EARTHQUAKE PREDICTION MODEL USING PYTHON

TEAM MEMBER NAME: DHANU VARSHA R

REG.NO: 810021106022

PHASE III: DEVELOPMENT PART 1

INTRODUCTION:

To build an earthquake prediction model using Python, we first need to load and preprocess the dataset. This involves loading the data, exploring it to understand its characteristics, and cleaning and transforming it to make it suitable for machine learning.

Once the data has been preprocessed, we can split it into training and test sets. The training set will be used to train the machine learning model, and the test set will be used to evaluate the performance of the model.

Here is a summary of the steps involved in loading and preprocessing the dataset for an earthquake prediction model using Python:

- 1. Load the dataset using the Python library "pandas".
- 2. Explore the dataset to understand its characteristics.
- 3. Preprocess the data by handling missing values, converting categorical variables to numerical variables, and scaling the data.
- 4. Split the data into training and test sets.

Once the data has been loaded and preprocessed, we can train and evaluate the machine learning model.

LOADING:

To load the dataset for the earthquake prediction model project, we can use the following steps:

1. Import the pandas library.

- 2. Load the dataset using the pandas.read_csv() function.
- 3. Explore the dataset to understand its characteristics and identify any preprocessing steps that need to be performed.
- 4. Preprocess the dataset as needed, such as handling missing values, converting categorical variables to numerical variables, and scaling the data.
- 5. Split the dataset into training and test sets.

PROGRAM FOR LOADING:

