Projetos em Ciência de Dados

Gianlucca Devigili e Maisa de O. Fraiz

Redução do uso de memória

- + Transformar cada coluna no "menor" datatype possível. E.g float64 -> float32
- Dados do tipo object -> category

Redução do uso de memória: Datasets Base

Df Targets

```
df_targets = reduce_mem_usage(df_targets);
```

Memory usage of dataframe is 102.84 MB Memory usage after optimization is: 71.99 MB Decreased by 30.0%

Player Box Scores

```
df_pbs = reduce_mem_usage(df_pbs);
```

Memory usage of dataframe is 92.20 MB Memory usage after optimization is: 29.97 MB Decreased by 67.5%

Redução do uso de memória: Datasets Principal

Reduce memory usage

```
df_train = reduce_mem_usage(df_train);
```

Memory usage of dataframe is 1331.04 MB Memory usage after optimization is: 450.51 MB Decreased by 66.2%

- + Redução de ≈880.5 MB (66.2%)
- Redução do tempo de treinamento dos modelos:
 - + Gradient Boosting: 2h 48m 6s -> 1h 46m 58s

Modelos de Multitask

- + Motivação: resultado do MultitaskLASSO
 3 multitask LASSO 0.748527 1.503057 0.672377 0.789836 0.928449
- Uso do sklearn.MultiOutputRegressor ao invés do código programado pelo próprio grupo
- + Possibilidade de usar feature Chaining

Modelos de Multitask

	model	target1	target2	target3	target4	average
0	Média (sem PBS)	1.126844	2.739029	1.068968	1.477766	1.603152
1	Média por Jogador (sem PBS)	0.939999	2.251019	0.954300	1.025011	1.292582
2	Mediana (sem PBS)	0.712801	1.651943	0.498075	1.139852	1.000668
3	Mediana por Jogador (sem PBS)	0.702606	1.560620	0.493126	0.925954	0.920577
4	Naive (sem PBS)	1.168903	1.808041	0.761283	1.520494	1.314680
	model	target1	target2	target3	target4	average
0	Lasso MultiOutput	0.780746	1.344433	0.703082	0.746220	0.893620
1	Ridge MultiOutput	0.784643	1.331393	0.729669	0.756929	0.900659
2	ElasticNet MultiOutput	0.782295	1.342960	0.710303	0.747843	0.895850
	Elasticivet Maitioutput	0 00000				
3	DecisionTreeRegressor MultiOutput	2.361119	2.124396	1.964909	1.574683	2.006277

Cross Validation com LASSO

- + Procurar o valor ótimo para o parâmetro de regularização. Mas ótimo para que?
 - + α_{pred} -> otimiza as predições
 - + α_{ms} -> dá o valor do modelo verdadeiro
- + Em geral, α_{pred} != α_{ms} e α_{pred} < α_{ms}
- + Em resumo, overfitting porque estávamos procurando o α_{ms} ao usar o LassoCV, o que levava a um erro grande.

Em progresso

- + Uso da coluna de data:
 - + A data como variável ordinal
 - + Decomposição em ano, mês, dia, dia da semana, dia do ano, semana do ano...
 - + Dummies vs. valor numérico

Projetos em Ciência de Dados

Gianlucca Devigili e Maisa de O. Fraiz