Logos 系列产品 HMEMC 应用实例 用户指南

(UG020011, Version 1.2) (2019.11.4)

深圳市紫光同创电子有限公司 版权所有 侵权必究

文档版本修订记录

版本号	发布日期	修订记录
V1.0	2018/1/18	初始版本
V1.1	2018/12/18	封面增加最新的版本更新时间; 页脚去掉版本信息
V1.2	2019/11/4	 修改 UG 编号; 修改 PGL22 的 DQ 信号连接说明

名词术语解释

HMEMC: Hard Memory Controller

DDR: Double Data Rate

IOL: IO Logic

IOB: IO Buffer

qos: quality of service

目录

、概述		1
HMEM	C 功能说明	2
	**·	
	仿真说明	
	HMEM (一) (三) (四) HMEM (一) (二) (三) (三) (三) (三) (四)	(三) 用户端口选择 (四) 低功耗模式 HMEMC DDR3 实例介绍 (一) 设计说明 (二) 参数说明 (三) 信号说明 (四) 仿真说明 (五) 使用资源说明

图目录

图 1 HMEMC 与其他硬件资源的互连	2
图 2 突发写时序图	4
图 3 突发读时序图	5
图 4APB接口写时序图	6
图 5 APB 接口读时序图	6
图 6 HMEMC 的时钟和复位信号	7
图 7 进入和退出 AXI 低功耗模式的时序图	8
图 8 拒绝进入 AXI 低功耗模式的时序	
图 9 由 CACTIVE_X 发起的退出 AXI 低功耗模式请求	9
图 10 进入 DDRC 低功耗模式	
图 11 退出 DDRC 低功耗模式	10
图 12 DDR3 设计实例逻辑框图	11
表目录	
表目录 表 1 存储接口的数据率和峰值带宽	
表 1 存储接口的数据率和峰值带宽	3
表 1 存储接口的数据率和峰值带宽表 2 AXI4 总线信号说明表 3 APB 总线信号说明表 4 HMEMC 的时钟信号	
表 1 存储接口的数据率和峰值带宽表 2 AXI4 总线信号说明表 3 APB 总线信号说明	
表 1 存储接口的数据率和峰值带宽表 2 AXI4 总线信号说明表 3 APB 总线信号说明表 4 HMEMC 的时钟信号	
表 1 存储接口的数据率和峰值带宽	

一、概述

本文档主要描述了 HMEMC 的主要功能以及使用 HMEMC 实现 DDR3 存储器读写的应用实例。 HMEMC 是 Logos 系列 FPGA 芯片所拥有的高性能嵌入式硬核内存控制器,它简化了芯片与当前流行的内存标准的接口互联操作。与规模相当的 IP 相比,HMEMC 能提供更好的性能,并降低了功耗和开发时间。HMEMC 保留了宝贵的 FPGA 资源,让开发者更专注于其他 FPGA 设计工作。

主要特性:

- ➤ 支持LPDDR, DDR2, DDR3
- ➤ 支持x8, x16 DDR存储器
- ▶ 支持标准的AXI4总线协议
- ▶ 一共三个AXI4 用户端口, 1个128-bit, 两个64-bit, 支持可读可写
- ➤ 支持AXI4 read reordering
- ▶ 支持BANK Management
- > 支持各种low power mode, self refresh, power down, deep power down
- ▶ 支持bypass DDRC
- ➤ 支持DDR3 write leveling和DQS gate training
- ▶ DDR3最高传输率达到1066Mb/s

性能参数:

表 1 存储接口的数据率和峰值带宽

存储类型	数据率: Mb/s DI	OR (MHz Clock)	每个HMEMC的峰值带宽(Gb/s)	
行相天至	最小值	最大值	8-bit	16-bit
DDD2	250 Mb/s	800 Mb/s	6.4 Gb/s	12.8 Gb/s
DDR2	(125 MHz)	(400 MHz)	0.4 Gb/s	
DDR3	606 Mb/s	1066 Mb/s	8.528 Gb/s	17.056Gb/s
	(303 MHz)	(533 MHz)	8.328 Gb/S	
LPDDR	200 Mb/s	400 Mb/s	2.2 Ch/a	6.4 Gb/s
	(100 MHz)	(200 MHz)	3.2 Gb/s	0.4 00/8

二、HMEMC 功能说明

HMEMC 实现了 FPGA fabric 与 DDR 存储器的连接,主要功能是通过 AXI4 总线接口接收 FPGA fabric 上层用户逻辑发来的访问请求,并根据请求的优先级进行调度,按照存储器的时序要求,转换成存储器可以识别的各种命令,发送到存储器,最终完成对存储器数据的读写操作。下图描述了HMEMC 与 FPGA fabric 及 DDR 存储器的连接情况。

