Opioid death rate prediction of California

Jiayi Liu May 15, 2018

Install packages

```
library(MASS)
library(car)

## Loading required package: carData
library(psych)

## ## Attaching package: 'psych'

## The following object is masked from 'package:car':

## ## logit
library(carData)
library(corrplot)

## corrplot 0.84 loaded
```

Load data and summary data

Min. : 35270

1st Qu.: 44693

```
opioid = read.table("LRdata.csv", sep=',', header = TRUE)
str(opioid)
## 'data.frame':
                   58 obs. of 7 variables:
##
   $ County
                   : Factor w/ 58 levels "Alameda", "Alpine", ...: 1 2 3 4 5 6 7 8 9 10 ...
## $ Death.Rate
                   : num 2.63 0 15.61 7.07 9.97 ...
## $ Unemployment : num 4.3 6.5 6 6.6 5.7 15.6 4.5 7.5 5.1 9.5 ...
## $ Poverty
                    : num
                          10.7 18.6 11.3 19.5 13.1 11.1 8.7 23.7 8.7 25.5 ...
## $ Median.Income : int
                          79831 62375 57032 44366 53502 54946 82881 42363 72586 45963 ...
                          593500 329500 265900 228500 259000 205000 472900 183600 379200 204900 ...
## $ Home.Price
                    : int
## $ no.high.school: num 13.6 9.6 11.9 12.3 7.2 30.6 11.2 20.9 6.8 26.9 ...
summary(opioid)
##
         County
                    Death.Rate
                                    Unemployment
                                                       Poverty
##
                        : 0.000
                                         : 3.000
  Alameda : 1
                  Min.
                                   Min.
                                                           : 6.60
                                   1st Qu.: 5.100
## Alpine
            : 1
                  1st Qu.: 3.045
                                                    1st Qu.:11.10
## Amador
                  Median : 5.740
                                   Median : 6.350
            : 1
                                                    Median :14.55
            : 1
                  Mean : 6.608
##
   Butte
                                   Mean : 6.929
                                                    Mean
                                                           :15.08
                  3rd Qu.: 8.238
## Calaveras: 1
                                   3rd Qu.: 8.025
                                                    3rd Qu.:18.75
## Colusa
           : 1
                  Max.
                         :22.910
                                          :23.600
                                                    Max.
                                                           :25.50
                                   Max.
## (Other) :52
## Median.Income
                      Home.Price
                                     no.high.school
```

Min. : 5.70

1st Qu.:11.45

Min. :144600

1st Qu.:204825

```
Median :270700
                                        Median :14.95
##
    Median : 54996
##
    Mean
           : 57999
                      Mean
                              :335724
                                        Mean
                                                :17.18
                                        3rd Qu.:21.77
##
    3rd Qu.: 66415
                      3rd Qu.:419650
                                                :35.50
##
    Max.
            :101173
                              :859400
                                        Max.
                      Max.
##
```

Data visualization

```
# histogram of factors

par(mfrow=c(3,2))
hist(opioid$Unemployment)
hist(opioid$Poverty)
hist(opioid$Median.Income)
hist(opioid$Home.Price)
hist(opioid$no.high.school)
```

Histogram of opioid\$Unemployment

Histogram of opioid\$Poverty

Histogram of opioid\$Median.Income

Histogram of opioid\$Home.Price

Histogram of opioid\$no.high.school

#look at correlations, scatterplots
scatterplotMatrix(~Death.Rate+Unemployment+Poverty+Median.Income+Home.Price+no.high.school,data=opioid,

```
## Warning in applyDefaults(ellipse, defaults = list(levels = c(0.5, 0.95), : ## unnamed ellipse arguments, will be ignored
```

Simple Scatterplot Matrix


```
# cor(opioid[,2:7])
# corr.test(opioid[,2:7], y = NULL, use ="pairwise", method="pearson", adjust="holm", alpha=.05)
##more on correlation plots with p-values

M <- cor(opioid[,2:7])
corrplot(M,method="number")</pre>
```

