

P08 Freshly Delivered

E331 – Supply Chain Management

Diploma in Supply Chain Management

E331 Module Overview

E331 Supply Chain Management

Bullwhip Effect (P1) **Supply Chain Management** Overview Supply Chain Design (P2) Risk Pooling (P3) **Supply Chain Performance** SCOR Model -1 (P4) **Benchmarking** SCOR Model -2 (P5) Supply Chain Network Design (P6) Distribution Network (P7) **Supply Chain Design** Transportation Routing and Scheduling (P8) and Optimization Humanitarian Logistic (P9) Impact on Financial Performance (P10) Green supply chain (P11) SAP SD Module (p12) **SAP Configuration and Analysis** SAP MM Module (P13)

Today's Problem

- Multiple trucks
- Capacity Constraints
- Many route possibilities
- Even more complicated if suppliers are considered at the same time (supply chain)

Milk Run in Transportation

- A milk run is a route in which a transport vehicle either delivers product from a single pickup point to multiple delivery points or from multiple pickup points to a single delivery point.
- A milk run combines multiple pickups or deliveries into one multi-stop shipment. It can be a very effective way to increase return on your supply chain investment
- Benefits include:
 - To save trucking costs
 - To save the travelling distance or time
 - To reduce the number of trucks being used
 - To ensure FTL and avoid LTL (Less Truck Load)
 - To reduce the fuel consumption
 - To eliminate environmental impacts by reducing carbon emission

Milk Run in Production

- A milk run is a classic example for a Kanban system, which is used in industrial manufacturing as a signal to act.
- A milk run can contain multiple stations where product is needed for point
 of storage use. In case the on-hand inventory is insufficient until the next
 run, that inventory can be increased by special orders.
- Increasing the frequency of the runs would reduce the inventory on hand and the replenishing inventory. In a perfect environment, a milk run can provide just enough inventory until the next milk run, with no or very little buffer at each station.

Direct Shipment Network

- We can consider the Direct Shipment Network in 2 ways:
 - without milk runs
 - with milk runs

Shipments Via Central DC

- We can consider this method in 2 ways:
 - without milk runs
 - with milk runs

Routing and Scheduling Decisions

- The most important operational decision about transportation in a supply chain is the routing of deliveries.
- Typical objectives when routing and scheduling transport vehicles are a combination of minimizing costs by:
 - decreasing the number of vehicles needed
 - decreasing the total distance travelled by vehicles
 - decreasing the total travel time of the vehicles
 - eliminating service failures such as a delay in shipments
- Jordan has to consider that the goal is to route and schedule vehicles such that the costs incurred to meet the delivery promises are kept as low as possible.
- Jordan must decide which truck to deliver to which customers and the route that each truck will take when making the deliveries.
- Jordan must also ensure that no truck is overloaded.

The Savings Matrix Method

- This method is simple to implement and can be used to assign customers to vehicles even when the delivery time windows or other constraints exist.
- The major steps involve:
 - Step 1: Identify the distance matrix (given today)
 - Step 2: Identify the distance savings matrix
 - Step 3: Assign customers to vehicles or routes
 - Step 4: Sequence customers within routes
- Step 1-3 are used to assign customers to vehicles
- Step 4 is used to route each vehicle to further minimize the total distance travelled

Step 1: Identify the Distance Matrix

 If the transportation costs/ travelling time between a pair of locations are known, then we can use the transportation costs / time directly in place of the distances.

	SF	Store 1	Store 2	Store 3	Store 4	Store 5	Store 6	Store 7	Store 8	Store 9	Store 10	Store 11	Store 12	Store 13
SF	0													
Store 1	5.6	0												
Store 2	6.8	3.2	0											
Store 3	5.6	4.4	2.0	0										
Store 4	10.5	8.1	5.6	4.4	0									
Store 5	11.7	10.5	8.1	6.8	3.2	0								
Store 6	15.3	15.3	12.9	11.7	6.8	4.4	0							
Store 7	17.7	16.5	14.1	12.9	8.1	5.6	2.2	0						
Store 8	21.4	22.6	20.2	18.9	11.7	10.5	6.8	4.4	0					
Store 9	28.6	28.6	26.2	25.0	17.7	16.5	11.7	10.5	4.4	0				
Store 10	26.2	25.0	22.6	21.4	16.5	15.3	10.5	6.8	3.2	3.2	0			
Store 11	23.8	20.2	17.7	16.5	12.9	12.9	10.5	6.8	6.8	8.1	5.3	0		
Store 12	15.3	15.3	12.9	11.7	10.5	11.7	11.7	9.3	10.5	11.7	9.3	4.4	0	
Store 13	18.9	14.1	11.7	10.5	14.1	14.1	15.3	11.7	11.7	14.1	12.9	8.1	3.2	0
Store 14	17.7	16.5	14.1	12.9	14.1	15.3	16.5	12.9	14.1	15.3	15.3	10.5	3.2	3.1

