# Unidad 1 Magnitudes físicas

# 1 Magnitudes y unidades

- 1- ¿Qué objetos, instrumentos o aparatos de medición conoce para medir longitudes, corrientes eléctricas, masa, peso? Enumerarlos v caracterizarlos.
- 2- ¿Cuáles de las siguientes magnitudes son fundamentales en el sistema MKS-Internacional?

Área Volumen Masa Aceleración Fuerza Velocidad

3- Completar los siguientes enunciados, adoptando la notación científica, por ejemplo:

 $2000 \text{ m} = 2 \times 10^3 \text{ m}$ 

| a      | En | 800 | gramos  | hav   | kilogramos.        |
|--------|----|-----|---------|-------|--------------------|
| $\sim$ |    | 000 | granico | 11019 | <br>Kiiogi airioo. |

b) En 1000 cm hay \_\_\_\_\_ pulgadas.

c) 83 horas equivalen a \_\_\_\_\_ minutos o a\_\_\_\_\_ segundos.

d) Un pie equivale a \_\_\_\_\_ milímetros.

e) 16 km equivalen a centímetros.

- 4- El espesor de una moneda es de 2 mm, ¿cuál es el espesor total de 6 monedas superpuestas una sobre la otra? Expresar el resultado en nm, en km y en m.
- 5- Calcular cuántos segundos tarda un haz de luz enviado desde la Tierra a la Luna en ir y volver, sabiendo que la distancia media entre la Tierra y la Luna es 384400 km (238,855 millas), y que un haz de luz recorre 3 x 108 m en un segundo.
  - 6- Expresar 320 kg/m<sup>3</sup> en gr/cm<sup>3</sup>.

**7-** Si x y  $x_{\theta}$  son longitudes,  $v_{\theta}$  es una velocidad, a es la aceleración y, finalmente, t y  $t_0$  son tiempos, demostrar que las expresiones siguientes son dimensionalmente correctas:

$$x = x_0 + v_0 (t - t_0) + 1/2 a (t - t_0)^2;$$

$$v - v_0 = a (t - t_0)$$

8- Analizando las dimensiones de las siguientes ecuaciones indicar cuáles son incorrectas. ¿Puede asegurar que las restantes son válidas?

x: posición, v: velocidad, a: aceleración, t: tiempo, F: Fuerza, V = Volumen, A = área; h = altura. (Obtener de las tablas de la página siguiente las unidades de cada una de las magnitudes involucradas).

$$t = v_0^2 sen \alpha / (3a)$$
  $x - x_0 = v_0^2 / (2a)$ 

$$x - x_0 = v_0^2 / (2a)$$

$$\frac{1}{2} m v^2 = F d^2$$

$$F/A = m a h / V$$

$$m\ v = F\left(t - t_0\right)^2$$

- 9- Considere un promedio de 60 latidos por minuto y calcule el número total de latidos durante una vida de 80 años.
- 10- Los cabellos crecen en promedio 0,35 mm diarios. ¿Cuántos km crecerán en un segundo?
- 11- Una persona en reposo realiza 12 respiraciones por minuto; si en cada entrada y salida de aire moviliza 500 ml, ¿cuantos m³ movilizará en un día?
- 12- Área de superficie corporal (ASC) es la medida o cálculo de la superficie del cuerpo humano, o superficie de su piel. La manera más simple de calcularlo es con la siguiente ecuación:

$$ASC = \sqrt{\frac{Peso \cdot Altura}{36 \frac{kgf}{m^3}}}$$

Calcule su propia ASC en metros cuadrados y exprésela en centímetros cuadrados.

### Prefijos más usados

| Prefijo | Símbolo | Núm                       | ero               | Notación<br>exponencial |
|---------|---------|---------------------------|-------------------|-------------------------|
| exa     | Е       | 1.000.000.000.000.000.000 | un trillón        | 10 <sup>18</sup>        |
| peta    | P       | 1.000.000.000.000.000     | mil billones      | 10 <sup>15</sup>        |
| tera    | T       | 1.000.000.000.000         | un billón         | 10 <sup>12</sup>        |
| giga    | G       | 1.000.000.000             | mil millones      | 10 <sup>9</sup>         |
| mega    | M       | 1.000.000                 | un millón         | 10 <sup>6</sup>         |
| kilo    | k       | 1.000                     | mil               | 10 <sup>3</sup>         |
| hecto   | h       | 100                       | cien              | 10 <sup>2</sup>         |
| deca    | da      | 10                        |                   | 10 <sup>1</sup>         |
| ninguno |         | 1                         | una decena, diez  | 10 <sup>0</sup>         |
| deci    | d       | 0,1                       | un décimo         | 10 <sup>-1</sup>        |
| centi   | С       | 0,01                      | un centésimo      | 10-2                    |
| mili    | m       | 0,001                     | un milésimo       | 10 <sup>-3</sup>        |
| micro   | μ       | 0,000001                  | un millonésimo    | 10-6                    |
| nano    | n       | 0,000000001               | un milmillonésimo | 10-9                    |
| pico    | р       | 0,00000000001             | un billonésimo    | 10 <sup>-12</sup>       |
| femto   | f       | 0,000000000000001         | un milbillonésimo | 10 <sup>-15</sup>       |
| atto    | a       | 0,00000000000000000001    | un trillonésimo   | 10-18                   |

