5. आम्ल, आम्लारी व क्षार

- > अन्हेनिअसचा आम्ल व आम्लारी सिद्धांत
- > आम्ल व आम्लारीची संहती
- 🕨 द्रावणाचा सामू 🥟 🕨 आम्ल व आम्लारीचा सामू 🕨 क्षार

लिंबू, चिंच, खाण्याचा सोडा, ताक, व्हिनेगर, संत्रे, दूध, टोमॅटो, मिल्क ऑफ मॅग्नेशिया, पाणी, तुरटी या पदार्थांचे लिटमसच्या साहाय्याने तीन गटांमध्ये वर्गीकरण कसे करतात?

मागील इयत्तेत आपण पाहिले की खाद्यपदार्थांमधील काही आंबट चवीचे असतात तर इतर काही तुरट चवीचे व स्पर्शाला बुळबुळीत असतात. या पदार्थांचा वैज्ञानिक अभ्यास केला असता असे दिसते की त्यांच्यात अनुक्रमे आम्लधर्मी व आम्लारिधर्मी घटक असतात. मागील इयत्तेत आपण लिटमस सारख्या दर्शकाच्या आधारे आम्ल व आम्लारी ओळखण्याची सोपी व स्रक्षित पद्धत अभ्यासली आहे.

लिटमस पेपरच्या आधारे आम्ल व आम्लारी कसे ओळखले जातात?

आपण आम्ल व आम्लारी यांच्याविषयी अधिक माहिती जाणून घेणार आहोत. त्यासाठी संयुगांचे रेणू कशाचे बनतात याचे आपण पुनरावलोकन करू.

पुढील तक्त्यात 'अ' भागातील रकाने पूर्ण करा.

अ				आ
संयुगाचे नाव	रेणुसूत्र	आम्लारिधर्मी मूलक	आम्लधर्मी मूलक	संयुगाचा प्रकार
हायड्रोक्लोरिक आम्ल	HC1	H ⁺	Cl ⁻	आम्ल
	HNO ₃			
	HBr			
	H ₂ SO ₄			
	H ₃ BO ₃			
	NaOH			
	КОН			
	Ca(OH) ₂			
	NH ₄ OH			
	NaCl			
	Ca(NO ₃) ₂			
	K ₂ SO ₄			
	CaCl ₂			
	(NH ₄) ₂ SO ₄			

काही संयुगांच्या रेणूमध्ये H^+ हे आम्लारिधर्मी मूलक असल्याचे दिसते. ही सर्व आम्ले आहेत. काही संयुगांच्या रेणूमध्ये OH^- चे हे आम्लधर्मी मूलक असल्याचे दिसते. ही सर्व संयुगे आम्लारी आहेत. ज्यांचे आम्लारिधर्मी मूलक H^+ पेक्षा वेगळे असून आम्लधर्मी मूलक OH^- पेक्षा वेगळे आहे अशी आयनिक संयुगे म्हणजे **क्षार** (Salts) होत.

आता मागील तक्त्याचा 'आ' हा भाग पूर्ण करा. त्यावरून स्पष्ट होते की आयनिक संयुगांचे तीन प्रकार असतात व ते म्हणजे आम्ल, आम्लारी व क्षार.

आयनिक संयुगे : एक पुनरावलोकन

आयनिक संयुगाच्या रेणूचे दोन घटक असतात व ते म्हणजे कॅटायन (धन आयन / आम्लारिधर्मी मूलक) व ॲनायन (ऋण आयन/आम्लधर्मी मूलक). या आयनांवर विरुद्ध विद्युतप्रभार असल्याने त्यांच्यामध्ये आकर्षण बल कार्यरत असते व ह्यालाच आयनिक बंध म्हणतात. हे आपण मागील इयत्तेत पाहिले आहे. कॅटायनवरील एक धनप्रभार व ॲनायनवरील एक ऋणप्रभार यांच्यातील आकर्षण बल म्हणजे एक आयनिक बंध होय.

स्थितिक विद्युतचा अभ्यास करताना आपण पाहिले आहे की निसर्गतः कोणत्याही वस्तूची प्रवृत्ती विद्युतप्रभारित स्थितीकडून उदासीन स्थितीकडे जाण्याची असते. असे असूनही विद्युतदृष्ट्या संतुलित म्हणजे उदासीन अशा अणूपासून प्रभारित असे आयन कशामुळे तयार होतात? अणूंच्या इलेक्ट्रॉन संरूपणावरून याचे स्पष्टीकरण मिळते. त्यासाठी सोडिअम व क्लोरिनच्या अणूंपासून Na⁺ व Cl⁻ हे आयन व त्यामुळे NaCl हा क्षार कसा तयार होतो ते आकृती 5.1 मध्ये दाखवले आहे.

सोडिअम व क्लोरिन या अणूंमध्ये बाह्यतम कवच हे पूर्ण अष्टक नाही. मात्र Na^+ व Cl^- ह्या दोन्ही आयनांमध्ये बाह्यतम कवच हे पूर्ण अष्टक आहे.

5.1 NaCl संयुगाची निर्मिती : इलेक्ट्रॉन संरूपण

पूर्ण अष्टक असलेले इलेक्ट्रॉन संरूपण हे स्थैर्याची स्थिती दर्शवते आणि पुढे जाऊन Na^+ व Cl^- ह्या विरुद्ध प्रभारित आयनांमध्ये आयनिक बंध तयार झाल्यामुळे NaCl हे अतिशय स्थैर्य असलेले आयनिक संयुग तयार होते.

आयनिक संयुगांचे विचरण

पुढील प्रमाणे पदार्थ मिसळल्यास होणाऱ्या मिश्रणांना काय म्हणतात?

- 1. पाणी व मीठ
- 2. पाणी व साखर
- 3. पाणी व तेल
- 4. पाणी व लाकडाचा भुसा

जेव्हा आयनिक संयुग पाण्यात विरघळते तेव्हा त्याचे जलीय द्रावण तयार होते. स्थायुरूपात असलेल्या आयनिक संयुगात विरुद्धप्रभारित आयन एकमेकांना लागून असतात. जेव्हा एखादे आयनिक संयुग पाण्यात विरघळायला सुरुवात होते तेव्हा पाण्याचे रेणू संयुगाच्या आयनांच्या मध्ये घुसतात व त्यांना एकमेकांपासून वेगळे करतात, म्हणजेच जलीय द्रावण होताना आयनिक संयुगाचे विचरण होते. (पहा आकृती 5.2)

द्रावणामध्ये विलग झालेल्या प्रत्येक आयनाला सर्व बाजूंनी पाण्याच्या रेणूंनी घेरलेले असते. ही स्थिती दर्शवण्यासाठी प्रत्येक आयनाच्या संज्ञेच्या उजवीकडे (ag) (aqueous म्हणजेच जलीय) असे लिहितात.

5.2 मिठाचे जलीय दावणातील विचरण

अन्हेनिअसचा आम्ल व आम्लारी सिद्धांत (Arrhenius Theory of Acids and Bases)

इ.स. 1887 मध्ये स्वीडिश वैज्ञानिक अर्हेनिअस याने आम्ल व आम्लारी सिद्धांत मांडला. या सिद्धांतात आम्ल व आम्लारीच्या व्याख्या केल्या आहेत. व त्या पुढीलप्रमाणे आहेत.

आम्ल : आम्ल म्हणजे असा पदार्थ की जो पाण्यात विरघळला असता त्याच्या द्रावणात H⁺ (हायड्रोजन आयन) हे एकमेव कॅटायन तयार होतात. उदा. HCl, H,SO, H,CO3.

