

Chapter 8 Protein biosynthesis

(Translation)

1. Ribosome (核糖体)

- The ribosome is the machine that directs the synthesis of proteins.
- The ribosome is the largest and most complex RNPs.

1.1 Ribosome Composition

Ribosome -

Contains the peptidyl transferase (肽酰转移酶) center

For the formation of peptide bonds

small subunit

Large

Contains the decoding center

Charged (负载的) tRNAs read or "decode" the codonunits of the mRNA

1.2 Active centers of ribosome

- Three tRNAbinding sites:
- An aminoacyltRNA enters the A site.
- Peptidyl-tRNA is bound in the P site.
- Deacylated tRNA exits via the E site.

1.3 Polyribosome or polysome (多聚核糖体)

- Most mRNAs are translated by more than one ribosome at a time.
- Polysome is a structure in which many ribosomes translate an mRNA in tandem.
 许多核糖体串联翻译mRNA的结构称为多核糖体

2. mRNA

2.1 Prokaryotic mRNA

2.1.1 Prokaryotic RBS (核糖体结合位点)

Ribosome binding site (RBS) / SD(Shine-Dalgarno)序列

5'... AGGAGG... 3', 与16S rRNA配对

3-9 nt

- Typically located 3-9 nt on the 5' side of the start codon
- to a sequence of the 16S rRNA

mRNA

2.1.2 ORF (开放阅读框) and coding region

 Open reading frames (ORFs) are suspected coding regions usually identified by computer in DNA. They are continuous groups of adjacent codons following a start codon and ending at a stop codon.

开放阅读框是指DNA序列中由计算机辨认出的可能编码区,它是从起始密码子到终止密码子的一段连续的密码子区域。

 When a particular ORF is known to encode a certain protein, the ORF is usually referred to as a coding region.

- Prokaryotic mRNAs frequently contain two or more coding regions.
- mRNAs containing multiple coding regions are known as polycistronic mRNAs (多顺反 子mRNA).
- polycistronic mRNAs encode proteins that perform related functions.

2.2 Eukaryotic mRNA

- Eukaryotic mRNA has two features recognized by ribosomes: 5' cap and Kozak sequence near the start codon.
- Eukaryotic mRNAs almost always contain a single coding region. Monocistronic mRNA

3.1 Secondary structure of tRNA

四环四臂/茎 (Cloverleaf, 三叶草)

3.2 Tertiary structure of tRNA

3.3 Aminoacyl-tRNA synthetase

- Aminoacyl-tRNA synthetases (氨酰tRNA 合成酶) charge tRNAs by the attachment of an amino acid to the 3'-terminal adenosine nucleotide via a high-energy acyl linkage (酰基键).
- Each aminoacyl-tRNA synthetase attaches a single amino acid to one or more tRNAs. (20种氨酰tRNA合成酶)
- Aminoacyl-tRNA synthetases charge tRNAs in two steps.

(1) Adenylation (腺苷酰化)

氨基酸活化

(2) tRNA charging

3.4 Initiator tRNA

- Initiator tRNA is a special tRNA that recognizes the start codon.
- Prokaryotic initiator tRNA Nformylmethionine-tRNA (fMet-tRNA_i, N-甲酰甲硫氨酰-tRNA_i)
 - First charged with methionine by methionyltRNA synthetase
 - The methionine residue is then converted to N-formylmethionine by transformylase (转 甲酰酶)
- Eukaryotic initiator tRNA methionyltRNA (Met-tRNA_i, 甲硫氨酰-tRNA_i).

4. Genetic code

 A genetic code is a set of rules that translates an mRNA sequence in groups of three nucleotides into an amino acid sequence of a protein.

遗传密码是一组规则,将mRNA序列以三个核苷酸为一组转译为蛋白质的氨基酸序列。 遗传密码还可称为三联体密码(triplet code)或 密码子(coden)。

4.1 Characteristics of genetic code

- (1) Direction of codon: $5' \rightarrow 3'$
- (2) Nonoverlapping / adjacent (不重叠/相邻的)
- (3) Comma-less (无逗号,连续性)
- (4) Degeneracy (简并性, synonymous codons)
- (5) Universality (通用性)
 - Some deviations occur in mitochondria and some unicellular organisms (单细胞生物)

4.2 Start codon and stop codon

4.2.1 Start codon

- AUG-真核/原核,真核中起始为Met、 原核中起始为fMet,翻译中间为Met。
- GUG-原核,起始为fMet,翻译中间为Val。极少数还用到UUG和AUU。

4.2.2 Stop codon

- UAG (amber 琥珀)
- UAA (ochre 赭石)
- UGA (opal 卵白石)

In bacteria, frequencies: UAA>UGA>UAG

4.3 The second set of genetic codes

- The ribosome is unable to distinguish between correctly and incorrectly charged tRNAs.
- Aminoacyl-tRNA synthetases recognize unique structural features of cognate (相 应的) tRNAs
- The second set of genetic codes guarantees the correct binding of amino acids to cognate RNA.

- In the structure of the aminoacyl-tRNA synthetase
- ► Identity elements (鉴别元件) in tRNA molecules

5. Prokaryotic protein synthesis

- Protein synthesis system:
- Template: mRNA
- Materials: amino acids
- Vehicle: tRNAs
- Site: Ribosome
- ➤ Enzymes: aminoacyl-tRNA synthetase, peptidyl transferase, translocase(移位酶)
- Cofactors: Mg²⁺/K⁺
- Protein factors: IF, EF, RF
- Energy supply: ATP, GTP

5.1 Initiation of translation

(1) tRNA charging

Aminoacyl-tRNA synthetases link amino acids to their cognate tRNAs.

- ➤ amino acid + ATP → aminoacyl-AMP+ pyrophosphate (PPi)
- > aminoacyl-AMP+tRNA → aminoacyl-tRNA + AMP

(2) Dissociation of ribosomes

- IFI prevents tRNAs from binding to the A site of the small subunit.
- IF3 binds to the small subunit (E site) and blocks it from reassociating with a large subunit.

- F2 with GTP binds to IFI and facilitates the association of fMet-tRNA; with the P site of the small subunit.
- The small subunit with all three initiation factors recognizes and binds to the RBS (SD sequence). Thus, the 30S initiation complex is formed.

(4) Formation of the 70S initiation complex

IF3 releases, and the large subunit is free to bind to the small subunit.

- ➤ GTP is cleaved (GTPase activity of IF2), which leading to the release of IF2•GDP as well as IF1 from the ribosome.
- 70S initiation complex is assembled at the start site of the mRNA with fMet-tRNA; in the P site and an empty A site.

5.2 Elongation of translation

(1) Aminoacyl-tRNA binding

Elongation Factors (EFs)

Charged tRNA bound to EF-Tu-GTP interact with the A-site of the ribosome.

- When the correct codon—anticodon interaction occurs, EF-Tu hydrolyzes its bound GTP, and is released from the tRNA and the ribosome.
- After EF-Tu release, the tRNA rotates into the peptidyl transferase center of the ribosome.

(2) Peptide bond formation

(转肽)

- The 50S subunit has peptidyl transferase activity as provided by an rRNA ribozyme.
- The nascent polypeptide chain is transferred from peptidyl-tRNA in the P site to newly arrived aminoacyl-tRNA in the A site.

The mechanism of peptide bond formation

5.3. Termination of translation

(1) Release factors (RFs)

Class I RFs

RF1: UAA, UAG RF2: UAA, UGA

Class I RFs recognize the stop codons and trigger hydrolysis of the peptide chain from the tRNA in the P site.

Class II release factors stimulate the dissociation of the class I factors from the ribosome after release of the polypeptide chain.

