

DIMENSIONAMIENTO DE UN IC DE PLACAS

Modelos de cálculo

En la Tabla 1 se muestran las Especificaciones técnicas del pasteurizador de placas de la planta de lácteos de la Universidad de Antioquia.

Tabla 1. Especificaciones técnicas del pasteurizador para cada una de las zonas

Datos placas	Valor
Material	Acero Inoxidable AISI 316
Conductividad térmica (K: W/m °C)	16
Ancho de la placa (a _p : m)	0,1
Largo de las placas (L: m)	0,48
Distancia entre placas (w: m)	0,003
Diámetro equivalente (D _{eq} : m)	0,006
Calibre (m)	0,00075
Espesor placas (x: m)	0,003
Área de circulación (S: m²)	0,0003
Coeficiente de Obstrucción	0,00009
Número de placas N	N=6 para la zona de pasterización y enfriamiento y N=8 para la zona de regeneración

A continuación, se describen los modelos de cálculo necesarios para el dimensionamiento de IC de placas (Mendieta, 2008):

Condiciones del proceso requeridas:

	DATOS DE LOS FL	UIDOS DE TRAB	BAJO	
	Leche		Fluido de servicio	
	m_f		m_c	
Flujo másico (kg/s)		0.07		0.6
Temperatura entrada (°C)	T_{e}^{f}	4	T_{e}^{c}	85
Temperatura salida (°C)	T_s^f	75	T_s^c	
Temperatura promedio (°C)	$T_m^f = \frac{T_e^f + T_s^f}{2}$	57.5	$T_m^c = \frac{T_e^c + T_s^c}{2}$	
Conductividad térmica (W/m°C)	k _i	0,650	k _o	
Viscosidad (kg/s.m)	μ_{i}	4.8x10 ⁻⁴	$\mu_{\rm o}$	
Densidad (kg/m³)	ρ_{i}	984.94	ρ_0	
Capacidad calorífica (J/kg°C)	Cp _i	4189.071	Cp _o	
Pr	Pr_{i}	3.10	Pr_0	
Coeficiente de incrustación (m²°C/W)	$R_{f.i}$	2x10 ⁻⁴	$R_{\rm f.0}$	1x10 ⁻⁴
	ESPECIFICACIONES GEON	MÉTRICAS DEL IC DE I	PLACAS	
Material			Acero Inoxid	able AISI 316
Conductividad térmica (K: W/r	m °C)		1	6
Ancho de la placa (a٫: m)			0,	1
Largo de las placas (L: m)		0,48		
Distancia entre placas (w: m)		0,003		
Espesor placas (x: m)		0,003		
Coeficiente de incrustación (m^2 °C/W)		0,000035		

1. Flujo de calor requerido y flujo másico requerido para el fluido frio o caliente

Con el balance de energía se puede calcular el flujo másico requerido para el fluido de servicio o la temperatura de salida de uno de los fluidos

$$Q = m_c C_{po} \left(T_e^c - T_s^c \right) = m_f C_{pi} \left(T_s^f - T_e^f \right)$$

Dónde: Q es el flujo de calor (J/s), Te y Ts son las temperaturas del fluido caliente a la entrada y a la salida de la sección (°C),

 T_e^f y T_s^f son las temperaturas del fluido frío a la entrada y a la salida, m_f y m_c son los flujos másicos del fluido frio y caliente (kg/S), C_p es la capacidad calorífica de ambos fluidos (J/kg°C).

2. Calcular la temperatura media logarítmica

$$\Delta T_{ml} = \left[rac{\Delta T_1 - \Delta T_2}{\ln rac{\Delta T_1}{\Delta T_2}}
ight]$$

Dónde: ΔT_1 diferencia de temperaturas entre los dos fluidos a la entrada del intercambiador de calor y ΔT_2 diferencia de temperaturas entre los dos fluidos a la salida del intercambiador de calor.

