Planche nº 21. Continuité: étude globale. Corrigé

Exercice nº 1

Soit $x \in \mathbb{R}$. $\{|x-y|, y \in A\}$ est une partie non vide de \mathbb{R} (car $A \neq \emptyset$) et minorée (par 0). Donc, $\{|x-y|, y \in A\}$ admet une borne inférieure dans \mathbb{R} . On en déduit l'existence de f(x). Ainsi, la fonction f est définie sur \mathbb{R} .

Soit $(x,y) \in \mathbb{R}^2$ et $z \in A$. $|x-z| \le |x-y| + |y-z|$ ou encore $|y-z| \ge |x-z| - |x-y|$. Comme d(x,A) est un minorant de $\{|x-z|,\ z \in A\}$, on en déduit que $|y-z| \ge d(x,A) - |x-y|$.

Ainsi, $\forall z \in A$, $|y-z| \ge d(x,A) - |x-y|$ et donc d(x,A) - |x-y| est un minorant de $\{|y-z|, z \in A\}$. Puisque d(y,A) est le plus grand de ces minorants, on en déduit que $d(x,A) - |x-y| \le d(y,A)$. On a montré que

$$\forall (x, y) \in \mathbb{R}^2, \ d(x, A) - d(y, A) \leq |y - x|.$$

En appliquant ce résultat à y et x, on a aussi montré que $\forall (x,y) \in \mathbb{R}^2$, $d(y,A) - d(x,A) \leq |y-x|$. Finalement, $\forall (x,y) \in \mathbb{R}^2$, $||f(y) - f(x)| \leq |y-x|$. Ainsi, f est donc 1-Lipschitzienne sur \mathbb{R} et en particulier, f est continue sur \mathbb{R} .

Exercice nº 2

Pour $x \in [a, b]$, posons g(x) = f(x) - x. La fonction g est continue sur [a, b] puisque f l'est. De plus, $g(a) = f(a) - a \ge 0$ et $g(b) = f(b) - b \le 0$. D'après le théorème des valeurs intermédiaires, g s'annule au moins une fois sur [a, b] ou encore, l'équation f(x) = x admet au moins une solution dans [a, b].

Exercice nº 3

Puisque $\frac{f(x)}{x}$ tend vers $\ell \in [0,1[$, il existe A>0 tel que pour $x\geqslant A, \frac{f(x)}{x}\leqslant \ell+\frac{1-\ell}{2}=\frac{\ell+1}{2}<1$. Ainsi, $f(A)\leqslant A$ et $f(0)\geqslant 0$. La fonction $g:x\mapsto f(x)-x$ est donc continue sur [0,A] et change de signe sur [0,A]. D'après le théorème des valeurs intermédiaires, l'équation g(x)=0 admet une solution dans [0,A] et donc dans $[0,+\infty[$ ou encore l'équation f(x)=x admet au moins une solution dans $[0,+\infty[$.

Exercice nº 4

Puisque f est croissante sur [a, b], f admet en tout réel x de]a, b[une limite à droite et une limite à gauche vérifiant $-\infty < f(x^-) \le f(x) \le f(x^+) < +\infty$. De même, f admet une limite à droite en a et une limite à gauche en b vérifiant $f(a) \le f(a^+) < +\infty$ et $-\infty < f(b^-) \le f(b)$.

Soit $E = \{x \in [a, b] / f(x) \ge x\}$. E est une partie non vide de \mathbb{R} (car \mathfrak{a} est dans E) et majorée (par \mathfrak{b}). Donc, E admet une borne supérieure \mathfrak{c} vérifiant $\mathfrak{a} \le \mathfrak{c} \le \mathfrak{b}$.

Montrons que f(c) = c.

Si c = b, alors $\forall n \in \mathbb{N}^*$, $\exists x_n \in E/b - \frac{1}{n} < x_n \le b$. Puisque f est à valeurs dans [a, b] et que les x_n sont dans E, pour tout entier naturel non nul n, on a

$$x_n \leqslant f(x_n) \leqslant b (*).$$

Quand $\mathfrak n$ tend vers $+\infty$, la suite $(x_\mathfrak n)$ tend vers $\mathfrak b$ (théorème des gendarmes) et donc, $\mathfrak f$ étant croissante sur $[\mathfrak a,\mathfrak b]$, la suite $(\mathfrak f(x_\mathfrak n))$ tend vers $\mathfrak f(\mathfrak b^-)$ ou vers $\mathfrak f(\mathfrak b)$. Par passage à la limite quand $\mathfrak n$ tend vers $+\infty$ dans (*), on obtient alors $\mathfrak b \leqslant \mathfrak f(\mathfrak b^-) \leqslant \mathfrak f(\mathfrak b) \leqslant \mathfrak b$ ou directement $\mathfrak b \leqslant \mathfrak f(\mathfrak b) \leqslant \mathfrak b$. Dans tous les cas, $\mathfrak f(\mathfrak b) = \mathfrak b$. Finalement, dans ce cas, $\mathfrak b$ est un point fixe de $\mathfrak f$.

