Shortest Path Algorithms: Bellman-Ford and Floyd-Warshall

Varun Kumar

July 9, 2025

Contents

1	roduction: Shortest Path Problem	9		
2	Bellman-Ford Algorithm			
	2.1	Purpose	4	
	2.2	Problem Context	4	
	2.3	Time Complexity	2	
	2.4	Space Complexity	2	
	2.5	Key Features	2	
	2.6	Step-by-Step Explanation	4	
	2.7	Comparison with Dijkstra's Algorithm	(
3	Dry	Run: Bellman-Ford Algorithm	(
	3.1	Example Graph: With Negative Edge Weight	(
	3.2	Understanding the Dry Run Output	ė	
	3.3	Example Graph: With Positive Edge Weight	1	
	3.4	Understanding the Output of the Dry Run	1	
	3.5	Python Code	1	
	3.6	Explanation of Bellman-Ford Algorithm in Python	1	
	3.7	Borderline Case Where Bellman-Ford Fails	1	
4	Flo	yd-Warshall Algorithm	1	
	4.1	Purpose	1	
	4.2	Time Complexity	1	
	4.3	Space Complexity	1	
	4.4	Key Features	1	

5	5.1 5.2	Run: Floyd-Warshall Algorithm Example Graph: With Negative Edge Weight	19
	5.3 5.4 5.5 5.6 5.7	Understanding the Dry Run Output	19 20 21 21 22 23 24
	5.8	Logic to Detect Negative Weight Cycles	25
6	10 I 6.1 6.2	Key Points: Bellman-Ford Algorithm Floyd-Warshall Algorithm	26 26 26
7	Fina	al Summary: Bellman-Ford vs Floyd-Warshall	27
${f L}{f i}$	ist	of Algorithms	
	1 2	Bellman-Ford Algorithm	
\mathbf{P}_{i}^{i}	${ m yth}$	on Programs	
	1 2	Bellman-Ford Algorithm in Python	14 22
$\mathbf{L}_{\mathbf{j}}$	ist	of Tables	
	1	Comparison Summary: Bellman-Ford vs Floyd-Warshall .	28

1. Introduction: Shortest Path Problem

The **Shortest Path Problem** involves finding the path between two nodes in a **weighted graph** such that the sum of the edge weights is minimized.

This problem has many real-world applications:

- Network routing
- Road navigation
- Flight booking systems
- Dependency resolution

Depending on the type of graph and requirements, different algorithms are used:

- Single-source shortest path: e.g., Dijkstra, Bellman-Ford
- All-pairs shortest path: e.g., Floyd-Warshall
- Graphs with negative weights: Bellman-Ford, Floyd-Warshall

2. Bellman-Ford Algorithm

2.1 Purpose

The Bellman-Ford algorithm finds the shortest path from a single source to all other vertices in a weighted graph. Unlike Dijkstra's algorithm, Bellman-Ford works correctly even when the graph contains **negative edge weights**.

2.2 Problem Context

Given a directed graph G = (V, E) with edge weights w(u, v) (which may be negative), and a source vertex $s \in V$, compute the shortest path distance d(s, v) for every $v \in V$. Also detect whether a **negative-weight cycle** is reachable from the source.

2.3 Time Complexity

$$O(V \cdot E)$$

where V is the number of vertices and E is the number of edges.

2.4 Space Complexity

O(V)

for storing the distance array.

2.5 Key Features

- Works for directed and undirected graphs.
- Handles graphs with negative edge weights.
- Detects and reports negative weight cycles.
- Slower than Dijkstra's algorithm, but more general.

2.6 Step-by-Step Explanation

1. Initialize the distance to all vertices as ∞ , except the source which is 0.

- 2. Repeat V-1 times:
 - For every edge (u, v) with weight w, update:

```
if dist[u] + w < dist[v], then set dist[v] = dist[u] + w
```

- 3. Check for negative-weight cycles by repeating the edge-relaxation step once more.
- 4. If any edge can still be relaxed, report a negative-weight cycle.

