Basic Facts for Quals Preparation

Kenneth Tay

Contents

1	Gen	eral Probability/Statistics Definitions and Facts	2
2	Dist	cributions	4
	2.1	Arcsine Distribution	4
	2.2	Bernoulli Distribution	4
	2.3	Beta Distribution	Ę
	2.4	Binomial Distribution	6
	2.5	Cauchy Distribution	6
		2.5.1 Standard Cauchy Distribtion	6
		2.5.2 General Cauchy Distribution	7
	2.6	Chi-Squared Distribution	7
		2.6.1 Non-Central Chi-Squared Distribution	8
	2.7	Dirichlet Distribution	8
	2.8	Exponential Distribution	8
		2.8.1 Shifted Exponential Distribution	g
	2.9	F Distribution	10
		2.9.1 Non-Central F Distribution	10
		2.9.2 Doubly Non-Central F Distribution	10
	2.10	Gamma Function	11
	2.11	Gamma Distribution	11
	2.12	Geometric Distribution	12
	2.13	Gumbel Distribution	12
	2.14	Hypergeometric Distribution	12
	2.15	Inverse Gaussian Distribution	13
	2.16	Laplace/Double Exponential Distribution	13

	2.17	Logistic Distribution	14		
	2.18	Multinomial Distribution	15		
	2.19	Negative Binomial Distribution	15		
	2.20	Normal Distribution	16		
		2.20.1 Standard Normal Distribution	17		
		2.20.2 Multivariate Normal Distribution	18		
		2.20.3 Bivariate Normal Distribution	19		
	2.21	Pareto Distribution	19		
	2.22	Poisson Distribution	19		
	2.23	T Distribution	20		
		2.23.1 Non-Central T Distribution	21		
	2.24	Uniform Distribution	21		
	2.25	Weibull Distribution	21		
3	Analysis Facts				
	3.1	Basic Topology and Spaces	22		
	3.2	Measure Theory, Integration and Differentiation	23		
	3.3	Approximations	23		
	3.4	Convergence	24		
4	Line	ear Algebra Facts	25		
	4.1	Properties of Matrices	25		
	4.2	Matrix Decompositions	27		
	4.3	General Vector Spaces	28		
5	\mathbf{Use}	ful Inequalities	28		
6	Use	ful Integrals	2 9		
7	Oth	er Basic Facts	30		

1 General Probability/Statistics Definitions and Facts

- $X \sim F$ (cdf), then $F(X) \sim \text{Unif}(0,1)$.
- • For any $X,\,X'$ i.i.d., Var $X=\frac{1}{2}\mathbb{E}[(X-X')^2].$

- (300B HW5) Var $X = \inf_t \mathbb{E}[(Y t)^2].$
- Conditional covariance decomposition: $\operatorname{Cov} X = \operatorname{Cov}(\mathbb{E}[X \mid Y]) + \mathbb{E}[\operatorname{Cov}(X \mid Y)]$. Since $\mathbb{E}[\operatorname{Cov}(X \mid Y)] \succeq 0$, thus $\operatorname{Cov}(\mathbb{E}[X \mid Y]) \preceq \operatorname{Cov} X$.
- $\mathbb{E}[X^n]$ is the n^{th} raw moment, sometimes denoted μ'_n . $\mathbb{E}[(X-\mu)^n]$ is the n^{th} central moment, sometimes denoted μ_n . $\frac{\mathbb{E}[(X-\mu)^n]}{\sigma^n}$ is the normalized n^{th} central moment.
- Skewness $\gamma := \frac{\mathbb{E}[(X \mu)^3]}{\sigma^3}$, kurtosis $\kappa := \frac{\mathbb{E}[(X \mu)^4]}{\sigma^4}$, excess kurtosis = $\kappa 3$.
- If M_X and ϕ_X are the MGF and characteristic functions of X respectively, then $\mathbb{E}[X^k] = M_X^{(k)}(0) = \frac{1}{ik}\phi_X^{(k)}(0)$ (if it exists).
- Fisher information: Let $f_{\theta}(x)$ be the probability density function of X conditional on the value of θ
 - For all θ , $\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right] = 0$.
 - Fisher information $I(\theta) := \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right)^{2} \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X) \right].$
 - (300B Lec 4) For a normal location family (i.e. only mean unknown), Fisher information is $\frac{1}{\sigma^2}$.
 - (300B Lec 5) In an exponential family with density $p_{\theta}(x) = h(x) \exp \left[\theta^T T(x) A(\theta)\right]$, Fisher information $I(\theta) = \nabla^2 A(\theta)$.

• Information Inequality:

- (TPE Thm 2.5.10 p120) Information Inequality: Suppose p_{θ} is family of densities w.r.t. dominating measure μ and $I(\theta) > 0$. Let δ be any statistic with $\mathbb{E}_{\theta}(\delta^2) < \infty$ and such that the derivative of $\mathbb{E}_{\theta}(\delta)$ w.r.t. θ exists and can be differentiated under the integral sign. Then

$$\operatorname{Var}_{\theta}(\delta) \geq \frac{\left[\frac{\partial}{\partial \theta} \mathbb{E}_{\theta}(\delta)\right]^{2}}{I(\theta)},$$

with equality iff $\delta = a \left[\frac{\partial}{\partial \theta} \log p_{\theta}(x) \right] + b$, where a and b are constants (which may depend on θ).

- (Stephen's version) Let δ be an estimator for $g(\theta)$, and let $\mathbb{E}_{\theta}(\delta) = g(\theta) + b(\theta)$. Then

$$\operatorname{Var}_{\theta}(\delta(X)) \ge \frac{(b'(\theta) + g'(\theta))^2}{I(\theta)}.$$

- For i.i.d. samples $X_1, \ldots, X_n, \bar{X}$ is an unbiased estimator of the mean and $\frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator for the variance.
- (TPE Prob 2.2.15 p133, 310A HW3 Qn 2) For i.i.d. bivariate samples, $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})(Y_i-\bar{Y})$ is an unbiased estimator for Cov(X,Y).
- (310A HW8) Total variation distance for 2 probability measures is $\|\mu \nu\|_{TV} = \sup_{A \in \mathcal{F}} |\mu(A) \nu(A)|_{TV}$

 $- \|\cdot\|_{TV}$ is a metric.

$$- \|\mu - \nu\|_{TV} = \frac{1}{2} \sup_{\|f\|_{\infty} \le 1} |\mathbb{E}_{\mu}(f) - \mathbb{E}_{\nu}(f)|.$$

- If μ and ν have densities f_{μ} and f_{ν} w.r.t. some base measure λ , then $\|\mu - \nu\|_{TV} = \frac{1}{2} \int |f_{\mu}(\omega) - f_{\nu}(\omega)| \lambda(d\omega)$.

(300B HW8) For 2 distributions P and Q with densities p and q w.r.t. μ ,

$$-2\|P - Q\|_{TV} = \int (p - q)_{+} d\mu + \int (q - p)_{+} d\mu.$$

$$- \|P - Q\|_{TV} = \int (p \vee q) d\mu - 1.$$

$$- \|P - Q\|_{TV} = 1 - \int (p \wedge q) d\mu.$$

2 Distributions

2.1 Arcsine Distribution

Let $X \sim \operatorname{Arcsine}(a, w)$. $a \in \mathbb{R}$ location parameter, w > 0 scale parameter.

• PDF
$$p(x) = \frac{1}{\pi \sqrt{(x-a)(a+w-x)}}, x \in (a, a+w).$$

• CDF
$$\mathbb{P}(X \le x) = \frac{2}{\pi} \arcsin\left(\sqrt{\frac{x-a}{w}}\right)$$
.

•
$$\mathbb{E}X = \text{Median } = a + \frac{w}{2}, \text{ Var } X = \frac{w^2}{8}.$$

• MGF
$$\mathbb{E}[e^{tX}] = e^{at} \sum_{0}^{\infty} \left(\prod_{j=0}^{n-1} \frac{2j+1}{2j+2} \right) \frac{w^n t^n}{n!}.$$

• Moments
$$\mathbb{E}[X^n] = w^n \prod_{j=0}^{n-1} \frac{2j+1}{2j+2}$$
.

- The standard arcsine distribution (a = 0, w = 1) is Beta(1/2, 1/2).
- If $X \sim \operatorname{Arcsine}(a, w)$, then $c + dX \sim \operatorname{Arcsine}(c + ad, dw)$.
- If $U \sim \text{Unif}(0,1)$, then $a + w \sin^2(\pi U/2) \sim \text{Arcsine}(a, w)$.

2.2 Bernoulli Distribution

If $X \sim \text{Ber}(p)$, then $\mathbb{P}(X=1) = p$, $\mathbb{P}(X=0) = 1 - p = q$.

•
$$\mathbb{E}X = p$$
, $\text{Var } X = p(1-p)$.

• MGF
$$\mathbb{E}[e^{tX}] = q + pe^t$$
.

- Characteristic function $\mathbb{E}[e^{itX}] = q + pe^{it}$.
- Fisher information: $\frac{1}{p(1-p)}$.

2.3 Beta Distribution

- Beta function: For a, b > 0, $B(a, b) = \int_0^1 u^{a-1} (1-u)^{b-1} du$.
- $B(a,b) = B(b,a), B(a,1) = \frac{1}{a}.$
- $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.
- $B(x,y) \cdot B(x+y,1-y) = \frac{\pi}{x \sin(\pi y)}$.
- For large x and large y, $B(x,y) \sim \sqrt{2\pi} \frac{x^{x-1/2}y^{y-1/2}}{(x+y)^{x+y-1/2}}$ (Stirling's formula). For large x and fixed y, $B(x,y) \sim \Gamma(y)x^{-y}$.

Let $X \sim \text{Beta}(\alpha, \beta)$, with $\alpha, \beta > 0$. Support of X is [0, 1] or (0, 1).

- PDF $p(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha 1} (1 x)^{\beta 1}.$
- $\mathbb{E}X = \frac{\alpha}{\alpha + \beta}$, $\operatorname{Var} X = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$, $\operatorname{Mode} = \frac{\alpha 1}{\alpha + \beta 2}$.
- MGF $\mathbb{E}[e^{tX}] = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$.
- Moments: If $k \ge 0$, then $\mathbb{E}[X^k] = \frac{B(\alpha + k, \beta)}{B(\alpha, \beta)}$.
- $\bullet \ \mathbb{E}\left[\frac{1}{X}\right] = \frac{\alpha+\beta-1}{\alpha-1}, \ \mathbb{E}\left[\frac{1}{1-X}\right] = \frac{\alpha+\beta-1}{\beta-1}, \ \mathbb{E}\left[\frac{X}{1-X}\right] = \frac{\alpha}{\beta-1}.$
- Beta $(1,1) \stackrel{d}{=} U(0,1)$.
- Beta $(\frac{1}{2}, \frac{1}{2})$ is called the arcsine distribution, PDF $p(x) = \frac{1}{\pi \sqrt{x(1-x)}}$.
- If $X \sim \text{Beta}(\alpha, \beta)$, then $1 X \sim \text{Beta}(\beta, \alpha)$.
- If $X \sim \text{Beta}(\alpha, 1)$, then $-\log X \sim \text{Exp}(\alpha)$.
- Suppose X and Y are independent gamma RVs with $X \sim \Gamma(a,r)$ and $Y \sim \Gamma(b,r)$ (shape and rate). Let U = X + Y and $V = \frac{X}{X + Y}$. Then U and V are independent, with $U \sim \Gamma(a+b,r)$ and $V \sim \text{Beta}(a,b)$. (Proof: Look at joint PDF of X and Y, change of variables to U and V.)

