Ficha	TER178: Hibridación en modo alternativo de caldera/s de combustión con bomba de calor de accionamiento eléctrico en edificios no residenciales ubicados en la zona climática D1, D2 o D3
Código	TER178
Versión	V1.0
Sector	Terciario

1. ÁMBITO DE APLICACIÓN

Hibridación en modo alternativo de una o varias calde, s/s / a combustión existente/s de una instalación térmica (calefacción /o ɛ ȝ、 caliente sanitaria y piscina) de un edificio del sector terciario con bomba case or de accionamiento eléctrico tipo aire-aire, aire-agua, salmuera-agua, agua o combinadas.

Los edificios no residenciales del senor tellino (hoteles, restaurantes, hospitales, centros educativos, bibliotecas, un tros culturales, oficinas, centros comerciales, etc.) estarán ubicados en la zona climática D1, D2 o D3.

En esta ficha no es aplicable las ' "ba de Jalor cuyo compresor esté accionado térmicamente.

2. REQUISITOS

La instalación térr. ca de be disponer de depósito de inercia o acumulador para el suministro de 'S y/o celefacción y/o piscina.

Para poder a in la lorros a cualquiera de los servicios previstos en las fórmulas del aparado in lecua debe operar en funcionamiento bivalente alternativo¹.

3. CÁLCULO DEL AHORRO DE ENERGÍA

3.7 En calefacción

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

¹ La/s bomba/s de calor funcionará/n hasta una temperatura exterior concreta, según anexo III, por debajo de la cual se detiene, poniéndose en marcha la caldera de combustión. A este sistema se le denomina "bivalente alternativo".

$$AE_C = \left(\frac{1}{\eta_i} - \frac{1}{SCOP}\right) \cdot D_C \cdot S \cdot F_P$$

Donde:

η_i Rendimiento de la caldera a hibridar según ficha técnica (tanto r ... referido² a PCS³ uno)

SCOP Coeficiente de rendimiento estacional⁴ de la bomba de

calor en calefacción

Dc Demanda anual de energía térmica en calefacción⁵ k '/h/ar ,·m²

S Superficie útil habitable del edificio m²

F_p Factor de ponderación⁶

AEc Ahorro anual de energía final en calefacción kWh/año

ηί	SCOP	Dc	S	F	AEc
v.PC					

3.8En agua caliente sa itaria (ACS)

En ahorro de energía en ACS se me irá en riminos de energía final, expresada en kWh/año, de acuerdo con la riguante con mula:

$$A^{-1}_{ACS} = \left(\frac{1}{\eta_i} \frac{1}{SCOP_{dhw}}\right) \cdot D_{ACS} \cdot F_P$$

Donde:

ηι Rendimento le la caldera a hibridar según ficha técnica (tanto por referido⁷ a PC ε⁸ uno)

² Para la priversio de PCI a PCS se usará la formula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de convers de F_{conv} to F_{co

httr: 'www.io. ___uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e

[`]alternaւ ւլente ել valor de la última inspección.

⁴ Ve, ne o II de condiciones generales para cálculo del coeficiente de eficiencia estacional sobre energía final, en lo lativo a calefacción.

⁵ Landa de proyecto o alternativamente el certificado de eficiencia energética del edificio.

⁶ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

⁷ Para la conversión de PCI a PCS se usará la formula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de conversión de F_{conv} = 1,106), para gasóleo (F_{conv} = 1,059) y para propano (F_{conv} = 1,086). Ver Tabla CB-01 Poderes caloríficos de los combustibles:

 $https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e53f312e.pdf$

⁸ O alternativamente el valor de la última inspección.