Algorithm 1 Bellman-Ford Algorithm

```
1: Input: Graph G = (V, E) with edge weights (possibly negative),
   source vertex s
2: Output: Shortest distances from s to all vertices (or detect negative
   cycle)
3: function BellmanFord(G, s)
       for each vertex v in V do
          dist[v] \leftarrow \infty
5:
       end for
 6:
       dist[s] \leftarrow 0
 7:
       for i \leftarrow 1 to |V| - 1 do
 8:
          for each edge (u, v) with weight w in E do
9:
              if dist[u] + w < dist[v] then
10:
                  dist[v] \leftarrow dist[u] + w
11:
              end if
12:
          end for
13:
       end for
14:
       for each edge (u, v) with weight w in E do
15:
          if dist[u] + w < dist[v] then
16:
              return Negative weight cycle detected
17:
          end if
18:
       end for
19:
       return dist
20:
21: end function
```

2.7 Comparison with Dijkstra's Algorithm

Feature	Bellman-Ford	Dijkstra
Negative weights	Supported	Not supported
Time complexity	$O(V \cdot E)$	$O((V+E)\log V)$ (with min-heap)
Cycle detection	Can detect negative weight cycles	Cannot detect cycles
Approach	Edge relaxation $(V-1)$ times	Greedy approach using Min-Heap

3. Dry Run: Bellman-Ford Algorithm

3.1 Example Graph: With Negative Edge Weight

Figure 1: Directed Graph with Negative Edge Weight

Vertices: A, B, C, D

Edges: (A, B, 4), (A, C, 5), (B, D, -3), (C, D, 3), (D, B, 2)

Initialization

Source Vertex: A

Vertex	Distance from A
A	0
B	∞
C	∞
D	∞

Relaxation Steps

Bellman-Ford runs for V-1=3 iterations.

Iteration 1

Edge	Relaxation	Updated Distances
(A, B, 4)	$0+4<\infty$	B=4
(A,C,5)	$0+5<\infty$	C = 5
(B, D, -3)	$4-3<\infty$	D=1
(C,D,3)	5 + 3 > 1	No change
(D,B,2)	1 + 2 < 4	B=3

Distances after Iteration 1:

$$A = 0, \quad B = 3, \quad C = 5, \quad D = 1$$

Iteration 2

Edge	Relaxation	Updated Distances
(A, B, 4)	0 + 4 > 3	Nochange
(A,C,5)	0 + 5 = 5	No change
(B, D, -3)	3 - 3 = 0 < 1	D = 0
(C,D,3)	5 + 3 > 0	No change
(D,B,2)	0+2=2<3	B=2

Distances after Iteration 2:

$$A = 0, \quad B = 2, \quad C = 5, \quad D = 0$$

Iteration 3

Edge	Relaxation	Updated Distances
(A, B, 4)	No change	_
(A,C,5)	No change	_
(B, D, -3)	2 - 3 = -1 < 0	D = -1
(C,D,3)	No change	_
(D,B,2)	-1+2=1<2	B=1

Distances after Iteration 3:

$$A = 0, \quad B = 1, \quad C = 5, \quad D = -1$$

Negative Cycle Check

Run one more iteration to check if further relaxation is possible.

- Edge (B, D, -3): $1-3=-2<-1 \rightarrow$ Relaxation possible!

Negative weight cycle detected

Output Summary

Result

The graph contains a **negative weight cycle** reachable from the source. The Bellman-Ford algorithm terminates and reports failure.

3.2 Understanding the Dry Run Output

The output of the dry run simulates how the Bellman-Ford algorithm works internally. Here's what each part of the dry run means:

1. Step-by-Step Edge Relaxations

Each iteration updates the shortest known distances from the source vertex (in our case, A) to all other vertices using edge relaxation.

- If dist[u] + w < dist[v], then dist[v] is updated.
- This simulates checking if going through an intermediate node gives a shorter path.

For example, in Iteration 1:

- Distance to B becomes 4 via $A \to B$
- Distance to C becomes 5 via $A \to C$
- Distance to D becomes 1 via $A \to B \to D$

2. Multiple Iterations Improve Paths

Bellman-Ford runs the edge relaxation process V-1 times (where V is the number of vertices). This ensures all shortest paths (which can be at most V-1 edges long) are found.

