學號:B03502040 系級: 資工三 姓名:劉君猷

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature)

答:使用部分測項(CO, O3, PM10, PM2.5, RAINFALL, WD_HR, WIND_DIREC, WIND_SPEED, WS_HR)的連續9個小時的數值為一次方,加上PM10和PM2.5的兩次方與三次方作為features。

train $x = [x2, x7, x8, x9, x10, x14, x15, x16, x17, x8^2, x9^2, x8^3, x9^3]$

2.請作圖比較不同訓練資料量對於PM2.5預測準確率的影響

答:藍色線是training loss rate (in RMS);橘色線是valid loss rate (in RMS)。因為切valid的時候都是切固定的,所以可能會有bias。

3. 請比較不同複雜度的模型對於PM2.5預測準確率的影響

答:只使用一維參數當features時,loss rate大約在5.7~5.9之間;加上features的平方項後,loss rate降到5.6~5.7之間;調成三次方項後,loss rate大概在5.6左右。

一次項	二次項	三次項	Training loss	Public score
2, 7, 8, 9, 10, 14, 17			5.85	5.76
2, 7, 8, 9, 10, 14, 15, 16, 17			5.84	5.75
0~17			5.68	5.94
2, 7, 8, 9, 10, 14, 15, 16, 17	8, 9		5.81	5.65
2, 7, 8, 9, 10, 14, 15, 16, 17	8, 9	8, 9	5.79	5.61

(0~17 對應到 18 個測項)

4. 請討論正規化(regularization)對於PM2.5預測準確率的影響

答:在同樣的模型與參數輸入下,加上regularization效果沒有進步多少。我覺得是因為我太早做regularization的測試,以至於在當時那個model與參數下還underfitting,所以應該要再去調整model與參數,而不是就先加上regularization測試。

Lambda value	Training loss rate	Valid loss rate	
0	5.791388	5.891997	
1e-7	5.791392	5.892001	
1e-5	5.791765	5.892368	
1e-3	5.829029	5.929006	

5. 在線性回歸問題中,假設有 N 筆訓練ji資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^{N} (y^n-w\cdot x^n)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請以 X 和 y 表示可以最小化損失函數的向量 w 。

答: $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$