A Course in Model Theory

Katin Tent & Martin Ziegler

October 30, 2020

Contents

1	The	Basics	1		
	1.1	Structures	1		
	1.2	Language	3		
	1.3	Theories	4		
2	Elementary Extensions and Compactness				
	2.1	Elementary substructures	4		
		The Compactness Theorem			
3	Qua	Quantifier Elimination			
	3.1	Preservation theorems	8		

1 The Basics

1.1 Structures

Definition 1.1. Let $\mathfrak{A},\mathfrak{B}$ be L-structures. A map $h:A\to B$ is called a **homomorphism** if for all $a_1,\dots,a_n\in A$

$$\begin{array}{rcl} h(c^{\mathfrak{A}}) & = & c^{\mathfrak{B}} \\ h(f^{\mathfrak{A}}(a_1, \ldots, a_n)) & = & f^{\mathfrak{B}}(h(a_1), \ldots, h(a_n)) \\ R^{\mathfrak{A}}(a_1, \ldots, a_n) & \Rightarrow & R^{\mathfrak{B}}(h(a_1), \ldots, h(a_n)) \end{array}$$

We denote this by

$$h:\mathfrak{A}\to\mathfrak{B}$$

If in addition h is injective and

$$R^{\mathfrak{A}}(a_1,\ldots,a_n) \Leftrightarrow R^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$

for all $a_1, \dots, a_n \in A$, then h is called an (isomorphic) **embedding**. An **isomorphism** is a surjective embedding

Lemma 1.2. Let $h: \mathfrak{A} \xrightarrow{\sim} \mathfrak{A}'$ be an isomorphism and \mathfrak{B} an extension of \mathfrak{A} . Then there exists an extension \mathfrak{B}' of \mathfrak{A}' and an isomorphism $g: \mathfrak{B} \xrightarrow{\sim} \mathfrak{B}'$ extending h

Definition 1.3. Let (I, \leq) be a **directed partial order**. This means that for all $i, j \in I$ there exists a $k \in I$ s.t. $i \leq k$ and $j \leq k$. A family $(\mathfrak{A}_i)_{i \in I}$ of L-structures is called **directed** if

$$i \leq j \Rightarrow \mathfrak{A}_i \subseteq \mathfrak{A}_j$$

If *I* is linearly ordered, we call $(\mathfrak{A}_i)_{i\in I}$ a **chain**

If a structure \mathfrak{A}_1 is isomorphic to a substructure \mathfrak{A}_0 of itself,

$$h_0:\mathfrak{A}_0\stackrel{\sim}{\longrightarrow}\mathfrak{A}_1$$

then Lemma 1.2 gives an extension

$$h_1:\mathfrak{A}_1\stackrel{\sim}{\longrightarrow}\mathfrak{A}_2$$

Continuing in this way we obtain a chain $\mathfrak{A}_0\subseteq\mathfrak{A}_1\subseteq\mathfrak{A}_2\subseteq...$ and an increasing sequence $h_i:\mathfrak{A}_i\stackrel{\sim}{\longrightarrow}\mathfrak{A}_{i+1}$ of isomorphism

Lemma 1.4. Let $(\mathfrak{A}_i)_{i\in I}$ be a directed family of L-structures. Then $A=\bigcup_{i\in I}A_i$ is the universe of a (uniquely determined) L-structure

$$\mathfrak{A} = \bigcup_{i \in I} \mathfrak{A}_i$$

which is an extension of all \mathfrak{A}_i

A subset K of L is called a **sublanguage**. An L-structure becomes a K-structure, the **reduct**.

$$\mathfrak{A} {\upharpoonright} K = (A, (Z^{\mathfrak{A}})_{Z \in K})$$

Conversely we call $\mathfrak A$ an **expansion** of $\mathfrak A \upharpoonright K$.

