МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

Факультет компьютерных наук

Кафедра информационных систем

Разработка web-интерфейса управления RAID-массивом

ВКР *Бакалаврская работа* 09.03.02 *Информационные системы и технологии Информационные системы и сетевые технологии*

Допущено к защите в ГЭК	
Зав. кафедрой	Д.Н. Борисов, к. т. н., доцент2022
Обучающийся	В.Р. Григоренко, 4 курс, д/о
Руководитель	А.А. Головкин, ассистент

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных наук

Кафедра информационных систем

УТВЕРЖДАЮ
заведующий кафедрой
подпись, расшифровка подписи
2022

ЗАДАНИЕ

НА ВЫПОЛНЕНИЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ ОБУЧАЮЩЕГОСЯ Григоренко Виктора Руслановича

фамилия, имя, отчество

фамилая, имя, от чество
1. Тема работы «Разработка web-интерфейса управления RAID-массивом», утверждена решением ученого совета факультета от2022
2. Направление подготовки 09.03.02 Информационные системы и технологии
3. Срок сдачи законченной работы 2022
4. Календарный план: (строится в соответствии со структурой ВКР)

Nº	Структура ВКР	Сроки вы-	Примечание
		полнения	
1	Введение	20.03.2022	
2	Постановка задачи	27.03.2022	
3	Средства реализации	01.04.2022	
4	Цели создания web-приложения	05.04.2022	
5	Анализ предметной области	07.04.2022	

6	Терминология	13.04.2022	
7	Уровни RAID-массивов	15.04.2022	
8	Разработка	16.04.2022	
9	Интерфейс управления RAID-массивами	20.04.2022	
10	Web-интерфейс взаимодействия с разработанным	22.04.2022	
	RAID-менеджером		
11	Сравнение создания RAID-массива	23.04.2022	
12	Заключение	26.04.2022	
13	Список использованных источников	30.04.2022	

Обучающийся		
	Подпись	расшифровка подписи
Руководитель		
	Подпись	расшифровка подписи

Реферат

Бакалаврская работа 44 с., 32 рис.

RAID-МАССИВ, ЗЕРКАЛИРОВАНИЕ, ЧЕРЕДОВАНИЕ, ЧЁТНОСТЬ, УРОВНИ RAID-МАССИВОВ, MDADM, WEB-ПРИЛОЖЕНИЕ.

Объектом исследования является механизмы взаимодействия интерфейсов и средств ОС Linux, создание и управление RAID-массивами.

Цель работы – программная реализация web-интерфейса для управления RAID-массивами.

В процессе выполнения работы проводились:

- изучение архитектуры RAID-массивов;
- изучение утилит и команд для управления RAID-массивами;
- проектировка понятного и лаконичного внешнего вида для клиентской части web-приложения.

В результате было реализовано web-приложение для взаимодействия с RAID-массивами с возможностями:

- упрощённого процесса создания RAID-массивов;
- управление RAID-массивами;
- мониторинга состояния RAID-массивов.

Содержание

Введение	6
1 Постановка задачи	7
1.1 Средства реализации	8
1.2 Цели создания web-приложения	8
2 Анализ предметной области	9
2.1 Терминология	9
2.2 Уровни RAID-массивов	15
2.3 Язык программирования	22
2.4 Фреймворк	23
2.5 Операционная система	23
3 Разработка	24
3.1 Интерфейс управления RAID-массивами	24
3.2 Web-интерфейс взаимодействия с разработанным RAID-менеджером	28
3.3 Сравнение создания RAID-массива	32
Заключение	44
Список использованных источников	45

Введение

В настоящее время компьютер тесно связан с нашей жизнью, так как компьютер применяется практически во всех сферах жизни, появляется проблема хранения больших объёмов данных, эту проблему помогают решить RAID-массивы. Они помогают сохранять данные и повысить производительность систем.

Большое количество RAID-массивов используются на unix подобных систем, так как особенность этой ОС в её безопасности и конфиденциальности. Большинство unix — подобных операционных систем бесплатны, так же стоит отметить, что в данных ОС потребляется гораздо меньше аппаратных ресурсов. Данные операционные системы более гибкие в настройке. Мой выбор был сделан на дистрибутив Ubuntu, так как он наиболее популярен среди всех unix-подобных систем, так же разработчики часто выпускают обновления для улучшения производительности и устранение возникших неполадок.

RAID—массивы применяются в крупных компаниях, в серверных, а так же в домашнем использовании. Технология RAID (Redundant Array of Independent Disks) — избыточный массив независимых дисков. Принцип работы данной технологии состоит в том, чтобы из набора накопителей(дисков) создаётся массив, который определяется в системе, как большой логический диск. Надёжность хранение информации выполняется дублированием данных, а высокое быстродействие системы выполняется за счёт параллельного выполнения операций вводавывода данных.

Выбор RAID-массива определяется в зависимости от требуемых задач, компонентов системы и цены. Существует 2 подхода в реализации RAID-массивов: программный и аппаратный. В данной работе выбор был сделан в программной реализации, так как не требует наличие RAID-контроллера.

Для создания RAID-массива будут использоваться утилиты из Linux. Для простоты использования реализация будет в web-интерфейсе.

1 Постановка задачи

Главной целью данной работы является разработка интерфейса для управления RAID-массивами, на основе которого будет проектироваться и реализовываться web-приложение для управления RAID-массивами.

Разрабатываемый интерфейс для управления RAID-массивами должен уметь выполнять все необходимые действия по предварительной настройке для создания самого RAID-массива, а также его создание, мониторинг состояния созданных RAID-массивов и остановка работающих RAID-массивов.

Разрабатываемое web-приложение должно быть интуитивно понятно для пользователя, иметь современный вид и выполнять весь функционал, который будет реализован в интерфейсе для управления RAID-массивами.