- Distances improve progressively as better paths are discovered.
- For example: D goes from $\infty \to 1 \to 0 \to -1$

3. Final Iteration: Negative Cycle Detection

After the V-1 iterations, Bellman-Ford runs one extra iteration to check if any edge can still be relaxed.

- If yes, then the graph contains a **negative weight cycle**.
- Such cycles allow endlessly reducing path costs, making shortest path meaningless.

In our example:

Edge (B, D, -3):
$$1 - 3 = -2 < -1$$

⇒ Negative weight cycle detected

4. Final Interpretation

What it shows	Meaning in Algorithm	
Distance updates in each iteration	Edge relaxations updating shortest known paths	
Improving distances over rounds	Intermediate vertices offering shorter routes	
Negative cycle detection step	Unique ability of Bellman-Ford to identify cycles	
Final result box output	Indicates if shortest paths are valid or undefined	

5. Why It Matters

Understanding the dry run helps solve problems that ask:

- How many iterations are required?
- Will Bellman-Ford detect a negative cycle?
- Which algorithm (Bellman-Ford or Dijkstra) is more suitable for a graph?

3.3 Example Graph: With Positive Edge Weight

Figure 2: Graph with Positive Edge Weight Cycle

Vertices: A, B, C, D

Edges: (A, B, 2), (A, C, 4), (B, D, 3), (C, D, 1), (D, B, 5)

Initialization

Source Vertex: A

Vertex	Distance from A
A	0
B	∞
C	∞
D	∞

Relaxation Steps (3 Iterations)

Iteration 1

Edge	Relaxation Condition	Updated Distances
(A, B, 2)	$0+2<\infty$	B=2
(A,C,4)	$0+4<\infty$	C=4
(B, D, 3)	$2+3<\infty$	D = 5
(C,D,1)	$4+1=5\geq 5$	Nochange
(D, B, 5)	5+5=10>2	ig Nochange

After Iteration 1:

$$A = 0, \quad B = 2, \quad C = 4, \quad D = 5$$

Iteration 2

No edge relaxes further.

All conditions fail: distances unchanged.

Iteration 3

Still no changes.

 \Rightarrow All distances are stable.

Negative Cycle Check

Perform one more iteration:

- No edge (u, v) satisfies dist[u] + w < dist[v]
- So, no negative weight cycle exists

Final Result

The graph does not contain a negative weight cycle. Shortest distances from A are:

$$A = 0, \quad B = 2, \quad C = 4, \quad D = 5$$

3.4 Understanding the Output of the Dry Run

The dry run demonstrates how the Bellman-Ford algorithm processes graphs with only positive edge weights. Below is the interpretation of the output:

1. Edge Relaxation Steps

In the first iteration, all reachable vertices from the source (A) have their distances updated because the initial distances are ∞ . Each edge is examined and relaxed if a shorter path is found:

- (A, B, 2) sets dist[B] = 2
- (A, C, 4) sets dist[C] = 4
- (B, D, 3) sets dist[D] = 5

No further updates are made in subsequent iterations, which means that the shortest paths have already been found.

2. Stable Distances After Iteration 1

After the first iteration, the shortest distances from the source vertex A to all other vertices are finalized:

$$A = 0, \quad B = 2, \quad C = 4, \quad D = 5$$

- No edge caused a relaxation in iteration 2 or 3.
- This indicates that the shortest paths have been found before completing all V-1 iterations.

3. Cycle Handling with Positive Weights

The graph contains a cycle: $B \to D \to B$, with total weight 3+5=8.

- Since the total weight is positive, it does not cause any endless relaxation.
- Bellman-Ford correctly ignores such cycles when computing shortest paths.

4. Final Negative Cycle Check

After the V-1 iterations, Bellman-Ford checks all edges once more to see if any further relaxation is possible.

- No edge satisfies dist[u] + w < dist[v]
- Therefore, no negative weight cycle exists

Conclusion

The algorithm successfully terminates. All shortest distances from source vertex A have been computed correctly, and no negative weight cycle is present in the graph.

