COMP90054 Workshop 3

Recap: Manhattan Problem

- Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.
- Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them
- Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).

m x m Grid

	Agent	

 $P = {S, s0, SG, A, T, C}$

- a set of coordinates *G* to visit in any order
- Using a set of coordinates V' remaining to be visited,

Recap: Manhattan Problem

- a set of coordinates G to visit in any order
- Using a set of coordinates V' remaining to be visited

$$ullet S = \{\langle x,y,V'
angle \mid x,y \in \{0,\ldots,m-1\} \, \wedge \, V' \subseteq G\}$$

•
$$s_0 = \langle (0,0), G \setminus \{(0,0)\}
angle$$

$$ullet \ S_G = \{\langle (x,y), \{\}
angle \mid x,y \in \{0,\ldots,m-1\}\}$$

$$ullet \ A(\langle x,y,V'
angle)=\{(dx,dy)\mid$$

•
$$dx, dy \in \{-1, 0, 1\}$$

$$\bullet \wedge |dx| + |dy| = 1$$

$$ullet \wedge x + dx, y + dy \in \{0,\ldots,m-1\}$$

•
$$(x+dx,y+dy) \notin W$$

$$ullet T(\langle x,y,V'
angle,(dx,dy))=\langle x+dx,y+dy,V'\setminus\{(x+dx,y+dy)\}
angle$$

•
$$c(a, s) = 1$$

Reformulate the state-space model from *Review and Recap* as a STRIPS problem $P = \langle F, O, I, G \rangle$

STRIPS Model

- **A problem** in STRIPS is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all atoms (boolean vars)
 - O stands for set of all operators (actions)
 - $I \subseteq F$ stands for initial situation
 - \blacksquare $G \subseteq F$ stands for goal situation

STRIPS Model

- lacktriangle Operators $o \in O$ represented by
 - the Add list $Add(o) \subseteq F$
 - the Delete list $Del(o) \subseteq F$
 - the Precondition list $Pre(o) \subseteq F$

Recap: Manhattan Problem

- a set of coordinates G to visit in any order
- Using a set of coordinates V' remaining to be visited,

$$ullet S = \{\langle x,y,V'
angle \mid x,y \in \{0,\ldots,m-1\} \, \wedge \, V' \subseteq G\}$$

•
$$s_0 = \langle (0,0), G \setminus \{(0,0)\}
angle$$

$$ullet \ S_G = \{\langle (x,y), \{\}
angle \mid x,y \in \{0,\ldots,m-1\}\}.$$

$$ullet$$
 $A(\langle x,y,V'
angle)=\{(dx,dy)\mid$

■
$$dx, dy \in \{-1, 0, 1\}$$

$$ullet \wedge |dx| + |dy| = 1$$

$$\land x + dx, y + dy \in \{0, \dots, m-1\}$$

$$\bullet (x+dx,y+dy)\not\in W \}$$

$$ullet T(\langle x,y,V'
angle,(dx,dy))=\langle x+dx,y+dy,V'\setminus\{(x+dx,y+dy)\}
angle$$

•
$$c(a, s) = 1$$

- ullet $F=\{at(x,y), visited(x,y) \mid x,y \in \{0,\ldots,m-1\}\}$
- $O = \{move(x, y, x', y'):$
 - Prec:
 - Add:
 - Del:

- $I = \{at(0,0), visited(0,0)\}$
- ullet $G=\{visited(x,y)\mid (x,y)\in G'\}$

• $I = \{at(0,0), visited(0,0)\}$

• $G = \{visited(x,y) \mid (x,y) \in G'\}$

```
• F = \{at(x, y), visited(x, y) \mid x, y \in \{0, \dots, m-1\}\}
• O = \{move(x, y, x', y'):
    • Prec: at(x,y)
    • Add: at(x', y'), visited(x', y')
    • Del: at(x,y)
                                                      x,y,x', xy' & 6 ... u-17
  for each adjacent (x,y),(x',y'), and (x',y') \not\in W }
```

notWall(x,y)

- ullet $F=\{at(x,y), visited(x,y) \mid x,y \in \{0,\ldots,m-1\}\}$
- $O = \{move(x, y, x', y'):$
 - Prec: at(x, y) notWall(x,y), notWall(x', y')
 - Add: at(x', y'), visited(x', y')
 - lacktriangledown Del: at(x,y)

 \mid for each adjacent (x,y),(x',y')

- $I = \{at(0,0), visited(0,0)\}$
- $ullet \ G = \{visited(x,y) \mid (x,y) \in G'\}$

G1					G2
	Wall	Wall	Startin g point		

- Goal-counting
- Manhattan distance to the closest goal(position) heuristic
- Manhattan distance to the furthest goal(position) heuristic

- Your own heuristic...

Recap: Dominant Relation

- If heuristic h1 dominates heuristic h2:
- Then we will have h1(s) >= h2(s), for all s belongs to state space S
- And both h1 and h2 need to be admissible

Recap: Dominant Relation

- If heuristic h1 dominates heuristic h2:
- Then we will have h1(s) >= h2(s), for all s belongs to state space S
- And both h1 and h2 need to be admissible

Common Heuristic for Manhattan Problems

- Null Heuristic: h = 0 for all state
- Goal counting: h = |V'|
- Manhattan to the closest: h = min(Manhattan(all food))
- Manhattan to the furthest: h = max(Manhattan(all food))
- Average of these two: h = average(min, max)
- Sum Manhattan: h = sum(Manhattan(all food))
- Minimum Spanning Tree: h = len(minimum spanning tree(all food))

Properties of Heuristic functions

Definition (Safe/Goal-Aware/Admissible/Consistent). Let Π be a planning task with state space $\Theta_{\Pi} = (S, L, c, T, I, S^G)$, and let h be a heuristic for Π . The heuristic is called:

- safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$;
- **goal-aware** if h(s) = 0 for all goal states $s \in S^G$;
- **admissible** if $h(s) \leq h^*(s)$ for all $s \in s$;
- **consistent** if $h(s) \le h(s') + c(a)$ for all transitions $s \stackrel{a}{\to} s'$.

Is Manhattan furthest heuristic consistent?

- -Being consistent: reduced value h(s) h(s') <= 1
- Every time perform an action using this heuristic,
- There are 3 possible outcome:
- 1. one step closer: h(s) h(s') = 1, also consistent
- 2. one step further: h(s) h(s') = -1, also consistent
- 3. furthest food change

G1		Agent		G2
Wall	Wall			

- For state s, agent position: P1, furthest coordinate: G1
- For state s', agent position: P2, furthest coordinate: G2
- h(s) = Distance(P1, G1), h(s') = Distance(P2, G2)

Is it possible that h(s) > h(s')?

For state s, agent position: P1, furthest coordinate: G1

For state s', agent position: P2, furthest coordinate: G2

- h(s) = Distance(P1, G1), h(s') = Distance(P2, G2)

Is it possible that h(s) > h(s')?

- Which means h(s) >= h(s') + 1
- i.e, $h(s') \le h(s) 1$

And we also have

h(s) - 1 <= Distance(P2, G1) <= h(s) + 1

In conclusion,

- h(s') = Distance(P2, G2) <= Distance(P2, G1)
- Furthest food should not change

- If the furthest coordinate changes, is it possible that h(s) > h(s')?
- Impossible!
- And h(s) h(s') <= 0
- Reduced value is always <= 1
- This is consistent

Sum Manhattan heuristic

		Agent	G1	G2	
Wall	Wall				

Minimum Spanning Tree Heuristic

- Admissible
- Not consistent

