Digital Signal Processing

Formulary

Author: Daniel Thiem - studium@daniel-thiem.de

Version 0.1 - 10.02.2013

Contents

1	Digital Processing of Continous-Time Signals						
	1.1	Period	lic Sampling	4			
		1.1.1	Reconstruction of Band-Limited Signals	4			
		1.1.2	Discrete-time Processing of Continous-Time Signals	4			
2	Digi	ital Filt	er Design	5			
	2.1		Impulse Response (FIR) filter	5			
	2.2	Linear	Phase Filters	5			
			Generalized linear phase system	5			
	2.3	Linear	Phase FIR filters	6			
	2.4	Linear	Phase FIR filter Types	6			
		2.4.1	Type I FIR linear phase filter	6			
		2.4.2	Type II FIR linear phase filter	7			
		2.4.3		7			
		2.4.4	Type IV FIR linear phase filter	7			
	2.5						
		2.5.1		8			
		2.5.2		8			
		2.5.3		11			
	2.6			11			
		2.6.1		12			
	2.7	Filter		12			
3	Mis	cellane	ous	13			
	3.1	Useful	l mathematical equations	13			
				13			
				13			

Preface

This formulary is based on the formulary of the course Stochastic Signals and Systems, which can be found here https://github.com/Tyde/stosigsysfs/blob/

master/document.pdf?raw=true. If you find any errors or have any ideas for improvement, mail me at studium@daniel-thiem.de or file an issue at https://github.com/Tyde/dspformulary/issues. The LATEX source code is online on https://github.com/Tyde/dspformulary and can be improved and extended.

1 Digital Processing of Continous-Time Signals

1.1 Periodic Sampling

Basic principles of sampling and transforming signals can be found in the Stochastic Signals and Systems formulary

1.1.1 Reconstruction of Band-Limited Signals

Assume, that $H_r(j\Omega)$ and $h_r(t)$ are the frequency and time responses for an ideal low pass filter where x(n) is the input signal. Then the output will be

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n)h_r(t - nT)$$
(1.1)

Because the filter is assumed to be ideal, its impulse response is given by:

$$h_r(t) = \frac{\sin(\pi t/T)}{\pi t/T} \tag{1.2}$$

where T is the sampling interval that should fulfil the Nyquist condition $\Omega_{\rm s}>2\Omega_{\rm B}$

1.1.2 Discrete-time Processing of Continous-Time Signals

To process a continuous-time signal $x_c(t)$ with digital signal processing techniques, the following setup is used:

2 Digital Filter Design

Let x(n) and y(n), $n = 0 \pm 1,...$ be the input and the output of the system. Linear time-invariant discrete-time systems can be characterized by linear constant coefficient difference equations of the following type, where $\max(N-1,M)$ is the order:

$$\sum_{k=0}^{M} a_k y(n-k) = \sum_{r=0}^{N-1} b_r x(n-r)$$
 (2.1)

2.1 Finite Impulse Response (FIR) filter

If M = 0 then the impulse response of the filter is finite so that:

$$y(n) = \frac{1}{a_0} \sum_{k=-\infty}^{\infty} b_r x(n-k)$$
 (2.2a)

comparison with the convolution sum yields

$$h(n) = \begin{cases} b_n/a_n, & n = 0, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$
 (2.2b)

2.2 Linear Phase Filters

A digital filter can be described as linear phase filter if $H(e^{j\omega})$ can be expressed as:

$$H(e^{j\omega}) = H_M(e^{j\omega})e^{-j\omega\alpha} \tag{2.3}$$

with $H_M(e^{j\omega})$ real and α (group delay) constant

2.2.1 Generalized linear phase system

A Linear phase system with:

$$H(e^{j\omega}) = H_M(e^{j\omega})e^{-j\omega\alpha + j\beta} \tag{2.4}$$

has to meet the condition:

$$\sum_{n=-\infty}^{\infty} h(n) \sin[\omega(n-\alpha) + \beta] = 0 \,\forall \, \omega \in \mathbb{R}$$
 (2.5)