3. Estimar la temperatura aproximada de la pared de la placa con las siguientes ecuaciones

$$T_{m}^{f} = \frac{T_{e}^{f} + T_{s}^{f}}{2}$$
 $T_{m}^{c} = \frac{T_{e}^{c} + T_{s}^{c}}{2}$ $T_{w} = \frac{T_{m}^{f} + T_{m}^{c}}{2}$

Dónde: T_w es la temperatura estimada de la pared de la placa (°C), T_m es la temperatura media de los fluidos frio (f) y caliente (c) (°C). T_e^f y T_s^f son las temperaturas de entrada y de salida del fluido frio (°C), y T_e^c y T_s^c son las temperaturas de entrada y de salida de los fluidos de servicio.

4. Cálculo del área de transferencia de calor requerida (A_T)

$$A_D = \frac{Q}{U_D \Delta T_{ml}}$$

Dónde: Q es el flujo de calor requerido (W), U_D es el coeficiente global de transferencia de calor de diseño (W/m² °C), ΔT_{ml} es la temperatura media logarítmica (°C).

Como hasta este punto no se conoce un valor del coeficiente global de transferencia de calor de diseño (U_D) se debe suponer un valor, algunos autores recomiendan un valor de U_D para un sistema agua-agua entre 850 y 1700 W/m²°C (Ver tabla adjunta), que es una aproximación aceptable con la cual se puede iniciar la iteración.

5. Cálculo del número de placas necesarias

$$N_p = \frac{A_D}{A_p}$$

$$A_p = a_p L_p$$

Dónde: A_D es el área de diseño requerida (m²) y A_p es el área de transferencia de calor de cada placa (m²), a_p y L_p es el ancho efectivo y la longitud cada placa (m)

El número de placas debe ser impar. Si el Np > 700 se considerar que el diseño es *incorrecto* y se debe regresar al paso anterior y tomar placas con dimensiones mayores.

6. Cálculo del número de canales totales (N_c) y para cada fluido

$$N_c = N_p + 1$$

El número de canales para el fluido frio y caliente es:

$$N_{cf} = \frac{N_c}{2}$$

7. Cálculo del área de flujo total para los fluidos

$$A_f = a_p w_p N_{cf}$$

Dónde: A_f es el área de flujo (m²), a_p es el ancho efectivo de cada placa (m), w_p es la separación entre placas (m) y N_{cf} es el número de canales para cada fluido.

8. Cálculo del diámetro equivalente

$$D_{eq} = 4R_H = \frac{4a_p w_p}{2a_p} \implies D_{eq} = 2w_p$$

Dónde: D_{eq} es el diámetro equivalente que se define como 4 veces el radio hidráulico (R_H) , siendo este la razón entre el área de paso del fluido entre las placas y el perímetro mojado. G_f es la densidad d flujo másica global (kg/s.m²) y m es el flujo másico del fluido (kg/s).

9. Cálculo de las velocidades de masa de cada uno de los fluidos

 $G_f = \frac{m_f}{A_f}$ Fluido frío

 $G_c = \frac{m_c}{A_c}$

Fluido caliente

Dónde: G_f es la densidad de flujo másica global (kg/s.m²) y m_f y m_c es el flujo másico del fluido frio y caliente (kg/s), respectivamente.

10. Cálculo del número de Reynolds y de Prant para ambos fluidos

Fluido frío

$$\operatorname{Re}_{f} = \frac{G_{f} D_{eq}}{\mu_{f}} \quad \operatorname{Pr}_{f} = \frac{c_{p_{f}} \mu_{f}}{k_{f}}$$

$$\mathrm{Re}_{c} = \frac{G_{c}D_{eq}}{\mu_{c}} \quad \mathrm{Pr}_{c} = \frac{c_{p_{c}}\mu_{c}}{k_{c}}$$
 Fluido caliente

Dónde: Re es el número de Reynolds, D_{eq} es el diámetro hidráulico equivalente (m), μ_f y μ_c es la viscosidad del fluido frio y caliente (kg/m.s), respectivamente.

