ACH 2147 — Desenvolvimento de Sistemas de Informação Distribuídos

Aula 18: Nomeação (parte 2)

Prof. Renan Alves

Escola de Artes, Ciências e Humanidades — EACH — USP

10/05/2024

Na aula passada...

- Nome, ponto de acesso, endereço, identificador
- Resolução de nomes em nomeação plana

Nomeação Estruturada: Espaço de Nomes

Grafo de Nomeação

Um grafo no qual um nó folha representa uma entidade (nomeada). Um nó de diretório é uma entidade que se refere a outros nós.

Um grafo de nomeação geral com um único nó raiz

Observação

- Caminhos podem ser absolutos ou relativos
- Um nó diretório contém uma tabela de pares (id de nó, rótulo de aresta)

Espaços de Nomes 10/05/2024 3

Espaço de Nomes

Podemos armazenar diversos os tipos de atributos em um nó

- Tipo da entidade
- Um identificador para essa entidade
- Endereço do local da entidade
- Apelidos
- ..

Espaços de Nomes 10/05/2024 4 / 2

Espaço de Nomes

Podemos armazenar diversos os tipos de atributos em um nó

- Tipo da entidade
- Um identificador para essa entidade
- Endereço do local da entidade
- Apelidos
- ...

Nota

Os nós de diretório também podem ter atributos, além de apenas armazenar uma tabela de diretório com pares (identificador, rótulo).

Espaços de Nomes 10/05/2024

Resolução de Nomes

Problema

Para resolver um nome, precisamos de um nó de diretório. Como encontramos esse nó (inicial)?

Nomeação Struturada Nomeação Estruturada

Resolução de Nomes

Problema

Para resolver um nome, precisamos de um nó de diretório. Como encontramos esse nó (inicial)?

Mecanismo de fechamento (closure): mecanismo para selecionar o contexto implícito a partir do qual iniciar a resolução de nomes

- www.distributed-systems.net: começa a resolução em um servidor de nomes de DNS
- /home/maarten/mbox: começa no servidor de arquivos NFS local (pesquisa recursiva possível)
- 0031 20 598 7784: discar um número de telefone
- 77.167.55.6: encaminhar uma mensagem para um endereço IP específico

Vinculação de Nomes

Link permanente (hard link)

É o que até agora estávamos chamando de um caminho: um nome que é resolvido seguindo um caminho específico em um grafo de nomeação, indo de um nó para outro.

Link simbólico: Permite que um nó *N* contenha um nome de outro nó

- Primeiro, resolva o nome de N (levando a N)
- Leia o conteúdo de N, resultando em nome
- A resolução de nome continua com nome

Vinculação de Nomes

Link permanente (hard link)

É o que até agora estávamos chamando de um caminho: um nome que é resolvido seguindo um caminho específico em um grafo de nomeação, indo de um nó para outro.

Link simbólico: Permite que um nó N contenha um nome de outro nó

- Primeiro, resolva o nome de N (levando a N)
- Leia o conteúdo de N, resultando em nome
- A resolução de nome continua com nome

Observações

- O processo de resolução de nome determina que lemos o conteúdo de um nó, em particular, o nome do outro nó para o qual precisamos ir.
- De uma forma ou de outra, sabemos onde e como iniciar a resolução de nome dada nome

Vinculação de Nomes

Exemplo de hard link:

(mesma figura mostrada antes)

Vinculação de Nomes

Exemplo de link simbólico em um grafo de nomeação:

Observação

O nó n5 tem apenas um nome.

Montagem

Problema

A resolução de nomes também pode ser usada para mesclar diferentes espaços de nomes de forma transparente através da montagem: associando um identificador de um nó de outro espaço de nomes com um nó em um espaço de nomes atual.

Terminologia

- Espaço de nomes estrangeiro: o espaço de nomes que precisa ser acessado
- Ponto de montar (mount point): o nó no espaço de nomes atual contendo o identificador de nó do espaço de nomes estrangeiro
- Ponto de montagem (mounting point): o nó no espaço de nomes estrangeiro onde continuar a resolução de nomes

Montagem através da rede

- 1. O nome de um protocolo de acesso.
- 2. O nome do servidor.
- 3. O nome do ponto de montagem no espaço de nomes estrangeiro.

Nomeação Struturada Nomeação Estruturada

Montagem em sistemas distribuídos

Montagem de espaços de nomes remotos através de um protocolo de acesso específico

Implementação de Espaço de Nomes

Questão básica

Distribuir o processo de resolução de nomes, bem como o gerenciamento de espaço de nomes, em várias máquinas (servidores de nomes), através da distribuição dos nós do grafo de nomeação.

