Raport

Jakub Kosterna, Marcin Łukaszyk, Mikołaj Malec

15/04/2020

1. Ogólnie

German credit data to bardzo ładny zbiór danych pod naukę uczenia maszynowego. Jest on względnie nieduży, gdyż zawiera 1000-czną próbkę osób ubiegających się o kredyt, jednak jest przy tym wydaje się reprezentatywny (dane zdają się dobrze odzwierciedlać populację) i zawiera dużo informacji na temat każdego klienta.

W ciągu ostatnich tygodni pierwszorzędnie dobrze zapoznaliśmy się z daną ramką danych, następnie przygotowaliśmy ją pod odpalania algorytmów machine learning, żeby na końcu wybrać ten jeden fajny model i go przetestować.

2. Czyszczenie

Pierwotna wersja data frame nie była najweselsza na świecie - zamiast ludzkich liczb czy jasnych wartości typu faktor, mieliśmy do czynienia z chaosem w postaci **dziwnych oznaczeń** takich jak widać na załączonym obrazku:

checking_account_status	duration	credit_history	purpose	credit_amour	t savings	present_employment	installment_rate	personal	other_debtors	present_residence	property	age
A12	30	A34	A40	424	A61	A71	4	A94	A101	2	A123	28
A11	18	A32	A42	113	1 A61	A71	4	A92	A101	2	A123	33
A12	24	A32	A43	196	7 A61	A75	4	A92	A101	4	A123	20
A11	12	A32	A42	165	7 A61	A73	2	A93	A101	2	A121	27
A11	18	A32	A43	188	2 A61	A73	4	A92	A101	4	A123	25
A14	9	A32	A49	144	9 A61	A74	3	A92	A101	2	A123	27
A14	9	A32	A42	131	3 A61	A75	1	A93	A101	4	A123	20
A12	42	A34	A49	595	4 A61	A74	2	A92	A101	1	A121	41
A14	30	A32	A43	186	7 A65	A75	4	A93	A101	4	A123	58
A12	12	A32	A40	122	3 A61	A75	1	A91	A101	1	A121	46

Z pomocą przyszła **dokumentacja**, która rozwiała wszelkie możliwości. W celu dalszej pracy z naszymi danymi, podmieniliśmy skrótowe identyfikatory na ciągi znaków przyjazne użytkownikowi.

2. Czyszczenie danych

W celu ludzkiego przedstawienia danych zmodyfikujemy je tak, żeby wszystko stało się jasne.

```
# przeksztalcanie na dane numeryczne i z faktorami
levels(data[,1]) \leftarrow c("low", "fair", "high", "not\_have") \ \#DM \ low<0 < fair<200 < high \ low<0 < hig
levels(data[,3]) <- c("all_paid", "all_paid_here", "paid_till_now", "delay", "critical")</pre>
levels(data[,4]) <- c("new_car", "used_car", "furniture/equipment", "radio/television", "domestic", "repairs", "education",
"retraining", "business", "other") #note: 0 for vacation
levels(data[,6]) <- c("low","normal","high","very_high","not_have/unknown") #DM low<100<normal<500<high<1000<very_high
levels(data[,7]) <- c("unemployed", "less_than_year", "1-3_years", "4-6_yeras","7+_years")</pre>
levels(data[,9]) \leftarrow c("male\_d/s", "female\_d/s/m", "male\_single", "male\_m/w") \# d = divorsed, \ s = seperated, \ m = married, \ w = married, 
widowed ,#note: 0 female single
levels(data[,10]) <- c("none", "co-applicant", "guarantor")</pre>
levels(data[,12]) <- c("real_estate", "building_savings", "car", "not_have/unknown")</pre>
levels(data[,14]) <- c("bank", "stores", "none")
levels(data[,15]) <- c("rent", "own", "for_free")</pre>
levels(data[,17]) <- c("unskilled_non_resident", "unskilled_resident", "skilled_eployee", "highly_qualified_employee*") # aL
so management, self-employed, officer
levels(data[,19]) <- c("no", "yes")</pre>
levels(data[,20]) <- c("yes", "no")
data[,21] <- as.factor(as.character(data[,21]))</pre>
levels(data[,21]) <- c("Good", "Bad")</pre>
```

Jak teraz wygąląda nasze losowe 20 wierszy?

