第11回了于到过37年时期

,	<u> </u>
RIFT A/B N=RITA AFAILCTS	$A = \begin{pmatrix} a_1 \\ a_2 \\ a_n \end{pmatrix} \begin{pmatrix} a_2 - (a_1) + (c_1) \\ a_2 - (a_2) \end{pmatrix}$
1 det tA = det A	an) (az=(azi azz azu) ztaz
2) 4+(AB)=(4+A)(4+B)	图120分表它个意格人们过往的
C(1=del(1B)=del(BA)	1 01 1 01 1 01 1 01 1 01 1 0 1
3) det / + to z' ある-とと At 正是(() () () () = E	$\begin{vmatrix} a_1 \\ ca_2 \\ a_n \end{vmatrix} = c \begin{vmatrix} a_1 \\ a_2 \\ a_n \end{vmatrix}$
(1) A = (a11 a12 a1n) & fr & c o a22 a2n & fr & c o a27 (a2n) (an 2)	Dan an an
$CLETA = all \left(\begin{array}{c} a_{22} - a_{2n} \\ a_{2n} \end{array} \right)$	liv, Ci 1771/11-
(S) 1 (Q12 azy)	②2つのイラをいわかさきらイで別割はインをする
$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	
$\left(Q_{2}^{2}-Q_{2}^{2}-Q_{2}^{2}-Q_{2}^{2}\right)$	$\frac{\alpha_{v}}{\alpha_{v}}$
$det A = Q_{11} - Q_{11}$	án Jan J
(9) 2/7-130 C/\$ EJ/9-16-(\$224 /7-5-12) 12 07-3-6-4	
dit car = dr	751667-
(D) BHA"THUE HALZE GAR	20 11041
(C) X (C) / (C) by (E)	
$\left Q_1 a_2 \cdots c_{2j} - a_n \right = c \left Q_1 \circ Q_2 - Q_n \right $	
l l	
AB=Entiblianializi	

anı - - - ann / ith = 55 Squ(r) and are-IXT 97107HL a... antobo $A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_n \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \end{pmatrix} \times d = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\$? EN-120 F + E(2. det ata, Sont det ata, tall Llizteci = Let lizt 12 C2 (171/11), DB #5 FETCH

$$F(f) = F(f) = Sfh(f)F(f)$$

$$F(f) = Sfh(f)$$

 $\begin{array}{ccc}
(FI) & (2) & ($ Toesh (t) (t) (t) pasi-(t) non

Sgn(t) Arch (Arox) - (Arown

Jesn (t) Arch (Arox) - (Arown - 27 Sqn(0+) A104(1) A256, -- Another - 085n - det A. 2) 47511 X 1=x+(z. F(X) = det(AX) cipples を主たすま作事をソポリカマコー (E) T(En) def(x). · detAX) = detA delX 3 = (e(AB) = ((e(A)(de(B)

3) (de/A+0 => A EXIIE &) Jef A + 0 E 1 3. AOPS 新人化生品とおろと Eur 下至, GS OM OMA PENDEN 有意的 100 不意的 100 不意的 100 不高的 120 在2 RA=B XA3 det(R) +0 (2) 7()) 22011 det(RA) =(det R)deq) to · det 3 +0 BIJAS/178(11) B=En (£(2)260-0) EGh2343) 1. PAZEN. PAZENIAY ATPI, AFRIL 小人们是一个小人 AA7 = A7 A= EN 873.

det (HAT) = (det A) (det AT) det(En) = 1 (det A = 0 图成了四月 (定里里からもおろかたんなこと) AB=En ET3 detA) detB = detEn=1 To det A Fo 23 dy A(FIP) JAGAN A- ES A-1= A-1(AB) -(A-A)B=B. C B = A - I (小部制)上到了什么多次用行行。