Synergistic Deep Graph Clustering Network(SDGCN)

1. 题目解释:

Synergistic--->协同的,文中指表示学习 (representation learning) 和结构增强 (structure augmentation) ,两者之间互相促进,稳定的结构能够获得好的嵌入表达,而好的嵌入能引导结构的增强。

2. 模型图:

该结构分为两部分,分别是TIGAE和SynC。

TIGAE: 首先对属性进行线性变换,加入偏差bias,这样得到的Ap是n*n维的,相比于GAE,由于加了偏差,解码以后的Z会包含更多的信息。并且会有一个损失函数得到较为稳定的参数和嵌入。(这个也算是预训练的过程,先编码后解码)

$$egin{aligned} \mathbf{Z} &= \widetilde{\mathbf{L}} \mathrm{ReLU}(\widetilde{\mathbf{L}}(\mathbf{X}\mathbf{W}_a^ op + \mathbf{W}_b)\mathbf{W}_1)\mathbf{W}_2, \ \hat{\mathbf{A}}_p &= \mathrm{Sigmoid}(\mathbf{Z}\mathbf{Z}^ op). \end{aligned}$$
 $\mathcal{L}_p &= rac{1}{N} \|\hat{\mathbf{A}}_p - \widetilde{\mathbf{A}}\|_2 + lpha \cdot CE(\mathcal{S}(\mathbf{X}_p), \mathcal{S}(\mathbf{X})), \end{aligned}$

Fine-tuning微调策略:该策略从三个角度对上面模型得到的Ap进行修正:选取边预测概率,从P中选取概率最高的边,相当于增大了重要边的影响力;由于边预测邻接矩阵是非对称的,因此需要转置后相加除以2得到对称,然后用该矩阵与度矩阵进行运算,这样做的目的是增加重要节点的影响力;选取属性信息进行余弦相似度计算;最后将上面三个方面的矩阵相加均分得到微调后的增强邻接矩阵,相比于原始的邻接矩阵,增强后的加入了重要边信息、重要节点信息以及属性信息。

Sync:协同交互模型,对TIGAE进行预训练得到较为稳定的参数和预测图,然后用参数不计算梯度得到Ap,将Ap微调过后再次喂入TIGAE中,这次计算梯度,通过损失函数2来进行迭代优化

$$\mathcal{L} = rac{1}{N} \|\hat{\mathbf{A}} - \mathbf{A}_s\|_2 + eta \cdot CE(\mathbf{P}, \mathbf{Q}),$$

使用的核心模型是TIGAE, Sync更像是一种策略, 先获得较为稳定的表达, 然后用得到的表达带入模型中进行迭代。(这里要注意为什么不是减Ap, 而是减As)

Clustering: 聚类方式选用的是自监督聚类(软聚类),将每个嵌入与聚类中心进行计算

$$q_{ij} = \frac{(1 + \|\mathbf{z}_i - \boldsymbol{\mu}_j\|^2)^{-1}}{\sum_{j'} (1 + \|\mathbf{z}_i - \boldsymbol{\mu}_{j'}\|^2)^{-1}},$$

3. 数据集:

Dataset	#Samples	#Classes	#Dimension	#Edges	R_h
UAT	1190	4	239	13599	0.70
CORA	2708	7	1433	5278	0.81
ACM	3025	3	1870	13128	0.82
CITE	3327	6	3703	4552	0.74
DBLP	4057	4	334	3528	0.80
AMAP	7650	8	745	119081	0.83
Wisconsin	251	5	1703	515	0.20
Texas	183	5	1703	325	0.11

没用大数据集,反而选取了少样例多维度的数据集,可能该方法在大数据集表现不好。但是用了软聚类后结果比传统的Kmeans要好,可以借鉴

4. 结果:

SynC	SynC
KMeans	SSL
91.51±0.12	92.73±0.04
70.01±0.26	73.58 ± 0.22
76.43±0.30	79.58±0.11
91.49±0.12	92.74±0.04
77.62±0.55	83.48±0.13
45.62±1.54	55.11±0.24
50.17±1.18	61.70±0.27
77.19±0.54	82.90±0.17
66.93±0.80	71.77±0.27
40.49±0.53	46.37±0.42
41.52±0.88	48.09±0.45
62.97±0.36	65.72±0.36*
77.22±0.40*	78.58 ± 0.38
57.26±0.57	58.13±0.52*
55.34±0.64	57.90±1.06
76.31±0.41*	77.65±0.30
80.94±0.11	82.48±0.04
00.5 == 0.10	69.70±0.23
	65.02±0.11*
79.51±0.40*	80.69±0.11
60.39±0.46	57.33±0.13*
	28.58±0.24*
30.09±0.76	26.60±0.17*
58.91±1.02	57.34±0.23*

5. 总结:

本论文的亮点是微调策略,将重要边信息、重要节点信息和属性信息都加入到增强邻接矩阵中,并且能够通过是否计算梯度来获得更好的表达。可以学习的地方还有论文排版和撰写,条例清晰,在有限的页数中消融实验、参数分析、结果图、时间复杂度都写上了。