MAT-032: Probabilidad y Estadística Comercial

Felipe Osorio

http://fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Información

Horario:

Clases: Lunes, bloque 16-20 (19:05-22:20 hrs.) via Zoom

Taller: Martes, bloque 16-20 (19:05-22:20 hrs.) a cargo de prof. Enzo Hernández.

Ayudante: Fabián Ramírez

Contacto:

E-mail: felipe.osorios@usm.cl.

Web: http://fosorios.mat.utfsm.cl/teaching.html y AULA

Evaluación:

Se realizará 3 Certámenes, Controles y Tareas.

Ponderaciones:

Sea \overline{C} , \overline{Q} y \overline{T} el promedio de certámenes, controles, y tareas, respectivamente. De este modo, la nota de presentación (NP) es dada por:

$$NP = 0.8\,\overline{C} + 0.1\,\overline{Q} + 0.1\,\overline{T}.$$

Criterio de aprobación

Criterio de aprobación:

Aquellos estudiantes que obtengan NP mayor o igual a 55 y **todos** los certámenes sobre 40, aprobarán la asignatura con nota final, NF=NP.

Criterio para rendir global:

En caso contrario, y siempre que $NP \geq 45$, los estudiantes podrán rendir el certamen global (CG), en cuyo caso la nota final es calculada como sigue:

$$NF = 0.6 \cdot NP + 0.4 \cdot CG.$$

Reglas adicionales

- Se llevará un control de asistencia.
- ▶ Se puede realizar preguntas sobre la materia en cualquier momento.
- Los alumnos deben apagar/silenciar sus teléfonos celulares durante clases.
- Conversaciones sobre asuntos ajenos a la clase no serán tolerados. Otros estudiantes tiene derecho a asistir clases en silencio.
- Al enviar algún e-mail al profesor, identificar el código de la asignatura en el asunto (MAT206).
- E-mail será el canal de comunicación oficial entre el profesor y los estudiantes.

Reglas: sobre las pruebas

- Es derecho del estudiante conocer la pauta de corrección la que será publicada en la página web del curso.
- El uso de lápiz grafito es aceptado. Sin embargo, inhabilita al estudiante de pedir recorrección.
- Pedidos de recorrección deben ser argumentados por escrito.
- En modalidad online, Certámenes, Controles y Tareas deben ser enviados en formato PDF.¹
- Cualquier tipo de fraude en prueba (copia, WhatsApp, suplantación, etc.) implicará la reprobación de los involucrados.²

¹En un único archivo, orientado en una dirección legible.

²Puede implicar la apertura de un proceso disciplinario.

Orientaciones de estudio

- Mantener la frecuencia de estudio de inicio a final del semestre. El ideal es estudiar el contenido luego de cada clase.
- Estudiar primeramente el contenido dado en clases, buscando apoyo en las referencias bibliográficas.
- Las referencias son fuentes de ejemplos y ejercicios. Resuelva una buena cantidad de ejercicios. No deje esto para la víspera de la prueba.
- Buscar las referencias bibliográficas al inicio del semestre, dando preferencia a las principales y complementarias.

Programa del curso

- Introducción y conceptos básicos.
- Estadística descriptiva.
- Cálculo de probabilidades.
- Variables aleatorias.
- Inferencia estadística.

Bibliografía

Canavos, G. (1990).

Probabilidad y Estadística, Aplicaciones y Métodos.

McGraw-Hill Latinoamericana.

Meyer, P.L. (1976)

Probabilidad y Aplicaciones Estadísticas.

Fondo Educativo Interamericano.

Newbold, O., Carlson, W.L., Thorne, B. (2008). Estadística para Administración y Economía (6ta Ed.). Prentice Hall, Madrid.

Wackerly, D., Mendenhall, W., Scheaffer, R. (2008). Estadística Matemática con Aplicaciones.

Cengage Learning.

Motivación mediante ejemplos

- Existe competencia en el mercado de AFPs chileno?
- ▶ Modelando rentabilidades de acciones en el mercado chileno usando el CAPM³.
- ldeas sobre el proceso de modelación.
- Algunos conceptos preliminares.

³CAPM: Capital asset pricing model

Ideas subyacentes

```
"Todos los modelos son errados, pero algunos son útiles."
— George Box.
```

"Aunque puede parecer una paradoja, toda la ciencia exacta está dominada por la idea de aproximación."