На основе поставленных выше целей были сформулированы следующие задачи:

- исследовать и изучить утилиты и команды для создания, управления, мониторинга состояния и удаления RAID-массивов;
- спроектировать и реализовать интерфейс для работы с RAIDмассивами, исходя из результатов выполнения первой задачи;
- спроектировать и реализовать интуитивно понятный и лаконичный внешний вид клиентской части будущего web-приложения;
- спроектировать и реализовать сервер приложений будущего webприложения;
- реализовать взаимодействие между разработанным интерфейсом для работы с RAID-массивами, сервером приложений и клиентской частью web-приложения;
- провести тестирование на работоспособность разработанного webприложения для работы с RAID-массивами и сравнить затраченное время и трудоёмкость на аналогичные действия в терминале.

1.1 Средства реализации

Реализация web-приложения будет осуществляться на базе языка программирования Python, а именно на определённых его модулях:

- os и subprocess с помощью которых реализовывается интерфейса для работы с RAID-массивами;
- Flask и его компоненты для реализации web-интерфейса и связывания его с разработанным интерфейсом для работы с RAID-массивами.

Также понадобятся утилиты mdadm, mkfs, fdisk и некоторые другие для реализации интерфейса работы с RAID-массивами.

Разработанное web-приложение будет работать на базе операционной системы Ubuntu.

1.2 Цели создания web-приложения

Основными целями разработки и реализации web-приложения являются:

- упрощение процесса создания, управления и мониторинга состояния
 RAID-массива для обычных пользователей;
- экономия времени пользователей на изучение способов создания, управления и мониторинга состояния RAID-массива.

2 Анализ предметной области

В данном разделе выделим и рассмотрим сущности, которые необходимо будет реализовать в будущем web-приложении. Также проведём анализ инструментов для реализации данных сущностей.

2.1 Терминология

Разберём некоторые термины, ознакомление с которыми позволит свободнее понимать тему данной работы.

2.1.1 RAID

В переводе с английского «RAID» (Redundant Arrays of Inexpensive Disks) означает «избыточный массив независимых дисков». RAID — это дисковой массив. Данный массив создан для повышения безопасности хранения данных и/или для повышения скорости записи и/или чтения информации[1].

Отказоустойчивость добивается за счёт избыточности. Доля дискового места становится недоступной для пользователя. Увеличение скорости системы достигается за счёт параллельной/независимой работы нескольких дисков. Данные разбиваются на определенные блоки и синхронно записываются на диски. Пример: блок имеет размер 10 Кбайт, в массиве имеется 5 дисков, а размер файла 50 Кбайт, при выполнении записи файлов на диск, файл делится на 5 блоков и запись происходит синхронно. Так же бывают ситуации, когда размер записываемой информации, имеет меньший размер, чем блок, тогда запись происходит на один диск[1].

При модели независимого доступа вся информация, которая выполняется одной командой запроса, то запись или чтение происходит на каждое отдельное устройство.

Технология RAID имеет ряд преимуществ [2]:

- использование нескольких устройств увеличивает производительность системы, показатели скорости чтения и записи информации, значительно повышаются;
- гарантированная отказоустойчивость, то есть повышение надёжности сохранения данных, при отказе одного из дисков, функционирование системы и доступ к данным продолжается.

Данная технология имеет также и недостатки [3]:

- комбинация уровней рейд, повышает стоимость реализации технологии, так как требует большее количество дисков;
- не все уровни рейд, могут сохранять скорость чтения и записи, при выходе одного из устройств;
- при выходе из строя диска в некоторых уровнях, сохранение информации не гарантировано или может быть восстановлена не в полном объёме;
- работа по восстановления данных или починки диска, может занимать трудоёмкий процесс, требующий большого количества времени и знаний.

Различные уровни RAID используют различные методы и принципы. Уровень RAID – характеризует отношения между устройствами хранения данных.

2.1.2 ЕСС-память

ECC-память — это тип модуль корреляции ошибок, который позволяет исправить или опознать ошибку.

2.1.3 Массив

Массив — это несколько связанных устройств хранения данных, которые управляются, настраиваются и форматируются одним единым центром [5]. Логический массив — это более сложное представление накопителей без учитывания физических характеристик системы. Следовательно, логические диски по объёму

и количеству могут не совпадать с физическими параметрами устройств. Операционная система определяет массив как один большой диск.

2.1.4 Метод зеркалирования

Метод зеркалирования — это метод копирования одинаковых данных на один и более диск, входящих в массив для надёжности хранения информации (рисунок 1.1) [5]. Этот метод позволяет увеличить надёжность системы. При выходе из строя одного из устройств хранения данных, данные остаются на втором устройстве. Данный метод имеет 100% избыточность.

Рисунок 1.1 – Зеркалирование

2.1.5 Чередование

Чередование — метод позволяющий увеличить быстродействие системы. (рисунок 1.2) [5]. В данном методе, запись и чтение происходит следующим образом, файл делится на определённый размер (от 1 байта и больше) и направляется или считывается параллельно на все устройства хранения данных. Метод не имеет избыточности, но при выходе из строя одного из дисков, информация будет потеряна.

Рисунок 1.2 – Чередование

2.1.6 Дуплекс

Дуплекс — это метод зеркалирования, но с использованием вдвое большего количества накопителей для создания копий (рисунок 1.3) [5]. Данный метод имеет высокий уровень надёжности, но также имеет дополнительные затраты. В случае выхода из строя устройства хранения данных и/или RAID-контроллера система продолжает работу.

Рисунок 1.3 – Дуплекс

2.1.7 Чётность

Чётность – это технология, в которой объединяются зеркалирование и чередование [5]. Данный метод имеет высокую скорость работы и надёжность. Данный метод работает по принципу чётности оперативной памяти.