3.5 Python Code

```
def bellman_ford(V, edges, source):
       # Initialize distances
       dist = [float('inf')] * V
       dist[source] = 0
       # Relax all edges (V - 1) times
       for _ in range(V - 1):
           for u, v, w in edges:
               if dist[u] != float('inf') and dist[u] + w < dist</pre>
9
     [v]:
                    dist[v] = dist[u] + w
10
11
       # Check for negative weight cycles
       for u, v, w in edges:
           if dist[u] != float('inf') and dist[u] + w < dist[v]:
14
               print("Negative weight cycle detected.")
               return None
16
17
       return dist
18
19
  # Example usage
20
  V = 4
21
  edges = [
22
       (0, 1, 2),
                     # A -> B
23
       (0, 2, 4),
                     # A -> C
24
       (1, 3, 3),
                     # B -> D
25
                     # C -> D
       (2, 3, 1),
26
                     # D -> B (positive cycle)
       (3, 1, 5)
28
  source = 0 # Vertex A
  distances = bellman_ford(V, edges, source)
30
31
  if distances:
       print("Shortest distances from source A:")
33
       for i, d in enumerate(distances):
34
           print(f"Vertex {chr(ord('A') + i)}: {d}")
```

Listing 1: Bellman-Ford Algorithm in Python

3.6 Explanation of Bellman-Ford Algorithm in Python

- **Line 1:** Define the function bellman_ford with parameters: number of vertices V, list of edges, and the source vertex.
- **Line 2:** Initialize a list dist with ∞ for all vertices, representing unreachable distances initially.
- **Line 3:** Set the distance of the source vertex to 0, since the shortest path to itself is 0.
- **Line 4:** Begin the relaxation phase: loop V-1 times (as per the Bellman-Ford algorithm).
- **Line 5:** For each edge (u, v, w), check if the distance to v through u is shorter than the current distance.
- Line 6: If so, update dist[v] with the shorter distance dist[u] + w.
- **Line 7:** After all relaxations, check again for each edge whether any further relaxation is possible.
- **Line 8:** If it is, this implies a negative weight cycle exists, so print a warning and return None.
- **Line 9:** If no negative cycles are found, return the **dist** list containing the shortest distances.

3.7 Borderline Case Where Bellman-Ford Fails

Case: Negative Weight Cycle Reachable from the Source

The Bellman-Ford algorithm fails when a negative weight cycle is reachable from the source vertex. This is because the algorithm relies on the fact that shortest paths can be calculated in at most V-1 edge relaxations. However, if a cycle with total negative weight exists, the distance to some nodes can always be reduced by going around the cycle repeatedly.

Example

Edge	From	To	Weight
1	A	В	1
2	В	С	-1
3	С	A	-1

This forms a cycle: $A \to B \to C \to A$ with total weight 1+(-1)+(-1)=-1, which is negative.

If the source is A, Bellman-Ford will:

- Relax edges for V 1 = 2 times.
- On the 3rd pass (for cycle detection), it will detect that further relaxation is possible:

$$\operatorname{dist}[A] > \operatorname{dist}[C] + w(C \to A)$$

• It prints "Negative weight cycle detected" and returns None.

Why This Happens

Because in the presence of a reachable negative weight cycle:

- The shortest path is not well-defined.
- It can be made infinitely small by repeating the cycle.

Important Notes

- If the cycle is not *reachable* from the source, Bellman-Ford works fine.
- Bellman-Ford is one of the few shortest path algorithms that can even **detect** such cycles.

4. Floyd-Warshall Algorithm

4.1 Purpose

The Floyd-Warshall Algorithm is used to compute the shortest paths between all pairs of vertices in a weighted directed graph. It works for graphs with positive and negative edge weights (but no negative weight cycles).

Common applications:

- Network routing between all routers
- Finding transitive closures
- Calculating reachability in graphs

4.2 Time Complexity

$$O(V^3)$$

where V is the number of vertices. It uses three nested loops over the vertices.

4.3 Space Complexity

$$O(V^2)$$

because it stores all-pairs shortest distances in a 2D matrix.