图 1 HMEMC 与其他硬件资源的互连

(一) HMEMC 结构描述

HMEMC 主要由 DDR Controller 和 DDR PHY 组成。

DDRC 模块主要对用户读写请求进行仲裁,完成 AXI4 命令到 DFI 读写命令和操作时序的转换,同时对 DDR 存储器读写操作进行调度。

DDR PHY 完成不同类型的 DDR 存储器的初始化,完成 DDR3 的 write leveling,完成不同 DDR 类型的 DQS gate training 以及 read data eye leveling 等工作。接收 DDRC 发送的 DFI 命令并进行协议 转换后发送到 DDR 存储器。

除此之外,为了能使 HMEMC 正常工作,还需要初始化和复位模块,负责整个系统上电初始化和所有模块的复位控制。为了减少风险,这部分功能放在 FPGA fabric 里,通过软逻辑来实现。

(二) HMEMC 接口描述

1. AXI4 总线接口

1) 信号说明

下表描述了 HMEMC 的 AXI4 总线信号。每个信号的后缀"_X"代表 0~2 不同的 AXI4 用户端口。 表 2 AXI4 总线信号说明

信号名称	I/O	信号说明
CSYSREQ_X	I	退出AXI低功耗模式请求,高电平有效
CSYSACK_X	0	退出AXI低功耗模式响应,高电平有效
CACTIVE_X	О	外围设备时钟请求,高电平有效。
ACLK_X	I	输入时钟信号
AWID_X [7:0]	I	写地址ID
AWADDR_X [31:0]	I	写地址
AWLEN_X [7:0]	I	突发写的长度
AWSIZE_X [2:0]	I	突发写的大小
AWBURST_X [1:0]	I	突发写的类型,不支持fixed的突发类型
AWVALID_X	I	写地址有效,高电平有效
AWREADY_X	О	写地址准备好信号,高电平有效
AWURGENT_X	I	一旦使能则该端口具有最高优先级,如果使能PCFGW_n.wr_port_urgent_en 寄存器,则仲裁器PA立刻进入写命令仲裁。当相应的端口和地址队列请求 为空时,PA会忽略该信号
WDATA_X [127:0]	Ι	写数据信号
WSTRB_X[15:0]	Ι	写数据阀门信号,高电平有效
WLAST_X	I	写最后一个数据的标识信号,高电平有效
WVALID_X	Ι	写有效信号,高电平有效
WREADY_X	О	写就绪信号,高电平有效
BID_X [7:0]	0	写响应ID
BRESP_X [1:0]	О	写响应,指明写事务的状态。可有的响应: OKAY, EXOKAY, SLVERR, DECERR
BVALID_X	О	写响应有效,高电平有效
BREADY_X	I	写响应就绪,高电平有效
ARID_X [7:0]	I	读地址ID
ARADDR_X [31:0]	I	读地址
ARLEN_X [7:0]	I	突发读的长度
ARSIZE_X [2:0]	I	突发读的大小
ARBURST_X[1:0]	I	突发读的类型
ARLOCK_X	I	锁类型。AXI4中: 0-normal access,1-exclusive access。关于exclusive access 请查阅AXI4协议中的相关说明
ARVALID_X	I	读地址有效,高电平有效
ARREADY_X	О	读地址就绪,高电平有效
ARURGENT_X	Ι	一旦使能则该端口具有最高优先级,如果使能PCFGR_n.rd_port_urgent_en 寄存器,则仲裁器PA立刻进入读命令仲裁,当相应的Port和地址queue请求 为空时,PA会忽略该信号

信号名称	I/O	信号说明
RID_X [7:0]	О	读ID
RDATA_X [127:0]	О	读数据
RRESP_X [1:0]	О	读响应
RLAST_X	О	读事务中的最后一个数据,高电平有效
RVALID_X	I	读数据有效,高电平有效
RREADY_X	О	读数据就绪,高电平有效

2) 时序说明

下面逐一介绍 AXI4 总线的接口时序。

> 写通道时序

图 2 突发写时序图

▶ 读通道时序

图 3 突发读时序图

2. APB 总线接口

1) 信号说明

下表描述了 HMEMC 的 APB 总线信号。

表 3 APB 总线信号说明

信号名称	I/O	信号说明
PCLK	I	APB时钟信号
PRESET	I	APB复位信号,高电平有效
PADDR[11:0]	I	APB地址
PWDATA[31:0]	I	APB写数据
PWRITE	I	APB读写方向,高电平为写操作
PSEL	I	APB选择信号,高电平有效
PENABLE	I	APB使能信号,高电平有效
PREADY	О	APB ready信号,高电平有效
PRDATA [31:0]	О	APB读数据
PSLVERR	О	APB错误信号,高电平有效

