CLAIMS

1. A compound of the formula (1):

HO
HO
$$R_1$$
 R_2
 R_3
 R_8
 R_7
 R_6
 R_7
 R_6
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_9
 R_9

wherein

- 5 n is 0, 1, 2, 3 or 4;
 - R_1 and R_2 are each independently selected from hydrogen and (C_1 - C_4)alkyl;
 - R₃ is selected from the group consisting of hydrogen and (C₁-C₆)alkyl optionally substituted by a hydroxy; and
- R₄, R₅, R₆, R₇ and R₈ are each independently selected from the group consisting of hydrogen, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, benzyloxy, hydroxy(C₁-C₆)alkyl, thio(C₁-C₆)alkyl, halo and trifluoromethyl;

or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.

15 2. A compound according to claim 1 wherein

- n is 1 or 2;
- R₁ is a (C₁-C₄)alkyl; and
- R₃ is selected from hydrogen and (C₁-C₆)alkyl;

or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or 20 isotopic variation thereof.

- 3. A compound according to claim 1 wherein
- n is 1 or 2;
- R₁ is selected from methyl and ethyl;
- R₂ is selected from hydrogen, methyl and ethyl; and

R₃ is selected from hydrogen and methyl;

or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.

- 4. A compound according to claim 1 wherein
- 5 n is 1 or 2;
 - R₁ is selected from methyl and ethyl;
 - R₂ is selected from hydrogen, methyl and ethyl;
 - R₃ is selected from hydrogen and methyl; and
- R₄, R₅, R₆, R₇ and R₈ are each independently selected from the group consisting of hydrogen, hydroxy, methyl, methoxy, ethoxy, benzyloxy, thiomethyl, halo and trifluoromethyl;
 - or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.
- 5. A compound according to any one of claims 1 to 4, wherein at least two of R_4 , R_5 , R_6 , R_7 and R_8 are hydrogen.
 - 6. A compound according to claim 1 wherein n is 1 or 2; R_1 is methyl; R_2 and R_3 are hydrogen; and R_4 , R_5 , R_6 , R_7 and R_8 are each independently selected from the group consisting of hydrogen, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkyl, thio (C_1-C_6) alkyl, halo and trifluoromethyl;
- or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.
 - 7. A compound according to claim 1 wherein n is 1; R_1 is methyl; R_2 and R_3 are hydrogen; and R_4 , R_5 , R_6 , R_7 and R_8 are each independently selected from the group consisting of hydrogen, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, thio (C_1-C_6) alkyl, and trifference at the left contact to (C_1-C_6) alkyl, (C_1-C_6) alkoxy, thio (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, thio (C_1-C_6) alkyl, $(C_1-C_$
- 25 C₆)alkyl and trifluoromethyl;
 - or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.

- 8. A compound according to claim 1 wherein n is 1; R_1 is methyl; R_2 and R_3 are hydrogen; and R_4 , R_5 , R_6 , R_7 and R_8 are each independently selected from the group consisting of hydrogen, (C_1 - C_6)alkyl, (C_1 - C_6)alkoxy and trifluoromethyl; provided that at least two of R_4 , R_5 , R_6 , R_7 and R_8 are hydrogen;
- 5 or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.
 - 9. A compound according to claim 1 wherein n is 1; R_1 is methyl; R_2 and R_3 are hydrogen; and R_4 , R_5 , R_6 , R_7 and R_8 are each independently selected from the group consisting of hydrogen, methyl, methoxy and trifluoromethyl; provided that at least two of R_4 , R_5 , R_6 , R_7 and R_8 are hydrogen;
 - or a pharmaceutically acceptable salt and/or isomer, tautomer, solvate or isotopic variation thereof.
- 10. A compound according to claim 1 selected from the group consisting of: 5-[(2R)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl) phenyl]ethyl}amino)
 15 propyl]-N-(2-methoxybenzyl)-1H-indole-2-carboxamide,
 5-[(2R)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl} amino)
 propyl]-N-[4-(trifluoromethyl)benzyl]-1H-indole-2-carboxamide,
 N-(2,6-dimethoxybenzyl)-5-[(2R)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)propyl]-1H-indole-2-carboxamide,
- 5-[(2R)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino) propyl]-N-(3-methoxybenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino) propyl]-N-[2-(3-methoxyphenyl)ethyl]-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl)
- phenyl)ethyl}amino)propyl}-N-(2,4-dichlorobenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(3-hydroxy-2,6-dimethoxybenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-benzyloxy-3-hydroxy methyl phenyl)ethyl} amino)propyl}-N-(2-benzyloxy-6-methoxybenzyl)-1H-indole-2-carboxamide,

