Singing Voice Synthesis Using Differentiable LPC and Glottal-Flow-Inspired Wavetables

Chin-Yun Yu and György Fazekas Centre for Digital Music, Queen Mary University of London

Engel, Jesse, Chenjie Gu, and Adam Roberts. "DDSP: Differentiable Digital Signal Processing." International Conference on Learning Representations. 2019.

ISMIR 2023

We propose...

```
GlOttal-flow LPC Filter (GOLF)
```

- 1. Glottal flows as the source signal
- 2. Differentiable, efficient LPC synthesis simulating the vocal tract

Glottal Source-Filter Model (simplified)

Linear Predictive Coding (LPC)

$$s_n = e_n - \sum_{i=1}^M a_i s_{n-i}$$

Recursion is slow...

- Just like RNN
- Long sequence == very deep computational graph

Proposed Methodology

Glottal-flow Wavetables

Efficient and Differentiable LPC

Simulating Time-Varying LPC

Parallelisable

GOLF Vocoder

The Vocoder Experiment

- Dataset: MPop600¹
 - f1/m1 singers
 - exclude 3 songs for evaluation
- Input features: 80 mel-frequencies
- Criterion
 - multi-resolution STFT
 - o F0
 - voiced/unvoiced
- 800k training steps

- Decoder
 - DDSP
 - SawSing²
 - GOLF
 - PULF (replace glottal flow with pulse train)
- Metrics
 - multi-resolution STFT
 - Mean Absolute Error on F0
 - FAD
 - MOS on singing quality

^[1] Chu, Chan-Chuan, et al. "MPop600: A Mandarin popular song database with aligned audio, lyrics, and musical scores for singing voice synthesis." 2020 APSIPA ASC. IEEE, 2020.

^[2] Wu, Da-Yi, et al. "DDSP-based singing vocoders: A new subtractive-based synthesizer and a comprehensive evaluation." 2022 Proc. International Society for Music Information Retrieval.

Singers	Models	MSSTFT	MAE-f0 (cent)	FAD
f1	DDSP SawSing	3.09 3.12	74.47 ±1.19 78.91±1.18	0.50 ± 0.02 0.38 ± 0.02
	GOLF PULF	3.21 3.27	77.06 ± 0.88 76.90 ± 1.11	0.62 ± 0.02 0.75 ± 0.04
m1	DDSP SawSing	3.12 3.13	52.95 ±1.03 56.46±1.04	0.57 ± 0.02 0.48 ± 0.02
	GOLF PULF	3.26 3.35	54.09 ± 0.30 54.60 ± 0.73	0.67 ± 0.01 1.11 ± 0.04

Models	Memory	RTF		Waveform L2	
11100015		GPU	CPU	Min	Max
DDSP	7.3	0.015	0.237	71.83	88.77
SawSing	7.3	0.015	0.240	75.72	93.16
GOLF	2.6	0.009	0.023	21.98	64.82
PULF	7.5	0.015	0.248	44.08	70.59

In Summary, GOLF...

...is more computationally efficient.

...has better ability to model human voice phase response.

Differentiable IIR: torchaudio.functional.lfilter

Source Code: https://github.com/yoyololicon/golf/

Audio Samples: https://yoyololicon.github.io/golf-demo/

