Gra "Snake" sterowana sztuczną siecią neuronową. Specyfikacja Implementacyjna

Patryk Peszko

 $25~\mathrm{marca}~2021$

Spis treści

1	\mathbf{Wstep}	2
2	Środowisko deweloperskie	2
	2.1 Parametry komputera	. 2
	2.2 Programy wykorzystywane podczas projektu	
	2.3 Środowisko kompilacji	
	2.4 Standard	
3	Zasady wersjonowania	2
4	Struktura projektu	3
	4.1 Opis modułów	. 3
	4.2 Struktura	. 4
5	Algorytmy i struktury danych	4
6	Sztuczna sieć neuronowa	4
	6.1 Struktura sieci	
	6.2 Wizualizacja struktury sieci	
	6.3 Nienadzorowane nauczanie sieci	

1 Wstęp

Dokument ten jest kontynuacją dokumentu pt. "Gra "Snake" sterowana sztuczną siecią neuronową. Specyfikacja Funkcjonalna". W tym dokumencie postaram się opisać sposób w jaki mam zamiar napisać ten program, jak będę go wersjonować oraz z jakich modułów będzie się on składać.

2 Środowisko deweloperskie

2.1 Parametry komputera

- laptop Lenovo Ideapad 720s-14IKB z procesorem m Intel(R) Core(TM) i7-8555U CPU @ 1.80Ghz 2.00Ghz z 8 GB pamięci RAM, działającym na systemie Windows 10 Home wersja 1909

2.2 Programy wykorzystywane podczas projektu

- IntelliJ IDEA Community Edition 2019.3.2 x64

2.3 Środowisko kompilacji

- Microsoft Windows 10 Home wersja 20H2

2.4 Standard

Projekt pisany będzie zgodny z standardem Java 13.

3 Zasady wersjonowania

Wersje plików wrzucanych na gita będę zaznaczać w tag'ach. Krótkie komentarze, pisane w języku polskim, na temat zmian wprowadzonych w kodzie, będą się znajdować w commit'ach:

- "v n" wersja stabilna gdzie n = 0, 1, 2, ...
- "v n.m" wersja z drobnymi poprawami gdzie m = 1, 2, ...
- "v FINAL" ostateczna wersja programu

4 Struktura projektu

4.1 Opis modułów

Program będzie składał się z wymienionych modułów:

- Neuron.java pojedynczy neuron
- Layer.java warstwa sztucznej sieci neuronowej
- NeuronNetwork.java cała sieć neuronowa
- ListsHolder.java interfejs
- SnakeRunByNeuronNetwork.java klasa zarządzająca przebiegiem programu
- ReadFromFile.java klasa wczytująca z pliku
- WriteToFile.java klasa zapisująca do pliku
- Cell.java komórka planszy
- GameField.java pole gry
- Apple.java jabłko, dziedziczy po Cell.java
- Graphics.java zarządza GUI
- KeyOperations.java klasa obsługująca klawiaturę
- Snake.java wąż
- Game.java zarządza grą

4.2 Struktura

5 Algorytmy i struktury danych

Sieć neuronowa będzie przechowywać warstwy w liście liniowej. Warstwy sieci neuronowej będą przechowywać neurony w liście liniowej. Czyli cała sieć będzie przechowywana w liście liniowej list liniowych. Komórki, z których będzie się składać wąż, również będą przechowywane w liście liniowej. Listy

liniowe i stałe zmienne będą przechowywane w interfejsie.

6 Sztuczna sieć neuronowa

Zaimplementuję jednokierunkową sieć neuronową. Wszystkie neurony będą mieć tę samą funkcję aktywacji ReLu (rektyfikowana jednostka liniowa). Pierwszy neuron wyjściowy będzie odpowiedzialny za skręcenie w lewo. Drugi za pójście prosto. Trzeci za skręcenie w prawo. Sieć będzie wybierać neuron o największej wartości i obierać kierunek odpowiadający danemu neuronowi.

6.1 Struktura sieci

Sieć neuronowa będzie zbudowana z 4 warstw. Pierwsza warstwa 24 neuronów, dwie kolejne będą miały po 18 neuronów a ostatnia będzie się składać z 3 neuronów wyjściowych.

6.2 Wizualizacja struktury sieci

6.3 Nienadzorowane nauczanie sieci

Pierwsza generacja węży będzie mieć sieci o współczynnikach losowych. Po zakończeniu gry przez wszystkie węże w danej generacji będzie wybierany najlepszy wąż. Każde jabłko zjedzone przez węża będzie warte 50 punktów a każdy ruch 1 punkt. Wąż będzie startował z możliwością wykonania 100 ruchów, za każde zjedzone jabłko będzie dostawać kolejne 50 ruchów. Po wybraniu najlepszego węża zostanie stworzona kolejna generacja węży, których sieci będą zawierać współczynniki losowe z zakresu <0.9x, 1.1x>, gdzie x jest współczynnikiem najlepszego węża z poprzedniej generacji.