## Differentialgleichungen mit getrennten Veränderlichen

Stets in diesem Paragraphen: I, J seien Intervalle in  $\mathbb{R}, f: I \to \mathbb{R}, g: J \to \mathbb{R}$  stetig,  $x_0 \in I, y_0 \in J$ .

Wir betrachten: (i) y' = g(y)f(x), Differentialgleichung mit getrennten Veränderlichen und das zugehörige AWP (ii)  $\begin{cases} y' = g(y)f(x) \\ y(x_0) = y_0 \end{cases}$ 

## Satz 8.1 (AWP mit getrennten Veränderlichen)

Sei  $y_0 \in J^0$  und  $g(y) \neq 0 \ \forall y \in J$ . Dann esistiert ein Intervall  $I_{x_0} \in I$  und  $x_0 \in I_{x_0}$  und es gilt:

- (1) Das AWP (ii) hat eine Lösung  $y: I_{x_0} \to \mathbb{R}$
- (2) Die Lösung aus (1) erhält man durch Auflösen der Gl

$$\int_{y_0}^{y(x)} \frac{\mathrm{d}t}{g(t)} = \int_{x_0}^{x} f(t) \mathrm{d}t \quad \text{nach } y(x)$$

- (3) Ist  $U \subseteq I$  ein Intervall und  $u: U \to \mathbb{R}$  eine Lösung des AWPs,  $x_0 \in U, \implies U \subseteq I_{x_0}$  und u = y auf U.
- (4) Das AWP (ii) ist eindeutig lösbar.

## Beweis

- (4) folgt aus (3)
  - Definiere  $G: J \to \mathbb{R}$  durch  $G(y) := \int_{y_0}^y \frac{dt}{g(t)}$ , G ist stetig db,  $G' = \frac{1}{g}$  auf J und  $G(y_0) = 0$ . g stetig,  $g(y) \neq 0 \ \forall y \in J \implies G' > 0$  auf J oder G' < 0 auf  $J \implies \exists G^{-1}: G(J) \to J$ , K := G(J), K ist ein Intervall,  $0 \in K$ ,  $y_0 \in J^0 \implies 0 \in K^0 \implies \exists \varepsilon > 0 : (-\varepsilon, \varepsilon) \subseteq K$  Definiere  $F: I \to \mathbb{R}$  durch  $F(x) := \int_{x_0}^x f(t) dt$ ; F ist stetig db, F' = f,  $F(x_0) = 0$ . F stetig in  $x_0 \implies \exists \delta > 0 : |F(x) F(x_0)| = |F(x)| < \varepsilon \ \forall x \in U_{\delta}(x_0) \cap I$

 $M_0$  ist ein Intervall,  $x_0 \in M_0$ ,  $M_0 \subseteq I$ ,  $F(M_0) \subseteq K$   $\mathfrak{M} := \{M \subseteq I : M \text{ ist ein Intervall, } x_0 \in M, F(M) \subseteq K\}, M_0 \in \mathfrak{M} \neq \emptyset; I_{x_0} := \bigcup_{M \in \mathfrak{M}} M \implies I_{x_0} \in \mathfrak{M}$ Definiere  $y : I_{x_0} \to \mathbb{R}$  durch  $y(x) := G^{-1}(F(x))$ . y ist stetig db auf  $I_{x_0}$ ,  $y(x_0) = G^{-1}(F(x_0)) = G^{-1}(0) = y_0; \forall x \in I_{x_0} : G(y(x)) = F(x) \implies (2) \text{ und (Diff)} : G'(y(x)) y'(x) = G'(y(x)) = G'(y(x))$ 

$$F'(x) = f(x) \implies y'(x) = g(y(x))f(x) \ \forall x \in I_{x_0} \implies (1)$$

(3) Sei  $u: U \to \mathbb{R}$  eine Lösung des AWPs,  $U \subseteq I$ .  $u(x_0) = y_0$  und  $u'(t) = g(u(t))f(t) \ \forall t \in U \implies f(t) = \frac{u'(t)}{g(u(t))} \ \forall t \in U, \ u(U) \subseteq J$ 

