Mathematics I

Course Objectives:

To provide students a sound knowledge of calculus and analytic geometry to apply them in their relevant fields.

- 1. Derivatives and their Applications (14 hours)
 - a.Introduction
 - b. Higher order derivatives
 - c.Mean value theorem
 - i.Rolle's Theorem
 - ii.Lagrange's Mean Value Theorem
 - iii.Cauchy's Mean Value Theorem
 - d. Power series of Single Valued Function
 - i. Taylor's Series
 - ii. Maclaurin's Series
 - e.Indeterminate forms: L'Hospital Rule
 - f. Asymptotes to Cartesian and Polar Curves
 - g. Pedal equations to Cartesian and Polar Curves: Curvature and Radius of Curvature
- 2. Integration and its Applications(11 hours)
 - a.Introduction
 - b. Definite Integrals and their properties
 - c.Improper Integrals
 - d. Differentiation under Integral Sign
 - e.Reduction formula: Beta Gama functions
 - f. Application of Integrals for finding areas, arc length, surface and solid of revolution in the plane for Cartesian and Polar curves
- 3. Plane Analytic Geometry (8 hours)
 - a. Transformation of Coordinates: Translation and rotation
 - b. Ellipse and Hyperbola: Standard forms. Tangent, and Normal
 - c.General equation of conics in Cartesian and Polar forms
- 4. Ordinary Differential Equations and their Applications (12 hours)
 - a. First order and first degree Differential equations
 - b. Homogenous Differential equations
 - c.Linear differential equations
 - d. Equations reducible to linear Differential equations: Bernoulli's equation
 - e. First order and Higher degree differential equation: Clairaut's equation
 - f.Second order and First degree linear differential equations with constant coefficients
 - g. Second order and First degree linear differential equations with variable coefficients: Cauchy's equations
 - h. Applications in Engineering field

Reference books:

- 1.Erwin Kreyszig," Advance Engineering Mathematics", John Wiley and Sons Inc
- 2. Thomas, Finney", Calculus and Analytical geometry "Addison-Wesley
- 3.M. B. Singh, B. C. Bajrachrya," Differential Calculus", Sukunda Pustak Bhandar, Nepal
- 4.M. B. Singh, S. P. Shrestha, "Applied Mathematics"
- 5.G.D. Pant, G. S. Shrestha, "Integral Calculus and Differential Equations", Sunila Prakashan,Nepal
- 6.M. R. Joshi, "Analytical Geometry", SukundaPustak Bhandar, Nepal
- 7.S. P. Shrestha, H. D. Chaudhary, P. R. Pokharel,
 - "A Textbook of Engineering Mathematics Vol I"
- 8. Santosh Man Maskey, "Calculus", Ratna Pustak Bhandar, Nepal

Evaluation Scheme:

The questions will cover all the chapters in the syllabus. The evaluation scheme will be as indicated in the table below:

Chapters	Hours	Marks Distribution*
1	14	25
2	11	20
3	08	15
4	12	20
Total	45	80

^{*}Note: There may be minor deviation in marks distribution.