Transitive Closure

Let R be a binary relation on A.

We define R^+ , the transitive closure of R, as the smallest transitive relation that contains R.

We can construct R⁺ from R as follows.

First we define Ri as:

$$\begin{split} R^1 &\triangleq R \\ R^2 &\triangleq R \circ R \\ R^3 &\triangleq R \circ R^2 = R^2 \circ R \text{, since } \circ \text{ is associative} \\ \dots \\ R^n &\triangleq R \circ R^{n-1} = R \circ \dots \circ R \text{, n times} \\ \dots \end{split}$$

and we define

$$R^{\,+} \, \triangleq \, R \, \, \text{U} \, R^{\,2} \, \, \text{U} \cdots \, \text{U} \, R^{\,n} \, \, \text{U} \cdots \, \triangleq \, \text{U}_{i \geq \, 1} R^{\,i}$$

Therefore, we have a R^+ b \iff $\exists n \ge 1 (a R^n b)$

Constructing the Transitive Closure

Let R be a **finite binary** relation on A.

If R is already transitive, we are done.

Otherwise, there exists $a, b, c \in A$ such that a R b and b R c, but not a R c.

We add the pair $\langle a, c \rangle$ to the relation.

Carry on doing this, until there are no more pairs to add.

We now have a **transitive** relation.

Every added pair was a **necessary requirement of transitivity**, so we have obtained the smallest possible transitive relation containing R.

(Since we accept **infinite** constructions, this procedure even works for infinite relations.)

Transitive Closure: Example

Define a set City of cities and a binary relation R on City such that a R b when there is a direct flight from a to b.

Define the relation R^+ by $a R^+ b$ when there is a trip from a to b. We will calculate R^+ from R.

