信息论

- 1. 熵和互信息量的基本概念
- 2. 熵和互信息量的基本性质
- 3. 信源的无失真编码
- 4. 信道容量——代价函数
- 5. 最佳接收和错误概率的估计
- 6. 信道编码定理
- 7. <u>信源的率失真函数和限失真</u> 信源编码
- 8. 非离散信源和信道

7.信源率失真函数 及限失真信源编码定理

2 2018/6/12

目录

- 引言
- > 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- **▶ 限失真信源编码定理**

引言

- Shannon在1948年的论文中首次提出限失真信源编码的概念,在1959年的论文中奠定了限失真信源编码的理论基础
- 此后,限失真信源编码理论受到广泛重视,取得较大发展
- 数据压缩是当前信息传输和处理的重要研究内容
- ▶ 限失真信源编码理论研究的就是在允许失真时的数据压缩问题

4

引言

▶例:无失真与限失真信源编码的对比

	U ₁	U ₂	U ₃	U ₄	U ₅	bits
P(U _i)	0.25	0.25	0.25	0.15	0.10	H(U)=2.243
非等长编码	00	01	10	110	111	2.25
等长编码	000	001	010	011	100	3
允许失真	00	01	10	11	11	2

目录

-) 引言
- | 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- **▶ 限失真信源编码定理**

信源的分类

根据信源输出在时间上及取值上是否连续,可分为:

离散信源

非离散信源

> 按信源的记忆特性, 离散信源又分为:

离散无记忆信源

离散有记忆信源

目录

-) 引言
- ▶ 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- **▶ 限失真信源编码定理**

信源的数学描述

- 》离散无记忆信源输出 u_i 的取值符号集 $\mathbf{A}_u = \{u_1, u_2, ..., u_r\}.$ 取值概率 $\mathbf{P} = \{p(u_1), p(u_2), ..., p(u_r)\}.$
- lackbox 信源编码器输入 $u_i \in \mathbf{A}_u = \{u_1, u_2, ..., u_r\}.$
- lackbox 信源译码器输出 $v_j \in \mathbf{A}_v = \{ v_1, v_2, ..., v_t \}.$

信源的数学描述

- □失真测度矩阵 $D = [d(u_i, v_i)]$, r×t 阶矩阵
- □单个符号失真测度 d(u_i, v_i)

平均单个符号失真测度:

$$E(d) = \sum_{i,j} p(u_i, v_j) d(u_i, v_j)$$

符号序列(长度为k)失真测度:

$$d(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^{\kappa} d(u_i, v_i)$$

平均符号序列失真测度

$$E(\mathbf{d}) = \sum_{i=1}^{k} E(d_i) = \sum_{i=1}^{k} \sum_{j,l} p(u_{ij}, v_{il}) d(u_{ij}, v_{il})$$

$$d_{ij} = \begin{cases} 0 & i = j \\ \alpha(\geq 0) & i \neq j \end{cases}$$

$$d_{ij} = |i - j|$$

$$d(u, v) = |u - v|$$

$$d(u, v) = (u - v)^{2}$$

目录

-) 引言
- ▶ 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- **▶ 限失真信源编码定理**

11 2018/6/12

信源率失真函数的定义

> 定义7.1: 信源的k维率失真函数定义为

$$R_k(\delta) = \min_{p(\mathbf{v}/\mathbf{u})} \{ I(\mathbf{U}; \mathbf{V}) : E(\mathbf{d}) \le k\delta \}$$

说明: (1) 离散无记忆信源的p(u)确定,

寻找一个转移概率分布 p(v/u),

对应一种信源编码方式,

在满足平均失真测度不超过 $k\delta$ 的前提下,

使I(U;V) 达到最小值.