- If $X \sim F_{n,d}$, then $\frac{(n/d)X}{1+(n/d)X} \sim \text{Beta}\left(\frac{n}{2}, \frac{d}{2}\right)$. Conversely, if $X \sim \text{Beta}\left(\frac{n}{2}, \frac{d}{2}\right)$, then $\frac{dX}{n(1-X)} \sim F_{n,d}$.
- Let X_1, \ldots, X_n be independent U(0,1) variables. Then the kth order statistic $X_{(k)} \sim \text{Beta}(k, n-k+1)$.
- $\lim_{n\to\infty} \text{Beta}(k,n) = \text{Gam}(k,1).$

2.4 Binomial Distribution

Let $X \sim \text{Bin}(n, p)$.

- PMF $\mathbb{P}(X = x) = \binom{n}{n} p^x (1-p)^{n-x}, x \in \{0, 1, \dots, n\}.$
- CDF can be written in the form $F(k) = \mathbb{P}(X \leq k) = \frac{n!}{(n-k-1)! \, k!} \int_0^{1-p} x^{n-k-1} (1-x)^k dx, \ k \in \{0,1,\ldots,n\}$. (Proof: Integration by parts and induction.)
- $\mathbb{E}X = np$, Var X = npq. Median is $\lfloor np \rfloor$ or $\lceil np \rceil$, mode is $\lfloor (n+1)p \rfloor$ or $\lfloor (n+1)p \rfloor 1$.
- MGF $\mathbb{E}[e^{tX}] = (1 p + pe^t)^n$.
- MGF $\mathbb{E}[e^{itX}] = (1 p + pe^{it})^n$.
- Fisher information: $\frac{n}{p(1-p)}$. (Proof: Consider binomial as sum of n independent Bernoulli RVs.)
- Poisson Approximation: If $np_n \to r \in (0, \infty)$ as $n \to \infty$, then $Bin(n, p_n)$ converges to Pois(r).
- Normal Approximation: General rule of thumb is $np \ge 5$ and $n(1-p) \ge 5$.
- If $X \sim \text{Bin}(n, p)$ and $Y \mid X \sim \text{Bin}(X, q)$, then $Y \sim \text{Bin}(n, pq)$.
- If $X \sim \text{Bin}(a, p)$ and $Y \sim \text{Bin}(b, p)$ are independent, then $\mathbb{P}(X = k \mid X + Y = m) = \frac{\binom{a}{k}\binom{b}{m-k}}{\binom{a+b}{m}}$, i.e. is hypergeometric.
- (Theory Add Ex 12) If $Y \sim \text{Bin}(n,p)$, then $\mathbb{E}\left[\frac{Y}{1+n-Y}\right] \leq \frac{p}{1-p}$.

2.5 Cauchy Distribution

2.5.1 Standard Cauchy Distribtion

- If X has standard Cauchy distribution, PDF $p(x) = \frac{1}{\pi(1+x^2)}$, CDF $\mathbb{P}(X \leq x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$.
- $\mathbb{E}X$ does not exist.
- The standard Cauchy distribution is the same as t_1 .
- $\bullet\,$ If $Z,\,W$ are standard normal RVs, then $\frac{Z}{W}$ has standard Cauchy distribution.
- If X has standard Cauchy distribution, so does $\frac{1}{X}$.

2.5.2 General Cauchy Distribution

- If X has standard Cauchy distribution, then Y = a + bX has Cauchy distribution with location parameter a and scale parameter b.
- PDF $p(y) = \frac{b}{\pi [b^2 + (x-a)^2]}$, CDF $\mathbb{P}(Y \le y) = \frac{1}{\pi} \arctan\left(\frac{x-a}{b}\right) + \frac{1}{2}$.
- MGF does not exist. Characteristic function $\mathbb{E}[e^{itY}] = \exp(ait b|t|)$.
- If X_1, \ldots, X_n are independent Cauchy variables with location and scale parameters a_i and b_i , then $X_1 + \cdots + X_n$ has Cauchy distribution with location and scale parameters $\sum a_i$ and $\sum b_i$. In particular, if $a_i = a$ and $b_i = b$, \bar{X} has the same distribution as the X_i 's.
- (300B HW3) When b = 1 and $a = \theta$, Fisher information is $I(\theta) = \frac{1}{2}$.

2.6 Chi-Squared Distribution

Let $X \sim \chi_k^2$, for k positive integer.

- PDF $p(x) = \frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$, for $x \ge 0$. The PDF satisfies the differential equation 2xf'(x) + f(x)(-k+x+2) = 0.
- $\mathbb{E}X = k$, Median $\approx k \left(1 \frac{2}{9k}\right)^3$, Mode = $\max(k 2, 0)$, Var X = 2k.
- MGF $\mathbb{E}[e^{tX}] = (1-2t)^{-k/2}$ for $t < \frac{1}{2}$. Characteristic function $\mathbb{E}[e^{itX}] = (1-2it)^{-k/2}$.
- Moments: If $X \sim \chi_n^2$, then for k > -n/2, $\mathbb{E}[X^k] = 2^k \frac{\Gamma(n/2 + k)}{\Gamma(n/2)}$. For $k \leq -m/2$, $\mathbb{E}[X^k] = \infty$.
- In particular, if $X \sim \chi_n^2$ for $n \ge 3$, then $\mathbb{E}[1/X] = \frac{1}{n-2}$.
- If Z_1, \ldots, Z_k are independent $\mathcal{N}(0,1)$ RVs, then $Z_1^2 + \cdots + Z_k^2 \sim \chi_k^2$.
- If $X_1, \ldots X_n$ are i.i.d. $\chi^2_{k_n}$ RVs, then $X_1 + \cdots + X_n$ is χ^2 with $k_1 + \cdots + k_n$ degrees of freedom.
- If $Y \sim \mathcal{N}(\mu, \Sigma) \in \mathbb{R}^p$, where Σ is non-singular, then $(Y \mu)^T \Sigma^{-1} (Y \mu) \sim \chi_k^2$.
- $\chi_{\nu}^2 \stackrel{d}{=} \operatorname{Gam}(\nu/2, \theta = 2)$.
- If $X \sim \operatorname{Gam}(k,b)$ (shape, scale), then $Y = \frac{2}{b}X \sim \chi^2_{2k}$.
- $\chi_2^2 \stackrel{d}{=} \text{Exp}(1/2)$.
- Let f_n denote the density of χ_n^2 . Then $f_{n+2}(x) = \frac{x}{n} f_n(x)$.
- If $X \sim F_{\nu_1,\nu_2}$, then $Y = \lim_{\nu_2 \to \infty} \nu_1 X \stackrel{d}{=} \chi^2_{\nu_1}$.

2.6.1 Non-Central Chi-Squared Distribution

Suppose X_1, \ldots, X_n are independent RVs, where $X_k \sim \mathcal{N}(\mu_k, 1)$. Then $Y = X_1^2 + \cdots + X_n^2$ is the non-central chi-squared distribution with n degrees of freedom and non-centrality parameter $\lambda = \mu_1^2 + \cdots + \mu_n^2$.

• PDF of
$$\chi_n^2(\lambda)$$
 is $p(x;\lambda) = e^{-\lambda/2} \sum_{k=0}^{\infty} \frac{(\lambda/2)^k}{k!} \frac{x^{n/2-1+k}e^{-x/2}}{2^{k+n/2}\Gamma(k+n/2)}$.

- $\mathbb{E}Y = n + \lambda$, $\text{Var } Y = 2(n + 2\lambda)$.
- MGF $\mathbb{E}[e^{tY}] = (1-2t)^{-n/2} \exp\left(\frac{\lambda t}{1-2t}\right)$, for t < 1/2. Characteristic function $\mathbb{E}[e^{itY}] = (1-2it)^{-n/2} \exp\left(\frac{\lambda it}{1-2it}\right)$.
- If $J \sim \text{Pois}(\lambda)$, then $\chi^2_{k+2J} \sim \chi'^2_k(\lambda)$.

2.7 Dirichlet Distribution

Let $K \geq 2$ be the number of categories. Let $X \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_K)$, $\alpha_i > 0$ for all i. Let $\alpha_0 = \alpha_1 + \dots + \alpha_K$.

- Support of X is (x_1, \ldots, x_K) , where $x_i \in (0,1)$ and $\sum_{i=1}^K x_i = 1$.
- PDF $p(x) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i 1}$, where $B(\alpha) = \frac{\Gamma(\alpha_1) \dots \Gamma(\alpha_K)}{\Gamma(\alpha_1 + \dots + \alpha_K)}$.
- $\mathbb{E}X_i = \frac{\alpha_i}{\alpha_0}$, mode for X_i is $\frac{\alpha_i 1}{\alpha_0 K}$ $(\alpha_i > 1)$.
- Var $X_i = \frac{\alpha_i(\alpha_0 \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$, $\operatorname{Cov}(X_i, X_j) = \frac{-\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$ for $i \neq j$.
- Moments $\mathbb{E}\left[\prod_{i=1}^K X_i^{\beta_i}\right] = \frac{B(\alpha+\beta)}{B(\alpha)} = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0+\beta_0)} \prod_{i=1}^K \frac{\Gamma(\alpha_i+\beta_i)}{\Gamma(\alpha_i)}.$
- The marginal distributions are beta distributions: $X_i \sim \text{Beta}(\alpha_i, \alpha_0 \alpha_i)$.
- If $Y_i \stackrel{ind}{\sim} \operatorname{Gam}(\alpha_i, \theta)$, then $V = \sum Y_i \sim \operatorname{Gam}(\sum \alpha_i, \theta)$, and $\left(\frac{Y_1}{V}, \dots, \frac{Y_K}{V}\right) \sim \operatorname{Dirichlet}(\alpha_1, \dots, \alpha_K)$.

2.8 Exponential Distribution

Let $X \sim \text{Exp}(\lambda)$, $\lambda > 0$ (rate).

- PDF $p(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, CDF $\mathbb{P}(X \le x) = 1 e^{-\lambda x}$.
- $\mathbb{E}X = \frac{1}{\lambda}$, Median = $\frac{\log 2}{\lambda}$, Mode = 0. Var $X = \frac{1}{\lambda^2}$.

