ĐẠI HỌC THĂNG LONG Khoa Toán - Tin

·ĐỀ CƯƠNG

Lý thuyết xác suất

Sinh viên thực hiện: Nguyễn Tú Anh

MSV: A29888

Mục lục

Ι	Biến cố và xác suất của biến cố	4
1	Biến cố và mối quan hện giữa chúng	4
2	Xác suất của một biến cố	4
3	Các quy tắc tính xác suất	4
4	Phép thử lặp - Công thức Becnuli	5
5	Xác suất có điều kiện - Quy tắc nhân tổng quát	5
6	Công thức xác suất đầy đủ và công thức Bayet	5
II	Đại lượng ngẫu nhiên rời rạc	7
1	Phân bố xác suất và hàm phân bố 1.1 Phân bố xác suất 1.2 Hàm phân bố 1.3 Ví dụ	7 7 7 8
2	Kì vọng và phương sai2.1 Kì vọng2.2 Phương sai	8 8
3	Phân bố đồng thời và hệ số tương quan3.1Phân bố đồng thời3.2Đại lượng ngẫu nhiên độc lập3.3Covarian và hệ số tương quan	9 9 9 10
4	Phân bố nhị thức	10
5	Phân bố Poát Xông	10

	I Đại lượng ngẫu nhiên liên tục	11
1	Hàm mật độ và hàm phân bố 1.1 Hàm mật độ	11 11 11
2	Kì vọng, phương sai 2.1 Kì vọng	12 12 12
3	Phân bố chuẩn 3.1 Phân bố chẩn tắc	12 12 13
4	Phân phối mũ	14
5	Phân bố đều	14
I	Tính chất quan trọng của tham số đặc trưng	15
1	Kì vọng	15
	Kì vọng Phương sai	
	Phương sai	15
${f v}$	Phương sai	15 15
$egin{array}{c} \mathbf{V} \ 1 \end{array}$	Phương sai Hàm đặc trưng xác suất và các định lý giới hạn	15 15 16

2	Bât	đẳng thức Trê-bư-sép và Luật số lớn	18
	2.1	Bất đẳng thức Trê-bư-sép	18
	2.2	Luật số lớn	18
Tà	u liệt	ı tham khảo	19

Phần I

Biến cố và xác suất của biến cố

1 Biến cố và mối quan hện giữa chúng

Quan hệ giữa các biến cố

- Kéo theo: $A \subset B$ A sảy ra thì B cũng sảy ra.
- Biến cố đối: $\overline{A} = \Omega \backslash A$.
- Biến cố xung khắc: Không đồng thời xảy ra.

Phép toán tập hợp

- Hợp: $A \cup B$ Sảy ra nếu ít nhất có một trong 2 biến A, B xảy ra.
- \bullet Giao: AB Sảy ra nếu cả 2 biến cố A và B sảy ra.

2 Xác suất của một biến cố

- Xác suất đồng khả năng của biến cố A : $P(A) = \frac{|A|}{|\Omega|}$
- Nguyên lý xác suất nhỏ
 - Nguyên lý: Nếu một biến cố có xác suất rất nhỏ thì thực tế có thể cho rằng trong một phép thử biến cố đó sẽ không sảy ra.
 - Kí hiệu : α mức ý nghĩa
($\beta=1-\alpha$: Độ tin cậy)

3 Các quy tắc tính xác suất

- Quy tắc cộng xác suất
 - $-A_1,A_2$.. đôi một xung khắc $\rightarrow P(A_1 \cup A_2 \cup ..) = P(A_1) + P(A_2) + ..$
 - Công thức tổng quát : $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1A_2)$

- $\bullet\,$ Quy tắc chuyển sang biến cố đối: $P(A)=1-P(\overline{A})$
- Quy tắc **nhân**: Biến cố A, B **độc lập** $\rightarrow P(AB) = P(A) * P(B)$

4 Phép thử lặp - Công thức Becnuli

- Kí hiệu: $P_k(n;p)$
- Ý nghĩa: Là xác suất để trong một dãy n phép thử **độc lập** biến cố A xuất hiên đúng k lần.
- Công thức: $P_k(n;p) = C_n^k p^k q^{n-k}$
- Chú thích: p = P(A), q = 1 p.

