第四章 线性方程组的迭代解法 编程实验

孔瑞阳 计科91 2019010175

第四章上机题2:

(1) 对 $\varepsilon=1, a=\frac{1}{2}, n=100$,分别用雅可比, G-S 和 SOR 方法求线性方程组的解, 要求相邻迭代解的差的无穷范数不超过 10^{-3} ,然后比较与精确解的误差.

(2) 对 $\varepsilon = 0.1, \varepsilon = 0.01, \varepsilon = 0.0001$ 考虑同样的问题.

思路:

使用C++编程实现。

使用题目中的方法生成 A, b, 使用高斯消元求出线性方程组的精确解。

三个迭代法都仿照书中的伪代码实现。题面中并没有规定 SOR 方法中 ω 的值,分别取 $\omega=0.9$ 的低松 弛迭代法和 $\omega=1.1$ 的超松弛迭代法进行实验。

为了比较各个迭代法之间的时间效率和误差,在迭代过程中记录总的迭代次数,计算最终解和精确解的差的无穷范数来评估误差。

实验结果:

 $\varepsilon=1$:

迭代方法	迭代次数	误差($ \Delta y _{\infty}$)
Jacobi	533	0.5722283515
G-S	274	0.5810193382
SOR ($\omega=0.9$)	272	0.6153560369
SOR ($\omega=1.1$)	277	0.5434067169

$\varepsilon = 0.1$:

迭代方法	迭代次数	误差($ \Delta y _{\infty}$)
Jacobi	1365	0.3705039472
G-S	646	0.4432678181
SOR ($\omega=0.9$)	595	0.5844206062
SOR ($\omega=1.1$)	650	0.3210813525

arepsilon=0.01 :

迭代方法	迭代次数	误差($ \Delta y _{\infty}$)
Jacobi	410	0.0126209357
G-S	254	0.0123968772
SOR ($\omega=0.9$)	297	0.0157257680
SOR ($\omega=1.1$)	218	0.0095793570

$\varepsilon = 0.0001$:

迭代方法	迭代次数	误差($ \Delta y _{\infty}$)
Jacobi	111	0.0007437436
G-S	106	0.0006256325
SOR ($\omega=0.9$)	126	0.0005636831
SOR ($\omega=1.1$)	138	0.0001506856

结果分析:

当 ε 较大时,三种迭代法都不能快速收敛到一个接近精确解的值,迭代法并非对所有问题都很有效。

对于 $\omega=0.9/1.0/1.1$ 的 SOR 方法,从表格中可以看出迭代次数针对不同的问题各有优劣,均在某个问题中取得了最少的迭代次数(绿色)。说明针对不同的问题要选择适合的 ω 。

对于稀疏矩阵,由于迭代法每一次迭代的运算次数很少,且在实验中看出,总迭代次数并不比 n 大很多数量级,所以速度均比高斯消元法快很多,因此可以提高大规模计算的效率。