信源率失真函数的定义

说明: (2) $R_k(\delta)$ 是连续函数I(U;V)的极值

$$(3) \diamondsuit \delta_{\min} = \min_{p(v/u)} \left\{ E(d) \right\} = \min_{p(v/u)} \left\{ \sum_{u,v} p(u,v) d(u,v) \right\}$$

$$= \min_{p(v/u)} \left\{ \sum_{u} p(u) \sum_{v} p(v/u) d(u,v) \right\}$$

$$= \sum_{u} p(u) \left\{ \min_{p(v/u)} \left[\sum_{v} p(v/u) d(u,v) \right] \right\}$$

$$= \sum_{u} p(u) \min_{v} d(u,v)$$

 $R_k(\delta)$ 的定义域为 $\delta \geq \delta_{min}$

(4) 对于 $\delta \geq \delta_{\min}$,

 $R_k(\delta)$ 是随 δ 增加而非增的函数

信源率失真函数的定义

定义7.2:
$$R(\delta) = \inf_{k} \frac{1}{k} R_{k}(\delta)$$

inf—下确界.

目录

-) 引言
- ▶ 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- ▶ 限失真信源编码定理

15 2018/6/12

▶ 定理7.1 $R_k(\delta)$ 是 δ 的下凹函数, 对于 $\delta \geq \delta_{min}$.

证明: 设
$$\alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$$

需证明对于
$$\delta_1, \delta_2 \geq \delta_{\min},$$
有

$$R_k(\alpha_1\delta_1+\alpha_2\delta_2)\leq \alpha_1R_k(\delta_1)+\alpha_2R_k(\delta_2).$$

设试验信道1和2,相应的转移概率分布为

$$p_1(\mathbf{v/u})$$
、 $p_2(\mathbf{v/u})$, 达到 $R_k(\delta_1)$ 、 $R_k(\delta_2)$.

$$\text{Bp} \quad I(\mathbf{U}; \mathbf{V}_1) = R_k(\delta_1) \qquad E[d(\mathbf{u}, \mathbf{v}_1)] \le k\delta_1$$

$$I(\mathbf{U}; \mathbf{V}_2) = R_k(\delta_2)$$
 $E[d(\mathbf{u}, \mathbf{v}_2)] \le k\delta_2$

▶ 定理7.1证明 (续):

定义一个新的试验信道,相应的转移概率分布 $p(\mathbf{v/u}) = \alpha_1 p_1(\mathbf{v/u}) + \alpha_2 p_2(\mathbf{v/u}).$

对于给定的DMS和它的信源符号分布有

$$E[d(\mathbf{u},\mathbf{v})] = \alpha_1 E[d(\mathbf{u},\mathbf{v}_1)] + \alpha_2 E[d(\mathbf{u},\mathbf{v}_2)]$$

$$\leq k(\alpha_1\delta_1 + \alpha_2\delta_2).$$

根据定义7.1,相应的信息量

$$I(\mathbf{U}; \mathbf{V}) \ge R_k(\alpha_1 \delta_1 + \alpha_2 \delta_2)$$

定理7.1证明(续):

根据定理2.7,有

$$I(\mathbf{U}; \mathbf{V}) \le \alpha_1 I(\mathbf{U}; \mathbf{V}_1) + \alpha_2 I(\mathbf{U}; \mathbf{V}_2)$$

= $\alpha_1 R_k(\delta_1) + \alpha_2 R_k(\delta_2)$.

故 $R_k(\alpha_1\delta_1+\alpha_2\delta_2) \leq \alpha_1 R_k(\delta_1) + \alpha_2 R_k(\delta_2)$. 证毕!

▶ 定理7.2 对于离散无记忆信源,

有
$$R_k(\delta) = kR_1(\delta)$$
, 其中 $\delta \ge \delta_{\min}$.

证明: (a) 设k_维试验信道的转移概率分布p(v/u)

达到 $R_k(\delta)$.即

$$E[d(\mathbf{u},\mathbf{v})] \le k\delta, \quad I(\mathbf{U};\mathbf{V}) = R_k(\delta) \quad (7.1)$$

对于DMS, 根据定理2.8, 有

$$I(\mathbf{U}; \mathbf{V}) \ge \sum_{i=1}^{k} I(U_i; V_i)$$
 (7.2)

20

▶ 定理7.2证明: (a) (续) 定义 $\delta_i = E[d(u_i, v_i)],$ 有 $I(U_i; V_i) \ge R_1(\delta_i),$ i=1, 2, ..., k (7.3)

因为 $R_1(\delta)$ 是下凹非增函数, 有

$$\sum_{i=1}^{k} R_1(\delta_i) = k \sum_{i=1}^{k} \frac{1}{k} R_1(\delta_i) \ge k R_1 \left(\frac{\delta_1 + \dots + \delta_k}{k} \right) \ge k R_1(\delta) \quad (7.4)$$

由 (7.1), (7.2), (7.3), (7.4) 式得 $R_k(\delta) \ge kR_1(\delta)$

▶ 定理7.2证明:(b)

设 1_4 试验信道的转移概率分布 $p(v_i/u_i)$ 达到 $R_1(\delta)$.

$$\text{gp} \quad E[d(u_i, v_i)] \leq \delta,$$

$$I(U_i; V_i) = R_1(\delta)$$
 $i=1, 2, ..., k$.

