Zero Forcing with Random Sets

Sam Spiro, Rutgers University

Joint with Bryan Curtis, Luyining Gan, Jamie Haddock, and Rachel Lawrence

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

We say that $B \subseteq V(G)$ is a zero forcing set if this process ends with every vertex colored blue, and we let zfs(G) be the set of zero forcing sets.

Given a graph G and a set of vertices $B \subseteq V(G)$, the zero forcing process starts by coloring every vertex $v \in B$ blue and the rest white, and then iteratively selects blue vertices v which has exactly one white neighbor u and coloring u blue.

We say that $B \subseteq V(G)$ is a zero forcing set if this process ends with every vertex colored blue, and we let $\mathrm{zfs}(G)$ be the set of zero forcing sets. Define the zero forcing number $Z(G) := \min_{B \in \mathrm{zfs}(G)} |B|$.

The zero forcing number Z(G) tells us how many vertices we need so that there exists **some** set of that size which is zero forcing.

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p.

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) =$

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$, $B_1(G)$

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$, $B_1(G) = V(G)$

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$, $B_1(G) = V(G)$, and $B_{1/2}(G) =$

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$, $B_1(G) = V(G)$, and $B_{1/2}(G) = \emptyset$ uniformly random subset of V(G).

Given $p \in [0,1]$, define $B_p(G)$ to be the random set obtained by including each vertex $v \in V(G)$ independently and with probability p. For example, $B_0(G) = \emptyset$, $B_1(G) = V(G)$, and $B_{1/2}(G) = \emptyset$ uniformly random subset of V(G).

Problem

Determine or bound $Pr[B_p(G) \in zfs(G)]$.

Define the threshold probability p(G) to be the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$.

Family	Threshold Probability
K_n	$ \begin{array}{l} 1 - \Theta(n^{-1}) \\ 2^{-1/n} \end{array} $
nK_1	$2^{-1/n}$
K_{n_1,\cdots,n_k}	$1 - \Theta_k(\min_i\{n_i^{-1}\})$
P_n	$\Theta(n^{-1/2})$
C_n	$ \begin{array}{c} \Theta(n^{-1/2}) \\ \Theta(n^{-1/2}) \\ \Theta(n^{-1/3}) \end{array} $
W_n	$\Theta(n^{-1/3})$

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}).$$

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}).$$

Corollary (Informal)

For every n-vertex graph G, a random set of size much less than \sqrt{n} is unlikely to be a zero forcing set.

It turns out that many classical bounds for Z(G) extend to analogous bounds for $Pr[B_p(G) \in zfs(G)]$.

It turns out that many classical bounds for Z(G) extend to analogous bounds for $\Pr[B_p(G) \in \mathrm{zfs}(G)]$. For example, it is well known that for any n-vertex graph G, we have $Z(G) \leq Z(\overline{K_n})$.

It turns out that many classical bounds for Z(G) extend to analogous bounds for $\Pr[B_p(G) \in \mathrm{zfs}(G)]$. For example, it is well known that for any n-vertex graph G, we have $Z(G) \leq Z(\overline{K_n})$.

Proposition

If G is an n-vertex graph, then

$$\Pr[B_{\rho}(G) \in \mathrm{zfs}(G)] \geq \Pr[B_{\rho}(\overline{K_n}) \in \mathrm{zfs}(\overline{K_n})],$$

with equality if and only if $p \in \{0,1\}$ or $G = \overline{K_n}$.

It is well known that $Z(G) \geq Z(P_n)$, where P_n is the *n*-vertex path.

It is well known that $Z(G) \ge Z(P_n)$, where P_n is the *n*-vertex path.

Conjecture

If G is an n-vertex graph, then

$$\Pr[B_{\rho}(G) \in \mathrm{zfs}(G)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)],$$

with equality if and only if $p \in \{0,1\}$ or $G = P_n$.

It is well known that $Z(G) \ge Z(P_n)$, where P_n is the *n*-vertex path.

Conjecture

If G is an n-vertex graph, then

$$\Pr[B_{\rho}(G) \in \mathrm{zfs}(G)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)],$$

with equality if and only if $p \in \{0,1\}$ or $G = P_n$.

This is a weaker version of a conjecture of Boyer et. al. which says for all k

$$|\{B \in \mathrm{zfs}(G) : |B| = k\}| \le |\{B \in \mathrm{zfs}(P_n) : |P_n| = k\}|.$$

Theorem (CGHLS 2022)

There exists some $n_0 \in \mathbb{N}$ such that if T is an n-vertex tree with $n \geq n_0$, then

$$\Pr[B_p(T) \in \mathrm{zfs}(T)] \le \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)],$$

with equality if and only if $p \in \{0,1\}$ or $T = P_n$.

Theorem (CGHLS 2022)

There exists some $n_0 \in \mathbb{N}$ such that if T is an n-vertex tree with $n \geq n_0$, then

$$\Pr[B_{\rho}(T) \in \mathrm{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)],$$

with equality if and only if $p \in \{0,1\}$ or $T = P_n$.

