성층권 오존총량과 홍반 자외선 세기의 상관관계

〈소주제〉 오존의 역할에 대한 고찰

과목명

컴퓨팅 기초

화씨온도 팀

지도교수 변해선 교수님 학과/이름

화학부 박승연, 화학부 최지우

4

연구배경 및 필요성

1. 연구배경

<mark>가외선</mark>은 일반적으로 가외선A, 가외선B, 가외선C로 나뉘며, 이 중 가외선A와 자외선B는 오존층에 일부가 흡수되고 그 나머지가 지표에 도달한다. 지표에 도달하는 자외선은 적은 양이지만 인간과 동·식물에게 큰 피해를 줄 뿐만 아니라 광화학 반응에도 영향을 미치면서 대기 환경을 변화시킨다. 기상청은 자외선 복사 중 자외선A(320~400nm)와 자외선B 영역 중 인체에 홍반을 발생시키는 홍반자외선B(280~320 nm)를 관측하고 있다.

성층권에는 지구 대기에 존재하는 오존의 약 90%가 존재하며, 대체로 15~30km 사이에 오존 농도가 높게 존재하는 층을 <mark>오존층</mark>이라고 부른다. 오존층은 태양으로부터 유해 자외선 복사를 흡수하여 자외선으로부터 인간과 생태계가 유지될 수 있도록 보호하고 지구의 기후 조절에 중요한 역할을 하고 있다. 기상청은 세계기상기구(WMO) 지구대기감시(GAW) 프로그램의 일환으로 안면도 기후변화감시소에서 성층권 오존전량을 관측하고 있다.

2. 필요성

최근, 산업 활동과 환경 변화로 인해 오존층에 변화가 생겼으며, 이는 지구 표면의 자외선 노출 증가로 이어질 수 있다. 지표면의 유해 자외선 증가는 인간을 포함한 동식물에게 큰 피해를 야기할 수 있기 때문에, 이 프로젝트는 오존층의 변화가 자외선 강도에 어떤 영향을 미치는지를 분석하는 것을 목표로 한다.

3. 목표

본 프로젝트의 주요 목표는 오존층의 두께 및 구성 변화가 대한민국 표면에서의 자외선 강도와 어떠한 상관관계가 있는지 분석하는 것이다.

프로젝트 진행과정

1. 데이터 수집

기상자료개방포털 https://data.kma.go.kr/cmmn/main.do -> 데이터 -> 기후 -> 성층권 오존전량과 자외선 세기 데이터 수집 2014, 2015, 2016 3개년에 대한 데이터를 일 단위로 수집했다. 지역은 안면도(감)으로 통일하였다.

2. 전체코드

```
ozone_data = pd.read_csv('/content/ENV_OZONE_2014_2015_2016_merge.csv',
encoding='unicode escape', header=0, usecols = [1, 2])
ozone data.columns = ['date', 'ozone thickness']
uv data = pd.read csv('/content/ENV UV 2014 2015 2016 merge.csv',
encoding='unicode escape', header=0, usecols = [1, 3])
uv data.columns = ['date', 'uv intensity']
                                                                  #1
data = pd.merge(ozone data, uv data, on='date')
                                                            데이터 불러오기,
data = pd.DataFrame(data)
                                                             전처리, 합치기
data.dropna(inplace=True)
fig, ax1 = plt.subplots()
color 1 = 'tab:blue'
ax1.set title('Plot with 2 Axes for a dataset with different scales', fontsize=16)
ax1.set xlabel('Date')
ax1.set ylabel('Ozone thickness (blue)', fontsize=14, color=color 1)
ax1.plot(data['date'], data['ozone thickness'], color=color 1)
                                                                   #2
ax1.tick params(axis='y', labelcolor=color 1)
ax2 = ax1.twinx()
                                                                시계열 분석
color 2 = 'tab:red'
ax2.set ylabel('UV Intensity (red)', fontsize=14, color=color 2)
ax2.plot(data['date'], data['uv intensity'], color=color 2)
ax2.tick_params(axis='y', labelcolor=color_2)
fig.tight layout()
plt.show()
linear_regression = linear_model.LinearRegression()
linear regression.fit(X = pd.DataFrame(data['ozone thickness']), y =
data['uv intensity'])
                                                        #3
print('a value = ', linear_regression.intercept_)
print('b value = ', linear_regression.coef_)
                                                   단순회귀분석
X = data[['ozone thickness']] # 독립변수
y = data['uv intensity'] # 종속변수
X = sm.add constant(X) # 상수항 추가
model = sm.OLS(y, X).fit()
                                                                      #4
                                                                   상관계수
correlation = data['ozone thickness'].corr(data['uv intensity'])
print("상관계수: ", correlation)
                                                                   결정계수
print("결정계수 R-squared: ", model.rsquared)
```