2.1.8 Программный и аппаратный RAID-массив

RAID-массивы разделяются по способу реализации на аппаратный и программный. С помощью RAID-контроллера или RAID -карты в аппаратном RAID можно создавать и управлять массивами RAID, независимо от операционной системы [6]. В этих контроллерах имеется специальный процессор для управления устройствами RAID. Преимущество аппаратного RAID: на управление устройствами хранения не тратятся дополнительные ресурсы, так как это выполняет RAID контроллер; так как массив управляется без программного обеспечения, то на RAID -массив устанавливается главная файловая система. Недостатки: качественные контроллеры, стоят дорого; при поломке RAID, необходим аналогичный контроллер.

Программный RAID настраивается с помощью операционной системы. Преимущества: нет дополнительных затрат, так как не нужно аппаратное обеспечение; гибкость в управлении RAID-массивом, можно перенести RAID массив с одной операционной системы на другую, без потери доступа к данным [6].

2.1.9 Web-приложение

Web-приложения — это приложение в котором, клиент взаимодействует с веб-сервисом с помощью браузера [7]. Данный вид приложений логически делится серверную и клиентскую часть. В большинстве случаев данные хранятся на сервере, а обмен информацией происходит по сети. Web-приложение пишется с помощью нескольких языков программирования, так как оно делится на backend и frontend.

В данном случае будет использоваться подход к разработке MPA (Multi Page Application). Данный подход характеризуется приложением с множеством страниц, в которых загрузка новой информации, также изменение данных перезагружают страницу для их отображения [8].

На рисунке 1.4 представлена теоритическая схема будущего webприложения.

Рисунок 1.4 – Web-приложение

Клиентская часть приложения, так же называемая frontend, это пользовательский интерфейс, который виден пользователю [8]. В данной части приложения клиент обращается с запросами к серверу. Значимость клиентской части состоит в том, чтобы информировать сервер, о том, что совершить с данными, которые он передаёт, либо с данными, которые, находятся в базе данных. Главной задачей frontend части для пользователя состоит в том, чтобы предоставлять данные в удобном виде и использовать механизмы для обновления данных. Для реализации frontend был использован стандартный язык разметки html и фреймворк bootstrap. В данной работе клиентом является браузер.

Серверная часть приложения, она же backend, принимает запросы от клиентской части [8]. Роль серверной части в том, чтобы обрабатывать и индексировать информацию, предоставлять доступ к данным и выполнять запросы клиента.

В данной работе для backend части был выбран язык программирования Python и микрофреймворк Flask.

2.2 Уровни RAID-массивов

Рассмотрим уровни raid-массивов. Уровни от RAID 0 до RAID 5 считаются стандартизированными. Существуют фирменные уровни (RAID 6,7) и комбинированные. Уровни 0, 1, 3, 5 считаются наиболее распространёнными.

2.2.1 RAID 0

RAID уровня 0 (рисунок 1.5), объединяет два и более устройства хранения данных, затем информация делится на блоки и записывается на отдельные устройства, путём чередования информации [9]. В результате синхронного вводавывода информации с разных дисков, предоставляется максимальная скорость передачи данных. В основном этот уровень используется в тех случаях, когда необходима быстрая передача больших объёмов информации.

Из недостатков уровня можно отметить следующее:

- при выходе из строя одного из дисков, весь массив перестаёт работать и все данные будут потеряны;
 - данные из этого уровня невозможно восстановить.

Также есть и ряд преимуществ данного вида рейда:

- увеличивает производительность системы;
- нет дополнительных затрат.

Рисунок 1.5 - RAID 0

2.2.2 RAID 1

RAID уровня 1 (рисунок 1.6) — это массив, при котором данные зеркалируются, то есть данные из 1 устройства полностью копируются на другое устройство хранения данных [9]. Данный уровень имеет большой уровень надёжности. Такой уровень используется при наивысшем приоритете надёжности сохранения данных. Преимущество: при выходе из строя одного устройства все данные сохраняются.

В данном уровне присутствуют недостатки:

- высокая стоимость реализации данного уровня;
- высокая избыточность, так как один диск просто используется для хранения одинаковых данных, в итоге пользователь получит из 2 дисков объём одного диска.

Рисунок 1.6 – RAID 1

2.2.3 RAID 2

RAID уровня 2 (рисунок 1.7) — это массив данных, использующий чередование дисков, в котором некоторые диски выделяются, и в них записывается информация о исправлении ошибок и проверке, так же используется чётность кода Хемминга для обнаружения ошибок и их корреляции, но так как современные устройства имеют само контролирующийся код Хемминга, то такой уровень считается устаревшим [9].

К преимуществам можно отнести: операции с информацией происходят быстрее в сравнении со скоростью одного диска.

Можно выделить главные недостатки уровня:

- реализация уровня, требует специальные дорогие контроллеры, что влечёт за собой увеличивания стоимости данного уровня;
- только при 7 дисках, его использование рационально, так как он требует меньшее количество дисков, чем RAID 1.

Рисунок 1.7 – RAID 2

2.2.4 RAID 3

RAID уровня 3 (рисунок 1.8) – это массив в котором данные, разделяются на подблоки на уровне байтов, после этого синхронно записываются на все устройства памяти кроме одного, так как он используется для хранения контрольной информации [9].

К достоинствам уровня можно отнести:

- при выходе из строя любого устройства хранения данных, данные можно восстановить по контрольным данным и данным, оставшимся на исправных дисках;
 - повышение производительности системы;
 - при работе с большими файлами показывает хорошие результаты.

К недостаткам уровня относятся:

- увеличенная нагрузка на контрольный диск;
- при малом размере блока, требуется больше времени для чтения.

