Stochastically Controlled Stochastic Gradient (SCSG) Method

Lihua Lei

joint works with Cheng Ju, Jianbo Chen and Michael Jordan

March 14, UC Davis

Table of Contents

- 1 Background
- 2 Stochastically Controlled Stochastic Gradient (SCSG) Method
- 3 SCSG in Non-convex Optimization
- 4 SCSG in Convex Optimization

Table of Contents

- 1 Background
- 2 Stochastically Controlled Stochastic Gradient (SCSG) Method
- 3 SCSG in Non-convex Optimization
- 4 SCSG in Convex Optimization

Herbert Robbins (1915-2001)

Herbert Robbins (1915-2001)

A STOCHASTIC APPROXIMATION METHOD¹

By Herbert Robbins and Sutton Monro
University of North Carolina

1. Summary. Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is assumed to be a monotone function of x but is unknown to the experimenter, and it is desired to find the solution $x=\theta$ of the equation $M(x)=\alpha$, where α is a given constant. We give a method for making successive experiments at levels x_1, x_2, \ldots in such a way that x_n will tend to θ in probability.

Herbert Robbins (1915-2001)

A STOCHASTIC APPROXIMATION METHOD¹

By Herbert Robbins and Sutton Monro
University of North Carolina

1. Summary. Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is assumed to be a monotone function of x but is unknown to the experiment, and it is desired to find the solution $x=\theta$ of the equation $M(x)=\alpha$, where α is a given constant. We give a method for making successive experiments at levels x_1,x_2,\cdots in such a way that x_n will tend to θ in probability.

Robbins-Monro Algorithm/ Stochastic Gradient Descent

Finite sums

$f(x) \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ $\nabla f(x) = \frac{1}{n} \sum_{i} \nabla f_i(x)$

Draw $i \in \{1, ..., n\}$ uniformly. $x_{k+1} = x_k - \tau_k \nabla f_i(x_k)$

Expectation

$$f(x) \stackrel{\text{def.}}{=} \mathbb{E}_{\mathbf{z}}(f(x, \mathbf{z}))$$
$$\nabla f(x) = \mathbb{E}_{\mathbf{z}}(\nabla F(x, \mathbf{z}))$$

Draw
$$z \sim \mathbf{z}$$

 $x_{k+1} = x_k - \tau_k \nabla F(x, z)$

Robbins-Monro Algorithm/ Stochastic Gradient Descent

Finite sums

$$f(x) \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
$$\nabla f(x) = \frac{1}{n} \sum_{i} \nabla f_i(x)$$

Draw $i \in \{1, ..., n\}$ uniformly. $x_{k+1} = x_k - \tau_k \nabla f_i(x_k)$

Expectation

$$f(x) \stackrel{\text{def.}}{=} \mathbb{E}_{\mathbf{z}}(f(x, \mathbf{z}))$$
$$\nabla f(x) = \mathbb{E}_{\mathbf{z}}(\nabla F(x, \mathbf{z}))$$

Theorem 1 (Robbins and Monro, 1951).

Let $\sum_k \tau_k = \infty, \sum_k \tau_k^2 < \infty$. Then under technical conditions,

$$x_k \stackrel{a.s.}{\to} \arg\min f(x)$$

Optimization in Machine Learning

Assume $(y_i, z_i) \overset{i.i.d.}{\sim} G$. The goal is to learn a map $h(\cdot; x)$ from a function class parametrized by $x \in \mathbb{R}^d$, such that h(z; x) is a good "guess" of y.

Optimization in Machine Learning

Assume $(y_i, z_i) \stackrel{i.i.d.}{\sim} G$. The goal is to learn a map $h(\cdot; x)$ from a function class parametrized by $x \in \mathbb{R}^d$, such that h(z;x) is a good "guess" of y.

Empirical Risk Minimization

$$\min_{x} \hat{f}(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(z_i; x)) \quad \min_{x} f(x) \triangleq \mathbb{E}_G \ \ell(Y, h(Z; x)).$$

- batch learning;
- observed objective;
- training loss.

Stochastic Optimization

$$\min_{x} f(x) \triangleq \mathbb{E}_{G} \ \ell(Y, h(Z; x)).$$

- online/streaming learning;
- unobserved objective;
- testing loss.

Finite sums

$f(x) \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ $\nabla f(x) = \frac{1}{n} \sum_{i} \nabla f_i(x)$

Draw $i \in \{1, ..., n\}$ uniformly. $x_{k+1} = x_k - \tau_k \nabla f_i(x_k)$

Expectation

Draw $z \sim \mathbf{z}$ $x_{k+1} = x_k - \tau_k \nabla F(x, z)$

Finite sums

$$f(x) \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
$$\nabla f(x) = \frac{1}{n} \sum_{i} \nabla f_i(x)$$

Draw $i \in \{1, ..., n\}$ uniformly. $x_{k+1} = x_k - \tau_k \nabla f_i(x_k)$

- can access each data for multiple times;
- full gradients can be computed with finite cost

Expectation

$$f(x) \stackrel{\text{def.}}{=} \mathbb{E}_{\mathbf{z}}(f(x, \mathbf{z}))$$
$$\nabla f(x) = \mathbb{E}_{\mathbf{z}}(\nabla F(x, \mathbf{z}))$$

Draw
$$z \sim \mathbf{z}$$

$$x_{k+1} = x_k - \tau_k \nabla F(x, z)$$

- must access a "fresh" sample at each step;
- full gradients cannot be computed with finite cost

 Finite-sum optimization can be regarded as a special case of stochastic optimization:

$$\frac{1}{n}\sum_{i=1}^{n} f_i(x) = \mathbb{E}_{z \sim U([n])} f_z(x);$$

 Any algorithm that works for stochastic optimization also works for finite-sum optimization, with same complexity.

