Live Session (Basics of Speech Production)

Lecture 5a

Instructor: Preethi Jyothi, IITB

Cascaded ASR Systems: Putting it all together

- A: speech utterance
- O_A : acoustic features corresponding to the utterance A

$$W^* = \underset{W}{\operatorname{arg\,max}} \Pr(O_A|W) \Pr(W)$$

- Return the word sequence that jointly assigns the highest probability to O_A
- How do we estimate $Pr(O_A|W)$ and Pr(W)?
- How do we decode?

Acoustic Model

$$W^* = \underset{W}{\operatorname{arg\,max}} \Pr(O_A|W) \Pr(W)$$

$$\Pr(O_A|W) = \sum_{Q} \Pr(O_A, Q|W)$$

$$= \sum_{Q} \prod_{t=0}^{T} \Pr(O_t|O_1^{t-1}, q_1^t, w_1^N) \Pr(q_t|q_1^{t-1}, w_1^N)$$

 $q_1^T, w_1^N t=1$

First-order HMM assumptions

$$\approx \sum_{\substack{q_1^T, w_1^N \ t=1}} \Pr(O_t|q_t, w_1^N) \Pr(q_t|q_{t-1}, w_1^N)$$

Viterbi approximation

$$\approx \max_{q_1^T, w_1^N} \prod_{t=1}^{T} \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N)$$

Acoustic Model

Transition probabilities

$$\Pr(O_A|W) = \max_{q_1^T, w_1^N} \prod_{t=1}^T \Pr(O_t|q_t, w_1^N) \Pr(q_t|q_{t-1}, w_1^N)$$

Emission probabilities

Modeled using a mixture of Gaussians

$$\Pr(O_t|q_t) = \sum_{m=1}^{M} c_{qm} \mathcal{N}(O|\mu_{qm}, \Sigma_{qm})$$

Language Model

$$W^* = \underset{W}{\operatorname{arg\,max}} \Pr(O_A|W) \Pr(W)$$

$$\Pr(W) = \Pr(w_1, w_2, \dots, w_N)$$

= $\Pr(w_1) \dots \Pr(w_N | w_{N-m+1}^{N-1})$

m-gram language model

 Further optimized using smoothing and interpolation with lower-order Ngram models

Decoding

$$W^* = \underset{W}{\operatorname{arg\,max}} \Pr(O_A|W) \Pr(W)$$

$$W^* = \underset{w_1^N, N}{\operatorname{arg\,max}} \left\{ \left[\prod_{n=1}^N \Pr(w_n | w_{n-m+1}^{n-1}) \right] \left[\sum_{q_1^T, w_1^N} \prod_{t=1}^T \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N) \right] \right\}$$

$$\overset{\text{Viterbi}}{\approx} \underset{w_1^N, N}{\arg\max} \left\{ \left[\prod_{n=1}^N \Pr(w_n | w_{n-m+1}^{n-1}) \right] \left[\max_{q_1^T, w_1^N} \prod_{t=1}^T \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N) \right] \right\}$$

 Search space still very huge for LVCSR tasks! Use approximate decoding techniques (A* decoding, beam-width decoding, etc.) to visit only promising parts of the search space

How are ASR systems evaluated?

• Word/Phone error rate (ER) uses the Levenshtein distance measure: What are the minimum number of edits (insertions/deletions/substitutions) required to convert W^* to W_{ref} ?

On a test set with *N* instances:

$$ER = \frac{\sum_{j=1}^{N} Ins_j + Del_j + Sub_j}{\sum_{j=1}^{N} \ell_j}$$

Ins_j, Del_j, Sub_j are number of insertions/deletions/substitutions in the jth ASR output ℓ_j is the total number of words/phones in the jth reference

Basics of Speech Production

Speech Production

Schematic representation of the vocal organs

Pronunciation Model

TON.TIP

TON.BODY

GLOTTIS

VELUM

critical/alveolar

mid/uvular

open

closed

mid/alveolar

mid/palatal

critical

closed/alveolar

open

critical/alveolar

open

closed

mid/uvular

P. Jyothi, E. Fosler-Lussier & K. Livescu, IS'12. (Adapted from Livescu & Glass, Interspeech '04)

Speech Production

Schematic representation of the vocal organs

Sound units

- Phones are acoustically distinct units of speech
- Phonemes are abstract linguistic units that impart different meanings in a given language
 - Minimal pair: <u>pan vs. ban</u>
- Allophones are different acoustic realisations of the same phoneme
- Phonetics is the study of speech sounds and how they're produced
- Phonology is the study of patterns of sounds in different languages

Vowels

 Sounds produced with no obstruction to the flow of air through the vocal tract

VOWEL QUADRILATERAL

Vowels at right & left of bullets are rounded & unrounded.

Spectrogram

- Spectrogram is a sequence of spectra stacked together in time, with amplitude of the frequency components expressed as a heat map
- Spectrograms of certain vowels: <u>http://www.phon.ucl.ac.uk/courses/spsci/iss/week5.php</u>
- Praat (http://www.fon.hum.uva.nl/praat/) is a good toolkit to analyse speech signals (plot spectrograms, generate pitch contours, etc.)

Consonants (voicing/place/manner)

 "Consonants are made by restricting or blocking the airflow in some way, and may be voiced or unvoiced." (J&M, Ch. 7)

Voiced/Unvoiced Sounds

- · Sounds made with vocal cords vibrating: voiced
 - E.g. /g/, /d/, etc.
 - All English vowel sounds are voiced
- Sounds made without vocal cord vibration: voiceless
 - E.g. /k/, /t/, etc.

Consonants (voicing/place/manner)

- "Consonants are made by restricting or blocking the airflow in some way, and may be voiced or unvoiced." (J&M, Ch. 7)
- Consonants can be labeled depending on
 - where the constriction is made (place of articulation)
 - how the constriction is made (manner of articulation)

Place of articulation

- Bilabial (both lips)[b],[p],[m], etc.
- Labiodental (with lower lip and upper teeth) [f], [v], etc.
- Interdental (tip of tongue between teeth) [θ] (thought), [δ] (this)

Manner of articulation

- Plosive/Stop (airflow completely blocked followed by a release)
 [p],[g],[t],etc.
- Fricative (constricted airflow)
 [f], [s], [th], etc.
- Affricate (stop + fricative) [ch], [jh], etc.
- Nasal (lowering velum)
 [n], [m], etc.