(19) Japan Patent Office (JP)

(11) Japanese Unexamined Patent Application Publication Number

(12) Japanese Unexamined Patent Application Publication (A)

H8-330224

			(43) Publication date: December 13, 1996		
(51) Int, CL ⁶	Identification Office Referen Symbol	ice Number F	T Tecl	chnical indication location	
H 01 L 21/027			H 01 L 21/30	515 Z	
G 03 F 9/00			G 03 F 9/00	H	
H 01 L 21/68			H 01 L 21/68	F	
			21/30	515 G	
				516 B	
	Request for examinat	ion: Not yet request	ed No. of claims;	12 OL (Total of 10 pages)	
(21) Application No.	Patent application no. H8-58629	(71) Applicant	000004112 Nikon Corp. 3-2-3 Marunouchi	, Chiyoda-ku, Tokyo	
(22) Date of Application	March 15, 1996	(72) Inventor	Martin E. Lee Big Basin Way 24100, Saratoga, CA 95070, USA		
(31) Priority Number No.	416558				
(32) Priority Date	April 4, 1995				
(33) Priority Country	US				

(54) Title of the invention: Stage mechanism and Method of Operating the same

(57) Abstract

<u>Purpose</u>: To provide a stage mechanism that is not provided with a stage driving guide blocking a light beam to pass, and that prevents twist motion of a stage.

Configuration: A stage mechanism capable of moving with high precision, comprising: a base defining a principal surface; a movable stage located on the principal surface of the base; a window frame of first, second, third and fourth window frame members laterally surrounding the stage, the first and second window frame members opposing each other and being in slidable contact with the stage; and first and second guides slidably supporting the third and fourth window frame members opposing each other.

Scope of Patent Claims

Claim 1

A stage mechanism capable of moving with high precision, comprising: a base defining a principal surface:

a movable stage located on the principal surface of the base;

a window frame of first, second, third and fourth window frame members laterally surrounding the stage, the first and second window frame members opposing each other and being in slidable contact with the stage; and

first and second guides slidably supporting the third and fourth window frame members opposing each other.

Claim 2

The stage mechanism of claim 1, wherein in the window frame, the first and second window frame members are respectively connected by a connecting member to the third and fourth members.

Claim 3

The stage mechanism according to claim 2, wherein each connecting member comprises a plurality of strips, each strip being provided in an X configuration. Claim 4

The stage mechanism according to claim 1, further comprising a plurality of fluid bearings located on an underside of the stage in a manner facing the base. Claim 5

The stage mechanism according to claims 1 and 4, comprising at least two fluid bearings located on each of the third and fourth window frame members and respectively facing the first and second guides.

Claim 6

The stage mechanism according to claim 1, further comprising a first driving means on each of the third and fourth window frame members, thereby the first driving means drives the window frame relative to the first and second guides. Claim 7

The stage mechanism according to claim 6, further comprising a second driving means provided on the base so as to cooperate with one of the first driving means.

Claim 8

The stage mechanism according to claim 1, further comprising a third driving means located on opposing sides of the stage respectively facing the first and second window frame members.

Claim 9

The stage mechanism according to claim 1, further comprising a support base for supporting the first and second guides and the third and fourth window frame members, the support base being supported independently of the base.

Claim 10

A method of operating a stage capable of moving with high precision in two perpendicular directions, comprising the steps of:

locating the stage on a base;

laterally surrounding the stage with a frame in slidable contact with the stage; driving the stage in a first direction of the two perpendicular directions relative to the base; and

driving the stage in a second direction of the two perpendicular directions relative to the frame.

Claim 11

A frame structure that is deformable and has a hinge installed therein, comprising:

four rigid frame members arranged rectangularly, each of the frame members forming an acute structure that is placed to be adjacent to the same acute structure of an adjacent frame member in the vicinity of the end portion of each of the frame member; and

a plurality of connecting members that connect each two adjacent acute structure and are provided in an X configuration.

