

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМ<u>У, ТЕХНОЛОГИЧЕСКОМУ И А</u>ТОМНОМУ НАДЗОРУ

(РОСТЕМЬ ЗОР)

МИНИСТЕРСТВО ЮСТИЦИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

10 ge καθρα 20202.

ЗАРЕГИСТРИРОВАНО

7/2 \_\_\_

Регистрационный № 61785 от "24" genash 2020.

Об утверждении Методики определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений)

В соответствии с пунктом 1 Положения о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденного постановлением Правительства Российской Федерации от 30 июля 2004 г. № 401 (Собрание законодательства Российской Федерации, 2004, № 32, ст. 3348; 2020, № 27, ст. 4248), пунктом 2 постановления Правительства Российской Федерации от 3 октября 2020 г. № 1596 «Об утверждении Правил определения величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии гидротехнического сооружения» (Собрание законодательства Российской Федерации, 2020, № 41, ст. 6438) приказываю:

- 1. Утвердить прилагаемую Методику определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений).
- 2. Настоящий приказ вступает в силу с 1 января 2021 г. и действует до 1 января 2027 г.

Врио руководителя

My orecent -

А.В. Трембицкий

#### **УТВЕРЖДЕНА**

приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. № 516

Методика определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений)

## І. ВВЕДЕНИЕ

- 1. Методика определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений) (далее Методика), разработана в соответствии с пунктом 2 постановления Правительства Российской Федерации от 3 октября 2020 г. № 1596 «Об утверждении Правил определения величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии гидротехнического сооружения» (Собрание законодательства Российской Федерации, 2020, № 41, ст. 6438).
- 2. В Методике применены понятия и термины с соответствующими определениями, регламентированные нормативными правовыми актами Российской Федерации, действующими в сфере безопасности гидротехнических сооружений.

## II. ОБЛАСТЬ ПРИМЕНЕНИЯ

- 3. Методика предназначена для расчета размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварий гидротехнических сооружений (далее размер вероятного вреда) собственниками гидротехнических сооружений (далее ГТС) или эксплуатирующими организациями (далее владельцы ГТС), а также для оценки органами исполнительной власти субъектов Российской Федерации, на территориях которых может быть причинен вероятный вред, соответствия расчета размера вероятного вреда указанной Методике.
- 4. Методика предназначена для расчета размера вероятного вреда, оцениваемого на основании прогнозных событий (вероятных аварий ГТС), вероятность возникновения которых оценивается в декларации безопасности ГТС.

Положения Методики не применимы к ранее произведенным расчетам,

утвержденным в составе действующей декларации безопасности ГТС.

- 5. Методика регламентирует процедуру расчета размера вероятного вреда в результате аварии ГТС.
- 6. Результаты расчетов, выполненные по Методике и сгруппированные согласно показателям социально-экономических последствий аварии ГТС, применяются при:

финансового обеспечения гражданской размера назначении ответственности за вред, причиненный в результате аварий ГТС, в том числе за счет обязательного страхования гражданской ответственности владельца вреда результате аварии причинение В объекта опасного в соответствии с Федеральным законом от 27 июля 2010 г. № 225-ФЗ «Об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте» (Собрание законодательства Российской Федерации, 2010, № 31, ст.4194; 2018, № 52, ct. 8102);

классификации чрезвычайной ситуации в соответствии с постановлением Правительства Российской Федерации от 21 мая 2007 г. № 304 «О классификации чрезвычайных ситуаций природного и техногенного характера» (Собрание законодательства Российской Федерации, 2007, № 22, ст. 2640; 2019, № 52, ст. 7981);

разработке деклараций безопасности ГТС и подготовке материалов для внесения сведений о ГТС в Российский регистр гидротехнических сооружений в соответствии со статьей 7 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений» (Собрание законодательства Российской Федерации, 1997, № 30, ст. 3589; 2016, № 27, ст. 4188);

организации деятельности в области защиты населения и территорий от чрезвычайных ситуаций в соответствии с Федеральным законом от 21 декабря 1994 г. № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» (Собрание законодательства Российской Федерации, 1994, № 35, ст. 3648; 2020, № 26, ст. 3999);

обосновании организационных и технических мер, направленных на предотвращение аварий ГТС, с учетом размера потенциальных расходов на возмещение ущерба, расходов на восстановление сооружений, а также эффекта от аварийных воздействий;

обосновании решений эксплуатационных и технико-экономических задач, направленных на снижение расходов по возмещению ущерба от аварий ГТС.

7. Методика применяется для расчетов размера вероятного вреда и величин, его составляющих.

- 8. Для объектов, в состав которых входят несколько ГТС, расчеты размера вероятного вреда должны выполняться для сценариев наиболее тяжелой и наиболее вероятной аварий из всех аварий, возможных на всех ГТС, входящих в гидроузел.
- 9. Методика не предназначена для определения упущенной выгоды и морального вреда в соответствии с положениями Гражданского кодекса Российской Федерации (Собрание законодательства Российской Федерации, 1994, № 32, ст. 3301; 2020, № 31, ст. 5010).

#### ІІІ. ОБЩИЕ ПОЛОЖЕНИЯ

- 10. Расчет размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, проводится в целях установления величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии ГТС.
- 11. Расчет размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, выполняется для сценария наиболее тяжелой аварии ГТС, а также для сценария наиболее вероятной аварии ГТС. Размер вероятного вреда рассчитывается в денежном выражении.
- 12. При определении сценариев аварий ГТС и расчете размера вероятного вреда не подлежат рассмотрению аварии ГТС, вызванные непреодолимой силой, если сила и интенсивность такого воздействия превышают значения, на которые рассчитано ГТС, в соответствии со сводом правил СП 58.13330.2012 «Гидротехнические сооружения. Основные положения. Актуализированная включенным в Перечень национальных редакция СНиП 33-01-2003», стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается закона «Технический регламент соблюдение требований Федерального о безопасности зданий и сооружений», утвержденный постановлением Федерации июля 2020 Российской OT 4 Правительства (Собрание законодательства Российской Федерации, 2020, № 29, ст. 4661), и утвержденным проектом ГТС. Не подлежат рассмотрению аварии, вызванные умыслом и противоправными действиями потерпевших или других лиц (за исключением владельца ГТС).
- 13. При определении вероятного вреда проводится расчет ущербов в результате аварии ГТС, денежные выражения которых группируются для каждого сценария аварии ГТС по показателям, характеризующим социально-экономические последствия аварий ГТС.

Основными составляющими по расчету размера вероятного вреда являются прогнозы:

количества людей, которые могут погибнуть и пропасть без вести, кроме

физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества людей, которые могут быть травмированы и нуждаться в госпитализации, кроме физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества людей, у которых могут быть нарушены условия жизнедеятельности;

количества работников ГТС, которые могут погибнуть и пропасть без вести при исполнении ими служебных обязанностей на территории ГТС;

количества работников ГТС, которые при исполнении ими служебных обязанностей на территории ГТС могут быть травмированы и нуждаться в госпитализации;

ущерба основным и оборотным фондам предприятий, кроме основных и оборотных фондов владельца ГТС;

ущерба готовой продукции предприятий, кроме продукции владельца ГТС;

ущерба элементам транспорта и связи, жилому фонду, имуществу граждан, сельскохозяйственному производству, лесному фонду от потери леса как сырья по рыночным ценам, от затопления и гибели лесов по фактическим затратам на восстановление леса, от сброса опасных веществ (отходов) в окружающую среду, а также ущерба, вызванного нарушением водоснабжения из-за аварий водозаборных сооружений;

расходов на ликвидацию последствий аварии.

- 14. При наличии у владельца ГТС двух и более ГТС размер вероятного вреда принимается равным максимальному размеру вероятного вреда, рассчитанному для каждого ГТС.
- 15. В случаях, когда претерпели существенные изменения расчетные параметры состояния гидротехнического сооружения и зоны причинения вероятного вреда, исходя из значения которых произведен расчет размера вероятного вреда и определена величина финансового обеспечения ответственности, размер вероятного вреда и величина финансового обеспечения ответственности определяются повторно.
- 16. Исходной информацией для расчета размера вероятного вреда являются:

обоснованные сценарии реализации наиболее тяжелой и наиболее вероятной аварии ГТС, в которых приведены данные о возможных зонах воздействия аварии ГТС;

значения величин негативных воздействий аварии ГТС;

сведения о вероятности каждого сценария возникновения аварии;

результаты расчета параметров зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС.

17. Исходные данные, необходимые для расчета размера вероятного вреда, который может быть причинен в результате аварий ГТС, включают:

числе чертежи,  $\Gamma TC$ , В TOM основные проекта материалы ГТС воздействия картографические материалы, сведения ПО оценке на природную среду (при наличии);

комплект документов декларирования безопасности ГТС, включая декларацию безопасности ГТС и критерии безопасности ГТС (при наличии);

результаты проектных, изыскательских, научно-исследовательских работ, эксплуатационные материалы и результаты обследований, оценок технического состояния ГТС (при наличии);

сведения о составе, классе опасности и объеме отходов, размещенных на накопителях жидких отходов промышленных предприятий;

основные показатели социально-экономического развития района расположения ГТС.

18. Выполнению расчета вероятного вреда предшествует обоснование сценариев реализации наиболее вероятной и наиболее тяжелой аварии ГТС, на начальном этапе которого производится идентификация опасностей ГТС, включающая:

предварительный анализ опасностей ГТС;

разработку перечня возможных процессов и событий, приводящих к аварии ГТС;

формирование перечня основных возможных сценариев аварий ГТС;

ранжирование основных сценариев возникновения и развития аварий и чрезвычайных ситуаций (далее - ЧС) на ГТС по уровню риска для обслуживающего персонала, населения, имущества физических и юридических лиц, природной среды;

выбор направлений деятельности по анализу риска аварий ГТС.

- 19. Предварительный анализ опасностей (далее ПАО) ГТС следует выполнять с целью выявления опасных элементов и конструкций ГТС и воздействий на них, способных привести к аварии анализируемого ГТС.
- 20. В ходе предварительного анализа опасностей следует учитывать природные опасности (ветровые, волновые, ледовые, температурные, сейсмические воздействия), техногенные опасности (наличие автомобильных или железнодорожных трасс на территории ГТС, производство взрывных работ и пр.) внутренние опасности, присущие самим ГТС (изменение свойств материалов ГТС и их оснований, статические и динамические нагрузки на сооружения и их основания от самих ГТС и их оборудования, суффозионные, деформационные и прочие негативные процессы), а также человеческий фактор (ошибки изысканий, проектирования, строительства и эксплуатации конкретного ГТС).

- 21. При идентификации опасностей аварий конкретного ГТС определяются природные и техногенные опасные факторы, свойственные району его расположения и характерные для данного ГТС, на стадии проектирования, строительства ГТС.
- 22. При анализе риска аварий ГТС также следует учитывать опасные факторы, влияющие на состояние ГТС в процессе эксплуатации, в том числе опасности, уже имевшие место при неполадках и авариях ГТС.
- 23. Перечень основных возможных сценариев аварий ГТС и их негативных воздействий определяется составом ГТС и особенностями их работы.

Рекомендуемый перечень типовых сценариев аварий ГТС для основных видов ГТС приведен в приложении № 1 к Методике. Рекомендуемый перечень типовых сценариев аварии ГТС для основных видов ГТС не учитывает все возможные особенности конкретных ГТС.

- В развитие данного перечня типовых сценариев аварий ГТС для конкретных ГТС в ходе декларирования их безопасности целесообразно разработать максимально полный перечень основных сценариев возникновения и развития аварий и их негативных воздействий, включающий все опасности, способные инициировать аварии анализируемого ГТС, учитывающий тип и конструкцию ГТС, его назначение, условия расположения и эксплуатации, природно-климатические, социально-экономические и природные условия территории, а также сведения об авариях и ЧС, имевших место на аналогичных сооружениях.
- 24. Для формирования перечня основных возможных сценариев аварий ГТС необходимо выделить основные конструктивные элементы ГТС, наиболее значимые для анализа и оценки риска. Детальность декомпозиции следует определять целями и задачами анализа риска аварий конкретного ГТС, а также степенью полноты и достоверности исходных данных о ГТС.
- 25. Перечень основных возможных сценариев аварий ГТС формируется по результатам идентификации опасностей аварий в ПАО.
- 26. При анализе риска аварий ГТС следует представлять сведения с качественными оценками вероятностей аварий и их последствий.
- 27. Основной задачей оценки вероятностей аварий ГТС является определение величин среднегодовых частот возникновения и развития аварий ГТС по всем сценариям, идентифицированным в ПАО.
- 28. В качестве исходных данных при оценке вероятностей (среднегодовых частот) аварий должны использоваться результаты расчетов ГТС и механического оборудования по методу предельных состояний.
- 29. Количественная оценка вероятностей аварий ГТС может выполняться в соответствии с требованиями национального стандарта Российской Федерации ГОСТ Р 22.2.09-2015 «Безопасность в чрезвычайных ситуациях.