4.4 Key Features

- Solves the **All-Pairs Shortest Path** problem
- Works with **negative weights** (but not negative cycles)
- Uses **Dynamic Programming** to build solutions incrementally
- \bullet Simpler implementation than running Dijkstra V times

4.5 Step-by-Step Explanation

Let dist[i][j] be the shortest distance from vertex i to vertex j. The algorithm works as follows:

1. Initialize the distance matrix:

$$dist[i][j] = \begin{cases} 0 & \text{if } i = j \\ \text{weight}(i,j) & \text{if } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

2. For each vertex k, update:

```
If dist[i][k]+dist[k][j] < dist[i][j] then set dist[i][j] = dist[i][k]+dist[k][j]
```

3. Repeat this for all $k \in [1, V]$

Algorithm 2 Floyd-Warshall Algorithm

```
1: Input: Weighted graph G = (V, E) as adjacency matrix
 2: Output: Matrix dist of shortest distances between all pairs
   function FLOYDWARSHALL(G)
       dist \leftarrow adjacency matrix of G
 4:
       for each vertex k in V do
 5:
          for each vertex i in V do
 6:
              for each vertex j in V do
 7:
                  if dist[i][k] + dist[k][j] < dist[i][j] then
 8:
                     dist[i][j] \leftarrow dist[i][k] + dist[k][j]
 9:
                  end if
10:
              end for
11:
          end for
12:
       end for
13:
       return dist
14:
15: end function
```

4.6 Comparison with Dijkstra's Algorithm

Feature	Floyd-Warshall	Dijkstra
Problem Type	All-pairs shortest path	Single-source shortest path
Time Complexity	$O(V^3)$	$O((V + E)\log V)$ (with min-heap)
Handles Negative Weights	Yes	No (fails for negative weights)
Negative Cycle Detection	No (but can be checked manually)	No
Graph Type	Dense	Sparse
Approach	Dynamic Programming	Greedy + Min-Heap
Ease of Implementation	Very simple	More complex with heap

5. Dry Run: Floyd-Warshall Algorithm

5.1 Example Graph: With Negative Edge Weight

Figure 3: Graph with Negative Edge Weight (No negative cycle)

Vertices: A = 0, B = 1, C = 2

Edges:

$$(0,1,4), (1,2,-2), (2,0,3)$$

Initial Distance Matrix:

$$\begin{bmatrix} 0 & 4 & \infty \\ \infty & 0 & -2 \\ 3 & \infty & 0 \end{bmatrix}$$

After k=0:

No changes (only self-loops)

After k=1:

$$dist[0][2] = dist[0][1] + dist[1][2] = 4 + (-2) = 2$$

After k=2:

$$dist[1][0] = dist[1][2] + dist[2][0] = -2 + 3 = 1$$

 $dist[1][1] = dist[1][0] + dist[0][1] = 1 + 4 = 5$

5.2 Understanding the Dry Run Output

- Floyd-Warshall computes the shortest path between all node pairs.
- It progressively improves the solution by considering each vertex as an intermediate step.
- Negative edge weights are handled properly, as long as there are no negative cycles.
- If any dist[i][i] < 0 at the end, a **negative cycle** is detected.

Final Result (Negative Edge)

Shortest path matrix is successfully computed with negative weights (no cycle).

5.3 Example Graph: With Positive Edge Weight

Figure 4: Graph with Positive Edge Weights

Vertices: A = 0, B = 1, C = 2, D = 3Initial Distance Matrix:

$$\begin{bmatrix} 0 & 3 & 5 & \infty \\ \infty & 0 & \infty & 1 \\ \infty & \infty & 0 & 2 \\ \infty & 4 & \infty & 0 \end{bmatrix}$$

5.4 Understanding the Output of the Dry Run

- After multiple updates, all indirect shortest paths are computed.
- The algorithm detects no negative cycles.
- Final matrix contains the shortest distances between all vertex pairs.

Final Result (Positive Edges)

All-pairs shortest paths successfully computed with only positive weights.

