Updates on Multimode ECD (Theory)

August 4, 2023

Aim

Enact high-speed multimode gate operations while reducing propagation of ancilla errors into the cavity.

Displacement Enhanced Interactions

Large cavity displacements as a switch to enhance cavity-ancilla interaction strength

- Weak $\chi/2\pi \sim 30$ kHz but strong $\chi\alpha_0/2\pi \sim 1$ MHz

$$\chi a^{\dagger} a \sigma_z \qquad \qquad \chi \left(\alpha_0 a^{\dagger} + \alpha_0^* a \right) \sigma_z$$

$$D(\alpha_0)$$

$$|\alpha_0| \le \sqrt{n_{crit}} = \Delta/2g$$

Echoed Conditional Displacements

At T/2,

$$\alpha \to -\alpha$$

$$\sigma_z \to -\sigma_z$$

echoes out unwanted terms from Hamiltonian

Q: Echo of $\chi a^{\dagger} a \sigma_z$ partial?

- 1. It seems that $\chi a^{\dagger} a \sigma_z$ is only partially echoed out. But in S4A, use of classical variable, the derivation shows that $\chi a^{\dagger} a \sigma_z$ is completely removed from the unitary. Mismatch?
- 1. Whether Qutrit ansatz is correct?

Multimode ECD

Find pulse parameters $\vec{\beta}$, $\vec{\gamma}$, $\vec{\phi}$, $\vec{\theta}$ which realize a target unitary U

Multimode ECD

Task: Swapping photons between two modes $|g0n\rangle \rightarrow |gn0\rangle$

Problem: High Fidelity Pulses are **long** (5-15 μs) compared to typical ancilla transmon lifetime (100 μs)

Idea: f -state

 Naik et. al required fstate of the transmon to perform multimode gates.

• Maybe f-state can help find ECD sequences with lower layer count.

Circle GRAPE with f state

- Both modes displaced to $D(\alpha = 30)$
- Optimizing qubit drives :
 - Only *ge* qubit drive
 - Both ge and ef qubit drive

Upshot: Inclusion of a *ef* qubit drive improves convergence

ECD with f-state

Objective: Realize ECD gates with qutrit ancilla

$$ECD = \begin{bmatrix} D\left(\frac{\beta}{2}\right) & \\ & D\left(-\frac{\beta}{2}\right) \end{bmatrix}$$

$$ECD_{ge} = \begin{bmatrix} D\left(\frac{\beta}{2}\right) & & \\ & D\left(-\frac{\beta}{2}\right) & \\ & & 1 \end{bmatrix}$$

$$ECD_{ef} = \begin{bmatrix} 1 & & \\ & D\left(\frac{\beta}{2}\right) & \\ & & D\left(-\frac{\beta}{2}\right) \end{bmatrix}$$

Question: What pulse sequence would realize ECD_{qe} ?

Note that
$$H = \chi a^{\dagger} a \sigma_{ge}^{z} + \chi a^{\dagger} a |f\rangle\langle f| + \epsilon (t) a^{\dagger} + \epsilon^{\star}(t) a$$

Dispersive Interaction

Cavity Drive

$$U = e^{\begin{bmatrix} -\theta_{ge} & & \\ & \theta_{ge} & \\ & & \theta_{f} \end{bmatrix}} \times \begin{bmatrix} -\delta_{ge} & & \\ & & \delta_{ge} & \\ & & \delta_{f} \end{bmatrix} a^{\dagger} - h.c.$$

$$e^{i\phi_f a^{\dagger}a|f\rangle\langle f|}$$

 $|g\rangle$

 $|e\rangle$

 $Re(\alpha)$

Now adding in f state

Question: What pulse sequence would realize ECD_{qe} ?

Note that
$$H = \chi a^{\dagger} a \sigma_{ge}^{z} + \chi a^{\dagger} a |f\rangle\langle f| + \epsilon (t) a^{\dagger} + \epsilon^{\star}(t) a$$

Dispersive Interaction

Cavity Drive

$$U = e^{\begin{bmatrix} -\theta_{ge} & \\ \frac{i}{2} & \theta_{ge} \\ \theta_f \end{bmatrix}} \times \begin{bmatrix} -\delta_{ge} & \\ \delta_{ge} & \\ \delta_f \end{bmatrix} a^{\dagger} - h.c.$$

$$e^{i\phi_f a^{\dagger}a|f\rangle\langle f|}$$

Summary

Generalized ECD to multimode system

- Inclusion of ef qubit drive improved convergence
- ECD with Qutrit ancilla (In progress)
 - Coming up with a pulse sequence to realize ECD_{ge}

Scratch

First Guess for ECD_{ge}

Question: Does the following pulse sequence echo out the unwanted f-state terms?

Not completely

$$U = e^{\frac{i}{2}(\theta_{ge} - \theta_{f})\sigma_{ge}^{Z}} \times e^{\begin{bmatrix} \delta_{f} \\ \delta_{ge} \\ -\delta_{ge} \end{bmatrix}} \times e^{\frac{i}{2}(\theta_{ge} - \theta_{f})\sigma_{ge}^{Z}} \times e^{\begin{bmatrix} \delta_{f} \\ \delta_{ge} \\ -\delta_{ge} \end{bmatrix}} \times e^{\frac{i}{2}(\theta_{ge} - \theta_{f})\sigma_{ge}^{Z}} \times e^{\frac{i}{2}(\theta_{fg} - \theta_{f})\sigma_{ge}^{Z}} \times e^{\frac{i}{2}$$