Рисунок 1.8 – RAID 3

2.2.5 RAID 4

RAID уровня 4 — это массив с одним устройством, в котором хранятся контрольные суммы (рисунок 1.9) [9]. Данный уровень похож на 3, но с увеличенным размером блока записываемой информации. Контрольная сумма записывается на выделенный диск и благодаря этому возможно синхронное выполнение нескольких операций чтения. К недостатку уровня можно отнести следующие: производительность снижается, из-за того, что все записи идут на блок чётности.

Рисунок 1.9 – RAID 4

2.2.6 RAID 5

RAID уровня 5 — это отказоустойчивый массив с распределением хранения контрольных сумм и чередованием (рисунок 1.10). В данном уровне все устройства хранения данных имеют одинаковый размер, но на один диск меньше, так как 1 устройство хранение данных отводится на контрольную информацию. Данный уровень очень распространён в различных системах [9].

К недостаткам можно отнести следующие пункты:

- потеря производительности при записи в произвольном порядке;
- при выходе из строя одного из дисков, отказоустойчивость приравнивается к RAID уровня 0.

Можно выделить следующие достоинства уровня:

- высокая скорость записи и чтения информации;
- относительная экономия стоимости в сравнении с RAID уровня 10; присутствует отказоустойчивость.

Рисунок 1.10 – RAID 5

2.2.7 RAID 6

RAID уровня 6 (рисунок 1.11) — это массив с двумя устройствами хранения данных, которые определены для хранения контрольных сумм с методом чередования. Данный уровень может сохранить данные при выходе из строя двух дис-

ков, скорость ввода-вывода информации достаточно высока [10]. Для данного уровня типичные преимущества: максимальная надёжность из вышеперечисленных RAID -массивов. Также можно выделить недостатки:

- большая стоимость;
- уменьшение производительности, если сравнивать с RAID уровня 5.

Рисунок 1.11 – RAID 6

2.2.8 RAID 7

RAID уровня 7 (рисунок 1.12) — это фирменный массив, который принадлежит компании «Storage Computer Corporation», в основе данного уровня лежит 3 и 4 уровень RAID-массива [11].

Преимущества:

- высокая отказоустойчивость;
- скорость обработки данных выше, чем у RAID уровня 3.

Недостатки:

- весьма трудоёмкая реализация;
- трудоёмкое восстановление данных;
- невысокая скорость записи данных;
- большая стоимость, которая вытекает из монополии создания контроллеров для данного массива.

Рисунок 1.12 – RAID 7

2.3 Язык программирования

Для разработки будущего web-приложения был выбран высокоуровневый язык программирования Python. Он в сравнении с другими языками является достаточно простым в освоении, применим в широком спектре задач. Одним из плюсов является кроссплатформенность и использование в web-проектах, что и необходимо. Одной из его особенностью, является читабельностью и скоростью разработки. Так же данный язык, динамично и постоянно развивается, количество библиотек постоянно увеличивается, и также у него большое количество фреймворков, которые упрощают и ускоряют процесс разработки.

2.4 Фреймворк

Среди различных фреймворков для создания web-приложения, был выбран Flask. Данный фреймворк не перегружен библиотеками, которые не будут использованы, для небольшого проекта он более удобен. Главные черты Flask это минимализм и простота, также он позволяет выбирать только те компоненты, которые будут необходимы для создания конкретного проекта [12].

2.5 Операционная система

Операционная система была выбрана Ubuntu. Данный дистрибутив один из самых популярных дистрибутивов Linux. Из-за популярности Ubuntu имеет большое количество документации, так же стоит отметить стабильность, безопасность, постоянную поддержку различного оборудования, доступность различных программ и библиотек. Данный дистрибутив достаточно прост и гибок в настройке, по умолчанию не требует высоких системных требований.

3 Разработка

В данном разделе будут рассмотрены этапы при работе над практической частью дипломной работы, а именно разработка интерфейса для работы с RAID-массивами и разработка web-интерфейса для работы с ранее разработанным программным обеспечением для работы с RAID-массивами.

3.1 Интерфейс управления RAID-массивами

Для разработки программного обеспечения, с помощью которого можно управлять программными RAID-массивами будет использована утилита mdadm. Следует ознакомиться с её встроенными возможностями чтобы понимать на что будет способен будущий интерфейс.

Также нам необходимо будет работать с файловыми системами дисковых устройств для RAID-массивов и изменение типов разделов данных дисков, что означает и использование специальных утилит для этого. Для работы с файловыми системами достаточно будет встроенной утилиты mkfs, а для работы с типами разделов – fdisk.

При разработке интерфейса взаимодействия с данными утилитами на языке Python, в основном, будут использованы библиотеки оѕ и subprocess. Они позволят вызывать нужные нам утилиты от лица пользователя в автоматическом режиме.

3.1.1 Утилита mdadm

Утилита mdadm является утилитой для Linux-систем, которая позволяет работать с программными RAID-массивами, а именно: создавать, удалять и изменять по необходимости.

