Análise de Algoritmos

CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

- $n^2 + 99n$ é $O(n^2)$
- $33n^2$ é $O(n^2)$
- $9n + 2 \text{ \'e } O(n^2)$
- $0,00001n^3 200n^2$ não é $O(n^2)$

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

Mais informal

T(n) é O(f(n)) se existe c>0 tal que

$$T(n) \leq c f(n)$$

para todo *n* suficientemente **GRANDE**.

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$$

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$$

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$$

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Outra prova: Para $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + n n \lg n + n \le 20n^3 + n^3 + n^3 = 22n^3$$
.

Uso da notação O

$$O(f(n)) = \{T(n) : \text{existem } c \in n_0 \text{ tq } T(n) \leq cf(n), n \geq n_0 \}$$

"T(n) é O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

"T(n) = O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

" $T(n) \leq O(f(n))$ " é feio.

" $T(n) \ge O(f(n))$ " não faz sentido!

" $T(n) \not e g(n) + O(f(n))$ " significa que existe constantes positivas $c e n_0$ tais que

$$T(\mathbf{n}) \le g(\mathbf{n}) + \mathbf{c} f(\mathbf{n})$$

para todo $n \geq n_0$.

Nomes de classes O

classe	nome
O(1)	constante
$O(\lg n)$	logarítmica
O(n)	linear
$O(n \lg n)$	$n \log n$
$O(n^2)$	quadrática
$O(n^3)$	cúbica
$O(n^k) \text{ com } k \ge 1$	polinomial
$O(2^n)$	exponencial
$O(a^n) \text{ com } a > 1$	exponencial

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Saída: 11

Inversões:
$$(1,3)$$
, $(2,3)$, $(4,5)$, $(2,6)$, $(4,6)$, $(5,6)$, $(4,7)$, $(4,8)$, $(7,8)$, $(4,9)$ e $(7,9)$.

Número de inversões

```
CONTA-INVERSÕES (p,n)
```

```
\begin{array}{lll} \mathbf{1} & c \leftarrow 0 \\ \mathbf{2} & \mathsf{para} \ \pmb{i} \leftarrow 1 \ \mathsf{at\'e} \ \pmb{n} - 1 \ \mathsf{faça} \\ \mathbf{3} & \mathsf{para} \ \pmb{j} \leftarrow \pmb{i} + 1 \ \mathsf{at\'e} \ \pmb{n} \ \mathsf{faça} \\ \mathbf{4} & \mathsf{se} \ p[\pmb{i}] > p[\pmb{j}] \\ \mathbf{5} & \mathsf{ent\~ao} \ c \leftarrow c + 1 \\ \mathbf{6} & \mathsf{devolva} \ c \end{array}
```

Número de inversões

```
CONTA-INVERSÕES (p, n)
       c \leftarrow 0
       para i \leftarrow 1 até n-1 faça
 3
              para j \leftarrow i + 1 até n faça
                     se p[i] > p[j]
 4
                           então c \leftarrow c+1
 5
 6
       devolva c
        linha
                 consumo de todas as execuções da linha
          5
                    ?
        total
```

Número de inversões

```
CONTA-INVERSÕES (p, n)
       c \leftarrow 0
       para i \leftarrow 1 até n-1 faça
 3
              para j \leftarrow i + 1 até n faça
                    se p[i] > p[j]
 4
                          então c \leftarrow c+1
 5
 6
       devolva c
                consumo de todas as execuções da linha
        linha
                    O(1)
                   O(n)
                   O(n^2)
                   O(n^2)
                   O(n^2)
          5
                    O(1)
          6
                   O(3n^2 + n + 2) = O(n^2)
        total
```

Conclusão

O algoritmo CONTA-INVERSÕES consome $O(n^2)$ unidades de tempo.

Também escreve-se

O algoritmo CONTA-INVERSÕES consome tempo $O(n^2)$.

Notação Omega

Dizemos que T(n) é $\Omega(f(n))$ se existem constantes positivas c e n_0 tais que

$$c f(n) \leq T(n)$$

para todo $n \geq n_0$.

Mais informal

 $T(n) = \Omega(f(n))$ se existe c > 0 tal que

$$c f(n) \le T(n)$$

para todo *n* suficientemente **GRANDE**.

Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Prova: Aplique a definição com c = 0.001 e $n_0 = 8$.

O consumo de tempo do CONTA-INVERSÕES é $\mathrm{O}(n^2)$ e também $\Omega(n^2)$.

O consumo de tempo do CONTA-INVERSÕES é $O(n^2)$ e também $\Omega(n^2)$.

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

O consumo de tempo do CONTA-INVERSÕES é $O(n^2)$ e também $\Omega(n^2)$.

linha	todas as execuções da linha		
1	=	1	
2	=	n	
3	=	(n+2)(n-1)/2	
4	=	n(n-1)/2	
5	\geq	0	
6	=	1	
total	>	$n^2 + n = \Omega(n^2)$	

Notação Theta

Sejam T(n) e f(n) funções dos inteiros no reais. Dizemos que T(n) é $\Theta(f(n))$ se

T(n) é O(f(n)) e T(n) é $\Omega(f(n))$.

Notação Theta

Dizemos que T(n) é $\Theta(f(n))$ se se existem constantes positivas c_1, c_2 e n_0 tais que

$$c_1 f(n) \leq T(n) \leq c_2 f(n)$$

para todo $n \geq n_0$.

