# Introduction to Digital Signal Processing Linear Time-Invariant Systems

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

# Input-Output Relationship of System



## Input-Output Relationship of Linear System

#### Linearity:

$$x_i[n] \mapsto y_i[n] \implies \sum_i \alpha_i x_i[n] \mapsto \sum_i \alpha_i y_i[n]$$

# Input-Output Relationship of Time-Invariant System

#### Time-invariance:

$$x_i[n] \mapsto y_i[n] \implies x_i[n-k] \mapsto y_i[n-k]$$

# Linear Time Invariant (LTI) System

#### Input-Output Relationship

$$x_i[n] \mapsto y_i[n] \implies \sum_i \alpha_i x_i[n-k_i] \mapsto \sum_i \alpha_i y_i[n-k_i]$$

# Importance of the Impulse Signal

Any signal x[n] can be represented as a linear combinration of time-shifted impulse signals.

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$



# Impulse Response of an LTI System

Impulse Response: The response of an LTI system to an impulse input.

$$h[n] = \mathcal{H}\left(\delta[n]\right)$$

If we know this, then we know the following for an LTI system:

$$\delta[n] \mapsto h[n] \implies \begin{cases} \delta[n-k] & \mapsto h[n-k] \\ \alpha_k \cdot \delta[n-k] & \mapsto \alpha_k \cdot h[n-k] \\ \sum_k \alpha_k \cdot \delta[n-k] & \mapsto \sum_k \alpha_k \cdot h[n-k] \end{cases}$$
$$x[n] = \sum_k x[k] \cdot \delta[n-k] \xrightarrow{\mathcal{H}} \sum_k x[k] \cdot h[n-k] = x[n] * h[n]$$

# Output of an LTI System



### Convolution Sum

$$y[n] = x[n] * h[n] = \sum_{i} x[k] \cdot h[n-k]$$

#### Alternative View of the Convolution Sum

$$y[n] = x[n] * h[n] = \sum_{k} x[k] \cdot h[n-k]$$

| k     |       | -3 | -2 | -1 | 0   | 1 | 2   | 3 | 4 | 5 | 6 | 7     |       |
|-------|-------|----|----|----|-----|---|-----|---|---|---|---|-------|-------|
| x[k]  |       | 0  | 0  | 0  | 0.5 | 1 | 0.5 | 0 | 0 | 0 | 0 | • • • |       |
| h[-k] |       |    |    |    |     |   |     |   |   |   |   |       | • • • |
| h[-k] | • • • |    |    |    |     |   |     |   |   |   |   |       | • • • |
| h[-k] | • • • |    |    |    |     |   |     |   |   |   |   |       | • • • |
| h[-k] | • • • |    |    |    |     |   |     |   |   |   |   |       | • • • |
| h[-k] |       |    |    |    |     |   |     |   |   |   |   |       | • • • |
| h[-k] |       |    |    |    |     |   |     |   |   |   |   |       |       |
| h[-k] |       |    |    |    |     |   |     |   |   |   |   |       |       |

# What does the impulse response tell us?

$$y[n] = x[n] * h[n] = \sum_{k} x[k] \cdot h[n-k]$$

$$= h[n] * x[n] = \sum_{k} h[k] \cdot x[n-k]$$

$$= \dots + h[2] \cdot x[n-2] + h[1] \cdot x[n-1]$$

$$+ h[0] \cdot x[n]$$

$$+ h[-1] \cdot x[n+1] + h[-2] \cdot x[n+2] + \dots$$