нод и нок

- 1. Применим алгоритм Евклида к числам a и $b \in \mathbb{N}$:
 - $0) \quad a = bq_0 + r_1, \qquad \dots$
 - 1) $b = r_1q_1 + r_2$, n-1) $r_{n-2} = r_{n-1}q_{n-1} + r_n$,
 - 2) $r_1 = r_2 q_2 + r_3$, n $r_{n-1} = r_n q_n$.

Докажите, что

- (a) $HOД(a,b) = r_n$ (последний ненулевой остаток);
- (b) au + bv = HOД(a, b) при некоторых u и $v \in \mathbb{Z}$.
- 2. Докажите, что любое целое $n \geq 2$ может быть разложено в произведение простых, и это разложение единственно с точностью до порядка множителей.
- 3. Пусть a, b и $c \in \mathbb{N}$. Докажите, что
 - (a) $\text{HOД}(\text{HOK}(a, b), \text{HOK}(b, c), \text{HOK}(c, a)) = \\ = \text{HOK}(\text{HОД}(a, b), \text{HОД}(b, c), \text{HОД}(c, a));$
 - (b) $\text{HOД}(a, b) + \text{HOK}(a, b) \ge a + b$.
- 4. Пусть a, n и m натуральные числа. Докажите, что
 - (a) $HOД(a^n 1, a^m 1) = a^{HOД(n,m)} 1$ при a > 1;
 - (b) $\text{HOД}(a^{2^n} + 1, a^{2^m} + 1) \le 2$, если $n \ne m$.
- 5. Можно ли с помощью циркуля и линейки разделить угол 19° на 19 равных частей?
- 6. В прямоугольнике с целыми сторонами *a* и *b*, нарисованном по линиям клетчатой бумаги, проведена диагональ. Через какое число узлов она проходит?
- 7. Натуральные числа m, a_1, a_2, \ldots, a_n таковы, что $a_i \leq m$ и НОК $(a_i, a_j) > m$ при всех $i \neq j$. Докажите, что верно неравенство $\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} < 2$.