6. Differences between prokaryotic and eukaryotic protein synthesis

- (1) Ribosomes
- (2) Initiation codon and initiator tRNA
- (3) 5' structure of mRNA (cap and Kozak sequence)
- (4) Monocistronic mRNA
- (5) Translation is not coupled to transcription
- (6) Translation factors

		Initiation Factor	ors
Prokaryotic	Eukaryotic	General Function	Notes
IF-1 IF-2* [†]	elF1A elF2, elF3, elF5B*	Blocks A site Entry of initiator tRNA	eIF1A assists eIF2 in promoting Met-tRNA _i to binding to 40S; also promotes subunit dissociation eIF2 is a GTPase eIF3 stimulates formation of the ternary complex, its
IF-3	4A, 4B, 4E, 4G elF1, elF4 complex, elF3	Small subunit binding to mRNA	binding to 40S, and binding and scanning of mRNA eIF5B is involved in initiator tRNA entry and is a GTPase eIF4 complex functions in cap binding
		Elongation Fac	tors
Prokaryotic	Eukaryotic	General Function	
EF-Tu ^{†‡} , EF-G [†] EF-Ts EF-G [§]	eEF1α [‡] eEF1β, eEF1γ eEF2 [§]	GTP-binding GDP-exchanging Ribosome translocation	
		Release Facto	rs
Prokaryotic	Eukaryotic	General Function	
RF1 RF2 RF3 [†]	eRF1 eRF1 eRF3	UAA/UAG recognition UAA/UGA recognition Stimulation of other RF(s)	

^{*} IF-2 and eIF5B have sequence homology.

† IF-2, EF-Tu, EF-G, and RF3 have sequence homology.

‡ EF-Tu and eEF1α have sequence homology.

FF-G and eEF2 have sequence homology.

7. Initiation of translation in eukaryotes

7.1 Formation of the 48S pre-initiation complex

(1) Formation of the 43S pre-initiation complex

(2) mRNA is prepared for recognition by the 40S subunit

- eIF4E cap binding protein
- eIF4A RNA helicase which binds the mRNA unwinds any secondary structures formed at the end of the mRNA.
- eIF4B activates the activity of eIF4A
- eIF4G scaffold protein which binds to both eIF4E and eIF4A

(3) Recruit the 43S preinitiation complex to the mRNA

➤ 43S pre-initiation complex binds to the mRNA complex via the interactions between eIF4G and the initiation factors (particularly eIF3) bound to the small subunit to form the 48S pre-initiation complex.

7.2 Formation of the 80S initiation complex

(1) Scanning

The small subunit first binds to methylated cap, and then "scans" the mRNA for the first start codon.

8. Post-translational events

8.1 Post-translational processing

(1) Cleavage

- > To remove signal peptides
- To release mature fragments from polyprotein
 - Polyprotein mRNA are translated to a single polypeptide chain that is cleaved subsequently by specific proteases to produce multiple mature protein from one translation product.
- To remove internal peptides as well as
- To trim both N- and C-termini.

(2) Covalent modification

- ➤ Acetylation (乙酰化)
- ➤ Methylation (甲基化)
- ➤ Hydroxylation (羟基化)
- ▶ Phosphorylation (磷酸化)
- ➤ Glycosylation (糖基化)
- Addition of nucleotides

(3) Folding

- Formation of the three-dimensional structure
- ➤ With the help of Molecular chaperones (分子伴侣)

8.2 Protein targeting

1975, Blobel & Dobberstein

 Signal hypothesis – the ultimate cellular location of proteins is often determined by specific, relatively short, amino acid sequences within the proteins themselves.

8.2.1 Co-translation pathway

- Proteins of endoplasmic reticulum (ER),
 Golgi apparatus, lysosome, cell membrane,
 and secreted proteins.
- N-signal peptide
 - Composed of 13-16 amino acids
 - Have at least I positively charged residue
 - A hydrophobic core of 10-15 residues
 - Neutral residue (often Ala) at C-terminal
 - Binds to signal recognition particle (SRP)

- Signal recognition particle (SRP)
 - Recognize ribosomes with signal peptide of the nascent chain.
- SRP receptor (docking protein)
 - SRP with the arrested ribosome can bind to SRP receptor on the cytosolic side of the ER.

