How similar is this cluster to the other clusters?

Genes in the cluster along with the pathways as annotated by experts Expert Annotation

	Expert Annotation		
Treatment	Pathway	Regulation Type	
TGFBR1_K232R	Canonical TGFbeta	Inhibitor	
TGFBR1_WT.2	Canonical TGFbeta	Activator	
$DVL3_WT$	Canonical WNT	Activator	

				_	_
Top 5 genes	negatively	correlated	to	the	cluster
- op			~ ~	U	0101001

	Expert Annota	ation		
Treatment	Pathway	Regulation Type	Mean Correlation	Standard Deviation
SMO_WT.1	Hedgehog	Activator	-0.58	0.06
DDIT3_WT.2	Canonical ER Stress/UPR	Activator	-0.51	0.04
PRKACA_WT.2	Canonical PKA	Activator	-0.47	0.16
NFKBIA_WT	Canonical NFkB	Inhibitor	-0.47	0.21
DIABLO_WT	Canonical Apoptosis	Inhibitor	-0.43	0.10

AKT1_E17K AKT1S1_WT.1 BRAF_WT.1 CCND1_WT.1 CDKN1A_WT CEBPA_WT.1 CSNK1A1_WT.3 CXXC4_WT DVL3_WT GLI1_WT MAP3K2_WT.1 MYD88_L265P PRKCZ_K281R RBPJ_WT.1 WWTR1_WT AKT3_E17K AKT1S1_WT.2 BRAF_WT.2 CCND1_WT.2 HRAS_G12V CEBPA_WT.2 MAPKAP1_WT STK3_WT.1 TGFBR1_K232R PRKACA_WT.1 MAP3K2_WT.2 MYD88_WT PRKCZ_WT.1 RBPJ_WT.2 YAP1_WT.1 AKT3_WT.2 ATF4_WT.2 MOS_WT.1 E2F1_WT KRAS_G12V JUN_WT.1 SGK3_WT.2 STK3_WT.2 TGFBR1_WT.2 PRKACA_WT.2 TRAF5_WT SDHA_WT PRKCZ_WT.2 SMAD3_WT.1 YAP1_WT.2 CDC42_T17N MAP2K4_WT.2 MOS_WT.2 MAP2K4_WT.2 MAP2K4_WT.1 MAP2K4_WT.1 MAP2K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K4_WT.1 MAP3K5_WT

What groups of morphological features are distinguishing in the cluster relative to the untreated samples? (maximum of absolute m-score for the features belonging to the same category; m-score defined as median of a feature z-score across genes in the cluster) Black means no feature is available in the category

Which individual morphological features are distinguishing in the cluster relative to the untreated samples? Blue/Red means the feature has a positive/negative z-score. Size is proportional to the z-score value.

How strongly are genes within the cluster correlated?

Plate: 41744 - Genes in the Cluster (Channels are sorted based on their dominance in the grid plot)

AGP

 $DVL3_WT$

TGFBR1_K232R

Compound IDs and common names (where available); blue/red colored box means the matching compound is positively/negatively correlated with the cluster	Chemical structure (95th DMSO replicate correlation is 0.54) Tables contain data for individual genes Chemical structure Chemical structure Mean compound rank when scored against genes in cluster using L1000 profiling ± standard deviation; Tables contain data for individual genes Chemical structure Mean compound rank when scored against genes in cluster using L1000 profiling ± standard deviation; Tables contain data for individual genes Tables contain data for individual genes	Common distinguishing feature categories in the compound and untreated samples. Black means a mismatch; i.e. active (= nighty) the compound was tested; assays in
BRD-K04267190-001-01-4 PubChem CID : 54646512	0.72 (in 4 replicates) 0.47 ± 0.21 O.705 ± 0.049 Trestment Sover DVLS.WT Sover TGFBRI WT2 0.76 TGFBRI WT2 0.76 TGFBRI WT2 0.76 TGFBRI WT2 0.	Assassings - Nuclei Cytoplasm Calls Head States S

