Note Tit	
	Let $X = normed v.s. of data$ $ Y = normed v.s. of solutions $ $ f: X \rightarrow Y $ $ \begin{cases} x \\ y \\ x \\ x$
Defn:	Absolute condition number - Let δx denote a small perturbation in α & $\delta f = f(x + \delta x) - f(x)$.
	perturbation in $x = 2 + 6f = f(x+8x) - f(x)$.
	The abs. condition number $K(x)$ of f at x is defined as-
	K(x) = him sup Sf absolute change in the solution 5>0 Sa 6 Sa abs. change in data
	If we restrict to infinitesimal Son then we may write-
	R(n) = sup Sf 1 Sx 1
	8n (8n1)
Defn	(Relative condition number) $K(x)$ of a function f at x
	is defined as - $K(x) = \sup_{\delta x} \frac{\ Sf\ }{\ f\ }$ relative change in solution $\frac{\ Sf\ }{\ g\ }$ relative change in data
	11 6x11/mil = rel change in data
	· If f is differentiable, with its Jacobian being J(z),
	then $Sf \approx J(x).Sx$, $J(x) = \lim_{N \to \infty} \frac{Sf}{Sx}$
	30 R(n) = 11 J(n)11
	2 + (n) = J(n) $ f(x) / n $

	Ry En R.
Examp	les: 1) f is the problem of computing $\sqrt{2}$ for $2>0$.
	$2) \mapsto \lceil 2 \rceil \qquad f : \varkappa \mapsto \lceil \varkappa \qquad , \qquad \int \lceil \varkappa \rceil = \frac{1}{2 \lceil \varkappa}$
. 2	$K(x) = J(x) = \sqrt{ x } = 1$
	$K(x) = \frac{ J(x) }{ F(x) / x } = \frac{1}{ J(x) / x } = \frac{1}{2}$
	This is a well-conditioned problem.
	E) f is the problem of computing the roots of a monic quadratic polynomial i.e. x2+bx+c.
	quadratic polynomial i.e. x2+bx+c.
	$f:(b,c) \longmapsto \sqrt{b^2-4c}$
	Jacobian of $f = J = \begin{bmatrix} \frac{2b}{2\sqrt{b^2-4c}} & \frac{-4}{2\sqrt{b^2-4c}} \end{bmatrix}$
	If $f(b,c)$ has repeated roots, i.e. $b^2-4c=0$, then $ J =\infty$, so $K(x)=\infty$,
	then $ \overline{J} = \infty$, so $K(x) = \infty$, in which case f is ill-conditions
	eg: lets consider $x^2-2x+1 = (x-1)$
	eg: lets consider $x^2-2x+1 = (x-1)^2$ Take a small perturbation in coefficients: $x^2-2x+0.9999$
	= (x - 0.99)(x - 1.01)
	Condition of matrix-restor multiplications
	Condition of matrix-vector multiplication date solution:
	2 problems: $0 \times \longrightarrow A \times (=b)$ $A \times = b$
	ODFABCI AU=X
	For the 1st problem, $K(x) = \sup_{\delta x} \left(\frac{\ A(x+\delta x) - Ax\ }{\ Ax\ } \right) \frac{\ \delta x\ }{\ x\ }$
	/ 1124 /

$$sup \frac{||Ax||}{||x||} = sup \left(\frac{||Ax||}{||Sx||} / \frac{||Ax||}{||x||}\right)$$

$$\# K(x) = ||A|| \cdot ||Ax|| \left(\frac{exact formula for K}{||x||} \right)$$

$$\# K(x) \leq ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) \leq ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) \leq ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A|| \cdot ||A^{-1}|| \cdot exact formula for K}{||x||}$$

$$\# K(x) = ||A^{-1}|| \cdot exact for Exa$$