遥感知识点总结

- 1、广义遥感:一切无接触的的远距离包括对电磁场、力场、机械波等的探测。
- 2、狭义遥感:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特征记录下来,揭示出物体的特征性质及其变化的综合性探测技术。
- 3、遥测(对比):对被测物某些运动参数和性质进行远距离测量。
- 4、遥感系统:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用。
- 5、遥感器(传感器):接收、记录目标物电磁波特征的仪器,如扫描仪、雷达、摄影机等。
- 6、遥感平台(按高度从低到高):

地面遥感: 传感器设置在地面上, 如车载、船载、手提等平台;

航空遥感: 传感器设置在航空器上, 如飞机、气球;

航天遥感:传感器设置在环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭;

航宇遥感:传感器设置在星际飞船上(对地月系统外的目标的探测);

7、遥感的特点:

大面积的同步观测:相对于传统的地面调查,遥感观测试试简单且不受地形阻隔等限制,遥感平台越高,视角越宽广,可以同步探测到的地面范围越大,容易发现地球上一些重要目标地物的空间分布宏观规律;

时效性: 短时间内可以对同一地区进行重复探测, 发现地物动态变化;

数据的综合性和可比性:遥感获取的地物电磁波特性可以综合地反映地球上许多自然人文信息(综合性),新的传感器和信息记录都可以向下兼容(可比性);

经济性: 遥感的使用具有很高的经济效益与社会效益, 收益远高于 传统方法;

局限性:目前遥感技术能利用的电磁波很有限;

8、电磁波: 指电磁振动的传播, 具有偏振现象 (振动方向不随时间改变), 横波, 可以在真空中传播

	波 段	波 长		
	ķī	0.20	0.62·-0.76 μm	
T Z K	橙	0.38	$0.59 - 0.62 \mu m$	
	黄	,	0.56~0.59 jum	
	绿	, ,	0.50~0.56 μm	
	青	0.74	0.47~0.50 μm	
	蓝	0.76	0.43~0.47 jum	
	紫	μm	0.38 ·· 0.43 μm	
	紫外线		$10^{-3} \sim 3.8 \times 10^{-1} \mu m$	
	X射线		$10^{-6} \sim 10^{-3} \mu m$	
γ射线		小于 10 ⁻⁶ μm		

9、—

微波:

1mm-1m;

近红外: 中红外: 0.76-3um; 3-6um:

远红外:

6-15um;

10、大气散射:辐射在传播过程中遇到小微粒而使传播方向改变,向各个方向散开,使原传播方向的辐射强度减弱,增加其他方向的辐射。

瑞利散射: 当大气中粒子的直径比波长小得多时发生的散射。散射强度与波长的四次方成反比。(无云的天空呈现蓝色因为蓝光波长短,散射强度大。朝霞夕阳也是这样)

米氏散射: 当大气中的粒子直径与波长相等时发生的散射,主要由大气中的烟、尘埃、小水滴等气溶胶引起。散射强度与波长的二次方成反比。(云雾对红外线散射)

无选择性散射: 当大气中的粒子的直径比波长大很多的时候发生的散射。散射强度与波长无关(云雾呈白色)

- 11、大气窗口: 电磁波通过大气层时较少被反射、吸收、散射的、透过率较高的波段,主要是紫外、可见光、近红外波段。
- 12、地物反射波普特征:

到达地面的太阳辐射能量($Es(\lambda)$)=反射能量($Ep(\lambda)$)+吸收能量($Ea(\lambda)$)+投射能量($Et(\lambda)$)

- 13、反射率: 物体反射的辐射能量 Pp占总入射能量P0的比例
- 14、物体的反射:物体表面情况不同,反射率也不同

镜面反射: 物体的反射满足反射定律即入射角=反射角

漫反射:不论入射方向如何,虽然反射率与镜面反射一样但反射方向是四面八 方

实际物体反射:介于镜面反射与朗博面(漫反射面)之间

15、反射波谱:

植被

水体: 土壤: 岩石:

16、传感器的分辨率:

辐射分辨率:传感器区分接收到的电磁波辐射强度差异的能力

光谱分辨率:传感器记录的电磁波谱的波长范围和数量;波长范围越短,波段

数越多,光谱分辨率越高

空间分辨率:遥感图像上能够详细区分的最小单元的尺寸或大小,是表征图像

分辨目标细节能力的指标(小于10M为高分辨率);

时间分辨率: 传感器对同一空间区域进行重复探测时两次相邻探测时间的间隔;

重复周期:卫星图像再次覆盖完全相同区域所需时间,一般长于重访周期;

重访周期:卫星经过同一个星下点的时间间隔;

17、常见传感器数据:

法国SPOT: 多光谱分辨率20米, 全色波段10米, HRV传感器, 回归周期26天

美国LANDSAT5: TM传感器,多光谱分辨率30米,全色波段15米,

回归周期: 16天

QUICK BIRD: 全色波段分辨率0.61米, 多光谱2.44米, 重访周期1-6

天,

IKONOS:全色波段1米,多光谱4米,重访周期3-4天,全色传感器

KONOS: 全1	三波段Ⅰ米,多光 1	^{谓4米} ,里功周期	3-4大,全色传感器			
_ 加刑专题绘图	图仪)遥感器来获知 15 四色波段,分辨率为 15 四	,并以上	1/			
则县增加了全年	西波段,分辨率为10	5 上 TM 技术参数 ★ 波段名称	地面分辨率/m			
加定增加了工	. 4	5 L TM IX	到 30			
(表 5.4)。	表 5. 3 Landsat - 3	波段名称	30			
	波长范围/µm	蓝色	30			
波段序号	0. 45 ~ 0. 52	绿色	30			
1	0. 52 ~ 0. 60	红色	30			
2	0. 63 ~ 0. 69	近红外	120			
3	0.76~0.90		m 100 day 3.1 20 0			
4 5	1. 55 ~ 1. 75	执红外	30			
6	10. 4 ~ 12. 5	短波红外				
7	2. 08 ~ 2. 35					
	+ = 4 Londsat - 7	上 TM 技术参数 🛠				
	表 5.4 Landsat - /	in to the	地面分辨率/m			
4000	波长范围/µm	波段名称	30			
波段序号	0. 45 ~ 0. 52	蓝色	30			
1	0. 52 ~ 0. 6	绿色				
2	0. 63 ~ 0. 69	红色	30			
3	0. 76 ~ 0. 90	近红外	30			
4		短波红外	30			
5	1. 55 ~ 1. 75	热红外	60			
6	10.4 ~ 12.5					
	2. 08 ~ 2. 35	短波红外	30			
PAN	0.50 ~ 0.90	全色波段	15			
		主要应用领域				
波段序号 波	段	工文型// · · · · · · · · · · · · · · · · · ·	区分土壤和植被、编制森林			
成权/5 5	色 对水体有透射能力,能	够反射浅小小一	区分土壤和植被、编制森林			
1 m	类型图、区分人造地物	类型	在作物长势,区分人造地			
2 / 绿1	探测健康植被绿色反射	十率、可区分植被 突型和17	ППР			
MIND DE LEGIS	14.16.101 对水体方一学	添射能力				
3 / 红色	可测量植物绿色素吸收	率,并依次进行植物分类	,可区分人造地物类型			
4 近红夕	测完生物量和作物长势	区分植被类型,绘制水体	本边界、探测水中生物的			
, LEL		, 11/4 11 00/01/11/11/11				
5 / (2)	量和土壤湿度					
5 短波红外	1000日的日小里久	土壤湿度,区别云与雪				
6 热红外	探测地球表面不同物质	的自身热辐射的主要波	段,可用于热分布制图,			
_ / -	石识别和地质探矿等方	面				
7 短波红外	探测高温辐射源加收测	森林火灾、火山活动等	The state of the s			
	,	林州人火、火山沽动等	,区分人造地物类型			

18、微波遥感:

全天候、全天时工作:对云层、雨区穿透力强,不受其限制对某些地物具有特殊的波普特征

对冰、雪、森林、土壤具有一定的穿透能力

对海洋具有特别意义,对海水敏感,适合监测海面动态情况

19、可见光:人眼可以感觉到并产生视觉现象的辐射

20、颜色的性质:人眼看到的物体颜色是物体反射光线所致

明度:人眼对光源或物体明亮程度的感觉(黑白只能用明度描述)

