

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

CSE3502 – INFORMATION SECURITY MANAGEMENT - EPJ

MR SIVA SHANMUGAM G TEAM

- 1. ANIRUDH VADERA(20BCE2940)
- 2. AYUSH DWIVEDI(20BCE2939)

APRIL 14,2023

Anirudh

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

TITLE: CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

ABSTRACT:

MOTIVATION:

With the great popularity and expansion in digital world technologies and the rapid growth of the network, the Internet has turned out to be a commonly used channel for communication of all forms of data such as audio, video, image, and text, digitally. There are many cryptography and encryption algorithms available, but not all are accessible to everyone and there can be many vulnerabilities. With steganography, most of these problems are eliminated. Steganography is the technique of hiding text, images, audio or even video in other images or any other digital content, such that it is very difficult or near impossible to detect that some data has been hidden into an image. The use of steganography algorithms can be embedded with encryption as an additional step for hiding or protecting sensitive data.

INTRODUCTION:

OBJECTIVES:

- To understand various steganography and encryption techniques and how it is implemented.
- To actually implement steganography techniques to hide text and images into other images.
- To create a website which will enable users to use steganography techniques and hide their secret message or text into an image of their choice.
- To extract the data hidden into images with no error or loss of data.
- To create a Chat Application to send information encrypted using steganography techniques

Anirudh

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

COURSE:

To overcome the vulnerabilities of cryptography or general encryption, steganographic techniques are suggested to hide the data in such a manner that no one other than the sender and recipient even recognizes that there is some hidden data in it.

- Unlike the other forms of communication and encryption, the main purpose of steganography is defeated when the communication between 2 users is detected.
- Therefore, the prime motive of a steganographic structure is its undetectability.
- The basic outline of the project lies with a website which enables a user to access these steganography techniques.
- The core of the project lies with successful implementation of these techniques.
- We implemented Least Significant Bit Substitution (text within image) for our cause
- Next step was to create a working website with appropriate front end and back end.
- Finally we will be implementing a Chat application for our purpose of sending information encrypted using steganography techniques. Now this information will be sent into a group basically but will only be readable by persons who are correct owners to extract this information.

PROPOSED METHODOLOGY:

Sockets:

Define System Requirements: Define the requirements of the proposed system, including the desired functionalities, performance benchmarks, security measures, and user interface. This will guide the development process and ensure that the final product meets the expectations of stakeholders.

Select a Steganography Technique: Select an appropriate steganography technique, such as LSB steganography o and develop Python scripts to embed messages or data into images.

Implement Socket Programming: Implement the socket programming functionality in JavaScript to enable clients to send and receive steganographic images or messages securely. This includes implementing the different protocols and standards used in socket programming and how they can be integrated with the steganography functionality.

Integrate Steganography and Socket Programming: Integrate the steganography scripts with the JavaScript socket programming functionality to enable the clients to send and receive steganographic images or messages securely. This requires careful consideration of how the steganography functionality will be triggered and how the resulting images or messages will be transmitted through the socket connections.

Implement Security Measures: Implement additional security measures to ensure that the system is secure and protected against potential threats. This includes encryption of data transmitted over the socket connections and authentication of clients to prevent unauthorized access.*

Make a proper chat app that supports all that functionality. Providing the user with a good UI and a convenient and safe way to communicate.

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

In socket programming:

- First, you would need to create a server-side script that listens for incoming connections from clients.
- Once a client connects to the server, the server-side script would create a socket connection with the client. This connection would be used to transmit data back and forth between the client and the server.
- To implement steganography, you would modify the client-side script to first encode
 a message or data into an image file using a steganography algorithm. Once the
 message is encoded, the client would then send the image file to the server over the
 socket connection.
- On the server-side, the server would receive the image file and decode the message
 or data from the image using the same steganography algorithm that was used to
 encode the message. The server could then perform any necessary processing on the
 message before sending a response back to the client over the same socket
 connection.
- To ensure security, you would need to implement encryption of the data transmitted over the socket connection, and authentication of clients to prevent unauthorized access to the server.

