Equilibria Exist in Compact Convex Forward-Invariant Sets

http://mathoverflow.net/questions/68174/equilibria-exist-in-compact-convex-forward-invariant-sets http://gillesgnacadja.wordpress.com/2011/06/18/equilibria-exist-in-compact-convex-forward-invariant-sets

Gilles Gnacadja

http://math.gillesgnacadja.info/ gilles.gnacadja@gmail.com

Revision A.02 21 June 2011

Theorem. Consider a continuous map $f: \mathbb{R}^n \to \mathbb{R}^n$ and suppose that the autonomous dynamical system $\dot{x} = f(x)$ has a semiflow $\varphi : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$. Let $K \subseteq \mathbb{R}^n$. If K is nonempty, compact, convex and forward-invariant, then

K contains an equilibrium of the dynamical system, i.e. a zero of the map f.

According to a reliable source, the above theorem is a standard result ev-

eryone uses in dynamical systems without proof. I propose a proof in this

document. With Zero(f) denoting the set of zeros of f, the result is that

 $K \cap \operatorname{Zero}(f) \neq \emptyset$ for any nonempty, compact, convex, forward-invariant $K \subset \mathbb{R}^n$.

The semiflow φ satisfies the following properties.

- The map $\varphi: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.
- For every $a \in \mathbb{R}^n$, the map $\varphi(-,a) : \mathbb{R}_{\geq 0} \to \mathbb{R}^n, t \mapsto \varphi(t,a)$ is of class C^1 and is the solution trajectory originating at a, i.e.

$$\varphi(0,a) = a \text{ and } \forall t \in \mathbb{R}_{\geq 0}, \frac{\partial \varphi}{\partial t}(t,a) = f(\varphi(t,a)).$$

• $\forall t, t' \in \mathbb{R}_{\geq 0}$, $\forall a \in \mathbb{R}^n$, $\varphi(t + t', a) = \varphi(t', \varphi(t, a))$.

For $a \in \mathbb{R}^n$, we have

21

2 3

5

$$f(a) = 0 \iff \forall t \in \mathbb{R}_{\geq 0}, \ \varphi(t, a) = a \ . \tag{1}$$

With $\Phi(t)$ denoting the set of fixed points of $\varphi(t, -)$ for each $t \in \mathbb{R}_{\geq 0}$, Property (1) is equivalent to

$$Zero(f) = \bigcap_{t \in \mathbb{R}_{>0}} \Phi(t) . \tag{2}$$

Because $\varphi(t, -)$ is continuous for each $t \in \mathbb{R}_{\geq 0}$ and $\mathbb{Q}_{\geq 0}$ is dense in $\mathbb{R}_{\geq 0}$, we also have

$$Zero(f) = \bigcap_{t \in \mathbb{Q}_{\geq 0}} \Phi(t) . \tag{3}$$

 $_{30}$ A straightforward inductive reasoning shows that

$$\forall t \in \mathbb{R}_{\geq 0}, \ \forall n \in \mathbb{Z}_{\geq 0}, \ \Phi(t) \subseteq \Phi(nt) \ . \tag{4}$$

It then results that

26

29

31

39

50

$$\forall t_1, t_2 \in \mathbb{Q}_{\geq 0}, \ \exists t \in \mathbb{Q}_{\geq 0} : \ \Phi(t) \subseteq \Phi(t_1) \cap \Phi(t_2) \ . \tag{5}$$

Indeed, with $i \in \{1,2\}$, let $t_i \in \mathbb{Q}_{\geqslant 0}$, and let $p_i \in \mathbb{Z}_{\geqslant 0}$ and $q_i \in \mathbb{Z}_{>0}$ such that $t_i = p_i/q_i$. Then let $n_1 = p_1q_2$, $n_2 = p_2q_1$, and $t = 1/(q_1q_2)$. We have $t \in \mathbb{Q}_{\geqslant 0}$, $n_i \in \mathbb{Z}_{\geqslant 0}$ and $t_i = n_i t$. By Property (4), $\Phi(t) \subseteq \Phi(t_i)$.

On another hand, we have

$$\forall t \in \mathbb{R}_{\geq 0}, K \cap \Phi(t) \neq \emptyset. \tag{6}$$

Indeed, let $t \in \mathbb{R}_{\geqslant 0}$. Because K is forward-invariant, the (continuous) map $\varphi(t,-):\mathbb{R}^n \to \mathbb{R}^n$ restricts to a continuous map $K \to K$. And because K is compact and convex, the Brouwer Fixed Point Theorem implies that $\varphi(t,-)$ has a fixed point in K.

Properties (6) and (5) together say that the family $\{K \cap \Phi(t)\}_{t \in \mathbb{Q}_{\geqslant 0}}$ is a filter basis and imply that the family has the finite intersection property: for every finite $T \subset \mathbb{Q}_{\geqslant 0}$, $\bigcap_{t \in T} (K \cap \Phi(t)) \neq \emptyset$. Furthermore, for every $t \in \mathbb{R}_{\geqslant 0}$, $K \cap \Phi(t)$ is a closed subset of K because $\Phi(t)$ is a closed subset of \mathbb{R}^n . Since K is compact, we have

$$\varnothing \neq \bigcap_{t \in \mathbb{Q}_{\geqslant 0}} (K \cap \Phi(t)) = K \cap \bigcap_{t \in \mathbb{Q}_{\geqslant 0}} \Phi(t) = K \cap \operatorname{Zero}(f).$$
 (7)

1 The proof is complete.