色调:色彩区分彼此的特征 饱和度:色彩的纯洁程度

常用色彩模型: RGB (红绿蓝)、CMYK (青品红黄黑)、

HSI (色调饱和度纯度) 21、加色法与减色法

互补色:若两种颜色混合再一起为白色或灰色,则为互补色(黄和蓝、绿和品红、红和青)

三原色:任意一种颜色都不能由其他两种颜色相加产生,但他们若按一定比例可以形成各种颜色(红。绿、蓝)

图2.4.3a 加色法

22、采样和量化(数字化的两个过程):

采样:

波谱采样:产生图像的波段和辐射强度,即像素值

空间采样:空间上连续的图像变换成离散点(像素)(空间采样间隔越大细节损失越多)

量化:采样后图像被分割成空间上离散的像素,但灰度值不变,而量化将像素灰度值转化成整数灰度级的过程。(如8位量化后灰度级为255=2^8-1,量化位数越高细节的可分辨程度越高)

23、元数据:数据的数据,如LANDSAT图像的时间、投影参数等

24、产品级别:

0级: 未经处理; 1级: 经过辐射校正; 2级: 经过几何校正; 3级: 几何精校正

25、数据格式:

BSQ: 像素按波段顺序依次排列

BIL: 像素先以行为单位分块再在每个块内按照波段顺序排列像素

BIP: 以像素为核心,同一像素不同波段数据保存在一起,打破像素空间位置的

连续性

26、直方图: 灰度级的函数,描述图像各个灰度级的像素个数。横轴为灰度级。纵轴为灰度级对应像素数或所占比例

性质:

反映了图像的灰度分布规律;

任何图像都有唯一的直方图, 但不同的图像可以有相同的直方图;

在图像像素足够多且地物差异不大的时候数据服从正态分布

包含两个连通区域直方图的图像可以通过直方图相加得到自己的直方图

27、数字图像处理的空间概念:

图像空间: 具有二维坐标的图像

光谱空间:每个图像的像素具有特定的灰度值,不同波段的灰度值构成了光谱,区分地物、识别地物的基本依据

特征空间:任意两个或多个波段所构成的像素空间

28、窗口: 以任意像素 (x,y) 为中心,按上下左右对称设定的像素范围 邻域:中心像素周围的行列,以邻域行列总数命名

29. 图像的彩色合成:

伪彩色合成:按特定的数学关系把单波段灰度图像的灰度级变成彩色,通常采用密度分割(将单波段遥感影像按灰度分级,对每级赋予不同色

真彩色合成:色彩合成中选择的波段的波长与红绿蓝的波长相同或近似,合成后的图像颜色就会与真彩色近似,与人对地物的视觉感觉一致

假彩色合成:人工合成的非物体原有的天然颜色的颜色,用来提高对特定对象 类型的显示效果

- 30、图像拉伸: 用来改变图像的对比度
- 31、直方图均衡化: 使变换后图像灰度值的概率密度为均匀分布的映射变换方
- 法,改变了图像灰度级和原有灰度级中的像素比例
- 32、图像校正:包括对图像像素位置的校正和图像像素值的校正
- 33、辐射校正: 消除因传感器自身条件、大气条件、太阳位置角度、噪声引起 的传感器的测量值与目标反射率或辐亮度的差异

流程

34、大气校正: 消除因大气散射引起的辐射误差的处理过程

统计学方法:通过将野外现场波谱测试获得的无大气影响的辐射值与传感 器测量值进行回归分析运算

辐射传输方法:测量大气参数按公式计算

暗像元法: 利用不受大气影响或影响很小的波段校正其他波段

- 35、基于模型的大气模型校正:如FLAASH模型
- 36、绝对大气校正:

基于地面真实数据的经验方程方法; 暗像元法;