定义k_维DMC的转移概率分布

$$p(\mathbf{v}/\mathbf{u}) = \prod_{i=1}^{k} p(v_i/u_i)$$

则有 $E[d(\mathbf{u},\mathbf{v})] \leq k\delta$,

根据定义7.1,有 $I(U;V) \ge R_k(\delta)$.

▶ 定理7.2证明:(b) (续) 根据定理2.9

$$I(\mathbf{U}; \mathbf{V}) \le \sum_{i=1}^{k} I(U_i; V_i) = kR_1(\delta)$$

故
$$k R_1(\delta) \ge R_k(\delta)$$

综合(a),(b), 有
$$R_k(\delta) = kR_1(\delta)$$

▶ 定理7.2证明:

▶ 推论7.1: 对于离散无记忆信源(DMS),

有
$$R(\delta) = R_1(\delta)$$
, 当 $\delta \ge \delta_{\min}$ 射.

- R(δ)的性质:
 - (1)对于 $\delta \geq \delta_{\min}$, $R(\delta)$ 是 δ 的连续函数.
 - (2) R(δ)是 δ 的非增函数.
 - (3) R(δ)是 δ 的下凹函数.
 - (4) 存在

$$\delta_{\max} = \min_{v} \sum_{u} p(u) d(u.v)$$

当且仅当
$$\delta$$
≥ δ _{max}时, R(δ)=0.

在区问
$$\delta_{\min} \leq \delta \leq \delta_{\max}$$
 内,

$$R(\delta) = \min_{p(v/u)} [I(U;V): E(d) = \delta]$$

$$R(\delta)=0\rightarrow U和V相互独立.$$

$$E(d) = \sum_{u,v} p(u) p(v) d(u,v)$$

$$= \sum_{v} p(v) \sum_{u} p(u) d(u, v)$$

$$\geq \sum_{v} p(v) \delta_{\max} = \delta_{\max}$$

目录

-) 引言
- > 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- **计算信源率失真函数**
- 限失真信源编码定理

28 2018/6/12

> 利用对称性计算率失真函数

例7.1: 一维DMS, 计算R(δ).

> 利用对称性计算率失真函数

例7.1: 一维DMS, 计算R(δ).

30 2018/6/12

▶ 利用对称性计算率失真函数

定理7.3:对应于Hamming失真测度的r_维对称 DMS的率失真函数为:

$$R(\delta) = \begin{cases} \log r - \delta \log(r-1) - H(\delta), & 0 \le \delta \le 1 - 1/r. \\ 0, & \delta \ge 1 - 1/r \end{cases}$$

说明: 设
$$A_u = A_v = \{0, 1, ..., r-1\}.$$

$$p(u) = 1/r, u \in A_u$$

Hamming失真测度定义为:

$$d(u,v) = \begin{cases} 0 & \text{if } u = v \\ 1 & \text{if } u \neq v \end{cases}$$

例:
$$r = 4$$

$$D = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\delta_{\min} = \sum_{u \in Au} p(u) \min_{v} d(u, v)$$

$$\delta_{\max} = \min_{v} \sum_{u} p(u) d(u.v)$$

▶ 利用对称性计算率失真函数

证明: 首先求得 $\delta_{\min} = 0$, $\delta_{\max} = 1-1/r$.

(a)设试验信道对于一个确定的 δ (0≤ δ ≤1-1/r)

达到 $R(\delta)$.

 $\operatorname{gp} R(\delta) = I(U;V) = H(U) - H(U/V).$

其中 $H(U) = \log r$.

因为 $\delta = E(d) = P(U \neq V)$,

根据Fano不等式有

 $H(U/V) \le \delta \log(r-1) + H(\delta)$.

