TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

```
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE
)
```

Abstract

Contents

\mathbf{A}	ostra	act	2
1	Met	thodology	4
	1.1	Parametric bootstrap	4
	1.2	Nonrank-based method	5
	1.3	Results	6
2	Intr	roduction	11
	2.1	Background of the Study	11
	2.2	Statement of the Problem	11
	2.3	Objective of the Study	11
	2.4	Study Hypothesis	11
	2.5	Significance of the Study	11
	2.6	Scope and Limitation	11
	2.7	Definition of Terms	11
3	Bac	kground	11
\mathbf{R}_{0}	efere	nces	11
$\mathbf{A}_{]}$	ppen	dices	11
	Cod	es for algorithm 1	11
	Cod	es for algorithm 2	15
	Cod	es for simulation	21

1 Methodology

Let $\theta_1, \theta_2, \dots, \theta_K$ be the true parameter values and $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be the estimates obtained.

1.1 Parametric bootstrap

Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be independent but not identically distributed estimates. For this study, it is assumed that $\hat{\theta}_k \sim N\left(\theta_k, \sigma_k^2\right), \ k = 1, 2, \dots, K$, where σ_k^2 is known. Denote the corresponding ordered values by $\hat{\theta}_{(1)}, \hat{\theta}_{(2)}, \dots, \hat{\theta}_{(K)}$.

Algorithm 1 Computation of Joint Confidence Region via Parametric Bootstrap

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate $\hat{\theta}_{bk}^* \sim N\left(\hat{\theta}_k, \sigma_k^2\right)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

varies							
	k=1	k=2		k = K			
b=1	$\hat{ heta}_{1(1)}^*$	$\hat{\theta}_{1(2)}^*$		$\hat{ heta}_{1(K)}^*$			
$b = 2 \qquad \hat{\theta}_{2(1)}^*$		$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$			
:	:	:		:			
b = B	$\hat{ heta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$			

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

5: end for

- 6: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^2}$$

4

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_k \sim N(\theta_k, \sigma_k^2)$, for $k = 1, 2, \dots, K$
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $\left(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}\right) \in \mathfrak{R}$ and compute $T_1 = \frac{1}{K} \sum_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_2 = \prod_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_3 = 1 \frac{K + \sum_{k=1}^K \left| \Lambda_{Ok} \right|}{K^2}$
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

1.2 Nonrank-based method

The nonrank-based method assumes that $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K) \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$. It accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, $\boldsymbol{\rho}$ (See Equation 1.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 1.2.).

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{1.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{1.2}$$

where $\Delta = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's and ρ is studied for 0.1, 0.5, 0.9.

Algorithm 3 Computation of Joint Confidence Region via Nonrank-based Method

Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

- 1: **for** $b = 1, 2, \dots, B$ **do**
- 2: Generate $\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$ and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$
- 3: Compute $t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* \hat{\theta}_j^*}{\sigma_j} \right|$
- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

- 1: for replications = $1, 2, \ldots, 5000$ do
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region \mathfrak{R} using Algorithm 3.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute T_1, T_2 , and T_3 .
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

1.3 Results

For the simulation studies, α is fixed at 0.1, while the true standard deviations are varied (sd = 2.0, 3.6, 6.0) along with the number of items to be ranked (K = 5, 10, 20, 30, 40, 51). Table 1 shows that when the correlation is zero, the nonrank-based, independent, and Bonferroni CI methodology exhibit similar coverage values regardless of K and S in contrast, the parametric approach generally yields higher coverage for smaller S while showing comparable variability across different S. It deviates the most from the nominal coverage level.

The case is different in terms of T_1 (See Table 2.) as it increases with decreasing sd and

Table 1: Simulation results for coverage probabilities when $\rho=0.$

		Coverage					
K	sd	Parametric	Non-rankbased	Independent	Bonferroni		
	2.0	0.9198	0.8970	0.9000	0.9042		
5	3.6	0.8534	0.8970	0.9000	0.9042		
	6.0	0.8034	0.8970	0.9000	0.9042		
	2.0	0.8900	0.8962	0.8984	0.9034		
10	3.6	0.8830	0.8962	0.8984	0.9034		
	6.0	0.8212	0.8962	0.8984	0.9034		
	2.0	0.8842	0.9070	0.9096	0.9134		
20	3.6	0.8952	0.9070	0.9096	0.9134		
	6.0	0.8264	0.9070	0.9096	0.9134		
	2.0	0.8786	0.9026	0.9048	0.9088		
30	3.6	0.8594	0.9026	0.9048	0.9088		
	6.0	0.8458	0.9026	0.9048	0.9088		
	2.0	0.8820	0.8958	0.8972	0.9020		
40	3.6	0.8804	0.8958	0.8972	0.9020		
	6.0	0.8474	0.8958	0.8972	0.9020		
	2.0	0.9442	0.9010	0.9008	0.9054		
51	3.6	0.9128	0.9010	0.9008	0.9054		
	6.0	0.9124	0.9010	0.9008	0.9054		

Table 2: Simulation results for average T_1 when $\rho = 0$.

