

## IoT para Objetivos de Desarrollo Sostenible

Máster en Ingeniería Informática 2023-24 Arquitectura del nodo IoT

Alonso Núñez, Mario Voicila Voicila, Bogdan Gabriel

# Índice de contenidos

### 1. Planteando el escenario

- 1. Criterios seleccionados
- 2. Problema a resolver
- 3. Situación actual

### 2. Diseñando una solución

- 1. Descripción de la propuesta
- 2. Componentes del sistema
- 3. Esquema de funcionamiento
- 4. Requisitos usabilidad
- 5.Comunicación con el usuario

### 3. Desarrollo del sistema

- 1. El nodo principal
  - 1. Repertorio de SoCs

- 2. Sensores y actuadores
- 3. Alimentación del nodo
- 2. El nodo secundario
- 3. Ejemplo de presupuestos
- 4. Conclusiones
- 5. Bibliografía

## 1. Planteando el escenario

### 1.1 Criterios seleccionados

#### **Escenarios**



#### **Personas**



#### Misiones



#### Cosas



# Acciones humanas



### 1.1 Criterios seleccionados

#### Sensores







#### Servicios



### **Feedback**



#### **Criterios**





### 1.2 Problema a resolver

- La humanidad es cada vez más consciente sobre la necesidad de cuidar la naturaleza y respetar aquellos recursos que esta nos proporciona, con el objetivo de ser productivos, pero también respetuosos.
- El agua se ha convertido en uno de los bienes más preciados, sin embargo, aún se encuentran grandes áreas de terreno donde no se emplea de forma eficiente.
- **Problema:** "Carencia de una correcta gestión del agua cuando trabajamos en contacto con la flora"



### 1.3 Situación actual

- Watersens: Control de agua inteligente comunicado por LoRaWAN que optimiza el consumo y reduce los costes de mantenimiento.
  - **Pro:** Alta fiabilidad y versatilidad en el control remoto del riego.
  - Contra: Precio por unidad elevado.



- Envira IoT: Despiegue IoT convencional que monitoriza la calidad y el caudal del agua, disponiendo de sistemas de monitorización y aleta.
  - **Pro:** Adaptabilidad del sistema a diferentes medios e instalaciones.
  - Contra: Necesidad de diseñar el despliegue a medida.



## 2. Diseñando una solución

### 2.1 Descripción de la propuesta

- Sistema IoT de control del flujo de agua aplicado a plantaciones agrarias de tamaño variable. Contando con las siguientes características:
  - Libertad para diseñar el despliegue de forma modular y asistida.
  - Comunicación mediante LoRaWAN.
  - Monitorización en tiempo real mediante una aplicación Web.
  - Métricas agregadas a partir de datos históricos accesibles.



### 2.2 Componentes del sistema

- El sistema es modular y se compone de tres elementos diferentes:
  - Nodo principal:
    - Gestiona la comunicación con el usuario mediante la aplicación Web.
    - Configura el funcionamiento de los nodos secundarios mediante LoRaWAN.
    - Recolecta información relevante para el usuario.
  - Nodo Secundario:
    - Gestiona el paso del agua para el riego.
    - Puede recopilar ciertos datos.
  - Vías de transporte del agua



### 2.3 Esquema de funcionamiento



### 2.4 Requisitos de usabilidad



**Escalabilidad:** El Sistema debe poder adaptarse fácilmente a amplias plantaciones.



**Modularidad:** El despliegue debe poder modificarse a voluntad para adaptarse a las diferentes plantaciones.



Facilidad de modificación: El despliegue debe poder modificarse sin la necesidad de herramientas ni conocimientos especiales.



Accesibilidad: La aplicación web debe ser intuitiva y facilitar su uso sin la necesidad de conocimientos previos.

### 2.5 Comunicación con el usuario

Aplicación web

- Visualizar el esquema del despliegue e información en tiempo real.
- Modificar el esquema del despliegue y su configuración.
- Ver el histórico de datos.
- Vincular los diferentes nodos del despliegue.
- Realizar el provisionamiento WIFI al sistema.

Pantalla táctil LCD del nodo principal

- información básica sobre el sistema.
- Acciones básicas como:
  - Visualizar el despliegue.
  - Cerrar o abrir válvulas.