#### Unidades básicas

| Magnitud                          | Nombre    | Símbolos |
|-----------------------------------|-----------|----------|
| Longitud                          | metro     | m        |
| Masa                              | kilogramo | kg       |
| Tiempo                            | segundo   | S        |
| Intensidad de corriente eléctrica | ampere    | Α        |
| Temperatura termodinámica         | kelvin    | K        |
| Cantidad de sustancia             | mol       | mol      |
| Intensidad luminosa               | candela   | cd       |

# Unidades SI derivadas expresadas a partir de unidades básicas y suplementarias.

| Magnitud            | Nombre                        | Símbolos         |
|---------------------|-------------------------------|------------------|
| Superficie          | metro cuadrado                | m²               |
| Volumen             | metro cúbico                  | m³               |
| Velocidad           | metro por segundo             | m/s              |
| Aceleración         | metro por segundo cuadrado    | m/s <sup>2</sup> |
| Número de ondas     | metro a la potencia menos uno | m−1              |
| Densidad            | kilogramo por metro cúbico    | kg/m³            |
| Velocidad angular   | radián por segundo            | rad/s            |
| Aceleración angular | radián por segundo cuadrado   | rad/s²           |

#### Unidades SI derivadas con nombres y símbolos especiales.

| Magnitud         | Nombre (Símbolo)   | Unidades SI<br>básicas o derivadas                     |  |
|------------------|--------------------|--------------------------------------------------------|--|
| Frecuencia       | hertz (Hz)         | s-1                                                    |  |
| Fuerza           | newton (N)         | m·kg·s-2                                               |  |
| Presión          | pascal (Pa)        | m-1-kg·s-2 o N·m-2                                     |  |
| Energía, trabajo | joule ( <b>J</b> ) | m <sup>2</sup> ·kg·s <sup>-2</sup> o N·m               |  |
| Potencia         | watt (W)           | m <sup>2</sup> ·kg·s <sup>-3</sup> o J·s <sup>-1</sup> |  |
| I ULCIILIA       | vvall (VV)         | 1112-1Kg-5-0 U J-5-                                    |  |

#### Unidades derivadas sin dimensión.

| Magnitud      | Nombre         | Símbolo |  |
|---------------|----------------|---------|--|
| Ángulo plano  | Radián         | rad     |  |
| Ángulo sólido | Estereorradián | sr      |  |

# 2 Vectores

En este capítulo los vectores se denotan con letra mayúscula y negrita; y su módulo se indica entre barras: **A, |A|.** 

**1-** Determinar el módulo y la dirección de los siguientes vectores. Representar gráficamente.

a) 
$$A = (-4; 3)$$

b) 
$$B=(2; 0)$$

c) 
$$C = (-2; -3)$$

d) 
$$\mathbf{D} = (0; -5)$$

**2-** Hallar las componentes cartesianas de los siguientes vectores:



**3-** Hallar analíticamente las componentes polares, módulo y ángulo con el eje horizontal x,  $|\mathbf{C}| \ y \ \theta$  respectivamente, del vector  $\mathbf{C} = \mathbf{A} + \mathbf{B}$ .

a) 
$$A = (-3; 2)$$

$$\mathbf{B} = (-2; 5)$$

b) 
$$\mathbf{A} = (1; -1,732)$$

$$\mathbf{B} = (1; -1,732)$$

c) 
$$\mathbf{A} = (-2; -4)$$

$$B = (2; 4)$$

d) 
$$A = (0; -2)$$

$$\mathbf{B} = (-2; 0)$$

e) 
$$A = (2; 2)$$

$$B = (-2; 2)$$

**4-** Dados los vectores **A** y **B** indicados, hallar gráficamente su suma o *resultante*, y su diferencia **A** – **B**.

a) 
$$A = (-3; 2)$$

$$B = (-2; 5)$$

b) A tal que 
$$|A|=2$$

$$\theta = 240^{\circ}$$

c) 
$$\mathbf{A} = (-2; 2)$$

$$B = (-5; 5)$$

5- Sean A y B los vectores dados en el ejercicio anterior. Hallar analíticamente las componentes cartesianas del vector  $\mathbf{A} + \mathbf{B}$ , y del  $\mathbf{A} - \mathbf{B}$ . ¿El módulo del vector suma,  $\mathbf{A} + \mathbf{B}$ , es igual a la suma de los módulos de  $\mathbf{A}$  y de  $\mathbf{B}$ ?

