ACH2053 - Introdução à Estatística Lista de Exercícios 04

1 Intervalos de confiança & Testes de hipóteses

Considere uma hipótese nula, $H_0: \mu = 10$, que é confrontada com uma hipótese alternativa $H_1: \mu > 10$. Aqui, μ é a média extraída de uma variável aleatória que segue uma distribuição gaussiana de variância $\sigma^2 = 25$. Após coletar 100 amostras, verificou-se que a média amostral era $\overline{x} = 11$.

1) Realizar o teste de hipóteses com nível de significância de $\alpha = 2\%$ e $\alpha = 3\%$.

-valor: 0.02275 = 2.3%; aceitação de H_0 para α = 2% e rejeição para α = 3%.

2) Determinar o ponto crítico e a região crítica para α = 2% e α = 3%.

 $\alpha = 2\% \colon \: x_c = 11.025, \: K : x > 11.025; \: \alpha = 3\% \colon \: x_c = 10.94, \: K : x > 10.94$

3) Com os mesmos dados, examinar como o teste de hipótese seria alterado caso a hipótese alternativa fosse substituída por $H_a: \mu \neq 10$.

a/2 = 1% e 1.5%, ambos inferiores ao p-valor (sem rejeição de H₀ nos dois case

A duração média de uma bateria de uma dada marca está em análise. Com base em estudos de baterias de outras marcas, assumiu-se que a vida média destas baterias segue uma distribuição normal/gaussiana com desvio padrão de 5.0 meses.

4) Estimar o tamanho da amostra de sorte que a amplitude do intervalo de 95% de confiança para a duração média seja de 3 meses.

43

5) Suponha que a duração média seja μ = 20 (meses). Após algumas alterações, houve uma alegação que o tempo de duração aumentou para $\tilde{\mu}$ = 24 (meses). Para verificar se houve, de fato, uma alteração, foram analisadas 16 amostras, e verificou-se que a média amostral foi \bar{x} = 23 (meses). Adotando as hipóteses nula H_0 : μ = 20 e alternativa H_1 : μ > 20, realizar um teste de hipóteses com nível de significância de α = 2%.

p-valor: 0.0082 < 2% (rejeição de $H_0); K: x > 22.5625$ (meses

6) Suponha que a duração média seja $\mu_0 = 22$ meses. Determinar a probabilidade de, mesmo assim, aceitar a hipótese $\mu = 20$ com os dados do item anterior.

67.364%

Uma pesquisa foi feita com ingressantes da EACH a fim de determinar o tempo médio que gastam para chegar à universidade. Dado o grande número de alunos, a média real é desconhecida, mas com base em informações do passado, considerou-se que o desvio padrão fosse de 30 minutos. Após entrevistar 100 alunos, obteve-se um valor médio observado de 85 minutos.

7) Estimar o intervalo em que se encontra a média verdadeira com coeficiente de confiança de 90%.

(80.08, 89.92) (min

8) Suponha que para efeito de pesquisa, um grupo resolveu adotar o tempo de percurso como sendo $\mu = 80$ (min). Um outro grupo, contudo, alegou que esse tempo deveria ser maior. Adotando as hipóteses nula $H_0: \mu = 80$ e alternativa $H_1: \mu > 80$, realizar um teste de hipóteses com nível de significância de $\alpha = 5\%$ determinando a região crítica. Para a análise, usar os dados mencionados no enunciado.

 $K\colon\thinspace x>84.92$ (min) (rejeição de $H_0);$ p-valor: 0.04746

9) Suponha que a duração seja $\mu_0 = 90$ min. Determinar a probabilidade de, mesmo assim, aceitar a hipótese nula anterior ($H_0: \mu = 80$) com os dados do enunciado.

0.04551 = 4.551%

Deseja-se estimar o tempo que os alunos necessitam para se graduar em uma universidade com muitos alunos. Com base em estatísticas do ano anterior, este tempo pode ser aproximado por uma distribuição normal e a variância pode ser considerada como sendo de 1.5 anos².

10) Estimar o número de ex-alunos para a entrevista de forma que a amplitude do intervalo de 80% de confiança para o tempo de conclusão médio do curso seja de, no máximo, 0.5 ano.

40

Deseja-se investigar a popularidade de um certo produto à venda no mercado. Para tal, realiza-se uma pesquisa de opinião e pede-se aos entrevistados uma pontuação ao produto de zero a dez. Assuma (sem questionar) que as notas sigam uma distribuição normal e a variância seja $\sigma^2 = 4$.

11) Desejando-se um nível de confiança de 90% e um intervalo de confiança de comprimento não maior que 0.4 pontos, determinar o número mínimo de amostras (entrevistados) n.

269

12) Caso não se possa entrevistar mais de 100 pessoas e tolerando-se um intervalo de confiança de comprimento 0.5 pontos, determinar o nível de confiança máximo que se pode conseguir para esta situação.

78.87