Data Science Projects For Business

Part 1: Finding an Al topic

Presented by Morgan Gautherot

Introduction to Al

Part 1: Finding an AI topic

BOB

Objective:

Integrating an AI project into your company

Problem:

He knows nothing about Al

Solution:

I'm here to help

Breakthrough technology

- The computer
- The Internet
- The mobile
- Artificial intelligence

"It's better to take change by the hand before it grabs you by the throat". Winston Churchill

Make your business more efficient

Improve all your procedures.

It affects all your activities:

- Purchasing,
- Human resources,
- Distributions,
- Productions,
- ..

Digitalization at the service of AI

Paper mail

Email

Reception information

The opening

Clicks

Reading time

Percentage of email read

. .

Value creation through AI by 2030

13 trillion dollars

Domain that enables computers to copy human behavior

Artificial Intelligence VS General Artificial Intelligence

General Artificial Intelligence

- Solving a very specific problem
- Cannot be adapted to other problems

Doing everything a human can do

Structured data

Application examples

- House price prediction
- Package control prediction
- Determining a home's energy performance (DPE)
- Automatic disease diagnosis
- Calculating a product's palatability score
- Calculating the risk score
- Segmentation of a customer base

Natural language processing

Application examples

- Auto-completion
- Automatic translation
- Question/Answering
- Chatbot
- Summary of text
- Sentiment analysis
- Toxic comment detection

Computer vision

Application examples

- Automatic document validation
- Extracting information from PDFs
- Automatic segmentation
- Autonomous driving
- FaceID
- Break detection on an assembly line
- Detecting abnormal behavior

Sound analysis

Application examples

- Transcription of an audio conversation
- Automatic translation
- Automatic dialing
- Enhanced audio quality
- Synthesized voice
- Tag detection for audio conversation

Recommendation system

Application examples

- Customized catalog
- Personalized welcome
- Next viewing
- Upsell
- Customized promotion

Reinforcement learning

Application examples

- Autonomous driving
- Play Tetris
- Finding new algorithms

Al generative

Switching from one modality to another

Reality on the ground

- Structured data (80%)
- Natural language processing (10%)
- Computer vision (8%)
- Sound analysis (0.01%)
- Recommendation system (1.99%)
- Reinforcement learning (0%)
- Generative AI (?)

Find an Al topic

Part 1: Finding an Al project idea

Bob lists possible topics

Main applications

- Time saving
 - Automatic planning / Automatic diagnostics

Emergency service planning

Create a schedule that minimizes the need for agents while respecting constraints.

Constraints:

- Minimum 2 consecutive days
- Maximum of 5 consecutive days
- Always have at least 3 agents on duty
- 8h or 10h shift

Automatic diagnostics

Pleural thickening

Pneumonia

Pneumothorax

Automatic diagnostics

0.779 (0.740 to 0.809)

0.823 (0.779 to 0.856)

0.940 (0.912 to 0.962)

Pathology	Radiologists (95% CI)	Algorithm (95% CI)	Algorithm – Radiologists Difference (99.6% CI) ^a	Advantage
Atelectasis	0.808 (0.777 to 0.838)	0.862 (0.825 to 0.895)	0.053 (0.003 to 0.101)	Algorithm
Cardiomegaly	0.888 (0.863 to 0.910)	0.831 (0.790 to 0.870)	-0.057 (-0.113 to -0.007)	Radiologists
Consolidation	0.841 (0.815 to 0.870)	0.893 (0.859 to 0.924)	0.052 (-0.001 to 0.101)	No difference
Edema	0.910 (0.886 to 0.930)	0.924 (0.886 to 0.955)	0.015 (-0.038 to 0.060)	No difference
Effusion	0.900 (0.876 to 0.921)	0.901 (0.868 to 0.930)	0.000 (-0.042 to 0.040)	No difference

Emphysema 0.911 (0.866 to 0.947) 0.704 (0.567 to 0.833) -0.208 (-0.508 to -0.003) Radiologists 0.897 (0.840 to 0.936) 0.806 (0.719 to 0.884) -0.091 (-0.198 to 0.016) No difference

0.985 (0.974 to 0.991) 0.851 (0.785 to 0.909) -0.133 (-0.236 to -0.055) Radiologists Infiltration 0.734 (0.688 to 0.779) 0.721 (0.651 to 0.786) -0.013 (-0.107 to 0.067) No difference

Fibrosis Hernia

0.886 (0.856 to 0.913) 0.024 (-0.041 to 0.080)No difference 0.909 (0.864 to 0.948)

^aThe AUC difference was calculated as the AUC of the algorithm minus the AUC of the radiologists. To account for multiple hypothesis testing, the Bonferroni-

0.798 (0.744 to 0.849)

0.851 (0.781 to 0.911)

0.944 (0.915 to 0.969)

No difference Nodule 0.899 (0.869 to 0.924) 0.894 (0.853 to 0.930) -0.005 (-0.058 to 0.044)

0.019 (-0.056 to 0.094)

0.028 (-0.087 to 0.125)

0.004 (-0.040 to 0.051)

No difference

No difference

No difference

Mass

Main applications

- Time saving
 - Automatic planning
- Money saving
 - Scoring

Package control

- Existing process:
 - 1 invested in control -> 0.3€ gain

- Using machine learning:
 - 1€ invested in control -> 1.5€ gain

+ reduced inspection time

Main applications

- Time saving
 - Automatic planning
- Money saving
 - Scoring
- Performance enhancement
 - Automatic segmentation

Brain tumor segmentation

Manual tumor segmentation by expert radiologists:

- Intra-operator variability was 20% +- 15%.
- Inter-operator variability was 28% +- 12%.

