Calcul matriciel

Multiplication par un scalaire somme

Récapitulatif séance précédente

Ecrire les fonctions suivantes :

<mark>ligne(m,i)</mark>

- en entrée : une matrice m et un indice de ligne i
- en sortie : la ième ligne sous forme de liste

$$M=[[1,2],[3,4],[5,6]]$$
 ligne $(M,1) \rightarrow [3,4]$

colonne(m,j)

- en entrée : une matrice m et un indice de colonne j
- en sortie : la jème colonne sous forme de liste

$$M=[[1,2],[3,4],[5,6]]$$
 colonne $(M,0) \rightarrow [1,3,5]$

Récapitulatif séance précédente

Nouvelle fonction

parcourir(m)

- en entrée : une matrice m (liste de listes)
- en sortie : la liste de toutes les éléments de m

$$M=[[1,2],[3,4],[5,6]]$$
 parcourir $(M) \rightarrow [1,2,3,4,5,6]$

mult(m,x)

- en entrée : une matrice m (liste de listes) et un réel x
- en sortie : la liste de toutes les éléments de m multipliés par x

$$M=[[1,2],[3,4],[5,6]]$$
 mult $(M,2) \rightarrow [2,4,6,8,10,12]$

Récapitulatif séance précédente

Nouvelle fonction

multi_scal(m,x)

- en entrée : une matrice m (liste de listes) et un réel x
- en sortie : une liste de liste, de même dimensions que M, contenant ses valeurs multipliées par x.

```
M=[[1,2],[3,4],[5,6]] multi_scal(M,2) \rightarrow [[2,4],[6,8],[10,12]]
```

Multiplication par un scalaire

Si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 alors $2M = \begin{pmatrix} 10 & -6 \\ 2 & 4 \\ 0 & 2 \end{pmatrix}$

Définition mathématique

Soit $M=(m_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ une matrice d'ordre (n,p) et x un réel.

La matrice xM ou $x\times M$ est la matrice de terme général $xm_{ij}=x\times m_{ij}: xM=(xm_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$

Addition de matrices

Si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 0 & -1 \end{pmatrix}$ alors $M + N = \begin{pmatrix} 5+1 & -3-1 \\ 1+2 & 2-2 \\ 0+0 & 1-1 \end{pmatrix} = \begin{pmatrix} 6 & -4 \\ 3 & 0 \\ 0 & 0 \end{pmatrix}$

Définition mathématique

Soit $M=(m_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ et $N=(n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ deux matrices de même ordre (n,p).

La somme M+N est la matrice de terme général $m_{ij}+n_{ij}$: $M+N=(m_{ij}+n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$

Multiplication par un scalaire

Si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 alors $2M = \begin{pmatrix} 10 & -6 \\ 2 & 4 \\ 0 & 2 \end{pmatrix}$

Définition mathématique

Soit $M = (m_{ij})_{\substack{1 \le i \le n \\ 1 \le J \le p}}$ une matrice d'ordre (n,p) et x un réel.

La matrice xM ou $x\times M$ est la matrice de terme général $xm_{ij}=x\times m_{ij}: xM=(xm_{ij})_{\substack{1\leq i\leq n\\1\leq i\leq n}}$

Fonction *multscal(M,x)*:

- prend en paramètres une liste de listes M représentant une matrice et un réel x
- renvoie la liste de listes associée au produit xM

Addition de matrices

Si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 0 & -1 \end{pmatrix}$ alors $M + N = \begin{pmatrix} 5+1 & -3 \\ 1+2 & 2 \\ 0+0 & 1 \end{pmatrix}$

Définition mathématique

Soit $M=(m_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ et $N=(n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ deux matrices de même ordre (n,p).

La somme M+N est la matrice de terme général $m_{ij}+n_{ij}$: $M+N=(m_{ij}+n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$

Fonction som_mat(M,N):

- prend en paramètres deux listes de listes M et N représentant deux matrices de mêmes dimensions
- renvoie la liste de listes associée
 à la somme M+N

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    # Initialisation de « prod », la matrice résultat, par une liste vide
    prod=[]
   # Double boucle pour parcourir tous les éléments de la matrice et les multiplier par x
    for i in range(n):
        prod.append([])
        for j in range(p):
            prod[i].append(x*mat[i][j])
    return (prod)
```

$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \Rightarrow 2M = \begin{pmatrix} 10 & -6 \\ 2 & 4 \\ 0 & 2 \end{pmatrix}$$

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    prod=[]
    for i in range(n):
        prod.append([])
        for j in range(p):
            prod[i].append(x*mat[i][j])
    return(prod)
```

mat=[[5,3], [1,2],[0,1]] x=2	i=0	i=1	i=2
	prod=[[]]	prod=[[10,6],[]]	prod=[[10,6]],[2,4],[]]
Initialisation n=3 P=2	Pour j de 0 à 1 : prod[0].append(x*mat[0][j])	Pour j de 0 à 1 : prod[1].append(x*mat[1][j])	Pour j de 0 à 1 : prod[2].append(x*mat[2][j])
prod=[]	Résultat prod=[[10,6]]	Résultat prod=[[10,6],[2,4]]	Résultat prod=[[10,6],[2,4],[0,2]]

