Package 'daewr'

July 23, 2014

Type Package

Title Design and Analysis of Experiments with R

Version 1.0-18
Date 2014-06-03
Author John Lawson
Maintainer John Lawson <lawson@byu.edu></lawson@byu.edu>
Description This package contains data frames and functions used in the book `Design and Analysis of Experiments with R"
License GPL-2
Depends BsMD, lattice, FrF2
LazyLoad yes
LazyData yes
daewr-package 3 Altscreen 4 antifungal 5 Apo 6 apple 6 arso 6 augm 5 Bdish 5 bha 9 BIBsize 10
bioequiv

cake																						 	
cement																						 	
chem																		 				 	
chipman																		 				 	
COdata																		 				 	
colormap .																							
cont																							
cpipe																							•
culture																							•
dairy																							•
•																							•
DefScreen .																							•
drug																							•
EEw1s1																							•
EEw1s2												•						 				 	
EEw1s3																						 	
EEw2s1																						 	
EEw2s2																		 				 	
EEw2s3																		 				 	
EEw3																						 	
eptaxr																						 	•
eptaxs2																						 •	•
1																							•
eptaxyb																							•
Fcrit																							•
fhstep																							•
Fpower																							•
Fpower1																							
Fpower2																						 	
fullnormal .																		 				 	
gagerr																		 				 	
gapstat																		 				 	
Gaptest																							
gear																		 				 	
halfnorm																							
hardwood .																							
		•	 -	 -	•	 •		 -	•	 •			•		•	 •	•	 	•	-		 •	•
		•	 -	 •	•	 •		 •	•	 •			•		•	 -	-	 	-	•	•	 	•
inject	•	•	 •	 •	•	 •	•	 •	•	 •	•	•	•	 •	•	 •	•	 •	•	•	•	 	•
LGB	٠	•	 •	 •	•	 ٠	•	 •	•	 •	•	•	٠	 ٠	٠	 ٠	٠	 •	٠	٠	•	 	•
LGBc																							
mod																							
ModelRobus																							
$MPV\;.\;\;.\;\;.$																						 	
Naph																						 	
OptPB																		 				 	
pastry																		 				 	
pest																							
pesticide																							
plasma																							
_																							
polvdat																							
polymer																							
prodstd																							
qsar																							
rcb																		 				 	

daewr-package 3

daewr-package		Data frames and functions for Design and Analysis of Experiments with R								
Index				75						
	•									
				6						
	0									
	~			65						
	\mathcal{C}			64						
				64						
	1			63						
	1			62						
	soup			62						
	Smotor			61						
	sausage			60						
	rubber			60						
	residue			59						

Description

This package contains the data sets and functions from the book Design and Analysis of Experiments with R published by CRC in 2013.

Details

Package: daewr Type: Package Version: 1.0 Date: 2012-05-10 License: GPL-2

LazyLoad: yes

Author(s)

John Lawson

Maintainer: John Lawson lawson@byu.edu

4 Altscreen

References

J. Lawson, Design and Analysis of Experiments with R, CRC 2013.

Examples

```
Fcrit(.05,2,15)
Fpower1(alpha=.05,nlev=3,nreps=4,Delta=3,sigma=sqrt(2.1))
BIBsize(6,3)
```

Altscreen

Alternate 16 run screening designs

Description

Recalls Jones and Montgomery's 16 run screening designs from data frames

Usage

```
Altscreen(nfac, randomize=FALSE)
```

Arguments

nfac input- an integer randomize input - logical

Value

a data frame containing the alternate screening design

Author(s)

John Lawson

References

Jones, B. and Montgomery, D. C. (2010) "Alternatives to resolution IV screening designs in 16 runs", Int. J. Experimental Design and Process Optimization, Vol 1, No. 4, 2010.

```
Altscreen(6)
Altscreen(6, randomize=TRUE)
```

antifungal 5

antifungal

Two-period crossover study of antifungal agent

Description

Data from the Two-period crossover study of an antifungal agent in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(antifungal)
```

Format

A data frame with 34 observations on the following 5 variables.

```
Group a factor with levels 1 2
Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
Period a factor with levels 1 2
Treat a factor with levels A B
pl a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(antifungal)
```

Apo

apolipoprotein survey varaince component study

Description

Data from the apolipoprotein survey variance component study of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(Apo)
```

Format

A data frame with 30 observations on the following 2 variables.

```
lab a factor with levels A B C D conc a numeric vector
```

6 arso

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Apo)
```

apple

Confounded apple slice browning experiment

Description

Data from the confounded apple slice browning experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(apple)
```

Format

A data frame with 24 observations on the following 4 variables.

Block a factor with levels 1 2 3 4

A a factor with levels 0 1 2 3

B a factor with levels 0 1 2

rating a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(apple)
```

arso

 $2^{(7-3)}$ arsenic removal experiment

Description

Data from the $2^{(7-3)}$ arsenic removal experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(arso)
```

augm 7

Format

A data frame with 8 observations on the following 8 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

y1 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(arso)
```

augm

 $2^{\hat{}}(7-3)$ arsenic removal experiment augmented with mirror image

Description

Data from the $2^{(7-3)}$ arsenic removal experiment augmented with mirror image in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(augm)
```

Format

A data frame with 8 observations on the following 8 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

fold a factor with levels original mirror

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

y a numeric vector

8 Bdish

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(augm)
```

Bdish

Confounded Block Dishwashing Experiment

Description

Data from the Confounded Block Dishwashing Experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(Bdish)
```

Format

A data frame with 16 observations on the following 5 variables.

```
Blocks a factor with levels 1 2 3 4
```

- A a factor with levels -1 1
- B a factor with levels -1 1
- C a factor with levels -1 1
- D a factor with levels -1 1
- y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Bdish)
```

Bff 9

Bff

Confounded block fractional mouse growth experiment

Description

Data from the Confounded block fractional factorial mouse growth experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(Bff)
```

Format

A data frame with 16 observations on the following 5 variables.

```
Blocks a factor with levels 1 2 3 4 5 6 7 8
```

- A a factor with levels -1 1
- B a factor with levels -1 1
- C a factor with levels -1 1
- D a factor with levels -1 1
- E a factor with levels -1 1
- F a factor with levels -1 1
- G a factor with levels -1 1
- H a factor with levels -1 1
- weight a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Bff)
```

bha

mouse liver enzyme experiment

Description

Data from the mouse liver enzyme experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(bha)
```

10 BIBsize

Format

A data frame with 16 observations on the following 4 variables.

```
block a factor with levels 1 2
strain a factor with levels A/J 12901a NIH BALB/c
treat a factor with levels treated control
y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(bha)
```

BIBsize

Balanced incomplete blocksize

Description

This function computes the number of blocks, treatment frequency and lambda for a potential BIB design

Usage

```
BIBsize(t,k)
```

Arguments

t input - number of levels of the treatment factor

k input - blocksize or number of experimental units per block

Value

a list containing the b=number of blocks, r=number of treatment replicates and lambda for a potential BIB design with t levels of treatment factor and blocksize k.

Author(s)

John Lawson

bioequiv 11

Examples

```
BIBsize(6,3)
## The function is currently defined as
BIBsize<-function(t,k)
{
  b<-t
  r<-0
  lambda<-0
  check<-0
  while (check==0) {
  while (r==0) {
     #cat("r=",r)
     testr<-(b*k)/t
     #cat("testr=",testr,"b=",b)
     if (testr==floor(testr)) {
       r<-testr
       } else {
       b<-b+1
       }
     }
      #cat("b=",b, "r=",r)
      testl < -(r*(k-1))/(t-1)
      #cat("testl=",testl,"b=",b)
      if (testl==floor(testl)) {
      lambda<-testl
       check=1
       } else {
       r<-0
       b<-b+1
      #cat("b=",b, "r=",r)
    #cat("lambda=",lambda)
    }
  cat("Posible BIB design with b=",b," and r=",r," lambda=",lambda,"\n")
```

bioequiv

Extra-period crossover bioequivalence study

Description

Data from the extra-period crossover bioequivalence study in chapter 9 of Design and Analysis of Experiments with ${\bf R}$

Usage

```
data(bioequiv)
```

Format

A data frame with 108 observations on the following 5 variables.

12 bioeqv

```
Group a factor with levels 1 2

Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25 26 27 28

30 31 32 33 34 35 36 120 122 129

Period a factor with levels 1 2 3

Treat a factor with levels A B

Carry a factor with levels none A B

y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bioequiv)

bioeqv

Latin Square bioequivalence experiment

Description

Data from the Latin Square bioequivalence experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(bioeqv)
```

Format

A data frame with 9 observations on the following 4 variables.

```
Period a factor with levels 1 2 3
Subject a factor with levels 1 2 3
Treat a factor with levels A B C
AUC a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(bioeqv)
```

blood 13

blood

Variance component study of calcium in blood serum

Description

Data from the Variance component study of calcium in blood serum in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(blood)
```

Format

A data frame with 27 observations on the following 3 variables.

