FEGEIVED CENTRAL PAX CENTER SEP 1 3 2006

IN THE CLAIMS

Please amend the claims and add new claims 17 and 18 as follows:

- (currently amended) A method for producing a blank for a component of laser active quartz glass, said method comprising the following steps:
 - a) providing a dispersion with a solids content of at least 40% by wt. which contains SiO₂ nanopowder and dopants, including a cation of one or more the rare earth metals or of the transition metals in a liquid,
 - b) granulation by moving the dispersion with withdrawal of moisture until the formation-of a doped SiO₂ granulate of spherical porous granulate grains having a moisture content of less than 35% by wt. and a density of at least 0.95 g/cm³ is formed.
 - c) drying and purifying the SiO₂ granulate by heating said SiO₂ granulate to a temperature of at least 1000°C so as to form with formation of doped porous SiO₂ granules having an OH content of less than 10 ppm, and
 - d) sintering or melting the doped SiO₂ granules in a reducing atmosphere so as to form with formation of the blank of doped quartz glass, including a gas pressure sintering, which comprises the following steps:
 - aa) heating the SiO₂ granules to a melting temperature of at least 1600°C while applying and maintaining a negative pressure;
 - bb) holding the SiO₂ granules at the melting temperature at an overpressure ranging from 5 bar to 15 bar for a melting period of at least 30 min so as

to form with formation of the quartz glass blank;

- cc) cooling the quartz glass blank while maintaining said un overpressure.
- (currently amended) The method according to claim 1, wherein characterized in that
 an initial solids content of at least 50% by wt. is set in the dispersion.
- (currently amended) The method according to claim 1, wherein characterized-in-that
 the SiO₂ granulate obtained according to step b) has a BET surface area ranging from 40
 m²/g to 70 m²/g.
- (currently amended) The method according to claim 3, wherein characterized in that
 the SiO₂ granulate obtained according to step b) has a BET surface area of at least 50
 m²/g.
- (currently amended) The method according to claim 1, wherein characterized in that
 the spherical porous granulate grains have a grain size of less than 500 μm.
- (currently amended) The method according to claim 1, wherein characterized-in-that
 the SiO₂ granulate is dried and purified in under a chlorine-containing atmosphere.
- (currently amended) The method according to claim 1, wherein characterized in that
 the SiO₂ granulate is dried and purified at a temperature of at least 1050°C.
- 8. (currently amended) The method according to claim 1, wherein characterized in that the drying and purifying of the porous granulate is performed in under an oxygen-containing atmosphere.
- (currently amended) The method according to claim 1, wherein characterized in that
 the porous SiO₂ granules obtained according to step c) have an OII content of less than

one wt ppm.

- 10. (currently amended) The method according to claim 1, wherein characterized in that the porous SiO₂ granules obtained according to step c) have a BET surface area of less than 20 m²/g.
- (currently amended) The method according to claim 1, wherein characterized-in-that
 the SiO₂ granules are thermally densified prior to step d).
- 12. (currently amended) The method according to claim 1, wherein characterized in that the quartz glass blank is annealed at a temperature of at least 1120°C for a retention period of at least 40 hours h.
- 13. (currently amended) The method according to claim 1, wherein eharacterized in that the SiO₂ granules according to step d) are molten in a mold.
- 14. (currently amended) The method according to claim 1, wherein eharaeterized in that the SiO₂ blank according to step d) is three-dimensionally homogenized.
- 15. (currently amended) The method according to claim 1, wherein characterized-in that a bulk body with a radially inhomogeneous refractive index distribution is formed from SiO₂ granules of different refractive index, and that the bulk body is sintered or molten to obtain the SiO₂ blank.
- 16. (currently amended) A method of transmitting laser light, said method comprising:

 providing Use of an SiO₂ blank obtained according to a method as claimed in claim 1,

 and incorporating said SiO₂ blank into as a core material for a fiber laser, as an

 optical filter or as a cladding tube for laser and transmitting said laser light

through said fiber.

- 17. (new) A method of transmitting laser light, said method comprising: providing an SiO₂ blank obtained according to a method as claimed in claim 1, and incorporating said SiO₂ blank into an optical filter; and transmitting said laser light through said optical filter.
- 18. (new) A method of transmitting laser light, said method comprising: providing an SiO₂ blank obtained according to a method as claimed in claim 1, and incorporating said SiO₂ blank into a cladding tube for a fiber; and transmitting said laser light through said fiber.