TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA HỆ THỐNG THÔNG TIN

Tài liệu bài giảng:

KHAI THÁC DỮ LIỆU – IS252

Chương 5:

Tập thô và ứng dụng phân lớp

ThS. Dương Phi Long – Email: longdp@uit.edu.vn

NỘI DUNG BÀI HỌC

01 Các khái niệm cơ bản

Rút gọn thuộc tính và luật phân lớp

Ứng dụng của tập thô trong KTDL

- Khắc phục hiện tượng dữ liệu bị nhiễu
- Rút gọn dữ liệu (khử dữ liệu thừa)
- Tạo luật phân lớp
- Nhận diện phụ thuộc riêng phần và toàn phần của các thuộc tính

Các khái niệm cơ bản

- 1. Hệ thông tin
- 2. Hệ quyết định
- 3. Quan hệ tương đương
- 4. Quan hệ bất khả phân
- 5. Xấp xỉ tập hợp
- 6. Phụ thuộc thuộc tính

1. Hệ thông tin (Information system)

- Hệ thông tin (IS): cặp (U, A)
 - U: là tập các đối tượng
 - A: là tập các thuộc tính
 - V_a: tập giá trị của thuộc tính a
 (a ∈ A)

- VD1:

- U={x1, x2, x3, x4, x5, x6, x7}
- A={"Age","LEMS"}

	Age	LEMS
x1	16-30	50
x2	16-30	0
x 3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
х6	16-30	26-49
x7	46-60	26-49

LEMS: Hội chứng nhược cơ Lambert-eaton

2. Hệ quyết định (Decision system)

- Hệ quyết định (DS): cặp (U, C∪D)
 - U: tập các đối tượng
 - C: tập thuộc tính điều kiện
 - D: tập thuộc tính quyết định

- VD2:

- U={x1, x2, x3, x4, x5, x6, x7}
- A={"Age","LEMS"}
- D={"Walk"}

	Age	LEMS	Walk
χl	16-30	50	Yes
x2	16-30	0	No
x 3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
х6	16-30	26-49	Yes
x7	46-60	26-49	No

LEMS: Hội chứng nhược cơ Lambert-eaton

2. Hệ quyết định (Decision system)

Quan sát VD2:

- {x3, x4} có cùng giá trị thuộc tính điều kiện, nhưng khác giá trị thuộc tính quyết định
- {x5, x7} có cùng giá trị thuộc tính điều kiện và cùng giá trị thuộc tính quyết định
- \Rightarrow "Nếu Age = "16-30" và LEMS = "50" thì Walk = "Yes".

	Age	LEMS	Walk
x1	16-30	50	Yes
x2	16-30	0	No
x 3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
х6	16-30	26-49	Yes
x7	46-60	26-49	No

- Cho U: tập các đối tượng và R: một quan hệ 2 ngôi trên UxU // R ⊆ UxU
- R được gọi là quan hệ tương đương nếu:
 - (i) Phản xạ: $\forall x \in U: xRx$ // $(x, x) \in R$
 - (ii) Phản xứng: $\forall x, y \in U$: nếu xRy thì yRx
 - (iii) Bắc cầu: ∀x, y, z∈U: nếu xRy và yRz thì xRz
- Lóp tương đương của x: [x]_R = {x∈U / xRy}
- Tập các lớp tương đương theo quan hệ R: U/R

VD3: Cho U là tập các sinh viên trong lớp.
Định nghĩa quan hệ 2 ngôi R ⊆ UxU như sau:
Với (x,y)∈ UxU, (x,y)∈ R ⇔ x cùng giới tính với y

- Nhận xét: R là quan hệ tương đương
- Ta có:
 - Giới tính(Tài)="Nam"; Giới tính(Cường)="Nam"
 - ⇒ Tài cùng giới tính với Cường
 - ⇔ (Tài, Cường) ∈R // Tài R Cường
 - Lớp tương đương của Tài: $[Tài]_R = \{Tài, Cường, Quang\} = [Cường]_R$

VD3:

- Ta có:
 - Giới tính(Liên)="Nữ"; Giới tính(Lan)="Nữ"
 - ⇒ Liên cùng giới tính với Lan
 - ⇔ (Liên, Lan) ∈R // Liên R Lan
 - Lớp tương đương của Liên: [Liên] $_R$ = {Liên, Lan, Mai, ...}
 - (Tài, Liên) ∉ R

- Nhận xét:
 - Mỗi đối tượng đều thuộc 1 lớp duy nhất
 - Hai đối tượng trong 1 lớp có quan hệ với nhau
 - Hai đối tượng thuộc 2 lớp khác nhau không quan hệ với nhau

- Cho hệ thông tin IS = (U, A), tập thuộc tính $B \subseteq A$
- R là một quan hệ trên UxU, được gọi là quan hệ bất khả phân theo B
 (B-indiscernibility relation) khi:

$$R = \{ (x,y) \in U^2 / \forall b \in B, b(x) = b(y) \}$$

- Ký hiệu: IND_{IS}(B)
- Quan hệ bất khả phân là quan hệ tương đương
- Lớp tương đương của x theo quan hệ bất khả phân theo B:

$$[x]_R = [x]_{IND_{IS}(B)} = [x]_B = [x]$$

VD4: Cho hệ thông tin IS

- Với B = {"Age"}
 - Xét cặp (x1, x2):

Ta có: Age(x1) = Age(x2) = "16-30"

Do đó: $(x1, x2) \in IND_{IS}(\{\text{``Age''}\}) //quan hệ bất khả phân theo ``Age''$

Nghĩa là: Xét về "Age" thì x1 và x2 là giống nhau. x1 và x2 không thể phân biệt được qua "Age"

Xét cặp (x2, x3): (x2, x3) ∉ IND_{IS}({"Age"})

	Age	LEMS
χl	16-30	50
x2	16-30	0
x3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
х6	16-30	26-49
x7	46-60	26-49

VD4:

- Với B = {"Age", "LEMS"}
 - Tập các lớp tương đương theo B
 U/B = {{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}}
 - Lớp tương đương của x3 theo B:

$$[x3]_B = \{x3, x4\} = [x4]_B$$

 Các đối tượng trong cùng một lớp sẽ có "Age" và "LEMS" bằng nhau.

	Age	LEMS
хl	16-30	50
x2	16-30	0
x 3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
х6	16-30	26-49
x7	46-60	26-49

VD4:

- Ta có:
 - $IND(\{Age\}) = \{\{x1, x2, x6\}, \{x3, x4\}, \{x5, x7\}\}$
 - IND($\{LEMS\}$) = $\{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x6, x7\}\}$
 - IND({Age, LEMS}) = {{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}}

	Age	LEMS
хl	16-30	50
x2	16-30	0
x 3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
х6	16-30	26-49
x7	46-60	26-49

- Ta thấy: Không thể định nghĩa rõ ràng các đối tượng có thuộc tính quyết định dương (Walk = "Yes") từ các thuộc tính khác.
- Gặp khó khăn ở x3, x4. Không thể có 1 định nghĩa chính xác nhưng đối tượng như vậy
- → Cần tập thô

	Age	LEMS	Walk
χl	16-30	50	Yes
x2	16-30	0	No
x3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
x6	16-30	26-49	Yes
x7	46-60	26-49	No

Mục đích:

- Chỉ ra những đối tượng có thuộc tính quyết định dương
- Chỉ ra những đối tượng có thuộc tính quyết định không dương
- Những đối tượng nào thuộc vùng biên giữa các trường hợp chắc chắn

	Age	LEMS	Walk
χl	16-30	50	Yes
x2	16-30	0	No
x 3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
х6	16-30	26-49	Yes
x7	46-60	26-49	No

Dinh nghĩa

- Gọi T = (U, A) và tập thuộc tính B \subseteq A, tập đối tượng X \subseteq U
- Chúng ta có thể xấp xỉ X dùng các thông tin chứa trong B bằng cách tạo các xấp xỉ dưới và trên của B
 - Xấp xỉ dưới: $\underline{B}X = \{x \mid [x]_B \subseteq X\}$
 - Xấp xỉ trên: $\overline{B}X = \{x \mid [x]_B \cap X \neq \emptyset\}$

