

Reaction Mechanisms

Three Roles for the Fluoride Ion in Palladium-Catalyzed Hiyama Reactions: Transmetalation of [ArPdFL₂] by Ar'Si(OR)₃**

Christian Amatore,* Laurence Grimaud,* Gaëtan Le Duc, and Anny Jutand*

Abstract: From the kinetic data on the transmetalation/reductive elimination in fluoride-promoted Hiyama reactions, obtained using electrochemical techniques, it has been established that fluoride ions play three roles. F^- reacts with trans- $[ArPdBrL_2]$ ($L=PPh_3$) to form trans- $[ArPdFL_2]$, which reacts with $Ar'Si(OMe)_3$ in the rate-determining transmetalation, whereas trans- $[ArPdBrL_2]$ does not react with $Ar'Si(OMe)_3$. F^- reacts with $Ar'Si(OMe)_3$ to deliver the unreactive silicate $Ar'SiF(OMe)_3^-$, thus leading to two antagonistic kinetic effects. In addition, F^- catalyzes the reductive elimination from intermediate trans- $[ArPdAr'L_2]$.

The palladium-catalyzed Hiyama reactions between arylhalides and arylsilanes Ar'Si [$Si = Si(OR)_3$, $SiRF_2$, SiF_3] are promoted by fluoride ions. They are often performed at high temperatures even with aryl iodides (Scheme 1).^[1,2]

$$ArX + Ar'Si \xrightarrow{Pd cat} ArAr'$$

Scheme 1. Hiyama reactions promoted by fluoride ions.

The postulated mechanism of the Hiyama reaction involving Ar'SiRF2 predicted a transmetalation of [ArPdXL₂] (formed in the oxidative addition of ArX to [Pd⁰L₄]) with the silicate Ar'SiRF₃⁻, thus leading to [ArPdAr'L2] which generates ArAr' and [Pd0L2].[2a] A transition state involving a Pd-F bond was also proposed.[2b] DFT calculations on the model reaction of CH₂=CH-I with CH₂= CH-SiMe₃ in the presence of F⁻ ruled out the participation of a silicate in the transmetalation. They predicted I–F exchange in $CH_2=CH-[PdIL_2]$ ($L=PMe_3$) to give $CH_2=CH-[PdFL_2]$. A coordination of the C=C bond of CH₂=CH-SiMe₃ to the palladium(II) center led to CH₂=CH-[PdF(η²-CH=CH-SiMe₃)L].^[2c] The transmetalation would then occur from the latter in an unimolecular process. A nucleophilic attack of F onto the Si center of the coordinated CH=CH-SiMe₃ in CH₂= CH-[PdI(η^2 -CH=CH-SiMe₃)L] favoring the intramolecular transmetalation was also examined. Those two pathways are

[*] Dr. C. Amatore, Dr. L. Grimaud, Dr. G. Le Duc, Dr. A. Jutand Ecole Normale Supérieure-PSL Research University Département de Chimie, Sorbonne Universités UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR 24 Rue Lhomond, 75231 Paris Cedex 5 (France) E-mail: christian.amatore@ens.fr Anny.Jutand@ens.fr

[**] CNRS, ENS, and UPMC are thanked for financial support.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201400956.

quite unlikely with $Ar'Si(OR)_3$ reagents because of the improbable coordination of the latter onto a palladium(II) center. A mechanism has been proposed for the reaction of the silanols $RSi(OH)Me_2$ with ArI, promoted by F^- , in which a first-order dependence was found for F^- at low concentrations and an inverse-order reaction at high concentrations. The authors proposed two different pathways towards the fluoride-activated disiloxane $[RSi(Me)_2(F)OSi(Me)_2R]^-$ which is involved in a transmetalation with [ArPdI]. [3b]

We recently established that fluoride ions are involved in two kinetically antagonistic effects in Suzuki-Miyaura reactions: F⁻ is required to generate *trans*-[ArPdFL₂] [Eq. (1)]

$$trans$$
-[ArPdXL₂] + F⁻ $\xrightarrow{K_X} trans$ -[ArPdFL₂] + X⁻ (1)

which reacts with $Ar'B(OH)_2$ in the rate-determining transmetalation (Scheme 2). [4a] However, at too high a concentration, F^- inhibits the reaction by competitive formation of the unreactive $Ar'B(OH)_{3-n}F_n^-$ (n=1-3). Moreover, F^- pro-

