Ray tracing toy models

Claire Baskevitch and Baptiste Cecconi

November 2021

1 Toy model 1

We consider an isotropic environment whose density is defined by :

$$n_e(z) = n_0(\frac{z}{z_0})^{-3}$$

The ordinary propagation mode of the Appleton-Hartree equation is used.

Six rays are traced with the following initial angles $(x,k): -50^{\circ}, -30^{\circ}, -10^{\circ}, 10^{\circ}, 30^{\circ}, 50^{\circ}$

$n_0 \ (cm^{-3})$	$z_0 (km)$	$R_E (km)$	z(km)	B(T)
115	$2R_E$	6400	$1000 + z_0$	0

Table 1: Global parameters

(b) Ray tracing with $f_0 = 150kH_z$. z is the altitude above z_0 .

2 Toy model 2

We consider an anisotropic environment whose density and magnetic field along z are defined by :

$$n_e(z) = n_0(\frac{z}{z_0})^{-2}$$

$$B(z) = B_0(\frac{z}{z_{B0}})^{-3}$$

The extraordinary propagation mode of the Appleton-Hartree equation is used.

Three rays are traced with the following initial angles (k,B) : 10° , 20° , 30°

$n_0 \ (cm^{-3})$					
100	$2R_E$	6400	$1000 + z_0$	6.10^{-5}	R_E

Table 2: Global parameters

Figure 2: Ray tracing with a $f_0 = 100kH_z$. z is the altitude above z_0 .

The refractive index n_i shown in figure 2 is computed with the Appleton-Hartree equation :

$$n_i^2 = 1 - \frac{2X(1-X)}{2(1-X) - Y^2 sin^2(\theta) \pm \sqrt{Y^4 sin^4(\theta) + 4(1-X)^2 Y^2 cos^2(\theta)}}$$

with $X = (\frac{\omega_p}{\omega})^2$, $Y = \frac{\omega_c}{\omega}$ and $\theta = 20^\circ$ is the propagation angle (between the wave vector and the local magnetic field vector).