Problem I: Consider the sequential circuit in Figure 5.31 where the adder is a CLA. Its simplified circuit is shown in Figure 5.32. Assuming that the Flip-Flips register set-up time, clock-to-q, and clock-skew are each 0.1 ns, determine the upper bound for its clock frequency. (4 pts)

FIGURE 5.31 A synchronously cleared bit-parallel mod-8 up-counter.

FIGURE 5.32 A synchronously cleared bit-parallel mod-8 up-counter using a simplified CLA adder and a simplified MUX.

The longest path delay for the simplified circuit is:

$$\triangle_{AND}$$
 + \triangle_{xoR} + \triangle_{AND} = 0.2 + 0.3 + 0.2 = 0.7 ns

Problem II: Textbook problem 5.9 assuming the unknown state are ignored (don't care) in the design. (5 pts)

5.9. Design a Mealy sequence recognizer that detects the nonoverlapping sequence "101." Use binary encoded state labels and draw the circuit schematic similar to the one shown in Fig. 5.16.

Number of bits =
$$log_2[k]$$
, where $k = # of states$
 $log_2(3) = 2$

Current State	Input	Next State	Output
9, 9 ₀	K	م، م	z
0 0	0	0 0	0
0 0	ı	0 1	0
0 1	0	1 0	0
0 1	t	0 1	D
10	0	0 0	0
1 0	ı	0 0	1
t t	0	x x	X
l (t	x x	×

$$d_1 = \overline{q}, q_0 \times d_0 = \overline{q}, \overline{q}_0 \times + \overline{q}, q_0 \times$$

$$Z = q_1 \overline{q}_0 \times$$

5.11. Design a Mealy sequence recognizer that detects the overlapping sequence "1001." Use binary encoded state labels.

