

GAMES 102在线课程

几何建模与处理基础

刘利刚

中国科学技术大学

GAMES 102在线课程:几何建模与处理基础

参数曲线

回顾

- 一元(单变量)函数 $f: R^1 \to R^1$ y = f(x)
- 一元函数的数据拟合的方法
 - 到哪找?
 - 确定某个函数集合("池子")、具有某种结构容易表达(比如线性函数空间),且尽量广泛(表达能力强)
 - 找哪个?
 - 度量哪个函数是好的/"最好"的,定义损失函数,包括数据误差项(逼近数据的度量)与正则项(对函数性质的度量)
 - 怎么找?
 - 优化求解:不同的优化方法与技巧
 - 线性问题: 解线性方程或线性方程组
 - 非线性问题:
 - 凸问题: 有理论保证
 - 非凸问题:难!数值求解(梯度下降法、牛顿法、拟牛顿法、L-BFGS,...) 须选择合适初值、步长等:一般要根据具体的优化问题形式及特点来设计合适的优化方法!

多元函数

多元函数 (多变量)

• 多个变量的函数 $f: \mathbb{R}^n \to \mathbb{R}^1$ $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to y$ $y = f(x_1, x_2, ..., x_n)$

• 例子: 二元函数
$$z = f(x,y), (x,y) \in [0,1] \times [0,1]$$

二元函数的基函数构造

- 方法: 张量积形式,即用两个一元函数的基函数的相互乘积来定义
- 比如:二次二元多项式函数z = f(x,y)的基函数 $\{1, x, y, x^2, xy, y^2\}$

	1	x	x^2
1	1	х	x ²
У	у	xy	x^2y
y^2	y ²	xy^2	x^2y^2

三次张量积多项式

	1	и	u^2	u ³
1	1	u	u^2	u^3
v	v	vu	vu²	vu^3
v^2	v^2	v²u	v^2u^2	v^2u^3
v^3	v ³	v³u	v^3u^2	v^3u^3

三次张量积函数

张量积基函数

	$b_1(u)$	$b_2(u)$	$b_3(u)$	<i>b</i> ₄ (<i>u</i>)
$b_1(v)$	$b_{1}(v)b_{1}(u)$	$b_{1}(v)b_{2}(u)$	$b_1(v)b_3(u)$	$b_1(v)b_4(u)$
$b_2(v)$	$b_{2}(v)b_{1}(u)$	$b_2(v)b_2(u)$	$b_2(v)b_3(u)$	$b_{2}(v)b_{4}(u)$
$b_3(v)$	$b_3(v)b_1(u)$	$b_3(v)b_2(u)$	$b_3(v)b_3(u)$	$b_3(v)b_4(u)$
$b_{4}(v)$	$b_{4}(v)b_{1}(u)$	$b_4(v)b_2(u)$	$b_4(v)b_3(u)$	$b_{4}(v)b_{4}(u)$

多元函数的张量积定义

- 优点: 定义简单, 多个一元基函数的乘积形式
- 不足:
 - 随着维数增加,基函数个数急剧增加,导致变量技据增加(求解系统规模急剧增加,求解代价大)

	1	x	x^2
1	1	x	x ²
y	у	xy	x^2y
y ²	y ²	xy^2	x^2y^2

多元函数的神经网络表达 $f:\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to y$

• 用一个单变量函数 $\sigma(x)$ (称为激活函数)的不同仿射变换来构造"基函数":基函数数目可控

向量值函数

向量值函数 (多个应变量)

• 先看单变量的: $f: R^1 \to R^m$ $x \to \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$

- 看成多个单变量函数,各个函数独立无关
 - 一般会用同样的基函数 (共享基函数)

$$\begin{cases} y_1 = f_1(x) \\ \vdots \\ y_m = f_m(x) \end{cases}$$

向量值函数 (多个应变量)

$$f: R^1 \to R^m$$

$$\begin{cases} y_1 = f_1(x) \\ \vdots \\ y_m = f_m(x) \end{cases}$$

- 几何解释:
 - 一个实数 $x \in R^1$ 映射到m维空间 R^m 的一个点,轨迹构成 R^m 的一条"曲线"
 - 本质维度为1

特例: 平面参数曲线

$$f: R^1 \to R^2 \qquad \begin{cases} x = x(t) \\ y = y(t) \end{cases} \qquad t \in [0,1]$$

- 几何解释:
 - 一条曲线由一个变量参数t决定, 也称为单参数曲线
 - •参数t可看成该曲线的"时间"变量
 - 可灵活表达非函数型的曲线(任意曲线)

特例: 空间参数曲线

$$f: R^1 \to R^3 \qquad \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \qquad t \in [0,1]$$

- 几何解释:
 - 一条曲线由一个变量参数t决定, 也称为单参数曲线
 - •参数t可看成该曲线的"时间"变量
 - 可灵活表达非函数型的曲线(任意曲线)

特例: 参数曲面

$$f: R^2 \to R^3 \qquad \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases} \quad (u, v) \in [0, 1] \times [0, 1]$$