- Finite-sum optimization has more structure and more applications than stochastic optimization;
- (y_i, z_i) are not i.i.d. or even not random:
 - ubiquitous in statistical inference for fixed designs;
 - stochastic optimization even not defined
- objective involving pairwise comparison:

•
$$f(x) = \mathbb{E}F(x; (y_1, z_1), (y_2, z_2))$$

 $\approx \frac{1}{n(n-1)} \sum_{i \neq j} F(x; (y_i, z_i), (y_j, z_j))$

• metric learning, preference elicitation, sport analysis...

SGD: A Brief Overview

Algorithm (for finite-sum optimization and stochastic optimization):

SGD:
$$x_{t+1} = x_t - \eta_t g_t$$
, $\mathbb{E}g_t = \nabla f(x_t)$

Main assumption (smoothness):

$$\mu I \leq \nabla^2 f(x) \leq LI, \quad (L > 0)$$

SGD: A Brief Overview

Algorithm (for finite-sum optimization and stochastic optimization):

SGD:
$$x_{t+1} = x_t - \eta_t g_t$$
, $\mathbb{E}g_t = \nabla f(x_t)$

Main assumption (smoothness):

$$\mu I \leq \nabla^2 f(x) \leq LI, \quad (L > 0)$$

- strongly convex $(\mu > 0, \kappa = L/\mu)$;
- non-strongly convex $(\mu = 0)$;
- non-convex: $(\mu = -L)$.

type of objective	η_t	goal	complexity
strongly convex	$O\left(\frac{1}{\mu t}\right)$	$\mathbb{E}(f(x) - f(x^*)) \le \epsilon$	$O\left(\frac{1}{\mu\epsilon}\right)$
convex	$O\left(\frac{1}{\sqrt{t}}\right)$	$\mathbb{E}(f(x) - f(x^*)) \le \epsilon$	$O\left(\frac{1}{\epsilon^2}\right)$
non-convex	$O\left(\frac{1}{\sqrt{t}}\right)$	$\mathbb{E}\ \nabla f(x)\ ^2 \le \epsilon$	$O\left(\frac{1}{\epsilon^2}\right)$

SVRG: A Brief Overview

Algorithms (for finite-sum optimization):

 ${\rm SAG, SAGA, SVRG, SDCA, APCG, SPDC, Katyusha, Natasha \dots}$

SVRG: A Brief Overview

Algorithms (for finite-sum optimization):

 $SAG, SAGA, SVRG, SDCA, APCG, SPDC, Katyusha, Natasha \dots$

type of objective	algorithm	complexity
strongly convex	[JZ13]	$O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$
convex	[AZY15]	$O\left(n\log\left(\frac{1}{\epsilon}\right) + \frac{1}{\epsilon}\right)$
non-convex	[RHS ⁺ 16]	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

type of objective	complexity (SGD)	complexity (SVRG)
strongly convex	$O\left(\frac{1}{\mu\epsilon}\right)$	$O\left((n+\kappa)\log(\frac{1}{\epsilon})\right)$
convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\log(\frac{1}{\epsilon}) + \frac{1}{\epsilon}\right)$
non-convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

type of objective	complexity (SGD)	complexity (SVRG)
strongly convex	$O\left(\frac{1}{\mu\epsilon}\right)$	$O\left((n+\kappa)\log(\frac{1}{\epsilon})\right)$
convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\log(\frac{1}{\epsilon}) + \frac{1}{\epsilon}\right)$
non-convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

SVRG only works for finite-sums while SGD works for both;

type of objective	complexity (SGD)	complexity (SVRG)
strongly convex	$O\left(\frac{1}{\mu\epsilon}\right)$	$O\left((n+\kappa)\log(\frac{1}{\epsilon})\right)$
convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\log(\frac{1}{\epsilon}) + \frac{1}{\epsilon}\right)$
non-convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

- SVRG only works for finite-sums while SGD works for both;
- Both SGD and SVRG need different settings for strongly/non-strongly/non-convex objectives;

type of objective	complexity (SGD)	complexity (SVRG)
strongly convex	$O\left(\frac{1}{\mu\epsilon}\right)$	$O\left((n+\kappa)\log(\frac{1}{\epsilon})\right)$
convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\log(\frac{1}{\epsilon}) + \frac{1}{\epsilon}\right)$
non-convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

- SVRG only works for finite-sums while SGD works for both;
- Both SGD and SVRG need different settings for strongly/non-strongly/non-convex objectives;
- SVRG has better dependence on ϵ but may be worse than SGD for low accuracy computation where $\frac{1}{\epsilon} \ll n$.

