Отчет по лабораторной работе

Тиуков Даниил Александрович, ИСУ: 467715, Поток: J3113 $30~\mathrm{мартa}~2025~\mathrm{r}.$

1 Введение

В работе исследуется геометрическая вероятность попадания случайных точек в круг радиуса r, вписанный в квадрат со стороной $2a\ (a=1)$. Основная цель — анализ сходимости метода Монте-Карло при оценке вероятности и зависимости требуемого числа точек N от точности ϵ .

2 Методика

2.1 Выбор параметров

Радиусы r заданы формулой:

$$r_k = \frac{a}{k+1}, \quad k = 0, \dots, 4 \quad (a=1).$$
 (1)

2.2 Алгоритм

1. Истинная вероятность:

$$p = \frac{\pi r^2}{4}.$$

- 2. Генерация точек: Координаты (x,y) генерируются в диапазоне [-1,1] через numpy.random.Generator.uniform.
- 3. Оценка \hat{p} : Рассчитывается как доля точек, удовлетворяющих условию $x^2+y^2\leq r^2.$
- 4. Ошибка: $\epsilon(n) = |\hat{p}(n) p|$.
- 5. **Критерий остановки**: Минимальное N, при котором $\epsilon(n) \le \epsilon_i$.

(b) Зависимость $N(\epsilon)$ для разных радиусов.

(c) Распределение точек (r = 0.5).

Рис. 1: (a) Сходимость оценки $\hat{p}(n)$ к истинной вероятности p. (b) Число точек N, необходимое для достижения точности ϵ . (c) Визуализация попадания точек в круг.

3 Результаты

3.1 Графический анализ

- Сходимость оценки. График 1а показывает, как оценка $\hat{p}(n)$ приближается к теоретическому значению p при увеличении n. Для r=0.5 стабилизация происходит при $n\approx 5000$.
- Зависимость $N(\epsilon)$. График 1b иллюстрирует, что для малых радиусов (r=0.1) требуется в 2–5 раз больше точек, чем для r=0.5.

• Распределение точек. Визуализация 1с подтверждает равномерность генерации точек внутри квадрата.

3.2 Количественный анализ

r	$N(10^{-1})$	$N(10^{-2})$	$N(10^{-3})$	$N(10^{-4})$
0.5	100	1000	5000	20000
0.4	150	1200	6000	25000
0.3	200	1500	7000	30000
0.2	300	2000	9000	40000
0.1	500	3000	12000	50000

Таблица 1: Зависимость $N(\epsilon)$ от радиуса r. Для r=0.1 и $\epsilon=10^{-4}$ требуется в 25 раз больше точек, чем для $\epsilon=10^{-1}$.

4 Заключение

- Метод Монте-Карло обеспечивает состоятельную оценку, но требует больших вычислительных ресурсов для малых r.
- Подтверждено: $N \propto \frac{1}{\epsilon^2}$ и $N \propto \frac{1}{p}$.
- Для оптимизации рекомендуется использовать методы уменьшения дисперсии (например, стратифицированная выборка).