		T_1						
K	sd	Parametric	Non-rankbased	Independent	Bonferroni			
	2.0	2.212960	2.127360	2.128560	2.130800			
5	3.6	1.983280	1.834720	1.835600	1.842240			
	6.0	1.622000	1.462560	1.462560	1.465520			
	2.0	4.002280	3.243800	3.246320	3.259040			
10	3.6	2.710680	2.307480	2.308680	2.317680			
	6.0	1.924080	1.731200	1.733320	1.736840			
	2.0	7.022060	5.333380	5.336680	5.361700			
20	3.6	4.207100	3.448120	3.451680	3.465240			
	6.0	2.787040	2.453000	2.454920	2.462440			
	2.0	11.830987	9.538733	9.547507	9.591387			
30	3.6	7.653613	5.802093	5.806080	5.833933			
	6.0	4.764387	3.778320	3.781573	3.797987			
	2.0	15.153140	12.100160	12.108990	12.160730			
40	3.6	10.392030	7.201310	7.205910	7.241320			
	6.0	6.508180	4.483520	4.485920	4.506070			
	2.0	20.446533	15.607796	15.614745	15.685914			
51	3.6	13.206918	9.098996	9.103490	9.143977			
	6.0	8.598722	5.786298	5.789153	5.814400			

increasing K. The CIs are wider for the parametric approach compared to the remaining approaches whose T_1 only vary by a small margin, with nonrank-based method having the smallest T_1 and Bonferroni, the largest one. The same behavior is observed for T_2 and T_3 .

As the correlation increases, the coverage of both independent and Bonferroni CIs exceeds the nominal value while that of nonrank-based method remains close to it. This holds regardless of K and sd. See Table 3 for sd=2.0; results for other sd values are omitted, as they are identical to those shown. This suggests that when items being ranked are correlated, the proposed method is preferable, as it maintains coverage close to the nominal level.

Table 3: Simulation results for coverage probabilities when $\rho \neq 0$.

		Coverage					
corr	K	Non-rankbased	Independent	Bonferroni			
	5	0.8984	0.9008	0.9046			
	10	0.8996	0.9016	0.9060			
0.1	20	0.8988	0.9026	0.9082			
0.1	30	0.9000	0.9036	0.9088			
	40	0.8916	0.8968	0.9012			
	51	0.8944	0.8994	0.9048			
	5	0.9042	0.9218	0.9260			
	10	0.9038	0.9322	0.9346			
0.5	20	0.9032	0.9378	0.9408			
0.5	30	0.8910	0.9312	0.9338			
	40	0.8920	0.9328	0.9358			
	51	0.9086	0.9492	0.9516			
	5	0.9032	0.9574	0.9586			
	10	0.8962	0.9682	0.9690			
0.9	20	0.8980	0.9758	0.9766			
0.9	30	0.8960	0.9802	0.9806			
	40	0.8996	0.9862	0.9870			
	51	0.8928	0.9866	0.9868			

Table 4: Simulation results for T_1 probabilities when $\rho \neq 0$.