**6-** Decir si es *Verdadero* o *Falso* y justificar:

- a) El módulo del vector **A** + **B** es siempre igual a la suma de los módulos de **A** y de **B**.
- b) El módulo del vector **A+B**, puede ser menor que la suma de los módulos de **A** y de **B**.
- c) El módulo del vector **A**+**B** es siempre mayor al módulo del vector **A B**
- d) El módulo del vector **A** + **B** puede ser menor que el módulo del vector **A B**
- e) El módulo del vector **A B**, es siempre igual la resta de los módulos de **A** y de **B**.

**7-**¿Qué propiedades tienen los vectores **A** y **B** tales que:

a) 
$$A+B=C y |A|+|B|=|C|$$

b) 
$$A + B = A - B$$
.

c) 
$$A+B=C$$
 y  $|A|^2+|B|^2=|C|^2$ 

8- Hallar el vector que tiene origen en el punto **A** y extremo en el punto **B**:

a) 
$$A = (2; -1) y B = (-5; -2)$$
.

b) 
$$A = (2; -5; 8) y B = (-4; -3; 2).$$

9- Encontrar y graficar para el ejercicio 4 el vector C tal que C + (A + B) = 0, al que más adelante llamaremos equilibrante del sistema.

10- Sabiendo que los vectores A y B son los dados en el ejercicio 4. Calcular para cada caso el vector **D** que cumple:

(I) 
$$A + D = B$$

(II) 
$$A + B + D = F = (10; 10).$$

## Versor

Un vector unitario o versor es un vector de módulo uno.

Los versores cartesianos permiten expresar analíticamente los vectores por medio sus componentes cartesianas.



11- Escribir los vectores del ejercicio 1 utilizando versores.

**12-** Dados los vectores:  $\mathbf{A} = 9 \hat{x} - 8 \hat{y} + 6 \hat{z}$ ;  $\mathbf{B} = -1 \,\hat{x} + 2 \,\hat{y} - 4 \,\hat{z}$  y  $\mathbf{C} = -6 \,\hat{y} - 8 \,\hat{z}$ , efectuar las siguientes operaciones:

a) 
$$(A - B)/|C| + C$$

b) 
$$5 A - 2C$$

c) 
$$-2 A + B - (C/2)$$

#### **Producto Escalar**

Se define *producto escalar* de dos vectores

$$\mathbf{A} \bullet \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$$
,

donde  $\theta$  es el ángulo que forman los dos vectores.



**13-** Sean  $\hat{x}$  ,  $\hat{y}$  ,  $\hat{z}$  , los versores asociados con las direcciones de los ejes cartesianos de la terna derecha del recuadro gris intitulado "Versor".

$$\hat{x} = (1; 0; 0)$$
  $\hat{y} = (0; 1; 0)$   $\hat{z} = (0; 0; 1)$ 

Calcular:

a) 
$$\hat{x} \bullet \hat{x}$$
,  $\hat{x} \bullet \hat{y}$ ,  $\hat{x} \bullet \hat{z}$ 

b) 
$$\hat{y} \bullet \hat{x}$$
,  $\hat{y} \bullet \hat{y}$ ,  $\hat{y} \bullet \hat{z}$ 

c) 
$$\hat{z} \cdot \hat{x}$$
,  $\hat{z} \cdot \hat{y}$ ,  $\hat{z} \cdot \hat{z}$ 

14- Usando la propiedad distributiva del producto escalar respecto a la suma y los resultados del ejercicio anterior, demostrar que si:

$$\mathbf{A} = A_{x} \hat{x} + A_{y} \hat{y} + A_{z} \hat{z}$$
  
 $\mathbf{B} = B_{x} \hat{x} + B_{y} \hat{y} + B_{z} \hat{z}$ 

$$\mathbf{A} \bullet \mathbf{B} = \mathbf{A}_{x} \mathbf{B}_{x} + \mathbf{A}_{y} \mathbf{B}_{y} + \mathbf{A}_{z} \mathbf{B}_{z}$$