2) 时序说明

➤ APB接口写时序

图 4APB接口写时序图

➤ APB接口读时序

图 5APB接口读时序图

3. 时钟和复位信号

图 6 HMEMC 的时钟和复位信号描述了 HMEMC 主要的时钟和复位信号的逻辑框图。

图 6 HMEMC 的时钟和复位信号

HMEMC 的时钟信号如表 4 HMEMC 的时钟信号所示。这些时钟都是异步的。

信号名称 信号说明 I/O DDRC系统时钟,来自pll即PLL_CLK。最大时钟频率 CORE_DDRC_CORE_CLK I 是266.5MHz。 AXI4总线接口时钟,由pll产生。最大时钟频率是 ACLK X I 133MHz。X取值范围为0-2,代表不同的用户端口。 APB总线接口时钟,由pll产生。PCLK的频率必须小于 或者等于CORE_DDRC_CORE_CLK的频率。最大时钟 I **PCLK** 频率是100MHz。

表 4 HMEMC 的时钟信号

HMEMC 的复位信号如表 5 HMEMC 的复位信号所示。

表 5 HMEMC 的复位信号

信号名称	I/O	信号说明
DDRPHY_RST	Ι	DDR PHY的复位信号,来自FPGA fabric,高电平有效
PRESET	I	APB总线接口的复位信号,来自FPGA fabric,高电平有效
CORE_DDRC_RST	I	DDRC的复位信号,来自FPGA fabric,高电平有效
ARESET_X	I	AXI4总线接口的复位信号,来自FPGA fabric,高电平有效
DDRPHY_MEM_RST	О	DDR PHY输出给外部DDR存储器的复位信号,高电平有效

4. 用户端口屏蔽信号

表 6 用户端口屏蔽信号

信号名称	I/O	信号说明
pa_rmask[2:0]	I	屏蔽相应端口到PA中读地址请求。0~2对应port0~port2
pa_wmask[2:0]	I	屏蔽相应端口到PA中写地址请求。0~2对应port0~port2

5. 低功耗模式信号

信号名称	I/O	信号说明
csysreq_ddrc	I	DDRC低功耗请求信号
csysack_ddrc	О	DDRC低功耗请求响应信号
cactive_ddrc	О	DDRC低功耗时钟有效信号,低电平表示去除时钟
CSYSREQ_X	I	退出AXI低功耗模式请求,高电平有效
CSYSACK_X	О	退出AXI低功耗模式响应,高电平有效
CACTIVE_X	0	外围设备时钟请求,高电平有效。

表 7 HMEMC 低功耗模式信号

(三) 用户端口选择

HMEMC 支持 3 个 AXI4 总线接口, 1 个 128-bit 和 2 个 64-bit。用户可根据实际需要选择合适的端口。没有用到的端口中, 其复位信号最好配置高电平, 其他信号可悬空。若用户端需要更多的端口, 则需自行开发软核。

当多个 AXI4 端口被使用时,可以通过屏蔽功能筛选出唯一的端口进行读写操作。相关信号说明 如表 6 用户端口屏蔽信号所示。

(四) 低功耗模式

1. AXI 低功耗模式

HMEMC 总共有 3 组 AXI 端口,因此一共有 3 组 AXI 低功耗端口信号,它们分别是 CSYSREQ_X, CACTIVE_X 和 CSYSACK_X,如表 7。外部设备可以通过 CSYSREQ_X 发起进入或退出 AXI 低功耗模式请求,而 HMMEC 通过 CACTIVE_X 表明接受还是拒绝该请求,HMEMC 通过 CSYSACK_X 响应外部设备请求。

当外部设备提出申请时,AXI 端口没有未完成的读写请求并且写数据队列中没有被接收的数据,则可以进入低功耗状态,否则请求会被拒绝。进入和退出 AXI 低功耗模式的时序关系如下图所示:

图 7 进入和退出 AXI 低功耗模式的时序图

由图 7 所示, 当某个 AXI 端口申请进入 AXI 低功耗模式时 CSYSREQ_X 拉低, 经过一个时钟周期后 CSYSACK X 拉低, 如果此时 CACTIVE X 也是低电平,则此端口的时钟被取消,进入 AXI 低

功耗模式; 当申请退出 AXI 低功耗模式时,CSYSREQ_X 拉高,时钟信号恢复,经过一个时钟周期 CSYSACK X 拉高,这个端口进入正常的工作状态。

图 8 拒绝进入AXI 低功耗模式的时序给出了拒绝进入AXI 低功耗模式的情况。

图 8 拒绝进入 AXI 低功耗模式的时序

当 AXI 端口有数据读写请求时,也可通过 CACTIVE_X 退出 AXI 低功耗模式。其时序图如下所示:

图 9 由 CACTIVE X 发起的退出 AXI 低功耗模式请求

如图 9 由 CACTIVE_X 发起的退出 AXI 低功耗模式请求所示,外部设备也可以通过 CACTIVE_X 状态来发起退出 AXI 低功耗模式请求。CACTIVE_X 为低表明该 AXI 端口没有未完成的读写请求并且写数据队列没有被接收的数据,该端口处于空闲状态,此时可以发起进入低功耗请求;当有读写请求时,此时 CACTIVE_X 为高,系统重新唤起时钟信号,当 CSYSACK_X 为高时,端口开始正常工作。

2. DDRC 低功耗模式

DDRC 处于空闲状态时,可以申请进入低功耗模式。DDRC 低功耗接口信号有 CSYSREQ_DDRC, CSYSACK_DDRC 和 CACTIVE_DDRC, 如表 7 所示, 通过这些信号可以让 DDRC 进入低功耗模式。通过 CSYSREQ_DDRC 触发 DDRC 进入自刷新状态。在进入自刷新状态前会将 DDRC 中存在的命令执行完。进入 DDRC 低功耗模式的时序图如下所示:

图 10 进入 DDRC 低功耗模式

退出 DDRC 低功耗模式的时序如下图所示。FPGA fabric 通过拉高 CSYSREQ_DDRC 请求退出 DDRC 低功耗模式,当 CACTIVE_DDRC 为高时并且 CSYSACK_DDRC 拉高后,退出 DDRC 低功耗模式,此时 HMEMC 从自刷新状态转换到正常工作模式。

图 11 退出 DDRC 低功耗模式

三、HMEMC DDR3 实例介绍

本实例是基于 HMEMC 的 DDR3 存储器随机读写用例,主要模块 DDRC 和 DDR_PHY 是通过调用相应的 GTP 来实现。读写控制以及初始化和复位模块通过 RTL 代码来实现。本实例使用一个 AXI端口。外部采用 1 片 X16 DDR3 存储器,镁光,MT41K512M16HA。

(一) 设计说明

图 12 DDR3 设计实例逻辑框图

本实例的逻辑框图如图 12 DDR3 设计实例逻辑框图所示,主要包含用户逻辑模块 User Logic 和 DDR3 主模块 DDR3_top。其中,用户逻辑模块可由用户根据需要自行开发,HMEMC 包裹在 DDR3 主模块里,无需更改。

用户逻辑模块包括 test_main_ctrl, test_wr_ctrl 以及 test_rd_ctrl。

- ▶ test main ctrl: DDR3读写主控模块,控制对DDR3 SDRAM的初始化,控制读写切换;
- ▶ test wr ctrl: 写控制模块,执行burst写操作;
- ▶ test rd ctrl: 读控制模块,执行burst读操作;

DDR3 主模块包括 HMEMC (DDRC 和 DDR PHY), 初始化和复位模块, PLL, IOL, DQS_DDC和 IOB。

- ▶ DDRC: 完成AXI4命令到DFI读写命令和操作时序的转换,同时对DDR3存储器读写操作进行调度;
- DDR PHY: 完成DDR3存储器的初始化,完成write leveling和DQS gate training以及read leveling等工作,同时接收DDRC发送的DFI命令并进行协议转换后发送到外部DDR3存储器;

- ▶ 初始化和复位模块:完成整个系统上电初始化和所有模块的复位控制;
- ▶ PLL:外部参考时钟进入PLL,产生AXI4接口时钟,再通过IOCLKBUF、CLKDIV和DLL,分别产生DDRC系统时钟、DDR PHY系统时钟以及IOL和DQS DDC所需时钟;
- ▶ DLL: 提供DQS_DDC调整延迟所需的延迟调整码ctrl_code;
- ▶ IOL: 完成高速数据的串并转化;
- ▶ IOB: 完成各种DDR memory device 电平的转换,提供FPGA与DDR3存储器的接口;
- ▶ DQS_DDC: 完成对输入的DQS的门控操作,去除噪声影响,将门控后的DQS相移1/4时钟周期,控制IOLIFIFO的读写指针等功能。

HMEMC 首先对 DDR3 存储器进行初始化,初始化完成后,ddr_init_done 信号拉高。此后,用户就可以通过用户侧的 AXI4 端口对 DDR3 主模块进行控制。

本实例先对 DDR3 存储器的所有地址进行顺序写操作,写完后开始第一次随机写操作。这个写操作是随机长度的写,向随机地址写入随机数据。完成第一次写操作后,开始进行随机读写操作。此后的操作是读还是写,取决于伪随机数生成模块的输出。进行读操作时,对读回的数据进行校验,若错误,输出 error。

本实例通过 AXI4 接口的 write 通道写入数据,在 AXI4 接口的 read 通道接收数据。

(二) 参数说明

 参数名称
 参数说明

 DDR_TYPE
 DDR类型,支持 "DDR3", "DDR2", "LPDDR"