SCOP_{dhw} Coeficiente de rendimiento estacional⁹ de la bomba de

calor en agua caliente sanitaria (ACS)

D_{ACS} Demanda anual de energía térmica en agua caliente kWh/año

sanitaria (ACS) conforme al anexo F del DB HE1 CTE

F_p Factor de ponderación¹⁰

AE_{ACS} Ahorro anual de energía final en agua caliente sanitaria kWh/¿ ĭo

ACS

η_{i}	SCOP _{dhw}	D _{ACS}	Fp	AE _{ACS}

3.9 En calentamiento de piscina (CAF

El ahorro de energía en el calentamiento de agua de pascimis se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la riguiente fórmula:

$$AE_{CAP} = \left(\frac{1}{\eta_i} - \frac{1}{SCOP_{L/h}}\right) \cdot D_{CAF} F_P$$

Donde:

ηι Rendimiento de la calderr a hi' ridar según ficha técnica (tanto por referido¹¹ a PCS¹² uno)

SCOP_{pwh} Coeficiente de rendimer. Desacional¹³ de la bomba de

calor para el cale. miento de piscinas (CAP)

DCAP Demanda a ua 'e e térmica para el kWh/año

calentar. iento de a va de piscinas (CAP)14

F_P Factor de , onde ración¹⁵

AECAP Ahorro inual de erlergía final en el calentamiento de kWh/año

agua caliente c'e piscina (CAP)

⁹ Ver Anex ondir o generales para cálculo del coeficiente de eficiencia estacional sobre energía final, en lo relativo al alentamo to de ACS.

Facto. pondera 5n para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del co. no rec. la enc. jía final.

¹¹ Parc r conve. 'ón de PCI a PCS se usará la fórmula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de niversión. 'a F_{conv} = 106), para gasóleo (F_{conv} = 1,059) y para propano (F_{conv} = 1,086). Ver Tabla CB-01 Poderes caloríficos de la combusuibles:

https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e %1212e.pdf

¹² lternativamente el valor de la última inspección.

¹³ Ver Anexo III de condiciones generales para cálculo del coeficiente de eficiencia estacional en lo relativo al calentamiento de agua de piscinas (CAP).

Según datos de la instalación existente o según la metodología de cálculo indicada en el Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura, de IDAE:

https://www.idae.es/uploads/documentos/documentos 5654 ST Pliego de Condiciones Tecnicas Baja Temperatura 0 9 082ee24a.pdf

¹⁵ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

F _P	ηί	SCOP _{pwh}	D _{CAP}	AECAP

4. RESULTADO DEL CÁLCULO

El ahorro anual de energía total será la suma de los ahorros de energía nal en calefacción, agua caliente sanitaria y/o calentamiento de piscina. Lo ahorros del servicio que no sea hibridado no deberán figurar en la fórmula:

 $AE_{TOTAL} = (AE_C + AE_{ACS} + AE_{CAP}) \cdot C_b$

AEc		ro anual de ene ución total	ergía final en calefac	ción pc -	kWh/año
AE _{ACS}		ro anual de ene sanitaria (ACS	ergía final en calenta)	ilen . de	kWh/año
AECAP		ro anual de ene de piscina (CA	ergía final en ca enta P)	mier de	kWh/año
Cb	Coefi	ciente de cobe	rtura por t` alencia	en alternativo	(tanto por uno)
AE TOTAL	Ahori	ro anual de ene	ergía inal otal		kWh/año
AEc		AEACS	AEr (P	AETOTAL	Di
Di	Dura	cich ino rativa	de la actuación¹7		años
Fecha inic	io actu	ı⊳ción			
Fecha fin	ac [،] ،دئ	ción			
Repre en	ta. 'e u	solicitante			
NIE/5 =					

า eleu าว์nica

¹⁶ El coeficiente de cobertura por bivalencia es el porcentaje de la demanda de energía térmica anual cubierta por bombas de calor cuando está combinada con generadores auxiliares (calderas) formando un sistema híbrido. Ver Anexo IV. El valor se expresará en tanto por uno con tres decimales.

¹⁷ Según Recomendación (UE) 2019/1658, de la Comisión, de 25 de septiembre, relativa a la transposición de la obligación de ahorro de energía en virtud de la Directiva de eficiencia energética, o en su defecto a criterio de la persona técnica responsable.

