IPv6

isszym sysu.edu.cn 2016.12.1

概述

- □ 1992年初,出现若干扩展因特网地址系统的方案。
- □ 1993年9月,IETF(The Internet Engineering Task Force)发起了下一代IP (IPng) 的讨论。
- □ 1994年7月25日,IETF采纳了IPng的模型,并建立了若干个IPng的工作组。
- □ 1996年发布了一系列关于IPv6的RFC标准,包括定义Internet Protocol version 6 (IPv6)的 RFC 1883。(由于Version 5 被用于Internet Stream Protocol的实验,所以使用了Version 6)
- □ 格林尼治时间2012年6月6日,全球范围内的世界互联网协议版本6(IPv6)正式启动。在非营利组织国际互联网协会(Internet Society)发起下,包括互联网服务供应商AT&T、康卡斯特(Comcast)、时代华纳有线(Time Warner Cable),网络设备制造商思科和D-Link,Web服务提供商Facebook、谷歌、微软和雅虎等世界上很多公司,于格林尼治时间6月6日开启对IPv6的永久支持。这代表IPv6已不再是实验性质的产品,而是网络创新重要的下一步,未来将会有越来越多的IPv6应用服务及产品。
- □ 2013年4月11-12日,2013全球IPv6下一代互联网高峰会。
- □ 2013年,全球IPv6过渡技术国际测试大会。
- □ 2015年9月7日, "全球IPv6下一代互联网高峰会议"(简称IPv6峰会)在北京隆重举行。

IPv4数据报格式

IPv6分组格式

字段名		位数	说明		
版本号	Version	4	取值6,表示为IPv6		
流量类别	Traffic Class	8	说明数据流的类别或优先级。功能类似于 IPv4的服务类型(TOS)字段。		
流标签	Flow Label	20	用于区分相同信源和信宿之间的不同数据流。 取值 0 时,表示未用该标签。		
有效载荷 长度	Payload Length	16	包括扩展头和上层PDU,最多65535字节。超过这一字节数的负载,该字段值置为"O",使用扩展头逐个跳段(Hop-by-Hop)选项中的巨量负载(Jumbo Payload)选项。		
下一包头	Next Header	8	指出紧随IPv6头部之后的包头(Header)类型,如扩展头(有的话)或某个传输层协议头(诸如TCP,UDP或着ICMPv6)。IPV4的协议字段		
跳数限制	Hop Limit	8	类似于 IPv4 的 TTL 。每次转发减 1 ,减到 0 时如果还没有到达目的地则被丢弃。		
源地址	Source Address	128	发出此数据报的主机地址。		
目的地址	Destination Address	128	在大多数情况下,目的地址即信宿地址。但 如果存在路由扩展头的话,目的地址可能是 发送方路由表中下一个路由器接口。		

Next Header(1)

下一头部(Next Header)实际上就是IPv4的选项。

选项名	NH	说明
逐跳选项 (Hop-by-Hop)	0	要求每个路由器都必须检查选项部分,必须作为第一个选项,而且只允许出现一次。例如,用于传送超大分组(有效载荷的字节数用32比特表示)的Jumbo Payload选项。
目的地选项 (Destination)	60	用于为目的地传送信息,只在目的地检查该选项。
路由选择选项 (Routing)	43	类似于 IPv4 的松散源路由。
分段选项 (Fragmentation)	44	提供分段和重组服务, IPv6 只能在源主机进行分段。
认证 (Authentication)	51	提供数据源认证、数据完整性检查和反重播保护。
ESP选项 (Encrypted security payload)	50	提供加密服务。

Next Header(2)

超大分组(Jumbo payload)选项:

类型 数据长度
Next header 0 194 4

Jumbo payload length

路由选择(Routing)选项:

Next Header(3)

IPv6头部	TCP头部	TCP数据
下一头部=6 TCP		

IPv6头部	路由选择	TCP头部	TCP数据	
下一头部=43 路由选择	下一头部=6 TCP			

IPv6头部	路由选择	分段	TCP头部	TCP数据	
下一头部=43 路由选择	下一头部=44 分段	下一头部=6路由选择			

协议号

Next Header(4)

在选项类型字段中,最高的两位表示当处理选项的节点不能识别该选项的类型时,应该如何处理这个选项:

- 00 跳过这个选项
- 01 无声的丢弃数据包
- 10 丢弃数据包,并且如果IPv6报头中的目的地址是一个单播或者 多播地址,就向发送方发送一个ICMPv6参数问题报文
- 11 丢弃数据包,并且如果IPv6报头中的目的地址不是一个多播地址,就向发送方发送一个ICMPv6参数问题报文

选项类型字段中的第三高位表示在通向目标的路径中, 选项数据可以改变(=1),或是不能改变(=0)。

IPv6地址的定义和表示法

IPv6地址是由128位的二进制数组成的,为了方便人们记忆,又把128位分割成8段16位组,然后把每段16位组换算成4个十六进制数来表示,每段十六进制数值的范围是0000~FFFF。每段之间使用冒号来分隔。

重点: IPv6地址是使用冒号分隔十六进制数来表示的。

IPv6地址简化规则

- □ 每一个段中开头的0可以省略不写,但末尾的0不能省略; 原始IPv6地址: 3ffe:1944:0100:000a:0000:00bc:2500:0d0b 简化后IPv6地址: 3ffe:1944:100:a:0:bc:2500:d0b
- □ 如果128位全部为0的地址,则可以使用一个"::"来表示。 原始IPv6地址: 0000:0000:0000:0000:0000:0000:0000 简化后IPv6地址: ::
- □ IPv4地址的表示方法: 0:0:0:0:0:0:d.d.d.d IPv4地址: 170.1.2.3 用IPv6地址表示: 0:0:0:0:0:0:170.1.2.3 或 ::170.1.2.3

地址简化注意事项

注: 在IPv6地址中,只能使用一次双冒号。

例 2001:0d02:0000:0000:0014:0000:0000:0095

以下两种缩写方式都是正确的:

2001:d02::14:0:0:95

2001:d02:0:0:14::95

但下面这种缩写方式是错误的:

2001:d02::14::95

可以表示下面任何一个可能的IPv6地址:

2001:0d02:0000:0000:0014:0000:0000:0095

2001:0d02:0000:0000:0000:0014:0000:0095

2001:0d02:0000:0014:0000:0000:0000:0095

IPv6地址类型

□ 单播地址:标识单个节点

□ 组播地址:标识一组节点(前8个bit为1111 1111)

- □ 任意播地址:标识一组节点中任何一个成员,即源节点的数据流被 转发到组里最近的节点
 - 任意播地址直接采用全局单播地址
 - 多台设备设置相同的任意播地址
 - 任意播地址的经验的广泛使用会带来的混乱和危险

IPv6单播地址

- □ 单播地址类型:
 - Global全局: Starts with 2000::/3 and assigned by IANA
 - Reserved保留: Used by the IETF
 - Private私有: Link local (starts with FE80::/10) and Unique local
 - Loopback环回(::1)
 - Unspecified未指明(::)
- □ 单个接口可以分配多个任意类型的地址: 单播,任意播,多播。
- IPv6 地址规则参见RFC 4291

IPv6地址格式

- **全球网络前缀是由几个层次来构成的**,根据地址分配空间来决定的。 IANA(2000::/3)—RIR (/12) — ISP/LIR (/32) — 组织机构 (/48) — 本地子网(/64)
- 地址分配机构

美国Internet编号注册机构(ARIN): 服务于北美地区和部分加勒比海地区;

亚太网络信息中心(APNIC): 服务亚洲和太平洋地区的国家;

欧洲IP网络(RIPE NCC): 服务于欧洲、中东地区和中亚地址;

非洲网络信息中心(AfriNIC): 服务于非洲地区;

拉美和加勒比海地区IP地址注册机构(LACNIC): 服务于中美、南美以及加勒比海地区

IPv6 EUI-64接口标识符

IEEE定义了一种基于64比特的扩展唯一标识符EUI-64(Extended Unique Identifier -64)。

EUI-64是通过在48位MAC地址插入"FFFE"作为中间16位形成的。所选的MAC地址要求是全球唯一,U/L位要设置为1(0为本地范围)。

本地链路地址

- 本地链路的单播地址是受限制的,只能与同一链路的节点通信,它们都是使用本地链路前缀FE80::/10和一个64位接口标识符创建的。
- 本地链路的地址主要用于自动配置、邻居发现和路由器发现。

分配IPv6全局单播地址

- Static assignment
 Manual interface ID assignment
 EUI-64 interface ID assignment
- Dynamic assignment
 DHCPv6 (stateful)
 Stateless autoconfiguration

