Bijeções, Órbitas e Inteiros de Peano

Eduardo Sodré

Setembro de 2019

1 Decomposição de Conjuntos por uma Função

Considere um conjunto S não-vazio e uma função $s:S\longrightarrow S$ injetora. Estudou-se amplamente a estrutura que s induz em S principalmente por meio das órbitas de elementos especificados, seja no caso de funções injetoras ou não. Destaca-se a construção do conjunto $\mathcal{I}_s = \mathcal{O}(\mathrm{id}_S, \hat{s})$ das iterações de s, com $\hat{s}:S^S\longrightarrow S^S$ dada por $\hat{s}(f)=s\circ f$.

Previamente, fez-se uma completa caracterização das possíveis órbitas, tomando $S = \mathcal{O}(x)$ para algum $x \in S$. Retorna-se então a um contexto mais geral, onde não necessariamente S é um conjunto resultado de uma única órbita de um dado elemento.

Considere o conjunto $I = S \setminus s(S)$, possivelmente vazio. Claramente, I será vazio se e somente se s for bijetora. Intuitivamente, os elementos de I são aqueles que, por não serem imagens de nennhum outro elemento por s, seriam em algum sentido "iniciais", ao considerar a estrutura de S por s.

De fato, cada elemento de $i \in I$ terá sua órbita $\mathcal{O}(i,s)$, "entrando" no conjunto $s(S) \subset S$. Como s é injetora, tais órbitas são totalmente disjuntas, consistindo de elementos incomparáveis entre elas.

Seja então

$$U_s = \bigcup_{i \in I} \mathcal{O}(i, s)$$

a união de todas essas órbitas, cada qual disjunta das outras. Finalmente, considera-se o conjunto $C_s = S \setminus U_s$, denominado o *core* ou *núcleo* de S por s, composto pelos elementos que não pertencem a tais correntes, conjunto possivelmente vazio. De fato, para algo como $S = \mathbb{N}$, $C_s = \emptyset$.

Proposição 1.1. Uma outra definição equivalente para C_s é

$$C_s = \bigcap_{f \in \mathcal{I}_s} f(S)$$

Demonstração. Provemos primeiro que $C_s \subset \bigcap_{f \in \mathcal{I}_s} f(S)$. Suponha $x \in C_s$, ou seja, $x \in S$ e $x \notin U_s$. Provemos que, $\forall f \in \mathcal{I}_s$, $x \in f(S)$. De fato, como $x \notin U$, então $x \notin I$, de modo que $x \in s(S)$. Faz-se uma demonstração indutiva, já que \mathcal{I}_s é uma órbita. Suponha então que $x \in f(S)$, para $f \in \mathcal{I}_s$.

Quer-se mostrar que, por consequência, $x \in sf(S)$. x = f(y), para algum único $y \in S$. Se $x \notin sf(S)$, então $y \notin s(S)$. Mas então $y \in I$, contradição, pois senão então x pertenceria a uma corrente de um elemento de I, ou seja, $x \in U_s$.

Dessa maneira, como \mathcal{I}_s é uma órbita, $x \in f \ \forall f \in \mathcal{I}_s$, de maneira que $C_s \bigcap_{f \in \mathcal{I}_s} f(S)$.

Querendo provar a contenção oposta, assuma $x \in \bigcap_{f \in \mathcal{I}_s} f(S)$. Quer-se demonstrar então que $x \notin U_s$, mostrando que $x \in C_s$. De fato, se $x \in U_s$, então x = f(i) para algum único $i \in I$ e alguma única $f \in \mathcal{I}_s$. Deduz-se analogamente a antes que $x \notin sf(S)$, senão $i \in S(S)$, contradição. Mas que $x \notin sf(S)$ é uma outra contradição, já que $x \in \bigcap_{f \in \mathcal{I}_s} f(S)$. Portanto $x \in C_s$, e $\bigcap_{f \in \mathcal{I}_s} f(S) \subset C_s$, concluindo que $\bigcap_{f \in \mathcal{I}_s} f(S) = C_s$.

Corolário 1.2. C_s é invariante por s e s é bijetora de C_s em C_s . Consequentemente, é invariante por f e f é bijetora em C_s , para toda $f \in \mathcal{I}_s$.

