Machine Learning Seminar

Mohit Gupta (110050085)

Deepali Adlakha (11D170020)

On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of Measures

Bharath K. Sriperumbudur*, Kenji Fukumizu[†] and Gert R. G. Lanckriet*

*UC San Diego [†] The Institute of Statistical Mathematics

AISTATS 2010

Outline

- Kernel Based Learning
- RKHS embedding of probability measures
- Characteristic kernels
- Universal kernels
- Various notions of universality
- Novel characterization of universality
- Relation to RKHS embedding of signed measures

SVM Optimisation Problem

We want to optimise the following problem

$$\min_{w \in \mathbb{R}^n} ||w|| + C \sum_{i=1}^m l(x_i, y_i, w),$$

Where C is a regularisation constant

Note: SVM considers linear boundary functions only.

Non Linear functions

To allow for non-linear functions as our separator function:

Define a feature map:

$$\varphi: X \to \mathcal{H}$$

Where $oldsymbol{arphi}$ can have non-linear mappings of components of X

Kernel Trick

- We only need inner product of two points in the hilbert space
- Reproducing Kernel Hilbert Space

Define the mapping as

$$X \rightarrow \varphi(X) := K(\cdot, x)$$

Where $K(\cdot, x)$ measures the similarity of x another point

Representer Theorem

Solutions to the optimisation problem is of the form

$$f := \sum_{j \in \mathbb{N}_n} c_j k(\cdot, x_j).$$

Can f approximate any target function arbitrarily well as $n \rightarrow \infty$?

RKHS Embeddings of Probability Measures

- ► Input space : X
- ightharpoonup Feature space : \mathcal{H} (with reproducing kernel, k)
- ► Feature map : Φ

$$\Phi: X \to \mathcal{H}$$
 $x \mapsto \Phi(x) := k(\cdot, x)$

Extension to probability measures:

$$\mathbb{P}\mapsto \Phi(\mathbb{P}):=\underbrace{\int_X k(\cdot,x)\,d\mathbb{P}(x)}_{E_{Y\sim\mathbb{P}}[\Phi(Y)]=E_{Y\sim\mathbb{P}}[k(\cdot,Y)]}$$

Advantage: $\Phi(\mathbb{P})$ can distinguish \mathbb{P} by high-order moments.

$$k(y,x) = c_0 + c_1(xy) + c_2(xy)^2 + \cdots$$
 $(c_i \neq 0)$ e.g. $k(y,x) = e^{xy}$
 $\Phi(\mathbb{P})(y) = c_0 + c_1 \left(\int_X x d\mathbb{P}(x)\right) y + c_2 \left(\int_X x^2 d\mathbb{P}(x)\right) y^2 + \cdots$

Characteristic Kernels

Define: k is characteristic if

$$\mathbb{P} \mapsto \int_X k(\cdot, x) d\mathbb{P}(x)$$
 is injective.

In other words,

$$\int_X k(\cdot,x) d\mathbb{P}(x) = \int_X k(\cdot,x) d\mathbb{Q}(x) \Leftrightarrow \mathbb{P} = \mathbb{Q}.$$

Applications

Two-sample problem:

- ▶ Given random samples $\{X_1, \ldots, X_m\}$ and $\{Y_1, \ldots, Y_n\}$ drawn i.i.d. from \mathbb{P} and \mathbb{Q} , respectively.
- ▶ *Determine:* are \mathbb{P} and \mathbb{Q} different?
- $ho \gamma(\mathbb{P}, \mathbb{Q}) = \|\Phi(\mathbb{P}) \Phi(\mathbb{Q})\|_{\mathcal{H}}$: distance metric between \mathbb{P} and \mathbb{Q} .

$$H_0: \mathbb{P} = \mathbb{Q} \qquad H_0: \gamma(\mathbb{P}, \mathbb{Q}) = 0 \ \equiv H_1: \mathbb{P} \neq \mathbb{Q} \qquad H_1: \gamma(\mathbb{P}, \mathbb{Q}) > 0$$

▶ *Test:* Say H_0 if $\widehat{\gamma}(\mathbb{P}, \mathbb{Q}) < \varepsilon$. Otherwise say H_1 .