- $5-[(2R)-2-(\{(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl\}amino)\\ propyl\}-N-(4-hydroxy-2,6-dimethoxybenzyl)-1H-indole-2-carboxamide,\\ 5-[(2R)-2-(\{(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl\}amino)$
- 5 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2-hydroxy-6-methoxybenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2,6-difluorobenzyl)-1H-indole-2-carboxamide,

propyl}-N-(2-benzyloxy-6-methoxybenzyl)-1H-indole-2-carboxamide,

- 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
- 10 propyl}-N-(2-chlorobenzyl)-1H-indole-2-carboxamide,
 - 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2-fluorobenzyl)-1H-indole-2-carboxamide,
 - $5-[(2R)-2-(\{(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl\}amino)$ propyl-N-(4-hydroxybenzyl)-1H-indole-2-carboxamide,
- 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(3-hydroxybenzyl)-1H-indole-2-carboxamide,
 - 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2-methylsulfanylbenzyl)-1H-indole-2-carboxamide,
 - 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
- 20 propyl}-*N*-(4-methylsulfanylbenzyl)-1H-indole-2-carboxamide,
 - 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2,3-dimethoxybenzyl)-1H-indole-2-carboxamide,
 - 5-[(2*R*)-2-({(2*R*)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-*N*-(2,4-dimethoxybenzyl)-1H-indole-2-carboxamide,
- 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2-ethoxybenzyl)-1H-indole-2-carboxamide,
 - 5-[(2R)-2-(((2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl)amino) propyl-N-benzyl-N-methyl-1H-indole-2-carboxamide,
 - [(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
- 30 propyl}-N-benzyl-1H-indole-2-carboxamide,
 - $[(2R)-2-(\{(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl\}amino)$ propyl-N-(4-fluorobenzyl)-1H-indole-2-carboxamide,

- 5-[(2R)-2-(((2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(2-methoxy-3-methyl-benzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-(((2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) propyl}-N-(3-methoxy-2-methylbenzyl)-1H-indole-2-carboxamide,
- 5 1-Ethyl-5-[(2R)-2-({(2R)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl} amino)propyl}-N-(2,6-dimethoxybenzyl)-1H-indole-2-carboxamide, 1-Ethyl-5-[(2R)-2-({(2R)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl} amino)propyl}-N-(2-ethoxybenzyl)-1H-indole-2-carboxamide, 1-Ethyl-5-[(2R)-2-({(2R)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl}
- amino)propyl}-*N*-(4-chlorobenzyl)-1H-indole-2-carboxamide,

 1-Methyl-5-[(2*R*)-2-({(2*R*)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl}

 amino)propyl}-*N*-(2,6-dimethoxybenzyl)-1H-indole-2-carboxamide,

 1-Methyl-5-[(2*R*)-2-({(2*R*)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl}

 amino)propyl}-*N*-(2-methoxybenzyl)-1H-indole-2-carboxamide,
- 15 1-Methyl-5-[(2R)-2-({(2R)-2-hydroxy-2-(4-hydroxy-3-hydroxy methylphenyl)ethyl} amino)propyl}-N-(4-chlorobenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino) butyl}-N-(2-methoxybenzyl)-1H-indole-2-carboxamide, 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
- butyl}-*N*-(2,6-dimethoxybenzyl)-1H-indole-2-carboxamide,
 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
 butyl}-*N*-(2-ethoxybenzyl)-1H-indole-2-carboxamide, and,
 5-[(2R)-2-({(2R)-2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl phenyl)ethyl}amino)
 butyl}-*N*-benzyl-1H-indole-2-carboxamide.
- 25 11. A process for preparing a compound of claim 1 or a pharmaceutically acceptable salt or derived form thereof comprising coupling an acid of formula (2):