- Bertrand Russell.

Principio KISS: "Keep It Simple, Stupid."

- Clarence "Kelly" Johnson.

Ideas subyacentes

"Todos los modelos son errados, pero algunos son útiles."

- George Box.

"Aunque puede parecer una paradoja, toda la ciencia exacta está dominada por la idea de aproximación."

- Bertrand Russell.

Principio KISS: "Keep It Short and Simple."

- Clarence "Kelly" Johnson.

El éxito de Google: Aplicar el principio KISS⁴

Evolución de Yahoo vs. Google:

Cuota de mercado de los motores de búsqueda:

⁴En estadística este se conoce como Principio de Parsimonia.

Esto NO es una crítica al sistema de AFP...

Administradoras de Fondos de Pensiones (AFP) de Chile

Aplicación:

El sistema de AFP (o de capitalización individual) chileno está en vigor desde 1980.

Ahorros de los contribuyentes son administrados en un sistema de multifondos.

Existe 5 tipos de fondos (A, B, C, D y E) divididos por la proporción del portfólio que es invertido en títulos de renta variable.

El fondo A tiene la mayor proporción de inversión en renta variable, la que disminuye progresivamente para los fondos B, C, D y E.

Conjunto de datos:

Rentabilidades mensuales de AFPs: Cuprum, Habitat, PlanVital y ProVida en el periodo de agosto/2005 a diciembre/2013.

Datos fueron obtenidos desde el sitio web de la superintendencia de pensiones (www. spensiones.cl)

Conjunto de datos con 101 observaciones y 4 variables (solamente datos del Fondo D).

Obs. 28, 30, 35, 38, 39, 42, 66, 73 y 75 son identificadas como outliers.

QQ-plot de distancias transformadas revelan la presencia de colas pesadas.

Identificando observaciones atípicas

En mercados emergentes como el chileno suele ocurrir periodos con alta volatilidad.

Existe una bateria de procedimientos para detectar observaciones que presentan un comportamiento es aberrante/atípico.

Este tipo de observaciones puede tener un efecto nefasto sobre la inferencia estadística.

Evaluando los supuestos distribucionales

El supuesto de normalidad es habitual en este tipo de problemas.

Es decir, suponga x_1, \ldots, x_n una muestra aleatoria desde $\mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$.

Usando test de hipótesis y técnicas gráficas se concluye que el supuesto de normalidad no es soportado por los datos.

Análisis multivariado usando la distribución t de Student

Características del problema:

- ► AFPs invierten esencialmente en la misma cartera de inversiones.
- Mercados emergentes suelen presentar alta volatilidad.
- Los datos son bien modelados usando la distribución t multivariada.

Conclusiones:

- Aparentemente, no existe competencia en el mercado de AFP.
- Cálculo óptimo de los porcentajes de inversión en los distintos fondos.
- ► Test para evaluar la igualdad entre razones de Sharpe.⁵

⁵Trabajo en desarrollo junto al prof. Manuel Galea (PUC)

Datos de Concha y Toro (Osorio y Galea, 2006)⁶

Rentabilidades mensuales de Concha y Toro vs. IPSA, ajustados por bonos de interés del Banco Central entre marzo/1990 a abril/1999.

⁶Statistical Papers **47**, 31-38

Datos de Concha y Toro

Modelo CAPM (Valoración de Activos de Capital), Sharpe (1964)⁷

$$E(r) = r_f + \beta (E(r_m) - r_f),$$

usando datos observados, podemos escribir

$$R_t = \alpha + \beta \times IPSA_t + \epsilon, \qquad t = 1, \dots, T.$$

Características del problema:

- Relación lineal entre las variables.
- Posibles periodos de alta volatilidad.

Hipótesis de interés:

- $ightharpoonup H_0: \beta > 1$ (Amante del riesgo).
- $H_0: \beta = 1$ (Neutral al riesgo).
- ▶ $H_0: \beta < 1$ (Averso al riesgo).

