

SLAM: Inertial Navigation

Robot Localization and Mapping 16-833

Michael Kaess

March 24, 2021

Inertial Navigation

- Inertial Measurement Unit (IMU)
 - Gyroscope
 - Accelerometer
 - Magnetometer (optional)
 - Pressure (optional)
- Inertial Navigation System (INS)
 - Attitude Heading Reference System (AHRS)
 - GPS-Aided Inertial
 - DVL-Aided Inertial
 - Vision-Aided Inertial

Inertial Sensors

>\$10k 1deg/h

Around \$1000

<\$10 1deg/s

Gyroscopes

- Mechanical
 - Gimbal
 - Vibrating structure gyros
 - Tuning fork resonator
 - Hemispherical resonator
 - Cylindrical resonator
- MEMS
 - Vibrating structure gyros
- Optical
 - Ring-Laser Gyro (RLG)
 - Fiber Optic Gyro (FOG)

Leon Foucault, 1852

Fiber Optic Gyroscopes

- Use coherent light to estimate angular rate
- Sagnac effect
 - A single light beam split and sent in opposite directions around a loop will emerge with a phase difference proportional to the angular velocity of the loop

 A detector can be built to look at the interference pattern and measure the rate

ω

Fiber Optic Gyro

- Very accurate measurement of rotation rates
 - Use 3 coils, in three different planes, to calculate true heading
 - No moving parts, no magnetic biases
 - Will estimate its own latitude $\omega_{ ext{observed}} \propto \sin(ext{lat})$

HeadingAccuracy 0.1 deg secant latitude ^[1] (2]

Resolution 0.01 deg
Settling time (static conditions) < 1 min
Full accuracy settling time (all conditions) < 5 min

Heave / Surge / Sway

Accuracy 5 cm or 5% (whichever is highest)
Set-up free (SAFE-HEAVE TH)

Roll / Pitch

Dynamic accuracy 0.01 deg (for ±90 deg amplitude)⁽²⁾
Range No limitation (-180 deg to 180 deg)

Resolution 0.001 deg

North-Seeking Gyrocompass/INS

- Mechanical Gyro
 - Obsolete
- Optical Gryo
 - Ring-Laser or Fiber-Optic
 - Accuracy
 - 0.1 Heading
 - 0.01 Pitch & Roll
 - Cold start in 5 minutes.
 - Power: 15-30W
 - Cost: \$30K \$80K

Kearfott KI4920 INS.

Ixsea Octans Gyrocompass

\ddot{x}

Inertial Navigation

$$x(t) = x(t_o) + \int_{t_o}^{t} \dot{x}(t_o)t + \int_{t_o}^{t} \ddot{x}(\tau) d\tau$$
Courtesy of Ryan Eustice

\ddot{x}

Inertial Navigation

Advantages

- High precision local navigation
- High update rate

Disadvantages

- Drift! Requires correction from position and velocity sensors:
 - XY position (LBL, USBL)
 - Z position (depth sensor)
 - Velocity correction (Doppler)
- Corrected accuracy ~0.1% 2% of distance traveled reported.
- Cost: US\$75K-\$250K
- Power: 15-50 Watt

Courtesy of Ryan Eustice

9

Accelerometer

- Pendular Accelerometer
 - Open loop
 - Closed loop

chipworks

spring

proof mass

capacitor plates

Estimation with Inertial Sensors

- Math on board
- Factor graph

"On-Manifold Preintegration for Real-Time Visual-Inertial Odometry", Forster, Carlone, Dellaert, Scaramuzza, IEEE Transactions on Robotics 2017

Implemented in gtsam library (https://bitbucket.org/gtborg/gtsam)

Example: GPS-Aided Inertial Navigation

Used in planes, robots...

Example: Vision-Aided Inertial Navigation

Monocular camera + IMU

Example: Laser-Aided Inertial

Inertial plus any of: camera, lidar, pressure, GPS, ...

e.g.: GPS-denied flight, distance 118nm = **218km**, landing position error **< 40m**

Lidar

Example: Doppler-Aided Inertial

Challenges underwater:

- No GPS
- No radio signals

Low visibility

Bluefin Hovering Autonomous Underwater Vehicle (HAUV)

DIDSON Sonar

SS Curtiss, San Diego (180m)

Doppler Velocity Log

 Constantly measure Doppler shift of "pings" as they reflect off the ground beneath the AUV.

 Can measure body-frame velocity of vehicle in x, y, z.

