

Controller template with DSA

For 2.14, 2.737

Instructor – Prof. David L. Trumper

Useful Shortcuts for LabVIEW:

- To open <u>LabVIEW in-context help</u> within LabVIEW, press Ctrl+H.
- To switch between <u>Front-panel and block diagram</u>, press Ctrl+E.

Overview

- Controller template with up to 2kHz loop rate.
- Dynamic Signal Analyzer to get the frequency response bode plots built in.
 - Plant
 - Loop return ratio
 - Etc.

Pinout Configuration

- Port C/AI 0 : Plant output being read by the myRIO
- Port C/Al 1: Reference signal for the control loop
- Port C/AO 0 : Control effort signal to the plant

These connections are on the protoboard side of myRIO.

Loop timing

Set loop rate of each loop (Restart required).

Also displays the #Finished late counter (refreshed after stopping the program), which shows the number of times the particular loop ran late.

Ref. Gen

Various options of generating the reference signal.

- Analog In: Uses C/AI as the input voltage signal.
- Manual: manually set the reference signal.
- Wave Gen.: use a function generator to set the reference signal.
- DSA: Dynamic Signal Analyzer (used to get frequency responses).

Controller Params

Set **Proportional Gain (Kp)** of the controller.

Controller On?:

If off, the controller output is forced to 0.

Program options

Pause chart:

Pauses the chart plotting to allow for zooming into the signals.

Stop?:

Stops the program

Status:

Displays current program status

Waveform tabs

Controller signals:

View reference, plant output and control-effort.

DSA:

View Dynamic Signal Analyzer (DSA) signals and frequency response measurement (after measurement is completed).

More on DSA later.

Block-diagram overview

- 3 parallel loops
 - User-Interface (UI) loop (non-deterministic)
 - Control and Simulation Loop (CD&Sim) deterministic
 - Reference Generation / DSA loop deterministic
- Inter-loop communication using <u>local variables</u> and <u>RT-FIFO</u> variables.

State machine architecture for User-Interface.

Block diagram - controller

1. Select options on the User interface:

- Select DSA tab in the Ref. Gen. control.
- DSA tab in the Waveform control.

2. Select DSA options:

- Initial frequency low frequency can take a long time to capture.
- Final frequency –
 maximum limited to
 Nyquist frequency of the
 loop sample time (f_c/2)
- # pts. in interval –
 number of points
 logarithmically
 distributed between
 initial and final
 frequency.
- Amplitude input signal at which to get the frequency response.
- Offset to add a bias to the input signal.

3. Start the DSA:

- Press start to start the DSA.
- When running, the DSA running indicator will be on.
- Press stop to abort the Capture.

Note:

When the controller is off, running the DSA will return the plant frequency response.

When the controller is on, the DSA will return the loop return ration frequency response.

4. Export the Mag and phase bode plots

- Once the DSA stops, it will plot the magnitude and phase plots.
- You can export the magnitude and phase plots to excel by right-click and selecting Export->to Excel as shown.

Sample DSA results

Unity plant (AO connected to AI), Ts = 0.5 msec

Transfer function in continuous time H(s) = 1

As seen by the myRIO, due to A/D sampling, there is a one sample delay, $H(s) = 1.e^{-s.T_s}$ i.e., $H(z) = z^{-1}$

Thus, one loop sample time delay.

fs = 2 kHz 180 deg. Phase lag at Nyquist freq. (1 kHz)

RC low pass filter, $\tau = 4.7 \ ms$, $f_{3dB} \approx 34 \ Hz$

Another low pass filter, $\tau = 6.2 \ ms$, $f_{3dB} \approx 25 \ Hz$

More information

Excitation specs and cycle specs

Cycle specs aré directly entered as constants into the Droppable DSA. Hover over them with context help on (Ctrl+H) to see the description.

Selecting CH1, CH0 and location of excitation

Change location of adding DSA excitation in the control loop. It can be added either to the reference or to the analog output.

Reference value set to 0 when the DSA mode is selected.

Left click on the variables connected to CH1, CH0 of the droppable DSA to change them to the variables required. Analog Input = Plant output, Analog Output = Control effort, Error = Ref — Plant Output.

DSA running

When DSA is running the Bode plot is cleared and it is replotted with the DSA generated data after it stops.

DSA results

Note: There is a time delay of one sample time (Ts) due to the DAQmx implementation in which it sends the Analog Output for this sample at the clock edge for the next sample. (http://zone.ni.com/reference/en-