Perception of Contrast

datascience@berkeley

Brightness: The *perceived* amount of light results in a nonlinear function.

Weber's Law

$$\Delta S/S = k$$

Ratio of change in stimulus to magnitude of stimulus is roughly constant

8 units different

Continuous Variation

Most continuous variations are perceived as discrete steps

Color Contrast

Complementary Colors

Complements vibrate

Color Differentiation

Rapidly identify data elements using color

Color Differentiation

Color distance: the Euclidian distance between colors in the model

Linear separation: ability to separate targets from nontargets when one can or cannot draw a straight line between the target and nontargets

Color category: named color regions occupied by both target and nontarget elements

Distinct Nameable Colors

Source: http://vis.stanford.edu/color-names/analyzer/

Saturation and Size

Source: Ware, C. Information visualization, perception for design, 2013

Color Blindness: Cones

Color Blindness: Types

"Traffic Light" Indicators

Color Scales

Typical Rainbow Color Scale

Contrast Sensitivity Function

Alternatives

David Green's Cubehelix d3.cubehelix()

divergent scales

Design Tips

- First ask: Is color necessary?
- Use colors that are separable and nameable when possible
- Scale appropriately
- Beware of poor contrast effects
- Design for color blindness

Berkeley school of information