HCl (g)
$$\xrightarrow{\text{uiul}}$$
 H⁺ (aq) + Cl⁻ (aq)

H₂SO₄(l) $\xrightarrow{\text{uiul}}$ H⁺(aq) + HSO₄⁻ (aq)

HSO₄⁻(aq) $\xrightarrow{\text{(aatvu)}}$ H⁺(aq) + SO₄²⁻(aq)

जरा डोके चालवा

- $1.~\mathrm{NH_{_{3,}}~Na_{_2}O},~\mathrm{CaO}$ या संयुगांची नावे काय आहेत? $2.~\mathrm{atlm}$ संयुगे पाण्यात मिसळली असता ती पाण्याबरोबर संयोग पावतात त्यामुळे कोणते आयन तयार होतात ते दर्शवणारी खालील सारणी पूर्ण करा.

$$NH_{3}(g) + H_{2}O(1) \longrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$
 $Na_{2}O(s) + \dots \longrightarrow 2 Na^{+}(aq) + \dots$
 $CaO(s) + H_{2}O(1) \longrightarrow \dots + \dots$

3. वरील संयुगांचे वर्गीकरण आम्ल, आम्लारी, क्षार यापैकी कोणत्या प्रकारात कराल?

आम्लारी: आम्लारी म्हणजे असा पदार्थ की जो पाण्यात विरघळला असता त्याच्या द्रावणात OH (हायड्रॉक्साइड आयन) हे एकमेव ॲनायन तयार होतात. उदा., NaOH, Ca(OH),

NaOH (s)
$$\xrightarrow{\text{पाणी}}$$
 Na⁺(aq) + OH⁻(aq)

Ca(OH)₂(s)) $\xrightarrow{\text{पाणी}}$ Ca²⁺(aq) + 2OH⁻(aq)

आम्ल व आम्लारींचे वर्गीकरण (Classification of Acids and Bases)

1. तीव्र व सौम्य आम्ल, आम्लारी आणि अल्क (Strong and Weak Acids, Bases and Alkali)

आम्ल व आम्लारींच्या जलीय द्रावणांमध्ये त्यांचे विचरण किती प्रमाणात होते त्यानुसार त्यांचे वर्गीकरण तीव्र व सौम्य या दोन प्रकारांत करतात.

तीव्र आम्ल (Strong Acid): तीव्र आम्ल पाण्यात विरघळले असता त्याचे विचरण जवळजवळ पूर्ण होते व त्याच्या जलीय द्रावणात H⁺ व संबंधित आम्लाचे आम्लधर्मी मूलक हे आयनच प्रामुख्याने असतात.

उदाहरणार्थ HCl, HBr, HNO $_3$, H $_2$ SO $_4$.

सौम्य आम्ल (Weak Acid): सौम्य आम्ल पाण्यात विरघळले असता त्याचे विचरण पूर्ण होत नाही व त्याच्या जलीय द्रावणात थोड्या प्रमाणात H⁺ व संबंधित आम्लाचे आम्लधर्मी मूलक या आयनांच्या बरोबरच विचरण न झालेले आम्लाचे रेणू मोठ्या प्रमाणात असतात. उदाहरणार्थ, CH,COOH, CO

तीव्र आम्लारी (Strong Base): तीव्र आम्लारी पाण्यात विरघळले असता त्यांचे विचरण जवळजवळ पूर्ण होते व त्याच्या जलीय द्रावणात OH^- व संबंधित आम्लारींचे आम्लारींधर्मी मूलक हे आयनच प्रामुख्याने असतात. उदाहरणार्थ NaOH, KOH, $Ca(OH)_2$, Na_2O .

सौम्य आम्लारी (Weak Base): सौम्य आम्लारी पाण्यात विरघळले असता त्याचे विचरण पूर्ण होत नाही व त्या जलीय द्रावणात कमी प्रमाणातील OH^- व संबंधित आम्लारिधर्मी मूलकाबरोबरच विचरण न झालेले आम्लारीचे रेणू मोठ्या प्रमाणात असतात. उदाहरणार्थ NH_- .

अल्क (Alkali): जे आम्लारी पाण्यात मोठ्या प्रमाणात विद्राव्य असतात त्यांना अल्क म्हणतात. उदाहरणार्थ NaOH, KOH, NH_3 यापैकी NaOH व KOH हे तीव्र आम्लारी आहेत तर NH_3 हा सौम्य आम्लारी आहे.

2. आम्लारिधर्मता व आम्लधर्मता (Basicity and Acidity)

पुढील तक्ता पूर्ण करा

आम्ल : एका रेणूपासून मिळू शकणाऱ्या H ⁺ ची संख्या						
HC1	HNO ₃	H ₂ SO ₄	H ₂ CO ₃	H ₃ BO ₃	H ₃ PO ₄	CH ₃ COOH
आम्लारी: एका रेणूपासून मिळू शकणाऱ्या OH ⁻ ची संख्या						
NaOH	КОН	Ca(OH) ₂	Ba(OH) ₂	Al (OH) ₃	Fe(OH) ₃	NH ₄ OH

आम्ल व आम्लारींचे वर्गीकरण त्यांच्या अनुक्रमे आम्लारिधर्मता व आम्लधर्मता यांच्या आधारे सुद्धा करतात.

आम्लाची आम्लारिधर्मता : आम्लाच्या एका रेणूपासून विचरणाने जितके H⁺ आयन मिळू शकतात ती संख्या म्हणजे त्या आम्लाची आम्लारिधर्मता होय.

आम्लारींची आम्लधर्मता : आम्लारीच्या एका रेणूपासून विचरणाने जितके OH आयन मिळू शकतात ती संख्या म्हणजे आम्लारीची आम्लधर्मता होय.

- 1. पृष्ठ क्र.61 वरील तक्त्यावरून एक आम्लारिधर्मी, द्विआम्लारिधर्मी व त्रिआम्लारिधर्मी आम्लांची उदाहरणे द्या.
- 2. पृष्ठ क्र. 61 वरील तक्त्यावरून आम्लारींचे तीन प्रकार कोणते ते सांगून त्यांची उदाहरणे द्या.

आम्ल व आम्लारींची संहती (Concentration of Acid and Base)

5.3 लिंबुरसाचे द्रावण

एका लिंबाचे दोन समान भाग करून एकेका भागाचा रस काचेच्या एकेका चंचुपात्रामध्ये घ्या. एका चंचुपात्रामध्ये (अ) पिण्याचे पाणी 10 मिली ओता व दसऱ्यामध्ये (ब) 20 मिली ओता. दोन्ही चंचुपात्रामधील द्रावणे ढवळून त्यांची चव घ्या.

दोन चंचुपात्रामधील द्रावणांच्या चवींमध्ये फरक आहे का? कोणता? वरील कृतीत द्रावणांची आंबट चव ही त्यातील लिंबुरस या

द्राव्यामुळे आहे. दोन्ही द्रावणामध्ये लिंब्रसाची एकूण राशी समान आहे. परंतु चवीत मात्र फरक आहे. पहिल्या चंचुपात्रातील द्रावण दुसऱ्या चंचुपात्रातील द्रावणापेक्षा अधिक आंबट आहे. असे कशामुळे होते ?

जरी दोन्ही द्रावणांमध्ये द्राव्याची राशी समान असली तरी द्रावकाची राशी कमी-अधिक आहे. द्राव्याच्या राशीचे तयार झालेल्या द्रावणांच्या राशींशी प्रमाण वेगवेगळे आहे. पहिल्या चंचुपात्रामध्ये हे प्रमाण जास्त आहे व त्यामुळे त्या द्रावणाची चव जास्त आंबट आहे. या उलट दुसऱ्या चंचुपात्रामध्ये लिंबूरसाचे एकूण द्रावणाशी प्रमाण कमी असल्याने चव कमी आंबट आहे.