11. Estimación del coeficiente de transferencia de calor por convección utilizando números adimensionales:

Con correlación matemática reportada por Kumar 1984 se pueden obtener valores de coeficiente de transferencia de calor por convección aceptables:

$$Nu = C_1 (\text{Re})^m (\text{Pr})^{0.33} \left[\frac{\mu_i}{\mu_w} \right]^{0.17}$$

Las constantes de esta correlación se muestran en la siguiente tabla:

Re	C ₁	m
≤ 10	0.718	0.349
> 10	0.348	0.663
< 10	0.718	0.349
10-100	0.400	0.598
> 100	0.300	0.663
< 20	0.630	0.333
20 - 300	0.291	0.591
> 300	0.130	0.732
< 20	0.562	0.326
20 - 400	0.306	0.529
> 400	0.108	0.703
≤20	0.562	0.326
20 - 500	0.331	0.503
> 500	0.087	0.718

$$h_f = \frac{Nu_f k_f}{D_{eq}}$$

$$h_c = \frac{Nu_c k_c}{D_{ca}}$$

- Fluido caliente

12. Cálculo del coeficiente global de diseño de transferencia de calor por convección

$$\frac{1}{U_D} = \frac{1}{h_f} + \frac{x}{k} + \frac{1}{h_c} + R_f + R_c$$

Dónde: x es el espesor de las placas (m), k es la conductividad térmica del material de las placas (W/m $^{\circ}$ C) y R_f y R_c son los coeficientes de incrustación para el fluido frio y caliente respectivamente (valores leídos en tablas).

13. Comparar el valor calculado de $U_{\rm D}$ con el valor supuesto en el punto 4

 $\frac{\left(U_{D}\right)_{asumido}}{\left(U_{D}\right)_{calculado}}$ está entre 0.995 y 1.05, el valor se considera aceptable, sino, el U_{D} calculado para a ser el supuesto en el punto 4 y se vuelve a repetir todo el procedimiento hasta que se cumpla esta condición.

14. Cálculo del área total de TC requerida para estas condiciones de trabajo

$$A_{D} = \frac{Q}{U_{D} \Delta T_{ml}}$$

Dónde: Q es el flujo de calor requerido (W), U_D es el coeficiente global de transferencia de calor de diseño (W/m² °C), ΔT_{ml} es la temperatura media logarítmica (°C).

15. Número de placas para la transferencia de calor requerida:

$$N_p = \frac{A_D}{A_p}$$

Dónde: Q es el flujo de calor requerido (W), U_D es el coeficiente global de transferencia de calor de diseño (W/m² °C), ΔT_{ml} es la temperatura media logarítmica (°C).

16. Número de placas totales (N_T)

Del total de placas necesarias, habrá dos placas más que actuarán como soportes de la estructura, pues estas no intervienen en la transferencia de calor.

BIBLIOGRAFÍA

Mendieta, D. G. (2008). Diseño de una línea piloto HTST para el laboratorio de operaciones unitarias de la carrera de ingeniería en alimentos (ESPOL). Trabajo de grado para optar al Título de Ingeniero de Alimentos. Escuela Superior Politécnica del Litoral.

Tabla 2. Valores representativos de los coeficientes totales de TC en los intercambiadores de calor

Tipo de intercambiador de calor	<i>U</i> , W/m² · °C*
Agua hacia agua	850-1700
Agua hacia aceite	100-350
Agua hacia gasolina o queroseno	300-1000
Calentadores de agua de alimentación	1000-8500
Vapor de agua hacia combustóleo ligero	200-400
Vapor de agua hacia combustóleo pesado	50-200
Condensador de vapor de agua	1000-6000
Condensador de freón (agua enfriada)	300-1000
Condensador de amoniaco (agua enfriada)	800-1400
Condensadores de alcohol (agua enfriada)	250-700
Gas hacia gas	10-40
Agua hacia aire en tubos con aletas	
(agua en los tubos)	30-60 [†]
	400-850 [†]
Vapor de agua hacia aire en tubos con aletas	
(vapor de agua en los tubos)	30-300 [†]
	400-4000‡