Probabilistic Algorithms for Finding Matrix Decompositions

Sparsity and Compressed Sensing MVA 2017/18 - ENS Cachan

Alex Nowak

08/01/2018

Problem: Low rank approximation of a matrix

$$egin{array}{lll} m{A} & pprox & m{B} & m{C}, \\ m imes n & m imes k & k imes n. \end{array}$$

- Standard Decompositions:
 - SVD:

$$oldsymbol{A} = \left(oldsymbol{U} oldsymbol{\Sigma}^{1/2}
ight) \left(oldsymbol{V} oldsymbol{\Sigma}^{1/2}
ight)^*$$

QR:

$$A = QR$$

- Classical Algorithms:
 - **1** Computationally expensive: $\mathcal{O}(mnk)$.
 - ② Need $\mathcal{O}(k)$ passes over data.
 - 3 Can't deal with inaccurate matrices.
 - → Not adequate to deal with massive datasets!

Two Stages Solution

• Stage A: (Randomized) Find $m \times k$ orthonormal Q whose columns approximate the range of A:

$$A \approx QQ^*A$$

• Stage B: (Deterministic) Use Q to find the desired decomposition. E.g, set B = Q and $C = Q^*A$

Stage A: Randomize!

RANDOMIZED RANGE FINDER

- 1 Draw an $n \times \ell$ Gaussian random matrix Ω .
- 2 Form the $m \times \ell$ matrix $\mathbf{Y} = \mathbf{A}\Omega$.
- Construct an $m \times \ell$ matrix Q whose columns form an orthonormal basis for the range of Y, e.g., using the QR factorization Y = QR.
- If we set $\ell = k + p$ with p > 0 (p << k) the oversampling parameter, we can control the error $\|\mathbf{A} \mathbf{Q}\mathbf{Q}^*\mathbf{A}\|$! (See Bound)

$$\mathbb{E} \| \boldsymbol{A} - \boldsymbol{Q} \boldsymbol{Q}^* \boldsymbol{A} \| \le \left(1 + \sqrt{\frac{k}{p-1}} \right) \sigma_{k+1} + \frac{e\sqrt{k+p}}{p} \left(\sum_{j>k} \sigma_j^2 \right)^{1/2}.$$

• But, error large if singular values $(\sigma_i)_{i=1}^r$ decay slowly...

• But, product $A\Omega$ too expensive... $\mathcal{O}(mn\ell)$

Stage A: Solving the two issues.

• If **A** has slow decaying singular values $(\sigma_i)_{i=1}^r$, take powers!

$$\mathbf{Y} = \mathbf{B}\mathbf{\Omega}$$
 $\mathbf{B} = (\mathbf{A}\mathbf{A}^*)^q\mathbf{A}$ $\sigma_j(\mathbf{B}) = \sigma_j(\mathbf{A})^{2q+1}$, $j = 1, 2, 3, \dots$

$$\frac{\mathbb{E} \left\| \boldsymbol{A} - \boldsymbol{Q} \boldsymbol{Q}^* \boldsymbol{A} \right\|}{\sigma_{k+1}} \leq \left[1 + \sqrt{\frac{k}{p-1}} + \frac{\mathrm{e}\sqrt{k+p}}{p} \cdot \sqrt{\min\{m,n\} - k} \right]^{1/(2q+1)}$$

ullet Make the product $oldsymbol{A}\Omega$ cheaper by using a structured random matrix instead of Gaussian.

Use Subsampled Random Fourier Transform(SRFT)

$$\Omega = \sqrt{n/\ell} \cdot m{DFR}^*$$

Can compute the sample matrix $\mathbf{Y} = \mathbf{A}\Omega$ in $\mathcal{O}(mn\log(\ell))$ operations via a subsampled FFT. 🙂

Stage B: Construct $A \approx BC$ decomposition from Q.

- Direct SVD: Set B = Q and $C = Q^*A$. Construct SVD of $C = U_1 \Sigma V^*$ and set $U = BU_1$
 - \implies Product $\mathbf{Q}^*\mathbf{A}$ costs $\mathcal{O}(mnk)$, too expensive!
 - \implies SVD with *Direct SVD* requires $\mathcal{O}(k)$ passes over data!
- Solution 1: Complexity can be reduced to $\mathcal{O}(k^2(m+n))$ via row extraction, but an additive error term comes up.
- Solution 2: Use single-pass algorithms. Adds additional error too.

Full Algorithms

- General Matrices That Fit in Core Memory
 - 1 Stage 1: Use Structured Random Matrix.
 - 2 Stage 2: Use row-extraction.

$$T_{
m random} \sim mn\log(k) + k^2(m+n)$$

- Matrices for which Matrix-Vector Products are Cheap.
 - Stage 1: Use Randomized Power method.
 - 2 Stage 2: Use Direct SVD

$$T_{\text{sparse}} = (2q+2)(k+p)T_{\text{mult}} + \mathcal{O}(k^2(m+n))$$

Theory: Expectation and high probability error bounds.

Obs: Deterministic stage.

• Expectation bound:

$$\mathbb{E} \left\| \boldsymbol{A} - \boldsymbol{Q} \boldsymbol{Q}^* \boldsymbol{A} \right\| \leq \left(1 + \sqrt{\frac{k}{p-1}} \right) \sigma_{k+1} + \frac{\mathrm{e} \sqrt{k+p}}{p} \left(\sum_{j>k} \sigma_j^2 \right)^{1/2}.$$

with probability

Tail bound:

$$\begin{aligned} & \|(\mathbf{I} - \mathbf{P_Y})\mathbf{A}\| \le \\ & \le \left(1 + 8\sqrt{(k+p) \cdot p \log p}\right) \sigma_{k+1} + 3\sqrt{k+p} \left(\sum_{j>k} \sigma_j^2\right)^{1/2}, \end{aligned}$$

with failure probability at most $6p^{-p}$...

Remark: Very fast decay with *oversampling parameter p*.

Experiment: Compare theoretical bound with numerical error for powers of normalized gaussian matrices A.

Figure: Comparison between theoretical mean bound and numerical error produced by *Randomized Range Finder* for $(\mathbf{A}\mathbf{A}^*)^r\mathbf{A}$ with r=0,1,2.

Experiment: Compare theoretical bound with numerical error for powers of normalized gaussian matrices A.

Figure: Comparison between theoretical mean bound and numerical error produced by *Randomized Power Iteration* for \bf{A} and q=1,2,3

Experiment: MNIST and Laplacian eigenvectors of image patches.

Figure: Left: Fast decaying singular values. Right: Slow decaying singular values.

Take Away Message / Future directions / Critics

- Necessary tool for Data Scientists working with massive or inaccurate datasets.
- Methods with strong experimental evidence backed up with theory.
- Possible future directions: Improve error bounds sharpness under additional hypothesis of matrix A.
- Critics: In many applications, the target rank k already satisfies $k \ll m, n$. (So log-term not really necessary...)
- Critics: Sometimes properties of matrix **A** hard to know in advance.

Gràcies!