Oh Geez, why is life so complicated?

Hey Morty, let's adventure in the new world!

Table of Contents

- 1 Background
- 2 Stochastically Controlled Stochastic Gradient (SCSG) Method
- 3 SCSG in Non-convex Optimization
- 4 SCSG in Convex Optimization

Stochastic Variance Reduced Gradient (SVRG) Method

SGD with constant stepsize:

$$x_{t+1} = x_t - \eta g_t, \quad \mathbb{E}g_t = \nabla f(x_t).$$

It does not converge because $Var(x_{t+1} - x_t) = \eta^2 Var(g_t) \not\to 0$.

Stochastic Variance Reduced Gradient (SVRG) Method

SGD with constant stepsize:

$$x_{t+1} = x_t - \eta g_t, \quad \mathbb{E}g_t = \nabla f(x_t).$$

It does not converge because $Var(x_{t+1} - x_t) = \eta^2 Var(g_t) \not\to 0$.

Idea: find an extra term h_t with

$$x_{t+1} = x_t - \eta(g_t - h_t), \quad \mathbb{E}h_t = 0, \quad \text{Var}(g_t - h_t) \to 0.$$

Stochastic Variance Reduced Gradient (SVRG) Method

SGD with constant stepsize:

$$x_{t+1} = x_t - \eta g_t, \quad \mathbb{E}g_t = \nabla f(x_t).$$

It does not converge because $Var(x_{t+1} - x_t) = \eta^2 Var(g_t) \not\to 0$.

Idea: find an extra term h_t with

$$x_{t+1} = x_t - \eta(g_t - h_t), \quad \mathbb{E}h_t = 0, \quad \text{Var}(g_t - h_t) \to 0.$$

SVRG:
$$h_t = g_{t'} - \mathbb{E}g_{t'}$$
 for some $t' \leq t$. Then

$$g_t - g_{t'} \to 0, \quad t, t' \to \infty.$$

SVRG

Consider finite-sum optimization:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i \in [n]} f_i(x)$$

SVRG (Outer Loop)

Inputs: $\tilde{x}_0, \{\eta_i\}, \{m_i\}, T$

1: for
$$j=1,2,\cdots,T$$
 do

2:
$$\tilde{x}_i \leftarrow$$

 $\mathsf{SVRGEpoch}(\tilde{x}_{j-1},\eta_j,m_j)$

3: end for

Output: \tilde{x}_T

SVRGEpoch (Inner Loop)

Inputs: x_0, η, m

1:
$$g \leftarrow \frac{1}{n} \sum_{i \in [n]} f_i'(x_0)$$

2: Generate
$$N \sim U([m])$$

3: **for**
$$k = 1, 2, \dots, N$$
 do

4: Randomly pick
$$i \in [n]$$

5:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

6:
$$x \leftarrow x - \eta \nu$$

7: end for

Output: x

SVRG and Its Variants

type	algorithm	η_j	m_j	complexity
strongly convex	[JZ13]	$O\left(\frac{1}{L}\right)$	$O(\kappa)$	$O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$
convex	[AZY15]	$O\left(\frac{1}{L}\right)$	2^j	$O\left(n\log\left(\frac{1}{\epsilon}\right) + \frac{1}{\epsilon}\right)$
non-convex	[RHS ⁺ 16]	$O\left(\frac{1}{Ln^{2/3}}\right)$	O(n)	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

SVRG and Its Variants

type	algorithm	η_j	m_{j}	complexity
strongly convex	[JZ13]	$O\left(\frac{1}{L}\right)$	$O(\kappa)$	$O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$
convex	[AZY15]	$O\left(\frac{1}{L}\right)$	2^{j}	$O\left(n\log\left(\frac{1}{\epsilon}\right) + \frac{1}{\epsilon}\right)$
non-convex	[RHS ⁺ 16]	$O\left(\frac{1}{Ln^{2/3}}\right)$	O(n)	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$

Theoretical concerns:

- SVRG does not work for stochastic optimization, in which the full gradient is inaccessible;
- SVRG outperforms SGD only if ϵ is small;
- SVRG requires the knowledge of κ to achieve the fast rate for strongly-convex objectives.

Practical Concern of SVRG

Computing full gradient is too costly!