- Skewness is 2, excess kurtosis is 6.
- MGF $\mathbb{E}[e^{tX}] = \frac{\lambda}{\lambda t}$ for $t < \lambda$. Characteristic function $\mathbb{E}[e^{itX}] = \frac{\lambda}{\lambda it}$.
- Moments $\mathbb{E}X^k = \frac{k!}{\lambda^k}$. (Proof: Integration by parts.)
- Fisher information: $\frac{1}{\lambda^2}$.
- Memoryless property: For exponentially distributed X, $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$ for all $s, t \geq 0$.
- If X_1, \ldots, X_n are independent exponential RVs with rates $\lambda_1, \ldots, \lambda_n$, then $\min\{X_1, \ldots, X_n\} \sim \operatorname{Exp}(\lambda_1 + \cdots + \lambda_n)$. The maximum is NOT exponentially distributed.
- If X_1, \ldots, X_n are independent Exp(1) random variables, then the k^{th} order statistic $T_{(k)} \sim \sum_{i=1}^k \frac{1}{n-i+1} \text{Exp}(1)$. (Proof uses memoryless property, see Prob Qual 2013-1.)
- If $X \sim \text{Exp}(\lambda)$, then $kX \sim \text{Exp}(\lambda/k)$.
- If $X \sim \text{Exp}(1/2)$, then $X \sim \chi_2^2$.
- $\operatorname{Exp}(\lambda) = \operatorname{Gam}(1, \lambda)$ (shape-rate parametrization).
- If $U \sim \text{Unif}(0,1)$, then $-\log U \sim \text{Exp}(1)$.
- If $X \sim \text{Exp}(\lambda)$, then $e^{-X} \sim \text{Beta}(\lambda, 1)$.
- If $X \sim \operatorname{Exp}(a)$ and $Y \sim \operatorname{Exp}(b)$ and are independent, then $\mathbb{P}(X < Y) = \frac{a}{a+b}$. Extending the set-up to n RVs: $\mathbb{P}(X_i < X_j \text{ for all } j \neq i) = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$, and $\mathbb{P}(X_1 < \dots < X_n) = \prod_{i=1}^n \frac{\lambda_i}{\sum_{j=i}^n \lambda_j}$.

2.8.1 Shifted Exponential Distribution

(Notation from TPE p18) Let $X \sim E(a, b)$ ($-\infty < a < \infty, b > 0$). a is shift parameter, b is scale parameter.

- PDF $p(x) = \frac{1}{b}e^{-(x-a)/b}$ if $x \ge a$, 0 otherwise. CDF $\mathbb{P}(X \le x) = 1 \exp[-(x-a)/b]$ for $x \ge a$, 0 otherwise.
- $\mathbb{E}X = a + b$, $\operatorname{Var} X = b^2$.
- If $X_1, \ldots, X_n \stackrel{iid}{\sim} E(a, b)$, then smallest order statistic $X_{(1)} \sim E(a, b/n)$.
- (TPE Eg 1.6.24 p43) If $X_1, ..., X_n \stackrel{iid}{\sim} E(a, b)$, let $T_1 = X_{(1)}, T_2 = \sum [X_i X_{(1)}]$. Then T_1 and T_2 are independent (Basu's Theorem), and $T_1 \sim E(a, b/n)$ and $T_2 \sim \frac{b}{2}\chi_{2n-2}^2$.

2.9 F Distribution

Let $F \sim F_{n,m}$, n, m > 0.

- PDF $p(x) = \frac{1}{xB(n/2, m/2)} \sqrt{\frac{(nx)^n m^m}{(nx+m)^{n+m}}}$ for x > 0, where B is the beta function. (PDF also defined at x = 0 for $n \ge 2$.)
- $\mathbb{E}X = \frac{m}{m-2}$ for m > 2 (∞ if $m \le 2$), mode $= \frac{n-2}{n} \frac{m}{m+2}$ for n > 2, $\text{Var } X = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$ for m > 4 (undefined for $m \le 2$, ∞ for $2 < m \le 4$).
- MGF does not exist.
- kth moment only exists when 2k < m. In that case, $\mathbb{E}X^k = \left(\frac{m}{n}\right)^k \frac{\Gamma(n/2+k)}{\Gamma(n/2)} \frac{\Gamma(m/2-k)}{\Gamma(m/2)}$.
- If X_1, \ldots, X_n and Y_1, \ldots, Y_m are independent $\mathcal{N}(0,1)$ random variables.

$$F = \frac{(X_1^2 + \dots + X_n^2)/n}{(Y_1^2 + \dots + Y_m^2)/m} \sim F_{n,m} \stackrel{d}{=} \frac{\chi_n^2/n}{\chi_m^2/m}.$$

- If $X \sim \text{Beta}(n/2, m/2)$, then $\frac{mX}{n(1-X)} \sim F_{n,m}$. Conversely, if $X \sim F_{n,m}$, then $\frac{nX/m}{1+nX/m} \sim \text{Beta}(n/2, m/2)$.
- If $X \sim F_{n,m}$, then $\frac{1}{X} \sim F_{m,n}$.
- If $X \sim t_n$, then $X^2 \sim F_{1,n}$.
- If $X, Y \sim \text{Exp}(\lambda)$ independent, then $\frac{X}{Y} \sim F_{2,2}$.
- As $m \to \infty$, $F_{n,m} \stackrel{d}{\to} \chi_n^2/n$.

2.9.1 Non-Central F Distribution

This is defined by a non-central χ^2 distribution divided by a central χ^2 distribution, i.e. $\frac{\chi'_{n_1}(\lambda)/n_1}{\chi^2_{n_2}/n_2}$

•
$$\mathbb{E}F = \frac{n_2(n_1 + \lambda)}{n_1(n_2 - 2)}$$
 if $n_2 > 2$, does not exist if $n_2 \le 2$. Var $F = 2\frac{(n_1 + \lambda)^2 + (n_1 + 2\lambda)(n_2 - 2)}{(n_2 - 2)^2(n_2 - 4)} \left(\frac{n_2}{n_1}\right)^2$ if $n_2 > 4$, does not exist if $n_2 \le 4$.

2.9.2 Doubly Non-Central F Distribution

This is defined by the ratio of 2 non-central χ^2 distributions, i.e. $\frac{\chi'^2_{n_1}(\lambda_1)/n_1}{\chi'^2_{n_2}(\lambda_1)/n_2}$

2.10 Gamma Function

For $z \in \mathbb{C}$ with Re(z) > 0, the gamma function is defined by $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.

- $\Gamma(z+1) = z\Gamma(z)$ for all z.
- $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$ for all $z \notin \mathbb{Z}$.
- If n is a positive integer, $\Gamma(n) = (n-1)!$.
- $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- If n is an even positive integer, $\Gamma(n/2) = (n/2 1)!$. If n is an odd positive integer, $\Gamma(n/2) = \frac{(n-1)!}{2^{n-1}(n/2 1/2)!} \sqrt{\pi}$.
- (Rudin Thm 8.18) $\log \Gamma$ is convex on $(0, \infty)$.
- For $\alpha \in \mathbb{R}$, $\lim_{n \to \infty} \frac{\Gamma(n+\alpha)}{\Gamma(n)n^{\alpha}} = 1$.

2.11 Gamma Distribution

The Gamma distribution is often parametrized in 2 different ways: $X \sim \text{Gam}(k, \theta)$ (shape, scale) or $X \sim \text{Gam}(\alpha, \beta)$ (shape, rate). All parameters are positive, and $k = \alpha$, $\theta = \frac{1}{\beta}$ represent the same distribution.

Rate interpretation: $\Gamma(\alpha, \beta) = \frac{\Gamma(\alpha)}{\beta}$. (BDA3 uses shape-rate parametrization.)

- PDF $p(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$ for x > 0.
- $\mathbb{E}X = k\theta$, Mode = $(k-1)\theta$ for $k \ge 1$, Var $X = k\theta^2$.
- MGF $\mathbb{E}[e^{tX}] = (1 \theta t)^{-k}$ for $t < \frac{1}{\theta}$. Characteristic function $\mathbb{E}[e^{itX}] = (1 \theta it)^{-k}$.
- Moments $\mathbb{E}[X^a] = \frac{\theta^a \Gamma(a+k)}{\Gamma(k)}$ for a > -k.
- If $X \sim \text{Gam}(k, \theta)$, then for any c > 0, $cX \sim \text{Gam}(k, c\theta)$.
- $Gam(1, \lambda) = Exp(\lambda)$.
- $\operatorname{Gam}(\nu/2, \theta = 2) = \chi_{\nu}^2$. Conversely, if $Q \sim \chi_{\nu}^2$ and c > 0, then $cQ \sim \operatorname{Gam}(\nu/2, 2c)$.
- If $X \sim \operatorname{Gam}(\alpha, \theta)$ independent of $Y \sim \operatorname{Gam}(\beta, \theta)$, then $X + Y \sim \operatorname{Gam}(\alpha + \beta, \theta)$ and $\frac{X}{X + Y} \sim \operatorname{Beta}(\alpha, \beta)$.
- If $X_i \sim \text{Gam}(\alpha_i, 1)$ independent and $S = X_1 + \dots + X_n$, then $(X_1/S, \dots, X_n/S) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_n)$. (Proof: Compute joint density of $(S, X_1/S, \dots, X_{n-1}/S)$ via change of variables.)

2.12 Geometric Distribution

Let $X \sim \text{Geom}(p)$ (p is probability of success).

- $\mathbb{P}(X = k)$ is the probability that the 1st success occurs on the kth trial. $\mathbb{P}(X = k) = p(1 p)^{k-1}$, $k \in \{1, 2, \dots\}$.
- CDF $\mathbb{P}(X \le k) = 1 (1 p)^k$.
- $\mathbb{E}X = \frac{1}{p}$, $\operatorname{Var} X = \frac{q}{p^2}$, $\operatorname{Mode} = 1$.
- MGF $\mathbb{E}[e^{tX}] = \frac{pe^t}{1 (1 p)e^t}$ for $t < -\log(1 p)$. Characteristic function $\mathbb{E}[e^{itX}] = \frac{pe^{it}}{1 (1 p)e^{it}}$.
- Memoryless property: For $m, n \in \mathbb{N}$, $\mathbb{P}(X > n + m \mid X > m) = \mathbb{P}(X > n)$.
- If X_1, \ldots, X_r are independent Geom(p) RVs, then their sum has distribution NegBin(r, p).
- If X_1, \ldots, X_r are independent $Geom(p_r)$ RVs (possibly different parameters), then min X_i is Geometric with parameter $p = 1 \prod_i (1 p_i)$.
- Exponential approximation (Dembo Eg 3.2.5): Let $Z_p \sim \text{Geom}(p)$. Then as $p \to 0$, $pZ_p \xrightarrow{d} \text{Exp}(1)$.

2.13 Gumbel Distribution

Location parameter $\mu \in \mathbb{R}$, scale parameter $\beta > 0$. Standard Gumbel distribution has $\mu = 0, \beta = 1$.