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    # Initialisation de « prod », la matrice résultat : on crée une
    # matrice de dimension(n,p) remplie de valeurs manquantes
    prod=[[None for j in range(p)] for i in range(n)]
   # Double boucle pour parcourir tous les éléments de la matrice et les multiplier par x
    for i in range(n):
        for j in range(p):
            prod[i][j]=x*mat[i][j]
    return (prod)
```

$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \Rightarrow 2M = \begin{pmatrix} 10 & -6 \\ 2 & 4 \\ 0 & 2 \end{pmatrix}$$

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    prod=[[None for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
            prod[i][j]=x*mat[i][j]
    return (prod)
```

mat=[[5,3],[1,2],[0,1]]	i=0	i=1	i=
x=2 Initialisation	Pour j de 0 à 1 : prod[0][j]=2*mat[0][j]	Pour j de 0 à 1 : prod[1][j]=2*mat[1][j]	Pour j de 0 à 1 : prod[2][j]= 2*mat[2][j]
n=3 P=2 prod=[[0,0],[0,0],[0,0]]	Résultat prod=[[10,6],[0,0],[0,0]]	Résultat prod=[[10,6],[2,4],[0,0]]	Résultat prod=[[10,6],[2,4], [0,2]]

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    # définition "en compréhension" du produit
    return [[x*mat[i][j] for j in range(p)] for i in range(n)]
```

```
Python
```

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    # définition "en compréhension" du produit
    return [[x*mat[i][j] for j in range(p)] for i in range(n)]
```

$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \Rightarrow 2M = \begin{pmatrix} 10 & -6 \\ 2 & 4 \\ 0 & 2 \end{pmatrix}$$

mat=[[5,3],[1,2],[0,1]] x=2	i	<pre>[x*mat[i][j] pour j allant de 0 à 1]</pre>	Résultat
Initialisation n=3	i=0	[x*mat[0][j] pour j allant de 0 à 1]	[10,6]
P=2	i=1	[x*mat[1][j] pour j allant de 0 à 1]	[2,4]
	i=2	[x*mat[2][j] pour j allant de 0 à 1]	[0,2]

Résultat [[10,6],[2,4],[0,2]]

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    prod=[[None for j in range(p)] for i in range(n)]

    for i in range(n):
        for j in range(p):
            prod[i][j]=x*mat[i][j]
    return(prod)
```

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    prod=[]
    for i in range(n):
        prod.append([])
        for j in range(p):
            prod[i].append(x*mat[i][j])
    return(prod)
```

```
def multiscal(mat,x) :
    n=len(mat)
    p=len(mat[0])
    # définition "en compréhension" du produit
    return [[x*mat[i][j] for j in range(p)] for i in range(n)]
```

Addition de matrices

Si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 0 & -1 \end{pmatrix}$ alors $M + N = \begin{pmatrix} 5+1 & -3-1 \\ 1+2 & 2-2 \\ 0+0 & 1-1 \end{pmatrix} = \begin{pmatrix} 6 & -4 \\ 3 & 0 \\ 0 & 0 \end{pmatrix}$

Définition mathématique

```
Soit M=(m_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}} et N=(n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}} deux matrices de même ordre (n,p).
```

La somme M+N est la matrice de terme général $m_{ij}+n_{ij}$: $M+N=(m_{ij}+n_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$

```
def som_mat(mat1,mat2):
    n=len(mat1)
    p=len(mat1[0])
    # définition "en compréhension" de la somme
    return [[mat1[i][j]+mat2[i][j] for j in range(p)] for i in range(n)]
```

Transposition

La transposée d'une matrice est la matrice obtenue en échangeant les lignes et les colonnes.

Par exemple, si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 alors ${}^tM = \begin{pmatrix} 5 & 1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$

Définition mathématique

Soit $M = (m_{ij})_{\substack{1 \le i \le n \\ 1 \le J \le p}}$ une matrice d'ordre (n, p).

La transposée de M est la matrice ${}^tM=(t_{ij})_{\substack{1\leq i\leq p\\1\leq j\leq m}}$ d'ordre (p,n), telle que : $t_{ij}=m_{ji}$

Transposition

La transposée d'une matrice est la matrice obtenue en échangeant les lignes et les colonnes.

Par exemple, si
$$M = \begin{pmatrix} 5 & -3 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 alors ${}^tM = \begin{pmatrix} 5 & 1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$

Définition mathématique

Soit $M = (m_{ij})_{\substack{1 \le i \le n \\ 1 \le J \le p}}$ une matrice d'ordre (n, p).

La transposée de M est la matrice ${}^tM=(t_{ij})_{1\leq i\leq p}$ d'ordre (p,n), telle que : $t_{ij}=m_{ji}$ $1\leq j\leq m$

```
def transpose(mat):
    n=len(mat)
    p=len(mat[0])
    # définition "en compréhension" de la transposition
    return [[mat[i][j] for i in range(n)] for j in range(p)]
```