 DQ_WIDTH
 DDR的数据位宽,支持 "8", "16"

 SPEED
 DDR的速率,支持 "600Mbps", "800Mbps", "1066Mbps"

 DDR_SIZE
 DDR 存储器的容量,支持 "512Mb", "1Gb", "2Gb", "4Gb", "8Gb"

表 8 DDR3 设计实例参数说明

(三) 信号说明

下表是HMEMC DDR3设计实例的顶层信号说明,主要包含了FPGA与DDR存储器的接口信号。

表 9 HMEMC DDR3 设计实例顶层信号说明

信号名称	I/O	信号说明
pll_refclk_in	I	FPGA外部输入参考时钟,50MHz
resetn	I	系统复位信号,低电平有效
clk_led	О	系统正常工作指示信号,高低电平变化
pll_lock	О	PLL LOCK信号,高电平有效
ddr_init_done	О	HMEMC初始化完成信号,高电平有效
pad_loop_in	I	DQS_GATE温漂补偿输入信号,对应DQS低8位
pad_loop_in_h	I	DQS_GATE温漂补偿输入信号,对应DQS高8位
pad_rstn_ch0	О	DDR存储器的复位信号

信号名称	I/O	信号说明
pad_ddr_clk_w	О	DDR存储器时钟p端
pad_ddr_clkn_w	О	DDR存储器时钟n端
pad_csn_ch0	О	DDR存储器片选信号, 低有效
pad_addr_ch0[15: 0]	О	DDR存储器地址
pad_dq_ch0[15: 0]	I/O	DDR存储器数据
pad_dqs_ch0[1: 0]	I/O	DDR存储器数据阀门信号p端
pad_dqsn_ch0[1: 0]	I/O	DDR存储器数据阀门信号n端
pad_dm_rdqs_ch0[1: 0]	O	数据屏蔽信号,高有效
pad_cke_ch0	О	DDR存储器时钟使能信号,高有效
pad_odt_ch0	О	DDR存储器片上终端使能信号,高表示打开片上终端
pad_rasn_ch0	О	row地址有效信号,低有效
pad_casn_ch0	О	column地址有效信号,低有效
pad_wen_ch0	О	DDR存储器写使能信号,低有效
pad_ba_ch0[2: 0]	О	DDR存储器bank地址
pad_loop_out	О	DQS_GATE温漂补偿输出信号,对应DQS低8位
pad_loop_out_h	О	DQS_GATE温漂补偿输出信号,对应DQS高8位
err_flag	О	数据校验错误标识
err_cnt[7: 0]	О	数据校验错误统计

DDR3 主模块用户侧信号说明如下所示(仅列出 AXI4 port0):

表 10 DDR3 主模块用户侧信号说明

信号名称	I/O	信号说明
pll_refclk_in	I	FPGA外部输入参考时钟,50MHz
rstn	I	系统复位信号, 低电平有效
pll_lock	O	PLL LOCK信号,高电平有效
axi_clk_fast	O	输出给AXI4总线的高速时钟,最高支持133MHz
axi_clk_slow	0	输出给AXI4总线的低速时钟
pclk	0	输出给APB总线的时钟信号,50MHz
ddr_init_done	0	HMEMC初始化完成信号,高电平有效
ddrc_rst	I	DDRC复位信号,高电平有效
pa_rmask[2:0]	Ι	屏蔽相应端口到PA中的读地址请求。0~2对应port0~port2
pa_wmask[2:0]	I	屏蔽相应端口到PA中的写地址请求。0~2对应port0~port2
csysreq_ddrc	I	DDRC低功耗请求信号
csysack_ddrc	0	DDRC低功耗请求响应信号
cactive_ddrc	0	DDRC低功耗时钟有效信号,低电平表示去除时钟
RAQ_PUSH_0	0	读地址fifo的写事务,脉冲信号
RAQ_SPLIT_0	0	读地址fifo中读指令的执行,脉冲信号
WAQ_PUSH_0	0	写地址fifo的写事务,脉冲信号
WAQ_SPLIT_0	0	写地址fifo中写指令的执行,脉冲信号
AWQOS_0[3:0]	I	写通道的优先级指示,数值越大优先级越高;默认值是4'b0000,不执行qos
ARQOS_0[3:0]	I	读通道的优先级指示,数值越大优先级越高;默认值是4'b0000,不执行qos
CSYSREQ_0	I	退出AXI低功耗模式请求,高电平有效
CSYSACK_0	O	退出AXI低功耗模式响应,高电平有效
CACTIVE_0	0	外围设备时钟请求,高电平有效
ARPOISON_0	I	读通道上的有害事务,高电平有效,表示读优先级最高
ARLOCK_0	I	不支持

