Tutorial 8 Bipolar junction transistor (Basic concept)

Question 1

A BJT has $I_C=1$ mA and $I_B=10$ uA. What are I_E , β_F and α_F ?

Solution:

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 1 \,\text{mA} + 10 \,\mu\text{A} = 1.01 \,\text{mA}$$

$$\beta_{\rm F} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{1 \,\text{mA}}{10 \,\mu\text{A}} = 100$$

$$\alpha_{\rm F} = \frac{I_{\rm C}}{I_{\rm E}} = \frac{1 \,\text{mA}}{1.01 \,\text{mA}} = 0.9901$$

Question 2

Using Device Curves of a bipolar junction transistor to determine its α and β .

Solution:

For example:

at
$$v_{CE}$$
=4 V and i_B =30 μ A; i_C =3 mA;

$$\beta = \frac{i_C}{i_B} = \frac{3 mA}{30 \mu A} = 100$$
$$\alpha = \frac{\beta}{\beta + 1} = 0.99$$

Question 3

Compute transistor parameters I_B , I_C , V_{BE} , V_{CE} (Si BJT with $\beta = 100$).

Solution:

BE-KVL: $4 = 40 \times 10^3 i_B + v_{BE} + 10^3 i_E$

CE-KVL: $12 = 10^3 i_C + v_{CE} + 10^3 i_E$

Assume Cut - off: $i_B = 0$, $i_C = 0$ and $v_{BE} < V_{D0} = 0.7 \text{ V}$

 $i_E = i_B + i_C = 0$

BE-KVL: $4 = 40 \times 10^3 \times 0 + v_{RE} + 10^3 \times 0 \rightarrow v_{RE} = 4 \text{ V}$

 $v_{BE} = 4 \text{ V} > V_{D0} = 0.7 \text{ V} \rightarrow \text{Assumption incorrect}$

Because BE-KVL depends on i_E (there is a resistor in the emitter circuit), i_B would depend on the state of transistor (active or saturation)e

BE-KVL: $4 = 40 \times 10^3 i_B + v_{BE} + 10^3 i_E$

CE-KVL: $12 = 10^3 i_C + v_{CE} + 10^3 i_E$

Assume Active: $i_C = \beta i_B$ and $v_{CE} \ge V_{D0} = 0.7 \text{ V}$

BE ON: $v_{BE} = V_{D0} = 0.7 \text{ V}$ and $i_B \ge 0$

 $i_E = i_B + i_C = (\beta + 1) i_B = 101 i_B$

BE-KVL: $4 = 40 \times 10^3 i_B + v_{BE} + 10^3 \times 101 i_B$

 $4 = (40 + 101) \times 10^{3} i_{B} + 0.7 \rightarrow i_{B} = 23.4 \,\mu\text{A}$ $i_{C} = \beta i_{B} = 100 \times 23.4 \times 10^{-6} = 2.34 \,\text{mA}$ $i_{E} = i_{B} + i_{C} = 2.36 \,\text{mA}$

CE - KVL: $12 = 10^3 \times 2.34 \times 10^{-3} + v_{CE} + 10^3 \times 2.36 \times 10^{-3} \rightarrow v_{CE} = 7.3 \text{ V}$ $v_{CE} = 7.3 \text{ V} > V_{D0} = 0.7 \text{ V} \rightarrow \text{Assumption correct}$

It is a very good approximation to set $i_E \approx i_C$ in the active mode!

- -