Claim 12

The frame structure according to claim 11, wherein the connecting members are made of stainless steel having a thickness of less than 0.05 inches.

Detailed Description of the Invention

[0001]

Industrial Field of Utilization

This invention relates to precision motion stages and more specifically to a stage suitable for use in a photolithography machine and especially adapted for supporting a reticle.

[0002]

Prior Art

Photolithography is a well known field especially as applied to semiconductor fabrication. In photolithography equipment, a stage (an X-Y motion device) supports the reticle (i.e., mask) and a second stage supports the semiconductor wafer, i.e. the work piece being processed. Sometimes only a single stage is provided, for the wafer or the mask

[0003]

Such stages are essential for precision motion in the X-axis and Y-axis directions and often some slight motion is provided for adjustment in the vertical (Z-axis) direction. A reticle stage is typically used where the reticle is being scanned in a scanning exposure system, to provide smooth and precise scanning motion in one linear direction and insuring accurate, reticle to wafer alignment by controlling a small displacement motion perpendicular to the scanning direction and a small amount of "yaw" (rotation) in the X-Y plane.

[0004]

Problems to Be Solved by the Invention

It is desirable that such an X-Y stage be relatively simple and be fabricated from commercially available components in order to reduce cost, while maintaining the desired amount of accuracy. Additionally, many prior art stages include a guide structure located directly under the stage itself. This is not a desirable in a reticle stage since it is essential that a light beam be directed through the reticle and through the stage itself to the underlying projection lens. Thus, a stage is needed which does not include any guides directly under the stage itself, since the stage itself must define a fairly large central passage for the light beam.

Additionally, many prior art stages do not drive the stage through its center of gravity which undesirably induces a twisting motion in the stage, reducing the frequency response of the stage. Therefore there is a need for an improved stage and especially one suitable for a reticle stage.

[0006]

Means to Solve Problems

To achieve the above object, the invention recited in claim 1 (first invention) is a stage mechanism capable of moving with high precision, comprising: a base defining a principal surface a movable stage located on the principal surface of the base; a window frame of first, second, third and fourth window frame members laterally surrounding the stage, the first and second window frame members opposing each other and being in slidable contact with the stage; and first and second guides slidably supporting the third and fourth window frame members opposing each other. [0007]

In the invention recited in claim 2, the first and second window frame members in the first invention are respectively connected to the third and fourth members by a connecting member. In the invention recited in claim 3, each connecting member in the first invention includes a plurality of strips, each strip being provided in an X configuration. In the invention recited in claim 4 (fourth invention), the stage mechanism according to the first invention further includes a plurality of fluid bearings located on an underside of the stage and facing the base.

F00081

In the invention recited in claim 5, the stage mechanism according to the first and fourth inventions includes at least two fluid bearings located on each of the third and fourth window frame members and respectively facing the first and second guides. In the invention recited in claim 6 (sixth invention), the stage mechanism according to the first invention further includes a first driving means on each of the third and fourth window frame members, thereby the first driving means drives the window frame relative to the first and second guides.

In the invention recited in claim 7, the stage mechanism according to the sixth invention further includes a second driving means provided on the base so as to cooperates with one of the first driving means.

In the invention recited in claim 8, the stage mechanism according to the first invention further includes a third driving means located on opposing sides of the stage respectively facing the first and second window frame members.

[0010]

In the invention recited in claim 9, the stage mechanism according to the first invention further includes a support base for supporting the first and second guides and the third and fourth window frame members, the support base being supported independently of the base. The invention recited in claim 10 is a method of operating a stage capable of moving with high precision in two perpendicular directions, comprising the steps of: locating the stage on a base; laterally surrounding the stage with a frame in slidable contact with the stage; driving the stage in a first direction of the two perpendicular directions relative to the base; and driving the stage in a second direction of the two perpendicular directions relative to the frame.