```
sol a factor with levels 1 2 3 4 lab a factor with levels A B C calcium a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(blood)

BoxM

Box and Meyer's unreplicated 2⁴ from Chapter 3

Description

Data from Box and Meyer's unreplicated 2^4 in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(BoxM)
```

Format

A data frame with 16 observations on the following 4 variables.

- A a numeric vector containing the coded (-1,1) levels of factor A
- B a numeric vector containing the coded (-1,1) levels of factor B
- C a numeric vector containing the coded (-1,1) levels of factor C
- D a numeric vector containing the coded (-1,1) levels of factor D
- y a numeric vector containing the response

BPmonitor

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

References

```
Box, G. E. P. "George's Column", Quality Engineering, Vol. 3, pp. 405-410.
```

Examples

```
data(BoxM)
```

BPmonitor

blood pressure monitor experiment

Description

Data from the blood pressure monitor experiment experiment in Chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(BPmonitor)
```

Format

A data frame with 12 observations on the following 3 variables.

```
Block a factor with levels 1 2 3 4 5 6

Treatment a factor with levels "P" "A" "B" "C" pressure a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(BPmonitor)
```

bread 15

bread	Bread rise experiment data from Chapter 2	

Description

Data from the bread rise experiment in chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(bread)
```

Format

A data frame with 12 observations on the following 3 variables.

```
loaf a numeric vector
time a numeric vector
height a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bread)

bstep	This function performs Tukey's single degree of freedom test for inter- action in an unreplicated two-factor design

Description

This function removes the term with the highest p-value from a model already created by ihstep or fhstep.

Usage

```
bstep(y,des,prvm)
```

Arguments

у	input - this is a data frame containing a single numeric column of response data.
des	input - this is a data frame containing the numeric columns of the candidate independent variables.
prvm	input - this is a vector of text names of the terms in the model. This is created as the value resulting from running ihstep or flstep.

16 cake

Value

returned vector of terms entered in the model at this step.

Author(s)

John Lawson

Examples

```
library(daewr)
des <- DefScreen( m = 8 )
pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,8.1,5.35)
trm<-ihstep(pd,des)
trm<-fhstep(pd,des,trm)
trm<-fhstep(pd,des,trm)
trm<-bstep(pd,des,trm)
trm<-bstep(pd,des,trm)
trm<-bstep(pd,des,trm)</pre>
```

cake

Split-Plot response surface for cake baking experiment

Description

Data from the Split-Plot response surface for cake baking experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cake)
```

Format

A data frame with 11 observations on the following 6 variables.

```
Ovenrun a factor with levels 1 2 3 4
x1 a numeric vector
x2 a numeric vector
y a numeric vector
x1sq a numeric vector
x2sq a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(cake)
```

cement 17

cement

CCD design for cement workability experiment

Description

Data from the CCD design for cement workability experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cement)
```

Format

A data frame with 20 observations on the following 4 variables.

Block a factor with levels 1 2

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(cement)

chem

Chemical process experiment data from Chapter 3

Description

Data from the Chemical process experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

data(chem)

Format

A data frame with 16 observations on the following 4 variables.

- A a numeric vector containing the coded (-1,1) levels of factor A
- B a numeric vector containing the coded (-1,1) levels of factor B
- C a numeric vector containing the coded (-1,1) levels of factor C
- D a numeric vector containing the coded (-1,1) levels of factor D
- y a numeric vector containing the response

18 chipman

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(chem)
```

chipman

Williams' crossover design for sprinting experiment

Description

Data from the Williams' crossover design for sprinting experiment in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(chipman)
```

Format

A data frame with 36 observations on the following 5 variables.

```
Square a factor with levels 1 2
```

Group a factor with levels 1 2 3

Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12

Period a factor with levels 1 2 3

Treat a factor with levels 1 2 3

Carry a factor with levels 0 1 2 3

Time a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(chipman)
```

COdata 19

COdata

CO emmisions experiment data from Chapter 3

Description

Data from the CO emissions experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(COdata)
```

Format

A data frame with 18 observations on the following 3 variables.

Eth a factor with levels 0.1 0.2 0.3 Ratio a factor with levels 14 15 16 CO a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(COdata)
```

colormap

This function makes a colormap of correlations in a design matrix

Description

This function makes a colormap of the correlations of a design matrix stored in the data frame design

Usage

```
colormap(design, mod)
```

Arguments

design

input - a data frame containing columns of the numeric factor levels

mod

input - a number indicationg the model for the colormap 1 = linear model containing only the terms in the dataframe 2 = linear model plus two factor interactions 3 = linear model plus 2 and 3 factor interactions 4 = linear model plus 2,

3, and 4 factor interactions

20 cont

Author(s)

John Lawson

Examples

```
# color map of 2<sup>(4-1)</sup> design
library(FrF2)
design <- FrF2(8, 4, randomize = FALSE)</pre>
colormap(design, mod=3)
# Makes color map for saturated 2^(7-4) design in Figure 6.14 p. 197
library(FrF2)
design <-FrF2( 8, 7)</pre>
colormap(design, mod=2)
# Makes colormap of an Alternate Screening Design
library(daewr)
ascr<-Altscreen(7)
colormap(ascr, mod=2)
# Makes colormap of a Model Robust Design
library(daewr)
MR16 <- ModelRobust(MR16m7g5, randomize = FALSE)</pre>
colormap(MR16, mod=2)
## The function is currently defined as
function(design, mod) {
# design - a data frame containing columns of the numeric factor levels
\mbox{\#}\mbox{ mod -}\mbox{ the model for the color plot of correlations}
    1 = Linear model containing only the terms in the data frame
    2 = Linear model plus two factor interactions
    3 = Linear model plus 2 and 3 factor interactions
    4 = Linear model plus 2, 3 and 4 factor interactions
y<-runif(nrow(design),0,1)
if(mod==1) {test <- model.matrix(lm(y^{(.)}, data=design))}
if(mod==2) {test <- model.matrix(lm(y~(.)^2,data=design))}</pre>
if(mod==3) {test <- model.matrix(lm(y~(.)^3,data=design))}</pre>
if(mod==4) {test <- model.matrix(lm(y~(.)^4,data=design))}</pre>
names<-colnames(test)</pre>
names<-gsub(:,,names)</pre>
names<-gsub(1,,names)</pre>
colnames(test)<-names</pre>
cmas<-cor(test[,ncol(test):2])</pre>
cmas<-cmas[c((ncol(cmas)):1), ]</pre>
rgb.palette <- colorRampPalette(c("white", "black"), space = "rgb")</pre>
levelplot(cmas, main="Color map of correlations", xlab="", ylab="", col.regions=rgb.palette(120), cuts=100
```

Control factor array and summary statistics for controller circuit design experiment

cpipe 21

Description

Data from the control factor array and summary statistics for controller circuit design experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(cont)
```

Format

A data frame with 18 observations on the following 6 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- F a numeric vector

lns2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(cont)

cpipe

Split-plot response surface for ceramic pipe experiment

Description

Data from the Split-plot response surface for ceramic pipe experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cpipe)
```

Format

A data frame with 48 observations on the following 6 variables.

WP a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12

- A a numeric vector
- B a numeric vector
- P a numeric vector
- Q a numeric vector
- y a numeric vector

22 culture

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(cpipe)
```

culture

paecilomyces variotii culture experiment

Description

Data from the paecilomyces variotii culture experiment experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(culture)
```

Format

A data frame with 16 observations on the following 9 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

H a factor with levels -1 1

y1 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(culture)
```

dairy 23

dairy	Repeated measures study with dairy cow diets	

Description

Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(dairy)
```

Format

A data frame with 120 observations on the following 5 variables.

