

Sommersemester 2015

Formelsammlung Koordinatentransformation

Es wird die Notation aus Vorlesung und Übung zur Analysis 2 (EI) verwendet.

		•								
Skalarfelder $f\colon \mathbb{R}^3 o\mathbb{R}$	Kugelkoordinaten im Punkt $(r, \varphi, \theta)^T$	***	$\begin{split} \widetilde{\Delta f} &= \frac{\partial^2 \tilde{f}}{\partial r^2} + \frac{2}{r} \frac{\partial \tilde{f}}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \tilde{f}}{\partial \varphi^2} \\ &+ \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial \tilde{f}}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 \tilde{f}}{\partial \theta^2} \end{split}$		$ec{ abla} ilde{f} = \left(egin{array}{c} 1 & rac{\partial f}{\partial ec{arphi}} \\ 1 & \partial ilde{f} \end{array} ight)$	$\langle \frac{7}{r} \frac{\partial \theta}{\partial \theta} \rangle$ bzgl. $\{e_r, e_{\varphi}, e_{\theta}\}$			Kugelkoordinaten im Punkt $^{\it T}$	$\left(\hat{g}_{1}\right)$
	Zylinderkoordinaten im Punkt $(r, \varphi, z)^T$	4	$\widetilde{\Delta f} = \frac{\partial^2 \tilde{f}}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{f}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \tilde{f}}{\partial \phi^2} + \frac{\partial^2 \tilde{f}}{\partial z^2}$	_	$ abla f = \left(egin{array}{c} 1 rac{\partial f}{\partial ec{q}} \ rac{\partial f}{\partial ec{q}} \end{array} ight)$	$\langle \overline{\sigma_z} \ / \rangle$ bzgl. $\{e_r, e_{arphi}, e_z\}$	$\text{Vektorfelder } q \colon \mathbb{R}^3 \to \mathbb{R}^3$	3	Zylinderkoordinaten im Punkt $(r,\varphi,z)^T$	$\left(\hat{g}_{1} ight)$
	kartesische Koordinaten im Punkt $(x, y, z)^T$	* **	$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$\left\langle \frac{\partial \overline{\partial c}}{\partial \overline{c}} \right\rangle$	$ abla f = egin{pmatrix} rac{\partial f}{\partial y} \ rac{\partial f}{\partial x} \end{pmatrix}$	$\begin{cases} \langle \partial z \rangle \\ \text{bzgl. } \{e_x, e_y, e_z\} \end{cases}$			kartesische Koordinaten im Punkt $(x,y,z)^T$	$\left(egin{array}{c} g_1 \end{array} ight)$