MATHÉMATIQUES II

Rappels, notations et objectifs du problème

Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2 et $\mathcal{M}_n(\mathbb{C})$ l'ensemble des matrices carrées complexes d'ordre n. De plus :

- \mathcal{M}_n désigne l'ensemble des matrices carrées réelles d'ordre n ;
- si $A \in \mathcal{M}_n(\mathbb{C})$, on note $A_{i,\,j}$ le terme de A situé sur la ligne i et la colonne j ;
- pour $(\alpha, \beta) \in \mathbb{R}^2$, $M(\alpha, \beta)$ est la matrice $\begin{bmatrix} \alpha \beta \\ \beta & \alpha \end{bmatrix}$;
- si $(\alpha_1,...,\alpha_p)$ et $(\beta_1,...,\beta_p)$ sont dans \mathbb{R}^p , on désigne par diag $(M(\alpha_1,\beta_1),M(\alpha_2,\beta_2),...,M(\alpha_p,\beta_p))$ la matrice de \mathcal{M}_{2p} définie par blocs carrés d'ordre 2 dont les seuls blocs éventuellement non nuls sont les blocs diagonaux $M(\alpha_1,\beta_1),M(\alpha_2,\beta_2),...,M(\alpha_p,\beta_p)$;
- I_n est la matrice unité diag(1, ..., 1) élément de \mathcal{M}_n ;
- On rappelle les trois types d'opérations élémentaires sur les lignes d'une matrice et leur codage :

opérations	codage
échange des lignes i et j	$L_i \! \leftrightarrow \! L_j$
multiplication de la ligne i par $\alpha \neq 0$	$L_i \leftarrow \alpha L_i$
ajout de la ligne j , multipliée par le scalaire λ , à la ligne $i\ (i \neq j)$	$L_i \leftarrow L_i + \lambda L_j$

On définit de même trois types d'opérations élémentaires sur les colonnes d'une matrice.

Si $A\in \mathcal{M}_n$ et si E est la matrice obtenue à partir de I_n par utilisation d'une opération élémentaire, alors EA (resp. AE) est la matrice obtenue à partir de A en effectuant la même opération élémentaire sur les lignes (resp. colonnes) de A (on ne demande pas de démontrer ce résultat).

Filière PSI

On confond respectivement:

- matrice et endomorphisme de \mathbb{R}^n (resp. \mathbb{C}^n) canoniquement associé,
- vecteur de \mathbb{R}^n (resp. \mathbb{C}^n) et matrice colonne de ses coordonnées,
- matrice de taille 1 et scalaire la constituant.

On rappelle qu'une symétrie s de \mathbb{R}^n est un automorphisme de \mathbb{R}^n vérifiant $s^2 = s \circ s = \operatorname{Id}_{\mathbb{R}^n}$; il existe alors deux sous-espaces supplémentaires E_1 et E_2 tel que s soit la symétrie par rapport à E_1 parallèlement à E_2 , définie par :

$$s|_{E_1} = \mathrm{Id}_{E_1} \text{ et } s|_{E_2} = -\mathrm{Id}_{E_2}.$$

Préciser la symétrie s , c'est déterminer les sous-espaces E_1 et E_2 associés.

On note (P_A) la propriété :

$$(P_A)$$
 A ne possède pas de valeur propre réelle

Le but de ce problème est d'étudier des matrices de \mathcal{M}_n vérifiant la propriété $(P_A)\,.$

Après avoir établi quelques résultats préliminaires, on étudie des cas particuliers dans les parties I et II et un cas plus général dans la partie III.

Résultats préliminaires

- 1) On se propose de démontrer le résultat suivant :
- « deux matrices de \mathcal{M}_n semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans \mathcal{M}_n ». Soit donc A et B deux matrices de \mathcal{M}_n semblables dans $\mathcal{M}_n(\mathbb{C})$ et P un élément de $GL_n(\mathbb{C})$ tel que $A = PBP^{-1}$.
- a) Montrer qu'il existe $R, J \in \mathcal{M}_n$ tels que P = R + iJ avec $i^2 = -1$.
- b) Montrer que, pour tout $t \in \mathbb{C}$, A(R+tJ) = (R+tJ)B .
- c) Montrer qu'il existe $t_0 \in \mathbb{R}$ tel que $\det(R + t_0 J) \neq 0$.
- d) En déduire que A et B sont semblables dans \mathcal{M}_n .