信号名称	I/O	信号说明	
AWPOISON_0	Ι	写通道上的有害事务,高电平有效,表示写优先级最高	
AWLOCK_0	I	不支持	
ACLK_0	Ι	输入时钟信号	
ARESET_0	Ι	AXI4总线接口的复位信号,高电平有效	
AWID_0 [7:0]	Ι	写地址ID	
AWADDR_0 [31:0]	I	写地址	
AWLEN_0[7:0]	Ι	突发写的长度	
AWSIZE_0 [2:0]	Ι	突发写的大小	
AWBURST_0 [1:0]	Ι	突发写的类型,不支持fixed的突发类型	
AWVALID_0	Ι	写地址有效,高电平有效	
AWREADY_0	0	写地址准备好信号, 高电平有效	
AWURGENT_0	I	一旦使能则该端口具有最高优先级,如果使能PCFGW_n.wr_port_urgent_en 寄存器,则仲裁器PA立刻进入写命令仲裁。当相应的端口和地址队列请求 为空时,PA会忽略该信号	
WDATA_0[127:0]	I	写数据信号	
WSTRB_0[15:0]	Ι	写数据阀门信号,高电平有效	
WLAST_0	I	写最后一个数据的标识信号,高电平有效	
WVALID_0	I	写有效信号,高电平有效	
WREADY_0	0	写就绪信号, 高电平有效	
BID_0[7:0]	O	写响应ID	
BRESP_0[1:0]	О	写响应,指明写事务的状态。可有的响应: OKAY, EXOKAY, SLVERR, DECERR	
BVALID_0	O	写响应有效,高电平有效	
BREADY_0	I	写响应就绪,高电平有效	
ARID_0[7:0]	I	读地址ID	
ARADDR_0[31:0]	I	读地址	
ARLEN_0[7:0]	I	突发读的长度	
ARSIZE_0[2:0]	I	突发读的大小	
ARBURST_0[1:0]	I	突发读的类型	
ARLOCK_0	I	锁类型。AXI4中: 0-normal access, 1-exclusive access。关于exclusive access 请查阅AXI4协议中的相关说明	
ARVALID_0	I	读地址有效,高电平有效	
ARREADY_0	0	读地址就绪, 高电平有效	
ARURGENT_0	I	一旦使能则该端口具有最高优先级,如果使能PCFGR_n.rd_port_urgent_en 寄存器,则仲裁器PA立刻进入读命令仲裁,当相应的Port和地址queue请求 为空时,PA会忽略该信号	
RID_0[7:0]	O	读ID	
RDATA_0[127:0]	О	读数据	
RRESP_0[1:0]	O	读响应	
RLAST_0	О	读事务中的最后一个数据,高电平有效	
RVALID_0	Ι	读数据有效,高电平有效	
RREADY_0	О	读数据就绪,高电平有效	
PRESET	I	APB复位信号,高电平有效	
PADDR[11:0]	I	APB地址	
PWDATA[31:0]	I	APB写数据	

信号名称	I/O	信号说明
PWRITE	I	APB读写方向,高电平为写操作
PSEL	I	APB选择信号,高电平有效
PENABLE	I	APB使能信号,高电平有效
PREADY	О	APB ready信号,高电平有效
PRDATA [31:0]	О	APB读数据
PSLVERR	О	APB错误信号,高电平有效

(四) 仿真说明

HMEMC 的 仿 真 模 型 是 已 经 被 加 密 的 , 相 关 的 仿 真 文 件 存 放 在 路 径 \arch\vendor\pango\verilog\simulation 下的 modelsim10.2c 和 vcs2014.03 目录中,用户在仿真时按照此路径添加仿真库。

PDS 支持以下仿真工具:

- ➤ Modelsim 10及以上版本
- ➤ Debussy 5.4及以上版本

本实例进行仿真时,首先进入路径\scripts,按下shift的同时在文件夹空白处点击鼠标右键,在弹出的命令框中输入source_prj,回车,再输入sim.bat demo_test FSDB_DUMP_ON,回车,开始进行功能仿真,用户也可以在Debussy中观察波形。

(五) 使用资源说明

表 11 DDR3 实例资源列表

资源类型	x16 模式下的资源使用情况
HMEMC	1, 50%
IO	70, 38%
LUT	1044, 6%
PLL	1, 17%

四、PCB 设计说明

PGL22G 芯片内部有两个 HMEMC (左右各一个),如果使用右边的硬核,DDR 存储器与 FPGA 连接时,DQ 引脚的连接在每组内 (8 个为 1 组,比如 DQ0-DQ7 为一组)可以交换,但由于是硬核,软件约束时,需严格按照表 12 约束。其他引脚需要根据表 12 严格对应。(必需项)。

