HIERARCHICAL TEMPORAL MEMORY

Fred Rotbart

HTM

- HTM is a theoretical framework for both biological and machine intelligence.
 - Based on the Neocortex
- Deep Neural Nets (DNN) have clocked up incredible successes in many areas,
 - DNN needs thousands if not millions of samples to train on
 - DNN finds it hard to adapt to continually changing data and surprises
 - DNN is not a good fit in such problem domains, such as sensorimotor
- In contrast, HTM
 - HTM only requires a few hundred samples to learn
 - HTM learns unsupervised as it goes and easily handles changing data and surprises

rotbart@softbart.com

History

- 2004 "On Intelligence" by Jeff Hawkins & Sandra Blakeslee
 - The core concepts in Hierarchical Temporal Memory (HTM) theory were first described in this book
- 2005 Numenta was established in Redwood City, CA to
 - understand and model the human neocortex
 - enable technology based on cortical theory
- 2014 NuPIC (Numenta Platform for Intelligent Computing) was open sourced under the AGPLv3 license
 - API in Python 2.7, Java and C++
 - Third Party Implementations in Closure, C#
 - Community port to Python 3 (in progress)

Neocortex

- Size of a large table serviette (50x50 square centimetres)
- 2.5 mm thick
- 30 billion neurons
- 10 thousand synapses per neuron
- -> 300 trillion edges (in a graph)
- Largely homogenous
 - Replication of same neural algorithms
 - packaged into cortical columns
- Sparsely active
 - Only ~ 2% spiking at any one time
- Constantly predicting its inputs

Cortical Column

- 12 or more cellular layers
- 2 parallel feed forward pathways
- Parallel feedback pathways (not shown)
- Numerous intra and inter column pathways (not shown)
- So whatever the column does must also be complex
- Whatever the column does applies to everything the neocortex does.

Visualisation

http://cajalbbp.cesvima.upm.es/

Deep Neural Net Neuron

HTM Neuron

Real Neuron

5K to 30K excitatory synapses

- 10% proximal, can cause spike
- 90% distal, cannot cause spike

Distal dendrites are pattern detectors

- 8-15 co-active, co-located synapses

generate dendritic spike

- sustained depolarisation of soma

HTM Neuron Model

Learning is by Rewiring, Forming New Synapses Not by Changing Synaptic Weights

HTM Cortical Column

Sparse Distributed Representation (SDR)

Sparse Distributed Representations

- SDRs are how brains solve the problem of knowledge
- Each bit has semantic meaning
- Extremely high capacity. For 2048 bit vector and 2% are set, we have >> 1084 unique patterns
- Randomly chosen patterns have minimum overlap

- Two representations with shared bits have some shared semantic information
- Comparing two representations is as simple as taking the intersection of the two indices sets.
- SDRs are inherently fault-tolerant and noise tolerant.
- Can check for existence of an SDR in a set by taking the union

Create SDRs - Spacial Pooler

Input

converted

to SDR

Demo - Character Reader

ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijklm nopqrstuvwxyz 1234567890

Chalkduster 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgrstuvwxyz

Courier New Bold Italic 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Times New Roman 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Comic Sans MS 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz

HERCULANUM 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Xingkai 0123456789

ABCDETGHIJK LMNOP2RSTUVWXYZ

abcdefghijklmnopgrstuvwxyz

SnellRoundhand 0123456789

ABCDEFGHIJRLMNOLLRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Temporal (or Sequence) Memory

- Makes predictions of what the next input SDR will be
- Huge capacity (can learn more than 1 million transitions)
- Learns higher order sequences: "ABCD" vs "XBCY"
- Makes simultaneous predictions: "..BC" predicts "D" and "Y"
- Extremely robust (40% noise and fault tolerant)
- Learning is unsupervised, continuous and local

rotbart@softbart.com

Demo - Anomaly Detection

Sensorimotor Sequence Memory

 Such a column can learn models of complete objects by sensing different locations on an object over time

Grid and Place Cells

Sensorimotor with Multiple Columns

- Each column has partial knowledge of the object
- Long range connections in object layer allow columns to vote
- Inference is faster

Demo - Sensorimotor

Commercial Applications

http://grokstream.com/

Links

- https://numenta.com/
- https://numenta.org/
- HTM School: https://www.youtube.com/
 channel/UC8-ttzWLgXZOGuhUyrPlUuA

Slides and Demos

https://github.com/fcr/python meetup htm slides

Questions?