Implementação de Espaço de Nomes

Questão básica

Distribuir o processo de resolução de nomes, bem como o gerenciamento de espaço de nomes, em várias máquinas (servidores de nomes), através da distribuição dos nós do grafo de nomeação.

Distinguir três níveis

Implementação de Espaço de Nomes

Questão básica

Distribuir o processo de resolução de nomes, bem como o gerenciamento de espaço de nomes, em várias máquinas (servidores de nomes), através da distribuição dos nós do grafo de nomeação.

Distinguir três níveis

 Nível global: Consiste nos nós de diretório de alto nível. O principal aspecto é que esses nós de diretório devem ser gerenciados conjuntamente por diferentes administrações.

Implementação de Espaço de Nomes

Questão básica

Distribuir o processo de resolução de nomes, bem como o gerenciamento de espaço de nomes, em várias máquinas (servidores de nomes), através da distribuição dos nós do grafo de nomeação.

Distinguir três níveis

- Nível global: Consiste nos nós de diretório de alto nível. O principal aspecto é que esses nós de diretório devem ser gerenciados conjuntamente por diferentes administrações.
- Nível administrativo: Contém nós de diretório de nível médio que podem ser agrupados de tal forma que cada grupo pode ser atribuído a uma administração separada.

Implementação de Espaço de Nomes

Questão básica

Distribuir o processo de resolução de nomes, bem como o gerenciamento de espaço de nomes, em várias máquinas (servidores de nomes), através da distribuição dos nós do grafo de nomeação.

Distinguir três níveis

- Nível global: Consiste nos nós de diretório de alto nível. O principal aspecto é que esses nós de diretório devem ser gerenciados conjuntamente por diferentes administrações.
- Nível administrativo: Contém nós de diretório de nível médio que podem ser agrupados de tal forma que cada grupo pode ser atribuído a uma administração separada.
- Nível gerencial: Consiste em nós de diretório de baixo nível dentro de uma única administração. A questão principal é mapear efetivamente nós de diretório para servidores de nomes locais.

Implementação de Espaço de Nomes

Um exemplo do espaço de nomes de DNS, incluindo arquivos de rede

Nomeação Struturada Nomeação Estruturada

Implementação de Espaço de Nomes

Uma comparação entre servidores de nomes para implementar nós em um espaço de nomes

Item	Global	Administrativo	Gerencial	
1	Mundial	Organização Departamen		
2	Poucos	Muitos	Números vastos	
3	Segundos	Milissegundos	Imediato	
4	Preguiçoso	Imediato	Imediato	
5	Muitos	Nenhum ou poucos	Nenhum	
6	Sim	Sim	Às vezes	
1: Escala geográfica		4: Propagação de atualizações		
2: # Nós		5: # Réplicas		
3: Responsividade		6: Deve ter cache do lado do cliente?		

Resolução de Nomes

- O cliente tem um resolvedor de nomes, incumbido de realizar o procedimento
- Resolução iterativa e resolução recursiva
- Exemplo de caminho: root:[nl, vu, cs, ftp, pub, globe, index.html]
- Equivale ao URL ftp://ftp.cs.vu.nl/pub/globe/index.html

Resolução de Nomes Iterativa

Princípio

- resolve(dir,[name₁,...,name_K]) enviado para Servidor₀ responsável por dir
- 2. $Servidor_0$ resolve $resolve(dir, name_1) \rightarrow dir_1$, retornando a identificação (endereço) de $Servidor_1$, que armazena dir_1 .
- 3. O cliente envia $resolve(dir_1, [name_2, ..., name_K])$ para $Servidor_1$, etc.

Resolução de Nomes Recursiva

Princípio

- resolve(dir,[name₁,...,name_K]) enviado para Servidor₀ responsável por dir
- 2. $Servidor_0$ resolve $resolve(dir, name_1) \rightarrow dir_1$, e envia $resolve(dir_1, [name_2, ..., name_K])$ para $Servidor_1$, que armazena dir_1 .
- 3. Servidor₀ aguarda o resultado de Servidor₁, e o retorna para o cliente.

