CS 320: Homework #2

Due on February 10, 2017 at 10:50 pm $Professor\ Dmitry\ Ponomarev$

Tim Hung

Problem Statement: Apply a 2-level carry-lookahead addition algorithm discussed in class to add the following two 16-bit numbers:

Bit level propogation and generation

$$g_i = a_i \cdot b_i$$
$$p_i = a_i \oplus b_i$$

Group level propogation and generation

$$G_i = \prod_{x=4i}^{4i+3} g_x$$

$$P_i = \begin{cases} 1 & \text{if } \mathbf{g}_{4i+3} = 1 \\ 1 & \text{if earlier generate is true and all intermediate propagates are true} \\ 0 & \text{otherwise} \end{cases}$$

Values are displayed in the table below.

Calculating group level carries: $c_{i+1} = g_i + p_i \cdot c_i$

$$C_{0} = G_{0} + P_{0} \cdot C_{0} = 1$$

$$C_{1} = G_{1} + P_{1} \cdot C_{1} = 1$$

$$C_{2} = G_{2} + P_{2} \cdot C_{2} = 1$$

$$C_{3} = G_{3} + P_{3} \cdot C_{3} = 0$$

$$(1)$$

Calculating bit level carries: $c_{i+1} = g_i + p_i \cdot c_i$

c_1	$=g_0+p_0\cdot c_0$	=0
c_2	$=g_1+p_1\cdot c_1$	= 1
c_3	$=g_2+p_2\cdot c_2$	= 1
c_4	$=g_3+p_3\cdot C_0$	= 1
c_5	$=g_4+p_4\cdot c_4$	= 1
c_6	$=g_5+p_5\cdot c_5$	=1
c_7	$=g_6+p_6\cdot c_6$	= 1
c_8	$=g_7+p_7\cdot C_1$	= 1
c_9	$=g_8+p_8\cdot c_8$	=0
c_{10}	$=g_9+p_9\cdot c_9$	=0
c_{11}	$= g_{10} + p_{10} \cdot c_{10}$	= 1
c_{12}	$= g_{11} + p_{11} \cdot C_2$	= 1
c_{13}	$= g_{12} + p_{12} \cdot c_{12}$	= 1
c_{14}	$= g_{13} + p_{13} \cdot c_{13}$	= 1
c_{15}	$= g_{14} + p_{14} \cdot c_{14}$	=0

Remaining calculations are displayed in the table

Least significant bit is on the left

bit	0	1	2	3		4	5	6	7		8	9	10	11		12	13	14	15	16
\mathbf{a}_i	1	1	1	0		1	1	0	0		0	0	1	0		1	1	0	0	
b_i	0	1	1	1		1	0	1	1		0	0	1	1		1	1	0	0	
g_i	0	1	1	0		1	0	0	0		0	0	1	0		1	1	0	0	
p_i	1	0	0	1		0	1	1	1		0	0	0	1		0	0	0	0	
G_i					1					1					1					0
P_i					0					0					0					0
c_i		0	1	1		1	1	1	1		1	0	0	1		1	1	1	0	
C_i					1					1					1					0
S_i	1	0	-1	0		1	0	0	0		1	0	0	0		1	1	1	0	

Ripple carry adder Least significant bit is on the right

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
carry		1	1	1	1			1	1	1	1	1	1	1			
\mathbf{a}_i	0	0	1	1	0	1	0	0	0	0	1	1	0	1	1	1	
b_i	0	0	1	1	1	1	0	0	1	1	0	1	1	1	1	0	
sum	0	1	1	1	0	0	0	1	0	0	0	1	0	1	0	1	

Conclusion:

Ripple Carry Adder and Carry-Lookahead Adder both generate the same accurate result!