SVRGEpoch

Inputs: x_0, η, m

1:
$$\mathcal{I} \leftarrow [n]$$

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen.
$$N \sim U([m])$$

4: for
$$k=1,2,\cdots,N$$
 do

5: Randomly pick
$$i \in [n]$$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

SVRGEpoch

Inputs: x_0, η, m

$$x_0, \eta, m$$

1:
$$\mathcal{I} \leftarrow [n]$$

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen.
$$N \sim U([m])$$

4: for
$$k=1,2,\cdots,N$$
 do

5: Randomly pick $i \in [n]$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

SCSGEpoch

Inputs: x_0, η, B, m

SVRGEpoch

Inputs: x_0, η, m

- 1: $\mathcal{I} \leftarrow [n]$
- 2: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 3: Gen. $N \sim U([m])$
- 4: for $k=1,2,\cdots,N$ do
- 5: Randomly pick $i \in [n]$
- 6: $\nu \leftarrow f_i'(x) f_i'(x_0) + g$
- 7: $x \leftarrow x \eta \nu$
- 8: end for

SCSGEpoch

Inputs: x_0, η, B, m

1: Randomly pick $\mathcal I$ with size B

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

SVRGEpoch

Inputs: x_0, η, m

1:
$$\mathcal{I} \leftarrow [n]$$

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen.
$$N \sim U([m])$$

4: for
$$k=1,2,\cdots,N$$
 do

5: Randomly pick
$$i \in [n]$$

6:
$$\nu \leftarrow f'_i(x) - f'_i(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

SCSGEpoch

Inputs: x_0, η, B, m

1: Randomly pick $\mathcal I$ with size B

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen. $N \sim \mathrm{Geo}$ with mean m

$$N \sim \text{Geo}(\gamma) \text{ iff } P(N=k) = (1-\gamma)\gamma^k \ (k \ge 0) \Longrightarrow \mathbb{E}N = \frac{\gamma}{1-\gamma}$$

SVRGEpoch

Inputs: x_0, η, m

1:
$$\mathcal{I} \leftarrow [n]$$

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen.
$$N \sim U([m])$$

4: **for**
$$k = 1, 2, \dots, N$$
 do

5: Randomly pick
$$i \in [n]$$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

SCSGEpoch

Inputs: x_0, η, B, m

1: Randomly pick \mathcal{I} with size B

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen. $N \sim \mathrm{Geo}$ with mean m

4: **for**
$$k = 1, 2, \dots, N$$
 do

5: Randomly pick $i \in [n]$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

$$N \sim \text{Geo}(\gamma) \text{ iff } P(N=k) = (1-\gamma)\gamma^k \ (k \ge 0) \Longrightarrow \mathbb{E}N = \frac{\gamma}{1-\gamma}$$

SCSG in Stochastic Optimization

SCSGEpoch (finite-sum)

Obj.:
$$f(x) = \frac{1}{n} \sum_{i \in [n]} f_i(x)$$

Inputs: x_0, η, B, m

- 1: Randomly pick ${\mathcal I}$ with size B
- 2: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 3: Gen. $N \sim \text{Geo}$ with mean m
- 4: **for** $k = 1, 2, \dots, N$ **do**
- 5: Randomly pick $i \in [n]$
- 6: $\nu \leftarrow f_i'(x) f_i'(x_0) + g$
- 7: $x \leftarrow x \eta \nu$
- 8: end for

SCSGEpoch (expectation)

Obj.:
$$f(x) = \mathbb{E}_{\xi \sim G} F_{\xi}(x)$$

Inputs: x_0, η, B, m

- 1: Gen. $\{\xi_i\}_{i=1}^{B} \overset{i.i.d.}{\sim} G$
- 2: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i=1}^{B} F'_{\xi_i}(x_0)$
- 3: Gen. $N \sim \text{Geo}$ with mean m
- 4: **for** $k = 1, 2, \dots, N$ **do**
- 5: Gen. $\xi \sim G$
- 6: $\nu \leftarrow F'_{\xi}(x) F'_{\xi}(x_0) + g$
- 7: $x \leftarrow x \eta \nu$
- 8: end for

SCSG: A Brief Summary

In non-convex optimization problems,

- SCSG strictly outperforms SGD in both finite-sum and stochastic optimization, for all accuracy levels;
- SCSG is never worse than SVRG in finite-sum optimization, for all accuracy levels.

SCSG: A Brief Summary

In non-convex optimization problems,

- SCSG strictly outperforms SGD in both finite-sum and stochastic optimization, for all accuracy levels;
- SCSG is never worse than SVRG in finite-sum optimization, for all accuracy levels.

In convex optimization problems,

- SCSG is never worse than SGD and SVRG for all accuracy levels and for both finite-sum and stochastic optimization;
- \bullet SCSG does not need the knowledge of μ to achieve the same complexity for strongly convex objectives as SVRG.

Two Techniques

SCSGEpoch

Inputs: x_0, η, B, m

- 1: Randomly pick \mathcal{I} with size B Batching-VR
- 2: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 3: Gen. $N \sim \text{Geo}$ with mean m Geometrization
- 4: for $k=1,2,\cdots,N$ do
- 5: Randomly pick $i \in [n]$
- 6: $\nu \leftarrow f_i'(x) f_i'(x_0) + g$
- 7: $x \leftarrow x \eta \nu$
- 8: end for

Two Techniques

Batching-VR

- First considered by [HAV⁺15]. However the analysis requires B = O(n) and unrealistic assumptions (e.g. bounded domain).
- [HAV⁺15] only holds for strongly-convex objectives and requires the knowledge of μ ;
- Also considered by [FGKS15]. However the analysis relies on stringent assumptions and the algorithm has extremely unrealistic settings.

