Formulas

discrete time growth:

- $N_T = N_0 \lambda^T$
- $\lambda = f + p$
- $\mathcal{R} = f/(1-p)$

continuous time growth:

- $N(t) = N(0) \exp(rt)$
- r = b d
- $\mathcal{R} = b/d$

structured growth:

- $\bullet \ \ell_x = p_1 \times p_2 \times \dots p_{x-1}$
- $\mathcal{R} = \sum \ell_x f_x$
- 1. A pile of radioactive material is decaying *continuously* at an instantaneous rate of 1%/minute. After two minutes, what proportion is left?
 - **A.** A little more than 98%
 - **B.** Exactly 98%
 - C. A little less than 98%
 - **D.** About 30%
 - E. None
- **2.** The ℓ_x column in a life table identifies
 - **A.** The probability of surviving from birth to age x
 - **B.** The probability of surviving from age 1 to age x
 - C. The probability of surviving from age x-1 to age x
 - **D.** The probability of surviving from age x to age x + 1
 - **E.** The cumulative fecundity from age 1 to age x
- **3.** A population is changing in continuous time, according to the equation dN/dt = r(N)N. What are the conditions for this population to be in equilibrium at a non-zero value?
 - **A.** r(N) = 0
 - **B.** 0 < r(N) < 1/yr
 - **C.** r(N) = 1/yr
 - **D.** r(N) = 1

4. If a simple model assumes individuals are independent of each other, then ______ birth rates should ______ the size of the population.

- A. per capita; not be affected by
- **B.** per capita; decrease with
- C. total; not be affected by
- **D.** total: decrease with
- **5.** Which of the following would be the strongest reason to prefer an age-structured model to a stage-structured model?
 - **A.** A life cycle that is usually of a predictable time length (like salmon)
 - **B.** A life cycle that is not of a predictable time length (like hemlock trees)
 - C. Large variation in size of reproductive organisms (like codfish)
 - **D.** Small variation in size of reproductive organisms (like storks)
- **6.** The technical meaning of exponential change is:
 - A. Changing faster and faster
 - **B.** Changing at a constant rate
 - C. Changing at a rate proportional to the size of the thing changing
 - **D.** Changing at a rate proportional to time elapsed
- 7. A researcher estimates that a moth population has a density of 10 pupae/ha in 2016, and finite rate of growth $\lambda = 1.4$ (associated with a time step of one year). The population on average is 2/3 male and 1/3 female. If λ remains constant, what is the approximate density of pupae the researcher will expect to see in 2024?
 - A. 27 pupae/ha
 - **B.** 49 pupae/ha
 - C. 54 pupae/ha
 - **D.** 74 pupae/ha
 - E. 148 pupae/ha
- **8.** What value of the instantaneous growth rate r corresponds to the finite growth model described in the question above?
 - **A.** 0.34/yr
 - **B.** 0.34
 - C. 1.4/yr
 - **D.** 1.4
 - **E.** There is not enough information to tell

9. In simple, discrete-time models of a single species competing for resources, we often see population cycles:

- **A.** In models where competition is contest-like
- B. In models where competition is scramble-like
- C. In models without competition
- **D.** We don't see population cycles in simple discrete-time models
- **10.** When we make an *unstructured*, discrete-time model of a perennial population, we usually census ______ because _____.
 - A. before reproduction; there are fewer individuals to count
 - B. after reproduction; there are fewer individuals to count
 - C. before reproduction; individuals are more likely to be similar to each other
 - **D.** after reproduction; individuals are more likely to be similar to each other
- ${\bf E.}$ whenever is most convenient; our model already keeps track of everything we need

Use the picture below for the next two questions.

- 11. Compared to the picture on the left, the picture on the right shows
 - A. A population with more of a tendency for contest competition
 - **B.** A population with more of a tendency for scramble competition
 - C. More of an individual-level perspective on the same population
 - ${f D.}$ More of an population-level perspective on the same population

12. The scientists probably chose to count egg masses instead of some other life stage because:

- **A.** They want to observe as many individuals as possible
- **B.** They want to observe individuals as close to the time of reproduction as possible
- C. Egg masses are the easiest life stage to count reliably
- **D.** Egg masses are an important food source for birds

Use the picture above for the next 3 questions.

