

Introduction to Algorithms

Date: 3/12 (Thursday)

Instructor: 유준수

Assignment

- Read 2.3
- Problems:
 - 2.3절 *-* 1, 4, 6

- Incremental Approach
 - Incrementing i=2 to n

- Correctness
 - State Loop Invariant
 - Check Initialization/Maintenance/Termination

- Assumption: RAM Model
 - 1. One by one execution of instruction
 - 2. Instruction takes constant time (not dependent on input size n)
- Analyzing Insertion Sort

INSERTION-SORT
$$(A, n)$$
 $cost times$

1 **for** $i = 2$ **to** n c_1 n

2 $key = A[i]$ c_2 $n-1$

3 **// Insert** $A[i]$ **into the sorted subarray** $A[1:i-1]$. 0 $n-1$

4 $j = i-1$ c_4 $n-1$

5 **while** $j > 0$ and $A[j] > key$ c_5 $\sum_{i=2}^{n} t_i$

6 $A[j+1] = A[j]$ c_6 $\sum_{i=2}^{n} (t_i-1)$

7 $j = j-1$ c_7 $\sum_{i=2}^{n} (t_i-1)$

8 $A[j+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)$$

- t_i : number of while loop at i –th iteration
- Best-case time complexity
 - $t_i = 1 \text{ for all } i$ $T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n (c_2 + c_4 + c_5 + c_8)$
- Worst-case time complexity
 - $t_i = i for all i$

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(\frac{c_1 + c_2 + c_4 + c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - (c_2 + c_4 + c_5 + c_8)$$

- Order of growth
 - Think of θ as "roughly proportional to" for now
 - Consider only the highest term
 - Ignore the constant term
 - E.g., $\theta(9n^3 + 2n^2 + 100) = \theta(n^3)$

Chapter 2. The Role of Algorithms in Computing

- 2.1 Insertion sort
- 2.2 Analyzing algorithms
- 2.3 Designing algorithms

Divide & Conquer Method

- Divide
 - Divide the problem into sub-problem of the same kind
- Conquer
 - Solve the problem, recursively.
- Combine
 - Combine solutions to form original solution

Ch 2. Getting Started – 2.3 Designing Algorithms

Main Idea of Merge Sort Algorithm

Merge

Combine two sorted arrays to output a sorted combined array

Back to Merge Sort Algorithm

How it works:

Example of n=4 and how it works

Complexity of Merge Process

```
MERGE(A, p, q, r)
 1 n_L = q - p + 1 // length of A[p:q]
 2 n_R = r - q // length of A[q + 1:r]
 3 let L[0:n_L-1] and R[0:n_R-1] be new arrays
 4 for i = 0 to n_L - 1 // copy A[p:q] into L[0:n_L - 1]
       L[i] = A[p+i]
 6 for j = 0 to n_R - 1 // copy A[q + 1:r] into R[0:n_R - 1]
        R[j] = A[q+j+1]
             //i indexes the smallest remaining element in L
 8 i = 0
            //j indexes the smallest remaining element in R
 9 i = 0
10 k = p
                     // k indexes the location in A to fill
11 // As long as each of the arrays L and R contains an unmerged element,
          copy the smallest unmerged element back into A[p:r].
   while i < n_L and j < n_R
       if L[i] \leq R[j]
13
           A[k] = L[i]
14
     i = i + 1
    else A[k] = R[j]
17
       j = j + 1
       k = k + 1
   // Having gone through one of L and R entirely, copy the
          remainder of the other to the end of A[p:r].
   while i < n_L
       A[k] = L[i]
      i = i + 1
       k = k + 1
24 while j < n_R
25
       A[k] = R[j]
       j = j + 1
26
       k = k + 1
```

Complexity of Merge Sort: Recurrence Relation

```
MERGE-SORT(A, p, r)

1 if p \ge r  // zero or one element?

2 return

3 q = \lfloor (p+r)/2 \rfloor  // midpoint of A[p:r]

4 MERGE-SORT(A, p, q)  // recursively sort A[p:q]

5 MERGE-SORT(A, q+1, r)  // recursively sort A[q+1:r]

6 // Merge A[p:q] and A[q+1:r] into A[p:r].

7 MERGE(A, p, q, r)
```

$$T(n) = \begin{cases} T(n) = C_1, & n=1 \\ 2T(n/2) + \Theta(n) \\ C_1, & n=1 \end{cases}$$

Ch 2. Getting Started – 2.3 Designing Algorithms

Complexity of Merge Sort: Time Complexity Calculation

Question?