CREATED by Jafarabat ©

1. Существование и единственность задачи Коши для уравнения с разделяющимися переменными.

$$\frac{dy}{dx} = f(x)g(y) \quad (7)$$

Теорема 1. (О существовании и единственности задачи Коши для уравнения с разделяющимися переменными) Пусть функция f(x),g(y) непрерывны на интервалах a < x < b и c < y < d соответственно и $g(y) \neq 0 \ \forall y: y \in (c,d)$. Тогда через каждую точку (x_0,y_0) прямоугольника $Q\{(x,y) \in R^2: a < x < b, \ c < y < d\}$ проходит график одного и только одного решения $y = \varphi(x)$ уравнения (7).

Иначе говоря, теорема 1 говорит о том, что в прямоугольнике Q задача

$$\left\{egin{aligned} rac{dy}{dx} &= f(x)g(y), \ arphi(x_0) &= y_0 \end{aligned}
ight.$$

имеет единственное решение.

Доказательство. Пусть $y = \varphi(x)$ — решение уравнения (7), проходящее через точку (x_0, y_0) , то есть удовлетворяет условию

$$\varphi(x_0) = y_0 \quad (10)$$

Функция $\varphi(x)$ является решением уравнения (7), а значит эта функция непрерывно дифференцируема и обращает в тождество уравнение (7)

$$rac{d\varphi(x)}{dx} \equiv f(x)g(\varphi(x))$$
 (11)

Так как $g(y) \neq 0$, то разделим обе части уравнения:

$$rac{darphi(x)}{q(arphi(x))} \equiv f(x)dx \quad (12)$$

Справа и слева стоят непрерывные функции. Переобозначим переменную x как t и проинтегрируем в пределах x_0,x , где $(x_0,x)\subset (a,b)$

$$\int_{x_0}^x \frac{d\varphi(t)}{g(\varphi(t))} \equiv \int_{x_0}^x f(t)dt \quad (13)$$

Пусть $t \in (x_0,x) \ arphi(t) = \xi \Rightarrow \xi \in (arphi(x_0),arphi(x)).$

$$\int_{\varphi(x_0)}^{\varphi(x)} \frac{d\xi}{g(\xi)} \equiv \int_{x_0}^x f(t)dt \quad (14)$$

Пусть $G(\xi)-$ одна из первообразных функций $\frac{1}{g(\xi)}, F(t)-$ одна из первообразных функций f(t). Тогда после интегрирования получим:

$$G(\varphi(x)) - G(\varphi(x_0)) = F(x) - F(x_0) \quad (15)$$

$$G(\varphi(x)) = F(x) - F(x_0) + G(\varphi(x_0))$$
 (16)

Функция G(y) монотонна на (c,d) (т.к $G'(y)=\frac{1}{g(y)}\neq 0$). Следовательно существует единственная обратная функция $G^{-1}(x)$:

$$\varphi(x) = G^{-1}(F(x) - F(x_0) + G(\varphi(x_0)))$$
 (17)

Функция $\varphi(x)$, заданная формулой (17), определена единственным образом, так как в правой части формулы (17) содержатся только функции из правой части уравнения (7) и начальные условия. Таким образом, предположив существование решения мы доказали единственность.

Покажем, что функция $\varphi(x)$, заданная формулой (17) удовлетворяет задаче (9). Покажем, что функция $\varphi(x)$ является решение уравнения (7). Для этого продифференцируем (16). Это можно сделать потому что функции F,G являются первообразными непрерывных функций. Получим тогда

$$rac{dG}{darphi}rac{darphi}{dx}=rac{dF}{dx}$$
 $rac{1}{g(arphi(x))}rac{darphi}{dx}=f(x)$ $rac{darphi}{dx}=f(x)g(arphi(x))$ (18).

Из формулы (18) мы видим, что $\varphi(x)$ является решением уравнения (7). Проверим, что функция $\varphi(x)$ удовлетворяет условию $\varphi(x_0) = y_0$. Действительно,

$$\varphi(x_0) = G^{-1}(F(x_0) - F(x_0) + G(\varphi(x_0))) = G^{-1}(G(y_0)) = y_0$$
 (19)

Условие Липшица, лемма об условии Липшица в выпуклой области

Пусть функция $f(x, y_1, ..., y_n)$ определена в области D.

Определение. Функция f, определена в ограниченной области D, удовлетворяет условию Липшица по переменным $y_1,...,y_n$, если существует константа L>0, такая, что для любых точек $(x,u_1,...,u_n)\in D$ и $(x,v_1,...,v_n)\in D$ выполняется неравенство:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)| \leq L \sum_{i=1}^n |u_i-v_i| \quad \ \ (1)$$

Определение. Область D наз. выпуклой, если для двух точек $(x,u_1,...,u_n)\in D$ и $(x,v_1,...,v_n)\in D$, и для любых s таких, что $0\leq s\leq 1$, точка

$$(x, su_1 + (1-s)v_1, ...su_n + (1-s)v_n) \in D$$

Лемма. Пусть функция f определена и непрерывно дифференцируема в выпуклой области D и кроме того:

$$|rac{df}{dy_i}| \leq k_i, ~~i=\overline{1,n},$$
 где $k_i=const$

Тогда функция f удовлетворяет условию Липшица по переменным $y_1,...,y_n$

Доказательство. Возьмем 2 точки $(x, su_1 + (1-s)v_1, ...su_n + (1-s)v_n) \in D$. Покажем, что для f будет выполняться условие (1). Применяя формулу Ньютона-Лейбница, а также используя выпуклость области D получим следующее выражение:

$$egin{split} |f(x,u_1,...,u_n)-f(x,v_1,...,v_n)| \ &=|\int_0^1rac{d}{ds}f(x,su_1+(1-s)v_1,...su_n+(1-s)v_n)ds| \end{split}$$

