Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1} -$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2} - \frac{b}{t_1}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2} \left \frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2} \right $	0 0	0 0	0 0	0 0
	$-\frac{\sqrt{2}}{t_1+k^2t_1} -$		•	0 0 0	0 0 0	0 0 0	0 0 0

Quadi	Quadratic (free) action	e) actio	nc									
S == [][][()	$S == \int \int$	$\omega^{\alpha\beta\chi}$	$\sigma_{lphaeta\chi} + 1$	$\frac{1}{2}t_{1}$ (2	ω^{lpha_l}	ω_{θ}^{θ}	$4~\omega_{lpha}^{~\epsilon}$	$\frac{\partial}{\partial \theta} \partial_i f^{\alpha i}$	+4 ω	η, θ θ',	ςα - α	
20,5	$2\partial_i f^{\theta}_{} \partial^j f^{\alpha}_{} - 2\partial_i f^{\alpha i} \partial_{\theta} f^{}_{} + 4\partial^i f^{\alpha}_{} \partial_{\theta} f^{}_{} - 2\partial_{\alpha} f_{\theta} \partial^{\theta} f^{\alpha i} - \partial_{\alpha} f_{i} \partial^{\theta} f^{\alpha i} +$	2 0, f ^{α1} ¿	$\theta_{\theta} f_{\alpha}^{\theta} +$	- 4 ∂′ f ^α	$\alpha^{}_{}\partial_{\theta}f^{}_{}_{}{}^{\epsilon}$,-20 _a	$f_{I\theta}\partial^{\theta}I$	$f^{\alpha\prime} - \partial_{\alpha} f_{\ \ell}$	$f_{\theta}e^{\prime 6}$	+		
$\partial_i f_{\alpha \theta}$	$\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime}+\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime}+\partial_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime}+2\;\omega_{\alpha\theta\prime}\;(\omega^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime})).$	$\partial f_{\alpha i} \partial^{\theta} f$	$\epsilon^{\alpha\prime} + \partial_{\theta}$	$f_{1\alpha}\partial^{\theta}f$: _{\alpha'} + 2	$\omega_{lpha heta_{l}}$	$(\omega^{\alpha i \theta})$	$+2\partial^{\theta}f$	α"))-			
$\frac{1}{3}$ r_1 (.	$\frac{1}{3} r_1 \left(3 \partial_\beta \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\beta'\omega^{lphaeta}_{-}$	$3 \partial_i \omega_{\beta}^{ t}$	$^{9}\omega'^{6}$	α^{β} -36	$\beta_{lpha}\omega^{lphaeta}$	$^{\prime}\partial_{ heta}\omega_{eta}$	+ '				
<i>ω</i> / <i>Θ</i> 9	$6\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{}_{}+3\partial_{\alpha}\omega^{\alpha\beta}\partial_{\theta}\omega^{}_{}-6\partial'\omega^{\alpha\beta}_{}\partial_{\theta}\omega^{}_{}+$	$^{\prime}_{0}+3\partial_{c}$	$_{_{\chi}}\omega^{lphaeta\prime}\partial_{\epsilon}$	$^{ heta}_{eta}^{ heta}$	6 ∂′ω ^a	$^{ieta}_{lpha}\partial_{ heta}\iota$	$^{\theta}_{\beta}$					
$4 \partial_{\beta} \alpha$	$4\partial_{\beta}\omega_{\alpha_{l}\theta}\partial^{\theta}\omega^{\alpha\beta_{l}}-2\partial_{\beta}\omega_{\alpha\theta_{l}}\partial^{\theta}\omega^{\alpha\beta_{l}}+8\partial_{\beta}\omega_{_{l}\theta\alpha}\partial^{\theta}\omega^{\alpha\beta_{l}}+2\partial_{_{l}}\omega_{_{\alpha\beta\theta}}\partial^{\theta}\omega^{\alpha\beta_{l}}-$	$^{eta_{\prime}}$ - 2 ∂_{eta}	$ u_{\alpha \theta}, \partial^{\theta} c $	$ u^{\alpha\beta\prime} +$	$8 \partial_{eta} \omega_{,}$	$\theta^{\alpha}\partial^{\theta}u$	+ امرار	$2 \partial_i \omega_{\alpha\beta i}$	$\omega^{\theta} \delta_{\theta}$	αβι_		
$2 \partial_{\theta} u$	$2\partial_\theta\omega_{\alpha\beta_I}\partial^\theta\omega^{\alpha\beta_I} - 2\partial_\theta\omega_{\alpha_I\beta}\partial^\theta\omega^{\alpha\beta_I}))[t,x,y,z]dzdydxdt$	$^{\beta_{\prime}}$ - 2 ∂_{θ}	$ u_{\alpha \beta} \partial^{\theta} c$	$n^{lphaeta_{\prime}}))[$	t, x, y	, z]ď;	z d y d	'x dlt				
	$\omega_{1}^{\#1}{}_{lphaeta}\;\omega_{1}^{\#2}{}_{lphaeta}\;f_{1}^{\#1}{}_{lphaeta}\;\omega_{1}^{\#1}{}_{lpha}\;\omega_{1}^{\#2}{}_{lpha}\;f_{1}^{\#2}{}_{lpha}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1^{^{-}}\alpha}^{\#1}$	$\omega_{1^{-}}^{\#2}{}_{lpha}$	$f_{1^{ ext{-}}lpha}^{\#1}$	$f_{1}^{\#2}$	$\sigma_0^{\#1}$ -	$ au_{0}^{\#2}$	$ au_0^{\#1}$	$\sigma_{0^{+}}^{\#1}$ -	
$\omega_1^{\#1} + \sigma^{eta}$	$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} r_{1} - \frac{t_{1}}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	†	t	† - 	† - (1+	
$\omega_1^{\#2} + \alpha^{\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	0	0	$i \sqrt{2} k$ $-2 k^2)^2$	$\frac{1}{(2k^2)^2}$	$\sigma_{0}^{\#1}$
$f_1^{#1} + \alpha \beta$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0			$-\frac{1}{t_1}$	$\frac{1}{t_1}$ $\frac{1}{t_1}$	
$\omega_{1}^{\#1} +^{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ikt_1	0	0	$2k^2$ 1+2 k^2) ²	$i \sqrt{2} k$ $+2 k^{2})^{2}$ $2 k^{2}$ $1+2 k^{2})^{2}$	$ au_{0}^{\#1}$
$\omega_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{\zeta / \tau}{12}$	0	0	0			<u>t</u> 1	$-\atop t_1$	τ
				۷ ۲				0	0	0	0+ 0	.#2 0 ⁺

Source constraints/gauge generator					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_1^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

 $\tau_{2}^{\#1}{}_{\alpha\beta}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

0

 $\frac{1}{2k^2r_1+t_1}$

 $f_{0+}^{#2} \omega_{0-}^{#1}$

0

0

0

 $i \sqrt{2} kt_1$

 $-2 k^2 t_1$

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

*-t*₁

 $-i\sqrt{2} kt_1$

0

0

0

0

0

0

0

0

 $\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$