У утилиты mdadm есть несколько режимов работы:

- Assemble (сборка) данный режим позволяет из ранее построенного массива собрать компоненты в массив. Составляющие построенного массива можно указывать или не указывать, если не указывать, то дальше идёт их поиск по суперблокам
- Build (построение) данный режим позволяет построить массив из составляющих, у которых отсутствуют суперблоки. Создание и сборка не имеют различий, так как проверки не выполняются.
- Create (создание) режим позволяет на основе устройств, которые указал пользователь создать новый массив, в котором суперблоки будут размещены на каждое устройство.
- Monitor /Follow (наблюдение) режим позволяет просматривать изменения и откликаться на их состояние. Данный режим не целесообразен для линейных массивов и RAID 0, но для многоканальных типов RAID-массивов он применим и необходим.
- Grow (расширение или уменьшение) режим, который позволяет сжать (уменьшить количество дисков), увеличить или переформировать массив. С помощью данного режима возможно модифицировать размер, составляющих в RAID 1,2,3,5,6, и изменить численность действующих устройств в RAID 1.
- Incremental Assembly (инкрементальная сборка) режим позволяет добавить устройство в массив.
- разнообразные операции по управлению массивом, такие как замена диска и пометка как сбойного;
- Мападе (управление) позволяет совершать разные операции по управлению массивом, подобные как добавление новых свободных дисков и удаление дисков, которые помечены, как сбойные.
- Misc (разное) данный режим позволяет совершать операции с массивом, которые не могут совершать режимы, которые указаны выше. К примеру, остановка массивов, которые активны, изменять и просматривать суперблоки массива.

– Auto-detect (автоообнаружение) – режим возможностью, которого является автоматическое обнаружение массивов в ядре Linux.

В нашем случае мы будем использовать, в большей части, режим Create, который будет создавать RAID-массив с выбранными пользователем параметрами: тип RAID, количество дисков и сами диски.

3.1.2 Утилиты fdisk и mkfs

Утилита fdisk является общим названием некой семьи утилит, позволяющих работать с разделами жёсткого диска. В нашем случае мы будем использовать её в специальном скрипте, который будет эмулировать работу пользователя и в автоматическом режиме выполнять необходимые действия с выбранными дисками.

Текст данного скрипта представлен в листинге 1.

```
Листинг 1 — Код скрипта для работы с утилитой fdisk #!/bin/bash
```

```
fdisk $1 <<EEOF
t
fd
w
EEOF
exit 0</pre>
```

В листинге 1 каждая буква выполняет определённые действия:

- t сменить тип раздела;
- fd сменить тип раздела на Linux RAID autodetect;
- w сохранить изменения и выйти из fdisk.

Утилита mkfs будет использована для создания файловых систем, которые будут выбраны пользователем, на выбранных пользователем дисков для создания

RAID-массива. В нашем случае синтаксис вызова данной команды будет выглядеть примерно следующим образом — mkfs.file_system raid_name. Названия, использованные в примере, имеют следующие обозначения:

- file system выбранный тип файловой системы;
- raid_name название RAID-массива, на котором будет устанавливаться файловая система.

Используется утилита mkfs, как и fdisk, с помощью bash-скрипта, код которого представлен в листинге 2.

Листинг 2 — Код bash-скрипта для запуска утилиты mkfs #!/bin/bash

\$1 \$2

Скрипт из листинга 2 запускается с помощью метода subprocess. Popen и имеет следующий вид: subprocess. Popen ([f'{path}/mkfs_helper.sh', f'mkfs.{filesystem}', f'{disk}'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True). Параметры для запуска скрипта описаны выше.

3.1.3 Библиотеки os и subprocess

Обе эти библиотеки позволяют работать с терминальными командами Linux-систем с помощью специальных методов.

Например, некоторые команды необходимо выполнять в режиме суперпользователя, а для того, чтоб зайти в этот режим, необходимо выполнить следующий код, который представлен в листинге 2.

Листинг 3 — Код для входа в режим супер-пользователя os.popen('sudo su', 'w').write(self.sudo_pass)

```
res = os.popen(f'команда_для_выполнения').read()
os.popen('exit')
```

В листинге 3 с помощью конструкции os.popen('sudo su', 'w').write(self.sudo_pass) выполняется вход в режим суперпользователя, с помощью заранее введённого пароля пользователя, который сохраняется в поле sudo pass.

Далее выполняется нужная нам команда, занося результат в переменную res, чтоб можно было вернуть результат выполнения, а после выполнения операции выполняется выход из режима супер-пользователя с помощью конструкции os.popen ('exit'), после чего можно возвращать результат работы.

Библиотеку subprocess, по некоторым техническим причинам, мы будем использовать только для запуска скрипта, представленного в листинге 1, с помощью следующей конструкции:

proc = subprocess.Popen([f'./utilies/fdisk_helper.sh',
f'{disk}'], stdout=subprocess.PIPE), где:

- рrос переменная для сохранения результата работы скрипта;
- disk название диска для смены его разделов на Linux raid autodetect.

3.2 Web-интерфейс взаимодействия с разработанным RAIDменеджером

При разработке web-интерфейса использовался микрофреймворк Flask и отдельные его компоненты: request и render_template.

Для более привлекательного вида страниц web-интерфейса была использована библиотека с заготовленными стилями Bootstrap.

В разработанном web-интерфейсе есть несколько основных страниц и путей, по которым они будут отображаться:

- «/» отображение главной страницы по данному пути;
- «/сгеаtе» отображение страницы с формой для создания RAIDмассива и вывода результата создания;
- «/control» отображение страницы с формой для управления созданными RAID-массивом;
- «/status» отображение страницы с состоянием работы RAIDмассивов.

3.2.1 Компоненты микрофреймворка Flask – request и render_template

Компонент request нам необходим для обработки данных, которые отсылаются на сервер с клиента при заполнении форм для создания и управления RAID-массивами на определённых страницах web-приложения.

Метод render_template нам необходим для написания контроллера с выбранными путями для верного отображения страниц web-интерфейса. Также с помощью шаблонизатора, который входит в данный компонент, мы сможем генерировать страницы HTML с динамическими данными, передавая их при отображении того или иного шаблона.

3.2.2 Использование библиотеки Bootstrap

Библиотека Bootstrap является специальным инструментом для облегчения создания web-страниц, имея большой список заготовленных css-стилей для различных компонентов, таких как кнопки, формы, контейнеры, меню сайта и прочие.