खाद्यपदार्थाची चव त्यातील चव देणारा घटकपदार्थ कोणता व त्याचे प्रमाण किती आहे यावर अवलंबून असते. त्याचप्रमाणे द्रावणाचे सर्वच गुणधर्म त्याच्यातील द्रावक व द्राव्य यांच्या स्वरूपावर तसेच द्रावणामध्ये द्राव्याचे प्रमाण किती आहे यावर अवलंबून असते. द्राव्याच्या राशीचे द्रावणाच्या राशीशी प्रमाण म्हणजे द्राव्याची द्रावणातील संहती होय. जेव्हा द्रावणात द्राव्याची संहती जास्त असते तेव्हा ते **संहत द्रावण** असते तर द्राव्याची संहती कमी असते तेव्हा ते **विरल द्रावण** असते.

द्रावणाची संहती व्यक्त करण्यासाठी अनेक एककांचा उपयोग करतात. यांपैकी दोन एककांचा उपयोग जास्त वेळा करतात. पहिले एकक म्हणजे द्रावणाच्या एक लीटर आकारमानात विरघळलेल्या स्थितीत असलेल्या द्राव्याचे ग्रॅममधील वस्तुमान (ग्रॅम प्रति लीटर), दसरे एकक म्हणजे द्रावणाच्या एक लीटर आकारमानात विरघळलेली द्राव्याची मोलमध्ये व्यक्त केलेली राशी. यालाच द्रावणाची रेण्ता (Molarity, M) म्हणतात. एखाद्या द्राव्याची रेण्ता दर्शविण्यासाठी त्याचे रेणूसूत्र चौकटी कंसात लिहितात. उदाहरणार्थ [NaCl]= 1 मोल/लीटर याचा अर्थ मिठाच्या प्रस्तुत द्रावणाची रेणूता 1M (1 मोलार) आहे असा होतो.

विविध जलीय द्रावणांच्या संहतीचा खालील तक्ता पूर्ण करा.

द्राव्य		द्राव्याची राशी		द्रावणाचे आकारमान	द्रावणाची संहती		
A	В	С	D	$E = \frac{D}{C}$	F	$G = \frac{D}{F}$	$H = \frac{E}{F}$
नाव	रेणूसूत्र	रेणुवस्तुमान (u)	ў म (g)	मोल (mol)	लीटर (L)	ग्रॅम/लीटर (g/L)	रेणुता M mol/L
मीठ	NaCl	58.5 u	117 g	2 mol	2 L	58.5 g/L	1 M
	HCl		3.65 g		1 L		
	NaOH			1.5 mol	2 L		

द्रावणाचा सामू (pH of Solution)

आपण पाहिले की पाण्यात विरघळल्यावर आम्ल व आम्लारींचे कमी–अधिक प्रमाणात विचरण होते व अनुक्रमे H^+ व OH^- हे आयन तयार होतात. सर्व नैसर्गिक जलीय द्रावणांमध्ये H^+ व OH^- हे आयन विविध प्रमाणात आढळतात व त्याप्रमाणे त्या द्रावणांचे गुणधर्म ठरतात.

उदाहरणार्थ, H^+ व OH^- आयनांच्या प्रमाणानुसार मृदेचे आम्लधर्मी, उदासीन व आम्लारिधर्मी असे प्रकार पडतात. रक्त, पेशीद्रव यांचे नियोजित कार्य यथायोग्य रीतीने होण्यासाठी त्यांच्यातील H^+ व OH^- आयनांचे प्रमाण ठरावीक असणे आवश्यक असते. सूक्ष्मजीवांच्या उपयोगाने केल्या जाणाऱ्या किण्वन किंवा इतर जैवरासायनिक प्रक्रिया तसेच विविध रासायनिक प्रकियांमध्ये H^+ व OH^- आयनांचे प्रमाण विशिष्ट मर्यादांमध्ये राखणे आवश्यक असते. शुद्ध पाण्याचे सुद्धा अतिशय थोड्या प्रमाणात विचरण होऊन H^+ व OH^- हे आयन समप्रमाणात तयार होतात.

$$H_2O \xrightarrow{\text{aatm}} H^+ + OH^-$$

पाण्याचा हा जो विचरण पावण्याचा गुणधर्म आहे त्यामुळे कोणत्याही पदार्थाच्या जलीय द्रावणात H^+ व OH^- हे दोन्ही आयन असतात. मात्र त्यांची संहती वेगवेगळी असते.

सामान्य जलीय द्रावणांचा साम्

	द्रावण	सामू
तीव्र आम्ले	1M HCl	0.0
†	जाठररस	1.0
	लिं ब् रस	2.5
	व्हिनेगर	3.0
	टोमॅटो रस	4.1
	काळी कॉफी	5.0
	आम्ल पाऊस	5.6
	मूत्र	6.0
सौम्य आम्ले	पाऊस, दूध	6.5
उदासीन	शुद्ध पाणी, साखरेचे द्रावण	7.0
सौम्य आम्लारी	रक्त	7.4
	खाण्याच्या सोड्याचे द्रावण	8.5
	टूथपेस्ट	9.5
	मिल्क ऑफ मॅग्नेशिआ	10.5
	चुन्याची निवळी	11.0
तीव्र आम्लारी	1 M NaOH	14.0

पाण्याच्या विचरणाने तयार होणाऱ्या H^+ आयनांची संहती 25° C या तापमानाला 1×10^{-7} मोल/लीटर इतकी असते. याच तापमानाला 1M HCl या द्रावणात H^+ आयनांची संहती $1\times10^{\circ}$ मोल/लीटर असते, तर 1 M NaOH ह्या द्रावणात H^+ आयनांची संहती 1×10^{-14} मोल/लीटर इतकी असते. यावरून लक्षात येते की सर्वसामान्य जलीय द्रावणांमध्ये H^+ आयनांच्या संहतीची व्याप्ती $10^{\circ}-10^{-14}$ मोल/लीटर अशी खूप मोठी असते. रासायनिक व जैवरासायनिक प्रक्रियांमध्ये अतिशय उपयोगी असे H^+ आयनांच्या संहतीचे एक सोईस्कर असे नवे माप डॅनिश वैज्ञानिक सोरेनसन याने इ.स. 1909 मध्ये सुरू केले. हे माप म्हणजे **सामू मापनश्रेणी (pH Scale : Power of Hydrogen)** होय. ही मापनश्रेणी 0 ते 14 सामू अशी असते. या मापनश्रेणीनुसार पाण्याचा सामू 10^{-7} मोल/लीटर असते. सामू 10^{-7} हा उदासीन द्रावण दर्शवतो. हा सामू मापनश्रेणीचा मध्यबिंदू आहे. आम्लधर्मी जलीय द्रावणाचा सामू 10^{-7} पेक्षा जास्त असतो.

मागील पृष्ठावरील सारणीमध्ये काही सामान्य द्रावणांचे सामू दर्शविले आहेत.

द्रावणाचा सामू अन्य कोणत्या प्रकारे शोधता येईल?

वैश्विक दर्शक (Universal Indicators)

खाली दिलेल्या नैसर्गिक व संश्लिष्ट दर्शकांचे आम्लधर्मी व आम्लारिधर्मी द्रावणांमध्ये कोणते रंग असतात?

लिटमस, हळद, जांभूळ, मिथिल ऑरेंज, फिनॉल्फ्थॅलीन.

आपण मागील इयत्तेत पाहिले की काही नैसर्गिक तसेच संश्लिष्ट रंगद्रव्ये आम्लधर्मी व आम्लारिधर्मी द्रावणांमध्ये दोन भिन्न रंग दाखवतात व अशा रंगद्रव्यांचा आम्ल आम्लारी दर्शक म्हणून उपयोग करतात.सामू मापनप्रणालीमध्ये आम्ल-आम्लारींच्या तीव्रतेप्रमाणे त्यांच्या द्रावणांचा सामू 0 ते 14 असा बदलतो. सामूमधील हे बदल दर्शवण्यासाठी वैश्विक दर्शक वापरतात. वेगवेगळ्या सामूला वैश्विक दर्शक वेगवेगळे रंग दाखवतो.

