Handling uncertain knowledge

Classical first order logic has no room for uncertainty

```
\forall p \ Symptom(p, Toothache) \Rightarrow Disease(p, Cavity)
```

- Not correct toothache can be caused in many other cases
- In first order logic we have to include all possible causes

```
∀p Symptom(p, Toothache) ⇒ Disease(p, Cavity) ∨ Disease(p, GumDisease)
∨ Disease(p, ImpactedWisdom) ∨ ...
```

Similarly, Cavity does not always cause Toothache, so the following is also not true

```
\forall p \ Disease(p, Cavity) \Rightarrow Symptom(p, Toothache)
```

Reasons for using probability

- Specification becomes too large
 - It is too much work to list the complete set of antecedents or consequents needed to ensure an exception-less rule
- Theoretical ignorance
 - The complete set of antecedents is not known
- Practical ignorance
 - The truth of the antecedents is not known, but we still wish to reason

Predicting versus Diagnosing

- Probabilistic reasoning can be used for predicting outcomes (from cause to effect)
 - Given that I have a cavity, what is the chance that I will have toothache?
- Probabilistic reasoning can also be used for diagnosis (from effect to cause)
 - Given that I am having toothache, what is the chance that it is being caused by a cavity?

We need a methodology for reasoning that can work both ways.

Axioms of Probability

- 1. All probabilities are between 0 and 1: $0 \le P(A) \le 1$
- 2. P(True) = 1 and P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

Bayes' Rule

$$P(A \wedge B) = P(A \mid B) P(B)$$

$$P(A \wedge B) = P(B \mid A) P(A)$$

$$P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$$

Bayesian Belief Network

Belief Networks

A belief network is a graph with the following:

- Nodes: Set of random variables
- Directed links: The intuitive meaning of a link from node X to node Y is that X has a direct influence on Y

Each node has a conditional probability table that quantifies the effects that the parent have on the node.

The graph has no directed cycles. It is a directed acyclic graph (DAG).

Classical Example

- Burglar alarm at home
 - Fairly reliable at detecting a burglary
 - Responds at times to minor earthquakes

- Two neighbors, on hearing alarm, calls police
 - John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
 - Mary likes loud music and sometimes misses the alarm altogether

Belief Network Example

• A generic entry in the joint probability distribution $P(x_1, ..., x_n)$ is given by:

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

В	E	P(A)
Т	Η	0.95
Т	F	0.95
F	Т	0.29
F	F	0.001

Conditional probability

Conditional or posterior probabilities

```
e.g., P(cavity | toothache) = 0.8 i.e., given that toothache is all I know there is 80% chance of cavity
```

Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element vectors)

- If we know more, e.g., *cavity* is also given, then we have P(*cavity* | *toothache*, *cavity*) = 1
- New evidence may be irrelevant, allowing simplification:
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probability

- P(A | B) is the probability of A given B
- Assumes that B is the only info known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Independence

A and B are independent iff:

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

These two constraints are logically equivalent

· Therefore, if A and B are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

Earthquake Example (cont'd)

- If we know *Alarm*, no other evidence influences our degree of belief in *JohnCalls*
 - -P(JC|MC,A,E,B) = P(JC|A)
 - also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E)
- By the chain rule we have

```
P(JC,MC,A,E,B) = P(JC|MC,A,E,B) \cdot P(MC|A,E,B) \cdot P(A|E,B) \cdot P(E|B) \cdot P(B)= P(JC|A) \cdot P(MC|A) \cdot P(A|B,E) \cdot P(E) \cdot P(B)
```

Earthquake Example (Global Semantics)

We just proved

$$P(JC,MC,A,E,B) = P(JC|A) \cdot P(MC|A) \cdot P(A|B,E) \cdot P(E) \cdot P(B)$$

In general full joint distribution of a Bayes net is defined as

$$P(X_1, X_2,..., X_n) = \prod_{i=1}^n P(X_i | Par(X_i))$$

 Probability of the event that the alarm has sounded but neither a burglary nor an earthquake has occurred, and both Mary and John call:

$$P(J \land M \land A \land \neg B \land \neg E)$$

= $P(J | A) P(M | A) P(A | \neg B \land \neg E) P(\neg B) P(\neg E)$
= $0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
= 0.00062

В	E	P(A)
Т	Т	0.95
Т	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
Т	0.90
F	0.05

