Intro2DA

April 19, 2021

Introduction to Data Analytics Kevin Kam Fung Yuen kevinkf.yuen@gmail.com 19 April 2021

1 Background and Objectives

Data includes the profiles of the clients and the charge how much insurance company to insure them. A data analyst needs to find the insights from the data. He/she needs to performance a KDD process for the activities below.

- Descriptive Analytics: distribution of data.
- Diagnostic Analytics: factors contributing to the charges.
- Predictive Analytics: predict the insurance charges for the new people based on the information we will get from them.
- Prescriptive Analytics: suggest deployments methods based on the previous steps.

2 Get Data from Internet

```
[1]: path = "https://raw.githubusercontent.com/stedy/

→Machine-Learning-with-R-datasets/master/insurance.csv"
```

		age <int></int>	sex <fct></fct>	bmi <dbl></dbl>	children <int></int>	$\begin{array}{l} {\rm smoker} \\ {\rm < fct >} \end{array}$	$ \begin{array}{c} {\rm region} \\ {\rm < fct >} \end{array} $	charges <dbl></dbl>
A data.frame: 6×7	1	19	female	27.900	0	yes	southwest	16884.924
	2	18	male	33.770	1	no	southeast	1725.552
	3	28	male	33.000	3	no	southeast	4449.462
	4	33	$_{\mathrm{male}}$	22.705	0	no	northwest	21984.471
	5	32	male	28.880	0	no	northwest	3866.855
	6	31	female	25.740	0	no	southeast	3756.622

3 Data cleansing and preparation

```
[3]: # check missing values
     sum(is.na(data))
    0
[4]: # check structure of data
     str(data)
    'data.frame': 1338 obs. of 7 variables:
              : int 19 18 28 33 32 31 46 37 37 60 ...
                : Factor w/ 2 levels "female", "male": 1 2 2 2 2 1 1 1 2 1 ...
     $ sex
              : num 27.9 33.8 33 22.7 28.9 ...
     $ children: int 0 1 3 0 0 0 1 3 2 0 ...
     $ smoker : Factor w/ 2 levels "no", "yes": 2 1 1 1 1 1 1 1 1 1 ...
     $ region : Factor w/ 4 levels "northeast", "northwest", ..: 4 3 3 2 2 3 3 2 1 2
     $ charges : num 16885 1726 4449 21984 3867 ...
[5]: # it looks the factor number for smoker is not appropriate.
     head(data$smoker)
    1. yes 2. no 3. no 4. no 5. no 6. no
    Levels: 1. 'no' 2. 'yes'
[6]: # fix the data type
     data$smoker = as.logical(as.numeric(as.character(factor(data$smoker,levels⊔
      \hookrightarrow = c("no","yes"), labels = c(0,1))))
     str(data)
    'data.frame': 1338 obs. of 7 variables:
              : int 19 18 28 33 32 31 46 37 37 60 ...
                : Factor w/ 2 levels "female", "male": 1 2 2 2 2 1 1 1 2 1 \dots
               : num 27.9 33.8 33 22.7 28.9 ...
     $ children: int 0 1 3 0 0 0 1 3 2 0 ...
     $ smoker : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
     $ region : Factor w/ 4 levels "northeast", "northwest", ...: 4 3 3 2 2 3 3 2 1 2
     $ charges : num 16885 1726 4449 21984 3867 ...
[7]: head(data$smoker)
```

1. TRUE 2. FALSE 3. FALSE 4. FALSE 5. FALSE 6. FALSE

4 Descriptive Statistics

[8]: summary(data)

```
bmi
                                                  children
                                                                  smoker
     age
                     sex
Min.
       :18.00
                 female:662
                              Min.
                                      :15.96
                                               Min.
                                                      :0.000
                                                                Mode :logical
1st Qu.:27.00
                male :676
                              1st Qu.:26.30
                                               1st Qu.:0.000
                                                                FALSE: 1064
Median :39.00
                              Median :30.40
                                               Median :1.000
                                                                TRUE :274
Mean
       :39.21
                              Mean
                                      :30.66
                                               Mean
                                                      :1.095
3rd Qu.:51.00
                              3rd Qu.:34.69
                                               3rd Qu.:2.000
Max.
       :64.00
                                      :53.13
                                               Max.
                                                      :5.000
                              Max.
      region
                    charges
northeast:324
                Min.
                        : 1122
northwest:325
                 1st Qu.: 4740
southeast:364
                Median: 9382
southwest:325
                        :13270
                Mean
                 3rd Qu.:16640
                Max.
                        :63770
```

[9]: hist(data\$charges)

Histogram of data\$charges


```
[10]: # install.packages("psych") # if it is not ready
library(psych)
pairs.panels(data[c("age","bmi","children","smoker","charges")])
```