- PDF $p(x) = \frac{1}{\beta} \exp[-(z + e^{-z})]$, where $z = (z \mu)/\beta$.
- CDF $P(X \le x) = \exp\left(-e^{-(x-\mu)/\beta}\right)$.
- $\mathbb{E}X = \mu + \beta \gamma$, where γ is the Euler-Mascheroni constant, Median $= \mu \beta \log \log 2$, Mode $= \mu$, $\operatorname{Var} X = \frac{\pi^2 \beta^2}{6}$.
- MGF $\mathbb{E}[e^{tX}] = \Gamma(1 \beta t)e^{\mu t}$. Characteristic function $\mathbb{E}[e^{itX}] = \Gamma(1 i\beta t)e^{i\mu t}$.
- The standard Gumbel distribution is the limit of the maximum of n i.i.d. RVs (whose distribution falls in a certain class). This is true for exponential distribution, normal distribution.
- (Gumbel Max Trick) Let $\varepsilon_1, \ldots, \varepsilon_k$ be i.i.d. standard Gumbel RVs. Then for any $\alpha_1, \ldots, \alpha_k$,

$$P\left\{\operatorname{argmax}_{1 \leq i \leq k} \alpha_i + \varepsilon_i = r\right\} = \frac{e^{\alpha_r}}{\sum_{i=1}^k e^{\alpha_i}}.$$

2.14 Hypergeometric Distribution

The hypergeometric distribution describes the probability of k successes in n draws, without replacement, from a finite population of size N that contains exactly K successes (each draw is either a success or a failure).

- Support is $k \in \mathbb{N}$ such that $\max(0, n + K N) \le k \le \min(K, n)$.
- PMF $\mathbb{P}(Y=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$.
- $\mathbb{E}Y = \frac{nK}{N}$, $\operatorname{Var} Y = \frac{nK(N-K)(N-n)}{N^2(N-1)}$.
- Let $X_i = 1$ if draw i is a success, 0 otherwise. Then $Y = \sum_{i=1}^{n} X_i$.
- Let $Y \sim \text{Hypergeom(n, N, K)}$. $\mathbb{E}[Y^k] = \frac{nK}{N}\mathbb{E}\left[(Z+1)^{k-1}\right]$, where $Z \sim \text{Hypergeom(n-1, N-1, K-1)}$. (Proof by combinatorial identities.)
- Let $Y \sim \text{Hypergeom}(n, N, K)$, and let p = K/N. If N and K are large compared to n, and p is not close to 0 or 1, then $Y \stackrel{\cdot}{\sim} \text{Binom}(n, p)$.

2.15 Inverse Gaussian Distribution

Let $X \sim \mathrm{IG}(\mu, \lambda)$ with $\mu, \lambda > 0$.

- Support is $x \in (0, \infty)$.
- PDF $p(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left[\frac{-\lambda(x-\mu)^2}{2\mu^2 x}\right]$. CDF $\mathbb{P}(X \le x) = \Phi\left[\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu} 1\right)\right] + \exp\left(\frac{2\lambda}{\mu}\right)\Phi\left[-\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu} + 1\right)\right]$.
- $\mathbb{E}X = \mu$, Mode $= \mu \left[\sqrt{1 + \frac{9\mu^2}{2\lambda^2}} \frac{3\mu}{2\lambda} \right]$. Var $X = \frac{\mu^3}{\lambda}$.
- $\mathbb{E}[1/X] = 1/\mu + 1/\lambda$, $\text{Var }(1/X) = \frac{1}{\mu\lambda} + \frac{2}{\lambda^2}$.
- $\bullet \text{ MGF } \mathbb{E}[e^{tX}] = \exp\left[\frac{\lambda}{\mu}\left(1 \sqrt{1 \frac{2\mu^2 t}{\lambda}}\right)\right]. \text{ Characteristic function } \mathbb{E}[e^{itX}] = \exp\left[\frac{\lambda}{\mu}\left(1 \sqrt{1 \frac{2\mu^2 it}{\lambda}}\right)\right].$
- If $\{X_t\}$ is the Brownian motion with drift ν , i.e. $X_t = \nu t + \sigma W_t$, then for a fixed level $\alpha > 0$, the first passage time is an inverse-Gaussian: $T_\alpha = \inf\{t > 0 : X_t = \alpha\} \sim IG\left(\frac{\alpha}{\nu}, \frac{\alpha^2}{\sigma^2}\right)$.
- If $X \sim IG(\mu, \lambda)$, then for k > 0, $kX \sim IG(k\mu, k\lambda)$.
- If $X_i \stackrel{ind}{\sim} IG(\mu_0 w_i, \lambda_0 w_i^2)$, then $\sum_{i=1}^n X_i \sim IG\left(\mu_0 \sum w_i, \lambda_0 \left(\sum w_i\right)^2\right)$.

2.16 Laplace/Double Exponential Distribution

Let $X \sim \text{Laplace}(\mu, b)$, where b > 0 (scale).

• PDF
$$p(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$
. CDF $P(X \le x) = \frac{1}{2} \exp\left(\frac{x-\mu}{b}\right)$ if $x < \mu$, $P(X \le x) = 1 - \frac{1}{2} \exp\left(-\frac{x-\mu}{b}\right)$ if $x \ge \mu$.

- Mean, median and mode are all μ . Var $X=2b^2$. Skewness is 0, excess kurtosis is 3.
- MGF $\mathbb{E}[e^{tX}] = \frac{\exp(\mu t)}{1 b^2 t^2}$ for |t| < 1/b. Characteristic function $\mathbb{E}[e^{itX}] = \frac{\exp(i\mu t)}{1 + b^2 t^2}$.
- Central moments $\mathbb{E}[(X \mu)^n] = 0$ if n is odd, $= b^n n!$ if n is even.
- If $X \sim \text{Laplace}(\mu, b)$, then $kX + c \sim \text{Laplace}(k\mu + c, kb)$.
- If $X \sim \text{Laplace}(\mu, b)$, then $|X \mu| \sim \text{Exp}(1/b)$ (rate).
- If $X, Y \sim \text{Exp}(\lambda)$, then $X Y \sim \text{Laplace}(0, 1/\lambda)$.
- If $X_1, ..., X_4 \stackrel{iid}{\sim} \mathcal{N}(0,1)$, then $X_1 X_2 X_3 X_4 \sim \text{Laplace}(0,1)$.
- If $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Laplace}(\mu, b)$, then $\frac{2}{b} \sum_{i=1}^n |X_i \mu| \sim \chi_{2n}^2$.
- If X, YLaplace (μ, b) , then $\frac{|X \mu|}{|Y \mu|} \sim F_{2,2}$.
- If $X, Y \sim \text{Unif}(0, 1)$, then $\log(X/Y) \sim \text{Laplace}(0, 1)$.
- If $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Bernoulli}(1/2)$, then $X(2Y-1) \sim \text{Laplace}(0,1/\lambda)$.
- If $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\nu)$, then $\lambda X \nu Y \sim \text{Laplace}(0,1)$.
- If $V \sim \text{Exp}(1)$ and $Z \sim \mathcal{N}(0,1)$, then $X = \mu + b\sqrt{2V}Z \sim \text{Laplace}(\mu,b)$.

2.17 Logistic Distribution

Let $X \sim \text{Logistic}(\mu, s)$. μ location parameter, s > 0 scale parameter.

• PDF
$$p(x) = \frac{\exp\left(-\frac{x-\mu}{s}\right)}{s\left[1 + \exp\left(-\frac{x-\mu}{s}\right)\right]^2}$$
, CDF $P(X \le x) = \frac{1}{1 + \exp\left(-\frac{x-\mu}{s}\right)}$.

- Mean, median and mode are all μ . Var $X = \frac{s^2 \pi^2}{3}$.
- MGF $\mathbb{E}[e^{tX}] = e^{\mu t}B(1-st,1+st)$ for $st \in (-1,1)$, where B is the beta function. Characteristic function $\mathbb{E}[e^{itX}] = e^{it\mu}\frac{\pi st}{\sinh(\pi st)}$.
- Central moments $\mathbb{E}[(X-\mu)^n] = s^n \pi^n (2^n-2) \cdot |B_n|$, where B_n is the n^{th} Bernoulli number.
- If $X \sim \text{Logistic}(\mu, s)$, then $kX + c \sim \text{Logistic}(k\mu + c, ks)$.
- If $U \sim \text{Unif}(0,1)$, then $\mu + s[\log U \log(1-U)] \sim \text{Logistic}(\mu,s)$.
- If $X, Y \sim \text{Gumbel}\alpha, \beta$, then $X Y \sim \text{Logistic}(0, \beta)$.
- If $X \sim \text{Exp}(1)$, then $\mu + \beta \log(e^X 1) \sim \text{Logistic}(\mu, \beta)$.
- If $X, Y \sim \text{Exp}(1)$, then $\mu \beta \log \left(\frac{X}{Y}\right) \sim \text{Logistic}(\mu, \beta)$.

2.18 Multinomial Distribution

Let $X \sim \text{Multinom}(n; p_1, \dots, p_s)$. n objects belonging to s classes, $p_1 + \dots + p_s = 1$.

- PMF $P(X_1 = x_1, ... X_s = x_s) = \frac{n!}{x_1! ... x_s!} p_1^{x_1} ... p_s^{x_s}$ (for x_i 's that sum up to n).
- $\mathbb{E}X_i = np_i$, $\operatorname{Var}X_i = np_i(1-p_i)$, $\operatorname{Cov}(X_i, X_j) = -np_ip_j$ for $i \neq j$. In matrix notation, $\operatorname{Var}\mathbf{X} = n\left[\operatorname{diag}(\mathbf{p}) \mathbf{pp^T}\right]$. (Proof: 310A HW1 Qn3.)
- MGF $\mathbb{E}[e^{t \cdot X}] = \left(\sum_{i=1}^{s} p_i e^{t_i}\right)^n$. Characteristic function $\mathbb{E}[e^{it \cdot X}] = \left(\sum_{j=1}^{s} p_j e^{it_j}\right)^n$.
- (TPE Eg 5.3 p24) Multinom $(n; p_1, \ldots, p_s)$ is an (s-1)-dimensional exponential family.
- The X_i 's have marginal distribution Binom (n, p_i) .
- Poisson-Multinomial connection: Suppose X_i 's independent RVs with $X_i \sim \text{Pois}(\lambda_i)$. Let $S = X_1 + \cdots + X_n$, $\lambda = \lambda_1 + \cdots + \lambda_n$. Then

$$(X_1, \ldots, X_n) \mid S \sim \text{Multinom}\left(S, \left(\frac{\lambda_1}{\lambda}, \ldots, \frac{\lambda_n}{\lambda}\right)\right).$$

Conversely, suppose that $N \sim \text{Pois}(\lambda)$ and conditional on $N = n, X = (X_1, \dots, X_k) \sim \text{Multinom}(n, (p_1, \dots, p_k))$. Then the X_i 's are marginally independent and Poisson-distributed with parameters $\lambda p_1, \dots, \lambda p_k$.

2.19 Negative Binomial Distribution

The negative binomial is parametrized in a number of ways.

BDA3/305C Notes

Let $Y \sim \text{NegBin}(\alpha, \beta)$, where $\alpha > 0$ (shape), $\beta > 0$ (rate).

