

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Walking PCT
NP10 800

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely being the company to certain additional company law rules.

Signed

Dated

28 October 200

its Form THF PATENT Patents Act 1977 3 OCT 2002 (Rule 16)

Request for gran

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

Your reference

100835

Patent application number (The Patent Office will fill in this part) 0222912.8

03 OCT 2002

Full name, address and postcode of the or of each applicant (underline all surnames)

0705725,00 AstraZeneca AB S-151 85 Sodertalje Sweden

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Sweden

Title of the invention

NOVEL PROCESS AND INTERMEDIATES

5. Name of your agent (if you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Anne Williams

AstraZeneca UK Limited Global Intellectual Property Mereside, Alderley Park Macclesfield Cheshire SK10 4TG

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing (day / month / year)

If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

- 8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:
 - a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body. See note (d))

ents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

19-

Claim(s)

06-

Abstract

01-

Drawing(s)

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Authorised Signatory

2/10/2002

Name and daytime telephone number of person to contact in the United Kingdom

Jennifer C Bennett - 01625 230148

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you bave any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

NOVEL PROCESS AND INTERMEDIATES

The present invention relates to a novel process for preparing intermediates for therapeutically effective compounds, together with novel intermediates for use in the process.

Compounds with glycogen phosphorylase activity are described in WO 02/20530.

These compounds have a general formula which may be represented as formula (A)

$$\begin{array}{c|c}
X & H & H^1 \\
\hline
X & N & N & R^3
\end{array}$$
(A)

where X, Y and Z is selected from *inter alia* –CR⁴=CR⁵-S-, R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl,

15 C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N,-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; n is 0-4, and R¹, R² and R3 are various specified organic groups.

These compounds are generally prepared by a reacting an acid of formula (B)

with an appropriate amine. Acids of formula (B) are prepared according to the following scheme:

However, this process is difficult to effect as it may proceed explosively.

The applicants have found an improved process for the production of certain intermediates.

The present invention provides a process for preparing a compound of formula (I)

where R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, hydroxy,

- fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl,
- N,N,-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; and R⁶ is hydrogen or a protecting group, which process comprises cyclisation of a compound of formula (II)

where R⁴, R⁵ and R⁶ are as defined in relation to formula (I) and R⁷ is a nitrogen protecting group, and removing protecting group R⁷, and thereafter if desired or necessary, removing any protecting group R⁶ to obtain the corresponding carboxylic acid.

Cyclisation is suitably effected in an organic solvent such as methanol or

5 dimethylformamide (DMF) in the presence of a base. Suitable bases include particularly strong bases such as an alkali metal alkoxide, for instance sodium methoxide, but also weaker bases such as alkali metal carbonates like potassium carbonate. The reaction is suitably carried out at a broad range of temperatures, for example of from ambient temperature to 70°C, and conveniently at the reflux temperature of the solvent. Under these conditions, R⁷ is generally removed in the same reaction step. Depending upon the nature of the group employed however, it might be necessary to remove R⁷ in a subsequent step, for example by acid or base hydrolysis reactions.

Acid hydrolysis reactions may be carried out using conventional methods, and in particular using acids such as trifluoromethanesulphonic acid, acetic acid or hydrochloric acid. Base hydrolysis reactions are suitably effected in the presence of bases, such as alkali metal hydroxides, and in particular sodium or potassium hydroxide.

Suitable example of protecting groups R⁷ are listed in T.W. Green, Protecting Groups in Organic Synthesis, J. Wiley and Sons, 1991 and in particular are those designated as nitrogen protection groups.

Particular examples of protecting groups R⁷ are groups of sub-formula (i)

where R⁸ is a hydrocarbyl or heterocyclic group, either of which may be optionally substituted.

As used herein, the expression "hydrocarbyl" includes any structure comprising carbon and hydrogen atoms. For example, these may be alkyl, alkenyl, alkynyl, aryl such as phenyl or napthyl, arylalkyl such as benzyl, or cycloalkyl, cycloalkenyl or cycloalkynyl. Suitably hydrocarbyl groups contain up to 20 and preferably up to 10 carbon atoms.

