雷达技术研究院新生培训

第2讲: 雷达方程与目标检测

1、接收信号功率

- □ 雷达最关心的指标? → 看多远
 - ◆ 胡斯梅耶的探船雷达(作用距离1公里): 德国海军认为"最没用"

1、接收信号功率

噪声中的雷达方程

接收信号功率

接收功率

$$P_r = \frac{P_t A^2 \sigma}{4\pi \lambda^2 L R^4}$$

雷达作用距离

R正比于:发射功率 P_i 的1/4次方

雷达 最大作用距离

$$R_{max} = \sqrt[4]{\frac{P_t A^2 \sigma}{4\pi \lambda^2 L_{min}^2}}$$

最小可检测 信号功率

回波的功率与距离的四次方成反比:

距离增加1倍→回波功率减小1/16(回波电压减小为1/4)

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.1 内涵与定义
 - ◆ 内涵:表征目标对电磁波反射能力强弱
 - ◆ 定义: 一个假想的、各向均匀散射体(如金属球)的面积 在雷达处所产生的回波功率与实际目标的回波功率相等

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ 目标的几何结构和材质

典型目标的雷达截面积

目标	典型RCS(m²)	
载货小汽车	200	
大型轰炸机	40	
大型战斗机	6	
人	1	
巨	10-2	
昆虫	10-5	

*数据来源:《雷达系统导论(第三版)》

真实坦克:钢铁,RCS大

充气坦克:塑料, RCS小

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ 目标的几何结构和材质
 - ◆ 雷达的工作频率

雷达频段的字母缩略词表示

波段	频率	典型频率	典型波长	波段	频率	典型频率	典型波长
HF	3~30MHz	16MHz	18.75 m	Ku	12~18GHz	16GHz	1.9cm
VHF	30~300MHz	165MHz	1.81m	K	18~27GHz	22GHz	1.4cm
UHF	300MHz~1GHz	650MHz	46cm	Ka	27~40GHz	35GHz	8.6mm
L	1~2GHz	1.25GHz	24cm	V	40-75GHz	60GHz	5mm
S	2~4GHz	3GHz	10cm	W	75~110GHz	77、94GHz	3.9、3.2mm
С	4~8GHz	5.4GHz	5.5cm	mm	110~300GHz	140、220GHz	2.1、1.4mm
X	8~12GHz	10GHz	3cm	太赫兹	300GHz~3THz	500GHz	0.6mm

米波

厘米波

毫米波

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ 目标的几何结构和材质
 - ◆ 雷达的工作频率
 - ◆ 电磁波的入射方向(RCS敏感)

A-26战斗轰炸机不同角度的RCS

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ (1) RCS与工作频率的关系

标准球体雷达截面积与工作频率的关系

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ (2) RCS与目标大小的关系
 - ightharpoons 雷达截面积 $\sigma \propto$ 目标几何面积

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.2 影响雷达截面积的关键要素
 - ◆ (3) RCS与目标照射方向的关系
 - ▶ 雷达截面积随电磁波对目标的照射方向的变化很大
 - 原因: 多散射中心回波叠加, 角度敏感

A-26战斗轰炸机不同角度的RCS

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.3 复杂目标的雷达截面积: 起伏
 - ◆ 雷达截面积的起伏→雷达回波幅度的起伏→影响信号检测

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.3 复杂目标的雷达截面积: 起伏
 - ◆ 关键要素: (1) 快慢

快起伏: 散射脉冲间改变

慢起伏: 散射扫描间改变

扫描一 ______

扫描一 _____

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.3 复杂目标的雷达截面积: 起伏
 - ◆ 关键要素: (2)概率

指数分布: 多个相似散射体

卡方分布: 一个大散射体+多个小散射体

$$p(\sigma) = \frac{1}{\sigma_{av}} \exp\left(-\frac{\sigma}{\sigma_{av}}\right)$$
$$\sigma \ge 0$$

均值: σ_{av} , 方差: σ_{av}^2

强散射

$$p(\sigma) = \frac{4\sigma}{\sigma_{av}^2} \exp\left(-\frac{2\sigma}{\sigma_{av}}\right)$$

 $\sigma \ge 0$

均值: σ_{av} , 方差: $\frac{1}{2}\sigma_{av}^2$

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.3 复杂目标的雷达截面积: 起伏
 - ◆ 复杂目标幅度变化: 斯威林模型

哪一种对目标探测影响最大?