```
Diet a factor with levels "Barley" "Mixed" "Lupins" pr1 a numeric vector pr2 a numeric vector pr3 a numeric vector pr4 a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(dairy)
```

Description

Recalls Jones and Nachtsheim's Definitive screening designs for 3-level factors and 3-level factors with added 2-level categorical factors.

Usage

```
DefScreen(m, c=0, randomize=FALSE)
```

Arguments

m input- an integer, the m=number of 3-level factors

c input- an integer, the m=number of 2-level categorical factors, default is zero if

not supplied

randomize input - logical

24 drug

Value

a data frame containing the definitive screening design with 3-level factors first followed by 2-level factors.

Author(s)

John Lawson

References

Jones, B. and Nachtsheim, C. J. (2011) "A Class of Three Level Designs for Definitive Screening in the Presence of Second-Order Effects", Journal of Quality Technology, Vol 43, No. 1, 2011, pp 1-15. Jones, B. and Nachtsheim, C. J. (2013) "Definitive Screening Designs with Added Two-Level Categorical Factors", Journal of Quality Technology, Vol 44, No. 2, 2013, pp. 121-129.

Examples

```
DefScreen(m=8,c=2)
DefScreen(12)
DefScreen(m=4,c=4, randomize=TRUE)
```

drug

Data from rat behavior experiment in Chapter 4

Description

Data from rat behavior experiment in Chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(drug)
```

Format

A data frame with 50 observations on the following 3 variables.

```
rat a factor with levels 1 2 3 4 5 6 7 8 9 10 dose a factor with levels 0.0 0.5 1.0 1.5 2.0 rate a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(drug)
```

EEw1s1 25

EEw1s1

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 1 sub-plot factor from a catalog

Usage

```
EEw1s1(des, randomize=FALSE)
```

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

Examples

```
EEw1s1()
EEw1s1(EE8R4WP)
EEw1s1(EE8R4WP, randomize=TRUE)
```

EEw1s2

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 2 sub-plot factors from a catalog

Usage

```
EEw1s2(des, randomize=FALSE)
```

26 EEw1s2

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

```
EEw1s2()
EEw1s2(EE12R4WP)
EEw1s2(EE12R4WP, randomize=TRUE)
EEw1s2(EE12R6WP)
EEw1s2(EE12R6WP, randomize=TRUE)
EEw1s2(EE14R7WP)
EEw1s2(EE14R7WP, randomize=TRUE)
EEw1s2(EE15R5WP)
EEw1s2(EE15R5WP, randomize=TRUE)
EEw1s2(EE16R4WP)
EEw1s2(EE16R4WP, randomize=TRUE)
EEw1s2(EE18R6WP)
EEw1s2(EE18R6WP, randomize=TRUE)
EEw1s2(EE20R4WP)
EEw1s2(EE20R4WP, randomize=TRUE)
EEw1s2(EE20R5WP)
EEw1s2(EE20R5WP, randomize=TRUE)
EEw1s2(EE21R7WP)
EEw1s2(EE21R7WP, randomize=TRUE)
EEw1s2(EE24R4WP)
EEw1s2(EE24R4WP, randomize=TRUE)
EEw1s2(EE24R6WP)
EEw1s2(EE24R6WP, randomize=TRUE)
EEw1s2(EE25R5WP)
EEw1s2(EE25R5WP, randomize=TRUE)
EEw1s2(EE28R7WP)
EEw1s2(EE28R7WP, randomize=TRUE)
EEw1s2(EE30R6WP)
EEw1s2(EE30R6WP, randomize=TRUE)
EEw1s2(EE30R5WP)
EEw1s2(EE30R5WP, randomize=TRUE)
EEw1s2(EE35R7WP)
EEw1s2(EE35R7WP, randomize=TRUE)
EEw1s2(EE36R6WP)
EEw1s2(EE36R6WP, randomize=TRUE)
```

EEw1s3 27

```
EEw1s2(EE42R7WP)
EEw1s2(EE42R7WP, randomize=TRUE)
```

EEw1s3

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 3 sub-plot factors from a catalog

Usage

```
EEw1s3(des, randomize=FALSE)
```

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

```
EEw1s3()
EEw1s3(EE16R4WP)
EEw1s3(EE16R4WP, randomize=TRUE)
```

EEw2s2

EEw2s1

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog

Usage

```
EEw2s1(des, randomize=FALSE)
```

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

Examples

```
EEw2s1()
EEw2s1(EE21R7WP)
EEw1s1(EE21R7WP, randomize=TRUE)
```

EEw2s2

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog

Usage

```
EEw2s2(des, randomize=FALSE)
```

EEw2s3 29

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

Examples

EEw2s2()
EEw2s2(EE21R7WP)
EEw1s2(EE21R7WP, randomize=TRUE)

EEw2s3

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog

Usage

EEw2s3(des, randomize=FALSE)

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

30 *EEw3*

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

Examples

```
EEw2s3()
EEw2s3(EE24R8WP)
EEw1s3(EE24R8WP, randomize=TRUE)
```

EEw3

D-efficient Estimation Equivalent Response Surface Designs

Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 3 whole plot factors and 1-2 sub-plot factors from a catalog

Usage

```
EEw3(des, randomize=FALSE)
```

Arguments

des

input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize

input- a logical

Value

design

Author(s)

John Lawson

References

Jones, B. and Goos, P.(2012) "An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split Plot Designs", Journal of Quality Technology, Vol 44, No. 4, pp281-303, 2012.

```
EEw3()
EEw3(EE22R11WP)
EEw3(EE22R11WP, randomize=TRUE)
EEw3(EE48R12WP)
EEw3(EE48R12WP, randomize=TRUE)
```

eptaxr 31

eptaxr	Single array and raw response for silicon layer growth experiment

Description

Data from the single array and raw response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(eptaxr)
```

Format

A data frame with 64 observations on the following 9 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- H a numeric vector
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(eptaxr)
```

eptaxs2	Control array and variance of response for silicon layer growth experiment

Description

Data from the control array and variance of response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(eptaxs2)
```

32 eptaxyb

Format

A data frame with 16 observations on the following 9 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

H a numeric vector

s2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxs2)

eptaxyb

Control array and mean response for silicon layer growth experiment

Description

Data from the control array and mean response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(eptaxyb)

Format

A data frame with 16 observations on the following 9 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

H a numeric vector

ybar a numeric vector

Fcrit 33

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(eptaxyb)
```

Fcrit

F-Distribution critical values

Description

Gets F-distribution critical values

Usage

```
Fcrit(alpha, nu1, nu2)
```

Arguments

alpha input- right tail area beyond critical value

nu1 input - numerator degrees of freedom for F-distribution

nu2 input - denominator degrees of freedom for F-distribution

Value

returned critical value

Author(s)

John Lawson

```
Fcrit(.05,2,15)
## The function is currently defined as
function(alpha,nu1,nu2) qf(1-alpha,nu1,nu2)
```

fhstep

fhstep	This function performs Tukey's single degree of freedom test for inter-
	action in an unreplicated two-factor design

Description

This function performs a single step of a hierarchical forward stepwise regression by entering additional term(s) to a model already created by ihstep or flistep. If an interaction or quadratic term is entered first, the parent main effects are also entered into the model.

Usage

```
fhstep(y,des,prvm)
```

Arguments

у	input - this is a data frame containing a single numeric column of response data.
des	input - this is a data frame containing the numeric columns of the candidate independent variables.
prvm	input - this is a vector of text names of the terms in the model. This is created as

the value resulting from running ihstep or fhstep.

8 ...

Value

returned vector of terms entered in the model at this step.

Author(s)

John Lawson

```
library(daewr)
des <- DefScreen( m = 8 )
pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,8.1,5.35)
trm<-ihstep(pd,des)
trm<-fhstep(pd,des,trm)
trm<-fhstep(pd,des,trm)
trm<-fhstep(pd,des,trm)</pre>
```

Fpower 35

Fpower F-Distribution Power Calculation

Description

Calculates the power for the non-central F-distribution

Usage

```
Fpower(alpha, nu1, nu2, nc)
```

Arguments

alpha input - critical value alpha

nu1 input - degrees of freedom for numeratornu2 input - degrees of freedom for denominator

nc input - noncentrality parameter

Value

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)

John Lawson

Examples

```
Fpower(0.05,2,15,6.428)
## The function is currently defined as
function(alpha,nu1,nu2,nc) 1-pf(Fcrit(alpha,nu1,nu2),nu1,nu2,nc)
```

Fpower1

F-Distribution Power Calculation

Description

Calculates the power for one-way ANOVA

Usage

```
Fpower1(alpha,nlev,nreps,Delta,sigma)
```

36 Fpower1

Arguments

alpha	input - significance level of the F-test.
nlev	input - the number of levels of the factor
nreps	input - the number of replicates in each level of the factor.
Delta	input - the size of a practical difference in two cell means.
sigma	input - the standard deviation of the experimental error.