5 Xác suất có điều kiện - Quy tắc nhân tổng quát

- Xác suất của B với điều kiện A : P(B/A)
- Quy tắc nhân tổng quát : P(AB) = P(A) * P(B/A)

6 Công thức xác suất đầy đủ và công thức Bayet

Hệ đầy đủ

Các biến cố $B_1, B_2, ..., B_n$ là một hệ đầy đủ nếu:

- \bullet Đôi một xung khắc : $B_iB_j=\varnothing$ với $i\neq j$
- $\Omega = B_1 \cup B_2 ... \cup B_n$: Biến cố chắc chắn

Công thức xác suất đầy đủ

Nếu $B_1...B_n$ là một hệ đầy đủ thì với mỗi biến cố A ta có:

$$P(A) = \sum_{i=1}^{n} P(B_i)P(A/B_i)$$

Công thức Bayet

Nếu $B_1...B_n$ là một hệ đầy đủ và biến cố A có P(A)>0 thì mới mỗi k=1,2,...,n ta có:

$$P(B_k/A) = \frac{P(B_k)P(A/B_k)}{P(A)} = \frac{P(B_k)P(A/B_k)}{\sum_{i=1}^{n} P(B_i)P(A/B_i)}$$

 $P(B_1),...,P(B_n)$ là **xác suất tiên nghiệm**. Sau khi biến cố A sảy ra, các xác suất của B_i được tính trên thông tin này- $P(B_i/A)$ được gọi là **xác suất hậu nghiệm**.

Vì thế công thức Bayet còn có tên là **công thức xác suất hậu nghiệm**

Phần II

Đại lượng ngẫu nhiên rời rạc

Một ĐLNN được gọi là **rời rạc** nếu nó chỉ nhận một số hữu hạn các giá trị hoặc một số vô hạn đếm được các giá trị.

1 Phân bố xác suất và hàm phân bố

1.1 Phân bố xác suất

Phân bố xác suất là một bảng như sau:

$$\begin{array}{c|ccccc} X & x_1 & x_2 & \dots & x_n \\ \hline P & p_1 & p_2 & \dots & p_n \\ O & \phi & p_i = P(X = x_i). \end{array}$$

1.2 Hàm phân bố

$$F(x) = P\{X < x\}$$

Hàm phân bố của một ĐLNN rời rạc X là một hàm **bậc thang**, **không giảm** có bước nhảy tại các giá trị có thể của X. Độ lớn của bước nhảy tại điểm x_k là $p_k = P\{X = x_k\}$.

Hình 1: Đồ thị hàm phân bố

1.3 Ví dụ

Bảng phân bố xác suất của X là:

X	0	1	2	3
P	$\frac{5}{30}$	$\frac{15}{30}$	$\frac{9}{30}$	$\frac{1}{30}$

Hàm phân bố của X:

$$F(x) = \begin{cases} 0 & \text{n\'eu } x \le 0 \\ \frac{5}{30} & \text{n\'eu } 0 < x \le 1 \\ \frac{20}{30} & \text{n\'eu } 1 < x \le 2 \\ \frac{29}{30} & \text{n\'eu } 2 < x \le 3 \\ 1 & \text{n\'eu } x > 3 \end{cases}$$

2 Kì vọng và phương sai

2.1 Kì vọng

Kì vọng (giá trị trung bình) của X, kí hiệu EX:

$$EX = \sum x_i p_i$$

.