斯威林1型:指数分布,慢起伏

$$p(\sigma) = \frac{1}{\sigma_{av}} \exp\left(-\frac{\sigma}{\sigma_{av}}\right)$$
$$\sigma \ge 0$$

脉冲间相关、扫描间改变

斯威林2型:指数分布,快起伏

$$p(\sigma) = \frac{1}{\sigma_{av}} \exp\left(-\frac{\sigma}{\sigma_{av}}\right)$$
$$\sigma \ge 0$$

斯威林3型:卡方分布,慢起伏

$$p(\sigma) = \frac{4\sigma}{\sigma_{\text{av}}^2} \exp\left(-\frac{2\sigma}{\sigma_{\text{av}}}\right)$$
$$\sigma \ge 0$$

斯威林4型:卡方分布,快起伏

$$p(x) = \frac{4\sigma}{\sigma_{\text{av}}^2} \exp\left(-\frac{2\sigma}{\sigma_{\text{av}}}\right)$$
$$\sigma \ge 0$$

脉冲间独立、脉冲间改变

2、雷达截面积(Radar Cross Section, RCS)

- □ 2.3 复杂目标的雷达截面积: 起伏
 - ◆ 影响最大: 斯威林1型(指数分布, 慢起伏)
 - ▶ 机理: (1) 相同平均RCS条件下,指数分布比卡方分布RCS波动大
 - (2) 相同扫描次数条件下,慢起伏比快起伏累加RCS波动大
 - ▶ 结论: 相同检测概率下, 斯威林1型所需信噪比最大

3、接收噪声功率

□ 3.1 接收噪声: 电子的无序热运动产生

17

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 概率论: 利用概率密度函数描述随机变量的输出在某点的可能性 均匀、高斯、瑞利、指数等分布

均匀分布

瑞利分布

高斯分布

期望: μ

方差: σ^2

指数分布

$$p(x) = \begin{cases} \frac{1}{\lambda} e^{\left(-\frac{x}{\lambda}\right)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

期望: λ

方差: λ²

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 随机过程: 以时间作为变量依概率分布的随机函数

噪声的随机过程描述: 多维联合概率密度函数

$$p[x_1(t_1), x_2(t_2), \dots, x_n(t_n), \dots]$$

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 接收的噪声: 随机过程的"一次实现"

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 随机过程的期望与相关函数

期望

$$E(x(t)) = \int_{-\infty}^{+\infty} x p_x(x,t) dx$$

相关函数

$$r_{xy}(t_1, t_2) = E[x(t_1)y(t_2)]$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyp_{xy}(x, y; t_1, t_2) dxdy$$
二维联合概率密度函数

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 随机过程的各态历经性
 - ▶ 含义:随机过程的各个样本都同样经历各种可能状态, 任一样本函数特性都可代表整个随机过程特性

时间均值:常数

$$A\langle x(t)\rangle = \overline{x(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$
$$= E[x(t)] = 常数$$

时间相关函数: 只和时间差有关

$$R_{x}(t,t+\tau) = \overline{x(t)x(t+\tau)}$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt$$

$$= E[x(t)x(t+\tau)] = R_{x}(\tau)$$

样本2

样本1

随机过程满足各态历经性时:

时间平均 = 集合平均(期望、相关函数、方差等)

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础:概率论与随机过程
 - ◆ 随机过程的功率谱密度

自相关函数、功率谱密度函数是一对傅立叶变换

自相关函数: 随机信号在不同时刻

之间的相关程度

功率谱密度函数:信号功率在

$$r_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t)x(t+\tau)dt$$

$$t_1 + \tau_1 \qquad t_2 + \tau_1 \qquad t_n + \tau_1$$

$$t_1 \qquad t_2 \qquad \dots \qquad t_n \qquad t$$

$$r_{xx}(\tau) \qquad \dots \qquad \dots$$

噪声功率
$$P = \int_{f_1}^{f_2} S(f) df$$

$$S_{xx}(f) = \int_{-\infty}^{\infty} r_{xx}(\tau) e^{-j2\pi f \tau} d\tau$$

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 典型的噪声模型:白噪声
 - > 定义:包含所有频率分量噪声,且所有的频率分量能量相等
 - > 特点: 自相关函数为δ函数、功率谱密度为常数

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础:概率论与随机过程
 - ◆ 最重要的白噪声模型: 高斯白噪声
 - 高斯: 噪声每时刻取值均从高斯分布中独立随机产生
 - 白 : 在所有频率上的功率谱密度相等

高斯: 概率密度服从正态分布 $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 功率P=方差 σ^2

高斯+白:联合概率密度函数可根据单一时刻确定 用功率可完全描述

3、接收噪声功率

- □ 3.2 接收噪声描述的数学基础: 概率论与随机过程
 - ◆ 基于白噪声模型的噪声功率数学表示

对于常温: T = 290K

噪声功率谱密度:

 $S_n = k \times T \approx -173.9 \text{dB} m/\text{Hz}$

3、接收噪声功率

□ 3.3 接收噪声的来源:外部、内部

内部噪声 发射机 波形发生 信号处 接 A/D 显示 收 转 机 换 理 馈线噪声、放大器噪声、 混频器噪声等

27

3、接收噪声功率

- □ 3.3 接收噪声的来源: (1) 外部噪声
 - ◆ ① 来源:宇宙背景辐射、太阳热辐射、大气辐射噪声、

地面环境辐射噪声等

宇宙背景辐射

来自宇宙大爆 炸残留的电磁 波辐射,亮温 为2.72K

大气辐射噪声

高于绝对零度的 大气中气体、水 滴、冰滴等产生, 噪温约为10K

太阳热辐射

太阳等星体的电 磁辐射

195750/f(K), f 为频率(GHz)

地面环境辐射噪声

地表环境中产生的电磁辐射, 其温度接近 300K

3、接收噪声功率

- □ 3.3 接收噪声的来源: (1) 外部噪声
 - ◆ ② 计算:天线"捕获"的噪声等于各角度上的噪声 根据天线天线方向图加权平均

天线"捕获"的噪声: $T_{\text{h}} = \frac{1}{4\pi} \int_{4\pi} G(\theta, \phi) T(\theta, \phi) d\Omega$

宇宙背景辐射

地面环境辐射噪声

太阳等热辐射

大气辐射噪声

3、接收噪声功率

□ 3.3 接收噪声的来源: (1) 外部噪声

◆ 例:太阳噪声

P显图: 当雷达扫描角度对上太阳照射时

3、接收噪声功率

- □ 3.3 接收噪声的来源: (2) 内部噪声
 - ◆ 重要描述指标: 噪声系数

噪声系数:环境温度为常温($T_{\text{M}}=T_0=290$ K)时的输入信噪比/输出信噪比

反应了信噪比的恶化程度,F 越大,噪声越大。

$$F = rac{\mathbf{输入信噪比}}{\mathbf{输出信噪比}} = rac{S_i/N_{\text{sh}}}{S_o/N_{out}}$$

器件/设备	典型噪声系数	器件/设备	典型噪声系数
S波段低噪声放大器	0.7dB	无源混频器	10dB
X波段低噪声放大器	1.5dB	1dB损耗的线缆	1dB
Ku波段低噪声放大器	1.8dB	卫星通信接收机	3~5dB ₃₁

4、最小可检测信号与雷达最大作用距离

- □ 4.1 内涵与影响要素
 - ◆ 最小可检测信号: 到达雷达天线的最小可检测的高频回波信号

雷达 最大作用距离

$$R_{max} = \sqrt[4]{\frac{P_t A^2 \sigma}{4\pi \lambda^2 L_{\frac{S_{min}}{2}}}}$$

最小可检测信号功率

- 4.2 雷达信号检测
 - ◆ 内涵: 在同时包含目标和噪声的信号中发现目标
 - ◆ 实现:以一定的电压值进行比较,这一比较电平称为检测门限
 - ▶ 如果雷达回波幅度大于检测门限,即认为有目标
 - ▶ 如果雷达回波幅度小于检测门限,即认为无目标

- □ 4.2 雷达信号检测
 - ◆ 噪声的影响: (1) 虚警: 把没有目标误判为有目标
 - (2)漏检: 把有目标的单元认为是没有目标

- □ 4.2 雷达信号检测
 - ◆ 理论基础:二元假设检验
 - ▶ 假设两种情况:

$$H_0: x = n$$
 表示观测信号 x 中只有噪声 n $H_1: x = s + n$ 表示观测信号 x 中存在信号 s

- 检验: 判决哪种假设是真的(判决门限为检测门限)
 - (1) H_0 为真,判决为 H_0 ,记为($H_0|H_0$)
 - (2) H_0 为真,判决为 H_1 ,记为($H_1|H_0$)
 - (3) H_1 为真,判决为 H_1 ,记为($H_1|H_1$)
 - (4) H_1 为真,判决为 H_0 ,记为($H_0|H_1$)

