MARKED UP COPY OF THE CURRENT/PENDING CLAIMS

- 1. A chemical mechanical planarization system that includes a Cu/Ta/TaN surface, a single-slurry solution comprising:
 - a) an oxidizing reactant selected from the group consisting of H₂O₂, HNO₃ and mixtures thereof; and
 - b) a co-reactant is selected from the group consisting of H₃PO₄, H₂SO₄, HNO₃, oxalic acid, acetic acid, organic acids and mixtures thereof.
- 12. (Twice Amended) The slurry solution of, claim 1 further comprising abrasive particles selected from the group consisting SiO₂, Al₂O₃ metallic and solid elemental particles, polymer particles, oxides, carbides, fluorides, carbonates, borides, nitrides, hydroxides of Al, Ag, Au, Ca, Ce, Cr, Cu, Fe, Gd, Ge, La, In, Hf, Mn, Ng, Ni, Nd, Pb, Pt, P, Sb, Sc, Sn, Tb, Ti, Ta, Th, Y, W, Zn, Zr, [and] or mixtures thereof.
- 13. The slurry solution of claim 12, wherein said abrasive particles are coated.
- 14. The slurry solution of claim 13, wherein said coating is a chemically active species.
- 15. The slurry solution of claim 12, wherein said coating is CeO₂.
- 16. The slurry solution of claim 12, wherein said particles are produced by the sol method.
- 17. The slurry solution of claim 12, wherein said particles have a range of sizes from approximately 4 nanometers to approximately 5 micrometers.
- 18. The slurry solution of claim 12, wherein said particles have a size less than approximately 5 micrometers.

19. (Twice Amended) A method of accomplishing chemical mechanical planarization of a Cu/Ta/TaN surface comprising:

providing a single-step slurry solution including a combination selected from the group consisting of (i) H₂O₂ with H₃PO₄, H₂SO₄, HNO₃, oxalic acid, acetic acid, or organic acid, (ii) HNO₃ with H₃PO₄, or H₂SO₄; and (iii) an oxidizing reagent with HF;

applying the solution to the surface; and

planarizing both the Cu and at least one of the Ta and TaN during a single processing step.

- 20. The method of claim 19, wherein the slurry solution is selected from the group consisting of H₂O₂ with H₃PO₄, H₂SO₄, HNO₃ oxalic acid, or organic acid.
- 21. The method of claim 19, wherein the slurry solution is selected from the group consisting of HNO₃ with H₃PO₄, or H₂SO₄.
- 22. The method of claim 19, wherein the slurry solution is selected from the group consisting of an oxidizing reagent with HF.
- 23. (Amended) The method of claim 19, further including in the slurry solution an additive selected from the group consisting of selected from the group consisting of HCI, aliphatic alcohols, butylated hydroxytoluene, Agidol-2,2,6-di-tert-butyl-4[(dimethylamino)methyl]phenol, 2,6-di-tert-4N,N-dimethylaminomethylphenol, borax, ethylene glycol, ZnSO₄, methanol, propanol, poly(oxyethylene)lauryl ether, malic acid, HOOC(CX₂)_nCOOH wherein X=OH, amine, H and n=1-4), 3% tartaric acid, 1% ethylene glycol, 1,2,4-triazole, 1,2,3-triazole, tetrazole, nonionic surfactant, ethanol, triflouroethanol, SiF6, organic salt surfactant, polyvinyl alcohol, diphenylsulfamic acid, sodium oxalate, bezotriazole, sodium lignosulfonate, glycol, gelatin carboxymethylcellulose, amines, heavy metal salts, salts of Cu and Ta, KCl, CuCl₂,

SnCl₂, propylene glycol, 2-ethyl-hexylamine, copper carbonate, low molecular weight alcohols, glycols, phenols, aliphatic alcohols, polyvinylalcohols, anionic surfactants, cationic surfactants, fluorocarbon-based surfactants, nonionic surfactants having the properties of preferentially adhering to certain materials, modifying thereby the chemical reactivity where so adhered, polyvinyl alcohol solution stabilizers and species inhibiting spontaneous decomposition of oxidizing agents, wetting agents [and] or mixtures thereof.

- 24. The method of claim 19, further including in the slurry solution at least one of CuCl, FeCl, and FeCl₃, in the slurry solution.
- 25. (Twice Amended) The method of claim 19, further including in the slurry solution at least one of Cu(NO₃)₂, CuSO₄, EDTA, FeNO₃, KOH, K₂S₂O₅, (NH₄)₂S₂O₈, CuNH₄Cl₃, NaOH, NaClO₃, NaNO₃, Na₂S₂O₈, NH₄F, [and] or NH₄OH[and in the slurry solution].
- 26. The method of claim 19, further including in the slurry solution at least one of a molybdenum salt and phenolsulfonic acid in the slurry solution.
- 27. (Amended) The method of claim 19, further comprising including abrasive particles selected from the group consisting SiO₂, Al₂O₃ metallic and solid elemental particles, polymer particles, oxides, carbides, fluorides, carbonates, borides, nitrides, hydroxides of Al, Ag, Au, Ca, Ce, Cr, Cu, Fe, Gd, Ge, La, In, Hf, Mn, Ng, Ni, Nd, Pb, Pt, P, Sb, Sc, Sn, Tb, Ti, Ta, Th, Y, W, Zn, Zr, [and] or mixtures thereof.
- 28. The method of claim 19, wherein the step of planarizing removes the Cu and at least one of the Ti and TiN with approximately 1:1 selectivity.
- 29. The slurry solution of claim 1 comprising H_2O_2 .
- 30. The slurry solution of claim 1 comprising H₃PO₄.

- 31. The slurry solution of claim 1 comprising H₂SO₄.
- 32. The slurry solution of claim 1 comprising HNO₃.
- 33. The slurry solution of claim 1 comprising an organic acid.