Дискретное логарифмирование в конечном поле

Лабораторная работа №7

Шутенко Виктория

17 сентября 2023

Российский университет дружбы народов, Москва, Россия

Информация ______

Докладчик

- Шутенко Виктория михайловна
- студентка Магистратуры
- группы НФИмд-02-23
- Российский университет дружбы народов

Задание лабораторной работы

Задание лабораторной работы

1. Реализовать алгоритм, реализующий p-Метод Полларда для задач дискретного логарифмирования.

реализующего р-метод Полларда для задач дискретного

Реализация алгоритма,

логарифмирования

Реализация алгоритма, реализующего р-метод Полларда для задач дискретного логариф-

мирования

```
def po method(a: int. b: int. p: int):
 print(f''\setminus n\{a\}^{(x)} = \{b\} \mod \{p\}'')
 print('|\tc\t|\tlog c\t|\td\t|\tlog d\t|')
 print("----")
 u = np.random.randint(4)
 v = np.random.randint(4)
 r = order(a, p)
c = mod(np.power(a, u) * np.power(b, v), p)
 d = c
 u c, u d = u, u
 v c, v d = v, v
print(f'|\{c\}\{t\}\{u,c\}+\{v,c\}x\{t\}\{t\}\{d\}\{t\}\{u,d\}+\{v,d\}x\{t\}\})
 def f(x, u x, v x):
             if x < r:
                         return mod(a*x, p), u \times + 1, v \times
                         return mod(b*x, p), u \times v \times + 1
 c, u_c, v_c = f(c, u_c, v_c)
 tmp d = f(d, u d, v d)
d. u d. v d = f(tmp d[0], tmp d[1], tmp d[2])
while mod(c, p) != mod(d, p):
            print(f'|\{t\}) = print(f'|\{t\}
             c. u c. v c = f(c. u c. v c)
             tmp d = f(d, u d, v d)
            d, u_d, v_d = f(tmp_d[0], tmp_d[1], tmp_d[2])
print(f'|\{c\}\{t\}\{u,c\}+\{v,c\}x\{t\}\{d\}\{t\}\{u,d\}+\{v,d\}x\{t\}\})
 print("-----")
 x = 1
 # print(v c - v d, u d - u c)
 while mod((v_c - v_d)*x, r) != mod(u_d - u_c, r):
```

Результаты

Результаты

ifname == main()	main":
10^(x) = 64 mod	107

$10^{(x)} = 64 \text{ mod}$	107	
-----------------------------	-----	--

1	С	log c	1	d	1	log d
1	100	2+0×	1	100		2+0×
İ	87	2+1x	İ	4	Ì	2+2x
İ	4	2+2x	İ	79	j	4+2x
İ	40	3+2x	İ	56	Ĺ	5+3x
i	79	4+2×	İ	75	j	5+5×
i	27	4+3x	İ	3	j	5+7×
İ	56	5+3x	İ	86	İ	7+7×
i	53	5+4×	İ	42	i	8+8×
i	75	5+5x	İ	23	j	9+9×
ĺ	92	5+6x	İ	53	İ	11+9×
i	3	5+7x	İ	92	i	11+11×
i	30	6+7×	İ	30	i	12+12×

x = 20

 $10^{(20)} = 64 \mod 107$

 $2^(x) = 1 \mod 15$

	С	I	log c		d	I	log d	
	1 2 4		0+3x 1+3x 2+3x		1 4 4		0+3x 2+3x 2+5x	

x = 2

 $2^{(2)} = 1 \mod 15$

1. Реализован алгоритм, реализующий р-метод Полларда для задач дискретного логарифмирования.