- □ 4.2 雷达信号检测
 - ◆ 几何解释: (1) <mark>检测</mark>概率 P_D

噪声中的雷达方程

4、最小可检测信号与雷达最大作用距离

- □ 4.2 雷达信号检测
 - ◆ 几何解释: (2) 虚警概率 P_{FA} 与漏检概率 P_{M}

虚警概率 P_{FA}

漏检概率 P_{M}

 $P(H_1|H_0)$: 无目标时误判为有目标的概率 $P(H_0|H_1)$: 有目标时误判为无目标的概率

4、最小可检测信号与雷达最大作用距离

- 4.2 雷达信号检测
 - ◆ 基本矛盾: 信噪比一定时, 虚警和漏检概率不能同时最小
 - ▶ 虚警概率小 → 需要高检测门限 → 需要高信噪比
 - ➢漏检概率小→需要低检测门限→需要低信噪比

4、最小可检测信号与雷达最大作用距离

- □ 4.2 雷达信号检测
 - ◆ 解决思路:在虚警和漏检概率中固定一个,最小化另一个

方案1:

固定漏检概率 P_M (即固定漏检概率 P_D)、 最小化虚警概率 P_{FA}

固定检测概率 P_D 的问题

- ① 目标可能不存在: 固定检测概率 P_D 不合理
- ② 虚警概率 P_{FA} 浮动: 虚警过高导致饱和

方案2:

固定虚警概率 P_{FA} 、 最小化漏检概率 P_{M} (即最大化检概率 P_{D})

虚警率
$$P_{FA} = \int_{\gamma}^{+\infty} p(x \mid H_0) dx$$
 检测门限 γ

方案1不可行

尼曼-皮尔逊准则

4、最小可检测信号与雷达最大作用距离

- 4.2 雷达信号检测
 - ◆ 例:包络检波后恒虚警概率目标检测

瑞利分布的虚警概率

$$P_{FA} = \int_{\gamma}^{+\infty} \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{\sigma^2}\right) dx = \exp\left(-\frac{\gamma^2}{\sigma^2}\right)$$

$$\gamma = \sqrt{-\sigma^2 \cdot \ln P_{FA}}$$

检测门限:

可根据虚警概率解析求解

4、最小可检测信号与雷达最大作用距离

- 4.2 雷达信号检测
 - ◆ 虚警概率相同:低信噪比 → 检测概率低

高信噪比 → 检测概率高

4、最小可检测信号与雷达最大作用距离

- □ 4.2 雷达信号检测
 - ◆ 检测概率、虚警概率和信噪比关系

 $P_{FA}=10^{-6}$, $P_{D}=0.9$ 时, SNR=13.2dB

虚警概率 P_{FA} + 噪声功率 P_n \rightarrow 检测门限 γ

检测门限 γ + 检测概率 P_D →最小可检测信噪比 SNR_{min}

最小可检测信噪比 SNR_{min} \rightarrow 雷达最大作用距离 R_{max}

噪声中的雷达方程

4、最小可检测信号与雷达最大作用距离

4.3 最小可检测信号功率

噪声功率

虚警概率

检测门限

$$P_n = kT_0 FB_n +$$

$$P_n = kT_0 F B_n + P_{FA} = \int_{\gamma}^{+\infty} \frac{x}{\Delta^2} \exp\left(-\frac{x^2}{\Delta^2}\right) dx$$

 $(T_0: 标准室温, F: 接收机噪声系数)$ 方差 $\Delta^2=$ 功率 P_n

检测门限

检测概率

最小可检测信噪比

$$\gamma + P_D = \int_{\gamma}^{+\infty} \frac{x}{\Delta^2} \exp\left(-\frac{x^2 + A^2}{2\Delta^2}\right) \cdot I_0\left(\frac{Ax}{\Delta^2}\right) dx \longrightarrow SNR_{\min} = \frac{A^2}{\sigma^2} = \frac{P_r}{P_n}$$

接收信号功率

$$P_r = \frac{P_t A^2 \sigma}{4\pi \lambda^2 L R^4}$$

最小可检测信噪比

$$SNR_{\min} = \frac{P_r}{P}$$

雷达最大作用距离

+
$$SNR_{min} = \frac{P_r}{P_n}$$
 \longrightarrow $R_{max} = \left(\frac{P_t A^2 \sigma}{4\pi \lambda^2 k T_0 F B_n L \cdot SNR_{min}}\right)^{\frac{1}{4}}$

4、最小可检测信号与雷达最大作用距离

4.4 雷达最大作用距离

雷达最大作用距离

$$R_{\text{max}} = \left(\frac{P_t A^2 \sigma}{4\pi \lambda^2 k T_0 F B_n L \cdot SNR_{\text{min}}}\right)^{\frac{1}{4}}$$

R_{max} 如何提升?

