Contrôle IMA 201 (a) et (b) $_{25 \text{ octobre } 2019 - 3h}$

Avec documents, sans calculatrice, sans ordinateur.

1	Acquisition	photograp	hique
		F	

P	Acquisition photographique
1.	On effectue la mise au point sur un objet à une distance D de l'appareil photo. Puis on augmente D. Pour faire la mise au point, faut-il rapprocher le plan du capteur de la lentille ou l'éloigner? Justifiez.
2.	On considère une lentille mince de distance focale égale à 5cm. Pour qu'un objet à très grande distance (à l'infini) soit net, quelle doit être la distance entre la lentille et le plan image (le capteur)?
3.	On considère toujours la même lentille (focale 5cm). On suppose maintenant que la distance de la lentille au plan image (le capteur) est fixe, égale à 6 cm. On photographie un objet de hauteur 10 cm. On dispose d'un capteur de taille 24 x 36 mm, de 2400 pixels sur 3600 pixels. — A quelle distance de la lentille faut-il, placer l'objet?
	— Quel est la hauteur de l'image de l'objet, en pixels?

2 Contraste - couleur

	On considère le changement de contraste suivant (transformation affine) :
•	I ightarrow a I + b,
	avec a et b des valeurs numériques. On considère une image I codée sur 8 bits et on note m et M respectivement le minimum et maximum des niveaux de gris de I . Donnez les valeurs de a et b ci-dessus qui permettent de transformer l'image de manière à ce que minimum et maximum soient respectivement 0 et 255 . On appelle le résultat « étirement » d'histogramme (histogram stretching en anglais).
	A quoi peut servir une telle transformation?
	Commentez les différences entre cette transformation et l'égalisation d'histogramme. On pourra s'aider de dessins et/ou d'histogrammes simples.

2. On rappelle que pour comparer (pixel à pixel) deux images A et B en niveaux de gris, nous avons vu en cours et en TP une technique (la spécification d'histogrammes) qui permet de modifier B pour qu'elle ait le même histogramme que A. Comment adapteriez-vous cette technique pour comparer (pixel à pixel) deux images A et B en couleur?
Interpolation
1. Donner la formule d'interpolation bilinéaire. On suppose que les valeurs aux pixels entiers de position $(0,0),(0,1),(1,1)$ et $(1,1)$ sont α,β,γ δ et que le point où l'on veut interpoler est de coordonnées $(0,0) \leq (x,y) \leq (1,1)$.
2. Combien faut-il d'opérations pour effectuer un zoom par Fourier (zéro-padding) d'un facteur 2 d'une image de taille $N\times N$? Expliquer les étapes du calcul.
Représentations discrètes

4.1 Distances discrètes

4

3

Quelle est la distance discrète entre les points P=(0,0) et Q=(4,3) de la figure 1 si on utilise :

- le masque élémentaire de la 4-connexité avec des coefficients 1?
- le masque élémentaire de la 8-connexité avec des coefficients 1?
- le masque 3×3 avec les coefficients 3 et 4?
- le masque 5×5 avec les coefficients 5, 7 et 11?

Figure 1 – Définition des points P et Q.

4.2 Topologie discrète

Sur une trame carrée, un objet 4-connexe est-il également 8-connexe? Un objet 8-connexe est-il également 4-connexe? Illustrer.

5 Morphologie mathématique

La figure 2 présente une fonction f définie sur un espace à une dimension. On interprète les valeurs de f(x) comme l'altitude des points x (analogie géographique), et on cherche à supprimer les vallées de faible contraste.

FIGURE 2 – Fonction sur un espace à lD.

- Tracer la fonction g(x) = f(x) + 1.
- Calculer l'érosion E(g, B) de g par l'élément structurant B représenté sur la figure (point central et un voisin de chaque côté).
- Tracer la fonction $\max(E(g, B), f)$. Commenter le résultat.

6 Restauration

On restaure une image qui a été observée de la manière suivante : g = Af + b où f est l'image parfaite et A l'opérateur de convolution par un noyau H. Le bruit b a une énergie σ_b^2 . On suppose que l'image parfaite avait une densité spectrale de puissance de $\sigma_s^2(\omega) = \frac{1}{\omega^3}$.

1. Donner la formule de restauration de Wiener. (on donnera la TF de \tilde{f} en fonction de la TF de $H,\,\sigma_b^2$ et ω)

	2.	Quel effet visuel se produit si la densité spectrale de l'image était en fait en $\frac{1}{\omega^2}$? Même question si elle était en $\frac{1}{\omega^4}$? (justifier brièvement)
7	S	Segmentation
7.1		Critères de Canny
	1.	Comment évoluent les critères de bonne détection Σ et de bonne localisation Λ proposés par Canny lorsque l'on augmente la valeur du paramètre α du filtre de Deriche : $f(x) = \alpha^2 x e^{-\alpha x }$
	2.	Quelle conséquence cela a-t-il sur la détection des contours?
7.2		Passage par zéro du laplacien
	1.	Expliquez pourquoi la méthode de détection de contours par détection des passages par zéro du laplacien produit des faux contours pour des profils d'image en marche d'escalier.
		Comment ces faux contours peuvent-ils être éliminés?

8 Textures

8.1 Question 1

On considère l'image de la figure 3, pour laquelle chaque case est constituée de 1 pixel. En négligeant les effets de bord, donner les matrices de co-occurrence de cette image associées aux déplacements horizontaux et verticaux de un pixel (respectivement notées C_{10} , C_{01}), ainsi que la matrice associée aux déplacements de un pixel horizontal et un pixel vertical (notée C_{11}).

FIGURE 3 -

8.2 Question 2

On propose de représenter une texture par la variance de ses niveaux de gris, c'est à dire que si I est une image discrète de taille $N \times N$, on définit un indice de texture α par :

$$\alpha = N^{-2} \sum_{i,j=1}^{N} (I(i,j) - m)^2,$$

avec

$$m = N^{-2} \sum_{i,j=1}^{N} I(i,j).$$

Que pensez-vous d'un tel descripteur?

A quelle transformation radiométrique (changement de contraste) ce descripteur est-il invariant?

Comment peut-on le modifier pour quil soit invariant à un changement de contraste affine (c'est à dire $I \to a.I + b$)

8.3 Question 3

Comment peut-on utiliser la transformée de Fourier pour synthétiser une texture B à partir d'une image exemple A?

9 Représentation et analyse de formes

9.1 Moments invariants

Pour une forme $A \subset \mathbb{R}^2$, de barycentre (x_c, y_c) , on considère les moments

$$M_{m,n}(A) = \iint_A (x - x_c)^m (y - y_c)^n dx dy.$$

On associe à A le descripteur $\frac{M_{0,2}}{M_{2,0}}$. Ce descripteur est-il invariant aux (justifier)

- zoom
- rotations
- transformations affines

9.2 Descripteur SIFT

On rappelle que les descripteurs SIFT sont calculés à partir de l'orientation du gradient en chaque pixel x, définie par :

$$\theta(x) = \arctan\left(\frac{u_y}{u_x}\right),$$

où u_x et u_y sont respectivement les dérivées en x et y de l'image u. Montrez que θ est invariant à tout changement de contraste (composition de l'image avec une fonction croissante).

On considère le descripteur SIFT vu en cours. Pourquoi ce descripteur est-il invariant aux rotations?