2.3 Linear Phase FIR filters

Applying the condition for generalized linear phase systems (2.2.1) to the FIR Filters yields two possible causal FIR Systems:

$$h(n) = \begin{cases} h(N-1-n) & , 0 \le n \le N-1 \\ 0 & , \text{otherwise} \end{cases}$$
 (2.6a)

$$H(e^{j\omega}) = H_e(e^{j\omega})e^{-j\omega(N-1)/2}$$
(2.6b)

and

$$h(n) = \begin{cases} -h(N-1-n) & , 0 \le n \le N-1 \\ 0 & , \text{otherwise} \end{cases}$$
 (2.7a)

$$H(e^{j\omega}) = H_o(e^{j\omega})e^{-j\omega(N-1)/2 + j\pi/2}$$
(2.7b)

2.4 Linear Phase FIR filter Types

The linear phase FIR filters have been classified into 4 Types:

- Type I symmetric impulse response and N is odd
- Type II symmetric impulse response and N is even
- Type III antisymmetric impulse response and N is odd
- Type IV antisymmetric impulse response and N is even

2.4.1 Type I FIR linear phase filter

N is odd and the impuls response is symmetric. $\beta = 0$

$$h(n) = h(N-1-n)$$
 $0 \le n \le N-1$ (2.8a)

$$H(e^{j\omega}) = e^{-j\omega \frac{N-1}{2}} \left[\sum_{k=0}^{(N-1)/2} a(k)\cos(\omega k) \right]$$
 (2.8b)

where

$$a(0) = h\left(\frac{N-1}{2}\right)$$
 and $a(k) = 2h\left(\frac{N-1}{2} - k\right)$, $k = 1, 2, ..., (N-1)/2$

2.4.2 Type II FIR linear phase filter

N is even and the impuls response is symmetric. $\beta = 0$

$$h(n) = h(N-1-n) \quad 0 \le n \le N-1$$
 (2.9a)

$$H(e^{j\omega}) = e^{-j\omega \frac{N-1}{2}} \left\{ \sum_{k=1}^{N/2} b(k) \cos \left[\omega \left(k - \frac{1}{2}\right)\right] \right\}$$
 (2.9b)

where

$$b(k) = 2h[N/2 - k],$$
 $k = 1, 2, ..., N/2$

2.4.3 Type III FIR linear phase filter

N is odd and the impuls response is antisymmetric. $\beta = \pi/2$

$$h(n) = -h(N-1-n)$$
 $0 \le n \le N-1$ (2.10a)

$$H(e^{j\omega}) = je^{-j\omega\frac{N-1}{2}} \left[\sum_{k=1}^{(N-1)/2} c(k)\sin(\omega k) \right]$$
 (2.10b)

where

$$c(k) = 2h[(N-1)/2 - k],$$
 $k = 1, 2, ..., (N-1)/2$

2.4.4 Type IV FIR linear phase filter

N is even and the impuls response is antisymmetric. $\beta=\pi/2$

$$h(n) = -h(N-1-n)$$
 $0 \le n \le N-1$ (2.11a)

$$H(e^{j\omega}) = je^{-j\omega\frac{N-1}{2}} \left\{ \sum_{k=1}^{N/2} d(k) \sin\left[\omega\left(k - \frac{1}{2}\right)\right] \right\}$$
 (2.11b)

where

$$d(k) = 2h[N/2 - k],$$
 $k = 1, 2, ..., N/2$

2.5 FIR filter design

2.5.1 FIR filter type choice

Not every FIR filter type fits on every filter.

Type	Low Pass	High Pass	Band Pass	Band Stop
I				
II		Not suitable		Not suitable
III	Not suitable	Not suitable		Not suitable
IV	Not suitable			Not suitable

2.5.2 FIR filter design by Windowing

Most idealized systems are non causal and have infinite impulse responses. To achieve finite impulse responses and causality, truncating the ideal response is the most straightforward approach.

For the ideal impulse response

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$
 (2.12)

the truncated response would be

$$h(n) = \begin{cases} h_d(n) & , 0 \le n \le N-1 \\ 0 & , \text{ otherwise} \end{cases} \tag{2.13a}$$

or

$$h(n) = h_d(n) \cdot w(n) \tag{2.13b}$$

with

$$w(n) = \begin{cases} 1 & \text{, } 0 \le n \le N - 1 \\ 0 & \text{, otherwise} \end{cases}$$

Properties of a rectangular Window

If the window-funciton is a rectangle, the frequency response of the filter has to be multiplied with the fourier transform of the rectangle:

$$H(e^{j\omega}) = H_d(e^{j\omega}) \otimes W(e^{j\omega})$$
 (2.14a)

$$= H_d(e^{j\omega}) \otimes \left[e^{-j\omega \frac{N-1}{2}} \cdot \frac{\sin(\omega N/2)}{\omega/2} \right]$$
 (2.14b)

This, if $H_d(e^{j\omega})$ should be closest to $H(e^{j\omega})$, N has to go to infinity

Main and Sidelobes

With increasing N, the 'main-lobe' width increases.