Scheme 2. Mechanism of the transmetalation/reductive elimination in the Suzuki–Miyaura reaction performed in the presence of nBu_4NF .^[4] rds = rate-determining step.

motes the reductive elimination from *trans*-[ArPdAr'L₂], thus making this reaction faster than the transmetalation, which becomes rate determining (Scheme 2). The rate of the overall reaction performed with *trans*-[ArPdXL₂] is thus controlled by the $[F]^-/[Ar'B(OH)_2]$ ratio.^[4]

We report herein the kinetic and mechanistic data aimed to understand the role of fluoride anions in Hiyama reactions performed with PhSi(OMe)₃ (1). Three roles for F⁻ were discovered, including the transmetalation of [ArPdF(PPh₃)₂] with Ar'Si(OMe)₃.

Fluoride ions react with *trans*-[ArPdX(PPh₃)₂]^[4a] to form *trans*-[ArPdF(PPh₃)₂] [Eq. (1)]. [4a,5] The isolated *trans*-[p-CNC₆H₄-Pd-F(PPh₃)₂] ($\mathbf{2}$)^[4a] (C_0 = 2 mm) was first submitted to a reaction with PhSi(OMe)₃ ($\mathbf{1}$) in DMF at 25 °C. The reaction was performed in the presence of PPh₃ (2 equiv) to afford the stable and thus detectable [Pd⁰(PPh₃)₃] ($\mathbf{5}$). The reaction was monitored by cyclic voltammetry (CV). The reduction peak R₁ of $\mathbf{2}$ (E^p_{R1} = -1.95 V vs SCE, Figure 1a), whose peak current was proportional to its concentration,

Figure 1. Cyclic voltammetry performed in DMF containing nBu₄NBF₄ (0.3 M) in the presence of PPh₃ (4 mM) at a gold disk electrode (d=2 mm) at the scan rate of 0.5 Vs⁻¹, at 25 °C. a) Reduction at R₁ of trans-[p-CNC₆H₄-Pd-F(PPh₃)₂] 2 (2 mm). b) 30 min after addition of PhSi(OMe)₃ (1; $\beta = 30$ equiv versus 2) to 2: reduction of trans-[p-CNC₆H₄-Pd-Ph(PPh₃)₂] (3) at R₂. c) Oxidation at O₁ of [Pd⁰(PPh₃)₃] (5) formed after addition of F ($\alpha = 40$ equiv versus 2) to 3 after 20 min. d) Reduction at R_3 of p-CNC₆H₄-Ph (4) formed together with 5 under the reaction conditions described for Figure 1 c after 22 min. *= Adsorption peak.

progressively disappeared in the presence of $\mathbf{1}$ ([1] = βC_0 , β = 30 equiv), thus leading to the intermediate palladium(II) complex trans-[p-CNC₆H₄-Pd-Ph(PPh₃)₂] (3) characterized by its reduction peak R_2 ($E^p_{R2} = -1.47 \text{ V vs SCE}$) (Figure 1 b). The same complex was formed in our previous work when 2 was reacted with PhB(OH)₂. [4,6] However, the reaction of 2 with 1 was much slower than that of PhB(OH)₂ at identical concentrations.^[4] It is only after addition of nBu_4NF ([F⁻] = αC_0 , $\alpha = 40$ equiv, from a stock solution 1M in THF) that the intermediate complex 3 disappeared and the solution turned to yellow, thus leading to p-CNC₆H₄Ph (4) (99%) and $[Pd^0(PPh_3)_3]$ (5) (96%). The compound 4 was characterized by its reduction peak at -2.0 V (R₃, reversible) and 5 by its oxidation peak at $+0.05 \text{ V } (O_1)$ (Figures 1 c,d).

Their yield was determined from the increase of their respective current after addition of a known amount of the authentic samples 4 and 5.