- Các đối tượng trong $\underline{B}X$: chắc chắn được phân lớp như các thành viên của tập X
- Các đối tượng trong $\overline{B}X$: chỉ có thể phân lớp dương tính
- Vùng B-biên của X: $\mathrm{BN}_B(X) = \overline{B}X \underline{B}X$ Chứa các đối tượng không thể phân lớp chắc chắn vào X theo B
- Vùng B-ngoài của X: $U \overline{B}X$ Chứa các đối tượng chắc chắn được phân lớp không thuộc về X
- Một tập được gọi là thô (rough set) nếu vùng biên của nó khác rỗng,
 ngược lại tập là rõ.

- Các bước thực hiện
 - B1. Phân lớp U theo B: U/B (hoặc IND(B))
 - B2. Xấp xỉ dưới: // LOWER(B, X) $\underline{B}X = \{x \mid [x]_B \subseteq X\}$
 - B3. Xấp xỉ trên: // UPPER(B, X) $\overline{B}X = \{x \mid [x]_B \cap X \neq \emptyset\}$
 - B4. Vùng biên $BN_B(X)$: B_Biên = $\overline{BX} \underline{BX}$
 - B5. Vùng ngoài: B_Ngoài = $U \overline{B}X$

- Các bước thực hiện
 - B6. Hệ số xấp xỉ:

$$\alpha_B(X) = \frac{\left|\underline{B}X\right|}{\left|\overline{B}X\right|}$$
 Với |A|: lực lượng của A $\neq \emptyset$

- $0 \le \alpha_B(X) \le 1$
- Nếu $\alpha_B(X) = 1$: X là rõ so với B
- Nếu $\alpha_B(X) < 1$: X là thô so với B

VD5: Cho hệ IS = (U, A)

Với B = {Age, LEMS}

Và X = {x1, x4, x6} // các bệnh nhân có Walk = "Yes"

Hãy xấp xỉ X theo B

	Age	LEMS	Walk
x1	16-30	50	Yes
x2	16-30	0	No
x 3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
х6	16-30	26-49	Yes
x7	46-60	26-49	No

VD5:

Gọi X là tập các đối tượng Walk

$$X = \{ x \mid Walk(x) = "Yes" \} = \{x1, x4, x6 \}$$

- B1. Phân lớp theo B= {Age, LEMS} U/B = {{x1}, {x2}, {x3,x4}, {x5,x7}, {x6}}
- B2. Xấp xỉ dưới

$$\underline{BX} = \{x \mid [x]_B \subseteq X\} = \{x \mid x6\}$$

- B3. Xấp xỉ trên

$BX = \{$	[x]	$[x]_B$	$\cap X \neq \emptyset$	$\{x\} = \{x\}$	1, x3,	x4, x6}

	Age	LEMS	Walk
χl	16-30	50	Yes
x2	16-30	0	No
x 3	31-45	1-25	No
x4	31-45	1-25	Yes
x5	46-60	26-49	No
х6	16-30	26-49	Yes
x7	46-60	26-49	No

VD5:

- B4. B_Biên = $\overline{B}X \underline{B}X = \{x3, x4\}$
- B5. B_Ngoài = $U \overline{B}X = \{x2, x5, x7\}$
- B6. Hệ số xấp xỉ

$$\alpha_B(X) = \frac{|\underline{B}X|}{|\overline{B}X|} = \frac{|\{x1, x6\}|}{|\{x1, x3, x4, x6\}|} = \frac{2}{4} = 0.5$$

- $\alpha_B(X) < 1 \Rightarrow$ Lớp quyết định Walk là thô

Lớp quyết định Walk là thô vì vùng biên khác rỗng

5. Phụ thuộc thuộc tính

- Tập thuộc tính D phụ thuộc hoàn toàn vào tập thuộc tính C nếu tất cả các thuộc tính của D đều được xác định duy nhất bởi giá trị của các thuộc tính trong C.
- Ký hiệu: C ⇒ D
- Hệ số phụ thuộc:

$$k = \gamma(C, D) = \sum_{X \in U/D} \frac{|\underline{C}X|}{|U|}$$

- Nếu k = 1: D phụ thuộc hoàn toàn vào C.
- Nếu k < 1: D phụ thuộc một phần (theo mức độ k) vào C

