

Scampuddu Relatore: Andrea Loi

Gruppo diedrale

Automorfismi del gruppo

Classi d'ordine

Automorfismi del gruppo diedrale

Deborah Scampuddu Rel

Relatore: Andrea Loi

Università di Cagliari - Corso di studi di Matematica

24 novembre 2022

Scampuddu Relatore: Andrea Lo

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Obiettivo

- Per $n \ge 3 |Aut(D_n)| = n\varphi(n)$, dove $\varphi(n)$ è la funzione di Eulero.
- Se p è un primo della forma $p = 1 + 2^k$ ($k \ge 2$), allora $Aut(D_p)$ è un gruppo POS non abeliano il cui ordine non è divisibile per 3.

Scampuddu Relatore: Andrea Loi

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Indice

- 1 Gruppo diedrale
- 2 Automorfismi del gruppo diedrale
- 3 Classi d'ordine e gruppi POS

Gruppo diedrale

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea Lo

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordin e gruppi POS

Rotazioni e riflessioni di un poligono regolare

Consideriamo un poligono regolare di n lati. Per ogni vertice individuiamo n rotazioni ed n riflessioni distinte.

Il gruppo costituito da tali isometrie è detto **gruppo diedrale**.

Rotazioni

Per $n \ge 3$ avremo n rotazioni determinate ruotando in senso antiorario i vertici del poligono di un angolo pari a $\frac{2\pi}{n}$.

Gruppo diedrale

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea Lo

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordin e gruppi POS

Riflessioni

Distinguiamo i casi in cui n sia pari o dispari.

- **n dispari**: avremo *n* riflessioni rispetto all'asse che passa per un vertice fissato e il punto medio del lato opposto.
- **n pari**: distinguiamo $\frac{n}{2}$ riflessioni rispetto all'asse che congiunge un vertice fissato e il punto medio del lato opposto e $\frac{n}{2}$ riflessioni rispetto all'asse che congiunge i punti medi di lati opposti.

Gruppo diedrale

Automorfismi del gruppo diedrale

Deborah Scampuddi Relatore: Andrea L

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordin

Definizione 1.1

Un **gruppo diedrale** D_n è un gruppo generato da due elementi r_1 ed s_0 rispettivamente di ordine n e 2 tali che $s_0r_1s_0^{-1}=r_1^{-1}$.

Ovvero
$$D_n = \langle r, s | r^n = s^2 = (r^k s)^2 = id, k = 1, 2, ., n \rangle$$
.

Osservazione 1.1

Introduciamo un'operazione binaria su D_n tramite le seguenti relazioni:

$$r_i r_j = r_{i+j \mod n}$$
 $r_i s_j = s_{i+j \mod n}$
 $s_i s_i = r_{i-i \mod n}$ $s_i s_j = s_{i-i \mod n}$

$$\forall \ 0 \le i, j \le n-1$$

Automorfismi del gruppo diedrale

Scampuddu Relatore: Andrea Lo

diedrale

Automorfis

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Definizione 2.1

Sia G un gruppo. Un **automorfismo** di G è un isomorfismo da G in se stesso.

Osservazione 2.1

L'insieme $Aut(G)=\{\phi:G\to G\mid \phi \text{ è un automorfismo}\}$ è un gruppo rispetto all'operazione di composizione di funzioni.

Automorfismi del gruppo diedrale

Deborah Scampuddo Relatore: Andrea L

Grupp diedra

Automorfismi del gruppo diedrale

Classi d'ordin e gruppi POS

Teorema 2.1

Per $n \ge 3 |Aut(D_n)| = n\varphi(n)$.

Dimostrazione

Sia $\phi: D_n \to D_n$ un automorfismo. Per le proprietà degli omomorfismi $o(\phi(r_1)) = n$ e $o(\phi(s_0)) = 2$ e dalla definizione di gruppo diedrale segue che $D_n = \langle \phi(r_1), \phi(s_0) \rangle$. Per $n \geq 3$ $\phi(r_1) = r_k$ per qualche $0 \leq k \leq n-1$ e (k, n) = 1 e $\phi(s_0) = s_j$ per qualche $0 \leq j \leq n-1$.

Allora $|Aut(D_n)| \leq n\varphi(n)$.

Al contrario, per ogni $0 \le k, j \le n-1$ con (k, n) = 1, sia $\phi_{k,j} \colon D_n \to D_n$ una funzione tale che $\forall 0 \le i \le n-1$

$$\phi_{k,j}(r_i) = r_{ik \mod n}$$
 $\phi_{k,j}(s_i) = s_{ik+j \mod n}$

Automorfismi del gruppo diedrale

Deborah Scampudd Relatore: Andrea I

Grupp diedral

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Dimostrazione

Presi $0 \le i, t \le n - 1$, allora:

- $\implies \phi_{k,i} \colon D_n \to D_n$ è un omomorfismo.

