1. Técnicas de integración

Proposición 1 (Integración por partes). Sean $f, g: [a, b] \to \mathbb{R}$, tales que f' y g' son continuas en [a, b]. Entonces,

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g.$$

Demostración. Por las reglas elementales de derivación, sabemos que

$$(fq)' = qf' + fq'.$$

Recomodando los términos,

$$fq' = (fq)' - qf'.$$

Luego, por el TFC,

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g.$$

Proposición 2 (Integración por sustitución). Sean $f, g: [a, b] \to \mathbb{R}$ tales que f y g' son continuas. Entonces,

$$\int_{g(a)}^{g(b)} f = \int_{a}^{b} f(g(t))g'(t) dt.$$

Demostración. Sea F una primitiva de f. Entonces,

$$\int_{g(a)}^{g(b)} f = F(g(b)) - F(g(a)).$$

Por otro lado, para cada $t \in [a, b]$,

$$(F(g(t)))' = F'(g(t))g'(t) = f(g(t))g'(t).$$

Por lo tanto,

$$\int_{a}^{b} f(g(t))g'(t) = F(g(b)) - F(g(a)). \qquad \Box$$

Proposición 3. Sean $a, b, c, d \in \mathbb{R}$, $a < b \ y \ c < d$. Hacemos $D := [a, b] \times [c, d]$. Supongamos que $f: D \to \mathbb{R}$ es continua. Entonces, para cada $t \in [c, d]$, $f_t: [a, b] \to \mathbb{R}$, $f_t(x) := f(x, t)$ es continua e integrable.

Proposición 4. Sea $f: D \to \mathbb{R}$ continua y supongamos que $\frac{d}{dt}f$ es continua en [a,b]. Sea $F: [c,d] \to \mathbb{R}$, $F(t) := \int_a^b f(x,t) dx$. Entonces, F es derivable y

$$F'(t) = \int_a^b \frac{\mathrm{d}}{\mathrm{d}t} f(x, t) \, \mathrm{d}x.$$

Proposición 5 (Regla de Leibniz). Sea $f: D \to \mathbb{R}$ continua tal que $\frac{d}{dt}f$ es continua. Sean $\alpha, \beta \colon [c, d] \to \mathbb{R}$ derivables. Sea $\varphi \colon [c, d] \to \mathbb{R}$,

$$\varphi(t) \coloneqq \int_{\alpha(t)}^{\beta(t)} f(x, t) \, \mathrm{d}x.$$

Entonces, φ es derivable en [c,d] y

$$\varphi'(t) = f(\beta(t), t)\beta'(t) - f(\alpha(t), t)\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} \frac{\mathrm{d}}{\mathrm{d}t} f(x, t) \,\mathrm{d}x.$$

Ejercicios

a)

1. Hallar las integrales de las siguientes funciones:

	$\int \sqrt{1+x} + \sqrt{1-x}$
<i>b</i>)	$\int \mathrm{e}^x \sin(\mathrm{e}^x)$
<i>c</i>)	$\int e^{e^x} dx$
d)	V
e)	$\int x^2 \sin x \mathrm{d}x$
f)	$\int \cos(\log(x)) \mathrm{d}x$
	$\int x^3 \sqrt{1+x} \mathrm{d}x$
g)	$\int \frac{x+4}{x^2+1} \mathrm{d}x$
h)	$\int_0^1 x^{\frac{4}{3}} \log x \mathrm{d}x$
	J_0 2

j)
$$\int \frac{4}{(1-4x^2)^2} \, \mathrm{d}x$$

$$\int \frac{\mathrm{d}x}{(5+4x-x^2)^{\frac{3}{2}}}$$

2. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f(2) = \frac{1}{2}$ y para cada $x \in \mathbb{R}$,

$$f(x) = \int_1^x (f(t))^2 dt.$$

Hallar $f\left(\frac{1}{2}\right)$.

3. Calcular

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{\frac{\pi}{6}}^{\sqrt{2x}} (\sin(t^2) + \cos(2t^2)) \mathrm{d}t.$$

4. Calcular

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{\frac{1}{x}}^{x} \frac{\sqrt{1+x^2t^2}}{t} \mathrm{d}t.$$