1. Let $B \subseteq A$, we obtain a new language

$$L(B) = L \cup B$$

and the L(B)-structure

$$\mathfrak{A}_B=(\mathfrak{A},b)_{b\in B}$$

Note that $\mathbf{Aut}(\mathfrak{A}_B)$ is the group of automorphisms of $\mathfrak A$ fixing B elementwise. We denote this group by $\mathbf{Aut}(\mathfrak A/B)$

Let S be a set, which we call the set of sorts. An S-sorted language L is given by a set of constants for each sort in S, and typed function and relations. For any tuple (s_1,\ldots,s_n) and (s_1,\ldots,s_n,t) there is a set of relation symbols and function symbols respectively. An S-sorted structure is a pair $\mathfrak{A}=(A,(Z^{\mathfrak{A}})_{Z\in L})$, where

$$\begin{array}{ll} A & \text{if a family } (A_s)_{s \in S} \text{ of non-empty sets} \\ Z^{\mathfrak{A}} \in A_s & \text{if } Z \text{ is a constant of sort } s \in S \\ Z^{\mathfrak{A}} : A_{s_1} \times \cdots \times A_{s_n} \to A_t \text{if } Z \text{ is a function symbol of type } (s_1, \dots, s_n, t) \\ Z^{\mathfrak{A}} \subseteq A_{s_1} \times \cdots \times A_{s_n} & \text{if } Z \text{ is a relation symbol of type } (s_1, \dots, s_n) \end{array}$$

Example 1.1. Consider the two-sorted language L_{Perm} for permutation groups with a sort x for the set and a sort g for the group. The constants and function symbols for L_{Perm} are those of L_{Group} restricted to the sort g and an additional function symbol φ of type (x,g,x). Thus an L_{Perm} -structure (X,G) is given by a set X and an L_{Group} -structure G together with a function $X \times G \to X$

1.2 Language

Lemma 1.5. Suppose \overrightarrow{b} and \overrightarrow{c} agree on all variables which are free in φ . Then

$$\mathfrak{A}\models\varphi[\overrightarrow{b}]\Leftrightarrow\mathfrak{A}\models\varphi[\overrightarrow{c}]$$

We define

$$\mathfrak{A}\models\varphi[a_1,\dots,a_n]$$

by $\mathfrak{A} \models \varphi[\overrightarrow{b}]$, where \overrightarrow{b} is an assignment satisfying $\overrightarrow{b}(x_i) = a_i$. Because of Lemma 1.5 this is well defined.

Thus $\varphi(x_1,\ldots,x_n)$ defines an n-ary relation

$$\varphi(\mathfrak{A}) = \{ \bar{a} \mid \mathfrak{A} \models \varphi[\bar{a}] \}$$

on A, the **realisation set** of φ . Such realisation sets are called **0-definable subsets** of A^n , or 0-definable relations

Let B be a subset of A. A B-definable subset of $\mathfrak A$ is a set of the form $\varphi(\mathfrak A)$ for an L(B)-formula $\varphi(x)$. We also say that φ are defined over B and that the set $\varphi(\mathfrak A)$ is defined by φ . We call two formulas **equivalent** if in every structure they define the same set.

Atomic formulas and their negations are called **basic**. Formulas without quantifiers are Boolean combinations of basic formulas. It is convenient

to allow the empty conjunction and the empty disjunction. For that we introduce two new formulas: the formula \top , which is always true, and the formula \bot , which is always false. We define

$$\bigwedge_{i<0}\pi_i=\top$$

$$\bigvee_{i<0}\pi_i=\bot$$

A formula is in **negation normal form** if it is built from basic formulas using $\land, \lor, exists, \forall$

Definition 1.6. A formula in negation normal form which does not contain any existential quantifier is called **universal**. Formulas in negation normal form without universal quantifiers are called **existential**

Let $\mathfrak A$ be an L-structure. The **atomic diagram** of $\mathfrak A$ is

$$Diag(\mathfrak{A}) = \{ \varphi \text{ basic } L(A) \text{-sentence } | \mathfrak{A}_A \models \varphi \}$$

Lemma 1.7. The models of $Diag(\mathfrak{a})$ are precisely those structures $(\mathfrak{B}, h(a))_{a \in A}$ for embeddings $h : \mathfrak{A} \to \mathfrak{B}$

1.3 Theories

Definition 1.8. An *L***-theory** *T* is a set of *L*-sentences

A theory which has a model is a **consistent** theory. We call a set Σ of L-formulas **consistent** if there is an L-structure and an assignment \overrightarrow{b} s.t. $\mathfrak{A} \models [\overrightarrow{b}]$ for all $\varphi \in \Sigma$

Lemma 1.9. 1. If $T \models \varphi$ and $T \models (\varphi \rightarrow \psi)$, then $T \models \psi$

