Table 1: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 0-94% MB centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of GeV/c.

$p_{ m T}$	yield	stat. error	sys. error
0.55	0.00257242	0.00149208	6.21454e-05
0.65	0.00214702	0.000727918	0.000144749
0.75	0.00173871	0.000406649	0.000116428
0.85	0.00123392	0.000249203	0.000101368
0.95	0.000782904	0.000138794	6.1357e-05
1.1	0.000388463	1.12917e-05	0.000110091
1.3	0.000213025	4.66722 e-06	4.45261 e-05
1.5	0.000103856	2.31311e-06	2.00111e-05
1.7	5.22142e-05	1.20108e-06	9.32697e-06
1.9	2.88571e-05	6.97601 e-07	4.61483e-06
2.25	1.05956e-05	2.05716e-07	1.59384 e-06
2.75	3.08116e-06	8.72807e-08	4.1603e-07
3.25	9.00264e-07	1.84137e-08	1.21935e-07
3.75	3.37038e-07	9.93587e-09	4.41342e-08
4.25	1.36083e-07	5.86629 e-09	1.77334e-08
4.75	6.03373e-08	3.70861e-09	7.86765e-09
5.5	1.9117e-08	1.36104 e-09	2.66815 e - 09
6.5	5.61818e-09	6.72032e-10	7.65787e-10

Table 2: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 0-10% centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of $(\text{GeV/c})^{-2}$, vield stat error systems.

p_{T}	yield	stat. error	sys. error
0.55	0.00445681	0.00409094	-0.000232876
0.65	0.0057561	0.00206134	0.00031536
0.75	0.00540793	0.00117524	0.00035844
0.85	0.00378037	0.000741248	0.000274688
0.95	0.00230707	0.00041595	0.000175378
1.1	0.00123341	3.68467e-05	0.000320498
1.3	0.00064905	1.74763e-05	0.000130999
1.5	0.000319822	9.20841e-06	5.65796e-05
1.7	0.00016002	5.36624 e-06	2.62585 e-05
1.9	8.49952e-05	3.3396e-06	1.29878e-05
2.25	3.23935e-05	1.08655 e-06	4.53517e-06
2.75	8.95773e-06	4.76208e-07	1.14208e-06
3.25	2.47894e-06	9.41263e-08	3.31498e-07
3.75	9.06019e-07	5.16037e-08	1.20004 e-07
4.25	3.46542e-07	3.01388e-08	4.74271e-08
4.75	1.45975e-07	1.88511e-08	2.06506e-08
5.5	5.23461e-08	7.39248e-09	7.55471e-09
6.5	1.52473e-08	3.63041e-09	2.21925e-09

Table 3: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 0-20% centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of GeV/c.

p_{T}	yield	stat. error	sys. error
0.55	0.00472476	0.00372047	0.000172939
0.65	0.0052773	0.00185126	0.000448389
0.75	0.00456507	0.00104729	0.000373986
0.85	0.00322061	0.000651139	0.000285734
0.95	0.00203389	0.000364774	0.00017961
1.1	0.00109025	3.09277e-05	0.000266751
1.3	0.000571794	1.35801 e-05	0.000110419
1.5	0.000301086	6.69693 e-06	4.80521 e-05
1.7	0.000137788	3.83941e-06	2.26569 e - 05
1.9	8.12778e-05	2.29062 e-06	1.1333e-05
2.25	2.89842e-05	7.29784e-07	3.8639 e-06
2.75	8.07859e-06	3.14318e-07	1.0026e-06
3.25	2.30594e-06	6.49552 e-08	2.93907e-07
3.75	8.41325e-07	3.55518 e-08	1.0737e-07
4.25	3.43032e-07	2.11698e-08	4.37521e-08
4.75	1.51182e-07	1.33701 e-08	1.94463e-08
5.5	4.67382e-08	4.98044e-09	6.48278e-09
6.5	1.41629e-08	2.49619e-09	1.95233e-09

Table 4: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 20-40% centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of $(\text{GeV/c})^{-2}$, vield stat error systems.

