Задача 9-2

Для получения простого вещества **X** Юный химик смешал 500 г раствора безводной натриевой соли **A** (содержание соли в растворе составляет 35 масс. %) и 90 г измельчённого минерала *пиролюзита* в двугорлой колбе **1**. Затем из капельной воронки **2** при нагревании он начал добавлять раствор серной кислоты, при этом реакционная смесь потемнела, а установку начали заполнять тёмно-красные пары **X** (*p-ция 1*). Пары постепенно достигли холодильника **3**, в котором сконденсировались в тёмную жидкость и по каплям начали поступать в охлаждаемую льдом колбу-приёмник **4**. Ниже приведен рисунок установки для получения вещества **X**:

1. На приведённом рисунке не хватает следующих частей: a) ловушки с тиосульфатом натрия; a0 термометра; a0 входного шланга с проточной водой для охлаждения; a2 выходного шланга для воды.

Определите, какие из недостающих частей установки соответствует позициям 5-8, заполните таблицу:

	a) Ловушка	б) Термометр	<i>в</i>) Входной	г) Выходной
	c $Na_2S_2O_3$		шланг для воды	шланг для воды
Позиция				

В тёплой воде **X** растворяется ограниченно, при этом раствор окрашивается в красно-коричневый цвет. При добавлении щёлочи происходит обесцвечивание водного раствора (p- μ u μ 2). **X** хорошо растворяется в бензоле C_6H_6 , при добавлении небольшого количества металлического железа этот раствор постепенно обесцвечивается (p- μ u μ 4). Один из продуктов p- μ u μ 4 содержит 45,9 масс. % углерода.

После завершения опыта в ловушке с тиосульфатом образовалась взвесь простого вещества (p-uus s). Юный химик разобрал прибор промыл всю посуду от s раствором тиосульфата натрия, в который добавил карбонат натрия (p-uus s).

- **2.** Напишите формулу вещества, являющегося основным компонентом минерала *пиролюзита*.
 - 3. Определите вещества А и Х.
- **4.** Напишите уравнения реакций 1-6. Зачем для мытья посуды Юный химик добавил в раствор тиосульфата карбонат натрия?
- **5.** Рассчитайте теоретический минимальный объём раствора серной кислоты, необходимый для количественного протекания реакции *1*. При расчётах учтите, что используемый Юным химиком *пиролюзит* кроме основного вещества содержит 8 масс. % оксида кремния.
 - 6. Опишите, какие правила безопасности соблюдал Юный химик при:
 - a) приготовлении раствора серной кислоты; δ) проведении синтеза.

Решение задачи 9-2 (автор: Трофимов И.А.)

1. Термометр устанавливают на позицию 5, чтобы следить за температурой отгоняемых паров. Ловушку помещают на позицию 8, чтобы минимизировать выброс вредных паров брома в атмосферу. Входное отверстие для шланга обозначено цифрой 7, а выходное — цифрой 6. Располагают вход и выход воды именно таким образом, поскольку в противном случае проточная вода будет сразу стекать сверху вниз и не задерживаться в холодильнике, что сделает охлаждение неэффективным.

	a) Ловушка	б) Термометр	<i>в</i>) Входной	г) Выходной
	c Na ₂ S ₂ O ₃		шланг для воды	шланг для воды
Позиция	8	5	7	6

- 2. Основной компонент *пиролюзита* диоксид марганца MnO₂.
- 3. Описание X как жидкого простого вещества, образующего тёмнокрасные пары приводит к выводу о том, что X – это бром Br₂. Наличие брома можно также установить по расчёту состава продукта реакции X с бензолом в смеси с железом. Полагая, что число атомов углерода в продукте такое же, как в бензоле, получаем молярную массу 157 г/моль, что соответствует составу C₆H₅Br.

Прийти к выводу о том, что бром содержится в соли в степени окисления меньшей, чем 0, можно, рассмотрев участвующие в синтезе вещества. Для разбавленных растворов серной кислоты окислительные свойства нехарактерны; в состав *пиролюзита* же входит MnO_2 , который в кислой среде проявляет окислительные свойства и восстановливается с образованием солей марганца(II). Отсутствие кристаллизационной воды указано в задаче напрямую. Следовательно, натриевая соль, которая может быть использована для получения брома — это **бромид натрия** ($\mathbf{A} - \mathbf{NaBr}$).

4. В кислой среде диоксид марганца окисляет находящиеся в растворе бромид-ионы с образованием брома:

1)
$$2NaBr + MnO_2 + 2H_2SO_4 \rightarrow Br_2\uparrow + MnSO_4 + Na_2SO_4 + 2H_2O$$
.

В щелочной среде бром диспропорционирует на бромид- и гипобромитионы (20 °C) и бромид- и бромат-ионы (50 °C); т.к. указана тёплая вода, уравнение реакции следующее:

2)
$$3Br_2 + 6NaOH \rightarrow 5NaBr + NaBrO_3 + 3H_2O$$
.