## 3. Desarrollo del sistema

### 3.1.1 El nodo principal – Repertorio de SoCs



#### Seamuing ESP32 Lora

• *Pines:* 32

• **Dimensiones:** 5,2cm x 4cm

WIFI, LoRaWAN, BlueTooth

• Flash: 8MB

Consumo: Deep Sleep 10μΑ

• *Precio:* 15€ - 25€



### Seamuing SX1262 Lora

• *Pines: 22* 

• **Dimensiones**: 4,6cm x 2,3cm

LoRaWAN

• **Flash:** 128KB

• Consumo: Deep Sleep 3,5μA

• *Precio:* 20€ - 35€



#### Onion Omega 2+

• *Pines:* 32

• **Dimensiones**: 4,3cm x 2,54cm

LoRaWAN

• **Flash:** 64MB

Consumo: Deep Sleep

• *Precio:* 40-50€



#### **Núcleo-WL55JC**

• Pines: 32

• **Dimensiones**: 6cm x 5cm

LoRaWAN

• Flash: 256 Kbyte

• **Consumo:** 500 mA

• *Precio:* 41,98\$

## 3.1.2 El nodo principal – Sensores y actuadores

| Sensor de Temperatura |         |                      |               |               |           |  |
|-----------------------|---------|----------------------|---------------|---------------|-----------|--|
| Rerencia              | Marca   | Dimensiones          | Rango         | Consumo       | Precio    |  |
| DS18B20               | DFRobot | 90cm x 4mm           | -55ºC y 125ºC | 3,3 V - 5,5 V | 7€        |  |
| PT1000                | iOVEO   | 22,5 x 15,5 x 1,5 cm | -35ºC y 105ºC | 3,3 V - 5,5 V | 13€ - 17€ |  |
| 30500109              | Yageo   | 29 x 1 x1 cm         | hasta +500°C  | 3,3 V - 5,5 V | 36€       |  |

| Sensor de presión de agua |             |                      |                  |      |            |               |        |  |
|---------------------------|-------------|----------------------|------------------|------|------------|---------------|--------|--|
| Referencia                | Marca       | Dimensiones          | Material         | Peso | Rango      | Consumo       | Precio |  |
|                           | SeeedStudio | 7cm x 2,5cm          | Acero al carbono | 52g  | 0 - 1,2MPa | 0,5 V - 4,5 V | 15€    |  |
|                           | Jadeshay    | 15,5 x 13,4 x 3,2 cm | Acero inoxidable | 115g | 0 - 1MPa   | 3,3 V - 5,5 V | 13€    |  |
| TSP-10-1/2                | TOSCANO     | 15 x 12 cm           | Acero inoxidable | 175g | 0 - 1MPa   | 10 V - 30V    | 140€   |  |

## 3.1.2 El nodo principal – Sensores y actuadores

| Electroválvulas     |           |                  |                  |         |        |  |
|---------------------|-----------|------------------|------------------|---------|--------|--|
| Rerencia            | Marca     | Dimensiones      | Materiales       | Consumo | Precio |  |
| EZP-03-54           | GCNGarden | 20 x 20 x 10 cm  | PVC              | 24 V    | 23€    |  |
| Sorands7yvtexi5b-01 | Sorand    | 10 x 10 x 10 cm  | Acero inoxidable | 12 V    | 22€    |  |
| Jadpes5of96q0yuv-02 | Jadpes    | 6,5 x 6,4 x 2 cm | Acero inoxidable | 6 V     | 27€    |  |

| Pantalla LCD |                  |       |                          |               |        |  |  |
|--------------|------------------|-------|--------------------------|---------------|--------|--|--|
| Rerencia     | Marca            | Pines | Resolución / Dimensiones | Consumo       | Precio |  |  |
| 214-3525     | Powertip         | 16    | 66 x 16mm                | 5,5V          | 25€    |  |  |
| 168-3095     | MikroElektronika | 20    | 128 x 64 px              | 2,4 V – 5,5 V | 32€    |  |  |

| <u>Cámaras</u> |           |       |                    |            |         |               |        |
|----------------|-----------|-------|--------------------|------------|---------|---------------|--------|
| Rerencia       | Marca     | Pines | Dimensiones        | Resolución | Píxeles | Consumo       | Precio |
| OV5647         | Weewooday | 16    | 31 x 32mm          | 1920 x1080 | 5 Mpx   | 3,3 V         | 20€    |
| FOV90          | Innomaker | 16    | 10,7 x 7,7 x 4,7cm | 1280 x 720 | 1 Mpx   | 3,3 V – 5,5 V | 35€    |

## 3.1.3 El nodo principal – Alimentación del nodo

|                                                                                                            | KIT 1                           | KIT 2                            | KIT 3                          |
|------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------------|
| Voltaje panel                                                                                              | 12V                             | 12V                              | 12V                            |
| Potencia panel                                                                                             | 1 x 25 W                        | 2 x 120W                         | 1 x 180W                       |
| Tipo controlador carga (PWM / MPPT) Amperaje Eficiencia de conversión (%) Potencia máxima (A*V*Eficiencia) | PWM<br>10A<br>70% - 90%<br>96 W | PWM<br>30A<br>70% - 90%<br>288 W | PWM<br>10ª<br>70% - 90%<br>96W |
| Voltaje baterías                                                                                           | 12 V                            | 12 V                             | 12 V                           |
| Extra                                                                                                      | Salida USB 5V                   | Salida USB 5V                    | Salida USB 5V                  |
| Batería                                                                                                    | No incluida<br>142,78 €         | No incluida<br>142,78 €          | Incluida                       |
| Precio total                                                                                               | 50,99 €<br>193,77 € (+ batería) | 161,49 €<br>304,27 € (+ batería) | 361,10 €                       |