The invention recited in claim 11 is a frame structure that is deformable and has a hinge installed therein, comprising: four rigid frame members arranged rectangularly, each of the frame members forming an acute structure that is placed adjacent to the same acute structure of an adjacent frame member in the vicinity of the end portion of each of the frame members; and a plurality of connecting members that connect each two adjacent acute structures and are provided in an X configuration. [0012]

In the invention recited in claim 12, the connecting members is made of stainless steel having a thickness of less than 0.05 inches. A precision motion stage mechanism includes the stage itself which moves in the X-Y plane on a flat base. The stage is laterally surrounded by a "window frame" guide structure which includes four frames (hereinafter, referred as window frame members) attached at or near their corners to form a rectangular structure. Furthermore, the window frame is formed by

connecting the four window frame member. The connecting members that perform the connection are connecting portions which are a special type of hinge allowing movement to permit slight distortion of the rectangle. That is, due to the connecting members, the square or rectangular frame may be deformed into a parallelogram. In one version these connecting members are thin stainless steel strips attached in an "X" configuration, allowing the desired degree of hinge movement between any two adiacent connected window frame members (described in detail later using Fig. 6)

The window frame moves on a base against two spaced-apart and parallel fixed guides in, for example, the X axis direction, being driven by motor coils mounted on two opposing members of the window frame cooperating with magnetic tracks fixed on the base.

[0013]

The window frame in effect "follows" the movement of the stage and carries the magnetic tracks needed for movement of the stage in the Y axis direction. (It is to be understood that references herein to the X and Y axes directions are merely illustrative and for purposes of orientation relative to the present drawings and are not to be construed as limiting.)

The stage movement in the direction perpendicular (the Y axis direction) to the direction of movement of the window frame is accomplished by the stage moving along the other two members of the window frame. The stage is driven relative to the window frame by motor coils mounted on the stage and cooperating with magnetic tracks mounted in the two associated members of the window frame. [0014]

To minimize friction, the stage is supported on the base by air bearings or other fluid bearings mounted on the underside of the stage. Similarly fluid bearings support the window frame members on their fixed guides. Additionally, fluid bearings load the window frame members against the fixed guides and load the stage against the window frame. So as to allow slight yaw movement (rotation in the X-Y plane and about the Z-axis), these loading bearings are spring mounted. The stage itself defines central passage. The reticle rests on a chuck mounted on the stage. Light from an illuminating source typically located above the reticle passes to the central passage through the reticle and chuck to the underlying projection lens. 100151

It is to be understood that the present stage, with suitable modifications, is not restricted to supporting a reticle but may also be used as a wafer stage and is indeed not limited to photolithography applications. However, the present stage is generally suited to precision stages. An additional aspect in accordance with the present invention is that the reaction force of the stage and window frame drive motors is not transmitted to the support frame of the photolithography apparatus projection lens but

is transmitted independently to the earth's surface directly by an independent supporting structure. Thus the reaction forces caused by movement of the stage do not induce undesirable movement in the projection lens or other elements of the photolithography machine.

[10016]

This physically isolating the stage reaction forces from the projection lens and associated structures prevents these reaction forces from vibrating the projection lens and associated structures. These structures include the interferometer system used to determine the exact location of the stage in the X-Y plane and the wafer stage. Thus the reticle stage mechanism support is spaced apart from and independently supported from the other elements of the photolithography machine and extends to the surface of the earth.

[0017]

Advantageously, the reaction forces from operation of the four motor coils for moving both the stage and its window frame are transmitted through the center of gravity of the stage, thereby desirably reducing unwanted moments of force (i.e., torque). The controller controlling the power to the four drive motor coils takes into consideration the relative position of the stage and the frame and proportions the driving force accordingly by a differential drive technique.

[10018]

Embodiments

FIG. 1 shows a top view of a stage mechanism in accordance with the present invention. See also the co-pending, commonly owned and invented U.S. patent application, Ser. No. 08/221,375 entitled "Guideless Stage with Isolated Reaction Stage" filed Apr. 1, 1994, original docket no. NPI0500 which is incorporated herein by reference and shows a related method of supporting elements of a stage mechanism so as to isolate reaction forces from the projection lens and other parts of a photolithography apparatus.

