

Introduction

Winson Liang

Business Implications and Overview

Nancy Wu

Slide design and dataset summary

Lance Nillo

Data analysis and ML model

Daniel Chua

Model analysis and results

Danny Weng

Discussion and model analysis

Agenda

- 1. Airbnb business overview and problem statement
- 2. Dataset analysis
- 3. Data preprocessing and exploration
- 4. Machine learning model
- 5. Results
- 6. Business implications and conclusion

Airbnb business overview

Number of Airbnb users in the US (USDm)

Source: Statista (https://www.statista.com/statistics/346589/number-of-us-airbnb-users/

Number of Airbnb bookings (USDm)

Source: Airbn

Problem statement

How can we effectively assess the appropriate rental rates for AirBnB listings in European cities while considering the significance of various factors influencing pricing?

Hypothesis

We hypothesise that City Center, Bedrooms, and Attraction Index are significant determinants to European Airbnb pricing.

- As proximity to the city center increases, pricing increases.
- As the number of bedrooms increases, pricing increases.
- As attraction index increases, pricing increases.

What does our AirBnB dataset look like?

Accommodation from different cities across Europe, including Amsterdam, Athens, Barcelona, Berlin, Budapest, Lisbon, Paris, Rome and Vienna

 $41,714 \text{ rows} \Rightarrow 41,714 \text{ Airbnbs}$

16 columns ⇒ 16 different feature variables

Eight columns of interest to focus on

Results

Model

3 key steps we undertook for data preprocessing

Drop Price null values

--->

Clear remaining null values using mean imputation

--->

Use Label encoding for Guest Satisfaction variable

Price has too many null values

1

Drop Price null values


```
df = bnbdf.dropna(subset=['Price'] )
```

Price

41,714 rows of data

- 33,372 non-null values
- 8,342 null values

Price

33,372 rows of data

• 33,372 non-null values

City Center and Metro Distance also have null values

2

Clear remaining null values using mean imputation


```
df['City Center (km)'].fillna((df['City Center (km)'].mean()), inplace=True)

df['Metro Distance (km)'].fillna((df['Metro Distance (km)'].mean()), inplace=True)
```

City Center (km)

33,372 rows of data

- 32,695 non-null values
- 677 null values

Metro Distance (km)

33,372 rows of data

- 30,006 non-null values
- 3,366 null values

City Center (km)

33,372 rows of data

33,372 non-null values

Metro Distance (km)

33,372 rows of data

• 33,372 non-null values

Guest Satisfaction is currently a categorical variable

Use Label encoding for Guest Satisfaction variable


```
satisfaction_map = {
    'Very Bad': 0,
    'Bad': 1,
    'Not bad': 2,
    'Good': 3,
    'Excellent': 4
}

df['Guest Satisfaction'] = df['Guest Satisfaction'].map(satisfaction_map)

df['Guest Satisfaction'].value_counts()
```


City Center and Metro distance are both right skewed

City Center vs Price

Metro Distance vs Price

An initial correlation table appears to show no correlation at all

- 0.50

- 0.25

0.00

-0.25

-0.50

-0.75

City Center (km): -0.058

Metro Distance (km): -0.036

Normalised Attraction Index: 0.29

Normalised Restaurant Index: 0.23

Overview

Dataset

Preprocessing

Model

Results


```
x_values = df_dropped.drop(['Price'], axis = "columns")
y_values = df_dropped['Price']

x_train, x_test, y_train, y_test = train_test_split(x_values, y_values, test_size=0.2, random_state=42)

model = LinearRegression().fit(x_train, y_train)
preds = model.predict(x_test)

#Plotting
sns.regplot(x=preds, y=y_test, scatter_kws={'s':10}, line_kws={'color':'red'})
```

