שיטות אלגבריות בהנדסת נתונים - תרגיל בית 3

שאלה 1

אומר: $X,Y \in \mathbb{S}^n$ אומר אי שוויון Ky-Fan אי שוויון

$$\forall k = 1, \dots, n: \sum_{i=1}^{k} \lambda_i(X+Y) \le \sum_{i=1}^{k} \lambda_i(X) + \lambda_i(Y)$$

א. (7 נקודות) הוכיחו כי אי השוויון ההפוך גם מתקיים:
$$\forall k=1,\dots,n: \sum\nolimits_{i=1}^k \lambda_{n-i+1}(X+Y) \geq \sum\nolimits_{i=1}^k \lambda_{n-i+1}(X) + \lambda_{n-i+1}(Y)$$

ב. (7 נקודות) הוכיחו/הפריכו:

בהינתן שלמים $X \in \mathbb{S}^n$ ומטריצה סימטרית ומטריצה ל $1 \leq k \leq n$ בהינתן שלמים $\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_n(X)$:העצמיים שלה על ידי

נגדיר את הפונקציה: $\|X\| = \sum_{i=1}^k |\lambda_i(X)|$ - כלומר הפונקציה מחזירה את סכום הערכים המוחלטים של k הערכים העצמיים הגדולים ביותר של המטריצה X. אזי, הפונקציה הנ״ל היא נורמה מעל מרחב המטריצות $n \times n$ הסימטריות הממשיות

 $\underline{\underline{\theta}}$ שאלה שא σ_1,\dots,σ_n נסמן ב- תהי $n\leq m$ כך ש- כך של תהי תהי תהי הינגולרים של החי $A\in\mathbb{R}^{m\times n}$ $.ar{A} = {A \choose I_n} \in \mathbb{R}^{(m+n)xn}$:נגדיר

 $.ar{\sigma}_i = \sqrt{1+\sigma_i^2}$ הם $ar{A}$ הם הסינגולריים של .1

A של SVD של SVD של $ar{A}$ בהינתן פירוק.

שאלה 3

1. מצאו פירוק SVD של המטריצה הבאה:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

2. מהי הדרגה של 2

3. כתבו באופן מפורש בסיסים אורתונורמליים למרחבים הבאים: $Im(A), Im(A^T), N(A), N(A^T)$

 A^{\dagger} כתבו את המטריצה הפסאודו הופכית 4.

 $Q \in \mathbb{R}^{nxn}$, $R \in \mathbb{R}^{mxm}$ מטריצות $Q \in \mathbb{R}^{nxn}$, מטריצה כלשהי, ויהיו א מטריצה $Y \in \mathbb{R}^{mxn}$ אורתוגונליות. הוכיחו את הטענות הבאות:

- (נורמת פרובניוס) $||RYQ||_F = ||Y||_F$.1
- (נורמה ספקטרלית) $||RYQ||_2 = ||Y||_2$.2

- 1. הוכיחו את הטענה הבאה, שהיא הטענה המקבילה למשפט ריילי עבור $\max_{x\in\mathbb{R}^m,y\in\mathbb{R}^n,\|x\|_2=\|y\|_2=1} x^TAy = \sigma_1$:מטריצות לא סימטריות $\min_{x \in \mathbb{R}^m, y \in \mathbb{R}^n, \|x\|_2 = \|y\|_2 = 1} x^T A y = -\sigma_1$ בנוסף, הוכיחו כי:
- 2. הוכיחו כי הערך המקסימלי מתקבל עבור $y=v_1, x=u_1$ כלומר עבור $\sigma_1(A)$ - הוקטורים הסינגולריים המתאימים ל
 - : מתקיים: $A,B \in \mathbb{R}^{mxn}$ מתקיים: 3. $\sigma_1(A+B) \leq \sigma_1(A) + \sigma_1(B)$

9 שאלה

 $A \in \mathbb{S}^n$ תהי מטריצה

 $A^{rac{1}{2}}A^{rac{1}{2}}=A$ את השורש של A שהיא מטריצה שמקיימת $A^{rac{1}{2}}\in\mathbb{S}^n$ נסמן ב