Пусть $z_1 = su_1 + (1-s)v_1, ..., z_n = su_n + (1-s)v_n$. Тогда:

$$egin{split} \int_0^1 rac{d}{ds} f(x,z_1,...,z_n) ds &= |\int_0^1 rac{df}{dz_i} rac{dz_i}{ds} ds| = |\int_0^1 rac{df}{dz_i} (u_i - v_i) ds| \leq \ &\leq \int_0^1 \sum_{i=1}^n |rac{df}{dz_i}| |u_i - v_i| ds \leq \sum_{i=1}^n k_i |u_i - v_i| \int_0^1 ds \leq K \sum_{i=1}^n |u_i - v_i| \end{split}$$

Сопоставив начало и конец получим:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)| \leq K \sum_{i=1}^n |u_i-v_i|$$

Пример. Рассмотрим функцию $f(x,y_1,...,y_n)=|y_1|$ в единичном шаре с центром в начале координат $B_1(0)\subset R^{n+1}$. В нуле эта функция не дифференцируема, но тем не менее, удовлетворяет условию Липшица:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)|=||u_1|$$
 $-|v_1||\leq |u_1-v_1|\leq \sum_{i=1}^n |u_i-v_i|$

3. Лемма об эквивалентности решения задачи Коши и решения интегрального уравнения.

Рассмотрим задачу Коши в прямоугольнике
$$\Pi = \{(x,y) \in R^2: |x-x_0| \leq a, |y-y_0| \leq b\}:$$

$$\frac{dy}{dx} = f(x, y) \quad (4)$$

$$y(x_0) = y_0 \quad (5)$$

Лемма 2. (Об эквивалентности решения задачи Коши и решения интегрального уравнения). Пусть f(x,y) непрерывна в Π , тогда Решение задачи Коши (4)-(5) эквивалентно непрерывному решению уравнения

$$y(x)=y_0+\int_{x_0}^x f(t,y)dt \quad \ (6)$$

Определение 3. Функция $y = \varphi(x)$ называется решением задачи Коши (4)-(5), если:

- ullet 3.a)Она определена на отрезке $I_a = [x_0-a,x_0+a]$
- 3.b) $\forall x \in I_a \exists$ непрерывная $\varphi'(x)$
- 3.c) $\forall x \in I_a$ т. $(x, \varphi(x)) \in \Pi$
- 3.d) $\forall x \in I_a : \frac{d\varphi}{dx} \equiv f(x,\varphi)$
- 3.e) $\varphi(x_0) = y_0$

Определение 4. Функцию $y = \psi(x)$ будем называть решением интегрального уравнения (6), если:

- ullet 4.a) Она определена на отрезке $I_a = [x_0 a, x_0 + a]$
- ullet 4.b) $\psi(x)$ непрерывна на отрезке $I_a = [x_0-a,x_0+a]$
- 4.c) $\forall x \in I_a$ т. $(x,\psi(x)) \in \Pi$
- 4.d) $orall x \in I_a$: $\psi(x) = y_0 + \int_{x_0}^x f(t,\psi(t)) dt$

Доказательство. Пусть $\varphi(x)$ будет решением задачи Коши (4)-(5). Покажем, что тогда из условий (3.a)-(3.e) следуют условия (4.a)-(4.d). 3.a и 4.a совпадают, 3.c и 4.c - тоже. Из пункта 3.b следует 4.b. Покажем, что из 3.d, 3.e следует 4.d. Подставим функцию $\varphi(x)$ в уравнение (4), получим

$$\frac{d\varphi}{dx} \equiv f(x, \varphi(x))$$
 (7)

Функция $\varphi(x)$ непрерывна по условию 3.b, f непрерывна в прямоугольнике П по условию теоремы, x неперерывна как элементарная функция, тогда суперпозиция $F(x)=f(x,\varphi(x))$ непрерывна на отрезке I_a . Заменим в тождестве (7) x на t и проинтегрируем в пределах x_0,x :

$$\int_{x_0}^x rac{darphi}{dt} \equiv \int_{x_0}^x f(t,arphi(t)) dt.$$

Проинтегрировав получим:

$$arphi(x)-arphi(x_0)\equiv\int_{x_0}^xf(t,arphi(t))dt$$

$$arphi(x)\equiv y_0+\int_{x_0}^x f(t,arphi(t))dt$$

Таким образом, мы получаем, что если функция $\varphi(x)$ является решением задачи Коши (4)-(5), то она будет и решением интегрального уравнения (6).

$$\frac{dy}{dx} = f(x, y) \quad (4)$$

$$y(x_0)=y_0 \quad (5)$$

$$y(x)=y_0+\int_{x_0}^x f(t,y)dt \quad \ (6)$$

Теорема 2. (О существовании и единственности задачи Коши)(Теорема Пикара). Пусть f(x,y) определена в прямоугольнике П и удовлетворяет условиям:

- f(x,y) непрерывна в Π ;
- f(x,y) по переменной y удовлетворяет условию Липшица.

Тогда для любых $(x_0,y_0)\in\Pi$ существует единственное решение $y=\varphi(x)$ задачи Коши(4)-(5), которое определено и непрерывно для $x\in[x_0-h,x_0+h],$ $h=min\{a,\frac{b}{M}\},\,M=max_\Pi|f(x,y)|.$

Доказательство. Согласно доказанной выше лемме (Лемма об эквивалентности решения задачи Коши и решения интегрального уравнения.), достаточно доказать существование и единственность решения интегрального уравнения (6). Доказательство будем проводить методом последовательных приближений. Разобьем на 4 этапа(4-7 биелеты)

4. Теорема Пикара. Построение последовательных приближений.

Очевидно, $\forall x \in I_a$ т. $(x, \varphi_0(x)) \in \Pi$. Далее, в качестве $\varphi_1(x)$ возьмем функцию:

$$arphi_1(x)=y_0=\int_{x_0}^x f(t,arphi_0(t))dt \quad \ (14)$$

Покажем, что $\varphi_1(x)$ непрерывна на I_a . Используем теорему из мат. анализа:

Теорема 3. Если f(t) интегрируема на [a,b], то функция $F(x) = \int_{x_0}^x f(t) dt$ непрерывна, а если еще и f(t) непрерывна на [a,b], то F(x) дифференцируема.