2.2 Phương sai

Phương sai của X, kí hiệu là DX, là độ lệch bình phương trung bình

$$DX = E(X - EX)^2 = EX^2 - (EX)^2 = \sum_{i=1}^{n} x_i^2 p_i - (EX)^2 = \sigma^2$$

Ở đó, σ là độ lệch chuẩn của X

3 Phân bố đồng thời và hệ số tương quan

3.1 Phân bố đồng thời

Bảng phân bố xác suất đồng thời:

Y	y ₁	y ₂	y _j	yn
<i>x</i> ₁	P ₁₁	. P ₁₂	P _{1j}	p_{1n}
x_2		0 = (3	= 4.0	= 1/4.
				· 4-V
x_i	p _{i1}	p_{i2}	Pij	pin
x_m	p_{m1}	. P _{m2}	p_{mj}	p _{mn}

$$\mathring{O}$$
 đó, $p_{ij} = P(X = x_i, Y = y_j)$

3.2 Đại lượng ngẫu nhiên độc lập

2 ĐLNN X,Y độc lập:

$$P\{X = x_i/Y = y_j\} = P\{X = x_i\}$$

Kí hiệu:

$$P_{io} = P\{X = x_i\} = \sum_{j=1}^{n} p_{ij}$$

$$P_{oj} = P\{Y = y_j\} = \sum_{i=1}^{m} p_{ij}$$

X và Y độc lập nếu:

$$p_{ij} = p_{io}p_{oj}$$

Covarian và hệ số tương quan 3.3

Covarian

$$cov(X,Y) = \sum_{i} \sum_{j} x_{i}y_{j}p_{ij} - EX * EY$$

Hệ số tương quan

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Chú ý: $-1 \le \rho(X, Y) \le 1$.

Phân bố nhị thức 4

Quan tâm đến X - số lần xuất hiện biến cố trong n lần thực hiện phép thủ.

Kí hiệu: $X \sim B(n, p)$

$$p_k = P\{X = k\} = C_n^k p^k (1-p)^{n-k}$$

- \bullet EX = np
- DX = np(1-p)

Trong đó: p là xác suất xuất hiện biến cố.

Phân bố Poát Xông 5

Số lần xảy ra thành công của một sự kiện trong 1 khoảng thời gian nhất định.

Kí hiệu: $X \sim P(\lambda)$ Phân bố: $P\{X = k\} = \frac{e^{-\lambda}\lambda^k}{k!}$

- $EX = \lambda$
- $DX = \lambda$

Nếu $X \sim P(\mu)$ và $Y \sim P(\lambda)$ X,Y độc lập thì $(X+Y) \sim P(\mu+\lambda)$

Phần III

Đại lượng ngẫu nhiên liên tục

Một ĐLNN X được gọi là ĐLNN liên tục nếu:

- Tập cáo giá trị có thể của X lấp đầy một hay một khoảng trục số.
- Với mọi số a, P(X = a) = 0.

1 Hàm mật độ và hàm phân bố

1.1 Hàm mật độ

Hàm số f(x) xác định trên toàn trục số được gọi là hàm mật độ của ĐLNN liên tục X nếu:

- $f(x) \geq 0$
- $\bullet \int_{-\infty}^{\infty} f(x)dx = 1$
- $P(a < X < b) = P(a \le X \le b) = \int_a^b f(x) dx$

1.2 Hàm phân bố

Hàm phân bố xác suất của ĐLNN X kí hiệu bởi F(x), là hàm xác định với mọi số thực x theo công thức sau:

$$F(x) = P\{X < x\}$$

Tính chất

- $0 \le F(x) \le 1$
- Hàm không giảm: Nếu $x_1 < x_2$ thì $F(x_1) \leq F(x_2)$
- F(x) là một hàm liên tục.
- $\lim_{x\to+\infty} F(x) = 1$; $\lim_{x\to-\infty} F(x) = 0$
- f(x) = F'(x); $F(x) = \int_{-\infty}^{x} f(t)dt$

2 Kì vọng, phương sai

2.1 Kì vọng

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$

2.2 Phương sai

$$DX = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Với $\mu = EX$

3 Phân bố chuẩn

3.1 Phân bố chẩn tắc

ĐLNN Z
 được gọi là một ĐLNN có phân bố chuẩn tắc nếu hàm mật độ của nó là

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Hàm phân bố của Z, kí hiệu $\Phi(x)$, là:

$$\Phi(x) = \int_{-\infty}^{x} f(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

