תרגיל בית 4 - אלגברה לינארית 1א' לאודיסיאה סייבר

- ת. שיש לב שלא כל הפונקציות מונוטוניות (שימו לב שלא כל הפונקציות תר־מרחב על V הפונקציות (שימו לב שלא כל הפונקציות V הוא לכל היותר V הוא לכל היותר שייכות ל־U). הוכיחו שהמימד של U הוא לכל היותר ב
- הערה: בשאלה הזאת, הכוונה בפונקציות מונוטוניות היא פונקציות מונוטוניות חלש. כלומר פונקציה היא מונוטונית הערה: $f(x) \geq f(y)$ מתקיים $f(x) \geq f(y)$ ופונקציה היא מונוטונית יורדת אם לכל $f(x) \leq f(y)$ מתקיים $f(x) \leq f(y)$ ופונקציה היא מונוטונית יורדת אם לכל $f(x) \leq f(y)$ מתקיים $f(x) \leq f(y)$ ופונקציה היא מונוטונית יורדת אם לכל $f(x) \leq f(y)$ מתקיים $f(x) \leq f(y)$ ופונקציה היא מונוטונית יורדת אם לכל $f(x) \leq f(y)$ מתקיים בירוף לינארי לא טריוויאלי $f(x) \leq f(y)$ הראו שקיים צירוף לינארי לא טריוויאלי $f(x) \leq f(y)$ הראו שקיים צירוף לינארי לא טריוויאלי $f(x) \leq f(y)$
 - באה המשוואות הבאה של מערכת המשוואות הבאה U

$$\begin{cases} x_1 + 4x_2 + x_3 - x_4 + 5x_5 = 0 \\ x_1 + 4x_2 + 2x_3 + 8x_5 = 0 \\ x_3 + x_4 + 3x_5 = 0 \end{cases}$$

 \mathbb{R}^5 ב- \mathbb{R}^5 . לאחר מכן השלימו אותו לבסיס של

- .3 מצאו בסיס למרחב $\{p \in \mathbb{R}_3 \left[x\right] \mid p\left(1\right) = 0\}$ ומצאו את המימד שלו.
 - \mathbb{R}^4 נתונים שני תתי־מרחבים של \mathbb{R}^4

$$U = \operatorname{Sp}\left\{ \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \right\}, \ V = \operatorname{Sp}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3 \end{pmatrix} \right\}$$

ישר? הוא סכום U+V האם $U,V,U\cap V,U+V$ הוא סכום ישר?

הוכיחו/הפריכו: אם S מרחב וקטורי נוצר סופית ו־U,V,W הם תתי־מרחבים של S אז 5. הוכיחו/הפריכו

$$\dim\left(U+V+W\right)=\dim\left(U\right)+\dim\left(V\right)+\dim\left(W\right)-\dim\left(U\cap V\right)-\dim\left(U\cap W\right)-\dim\left(V\cap W\right)+\dim\left(U\cap V\cap W\right)$$

- . הוכיחו $V=U\oplus W'$ וגם $V=U\oplus W$ הוכיחו כי U,W,W' הוכיחו עובר סופית, ויהיו ויהיו U,W,W' התי־מרחבים של $\dim (W\cap W')>\dim (V)-2\dim (U)$
 - על ידי $T\colon M_{2}\left(\mathbb{R}
 ight)
 ightarrow\mathbb{R}_{2}\left[x
 ight]$ על על ידי .7

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (2c+2d)x^2 + (2c+2d)x + (a+b)$$

הוכיחו כי T היא העקתה לינארית, ומצאו את התמונה ואת הגרעין שלה.

8. תהי $T:\mathbb{R}\to\mathbb{R}$ הוכיחו כי $T:\mathbb{R}\to\mathbb{R}$ לכל לונארית כשמסתכלים $T:\mathbb{R}\to\mathbb{R}$ הוכיחו כי $T:\mathbb{R}\to\mathbb{R}$ המקיימת $T:\mathbb{R}\to\mathbb{R}$ פמרחב וקטורי מעל \mathbb{R} .

קבור $q\in\mathbb{N}$, אחר כך עבור בשלבים: הוכיחו בשלבים: מתקיים $q\in\mathbb{Q}$ מתקיים $q\in\mathbb{Q}$ מתקיים מתקיים למעשה צריך להוכיח שלכל $q\in\mathbb{N}$ מתקיים $q\in\mathbb{N}$ מתקיים $q=\frac{1}{m}$ עבור $q=\frac{1}{m}$ עבור $q=\frac{1}{m}$ עבור $q=\frac{1}{m}$