The term "aryl" refers to aromatic rings such as phenyl or naphthyl.

The term "heterocyclic" includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 8 ring atoms, at least one of which, and suitably

from 1 to 4 of which is a heteroatom such as oxygen, sulphur or nitrogen. They may be monocyclic or have fused rings, such a bicyclic or tricyclic ring systems. Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl, tetrazolyl, oxazolyl, isoxazolyl, piperidinyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzothienyl or benzofuryl.

The term "heteroaryl" refers to heterocyclic groups which are aromatic in nature.

Thus these may comprises cyclic aromatic hydrocarbons in which one or more carbon atoms have been replaced with a heteroatom. If the heteroaryl group contains more than one

10 heteroatom, the heteroatoms may be the same or different. Examples of heteroaryl groups include pyridyl, pyrimidinyl, imidazolyl, thienyl, furyl, pyrazinyl, pyrrolyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, indolyl, isoindolyl, indolizinyl, triazolyl, pyridazinyl, indazolyl, purinyl, quniolizinyl, isoquinolyl, quinolyl phthalazinyl, naphthyridinyl, quinoxalinyl, isothiazolyl and benzo[b]thienyl. Preferred heteroaryl groups are five or six membered rings and contain from one to three heteroatoms.

Suitable optional substituents for heterocyclic and hydrocarbyl groups R⁸ include nitro, cyano, halo, oxo, =CR¹³R¹⁴, C(O)_xR¹², OR¹², S(O)_yR¹², NR¹³R¹⁴, C(O)NR¹³R¹⁴, OC(O)NR¹³R¹⁴, =NOR¹², -NR¹²C(O)_xR¹³, -NR¹²CONR¹³R¹⁴, -N=CR¹³R¹⁴, S(O)_yNR¹³R¹⁴ or -NR¹²S(O)_yR¹³ where R¹², R¹³ and R¹⁴ are independently selected from hydrogen or optionally substituted hydrocarbyl, or R¹³ and R¹⁴ together form an optionally substituted ring which optionally contains further heteroatoms such as S(O)_y oxygen and nitrogen, x is an integer of 1 or 2, y is 0 or an integer of 1-3. Hydrocarbyl groups R⁸ may also include heterocyclic substituents, which may themselves be optionally substituted by one or more of the optional substituents listed above. Heterocyclic groups may also be substituted with hydrocarbyl groups which may also be optionally substituted by any of the groups listed above.

Preferably R^8 is a hydrocarbyl group such as alkyl, aryl or arylalkyl. Most preferably R^8 is a straight chain alkyl group of from 1 to 6 carbon atoms, and particularly is a straight chain C_{1-4} alkyl group, such as methyl.

Particular examples of groups R⁴ and R⁵ are hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl and C₁₋₆alkanoyloxy.

Suitably R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, and C₁₋₄alkanoyloxy.

Preferably R⁴ and R⁵ are independently selected from hydrogen and halogen such as chlorine, fluorine and bromine, and in particular chlorine.

Most preferably R⁴ is hydrogen and R⁵ is halogen such as chlorine.

Particular examples of ester protecting groups R⁶ are any organic groups which can be removed by hydrogenation or hydrolysis. These include optionally substituted hydrocarbyl or optionally substituted heterocyclic groups. Such groups may be similar to those listed above in relation to R⁷.

Suitable example of protecting groups R⁶ are also listed in T.W. Green, Protecting Groups in Organic Synthesis, J. Wiley and Sons, 1991 and in particular are those designated as acid protecting groups.

In particular R^6 is a hydrocarbyl group such as C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl such as phenyl, or arylalkyl such as benzyl.