- 2. If $T \models \varphi(c_1,\ldots,c_n)$ and the constants c_1,\ldots,c_n occur neither in T nor in $\varphi(x_1,\ldots,x_n)$, then $T \models \forall x_1\ldots x_n \varphi(x_1,\ldots,x_n)$
- $\begin{array}{ll} \textit{Proof.} & \text{2. Let } L' = L \smallsetminus \{c_1, \dots, c_n\}. \text{ If the L'-structure is a model of T and } \\ a_1, \dots, a_n \text{ are arbitrary elements, then } (\mathfrak{A}, a_1, \dots, a_n) \ \models \ \varphi(c_1, \dots, c_n). \\ & \text{This means } \mathfrak{A} \models \forall x_1 \dots x_n \varphi(x_1, \dots, x_n). \end{array}$

2 Elementary Extensions and Compactness

2.1 Elementary substructures

Let $\mathfrak{A},\mathfrak{B}$ be two L-structures. A map $h:A\to B$ is called **elementary** if for all $a_1,\dots,a_n\in A$ we have

$$\mathfrak{A}\models\varphi[a_1,\dots,a_n]\Leftrightarrow\mathfrak{B}\models\varphi[h(a_1),\dots,h(a_n)]$$

We write

$$h:\mathfrak{A}\stackrel{\prec}{\longrightarrow}\mathfrak{B}$$

Lemma 2.1. The models of $\operatorname{Th}(\mathfrak{A}_A)$ are exactly the structures of the form $(\mathfrak{B}, h(a))_{a \in A}$ for elementary embeddings $h : \mathfrak{A} \stackrel{\smile}{\longrightarrow} \mathfrak{B}$

We call $Th(\mathfrak{A}_A)$ the **elemantary diagram** of \mathfrak{A}

A substructure ${\mathfrak A}$ of ${\mathfrak B}$ is called **elementary** if the inclusion map is elementary. In this case we write

$$\mathfrak{A}\prec\mathfrak{B}$$

Theorem 2.2 (Tarski's Test). Let $\mathfrak B$ be an L-structure and A a subset of B. Then A is the universe of an elementary substructure iff every L(A)-formula $\varphi(x)$ which is satisfiable in $\mathfrak B$ can be satisfied by an element of A

We use Tarski's Test to construct small elementary substructures

Corollary 2.3. Suppose S is a subset of the L-structure \mathfrak{B} . Then \mathfrak{B} has a elementary substructure \mathfrak{A} containing S and of cardinality at most

$$\max(|S|, |L|, \aleph_0)$$

Proof. We construct A as the union of an ascending sequence $S_0 \subseteq S_1 \subseteq \ldots$ of subsets of B. We start with $S_0 = S$. If S_i is already defined, we choose an element $a_{\varphi} \in B$ for every $L(S_i)$ -formula $\varphi(x)$ which is satisfiable in $\mathfrak B$ and define S_{i+1} to be S_i together with these a_{φ} .

An L-formula is a finite sequence of symbols from L, auxiliary symbols and logical symbols. These are $|L|+\aleph_0=\max(|L|,\aleph_0)$ many symbols and there are exactlymax $(|L|,\aleph_0)$ many L-formulas

Let $\kappa = \max(|S|, |L|, \aleph_0)$. There are κ many L(S)-formulas: therefore $|S_1| \leq \kappa$. Inductively it follows for every i that $|S_i| \leq \kappa$. Finally we have $|A| \leq \kappa \cdot \aleph_0 = \kappa$

A directed family $(\mathfrak{A}_i)_{i\in I}$ of structures is **elementary** if $\mathfrak{A}_i\prec\mathfrak{A}_j$ for all $i\leq j$

Theorem 2.4 (Tarski's Chain Lemma). *The union of an elementary directed family is an elementary extension of all its members*

Proof. Let $\mathfrak{A}=\bigcup_{i\in I}(\mathfrak{A}_i)_{i\in I}$. We prove by induction on $\varphi(\bar{x})$ that for all i and $\bar{a}\in\mathfrak{A}_i$

$$\mathfrak{A}_i \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{A} \models \varphi(\bar{a})$$

2.2 The Compactness Theorem

Theorem **2.5** (Compactness Theorem). Finitely satisfiable theories are consis-

Let L be a language and C a set of new constants. An L(C)-theory T' is called a **Henkin theory** if for every L(C)-formula $\varphi(x)$ there is a constant $c \in C$ s.t.

$$\exists x \varphi(x) \to \varphi(c) \in T'$$

Lemma 2.6. Every finitely satisfiable L-theory T can be extended to a finitely complete Henkin theory T^*

