Définition 7.1 - endomorphisme diagonalisable

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. On dit que u est diagonalisable s'il existe une base \mathcal{B} de E dans laquelle la matrice de u est diagonale.

Proposition 7.2 - CNS de diagonalisabilité

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. Les assertions suivantes sont équivalentes.

- 1. Il existe une base de E constituée de vecteurs propres de u.
- **2.** L'endomorphisme u est diagonalisable.
- 3. Les sous-espaces propres de u sont supplémentaires dans $E: E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$

Théorème 7.6 - caractérisation de la diagonalisabilité par la dimension des sous-espaces propres

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. u est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres de u vaut la dimension de E:

$$\sum_{\lambda \in \operatorname{Sp}(u)} \dim (E_{\lambda}(u)) = \dim(E)$$

Théorème 7.7 - caractérisation de la diagonalisabilité par la multiplicité de ses valeurs propres

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. u est diagonalisable si et seulement si χ_u est scindé et si la dimension de chaque sous-espace propre associé à la valeur propre λ vaut la multiplicité de λ :

$$\forall \lambda \in \operatorname{Sp}(u), \dim (E_{\lambda}(u)) = m_{\lambda}$$

Théorème 7.9 - caractérisation de la diagonalisabilité par le polynôme minimal

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. u est diagonalisable si et seulement si μ_u est scindé à racines simples.

Définition 7.14 - endomorphisme trigonalisable

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. On dit que u est trigonalisable s'il existe une base \mathcal{B} de E dans laquelle la matrice de u est triangulaire supérieure.

Proposition 7.17 - point commun entre polynômes caractéristique et minimal

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. χ_u est scindé si et seulement si μ_u est scindé.

Théorème 7.18 - caractérisation de la trigonalisabilité

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. u est trigonalisable si et seulement si ses polynômes caractéristique et minimal sont scindés (c'est équivalent).

Proposition 7.31 - caractérisation de la nilpotence

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme de E. u est nilpotent si et seulement s'il est trigonalisable avec pour seule valeur propre 0.

Proposition 7.32 - famille libre impliquant un endomorphisme nilpotent

Soit E un \mathbb{K} -espace vectoriel. Soit $u \in \mathcal{L}(E)$ nilpotente d'indice p et $x \in E$ tel que $u^{p-1}(x) \neq 0$. Alors la famille $(x, u(x), \dots u^{p-1}(x))$ est libre.

Théorème 7.33 - majoration de l'indice de nilpotence en dimension finie

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et u un endomorphisme nilpotent d'indice p de E. On a les résultat suivants :

- 1. $p \leq n$
- **2.** Si p=n, alors dans une certaine base de E la matrice de u est la matrice de Jordan de taille n:

$$J_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$