Так как в выражении (14) подынтегральное выражение $f(t,\varphi_0(t))$ непрерывно (как композиция двух непрерывных функций f и φ_0 и элементарной функции t, функции $\varphi_1(x)$ также непрерывна. Покажем, что график функции $\varphi_1(x)$ не выходит за пределы прямоугольника $\Pi_1=\{(x,y)\in\Pi:|x-x_0|\leq h,|y-y_0|\leq b\},$ где

 $h=min\{a,rac{b}{M}\}$. Покажем, что для всех $x\in I_h,I_h=[x_0-h,x_0+h]$ выполяется неравенство:

$$|arphi_1(x)-y_0|\leq b$$

тем самым, докажем, что график лежит в прямоугольнике Π_1 . Получим:

$$|arphi_1(x) - y_0| = |\int_{x_0}^x f(t, arphi_0(t)) dt| \leq |\int_{x_0}^x |f(t, arphi_0(t))| dt| \leq M|x - x_0| \leq Mh \leq b$$

Мы получили, что второе приближение $\varphi_1(x)$ является непрерывным и график функции $\varphi_1(x)$ для всех $x \in I_h$ лежит в прямоугольнике Π_1 . След. приближение строим аналогично:

$$arphi_2(x) = y_0 + \int_{x_0}^x f(t,arphi(t_1)) dt$$

Функция непрерывна $\varphi_2(x)$ непрерывна на I_2 как сумма двух непрерывных функций. Проверим, что $\varphi_2(x)$ лежит в прямоугольнике Π_1 :

$$|\varphi_2(x)-y_0|\leq b$$

 $orall x \in I_h, \ I_h = [x_0 - h, x_0 + h]$. Будем иметь:

$$|arphi_2(x)-y_0|=|\int_{x_0}^x f(t,arphi_1(t))dt|\leq |\int_{x_0}^x |f(t,arphi_1(t))|dt|\leq M|x-x_0|\leq Mh\leq b$$

Будем продолжать процесс построения приближений согласно формуле:

$$arphi_n(x) = y_0 + \int_{x_0}^x f(t, arphi_{n-1}(t)) dt, \;\; n = 1, 2, 3, ...$$

Это рекурретная формула для получения любого члена последовательности, где функция $\,arphi_n\,$ определены и непрерывны на I_n , а так же, для $\,\forall x\in I_h\,$ точка $(x,arphi_n(x))\in\Pi$

5. Теорема Пикара. Сходимость последовательных приближений.

Мы уже построили последовательность

$$\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$$
 (17)

Где каждое приближение можем получить зная предыдущее. Покажем, что последовательность (17) равномерно сходится к некоторой функции $\varphi(x)$ на $I_h(I_h=[x_0-h,x_0+h])$

Определение 5 Последовательность функций $\varphi_n(x), n=1,2,3...$ равномерно сходится на [a,b] к $\varphi(x)$, если

$$\sup_{[a,b]}|arphi_n(x)-arphi(x)|=r_n o 0,$$
 при $n o 0$

Для равномерной сходимости использую обозначение $arphi_n(x)
ightrightarrows arphi(x)$

Исследуем ряд

$$|\varphi_0(x) + [\varphi_1(x) - \varphi_0(x)] + [\varphi_2(x) - \varphi_1(x)] + \dots + [\varphi_n(x) - \varphi_{n-1}(x)]|$$
 (18)

где $S_{n+1}=\varphi_n(x),\; n=1,2,3...$ Таким образом, если ряд (18) сходится, то и последовательность (17) сходится. будем использовать мажорантный признак Вейерштрасса:

$$ert arphi_1(x)-arphi_0(x)ert \leq ert \int_{x_0}^x f(t,arphi_0(t))dtert \leq Mert x-x_0ert, \ ert arphi_2(x)-arphi_1(x)ert = ert \int_{x_0}^x f(t,arphi_1(t))dt-\int_{x_0}^x f(t,arphi_0(t))dtert = ert \int_{x_0}^x (f(t,arphi_1(t))-f(t,arphi_0(t)))dtert \leq \ ert \int_{x_0}^x ert (f(t,arphi_1(t))-f(t,arphi_0(t)))ert dtert \leq L ert \int_{x_0}^x ert arphi_1(x)-arphi_0(x)ert dtert \leq L Mrac{ert x-x_0ert^2}{2}$$

Продолжая аналогичным образом, получим

$$|arphi_n(x)-arphi_{n-1}(x)| \leq Mrac{L^{n-1}|x-x_0|^n}{n!}, \ n=1,2,3...$$

Учитывая, что $|x-x_0| < h,$ получим

$$|arphi_n(x) - arphi_{n-1}(x)| \leq M rac{L^{n-1}h^n}{n!}, \ n = 1, 2, 3...$$

Рассмотрим рядо из $a_n,$ где $a_n=Mrac{L^{n-1}h^n}{n!}.$ По условию теоремы $L,M,h>0\Rightarrow a_n>0$

$$\lim_{n o\infty}rac{a_{n+1}}{a_n}=Lh\lim_{n o\infty}rac{1}{n+1}=0<1.$$

Отсюда по признаку Даламбера, получим, что ряд $\sum_{n=1}^{\infty} \frac{L^{n-1}h^n}{n!}$ сходится, а значит, наш функциональный ряд (18) сходится равномерно на I_h . Отсюда следует, что последовательность (17) имеет предел:

Суть признака Даламбера:

- При меньшем значении ряд сходится.
- При большем значении ряд расходится.
- Если значение равно 1, то признак не даёт ответа

$$\lim_{n\to\infty} \varphi_n(x) = \varphi(x).$$

Функция $\varphi(x)$ непрерывна на I_h , так как является равномерным пределом последовательности непрерывных функций. Действительно, здесь мы опираемся на теорему из мат. анализа.

