Obučavanje modela

Komponente obučavanja

Obučavanje modela

Obučavanje modela

$$f_{\theta}(x) = \underline{\theta} \cdot x$$

$$h_{\theta}(x) = \theta_1 x + \theta_0$$

Kako pronaći minimum funkcije?

Obučavanje modela: gradijentni spust

- Optimizaciona tehnika
 - možemo pronaći ekstrem proizvoljne funkcije

Ulaz	 J(θ) – funkcija koja se optimizuje θ₀ – početno rešenje α – learning rate (veličina koraka) maxIters – maksimalan broj iteracija
Postupak	for $t = 1, 2,, \underline{\text{maxIters}}$: $\text{for } d = 1, 2,, D$ $\theta_d^{(t+1)} = \theta_d^{(t)} - \alpha \frac{\partial}{\partial \theta_d} J(\theta)$
Izlaz	θ – tačka u kojoj funkcija $J(\theta)$ ima minimum

Primena na linearnu regresiju

$$\min_{\theta} J(\theta)$$

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \alpha \frac{\partial}{\partial \theta_d} J(\theta)$$

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \underbrace{\frac{h_{\theta}(x)}{\theta_{1}(x^{(i)} + \theta_{0} - y^{(i)})^{2}}_{X^{(i)}}$$

Za implementaciju bi bilo lakše da je pravilo ažuriranja jednako za sve θ_d

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\theta_1 x^{(i)} + \theta_0 - y^{(i)}}{h_{\theta}(x)} \right) \cdot 1$$

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} \left(\theta_1 x^{(i)} + \theta_0 - y^{(i)} \right) x_1^{(i)}$$

Primena na linearnu regresiju

$$X = \begin{bmatrix} \frac{1}{1} & x^{(1)} \\ \frac{1}{1} & x^{(2)} \\ \dots & x^{(N)} \end{bmatrix}_{N \times 2} \qquad \theta = \begin{bmatrix} \frac{\theta_0}{\theta_1} \\ \frac{\theta_1}{\theta_1} \end{bmatrix}_{2 \times 1} \qquad \underline{h}_{\theta}(x) = \underline{X}\theta = \begin{bmatrix} \frac{\theta_0}{\theta_0} + \theta_1 x^{(1)} \\ \theta_0 + \theta_1 x^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x^{(N)} \end{bmatrix}_{N \times 1}$$

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_0^{(i)}$$

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_1^{(i)}$$

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^N (h_\theta(x^{(i)}) - y^{(i)}) x_d^{(i)}$$

LMS (Least Mean Squares) update rule

$$\underline{\underline{\theta_d^{(t+1)}}} = \underline{\underline{\theta_d^{(t)}}} - \underline{\underline{\hat{\lambda}}} \sum_{i=1}^{N} \underbrace{\underline{\underline{h_\theta(x^{(i)})} - \underline{y^{(i)}}}}_{d} \underline{\underline{x_d^{(i)}}}$$

Magnituda promene je proporcionalna grešci

Mala greška \rightarrow nećemo mnogo menjati θ

Velika greška \rightarrow mnogo ćemo promeniti θ

Navedite razliku

Batch gradient descent

Stochastic gradient descent

Batch Gradient Descent

for t = 1, 2, ..., maxIters:

for
$$d = 1, 2, ..., D$$

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} \theta_d^{(t+1)} = \theta_d^{(t+1)} - \frac{\alpha}{N} \sum_{i=1}^{N} \theta_d^{(t+1)} = \theta_d^{(t+1)} - \frac{\alpha}{N} \sum_{i=1}^{N} \theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} \theta_d^{(t)} = \theta_d^{(t)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} \theta_d^{(t)} = \theta_d^{(t)} =$$

Koristimo ceo skup podataka da ažuriramo model

$$(h_{\theta}(x^{(i)}) - y^{(i)})x_{d}^{(i)}$$

Iteracija preko celog skupa podataka je skupa ako je N veliko

Stohastic Gradient Descent

for t = 1, 2, ..., maxIters:

→ Shuffle dataset

Više puta prolazimo kroz skup podataka

for
$$i = 1, 2, ..., N$$

for d = 1, 2, ..., D

Ažuriramo model na osnovu jednog trening podatka

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \alpha \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_d^{(i)}$$

Napredujemo sa svakim podatkom – ovo preferiramo kada je *N* veliko

Stohastic Gradient Descent

- Obično će θ dovesti brže blizu minimuma od batch GD
- U praksi, blizu je često dovoljno dobro
- Zato ga preferiramo kada je N veliko

Rezime

Residual Sum of Squares

Gradijentni spust