These results establish for the first time that trans--[ArPdFL₂] undergoes transmetalation with 1 at 25°C as a consequence of the fluorophilicity of the silicon atom (Scheme 3). Moreover, as already proved in our previous work, F ions promote the reductive elimination from the stable trans-[ArPdAr'L₂] (Scheme 3).[4,7]

In contrast to 2, the cyclic voltammetry showed that trans- $[p\text{-CNC}_6\text{H}_4\text{-Pd-Br}(\text{PPh}_3)_2]$ (6; $C_0 = 2 \text{ mM}$ in DMF, characterized by its reduction peak at −1.83 V vs SCE) did not react with 1 (from $\beta = 10$ to 50 equiv versus 6) in the presence of 2 equivalents of PPh₃ at 25 °C. The compounds 4 and 5 were not formed in the presence of F⁻ ($\alpha = 25$ equiv versus 6 for $\beta = 30$) at room temperature (see below). Conversely, a reaction took place at 70°C and it delivered the cross-coupling

$$Ar-Pd-F + Ar'Si(OMe)_{3} \xrightarrow{\text{trans-metalation}} Ar - Pd-Ar' \xrightarrow{\text{reductive elimination}} Ar-Ar' + Pd^{0}L_{3}$$

$$L = PPh_{3} \qquad \qquad Via \qquad Ar-Pd-Fd^{-}F \qquad \qquad Via \qquad Ar-Pd^{-}Fd^{-}L \qquad \qquad Via \qquad Ar-Pd^{-}Hd^{-}L \qquad \qquad Via \qquad Yia \qquad \qquad Via \qquad Ar-Pd^{-}Hd^{-}L \qquad \qquad Via \qquad Yia \qquad \qquad Via \qquad Yia \qquad Yi$$

Scheme 3. Mechanisms of the transmetalation/reductive elimination in the presence of F⁻.

product 4 as well as 5. The role of F⁻ in the reaction shown in Scheme 4 could thus be investigated. With four PPh₃ units per palladium center, those reaction conditions mimicked a Hiyama reaction catalyzed by [Pd⁰(PPh₃)₄].^[1]

Scheme 4. Model reaction.

The kinetics of the formation of 5 was monitored by chronoamperometry at a rotating gold disk electrode polarized at $+0.1 \,\mathrm{V}$ (oxidation potential of 5 in DMF). The increase of the oxidation current of 5 (proportional to its concentration) was recorded with time just after addition of nBu_4NF ($\alpha = 25$ equiv) to a solution containing 6 ($C_0 = 2$ mm), 1 ($\beta = 30$ equiv), and PPh₃ (2 equiv) at 70 °C (Figure 2a). The plot of $\ln x$ versus time was linear (Figure 2b; $x = (i_{\lim} - i_t)/i_{\lim}$ where i_{lim} = final oxidation current of 5; i_t = oxidation current of **5** at time t). The value of k_{obs} , $1.4 \times 10^{-3} \,\text{s}^{-1}$ (DMF, 70°C), was determined from the slope of the linear correlation (Figure 2b). At the end of the reaction, 5 and 4 were formed

Figure 2. Kinetics of the reaction of trans-[p-CNC₆H₄-Pd-Br(PPh₃)₂] (6; $C_0 = 2 \text{ mM}$) with 1 ($\beta = 30 \text{ equiv versus } 6$) in the presence of PPh₃ (2 equiv) and nBu_4NF ($\alpha = 25$ equiv versus 6) in DMF at 70 °C. a) Evolution of the oxidation current of 5 (proportional to its concentration) measured by chronoamperometry at a rotating gold disk electrode (d=2 mm) polarized at +0.1 V vs SCE. b) Variation of $\ln x$ vs time (see text for the definition of x).

Figure 3. Reaction of 6 (2 mm) with 1 in the presence of F^- (α equiv versus 6) and PPh₃ (2 equiv) in DMF at 70°C. a) Plot of the pseudo-first-order rate constant k_{obs} versus F^- (α equiv versus 6) in the presence of 1 (β = 30, 50 and 70 equiv versus 6). b) Plot of k_{obs} versus 1 (β equiv versus 6) in the presence of F^- (α equiv versus 6). c) Plot of k_{obs} vs F^- (α equiv) for the reaction of 1 (β = 30 equiv) with 6 and trans-[p-FC₆H₄-Pd-Br(PPh₃)₂] 6'.

in 97 and 98% yield respectively (see Figure S1a,b in the Supporting Information).