						T_1				
		nonrank			independent			Bonferroni		
K	sd	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$
5	2.0	2.129280	2.140720	2.114400	2.130640	2.153280	2.170800	2.132640	2.155760	2.172320
5	3.6	1.838480	1.830160	1.739120	1.839440	1.863040	1.889040	1.845760	1.869040	1.893840
	6.0	1.455040	1.420000	1.385040	1.456480	1.433200	1.400880	1.459920	1.436640	1.402000
10	2.0	3.254200	3.161880	2.883560	3.262520	3.249120	3.221600	3.274720	3.261680	3.233680
10	3.6	2.297600	2.233440	1.980640	2.301520	2.305600	2.314720	2.311040	2.315960	2.327920
	6.0	1.728520	1.704800	1.634280	1.730840	1.733000	1.711920	1.735480	1.737160	1.716400
20	2.0	5.319420	5.109500	4.371980	5.332860	5.335500	5.360780	5.357940	5.359040	5.385320
20	3.6	3.441220	3.321680	2.863180	3.448160	3.457860	3.488740	3.462300	3.473300	3.502700
	6.0	2.450240	2.384140	2.172600	2.455120	2.452100	2.441440	2.463000	2.460020	2.448520
20	2.0	9.525240	9.112560	7.639680	9.549013	9.576253	9.623440	9.592120	9.619173	9.664320
30	3.6	5.784933	5.512867	4.555827	5.799840	5.813653	5.842280	5.828347	5.842120	5.870320
	6.0	3.770373	3.612987	3.087267	3.779547	3.787573	3.789267	3.795240	3.804000	3.804840
40	2.0	12.087970	11.537040	9.602120	12.123520	12.153500	12.224780	12.175670	12.203740	12.273560
40	3.6	7.184540	6.756920	5.430030	7.206670	7.204860	7.226330	7.242580	7.242400	7.265960
	6.0	4.476240	4.256020	3.539500	4.488620	4.491630	4.503040	4.508860	4.511780	4.523070
F 1	2.0	15.563663	14.706651	11.878298	15.608400	15.641286	15.662024	15.679569	15.712047	15.736000
51	3.6	9.071851	8.561145	6.969490	9.096541	9.099663	9.117435	9.138267	9.140047	9.159812
	6.0	5.772494	5.465592	4.432910	5.788596	5.800847	5.826855	5.814674	5.826659	5.853412

2 Introduction

- 2.1 Background of the Study
- 2.2 Statement of the Problem
- 2.3 Objective of the Study
- 2.4 Study Hypothesis
- 2.5 Significance of the Study
- 2.6 Scope and Limitation
- 2.7 Definition of Terms

3 Background

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices

Codes for algorithm 1

```
K <- length(theta_hat)
 gamma = \frac{1}{(1-alpha)}(\frac{1}{K})
 z = qnorm(1-gamma/2)
 ci_lower < - theta_hat - z*S
 ci\_upper <- theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
 ))
}
get_bonferroni_ci <- function(theta_hat,
                      S,
                      alpha){
 K <- length(theta_hat)
 z = qnorm(1-(alpha/K)/2)
 ci_lower < - theta_hat - z*S
 ci\_upper < - theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
 ))
}
get_parametric_ci <- function(B,
                      theta_hat,
                      S,
                      alpha) {
 K <- length(theta_hat)
```

```
thetahat_star <- sapply(seq_len(K), function(i) {
 rnorm(B, mean = theta\_hat[i], sd = S[i])
})
colnames(thetahat star) <- paste0("thetahat star",
                 sprintf("%02d", 1:K))
sorted_thetahat_star <- t(apply(thetahat_star, 1, sort))
colnames(sorted_thetahat_star) <- paste0("sorted_thetahat_star",
                     sprintf("%02d", 1:K))
variance vector <- S^2
minuend \leftarrow thetahat_star^2 + rep(
 variance\_vector, each = nrow(thetahat\_star))
sigma_hat_star <- sqrt(
 t(apply(minuend, 1, sort)) - sorted_thetahat_star^2)
sorted_theta_hat <- sort(theta_hat)
t_star <- apply(
 abs(
   sorted thetahat star - rep(
    sorted theta hat,
    each = nrow(sorted thetahat star)
   )/sigma_hat_star
  ),
 1,
 max)
```

```
t_hat <- quantile(t_star, probs = 1 - alpha)
sigma_hat <- sqrt(
 sort(theta_hat^2 + variance_vector) - sorted_theta_hat^2)
ci_lower <- sorted_theta_hat - t_hat*sigma_hat
ci_upper <- sorted_theta_hat + t_hat*sigma_hat
return(list(
 ci_lower = ci_lower,
 ci\_upper = ci\_upper
))
get_nonrankbased_ci <- function(B,
              theta hat,
              alpha,
              varcovar_matrix) {
K <- length(theta_hat)
generate_data <- function(){MASS::mvrnorm(n = 1,
                 mu = theta hat,
                 Sigma = varcovar matrix)
thetahat_star <- t(replicate(B, generate_data()))
t_star <- apply(thetahat_star,
        function(x) max(abs((x - theta_hat) / sqrt(
         diag(varcovar_matrix)))))
```