	Death.Rate	Unemployment	Poverty	Median.Income	Home.Price	no.high.school	— 1
Death.Rate	1	-0.07	0.16	-0.3		-0.18	-0.8
Unemployment	-0.07	1	0.53	-0.5	-0.55	0.68	-0.6 -0.4
Poverty	0.16	0.53	1	-0.79	-0.67	0.47	0.2
Median.Income	-0.3	-0.5	-0.79	1	0.9	-0.3	-0.2
Home.Price	-0.11	-0.55	-0.67	0.9	1	-0.34	-0.4
no.high.school	-0.18	0.68	0.47	-0.3	-0.34	1	-0.6 -0.8
				1			■ -1

corrplot(M,method="pie")

corrplot.mixed(M)


```
# matrix of the p-value of the correlation
p.mat <- cor.mtest(opioid[,2:7], conf.level=0.95)
corrplot(M, p.mat = p.mat$p, sig.level=0.05, insig="p-value")</pre>
```


Build models

```
# use AIC to select features and find out that model with Median. Income, Home. Price and no. high. school
null=lm(Death.Rate~1, data=opioid)
summary(null)
##
## Call:
## lm(formula = Death.Rate ~ 1, data = opioid)
##
## Residuals:
                1Q Median
                                3Q
                                       Max
## -6.6079 -3.5629 -0.8679 1.6296 16.3021
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                            0.6939
                                     9.523 2.19e-13 ***
                6.6079
## (Intercept)
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.285 on 57 degrees of freedom
full = lm(Death.Rate~.-County, data=opioid)
summary(full)
```

```
##
## Call:
## lm(formula = Death.Rate ~ . - County, data = opioid)
## Residuals:
##
               1Q Median
      Min
                                3Q
                                       Max
## -9.2550 -2.5748 0.3439 1.9636 13.1923
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  2.716e+01 7.169e+00 3.788 0.000396 ***
                 -5.544e-02 2.956e-01 -0.188 0.851960
## Unemployment
## Poverty
                 -1.786e-01 2.328e-01 -0.767 0.446392
## Median.Income -3.991e-04 1.103e-04 -3.617 0.000673 ***
## Home.Price
                  2.326e-05 8.236e-06 2.823 0.006718 **
## no.high.school -1.240e-01 1.168e-01 -1.061 0.293534
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.66 on 52 degrees of freedom
## Multiple R-squared: 0.2905, Adjusted R-squared: 0.2223
## F-statistic: 4.258 on 5 and 52 DF, p-value: 0.00255
step(null, scope=list(lower=null, upper=full),direction="forward")
## Start: AIC=194.11
## Death.Rate ~ 1
##
##
                   Df Sum of Sq
                                   RSS
                                           \Delta TC
## + Median.Income
                     1 144.685 1447.2 190.58
## <none>
                                 1591.8 194.11
## + no.high.school 1
                         53.668 1538.2 194.12
                         41.147 1550.7 194.59
## + Poverty
                     1
## + Home.Price
                     1
                         18.783 1573.0 195.42
## + Unemployment
                     1
                          7.767 1584.1 195.82
## Step: AIC=190.58
## Death.Rate ~ Median.Income
##
##
                    Df Sum of Sq
                                   RSS
                        220.495 1226.7 182.99
## + Home.Price
                     1
## + no.high.school 1
                        130.833 1316.3 187.09
## + Unemployment
                        103.573 1343.6 188.27
## <none>
                                1447.2 190.58
## + Poverty
                     1
                         25.222 1421.9 191.56
##
## Step: AIC=182.99
## Death.Rate ~ Median.Income + Home.Price
##
                    Df Sum of Sq
                                   RSS
                                           AIC
## + no.high.school 1
                        83.270 1143.4 180.92
## + Poverty
                         51.497 1175.2 182.51
                     1
## + Unemployment
                         43.582 1183.1 182.90
                     1
## <none>
                                 1226.7 182.99
##
```

```
## Step: AIC=180.92
## Death.Rate ~ Median.Income + Home.Price + no.high.school
##
##
                  Df Sum of Sq
                                 RSS
                                         ATC
## <none>
                               1143.4 180.92
## + Poverty
                       13.1797 1130.2 182.24
                   1
## + Unemployment 1
                        1.1571 1142.2 182.86
## Call:
## lm(formula = Death.Rate ~ Median.Income + Home.Price + no.high.school,
       data = opioid)
##
## Coefficients:
      (Intercept)
                   Median.Income
                                       Home.Price no.high.school
                       -3.466e-04
                                                       -1.683e-01
        2.216e+01
                                        2.215e-05
# build the model with Median. Income, Home. Price and no. high. school and find out the no. high. school is
rlineO<-lm(formula=opioid$Death.Rate ~ opioid$Median.Income+opioid$Home.Price+opioid$no.high.school)
summary(rline0)
##
## Call:
## lm(formula = opioid$Death.Rate ~ opioid$Median.Income + opioid$Home.Price +
       opioid$no.high.school)
##
## Residuals:
                1Q Median
                                3Q
                                       Max
## -8.9083 -2.6929 0.2688 2.0475 13.0616
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          2.216e+01 3.492e+00
                                               6.347 4.71e-08 ***
## opioid$Median.Income -3.466e-04 8.616e-05 -4.022 0.00018 ***
                                                 2.858 0.00605 **
## opioid$Home.Price
                          2.215e-05 7.752e-06
## opioid$no.high.school -1.683e-01 8.487e-02 -1.983 0.05245 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.602 on 54 degrees of freedom
## Multiple R-squared: 0.2817, Adjusted R-squared: 0.2418
## F-statistic: 7.06 on 3 and 54 DF, p-value: 0.0004341
# build model with Median. Income and Home. Price only and find the features are still significant and th
rline2<-lm(formula = opioid$Death.Rate ~ opioid$Median.Income+opioid$Home.Price)
summary(rline2)
##
## lm(formula = opioid$Death.Rate ~ opioid$Median.Income + opioid$Home.Price)
## Residuals:
     Min
              1Q Median
                            3Q
## -7.747 -2.722 -0.384 2.359 12.881
##
```

```
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        1.853e+01 3.052e+00
                                               6.072 1.23e-07 ***
## opioid$Median.Income -3.485e-04 8.842e-05
                                            -3.941 0.000231 ***
                                               3.144 0.002684 **
## opioid$Home.Price
                        2.468e-05 7.848e-06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.723 on 55 degrees of freedom
## Multiple R-squared: 0.2294, Adjusted R-squared: 0.2014
## F-statistic: 8.187 on 2 and 55 DF, p-value: 0.0007721
```

