(2) Assume that \Im is a maximal ideal. As in (1), A/\Im is not the trivial ring (0). Let $[a] \neq 0$ in A/\Im . We need to prove that [a] has a multiplicative inverse. Since $[a] \neq 0$, we have $a \notin \Im$. Let \Im_a be the ideal generated by \Im and a. We have

$$\mathfrak{I} \subseteq \mathfrak{I}_a$$
 and $\mathfrak{I} \neq \mathfrak{I}_a$,

since $a \notin \mathfrak{I}$, and since \mathfrak{I} is maximal, this implies that

$$\mathfrak{I}_a = A$$
.

However, we know that

$$\mathfrak{I}_a = \{ax + h \mid x \in A, h \in \mathfrak{I}\},\$$

and thus, there is some $x \in A$ so that

$$ax + h = 1$$
,

which proves that [a][x] = [1], as desired.

Conversely, assume that A/\mathfrak{I} is a field. Again, since A/\mathfrak{I} is not the trivial ring, $\mathfrak{I} \neq A$. Let \mathfrak{J} be any proper ideal such that $\mathfrak{I} \subseteq \mathfrak{J}$, and assume that $\mathfrak{I} \neq \mathfrak{J}$. Thus, there is some $j \in \mathfrak{J} - \mathfrak{I}$, and since $\operatorname{Ker} \pi = \mathfrak{I}$, we have $\pi(j) \neq 0$. Since A/\mathfrak{I} is a field and π is surjective, there is some $k \in A$ so that $\pi(j)\pi(k) = 1$, which implies that

$$jk - 1 = i$$

for some $i \in \mathfrak{I}$, and since $\mathfrak{I} \subset \mathfrak{J}$ and \mathfrak{J} is an ideal, it follows that $1 = jk - i \in \mathfrak{J}$, showing that $\mathfrak{J} = A$, a contradiction. Therefore, $\mathfrak{I} = \mathfrak{J}$, and \mathfrak{I} is a maximal ideal.

As a corollary, we obtain the following useful result. It emphasizes the importance of maximal ideals.

Corollary 30.9. Given any ring A, every maximal ideal \Im in A is a prime ideal.

Proof. If \Im is a maximal ideal, then, by Proposition 30.8, the quotient ring A/\Im is a field. However, a field is an integral domain, and by Proposition 30.8 (again), \Im is a prime ideal. \square

Observe that a ring A is an integral domain iff (0) is a prime ideal. This is an example of a prime ideal which is not a maximal ideal, as immediately seen in $A = \mathbb{Z}$, where (p) is a maximal ideal for every prime number p.

A less obvious example of a prime ideal which is not a maximal ideal is the ideal (X) in the ring of polynomials $\mathbb{Z}[X]$. Indeed, (X,2) is also a prime ideal, but (X) is properly contained in (X,2). The ideal (X) is the set of all polynomials of the form XQ(X) for any $Q(X) \in \mathbb{Z}[X]$, in other words the set of all polynomials in $\mathbb{Z}[X]$ with constant term equal to 0, and the ideal (X,2) is the set of all polynomials of the form

$$XQ_1(X) + 2Q_2(X), \quad Q_1(X), Q_2(X) \in \mathbb{Z}[X],$$