Codes for algorithm 2

```
source("../../R/compute_ci.R")
library("doRNG")

get_ranks <- function(k, tuple_list){
    Lambda_lk <- which(
        tuple_list[,2]<=tuple_list[k,1])
    Lambda_lk <- Lambda_lk[Lambda_lk != k]
    Lambda_Ok <- which(
        tuple_list[,2]>tuple_list[k,1] & tuple_list[k,2] > tuple_list[,1])
    Lambda_Ok <- Lambda_Ok[Lambda_Ok != k]
    ranks <- seq(
    length(unique(Lambda_lk)) + 1,
    length(unique(Lambda_lk)) + length(unique(Lambda_Ok)) + 1,
    1
    )
    return(list(
    ranks = ranks,</pre>
```

```
Lambda_Ok = Lambda_Ok
 ))
}
get_t1 <- function(v) mean(v)
get_t2 \leftarrow function(v) \operatorname{prod}(v)^(1/\operatorname{length}(v))
get_t3 <- function(v) {
 \frac{1}{2} - ((\operatorname{length}(v) + \operatorname{sum}(v)) / (\operatorname{length}(v)^2))
}
get_coverage <- function(ci_lower,
                     ci_upper,
                     true_theta) {
 return(all(ci_lower<=true_theta) & all(true_theta<=ci_upper))
}
algo2_nonrankbased <- function(
   true_theta,
   Κ,
   reps = 5, \# step 4
   B = 100,
   alpha = 0.10,
   varcovar_matrix){
  foreach(iter = 1:reps,
        .combine = rbind,
        .packages = c("foreach", "arrow", "MASS"),
        . \\ export = c("get\_nonrankbased\_ci", "get\_independent\_ci", \\
```

```
"get_bonferroni_ci", "get_ranks", "get_coverage",
              "get_t1", "get_t2", "get_t3")
) %dorng% {
 # step 1 ======
 theta_hat <- mvrnorm(n = 1,
                mu = true\_theta,
                Sigma = varcovar\_matrix
 # step 2 ======
 S <- sqrt(diag(varcovar_matrix))
 ci_methods <- list(
  nonrankbased = function() get_nonrankbased_ci(B, theta_hat, alpha,
                                   varcovar_matrix),
  independent = function() get_independent_ci(theta_hat, S, alpha),
  bonferroni = function() get_bonferroni_ci(theta_hat, S, alpha)
 )
 ci_results <- lapply(ci_methods, function(f) f())
 coverages <- lapply(ci_results, function(res) {
  get_coverage(
    ci_lower = res$ci_lower,
    ci\_upper = res$ci\_upper,
    true theta = true theta
 })
```

```
process_ci_result <- function(result, K) {
 tuple_list <- t(apply(
  data.frame(
    ci_lower = result$ci_lower,
    ci upper = result$ci upper
  ),
  1,
  function(row) as.numeric(row)
 ))
 rank_range_length <- sapply(1:K, function(x)
  length(get_ranks(x, tuple_list)$ranks)
 list(
  t1 = get_t1(rank_range_length),
  t2 = get\_t2(rank\_range\_length),
  t3 = get_t3(rank_range_length)
}
processed <- lapply(ci_results, process_ci_result, K = K)
data.frame(
 t1_nonrankbased = processed$nonrankbased$t1,
 t2_nonrankbased = processed$nonrankbased$t2,
 t3_nonrankbased = processed$nonrankbased$t3,
 coverage_nonrankbased = coverages$nonrankbased,
 t1_independent = processed$independent$t1,
```

```
t2_independent = processed$independent$t2,
    t3_independent = processed$independent$t3,
    coverage_independent = coverages$independent,
    t1_bonferroni = processed$bonferroni$t1,
    t2 bonferroni = processed$bonferroni$t2,
    t3_bonferroni = processed$bonferroni$t3,
    coverage_bonferroni = coverages$bonferroni
    )
 }
}
algo2_parametric <- function(
  true_theta,
  Κ,
  reps = 5, # step 4
  B = 100,
  alpha = 0.10,
  S){}
 foreach(iter = 1:reps,
       .combine = rbind,
       .packages = c("foreach", "arrow", "MASS"),
       .export = c("get_parametric_ci", "get_ranks", "get_coverage",
               "get_t1", "get_t2", "get_t3")
 ) %dorng% {
  # step 1 ======
  theta_hat <- rnorm(
    n = K,
```

```
mean = true_theta,
 sd = S
# step 2 ======
result <- get_parametric_ci(B,
                   theta_hat,
                   S,
                   alpha)
# step 3 ======
sorted_true_theta <- sort(true_theta)
coverage <- get_coverage(ci_lower = result$ci_lower,
                 ci_upper = result$ci_upper,
                 true_theta = sorted_true_theta)
tuple\_list <- t(apply(
 data.frame(ci_lower = result$ci_lower,
         ci_upper = result$ci_upper), 1, function(row) as.numeric(row)))
rank_range_length <- sapply(1:K, function(x) length(
 get_ranks(x, tuple_list)$ranks))
t1 <- get_t1(rank_range_length)
t2 <- get_t2(rank_range_length)
t3 <- get_t3(rank_range_length)
data.frame(
 t1_parametric = t1,
 t2_parametric = t2,
 t3_parametric = t3,
```

```
coverage_parametric = coverage
)
}
```