5.4 वैश्विक दर्शकातील रंगबदल व सामू मापक

अनेक संश्लिष्ट दर्शकांचे विशिष्ट प्रमाणात मिश्रण करून वैश्विक दर्शक बनवतात. वैश्विक दर्शकाचे द्रावण किंवा त्यापासून बनवलेल्या कागदी सामू दर्शकपट्टिकेचा उपयोग करून दिलेल्या द्रावणाचा सामू ठरवता येतो. सामू मोजण्याची सर्वांत अचूक पद्धत म्हणजे सामू मापक (pH meter) हे विद्युतसाधन वापरणे. या पद्धतीत द्रावणात विद्युतअग्र बुडवून सामू मोजतात.

5.5 उदासीनीकरण

आम्ल व आम्लारींच्या अभिक्रिया

1. उदासिनीकरण (Neutralization)

कृती: एका चंचुपात्रात 10 मिली विरल HCl घ्या. ह्या द्रावणाचा एक थेंब कागदी सामू दर्शकपिट्टिकेवर काचकांडीच्या साहाय्याने टेकवून मिळालेल्या रंगावरून द्रावणाच्या सामूची नोंद करा. ड्रॉपरच्या साहाय्याने विरल NaOH द्रावणाचे काही थेंब ह्या चंचुपात्रात टाकून काचकांडीने ढवळा. सामू दर्शकपिट्टिकेच्या दुसऱ्या तुकड्यावर या द्रावणाचा थेंब टेकवून सामू नोंदवा. या पद्धतीने थेंबाथेंबाने विरल NaOH टाकत रहा व सामू नोंदवत रहा. काय आढळले? जेव्हा दर्शक पट्टीवर हिरवा रंग येईल म्हणजेच द्रावणाचा सामू 7 होईल तेव्हा NaOH मिळवण्याचे थांबवा.

उदािसनीकरण अभिक्रिया : HCl च्या द्रावणामध्ये NaOH चे द्रावण थेंबाथेंबाने मिसळल्यावर सामू वाढत का जातो? या मागचे कारण विचरणाच्या क्रियेमध्ये आहे. HCl व NaOH या दोन्हींचे त्यांच्या जलीय द्रावणात विचरण होते. HCl च्या द्रावणात NaOH चे द्रावण मिसळणे म्हणजे मोठ्या संहतीतील H^+ आयन मोठ्या संहतीतील OH^- आयनांमध्ये मिसळल्यासारखे आहे. परंतु पाण्याचे H^+ आणि OH^- आयनांमध्ये विचरण फार कमी प्रमाणात होते. त्यामुळे मिसळलेले जास्तीचे OH^- आयन जास्तीच्या H^+ आयनांबरोबर संयोग पावून पाण्याचे रेणू तयार होतात व ते द्रावक पाण्यामध्ये मिसळून जातात. हे बदल खालील आयनिक समीकरणाने दर्शवतात.

$$H^+ + Cl^- + Na^+ + OH^- \longrightarrow Na^+ + Cl^- + H_2O$$

वरील समीकरणावरून दिसून येते की Na^+ व Cl^- हे आयन दोन्ही बाजूंना आहेत. त्यामुळे निव्वळ आयनिक अभिक्रिया पुढीलप्रमाणे आहे.

$$H^+ + OH^- \longrightarrow H_2O$$

NaOH द्रावण जसे थेंबाथेंबाने HCl द्रावणामध्ये मिळवले जाते तशी OH आयनांशी संयोग पावल्याने H आयनांची संहती कमी कमी होत जाते आणि त्यामुळे सामू वाढत जातो.

जेव्हा HCl मध्ये पुरेसे NaOH मिसळले जाते, तेव्हा निष्पन्न होणाऱ्या जलीय द्रावणात फक्त Na $^+$ a Cl $^-$ हे आयन म्हणजे NaCl हा क्षार व द्रावक पाणी हे असतात. तेव्हा H $^+$ a OH $^-$ आयनांचा एकमेव स्रोत म्हणजे 'पाण्याचे विचरण' हा असतो. त्यामुळे या अभिक्रियेला उदासिनीकरण अभिक्रिया म्हणतात. उदासिनीकरण अभिक्रिया पुढीलप्रमाणे साध्या समीकरणाने सुद्धा दर्शवतात.

$$HCl + NaOH \longrightarrow NaCl + H_2O$$

आम्ल आम्लारी क्षार पाणी

उदासिनीकरण अभिक्रियांचा पुढील तक्ता पूर्ण करा व त्यातील आम्ल, आम्लारी व क्षारांची नावे लिहा.

	• \	· · · · · · · · · · · · · · · · · · ·
आम्ल + आम्लारी	→	क्षार + पाणी
HNO ₃ +	·	$KNO_3 + H_2O$
+ 2 NH ₄ OH	→	$(NH_4)_2 SO_4 + \dots$
+ КОН	→	KBr +

उदासिनीकरण अभिक्रियेमध्ये आम्ल व आम्लारी यांच्यात अभिक्रिया होऊन क्षार व पाणी तयार होतात.

उदासिनीकरण अभिक्रियेच्या संदर्भाने आम्ल व आम्लारीची व्याख्या काय होईल?

2. धातुंबरोबर आम्लांची अभिक्रिया

धातूबरोबर होणारी आम्लांची अभिक्रिया ही आम्लांची तीव्रता संहती तसेच तापमान व धातूची अभिक्रियाशीलता यानुसार ठरते. तीव्र आम्लाच्या विरल द्रावणाच्या अभिक्रिया मध्यम अभिक्रियाशील धातूंबरोबर सामान्य तापमानाला करणे सोपे आहे.

कृती: एक मोठी परीक्षानळी घ्या. वायुवाहक नलिका बसवता येईल असे रबरी बूच निवडा. मॅग्नेशिअम फितीचे काही तुकडे परीक्षानळीत घेऊन त्यात विरल HCl घाला. जळती मेणबत्ती वायुवाहक नलिकेच्या टोकाशी नेऊन निरीक्षण करा.

तुम्हाला काय आढळले?

5.6 धातूबरोबरची तीव्र आम्लाच्या विरल द्रावणाची अभिक्रिया

मॅग्नेशिअम धातूबरोबर तीव्र आम्लाच्या विरल द्रावणाची अभिक्रिया : वरील कृतीवरून लक्षात येते की मॅग्नेशिअम धातूची विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया होऊन हायड्रोजन हा ज्वलनशील वायू तयार होतो. हे होताना आम्लातील हायड्रोजनला मॅग्नेशिअम हा अभिक्रियाशील धातू विस्थापित करतो व हायड्रोजन वायू मुक्त होतो. त्याचवेळी धातूचे रूपांतर आम्लारिधर्मी मूलकामध्ये होऊन आम्लातील आम्लधर्मी मूलकाशी ते संयोग पावते व क्षार तयार होतो. खालील अपूर्ण अभिक्रिया पूर्ण करा.

धातू + विरल आम्ल
$$\longrightarrow$$
 क्षार + हायड्रोजन $Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$ $Zn(s) +(aq) \longrightarrow ZnSO_4(aq) +(s) +(aq) \longrightarrow Cu(NO_3)_2(aq) + H_2(g)$

3. धातूंच्या ऑक्साइडबरोबर आम्लांची अभिक्रिया

एका परीक्षानळीत थोडे पाणी घेऊन त्यात रेड ऑक्साइड (लोखंडी वस्तू रंगवण्यापूर्वी लावतात तो प्रायमर) घ्या. आता त्यात थोडे विरल HCl टाकून हलवा व पहा.

- 1. रेड ऑक्साइड पाण्यात विरघळते का?
- 2. विरल HCl टाकल्यावर रेड ऑक्साइडच्या कणांमध्ये काय बदल होतो?