$p_{ m T}$	yield	stat. error	sys. error
0.55	0.00412161	0.00195223	0.000539575
0.65	0.00300885	0.000947326	0.000318848
0.75	0.00221522	0.00052831	0.00020694
0.85	0.00162074	0.000322657	0.000132374
0.95	0.00100533	0.000182878	8.88219 e-05
1.1	0.000494886	1.55789 e-05	0.000127101
1.3	0.00024945	7.33995e-06	5.31705 e-05
1.5	0.000134992	3.88173 e-06	2.44051e-05
1.7	6.94806e-05	2.19938e-06	1.12588e-05
1.9	3.54193e-05	1.4126e-06	5.70753e-06
2.25	1.29672e-05	4.4968e-07	1.92721e-06
2.75	3.84006e-06	1.97951e-07	5.10457e-07
3.25	1.19239e-06	4.70822e-08	1.56856e-07
3.75	4.33257e-07	2.56087e-08	5.57685e-08
4.25	1.68018e-07	1.5086e-08	2.22252e-08
4.75	8.68664e-08	9.9141e-09	1.05408e-08
5.5	3.10578e-08	3.78492e-09	3.69684 e-09
6.5	7.59535e-09	1.76584 e-09	9.7223e-10

Table 5: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 40-60% centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of GeV/c.

$p_{ m T}$	yield	stat. error	sys. error
0.55	0.00234218	0.000869072	0.000295911
0.65	0.00130109	0.000414729	0.000149806
0.75	0.000986064	0.0002319	0.000100129
0.85	0.000622315	0.000140645	5.20514 e-05
0.95	0.000459578	8.06199 e-05	3.65274 e-05
1.1	0.000178204	7.3428e-06	5.14379e-05
1.3	9.3212e-05	3.69165 e-06	2.18296e-05
1.5	4.94724e-05	2.0935 e-06	9.95056 e - 06
1.7	2.75405e-05	1.2787e-06	4.84502 e-06
1.9	1.29441e-05	8.22527 e-07	2.30341e-06
2.25	4.98256e-06	2.66334e-07	7.97963e-07
2.75	1.72359e-06	1.27085 e-07	2.2489 e - 07
3.25	4.35661e-07	2.97506e-08	6.19755 e-08
3.75	1.83944e-07	1.6974 e - 08	2.39334e-08
4.25	6.68283e-08	9.61881e-09	8.97407e-09
4.75	3.13059e-08	6.18654 e-09	4.13046e-09
5.5	4.40827e-09	1.86048e-09	1.0011e-09
6.5	2.85626e-09	1.08154e-09	3.86024 e-10

Table 6: Heavy-flavor $\frac{e^++e^-}{2}$ yield, 60-94% centrality. Yield and errors in units of $(\text{GeV/c})^{-2}$, p_{T} is in units of (GeV/c).

$p_{ m T}$	yield	stat. error	sys. error
0.55	0.000433007	0.000231116	6.14249 e - 05
0.65	0.000221695	0.000109361	4.21512 e-05
0.75	0.000169279	6.08596 e- 05	2.62267e-05
0.85	0.000131512	3.78567e-05	1.79285 e - 05
0.95	6.09567e-05	2.19982 e-05	9.89068e-06
1.1	4.59723e-05	2.07668e-06	1.23727e-05
1.3	2.20712e-05	1.12321e-06	5.01183e-06
1.5	1.27709e-05	6.79227e-07	2.32738e-06
1.7	6.39553e-06	4.25665 e-07	1.10713e-06
1.9	3.34703e-06	2.87821e-07	5.50834e-07
2.25	1.20752e-06	9.27125 e-08	1.87744e-07
2.75	3.84479e-07	4.44239e-08	5.06832e-08
3.25	1.1553e-07	1.12857e-08	1.50378e-08
3.75	4.35783e-08	6.20082 e-09	5.37693e-09
4.25	2.30292e-08	4.06759 e-09	2.5206e-09
4.75	6.48913e-09	2.14737e-09	8.61769e-10
5.5	2.42001e-09	8.47821e-10	3.17658e-10
6.5	3.0812e-10	3.34422e-10	7.41242e-11

Table 7: R_{CuCu} , 0-94% centrality. The p_{T} is in units of GeV/c.