Lemma 2.7. Every finitely complete Henkin theory T^* has a model $\mathfrak A$ (unique up to isomorphism) consisting of constants; i.e.,

$$(\mathfrak{A},a_c)_{c\in C}\models T^*$$

with $A = \{a_c \mid c \in C\}$

tent

Corollary 2.8. A set of formulas $\Sigma(x_1,\ldots,x_n)$ is consistent with T if and only if every finite subset of Σ is consistent with T

Proof. Introduce new constants c_1,\ldots,c_n . Then Σ is consistent with T is and only if $T\cup\Sigma(c_1,\ldots,c_n)$ is consistent. Now apply the Compactness Theorem \Box

Definition 2.9. Let $\mathfrak A$ be an L-structure and $B\subseteq A$. Then $a\in A$ realises a set of L(B)-formulas $\Sigma(x)$ if a satisfied all formulas from Σ . We write

$$\mathfrak{A} \models \Sigma(a)$$

We call $\Sigma(x)$ finitely satisfiable in $\mathfrak A$ if every finite subset of Σ is realised in $\mathfrak A$

Lemma 2.10. The set $\Sigma(x)$ is finitely satisfiable in $\mathfrak A$ iff there is an elementary extension of $\mathfrak A$ in which $\Sigma(x)$ is realised

Proof. By Lemma 2.1 Σ is realised in an elementary extension of $\mathfrak A$ iff Σ is consistent with $\mathrm{Th}(\mathfrak A_A)$. So the lemma follows from the observation that a finite set of L(A)-formulas is consistent with $\mathrm{Th}(\mathfrak A_A)$ iff it is realised in $\mathfrak A$

Definition 2.11. Let $\mathfrak A$ be an L-structure and B a subset of A. A set p(x) of L(B)-formulas is a **type** over B if p(x) is maximal finitely satisfiable in $\mathfrak A$. We call B the **domain** of p. Let

$$S(B) = S^{\mathfrak{A}}(B)$$

denote the set of types over B.

Every element a of $\mathfrak A$ determines a type

$$\mathsf{tp}(a/B) = tp^{\mathfrak{A}}(a/B) = \{ \varphi(x) \mid \mathfrak{A} \models \varphi(a), \varphi \text{ an } L(B) \text{-formula} \}$$

So an element a realises the type $p \in S(B)$ exactly if $p = \operatorname{tp}(a/B)$. If \mathfrak{A}' is an elementary extension of \mathfrak{A} , then

$$S^{\mathfrak{A}}(B) = S^{\mathfrak{A}'}(B)$$
 and $\operatorname{tp}^{\mathfrak{A}'}(a/B) = \operatorname{tp}^{\mathfrak{A}}(a/B)$

If $\mathfrak{A}' \models p(x)$ then $\mathfrak{A}' \models \exists x p(x)$, so $\mathfrak{A} \models \exists x p(x)$.

We use the notation tp(a) for $tp(a/\emptyset)$

Maximal finitely satisfiable sets of formulas in x_1,\dots,x_n are called n-types and

$$S_n(B) = S_N^{\mathfrak{A}}(B)$$

denotes the set of n-types over B.

$$\operatorname{tp}(C/B) = \{\varphi(x_{c_1}, \dots, x_{c_n}) \mid \mathfrak{A} \models \varphi(c_1, \dots, c_n), \varphi \text{ an } L(B) \text{-formula}\}$$

Corollary 2.12. Every structure \mathfrak{A} has an elementary extension \mathfrak{B} in which all types over A are realised

Proof. We choose for every $p \in S(A)$ a new constant c_p . We have to find a model of

$$\operatorname{Th}(\mathfrak{A}_A) \cup \bigcup_{p \in S(A)} p(c_p)$$

This theory is finitely satisfiable since every p is finitely satisfiable in \mathfrak{A} .

Or use Lemma 2.10. Let $(p_\alpha)_{\alpha<\lambda}$ be an enumeration of S(A). Construct an elementary chain

$$\mathfrak{A} = \mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots \prec \mathfrak{A}_\beta \prec \ldots (\beta \leq \lambda)$$

s.t. each p_{α} is realised in $\mathfrak{A}_{\alpha+1}$ (by recursion theorem on ordinal numbers)

Suppose that the elementary chain $(\mathfrak{A}_{\alpha'})_{\alpha'<\beta}$ is already constructed. If β is a limit ordinal, we let $\mathfrak{A}_{\beta} = \bigcup_{\alpha<\beta} \mathfrak{A}_{\alpha}$, which is elementary by Lemma 2.4. If $\beta = \alpha + 1$ we first note that p_{α} is also finitely satisfiable in \mathfrak{A}_{α} , therefore we can realise p_{α} in a suitable elementary extension $\mathfrak{A}_{\beta} \succ \mathfrak{A}_{\alpha}$ by Lemma 2.10. Then $\mathfrak{B} = \mathfrak{A}_{\lambda}$ is the model we were looking for

