

Построение глобальных траекторных гипотез

AI integration

Постановка задачи

		_	_		_	_	_	_	_	40	
	1	2	3	4	5	6	7	8	9	10	11
1	0	0	0	0	1	1	1	0	1	1	1
2		0	0	0	1	1	1	1	0	1	1
3			0	0	1	1	1	1	1	0	1
4				0	1	1	1	1	1	1	0
5					0	0	0	1	1	0	1
6						0	0	1	1	1	0
7							0	1	1	1	1
8								0	1	1	0
9									0	1	1
10										0	1
11											0
11											0

	TH1	TH2	TH3	TH4	TH5	TH6	TH7	TH8	TH9	TH10	TH11	W
GH1	1	0	0	0	1	0	0	0	1	0	1	3.73
GH4	0	1	0	0	1	0	0	1	0	0	0	3.69
GH5	0	1	0	0	1	0	0	0	0	0	1	3.69
GH6	0	1	0	0	0	1	0	1	0	1	0	3.63
GH9	0	0	1	0	1	0	0	1	1	0	0	3.61
GH10	0	0	1	0	1	0	0	0	1	0	1	3.61
GH2	1	0	0	0	0	1	0	0	1	1	0	3.52
GH3	1	0	0	0	0	0	1	0	1	1	1	3.45
GH7	0	1	0	0	0	0	1	1	0	1	0	3.41
GH8	0	1	0	0	0	0	1	0	0	1	1	3.41
GH11	0	0	1	0	0	1	0	1	1	0	0	3.40
GH14	0	0	0	1	1	0	0	1	1	0	0	3.33
GH15	0	0	0	1	0	1	0	1	1	1	0	3.27
GH12	0	0	1	0	0	0	1	1	1	0	0	3.18
GH13	0	0	1	0	0	0	1	0	1	0	1	3.18
GH16	0	0	0	1	0	0	1	1	1	1	0	3.05

Формализация

$$w \in \mathbb{R}^n$$
 $w_i \geq 0$ $\forall i \in 1, \ldots, n$ $x \in \mathbf{B}^n$ $\mathbf{B} = \{0, 1\}$

 $\max w \cdot x$

$$x_i + x_j \leq 1 \quad \forall \ i,j: \ a_{ij} = 0 \ \ i < j \ \ (x_i \wedge x_j = 0)$$

$$x_i \geq 0 \quad \forall \ i \in 1, \ldots, n$$

$$x_i \in \{0,1\} \quad orall \ i \in 1,\ldots,n$$

Zero-one linear programing

0101 101

- 1. Branch and bounds
- 2. Cutting plane methods
- 3. Parallel shifts of the objective function hyper-plane
- 4. Boolen algebra methods
- 5. Combinatorial methods
- 6. Lagrangian method

Лемма. Пусть $x^* \in \mathbf{B}^n$. Тогда $\exists m \in \mathbb{R}, \ y \in \mathbb{R}^n$:

$$\forall x \in \mathbb{B}^n, \ x \neq x^* \ x \cdot y \leq m, \quad x^* \cdot y > m.$$

Доказательство: $y = x^* - 0.5(1, \dots, 1), \ m = y \cdot \tilde{x}^*$

$$ilde{x}^* = (0.5, x_2^*, \dots, x_n^*)$$
 (далее см. приложение).

K-BLP:

 k, n, m, w, A_1, b_1 for $i \in 1, \ldots, k$: $x_i^* = BLP(w, A_i, b_i)$ $ilde{x}_i^*[2,\ldots,n]=x_i^*$ $\tilde{x}_{i}^{*}[1] = 0.5$ $y_i=x^*-0.5(1,\ldots,1)$ $A_{i+1}[m+i-1,n] = A_i$ $A_{i+1}[m+i]=y_i$ $|b_{i+1}[1,\ldots,m+i-1] = b_i$ $b_{i+1}[m+i] = y_i \cdot ilde{x}_i^*$

Теорема. Результатом алгоритма K-BLP является набор k наилучших решений оптимизационной задачи x_1^*, \ldots, x_k^* .

Замечание. Если не будет вырождения оптимизационной задачи.

gurobipy

• Гибкость

• Ограничения лицензии

Blazingly fast

• Fast

Литература

- M. L. Balinski, (1965) Integer Programming: Methods, Uses, Computations. Management Science 12(3):253-313.
- Chitturi, R. V. (1961). A Master's Report. B.S. (Mech. Engg), Andhra University, Waltair, India.
- Chang, Y.-J., & Wah, B.W. (1995). Lagrangian techniques for solving a class of zero-one integer linear programs. In Proceedings Nineteenth Annual International Computer Software and Applications Conference (COMPSAC'95).