Objetivos a cubrir

Código: MAT4-EDO.10

- Ecuaciones Diferenciales Ordinarias: Lineal de primer orden.
- Ecuaciones Diferenciales Ordinarias: Ecuación de Bernoulli.
- 1. Demuestre que si $a y \lambda$ son constantes positivas y b es cualquier número real, entonces toda solución de la ecuación

$$y' + ay = be^{-\lambda x}$$

tiene la propiedad de que $y \to 0$ cuando $x \to \infty$

2. Halle la solución general de la ecuación diferencial dada.

1.
$$\frac{dy}{dx} = 5y$$

$$2. \quad y' + 3x^2y = x^2$$

$$x \frac{dy}{dx} + 2y = 3$$

2.
$$y' + 3x^2y = x^2$$
 3. $x\frac{dy}{dx} + 2y = 3$ 4. $\frac{dy}{dx} = 2y + x^2 + 5$

5.
$$y' = \frac{3x^2y}{1-x^3}$$
 6. $x^2y' + xy = 1$ 7. $y' + 2xy = x^3$ 8. $xy' + 4y = x3^{-x}$

$$6. \quad x^2y' + xy = 1$$

$$7. \quad y' + 2xy = x^3$$

8.
$$xy' + 4y = x3^{-x}$$

9.
$$y dx + (x + 2xy^2 - 2y) dy = 0$$
 10. $\frac{dy}{dx} + y = e^{3x}$ 11. $\frac{dx}{dy} = \frac{x}{x \sec x - y}$

$$10. \quad \frac{dy}{dx} + y = e^{3x}$$

11.
$$\frac{dx}{dy} = \frac{x}{x \operatorname{sen} x - y}$$

12.
$$y' + 2y = 0$$

$$(13.) (xy' + y = 3xy)$$

12.
$$y' + 2y = 0$$
 13. $xy' + y = 3xy$ 14. $\frac{dy}{dx} + y = \frac{1 - e^{-2x}}{e^x + e^{-x}}$ 15. $\cos x \frac{dy}{dx} + y \sin x = 1$

$$15. \quad \cos x \, \frac{dy}{dx} + y \sin x = 1$$

$$16. \quad y' = x^3 e^{x^2} y$$

17.
$$3y' + 12y = 4$$

18.
$$\frac{dr}{d\theta} + r \sec \theta = \cos \theta$$

16.
$$y' = x^3 e^{x^2} y$$
 17. $3y' + 12y = 4$ 18. $\frac{dr}{d\theta} + r \sec \theta = \cos \theta$ 19. $\frac{dy}{dx} + y \cot x = 2\cos x$

(20.)
$$y' = y + e^{x}$$

$$21. \quad \frac{dx}{dy} = x + y$$

22.
$$y' = \frac{5 - 8y - 4xy}{(x+2)^2}$$

20.
$$y' = y + e^x$$
 21. $\frac{dx}{dy} = x + y$ 22. $y' = \frac{5 - 8y - 4xy}{(x+2)^2}$ 23. $x\frac{dy}{dx} + (3x+1)y = e^{-3x}$

24.
$$(1+x^2)y' + xy + x^3 + x = 0$$
 25. $xy' + 2y = e^x + \ln x$ 26. $(1+x)y' - xy = x + x^2$

25.
$$xy' + 2y = e^x + \ln x$$

26.
$$(1+x)y' - xy = x + x^2$$

- 3. Resuelva la ecuación diferencial dada sujeta a la condición inicial que se indica
- 1. $\frac{dy}{dx} + 5y = 20$; y(0) = 2 2. $yy' x = 2y^2$; y(1) = 5 3. $\cos^2 x \frac{dy}{dx} + y = 1$; y(0) = -3

- 4. $\frac{dy}{dx} = \frac{y}{y-x}$; y(5) = 2 5. $xy' + y = e^x$; y(1) = 2 6. $\frac{dy}{dx} = \frac{1}{e^y x}$; y(1) = 0
- 7. $x dy + (xy + 2y 2e^{-x}) dx = 0$; y(1) = 0 8. $L \frac{di}{dt} + Ri = E$, E = ctte; $i(0) = i_0$
- 9. $\cos^2 x \frac{dy}{dx} + y = 1$; y(0) = -3 10. $y' = 2y + x(e^{3x} e^{2x})$; y(0) = 2
- 11. x(x-2)y'+2y=0; y(3)=6 12. $\sin x \frac{dy}{dx} + y \cos x = 0$; $y\left(-\frac{\pi}{2}\right) = 1$
- 13. $(x+1)\frac{dy}{dx} + y = \ln x$; y(1) = 10 14. $(x^2+1)y' + 3x^3y = 6x \exp\left(-\frac{3x^2}{2}\right)$; y(0) = 1
- 15. $y' + y \tan x = \cos^2 x$; y(0) = -1
- 4. Resuelva la ecuación de Bernoulli dada
- 1. $x \frac{dy}{dx} + y = \frac{1}{y^2}$ 2. $\frac{dy}{dx} y = e^x y^2$ 3. $\frac{dy}{dx} = y(xy^3 1)$ 4. $x^2 \frac{dy}{dx} + y^2 = xy$
- 5. $3(1+x^2)\frac{dy}{dx} = 2xy(y^3-1)$ 6. $x\frac{dy}{dx} (1+x)y = xy^2$ 7. $x^2y' + 2xy y^3 = 0$; x > 0