Теорема 4. Пусть последовательность $\varphi_n(x)$ равномерно сходится к $\varphi(x)$ на [a,b] и кроме того $\varphi_n(x)$ — непрерывны на [a,b]. Тогда предельная функция $\varphi(x)$ непрерывна на [a,b].

Проверим, что предельная функция лежит в прямоугольнике Π_1 для $x \in I_h$. Поскольку все последовательные приближения удовлетворяют неравенствам:

$$y_0 - b \le \varphi_n(x) \le y_0 + b$$
,

то и предельная функция удовлетворяет условию

$$y_0-b\leq arphi(x)\leq y_0+b,$$
 $|arphi(x)-y_0|\leq b.$

Здесь мы опираемся на след. утверждение.

Теорема 5. Пусть все члены последовательности a_n таковы, что $A \leq a_n \leq B$ и $\lim_{n \to \infty} a_n = a$. Тогда и для предельного значения справедливо неравенство: A < a < B.

Мы доказали, что построенная последовательность приближений равномерно сходится, ее предельная функция непрерывна и не выходит за рамки прямоугольника Π_1 для всех $x \in I_h$

6. Теорема Пикара. Доказательство того, что предельная функция последовательности приближений является решением интегрального уравнения.

$$y(x)=y_0+\int_{x_0}^x f(t,y)dt \quad \ (6)$$

Покажем, что предельная функция $\varphi(x)$ является решением интегрального уравнения (6), то есть обращает в тождество выражание:

$$arphi(x)\equiv y_0+\int_{x_0}^x f(t,arphi(x))dt.$$

Функция $\varphi(x)$ является равномерным пределом на $I_h(I_h=[x_0-h,x_0+h])$ последовательности $\varphi_n(x)$, построенной по рекурретному соотношению

Равномерный предел последовательности — это предел, при котором скорость сходимости не зависит от точки

$$arphi_n(x) \equiv y_0 + \int_{x_0}^x f(t, arphi_{n-1}(t)) dt, \; n=1,2,3...$$

Перейдем к пределу:

$$\lim_{n o\infty}arphi_n(x)=\lim_{n o\infty}(y_0+\int_{x_0}^xf(t,arphi_{n-1}(t))dt)$$

Покажем, что

$$\lim_{n o\infty}\int_{x_0}^x f(t,arphi_{n-1}(t))dt = \lim_{n o\infty}\int_{x_0}^x f(t,arphi(t))dt \quad \ (25)$$

В (25) при каждом фиксированном $x \in I_h$ мы имеем дело с числовой последовательностью. Покажем, что при каждом фиксированном $x \in I_h$ будет справедливо:

$$|\int_{x_0}^x f(t,arphi_{n-1}(t))dt - \int_{x_0}^x f(t,arphi(t))dt| o 0$$
 при $n o\infty$

Действительно,

$$0\leq |\int_{x_0}^x f(t,arphi_{n-1}(t))dt-\int_{x_0}^x f(t,arphi(t))dt|\leq |\int_{x_0}^x (f(t,arphi_{n-1}(t))-f(t,arphi(t)))dt|\leq$$
 $\leq L|\int_{x_0}^x |arphi_{n-1}(t)-arphi(t)|dt|\leq L|\int_{x_0}^x \sup|arphi_{n-1}(t)-arphi(t)|dt|=L|\int_{x_0}^x r_ndt|\leq Lhr_n o 0, ext{ при } n o \infty$

7. Теорема Пикара. Единственность.

$$y(x)=y_0+\int_{x_0}^x f(t,y)dt \quad \ (6)$$

Докажем, что предельная функция $\varphi(x)$ является единственным решением интегрального уравнения (6). Предположим противное, т.е, пусть существует функция $\psi(x)$, удоавлетворяющая интгральному тождеству

$$\psi(x)\equiv y_0+\int_{x_0}^x f(t,\psi(x))dt$$

На втором шаге мы показали, что

$$\lim_{n o\infty}arphi_n(x)=\psi(x)$$

Если мы покажем это, то в силу единственности предела получим, что $\varphi(x)=\psi(x).$ На самом деле достаточно показать, что

$$\lim_{n o\infty}|arphi_n(x)-\psi(x)|=0.$$

Рассмотрим $|\varphi_n(x) - \psi(x)|$, где n = 1, 2, 3... Начнем с n = 0:

$$|arphi_n(x)-\psi(x)|=|\int_{x_0}^x f(t,\psi(x))dt|\leq |\int_{x_0}^x |f(t,\psi(x))|dt|\leq M|x_0-x|.$$

Здесь мы воспрользовались тем, что $f(t,\psi(x))$ непрерывна на отрезке I_h ,($I_h=[x_0-h,x_0+h]$) как композиция непрерывных функций, и тем, что функция ограничена на $I_h:|f(t,\psi(x))|\leq M$. Возьмем n=1:

$$|arphi_1(x) - \psi(x)| \leq |\int_{x_0}^x |f(t, arphi_0(x)) - f(t, \psi(x))| dt| \leq L |\int_{x_0}^x |arphi_0(x) - \psi(x)| dt| \leq rac{LM|x - x_0|^2}{2!}$$

Продолжая оценку, получаем:

$$|\varphi_n(x)-\psi(x)|\leq \frac{L^nM|x-x_0|^{n+1}}{(n+1)!}$$

Вспоминаем, что $\frac{L^nMh^{n+1}}{(n+1)!}=a_n$, где $\sum_{n=1}^\infty a_n$ сходящийся ряд. Но если ряд сходится, то из необходимого условия сходимости числового ряда следует, что $a_n\to 0$ при $n\to\infty$. Мы имеем следующее:

$$0 \leq |arphi_n(x) - \psi(x)| \leq a_n o 0.$$

Тогда по теореме о 2 милиционерах $|arphi_n(x) - \psi(x)| \to 0$. Тем самым единсвтенность доказана.