Demonstração. As afirmações são claras da definição alternativa para C_s .

Proposição 1.3. Seja $T \subset S$ tal que $s(T) \subset T$ e s é uma bijeção em T. Então $T \subset C_s$.

Demonstração. Veja que s(T) = T, e portanto f(T) = T para toda $f \in \mathcal{I}_s$. Mas $f(T) \subset f(S)$, de modo que $T \subset f(S)$ para toda $f \in \mathcal{I}_s$, concluindo que $T \subset C_s$ pela definição alternativa.

Percebe-se que, como para cada $i \in I$, s é injetora mas não sobrejetora em $\mathcal{O}(i,s) \subset U_s$, $\mathcal{O}(i,s)$ configura um modelo de Peano. Dado um modelo de Peano fixo N, há então um isomorfismo natural entre $I \times N$ e U_s , em que

$$\begin{array}{ccc} I \times N & \longrightarrow & U_s \\ (i,n) & \longmapsto & s^n(i) \end{array}$$

com s^n definida a partir ou do isomorfismo entre \mathcal{I}_s e $\mathcal{O}(i,s)$ quando s é restrita a $\mathcal{O}(i,s)$, ou a partir da estrutura que N induz no monoide das funções de um conjunto nele mesmo, descrita previamente. As definições são equivalentes no contexto dado. Essencialmente, a intuição por trás dessa correspondência é que U_s consiste de uma "quantidade" I de modelos de Peano paralelos em S.

Em certo sentido, então, há uma decomposição canônica de S na forma $(I \times N) \cup C_s$, em união disjunta, com $I \times N$ indica I "cópias" de modelos de Peano, onde o comportamento de s é bem descrito, e C_s onde s é bijetora.

Uma noção que pode ter-se em primeiro momento sobre C_s é que ele consistirá apenas de ciclos disjuntos, onde para todo $x \in C_s$, existirá um $n \in N$ (ou, em termos mais elementares da teoria, uma $f \in \mathcal{I}_s$) tal que $s^n(x) = x$ (f(x) = x). Mas tal intuição não é de todo correta.

Considere por exemplo o caso de $S = \mathbb{Z}$, sob a função s(x) = x+1. Claramente $\mathbb{Z} \setminus s(\mathbb{Z}) = \emptyset$, portanto $C_s = \mathbb{Z}$. Mas de fato, não há ciclo algum em \mathbb{Z} , consistindo essencialmente da órbita de $0 \in \mathbb{Z}$ por $s \in s^{-1}$, com $s^{-1}(x) = x - 1$.

2 Órbitas de bijeções

Essa ideia pode ser generalizada ao considerar um conjunto T e uma função bijetora $s:T\longrightarrow T$ dada, e supor a existência de um elemento $i\in T$ tal que não existe $f\in \mathcal{I}_s$ diferente da identidade tal que f(i)=i (ou seja, que $\mathcal{O}(i,s)$ é um modelo de Peano). Uma consequência natural é que $\mathcal{O}(i,s^{-1})$ será também modelo de Peano: afinal, s^{-1} será injetora, e se existisse $x\in \mathcal{O}(i,s^{-1})$ tal que $s^{-1}(x)=i$, então x=s(i), de modo que $s(i)\overset{s^{-1}}{\geq}i$, e claramente $i\overset{s^{-1}}{\geq}s(i)$, então i=s(i), contradição.

Assim, considera-se o conjunto $Z(i,s) = \mathcal{O}(i,s^{-1}) \cup \mathcal{O}(i,s)$. Por s ser bijetora em T, Z(i,s) consiste exatamente daqueles elementos de T comparáveis à i pela ordem parcial dada por pertencimento em órbitas.

Proposição 2.1. Z(i, s) é invariante por s, e s é uma bijeção em Z(i, s).

Demonstração. Veja que $\mathcal{O}(i,s) \cap \mathcal{O}(i,s^{-1}) = \{i\}$, em virtude de não existir $f \in \mathcal{I}_s$ diferente da identidade tal que f(i). Ainda mais, $s(\mathcal{O}(i,s)) = \mathcal{O}(i,s) \setminus \{i\}$, e $s(\mathcal{O}(i,s^{-1})) = \mathcal{O}(i,s^{-1}) \cup \{i\}$ em argumentos simples. Assim, z(i,s) é invariante por s.