LSB Steganography:

LSB Steganography is an image steganography technique in which messages are hidden inside an image by replacing each pixel's least significant bit with the bits of the message to be hidden.

To understand better, let's consider a digital image to be a 2D array of pixels. Each pixel contains values depending on its type and depth. We will consider the most widely used modes — RGB(3x8-bit pixels, true-color) and RGBA(4x8-bit pixels, true-color with transparency mask). These values range from 0–255, (8-bit values).

Anirudh
REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES
FOR DIGITAL IMAGES

We can convert the message into decimal values and then into binary, by using the ASCII Table. Then, we iterate over the pixel values one by one, after converting them to binary, we replace each least significant bit with that message bits in a sequence.

To decode an encoded image, we simply reverse the process. Collect and store the last bits of each pixel then split them into groups of 8 and convert it back to ASCII characters to get the hidden message.

Advantages of LSB Steganography:

The advantages of Least-Significant-Bit (LSB) steganographic data embedding are that it is simple to understand, easy to implement, and it results in stego-images that contain hidden data yet appear to be of high visual fidelity

- This method is very fast and easy to implement in comparison to other methods of image Steganography.
- The output image has very slight difference to the input image.
- Instead of embedding the message in only the LSB, we can embed the message in last two LSBs, thus embedding even large messages.
- This method forms the basics of many other complex algorithms
- Instead of embedding the message in only the LSB, we can embed the message in last two LSBs, thus embedding even large messages.

Disadvantages of LSB Steganography:

It can be shown that under certain conditions, LSB embedding is not secure at all. The fatal drawback of LSB embedding is the existence of detectable artifacts in the form of pairs of values (PoVs).

- This type of encoding the data is weak since it can be easily decoded by taking the LSBs of the image and getting the message in binary format.
- This is method is too old because it was used long ago when other encoding methods were not yet developed.
- When embedding the message in more than one LSB, the image quality may reduce depending on how many pixels are changed.

Some Better Steganography Techniques:

There are several steganography techniques that are more secure and robust than the LSB method. Here are some of them:

Spread Spectrum Steganography:

Spread Spectrum Steganography is a technique that spreads the message over multiple frequencies in a way that it becomes difficult to detect it by an attacker. It uses the properties of the frequency domain to hide the message by spreading it over a range of frequencies. This method is more secure than LSB since the message is distributed over multiple frequencies and not confined to a single location.

Statistical Steganography:

Statistical Steganography hides the message by modifying the statistical properties of the cover image. It analyzes the image's statistical properties and then embeds the message in such a way that it does not change the statistical properties significantly. The method is more secure since it is difficult to detect changes in the statistical properties of the cover image.

Transform Domain Steganography:

Transform Domain Steganography is a technique that hides the message in the transform domain of the cover image. It transforms the cover image into a different domain, such as the wavelet domain or Fourier domain, and embeds the message in the transform coefficients. This method is more secure than LSB since it is difficult to detect the changes in the transform domain.

Distortion Steganography:

Distortion Steganography embeds the message in the cover image by introducing controlled distortions. It changes the color or luminance of pixels or introduces noise in the image to hide the message. The method is more secure than LSB since the changes are introduced in a way that is difficult to detect.

Video Steganography:

Video Steganography is a technique that hides the message in the video stream. It can be done by modifying the frames of the video or by embedding the message in the audio track. The method is more secure than LSB since it is difficult to detect changes in the video stream.

Anirudh

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

RESEARCH GAP:

The research gap is the lack of consideration for potential attacks and vulnerabilities in the proposed system. While steganography can provide a high level of security and privacy, it is not entirely foolproof, and there is always a risk of an attack that can compromise the hidden data's confidentiality. Therefore, future research can focus on identifying and addressing potential attacks and vulnerabilities in steganography-based communication systems. Additionally, the proposed chat application's scalability and usability can also be considered in future research to ensure that it can accommodate a large number of users while maintaining a high level of security and user-friendliness.

