Nanyang Technological University School of Electrical & Electronic Engineering EE2002 Analog Electronics – Tutorial 11

1. (a) Derive the output resistance R_o of the cascode current mirror in Figure 1. State your assumptions for the circuit to operate with high output resistance.

(Ans:
$$g_{m3}r_{o3}r_{o2}$$
)

(b) What is the lowest voltage limit at the drain of M_3 if all the transistors are in the saturation region.

(Ans:
$$V_{TN} + 2\sqrt{\frac{2I_{REF}}{K_n}}$$
)

(c) If $I_{REF} = 17.5 \mu A$, $V_{DD} = 5 V$, $K_n = 75 \mu A/V^2$, $V_{TN} = 0.75 V$, and $\lambda = 0.0125 V^{-1}$. Find R_o if the drain voltage of M_3 is connected to V_{DD} . Calculate also the minimum voltage at the drain of M_3 for all transistors to remain in the saturation region of operation.

(Ans: $1.16 G\Omega$., 2.12 V)

Figure 1

2. An amplifier has a transfer function:

$$T(s) = \frac{10^{12} s^2}{(s+10)(s+10^3)(s+10^6)}$$

Sketch the Bode magnitude plot for the gain response. Use the plot to estimate the values for the amplifier gain at 10^3 rad/s and 10^6 rad/s respectively. What should be the actual values of the gain at these frequencies? Determine the bandwidth of the response.

(Ans: 120 dB, 120 dB, 117 dB, 0.999x10⁶ rad/s)

1/2