所以 $R(\delta) \ge \log r - \delta \log(r-1) - H(\delta)$.

利用对称性计算率失真函数

证明: (b) 设 $0 \le \delta \le |-|/r$,

定义试验信道的转移概率分布为:

$$p(v/u) = \begin{cases} 1 - \delta & \text{if } v = u \\ \frac{\delta}{r - 1} & \text{if } v \neq u \end{cases}$$

容易求得
$$E(d) = \delta$$
, $I(U;V) = H(V) - H(V/U)$ $= \log r - H[1-\delta, \delta/(r-1), ..., \delta/(r-1)]$ $= \log r - \delta \log(r-1) - H(\delta)$

▶ 利用对称性计算率失真函数

证明: (b)(续)

根据定义7.1

有 $R(\delta) \le I(U;V) = \log r - \delta \log(r-1) - H(\delta)$

综合(a)、(b), 定理得证!

- ▶ 利用拉格朗日乘子法计算率失真函数
- (A) 利用拉格朗日乘子法求解 $R(\delta)$

问题表述:在区问
$$\delta_{\min} \leq \delta \leq \delta_{\max}$$

$$R(\delta) = \min_{p(v/u)} \left\{ I(U;V) : E(d) = \delta \right\}$$

$$I(U;V) = \sum_{i,j} p(u_i, v_j) \log \frac{p(v_j/u_i)}{p(v_j)}$$

$$= \sum_{i,j} p(u_i) p(v_j/u_i) \log \frac{p(v_j/u_i)}{\sum_{l} p(v_j/u_l) p(u_l)}$$

$$\delta = E[d] = \sum_{i,j} p(u_i) p(v_j/u_i) d(u_i, v_j)$$

$$1 = \sum_{j} p(v_j/u_i) \qquad i = 1, 2, \dots, r.$$

▶ 利用拉格朗日乘子法计算率失真函数

(A) (cont.)

构造函数:
$$\phi = I(U;V) - s\delta - \mu_i \sum_j p(v_j / u_i)$$

求偏微商取极值: $\frac{\partial \phi}{\partial p(v_j / u_i)} = 0$ \Rightarrow
$$p(u_i) \log \frac{p(v_j / u_i)}{p(v_j)} + p(u_i) - \sum_k p(u_k) p(v_j / u_k) \frac{p(u_i)}{p(v_j)} - sp(u_i) d(u_i, v_j) - \mu_i = 0$$

化简得 $\log \frac{p(v_j / u_i)}{p(v_i)} = sd(u_i, v_j) + \frac{\mu_i}{p(u_i)}$

▶ 利用拉格朗日乘子法计算率失真函数

(A) (cont.)

定义
$$\log \lambda_i = \frac{\mu_i}{p(u_i)}$$

$$\frac{p(v_j/u_i)}{p(v_j)\lambda_i} = e^{sd(u_i,v_j)}$$

$$p(v_j / u_i) = p(v_j) \lambda_i e^{sd(u_i, v_j)}$$
 (7.5)

- ▶ 利用拉格朗日乘子法计算率失真函数
- (B) 利用约束条件求解 $p(v_i)$ 和 λ_i

由
$$1 = \sum_{j} p(v_j / u_i) = \lambda_i \sum_{j} p(v_j) e^{sd(u_i, v_j)}$$

$$\lambda_i = \left[\sum_{j} p(v_j) e^{sd(u_i, v_j)}\right]^{-1} \tag{7.6}$$

$$p(v_j) = \sum_{j} p(v_j / u_i) p(u_i)$$

$$\oint p(v_j) = \sum_i p(v_j / u_i) p(u_i)$$

$$= p(v_j) \sum_i \lambda_i p(u_i) e^{sd(u_i, v_j)}$$

得
$$1 = \sum_{i} \lambda_{i} p(u_{i}) e^{sd(u_{i}, v_{j})}$$
 (7.7)

2018/6/12

▶ 利用拉格朗日乘子法计算率失真函数

(B) (cont.)

$$1 = \sum_{i} \lambda_{i} p(u_{i}) e^{sd(u_{i}, v_{j})}$$
 (7.7)

$$\lambda_i = \left[\sum_j p(v_j) e^{sd(u_i, v_j)}\right]^{-1}$$

$$p(v_j / u_i) = p(v_j) \lambda_i e^{sd(u_i, v_j)}$$
 (7.5)

 $p(v_j/u_i)$.

