LA DÉRIVATION M05

EXERCICE N°1 Méthode : dérivée et tableau de variation

VOIR LE CORRIGÉ

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné, puis dresser le tableau de signes de f' et en déduire son tableau de variations sur I.

1)
$$f: x \mapsto \frac{1}{4}x^4 + \frac{4}{3}x^3 + \frac{1}{2}x^2 - 6x - 2$$

$$I =]-4 ; 2[$$

(Coup de pouce pour factoriser la dérivée : f'(1), Méthode de Horner, Delta)

2)
$$f: x \mapsto x\sqrt{x} - 3\sqrt{x}$$

$$I =]0; 4[$$

EXERCICE N°2 Étude de fonction

VOIR LE CORRIGÉ

Extrait du Seseamath 1spé n°37 p 154

Soit g la fonction définie sur $]-\infty$; 9[\cup]9; $+\infty$ [par $g(x)=\frac{3x+1}{x-9}$.

- 1) Justifier que la fonction g est dérivable sur $]-\infty$; $9[\ \cup\]9$; $+\infty[$ et déterminer sa dérivée g'.
- 2) Étudier le signe de g' sur $]-\infty$; $9[\cup]9$; $+\infty[$.
- 3) En déduire les variations de g sur $]-\infty$; $9[\cup]9$; $+\infty[$.
- 4) Contrôler la réponse à la question précédente en traçant la courbe de la fonction g à l'aide la calculatrice graphique.

LA DÉRIVATION M05C

EXERCICE N°1 Méthode : dérivée et tableau de variation

RETOUR À L'EXERCICE

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné, puis dresser le tableau de signes de f' et en déduire son tableau de variations sur I.

1)
$$f: x \mapsto \frac{1}{4}x^4 + \frac{4}{3}x^3 + \frac{1}{2}x^2 - 6x - 2$$

$$I =]-4 ; 2[$$

(Coup de pouce pour factoriser la dérivée : f'(1), Méthode de Horner, Delta)

- f est bien définie et dérivable sur I et pour tout $x \in I$, $f'(x) = x^3 + 4x^2 + x 6$
- On remarque que :

$$f'(1) = 1^3 + 4 \times 1^2 + 1 - 6 = 0$$

Ainsi 1 est une racine évidente, ce qui nous permet d'appliquer la méthode de Horner :

	1	4	1	-6
1		1	5	6
	1	5	6	0

On en déduit que $f'(x) = (x-1)(x^2+5x+6)$

• Posons à présent $\Delta = 5^2 - 4 \times 6 = 1$ le discriminant du second facteur. $\Delta > 0$, il y a donc deux racines :

$$x_1 = \frac{-5 - \sqrt{1}}{2 \times 1} = -3$$

e

$$x_1 = \frac{-5 + \sqrt{1}}{2 \times 1} = -2$$

Au final f'(x) = (x-1)(x+2)(x+3)

Oui, je sais c'est long, mais vous êtes à la maison, vous avez le temps ;) Et puis ça fait une bonne révision :)

On en déduit le tableau de signes et de variations suivant :

x	<u>-4</u>	oud de bigi	-3	<u>variations</u>	$\frac{-2}{}$		1		2
x-1		_		_		_	0	+	
x+2		_		_	0	+		+	
x+3		_	0	+		+		+	
f'(x)		_	0	+	0	_	0	+	
f(x)	$f(x) \qquad \frac{26}{3} \qquad \frac{16}{3} \qquad \frac{8}{3}$								

2)
$$f: x \mapsto x\sqrt{x} - 3\sqrt{x}$$
 $I =]0; 4[$

•
$$f$$
 est bien définie et dérivable sur I et pour tout $x \in I$,
$$f'(x) = 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}} - 3 \times \frac{1}{2\sqrt{x}}$$
$$= \frac{2x + x - 3}{2\sqrt{x}}$$
$$= \frac{3x - 3}{2\sqrt{x}}$$
$$f'(x) = \frac{3(x - 1)}{2\sqrt{x}}$$

On en déduit le tableau de signes et de variations suivant :

х	0 1	4
3(x-1)	- 0	+
$2\sqrt{x}$	+	+
f'(x)	- 0	+
f(x)	0 -2	2

LA DÉRIVATION M05C

EXERCICE N°2 Étude de fonction

RETOUR À L'EXERCICE

Extrait du Sesamath 1spé n°37 p 154

Soit g la fonction définie sur $]-\infty$; 9[\cup]9; $+\infty$ [par $g(x)=\frac{3x+1}{x-9}$.

Posons $I =]-\infty$; $9[\cup]9$; $+\infty[$

- 1) Justifier que la fonction g est dérivable sur $]-\infty$; $9[\ \cup\]9$; $+\infty[$ et déterminer sa dérivée g'.
- On a :

 $g = \frac{u}{v}$ avec u et v définies et dérivables sur I et v ne s'annule pas sur I.

Donc:

g est définie et dérivable sur I et pour tout $x \in I$ $g'(x) = \frac{-3}{(x-9)^2}$

2) Étudier le signe de g' sur $]-\infty$; $9[\cup]9$; $+\infty[$.

Pour tout $x \in I$, $(x-9)^2 > 0$ d'où

 $\frac{-3}{(x-9)^2} < 0$

Ainsi .

 $\forall x \in I, g'(x) < 0$

- 3) En déduire les variations de g sur $]-\infty$; 9[\cup]9; + ∞ [.
- g' est strictement négative sur **l'intervalle** $]-\infty$; 9 donc [g] est strictement décroissante sur $]-\infty$; 9
- g' est strictement négative sur **l'intervalle**]9; + ∞ [

donc g est strictement décroissante sur 9; $+\infty$

- Attention : le mot **intervalle** est **obligatoire**.
- g n'est pas décroissante sur I.
- 4) Contrôler la réponse à la question précédente en traçant la courbe de la fonction g à l'aide la calculatrice graphique.