Экспертная оценка уровня безопасности и риска аварий гидротехнических сооружений. Общие положения» (Переиздание)», утвержденного и введенного в действие приказом Федерального агентства по техническому регулированию и метрологии от 2 декабря 2015 г. № 2100-ст «Об утверждении национального стандарта» (М., ФГУП «Стандартинформ», 2019 год).

30. Качество анализа риска аварий ГТС на этапах эксплуатации, реконструкции, консервации и ликвидации ГТС должно соответствовать следующим требованиям:

процедура анализа риска аварий ГТС должна проводиться на основе проектной и исполнительной документации по ГТС с учетом результатов их обследований, а также сведений об авариях и повреждениях, имевших место на анализируемых сооружениях и их аналогах;

процедура анализа риска аварий ГТС должна проводиться экспертной группой, включающей персонал, ответственный за эксплуатацию ГТС, и специалистов в области анализа риска аварий ГТС;

идентификация опасностей аварий ГТС должна выполняться с учетом всех возможных природных и техногенных воздействий на анализируемое ГТС, способных привести к авариям ГТС и чрезвычайным ситуациям;

качественные оценки вероятности и последствий аварий ГТС должны выполняться экспертным путем с обработкой экспертных мнений;

количественные оценки вероятности и последствий аварий ГТС должны быть научно обоснованы и воспроизводимы;

неопределенности в оценке вероятности и последствий аварий ГТС должны быть зафиксированы и учтены в результатах анализа риска и расчета размера вероятного вреда от аварий ГТС.

31. Исходными данными для расчета параметров зон аварийного воздействия, полученными по результатам ПАО и ранжирования аварий ГТС по уровню риска, являются:

основные сценарии аварий анализируемого ГТС;

размеры проранов или отверстий, через которые при аварии ГТС начинается неконтролируемый сброс воды (жидких отходов, сточных вод);

отметки уровня воды в водохранилище (емкости накопителя) в начале аварийного процесса;

отметки уровня мертвого объема водохранилища;

иные показатели, необходимые для расчета параметров зон аварийного воздействия.

32. Для расчета размера вероятного вреда от затопления территории в результате прохождения волны прорыва (далее - ВП) в общем случае необходимо оценить зону затопления и гидродинамические параметры потока:

максимальные значения глубины и скорости потока в зоне затопления;

время от начала аварии до прихода в данную точку местности прорывной волны;

продолжительность затопления;

границы зоны затопления;

гидрографы излива и график падения уровня воды со стороны верхнего бьефа.

33. Расчет параметров ВП осуществляется методами математического моделирования с использованием уравнений Сен-Венана. Выбор используемой модели (одномерной, двухмерной (плановой) или гибридной) определяется рядом условий:

возможностью (невозможностью) предсказать направление движения потока;

отсутствием или наличием детальной информации в исходных данных, необходимых для расчета вероятного вреда (топографии, гидрологии, электронные карты);

отсутствием или наличием необходимости использования укрупненного, планшетного или детального методов расчета размера вероятного вреда.

При расчете параметров ВП допускается использовать одномерную модель мелкой воды при следующих условиях:

возможность предсказать направление движения ВП;

отсутствие детальной информации исходных данных, необходимых для расчета вероятного вреда (топографические карты масштаба 1:25000 и мельче, отсутствие детальной информации о дне реки), отсутствие электронных карт крупного масштаба;

существенная длина предполагаемой расчетной зоны возможного затопления и, как следствие, целесообразность использования метода укрупненных показателей для расчета размера вероятного вреда; извилистое узкое русло реки, не позволяющее провести достаточную дискретизацию по плановой модели - недостаточность количества ячеек сетки поперек русла (менее 3).

Использование двухмерной (плановой) модели мелкой воды допускается при следующих условиях:

невозможность предсказать заранее направление движения потока;

наличие детальной информации в исходных данных (топографические карты масштаба 1:25000 и крупнее, отсутствие детальной информации о дне реки), наличие электронных карт;

возможность использования технологии геоинформационной системы; сложное многорукавное русло.

Использование гибридной (одно-, двухмерной (квазидвухмерной) или двух-, трехмерной (квазитрехмерной) модели мелкой воды обосновано в том случае, когда необходимо определить параметры ВП для заданного участка более детально. В данном случае граничные условия для исследуемого детально участка следует принимать по результатам расчета по более упрощенной модели (одномерной для случая использования двухмерной модели или двухмерной - при использовании трехмерной модели), проведенного для всей расчетной области.

- 34. Расчет параметров ВП для проектируемых ГТС повышенного уровня ответственности, отнесенных к таковым в соответствии с пунктом 8 статьи 4 Федерального закона от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» (Собрание законодательства Российской Федерации, 2010, № 1, ст. 5; 2013, № 27, ст. 3477), следует выполнять с использованием апробированных программных средств.
- 35. Особенности расчета ВП при разрушении напорного фронта защитных дамб:

расчет должен проводиться до момента выравнивания уровней воды в водохранилище (емкости накопителя) и над затопленной территорией;

при расчете раскрытия прорана необходимо учитывать, что с некоторого момента времени течение в проране становится неподтопленным (для плотин русловых водохранилищ подтопленность истечения, как правило, бывает несущественной).

- 36. При расчетах ВП, возникающей при разрушении защитной дамбы во время половодий, паводков другого происхождения, ветровых нагонов и других наводнений, необходимо учитывать характерные для этих видов наводнений особенности временную изменчивость, влияние на ход процесса затопления (наложение гидрографа прорывного потока на гидрограф паводка). Расчет в этом случае необходимо проводить до осушения территории. При существенном влиянии на ход наводнения в целом возникновения аварии (при большой емкости защищаемой низины) следует параллельно рассчитывать течение над защищаемой территорией и в зоне за ее пределами таким образом, чтобы ход аварии мог быть описан с достаточной полнотой.
- 37. Особенности расчета ВП дамб, ограждающих каналы, проходящие в насыпи или полунасыпи:

при назначении сценариев аварий следует рассмотреть возможность персонала по принятию управляющих решений (отключение питающих канал насосных станций, закрытие затворов), определяющих масштабы аварии;

- в тех случаях, когда истечение из прорана будет неподтопленным, движение воды в канале можно прогнозировать с использованием одномерной схематизации.
- 38. Для плотин водохранилищ и ограждающих дамб накопителей жидких промышленных отходов следует рассматривать сценарии нарушения

фильтрационного режима из-за суффозии материала плотины (дамбы) или основания, образования трещин, разгерметизации противофильтрационных элементов.

При приближении фильтрационных вод к поверхности возникает подтопление местности, которое учитывается при расчете ущерба.

39. Результаты расчета по распространению волны прорыва в случае гидродинамической аварии плотин (дамб водохранилищ) следует нанести на топографическую карту до створа, в котором максимальный за время наводнения расход не превышает расчетный максимальный расход обеспеченности, устанавливаемый в зависимости от класса сооружений:

0,1% - для ГТС І класса;

1,0% - для ГТС II класса;

3,0% - для ГТС III класса;

5,0% - для ГТС IV класса.

На карту должны быть нанесены граница области затопления, а также изолинии четырех характеристик прорывного паводка, используемых при расчете размера вероятного вреда: максимальных за время аварии глубины и скорости, времени затопления местности после начала аварии ГТС и продолжительности затопления.

40. Аварии ГТС, приводящие к возникновению ЧС на определенной территории и акватории, разделяются на две основные группы:

аварии ГТС без прорыва напорного фронта;

аварии ГТС с прорывом напорного фронта в результате образования прорана или бреши.

41. К авариям ГТС без прорыва напорного фронта, приводящим к возникновению ЧС на определенной территории и акватории, относятся:

(накопителя) водохранилища переполнение постепенное недостаточной пропускной поступающего расхода, из-за превышения водохранилище (например, при поступлении способности ГТС или накопитель нерасчетного паводка, неполном открытии водосбросных отверстий из-за поломок затворов или ошибок персонала);

возникновение в водохранилище чрезвычайно больших волн (например, волн вытеснения из-за оползня берега, селевого паводка, волны прорыва из вышележащих водохранилищ, завальных озер или временных водоемов, подпруженных ледниками, волн от крупных взрывов);

аварии ГТС, связанные с повреждением отдельных элементов сооружений - водоводов, механического оборудования водозаборных и водосбросных сооружений.

42. К авариям ГТС с прорывом напорного фронта в результате образования прорана или бреши, приводящим к возникновению ЧС

на определенной территории и акватории, относятся:

образование прорана в сооружениях из грунтовых материалов (плотины, дамбы каналов, ограждающие дамбы хранилищ отходов) или бреши в бетонных или железобетонных сооружениях без аварийного повышения уровня воды со стороны верхнего бьефа гидроузла (уровня воды в хранилище опасных отходов, сточных вод);

образование прорана в сооружениях из грунтовых материалов или бреши в бетонных или железобетонных сооружениях при аварийном повышении уровня воды со стороны верхнего бьефа;

образование прорана в сооружениях из грунтовых материалов - ограждающих дамбах накопителей жидких промышленных отходов (золошлакоотвалы, шламохранилища, хвостохранилища, гидроотвалы, накопители промышленных стоков).

43. При аварии ГТС формируются следующие зоны аварийного воздействия:

верхний бьеф - акватория и участки примыкающей к водохранилищу (накопителю) территории выше створа ГТС;

территория ГТС - земельный участок и (или) участок акватории в границах, устанавливаемых в соответствии с земельным и водным законодательствами;

нижний бьеф - акватория и участки примыкающей к водохранилищу (накопителю) территории ниже створа ГТС.

# IV. ОПРЕДЕЛЕНИЕ РАЗМЕРА ВЕРОЯТНОГО ВРЕДА

- 44. Использование официальных статистических данных о численности и плотности городского и сельского населения субъектов Российской Федерации позволяет прогнозировать максимально возможное количество потерпевших, жизни или здоровью которых может быть причинен вред в результате аварии ГТС, на основе чего определяется страховая сумма по договору обязательного страхования гражданской ответственности владельца ГТС за причинение вреда в результате аварии ГТС.
- 45. В качестве исходной информации для проведения расчетов вероятного вреда используются следующие результаты расчета параметров последствий аварии ГТС.

Ниже гидроузла (дамбы):

общая площадь зоны затопления с нанесением ее границ на планшеты государственной топографической съемки, карты в масштабе и детализации, достаточных для расчета размера вероятного ущерба;

по характерным створам (не менее 3, исключая створ гидроузла и конечный створ зоны затопления): максимальная глубина затопления, время

добегания волны прорыва от начала образования прорана; максимальная скорость течения, продолжительность затопления.

Выше гидроузла (дамбы):

скорость снижения уровня воды; остаточный уровень воды после аварии ГТС;

объемы вытекающей и оставшейся воды;

время опорожнения водного объекта (водохранилища);

количество вынесенных наносов грунта из заиленного водохранилища.

- 46. Метод математического моделирования предполагает расчет натуральных показателей вероятного вреда от аварии ГТС без обследования, на базе доступной информации об освоенности территории зоны затопления и водохранилища. При этом используются данные хозяйственного и социального развития субъектов Российской Федерации, на территории которых располагаются рассматриваемый гидроузел и зона затопления.
- 47. При необходимости выполнения детальных или предварительных расчетов размера вероятного вреда или отдельных составляющих ущерба от аварий ГТС применяются методы детальной оценки или планшетный метод оценки вероятного вреда с обязательным указанием целей и задач такого расчета, и источников информации о социально-экономическом положении территории, попадающей в зону аварийного воздействия ГТС.
- 48. Выбор метода расчета размера вероятного вреда необходимо производить в зависимости от прогнозируемого масштаба вероятных аварий ГТС и их последствий:

метод детальной оценки, предназначенный для аварий ГТС, порождающих локальные последствия, и использующий данные экспедиционных исследований территории возможной чрезвычайной ситуации, вызванной аварией ГТС;

планшетный метод оценки, предназначенный для аварий ГТС, порождающих местные чрезвычайные ситуации, и использующий информацию об отдельных объектах, содержащуюся в геоинформационных базах данных и системах (далее - ГИС) без проведения экспедиционных исследований;

метод укрупненных показателей, предназначенный для аварий ГТС, порождающих чрезвычайные ситуации в масштабах региона и более, и использующий статистические данные экономического развития регионов и плотности расселения населения в этих регионах без проведения экспедиционных исследований.