⁷ Journal of Finance **19**, 425-442

Datos de Concha y Toro

Ajuste usando errores normales (—) y Cauchy (– –). ($\widehat{\beta}=0.89$ y $\widehat{\beta}=0.35$, respectivamente). The substitution of the content of the cont

Considere la función

$$Y = \sin\{2\pi (1-x)^2\},\,$$

cuyo gráfico es dado por:

Suponga que "generamos" datos, usando

$$Y_i = \text{sen}\{2\pi(1-x_i)^2\} + \sigma\epsilon_i, \qquad i = 1, \dots, 100,$$

donde $x_i \sim \mathcal{U}(0,1)$, $\epsilon_i \sim \mathcal{N}(0,1)$ y $\sigma = 1/2$,

Lamentablemente, en la práctica sólo disponemos de los datos observados:

$$(x_1, Y_1), (x_2, Y_2), \ldots, (x_{100}, Y_{100}),$$

el primer paso es hacer un análisis exploratorio:

El analista propone el modelo:

$$Y_i = g(x_i) + \epsilon_i, \qquad i = 1, \dots, 100,$$

y su objetivo es "estimar" la función $g(\cdot)$ desde los datos, obteniendo

En Estadística se estudia teóricamente, la "bondad del modelo" comparando

$$\hat{Y} = \hat{g}(x),$$
 v.s. $Y = \sin\{2\pi(1-x)^2\},$

esto es, el modelo ajustado v.s. el modelo subyacente (verdadero).

Esquema de Modelación Estadística

Recolección de datos: Muestreo.

Análisis exploratorio de datos.

Análisis Multivariado.

Técnicas de Regresión.

Series de Tiempo, entre (muchas) otras.

Inferencia Estadística

Bondad de ajuste, técnicas gráficas.

Análisis de Sensibilidad.

Comunique sus resultados!

Investigación Estadística

Método Científico:

Observación sistemática, medición y experimentación, y la formulación, análisis y modificación de las hipótesis.

- Etapas de una Investigación Estadística.
 - Formulación del problema.
 - Diseño del experimento.
 - Experimentación y recolección de datos.
 - Tabulación y descripción de los resultados.
 - Inferencia estadística.

Conceptos básicos

- Población: Conjunto de entidades (indivíduos, elementos) desde los que se desea extraer información, i.e. hacer inferencias.
- Muestra: Es un subconjunto de la población, seleccionada de acuerdo a una regla o plan.
- Variable: Características o atributos de los elementos que conforman la población.
 - Categóricas: Partición en dos o más clases (variables discretas o factores).
 - Binarias: sólo dos categorías (masc/fem, fumador/no fumador).
 - Nominal: no existe orden entre categorías (país de origen).
 - Ordinal: categorías tienen un orden natural (leve/moderado/grave).
 - Cuantitativas: Pueden adoptar infinitos valores sobre un conjunto (R).

Tipos de muestreo

Ejemplo: Datos del SIMCE.

- Regiones geográficas.
- ▶ Niveles educacionales: 2°, 4°, 8° básico; 2° medio.
- Dependencia: Municipal, Subvencionado, Particular.
- ► Área: Urbano, Rural.

Tipos de muestreo

► Muestreo Aleatorio Simple (m.a.s.)

Todas las muestras posibles de tamaño n desde una población de tamaño N tienen la misma probabilidad de ser escogida.

► Muestreo Estratificado

Se emplea cuando la población está agrupada en varios grupos homogéneos o estratos. Luego, se obtiene una m.a.s. desde cada estrato.

Muestreo Sistemático

En este caso las unidades de la población están ordenadas y se selecciona la muestra aprovechando este ordenamiento.

Suponga que se desea una muestra de tamaño n desde una población de tamaño N y considere K el entero más cercano a N/n. Se escoge un numero al azar entre 1 y K, luego se selecciona una observación cada K observaciones hasta obtener una muestra de tamaño n.

Tipos de muestreo

► Muestreo por Conglomerado

Se emplea cuando la población está dividida en grupos pequeños. Consiste en una m.a.s. de conglomerados y luego se censa cada uno de éstos.

► Muestreo en dos Etapas

Primero se selecciona una muestra de unidades primarias y luego se realiza un muestreo desde cada muestra escogida.

Gráfico circular: se usa para representar magnitudes en frecuencias o porcentajes. El largo de arco (i.e. área) de cada sector es proporcional a la cantidad que representa.