[0019]

The stage 10 is (in plan view) a rectangular structure of a rigid material (e.g., steel, aluminum, or ceramic). Two interferometry mirrors 14A and 14B located on stage 10 interact conventionally with laser beams 16A and 16B, respectively. Conventionally, laser beams 16A are two pairs of laser beams and laser beams 16B are one pair of laser beams, for three independent distance measurements. The underside of stage 10 defines a relieved portion 22 (indicated by a dotted line, not being visible in the plane of the drawing). That is, the stage 10 is configured to cover the upper portion of the projection lens 10 (refer to Fig. 1).

A reticle 24 is located on stage 10 and held by conventional reticle vacuum groove 26 formed in the upper surface of chuck plate 28. Stage 10 also defines a central aperture 30 (passage) below the location of reticle 24. Central aperture 30 allows the light (or other) beam which penetrates through reticle 24 to enter the underlying projection lens, as further described below. (It is to be understood that the reticle 24 itself is not a part of the stage mechanism.) Moreover if the present stage mechanism is to be used for something other than a reticle stage, i.e. for supporting a wafer, aperture 30 is not needed.

Stage 10 is supported on a conventional rectangular base structure 32 of e.g. granite, steel, or aluminum, and has a smooth planar upper surface. The left and right edges (in FIG. 1) of base structure 32 are shown as dotted lines, being overlain by other structures (as described below) in this view. In operation, stage 10 is not in direct physical contact with its base structure 32; instead, stage 10 is vertically supported by, in this example, conventional bearings such as gas bearings. In one embodiment three air bearings 36A, 36B and 36C are used which may be of a type commercially available.

[0022]

In an alternative air bearing/vacuum structure, the vacuum portion is physically separated from and adjacent to the air bearing portion. It is to be understood that the vacuum and compressed air are provided externally via tubing in a conventional cable bundle and internal tubing distribution system (not shown in the drawings for simplicity). In operation, the stage 10 thereby floats on the air bearings 36A, 36B, 36C by approximately 1 to 3 micrometers above the flat top surface of base structure 32. It is to be understood that other types of bearings (e.g. air bearing/magnetic combination type) may be used alternatively.

Stage 10 is laterally surrounded by the "window frame" which is a rectangular structure constituted of four window frame members. The four window frame members as shown in FIG. 1 are (in the drawing) the top window frame member 40A, the bottom window frame member 40B, the left-hand window frame member 40C, and the right-hand window frame member 40D. The four window frame members 40A-40D are made of any material having high specific stiffness (stiffness to density ratio) such as aluminum or a composite material. These four window frame members 40A-40D are attached together by hinge structures (connecting members) which allow non-rigid movement of the four window frame members relative to one another in the X-Y plane and about the Z-axis as shown in the drawing, this movement is also referred to as a "yaw" movement. The hinge is described in detail below, each hinge

44A, 44B, 44C and 44D being, for example, one or more metal connecting portions allowing a slight flexing of the window frame.

[0024]

The window frame moves in the X axis (to the left and right in FIG. 1) supported on horizontal surfaces of fixed guides 46A and 46B, and supported on vertical surfaces of fixed guides 64A, 64B. (It is to be understood that each pair of fixed guides 46A, 64A and 46B, 64B could be e.g. a single L-shaped fixed guide, or other configurations of fixed guides may be used.) Mounted on window frame member 40A are two air bearings 50A and 50B that cause the window frame member 40A to ride on its supporting fixed guide member 46A. Similarly air bearings 52A and 52B are mounted on the window frame member 40B, allowing window frame member 40B to ride on its supporting fixed guide member 46B. Air bearings 50A, 50B, 52A, 52B are similar to air bearings 36A, etc.