Conversion of a protecting group R⁶ to hydrogen is suitably effected using conventional methods, for example as described in WO 02/20530. In particular, the compound is reacted with a base such as lithium hydroxide, in an organic solvent such as methanol, at temperatures of from 20-80°C, and conveniently at the reflux temperature of the solvent.

Compounds of formula (II) are suitably prepared by reacting a compound of formula (III)

(III)

where R⁴, R⁵ are as defined in relation to formula (I), and R⁶ and R⁷ are as defined in relation to formula (II), with a compound of formula (IV)

LCH₂COOR⁶

(IV)

where L is a leaving group such as halogen and in particular bromine. The reaction is suitably effected in the presence of a base in an organic solvent such as dimethylformamide or acetone. Suitable bases include alkali metal carbonates, bicarbonates, hydroxides, or methoxides, but are preferably weak bases such as alkali metal carbonates or bicarbonates, for instance potassium bicarbonate. The reaction may be conducted at elevated temperatures, for example of from 40 to 100°C, preferably from 50 to 70°C and most preferably at about 60°C.

Compounds of formula (III) are suitably prepared by formylation of a compound of 10 formula (V)

(V)

where R⁴ and R⁵ are as defined above in relation to formula (I) and R⁷ is as defined above in relation to formula (II). This can be carried out using conventional methods such as the Vilsmeier-Haack reaction. In this reaction, the compound of formula (V) is reacted with a formyl containing reagent such as a compound of formula (VI)

where R⁹ and R¹⁰ are independently selected from phenyl and alkyl groups (in particular lower alkyl groups of 1 to 4 carbon atoms, such as methyl) in the presence of phosphorus oxychloride. The reaction is suitably effected at moderate temperatures and conveniently at room temperature. The compound of formula (VI) may act as a solvent also, where it is for example, DMF, but where this is not possible, a different organic solvent may be used.

The applicants have found however that this reaction produces a significant proportion of an amidine of formula (VII)

(VII)

where R⁴ and R⁵ are as defined in relation to formula (I) and R⁹ and R¹⁰ are as defined in relation to formula (VI). A compound of formula (VII) may be converted to a compound of formula (III) by reaction with a compound of formula (VIII)

 $(R^7)_2O$ (VIII)

where R⁷ are as defined in relation to formula (II), under acidic conditions, for example in a solvent comprising an organic acid, such as acetic acid. Elevated temperatures for example of from 80-150°C and preferably from 110-130°C are employed. Conveniently the reaction may be effected at the reflux temperature of the solvent. Particular examples of compounds of formula (VIII) are those where groups R⁷ are groups of sub-formula (i) as defined above, and in particular where R⁸ is methyl, so that the compound of formula (VIII) is acetic anhydride.

Compounds of formula (V) are suitably prepared by reacting a compound of formula (IX)

(IX)

15

where R⁴ and R⁵ are as defined above in relation to formula (I), and R¹¹O(C=O) is a labile nitrogen protecting group, with a compound of formula (VIII) as defined above, under acidic conditions, for example in a solvent comprising an organic acid, such as acetic acid. Elevated temperatures for example of from 80-150°C and preferably from 110-130°C are employed.

20 Conveniently the reaction may be effected at the reflux temperature of the solvent.

Suitable labile nitrogen protecting groups for R¹¹O(C=O) include tertiary-butoxy carbonyl groups, or benzyloxycarbonyl groups.

Compounds of formula (IX) are either known (see for example Binder et al., Synthesis, (1977, (4) 255-6) or can be prepared from known compounds. In particular, compounds of formula (IX) are suitably prepared by subjecting a compound of formula (X)

(X)

where R⁴ and R⁵ are as defined in relation to formula (I), to a Curtius rearrangement reaction, in the presence of an alcohol of formula R¹¹OH. In this reaction, the compound of formula (X) is reacted with an diphenylphosphorylazide, to convert the acid group to a carbonyl azide, which is thermally decomposed to the amide via an isocyanate. Suitable reaction conditions are illustrated hereinafter.

