Systèmes Embarqués 1 : Travail écrit no 1.

Classe : T-2/I-2 Date : 21.11.2016

Problème nº 1 (Programmation en assembleur)

Lors du développement d'une application logicielle, la nécessité de recourir à des fonctions en langage assembleur pour des raisons de performances, c'est fait ressentir. Il a donc été décidé de créer un module contenant les fonctions « copy_words » et « stats» ci-dessous.

a) Ecrivez, en langage assembleur ARM, toutes les directives nécessaires à l'allocation des ressources et qui permettent un assemblage et un linkage corrects du module et de ses fonctions.

en assembleur ---global Stats,
Copy-words:

nb-calls #8; - Logins gright

b) Implémentez en assembleur la fonction « stats ».

Stats: Add

Vad holder rs, = nb_calls;
| Apolder r6, [rs]; Ar6=nb-calls
| add r6, r6, #1; Ar6++
| str r6, [rs]; A on shock daw la variable
| bx lr;

Implémentez en assembleur la fonction « copy_words ». Pour indication, les arguments « dst », « src », qui sont des pointeurs (références) vers des tableaux de « long », et « nb_words » sont passés à la fonction par les registres « R0 », « R1 » et respectivement « R2 ».

and assembleur

Copy_words: put always

A: Sinh Y2, Y2, #1: //ms word
lar Y3, A [re, Y2] [ms + Asl [ms - word]

str [mm],

Sinh [re, Y2] [ms + Asl [ms - word]

2: Cmp Y2, #0;

bine copy words of while >0...

Cac/11.2016] T-2/1-2 str.

Page 1/5

Systèmes Embarqués 1 : Travail écrit no 1.

Problème n° 2 (Mode d'adressage)

a) Implémentez les 2 instructions assembleur permettant de sauver le contenu des registres R4 à R12 de la structure « regs » ci-dessous

struct {uint32_t r4,r5,r6,r7,r8,r9,r10,r11,r12;} regs;

ro, = regs smia ro, frantizg

b) Donnez l'instruction assembleur permettant de restaurer sur la pile les registres r4, r5, r6, r7 et pc (les instructions push et pop ne peuvent pas être utilisées).

Sp! 2 ry, rs, r6, r7, pc } -> lamid sp! { ry-r7, pc}

c) Pour le code assembleur et la représentation de la mémoire (Little-Endian / 8-bits) et l'état des registres du processeur ci-dessous, donnez le résultat des opérations (état des registres, état de la mémoire):

Mémoi: (little-endian		(après)
0x80002100	0x34	
0x80002101	0xf5	
0x80002102	0x89	
0x80002103	0xc9	
0x80002104	0x25	
0x80002105	0x94	
0x80002106	0xa5	
0x80002107	0xc2	
0x80002108	0xba	
0x80002109	0x53	
0x8000210a	0x41	OXWAL 18 C
0x8000210b	0x87	

	Registres (avant)	Registres (après)
R0	0x0000′0004	
R1	0x0000′3000	
R2	0x0000′000c	0x0000 0300 V
R3	0x0000'12f8	
R4	0x0000′0002	
R5	0x8000'210a	0x8000210CV
R6	0xffff'fff2	
R7	0x8000′5101	OX FFFF' FFAB
R8	0x8000'20fc	0x8000 20 + 6
R9	0x0302'0100	
R10	0x0403′0200	
R11	0x0504′0300	
R12	0x8000′2008	
SP	0x8000′5110	
	2 5.	

1. lsr r2, r1, r0 2 r2 = r1 shilté de ro ->9

2. strb r3, [r5], r4

address r5 = r3 prisaite 15 = 15 + 17

3. ldrsh r7, [r8, #2]!

V8=18+2 On a pas la mémoire de 0x8000'20FR, je Suppose qu'elle conhient 0xAB

Systèmes Embarqués 1: Travail écrit no 1.

