Validation Croisée

Joseph Salmon, Nicolas Verzelen

Université de Montpellier / INRA

Evaluer la précision d'une règle d'apprentissage

Supposons que l'on ajuste une règle $\widehat{f}(x)$ sur les données $D_1^n=\{(X_1,Y_1),\dots,(X_n,Y_n)\}.$

Le **risque empirique** ou **risque apparent** d'un algorithme de \widehat{f} (construit sur D_1^n) est défini par $\widehat{R}_n(\widehat{f}) = \frac{1}{n} \sum_{i=1}^n l\left(Y_i, \widehat{f}(X_i)\right)$.

ATTENTION: Sous-estimation du risque moyen

 \Rightarrow Minimisation du risque empirique = sur-apprentissage (overfitting)!

Erreur de Test

Supposons que l'on a accès à un deuxième échantillon

$$D_{n+1}^{n+N} = \{(X_1, Y_1), \dots, (X_{n+N}, Y_{n+N})\}\$$

indépendant de l'échantillon d'apprentissage \mathbb{D}^n_1 .

$$\widetilde{R}_{Te}(\widehat{f}) = \frac{1}{N} \sum_{i=n+1}^{N+n} l(Y_i, \widehat{f}(X_i))$$

Proposition =

$$\mathbb{E}\big[\widetilde{R}_{Te}(\widehat{f})|D_1^n\big] = R_P(\widehat{f})$$

Lorsque N tend l'infini, $\widetilde{R}_{Te}(\widehat{f})$ converge presque surement vers $R_P(\widehat{f})$.

Erreur d'entrainement et erreur de test

Prediction Error

Model Complexity

Noire : vraie f(x)Orange : modèle linéaire Bleue et verte : splines

Rouge : risque test $\widetilde{R}_{Te}(\widehat{f})$ Gris : risque empirique $\widehat{R}_n(\widehat{f})$

Noire : vraie f(x)Orange : modèle linéaire Bleue et verte : splines Rouge : risque test $\widetilde{R}_{Te}(\widehat{f})$ Gris : risque empirique $\widehat{R}_n(\widehat{f})$

Noire : vraie f(x)Orange : modèle linéaire Bleue et verte : splines Rouge : risque test $\widetilde{R}_{Te}(\widehat{f})$ Gris : risque empirique $\widehat{R}_n(\widehat{f})$

Estimations de l'erreur de prédiction

- ► La meilleure solution : un grand ensemble de test clairement désigné. Bien souvent, ce n'est pas disponible.
- Certaines méthodes permettent de corriger l'erreur d'entrainement pour estimer l'erreur de test, avec des arguments fondés mathématiquement.
 - Cela inclut les critères AIC et BIC. Ils seront discutés plus tard.
- ▶ Ici, nous nous intéressons à une classe de méthodes qui estime le risque en mettant de côté un sous-ensemble des données d'entrainement disponibles pour ajuster les modèles, et en appliquant la méthodes ajustée sur ces données mises de côté.

Approche par ensemble de validation

- ➤ Cette méthode propose de diviser l'échantillon d'apprentissage en deux : un ensemble d'entrainement et un ensemble de validation
- Le modèle est ajusté sur l'ensemble d'entrainement, et on l'utilise ensuite pour prédire les réponses sur l'échantillon de validation.

Approche par ensemble de validation

Algorithme de validation croisée hold-out

input : \mathcal{A} sous-ensemble de $\{1, \ldots, n\}$, définissant l'ensemble d'apprentissage

input : \mathcal{V} sous-ensemble de $\{1,\ldots,n\}$, définissant l'ensemble de validation

begin

Construire la règle de prédiction $\widehat{f}_{D_{\mathcal{A}}}$ sur

$$D_{\mathcal{A}} = \{(X_i, Y_i), i \in \mathcal{A}\}$$

output:
$$\frac{1}{\#\mathcal{V}}\sum_{i\in\mathcal{V}}l\left(Y_i,\widehat{f}_{D_{\mathcal{A}}}(X_i)\right)$$

Exemple sur les données automobiles

- On veut comparer la régression linéaires à des régressions polynomiales de différents degrés
- ► On divise en deux les 392 observations : 196 pour l'entrainement, 196 pour le test.

