Seminár 9

Téma

Geometria I – základné poznatky

Ciele

Zopakovať a upevniť základné poznatky z planimetrie, ktoré by študenti mali mať zo základnej školy. Venovať sa vlastnostiam uhlov, trojuholníkov, štvoruholníkov a kružníc. Niektoré z poznatkov odvodiť.

Úlohy a riešenia

Úvodný komentár. Keď že planimetria nie je súčasť ou osnov 1. ročníka gymnázií, je potrebné poznatky žiakov z tejto oblasti o to starostlivejšie zopakovať. Geometrické úlohy majú veľ mi často najhoršiu úspešnosť v krajských kolách MO, čo môže mať viacero dôvodov. Nepopierateľ ne však študentom tréning pomôže, preto je geometrii v priebehu roka venovaných 6+1 seminárov.

Zo zmienených dôvodov má preto tento seminár odlišnú štruktúru ako predchádzajúce – viac ako riešeniu úloh z olympiád sa venujeme opakovaniu základných vlastností uhlov, trojuholníkov, štvoruholníkov a kružníc, ktorých znalosti budú nenahraditeľ né v ďalších piatich geometrických seminároch. Spolu so študentmi tak vytvoríme základnú výbavu, ktorá im pomôže v boji s geometrickými záludnosť ami.

Študenti by mali mať nasledujúce znalosti (voľ ne spracované podľ a [XX]TODO):

uhly

 chápať pojmy vrcholové, vedľajšie, súhlasné a striedavé uhly, vedieť nájsť dvojice takých uhlov a používať ich pri riešení úloh,

▷ trojuholníky

- poznať základné vlastnosti strán a vnútorných uhlov trojuholníka: trojuholníková nerovnosť, súčet vnútorných uhlov,
- vedieť popísať rozdiely medzi ostrouhlým, pravouhlým, tupouhlým, všeobecným, rovnoramenným a rovnostranným trojuholníkom,
- chápať pojmy os uhla, os strany, výška, ťažnica, stredná priečka, kružnica vpísaná a opísaná trojuholníku a poznať ich vlastnosti,
- poznať a vedieť používať vzorec na výpočet obsahu trojuholníka,
- poznať a vhodne používať vety o zhodnosti (sss, sus, usu, Ssu) a podobnosti (sss, sus, uu, Ssu) trojuholníkov,
- poznať a používať Pytagorovu vetu pre pravouhlý trojuholník,

- vedieť popísať všeobecný štvoruholník a jeho špecifické prípady: rovnobežník, štvorec, obdĺžnik, kosoštvorec, kosodĺžnik, lichobežník,
- poznať základné vzorce pre výpočet obsahu rôznych rovnobežníkov a lichobežníkov,
- vedieť, že uhlopriečky v pravouholníku a rovnobežníku sa polia a vedieť tento fakt využiť pri riešení úloh,

⊳ kružnice a kruhy

- chápať pojmy kružnica, kruh, kružnicový oblúk, dotyčnica, sečnica, tetiva, stredový a obvodový uhol,
- poznať a vedieť používať Talesovu kružnicu,

⊳ riešenie konštrukčných úloh

- náčrt, rozbor, popis konštrukcie, diskusia o počte riešení.

Komentár. Skôr než frontálny výklad je vhodné nechať skladať mozaiku vedomostí študentov. Ak pracujeme s malou skupinou, môžeme o vyššie spomenutých bodoch diskutovať všetci spoločne. Ak seminár navštevuje väčšie množstvo záujemcov o matematiku, rozdelíme študentov na menšie skupiny, pričom každá spracuje poznatky o zadanej neprázdnej podmnožine vyššie spomenutých oblastí. Tie si potom študenti navzájom odprezentujú, vedúci seminára nepresnosti vhodnými otázkami koriguje.

Komentár. V druhej polovici seminára niektoré zo základných tvrdení, ktoré budeme v priebehu ďalších stretnutí využívať, dokážeme.

Domáca práca

Úloha 9.1. [58-I-2-D1] Nech k je kružnica opísaná pravouhlému trojuholníku ABC s preponou AB dĺžky c. Označme S stred strany AB a D a E priesečníky osí strán BC a AC s jedným oblúkom AB kružnice k. Vyjadrite obsah trojuholníka DSE pomocou dĺžky prepony c.

Riešenie. Trojuholník *DSE* je pravouhlý rovnoramenný s pravým uhlom pri vrchole *S*, pretože odvesny *DS* a *ES* ležia na osiach navzájom kolmých strán. Odvesny majú dĺžku $\frac{c}{2}$, pretože sú to polomery kružnice opísanej trojuholníku *ABC*. Obsah trojuholníka *DSE* je $\frac{1}{2} \cdot |DS| \cdot |DE| = \frac{1}{2} \cdot \frac{c}{2} \cdot \frac{c}{2} = \frac{c^2}{8}$.

Úloha 9.2. [58-I-2-D2] Vyjadrite obsah rovnoramenného lichobežníka ABCD so základňami AB a CD pomocou dĺžok a, c jeho základní a dĺžky b jeho ramien.

Riešenie. Bez ujmy na všeobecnosti môžeme predpokladať, že a > b. Najprv vyjadríme výšku v pomocou dĺžok základní a odvesien. Nech je P päta výšky z bodu D na stranu AB. Potom |AP| = (a-c)/2. Použitím Pytagorovej vety v pravouhlom trojuholníku APD máme

$$\left(\frac{a-c}{2}\right)^2 + v^2 = b^2,$$

odkiaľ $v=\sqrt{b^2-(\frac{a-c}{2})^2}=\frac{1}{2}\sqrt{4b^2-(a-c)^2}$ a preto pre obsah lichobežníka dostávame

$$S_{ABCD} = \frac{a+c}{2} \cdot v = \frac{1}{4}(a+c)\sqrt{4b^2 - (a-c)^2}.$$

Doplňujúce zdroje a materiály

Ak študenti budú stále neistí v používaní základných geometrických poznatkov, je možné ich odkázať na základoškolské učebnice geometrie, v ktorých nájdu aj jednoduchšie príklady na precvičenie, príp. vhodným doplnkom geometrického vzdelania je aj publikácia [[?]].