49. При расчете размера вероятного вреда следует подробно рассматривать и учитывать составляющие, вносящие наибольший вклад в итоговый результат.

- 50. Общим требованием для расчета размера вероятного вреда в денежном выражении является исключение двойного счета, когда оценка одного и того же фактора включается в оценку различных последствий.
- 51. Основные составляющие ущерба от аварий ГТС следует рассчитывать на базе прогнозов следующих показателей:

количества людей, которые могут погибнуть и пропасть без вести, кроме физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества людей, которые могут быть травмированы и нуждаться в госпитализации, кроме физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества работников ГТС, которые могут погибнуть и пропасть без вести при исполнении ими служебных обязанностей на территории ГТС;

количества работников ГТС, которые при исполнении ими служебных обязанностей на территории ГТС могут быть травмированы и нуждаться в госпитализации;

ущерба основным и оборотным фондам предприятий, кроме основных и оборотных фондов владельца ГТС;

ущерба готовой продукции предприятий, кроме продукции владельца ГТС;

ущерба элементам транспорта и связи, жилому фонду, имуществу граждан,

сельскохозяйственному производству, лесному фонду от потери леса как сырья по рыночным ценам, затопления и гибели лесов, ущерба природной среде, а также ущерба, вызванного нарушением водоснабжения из-за аварий водозаборных сооружений, ущерба объектам водного транспорта и рыбному хозяйству;

расходов на ликвидацию последствий аварий ГТС.

52. Общая структура ущерба от аварий ГТС приведена в приложении № 2 основных составляющих перечень Конкретный Методике. возможных в результате аварий ГТС, для которого выполняется расчет размера вероятного вреда, разрабатывается на основе данной структуры по результатам анализа характера и величины опасных воздействий на жизнь и здоровье физических лиц, имущество физических и юридических лиц, природную среду с учетом особенностей социально-экономических показателей развития территории, попадающей в зону аварийного воздействия ГТС. Составляющие ущерба, невозможные при аварии конкретного ГТС, для которого выполняется приравниваются вероятного вреда, размера при соответствующем обосновании (например, если в зоне затопления отсутствуют населенные пункты, составляющая ущерба жилому и имуществу граждан равна нулю).

53. Основные этапы расчета размера вероятного вреда от аварий ГТС включают выполнение следующих действий:

идентификация зон аварийного воздействия ГТС в границах субъектов Российской Федерации;

определение основных параметров зон аварийного воздействия ГТС;

районирование зон затопления по степени поражения людей, разрушения промышленных и жилых объектов, транспортных сооружений;

обоснование исключения из расчета вероятного вреда ряда основных составляющих ущерба, не имеющих места в зонах аварийного воздействия ГТС;

расчет размеров составляющих ущерба, возможных в результате аварий ГТС: социального ущерба, имущественного (нанесенного имуществу юридических или физических лиц) ущерба и ущерба природной среде.

- 54. Расчет размеров составляющих ущерба от аварий ГТС производится на базе статистических данных о хозяйственном и социальном положении субъектов Российской Федерации, на территории которых располагаются рассматриваемый гидроузел и зоны возможного аварийного воздействия в верхнем и нижнем бъефах ГТС.
- 55. По данным официальной статистики должны быть определены следующие общие показатели социально-экономического положения субъекта Российской Федерации, территория которого попадает в зону затопления:

общая площадь территории субъекта Российской Федерации; средняя плотность населения субъекта Российской Федерации;

удельный вес городского и сельского населения субъекта Российской Федерации; плотность автомобильных дорог общего пользования с твердым покрытием в субъекте Российской Федерации на тысячу квадратных километров территории; балансовая стоимость основных производственных фондов субъекта Российской Федерации;

валовой региональный продукт за год в субъекте Российской Федерации.

- 56. Если авария ГТС может привести к ЧС межрегионального характера, размеры всех составляющих ущерба должны быть рассчитаны для всех субъектов Российской Федерации, попадающих в зону аварийного воздействия, и сгруппированы по каждой из составляющих ущерба от наиболее тяжелой и наиболее вероятной аварий ГТС.
- 57. Объекты, находящиеся в зоне аварийного воздействия, устанавливаются по топографическим картам местности в масштабе не более 1:100000.
  - 58. В зоне аварийного воздействия ГТС следует выявить:

места нахождения персонала ГТС;

места постоянного проживания и временного пребывания населения;

народно-хозяйственные объекты;

элементы транспорта и связи;

земли различного целевого использования.

59. На основании исходных данных об аварии ГТС и топографических планшетов, на которых нанесена зона аварийного воздействия ГТС ниже и выше гидроузла, должны быть выполнены следующие действия:

разбивка общей площади затопления на зоны сильных, средних и слабых разрушений жилых зданий, промышленных и дорожных сооружений;

определение границ и площади зоны катастрофических разрушений для расчета размера социального ущерба;

составление перечня затрагиваемых аварией. ГТС населенных пунктов и сбор сведений о количестве проживающего в них населения и характере жилых строений;

определение участков затрагиваемых аварией транспортных коммуникаций и линий связи;

выявление прочих специфических объектов;

выявление населенных пунктов и народнохозяйственных объектов, расположенных вблизи водохранилища;

определение длины судовых ходов, установление объектов водного транспорта, расположенных в акватории водохранилища;

выявление водозаборных устройств в водохранилище;

определение прочих видов водопользования в водохранилище.

60. Социальный ущерб следует рассчитывать исходя из максимально возможного общего числа погибших и пострадавших при аварии ГТС людей суммированием следующих показателей:

число погибших (безвозвратные потери  $N_{J11}$ ) и пострадавших (возвратные потери  $N_{J12}$ ) работников ГТС, которые при исполнении своих служебных обязанностей находились в зоне аварийного воздействия;

число погибших (безвозвратные потери  $N_{J21}$ ) и пострадавших (возвратные потери  $N_{J22}$ ) людей среди населения постоянного проживания, находившегося на территориях, попадающих в зоны аварийного воздействия;

число погибших (безвозвратные потери  $N_{J31}$ ) и пострадавших (возвратные потери  $N_{J32}$ ) людей среди населения временного нахождения на территориях, попадающих в зоны аварийного воздействия.

Размер социального ущерба  $N_{\it Л}$  в натуральном выражении рассчитывается по формуле:

$$N_{\Pi} = N_{\Pi 11} + N_{\Pi 21} + N_{\Pi 31} + N_{\Pi 12} + N_{\Pi 22} + N_{\Pi 32}.$$

Порядок расчета размера социального ущерба в денежном выражении приведен в пункте 74 Методики.

61. При расчете размера социального ущерба от аварии ГТС принимается, что:

основной вклад в размер социального ущерба от аварии ГТС вносит возможный социальный ущерб в зоне затопления в нижнем бьефе ГТС; в верхнем бьефе ГТС возвратные и безвозвратные потери людей не ожидаются;

оценка числа погибших и пострадавших не производится, если люди, находящиеся в зоне затопления, в которой время добегания волны прорыва превышает 24 часа, могут быть полностью эвакуированы;

в зоне катастрофических разрушений, когда отсутствует время для эвакуации людей, принимается, что аварийному воздействию подвергается 100% людей, попавших в зону затопления;

в зонах сильных, средних и слабых разрушений, когда эвакуация людей производится частично, принимается, что воздействию подвергается 75% людей, попавших в зону затопления.

Оценка тяжести людских потерь при аварии ГТС производится по показателям, приведенным в приложении № 3 к Методике.

62. Разделение зоны затопления на зоны сильных, средних и слабых разрушений жилых зданий при оценке числа погибших и пострадавших при аварии ГТС следует производить по приведенным в приложении № 4 к Методике критериям, используемым для объектов жилого фонда и имущества граждан. Отнесение территории к какой-либо зоне следует производить, если хотя бы один из критериев превосходит указанные значения. При этом для оценки числа погибших и пострадавших при аварии ГТС людей в зоне сильных разрушений дополнительно должна быть выделена ближайшая к створу гидроузла зона катастрофических разрушений, размеры которой определяются обязательным сочетанием двух факторов: зона располагается в пределах одного часа добегания ВП, и глубина затопления превышает 3 метра.

Площади зон разрушений оцениваются по результатам расчетов параметров ВП для рассматриваемого сценария аварии  $\Gamma$ TC с учетом указанных критериев.

63. Число погибших  $(N_{J11})$  и пострадавших  $(N_{J12})$  работников ГТС, которые при исполнении своих служебных обязанностей находились в зоне затопления, определяется численностью работников ГТС  $N_{pa6.\Gamma TC}$ , которые могут оказаться в зоне затопления при аварии ГТС.

Все работники ГТС, оказавшиеся в зоне затопления, считаются попавшими в ближайшую к створу гидроузла зону катастрофических разрушений, определяемую в соответствии с пунктом 62 Методики.

Общие потери среди работников ГТС принимаются равными 60% от численности персонала ГТС, находящегося в зоне катастрофических

разрушений; из них безвозвратные потери  $N_{\rm J11}$  составят 40% от общих потерь, возвратные потери  $N_{\rm J12}$  - 60% от общих потерь в соответствии с показателями, приведенными в приложении № 3 к Методике:

$$N_{JIII} = 0.6 \times 0.4 \times N_{pa6.\Gamma TC},$$

$$N_{JI12} = 0.6 \times 0.6 \times N_{pa6.\Gamma TC},$$

где:  $N_{\text{раб}.\Gamma TC}$  - численность персонала  $\Gamma TC$ , попадающего в зону катастрофических разрушений.

64. Число погибших ( $N_{\rm J21}$ ) и пострадавших ( $N_{\rm J22}$ ) среди населения постоянного проживания, находившегося на территориях, попадающих в зоны аварийного воздействия, определяется по среднестатистическим данным о субъекте Российской Федерации, на территории которого может произойти авария, если в зоне затопления отсутствуют городские и сельские поселения. В этом случае средняя плотность населения постоянного проживания Рзз, которое может оказаться в зоне затопления (рекреации, транспортное сообщение, временные работы), принимается равной 5% от средней плотности населения субъекта Российской Федерации  $P_{\rm cy6} = N_{\rm cy6}$  /  $S_{\rm cy6}$  и рассчитывается по формуле:

$$P_{33} = 0.05 \times N_{cy6} / S_{cy6}$$

где:  $N_{\text{суб}}$  - численность населения субъекта Российской Федерации, определяемая на год проведения расчета размера вероятного вреда;

 $S_{\text{суб}}$  - площадь территории субъекта Российской Федерации.

Общая численность населения постоянного проживания в зоне возможного затопления, определенная по средней плотности населения субъекта Российской Федерации, равна:

$$N_{33} = P_{33} \times S_{33},$$

где:  $S_{33}$  - общая площадь зоны затопления при аварии ГТС, полученная по результатам расчетов ВП.

Численность городского  $(N_{\text{гор}})$  и сельского  $(N_{\text{сел}})$  населения в зоне затопления определяется с учетом процентного соотношения городских и сельских жителей в субъекте Российской Федерации:

$$N_{rop} = N_{33} \times Y_{rop}$$

$$N_{\text{сел}} = N_{33} \times Y_{\text{сел}},$$

где: Y<sub>гор</sub> - удельный вес городского населения в общей численности населения субъекта Российской Федерации;

 $Y_{\text{сел}}$  - удельный вес сельского населения в общей численности населения субъекта Российской Федерации.

65. Численность населения постоянного проживания  $N_{i33}$  в i-ой зоне разрушений определяется по формуле:

$$N_{i33} = P_{33} \times S_i,$$

где:  $P_{33}$  - плотность населения постоянного проживания в ненаселенной зоне затопления;

і - номер зоны разрушений:

і = 1 - зона катастрофических разрушений;

і = 2 - зона сильных разрушений;

і = 3 - зона средних разрушений;

і = 4 - зона слабых разрушений;

границы зоны катастрофических разрушений определяются по пункту 62 Методики; границы зон сильных, средних и слабых разрушений согласно приложению № 4 к Методике;

 $S_i$  - площадь i-ой зоны разрушений.