DQSU_GATE_OUT 在芯片外部绕线后与 DQSU_GATE_IN 相连,绕线长度大致等于 CK 走线长度 + DQS 走线长度即可。DQSL_GATE_OUT 和 DQSL_GATE_IN 做同样的处理。(非必需项,未连接也能使用)

CK 的走线长度需稍大于 DQS 的走线长度,以保证 CK 和 DQS 信号到达 DDR 存储器的时间相差在一个时钟周期内。例如 DDR 速率为 800Mbps,则时间差不超过 2.5ns,如果 PCB 走线的延时为 152mm/ns,则 CK 的走线长度不能超过 DOS 的长度 380mm。(必需项)

在 FPGA 的引脚 DQSU_P 和 DQSL_P 加下拉电阻,在 FPGA 的引脚 DQSU_N 和 DQSL_N 加上拉电阻,电阻值为 500-1000 欧。上拉电阻接的电压为 DDR 存储器的电压,比如 DDR3,则接 1.5V。(非必需项,用于改善信号质量)。

下表给出了 FPGA 引脚与 DDR 存储器信号的映射关系。

表 12 FPGA 引脚与 DDR 存储器信号的映射关系

FPGA 引脚位号	引脚说明	DDR 存储器信号
E2	DIFFIO_L1_10_N/CLK3_L1/DIFFCLK1_L1_N/PLL3_CLKIN1	L_A14
E1	DIFFIO_L1_10_P/CLK2_L1/DIFFCLK1_L1_P/PLL3_CLKIN0	L_A15
G3	DIFFIO_L1_11_N/PLL3_CLKIN3	L_A12
G4	DIFFIO_L1_11_P/PLL3_CLKIN2	L_A13
F1	DIFFIO_L1_12_P/	L_A11
Н6	DIFFIO_L1_13_N/	L_A10
G2	DIFFIO_L1_14_N/	L_RESET_N
G1	DIFFIO_L1_14_P/	L_A9
Н3	DIFFIO_L1_15_N/	L_CKE
H4	DIFFIO_L1_15_P/	L_A8
H2	DIFFIO_L1_16_N/	L_A6
H1	DIFFIO_L1_16_P/	L_A7
J4	DIFFIO_L1_17_N/	L_A4
Ј3	DIFFIO_L1_17_P/	L_A5
J2	DIFFIO_L1_18_N/	L_A2
J1	DIFFIO_L1_18_P/	L_A3
K7	DIFFIO_L1_19_N/	L_A0
J7	DIFFIO_L1_19_P/	L_A1
L3	DIFFIO_L2_0_N/	L_DQSU_GATE_IN
K3	DIFFIO_L2_0_P/	L_DQSU_GATE_OUT
K2	DIFFIO_L2_1_N/	L_DQ15

FPGA 引脚位号	引脚说明	DDR 存储器信号
K1	DIFFIO L2 1 P/	L DMU
R2	DIFFIO L2 10 N/CLK3 L2/DIFFCLK1 L2 N/PLL5 CLKIN1	L ODT
R1	DIFFIO L2 10 P/CLK2 L2/DIFFCLK1 L2 P/PLL5 CLKIN0	L_WE_N
N4	DIFFIO L2 11 N/PLL5 CLKIN3	L CK N
N3	DIFFIO L2 11 P/PLL5 CLKIN2	L CK
T7	DIFFIO_L2_13_N/	L_DQ7
T4	DIFFIO_L2_14_N/	L_DQ5
R4	DIFFIO_L2_14_P/	L_DQ6
P6	DIFFIO_L2_15_N/	L_DQSL_N
P5	DIFFIO_L2_15_P/	L_DQSL
T5	DIFFIO_L2_16_N/	L_DQ3
R5	DIFFIO_L2_16_P/	L_DQ4
T8	DIFFIO_L2_17_N/	L_DQ1
R8	DIFFIO_L2_17_P/	L_DQ2
T6	DIFFIO_L2_18_N/	L_DML
R6	DIFFIO_L2_18_P/	L_DQ0
M5	DIFFIO_L2_19_N/	L_DQSL_GATE_IN
N5	DIFFIO_L2_19_P/	L_DQSL_GATE_OUT
K6	DIFFIO_L2_2_N/	L_DQ13
J6	DIFFIO_L2_2_P/	L_DQ14
L2	DIFFIO_L2_3_N/	L_DQ11
L1	DIFFIO_L2_3_P/	L_DQ12
M2	DIFFIO_L2_4_N/	L_DQSU_N
M1	DIFFIO_L2_4_P/	L_DQSU
L4	DIFFIO_L2_5_N/	L_DQ9
K4	DIFFIO_L2_5_P/	L_DQ10
K5	DIFFIO_L2_6_P/	L_DQ8
N2	DIFFIO_L2_7_N/	L_RAS_N
N1	DIFFIO_L2_7_P/	L_CS_N
T3	DIFFIO_L2_8_N/PLL4_CLKOUT_N	L_BA2
R3	DIFFIO_L2_8_P/PLL4_CLKOUT_P	L_CAS_N
P2	DIFFIO_L2_9_N/CLK1_L2/DIFFCLK0_L2_N/PLL4_CLKFB_N/XTALB_L2	L_BA0
P1	DIFFIO_L2_9_P/CLK0_L2/DIFFCLK0_L2_P/PLL4_CLKFB_P/XTALA_L2	L_BA1
D15	DIFFIO_R1_10_N/CLK3_R1/DIFFCLK1_R1_N/PLL3_CLKFB_N	R_A14
D16	DIFFIO_R1_10_P/CLK2_R1/DIFFCLK1_R1_P/PLL3_CLKFB_P	R_A15
G13	DIFFIO_R1_11_N/PLL3_CLKOUT_N	R_A12
F13	DIFFIO_R1_11_P/PLL3_CLKOUT_P	R_A13
E16	DIFFIO_R1_12_P/	R_A11
H14	DIFFIO_R1_13_N/	R_A10
F15	DIFFIO_R1_14_N/	R_RESET_N
F16	DIFFIO_R1_14_P/	R_A9
J13	DIFFIO_R1_15_N/	R_CKE
J14	DIFFIO_R1_15_P/	R_A8
G15	DIFFIO_R1_16_N/	R_A6
G16	DIFFIO_R1_16_P/	R_A7

