The previous step follows because given (3) a grandom variable (say) Yi from distribution F(Yi), we know that F(Yi) is a [0,1] uniform

random variable.

We also know that for any x, $F(x) \in [0, 1]$.

Rename F(x) as y, which gives us $P(D \ni d) = P\{\max_{0 \le y \le 1} \left| \sum_{i=1}^{n} (U_i \le y) - y \right| \ni d \}$ $= P(E \ni d)$

Q3 For covariance matrix of multinomial, refer to lecture slides on multinomial distribution.

Q4)
a) Let $Y = \min \{Xi\}_{i=1}^n$ where $Xi \in Bernoulli (p)$. $P(Y = 1) = \prod P(Xi = 1) = p^n$ $P(Y = 0) = 1 - P(Y = 1) = 1 - p^n$.

So Y is a Bernoulli random variable with parameter p^n .