Let p, q and r be propositions.

Logical Equivalences:

Rule	Equivalence
Identity Laws	$p \wedge T \equiv p$
	$p \vee F \equiv p$
Domination Laws	$p \lor T \equiv T$
	$p \wedge F \equiv F$
Idempotent Laws	$p \wedge p \equiv p$
	$p \lor p \equiv p$
Double Negation	$\neg \neg p \equiv p$
Commutative Laws	$p \wedge q \equiv q \wedge p$
	$p \lor q \equiv q \lor p$
Associative Laws	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
	$p \lor (q \lor r) \equiv (p \lor q) \lor r$
Distributive Laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
De Morgan Laws	$\neg (p \land q) \equiv \neg p \lor \neg q$
	$\neg (p \lor q) \equiv \neg p \land \neg q$
Other important laws	$p \to q \equiv \neg p \lor q$
	$p \to q \equiv \neg q \to \neg p$
Quantifier laws	$\neg(\forall x P(x)) \equiv \exists x (\neg P(x))$
	$\neg(\exists x P(x)) \equiv \forall x(\neg P(x))$

Inference Rules:

Inference Rule	Tautology
Addition	$p \to p \lor q$
Simplification	$p \land q \to p$
Conjunction	$[(p) \land (q)] \to p \land q$
Modus ponens	$[p \land (p \to q)] \to q$
Modus tollens	$[\neg q \land (p \to q)] \to \neg p$
Hypothetical syllogism	$[(p \to q) \land (q \to r)] \to (p \to r)$
Disjunctive syllogism	$[(p \lor q) \land \neg p] \to q$
Resolution	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$
Universal instantiation	$\forall x P(x) \to P(c)$
Universal generalization	$[P(c) \text{ for arbitrary } c] \rightarrow \forall x P(x)$
Existential instantiation	$\exists x P(x) \to [P(c) \text{ for some c}]$
Existential generalization	$[P(c) \text{ for some } c] \to \exists x P(x)$