रेड ऑक्साइडचे रासायनिक सूत्र ${\rm Fe_2O_3}$ आहे. पाण्यात अविद्राव्य असलेले रेड ऑक्साइड HCl बरोबर अभिक्रिया पावते व पाण्यात विद्राव्य असा ${\rm FeCl_3}$ हा क्षार तयार झाल्याने पाण्याला पिवळसर रंग येतो. या रासायनिक बदलासाठी खालील रासायनिक समीकरण लिहिता येते.

Fe
$$_2$$
O $_3$ (s) + 6HCl (aq) \longrightarrow 2FeCl $_3$ (aq) + 3H $_2$ O (l) खालील अभिक्रिया पूर्ण करा.

- 1. उदासिनीकरण अभिक्रियेच्या संदर्भाने धातूचे ऑक्साइड कोणत्या प्रकारचे संयुग ठरते?
- 2. धातूंची ऑक्साइड आम्लारिधर्मी असतात हे विधान स्पष्ट करा.

4. अधातूंच्या ऑक्साइडबरोबर आम्लारींची अभिक्रिया

अधातूंच्या ऑक्साइडबरोबर आम्लारींची अभिक्रिया होऊन क्षार व पाणी ही संयुगे तयार होतात.त्यामुळे अधातूंची ऑक्साइड आम्लधर्मी आहेत असे म्हणतात. कधीकधी अधातूंची ऑक्साइड ही आम्लांचीच उदाहरणे आहेत असेही म्हणतात.

खालील अभिक्रिया पूर्ण करा.

अधातूचे ऑक्साइड + आम्लारी
$$\longrightarrow$$
 क्षार + पाणी $CO_2(g) + 2 NaOH(aq) \longrightarrow $Na_2CO_3(aq) + H_2O(l)$ + $2 KOH(aq) \longrightarrow$ $K_2CO_3(aq) + H_2O(l)$ $SO_3(g) + \dots$ $Na_2SO_4(aq) + H_2O(l)$$

झिंक ऑक्साइडची सोडिअम हायड्रॉक्साइड बरोबर अभिक्रिया होऊन सोडिअम झिंकेट (Na_2ZnO_2) व पाणी तयार होते. तसेच ॲल्युमिनिअम ऑक्साइडची सोडिअम हायड्रॉक्साइड बरोबर अभिक्रिया होऊन सोडिअम ॲल्युमिनेट ($NaAlO_2$) व पाणी तयार होते.

- 1. या दोन्ही अभिक्रियांची रासायनिक समीकरणे लिहा.
- 2. या अभिक्रियांवरून ${\rm Al_2O_3}$ व ${\rm ZnO}$ ही आम्लधर्मी ऑक्साइड आहेत असे म्हणता येईल का ?
- 3. उभयधर्मी ऑक्साइडस्ची व्याख्या करून दोन उदाहरणे द्या.

5. धातूंच्या कार्बोनेट व बायकार्बोनेट क्षारांबरोबर आम्लांची अभिक्रिया

कृती: एका परीक्षानळीत खाण्याचा सोडा घ्या. त्यात लिंबाचा रस टाकून लगेच परीक्षानळीला रबरी बुचात बसवलेली वाकडी काचनळी बसवून तिचे दुसरे टोक दुसऱ्या परीक्षानळीत घेतलेल्या चुन्याच्या निवळीत बुडवा. दोन्ही परीक्षानळ्यांमधील निरीक्षणाची नोंद करा. हीच कृती धुण्याचा सोडा, व्हिनेगार, विरल HCl ह्यांच्या योग्य वापराने पुन्हा करा. काय दिसते?

ह्या कृतीमध्ये फसफसण्याच्या स्वरूपात निर्माण होणारा वायू चुन्याच्या निवळीच्या संपर्कात येतो तेव्हा ती दुधाळ झालेली दिसते. ही कार्बनडायऑक्साइड ह्या वायूची रासायनिक परीक्षा आहे. म्हणजे, चुन्याची निवळी दुधाळ होते यावरून आपल्याला समजते की फसफसून आलेला वायू हा कार्बन डायऑक्साइड वायू आहे. धातूंच्या कार्बोनेट आणि बायकार्बोनेट क्षारांवरील आम्लांच्या अभिक्रियेने हा वायू तयार होतो व चुन्याच्या निवळी ${\rm Ca(OH)}_2$ बरोबर त्याची अभिक्रिया होऊन ${\rm CaCO}_3$ चा साका तयार होतो. यामुळे हा वायू ${\rm CO}_2$ असल्याचे समजते.

$$Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(l)$$

खालील तक्त्यांमधील अभिक्रिया पूर्ण करा.

धातूचा कार्बोनेट क्षार + विरल आम्ल		धातूचा अन्य क्षार + कार्बन डायऑक्साइड
Na_2CO_3 (s) + 2 HCl (aq)	→	2 NaCl (aq) + CO_{2} (g) + $H_{2}O$ (l)
Na ₂ CO ₃ (s) +	→	$Na_2SO_4(aq) + CO_2(g) + \dots$
$CaCO_3(s) + 2 HNO_3(aq)$	→	++
$K_2CO_3(s) + H_2SO_4(aq)$	→	++

धातूचा बायकार्बोनेट क्षार + विरल आम	ल धातूचा अन्य क्षार + कार्बन डायऑक्साइड
1. NaHCO ₃ (s) + HCl (aq)	\longrightarrow NaCl (aq) + CO ₂ (g) + H ₂ O (l)
$2. \text{ KHCO}_3 (s) + \text{HNO}_3 (aq)$	→ + +
3. NaHCO ₃ (s) +	CH ₃ COONa (aq) + +

श्वार (Salts)

क्षारांचे प्रकार: आम्लधर्मी, आम्लारिधर्मी व उदासीन क्षार

कृती: सोडिअम क्लोराइड, अमोनिअम क्लोराइड व सोडिअम बायकार्बोनेट ह्या क्षारांच्या राशींपासून त्यांची 10 मिली जलीय द्रावणे तयार करा. सामूदर्शक पट्टिकेच्या साहाय्याने तीनही द्रावणांचा सामू मोजा. तिन्हीचे सामू समान आढळले का? सामूच्या मूल्यावरून ह्या क्षारांचे वर्गीकरण करा.

आम्ल व आम्लारी यांच्यातील अभिक्रियेने क्षार तयार होतात हे आपण पाहिले. ह्या अभिक्रियेला जरी उदासिनीकरण अभिक्रिया असे म्हटले जाते, तरी निष्पन्न होणारे क्षार नेहमीच उदासीन नसतात. तीव्र आम्ल व तीव्र आम्लारी ह्यांच्या उदासिनीकरणाने उदासीन क्षार तयार होतो. ह्या क्षाराच्या जलीय द्रावणाचा सामू ७ असतो. तीव्र आम्ल व सौम्य आम्लारी ह्यांच्या उदासिनीकरणाने आम्लधर्मी क्षार तयार होतो. आम्लधर्मी क्षाराच्या जलीय द्रावणाचा सामू ७ पेक्षा कमी असतो. याउलट सौम्य आम्ल व तीव्र आम्लारी ह्यांच्या उदासिनीकरणाने आम्लारिधर्मी क्षार तयार होतो. अशा क्षाराच्या जलीय द्रावणाचा सामू ७ पेक्षा जास्त असतो.

पुढील क्षारांचे वर्गीकरण आम्लधर्मी, आम्लारिधर्मी व उदासीन क्षार ह्या प्रकारांमध्ये करा. सोडिअम सल्फेट, पोटॅशिअम क्लोराइड, अमोनिअम नायट्रेट, सोडिअम कार्बोनेट, सोडिअम ॲसिटेट, सोडिअम क्लोराइड.

स्फटिकजल (Water of Crystallization)

5.7 स्फटिकजलाचे गुणधर्म

$$CuSO_4$$
. $5H_2O$ $\xrightarrow{3 \text{EVIRI}}$ $CuSO_4 + 5H_2O$ (मंढरे)

वरील कृती फेरस सल्फेट, सोडिअम कार्बोनेट यांच्या स्फटिका बाबतीतही करून पहा व त्यांच्या साठी वरीलप्रमाणे समीकरण लिहा. त्यात ${\rm H_2O}$ साठी 'x' हा सहगुणक घ्या.

