Praktikum 10

Christoph Kirsch

06.02.2023

Inhaltsverzeichnis

1	(Dia	gonal-)implizite Runge-Kutta-Verfahren	1
	1.1	Lernziele	1
	1.2	Theorie	1
	1.3	Aufträge	2
	1.4	Abgabe	2

1 (Diagonal-)implizite Runge-Kutta-Verfahren

1.1 Lernziele

- Sie implementieren zwei implizite Runge-Kutta-Verfahren, unter Verwendung der Programmstruktur aus dem Praktikum 7.
- Sie testen Ihre Programme an einfachen Modellproblemen und wenden sie schliesslich auf ein komplexeres Problem an, um die numerischen Lösungen zu vergleichen.

1.2 Theorie

In diesem Praktikum betrachten wir **d**iagonal-**i**mplizite s-stufige **R**unge-**K**utta-Verfahren mit einem Butcher-Tableau der Form

In einem solchen **DIRK-Verfahren** können die Stufengleichungen nacheinander gelöst werden, weil in der j-ten Stufe die Steigungen $r_1, r_2, \ldots, r_{j-1}$ bereits bekannt sind (vgl. Übungsblatt 8, Aufgabe 2).

1.3 Aufträge

1. (s = 1) Schreiben Sie ein Programm zur Lösung eines AWPs mit der impliziten Mittelpunktsregel:

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

Verwenden Sie dafür dieselbe Programmstruktur wie für das implizite Euler-Verfahren im Praktikum 7.

- 2. Testen Sie Ihr Programm aus 1. anhand des Modellproblems $y' = -4y, \ y(0) = 1$, mit Endstelle $x_n = 1$ und n = 10 Schritten. Vergleichen Sie die Werte y_k der numerischen Lösung mit den Werten der exakten Lösung, $y(x_k), \ k \in \{1, 2, \dots, 10\}$.
- 3. (s=2) Schreiben Sie ein Programm zur Lösung eines AWPs mit der impliziten Trapezregel:

$$\begin{array}{c|cccc}
0 & 0 \\
1 & \frac{1}{2} & \frac{1}{2} \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}$$

- 4. Testen Sie Ihr Programm wie in 2.
- 5. Lösen Sie mit Ihren Programmen aus 1. und 3. das Anfangswertproblem

$$y' + \frac{x^2}{y} = 0, \quad y(0) = -4.$$

Berechnen Sie für $x_n = 2$ und $n = 3^j, j \in \{1, 2, 3, 4, 5, 6, 7, 8\}$, jeweils die absoluten Fehler an der Endstelle. Bestimmen Sie grafisch die Konvergenzordnung der beiden Verfahren.

1.4 Abgabe

Bitte geben Sie Ihre Lösungen bis spätestens vor dem nächsten Praktikum 10 ab.

Downloads:

- PDF-Dokumentation:
 - Anleitung Praktikum 10