Końcowy efekt zaprezentował się następująco:

checking_account_status	duration	credit_history	purpose	credit_amount	savings	present_employment	installment_rate	personal	other_debtors	present_residence
low	15	paid_till_now	new_car	3959	low	1-3_years	3	female_d/s/m	none	2
fair	15	paid_till_now	new_car	2631	normal	1-3_years	2	female_d/s/m	none	4 (
low	18	critical	education	1190	low	unemployed	2	female_d/s/m	none	4 1
fair	18	delay	radio/television	4297	low	7+_years	4	male_d/s	none	3 1
not_have	24	paid_till_now	domestic	1311	normal	4-6_yeras	4	male_m/w	none	3
high	15	paid_till_now	retraining	1905	low	7+_years	4	male_single	none	4 (
fair	10	all_paid_here	domestic	1048	low	1-3_years	4	male_single	none	4 1
fair	15	paid_till_now	education	1308	low	7+_years	4	male_single	none	4 (
fair	27	critical	domestic	2520	high	1-3_years	4	male_single	none	2
not_have	24	critical	radio/television	1585	low	4-6_yeras	4	male_single	none	3 1
low	24	critical	domestic	1231	very_high	7+_years	4	female_d/s/m	none	4 1
fair	6	paid_till_now	education	454	low	less_than_year	3	male_m/w	none	1 1

Wielkim szczęściem okazał się za to fakt, że nasza ramka danych nie zawierała braków ani niepokojących outlierów.

3. Eksploracja

... dla tak przyjemnych i życiowych danych była czystą przyjemnością.

Bardzo pomocny okazało się narzędzie **DataExplorer**, które pokazało wiele ciekawych zależności w tabeli automatycznie.

Elegancki ogląd naszych danych otrzymaliśmy dzięki zaoferowanemu przez funkcję drzewko typów.

```
ochecking_account_status (Factor w/ 4 levels "low", "fair", "high",)
                                                                                                 oduration (int)
                                                                                                 ocredit_history (Factor w/ 5 levels "all_paid", "all_paid_here",)
                                                                                                 opurpose (Factor w/ 10 levels "new_car", "used_car",)
                                                                                                 ocredit amount (num)
                                                                                                osavings (Factor w/ 5 levels "low", "normal",)
                                                                                                 opresent employment (Factor w/ 5 levels "unemployed", "less than year",)
                                                                                                oinstallment_rate (num)
                                                                                                opersonal (Factor w/ 4 levels "male_d/s", "female_d/s/m",)
                                                                                                 other_debtors (Factor w/ 3 levels "none", "co-applicant",)
root (Classes 'data.table' and 'data.frame': 1000 obs. of 21 variables:)
                                                                                                opresent residence (num)
                                                                                                oproperty (Factor w/ 4 levels "real_estate",)
                                                                                                oage (num)
                                                                                                 oother_installment_plans (Factor w/ 3 levels "bank", "stores",)
                                                                                                -housing (Factor w/ 3 levels "rent", "own", "for_free")
                                                                                                 oexisting_credits (num)
                                                                                                 ojob (Factor w/ 4 levels "unskilled non resident",)
                                                                                                 odependents (int)
                                                                                                 otelephone (Factor w/ 2 levels "no", "yes")
                                                                                                 oforeign_worker (Factor w/ 2 levels "yes", "no")
                                                                                                 ocustomer_type (Factor w/ 2 levels "Good", "Bad")
```

Wykresy kolumnowe gęstości występowania danych utwierdziły nas w przekonaniu, że z naszą ramką danych wszystko w porządalu.

Univariate Distribution

Histogram

Ładny ogląd balansu wartości dały nam barcharty zmiennych numerycznych.

Bar Chart (by frequency)

Bardzo przydatna okazała się także wizualizacja \mathbf{QQplot} - dzięki niej dostaliśmy przystępny obraz wartości liczbowych w naszej dataframe oraz ich rozkład.