### 3.2 El nodo secundario

- Se empleará el periférico <u>Watersens</u>, el cual integra:
  - Comunicación mediante LoRaWAN.
  - Posibilidad de controlar hasta 4 electroválvulas.
  - Posibilidad de utilizar hasta dos sensores de humedad.
  - Disponible en 2 versiones: 9V y 12V
  - Batería integrada



- A.1. Grey External sensors supply (3.3V)
- A.2. Brown External Sensor temperature (analog signal range 0..3.3V)
- A.3. White External pulse counter sensor (digital signal 0..3.3V or potential free contact or to connect to open collector / drain output)
- A.4. Yellow External sensor humidity (analog signal range 0..3.3V)
- A.5. Green Voltage reference GND
- B.1. Brown output electrovalve 1 voltage A
- B.2. Green output electrovalve 1 voltage B
- B.3. Grey output electrovalve 2 voltage A
- B.4. Yellow output electrovalve 2 voltage B
- B.5. Pink output electrovalve 3 voltage A
- B.6. Red output electrovalve 3 voltage B
- B.7. White output electrovalve 4 voltage A
- B.8. Blue output electrovalve 4 voltage B



## 3.3 Ejemplos de presupuestos

|                           | Presupuesto – Plantación pequeña   |           |           |  |  |
|---------------------------|------------------------------------|-----------|-----------|--|--|
|                           | Elemento                           | Precio U. | Precio T. |  |  |
| SoC                       | Seamuing SX1262 Lora (x1)          | 30€       | 30€       |  |  |
| Sensor de humedad SoC     | DFRpbot - DS18B20 (x1)             | 7€        | 7€        |  |  |
| Sensor agua               | SeeedStudio (x1)                   | 15€       | 15€       |  |  |
| Pantalla LCD              | MikroElektronika – 168-3095 (x1)   | 32€       | 32€       |  |  |
| Cámara                    | Weedwooday – 0V5647                | 20€       | 20€       |  |  |
|                           |                                    |           |           |  |  |
| Nodo válvula              | WaterSens (x6)                     | 654€      | 3.924€    |  |  |
| Electroválvula            | Sorand - Sorands7yvtexi5b-01 (x24) | 22€       | 528€      |  |  |
| Sensor de humedad Válvula |                                    |           |           |  |  |
|                           |                                    |           |           |  |  |
| Kit energía solar         | Kit 2                              | 304€      | 304€      |  |  |
|                           |                                    |           | 4.860€    |  |  |

## 4. Conclusiones

### 4 Conclusiones

#### • Pros:

- Monitorización y control remotos.
- Fácilmente adaptable y escalable.
- Uso eficiente del agua y la energía.
- Uso de energías renovables.
- Compatibles con áreas extensas gracias al uso de LoRaWAN.

#### Contras:

- Alto coste en pequeñas plantaciones.
- Dependencia de un sustento de agua externo.

# 5. Bibliografía

# Bibliografía

- Nodos principales + adaptadores WIFI y LORA
  - ESP32 LORA WIFI
  - ESP32 LORA WIFI gateway
  - Seamuing LORA sin WIFI
  - Onion Omega 2 sin LORA
  - STM Núcleo-WL55JC STM32W
  - Adaptador LORA
  - Adaptador WIFI
- Nodos válvula
  - Waters
- Sensores Medidores de humedad de suelo
  - Sensor de humedad de suelo DFRobot (17€)
  - Sensor de humedad de suelo Selly (22€)
  - Sensor de humedad de suelo Seeed Technology (117€)

# Bibliografía

- Sensores Medidores de temperatura estancos
  - Sensor de temperatura estanco DFRobot (7€)
  - Sensor de temperatura alemán PT1000 (14€)
  - Sensor de temperatura meteorológica Yageo (36€)
- · Sensores Medidores de presión de agua
  - Sensor de presión de agua G1 (14€)
  - Sensor de preseion de agua Jadeshay (26€)
  - Sensor de preseion de agua Jadeshay (140€)
- · Actuadores Electroválvulas
  - Electroválcula riego Toro (23€)
  - Electroválvula 12V (22€)
  - Electrovávula 6V (27€)
- . Actuadores Pantallas
  - Pantalla LCD dos líneas (25€)
  - Pantalla LCD 128x64 (32€)

# Bibliografía

- · Actuadores Cámaras
  - Cámara HD IR-CUT (20€)
  - Cámara monocromo Industrial OV9281 (35€)
  - <u>Cámara HD tevi (100€)</u>
- El nodo principal Alimentación del nodo
  - Kit ECOWORTHY