Homework 4

VE216 - Introduction to Signal and Systems, Qiao Heng, Spring 2021

* Name: Han Yibei Student ID: 519370910123

HW Notes:

- Problems where the number of points are followed by an exclamation are basic skill problems and will be graded without partial credit.
- Box your final answer. You will be graded on both the final answer and the steps leading to it. Correct intermediate steps will help earn partial credit. For full credit, cross out any incorrect intermediate step.
- If you need to make any additional assumptions, state them clearly.
- Legible writing will help when it comes to partial credit.
- Simplify your result when possible.

Problems:

- 1. [20!] Use the table of FT pairs and the table of properties to find the FT of each of the following signals (DO NOT USE INTEGRATION):
- (a) $[5!]x(t) = rect\left(\frac{t-1}{2}\right)$ (b) $[5!]x(t) = e^{-3t}rect\left(\frac{t-1}{2}\right)$
- (c) $[5!]x(t) = trect\left(\frac{t-1}{2}\right)^2$ (d) $[5!]x(t) = \cos(2\pi t)rect\left(\frac{t-1}{2}\right)$

Answer: $(a) f(t) = rect \left(\frac{t}{T}\right) \text{ so } F(\omega) = Tsinc \left(T\frac{\omega}{2\pi}\right),$ $\text{suppose } h(t) = rect \left(\frac{t}{2}\right) \quad H(\omega) = 2sinc \left(\frac{\omega}{\pi}\right)$ $x(t) = h(t-1), X(\omega) = H(\omega)e^{-j\omega} = \left[2e^{-j\omega}sinc \left(\frac{\omega}{\pi}\right)\right]$ $(b) \ x(t) = e^{-3t}u(t) - e^{-3t}u(t-2)$ $X(\omega) = \left[\frac{1}{j\omega+3} + \frac{e^{-6-j\omega^2}}{j\omega+3}\right]$ $(c) \ h(t) = rect \left(\frac{t-1}{2}\right) \quad H(\omega) = 2e^{-j\omega}4sinc \left(\frac{\omega}{\pi}\right)$ $x(t) = th(t) = j(-jt)h(t) = j\frac{d}{d\omega} \quad F(\omega) = \left[\frac{(1+2j\omega)e^{-2j\omega-1}}{\omega^2}\right]$ $(d) \ X(\omega) = \frac{H(\omega-2\pi)+H(\omega+2\pi)}{2} = \left[e^{-j\omega}\sin\omega\frac{2\omega}{\omega^2-4\pi^2}\right]$

2. [10] Find a mathematical expression and sketch or plot the inverse FT of $F(\omega) = sinc^3(\omega/2)$. Hint: the inverse FT formula would probably be a hard way to do it.

when
$$h(t) = \frac{1}{\pi} rect(\frac{t}{\pi})$$
, $H(\omega) = sinc(\frac{\omega}{2})$
So if $F(\omega) = H(\omega)^3$, then $f(t) = h(t) * h(t) * h(t) = \frac{1}{\pi^2} tri(\frac{t}{\pi}) * rect\frac{t}{\pi}$

$$f(t) = \begin{cases} 0 & t \le -\frac{3}{2}\pi \\ \frac{1}{2\pi^3}t^2 + \frac{3}{2\pi^2}t + \frac{9}{8\pi} & -\frac{3}{2}\pi \le t \le -\frac{\pi}{2} \\ \frac{3}{4\pi} - \frac{t^2}{\pi^3} & -\frac{\pi}{2} \le t \le \frac{\pi}{2} \\ \frac{1}{2\pi^3}t^2 - \frac{3}{2\pi^2}t + \frac{9}{8\pi} & \frac{\pi}{2} \le t \le \frac{3\pi}{2} \\ 0 & t \ge \frac{3}{2}\pi \end{cases}$$

3. [10] Find the FT of $t^2e^{-(t/4)^2}$. Hint: see table of FT pairs.

Answer:

$$x(t) = -(-jt)^{2}e^{(-\frac{t}{4})^{2}}$$

so $X(\omega) = -\frac{d^{2}}{d\omega^{2}}(4\sqrt{\pi}e^{-4\omega^{2}}) = 32\sqrt{\pi}e^{-4\omega^{2}}(1 - 8\omega^{2})$

4. [10] Show that if f(t) is real and odd, then $F(\omega)$ is purely imaginary and odd.

