The Impact of Public Transit on Rideshare Demand in Austin, Texas

Jeffrey Finucane, Justin Heinzekehr, Jingya Ye, Ting Sit, Warren Ehrenfried

Overview of Project

Problem overview

- Average U.S. "ridesharing" trip results in 69% more pollution than the transportation choices
 - Rideshare- 683 g CO2
 - Public Transit 103g CO2
- City of Austin to be opportunity to analyze ridesharing and public transit
- Do rideshare services serve as a complement to public transportation or cannibalize public transit utilization?
- What motivates a passenger to switch mode of transportation?

Problem Statement

Identify the potential complementary or substitution effects among public transit and rideshare usage in Austin to suggest strategies to convert rideshare rides to public transit rides in order to help meet the city's <u>50/50 mode share</u> target by 2039.

Key objectives:

- Reduction in harmful emissions
- More affordable and accessible transit services to citizens.
- Less traffic congestion as rideshare rides decrease

Approach

- 1. Exploratory analysis on rideshare data, identify potential variables that explain rider's behavior of using the service
- 2. Apply the same potential variables to bus ride data to assess if there are consistent compact to bus rider's behavior of using public transit
- 3. Merge the two dataset to run linear regression bus ride against rideshare, controlling on the potential variables identified. Check model significance
- 4. Determine if complementary or substitution effect exists among rideshare and bus services
- 5. Apply high level CO2 emission reduction calculation and estimate social cost saving through benchmark from existing research

Overview of Data

Dataset Description

Austin Ride Volume - summarizes the total volume of rideshare on each day from June 16th,2016 to August 31st, 2016.

RideAustin_Weather - contains individual rideshares information such as start/end location coordinates, weather conditions, vehicle type

Fuel economy Vehicle - fuel consumption in both city and highway with CO2 emission on each specific vehicle.

CapMetro Shapefile - CapMetro detailed operation information which contains passenger volume at each station from June 2016 to January 2017

Census Dataset - The American Community Survey shows population density (ppsm) and median household income by census tract.

Cleaning Process

- Remove rideshare trips that travelled >11km or last more than 120 minutes.
 Assumed those trips cannot be replaced by public transit.
- Align time frame from Austin ride volume and CapMetro datasets; summarize the passenger volume from June to end of August, 2016.
- Rounded lat, long of bus volume dataset to 2 decimal places to group alongside rideshare volume

Estimating Walking Distance

- Variable to determine if walking distance is a factor in choice of transportation
- Calculate average distance from rideshare pick- up location to nearest bus stops
- Straight-line euclidean distance method calculated for each data point to each bus stop location
- Average distance of 3 nearest bus stops
- Coarse coordinates: rideshare data only accurate to 2 decimal places or up to a km inaccurate (ex: Lat: 30.23, Long: -97.54)
- Euclidean method imperfect for route distance

Rideshare coordinate precision is coarse

Spatial Binning of Coordinates

- Spatial binning method applied to compiled rideshare/bus volume dataset for further analysis
- Locations divided in a 5 x 5 grid resulting in
 25 unique categorical variables
- Grouped data regions providing more related and relevant data points
- The result shows that bus volume has a negative relationship with rideshare volume and is somewhat significant with an Rsquared value > 0.5

Heatmap showing density of rideshare pick-up locations

Initial Hypothesis

- Control on day of week, hour of day, and weather condition, higher bus ride volume lead to lower rideshare volume (negatively correlated).
- For the same to and from location, the **longer** the difference in traveled time among rideshare and public transposition, the **higher** the rideshare volume.
- The shorter the distance between a pickup/dropoff location from a bus stop, the lower the share ride volume.
- The **fewer** rides on the road through rideshare the **less** fuel consumed and **less** CO2 emissions (positive correlation).

