contrasts {1,3} (global null) contrasts

Statistics: p-values adjusted for search volume

Ctationics: praiace adjacea is: coaisii voiaiiis					
set-level	cluster-level		peak-level		mm mm mm
рс	$\rho_{\text{FWE-corr}} q_{\text{FDR-corr}} k_{\text{E}}$	$p_{ m uncorr}$	$\rho_{FWE-corrFDR-corr}$	$(Z_{\equiv}) p_{\text{uncorr}}$	
рс	P _{FWE-colf FDR-colf} k _E 0.868 1.000 20 1.000 1.000 9 0.868 1.000 20 0.661 1.000 26 0.972 1.000 15 0.941 1.000 17 0.486 1.000 31 1.000 1.000 5 1.000 1.000 7 0.770 1.000 23 1.000 1.000 6 1.000 1.000 8 1.000 1.000 6 1.000 1.000 6 0.983 1.000 14 1.000 1.000 7 1.000 1.000 7	0.038 0.146 0.038 0.020 0.067 0.053 0.012 0.273 0.197 0.231 0.326 0.397 0.197 0.231 0.231 0.231 0.231 0.231	1.000 0.402 2.32 1.000 0.402 2.32 1.000 0.405 2.32 1.000 0.411 2.31 1.000 0.412 2.30 1.000 0.412 2.31 1.000 0.412 2.30 1.000 0.413 2.30 1.000 0.413 2.30 1.000 0.413 2.30 1.000 0.413 2.29 1.000 0.418 2.28 1.000 0.418 2.28 1.000 0.418 2.27 1.000 0.422 2.26 1.000 0.467 2.22 1.000 0.474 2.22	3.66 0.000 3.66 0.000 3.65 0.000 3.65 0.000 3.64 0.000 3.64 0.000 3.64 0.000 3.64 0.000 3.64 0.000 3.65 0.000 3.60 0.000 3.60 0.000 3.60 0.000 3.60 0.000 3.50 0.000 3.51 0.000 3.52 0.000 3.53 0.000 3.53 0.000	-32 -74 -34 64 -48 34 -12 -12 2 -48 -44 20 -52 -52 20 -8 -4 68 24 36 34 46 -42 46 42 -48 38 8 -54 72 -50 -40 30 40 -2 -10 -42 -22 70 -40 -86 28 32 58 22 44 -62 -36 -56 -34 -18 42 16 6 14 58 10 20 36 56 -46 -16 -26
	1.000 1.000 5 1.000 1.000 7 1.000 1.000 3	0.273 0.197 0.397	1.000 0.474 2.21 1.000 0.474 2.21 1.000 0.491 2.20	3.52 0.000 3.52 0.000 3.51 0.000	-36 -48 48 64 -48 22 -62 -16 30
1.000 1.000 4 0.326 1.000 0.522 2.18 3.48 0.000 60 16 4 table shows 3 local maxima more than 8.0mm apart					

Height threshold: T = 1.88, p = 0.001 (1.00 egrees of freedom = [1.0, 98.0] Extent threshold: k = 0 voxels FWHM = 8.2 8.1 7.9 mm mm mm; 4.1 4.0 4.0 {voxels} Expected voxels per cluster, $\langle k \rangle = 4.487$ Volume: 1784456 = 223057 voxels = 3155.8 resels Expected number of clusters, $\langle c \rangle = 53.49$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 65.58 voxels FWEp: 3.409, FDRp: 3.135