

Optimization and Vectorization

By: Bart Oldeman

slides also by: Pier-Luc St-Onge

Members and partners

Partenaire de l'

Alliance de recherche numérique du Canada

Partenaires connectivité

Partenaires financiers

Présentation du formateur

Instructor presentation

- Advanced Research Computing Analyst
 - McGill team, Calcul Quebec since July 2012
 - Taught at the spring school since 2015
- Speciality
 - Ph.D. in Engineering Maths,
 University of Bristol, UK, 2001
 - Various postdocs followed in the UK, USA, New Zealand and Canada, on the intersection between Dynamical Systems and Numerical Analysis.

Cet après-midi

This afternoon

- Exercic/ses;
- Questions;

De 13h30 à 16h, 1:30pm to 4pm.

Accéder à la plateforme

Accessing the platform

Navigateur web browser: **p-ecole.calculquebec.cloud**

Exercise 0: log in to Cloud VM

- Connect to the Magic Castle platform via <u>https:/p-ecole.calculquebec.cloud</u>
 - Create account via link on page
 - Start a "Terminal" in the launcher
- Change directories to workshop material
 - o git clone https://github.com/calculquebec/cqformation-convolution.git
 - module load StdEnv/2023 scipy-stack
 - cd cq-formation-convolution/noyaux;
 make
 - o cd
 ~/cq-formation-convolution/solution
 s/optimisation

Introduction to Optimization

What you should do!

- Make good (i.e. well structured) code first
 - Do not reinvent the wheel: try using existing optimized libraries
 - Use functions when long code gets too complicated
 - Move if/for/while inner code to a function
 - Use classes where object-oriented programming feels right. See <u>Software design patterns</u>
- Profile your code
 - Identify which functions and which loops are taking most of the compute time
- Then, you may try to optimize your code

Where most time is spent

CPU

- We want to maximize CPU time
- Efficiency of instruction sets (i386, mmx, sse, avx, etc.)
- Optimization at compilation level (-O2, -O3, etc.)
- Compiler & version (gcc/12, intel/2023)
- Memory access
 - Registers, caches
 - RAM, local hard drive, network caches
- Network
 - Latency, bandwidth
- Which parts of your code?

Best practices

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil." – Donald Knuth

- The best way to optimize is to choose a good algorithm, but ...
- ... do not try to optimize from the beginning of your project.
- More than 80% of execution time is in less than 20% of code.
- Validate your code after each step of optimization

Serial and parallel tasks

- Serial tasks (even in a parallel job)
 - Not divisible (mandatory cost in time)
 - Initiating the parallel environment
 - Loading a file, writing to a file (often)
 - Collective communications (parts)
 - Anything else done by one thread only
 - Anything else done by one thread at a time
- Parallel tasks
 - The work is divisible in multiple tasks
 - Single instruction, multiple data (SIMD)
 - Any distinctive tasks that could be done by different threads and/or processes

Amdahl's law

General speedup ratio (with time command):

speedup = elapsed time for serial code elapsed time for parallel code

Amdahl's law for parallel code:

speedup =
$$\frac{1}{S + P/n}$$

where n is the number of processes or threads, P is the parallel fraction of the code ($0 \le P \le 1$), and S is the serial fraction of the code (S = 1 - P).

Amdahl's law to the limit

• What if we have unlimited computing resources ($n \rightarrow \infty$) on a perfect network (high bandwidth, low latency):

speedup =
$$\frac{1}{S + P/n} \rightarrow \frac{1}{S} = \frac{1}{1-P}$$

- Example with S = 0.0035 (or P = 0.9965):
 - o For n → ∞ , the maximum speedup is 285
 - But for n = 1024, the speedup is only 223

Amdahl's law to the limit

Karp-Flatt metric

 Approximation of P (the parallel fraction of the code)

speedup =
$$\frac{1}{S+P/n}$$
 \Rightarrow P= $\frac{n(1-1/\text{speedup})}{n-1}$

 We can also determine the experimentally determined serial fraction e given measured speedup.

$$e = S = 1-P = 1 - \frac{n(1-1/speedup)}{n-1}$$

- Example: n = 2, speedup = 1.95, e = 0.026.
- Example: n = 1024, speedup = 200, e = 0.0040.

