CROISSANCE EXPONENTIELLE

I Les suites géométriques

Remarque n°1.

Afin d'éviter certaines « lourdeurs », les définitions et propriétés suivantes seront écrites pour le cas où le premier rang est zéro . Nous les adapterons selon les besoins des activités.

Définition n°1. Suite géométrique

Une suite géométrique est une suite telle que :

Il existe un nombre réel q tel que :

- Pour tout entier naturel n, on peut écrire $u(n+1) = u(n) \times q$
- q est appelé la raison de la suite.
- l'indice n est appelé le rang du terme u(n)

Remarque n°2.

Autrement dit : « pour obtenir le terme suivant (u(n+1)) , il suffit de multiplier par q le terme actuel (u(n)).

Exemple n°1.

Soit la suite géométrique v de terme initial v(0) = 4,5 et de raison r = 2. Les quatre premiers de v sont :

$$v(0) = 4.5$$
, $v(1) = 9$, $v(2) = 18$ et $v(3) = 36$.

Propriété n°1. Exprimer u(n) en fonction de n

Une suite (u(n)) est géométrique de raison q si et seulement si :

Pour tout entier naturel n, on a $u(n) = u(0) \times q^n$

Remarque n°3.

Si le terme initial est u(1) alors $u(n) = u(1) \times q^{n-1}$

Exemple n°2.

Dans l'exemple n°1, pour tout $n \in \mathbb{N}$: $v(n) = 4.5 \times 2^n$.

II Et la croissance exponentielle dans tout ça?

Propriété n°2. Pour la croissance

Soit u une suite géométrique de terme initial strictement positif et de raison q > 0:

- u est strictement croissante si et seulement si q > 1
- u est strictement décroissante si et seulement si 0 < q < 1 et
- u est constante si et seulement si q = 1.

Remarque n°4.

Et pour $q \leq 0$?

Si q = 0 alors tous les termes suivant le terme initial sont nuls.

Et si q < 0 alors la suite est alors alternée (si un terme est positif alors son suivant est négatif et vice et versa).

Exemple n°3.

La suite géométrique w de terme initial $w_0 = 0,1$ de raison r = 0,5 est strictement décroissante.

Remarque n°5.

- Si le terme initial est strictement négatif alors dans la propriété n°2 les mots « croissante » et « décroissante » sont échangés.
- Si le terme initial est nul alors tous les autres le sont aussi.

Remarque n°6. Représentation graphique

Pour représenter la suite (u(n)) on utilise un nuage de points qui ont pour coordonnées (n, u(n)).

Les pointillés symbolisent la courbe à laquelle appartiennent les points du nuage mais ne font pas partie de la représentation graphique de la suite.

Remarque n°7. Pour le côté exponentielle

La courbe en pointillés est la représentation graphique d'une fonction exponentielle. Nous allons préciser cela tout de suite...

III Les fonctions exponentielles

Définition n°2. Fonction exponentielle de base a

Soit *a* un nombre réel strictement positif.

On appelle fonction exponentielle de base a, la fonction f définie pour tout nombre réel x par : $f(x) = a^x$

Exemple n°4.

$$f(x) = 2^{x}$$
 ($a = 2 > 1$)

Visualiser plus d'exemples

Remarque n°8.

Si x est un nombre entier alors a^x correspond à la puissance $x^{i\text{ème}}$ de a.

Remarque n°9.

Comme pour les suites arithmétiques, on utilisera les suites géométriques pour modéliser des phénomènes à croissance exponentielle discrète et les fonctions exponentielles pour les phénomènes continus. Les fonctions exponentielles sont en quelque sorte le prolongement des suites géométriques.

