Dynamic Design

1) For ECU1

- state machine diagram for each ECU component

- state machine diagram for the ECU operation

miro

- sequence diagram for the ECU

Calculate CPU load for the ECU

Suppose Execution Time for each task 1 ms

Speed Sensor Task → {E: 1ms, P: 5ms}

Door Sensor Task → {E: 1ms, P: 10ms}

Light Switch Task → {E: 1ms, P: 20ms}

Hyper period = 20

CPU Load = SUM (E/P) at hyper period=((1*(20/5) + 1*(20/10) + 1*(20/20))/20)*100 = 35 %

2) For ECU 2

- state machine diagram for each ECU component

- state machine diagram for the ECU operation

miro

sequence diagram for the ECU

- Calculate CPU load for the ECU

Suppose Execution Time for each task 1 ms

PeriodicReceivedTask → {E: 1ms, P: 5ms}

Hyper period = 5 ms

CPU Load = SUM (E/P) at hyper period=(((1*(5/5)) /5)*100 = 20%

3) For Bus Load

CAN Frame have 125 bits so if we are using (500 kbit/s) rate So to transfer one bit we need (1/bit rate) time = (1/500000*1000) = 2 microS To transfer 1 frame we need 2*125 = 250 microS In ECU1 there are 3 tasks use CAN Bus

First Task send 1 frame every 5 ms Second Task send 1 frame every 10 ms Third Task send 1 frame every 20 ms

Through one second

First Task send 200 frame Second Task send 100 frame Third Task send 50 frame

Totally 350 frames per second

Time on Bus = Total Frames * Frame Time = 350 * 250 = 87.5 ms Bus Load = ((87.5 /1000)*100)% = 8.75 %