QQ Plot

Także i $\mathbf{macierz}$ $\mathbf{korelacji}$ tym bardziej zbliżyła nas do pełnego pojęcia pełnego $\mathbf{\mathit{german}}$ $\mathbf{\mathit{credit}}$ $\mathbf{\mathit{data}}$ i wiele wartości pokryło się z naszą intuicją.

Correlation Analysis

Na koniez przyjrzeliśmy się jeszcze **wykresowi analizy głównych składowych**.

Principal Component Analysis

Oprócz tego postanowiliśmy sami przyjrzeć się wybranym cechom.

Okazało się między innymi, że stereotypy można wyrzucić do kosza - mężczyźni o wiele częściej biorą kredyt ze względu na potrzebę funduszy na gospodarstwo domowe i nie widać znaczącej przewagi w stosunku do kobiet jeśli idzie o chęć postawienia pieniędzy na auto.

% Variance Explained

6.0%

Bez zaskoczeń o wiele częściej na dom stawiają mężczyźni po ślubie niż ci samotni czy rozwodnicy. Co ciekawe ci sami ani razu nie wzięli pożyczki na wyposażenie / meble [przynajmniej na te 1000 osobników], zaś rozwodnicy i separatyści... przeciwnie do pozostałych grup nie myślą tu wręcz wcale o dodatkowej mamonie na biznes.

Wychodzi również na to, że generalnie większym zaufaniem firma daży osoby starsze:

age

Wyciągnęliśmy także wnioski na podstawie płci, wieku i stanu cywilnego.

Customer type by sex, marital status and age

Dane mówią, że:

- 1. Najmniej ufamy rozwiedzionym facetom zwłaszcza tym po 30, im zwykle nie dajemy.
- 2. Najbezpieczniejsi za to są też faceci po 30... ale single.
- 3. Żonaci to też dobre ziomki.
- 4. Kobiety są gorsze od mężczyzn, ale tylko przed 40. Potem raczej spokój, za wyjątkiem 70-tki psującej obraz.

Jak można się było spodziewać, pożyczka chętniej jest także udzielana na krótszy okres czasu.

Customer type by duration

4. Kodowanie

W ramach drugiego kamienia milowego dokonaliśmy szczegółowej analizy pod względem sensownego encodingu i każdej kolumnie przyjrzeliśmy się pod lupą.

Spośród 21 kolumn, aż 14 okazało się być tekstowymi.

Do czynienia mieliśmy z problemami:

- 1. Prostych zmiennych binarnych
- 2. Kolumn nominalnych
- 3. Cech uporządkowanych

3.3.1. Zarobki w skali 0-4

... oczywiście jednoznacznie mozna uporządkować.

Do jednej kupy został wsadzony brak zarobków i brak informacji na ich temat - rozsądnie będzie obu przydzielić 0, gdyż można się spodziewać, że tak istotna informacja raczej nie byłoby zatajana przez osobę ubiegającą się o pożyczkę i realistycznie jest ona raczej w grupie *low* (przynajmniej według mnie - przypowiedź Kuba).

Wobec tego kolejne numery będą miały takie dopasowanie:

```
    not_have/unknown -> 0
    low -> 1
    normal -> 2
```

• high -> 3

very_high -> 4

```
num_data$savings <- as.numeric(data$savings)
num_data$savings[num_data$savings == 5] <- 0 # not_have/unknown</pre>
```

3.3.2. Staż pracy w przybliżonych liczbach

Kolumna present_employment daje nam ładne pogrupowanie długości pracy w formie grup unemployed, less_than_year, 1-3_years, 4-6_years i more. Zamienimy dane kategoryczne na liczbę oznaczającą oczekiwany staż pracy jak niżej:

```
unemployed -> 0
less_than_year -> 1
1-3_years -> 2
4-6_yeras -> 5
more -> 7
```

```
num_data$present_employment <- if_else(data$present_employment %in% c("unemployed"), 0, if_else(data$present_employment %in% c("less_than_year"), 1,if_else(data$present_employment %in% c("1-3_years"), 2,if_else(data$present_employment %in% c("4-6_yeras"), 5,7))))
```