Doppler Effect

- Change in observed sound pitch caused by relative motion of the sound source or observer
 - Change in pitch is proportional to the speed of the source or observer
 - Dopper shift difference in frequencies

$$F_{shift} = F_{still} \left(\frac{v}{c} \right)$$

– Note:

$$F_{shift} \uparrow \ \$$
 For larger v and F For sound speed increase (or -v) $F_{shift} \downarrow \ \$

Figure 3. The Doppler effect. An observer walking into the waves will see more waves in a given time than will someone standing still.

Time 1

Doppler Based Navigation

- 1200 kHz RDI Doppler provides velocity measurements at 0.03% standard deviations at 1-10Hz.
- The resulting 4x1 vector of beam velocities can be linearly transformed to the instrument frame velocities.

$${}^w\dot{p}_d(t) = {}^w_vR(t) {}^v_iR {}^i\dot{p}_d(t)$$

•The world velocities are integrated, and the bottom track position determined using dead-reckoning:

$${}^{w}p_{d}(t) = \int_{t_{0}}^{t} {}^{w}\dot{p}_{d}(\tau)d\tau + {}^{w}p_{d}(t_{0})$$

Doppler Navigation Error Sources

Doppler velocity in the world frame

- Doppler Velocity Sensing Accuracy
 - Sensor Accuracy
 - Frequency vs Range
 - Update Rate
 - Sound Velocity Calibration
- 2. Doppler to Attitude-Sensor Alignment
- 3. Attitude Sensor Accuracy

Doppler Navigation

Advantages

- Vehicle-mounted
- High update rate
- Easily deployed
- ADCP current profiles

Disadvantages

- Limited bottom-lock range:
 (25m @ 1,200 kHz, 800m @ 75 kHz)
- Requires precision attitude reference (North-seeking gyrocompass)
- Requires calibration of Doppler to attitude sensor.
- Accuracy ~0.1% 5% of distance traveled
- Interference with other sonars
- Requires external reference (LBL, USBL, etc), for initialization and correction

Navigation: Latitude – Longitude (Y-X)

- Angular system of measurement of spherical earth
 - Reference to prime meridian Greenwich England
 - Parallels
 - Lines of constant Latitude
 - 1 degree 60 nm
 - Meridians
 - Lines of constant Longitude
 - 1 degree 60 nm at equator
 - 1 degree 42.5 nm at 45 N or S
 - Great Circle

 Line created by surface intersecting plane that passes through center sphere

Longitude = Time

- Longitude can be calculated using time difference between a reference location and you. (local apparent noon)
- The nautical mile (symbol M, NM, Nm or nmi) is a unit of length corresponding approximately to one minute of arc of latitude along any meridian.
- John Harrison 1693-1776
 - H4 lost 5.1 seconds on two month trip to Jamaica (1761)

Map projections

- Need a projection to move from 3D to 2D
- Now a Cartesian cord frame in (x,y), no longer angles

UTM (Universal Transverse Mercator)

- This is an ellipsoidal (WGS84) projection that divides the world into numbered zones in longitude, each 6 degrees wide
- Within each of the zones, the latitude and longitude difference from the central meridian is used to compute the UTM coordinates.

UTM coordinates

- UTM coordinates are given as Northing and Easting. (The east coordinates have 500,000 added so that they are not negative west of the central meridian)
- UTM's are in meters
- Distortions inside one grid are 1 in 1000.

GPS

- Launch some accurate clocks into orbit
 - Satellites broadcast the time and almanac of satellite positions
- Want to measure distance from receiver to satellites
 - dist = time * 299792458
- Assume receiver has atomic clock
 - Each satellite observation gives a sphere that the receiver must be on
 - Two spheres: circle
 - Three spheres: a point
- Receiver doesn't have an atomic clock
 - Use fourth satellite, add local time as unknown variable.
- Tricky GPS characteristic
 - Error characteristic non-Gaussian!

GPS IIR-15 (M), launched September 25, 2006 Courtesy of Ryan Eustice

GPS

- 24 satellites in 6 orbits
 - ~20,000 miles altitude
 - Orbit period ~ 12 hours
 - Each has multiple atomic clocks
 - Each broadcasts coded signals
 - L1 band 1575.42 MHz civilian
 - L2 band 1272.60 MHz military
 - (Fully) Operational in 1995
 - Positions relative to a WGS-84 ellipsoid (World Geodetic System)

Courtesy of Ryan Eustice

GPS Signals

- Signals send information to receiver
 - Time, location of satellite, satellite ID
 - All broadcast on the same frequency, using different Pseudo Random Number (PRN) sequences