增大 发射功率P, 天线面积A

增大

减小 噪声系数F

减小系统带宽 B_n (又不能太小、应该折衷)

4、最小可检测信号与雷达最大作用距离

- □ 4.4 雷达最大作用距离
 - ◆ 目标起伏时的雷达最大作用距离
 - ▶ 起伏损失:对起伏目标与不起伏目标检测,达到相同概率时, 起伏目标相对于不起伏目标检测所需信噪比的增加量

$$SNR_q$$
 $=$ SNR_{min} + $LOSS_q$
起伏目标 不起伏目标
最小可检测信噪比 最小可检测信噪比 起伏损失

起伏目标
雷达最大作用距离
$$R_{\text{max}} = \left(\frac{P_t A^2 \sigma}{4\pi \lambda^2 Lk T_0 F B_n \cdot SNR_q}\right)^{\frac{1}{4}}$$

4、最小可检测信号与雷达最大作用距离

- □ 4.4 雷达最大作用距离
 - ◆ 目标起伏特征: 快起伏、慢起伏

快起伏

起伏损失:被平均→小

高速机动的飞机:

起伏损失:未被平均→大

目标起伏损失:慢起伏>快起伏

实际情况:目标起伏介于快、慢起伏之间

4、最小可检测信号与雷达最大作用距离

- □ 4.4 雷达最大作用距离
 - ◆ 例: 某X波段雷达最大作用距离计算

雷达参数表

参数	值
峰值功率 P_t	4 kW
天线孔径 D	2.5 m
工作频率 f_c	9.5 GHz
典型目标RCS(σ)	$20~m^2$
损耗 <i>L</i>	5 dB
噪声系数 F	4 dB
接收机带宽 B	2 MHz
最小可检测信噪比SNR _q	13 dB

天线面积:
$$A = \pi \left(\frac{D}{2}\right)^2 \approx 4.9 \, m^2$$

工作波长:
$$\lambda = \frac{c}{f_c} \approx 0.032m$$

雷达最大作用距离:

$$R_{\text{max}} = \left(\frac{P_t A^2 \sigma}{4\pi \lambda^2 Lk T_0 F B_n \cdot SNR_q}\right)^{\frac{1}{4}}$$

$$\approx 104.92 km$$

5、积累

- □ 5.1 简单脉冲积累
 - ◆ 单个信号与噪声叠加→信号被淹没,看不清

5、积累

- 5.1 简单脉冲积累
 - ◆ 信号积累: N个脉冲积累→信号功率增大N²倍
 - ◆ 噪声积累: N个脉冲积累→噪声功率增大?

噪声中的雷达方程

5、积累

- 5.1 简单脉冲积累
 - ◆ 信号积累:N个脉冲积累→信号功率增大 N^2 倍
 - 噪声积累:N个脉冲积累 \rightarrow 噪声功率增大?

$$Var(n) = E(n^2) - E^2(n)$$

方差与均值的关系

以两个脉冲噪声 n_1 , n_2 积累为例(噪声符合均值为0, 方差为 σ^2 的高斯分布):

$$Var(n_1 + n_2) = E((n_1 + n_2)^2) - E^2(n_1 + n_2)$$

$$= E(n_1^2 + 2n_1n_2 + n_2^2) - (E(n_1) + E(n_2))^2$$

$$= E(n_1^2) - E^2(n_1) + E(n_2^2) - E^2(n_2) - 2E(n_1)E(n_2) + 2E(n_1n_2)$$

$$Var(n_1) = \sigma^2 \quad Var(n_2) = \sigma^2 = 0$$

类比可得

信号功率增大 N^2 倍,噪声功率增大N倍 \rightarrow 信噪比增加N倍 → 相参积累(理想情况)

5、积累

- □ 5.2 包络检波后信号积累
 - ◆ 内涵:对包络进行非相参积累,改善信噪比

N个脉冲非相参积累,信噪比增加 $N^{0.5}$ ~ N倍

与相参积累相比,非相参积累会产生积累损失

5、积累

□ 小结

积累

信号相加→提升信噪比

分类

相参积累

非相参积累

积累增益

相参积累 信噪比提高*N*倍

非相参积累 信噪比提高**N^{0.5}~ N**倍

噪声中的雷达方程

匹配滤波

- 接收机信噪比越大, 信号检测性能越好
 - → 什么样的接收机,可使输出信噪比最大?

6、匹配滤波

□ 中频放大器(中放): 带通/带阻特性如何设计为最优?