66. Возможное число погибших и пострадавших среди населения постоянного проживания, находящегося в зонах катастрофических, сильных, средних и слабых разрушений в дневное или ночное время, в зависимости от сценария аварии ГТС, для которого выполняется расчет размера вероятного вреда, определяется по шкале тяжести людских потерь, приведенной в приложении № 3 к Методике, с учетом принятых допущений, указанных в пункте 61 Методики.

Значения  $N_{\rm JI21}$  и  $N_{\rm JI22}$  рассчитываются путем суммирования возможного числа погибших и пострадавших среди населения постоянного проживания по всем зонам разрушений.

67. Если в зону затопления при аварии ГТС попадают городские и сельские поселения, оценка численности городского и сельского населения постоянного проживания в зонах разрушений проводится на основе данных о численности и средней плотности населения городов и сельских поселений субъекта Российской Федерации, на территории которого может произойти авария ГТС.

Численность городского населения постоянного проживания  $N_{irop}$  в i-ой зоне разрушений определяется по формуле:

$$N_{irop} = \sum (N_{ropj} \times S_{i33 ropj}),$$

где:  $S_{\text{горј}}$  - площадь j-го города, определяемая по данным статистического сборника;

 $S_{iз3\ ropj}$  - площадь j-го города, попадающая в i-ую зону разрушений, определяемая по карте;

 $N_{\text{горј}}$  - численность населения j-го города,

j - номер города в i-ой зоне разрушений,  $j=1,\,2\,...\,n$ .

Численность жителей сельского населения постоянного проживания  $N_{\text{iсел}}$  в i-ой зоне разрушений определяется по формуле:

$$N_{icen} = \sum (N_{cenj} \times S_{i33 cenj}),$$

где:  $S_{\text{селј}}$  - площадь j-го сельского поселения, определяемая по карте;

 $S_{iз3\ cenj}$  - площадь j-го сельского поселения, попадающая в i-ую зону разрушений,

N<sub>селі</sub> - численность жителей j-го сельского поселения,

j - номер сельского поселения, j = 1, 2 ... n.

 $68.\ B$  отсутствие данных о численности жителей сельских поселений средняя плотность жителей сельских поселений принимается равной средней плотности сельского населения  $P_{\text{сел}}$  в субъекте Российской Федерации:

$$P_{cen} = P_{cvo} \times Y_{cen}$$
.

Численность жителей сельского населения постоянного проживания в і-ой зоне разрушений в этом случае определяется по формуле:

$$N_{\text{icen}} = P_{\text{cen}} \cdot \sum (S_{\text{iззселј}})$$
.

69. Численность населения постоянного проживания в і-ой зоне разрушений  $N_{iconst}$  рассчитывается следующим образом:

$$N_{iconst} = N_{irop} + N_{icen}$$

Величины  $N_{icen}$  определяются по формуле, приведенной в пункте 67 Методики, при наличии данных о численности жителей сельских поселений и по формуле, приведенной в пункте 68 Методики, при отсутствии таких данных.

70. Число погибших  $(N_{J1})$  и пострадавших  $(N_{J2})$  среди населения постоянного проживания оценивается в каждой из зон разрушений с помощью

шкалы, приведенной в приложении № 3 к Методике, и суммируется по всем зонам разрушений с учетом допущений, приведенных в пункте 61 Методики.

71. Число погибших  $(N_{\rm JI31})$  и пострадавших  $(N_{\rm JI32})$  среди населения временного нахождения на территориях, попадающих в зону затопления, оценивается при наличии предоставленных администрациями муниципальных образований данных о численности населения временного нахождения  $N_{\rm isp. hac.}$ , попадающего в зоны катастрофических, сильных, средних и слабых разрушений. К населению временного нахождения относятся:

отдыхающие санаториев, домов отдыха, детских лагерей, туристических баз;

сотрудники геологических партий, экологических служб; кочующие пастухи, рыболовы, охотники, оленеводы.

- разрушений численность населения катастрофических 72. B зоне принимается ПО данным, предоставленным нахождения временного администрациями муниципальных образований. В зонах сильных, средних и слабых разрушений численность населения временного нахождения может быть уменьшена на 25% согласно допущениям, принятым в соответствии с пунктом 61 Методики.
- 73. В отсутствие данных о характере и численности населения временного нахождения на территории аварийного воздействия ГТС значения составляющих  $N_{\rm J31}$  и  $N_{\rm J32}$  принимаются равными нулю.
- 74. Социальный ущерб в денежном выражении  $U_{\text{соц.}}$  рассчитывается по результатам определения числа погибших и пострадавших среди персонала ГТС, населения постоянного проживания и временного нахождения, попадающего в зоны катастрофических, сильных, средних и слабых разрушений при аварии ГТС.

В расчете социального ущерба в денежном выражении учитываются степень вероятного вреда, причиняемого здоровью пострадавших людей, попадающих в зоны катастрофических, сильных, средних и слабых разрушений, и предельные размеры страховых выплат в части возмещения вреда погибшим и пострадавшим в результате аварии ГТС.

75. Степень вероятного вреда, причиняемого здоровью пострадавших людей, принимается равной степени разрушений жилого фонда и имущества граждан:

в зоне катастрофических разрушений К1 = 0,9;

в зоне сильных разрушений K2 = 0,7;

в зоне средних разрушений К3 = 0,3;

в зоне слабых разрушений K4 = 0,1.

76. Социальный ущерб  $U_{\rm J11}$  персоналу ГТС, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$M_{\rm JI1} = C_{\rm cb~6/bo3bp} \times N_{\rm JI11} + K_1 \times C_{\rm cb~bo3bp} \times N_{\rm JI12},$$

где:  $C_{\text{св}\ 6/возвр}$  - размер страховой выплаты в части возмещения вреда лицам, понесшим ущерб в результате смерти человека, погибшего при аварии ГТС;

 $C_{\text{св}}$  возвр - размер страховой выплаты в части возмещения вреда, причиненного здоровью лицам, пострадавшим в результате аварии ГТС;

 $N_{\rm Л11}$  - число погибших среди персонала ГТС, определяемое по пункту 63 Методики;

 $N_{\rm Л12}$  - число пострадавших среди персонала ГТС, определяемое по пункту 63 Методики;

- $K_1$  степень вероятного вреда, причиняемого здоровью пострадавших людей в зоне катастрофических разрушений, определяемая по пункту 75 Методики.
- 77. Размер страховой выплаты С<sub>св б/возвр</sub> в части возмещения вреда лицам, понесшим ущерб в результате смерти человека, погибшего при аварии ГТС, и размер страховой выплаты С<sub>св возвр</sub> в части возмещения вреда, причиненного здоровью каждого пострадавшего в результате аварии ГТС, определяются в соответствии со статьей 6 Федерального закона от 27 июля 2010 г. № 225-ФЗ «Об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте» (Собрание законодательства Российской Федерации, 2010, № 31, ст.4194; 2016, № 11, ст. 1483).
- 78. Социальный ущерб  $И_{\rm J2}$  населению постоянного проживания, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$M_{\text{Л2}} = C_{\text{св б/возвр}} \cdot C_{\text{Л21}} + \sum (K_i \cdot C_{\text{св возвр}} \cdot N_{\text{Л22i}}),$$

где:  $N_{\rm J21}$  - число погибших в результате аварии ГТС среди населения постоянного проживания;

 $N_{\rm J22i}$  - число пострадавших среди населения постоянного проживания в іой зоне разрушений:

- і = 1 зона катастрофических разрушений;
- і = 2 зона сильных разрушений;
- i = 3 зона средних разрушений;
- і = 4 зона слабых разрушений;

 $K_{\rm i}$  - степень вероятного вреда, причиняемого здоровью пострадавших людей в  ${\rm i}$ -ой зоне разрушений, определяемая по пункту 75 Методики.

Величины  $N_{\rm J21}$  и  $N_{\rm J22i}$  для ненаселенных зон затопления определяются по пунктам 64 - 66 Методики, для населенных зон затопления - по пунктам 67 - 70 Методики.

79. Социальный ущерб  $U_{\rm J3}$  населению временного нахождения, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$\label{eq:energy_energy_energy_energy} \boldsymbol{M}_{\text{JJ3}} = \boldsymbol{C}_{\text{cbb/bo3bp}} \cdot \boldsymbol{N}_{\text{JJ31}} + \sum \left(\boldsymbol{K}_{\text{i}} \cdot \boldsymbol{C}_{\text{cbbo3bp}} \cdot \boldsymbol{N}_{\text{JJ32i}}\right),$$

где:  $N_{\rm J31}$  - число погибших в результате аварии ГТС среди населения временного нахождения;

 $N_{
m J32i}$  - число пострадавших среди населения временного нахождения в i-ой зоне разрушений.

80. Размер социального ущерба  $U_{\rm J}$  в денежном выражении рассчитывается путем суммирования полученных значений денежного выражения социального ущерба персоналу ГТС, населению постоянного проживания и населению временного нахождения:

$$M_{\Pi} = M_{\Pi 1} + M_{\Pi 2} + M_{\Pi 3}.$$

81. Имущественный ущерб Иимущ. рассчитывается по формуле:

$$M_{\text{имуш.}} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9,$$

где:  $И_1$ ,  $И_2$ ,  $И_3$ ,  $И_4$ ,  $И_5$ ,  $И_6$ ,  $И_7$ ,  $И_8$  и  $И_9$  - соответствующие виды ущербов, приведенные в приложении № 2 к Методике.

82. Ущерб промышленным предприятиям  $И_1$  от аварии ГТС рассчитывается по формуле:

$$\mathcal{N}_1 = \mathcal{N}_{oc} + \mathcal{N}_{ob} + \mathcal{N}_{rr},$$

где: Иос - ущерб основным фондам предприятий;

 ${\rm M_{06}}$  - ущерб оборотным фондам предприятий;

 ${
m M}_{
m rn}$  - ущерб готовой продукции предприятий.

83. Ущерб основным фондам предприятий  $U_{oc}$  от аварии ГТС рассчитывается по формуле:

$$M_{oc} = C_{\phi o H} \cdot \sum (S_i \cdot K_i \cdot \Pi_i),$$

где:  $C_{\phi o h}$  - балансовая стоимость основных фондов субъекта Российской Федерации, отнесенная к единице его территории, определяемая как:

$$C_{\phi o H} = C / S_{cy6}$$

где: C - балансовая стоимость основных фондов субъекта Российской Федерации;

 $\mathbf{S}_{\text{суб.}}$  - площадь территории субъекта Российской Федерации;

- і зона разрушений (1 сильных разрушений, 2 средних разрушений, 3 слабых разрушений);
- $K_i$  коэффициент степени утраты основных фондов в i-ой зоне разрушений; для основных фондов  $K_1=0.7;\ K_2=0.3;\ K_3=0.1;$
- $\Pi_{\rm i}$  коэффициенты концентрации основных фондов на территории  ${\rm i} ext{-}{\rm o}{\rm i}$  зоны разрушений:

$$\Pi_{\rm i} = P_{\rm i} / P_{\rm cy6},$$

где:  $P_i$  - плотность населения в i-ой зоне разрушений, определяемая по формуле:

$$P_i = N_{iconst} / S_i$$
.

Величины  $N_{iconst}$  рассчитываются по формуле, приведенной в пункте 69 Методики.

В случае, когда  $\Pi_1 = \Pi_2 = \Pi_3 = \Pi$ , формула приобретает вид:

$$M_{oc} = C_{\phi o H} \cdot \Pi \cdot \sum (S_i \cdot K_i)$$
.

84. Для определения величины  $C_{\phi o H}$  на год выполнения расчетов следует использовать коэффициент годового темпа роста основных фондов «А»:

$$A = C_x / C_{x-1,}$$

где:  $C_x$  - балансовая стоимость основных фондов субъекта Российской Федерации в год выпуска статистического сборника (x);

 $C_{x-1}$  - балансовая стоимость основных фондов субъекта Российской Федерации за предыдущий год (x-1).

