8. This question involves the use of simple linear regression on the Auto data set.

```
In []: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from statsmodels.api import OLS, add_constant
from statsmodels.graphics.gofplots import ProbPlot
```

Importing data

```
In [ ]: auto = pd.read_csv("https://static1.squarespace.com/static/5ff2adbe3fe4fe33c
In [ ]: auto_1 = auto.copy()
```

Removing symbol '?'

```
In [ ]: auto = auto[auto.horsepower != '?']
In [ ]: auto = auto.drop(['cylinders','displacement','weight','acceleration','year',
```

Converting data-type 'object' to 'int64'

dtype: object

8(a) Use the Im() function to perform a simple linear regression with mpg as the response and horsepower as the predictor. Use the summary() function to print the results. Comment on the output. For example:

OLS Regression Results

==========			====			=======	======
===			mpa	D car	uared:		0.
Dep. Variable	: :		mpg	K-Sqt	iareu:		0.
Model:			0LS	Adj.	R-squared:		0.
605							
Method:		Least Squa	res	F-sta	atistic:		59
9.7 Date:	Sur	n 02 Oct 2	022	Proh	(F-statistic)		7 . 03e
-81	Sun	1, 02 000 2	.022	1105	(1 Statistic)	•	71050
Time:		22:07	:19	Log-L	_ikelihood:		-117
8.7							
No. Observations: 61.			392	AIC:			23
Df Residuals:	<u>.</u>		390	BIC:			23
69.							
Df Model:			1				
Covariance Type: nonrobus							
=======================================			=====		=======================================		======
	coef	std err		t	P> t	[0.025	0.9
75]							
const	30 0350	0 717	5.5	5 660	0.000	38.525	41.
347	3313333	01717	5.	71000	01000	301323	71.
horsepower	-0.1578	0.006	-24	4.489	0.000	-0.171	-0.
145							
=======================================			=====		=========	=======	======
Omnibus:			16.432		Durbin-Watson:		0.
920							
<pre>Prob(Omnibus):</pre>		0.	0.000		ue-Bera (JB):		17.
305 Skovi		0	0.403		(1D) -		0.000
Skew: 175		0.	0.492		(JB):		0.000
Kurtosis:		3.	3.299		Cond. No.		3
22.							
=========			=====			=======	======
===							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation:

1. We can see that 'R-squared' is 0.606. So model is correct for ~60% of the time. So next I am looking for outliers.

So the equation of the linear regression line from the model is: **Y_Predict= 39.9359 - 0.1578*X**

i. Is there a relationship between the predictor and the response?

Yes, the relationship between the predictor variables and the response variable was statistically significant, because the F-statistic: 599.7 which is grater than 1 and probability value which less. This tells us we reject the null hypothesis and conclude there is statiscally relationship between "horsepower" and "mpg".

ii. How strong is the relationship between the predictor and the response?

Here value of the R-squared is 0.606, so 60% variability is explained by the model.

iii. Is the relationship between the predictor and the response positive or negative?

Here is we have negetive coefficient, which means we have negetive relationship.

iv. What is the predicted mpg associated with a horsepower of 98? What are the associated 95 % confidence and prediction intervals?

```
In []: import scipy.stats as st

#Predicting for horsepower 98
y_pred=39.9359-0.1578*98
print(y_pred)

#95% confidence interval
st.t.interval(confidence=0.95, df=len(auto['mpg'])-1, loc=np.mean(auto['mpg'])
24.4715
Out[]: (22.670877187773137, 24.22095954692074)
```

Answer:

- 1. Predicted horsepower value of 98 is 24.47.
- 2. we can say With 95% confidence that this model's mileage value lies between 22.67 and 24.22.

(b) Plot the response and the predictor. Use the abline() function to display the least squares regression line.

```
In [ ]: sns.regplot(x='horsepower', y='mpg', data=auto, ci=None)
```

Out[]: <AxesSubplot: xlabel='horsepower', ylabel='mpg'>

(c) Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any problems you see with the fit.