Si $c \in [a, b[$, par définition de c, pour x dans]c, b[, f(x) < x (car x n'est pas dans E) et par passage à la limite quand x tend vers c par valeurs supérieures et d'après les propriétés usuelles des fonctions croissantes, on obtient : $f(c) (\leqslant f(c+)) \leqslant c$.

D'autre part, $\forall n \in \mathbb{N}^*$, $\exists x_n \in \mathbb{E}/c - \frac{1}{n} < x_n \leqslant c$. x_n étant dans \mathbb{E} , on a $f(x_n) \geqslant x_n$. Quand n tend vers $+\infty$, on obtient : $f(c) \geqslant f(c^-) \geqslant c$. Finalement, f(c) = c et dans tous les cas, f admet au moins un point fixe.

Exercice nº 5

Puisque f est croissante sur [a, b], on sait que f admet en tout point x_0 de]a, b[une limite à gauche et une limite à droite réelles vérifiant $f(x_0^-) \le f(x_0^+)$ puis une limite à droite en a élément de $[f(a), +\infty[$ et une limite à gauche en b élément de $]-\infty, f(b)]$.

Si f est discontinue en un x_0 de]a, b[, alors on a $f(x_0^-) < f(x_0)$ ou $f(x_0) < f(x_0^+)$. Mais, si par exemple $f(x_0^-) < f(x_0)$ alors, $\forall x \in [a, x_0[\ (\neq \varnothing), \ f(x) \leqslant f(x_0^-) \)$ et $\forall x \in [x_0, b], \ f(x) \geqslant f(x_0)$.

Donc $]f(x_0^-), f(x_0)[\cap f([a,b]) = \emptyset$ ce qui est exclu puisque d'autre part $]f(x_0^-), f(x_0)[\neq \emptyset$ et $]f(x_0^-), f(x_0)[\subset [f(a), f(b)]$ (la démarche est identique si $f(x_0^+) > f(x_0)$). Donc, f est continue sur]a, b[. Par une démarche analogue, f est aussi continue en a ou b et donc sur [a, b].

Exercice nº 6

Soit x > 0. Pour tout naturel n, $f(x) = f(\sqrt{x}) = f(x^{1/4}) = \dots = f(x^{1/2^n})$. Or, à x fixé, $\lim_{n \to +\infty} x^{1/2^n} = \lim_{n \to +\infty} e^{(\ln x)/2^n} = 1$ et, f étant continue en 1, on a :

$$\forall x > 0, \ f(x) = \lim_{n \to +\infty} f(x^{1/2^n}) = f(1).$$

f est donc constante sur $]0, +\infty[$, puis sur $[0, +\infty[$ par continuité de f en 0.

Pour $x \ge 0$, posons f(x) = 0 si $x \ne 1$ et f(x) = 1 si x = 1. Pour $x \ge 0$, on a $x^2 = 1 \Leftrightarrow x = 1$. f vérifie donc: $\forall x \ge 0$, $f(x^2) = f(x)$, mais f n'est pas constante sur \mathbb{R}^+ .

Exercice nº 7

Soit f une application de \mathbb{R} dans \mathbb{R} vérifiant

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Puisque f(0) = f(0+0) = f(0) + f(0), on a f(0) = 0. Puis, pour x réel donné, f(-x) + f(x) = f(-x+x) = f(0) = 0 et donc, pour tout réel x, f(-x) = -f(x) (f est donc impaire). On a aussi pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$,

$$f(nx) = f(x) + ... + f(x) = nf(x).$$

De ce qui précède, on déduit :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ f(nx) = nf(x).$$

Soit $\mathfrak{a}=f(1).$ D'après ce qui précède, $\forall \mathfrak{n} \in \mathbb{Z}, \ f(\mathfrak{n})=f(\mathfrak{n} \times 1)=\mathfrak{n} f(1)=\mathfrak{a} \mathfrak{n}.$

Puis, pour
$$n \in \mathbb{N}^*$$
, $nf\left(\frac{1}{n}\right) = f\left(n \times \frac{1}{n}\right) = f(1) = a$ et donc $\forall n \in \mathbb{N}^*$, $f\left(\frac{1}{n}\right) = a\frac{1}{n}$.