Compounds of formula (II), (III) and (VII) are novel and form further aspects of the invention.

Compounds of formula (IV), (V), (VII), (IX) and (X) are known compounds or they can be prepared from known compounds by conventional methods.

Compounds of formula (I) are suitably used in the production of pharmaceutical compounds and in particular, compounds with glycogen phosphorylase activity as described in WO 02/20530 and EP-A-1088824.

Thus in a further aspect, the invention provides a method as described above, for the production of a compound of formula (I) where R⁶ is hydrogen, and further comprising reacting the compound of formula (I) obtained with an amine of formula (XI),

where R¹⁴ is selected from hydrogen or C₁₋₈alkyl,
m is an integer of from 0 to 4,
each R¹⁵ is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy,
amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,
C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,
C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a
wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)₂sulphamoyl,
N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,
C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl,

arylC₁₋₆alkyl, heterocyclic group and (heterocyclic group)C₁₋₆alkyl; wherein R¹ may be optionally substituted on carbon by one or more groups selected from P and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R;

each R¹⁶ is the same or different and is selected from is hydrogen or C₁₋₆alkyl;

- R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl,
- 20 C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, sulphamoylamino, N-(C₁₋₆alkyl)sulphamoylamino, N,N-(C₁₋₆alkyl)₂sulphamoylamino, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonylaminocarbonyl, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino and a group -E-F-G-H;
- wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-, -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and -C(O)NR^aSO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl which is optionally substituted by a group V;
- F is C₁₋₆alkylene optionally substituted by one or more Q or a direct bond;

 H is selected from aryl, C₃₋₈cycloalkyl and heterocyclic group; wherein H may be optionally substituted on carbon by one or more groups selected from S and wherein if said

heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T;

n is selected from 0-4; wherein the values of R¹ may be the same or different; and wherein the values of R³ may be the same or different;

P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

- 20 N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;
- R, T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;
- 30 to produce a compound of formula (XII)

$$R^{5} \longrightarrow N \longrightarrow N \longrightarrow R^{15}$$

$$R^{14} \longrightarrow R^{15}$$

$$R^{15} \longrightarrow R^{15}$$

$$(XIII)$$

where R⁴, R⁵, R¹⁵, R¹⁶, R¹⁷ and m are as defined above, or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

Particular examples of compounds of formula (XII) are compounds where R¹⁴ is hydrogen, as described in WO 02/20530. For instance, suitable compounds of formula (XII) are compounds where R⁴ and R⁵ are as defined above, R¹⁴ is hydrogen, m is 0 and R¹⁷ is a group -E-F-G-H;

wherein E, F and G are each a direct bond;

H is a C₃₋₁₂cycloalkyl which is optionally fused to a benz ring wherein H may be optionally substituted on carbon by one or more groups S which are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,

15 C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,

C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic groups; wherein 20 S may be optionally substituted on carbon by one or more groups selected from V;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

- N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-diethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;
- 30 or a pharmaceutically acceptable salt thereof.

Other suitable compounds of formula (XII) are compounds where R⁴ and R⁵ are as defined above, R¹⁴ is hydrogen, m is 0, and R¹⁷ is a group -E-F-G-H;

wherein E, F and G are each a direct bond; and H is a cyclic amide of formula

in which the point of attachment is the carbon atom adjacent to the carbonyl group, k is 0, 1 or 2 and 1 is 0, 1 or 2 such that the sum of k and 1 is 1, 2 or 3 and wherein one of the carbon atoms governed by k or l may be replaced by sulphur and wherein H is optionally substituted on the carbon atom adjacent to the aromatic ring by a group selected from S and may be

10 independently optionally substituted on nitrogen by a group selected from T;

S is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, $N-(C_{1-6}$ alkyl)carbamoyl, $N,N-(C_{1-6}$ alkyl)₂carbamoyl,

15 N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, N- $(C_{1-6}$ alkyl)sulphamoyl, $N,N-(C_{1-6}alkyl)_2$ sulphamoyl, $C_{1-6}alkyl$ sulphonylamino,

C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein S may be optionally and independently substituted on carbon by one or more groups selected 20 from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

T and U are independently selected from C_{1-4} alkyl, C_{1-4} alkanoyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonyl, carbamoyl, $N-(C_{1-4}$ alkyl)carbamoyl, $N,N-(C_{1-4}$ alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be 25 optionally and independently substituted on carbon by one or more groups selected from V;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

30 N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl,

ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl and 4-hydroxypiperidinocarbonyl;

5 or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof.