5. Resuelva la ecuación diferencial dada, sujeta a la condición inicial que se indica

1.
$$x^2 \frac{dy}{dx} - 2xy = 3y^4, \ y(1) = 1$$

1.
$$x^{2} \frac{dy}{dx} - 2xy = 3y^{4}$$
, $y(1) = 1$ 2. $y^{1/2} \frac{dy}{dx} + y^{3/2} = 1$, $y(0) = 4$ 3. $2y' = \frac{y}{x} - \frac{x}{y^{2}}$, $y(1) = 1$

3.
$$2y' = \frac{y}{x} - \frac{x}{y^2}$$
, $y(1) = 1$

4.
$$x^2y' - 2xy = 3y^4$$
, $y(1) = 1$

4.
$$x^2y' - 2xy = 3y^4$$
, $y(1) = 1$ 5. $xy(1 + xy^2) \frac{dy}{dx} = 1$, $y(1) = 0$

6.
$$2 \frac{dy}{dx} = \frac{y}{x} - \frac{x}{y^2}, \ y(1) = 1$$

- 6. La ecuación dada es una ecuación de Bernoulli. Resuelva dicha ecuación.
 - (a) $y' = ry ky^2$, r > 0 y k > 0. Esta ecuación es importante en la dinámica de las poblaciones
 - (b) $y' = \epsilon y \sigma y^3$, $\epsilon > 0$ y $\sigma > 0$. Se presenta en el estudio de la estabilidad del flujo de fluidos.
 - (c) $\frac{dy}{dt} = (\Gamma \cos t + T) y y^3$, donde $\Gamma y T$ son constantes. Esta ecuación se presenta en el estudio de la estabilidad

Respuestas

$$2.1. \ \ y = Ke^{5x}; \qquad 2.2. \ \ y = \frac{1}{3} + Ce^{-x^3}; \qquad 2.3. \ \ y = \frac{1}{3} + \frac{C}{x^2}; \qquad 2.4. \ \ y = -\frac{1}{2}\left(x^2 + 5\right) - \frac{x}{2} - \frac{1}{4} + Ce^{2x}; \qquad 2.5. \ \ y = \frac{K}{1 - x^3};$$

$$2.6. \ \ y = \tfrac{1}{x} \ln |x| + \tfrac{C}{x}; \qquad 2.7. \ \ y = \tfrac{x^2}{2} - \tfrac{1}{2} + Ce^{-x^2}; \qquad 2.8. \ \ y = -\tfrac{3^{-x}}{\ln 3} \left\{ 1 + \tfrac{4}{x \ln 3} + \tfrac{12}{x^2 \ln^2 3} - \tfrac{24}{x^3 \ln^3 3} - \tfrac{24}{x^4 \ln^4 3} \right\} + \tfrac{C}{x^4};$$

2.9.
$$x = \frac{1}{y} \left(1 - Ce^{-y^2} \right);$$
 2.10. $y = \frac{1}{4}e^{3x} + Ce^{-x};$ 2.11. $y = -\cos x + \frac{\sin x}{x} + \frac{C}{x};$ 2.12. $y = e^{-2x}Ce^{-x}$

2.13.
$$y = \frac{1}{x}e^{3x}C;$$
 2.14. $y = e^{-x}\ln(1 + e^{2x}) - e^{-x}x + e^{-x}C;$ 2.15. $y = \sin x + C\cos x;$

$$2.16. \ \ y = C \exp\left(\frac{1}{2}e^{x^2}\left(x - 1\right)\left(x + 1\right)\right); \qquad 2.17. \ \ y = \frac{1}{3} + Ce^{-4x}; \qquad 2.18. \ \ r = -\cos\theta \frac{-\theta + \cos\theta - C}{1 + \sin\theta}; \qquad 2.19. \ \ y = -\frac{\cos^2 x - C}{\sin x};$$