EDA

Rideshares Volume Pattern

Observe <u>inverse</u> relationship among rideshare and bus ride volume, implies the possibility of <u>substitution</u> effect

Bus rides Volume Pattern

EDA (cont)

Existence of weather conditions do not appear to affect rideshare usage distribution

Rideshares Volume Pattern

Day distribution conditioned on Thunder

Modeling

Key Variables

- Rideshare volume (ride_vol) Target
- Bus ride volume (bus_vol)
- Weekend/Weekday (wkd_end): Mon-Fri (weekday), Sat/Sun(weekend)
- Hour of day (hr_cat): 4 categories (Midnight 6am, 6am to 12noon, 12noon to 6pm, 6pm to midnight)
- Weather conditions (Fog, Thunder)
- Spatial binning (start_grid_cell)

Statistical Tests

K-S Test on weather conditions

Not significant

Fog	Thunder
data: no_fog\$n and fog\$n D = 0.28571, p-value = 0.9627 alternative hypothesis: two-sided	data: no_thunder\$n and thunder\$n D = 0.2381, p-value = 0.9627 alternative hypothesis: two-sided

Pearson Test on bus_vol

Significant

```
data: final_df$bus_vol and final_df$ride_vol
t = -6.3726, df = 166, p-value = 1.762e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.5573409 -0.3129403
sample estimates:
    cor
    -0.4433435
```

Regression Test on hr_cat, wkd_end

Significant

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8899.7 614.8 14.475 < 2e-16 ***
wkd_endweekend 6610.6 648.8 10.188 < 2e-16 ***
hr_catevening -4468.9 829.0 -5.390 2.43e-07 ***
hr_catrush_hour -6689.0 829.0 -8.068 1.47e-13 ***
hr_catwork_hour -6957.1 829.0 -8.392 2.19e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3799 on 163 degrees of freedom Multiple R-squared: 0.5437, Adjusted R-squared: 0.5325 F-statistic: 48.56 on 4 and 163 DF, p-value: < 2.2e-16

Linear Regression Model

Ride_vol ~ Bus_vol + wkd_end + hr_cat + start_grid_cell

Controlling on day of week, hour of day, and location factor, *bus_vol* is **significant** to predict *ride_vol*.

The effect is about -4%

R2 - 0.54

```
lm(formula = ride_vol ~ bus_vol + wkd_end + hr_cat + start_grid_cell,
    data = final_df_1)
Residuals:
            10 Median
-3002.7 -369.2
                  58.3
                         267.9
                               8721.8
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   6.769e+02 9.292e+01
                                        7.284 5.02e-13 ***
bus_vol
                  -4.329e-02 3.418e-03 -12.666 < 2e-16 ***
wkd_endweekend
                   6.190e+02 5.522e+01 11.210 < 2e-16 ***
                  -3.676e+02 7.509e+01
hr_catevening
                                        -4.896 1.08e-06 ***
hr_catrush_hour
                  -3.898e+02 7.991e+01
                                        -4.878 1.18e-06 ***
hr_catwork_hour
                  -3.459e+02 8.079e+01
                                         -4.282 1.96e-05 ***
start_grid_cell2-B -2.046e+02 1.116e+02
                                         -1.833 0.067053
start_grid_cell2-C -3.946e+02 1.188e+02
                                         -3.323 0.000912 ***
start_grid_cell2-D -6.452e+02 2.947e+02
start_grid_cell3-A 1.772e+03 1.116e+02 15.880 < 2e-16 ***
start_grid_cell3-B 3.822e+03 1.434e+02
                                         26.657 < 2e-16 ***
start_grid_cell3-C -4.412e+02 1.117e+02
                                         -3.950 8.14e-05 ***
start_grid_cell3-D -5.326e+02 1.840e+02
                                         -2.894 0.003852 **
start_grid_cell4-A -4.301e+02 1.156e+02
                                         -3.720 0.000206 ***
start_grid_cell4-B -7.122e+01 1.111e+02
start_grid_cell4-C -4.739e+02 1.130e+02
start_grid_cell4-D -6.739e+02 1.020e+03
                                         -0.660 0.509078
start_grid_cell5-A -5.619e+02 1.213e+02
                                        -4.632 3.91e-06 ***
start_grid_cell5-B -3.132e+02 3.939e+02
                                        -0.795 0.426611
start_grid_cell5-c -6.149e+02 7.240e+02 -0.849 0.395836
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1016 on 1623 degrees of freedom
Multiple R-squared: 0.5511.
                               Adjusted R-squared: 0.5458
F-statistic: 104.9 on 19 and 1623 DF, p-value: < 2.2e-16
```

Recommendation

Public Transit Expansion Opportunity

Can we add variables that allow us to predict public transportation use in areas without service?

