where KB is true

$$- E.g., x + y = 4 entails 4 = x + y$$

Inference

- Logical inference: a procedure for generating sentences that follow from a knowledge base KB
- An inference procedure is sound if whenever it derives a sentence α, KB | α
 - A sound inference procedure can derive only true sentences
- An inference procedure is **complete** if whenever $KB \models \alpha$, α can be derived by the procedure
 - A complete inference procedure can derive every entailed sentence

Inference

- How can we check whether a sentence α is entailed by KB?
- How about we enumerate all possible models of the KB (truth assignments of all its symbols), and check that α is true in every model in which KB is true?
 - Is this sound?
 - Is this complete?
- Problem: if KB contains n symbols, the truth table will be of size 2ⁿ
- Better idea: use inference rules, or sound procedures to generate new sentences or conclusions given the premises in the KB

Inference rules

Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \longleftarrow \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array}$$

And-elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

Inference rules

And-introduction

$$\frac{\alpha, \beta}{\alpha \wedge \beta}$$

Or-introduction

$$\frac{\alpha}{\alpha \vee \beta}$$

Inference rules

Double negative elimination

$$\frac{\neg\neg\alpha}{\alpha}$$

Unit resolution

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

Resolution

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text{or} \quad \frac{\alpha \vee \beta, \beta \Rightarrow \gamma}{\alpha \vee \gamma}$$

Example:

 α : "The weather is dry"

β: "The weather is rainy"

γ: "I carry an umbrella"

Resolution is complete

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

- To prove KB |= α, assume KB ∧ ¬ α and derive a contradiction
- Rewrite KB Λ ¬ α as a conjunction of *clauses*, or disjunctions of *literals*
 - Conjunctive normal form (CNF)
- Keep applying resolution to clauses that contain complementary literals and adding resulting clauses to the list
 - If there are no new clauses to be added, then KB does not entail α
 - If two clauses resolve to form an empty clause, we have a contradiction and KB $\models \alpha$

Inference, validity, satisfiability

A sentence is valid if it is true in all models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model e.g., Av B, C

A sentence is unsatisfiable if it is true in no models e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

Complexity of inference

- Propositional inference is co-NP-complete
 - Complement of the SAT problem: $\alpha \models \beta$ if and only if the sentence $\alpha \land \neg \beta$ is unsatisfiable
 - Every known inference algorithm has worstcase exponential running time
- Efficient inference possible for restricted cases

Definite clauses

 A definite clause is a disjunction with exactly one positive literal

- Basis of logic programming (Prolog)
- Efficient (linear-time) complete inference through forward chaining and backward chaining

Forward chaining

 Idea: find any rule whose premises are satisfied in the KB, add its conclusion to the KB, and keep going until query is found

$$\begin{array}{c} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}$$

Backward chaining

```
Idea: work backwards from the query q:
to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q
```


Forward vs. backward chaining

- Forward chaining is data-driven, automatic processing
 - May do lots of work that is irrelevant to the goal
- Backward chaining is goal-driven, appropriate for problem-solving
 - Complexity can be much less than linear in size of KB

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Resolution is complete for propositional logic
- Forward, backward chaining are linear-time, complete for definite clauses