Puis, pour
$$p \in \mathbb{Z}$$
 et $q \in \mathbb{N}^*$, $f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = pa\frac{1}{q} = a\frac{p}{q}$. Finalement,

$$\forall r \in \mathbb{Q}, f(r) = ar.$$

Si on n'a pas l'hypothèse de continuité, on ne peut aller plus loin. Supposons de plus que f soit continue sur $\mathbb R$.

Soit x un réel. Puisque \mathbb{Q} est dense dans \mathbb{R} , il existe une suite $(r_n)_{n\in\mathbb{N}}$ de rationnels, convergente de limite x. f étant continue en x, on a :

$$f(x) = f\left(\lim_{n \to +\infty} r_n\right) = \lim_{n \to +\infty} f\left(r_n\right) = \lim_{n \to +\infty} \alpha r_n = \alpha x.$$

f est donc une application linéaire de \mathbb{R} dans \mathbb{R} . Réciproquement, les applications linéaires conviennent.

Exercice nº 8

On a $0 \le f(0) \le 1$ et $0 \le f(1) \le 1$. Donc $|f(1) - f(0)| \le 1$. Mais, par hypothèse, $|f(1) - f(0)| \ge 1$. Par suite, |f(1) - f(0)| = 1 et nécessairement, $(f(0), f(1)) \in \{(0, 1), (1, 0)\}$.

Supposons que f(0) = 0 et f(1) = 1 et montrons que $\forall x \in [0, 1], f(x) = x$.

Soit $x \in [0,1]$. On a $|f(x) - f(0)| \ge |x-0|$ ce qui fournit $f(x) \ge x$. On a aussi $|f(x) - f(1)| \ge |x-1|$ ce qui fournit $1 - f(x) \ge 1 - x$ et donc $f(x) \le x$. Finalement, $\forall x \in [0,1]$, f(x) = x et f = Id.

Si f(0) = 1 et f(1) = 0, posons pour $x \in [0, 1]$, g(x) = 1 - f(x). Alors, g(0) = 0, g(1) = 1 puis, pour $x \in [0, 1]$, $g(x) \in [0, 1]$. Enfin,

$$\forall (x,y) \in [0,1]^2, |q(y) - q(x)| = |f(y) - f(x)| \ge |y - x|.$$

D'après l'étude du premier cas, g = Id et donc f = 1 - Id. Réciproquement, Id et 1 - Id sont bien bien solutions du problème.

Exercice nº 9

 $Id_{[0,1]}$ est solution.

Réciproquement, soit f une bijection de [0,1] sur lui-même vérifiant $\forall x \in [0,1]$, f(2x - f(x)) = x. Nécessairement, $\forall x \in [0,1]$, $0 \le 2x - f(x) \le 1$ et donc $\forall x \in [0,1]$, $2x - 1 \le f(x) \le 2x$.

Soit f^{-1} la réciproque de f.

$$\forall x \in [0, 1], \ f(2x - f(x)) = x \Leftrightarrow \forall x \in [0, 1], \ 2x - f(x) = f^{-1}(x)$$

$$\Leftrightarrow \forall y \in [0, 1], \ f(f(y)) - 2f(y) + y = 0 \ (\operatorname{car} \ \forall x \in [0, 1], \ \exists ! y \ [0, 1] / \ x = f(y))$$

Soient $y \in [0,1]$ puis $u_0 = y$. En posant $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, on définit une suite de réels de [0,1] (car [0,1] est stable par f). La condition $\forall y \in [0,1]$, f(f(y)) - 2f(y) + y = 0 fournit $\forall n \in \mathbb{N}$, $u_{n+2} - 2u_{n+1} + u_n = 0$, ou encore $\forall n \in \mathbb{N}$, $u_{n+2} - u_{n+1} = u_{n+1} - u_n$. La suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est constante ou encore u est arithmétique. Mais, u est également bornée et donc u est constante.

En particulier, $u_1 = u_0$ ce qui fournit f(y) = y. On a montré que $\forall y \in [0, 1], f(y) = y$ et donc f = Id.

Exercice nº 10

1) Si n = 1, le réel x = 0 est solution de l'équation proposée.

