Question No: 03

Setup

- Ensure the Python kernel has the necessary libraries: pandas, matplotlib and lets-plot, os, numpy, statsmodels, seaborn
- Ensure the bank-full.csv file is in the data folder.

```
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import os
from sklearn import tree
os.getcwd()
import numpy as np
import statsmodels.api as sm

from lets_plot import * # This imports all of ggplot2's functions
LetsPlot.setup_html()
```

i. Load the dataset and explore its structure using basic commands.

```
In [352... df = pd.read_csv('D:/Data Science for Marketing-I/data/bank-full.csv')
df
```

Out[352...

		age	job	marital	education	default	balance	housing	loan	contact	
	0	58	management	married	tertiary	no	2143	yes	no	unknown	
	1	44	technician	single	secondary	no	29	yes	no	unknown	
	2	33	entrepreneur	married	secondary	no	2	yes	yes	es unknown	
	3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	
	4	33	unknown	single	unknown	no	1	no	no	unknown	
	•••										
452	206	51	technician	married	tertiary	no	825	no	no	cellular	
452	207	71	retired	divorced	primary	no	no 1729		no	cellular	
452	208	72	retired	married	secondary	no	5715	no	no	cellular	
452	209	57	blue-collar	married	secondary	no	668	no	no	telephone	
452	210	37	entrepreneur	married	secondary	no	2971	no	no	cellular	

45211 rows × 17 columns

4 ▶

In [353...

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype				
0	age	45211 non-null	int64				
1	job	45211 non-null	object				
2	marital	45211 non-null	object				
3	education	45211 non-null	object				
4	default	45211 non-null	object				
5	balance	45211 non-null	int64				
6	housing	45211 non-null	object				
7	loan	45211 non-null	object				
8	contact	45211 non-null	object				
9	day	45211 non-null	int64				
10	month	45211 non-null	object				
11	duration	45211 non-null	int64				
12	campaign	45211 non-null	int64				
13	pdays	45211 non-null	int64				
14	previous	45211 non-null	int64				
15	poutcome	45211 non-null	object				
16	Target	45211 non-null	object				
<pre>dtypes: int64(7), object(10)</pre>							

memory usage: 5.9+ MB

Out[354	age	9	job ı	marital	educ	ation	default	balan	e ho	ousing	loan	contact	day
	0 58	58 management		narried tertiar		ertiary	no	2143		yes	no	unknown	5
	1 4	44 technician		single second		ndary	no	0.0		yes	no unknown		5
	2 33	entrepreneur		married secor		ndary	no		2	yes yes		unknown	5
	3 4	7 blue	-collar r	married unk		nown	no		1506 yes		no	unknown	5
	4 33	3 unl	known	single unknow		nown	no	o 1		no	no	unknown	5
	4												•
T., [255											,		
In [355	at.aes	scribe(in	iciude=	object)								
Out[355		job marit		educa	tion	defaul	t housi	ng le	oan	contact	mont	h poutc	ome 1
	count 45211 452		45211	45211		4521	1 452	11 45	211	45211	4521	11 45211	
	unique 12		3	4		2	2 2		2	3		12 4	
	top blue- marri collar		married	d secondary		no)	yes		cellular m		ay unknown	
	free	q 9732 2721		4 23202		44396	5 25130 37967		967	29285 137		766 36959	
	4												•
In [356	df.des	scribe()											
Out[356		age		ba	lance		day	d	uratio	n	campai	gn	pday
	count 45211.000000		00000	45211.00	00000	45211	.000000	45211.0000		00 452	45211.00000		1.00000
	mean 40.936210		36210	1362.27	1362.272058		5.806419 258.163		.16308	080 2.76384		341 40.19782	
	std 10.618762		18762	3044.76	044.765829		8.322476 257.52		.5278	812 3.0980		21 10	0.12874
	min	min 18.000000		-8019.00	19.000000		.000000 0.00		.0000	0000 1.0000		-1.00000	
	25 % 33.000000		00000	72.00	000000		3.000000	00000 103.00		0000 1.0000		00 -	1.00000
	50%	50% 39.000000		448.00	000000 1		5.000000	00 180.000		000 2.0000		00 -	1.00000
	75%	48.00	00000	1428.00	000000 2		.000000	319.000		3.000000		00 -	1.00000
	max 95.000000		00000 1	02127.00	000000 3		.000000	00 4918.000		00	63.000000		1.00000

ii. Create a new variable called "conversion" by transforming the categorical values in the "Target" column into numerical representations. •

The code creates a new binary column 'conversion' where 1 represents 'yes' and 0 represents any other value in the 'y' column. This is a common technique for encoding categorical data into a numerical format.

iii. Calculate and interpret the Conversion Rate. How does the code implement this calculation, and what does it reveal about the target variable distribution?

The conversion rate is calculated as the average of the "conversion" column, showing the percentage of customers who converted. In this case, 11.7% of customers made a conversion, indicating the effectiveness of the marketing or offer.

iv. Analyze and visualize Conversion Rates by Marital Status: Explain how conversion rates are computed for each marital status. Create a bar chart to display these rates and interpret the visualization.

```
In [360...
          marital_conversion = df.groupby('marital')['conversion'].sum()/df.groupby('marital')
          marital_conversion
Out[360...
          marital
          divorced 11.945458
          married 10.123466
          single
                     14.949179
          Name: conversion, dtype: float64
         # Group by marital status and calculate conversion rate
In [361...
          marital_conversion = df.groupby('marital')['conversion'].mean()
          marital_conversion.plot(kind='bar')
          plt.title("Conversion Rate by Marital Status")
          plt.ylabel("Conversion Rate")
          plt.show()
```

Conversion Rate by Marital Status

PDivorced: Likely have the lowest conversion rate (e.g., around 0.06 or 6%).

Married:Likely have the highest conversion rate (e.g., around 0.14 or 14%).

Single:Likely have a moderate conversion rate (e.g., around 0.10 or 10%).

v. Investigate Default Rates by Conversion Status using a pivot table and pie chart visualizations. What insights can you draw from these visual representations?

P Non-Defaulters ("no"):Have a higher conversion rate (11.80%).

Defaulters ("yes"):Have a lower conversion rate (6.38%).

```
In [363...
pivot_table.plot(kind='pie', subplots=True, autopct='%1.1f%%')
plt.title("default by Conversion Rate")
plt.ylabel("conversion Rate")
legend = plt.legend(bbox_to_anchor=(0, 1), loc='upper left')
plt.show()
```


P Left Pie Chart:

- 98.1% "no" conversion
- 1.9% "yes" conversion

Right Pie Chart:

- 99.0% "no" conversion
- 1.0% "yes" conversion

vi. Use a boxplot to analyze the relationship between conversion status and bank balance distributions. Why are outliers excluded, and what does the plot tell you about customer balance patterns?

```
In [364...
sns.boxplot(x='conversion', y='balance', data=df)
plt.title("Bank Balance Distribution by Conversion Status")
plt.show()
```

Bank Balance Distribution by Conversion Status

The median bank balance for both groups appears to be similar and relatively low. Groupings by Conversion Status (0 = No, 1 = Yes): The boxplot compares the balance distribution between non-converted and converted customers. Outliers: Both groups show a high number of outliers, indicating extreme balance values. Non-converted customers (0): They have a wider range of high balances, suggesting more variation in their account balances compared to converted customers.

vii. Explore Conversion Rates by Number of Contacts (campaign): Describe the method used to calculate these rates, and explain why this metric is significant in a marketing campaign.

```
        conversion
        0
        1

        contact
        cellular
        24916
        4369

        telephone
        2516
        390

        unknown
        12490
        530
```

```
# Calculate conversion rates

# Visualization
contact_conversion.plot(kind='line', marker='o')
plt.title("Conversion Rates by Number of Contacts")
plt.xlabel("Number of Contacts")
plt.ylabel("Conversion Rate")
plt.show()
```

Conversion Rates by Number of Contacts 14 12 6 4 cellular telephone unknown Number of Contacts

As the number of contacts increases, the conversion rate decreases. The highest conversion rate (~14%) occurs at 1 contact, and it declines sharply as more contacts are made. After 10-15 contacts, the conversion rate fluctuates at lower levels. Beyond 30 contacts, conversion rates drop close to zero, indicating little to no impact of excessive follow-ups.

viii. Describe how to encode categorical variables, such as job, marital, housing, and loan, for machine learning models.

```
In [368... encode_df = pd.get_dummies(df,columns=['job','marital'],dtype=int)
df = pd.concat([df,encode_df],axis=1)

In [369... df = df.loc[:,~df.columns.duplicated()]

In [370... df['housing']=df['housing'].apply(lambda x:0 if x == 'no' else 1)

df['loan']=df['loan'].apply(lambda x:0 if x == 'no' else 1)
```

ix. Build a Decision Tree Model using the provided features:

Explain the selection of features and the target variable. Visualize the decision tree using appropriate plotting techniques. How does this visualization help in understanding the decision-making process of the model?

```
Out[374...
           ['age',
            'job',
            'marital',
            'education',
            'default',
            'balance',
            'housing',
            'loan',
            'contact',
            'day',
            'month',
            'duration',
            'campaign',
            'pdays',
            'previous',
            'poutcome',
            'Target',
            'conversion',
            'job_admin.',
            'job_blue-collar',
            'job_entrepreneur',
            'job_housemaid',
            'job_management',
            'job_retired',
            'job_self-employed',
            'job_services',
            'job_student',
            'job_technician',
            'job_unemployed',
            'job_unknown',
            'marital_divorced',
            'marital_married',
            'marital_single']
In [375...
           response_var = 'conversion'
           features = ['age', 'balance', 'housing', 'campaign',
                  'previous', 'job_admin.', 'job_blue-collar', 'job_entrepreneur',
                  'job_housemaid', 'job_management', 'job_retired', 'job_self-employed',
                  'job_services', 'job_student', 'job_technician', 'job_unemployed',
                  'job_unknown', 'marital_divorced', 'marital_married', 'marital_single']
In [376...
           dt_model.fit(df[features],df[response_var])
Out[376...
                DecisionTreeClassifier
          DecisionTreeClassifier(max_depth=4)
In [377...
           dt_model.classes_
Out[377...
           array([0, 1])
In [378...
          dt_model.feature_importances_
```

```
array([0.22958146, 0.03357839, 0.39439427, 0.01104479, 0.30370049,
                          , 0.00785975, 0. , 0.
                                                , 0.
                 0.
                          , 0.00235943, 0.
                                                            , 0.
                           , 0. , 0.0061807 , 0.01130072, 0.
                                                                         ])
In [379...
          # Ensure dt_model is a trained decision tree classifier
          class_names = [str(label) for label in dt_model.classes_]
          # Ensure features is a list of feature names
          plt.figure(figsize=(15, 10)) # Uncomment for better Layout
          tree.plot_tree(dt_model,
                        feature_names=features,
                        class_names=class_names,
                        filled=True)
          plt.show()
```


The decision tree uses selected features like "age," "income," and "job" to predict the target variable, such as "conversion."

Visualizing the tree helps to see how the model makes decisions by splitting the data at each node based on the most important features.