Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3-4}t_3}{3(k+2k^3)^2r_3t_3}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	$\frac{4i}{3kr_3+6k^3r_3}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

Quadratic (iree) Lagrangian density	$\frac{2}{3}t_3 \; \omega_{,\alpha}^{\;\; \alpha'} \; \; \omega_{\kappa\alpha}^{\;\; \kappa} + \frac{2}{3}t_2 \; \omega_{,\lambda}^{\;\; \kappa\lambda} \; \omega_{\kappa\lambda}^{\;\; \prime} + \frac{1}{3}t_2 \; \omega_{\kappa\lambda}^{\;\; \prime} \; \; \omega_{\kappa\lambda}^{\;\; \kappa\lambda} + f^{\alpha\beta} \; \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \; \sigma_{\alpha\beta\chi} +$	$\frac{3}{2}r_3\partial_{i}\omega^{\kappa\lambda}_{\kappa}\partial^{i}\omega_{\alpha}^{\alpha}+\frac{2}{3}r_2\partial^{\beta}\omega^{\theta\alpha}_{\theta$	$\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} + \frac{5}{2}r_3\partial_\alpha\omega_{\lambda}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - \frac{5}{2}r_3\partial_\theta\omega_{\lambda}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} +$	$rac{3}{2}r_3\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta} - 3r_3\partial_{ heta}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta} + rac{1}{6}t_2\partial^{lpha}f_{ heta\kappa}\partial^{\kappa}f_{a}^{} -$	$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} - \frac{2}{3}t_3\omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f'_{\ \prime} - \frac{2}{3}t_3\omega_{\kappa\lambda}^{\ \lambda}\partial^{\kappa}f'_{\ \prime} -$	$\frac{4}{3}t_{3}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\ \ \ }+\frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{\ \ \ }\partial^{\kappa}f'_{\ \ \ }+\frac{1}{3}t_{2}\ \omega_{,\theta\kappa}\ \partial^{\kappa}f'^{\theta}-\frac{2}{3}t_{2}\ \omega_{,\kappa\theta}\ \partial^{\kappa}f'^{\theta}-$	$\frac{1}{3}t_{2}\ \omega_{\theta\prime\kappa}\ \partial^{\kappa}f^{\prime\theta} + \frac{2}{3}t_{2}\ \omega_{\theta\kappa\prime}\ \partial^{\kappa}f^{\prime\theta} + \frac{2}{3}t_{3}\ \omega_{\prime\alpha}^{\ \alpha}\ \partial^{\kappa}f^{\prime}_{\ \kappa} + \frac{2}{3}t_{3}\ \omega_{\prime\lambda}^{\ \lambda}\ \partial^{\kappa}f^{\prime}_{\ \kappa} -$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha}-\frac{1}{6}t_2\partial_\kappa f_{\lambda}^{}\partial^\kappa f_{\lambda}^{}+\frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta}+\frac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa}+$	$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \ \prime} +$	$\frac{2}{3}r_2\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}{}^{\prime}-4r_3\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}{}^{\prime}-\frac{5}{2}r_3\partial_\alpha\omega_{,}{}^{\alpha}\theta^{\lambda}\omega_{,}{}^{\theta\kappa}+\frac{5}{2}r_3\partial_\theta\omega_{,}{}^{\alpha}\theta^{\lambda}\omega_{,}{}^{\theta\kappa}$
Quadratic (Tree) Lagra	$\frac{2}{3}t_3 \omega_{\alpha'}^{\alpha'} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{3}{2}r_3\partial_i\omega^{k\lambda}_{}\partial^i\omega_{\alpha}^{\alpha} + \frac{2}{3}r_2$	$\frac{2}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \ \ } \partial_{\kappa} \omega^{\theta \alpha \beta} + \frac{5}{2} r_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{3}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \theta \partial_{\kappa} \omega^{\kappa \lambda \theta} - 3 r_3$	$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}$	$\frac{4}{3}t_3\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{l}+\frac{2}{3}t_3\partial_{\kappa j}$	$\frac{1}{3}t_2 \omega_{\theta IK} \partial^K f^{I\theta} + \frac{2}{3}t_2 \omega_{\theta}$	$\frac{1}{6}t_2 \partial^{\alpha} f^{\lambda}_{\ \ \ } \partial^{\kappa} f_{\lambda \alpha} - \frac{1}{6}t_2 \partial_{\kappa} f_{\lambda \alpha}$	$\frac{1}{3}r_2\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{\beta}$	$\frac{2}{3} r_2 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - 4 r_3 \delta^{\beta}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>3</u> ع	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 ikt3</u> 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	k ² t ₂	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	2 ع	$-rac{1}{3} \bar{l} k t_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2\left -\frac{1}{3}\bar{l}kt_2\right $	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha\beta$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\sharp 2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints/g	Source constraints/gauge generators					
SO(3) irreps	Multiplicities					
$\tau_{0^{+}}^{\#2} == 0$	1					
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1\alpha} == 0$	3					
$\tau_{1^{+}}^{\#1\alpha\beta} + i k \sigma_{1^{+}}^{\#1\alpha\beta} == 0$	3					
$\sigma_{1+}^{\#1 \alpha\beta} = \sigma_{1+}^{\#2 \alpha\beta}$	3					
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5					
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5					
Total constraints:	24					

$\omega_{2}^{\#1}_{+} lpha_{\beta}^{\#1} f_{2}^{\#1}_{+} \omega_{2}^{\#1}_{-} lpha_{eta \chi}^{\#}$	0	0	0
$f_{2}^{\#1}_{\alpha\beta}$	0	0	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
·	$\omega_2^{#1} +^{\alpha\beta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

. •			
σ_2^{*+} α_2^{*+} α_2^{*+} α_2^{*-} $\alpha_{\beta\chi}$	0	0	0
$\tau_2^{*+}\alpha\beta$	0	0	0
$\sigma_2^{*+}\alpha\beta$	$-\frac{2}{3k^2r_3}$	0	0
	$\sigma_{2}^{#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$

Massive and massless spectra

(No massless particles)

Unitarity conditions