Máquinas de Turing

Jaime A. Pavlich Mariscal

Juguemos un rato...

https://playgameoflife.com/

Problemas de decisión

Problemas indecidibles

- Problema de decisión
- Imposible construir un algoritmo que
 - Responda sí o no correctamente, para todas las posibles entradas

El juego de la vida es indecidible

- Dados dos patrones A y B
- Es imposible construir un algoritmo que determine si desde A se puede llegar a B
- Obviamente:
 - Debe ser un algoritmo más breve que ejecutar el juego de la vida propiamente tal

El **problema de la detención** es indecidible

- Dados
 - Un programa
 - Los datos de entrada suministrados a dicho programa
- Determinar (para cualquier programa y datos de entrada)
 - Si el programa termina en algún momento
 - O sigue ejecutándose infinitamente
- Obviamente:
 - No está permitido ejecutar el programa propiamente tal

Máquina de Turing

- Modelo abstracto de un computador
- ¿Por qué es importante?
 - Determinar qué problemas se pueden resolver con un computador
 - Base para análisis de algoritmos
 - Complejidad, problemas tratables e intratables

Máquina de Turing - Estructura

Máquina de Turing - Comportamiento

- Por cada movimiento se realizan 3 acciones
 - Cambiar de estado
 - Puede saltar al mismo estado en que se encuentre
 - Escribir un símbolo en la celda apuntada por el cabezal
 - Puede escribir el mismo símbolo que había en la celda
 - Mover el cabezal (izquierda o derecha)

Notación

Estados

Estado inicial

Estado

Estado final

Transiciones

- X: Símbolo que debe estar en la celda apuntada por el cabezal
- Y: Símbolo a escribir en la celda apuntada por el cabezal
 - -X/X: La celda no cambia
 - -X/Y: Se reemplaza X por Y en la celda
 - $-X/\square$: Se borra X (se reemplaza por espacio en blanco)
- D: Dirección en la que se mueve el cabezal

Ejemplo

 Escriba una MT que reconozca el siguiente lenguaje

$$\{0^n 1^n | n \ge 1\}$$

Definición Formal

• Un Máquina de Turing (MT) es la siguiente tupla:

$$MT = (Q, \Sigma, \Gamma, D, \delta, q_0, \Box, F)$$

Q : Conjunto finito de estados

 $\Sigma \subset \Gamma$: Alfabeto de *entrada*

Γ: Alfabeto de la *cinta*

 $D = \{\leftarrow, \rightarrow\}$: Direcciones de movimiento del cabezal

 $δ: Q \times \Gamma \rightarrow Q \times \Gamma \times D$: Función de transición.

 $q_0 \in Q$: Estado inicial

 $\Box \in \Gamma$: Símbolo de *espacio en blanco*

 $F \subseteq Q$: Conjunto de *estados finales* o de aceptación

Ejercicios – Construya una MT que

- Sume 2 números
 - Codificación
 - 11111 = 5
 - 111 = 3
 - 11111+111 = 5+3
 - El resultado puede quedar en cualquier parte de la cinta
- Reste 2 números A y B (A >= B)
 - Codificación (similar)
 - 11111-111=5-3
- Reconozca el lenguaje $\{a^nb^nc^n|n\geq 1\}$