Matrix Multiplication and Transformations

Transformations of the plane:

Examples of transformations:

Rotation:

Any 2x2 matrix defines a transformation of the plane.

$$E_{x}: A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

totation counter-dockwise

$$A[\cdot] = \begin{bmatrix} \cdot - \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$

$$A[\cdot] = \begin{bmatrix} \cdot - \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \cdot \\ \cdot & \cdot \end{bmatrix}$$

$$A\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \qquad A\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \qquad A\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Remark: transformations could stretch or squeeze!

Quest: Can any rotation be represented as a matrix?

Answer ' yes!

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Theorem: The matrix [cost -sma] defines a

counter-clackwise rotation by a radians.

Def: The matrices from the previous theorem are called rotation matrices.

$$\underline{\mathsf{E}_{\mathsf{X}}}$$
: $\underline{\mathsf{A}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Four basic types of transformations of the plane:

Products of Matrices and Transformations:

$$\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix} \begin{bmatrix} a & 0 \end{bmatrix} = \begin{bmatrix} a\cos \theta & -b\sin \theta \\ o & b \end{bmatrix}$$

The transformation defined by the product is:

