Homework

Subject: Numerical Computation & Optimization Models (2/2565)

Author Name: Puriwat Sangrawee / Student ID: 65056071

Part 2: Chapter 4 – Constrained Optimization

จากบทที่ 4 ผมได้เลือกใช้วิธี Penalty Method รูปแบบ Inverse โดยกำหนดเงื่อนใจในโจทย์ปัญหา ดังต่อไปนี้

Minimize
$$f(x) = (x_1 - 3)^2 + (x_2 - 3)^2$$

Subject to
$$g(x) = 2x_1 + x_2 \ge 2$$

Range
$$1 \le x_1, x_2 \le 5$$

ซึ่งจากข้อมูลสมการหลักที่เราทราบ เป็นไปดังข้อมูลด้านล่าง

$$P(x,R) = f(x) + \Omega$$
$$\Omega = R\left[\frac{1}{g(x)}\right]$$

ซึ่งหากเราต้องการหาคำตอบในรูปแบบที่มีการรวม Penalty Term ไว้ด้วย เราจำเป็นต้องทำการรวม f(x) และ g(x) ไว้ด้วยกันตามรูปแบบด้านล่าง

Minimize
$$P(x, R) = (x_1 - 3)^2 + (x_2 - 3)^2 - R\left(\frac{1}{2x_1 + x_1 - 2}\right)$$

จากนั้นทำการกำหนด Format เบื้องต้นเพื่อให้สะควกในการใส่ค่า และคำนวณ ซึ่งผมได้กำหนดตามด้านล่าง

	А	В	С	D	Е	F
1						
2						
3			x1	X2		
4		Variable	1	5		
5						
6		Original Objective Function	f(x)	8		
7		Original Constraint	g(x)	5.000	>=	0
8		inversed Constraint	1/g(x)	0.2	<u>=</u>	0
9		(as Penalty Term)	1/8(^)			
10						
11		Selected R	0			
12						
13		Objective Function	P (x,R)	8		
1.4						

และทำการเรียกใช้ Solver และกำหนดเงื่อนไขคังต่อไปนี้

ซึ่งตัวอย่างของผลลัพธ์ที่ได้ (Optimized value) เป็นไปตามตารางค้านล่าง

R	x1	x2	f(x)	g(x)	P(x,R)
0	1	1	8	1	8
0	3	3	0	7	0
0.5	3.010131	3.005065321	0.000128287	7.025326605	0.071299356
1	3.020118	3.010059014	0.000505919	7.05029507	0.142343954
2	3.039684	3.019841756	0.001968476	7.09920878	0.283690012
5	3.095426	3.047712828	0.01138257	7.238564138	0.702127295
10	3.180154	3.090076752	0.040569106	7.45038376	1.382781846
20	3.327216	3.163607905	0.133837733	7.818039526	2.692023828
50	3.665954	3.332977113	0.554368761	8.664885522	6.324785446
100	4.068913	3.534456382	1.428218089	9.672281879	11.76704002
200	4.630335	3.8151675	3.322490205	11.07583746	21.3798155
500	5	4.579772166	6.495680095	12.57977217	46.24202792
1000	5	5	8	13	84.92307692

***Initial value