2)

- a) Montrer que tout polynôme à coefficients réels de degré impair possède au moins une racine réelle.
- b) En déduire que s'il existe une matrice A de \mathcal{M}_n vérifiant (P_A) , alors n est pair.

Dans toute la suite du problème, on suppose n pair et on note n=2p avec $p \in \mathbb{N} \setminus \{0\}$.

Partie I -

- **I.A -** Dans cette section I.A.1, on se place dans \mathbb{R}^2 et on désigne par (e_1, e_2) la base canonique, avec $e_1 = (1, 0)$ et $e_2 = (0, 1)$.
- I.A.1) On considère la matrice $M(0,1)=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ et on désigne par u l'endomorphisme associé.
- a) Déterminer, dans la base canonique, la matrice de s_1 , symétrie par rapport à la droite $\mathbb{R}e_1$ parallèlement à la droite $\mathbb{R}e_2$.
- b) Déterminer, dans la base canonique, la matrice de l'application $u \circ s_1$. En déduire qu'il existe une symétrie s_2 , qu'on précisera, telle que $u = s_2 \circ s_1$.
- I.A.2) On considère la matrice $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$.
- a) Montrer que A est semblable à M(0,1) et donner une matrice P de \mathcal{M}_2 à coefficients entiers et de déterminant 1 telle que $M(0,1) = P^{-1}AP$.
- b) Montrer que A est la matrice, dans la base canonique, de la composée de deux symétries qu'on précisera.

Soit
$$\alpha$$
 et β des nombres réels tels que $\beta^2 - \alpha^2 = 1$ et $B = \begin{bmatrix} \alpha & -\beta \\ \beta & -\alpha \end{bmatrix}$.

c) Montrer que B est semblable à M(0, 1) et donner une matrice Q de \mathcal{M}_2 telle que $M(0, 1) = Q^{-1}BQ$.

$$Indication:$$
 on pourra calculer $Be_1 = B\begin{bmatrix} 1\\0 \end{bmatrix}$.

d) Montrer que B est la matrice, dans la base canonique, de la composée de deux symétries qu'on ne demande pas de préciser.

I.A.3) On considère la matrice $M(\alpha, \beta) = \begin{bmatrix} \alpha - \beta \\ \beta & \alpha \end{bmatrix}$ où α et β sont des nombres réels tel que $\alpha^2 + \beta^2 = 1$.

Montrer que $M(\alpha,\beta)$ est la matrice, dans la base canonique, de la composée de deux symétries qu'on ne demande pas de préciser.

- I.A.4) On considère à présent la matrice $M(\alpha, \beta) = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$ où α et β sont des nombres réels tels que $\alpha^2 + \beta^2 \neq 0$. Montrer que $M(\alpha, \beta)$ est la matrice, dans la base canonique, de la composée de deux symétries et d'une homothétie.
- I.A.5) Soit $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ appartenant à \mathcal{M}_2 .
- a) Donner une condition nécessaire et suffisante portant sur les coefficients de A pour que (P_A) soit réalisée.
- b) En supposant que A vérifie (P_A) , et en étudiant la diagonalisation dans $\mathcal{M}_2(\mathbb{C})$ de A, montrer qu'il existe une unique matrice, semblable à A, du type $M(\alpha,\beta)$ avec α réel et β réel strictement positif. Expliciter α et β en fonction de a, b, c et d.
- c) Que peut-on dire de $\det(A)$ si A vérifie (P_A) et est dans \mathcal{M}_2 ?
- d) Montrer que A est la matrice, dans la base canonique, de la composée de deux symétries et d'une homothétie.
- I.A.6) On suppose que \mathbb{R}^2 est muni de sa structure euclidienne orientée canonique (i.e. (e_1,e_2) est orthonormée directe). Que sont alors les endomorphismes de matrice $M(\alpha,\beta)$ (avec α et β réels tels que $\alpha^2+\beta^2\neq 0$) dans la base canonique?
- **I.B** Soit B une matrice de \mathcal{M}_p vérifiant $B^2 = I_p$. Soit A la matrice de \mathcal{M}_n définie par blocs sous la forme $A = \begin{bmatrix} 2B & -5B \\ B & -2B \end{bmatrix}$.
- I.B.1) Montrer que B est diagonalisable dans \mathcal{M}_p et qu'il existe une matrice Q de \mathcal{M}_p inversible, des entiers naturels q et r tels que $Q^{-1}BQ$ soit sous la forme d'une matrice par blocs $\begin{bmatrix} I_q & 0 \\ 0 & -I_r \end{bmatrix}$

On convient que cette matrice vaut I_p lorsque r=0 et q=p et qu'elle vaut $-I_p$ lorsque q=0 et r=p.