Other applications:

- ► *Hypothesis testing* : Independence test, Goodness of fit test, etc.
- ▶ Feature selection, message passing, density estimation, etc.

c- Universality [Steinwart, 2001]

- X : compact metric space
- k : continuous on X X X
- Target function space : C(X), continuous functions on X

Define k to be c-universal if H is dense in C(X) w.r.t. the uniform norm

$$(\|f\|_{U} = \sup_{x \in X} |f(x)|).$$

Sufficient conditions are obtained based on the Stone-Weierstraß theorem.

Examples: Gaussian and Laplacian kernels on any compact subset of Rd

Stone Weierstraß Theorem

Theorem 1 Let (X,d) be a compact metric space and $A \subset C(X)$ be an algebra. Then A is dense in C(X) if both A does not vanish, i.e. for all $x \in X$ there exists an $f \in A$ with $f(x) \neq 0$, and A separates points, i.e. for all $x, y \in X$ with $x \neq y$ there exists an $f \in A$ with $f(x) \neq f(y)$.

However, one limitation in the c-universality is that X is assumed to be compact, which excludes many interesting spaces, such as R^d and infinite discrete sets

cc- Universality [Micchelli et al., 2006]

- X : Hausdorff space
- k : continuous on X X X
- Target function space : C(X)

Define k to be cc-universal if H is dense in C(X) endowed with the topology of compact convergence.

Necessary and sufficient conditions related to the injectivity of RKHS embedding of measures are obtained

Examples: Gaussian, Laplacian and Sinc kernels on Rd.

Issue

Topology of compact convergence is weaker than the topology of uniform convergence.

The question is whether we can characterize H that are rich enough to approximate any f^* on non-compact X in a stronger sense, i.e., uniformly, by some $g \in H$.

Proposed Notion: c₀ universality

- X: locally compact Hausdorff (LCH) space
- Target function space : $C_0(X)$, the space of bounded continuous functions that "vanish at infinity" (for every $\varepsilon > 0$, $\{x \in X : |f(x)| \ge \varepsilon\}$ is compact).
- k is bounded and $k(., x) \in C_0(X)$ for all $x \in X$.

Define k to be c_0 -universal if H is dense in $C_0(X)$ w.r.t. $\|.\|_u$.

Handles non-compact X and ensures uniform convergence over entire X.

Radon Measure

A Radon measure μ on a Hausdorff space X is a Borel measure on X satisfying :

- $\mu(C) < \infty$ for each compact subset $C \subseteq X$ and
- $\mu(B) = \sup \{\mu(C) \mid C \subseteq B, C \text{ compact} \}$ for each B in the Borel σ -algebra of X

Radon Measure notations

- μ is said to be finite if $/\!/ \mu /\!/ := |\mu|(X) < \infty$, where $|\mu|$ is the total variation of μ
- M_h(X) denotes the space of all finite signed Radon measures on X
- M¹_{_1}(X) denotes the space of all Radon probability measures
- M_{bc}(X) denotes the space of all compactly supported finite signed Radon measures on X.
- For $\mu \in M_b(X)$, the support of μ is defined as $supp(\mu) = \{x \in X \mid \text{ for any open set } U \text{ such that } x \in U, |\mu|(U) \neq 0\}$

Embedding Characterization of Universality

k is c₀-universal if and only if

$$\mu \to \int_{\mathbf{x}} k(\cdot, \mathbf{x}) d\mu(\mathbf{x}), \quad \mu \in M_b(\mathbf{X}),$$

is injective. M_b(X) is the space of finite signed Radon measures on X

• k is cc-universal if and only if

$$\mu \to \int_{\mathbf{x}} k(\cdot, \mathbf{x}) d\mu(\mathbf{x}), \quad \mu \in M_{bc}(X),$$

is injective. $M_{bc}(X) = {\mu \in M_b(X) \mid supp(\mu) \text{ is compact}}$

• k is c-universal if and only if

$$\mu \to \int_{\mathbf{x}} k(\cdot, \mathbf{x}) d\mu(\mathbf{x}), \quad \mu \in M_b(X),$$

is injective

Positive Definite Characterization of Universality

• k is c₀-universal (resp. c-universal) if and only if

$$\int_{x} \int_{y} k(x, y) \ d\mu(x) \ d\mu(y) > 0, \qquad \forall \ \mu \in M_{b}(X) \setminus \{0\}$$

• k is cc-universal if and only if

$$\int_{x} \int_{y} k(x, y) d\mu(x) d\mu(y) > 0, \qquad \forall \ \mu \in M_{bc}(X) \setminus \{0\}$$