Value

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)

John Lawson

```
Fpower1(alpha=.05,nlev=3,nreps=4,Delta=3,sigma=sqrt(2.1))
rmin <-2 #smallest number of replicates considered
rmax <-6 # largest number of replicates considered
alpha \leftarrow rep(0.05, rmax - rmin +1)
sigma < -rep(sqrt(2.1), rmax - rmin +1)
nreps <-c(rmin:rmax)</pre>
nlev \leftarrow rep(3, rmax - rmin +1)
nreps <- rmin:rmax</pre>
Delta <- rep(3,rmax - rmin +1)</pre>
power <- Fpower1(alpha,nlev,nreps,Delta,sigma)</pre>
data.frame(r=nreps,Power=power)
## The function is currently defined as
Fpower1<-function(alpha=NULL, nlev=NULL, nreps=NULL, Delta=NULL, sigma=NULL)</pre>
{
##### Power Calculation for one way ANOVA ##########
# Argument list
# alpha the significance level of the test
# nlev the number of levels of the factor
# nreps the number of replicates in each level of the factor
# Delta the size of a practical difference in two cell means
# sigma the standard deviation of the experimental error
if (is.null(alpha)|is.null(nlev)|is.null(nreps)|is.null(Delta)|is.null(sigma))
  stop("you must supply alpha, nlev, nreps, Delta and sigma")
css<-(Delta^2)/2
nc<- (nreps*css)/(sigma^2)</pre>
df1<-nlev-1
df2<-(nreps-1)*nlev
power <- 1-pf(Fcrit(alpha,df1,df2),df1,df2,nc)</pre>
return(power)
}
```

Fpower2 37

Fpower2 F-Distribution Power Calculation	Fpower2	F-Distribution Power Calculation	
--	---------	----------------------------------	--

Description

Calculates the power for a two-way ANOVA

Usage

```
Fpower2(alpha,nlev,nreps,Delta,sigma)
```

Arguments

alpha	input - significance level of the F-test.
nlev	input - vector of length two containing the number of levels of the factors.
nreps	input - the the number of replicates in each combination of factor levels.
Delta	input - the size of a practical difference in two marginal factor level means.
sigma	input - the standard deviation of the experimental error.

Value

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)

John Lawson

```
power <- Fpower2(.05, nlev = c(4,4), nreps=2, Delta= 1, sigma=.32)
rmin <- 2 # smallest number of replicates</pre>
rmax <- 4 # largest number of replicates</pre>
alpha <- .05
sigma <- .32
Delta <- 1.0
nlev <- c(4,4)
nreps <- c(rmin:rmax)</pre>
result <- Fpower2(alpha, nlev, nreps, Delta, sigma)</pre>
options(digits = 5)
result
\mbox{\tt \#\#} 
 The function is currently defined as
Fpower2<-function(alpha=NULL, nlev=NULL,nreps=NULL, Delta=NULL, sigma=NULL)</pre>
##### Power Calculation for two way ANOVA ##########
# Argument list
# alpha the significance level of the test.
# nlev vector containing the number of levels of the factors.
# nreps the number of replicates in each combination of factor levels.
```

38 fullnormal

```
# Delta the size of a practical difference in two marginal factor level means.
# sigma the standard deviation of the experimental error.
if \ (is.null(alpha)|is.null(nlev)|is.null(nreps)|is.null(Delta)|is.null(sigma)) \\
  stop("you must supply alpha, nlev, nreps, Delta and sigma")
if(length(nlev)<2)
  stop ("nlev must be a two component vecto containing levels of the 1st and 2nd factors")
a <- nlev[1]
b <- nlev[2]
cssb <- (Delta^2)/2
ncb <- a*(nreps*cssb)/(sigma^2)</pre>
cssa<-(Delta^2)/2
nca<- b*(nreps*cssa)/(sigma^2)</pre>
dfa<- a-1
dfb<- b-1
df2<-(nreps-1)*b*a
powera <- 1-pf(Fcrit(alpha,dfa,df2),dfa,df2,nca)\\
powerb <- 1-pf(Fcrit(alpha,dfb,df2),dfa,df2,nca)</pre>
result <-cbind(nreps,df2,powera,powerb)</pre>
}
```

fullnormal

This function makes a full normal plot of the elements of the vector called effects

Description

This function makes a full normal plot of the elements of the vector called effects

Usage

```
fullnormal(effects, labs, alpha = 0.05, refline = "TRUE")
```

Arguments

effects input - vector of effects to be plotted

labs input - vector of labels of the effects to be plotted

alpha input - alpha level for labeling of significant effects using Lenth statistic

refline input - logical variable that indicates whether a reference line is added to the

plot (default is "TRUE")

Author(s)

John Lawson

```
# Example Separate Normal plots of whole and split plot effects from an unreplicated split-plot
data(plasma)
sol<-lm(y~A*B*C*D*E,data=plasma)
summary(sol)
# get whole plot effects and split plot effects
effects<-coef(sol)</pre>
```

gagerr 39

```
effects<-effects[c(2:32)]
Wpeffects<-effects[c(1:4, 6:11, 16:19, 26)]</pre>
Speffects<-effects[c(5,12:15,20:25,27:31)]
#make separate normal plots
library(BsMD)
fullnormal(Wpeffects, names(Wpeffects), alpha=.10)
fullnormal(Speffects, names(Speffects), alpha=.05)
## The function is currently defined as
function (effects, labs, alpha = 0.05, refline = "TRUE")
    crit <- LenthPlot(effects, alpha = alpha, plt = FALSE)["ME"]</pre>
    names <- names(effects)</pre>
    names <- gsub(":", "", names)
names <- gsub("1", "", names)</pre>
    le <- length(effects)</pre>
    for (i in 1:le) {
         logc <- (abs(effects[i]) <= crit)</pre>
         if (logc) {
             names[i] <- " "
    }
    qqnorm(effects, ylab = "Estimated Effects", xlab = "Normal Scores")
    x <- qqnorm(effects, plot = FALSE)</pre>
    zscr \leftarrow (x$x)
    effp <- effects[zscr > 0]
    zp <- zscr[zscr > 0]
    namep <- names[zscr > 0]
    effn <- effects[zscr < 0]</pre>
    zn <- zscr[zscr < 0]</pre>
    namen <- names[zscr < 0]</pre>
    text(zp, effp, namep, pos = 1)
    text(zn, effn, namen, pos = 3)
    ahe <- abs(effects)</pre>
    s0 <- 1.5 * median(ahe)
    selhe <- ahe < (2.5 * s0)
    pse = 1.5 * median(ahe[selhe])
    if (refline) {
         abline(0, pse)
    }
  }
```

gagerr

Gauge R&R Study

Description

Data from the Gauge R&R Study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(gagerr)
```

40 gapstat

Format

A data frame with 60 observations on the following 3 variables.

```
part a factor with levels 1 2 3 4 5 6 7 8 9 10 oper a factor with levels 1 2 3 y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(gagerr)
```

gapstat

This function computes the gap statistic which is used to test for an outlier using Daniels method

Description

This function computes the gap statistic which is used to test for an outlier using Daniels method

Usage

```
gapstat(beta, pse)
```

Arguments

```
beta input - vector of coefficients from saturated model fit to the data
pse input - Lenth's PSE statistic calculated from the elements of beta
```

Value

returned gap statistic

Author(s)

John Lawson

```
## The function is currently defined as
function (beta, pse)
{
    p <- length(beta)
    psehe <- pse
    sel <- beta >= 0
    betap <- beta[sel]
    betap <- sort(betap)
    betas <- betap[1]</pre>
```

Gaptest 41

```
sel <- beta < 0
betan <- beta[sel]
nn <- length(betan)
betan <- sort(betan)
betal <- betan[nn]
zl <- qnorm((nn - 0.375)/(p + 0.25))
zs <- qnorm((nn + 1 - 0.375)/(p + 0.25))
gap <- ((betas - betal)/psehe)/(zs - zl)
return(gap)
}</pre>
```

Gaptest

This function uses Daniel's Method to find an outlier in an unreplicated $2^{\hat{}}(k-p)$ design.

Description

This function uses Daniel's Method to find an outlier in an unreplicated $2^{(k-p)}$ design.

Usage

```
Gaptest(DesY)
```

Arguments

DesY

input this is a data frame containing an unreplicated $2^{(k-p)}$ design. The last variable in the data frame should be the numeric response.

Author(s)

John Lawson

References

Box, G.E.P. (1991) "George's column: Finding bad values in factorial designs", Quality Engineering, 3, 249-254.

