Customer-Rating Prediction on Trustpilot Reviews

Final Report

Team TemuStars · Frank | Sebastian | Mohamed · DataScientest Cohort May 2025

1 Context & Objectives

Online marketplaces live and die by customer reviews. Temu (≈ 14 k English-language Trustpilot reviews) shows an unusually polarised 1- and 5-star pattern; predicting the star rating directly from free text therefore offers an excellent laboratory for Natural-Language-Processing pipelines, class imbalance strategies and real-time deployment.

Although we initially scraped AliExpress (~57k) and Wish (~99k), those volumes were impractical for local scraping and training time. On our mentor's advice that ~10k reviews are sufficient, we pivoted to Temu (~14k), keeping the polarised star distribution while fitting compute limits.

Goals

- 1. Scrape, clean and explore the Temu review corpus.
- 2. Predict 1–5-star ratings from text (multi-class classification).
- 3. Build an interactive Rating demo that returns an instant rating (and sentiment group) for any new review text.
- 4. Document insights for a 25 Aug oral defence (20 min + Q&A).

(Our original regression branch and template-based reply generator were discontinued for scope reasons but are archived under /src/discontinued_regression_way/.

2 Data Collection

Source	Period	Raw size Fields ca _l	
Trustpilot API (custom scrape_trustpilot.py)	Sep 2022 – Jul 2025	13 855 reviews	UserId, Country, ReviewText, Rating, Date

Frank · Sebastian · Mohamed v1.0

3 Exploratory Insights

1-star texts are ~2 × longer and more emotional than 5-star.

49 % GB, 25 % US \rightarrow cultural bias to watch.

Down-trend from $4.0 \rightarrow 1.7 \bigstar$ since late 2023 (possible logistic issues).

Night-time reviews are harsher; Fridays slightly friendlier.

4 Text Pre-processing & Feature Engineering

Step	Toolkit	Output
HTML stripping, lower-casing, lemmatisation, stop-word removal	spaCy, NLTK	Clean corpus
Sentiment scores (compound / pos / neu / neg)	VADER	3 numeric cols
Surface features	length, capitals-ratio, punctuation counts	8 cols
TF-IDF 1–2-grams	max_features=5 000	sparse 10 k × 5 001
Final feature matrix	5 011 dims	

VADER tracks the stars as expected: the negative score is highest for 1★ and collapses towards 0 by 5★; the positive score does the reverse; the compound score shifts accordingly with star level. This validates using VADER features alongside TF-IDF.

We removed platform-specific tokens 'temu', 'order', 'item' from the visualisation because they were overwhelmingly dominant.

Sentiment-split Word Clouds

Top-30 TF-IDF terms confirms a complaint focus: refund, package, delivery.

A PCA retains 90 % variance in 6 components and already shows a clear 1-vs-5 separation.

5 Modelling & Evaluation

5.1 Candidates

 $\label{logReg} \begin{array}{l} \text{LogReg} \cdot \text{LinearSVC} \cdot \text{RF} \cdot \text{GBDT} \cdot \text{XGBoost} \cdot \text{k-NN} \cdot \text{GaussianNB} \cdot \text{DecisionTree} \\ \text{plus } \textbf{Hard/Soft Voting} \text{ and a } \textbf{Stacking} \text{ ensemble (RF + ExtraTrees as base, LogReg meta-learner)}. \text{ Class weights and StratifiedKFold (4x) were used to counter the 1/5 dominance.} \end{array}$

5.2 Comparison

CLASSIFICATION MODEL CO	OMPARISON

Rank	Model	Accuracy N	Weighted F1	Macro F1 W	. Precision	W. Recall
1	Stacking	0.733	0.725	0.452	0.719	0.733
2	Logistic Regression	0.713	0.715	0.447	0.717	0.713
3	LinearSVC	0.745	0.719	0.432	0.701	0.745
4	Hard Voting	0.761	0.695	0.371	0.673	0.761
5	XGBoost	0.754	0.687	0.361	0.667	0.754
6	Gradient Boosting	0.741	0.678	0.355	0.652	0.741
7	Soft Voting	0.765	0.690	0.353	0.689	0.765
8	Decision Tree	0.449	0.522	0.334	0.675	0.449
9	Random Forest	0.735	0.656	0.321	0.593	0.735
10	K-Nearest Neighbours	0.689	0.624	0.318	0.607	0.689
11	Gaussian Naive Bayes	0.472	0.523	0.308	0.612	0.472

Rank Model		Accuracy	Weighted F1	
8	Stacking	0.733	0.725	
2	Soft Voting	0.765	0.690	
3	XGBoost	0.754	0.687	

Metrics throughout the classification track use **Weighted F1** (handles class imbalance better than Macro F1).