- PMF is $p(y) = {\alpha + y 1 \choose y} \left(\frac{\beta}{\beta + 1}\right)^{\alpha} \left(\frac{1}{\beta + 1}\right)^{y}, y = 0, 1, \dots$
- $\mathbb{E}Y = \frac{\alpha}{\beta}$, $\operatorname{Var} Y = \frac{\alpha(\beta+1)}{\beta^2}$.
- The negative binomial is a mixture of Poisson distributions with rates which follow the gamma distribution (shape-rate):

$$\operatorname{NegBin}(y \mid \alpha, \beta) = \int \operatorname{Pois}(y \mid \theta) \operatorname{Gamma}(\theta \mid \alpha, \beta) d\theta.$$

TSH

Let $Y \sim \text{NegBin}(p, m)$, where p is the probability of success, and m is the number of successes to be obtained.

- If we let $m = \alpha$ and $p = \frac{\beta}{\beta + 1}$, we get BDA's parametrization.
- Interpretation: If Y+m independent trials are needed to obtain m successes (and each trial has success probability p), then $Y \sim \text{NegBin}(p, m)$.
- PMF is $p(y) = {m+y-1 \choose y} p^m (1-p)^y$, y = 0, 1, ...
- $\mathbb{E}Y = \frac{m(1-p)}{p}$, $\text{Var } Y = \frac{m(1-p)}{p^2}$.
- MGF $\mathbb{E}[e^{tY}] = \left(\frac{p}{1 (1 p)e^t}\right)^m$ for $t < -\log(1 p)$. Characteristic function $\mathbb{E}[e^{itY}] = \left(\frac{p}{1 (1 p)e^{it}}\right)^m$.
- Fisher information: $\frac{m}{p(1-p)^2}$.
- Y is the sum of m independent Geom(p) random variables.

Agresti

Let $Y \sim \text{NegBin}(k, \mu)$ or $Y \sim \text{NegBin}(\gamma, \mu)$, where $\gamma = \frac{1}{k}$ (dispersion parameter). $k > 0, \mu > 0$.

- If we let $\mu = \frac{\alpha}{\beta}$ and $k = \alpha$, we get BDA's parametrization.
- PMF $p(y) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{k}{\mu+k}\right)^k \left(1 \frac{\mu}{\mu+k}\right)^y, y = 0, 1, \dots$
- $\mathbb{E}Y = \mu$, $\operatorname{Var} Y = \mu + \gamma \mu^2$.
- As $\gamma \to 0,$ the negative binomial converges to the Poisson.

2.20 Normal Distribution

Let $Z \sim \mathcal{N}(\mu, \sigma^2)$.

- PDF $p(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(z-\mu)^2}{2\sigma^2}}$.
- MGF $\mathbb{E}\left[e^{tZ}\right] = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$. Characteristic function $\mathbb{E}\left[e^{itZ}\right] = \exp\left[i\mu t \frac{\sigma^2 t^2}{2}\right]$.
- Fisher information: $\begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$.
- Central moments (i.e. $\mu = 0$): for non-negative integer p,

$$\mathbb{E}[X^p] = \begin{cases} 0 & \text{if } p \text{ odd,} \\ \sigma^p(p-1)! ! & \text{if } p \text{ even.} \end{cases}$$

$$\mathbb{E}[X^p] = \sigma^p(p-1)! ! \cdot \int \sqrt{\frac{2}{\pi}} & \text{if } p \text{ odd.} = \sigma^p \cdot \frac{2^{p/2} \Gamma\left(\frac{p}{2}\right)}{2^{p/2} \Gamma\left(\frac{p}{2}\right)}$$

$$\mathbb{E}[|X|^p] = \sigma^p(p-1)! \,! \cdot \begin{cases} \sqrt{\frac{2}{\pi}} & \text{if } p \text{ odd} \\ 1 & \text{if } p \text{ even} \end{cases} = \sigma^p \cdot \frac{2^{p/2} \Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}.$$

- $\mathbb{E}\left[\frac{1}{X}\right]$ does not exist.
- If X and Y are **jointly** normal, then uncorrelatedness is the same as independence.
- (TPE Eg 5.16 p31) Stein's identity for the normal: If $X \sim \mathcal{N}(\mu, \sigma^2)$ and g a differentiable function with $\mathbb{E}[g'(X)|<\infty$, then $\mathbb{E}[g(X)(X-\mu)]=\sigma^2\mathbb{E}g'(X)$.
- Variance stabilizing transformation: If $X \sim \mathcal{N}(\theta, \alpha\theta(1-\theta))$, then taking $Y = \frac{1}{\sqrt{\alpha}}\arcsin(2X-1)$, we have $Y \sim \mathcal{N}\left(\frac{1}{\sqrt{\alpha}}\arcsin(2\theta-1), 1\right)$.
- Cramér's decomposition theorem: If X_1 and X_2 are independent and $X_1 + X_2$ is normally distributed, then both X_1 and X_2 must be normally distributed.
- Marcinkiewicz theorem: If a random variable X has characteristic function of the form $\varphi_X(t) = e^{Q(t)}$ where Q is a polynomial, then Q can be at most a quadratic polynomial.
- If X and Y are independent $\mathcal{N}(\mu, \sigma^2)$ RVs, then X + Y and X Y are independent and identically distributed. **Bernstein's theorem** asserts the converse: If X and Y are independent s.t. X + Y and X Y are also independent, then X and Y must have normal distributions.
- KL divergence: If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, then

$$D_{kl}(X_1 \parallel X_2) = \frac{(\mu_1 - \mu_2)^2}{2\sigma_2^2} + \frac{1}{2} \left(\frac{\sigma_1^2}{\sigma_2^2} - 1 - \log \frac{\sigma_1^2}{\sigma_2^2} \right).$$

• Hellinger distance: If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, then

$$d_{hel}^2(X_1,X_2) = 1 - \sqrt{\frac{2\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2}} \exp\left(-\frac{(\mu_1 - \mu_2)^2}{4(\sigma_1^2 + \sigma_2^2)}\right).$$

2.20.1 Standard Normal Distribution

- For $Z \sim \mathcal{N}(0,1)$, $\phi'(x) = -x\phi(x)$ for all $x \in \mathbb{R}$.
- If $Z_1, \ldots, Z_n \stackrel{iid}{\sim} \mathcal{N}(0,1)$, then $Z_1^2 + \cdots + Z_n^2 \sim \chi_n^2$.
- $\mathbb{E}|Z| = \sqrt{\frac{2}{\pi}}$.
- Box-Muller method: If $U, V \stackrel{iid}{\sim} U[0, 1]$, then

$$X = \sqrt{-2 \log U} \cos(2\pi V), \qquad Y = \sqrt{-2 \log U} \sin(2 \sin V)$$

are independent $\mathcal{N}(0,1)$ random variables.

- (Owen Section 3.2.4) If $Z_1, \ldots, Z_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, then \bar{Z} is independent of $Z_1 \bar{Z}, \ldots, Z_n \bar{Z}$
- (Dembo Ex 2.2.24, 310A Lec 9, 300C Lec 2) **Approximating tail of a Gaussian:** Let $Z \sim \mathcal{N}(0, 1)$. Then for any x > 0,

$$\left(\frac{1}{x} - \frac{1}{x^3}\right) \frac{e^{-x^2/2}}{\sqrt{2\pi}} \le P\{Z > x\} \le \frac{1}{x} \frac{e^{-x^2/2}}{\sqrt{2\pi}}.$$

For large x, $1 - \Phi(x) \sim \frac{e^{-x^2/2}}{x\sqrt{2\pi}} = \frac{\varphi(x)}{x}$.

• (300C Lec 2) Holding α fixed, for large n,

$$|z(\alpha/n)| \approx \sqrt{2\log n} \left[1 - \frac{1}{4} \frac{\log \log n}{\log n} \right] \approx \sqrt{2\log n}.$$

• (Dembo Ex 2.2.24, 300°C Lec 2) Let $Z_1, Z_2, ...$ be independent $\mathcal{N}(0,1)$ random variables. Then with probability 1,

$$\lim_{n \to \infty} \frac{\max_{i \le n} Z_i}{\sqrt{2 \log n}} = 1.$$

• (300C, Lec 24) For large λ ,

$$\mathbb{E}[Z^2; |Z| > \lambda] \approx 2\lambda \phi(\lambda).$$

- If Z_1 and Z_2 are standard normal variables, then Z_1/Z_2 has the standard Cauchy distribution.
- $\Phi(x)$ is log-concave (i.e. $\log \Phi(x)$ is concave), so $\frac{d}{dx} \log \Phi(x) = \frac{\phi(x)}{\Phi(x)}$ is decreasing in x.
- If G_{θ}^k is the CDF of the truncated normal $Z \sim \mathcal{N}(\theta, 1) \mid Z \leq k$, then $G_{\theta}^k(t)$ is a decreasing function of θ .

2.20.2 Multivariate Normal Distribution

Let $Z \sim \mathcal{N}(\mu, \Sigma)$, with $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$, and Σ positive semi-definite.

- Support $Z \in \mu + \operatorname{span}(\Sigma) \subseteq \mathbb{R}^d$.
- PDF exists only when Σ is positive definite: $p(z) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left[-\frac{1}{2}(z-\mu)^T \Sigma^{-1}(z-\mu)\right].$
- MGF $\mathbb{E}[e^{t \cdot Z}] = \exp\left(\mu^T t + \frac{1}{2} t^T \Sigma t\right)$. Characteristic function $\mathbb{E}[e^{it \cdot Z}] = \exp\left(i\mu^T t \frac{1}{2} t^T \Sigma t\right)$.
- (Dembo Ex 3.5.20) A random vector X has the multivariate normal distribution iff $\left(\sum_{i=1}^{d} a_{ji} X_i, j=1,\ldots,m\right)$ is a Gaussian random vector for any non-random coefficients $a_{11},\ldots,a_{md}\in\mathbb{R}$. (Also holds when m=1.)
- Let $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right)$ $(X_1 \text{ and } X_2 \text{ can be vectors})$. Then the distribution of X_1 given $X_2 = a$ is multivariate normal:

$$X_1 \mid X_2 = a \sim \mathcal{N} \left(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (a - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \right).$$

The covariance matrix above is called the Schur complement of Σ_{22} in Σ . Note that it does not depend on a. (In order to prove this result, we use the fact that X_2 and $X_1 - \Sigma_{12}\Sigma_{22}^{-1}X_2$ are independent.)

- Using the notation above, X_1 and X_2 are independent iff $\Sigma_{12} = 0$. (Proof: Factor the characteristic function.)
- Suppose $Y \sim \mathcal{N}(\mu, \Sigma)$ and Σ^{-1} exists. Then $(Y \mu)^T \Sigma^{-1} (Y \mu) \sim \chi_n^2$. (Proof: $\Sigma = P^T \Lambda P$, $Z \sim \Lambda^{-1/2} P(Y \mu)$. Then $Z \sim \mathcal{N}(0, I_n)$.)
- Assume that $Z \sim \mathcal{N}(0, \Sigma)$ is d-dimensional. Then $Z^T \Sigma^{-1} Z \sim \chi_d^2$. More generally, $(Z \mu)^T \Sigma^{\dagger} (Z \mu) \sim \chi_{rank(\Sigma)}^2$, where Σ^{\dagger} is the pseudo-inverse of Σ .
- If $Z \sim \mathcal{N}(0, I)$ and Q orthogonal (i.e. $QQ^T = I$), then $QZ \sim \mathcal{N}(0, I)$.
- If φ is the density for $\mathcal{N}(0,I)$, then $\partial_i \varphi(x-\mu) = -(x_i \mu_i)\varphi(x-\mu)$.