5. DOCUMENTOS PARA LA JUSTIFICACIÓN DE LOS AHORROS DE LA ACTUACIÓN Y DE SUS REALIZACIÓN

- Ficha cumplimentada y firmada por el representante legal del solicitante de la emisión de CAE
- 2. Declaración responsable formalizada por el propietario inicial del at. rro de energía final referida a la solicitud y/u obtención de ayudas públic as para la misma actuación de ahorro de energía según el modelo del Anexo I c. esta ficha.
- 3. Facturas justificativas de la inversión realizada de incluyan una descripción detallada de los elementos principales (por riem, requellos de cuya ficha técnica se toman datos para calcular el ahorro)
- 4. Informe fotográfico del conjunto caldera/s , . ./s L `m' a/s de calor antes y después de la actuación con identificación de l s equi; is afectados.
- 5. Copia de la comunicación de la pue. Len se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la pue. Le no se meio presentada en el registro habilitado por el órgano competente de la comunicación de la

5

¹⁸ Todas las facturas deben contener, como mínimo, los datos y requisitos exigidos por la Agencia Tributaria.

ANEXO I

Declaración responsable formalizada por el propietario inicial del ahorro referida a la solicitud y/u obtención de ayudas o subvención subvención de ahorro de energía.

1. Identificación de la actuación de ahorro de energía

Nombre de la actuación

Código y nombre de la ficha			
Comunidad autónoma en la que se actuación¹	ejecutó la		
Dirección postal de la instalación en la actuación	n que se ejecut		
Referencia catastral de la localizaci actuación	ión de la		
En su caso, número de serie de los	s eaui _k s		
2. Identificación del ¡rop』、'a	ario nicial del aho	rro y del beneficiario	
Propietario inicial del ahc ro² (Nombre y apellidos / Razc n social)		NIF/NIE	
Domicilio		·	
Teléfono			
Correo ele strónic			

Fn e. aso en que el propietario inicial del ahorro no coincida con el beneficiario de ahorro, completar también la siguiente tabla:

¹ En el caso de que la actuación exceda el ámbito territorial de una comunidad autónoma, indicar en este apartado: "Excede el ámbito territorial de una comunidad autónoma".

² Persona física o jurídica que lleva a cabo la inversión de la actuación en eficiencia energética.

Beneficiario del ahorro³ (Nombre y apellidos / Razón social)			1	NIF/NIE	
Domicilio					
Teléfono					
Correo electrónico					
	•	entante del propietari epresentación)	io inicial del a	ahorro (a	dicar
Representante					
(Nombre y apellidos / social)	Razón			nif/NIE	
Domicilio					
Teléfono					
Correo electrónico					
Control crodulerings					
Ostentando podere	s suficientes	segun:			
☐ Poder Notarial d	e fecha	iúmero (de protocolo		
Se adjunta copia a					
		rifice título y	fecha de	formaliz	ación):
	1 1	. Se adjunta copia a			,
Manifestando que limitados.		res no se encuentra	•	, modifica	ados ni
4. Ir sión s	si el prop	pietario inicial del a	ihorro o el t	peneficiar	io son
		cial, en sus modalida			
	<u> </u>	cial eléctrico para co			
Persistor as pono		cial eléctrico para co			
cial		cial eléctrico en ries			
(Seichocionar las opciones que		cial de justicia energ	•		
c respondan)	☐ Bono so	cial térmico			
	☐ Ninguno	de los anteriores			

³ Aquella persona física o jurídica que, siendo titular, arrendatario u ocupante de las instalaciones sobre las que se ha ejecutado la actuación de eficiencia energética, obtiene un impacto positivo de los ahorros de energía final generados.