Intuitivamente

Comparação assintótica, ou seja, para *n* ENORME.

comparação	comparação assintótica
	T(n) é $O(f(n))$
$T(n) \ge f(n)$	$T(n)$ é $\Omega(f(n))$
T(n) = f(n)	$T(n)$ é $\Theta(f(n))$

Tamanho máximo de problemas

Suponha que cada operação consome 1 microsegundo (1 μs).

consumo de	Tamanho máximo de problemas (n)		
tempo (μs)	1 segundo	1 minuto	1 hora
400n	2500	150000	9000000
$20 n \lceil \lg n \rceil$	4096	166666	7826087
$2n^2$	707	5477	42426
n^4	31	88	244
2^n	19	25	31

Michael T. Goodrich e Roberto Tamassia, *Projeto de Algoritmos*, Bookman.

Crescimento de algumas funções

n	$\lg n$	\sqrt{n}	$n \lg n$	n^2	n^3	2^n
2	1	1,4	2	4	8	4
4	2	2	8	16	64	16
8	3	2,8	24	64	512	256
16	4	4	64	256	4096	65536
32	5	5,7	160	1024	32768	4294967296
64	6	8	384	4096	262144	1,8 10^{19}
128	7	11	896	16384	2097152	3,4 10 ³⁸
256	8	16	1048	65536	16777216	1,1 10 ⁷⁷
512	9	23	4608	262144	134217728	1,3 10^{154}
1024	10	32	10240	1048576	1,1 10 ⁹	1,7 10^{308}

Nomes de classes Θ

classe	nome
$\Theta(1)$	constante
$\Theta(\log n)$	Iogarítmica
$\Theta(n)$	linear
$\Theta(n \log n)$	$n \log n$
$\Theta(n^2)$	quadrática
$\Theta(n^3)$	cúbica
$\Theta(n^k) \text{ com } k \ge 1$	polinomial
$\Theta(2^n)$	exponencial
$\Theta(a^n) \text{ com } a > 1$	exponencial

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

 $100 n \notin \Theta(n)$ e $n \log_{10} n \notin \Theta(n \lg n)$. Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B} .

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

```
100 n \notin \Theta(n) e n \log_{10} n \notin \Theta(n \lg n).
Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B}.
```

 \mathcal{A} é mais eficiente que \mathcal{B} para $n \geq 10^{100}$.

```
 \begin{array}{l} 10^{100} = \text{um } \textit{googol} \\ \approx \text{n\'umero de \'atomos no universo observ\'avel} \\ = \text{n\'umero ENORME} \end{array}
```

Conclusão:

Lembre das constantes e termos de baixa ordem que estão "escondidos" na notação assintótica.

Em geral um algoritmo que consome tempo $\Theta(n \lg n)$, e com fatores constantes razoáveis, é bem eficiente.

Um algoritmo que consome tempo $\Theta(n^2)$ pode, algumas vezes, ser satisfatório.

Um algoritmo que consome tempo $\Theta(2^n)$ é dificilmente aceitável.

Do ponto de vista de AA, eficiente = polinomial.

Exercício da aula passada

```
f1 (x, y)
           se x = 1 ou y = 1
                 devolva 0
           senão
5
                 devolva f1(x-1,y) + f1(x,y-1) + xy
     f2 (x, y)
           para i \leftarrow 1 até x faça
                 t[i,1] \leftarrow 0
           para j \leftarrow 2 até y faça
5
                 t[1, j] \leftarrow 0
6
           para i \leftarrow 2 até x faça
                 para i \leftarrow 2 até y faça
                      t[i,j] \leftarrow t[i-1,j] + t[i,j-1] + ij
8
9
           devolva t[x,y]
```

Exercício da aula passada

Para que valores de x e y você acha que dá para começar a sentir diferença no tempo consumido por estas funções?

Exercício da aula passada

Para que valores de x e y você acha que dá para começar a sentir diferença no tempo consumido por estas funções?

- Valores menores que 30? 8 respostas.
- Entre 30 e 100? 12 respostas.
- Maiores que 100? 4 respostas.

Exercício da aula passada

Para que valores de x e y você acha que dá para começar a sentir diferença no tempo consumido por estas funções?

- Valores menores que 30? 8 respostas.
- Entre 30 e 100? 12 respostas.
- Maiores que 100? 4 respostas.

Uma frase a se pensar...

f1 funciona para x e y maiores que 100.

Exercício da aula passada

Matriz t inicializada com -1 em todas as posições.

```
1  f3 (x, y)
2  se t[x, y] \neq -1
3  devolva t[x, y]
4  se x = 1 ou y = 1
5  r \leftarrow 0
6  senão
7  r \leftarrow f3(x - 1, y) + f3(x, y - 1) + xy
8  t[x, y] \leftarrow r
9  devolva r
```

MEMOIZAÇÃO

Exercício da aula passada

```
1 f4 (x, y)

4 para j \leftarrow 1 até y faça

5 t[j] \leftarrow 0

6 para i \leftarrow 2 até x faça

7 para j \leftarrow 2 até y faça

8 t[j] \leftarrow t[j] + t[j-1] + ij

9 devolva t[y]
```

Mais econômica em relação à memória.

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Idéia: vamos ordenar e contar ao mesmo tempo!

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Idéia: vamos ordenar e contar ao mesmo tempo!

Método: divisão e conquista.

Você sabe fazer um algoritmo mais rápido para o problema do número de inversões?

Note que o número de inversões pode ser $\Theta(n^2)$. Portanto, para isso, não podemos contar de uma em uma as inversões, como faz o algoritmo que vimos hoje. Temos que ser mais espertos...

Idéia: vamos ordenar e contar ao mesmo tempo!

Método: divisão e conquista.

Resultado: um algoritmo $O(n \lg n)$ para o problema do número de inversões de uma permutação!

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT.

Qual deles parece mais adequado?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT.

Qual deles parece mais adequado?

Resposta: o MERGESORT.