При добавлении небольших количеств брома в бензол реакция не идёт. Однако при добавлении металлического железа сначала оно окисляется до бромида железа(III), который, будучи кислотой Льюиса, обладает способностью катализировать реакции замещения в ароматическом кольце (знать эту реакцию необязательно, так как состав продукта можно вычислить по массовой доле углерода). Отсюда можем написать реакции 3 и 4 (в решении участников нумерация реакций может быть иной):

3)
$$2\text{Fe} + 3\text{Br}_2 \rightarrow 2\text{FeBr}_3$$
;

4)
$$C_6H_6 + Br_2 \xrightarrow{FeBr_3} C_6H_5Br + HBr$$

или
$$C_6H_6 + FeBr_3 + Br_2 \xrightarrow{FeBr_3} C_6H_5Br + H[FeBr_4].$$

Действительно, массовое содержание углерода в бромбензоле:

$$\frac{12,01.6}{12,01.6+1,008.5+79,90} = 45,9 \%.$$

При очистке поверхностей от брома тиосульфат-ионы окисляются до сульфат-ионов, а бром восстанавливается до бромид-ионов. В результате реакции образуются сильные кислоты, приводящие к образованию тиосерной кислоты, которая диспропорционирует, в результате чего образуется мелкодисперсная сера (осадок белого цвета) и SO₂, который окисляется бромом до серной кислоты:

5)
$$5Br_2 + 2Na_2S_2O_3 + 6H_2O \rightarrow 4NaBr + 6HBr + 3H_2SO_4 + S\downarrow$$
.

В присутствии карбоната натрия в растворе поддерживается щелочная среда, в результате чего диспропорционирования не происходит, тиосульфат натрия окисляются до сульфата и раствор остаётся прозрачным:

6)
$$4Br_2 + Na_2S_2O_3 + 10Na_2CO_3 + 5H_2O \rightarrow 8NaBr + 10NaHCO_3 + 2Na_2SO_4$$
.

Такой раствор гораздо лучше подходит для отмывания посуды от брома, так как в продуктах нет мелкого осадка серы (в результате отмывания не образуется нового загрязнителя) и опасных сильных кислот. Для оценивания ответа полным баллом участнику Олимпиады достаточно указать хотя бы одну из двух причин — нейтрализацию кислот или недопущение образования серы.

5. Количество вещества H₂SO₄ равно таковому для прореагировавшего NaBr. Количество вещества NaBr равно:

$$\nu(\text{NaBr}) = \frac{m_{\text{p-pa}} \cdot \omega(\text{NaBr})}{M_{\text{r}}(\text{NaBr})} = \frac{500 \text{ г} \cdot 0.35}{102.9 \text{ г/моль}} = 1.70 \text{ моль}.$$

Найдём количество вещества MnO₂:

$$\nu({\rm MnO_2}) = \frac{m({\rm MnO_2})}{M_{\rm r}({\rm MnO_2})} = \frac{m({\rm пиролюзита}) \cdot \omega({\rm MnO_2})}{M_{\rm r}({\rm MnO_2})} = \frac{90 \; {\rm r} \cdot (1-0.08)}{87 \; {\rm r/моль}} = 0.952 \; {\rm моль}.$$

Стехиометрическое соотношение $\nu(\text{NaBr}): \nu(\text{MnO}_2) = 2:1$, а в данном случае – 2:1,12. Следовательно, **бромид натрия находится в недостатке**.

Теперь необходимо найти концентрацию H_2SO_4 в используемом для синтеза растворе. Произведём расчёт исходя из того, что смешали 4 л воды и 1 л концентрированной серной кислоты:

$$c(H_2SO_4) = \frac{\nu(H_2SO_4)}{V_{p-pa}} = \frac{\rho \cdot \nu(H_2SO_4)}{m_{p-pa}} = \frac{1,23\frac{\kappa\Gamma}{\pi} \cdot 18,34 \text{ моль}}{4 \pi \cdot 1\frac{\kappa\Gamma}{\pi} + 1 \pi \cdot 1,836\frac{\kappa\Gamma}{\pi}} = 3,87 \text{ M}.$$

Тогда минимальный объём серной кислоты равен:

$$V_{p-pa} = \frac{\nu(H_2SO_4)}{c(H_2SO_4)} = \frac{1,70 \text{ моль}}{3,87 \text{ M}} = 0,439 \text{ л} = 439 \text{ мл}.$$

6. a) При приготовлении раствора серной кислоты путём разбавления концентрированной серной кислоты необходимо вливать концентрированную серную кислоту в воду при интенсивном перемешивании. б) Юный химик должен располагать установку для синтеза брома в вытяжном шкафу, поскольку пары брома весьма ядовиты (в качестве дополнительной предосторожности использовалась ловушка с раствором тиосульфата натрия). Также необходимо использовать средства индивидуальной защиты – халат, перчатки и очки.

Система оценивания:

1.	Соотнесение частей установки цифрам 5 – 8 – по 1 баллу	4 балла
2.	Основной компонент пиролюзита	1 балл
3.	Формулы веществ A и X – по 1 баллу	2 балла
4.	Уравнения реакций $1 - 6 - \text{по 1 баллу}$	7 баллов
	Цель добавления карбоната натрия в раствор – 1 балл	
	достаточно указать хотя бы одну из двух причин –	
	нейтрализацию кислот или недопущение образования серы	
5.	Минимальный объём серной кислоты — 4 балла, из них расчёт количеств вещества $NaBr\ u\ MnO_2$ — no $0.5\ балла$	4 балла
	NaBr находится в недостатке — 1 балл расчёт концентрации серной кислоты — 1 балл	
	расчёт минимального объёма – 1 балл	1.7
6.	a) необходимость наливать кислоту в воду	1 балл
	 б) использование вытяжного шкафа и средств индивидуальной защиты – по 0.5 балла 	1 балл
	итого:	20 баллов