2.20.3 Bivariate Normal Distribution

• In the bivariate normal case $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$, letting ρ be the correlation between X and Y, we can write the PDF as

$$p(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right] \right).$$

- (300A Lec 16) Under $\rho = 0$ (i.e. independence), the sample correlation has $\frac{\sqrt{n-2}\hat{\rho}}{\sqrt{1-\hat{\rho}^2}} \sim t_{n-2}$.
- Let $\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right)$. Then $Y = \rho X + \sqrt{1 \rho^2} \varepsilon$ for $\varepsilon \sim \mathcal{N}(0, 1)$.

2.21 Pareto Distribution

Let $X \sim \text{Pareto}(a, b)$. a > 0 shape, b > 0 scale.

• PDF
$$p(x) = \frac{ab^a}{x^{a+1}}$$
 for $x \ge b$. CDF $\mathbb{P}(X \le x) = 1 - \left(\frac{b}{x}\right)^a$.

•
$$\mathbb{E}X = \infty$$
 if $a \le 1$, $\mathbb{E}X = \frac{ab}{a-1}$ if $a > 1$. Median is $b\sqrt[a]{2}$, Mode is b .

• Var
$$X = \infty$$
 if $a \le 2$, Var $X = \frac{ab^2}{(a-1)^2(a-2)}$ if $a > 2$.

• MGF and characteristic function uses incomplete gamma function.

• Moments
$$\mathbb{E}[X^n] = \frac{ab^n}{a-n}$$
 if $0 < n < a, = \infty$ if $n \ge a$.

• Fisher information:
$$\begin{pmatrix} \frac{a}{b^2} & -\frac{1}{b} \\ -\frac{1}{b} & \frac{1}{a^2} \end{pmatrix}$$
.

- If $X \sim \operatorname{Pareto}(a, b)$ and c > 0, then $cX \sim \operatorname{Pareto}(a, bc)$.
- If $X \sim \operatorname{Pareto}(a, b)$ and n > 0, then $X^n \sim \operatorname{Pareto}(a/n, b^n)$.

2.22 Poisson Distribution

Let $X \sim \text{Pois}(\lambda)$.

• PMF
$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
.

•
$$\mathbb{E}X = \lambda$$
, $\text{Var } X = \lambda$.

• MGF
$$\mathbb{E}[e^{tX}] = \exp\left[\lambda(e^t - 1)\right]$$
. Characteristic function $\mathbb{E}[e^{itX}] = \exp\left[\lambda(e^{it} - 1)\right]$.

• For
$$k = 1, 2, ..., \mathbb{E}[X(X - 1)...(X - K + 1)] = \lambda^k$$
.

- Fisher information: $\frac{1}{\lambda}$.
- Let $X_1 \sim \operatorname{Pois}(\lambda_1)$ and $X_2 \sim \operatorname{Pois}(\lambda_2)$ be independent. $X_1 + X_2 \sim \operatorname{Pois}(\lambda_1 + \lambda_2)$, and $X_1 \mid X_1 + X_2 = k \sim \operatorname{Binom}\left(k, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$.
- Poisson-Multinomial connection: Suppose X_i 's independent RVs with $X_i \sim \text{Pois}(\lambda_i)$. Let $S = X_1 + \cdots + X_n$, $\lambda = \lambda_1 + \cdots + \lambda_n$. Then

$$(X_1, \ldots, X_n) \mid S \sim \text{Multinom}\left(S, \left(\frac{\lambda_1}{\lambda}, \ldots, \frac{\lambda_n}{\lambda}\right)\right).$$

Conversely, suppose that $N \sim \text{Pois}(\lambda)$ and conditional on $N = n, X = (X_1, \dots, X_k) \sim \text{Multinom}(n, (p_1, \dots, p_k))$. Then the X_i 's are marginally independent and Poisson-distributed with parameters $\lambda p_1, \dots, \lambda p_k$.

2.23 T Distribution

Let $X \sim t_{\nu}$, $\nu > 0$. (ν can be any positive real number.)

• PDF
$$p(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{\frac{\nu+1}{2}}.$$

- $\mathbb{E}X = 0$ (if $\nu > 1$, otherwise undefined), median and mean are 0. Var $X = \frac{\nu}{\nu 2}$ for $\nu > 2$, ∞ for $1 < \nu \le 2$, undefined otherwise.
- MGF is undefined, characteristic function involves modified Bessel function of the second kind.
- When $\nu > 1$,

$$\mathbb{E}[X^k] = \begin{cases} 0 & \text{if } k \text{ odd, } 0 < k < \nu, \\ \frac{1}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \left[\Gamma\left(\frac{k+1}{2}\right)\Gamma\left(\frac{\nu-k}{2}\right)\right] & \text{if } k \text{ even, } 0 < k < \nu. \end{cases}$$

Moments of order ν or higher don't exist.

- As $n \to \infty$, $t_n \to \mathcal{N}(0,1)$.
- If $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$ with Z and X independent, then $\frac{Z}{\sqrt{X/n}} \sim t_n$.
- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. Let \bar{X} be the sample mean and $S^2 = \frac{1}{N-1} \sum_{i=1}^N (X_i \bar{X})^2$ be the sample variance. Then $\frac{\bar{X} \mu}{S/\sqrt{n}} \sim t_{n-1}$.
- $t_1 \stackrel{d}{=}$ standard Cauchy distribution.
- If $T \sim t_{\nu}$, then $T^2 \sim F_{1,\nu}$.

2.23.1 Non-Central T Distribution

- This is obtained by $t_n'(\lambda) = \frac{\mathcal{N}(\lambda, 1)}{\sqrt{\chi_n^2/n}}$.
- Non-central t-distribution is asymmetric unless $\mu = 0$. Right tail will be heavier than the left when $\mu > 0$ and vice versa.
- If $T \sim t'_{\nu}(\mu)$, then $T^2 \sim F'_{1,\nu}(\mu^2)$.
- As $n \to \infty$, $t'_n(\mu) \xrightarrow{d} \mathcal{N}(\mu, 1)$.

2.24 Uniform Distribution

Let $U \sim \text{Unif}(a, b)$.

- PDF $p(x) = \frac{1}{b-a} \mathbb{1}_{x \in [a,b]}$. CDF $P(X \le x) = \frac{x-a}{b-a}$ for $a \le x \le b$.
- $\mathbb{E}X = \text{Median} = \frac{a+b}{2}$, $\text{Var } X = \frac{(b-a)^2}{12}$.
- $\bullet \text{ MGF } \mathbb{E}[e^{tU}] = \frac{e^{tb} e^{ta}}{t(b-a)} \text{ for } t \neq 0, \, \mathbb{E}[e^{tU}] = 1 \text{ if } t = 0. \text{ Characteristic function } \mathbb{E}[e^{itU}] = \frac{e^{itb} e^{ita}}{it(b-a)}.$
- If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{Unif}(0,1)$, then the kth order statistic $X_{(k)} \sim \mathrm{Beta}(k, n+1-k)$.
- Unif(0,1) = Beta(1,1).
- If $U \sim \text{Unif}(0,1)$, then $U^n \sim \text{Beta}(1/n,1)$.
- Suppose F is a distribution function for a probability distribution on \mathbb{R} , and F^{-1} is the corresponding quantile function, i.e. $F^{-1}(u) = \inf\{x : F(x) \ge u\}$. Then $X = F^{-1}(U)$ has distribution function F.

2.25 Weibull Distribution

Let $X \sim \text{Weibull}(\lambda, k)$, with $\lambda > 0$ (scale) and k > 0 (shape).

- Support is $x \ge 0$.
- PDF $p(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$. CDF $P(X \le x) = 1 e^{-(x/\lambda)^k}$.
- $\mathbb{E}X = \lambda \Gamma(1+1/k)$, median $= \lambda (\log 2)^{1/k}$, mode $= \lambda \left(\frac{k-1}{k}\right)^{1/k}$ if k > 1, 0 otherwise.
- Var $X = \lambda^2 \left[\Gamma(1 + 2/k) (\Gamma(1 + 1/k))^2 \right].$
- MGF $\mathbb{E}[e^{tX}] = \sum_{n=0}^{\infty} \frac{t^n \lambda^n}{n!} \Gamma(1+n/k)$ for $k \ge 1$. Characteristic function $\mathbb{E}[e^{itX}] = \sum_{n=0}^{\infty} \frac{(it)^n \lambda^n}{n!} \Gamma(1+n/k)$.

- The Weibull is the distribution of a random variable W such that $\left(\frac{W}{\lambda}\right)^k \sim \text{Exp}(1)$. Going in the other direction, if $X \sim \text{Exp}(1)$, then $\lambda X^{1/k} \sim \text{Weibull}(\lambda, k)$.
- If $U \sim \text{Unif}(0,1)$, $\lambda[-\log U]^{1/k} \sim \text{Weibull}(\lambda, k)$.
- As $k \to \infty$, Weibull (λ, k) converges to a point mass at λ .

3 Analysis Facts

3.1 Basic Topology and Spaces

- Banach space: A complete vector space with a norm.
- **Hilbert space**: A real or complex inner product space which is complete w.r.t. distance induced by the inner product.
- Compact metric space: A metric space X is compact if every open cover of X has a finite subcover.
- Sequentially compact: A metric space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in X.
- **Totally bounded**: A metric space (M, d) is totally bounded iff for every $\varepsilon > 0$, there exists a finite collection of open balls in M of radius ε whose union covers M.
- **Heine-Borel Theorem for arbitrary metric space**: A subset of a metric space is compact iff it is complete and totally bounded.
- Borel-Lebesgue Theorem: For a metric space (X, d), the following are equivalent:
 - 1. X is compact.
 - 2. Every collection of closed subsets of X with the finite intersection property (i.e. every finite subcollection has non-empty intersection) has non-empty intersection.
 - 3. X is sequentially compact.
 - 4. X is complete and totally bounded.
- (Stein Thm 2.4) Every Hilbert space has an orthonormal basis.
- (Rudin Thm 2.35) Closed subsets of compact sets are compact. If F is closed and K is compact, then $F \cap K$ is compact.
- (Rudin Thm 4.19) If f is a continuous mapping from compact metric space X to metric space Y, then f is uniformly continuous on X.
- If T is a compact set and $f: T \mapsto \mathbb{R}$ is continuous, then f is bounded.
- Over a compact subset of the real line, continuously differentiable \implies Lipschitz-continuous \implies α -Hölder continuous ($\alpha > 0$) \implies uniformly continuous \implies continuous \implies RCLL \implies separable.