5.3 Confusion matrices for all candidate models and the Stacking classification report

Detailed Stacking report – highest weighted-F1 with strong 1★ & 5★ performance, weaker on rare 2–4★ classes.

5.4 Error Analysis (Prediction Stage)

Set-up. We sampled 100 random Temu reviews from the processed corpus and evaluated the trained **Stacking** classifier on the raw 5-star task. Because Temu is highly imbalanced (many $1 \pm .5 \pm$), we also applied our **grouped refinement** at prediction time:

- **Groups:** neg = {1,2}, neu = {3}, pos = {4,5}
- **Rule:** take the majority group according to the model's class probabilities; inside the winning group pick the higher-probability star.
- Bias control: reduce the prior for class 3★ by 20 % (to counter its tendency to be over-predicted).

Headline results on the 100-sample run

- Raw (initial) 5-class prediction: Weighted F1 = 0.603, Macro F1 = 0.405, Accuracy = 52 %.
- After group refinement (neg/neu/pos): Grouped accuracy = 91 %, Grouped Macro F1 = 0.630.
- Quality breakdown: 52 % perfect initial, 38 % off by one star, 9 % corrected by refinement, 1 % off by ≥2 stars.

Where the model is strong / weak

- Strong: 1★ and 5★ (clear lexical cues like scam, refund, broken vs. love, excellent, great).
- Weak: 2★ and 4★ (rare classes), and neutral 3★, which often sits between sentiment poles. The 20 % penalty on 3★ reduces this bias without hurting 1★/5★.

Typical error patterns (from the 100-sample audit)

- Over-prediction dominates: 31 of 48 errors were predicted higher than ground truth (e.g., $1 \pm \rightarrow 3 \pm$).
- Most common mis-type: True 1★ / Pred 3★ (13×).

- Why this happens: very long "mixed" texts (lists of issues, quoted complaints, sarcasm) produce lexical overlap with neutral vocabulary.
- Example (Row 84, the only ≥2-star miss):
 Ground truth 5★, model predicted 2★. The review mostly enumerates other people's complaints (delivery/carrier problems), flooding the text with negative tokens; the model (correctly) reads the text as negative even though the author's final rating is positive.

Take-away: The refinement step (group vote + 3★ penalty) materially improves practical accuracy by pulling "near-miss" predictions into the right sentiment band.

Prediction audit on 100 random reviews. Dark green = perfect initial; light green = corrected by refinement; yellow = ±1 star; red = ≥2 stars (only Row 84). Refinement consistently pulls borderline cases into the correct sentiment group.

66	1*	1 🛊	1*	neg	neg	neg
67	1*	1 🛊	1 🛊	neg	neg	neg
68	1*	1*	1*	neg	neg	neg
69	1*	1 🛊	1 🖈	neg	neg	neg
70	1 🛊	1 🖈	1*	neg	neg	neg
71	3 🍁	2 🌟	2 🌟	neu	neg	neg
72	5 🍁	4☆	4 🚖	pos	pos	pos
73	1 🏚	3 🍁	1 🛊	neg	neu	neg
74	5 🍁	4 🌟	4 🌟	pos	pos	pos
75	3 ★	2 🌟	2 🌟	neu	neg	neg
76	5☆	5☆	5☆	pos	pos	pos
77	1 🛊	3 🌟	2 🌟	neg	neu	neg
78	3 🍁	4 🛊	4 🌟	neu	pos	pos
79	1★	3 🛊	2 🌟	neg	neu	neg
80	1*	1 🛊	1*	neg	neg	neg
81	2 🍁	2☆	2 🍁	neg	neg	neg
82	1*	1 🛊	1*	neg	neg	neg
83	5 🌟	4 🚖	4 🚖	pos	pos	pos
84	5 🌟	2 🚖	2 🌟	pos	neg	neg
85	1 🛊	3 🍁	1 🛊	neg	neu	neg
86	2☆	2 🍁	2 🍁	neg	neg	neg
87	2 🍁	4 🌼	2 🍁	neg	pos	neg
88	1 🛊	1 🛊	1 🛊	neg	neg	neg
89	1☆	2 🌟	2 🌟	neg	neg	neg
90	5 🍁	5☆	5☆	pos	pos	pos
91	1 🛊	3 🐞	1 🛊	neg	neu	neg
92	5 🍁	5☆	5☆	pos	pos	pos
93	5 🍁	5☆	5☆	pos	pos	pos
94	1 🛊	1 🖈	1 🖈	neg	neg	neg
95	1 🛊	3 🏫	1 🛊	neg	neu	neg
96	1*	1 🖈	1*	neg	neg	neg
97	1*	1*	1*	neg	neg	neg
98	1 🛊	1 🛊	1 🍁	neg	neg	neg
99	3 🌟	4☆	4 🚖	neu	pos	pos
100	1☆	2 🌟	2 🌟	neg	neg	neg