- ▶ 利用拉格朗日乘子法计算率失真函数
- (C) 求解 δ 与 $R(\delta)$ 的参量表达式

$$\delta = E[d] = \sum_{i,j} p(u_i) p(v_j / u_i) d(u_i, v_j)$$

$$= \sum_{i,j} d(u_i, v_j) p(u_i) p(v_j) \lambda_i e^{sd(u_i, v_j)}$$

$$R(\delta) = \sum_{i,j} p(u_i) p(v_j / u_i) \log \frac{p(v_j / u_i)}{p(v_j)}$$
$$= sE[d] + \sum_{i,j} p(u_i) p(v_j / u_i) \log \lambda_i$$

$$= s\delta + \sum_{i} p(u_i) \log \lambda_i$$

$$p(v_j / u_i) = p(v_j) \lambda_i e^{sd(u_i, v_j)}$$

$$\Rightarrow \frac{p(v_j / u_i)}{p(v_j)} = \lambda_i e^{sd(u_i, v_j)}$$
(7.5)

> 利用拉格朗日乘子法计算率失真函数

例7.2: 一维DMS, 计算R(δ).

信源符号 p(u) 失真测度d(u,v) 0 1 0 p 0 α 1 1-p α 0

目录

-) 引言
- ▶ 信源的分类
- > 信源的数学描述
- > 信源率失真函数的定义
- > 信源率失真函数的性质
- > 计算信源率失真函数
- **▶ 限失真信源编码定理**

限失真信源编解码模型

▶ 限失真信源编解码模型

信源序列: $\mathbf{u}=(u_1, u_2, ..., u_k), u \in A_s, \#s^k$ 个.

编码序列: $\mathbf{x}=(x_1, x_2, ..., x_n), x \in A_r, M=r^n. (M \le s^k).$

解码序列: $v=(v_1, v_2, ..., v_k), v \in A_s$, 从 s^k 中取M个.

压缩比例: $R = \frac{1}{k} \log_s M = \frac{n}{k}$ (设s=r=2)

信源编码是为了提高通信的有效性,减少冗余, 因此若信源序列和编码序列都是二进制序列, 一般有n<k

▶ 限失真信源编码定理

假设
$$\sum_{i=1}^{k} E[d(u_i, v_i)] \leq k\delta$$
 有 $I(\mathbf{U}; \mathbf{V}) \geq R_k(\delta) = kR(\delta)$, 而 $I(\mathbf{U}; \mathbf{V}) \leq I(\mathbf{X}; \mathbf{V})$, (数据处理定理) $I(\mathbf{X}; \mathbf{V}) \leq H(\mathbf{X}) \leq n$ (bits),(二进制编码) 有 $kR(\delta) \leq n$, $\frac{n}{k} \geq R(\delta)$

压缩比例n/k越小越好,但不能小于 $R(\delta)$, $R(\delta)$ 是表示每个信源符号所需的最少比特数.

▶ 限失真信源编码定理

定理7.4: 给定失真 $\delta \geq \delta_{min}$, 对于 $\delta' > \delta$, $R'>R(\delta)$, 以及足够大的k值,存在一个包含M个码长为k的码字的信源编码C , 满足 $M \leq 2^{\lfloor kR' \rfloor}$, $d(C) < \delta'$.

▶ 例7.3:

已知语音信号{x(t)}的最高频率为4kHz,经采样、量化编成等长二进制码,设每个样本的量化分层数m=128 (即7bits量化),求此语音信号的信息传输速率是多少?

根据采样定理,采样速率为8kHz,每个样点的量化为 $\log_2 128=7bits$,因此信息传输速率为8*7=56kbps.

▶ 例7.3(续-1);

若对此语音信号进行压缩编码,编码速率r=7/4,采用的是(7,4)Hamming码的逆编码过程,即将128个长度为7比特的二进制信息序列映射为16个Hamming码字,并且只传输高4比特.求在这种压缩编码方式下的信息传输速率是多少?

每样点7bits压缩为4bits, 信息传输速率为8*4=32kbps.