Yet further examples of compounds of formula (XII) are compounds where R¹⁴ is hydrogen, and wherein R⁴ and R⁵ are independently selected from hydrogen, halo or C_{1.6}alkyl,

m is 1; R¹⁵ is hydrogen or arylC₁₋₆alkyl, R¹⁶ is hydrogen or C₁₋₆alkyl, and R¹⁷ is selected from 10 a group -E-F-G-H; wherein E, F and G are each a direct bond;

H is an unsaturated five membered heterocyclic group containing at least one nitrogen atom and one or two ring atoms selected from oxygen and sulphur and wherein H may be optionally substituted on carbon by one or more groups S which are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy,

15 carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,

 C_{1-6} alkanoylamino, N-(C_{1-6} alkyl)carbamoyl, N, N-(C_{1-6} alkyl)₂carbamoyl,

N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2,

 $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ alkoxycarbonylamino, $N\text{-}(C_{1\text{-}6}$ alkyl)sulphamoyl,

20 N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,

 C_{1-6} alkylsulphonyl-N-(C_{1-6} alkyl)amino, C_{3-8} cycloalkyl and aryl groups; or a pharmaceutically acceptable salt thereof.

Other particular examples include compounds of formula (XII) where R^{14} is hydrogen, R^4 and R^5 are independently selected from hydrogen, halo or C_{1-6} alkyl.

m is 0; and R¹⁷ is a group -E-F-G-H;

wherein E is a direct bond;

F is methylene;

25

wherein G is -C(O)NR^a-, wherein R^a is selected from hydrogen or C₁₋₆alkyl which is optionally substituted by a group V;

30 H is aryl which may be optionally substituted on carbon by one or more groups selected from S;

S is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,

C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, *N*-(C₁₋₆alkyl)amino, *N*,*N*-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, *N*-(C₁₋₆alkyl)carbamoyl, *N*,*N*-(C₁₋₆alkyl)₂carbamoyl, *N*-(C₁₋₆alkyl)-*N*-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, *N*-(C₁₋₆alkyl)sulphamoyl,

5 N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein S may be optionally and independently substituted on carbon by one or more groups selected from V;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl,

N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

or a pharmaceutically acceptable salt thereof.

Other particular compounds of formula (XII) are compounds where the group

$$R^{14}$$
 R^{15} R^{17} R^{18}

20

is a group of sub-formula (ii)

where R¹⁴ is as defined above, R¹⁸ is aryl, substituted aryl, heteroaryl, or substituted
25 heteroaryl, R¹⁹ is a bond or a group -CH(OH)-, and R²⁰ is a group -C(=O)-A or a group CH(OH)-C(=O)-A in which A is NR^dR^d, -NR^aCH₂CH₂OR^a, or

$$- \underset{(CH_2)n}{\overset{(CH_2)n}{\underset{R^c}{\nearrow}}} \underset{R^c}{\overset{(CH_2)n}{\underset{R^c}{\nearrow}}} \underset{R^c}{\overset{(CH_2)n}{\underset{R^c}{\nearrow}}$$

each R^a and R^b is independently hydrogen or $-C_1$ - C_8 alkyl; each R^d is independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

5 each R^c is independently hydrogen, -C(=O)OR^a, -OR^a, -SR^a, or -NR^aR^a; and each n is independently 1-3, and

X¹ is NR^a, -CH₂-, O or S.