Step 2: Identify the Distance Savings Matrix

- How do we calculate the distance savings?
- Let's consider a simple example:

- Generally, S(A,B) = Dist(DC, A) + Dist(DC, B) - Dist(A,B)
- For this example, distance savings = 12 9 = 3km

Step 2: Identify the Distance Savings Matrix

51.6 is the saving in travelling distance if store 9 and 10 are grouped in a single milk run

Step 3: Assign Stores to Vehicles/Routes

Highest saving: 51.6 (Route 9-10) (start the 1st route)

Vehicle load: 35 + 61 = 96 < 200, OK

Next highest saving: 45.6 (Route 8-9)

Vehicle load: 96 + 30 = 126 < 200, OK (first route: 8-9-10)

Next highest saving: 44.7 (Route 10-11)

Vehicle load: 126 + 50= 176 < 200, OK (first route: 8-9-10-11)

Cancel store 8,9,10 and 11 as no order size is < 200-176 = 24 and no other stores can be added into the current route

	Store 1	Store 2	Store 3	Store 4	Store 5	Store 6	Store 7	Stor	e 8	Sto	re 9	Store	10	Store	e 11	Store 12	Store 13	Store 14
Store 1	0																	
Store 2	9.2	0																
Store 3	6.8	10.4	0															
Store 4	8.0	11.7	11.7	0				1										
Store 5	6.8	10.4	10.5	19.0	0			1										
Store 6	5.6	9.2	9.2	19.0	22.6	0		1										
Store 7	6.8	10.4	10.4	20.1	23.8	30.8	0											
Store 8	4.4	8.0	8.1	20.2	22.6	29.9	34.7)					=				
Store 9	5.6	9.2	9.2	21.4	23.8	32.2	35.8	45)							
Store 10	6.8	10.4	10.4	20.2	22.6	31.0	37.1	4	.4		.6	0						
Store 11	9.2	12.9	12.9	21.4	22.6	28.6	34.7	38	.1	4.	.3	11						
Store 12	5.6	9.2	9.2	15.3	15.3	18.9	23.7	26		32	2.2	32	2	34	.7	0		
Store 13	10.4	14.0	14.0	15.3	16.5	18.9	24.9	28	.6	33	3.4	32	2	34	.6	31.0	0	
Store 14	6.8	10.4	10.4	14.1	14.1	16.5	22.5	25	.0	3	.0	28	6	31	.0	29.8	33.5	0

Step 3: Assign Stores to Vehicles/Routes

- Next highest saving: 33.5 (Route 13-14) (start the 2nd route)
 - Truck load = 48 + 61 = 109 < 200, OK
- Next highest saving: 31 (Route 12-13) (12-13-14 tentatively)
 - Truck load = 109 + 57 = 166 < 200, OK
- Next highest saving: 30.8 (Route 6-7)
 - \circ Truck load = 166 + 80 + 36 = 282 > 200, not OK
- Cancel store 12,13 and 14 as no order size is < 200-166 =
 34 and no other stores can be added into the current route

Step 3: Assign Stores to Vehicles/Routes

Next highest saving: 30.8 (Route 6-7) (start the 3rd route)

Truck load = 80 + 36 = 116 < 200, OK

Next highest saving: 23.8 (Route 5-7)

Truck load = 116 + 40 = 156 < 200, OK (3rd route : 5-6-7)

Leftover capacity = 200 - 156 = 44, only store 2 can be tagged along to deliver.