```
# Example from Box(1991)
data(BoxM)
Gaptest(BoxM)

## The function is currently defined as
function (DesY)
{
    ncheck <- dim(DesY)
    ncheck <- ncheck[1]
    tcnd = TRUE
    if (ncheck == 8) {
        tcnd = FALSE
    }
    if (ncheck == 16) {</pre>
```

42 Gaptest

```
tcnd = FALSE
if (ncheck == 32) {
    tcnd = FALSE
if (tcnd) {
    stop("This function only works for 8, 16, or 32 run designs",
         "\n")
}
else {
    if (ncheck == 8)
        ncheck = 16
    critg16 <- c(1.7884, 5.1009)
    critg32 <- c(1.7297, 5.8758)
    modf <- lm(y ~ (.)^4, x = TRUE, data = DesY)
    nbeta <- dim(DesY)</pre>
    nbeta <- nbeta[1]</pre>
    he <- modf$coef
    selcol <- which(!is.na(he))</pre>
    he <- he[selcol]
    he <- he[-1]
    p <- length(he)</pre>
    n < -p + 1
    cn1 <- names(he)</pre>
    ccn1 <- gsub("[^A-Z]", "", cn1)</pre>
    names(he) <- ccn1</pre>
    ahe <- abs(he)
    s0 <- 1.5 * median(ahe)
    selhe <- ahe < (2.5 * s0)
    pse = 1.5 * median(ahe[selhe])
    gap <- gapstat(he, pse)</pre>
    if (ncheck == 16) {
         test = (gap > critg16[1])
    }
    else {
        test = (gap > critg32[1])
    }
    if (test) {
        X \leftarrow modf$x
        X <- X[, selcol]</pre>
        X \leftarrow X[, -1]
         se <- as.matrix(sign(he), nrow = 1)</pre>
         sigef <- LGB(he, rpt = FALSE, plt = FALSE)</pre>
         for (i in 1:length(he)) {
             if (sigef[i] == "yes") {
               se[i] = 0
             }
         }
         sp <- X %*% se
        asp <- abs(sp)</pre>
        oo <- max.col(t(asp))</pre>
        ae <- abs(he)
        sae <- sort(ae)</pre>
        nsmall <- round(length(he)/2)</pre>
        bias <- 2 * sum(sae[1:nsmall])</pre>
        y <- DesY$y
        ycorr <- DesY$y
```

gear 43

```
ycorr[oo] <- ycorr[oo] + (-1 * sign(sp[oo])) * bias</pre>
          detect <- c(rep("no", n))</pre>
          detect[oo] <- "yes"</pre>
          cat("Initial Outlier Report", "\n")
          cat("Standardized-Gap = ", gap, "Significant at 50th percentile",
               "\n")
          DesYc <- cbind(DesY[, 1:(dim(DesY)[2] - 1)], ycorr)</pre>
          modf <- lm(ycorr ~ (.)^4, x = TRUE, data = DesYc)</pre>
          che <- modf$coef
          che <- che[!is.na(che)]</pre>
          che <- che[-1]
          p <- length(che)</pre>
          n < -p + 1
          cn <- names(che)</pre>
          ccn <- gsub("[^A-Z]", "", cn)</pre>
          names(che) <- ccn</pre>
          ache <- abs(che)</pre>
          s0 <- 1.5 * median(ache)
          selche <- ache < (2.5 * s0)
          psec = 1.5 * median(ache[selche])
          gap <- gapstat(he, psec)</pre>
          if (ncheck == 16)
              test2 = (gap > critg16[2])
          else test2 = (gap > critg32[2])
          if (test2) {
              cat("Final Outlier Report", "\n")
              cat("Standardized-Gap = ", gap, "Significant at 99th percentile",
                 "\n")
              cat("
                       ". "\n")
              cat("
                       Corrrected Data Report ", "\n")
               cat("Response Corrected Response Detect Outlier",
                 "\n")
               cat(paste(format(DesY$y, width = 8), format(DesYc$ycorr,
                 width = 13), "
                                     ", format(detect,
                 width = 10), "\n"), sep = "")
               tce <- LGB(che)
          }
          else {
               cat("Final Outlier Report", "\n")
               cat("No significant outlier detected in second pass",
                 "\n")
              LGB(he)
                        ", "\n")
               cat("
          }
      }
 }
}
```

gear

Unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears

Description

Data from the unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears in chapter 8 of Design and Analysis of Experiments with R

44 halfnorm

Usage

```
data(gear)
```

Format

A data frame with 16 observations on the following 6 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

P a factor with levels -1 1

Q a factor with levels -1 1

y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(gear)
```

halfnorm This function makes a half normal plot of the elements of the vector called effects

Description

This function makes a half normal plot of the elements of the vector called effects

Usage

```
halfnorm(effects, labs, alpha = 0.05, refline = "TRUE")
```

Arguments

effects input - vector of effects to be plotted

labs input - vector of labels of the effects to be plotted

alpha input - alpha level for labeling of significant effects using Lenth statistic

refline input - logical variable that indicates whether a reference line is added to the

plot (default is "TRUE")

Author(s)

John Lawson

hardwood 45

Examples

```
# Example Separate Normal plots of whole and split plot effects from an unreplicated split-plot
data(plasma)
sol<-lm(y~A*B*C*D*E,data=plasma)
# get whole plot effects and split plot effects
effects<-coef(sol)
effects<-effects[c(2:32)]
Wpeffects<-effects[c(1:4, 6:11, 16:19, 26)]
Speffects<-effects[c(5,12:15,20:25,27:31)]
#make separate half normal plots
library(BsMD)
halfnorm(Wpeffects,names(Wpeffects),alpha=.10)
halfnorm(Speffects,names(Speffects),alpha=.05)</pre>
```

hardwood

low grade hardwood conjoint study

Description

Data from the low grade hardwood conjoint study in chapter 6 of Design and Analysis of Experiments with R

Usage

data(hardwood)

Format

A data frame with 12 observations on the following 5 variables.

```
Design a factor with levels "RC" "AC" "OCI" "OCII"

Price a numeric variable

Density a factor with levels "Clear" "Heavy" "Medium"

Guarantee a factor with levels "1y" "Un"

Rating a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(hardwood)

46 inject

This function performs Tukey's single degree of freedom test for inter-
action in an unreplicated two-factor design

Description

This function performs the first step of a hierarchical forward stepwise regression. If an interaction or quadratic term is entered first, the parent main effects are also entered into the model.

Usage

```
ihstep(y,des)
```

Arguments

y input - this is a data frame containing a single numeric column of response data.

des input - this is a data frame containing the numeric columns of the candidate

independent variables.

Value

returned vector of terms entered in the model at this step.

Author(s)

John Lawson

Examples

```
library(daewr)
des <- DefScreen( m = 8 )
pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,8.1,5.35)
trm<-ihstep(pd,des)</pre>
```

inject

Single array for injection molding experiment

Description

Data from the single array for injection molding experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(inject)
```

LGB 47

Format

A data frame with 20 observations on the following 8 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

shrinkage a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(inject)

LGB	This function uses the LGB Method to detect significant effects in un-
	replicated fractional factorials.

Description

This function uses the LGB Method to detect significant effects in unreplicated fractional factorials.

Usage

```
LGB(Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)
```

Arguments

Beta	input - this is the numeric vector of effects or coefficients to be tested
alpha	input - This is the significance level of the test
rpt	input - this is a logical variable that controls whether the report is written (default is $TRUE$)
plt	input - this is a logical variable that controls whether a half-normal plot is made (default is TRUE)
pltl	input - this is a logical variable that controls whether the significance limit line is drawn on the half-normal plot (default is TRUE)

Author(s)

John Lawson

48 LGBc

References

Lawson, J., Grimshaw, S., Burt, J. (1998) "A quantitative method for identifying active contrasts in unreplicated factorial experiments based on the half-normal plot", Computational Statistics and Data Analysis, 26, 425-436.

Examples

```
data(chem)
modf<-lm(y~A*B*C*D,data=chem)
LGB(coef(modf)[-1],rpt=FALSE)

## The function is currently defined as
LGB <- function(Beta, alpha=.05,rpt=TRUE, plt=TRUE, pltl=TRUE) {
sigLGB<-LGBc(Beta,alpha,rpt,plt,pltl)
}</pre>
```

LGBc

This function does the calculations for the LGB Method to detect significant effects in unreplicated fractional factorials.

Description

This function uses the LGB Method to detect significant effects in unreplicated fractional factorials.

Usage

```
LGBc(Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)
```

Arguments

Beta	input - this is the numeric vector of effects or coefficients to be tested
alpha	input - This is the significance level of the test
rpt	input - this is a logical variable that controls whether the report is written (default is \overline{TRUE})
plt	input - this is a logical variable that controls whether a half-normal plot is made (default is TRUE)
pltl	input - this is a logical variable that controls whether the significance limit line is drawn on the half-normal plot (default is TRUE)

Author(s)

John Lawson

References

Lawson, J., Grimshaw, S., Burt, J. (1998) "A quantitative method for identifying active contrasts in unreplicated factorial experiments based on the half-normal plot", Computational Statistics and Data Analysis, 26, 425-436.