- 37、地面辐射校正:太阳辐射校正与地形校正。
- 38、图像的几何误差:静态误差(成像过程中传感器相对于地球表面呈静止状态时的误差)、动态误差(成像过程中地球自转造成的误差)。
- 39、几何校正: 系统几何校正(部门完成)、投影变形校正(部门完成)、几何精校正(用户完成)。
- 40、正射校正:对图像进逐个像素进行地形校正,结果对于每个像素如同从空中进行垂直成像。
- 41、几何精校正(几何配准): 把不同传感器获取的具有几何精度的图像、地图或数据集集中的相同地物元素彼此精确匹配、叠加在一起,包括相对校正(以影像纠正影像)、绝对校正(以地图校正影像),解决了遥感图像与地图投影匹配的问题。

基本原理:

回避成像的空间几何过程,利用具有大地坐标和投影信息的地面控制点数据确定一个模拟几何畸变的模型,一次建立原始图像空间与标准空间的某种对应关系,然后利用这种关系把畸变图像空间中的像素变换到标准空间中。

操作步骤:

输入原始数字图像→确定工作范围→选择地面控制点→选择地图投影→匹配地面控制点与像元位置→选择纠正函数和相关参数→选择重采样方法→重采样→输出图像。

42、控制点选取:

选取数量为(k+1)(k+2)/2;选取方式为容易辨别、相对稳定、特征明显的位置43、重采样:对离散数据组成的数字图像按所需的像元位置或像元间距进行插值计算得到新图像,包括像素位置变换和像素值变换。

- 44、重采样方法包括最近邻法、双线性内插法、三次卷积内插法。
- 45、图像变换:利用单波段或多波段中的相关信息对像素值进行的数学变换,达到简化图像处理、便于提取图像特征、图像压缩、增强对图像理解的目的
- ①傅里叶变换:常应用于图像特征提取、频率域滤波、周期性噪声去除、图像恢复、纹理分析,数字图像处理常用二维离散傅里叶变换,得到频率域图像。频率域图像往往以中心为坐标原点对称(左上-右下、右上-左下),从图像中

心向外频率增高,频率域图像明显的频率变化方向与原始图像中地物分布方向 垂直

傅里叶变化应用:正向FFT→定义滤波器(低通、高通、带通、带阻)→逆向FFT

②波段运算:根据地物本身在不同波段的灰度差异,通过波段之间的简单代数运算(参与运算的图像空间坐标与大小必须完全相同)产生新的特征,突出感兴趣的地物信息

46、代数运算:

加法运算: B=B1+B2,用于对同一区域不同时段的图像求平均

差值运算: B=B1-B2, 提供不同波段或不同时段相同图像之间的差异, 反映同一地物在不同波段上的差异。例如用红外波段减红光波段时, 由于植被在这两个波段的反射率差异很大, 相减后有很高的差值

乘法运算:B=B1*B2,实现图像的平滑、锐化、消除边缘信息、凸显边缘信息。

图像掩膜: 使用一个二值图像F1乘以图像F2,抹去图像F2上的某些部分

比值运算: B=B1/B2, 两个不同波段图像对应像素的灰度值相除, 用于降低地形导致的阴影影响, 增强图像特定区域。

归一化指数: B= (B1-B2) /(B1+B2)

植被指数:

- ①归—化植被指数: NDVI= (NIR-R) / (NIR+R)
- ②比值植被指数: RIV=NIR/R
- ③差值植被指数: DVI=(NIR-R)
- ④土壤调整植被指数: SAVI= (NIR-R) / (NIR+6R-7.5B+1)
- 46、K-L变化(主成分分析,默认使用协方差矩阵),用于图像降维压缩或图像 夫噪。

变换原理: 设图像有两个波段B1和B3并且两者间有相关性,得到他们的分布,为了使从二维向一位变换信息损失最小,必须按照一维数据的信息量最大的原则确定y1轴的取向,y1轴称作第一主成分PC1,再找出与轴y1正交且尽可能信息量多的第二个轴y2即第二主成分PC2.V一般大于85%

工作流程: 图像→图像统计→计算相关矩阵、协方差矩阵→主成分变换(前几个主成分包含原始图像绝大部分信息)→确定成分个数→主成分逆变换(选择主成分数目小于波段数相当于压抑图像的噪声)