2020 US Census: American Community Survey

Variables that significantly predict public transportation use:

- Median household income
- Population density (people per square mile)
- + Diversity of demand for rideshares: many times of day, days of week, and geographical locations within a given census tract

Public Transit Expansion Opportunity

Best potential locations for expanding public transportation are those with:

- High demand for ridesharing (passgrs)
- High population density (ppsm)
- Low median income (median_hincome)
- Use rideshares in variety of ways (n_var)

```
call:
lm(formula = rides_on ~ passgrs + ppsm + median_hincome + n_var,
    data = master_grp)
Residuals:
            1Q Median
   Min
-254352 -31992
                 -7874
                         21262 491868
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               5249.4874 20410.2518 0.257 0.79730
                  4.5259
                             0.4132 10.952 < 2e-16
passgrs
                  6.4172
                             1.7971 3.571 0.00045
ppsm
median_hincome
                 -0.5114
                             0.1832 -2.792 0.00577 **
                127.2927
                            28.6557 4.442 1.5e-05 ***
n_var
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 74510 on 192 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.5347, Adjusted R-squared: 0.525
F-statistic: 55.15 on 4 and 192 DF, p-value: < 2.2e-16
```

Public Transit Expansion Opportunity

		Predicted Public Transportation Use
Rank	Census Tract	per Year
1	215.14	74,046
2	23.13	65,262
3	205.12	58,937
4	207.04	47,328
5	205.11	36,265
6	215.02	31,491
7	207.1	14,350
8	215.15	13,669
9	207.09	10,874

Predicted Business Outcomes

Recommendation: Add a route connecting these eight census tracts in the Round Rock neighborhood north of Austin.

Total new annual public transportation use: 286,958

Replaced rideshare use: 12,422

Estimated replaced private vehicle trips: ~150,000

Cost of constructing eight new bus stops: ~\$280,000-\$400,000

CO₂ emissions saved: ~98 tons per year, or \$18,600 in terms of social value

August 2017: CapMetro Expands into Round Rock

Capital Metro arrives in Round Rock

MONDAY, AUGUST 28, 2017 BY CALEB PRITCHARD

Challenges

- Imprecision of location data distance variable couldn't apply
- Passenger's behavior data omitted from model due to time constraints on gathering the needed data
- Austin population & economic growth impacts are ignored in the model
- Rate of return on CO2 emission need more refinement to ensure that the recommendation is economically and socially attractive for the needed capital investment

Appendix

Linear Regression Model

Ride_vol ~ Bus_vol + wkd_end + hr_cat

Bus_vol, while shows negative coefficient as agreed with Pearson test, is **not significant**

Consider adding new variables to refine the model

```
call:
lm(formula = ride_vol ~ bus_vol + wkd_end + hr_cat, data = final_df)
Residuals:
   Min
            10 Median
                            30
                                   Max
-7700.1 -1794.7 -298.4 2041.2 13080.3
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                8.981e+03 6.440e+02 13.947 < 2e-16 ***
bus vol
               -4.980e-03 1.137e-02 -0.438
wkd_endweekend 6.576e+03 6.552e+02 10.036 < 2e-16 ***
hr_catevening
               -4.306e+03 9.104e+02 -4.730 4.86e-06 ***
hr_catrush_hour -6.300e+03 1.216e+03 -5.182 6.45e-07 ***
hr_catwork_hour -6.492e+03 1.348e+03 -4.815 3.35e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3809 on 162 degrees of freedom
Multiple R-squared: 0.5443,
                               Adjusted R-squared: 0.5302
F-statistic: 38.69 on 5 and 162 DF, p-value: < 2.2e-16
```

Austin Ride Volume

The data set summarizes the total volume of rideshare on each day from June 16th,2016 to August 31st, 2016. Number of rideshare will be the response to the model to be trained for.

Ride Volume								
Date	Rides		Weekend	Total for Week	Running Total			
Thursday, June 16	190				190		Day 1	190
Friday, June 17	345				535		Day 2	535
Saturday, June 18	411				946		Day 3	946
Sunday, June 19	202		958	1148	1148		Day 4	1148
Monday, June 20	100				1248		Day 5	1248
Tuesday, June 21	124				1372		Day 6	1372
Wednesday, June 22	220				1592		Day 7	1592
Thursday, June 23	144	-24%			1736		Day 8	1736
Friday, June 24	397	15%			2133		Day 9	2133
Saturday, June 25	503	22%	21%	52%	2636		Day 10	2636
Sunday, June 26	256	27%	1156	1744	2892		Day 11	2892
Monday, June 27	97	-3%			2989		Day 12	2989
Tuesday, June 28	108	-13%			3097		Day 13	3097
Wednesday, June 29	122	-45%			3219		Day 14	3219
Thursday, June 30	203	41%			3422		Day 15	3422
Friday, July 1	514	29%			3936		Day 16	3936
Saturday, July 2	767	52%	65%	40%	4703		Day 17	4703
Sunday, July 3	622	143%	1903	2433	5325	297	Day 18	5325
Monday, July 4	402	314%			5727		Day 19	5727
Tuesday, July 5	199	84%			5926		Day 20	5926
Wednesday, July 6	195	60%			6121		Day 21	6121
Thursday, July 7	248	22%			6369		Day 22	6369
Friday, July 8	450	-12%			6819		Day 23	6819
Saturday, July 9	654	-15%	-22%	4%	7473		Day 24	7473
Sunday, July 10	378	-39%	1482	2526	7851		Day 25	7851

RideAustin_Weather

This data set contains key information which includes geographic start and end locations of the rideshare, detailed vehicle list and weather condition for each registered rideshare.

completed_on	distance_tr end	_locatice	end_location	started_on	driver_ratir	rider_ratingstart_zip_c	end_zip_cc	charity_id	requested	free_credit	surge_facto	start_locatista	rt_locaticolor	make	model	year
2016/6/4 4:35	285	30.27	-97.75	2016/6/4 4:34	5	5			REGULAR		0	-97.75	30.27 Black	Cadillac	XTS	2013
2016/6/4 4:51	1029	30.27	-97.74	2016/6/4 4:45	5	5			REGULAR		0	-97.75	30.27 Black	Cadillac	XTS	2013
2016/6/4 5:27	8459	38.68	-121.04	2016/6/4 5:18	5	5			REGULAR		0	-121.07	38.65 Gray	Bentley	Continenta	2013
2016/6/4 6:51	443	38.68	-121.04	2016/6/4 6:50	5	5			REGULAR		0	-121.04	38.68 Gray	Bentley	Continenta	2013
2016/6/4 8:17	568	38.68	-121.04	2016/6/4 8:16	3	5			REGULAR		0	-121.04	38.68 Gray	Bentley	Continenta	2013
2016/6/4 15:13	4051	30.27	-97.74	2016/6/4 15:05	5	5			REGULAR		0	-97.76	30.25 Black	Cadillac	XTS	2013
2016/6/4 15:26	790	30.27	-97.75	2016/6/4 15:24	5	5			REGULAR		0	-97.75	30.27 Black	Cadillac	XTS	2013
2016/6/5 3:50	2171	30.27	-97.75	2016/6/5 3:40	0.5	5			REGULAR		0	-97.75	30.26 Black	Cadillac	XTS	2013
2016/6/5 4:33	10260	30.27	-97.75	2016/6/5 4:17		5			REGULAR		0	-97.77	30.2 Black	Infiniti	QX60	2015
2016/6/5 7:12	5294	30.24	-97.78	2016/6/5 6:57	3	5			REGULAR		0	-97.75	30.27 Black	Cadillac	SRX	2012
2016/6/5 7:36	9768	30.2	-97.77	2016/6/5 7:26	4.5	5			REGULAR		0	-97.74	30.27 Silver	Toyota	Highlander	2008
2016/6/5 20:59	12169	30.2	-97.67	2016/6/5 20:47	5	5			REGULAR		0	-97.75	30.24 White	Nissan	Murano	2015
2016/6/5 21:12	9859	30.27	-97.74	2016/6/5 20:56	5	5			REGULAR		0	-97.8	30.21 Black	Cadillac	XTS	2013
2016/6/5 22:19	4289	30.31	-97.75	2016/6/5 22:11	5	5			REGULAR		0	-97.74	30.29 Black	Cadillac	XTS	2013
2016/6/5 23:35	3305	30.29	-97.74	2016/6/5 23:29	3	5			REGULAR		0	-97.75	30.31 Black	Cadillac	XTS	2013
2016/6/5 21:55	2290	30.27	-97.75	2016/6/5 21:47		5			REGULAR		0	-97.74	30.26 Black	Cadillac	SRX	2012
2016/6/5 22:23	2411	30.27	-97.75	2016/6/5 22:15	3	5			REGULAR		0	-97.75	30.25 Black	Cadillac	SRX	2012
2016/6/5 23:57	2107	30.25	-97.75	2016/6/5 23:51		5			REGULAR		0	-97.75	30.27 Black	Cadillac	SRX	2012
2016/6/5 23:33	2120	30.27	-97.74	2016/6/5 23:24	5	5			REGULAR		0	-97.75	30.27 Gray	Toyota	Highlander	2012
2016/6/6 0:07	9771	30.26	-97.75	2016/6/5 23:47		5			REGULAR		0	-97.77	30.31 White	Nissan	Murano	2015
2016/6/6 1:28	3468	30.31	-97 73	2016/6/6 1:20		5			REGULAR		0	-97 75	30 29 White	Chevrolet	Tahoe	2013