The window frame is driven along the X axis on fixed guides 46A and 46B, 64A and 64B by a conventional linear motor, which includes a motor coil 60A which is mounted on window frame member 40A. The motor coil 60B moves in a magnetic track 62A which is located in (or along) fixed guide 64A. Similarly, a motor coil 60B which is mounted on window frame member 40B moves in magnetic track 62B which is located in fixed guide 64B. The motor coil and track combinations are part no. LM-310 from Trilogy Company of Webster Texas. The tracks 62A, 62B are each a number of permanent magnets fastened together. The electric wires which connect to the motor coils are not shown but are conventional. Other types of finear motors may be substituted. It is to be understood that the locations of the motor coils and magnetic tracks for each motor could be reversed, so that for instance the magnetic tracks are located on stage 10 and the corresponding motor coils on the window frame members, at a penalty of reduced performance.

Similarly, stage 10 moves along the Y axis in FIG. 1 by means of motor coils 68A and 68B mounted respectively on the left and right edges of stage 10. Motor coil 68A moves in magnetic track 70A mounted in window frame member 40C. Motor coil 68B moves in magnetic track 70B mounted in window frame member 40D. [0027]

Also shown in FIG. 1 are air bearings 72A, 72B and 72C. Air bearing 72A is located on window frame member 40A and minimizes friction between window frame member 40A and its fixed guide 64A. The use of a single air bearing 72A at one end and two opposing air bearings 72B and 72C at the other end allows a certain amount of yaw (rotation in the X-Y plane about the Z-axis.) as well as limited motion along the Z-axis. In this case, typically air bearing 72A is gimbal mounted, or gimbal

mounted with the gimbal located on a connecting portion so as to allow a limited amount of misalignment between the window frame member 40A and fixed guide 64A.

[0028]

The use of the air bearing 72A opposing bearings 72B and 72C provides a loading effect to keep the window frame guide in its proper relationship to fixed guides 64A, 64B. Similarly, an air bearing 76A loads opposing air bearings 76B and 76C, all mounted on side surfaces of the stage 10, in maintaining the proper location of stage 10 relative to the opposing window frame members 40B and 40D. Again, in this case one air bearing such as 76A is gimbal mounted to provide a limited amount of misalignment, or gimbal mounted with the gimbal on a connecting portion (spring). Air bearings 72A, 72B, 72C and 76A, 76B, and 76C are conventional air bearings. [0029]

The outer structure 80 in FIG. 1 is the base support structure for the fixed guides 46A, 46B, 64A, and 64B and the window frame members 40A, 40B, 40C and 40D of the stage mechanism. In this manner, because the underlying support is partitioned, the reaction force on base support structure 80 does not transmitted to the stage base structure 32. Base support structure 80 is supported by its own support pillars or other conventional support elements (not shown in this drawing) to the ground, i.e. the surface of the earth or the floor of a building. An example of a suitable support structure is disclosed in above-referenced U.S. patent application Ser. No. 08/221,375 at FIGS. 1, 1B and 1C. This independent support structure for this portion of the stage mechanism provides the above-described advantage of transmitting the reaction forces of the reticle stage mechanism drive motors away from the frame supporting the other elements of the photolithography apparatus, especially away from the optical elements including the projection lens 92 and from the wafer stage, thereby minimizing vibration forces on the projection lens due to reticle stage movement. This is further described below. F00301

The drive forces for the stage mechanism are provided as close as possible through the center of gravity of the stage mechanism. As can be understood, the center of gravity of the stage mechanism moves with the stage 10. Thus the stage 10 and the window frame guide combine to define a joint center of gravity. A first differential drive control (not shown) for motor coils 60A, 60B takes into account the location of the window frame guide to control the force exerted by each motor coil 60A, 60B to keep the effective force applied at the center of gravity. A second conventional differential drive control (not shown) for motor coils 68A, 68B takes into account the location of stage 10 to control the force exerted by each motor coil 68A, 68B to keep the effective force applied at the center of gravity. It is to be

understood that since stage 10 has a substantial range of movement, that the differential drive for the motor coils 60A, 60B has a wide differential swing. In contrast, the window frame guide has no CG change, hence the differential drive for the motor coils 68A, 68B has a much lesser differential swing, providing a trim effect. Advantageously, use of the window frame guide maintains the reaction forces generated by movement of the reticle stage mechanism in a single plane, thus making it easier to isolate these forces from other parts of the photolithography apparatus. [0031]

