Decision Tree Classifier

Introduction

Terminology

- Root Node
- Leaf Node
- Splitting
- Branch/Sub-Tree
- Pruning

Working Of Classifier

Example

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play	Golf
Yes	No
9	5

- = Entropy (0.36, 0.64)
- = (0.36 log₂ 0.36) (0.64 log₂ 0.64)
- = 0.94

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

		Play	Golf	
		Yes	No	8.9
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$E(PlayGolf, Outlook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)$$

= $(5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$

$$= 0.693$$

	5	Play	Golf
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
0	Gain = 0.	247	_

		Play	Golf
		Yes	No
Temp.	Hot	2	2
	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
D	High	3	4
Humidity	Normal	6	1

		Play Golf	
		Yes	No
	False	6	2
Windy	True	3	3
	Gain =	0.048	

As seen, outlook factor on decision produces the highest score. That's why, outlook decision will appear in the root node of the tree.

Overcast outlook on decision

Basically, decision will always be yes if outlook were overcast.

Day	Outlook	Temp.	Humidity	Wind	Decision
3	Overcast	Hot	High	Weak	Yes
7	Overcast	Cool	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes

Sunny outlook on decision

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Here, there are 5 instances for sunny outlook. Decision would be probably 3/5 percent no, 2/5 percent yes.

- 1- Gain(Outlook=Sunny|Temperature) = 0.570
- 2- Gain(Outlook=Sunny|Humidity) = 0.970
- 3- Gain(Outlook=Sunny|Wind) = 0.019

Now, humidity is the decision because it produces the highest score if outlook were sunny.

At this point, decision will always be no if humidity were high.

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No

On the other hand, decision will always be yes if humidity were normal

Day	Outlook	Temp.	Humidity	Wind	Decision
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Rain outlook on decision

Day	Outlook	Temp.	Humidity	Wind	Decision
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
10	Rain	Mild	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

- 1- Gain(Outlook=Rain | Temperature) = 0.01997309402197489
- 2- Gain(Outlook=Rain | Humidity) = 0.01997309402197489
- 3- Gain(Outlook=Rain | Wind) = 0.9709505944546686

Here, wind produces the highest score if outlook were rain. That's why, we need to check wind attribute in 2nd level if outlook were rain.

So, it is revealed that decision will always be yes if wind were weak and outlook were rain.

Day	Outlook	Temp.	Humidity	Wind	Decision
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes

What's more, decision will be always no if wind were strong and outlook were rain.

Day	Outlook	Temp.	Humidity	Wind	Decision
6	Rain	Cool	Normal	Strong	No
14	Rain	Mild	High	Strong	No

So, decision tree construction is over. We can use the following rules for decisioning.

Thank You