8. Теорема об общем решении однородного линейного уравнения.

$$\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_n(x)y = 0$$
 (8)

Определение 3. Введем пространство $C^n([a,b])$ непрерывно дифференцируемых на [a,b] функций до порядка n включительно, с нормой $||u||_{C^n([a,b])} = \sum_{i=0}^n max|u^{(i)}(x)|.$

Рассмотрим линейный диффернциальный оператор $L(x,\frac{d}{dx}u)$ действующий из $C^n([a,b])$ в C([a,b]) по формуле:

$$L(u) = L(x, \frac{d}{dx})u = \frac{d^n u}{dx^n} + a_1(x)\frac{d^{n-1}u}{dx^{n-1}} + ... + a_n(x)u$$
 (10)

Тогда уравнение (8) можно записать в виде L(y)=0. Оператор L является линейным, так как для него справедливы следующие свойства:

- $L(u+v) = L(U) + L(V), \forall U, V \in C^n([a,b])$
- $L(cU) = cL(U), \forall c \in R, \forall U \in C^n([a,b])$

Теорема 3. (О множестве решений линейного однородного уравнения L(y)=0). Множество решений уравнения (8), при условии непрерывности коэффициентов на отрезке [a,b] образуют линейное n- мерное пространство.

Доказательство. Шаг 1. Пусть M- множество решений уравнения (8). Введем операции сложения и умножения на скаляр. Тогда получим, что если $z,y\in M,$ то и $z+y\in M.$ Действительно, если $z,y\in M,$ то $L(z)\equiv 0$ и $L(y)\equiv 0.$ Но тогда в силу линейности, для любой константы будет выполнено:

$$L(cy) = cL(y) \equiv 0.$$

Тогда и $cy \in M$. Таким образом, для элементов множества решений уравнения (8) M выполняется следующее. Если

$$z,y\in M$$
, to $z+y\in M$, $cy\in M$,

где c- константа. Это значит, что множество M является линейным пространством.

Шаг 2. Покажем, что множество линейного пространства M имеет размерность n. Т.е., что существуют n линейно независимых решений, а любые n+1 решения являются линейно зависимыми на [a,b]

Построим сначала n решений и покажем, что они линенйно независимы. Пусть $y_j(x)$ — решения линейного однородного уравнения уравнения, удовлетворяющее удоавлетворяющая условиям:

$$\frac{d^{i-1}}{dx^{i-1}}(x_0=\delta^i_j) \quad (11)$$

где $x_0\in[a,b], \delta^i_j=egin{cases}1,&i=j\\0,&i
eq j \end{pmatrix}$ – символ Кронекера, $i,j=\overline{1,n}.$ Задача (8)-(11) имеет

единственное решение, так как выполнены условия теоремы существования и единственности. Меняя j от 1 до n получим n функций.

9. Теорема об определителе Вронского (линейная зависимость).

Теорема 4. Пусть функции $y_1(x), ..., y_n(x)$ непрерывно дифференцируемы на [a, b], и являются линейно независимыми на этом отрезке. Тогда на этом отрезке. Тогда на [a, b] определитель, называемый определителем Вронского:

$$W(x) = egin{array}{cccc} y_1(x) & ... & y_n(x) \ y_1'(x) & ... & y_n'(x) \ ... & ... & ... \ y_1^{(n-1)}(x) & ... & y_n^{(n-1)}(x) \ \end{array} igg| \equiv 0$$

Доказательство. По условию теоремы функции $y_1(x),...,y_n(x)$ линейно зависимы. Это значит, что существует набор констант $\overline{c_1},\overline{c_2},...,\overline{c_n},\overline{c_1}^2,\overline{c_2}^2,...,\overline{c_n}^2 \neq 0$, такой, что имеет место тождество:

$$\overline{c_1}y_1(x)+\overline{c_2}y_2(x)+...+\overline{c_n}y_n(x)\equiv 0$$

Так как $y_1(x),...,y_n(x)$ дифференцируемы (n-1) раз, можем продифференцировать вышестоящее тождество (n-1) раз. Тогда мы получим систему:

$$egin{cases} \overline{c_1}y_1(x)+\overline{c_2}y_2(x)+...+\overline{c_n}y_n(x)\equiv 0,\ \overline{c_1}y_1'(x)+\overline{c_2}y_2'(x)+...+\overline{c_n}y_n'(x)\equiv 0\ ...,\ \overline{c_1}y_1^{(n-1)}(x)+\overline{c_2}y_2^{(n-1)}(x)+...+\overline{c_n}y_n^{(n-1)}(x)\equiv 0 \end{cases}$$

Рассмотрим эту систему относительно констант. Система линейно и однородна. Она всегда имеет нулевое решение. Однако, по условию теоремы система имеет и не нулевое решение. Это значит, что решение не единственно и определитель равен нулю. Но определитель системы - это и есть определитель Вронского.

Обратное утверждение не верно.

Теорема об определителе Вронского(нелинейная зависимость).

