SWE223: Digital Electronics Fall 2015

Lecture 3 Part 2 Tanjila Farah (TF)

Textbooks

Digital Logic And Computer Design by M. Morris Mano

Number system extended & Venn Diagram

Binary Coded Decimal (BCD)

- Used to represent the decimal digits 0 9.
- 4 bits are used.
- Each bit position has a weight associated with it (weighted code).
- Weights are: 8, 4, 2, and 1 from MSB to LSB (called 8-4-2-1 code).
- BCD Codes:

0:0000	4: 0100	8: 1000
1:0001	5: 0101	9: 1001
2:0010	6: 0110	
3:0011	7: 0111	

- Used to encode numbers for output to numerical displays
- Used in processors that perform decimal arithmetic.
- **Example**: $(9750)_{10} = (1001\ 0111\ 0101\ 0000)_{BCD}$ 9 7 5 0

Excess 3

- A BCD Code formed by adding 3 (0011) to its true four bit binary value.
- Excess 3 is a self complementing code. If the bits of the Excess-3 digit are inverted, they yield the 9's complement of the decimal equivalent.
- Excess-3 code is useful for performing decimal arithmetic digitally.

- Examples
 3 = 0011 + 0011 = 0110
 - \bullet 1 = 0001 + 0011 = 0100

Gray code

- Binary-to-Gray code conversion
 - The MSB in the Gray code is the same as corresponding MSB in the binary number.
 - Going from left to right, add each adjacent pair of binary code bits to get the next Gray code bit.
 <u>Discard carries</u>.

ex: convert 10110₂ to Gray code

1 + 0 + 1 + 1 + 0 binary

1 1 1 0 1 Grav

Combinational Logic Venn Diagram

Operations on sets
Sets ≡ closed regions

Sets correspond to elements Intersection \cap corresponds to • Union \cup corresponds to +

Combinational Logic Venn Diagram

Combinational Logic Venn Diagram

Set a is shaded.

Set $a \cdot b$ is shaded.

Set b is shaded.

Set a + b is shaded.