4. Zmiennych mieszanych - zawierających w sobie po parę ciekawych informacji

3.4. Zmienne "mieszane"

3.4.1. personal czyli pleć i stan cywilny na raz

Tu zrobimy dwie kolumny numeryczne - pierwszą binarną *is_woman* naturalnie odpowiadającą za płeć, dodatkową za pytanie o bycie singlem. W tym wypadku tracimy małą informację w stosunku do oryginalnego zbioru danych o odróżnieniu singli i rozwodników, ale jest to bardzo mała grupa, a podział na płeć powinien przynieść bardziej porządany efekt.

```
num_data$is_woman <- if_else(data$personal == "female_d/s/m", 1, 0)
num_data$is_single <- if_else(data$personal == "male_single", 1, 0) # nie ma kobiet singli</pre>
```

Końcowy efekt wyszedł encodingu wyszedł następujacy:

duration	credit_amount	installment_rate	present_residence	age	existing_credits	dependents	has_telephone	is_foreign_worker	is_good_customer_type
48	3914	4	2	38	1	1	0	1	0
12	1922	4	2	37	1	1	0	1	0
18	1345	4	3	26	1	1	0	1	0
12	983	1	4	19	1	1	0	1	1
21	3652	2	3	27	2	1	0	1	1
18	1453	3	1	26	1	1	0	1	1
24	3069	4	4	30	1	1	0	1	1
8	1164	3	4	51	2	2	1	1	1
18	2462	2	2	22	1	1	0	1	0
36	7980	4	4	27	2	1	1	1	0
18	2169	4	2	28	1	1	1	1	0
48	7629	4	2	46	2	2	0	1	1
48	6416	4	3	59	1	1	0	1	0

Tutaj kolory odpowiadające miarom:

5. Poszukiwanie najlepszego modelu - dyskusja

W celu wybrania tego jednego właściwego modelu, wpierw postanowiliśmy podzielić się popularnymi znanymi już przez nas metodami i indywidualne zajęcie się nimi.

Rozpatrzyliśmy i przetestowaliśmy dla różnych hiperparametrów cztery algorytmy uczenia maszynowego:

- 1. Drzewo klasyfikacyjne i lasy losowe
- 2. Regresja liniowa
- 3. K-najbliższych sąsiadów
- 4. Naiwny klasyfikator bayesowski

... przy czym dla pierwszych trzech przygotowaliśmy dłuższe skrypty i raporty w formacie .Rmd - można je znaleźć pod [kolejno] KM3Drzewa.Rmd, KM3Reqresja.Rmd i KM3knn.Rmd.

Efekty testowania mniej godne zraportowania znajdują się także w pojedynczych skryptach: lm.r, nb.r i knn.r.

Ku porównaniu efektów modeli postanowiliśmy porównywać cztery chyba najbardziej podstawowe w tej kwestii, ale i przy tym dające ogrom informacji miary: accuracy, precision, recall i f1.

2. Miary oceny klasyfikatora

W ocenie kolejnych modeli posłużę się czterema najbardziej klasycznymi miarami:

```
 \begin{array}{l} \bullet \ \ \text{accuracy} \cdot \frac{TP+TN}{TP+FP+FN+TN} \\ \bullet \ \ \text{precision} \cdot \frac{TP}{TP+FP} \\ \bullet \ \ \text{recall} \cdot \frac{TP}{TP+FN} \\ \bullet \ \ \text{f1} \cdot 2 * \frac{Recall+Precision}{Recall+Precision} \end{array}
```

```
confusion_matrix_values <- function(confusion_matrix){</pre>
  TP <- confusion_matrix[2,2]
  TN <- confusion_matrix[1,1]
  FP <- confusion_matrix[1,2]
 FN <- confusion_matrix[2,1]
  return (c(TP, TN, FP, FN))
accuracy <- function(confusion_matrix){
 conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
   \textbf{return}((\texttt{conf\_matrix}[1] + \texttt{conf\_matrix}[2]) \ / \ (\texttt{conf\_matrix}[1] + \texttt{conf\_matrix}[2] + \texttt{conf\_matrix}[3] + \texttt{conf\_matrix}[4])) 
precision <- function(confusion_matrix){</pre>
 conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
  return(conf_matrix[1]/ (conf_matrix[1] + conf_matrix[3]))
recall <- function(confusion_matrix){</pre>
 conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
 return(conf_matrix[1] / (conf_matrix[1] + conf_matrix[4]))
f1 <- function(confusion_matrix){
 conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
 rec <- recall(confusion_matrix)
  prec <- precision(confusion_matrix)</pre>
  return(2 * (rec * prec) / (rec + prec))
```