Armazenamento em Cache na Resolução de Nomes Recursiva

Server	Should	Looks up	Passes to	Receives	Returns
for node	resolve		child	and caches	to requester
CS	[ftp]	#[ftp]	_	_	#[ftp]
vu	[cs, ftp]	#[cs]	[ftp]	#[ftp]	#[cs] #[cs, ftp]
nl	[vu, cs, ftp]	#[vu]	[cs, ftp]	#[cs] #[cs, ftp]	#[vu] #[vu, cs] #[vu, cs, ftp]
root	[nl, vu, cs, ftp]	#[nl]	[vu, cs, ftp]	#[vu] #[vu, cs] #[vu, cs, ftp]	#[nl] #[nl, vu] #[nl, vu, cs] #[nl, vu, cs, ftp]

Explorando localidade na Resolução de Nomes Recursiva

Precisamos garantir que o processo de resolução de nomes escale por grandes distâncias geográficas

Problema

Ao mapear os nós para servidores que podem estar localizados em qualquer lugar, introduzimos uma dependência de localização implícita.

Questões de Escalabilidade

Escalabilidade de tamanho

Precisamos garantir que os servidores possam lidar com um grande número de solicitações por unidade de tempo \Rightarrow os servidores de alto nível estão em apuros.

Questões de Escalabilidade

Escalabilidade de tamanho

Precisamos garantir que os servidores possam lidar com um grande número de solicitações por unidade de tempo \Rightarrow os servidores de alto nível estão em apuros.

Solução

Assumir (pelo menos no nível global e administrativo) que o conteúdo dos nós raramente muda. Assim, podemos aplicar replicação extensamente, mapeando nós para vários servidores e iniciar a resolução de nomes no servidor mais próximo.

Questões de Escalabilidade

Escalabilidade de tamanho

Precisamos garantir que os servidores possam lidar com um grande número de solicitações por unidade de tempo \Rightarrow os servidores de alto nível estão em apuros.

Solução

Assumir (pelo menos no nível global e administrativo) que o conteúdo dos nós raramente muda. Assim, podemos aplicar replicação extensamente, mapeando nós para vários servidores e iniciar a resolução de nomes no servidor mais próximo.

Observação

Um atributo importante de muitos nós é o endereço onde a entidade representada pode ser contatada. Replicar nós torna os servidores de nome tradicionais em larga escala inadequados para localizar entidades móveis.

DNS

Essência

- Espaço de nomes organizado hierarquicamente, com cada nó tendo exatamente uma aresta de entrada

 rótulo de aresta = rótulo de nó.
- domínio: uma subárvore
- nome de domínio: um caminho até o nó raiz de um domínio.

Informações em um nó

Tipo	Referente a	Descrição
SOA	Zona	Mantém informações sobre a zona representada
Α	Host	Endereço IP do host que este nó representa
MX	Domínio	Servidor de email para manipular emails para este nó
SRV	Domínio	Servidor que manipula um serviço específico
NS	Zona	Servidor de nomes para a zona representada
CNAME	Nó	Link simbólico
PTR	Host	Nome canônico de um host
HINFO	Host	Informações sobre este host
TXT	Qualquer tipo	Qualquer informação considerada útil

DNS Moderno

A organização tradicional da implementação do DNS

A organização moderna do DNS

DNS Seguro

Abordagem básica

Registros de recursos do mesmo tipo são agrupados em um conjunto assinado, por zona. Exemplos:

- Um conjunto com todos os endereços IPv4 de uma zona
- Um conjunto com todos os endereços IPv6 de uma zona
- Um conjunto com os servidores de nomes de uma zona

A chave pública (ZSK) associada à chave privada (SZK) usada para assinar um conjunto de registros de recursos é adicionada a uma zona, chamada chave de assinatura de zona.

Confiando nas assinaturas

- Todas as chaves de assinatura de zona são agrupadas novamente em um conjunto separado, que é assinado usando outra chave secreta. A chave pública deste último é a chave de assinatura de chaves (SKK).
- O hash da chave de assinatura de chaves é armazenado e assinado pelo nó pai

DNS Seguro

Construindo uma cadeia de confiança

- Considere um único conjunto de registros de recursos RR, hasheado com HZ_k e assinado com SKZ_k
- SZK_k tem chave pública associada ZSK_k
- (Conjunto de) ZSK_k é hasheado com HK_k e assinado com SKK_k
- SKK_k tem chave pública associada KSK_k

Um cliente pode verificar a assinatura SKZ₂(HZ₂(RR)) calculando

$$ZSK_2(SKZ_2(HZ_2(RR))) \stackrel{?}{=} HZ_2(RR)$$

Nomeção no Network File System (NFS)

Observação

Um servidor pode exportar (uma parte de) seu sistema de arquivos, que por sua vez podem ser importados por clientes diferentes (montagem). Note que clientes diferentes terão namespaces (não compartilhados) diferentes!

Montando diretórios aninhados