47、缨帽变换:实现信息压缩以及帮助解译分析农作物特征,U=R1*X+r;前三个分量分别代表亮度(土壤变化的主要方向)、绿色物质分量(植物生物量情况)、黄色物质分量(植物枯萎程度)

应用:

显示增强(如水体植被信息提取);信息提取(如第二第三分量提取水体和植被);

雾霾去除;

- 48、变换系数:以TM图像为例,变换后的光谱向量,前三个分别代表亮度、绿度、湿度以及第四分量霾信息,亮度绿度分量组成的二维平面被称为"植被";湿度和亮度组成的二维平面被称为"土壤";湿度与绿度组成"过渡区"。
- 49、图像滤波:利用图像的空间相邻信息和空间变化信息,对单个波段图像进行滤波处理,包括空间域滤波和频率域滤波,通过邻域操作以及图像的卷积运算实现。
- ①空间滤波: 在图像空间(x,y)对输入图像应用滤波函数(核、模板)改善输出图像的处理方法,包括平滑与锐化。
- ②空间频率:图像像素值随位置的变化用频率描述;如河流、道路、边界等较短的像素距离内灰度值重现的概率大,为高空间频率;如海面、平原等相反
- 50、图像平滑:抑制噪声(单波段的图像可以看作二维亮度分布,噪声可以看作对亮度的干扰)和改善图像质量。

①噪声:

高斯噪声: 可以用高斯概率密度描述其分布的噪声;

脉冲噪声(椒盐噪声):随机改变了一些像素值使一些像素点变黑一些变白;

周期噪声: 获取过程中受到设备影响产生;

②均值滤波(线性低通滤波): 对每个像素,取邻域像素值的平均作为该像素的新替代值,去掉噪声的同时模糊了图像,削弱边缘信息以及细节。可以通过引入阈值T,将滤波结果值g与原图像值f的差值与T比较,差值小于T则取原值,否则取新值.

- ③中值滤波:将窗口内的所有像素值按高低排序后取中间值作为新中心像素值.对脉冲噪声有效
- ④高斯低通滤波(图像平滑最优): 平滑程度与方差有关,方差越大图像平滑程度越好,但图像也最模糊。
- ⑤梯度倒数加权平滑:离散图像中相邻区域的变化大于区域内部的变化而同一区域内部的变化小于区域边缘的变化,所以在图像变化缓慢地区域梯度值小,以梯度倒数为权重因子,权重最高的是中心像素(0.5)。

例 最后,通过卷积公式计算中心像素的新值g。 原始图像 平滑后图像 原始图像的梯度倒数 21 30 28 20 29 26 1/10 1/1 1/3 24 31 23 24 30 24 1/7 0 1/8 36 38 27 33 34 24 1/5 1/7 1/4 根据上面公式计算得到 [0.022 0.218 0.073] $W = \begin{bmatrix} 0.031 & 0.50 & 0.027 \end{bmatrix}$ 0.044 0.031 0.054 $g(x, y) = 0.022 \times 21 + 0.218 \times 30 + 0.073 \times 28 + 0.031 \times 24 +$ $0.50 \times 31 + 0.027 \times 23 + 0.044 \times 36 + 0.031 \times 38 + 0.054 \times 27$ ≈ 30

⑥选择式掩膜平滑:基于中心像素与邻域像素的差异性进行图像平滑,尽可能 地不破坏区域边界细节;如果周围像素与中心像素属于相同的区域,那么他们 具有相同的方差,以5*5窗口为例,有九种掩膜方式;ai为掩膜均值,ki为掩膜 方

- 51、图像锐化:对图像进行逆运算(微分运算)使图像清晰化,把图像中任何 方向伸展的边缘和轮廓变得清晰,提高了边缘与周围像素间的反差。
- ①线性锐化滤波器(线性高通滤波器):中心系数为正数,其他系数为负数,例如原始影像减去均值滤波图像得出线性锐化结果。
- ②梯度法: 灰度值的一阶微分,反映了x方向和y方向相邻像素之间的灰度变化率,梯度图像上梯度值较大的就是边缘。

Y方向模板: H1=1,0 X方向模板: H2=1, -1

G=|f*H1|+|f*H2|

③罗伯特梯度:采用交叉差分的方法

H1=1 0 H2=0 1

0 -1 -1 0

G=|f*H1|+|f*H2|

④Prewitt梯度:

H1=-1 -1 -1 H2=-1 0 1

0 0 0 -1 0 1

1 1 1 -1 0 1

⑤Sobel梯度:

H1=-1 -2 -1 H2=-1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

⑥拉普拉斯算子: 一种二阶微分边缘检测技术

 $H = 0 \ 1 \ 0$

1 -4 1

0 1 0

⑦定向检测:

检测垂直线突出图像水平差异;

检测水平线突出垂直差异;

检测对角线;

52、同态滤波:减少低频增加高频,从而减少光照变化并锐化边缘或细节。

一副图像f(x,v)可以用照射分量i(x,v)和反射分量r(x,v)表示。

操作步骤:取对数(分开照射分量与反射分量) $lnf=lni+lnr\rightarrow$ 傅里叶变换 $F=I+R\rightarrow$ 滤波 \rightarrow 傅里叶逆变换 \rightarrow 指数变换

53、图像分割:按照特定的规则根据图像特征对图像像素进行划分标记处理,

将图像分为若干互不交迭的区域,可以作为图像信息提取和分类的后处理。

分割原则:依据像素的不连续性进行分割;依据区域内部像素具有最大相似性原则进行分割。

分割方法:基于像素的分割,利用阈值把像素划分为不同类;基于边界分割, 先标识图像中像素值变化明显的点作为边缘再将边缘连接起来作为边界;基于 区域分割。先确定区域再把像素归到各个区域中。

分割流程: 确定待分割的对象→特征选择→选择分割方法→分割后处理→检查结果, 进行区域标识→分析各个区域特征→将区域图转化为矢量图

54、灰度阈值法;目标和背景板虽然相邻像素的灰度值接近但是目标与背景总体上有差异,在图像的直方图上,分割阈值位于两峰之间的谷底,能将峰彻底分开。

过程:图像具有双峰特点,在高亮度峰右侧具有一个弱峰,设定阈值T,将直方图分为包含与背景相关灰度级的A部分以及包含与目标相关灰度级的B部分

- ①全局阈值法: 固定的全局阈值
- ②自适应阈值法: 灰度阈值随位置缓慢变化
- ③分水岭算法:从一个偏低但仍能正确分割各个目标的阈值开始逐渐提升到最佳阈值,使各个目标不会被合并。
- 54、梯度法:使用图像锐化中的梯度算法进行图像分割;先进行边缘检测,获取图像边缘信息再进行边缘连接将边缘连接起来作为图像分割区域的边界。
- 55、区域方法:基于像素相似性进行图像分割;

区域生长法:在每个需要分割的目标区域找一个种子像素作为生长点,将种子像素周围邻域中与种子像素性质相同或相似的像素合并到种子像素所在区域,再将这些像素作为种子像素继续作为新的种子继续重复上述内容。

前提条件:确定生长过程的规则;确定生长停止的条件;确定能代表区域的种 子像素组

区域分裂合并法:将图像作为一个区域出发点按照特定准则进行分裂再从区域种子点开始合并像素。

简单区域扩张法:对图像进行扫描,求出不属于任何区域的像素,再把该像素的灰度与其周围4邻域或8邻域内不属于任何一个区域的像素灰度级进行比较,若差值在某一阈值下则作为同一区域合并,反复进行此操作;

56、数学形态学方法:

