Introductory Statistics Lectures

Random variables

Theoretical distributions for populations versus histograms for samples.

ANTHONY TANBAKUCHI DEPARTMENT OF MATHEMATICS PIMA COMMUNITY COLLEGE

REDISTRIBUTION OF THIS MATERIAL IS PROHIBITED WITHOUT WRITTEN PERMISSION OF THE AUTHOR

© 2009

(Compile date: Tue May 19 14:49:16 2009)

Contents

1	Random variables		1		Unusual values	4
	1.1	Random variables	1	1.3	Probability densities	4
	1.2	Probability distributions	2	1.4	Summary	(
		Mean and standard de-		1.5	Additional Problems	7
		viation of $P(x_i)$.	3			

1 Random variables

1.1 Random variables

Random variable x.

Definition 1.1

is a variable determined by chance for each outcome of a procedure.

Example 1. Examples of random variables:

- Height
- Weight
- Number of males in a class

Types of random variables

discrete are countable. Have an associated **probability distribution**. (ex. Number of males)

continuous have infinitely many values. Have an associated probability density function. (ex. Height)

Types of questions we want to answer

"Find the probability that the mean is ..."

english statement	mathematical notation
"equal to fifty"	$P(\mu = 50)$
"not equal to fifty"	$P(\mu \neq 50)$
"not fifty"	$P(\mu \neq 50)$
"greater than fifty"	$P(\mu > 50)$
"at least fifty"	$P(\mu \ge 50)$
"less than fifty"	$P(\mu < 50)$
"no more than fifty"	$P(\mu \le 50)$
"between forty and fifty" (inclusive)	$P(40 \le \mu \le 50)$
"between forty and fifty"	$P(40 < \mu < 50)$

1.2 Probability distributions

Definition 1.2

PROBABILITY DISTRIBUTION $P(x_i)$.

describes the probability of a discrete random variable x. $P(x_i)$ is the probability of observing x_i . Describes **population**.

Two key properties of probability distributions

$$\sum_{i=1}^{k} P(x_i) = 1 \tag{1}$$

with k possible values of x.

$$0 \le P(x_i) \le 1, \text{ for } i = 1, 2, \dots, k$$
 (2)

Ways we can represent $P(x_i)$

Three basic ways we can represent $P(x_i)$.

1. Table

X	P(x)
0	0.03125
1	0.15625
2	0.31250
3	0.31250
4	0.15625
5	0.03125

2. Probability distribution plot

3. Probability histogram

MEAN AND STANDARD DEVIATION OF $P(X_I)$

Given $P(x_i)$, we can find the mean and standard deviation:

EXPECTED VALUE.

of a random variable is the mean value μ . The expected value E in terms of the probability distribution is:

$$E = \mu = \sum_{i}^{k} x_i \cdot P(x_i)$$
 (3)

Anthony Tanbakuchi

MAT167

Definition 1.3

Definition 1.4

STANDARD DEVIATION.

of a probability distribution is given by:

$$\sigma = \sqrt{\sum_{i}^{k} (x_i - \mu)^2 \cdot P(x_i)}$$
(4)

Example 2. Find the expected value of x using the previous table giving $P(x_i)$.

X	P(x)	x P(x)
0	0.03125	0.00000
1	0.15625	0.15625
2	0.31250	0.62500
3	0.31250	0.93750
4	0.15625	0.62500
5	0.03125	0.15625

Finally, summing up the last column: E=2.5

Example 3. Find the σ of x using the previous table giving $P(x_i)$.

X	P(x)	$(x-2.5)^2 P(x)$
0	0.03125	0.19531
1	0.15625	0.35156
2	0.31250	0.07812
3	0.31250	0.07812
4	0.15625	0.35156
5	0.03125	0.19531

Finally, summing up the last column: $\sigma^2 = 1.25$, taking the square root: $\sigma = 1.12$

UNUSUAL VALUES

Definition 1.5

Unusual value.

if
$$P(x_i) \le 0.05$$

Given that P(x = 5) = 0.0312.

Question 1. Is P(x=5) unusual?

Question 2. If we observe x = 5, what does the rare event rule tell us?

1.3 Probability densities

Definition 1.6

Probability density function (PDF) f(x) .

describes the probability of a continuous random variable x. Describes **population**.

Random variables 5 of 7

Two key properties of probability densities

$$1 = \int_{-\infty}^{\infty} f(x) dx, \quad \text{(area under curve is 1)}$$
 (5)

$$0 \le f(x)$$
 for all x (6)

Probability is area

$$P(A) = \int_{A} f(x) dx \tag{7}$$

Unusual values: $P(A) \leq 0.05$

Representing a probability density

Standard normal density f(x)

Probability is represented by AREA. Height is not meaningful.

Representation of probability on a pdf

P(x<0)=0.5

The probability P(x < 0) is the area to the left of 0.

Given f(x), we can generally find the mean and standard deviation:

Definition 1.7

EXPECTED VALUE.

of a random variable is the mean value μ . The expected value E in terms of the probability density is:

$$E = \mu = \int_{-\infty}^{\infty} x \cdot f(x) dx \tag{8}$$

Definition 1.8

STANDARD DEVIATION.

of a probability density is given by:

$$\sigma = \sqrt{\int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx}$$
 (9)

1.4 Summary

- 1. Random variable x
- 2. $P(x_i)$ describes probability of observing x_i (discrete).
 - Key properties (for discrete):
 - a) $0 \le P(x_i) \le 1$ b) $\sum_{i=1}^k P(x_i) = 1$ Unusual value: $P(x_i) \le 0.05$
 - Expected value (mean): $E = \mu = \sum x_i \cdot P(x_i)$
- Standard deviation: σ = √∑(x_i μ)² · P(x_i)
 f(x) is probability density function (pdf), for continuous variables.

1.5 Additional Problems

	X	P(x)
	0	0.12500
Given:	1	0.37500
	2	0.37500
	3	0.12500

 ${\it Question}$ 3. Is the above a valid probability distribution?

 $Question\ 4.$ Find the expected value.

Question 5. Find the standard deviation.