A look into our first Machine Learning Model

$$MAE = 106.13$$

$$MSE = 40,668.64$$

$$RSME = 201.66$$

$$r^2 = 0.21$$

A skew analysis of independent variables

A skew analysis of our target variable, Price


```
#Log transforming features and creating updated dataframe
logged_df_improved = df_improved.copy()

continuous_cols.remove('Normalised Restaurant Index') #Removing Normalised
Restaurant Index as no improvement for skew after log transformation

for col in continuous_cols:
    logged_df_improved[col] = np.log(logged_df_improved[col])

logged_df_improved['Price'] = np.log(logged_df_improved['Price'])
```

Back-transforming for our final model


```
x values = logged df improved.drop(['Price'], axis = "columns")
y values = logged df improved['Price']
x train, x test, y train, y test = train test split(x values, y values, test size=0.2, random state=42)
model = LinearRegression().fit(x train, y train)
preds = model.predict(x test)
#Back-transform predictions and test values
preds exp = np.exp(preds)
y test exp = np.exp(y test)
#Plotting the log-transformed model
sns.regplot(x=preds, y=y test, scatter kws={'s':10}, line kws={'color':'red'})
#Plotting back-transformed model on original scale
sns.regplot(x=preds exp, y=y test exp, scatter kws={'s':10}, line kws={'color':'red'})
```

Log-transformed Machine Learning model

$$MAE = 0.34$$

$$MSE = 0.20$$

$$RSME = 0.44$$

$$r^2 = 0.39$$

Final back-transformed model

$$MAE = 92.96$$

$$MSE = 40,016.90$$

$$RSME = 200.04$$

$$r^2 = 0.39$$

Comparison of residuals

Overview

Dataset

Preprocessing

Model

Results

Comparison of models

Initial model

- MSE = 40,668.64
- RSME = 201.66
- $r^2 = 0.21$

Log transformed model

- MAE = 92.96
- MSE = 40,016.90
- RSME = 200.04
- $r^2 = 0.39$

What does our final model mean?

Coefficients

• Intercept: 50.09 Euros

```
#Back transforming the coefficients and intercept
print("Intercept: ${}".format(round(np.exp(intercept),2)))

print("\nCoefficients:")
for i, col in enumerate(x_train.columns):
    print("{}: {}".format(col,round(np.exp(coef[i]),2)))
```

Person Capacity

X 1.05

Bedrooms

X 1.21

Norm. Attraction Index

X 1.51

Room Type (Home/Apart)

X 1.29

Why is our Model Poor?

Dataset contained features from multiple cities:

- Amsterdam, Athens, Barcelona, Berlin,
 Budapest, Lisbon, Paris, Rome & Vienna
- Variability between each city, difficult to create a general model across all cities.
- "This dataset encapsulates the diverse tapestry..."

What does this mean for Airbnb?

Ensures Host Loyalty

- Educate hosts on the importance of location and amenities
- Appealing listings for higher satisfaction and reviews
- Satisfied hosts = long-term customers

Transparency builds Trust

- Ensures pricing meets customer expectations for a satisfying experience
- Hosts can maximise their revenue margins

Top of the competition

- Ensures Airbnb remains competitive against other home rental marketplaces
- Allows Airbnb to effectively resolve customer complaints

Future opportunities for Airbnb

Machine learning integration into the platform

- Allow users to better estimate the costs of their rental stay
- Allow hosts to get an approximation of how much they should charge

Going back to our hypothesis...

We hypothesised that City Center, Bedrooms, and Attraction Index are significant determinants to European Airbnb pricing.

The factors with most influence are:

• Person Capacity: 1.05

Bedrooms: 1.21

Normalised Attraction Index: 1.51

Room_Type_Entire home/apt: 1.29

Overview

Dataset

Preprocessing

Model

Results

Appendix – AirBnB dataset extract

Α	В		D D	E		F	G	Н	1	J	K	L	M	N	0	Р
Price		ty Multiple	Rooms Busine	ess Cleanliness I	Rating B	edrooms Ci	ty Center (km)	Metro Distance (km)	Attraction Index N	Iormalised Attraction Index	Restaurant Index	Normalised Restaurant Index Room_	Type_Entire home/apt	Room_Type_Private room Ro		
194.0336981	L	2	1	0	10	1	5.022963798	2.539380003	78.69037927	4.166707868	98.25389587	6.846472824	0	1		0 Excellent
		4	0	0	8	1	0.488389289	0.239403923	631.1763783	33.42120862	837.2807567	58.34292774	0	1		0 Good
		2	0	1	9	1	5.748311915	3.651621289	75.27587691	3.9859077	95.38695493	6.646700255	0	1		0 Good
433.529398	3	4	0	1	9	2	0.384862013	0.439876076	493.2725344	26.11910845	875.0330976	60.97356517	0	1		0 Excellent
485.5529257	7	2	0	0	10	1	0.544738183	0.318692647	552.8303244	29.272733	815.30574	56.81167696	0	1		0 Excellent
552.8085675	5	3	0	0	8	2	2.131420081	1.904668241	174.7889568	9.255191399	225.2016624	15.69237584	0	1		0 Excellent
215.1243175	5	2	0	0	10	1	1.881091564	0.729746739	200.1676516	10.59901016	242.7655237	16.91625096	0	1		0 Excellent
2771.307384	1	4	0	0	10	3	1.686806965	1.458403566	208.8081086	11.05652809	272.3138229	18.97521897	1	0		0 Excellent
1001.80442	2	4	0	0	9	2	3.719141399	1.196112353	106.2264562	5.624761439	133.8762019	9.328686362	1	0		0 Excellent
276.5214538	3	2	1	0	10	1	3.142361426		206.2528615	10.92122606	238.2912578	16.60447768	0	1		0 Good
909.4743749	9	2	0	0	10	1	1.009922025		409.8581245	21.70226002	555.1142756	38.68116138	1	0		0 Excellent
319.6400534	1	2	1	0	10	1	2.182707104	1.590381363	191.5013392	10.14012315	229.2974006	15.97777277	0	1		0 Excellent
675.6028402	2	4	0	0	8	1	2.933045843	0.628073047	214.9233419	11.38033376	269.624904	18.78785123	1	0		0 Good
552.8085675	5	2	0	0	10	1	1.305493932	1.342162408	325.2559516	17.22251876	390.912052	27.2393142	1	0		0 Excellent
209.0314719	9	2	1	0	8	1	7.304535267	3.720813886	59.77618069	3.165188486	75.70105653	5.274958532	0	1		0 Excellent
368.8514986	5	2	0	0	10	1	1.031100609	0.557884535	359.9219322	19.05810546	439.950562	30.65638813	0	1		0 Excellent
368.8514986	5	2	0	0	10	1	1.327797157	0.119528107	539.0128842	28.54109037	573.896572	39.98993881	0	1		0 Excellent
337.9185902	2	2	1	0	10	1	1.366334238	0.53493346	576.0828256	30,5039684	845.957616	58.94754378	0	1		0 Excellent
313.5472078	3	2	1	0	10	1	1.28975923	0.552116488	528.9405557	28.00775388	1023.904785	71.34715853	0	1		0 Excellent
447.5898109	9	2	1	0	9	1	1.057619331	1.065339126	422.8529062	22.39034235	476.6969918	33.21693223	1	0		0 Excellent
		2	1	0	10	1	2.870632844		169.6957545	8.985502956	210.2676921	14.6517553	0	1		0 Excellent
933.8457573	3	4	0	0	10	2	1.014066427	0.377103687	477.7940702	25.29951349	664.0532506	46.27218589	1	0		0 Excellent
		2	1	0	10	1	1.247083667	1.098774338	267.3259896	14.15508878	366,4646498	25.53578404	0	1		0 Excellent
377.2877464	1	2	0	0	10	1	1.167492301	0.983743003	278.8005954	14.76267678	383.5778926	26.72825942	0	1		0 Excellent
245.5885455		2	1	0	10	1	4.230634297	2.68714404	92.2136022	4.882771508	116.2171437	8.098177779	0	1		0 Excellent
		2	1	0	8	1	4.180814737	2.808437972	93.27076367	4.93874891	117.759656	8.205662253	0	1		0 Excellent
295.0343308	2	2	1	0	10	1	3.366018582	0.225882299	170.0286974	9.003132506	217.1552314	15.13168895	0	1		0 Excellent
295.0343308		2	0	0	10	1	4.127280019	0.839325385	129.2296995	6.842798454	164.405009	11.45597756	0	1		0 Excellent
1032.971668		4	1	0	9	2	2.161607614	1.424169427	183.3652586	9.709312281	222.3896893	15.49643351	1	0		0 Excellent
270.4286083		4	0	0	10	1	4.885477641	21121203127	91.666212	4.853786833	114.6743433	7.990673226	0	1		0 Excellent
524.6877417		2	0	1	9	1	1.126326972	1.121070546	386.3649665	20.4582817	462.8059339	32.24898332	1	0		0 Good
599.6766105		4	0	0	9	3	3.363590725	0.697422494	156.2371148	8.272859043	198.8741211	13.85783489	1	0		0 Excellent
516.0171537		4	0	0	9	2	1.071168346	0.382535403	487.8730216	25.83320066	702.9288761	48.98109541	1	0		0 Excellent
602.2543529		3	0	0	10	2	3.856290113	0.727962239	148.724103	7.875040072	184.2598483	12.83949133	1	0		0 Excellent
504.0658027		4	0	0	9	2	4.075247886	1.873410991	98.63663409	5.222875315	122.1255419	8.509883465	1	0		0 Excellent
1609.917278		6	1	0	10	2	2.988588786	1.750002981	207.9524737	11.01122166	241.7781267	16.84744772	1	0		0 Excellent
.003.317270	,	2	1	0	9	0	4.147086686	0.038354694	118.7788847	6.289420865	151.3763929	10.54812485	1	0		0 Excellent
202.7042861		2	0	0	10	1	5.611750156	3.911722316	71.34500904	3.777765634	89.08448606	6.207535156	0	1		0 Excellent
796,288051		Δ	0	0	10	2	2.854991669	1.702583373	202.8431045	10.74067716	271.3813254	18.9102412	1	0		0 Excellent
/90.200031	1	2	0	0	10	1	6.411657372	4.143226904	67.21539749		83.99842553	5.853131141	0	1		
210 6400524		2	0	1	-	1				3.559099959			-	1		0 Excellent
319.6400534	•	-	U	1	10	1	0.540353868	0.338657742	558.6099219	29.57876654	816.9103767	56.92349036	0	1		0 Excellent
		4	0	1	9	1	0.495828246	0.332742213	717.4464438	37.98926591	848.4048419	59.11807	0	1		0 Excellent