Теорема 4. Пусть функции $y_1(x), ..., y_n(x)$ непрерывно дифференцируемы на [a, b], и являются линейно независимыми на этом отрезке. Тогда на этом отрезке. Тогда на [a, b] определитель, называемый определителем Вронского:

$$W(x) = egin{array}{cccc} y_1(x) & ... & y_n(x) \ y_1'(x) & ... & y_n'(x) \ ... & ... & ... \ y_1^{(n-1)}(x) & ... & y_n^{(n-1)}(x) \ \end{array} igwedge \equiv 0$$

Теоерема 5. Пусть $y_1(x),...,y_n(x)$ – решения линейного однородного уравнения

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_ny = 0,$$

с непрерывными на [a,b] коэффициентами, линейно незавсисимы на отрезке [a,b]. Тогда определитель Вронского этих решений не может обратиться в ноль ни в одной точке отрезка [a,b]

Доказательство. Предположим противное. Допустим, что существует точка $x_0 \in [a,b]$, такая, что $W(x_0)=0$. Тогда система

$$\begin{cases}
\overline{c_1}y_1(x_0) + \overline{c_2}y_2(x_0) + \dots + \overline{c_n}y_n(x_0) = 0, \\
\overline{c_1}y_1'(x_0) + \overline{c_2}y_2'(x_0) + \dots + \overline{c_n}y_n'(x_0) = 0, \\
\dots, \\
\overline{c_1}y_1^{(n-1)}(x_0) + \overline{c_2}y_2^{(n-1)}(x_0) + \dots + \overline{c_n}y_n^{(n-1)}(x_0) = 0.
\end{cases} (27)$$

имеет ненулевое решение. То есть сущесвтует набор констант $\overline{c_1},\overline{c_2},...,\overline{c_n},$ $\overline{c_1}^2,\overline{c_2}^2,...,\overline{c_n}^2 \neq 0$. Составим функцию $y(x)=\overline{c_1}^2y_1(x)+...+\overline{c_n}^2y_n(x)$. Эта функция является решением линейного однородного уравнения

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_ny = 0,$$

так как функции $y_1(x),...,y_n(x)$ решения линейного однородного уравнения. Кроме того, в силу равенств (27), удовлетворяет нулевым начальным условиям: $y_0(x_0)=0,y'(x_0)=0,...,y^{(n-1)}(x_0)=0$. Тогда по лемме о нулевом решении задачи Коши функция $y(x)\equiv 0$ для всех $x\in [a,b].$ То есть, выполняется равенство $\overline{c}_1^2y_1(x)+...+\overline{c}_n^2y_n(x)\equiv 0$ и $\overline{c}_1^2+...+\overline{c}_n^2\neq 0.$ Это значит, что система линейно независима. Следовательно, получим противоречие.

Теоерема 6. Критерий линейной независимости n решений линейного однородного уравнения. Для того, чтобы n решений $y_1(x),...,y_n(x)$ — решения линейного однородного уравнения

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_ny = 0,$$

с непрерывными на [a,b] коэффициентами, были линейно независимы на этом отрезке необходимо и достаточно, чтобы определитель Вронского этих решений был отличен от нуля на всем отрезке [a,b]

Доказательство. Пусть решения $y_1(x),...,y_n(x)$ линейно независимы. Тогда по теореме 5 $W\neq 0$ для всех $x\in [a,b]$.

Обратно, пусть $W \neq 0$. Тогда решения лиенйно независимы? Предположим противное, то есть, что решения линейно зависимы. Тогда по теореме 4 W=0. Получили противоречие.

Если функции $y_1(x),...,u_n(x)$ не являются решением линейного однородного уравнения, то W может обращаться в ноль.

Основные понятия теории ОДУ.

1. Уравнение с разделяющимися переменными.

Пусть y(x)- неизвестная функция, а функция f(x),g(x)- заданные функции. Уравнения вида:

$$\frac{dy}{dx} = f(x)g(x) \quad (7)$$

называется уравнением с разделяющимися переменными.

Можно записать в виде:

$$\frac{dy}{g(y)} = f(x)dx$$

Затем проинтегрировав справа и слева, откуда получим решение. Но это можно сделать только в предположении, что $g(x) \neq 0$. Таким образом в при решении важную роль будут играть точки, в которых функция g(y) = 0

Примеры

Джафар:

- $\bullet \quad xy \ dx + (x+1) \ dy = 0$
- $\bullet \quad \sqrt{y^2 + 1} \ dx = xy \ dx$

Кенан:

- $\bullet \quad y' xy^2 = 2xy$
- $\bullet \quad \frac{dy}{y} \frac{dx}{x} = 0$

Егор:

- $\bullet \quad (x^2+9)y'=4xy$
- $\cos^2(x) dy = \sin^2(y) dx$

Нур:

- x dx + y dy = 0
- $y^2(1+x)dx + x^2(1-y)dy = 0$

Евгений:

- $2y dy = 3x^2 dx$
- $(e^x + 1) dx = 6y^5 dy$

Фрязино:

- xy' = y
- y' + (2y + 1)ctg(x) = 0

2. Порядок уравнения.

Максимальный порядок производной, входящей в уравнение, называется порядком уравнения.

Определение. Обыкновенным дифференциальным уравнением n- ого порядка будем называть соотношение, связывающее незавсимую переменную от x, функции y(x) и ее производные до n- ого порядка.

$$F(x, y, y', y'', ..., y^{(n)}) = 0,$$

где F определена на $[a,b]\in R$

3. Решение уравнения.

$$F(x, y, y', ..., y^{(n)}) = 0$$
 (1)

Определение. Функция $y=\varphi(x)$ называется решением уравнения (1) (частным решением), если она определена на [a,b], имеет все производные до порядка n, то есть $\varphi\in C^n([a,b])$, если при подстановке в уравнение(1) мы получим тождество:

$$F(x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)) \equiv 0$$
, для всех $x \in [a, b]$. (2)

Определение. Решение уравнения (1), зависящее от n произвольных постоянных будем называть общим решением уравнения (1), если при соответсвующем наборе констант можно получить любое решение уравнения (1)

Пример:

$$y''+y=0$$
 $\lambda^2+1=0\Rightarrow \lambda=\pm i$ $y(x)=C_1cos(x)+C_2sin(x)$ — общее решение

4. Линейное уравнение.

$$\frac{d^n(y)}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + ... + a_n(x)y = f(x).$$
 (8)

- Если правая часть уравнения (8)- функция $f(x) \equiv 0$, то уравнение (8) называется линейным однородным уравнением.
- В противном случае уравнение (8) называется линейным неоднородным уравннением.
- Функции $a_1, a_2, ..., a_n$ называются коэффициентами уравнения (8).
- дифференциальное уравнение (8) имеет порядок *n*.
- Будем предполагать, что правая часть уравнения (8) и коэффициенты $a_1, a_2, ..., a_n$ непрерывны на [a, b]

5. Однородное уравнение.

