## $\frac{MINIMIZING\ THE\ NUMBER\ OF\ STATES\ OF\ DFA\ -\ SCHEDULED}{FOR\ 19.12.07\ 6^{th}\ HOUR}$

**Aim:** To construct minimum state DFA by reducing the number of states in a given DFA to the bare minimum without affecting the language that is being recognized.

String w distinguishes state s from state t if, by starting with DFA M in state s and feeding it input w, we end up in accepting state but starting in state t and feeding input w, we end up in non accepting state or vice versa. Algorithm works by finding all groups of states that can be distinguished by some input string. A group of states that cannot be distinguished is then merged to single group.

## Algorithm:

- 1. Construct an initial partition  $\pi$  of set of states with two groups: the accepting states F and non accepting states S-F.
- 2. Apply the procedure of fig.1 to  $\pi$  to construct new partition  $\pi$ new.
- 3. If  $\pi \text{new} = \pi$ , let  $\pi \text{final} = \pi$  and continue with step 4. other wise repeat step 2 with  $\pi = \pi \text{new}$ .
- 4. Choose one state in each group of partition  $\pi$  final as the representative for that group. The representatives will be the states of the reduced DFA.

## fig. 1

for each group G of  $\pi$  do begin

partition G into subgroups such that two states s and t of G are in the same subgroup if and only if for all input symbols a, states s and t have transitions on a to states in the same group of  $\pi$ ;

replace G in  $\pi$ new by the set pf all subgroups formed end

## **Minimizing DFA - Example**



So, the minimized DFA