使信噪比最大的中放滤波器幅频响应、相频响应是什么?4

6、匹配滤波

□ 信噪比最大: 匹配滤波器

6、匹配滤波

□ 匹配滤波输出的时域信号是什么?

三角波滤波结果 是否理想?

理想: 三角波尖峰 有助于信号检测

准则不同,结果不同:

失真最小:全通滤波,

信噪比无优化

信噪比最大: 匹配滤波

信号不保形

6、匹配滤波

 \square 物理可实现的匹配滤波器: 需引入群延时 t_0

→避免负时间,满足因果性

6、匹配滤波

□ 匹配滤波器的输出信噪比

简单脉冲时频关系

双边高斯白噪声功率谱

信号
$$P_s = \frac{E}{T}$$

噪声

$$P = \frac{N_0}{N_0} P$$

信噪比
$$SNR = \frac{P_S}{P_N} = \frac{\frac{E}{T}}{\frac{N_0}{2}B} = \frac{2E}{N_0}$$

输出最大信噪比只与信号能量有关,与信号波形无关

6、匹配滤波

□ 匹配滤波实现:中频放大器,脉冲调制正弦信号

6、匹配滤波

□ 小结

匹配滤波器

使输出信噪比最大的滤波器

幅频响应

相频响应

输出信噪比

输出最大信噪比只与信号能量有关,与信号波形无关

7、雷达最优接收

- □ 7.1 最小贝叶斯风险接收机
 - ◆ 内涵:设计接收机,使接收贝叶斯风险最小

$$\mathcal{R} = \sum_{i=0}^{1} \sum_{j=0}^{1} C_{ij} p(H_i | H_j) p(H_j)$$

$$= C_{00} p(H_0 | H_0) p(H_0) \longrightarrow \text{发射} H_0, \text{ 判决为} H_0 \text{的风险}$$

$$+ C_{01} p(H_0 | H_1) p(H_1) \longrightarrow \text{发射} H_1, \text{ 判决为} H_0 \text{的风险}$$

$$+ C_{11} p(H_1 | H_1) p(H_1) \longrightarrow \text{发射} H_1, \text{ 判决为} H_1 \text{的风险}$$

$$+ C_{10} p(H_1 | H_0) p(H_0) \longrightarrow \text{发射} H_0, \text{ 判决为} H_1 \text{的风险}$$

先验概率 $p(H_i)$

发射 H_i 的概率

条件概率 $p(H_i|H_j)$

发射 H_j (H_j 为真) 判决为 H_i 的概率 代价 C_{ii}

发射 H_j (H_j 为真) 判决为 H_i 的代价

7、雷达最优接收

- □ 7.1 最小贝叶斯风险接收机
 - ◆ 内涵:设计接收机,使接收贝叶斯风险最小

7、雷达最优接收

- □ 7.1 最小贝叶斯风险接收机
 - ◆ 内涵:设计接收机,使接收贝叶斯风险最小

假设 接收样本为x

$$p(\mathbf{x}|\ H_0)$$
 $p(\mathbf{x}|\ H_1)$ 发射 H_0 , \mathbf{x} 的分布 发射 H_1 , \mathbf{x} 的分布

似然函数 $发射H_i$,x的分布

7、雷达最优接收

- □ 7.1 最小贝叶斯风险接收机
 - ◆ 内涵:设计接收机,使接收贝叶斯风险最小

Case 1:

对任意发射,将接收x判为 H_0 的风险>判为 H_1 的风险

$$\frac{C_{00}P(H_{0})p(\mathbf{x}|H_{0})}{+C_{01}P(H_{1})p(\mathbf{x}|H_{1})} > \frac{C_{10}P(H_{0})p(\mathbf{x}|H_{0})}{+C_{11}P(H_{1})p(\mathbf{x}|H_{1})}$$

Case 2:

对任意发射,将接收x判为 H_1 的风险>判为 H_0 的风险

$$\frac{C_{00}P(H_{0})p(\mathbf{x}|H_{0})}{+C_{01}P(H_{1})p(\mathbf{x}|H_{1})} < \frac{C_{10}P(H_{0})p(\mathbf{x}|H_{0})}{+C_{11}P(H_{1})p(\mathbf{x}|H_{1})}$$

$$C_{00}P(H_0)p(\mathbf{x}|H_0)+C_{01}P(H_1)p(\mathbf{x}|H_1)\begin{pmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