Codes for simulation

```
#3:37PM
source("../../R/implement_algo2.R")
mean <-23.8
df <- readRDS("../../data/mean_travel_time_ranking_2011.rds")
cl=parallel::makeCluster(15)
registerDoParallel(cl)
sds < -c(2, 3.6, 6)
Ks <- c(51, 40, 30, 20, 10, 5)
corrs <- c(0.1,0.5,0.9)
alphas <- c(0.1)#c(0.05, 0.1, 0.15, 0.2)
for (sd in sds) {
 for (K in Ks) {
   set.seed(123974)
   true_theta <- rnorm(K, mean, sd)
   true\_sds <- df$S[1:K]
   for (alpha in alphas) {
```

```
tic("Running parametric...")
coverage_parametric_df <- algo2_parametric(true_theta,
                                    Κ,
                                    reps = 5000,
                                    B = 500,
                                    alpha= alpha,
                                    S=true sds)
toc()
saveRDS(coverage_parametric_df, paste0("output/coverage_parametric_",
                                 K,"__", sd, "__", alpha, ".rds"))
for (corr in corrs) {
 \operatorname{corr}_{\operatorname{matrix}} <- (1 - \operatorname{corr}) * \operatorname{diag}(K) + \operatorname{corr} * \operatorname{matrix}(1, K, K)
 variance_vector <- true_sds^2
 delta <- diag(variance_vector)
 varcovar_matrix <- delta^{(1/2)} \% \% corr_matrix \% \% delta^{(1/2)}
 tic("Running nonrankbased...")
 coverage\_output\_df <- \ algo 2\_nonrank based (
   true_theta,
   Κ,
   reps = 5000,
   B = 500,
   alpha=alpha,
   varcovar_matrix = varcovar_matrix)
 toc()
 saveRDS(coverage_output_df, paste0("output/coverage_probability_",
                               K,"_", sd, "_", corr, "_",
                               alpha, ".rds"))
```

```
}
   }
stopCluster(cl)
param\_grid \leftarrow expand.grid(K = Ks, sd = sds, corr = corrs, alpha = alphas)
results <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 corr <- param_grid$corr[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_probability_",
               K, "_", sd, "_", corr, "_", alpha, ".rds"))
 data.frame(
   K = K,sd = sd,corr = corr,alpha = alpha,
   Cov_nonrankbased = mean(a$coverage_nonrankbased),
   Cov\_independent = mean(a\$coverage\_independent),
   Cov_bonferroni = mean(a$coverage_bonferroni),
   T1_nonrankbased = mean(a$t1_nonrankbased),
   T1_independent = mean(a$t1_independent),
   T1_bonferroni = mean(a$t1_bonferroni),
   T2_nonrank = mean(a$t2_nonrankbased),
   T2_independent = mean(a$t2_independent),
   T2_bonferroni = mean(a$t2_bonferroni),
```

```
T3_independent = mean(a$t3_independent),
   T3_nonrankbased = mean(a$t3_nonrankbased),
   T3_bonferroni = mean(a$t3_bonferroni)
 )
}))
param\_grid \leftarrow expand.grid(K = Ks, sd = sds, alpha = alphas)
results1 <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_parametric_",
               K, "_", sd, "_", alpha, ".rds"))
 data.frame(
   K = K
  sd = sd,
   alpha = alpha,
   Cov_parametric = mean(a$coverage_parametric),
   T1_parametric = mean(a$t1_parametric),
   T2_parametric = mean(a$t2_parametric),
   T3_parametric = mean(a$t3_parametric)
 )
}))
save(results, results1, file = "simulation_results.RData")
```