Appendix – Residuals Distribution for Base Model


```
residuals = y test - preds
#Plotting Residuals vs. Predicted values
plt.figure(figsize=(10, 6))
plt.scatter(preds, residuals, s=10)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('Predicted Prices')
plt.ylabel('Residuals')
plt.title('Residuals vs. Predicted Prices')
plt.show()
#Histogram of Residuals
plt.figure(figsize=(10, 6))
sns.histplot(residuals, kde=True, bins=30)
plt.title('Distribution of Residuals')
plt.xlabel('Residual')
plt.ylabel('Frequency')
plt.show()
```


Appendix – Residuals Distribution for Logged Model


```
residuals = y test - preds
#Plotting Residuals vs. Predicted values
plt.figure(figsize=(10, 6))
plt.scatter(preds, residuals, s=10)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('Predicted Prices')
plt.ylabel('Residuals')
plt.title('Residuals vs. Predicted Prices')
plt.show()
#Histogram of Residuals
plt.figure(figsize=(10, 6))
sns.histplot(residuals, kde=True, bins=30)
plt.title('Distribution of Residuals')
plt.xlabel('Residual')
plt.ylabel('Frequency')
plt.show()
```


Appendix – Correlation Analysis for Logged Model

Normalised Restaurant Index: 0.39

Appendix – Original pair plot

Appendix – Logged pair plot