- $A \succeq 0$ אם ורק אם $A^{rac{1}{2}}$ אם ורק אם 1.
- את הפירוק הספקטרלי של $A=U\Lambda U^T=\sum_{i=1}^n\lambda_iu_iu_i^T$ בטאו. $A^{rac{1}{2}}$ באמצעותו את הפירוק הספקטרלי של

 $A^{\frac{1}{2}}$ נסמן ב $A^{-\frac{1}{2}}$ את המטריצה ההופכית של

 $B \in \mathbb{S}^n$ נניח A מוגדרת חיובית. תהי נתבונן בבעיית האופטימיזציה הבאה:

$$\max_{x \neq 0} \frac{x^T B x}{x^T A x}$$

 $A_1(A^{-rac{1}{2}}BA^{-rac{1}{2}})$ הוכיחו כי הערך האופטימלי של בעיה זו הוא

שאלה 7

יהיו $A,B \in \mathbb{S}^n$. ראינו בהרצאה את הטענה הבאה:

 $\lambda_i(A) \geq \lambda_i(B)$ אם $1 \leq i \leq n$ אז לכל $1 \leq i \leq n$ אם א

הוכח / הפרך:

 $A \geqslant B$ אז $\lambda_i(A) \geq \lambda_i(B)$ מתקיים: $1 \leq i \leq n$ אם לכל

שאלה 8 (שאלה תכנותית)

כתבו קוד פייתון המחשב פירוק QR של מטריצה נתונה $A \in \mathbb{R}^{nxm}$ כתבו קוד פייתון המחשב פירוק בתרגול A ומחזיר את המטריצות C. כלומר: מקבל מטריצה A ומחזיר את המטריצות

א. השתמשו בקוד שכתבתם כדי לחשב פירוק QR של המטריצה הבאה:

```
A = \begin{pmatrix} 3 & 6 & 8 & 0 & 4 & 3 & 1 & 5 & 4 & 4 \\ 4 & 0 & 6 & 5 & 1 & 9 & 3 & 3 & 3 & 3 \\ 5 & 0 & 9 & 8 & 0 & 4 & 9 & 6 & 6 & 4 \\ 0 & 7 & 6 & 9 & 2 & 5 & 5 & 5 & 3 & 4 \\ 2 & 3 & 8 & 1 & 2 & 2 & 6 & 6 & 6 & 4 \\ 5 & 4 & 1 & 8 & 1 & 5 & 8 & 9 & 5 & 3 \\ 0 & 1 & 7 & 5 & 3 & 7 & 9 & 4 & 0 & 7 \\ 2 & 9 & 2 & 8 & 3 & 4 & 8 & 2 & 2 & 5 \\ 6 & 6 & 0 & 0 & 4 & 6 & 8 & 2 & 7 & 1 \\ 4 & 7 & 8 & 6 & 4 & 8 & 7 & 8 & 2 & 7 \\ 7 & 5 & 9 & 9 & 5 & 1 & 8 & 4 & 3 & 8 \\ 2 & 4 & 9 & 2 & 9 & 4 & 0 & 7 & 0 & 8 \\ 2 & 8 & 2 & 4 & 2 & 4 & 6 & 3 & 5 & 1 \\ 2 & 9 & 6 & 8 & 2 & 5 & 9 & 0 & 0 & 9 \\ 1 & 4 & 5 & 2 & 2 & 2 & 2 & 6 & 9 & 5 \end{pmatrix}
```

- על $x=(21,11,9,6,5,4,2,1,94,91,89,85,84,16,98)^T$ ב. הטילו את הנקודה S, נסמנו S, נסמנו
- על $x=(21,11,9,6,5,4,2,1,94,91,89,85,84,16,98)^T$ ג. הטילו את הנקודה \mathcal{S}^\perp

הגישו את הקוד שכתבתם ואת הפלט של כל סעיף (המטריצות Q ו-R בסעיף א', ו-וקטורי ההיטל בסעיפים ב' וג').