FIG. 2 shows a cross-sectional view through line 2--2 of FIG. 1. The structures shown in FIG. 2 which are also in FIG. 1 have identical reference numbers and redundant descriptions thereof are omitted. Also shown in FIG. 2 is the illuminator 90 which is a conventional element shown here without detail, and omitted from FIG. 1 for clarity. Also shown without detail in FIG. 2 is the upper portion of the projection lens (barrel) 92. It is to be understood that the lower portion of the projection lens 92 and other elements of the photolithography apparatus are not shown in FIG. 2, but are illustrated and described below.

The supporting structure 94 for the projection lens 92 is also shown in FIG. 2. As can be seen, structure 94 is separated at all points by a slight gap 96 from the base support structure 80 for the reticle stage mechanism. This gap 96 isolates vibrations caused by movement of the reticle stage mechanism from the projection lens 92 and its support 94. As shown in FIG. 2, stage 10 is not a flat structure in this embodiment but defines the underside relieved portion 22 to accommodate the upper portion of lens 92. Magnetic track 70A is mounted on top of the window frame guide 40B and similarly magnetic track 70B is mounted on top of the opposite window frame member 40D.

[0033]

FIGS. 3A and 3B are enlarged views of portions of FIG. 2, with identical reference numbers; FIG. 3A is the left side of FIG. 2 and FIG. 3B is the right side of FIG. 2. Shown in FIG. 3A is the spring mounting 78 for air bearing 76A. Air bearing 78A being spring mounted to a side surface of stage 10, this allows a certain amount of yaw (rotation in the X-Y plane about the Z-axis) as well as limited motion along the Z-axis. A gimbal mounting may be used in place of or in addition to the spring 78. The spring or gimbal mounting thereby allows for a limited amount of misalignment between stage 10 and members 40C, 40D (not shown in FIG. 3A). [0034]

FIG. 4 is a top view of a photolithography apparatus including the stage mechanism of FIGS. 1 and 2 and further including, in addition to the elements shown in FIG. 1, the supporting base structure 100 which supports the photolithography apparatus including frame 94 except for the reticle stage mechanism (some structures shown in FIG. 1 are not labelled in FIG. 4, for simplicity). Base structure 100 supports four vertical support pillars 102A, 102B, 102C and 102D connected to structure 94 by bracket structures 106A, 106B, 106C and 106D, respectively. It is to be appreciated that the size of the base structure 100 is fairly large, i.e. approximately 3 meters top to bottom in one embodiment. Each pillar 102A, 102B, 102C, 102D includes an internal conventional servo mechanism (not shown) for leveling purposes. Also shown in FIG. 4 are the supports 108 and 110 for laser interferometer units (beam splitter etc.) 112A, 112B, 112C, respectively. FIG. 4 will be further understood with reference to FIG. 5 which shows a cross-sectional view of FIG. 4 through line 5–5 of FIG. 4. [0035]

In FIGS. 4 and 5 the full extent of the supporting structure 94 can be seen along with its support pillars 102A, 102C which rest on the base structure which is in contact with the ground via a conventional foundation (not shown). The independent support structure for the reticle stage base support structure 80 is shown, in FIG. 4 only (for clarity) and similarly includes a set of four pillars 114A, 114B, 114C, 114D with associated bracket structures 116A, 116B, 116C, 116D, with the pillars thereby extending from the level of base support structure 80 down to the base structure 100. [0036]