Определение. Однородным ДУ называется уравнение n- ого порядка вида:

$$y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x)y = 0,$$

Примеры

Джафар:

$$\bullet \quad y'' - 2y' - 3y = 0$$

Кенан:

$$\bullet \quad y'' - 8y' + 16y = 0$$

Егор:

$$\bullet \quad y'' + 3y' - 10y = 0$$

Нур:

•
$$y'' - 6y' + 25y = 0$$

Евгений:

•
$$y''' - 2y'' - y' + 2y = 0$$

Фрязино:

$$\bullet \quad y'' - 4y' = 0$$

где $a_1, a_2, ..., a_n$ заданные коэффициенты, которые могут зависеть от x, а y-искомая функция.

6. Неоднородное уравнение.

Неоднородным называется уравнение, которое содержит не равный тождественно нулю член-слагаемое, не зависящее от функций

$$b_1(t)x^{(n)} + ... + b_n(t)x - f(t) = 0,$$

где $f(t) \neq 0$

Примеры

Джафар:

•
$$y'' + 4y' + 13y = 5\sin(2x)$$

Кенан:

•
$$y''2y'+2y=rac{1}{e^x+1}$$

Егор:

•
$$5y'' - 4y' - y = 3\sin(x) + 2\cos(x)$$

Нур:

•
$$y'' + y = \frac{1}{\sin(x)}$$

Евгений:

•
$$y'' + 2y' + y = 3e^{-x}\sqrt{x+1}$$

Фрязино:

$$\bullet \quad y'' + 4y = 2 \operatorname{tg}(x)$$

7. Задача Коши.

$$F(x, y, y', ..., y^{(n)}) = 0$$
 (1)

Определение. (Задача Коши для уравнений n-ого порядка). Рассмотрим след. задачу. Среди всех решений уравнения (1) найти решение, удовлетворяющее условию:

$$egin{cases} y(x_0) = y_0, \ y'(x_0) = y_1, \ ..., \ y^{(n-1)}(x_0) = y_{n-1}. \end{cases}$$

Где $x_0 \in [a,b]$, а $y_0,y_1,...,y_{n-1}$ — заданные числа. Условие (3) называется начальным условием, а задача (1),(3) называется задачей Коши.

Примеры

Джафар:

•
$$y' - 3y = 0$$
, $y(0) = 5$

Кенан:

•
$$y'' + y' - 6y = 0$$
, $y(0) = 1, y'(x) = 0$

Егор:

•
$$y'' + 5y' + 6y = 0$$
, $y(0) = -1, y'(x) = 3$

Hyp:

•
$$y''' - 3y'' + 3y' - y = 0$$
, $y(0) = 2, y'(0) = 0, y''(x) = -1$

Евгений:

•
$$x^2y'' + 3xy' - 4y = 0$$
, $y(1) = 3, y'(1) = -2$

Фрязино:

•
$$y'' - 2y' + y = 0$$
, $y(0) = 4$, $y'(0) = -2$

8. Линейно зависимая и линейно независимая система решений.

Линейная зависимость. Система функций $y_1(x),...y_n(x)$ называется линейно независимой на интервале [a,b], если существуют такие константы $c_1,...,c_n$, не все из которых равны нулю, что выполняется равенство:

$$c_1y_1(x) + c_2y_2(x) + ... + c_ny_n(x) = 0$$

Линейная независимость. Система функций $y_1(x),...y_n(x)$ называется линейно независимой на интервале [a,b], если из равенства

$$c_1y_1(x) + c_2y_2(x) + ... + c_ny_n(x) = 0$$

следует, что $c_1 = c_2 = ... = c_n = 0$

9. Определитель Вронского.

Определение. Для системы функций $y_1(x),...y_n(x)$ определитель Вронского определяется как

$$W(x) = egin{bmatrix} y_1 & y_2 & ... & y_n \ y_1' & y_2' & ... & y_n' \ ... & ... \ y_1^{(n-1)} & y_2^{(n-1)} & ... & y_n^{(n-1)} \ \end{pmatrix}$$

Это определитель матрицы, который состоит из функций и их производных до (n-1)- ого порядка.

Свойства

Свойство 1. Если система функций линейно независима, то W(x)
eq 0

Свойство 2. Если система функций линейно зависима, то $W(x) \equiv 0$

10. Критерий линейной независимости п решений линейного однородного

уравнения.

Теорема 4. Пусть функции $y_1(x),...,y_n(x)$ непрерывно дифференцируемы на [a,b], и являются линейно независимыми на этом отрезке. Тогда на этом отрезке. Тогда на [a,b] определитель, называемый определителем Вронского:

$$W(x) = egin{array}{cccc} y_1(x) & ... & y_n(x) \ y_1'(x) & ... & y_n'(x) \ ... & ... & ... \ y_1^{(n-1)}(x) & ... & y_n^{(n-1)}(x) \ \end{array} egin{array}{c} \equiv 0 \ \end{array}$$

Доказательство. По условию теоремы функции $y_1(x),...,y_n(x)$ линейно зависимы. Это значит, что существует набор констант $\overline{c_1},\overline{c_2},...,\overline{c_n},\overline{c_1}^2,\overline{c_2}^2,...,\overline{c_n}^2 \neq 0$, такой, что имеет место тождество:

$$\overline{c_1}y_1(x) + \overline{c_2}y_2(x) + ... + \overline{c_n}y_n(x) \equiv 0$$

Так как $y_1(x),...,y_n(x)$ дифференцируемы (n-1) раз, можем продифференцировать вышестоящее тождество (n-1) раз. Тогда мы получим систему:

$$egin{cases} rac{\overline{c_1}y_1(x)+\overline{c_2}y_2(x)+...+\overline{c_n}y_n(x)\equiv 0,\ \overline{c_1}y_1'(x)+\overline{c_2}y_2'(x)+...+\overline{c_n}y_n'(x)\equiv 0\ ...,\ \overline{c_1}y_1^{(n-1)}(x)+\overline{c_2}y_2^{(n-1)}(x)+...+\overline{c_n}y_n^{(n-1)}(x)\equiv 0 \end{cases}$$

Рассмотрим эту систему относительно констант. Система линейно и однородна. Она всегда имеет нулевое решение. Однако, по условию теоремы система имеет и не нулевое решение. Это значит, что решение не единственно и определитель равен нулю. Но определитель системы - это и есть определитель Вронского.

