

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

The case of Higgs boson production in $H \rightarrow ZZ^*$ decay Introduction to the Particle Physics Data Analysis

Aleksandra Poreba, Aleksandra Kukielka

Outline

- Physics motivation
- 2 Event selection
- 3 Expected number of events
- Background contributions
- Control plots
- 6 Cross-section measurement
- Ideas for possible measurements
- 8 Bibliography

Physics motivation

The physics motivation for the measurement:

- a good test for the SM,
- a measurement of inclusive and differential fiducial cross sections,
- tests of the spin and parity of the Higgs boson,
- test of perturbative QCD calculations.

The Feynman diagram

Aleksandra Poreba, Aleksandra Kukielka

Figure: Feynman diagram for $H \to ZZ^* \to 4\ell$ decay [3].

The final event-selection criteria for ZZ^* production:

- single-electron or single-muon trigger satisfied,
- exactly four leptons (electrons or muons) with $p_T > 25, 15, 10, 7 \, GeV$, respectively,
- Higgs-boson candidates are formed by selecting two SFOS lepton pairs,
- the leading pair is defined as the SFOS 1 pair with the mass $m_{\ell\ell,1}$ closest to the Z boson mass m_Z , and the subleading pair is defined as the SFOS pair with the mass $m_{\ell\ell,1}$ second closest to m_Z . [1]

¹SFOS - Same Flavour, Opposite Charge

Cutflow Histogram

Figure: The cutflow histogram: S1 - single-electron or single-muon trigger satisfied, S2 - four leptons with $p_T > 25, 15, 10, 7 \, GeV$, S3 - two SFOS lepton pairs.

Expected number of events equals:

$$N^{H \to ZZ^* \to 4\ell} = \sigma_{incl}^{H \to ZZ^* \to 4\ell} \cdot L_{int}, \tag{1}$$

where:

Aleksandra Poreba, Aleksandra Kukielka

$$\sigma_{incl}^{H \to ZZ^* \to 4\ell} = 3,62 \text{ fb}^{-1},$$

$$L_{int} = 10,06 \text{ fb}^{-1}.$$

$$N^{H \to ZZ^* \to 4\ell} = 3,62 \text{ fb} \cdot 10,06 \text{ fb}^{-1} = 36,42.$$
 (2)

The $H \rightarrow ZZ^*$ decay analysis

Number of Leptons

Figure: The histogram with number of leptons.

Aaboud, Morad and others Measurement of inclusive and differential cross sections in the $H \to ZZ^* \to 4\ell$ decay channel in pp collisions at $s\sqrt{=13\,TeV}$ with the ATLAS detector http://dx.doi.org/10.1007/JHEP10(2017)132

Passon, Oliver
On the interpretation of Feynman diagrams, or, did the LHC experiments observe the Higgs to gamma gamma decay?