3.2 Measure Theory, Integration and Differentiation

- (Stein Cor 3.5) G_{δ} sets are countable intersections of open sets, while F_{σ} sets are countable unions of closed sets. A subset $E \subset \mathbb{R}^d$ is (Lebesgue)-measurable (i) iff E differs from a G_{δ} by a set of measure zero, (ii) iff E differs from an F_{σ} by a set of measure zero.
- (Stein Thm 4.4) **Egorov's Theorem**: Suppose $\{f_k\}$ is a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$, and assume $f_k \to f$ a.e. on E. Given $\varepsilon > 0$, we can find closed set $A_{\varepsilon} \subset E$ such that $m(E A_{\varepsilon}) < \varepsilon$ and $f_k \to f$ uniformly on A_{ε} .
- Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$. The **Jacobian** is an $m \times n$ matrix with entries $J_{ij} = \frac{\partial f_i}{\partial x_j}$.
- Change of variables: See Ross p279.
- Lebesgue Differentiation Theorem: If f is a measurable function, then for almost every x, $f(x) = \lim_{r \to 0} \frac{1}{r} \int_{x}^{x+r} f(y) dy$.
- Mean Value Theorem: If f is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) f(a)}{b-a}$ (i.e. f(b) = f(a) + (b-a)f'(c)).
- Differentiation under integral sign: Let f(x,t) be such that f(x,t) and its partial derivative $f_x(x,t)$ are continuous in t and x in some region of the (x,t) plane, including $a(x) \le x \le b(x)$, $x_0 \le x \le x_1$. Also suppose that a(x) and b(x) are both continuous and both have continuous derivatives for $x_0 \le x \le x_1$. Then, for $x_0 \le x \le x_1$,

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t)dt\right) = f(x,b(x)) \cdot \frac{d}{dx}b(x) - f(x,a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x}f(x,t)dt.$$

• Inverse Function Theorem: For functions of a single variable, if f is a continuously differentiable function with non-zero derivative at point a, then f is invertible in a neighborhood of a, the inverse is continuously differentiable, and

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}.$$

For functions of more than one variable: Let f: open set of $\mathbb{R}^n \to \mathbb{R}^n$. If F is continuously differentiable and its total derivative of F is invertible at a point p, then an inverse function to F exists in some neighborhood of F(p). F^{-1} is also continuously differentiable, with

$$J_{F^{-1}}(F(p)) = [J_F(p)]^{-1}.$$

- If $f: \mathbb{R}^n \to \mathbb{R}$ is L-Lipschitz, i.e. $|f(x) f(y)| \le L|x y|$, and is differentiable, then for all $x \in \mathbb{R}^n$, $\|\nabla f(x)\| \le L$.
- (Durrett Ex 1.4.4) Riemann-Lebesgue Lemma: If g is integrable, then $\lim_{n\to\infty}\int g(x)\cos(nx)dx=0$.

3.3 Approximations

• Stirling's Approximation for factorial: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (i.e. ratio goes to 1 as $n \to \infty$).

- Stirling's Approximation for gamma function: $\Gamma(z) = \sqrt{\frac{2\pi}{z}} \left(\frac{z}{e}\right)^z \left[1 + O\left(\frac{1}{z}\right)\right]$ for large z, i.e. $\Gamma(z+1) \sim \sqrt{2\pi z} \left(\frac{z}{e}\right)^z$.
- Volume of ball in *n*-dimensional space: Volume of ball with radius r in n-dimensional space $\sim \frac{1}{\sqrt{n\pi}} \left(\frac{2\pi e}{n}\right)^{n/2} r^n$.
- Weierstrass Approximation Theorem: If h is continuous on [0,1], then there exist polynomials p_n such that $\sup_{x \in [0,1]} |h(x) p_n(x)| \to 0$ as $n \to \infty$.
- (Rudin Thm 5.15) **Taylor's Theorem**: Suppose f is a real function on [a, b], n a positive integer, $f^{(n-1)}$ continuous on [a, b], $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of [a, b]. Then, there exists a point x between α and β such that

$$f(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

- Newton's method: Say we are trying to find the solution to f(x) = 0. If our current guess is x_k , one step of Newton's method gives us our next guess: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$.
- (310A Lec 9) For small x, $\log(1-x) \sim -x$.
- As $n \to \infty$, $\sum_{k=1}^{n} 2\log(\sqrt{k}\log k) \sim n\log n$. (For proof, see 310A HW9.)
- (310B Lec 8) For large N, $\sum_{k=j+1}^{N} \frac{1}{k-1} \approx \log \frac{N}{j}$.

3.4 Convergence

- (Rudin Thm 3.33) Root test: Given $\sum a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. If $\alpha < 1$, $\sum a_n$ converges. If $\alpha > 1$, $\sum a_n$ diverges. If $\alpha = 1$, the test gives no information.
- (Rudin Thm 3.34) Ratio test: If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, the series $\sum a_n$ converges. If $\left| \frac{a_{n+1}}{a_n} \right| \ge 1$ for all large enough n, then $\sum a_n$ diverges.
- Convergence of infinite product: Let a_n be a sequence of positive numbers. Then $\prod_{n=1}^{\infty} (1+a_n)$ and $\prod_{n=1}^{\infty} (1-a_n)$ converge iff $\sum_{n=1}^{\infty} a_n$ converges. (Proof takes logs and uses fact that $\log(1+x) \sim x$ for small x.)
- (Rudin Thm 7.11) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t\to x} f_n(t) = A_n$. Then $\{A_n\}$ converges, and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
- (Rudin Thm 7.12) If $\{f_n\}$ is a sequence of continuous functions on E and if $f_n \to f$ uniformly on E, then f is continuous on E.

• (Rudin Thm 7.16) If $f_n \to f$ uniformly on [a, b] and f_n are integrable on [a, b], then f is integrable on [a, b] and

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx.$$

• (Rudin Thm 7.17) Suppose $\{f_n\}$ are differentiable on [a,b] and that $\{f_n(x_0)\}$ converges for some point $x_0 \in [a,b]$. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b] to a function f, and for all $x \in [a,b]$,

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

- Lusin's Theorem: Let A be a measurable subset of \mathbb{R} with finite measure, and let $f:A\mapsto\mathbb{R}$ be measurable. Then for any $\varepsilon>0$, there is a compact set $K\subseteq A$ with $m(A\setminus K)>\varepsilon$ such that the restriction of f to K is continuous.
- (Dembo Lem 2.2.11) Let y_n be a sequence in a topological space. If every subsequence has a further subsequence which converges to y, then $y_n \to y$.
- (Dembo Lem 2.3.20) **Kronecker's Lemma**: Let $\{x_n\}$ and $\{b_n\}$ be 2 sequences of real numbers with $b_n > 0$ and $b_n \uparrow \infty$. If $\sum_n x_n/b_n$ converges, then $s_n/b_n \to 0$ for $s_n = x_1 + \cdots + x_n$.
- (310A Lec 13) If $x_n \to x$, then $\frac{1}{n} \sum_{i=1}^n x_i \to x$.
- (310B Lec 10) If x_n is a sequence of positive real numbers increasing to infinity, then $\sum_{n=1}^{\infty} \frac{x_{n+1} x_n}{x_{n+1}} = \infty$, and $\sum_{n=1}^{\infty} \frac{x_{n+1} x_n}{x_{n+1}^2} < \infty$.
- (310B Lec 19) **Subadditive Lemma:** Let $\{x_n\}$ be a sequence of real numbers such that $x_{n+m} \le x_n + x_m$ for all n, m. Then $\lim_{n \to \infty} \frac{x_n}{n}$ exists and is equal to $\inf_{n \ge 1} \frac{x_n}{n}$.
- (Durrett Lem 3.1.1) If $c_j \to 0$, $a_j \to \infty$ and $a_j c_j \to \lambda$, then $(1 + c_j)^{a_j} \to e^{\lambda}$. (Generalization in Ex 3.1.1.)

4 Linear Algebra Facts

4.1 Properties of Matrices

• Matrix multiplication as sum of inner products: If $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, $A_1, \dots, A_n \in \mathbb{R}^{m \times 1}$ the columns of \mathbf{A} and $B_1, \dots, B_n \in \mathbb{R}^{1 \times n}$ the rows of \mathbf{B} , then $\mathbf{A}\mathbf{B} = \sum_{i=1}^n A_i B_i$.

In particular, for the regression setting: Let Z_1, \ldots, Z_n be the column vectors corresponding to subject $1, \ldots, n$. Let Z be the usual design matrix (i.e. row i belongs to subject i). Then we can write $Z^TZ = \sum_{i=1}^n Z_i Z_i^T$.

• For matrices, $Cov(AX, BY) = ACov(X, Y)B^T$, $Var(AX + b) = AVar(X)A^T$.

- $x^T A x = x^T \left(\frac{A + A^T}{2}\right) x$. Thus, when considering quadratic forms, we may assume A is symmetric.
- If $\mathbb{E}Y = \mu \in \mathbb{R}^n$ and $\text{Var } Y = \Sigma$, then for non-random matrix A, $\mathbb{E}[Y^T A Y] = \mu^T A \mu + \text{tr}(A \Sigma)$.
- For any matrix A, the row space of A and the column space of A have the same rank. In addition, $\operatorname{Rank}(A^TA) = \operatorname{Rank}(A)$.
- $rank(AB) \le min(rank(A), rank(B))$.

• Determinant:

- $\det(A) = \prod_i \lambda_i$.
- For square matrices A and B of equal size, det(AB) = det(A)det(B).
- If A is an $n \times n$ matrix, $\det(cA) = c^n \det(A)$.
- Considering a matrix in block form, we have

$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = (\det A)(\det C).$$

- Sylvester's theorem: If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$, then $\det(I_m + AB) = \det(I_n + BA)$.
- Trace: $tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = sum \text{ of eigenvalues.}$
 - More generally, $\operatorname{tr}(\mathbf{A}^k) = \sum_i \lambda_i^k$.
 - Trace is a linear operator, and $tr(\mathbf{A}) = tr(\mathbf{A}^T)$.
 - $-\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$ (if the matrices \mathbf{AB} and \mathbf{BA} make sense). However, $\operatorname{tr}(\mathbf{AB}) \neq \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B})$.
 - Trace is invariant under cyclic permutations but not arbitrary permutations. (However, for 3 symmetric matrices, any permutation is ok.)
 - If $P_X = X(X^TX)^{-1}X^T$ (projection matrix), then $tr(P_X) = rank(X)$. (Proof: Use cyclic permutations.)
 - If λ is an eigenvalue of \mathbf{A} , then $1/\lambda$ is an eigenvalue for \mathbf{A}^{-1} . So if the eigenvalues of \mathbf{A} are λ_i 's, then $\operatorname{tr}(\mathbf{A}^{-1}) = \sum_i 1/\lambda_i$.