3 Quantifier Elimination

3.1 Preservation theorems

Lemma 3.1 (Separation Lemma). Let T_1, T_2 be two theories. Assume \mathcal{H} is a set of sentences which is closed under \land, \lor and contains \bot and \top . Then the following are equivalent

1. There is a sentence $\varphi \in \mathcal{H}$ which separates T_1 from T_2 . This means

$$T_1 \models \varphi$$
 and $T_2 \models \neg \varphi$

2. All models \mathfrak{A}_1 of T_1 can be separated from all models \mathfrak{A}_2 of T_2 by a sentence $\varphi \in \mathcal{H}$. This means

$$\mathfrak{A}_1 \models \varphi$$
 and $\mathfrak{A}_2 \models \neg \varphi$

Proof. $2 \to 1$. For any model \mathfrak{A}_1 of T_1 let $\mathcal{H}_{\mathfrak{A}_1}$ be the set of all sentences from \mathcal{H} which are true in \mathfrak{A}_1 . (2) implies that $\mathcal{H}_{\mathfrak{A}_1}$ and T_2 cannot have a common model. By the Compactness Theorem there is a finite conjunction $\varphi_{\mathfrak{A}_1}$ of sentences from $\mathcal{H}_{\mathfrak{A}_1}$ inconsistent with T_2 . Clearly

$$T_1 \cup \{\neg \varphi_{\mathfrak{A}_1} \mid \mathfrak{A}_1 \models T_1\}$$

is inconsistent. Again by compactness T_1 implies a disjunction φ of finitely many of the $\varphi_{\mathfrak{A}_1}$

For structures $\mathfrak{A},\mathfrak{B}$ and a map $f:A\to B$ preserving all formulas from a set of formulas Δ , we use the notation

$$f:\mathfrak{A}\to_{\Lambda}\mathfrak{B}$$

We also write

$$\mathfrak{A} \Rightarrow_{\wedge} \mathfrak{B}$$

to express that all sentences from Δ true in $\mathfrak A$ are also true in $\mathfrak B$

Lemma 3.2. Let T be a theory, $\mathfrak A$ a structure and Δ a set of formulas, closed under existential quantification, conjunction and substitution of variables. Then the following are equivalent

- 1. All sentences $\varphi \in \Delta$ which are true in $\mathfrak A$ are consistent with T (There is a model $\mathfrak B \models \Delta \cup T$ and $\mathfrak A \Rightarrow_{\Delta} \mathfrak B$)
- 2. There is a model $\mathfrak{B} \models T$ and a map $f : \mathfrak{A} \rightarrow_{\Delta} \mathfrak{B}$

Proof. $1 \to 2$. Consider $\operatorname{Th}_{\Delta}(\mathfrak{A}_A)$, the set of all sentences $\delta(\bar{a})$ ($\delta(\bar{x}) \in \Delta$), which are true in \mathfrak{A}_A . The models $(\mathfrak{B}, f(a)_{a \in A})$ of this theory correspond to maps $f: \mathfrak{A} \to_{\Delta} \mathfrak{B}$. This means that we have to find a model of $T \cup \operatorname{Th}_{\Delta}(\mathfrak{A}_A)$. To show finite satisfiability it is enough to show that $T \cup D$ is consistent for every finite subset D of $\operatorname{Th}_{\Delta}(\mathfrak{A}_A)$. Let $\delta(\bar{a})$ be the conjunction of the elements of D. Then \mathfrak{A} is a model of $\varphi = \exists \bar{x} \delta(\bar{x})$

Lemma 3.2 applied to $T=\operatorname{Th}(\mathfrak{B})$ shows that $\mathfrak{A}\Rightarrow_{\Delta}\mathfrak{B}$ iff there exists a map f and a structure $\mathfrak{B}'\equiv\mathfrak{B}$ s.t. $f:\mathfrak{A}\to_{\Delta}\mathfrak{B}'$

Theorem 3.3. Let T_1 and T_2 be two theories. Then the following are equivalent

- 1. There is a universal sentence which separates T_1 from T_2
- 2. No model of T_2 is a substructure of a model of T_1