LGBc 49

```
data(chem)
modf<-lm(y~A*B*C*D,data=chem)</pre>
sig<-LGBc(coef(modf)[-1],rpt=FALSE)</pre>
## The function is currently defined as
function (Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)
    siglev \leftarrow c(0.1, 0.05, 0.025, 0.01)
    df \leftarrow c(7, 8, 11, 15, 16, 17, 26, 31, 32, 35, 63, 127)
    crittab <- matrix(c(1.265, 1.196, 1.161, 1.122, 1.11, 1.106,</pre>
        1.072, 1.063, 1.06, 1.059, 1.037, 1.023, 1.534, 1.385,
        1.291, 1.201, 1.186, 1.178, 1.115, 1.099, 1.093, 1.091,
        1.056, 1.034, 1.889, 1.606, 1.449, 1.297, 1.274, 1.26,
        1.165, 1.14, 1.13, 1.127, 1.074, 1.043, 2.506, 2.026,
        1.74, 1.447, 1.421, 1.377, 1.232, 1.197, 1.185, 1.178,
        1.096, 1.058), ncol = 4, byrow = FALSE)
    colind <- which(siglev == alpha, arr.ind = TRUE)</pre>
    if (length(colind) == 0) {
         stop("this function works only when alpha= .1, .05, .025 or .01")
    rowind <- which(df == length(Beta), arr.ind = TRUE)</pre>
    if (length(rowind) == 0) {
         stop("this function works only for coefficent vectors of
length 7,8,11,15,16,26,31,32,35,63,or 127")
    }
    critL <- crittab[rowind, colind]</pre>
    acj <- abs(Beta)</pre>
    ranks <- rank(acj, ties.method = "first")</pre>
    s0 <- 1.5 * median(acj)</pre>
    p <- (ranks - 0.5)/length(Beta)</pre>
    z \leftarrow qnorm((p + 1)/2)
    moda <- lm(acj \sim -1 + z)
    beta1 <- moda$coef
    sel <- acj < 2.5 * s0
    modi \leftarrow lm(acj[sel] \sim -1 + z[sel])
    beta2 <- modi$coef
    Rn <- beta1/beta2
    pred <- beta2 * z
    n <- length(acj[sel])</pre>
    df \leftarrow n - 1
    sig <- sqrt(sum(modi$residuals^2)/df)</pre>
    se.pred <- sig * (1 + 1/n + (z^2)/sum(z[sel]^2))^0.5
    pred.lim \leftarrow pred + qt(0.975, df) * se.pred
    sigi <- c(rep("no", length(Beta)))</pre>
    sel2 <- acj > pred.lim
    sigi[sel2] <- "yes"</pre>
    if (plt) {
        plot(z, acj, xlab = "Half Normal Scores", ylab = "Absoulute Effects")
        lines(sort(z), sort(pred), lty = 1)
        for (i in 1:length(Beta)) {
             if (sigi[i] == "yes")
                 text(z[i], acj[i], names(Beta)[i], pos = 1)
        if (pltl) {
```

50 mod

```
lines(sort(z), sort(pred.lim), lty = 3)
}

if (rpt) {
    cat("Effect Report", "\n")
    cat(" ", "\n")
    cat("Label Half Effect Sig(.05)", "\n")
    cat(paste(format(names(Beta), width = 8), format(Beta, width = 8), " ", format(sigi, width = 10), "\n"),
        sep = "")
    cat(" ", "\n")
    cat(" Lawson, Grimshaw & Burt Rn Statistic = ", Rn, "\n")
    cat("95th percentile of Rn = ", critL, "\n")
}
return(sigi)
}
```

mod

Mod function

Description

Gets mod of a to base b

Usage

mod(a,b)

Arguments

```
a input- an integerb input - an integer
```

Value

remainder of a/b or mod(a,b)

Author(s)

John Lawson

```
mod(5,3)
## The function is currently defined as
mod<-function(a,b)
{a-b*floor(a/b)}</pre>
```

ModelRobust 51

ModelRobust

Model Robust Factorial Designs

Description

Recalls Li and Nachtsheim's model robust factorial designs from a catalog of data frames

Usage

```
ModelRobust(des, randomize=FALSE)
```

Arguments

des input- a character variable containing the name of a design in the catalog. If left

blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson

References

Li, W. and Nachtsheim, C. J. (2000) "Model Robust factorial Designs", Technometrics, Vol 42, No. 4, pp345-352, 2000.

Examples

```
ModelRobust()
ModelRobust(MR8m4g3)
ModelRobust(MR8m4g3, randomize=TRUE)
```

MPV

mixture process variable experiment with mayonnaise

Description

Data from the mixture process variable experiment with mayonnaise in chapter 11 of Design and Analysis of Experiments with R

Usage

data(MPV)

S2 Naph

Format

A data frame with 35 observations on the following 4 variables.

```
x1 a numeric vector
```

x2 a numeric vector

x3 a numeric vector

z1 a numeric vector

z2 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(MPV)

Naph

Yields of naphthalene black

Description

Data from the Yields of naphthalene black of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(Naph)
```

Format

A data frame with 30 observations on the following 2 variables.

```
sample a factor with levels 1 2 3 4 5 6 yield a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Naph)
```

OptPB 53

OptPB

Optimum Plackett-Burman Designs

Description

Selects the columns from a Plackett-Burman Design Produced by FrF2 that will minimize model dependence for main effects and two factor interactions

Usage

```
OptPB(nruns, nfactors, randomize=FALSE)
```

Arguments

nruns input- an integer representing the number of runs in the design

nfactors input - in integer representing the number of factors in the design

randomize input - logical

Value

design

Author(s)

John Lawson

References

Fairchild, K. (2011) "Screening Designs that Minimize Model Dependence", MS Project Department of Statistics Brigham Young University, Dec. 2011.

Examples

OptPB(12,8)

pastry

Blocked response surface design for pastry dough experiment

Description

Data from the Blocked response surface design for pastry dough experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(pastry)
```

54 pest

Format

```
A data frame with 28 observations on the following 5 variables.
```

```
Block a factor with levels 1 2 3 4 5 6 7
x1 a numeric vector
x2 a numeric vector
x3 a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(pastry)
```

y a numeric vector

pest

Pesticide formulation experiment

Description

Data from the Pesticide formulation experiment in chapter 11 of Design and Analysis of Experiments with R

Usage

```
data(pest)
```

Format

A data frame with 13 observations on the following 4 variables.

```
x1 a numeric vectorx2 a numeric vector
```

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(pest)
```

pesticide 55

pesticide

pesticide application experiment

Description

Data from the pesticide application experiment in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(pesticide)
```

Format

A data frame with 16 observations on the following 4 variables.

```
form a factor with levels A B tech a factor with levels 1 2 plot a factor with levels 1 2 residue a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(pesticide)
```

plasma

Unreplicated split-plot 2⁵ experiment on plasma treatment of paper

Description

Data from the unreplicated split-plot 2^5 experiment on plasma treatment of paper in chapter 8 of Design and Analysis of Experiments with R

Usage

```
data(plasma)
```

Format

A data frame with 32 observations on the following 6 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

y a numeric vector containing the response

56 polymer

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(plasma)
```

polvdat

Polvoron mixture experiment

Description

Data from the Polvoron mixture experiment in chapter 11 of Design and Analysis of Experiments with R

Usage

```
data(polvdat)
```

Format

A data frame with 12 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(polvdat)
```

polymer

polymerization strength variability study

Description

Data from the polymerization strength variability study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(polymer)
```

prodstd 57

Format

A data frame with 120 observations on the following 5 variables.

```
lot a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

box a factor with levels 1 2

prep a factor with levels 1 2

test a factor with levels 1 2

strength a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(polymer)
```

prodstd	Complete control factor array and noise factor array for connector experiment

Description

Data from the complete control factor array and noise factor array for connector experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(prodstd)
```

Format

A data frame with 16 observations on the following 16 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- Pof a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(prodstd)
```

58 rcb

qsar

Library of substituted hydroxyphenylurea compounds

Description

Data from the Library of substituted hydroxyphenylurea compounds in chapter 10 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(qsar)
```

Format

A data frame with 36 observations on the following 4 variables.

Compound a numeric vector

HE a numeric vector

DMz a numeric vector

S0K a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(qsar)
```

rcb

generalized RCB golf driving experiment

Description

Data from the generalized RCB golf driving experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(rcb)
```

Format

A data frame with 135 observations on the following 3 variables.

```
id a factor with levels 1 2 3 4 5 6 7 8 9
teehgt a factor with levels 1 2 3
cdistance a numeric vector
```

residue 59

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(rcb)
```

residue

Herbicide degradation experiment

Description

Data from the Herbicide degradation experiment in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(residue)
```

Format

A data frame with 16 observations on the following 3 variables.

```
soil a factor with levels "C" "P"
moisture a factor with levels "L" "H"
temp a factor with levels 10 30
X1 a numeric vector
X2 a numeric vector
X3 a numeric vector
X4 a numeric vector
X5 a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(residue)
```

60 sausage

rubber

Rubber Elasticity data

Description

Data from the Rubber Elasticity Study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(rubber)
```

Format

A data frame with 96 observations on the following 4 variables.