В нашем случае мы использовали Bootstrap для облегчения и ускорения разработки дизайна web-интерфейса, а также для уменьшения вероятности неправильного отображения на различных мониторах, так как их заготовленные стили сразу поддерживают адаптивность.

3.3.3 Внешний вид страниц web-интерфейса

В разработанном web-интерфейсе существует 4 основные страницы - главная страница, страница для создания RAID, страница с информацией о RAID и страница с управлением созданных RAID.

На рисунках 3.1 – 3.4 представлены внешние виды вышеперечисленных страниц.

RAID MANAGER Создать Управление Состояние

Главная страница

WEB-интерфейс для управления RAID-массивами

Разработал и реализовал студент 4-го курса

Григоренко Виктор Русланович

Рисунок 3.1 – Главная страница web-интерфейса

Рисунок 3.2 – Страница с созданием RAID

Рисунок 3.3 — Страница для управления RAID-массивами

Статус RAID-массива

```
Personalities: [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
md1: active raid1 sdc[1] sdb[0]

15437824 blocks super 1.2 [2/2] [UU]

[>......] resync = 2.0% (317952/15437824) finish=34.9min speed=7210K/sec unused devices: <none>
```

Рисунок 3.4 – Страница с отображением статуса RAID-массивов

3.3 Сравнение создания RAID-массива

Сравним процесс создания RAID-массива с помощью выполнения необходимого списка команд в терминале и с помощью разработанного webприложения.

3.3.1 Создание RAID-массива с помощью терминала

Разберём по шагам создание RAID-массива через терминал с использованием необходимых для этого утилит.

3.3.1.1 Выбор дисков

Перед созданием RAID-массива, необходимо выбрать жёсткие диски, которые мы хотим использовать в будущем RAID-массиве. Для этого можно использовать команду «lsblk».

Команда «lsblk» выведет нам информацию об имеющихся дисках, в том числе о созданных на них разделах, их размеры и точки монтирования.

Результат выполнения команды «lsblk» представлен на рисунке 3.5.

Рисунок 3.5 – Результат выполнения команды «lsblk»

3.3.1.2 Изменение типа разделов

Для того чтобы создать RAID-массив на ранее выбранных нами дисках, - в нашем случае это «/dev/sdc» и «/dev/sde» -, необходимо установить на них специальный тип раздела – «Linux raid autodetect».

Установить необходимый нам тип раздела можно с помощью утилиты «fdisk». Этот процесс занимает довольно длительный промежуток времени, зависящий от характеристик компьютера, в том числе и выбранных дисков.

Процесс применения и результат работы утилиты «fdisk» представлен на рисунках 3.6 и 3.7.

```
Victor®VM-Laptop:-$ sudo fdisk /dev/sde
[sudo] пароль для victor:

Изменения останутся только в памяти до тех пор, пока вы не решите записать их.

Будьте внимательны, используя команду write.

Команда (п для справки): о
Создана новая метка DOS с идентификатором 0x15749fd2.

Команда (п для справки): п
Тип раздела
р основной (0 первичный, 0 расширеный, 4 свободно)
е расширенный (контейнер для логических разделов)
Выберите (по умолчания - p): р
Номер раздела (1-4, по умолчания 1): 1
Первый сектор (2048-80628991, по умолчания 2048): 2048
Last sector, +/-sectors or +/-size(K,M,GT,P) (2048-60628991, по умолчанию 60628991): 60628991

Создан новый раздел 1 с типом 'Linux' и размером 28,9 Gi8.

Уздалить сигнатуру? [Y] Да/[N] Нет: у
Сигнатура будет удалена командой записи.

Команда (п для справки): С
выбранный раздел 1
шестнациатеричный код (введите L для получения списка кодов): 1
тип раздела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'FAT12'.

Команда (п для справки): Р
дики (деи задела 'Linux' изменен на 'Linux' изменен на 'Linux' изменен
```

Рисунок 3.6 – Процесс работы с утилитой «fdisk»

```
Команда (m для справки): w
Таблица разделов была изменена.
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
victor@GVR-Laptop:~$
```

Рисунок 3.7 – Результат работы с утилитой «fdisk»

Команды, которые были использованы при работе с утилитой «fdisk», уже были описаны выше в пункте 3.1.2.

3.3.1.3 Создание RAID-массива

После того, как необходимые нам диски выбраны и их тип разделов изменён на «Linux raid autodetect», можно приступать к непосредственному созданию RAID-массива на этих дисках.

RAID-массив будем создавать с помощью утилиты «mdadm». Команда для создания RAID-массива на выбранных нами дисках выглядит следующим обра-

зом: «mdadm --create --verbose /dev/md0 --level=0 --raid-devices=2 /dev/sde /dev/sdc», где:

- «--create» ключ создания RAID-массива;
- «/dev/md0» название будущего RAID-массива;
- «--level=0» уровень будущего RAID-массива (в нашем случае RAID
 0);
- «--raid-devices=2» количество использованных устройств для будущего RAID-массива;
- «/dev/sde» и «/dev/sdc» перечисление устройств для будущего RAIDмассива.

Результат выполнения данной команды можно увидеть на рисунке 3.8.

Рисунок 3.8 – Результат создания RAID-массива

3.3.1.4 Проверка состояния созданного RAID-массива

После создания RAID-массива необходимо проверить правильно ли он функционирует и функционирует ли вовсе. Сделать это можно с помощью команды «cat /proc/mdstat».

Результат выполнения данной команды представлен на рисунке 3.9.

Рисунок 3.9 – Результат выполнения команды

3.3.1.5 Создание файловой системы на RAID-массиве

После создания и проверки работоспособности RAID-массива необходимо установить на него файловую систему. Сделать это можно с использованием утилиты «mkfs». Данный процесс, как и работа с утилитой «fdisk» в пункте 3.3.1.2, занимает немалый промежуток времени и может исчисляться несколькими минутами.