Examples of substituents for aryl and heteroaryl groups Q and R^d include halogen, C₁₋₈alkoxy, C₁₋₈alkyl, trifluoromethyl, amino, mono or di-(C₁₋₈alkyl)amino, nitro, cyano, 10 carboxy or C₁₋₈alkyl esters thereof.

The invention will now be particularly described by way of example.

Example 1

Step 1

15.

Under argon, 5-chlorothiophene-2-carboxylic acid (5.48g) was dissolved in warm dry tertiary butanol (34ml) and triethylamine (4.7ml) added followed by diphenylphosphorylazide (DPPA) (7.26ml). The mixture was then heated slowly to reflux and refluxed for about 12

hours.

The reaction mixture was then cooled and poured into H_2O (~180ml). The resultant dark suspension was filtered, and the solid was washed with H_2O then dried under suction to a brown powder. This was dissolved in diethyl ether and the solution dried over $MgSO_4$, filtered and evaporated to the desired product, tert-butyl (5-chloro-2-thienyl)carbamate, as a dark brown solid (Yield = 6.75g).

25 1 H NMR (400 MHz d⁶-DMSO) 6.82 (d, 1H), 6.34 (d, 1H), 1.50 (s, 9H)

A mixture of acetic anhydride (6.42 ml) in acetic acid (60ml) was added to the product from step 1 (7.48g) and the resultant mixture heated at 120°C for 4 hours. On cooling the reaction 5 mixture was poured into water and extracted with EtOAc. The EtOAc layer was washed with saturated aqueous K₂CO₃, dried over Na₂SO₄, filtered and evaporated under reduced pressure to give a black solid. Chromatography through silica using an eluent of CH₂Cl₂ to Et₂O gave N-(5-chloro-2-thienyl)acetamide (4.63g, 83%) as a pale brown solid. ¹H NMR (400 MHz d⁶-DMSO) 11.33 (br s, 1H), 6.82 (d, 1H), 6.40 (d, 1H), 2.05 (s, 3H); ES⁻ 174.29

Step 3

10

The product from step 2 (1.09g) was dissolved in DMF (3ml) and cooled in an ice bath. POCl₃ (0.58ml) was added dropwise and the dark mixture stirred at 0°C for 30 minutes then allowed to warm to room temperature, and stirred at room temperature for 64 hours.

The reaction mixture was poured into ice water and the aqueous phase was extracted into dichloromethane. The dichloromethane layer was dried over MgSO₄, filtered and evaporated to a black gum. Purification was effected by suction column chromatography though silica using hexane as initial eluent and CH₂Cl₂ to apply the material to the top of the column. The concentration of diethyl ether was slowly increased (10% jumps) to neat diethyl ether. Several fractions were analysed by LCMS. The 2 fractions which had (MH)+ at 217 and (MH)⁻ at 202 were combined. They were evaporated to give a yellow solid (0.53g). Spectral analysis both by Lc/ms and ¹H nmr showed that this was a mixture of the desired N-(5-chloro-3-formyl-2-thienyl)acetamide (87%) and

25 N'-(5-chloro-3-formyl-2-thienyl)-N,N-dimethylimidoformamide (13%).

¹H NMR *N*-(5-chloro-3-formyl-2-thienyl)acetamide (300 MHz d⁶-DMSO) 11.65 (br s, 1H), 9.93 (s, 1H), 7.22 (s, 1H), 2.25 (s, 3H); ES 202.21;

N'-(5-chloro-3-formyl-2-thienyl)-N,N-dimethylimidoformamide (300 MHz d⁶-DMSO) 9.90 5 (s, 1H), 7.97 (s, 1H), 6.93 (s, 1H), 3.13 (s, 3H), 3.02 (s, 3H); ES⁺ 217.22

Step 4

The mixture from step 3 (0.53g) was dissolved in acetic acid (5ml) and to this was added acetic anhydride (0.5ml) followed by H₂O (0.25ml). The mixture was heated to reflux for approximately 1 hour whereupon tlc analysis indicated that none of the dimethyl amidine derivative remained.