0000000	1000000	0100000	0010000	0001000	0000100	0000010	0000001
1010001	0010001	1110001	1000001	1011001	1010101	1010011	1010000
1110010	0110010	1010010	1100010	1111010	1110110	1110000	1110011
0100011	1100011	0000011	0110011	0101011	0100111	0100001	0100010
0110100	1110100	0010100	0100100	0111100	0110000	0110110	0110101
1100101	0100101	1000101	1110101	1101101	1100001	1100111	1100100
1000110	0000110	1100110	1010110	1001110	1000010	1000100	1000111
0010111	1010111	0110111	0000111	0011111	0010011	0010101	0010110
1101000	0101000	1001000	1111000	1100000	1101100	1101010	1101001
0111001	1111001	0011001	0101001	0110001	0111101	0111011	0111000
0011010	1011010	0111010	0001010	0010010	0011110	0011000	0011011
1001011	0001011	1101011	1011011	1000011	1001111	1001001	1001010
1011100	0011100	1111100	1001100	1010100	1011000	1011110	1011101
0001101	1001101	0101101	0011101	0000101	0001001	0001111	0001100
0101110	1101110	0001110	0111110	0100110	0101010	0101100	0101111
11111111	0111111	1011111	1101111	1110111	1111011	1111101	1111110

▶ 例7.3(续-2);

假设信源失真度为Hamming失真测度,求在这种压缩 编码方式下的平均失真测度、信源率失真函数,此语 音信号的信息传输速率最大可压缩到多少?

$$d(C) = \frac{1}{7} \times \frac{1}{128} \times [128 - 16] = \frac{1}{8}$$

对应Hamming失 真测度的二进制 信源,其率失真 函数为:

$$R(\delta) = 1 - H(\delta)$$

当
$$\delta = \frac{1}{8}$$
时, $R\left(\frac{1}{8}\right) \approx 0.4564bits$

因此信息传输速率最大可压缩到:

$$5.6 \times 10^4 \times R(\delta) \approx 25.56 kbps$$

作业

▶ 习题7.1, 7.2 (2), 7.3, 7.4

习题

7.4. 信源符号的概率分布和相应的失真测度如下图,证明 $R(\delta)$ 函数如下图.

$$[d(u,v)]_{i\times j} = \begin{bmatrix} 0 & \infty & \infty & \infty & 1 & \infty & 3 \\ \infty & 0 & \infty & \infty & 1 & \infty & 3 \\ \infty & \infty & 0 & \infty & \infty & 1 & 3 \\ \infty & \infty & \infty & 0 & \infty & 1 & 3 \end{bmatrix}$$

习题

7.4解:
$$\delta_{\min} = 0$$
, $\delta_{\max} = 3$

根据对称性,可设转移概率分布矩阵为

$$[p(v/u)]_{i \times j} = \begin{bmatrix} \alpha & 0 & 0 & 0 & \beta & 0 & \gamma \\ 0 & \alpha & 0 & 0 & \beta & 0 & \gamma \\ 0 & 0 & \alpha & 0 & 0 & \beta & \gamma \\ 0 & 0 & 0 & \alpha & 0 & \beta & \gamma \end{bmatrix}$$

$$\delta = 3 - 3\alpha - 2\beta$$

$$I(U;V) = (2 - \delta + \gamma)\log 2\cdots(a)$$

$$= \left(2 - \frac{\beta}{3} - \frac{2\delta}{3}\right)\log 2\cdots(b)$$

$$= \left(\frac{3}{2} + \frac{\alpha}{2} - \frac{\delta}{2}\right)\log 2\cdots(c)$$

习题

7.4解(续):

(a) 取
$$\gamma = 0$$
,有 $\delta = \beta$

$$R(\delta) = (2 - \delta) \log 2, \quad 0 \le \delta \le 1$$

(b) 取
$$\beta = 1$$
,有 $\delta = 1$

$$R(\delta) = (\frac{5}{3} - \frac{2}{3}\delta)\log 2, \quad \delta = 1$$

(c) 取
$$\alpha$$
 = 0,有 δ = 3-2 β =1+2 γ

$$R(\delta) = (\frac{3}{2} - \frac{\delta}{2})\log 2, \quad 1 \le \delta \le 3$$

