Norme vettoriali

Una funzione $\|\cdot\|: \mathbb{F}^n \to \mathbb{R}$ si dice norma vettoriale se:

- $\forall v \in \mathbb{F}^n$. ||v|| > 0 e $||v|| = 0 \iff v = 0$;
- $\forall \alpha \in \mathbb{F}$. $\|\alpha v\| = |\alpha| \|v\|$;
- $\forall v, u \in \mathbb{F}^n$. $||v + u|| \le ||v|| + ||u||$;

Per esempio:

norma euclidea
$$||v||_2 = \sqrt{\sum_{i=1}^n |v_i|^2} = \sqrt{v \cdot v}$$
;

norma 1
$$||v||_1 = \sum_{i=1}^n |v_i|;$$

norma
$$\infty$$
 $\max_{i=1,...,n} |x_i|$.

Le norme sono topologicamente equivalenti: date le norme $\|\cdot\|', \|\cdot\|''$,

$$\exists \alpha, \beta \in \mathbb{R}^+ . \forall v \in \mathbb{F}^n . \alpha ||v||'' < ||v||' < \beta ||v||''.$$

Per esempio, $||x||_{\infty} \le ||x||_2 \le \sqrt{x} ||x||_{\infty}$.