腐蚀:消除目标所有边界点的过程,使目标沿周边比原边界少一个像素

膨胀: 将与目标接触的所有背景点合并到该目标的过程,使目标增大了相应数量的点。但若是膨胀的原点不在结构元素内膨胀可能会破坏原有的连通性。

57、遥感图像分类

基本原理:同物同谱(同类地物在相同条件下具有相同或相似的光谱信息和空间信息特征);同类地物特征向量接近正态分布。

例如图像只包含两种地物,则特征空间会有两个互相分开的点集,而将两种地物分开的若干条曲线Fab(X)=0称为判别边界,利用判别准则进行分类。

分类方法:根据事先是否知道类别的部分信息分为监督分类和非监督分类。或根据图像上一个像素是否只能被分入一个类分为软分类和硬分类。

- 58、像素间相似性度量:可用距离度量,前提是地物光谱特征在特征空间中以点群的形式分布;
- ①绝对距离:像素到类中心的直接距离,各特征参数等权出现;
- ②欧式距离: 平面两点间的直线距离;
- ③马氏距离: 加权的欧式距离;
- ④相似系数(余弦距离):表明当前像素向量与类向量的夹角;
- 分类流程:分类前准备工作(确定分类体系、图像预处理、)→图像判读(目标物的大小、颜色、色调、与周围关系、纹理、形状、阴影、位置、图案
-)→特征选取(按照方差、相关性、方差和相关系数、类间的分离性)→图像分类→分类后检查(分类精度检测)→分类结果评价→结果输出(制作成专题地图或矢量格式)
- 59、非监督分类:主要采用聚类分析的方法,把像素按照相似性归为若干类别。
- 流程:确定初始类别参数(类中心、类别数)→计算每个像素对应的特征向量到各个点群中心的距离→选取距离最短的类别作为这一向量所属类别→计算新类别均值向量→比较新旧类别均值,若发生改变则以新的类别均值为聚类中心继续以上步骤→直到点群中心不再变化停止计算
- 1 类别参数选择:光谱特征比较法;直方图法;最大最小距离法;局部直方图峰值法
- 2 K-均值法: 使每一分类中像素点到该类别中心距离的平法和最小,通过迭代逐次移动各类中心直到满足收敛条件(图像中互不相交的任意一个类与该类均值差的平方和最小)
- 3 ISODATA方法(迭代法): 与K—均值法区别:它不是每调整一个样本的类别就重新计算一次各类样本的均值,为成批样本修正法;自动地进行类别合并和分裂;
- 60、监督分类:已知地物信息对未知地物进行分类
- 训练区(ROI): 点、线、面;确定时需要确定ROI名称、颜色、样本数目(ROI包含的像素数)

选取要求: 训练区必须具有典型性和代表性; 使用的图件时间和空间要保持一致; 训练样本的数目; 通过按坐标输入式和人机式两种输入方式

训练区调整:对选取的训练样区进行统计分析,剔除离散型过大的样本;检查 各类样本聚类中心分布情况,剔除不合格样本并补选;

- 61: 监督分类方法:
- ①平行管道法:
- 在二维时各类样本的特征向量产生各自的矩形,三维时产生真正的盒子;
- 盒子的中心是样本类的均值向量,盒子的边是波段值的标准差或2倍、1.73倍标准差;
- 像素落到哪个盒子为哪类,同时落到两个盒子里的像素属于小盒子,盒子外是 未知类;
- ②最小距离法: 假定图像各类地物波谱信息呈多元正态分布,每一个类在K维特征空间形成一个椭球状点群,通过像素距离各类中心距离远近决定归属;
- ③最大似然法:假设每个波段数据都呈现正态分布,构造出对应的多维正态分布模型,求属于各类的概率;
- ④光谱角法:适用于高光谱影像,通过估计像素光谱与样本光谱相似性进行, N纬空间中像素值被看作有方向和长度的向量,不同像素值之间形成光谱角。 61、分类后处理:
- ①运行误差(错分误差):某一类地物被分到其他类别的百分比;
- ②用户精度:可靠性,某一类地物正确分类占该类数量的比例减运行误差;

③结果误差(漏分误差): 实际的某一类地物被分到其他类别的百分比,除了要求的类其他所有类数量之和除以总数量;

④生产者精度: 100%-结果误差;

分类结果 \ 实际结果	表 9.4 混淆矩阵计算实例								"新亚/ 亚/亚/亚/	
1		2	3	4	5	6	7	8	类样本数	类正确率
2	154			2	7			12	175	0.88
		208		A ROSE	onias	14			222	0.94
3	15		192						207	0.93
4		2	1	253			6		262	0.97
5				253	230	A. S. C.	20		250	0.92
6			NAME .	43	230	213	1	1	256	0.83
7	2	1		45	6	210	235		24	0.96
8			17					39	2 40	9 0.9
总检验样本	202	5		类样本	-	1877	K	正确率		92.7%