The reaction mixture was poured into H₂O and the precipitate filtered. The aqueous phase was extracted into a mixture of dichloromethane and methanol in a ratio of 19:1 and the precipitate was dissolved in a similar mixture. The combined organic solutions were washed with dilute aqueous potassium carbonate, ensuring that the pH remained at about 12, then dried over MgSO₄. Filtration and evaporation under reduced pressure gave the desired product, N-(5-chloro-3-formyl-2-thienyl)acetamide, as a yellow, orange solid (Yield = 0.53g).

¹H NMR (300 MHz d⁶-DMSO) 11.65 (br s, 1H), 9.93 (s, 1H), 7.22 (s, 1H), 2.25 (s, 3H);

20 ES⁻ 202.21

Step 5

The product from step 4 (460mg) was placed under argon, in dry glassware, and dissolved in dry DMF (2ml). Potassium bicarbonate (567mg) was added to the solution followed by methylbromoacetate (0.54ml). The mixture was heated to 40°C for 150 mins, and then at 60°C for a further 120 mins. The reaction was stirred at room temperature overnight at again heated at 60°C for 270 minutes on the next day.

The product was partitioned between dichloromethane and water and the dichloromethane layer was dried over MgSO₄, filtered and evaporated under reduced pressure to give a dark oil. This was purified by suction column chromatography through silica using hexane as initial eluent and CH₂Cl₂ to apply the material to the top of the column. The concentration of CH₂Cl₂ was increased (10% jumps, 50ml fractions) to neat CH₂Cl₂, held at CH₂Cl₂ for a few fractions then the concentration of Et₂O increases (1% jumps) until the spots were removed from the column. The spot corresponding to the desired methyl

N-acetyl-N-(5-chloro-3-formyl-2-thienyl)glycinate
 (identified using Lc/ms) was collected for use in the subsequent step.
 ¹H NMR (300 MHz d⁶-DMSO) 9.93 (s, 1H), 7.20 (s, 1H), 4.40 (br s, 2H), 3.77 (s, 3H), 2.06 (s, 3H).

20 Step 6

The product from step 5(170mg) was dissolved in MeOH under an argon atmosphere, and a solution of sodium methoxide in methanol (0.62ml of 25% solution) added causing a slight darkening to a brown, clear solution. The mixture was refluxed for about 1 hour.

The reaction mixture was partitioned between dichloromethane and water, and the dichloromethane layer was dried over MgSO₄, filtered and evaporated under reduced pressure

to give the desired product, methyl 2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxylate as a yellow solid (Yield = 97mgs (93%). The structure was confirmed by Lc/ms and 1 Hnmr spectroscopy. 1 H NMR (300 MHz d 6 -DMSO) 9.40 (br s, 1H), 6.91 (s, 1H), 6.82 (s, 1H), 3.82 (s, 3H); ES 2 214.16

Claims

1. A process for preparing a compound of formula (I)

5

 (\mathbf{I})

where R^4 and R^5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl,

- 10 C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N, N,-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; and R⁶ is hydrogen or a protecting group,
- 15 which process comprises cyclisation of a compound of formula (II)

(II)

where R^4 , R^5 and R^6 are as defined in relation to formula (I) and R^7 is a nitrogen protecting group, and removing protecting group R^7 , and thereafter if desired or necessary, removing any protecting group R^6 to obtain the corresponding carboxylic acid.

- 2. A process according to claim 1 wherein the protecting group R⁷ is removed during the same reaction step as the cyclisation.
- 3. A process according to claim 1 or claim 2 wherein in structure of formula (II), R⁷ is a groups of sub-formula (i)

where R⁸ is a straight chain alkyl group of from 1 to 6 carbon atoms.