5 Modelling – Regression

5.1 Train-Test Splitting for Data

```
[11]: # Total observations
m = nrow(data)
m

1338
[12]: # randomize the data
set.seed(1000)
rand = sample(m)
```

```
rData = data[rand,]
[13]: # size of training data
      (nTrain = round(m * 0.9))
      # size of testing data
      (nTest = m - nTrain)
     1204
     134
[14]: # Assign training and testing data from randomized data
      trainData = rData[1:nTrain, ]
      testData = rData[(nTrain+1):m, ]
[15]: str(trainData)
     'data.frame': 1204 obs. of 7 variables:
              : int 47 25 62 34 60 63 25 47 52 47 ...
                : Factor w/ 2 levels "female", "male": 2 1 2 1 1 2 1 2 1 2 ...
      $ sex
               : num 28.2 23.5 38.8 26.7 18.3 ...
      $ children: int 3 0 0 1 0 0 0 1 2 3 ...
      $ smoker : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
      $ region : Factor w/ 4 levels "northeast", "northwest", ...: 2 1 3 3 1 1 4 3 1 2
      $ charges : num 24915 3206 12981 5003 13204 ...
[16]: str(testData)
     'data.frame':
                    134 obs. of 7 variables:
             : int 62 37 45 47 42 46 21 53 64 37 ...
      $ sex
                : Factor w/ 2 levels "female", "male": 1 2 2 1 2 1 2 2 1 2 ...
                : num 36.9 29.6 24 26.6 31.3 ...
      $ bmi
      $ children: int 1 0 2 2 0 0 0 0 3 1 ...
      $ smoker : logi FALSE FALSE FALSE FALSE FALSE ...
      $ region : Factor w/ 4 levels "northeast", "northwest", ...: 1 2 1 1 2 2 2 2 2 1
      $ charges : num 31620 5028 8604 9716 6359 ...
[17]: pairs.panels(trainData[c("age","bmi","children","smoker","charges")])
```


[18]: pairs.panels(testData[c("age","bmi","children","smoker","charges")])

5.2 Features Selection

```
Call:
```

lm(formula = charges ~ ., data = trainData)

Residuals:

Min 1Q Median 3Q Max -11614.8 -2747.7 -927.3 1397.8 29753.4

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                            1046.38 -11.346 < 2e-16 ***
(Intercept)
               -11872.52
                  255.99
                              12.56 20.378 < 2e-16 ***
age
                             351.77 -0.354 0.723210
sexmale
                 -124.62
                  338.19
                              30.30 11.163 < 2e-16 ***
bmi
children
                  477.09
                             144.27 3.307 0.000971 ***
                             435.97 55.540 < 2e-16 ***
smokerTRUE
                24213.76
regionnorthwest
                 -343.62
                             507.84 -0.677 0.498768
                             509.37 -2.285 0.022476 *
regionsoutheast -1164.02
                             506.16 -2.046 0.040943 *
regionsouthwest -1035.77
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6074 on 1195 degrees of freedom

Multiple R-squared: 0.7556, Adjusted R-squared: 0.754

F-statistic: 461.9 on 8 and 1195 DF, p-value: < 2.2e-16

Select those features with significant level, $p \le 0.01$ only. We may consider the dummy variables in region. to simply the introduction, we do not discuss at this moment.

```
[20]: reduceModel = lm(formula = charges ~ age + bmi + children + smoker , data = u → trainData)
summary(reduceModel)
```

Call:

lm(formula = charges ~ age + bmi + children + smoker, data = trainData)

Residuals:

Min 1Q Median 3Q Max -12246.6 -2820.3 -951.9 1366.5 29202.5

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -12025.20 1000.53 -12.019 < 2e-16 *** 256.88 12.56 20.456 < 2e-16 *** age bmi 318.70 29.05 10.969 < 2e-16 *** 144.22 3.302 0.00099 *** children 476.15 24180.23 434.31 55.675 < 2e-16 *** smokerTRUE

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6082 on 1199 degrees of freedom

Multiple R-squared: 0.7542, Adjusted R-squared: 0.7534

F-statistic: 919.6 on 4 and 1199 DF, p-value: < 2.2e-16

Now we can confirm all features are statistical significant.

[21]: anova(fullModel,reduceModel)

```
Res.Df
                                          Df
                                                   Sum of Sq
                                                               F
                                                                          Pr(>F)
                   <dbl>
                            <dbl>
                                          <dbl>
                                                                          <dbl>
                                                   <dbl>
                                                               <dbl>
A anova: 2 \times 6
                   1195
                            44092467572
                                          NA
                                                   NA
                                                               NA
                                                                          NA
                   1199
                            44358476853
                                          -4
                                                  -266009281
                                                               1.802355
                                                                         0.1259959
```

If P < 0.05, we reject H0: reduced model = full model, or assert Ha: reduced model != full model. In this case, P > 0.05. we do not reject H0. If H0: reduced model = full model is favored, we choose the less variable one.

