Přehledový seznam vět ke zkoušece z Lineární Algebry II na informatice 2018

1 Skalární součin

- \bullet Definice skalárního součinu, standardního skalárního součinu, normy, normy indukované skalárním součinem, metriky
- \bullet Definice kolmosti, ortogonálního a ortonormálního systému vektorů
- $\bullet \ \tau \$ Pythagorova věta, trojúhelníková nerovnost, Cauchy Schwarzova nerovnost, rovnoběžníkové pravidlo
- \bullet τ Ortonormální systém je lineráně nezávislý, furierovy koeficienty
- \bullet au Gram-Schmidtova ortogonalizace, všude ortonormální báze + rozšíření
- \bullet τ Besselova nerovnost, Parsevalova rovnost

2 Ortogonální doplněk, Ortogonální projekce, Ortogonální matice

- \bullet δ Definice ortogonálního doplňku
- \bullet τ Dva seznamy vlastností ortogonálního doplňku
- \bullet δ Definice ortogonální projekce
- \bullet au Výpočet dané projekce, ortogonální doplněk řádkového prostoru je kernel + důsledky
- \bullet τ Projekce do sloupcového prostoru, ortogonální projekce do doplňku, metoda nejmenších čtverců
- \bullet δ Definice ortogonální a unitární matice
- \bullet τ Vlastnosti ortogonálních matic, součin ortogonálních matic, ortogonální matice a součin
- τ Ortogonální matice a lineární zobrazení, stačí 2

3 Determinanty

- δ sqn permutace, definice determinantu,
- \bullet au Řádková linearita determinantu, determinant a elementární úpravy, determinat a singularita
- τ Determinant součinu, determinant A^{-1} , Laplaceův rozvoj, Cramerovo pravidlo
- \bullet δ Adjungovaná matice
- $\tau A \cdot adj(A)$, A^{-1} přes adjungovanou matici, celočíselné hodnoty
- $\bullet \ \tau \ \ {\rm Objem}$ rovnoběžnostěnu

4 Vlastní čísla

- \bullet δ Definice vlastního čísla a příslušeného vlastního vektoru, charakteristický polynom, geometrická násobnost
- τ Ekvivalentní definice (charakterizace), vlastní čísla a charakteristický polynom
- δ Stopa, spektr
um, spektrální poloměr
- $\bullet \ \tau \ \ Vlastní čísla, determinant a stopa, vlastní čísla a matice, vlastní číslo komplexně sdružené$
- \bullet δ Definice matice spole4nice
- τ Chrakteristický polynom matice společnice
- τ Cayley-Hammilton \star , důsledek Cayley-Hammilton \star
- \bullet δ Definice podobnosti, diagonalizovatelnost

- $\bullet \ \tau \ \ Podobné matice a vlastní čísla$
- \bullet τ Charakterizace diagonalizovatelnosti, lineárně nezávislé vlastní vektory
- τ Vlastní čísla AB a BA
- \bullet Jordanova buňka, Jordanova normální forma, hermitovská transpozice
- \bullet $\,\tau\,\,$ Podobnost Jordanově normální formě, vlastní čísla hermitovských matic
- \bullet τ Spektrální rozklad symetrických matic
- \bullet au Courant-Fischer o uspořádání vlastních čísel, Perronova, Gerschgorinovy disky
- \bullet $\,\tau\,\,$ Mocninná metoda, Deflace vlastního čísla

5 Pozitivní definitnost

- δ Definice pozitivní definitnosti
- \bullet au Základní vlastnosti (linearita, inverze), charakterizace pozitivně definitních matic
- \bullet au Rekurence pro pozitivní definitnost, Choleského rozklad, Gaussova eliminace a pozitivní definitnost
- \bullet τ Sylvestrovo kritérium, skalární součin a pozitivní definitnost, odmocnina z matie

6 Bilineární a kvadratické formy

- \bullet Definice bilineárních a kvadratických forem, definice příslušné matice
- τ Maticové vyjádření, dva důsledky
- \bullet au Matice kvadratické formy při změně báze, Sylvestrův zákon setrvačnosti, dva důsledky
- \bullet δ Signature kvadratické formy, matice Householderovy transformace
- \bullet τ Householderova transformace

7 Rozklady

- τ QR rozklad
- τ SVD rozklad