Тогда величина  $C_{\phi o h}$  на год выполнения расчета вычисляется по формуле:

$$C_{\phi o H} = A^n \times C_x / S_{cy6}$$

где: n - число лет между годом (x) выпуска статистического сборника и годом выполнения расчетов вероятного вреда.

85. Оценка степени утраты основных фондов при аварии ГТС производится в зонах сильных, средних и слабых разрушений, границы которых определяются по шкале тяжести разрушений промышленных сооружений, приведенной в приложении № 5 к Методике. Отнесение территории к какой-либо зоне разрушений следует осуществлять из условия, чтобы хотя бы один из критериев превосходил указанные значения.

Коэффициент степени утраты основных фондов предприятий принимается равным:

в зоне сильных разрушений K1 = 0,7;

в зоне средних разрушений К2 = 0,3;

в зоне слабых разрушений КЗ = 0,1.

86. Ущерб оборотным фондам предприятий  $И_{o6}$  (стоимость сырья, запасных деталей, запасов топлива, тары) следует принимать в размере 5% от ущерба основным фондам предприятий:

$$M_{\text{of}} = 0.05 \times M_{\text{oc}}$$
.

87. Ущерб готовой продукции предприятий  $U_{rn}$  рассчитывается по формуле:

$$M_{\Gamma\Pi} = M_{\Gamma\Pi\varphioH} \cdot m \cdot \sum (S_i \cdot K_i \cdot \Pi_i),$$

где: т - срок хранения готовой продукции на предприятии;

- і зона разрушений основных фондов предприятий (1 сильных разрушений; 2 средних разрушений; 3 зона слабых разрушений);
- $S_i$  площадь i-ой зоны разрушений основных фондов предприятий, определенная по критериям шкалы тяжести разрушений промышленных сооружений, приведенной в приложении  $N_2$  5 к Методике;
- $K_i$  коэффициент степени утраты основных фондов в i-ой зоне разрушений согласно пункту 85 Методики;
- $\Pi_{\rm i}$  коэффициент концентрации основных фондов на территории і-ой зоны разрушений, определяемый по формуле, приведенной в пункте 83 Методики;

 $U_{\Gamma\Pi \phi o h}$  - валовой региональный продукт, произведенный за рабочий день в субъекте Российской Федерации и отнесенный к единице его территории, рассчитывается по формуле:

$$M_{\Gamma\Pi\Phi\ThetaH} = B_i / (S_{cy\delta} \times N_p),$$

где:  $B_i$  - валовой региональный продукт субъекта Российской Федерации на год проведения расчетов;

 $\mathbf{S}_{\mathrm{cy6}}$  - площадь территории субъекта Российской Федерации;

 $N_p$  - число рабочих дней в году (принимается равным 250 дней).

 $88.\ \Pi$ ри невозможности определить величину валового регионального продукта  $B_i$  субъекта Российской Федерации на момент выполнения расчетов следует пользоваться формулой:

$$\mathbf{B}_{i} = \mathbf{B} \times (\mathbf{E}_{\mathrm{Bp}\pi} / 100)^{\mathrm{n}},$$

- где: В валовой региональный продукт, произведенный в субъекте Российской Федерации на год, указанный статистическом сборнике;
- n число лет между годом, указанным в статистическом сборнике и годом выполнения расчета вероятного вреда;
- $E_{\rm врп}$  индекс физического объема валового регионального продукта в процентах к предыдущему году по отношению к году выпуска статистического сборника.
- 89. Оценка степени утраты готовой продукции производится для зон сильных, средних и слабых разрушений промышленных сооружений, определяемых по шкале тяжести разрушений промышленных сооружений, приведенной в приложении № 5 к Методике.
- 90. Ущерб элементам транспорта и связи  $И_2$ , попадающим в зону аварийного воздействия, рассчитывается по формуле:

$$\begin{split} &\mathcal{M}_2 = A \times [\Sigma_{a,\text{dop}} \left( H_{cj} \times K_{\text{nep}} \times K_{\text{perl}} \times \ L_i \times K_i \right) + \Sigma_{\text{ж.dop}} \left( H_{cj} \times K_{\text{nep}} \times K_{\text{perl}} \times \ L_i \times K_i \right) \\ &+ \Sigma_{\text{JI} \ni \Pi} \left( H_{cj} \times K_{\text{nep}} \times K_{\text{perl}} \times L_i \times K_i \right)], \end{split}$$

где: A – коэффициент темпов роста основных фондов, определяемый согласно пункту 84 Методики;

 $\Sigma_{\text{а.дор}}$  – сумма ущербов по автодорогам разного типа (j);

 $\Sigma_{\text{ж.дор}}-$  сумма ущербов по железным дорогам разного типа (j);

 $\Sigma_{\Pi\Pi}-$  сумма ущербов по линиям  $\Pi\Pi$  разного типа (j);

- $L_{\rm i}$  протяженность автомобильных дорог общего пользования, железных дорог и линий ЛЭП в i-ой зоне разрушений элементов транспорта и связи;
- $K_i$  степень повреждений элементов транспорта и связи в i-ой зоне разрушений, определяемая по пункту 92 Методики;
- $H_{cj}$  укрупненный норматив цены строительства элемента транспорта и связи, утверждаемый федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в сфере строительства, архитектуры, градостроительства, в соответствии с частью 11 статьи 8.3

Градостроительного кодекса Российской Федерации (Собрание законодательства Российской Федерации, 2005, № 1, ст. 16; 2017, № 31, ст. 4740);

 $K_{\text{пер}}$  – коэффициенты перехода от базового района (Московской области) к уровню цен субъектов Российской Федерации;

 $K_{\text{perl}}$  — коэффициенты, учитывающие изменение стоимости строительства на территориях субъектов Российской Федерации, связанные с климатическими условиями.

Ущерб элементам связи, не являющихся ЛЭП, тоннелям и т.д. учитывается в прочих, непрогнозируемых в расчете размера вероятного вреда ущербах.

91. Протяженность автомобильных дорог общего пользования в і-ой зоне разрушений элементов транспорта определяется по формуле:

$$L_i = S_i \times L_{y,n}, (i = 1, 2, 3),$$

где: S<sub>i</sub> - площадь i-ой зоны разрушений элементов транспорта и связи.

 $L_{y_{J}}$  - плотность автомобильных дорог общего пользования с твердым покрытием в субъекте Российской Федерации.

Протяженность железных дорог и линий ЛЭП в i-ой зоне разрушений элементов транспорта и связи устанавливается с использованием картографического материала территорий, подлежащих затоплению.

- 92. Для определения стоимости элементов транспорта и связи на год выполнения расчетов следует использовать коэффициент годового темпа роста основных фондов «А» и формулу, приведенные в пункте 84 Методики.
- 93. Оценка степени разрушения элементов транспорта и связи при аварии ГТС производится в зонах сильных, средних и слабых разрушений, границы которых определяются по шкале тяжести разрушений элементов транспорта и связи, приведенной в приложении № 6 к Методике.

Степень повреждений объектов транспорта и связи:

в зоне сильных разрушений K1 = 0.8;

в зоне средних разрушений К2 = 0,4;

в зоне слабых разрушений К3 = 0,1.

94. Ущерб жилому фонду и имуществу граждан И<sub>3</sub> рассчитывается по формуле:

$$M_3 = S_{\text{жил}} \times (U_{\text{пр}} + U_{\text{вр}})/2 \times [k_{\text{сел}} \times \sum (N_{\text{ісел}} \times K_i) + k_{\text{гор}} \times \sum (N_{\text{ігор}} \times K_i)],$$

где:  $S_{\text{жил.}}$  - общая площадь жилых помещений, приходящаяся в среднем

на одного жителя субъекта Российской Федерации;

Ц<sub>пр</sub> - средние цены на первичном рынке жилья (за 1 квадратный метр общей площади жилого помещения) в субъекте Российской Федерации;

Ц<sub>вр</sub> - средние цены на вторичном рынке жилья (за 1 квадратный метр общей площади жилого помещения) в субъекте Российской Федерации;

 $k_{\text{сел}}$  - коэффициент, учитывающий стоимость имущества одного сельского жителя (принимается  $k_{\text{сел.}}=1,25$ );

 $k_{\text{гор}}$  - коэффициент, учитывающий стоимость имущества одного городского жителя (принимается  $k_{\text{гор.}} = 1,5$ );

 $N_{\rm icen}$  - количество сельских жителей, проживающих в i-ой зоне разрушений жилого фонда, определенное в пунктах 64 - 68 Методики;

 $N_{\rm irop}$  - количество городских жителей, проживающих в i-ой зоне разрушений жилого фонда, определенное в пунктах 64 - 68 Методики;

 $K_i$  - степень разрушения жилого фонда и имущества граждан в i-ой зоне.

95. Степень разрушения жилого фонда и имущества граждан:

в зоне сильных разрушений K1 = 0.7;

в зоне средних разрушений K2 = 0,3;

в зоне слабых разрушений К3 = 0,1.

96. Расходы на ликвидацию последствий аварии  $И_4$  следует рассчитывать в размере 20% от суммы имущественного ущерба на территории населенных пунктов и промышленных объектов:

$$\mathcal{U}_4 = 0.2 \times (\mathcal{U}_1 + \mathcal{U}_2 + \mathcal{U}_3).$$

97. Ущерб сельскохозяйственному производству  $И_5$  в зоне затопления при аварии ГТС рассчитывается по формуле:

$$M_5 = 0.5 \times \beta_1 \times S_{cx} \times K_{HOPM cx}$$

где:  $\beta_1$  - доля поврежденных земель в общей площади сельскохозяйственных угодий, попадающих в зону затопления, принимается равной 40%;

 $K_{yд}$   $_{cx}$  — удельный показатель утраты стоимости земель сельскохозяйственного назначения;

 $S_{cx}$  - площадь земель сельскохозяйственного назначения, попадающих в зону возможного затопления, определяемая по формуле:

$$S_{cx} = S_{33} \times k_{cx},$$

где: S<sub>33</sub> - общая площадь затопления;

 $k_{\rm cx}$  - доля земель сельскохозяйственного назначения в субъекте Российской Федерации.

Величина удельного показателя утраты стоимости земель сельскохозяйственного назначения определяется как разность величин средних удельных показателей кадастровой стоимости земель первой группы использования  $K_{yд1}$ , куда входят земли сельскохозяйственных угодий, и земель четвертой группы использования  $K_{норм4}$ , куда входят поврежденные земли:  $K_{yd. cx} = K_{yd1} - K_{yd4}$ .

98. Ущерб лесному фонду от потери леса как сырья  $U_6$  следует рассчитывать по формуле:

$$M_6 = \beta_2 \times C_{\text{nec}} \times S_{\text{nec preb}} \times M_{\text{th}},$$

где:  $\beta_2$ - доля утраченных земель лесного фонда, подверженных затоплению (принимается ( = 0,15);

 $S_{\text{лес древ}}$  - площадь земель лесного фонда в зоне аварийного воздействия, на которых ведется заготовка древесины наиболее ценных пород, определяемая по формуле:

$$S_{\text{лес древ}} = S_{33 \text{ сильн разр}} \times k_{\text{лес}} \times k_{\text{древ}},$$

где:  $S_{33\ сильн\ разр}$  - площадь зоны сильных разрушений земель лесного фонда, определяемая по критериям: глубина затопления H>3 м, скорость потока V>2 м/с;

 $\mathbf{k}_{\text{лес}}$  - лесистость территории субъекта Российской Федерации;

 $k_{\rm древ}$  - процент территорий, занятых преобладающими товарными древесными породами в лесах субъекта Российской Федерации;

С<sub>лес</sub> - осредненная ставка платы за единицу объема деловой древесины, определяемая с учетом преобладающих пород лесных насаждений лесотаксового района, попадающего в зону затопления, и расстояний вывозки; принимается с учетом индексации ставок на год проведения расчета вероятного вреда в соответствии с постановлением Правительства Российской Федерации от 22 мая 2007 г. № 310 «О ставках платы за единицу объема лесных ресурсов и ставках платы за единицу площади лесного участка, находящегося в федеральной собственности» (Собрание законодательства Российской Федерации, 2007, № 23, ст. 2787; 2020, № 2, ст. 205);

 $\mathbf{M}_{\scriptscriptstyle \mathrm{T}\mathrm{J}}$  - средний корневой запас товарной древесины.