Subst: 
$$\forall x \in U : F(X) = \int_{x_0}^x f(t) dt = \int_{x_0}^x \frac{u'(t)}{g(u(t))} dt = \begin{cases} s = u(t) \\ s = u'(t) dt \end{cases} = \int_{y_0}^{u(x)} \frac{ds}{g(s)} = G(u(x)) \text{ Also:}$$
$$ds = u'(t) dt$$
$$F(x) = G(u(x)) \ \forall x \in U). \ x \in U \implies u(x) \in J \implies G(u(x)) \in G(J) = K \implies F(x) \in K \implies F(U) \subseteq K \implies U \in \mathfrak{M} \implies U \subseteq I_{x_0}.$$
$$F(x) = G(u(x)) \ \forall x \in U \implies u(x) = G^{-1}(F(x)) = y(x) \ \forall x \in U$$

**Der Fall**  $G(y_0) = 0$ .  $y(x) = y_0$  ist eine Lösung des AWPs.

## Beispiel

Untersuchung des AWPs:

$$AWP: \begin{cases} y' = \sqrt{|y|} \\ y(0) = 0 \end{cases} \quad (I = J = \mathbb{R})$$

 $y_1(x)=0$ ist eine Lösung des AWPs  $y_2(x)=\frac{x^2}{4} \text{ ist eine Lösung des AWPs auf } [0,\infty)$ 

$$y_3(x) = \begin{cases} \frac{x^2}{4} & x > 0\\ 0 & x \le 0 \end{cases}$$

ist eine Lösung des AWPs auf  $\mathbb{R}$ . Mehrdeutige Lösbarkeit, da nicht gilt:  $g(y) \neq 0$  auf J.

**Verfahren für die Praxis:** Trennung der Veränderlichen (TDV): Schreibe (i) in der Form:  $\frac{dy}{dx} = f(x)g(y)$ . TDV:  $\frac{dy}{g(y)} = f(x)dx \implies (iii) \int \frac{dy}{g(y)} = \int f(x)dx + c \ (c \in \mathbb{R})$ 

Die allgemeine Lösung von (i) erhält man durch Auflösen von (iii) in der Form y = y(x; c). Die Lösung von (ii) erhält man, indem man c der Bedingung  $y(x_0) = y_0$  anpasst.

Beispiele:

Allgemeine Lösung von (\*) 
$$y(x) = y^2$$
).  $\frac{dy}{dx} = -2xy^2$   
TDV:  $\frac{dy}{y^2} = -2xdx \implies \int \frac{dy}{y^2} = \int (-2x)dx + c \implies -\frac{1}{y} = -x^2 + c \implies y = \frac{1}{-c+x^2}$ . Allgemeine Lösung von (\*)  $y(x) = \frac{1}{x^2-c}$   $(c \in \mathbb{R})$ 

(1.1)

AWP: 
$$\begin{cases} (*) \\ y(0) = -1 \end{cases}$$

 $-1=y(0)=-\frac{1}{c}\implies c=1\implies$ Lösung des AWPs:  $y(x)=\frac{1}{x^2-1}$  auf (-1,1)  $(=I_{x_0})$ 

(1.2)

AWP: 
$$\begin{cases} (*) \\ y(0) = 1 \end{cases}$$

 $1 = y(0) = -\frac{1}{c} \implies c = -1 \implies$  Lösung des AWPs:  $y(x) = \frac{1}{x^2 + 1}$  auf  $\mathbb{R}$   $(= I_{x_0})$ 

AWP: 
$$\begin{cases} (*) \\ y(0) = 0 \end{cases}$$

 $0=y(0)=-\frac{1}{c} \implies$  AWP hat die Lösung  $y\equiv 0,$ allerdings ist das Verfahren hier nicht anwendbar.

Dgl: 
$$y' = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2} \implies \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} \implies \int \frac{y^2}{1+y} \mathrm{d}y = \int \frac{x^2}{1-x} \mathrm{d}x + \epsilon \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} + \epsilon \frac{y^2}{1+y} + \epsilon \frac{y^2}{1+y$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2} \implies \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} \implies \int \frac{y^2}{1+y} \mathrm{d}y = \int \frac{x^2}{1-x} \mathrm{d}x + c$  Nachrechnen:  $\frac{y^2}{2} - y + \log(1+y) = -\frac{x^2}{2} - x - \log(1-x) + c \text{ (Lösungen in impliziter Form)}.$