$p_{ m T}$	R_{CuCu}	stat. error	sys. error
0.55	0.623709	0.388035	0.203531
0.65	0.96636	0.390506	0.291001
0.75	1.0896	0.318526	0.244497
0.85	1.34032	0.3626	0.278122
0.95	1.13691	0.273739	0.199499
1.1	0.995175	0.121476	0.154211
1.3	1.37733	0.23153	0.217363
1.5	1.28583	0.245942	0.185156
1.7	1.27787	0.0293949	0.133234
1.9	1.30685	0.0315922	0.136317
2.25	1.28321	0.0249139	0.133778
2.75	1.2884	0.0364967	0.137942
3.25	1.11615	0.0228293	0.124848
3.75	1.10001	0.0324284	0.128068
4.25	1.06276	0.0458138	0.122725
4.75	1.04262	0.0640843	0.11865
5.5	0.964826	0.0686912	0.109189
6.5	0.992698	0.118744	0.112321

Table 8: $R_{\rm CuCu},\,0\mbox{-}10\%$ centrality. The $p_{\rm T}$ is in units of GeV/c.

$p_{ m T}$	R_{CuCu}	stat. error	sys. error
0.55	0.306379	0.289553	0.100064
0.65	0.734553	0.308685	0.221244
0.75	0.960863	0.268331	0.215631
0.85	1.16425	0.309889	0.241596
0.95	0.949885	0.230824	0.167686
1.1	0.895892	0.109531	0.139711
1.3	1.18982	0.200875	0.188907
1.5	1.12268	0.215711	0.16224
1.7	1.11037	0.0372361	0.116486
1.9	1.09134	0.0428805	0.114766
2.25	1.11234	0.0373104	0.119541
2.75	1.06202	0.0564591	0.120186
3.25	0.871399	0.0330874	0.107106
3.75	0.838404	0.0477526	0.109155
4.25	0.767334	0.0667352	0.097983
4.75	0.715177	0.0923576	0.0894673
5.5	0.74906	0.105785	0.0913203
6.5	0.76386	0.181877	0.0913994

Table 9: R_{CuCu} , 0-20% centrality. The p_{T} is in units of GeV/c. p_{T} | R_{CuCu} stat. error sys. error

$p_{ m T}$	$R_{ m CuCu}$	stat. error	sys. error
0.55	0.390939	0.320161	0.127651
0.65	0.810584	0.335595	0.244129
0.75	0.976262	0.281919	0.219081
0.85	1.19382	0.323161	0.247729
0.95	1.00791	0.244218	0.169915
1.1	0.953236	0.1162	0.141012
1.3	1.26171	0.21241	0.191023
1.5	1.27218	0.243327	0.173467
1.7	1.15083	0.0320673	0.107703
1.9	1.25614	0.0354012	0.117945
2.25	1.1983	0.0301717	0.114944
2.75	1.15308	0.0448634	0.11725
3.25	0.975796	0.0274868	0.108322
3.75	0.937175	0.0396021	0.110422
4.25	0.914303	0.0564252	0.106609
4.75	0.891562	0.0788471	0.102982
5.5	0.80524	0.0858068	0.091223
6.5	0.854192	0.15055	0.0954289

Table 10: $R_{\rm CuCu}$, 20-40% centrality. The $p_{\rm T}$ is in units of GeV/c.

