局部紧空间性质的讨论

V21914009 章亦流

2023年6月20日

景目

1	定义	1
2	性质	1
3	·····································	9

1 定义

定义 1. 若拓扑空间 X 中每个点都有紧邻域,则称 X 是一个局部紧空间 (Locally Compact Space).

2 性质

我们列举一些性质. 首先显然有

定理 2.1. 紧空间都是局部紧空间.

定理 2.2. 局部紧 Hausdorff 空间都是正则空间.

证明. X 是局部紧正则空间, $x\in X,U$ 是其开邻域,D 是 x 的紧邻域. 由于 X 是 Hausdorff 空间,D 闭, 因此 D 是紧 Hausdorff 空间, 所以是正则空间. 集合 $W=U\cap D^\circ$ 是 x 在子空间 D 中的开邻域, 因此 x 在正则空间 D 中有开邻域 V, 使得 $\overline{V}_D\subset W$.

首先,V 是 D 中的开集, 且包含于 W, 因此 V 是 W 中的一个开集. 而 W 是 X 中开集, 因此 V 是 X 中开集. 另一方面,D 是 X 中闭集, 因此 $\overline{V}_D = \overline{V}$. 因此 $\overline{V} \subset W \subset U$. 这说明 X 是一个正则空间.

引理 2.3. X 是局部紧正则空间, $x \in X$, 则 x 的所有紧邻域构成的集族是 X 在 x 处的一个邻域基.

换言之, 局部紧正则空间在每一点处有紧邻域基.

证明. 令 $U \neq x \in X$ 的开邻域, $D \neq x$ 的紧邻域, 则 $U \cap D^\circ \neq x$ 是开邻域. 在正则空间 $X \mapsto$ 存在开邻域 $V \notin \overline{V} \subset U \cap D^\circ \subset D$, 因此 \overline{V} 紧. 因此对每个开邻域 U 都有紧邻域 \overline{V} .

定理 2.4. X 是局部紧 Hausdorff 空间, $x \in X$, 则 x 的所有紧致邻域构成的集族是 X 在 x 处的一个邻域基.

证明,由前两定理立即得到.

定理 2.5. 局部紧正则空间是完全正则空间.

证明. 设 X 是局部紧正则空间, $x\in X$, B 是 X 中的闭集, $x\notin B$. 因此 $U=B^c$ 是 x 是开邻域. 由引理 2.3, 存在 x 的紧闭邻域 $V\subset U.V$ 作为 X 的子空间是紧正则空间, 因此是完全正则的, 因此存在连续映射 $g:V\to [0,1]$ 使得 g(x)=0 且 $g(y)=1, \forall y\in V-V^c$.

定义连续映射 $h: V^{\circ c} \to [0,1]$, 使得 $h(z) = 1, \forall z \in V^{\circ c}$.

最后定义映射 $f: X \to [0,1]$ 使得 $\forall z \in X, f(z) = \begin{cases} g(z), & z \in V \\ h(z), & z \in V^{\circ c} \end{cases}$. f 的定义是确切的,因为如果 $z \in V^{\circ c} \cap V$ 则有 g(z) = 1 = h(z). 另一方面,V 和 $V^{\circ c}$ 都是 X 中闭集,因此根据粘结引理,f 连续. 由上,最后有 f(x) = 0,f(B) = 1.

最后我们不加证明的列举一些性质.

定理 2.6. 局部紧 Hausdorff 空间必为 Baire 空间.

定理 2.7. 局部紧 Hausdorff 空间可增加一点嵌入到紧 Hausdorff 空间中.

3 例子

例 3.1. \mathbb{R}^n 是局部紧空间.

例 3.2. 局部紧 Hausdorff 空间的开或闭子集局部紧.

例 3.3. p-adic 空间 \mathbb{Q}_p 是局部紧空间.