Процесс работы с утилитой «mkfs» и результат её работы представлены на рисунке 3.10.

Рисунок 3.10 – Процесс и результат работы утилиты «mkfs»

3.3.1.6 Создание конфигурационного файла

После создания RAID-массива и установки на него файловой системы, необходимо создать конфигурационный файл «mdadm.conf», в котором хранится информация для системы о том какие RAID-массивы нужно создавать и какие компоненты входят в данные RAID-массивы.

С помощью команды «echo "DEVICE partitions" > /etc/mdadm/mdadm.conf» мы можем создать конфигурационный файл. С помощью команды «mdadm --detail --scan --verbose | awk '/ARRAY {print}' >> /etc/mdadm/mdadm.conf» мы можем записать необходимую информацию, полученную из утилиты «mdadm», сразу в конфигурационный файл.

Результат создания конфигурационного файла и запись в него необходимых строк представлен на рисунке 3.11.

```
root@GVR-Laptop:~# echo "DEVICE partitions" > /etc/mdadm/mdadm.conf
root@GVR-Laptop:~# mdadm --detail --scan --verbose | awk '/ARRAY/ {print}' >> /etc/mdadm/mdadm.conf
```

Рисунок 3.11 — Результат создания конфигурационного файла и запись в него необходимых строк

3.3.1.7 Монтирование RAID-массива

После пройденных этапов создания установки необходимых типов разделов на выбранные диски, создания RAID-массива и установки на него файловой системы, необходимо смонтировать его для дальнейшей работы с RAID-массивом.

Для этого необходимо сначала создать папку для монтирования RAID-массива. Сделать это можно с помощью команды «mkdir /raid», которая создаст папку «/raid», в которую мы будем монтировать наш RAID-массив.

Смонтировать RAID-массив в папку можно с помощью команды «mount /dev/md0 /raid». Создание папки для монтирования представлено на рисунке 3.12, а монтирование RAID-массива представлено на рисунке 3.13.

```
victor@GVR-Laptop:~$ sudo mkdir /raid
victor@GVR-Laptop:~$
```

Рисунок 3.12 — Создание папки /raid для монтирования RAID-массивов

Рисунок 3.13 — Результат монтирования RAID-массива и проверка его состояния

3.3.1.8 Размонтирование и остановка RAID-массива

Когда созданный RAID-массив будет уже не нужен нам, необходимо его размонтировать и остановить. Это необходимо для предотвращения ненужной нагрузки на выбранные диски, которая может им навредить со временем.

Размонтирование созданного RAID-массива производится с помощью команды «sudo umount /dev/md0», где «/dev/md0» – имя RAID-массива. Остановка работающего RAID-массива производится с помощью команды «sudo mdadm -S /dev/md0», где:

- «-S» ключ остановки работающего RAID-массива;
- «/dev/md0» имя работающего RAID-массива.

Результат размонтирование и остановки работы RAID-массива представлен на рисунке 3.14.

```
victor@GVR-Laptop:~/raid_manager-main$ sudo umount /dev/md0
victor@GVR-Laptop:~/raid_manager-main$ sudo mdadm -S /dev/md0
mdadm: stopped /dev/md0
victor@GVR-Laptop:~/raid_manager-main$
```

Рисунок 3.14 — Результат размонтирования и остановки RAID-массива

3.3.2 Создание RAID-массива с помощью web-приложения

Разберём по шагам создание RAID-массива с помощью разработанного webприложения и сделаем выводы насколько это быстрее и удобнее.

3.3.2.1 Запуск web-приложения

Для того чтоб начать работать с разработанным web-приложением управления RAID-массивами, его необходимо сначала запустить в терминале.

Запуск приложения происходит с помощью команды «sudo python3 /путь/ index.py». Эта команда запустит сервер приложения, который будет обрабатывать входящие запросы с клиента.

После запуска сервера приложений, web-приложение попросит ввести пароль пользователя для выполнения необходимых действий от лица суперпользователя.

Результат запуска web-приложения представлен на рисунке 3.15.

```
Victor@GVR-Laptop:~/raid_manager-main$ sudo python3 index.py
[sudo] пароль для victor:
Sudo password:

* Serving Flask app 'index' (lazy loading)

* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: on

* Running on http://127.0.0.1:5000 (Press CTRL+C to quit)

* Restarting with stat

Sudo password:

* Debugger is active!

* Debugger PIN: 442-087-466

127.0.0.1 - [05/Jun/2022 01:12:07] "GET /favicon.ico HTTP/1.1" 404 -
127.0.0.1 - [05/Jun/2022 01:12:15] "GET / HTTP/1.1" 200 -
127.0.0.1 - [05/Jun/2022 01:12:15] "GET / static/css/bootstrap.min.css HTTP/1.1" 304 -
127.0.0.1 - [05/Jun/2022 01:12:16] "GET /favicon.ico HTTP/1.1" 404 -
```

Рисунок 3.15 – Результат запуска web-приложения

3.3.2.2 Заполнение формы и создание RAID-массива

Далее необходимо запустить браузер и перейти по адресу «127.0.0.1:5000» для загрузки web-приложения. После перейти во вкладку «Создание» в меню сверху.

На вкладке «Создание» необходимо заполнить форму для создания будущего RAID-массива с нужными характеристиками. После заполнения формы остаётся нажать на кнопку «Создать» и подождать пока страница перезагрузится, отдав ответ о результате создания RAID-массива.

Заполненная форма для создания RAID-массива и результат его создания представлены на рисунках 3.16 и 3.17 соответственно.

