# Data Science Capstone: From Exploration to Prediction"

PREPARED BY: ABDULRAHMAN MOHSEN

DATE: [2025/3/28]

#### Outline

- ▶ 1. Executive Summary
- ▶ 2. Introduction
- ▶ 3. Methodology
- 4. Data Collection
- ▶ 5. Data Preprocessing (Data Wrangling)
- ▶ 6. Exploratory Data Analysis (EDA)
- 7. SQL Data Analysis
- ▶ 8. Interactive Data Visualization (Folium & Plotly Dash)
- 9. Predictive Analysis (Classification)
- ▶ 10. Model Evaluation & Improvement
- ▶ 11. Results
- ▶ 12. Conclusion & Recommendations
- ► 13. Appendix

#### Executive Summary

This project aims to analyze structured datasets using Python, SQL, and visualization tools, providing insights and building predictive models for decisionmaking.

#### Introduction

Data science is essential for extracting insights from large datasets. This project focuses on exploratory analysis, interactive visualization, and predictive modeling.

#### Methodology

The project follows a structured approach: data collection, preprocessing, exploratory data analysis (EDA), SQL-based analysis, interactive visualization, and predictive modeling.

#### Data Collection

Data was sourced from multiple structured and unstructured sources, including databases, APIs, and web scraping techniques.

#### Data Wrangling

▶ Data cleaning included handling missing values, converting categorical variables, and normalizing numerical features.

#### Python Code - Data Wrangling

- import pandas as pd
- # Load dataset
- df = pd.read\_csv('dataset.csv')
- ▶ # Handle missing values by filling with the mean
- df.fillna(df.mean(), inplace=True)
- ▶ # Convert categorical variables to numerical using one-hot encoding
- df = pd.get\_dummies(df, columns=['Category'])
- df.head()

#### Exploratory Data Analysis (EDA)

▶ EDA techniques, such as histograms and scatter plots, were used to understand data distributions and correlations.



## Python Code - EDA Visualization

- import matplotlib.pyplot as plt
- # Histogram for numerical data
- plt.hist(df['Value'], bins=20, alpha=0.7, edgecolor='black')
- plt.xlabel('Value')
- plt.ylabel('Frequency')
- plt.title('Distribution of Values')
- plt.show()

#### SQL Data Analysis

▶ SQL queries were used to extract key insights from structured databases, enabling efficient data filtering and aggregation.



#### SQL Query Example

- SELECT category, AVG(sales) AS avg\_sales
- FROM sales\_data
- ► GROUP BY category
- ORDER BY avg\_sales DESC;

#### Interactive Data Visualization

Geospatial analysis was performed using Folium, while interactive dashboards were developed using Plotly Dash.

#### Python Code - Folium Map

- import folium
- # Create a map centered at a location
- m = folium.Map(location=[37.7749, -122.4194], zoom\_start=10)
- # Add a marker
- folium.Marker([37.7749, -122.4194], popup='San Francisco').add\_to(m)
- $\sim$  m

# Predictive Analysis (Classification)

Machine learning models were trained using Decision Trees and Logistic Regression to classify new data points based on historical trends.





#### Python Code - Machine Learning Model

- from sklearn.model\_selection import train\_test\_split
- ▶ from sklearn.ensemble import RandomForestClassifier
- from sklearn.metrics import accuracy\_score
- # Split dataset
- X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)
- ▶ # Train model
- model = RandomForestClassifier(n\_estimators=100)
- model.fit(X\_train, y\_train)
- # Predict and evaluate
- y\_pred = model.predict(X\_test)
- print("Accuracy:", accuracy\_score(y\_test, y\_pred))

#### Results

Findings from exploratory and predictive analyses revealed critical insights, helping improve decisionmaking processes.

## Conclusions & Recommendations

This project highlighted the importance of data visualization and predictive modeling. Future improvements could include real-time analytics and deeper feature engineering.

#### Appendix

► This section includes additional SQL queries, Python code, and visualizations.