Multi-purpose FC7-based test board: factorizing firmware

2016-11-01
Electronics for 2S and PS-Pt modules
Stefano Mersi

Uses of a multi-purpose test board

- System integration tests
 - Hybrid testing
 - Module integration
 - Larger structures
- System tests
 - Signal, noise measurements
 - Beam tests
- Production QC

- Variety of front-ends to readout & control
 - CBC3/MPA(+SSA)
 - With/without CIC
 - Electrical/optical
 - mini/full hybrid
- Potential issue:
 - large effort in firmware development
 - difficult to maintain/support

Firmware modular design

- High-level blocks
 - well defined functions (see next slides) and interfaces
 - switch between compatible blocks via compilation
- Block implementation
 - assigned to a developer or group
 - should fit the assigned resource use
- All code base included in the same repository
 Proposal: gitLab advantages are
 - well defined code integration work-flow
 - code review prior to inclusion in official release
 - can run test benches automatically when new code is pushed

Organizational aspects

- The idea was circulated and found positive feedback
- Interest in contributing expressed by 9 institutes
 - Boston, CERN, DESY, FNAL, IC, IPHC, NUST, Rutgers, ULB/VUB
 - Groups with interest in both PS and 2S modules are present
 - Still need to strengthen expertise or gather enough documentation on: GBT links, CIC data format, hybrid connections
- A mailing list was formed
 - cms-tracker-phase2-testboard, 27 members (some potential developers, most interested observers)

• Time-line:

- A series of meetings during November to define architecture & interfaces and assign block development (next one on Nov 7th)
- Allowing development to start before Christmas break

Top level

- Blocks to be implemented in the user code
- Relies on the standard FC7 system firmware
 - IPbus
 - Memory access
 - ...

Physical access block

- Two working modes:
 - Optical: wrapping around
 N×GBT-FPGA blocks → SFP+
 FMC
 - Electrical → interface FMC
 (must implement I²C master)
- Presents the same interface to the module block
 - Module does not know in which mode the system is working
 - The only difference is the number of available links
- Detects FE power-on and sends command to module

Module block

- Transmits slow and fast commands
- Receives and unpacks data
- Syncs trigger and stub data
- Can forward stub detection to fast command block
- Sends data to the readout block
- Can pre-process hits data for calibration (hit or stub counting)

(more details further on)

Readout block

Data mode:

- Manages memory readout and back-pressure
- Optionally could stream data to SFP+ connectors on the FMC (iif optical readout is present, one connector can be dedicated to fast streams)
- Data formatting for the DAQ, according to payload specs
- Performs post-scaling (to exercise fast trigger rates with limited bandwidth)

Count mode:

- Used for commissioning: holds hit/cluster/stub counts per strip
- Takes care to add counters
 properly as many counters as
 conditions (e.g. thresholds)

Fast command block

- Recovers clock and trigger from backplane
- Can generate clock and periodic triggers
- Holds a trigger counter: it can be programmed to accept next N triggers and then hold the next incoming triggers
- Can issue a trigger upon reception of a stub from modules

Supervisor block

- Holds a local stack of operations to be executed sequentially:
 - I²C transactions for F.E. (via module)
 - Generate (or accept next) N triggers
 - Push hit counters to appropriate memory location
- Significant reduction of IPBus transactions needed for a calibration operation (à la pixel DTB)

Module block (detailed)

- CIC unpacker: (if needed) splits stub & hits streams, otherwise ~ passthrough
- Chip data align
- Hit processing:
 - Hit count can be activated to count hits (or clusters or stub) per strip locally
 - Always sends stub to trigger with fixed latency
 - When requested, queues data to readout block

Some links

Mailing list cms-tracker-phase2-testboard
 https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=cms-tracker-phase2-testboard

• Shared document to collect information https://www.authorea.com/users/95964/articles/133719/_show_article