Punti stazionari

Teorema.

Sia $f:(a,b) \longrightarrow \mathbb{R}$ una funzione derivabile e x_0 un punto stazionario, allora

- se f' < 0 a sinistra di x_0 e f' > 0 a destra di x_0 allora x_0 è un punto di minimo locale per f
- se f' > 0 a sinistra di x_0 e f' < 0 a destra di x_0 allora x_0 è un punto di massimo locale per f
- se f' non cambia segno intorno a x₀ allora x₀ non è un massimo o minimo locale stretto per f

Punti stazionari

Corollario.

Sia $f:(a,b) \longrightarrow \mathbb{R}$ una funzione derivabile due volte e x_0 un punto stazionario, allora

- se f"(x₀) < 0 allora x₀ è un punto di massimo locale stretto per f
- se $f''(x_0) > 0$ allora x_0 è un punto di minimo locale stretto per f

Esempi

$$e^{x}$$
 $(e^{x})^{l} = e^{x}$ $(e^{x})^{l} = (e^{x})^{l} = e^{x} > 0$ $\forall x \in \mathbb{R}$.

 $\Rightarrow e^{x} e^{t} \text{ onvessa}$
 $\ln(x) \left(\ln(x) \right)^{l} = \frac{1}{x} \left(\ln(x) \right)^{l} = \left(\frac{1}{x} \right)^{l} = \left(x^{-1} \right)^{l} = -\frac{1}{x^{2}} < 0$
 $\Rightarrow e^{x} e^{t} \text{ oncava.}$

$$ax^2 + bx + c$$
 $(a,b,c \in \mathbb{R})$ $ax_1^2bx_1+c \in \mathbb{R}$ where ax_2 ax_3 ax_4 ax

Esempi

$$(e^{-x^2})^{1} = (-2xe^{-x^2})^{1} = -2e^{-x^2} + (-2x)(e^{-x^2})^{1} = 2(2x^2-1)e^{-x^2}$$

$$(\sin(x))^{1} = (\cos(x))^{1} = -8ex(x)$$

$$\left(\ln(1+x^2) \right)'' = \left(\frac{2x}{1+x^2} \right)'' = \frac{2(1+x^2)-2x(2x)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} = \frac{-1}{(1+x^2)^2} = \frac{-1}{$$

Ancora sulla convessità

$$f(x) = |x|$$

$$f(x) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1) \quad \forall x \in (x_1, x_2)$$