- A process according to any one of the preceding claims wherein R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, and C₁₋₄alkanoyloxy.
- 10 5. A compound of formula (II) as defined in claim 1.
 - 6. A process for preparing a compound according to claim 5 which comprises reacting a compound of formula (III)

(111)

15 where R⁴, R⁵ are as defined in claim 1, R⁶ and R⁷ are as defined in claim 1, with a compound of formula (IV)

(IV)

where L is a leaving group.

- 7. A compound of formula (III) as defined in claim 6.
- 8. A process for preparing a compound according to claim 7 which comprises reacting a compound of formula (V)

(V)

where R⁴, R⁵ and R⁷ are as defined in claim 1, with a compound of formula (VI)

(VI)

where R^9 and R^{10} are alkyl groups in the presence of phosphorus oxychloride.

9. A process for preparing a compound of formula (VII)

(VII)

where R⁴ and R⁵ are as in claim 1 and R⁹ and R¹⁰ are as defined in claim 8, by reacting a compound of formula (III) as defined in claim 6 with a compound of formula (VIII)

10

5

$$(R^7)_2O$$

(VIII)

where R^7 are as defined in claim 1.

- 15 10. A compound of formula (VII) as defined in claim 9.
 - 11. A method according to claim 1 for the production of a compound of formula (I) where R⁶ is hydrogen, and further comprising reacting the compound of formula (I) obtained with an amine of formula (XI),

$$\begin{array}{c|c}
R^{14} & R^{15} \\
N & & \\
R^{16} & & \\
(XI)
\end{array}$$

where R^{14} is selected from hydrogen or C_{1-8} alkyl, m is an integer of from 0 to 4,

- 5 each R¹⁵ is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl,
- N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group and (heterocyclic group)C₁₋₆alkyl; wherein R¹ may be optionally substituted on carbon by one or more groups selected from P and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a
 group selected from R;

each R^{16} is the same or different and is selected from is hydrogen or $C_{1\text{-}6}$ alkyl; R^{17} is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl,

- 20 C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, sulphamoylamino, N-(C₁₋₆alkyl)sulphamoylamino, N,N-(C₁₋₆alkyl)₂sulphamoylamino, C₁₋₆alkylsulphonylamino,
- 25 C₁₋₆alkylsulphonylaminocarbonyl, C₁₋₆alkylsulphonyl-*N*-(C₁₋₆alkyl)amino and a group -E-F-G-H;

wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-, -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and

-C(O)NR a SO $_2$ -; wherein R a and R b are independently selected from hydrogen or C $_{1\text{-}6}$ alkyl which is optionally substituted by a group V;

F is C₁₋₆alkylene optionally substituted by one or more Q or a direct bond;

H is selected from aryl, C₃₋₈cycloalkyl and heterocyclic group; wherein H may be optionally substituted on carbon by one or more groups selected from S and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T;

n is selected from 0-4; wherein the values of R^1 may be the same or different; and wherein the values of R^3 may be the same or different;

P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

- 25 N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;
- R, T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl

wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;

to produce a compound of formula (XII)

$$\begin{array}{c|c}
R^4 & R^{14} & R^{15} \\
\hline
 R^5 & S & N & O & R^{16}
\end{array}$$
(XIII)

where R^4 , R^5 , R^{15} , R^{16} , R^{17} and m are as defined above, or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

<u>A B S T R A C T</u>

NOVEL PROCESS AND INTERMEDIATES

5 A process for preparing a compound of formula (I)

 (\mathbf{T})

where R⁴ and R⁵ are as defined in the specification; and R⁶ is hydrogen or a protecting group, 10 which process comprises cyclisation of a compound of formula (II)

(II)

where R^4 , R^5 and R^6 are as defined in relation to formula (I) and R^7 is a nitrogen protecting group, and removing protecting group R^7 , and thereafter if desired or necessary, removing any protecting group R^6 to obtain the corresponding carboxylic acid.

Novel intermediates and the use of the products in the preparation of pharmaceutical compounds is also described and claimed.

GB0304217