Plots for Alpha Formation in Mostly Neutron Matter

Cody L. Petrie

February 5, 2019

Contents

1	Total Energy Plots for Alpha, 14n, and 14n2p	2
2	Breakdown of AV6' Potential Pieces with Linear Correlations	3
3	Breakdown of AV6' Potential Pieces with IP Correlations	4
4	Breakdown of AV6' Potential Pieces with Both Linear and IP Correlations	5
5	Distribution Functions for Linear and IP Correlations for cluster calculations	6
6	Distribution Functions for Linear and IP Correlations for 2n2p calculations	8
7	2n2n plots	10

1 Total Energy Plots for Alpha, 14n, and 14n2p

(a) Alpha energy calculated as $16\epsilon_{14n2p}-12\epsilon_{14n}$ where $\epsilon=E/A.$

(b) Energy/particle for 14 neutrons.

(c) Energy/particle for 14 neutrons + 2 protons.

2 Breakdown of AV6' Potential Pieces with Linear Correlations

(c) Energy/particle for 14 neutrons + 2 protons.

3 Breakdown of AV6' Potential Pieces with IP Correlations

(c) Energy/particle for 14 neutrons + 2 protons.

4 Breakdown of AV6' Potential Pieces with Both Linear and IP Correlations

(c) Energy/particle for 14 neutrons + 2 protons.

5	Distribution	Functions	for	Linear	and	IP	Correlations	for	cluster
	calculations								

Here we're looking at the pp distribution function, like they used in here to look for alpha clusters.

high r.

6	Distribution calculations	Functions	for	Linear	and	IP	Correlations	for	2n2p

(e) Comparison of $g_{pp}(r)$ for linear and IP correlations for 2n2p.

(f) Comparison of $g_{pp}(r)$ for linear and IP correlations for high r.

7 2n2p plots

(a) Energy of pieces of AV6' compared for linear correlations.

(c) Energy of pieces of AV6' comparing linear and IP correlations.

(d) Energy of alpha particle calculated as a cluster in mostly neutron matter and 2 neutrons and 2 protons with both linear and IP correlations.