Soit n un entier naturel supérieur ou égal à 2 donné. Pour x élément de $\left[0,1-\frac{1}{n}\right]$, posons $g(x)=f\left(x+\frac{1}{n}\right)-f(x)$. g est définie et continue sur $\left[0,1-\frac{1}{n}\right]$. De plus,

$$\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) = \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right) = f(1) - f(0) = 0.$$

Maintenant, s'il existe un entier k élément de [0,n-1] tel que $g\left(\frac{k}{n}\right)=0$, on a trouvé un réel x de [0,1] tel que $f\left(x+\frac{1}{n}\right)=f(x)$ (à savoir $x=\frac{k}{n}$).

Sinon, tous les $g\left(\frac{k}{n}\right)$ sont non nuls et, étant de somme nulle, il existe deux valeurs de la variable en lesquels g prend des valeurs de signes contraires. Puisque g est continue sur $\left[0,1-\frac{1}{n}\right]$, le théorème des valeurs intermédiaires permet d'affirmer que g s'annule au moins une fois dans cet intervalle ce qui fournit de nouveau une solution à l'équation $f\left(x+\frac{1}{n}\right)=f(x)$.

2) Soit $a \in]0,1[$ tel que $\frac{1}{a} \notin \mathbb{N}^*$. Pour $x \in [0,1]$, posons $f(x) = \left|\sin\frac{\pi x}{a}\right| - x\left|\sin\frac{\pi}{a}\right|$. f est continue sur [0,1], f(0) = f(1) = 0 mais pour tout réel x,

$$f(x+\alpha) - f(x) = \left(\left| \sin \frac{\pi(x+\alpha)}{\alpha} \right| - \left| \sin \frac{\pi x}{\alpha} \right| \right) - \left((x+\alpha) - x \right) \left| \sin \frac{\pi}{\alpha} \right| = -\alpha \left| \sin \frac{\pi}{\alpha} \right| \neq 0.$$

3) a) et b) Soit g(t) la distance, exprimée en kilomètres, parcourue par le cycliste à l'instant t exprimé en heures, $0 \le t \le 1$, puis, pour $t \in [0,1]$, f(t) = g(t) - 20t. f est continue sur [0,1] (si le cycliste reste un tant soit peu cohérent) et vérifie f(0) = f(1) = 0.

$$\begin{array}{ll} \mathrm{D'apr\`{e}s} \ 1), \ \exists t_1 \ \in \ \left[0,\frac{1}{2}\right], \ \exists t_2 \ \in \ \left[0,\frac{19}{20}\right] \ \mathrm{tels} \ \mathrm{que} \ f\left(t_1+\frac{1}{2}\right) \ = \ f(t_1) \ \mathrm{et} \ f\left(t_2+\frac{1}{20}\right) \ = \ f(t_2) \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{s'\'{e}crit} \ \mathrm{encore} \\ g\left(t_1+\frac{1}{2}\right)-g\left(t_1\right) = 10 \ \mathrm{et} \ g\left(t_2+\frac{1}{20}\right)-g(t_2) = 1. \end{array}$$

De t_1 à $t_1 + \frac{1}{2}$, le cycliste a roulé 10 km et de t_2 à $t_2 + \frac{1}{20}$, le cycliste a roulé 1 km.

c) Posons pour $0 \le t \le 1$, $f(t) = \left| \sin \frac{4\pi t}{3} \right| - \frac{t\sqrt{3}}{2}$ (de sorte que f(0) = f(1) = 0). D'après la question 2), l'équation $f\left(x + \frac{3}{4}\right) - f(x) = 15$ n'a pas de solution.

Exercice nº 14

Injectivité. f((1,0)) = (1,0) et f((1,1)) = (1,0). Ainsi, les couples (1,0) et (1,1) sont deux couples distincts ayant la même image par f. Donc, f n'est pas injective.

Surjectivité. Soit $(a,b) \in \mathbb{R}^2$. Soit $(x,y) \in \mathbb{R}^2$.

$$f(x,y) = (a,b) \Leftrightarrow \begin{cases} x = a \\ xy - y^3 = b \end{cases} \Leftrightarrow \begin{cases} x = a \\ y^3 - ay + b = 0 \end{cases}$$

Si $a \leq 0$, la fonction $g: t \mapsto t^3 - at + b$ est continue sur \mathbb{R} , tend vers $-\infty < 0$ en $-\infty$ et vers $+\infty > 0$ en $+\infty$. D'après le théorème des valeurs intermédiaires, l'équation g(t) = 0 a au moins une solution dans \mathbb{R} . Ceci montre que pour tout $(a,b) \in \mathbb{R}^2$, l'équation f((x,y)) = (a,b) a au moins une solution dans \mathbb{R}^2 . Donc, f est surjective.