

Photonics Curriculum Version 7.0

Lecture Series

Basic Photonic Measurements
TaM1

Module Prerequisites

Introduction to Fiber-Optic Communications I & II

Module Objectives

- Optical power meters
- Oscilloscopes
- Time domain laser chirp measurement
- Optical spectrum analyzers
- RF spectrum analyzers

Optical Power Measurement

Characteristics	Power meters with thermal detectors	Power meters with photodetector
Wavelength dependence	+ independent + wide range	- dependent - range 2:1
Self-calibration	+ available	not available (calibration indispensible)
Sensitivity	- very low (typically 10μW)	+ very high (down to less than 1pW)
Accuracy	±1% depending on calibration method	±2% depending on calibration method

Power Meters with Thermal Detector

This detector uses a method called substitution radiometry, which is a self-calibration method, as the heating effect of the light can be compared with that of an electric heater.

Power Meters with Photodetector

- Can measure power levels down to less than 1pW (-90 dBm)
- Has high frequency response
- Has a strong wavelength dependence

Temporal profile of Laser Output

Measurement Techniques

A photodetector and oscilloscope (or sampling oscilloscope) combination

- The time resolution is determined by the detection bandwidth of the photodetector and the rise time of the oscilloscope
 - Photodetector: rise time of 6ps; bandwidth of 60 GHz
 - Oscilloscope: rise time of 7ps; bandwidth of 50 GHz
 - Overall: rise time of 9.2ps; bandwidth of 40 GHz

Temporal profile of Laser Output

Measurement Techniques

Streak cameras: time resolution of 500 fs

Temporal profile of Laser Output

Measurement Techniques

Autocorrelator: time resolution tens of fs

Time-domain Laser Chirp Measurement

To: scope trigger

- The time dependence of frequency chirp can be characterized using an optical discriminator.
- The purpose is to convert chirp into intensity variation

Time-domain Laser Chirp Measurement

- When the average powers from each of the two interferometer output ports are equal, the interferometer is in quadrature.
- This enables conversion of optical frequency chirp into intensity changes via the linear discriminator slope characteristics.

Optical Spectrum Analyzers

The displayed width of each mode of the laser is a function of the spectral resolution of the tuneable optical filter.

The FP Interferometer-Based OSAs

- High spectral resolution (allows laser chirp measurements)
- Simplicity of construction
- Repeated passbands

Interferometer-Based OSA

- High wavelength accuracy
- Displays for power versus wavelength
- Less dynamic range than diffraction-grating-based OSAs

Diffraction-Grating-Based OSA

- The angle of the grating determines the wavelength.
- The size of the input and output apertures together with the size of the beam determines the spectral width of the optical filter.

RF Spectrum Analyzers

 RF spectrum analyzer indicates the frequency characteristics of a signal

- The resolution bandwidth is determined by the bandwidths of the photodetector and of the spectrum analyzer
 - Photodetector: bandwidth ≤ 60GHz
 - spectrum analyzer: bandwidth ≤ 50GHz

BERT

Basic bit error ratio tester (BERT)

- The pattern is injected into the system under test and received at the error detector's data input
- The error detector includes its own pattern generator that produces an exact replica of the known test pattern
- Each time the received bit differs from the known transmitted bit, an error is logged

Summary

In this module, the following basic photonic measurements were introduced:

- Optical Power Measurement
- Time Domain Measurement Techniques
 - Oscilloscope, Streak Camera, Autocorrelator
 - Laser chirp measurement
- Optical Spectrum Analyzers
- RF Spectrum Analyzers
- BER Test Set

Proceed with the Interactive Learning Module