Ta có:

- $P\{Z < a\} = \Phi(a)$
- $P\{Z > a\} = 1 \Phi(a)$
- $P{a < Z < b} = \Phi(b) \Phi(a)$

Kì vọng và phương sai

$$EZ = 0; DZ = 1$$

3.2 Phân bố chuẩn

ĐLNN X được gọi là có phân bố chuẩn với tham số μ và σ^2 nếu ĐLNN $Z=\frac{X-\mu}{\sigma}$ có phân bố chuẩn tắc.

Kí hiệu: $X \sim N(\mu, \sigma^2)$

Ta có:

$$P\{X < x\} = \Phi(\frac{x - \mu}{\sigma})$$
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x - \mu)^2}{2\sigma^2}}$$
$$EX = \mu \text{ và } DX = \sigma^2$$

Ta có:

- $P\{X < a\} = \Phi(\frac{a-\mu}{\sigma})$
- $P\{X > a\} = 1 \Phi(\frac{a-\mu}{\sigma})$
- $P\{a < X < b\} = \Phi(\frac{b-\mu}{\sigma}) \Phi(\frac{a-\mu}{\sigma})$

Quy luật 68-95-99.7

- $P\{|X \mu| \le 1\sigma\} = 68\%$
- $P\{|X \mu| \le 2\sigma\} = 95\%$
- $P\{|X \mu| \le 3\sigma\} = 99.7\%$
- $P\{|X \mu| \le \alpha \sigma\} > 99.99\%$ khi $\alpha > 3$

Tính chất

- $X \sim N(\mu, \sigma^2)$ và a,b là số thực thì $(aX + b) \sim N(a\mu + b, (a\sigma)^2)$
- $X \sim N(\mu_X, \sigma_X^2)$ và $Y \sim N(\mu_Y, \sigma_Y^2)$ với X,Y là các ĐLNN độc lập thì:

$$-U = (X + Y) \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

$$-V = (X - Y) \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

-U và V độc lập

4 Phân phối mũ

ĐLNN X được gọi là có phân phối mũ với tham số $\lambda>0$ nếu nó có hàm mật đô như sau:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{n\'eu } x > 0\\ 0 & \text{n\'eu } x \le 0 \end{cases}$$

Hàm phân bố là:

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{n\'eu } x > 0 \\ 0 & \text{n\'eu } x \le 0 \end{cases}$$

Kì vọng và phương sai:

$$EX = \frac{1}{\lambda}$$
$$DX = \frac{1}{\lambda^2}$$

5 Phân bố đều

ĐLNN liên tục X được gọi là có phân bố đều trên đoạn [a,b] nếu X có thể nhận được bất kì giá trị nào trên đoạn [a,b] với xác suất như nhau và không nhận giá trị nào bên ngoài [a,b].

Hàm mật độ:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{n\'eu } x \in [a,b] \\ 0 & \text{n\'eu } x \notin [a,b] \end{cases}$$

Hàm phân bố:

$$F(x) = \begin{cases} \frac{x-a}{b-a} & \text{n\'eu } x \in [a,b] \\ 0 & \text{n\'eu } x < a \\ 1 & \text{n\'eu } x > b \end{cases}$$

Xác suất để X rơi vào (α, β) là:

$$P\{\alpha < X < \beta\} = \frac{\beta - \alpha}{b - a}$$

Kì vọng và phương sai: $EX = \frac{a+b}{2}; DX = \frac{(b-a)^2}{12}$

Phần IV

Tính chất quan trọng của tham số đặc trưng

1 Kì vọng

- E(aX + bY) = aEX + bEY với X,Y là 2 ĐLNN bất kỳ và a,b là 2 số thực bất kỳ.
- Nếu X, Y độc lập:E(XY) = EXEY.