En relación con la actuación arriba indicada, el abajo firmante:

DECLARA RESPONSABLEMENTE

LI NO SE LIA SOCIOTADO a sulos organismos o autimistra ones
internacionales, nacionales, autonómicas o locales, una ayuda o upvencio
para la misma actuación.
☐ SE HA SOLICITADO a otros organismos o administraciones internacionales,
nacionales, autonómicas o locales, una ayuda o subver ción ρετα ια misma
actuación, y en ese caso:
☐ Se ha obtenido dicha ayuda o subvención [ara a . isma actuación.
☐ No se ha obtenido dicha ayuda o subv ₁ιωón μ ਖਾ ₁a misma actuación.
☐ Está pendiente de resolución dicha ay da o s bvención solicitada para
la misma actuación.
En todo caso, se deberán indicar . Śsig entes datos para cada ayuda o
subvención:
Denominación del programa de ayuda
Entidad u órgano gestor
Año
Disposición reguladora
Número de exp dier
Estado de la concesión
Fecha de solicituo
Fech de la
Cuarità de la ayuda ou nida o esperada

Denominación del programa de ayuda	
Entidad u órgano gestor	
Año	
Disposición reguladora	
Número de expediente	
Estado de la concesión	
Fecha de solicitud	
Fecha de la resolución de concesión	
Cuantía de la ayuda obtenida o esperada	
las circunstancias anteri o sujeto delegado con e	METE a comunicar cual _f uier modificación o variación de ores en un plazo mártimo de cir do días al sujeto obligado I que haya formaliza lo el convenio CAE. te, firma la arestate an, a de .
Fdo.:	
(Firma del propieta io in	rial del ahorro o representante del mismo).

ANEXO II

Fórmulas para obtener los coeficientes de rendimiento estacional sobre energía final en calefacción (SCOP) o ACS (SCOP_{dhw}), para aqua bomba de calor de accionamiento eléctrico

Los coeficientes de rendimiento estacional de la bomba de calor so re ene gía final, en calefacción o ACS, se calcularán a partir de los renommentos estacionales¹ sobre energía primaria según las exprezione sin dificadas siguientes²:

Calefacción	~S³
$SCOP = CC \cdot (\eta_{S,h} + F(1) + F(2))$	SCO dhw: CC · ηhw

BOMBA(S) DE CALOR AEROTÉFMIC. S Y DEPÓSITOS NO SUMINISTRADOS COMO CONJUNTO

En los casos en los que la(s) bo hba's) de calor aerotérmicas caliente(n) depósito(s) de ACS o depósito(s) de increia reara producción instantánea de ACS (mediante, por ejemplo, esta iches de producción), etc., que no forman parte de un conjunto⁴, el dato⁵ de la Seconda el cálculo de ahorro de energía final se obtendrá en función de la zona elimática establecida en la Tabla a del Anejo B del CTE y del COP a temperaturas⁶ (A7/W45) o (A7/W55) a partir de la expresión siguiente⁷:

¹ Hasta la actualiza fón los i glamentos de ecodiseño, se tomará el valor de 2,5 para el coeficiente de energía primaria de la electricidad "Cu .

² El factor (1) = 5 para sombas de calor aerotérmicas, geotérmicas e hidrotérmicas. El factor F(2) = 5% cuando las bombas de calor son idrotérmicas y usan sistemas de captación de agua subterránea de circuito abierto. En todos los dimás ca F(2) = (5). Punto 3.3 Cálculo de F(i) para enfriadoras de confort, acondicionadores de aire y bombas de ca, de la Compinación de la Unión Europea 2017/C 229/01.

³ Fórmusolo apurable a depósitos suministrados como conjunto de la bomba de calor, para otros casos ver apartados Nanexolo.

⁴ Le nrma UNE-EN 16147 aplica únicamente a los equipos suministrados como conjunto, por lo que es necesario un método cálculo para los equipos no suministrados como conjunto. No obstante, si la temperatura prevista de mulación de ACS es inferior a 55°C (precalentamiento en acumuladores previos), el método de cálculo del SCOP es el a Jepósito no suministrado como conjunto, aun cuando se suministre como conjunto.

⁵ La temperatura de acumulación en ACS considerada, en la metodología de cálculo, es inferior en 5K a la temperatura Je impulsión de primario.

⁶ Obtenido en las condiciones indicadas en la UNE-EN 14511.

