1

${\bf Math\text{-}Symbols\text{-}in\text{-}\LaTeX\text{-}Manual}$

₂ polos	SS	k
--------------------	----	---

1 Constants and Useful Symbols

Last Update November 15, 2017

4 Contents

6	2	Vector and Matrix Defination	2
7	3	Useful Functions and Operators	2
8	4	Useful Aliases and Generators	3
9	1	Constants and Useful Symbols	
10		• \mi: alias of \mathrm i, i	
11		• \me: alias of \mathrm e, e	
12		• \mnatr: alias of \mathbb N, N	
13		• \mintg: alias of \mathbb Z, $\mathbb Z$	
14		• \mrato: alias of \mathbb Q, Q	
15		• $\mbox{\em mreal}$: alias of $\mbox{\em mathbb } \mbox{\em R}$, $\mbox{\em R}$	
16		• \mcmpx: alias of \mathbb C, C	
17		• \mhilb: alias of \mathbb H, H	
18		• \mcond: alias of \mathrm {Cond.}, Cond.	
19		• \mconst: alias of \mathrm {const}, const	
20		• : continuous function space. eg: \mscon{(I)} gets $C(I)$	
21		• \mscab: continuous function space, alias of \mscon{[a, b]}, $C[a,b]$	
22		• \mslbg[]{}: lebesgue function space. eg: \mslbg{2} gets $L^2(I)$, \mslbg[{[a, b]}]{2} gets $L^2([a,b])$	ets
24 25		• \mssbl[]{}: sobolev function space. eg: \mssbl{m} gets $H^m(I)$, \mssbl[{[a, b]}]{m} g $H^m([a,b])$	ets

2 Vector and Matrix Defination

- \mv*: Vector Notations, alias of \bm *, * could be any English characters or Greek characters. For examples, \mva gets a, and \mvalpha gets α . The alphabet looks like this: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , π , ρ , σ , τ , v, ϕ , χ , ψ , ω
- \mm*: Matrix Notations, alias of \mathbf *, * could be any English characters or Greek characters. For examples, \mma gets A, and \mmsigma gets Σ. The alphabet looks like this: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, Γ, Δ, Θ, Λ, Ξ, Π, Σ, Υ, Φ, Ψ, Ω
- \mm*t: Transposed Matrix Notations, alias of \{\mathbf *}^T, * could be any English characters or Greek characters. For examples, \mma gets A, and \mmsigma gets \Sigma. The alphabet looks like this: \mathbf{A}^T , \mathbf{B}^T , \mathbf{C}^T , \mathbf{D}^T , \mathbf{E}^T , \mathbf{F}^T , \mathbf{G}^T , \mathbf{H}^T , \mathbf{I}^T , \mathbf{J}^T , \mathbf{K}^T , \mathbf{L}^T , \mathbf{M}^T , \mathbf{N}^T , \mathbf{O}^T , \mathbf{P}^T , \mathbf{Q}^T , \mathbf{R}^T , \mathbf{S}^T , \mathbf{T}^T , \mathbf{U}^T , \mathbf{V}^T , \mathbf{W}^T , \mathbf{X}^T , \mathbf{T}^T , \mathbf{T}^T , \mathbf{D}^T , \mathbf{D}^T , \mathbf{T}^T , $\mathbf{T$
- \mvzero, \mvone, \mmzero, \mmone: Special vector and matrix notation, 0, 1, 0, 1

₅ 3 Useful Functions and Operators

- \diff: diff operator, d, eg. $\int_0^t f(\tau) d\tau$
- \\Diff: Diff operator, D, eg. D²X = $\frac{-x_{i+1,j} + 2x_{i,j} x_{i-1,j}}{\Delta x^2}$
- **\Expect**: Expect operator, E, eg. X = B(n, p), EX = np
- \diag, \eig, \tr: Matrix operators, diag, eig, tr, eg. $D = \operatorname{diag} A$, $[\Lambda, V] = \operatorname{eig} A$, tr $\Lambda = \operatorname{tr} A$
- \lambda cm: lcm operator, lcm, eg. $lcm(f,g) \cdot gcd(f,g) = f \cdot g$
- \rand: random number, rand
- \mean, \var: statistics operator, mean, var, eg. $\mu = \text{mean}\,X$, $\sigma^2 = \text{var}\,X$
- \corr : correlation operator, corr, eg. $\operatorname{corr}(X,Y) = (R)_{ij} = \frac{\sum_{X_i,Y_j} (X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum_i (X-\bar{X})^2 \sum_j (Y-\bar{Y})^2}}$
- \conv: convolution operator, conv, eg. $conv(f,g) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$
- \card: cardinals operator, card, eg. card $\{1,2,3\}=3$, card $\mathbb{R}=2^{\aleph_0}$
- \argmin, \argmax, \argopt: argmin, argmax, argopt operator, $\hat{\theta} = \operatorname*{argmin}_{\theta} J_{\theta}(x)$
- \dist: distance operator, dist, eg. $\min \sum_{\forall s,t \in G} \operatorname{dist}(s,t)$
- \abs{}, \norm{}: norm operator, eg. $|x+y| \le |x| + |y|$, $||\mathbf{A}x + \mathbf{b}||$
- \normlp{}{}: Lp-norm operator, eg. $\|1\|_2$, $\|\mathbf{A}x + \mathbf{b}\|_2$, $\|\mathbf{A}x + \mathbf{b}\|_\infty$

4 Useful Aliases and Generators

- \fracdiff{}{}: frac & diff operator, also provide \dfracdiff{}{} mode. For example, \fracdiff{u}{x} gets $\frac{du}{dx}$, \dfracdiff{^2u}{x^2} gets $\frac{d^2u}{dx^2}$
- \fracdiffs{\}: simple frac & diff operator. For example, \fracdiffs{\x} gets $\frac{d}{dx}$, \dfracdiffs{\y} gets $\frac{d}{dy}$
- \fracpartial{}{}: frac & partial operator, also provide \dfracpartial{}{} mode. For example, \fracpartial{u}{x} gets $\frac{\partial u}{\partial x}$, \dfracpartial{^2u}{x^2} gets $\frac{\partial^2 u}{\partial x^2}$
- \fracpartials{}: simple frac & partial operator. For example, \fracpartials{x} gets $\frac{\partial}{\partial x}$, \dfracpartials{y} gets $\frac{\partial}{\partial y}$
- \mclosure, \mclosuresquare, \mclosurebrace: auto height brackets, eg $\left\{\left[\left(a^2+b^2\right)^2\right]^2\right\}$
- \mvct, \mvctz: row vector creator, eg \mvct{a}{n} gets $(a_1, a_2, ..., a_n)$, \mvctz{a}{n} gets $(a_0, a_1, ..., a_n)$
- \mvctt, \mvctzt: column vector creator, eg \mvctt{a}{n} gets $(a_1, a_2, ..., a_n)^T$, \mvctzt{a}{n} gets $(a_0, a_1, ..., a_n)^T$
- \mequlist: provided a list of equations, eg \mequlist{x + y &= 10 \\4x + 2y &= 30} gets $\begin{cases} x+y=10 \\ 4x+2y=30 \end{cases}$