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

LITERATURE SURVEY:

PAPER	SUMMARY	METHODOLOGY	RESULT	CONCLUSION				
Image	The paper	The proposed	The proposed	The proposed				
steganography	presents a new	approach uses an	approach was	approach can be				
using	approach for	uncorrelated color	evaluated using	used for secure				
uncorrelated	image	space to embed	several standard	communication of				
color space and	steganography	secret information	image quality	visual contents in				
its application	using	into the cover	metrics, and the	online social				
for security of	uncorrelated	image. The	results show	networks. The				
visual contents	color space	approach consists	that the	experimental results				
in online social	and its	of three main steps:	proposed	show that the				
networks	application for	color decorrelation,	approach	proposed approach				
	security of	embedding, and	achieves good	provides better				
	visual contents	extraction. The	results in terms	performance				
	in online social	embedding process	of hiding	compared to other				
	networks.	involves modifying	capacity,	existing approaches				
		the least significant	imperceptibility,	in terms of hiding				
		bits of the color	and robustness	capacity,				
		space to embed	against various	imperceptibility, and				
		secret information.	image	robustness against				
			processing	various image				
			attacks.	processing attacks.				
Steganography-	The paper	The paper provides	The paper does	The paper concludes				
A data hiding	provides an	a literature review	not present	that steganography				
technique.	overview of	of various	experimental	is a useful technique				
International	steganography	steganographic	results, as it is a	for secure				
Journal of	as a data	techniques,	review article.	communication and				
Computer	hiding	including image		can be used in				
Applications	technique.	steganography,		various applications,				
		audio		including digital				
		steganography, and		watermarking,				
		text		copyright				

Anirudh REVIEW3 — CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

		steganography. The	protection, and			
		paper also	secure			
		discusses the	discusses the			
		challenges	paper also highlights			
		associated with	the need for further			
		steganography,	research in			
		including detection	steganography to			
		and prevention.		improve its		
				effectiveness and		
				security.		
image	The paper	The proposed	The proposed	The proposed		
steganography	proposes a	approach uses a	approach was	approach can be		
for authenticity	new approach	two-stage	used to ensure the			
of visual	for image	encryption and	several standard	authenticity of visual		
contents in	steganography	embedding scheme	image quality	contents in social		
social	for the	to embed secret	metrics, and the	networks by		
networks.	authenticity of	information into	results show	embedding a digital		
	visual contents	the cover image.	that the	signature or		
	in social	The first stage	proposed	watermark into the		
	networks.	involves encrypting	approach	image. The		
		the secret message	achieves good	experimental results		
		using a symmetric	results in terms	show that the		
		key algorithm,	of hiding	proposed approach		
		while the second	capacity,	provides better		
		stage involves	imperceptibility,	performance		
		embedding the	and robustness	compared to other		
		encrypted message	against various	existing approaches		
		into the cover	image	in terms of hiding		
		image using a	processing	capacity,		
		modified version of	attacks.	imperceptibility, and		
		LSB steganography.		robustness against		
				various image		
				processing attacks.		

Anirudh REVIEW3 — CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

Enhanced	The paper	The proposed	The	The proposed			
digital image	proposes an	approach involves	experimental	approach can be			
and text data	enhanced	using LSB	results show	used for secure			
security using	approach for	steganography to	that the	communication of			
hybrid model of	digital image	embed a secret	proposed	digital image and			
LSB	and text data	message into the	approach	text data. The			
steganography	security using a	cover image, and	achieves good	experimental results			
and AES	hybrid model	AES cryptography	results in terms	show that the			
cryptography	of LSB	to encrypt the	of hiding	proposed approach			
technique	steganography	message before	capacity,	provides better			
	and AES	embedding. The	imperceptibility,	performance			
	cryptography	approach was	and security.	compared to other			
	technique.	evaluated using	evaluated using The approach				
		standard image	provides better	in terms of security			
		quality metrics and performance		and computational			
		cryptographic	compared to	efficiency. The			
		measures, such as	other existing	proposed approach			
		PSNR and approaches in		can be used in			
		encryption time.	terms of PSNR	various applications,			
			and encryption	including online			
		time.		communication and			
				data storage.			
Triple-A: Secure	The paper	The proposed	The	The proposed			
RGB image	proposes a	approach uses a	experimental	approach can be			
steganography	new approach	three-stage	results show	used for secure			
based on	for secure RGB	encryption and	that the	communication of			
randomization.	image	embedding scheme	proposed	visual contents by			
	steganography	to embed secret	approach	embedding a secret			
	based on	information into	provides better	message into the			
	randomization,	the cover image.	performance	cover image. The			
	called Triple-A.	The first stage	compared to	experimental results			
		involves	other existing	show that the			

Anirudh REVIEW3 — CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

		randomizing the	approaches in	proposed approach		
		image pixels using a	terms of hiding	provides better		
		pseudo-random	capacity,	performance		
		number generator.	imperceptibility,	compared to other		
		The second stage	and robustness	existing approaches		
		involves	against various	in terms of security		
		embedding the	image	and computational		
		secret message into	processing	efficiency. The		
		the randomized	attacks.	proposed approach		
		image using a		can be used in		
		modified version of		various applications,		
		LSB steganography.		including digital		
		The third stage		watermarking,		
		involves re-		copyright		
		randomizing the		protection, and		
		pixels to enhance		secure		
		security.		communication.		
An efficient	The paper	The proposed	The	The proposed		
image	proposes a	approach uses	experimental	approach can be		
cryptography	new efficient	hash-LSB	results show	used for secure		
using hash-LSB	image	steganography to	that the	communication and		
steganography	cryptography	embed a secret	proposed	storage of digital		
with RC4 and	approach using	message into the	approach	images. The		
pixel shuffling	hash-LSB	cover image, RC4	provides good	experimental results		
encryption	steganography	encryption to	security and	show that the		
algorithms.	with RC4 and	encrypt the	computational	proposed approach		
	pixel shuffling	message, and pixel	efficiency. The	provides better		
	encryption	shuffling	approach	performance		
	algorithms.	encryption to	provides better	compared to other		
		shuffle the pixel	performance	existing approaches		
		values of the image	compared to	in terms of security		
		to enhance	other existing	and computational		
		security. The	approaches in	efficiency. The		

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

	approach	was	terms	of	prop	osed	appro	ach
	evaluated	using	encryption	time	can	be	used	in
	standard	and key spa	id key space. vario			ous applications,		
	cryptographic				inclu	ding	on	line
	measures, such as				communication and		and	
	encryption time				data storage.			
	and key space	e.						

CODE SCREENSHOTS:

Basic HTML:

```
<!DOCTYPE html>
<html>
 <head>
   <meta charset="utf-8" />
   <meta http-equiv="X-UA-Compatible" content="IE=edge" />
   <title>CHAT APP</title>
   <meta name="description" content="" />
   <meta name="viewport" content="width=device-width, initial-scale=1" />
   <link rel="stylesheet" href="./css/styles.css" />
 </head>
 <body>
   <div id="snackbar">Some text some message..</div>
   <div class="appcontainer flex-column flex-center">
       <div class="container flex-column flex-center">
         <h1 class="title">Group Chat</h1>
         Please Provide Your Message to Encrypt or the encrypted image
           itself.
         </div>
     </header>
     <div class="main-content container flex-grow-1 flex-column">
       <div class="login">
         <h2 class="text-center">Get Started</h2>
         <form action="" class="login-form flex">
           <input</pre>
             type="text"
             name="userName"
             class="userNameInput flex-grow-1"
```

```
placeholder="Enter Your Username / (Anonymous)"
            <button class="loginBtn">Chat!!</button>
          </form>
        </div>
        <div class="chat flex-grow-1 flex-column hidden">
          <div class="message-list flex-grow-1"></div>
          <form action="" class="messageForm flex">
            <input</pre>
              type="text"
              name="message"
              placeholder="Enter a message"
              class="messageInput flex-grow-1"
          </form>
          <form action="" class="imageForm flex">
            <button class="imageInput flex-grow-1">Choose File</button>
            <input</pre>
              type="file"
              class="flex-grow-1"
              name="imageInput"
              style="display: none"
              id="getFile"
            <button class="sendBtn2">Send</button>
          </form>
        </div>
      </div>
    </div>
    <div class="loginPopup">
      <div class="formPopup" id="popupForm">
        <h1>HI</h1>
      </div>
    </div>
      src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.2.0/socket.io.js
      integrity="sha512-
WL6WGKMPBiM9PnHRYIn5YEtq0Z8XP4fkVb4qy7PP4vhmYQErJ/dySyXuFIMDf1eEYCXCrQrMJfkNwK
c9gsjTjA=="
      crossorigin="anonymous"
      referrerpolicy="no-referrer"
    ></script>
    <script src="./app.js" async defer></script>
  </body>
</html>
```

Login:

What happens when a image is clicked:

```
function sendMessage(message)
{
    socket.emit("message",message);
}

You, last month * Final Project ...

function imageClicked(event){
    event.preventDefault();
    imageUniqueKey = "encrypted_img" + event.target.dataset.name
    fetch("/" + imageUniqueKey).then((res)=>{
        return res.json()
    }).then((data)=>{
        var x = document.getElementById("snackbar");
        // Add the "show" class to DIV
        x.className = "show";
        x.innerHTML = data.data
        setTimeout(function(){ x.className = x.className.replace("show", ""); }, 5000);
})
}
```

Steganography decode function:

```
def decode(image_name):
         print("[+] Decoding...")
         image = cv2.imread(image_name)
         binary_data = ""
         for row in image:
12
             for pixel in row:
                 r, g, b = to_bin(pixel)
                 binary_data += r[-1]
                 binary_data += g[-1]
                 binary_data += b[-1]
         all_bytes = [binary_data[i: i + 8] for i in range(0, len(binary_data), 8)]
         # convert from bits to characters
         decoded_data = ""
         for byte in all_bytes:
             decoded_data += chr(int(byte, 2))
             if decoded_data[-5:] == "=====":
                 break
         return decoded_data[:-5]
```

Steganography encode function:

```
def encode(image_name, secret_data):
   # read the image
   image = cv2.imread(image_name)
   n_bytes = image.shape[0] * image.shape[1] * 3 // 8
   print("[*] Maximum bytes to encode:", n_bytes)
   if len(secret_data) > n_bytes:
       raise ValueError(
           "[!] Insufficient bytes, need bigger image or less data.")
   print("[*] Encoding data...")
   # add stopping criteria
   secret_data += "====="
   data_index = 0
   # convert data to binary
   binary_secret_data = to_bin(secret_data)
   data_len = len(binary_secret_data)
   for row in image:
        for pixel in row:
           r, g, b = to_bin(pixel)
           # modify the least significant bit only if there is still data to store
           if data_index < data_len:</pre>
                pixel[0] = int(r[:-1] + binary_secret_data[data_index], 2)
                data_index += 1
           if data_index < data_len:</pre>
                # least significant green pixel bit
                pixel[1] = int(g[:-1] + binary_secret_data[data_index], 2)
                data_index += 1
```

Anirudh

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

```
r, g, b = to_bin(pixel)
            if data_index < data_len:</pre>
                 # least significant red pixel bit
                 pixel[0] = int(r[:-1] + binary_secret_data[data_index], 2)
                 data_index += 1
            if data_index < data_len:</pre>
                 # least significant green pixel bit
                 pixel[1] = int(g[:-1] + binary_secret_data[data_index], 2)
                 data_index += 1
            if data_index < data_len:</pre>
                 pixel[2] = int(b[:-1] + binary_secret_data[data_index], 2)
                 data_index += 1
            if data_index >= data_len:
                 break
    return image
text = sys.argv[1]
                                           Spaces: 4 UTF-8 CRLF ( Python 3.10.2 64-bit  Go Live
                  See Tabnine Insights 💪
```

