CS1231 TUTORIAL 4

1. Determine whether these are true or false.

(a)
$$\emptyset \in \{\emptyset\}$$
. (b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$. (c) $\{\emptyset\} \in \{\emptyset\}$. (d) $\{\emptyset\} \in \{\{\emptyset\}\}$.

$$(e) \ \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}. \qquad (f) \ \{\{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}\}. \qquad (g) \ \{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}.$$

2. Let
$$B = \{n \in \mathbb{Z} : n = 3j + 2, j \in \mathbb{Z}\}, D = \{n \in \mathbb{Z} : n = 3j - 1, j \in \mathbb{Z}\}.$$
 Is $B = D$?

3. Find
$$|A|$$
 if $A = \{1, 2, \{2\}, \{4, 5\}, 5, 5\}$.

4. Let
$$A = \{a, b, c\}$$
, $B = \{b, c, d\}$, $C = \{b, c, e\}$. Find $(A - B) - C$ and $A - (B - C)$. Are they equal?

5. Let T_P denote the truth set of the predicate P(x). Prove the following:

(a)
$$T_{P\vee Q} = T_P \cup T_Q$$
, $T_{P\wedge Q} = T_P \cap T_Q$,

(b)
$$T_{P\to Q} = \overline{T_P} \cup T_Q$$
.

6. Let
$$A = \{1, 2, 3\}$$
, $B = \{u, v\}$, $C = \{m, n\}$. List the elements of $(A \times B) \times C$ and $A \times B \times C$. Are the two cartesian products equal?

7. Find the mistake in the following "proof".

Theorem: For all sets A and B, $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

Proof Suppose A and B are sets, and $x \in \overline{A} \cup \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$. It follows that $x \notin A$ or $x \notin B$ and so $x \notin A \cup B$. Thus $x \in \overline{A \cup B}$ and hence $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

8. Prve that
$$(A-C)\cap (B-C)\cap (A-B)=\emptyset$$

9. Prove that for all sets A, B, C, D,

if
$$A \cap C = \emptyset$$
, then $(A \times B) \cap (C \times D) = \emptyset$.

10. For each of the following, either prove the statement true or find a counterexample to prove that it is false.

(a) If
$$B \cap C \subseteq A$$
, then $(A - B) \cap (A - C) = \emptyset$.

(b)
$$(A - B) \cap (C - B) = A - (B \cup C)$$
.

- (c) If $\overline{A} \subseteq B$, then $A \cup B = U$.
- (d) $P(A \cap B) = P(A) \cap P(B)$.
- 11. Define the **SYMMETRIC DIFFERENCE** as $A \oplus B = (A B) \cup (B A)$.
- (a) Let $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, C = \{5, 6, 7, 8\}.$ Find $(A \oplus B) \oplus C.$
- (b) Prove that if $A \oplus C = B \oplus C$, then A = B.