无状态自动配置

IPv6路由协议

□ IPv6 routing types:
Static
RIPng (RFC 2080)
OSPFv3 (RFC 2740)
IS-IS for IPv6
MP-BGP4 (RFC 2545/2858)
EIGRP for IPv6

RIPng (RFC 2080)

- □ Similar IPv4 features:
 - Distance vector, radius of 15 hops, split horizon, and poison reverse
 - · 基于RIPv2

- Updated features for IPv6:
 - RIPng使用IPv6组播地址FF02::9发送路由选择 更新信息
 - · 在IPv6数据包上传送RIPng
 - · Cisco IOS最多同时支持4个RIPng进程,使用Named RIPng标记

IPv4到IPv6的转换

- □ 转换到IPv6没有固定的日期
- □ 不需要立即把所有IPv4转换到IPv6
- □ 有两种可用的转换过渡机制:

双栈(Dual stack)

隧道(Tunnel)

Cisco IOS双栈

双栈的定义:双栈是一种集成方法,通过在接口上同时配置IPv4和IPv6地址,让节点能够同时连接到IPv4和IPv6网络。

IPv4: 192.168.99.1 IPv6: 3ffe:b00:800:1::3

双栈的工作原理: 当双栈路由器接收到分组后,将根据分组的目标地址决定使用哪个协议栈。

IPv6隧道技术

隧道化的定义:隧道化是一种集成方法,是指使用另一种协议(如IPv4)来封装IPv6分组,以解决现有不兼容的网络。

隧道化的工作原理:要在IPv4的网络中通过隧道传输IPv6数据,需要使用边缘路由器将IPv6分组封装到IPv4分组中,而另一端边缘路由器再将其解封装。

配置IPv6地址

RouterX(config)#

ipv6 unicast-routing

Enables IPv6 traffic forwarding

RouterX(config-if)#

ipv6 address ipv6prefix/prefix-length eui-64

Configures the interface IPv6 addresses

LAN: 2001:db8:c18:1::/64 Ethernet 0 ipv6 unicast-routing interface Ethernet0 MAC address: 0260.3e47.1530 ipv6 address 2001:db8:c18:1::/64 eui-64 RouterX# show ipv6 interface Etherpet0 Ethernet0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::260:3EFF:FE47:1530 Global unicast address(es): 2001:DB8:C18:1:260:3EFF:FE47:1530, subnet is 2001:DB8:C18:1::/64 Joined group address(es): FF02::1:FF47:1530 FF02::1 FF02::2

MTU is 1500 bytes

配置RIPng (IPv6)

RouterX(config)#

```
ipv6 router rip tag
```

Creates and enters RIP router configuration mode

RouterX(config-if)#

```
ipv6 rip tag enable
```

Configures RIP on an interface

```
show ipv6 rip
```

Displays the status of the various RIP processes

```
show ipv6 route rip
```

Shows RIP routes in the IPv6 route table

配置隧道

IPv4: 192.168.99.1 IPv6: 3ffe:b00:c18:1::3 IPv4: 192.168.30.1 IPv6: 3ffe:b00:c18:1::2

interface tunnel 0 ipv6 address 3ffe:b00:C18:1::3/64 tunnel source 192.168.99.1 tunnel destination 192.168.30.1 tuunel mode ipv6ip interface tunnel 0 ipv6 address 3ffe:b00:c18:1:2/64 tunnel source 192.168.30.1 tunnel destination 192.168.99.1 tunnel mode ipv6ip

IPv6的优点

- □ 提供更大的地址空间
 - 改善全球的可达性和灵活性
 - · 通过严格的地址分配和聚类 (Aggregation)大大减小了路由表的长 度。
 - 自动配置链路层地址,从而实现
- □即插即用功能
 - 无需配置NAT即可实现端到端的通信
 - 简化了重新编址和修改地址的机制
- □ 支持移动性和安全性
 - · IPv6有加密与鉴别选项
 - · IPv6移动性内置

- □ 报头更简单
 - 路由选择效率更高,提高性能转发速率
 - · 没有广播,不会出现广播风暴
 - 不需要处理检验和
 - 报头扩展机制更简单
 - 流标签无需查看传输层信息应能 识别各种流
- □ 多种IPv4过渡IPv6方式
- · 双栈:即在接口上同时配置IPv4和 IPv6
- 使用IPv4隧道来传输IPv6数据
- 在IPV4和IPv6之间进行NAT转换