Ableitungsregeln

Konstante Funktionen:
$$f(x) = c$$
 $f'(x) = 0$

Potenzregel:
$$f(x) = x^n$$
 $f'(x) = n \cdot x^{n-1}$

Faktorregel:
$$f(x) = a \cdot g(x)$$
 $f'(x) = a \cdot g'(x)$

Summerregel:
$$f(x) = g(x) \pm h(x)$$
 $f'(x) = g'(x) \pm h'(x)$

Produktregel:
$$f(x) = g(x) \cdot h(x)$$
 $f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$

Quotienten
regel:
$$f(x) = \frac{g(x)}{h(x)}$$

$$f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{\big[h(x)\big]^2}$$

Kettenregel:
$$f(x) = g(h(x))$$
 $f'(x) = g'(h(x)) \cdot h'(x)$

Spezielle Funktionen

$$f(x) = \sqrt[n]{x} \qquad \qquad f'(x) = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$$

$$f(x) = \sin(x)$$
 $f'(x) = \cos(x)$

$$f(x) = \cos(x)$$

$$f'(x) = -\sin(x)$$

$$f(x) = \tan(x)$$

$$f'(x) = \frac{1}{\cos^2(x)}$$

$$f(x) = e^x f'(x) = e^x$$

$$f(x) = a^x f'(x) = a^x \cdot \ln(a)$$

$$f(x) = \ln(x) \qquad \qquad f'(x) = \frac{1}{x}$$

$$f(x) = \log_a(x)$$

$$f'(x) = \frac{1}{x} \cdot \frac{1}{\ln(a)}$$