Exercise 1.1

- (a)
- (b)

Exercise 1.2

Proof by contradiction to establish the following theorem:

For all sets A and B: If
$$(A \cap B) = \emptyset$$
, then $(A \setminus B) = A$.

Proof. Assume if $A \cap B = \emptyset$, then $A \setminus B \neq A$ Since $(A \setminus B) \neq A$ there is a $x \in B$ that's also $x \in A$. But since $A \cap B = \emptyset$ this is impossible. Hence the original statement must hold.

Exercise 1.3

- (a)
- (b)

Exercise 1.4

We examine the following statement:

For all sets A, B and C: if $A \subseteq (B \cup C)$, then $A \subseteq B$ or $A \subseteq C$.

We choose a set $A = B \cup C$ where $B \neq C$ and $B, C \neq \emptyset$. It follows that $A \not\subseteq B$ and $A \not\subseteq C$ since B and C are now strict subsets of A. Since $A \subseteq (B \cap C)$ holds this contradicts the statement.