5.6 Pour tout $n \in \mathbb{N}$, on pose $s_n = \sum_{k=1}^n u_k$.

L'exercice 4.21 a prouvé que $s_n = u_1 \cdot \frac{1 - r^n}{1 - r}$.

- 1) Si -1 < r < 1, l'exercice 4.24 a montré que la suite $(s_n)_{n \in \mathbb{N}}$ converge vers $u_1 \cdot \frac{1}{1-r}$.
- 2) Si r = 1, alors $u_k = u_1 \cdot r^{k-1} = u_1 \cdot 1^{k-1} = u_1$ pour tout $k \in \mathbb{N}$.

Dès lors
$$s_n = \sum_{k=1}^n u_k = \sum_{k=1}^n u_1 = n u_1$$
 pour tout $n \in \mathbb{N}$.

Puisque l'on suppose $u_1 \neq 0$, la suite $(s_n)_{n \in \mathbb{N}}$ est non bornée. C'est pourquoi elle diverge, au vu de l'exercice 3.8 3).

3) Si r = -1, alors $s_n = u_1 \cdot \frac{1 - (-1)^n}{1 - (-1)} = \frac{1}{2} u_1 \left(1 - (-1)^n \right)$.

Supposons, par l'absurde, que la suite $(s_n)_{n\in\mathbb{N}}$ converge.

Alors la suite de terme général $\frac{2}{u_1} s_n = 1 - (-1)^n$ converge également.

Comme la suite constante $(c_n)_{n\in\mathbb{N}}$ définie par $c_n=-1$ pour tout $n\in\mathbb{N}$ converge vers -1, la suite de terme général $s_n+c_n=1-(-1)^n-1=-(-1)^n$ est elle aussi convergente.

Il en résulte que la suite de terme général $\frac{1}{-1}\left(-(-1)^n\right)=(-1)^n$ est convergente, ce qui est manifestement faux d'après l'exercice 3.7.

On conclut ainsi que la suite $(s_n)_{n\in\mathbb{N}}$ diverge.

4) Si r < -1 ou r > 1, alors $s_n = u_1 \cdot \frac{1 - r^n}{1 - r} = \frac{u_1}{1 - r} \cdot (1 - r^n)$ est une suite non bornée. On en déduit qu'elle est divergente, grâce à l'exercice 3.8 3).

En résumé, une série géométrique de raison r

- converge vers $u_1 \cdot \frac{1}{1-r}$ si |r| < 1;
- diverge si $|r| \geqslant 1$.