LECTURE 16

Numpy Coding a Linear Model

Building your first linear model

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Load Dataset Fit OLS Fit Biased OLS

Load Dataset Fit OLS Fit Biased OLS

Solving OLS

$$egin{aligned} \mathcal{L} &= \mathbb{Y} - \hat{\mathbb{Y}} \ \mathcal{L} &= (\mathbb{Y} - \hat{\mathbb{Y}})^2 \ \mathcal{L} &= rac{1}{n} \sum_{i=1}^n (\mathbb{Y}_i - \hat{\mathbb{Y}}_i)^2 \ \hat{\mathbb{Y}} &= \mathbb{X} heta \ \mathcal{L}(heta) &= rac{1}{n} \sum_{i=1}^n (\mathbb{Y}_i - (\mathbb{X} heta)_i)^2 \ \hat{ heta} &= \mathrm{argmin}_{ heta} \mathcal{L}(heta) \ \hat{ heta} &= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y} \end{aligned}$$

@®®

Predict with OLS

$$\hat{\mathbb{Y}} = \mathbb{X}\hat{ heta}$$

Analyze Model Performance

Scatter plot Y vs. Ŷ
Histogram Y - Ŷ
Compute L(*\textit{\theta}*)
Plot Predictions

Load Dataset Fit OLS Fit Biased OLS

$$\hat{\mathbb{Y}} = \mathbb{X}\theta + b$$

Solving OLS

$$\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$$

$$\phi \mathbf{I}$$

$$\hat{\theta} = (\phi(\mathbb{X})^T \phi(\mathbb{X}))^{-1} \phi(\mathbb{X})^T \mathbb{Y}$$

Predict with OLS

$$\hat{\mathbb{Y}} = \mathbb{X}\hat{\theta}$$

$$\phi$$

$$\hat{\mathbb{Y}} = \phi(\mathbb{X})\hat{ heta}$$

Analyze Model Performance

Scatter plot Y vs. Ŷ
Histogram Y - Ŷ
Compute L(*\textit{\theta}*)
Plot Predictions

MSE

OLS 346

Biased OLS 187

Analyze Model Performance

Scatter plot Y vs. Ŷ
Histogram Y - Ŷ
Compute L(*\textit{\theta}*)
Plot Predictions

PRACTICAL TIP

numpy.linalg.solve is more efficient at solving linear equations.

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

xkcd.com/1725/

LECTURE 16

@080

Scikit-Learn Coding a Linear Model

Build a linear model much faster, with scikit-learn abstractions

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

Load Dataset Fit OLS Fit Biased OLS

Load Dataset Fit OLS Fit Biased OLS

PRACTICAL TIP

sklearn models always follow 3 steps:

- 1. Instantiate
 model = SuperCoolModel()
- 2. Fit
 model.fit(X, Y)
- 3. Predict model.predict(X)

Load Dataset Fit OLS Fit Biased OLS

PRACTICAL TIP

sklearn models always follow 3 steps:

- 1. Instantiate
 model = SuperCoolModel()
- 2. Fit
 model.fit(X, Y)
- 3. Predict model.predict(X)

	MSE	MAE	RMSE
OLS	346	14.0	18.6
Biased OLS	187	9.9	13.7

TAKEAWAY

Learn scikit-learn to vastly simplify and speed up your data science and machine learning workflow.

LECTURE 16

Benefit #1 Modeling Non-Linearities

Use feature engineering to model non-linear relationships, with a linear model

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

$\hat{y} = \sum_{j=1}^{d} \widehat{x_j} \theta_j$

<u>@0</u>\$0

 $\phi: \mathbb{R}^d o \mathbb{R}^p$

<u>@0</u>\$0

$$\hat{y} = \sum_{j=1}^p \widehat{\phi(x)_j} \theta_j$$

<u>@0</u>\$0

Load Dataset Fit Biased OLS Polynomial Features Sinusoidal Features

Load Dataset Fit Biased OLS Polynomial Features Sinusoidal Features

	MSE	MAE	RMSE
OLS	346	14.0	18.6
Biased OLS	187	9.9	13.7
Biased OLS + Location	167	9.0	12.9

Load Dataset Fit Biased OLS Polynomial Features Sinusoidal Features

	MSE	MAE	RMSE
OLS	346	14.0	18.6
Biased OLS	187	9.9	13.7
Biased OLS + Location	167	9.0	12.9
Biased OLS + Location + Poly	141	8.5	11.9

Load Dataset Fit Biased OLS Polynomial Features Sinusoidal Features

	MSE	MAE	RMSE
OLS	346	14.0	18.6
Biased OLS	187	9.9	13.7
Biased OLS + Location	167	9.0	12.9
Biased OLS + Location + Poly	141	8.5	11.9
Biased OLS + Location + Poly + Sin	132	8.3	11.5

<u>@0</u>\$0

TAKEAWAY

Use feature functions to model non-linear relationships, with a linear model.

LECTURE 16

Imputing Data with Scikit-Learn

Learn how to impute data quickly with scikit-learn

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

LECTURE 16

@990

Benefit #2 Applying Domain Knowledge

Leverage insight into the problem to improve model performance

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

Displacement Features Polynomial Features Sinusoidal Features

Displacement Features Polynomial Features Sinusoidal Features

Displacement Features Polynomial Features Sinusoidal Features

LECTURE 16

Benefit #3 Encoding Non-Numeric, Categorical Data

Dealing with data that is not quantitative continuous

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

data100.datahub.berkeley.edu

Categorical Data Text as Bag-of-Words Text as N-Grams Uh Oh

Encoding Categorical Data?

state

NY

WA

CA

state

0

1

2

INTUITION

Given k categories, represent each category as a unit vector an axis-aligned vector, in k-dimensional space.

One-Hot (Dummy) Encoding

state NY WA CA

AK	•••	CA	•••	NY	•••	WA	•••	WY
0	•••	0	• • •	1	•••	0	• • •	0
		0						
0	•••	1	•••	0	•••	0	•••	0

One-Hot (Dummy) Encoding

pandas pd.get_dummies

sklearn.preprocessing.OneHotEncoder

@080

TAKEAWAY

For categorical data, use the **one-hot encoding**.

Pro tip: In particular, use sklearn.preprocessing.OneHo tEncoder instead of panda's pd.get_dummies.

Categorical Data Text as Bag-of-Words Text as N-Grams Uh Oh

INTUITION

Generalize one-hot encoding to sequences of "categories". Add 1 for each occurrence of a word.

Bag of Words Encoding

Learning about machine learning is fun.

Bag of Words Issues

Word order lost

Be aware: Acceptable for some tasks

Potentially really long vector

Solution: Use sparse encoding

Unseen words at test time

Hack: Drop unseen words

Categorical Data Text as Bag-of-Words Text as N-Grams Uh Oh

Order Matters

The book was <u>not</u> well written but I did enjoy it.

The book was well written but I did <u>not</u> enjoy it.

INTUITION

Capture bags of sequences-of-words, instead, to preserve order information.

2-Gram Encoding

Categorical Data Text as Bag-of-Words Text as N-Grams Uh Oh