- **13.** The figure shows:
 - A. Density dependence in mortality only
 - **B.** Density dependence in both mortality and fecundity
 - C. An Allee effect in mortality only
 - **D.** An Allee effect in both mortality and fecundity

14. Which of the four pictures below was generated by the same model as the picture above?

- **15.** This population has a(n) _____ equilibrium at 0 individuals and a non-zero ____ equilibrium
 - A. stable; stable
 - B. stable; unstable
 - C. unstable; stable
 - **D.** unstable; unstable
- **16.** Which of the following is necessary for a population to reach a stable equilibrium?
 - **A.** R(0) must be < 1
 - **B.** The death rate must be independent of the population size
 - C. The population growth rate must be positive just above zero
 - **D.** The population growth rate must be negative for very large population size
 - E. The population growth rate must be negative just above zero

17. My favorite lake has no trout, but nearby lakes with similar conditions and similar weather do. I introduce a pair of adult trout to my lake in a year when the trout in the nearby lakes are doing well, but my trout fail to establish a population (they go locally extinct in my lake). This is most likely due to:

- A. Allee effects
- B. Either Allee effects or environmental stochasticity
- C. Either Allee effects or demographic stochasticity
- **D.** Either environmental stochasticity or demographic stochasticity
- 18. A biologist hypothesizes that her population is growing faster than exponentially, following the formula $N = N_0 \exp(kt^2)$, where N_0 is the initial population in units of [indiv]/[area], and t has units of [time]. What are the units of k?
 - **A.** 1/[time]
 - **B.** [indiv]/[time]
 - C. [area]/[time]
 - **D.** $[area]/[time]^2$
 - **E.** $1/[\text{time}]^2$
- 19. A population of small plants has discrete, overlapping generations, with year-to-year survival probability p = 1/4 and year-to-year fecundity f = 1/2. This population has:
 - **A.** $\lambda = 2$ and $\mathcal{R} = 1.25$
 - **B.** $\lambda = 1.25$ and $\mathcal{R} = 2$
 - **C.** $\lambda = 0.67 \text{ and } \mathcal{R} = 0.75$
 - **D.** $\lambda = 0.75 \text{ and } \mathcal{R} = 0.67$
- **20.** An individual's contribution to the reproductive number number \mathcal{R} in age class x is given by the probability of surviving from ______ until age class x multiplied by the expected number of offspring ______.
 - **A.** birth; that survive to be counted at the next census
- ${f B.}$ the first time the individual is counted; that survive to be counted at the next census
 - C. birth; produced in the following reproductive season
- $\mathbf{D.}$ the first time the individual is counted; produced in the following reproductive season

Short-answer questions

Answer questions in pen. Briefly show necessary work and equations. Points may be deducted for wrong information, even when the correct information is also there.

- 21. (5 points) Consider a population of hedgehogs that reproduce once a year. The adult sex ratio is 1:1. A reproducing one-year-old female produces on average 5 female offspring. A reproducing 2-year old female produces on average 12 female offspring. 20% of female offspring survive to reproduce in their first year. 40% of females survive from the first to the second year; no-one survives longer.
- a) Construct a life table and calculate \mathcal{R} for this population. State clearly whether you are calculating before or after reproduction, and show calculations for f_x and p_x

\boldsymbol{x}	f_x	$\mid \stackrel{\circ}{p}_x \mid$	ℓ_x	,

b) Based on your calculation of \mathcal{R} , what can you say about λ for this population? **A.** Since $\mathcal{R} > 1$, we expect $\lambda > 1$; because the average life cycle is more than a year, we also expect $\lambda < \mathcal{R}$ (that is, closer to 1 than \mathcal{R} is).