5.1. Drzewo klasyfikacyjny i las losowy

Uruchomienie algorytmu z pakietu rpart dało mało satysfakcjonujący wynik w myśli o logice biznesowej.

W celu znalezienia najlepszych hiperparametrów, porównywaliśmy między innymi miary dla kolejnych maksymalnie narzuconych głębokości drzewa.

Measures of classification tree by max depth

Tutaj:

- żółty accuracy
- niebieski precision
- zielony recall
- czerwony f1

Biorąc pod uwagę ideę naszego problemu, zdecydowaliśmy się na to z głębokością 6.

Prezentuje się ono tak:

Zajęliśmy się także lasami losowymi i koniec końców porównaliśmy otrzymane miary.

W efekcie otrzymaliśmy taką oto tabelkę:

```
## model accuracy precision recall f1
## 1 primitive 0.715 0.7484277 0.8750000 0.8067797
## 2 max depth: 6 0.735 0.7748344 0.8602941 0.8153310
## 3 random forest 0.720 0.7325581 0.9264706 0.8181818
```

Ze względu na koncepcję naszego zadania, stwierdziliśmy, że sumarycznie najlepiej wypada drzewo losowe o głębokości 6.

5.2. k najbliższych sąsiadów

... napisaliśmy oczywiście ze wskazaną wcześniejszą normalizacją.

```
#normaliacion to ~(0,1)
for( coli in 1:dim(x_train)[2]){
    #x and y have o be noemalized in the same way
    c_min <- min( c(x_train[,coli], x_test[,coli]))
    c_max <- max( c(x_train[,coli], x_test[,coli]))

x_train[,coli] <- (x_train[,coli] - c_min) / (c_max - c_min)
    x_test[,coli] <- (x_test[,coli] - c_min) / (c_max - c_min)
}</pre>
```

Również i tutaj przeszukaliśmy różne hyperparameters w celu znalezienia tego najlepszego.

Najbardziej satysfakcjonujący wydał się efekt dla k = 26.

Finalnie otrzymaliśmy acccuracy na poziomie 70%, a confusion matrix zaprezentował się tak:

	0	1
0	11	53
1	7	129

5.3. Regresja liniowa

Tutaj z pomocą przyszła nam funkcja glm(). Po dopasowaniu dobry obraz dała nam także metoda summary, ładnie podsumowująca co automatyczne narzędzie utworzyło.

```
Deviance Residuals:
  Min 1Q Median
                         30
                                  Max
-2.4722 -0.8899 0.4654 0.7781 2.3977
Coefficients:
                           Estimate Std. Error z value Pr(>|z|)
(Intercept)
                           3.384690 1.241297 2.727 0.00640 **
                          -0.042163 0.007819 -5.392 6.97e-08 ***
duration
age
                          0.012578 0.009399 1.338 0.18084
                          existing_credits
                          -0.486423 0.265525 -1.832 0.06696 .
dependents
                                             2.199 0.02788 *
has_telephone
                          0.456194 0.207464
is foreign worker
                          -1.482214 0.768042 -1.930 0.05362 .
has_problems_credit_history 0.782436
purpose_domestic 0.302664
                                    0.226453
                                              3.455 0.00055 ***
                                    0.334697
                                              0.904 0.36584
                          -0.772425
                                    0.448215 -1.723 0.08483
purpose_retraining
purpose_retraining
purpose_radio_television
                          -0.042468
                                    0.352021 -0.121 0.90398
                          -0.671123 0.335964 -1.998 0.04576 *
purpose_new_car
                          1.109216 0.451582 2.456 0.01404 *
purpose_used_car
                          1.009181 1.142224 0.884 0.37695
purpose_business
                         -0.334217 0.843957 -0.396 0.69210
purpose_repairs
                          -0.543683 0.601829 -0.903 0.36632
purpose education
purpose_furniture_equipment 0.439982 0.828232 0.531 0.59526
other_debtors_guarantor
                         0.634619 0.451470 1.406 0.15982
other_debtors_co_applicant
                          -0.811476 0.444269 -1.827 0.06777 .
other_installment_plans_bank -0.367892 0.248429 -1.481 0.13864
housing_rent
                          -0.143903 0.389959 -0.369 0.71211
housing_own
                           0.270075 0.336478 0.803 0.42218
```