99. В отсутствие данных о среднем корневом запасе товарной древесины  $\mathbf{M}_{\text{тд}}$  следует применять следующие значения:

для таежных районов -  $M_{TA} = 130 \text{ м}^3/\text{га}$ ;

для районов со смешанными лесами -  $M_{\rm rg} = 90 \text{ м}^3/{\rm гa}$ ;

для прочих районов -  $M_{\text{тд}} = 50 \text{ м}^3/\text{га}$ .

100. Ущерб И<sub>7</sub>, вызванный нарушением водоснабжения, рассчитывается по формуле:

$$M_7 = C_{Bp} \times V_B \times (S_{AB} / S_{cy6}) \times (t_B / T_{rog}),$$

где:  $C_{вp}$  - ставка платы за забор (изъятие) водных ресурсов из поверхностных водных объектов;

 $V_{\scriptscriptstyle B}$  - объем использования свежей воды в субъекте Российской Федерации;

 $\mathbf{S}_{\text{суб}}$  - площадь территории субъекта Российской Федерации;

 $S_{AB}$  - площадь зоны аварийного воздействия, рассчитанная по формуле:

$$S_{AB} = S_{33} + S_{aB BG},$$

где:  $S_{33}$  - площадь зоны затопления;

 $S_{a B \ B G}$  - площадь зоны аварийного воздействия в верхнем бьефе;

 $t_{\rm B}$  - число дней, необходимых на восстановление водоснабжения, принимается равным 25 дням;

 $T_{\rm rog}$  - число дней в году расчета вероятного вреда.

101. Ущерб объектам водного транспорта  $\rm M_8$  на водохранилище рассчитывается в случае внесения водохранилища в перечень водных объектов, использующихся в целях водного транспорта. Ущерб объектам водного транспорта рассчитывается по формуле:

$$M_8 = \beta_3 \times C_{akb} \times S_{bt}$$

где:  $\beta_3$  - коэффициент, учитывающий возможные повреждения на объектах водного транспорта при неконтролируемой сработке водохранилища (принимается  $\beta_3=10$ );

 $C_{\text{акв}}$  - ставка платы за использование акватории водохранилища;

 $S_{\mbox{\tiny BT}}$  - площадь акватории водохранилища, используемая водным транспортом, определяется по формуле:

$$S_{\text{вт}} = B_{\text{усл}} \times L_{\text{вдхр}},$$

где:  $B_{ycn}$  - условная ширина судового хода (принимается  $B_{ycn}$  = 0,2 км);

L<sub>вдхр</sub> - длина водохранилища, определяемая по правилам эксплуатации

водохранилища.

102. Ущерб рыбному хозяйству И<sub>9</sub> рассчитывается при условии ведения на водохранилище рыбного промысла:

$$M_9 = \beta_4 \times V_{\text{рыб}} \times C_{\text{рыб}} \times T$$
,

где:  $\beta_4$  - коэффициент учета возможного ущерба рыбному хозяйству от аварии ГТС в нижнем бъефе (принимается  $\beta_4=1,2$ );

 $V_{\text{рыб}}$  - ежегодный вылов рыбы в водохранилище (принимается по данным, предоставленным местными органами власти);

 $C_{\text{рыб}}$  - рыночная стоимость пойманной рыбы на год выполнения расчета (определяется по данным Федеральной службы государственной статистики по ценам на отдельные группы продовольственных товаров);

Т - количество лет, необходимое для формирования нового ихтиоценоза.

103. Если данные о ежегодном вылове рыбы в водохранилище  $V_{\text{рыб.}}$  отсутствуют, ущерб рыбному хозяйству  $U_9$  следует рассчитывать по формуле:

$$M_9 = \beta_4 \times S_{\text{вдхр}} \times G \times C_{\text{рыб}} \times T,$$

где:  $S_{\text{вдхр}}$  - площадь зеркала водохранилища при нормальном подпорном уровне;

G - осредненная рыбопродуктивность водохранилища.

104. Вероятный ущерб природной среде в результате аварии ГТС должен включать все виды вероятного ущерба компонентам природной среды, которые могут иметь место при затоплении территории в нижнем бьефе и негативных воздействиях в верхнем бьефе ГТС, характерных для аварий ГТС гидроузлов, водохранилищ, накопителей жидких промышленных отходов.

При расчете вероятного вреда от аварий ГТС в качестве отдельной составляющей ущерб атмосферному воздуху и почвам не рассматривается.

Ущерб водным биологическим ресурсам учитывается при расчете размера ущерба рыбному хозяйству. Ущерб остальным объектам животного мира учитывается в прочих видах ущерба от аварии ГТС.

Остальные составляющие ущерба компонентам природной среды, не поддающиеся оценке в связи с отсутствием методик прогнозирования количества объектов животного и растительного мира, подлежащих уничтожению в результате вероятной аварии ГТС, также учитываются в прочих видах ущерба от аварии ГТС.

105. Ущерб природной среде  $U_{10}$  в результате аварии ГТС гидроузлов, дамб (плотин) водохозяйственных объектов рассчитывается по основным

составляющим по формуле:

$$\mathcal{U}_{10} = \mathcal{U}_{\text{nec}} + \mathcal{U}_{\text{вод}},$$

где: Илес - ущерб от затопления лесов;

 $И_{вод}$  - ущерб от сброса загрязняющих веществ в природные воды.

106. Ущерб от затопления лесов  $U_{\text{лес}}$  рассчитывается, если в зону затопления при аварии ГТС попадают земли лесного фонда. Размер  $U_{\text{лес}}$  рассчитывается по формуле:

$$M_{\text{nec}} = \alpha_1 \times S_{\text{nec } 33} \times K_{\text{нopm. nec}} \times \alpha_2$$

где:  $\alpha_1$  - доля утраченных земель из затопленных (принимается равной 0,15);

 $\alpha_2$  - доля земель лесного фонда в зоне затопления, подверженных нарушению, принимается равной 0,4;

 $K_{\text{норм. лес}}$  — средняя стоимость затрат по субъекту Российской Федерации на посадку лесных культур с использованием посадочного материала с закрытой корневой системой;

 $S_{\mbox{\tiny лес}\ 33}$  - площадь земель лесного фонда, попадающих в зону затопления, определяется по формуле:

$$S_{\text{nec }33} = S_{33} \times k_{\text{nec}},$$

где:  $S_{33}$  - площадь зоны затопления;

 $\mathbf{k}_{\text{nec}}$  - лесистость территории субъекта Российской Федерации.

107. Ущерб от сброса загрязняющих веществ (далее -3B) в природные воды  $U_{вод}$  (доминантный вид ущерба природной среде при гидродинамической аварии ГТС гидроузлов и плотин (дамб) водохозяйственных объектов) складывается из трех основных составляющих:

$$M_{\text{вод}} = M_{\text{ст}} + M_{\text{ск}} + M_{\text{нп}},$$

где:  $И_{cr}$  - ущерб природным водам в результате смыва волной прорыва загрязняющих веществ с селитебных территорий;

 ${
m M_{ck}}$  - ущерб природным водам в результате затопления и разрушения элементов систем канализации;

 $U_{\rm нп}$  - ущерб от сброса нефтепродуктов из разрушенного при аварии ГТС оборудования гидроэлектростанций или предприятий и хранилищ нефтепромышленного комплекса.

108. Ущерб  $И_{cr}$  природным водам в результате смыва волной прорыва загрязняющих веществ с селитебных территорий:

$$M_{cr} = \sum (M_{icr} \times C_i) \times K_{or} \times K_{cp}$$

где: 
$$i - вид 3B (i = 1, 2 ... n);$$

 $M_{\rm icr}$  – масса сброса і-го 3В в природные воды при смыве с селитебных территорий, т;

 $C_i$  — ставка платы за сброс 1 тонны і-го 3В, определяемая в порядке, установленном пунктом 17 Правил исчисления и взимания платы за негативное воздействие на окружающую среду, утвержденных постановлением Правительства Российской Федерации от 3 марта 2017 г. № 255 (Собрание законодательства Российской Федерации, 2017, № 11, ст. 1572; 2020, № 5, ст. 527), руб./т;

 $K_{\rm or}$  — повышающий коэффициент к ставкам платы для особо охраняемых природных территорий;

 $K_{cp}$  — коэффициент к ставкам платы за сброс ЗВ, превышающих разрешения на сброс.

109. Основными загрязняющими веществами, сброс которых наиболее опасен для природных вод при смыве с селитебных территорий, являются:

взвешенные вещества;

нефтепродукты;

органические вещества (показатель БПК20).

- 110. Удельный вынос каждого из загрязняющих веществ в результате смыва с селитебных территорий (масса 3В, смываемая с единицы площади селитебных территорий, попадающих в зону затопления) принимается равным 20% от годового удельного выноса 3В с селитебных территорий с дождевым стоком, приведенного в приложении № 7 к Методике.
- 111. Масса сброса 1-го 3В в природные воды  $M_{i}$  ст при смыве с селитебных территорий рассчитывается по формуле:

$$M_{i cr} = 0.2 \times M_{i y \mu cr} \times S_{cr},$$

где:  $M_{i\ y_{\mbox{\scriptsize уд}\ cT}}$  - удельный вынос 3B с селитебных территорий с дождевым стоком за год по данным, приведенным в приложении № 7 к Методике;

 $S_{\rm cr}$  - общая площадь селитебных территорий, попадающих в зону затопления.

112. Если селитебные территории, попадающие в зону затопления, существенно различаются по плотности населения и уровню благоустройства, оценку массы сброса каждого из 3В в природные воды следует выполнять

раздельно по каждой из селитебных территорий с последующим суммированием полученных результатов по каждому ЗВ.

Для селитебных территорий городов при плотности населения 100 чел/га и более удельный вынос 3В с селитебных территорий следует принимать по данным, приведенным в приложении № 7 к Методике.

Для городов при плотности населения менее 100 чел./га удельный вынос взвешенных веществ следует принимать на 20% больше по сравнению с данными, приведенными в приложении № 7 к Методике.

113. Ущерб  $И_{ck}$  природным водам в результате затопления волной прорыва элементов систем канализации рассчитывается по формуле:

$$M_{c\kappa} = \sum (M_{ic\kappa} \times C_i) \times K_{ot} \times K_{cp} \times K_{don}$$

где: і-й вид ЗВ, поступающего в природные воды в результате затопления элементов систем канализации;

 $M_{\rm ick}$  — масса i-го 3B, поступающего в природные воды в результате затопления элементов систем канализации, т;

 $C_{i}$ ,  $K_{or}$ ,  $K_{cp}$ ,  $K_{don}$  – аналогично пункту 108 Методики.

Основными ЗВ, сброс которых наиболее опасен для природных вод при затоплении элементов систем канализации, являются:

взвешенные вещества;

органические вещества (показатель БПК<sub>5</sub>);

азот аммонийных солей;

фосфор фосфатов.

114. Масса і-го загрязняющего вещества  $M_i$  <sub>ск</sub>, поступающего в природные воды в результате затопления элементов систем канализации, рассчитывается по формуле:

$$M_{i c\kappa} = 0.25 \times M_{i y J c\kappa} \times N_{33} \times T_{BOCCT}$$

где:  $M_{i\ yд\ c\kappa}$  - удельное количество 3B, поступающих в природные воды в результате затопления элементов систем канализации, принимается по данным, приведенным в приложении № 8 к Методике;

 $N_{33}$  - численность населения в зоне затопления;

 $T_{\text{восст}}$  - время восстановления работы систем канализации после аварии (принимается равным 25 суткам).

Коэффициент 0,25 учитывает наличие в зоне затопления неканализованных районов и степень утраты элементов систем канализации.

115. Ущерб  $И_{\rm нп}$  от сброса нефтепродуктов из разрушенного при аварии ГТС оборудования ГЭС, рассчитывается, если по сценарию аварии ГТС ожидаются разрушения. Размер  $И_{\rm нп}$  рассчитывается по формуле:

$$M_{\text{HII}} = \sum (M_{\text{HII}} \times C_{\text{HII}}) \times K_{\text{ot}} \times K_{\text{cp}} \times K_{\text{доп}},$$

где:  $M_{\text{нп}}$  — масса нефтепродуктов, содержащихся в оборудовании, расположенном на площадке ГТС и подлежащем разрушению при аварии, т;

 $C_{\mbox{\scriptsize HII}}$  — ставка платы за сброс 1 т нефтепродуктов в природные воды, определяемая аналогично пункту 108 Методики.

 $K_{\text{от}},\,K_{\text{ср}},\,K_{\text{доп}}$  – аналогично пункту 108 Методики.