$p_{ m T}$	R_{CuCu}	stat. error	sys. error
0.55	0.840381	0.44068	0.274255
0.65	1.13885	0.437355	0.34295
0.75	1.1674	0.345592	0.261957
0.85	1.48046	0.397339	0.307203
0.95	1.22769	0.299804	0.206066
1.1	1.06622	0.130784	0.156439
1.3	1.35636	0.229555	0.204074
1.5	1.40553	0.27005	0.191184
1.7	1.43	0.0452661	0.13293
1.9	1.34891	0.0537976	0.126345
2.25	1.3209	0.0458067	0.124394
2.75	1.35051	0.0696177	0.129449
3.25	1.24331	0.0490927	0.124686
3.75	1.18922	0.0702915	0.124413
4.25	1.10351	0.0990819	0.115081
4.75	1.26233	0.14407	0.132838
5.5	1.3184	0.160669	0.139784
6.5	1.12873	0.262418	0.121855

Table 11: R_{CuCu} , 40-60% centrality. The p_{T} is in units of GeV/c.

$p_{ m T}$	R_{CuCu}	stat. error	sys. error
0.55	1.31908	0.572405	0.430416
0.65	1.36026	0.52675	0.409609
0.75	1.43535	0.421093	0.322079
0.85	1.57016	0.45366	0.325816
0.95	1.55022	0.371138	0.258476
1.1	1.06038	0.133089	0.156043
1.3	1.39985	0.239805	0.211946
1.5	1.42273	0.276899	0.194942
1.7	1.56559	0.0726903	0.147155
1.9	1.36161	0.0865231	0.127091
2.25	1.40145	0.0749122	0.130664
2.75	1.67394	0.123424	0.157667
3.25	1.25454	0.0856703	0.122661
3.75	1.39443	0.128675	0.141721
4.25	1.21225	0.174482	0.125012
4.75	1.25652	0.248308	0.130585
5.5	0.516715	0.218076	0.05488
6.5	1.17217	0.443849	0.128166

Table 12: R_{CuCu} , 60-94% centrality. The p_{T} is in units of GeV/c.

p_{T}	R_{CuCu}	stat. error	sys. error
0.55	1.06682	0.617937	0.34809
0.65	1.01389	0.547586	0.305306
0.75	1.07784	0.431158	0.241857
0.85	1.45139	0.492749	0.301169
0.95	0.899339	0.356098	0.155954
1.1	1.19738	0.15191	0.183885
1.3	1.45061	0.252787	0.227955
1.5	1.60707	0.317033	0.229851
1.7	1.59072	0.105873	0.164275
1.9	1.54033	0.132458	0.158662
2.25	1.4891	0.114332	0.153996
2.75	1.63602	0.189031	0.172313
3.25	1.45695	0.142324	0.15955
3.75	1.4463	0.205797	0.165567
4.25	1.82847	0.322959	0.211449
4.75	1.13981	0.377183	0.132995
5.5	1.24359	0.435676	0.14561
6.5	0.553993	0.601284	0.0650432

Table 13: $\langle R_{\rm CuCu} \rangle$ from $1 < p_{\rm T} < 3 \,{\rm GeV/c}$

$\langle N_{ m coll} \rangle$	$\langle N_{ m part} \rangle$	$\langle R_{\rm CuCu} \rangle$	stat. error	sys. error
5.1	6.4	1.45282	0.0716801	0.267348
22.3	21.2	1.39441	0.0607732	0.240911
61.2	45.2	1.3113	0.0555104	0.205795
151.8	85.9	1.15643	0.0490842	0.187563
182.7	98.2	1.07235	0.0461281	0.1823

Table 14: $\langle R_{\rm CuCu} \rangle$ from $3 < p_{\rm T} < 5 \,{\rm GeV/c}$

$\langle N_{\rm coll} \rangle$	$\langle N_{ m part} \rangle$	$\langle R_{\mathrm{CuCu}} \rangle$	stat. error	sys. error	
5.1	6.4	1.44798	0.138958	0.258389	
22.3	21.2	1.27236	0.0851539	0.209978	
61.2	45.2	1.1942	0.048683	0.177966	
151.8	85.9	0.922078	0.0270683	0.148556	
182.7	98.2	0.79416	0.0319751	0.134844	