Answer:

$$f(t)$$
 is odd, so $f(t) + f(-t) = 0$, then $f(t) + f(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega) + F(-\omega) = 0$, so $F(\omega)$ is odd

f(t) is real, so
$$f(t) - f * (t) = 0$$
, then $f(t) - f * (t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega) - F * (\omega) = 0$, so $F(\omega)$ is real

5. [10] Consider a real signal f(t) and let

$$f(t) \stackrel{\mathcal{F}}{\leftrightarrow} F(\omega), \quad F(\omega) = real\{F(\omega)\} + jimag\{F(\omega)\}$$

and

$$f(t) = f_e(t) + f_o(t)$$

where $f_e(t)$ and $f_o(t)$ are the even and odd component of f(t) respectively. Show that

$$f_e(t) \stackrel{\mathcal{F}}{\leftrightarrow} real\{F(\omega)\} \quad f_o(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jimag\{F(\omega)\}$$

Answer:

$$f(t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega)$$
, so $f_e(t) + f_o(t) \stackrel{\mathcal{F}}{\longleftrightarrow} F_e(\omega) + F_o(\omega)$

As in problem 4, $f_o(t)$ is odd and real, so $F_o(\omega)$ is odd and real

Also, f(t) is even, so f(t)-f(-t)=0, then $f(t)-f(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega)-F(-\omega)=0$, so $F(\omega)$ is even

f(t) is real, so f(t) - f * (t) = 0, then $f(t) - f * (t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega) - F * (\omega) = 0$, so $F(\omega)$ is real

So $f_e(t)$ is even and real, so $F_e(\omega)$ is even and real

So, $f_e(t) \stackrel{\mathcal{F}}{\leftrightarrow} real\{F(\omega)\}$ $f_o(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jimag\{F(\omega)\}$

6. [10!] Find the energy of the signal $x(t) = t sinc^2(t)$ by Fourier methods.

Answer:
$$sinc^{2}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} tri(\frac{\omega}{2\pi})$$

$$t \sin c^{2}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} j\frac{d}{d\omega}tri(\frac{\omega}{2\pi})$$

$$= \frac{j}{2\pi}\frac{d}{d\omega}rect(\frac{\omega}{2\pi})*rect(\frac{\omega}{2\pi})$$

$$= \frac{j}{2\pi}(\delta(\omega + \pi) - \delta(\omega - \pi))*rect(\frac{\omega}{2\pi})$$

$$= \frac{j}{2\pi}\left(rect(\frac{\omega + \pi}{2\pi}) - rect(\frac{\omega - \pi}{2\pi})\right)$$

$$|X(\omega)| = \frac{1}{2\pi}rect(\frac{\omega}{4\pi})$$

$$E = \frac{1}{2\pi}\int_{-\infty}^{\infty} |X(\omega)|^{2}d\omega = \boxed{\frac{1}{2\pi^{2}}}$$

7. [10] What percentage of the total energy in the energy signal $f(t)=e^{-t}u(t)$ is contained in the frequency band $-8\mathrm{rad/s}\leq\omega\leq8\mathrm{rad/s}$

Answer:
$$X(\omega) = \frac{1}{j\omega - 1}, \text{ so } E_{part} = \frac{1}{2\pi} \int_{-8}^{8} |F(\omega)|^2 d\omega = \frac{arctan(8)}{\pi}$$
$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega = \frac{1}{2}$$
$$P = \frac{E_{part}}{E} = \boxed{92\%}$$

8. [20] A LTI system has the following frequency response:

$$H(j\omega) = \frac{-\omega^2 + j\omega + 1}{(-\omega^2 + 6j\omega + 25)(j\omega + 2)}$$

- (a) [10] Find the impulse response of the LTI system. Hint: first find the partial differential equation.
- (b) [10] Find the differential equation corresponding to the LTI system. Hint: write $H(\omega) = Y(\omega)/X(\omega)$ and cross multiply.

Answer:
(a)
$$H(s) = \frac{s^2 + s + 1}{(s^2 + 6s + 25)(s + 2)}$$

$$\frac{b}{s + 3 - 4j} + \frac{c}{s + 3 + 4j} + \frac{a}{s + 2} = \frac{s^2 + s + 1}{(s^2 + 6s + 25)(s + 2)} \Rightarrow a = \frac{3}{17} \quad b = \frac{7}{17} + \frac{71}{136}j \quad c = \frac{7}{17} - \frac{71}{136}j$$

$$h(t) = \left[\frac{7}{17} + \frac{71}{136}j \right] e^{(4j - 3)t}u(t) + \left(\frac{7}{17} - \frac{71}{136}j \right) e^{(-4j - 3)t}u(t) + \frac{3}{17}e^{-2t}u(t) \right]$$
(b)
$$\frac{Y(\omega)}{X(\omega)} = \frac{-\omega^2 + j\omega + 1}{(-\omega^2 + 6j\omega + 25)(j\omega + 2)}$$

$$\left(s^3 + 8s^2 + 37s + 50 \right) Y(\omega) = \left(s^2 + s + 1 \right) X(\omega)$$

$$y'''(t) + 8y''(t) + 37y'(t) + 50y(t) = x''(t) + x'(t) + x(t) \right]$$