⁷ Para bombas de calor aerotérmicas cuyo refrigerante es CO₂, la expresión será: SCOP_{dhw} = COPAxx/W10-60, donde el dato de COP se aportará a una temperatura de impulsión de 60 °C, a una temperatura de entrada de agua fría de 10 °C y al menos en condiciones climáticas medias para ACS (7 °C de temperatura exterior media anual), o para las condiciones climáticas cálidas en ACS (14 °C de temperatura media anual) para la zona climática del CTE considerada,

SCOP_{dhw} Coeficiente de rendimiento estacional en ACS de la bomba de calor accionada eléctricamente para la zona climática del considerada.

COP A7/W55 Coeficiente de rendimiento en condiciones de temper tura exterior de 7°C y temperatura de impulsión de 55 °C. a caracterista acumulación de ACS a 50 °C.

COP A7/W45 Coeficiente de rendimiento en condiciones de tempo aura exterior de 7°C y temperatura de impulsió a 4c°C, para una acumulación a ACS a 40°C.

A7 Temperatura de entrada de aire exterio (1).

W55 Temperatura de impulsión (55 °C)⁸ de la hamba de calor.

F_C Factor de corrección⁹.

Donde el factor de corrección Fc se obtendi. de la tabla siguiente.

Temperatura de impulsión	45 °C	55 °C	65 °C
Clima CTE	Fr	Fc	Fc
D1	1, 4	1,093	1,094
D2	126	1,103	1,099
D3	1,1,7	1,113	1,101

Para las bombas in calor ae otérmicas que no dispongan de dato del COP en condiciones (AT/W65), pero les sea posible alcanzar dicha temperatura de primario, el calcrir de la coeficiente de rendimiento estacional en ACS (SCOP_{dhw}), para un impero ara de acumulación de 60°C, se realizará a partir de la expre in siguiente:

SCOP_{dhw} = COP_{A7/W55} x F_C

レ nde:

-

según la tabla del caso 1. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

⁸ La superficie de intercambio del interacumulador o acumulador, su geometría, la disposición de las tomas, el dimensionamiento del intercambiador de placas en su caso, el caudal en circulación, su aislamiento, etc. deben ser acordes con las instrucciones y/o recomendaciones del fabricante para su uso con bomba de calor y para las temperaturas y saltos térmicos considerados.

⁹ En función de la zona climática establecida en la Tabla a – Anejo B del DB HE del CTE y en función de la temperatura de acumulación de ACS o de inercia (para producción instantánea) prevista.

SCOP_{dhw} Coeficiente de rendimiento estacional en ACS de la bomba

de calor accionada eléctricamente para la zona climática del considerada y 60°C de temperatura de acumulación de ACS.

COP_{A7/W55} Coeficiente de rendimiento de la bomba de calor aerotérmica

que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizade esta expresión será el ponderado de las bombas de alor instaladas, en caso de ser de diferentes característica.

A7 Temperatura de entrada de aire exterior (7 °C)

W55 Temperatura de impulsión (55 °C) de la bor pa de calor

 F_C Factor único de corrección. Valor $F_C = 0.9$

La temperatura de acumulación en ACS considerada en la metodología de cálculo, es inferior en 5K a la temperatura de i ipulsión (i.ª de primario). Todos los depósitos deberán cumplir el reglamento de en no y/o etiquetado que les sea de aplicación¹⁰.

¹⁰ La superficie de intercambio del interacumulador, su geometría, la disposición de las tomas, el dimensionamiento del intercambiador de placas en el caso de acumuladores, el caudal en circulación, su aislamiento, etc. deben ser acordes con las instrucciones y/o recomendaciones del fabricante para su uso con bomba de calor y para las temperaturas y saltos térmicos considerados.

BOMBA(S) DE CALOR GEOTÉRMICAS E HIDROTÉRMICAS Y DEPÓSITOS NO SUMINISTRADOS COMO CONJUNTO.

