Part III — Mechanics

Based on lectures by Brian Notes taken by Dexter Chua

Lent 2017-2018

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Contents III Mechanics

Contents

1	Kinematics of a particles moving in a straight line	4
2	Dynamics of a particle moving in a straight line	5
3	Statics of a particle	6
4	Moments	7
5	Vectors	8
6	Kinematics of a particle moving in a straight line or plane	9
7	Centres of mass	10
8	Work, energy and power	11
9	Collisions	12
10	Statics of rigid bodies 1	13
11	Further kinematics 11.1 Forces which vary with speed	14 14
12	Elastic strings and springs 12.1 Hooke's Law	15 15 15
13	Further dynamics13.1 Impulse of a variable force13.2 Work done by a variable force13.3 Newton's Law of Gravitation13.4 Finding k in $F = \frac{k}{x^2}$ 13.5 Simple harmonic motion S.H.M	16 16 16 16 16
14	Motion in a circle 14.1 Angular velocity	17 17 17 17
15	Statics of rigid bodies 2 15.1 Centre of mass	18 18
16	Relative motion	19
17	Elastic collisions in two dimensions	20
18	Resisted motion of a particle moving in a straight line	21
19	Damped and forced harmonic motion	22
20	Stability	23

Contents	III Mechanics
21 Applications of vectors in mechanics	24
22 Variable mass	25
23 Moments of inertia of a rigid body	26
24 Rotation of a rigid body about a fixed smooth axis	27

1 Kinematics of a particles moving in a straight line

2 Dynamics of a particle moving in a straight line

3 Statics of a particle

4 Moments III Mechanics

4 Moments

5 Vectors III Mechanics

5 Vectors

6 Kinematics of a particle moving in a straight line or plane

7 Centres of mass

8 Work , energy and power

9 Collisions III Mechanics

9 Collisions

10 Statics of rigid bodies 1

11 Further kinematics

11.1 Forces which vary with speed

Proposition.

$$\mathbf{a} = \mathbf{v} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{x}}$$

Proof.

$$\mathbf{a} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} \times \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \mathbf{v} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}}$$

12 Elastic strings and springs

12.1 Hooke's Law

Law (Hooke's Law). There are two cases for using Hooke's Law

(i) Elastic strings: The tension T in an elastic string is

$$T = \frac{\lambda x}{l}$$

where

l is the natural (unstretched) length of the string,

x is the extension and

 λ is the modulus of elasticity

When the string is slack there is no tension.

(ii) Elastic springs: The tension, or thrust, T is an elastic spring is

$$T = \frac{\lambda x}{l}$$

where

l is the natural (unstretched) length of the string,

x is the extension or compression and

 λ is the modulus of elasticity

12.2 Energy stored in an elastic string or spring

Like kinematics, If there is force F and displacement traveled δs , the Work done is $\delta W = F \delta s$. Similarly, If the tension force is T and string/spring extended/stretched, then

$$\delta W \approx T \delta x$$

Total work done in exrending from x = 0 to x = X is approximately

$$\sum_{0}^{X} T \delta x$$

and , as $\delta x \to 0$, the total work done:

$$W = \int_0^X T dx = \int_0^X \frac{\lambda x}{l} dx = \frac{\lambda x^2}{2l}$$

The expression of Total work done is also called the Elastic Potential Energy

13 Further dynamics

13.1 Impulse of a variable force

$$\delta I \approx F(t)\delta t$$

The total impulse from time t_1 to t_2 is

$$I \approx \sum_{t_1}^{t_2} F(t) \delta t$$

and as $\delta t \to 0$, the total impulse is

$$I = \int_{t_1}^{t_2} F(t) dt$$

Also, as $F(t) = ma = m \frac{dv}{dt}$

$$\int_{t_1}^{t_2} F(t) dt = \int_{U}^{V} m dv = mV - mU$$

13.2 Work done by a variable force

$$\delta W \approx G(x)\delta x$$

and the total work done in moving from a displacement x_1 to x_2 is

$$W \approx \sum_{x_1}^{x_2} G(x) \delta x$$

and as $\delta x \to 0$, the total work done is

$$W = \int_{x_1}^{x_2} G(x) \mathrm{d}x$$

Also $G(x)=ma=m\frac{\mathrm{d}v}{\mathrm{d}x}=m\frac{\mathrm{d}x}{\mathrm{d}t}\times\frac{\mathrm{d}v}{\mathrm{d}x}=mv\frac{\mathrm{d}v}{\mathrm{d}x}$

$$\int_{x_1}^{x_2} G(x) dx = \int_{U}^{V} mv dv = \frac{1}{2} mV^2 - \frac{1}{2} mU^2$$

13.3 Newton's Law of Gravitation

Law. The force of attraction between two bodies of masses M_1 and M_2 is directly proportional to the product of their masses and inversely proportional to the square of the distance, d, between them:

$$F = \frac{GM_1M_2}{d^2}$$

where G is a constant known as the constant of Gravitation

13.4 Finding k in $F = \frac{k}{x^2}$

$$F=ma=\frac{k}{d^2}$$

13.5 Simple harmonic motion S.H.M.

14 Motion in a circle

14.1 Angular velocity

14.2 Acceleration

Types of problems

14.3 Motion in a vertical circle

Types of problems

15 Statics of rigid bodies 2

15.1 Centre of mass

16 Relative motion III Mechanics

16 Relative motion

17 Elastic collisions in two dimensions

18 Resisted motion of a particle moving in a straight line

19 Damped and forced harmonic motion

20 Stability III Mechanics

20 Stability

21 Applications of vectors in mechanics

22 Variable mass III Mechanics

22 Variable mass

23 Moments of inertia of a rigid body

24 Rotation of a rigid body about a fixed smooth axis