Karp-Flatt metric (2)

An acceptable speedup is at least 80% * n
 = 0.8n

speedup =
$$\frac{1}{S+P/n}$$
 $\geq 0.8n \Rightarrow n \leq \frac{1/0.8 - P}{S}$

 Given an experimentally determined serial fraction e = S = 0.01 (P = 1 − 0.01 = 0.99), what would be the highest acceptable n?

$$N \le \frac{1.25 - 0.99}{0.01} = 26$$

Algorithms

- A problem can be solved in many different ways
- Relative complexity:
 - Number of operations
 - Amount of memory
 - Complexity for n elements: O(1),
 O(log n), O(n),
 O(n log n), O(n²), etc.
 - If n is small, choose lightest algorithm
- Example: sorting algorithms
 - https://en.wikipedia.org/wiki/Sorting algorithm#Comparison of algorithm
 <u>S</u>

Profiling your Code

Profilers

0

https://docs.alliancecan.ca/wiki/Debugging and profiling

- gprofng (gprofng) (gprof is mostly redundant)
 - https://sourceware.org/binutils/wiki/gprofng
- Linux perf (perf)
 - https://perf.wiki.kernel.org/index.php/Main Page
- Nvidia command-line profiler (nvprof)
 - https://docs.alliancecan.ca/wiki/Nvprof
- Python Profilers (cProfile, profile)
 - https://docs.python.org/3/library/profile.html
- R profiler (Rprof)
 - https://www.rdocumentation.org/packages/util s/versions/3.5.2/topics/Rprof

More **Profilers**

https://docs.alliancecan.ca/wiki/Debugging and profiling

- ARM MAP (comes with DDT)
 - https://docs.alliancecan.ca/wiki/ARM software
- Intel VTune
 - https://software.intel.com/en-us/vtune
- Intel Advisor
 - https://software.intel.com/en-us/advisor
- Tau
 - http://www.cs.uoregon.edu/research/tau/hom e.php
- HPC Toolkit
 - http://hpctoolkit.org/
- Valgrind
 - https://docs.computecanada.ca/wiki/Valgrind

Example How to use gprofng

- Compile your code with debugging information enabled
 - gcc -g -o executable code.c
- Execute your code using gprofng collect app gprofng collect app executable args
- Then, get readable profiling information which parses files in a directory test.<n>.er written by gprofing collect app:
 - gprofng display text -lines
 test.1.er

Example -How to use perf

 Compile your code with debugging information enabled

gcc -g -o executable code.c

- Execute your code using perf record / stat
 perf stat -d executable arg1 arg2
 perf record executable arg1 arg2
- Then, get readable profiling information which parses the file perf.data written by perf record:

perf report

See also https://jvns.ca/perf-zine.pdf

Example 1: convolution

Example 1: grumpy cat

973 x 1200 PNG image Every pixel undergoes a filter (noyau_flou_45): weighted average of the red/green/blue values of a square of 45x45 pixels with the current pixel at the centre.

The weights are in the file noyau_flou_45.

Example 1: blurry fuzzy cat

973 x 1200 PNG image Every pixel undergoes a filter (noyau_flou_45): weighted average of the red/green/blue values of a square of 45x45 pixels with the current pixel at the centre.

The weights are in the file noyau_flou_45.

Exercise 1: using gprofng

1.

1. Compile exercise 1 code with debug information, noting the -g flag:

```
$ make -C ../..
```

\$ make convolution

2. Run:

```
$ gprofng collect app -0 test.1.er
./convolution exemple.png
noyau flou 45
```

3. Check correctness

```
$ md5sum resultat.png
685abc74c4139719155edc84d2c10dde
resultat.png
```

4. Look for results:

```
$ gprofng display text -lines
test.1.er
```


Exercise 2: using perf

1.

1. Run:

```
$ perf stat -d ./convolution
exemple.png noyau_flou_45
$ perf record ./convolution
exemple.png noyau flou 45
```

2. Look for results:

```
$ perf report
```


Exercise 3: python version

1.