Fuel economy -Vehicle

This will help to get fuel consumption in both city and highway with CO2 emission on each specific vehicle.

barrels08	barrelsA08 cha	arge120 c	harge240 d	city08	city08U	cityA08	cityA08U	cityCD	cityE	cityUF	co2	co2A		co2Tailpip	o2Tailpip	comb08
14.16714	0	0	0	19	0	(0	0	0	-1	-1	0	423.1905	21
27.04636	0	0	0	9	0	() (0	0	0	-1	-1	0	807.9091	11
11.01889	0	0	0	23	0	()		0	0	0	-1	-1	0	329.1481	27
27.04636	0	0	0	10	0	() (0	0	0	-1	-1	0	807.9091	11
15.65842	0	0	0	17	0	() ()	0	0	0	-1	-1	0	467.7368	19
13.52318	0	0	0	21	0	()		0	0	0	-1	-1	0	403.9545	22
11.9004	0	0	0	22	0	(0	0	0	-1	-1	0	355.48	25
12.39625	0	0	0	23	0	() ()	0	0	0	-1	-1	0	370.2917	24
11.44269	0	0	0	23	0	()		0	0	0	-1	-1	0	341.8077	26
11.9004	0	0	0	23	0	(0	0	0	-1	-1	0	355.48	25
11.44269	0	0	0	23	0	() ()	0	0	0	-1	-1	0	341.8077	26
14.16714	0	0	0	18	0	()		0	0	0	-1	-1	0	423.1905	21
12.39625	0	0	0	21	0	(0	0	0	-1	-1	0	370.2917	24
14.16714	0	0	0	18	0	() (0	0	0	-1	-1	0	423.1905	21
22.88538	0	0	0	12	0	()		0	0	0	-1	-1	0	683.6154	13
12.93522	0	0	0	20	0	() (0	0	0	-1	-1	0	386.3913	23
14.8755	0	0	0	18	0	() (0	0	0	-1	-1	0	444.35	20
14.16714	0	0	0	19	0	()		0	0	0	-1	-1	0	423.1905	21
15.65842	0	0	0	17	0	(0	0	0	-1	-1	0	467.7368	19
15.65842	0	0	0	17	0	() (0	0	0	-1	-1	0	467.7368	19
18.59438	0	0	0	14	0	(0	0	0	-1	-1	0	555.4375	16
18.59438	0	0	0	14	0	() (0	0	0	-1	-1	0	555.4375	16
22.88538	0	0	0	11	0	() ()	0	0	0	-1	-1	0	683.6154	13
12.93522	0	0	0	21	0	() (0	0	0	-1	-1	0	386.3913	23
15.65842	0	0	0	17	0	() ()	0	0	0	-1	-1	0	467.7368	19
22.88538	0	0	0	11	0	() ()	0	0	0	-1	-1	0	683.6154	13
14.16714	0	0	0	18	0	())	0	0	0	-1	-1	0	423.1905	21

CapMetro Ridership Data

This data set contains the number of passengers getting on or off the CapMetro public transportation system by latitude and longitude from June 2016 to January 2017.