$$\begin{array}{c|c}
 & OH \\
 & HO \\
 & HO$$

with an amine of formula (3):

$$R_{3} \xrightarrow{N} R_{4} R_{5}$$

$$R_{4} R_{5}$$

$$R_{6}$$

$$R_{6}$$

$$R_{6}$$

- 5 wherein R₁, R₂, R₃, R₄ R₅, R₆, R₇, R₈ and n are as defined in claim 1.
 - 12. A process according to claim 11 wherein said acid of formula (2) is prepared by reacting an amine of formula (5):

$$R_1$$
 ORa (5)

wherein R_1 and R_2 are as defined in claim 1 and R_2 is a suitable acid protecting group selected from (C_1-C_4) alkyl groups,

with a bromide of formula (6):

to form an ester of formula (4):

HO HO
$$R_1$$
 R_2 O O R_3 (4)

and deprotecting said ester to form the corresponding acid of formula (2).

- 13. A pharmaceutical composition comprising a compound of claim 1 or a pharmaceutically acceptable salt or derived form thereof, together with pharmaceutically acceptable excipients and/or additives.
- 14. A method of treating a disease, disorder or condition in a mammal, said method comprising administering to said mammal in need thereof an effective amount of a β2 agonist or a pharmaceutically acceptable salt, derived form or composition thereof.
- 15. A method according to claim 14 wherein said $\beta 2$ agonist is a compound of claim 1 or a pharmaceutically acceptable salt, derived form or composition thereof.
- 16. A method according to claim 14 where the disease, disorder or condition isselected from the group consisting of:
 - asthma of whatever type, etiology, or pathogenesis, in particular asthma
 that is a member selected from the group consisting of atopic asthma,
 non-atopic asthma, allergic asthma, atopic bronchial IgE-mediated
 asthma, bronchial asthma, essential asthma, true asthma, intrinsic
 asthma caused by pathophysiologic disturbances, extrinsic asthma
 caused by environmental factors, essential asthma of unknown or
 inapparent cause, non-atopic asthma, bronchitic asthma,
 emphysematous asthma, exercise-induced asthma, allergen induced

20

10

asthma, cold air induced asthma, occupational asthma, infective asthma caused by bacterial, fungal, protozoal, or viral infection, non-allergic asthma, incipient asthma, wheezy infant syndrome and bronchiolytis,

- chronic or acute bronchoconstriction, chronic bronchitis, small airways obstruction, and emphysema,
- obstructive or inflammatory airways diseases of whatever type, etiology, or pathogenesis, in particular an obstructive or inflammatory airways disease that is a member selected from the group consisting of chronic eosinophilic pneumonia, chronic obstructive pulmonary disease (COPD), COPD that includes chronic bronchitis, pulmonary emphysema or dyspnea associated or not associated with COPD, COPD that is characterized by irreversible, progressive airways obstruction, adult respiratory distress syndrome (ARDS), exacerbation of airways hyperreactivity consequent to other drug therapy and airways disease that is associated with pulmonary hypertension,
 - bronchitis of whatever type, etiology, or pathogenesis, in particular bronchitis that is a member selected from the group consisting of acute bronchitis, acute laryngotracheal bronchitis, arachidic bronchitis, catarrhal bronchitis, croupus bronchitis, dry bronchitis, infectious asthmatic bronchitis, productive bronchitis, staphylococcus or streptococcal bronchitis and vesicular bronchitis,
 - bronchiectasis of whatever type, etiology, or pathogenesis, in particular bronchiectasis that is a member selected from the group consisting of cylindric bronchiectasis, sacculated bronchiectasis, fusiform bronchiectasis, capillary bronchiectasis, cystic bronchiectasis, dry bronchiectasis and follicular bronchiectasis.
- 17. A method according to claim 14, 15 or 16 wherein said mammal is a human.
- 18. A compound of formula (2):

5

10

15

20

25

wherein R_1 and R_2 are each independently selected from hydrogen and (C_1 - C_4)alkyl.

19. A compound of formula (4):

5

wherein R_1 and R_2 are each independently selected from hydrogen and (C_1-C_4) alkyl, and R_3 is a suitable acid protecting group selected from (C_1-C_4) alkyl groups.