कृती : दोन परीक्षानळ्यांमध्ये मोरचुदाचे थोडे खडे घ्या.

एका परीक्षानळीत पाणी ओतून ती हलवा. काय दिसले?

तयार झालेल्या द्रावणाचा रंग कोणता आहे? दुसरी परीक्षानळी बर्नरवर मंद तापवा.काय दिसले? मोरचुदाच्या रंगात काय फरक पडला? परीक्षानळीच्या वरच्या बाजूला काय दिसले?

आता ही दुसरी परीक्षानळी थंड झाल्यावर तिच्यात थोडे पाणी ओतून ती हलवा. तयार झालेल्या द्रावणाचा रंग कोणता आहे? निरीक्षणावरून काय अनुमान बांधता येते?

तापवल्यामुळे मोरचुदाची स्फटिकी संरचना मोडून रंगहीन चूर्ण बनले. हे होताना पाणी बाहेर पडले. हे पाणी मोरचुदाच्या स्फटिकी संरचनेचा भाग होते. ह्यालाच स्फटिकजल म्हणतात. पांढऱ्या चूर्णात पाणी ओतल्यावर पहिल्या परीक्षानळीतील द्रावणाच्या रंगाचेच द्रावण बनले, यावरून लक्षात येते की तापवल्यामुळे मोरचुदाच्या स्फटिकांमध्ये कोणताही रासायनिक बदल झालेला नाही. मोरचूद तापवल्यावर पाणी बाहेर पडणे, स्फटिक संरचना मोडणे, निळा रंग जाणे हे सर्व भौतिक बदल आहेत.

साहित्य: बाष्पनपात्र, बन्सेन बर्नर, तिवई, तारेची जाळी इत्यादी.

रसायने : तुरटी

कृती : बाष्पनपात्रामध्ये तुरटीचा लहान खडा घ्या. बाष्पनपात्र तिवईवरील तारेच्या जाळीवर ठेवा.बाष्पनपात्राला बन्सेन बर्नरच्या साहाय्याने उष्णता द्या.निरीक्षण करा.

बाष्पनपात्रात काय दिसले ? तुरटीची लाही म्हणजे काय ?

आयनिक संयुगे स्फटिकस्वरूप असतात. त्यांची स्फटिकी संरचना आयनांच्या विशिष्ट अशा मांडणीतून तयार झालेली असते. काही संयुगांच्या स्फटिकांमध्ये पाण्यांच्या रेणूंचा सुद्धा समावेश ह्या मांडणीमध्ये झालेला असतो. हेच स्फटिकजल होय. स्फटिकजल हे संयुगाच्या रासायनिक सूत्राच्या विशिष्ट प्रमाणात असते व ते रासायनिक सूत्रात पुढीलप्रमाणे दर्शवतात.

- 1. स्फटिकरूप मोरचूद CuSO₄.5H₂O
- 3. स्फटिकरूप सोडा- Na, CO, .10H, O
- 4. तुरटी K₂SO₄.Al₂(SO₄)₃.24 H₂O
- 1. स्फटिकी पदार्थांमध्ये स्फटिकजल असते.
- 2. स्फटिकजलाचे पाण्याचे रेणू हे स्फटिकाच्या अंतर्गत मांडणीचा भाग असतात.
- 3. गरम केल्याने किंवा काही काळ नुसते ठेवण्यानेही स्फटिकजल बाहेर पडते व त्या भागाचे स्फटिकरूप नष्ट होते.

आयनिक संयुगे व विद्युतवाहकता

5.8 द्रावणाच्या विद्युतवाहकतेचे परीक्षण

कृती : 50 मिली पाण्यात 1 ग्रॅम सोडिअम क्लोराइड मिळवून द्रावण तयार करा. दोन विद्युत तारा घेऊन एक तार 6 व्होल्ट बॅटरीच्या धन टोकाला जोडा. दुसरी तार बॅटरीच्या ऋण टोकाला जोडताना मधे एक खटका व विजेचा दिवा बसवलेला धारक जोडा. दोन्ही तारांच्या मोकळ्या टोकांकडील 3 सेमी भागावरील रोधक आवरण काढून टाका. वरील द्रावण 100 मिली धारकतेच्या चंचुपात्रात घेऊन दोन्ही तारांची आवरण काढलेली टोके आधाराच्या साहाय्याने या द्रावणात उभी बुडवा. खटका चालू करा. दिवा लागतो का हयाची नोंद करा. हीच कृती 1 ग्रॅम कॉपर सल्फेट, 1 ग्रॅम ग्लुकोज, 1 ग्रॅम युरिया , 5 मिली विरल H_2SO_4 व 5 मिली विरल NaOH प्रत्येकी 50 मिली पाण्यात मिसळून मिळालेली द्रावणे वापरून करा व सर्व निरीक्षणे एका तक्त्यात नोंदवा.

(दर वेळी द्रावण बदलताना चंचुपात्र व तारांचा मोकळा भाग पाण्याने स्वच्छ करायला विसरू नका)

- 1. चंचुपात्रात कोणकोणती द्रावणे असताना दिवा लागला?
- 2. कोणकोणती द्रावणे विद्युतवाहक आहेत?

जेव्हा विजेच्या दिव्यामधून विद्युत प्रवाह जातो तेव्हाच दिवा लागतो आणि जेव्हा विद्युत परिपथ पूर्ण होतो तेव्हाच हे घडू शकते. वरील कृतीत NaCl, $CuSO_4$, H_2SO_4 व NaOH यांची जलीय द्रावणे वापरली असता विद्युत परिपथ पूर्ण होतो असे दिसते. याचा अर्थ असा की, ही द्रावणे विद्युत वाहक आहेत.

विजेच्या तारेमधून वीज वाहून नेण्याचे काम इलेक्ट्रॉन करतात आणि द्रावण किंवा द्रव यांमधून वीज वाहून नेण्याचे काम आयन करतात. बॅटरीच्या ऋण टोकाकडून इलेक्ट्रॉन बाहेर पडतात व विद्युत परिपथ पूर्ण करून ते बॅटरीच्या धन टोकातून बॅटरीत जातात. परिपथामध्ये जेव्हा द्रव/द्रावण असते तेव्हा त्यात दोन कांड्या/तारा/पट्टया बुडवतात. त्यांना विद्युतअग्र (Electrode) म्हणतात. विद्युतअग्र सामान्यतः विद्युत वाहक स्थायूचे बनवतात. बॅटरीच्या ऋण टोकाला वाहक तारेने जोडलेले विद्युतअग्र म्हणजे ऋणाग्र (Cathode) व बॅटरीच्या धन टोकाला जोडलेले विद्युतअग्र म्हणजे धनाग्र (Anode) होय.

काही द्रवांमध्ये /द्रावणांमध्ये विद्युतअग्रे बुडवली असता विद्युत परिपथ पूर्ण का होतो? हे जाणण्यासाठी वरील कृतीत जी द्रावणे विद्युतवाहक आढळली त्यांच्याकडे अधिक सखोल दृष्टीने पाहू.

आयनांचे विचरण आणि विद्युतवाहकता (Dissociation of Ions and Electrical Conductivity)

वरील कृतीमध्ये आढळले की NaCl, $CuSO_4$, H_2SO_4 व NaOH हया संयुगांची जलीय द्रावणे विद्युतवाहक आहेत. यापैकी NaCl व $CuSO_4$ हे क्षार आहेत, H_2SO_4 हे तीव्र आम्ल व NaOH हे तीव्र आम्लारी आहेत. आपण पाहिले की क्षार, तीव्र आम्ल व तीव्र आम्लारी ह्यांचे जलीय द्रावणात जवळजवळ पूर्णपणे विचरण होते. त्यामुळे या तिन्हींच्याही जलीय द्रावणात मोठया प्रमाणावर धन आयन व ऋण आयन असतात.