Tak zaimplementowana regresja liniowa nie daje binarnego dopasowania tak / nie, lecz prawdopodobieństwa na owe dwa stany. Postanowiliśmy najprościej - i chyba na tym poziomie najlepiej - przyjąc, że **jeśli p-stwo na "tak" >50% - klient został uznany za zdolnego finansowo**. Jeśli nie - przeciwnie.

```
glm.probs <- ifelse(predict(glm.fit,newdata = Reg_test,type = "response") > 0.5,1,0)
mean(glm.probs == select(Reg_test,is_good_customer_type))
```

[1] 0.7

Jak widzimy model średnio dobrze przewiduje 70 % odpowiedzi.

Macierz pomyłek i wcześniej zaplanowane badane miary zaprezentowały się następująco:

	0	1
0	16	45
1	15	124

accuracy	precision	recall	f1
0.7	0.7337278	0.8920863	0.8051948

W celu uzyskania potencjalnie lepszych wyników postanowiliśmy także pozbyć się tych kolumn, które według summary() najmniej wpływaną na model.

accuracy	precision	recall	f1
0.665	0.7045455	0.8920863	0.7873016

Miary nie okazały się być jednak lepsze.

Bardziej satysfakcjonujący wynik dało za to usunięcie zmiennych:

- age
- is_foreign_worker
- present_employment
- property
- checking_account_status
- \bullet is_single

Tutaj już radość została osiągnięta.

accuracy	precision	recall	f1
0.69	0.7015707	0.9640288	0.8121212

Ostatecznie postanowiliśmy jeszcze wziąć tylko pięć kolumn o największym znaczeniu według summary().

purpose_radio_television: 0.90

housing_rent : 0.71

purpose_repairs: 0.69

purpose_furniture_equipment : 0.59

housing own: 0.42

... taki model okazał się jednak bardzo zły, gdyż wszystkie obserwacje zostały zaklasyfikowane jako prawdziwe.

Podsumowując najlepszy okazał się model pierwszy - chyba, że najważniejsze znaczenie miałoby mieć recall - wtedy przy nieco gorszym precision i accuracy wygrywa model nieuwzględniający wspomnianych wcześniej sześciu parametrów.

6. Wybór najlepszego algorytmu uczenia maszynowego i implementacja

BAYES??

TODO

7. Zakończenie

To by było na tyle.

Mamy nadzieję, że się podobało; ja myślę, że fajna robota (dopowiedź: Kuba).

sessionInfo()

```
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18362)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Polish_Poland.1250 LC_CTYPE=Polish_Poland.1250
## [3] LC_MONETARY=Polish_Poland.1250 LC_NUMERIC=C
## [5] LC_TIME=Polish_Poland.1250
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                 base
##
## loaded via a namespace (and not attached):
## [1] compiler_3.6.1 magrittr_1.5
                                                      htmltools_0.3.6
                                      tools_3.6.1
## [5] yaml_2.2.0
                       Rcpp_1.0.1
                                       stringi_1.4.3
                                                      rmarkdown_2.1
## [9] knitr_1.22
                       stringr_1.4.0 xfun_0.6
                                                       digest_0.6.18
## [13] evaluate_0.14
```