IN[1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf

IN[2]:
data = pd.read_csv('../input/earthquake-database/database.csv')
IN[3]:
```

Data

OUT[1]: OUTPUT OF THE LOADED DATASET IS SHOWN BELOW AND LINK OF THE DATASET IS:

https://www.kaggle.com/datasets/usgs/earthquake-database/data

	В	С	D E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	V
Date	Time l	Latitude	Longitude Type	Depth	Depth Error	Depth Seismic Stations	Magnitude	Magnitude Type	e Magnitud	Magnitud	Azimutha	Horizonta	Horizonta	Root Mea	ID	Source	Location	S Magnitud	deStatus	
1/2/1965	13:44:18	19.246	145.616 Earthqu	ak 131.6	5		6	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
1/4/1965	11:29:49	1.863	127.352 Earthqu	ak 80)		5.8	MW							ISCGEM8	SISCGEM	ISCGEM	ISCGEM	Automatic	
1/5/1965	18:05:58	-20.579	-173.972 Earthqu	ak 20)		6.2	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
1/8/1965	18:49:43	-59.076	-23.557 Earthqu	ak 15	5		5.8	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
1/9/1965	13:32:50	11.938	126.427 Earthqu	ak 15	5		5.8	MW							ISCGEM8	SISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	13:36:32	-13.405	166.629 Earthqu	ak 35	5		6.7	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	13:32:25	27.357	87.867 Earthqu	ak 20)		5.9	MW							ISCGEM8	SISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	23:17:42	-13.309	166.212 Earthqu	ak 35	5		6	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	11:32:37	-56.452	-27.043 Earthqu	ak 95	5		6	MW							ISCGEMS	ISCGEMS	JISCGEM	ISCGEM	Automatic	
***************************************	10:43:17	-24.563	178.487 Earthqu	ak 565	5		5.8	MW							ISCGEM8	SISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	20:57:41	-6.807	108.988 Earthqu	ak 227.9	9		5.9	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	0:11:17	-2.608	125.952 Earthqu	ak 20)		8.2	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
***************************************	9:35:30	54.636	161.703 Earthqu	ak 55	5		5.5	MW							ISCGEM8	SISCGEM	ISCGEM	ISCGEM	Automatic	
2/1/1965	5:27:06	-18.697	-177.864 Earthqu	ak 482.9	9		5.6	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/2/1965	15:56:51	37.523	73.251 Earthqu	ak 15	5		6	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	3:25:00	-51.84	139.741 Earthqu	ak 10)		6.1	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	5:01:22	51.251	178.715 Earthqu	ak 30.3	3		8.7	MW							OFFICIAL	1 OFFICIAL	ISCGEM	OFFICIAL	Automatic	
2/4/1965	6:04:59	51.639	175.055 Earthqu	ak 30)		6	MW							ISCGEMS	ISCGEMS	ISCGEM	ISCGEM	Automatic	
2/4/1965	6:37:06	52.528	172.007 Earthqu	ak 25	5		5.7	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	6:39:32	51.626	175.746 Earthqu	ak 25	5		5.8	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	7:11:23	51.037	177.848 Earthqu	ak 25	5		5.9	MW							ISCGEMS	ISCGEMS	ISCGEM	ISCGEM	Automatic	
2/4/1965	7:14:59	51.73	173.975 Earthqu	ak 20)		5.9	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	7:23:12	51.775	173.058 Earthqu	ak 10)		5.7	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	7:43:43	52.611	172.588 Earthqu	ak 24	1		5.7	MW							ISCGEMS	ISCGEMS	ISCGEM	ISCGEM	Automatic	
2/4/1965	8:06:17	51.831	174.368 Earthqu	ak 31.8	3		5.7	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	8:33:41	51.948	173.969 Earthqu	ak 20)		5.6	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	
2/4/1965	8:40:44	51.443	179.605 Earthqu	ak 30)		7.3	MW							ISCGEM8	ISCGEM	ISCGEM	ISCGEM	Automatic	

IN[4]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23412 entries, 0 to 23411

Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype					
0	Date	23412 non-null	9					
1	Time	23412 non-null	object					
2	Latitude	23412 non-null	float64					
3	Longitude	23412 non-null	float64					
4	Type	23412 non-null	object					
5	Depth	23412 non-null	float64					
6	Depth Error	4461 non-null	float64					
7	Depth Seismic Stations	7097 non-null	float64					
8	Magnitude	23412 non-null	float64					
9	Magnitude Type	23409 non-null	object					
10	Magnitude Error	327 non-null	float64					
11	Magnitude Seismic Stations	2564 non-null	float64					
12	Azimuthal Gap	7299 non-null	float64					
13	Horizontal Distance	1604 non-null	float64					
14	Horizontal Error	1156 non-null	float64					
15	Root Mean Square	17352 non-null	float64					
16	ID	23412 non-null	object					
17	Source	23412 non-null	object					
18	Location Source	23412 non-null	object					
19	Magnitude Source	23412 non-null	object					
20	Status	23412 non-null	object					
dtypes: float64(12), object(9)								

dtypes: float64(12), object(9)

PREPROCESSING:

The goal of preprocessing the dataset for the earthquake prediction model project is to clean and transform the data to make it suitable for machine learning. This may involve the following steps:

- Handling missing values: We can either drop rows with missing values or impute the missing values with reasonable values.
- Converting categorical variables to numerical variables: This is necessary for most machine learning algorithms. For example, we could convert the Type column to numerical variables by creating a new column for each type of earthquake.
- Scaling the data: This ensures that all of the features have a similar range of values. This can be important for some machine learning algorithms, such as support vector machines.

Here is a concise introduction for preprocessing the dataset in this project in a single sentence:

We can preprocess the dataset by handling missing values, converting categorical variables to numerical variables, and scaling the data.

In addition to the above steps, we may also need to perform other preprocessing steps depending on the specific characteristics of the dataset. For example, we may need to remove outliers or normalize the data.

It is important to note that preprocessing is an essential step in machine learning, as it can significantly improve the performance of the model.

PROGRAM FOR PREPROCESSING:

```
In [5]:
data = data.drop('ID', axis=1)
In [6]:
data.isna().sum()
```

```
OUTPUT 1 FOR PREPROCESSING:
Out[6]:
Date
                                  0
Time
                                  0
Latitude
                                  0
Longitude
                                  0
Type
                                  0
Depth
                              18951
Depth Error
Depth Seismic Stations
                              16315
Magnitude
                                  0
Magnitude Type
                                  3
Magnitude Error
                              23085
Magnitude Seismic Stations 20848
Azimuthal Gap
                              16113
Horizontal Distance
                              21808
Horizontal Error
                             22256
Root Mean Square
                              6060
Source
                                  0
Location Source
                                  0
Magnitude Source
                                  0
Status
                                  0
dtype: int64
In [7]:
null_columns = data.loc[:, data.isna().sum() > 0.66 * data.shape[
0]].
columns
In [8]:
data = data.drop(null columns, axis=1)
```

OUTPUT 2 FOR PREPROCESSING:

Out[9]:

In [9]:

data.isna().sum()

Date 0
Time 0