Main socket Connections:

Client Side:

```
socket.on("message",(message)=>{
         if(message.type!==messageTypes.LOGIN)
             if(message.author===username)
                 message.type=messageTypes.RIGHT;
             else
                 message.type=messageTypes.LEFT;
         else{
44
             messages.push(message);
             displayMessages();
             chatWindow.scrollTop=chatWindow.scrollHeight;
         if(message.toWhom == "To All" || message.toWhom == username){
50
             messages.push(message);
             displayMessages();
             chatWindow.scrollTop=chatWindow.scrollHeight;
     });
```

```
socket.on("base64 file",(fileInfo)=>{
    const image = fileInfo.data;
    if(fileInfo.author == username){
        fileInfo.type = messageTypes.RIGHT;
    }
    else{
        fileInfo.type = messageTypes.LEFT;
    }
    messages.push(fileInfo);
    displayMessages();
    chatWindow.scrollTop=chatWindow.scrollHeight;
});
```

Server Side:

```
// Checking if the users connect
io.on("connection", (socket) => {
console.log("A user connected");
// Checking if the users disconnect
socket.on("disconnect", () => {
console.log("A user disconnected");
});

socket.on("message", (message) => {
console.log("message", message);
// Broadcasting this message to all the users that are connected io.emit("message", message);
}
dwivedi-ayush, last month • updated server.js ...
```

```
const hostname = "127.10.10.2"; // change this to your LAN IP address
const port = 5500;
http.listen(port, hostname, () => {
    console.log(`Server running at http://${hostname}:${port}/`);
});
```

Setting Cross Origin:

```
// Enable CORS
app.use((req, res, next) => {
    // Set CORS headers
    res.setHeader("Access-Control-Allow-Origin", "*");
    res.setHeader("Access-Control-Allow-Methods", "GET, POST, PUT, DELETE");
    res.setHeader("Access-Control-Allow-Headers", "Content-Type, Authorization");

// Pass to next layer of middleware
    next();
});
    dwivedi-ayush, last month * updated server.js ...
```

IMPLEMENTATION SCREENSHOTS:

Home Page:

Another user joins:

Sending Normal Messages in text and image format:

Sending text inscribed in an image(Steganography):

Secret Text: I am Anirudh

Image: test2.png

Client can decode the image by clicking on it:

Many other users can choose to join:

Sending a chat to everyone:

Anirudh Client Side

Ayush Client Side

REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES FOR DIGITAL IMAGES

Rajarshi Client Side

Sending a photo to everyone:

Anirudh Client Side

Ayush Client Side

Rajarshi Client Side

Sending a secret message to a person specified:

Let Anirudh send a secret message only to Ayush and Rajarshi shouldn't be able to see it:

Anirudh
REVIEW3 – CHAT APPLICATION FOR SENDING INFORMATION USING STEGANOGRAPHY TECHNIQUES
FOR DIGITAL IMAGES

Anirudh Client Side

Ayush Client Side

Only he is able to see and decode the message:

Rajarshi Client Side

CONCLUSION:

In conclusion, this project focused on the implementation of steganography techniques to hide data within images and the development of a website that enables users to use these techniques to hide their secret messages in images. The project successfully implemented the modified Least Significant Bit (LSB) substitution technique, which is a simple and easy-to-implement method for hiding data in images.

While LSB steganography has some limitations and can be easily detected under certain conditions, it is still a useful technique for hiding small amounts of data within images. The project also highlighted other more secure and robust steganography techniques, such as Spread Spectrum Steganography and Statistical Steganography, which can be used to hide larger amounts of data and are less susceptible to detection.

Overall, the project achieved its objectives of understanding various steganography and encryption techniques, implementing steganography techniques to hide text and images into other images, creating a website for users to access steganography techniques, extracting data hidden into images with no error or loss of data, and creating a chat application for sending information encrypted using steganography techniques. The users can also send the image to the only person he specified. The project demonstrated the potential of steganography as a valuable tool for secure communication and data protection in the digital world.