I.B.2) Déterminer une matrice par blocs P de \mathcal{M}_n inversible et constituée de

multiples de
$$I_p$$
 telle que : $P^{-1}AP = \begin{bmatrix} 0 & -B \\ B & 0 \end{bmatrix}$.

I.B.3) En déduire que A est semblable dans \mathcal{M}_n à la matrice

$$\begin{bmatrix} 0 & \begin{bmatrix} -I_q & 0 \\ 0 & I_r \end{bmatrix} \\ \begin{bmatrix} I_q & 0 \\ 0 & -I_r \end{bmatrix} & 0 \end{bmatrix}.$$

- I.B.4) Montrer alors que A est semblable dans \mathcal{M}_n à une matrice du type $\operatorname{diag}(M(0, 1), M(0, 1), ..., M(0, 1))$.
- I.B.5) Exemple : on considère dans \mathcal{M}_4 la matrice

$$A = \begin{bmatrix} 4 & 6 & -10 & -15 \\ -2 & -4 & 5 & 10 \\ 2 & 3 & -4 & -6 \\ -1 & -2 & 2 & 4 \end{bmatrix}.$$

a) Déterminer une matrice inversible M de \mathcal{M}_4 telle que

$$M^{-1}AM = diag(M(0, 1), M(0, 1)).$$

b) En utilisant la technique vue à la question I.A.1, montrer que A est la matrice, dans la base canonique de ${\rm I\!R}^4$ de la composée de deux symétries qu'on précisera.

Partie II -

- **II.A** Dans cette question, A désigne une matrice de \mathcal{M}_n telle que $A^2 = -I_n$.
- II.A.1) Montrer que (P_A) est réalisée.
- II.A.2) Si E est obtenue à partir de I_n par utilisation d'une opération élémentaire, comment déduit-on EAE^{-1} de A ?
- On distinguera les trois opérations élémentaires codées sous la forme :

$$\mathbf{a})L_i \leftrightarrow L_j\,,$$

- $\mathbf{b})L_i \leftarrow \alpha L_i \ \text{avec} \ \alpha \in \mathbb{R}^* \,,$
- $c)L_i \leftarrow L_i + \lambda L_i$ avec $\lambda \in \mathbb{R}$.

II.A.3)

- a) En utilisant II.A.1, montrer qu'il existe $i \ge 2$ tel que $A_{i,1} \ne 0$.
- b) En utilisant des opérations élémentaires, en déduire qu'il existe $P \in \mathcal{M}_n$ inversible telle que si $A' = PAP^{-1}$ alors $A'_{i,1} = 0$ si $i \neq 2$ et $A'_{2,1} = 1$.
- c) Montrer alors que $A'_{i,2} = 0$ si $i \neq 1$ et $A'_{1,2} = -1$.
- II.A.4) Montrer qu'il existe $Q \in \mathcal{M}_n$ inversible telle que $QA'Q^{-1}$ soit de la

forme par blocs
$$\begin{bmatrix} M(0,1) & 0 \\ 0 & B \end{bmatrix}$$
 avec $B \in \mathcal{M}_{n-2}$.

- II.A.5) Montrer que A est semblable à une matrice du type $\operatorname{diag}(M(0, 1), M(0, 1), ..., M(0, 1))$.
- II.A.6) Exemple: en utilisant la méthode décrite dans cette partie, trouver une matrice M inversible de \mathcal{M}_4 telle que $MAM^{-1} = \operatorname{diag}(M(0, 1), M(0, 1))$ où A est la matrice de la question I.B.5). On fera apparaître clairement les opérations élémentaires utilisées.
- **II.B** Dans cette question A est une matrice

de
$$\mathcal{M}_n$$
 vérifiant $(A - \alpha I_n)^2 + \beta^2 I_n = 0$ avec $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$.

- II.B.1) Montrer que A vérifie (P_A) .
- II.B.2) Montrer que A est semblable à la matrice d'ordre n diag $(M(\alpha, \beta), M(\alpha, \beta), ..., M(\alpha, \beta))$.