1. Run:

```
$ time python
../../defi-mpi/python-conv.py
exemple.png noyau flou 45
```

2. For this afternoon: Python version can be optimized using np.convolve and scipy.signal.convolve

Optimizations

Two ways of optimizing a code

1)

- 1) Review chosen algorithms and data structures vs the size of the problem
 - a) Use arrays (vectors, matrices), lists, sets and dictionaries where appropriate
 - b) Sometimes, a compute task is so small that even a naive algorithm may outperform a clever one
- Take into account the computer architecture
 - a) Memory architecture
 - b) Available CPU instructions

Computer Architecture

Non-uniform memory architecture (NUMA) with Intel • lstopo --no-io --of png node.png

Non-uniform memory architecture (NUMA) with Intel

Data Proximity

From:

https://www.7-cpu.com/cpu/Skylake X.html

- Cache line: 64 Bytes or 512 bits
- L1 cache = 2* 32 KB, latency of 4-5 cycles
 - Average L1 write latency: 0.5 cycles per access
- L2 cache = 1024 KB, latency of 14 cycles
 - Average L2 write latency: 3.2 cycles per cache line
- L3 cache = 27.5 MB, latency of 45 cycles
 - Average L3 write latency: 10 cycles per cache line
- RAM latency: >45 cycles + 50ns
 - Probably more between CPU sockets

Data Proximity

0

Whenever possible

- Reuse the same data in L1 (up to 32 KB per core), in L2 (from 256 KB to 1 MB per core) and in L3 (around 27.5 MB per socket)
 - Maximize the amount of operations on this data
 - Efficient parallel codes will run entirely in caches, which avoids access to the big RAM
- Do not waste access to memory
 - Remember: 64 B/cache line = 8 int64 or pointers
 - Jumps in memory space should be done carefully

2D Arrays and Contiguous vs Random Access

- N*1024 2D array
- Values are indexes

2D Arrays and Contiguous vs Random Access

- Horizontal access = contiguous access
- Each value is used once, but at least no cache line is wasted

2D Arrays and Contiguous vs Random Access

0		1	2	3	4	5	6	7	
10	24	1025	1026	1027	1028	1029	1030	1031	
20	48	2049	2050	2051	2052	2053	2054	2055	
30	72	3073	3074	3075	3076	3077	3078		
40	96	4097	4098	4099	4100	4101			
51	20	5121	5122	5123				91	***
61	44	6145							
		:	:	:	:	:	:	:	:

- Vertical access = jumping in memory
- If N is large enough, going from row 0 through N-1 will continuously waste lots of cached data

Example Matrix-vector multiplication

run:

```
cd ~
module load flexiblas
git clone
https://github.com/calculquebec/cq-fo
rmation-matrice-vecteur
cd cq-formation-matrice-vecteur
make
export OMP_NUM_THREADS=1
./matvec
```

This compares a naive inefficient matrix-vector multiplication with the optimized version from MKL via FlexiBLAS. We'll try to optimize this.

2D Arrays and Access by Blocks of Data

- Vertical access = jumping in memory
- Vertical access is OK if cached data is used as soon as possible OR as much as possible
- Blocks should fit in L1, L2, L3

About the Matrix Multiplication

```
for i = 1 ... N
 for j = 1 ... N # For each C[i,j] value
   C[i,j] = 0 # Initialize with 0
   for k = 1 ... N # Compute dot-product
     C[i,j] += A[i,k] * B[k,j] # Jumps in B
# Solution 1: transpose content of B (A[i,k] *
                                   B[i,k])
# Solution 2: exchange both inner for loops
for i = 1 ... N
 for j = 1 ... N # Whole row C[i,:] in cache
   C[i,j] = 0 # Initialized with 0s
 for k = 1 ... N # A[i,k] is fixed for each j
   for j = 1 ... N # Whole row B[k,:] is used
     C[i,j] += A[i,k] * B[k,j] # Contiguously
```


To Keep in Mind...

- Do not reinvent the wheel!
 - There are already many optimized libraries that can do operations on matrices
 - But for smaller amounts of data, like 2x2 matrices, a different (custom-made) algorithm may be better
- Do not completely fill L1, L2 and L3 caches
- Modern compilers may figure out what you are doing in your original algorithm and optimize memory access automatically
 - Therefore, make sure the code is clean!

Vectorization

About Vectorization

- Modern processors and accelerators (like GPUs) can apply the same basic operation on multiple data at once
 - SIMD: Single Instruction on Multiple Data
- Have you ever heard about x86, MMX, SSE2-SSE4.2, AVX, AVX2 and AVX512?
 - These are CPU instruction sets
- All national systems support at least AVX2
 - More SSE and AVX instructions in 256 bits
 - While AVX512 has instructions in 512 bits

What Fits in 256-bit registers?

