Lab2 Задача о погоне

Поляков Иван Андреевич 2022, 19 February

RUDN University, Moscow, Russian Federation

Цель работы

Научиться строить математические модели для решения задач.

Выведение формул

- 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки у, Для этого скорость катера раскладываем на две составляющие: y_t радиальная скорость и y_t тангенциальная скорость. Радиальная скорость это скорость, с которой катер удаляется от полюса, $y_t = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt}$ У, Тангенциальная скорость это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус r_t , $y_t = \sqrt{\frac{d\theta}{dt}}$ Получается $y_t = \sqrt{\frac{d\theta}{dt}} = \sqrt{\frac{19}{25}y}$ (учитывая, что радиальная скорость равна y_t). Тогда получаем y_t
- Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

с начальными условиями
$$\begin{bmatrix} \theta \, 0 = 0 \\ r \, 0 = 2,82 \end{bmatrix}$$
 или $\begin{bmatrix} \theta \, 0 = -3,14 \\ r \, 0 = 4,4 \end{bmatrix}$

Создание модели в Scilab

