Сортировка Шелла

Материал из Википедии — свободной энциклопедии

Сортировка Шелла (англ. Shell sort) — алгоритм сортировки, являющийся усовершенствованным вариантом сортировки вставками. Идея метода Шелла состоит в сравнении элементов, стоящих не только рядом, но и на определённом расстоянии друг от друга. Иными словами — это сортировка вставками C предварительными «грубыми» проходами. Аналогичный метод усовершенствования пузырьковой сортировки называется сортировка расчёской.

Содержание

Описание

История

Пример

Выбор длины промежутков

Реализация на С++

Реализация на С

Реализация на Java

Реализация на Python

Примечания

Ссылки

Описание

При сортировке Шелла сначала сравниваются и сортируются между собой значения, стоящие один от другого на некотором расстоянии d (о выборе значения d см. ниже). После этого

процедура повторяется для некоторых меньших значений $m{d}$, а завершается сортировка Шелла упорядочиванием элементов при d=1 (то есть обычной сортировкой вставками). Эффективность сортировки определённых случаях обеспечивается тем, что элементы «быстрее» встают на свои места (в простых методах сортировки, например, пузырьковой, каждая перестановка двух элементов уменьшает количество инверсий в списке максимум на 1, а при сортировке Шелла это число может быть больше).

Невзирая на то, что сортировка Шелла во многих случаях медленнее, чем быстрая сортировка, она имеет ряд преимуществ:

Сортировка с шагами 23, 10, 4, 1.

Автор Шелл, Дональд

Предназначение Алгоритм сортировки

Структура данных Массив

Худшее время $O(n^2)$

 $O(n \log^2 n)$ Лучшее время

Среднее время зависит от выбранных

шагов

O(n) всего, O(1) Затраты памяти

дополнительно

Сортировка Шелла на примере

- отсутствие потребности в памяти под стек;
- отсутствие деградации при неудачных наборах данных быстрая сортировка легко деградирует до $O(n^2)$, что хуже, чем худшее гарантированное время для сортировки Шелла.

История

Сортировка Шелла была названа в честь её изобретателя — Дональда Шелла, который опубликовал этот алгоритм в 1959 году.

Пример

Пусть	дан	список	Исходный массив	32	95	16	82	24	66	35	19	75	54	40	43	93	68	
			После сортировки с шагом 5	32	35	16	68	24	40	43	19	75	54	66	95	93	82	6 обменов
			После сортировки с шагом 3	32	19	16	43	24	40	54	35	75	68	66	95	93	82	5 обменов
			После сортировки с шагом 1	16	19	24	32	35	40	43	54	66	68	75	82	93	95	15 обменов

A = (32, 95, 16, 82, 24, 66, 35, 19, 75, 54, 40, 43, 93, 68) и выполняется его сортировка методом Шелла, а в качестве значений d выбраны 5, 3, 1.

На первом шаге сортируются подсписки A, составленные из всех элементов A, различающихся на 5 позиций, то есть подсписки $A_{5,1}=(32,66,40)$, $A_{5,2}=(95,35,43)$, $A_{5,3}=(16,19,93)$, $A_{5,4}=(82,75,68)$, $A_{5,5}=(24,54)$.

В полученном списке на втором шаге вновь сортируются подсписки из отстоящих на 3 позиции элементов.

Процесс завершается обычной сортировкой вставками получившегося списка.

Выбор длины промежутков

Среднее время работы алгоритма зависит от длин промежутков — d, на которых будут находиться сортируемые элементы исходного массива ёмкостью N на каждом шаге алгоритма. Существует несколько подходов к выбору этих значений:

- первоначально используемая Шеллом последовательность длин промежутков: $d_1 = N/2, d_i = d_{i-1}/2, d_k = 1$ в худшем случае, сложность алгоритма составит $O(N^2)$;
- предложенная Хиббардом последовательность: все значения $2^i-1 \leq N, i \in \mathbb{N}$; такая последовательность шагов приводит к алгоритму сложностью $O(N^{3/2})$;
- предложенная Седжвиком последовательность: $d_i = 9 \cdot 2^i 9 \cdot 2^{i/2} + 1$, если і четное и $d_i = 8 \cdot 2^i 6 \cdot 2^{(i+1)/2} + 1$, если і нечетное. При использовании таких приращений средняя сложность алгоритма составляет: $O(n^{7/6})$, а в худшем случае порядка $O(n^{4/3})$. При использовании формулы Седжвика следует остановиться на значении inc[s-1], если 3*inc[s] > size. [1];
- предложенная Праттом последовательность: все значения $2^i \cdot 3^j \leq N/2, i, j \in \mathbb{N}$; в таком случае сложность алгоритма составляет $O(N(log N)^2)$;
- эмпирическая последовательность Марцина Циура (последовательность $\underline{A102549}$ в \underline{OEIS}): $d \in \{1,4,10,23,57,132,301,701,1750\}$; является одной из лучших для сортировки массива ёмкостью приблизительно до 4000 элементов. [2];
- эмпирическая последовательность, основанная на числах Фибоначчи: $d \in \{F_n\}$;
- все значения $(3^j-1) \leq N$, $j \in \mathbb{N}$; такая последовательность шагов приводит к алгоритму сложностью $O(N^{3/2})$.

Реализация на С++

```
template< typename RandomAccessIterator, typename Compare >
void shell_sort( RandomAccessIterator first, RandomAccessIterator last, Compare comp )
{
    for( typename std::iterator_traits< RandomAccessIterator >::difference_type d = ( last - first ) / 2; d != 0; d
/= 2 )
//нужен цикл для first = a[0..d-1]
```

```
for( RandomAccessIterator i = first + d; i != last; ++i )
    for( RandomAccessIterator j = i; j - first >= d && comp( *j, *( j - d ) ); j -= d )
        std::swap( *j, *( j - d ) );
}
```

Реализация на С

```
void ShellSort (int array[], int size)
                                                           // * \Delta k = (b\Delta k - 1)/2 \quad \Delta \theta = N
{
    int step, i, j, tmp;
    // Выбор шага
    for (step = size / 2; step > 0; step /= 2)
         // Перечисление элементов, которые сортируются на определённом шаге
         for (i = step; i < size; i++)</pre>
              // Перестановка элементов внутри подсписка, пока і-тый не будет отсортирован
             for (j = i - step; j \ge 0 \&\& array[j] > array[j + step]; j -= step)
             {
                 tmp = array[j];
                 array[j] = array[j + step];
                 array[j + step] = tmp;
             }
}
```

Реализация на Java

Реализация на Python

```
def shellSort(array):
    increment = len(array) // 2
    while increment > 0:
        for startPosition in range(increment):
            gapInsertionSort(array, startPosition, increment)

        print("После инкрементации размера на", increment,"массив:", array)
        increment //= 2

def gapInsertionSort(array, low, gap):
    for i in range(low + gap, len(array), gap):
        currentvalue = array[i]
        position = i

    while position >= gap and array[position - gap] > currentvalue:
        array[position] = array[position - gap]
        position = position - gap

    array[position] = currentvalue
```

Примечания

- 1. *J. Incerpi, R. Sedgewick*, «Improved Upper Bounds for Shellsort», J. Computer and System Sciences 31, 2, 1985.
- 2. Marcin Ciura Best Increments for the Average Case of Shellsort (http://sun.aei.polsl.pl/~mciura/publikacje/shellsort.pdf)

Ссылки

- *Д. Кнут*. Искусство программирования. Том 3. Сортировка и поиск, 2-е изд. Гл. 5.2.1. <u>ISBN 5-8459-</u> 0082-4
- Анимированное представление алгоритма сортировки Шелла (http://www.sorting-algorithms.com/shell -sort)
- Представление алгоритма сортировки Шелла в виде танца (видео) (https://www.youtube.com/watch? v=CmPA7zE8mx0)

Источник — https://ru.wikipedia.org/w/index.php?title=Сортировка Шелла&oldid=102901269

Эта страница в последний раз была отредактирована 23 октября 2019 в 20:37.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.