UNIVERSIDADE FEDERAL DE SERGIPE DISCIPLINA DE FUNDAMENTOS DE SISTEMAS DIGITAIS

Segunda Avaliação

ALUNO				MATRÍCULA	
DISCIPLINA	Fundamentos de Sistemas Digitais			DATA DA PROVA	08/02/2021
PROFESSOR	Rafael Oliveira Vasconcelos			TIPO DE PROVA	Segunda Avaliação
		CÓDIGO DA			
TURMA	T02	TURMA	COMP0416	NOTA	

ATENÇÃO:

- Será atribuída nota zero ao aluno que devolver sua prova em branco.
- Ao aluno flagrado **utilizando meios ilícitos ou não autorizado pelo professor para responder a avaliação** será atribuída nota zero e, mediante representação do professor, responderá a Procedimento Administrativo Disciplinar, com base no Código de Ética.
 - 1. (2,0) Dados o circuito e o diagrama de tempo abaixo, faça o que se pede. A palavra "ALTO" informa que o sinal está constantemente em ALTO (1).
 - a) (1,0) Desenhe o diagrama de tempo contendo o sinal f_{out}
 - b) (1,0) Levando em consideração as saídas dos flip-flops, qual a relação entre os sinais de saída dos flip-flops?

2. (2,0) Dado o circuito abaixo, faça o diagrama de tempo com as entradas e saídas e explique qual a relação da saída Q com o sinal de clock.

UNIVERSIDADE FEDERAL DE SERGIPE DISCIPLINA DE FUNDAMENTOS DE SISTEMAS DIGITAIS

Segunda Avaliação

3. (3,0) O circuito da figura abaixo tem como função produzir sinais de clock não sobrepostos e de mesma frequência. Desenhe as formas de onda do clock, Q, ~Q, CP1 e CP2 considerando que o sinal clock é uma onda quadrada assim como o sinal de clock da questão 2. Considere ainda que t_{PLH} e t_{PHL} (atraso de propagação) sejam de 20ns para o flip-flop e de 10ns para as portas AND.