Para las bombas de calor¹¹ geotérmicas e hidrotérmicas combinadas co₁. depósitos¹² de ACS y que no estén suministrados como conjunto, para el c⁺ cu. del coeficiente de rendimiento estacional en ACS (SCOP_{dhw}) se aplicar n las fórmulas siguientes a partir del COP¹³:

Bombas de calor geotérmicas Bon	nbas de calor hidrotérmicas
$SCOP_{dhw} = COP_{B0/Wxx} x F_P$	$SCOP_{dhw} = (OP_{10/V} \times X F_{P})$

$SCOP_dhw$	Coeficiente de rendimiento estacion 1 er Ac a de la bomba de
	calor accionada eléctricament para a lona climática del
	considerada.
COP _{B0/W55}	Coeficiente de rendimiento in conociones de temperatura de
	captación (0°C) y tem receira en impulsión de 55 °C, para una
	acumulación de ACS 1 F J °C
COP _{B0/W45}	Coeficiente de Jud. Nemo en condiciones de temperatura de
	captació. (0°€, v temp∋ratura de impulsión de 45 °C, para una
	acumula ión `a Ac sa 40 °C.
COP w10/w55	Coeficiente de rendimiento en condiciones de temperatura de
	cantacion (16°C) y temperatura de impulsión de 55 °C, para una
	acumulaci∕n de ACS a 50 °C.
COP w10/w4	C _ ciente de rendimiento en condiciones de temperatura de
	ເລຕ' ɹción (10°C) y temperatura de impulsión de 45 °C, para una
	acumulación de ACS a 40 °C.
F.	Para bombas de calor geotérmicas, temperatura de entrada del
	glicol (Brine) al evaporador.

¹¹ Sólo podrán considerarse aquellas bombas de calor que puedan alcanzar una temperatura de impulsión de primario mínima de 65°C o superior, sin hacer uso de un generador auxiliar para alcanzar dicha temperatura.

¹² Se considera que la temperatura de calentamiento del agua ACS es 5 K inferior a la temperatura de impulsión.

¹³ Coeficiente de rendimiento de la bomba de calor geotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

W10 Para bombas de calor hidrotérmicas, temperatura de entrada del agua al evaporador.

F_P Factor de ponderación en función de la zona climática del CTE.

Considerando los factores¹⁴ de ponderación y corrección siguientes:

Fuente Energética de la bomba de calor				r a L		
Energía l	Hidrotérmica.					0,86
Energía	Geotérmica	de	circuito	cerrado.	Intercambiadores	0,90
horizonta	les					0,00
Energía	Geotérmica	de	circuito	cerrado.	Intercamt ores	1,11
verticales	3					1,11
Energía Geotérmica de circuito abierto			1,17			

Para las bombas de calor geotérmicas o h drow micros que sólo dispongan de dato del COP en condiciones¹⁵ (B0/W55) C 'W10/W55), pero les sea posible alcanzar 65 °C de temperatura de rime do 16, para calcular su coeficiente de rendimiento estacional en ACS (SCOF v) a una temperatura de acumulación de 60°C (acumulador final) se citi ará la xpresión siguiente:

Bombas de calor geoté mic 's:

Bombas de calor hidro érmicas:

Donde:

SCOP_{db}...

coeficiente de rendimiento estacional en ACS de la bomba de caior accionada eléctricamente para la zona climática del onsiderada.

C PBO/WL

Coeficiente de rendimiento de la bomba de calor geotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta

¹⁴ Los factores para bombas de calor geotérmicas e hidrotérmicas de la tabla se han obtenido del documento "Prestaciones medias estacionales de las bombas de calor para producción de calor en edificios, de IDAE".

¹⁵ Obtenido en las condiciones indicadas en la norma UNE-EN 14511.

¹⁶ Sólo podrán considerarse aquellas bombas de calor que puedan alcanzar una temperatura de impulsión de primario mínima de 65°C o superior, sin hacer uso de un generador auxiliar para alcanzar dicha temperatura.

expresión	será	el	ponderado	de	las	bombas	de	calor
instaladas,	en ca	so d	e ser de dife	erent	es ca	aracterístic	cas.	

