

NADH + NADPH Bioluminescent Kit

For a highly sensitive and quantitative detection of NADH + NADPH by bacterial bioluminescence enzymes

Introduction

Number of colorimetric and fluorometric methods have been developed for detection of micromolar and submicromolar concentrations of NADH and NADPH. NovoCIB's "NADH + NADPH Bioluminescent Kit" provides an ultrasensitive, one-step assay to detect as low as 2.10⁻¹³ mole of NAD(P)H in a 100µL assay volume (2nM).

NovoCIB's "NADH + NADPH Bioluminescent Kit" presents the following key-advantages:

- time-stability of the signal (>30 sec with 10nM NADH)
- a high sensitivity (>0.2 pmoles)
- reproducibility and reliability (linearity over 3 orders of magnitude)
- fast and easy to use for immediate measurements

Assay principle

With NADH + NADPH Bioluminescent Kit, ultrasenstive quantification of NAD(P)H is done with an enzymatic system consisting of highly pure bioluminescence enzymes: luciferase from *Photobacterium* phosphoreum (lux) and FMN-oxidoreductase from *E.coli* (Fre) In this coupled reaction NADH and NADPH are first used by bacterial FMN-oxidoreductase to produce FMNH₂ 1 . Bacterial luciferase then catalyzes the oxidation of FMNH₂ to FMN in the presence of O_2 and of a long chain aldehyde, with the emission of light (λ = 490 nm) whose amount is directly proportional to the total concentration of NADH and NADPH:

Application

NADH + NADPH Bioluminescent Kit is intended for the quantification of a constant concentration of total NADH and NADPH in the range of 2nM to $1\mu M$.

¹ Fieschi F, Nivière V, Frier C, Décout JL, Fontecave M. The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from *Escherichia coli.* (1995) *J Biol Chem.* 270:30392-400