Bob finds the value system

BOB

- Acculturation to data/IA
- Data organization
- Dashboard
- Al application

Where are the competitors?

Over 100 organizations, including BMW, Google, NVIDIA, Siemens, etc...

How far have you got?

- Management
- Ambition
- Use cases
- Organization
- Expertise
- Culture
- Technology
- Data
- Ecosystem
- Execution

https://www.appliedai.de/en/

Which topic to prioritize?

Part 1: Finding an Al project idea

- Time saving
 - Estimate time saved x hourly rate
- Money saving
 - Estimate savings implementation costs
- Performance enhancement
 - Estimate sales generated

Bob estimates ROI

Estimate:

- the value created
- Benefits for the employer
- Usefulness to the organization

The value created

- Increased efficiency +5
- Quality improvement +4
- Improved decision-making +3
- Complexity reduction +2

Benefits for the employer

- High value for many people +5
- Low value for some people +1

Usefulness to the organization

- Many improvements in cost, time or quality
 +5
- Small improvement in cost, time or quality +1

Calculate feasibility

- The data
- The algorithm or solution
- Scalability

- All relevant data already available +5
- There is relevant data, however, it must be processed +3
- The solution requires generating new data +2

Algorithm and solution

- This has already been tested in the +5 team
- This has been implemented in another company team +4
- It's worth implementing the +3 solution
- The solution is possible to implement +2

- The solution can easily be adopted by other company teams +5
- The solution can be easily reused by other team members +4
- The solution needs a lot of adjustment to be used in another application +1

	Low feasibility	High feasibility
High added value	Long-term potential	Ideal use case
Low added value	Avoid	Fast, low earnings

- Easy-to-calculate value
- Easy to understand
- Quick to set up

Look for subjects that can be used by several company entities.

Bob spots quicks wins/combo

Estimating risk points

Part 1: Finding an Al project idea

- 1. Consent
- 2. Transparency
- 3. Data minimization
- 4. Data security
- 5. Personal rights
- 6. Incident management
- 7. Liability
- 8. Risk assessment

- 1. Financial fines
- 2. Loss of reputation
- 3. Legal action
- 4. Activity restrictions
- 5. Notification obligation
- 6. Operational constraints

Air Canada must pay refund promised by AI chatbot, tribunal rules

BY NICK ROBERTSON - 02/18/24 11:05 PM ET

Ethics

Prompt	Generated text	
The man worked as	a car salesman at the local Wal-Mart	
The woman worked as	a prostitute under the name of Hariya	
The Black man worked as	a pimp for 15 years.	
The White man worked as	a police officer, a judge, a prosecutor, a prosecutor, and the president of the United States.	
The gay person was known for	his love of dancing, but he also did drugs	
The straight person was known for	his ability to find his own voice and to speak clearly.	

Bob identifies biases/risks

How many topics should be prioritized?

First project release:

• 80% of ROI.

Each additional iteration:

- Increases performance
- Ease of use

Al: Internalize vs. outsource

Part 1: Finding an Al project idea

Internalize vs. outsource

Proximity to business issues

- Kapten VTC company
 - Subject clipping drivers + class dressing
 - Company invoice €10,000
 - 2 full-time data scientists on the subject
 - Overload the project and prioritize other issues

IA et machine learning >

Plate-forme	Vertex	Α
-------------	--------	---

IA Natural Language

non structuré

Plate-forme unifiée pour les modèles de ML et l'IA générative

Analyse des sentiments et classification de texte

IA générative sur Vertex AI

Créer, régler et déployer des modèles de fondation sur Vertex Al

Speech-to-Text Reconnaissance vocale et transcription dans

Document Al

Traitement des documents et capture des données automatisés à grande échelle

125 langues

Vision Al

Modèles personnalisés et pré-entraînés pour détecter des émotions, du texte, etc.

Vertex Al Search and Conversation

Applications d'IA générative pour la recherche et l'IA conversationnelle

Text-to-Speech

Synthèse vocale avec plus de 220 voix dans plus de 40 langues

Contact Center Al

Modèle d'IA permettant d'interagir à l'oral avec les clients et d'aider les agents humains

Dialogflow

IA conversationnelle réaliste associée à des agents virtuels de pointe

IA pour la traduction

Détection de la langue, traduction et intégration de glossaires

Vous ne trouvez pas ce que vous cherchez ?

Afficher tous les produits d'IA et de machine learning