Automorfismi del gruppo diedrale

Scampuddu Relatore: Andrea Lo

Gruppo diedrale

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Dimostrazione

Essendo $\phi_{k,j}(r_1) = r_k e \phi_{k,j}(s_0) = s_j \text{ con } (k, n) = 1$, segue che $D_n = \langle r_k, s_j \rangle \subseteq \phi_{k,j}(D_n) \subseteq D_n$

da cui $\phi_{k,j}(D_n) = D_n$, ovvero $\phi_{k,j}$ è <u>suriettiva</u>.

Ma D_n è un gruppo finito, quindi $\phi_{k,i}$ è anche iniettiva.

Ovindi ϕ is an extensification $\forall 0 < k$ is a $\frac{1}{2}$ and $\frac{1}{2}$

Quindi $\phi_{k,j}$ è un automorfismo $\forall 0 \le k, j \le n-1$ e (k, n) = 1. Pertanto $|Aut(D_n)| \ge n\varphi(n)$.

Pertanto $|Aut(D_n)| \geq n\varphi(n)$.

$$\Longrightarrow |\operatorname{Aut}(\mathbf{D}_n)| = n\varphi(n)$$

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea Lo

Grupp diedra

Automorfismi del gruppo diedrale

Classi d'ordin e gruppi POS

Definizione 2.2

Per un numero naturale *n* definiamo l'insieme delle matrici:

$$\tilde{G}_n = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{Z}_n^* \in b \in \mathbb{Z}_n \right\}$$

Allora \tilde{G}_n è un gruppo di ordine $n\varphi(n)$ rispetto al prodotto tra matrici.

Osservazione 2.2

Si dimostra che $Aut(D_n) \simeq \tilde{G}_n$ per ogni n tramite l'isomorfismo:

$$\psi(\phi_{i,j}) = \begin{pmatrix} i & j \\ 0 & 1 \end{pmatrix}$$

$$\forall \ 0 \le i, j \le n-1, (i, n)=1.$$

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea Le

diedrale Automorfismi

del gruppo diedrale

Classi d'ordine e gruppi POS

Definizione 3.1

Sia G un gruppo finito e sia $S(G) = \{o(x) \mid x \in G\}$ l'insieme di tutti gli ordini possibili in G.

Per ogni $k \in S(G)$ denotiamo con $S_k = \{x \in G \mid o(x) = k\}$ l'insieme degli elementi di G che hanno ordine k. La **classe d'ordine** di G è definita come l'insieme delle coppie $\{(k, |S_k|) : k \in S(G)\}$.

Definizione 3.2

Diciamo che un gruppo G ha sottoinsiemi di ordine perfetto (**Perfect Order Subset o POS group**) se la cardinalità di S_k divide l'ordine di G per ogni k.

Automorfismi del gruppo diedrale

Scampuddu Relatore: Andrea Lo

diedrale Automorfism

Automorfismi del gruppo diedrale

Classi d'ordine e gruppi POS

Teorema 3.1

Sia p un numero primo. Allora la classe d'ordine di $Aut(D_p)$ è:

$$\{(1,1), (p,p-1), (k,p\varphi(k)): k \in d(p-1), k \neq 1\}$$

Osservazione 3.1

Per n > 1 $\varphi(k)$ divide $n \ \forall k \in d(n) \iff n=2^k 3^l, \ k \ge 1, \ l \ge 0$.

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea L

Gruppo diedral

Automorfism del gruppo diedrale

Classi d'ordine e gruppi POS

Corollario 3.1

Aut(Dp) è un gruppo $POS \iff p = 1 + 2^k 3^l$ per qualche $k \ge 1$, $1 \ge 0$.

Dimostrazione

Dal Teorema 2.1 sappiamo che $|Aut(D_p)| = p(p-1)$.

Per il Teorema 3.1 allora $Aut(D_p)$ è un gruppo $POS \iff \varphi(k)$ divide $p-1 \ \forall \ k \in d(p-1)$.

Dall'osservazione 3.1 segue dunque che Aut(Dp) è un gruppo $POS \iff p = 1 + 2^k 3^l$.

Automorfismi del gruppo diedrale

Deborah Scampuddu Relatore: Andrea Lo

diedrale Automorfism

del gruppo diedrale

Classi d'ordine e gruppi POS

Teorema 3.2

Sia p un primo della forma $p = 1 + 2^k$ $(k \ge 2)$.

Allora $Aut(D_p)$ è un gruppo POS non abeliano il cui ordine non è divisibile per 3.

Dimostrazione

Sia p della forma $1+2^k$. Applicando il Corollario 3.1 per l=0 segue che $Aut(D_p)$ è un gruppo POS.

Sappiamo che $|Aut(D_p)| = p(p-1) = (1+2^k)2^k$, ma essendo per ipotesi $k \ge 2$, $p \ge 5$ quindi $|Aut(D_p)|$ non è divisibile per 3.

Ricordando che $Aut(D_p)$ è isomorfo al gruppo non abeliano delle matrici \tilde{G}_n concludiamo che $Aut(D_p)$ è un gruppo POS non abeliano il cui ordine non è divisibile per 3.

Deborah Scampuddu Relato-:e: Andrea Lo

Gruppo diedrale

Automorfismi del gruppo

Classi d'ordine e gruppi POS

Grazie per l'attenzione!