GPS receivers

- Need to determine time delay between sent and received signal
 - Use local time and generate a version of the PRN sequence
 - Correlate the incoming and local sequence to find delay
 - Sequences from other satellites do not correlate well
 - Want 4 signals solve for positions and clock bias
 - Clock bias all signals will be off by the same difference in the satellite clock and local clock
 - Solve for intersection of spheres
 - Typically ~15 meter errors

GPS errors

Table 2 Standard error model - L1 C/A (no SA)

Error source

One-sigma error, m

Bias Random Total DGPS

- Ephemeris (satellite position)
- Multipath
- Troposphere /lonosphere
- Clock errors
- Satellite position (DOP)
 - Dilution of precision

Courtesy of Ryan Eustice

DOP > 4

Bad

GPS Errors

- Single-point positions collected for 24 hours on a rooftop using an expensive NovAtel OEM4 receiver.
 One sigma uncertainties are on the order of 2m, and in most cases would be greater if the receiver was in motion.
- A minimum of 4 satellites is required to determine a 3-D position (x,y,z,t). Horizontal Dilution of Precision (HDOP) is a metric characterizing the quality of GPS satellite coverage. A smaller HDOP value represents a better solution. For a "reasonable" GPS solution, HDOP should be < 3.

Improvements to GPS

- DGPS (Differential GPS)
 - Ground stations with known locations calculate corrections that can be applied to current signal
 - Corrections are sent out via ground based radio, need a special receiver to listen
 - Need to be within ~200 nm of station and be listening to the same set of satellites
 - Primarily atmospheric corrections
- WAAS (Wide Area Augmentation System)
 - Reduces error to ~3 meters, 95% of the time
 - Originally developed for FAA
 - Corrections broadcast via satellite to WAAS-enabled GPS receiver
 - (For the US only)
 - Euro Geostationary Navigation Overlay Service (EGNOS)

Additional measurements

Heading

- Most GPS's will derive a heading from motion, use with caution (Course Over Ground)
- Some will use two receivers to calculate a true heading,
 - ~1 degree accurate (no motion required)

Roll & Pitch

- Using multiple receivers to directly measure
- Very precise relative position (mm level) is determined between a pair of antennas (using differential carrier phase detection).
- Two baselines composed of three antennas completely define the Euler angles associated with aircraft attitude and can be used to compute pitch, roll, and yaw angles.

Angles

- Measure w.r.t. Gravity vector and earths rotation axis
- Naval architecture convention for labeling axes of a ship or submarine
 - Yaw rotation about z, + clockwise
 - Pitch rotation about y, + bow up
 - Roll rotation about x, + port up
- Use an angle sequence to describe angular position of a vessel
 - Yaw-pitch-roll is typical convention
 - CAREFUL sequences do not permute
 - YPR ≠ RPY

Magnetic Attitude Sensing Technology

3-Axis Magnetometer

- 1-5° Accuracy
- Low power < 1W
- Sensitive to heave, surge, sway.
- Cost \$0.5K
- Power < 1W

Image Credit: PNI Inc

Magnetometer/Compass

- Always a popular idea
 - Error doesn't integrate over time.
 - Unfortunately, hard to make work reliably
- Many sources of interference
 - Robot itself
 - Buildings
 - In fact, some have built maps of environments by using the local magnetic flux as a landmark!

Compass errors

 Variation: the angle between a magnetic line of force and a geographic (true) meridian at any location on the earth.

Causes:

- Variation exists because the earth's magnetic and geographic poles are not co-located.
- Magnetic anomalies in the earth's crust also contribute to variation.

Also called declination

Courtesy of Ryan Eustice

This difference

Compass errors con't

- <u>Deviation</u>: the angle between the actual magnetic meridian and the true meridian
- Causes:
 - Varies as a function of 0-360 angles on compass

 Deviation is caused by the interaction with surrounding metallic structures and electrical systems with the earth's

magnetic field

Compass Calibrations

Hard Iron – correct for distortions to the local magnetic field that are constant with orientation

Soft Iron – distortions that vary with orientation

Inertial Navigation Systems

- Derived a position by integrating measurements of only accelerations and angular rates
 - Need to solve for position, velocity, orientation
 - Inertial implies you will measure the rotation of the earth as well.
 The inertial frame is fixed to the stars.
- Only get a fixed reference at the start
- Error will grow with time
 - Error dominated by gyro heading error
 - INS drift nm/hr = 60 * Gyro drift deg/hr

 Aided INS – uses additional measurements of Position, Speed or Attitude