If k is c-, cc- or c₀-universal, then it is strictly positive definite

X is an LCH space: Summary

Translation invariant Kernels on Rd

 $X = R^d$ and $k(x, y) = \psi(x - y)$, where

$$\psi(x) = \int_{\mathbb{R}^d} e^{\sqrt{-1}x^T\omega} d\Lambda(\omega), x \in \mathbb{R}^d,$$

and Λ is a non-negative finite Borel measure

Theorem

- k is c_0 -universal if and only if $supp(\Lambda) = R^d$
- k is c₀-universal if and only if it is characteristic
- If $supp(\Lambda)$ has a non-empty interior, then k is cc-universal. [Micchelli et al., 2006]

Examples

► Gaussian kernel: $\psi(x) = e^{-x^2/2\sigma^2}$; $\Psi(\omega) = \sigma e^{-\sigma^2 \omega^2/2}$; $d\Lambda(\omega) = \Psi(\omega) d\omega$.

▶ Laplacian kernel: $\psi(x) = e^{-\sigma|x|}$; $\Psi(\omega) = \sqrt{\frac{2}{\pi}} \frac{\sigma}{\sigma^2 + \omega^2}$.

Examples

▶ B_1 -spline kernel: $\psi(x) = (1 - |x|) \mathbb{1}_{[-1,1]}(x)$; $\Psi(\omega) = \frac{2\sqrt{2}}{\sqrt{\pi}} \frac{\sin^2(\frac{\omega}{2})}{\omega^2}$.

▶ Sinc kernel: $\psi(x) = \frac{\sin(\sigma x)}{x}$; $\Psi(\omega) = \sqrt{\frac{\pi}{2}} \mathbb{1}_{[-\sigma,\sigma]}(\omega)$.

Summary

Characteristic kernel

- Injective RKHS embedding of probability measures
- Applications: Hypothesis testing, feature selection, etc

Universal kernel

- Consistency of learning algorithms
- Injective RKHS embedding of finite signed Radon measures

Conclusion

The characteristic and universal kernels are essentially the same except that universal kernels deal with some subset of M_b (X) while characteristic kernels deal with probability measures.

For a set of kernels such as Translation Invariant Kernels, the concepts of characteristic and universal kernels are equivalent.

References

- Sriperumbudur, Bharath K., Kenji Fukumizu, and Gert Lanckriet. "On the relation between universality, characteristic kernels and RKHS embedding of measures." *International Conference on Artificial Intelligence and Statistics*. 2010.
- Steinwart, Ingo. "On the influence of the kernel on the consistency of support vector machines." *The Journal of Machine Learning Research* 2 (2002): 67-93.
- van Gaans, Onno. "Probability measures on metric spaces, Notes of the seminar 'Stochastic Evolution Equations'." *Delft University of Technology*(2003).
- Nath, Saketh. "Notes on Topics in Machine Learning" Indian Institute of Technology, Bombay (2014).

Appendix

Banach Space

A **Banach space** is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit in the space.

Hausdorff Space

Points x and y in a topological space X can be separated by neighbourhoods if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint ($U \cap V = \emptyset$). X is a **Hausdorff space** if any two distinct points of X can be separated by neighborhoods.

Sigma Algebra

A σ -algebra on a set X is a set of subsets of X that contains \varnothing and is closed under elementary, countable set operations such as complements and countable intersections.

Borel Sigma Algebra

Let (X,d) be a metric space. The Borel σ -algebra (σ -field) $\mathcal{B} = \mathcal{B}(X)$ is the smallest σ -algebra in X that contains all open subsets of X. The elements of \mathcal{B} are called the Borel sets of X.

Let (X, d) be a metric space. A finite Borel measure on X is a map $\mu : \mathcal{B}(X) \to [0, \infty)$ such that

$$\mu(\emptyset) = 0$$
, and $A_1, A_2, \ldots \in \mathcal{B}$ mutually disjoint $\Longrightarrow \mu(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i)$.

 μ is called a Borel probability measure if in addition $\mu(X) = 1$.

Locally compact spaces

A locally compact space is a Hausdorff topological space with the

property:

Every point has a compact neighborhood.