Check assumptions

```
#diagnostics on residuals
plot(rline2, which=1:4)
```


Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)

Theoretical Quantiles Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)

Fitted values Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)

Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)


```
# normality and constant variance models
shapiro.test(rline2$residuals)

##
## Shapiro-Wilk normality test
##
## data: rline2$residuals
## W = 0.94465, p-value = 0.01041
ncvTest(rline2)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 5.51864, Df = 1, p = 0.018815
# normality condition passed but the constant variance test failed and there are some outliers
```

Transformation

```
# Attempts at transformations to get constance of variance box cox, Have to artificially inflate rate=0 opioid_boxcox<-opioid opioid_boxcox[,2] [opioid_boxcox[,2] == 0] <- 0.0001 opioid_boxcox
```

```
## County Death.Rate Unemployment Poverty Median.Income
## 1 Alameda 2.6300 4.3 10.7 79831
## 2 Alpine 0.0001 6.5 18.6 62375
```

##	3	Amador	15.6100	6.0	11.3	57032
	4	Butte	7.0700	6.6	19.5	44366
##	5	Calaveras	9.9700	5.7	13.1	53502
##	6	Colusa	6.8000	15.6	11.1	54946
##	7	Contra Costa	4.1900	4.5	8.7	82881
##	8	Del Norte	7.6700	7.5	23.7	42363
##	9	El Dorado	4.8300	5.1	8.7	72586
##	10	Fresno	6.5400	9.5	25.5	45963
##	11	Glenn	3.3900	8.3	16.7	41699
##	12	Humboldt	22.3500	4.9	20.0	42685
##	13	Imperial	5.7800	23.6	23.6	42560
##	14	Inyo	22.9100	5.3	12.3	42278
##	15	Kern	5.7000	10.4	22.4	49788
##	16	Kings	3.9800	10.0	17.4	47241
##	17	Lake	11.5200	6.7	20.7	36132
##	18	Lassen	17.7900	6.9	17.6	51457
##	19	Los Angeles	2.9700	5.3	16.3	57952
##	20	Madera	6.0200	9.2	20.4	45742
##	21	Marin	5.8700	3.3	7.8	100310
##	22	Mariposa	0.0001	6.9	17.9	49265
##	23	Mendocino	17.3400	5.3	19.0	43510
##	24	Merced	9.8200	10.6	20.3	44397
##	25	Modoc	0.0001	7.8	18.4	41194
##	26	Mono	6.8900	5.4	11.3	58937
##	27	Monterey	2.2200	7.7	12.9	60889
##	28	Napa	1.6400	4.3	7.9	74609
	29	Nevada	9.8500	4.8	10.9	57429
##	30	Orange	8.0800	4.0	11.1	78145
##	31	Placer	3.7500	4.5	7.2	76926
##	32	Plumas	0.0001	9.7	12.6	50125
##	33	Riverside	4.3300	6.1	15.3	57972
##	34	Sacramento	3.1900	5.4	16.3	57509
##	35	San Benito	2.2200	6.8	10.5	73814
##	36	San Bernardino	1.5800	5.8	17.6	54469
##	37	San Diego	6.7000	4.7	12.7	55322
##	38	San Francisco	9.0300	3.3	10.2	87701
##		San Joaquin	6.8000	8.1	14.6	55045
		San Luis Obispo	6.3900	4.3	11.0	64014
##		San Mateo	2.3700	3.0	6.6	98546
	42	Santa Barbara	6.9400	5.1	13.9	65161
	43	Santa Clara	3.1500	3.8	9.3	101173
	44	Santa Cruz	11.9500	7.0	13.4	70088
## ##		Shasta	8.2900	7.0	17.2	45582
##		Sierra	0.0001 16.0500	7.6 8.5	14.4 18.8	43984 38524
##		Siskiyou Solano	3.0100	5.5	11.4	69227
##		Sonoma	4.3600	4.0	9.4	66833 51501
## ##		Stanislaus	2.5600	8.6	14.5	51591 63783
##		Sutter	3.4200	9.8	14.3	63783
		Tehama	3.3000	7.1	20.9	40687 35270
## ##		Trinity	13.4000	7.1	21.3	35270 42780
		Tulare	2.6200	11.2	24.7	42789 50731
##		Tuolumne	11.3400	6.2	15.4	50731 78503
##	OC	Ventura	4.7100	5.2	9.8	78593