- 几何解释:
 - 一张曲面由两个参数(*u*, *v*)决定, 也称为双参数曲面
 - 可灵活表达非函数型的任意曲面

特例: 二维映射

$$f: R^2 \to R^2$$

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases} (u, v) \in [0,1] \times [0,1]$$

- 几何解释:
 - 二维区域之间的映射
 - 可看成特殊的曲面 (第三个维度始终为0)
 - 应用: 图像变形

特例: 二维映射

$$f: R^3 \to R^3 \qquad \begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \\ z = z(u, v, w) \end{cases} \qquad (u, v, w) \in [0,1]^3$$

- 几何解释:
 - 三维体区域之间的映射
 - 应用: 体形变、体参数化

特例: 降维映射 (低维投影)

- 降维映射一般有信息丢失
 - 丢失的信息大部分情况下不可逆, 即无法恢复

一般映射

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

- 如果n < m,为低维到高维的映射(高维的超曲面,n维流形曲面),本征维度为n
- 如果n > m,为降维映射
 - 一般信息有损失
 - 如果 R^n 中的点集刚好位于一个m 维(或小于m)的流形上,则映射可能是无损的,即可以被恢复的

低维空间之间的函数

	Output: 1D	Output: 2D	Output: 3D
Input: 1D	$ \begin{bmatrix} t & f(t) \\ \hline u & \\ Function graph \end{bmatrix} $	Plane curve	Space curve
Input: 2D		Plane warp	Surface
Input: 3D			Space warp

曲线拟合

曲线拟合问题

- 输入: 给定平面上系列点 (x_i, y_i) , i = 1, 2, ..., n
- 输出: 一条参数曲线, 拟合这些点

$$f: R^1 \to R^2 \qquad \begin{cases} x = x(t) \\ y = y(t) \end{cases} \qquad t \in [0,1]$$

应该怎么做?

曲线拟合问题

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in [0,1]$$

矢量符号化表达:

• 问题: 对数据点
$$(x_i, y_i)$$
, 对应哪个参数 t_i ?

• 误差度量: $E = \sum_{i=1}^n \left\| \begin{pmatrix} x(t_i) \\ y(t_i) \end{pmatrix} - \begin{pmatrix} x_i \\ y_i \end{pmatrix} \right\|^2 = \sum_{i=1}^n \| \boldsymbol{p}(t_i) - \boldsymbol{p}_i \|^2$

参数化问题

• 求数据点所对应的参数: 一个降维的问题!

• 然后极小化误差度量: $E = \sum_{i=1}^{n} || p(t_i) - p_i ||^2$

点列的参数化

- Equidistant (uniform) parameterization
 - $t_{i+1} t_i = \text{const}$
 - e.g. $t_i = i$
 - Geometry of the data points is not considered
- Chordal parameterization
 - $t_{i+1} t_i = ||\mathbf{k}_{i+1} \mathbf{k}_i||$
 - Parameter intervals proportional to the distances of neighbored control points

点列的参数化.

Centripetal parameterization

•
$$t_{i+1} - t_i = \sqrt{\|\mathbf{k}_{i+1} - \mathbf{k}_i\|}$$

- Foley parameterization
 - Involvement of angles in the control polygon

$$\begin{array}{l} \bullet \ t_{i+1} - t_i = \| \pmb{k}_{i+1} - \pmb{k}_i \| \cdot \left(1 + \frac{3}{2} \frac{\widehat{\alpha}_i \| \pmb{k}_i - \pmb{k}_{i-1} \|}{\| \pmb{k}_i - \pmb{k}_{i-1} \| + \| \pmb{k}_{i+1} - \pmb{k}_i \|} + \frac{3}{2} \frac{\widehat{\alpha}_{i+1} \| \pmb{k}_{i+1} - \pmb{k}_i \|}{\| \pmb{k}_{i+1} - \pmb{k}_i \| + \| \pmb{k}_{i+2} - \pmb{k}_{i+1} \|} \right) \\ \bullet \ \text{with } \widehat{\alpha}_i = \min \left(\pi - \alpha_i, \frac{\pi}{2} \right) \end{array}$$

- and $\alpha_i = \operatorname{angle}(k_{i-1}, k_i, k_{i+1})$

• Examples: Uniform parameterization

• Examples: Chordal parameterization

• Examples: Centripetal parameterization

• Examples: Foley parameterization

另一个例子

点的参数化对曲线拟合的影响很大,需要好的参数化!

曲面参数化

• 三维的点找二维的参数: 一个降维的问题!

曲面参数化的应用

• 地图绘制 (地理学)

曲面参数化的应用

• 纹理映射

作业2情况

- 作业2情况
 - 演示优秀demo
 - 优秀代码和优秀报告
- 其他学员可以继续完成提交
 - 可参照优秀作业尽快完成, 赶上大部队

作业3

- 任务
 - 使用单参数曲线来拟合平面上任意有序点列
- 目的
 - 学习参数曲线拟合
 - 使用各种参数化方法, 并进行比较
- 要求
 - 可以使用其他语言(Matlab, Python等)或其他框架
- Deadline: 2020年10月31日晚

谢 谢!