```
supplier a factor with levels A B C D
batch a factor with levels I II III IV
sample a factor with levels 1 2
elasticity a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(rubber)
```

sausage

Split-plot experiment on sausage casing with RCB in whole plot

Description

Data from the Split-plot experiment on sausage casing with RCB in whole plot in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(sausage)
```

Format

A data frame with 32 observations on the following 5 variables.

```
Block a factor with levels 1 2
```

Gbatch a factor with levels 1 2 3 4

A a factor with levels -1 1

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

ys a numeric vector containing the response

Smotor 61

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(sausage)
```

Smotor

Single array for starting motor experiment

Description

Data from the single array for starting motor experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(Smotor)
```

Format

A data frame with 18 observations on the following 6 variables.

A a factor with levels 1 2

B a factor with levels 1 2 3

C a factor with levels 1 2 3

D a factor with levels 1 2 3

E a factor with levels 1 2

torque a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Smotor)
```

62 soupmx

soup

dry mix soup experiment

Description

Data from the dry mix soup experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(soup)
```

Format

A data frame with 16 observations on the following 6 variables.

```
A a factor with levels -1 1
```

- B a factor with levels -1 1
- C a factor with levels -1 1
- D a factor with levels -1 1
- E a factor with levels -1 1
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(soup)

soupmx

dry soup mix variance component study

Description

Data from the dry soup mix variance component study of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(soupmx)
```

Format

A data frame with 12 observations on the following 2 variables.

```
batch a factor with levels 1 2 3 4 weight a numeric vector
```

splitPdes 63

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(soupmx)
```

splitPdes

Split-plot cookie baking experiment

Description

Data from the Split-plot cookie baking experiment in chapter 8 of Design and Analysis of Experiments with R

Usage

```
data(splitPdes)
```

Format

A data frame with 24 observations on the following 5 variables.

```
short a factor with levels 100 80
trayT a factor with levels RoomT Hot
bakeT a factor with levels low mid high
batch a factor with levels 1 2
y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(splitPdes)
```

64 strung

SPMPV

Split-plot mixture process variable experiment with vinyl

Description

Data from the Split-plot mixture process variable experiment with vinyl in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(SPMPV)
```

Format

A data frame with 28 observations on the following 7 variables.

```
wp a factor with levels 1 2 3 4 5 6 7
```

- z1 a numeric vector
- z2 a numeric vector
- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(SPMPV)

strung

Repeated measures study with dairy cow diets

Description

Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (strung out format)

Usage

```
data(strung)
```

strungtile 65

Format

```
A data frame with 120 observations on the following 5 variables.
```

```
Diet a factor with levels "Barley" "Mixed" "Lupins"
Cow a factor with levels 1 2 3 4 5 6 7 8 9 10
week a factor with levels 1 2 3 4
```

protein a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(strung)
```

st	rur	ngt	i	1	e
Ju	· ui	יט פי	-	-	•

Strung out control factor array and raw response data for Ina tile experiment

Description

Data from the strung out control factor array and raw response data for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(strungtile)
```

Format

A data frame with 16 observations on the following 16 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- H a numeric vector
- AH a numeric vector
- BH a numeric vector
- CH a numeric vector
- DH a numeric vector
- EH a numeric vector
- FH a numeric vector
- GH a numeric vector
- y a numeric vector

66 taste

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(strungtile)
```

sugarbeet

Sugarbeet data from Chapter 2

Description

Sugarbeet data from chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(sugarbeet)
```

Format

A data frame with 18 observations on the following 2 variables.

```
treat a factor with levels A B C D yield a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(sugarbeet)
```

taste

taste test panel experiment

Description

Data from the taste test panel experiment in Chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(taste)
```

Format

```
A data frame with 24 observations on the following 3 variables.
```

```
panelist a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 recipe a factor with levels "A" "B" "C" "D" score a numeric vector
```

teach 67

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(taste)
```

teach

Teaching experiment data from Chapter 2

Description

Data from the teaching experiment in chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(teach)
```

Format

A data frame with 30 observations on the following 4 variables.

```
class a numeric vector
method a factor with levels 1 2 3
score a factor with levels 1 2 3 4 5
count a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(teach)
```

Tet

Tetracycline concentration in plasma

Description

Data from the Tetracycline concentration in plasma study in chapter 10 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(Tet)
```

68 tile

Format

A data frame with 9 observations on the following 2 variables.

```
Time a numeric vector

Conc a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Tet)
```

tile

Control factor array and summary statistics for Ina tile experiment

Description

Data from the control factor array and summary statistics for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(tile)
```

Format

A data frame with 8 observations on the following 11 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

y1 a numeric vector

y2 a numeric vector

ybar a numeric vector

1ns2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(tile)
```

Treb 69

Treb	Box-Behnken design for trebuchet experiment	
	J	

Description

Data from the Box-Behnken design for trebuchet experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(Treb)
```

Format

A data frame with 15 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(Treb)

Tukey1df	This function performs Tukey's single degree of freedom test for interaction in an unreplicated two-factor design

Description

This function performs Tukey's single degree of freedom test for interaction in an unreplicated two-factor design

Usage

Tukey1df(data)

Arguments

data

input - this is a data frame with three variables, the first variable is a numeric response and next two variables are factors. There should be ab lines in the data frame where a is the number of levels of the first factor, and b is the number of levels of the second factor.

70 Tukey1df

Author(s)

John Lawson

```
library(daewr)
data(virus)
Tukey1df(virus)
## The function is currently defined as
function (data)
{
    y <- data[, 1]
    Afactor <- data[, 2]
    Bfactor <- data[, 3]</pre>
    tst1 <- is.factor(Afactor)</pre>
    tst2 <- is.factor(Bfactor)</pre>
    tst3 <- is.numeric(y)</pre>
    if (tst1 & tst2 & tst3) {
        a <- nlevels(Afactor)</pre>
        b <- nlevels(Bfactor)</pre>
    }
    else {
        stop("The first column of the data frame is the numeric response,
the 2nd and 3rd columns should be coded as factors")
    tst4 \leftarrow max(a, b) > 2
    tst5 \leftarrow length(y) == a * b
    if (tst4 & tst5) {
        ybb <- with(data, tapply(y, Bfactor, mean))</pre>
        yba <- with(data, tapply(y, Afactor, mean))</pre>
        sbb <- with(data, tapply(y, Bfactor, sum))</pre>
        sba <- with(data, tapply(y, Afactor, sum))</pre>
        ybardd <- mean(y)</pre>
        CT <- (sum(y)^2)/(a * b)
        ssA \leftarrow sum(sba^2/b) - CT
        ssB \leftarrow sum(sbb^2/a) - CT
        ssE \leftarrow sum(y^2) - CT - ssA - ssB
        ybdj <- rep(ybb, 6)</pre>
        prody <- y * ybdj</pre>
        sumprod <- tapply(prody, Afactor, sum)</pre>
        leftsum <- sum(sumprod * yba)</pre>
         ssAB \leftarrow (a * b * (leftsum - (ssA + ssB + a * b * ybardd^2) *
             ybardd)^2/(ssA * ssB))
        ssR <- ssE - ssAB
        F \leftarrow ssAB/(ssR/((a - 1) * (b - 1) - 1))
        Pval <- 1 - pf(1, ((a - 1) * (b - 1) - 1), F)
        cat("Source
                                df
                                                                      Pr>F",
                                        SS
             "\n")
         cat("A
                             ", paste(format(a - 1, width = 6),
             " ", format(round(ssA, 4), justify = "right"), "
             format(round(ssA/(a - 1), 4), justify = "right"),
             "\n"), sep = "")
                            ", paste(format(b - 1, width = 6),
             " ", format(round(ssB, 4), justify = "right"), " ",
             format(round(ssB/(b - 1), 4), justify = "right"),
```

vci 71

```
"\n"), sep = "")
        cat("Error ", paste(format((b - 1) * (a - 1),
width = 6), " ", format(round(ssE, 4), justify = "right"),
            " ", format(round(ssE/(a - 1) * (b - 1), 4), justify = "right"),
            "\n"), sep = "")
        cat("NonAdditivity", paste(format(1, width = 6), " ",
            format(round(ssAB, 4), justify = "right"), " ",
            format(round(ssAB, 4), justify = "right"), " ",
            format(round(F, 2), justify = "right"), " ", format(round(Pval,
                4), justify = "right"), "\n"), sep = "")
                           ", paste(format((b - 1) * (a - 1) -
            1, width = 6), " ", format(round(ssR, 4), justify = "right"),
            " ", format(round(ssR/((a - 1) * (b - 1) - 1), 4),
                justify = "right"), "\n"), sep = "")
    }
    else {
        stop("This function only works for unreplicated 2-factor
factorials with >2 levels for one of the factors")
  }
```

vci

 $confidence\ limits\ for\ method\ of\ moments\ estimators\ of\ variance\ components$

