Transformers

Jim Glass / MIT 6.806-6.864 / Spring 2021

1

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*

Université de Montréal

Attention mechanisms

- 1. When predicting output i, assign a weight $lpha_{ij}$ to each encoder state h_j
- 2. Compute a pooled input $c_i = \sum \alpha_{ij} h_j$

[Jacob's Attention lecture on Tuesday]

3

Challenges with RNNs

- The sequential nature of RNN models makes training challenging
 - Precludes parallelization
 - Unwieldy for long sequences
 - Limits batch sizes
- The best RNNs use attention to handle distant dependencies

[Luong et al., "Attention-based NMT" arXiv:1508.04025, 2015]

Language Modeling WikiText 103: >100M tokens from Wikipedia articles (>100x PTB) 60 50 Neural cache model (size = 2,000) PERPLEXITY 40 4 layer QRNN LSTM (Hebbian, Cache, MbPA) 30 Transformer (Adaptive inputs) 20 Megatron-LM 10 2018 2019 2021 2017 2020 Other models Models with lowest Test perplexity https://paperswithcode.com/sota/language-modelling-on-wikitext-103

Machine Translation

WMT2014 English-French (~36M sentence pairs)

9

Today's Transformer Story

- Encoder-decoder model
- Attention
 - Self-attention
 - Multi-head attention
- Other transformer topics
 - Positional encoding
 - Residual connections and normalization
 - Decoder masking
- Training issues
 - Byte-pair encoding (BPE)

Transformer as Encoder-Decoder

- The transformer is a non-recurrent sequence-to-sequence model
 - Uses an encoder to learn a latent representation of the input
 - Uses a decoder to generate an output from the latent representation

Input The quick brown fox Encoder Decoder Output Le renard brun rapide

Self-attention is used to enable the model to observe entire sequences

11

Transformer Encoders and Decoders

- The transformer consists of multiple (6) encoder and decoder layers
 - All encoder layers have identical structure but learn separate parameters
 - All decoder layers have identical structure but learn separate parameters
 - The outputs of the final encoder layer serve as context to all decoder layers

Basic Encoder Structure

- An encoder layer has a self-attention and a feed-forward sub-layer
 - The number of outputs is the same as the number of inputs (e.g., words)
 - Self-attention lets encoder look at entire input to encode a specific word
 - The same feed-forward network is applied to each word in turn

 Each encoder layer produces a latent representation for each word that is influenced by the surrounding context of the input sequence

13

Basic Decoder Structure

- The role of the decoder is to generate an output one word at a time
 - The output is generated incrementally (as in seq2seq language generation)
- A decoder layer has a self-attention, attention, and a FF sub-layer
 - Self-attention sub-layer attends to previously generated decoder output
 - Encoder-decoder attention sub-layer attends to final output of encoder

Final layer in decoder is a softmax layer to predict next word

15

Encoder Details

- Input words are represented by a learned embedding vector
- Each word in each position flows through its own path in encoder
- · Dependencies between paths are captured by self-attention sub-layer
- FF layer can be implemented in parallel (i.e., no dependencies)

Self-Attention

- Self-attention is the concept of incorporating information from other words in the input sequence to encode a specific word
- Self-attention enables learning contextualized representations

17

Attention Abstraction

- · Query, Key, Value vectors are useful abstractions for attention
 - A set of candidate retrieval items represented in terms of keys and values
 - An incoming query is matched against all keys (via dot-product or MLP)
 - Individual query-key distances are normalized (e.g., via softmax)
 - Result is attention weighted sum of value vectors (i.e., a linear combination)

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{i} e^{q \cdot k_j}} v_i$$

Softmax values are attention weights! (i.e., α 's)

Self-Attention

- For self-attention, the retrieval items are all terms in the sequence
 - Create query, key, value vectors for each input representation
- Vectors are created from input via three learned linear transforms
 - The three transformations provide a means to focus on different subspaces

19

Transformer Self-Attention Details

- Scaled dot-product works better for large dimensionality
 - i.e., dot product of two univariate variables has variance of dimension d
- Attention vectors are smaller than embedding size (64 vs 512)
 - When combined with multi-headed attention (8), dimensionality is similar

 $A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_{i}}}{\sum_{j} e^{q \cdot k_{j}}} v_{i}$

Softmax values are attention weights! (i.e., α 's)

Matrix Formulation of Self-Attention

- Matrix formulations of attention can be implemented efficiently
 - Input matrix represents entire sequence of input embeddings
 - Matrix multiplications compute all queries, keys, and values for sequence
 - Sequence outputs are weighted sum of vectors (softmax on each row)

21

Multi-Headed Attention

- Multi-headed attention enables multiple representation subspaces
 - Each representation space can attend to different concepts, positions etc.
 - Requires learning query, key, value transforms for each space (e.g., 8)

Transformer Multi-Headed Attention

- Multi-headed attention produces new embeddings for each head
- Output vectors are concatenated to create super embedding vector
- A final transformation is learned to map super vector to final vector

23

Transformer Multi-Head Attention

- · Attention module is used in every encoder and decoder layer
 - Decoder uses attention on all inputs and all previously generated outputs

