機率與統計簡介

機率與統計的關係(Relation between probability and statistic)

sample由某個機率分佈產生,而model由sample找出來

Sample ----> Model: 統計(Statistic)

Sample <---- Model: 機率(Probability)

基礎定理(Probability rules)

1. 互斥事件的加法(Addition rule for mutually exclusive events):

$$P(A \text{ or } B) = P(A) + P(B)$$

2. 獨立事件的乘法(Multiplication rule for independent events):

$$P(A \ and \ B) = P(A) \cdot P(B)$$

3. 通用加法(General addition rule):

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

4. 通用乘法(General multiplication rule):

$$P(A \text{ and } B) = P(A)P(B|A) \text{ or } P(B)P(A|B)$$

貝氏理論(Bayes theory)

- ullet Let $A_{i=1\sim n}$ be mutually exclusive and exhaustive event.
- Then for any other event B(Law of total probability):

$$P(A_k|B) = rac{P(A_k \ and \ B)}{P(B)} = rac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

期望值與變異數計算(Expected value and Variance)

Item	Formula		
期望值(Expected value)	$E(X) = \sum_{i=1}^k x_i p(x_i)$		
變異數(Variance)	$V(X) = E(X^2) - E(X)^2 = \sum \left[x_i^2 p(x_i) ight] - \mu^2$		
共變異數(Covariance)	Cov(X,Y) = E(XY) - E(X)E(Y)		
相關係數(Correlation coefficient)	$Corr(X,Y) = rac{Cov(X,Y)}{S.D(X)\cdot S.D(Y)}$		

常見的機率分佈(Probability distibutions)

機率分佈大分類可分為

- 1. 離散型(Discrete)
- 2. 連續型(Continuous)

離散型(Discrete)

- 1. Bernoulli
 - 結果只有兩種(0 or 1,正面或反面)可能的實驗,例如投擲硬幣。
- 2. Geometric
 - 在伯努利實驗中,第一次成功所需要的實驗次數。
- 3. Binomial
 - 進行伯努利實驗n次,成功x次的機率分佈。
- 4. Poisson

當Binomial的參數n很大,但p很小時的機率分佈。

	(r.v;參數)	期望值E	變異數	p.m.f
Bernoulli	(x;p)	р	p(1-p)	P(x=1)=p
Geometric	(x;p)	$\frac{1}{p}$	$rac{1-p}{p^2}$	$G(X=x)=p(1-p)^{x-1}$
Binomial	(x;n,p)	np	np(1-p)	$b(x;n,p)=inom{n}{x}p^x(1-p)^{n-x}$
Poisson	$(x; \lambda > 0)$	λ	λ	$p(x;\lambda)=rac{e^{-\lambda}\lambda^x}{x!}$

連續型(Continuous)

1. Uniform

在指定的範圍(a,b)間,每個變數x的機率密度都是相同的機率分佈模型。

2. Normal

以平均數和標準差為參數的對稱機率分佈模型。

3. Exponential

以 λ 為參數的連續機率分佈,通常發生在描述獨立事件變數發生的時間間 \mathbb{G} 。

4. Gamma

假設X1, X2, ... Xn 為連續發生事件的等候時間,且這n次等候時間為獨立的,那麼這n次等候時間之和Y (Y=X1+X2+...+Xn)服從伽瑪分布,即 Y \sim Gamma(α , β),亦可記作Y \sim Gamma(α , λ),其中 α = n,而 β 與 λ 互為倒數關係, λ 表單位時間內事件的發生率。 指數分布為 α = 1的伽瑪分布。

5. Chi-Square(將 (α, β) 設成 $(\frac{k}{2}, 2)$)

若k個隨機變數 Z_1 、 Z_2 ... Z_k 是相互獨立,符合標準常態分布的隨機變數(數學期望為0、變異數為1),則隨機變數Z的平方和 $X=\sum_{i=1}^k Z_i^2$ 被稱為服從自由度為 k 的卡方分布,記作 $X\sim\chi^2(k)$ 。

	(r.v;參數)	期望值E	變異數	p.d.f
Uniform	(x;a,b)	$rac{a+b}{2}$	$\frac{(a-b)^2}{12}$	$rac{1}{b-a}$ for $a <= x <= b$
Normal	$(x;\mu,\sigma)$	μ	σ^2	$f(x)=rac{1}{\sigma\sqrt{2\pi}}~e^{-rac{(x-\mu)^2}{2\sigma^2}}$
Exponential	(x,λ)	$\frac{1}{\lambda} = \beta$	$rac{1}{\lambda^2}$	$f(x;\lambda) = egin{cases} \lambda e^{-\lambda x} & x \geq 0, \ 0 & , \ x < 0. \end{cases}$
Gamma	(x;lpha,eta)	lphaeta	$lphaeta^2$	$f\left(x ight)=rac{x^{\left(lpha-1 ight)}e^{\left(-rac{1}{eta}x ight)}}{eta^{lpha}\Gamma\left(lpha ight)}\;,\;x>0$
Chi-Square	(x; <i>k</i>)	k	2k	$f_k(x) = rac{rac{1}{2}^{rac{k}{2}}}{\Gamma(rac{k}{2})} x^{rac{k}{2}-1} e^{rac{-x}{2}}$

機率分佈圖

離散型

圖片來源:維基百科

• Geometric distribution

• Binomial distribution

Poisson distribution

連續型

圖片來源:維基百科

• Uniform distribution

• Normal distribution

• Exponential distribution

- Gamma distribution 0.5

• chi-square distribution

In []:			