6 Prediction / test /evaluation

```
[22]: str(testData)
     'data.frame':
                     134 obs. of 7 variables:
      $ age
                 : int 62 37 45 47 42 46 21 53 64 37 ...
                 : Factor w/ 2 levels "female", "male": 1 2 2 1 2 1 2 2 1 2 ...
      $ sex
                : num 36.9 29.6 24 26.6 31.3 ...
      $ children: int 1 0 2 2 0 0 0 0 3 1 ...
                : logi FALSE FALSE FALSE FALSE FALSE ...
      $ region : Factor w/ 4 levels "northeast", "northwest", ..: 1 2 1 1 2 2 2 2 2 1
      $ charges : num 31620 5028 8604 9716 6359 ...
[23]: X = testData[,-7]
[24]:
     Y = testData[,7]
[25]: Yp = predict(reduceModel, X)
[26]: #rmse: root mean square error
      RMSE = sqrt(mean((Y-Yp)^2))
      RMSE
     5954.53393416666
[27]: data.frame(Y, Yp, abs(Y-Yp))
```

		l -	T.	
		Y	Yp	abs.YYp.
-		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	574	31620.001	16124.748	15495.25350
	165	5028.147	6925.631	1897.48391
	741	8604.484	8146.614	457.86955
	276	9715.841	9477.844	237.99716
	949	6358.776	8724.722	2365.94530
	89	8026.667	8631.984	605.31732
	788	1917.318	5116.645	3199.32710
	684	9863.472	9340.153	523.31840
	$379 \\ 948$	16455.708 39047.285	15441.148 33035.308	1014.56028
	1181	7650.774	12410.225	6011.97728 4759.45164
	857	40974.165	35037.412	5936.75272
	537	5972.378	10277.782	4305.40441
	456	21797.000	15050.064	6746.93595
	1091	41676.081	35762.144	5913.93697
	645	18806.145	11226.250	7579.89577
	700	3500.612	7350.782	3850.16964
	486	4347.023	5838.523	1491.49972
	381	15006.579	25765.344	10758.76430
	714	1984.453	6010.291	4025.83734
	766	11842.624	12759.535	916.91148
	1316	11272.331	2097.248	9175.08383
	832	5266.366	5457.678	191.31236
	893	10422.917	9506.200	916.71712
	228	24227.337	16230.543	7996.79391
	626	3736.465	3720.094	16.37061
	188	5325.651	6957.519	1631.86784
	765	9095.068	8509.937	585.13143
	795	7209.492	9118.335	1908.84362
A data.frame: 134×3	865	8782.469	9170.600	388.13126
11 444441141161 101 // 0				
	661	6435.624	13737.002	7301.37856
	444	28287.898	15245.758	13042.13994
	817	2842.761	1860.449	982.31168
	1120	5693.431	3467.708	2225.72203
	1226	4795.657	9618.684	4823.02758
	92	10942.132	9967.691	974.44126
	535	13831.115	17316.057	3484.94205
	636	14410.932	16586.225	2175.29266
	818	3597.596	7135.347	3537.75087
	61	8606.217	9168.705	562.48728
	558	3935.180	7611.478	3676.29812
	17	10797.336	11618.258	820.92208
	321	4894.753	5238.416	343.66260
	382	42303.692	36062.692	6240.99986
	547	3268.847	6460.630	3191.78310
	1326	13143.337	14332.027	1188.68990
	840	12622.180	13121.904	499.72488
	430	18804.752	6027.536	12777.21606
	1291	7133.903	5046.570	2087.33249
	1027	16450.895	25807.712	9356.81762

7 Deloyment

Normally, we compare different ML models and choose the best one with settting the best hyperparameters. To simply the illustration, we assume that the model is accepted and is going to deploy for further use.

101 1	urther use.
8	Reviews
8.1	Please give the orders for the steps in the advanced analytics!.
•	 ()Prescriptive Analytics ()Diagnostic Analytics ()Descriptive Analytics ()Predictive Analytics
8.2	Please give the order according to pyramid.
•	() Information() Data() wisdom() knowledge
8.3	Please rank the size of the scope: smaller number means smaller scope.
•	() Deep Learning() Artificial Intelligence() Machine Learning
8.4	Please give the orders according to KDD process.
•	 () selection () Preprocessing () Transformation () Data Mining () Interpretation / Evaluation
9	Solutions
9.1	Please give the orders for the steps in the advanced analytics.

- (4)Prescriptive Analytics
- (2)Diagnostic Analytics
- (1)Descriptive Analytics
- (3)Predictive Analytics
- 9.2 Please give the orders according to pyramid.
 - (2) Information
 - (1) Data

- (4) wisdom
- (3) knowledge

9.3 Please rank the sizes of the scopes: smaller number means smaller scope.

- \bullet (1) Deep Learning
- (3) Artificial Intelligence
- (2) Machine Learning

9.4 Please give the orders according to the KDD process.

- (1) selection
- (2) Preprocessing
- (3) Transformation
- (4) Data Mining
- (5) Interpretation / Evaluation

[]: