Copulas

Exceedance Correlations

Exceedance correlations show the correlations of (standardsed) stock returns X
and Y as being conditional on exceeding some threshold, that is,

$$\tilde{\rho}(p) = \begin{cases} \mathsf{Corr}[X,Y|X \leq Q_X(p) \text{ and } Y \leq Q_Y(p)], & \text{for } p \leq 0.5 \\ \mathsf{Corr}[X,Y|X > Q_X(p) \text{ and } Y > Q_Y(p)], & \text{for } p > 0.5 \end{cases}$$

where $Q_X(p)$ and $Q_Y(p)$ are the p-th quantiles of X and Y given a distributional assumption

Can be used to detect NLD

Exceedance Plot

Empirical Exceedance Plot

Copulas and Non-linear Dependence

- How do we model non-linear dependence more formally?
- One approach is multivariate volatility models (see Chapter 3)
- Alternatively we can use copulas, which allow us to create multivariate distributions with a range of types of dependence

Intuition Behind Copulas

- A copula is a convenient way to obtain the dependence structure between two or more random variables, taking NLD into account
- We start with the marginal distributions of each random variable and end up with a copula function
- The copula function joins the random variables into a single multivariate distribution by using their correlations

Intuition Behind Copulas

- The random variables are transformed to uniform distributions using the probability integral transformation
- The copula models the dependence structure between these uniforms
- Since the probability integral transform is invertible, the copula also describes the dependence between the original random variables

• Suppose X and Y are two random variables representing returns of two different stocks, with densities f and g:

$$X \sim f$$
 and $Y \sim g$

• Together, the joint distribution and marginal distributions are represented by the joint density *h*:

$$(X, Y) \sim h$$

• We focus separately on the marginal distributions (F, G) and the copula function C, which combines them into the joint distribution H

 We want to transform X and Y into random variables that are distributed uniformly between 0 and 1, removing individual information from the bivariate density h

Theorem 1.1 Let a random variable X have a continuous distribution F, and define a new random variable U as:

$$U = F(X)$$

Then, regardless of the original distribution F:

$$U \sim \mathsf{Uniform}(0,1)$$

• Applying this transformation to X and Y we obtain:

$$U = F(X)$$
 and $V = G(Y)$

• Using this we arrive at the following theorem

Theorem 1.2 Let F be the distribution of X, G the distribution of Y and H the joint distribution of (X,Y). Assume that F and G are continuous. Then there exists a unique copula C such that:

$$H(X,Y) = C(F(X), G(Y))$$

• In applications we are more likely to use densities:

$$h(X,Y) = f(X) \times g(Y) \times C(F(X),G(Y))$$

- The copula contains all dependence information in the original density h, but none of the individual information
- Note that we can construct a joint distribution from any two marginal distributions and any copula, and we can also extract the implied copula and marginal distributions from any joint distribution

The Gaussian Copula

- One example of a copula is the Gaussian copula
- Let $\Phi(\cdot)$ denote the normal (Gaussian) distribution and $\Phi^{-1}(\cdot)$ its inverse
- Let $U,V\in[0,1]$ be uniform random variables and $\Phi_{\rho}(\cdot)$ the bivariate normal with correlation coefficient ρ
- Then the Gaussian copula function can be written as:

$$C(U,V)=\Phi_{
ho}(\Phi^{-1}(U),\Phi^{-1}(V))$$

 This function allows us to join the two marginal distributions into a single bivariate distribution

Application of Copulas

- To illustrate we use the same data on Disney and IBM as used before
- By comparing a scatterplot for simulated bivariate normal data with one for the empirical data, we see that the two do not have the same joint extremes

Copulas

Gaussian Scatterplot

Empirical Scatterplot

Application of Copulas

- We estimate two copulas for the data, a Gaussian copula and a Student-t copula
- The copulas can be drawn in three dimensions

Copulas

Fitted Gaussian Copula

Daily Disney and IBM returns, January 1986 to June 2015

Fitted Student-t Copula

Daily Disney and IBM returns, January 1986 to June 2015

Application of Copulas

- It can be difficult to compare distributions by looking at three-dimensional graphs
- Contour plots may give a better comparison

Contours of Gaussian Copula

Contours of Student-t Copula

Clayton's Copula

- As noted earlier, there are a number of copulas available
- One widely used is the Clayton copula, which allows for asymmetric dependence
- ullet Parameter heta measures the strength of dependence
- We estimate a Clayton copula for the same data as before

Copulas

Contours of Clayton's Copula, $\theta = 1$

Contours of Clayton's Copula, $\theta = 0.483$