```
Latitude
                       0
Longitude
                       0
                       0
Type
Depth
                       0
Magnitude
                       0
                       3
Magnitude Type
Root Mean Square
                    6060
Source
                       0
Location Source
                       0
Magnitude Source
                       0
Status
                       0
dtype: int64
In [10]:
data['Root Mean Square'] = data['Root Mean Square'].fillna(data['
Root Mean Square'].mean())
In [11]:
data = data.dropna(axis=0).reset index(drop=True)
In [12]:
data.isna().sum().sum()
OUTPUT 3 FOR PREPROCESSING:
Out[12]:
```

0

VISUALIZATION:

Visualization is the process of creating visual representations of data in order to communicate information and insights. It is a powerful tool for machine learning, as it can help us to understand the data, identify patterns and relationships, and evaluate the performance of machine learning models.

Here are some specific ways in which we can use visualization in the earthquake prediction model project:

- Visualize the distribution of the data: This can help us to identify outliers and understand the general characteristics of the data. For example, we could create a histogram of the earthquake magnitudes to see how they are distributed.
- Visualize the relationships between different variables: This can help us to identify patterns and relationships that may not be immediately obvious. For example, we could create a scatter plot of the earthquake magnitudes and distances to the nearest fault line to see if there is any correlation between the two variables.
- Visualize the performance of machine learning models: This can help us to identify areas where the model needs improvement. For example, we could create a confusion matrix to see how well the model is predicting earthquakes of different magnitudes.

We can use a variety of tools to create visualizations, such as Python libraries like Matplotlib and Seaborn. There are also a number of specialized visualization tools available for machine learning, such as TensorBoard and Neptune.ai.

By carefully using visualization, we can gain a deeper understanding of the data, improve the performance of our machine learning models, and communicate our findings to others in a clear and concise way.

Visualization can be used at any stage of the machine learning pipeline, but it is most commonly used during the analysis and interpretation phases. For example, we can use visualization to explore the data, identify patterns and relationships, and evaluate the performance of machine learning models.

Here are some examples of how visualization can be used at different stages of the machine learning pipeline:

- Data exploration: We can use visualization to explore the data and identify patterns and relationships. For example, we can create a histogram to see how the data is distributed or a scatter plot to see the relationship between two variables.
- Model evaluation: We can use visualization to evaluate the performance of machine learning models. For example, we can create a confusion matrix to see how well the model is predicting different classes of data.

 Communication: We can use visualization to communicate our findings to others in a clear and concise way. For example, we can create a chart or graph to show how a machine learning model is performing on different types of data.

Overall, visualization is a powerful tool that can be used at any stage of the machine learning pipeline to improve our understanding of the data, develop better machine learning models, and communicate our findings to others.

PROGRAM FOR VISUALIZATION FOR COLOR SCHEME PLOT:

```
numeric_columns = [column for column in data.columns if data.dtyp
es[column] != 'object']

In [24]:
corr = data[numeric_columns].corr()

In [25]:
plt.figure(figsize=(12, 10))
sns.heatmap(corr, annot=True, vmin=-1.0, vmax=1.0)
plt.show()
```

OUTPUT FOR VISUALIZATION FOR COLOR SCHEME PLOT:

PROGRAM FOR VISUALIZATION FOR LINE GRAPH:

```
In [26]:
numeric_columns.remove('Status')

In [27]:
scaler = StandardScaler()
standardized_df = pd.DataFrame(scaler.fit_transform(data[numeric_columns].copy()), columns=numeric_columns)

In [28]:
plt.figure(figsize=(18, 10))
for column in numeric_columns:
    sns.kdeplot(standardized_df[column], shade=True)
plt.xlim(-3, 3)
plt.show()
```

OUTPUT FOR VISUALIZATION FOR LINE GRAPH:

CONCLUSION:

In conclusion, we have successfully loaded and preprocessed the dataset for the earthquake prediction model project. We have explored the dataset to understand its characteristics and identified any preprocessing steps that need to be performed. We have also preprocessed the data as needed, such as handling missing values, converting categorical variables to numerical variables, and scaling the data. Finally, we have split the dataset into training and test sets.

The dataset is now ready to be used to train and evaluate the machine learning model. We can use a variety of machine learning algorithms to train the model, such as logistic regression, support vector machines, and random forests. Once the model is trained, we can evaluate its performance on the test set to get an estimate of its accuracy.

We can also use feature engineering to create new features from the existing data in order to improve the performance of the model. By carefully considering the dataset and using our domain knowledge, we can create new features that help the machine learning model to better understand the data and make more accurate predictions.

We are now one step closer to developing a machine learning model that can be used to predict earthquakes. By carefully loading and preprocessing the dataset and using feature engineering to create new features, we can help the machine learning model to learn from the data and make more accurate predictions.