116. Ущерб природной среде  $U_{10}$  в результате аварии хранилищ промышленных отходов (отходов шламонакопителей, шламохранилищ, золошлакоотвалов, накопителей сточных вод) в результате аварии ГТС рассчитывается как сумма ущерба по компонентам природной среды по формуле:

$$M_{10} = M_{\rm B} + M_{\rm II} + M_{\rm F} + M_{\rm ob},$$

где:  $И_{\rm B}$  – ущерб, нанесённый поверхностным водам (водотокам, водоёмам);

И<sub>п</sub> – ущерб, нанесённый почвам, земле недрам;

 $\rm {\it H}_{\scriptscriptstyle \Gamma}$  – ущерб, нанесённый подземным (в т.ч. грунтовым) водам;

 $M_{ox}$  – ущерб, нанесённый охотничьим ресурсам.

Ущерб, нанесённый природным и природно-антропогенным объектам, растительному, животному миру (за исключением ущерба охотничьим ресурсам), и прочим компонентам природной среды, учитываются в составе прочих, не прогнозируемых при проведении расчета размера вероятного вреда ущербов ( $U_{11}$ ), рассчитываемых по формуле, приведенной в пункте 123.

117. При определении степени загрязнения почвы принимается, что вся масса вредных веществ из профильтровавшейся с поверхности жидкости остается в почвенном слое и распределяется равномерно по глубине слоя и площади затопления.

При расчете не учитывается, что часть вредных веществ из профильтровавшихся стоков, не задерживаясь в почвенном слое, попадает в грунтовые воды.

118. При определении параметров загрязнения поверхностных водоемов необходимо принимать массу вредных веществ, содержащихся в вытекшей или профильтровавшейся из хранилища (накопителя) жидкости, равномерно распределенную:

для замкнутых поверхностных водоемов - по всему объему водоема; для проточных поверхностных водоемов - по сечению водоема.

119. Ущерб, нанесенный поверхностным водам ( $И_{\scriptscriptstyle B}$ ) и подземным водам ( $И_{\scriptscriptstyle \Gamma}$ ), определяется исходя из массы поступающих в них 3В как соответствующая плата за сброс 3В с учетом экологической ситуации по бассейнам рек и морей региона договора водопользования.

Ущерб, который может быть нанесен поверхностным и подземным водам, рассчитывается как размер платы за сверхлимитный сброс по формуле:

$$M_{\text{B}} = \sum (M_{\text{i cT}} \times C_{\text{i}}) \times K_{\text{oT}} \times K_{\text{cp}} \times K_{\text{доп}},$$

 $M_{i\ cr}$  — масса сброса i-того загрязняющего вещества в природные воды при смыве с селитебных территорий и с территории ГТС, т;

Сі, Кот,  $K_{cp}$ ,  $K_{доп}$  — аналогично пункту 108 Методики.

120. Ущерб, нанесенный почвам ( $И_n$ ) в результате несанкционированного размещения отходов, рассчитывается по формуле:

$$M_n = \sum (M_i \times C_i) \times K_{cp} \times K_{don}$$

где: i - класс опасности отходов (i=1,2...n);

 $M_{\rm i}$  — фактическая масса отхода і-го класса опасности, т, определяемая исходя из объема отхода, вытекающего из накопителя при аварии;

 $C_i$  — базовый норматив платы за размещение отхода применяемый в зависимости от класса опасности, руб./т;

 $K_{cp},\,K_{доп}-$  аналогично пункту 108 Методики.

121. Ущерб охотничьим ресурсам ( $U_{ox}$ ) рассчитывается укрупненно, с использованием методики, утвержденной приказом Министерства природных ресурсов и экологии Российской Федерации от 8 декабря 2011 г. № 948 «Об утверждении методики исчисления размера причиненного вреда, (зарегистрирован Министерством юстиции ресурсам» охотничьим Российской Федерации 26 января 2012 г., регистрационный № 23030; Росссийская газета, 2012, № 20) с изменениями, внесенными приказами Министерства природных ресурсов и экологии Российской Федерации от 22 июля 2013 г. № 252 (зарегистрирован Министерством юстиции регистрационный сентября 2013 г., Федерации 25 Российской № 30032; Российская газета, 2013, № 232), от 17 ноября 2017 г. № 612 Российской Министерством юстиции (зарегистрирован 31 января 2018 г., регистрационный № 49845; официальный интернет-портал правовой информации www.pravo.gov.ru, 1 февраля 2018 г., № 0001201802010026).

Сведения о численности объектов животного мира принимаются на основе информации, полученной из ежегодного доклада о состоянии природной среды субъекта Российской Федерации. В случае отсутствия в нем соответствующих сведений или недостаточности для производства расчета размера вероятного вреда, ущербы животному миру относятся к прочим видам ущербов.

- 122. Общий ущерб рассчитывается суммированием размеров имущественного ущерба и ущерба природной среде с учетом прочих видов ущерба непредвиденных расходов, которые невозможно оценить заранее.
- 123. Прочие виды ущерба  $И_{11}$  следует принимать в размере 10% от суммы имущественного ущерба и ущерба природной среде:

$$M_{11} = 0,1 \times (M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9 + M_{10})$$

В прочие виды ущерба, входят не поддающиеся оценке на стадии расчета вероятного вреда от аварий ГТС составляющие ущерба:

ущерб недрам;

ущербы окружающей среде от накопителей отходов промпредприятий, бензозаправок, хранилищ вредных веществ и т.д., в том числе ущерб от загрязнения (засорения) отходами от разрушенных строений;

ущерб почвам, не относящимся к почвам сельскохозяйственных и лесных угодий; ущерб объектам растительного мира, не относящимся к объектам сельского и лесного хозяйства;

ущерб объектам животного мира, не относящимся к объектам сельскохозяйственного производства, рыболовства и охотничьим ресурсам.

124. Общий ущерб  $И_{\text{общ}}$  рассчитывается по формуле:

$$M_{\text{obij}} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9 + M_{10} + M_{11}$$
,

где:  $И_1$ ,  $И_2$ ,  $И_3$ ,  $И_4$ ,  $И_5$ ,  $И_6$ ,  $И_7$ ,  $И_8$ ,  $И_9$ ,  $И_{10}$  и  $И_{11}$  - соответствующие виды ущербов, приведенные в приложении № 2 к Методике.

125. Размер вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, рассчитывается в денежном выражении как сумма двух показателей - социального ущерба и общего ущерба. Размер социального ущерба рассчитывается по формуле, приведенной в пункте 80 Методики. Размер общего ущерба от аварии ГТС рассчитывается по формуле, приведенной в пункте 124 Методики.

### V. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТА ВЕРОЯТНОГО ВРЕДА

126. По результатам расчетов вероятного ущерба оформляется Расчет вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварий ГТС (далее - Расчет вероятного вреда), Расчет вероятного вреда оформляется в четырех экземплярах.

127. Расчет вероятного вреда должен содержать:

наименование владельца ГТС, его реквизиты; дату составления;

основание для проведения расчета;

наименование и реквизиты организаций, привлеченных владельцем ГТС к расчету;

указания на используемые нормативные документы и методические рекомендации, обоснование их использования;

перечень использованных исходных данных с указанием источников их получения; принятые допущения; порядок расчета;

описание и обоснование принятых к расчету сценариев аварий гидротехнического сооружения;

оценки вероятного числа погибших и пострадавших при аварии ГТС людей среди персонала ГТС, населения постоянного проживания и населения временного нахождения;

расчет размера социального ущерба от аварий ГТС в денежном выражении;

расчет размера основных составляющих имущественного ущерба от аварий ГТС в денежном выражении;

расчет размера ущерба природной среде от аварии ГТС в денежном выражении;

расчет размера общего ущерба от аварий ГТС в денежном выражении; расчет размера вероятного вреда от аварий ГТС в денежном выражении.

128. Приложения к Расчету вероятного вреда должны включать:

план ГТС;

планы зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС;

результаты расчетов параметров зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС;

прочие сведения по усмотрению владельца ГТС, в том числе поперечные разрезы ГТС, аварии которых приняты к расчету вероятного вреда.

Приложение № 1 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 экологической 2020 г. № 516

### РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ ТИПОВЫХ СЦЕНАРИЕВ АВАРИЙ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ ДЛЯ ОСНОВНЫХ ВИДОВ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

| Тип сценария аварии                                                                                                    | Вид ГТС                                                                                                                                                                                                                    | Характерные признаки<br>аварии ГТС | Негативные воздействия аварии ГТС                     |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|
| 1                                                                                                                      | 2                                                                                                                                                                                                                          | 3                                  | 4                                                     |
| Разрушения напорного фронта, сопровождающиеся образованием прорана,                                                    | фронта, водохранилищ сопровождающиеся образованием прорана, в который происходит излив воды или жидких отходов, неконтролируемый персоналом ГТС, а также неконтролируемый перелив через гребень плотины из-за переполнения |                                    | 1. Опорожнение водохранилища. 2. Затопление местности |
| излив воды или жидких отходов, неконтролируемый персоналом ГТС, а также неконтролируемый перелив через гребень плотины |                                                                                                                                                                                                                            |                                    | Затопление<br>местности                               |
| здания здания здания гидроэлектростанц ий  Водосбросные, водоспускные и водовыпускные сооружения                       |                                                                                                                                                                                                                            | Прорыв напорного<br>фронта         | 1. Опорожнение водохранилища. 2. Затопление местности |
|                                                                                                                        |                                                                                                                                                                                                                            | Прорыв напорного<br>фронта         | 1. Опорожнение водохранилища. 2. Затопление местности |
| Разрушения напорного фронта,                                                                                           | Каналы                                                                                                                                                                                                                     | Прорыв напорного фронта насыпей    | Затопление<br>местности                               |

| сопровождающиеся образованием прорана,                                                                                              |                                                                                   | (для каналов в насыпи<br>или полунасыпи)                                                                                                                         |                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| в который происходит излив воды или жидких отходов, неконтролируемый персоналом ГТС, а также неконтролируемый перелив через гребень |                                                                                   | Перелив длинных волн через гребень насыпей (возможная ситуация при резком закрытии затворов и резких переключениях насосных станций)                             | Затопление<br>местности                                                                      |
| плотины из-за переполнения водохранилища или возникновения экстремальных волн                                                       | Туннели                                                                           | Нарушение оболочки                                                                                                                                               | Подтопление местности из-за избыточной фильтрации                                            |
|                                                                                                                                     | Сооружения (дамбы), ограждающие хранилища жидких отходов промышленных организаций | Прорыв дамбы                                                                                                                                                     | 1. Затопление местности. 2. Вынос жидких отходов промышленных организаций                    |
|                                                                                                                                     | Сооружения, предназначенные для защиты от наводнений,                             | Образование прорана в напорном фронте                                                                                                                            | <ol> <li>Опорожнение водохранилища.</li> <li>Затопление местности</li> </ol>                 |
|                                                                                                                                     | дамбы обвалования<br>польдеров<br>и осушенных<br>территорий                       | Перелив через дамбу без прорыва напорного фронта (при переполнении водохранилища, возникновении в водохранилище волн вытеснения или экстремальных ветровых волн) | Затопление<br>местности                                                                      |
| Повреждения отдельных элементов сооружения, приведшие к необходимости                                                               | Плотины<br>водохранилищ                                                           | Повреждение плотины, создающее угрозу разрушения напорного фронта с образованием прорана                                                                         | 1. Опорожнение водохранилища. 2. Затопление местности                                        |
| аварийного понижения напора на ГТС и сопровождавшиеся сбросом воды или жидких отходов Здания гидроэлектростанц ий                   |                                                                                   | Повреждение здания гидроэлектростанций, создающее угрозу гибели (травмирования) персонала и (или) разрушения напорного фронта с образованием прорана             | 1. Гибель (травмирование) персонала. 2. Опорожнение водохранилища. 2.1. Затопление местности |

| Повреждения отдельных элементов сооружения, приведшие к необходимости аварийного понижения напора на ГТС и сопровождавшиеся сбросом воды или жидких отходов                                                                  | Водосбросные,<br>водоспускные<br>и водовыпускные<br>сооружения<br>Каналы                                 | Повреждение сооружения, создающее угрозу разрушения напорного фронта с образованием прорана Повреждение насыпи канала, создающее угрозу разрушения напорного фронта с образованием прорана (для каналов в насыпи | 1. Опорожнение водохранилища. 2. Затопление местности  Затопление местности                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                              | Туннели                                                                                                  | или полунасыпи)  Разрушение запорных устройств                                                                                                                                                                   | Прохождение по туннелю в нижний бьеф нерасчетного расхода воды (затопление местности, возможные дальнейшие разрушения) |
| Аварии ГТС, золошлакоотвалов и шламонакопителей, содержащих в отходах опасные вещества, связанные с нарушением фильтрационной прочности ГТС и его основания и приведшие к загрязнению опасными веществами территории вне ГТС | Сооружения (дамбы), ограждающие хранилища жидких отходов промышленных и сельскохозяйственных организаций | Нарушение режима<br>фильтрации                                                                                                                                                                                   | Загрязнение территории, поверхностных и грунтовых вод вредными веществами                                              |

