Proving Classical Theorems with Numerical Methods: The Intermediate Value Theorem Revisited

Allegra M. Simmons Numerical Analysis Final

13 May 2025

Overview

- Introduction
- 2 Theoretical Perspectives
- Geometric and Topological Ideas
- Proofs of IVT
- Conclusion

What is the Intermediate Value Theorem (IVT)?

- If f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then there exists $c \in (a, b)$ such that f(c) = 0.
- Foundational result in calculus and real analysis.
- Typically proven using the completeness of R.

Intermediate Value Theorem

Historical Context

- Intuitively accepted before rigorous proof.
- First formal proof: Bernard Bolzano (1817)
- Refined by Cauchy in 1821 in Cours d'Analyse.

Classical vs. Constructive

Classical:

- Based on completeness of real numbers.
- Existence proofs without construction.

Constructive:

- Emphasizes computable constructions.
- No object exists unless it can be explicitly constructed.

Constructive Mathematics

- Errett Bishop: real numbers as converging rational sequences.
- In computable analysis, IVT does not imply a computable root.
- Weakened IVT:

$$\forall \varepsilon > 0, \exists x \in [a, b] \text{ such that } |f(x)| < \varepsilon$$

• Avoids contradiction with Turing's undecidability results.

Ideas in Space

- Cauchy introduced geometric intuition into analysis.
- IVT reflects the **connectedness** of [a, b].
- In topology: a continuous image of a connected space is connected.
- Related idea: Brouwer Fixed-Point Theorem.

Root-Finding Algorithms

Two major techniques:

- Bisection Method
 - Guaranteed convergence.
 - Only requires continuity and sign change.
- Newton's Method
 - Fast but requires derivative and good initial guess.
 - May diverge.
- IVT ensures the existence of a root.
- Numerical methods constructively approximate it.
- A bridge between abstract theory and computation.

Why Bisection?

- Constructive and simple.
- Relies only on IVT's hypotheses.
- Does not require derivative or precise guess.
- Each step reduces error: converges to solution.

Classical Proof Outline

Theorem (IVT)

If f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then $\exists c \in (a, b)$ such that f(c) = 0.

- Define $S = \{x \in [a, b] \mid f(x) < 0\}.$
- Let $c = \sup S$.
- Use continuity to show f(c) = 0.

Constructive Proof via Bisection

Given: f continuous, f(a) < 0, f(b) > 0, and $\varepsilon > 0$.

Algorithm:

- **1** Compute midpoint $m = \frac{a+b}{2}$.
- ② Check sign of f(m).
- **3** Narrow interval to [a, m] or [m, b].
- **9** Repeat until $|b a| < \varepsilon$.

Result: Find x such that $|f(x)| < \varepsilon$.

Conclusion

- Classical IVT assumes existence.
- Numerical methods provide algorithmic insight.
- Bisection method embodies constructive logic.
- Bridging abstract theory and computation.

References

- Cauchy, A.-L. Cours d'Analyse (1821)
- Bishop, E. Foundations of Constructive Analysis (1967)
- Halperin, I. Discontinuous Functions with the Darboux Property (1958)

Questions?