Reference: https://robert-alvarez.github.io/2018-06-04-diagnostic_plots/

```
In [ ]: # create dataframe from X, y for easier plot handling
        dataframe = pd.concat([X, y], axis=1)
        # model values
        model_fitted_y = model_fit.fittedvalues
        # model residuals
        model_residuals = model_fit.resid
        # normalized residuals
        model_norm_residuals = model_fit.get_influence().resid_studentized_internal
        # absolute squared normalized residuals
        model_norm_residuals_abs_sqrt = np.sqrt(np.abs(model_norm_residuals))
        # absolute residuals
        model_abs_resid = np.abs(model_residuals)
        # leverage, from statsmodels internals
        model_leverage = model_fit.get_influence().hat_matrix_diag
        # cook's distance, from statsmodels internals
        model_cooks = model_fit.get_influence().cooks_distance[0]
In [ ]: def _residplot(x, y, model_fitted_y):
            plot = plt.figure()
            plot.axes[0] = sns.residplot(x=model fitted y, y=y,
                                               lowess=True,
                                               scatter_kws={'alpha': 0.5},
                                               line_kws={'color': 'red', 'lw': 1, 'al
            plot.axes[0].set_title('Residuals vs Fitted')
            plot.axes[0].set_xlabel('Fitted values')
            plot.axes[0].set_ylabel('Residuals')
            # annotations
            abs_resid = model_abs_resid.sort_values(ascending=False)
            abs_resid_top_3 = abs_resid[:3]
            for i in abs_resid_top_3.index:
                plot.axes[0].annotate(i,
                                            xy=(model_fitted_y[i],
                                                model residuals[i]))
            return True
        _ = _residplot(X, y, model_fitted_y)
```

/var/folders/qd/78cm3bf52xs_khrj7wkd_myc0000gn/T/ipykernel_31738/765372950. py:14: FutureWarning: The behavior of `series[i:j]` with an integer-dtype i ndex is deprecated. In a future version, this will be treated as *label-bas ed* indexing, consistent with e.g. `series[i]` lookups. To retain the old b ehavior, use `series.iloc[i:j]`. To get the future behavior, use `series.lo c[i:j]`.

abs_resid_top_3 = abs_resid[:3]

Observations: In the above plot, residuals shows a U-shaped pattern, so data might be non-linear.

20

Fitted values

25

30

15

5

10

```
In [ ]: def _normal_qq_plot(model_norm_residuals):
            QQ = ProbPlot(model norm residuals)
            plot = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1)
            plot.axes[0].set_title('Normal Q-Q')
            plot.axes[0].set_xlabel('Theoretical Quantiles')
            plot.axes[0].set_ylabel('Standardized Residuals')
            # annotations
            abs_norm_resid = np.flip(np.argsort(np.abs(model_norm_residuals)), 0)
            abs_norm_resid_top_3 = abs_norm_resid[:3]
            for r, i in enumerate(abs_norm_resid_top_3):
                plot.axes[0].annotate(
                    i,
                    xy=(np.flip(QQ.theoretical quantiles, 0)[r],
                        model_norm_residuals[i])
            return True, abs_norm_resid_top_3
        _, abs_norm_resid_top_3 = _normal_qq_plot(model_norm_residuals)
```

/Volumes/work/MTH522/project/block_2/.venv/lib/python3.9/site-packages/stat smodels/graphics/gofplots.py:1045: UserWarning: color is redundantly define d by the 'color' keyword argument and the fmt string "b" (-> color=(0.0, 0.0, 1.0, 1)). The keyword argument will take precedence. ax.plot(x, y, fmt, **plot_style)

Observation: The above plot that residual plot is not normally distributed as all othe data points do not lie on the red color line

Observations:

1. We can come to the conclusion that there are no outliers. As the data is standardized values should be between[-3,3]. The above data is between 0 to 2 which is accetable.

```
In [ ]: def graph(formula, x_range, label=None):
            Helper function for plotting cook's distance lines
            x = x_range
            y = formula(x)
            plt.plot(x, y, label=label, lw=1, ls='--', color='red')
        def _residuals_vs_leverage_plot():
            plot = plt.figure()
            plt.scatter(model_leverage, model_norm_residuals, alpha=0.5)
            sns.regplot(x=model_leverage, y=model_norm_residuals,
                        scatter=False,
                        ci=False,
                        lowess=True,
                        line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8})
            plot.axes[0].set_xlim(0, max(model_leverage)+0.01)
            plot.axes[0].set vlim(-3, 5)
            plot.axes[0].set_title('Residuals vs Leverage')
            plot.axes[0].set_xlabel('Leverage')
            plot.axes[0].set_ylabel('Standardized Residuals')
            # annotations
            leverage_top_3 = np.flip(np.argsort(model_cooks), 0)[:3]
            for i in leverage_top_3:
                plot.axes[0].annotate(i,
                                            xy=(model_leverage[i],
                                                model_norm_residuals[i])
            p = len(model_fit.params) # number of model parameters
            graph(lambda x: np.sqrt((0.5 * p * (1 - x)) / x),
                  np.linspace(0.001, max(model_leverage), 50),
                  'Cook\'s distance') # 0.5 line
            graph(lambda x: np.sqrt((1 * p * (1 - x)) / x),
                  np.linspace(0.001, max(model_leverage), 50)) # 1 line
            plot.legend(loc='upper right')
            return True
         _ = _residuals_vs_leverage_plot()
```


Observation:

1. From the above graph we can say that, there is no higher leverage points. The points above cooks distance are conidered high leverage points.