5.5 Python Code

```
def floyd_warshall(V, edges):
       dist = [[float('inf')] * V for _ in range(V)]
       for i in range(V):
           dist[i][i] = 0
       for u, v, w in edges:
           dist[u][v] = w
9
       for k in range(V):
           for i in range(V):
11
                for j in range(V):
12
                    if dist[i][k] + dist[k][j] < dist[i][j]:</pre>
13
                         dist[i][j] = dist[i][k] + dist[k][j]
14
15
       # Optional: detect negative cycles
16
       for i in range(V):
           if dist[i][i] < 0:
18
                print("Negative weight cycle detected.")
19
                return None
20
21
       return dist
22
23
  # Example usage:
24
  edges = [
25
       (0, 1, 3),
                    # A -> B
26
       (0, 2, 5),
                    # A -> C
27
       (1, 3, 1),
                    # B -> D
       (2, 3, 2),
                    # C -> D
       (3, 1, 4)
                    # D -> B
31
  dist = floyd_warshall(4, edges)
  for i, row in enumerate(dist):
       print(f"From {chr(65+i)}:", row)
```

Listing 2: Floyd-Warshall Algorithm in Python

5.6 Explanation of Floyd-Warshall Algorithm (Python)

1. def floyd_warshall(V, edges):

Defines a function that takes the number of vertices V and a list of edges. Each edge is a tuple (u, v, w) representing an edge from u to v with weight w.

- 2. dist = [[float('inf')] * V for _ in range(V)] Initializes a $V \times V$ distance matrix with ∞ , meaning all distances are initially unknown.
- 3. for i in range(V):

 Loop over all vertices to set distance from a vertex to itself as 0.
- 4. dist[i][i] = 0

 The shortest distance from any vertex to itself is 0.
- 5. for u, v, w in edges:
 Iterates over each edge in the input edge list.
- 6. dist[u][v] = w
 Updates the matrix with the given edge weights.
- 7. for k in range(V): Outer loop over all vertices k. This represents intermediate nodes in the path.
- 8. for i in range(V):
 Inner loop for source vertices.
- 9. for j in range(V):
 Inner loop for destination vertices.
- 10. if dist[i][k] + dist[k][j] < dist[i][j]:

 If the path from i to j via k is shorter than the current known path, update it.
- 11. dist[i][j] = dist[i][k] + dist[k][j]Update the shortest distance from i to j using k as an intermediate.
- 12. for i in range(V):
 After all updates, check for negative weight cycles.
- 13. if dist[i][i] < 0:

 If the diagonal of the matrix is negative, it indicates a negative weight cycle involving vertex i.

- 14. print("Negative weight cycle detected.")
 Warn the user about the presence of a negative cycle.
- 15. return None
 Abort and return None to indicate failure.
- 16. return dist
 If no negative cycle is found, return the final distance matrix.

5.7 Borderline Case: When Floyd-Warshall Fails

Case: Graph with a Negative Weight Cycle

The Floyd-Warshall algorithm fails to compute valid shortest paths when a **negative weight cycle** exists in the graph.

Why it Fails

- In a negative cycle, you can loop through the cycle indefinitely to reduce the total path cost.
- As a result, the concept of a "shortest path" is not well-defined.
- Floyd-Warshall relies on dynamic programming assuming that once the shortest path between any two nodes is found, it cannot get shorter this assumption breaks in the presence of negative cycles.

How to Detect It

• After running the algorithm, check the diagonal entries of the distance matrix:

If dist[i][i] < 0 for any i, a negative cycle exists.

Example

A graph with the following edges:

- $A \to B \text{ (weight = 1)}$
- $B \to C \text{ (weight = -2)}$
- $C \rightarrow A \text{ (weight = -2)}$

Forms a cycle $A \to B \to C \to A$ with

total weight =
$$1 + (-2) + (-2) = -3$$
.

This is a negative cycle.

Floyd-Warshall will detect this because:

$$dist[A][A] = -3 < 0$$

Hence, result is invalid and must be discarded.

5.8 Logic to Detect Negative Weight Cycles

The Floyd-Warshall algorithm detects negative weight cycles by analyzing the final values in the distance matrix.

Key Observations:

• Initially, the diagonal entries of the distance matrix are all set to 0:

$$dist[i][i] = 0$$
 for all i

• During the algorithm's execution, the matrix is updated using:

$$dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])$$

• If a node can reach itself with a total cost less than 0, then a negative weight cycle exists.