$$C_{10}P(H_0)p(\mathbf{x}|H_0)+C_{11}P(H_1)p(\mathbf{x}|H_1)$$

7、雷达最优接收

- □ 7.1 最小贝叶斯风险接收机
 - ◆ 内涵:设计接收机,使接收贝叶斯风险最小

合理假设: 误判代价>正判代价

$$\rightarrow C_{10} > C_{00}, C_{01} > C_{11}$$

发射 H_0 时,判决为 H_1 的 代价大于判决为 H_0 的代价 发射 H_1 时,判决为 H_0 的 代价大于判决为 H_1 的代价

接收判决

$$C_{00}P(H_{0})p(\mathbf{x}|H_{0}) \stackrel{H_{1}}{\geq} C_{10}P(H_{0})p(\mathbf{x}|H_{0}) \\ +C_{01}P(H_{1})p(\mathbf{x}|H_{1}) \stackrel{H_{1}}{\geq} +C_{11}P(H_{1})p(\mathbf{x}|H_{1})$$

最小贝叶斯 风险接收

$$\frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \stackrel{H_1}{\underset{H_0}{\triangleright}} \frac{\left(C_{10} - C_{00}\right)p(H_0)}{\left(C_{01} - C_{11}\right)p(H_1)}$$
似然比

噪声中的雷达方程

7、雷达最优接收

- □ 7.2 最小错误概率接收机
 - ◆ 内涵: 设计接收机,使错误概率最小
 - ◆ 特点:最小贝叶斯风险接收机在"错误判断代价为1,

正确判断代价为0 ($C_{01} = C_{10} = 1, C_{00} = C_{11} = 0$)" 时的特例

贝叶斯风险

$$\mathcal{R} = \sum_{i=0}^{1} \sum_{j=0}^{1} C_{ij} p(H_i | H_j) p(H_j) \frac{C_0}{C_0}$$

错误概率

$$C_{01} = C_{10} = 1$$

$$C_{00} = C_{11} = 0$$

$$P_e = p(H_0 | H_1) p(H_1)$$

$$+ p(H_1 | H_0) p(H_0)$$

最小贝叶斯风险接收

$$\frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{(C_{10} - C_{00}) p(H_0)}{(C_{01} - C_{11}) p(H_1)}$$

$$C_{01} = C_{10} = 1$$

$$C_{00} = C_{11} = 0$$

$$C_{01} = C_{10} = 1$$

最小错误概率接收

$$\frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{p(H_0)}{p(H_1)}$$

7、雷达最优接收

- □ 7.3 最大后验概率接收机
 - ◆ 内涵: 设计接收机, 使后验概率最大
 - ◆ 特点: 贝叶斯框架下最小错误概率接收机的等价表示

最小错误概率接收

$$\frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{p(H_0)}{p(H_1)}$$

最大后验概率接收

后验概率 接收样本为x时,判决为H_i的概率

贝叶斯公式

$$p(\mathbf{x}|H_i) = \frac{p(H_i|\mathbf{x})p(\mathbf{x})}{P(H_i)}$$

7、雷达最优接收

- □ 7.4 最大似然接收机
 - ◆ 内涵: 设计接收机, 使似然函数最大
 - ◆ 特点: 最小错误概率接收机(最大后验接收机)

在等概率发射 $p(H_0) = p(H_1)$ 条件下的特例

最小错误概率接收 (最大后验概率接收) $\frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \overset{H_1}{\underset{H_0}{\geqslant}} \frac{p(H_0)}{p(H_1)} \qquad p(H_0) = p(H_1)$ 仅然函数

7、雷达最优接收

- □ 7.5 匹配滤波接收机
 - ◆ 内涵: 设计接收机, 使输出信噪比最大
 - ◆ 特点:最大似然接收机在高斯白噪声条件下的特例

最大似然接收
$$p(\mathbf{x}|H_1) \underset{H_0}{\overset{H_1}{\geqslant}} p(\mathbf{x}|H_0) \longrightarrow \hat{i} = \arg\max p(\mathbf{x}|H_i)$$
 高斯白噪声背景
$$p(\mathbf{x}|H_i) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N e^{\frac{(\mathbf{x}-\mathbf{s}_i)^2}{2\sigma^2}}, \quad H_i \colon x(t) = s_i(t) + n(t)$$

$$\hat{i} = \arg\max \left[\ln\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N - \frac{1}{2\sigma^2}\right] \times \mathbf{x}^T + \mathbf{s}_i \mathbf{s}_i^T - 2\mathbf{x}^T \mathbf{s}_i$$
 节数
$$\hat{i} = \arg\max \mathbf{x}^T \cdot \mathbf{s}_i$$
 世史知 发射等概 发射等概 定配滤波接收机

