Dokumentacja Skryptu Analizy Regresji Danych Spotify

Michał Herka, Daniel Brzezicki

Wprowadzenie

Ten skrypt przeprowadza analizę regresji na danych Spotify, wykorzystując bibliotekę scikit-learn. Celem jest przewidywanie cechy 'streams' - ilości odtworzeń na podstawie wybranych cech wejściowych.

Zależności

- pandas
- numpy
- scikit-learn (sklearn)
- Matplotlib

Enumy

RegressionMethod

- SINGLE: Analiza pojedynczej regresji
- TRAIN_TEST_SPLIT: Analiza regresji z podziałem na zestaw treningowy i testowy
- KFOLD: Analiza regresji z użyciem K-krotnego podziału krzyżowego

RegressorType

- DECISION_TREE: Drzewo decyzyjne
- RANDOM FOREST: Las losowy

Funkcje

singleRegressorMAE(regressor, x_train, y_test)

Dopasowuje dostarczony regresor do danych treningowych (x_train, y_test) i zwraca średni błąd bezwzględny (MAE) na danych testowych.

trainTestSplitRegressorMAE(regressor, df_features, df_main_feature, test_size=0.5)

Dzieli dane na zestaw treningowy i testowy, dopasowuje regresor i zwraca MAE na zestawie testowym.

```
kfoldRegressorMAE(regressor, df_features,
df_main_feature, n_splits=5)
```

Przeprowadza K-krotny podział krzyżowy, dopasowuje regresor i zwraca maksymalne MAE we wszystkich foldach.

```
getMaeValues(dataMethod: RegressionMethod,
regressorType: RegressorType, X, y, depth=5)
```

Generuje wartości MAE dla różnych głębokości regresora na podstawie określonej metody regresji i typu regresora.

predictValueByFeatures(dataFrame, features, mainFeature)

Przetwarza dane, przeprowadza analizę regresji dla różnych metod i typów, a następnie przedstawia wyniki za pomocą wykresów słupkowych i liniowych.

Przykład Użycia

```
result = predictValueByFeatures(pd.read_csv('data/spotify-2023.csv',
encoding='latin-1'),
['artist_count','released_year','in_apple_playlists','in_spotify_playlists','in_sp
otify_charts','danceability_%', 'streams'], 'streams')
```

Wyjście z dobraniem powyższych cech

Decision Tree

W przypadku pojedynczego drzewa decyzyjnego, obserwuje się tendencję do poprawy dokładności modelu wraz z zwiększaniem głębokości drzewa. Warto jednak zauważyć, że głębokość drzewa równa 5 wydaje się być optymalnym wyborem, gdyż dalsze zwiększanie głębokości nie przynosi już tak znaczącej poprawy. Wyniki uzyskane na zbiorze testowym (TRAIN_TEST_SPLIT) różnią się od wyników na zbiorze treningowym, co może sugerować pewne przetrenowanie modelu. Optymalna

głębokość drzewa dla tego zbioru wydaje się być mniejsza niż dla pojedynczego drzewa.

Random Forest

Random Forest, będący ensemblem drzew decyzyjnych, wykazuje ogólnie lepszą zdolność do generalizacji niż pojedyncze drzewo. Otrzymane wyniki są bardziej stabilne i mniej podatne na przetrenowanie. W przypadku Random Forest również zauważa się tendencję do poprawy dokładności wraz z zwiększaniem głębokości drzewa, ale różnice między kolejnymi głębokościami są mniejsze niż dla pojedynczego drzewa.

Porównanie między pojedynczym drzewem a Random Forest:

Random Forest uzyskuje niższe wartości błędów średnich bezwzględnych (MAE) niż pojedyncze drzewo decyzyjne dla wszystkich głębokości drzewa i dla wszystkich rodzajów podziałów danych (SINGLE, TRAIN_TEST_SPLIT, KFOLD). Wyniki na zbiorze KFOLD są najbardziej stabilne, co potwierdza, że Random Forest jest bardziej odporny na różnice między podziałami zbioru danych.

Wnioski ogólne:

Random Forest wydaje się być bardziej wszechstronnym modelem do tego zadania, oferując lepszą zdolność do generalizacji niż pojedyncze drzewo. Optymalna głębokość drzewa może zależeć od specyfiki danych i zadania. Warto przeprowadzić dalsze eksperymenty, aby zoptymalizować parametry modelu. Przy analizie wyników ważne jest również zwrócenie uwagi na ewentualne przetrenowanie modelu, co można zaobserwować na zbiorze testowym w przypadku pojedynczego drzewa decyzyjnego. Regularyzacja modelu lub ograniczenie głębokości drzewa może pomóc w tym przypadku.