Α	P(M)		
Τ	0.70	P(E)	P(B)
F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(B) = 0.001$$

 $P(B') = 1 - P(B) = 0.999$
 $P(E) = 0.002$
 $P(E') = 1 - P(E) = 0.998$

E	3	Ε	P(A)						
	Г	Т	0.95						
ī	Γ	F	0.95	Α	P(J)	Α	P(M)		
F	-	T	0.29	Т	0.90	Τ	0.70	P(E)	P(B)
F	<u>-</u>	F	0.001	F	0.05	F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(A) = P(AB'E') + P(ABE') + P(ABE') + P(ABE)$$

$$= P(A | B'E').P(B'E') + P(A | B'E).P(B'E) + P(A | BE').P(BE') + P(A | BE).P(BE)$$

$$= 0.001 \times 0.999 \times 0.998 + 0.29 \times 0.999 \times 0.002 + 0.95 \times 0.001 \times 0.998 + 0.95 \times 0.001 \times 0.002$$

$$= 0.001 + 0.0006 + 0.0009 = 0.0025$$

В	Ε	P(A)
Т	Τ	0.95
Т	F	0.95
F	Т	0.29
F	F	0.001

Α	P(J)	1
Т	0.90	-
F	0.05	

Α	P(M)		
Т	0.70	P(E)	P(B)
F	0.01	0.002	0.001

The joint probability distribution: *Find* P(J)

$$P(J) = P(JA) + P(JA')$$

$$= P(J | A).P(A) + P(J | A').P(A')$$

$$= 0.9 \times 0.0025 + 0.05 \times (1 - 0.0025)$$

$$= 0.052125$$

$$P(AB) = P(ABE) + P(ABE') = 0.95 \times 0.001 \times 0.002 + 0.95 \times 0.001 \times 0.998$$

$$= 0.00095$$

В	Е	P(A)
Т	Τ	0.95
Т	F	0.95
F	Т	0.29
F	F	0.001

Α	P(J)
Т	0.90
F	0.05

A	\	P(M)		
Т		0.70	P(E)	P(B)
F		0.01	0.002	0.001

The joint probability distribution: *Find* P(A'B) *and* P(AE)

$$P(A'B) = P(A'BE) + P(A'BE')$$

$$= P(A' | BE).P(BE) + P(A' | BE').P(BE')$$

$$= (1 - 0.95) \times 0.001 \times 0.002$$

$$+ (1 - 0.95) \times 0.001 \times 0.998$$

$$= 0.00005$$

$$P(AE) = P(AEB) + P(AEB')$$

$$= 0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002 = 0.00058$$

В	Е	P(A)
Т	Τ	0.95
Т	F	0.95
F	Т	0.29
F	F	0.001

Α	P(J)	
Т	0.90	
F	0.05	

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

$$P(AE') = P(AE'B) + P(AE'B')$$

= 0.95 x 0.001 x 0.998 + 0.001 x 0.999 x 0.998
= 0.001945

$$P(A'E') = P(A'E'B) + P(A'E'B')$$

= $P(A' | BE').P(BE') + P(A' | B'E').P(B'E')$
= $(1 - 0.95) \times 0.001 \times 0.998 + (1 - 0.001) \times 0.999 \times 0.998 = 0.996$

В	Е	P(A)
Т	Τ	0.95
Т	F	0.95
F	Т	0.29
F	F	0.001

Α	P(J)
Т	0.90
F	0.05

Α	P(M)		
Т	0.70	P(E)	P(B)
F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(J | B) = P(JB) / P(B) = 0.00086 / 0.001 = 0.86$$

В	E	P(A)			
Т	Т	0.95			
Т	F	0.95		Α	P(.
F	Т	0.29		T	0.9
F	F	0.001		F	0.0

Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001

$$P(MB) = P(MBA) + P(MBA')$$

$$= P(M \mid AB).P(AB) + P(M \mid A'B).P(A'B)$$

$$= P(M \mid A).P(AB) + P(M \mid A').P(A'B)$$

$$= 0.7 \times 0.00095 + 0.01 \times 0.00005$$

$$= 0.00067$$

В	Е	P(A)	
Т	Τ	0.95	
Т	F	0.95	
F	Т	0.29	
F	F	0.001	

Α	P(J)
Т	0.90
F	0.05

Α	P(M)		
Т	0.70	P(E)	P(B)
F	0.01	0.002	0.001

Incremental Network Construction

- 1. Choose the set of relevant variables X_i that describe the domain
- 2. Choose an ordering for the variables (very important step)
- 3. While there are variables left:
 - a) Pick a variable X and add a node for it
 - b) Set Parents(X) to some minimal set of existing nodes such that the conditional independence property is satisfied
 - c) Define the conditional probability table for X