COPw10/w65

Coeficiente de rendimiento de la bomba de calor hidrotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en e ta expresión será el ponderado de las bombas de calor, el combas de calor, el c

Para bombas de calor geotérmicas, temperatura de ent. da do glicol (Brine) al evaporador.

Dara hambas de salar hidratérmicas, tampa eture de cetrad

W10 Para bombas de calor hidrotérmicas, tempe atur de entrada del agua al evaporador.

W55 Temperatura de impulsión (55 °C) de la ... ¬ba ... Jalor¹7.

F_P Factor de ponderación en función de la zor a con ática del CTE.

Fc Factor de corrección en función de 'a temperatura de

impulsión. Valor $F_C = 0.9$.

Todos los depósitos deberán cumplir el regla, ento de ecodiseño y/o etiquetado que les sea de aplicación¹⁸.

¹⁷ Se considera que la temperatura de calentamiento del agua (ACS) es 5 K inferior a la temperatura de impulsión.

¹⁸ La superficie de intercambio del interacumulador, su geometría, la disposición de las tomas, el dimensionamiento del intercambiador de placas en el caso de acumuladores, el caudal en circulación, su aislamiento, etc. deben ser acordes con las instrucciones y/o recomendaciones del fabricante para su uso con bomba de calor y para las temperaturas y saltos térmicos considerados.

ANEXO III

Condiciones generales para cálculo de la eficiencia estacional en lo relativo al calentamiento de agua de piscina (CAP)

$$SCOP_{pwh} = COP \cdot F_C$$

Donde:

SCOP_{pwh} Coeficiente de rendimiento estacional en calentamiento de agua de piscina¹.

COP Coeficiente de rendimiento a la timperatura de producción necesaria y a la temperatura exterior (medicar val) considerada².

Fc Factor de corrección en funci n de la temperatura de impulsión³.

Coeficientes para el cálculo del rendimie to estacional en lo relativo al calentamiento de agua de piscina (C \P)

T ^a de primario (impulsión) (°C)	F (C/Pa. V°C)	Fc (COP a 35°C)	Fc (COP a 40°C)
30			
35	υ <u>.</u> 37	1	
40	0,77	0,87	1

¹ Se c. .era que la temperatura de piscina, para vasos climatizados, debe encontrarse en el rango de entre los 24 °C y 30 °C o ≤ 36°C en hidromasaje (Parámetros indicadores de calidad del agua. Anexo I. <u>Real Decreto 742/2013</u>, de 27 de ptiembre, por el que se establecen los criterios técnico-sanitarios de las piscinas), por lo que las temperaturas de impulsión consideradas son 30 °C, 35 °C o 40 °C respectivamente, con un ΔT =5K.

² Para bombas de calor geotérmicas la temperatura del circuito de captación será de 0 °C. Para bombas de calor hidrotérmicas será de 10 °C. Para bombas de calor aerotérmicas ver Anexo VIII. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

³ En el caso de que el dato buscado corresponda a una temperatura de impulsión menor que la del dato disponible se usará el coeficiente inverso correspondiente. Ejemplo: el coeficiente de rendimiento estacional a una temperatura de 30 °C de impulsión, a partir del dato a 35 °C de impulsión, se obtendría de la siguiente expresión SCOPpwh = COP_{A7/W35} x 1 / 0,87.

ANEXO IV

Tabla de coeficientes de cobertura por bivalencia alternativa para bombas de calor hibridadas con calderas de combustión existen edificios no residenciales ubicados en zona climática D1-D.