Xấp xỉ tập hợp: Bài tập

BT08

Cho hệ quyết định sau:

- Tính xấp xỉ tập X = {01, 03, 04}
 qua tập thuộc tính B = {trời,
 hướng gió}
- Khảo sát sự phu thuộc của thuộc tính C = {Kết quả} vào B
 = {trời, hướng gió}

Subject	Trời	Hướng Gió	Áp suất	Kết quả
01	Trong	Bắc	Cao	Ko mưa
02	Mây	Nam	Cao	Mưa
03	Mây	Bắc	Trung bình	Mưa
04	Trong	Bắc	Thấp	Ko mưa
05	Mây	Bắc	Thấp	Mưa
06	Mây	Bắc	Cao	Mưa
07	Mây	Nam	Thấp	Ko mưa
08	Trong	Nam	Cao	Ko mưa

Rút gọn thuộc tính và luật phân lớp

- 1. Rút gọn thuộc tính
- 2. Luật phân lớp

1. Rút gọn thuộc tính

- Một số vấn đề về bảng quyết định:
 - Có thể biểu diễn lặp lại các đối tượng giống nhau hay bất khả phân biệt
 - Một số thuộc tính có thể thừa

	Age	LEMS	Walk	
x1	16-30	50	Yes	
x2	16-30	0	No	
x3	31-45	1-25	Yes	
х4	31-45	1-25	No	
x5	46-60	26-49	No	
х6	16-30	26-49	Yes	
x7	46-60	26-49	No	

1. Rút gọn thuộc tính

- Chỉ giữ lại các thuộc tính điều kiện bảo toàn quan hệ bất khả phân và hệ quả là bảo toàn xấp xỉ tập hợp.
- Các tập con thuộc tính điều kiện được giữ lại gọi là tập rút gọn (reduct).

1. Rút gọn thuộc tính

- Các bước thực hiện
 - B1. Xác định ma trận phân biệt
 - B2. Xác định hàm phân biệt
 - B3. Tìm rút gọn và lõi

1.1. Ma trận phân biệt

Cho DS =(U, C \cup D), \lor di U={u₁, u₂, ..., u_n}

Ma trận phân biệt của DS: $M(DS) = (m_{ij})_{n \times n}$

- n: số đối tượng trong U
- m_{ii}: tập thuộc tính

$$m_{ij} = \begin{cases} \{c \in C \mid c(u_i) \neq c(u_j)\}, \text{n\'eu } D(u_i) \neq D(u_j) \\ \lambda, \text{n\'eu } D(u_i) = D(u_j) \end{cases}$$

1.2. Hàm phân biệt

Hàm phân biệt f_{DS} là một hàm logic, được xác định từ ma trận phân biệt M(DS):

$$f_{DS}(u_i) = \bigwedge_{i \neq j} (\bigvee m_{ij}) \ \text{v\'oi} \ \text{m\~oi} \ u_i \in U$$
 (*)

Trong đó, mỗi thuộc tính được đặt tương ứng một biến logic cùng tên, và

- (1) $\bigvee m_{ij}$ là biểu thức tuyển của tất cả các biến $\mathbf{c} \in m_{ij}$, nếu $m_{ij} \neq \emptyset$
- (2) $\forall m_{ij} = true$, $\text{N\'eU} m_{ij} = \lambda \, \text{V\'a} \, D(u_i) = D(u_j)$
- (3) $\forall m_{ij} = false$, $\text{N\'eu} \ m_{ij} = \emptyset \ \text{V\'a} \ D(u_i) \neq D(u_j)$

(*): λ: true Trong 1 ô: phép toán ∨ Giữa 2 ô; phép toán?∧

1.3. Tìm rút gọn và lõi

- Đơn giản hàm:

- a) $(A) \wedge (True) = (A)$
- b) $(A) \wedge (A \vee B) = (A)$
- c) (A) \vee (A \wedge B) = (A)

- Chuyển dạng hàm:

Dạng cũ: $(\lor\lor\lor)$ \land $(\lor\lor\lor)$

Dạng mới: $(\land \land \land) \lor (\land \land \land) \lor (\land \land \land)$

- Core (C): Lõi của tập thuộc tính điều kiện C là kết quả của phép giao các tập con của C

2. Luật phân lớp

- Từ các tập rút gọn, rút ra các luật phân lớp
- Các bước thực hiện:
 - B1. Phân lớp U theo D: U/D = {X₁, X₂,...}
 - B2. Phân lớp U theo R1: U/R1 = $\{Z_1, Z_2, Z_3, ..., Z_k\}$ Phân lớp U theo R2: U/R2 = $\{Z_{k+1}, Z_{k+2}, Z_{....}\}$
 - B3. Nếu $Z_i \subseteq X_j$, ta có luật phân lớp $\mathbf{r} \colon \mathbf{Z_i} \to \mathbf{X_j}$

Rút gọn thuộc tính và Luật phân lớp

VD6: Cho hệ quyết định DS (U, C u D)

Với $U = \{x1, x2, x3, x4, x5, x6, x7\}$

C= {H, M, T} là các thuộc tính điều kiện

D= {F} là thuộc tính quyết định

- 1. Rút gọn các thuộc tính điều kiện và tìm một số luật phân lớp có độ chính xác 100%
- 2. Khảo sát sự phụ thuộc thuộc tính của $D = \{F\}$ vào $B = \{M, T\}$

U	H eadache	M usclepain	Temp	Flu
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
x3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

J	H	М	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
x3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

$$m_{ij} = \begin{cases} \{c \in C \mid c(x_i) \neq c(x_j)\}, \text{n\'eu } D(x_i) \neq D(x_j) \\ \lambda, \text{n\'eu } D(x_i) = D(x_j) \end{cases}$$

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

U	Н	М	T	F
x1	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
x3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

	хl	x2	x 3	x4	x5
x2	T				
x 3	? -	?			
x4	?	?	?		
x5	?	?	?	?	
х6	?	?	?	?	?

Xét m_{12} : D(x1) = No và D(x2) = Yes $\Rightarrow m_{12} = \{c \in C \mid c(x_i) \neq c(x_i)\} = \mathbf{T}$

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

U	Н	М	T	F	
x1	Yes	Yes	Normal	No	
x2	Yes	Yes	High	Yes	
х3	Yes	Yes	Very-high	Yes	
x4	No	Yes	Normal	No	
x5	No	No	High	No	
х6	No	Yes	Very-high	Yes	

	хl	x2	x3	x4	x5
x2	т				
x 3	T	?			
x4	?	?	?		
x5	?	?	?	?	
х6	?	?	?	?	?

Xét m_{13} : D(x1) = No và D(x3) = Yes $\Rightarrow m_{13} = \{c \in C \mid c(x_i) \neq c(x_i)\} = \mathbf{T}$

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

	<u> </u>				
U	Н	М	T	F	
хl	Yes	Yes	Normal	No	
x2	Yes	Yes	High	Yes	
х3	Yes	Yes	Very-high	Yes	
x4	No	Yes	Normal	No	
x5	No	No	High	No	
х6	No	Yes	Very-high	Yes	

	χl	x2	x3	x4	x5
x2	T				
x 3	۲	λ			
x4	?	?	?		
x5	?	?	?	?	
х6	?	?	?	?	?

Xét m_{23} : D(x2) = Yes và D(x3) = Yes $\Rightarrow m_{23} = \lambda$

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

J	Н	М	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
х3	Yes	Yes	Very-high Y	
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

	хl	x2	x3	x4	x5
x2	т				
x3	T	λ			
x4	λ	Н,Т	H,T		
x5	λ	H,M	Н,М,Т	λ	
х6	н,т	λ	λ	T	M,T

Xét m_{35} : D(x3) = Yes và D(x5) = No $\Rightarrow m_{35}$ = { $c \in C | c(x_i) \neq c(x_i)$ } = **H, M, T**

