3.13
$$\frac{1}{pq} = \frac{a}{p} + \frac{b}{q} = \frac{pb + qa}{pq} \iff 1 = pb + qa$$

- 1) S'il existe des entiers a et b tels que $\frac{1}{pq} = \frac{a}{p} + \frac{b}{q}$, alors $1 = p \, b + q \, a$. Vu le théorème de Bachet de Mériziac, $\operatorname{pgcd}(p,q)$ doit diviser 1. Dès lors $\operatorname{pgcd}(p,q) = 1$, c'est-à-dire que p et q sont premiers entre eux.
- 2) Si p et q sont premiers entre eux, alors le théorème de Bézout garantit l'existence d'entiers a et b tels que p b+q $a=\operatorname{pgcd}(p,q)=1$. En divisant cette dernière égalité par p q, on obtient $\frac{pb}{pq}+\frac{qa}{pq}=\frac{1}{pq}$ à savoir $\frac{a}{p}+\frac{b}{q}=\frac{1}{pq}$.