Attention Visualization

· Visualizing attention weights can yield insight to learned behavior

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

25

Attention Visualization

- Attention weights can learn syntactic and semantic relationships
 - e.g., implicit anaphora resolution for attentions for 'its' for heads 5 & 6

Feed Forward Network

- Each encoder (and decoder) layer has a feed-forward network
 - Two linear transformations with ReLU activation in hidden layer
 - The FF network is applied in parallel to each position in sequence
 - Different FF network parameters are learned for each layer

27

Positional Encoding of Word Embeddings

- Attention does not account for word order like recurrent networks
- · Positional encoding adds a "position" vector to each embedding
 - The same word in different locations will have different encodings

- Position encodings can be a pre-defined function, or be learned
 - The transformer model uses a sinusoidal positional encoding
- Position vectors enable the model to learn the position of a word in a sequence, or the relative distances between words
 - There is a linear relationship between position vectors

Residual Connections and Layer Normalization

- Transformer stages use residual connections and layer normalization
 - Performed after all stages in the encoder and decoder (i.e., 2 and 3 times)
- Residual connections directly <u>add</u> stage input and output vectors
 - Residual connections help vanishing gradient issue in deep networks
- Layer normalization scales outputs to be zero mean, unity variance

Transformer Encoder Summary

- Input represented as embedding vectors
 - Positional vector added to each embedding
- Encoder layers repeated 6 times
 - Entire sequence pass through in parallel
- Each encoder layer contains:
 - Multi-head attention (e.g., 8 heads)
 - Position-wise feed forward network
 - Residual connections at each sub-layer
 - Layer normalization after each sub-layer

Encoder Layer 6

31

Illustration of Encoder Pass Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Vencded DECODER **ENCODER** ENCODER DECODER **EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** suis étudiant Je INPUT [Alammar, The Illustrated Transformer]

Cutput Probabilities Softmax Linear Add & Norm Add & Norm Multi-Head Attention Positional Encoding Cutput Probabilities Cutput Probabilities Positional Encoding Positional Encoding

33

Basic Decoder Structure

- The role of the decoder is to generate an output one word at a time
 - The output is generated incrementally (as in seq2seq language generation)

Outputs (shifted right)

- A decoder layer has a self-attention, attention, and a FF sub-layer
 - Self-attention sub-layer attends to previously generated decoder output
 - Encoder-decoder attention sub-layer attends to final output of encoder

Final layer in decoder is a softmax layer to predict next word

Transformer Decoder Summary

- Input represented as embedding vectors
 - Encoder & decoder use same embedding transform
 - Positional encoding vectors added to word embeddings
- Decoder layers repeated 6 times, and contain:
 - Masked multi-head attention (e.g., 8 heads)
 - Encoder-decoder multi-head attention (new)
 - Position-wise feed forward network
 - Residual connections at each sub-layer
 - Layer normalization after each sub-layer
- Final output/softmax layer used to predict next word
 - Current step output is fed back into decoder for next step

35

Masked Self-Attention

- The decoder layers all deploy a self-attention sub-layer (as encoder)
 - Query, key, and value vectors produced for each decoder layer input
- Decoder self-attention sub-layer is allowed to attend to past outputs
 - Accomplished by masking future outputs prior to attention softmax

Encoder-Decoder Attention

- · Output of final encoder represented as key, value attention vectors
- · Used by decoder layers in an "encoder attention" sub-layer

37

Input

39

Other Transformer Details

· Cross-entropy loss function is used for training

$$L(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} L_t \qquad L_t = -\log p(w_t | w_1, \dots, w_{t-1})$$

- During training, regularization techniques are deployed
 - Dropout is applied to all layer outputs (pre normalization) and input vectors
 - Label smoothing is applied to outputs (i.e., one-hot vector is smoothed)
- To handle large vocabularies, sub-word units are often used, e.g.,
 - Byte-pair encodings (BPE), word-piece models, ...

Byte Pair Encoding (BPE)

- BPE is a compression technique that iteratively replaces the most frequent pair of bytes in a sequence with a single unused byte
- NLP has applied BPE to characters or character sequences
 - Addresses out-of-vocabulary (OOV) word issue (i.e., unseen words)
 - Reduces memory and computation (e.g., Transformer used ~37K BPEs)
- Initializes a symbol vocabulary with characters, and represents each word as a sequence of characters (plus end-of-word symbol)
- Iteratively counts all symbol pairs (no cross word counts), and adds most frequent pair into vocabulary, and updates dictionary entries
- Final vocabulary is initial vocabulary plus new BPE symbols
- Alternatives include Huffman encoding, word-piece models etc.

41

References

- Readings:
 - Jurafsky & Martin, "Speech and Language Processing," 2020 (Transformers; Sec. 9.4)
- On-line resources:
 - Rush, "The Annotated Transformer,"
 https://nlp.seas.harvard.edu/2018/04/03/attention.html
 - Google Tensor2Tensor Colab, https://github.com/tensorflow/tensor2tensor
 - Alammar, "The Illustrated Transformer," http://jalammar.github.io/illustrated-transformer/