The four patterns

Dempster-Shafer Theory

- Designed to deal with the distinction between uncertainty and ignorance.
- We use a belief function *Bel(X)* probability that the evidence supports the proposition
- When we do not have any evidence about X, we assign Bel(X) = 0 as well as $Bel(\neg X) = 0$
- For example, if we do not know whether a coin is fair, then:

$$Bel(Heads) = Bel(\neg Heads) = 0$$

• If we are given that the coin is fair with 90% certainty, then:

Bel(Heads) =
$$0.9 \times 0.5 = 0.45$$

Bel(\neg Heads) = $0.9 \times 0.5 = 0.45$

• Note that we still have a gap of 0.1 that is not accounted for by the evidence

Fuzzy Logic

- Fuzzy set theory is a means of specifying how well an object satisfies a vague description
 - Truth is a value between 0 and 1

• The rules for evaluating the fuzzy truth, T, of a complex sentence are:

$$T(A \wedge B) = min(T(A), T(B))$$

$$T(A \vee B) = \max(T(A), T(B))$$

$$T(\neg A) = 1 - T(A)$$

Example: Cardiac Health Management

Fuzzy Rules

- 1. Diet is low AND Exercise is high \Rightarrow Balanced
- 2. Diet is high OR Exercise is low \Rightarrow Unbalanced
- 3. Balanced \Rightarrow Risk is low
- 4. Unbalanced \Rightarrow Risk is high

For a person it is given that:

- Diet = 3000 calories per day
- Exercise = burning 1000 calories per day

What is the risk of heart disease?

Membership Functions

$$f_{diet\,high}(x) = \frac{1}{5000}x$$

$$f_{diet\,low}(x) = 1 - \frac{1}{5000}x$$

For daily calorie intake of 3000:

Membership for Diet-High = 3000 / 5000 = 0.6 Membership for Diet-Low = 0.4

Membership Functions

$$f_{exercise\ high}(x) = \frac{1}{2000}x$$

$$f_{exercise\ low}(x) = 1 - \frac{1}{2000}x$$

For daily calorie burned of 1000:

Membership for Exercise-High = 1000 / 2000 = 0.5 Membership for Exercise-Low = 0.5

Rule Evaluation

Truth(Diet-High) = 0.6 Truth(Diet-Low) = 0.4

Truth(Exercise-High) = 0.5 Truth(Exercise-Low) = 0.5

Diet is low AND Exercise is high ⇒ Balanced

• Truth(Balanced) = min { Truth(Diet-Low), Truth(Exercise-High)} = min { 0.4, 0.5 } = 0.4

Diet is high OR Exercise is low ⇒ Unbalanced

Truth(Unbalanced) = max { Truth(Diet-High), Truth(Exercise-Low) } = max { 0.6, 0.5 } = 0.6

Balanced \Rightarrow Risk is low

Truth(Risk-Low) = Truth(Balanced) = 0.4

Unbalanced ⇒ Risk is high

Truth(Risk-High) = Truth(Unbalanced) = 0.6

Risk-High Evaluation

- Truth(Risk-High) = 0.6
- Therefore:

$$0.6 = x / 125$$

or,
$$x = 75$$

Risk High

Risk-Low Evaluation

- Truth(Risk-Low) = 0.4
- Therefore:

$$0.4 = 0.8 - x / 125$$

or,
$$x = 50$$

Risk Low

Aggregated Risk Function

Defuzzification

$$\int_{0}^{100} f_{aggregated risk} dx$$

$$= \int_{0}^{50} 0.4 dx + \int_{50}^{75} \frac{1}{125} x dx + \int_{75}^{100} 0.6 dx$$

$$= 50x0.4 + \frac{1}{125} \left[\frac{x^{2}}{2} \right]_{50}^{75} + 25x0.6$$

$$= 20 + (75^{2} - 50^{2})/250 + 15$$

$$= 47.5$$

Therefore the likelihood of a heart disease for the person is 47.5%