plt.scatter(model.predict(X), model.resid) plt.xlabel('Predicted Values') #5 plt.ylabel('Residuals') plt.title('Residuals vs Predicted') 잔차분석 plt.axhline(y=0, color='r', linestyle='--') plt.show() fig, ax = plt.subplots(figsize=(6, 4)) stats.probplot(model.resid, dist="norm", plot=ax) #6 plt.title("Q-Q Plot of Residuals") plt.show() 산점도 회귀선추가 plt.figure(figsize=(10, 6)) plt.scatter(data['ozone_thickness'], data['uv_intensity'], alpha=0.5, label='Actual Data') prediction = linear_regression.predict(X = pd.DataFrame(data['ozone_thickness'])) plt.plot(data['ozone_thickness'], prediction, color='red', label='Regression Line') plt.xlabel('Ozone Thickness') #7 plt.ylabel('UV Intensity') plt.title('Ozone Thickness vs UV Intensity with Regression Line')

프로젝트 성과

1. 시계열 분석

plt.legend()

plt.show()

- Date 라는 공통 열을 중심으로 오존총량과 자외선 세기를 y축에 나타냈다. 이때 두 데이터의 숫자 scale이 달라 axis를 추가하는 코드를 작성했다.

(x축: Date, y축: Ozone thickness, UV intensity)

- 분석 결과

3개년을 분석한 결과가 다음과 같은 양상을 보이는 것으로 보아 1년을 주기로 오존총량과 자외선 세기가 주기를 가진다고 분석했다. 대체로 증가 추세가 유사하나 감소 추세는 자외선 세기가 오존총량보다 느렸다.

UV Intensity (re

Plot with 2 Axes for a dataset with different scales

2. 잔차 분석

잔차도

잔차란 실제값과 예측값의 차이를 뜻하며 이를 산점도로 나타낸 것이 잔차도인 것이다.

- 1. 잔차가 무작위하게 분포되어 있는 것을 확인할 수
- 2. 1. 을 통해 잔차들이 독립이라는 사실을 알 수 있다.
- 3. 0을 중심으로 약한 평행한 띠를 형성하여 등분산성을 검토했다.

Q-Q플롯이란 "Quantile"-"Quantile" 플롯의 줄인 말으로 두 확률 분포의 분위수를 비교하는 그래프이다. 이를 통해 잔차가 정규 분포를 따르는지 확인 할 수 있다.

Theoretical quantiles

- 1. 잔차가 대각선(45도) 근처에 대략적으로 위치하고 있다는 것을 볼 수 있다.
- 2. 1.을 통해 잔차는 정규 분포를 따른다고 결론 지을 수 있다.
- : 단순회귀분석을 위한 잔차의 검토를 마무리하였으며 결과적으로 잔차에 대한 가정에 적절히 들어 맞는다.

Q-Q 플롯

3. 데이터의 산점도와 회귀선의 시각화

회귀식: Y = 0.204 - 0.00250X X = 오존 총량 (독립변수) Y = UV 세기 (종속변수)

상관계수(r): -0.151 결과: 0에 가까운 음수이기에 오존 총량과 자외선 세기가 약한 음의 상관관계임을 알 수 있다.

결정계수 (r^2) : 0.0228 결과: 결정계수가 0에 가까움으로 현재 생성한 모델이 데이터를 설명하는 데 한계를 보이다고 결론 내릴 수 있다.

프로젝트 기대효과

1. 오존 총량과 UV세기의 상관관계 분석

선형회귀선을 그려 오존 총량과 UV 세기의 대략적인 관계를 확인 할 수 있었다. 강한 음의 관계는 아니지만 오존 총량이 늘어나면 UV 세기가 줄어드는 추세를 살펴볼 수 있었다. 그렇기에 추가적인 연구를 한다면 시계열 데이터를 참고해 오존 총량의 변화가 UV 세기 반영되기까지 어느 정도의 시간차를 가지고 있음을 고려해 미래의 연구를 진행할 수 있을 것이다.

2. 측정되는 UV 세기에 영향을 줄 수 있는 다양한 요인 제안

이번 연구는 단일회귀분석을 활용해 하나의 독립변수를 이용해 종속변수를 설명하려고 했다. 하지만 UV 세기는 다양한 요인에 영향을 받을 수 있다. 예를 들어 태양의 고도, 계절, 구름의 양과 종류, 날씨, 등 여러 요인이 UV 세기에 영향을 줄 수 있다. 만약 다중회귀분석을 이용한다면 다양한 독립변수를 설정해 UV 세기에 주는 요인을 파악 및 분석할 수 있기에 더 효과적인 분석이 될 수 있다.