The lower portion of FIG. 5 shows the wafer stage 120 and associated support structures 122, 124. The elements of wafer stage 120 conventionally include (not labelled in the drawing) a base, the stage itself, fixed stage guides located on the base, magnetic tracks located on the fixed stage guides, and motor coils fitting in the magnetic tracks and connected to the stage itself. Laser beams from laser 124 mounted on support 126 locate lens 92 and the stage itself by interferometry. [0037]

FIG. 6A shows the details of one of the window frame guide hinged connecting portion structures, e.g. hinge 44C, in a top view (corresponding to FIG. 1). Each of hinges 44A, 44B, 44C and 44D is identical. These connecting portion hinges have the advantage over a mechanical-type hinge of not needing lubrication, not exhibiting histeresis (as long as the connecting portion is not bent beyond its mechanical tolerance) and not having any mechanical "slop", as well as being inexpensive to fabricate.

[0038]

Each individual connecting portion is, for example, 1/4 hard 302 stainless steel approximately 20 mils (0.02 inch) thick and can sustain a maximum bend of 0.5 degrees. The width of each connecting portion is not critical; a typical width is 0.5 inches. Two, three or four connecting portions are used at each hinge 44A, 44B, 44C and 44D in FIG. 1. The number of connecting portions used at each hinge is

essentially determined by the amount of space available, i.e., the height of the window frame members. The four individual connecting portions 130A, 130B, 130C, 130D shown in FIG. 6A (and also in a 90°, rotated view in FIG. 6B) are each attached by clamps 136A, 136B, 136C, 136D to adjacent frame members (members 40A and 40B in FIGS. 6A and 6B) by conventional screws which pass through holes in the individual connecting portions 130A, 130B, 130C, 130D and through the clamps and are secured in corresponding threaded holes in frame members 40A and 40B. [0039]

Note that the frame members 40B, 40D of FIGS. 6A and 6B differ somewhat from those of FIG. 1 in terms of the angular (triangular) structures at the ends of frame members 40B, 40D and to which the metal connecting portions 130A, 130B, 130C, 130D are mounted. In the embodiment of FIG. 1, these angular structures are dispensed with, although their presence makes serew mounting the connecting portions easier.

[0040]

In an alternate embodiment, the window frame guide is not hinged but is a rigid structure. To accommodate this rigidity and prevent binding, one of bearings 72C or 72B is eliminated, and the remaining bearing moved to the center thereof, mounted on a gimbal with no spring. The other bearings (except those mounted on stage 10) are also gimballed.

[10041]

This disclosure is illustrative and not limiting; further modifications will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.

[0042]

Action

As described above, according to the stage mechanism and the method of operating the same of the present invention, it is possible to drive the stage provided with the guide that does not shut off the light beam (exposure light that projects reticle) on the stage and thus it is possible to drive the stage without providing a large opening at the stage.

[0043]

Furthermore, according to the present invention, it is possible to prevent the generation of a twist movement of the stage, and thus it is possible to improve the frequency response of the stage.

Brief Description of the Drawings

Fig. 1

FIG. 1 shows a top view of the stage guided by the window frame.

Fig. 2

FIG. 2 shows a side view of the guide, the stage, and associated structures. Fig. 3A and 3B $\,$

FIGS. 3A and 3B show enlarged views of portions of the structure of FIG. 2.

Fig. 4

FIG. 4 shows a top view of a photolithography apparatus including the stage guided by the guide.

Fig. 5

FIG. 5 shows a side view of the photolithography apparatus of FIG. 4.

Fig. 6A and 6B

FIGS. 6A and 6B show connecting portions that connect the window frame member

Description of Symbols

- 10 stage
- 14 interferometry mirror
- 24 reticle
 26 reticle vacuum groov
- 26 reticle vacuum groove
- 28 chuck plate
- 32 base structure
- 36 air bearing
- 40 window frame member
- 44 connecting member
- 46 guide
- 50 air bearing
- 52 air bearing
- 60 motor coil
- 64 guide
- 68 motor coil
- 70 magnetic track
- 80 outer structure
- 90 illuminator
- 92 projection lens