IV Les outils à connaître

Propriété n°3. Règles de calculs

Soit a et b deux nombres réels strictement positifs et x et y deux nombres réels :

$$\begin{bmatrix}
a^{0} = 1 \\

 \end{bmatrix}; \qquad \begin{bmatrix}
a^{-x} = \frac{1}{a^{x}} \\
 \end{bmatrix}; \qquad \begin{bmatrix}
a^{x} \times a^{y} = a^{x+y} \\
 \end{bmatrix}; \qquad \begin{bmatrix}
\frac{a^{x}}{a^{y}} = a^{x-y} \\$$

Exemple n°5.

•
$$10,45^0 = 1$$
 ; • $5,7^{-3,1} = \frac{1}{5,7^{3,1}}$;

•
$$1,2^{3,4} \times 1,2^{-5,6} = 1,2^{3,4+(-5,6)} = 1,2^{-2,2}$$
;

$$\frac{1,2^{3,4}}{1,2^{-5,6}} = 1,2^{3,4-(-5,6)} = 1,2^9 ;$$

•
$$(5.8^{3.1})^{-2.7} = 5.8^{3.1 \times (-2.7)} = 5.8^{-8.37}$$
 et

•
$$4,1^{7,1}\times3,2^{7,1}=(4,1\times3,2)^{7,1}=15,17^{7,1}$$

Propriété n°4. Taux d'évolution et Coefficient Multiplicateur

Soit t un taux d'évolution et CM le coefficient multiplicateur correspondant, on a alors la relation suivante :

$$CM = 1+t$$

Exemple n°6.

- Pour une hausse de 32 %, on a t = 0.32 et CM = 1.32
- Pour une baisse de 32 %, on a t = -0.32 et CM = 0.68

Remarque n°10. Taux d'évolution global t_g : Attention

On rappelle que les taux d'évolution ne s'additionnent pas.

Une hausse de 20 % suivie d'une baisse de 20 % correspondent à une baisse de 4 % .

$$(t_1=0.2 \rightarrow CM_1=1.2, t_2=-0.2 \rightarrow CM_2=0.8, CM_g=1.2 \times 0.8=0.96 \rightarrow t_g=-0.04$$
 soit une baisse de 4%)

Propriété n°5. Racine n^{ième}

Soit c un nombre réel positif ou nul, l'équation $x^n = c$ admet une unique solution réelle : $c^{\frac{1}{n}}$.

Exemple n°7. $x^5 = 2.5$ admet pour unique solution réelle : $2.5^{\frac{1}{5}}$.

Propriété n°6. Le taux moyen

Si CM_g est un coefficient multiplicateur global obtenu à partir de n coefficients multiplicateurs alors le taux moyen t_m s'obtient avec la formule : $t_m = CM_g^{\frac{1}{n}} - 1$.

Méthode n°1. Calculer un taux moyen à l'aide du Coefficient Multiplicateur moyen.

Énoncé

On applique successivement une hausse de 11 %, une baisse de 9 % et enfin une hausse de 10 %. Déterminer le taux d'évolution moyen.

« Au brouillon »

Posons $t_1=0.11$, $t_2=-0.09$, $t_3=0.1$ et les coefficients multiplicateurs correspondants : $CM_1=1.11$, $CM_2=0.91$, $CM_3=1.1$.

On calcule le coefficient multiplicateur global : $CM_g = CM_1 \times CM_2 \times CM_3$ $CM_g = 1,11111$.

On calcule le coefficient multiplication moyen CM_m en résolvant dans \mathbb{R} l'équation: $CM_m^3 = CM_g$ ce qui nous donne $CM_m = CM_g^{\frac{1}{3}}$ soit $CM_m = 1,11111^{\frac{1}{3}}$.

et enfin on calcule le taux moyen t_m : $t_m = CM_m - 1 = 1,11111^{\frac{1}{3}} - 1$

Bien sûr, sur la copie on résume un peu...

Réponse

Notons t_m le taux moyen cherché.

$$t_m = (1,11\times0,91\times1,1)^{\frac{1}{3}} - 1 \approx 0,0357$$

Soit une | hausse moyenne d'environ 3,57 % | .