匹配滤波接收机: 高斯白噪声背景下的最优接收机 69

7、雷达最优接收

□ 7.6 雷达接收机本质: 似然比接收机

7、雷达最优接收

- □ 7.6 雷达接收机本质: 似然比接收机
 - ◆ 似然比接收机: "尼曼一皮尔逊准则"下的雷达最优接收机

$$L(x) = \frac{p(\mathbf{x} | H_1)}{p(\mathbf{x} | H_0)} = \begin{cases} \geq \gamma \rightarrow \mathbf{f} = \mathbf{f} \\ < \gamma \rightarrow \mathbf{f} = \mathbf{f} \end{cases}$$

高斯白噪声下: 两种假设的概率密度函数

$$p(\mathbf{x} | H_0) = \frac{1}{\left(2\pi\sigma^2\right)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2}\mathbf{x}^T\mathbf{x}\right)$$
$$p(\mathbf{x} | H_1) = \frac{1}{\left(2\pi\sigma^2\right)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{s})^T(\mathbf{x} - \mathbf{s})\right)$$

最大信噪比

利用信号和噪声的二阶矩

似然比

利用噪声的多维联合概率分布

8、雷达恒虚警率(CFAR)处理

- □ 8.1 噪声未知雷达信号检测的问题
 - ◆ "尼曼一皮尔逊"准则:需噪声已知
 - ◆ 噪声未知时,雷达信号检测如何进行?

例如:不同时序的接收信号噪声水平存在差异

8、雷达恒虚警率(CFAR)处理

- □ 9.2 解决思路:恒虚警率处理
 - ◆ 机理: 利用局部统计特征估计起伏噪声的功率,

在保持虚警率一定的条件下,自适应求解局部检测门限

8、雷达恒虚警率(CFAR)处理

- □ 8.2 解决思路: 恒虚警率处理
 - ◆ 噪声功率估计不可避免有偏差→检测性能损失→需更高信噪比

检测门限 $\gamma =$ 噪声功率 $\sigma^2 \times$ 门限因子 β

Case 1: 噪声功率估计偏大→ 检测门限升高→ 检测概率降低

8、雷达恒虚警率(CFAR)处理

- □ 8.2 解决思路: 恒虚警率处理
 - ◆ 噪声功率估计不可避免有偏差→检测性能损失→需更高信噪比

检测门限 $\gamma =$ 噪声功率 $\sigma^2 \times$ 门限因子 β

Case 2: 噪声功率估计偏小→ 检测门限降低→ 虚警概率升高

噪声 $σ^2$ 估计偏小 \rightarrow 门限γ降低

使虚警率恒定 →提高门限因子*β*

正确噪声估计+ 门限因子β偏高 →检测概率降低

CFAR检测会导致 检测概率损失

核心:精准估计门限值需要无限样本值 任何估计都是有限样本,必然存在概率损失

- □ 8.2 解决思路: 恒虚警率处理
 - ◆ CA-CFAR检测效果受单元数多少与噪声变化规律影响

- □ 8.2 解决思路: 恒虚警率处理
 - ◆ 提高信噪比→提高检测概率

- 8.3 噪声水平估计方法: (1) 单元平均恒虚警(CA-CFAR)
 - ◆ 思路:被检测单元除保护单元外前后N/2单元能量平均值为噪声水平

- 8.3 噪声水平估计方法: (2) 有序统计恒虚警(OS-CFAR)
 - ◆ 问题: 干扰目标位于背景单元中时, 检测性能下降

- 8.3 噪声水平估计方法: (2) 有序统计恒虚警(OS-CFAR)
 - ◆ 问题: 干扰目标位于背景单元中时, 检测性能下降
 - ◆ 思路: 将参考单元内样本值排序, 选第k个作为杂波功率估计值

8、雷达恒虚警率(CFAR)处理

□ 8.4 检测门限:利用噪声估计值与虚警概率联合确定

检测门限

$$\gamma = Q(\sigma, P_{FA})$$

8、雷达恒虚警率(CFAR)处理

□ 小结

恒虚警检测

噪声未知检测:恒虚警率处理

噪声水平 估计方法

单元平均恒虚警

有序统计恒虚警

习题

- □ 1、哪些影响因素决定了雷达作用距离?
- □ 2、影响雷达截面积的关键要素有哪些?
- □ 3、什么是噪声系数?
- □ 4、高斯白噪声有什么特点?
- □ 5、简述尼曼-皮尔逊准则?如何提高雷达检测性能?
- □ 6、N个脉冲相参积累对信噪比的提升是多少?

谢谢