Description

function for getting confidence intervals on variance components estimated by the method of moments

Usage

```
vci(confl,c1,ms1,nu1,c2,ms2,nu2)
```

Arguments

confl	input- confidence level
c1	input - linear combination coefficient of $ms1$ in the estimated variance component $% \left\{ 1,2,,m\right\}$
ms1	input - Anova mean square 1
nu1	input - Anova degrees of freedom for mean square 1
c2	input - linear combination coefficient of $\ensuremath{ms2}$ in the estimated variance component
ms2	input - Anova mean square 2
nu2	input - Anova degrees of freedom for mean square 2

Value

returned delta, Lower and Upper limits

72 virus

Author(s)

John Lawson

Examples

```
vci(.90,.05,.014852,2,.05,.026885,18)
## The function is currently defined as
vci<-function(confl,c1,ms1,nu1,c2,ms2,nu2){</pre>
  delta<-c1*ms1-c2*ms2
  alpha<-1-confl
  Falpha1<-qf(confl,nu1,10000000)
  Falpha12<-qf(confl,nu1,nu2)
  Fconf2<-qf(alpha, nu2, 10000000)
  Fconf12<-qf(alpha,nu1,nu2)</pre>
  Falpha2<-qf(confl,nu2,10000000)
  Fconf1<-qf(alpha, nu1, 10000000)
  Fconf12<-qf(alpha,nu1,nu2)
  G1<-1-(1/Falpha1)
  H2<-(1/Fconf2)-1
  G12<-((Falpha12-1)**2-G1**2*Falpha12**2-H2**2)/Falpha12
  VL<-G1**2*c1**2*ms1**2+H2**2*c2**2*ms2**2+G12*c1*c2*ms1*ms2
  H1<-(1/Fconf1)-1
  G2<-1-(1/Falpha2)
  H12<-((1-Fconf12)**2-H1**2*Fconf12**2-G2**2)/Fconf12
  VU<-H1**2*c1**2*ms1**2+G2**2*c2**2*ms2**2
  L<-delta-sqrt(VL)
  U<-delta+sqrt(VU)
  cat("delta=",delta," Lower Limit=",L," Upper Limit=",U,"\n")
```

virus

Assay of Viral Contamination experiment data from Chapter 3

Description

Data from the Assay of Viral Contamination experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(virus)
```

Format

A data frame with 18 observations on the following 3 variables.

```
y a numeric vector
Sample a factor with levels 1 2 3 4 5 6
Dilution a factor with levels 3 4 5
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

volt 73

Examples

```
data(virus)
```

volt

Volt meter experiment data from Chapter 3

Description

Data from the Volt meter experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(volt)
```

Format

A data frame with 16 observations on the following 3 variables.

y a numeric vector

A a factor containing the levels (22, 32) of factor A

B a factor containing the levels (0.5, 5.0) of factor B

C a factor containing the levels (0.5, 5.0) of factor C

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(volt)
```

web

Web page design experiment data from Chapter 3

Description

Data from the web page design experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(web)
```

74 web

Format

A data frame with 36 observations on the following 6 variables.

A a factor with levels 1 2

B a factor with levels 1 2

C a factor with levels 1 2

D a factor with levels 1 2

visitors a numeric vector

signup a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(web)

Index

Taria datagan	
*Topic datagen	eptaxs2, 31
Altscreen, 4	eptaxyb, 32
BIBsize, 10	gagerr, 39
DefScreen, 23	gear, 43
EEw1s1, 25	hardwood, 45
EEw1s2, 25	inject, 46
EEw1s3, 27	MPV, 51
EEw2s1, 28	Naph, <u>52</u>
EEw2s2, 28	pastry, 53
EEw2s3, 29	pest, <u>54</u>
EEw3, 30	pesticide, 55
Fcrit, 33	plasma, 55
Fpower1, 35	polvdat, 56
Fpower2, 37	polymer, 56
mod, 50	prodstd, 57
ModelRobust, 51	qsar, 58
OptPB, 53	rcb, 58
*Topic datasets	residue, 59
antifungal, 5	rubber, 60
Apo, 5	sausage, 60
apple, 6	Smotor, 61
arso, 6	soup, <u>62</u>
augm, 7	soupmx, 62
Bdish, 8	splitPdes, 63
Bff, 9	SPMPV, 64
bha, 9	strung, 64
bioequiv, 11	strungtile, 65
bioeqv, 12	sugarbeet, 66
blood, 13	taste, 66
BoxM, 13	teach, 67
BPmonitor, 14	Tet, 67
bread, 15	tile, 68
cake, 16	Treb, 69
cement, 17	virus, 72
chem, 17	volt, 73
chipman, 18	web, 73
COdata, 19	*Topic hplot
cont, 20	colormap, 19
cpipe, 21	fullnormal, 38
culture, 22	halfnorm, 44
dairy, 23	*Topic htest
drug, 24	bstep, 15
eptaxr, 31	fhstep, 34

76 INDEX

gapstat, 40	eptaxs2, 31
Gaptest, 41	eptaxyb, 32
ihstep, 46	
LGB, 47	Fcrit, 33
LGBc, 48	fhstep, 34
Tukey1df, 69	Fpower, 35
	Fpower1, 35
vci, 71	Fpower2, 37
*Topic package	fullnormal, 38
daewr-package, 3	rullior mai, 36
	gagerr, 39
Altscreen, 4	
antifungal, 5	gapstat, 40
Apo, 5	Gaptest, 41
apple, 6	gear, 43
arso, 6	L - 1 C 44
augm, 7	halfnorm, 44
2.20,	hardwood, 45
Bdish, 8	
Bff, 9	ihstep, 46
bha, 9	inject, 46
BIBsize, 10	LGB, 47
bioequiv, 11	LGBc, 48
bioeqv, 12	
blood, 13	mod, 50
BoxM, 13	ModelRobust, 51
BPmonitor, 14	MPV, 51
bread, 15	
	Naph, 52
bstep, 15	Naph, 52
bstep, 15	Naph, 52 OptPB, 53
bstep, 15 cake, 16	OptPB, 53
bstep, 15 cake, 16 cement, 17	OptPB, 53 pastry, 53
bstep, 15 cake, 16 cement, 17 chem, 17	OptPB, 53
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18	OptPB, 53 pastry, 53
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19	OptPB, 53 pastry, 53 pest, 54
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25 EEw1s3, 27	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25 EEw1s3, 27 EEw2s1, 28	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62 splitPdes, 63
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEW1s1, 25 EEw1s2, 25 EEw1s3, 27 EEw2s1, 28 EEw2s2, 28	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62 splitPdes, 63 SPMPV, 64
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25 EEw1s2, 25 EEw2s1, 28 EEw2s2, 28 EEw2s3, 29	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62 splitPdes, 63 SPMPV, 64 strung, 64
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25 EEw1s3, 27 EEw2s1, 28 EEw2s2, 28 EEw2s3, 29 EEw3, 30	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62 splitPdes, 63 SPMPV, 64 strung, 64 strungtile, 65
bstep, 15 cake, 16 cement, 17 chem, 17 chipman, 18 COdata, 19 colormap, 19 cont, 20 cpipe, 21 culture, 22 daewr (daewr-package), 3 daewr-package, 3 dairy, 23 DefScreen, 23 drug, 24 EEw1s1, 25 EEw1s2, 25 EEw1s2, 25 EEw2s1, 28 EEw2s2, 28 EEw2s3, 29	OptPB, 53 pastry, 53 pest, 54 pesticide, 55 plasma, 55 polvdat, 56 polymer, 56 prodstd, 57 qsar, 58 rcb, 58 residue, 59 rubber, 60 sausage, 60 Smotor, 61 soup, 62 soupmx, 62 splitPdes, 63 SPMPV, 64 strung, 64

INDEX 77

```
taste, 66
teach, 67
Tet, 67
tile, 68
Treb, 69
Tukey1df, 69
vci, 71
virus, 72
volt, 73
web, 73
```