2 Phương sai

- $D(aX + b) = a^2DX$ với a,b là 2 số thực.
- $DX = E(X^2) (EX)^2$
- $D(aX+bY)=a^2DX+b^2DY+2ab*cov(X,Y)$ (X,Y độc lập thì cov(X,Y)=0)

Phần V

Hàm đặc trưng xác suất và các định lý giới hạn

1 Hàm đặc trưng xác suất

Định nghĩa

Cho ĐLNN X, g(t) là hàm đặc trưng của X nếu:

$$g_X(t) = E(e^{itX})$$

Tính chất

- $|g_X(t)| \le 1 = g_X(0)$
- $g_{aX+b}(t) = e^{itb}g_X(at)$ với a,
b là hằng số.
- Dãy $X_1,...,X_n$ độc lập, $Y=\sum_{k=1}^n X_k$ thì $g_Y(t)=\prod_{k=1}^n g_{X_k}(t)$

Hệ quả

- $X \sim B(n,p) \Rightarrow g_X(t) = (pe^{it} + (1-p))^n$
- $X \sim P(\lambda) \Rightarrow g_X(t) = e^{\lambda(e^{it}-1)}$
- $X \sim N(0,1) \Rightarrow g_X(t) = e^{-t^2/2}$
- $X \sim N(\mu, \sigma^2) \Rightarrow g_X(t) = e^{it\mu \frac{\sigma^2t^2}{2}}$

Phần VI

Luật số lớn và các định lý giới hạn

1 Các dang hội tụ của dãy các đại lượng ngẫu nhiên

1.1 Hội tụ theo xác suất

Đãy Z_1, Z_2, \dots các ĐLNN hội tụ theo xác suất tới ĐLNN Z khi $n \to \infty$ nếu:

$$\forall \varepsilon > 0, P\{|Z_n - Z| > \varepsilon\} \to 0$$
khi $n \to \infty$

1.2 Hội tụ theo bình phương trung bình

Đãy Z_1, Z_2, \dots các ĐLNN hội tụ theo bình phương trung bình tới ĐLNN Z nếu:

$$E|Z_n-Z|^2 \to 0$$
 khi $n \to \infty$

1.3 Hội tụ theo phân bố

Đãy Z_1, Z_2, \dots các ĐLNN hội tụ theo phân bố tới ĐLNN Z nếu:

ĐLNN rời rạc

$$\lim_{n \to \infty} P\{Z_n = c\} = P\{Z = c\}$$

ĐLNN liên tục

$$\lim_{n \to \infty} P\{Z_n < x\} = P\{Z < x\}$$

2 Bất đẳng thức Trê-bư-sép và Luật số lớn

2.1 Bất đẳng thức Trê-bư-sép

Cho Y là ĐLNN không âm, khi đó với mọi a > 0 ta có:

$$P\{Y > a\} \le \frac{EY}{a}$$

Hệ quả: Giả xử X là ĐLNN với $\mu = EX$. Khi đó với mọi $\varepsilon > 0$:

$$P\{|X-\mu|>\varepsilon\}\leq \frac{DX}{\varepsilon^2}$$

2.2 Luật số lớn

Giả xử $X_1, X_2, ..., X_n, ...$ là dãy các ĐLNN độc lập có cùng phân bố và có kì vọng là μ và phương sai σ^2 . Khi đó $\overline{X} = (X_1 + X_2 + ..X_n)/n$ sẽ hội tụ tới μ theo xác suất.

$$\forall \varepsilon, \lim_{n \to \infty} P\{|\overline{X} - \mu| > \varepsilon\} = 0$$

Định lý Markov: Nếu dãy $X_1, X_2, ...$ thỏa mãn điều kiện:

$$\frac{1}{n^2}D\left(\sum_{i=1}^n X_i\right) \to 0$$

khi $n \to \infty$ thì dãy (X_n) tuân theo luật số lớn.

Tài liệu

[1] Đặng Hùng Thắng $M \mathring{\sigma}$ đầu về lý thuyết Xác suất và các ứng dụng, (2011) NXB Giáo dục Việt Nam.