Proof. $2 \to 1$. If T_1 and T_2 cannot be separated by a universal sentence, then they have models \mathfrak{A}_1 and \mathfrak{A}_2 which cannot be separated by a universal sentence. This can be denoted by

$$\mathfrak{A}_2 \Rightarrow_{\exists} \mathfrak{A}_1$$

Now Lemma 3.2 implies that \mathfrak{A}_2 there is a map $\mathfrak{A}_2 \to_{\exists} \mathfrak{A}_1'$ where $\mathfrak{A}_1' \models T_1$. Hence \mathfrak{A}_2 has an extension \mathfrak{A}_2' s.t. $\mathfrak{A}_2' \equiv \mathfrak{A}_1'$. Then \mathfrak{A}' is gain a model of T_1 contradicting (2)

Definition 3.4. For any L-theory T, the formulas $\varphi(\bar{x}), \psi(\bar{x})$ are said to be **equivalent** modulo T (or relative to T) if $T \models \forall \bar{x} (\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))$

Corollary 3.5. *Let T be a theory*

- 1. Consider a formula $\varphi(x_1,\ldots,x_n)$. The following are equivalent
 - (a) $\varphi(x_1,\ldots,x_n)$ is, modulo T, equivalent to a universal formula
 - (b) If $\mathfrak{A}\subseteq\mathfrak{B}$ are models of T and $a_1,\ldots,a_n\in A$, then $\mathfrak{B}\models\varphi(a_1,\ldots,a_n)$ implies $\mathfrak{A}\models\varphi(a_1,\ldots,a_n)$
- 2. We say that a theory which consists of universal sentences is universal. Then T is equivalent to a universal theory iff all substructures of models of T are again models of T
- *Proof.* 1. Assume (2). We extend L by an n-tuple \bar{c} of new constants c_1,\ldots,c_n and consider theory

$$T_1 = T \cup \{\varphi(\bar{c})\} \quad \text{ and } \quad T_2 = T \cup \{\neg \varphi(\bar{c})\}$$

Then (2) says the substructures of models of T_1 cannot be models of T_2 . By Theorem 3.3 T_1 and T_2 can be separated by a universal $L(\bar{c})$ -sentence $\psi(\bar{c})$. By Lemma 1.9, $T_1 \models \psi(\bar{c})$ implies

$$T \models \forall \bar{x} (\varphi(\bar{x}) \to \psi(\bar{x}))$$

and from $T_2 \models \neg \psi(\bar{c})$ we see

$$T \models \forall \bar{x} (\neg \varphi(\bar{x}) \rightarrow \neg \psi(\bar{x}))$$

2. Suppose a theory T has this property. Let φ be an axiom of T. If $\mathfrak A$ is a substructure of $\mathfrak B$, it is not possible for $\mathfrak B$ to be a model of T and for $\mathfrak A$ to be a model of $\neg \psi$ at the same time. By Theorem 3.3 there is a universal sentence ψ with $T \models \psi$ and $\neg \varphi \models \neg \psi$. Hence all axioms of T follow from

$$T_{\forall} = \{ \psi \mid T \models \psi, \psi \text{ universal} \}$$

An $\forall \exists$ -formula is of the form

$$\forall x_1 \dots x_n \psi$$

where ψ is existential

Lemma 3.6. Suppose φ is an $\forall \exists$ -sentence, $(\mathfrak{A}_i)_{i \in I}$ is a directed family of models of φ and \mathfrak{B} the union of the \mathfrak{A}_i . Then \mathfrak{B} is also a model of φ .

Proo	f.	Write

$$\varphi = \forall \bar{x} \psi(\bar{x})$$

where ψ is existential. For any $\bar{a} \in B$ there is an A_i containing \bar{a} , clearly $\psi(\bar{a})$ holds in \mathfrak{A}_i . As $\psi(\bar{a})$ is existential it must also hold in \mathfrak{B}

Definition 3.7. We call a theory T **inductive** if the union of any directed family of models of T is again a model

Theorem 3.8. Let T_1 and T_2 be two theories. Then the following are equivalent

- 1. there is an $\forall \exists$ -sentence which separates T_1 and T_2
- 2. No model of T_2 is the union of a chain (or of a directed family) of models of T_1

Proof. $2 \to 1$. If (1) is not true, T_1, T_2 have models which cannot be separated by an $\forall \exists$ -sentence. Since $\exists \forall$ -formulas are equivalent to negated $\forall \exists$ -formulas, we have