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B1. Tìm ma trận phân biệt

	<u> </u>				
\supset	H	М	T	F	
хl	Yes	Yes	Normal	No	
x2	Yes	Yes	High	Yes	
х3	Yes	Yes	Very-high	Yes	
x4	No	Yes	Normal	No	
x5	No	No	High	No	
х6	No	Yes	Very-high	Yes	

	хl	x2	x3	x4	x5
x2	Н				
x 3	T	λ			
x4	λ	H,T	Н,Т		
x5	λ	H,M	H,M,T	λ	
х6	н,т	λ	λ	T	M,T

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B2. Tìm hàm phân biệt

	хl	x2	хЗ	x4	х5
x2	T				
x3	T	λ			
x4	λ	н,т	H,T		
x5	λ	H,M	н,м,т	λ	
х6	н,т	λ	λ	T	M,T

Dòng x2: (T)

Dòng x3: (T) \wedge (True)

Dòng x4: (True) \wedge (H \vee T) \wedge (H \vee T)

Dòng x5: (True) \wedge (H \vee M) \wedge (H \vee M \vee T) \wedge (True)

Dòng x6: $(H \lor T) \land (True) \land (True) \land (M \lor T)$

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B2. Tìm hàm phân biệt

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B3. Tìm rút gọn và lõi

```
      f(H,M,T) = (T)
      // dòng x2

      \(True\) \(True\) \(H \times T) \(H \times T)\)
      // dòng x3

      \(True\) \(H \times M) \(H \times M \times T) \(H \times M \times T) \times (True)\)
      // dòng x4

      \(H \times T) \(H \times M) \(H \times M \times T) \(H \times M \times T)\)
      // dòng x5

      \(H \times T) \(H \times M) \(H \times M \times T) \(H \times M \times T)\)
      // dòng x6

      \(H \times T) \(H \times M \times T) \(H \times M \times T)\)
      // dòng x6
```

VD6: 1.1. Rút gọn các thuộc tính điều kiện

B3. Tìm rút gọn và lõi

$$f(H,M,T) = (T) \land (T) \land (H \lor T) \land (H \lor M) \land (H \lor M \lor T) \land (H \lor M) \land (H \lor M \lor T) \land (H \lor M) \land (H \lor M \lor T) \land (M \lor T) // áp dụng b)$$

$$= (T) \land (H \lor M) \land (M \lor T) \qquad // áp dụng b)$$

$$= (T) \land (H \lor M)$$

$$= (T \land H) \lor (T \land M) \qquad // áp dụng chuyển dạng hàm$$

VD6: 1.1. Rút gọn các thuộc tính điều kiện B3. Tìm rút gọn và lõi

Ta có
$$f(H,M,T) = (T \wedge H) \vee (T \wedge M)$$

- \Rightarrow Có 2 tập rút gọn: $R_1 = \{T, H\} \lor a$ $R_2 = \{T, M\}$
- \Rightarrow Lõi (core) = $\mathbb{R}_1 \cap \mathbb{R}_2 = \{T\}$

VD6: 1.2. Tìm các luật phân lớp có độ chính xác 100%

- B1. Phân lớp U theo D ={F}:

$$U/D = \{X_1, X_2\}$$

$$X_1 = \{x \in U / D(x) = "Yes"\}\} = \{x2, x3, x6\}$$

$$X_2 = \{x \in U / D(x) = "No"\}\} = \{x1, x4, x5\}$$

U	Н	М	T	F	
x1	Yes	Yes	Normal	No	
x2	Yes	Yes	s High Y		
х3	Yes	Yes	Very-high	Yes	
х4	No	Yes	Normal	No	
x5	No	No	High	No	
х6	No	Yes	Very-high	Yes	

1.2. Tìm các luật phân lớp có độ chính xác 100% **VD6:**

- B2. Phân lớp U theo $R_1 = \{T, H\}$

$$U/R_1 = \{Z_1, Z_2, Z_3, Z_4, Z_5, Z_6\}$$

$$Z_1 = \{x 1\},$$

$$Z_1 = \{x 1\}, \qquad Z_2 = \{x2\},$$

$$Z_3 = \{x3\}, \qquad Z_4 = \{x4\},$$

$$Z_{\Delta} = \{x4\},$$

$$Z_5 = \{x5\},$$

$$Z_6 = \{x6\}$$

U	Н	М	T	F
x1	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
х3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
х5	No	No	High	No
х6	No	Yes	Very-high	Yes

