Міністерство освіти і науки України
Київський національний університет імені Тараса Шевченка
Український фізико-математичний ліцей Київського національного
університету імені Тараса Шевченка
XXIV Всеукраїнська учнівська Інтернет-олімпіада з фізики
2024/2025 навчального року
І (заочний) етап ІІ тур

3. «Ядерний більярд»

Яку мінімальну енергію повинна мати α -частинка (ядро гелію-4) масою m_{α} щоб при лобовому ударі з нерухомим ядром хімічного елемента з порядковим номером Z та масою m_{z} -частинка напевне потрапила у ядро-мішень і стала причиною ядерної реакції. Зрозуміло, що в даній ситуації потрібно брати до уваги ядерні сили, які виникають між ядрами, тому можете вважати, що енергія ядерної взаємодії дорівнює $W_{\rm яд} = -\frac{\alpha}{r^{2}}$, де $\alpha > 0$, а r – відстань між ядрами. Уважайте, що початкова швидкість руху α -частинки значно менша за швидкість світла.