Dane wyjściowe z przetrenowanego datasetu:

```
[10 rows x 24 columns]

Top 10 Predictions:

1. Title: Blinding Lights, Actual Streams: 3703895874.0, Predicted Streams: 3477042232.46

2. Title: Shape of You, Actual Streams: 3562543890.0, Predicted Streams: 3390391773.93

3. Title: Dance Monkey, Actual Streams: 2864791672.0, Predicted Streams: 2853848666.42

4. Title: Someone You Loved, Actual Streams: 2887741814.0, Predicted Streams: 2851804977.08

5. Title: One Dance, Actual Streams: 713922350.0, Predicted Streams: 28559856.40

6. Title: Sunflower - Spider-Man: Into the Spider-Verse, Actual Streams: 2808096550.0, Predicted Streams: 2798196210.70

7. Title: STAY (with Justin Bieber), Actual Streams: 2665343922.0, Predicted Streams: 2702468026.08

8. Title: Believer, Actual Streams: 259404013.0, Predicted Streams: 2614749807.72

9. Title: Starboy, Actual Streams: 259404013.0, Predicted Streams: 2614986729.07

10. Title: Closer, Actual Streams: 2591224264.0, Predicted Streams: 2655190308.44

PS C: USers-Ndrze-Vesk-FobyLocepie masszymows
```

Blinding Lights:

- Rzeczywiste odsłuchy: 3 703 895 074
- Przewidziane odsłuchy: 3 477 042 232
- Wnioski: Model prognozowania wydaje się skuteczny, ale przewidywania są nieco niższe niż rzeczywiste wartości, co może oznaczać pewne niedoszacowanie.

Shape of You:

- Rzeczywiste odsłuchy: 3 562 543 890
- Przewidziane odsłuchy: 3 390 391 774
- Wnioski: Model ponownie wydaje się być skuteczny, ale przewidywania są nieco niższe niż rzeczywiste wartości.

Dance Monkey:

- Rzeczywiste odsłuchy: 2 864 791 672
- Przewidziane odsłuchy: 2 853 848 666
- Wnioski: Model dobrze przewiduje odsłuchy, zbliżając się do rzeczywistych wartości.

Someone You Loved:

- Rzeczywiste odsłuchy: 2 887 241 814
- Przewidziane odsłuchy: 2 851 084 972
- Wnioski: Model prawdopodobnie dokładnie przewiduje odsłuchy, choć istnieje niewielka różnica.

One Dance:

- Rzeczywiste odsłuchy: 2 713 922 350
- Przewidziane odsłuchy: 2 845 959 256
- Wnioski: Model wydaje się nieco przeszacowywać odsłuchy.

Sunflower - Spider-Man: Into the Spider-Verse:

- Rzeczywiste odsłuchy: 2 808 096 550
- Przewidziane odsłuchy: 2 798 196 210
- Wnioski: Model jest skuteczny, a prognozy są zbliżone do rzeczywistych wartości.

STAY (with Justin Bieber):

- Rzeczywiste odsłuchy: 2 665 343 922
- Przewidziane odsłuchy: 2 702 468 026
- Wnioski: Model jest skuteczny, ale przewidywania są nieco wyższe niż rzeczywiste wartości.

Believer:

- Rzeczywiste odsłuchy: 2 594 040 133
- Przewidziane odsłuchy: 2 614 473 093
- Wnioski: Model jest skuteczny, a prognozy są zbliżone do rzeczywistych wartości.

Starboy:

- Rzeczywiste odsłuchy: 2 565 529 693
- Przewidziane odsłuchy: 2 611 986 729
- Wnioski: Model jest skuteczny, a prognozy są zbliżone do rzeczywistych wartości.

Closer:

- Rzeczywiste odsłuchy: 2 591 224 264
- Przewidziane odsłuchy: 2 605 190 308
- Wnioski: Model jest skuteczny, a prognozy są zbliżone do rzeczywistych wartości.

Podsumowanie:

Model jest skuteczny, ale istnieją pewne różnice między przewidywaniami a rzeczywistymi wartościami. Dla niektórych utworów prognozy są niższe, a dla innych wyższe. Może to wynikać z wielu czynników, takich jak brakujące informacje, które mogą wpływać na jakość modelu. Warto także zauważyć, że różnice te są stosunkowo niewielkie w porównaniu z ogólnymi liczbami odsłuchań.