Example Fused Multiply-Acc umulate (FMA)

```
With old x86:
for i = 0 .. 7
A[i] = B[i] * C[i] + D[i]
```

 But with SIMD, this can be done with four wide registers and a single CPU instruction:

For Good Vectorization

- Align similar data on cache lines (512 bits)
 - You may consider over-allocation for each row in a 2D array
- Recent C/C++ versions come with tools to allocate memory-aligned buffers
 - https://en.cppreference.com/w/c/me mory/aligned_alloc
 - https://en.cppreference.com/w/cpp/ memory/align
- Use structures of vectors instead of vectors of structures. See next slide ->

Using a Structure of Vectors

- Instead of:
 class Point3D {x,y,z}
 Point3D array[N] #
 x1,y1,z1,x2,y2,z2,...
 - Consider using:

```
class Ptr3D {*x,*y,*z,resize()}
Ptr3D array # x1,x2... y1,y2...
z1,z2...
array.resize(N) # x, y and z with N
values
```


Loop vectorization

- Compilers are now able to identify loops doing independent and identical operations:
 - No dependency between iterations (indexes i and i 1, for example)
 - The execution path must be the same: be careful with if, switch, break, while and for statements
 - Function calls are allowed if they follow the above rules
 - It works very well with vectors or arrays
 - This will be vectorized in chunks of 2, 4, 8 doubles (CPU dependent):

```
for (i = 0; i < N; i++) c[i] = a[i] * b[i]; Can be forced with OpenMP 4+: #pragma omp simd
```


Flops: floating point operations per second

Modern CPUs:

Peak double precision flops = CPU GHz * #cores * FMA units * (multiplication + addition) * vector length.
E.g. for Narval CPUs (AMD 7532)
2.4 GHz * 32 * 2 * 2 * 4 = 1228.8 Gflops

BUT can only be reached for compute intensive applications (high Flop/byte), e.g. matrix multiplication.

Matrix-vector multiplication "streams" memory, only reading the matrix once...

Memory bandwidth: Gigabyte/s

Streaming memory applications (e.g. matrix-vector multiplication), limited by memory speed.

- E.g. (AMD Rome):
- One core: 32 GB/s
- Peak: 210 GB/s: with 7 cores out of 32 cores used on a socket you've already reached peak bandwidth!

Latency-bound applications (random memory accesses), e.g. databases even worse:

- CPU spends most of its time waiting for memory reads/writes
- May benefit from hyperthreading
- Not extremely common in HPC

Roofline model

https://upload.wikimedia.org/wikipedia/commons/c/c0/Roofline_model_in-core_ceilings.png

Roofline using Intel Advisor

• Create roofline graph in Advisor:

```
advixe-cl -collect survey
-project-dir my_result --
./matvec
advixe-cl -collect tripcounts
-flop -project-dir my_result --
./matvec
advixe-gui my_result
```

- In navigation panel, click black icon under "Run Roofline"
- Click "Survey and Roofline", then click vertical bar "ROOFLINE"

Roofline using Intel Advisor for optimized matrix-vector multiplication

Example: optimizing convolution

- 1. 1_convolution_double: Use an image array of doubles to avoid conversions from char to double in the inner loops.
- 2. 2_convolution_soa: Use structure of arrays for the image.
- 3. 3_convolution_omp_simd: Use #pragma omp simd for the inner loop so the compiler can optimize the summing

Example: optimizing nbody

Runge-Kutta integration of n particles with random initial positions, velocity, and mass, interacting with each other using gravity.

Image from:

https://medium.com/swlh/create-your-own-n-body-simulation-with-python-f417234885e9

Example: optimizing nbody

1.

This example can be obtained via

cd

git clone \

https://github.com/calculquebec/cq-formatio
n-nbody

cd cq-formation-nbody
cd solutions/optimisation

- I. 1_nbody_transpose: Transpose arrays to allow better data locality with longer inner loops.
- 2_nbody_permute_loops: Provide better data locality and vectorization possibilities in inner loops.
- 3. 3_nbody_sqrtf: Use the "float" one-over-square-root to gain performance BUT with reduced precision.

Results:
optimizing
convolution
and n-body
(in secs)

Program	Run time (seconds)
convolution 1_convolution_double 2_convolution_soa 3_convolution_omp_simd python_conv	4.2 4.1 4.2 2.6 15.0
nbody 1_nbody_transpose 2_nbody_permute_loops 3_nbody_sqrtf python-nbody	13.4 14.4 11.6 7.9 178

Conclusion

Get things correct before getting it optimized. Reminder:

- Create well structured code with functions, classes and calls to optimized libraries
- 2) Profile your code
- 3) Then you can try to optimize your code
 - a) Study memory access
 - b) Vectorize the code to allow SIMD