$$2.20. \ \ y=e^xx+Ce^x; \qquad 2.21. \ \ y=-x-1+Ce^x; \qquad 2.22. \ \ y=\frac{1}{3}\frac{5x^3+30x^2+60x+3C}{x^4+8x^3+24x^2+32x+16}; \qquad 2.23. \ \ y=e^{-3x}\frac{x+C}{x};$$

$$2.24. \quad y = -\frac{1}{3} \frac{\sqrt{(1+x^2)} + x^2 \sqrt{(1+x^2)} - 3C}{\sqrt{(1+x^2)}}; \qquad 2.25. \quad y = \frac{1}{x^2} \left(xe^x - e^x + \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C \right); \qquad 2.26. \quad y = \frac{-3xe^{-x} - e^{-x} - x^2 e^{-x} + C}{x+1} e^x;$$

3.1.
$$4 - y = \frac{1}{2}e^{-5x}$$
; 3.2. $x = 2y^2 - 10y$; 3.3. $y = 1 - 4e^{-\tan x}$; 3.4. $yx = \ln\left|\frac{y}{2}\right| + 10$; 3.5. $y = \frac{e^x}{x} + \frac{5-e}{x}$;

3.6.; 3.7.
$$y = \frac{x^2 - 1}{2} e^{-x}$$
; 3.8. $i = \frac{E}{R} + (i_0 - \frac{E}{R}) e^{-Rt/L}$; 3.9. $y = 1 + 4e^{-\tan x}$;

3.10.
$$y = xe^{3x} - e^{3x} - \frac{1}{2}x^2e^{2x} + 3e^{2x};$$
 3.11. $y = \frac{2x}{x-2};$ 3.12. $y = \frac{-1}{\sin x};$ 3.13. $y = \frac{x \ln x - x + 21}{x+1};$

$$3.14. \ \ y = \left(-2 + 3\sqrt{(1+x^2)} + 3x^2\sqrt{(1+x^2)}\right)e^{-\frac{3}{2}x^2}; \qquad 3.15. \ \ y = \cos x \left(\sin x - 1\right); \qquad \qquad 4.1. \ \ y^3 = 1 + \frac{C}{x^3}; \qquad 4.2. \ \ y = \frac{2e^x}{e^{2x} + C};$$

$$4.3. \ \ y^{-3} = x - \tfrac{1}{3} + Ce^{3x}; \qquad 4.4. \ \ y = \tfrac{x}{\ln x + C}; \qquad 4.5. \ \ y^3 = \tfrac{1}{C - Cx^2}; \qquad 4.6. \ \ y = \tfrac{x}{-x + 1 + Ce^{-x}}; \qquad 4.7. \ \ y^2 = \tfrac{5x}{2 + 5Cx^5};$$

5.1.
$$y^{-3} = -\frac{9}{5x} + \frac{14}{5x^{6}}$$
; 5.2. $y^{3/2} = 1 + 7e^{-3x/2}$; 5.3. $y^{3} = -3x^{2} + 4\sqrt{x^{3}}$; 5.4. $\frac{1}{y^{3}} = -\frac{1}{5}\frac{9x^{5} - 4}{x^{6}}$;

5.5.
$$\frac{1}{x} = -y^2 + 2 - e^{-\frac{y^2}{2}};$$
 5.6. $y^3 = -2x^2 + 3x^{3/2};$ 6.a. $y = \frac{r}{K + Ce^{-rx}};$ 6.b. $y^{-2} = \frac{\sigma}{\varepsilon} + Ce^{-2\varepsilon x};$

6.c. $\frac{1}{u^2} = (2 \int \exp(2\Gamma \sin t + 2Tt)) dt + C \exp(-2\Gamma \sin t - 2Tt);$

Bibliografía

- 1. Edwards, C. H. y Penney, D.: "Ecuaciones Diferenciales Elementales y problemas con condiciones en la frontera". Tercera Edición. Prentice Hall.
- 2. Kiseliov, A. Krasnov, M. y Makarenko, G., "Problemas de ecuaciones diferenciales ordinarias". Editorial
- 3. Spiegel, Murray R., "Ecuaciones diferenciales aplicadas". Tercera edición. Prentice Hall.
- 4. Viola-Prioli, Ana y Viola-Prioli, Jorge, "Ecuaciones Diferenciales Ordinarias". Universidad Simón Bolívar.
- 5. Zill, Dennis, "Ecuaciones Diferenciales con Aplicaciones". Grupo Editorial Iberoamérica.

Ecuaciones Diferenciales Ordinarias - Ecuaciones lineales.

Prof. Farith Briceño - 2009

e-mail: farith 72@hotmail.com