Geometrization

Implicitly considered by [HLLJM15] in a special setting.
 However, the analysis still relies on the strong convexity and does not show the gain.

Batching-VR + Geometrization work!

Table of Contents

- 1 Background
- 2 Stochastically Controlled Stochastic Gradient (SCSG) Method
- 3 SCSG in Non-convex Optimization
- 4 SCSG in Convex Optimization

Smooth Non-convex Optimization

Finite-Sum Optimization

$$\min_{x} f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

Goal :
$$\mathbb{E}\|\nabla f(x)\|^2 \le \epsilon$$

Assumptions:

A1
$$-LI \leq \nabla^2 f_i(x) \leq LI$$
;
A2 $\sup \|\nabla f_i(x)\|^2 = O(1)$.

Complexity Results:

- SGD: $O(\frac{1}{c^2})$;
- SVRG: $O\left(n + \frac{n^{2/3}}{\epsilon}\right)$;
- SCSG: $\tilde{O}\left(\frac{1}{\epsilon^{5/3}} \wedge \frac{n^{2/3}}{\epsilon}\right)$.

Stochastic Optimization

$$\min_{x} f(x) \triangleq \mathbb{E}_{\xi \sim G} F(x; \xi).$$

Goal :
$$\mathbb{E}\|\nabla f(x)\|^2 \le \epsilon$$

Assumptions:

A1
$$-LI \preceq \nabla^2 F(x;\xi) \preceq LI$$
;
A2 $\sup \|\nabla F(x;\xi)\|^2 = O(1)$.

Complexity Results:

- SGD: $O\left(\frac{1}{\epsilon^2}\right)$;
- SVRG: not available;
- SCSG: $\tilde{O}\left(\frac{1}{\epsilon^{5/3}}\right)$.

Comparison in Finite-Sum Optimization

	General	$\epsilon \sim n^{-1/2}$	$\epsilon \sim n^{-1}$	
Gradient Methods				
GD	$O\left(\frac{n}{\epsilon}\right)$	$O\left(n^{3/2}\right)$	$O\left(n^2\right)$	
Best available	$\tilde{O}\left(rac{n}{\epsilon^{5/6}} ight)$	$\tilde{O}\left(n^{17/12}\right)$	$\tilde{O}\left(n^{11/6}\right)$	
Stochastic Gradient Methods				
SGD	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(n\right)$	$O\left(n^2\right)$	
Best available	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$	$O\left(n^{7/6}\right)$	$O\left(n^{5/3}\right)$	
SCSG	$\tilde{O}\left(\frac{1}{\epsilon^{5/3}}\wedge \frac{n^{2/3}}{\epsilon}\right)$	$\tilde{O}\left(n^{5/6}\right)$	$\tilde{O}\left(n^{5/3}\right)$	

Parameter Settings in SCSG

SCSG (Outer Loop)

Inputs:

$$\tilde{x}_0, \{\eta_j\}, \{B_j\}, \{m_j\}, T$$

1: **for**
$$j = 1, 2, \dots, T$$
 do

2:
$$\tilde{x}_j \leftarrow$$
 SCSGEpoch $(\tilde{x}_{i-1}, \eta_i, B_i, m_i)$

3: end for

Output: \tilde{x}_T

SCSGEpoch (Inner Loop)

Inputs: x_0, η, B, m

1: Randomly pick $\mathcal I$ with size B

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen. $N \sim \text{Geo}$ with mean m

4: for
$$k=1,2,\cdots,N$$
 do

5: Randomly pick
$$i \in [n]$$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

Ouput: 3

Parameter Settings in SCSG

SCSG (Outer Loop)

Inputs:

$$\tilde{x}_0, \{\eta_j\}, \{B_j\}, \{m_j\}, T$$

1: **for**
$$j = 1, 2, \dots, T$$
 do

2:
$$\tilde{x}_j \leftarrow$$

$$\mathsf{SCSGEpoch}(\tilde{x}_{j-1},\eta_j,B_j,m_j)$$

3: end for

Output: \tilde{x}_T

Parameters:

	option 1	option 2
B_{j}	$O\left(\frac{1}{\epsilon} \wedge n\right)$	$j^{3/2} \wedge n$
m_j	B_j	B_j
η_j	$\frac{1}{2LB_i^{2/3}}$	$\frac{1}{2LB_i^{2/3}}$

SCSGEpoch (Inner Loop)

Inputs: x_0, η, B, m

1: Randomly pick \mathcal{I} with size B

2:
$$g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$$

3: Gen. $N \sim \mathrm{Geo}$ with mean m

4: **for**
$$k = 1, 2, \dots, N$$
 do

5: Randomly pick
$$i \in [n]$$

6:
$$\nu \leftarrow f_i'(x) - f_i'(x_0) + g$$

7:
$$x \leftarrow x - \eta \nu$$

8: end for

Ouput: x

SCSG for Training Neural Networks

SCSG for Training Neural Networks

Discussion

- Existing acceleration techniques include: Variance Reduction, Momentum, Adaptive Gradient:
 - Momentum: Momentum SGD;
 - Adaptive Gradient: AdaGrad;
 - Momentum + Adaptive Gradient: Adam;
 - Variance Reduction: SVRG/SAGA, but not in practice!
- The mechanisms of three techniques are different and might be "orthogonal"! Potential gain by combining all:

Variance Reduction + Momentum + Adaptive Gradient

Table of Contents

- 1 Background
- 2 Stochastically Controlled Stochastic Gradient (SCSG) Method
- 3 SCSG in Non-convex Optimization
- 4 SCSG in Convex Optimization

Smooth Convex Optimization

Finite-Sum Optimization

$$\min_{x} f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

Goal :
$$\mathbb{E}(f(x) - f(x^*)) \le \epsilon$$

Assumption:

$$\mu I \preceq \nabla^2 f_i(x) \preceq LI, \ \mu \ge 0$$

Stochastic Optimization

$$\min_{x} f(x) \triangleq \mathbb{E}_{\xi \sim G} F(x; \xi).$$

Goal :
$$\mathbb{E}(f(x) - f(x^*)) \le \epsilon$$

Assumption:

$$\mu I \preceq \nabla^2 F(x;\xi) \preceq LI, \ \mu \ge 0;$$

Convex Optimization Theory is Weird

SGD (in convex stochastic optimization):

- Always different settings (of stepsizes) for strongly and non-strongly convex objectives:
- $\eta_t = O\left(\frac{1}{\sqrt{t}}\right)$ for non-strongly convex case; complexity $O\left(\frac{1}{\epsilon^2}\right)$;
- $\eta_t = O\left(\frac{1}{\mu t}\right)$ for strongly convex case; complexity $O\left(\frac{1}{\mu \epsilon}\right)$;

Convex Optimization Theory is Weird

SGD (in convex stochastic optimization):

- Always different settings (of stepsizes) for strongly and non-strongly convex objectives:
- $\eta_t = O\left(\frac{1}{\sqrt{t}}\right)$ for non-strongly convex case; complexity $O\left(\frac{1}{\epsilon^2}\right)$;
- $\eta_t = O\left(\frac{1}{\mu t}\right)$ for strongly convex case; complexity $O\left(\frac{1}{\mu \epsilon}\right)$;
- Use $\eta_t = O\left(\frac{1}{\sqrt{t}}\right)$ for strongly convex case does not yield the better complexity $O\left(\frac{1}{\mu\epsilon}\right)$ (in general);
- Use $\eta_t = O\left(\frac{1}{\mu t}\right)$ for non-strongly convex case (with a wrong guess of μ) could yield a complexity as bad as $O\left(e^{\frac{1}{\epsilon}}\right)$;
- Users must know the property of the objective and must know μ to take advantage of strong convexity!

Convex Optimization Theory is Weird

SVRG (in convex finite-sum optimization):

- Also different settings for strongly and non-strongly convex objectives:
- Original SVRG only for strongly convex objectives with $m_j \equiv O(\kappa), \eta_j \equiv O\left(\frac{1}{L}\right)$; complexity $\tilde{O}(n+\kappa)$;
- In order to extend SVRG to non-strongly convex objectives,
 - [AZY15]: $m_j = 2^j$; complexity $\tilde{O}\left(n + \frac{1}{\epsilon}\right)$;
 - [RHS⁺16]: $m_j = O(n), \eta_j = O\left(\frac{1}{L\sqrt{n}}\right)$; complexity $O\left(n + \frac{\sqrt{n}}{\epsilon}\right)$.
- Again, separate analyses for different settings.

An popular hand-waving argument of strong convexity:

 μ is always known in practice because an L_2 regularizer, in the form of $\frac{\lambda}{2}||x||^2$, is always added so one can set $\mu=\lambda$.

An popular hand-waving argument of strong convexity:

 μ is always known in practice because an L_2 regularizer, in the form of $\frac{\lambda}{2} ||x||^2$, is always added so one can set $\mu = \lambda$.

No!

- λ is usually small, e.g. $\lambda \sim 10^{-6}$, in which case the condition number κ is too large to justify the gain of strong convexity: compare $O\left(\frac{1}{\epsilon^2}\right)$ with $O\left(\frac{10^6}{\epsilon}\right)$;
- λ is too conservative: the global strong convexity parameter might be way larger than λ and the local strong convexity parameter, around the optimum, could be even larger.

The degree of strong convexity forms a continuum. An algorithm should depend on μ continuously without knowing it!

The degree of strong convexity forms a continuum. An algorithm should depend on μ continuously without knowing it!

Advantages of adaptive algorithms:

- Unified algorithm for both cases;
- Global adaptivity ⇒ local adaptivity.

Knowing μ makes a difference in terms of oracle lower bounds:

- [AS16] proves the lower bound $\Omega\left((n+\sqrt{n\kappa})\log\left(\frac{1}{\epsilon}\right)\right)$, in terms of ϵ , for CLI algorithms in finite-sum optimization, if μ is known;
- [Arj17b] shows that the above bound is not achievable without knowing μ , in which case the lower bound is $O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$, in terms of ϵ .