The 3rd route will include 2, 5, 6 and 7, then cancel the stores

	Store 1	Store 2	Store 3	Store 4	Store 5	Store 6	Store 7	Sto	re 8	Sto	re 9	Store	10	Store	e 11	Store	e 12	Store	e 13	Store	14
Store 1	0																				
Store 2	9.2	0																			
Store 3	6.8	10.4	0																		
Store 4	8.0	11.7	11.7	0																	
Store 5	6.8	10.4	10.5	19.0	0																
Store 6	5.6	9.2	9.2	19.0	22.6	0															
Store 7	6.8	10.4	10.4	20.1	23.8	30.8	0														
Store 8	4.4	8.0	8.1	20.2	22.6	29.9	34.7)												
Store 9	5.6	9.2	9.2	21.4	23.8	32.2	35.8)										
Store 10	6.8	10.4	10.4	20.2	22.6	31.0	37.1	4-		5	.6	0		-							
Store 11	9.2	12.0	12.0	21.4	22.6	28.6	34.7	3	<u>, 4</u>	4.	.3	11	7								
Store 12	5.6	9.2	9.2	15.3	15.3	18.9	23.7	2(24	:.2	32	^	34	.7)				
Store 13	10.4	14.0	14.0	15.3	16.5	18.9	24.9).ô		5.4	32	$\overline{}$	34	.ô	31	.0	Ó			
Store 14	6.6	10.4	10.4	14.1	14.1	16.5	22.5		-		.0	28	_	31		29	_	33		0	

Step 3: Assign Customers to Vehicles/Routes

- The last route will be 1, 3 and 4
 - Check capacity, 51+61+72 =184 < 200, OK (4th route : 1-3-4)

	Store 1	Store 2	Store 3	Store 4	Store	5	Store 6	Store 7	Stor	e 8	Store 9	Store	e 10	Store	e 11	Store	e 12	Store	e 13	Store	e 14
Store 1	0																				
Store 2	9.2	4					-														
Store 3	6.8	10.4	0																		
Store 4	8.0	11.7	11.7	0																	
Store 5	6.6	10.4	10.5	19.0	0																
Store 6	5.6	9.2	9.2	19.0	22.	;	4														
Store 7	6.8	10.4	10.4	20.1	23.		30.8	0													
Store 8	4.4	8.0	8.1	20.2	22.		29.9	34.7	— b												
Store 9	5.6	9.2	9.2	21.4	23.	}	32.2	35.8	45.		—										
Store 10	6.8	10.4	10.4	20.2	22.		31.0	37.1	44		51.6	-0									
Store 11	9.2	12.9	12.0	21.4	22.	,	28.6	34.7	38.		44.3	44									
Store 12	5.6	9.2	9.2	15.3	15.		18.9	23.7	26.	$\hat{}$	32.2	32	_	34)				
Store 13	10.4	14.0	14.0	15.3	16.		18.9	24.9	20.	_	33.4	32		34		31	.0	0			F
Store 14	6.8	10.4	10.4	14.1	14.1		16.5	22.5	25.	$\overline{}$	3 .0	28	_	31	.0	29	.8	33	.5	Û	

- We get the 4 route-truck assignments as:
 - Truck 1 is assigned to stores (8-9-10-11)
 - Truck 2 is assigned to stores (12-13-14)
 - Truck 3 is assigned to stores (5-6-7-2)
 - Truck 4 is assigned to store (1-3-4)

Step 4: Sequence Customers Within Routes

- The 14 stores are now grouped into 4 groups, with each group being assigned to a specific vehicle.
- The next step is to identify the sequence in which each vehicle will visit the companies.
- There are many types of route sequencing techniques available.

Nearest Neighbor:

- Starting from the farm, this procedure adds the <u>closest</u> store to extend the trip.
- At each step, the trip is built by adding the store <u>closest to the</u>
 <u>point last visited</u> by the vehicle until all the stores have been
 visited

Nearest Neighbor	Resulting Trip	Trip Length					
(8-10-9-11)	SF→8→10→9→11→SF	59.7					
(12-13-14)	SF→12→13→14→SF	39.3					
(2-5-6-7)	$SF \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow SF$	39.2					
(1-3-4)	SF→1→3→4→SF	24.9					

Traveling Time or Distance?

- Traveling time maybe a better measurement especially when there
 is an agreed timeframe with customers. In this case, the distance
 matrix will be replaced by a time matrix, before applying step 2 to
 4.
- So how do we get the traveling time within Singapore?

Learning Outcome

- Describe the concept of milk run and its benefits
- Describe the factors considered when deciding the appropriate routing and scheduling for a given transportation network
- Apply the Savings Matrix Method for a given scenario:
 - Step 1: Identify the Distance Matrix
 - Step 2: Identify the Distance Savings matrix
 - Step 3: Assign customers to vehicles or routes
 - Step 4: Sequence customers within routes
- Apply the Route Sequencing Procedures on a route:
 - Nearest Neighbour