Tabla de coeficientes¹ de cobertura por bivalencia alternativa para bomb s de ca or²					
	Aero	otermia	Geotermia o hidro		
T ^a de bivalencia	Potencia mínima (%)	Coeficiente de cobertura (%)	Potenci ^r mínima %)	Coef siente de	
>=-6 y <-5					
>=-5 y <-4					
>=-4 y <-3					
>=-3 y <-2	132,52%	97,60%	100, ^ 0	100,00%	
>=-2 y <-1	121,26%	94,96%	94 44%	97,60%	
>=-1 y <0	110,68%	90,80%	,89%ر	94,96%	
>=0 y <1	100,72%	85,80%	83,33%	90,80%	
>=1 y <2	91,33%	77,52,	77,78%	85,80%	
>=2 y <3	82,46%	(',6 ⁷ / ₀	72,22%	77,32%	
>=3 y <4	74,02%	5t 2%	66,67%	67,67%	
>=4 y <5	66,03%	4 81%	61,11%	56,52%	
>=5 y <6	58,46	35 5%	55,56%	45,81%	
>=6 y <7			50,00%	35,35%	
>=7 y <8					
>=8 y <9					
>=9 y <10					
>=10 y <11					
>=11 y <12					
>=12 y <13					
>=13 y <14					
>=14 y -15					

¹ Porcentaje de cobertura sobre la demanda de energía anual en función del porcentaje de potencia de la bomba de calor aerotérmica y geotérmica o hidrotérmica, para zona climática D1-D3. El coeficiente de cobertura de bivalencia ya incluye factores de degradación de potencia térmica al descender la temperatura exterior.

² Para una potencia nominal en condiciones UNE-EN 14511 (A7/Wxx) para bombas de calor aerotérmicas y (B0/Wxx) o (W10/Wxx) para bombas de calor geotérmicas o hidrotérmicas, respectivamente. Para porcentajes intermedios de potencia nominal de bomba de calor se interpolará linealmente entre los valores de la tabla más próximos.

Ficha	TER179: Hibridación en modo alternativo de caldera/s de combustión con bomba de calor de accionamiento eléctrico en edificios no residenciales ubicados en la zona climática E1
Código	TER179
Versión	V1.0
Sector	Terciario

1. ÁMBITO DE APLICACIÓN

Hibridación en modo alternativo de una o varias calde. \$/\$ / \$ combustión existente/s de una instalación térmica (calefacción /o ɛ ȝ、 caliente sanitaria y piscina) de un edificio del sector terciario con bomba care or de accionamiento eléctrico tipo aire-aire, aire-agua, salmuera-agua, agua o combinadas.

Los edificios no residenciales del servor te. in o (hoteles, restaurantes, hospitales, centros educativos, bibliotecas, un tros culturales, oficinas, centros comerciales, etc.) estarán ubicados en la zon a climática E1.

En esta ficha no es aplicable las ' ba de dalor cuyo compresor esté accionado térmicamente.

2. REQUISITOS

La instalación térro ca de be disponer de depósito de inercia o acumulador para el suministro de ^ S y/o celefacción y/o piscina.

Para poder a in la lorros a cualquiera de los servicios previstos en las fórmulas del aparado in lecua debe operar en funcionamiento bivalente alternativo¹.

3. CÁLCULO DEL AHORRO DE ENERGÍA

3.10 En calefacción

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

¹ La/s bomba/s de calor funcionará/n hasta una temperatura exterior concreta, según anexo III, por debajo de la cual se detiene, poniéndose en marcha la caldera de combustión. A este sistema se le denomina "bivalente alternativo".

Referencias

- Ficha Procedimiento Sede Electrónica MITECO
- BOE-A-2024-14816 Resolución de 3 de julio de 2024, de la Dirección General de Planificación y Coordinación Energética, por la que se actualiza el Anexo I de la Orden TED/845/2023, de 18 de julio, por la que se aprueba el catálogo de medidas estandarizadas de eficiencia energética.
 - Disposición 2027 del BOE núm. 21 de 2023 BOE-A-2023-2027.pdf
 - Sistema de Certificados de Ahorro Energético (CAE)
- Orden TED/296/2023, de 27 de marzo, por la que se establecen las obligaciones de aportación al Fondo Nacional de Eficiencia Energética en el año 2023. BOE-A-2023-8052-consolidado.pdf

IberCAE

16 de septiembre de 2024