Рисунок 3.16 — Заполненная форма для создания RAID-массива

Рисунок 3.17 — Результат создания RAID-массива

На рисунке 3.18 можно увидеть результат создания RAID-массива при помощи встроенной в Ubuntu программы для работы с дисковыми устройствами.

Рисунок 3.18 — Результат создания RAID-массива

В конечном итоге, многие действия, занимающие много времени и концентрации внимания, выполняются за несколько секунд и требуется лишь подождать пока создастся RAID-массив. В автоматическом режиме выполняются:

- размонтирование и изменение типа разделов выбранных дисков на «Linux raid autodetect»;
 - создание выбранного типа RAID-массива на выбранных устройствах;
 - установка выбранной файловой системы на созданный RAID-массив;
 - монтирование созданного RAID-массива;
 - создание и обновление конфигурационного файла.

Исходя из вышесказанного, можно сделать вывод, что разработанное webприложение значительно сокращает время для создания RAID-массива, а также упрощает сам процесс создания.

3.3.2.3 Проверка состояния RAID-массива

Чтобы проверить состояние созданного RAID-массива, необходимо перейти во вкладку «Состояние» в меню сверху.

Результат вывода состояния созданного RAID-массива представлен на рисунке 3.19.

RAID MANAGER Создать Управление Состояние

Статус RAID-массива

```
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10] md1 : active raid1 sdc[1] sdb[0]  

15437824 blocks super 1.2 [2/2] [UU]  

[>.....] resync = 2.0% (317952/15437824) finish=34.9min speed=7210K/sec unused devices: <none>
```

Рисунок 3.19 — Результат вывода состояния созданного RAID-массива

В данном случае затраченное время на получение статуса созданного RAID-массива не особо отличается от затраченного времени на получение статуса созданного RAID-массива в терминале, но информация не засоряет экран и лаконично представлена пользователю.

3.3.2.4 Размонтирование и остановка RAID-массива

Чтобы размонтировать и остановить работающий RAID-массив, необходимо перейти во вкладку «Управление» в меню сверху. На данной вкладке необхо-

димо написать номер работающего RAID-массива, который вы хотите размонтировать и остановить, после чего нажать кнопку «Остановить».

Заполненная форма для остановки работающего RAID-массива представлена на рисунке 3.20.

RAID MANAGER	Создать Управление	Состояние		
У	правлени	ie RAID-масс	ивами	
	/dev/md 1			
	0	становить		

Рисунок 3.20 — Заполненная форма для остановки работающего RAID-массива

В данном случае время, затраченное на размонтирование и остановку работающего RAID-массива через терминал и через разработанное web-приложение не особо различается. Однако у web-приложения существует явное преимущество, так как достаточно просто ввести номер нужного работающего RAID-массива и нажать на кнопку «Остановить».

Заключение

В ходе выполнения ВКР были изучены способы создания, управления и мониторинга состояния RAID-массива с помощью терминала Ubuntu, результаты которого легли основой для создания интерфейса для создания интерфейса для работы с RAID-массивом на языке программирования Python.

Исходя из поставленных задач в разделе «Постановка задачи», в котором были также описаны средства реализации web-приложения и цели его создания, разработанное web-приложение и его функционал выполняют их.

Анализ предметной области позволил выделить главные сущности разрабатываемого web-приложения, также определить терминологию, используемую в ВКР, описать выбор языка программирования, фреймворка и операционной системы.

Языком программирования был выбран Python, ведь он удовлетворяет всем нашим требованиям, а также имеет необходимые нам модули для работы с операционной системой — оѕ и subprocess, позволившие реализовать интерфейс для работы с RAID-массивами, и фреймворком Flask, который позволил нам реализовать web-приложение и связать его с интерфейсом для работы с RAID-массивами.

Раздел с реализацией web-приложения отчётливо показывает, что все поставленные цели к разрабатываемому web-приложению достигнуты в полном объёме. А сравнение со способом создания, управления и мониторинга состояния RAID-массива через терминал показывает, что разработанное web-приложение имеет явные преимущества по времени и простоте использования.

Список используемых источников

- 1 Практические советы по созданию RAID-массивов на домашних ПК [Электронный источник] URL: https://compress.ru/article.aspx?id=21065#01 (Дата обращения: 25.03.2022);
- 2 Что такое RAID-массивы [Электронный ресурс] URL: https://eternalhost.net/blog/sistemnoe-administrirovanie/raid-massiv#p4 (Дата обращения: 25.03.2022);
- 3 Введение в raid: основные термины и подходы [Электронный ресурс] URL: https://www.8host.com/blog/vvedenie-v-raid-osnovnye-terminy-i-podxody/ (Дата обращения: 27.03.2022);
- 4 RAID Levels [Электронный ресурс] URL: https://www.ixbt.com/storage/raids.html (Дата обращения: 27.03.2022);
- 5 Подробное знакомство с RAID-массивами [Электронный ресурс] URL: https://www.ferra.ru/review/computers/s26107.htm (Дата обращения: 27.03.2022);
- 6 Урок 1. Web-приложение: понятие, компоненты и принципы работы [Электронный ресурс] URL: https://smartiqa.ru/courses/web/lesson-1 (Дата обращения: 27.03.2022);
- 7 Стек технологий для разработки веб-приложений: что важно знать бизнесу [Электронный ресурс] URL: https://www.azoft.ru/blog/web-development-stack/ (Дата обращения: 01.04.2022);
- 8 Описание RAID массивов (RAID 4, RAID 5, RAID 6, RAID 7) [Электронный ресурс] URL: https://www.nstor.ru/ru/catalog/StorageSystems/info/93.html (Дата обращения: 05.04.2022);
- 9 Flask против Django: почему Flask может быть лучше [Электронный ресурс] URL: https://python-scripts.com/flask-vs-django (Дата обращения: 07.04.2022).