Ejemplo: Distribución de colores en bolsitas de M&M (chocolate de leche)

Ejemplo: Proporción de población anglófona en el mundo

Limitación: Gráfico circular de un arcoiris.

HOW PROFESSORS SPEND THEIR TIME

How departments expect them to spend their time:

How Professors would *like* to spend their time: JORGE CHAM @ 2008

WWW. PHDCOMICS. COM

Gráfico de Barras

Gráfico de barras (bloques): la magnitud de la variable es representada por la altura de un rectángulo. Permite una mejor comparación que juzgando áreas relativas.

Ejemplo: Promedio prueba SIMCE Lenguaje en 631 establecimientos de Valparaíso.

Gráfico de Barras

Particular

Municipal

Subvencionado

Gráfico de Barras

Notes: Administrator figures are medians salaries, the rest are averages. All figures in 2008 dollars. Sources: College and University Professional Association for Human Resources 2005 Survey; American Association of University Professors 2007 Survey; The Chronicle of Higher Education 2001 Survey of Graduate Assistants; USA Today Survey of Div. In A College Football Coaches Compensation 2007.

WWW.PHDCOMICS.COM

Histograma

Histograma: usa rectángulos para visualizar frecuencias y proporciones. Se debe:

- dividir el rango de los datos en "bins"
- contar el número de observaciones en cada clase
- dibujar rectángulos representando las frecuencias o porcentajes

Ejemplo: Diámetro (mm) de pernos producidos por una máquina en un día.

72	61	76	76	67	67	77	
77	72	69	62	71	67	63	
71	81	64	72	73	72	78	
73	76	65	84				

Histograma

Reglas para escoger el número de bins:

Raíz cuadrada:

$$k = \sqrt{n}$$

► Regla de Sturges:

$$k = 1 + 3.3 \log_{10}(n),$$

Regla de Rice:

$$k = \left\lceil 2n^{1/3} \right\rceil,$$

En general es posible considerar

$$k = \left\lceil \frac{\max\{x\} - \min\{x\}}{h} \right\rceil,$$

donde h es el "ancho de ventana".

Otros tipos de reglas: Doane, Scott, Freedman-Diaconis.

Histograma

Función de distribución acumulada empírica (ojiva)

 $F_n(x)$, cdf empírica, atribuye a cada valor de x, la fracción de datos menos o igual a x, i.e,

$$F_n(x) = \frac{1}{n} \# \text{ elementos } \le x$$

= $\frac{1}{n} \sum_{i=1}^n I_{\{x_i \le x\}}.$

Función de sobrevivencia:

$$S_n(x) = 1 - F_n(x).$$

Función de distribución acumulada empírica

Diagrama de dispersión (scatterplot)

Se utilizan cuando tenemos pares de observaciones

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n),$$

que pueden ser descritos por alguna función

$$Y = f(x)$$
.

Permiten identificar:

- relaciones funcionales
- agrupaciones
- direcciones de asociación

Diagrama de dispersión (scatterplot)

Series de tiempo

Algunos conjuntos de datos tienen un ordenamiento natural, por ejemplo el tiempo.

Series de tiempo

Muertes por bronquitis, enfisema y asma en UK, 1974-1979.

Series de tiempo

Análisis de puntos de cambio (Chen y Gupta, 2011).

Otros tipos de gráficos

Coordenadas de las muestras de suelo

Concentración de Plomo

Otros tipos de gráficos

Flamabilidad de nanotubos

Estudio reproductivo con roedores

Otros tipos de gráficos

Comparación del patrón de crecimiento de dos genotipos de plantas de soya (Davidian y Giltinan, 1995). Variedad comercial (F), Variedad experimental (P).

Referencias adicionales sobre gráficos en Estadística

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983). Graphical Methods for Data Analysis.

Wadsworth & Brooks/Cole.

Cleveland, W.S. (1993).

Visualizing Data.

Hobart Press, Summit.

Murrell, P. (2005).

R Graphics.

Chapman & Hall/CRC Press.

Sarkar, D. (2008).

Lattice: Multivariate Data Visualization with R.

Springer. URL: http://lmdvr.r-forge.r-project.org

Wilkinson, L. (2005).

The Grammar of Graphics, 2nd edition.

Springer.