• Inverses:

- Schur complement: Writing a matrix in block form,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1} \end{pmatrix}.$$

- (305A Sec 14.3.2) **Sherman-Morrison Formula:** If $A \in \mathbb{R}^{n \times n}$ is invertible, $u, v \in \mathbb{R}^n$ and $1 + v^T A u \neq 0$, then $(A + u v^T)^{-1} = A^{-1} \frac{A^{-1} u v^T A^{-1}}{1 + v^T A^{-1} u}$.
- Woodbury Formula: $(A + UCV)^{-1} = A^{-1} A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$.
- Positive definite matrices: $A \in \mathbb{R}^{n \times n}$ is PD $(A \succ 0)$ if $\langle Ax, x \rangle > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.
 - If $A, B \succ 0$ and t > 0, then $A + B \succ 0$ and $tA \succ 0$.
 - A has positive eigenvalues. This also implies that it will have positive trace and determinant.

- A has positive diagonal entries.
- A is invertible.
- -A has a unique positive definite square root.
- (300B Lec 4) If A is positive definite, then $\sup_{v} \frac{(v^T u)^2}{v^T A v} = u^T A^{-1} u$ (with equality when $v = A^{-1} u$).
- Positive semi-definite matrices: $A \in \mathbb{R}^{n \times n}$ is PSD $(A \succeq 0)$ if $\langle Ax, x \rangle \geq 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$. PSD matrices have corresponding properties of PD matrices as above. (PSD will have unique PSD square root.)
 - If A's smallest eigenvalue is $\lambda > 0$, then $A \succeq \lambda I$.
 - If the smallest eigenvalue of A is \geq the largest eigenvalue of B, then $A \succeq B$.
- **Perron-Frobenius Theorem:** Let A be a positive matrix (i.e. all entries positive). Then the following hold:
 - There is an r > 0 such that r is an eigenvalue of A and any other eigenvalue λ must satisfy $|\lambda| < r$.
 - -r is a simple root of the characteristic polynomial of A, and hence its eigenspace has dimension 1.
 - There exists an eigenvector v with all components positive such that Av = rv. (Respectively, there exists a positive left eigenvector w with $w^T A = rw^T$.)
 - There are no other non-negative eigenvectors except positive multiples of v. (Same for left eigenvectors.)
 - $-\lim_{k\to\infty} A^k/r^k = vw^T$, where v and w are normalized so that $w^Tv = 1$. Moreover, vw^T is the projection onto the eigenspace corresponding to r. (This convergence is uniform.)
 - $-\min_{i} \sum_{j} a_{ij} \le r \le \max_{i} \sum_{j} a_{ij}.$
- (305C p11) **Perron-Frobenius Theorem v2:** Let $P \in [0, \infty)^{N \times N}$ be a matrix with (possibly complex) right eigenvalues $\lambda_1, \ldots, \lambda_N$. Let $\rho = \max_{1 \le j \le N} |\lambda_j|$. Then P has an eigenvalue equal to ρ with a corresponding eigenvector with all non-negative entries.
- Computational cost:
 - Multiplying $n \times m$ matrix by $m \times p$ matrix: O(nmp). Multiplying two $n \times n$ matrices: $O(n^{2.373})$.
 - Inverting an $n \times n$ matrix: $O(n^{2.373})$.
 - QR decomposition for $m \times n$ matrix: $O(mn^2)$.
 - SVD decomposition for $m \times n$ matrix: $O(\min(mn^2, m^2n))$.
 - Determinant of an $n \times n$ matrix: $O(n^{2.373})$.
 - Back substitution for an $n \times n$ triangular matrix: $O(n^2)$.

4.2 Matrix Decompositions

- Every real symmetric matrix A can be decomposed as $A = Q\Lambda Q^T$, where Q is a real orthogonal matrix (whose columns are eigenvectors of A), and Λ is a real diagonal matrix (whose diagonal entries are the eigenvalues of A).
- Singular Value Decomposition: For any $M \in \mathbb{R}^{n \times p}$, we have the decomposition $M = U_{n \times n} \Sigma_{n \times p} V_{p \times p}^T$, where U and V are orthogonal, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_k)$ with $k = \min(n, p)$ and $\sigma_1 \geq \ldots \geq \sigma_k \geq 0$.

- QR Decomposition: Any real square matrix A may be decomposed as A = QR, where Q is an orthonormal matrix and R is an upper triangular matrix. (If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive.)
- Cholesky Decomposition: For any real symmetric positive semi-definite matrix A, there is a lower triangular L such that $A = LL^T$.

4.3 General Vector Spaces

• Operator norm:

$$||A||_{op} = \inf\{c \ge 0 : ||Av|| \le c||v|| \text{ for all } v\} = \sup\{||Av|| : ||v|| = 1\}.$$

The spectral radius of A (i.e. largest absolute value of its eigenvalues) is always bounded above by $||A||_{op}$.

- (Dembo Ex 4.3.6) **Parallelogram Law**: Let \mathbb{H} be a linear vector space with an inner product. Then for any $u, v \in \mathbb{H}$, $||u + v||^2 + ||u v||^2 = 2||u||^2 + 2||v||^2$.
- (Hoffman & Kunze Eqn 8-3) **Polarization Identity**: For an inner product space, $\langle u, v \rangle = \frac{1}{4} ||u + v||^2 \frac{1}{4} ||u v||^2$.
- (Hoffman & Kunze Thm 3.2) **Rank-Nullity Theorem**: Let T be a linear transformation from V into W. Suppose that V is finite-dimensional. Then $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$.
- (Hoffman & Kunze Eqn 8-8): In an inner product space, if v is a linear combintion of an orthogonal sequence of non-zero vectors u_1, \ldots, u_m , then

$$v = \sum_{k=1}^{m} \frac{\langle v, u_k \rangle}{\|u_k\|^2} u_k.$$

• (Hoffman & Kunze Cor on p287) **Bessel's Inequality**: Let $\{a_1, \ldots, a_n\}$ be an orthogonal set of non-zero vectors in an inner product space V. If b is any vector in V, then

$$\sum_{k=1}^{n} \frac{|\langle b, a_k \rangle|^2}{\|a_k\|^2} \le \|b\|^2.$$

5 Useful Inequalities

- $e^x \ge 1 + x$ and $1 e^{-x} \le x \land 1$ for all $x \in \mathbb{R}$.
- For any a > 0, $x \mapsto e^{ax} + e^{-ax}$ is an increasing function.
- $e^{|x|} < e^x + e^{-x}$.
- For all $x \in \mathbb{R}$, $\cosh x = \frac{e^x + e^{-x}}{2} \le e^{x^2/2}$. (Proof in 310A HW2 Q5.)
- For positive x, $\log\left(\frac{1+e^{-x}}{2}\right) \ge -x$.
- For any $k \ge 2$, $\Gamma(k/2) \le (k/2)^{k/2}$ and $k^{1/k} \le e^{1/e}$.

$$\bullet \ e\left(\frac{n}{e}\right)^n \leq n! \leq e\left(\frac{n+1}{e}\right)^{n+1}. \ \sqrt{2\pi n} \left(\frac{n}{e}\right)^n < n! < \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}.$$

•
$$\int_0^{\delta} \sqrt{\log\left(1 + \frac{2\delta}{\varepsilon}\right)} d\varepsilon \le 2\sqrt{2}\delta$$
. (Proof: Use $\log(1 + x) \le x$.)

- For any integer $\ell \ge 1$, $|x^{\ell} y^{\ell}| \le \ell |x y| \max(|x|, |y|)^{\ell-1}$.
- There is some constant c > 0 such that $|\cos x| \le 1 cx^2$ for all $x \in [-\pi/2, \pi/2]$.
- Reverse triangle inequality: For all $x, y \in \mathbb{R}$, $|x y| \ge ||x| |y||$.
- (Durrett Ex 1.6.6) Let $Y \ge 0$ with $\mathbb{E}Y^2 < \infty$. Then $\mathbb{P}(Y > 0) \ge \frac{(\mathbb{E}Y)^2}{\mathbb{E}Y^2}$. (Proof uses Cauch-Schwarz on $Y1_{\{Y>0\}}$.)
- Cauchy-Schwarz inequality: For any 2 random variables X and Y, $(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$, with equality iff X = aY for some constant $a \in \mathbb{R}$.
- Jensen's inequality: Let X be a random variable and g a convex function such that $\mathbb{E}[g(X)]$ and $g(\mathbb{E}X)$ are finite. Then $\mathbb{E}[g(X)] \geq g(\mathbb{E}X)$, with equality holding iff X is constant, or g is linear, or there is a set A s.t. $\mathbb{P}(X \in A) = 1$ and g is linear over A (i.e. there are a and b such that g(x) = ax + b for all $x \in A$).
- Correlation inequality: For any real-valued random variable X and increasing functions g and h, $Cor(g(Y), h(Y)) \ge 0$.
- (300B HW5) Marcinkiewicz-Zygmund inequality: Let X_i be independent mean-zero random variables with $\mathbb{E}[|X_i|^k] < \infty$ for some $k \ge 1$. Then there are constants A_k and B_k which depend only on k such that $A_k \mathbb{E}\left[\left(\sum_{i=1}^n X_i^2\right)^{k/2}\right] \le \mathbb{E}\left[\left|\sum_{i=1}^n X_i\right|^k\right] \le B_k \mathbb{E}\left[\left(\sum_{i=1}^n X_i^2\right)^{k/2}\right]$. (When k = 2, we may take $A_2 = B_2 = 1$.)
- (300B HW8) Let $V \in \mathbb{R}$ be a random variable such that $|V| \leq D$ w.p. 1. Let $\mathbb{E}[V^2] = \sigma^2$. Then for all $c \in [0, \sigma]$, $\mathbb{P}(|V| \geq c) \geq \frac{\sigma^2 c^2}{D^2 c^2}$.
- (Sub-G p18) Bounding of sub-Gaussian moments: If X is such that $\mathbb{P}(|X| > t) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$, then for any positive integer k, $\mathbb{E}[|X|^k] \leq (2\sigma^2)^{k/2}k\Gamma(k/2)$. In particular, for $k \geq 2$ we have $(\mathbb{E}[|X|^k])^{1/k} \leq \sigma e^{1/e}\sqrt{k}$.

6 Useful Integrals

$$\bullet \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

$$\bullet \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

•
$$\int_{-\pi/2}^{3\pi/2} e^{itx} dt = 2\pi$$
 if $x = 0, 0$ otherwise.

•
$$\int x^2 e^x dx = e^x (x - 2x + 2) + C$$
.

•
$$\int x^2 e^{-x} dx = -e^{-x} (x^2 + 2x + 2) + C.$$

•
$$\int e^{-x} (1 - e^{-nx}) dx = \frac{e^{-(n+1)x} [1 - (n+1)e^{nx}]}{n+1} + C.$$

7 Other Basic Facts

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

•
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots$$

•
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

•
$$|x - y| = x + y - 2\min(x, y)$$
.

- The function $f(x) = xe^{-x}$ attains its maximum value 1/e uniquely at x = 1.
- (Agresti p52) Conditional independence does not imply marginal independence.
- (Agresti Prob 9.19, 305B HW3) Assume X, Y and Z are categorical variables.
 - If Y is jointly independent of X and Z, then X and Y are conditionally independent given Z.
 - Mutual independence of X, Y and Z implies that X and Y are both marginally and conditionally independent.
 - If $X \perp Y$ and $Y \perp Z$, it is not necessarily the case that $X \perp Z$.