Theorem (CGHLS 2022)

For every n-vertex graph G, we have

$$p(G) = \Omega(n^{-1/2}) [= p(P_n)].$$

It is well known that $Z(G) \ge \delta(G)$.

It is well known that $Z(G) \ge \delta(G)$.

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

The probability that a given vertex v can force at the start of the process is exactly $\deg(v)p^{\deg(v)}(1-p)$

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

The probability that a given vertex v can force at the start of the process is exactly $\deg(v)p^{\deg(v)}(1-p)$, so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \leq \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

The probability that a given vertex v can force at the start of the process is exactly $\deg(v)p^{\deg(v)}(1-p)$, so

$$\Pr[B_p(G) \in \operatorname{zfs}(G)] \leq \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}.$$

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

The probability that a given vertex v can force at the start of the process is exactly $\deg(v)p^{\deg(v)}(1-p)$, so

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}.$$

If $p \ge e^{-1/\delta}$ then the result is trivial

Theorem (CGHLS 2022)

If G is an n-vertex graph with minimum degree $\delta \geq 1$, then

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \delta p^{\delta} n.$$

The probability that a given vertex v can force at the start of the process is exactly $deg(v)p^{deg(v)}(1-p)$, so

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq \Pr[B_p(G) = V(G)] + \sum_{v \in V(G)} \deg(v) p^{\deg(v)} (1-p)$$

$$\leq \sum_{v \in V(G)} \deg(v) p^{\deg(v)}.$$

If $p \ge e^{-1/\delta}$ then the result is trivial, and otherwise each term is minimized when $\deg(v) \ge \delta$ is as small as possible.

Recall p(G) is the unique p such that $Pr[B_p(G) \in zfs(G)] = 1/2$.

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \geq \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \geq \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

• G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \ge \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- ② G contains no pendant path of length much longer than \sqrt{n} .

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \ge \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- ② G contains no pendant path of length much longer than \sqrt{n} .
- 3 G contains no pendant paths.

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \geq \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- ② G contains no pendant path of length much longer than \sqrt{n} .
- G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2.

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \geq \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- ② G contains no pendant path of length much longer than \sqrt{n} .
- 3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \le 2p^2n$$

Recall p(G) is the unique p such that $\Pr[B_p(G) \in \mathrm{zfs}(G)] = 1/2$. Very roughly, we prove $p(G) \ge \Omega(n^{-1/2})$ by iteratively reducing the problem to the following cases:

- G contains no vertex attached to two "pendant paths" (i.e. subdivisions of pendant edges).
- ② G contains no pendant path of length much longer than \sqrt{n} .
- 3 G contains no pendant paths.

In this last case, G either has isolated vertices (easy), or it has minimum degree at least 2. By our minimum degree theorem,

$$\Pr[B_p(G) \in \mathrm{zfs}(G)] \leq 2p^2n$$
,

and for this to be at least 1/2 we need $p = \Omega(n^{-1/2})$.

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_p(T) \in \mathrm{zfs}(T)] \leq \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$$

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_{\rho}(T) \in \mathrm{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$.

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_p(T) \in \mathrm{zfs}(T)] \le \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1} .

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_p(T) \in \mathrm{zfs}(T)] \le \Pr[B_p(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1} .

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\Pr[B_p(T) \in \mathrm{zfs}(T)]$ is at most the probability that the union of these short paths are forced.

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_{\rho}(T) \in \mathrm{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1} .

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\Pr[B_p(T) \in \mathrm{zfs}(T)]$ is at most the probability that the union of these short paths are forced.

If $p \ll n^{-1}$, we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small.

Theorem (CGHLS 2022)

If T is an n-vertex tree with $n \ge n_0$, then

$$\Pr[B_{\rho}(T) \in \mathrm{zfs}(T)] \leq \Pr[B_{\rho}(P_n) \in \mathrm{zfs}(P_n)].$$

The function on the righthand side exhibits two different behaviors when $p \ll n^{-1}$ and $p \gg n^{-1}$. Accordingly, we break our proof into two cases depending on how p compares to n^{-1} .

If $p \gg n^{-1}$, then T not a path means it has two short pendant paths, and essentially $\Pr[B_p(T) \in \mathrm{zfs}(T)]$ is at most the probability that the union of these short paths are forced.

If $p \ll n^{-1}$, we give a crude upper bound for the number of zero forcing sets of size k which is significantly better than the count for the path when k is small. Since $B_p(T)$ will be very small, this gives the result.

Open Problems

Recall p(G) is the unique p such that $Pr[B_p(G) \in zfs(G)] = 1/2$.

Open Problems

Recall p(G) is the unique p such that $Pr[B_p(G) \in zfs(G)] = 1/2$.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

$$p(G) = \Omega(\sqrt{k/n}).$$

Open Problems

Recall p(G) is the unique p such that $Pr[B_p(G) \in zfs(G)] = 1/2$.

Conjecture

If G is an n-vertex graph which contains a clique of size k, then

$$p(G) = \Omega(\sqrt{k/n}).$$

Problem

Determine $p(P_m \square P_n)$, where $P_m \times P_n$ denotes the $m \times n$ grid.