act_trip_start_time	actual_s apc_date_t	me block_id	l booking_id	booking_num	booking_start_date	bs_id	close_date_time	current_route	day_type_vs	direction_cod e id	dwell_time	ext_trip_id	garage_id	headsign_rou	import_error
20161124224222.000	equence 28 20161125000023.0	00 10	05 AUG16D 000	18	20161121000000.000	3148	20161125000023.000	iu	3	e_iu 4	158	1669703	1	1	0
20161125000034.000	2 20161125000034.0	00	0	0	20161125000034.000	0	20161125000034.000	0	0	0	82	0	0	0	5
20161124212802.000	4 20161125000125.0	00 40	02 AUG16D 000	18	20161121000000.000	0	20161125000125.000	0	3	0	0	1676300	1	0	6
20161124224222.000	29 20161125000130.0	00 10	05 AUG16D 000	18	20161121000000.000	3150	20161125000130.000	1	3	4	9	1669703	1	1	0
20161125000151.000	2 20161125000151.0	00	0	0	20161125000151.000	0	20161125000151.000	0	0	0	0	0	0	0	5
20161124223655.000	20 20161125000155.0	00 10	04 AUG16D 000	18	20161121000000.000	5545	20161125000155.000	1	3	6	91	1669678	1	1	0
20161125000200.000	2 20161125000200.0	00	0	0	20161125000200.000	0	20161125000200.000	0	0	0	7	0	0	0	5
20161124220912.000	3 20161125000258.0	00 3500	02 AUG16D 000	18	20161121000000.000	0	20161125000258.000	0	3	0	5673	1675507	1	0	0
20161124224222.000	30 20161125000327.0	00 10	05 AUG16D 000	18	20161121000000.000	4727	20161125000327.000	1	3	4	12	1669703	1	1	0
20161125000402.000	2 20161125000402.0	00	0	0	20161125000402.000	0	20161125000402.000	0	0	0	63	0	0	0	5
20161124225411.000	4 20161125000425.0	00 3000	05 AUG16D 000	18	20161121000000.000	0	20161125000425.000	0	3	0	381	1673635	1	0	0
20161125000452.000	2 20161125000452.0	00	0	0	20161125000452.000	0	20161125000452.000	0	0	0	34	0	0	0	5
20161124223655.000	21 20161125000602.0	00 10	04 AUG16D 000	18	20161121000000.000	546	20161125000602.000	1	3	6	5	1669678	1	1	0
20161125000619.000	2 20161125000619.0	00	0	0	20161125000619.000	0	20161125000619.000	0	0	0	724	0	0	0	5
20161125000635.000	2 20161125000635.0	00	0	0	20161125000635.000	0	20161125000635.000	0	0	0	4	0	0	0	5
20161124225411.000	5 20161125000658.0	00 3000	05 AUG16D 000	18	20161121000000.000	0	20161125000658.000	0	3	0	109	1673635	1	0	0
20161124223655.000	22 20161125000703.0	00 10	04 AUG16D 000	18	20161121000000.000	548	20161125000703.000	1	3	6	10	1669678	1	1	0
20161125000739.000	2 20161125000739.0	00	0	0	20161125000739.000	0	20161125000739.000	0	0	0	0	0	0	0	5
20161124224222.000	31 20161125000749.0	00 10	05 AUG16D 000	18	20161121000000.000	2540	20161125000749.000	1	3	4	32	1669703	1	1	0
20161124223655.000	23 20161125000803.0	00 10	04 AUG16D 000	18	20161121000000.000	4381	20161125000803.000	1	3	6	12	1669678	1	1	0
20161125000822.000	2 20161125000822.0	00	0	0	20161125000822.000	0	20161125000822.000	0	0	0	0	0	0	0	5
20161124225411.000	6 20161125000827.0	00 3000	05 AUG16D 000	18	20161121000000.000	0	20161125000827.000	0	3	0	9	1673635	1	0	0
20161124220912.000	4 20161125000843.0	00 3500	02 AUG16D 000	18	20161121000000.000	0	20161125000843.000	0	3	0	173	1675507	1	0	7
20161124215503.000	4 20161125000857.0	00 3000	04 AUG16D 000	18	20161121000000.000	0	20161125000857.000	0	3	0	626	1673636	1	0	7
20161124223655.000	24 20161125000936.0	00 10	04 AUG16D 000	18	20161121000000.000	550	20161125000936.000	1	3	6	5	1669678	1	1	0
20161124224222.000	32 20161125000941.0	00 10	05 AUG16D 000	18	20161121000000.000	3036	20161125000941.000	1	3	4	9	1669703	1	1	0
20161124215503.000	5 20161125001021.0	00 3000	04 AUG16D 000	18	20161121000000.000	0	20161125001021.000	0	3	0	8	1673636	1	0	6

CapMetro Shapefile

Dataset contains the geographic locations of current public transit stops in the Austin CapMetro public transit city