##			Yolo	4.2900	5.9	19.0	57663
##	58		Yuba	8.0800	8.6	16.6	48739
##		Home.Price	no.high				
	1	593500		13.6			
	2	329500		9.6			
##		265900		11.9			
##		228500		12.3			
##		259000		7.2			
## ##	6 7	205000		30.6 11.2			
	8	472900 183600		20.9			
##		379200		6.8			
	10	204900		26.9			
##	11	215800		27.7			
##	12	279000		9.6			
	13	159000		35.5			
##	14	325500		11.9			
##	15	175600		27.6			
##	16	172000		29.0			
##	17	167300		14.6			
##	18	174500		20.6			
##	19	465000		23.4			
##		204800		31.5			
##		859400		7.6			
	22	250800		12.3			
##		319110		14.8			
##		171800		33.3			
##		144600		15.2			
##		286100		16.2			
##		393300		29.0			
##		503100		16.9			
## ##		355900 584200		5.7 16.2			
##		380900		6.4			
##		221300		10.1			
	33	276300		20.4			
##		271300		14.1			
	35	423100		23.1			
	36	256000		21.8			
##		184700		14.5			
##	38	858800		13.7			
##	39	246900		22.7			
##	40	471800		10.4			
##	41	845300		11.4			
##	42	480000		20.9			
##		752400		13.5			
##		615200		15.1			
##		223500		11.6			
##		170300		10.6			
##		173100		11.0			
	48	305900		12.8			
##		464700		13.3			
##		216000		23.6			
##	10	409300		21.7			

```
## 52
          178600
                             18.9
## 53
          270100
                              8.7
## 54
          169600
                             32.0
## 55
          259800
                             10.9
                             17.2
## 56
          481400
## 57
          346200
                             15.7
          190700
## 58
                             21.0
```

##

rline_boxcox<-lm(formula = opioid_boxcox\$Death.Rate~opioid_boxcox\$Median.Income+opioid_boxcox\$Home.Pric
boxcox(rline_boxcox)</pre>


```
# the best suggested transfromation is about 0.5 for y.

# build transform model and check assumptions

rline_transform<-lm(formula = sqrt(opioid$Death.Rate) ~ opioid$Median.Income+opioid$Home.Price)

summary(rline_transform)

##

## Call:

## lm(formula = sqrt(opioid$Death.Rate) ~ opioid$Median.Income +

## opioid$Home.Price)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.4601 -0.5421 0.1135 0.5829 2.2296</pre>
```

```
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        4.235e+00
                                   6.701e-01
                                               6.320 4.88e-08 ***
## opioid$Median.Income -5.890e-05
                                   1.941e-05
                                              -3.034 0.00368 **
                                               2.608 0.01171 *
## opioid$Home.Price
                        4.493e-06
                                   1.723e-06
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.037 on 55 degrees of freedom
## Multiple R-squared: 0.1444, Adjusted R-squared: 0.1133
## F-statistic: 4.641 on 2 and 55 DF, p-value: 0.01372
plot(rline_transform, which=1:4)
```

