

Universidade Federal de Roraima Departamento de Matemática Álgebra Linear I - Prova 1

Data: 15/10/2020 Semestre 2020.1 Turma 1 Prof. Jairo

Responda quatro, dentre as dez questões abaixo.

Questão 1. (2,5 Pontos) Verifique se são subespaços de \mathbb{R}^3 :

- a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 ; 3x + 2y z = 0\};$
- b) $W_2 = \{(x, y, z) \in \mathbb{R}^3; y = xz\}.$

Questão 2. (2,5 Pontos) Determine a dimensão do subespaço W de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, 1, 5, 4), v_2 = (1, 1, 1, 1)$ e $v_3 = (1, 1, -7, -5)$, exibindo uma base do mesmo.

Questão 3. (2,5 Pontos) Exiba uma base do subespaço U+W, onde $U=\{(x,y,z,w)\in\mathbb{R}^4\,;\;x+y=0\}$ e $W=\{(x,y,z,w)\in\mathbb{R}^4\,;\;x-y+w=z\}$, e determine a dimensão do subespaço $U\cap W$.

Questão 4. (2,5 Pontos) Verifique se $B = \{(1,2,3), (4,5,6), (3,2,1)\}$ é uma base do espaço vetorial \mathbb{R}^3 .

Questão 5. (2,5 Pontos) Verifique se o conjunto

$$N = \left\{ A = [a_{ij}]_{3\times3} \in \mathbb{M}_{3\times3}(\mathbb{R}); \ \sum_{i=1}^{3} a_{ii} = a_{11} + a_{22} + a_{33} = 0 \right\}$$

é um subespaço de $\mathbb{M}_{3\times 3}(\mathbb{R})$. Em caso afirmativo, determine a dimensão de N exibindo uma base do mesmo.

Nas questões 6 a 10, abaixo, V é um espaço vetorial de dimensão finita.

Questão 6. (2,5 Pontos) Seja V um espaço vetorial. Mostre que, para cada subespaço U de V, existe um subespaço W de V tal que $U \oplus W = V$.

Questão 7. (2,5 Pontos) Seja $X = \{u_1, \ldots, u_n\}$ um subconjunto de um espaço vetorial V. Mostre que se X é L.I., então dados $\alpha_1 \ldots, \alpha_n \in \mathbb{R}^*$ o conjunto $X' = \{\alpha_1 u_1, \ldots, \alpha_n u_n\}$ também é L.I.

Questão 8. (2,5 Pontos) Seja V é um espaço vetorial de dimensão finita, W_1 e W_2 subespaços de V, com $W_1 \oplus W_2 = V$. Prove que, se B_1 é base de W_1 e B_2 é base de W_2 , então $B = B_1 \cup B_2$ é uma base de V.

Questão 9. (2,5 Pontos) Seja $X = \{v_1, v_2, v_3, v_4\}$ um subconjunto de um espaço vetorial V. Mostre que se X é LI, então são LI os seguintes conjuntos:

- a) $X' = \{v_1, v_2 + v_1, v_3 + v_1, v_4 + v_1\};$
- b) $X'' = \{v_1, v_2, v_3 + \alpha v_1, v_4\}, \forall \alpha \in \mathbb{R}.$

Questão 10. (2,5 Pontos) Prove que, se $X = \{u_1, \ldots, u_n\}$ é um subconjunto de um espaço vetorial V tal que cada vetor u de U = GerX se escreve de modo único como combinação linear dos vetores de X. então X é uma base de U.

Observações:

- i) Resolva as questões (escreva as soluções em uma folha branca, de preferência papel A4, para facilitar a visibilidade), em seguida digitalize as folhas com as soluções e rena-as em um (único) arquivo no formato PDF.
- ii) assine em todas as folhas.
- iii) o arquivo com as soluções deve ser enviado até às 17hs.