15- Efectuar el producto escalar de los vectores A y B y diga si en algún caso A es perpendicular a B.

a) 
$$\mathbf{A} = 3 \hat{x} - 2 \hat{y} + \hat{z}$$
  
b)  $\mathbf{A} = (2; 3; -1)$ 

$$\mathbf{B} = -\hat{x} + 3\hat{z}$$

b) 
$$A = (2; 3; -1)$$

$$B = (6; -5; 2)$$

c) 
$$|\mathbf{A}|$$
 =3,  $|\mathbf{B}|$  = 2 y  $\theta$  = 60° ( $\theta$ : ángulo entre  $\mathbf{A}$  y  $\mathbf{B}$ )

## **Producto Vectorial**

Se define el producto vectorial como

$$\mathbf{A} \times \mathbf{B} = \mathbf{C}$$
 tal que:

•  $|C| = |A| \cdot |B| \sin \theta$ , donde  $\theta$  es el ángulo que forman los dos vectores.

• C es un vector cuya dirección es perpendicular al plano determinado por A y B., y cuyo sentido lo indica la regla de la mano derecha.

**16-** Sean  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$ , los versores de la terna derecha mostrada en el recuadro grisado intitulado "Versor", calcular:

a) 
$$\hat{x} \times \hat{x}$$
,  $\hat{x} \times \hat{y}$ ,  $\hat{x} \times \hat{z}$ 

b) 
$$\hat{y} \times \hat{x}$$
,  $\hat{y} \times \hat{y}$ ,  $\hat{y} \times \hat{z}$ 

c) 
$$\hat{z} \times \hat{x}$$
,  $\hat{z} \times \hat{y}$ ,  $\hat{z} \times \hat{z}$ 

17- Usando la propiedad distributiva del producto vectorial respecto de la suma y los resultados del ejercicio anterior, demostrar que si:

$$\mathbf{A} = A_{x} \hat{x} + A_{y} \hat{y} + A_{z} \hat{z}$$

$$\mathbf{B} = B_{x} \hat{x} + B_{y} \hat{y} + B_{z} \hat{z}$$

entonces:

$$\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y; A_z B_x - A_x B_z; A_x B_y - A_y B_x)$$

18- Observar que se obtiene un resultado idéntico al anterior si se usa el determinante del producto vectorial:

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{pmatrix} =$$

$$= (A_y B_z - A_z B_y) \hat{x} + (A_z B_x - A_x B_z) \hat{y} + (A_x B_y - A_y B_x) \hat{z}$$

19- Sean los vectores:

A = (3; 2; 1) B = (1; 0; -1) C = (0; -2; 4); calcular cuando corresponda.

a) **B** x **C** 

b)  $-4(B \times B) - A$ 

c)  $(A + B) \times C$ 

## **Producto Mixto**

**20-** Sean los vectores  $\mathbf{A} = (0, 0, 3)$ ,  $\mathbf{B} = (8, 0, 0)$ ,  $\mathbf{C} = (0, -2, 0)$ , calcular, en coordenadas cartesianas, los siguientes productos mixtos. Indicar si la respuesta es un escalar o un vector. Graficar en los casos que corresponda.

a) 
$$\mathbf{D} = (\mathbf{B} \times \mathbf{C}) \bullet (\mathbf{A} \times \mathbf{C})$$

b) 
$$\mathbf{D} = -4(\mathbf{B} \times \mathbf{B}) \cdot \mathbf{A} - \mathbf{A}$$

c) 
$$\mathbf{D} = (\mathbf{A} \times \mathbf{C}) \cdot \mathbf{B}$$

d) 
$$\mathbf{D} = (\mathbf{A} \times \mathbf{C}) \cdot (\mathbf{C} \times \mathbf{A})$$

e) 
$$\mathbf{D} = (\mathbf{A} \times \mathbf{B}) \bullet (\mathbf{A} - \mathbf{B})$$

## Teoremas del coseno y del seno

21- (Opcional) Haciendo uso de la propiedad distributiva del producto escalar y vectorial respecto de la suma, demostrar el teorema del coseno y del seno y especializar cuando uno de los ángulos es recto (teorema de Pitágoras)

$$a^2 = b^2 + c^2 - 2.b \cdot c \cdot \cos \alpha$$

$$\frac{\operatorname{sen}\alpha}{a} = \frac{\operatorname{sen}\beta}{b} = \frac{\operatorname{sen}\gamma}{c}$$



### **Identidades**

Cualesquiera que sean los vectores A, B o C:

 $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$  (anticonmutatividad)

 $\mathbf{A} \bullet (\mathbf{A} \times \mathbf{B}) = 0$  (ortogonalidad)

Si  $\mathbf{A} \neq 0$  y  $\mathbf{B} \neq 0$  y  $\mathbf{A} \times \mathbf{B} = 0 \Rightarrow \mathbf{A} // \mathbf{B}$  (paralelismo)

 $(A + B) \times C = A \times C + B \times C$ (distributiva)

$$A \times (B \times C) = B (A \cdot C) - C (A \cdot B)$$

 $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) = 0$  (identidad de Jacobi)

# Respuestas

1- |A|= 5; |B|= 2; |C|= 3,6; |D|= 5.

