Assignment 2

Instructions:

- This assignment is equivalent to two assignments.
- Write the code by yourself. Adopting any unfair means will result in -100%.
- Your output should match the sample outputs.
- Submit the codes in ELMS. Name the files 1.cpp, 2.cpp, 3.cpp, report.pdf.
 - 1.cpp contains the solution to the first problem, 2.cpp contains the solution to the second problem, and 3.cpp contains the solution to the third problem.
 - report.pdf contains the recurrence equations of the problems and comparison of the runtimes of naive vs dp algorithms for all the given problems.

Problem 1: Rod cutting problem

Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum profit obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

- A. Write a recurrence equation for the given problem.
- B. Determine the maximum profit using naive recursion
- C. Determine the maximum profit using the tabulation method. Print where to cut the rod pieces.
- D. Compare the runtime of the naive solution vs the tabulation method solution.

Sample Input	
n	Sample Output
p_1, p_2,, p_n	
7	profit 17 taka
1 5 9 7 12 8 16	5+2=7

Problem 2: Longest common subsequence problem

Find the longest common subsequence (LCS) length of given two sequences X (length m) and Y (length).

- E. Write a recurrence equation for the given problem.
- F. Determine the LCS length using naive recursion
- G. Determine the LCS length using the tabulation method. Print the LCS.
- H. Compare the runtime of the naive solution vs the tabulation method solution.

Sample Input X Y	Sample Output
AXCDAX XDCAXA	LCS length 4

LCS XCXA

Problem 3: Subset sum problem

Find whether a given integer X is a sum of any subset of a given array $A = \{a_1,...,a_n\}$.

- I. Write a recurrence equation for the given problem.
- J. Determine whether X is a sum of any subset of A using naive recursion
- K. Determine whether X is a sum of any subset of A using the tabulation method. If yes, then print the subset.
- L. Compare the runtime of the naive solution vs the tabulation method solution.

Sample Input	
n	Sample Output
a_1,, a_n	Jampie Julput
Х	
5	15 is a subset sum
17 /1 6 5 8	5 + 6 + 4 = 15
15	3 1 0 1 4 - 13