FPGA 引脚位号	引脚说明	DDR 存储器信号
J10	DIFFIO R1 17 N/	R A4
H10	DIFFIO R1 17 P/	R A5
H15	DIFFIO_R1_18_N/	R_A2
H16	DIFFIO_R1_18_P/	R_A3
J11	DIFFIO_R1_19_N/	R_A0
J12	DIFFIO_R1_19_P/	R_A1
K13	DIFFIO_R2_0_N/	R_DQSU_GATE_IN
K14	DIFFIO_R2_0_P/	R_DQSU_GATE_OUT
J15	DIFFIO_R2_1_N/	R_DQ15
J16	DIFFIO_R2_1_P/	R_DMU
P15	DIFFIO_R2_10_N/CLK3_R2/DIFFCLK1_R2_N/PLL5_CLKFB_N	R_ODT
P16	DIFFIO_R2_10_P/CLK2_R2/DIFFCLK1_R2_P/PLL5_CLKFB_P	R_WE_N
R16	DIFFIO_R2_11_N/PLL5_CLKOUT_N	R_CK_N
R15	DIFFIO_R2_11_P/PLL5_CLKOUT_P	R CK
T11	DIFFIO R2 13 N/	R DQ7
T14	DIFFIO_R2_14_N/	R_DQ5
R14	DIFFIO_R2_14_P/	R_DQ6
T10	DIFFIO R2 15 N/	R DQSL N
R10	DIFFIO_R2_15_P/	R_DQSL
T13	DIFFIO_R2_16_N/	R_DQ3
R13	DIFFIO_R2_16_P/	R_DQ4
Т9	DIFFIO_R2_17_N/	R_DQ1
R9	DIFFIO_R2_17_P/	R_DQ2
T12	DIFFIO_R2_18_N/	R_DML
R12	DIFFIO_R2_18_P/	R_DQ0
N11	DIFFIO_R2_19_N/	R_DQSL_GATE_IN
N12	DIFFIO_R2_19_P/	R_DQSL_GATE_OUT
K12	DIFFIO_R2_2_N/	R_DQ13
K11	DIFFIO_R2_2_P/	R_DQ14
K15	DIFFIO_R2_3_N/	R_DQ11
K16	DIFFIO_R2_3_P/	R_DQ12
L16	DIFFIO_R2_4_N/	R_DQSU_N
L15	DIFFIO_R2_4_P/	R_DQSU
L12	DIFFIO_R2_5_N/	R_DQ9
L11	DIFFIO_R2_5_P/	R_DQ10
L14	DIFFIO_R2_6_P/	R_DQ8
M15	DIFFIO_R2_7_N/	R_RAS_N
M16	DIFFIO_R2_7_P/	R_CS_N
P13	DIFFIO_R2_8_N/PLL4_CLKIN1	R_BA2
N13	DIFFIO_R2_8_P/PLL4_CLKIN0	R_CAS_N
N15	DIFFIO_R2_9_N/CLK1_R2/DIFFCLK0_R2_N/PLL4_CLKIN3/XTALB_R2	R_BA0
N16	DIFFIO_R2_9_P/CLK0_R2/DIFFCLK0_R2_P/PLL4_CLKIN2/XTALA_R2	R_BA1