**2-**  $\mathbf{A} = (1,73; 1); \mathbf{B} = (-1,5; -2,6); \mathbf{C} = (0; -1,5).$ 

3- a) **C** = (-5; 7) |**C**| = 8,6  $\theta$  = 125,54° b) **C** = (2; -3,464) |**C**| = 4  $\theta$  = -60° c) **C** = (0; 0) |**C**| = 0  $\theta$  = 0°

4- Gráficos de elaboración personal.

5- b)  $\mathbf{A} = (-1; -1,732) \text{ y } \mathbf{B} = (-2,121; 2,121);$   $\mathbf{C} = \mathbf{A} + \mathbf{B} = (-3,121; 0,389) = \mathbf{Resultante} = \mathbf{R_c}.$ c)  $\mathbf{A} + \mathbf{B} = (-7; 7);$  $|\mathbf{A}| = 2 \sqrt{2}; |\mathbf{B}| = 5 \sqrt{2}; |\mathbf{A} + \mathbf{B}| = 7 \sqrt{2}.$ 

6- a) F; b) V; c) F; d) V; e) F.

7- a) son paralelos y de igual sentido;b) |B|= 0;c) son perpendiculares.

**8-** b)  $\mathbf{D} = (-6; 2; -6)$ 

**9-** b) **Equilibrante** =  $\mathbf{E}_{c}$  tal que  $\mathbf{E}_{c}$ +  $\mathbf{R}_{c}$ =0;  $\mathbf{E}_{c}$ =  $-\mathbf{R}_{c}$   $\mathbf{E}_{c}$ = (3,121; -0,389).

**10-** a)  $\mathbf{D}_{I} = (1; 3); \mathbf{D}_{II} = (15; 3).$ 

**11-** a)  $\mathbf{A} = -4 \, \hat{x} + 3 \, \hat{y} + 0 \, \hat{z}$ ; b)  $\mathbf{B} = 2 \, \hat{x}$ ; c)  $\mathbf{C} = -2 \, \hat{x} - 3 \, \hat{y}$ ; d)  $\mathbf{D} = -5 \, \hat{y}$ .

**12-** a)  $\mathbf{R}_{a} = 1\hat{x} - 7\hat{y} - 7\hat{z};$ c)  $\mathbf{R}_{c} = -19\hat{x} + 21\hat{y} - 12\hat{z}.$ 

**13**-  $\hat{x} \bullet \hat{x} = \hat{y} \bullet \hat{y} = \hat{z} \bullet \hat{z} = 1$  $\hat{x} \bullet \hat{y} = \hat{y} \bullet \hat{x} = \hat{x} \bullet \hat{z} = \hat{z} \bullet \hat{x} = \hat{y} \bullet \hat{z} = \hat{z} \bullet \hat{y} = 0$ 

14- De elaboración personal.

**15-** a) **A • B** = -3 + 0 + 3 = 0 ⇒ son perpendiculares b) **A • B** = -5; c) **A • B** = 3.

**16-**  $\hat{x} \times \hat{x} = \hat{y} \times \hat{y} = \hat{z} \times \hat{z} = 0;$   $\hat{x} \times \hat{y} = \hat{z}; \hat{z} \times \hat{x} = \hat{y}; \hat{y} \times \hat{z} = \hat{x}$  $\hat{y} \times \hat{x} = -\hat{z}; \hat{x} \times \hat{z} = -\hat{y}; \hat{z} \times \hat{y} = -\hat{x}$ 

17- De elaboración personal.

18- De elaboración personal.

**19-** a)  $-2 \hat{x} - 4 \hat{y} - 2 \hat{z}$ ; b)  $-\mathbf{A} = -3 \hat{x} - 2 \hat{y} - \hat{z}$ c)  $8 \hat{x} - 16 \hat{y} - 8 \hat{z}$ 

**20-** a) D = 0 b) **D** = **- A** c) D = 48 d) D = -36 e) D = 0

21- De elaboración personal.