- Ribosome receptor (protein translocator complex)
 - Ribosome with SRP attaches to ribosome receptor on the ER.
 - SRP is released and can be re-used.
 - The ribosome is able to continue translation, and the nascent polypeptide chain is pushed through into the lumen of the ER.

8.2.2 Post-translation pathway

- Proteins of mitochondria, chloroplast and nuclear
- Signal peptide
 - ➤ Mitochondrial protein leader peptide sequence (导肽序列)
 - Chloroplast protein transit peptide (输送肽)
 - Nuclear protein nuclear localization signal (NLS)

8.3 Protein degradation

8.3.1 Proteasome (蛋白酶体) pathway

- Degradation of endogenous proteins
- In eukaryotes, N-terminal residue plays a critical role in inherent stability:
 - t_{1/2}>20 hours: Ala, Cys, Gly, Met, Pro, Ser, Thr, Val;
 - t_{1/2} 2~30 min: Arg, His, Ile, Leu, Lys, Phe, Trp, Tyr;
 - Destabilizing: Asn, Asp, Gln, Glu.

- N-terminal residue becomes ubiquitinylated (泛 素化) by covalent linkage of ubiquitin via its C-terminal Gly, to lysine residues in the protein.
- The ubiquitinylated protein is digested by a 26S protease complex in a reaction that requires ATP and releases intact ubiquitin for re-use.

26S protease complex - Proteasome

8.3.2 Lysosome (溶酶体) pathway

- Degradation of the extracellular proteins taken into the cell and the intracellular proteins taken into the autophagosomes (自噬体).
- Receptor-mediated endocytosis into endosome

- > NH₄CI:溶酶体降解途径抑制剂
- > MG132:蛋白酶体降解途径抑制剂

8.3.3 Results of protein degradation

- Reduced to amino acids that can be used to make new proteins
- Random peptide fragments of 9 amino acids in length are attached to peptide receptors – major histocompatibility complex class I molecules (MHC I, I类主 要组织相容性复合物)

9. Inhibitors of protein synthesis

9.1 Antibiotics

Target cells: Prokaryotic cells

9.1.1 Streptomycin (链霉素)

- Molecular target: 16S rRNA of the 30S subunit
- Consequence: interfering with the binding of formylmethionyl-tRNA to the 30S subunit.

9.1.2 Kanamycin (卡那霉素)

- Molecular target: 30S subunit
- Consequence: Mistranslation and indirectly inhibits translocation during protein synthesis

9.1.3 Neomycin (新霉素)

- Molecular target: 30S subunit
- Consequence: prevent assembly of the small subunit

9.1.4 Tetracyclines (四环素类)

- Molecular target: A-site of 30S subunit
- Consequence: Inhibits aminoacyl-tRNA binding to A-site

9.1.5 Chloramphenicol (氯霉素)

- Molecular target: Peptidyl transferase center of 50S subunit
- Consequence: Blocks correct positioning of A-site aminoacyl-tRNA for peptidyl transfer reaction

9.2 Diphtheria toxin (白喉毒素)

- Target cells: Eukaryotic cells
- Molecular target: Chemically modifies eEF2
- Consequence: Inhibits eEF2 function (translocation)

9.3 Cycloheximide (放线菌酮)

- Target cells: Eukaryotic cells
- Molecular target: Peptidyl transferase center of 60S subunit
- Consequence: Inhibits peptidyl transferase activity

9.4 Puromycin (嘌呤霉素)

- Target cells: Prokaryotic and eukaryotic cells
- Molecular target: Peptidyl transferase center of large ribosomal subunit
- Consequence: Chain terminator

Summary

- 1. Structure features and function of ribosome, mRNA and tRNA
- 2. Features of genetic code
- 3. Mechanisms of protein biosynthesis (especially the functions of each translation factors in prokaryotes and the differences between prokaryotic and eukaryotic protein synthesis)
- 4. The ways of post-translational processing
- 5. Inhibitors of protein synthesis