Let X be a locally compact space, let K be a compact set in X, and let D be an open subset, with $K \subset D$. Then there exists an open set E with:

- (i) E compact
- (ii) $K \subset E \subset E^{c} \subset D$

Hahn-Banach

Theorem 2 (Hahn-Banach). Suppose A be a subspace of a locally convex topological vector space Y. Then A is dense in Y if and only if $A^{\perp} = \{0\}$, where

$$A^{\perp} := \{ T \in Y' : \forall x \in A, \ T(x) = 0 \}.$$

Riesz representation theorem

It says that any bounded linear functional T on the space of compactly supported

continuous functions on X is the same as integration against a measure μ ,

$$T f = \int f d\mu$$

Here, the integral is the Lebesgue integral.

C₀ universality

Theorem 3 (Characterization of c_0 -universality). k is c_0 -universal if and only if the embedding,

$$\mu \mapsto \int_X k(\cdot, x) \, d\mu(x), \ \mu \in M_b(X),$$

is injective.

C₀ universality

Proposition 4. k is c_0 -universal if and only if

$$\iint_{X} k(x,y) d\mu(x) d\mu(y) > 0, \forall 0 \neq \mu \in M_{b}(X).$$

$$0 = \left\langle \int_{X} k(\cdot,x) d\mu(x), \int_{X} k(\cdot,x) d\mu(x) \right\rangle_{\mathfrak{H}}$$

$$\stackrel{(a)}{=} \iint_{X} k(x,y) d\mu(x) d\mu(y),$$

pd kernels

Proposition 5 (c_0 -universal kernels are strictly pd). If k is c_0 -universal, then it is strictly pd.

Special Kernels

- (A_1) k is translation invariant on $\mathbb{R}^d \times \mathbb{R}^d$, i.e., $k(x,y) = \psi(x-y)$, where $0 \neq \psi \in C_b(\mathbb{R}^d)$ is a pd function on \mathbb{R}^d .
- (A_2) k is a radial kernel on $\mathbb{R}^d \times \mathbb{R}^d$, i.e., $k(x,y) = \varphi(\|x-y\|_2^2)$, $x,y \in \mathbb{R}^d$, where $\varphi \in C_0(\mathbb{R})$ is completely monotone (Wendland, 2005, Chapter 7) on $[0,\infty)$.
- (A_3) X is an LCH space with bounded k. Let $k(x,y) = \sum_{j \in I} \phi_j(x)\phi_j(y)$, $(x,y) \in X \times X$, where we assume that series converges uniformly on $X \times X$. $\{\phi_j : j \in I\}$ is a set of continuous real-valued functions on X where I is a countable index set.

Bochner Theorem

Theorem 7 (Bochner). $\psi \in C_b(\mathbb{R}^d)$ is pd on \mathbb{R}^d if and only if it is the Fourier transform of a finite non-negative Borel measure Λ on \mathbb{R}^d , i.e.,

$$\psi(x) = \int_{\mathbb{R}^d} e^{-ix^T \omega} d\Lambda(\omega), \ x \in \mathbb{R}^d.$$
 (6)

Translation Invariant Kernels

Proposition 8 (Translation invariant kernels on \mathbb{R}^d).

Suppose (A_1) holds and $\psi \in C_0(\mathbb{R}^d)$. Then k is c_0 -universal if and only if $supp(\Lambda) = \mathbb{R}^d$.

$$B = \iint_{\mathbb{R}^d} \psi(x - y) \, d\mu(x) \, d\mu(y)$$

$$\stackrel{(a)}{=} \iiint_{\mathbb{R}^d} e^{-i(x - y)^T \omega} \, d\Lambda(\omega) \, d\mu(x) \, d\mu(y)$$

$$\stackrel{(b)}{=} \iiint_{\mathbb{R}^d} e^{-ix^T \omega} \, d\mu(x) \int_{\mathbb{R}^d} e^{iy^T \omega} \, d\mu(y) \, d\Lambda(\omega)$$

$$= \int_{\mathbb{R}^d} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} \, d\Lambda(\omega) = \int_{\mathbb{R}^d} |\hat{\mu}(\omega)|^2 \, d\Lambda(\omega), (7)$$

Translation Invariant Kernels

Assumption 1 $k(x,y) = \psi(x-y)$ where ψ is a bounded continuous real-valued positive definite function⁴ on $M = \mathbb{R}^d$.

Theorem 7 Let \mathcal{F} be a unit ball in an RKHS (\mathcal{H}, k) defined on \mathbb{R}^d . Suppose k satisfies Assumption 1. Then k is a characteristic kernel to the family, \mathfrak{S} , of all probability measures defined on \mathbb{R}^d if and only if $\operatorname{supp}(\Lambda) = \mathbb{R}^d$.