VD6: 1.2. Tìm các luật phân lớp có độ chính xác 100%

- B2. Phân lớp U theo $R_2 = \{T, M\}$

$$U/R_2 = \{Z_7, Z_8, Z_9, Z_{10}\}$$

$$Z_7 = \{x1, x4\}, Z_8 = \{x2\},$$

$$Z_9 = \{x3, x6\}, Z_{10} = \{x5\}$$

U	Н	М	T	F
x1	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
х3	Yes	Yes	Very-high	Yes
х4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

VD6: 1.2. Tìm một số luật phân lớp có độ chính xác 100%

- B3. Tìm luật phân lớp

Ta có:
$$X_1 = \{x \in U \ / \ D(x) = "Yes"\}\} = \{x2, x3, x6\}$$

 $X_2 = \{x \in U \ / \ D(x) = "No"\}\} = \{x1, x4, x5\}$
 $Z_1 = \{x1\}, Z_2 = \{x2\}, Z_3 = \{x3\}, Z_4 = \{x4\},$
 $Z_5 = \{x5\}, Z_6 = \{x6\}, Z_7 = \{x1, x4\}, Z_8 = \{x2\},$
 $Z_9 = \{x3, x6\}, Z_{10} = \{x5\}$

U	Н	М	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
х3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

Giả sử xét: Z₁, Z₇ và Z₉

VD6: 1.2. Tìm một số luật phân lớp có độ chính xác 100%

- B3. Tìm luật phân lớp
 - Xét $Z_1 = \{x1\}$ và $X_2 = \{x1, x4, x5\}$:

Ta thấy: $\mathbf{Z_1} \subset \mathbf{X_2}$ và $\mathbf{Z_1} \in \mathbf{U}/\mathbf{R_1}$, $\mathbf{R_1} = \{\mathbf{T}, \mathbf{H}\}$

Nên ta có luật phân lớp r1:

U	Н	М	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
x 3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

Nếu H = "Yes" và T = "Normal" thì F = "No"

VD6: 1.2. Tìm một số luật phân lớp có độ chính xác 100%

- B3. Tìm luật phân lớp
 - $X \notin Z_7 = \{x1, x4\} \ va\ X_2 = \{x1, x4, x5\}$:

Ta thấy: $\mathbf{Z_7} \subset \mathbf{X_2} \vee \dot{\mathbf{a}} \, \mathbf{Z_7} \in \mathbf{U/R_2}, \, \mathbf{R_2} = \{\mathbf{T}, \, \mathbf{M}\}$

Nên ta có luật phân lớp r2:

U	Н	М	T	F
x1	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
x3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

Nếu M = "Yes" và T = "Normal" thì F = "No"

VD6: 1.2. Tìm một số luật phân lớp có độ chính xác 100%

- B3. Tìm luật phân lớp

• $X \notin Z_9 = \{x3, x6\} \ va \ X_1 = \{x2, x3, x6\}$:

Ta thấy: $\mathbb{Z}_9 \subset \mathbb{X}_1 \text{ và } \mathbb{Z}_9 \in \mathbb{U}/\mathbb{R}_2, \, \mathbb{R}_2 = \{\mathbb{T}, \, \mathbb{M}\}$

Nên ta có luật phân lớp r3:

U	Н	М	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
х3	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
х5	No	No	High	No
х6	No	Yes	Very-high	Yes

Nếu M = "Yes" và T = "Very-high" thì F = "Yes"

VD6: 2. Khảo sát sự phụ thuộc thuộc tính của D = {F} vào B = {M, T}

- Hệ số phụ thuộc:

$$k = \gamma(B, D) = \sum_{X \in U/D} \frac{|\underline{B}X|}{|U|} = \sum_{X \in \{X_1, X_2\}} \frac{|\underline{B}X|}{|U|}$$

$$= \frac{|\underline{B}X_1| + |\underline{B}X_2|}{|U|} = \frac{|\{x_2, x_3, x_6\}| + |\{x_1, x_4, x_5\}|}{|U|} = \frac{3+3}{6} = 1$$

 $=> D = \{F\}$ phụ thuộc hoàn toàn vào $B=\{M, T\}$.