The plots of $k_{\rm obs}$ versus F⁻ concentration (α equiv versus 6) exhibited a maximum regardless of the concentration of 1 (Figure 3a). The dependence of $k_{\rm obs}$ versus the concentrations of F⁻ and 1 revealed that $k_{\rm obs}$ characterized the rate of the transmetalation, which was rate-determining, with a subsequent faster reductive elimination. The plot of $k_{\rm obs}$ versus the concentration of 1 at constant F⁻ concentration also exhibited a maximum (Figure 3b). The fluoride was required to let the transmetalation proceed, but the reaction became slower when the concentration of 1 was too high and greatly exceeded that of F⁻ (Figure 3b). This result means that at an excess of 1, F⁻ is quenched by 1 to form an unreactive species, the aryl silicate [PhSiF(OMe)₃]⁻ [Eq. (2)]. The affinity of F⁻ for silicon centers is indeed well known.^[8]

Therefore, the bell-shaped curves of Figure 3a,b indicate that fluoride ions led to two kinetically antagonistic effects because F^- is involved in two competitive equilibriums (Scheme 5): one delivers the reactive *trans*-[ArPdF(PPh₃)₂] which reacts with Ar'Si(OMe)₃ in the rate-determining transmetalation; the second one delivers the unreactive silicate Ar'SiF(OMe)₃⁻. As for the Suzuki–Miyaura reaction, [4a] for $\beta > 30$ the maximum value of $k_{\rm obs}$ under each of the reaction conditions was observed for $\alpha/\beta = [F^-]/[{\rm PhSi}({\rm OMe})_3]$ values in the range 0.7–0.8, that is, less than unity (see Figure S2 in the Supporting Information). A bell-shaped plot of $k_{\rm obs}$ versus F^- concentration was also observed for another complex 6'

Ar'Si(OMe)₃ + F⁻
$$\stackrel{K_F}{\longleftarrow}$$
 Ar'SiF(OMe)₃ (2) unreactive

$$trans-[ArPdXL_{2}] + F^{-} \xrightarrow{K_{X}} trans-[ArPdFL_{2}] + X^{-} \times k_{lm} \downarrow Ar'Si(OMe)_{3}$$

$$L = PPh_{3} trans Ar - Pd - Ar' \downarrow F^{-} \downarrow L$$

$$ArAr' + [Pd^{0}L_{3}]$$

Scheme 5. Mechanisms for the transmetalation with subsequent reductive elimination promoted by fluoride ions.

though with different α values for the same β value (Figure 3c).

The kinetic laws for the mechanism in Scheme 5 are expressed in Equations (3) and (4). [9]

$$rate = k_{obs} [Pd^{II}]_{total}$$
 (3)

$$k_{\text{obs}} = k_{\text{tm}} \beta C_0 \left(\frac{1}{1 + K_{\text{F}}[F^-]} \right) \left(\frac{K_{\text{X}}[F^-]}{[X^-] + K_{\text{X}}[F^-]} \right)$$
(4)

When $[F^-] \leqslant 1/K_F$ and $[F^-] \leqslant C_0/(2\,K_X)$, then $k_{\rm obs} \to 2\,k_{\rm tm}\beta\,K_X[F^-]$, and $k_{\rm obs}$ increases linearly with $[F^-]$ at low concentrations. Conversely, when $[F^-] \gg 1/K_F$ and $[F^-] \gg C_0/(2\,K_X)$, then $k_{\rm obs} \to k_{\rm tm}\beta\,C_0/(K_F[F^-])$ and $k_{\rm obs}$ decreases hyperbolically with $[F^-]$ at high concentrations of $[F^-]$. The theoretical variation of $k_{\rm obs}$ versus $[F^-]$ passes through a maximum, and is in agreement with the experimental observations (Figure 3a).

