Name: Pushp Raj

Entry No: 2018PH10830

PYL204: Assignment 1

The Assignment is based on root finding. We have to simply find out values of α for different value of diameter of wheels of given vehicle (D) and then plot α vs D.

Given equation:-

A sin α cos α + B sin 2 α - C cos α - E sin α = 0 where A = l sin β 1, B = l cos β 1, C = (h+0.5D)sin β 1 -0.5D tan β 1 and E = (h+0.5D) cos β 1 -0.5D l = 89in., h = 49in. and β 1 = 11.5 \circ

Observations:

After trying different values, I find out that for α =30° I am getting negative value and for α =34°,I am getting positive value for all the values of D between 30 to 100

Parameters descriptons:

- * D is a list of elements {30,40,50....100}
- * ε =10^-4 tolerance
- * a=30°
- * b=34°

Programming Language:

Python 3.8.6

Libraries used:

Matplotlib: Used for ploting graphs in python3

Numpy: Used for List manipulation

Math: Used for math functions like sin, cos, tan, radians

Algorithm:

I have used bisection method to solve the problem using the above parameters. Lets assume F(d,alpha) function is defined which take d and alpha as parameter, where d is elment of List D and alpha is our angle

psedo code:

```
alpha=[]
                                          //empy list to store output
for 0<=i<D.size(){
                                          // In my case D.size()=8
          p = 30^{\circ}
          while abs(F(D[i],p)) > \varepsilon{
                                         //bisection method
                p=a+(b-a)/2
                if F(D[i],p)*F(D[i],a)>0
                else
                     b=p
           }
          alpha.push_back(p)
                                         //collecting solutions
     }
     print(alpha)
                                         //printing alpha
                                           //ploting the values
     plot(D,alpha)
```

output:

D	30	40	50	60	70	80	90	100
α	33.17^{0}	33.09^{0}	33.01^{0}	32.93^{0}	32.85°	32.78°	32.70°	32.62^{0}

Graph:

Result:

From the graph one can easy see that as the diameter of wheels of the vehicle increases. The angle by which its nose goes down decreases

Compilation:

note: matplotlib and numpy library must we installed.

Run:

python3 ph1180830assign1.py