Por s ser injetora em T, será também em Z(i,s), e que é sobrejetora em Z(i,s) também não é difcil de ver Das próprias conclusões anteriores. Mais explicitamente para $\mathcal{O}(i,s^{-1}) \cup \{i\}, x = s(s^{-1}(x)).$

Antes disso ainda, pode-se considerar o conjunto $G_s = \mathcal{I}_{s^{-1}} \cup \mathcal{I}_s$, e analisar sua estrutura como grupo sob composição de funções, especialmente quando restritas a Z(i,s). De fato, considerando no momento s restrita a Z(i,s), ou equivalentemente que T = Z(i,s):

Lema 2.2. $\mathcal{I}_{s^{-1}} = \{f^{-1} \mid f \in \mathcal{I}_s\}$, e há isomorfismo de monoides natural entre \mathcal{I}_s e $\mathcal{I}_{s^{-1}}$ dado por $f \longmapsto f^{-1}$.

Demonstração. Provemos que, para cada $f \in \mathcal{I}_s$, $f^{-1} \in \mathcal{I}_{s^{-1}}$, para depois mostrar que essa correspondência é bijetora. Veja que $(\mathrm{id}_T)^{-1} = \mathrm{id}_T \in \mathcal{I}_{s^{-1}}$, e que se $f^{-1} \in \mathcal{I}_{s^{-1}}$ para dada $f \in \mathcal{I}_s$, então $(sf)^{-1} = (fs)^{-1} = s^{-1}f^{-1} \in \mathcal{I}_{s^{-1}}$. Pela definição indutiva de órbita, há então a correspondência.

A injetividade é fácil de ver a partir de $f^{-1} = g^{-1} \Rightarrow f = g$, e a sobrejetividade é vista da simetria ao considerar $\mathcal{I}_s \longrightarrow \mathcal{I}_{s^{-1}} \in \mathcal{I}_{s^{-1}} \longrightarrow \mathcal{I}_s$.

Proposição 2.3. Com s restrita a Z(i,s), G_s é um grupo abeliano sob composição de funções, de elemento neutro id_T , e elementos simétricos dados pela função inversa.

Demonstração. Basta mostrar que, se $f \in \mathcal{I}_s$ e $g \in \mathcal{I}_{s^{-1}}$, então $fg \in G_s$, e fg = gf. Para a comutatividade, prova-se que para toda $f \in \mathcal{I}_s$, f comuta com $g \in \mathcal{I}_{s^{-1}}$. Claramente a identidade comuta, e se f comuta, para que sf comute, basta mostrar que s comuta com toda $g \in \mathcal{I}_{s^{-1}}$.

Mas podemos provar tal afirmação analogamente considerando a definição indutiva de órbita em $\mathcal{I}_{s^{-1}}$. Novamente, a identidade comuta com s, e se g comuta com s, para que $s^{-1}g$ comute com s basta que s^{-1} comute, o que é trivial.

Do lema anterior, $g=h^{-1}$ para uma única $h\in\mathcal{I}_s$, de forma que há dois casos: $f\overset{\hat{\mathbb{S}}}{\geq}h$ ou $h\overset{\hat{\mathbb{S}}}{\geq}f$. No primeiro, existe única $k\in\mathcal{I}_s$ tal que h=kf. Mas então $g=h^{-1}=f^{-1}k^{-1}$. Assim $fg=ff^{-1}k^{-1}=k^{-1}\in\mathcal{I}_{s^{-1}}$. Para $h\overset{\hat{\mathbb{S}}}{\geq}f$, f=hk. Daí $fg=hk(h^{-1})=hh^{-1}k=k\in\mathcal{I})_s$. \square

Vê-se que Z(i,s) pode ser munido da mesma ordem de $\mathcal{O}(i,s)$, onde $a \stackrel{\mathrm{s}}{\geq} b \iff b \in \mathcal{O}(a,s)$, já bem descrita. Analogamente para G_s , havendo isomorfismo natural entre Z(i,s) e G_s .