Peak approxomation error (PAE)

$$PAE = \gamma \cdot \max_{\omega \in \mathbb{R}} \left| H_d(e^{j\omega}) - H(e^{j\omega}) \right|$$
 (2.15)

The PAE is also directly related to the maximum allowable specification tolerance. With ω_c as the discontinuity of $H_d(e^{j\omega})$:

$$\Delta H_d\left(e^{j\omega_c}\right) \cdot \gamma \le \min(\alpha_1, \alpha_2) \tag{2.16}$$

Commonly used Windows

Rectangular

$$w(n) = \begin{cases} 1 & \text{if } 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$$
 (2.17a)

Barlett

$$w(n) = \begin{cases} \frac{2n}{N-1} & , 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1} & , \frac{N-1}{2} \le n \le N-1 \end{cases}$$
 (2.17b)

Hanning

$$w(n) = \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{N - 1}\right) \right] \quad 0 \le n \le N - 1$$
 (2.17c)

Hamming

$$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right) \quad 0 \le n \le N-1$$
 (2.17d)

Blackman

$$w(n) = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right) \quad 0 \le n \le N-1$$
(2.17e)

These windows have different Properties:

Window	Peak Amplitude of Side-Lobe (dB)	Approximate Width (rad) of Main-Lobe	Peak Approximation Error (dB)
Туре	(relative) ($\Delta \omega$	$20\log_{10}\gamma$
Rectangular	-13	$4\pi/N$	-21
Bartlett	-25	$8\pi/(N-1)$	-25
Hanning	-31	$8\pi/(N-1)$	-44
Hamming	-41	$8\pi/(N-1)$	-53
Blackman	-57	$12\pi/(N-1)$	-74

2.5.3 Kaiser Window Filter Design

The Kaiser window function adapts to the specifications. Let $\alpha = \frac{N-1}{2}$ and I_0 be the zeroth order modified Bessel function of the first kind:

$$w(n) = \begin{cases} I_0 \left\{ \beta \left[1 - \left(\frac{n - \alpha}{\alpha} \right)^2 \right]^{\frac{1}{2}} \right\} \\ 0 & \text{, otherwise} \end{cases}$$
 (2.18)

Desgin a filter with Kaiser window

Assuming $\alpha_1=\alpha_2$ and the transition region is $\Delta\omega=\omega_s-\omega_p$. With $A=-20\log_{10}\alpha_1$

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50\\ 0.5842(A - 21)^{0.4} + 0.07866(A - 21) & 21 \le A \le 50\\ 0 & A < 21 \end{cases}$$
 (2.19)

and

$$N = \left[\frac{A - 8}{2.285\Delta\omega} + 1\right] \tag{2.20}$$

2.6 Infinite Impulse Response (IIR) filter

IIR filters are systems, which follow the following Restrictions: h(n) is

- real
- causal
- · satifies stability

h(n) possesses a rational z-transform with $a_0 = 1$, i.e.

$$H(z) = \frac{\sum_{k=0}^{N-1} b_k z^{-k}}{1 - \sum_{k=0}^{N-1} a_k z^{-k}}$$
(2.21)

2.6.1 Properties of IIR filters

- Stability
 All poles of H(z) must lie inside the unit disk
- Linear Phase

 IIR filters do not have linear phase. Only the magnitude response is specified.

2.7 Filter Specficaion

Non-ideal Filters have one or more pass-bands(ω_p), transition-bands(between ω_p and ω_s) and stop-bands(ω_s). For the pass- and the stop- band, a tolerance α_i has to be specified. Therefore a low-pass filter would have the following specification:

3 Miscellaneous

3.1 Useful mathematical equations

3.1.1 Geometric series

$$\sum_{n=0}^{N-1} q^n = \frac{1-q^N}{1-q} \quad \text{for} \quad |q| < 1$$
 (3.1)

3.1.2 Conversion from Geometric series to trigonometric fraction

Let $\frac{1-q^N}{1-q}$ be with $q=e^{-j\omega}$

$$\frac{1 - e^{-jN\omega}}{1 - e^{-j\omega}} = e^{-j\omega} \frac{\sin\left(\frac{N}{2}\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$
(3.2)