As stated above, the reaction in Scheme 4 did not work at 25 °C regardless of the α/β ratio (0.5, 0.75). Neither 5 nor ArAr' were formed. However, another reaction took place, thus affording the new complex 7, which is characterized by

its reduction peak at -2.17 V (see Figure S3 in the Supporting Information). The addition of F^- ($\alpha = 5$ equiv) to 6 (2 mM) partly generated **2** [Eq. (1)]. This step was clearly observed by CV where the reduction peaks R_1 and R_2 of **2** and **6**, respectively, coexisted. Both disappeared ultimately in the absence or presence of **1**, thus leading to the new complex **7**. The ^{31}P NMR analysis of the solutions exhibited a major singlet at $\delta = 31.77$ ppm as is observed for the dimer **7** which is generated by reacting [p-CNC₆H₄-Pd(μ -I)(PPh₃)]₂ with nBu₄NF (20 equiv) (see Figure S4 in the Supporting Information). [^{4a,5}]

The compound **7** was not formed when the isolated **2** was reacted with **1** in the presence of PPh_3 (2 equiv) at room temperature (see Scheme 3). But it was formed from **6** in the presence of F^- , **1**, and PPh_3 (2 equiv) at room temperature.

This difference presumably derives from the low thermodynamic concentration of [ArPdF(PPh₃)₂], when starting from **6**, which did not allow a fast transmetalation and thus, all the aryl/Pd^{II} were converted into the unreactive dimer **7** [Eq. (5)]. Upon increasing the temperature, the reaction of **1** with [ArPdF(PPh₃)₂], thus leading to ArAr' and **5**, became faster and the formation of **7** in Equation (5) was by-passed.

Two other putative pathways have been ruled out. When the preformed silicate [PhSiF(OMe)₃]⁻ (10 equiv) was added to a solution of **6** (2 mm) and PPh₃ (2 equiv) at 25 °C, **6** disappeared, but neither ArAr' nor **5** were formed. Only the dimer **7** was detected by its reduction peak at -2.17 V. Consequently, the silicate [PhSiF(OMe)₃]⁻ did not react with **6** at 25 °C. However, the formation of **7** attested that some transient [ArPdF(PPh₃)₂] was generated (experimentally observed; see the Supporting Information) by the reaction of **6** with F⁻ [Eq. (1)], the latter being released from [PhSiF(OMe)₃]⁻ in its equilibrium with **1** [Eq. (2)]. This evidence suggests that the affinity of **6** for F⁻ is higher than that of **1** at comparable concentrations.

On the other hand, addition of the preformed [PhSiF-(OMe)₃]⁻ (10 equiv) to a solution of **2** (2 mm) in the presence of PPh₃ (2 equiv) at 25 °C delivered the coupling product **4** (42%) and **5**, but in a slow reaction (80 min), much slower than that of **1** at the same concentration at 25 °C because the reaction proceeded via **1**, which was generated at low thermodynamic concentration in its equilibrium with [PhSiF-(OMe)₃]⁻ [Eq. (2)]. This result is in agreement with the slow reactions observed from **6** at high fluoride concentrations where both [PhSiF(OMe)₃]⁻ and **2** were the major species (Figure 3 a).

Consequently, the most efficient pathway for the transmetalation is the reaction of trans-[ArPdF(PPh₃)₂] with Ar'Si(OMe)₃, a reaction which even takes place at room temperature. The three roles of F⁻ in the Hiyama reactions are displayed in Scheme 6.

In conclusion, the three mechanistic roles of fluoride ions in Hiyama reactions involving Ar'Si(OMe)₃ have been established. The crucial step is the formation of *trans*-

$$Pd^{0}L_{3} \quad L = PPh_{3}$$

$$ArAr' \qquad + L \downarrow - L$$

$$Pd^{0}L_{2} \qquad ArX$$

$$Pd^{0}L_{2} \qquad ArX$$

$$F = Ar'Si(OMe)_{3} \qquad Ar - Pd - X$$

$$Ar - Pd - X \qquad L$$

$$Ar - Pd - X \qquad$$

Scheme 6. Mechanism of the Hiyama reaction performed in the presence of fluoride anions (nBu_4NF) at 70 °C.