Que peut-on dire de det(A)?

II.C - Soit u l'endomorphisme de $\mathbb{R}_{n-1}[X]$ défini par : pour tout polynôme P de $\mathbb{R}_{n-1}[X]$, u(P) vérifie :

$$\forall x \in \mathbb{R}^*, \ u(P)(x) = x^{n-1} P\left(\frac{-1}{x}\right).$$

- II.C.1) Déterminer pour quelles valeurs de i et j dans $\{0,...,n-1\}$, le plan $vect(X^i,X^j)$ est stable par u.
- II.C.2) En déduire que la matrice A de \mathcal{M}_n telle que $A_{n+1-i,i} = (-1)^{i-1}$ si $1 \le i \le n$, les autres coefficients de A étant nuls, est semblable à $\operatorname{diag}(M(0,1),M(0,1),...,M(0,1))$.

Partie III -

Dans toute cette partie, A désigne une matrice de \mathcal{M}_n vérifiant (P_A) .

On se propose de montrer l'équivalence entre les trois propositions suivantes :

- i) A est semblable à une matrice du type
 - $\operatorname{diag}(M(\alpha_1,\beta_1),M(\alpha_2,\beta_2),...,M(\alpha_p,\beta_p)) \text{ avec } (\alpha_k,\beta_k) \in \mathbb{R} \times \mathbb{R}_+^* \text{ pour } 1 \leq k \leq p \;.$
- ii) Il existe un polynôme réel à racines simples complexes non réelles annulé par ${\cal A}$.
- iii) Tout sous-espace vectoriel de \mathbb{R}^n de dimension 2 stable par A possède un sous-espace vectoriel supplémentaire stable par A.
- **III.A** Dans cette section III.A, on montre que (i) \Rightarrow (ii).
- III.A.1) Montrer que si $(\alpha,\beta) \in \mathbb{R} \times \mathbb{R}^*$, le polynôme $(X-\alpha)^2 + \beta^2$ ne possède que des racines simples complexes non réelles.
- III.A.2) En déduire que $(i) \Rightarrow (ii)$.
- III.B Dans cette section III.B, on montre que (ii) ⇒(iii).

On suppose donc que A vérifie (ii). Soit E un sous-espace vectoriel de \mathbb{R}^n de dimension 2 et stable par A. Soit (f_1, f_2) une base E que l'on complète en une base $(f_1, f_2, ..., f_n)$ de \mathbb{R}^n .

III.B.1) Montrer que dans la base $(f_1, f_2, ..., f_n)$ de \mathbb{R}^n , l'endomorphisme canoniquement associé à A a une matrice s'écrivant par blocs :

$$\begin{bmatrix} A' & B \\ 0 & C \end{bmatrix} \text{ avec } A' \in \mathcal{M}_2.$$

- III.B.2) Vérifier que A' ne possède pas de valeur propre réelle et en déduire que A' est semblable à une matrice du type $M(\alpha, \beta)$ avec $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$.
- III.B.3) Montrer que E est inclus dans $\operatorname{Ker}((A \alpha I_n)^2 + \beta^2 I_n)$.
- III.B.4) Montrer que $\operatorname{Ker}((A-\alpha I_n)^2+\beta^2 I_n)$ possède un sous-espace vectoriel supplémentaire stable par A dans \mathbb{R}^n .
- III.B.5) En utilisant une technique analogue à celle vue dans les parties II.A.3 et II.A.4, montrer que E possède un supplémentaire stable par A dans $\operatorname{Ker}((A-\alpha I_n)^2+\beta^2 I_n)$, puis conclure que iii) est réalisé.

III.C - En raisonnant par récurrence, montrer que (iii) ⇒(i).

III.D - Exemple :

Soit

$$A = \begin{bmatrix} -1 & -2 & 4 & 0 \\ 1 & -3 & 0 & 4 \\ -2 & 0 & 5 & -2 \\ 0 & -2 & 1 & 3 \end{bmatrix}.$$

En admettant que A annule $(X^2+1)(X^2-4X+5)$, déterminer une matrice inversible M de \mathcal{M}_4 et des réels α , β , α' et β' tels que

$$A = M \begin{bmatrix} M(\alpha, \beta) & 0 \\ 0 & M(\alpha', \beta') \end{bmatrix} M^{-1}.$$

••• FIN •••