| Offogle<br>Ms<br>Apple: | Given a matrix of size NXM, calculate<br>the sum of all submatrix sum.     |
|-------------------------|----------------------------------------------------------------------------|
| Sum                     | e) all subarray sum = (No. e) times A[i] is<br>Present in all<br>subarrays |
|                         | Contribution eg  Alij.  alij**  i=0                                        |
| Sun                     | ef all submatrin sum =                                                     |
|                         | No et times mat[i][j] is } * mat[i][j]  submatrices  * mat[i][j]           |
|                         | Contribution et matilisse                                                  |

$$mat = \begin{bmatrix} 4 & 9 & 6 \\ 5 & -1 & 2 \end{bmatrix}$$
 2x3 matrix

Sum ef all submatrin sums = 166 Contribution Technique

$$Sum = 4 * 6 + 9 * 8 + 6 * 6 + 5 * 6 + (-1) * 8 + 2 * 6$$

$$= 24 + 72 + 36 + 30 - 8 + 12$$

$$= 166$$

No. et times mat[i][j] is appearing is trow many submatrices.





mat[2][3]

No. ef Choices for TL = 12

No. ef Choices for BR = 9

No. of submatrices in which mat[2][3]
will be present = 12 × 9
= 108

Quiz

|   | 0       | t | 2        | 3        | 4        |
|---|---------|---|----------|----------|----------|
| 0 |         | / | <b>/</b> |          |          |
| t | <u></u> | ✓ | >        | <b>/</b> | <b>/</b> |
| 2 |         |   | /        | <b>\</b> | /        |
| 3 |         |   | <b>/</b> | V        | /        |

No et Choices for TL = 6

No. et choices for BR = 9

No. of submatrices in votrich matifices in votrich matifices in votrich matifices in votrich matifices



for (i= D; i < N; i++) {

for (j= D; j < M; j++) {

 TL = (i+1) × (j+1)

 BR = (N-i) × (M-j)

 ans += (TL×BR × maxtillij);

}

return aus;

= ;

TC: D(N.M) 8C: D(L) Si Given a matrin of size N×M, find the

| -2 | 3 | l  |
|----|---|----|
| 3  | 6 | -3 |

ર×3 ₩

Brute Force

Create all the submatrices & find the max Submatrix sum.



NXM

Submatrices.

Drown BR

for 
$$(a_1 = 0; a_1 < N; a_1 + +)$$
 {

for  $(b_1 = 0; b_1 < M; b_1 + +)$  {

// TL:  $(a_1, b_1)$ 

for  $(a_2 = a_1; a_2 < N; a_2 + +)$  {

for  $(b_2 = b_1; b_2 < M; b_2 + +)$  {

// BR:  $(a_2, b_2)$ 

Using PS, find the sum

ef Submatrin.

3

3

TC:  $O(N^2 \times M^2)$ 

SC:  $O(N \cdot M)$ 
 $A = PS[J[] matrin.$ 

0

1

2

(a<sub>1</sub>, b<sub>1</sub>) = (0, 0)  $\Rightarrow$  (0,0)

(a<sub>1</sub>, b<sub>1</sub>)

(a<sub>2</sub>, b<sub>2</sub>)

(a<sub>1</sub>, b<sub>1</sub>) = (0, 0)  $\Rightarrow$  (0,0)

(a<sub>1</sub>, b<sub>1</sub>)

(a<sub>2</sub>, b<sub>2</sub>)

(a<sub>1</sub>, b<sub>2</sub>)

(a<sub>2</sub>, b<sub>3</sub>)

(a<sub>1</sub>, b<sub>2</sub>)

(a<sub>1</sub>, b<sub>2</sub>)

(a<sub>2</sub>, b<sub>3</sub>)

(a<sub>1</sub>, b<sub>2</sub>)

## Optimization:

Thind mak submatrix sum where submatrix starts at 800 = 0 & ends at 700 = N-1.

|         | 0 | ١ | 2 | 3 | 4 (M- |
|---------|---|---|---|---|-------|
| 0       |   |   |   |   |       |
| ı       |   |   |   |   |       |
| (10-1)2 |   |   |   |   |       |

$$0 \times M$$
 $5 + 4 + 3 + - - 1$ 
 $\Rightarrow M + (M-1) + - - - 2 + 1$ 

$$\Rightarrow \frac{M(M+1)}{2}$$



|   | 0   | ١  | 2 | 3 | 4    |
|---|-----|----|---|---|------|
| 0 | -3  | 4  | ર | 2 | 9    |
| 1 | - 9 | -3 | 3 | 3 | -3   |
| ર | -1  | б  | 4 | 4 | ه ۱– |

| ٥ | (0 | 6 | 0 | 6 |
|---|----|---|---|---|

8tart\_ sow = 0, end\_ sow = 0

-3 4 2 2 9 Sun = 17

Find man Subarray sum in 0th 2010.

Start\_ sow = 0, end\_ sow = 1

-12 1 5 5 6 Sum > find man subarray sum

8tart\_ sow = 0, end\_ sow = 2

-13 7 1 9 -4 Sum = 17

for (Start\_sow = 0; start\_sow < N; start\_sow++)1 arr[M] = 603 for (end-sow = start sow; end-sow (N; end-sow++)1 for (j=0; j(M; j++) ( arr[j]+= mat[end\_sow][j); aus= max (aus, Kadanes (arr, M));  $O(N^*(N^*(M+M))$ 