Worst Predictions Analysis (2+ Stars Difference)

Found 1 samples with 2+ star difference:

♦ Worst Prediction #1 (Sample Index: 84)

Analysis complete! Grouped accuracy: 91.00%, Macro F1: 0.630, Weighted F1: 0.882

Prediction Quality Summary:

-----Perfect Initial Predictions: 52 (52.0%) Corrected by Adjustment: 9 (9.0%) Close Predictions (1 diff): 38 (38.0%)

Poor Predictions (2+ diff): 1 (1.0%)

-----📊 Total Samples: 100

Grouped evaluation after refinement: 91 % **accuracy**, **Macro F1 = 0.630** (100-sample run). Most residual confusion is between neg and neu; pos is well separated.

Raw 5-class performance before refinement: **Weighted F1 = 0.603**, **Macro F1 = 0.405**. Sparse classes $(2 \pm 4 \pm 4)$ remain hard.

6 Interactive Rating Demo (Notebook UI)

What the user sees

- 1. Enter any free-text review.
- 2. Initial prediction from the Stacking model (5-star).
- 3. **Refined rating** via sentiment groups (neg/neu/pos) with the **20** % **3★ penalty**.
- 4. Visuals:
 - Bar chart of class probabilities (1-5★),
 - Pie chart of sentiment distribution (neg/neu/pos),
 - History table of previous inputs.

Example runs (shown in the screenshots)

- "bad" → initial 4★, refined 1★ (refinement fixes a confident over-prediction).
- "This product is okay!" → initial 4★, refined 2★ (neutral tone is treated as "neg-leaning" rather than positive).
- "it is good!" → 4★ initial and refined.
- "I love it, it's excellent!" → 5★ initial and refined.

Practical note. Everything runs in the notebook with saved pickles (best_classification_model.pkl, vectorizer, scaler). No Streamlit used.

7 Additional Experiments

A separate first_deep_model/ folder explores deep-learning baselines (CNN and Bi-LSTM with embeddings) for star prediction. We also provide a small FastAPI demo with a /predict endpoint that accepts JSON {"reviewText":..,"reviewCount":.., "ReviewTitle":..} and returns the predicted star.

8 Conclusions & Recommendations

- Stacking delivers the best trade-off on imbalanced data (Weighted F1 = 0.725).
- Text length, VADER compound score and TF-IDF n-grams suffice expensive embeddings are optional.
- Negative reviews are verbose and easier to spot; neutral (3★) remains the Achilles' heel.
- The prototype proves production viability

On a 100-review audit, the Stacking model scores **52** % accuracy (Weighted F1 **0.603**) on raw 5-class predictions. Most errors are mild (± 1 star) and over-predicted ($1 \pm 3 \pm 1$). Applying our grouped refinement (neg = $\{1,2\}$, neu = $\{3\}$, pos = $\{4,5\}$) and a 20 % prior penalty on 3 ± 1 lifts grouped accuracy to **91** % (Macro F1 **0.630**). Extremes ($1 \pm 5 \pm 1$) are strong; rare mid classes ($2 \pm 4 \pm 1$) remain challenging. The single ± 2 -star miss was a 5 ± 1 review whose text enumerated negative complaints, which rightly triggered a low-star prediction. The refinement step therefore improves practical reliability without changing the underlying model.

Acknowledgements

We thank **Kylian Santos** (mentor) for steering us toward classification and for the constructive Slack feedback.