Обратное утверждение не верно.

Теоерема 6. Критерий линейной независимости n решений линейного однородного уравнения. Для того, чтобы n решений $y_1(x),...,y_n(x)-$ решения линейного однородного уравнения

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_ny = 0,$$

с непрерывными на [a,b] коэффициентами, были линейно независимы на этом отрезке необходимо и достаточно, чтобы определитель Вронского этих решений был отличен от нуля на всем отрезке [a,b]

Доказательство. Пусть решения $y_1(x),...,y_n(x)$ линейно независимы. Тогда по теореме 5 $W\neq 0$ для всех $x\in [a,b]$.

Обратно, пусть $W \neq 0$. Тогда решения лиенйно независимы? Предположим противное, то есть, что решения линейно зависимы. Тогда по теореме 4 W=0. Получили противоречие.

Если функции $y_1(x),...,u_n(x)$ не являются решением линейного однородного уравнения, то W может обращаться в ноль.

11. Условие Липшица, примеры.

Пусть функция $f(x, y_1, ..., y_n)$ определена в области D.

Определение. Функция f, определена в ограниченной области D, удовлетворяет условию Липшица по переменным $y_1,...,y_n$, если существует константа L>0, такая, что для любых точек $(x,u_1,...,u_n)\in D$ и $(x,v_1,...,v_n)\in D$ выполняется неравенство:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)| \leq L \sum_{i=1}^n |u_i-v_i| \quad \ \ (1)$$

Определение. Область D наз. выпуклой, если для двух точек $(x,u_1,...,u_n)\in D$ и $(x,v_1,...,v_n)\in D,$ и для любых s таких, что $0\leq s\leq 1,$ точка $(x,su_1+(1-s)v_1,...su_n+(1-s)v_n)\in D$

Лемма. Пусть функция f определена и непрерывно дифференцируема в выпуклой области D и кроме того:

$$|rac{df}{dy_i}| \leq k_i, ~~i=\overline{1,n},$$
 где $k_i=const$

Тогда функция f удовлетворяет условию Липшица по переменным $y_1,...,y_n$

Доказательство. Возьмем 2 точки $(x, su_1 + (1-s)v_1, ...su_n + (1-s)v_n) \in D$. Покажем, что для f будет выполняться условие (1). Применяя формулу Ньютона-Лейбница, а также используя выпуклость области D получим следующее выражение:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)|=|\int_0^1rac{d}{ds}f(x,su_1+(1-s)v_1,...su_n+(1-s)v_n)ds|$$

Пусть $z_1 = su_1 + (1-s)v_1, ..., z_n = su_n + (1-s)v_n.$ Тогда:

$$|\int_{0}^{1}rac{d}{ds}f(x,z_{1},...,z_{n})ds|=|\int_{0}^{1}rac{df}{dz_{i}}rac{dz_{i}}{ds}ds|=|\int_{0}^{1}rac{df}{dz_{i}}(u_{i}-v_{i})ds|\leq$$

$$0 \leq \int_0^1 \sum_{i=1}^n |rac{df}{dz_i}||u_i - v_i| ds \leq \sum_{i=1}^n k_i |u_i - v_i| \int_0^1 ds \leq K \sum_{i=1}^n |u_i - v_i|^2$$

Сопоставив начало и конец получим:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)| \leq K \sum_{i=1}^n |u_i-v_i|$$

Пример. Рассмотрим функцию $f(x,y_1,...,y_n)=|y_1|$ в единичном шаре с центром в начале координат $B_1(0)\subset R^{n+1}$. В нуле эта функция не дифференцируема, но тем

не менее, удовлетворяет условию Липшица:

$$|f(x,u_1,...,u_n)-f(x,v_1,...,v_n)|=||u_1|-|v_1||\leq |u_1-v_1|\leq \sum_{i=1}^n |u_i-v_i|$$

12. Теоремы о существовании и единственности задачи Коши: в полосе, для уравнения n-го порядка.

Теорема 6. (О существовании и единственности задачи Коши в полосе). Пусть функция f(x,y) определена в полосе Π_2 и удовлетворяет условиям:

- f(x,y) непрерывна в Π_2 по совокупности переменных.
- f(x,y) по переменной y удовлетворяет условию Липшица в полосе(т.е существует константа l>0, единая для всей полосы, такая, что для любых точек $(x,y_1),(x,y_2)\in\Pi_2$ выполняется неравенство: $|f(x,y_1)-f(x,y_2)|\leq l|y_1-y_2|$.)

Тогда для любых $x_0 \in I_a$ существует единственное решение $y=\varphi(x)$ задачи Коши, которое определено и непрерывно для любых $x \in I_a$

Теорема 7.(Теорема Пеано) Пусть правая часть уравнения $\frac{dy}{dx} = f(x,y)$, где $f \in C(G)$ и $(x_0,y_0) \in G$, где G- некоторая область. Тогда задача Коши

$$egin{cases} rac{dy}{dx} = f(x,y) \ y(x_0) = y_0 \end{cases}$$

имеет решение, определенное на некотором промежутке $[x_0 - \delta, x_0 + \delta]$.

CREATED by Jafarabat ©