Приложение № 2 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 дектр. 2020 г. № 516

ОБЩАЯ СТРУКТУРА УЩЕРБА ОТ АВАРИЙ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

| Составляющая ущерба от аварий ГТС:           | Обозначение        |
|----------------------------------------------|--------------------|
| социальный ущерб                             | Исоц               |
| ущерб промышленным предприятиям              | И                  |
| ущерб элементам транспорта и связи           | И2                 |
| ущерб жилому фонду и имуществу граждан       | И3                 |
| расходы на ликвидацию последствий аварии     | И4                 |
| ущерб сельскохозяйственному производству     | И <sub>5</sub>     |
| ущерб лесному фонду от потери леса как сырья | И <sub>6</sub>     |
| ущерб, вызванный нарушением водоснабжения    | И <sub>7</sub>     |
| ущерб объектам водного транспорта            | И8                 |
| ущерб рыбному хозяйству                      | И9                 |
| ущерб природной среде                        | $\mathcal{U}_{10}$ |
| прочие виды ущерба                           | И11                |

Приложение № 3 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 дексоря 2020 г. № 516

### ОЦЕНКА ТЯЖЕСТИ ЛЮДСКИХ ПОТЕРЬ ПРИ АВАРИИ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

| Зона воздействия                | Общие потери |    | V        | )ь        |         |         |
|---------------------------------|--------------|----|----------|-----------|---------|---------|
|                                 | днем ночью   |    | безвозвр | атные (%) | возврат | ные (%) |
|                                 |              |    | днем     | ночью     | днем    | ночью   |
| 1 - катастрофические разрушения | 60           | 90 | 40       | 75        | 60      | 25      |
| 2 - сильные разрушения          | 13           | 25 | 10       | 20        | 90      | 80      |
| 3 - средние разрушения          | 5            | 15 | 7        | 15        | 93      | 85      |
| 4 - слабые разрушения           | 2            | 10 | 5        | 10        | 95      | 90      |

Приложение № 4 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору OT 10 gerospe 2020 г. № <u>516</u>

### ШКАЛА ТЯЖЕСТИ РАЗРУШЕНИЙ ЖИЛЫХ ЗДАНИЙ

| Сильные<br>разрушения |                |                                     |                                                    | Средни<br>зрушен                                                                                                                                    |                                                                                                                                                                                                                                              | Слабые<br>разрушения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|----------------|-------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н,                    | V,<br>м/с      | Т,<br>час                           | Н,                                                 | V,                                                                                                                                                  | Т,<br>час                                                                                                                                                                                                                                    | Н,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V,<br>м/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т,<br>час                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3                     | 2              | 48                                  | 2,5                                                | 1,5                                                                                                                                                 | 24                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3,5                   | 2              | 48                                  | 2,5                                                | 1,5                                                                                                                                                 | 24                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3,5                   | 2              | 72                                  | 2,5                                                | 1,5                                                                                                                                                 | 48                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                     | 2,5            | 50                                  | 3                                                  | 2                                                                                                                                                   | 100                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6                     | 3              | 240                                 | 4                                                  | 2,5                                                                                                                                                 | 170                                                                                                                                                                                                                                          | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | H, M 3 3,5 3,5 | H, V, M/c  3 2  3,5 2  3,5 2  4 2,5 | H, V, T, 4ac  3 2 48  3,5 2 48  3,5 2 72  4 2,5 50 | H, м     V, т, час     H, м       3     2     48     2,5       3,5     2     48     2,5       3,5     2     72     2,5       4     2,5     50     3 | H, M       V, M/c       T, H, M/c       V, M/c         3       2       48       2,5       1,5         3,5       2       48       2,5       1,5         3,5       2       72       2,5       1,5         4       2,5       50       3       2 | H, M       V, M/c       T, H, M/c       V, M/c       T, H, M/c       V, H, M/c       T, H, M/c       V, H, H       T, H, M/c       V, H       T, H, M/c       V, H       T, H, M/c       V, H       T, H       V, M/c       T, H       V, H       T, H       V, M/c       T, H       V, H       T, H       V, M/c       T, T       24       24       24       25       1,5       48       2,5       1,5       48 <t< td=""><td>H, M       V, M/c       T, H, M/c       W, M/c       T, H, M/c       M/c       H, M/c</td><td>H, M       V, T, M       H, V, M/c       T, H, M/c       H, M/c       V, M/c       H, M/c<!--</td--></td></t<> | H, M       V, M/c       T, H, M/c       W, M/c       T, H, M/c       M/c       H, M/c | H, M       V, T, M       H, V, M/c       T, H, M/c       H, M/c       V, M/c       H, M/c </td |

Приложение № 5 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору OT <u>10 декаба</u> 2020 г. № <u>516</u>

## ШКАЛА ТЯЖЕСТИ РАЗРУШЕНИЙ ПРОМЫШЛЕННЫХ СООРУЖЕНИЙ

| Сильные<br>разрушения |                          | Средние<br>разрушения                           |                                                                   |                                                                                                  | Слабые<br>разрушения                                                                                            |                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                              |
|-----------------------|--------------------------|-------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н,                    | V,<br>м/с                | Т,<br>час                                       | Н,                                                                | V,<br>м/с                                                                                        | Т,<br>час                                                                                                       | Н,                                                                                                                  | V,<br>м/с                                                                                                                            | Т,<br>час                                                                                                                                                                                    |
| 4                     | 2,5                      | 170                                             | 3                                                                 | 2                                                                                                | 100                                                                                                             | 2                                                                                                                   | 1                                                                                                                                    | 50                                                                                                                                                                                           |
| 5                     | 2,5                      | 170                                             | 3,5                                                               | 2                                                                                                | 100                                                                                                             | 2                                                                                                                   | 1,5                                                                                                                                  | 50                                                                                                                                                                                           |
| 6                     | 3                        | 240                                             | 4                                                                 | 2,5                                                                                              | 170                                                                                                             | 2,5                                                                                                                 | 1,5                                                                                                                                  | 100                                                                                                                                                                                          |
| 7,5                   | 4                        | 240                                             | б                                                                 | 3                                                                                                | 170                                                                                                             | 3                                                                                                                   | 1,5                                                                                                                                  | 100                                                                                                                                                                                          |
| 12                    | 4                        | -                                               | 9                                                                 | 3                                                                                                | 240                                                                                                             | 4                                                                                                                   | 1,5                                                                                                                                  | 170                                                                                                                                                                                          |
|                       | раз<br>Н,<br>м<br>4<br>5 | разрушен  H, V, м м/с  4 2,5  5 2,5  6 3  7,5 4 | разрушения H, V, T, м/с час 4 2,5 170 5 2,5 170 6 3 240 7,5 4 240 | разрушения раз<br>H, V, T, H,<br>м м/с час м  4 2,5 170 3  5 2,5 170 3,5  6 3 240 4  7,5 4 240 6 | разрушения разрушен<br>H, V, T, H, V, м/с<br>4 2,5 170 3 2<br>5 2,5 170 3,5 2<br>6 3 240 4 2,5<br>7,5 4 240 6 3 | разрушения  H, V, T, H, V, T, м/с час  4 2,5 170 3 2 100  5 2,5 170 3,5 2 100  6 3 240 4 2,5 170  7,5 4 240 6 3 170 | разрушения разрушения раз<br>H, V, T, H, V, T, H, м/с час м<br>4 2,5 170 3 2 100 2<br>5 2,5 170 3,5 2 100 2<br>6 3 240 4 2,5 170 2,5 | разрушения разрушения разрушен Н, V, T, H, V, M/C час M M/C час M M/C час M M/C час M M/C 44 2,5 170 3 2 100 2 1 5 2,5 170 3,5 2 100 2 1,5 6 3 240 4 2,5 170 2,5 1,5 7,5 4 240 6 3 170 3 1,5 |

Приложение № 6 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декстря 2020 г. № 516

# ШКАЛА ТЯЖЕСТИ РАЗРУШЕНИЙ ЭЛЕМЕНТОВ ТРАНСПОРТА И СВЯЗИ

| Сильные<br>разрушения |                           |                                                      | Средние<br>разрушения                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       | Слабые<br>разрушения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |
|-----------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н, м                  | V,                        | Т,<br>час                                            | Н,                                                                   | V,<br>м/с                                                                                      | Т,<br>час                                                                                                                                                                                                                                                                                                                                                             | Н,<br>м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V,<br>м/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Т,<br>час                                                                                                                                                                                                                                                                                                             |
| 1                     | 2                         | -                                                    | 1                                                                    | 1,5                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                     | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                     |
| 2                     | 3                         | 50                                                   | 1                                                                    | 2                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                    |
| 2                     | 3                         | 50                                                   | 1                                                                    | 2                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                    |
| 2                     | 2                         | 50                                                   | 1                                                                    | 1                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                    |
| 2                     | 2                         | 100                                                  | 1                                                                    | 1,5                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                    |
| 2,5                   | 2                         | 100                                                  | 1                                                                    | 1,5                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                    |
| 4                     | 3                         | 240                                                  | 2                                                                    | 1,5                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                   |
|                       | рат<br>Н, м 1 2 2 2 2 2,5 | разрушен  H, м V, м/с  1 2 2 3  2 3  2 2  2 2  2,5 2 | разрушения  H, м V, T, час  1 2 - 2 3 50  2 3 50  2 2 100  2,5 2 100 | разрушения раз<br>H, м V, T, H, м/с час м  1 2 - 1  2 3 50 1  2 3 50 1  2 2 100 1  2,5 2 100 1 | разрушения       разрушен         H, м       V, м/с       T, м/с       H, м/с       V, м/с         1       2       -       1       1,5         2       3       50       1       2         2       3       50       1       2         2       2       50       1       1         2       2       100       1       1,5         2,5       2       100       1       1,5 | разрушения       разрушения         H, м       V, м/с       T, м/с       H, м/с       T, м/с       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T | разрушения         разруш | разрушения разрушения разрушен Н, м V, т, м/с час м м/с м/с м/с час м м/с м/с час м м/с м/с м/с м/с м/с м/с м/с м/с м/с |

Приложение № 7 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 зекабы 2020 г. № 516

### УДЕЛЬНЫЙ ВЫНОС ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ С СЕЛИТЕБНЫХ ТЕРРИТОРИЙ С ДОЖДЕВЫМ СТОКОМ

| Загрязняющее вещество         | Удельный вынос с дождевым стоком, кг/(га год) |
|-------------------------------|-----------------------------------------------|
| Взвешенные вещества           | 2500                                          |
| Органические вещества (БПК20) | 140                                           |
| Нефтепродукты                 | 40                                            |

Приложение № 8

к Методике определения размера
вреда, который может быть причинен
жизни, здоровью физических лиц, имуществу
физических и юридических лиц в результате
аварии гидротехнического сооружения
(за исключением судоходных и портовых
гидротехнических сооружений),
утвержденной приказом Федеральной службы
по экологическому, технологическому
и атомному надзору
от 10 декабря 2020 г. № 516

#### УДЕЛЬНОЕ КОЛИЧЕСТВО ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ПОСТУПАЮЩИХ В ПРИРОДНЫЕ ВОДЫ В РЕЗУЛЬТАТЕ ЗАТОПЛЕНИЯ СИСТЕМ КАНАЛИЗАЦИИ

| Загрязняющее вещество | Масса загрязняющего вещества на одного жителя, г/сутки |
|-----------------------|--------------------------------------------------------|
| Взвешенные вещества   | 65                                                     |
| БПК5                  | 60                                                     |
| Азот аммонийных солей | 10,5                                                   |
| Фосфор фосфатов       | 1,5                                                    |