

FINITE STATE MACHINE (Finite Automata)

FINITE STATE MACHINE

DETERMINISTIC FINITE AUTOMATA (DFA)

- it is a finite-state machine that accepts and rejects strings of symbols and only produces a unique computation (or run) of the automaton for each input string
- it is the simplest model of computation
- it has a very limited memory

DETERMINISTIC FINITE AUTOMATA (DFA)

 DFAs are easiest to present pictorially: Such a graph is called a state transition diagram

FORMAL DEFINITION

- A deterministic finite automaton M is a 5-tuple, (Q, Σ , δ , q₀, F), consisting of:
 - Q = set of all states
 - Σ = input symbols
 - δ = transition function (Q × Σ \rightarrow Q)
 - q0 = start state / initial state
 - F = set of final states

ALTERNATIVE REPRESENTATION: TRANSITION TABLE

EXAMPLE 1

- From the given DFA diagram, describe a DFA accepting the language by:
 - a.) determining the 5-tuple
 - b.) building a DFA transition table

5-tuple

•
$$Q = \{A,B,C\}$$

•
$$\Sigma = \{0,1\}$$

$$\begin{array}{lll} \bullet & \delta = \{ A \times 0 \rightarrow B; \ A \times 1 \rightarrow \\ A; \ B \times 0 \rightarrow C; \ B \times 1 \rightarrow \\ B; \ C \times 0 \rightarrow C; \ C \times 1 \rightarrow \\ C \} \end{array}$$

$$q0 = A$$

Transition Table

		0	1	_
→	Α	В	Α	
	В	С	В	
*	С	С	С	

EXAMPLE 2

- For each of the following languages, describe a DFA accepting the language by drawing a DFA diagram
 - L1 = set of all strings over {0,1} that starts with 0
 - L2 = set of all strings over {0,1} of length 2