Final Progress Report

Team IP1: Parker Jamison, Barbara Remmers, Sophia Su

Project & Data Overview

Build models to predict a quality test result that could be implemented during the manufacturing process. Also use the models to identify which parts of the production process have predictive power.

- Target variable data is highly variable: by grade, grade runs, and within a grade run.
- Potential predictor variables are plentiful and noisy.

Project Results

Model	Avg. RMSE Test	RMSE on Hold Out	Avg. MASE on Test	MASE on Hold Out
Naïve	1.57	1.70	1.00	1.00
MLR	1.49	1.59	0.93	0.93
MLR single grades	1.47	1.59	0.99	0.93
Random Forest	1.45	2.02	0.88	1.16
LightGBM	1.15	1.56	0.70	0.95
XGBoost	1.36	1.81	1.12	1.49

* MLR stands for Multiple Linear Regression

^{*} See all-grade model results by grade and expanded table in Appendix

Feature Engineering

Lagged variables

- Other Autoline tests performed at same time as the STFI test (target variable)
- Cleaned weight and target variable

Engineered Feature using lagged targets

- · Aims to estimate current target with less noise than lagged_y
- Uses prior targets in grade run
- For long enough runs, uses linear estimate of next target based on prior 12.
- First observation in a grade run uses lagged_y

Engineered Feature using lagged weights and current weight

- Quantifies how much current weight deviates from the mean of aver weights in the grade run
- Uncorrelated with y.eng, small but statistically stable effect

Feature Importance

Engineered Features

Model	Predictors	Coefficients	RMSE Train	RMSE Test	MASE Train
Naïve	Lagged_y	1.00	1.57	1.57	1.00
OLS	y.eng	1.00	1.49	1.52	0.92
MLR	y.eng, w.eng	1.00, 0.33	1.46	1.49	0.91

Sensor Features

Feature Name	Selected by Rnd. Forrest	Selected by LightGBM	Selected by XGBoost
REEL SPEED 31:IMV005	Х	Χ	Х
PRI TOTAL HEAD 31:IMVo18	Χ	X	Х
CW SCAN AVG 31:F13SAN		X	X
PRI SLICE POSITION 31:IMV022	X		X
SEC TOTAL HEAD 31:IMV019	Χ		Х
WIRE TO BINIP DRAW 31:DRAW001	X	Х	

Recommendations & Conclusions

- Focus on all-grade models
- Retrain tree-based models using more years of data and re-evaluate performance
- Keep the top sensors in good working order

Feature Name	Selected by Rnd. Forrest	Selected by LightGBM	Selected by XGBoost
REEL SPEED 31:IMV005	Х	Х	Х
PRI TOTAL HEAD 31:IMVo18	X	X	Х
CW SCAN AVG 31:F13SAN		X	X
PRI SLICE POSITION 31:IMV022	X		X
SEC TOTAL HEAD 31:IMVo19	X		Х
WIRE TO BINIP DRAW 31:DRAW001	Х	X	

- Consider adding new sensors
- Test sensor-only models to see how they compare to the linear models

Discussion

Appendix: All-Grade Model Results, by Grade

STFI data values distribution graph

Show

Hide

Appendix: All-Grade Model Performance Comparison

Model	Avg. RMSE Train	Avg. RMSE Test	RMSE on Hold Out	Avg. MASE on Train	Avg. MASE on Test	MASE on Hold Out
Naïve	1.57	1.57	1.70	1.00	1.00	1.00
Multiple Linear Regression (MLR)	1.46	1.49	1.59	0.91	0.93	0.93
MLR single grades	1.48	1.47	1.59	0.99	0.99	0.93
Random Forest	1.35	1.45	2.02	0.93	0.88	1.16
LightGBM	0.95	1.15	1.56	0.64	0.70	0.95
XGBoost	1.08	1.36	1.81	0.72	1.12	1.49