Detection Condition:

$$\exists i \in V \text{ such that dist[i][i]} < 0$$

Interpretation:

- This means there exists a cycle starting and ending at node *i* with negative total weight.
- The algorithm will detect this and report the cycle if such a condition is found.

Conclusion: If any diagonal entry of the final distance matrix is negative, the graph contains a negative weight cycle, and shortest paths are undefined.

6. 10 Key Points:

6.1 Bellman-Ford Algorithm

- 1. Solves Single-Source Shortest Path (SSSP) problem.
- 2. Works with negative edge weights.
- 3. Detects negative weight cycles.
- **4.** Time Complexity: $O(V \cdot E)$.
- **5.** Uses **edge relaxation** process up to V-1 times.
- **6.** Final pass checks for further relaxation to detect cycles.
- 7. Works for both **directed** and **undirected** graphs.
- **8.** Distance array initialized with ∞ ; source = 0.
- 9. Slower than Dijkstra but more versatile.
- 10. Common in scenarios with possible debt or penalties.

6.2 Floyd-Warshall Algorithm

- 1. Solves All-Pairs Shortest Path (APSP) problem.
- 2. Based on dynamic programming.
- 3. Handles **negative edge weights**, not negative cycles.
- **4.** Time Complexity: $O(V^3)$.
- **5.** Space Complexity: $O(V^2)$ using a 2D matrix.
- 6. Initializes distance matrix with direct edge weights.
- 7. Triple nested loop updates all distances.
- 8. Simple to implement; good for dense graphs.
- **9.** Can be used to detect negative cycles via diagonal dist[i][i] < 0.
- 10. Used in network routing, transitive closure, etc.

7. Final Summary: Bellman-Ford vs Floyd-Warshall

Bellman-Ford Algorithm Summary

- Solves Single-Source Shortest Path (SSSP) problem.
- Works with **negative weights** and **detects negative cycles**.
- Time Complexity: $O(V \cdot E)$
- Uses edge relaxation repeated V-1 times.
- Ideal for graphs with negative weights and when only one source is given.

Floyd-Warshall Algorithm Summary

- Solves All-Pairs Shortest Path (APSP) problem.
- Handles **negative edge weights** (not cycles).
- Time Complexity: $O(V^3)$
- Based on **dynamic programming** and a distance matrix.
- Useful in dense graphs and applications like routing, transitive closure.

Aspect	Bellman-Ford	Floyd-Warshall		
Problem Solved	Single-source shortest path	All-pairs shortest path		
Handles Negative Weights	Yes	Yes		
Negative Cycle Detection	Yes	Via diagonal check: $dist[i][i] < 0$		
Time Complexity	$O(V \cdot E)$	$O(V^3)$		
Approach	Edge relaxation	Dynamic programming		
Graph Type	Directed / undirected	Directed (preferably dense)		
Use Case	When source node is known	When all node pairs matter		

Table 1: Comparison Summary: Bellman-Ford vs Floyd-Warshall

Feature	Bellman- Ford	Dijkstra	Floyd- Warshall
Problem Type	Single-source shortest path (SSSP)	Single-source shortest path (SSSP)	All-pairs shortest path (APSP)
Graph Type	Directed / Undirected	Directed / Undirected	Directed
Negative Weights	Supported	Not supported	Supported (no negative cycles)
Negative Cycle Detection	Yes	No	Can be checked via $dist[i][i] < 0$
Time Complexity	$O(V \cdot E)$	$O((V + E) \log V)$ (with heap)	$O(V^3)$
Space Complexity	O(V)	O(V)	$O(V^2)$
Algorithm Type	Edge Relaxation (DP-based)	Greedy + Min-Heap	Dynamic Programming Matrix
Ease of Implementation	Easy	Medium (with heap)	Very Easy
Best for	Graphs with negative weights / cycle detection	Sparse graphs	Dense graphs / APSP
Path Reconstruction	Parent array	Parent array	Predecessor matrix (optional)

Table 2: Comparison Summary: Bellman-Ford vs Dijkstra vs Floyd-Warshall