Sur une partition aléatoire

Variabilité d'une partition à l'autre

Inconvénients de l'approche par ensemble de validation

- L'estimation obtenue par cette méthode peut être très variable, et dépend de la chance ou malchance dans la construction du sous-'échantillon de validation
- ▶ Dans cette approche, seule une moitié des observations est utilisée pour ajuster les modèles — celles qui sont dans l'ensemble d'entrainement.
- Cela suggère que l'erreur calculée peut surestimer l'erreur de test d'un modèle ajusté sur l'ensemble des données (moins de variabilité d'échantillonnage dans l'inférence des paramètres du modèle)

Déjà mieux : échanger les rôles entrainement-validation et faire la moyenne des deux erreurs obtenues. On *croise* les rôles.

Estimation du risque moyen

Méthodes de validation croisée et de bootstrap

- ► Validation croisée leave-p-out
- ► Validation croisée *K* fold.

Algorithme de validation croisée leave p out

```
input : p entier inférieur à n
begin
       Construire \mathcal{V}_1,\ldots,\mathcal{V}_{\binom{n}{n}} parties à p éléments de \{1,\ldots,n\}
      for k = 1, \ldots, \binom{n}{n} do
              Déterminer \mathcal{A}_k = \{1, \ldots, n\} \setminus \mathcal{V}_k
              Construire \widehat{f}_{D_{\mathcal{A}_k}} sur D_{\mathcal{A}_k} = \{(X_i, Y_i), i \in \mathcal{A}_k\}
              Calculer R_k = \frac{1}{n} \sum_{i \in \mathcal{V}_k} l\left(Y_i, \widehat{f}_{D_{\mathcal{A}_k}}(X_i)\right)
      output: \binom{n}{p}^{-1} \sum_{k=1}^{\binom{n}{p}} R_k
```

Remarque : Temps de calcul très long hormis pour p=1 (ou p=2).

Validation croisée à K groupes

- C'est la méthode la plus couramment utilisée pour estimer l'erreur de test
- L'estimation peut être utilisée pour choisir le meilleur modèle (la meilleure méthode d'apprentissage), ou approcher l'erreur de prédiction du modèle finalement choisi.
- ► L'idée est de diviser les données en K groupes de même taille. On laisse le k-ème bloc de côté, on ajuste le modèle, et on l'évalue sur le bloc laissé de côté.
- On répète l'opération en laissant de côté le bloc k=1, puis $k=2,\ldots$ jusqu'à k=K. Et on combine les résultats

1	2	3	4	5
Validation	Train	Train	Train	Train

Algorithme de validation croisée K-fold

```
\begin{array}{l} \textbf{input} \ : K \ \text{entier diviseur de } n \\ \textbf{begin} \\ & \quad | \quad \text{Construire } \mathcal{V}_1, \dots, \mathcal{V}_K \ \text{partition de } \{1, \dots, n\} \ \textbf{ for } \\ & \quad k = 1, \dots, K \ \textbf{do} \\ & \quad | \quad \text{Déterminer } \mathcal{A}_k = \{1, \dots, n\} \setminus \mathcal{V}_k \\ & \quad \text{Construire } \widehat{f}_{D_{\mathcal{A}_k}} \ \text{sur } D_{\mathcal{A}_k} = \{(X_i, Y_i), \ i \in \mathcal{A}_k\} \\ & \quad \text{Calculer } R_k = \frac{K}{n} \sum_{i \in \mathcal{V}_k} l\left(Y_i, \widehat{f}_{D_{\mathcal{A}_k}}(X_i)\right) \end{array}
```

output: $\frac{1}{K} \sum_{k=1}^{K} R_k$

On choisit généralement K=5 ou K=10 blocs Lorsque K=n, il s'agit de la méthode de « *leave-one out cross-validation* » (LOOCV)

Retour sur les données automobile

En cas d'égalité, choisir le modèle le plus *parcimonieux* car il aura naturellement moins de variance d'estimation dans les coefficients du modèle.