द्रव अवस्थेचे वैशिष्ट्य म्हणजे कणांना असलेली गतिमानता (Mobility). हया गतिमानतेमुळे द्रावणातील धन आयन हे ऋणाग्राकडे आकर्षले जातात व ऋणाग्राच्या दिशेने प्रवास करतात. याउलट द्रावणातील ऋण आयन धनाग्राच्या दिशेने प्रवास करतात. द्रावणातील आयनांचा संबंधित विद्युतअग्राच्या दिशेने प्रवास म्हणजेच द्रावणातून विद्युतवहन होय. यावरून तुमच्या लक्षात येते की, द्रव/द्रावणामध्ये आयनांचे मोठ्या प्रमाणात विचरण झाल्याने त्यांना विद्युतवाहकता प्राप्त होते.

5.9 आयनांचे विचरण

5.10 विद्युत अपघटन

विदयुत अपघटन (Electrolysis)

कृती: 1 ग्रॅम कॉपर सल्फेटचे ($CuSO_4$) 50 मिली पाण्यातील द्रावण एका 100 मिली धारकतेच्या चंचूपात्रात घ्या. तांब्याची एक जाड पट्टी धनाग्र म्हणून घ्या व कार्बनची एक कांडी ऋणाग्र म्हणून घ्या. आकृती प्रमाणे रचना करून परिपथामधून काही वेळ वीजप्रवाह जाऊ द्या. काही बदल घडलेला दिसतो का?

वरील कृतीत थोडा वेळ वीज वाहू दिल्यावर ऋणाग्राच्या द्रावणात बुडालेल्या भागावर तांब्याचे पुट चढलेले दिसते.असे कशामुळे झाले ? परिपथातून वीजेचा प्रवाह सुरू झाल्यावर द्रावणातील Cu^{2+} हे धन आयन ऋणाग्राकडे आकर्षिले गेले. ऋणाग्राकडून बाहेर पडणाऱ्या इलेक्ट्रॉन बरोबर Cu^{2+} आयनांचा संयोग होऊन Cu हे धातूचे अणू तयार होऊन त्याचा थर ऋणाग्रावर जमलेला दिसू लागला.

द्रावणातील Cu^{2+} आयन हया प्रकारे वापरले जाऊनही द्रावणाचा रंग होता तसाच राहिला. कारण वीजप्रवाह चालू असताना धनाग्रातील तांब्याच्या अणूंपासून इलेक्ट्रॉन काढून ते विजेच्या तारेतून पाठवले गेले. त्यामुळे तयार झालेले Cu^{2+} आयन द्रावणात उतरले. अशा प्रकारे वाहणाऱ्या वीजप्रवाहामुळे द्रावणातील द्राव्याचे अपघटन होते. त्यालाच विद्युत अपघटन (Electrolysis) म्हणतात. विद्युत अपघटनामध्ये दोन क्रिया असतात, ते म्हणजे ऋणाग्र अभिक्रिया व धनाग्र अभिक्रिया होय .

वरील कृतीमध्ये घडलेल्या विद्युत अपघटनाचे दोन भाग पुढीलप्रमाणे दाखवितात.

ऋणाग्र अभिक्रिया
$$Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s)$$

धनाग्र अभिक्रिया $Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^-$

- 1. विद्युत अपघटन होण्यासाठी द्रवात/द्रावणात मोठ्या प्रमाणावर विचरण झालेले आयन असणे आवश्यक असते. म्हणून ज्या पदार्थांचे द्रावणात/द्रवरूप अवस्थेत मोठ्या प्रमाणावर विचरण होते त्यांना तीव्र अपघटनी पदार्थ (Electrolyte) म्हणतात. क्षार, तीव्र आम्ले व तीव्र आम्लारी हे तीव्र विद्युत अपघटनी पदार्थ आहेत त्यांच्या द्रावणांना उच्च विद्युतवाहकता असते म्हणजेच तीव्र विद्युतअपघटनी पदार्थ द्रवरूपात व द्रावण अवस्थेत विजेचे सुवाहक असतात. सौम्य आम्ले व सौम्य आम्लारी हे सौम्य विद्युत अपघटनी पदार्थ आहेत.
- 2. विद्युत अपघटन करण्यासाठी पात्रामध्ये विद्युतअपघटनी पदार्थ (द्रवरुप/द्रावण) घेऊन त्यात विद्युतअग्रे बुडवल्यावर जी रचना तयार होते तिला विद्युत अपघटनी घट म्हणतात.

जरा डोके चालवा.

- मागील कृतीमधील विद्युत अपघटनी घटात बराच काळ वीज प्रवाहित केल्यास धनाग्रामध्ये काय बदल दिसून येईल?
- 2. पाणी हे विजेचे सुवाहक असेल का?

संकेतस्थळ

www.chemicalformula.org

शुद्ध पाण्यात विद्युत अग्रे बुडवून खटका चालू केला तरी वीजप्रवाह वाहत नाही. म्हणजेच शुद्ध पाणी हे विजेचे दुर्वाहक असल्याचे कळते. हयाचे कारण आपण आधीच पाहिले आहे. पाण्याचे विचरण खूपच कमी प्रमणात होते. विचरणाने तयार होणाऱ्या H^+ व OH^- आयनांची संहती प्रत्येकी $1x10^{-7} \, \mathrm{mol}/L$ इतकी असते. मात्र पाण्यात थोड्या प्रमाणात क्षार किंवा तीव्र आम्ल/आम्लारी मिसळले असता त्यांच्या विचरणाने पाण्याची विद्युतवाहकता वाढते व त्यामुळे पाण्याचे विद्युत अपघटन होते.

पाण्याचे विद्युत अपघटन (Electrolysis of water)

कृती: 500 मिली शुद्ध पाण्यात 2 ग्रॅम मीठ विरघळू द्या. 500 मिली धारकतेच्या चंचुपात्रात यातील 250 मिली द्रावण घ्या. पॉवर सप्लायच्या धन व ऋण टोकांना विजेच्या दोन तारा जोडा. तारांच्या दुसऱ्या टोकाकडील 2 सेमी भागावरील रोधक आवरण काढून टाका. ही दोन विद्युत अग्रे झाली. दोन परीक्षानळ्या तयार केलेल्या मिठाच्या विरल द्रावणाने काठोकाठ भरा. हया परीक्षानळ्या आत हवा शिरू न देता विद्युत अग्रांवर पालथ्या घाला. पॉवर सप्लायमधून 6 व्होल्ट दाबाखाली वीज प्रवाह सुरू करा. थोड्या वेळाने परीक्षानळ्यांमध्ये काय दिसते त्याचे निरीक्षण करा.

- चंचुपात्र 5.11 पाण्याचे विद्युत अपघटन
 - 1. परीक्षानळ्यांमधील विद्युत अग्रांजवळ वायूचे बुडबुडे तयार होताना दिसले का?
 - 2. हे वायू पाण्यापेक्षा जड आहेत की हलके?
 - 3. दोन्ही परीक्षानळ्यांमधील द्रावणावर जमलेल्या वायूंचे आकारमान समान आहे की वेगळे ?

वरील कृतीमध्ये असे आढळते की ऋणाग्रापाशी तयार होणाऱ्या वायूचे आकारमान धनाग्रापाशी तयार होणाऱ्या वायूच्या दुप्पट आहे. वैज्ञानिकांनी हे दाखवून दिले आहे की ऋणाग्रापाशी हायड्रोजन वायू तयार होतो तर धनाग्रापाशी ऑक्सिजन वायू तयार होतो. यावरून स्पष्ट होते की पाण्याचे विद्युत अपघटन होऊन त्याच्यातील घटक मूलद्रव्ये मुक्त होतात. संबंधित विद्युतअग्र अभिक्रिया पुढीलप्रमाणे आहेत.