Problème nº 3 (traitement numérique des nombres)

a) Prévoyez l'état des flags Z, C, N et V ainsi que le résultat contenu dans le registre R2 (en décimal) suite à l'exécution des instructions assembleur suivantes :

Remarque: toutes les opérations sont faites avec des registres de 8 bits au lieu de 32 bits

b) Représentez en hexadécimal sur 32 bits (simple précision) la valeur réelle ci-dessous et donnez le développement (pour rappel : exposant est codé sur 8 bits avec un biais de 127)

R2(signé) = 4

c) Citez les fanions (flags) utilisés pour tester les conditions des nombres non signés et indiquez l'équation logique sur les fanions pour les opérations « eq » et « ls ».

Systèmes Embarqués 1 : Travail écrit no 1.

/	Probl	eme n 4 (architecture generale)	
h	a)	Quelle est la différence principale dans l'organisation mémoire d'une application logici	ielle entre un
U		système embarqué et un système on chip	
		système embargai = micro - controlleur = tout dans le même IC	micro controller
			- Mc
	^	SAC= élévent sévaire	

b) Citez les 4 architectures de microprocesseurs selon la classification de Flynn (les abréviations)

Jon Mann Harward SISY SIND/MISD KIMP

c) Quelle est la différence principale entre l'architecture Von Neumann et l'architecture Harvard bus séparé entre Unité de Commande - mémoire programme et ALU-mémoire de donnée

d) Citez les 3 cycles principaux du traitement des instructions par les microprocesseurs

1 decode decode

e) Pour une organisation de la mémoire en « **Little-Endian** », représentez (en hexadécimal pour les entiers et en caractère ascii pour les strings) dans le tableau ci-dessous les variables suivantes

Adresse: 0x80002104 0x8000210a 0x80002109 0x8000210c 0x80002100	variable: msg: v1: v2: v3: v4:	taille/type: .asciz .short .byte .short .long	L 12 a	0000 0000 0000 0011 => 111 1101 = 111d 0111 1111 = 1000 0001 = 81 71 1 = 0100 1000 = 1011 0111 = 10111000 = 158 43
---	---	---	--------	--

3,5

	7 0
0x80002100	0268143
0x80002101	Ox II Go
0x80002102	Ox 11 00
0x80002103	Oa fl as
0x80002104	Ox By W
0x80002105	8120
0x80002106	Ž
0x80002107	Ð
0x80002108	. D
0x80002109	Oxet 74
0x8000210a	Ox fd 1
0x8000210b	Ox Il
0x8000210c	Ox3el/
0x8000210d	0x54
0x8000210e	

Kon

Systèmes Embarqués 1 : Travail écrit no 1

^	Systemes Embarques 1. Travail ecrit no 1.
6	Problème n° 5 (architecture interne) a) L'architecture interne du μP ARM Cortex-A8 est réalisée de 7 à 8 composantes principales. Citez et
	décrivez à l'aide d'une phrase la fonction de trois de ces unités :
	- Instruction below Unit
2	- CPIS-Mah - La 1-Lach
	- 17 O-Cach -12 System memory Cach
	-All bus memory systime
	- mon mecha processor
	b) Indiquez la fonction/l'usage des différents registres ci-dessous 1. R13: SP = Stack Pointur
1	2. R14: Link register LR
	1) 3. R15: Program Counter PC 4. CPSR: Current Program Status Register
1	c) Quelle différence fondamentale existe-t-il entre mode de fonctionnement « user » et « supervisor »? User est un moch normal qui n'a paç uccès au regisha printégic (coch programe) Superuser est un moch actif lors de l'execusion de Coch propre à l'
	d) Citez les caractéristiques principales de l'architecture des μP ARM et plus spécialement du Cortex-A8
	Adder 10 - 2 PX
6	Am - lood Sofur
	. Unité de commande
	Mémoine donnée
	e) Citez le mécanisme implémenté par le μP ARM Cortex-A8 pour augmenter ses performances lors de
1	l'exécution d'une instruction pipeline lekt classification exec
	like decel exec
	hold Olicook Perce

[Gac/11.2016] T-2/I-2

Page 5 / 5