STOP_ID	STOP_NAME	STOP_ABBR	STREET_NMB	ON_STREET	AT_STREET	CITY	ZIP	BAY	STOP_TYPE	PLACEMENT	CORNER	STATUS	LATITUDE	LONGITUDE
	66 4925 Craigwood/FM	CRFMS	4925	CRAIGWOOD	FM 969	AUSTIN	78725	5	Bus Stop	Nearside	Southeast	Active	30.2841709	-97.6598541
	252 200 Trinity/2nd	2TRS	200	TRINITY	2ND	AUSTIN	78701	1	Bus Stop	Mid-Block	Northeast	Active	30.2638421	-97.7404267
	462 851 Rutland/Park V	il S1	851	RUTLAND	PARK VILLAGE	AUSTIN	78758	3	Bus Stop	Mid-Block	Southeast	Active	30.36547	-97.6975
	466 8740 Lamar/Paytor	S1801	8740	LAMAR	PAYTON GIN	AUSTIN	78758	3	Bus Stop	Mid-Block	Southwest	Active	30.35680916	-97.7010655
	467 8630 Lamar/Fairfie	lc S63	8630	LAMAR	FAIRFIELD	AUSTIN	78758	3	Bus Stop	Farside	Southwest	Active	30.35529611	-97.703127
	468 Lamar/Thurmond	S15	8400	LAMAR	THURMOND	AUSTIN	78758	3	Bus Stop	Farside	Southwest	Active	30.35313912	-97.7060820
	469 8320 Lamar/Meado	v S62	8320	LAMAR	MEADOWLARK	AUSTIN	78758	3	Bus Stop	Nearside	Northwest	Active	30.3522556	-97.7072948
	471 7720 Lamar/Stobar	ıç S1911	7720	LAMAR	STOBAUGH	AUSTIN	78757	,	Bus Stop	Mid-Block	Southwest	Active	30.34604	-97.7139
	472 7520 Lamar/Morrov	v S11	7520	LAMAR	MORROW	AUSTIN	78757	,	Bus Stop	Mid-Block	Southwest	Active	30.34313363	-97.7156561
	474 6814 Lamar/Justin	S56	6814	LAMAR	JUSTIN	AUSTIN	78757	,	Bus Stop	Farside	Southwest	Active	30.33620568	-97.7200083
	475 6600 Lamar/Brentw	o S54	6600	LAMAR	BRENTWOOD	AUSTIN	78757	,	Bus Stop	Nearside	Northwest	Active	30.33411003	-97.7213225
	476 6200 Lamar/Denso	n S7	6200	LAMAR	DENSON	AUSTIN	78757	,	Bus Stop	Nearside	Northwest	Active	30.33042504	-97.7236362
	480 5528 Lamar/Koenig	S48	5528	LAMAR	KOENIG	AUSTIN	78756	6	Bus Stop	Mid-Block	Southwest	Active	30.32424886	-97.7275296
	482 5300 Lamar/North I	c S6	5300	LAMAR	NORTH LOOP	AUSTIN	78756	6	Bus Stop	Nearside	Northwest	Active	30.32130258	-97.7293907
	483 5106 Lamar/51st	S44	5106	LAMAR	51ST	AUSTIN	78756	3	Bus Stop	Nearside	Northwest	Active	30.31904976	-97.73080613
	484 Triangle Station (S	B S1805	4600	GUADALUPE	LAMAR	AUSTIN	78751	1	Rapid Station	Mid-Block	Southwest	Active	30.3146309	-97.7325243
	485 4500 Guadalupe/4	51 200SB	4500	GUADALUPE	45TH	AUSTIN	78751	1	Bus Stop	Nearside	Northwest	Active	30.311163	-97.7329578
	486 Guadalupe/43rd St	re S39	4300	GUADALUPE	43RD	AUSTIN	78751	1	Bus Stop	Nearside	Northwest	Active	30.30883127	-97.7343952
	487 Guadalupe/41st Str	e S37	4100	GUADALUPE	41ST	AUSTIN	78751	1	Bus Stop	Nearside	Northwest	Active	30.30670338	-97.73575572
	489 Guadalupe/Maiden	S1806	3500	GUADALUPE	MAIDEN	AUSTIN	78705	5	Bus Stop	Nearside	Northwest	Active	30.30167414	-97.7389602
	490 Guadalupe/34th St	re S31	3402	GUADALUPE	34TH	AUSTIN	78705	5	Bus Stop	Nearside	Northwest	Active	30.30045562	-97.7397087
	492 Guadalupe/30th St	re S27	3000	GUADALUPE	30TH	AUSTIN	78705	5	Bus Stop	Nearside	Northwest	Active	30.29680363	-97.74202809
	494 Guadalupe/27th St	re S14	2700	GUADALUPE	27TH	AUSTIN	78705	5	Bus Stop	Nearside	Northwest	Active	30.29219693	-97.7413099
	495 Guadalupe/26th St	re S2	2600	GUADALUPE	26TH	AUSTIN	78705	5	Bus Stop	Nearside	Northwest	Active	30.29067306	-97.74140804
	497 UT West Mall Statio	or S19	2246	GUADALUPE	23RD	AUSTIN	78705	5	Rapid Station	Mid-Block	Southwest	Active	30.28606366	-97.7418151