ऋणाग्र अभिक्रिया
$$2 H_2 O + 2 e^- \longrightarrow H_2(g) + 2 O H^-(aq)$$
 धनाग्र अभिक्रिया $2 H_2 O \longrightarrow O_2(g) + 4 H(aq) + 4 e^-$

- 1. दोन्ही परीक्षानळ्यांमधील द्रावणाचे लिटमस कागदाने परीक्षण करा. काय दिसेल?
- 2. विद्युत अपघटनी पदार्थ म्हणून विरल $H_{\gamma}SO_{4}$ तसेच विरल NaOH वापरून वरील कृती पुन्हा करा.

विद्युत अपघटनी पदार्थांचे विविध उपयोग कोणकोणते आहेत?

स्वाध्याय 🗸 🥙

1. गटात न बसणारा शब्द ओळखा व कारण द्या.

- अ. क्लोराइड, नायट्रेट, हायडाइड, अमोनिअम
- आ. हायड्रोजन क्लोराइड, सोडिअम हायड्रॉक्साइड, कॅल्शिअम ऑक्साइड, अमोनिआ
- इ. ॲसेटिक ॲसिड, कारबॉनिक ॲसिड, हायड्रोक्लोरीक ॲसिड, नायट्रिक ॲसिड.
- ई. अमोनियम क्लोराइड, सोडिअम क्लोराइड, पोटॅशिअम नायटेट, सोडिअम सल्फेट.
- उ. सोडिअम नायट्रेट, सोडिअम कार्बोनेट, सोडिअम सल्फेट, सोडिअम क्लोराइड
- ऊ. कॅल्शिअम ऑक्साइड, मॅग्नेशिअम ऑक्साइड, झिंक ऑक्साइड, सोडिअम ऑक्साइड
- ए. स्फटिकरूप मोरचूद, स्फटिकरूप मीठ, स्फटिकरूप फेरस सल्फेट, स्फटिकरूप सोडिअम कार्बोनेट
- ऐ. सोडिअम क्लोराइड, पोटॅशिअम हायड्रॉक्साइड, ॲसेटिक ॲसिड, सोडिअम ॲसिटेट.

2. पुढील कृती केल्यावर काय बदल दिसतील ते लिहून त्यामागील कारण स्पष्ट करा.

- अ. कॉपर सल्फेटच्या 50 मिली द्रावणात 50 मिली पाणी मिळवले.
- आ. सोडिअम हायड्रॉक्साइडच्या 10 मिली द्रावणात फिनॉलफ्थॅलीन दर्शकाचे दोन थेंब टाकले.
- इ. 10 मिली विरल नायट्रिक ॲसिडमध्ये तांब्याच्या किसाचे 2/3 कण टाकून हलवले.

- ई. 2 मिली विरल HCl मध्ये लिटमस कागदाचा तुकडा टाकला. त्यानंतर त्यामध्ये 2 मिली संहत NaOH मिळवून हलवले.
- 3. विरल HCl मध्ये मॅग्नेशिअम ऑक्साइड मिळवले तसेच विरल NaOH मध्ये मॅग्नेशिअम ऑक्साइड मिळवले.
- ऊ. विरल HCl मध्ये झिंक ऑक्साइड मिळवले तसेच विरल NaOH मध्ये झिंक ऑक्साइड मिळवले.
- ए. चुनखडीवर विरल HCl टाकले.
- ऐ. परीक्षानळीत मोरचुदाचे खडे तापवले व थंड झाल्यावर त्यात पाणी मिळवले.
- ओ. विद्युत अपघटनी घटात विरल ${\rm H_2SO_4}$ घेऊन त्यातून वीजप्रवाह जाऊ दिला.
- 3. खालील ऑक्साइडचे तीन गटात वर्गीकरण करून त्यांना नावे द्या.
 - CaO, MgO, CO₂, SO₃, Na₂O, ZnO, Al₂O₃, Fe₂O₃

4. इलेक्ट्रॉन संरूपण आकृती काढून स्पष्ट करा.

- अ. सोडिअम व क्लोरीनपासून सोडिअम क्लोराइडची निर्मिती
- आ. मॅग्नेशिअम व क्लोरीनपासून मॅग्नेशिअम क्लोराइडची निर्मिती

5. खालील संयुगे पाण्यात विरघळल्यास त्यांचे विचरण कसे होते ते रासायनिक समीकरणाने दर्शवा व विचरणाचे प्रमाण कमी की जास्त ते लिहा. हायड्रोक्लोरिक आम्ल, सोडिअम क्लोराइड,

हायड्रोक्लोरिक आम्ल, सोडिअम क्लोराइड, पोटॅशिअम हायड्रॉक्साइड, अमोनिआ, ॲसेटिक आम्ल, मॅग्नेशिअम क्लोराइड, कॉपर सल्फेट.

- 6. पुढील द्रावणाची संहती ग्रॅम/लीटर व मोल/लीटर हया एककांमध्ये व्यक्त करा.
 - अ. 100 मिली दावणात 7.3 ग्रॅम HCl
 - आ. 50 मिली द्रावणात 2 ग्रॅम NaOH
 - इ. 100 मिली द्रावणात 3 ग्रॅम CH3COOH
 - ई. 200 मिली द्रावणात 4.9 ग्रॅम H₂SO₄
- 7. खालील प्रश्नांची उत्तरे लिहा.
 - अ. आम्लारिधर्मता ह्या गुणधर्मानुसार आम्लांचे वर्गीकरण करा. प्रत्येकी एक उदाहरण लिहा.
 - आ. उदासिनीकरण म्हणजे काय? दैनंदिन जीवनातील उदासिनीकरणाची दोन उदाहरणे लिहा.
 - इ. द्रावणाचा सामू मोजण्यासाठी कोणत्या पद्धती वापरतात ते लिहा.
 - ई. पाण्याचे विद्युत अपघटन म्हणजे काय ते सांगून विद्युतअग्र अभिक्रिया लिहून स्पष्ट करा.
- 8. खालील कृतीसाठी रासायनिक समीकरणे लिहा.
 - अ. HCl च्या द्रावणात NaOH चे द्रावण मिळवले.
 - आ. विरल H¸SO₄ मध्ये जस्ताचे चूर्ण मिळवले.
 - इ. कॅल्शिअम ऑक्साइड मध्ये विरल नायट्रिक ऑसिड मिळवले.
 - ई. KOH च्या द्रावणामधून कार्बन डायऑक्साइड वायू सोडला.
 - उ. खाण्याच्या सोड्यावर विरल HCl ओतले.

- फरक लिहा.
 - अ.आम्ल व आम्लारी आ. कॅटायन व ॲनायन इ. ऋणाग्र व धनाग्र
- 10. खालील पदार्थांच्या जलीय द्रावणाचे वर्गीकरण सामूप्रमाणे 7, 7 पेक्षा जास्त व 7 पेक्षा कमी या गटांत करा.

मीठ, सोडिअम ॲिसटेट, हायड्रोजन क्लोराइड, कार्बन डायऑक्साइड, पोटॅशिअम ब्रोमाइड, कॅल्शिअम हायड्रॉक्साइड, अमोनिअम क्लोराइड, व्हिनेगार, सोडिअम कार्बोनेट, अमोनिआ, सल्फर डायऑक्साइड.

उपक्रम :

- 1. विद्युत विलेपन (Electroplating) चा वापर दैनंदिन जीवनात केला जातो. त्याविषयी अधिक माहिती मिळवा.
- पावसाच्या पाण्याचा नमुना मिळवा. त्यात वैश्विक दर्शकाचे काही थेंब टाका. त्याचा सामू मोजा. पावसाच्या पाण्याचे स्वरूप काय आहे ते सांगून त्याचा सजीवसृष्टीवर काय परिणाम होतो ते लिहा.

