1 Worked dry-run example: Bengali \rightarrow English

We illustrate a step-by-step dry-run for an ambiguous Bengali word কাল (kal) which can mean "yesterday" or "tomorrow" (and in some contexts "time/black" depending on usage). We pick two example source sentences and show how TATN disambiguates.

1.1 Example sentences

- 1. Context A (past): সে কাল বই বিক্রি করেছে। He sold the book yesterday.
- 2. Context B (future): সে কাল বই বিক্রি করবে। He will sell the book tomorrow.

Both contain the same surface token কাল, which is a homograph requiring context to resolve.

1.2 Simplified numeric dry-run (illustrative numbers)

Step 0: Tokenize & encode For each token, compute encoder vectors; for কাল we get h_i .

Step 1: Buffer and dispersion Assume prior buffer B has high dispersion $D_w > \delta_{\text{type}}$ (evidence that কাল has multiple senses). So DSCD marks it as a candidate.

Step 2: Prototype inventory Suppose prototypes exist:

 c_1 = prototype for "yesterday" sense, c_2 = prototype for "tomorrow" sense.

Step 3: Compute similarities and p_j Compute cosine similarities (toy values):

Context A (past):

$$s = [0.70, 0.30]$$
 $p = \operatorname{softmax}(s/T) \approx [0.72, 0.28]$

so $p_{\text{max}} \approx 0.72$, predicted $\hat{y}_i =$ "yesterday".

Context B (future):

$$s = [0.35, 0.65]$$
 $p \approx [0.35, 0.65]$

so $p_{\text{max}} \approx 0.65$, predicted $\hat{y}_i =$ "tomorrow".

Step 4: Compute uncertainty components Compute (toy) components:

Context A:

$$H_j \approx 0.86$$
, $\operatorname{Var}_j \approx 0.02$, $\sigma_j \approx 0.05$, $d_{\min} \approx 0.30$.

Aggregate $U_i \approx 1.23$.

Context B:

$$H_i \approx 0.94$$
, $Var_i \approx 0.03$, $\sigma_i \approx 0.06$, $d_{min} \approx 0.25$,

 $U_i \approx 1.28$.

Step 5: Gating and attention Compute gate $g_j = \sigma(w_g(U_j - b_g))$. Suppose $w_g = 4$ and $b_g = 0.8$:

Context A: $g_j = \sigma(1.72) \approx 0.85$ (attention boost). Context B: $g_j = \sigma(1.92) \approx 0.87$.

Step 6: ASBN GRL strength

$$\lambda_{\text{freq},j} = \text{clip}(1.0 \cdot p_{\text{max}} \cdot (1 - U_j) \cdot g_j, 0, 1.5).$$

Context A: $1-U_j\approx -0.23 \rightarrow \text{clipped to 0.}$ Context B: also clipped to 0. (Uncertain tokens are not adversarially forced.)

Step 7: Prototype update decision Suppose $\varepsilon_{\text{new}} = 0.4$; $d_{\text{min}} = 0.30$ or $0.25 \rightarrow \text{no}$ new prototype. Update nearest centroid with EMA.

Step 8: Sense augmentation If flagged:

$$h_i' = h_j + c_{w,\hat{y}_i}.$$

- Context A: $h'_j = h_j + c_1$ ("yesterday").
- Context B: $h'_j = h_j + c_2$ ("tomorrow").

Step 9: Decoding Decoder attends more to flagged token. h'_j anchors the correct sense in translation.

Step 10: TRG rationale extraction and generation TRG extracts verb morphology evidence:

- Context A: verb বিক্রি করেছে (past tense) ⇒ rationale "কাল means yesterday."
- Context B: verb বিক্রি করবে (future tense) ⇒ rationale "কাল means tomorrow."

1.3 Result

- Context A: He sold the book yesterday.
- Context B: He will sell the book tomorrow.

Both outputs include rationales tied to verb tense.