

Data-Flow-Based Normalization Generation Algorithm of R1CS for Zero-Knowledge Proof

Chenhao Shi, Hao Chen, Ruibang Liu, Guoqiang Li†

Shanghai Jiao Tong University

Contents

- Research Background
- Algorithm Design
- Evaluation
- Conclusion

RESEARCH BACKGROUND

Research Background

Increasing Importance

- Primary Applications: Privacy Security, Scalability
- Key Application Domains: Web3, Cryptocurrency, Financial Industry

Complex Transformation Process

Research Background

- Limitations in Conversing Arithmetic Circuits to R1CS
 - Limited Mergeability

Flexible R1CS Representations

ALGORITHM DESIGN

Algorithm Design

Example Equivalent R1CS

$$-A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} C = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Variable mapping = $(\sim \text{one}, x, , \sim \text{out}, x^2, x^3, \text{sym}_1)$

$$-A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -5 & -1 & 1 & 0 \end{pmatrix}$$
Variable mapping = (\sigma one, x,, \sigma out, x^2)

Algorithm Design: Construction of RNode Graph

• Main Steps: Transform each equation and combine the results

Algorithm Design: Construction of RNode Graph

The design of the RNode data structure minimizes changes to the overall structure.

Structural differences of RNode Graph of different R1CS remain.

Additional abstraction is necessary.

Algorithm Design: Tile Selection

• Main Steps: Partitioning data flow graphs using customized tile types

Customized Tile Types:

- Quadratic
- MulLinear
- AddLinear

Three Considerations:

- Temporarily deferring the constraint merging step.
- Utilizing the paradigm based on unmerged constraints as the fundamental approach.
- Implementing a relatively straightforward algorithm for tile selection.

Algorithm Design: Tile Selection

• The procedure of tile selection:

Algorithm Design: RNode Graph Abstraction

• Main Steps: Abstracting linear tiles as a single large node and reconfiguring the associated edges.

- The type of edges after abstraction:
 - Abstract Node to Abstract Node: Both abstracted nodes represent linear tiles that have common RNode.
 - Abstract Node to RNode: RNode is present in the linear tile represented by the abstracted node.
 - RNode to RNode: Maintaining consistency with the original data flow graph before abstraction.

Algorithm Design: Tile Weight Calculation

- Using Weighted PageRank Algorithm
- Formula for calculating weights:

$$- PR(u) = (1 - d) + d \sum_{v \in B(u)} PR(v) W_{(v,u)}^{in} W_{(v,u)}^{out}$$

- The weight $W_{(v,u)}^{in}W_{(v,u)}^{out}$ is computed using the in-degree and out-degree of node v and its neighboring nodes.
- Using the variance of the coefficients as the weight of linear tiles.

$$- W = \sum (a_i - \frac{\sum a_i}{n})^2 / (\frac{\sum a_i}{n})^2$$

- Diminishing the symmetry in the graph.
- Removing identical weights of tiles.

Algorithm Design: Linear Constraint Adjustment

- Scope of Adjustment: Newly Introduced Variables in Linear Tiles.
- Sorting Criterion

$$-$$
 weight $=$ $\sum_{\text{other linear tiles}}$ | field * weight of linear tile |

Rationale:

- To reflect the significance of variables based on their occurrences within the constraints.
- To maintain equal weights for variables that solely appear within a single linear constraint.

EVALUATION

Evaluation

Benchmark Design

- Benchmark Classification: According to summarized rules for generating equivalent R1CS
- Separated Generation: Within each category

Developing benchmark constraint sets

Constructing equivalent constraint sets

Performing algorithm testing

• Experiment Result Evaluation

Reasons for Generating Equivalent R1CS Constraints	Number of Groups	Successfully Generated Groups	Pass Rate
Replacement of variable order.	55	55	100%
Reordering of constraint sequences.	21	21	100%
Introduction of multiple new variables in a single linear constraint.	15	15	100%
Introduction of multiple new variables with usage in multiple linear constraints.	15	15	100%
Merging and splitting of constraints.	6	6	100%

CONCLUSION

Conclusion: Contribution

• Introducing the formal paradigm of R1CS constraint sets and designing an algorithm for generating paradigm sets.

- Summarizing the patterns in generating equivalent R1CS constraint sets.
- Designing benchmark for equivalent R1CS constraint sets.

Conclusion: Future Work

Merging Rules for Constraints

- More Complex Tile Forms
- Matrices with a Higher Degree of Density

More comprehensive test sets

- More Comprehensive Categorization
- Additional and Larger-scale Illustrations.

More efficient algorithmic workflow

- Improving the Parallelism of the Algorithm.
- Reducing Algorithm Memory Consumption.

THANK YOU