

Keonwoo Noh

Department of Information and Communication Engineering

DGIST

agvis

Chapter 20. Deep Generative Models

- 20.1 Boltzmann Machines
- 20.2 Restricted Boltzmann Machines
- 20.3 Deep Belief Networks
- 20.4 Deep Boltzmann machines
- 20.5 Boltzmann Machines for Real-Valued Data
- 20.6 Convolutional Boltzmann Machines
- 20.7 Boltzmann Machines for Structured or Sequential Outputs
- 20.8 Other Boltzmann Machines

Chapter 20. Deep Generative Models

- 20.9 Back-Propagation through Random Operations
- 20.10 Directed Generative Nets
- 20.11 Drawing Samples from Autoencoders
- 20.12 Generative Stochastic Networks
- 20.13 Other Generation Schemes
- 20.14 Evaluating Generative Models
- 20.15 Conclusion

Chapter 20. Deep Generative Models

- Generative models
- Boltzmann Machines
- Restricted Boltzmann Machines
- Deep Belief Networks

InfoSeminar

Generative V.S. Discriminative

Generative

- To model the joint probability and to make a decision using the result of 'generate' the samples into the distribution
- E.g. Autoencoders, Restricted Boltzmann Machines

Discriminative

- To directly compute the posterior class probability p(C|X) in the inference stage
- E.g. Logistic regression, SVM, Boosting, Neural networks

$$p(C|X) = \frac{p(X|C)p(C)}{p(X)}$$

Discriminative Model – Logistic Regression

- Classification model
- Finding decision boundary that minimize error rate

Decision boundary is randomly initialized

Update parameters of decision boundary

Update parameters of decision boundary

Update parameters of decision boundary

Generative model – AutoEncoders (AE)

- AE is neural network models that 'generate' the same data as the input data
- The main goal of AE is to train distribution of data
- AE with sigmoidal hidden units and linear reconstruction unit is equivalent to RBM

An Example of AE – Encoder

Encoder yields compression of input data

An Example of AE – Decoder

Decoder reconstructs input data

$$\widehat{x} = g(yW' + b)$$

InfoSeminar

DOVIS

Boltzmann Machines (BM)

- BM is undirected graphical model and energy based model
- Each node is connected with all of other nodes

Boltzmann Machine

Input data

Energy Based Model

The meaning of energy

- a measure of the amount of information
- an example of high energy event winning a lottery
- an example of low energy event not winning a lottery

Energy Based Model

 The goal is to lower the energy and increase the probability that the generated data actually exists

$$E(x) = -\sum_{i} b_{i}x_{i} - \sum_{i} \sum_{j} w_{ij}x_{i}x_{j}$$

$$P(x) = \frac{1}{Z}exp(-E(x))$$

E:energy U:weight

b: bais

Z : partition function

Multi Layer Boltzmann Machines

- Single layer BM can only generate linear data
- Multi layer BM can generate data with more complex distribution

InfoSeminar

Restricted Boltzmann Machines (RBM)

Characteristics of RBM

- no connection among same layer
- training procedure is much simpler than BM

Data Generation of RBM

Calculate latent variables

a: bias of input layer

b: bias of hidden layer

w: weight

sigm: sigmoid function

Data Generation of RBM

Calculate reconstruction value

a: bias of input layer

b: bias of hidden layer

w: weight

sigm: sigmoid function

Data Generation of RBM

Calculate reconstruction value

a: bias of input layer

b: bias of hidden layer

w:weight

sigm: sigmoid function

Probability of RBM

a: bias of input layer

b: bias of hidden layer

E: energy function

Z: partition function

$$E = -\sum_{i} a_i v_i - \sum_{j} b_j h_j - \sum_{i} \sum_{j} w_{ij} v_i h_j \qquad P(x) = \frac{1}{Z} exp(-E(x))$$

$$P(x) = \frac{1}{Z}exp(-E(x))$$

Training of Multi Layer Perceptron (MLP)

Predict label Predicted label Original label 2. Calculate loss 0 0 3. Minimize loss **Output layer** 01 02 h_1 h_2 h_3 **Hidden layer Input layer** x_2 x_3 x_1 x_4 0 0 Input data

Training of Multi Layer Perceptron (MLP)

- 1. Predict label
- 2. Calculate loss
- 3. Minimize loss

lpha: learning rate

 Δw : gradient

Parameter update with gradient decent

$$\Delta w_{ij} = \frac{\delta loss}{\delta w_{ij}}$$

$$w_{ij} \leftarrow w_{ij} - \alpha \cdot \Delta w_{ij}$$

Likelihood of RBM

L: likelihood

E: energy function

Z: partition function

RBM learns distribution of data by maximizing

likelihood

$$P(x) = \frac{1}{Z}exp(-E(x))$$

$$L(\boldsymbol{\theta}) = \prod_{n=1}^{N} P(x_n | \boldsymbol{\theta})$$

Training of RBM

Probability

Difficult to calculate

 α : learning rate

L: likelihood

E: energy function

Z: partition function

$$P(x) = \frac{1}{Z} exp(-E(x))$$

Likelihood

$$L(\boldsymbol{\theta}) = \prod_{n=1}^{N} P(x_n | \boldsymbol{\theta})$$

Log likelihood

$$log(L(\theta)) = \sum_{n=1}^{N} log(P(x_n|\theta)) = \sum_{n=1}^{N} \{-E - log(Z)\}$$

Differentiate

Weight update formula

 $w_{ij} \leftarrow w_{ij} + \alpha \frac{\delta log(L(\theta))}{\delta w_{ij}}$

Approximate algorithm of training of RBM

$$x^0$$
 0 1 1 0

Approximate algorithm of training of RBM

Approximate algorithm of training of RBM

Approximate algorithm of training of RBM

Iterate k time

 h^0 0.2 0.7 0.6

 x^0

 h^1 0.8 0.2 0.3

0

Weight Update with CD

Gradient of weight

$$\Delta w_{ij} = x_i^0 h_j^0 - x_i^k h_j^k$$

Gradient of bias of input layer

$$\Delta a_i = x_i^0 - x_i^k$$

Gradient of bias of hidden layer

$$\Delta b_j = h_i^0 - h_i^k$$

Boltzmann Machines for Real-Valued Data

Gaussian-Bernoulli RBM

Boltzmann Machines for Real-Valued Data

 $oldsymbol{\sigma}:$ standard deviation

Energy function

$$E = -\sum_{i} \frac{(v_i - a_i)^2}{2\sigma_i^2} - \sum_{j} b_j h_j - \sum_{i} \sum_{j} w_{ij} \frac{v_i}{\sigma_i} h_j$$

Probability

$$P(x_i|h) \propto exp(-\frac{(v_i - a_i - \sum_j w_{ij}h_j)^2}{2\sigma_i^2})$$

InfoSeminar

Deep Belief Networks (DBN)

 The first non-convolutional models to successfully admit training of deep architectures (Hinton et al, 2006)

DBN for Classification

Layer-wise pre-training (unsupervised)

DBN for Classification

Layer-wise pre-training (unsupervised)

DBN for Classification

Fine tuning (supervised)