Validation croisée : les pièges

Considérons un classifieur simple pour prédire une réponse Y binaire, mais avec de nombreuses co-variables (p=5000).

On procède comme suit

- 1. On démarre avec les 5000 prédicteurs et un échantillon de taille 50, et on cherche les 100 prédicteurs qui ont la plus grande corrélation par la réponse
- 2. On utilise une méthode d'apprentissage, par exemple la régression logistique, sur ces 100 meilleures co-variables.

Comment doit-on estimer l'erreur de test?

Peut-on utiliser la validation croisée à l'étape 2???

Réponse : NON, NON et NON!

- 1. On démarre avec les 5000 prédicteurs et un échantillon de taille 50, et on cherche les 100 prédicteurs qui ont la plus grande corrélation par la réponse
- 2. On utilise une méthode d'apprentissage, par exemple la régression logistique, sur ces 100 meilleures co-variables.
- Cela ignore le fait que l'étape 1 a déjà utilisé les réponses observées. Cette étape est une forme d'entrainement du classifier final.
- ▶ Il est facile de simuler des données réalistes, avec Y indépendant de X (dont l'erreur de test doit être de 50%) mais dont l'erreur calculée par CV dans l'étape 2 est proche de 0!

Essayer de le faire vous même!

► Cette erreur est pourtant comise dans de nombreux articles traitant de données génomiques!

Pré-validation

- ▶ Dans des études génomiques (microarray, etc.), un problème important est de comparer un prédicteur de l'état d'une maladie, calculé à partir des données microarray, avec d'autre prédicteurs cliniques
- Ce prédicteur est un résumé numérique construit sur des données. Comparer son lien avec l'état de la maladie sur les données qui ont servi à le construire n'est pas juste envers les autres prédicteurs
- La pré-validation permet de dé-biaiser la situation.

Exemple. van't Veer et al. *Nature* (2002)

Données microarray de 4918 gènes sur 78 cas de cancer des poumons : 44 cas favorables, 34 cas graves.

On construit le prédicteur (un résumé binaire) $Z_i = \hat{C}(X_i)$ pour chacun des cas i de l'échantillon.

On veut maintenant comparer ce résumé de données génomiques avec d'autres variables pour prédire l'état d'un nouveau patient.

Régression logistique sans pré-validation

	coeff	Stand.Err	Z-stat	p-value
microarray \hat{C}	4.096	1.092	3.752	< 0.001
angio	1.208	0.816	1.482	0.069
er	-0.554	1.044	-0.530	0.298
grade	-0.697	1.003	-0.695	0.243
pr	1.214	1.057	1.149	0.125
age	-1.593	0.911	-1.748	0.040
size	1.483	0.732	2.026	0.021

 \hat{C} est déjà lié au données (par construction de \hat{C}). Ce n'est pas étonnant qu'il est une p-value très faible.

Cela ne dit rien de la capacité de \hat{C} sur de nouveaux patients.

Solution: pré-validation

On procède comme suit.

- 1. On divise les cas observés en K=13 groupes de 6 observations chacun.
- 2. On construit un \hat{C} sur 12 groupes.
- 3. On l'utilise pour construire la co-variable sur les données mises de côté, ce qui donne des \tilde{Z}_i pour le groupe mis de côté
- 4. On répète les étapes 2 et 3 pour construire les \tilde{Z}_i sur chacune des observations
- 5. On utilise ce prédicteur, pour le comparer aux 6 autres prédicteurs cliniques

	coeff	Stand.Err	Z-stat	$p ext{-}value$
microarray $ ilde{Z}$	1.549	0.675	2.296	0.011
angio	1.589	0.682	2.329	0.010
er	-0.617	0.894	-0.690	0.245
grade	0.719	0.720	0.999	0.159
pr	0.537	0.863	0.622	0.267
age	-1.471	0.701	-2.099	0.018
size	0.998	0.594	1.681	0.046