J	Н	M	T	F
хl	Yes	Yes	Normal	No
x2	Yes	Yes	High	Yes
хЗ	Yes	Yes	Very-high	Yes
x4	No	Yes	Normal	No
x5	No	No	High	No
х6	No	Yes	Very-high	Yes

Rút gọn và Luật phân lớp: Bài tập

BT09

Cho Hệ quyết định (U, C \cup D). C={N, K, A, L} là các điều kiện và D = {T} là quyết định

- 1. Tính xấp xỉ X={01, 02, 04, 05, 06} qua tập thuộc tính B={K, A}
- 2. Tính các thu gọn của hệ quyết định trên
- 3. Hãy nêu 2 luật có độ chính xác phân lớp là 100%
- 4. Khảo sát sự phu thuộc của thuộc tính T vào L, N

	N	K	A	L	T
01	1	\bigcirc	X	2	O
02	2	\bigcirc	В	3	O
03	2	\bigcirc	В	2	K
04	2	C	X	3	0
05	1	K	В	3	0
06	3	O	Τ	1	K
07	3	K	X	1	K
08	1	C	В	1	K
09	1	K	В	3	O

Tổng kết chương

Các khái niệm cơ bản

- 1.Hệ thông tin
- 2.Hệ quyết định
- 3.Quan hệ tương đương
- 4.Quan hệ bất khả phân
- 5.Xấp xỉ tập hợp
- 6.Phụ thuộc thuộc tính

Rút gọn thuộc tính và luật phân lớp

- 1.Rút gọn thuộc tính
- 2.Luật phân lớp

Bài tập chương 5

5.1. Cho hệ quyết định sau:

	Bằng cấp	Kinh nghiệm	Tiếng Anh	Giới thiệu	Tuyển dụng
	d	е	f	r	†
xl	MBA	Trung bình	Tốt	Xuất sắc	Chấp nhận
x2	MBA	ĺ†	Tốt	Trung bình	Từ chối
x3	MCE	ĺ†	Tốt	Tốt	Từ chối
x4	MSC	Nhiều	Tốt	Trung bình	Chấp nhận
x5	MSC	Trung bình	Tốt	Trung bình	Từ chối
x6	MSC	Nhiều	Tốt	Xuất sắc	Chấp nhận
x7	MBA	Nhiều	Không	Tốt	Chấp nhận
x8	MCE	ĺ†	Không	Xuất sắc	Từ chối

Bài tập chương 5

5.1. Các yêu cầu:

- 1. Khảo sát sự phụ thuộc thuộc tính giữa B = {Bằng cấp, Giới thiệu} và C
 = {Tuyển dụng} và đề xuất một số phân lớp chính xác 100%.
- 2. Tính xấp xỉ tập X = {x1, x2, x3} qua thuộc tính B = {Bằng cấp, Kinh nghiệm}
- 3. Hãy tìm ma trận phận biệt và rút gọn thuộc tính điều kiện

Bài tập chương 5

5.2. Cho hệ quyết định sau. Hãy tìm tập rút gọn thuộc tính và xác định tất cả các loại có độ chính xác 100%.

	Tên	Màu tóc	Chiều cao	Cân nặng	Dùng thuốc	Kết quả
хl	Ноа	Đen	Tầm thước	Nhẹ	Không	Bị rám
x2	Lan	Đen	Cao	Vừa	Có	Không
x 3	Xuân	Râm	Thấp	Vừa	Có	Không
x4	Hạ	Đen	Thấp	Vừa	Không	Bị rám
x5	Thu	Bạc	Tầm thước	Nặng	Không	Bị rám
х6	Đông	Râm	Cao	Nặng	Không	Không
x7	Mơ	Râm	Tầm thước	Nặng	Không	Không
x8	Đào	Đen	Thấp	Nhẹ	Có	Không

THANKS!

Any questions?