US Census Data

The ACS survey shows population density (ppsm) and median household income by census tract.

https://censusreporter.org

Census Tract 215.02, Williamson, TX

Census Tract in: Round Rock, TX, Williamson County, TX, Texas, United States

4,476

0.8 square miles

Population

5,778.7 people per square mile

Census data: ACS 2021 5-year unless noted

Economics

[†] Margin of error is at least 10 percent of the total value. Take care with this statistic.

Income

\$25,393

Per capita income

about three-fifths of the amount in Round Rock: \$40,197

about three-fifths of the amount in Williamson County: \$42,959

\$55,388

Median household income

about two-thirds of the amount in Round Rock: \$86,587

about three-fifths of the amount in Williamson County: \$94,705

Show data / Embed

Reference

- Anair, D., Martin, J., Pinto de Moura, M. C., & Goldman, J. (2020, February 25). Ride-Hailing Climate Risks | Union of Concerned Scientists. https://www.ucsusa.org/resources/ride-hailing-climate-risks(Anair et al., 2020)
- Austin Motion. (2017). 2016 Mobility Bond program Overview And Implementation Plan [Capital Planning]. Austin City Government.

 https://www.austintexas.gov/sites/default/files/files/Capital_Planning/2016_Bond/FINAL_2016Bond_ProgramOverview_ImplementationUpdate_backup_reducedsize.pdf
- CBS Austin. (2017). "Round Rock to get CapMetro bus service in August." https://cbsaustin.com/news/local/round-rock-to-get-capmetro-bus-service-in-august
- City of Austin Carbon Footprint (Number of Metric Tons of Carbon Dioxide Emissions from Our Government Activity)." *Data.Austintexas.Gov*, Sept. 2021, data.austintexas.gov/stories/s/HE-E-3-City-of-Austin-carbon-footprint-number-of-m/k8ja-qxaz/.
- Erhardt, G. D., Hoque, J. M., Goyal, V., Berrebi, S., Brakewood, C., & Watkins, K. E. (2022). Why has public transit ridership declined in the United States? *Transportation Research Part A: Policy and Practice*, 161, 68–87. https://doi.org/10.1016/j.tra.2022.04.006
- Go Durham. (2023, March 16). Story Map Shortlist. https://triangletransit.maps.arcgis.com/apps/Shortlist/index.html?appid=5c5787e5a105433c904bd45fcb422332
- Hersher, R., Ramirez, R., Scott, A., & Cirino, M. (2023, February 9). EPA's proposal to raise the cost of carbon is a powerful tool and ethics nightmare. *NPR*. https://www.npr.org/2023/02/08/1155544378/epas-proposal-to-raise-the-cost-of-carbon-is-a-powerful-tool-and-ethics-nightmar
- Hoffmann Pham, K., Ipeirotis, P. G., & Sundararajan, A. (2019). Ridesharing and the Use of Public Transportation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4099122
- Pan, Y., & Qiu, L. (2022). How Ride-Sharing Is Shaping Public Transit System: A Counterfactual Estimator Approach. *Production And Operations Management*, 31(2), 906–927. https://doi.org/10.1111/poms.13582
- Zhang, Y., & Zhang, Y. (2018). Exploring the Relationship between Ridesharing and Public Transit Use in the United States. *International Journal of Environmental Research and Public Health*, 15(8), 1763. https://doi.org/10.3390/ijerph15081763