[ArPdF(PPh₃)₂], which reacts with Ar'Si(OMe)₃ in a rate-determining transmetalation step, whereas the silicate [Ar'SiF(OMe)₃]⁻ is not reactive. This process leads to two antagonistic roles of F⁻ and the rate of the overall reaction is controlled by the ratio [F⁻]/[Ar'Si(OMe)₃], which must be less than unity. A third role exerted by F⁻ is the promotion of the reductive elimination from *trans*-[ArPdAr'(PPh₃)₂], as was already established in the Suzuki–Miyaura coupling.^[4] The overall reactions starting from *trans*-[ArPdBr(PPh₃)₂] in the Hiyama reactions are much slower than those in Suzuki–Miyaura reactions at the same concentration of reagents and F⁻ since the former do not take place at 25 °C. This study explains why arylboronic acids can react with aryl iodides or bromides at room temperature, whereas arylsilanes require higher temperatures.^[1,2]

Received: January 28, 2014 Revised: March 14, 2014 Published online: May 23, 2014

Keywords: cross-coupling \cdot fluoride \cdot kinetics \cdot palladium \cdot reaction mechanisms

- a) Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 1988, 29, 97–98;
 b) K.-i. Gouda, E. Hagiwara, Y. Hatanaka, T. Hiyama, J. Org. Chem. 1996, 61, 7232–7233;
 c) K. Shibata, K. Miyazawa, Y. Goto, Chem. Commun. 1997, 1309–1310;
 d) E. Mowery, P. DeShong, Org. Lett. 1999, 1, 2137–2140;
 e) H. M. Lee, S. P. Nolan, Org. Lett. 2000, 2, 2053–2055;
 f) G. A. Molander, L. Iannazzo, J. Org. Chem. 2011, 76, 9182–9187;
 g) Y. Hatanaka, T. Hiyama, Synlett 1991, 845–853;
 h) T. Hiyama, E. Shirakawa, Organosilicon Compounds in Topics in Current Chemistry, Vol. 219, Springer, Berlin 2002, pp. 61–85.
- [2] a) Y. Hatanaka, K.-i. Goda, Y. Okahara, T. Hiyama, *Tetrahedron* 1994, 50, 8301 8316; b) Y. Hatanaka, T. Hiyama, *J. Am. Chem. Soc.* 1990, 112, 7793 7794; c) A. Sugiyama, Y.-y. Ohnishi, M. Nakaoka, Y. Nakao, H. Sato, S. Sakaki, Y. Nakao, T. Hiyama, *J. Am. Chem. Soc.* 2008, 130, 12975 12985.
- [3] a) S. E. Denmark, D. Wehrli, Org. Lett. 2000, 2, 565-568; b) S. E. Denmark, R. F. Sweis, D. Wehrli, J. Am. Chem. Soc. 2004, 126, 4865-4875; c) S. E. Denmark, C. Regens, Acc. Chem. Res. 2008, 41, 1486-1499; d) S. E. Denmark, J. H. C. Liu, Angew. Chem. 2010, 122, 3040-3049; Angew. Chem. Int. Ed. 2010, 49, 2978-2986.
- [4] a) C. Amatore, A. Jutand, G. Le Duc, Angew. Chem. 2012, 124, 2542-2545; Angew. Chem. Int. Ed. 2012, 51, 2492-2503; b) C. Amatore, A. Jutand, G. Le Duc, Chem. Eur. J. 2013, 19, 10082-10093.
- [5] For the synthesis of [ArPdF(PPh₃)₂], see: M. C. Pilon, V. V. Grushin, *Organometallics* 1998, 17, 1774–1781.
- [6] For the characterization of trans-[ArPdAr'(PPh₃)₂], see: C. Adamo, C. Amatore, I. Ciofini, A. Jutand, H. Lakmini, J. Am. Chem. Soc. 2006, 128, 6829–6836.
- [7] For reductive elimination induced by a fifth ligand in square-planar d¹⁰ complexes, see: a) R. Giovannini, P. Knochel, *J. Am. Chem. Soc.* 1998, 120, 11186–11187; b) A. G. Jarvis Amanda, I. J. S. Fairlamb, *Curr. Org. Chem.* 2011, 15, 3175–3196.
- [8] K. C. Kumara Swany, V. Chandrasekhar, J. J. Harland, J. M. Holmes, R. O. Day, R. R. Holmes, J. Am. Chem. Soc. 1990, 112, 2341 – 2348.
- [9] For similar equations in the Suzuki-Miyaura reactions performed in the presence of F⁻, see Ref. [4].