Residuals vs Fitted

Fitted values Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

Fitted values
Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

shapiro.test(rline_transform\$residuals)

normality and constant variance both pass

for Breusch-Pagan-Godfrey test, The null hypothesis for this test is that the error variances are all

Check outliers

for original model with median income and house price
influencePlot(rline2)


```
##
          StudRes
                         Hat
                                    CookD
## 12 2.72428416 0.05970936 1.406710e-01
## 14 2.59045900 0.09516861 2.131362e-01
## 18 2.98500168 0.04498952 1.223242e-01
## 21 0.24846961 0.16183919 4.042540e-03
## 38 -0.03203127 0.21242300 9.394989e-05
outlierTest(rline2)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
      rstudent unadjusted p-value Bonferroni p
##
## 18 2.985002
                        0.0042539
                                       0.24673
influenceIndexPlot(rline2)
```

Diagnostic Plots

plot(rline2, which=3:4)

Fitted values Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)

Im(opioid\$Death.Rate ~ opioid\$Median.Income + opioid\$Home.Price)

for transform model with sqrt(y)
influencePlot(rline_transform)


```
StudRes
##
                         Hat
                                    CookD
      1.62488000 0.09516861 0.0898845475
## 18 2.28330953 0.04498952 0.0760419844
## 21 0.24483921 0.16183919 0.0039254017
## 22 -2.51314678 0.02237902 0.0439456351
## 25 -2.53276902 0.03732672 0.0754795481
## 38 0.08255752 0.21242300 0.0006240432
outlierTest(rline_transform)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
       rstudent unadjusted p-value Bonferroni p
                                         0.8268
## 25 -2.532769
                          0.014255
influenceIndexPlot(rline_transform)
```

Diagnostic Plots

plot(rline_transform, which=3:4)

Fitted values
Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

Im(sqrt(opioid\$Death.Rate) ~ opioid\$Median.Income + opioid\$Home.Price)

```
# 22 and 25 are significant outliers for transform model
# build transformation model without outliers and check assumptions

opioid_outliers<-opioid[-c(22,25),]

rline_outliers_transform<-lm(formula = sqrt(Death.Rate) ~ Median.Income+Home.Price, data=opioid_outlier

plot(rline_outliers_transform, which = 1:4)</pre>
```


Fitted values
Im(sqrt(Death.Rate) ~ Median.Income + Home.Price)

Theoretical Quantiles
Im(sqrt(Death.Rate) ~ Median.Income + Home.Price)

Fitted values
Im(sqrt(Death.Rate) ~ Median.Income + Home.Price)

mmp(rline_outliers_transform,opioid_outliers\$Home.Price)

mmp(rline_outliers_transform,opioid_outliers\$Median.Income)

we could see that both normality and costant variance conditions pass.

Summary the final model

```
summary(rline_outliers_transform)
##
```

```
## Call:
## lm(formula = sqrt(Death.Rate) ~ Median.Income + Home.Price, data = opioid_outliers)
##
##
  Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
##
   -2.5648 -0.4420 0.1319
                            0.5701
##
##
  Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  4.552e+00
                             6.098e-01
                                         7.465 8.06e-10 ***
                                        -3.544 0.000832 ***
## Median.Income -6.209e-05
                             1.752e-05
## Home.Price
                  4.368e-06
                             1.554e-06
                                         2.810 0.006916 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9346 on 53 degrees of freedom
## Multiple R-squared: 0.2001, Adjusted R-squared: 0.1699
## F-statistic: 6.629 on 2 and 53 DF, p-value: 0.002694
```

```
# R^2 is 20% and p-value is 0.002694 which is small enough
```

Design and implement linear regression modeling to perform statistical analysis for opioid epidemic a # Collect and extract data from government websites, process raw data for regression, handle missing va # Perform the statistical analyses including linear regression analysis, statistical modeling (GLM, Logi

Future suggestions

```
# use VIF to check multicollinearity
# collect more data to emprove the R^2 such as use city replace county
# could use million unit to interprate the correlation since the correlation is very small
vif(rline_outliers_transform)

## Median.Income Home.Price
## 5.122854 5.122854
```

we see that the VIF is both smaller than 10, then the multicollinearity is not very serious.