CQF January 2009 Module 2.5

Live Class: February 20 Lecturer: Paul Wilmott

Binomial Model

In this lecture:

- A simple model for an asset price random walk
- Delta hedging
- No arbitrage
- The basics of the binomial method for valuing options
- Risk neutrality

By the end of this lecture you will be able to

- Understand how hedging is used to eliminate risk
- Use the binomial method to price simple options
- Explain the concept of risk neutrality

The Framework	4
Why should this 'theoretical price' be the 'market price'?	23
The role of expectations	24
How did I know to sell ½ of the stock for hedging?	
The general formula for Δ	28
How does this change if interest rates are non zero?	33
Complete markets	
The real and risk-neutral worlds	44
Non-zero interest rates	52
Symbols	54
How should we choose <i>u</i> , <i>v</i> and <i>p</i> ?	57
An equation for the value of an option	63
Hedging	65
Present Valuing	67
Expected Shortfall	73
Estimating Sigma	76
Simplest Volatility Estimate: Constant Vol/Moving Window	
Exponentially Weighted Moving Average	86

Summary

Please take away the following important ideas

- Delta hedging can be used for the elimination of risk
- The binomial method is a simple way to value options
- The concept of risk neutrality, its meaning and use
- The continuous-time limit of the binomial model is the Black–Scholes equation