Maximize cumulative future reward
Q*(s,a) = Max E[V++VY+++++++++++++++++++++++++++++++++
$8+25$, $\alpha_{\star}=\alpha$, π
CAN Model
Problem: (D) correlations present in the sequence of observation
"Small update", "Significantly change" to Q the policy
change data
distribution Experience Replay (randomize over the data)
2 Correlation between action-values Q
and target value r+ PMaxxQ(s', a'

it evative update that adjust the action-values Q toward target values Q(s,a; Di) CNN model $Q_{+} = (S_{+}, a_{+}, V_{+}, S_{++})$ $\mathcal{D}_{+} = \left\{ \mathcal{Q}_{1}, \mathcal{Q}_{2}, \dots, \mathcal{Q}_{k} \right\}$ $(s,a,r,s') \sim U(D)$ $L_{i}(\theta_{i}) = \overline{L}_{(s,\alpha,r,s') \sim U(D)} \left(r + \gamma \max_{\alpha} Q(s',\alpha',\theta_{i}) - \frac{1}{\alpha'} \right)$ $O(s,a;O_i)$ netu-ve parameters ers of the Q-network Used to compute the at iteration i target at iteration i

$$Q^*(s,a) = \mathbb{E}_{s'}\left[Y + V_{\text{Max}} Q^*(s',a') \mid s.a\right]$$

D(5,a; 0) 2 Q*(5,a)

" use a function approximator to estimate
the action-value function"

 $Q(s,a;\theta) \approx Q^*(s,a)$

$$y = r + p \max_{\alpha'} Q(s', \alpha'; \theta_i)$$

$$L_i(\theta_i) = E_{s,\alpha,r} \left(E_{s'}[9|s,\alpha] - Q(s,\alpha_i; \theta_i) \right)$$

$$= \mathbb{E}_{s,\alpha,\gamma,s'} \left[(y - Q(s,\alpha;\theta_i))^2 \right] +$$

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D if episode terminates at step j+1 $\operatorname{Set} y_{j} = \begin{cases} r_{j} \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) \end{cases}$ otherwise Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset Q = QEnd For End For

, ,)			
r+Vmax Q*(5,01		