Existing Works on Adaptivity

- Deterministic gradient method [N+07]:
 - doubling/halving technique;
 - need to check conditions on the norm of gradients at each step, thus not applicable in stochastic algorithms.
- Adaptive SVRG [XLY17]:
 - doubling/halving technique;
 - achieves the complexity $O((n+\kappa)\log\left(\frac{1}{\epsilon}\right))$;
 - need a lower bound for μ and hence no guarantee for non-strongly convex objective;
 - parameters depend on ϵ .
- Hand-waving algorithms:
 - Ad-hoc approaches to adaptively estimate μ ; extra overhead may dominate;
 - Restarting schemes; need the knowledge of μ to obtain theoretical guarantee.

Achieving Adaptivity Via SCSG

Randomized SVRG [LJ17]:

- A special case of SCSG;
- $B_j = m_j \equiv n, \eta_j = \frac{1}{3L}$ with complexity

$$\tilde{O}\left(\frac{n}{\epsilon}\wedge(n+\kappa)\right);$$

- need to record both the average (for the former) and the last iterate (for the latter);
- compared to SVRG: $B_j \equiv n, m_j \equiv m = O(\kappa), \eta_j \equiv \eta < \frac{1}{2L}$ with complexity

$$\tilde{O}(n+\kappa)$$
.

Achieving Adaptivity Via SCSG

SCSG+ (to appear soon):

• $B_j=B_0\cdot 1.05^{2j}\wedge n, m_j=m_0\cdot 1.05^j, \eta_j\equiv \eta=\frac{1}{4L}$ with complexity

$$\tilde{O}\left(\frac{1}{\epsilon^2} \wedge \left(n + \frac{1}{\epsilon}\right) \wedge \left(n + \kappa \left(\frac{1}{\epsilon\kappa}\right)^{0.05}\right)\right);$$

- The extra term $\left(\frac{1}{\epsilon\kappa}\right)^{0.05}$ is almost negligible. In addition, the exponent 0.05 can be made arbitrarily small by shrinking η ; roughly $\log(1.05)/\log(1/\eta L)$;
- SGD with $\eta_t = \frac{1}{\sqrt{t}}$ achieves $\tilde{O}\left(\frac{1}{\epsilon^2}\right)$; SVRG⁺⁺ achieves $\tilde{O}\left(n+\frac{1}{\epsilon}\right)$; SVRG achieves $\tilde{O}(n+\kappa)$ with known μ ; SCSG almost achieves the best of them, without knowing μ !
- Adaptivity to both strong convexity and required accuracy.

Other Remarks on SCSG

SGD relies on bounded gradient condition

$$\mathcal{H}^* \triangleq \sup_{i,x} \|\nabla f_i(x)\|^2 = O(1)$$
 (for finite-sum optimization)

or
$$\mathcal{H}^* \triangleq \sup_{\xi,x} \|\nabla F(x;\xi)\|^2 = O(1)$$
 (for stochastic optimization).

- Unfortunately this even does not hold for least squares unless the domain is bounded and projection step is performed every step. But nobody uses that in practice!
- SCSG relies on a much weaker condition $(x^* = \arg\min f(x))$

$$\mathcal{H} \triangleq \sup_{i} \|\nabla f_i(x^*)\|^2 = O(1)$$
 (for finite-sum optimization)

or
$$\mathcal{H} \triangleq \sup_{\xi} \|\nabla F(x^*;\xi)\|^2 = O(1)$$
 (for stochastic optimization).

• Extensive discussion of \mathcal{H} in [LJ16].

Other Remarks on SCSG

Refined rate of SCSG+

$$\tilde{O}\left(\left(\frac{D}{\epsilon}\right)^{2} \wedge \left(\left(\frac{D_{H}}{\epsilon}\right)^{2} + \kappa^{2} \left(\frac{D_{x}}{\epsilon \kappa}\right)^{0.09}\right) \\ \wedge \left(n + \frac{D}{\epsilon}\right) \wedge \left(n + \kappa \left(\frac{D_{H}}{\epsilon \kappa}\right)^{0.05}\right)\right);$$

where
$$D_x = L \cdot \mathbb{E} \|\tilde{x}_0 - x^*\|^2$$
, $D_H = \frac{\mathcal{H}}{L}$, $D = \max\{D_x, D_H\}$.

- D_x measures the quality of initialization; D_H measures heterogeneity of the components;
- D_x is algorithm/user driven while D_H is intrinsic;
- SCSG+ shows adaptivity for large ϵ with more tolerance to bad initialization when $\kappa \ll \frac{1}{\epsilon}$ (same condition for SGD to take advantage of strong convexity).

Optimality?

