Двадцать две основные буквы: Бог их нарисовал, высек в камне, соединил, взвесил, *переставил* и создал из них все, что есть, — и все, что будет.

Сефер Йецира

- **0.** Докажите, что $G \times H \cong H \times G$.
- **1.** Пусть A, B абелевы группы. Обозначим за $\operatorname{Hom}(A, B)$ множество гомоморфизмов из A в B. Задайте на $\operatorname{Hom}(A, B)$ структуру абелевой группы.
- **2.** Докажите формулу для числа сочетаний $\binom{n}{k}$ при помощи действия группы на множестве.
- 3. а) Докажите, что $\sum_{\pi \in S_n} |\mathrm{fix}(\pi)| = n!$. б) Пусть группа G транзитивно действует на множестве X. Каково среднее значение числа неподвижных точек элементов по всей G, то есть

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$$

4. а) Мальчик Вася нарисовал на бесконечном листе бумаги такой концептуальный рисунок:

Найдите группу симметрий этого рисунка.

б) то же самое, но для рисунка

... D D D D D D D D D ...

Комментарий. в данной задаче мы ищем *только те симметрии*, *которые переводят* соседние буквые в соседние. И, отметим, что буквы стоят на одинаковом расстоянии.

Определение. Симметрической группой S_X на множестве X называется группа биекций $X \to X$.

5. Докажите, что любая группа G реализуется, как подгруппа в некоторой симметрической группе (т.е. симметрической группе какого-то множество). Подсказка. Если у нас есть инъективный гомоморфизм $\varphi\colon G\to H$ по очевидным причинам ${\rm Im}\varphi\cong G$ и мы можем отождествить образ с самой группой G.

Определение. Дробно-линейным преобразованием называется функция $f\colon \mathbb{H}^2 o \mathbb{H}^2$ вида

$$f(z) = \frac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{R}$, $ad-bc = 1$.

Здесь $\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \operatorname{Im} z > 0 \}.$

6. Докажите, что дробно-линейные преобразования образуют группу относительно композиции.

Серия 3. Действию время, а потехе час.

Двадцать две основные буквы: Бог их нарисовал, высек в камне, соединил, взвесил, *переставил* и создал из них все, что есть, — и все, что будет.

Сефер Йецира

- **0.** Докажите, что $G \times H \cong H \times G$.
- **1.** Пусть A, B абелевы группы. Обозначим за $\operatorname{Hom}(A, B)$ множество гомоморфизмов из A в B. Задайте на $\operatorname{Hom}(A, B)$ структуру абелевой группы.
- **2.** Докажите формулу для числа сочетаний $\binom{n}{k}$ при помощи действия группы на множестве.
- 3. а) Докажите, что $\sum_{\pi \in S_n} |\mathrm{fix}(\pi)| = n!$. б) Пусть группа G транзитивно действует на множестве X. Каково среднее значение числа неподвижных точек элементов по всей G, то есть

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$$

4. a) Мальчик Вася нарисовал на бесконечном листе бумаги такой концептуальный рисунок:

Найдите группу симметрий этого рисунка.

б) то же самое, но для рисунка

... D D D D D D D D D ...

Комментарий. в данной задаче мы ищем только те симметрии, которые переводят соседние буквые в соседние. И, отметим, что буквы стоят на одинаковом расстоянии.

Определение. Симметрической группой S_X на множестве X называется группа биекций $X \to X$.

5. Докажите, что любая группа G реализуется, как подгруппа в некоторой симметрической группе (т.е. симметрической группе какого-то множество). Подсказка. Если у нас есть инъективный гомоморфизм $\varphi\colon G\to H$ по очевидным причинам ${\rm Im}\varphi\cong G$ и мы можем отождествить образ с самой группой G.

Определение. Дробно-линейным преобразованием называется функция $f\colon \mathbb{H}^2 \to \mathbb{H}^2$ вида

$$f(z) = \frac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{R}$, $ad-bc = 1$.

Здесь $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}.$

6. Докажите, что дробно-линейные преобразования образуют группу относительно композиции.