OneBit: Towards Extremely Low-bit Large Language Models[2]

King-Siong Si

Institute of Multimedia Knowledge Fusion and Engineering, Xi'an JiaoTong University sjsinx@stu.xjtu.edu.cn

March 22, 2024

- 1 Background
- 2 Methodology
- 3 Results
- 4 Discussion
- **6** References

Background •0

Background

Figure 1: The perplexity (lower scores mean better performance) of existing widely-used low-bit quantization methods on LLaMA-7B.¹

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

¹From Figure 1 in [2].

Background

Background

Figure 1: The perplexity (lower scores mean better performance) of existing widely-used low-bit quantization methods on LLaMA-7B.¹

 Existing methods decline when compressing model weights to 1 bit, struggling to maintain effectiveness.

4 / 19

K. Si, sjsinx@stu.xjtu.edu.cn

¹From Figure 1 in [2].

- 2 Methodology

 Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization

K. Si, sjsinx@stu.xjtu.edu.cn

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization
 - Activation Quantization

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization
 - Activation Quantization
 - Using integer-only arithmetic or not

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization
 - Activation Quantization
 - Using integer-only arithmetic or not
- Uniform Quantization

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization
 - Activation Quantization
 - Using integer-only arithmetic or not
- Uniform Quantization

Quantization Function

$$q = |r/S| + Z. (1)$$

K. Si, sjsinx@stu.xjtu.edu.cn

6 / 19

- Quantization: Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values.
- Quantization in DL
 - Weight Quantization
 - Input Quantization
 - Activation Quantization
 - Using integer-only arithmetic or not
- Uniform Quantization

Quantization Function

$$q = \lfloor r/S \rfloor + Z. \tag{2}$$

- PTQ(Post Training Quantization)
- QAT(Quantization Aware Training)

4 D > 4 A > 4 B > 4 B > B | B | 9 Q ()

K. Si, sjsinx@stu.xjtu.edu.cn

• Bit-Width: 1

• Bit-Width: 1

Weight Quantization

- Bit-Width: 1
- Weight Quantization
- QAT

K. Si, sjsinx@stu.xjtu.edu.cn

- Bit-Width: 1
- Weight Quantization
- QAT

- Bit-Width: 1
- Weight Quantization
- QAT

- Bit-Width: 1
- Weight Quantization
- QAT

- Bit-Width: 1
- Weight Quantization
- QAT

• Why value vectors?

K. Si, sjsinx@stu.xjtu.edu.cn

MethodologyResultsDiscussionReferencesThanks00●00000000

Idea in This Paper

• Bit-Width: 1

Weight Quantization

QAT

K. Si, sjsinx@stu.xjtu.edu.cn

- Why value vectors?
- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks[1]

Convolutional Networks[1]

• CNN: $\langle \mathcal{I}, \mathcal{W}, * \rangle$

- CNN: $\langle \mathcal{I}, \mathcal{W}, * \rangle$
- Find a new binary filter $\mathbf{B} \in \{+1, -1\}^{c \times w \times h}$ and a scale $\alpha \in \mathbb{R}^+$ such that $\mathbf{W} \approx \alpha \mathbf{B}$, then

$$\mathbf{I} * \mathbf{W} \approx \mathbf{I} * (\alpha \mathbf{B})$$
$$= (\mathbf{I} \oplus \mathbf{B})\alpha.$$

- CNN: $\langle \mathcal{I}, \mathcal{W}, * \rangle$
- Find a new binary filter $\mathbf{B} \in \{+1, -1\}^{c \times w \times h}$ and a scale $\alpha \in \mathbb{R}^+$ such that $\mathbf{W} \approx \alpha \mathbf{B}$, then

$$\mathbf{I} * \mathbf{W} \approx \mathbf{I} * (\alpha \mathbf{B})$$

$$= (\mathbf{I} \oplus \mathbf{B})\alpha.$$

• In this paper, Linear layers are designed as

- CNN: $\langle \mathcal{I}, \mathcal{W}, * \rangle$
- Find a new binary filter $\mathbf{B} \in \{+1, -1\}$ and a scale $\alpha \in \mathbb{R}^+$ such that $\mathbf{W} \approx \alpha \mathbf{B}$, then

$$\mathbf{I} * \mathbf{W} \approx \mathbf{I} * (\alpha \mathbf{B})$$
$$= (\mathbf{I} \oplus \mathbf{B})\alpha.$$

In this paper, Linear layers are designed as

Linear Layer

$$\mathbf{W}_{\pm 1} = \operatorname{Sign}(\mathbf{W}),\tag{4}$$

$$\mathbf{Y} = \text{LayerNorm} \left(\left[(\mathbf{X} \odot \mathbf{g}) \mathbf{W}_{\pm 1}^{\text{T}} \right] \odot \mathbf{h} \right). \tag{5}$$

• Q: How to get $\mathbf{W}_{\pm 1}$?

- Q: How to get \mathbf{W}_{+1} ?
- A: Negative/Positive $\mapsto -1/1$

- Q: How to get $W_{\pm 1}$?
- A: Negative/Positive $\mapsto -1/1$
- Q: How to get g and h?

- Q: How to get $W_{\pm 1}$?
- A: Negative/Positive $\mapsto -1/1$
- Q: How to get g and h?
- A: Low-Rank Approximation

- Q: How to get $\mathbf{W}_{\pm 1}$?
- A: Negative/Positive $\mapsto -1/1$
- Q: How to get g and h?
- A: Low-Rank Approximation
- SVID(Sign-Value-Independent Decomposition)

- Q: How to get W₊₁?
- A: Negative/Positive $\mapsto -1/1$
- Q: How to get g and h?
- A: Low-Rank Approximation
- SVID(Sign-Value-Independent Decomposition)

SVID

$$\mathbf{W} = \mathbf{W}_{\pm 1} \odot \mathbf{W}_{\mathrm{value}}$$

$$pprox \mathbf{W}_{+1} \odot (\mathbf{a}\mathbf{b}^{\mathrm{T}})$$

(6)

- Q: How to get W₊₁?
- A: Negative/Positive $\mapsto -1/1$
- Q: How to get g and h?
- A: Low-Rank Approximation
- SVID(Sign-Value-Independent Decomposition)

SVID

$$\mathbf{W} = \mathbf{W}_{+1} \odot \mathbf{W}_{\text{value}}$$

$$\approx \mathbf{W}_{+1} \odot (\mathbf{a}\mathbf{b}^{\mathrm{T}})$$

Balance rank and precision.

• $\mathbf{X} \left(\mathbf{W}_{\pm 1}^{\mathrm{T}} \odot (\mathbf{b} \mathbf{a}^{\mathrm{T}}) \right) = \left[(\mathbf{X} \odot \mathbf{b}^{\mathrm{T}}) \mathbf{W}_{\pm 1}^{\mathrm{T}} \right] \odot \mathbf{a}^{\mathrm{T}}$ with the same complexity. See Appendix 1 for details.

- $X(W_{\pm 1}^T\odot(ba^T))=[(X\odot b^T)W_{\pm 1}^T]\odot a^T$ with the same complexity. See Appendix 1 for details.
- Why not use low-rank approximation directly?

That Is It?!

- $X(W_{\pm 1}^T\odot(ba^T))=[(X\odot b^T)W_{\pm 1}^T]\odot a^T$ with the same complexity. See Appendix 1 for details.
- Why not use low-rank approximation directly?
- Less error[2]

That Is It?!

- $X(W_{+1}^T \odot (ba^T)) = [(X \odot b^T)W_{+1}^T] \odot a^T$ with the same complexity. See Appendix 1 for details.
- Why not use low-rank approximation directly?
- Less error[2]
- QAT: based on KD

IMKFE, XJTU

- Background
- 2 Methodology
- 3 Results
- 4 Discussion
- 6 References

Results

						l	/	110	UPA	
Models	Methods	$Perplexity(\downarrow)$		Zero-shot Accuracy(↑)						
		Wiki2	C4	Winogrande	Hellaswag	PIQA	BoolQ	ARC-e	ARC-c	Avg.
OPT-1.3B	FP16	14.63	14.72	59.67	53.73	72.42	57.68	50.80	29.69	54.00
	GPTQ	9.5e3	3.8e3	49.33	25.57	52.07	39.60	26.68	23.63	36.15
	LLM-QAT	4.9e3	2.1e3	49.72	25.72	50.05	37.83	25.76	25.09	35.70
	OmniQuant	42.43	55.64	51.85	33.39	60.94	56.45	38.76	23.38	44.13
	OneBit	25.42	22.95	51.14	34.26	62.57	59.45	41.25	24.06	45.46
OPT-2.7B	FP16	12.47	13.17	60.93	60.59	74.81	60.28	54.34	31.31	57.04
	GPTQ	8.7e3	3.9e3	49.88	26.47	49.84	39.88	25.76	26.02	36.31
	LLM-QAT	3.7e3	1.4e3	52.09	25.47	49.29	37.83	24.92	25.60	35.87
	OmniQuant	30.25	41.31	51.62	38.21	62.19	54.25	40.82	24.74	45.31
	OneBit	21.86	20.76	51.67	38.18	63.87	54.28	43.39	24.40	45.97
LLaMA-7B	FP16	5.68	7.08	66.85	72.99	77.37	73.21	52.53	41.38	64.06
	GPTQ	1.9e3	7.8e2	49.41	25.63	49.95	43.79	25.84	27.47	37.02
	LLM-QAT	7.1e2	3.0e2	51.78	24.76	50.87	37.83	26.26	25.51	36.17
	OmniQuant	15.34	26.21	52.96	43.68	62.79	58.69	41.54	29.35	48.17
	OneBit	10.38	11.56	60.30	50.73	67.46	62.51	41.71	29.61	52.05
LLaMA-13B	FP16	5.09	6.61	70.17	76.24	79.05	68.47	59.85	44.54	66.39
	GPTQ	3.2e3	9.9e2	50.67	25.27	50.00	42.39	26.14	27.39	36.98
	LLM-QAT	1.8e3	1.2e3	51.62	25.40	50.33	37.83	27.02	26.87	36.51
	OmniQuant	13.43	19.33	53.83	54.16	68.99	62.20	45.50	30.38	52.51
	OneBit	9.18	10.25	62.90	56.78	70.67	64.16	44.53	32.00	55.17

Figure 2: Main results of evaluation experiment.¹

¹From Table 1 in [2].

Results

Figure 3: Memory footprint and bit-width. ¹

13 / 19

¹From Figure 3(c) in [2].

- 1 Background
- 2 Methodology
- Results
- 4 Discussion
- 6 References

• The position of LayerNorm

- The position of LayerNorm
- The details of KD

- The position of LayerNorm
- The details of KD
- SVD vs. NMF

- The position of LayerNorm
- The details of KD
- SVD vs. NMF
- Backward? Gradient?

- 1 Background
- 2 Methodology
- 3 Results
- 4 Discussion
- **6** References

Xnor-net: Imagenet classification using binary convolutional neural networks.

In European conference on computer vision, pages 525–542. Springer, 2016.

[2] Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint arXiv:2402.11295, 2024.

40 - 40 - 40 - 40 - 51 - 900

17 / 19

4 D > 4 D > 4 E > 4 E > E E P 9 Q P

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU
Paper Sharing 18 / 19

Complexity of Two Types

Suppose that \mathbf{X} is a n by m matrix, while \mathbf{W} is a k by m matrix. Then, \mathbf{a} and \mathbf{b} are vectors of length k and m, respectively. In the former method, when calculating $(\mathbf{X}\mathbf{W}_{\pm 1}^{\mathrm{T}}\odot(\mathbf{b}\mathbf{a}^{\mathrm{T}}))$, we need $(k\times m+k\times m+n\times m\times k)$ multiplications. In the latter one, we need $(n\times m+n\times m\times k+n\times k)$ multiplications.

The difference between them is $2km - nm - nk = \frac{1}{2}\left((2k - n)(2m - n) - n^2\right)$. That is to say, a sufficient condition for the latter method to be better than the former one is $k > n \land m > n$.