- [AB14] proves the lower bound $\Omega\left(\frac{1}{\epsilon^2}\right)$;
- [Arj17a] proves the lower bound $\tilde{\Omega}\left(n+\kappa\right)$ for strongly-convex objectives;
- [Arj17a] proves the lower bound $\tilde{\Omega}\left(n+\sqrt{\frac{n}{\epsilon}}\right)$, achieved by Accelerate SDCA on Generalized Linear Models;
- [WS16] proves the lower bound $\Omega\left(\frac{1}{\mu\epsilon}\right)$ for strongly-convex objectives when μ is known.
- My conjecture: $\Omega\left(\frac{1}{\mu\epsilon}\right)$ is not achievable when μ is unknown.

Optimality?

The above results give a (possibly loose) lower bound as

$$\tilde{\Omega}\left(\frac{1}{\epsilon^2} \wedge \frac{1}{\mu\epsilon} \wedge \left(n + \sqrt{\frac{n}{\epsilon}}\right) \wedge (n + \kappa)\right)$$

Recall the bound of SCSG:

$$\tilde{O}\left(\frac{1}{\epsilon^2}\wedge\left(n+\frac{1}{\epsilon}\right)\wedge(n+\kappa)\right)$$

Summary

In non-convex optimization problems,

- SCSG has complexity $\tilde{O}\left(\frac{1}{\epsilon^{5/3}} \wedge \frac{n^{2/3}}{\epsilon}\right)$ to reach an ϵ -approximated first-order stationary point;
- SCSG strictly outperforms SGD, with complexity $O\left(\frac{1}{\epsilon^2}\right)$, in both finite-sum and stochastic optimization, for all accuracy;
- SCSG is never worse than SVRG, with complexity $O\left(n+\frac{n^{2/3}}{\epsilon}\right)$, in stochastic optimization, for all accuracy.

Summary

In convex optimization problems,

- SCSG has complexity $\tilde{O}\left(\frac{1}{\epsilon^2}\wedge\left(n+\frac{1}{\epsilon}\right)\wedge(n+\kappa)\right)$ to reach an ϵ -approximated solution;
- SCSG is never worse than SGD, with complexity and SVRG (SVRG⁺⁺, ...), for all accuracy and for both finite-sum and stochastic optimization;
- \bullet SCSG does not need the knowledge of μ to achieve the same complexity for strongly convex objectives as SVRG.

References

- [AB14] Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. <u>ArXiv e-prints</u> abs/1410.0723, 2014.
- [Arj17a] Yossi Arjevani. Limitations on variance-reduction and acceleration schemes for finite sum optimization. arXiv preprint arXiv:1706.01686, 2017.
- [Arj17b] Yossi Arjevani. Limitations on variance-reduction and acceleration schemes for finite sums optimization. In Advances in Neural Information Processing Systems, pages 3543–3552, 2017.
- [AS16] Yossi Arjevani and Ohad Shamir. Dimension-free iteration complexity of finite sum optimization problems. In <u>Advances in Neural Information</u> Processing Systems, pages 3540–3548, 2016.
- [AZY15] Zeyuan Allen-Zhu and Yang Yuan. Improved SVRG for non-strongly-convex or sum-of-non-convex objectives. ArXiv e-prints, abs/1506.01972, 2015.
- [FGKS15] Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Competing with the empirical risk minimizer in a single pass. In <u>Conference on learning theory</u>, pages 728–763, 2015.
- [HAV+15] Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Koneöny, and Scott Sallinen. Stop wasting my gradients: Practical SVRG. In Advances in Neural Information Processing Systems, pages 2242–2250, 2015.
- [HLLJM15] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. Variance

- reduced stochastic gradient descent with neighbors. In Advances in Neural Information Processing Systems, pages 2305–2313, 2015.
- [JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In <u>Advances in Neural Information Processing</u> Systems, pages 315–323, 2013.
- [LJ16] Lihua Lei and Michael I Jordan. Less than a single pass: Stochastically controlled stochastic gradient method. arXiv preprint arXiv:1609.03261, 2016.
- [LJ17] Lihua Lei and Michael I Jordan. Less than a single pass: Stochastically controlled stochastic gradient method. arXiv preprint arXiv:1609.03261, 2017.
- [N+07] Yurii Nesterov et al. Gradient methods for minimizing composite objective function, 2007.
- [RHS+16] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction for nonconvex optimization. arXiv preprint arXiv:1603.06160, 2016.
 - [WS16] Blake Woodworth and Nathan Srebro. Tight complexity bounds for optimizing composite objectives. ArXiv e-prints abs/1605.08003, 2016.
- [XLY17] Yi Xu, Qihang Lin, and Tianbao Yang. Adaptive surg methods under error bound conditions with unknown growth parameter. In <u>Advances in Neural Information</u> Processing Systems, pages 3279–3289, 2017.

THANKS!

A bit about myself

- With Peter Bickel and Noureddine El Karoui
 - exact and asymptotic inference on high-dimensional non-sparse linear models;
- With Michael Jordan
 - convex and non-convex optimization;
 - higher-order accuracy of bootstrap and its variant;
- With William Fithian
 - interactive multiple testing with side information;
 - knockoffs-based inference;
- With Alex D'amour, Peng Ding, Avi Feller and Jasjeet Sekhon
 - debiasing regression-adjustment in randomized experiments;
 - robust randomized designs;
 - justifying overlap condition in observational studies.