Subgradient methods for huge-scale optimization problems

Yurii Nesterov, CORE/INMA (UCL)

May 24, 2012 (Edinburgh, Scotland)

Outline

- 1 Problems sizes
- 2 Sparse Optimization problems
- 3 Sparse updates for linear operators
- 4 Fast updates in computational trees
- 5 Simple subgradient methods
- 6 Application examples
- 7 Computational experiments: Google problem

Nonlinear Optimization: problems sizes

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10 ³
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 \rightarrow n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)
- Finite-element schemes (Old)
- PDE, Weather prediction (Old)

Main hope: Sparsity.

Sparse problems

Problem: $\min_{x \in Q} f(x)$, where Q is closed and convex in R^N , and

• $f(x) = \Psi(Ax)$, where Ψ is a simple *convex function*:

$$\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in R^M,$$

• $A: \mathbb{R}^N \to \mathbb{R}^M$ is a sparse matrix.

Let $p(x) \stackrel{\text{def}}{=} \#$ of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

- Computation of vector Ax needs p(A) operations.
- Initial complexity MN is reduced in $\gamma(A)$ times.

Example: Gradient Method

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times.

Note: For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$. **Can we get more?**

Sparse updating strategy

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = Ax_+ + Ad$.
- What happens if d is sparse?

Denote
$$\sigma(d)=\{j:d^{(j)}\neq 0\}$$
. Then $y_+=y+\sum\limits_{j\in\sigma(d)}d^{(j)}\cdot Ae_j$.

Its complexity,
$$\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$$
, can be VERY small!

$$\kappa_A(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_j) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$$

$$\leq \gamma(d) \max_{j \in \sigma(d)} \gamma(Ae_j) \cdot MN$$

 $\leq \gamma(d) \max_{\substack{1 \leq j \leq m \\ 1 \leq j \leq m}} \gamma(Ae_j) \cdot MN.$ If $\gamma(d) \leq c\gamma(A)$, $\gamma(A_j) \leq c\gamma(A)$, then

$$\kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$$
.

Expected acceleration: $(10^{-6})^2 = 10^{-12} \Rightarrow 1 \text{ sec } \approx 32\,000$ <u>vear</u>sl

When it can work?

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

- Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient $f'(x) = Ax b, \quad x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$, can be sparse is a_i is sparse!

But: We need a fast procedure for updating *max-type operations*.

Fast updates in short computational trees

Def: Function f(x), $x \in \mathbb{R}^n$, is short-tree representable, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n=2^k$ and the tree has k+1 levels: $v_{0,i}=x^{(i)}$, $i=1,\ldots,n$. Size of the next level halves the size of the previous one:

$$v_{i+1,j} = \psi_{i+1,j}(v_{i,2j-1}, v_{i,2j}), \quad j = 1, \dots, 2^{k-i-1}, \ i = 0, \dots, k-1,$$

where $\psi_{i,j}$ are some bivariate functions.

$v_{k,1}$						
$V_{k-1,1}$					$V_{k-1,2}$	
		•••				
V _{2,1}				$V_{2,n/4}$		
<i>v</i> _{1,1}		v_1	,2		•	$V_{1,n/2-1} V_{1,n/2}$
<i>V</i> _{0,1} <i>V</i> ₀	0,2	<i>V</i> _{0,3}	<i>V</i> _{0,4}			$V_{0,n-3}V_{0,n-2}V_{0,n-1}V_{0,n}$

Main advantages

Important examples (symmetric functions)

$$f(x) = \|x\|_{p}, \quad p \ge 1, \quad \psi_{i,j}(t_{1}, t_{2}) \equiv [|t_{1}|^{p} + |t_{2}|^{p}]^{1/p},$$

$$f(x) = \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1}, t_{2}) \equiv \ln(e^{t_{1}} + e^{t_{2}}),$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}, \qquad \psi_{i,j}(t_{1}, t_{2}) \equiv \max\{t_{1}, t_{2}\}.$$

- The binary tree requires only n-1 auxiliary cells.
- Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with Sublinear Iteration Cost

Simple subgradient methods

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q \left(x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) \right)$, $k \ge 0$.

Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. Then for any $k \ge 0$ we have:

$$f_k^* - f^* \le \frac{L(f)\|x_0 - \pi_{X_*}(x_0)\|}{(k+1)^{1/2}},$$

$$||x_k - x^*|| \le ||x_0 - x^*||, \forall x^* \in X_*.$$

Proof:

Let us fix $x^* \in X_*$. Denote $r_k(x^*) = ||x_k - x^*||$. Then

$$r_{k+1}^{2}(x^{*}) \leq \left\| x_{k} - \frac{f(x_{k}) - f^{*}}{\|f'(x_{k})\|^{2}} f'(x_{k}) - x^{*} \right\|^{2}$$

$$= r_{k}^{2}(x^{*}) - 2 \frac{f(x_{k}) - f^{*}}{\|f'(x_{k})\|^{2}} \langle f'(x_{k}), x_{k} - x^{*} \rangle + \frac{(f(x_{k}) - f^{*})^{2}}{\|f'(x_{k})\|^{2}}$$

$$\leq r_{k}^{2}(x^{*}) - \frac{(f(x_{k}) - f^{*})^{2}}{\|f'(x_{k})\|^{2}} \leq r_{k}^{2}(x^{*}) - \frac{(f_{k}^{*} - f^{*})^{2}}{L^{2}(f)}.$$

From this reasoning, $||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2$, $\forall x^* \in X^*$. Corollary: Assume X_* has recession direction d_* . Then

$$||x_k - \pi_{X_*}(x_0)|| \le ||x_0 - \pi_{X_*}(x_0)||, \quad \langle d_*, x_k \rangle \ge \langle d_*, x_0 \rangle.$$

(Proof: consider
$$x^* = \pi_{X_*}(x_0) + \alpha d_*$$
, $\alpha \ge 0$.)

Constrained minimization (N.Shor (1964) & B.Polyak)

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \},$$
 where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0, \dots, k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem: If $k > ||x_0 - x^*||^2/h^2$, then $\mathcal{F}_k \neq \emptyset$ and

$$f_k^* - f(x) \le hL(f), \quad \max_{i \in \mathcal{F}_k} g(x_i) \le hL(g).$$

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take $h = \frac{\epsilon}{\max\{L(f), L(g)\}}$. Then we need to decide on the number of steps N (easy!).

Note: The standard advice is $h = \frac{R}{\sqrt{N+1}}$ (much more difficult!)

2. Constants L(f), L(g) are not known

- Start from a guess.
- Restart from scratch each time we see the guess is wrong.
- The guess is doubled after restart.

3. Tracking the record value f_k^*

Double run.

Other ideas are welcome!

Random sparse coordinate methods

III. Problem:
$$\min_{x\geq 0} \left\{ f(x) \stackrel{\text{def}}{=} \max_{1\leq i\leq M} [\ell_i(x) \equiv \langle a_i, x\rangle - b_i] \right\}.$$

Define i(x): $f(x) = \ell_{i(x)}(x)$, and random variable $\xi(x)$, which gives indexes from $\sigma(a_{i(x)})$ with equal probabilities $\frac{1}{p(a_{i(x)})}$.

Assuming that f^* is known, we can define now a random vector variable Next(x) by the following rules:

- 1. Compute $h(x) = \frac{f(x) f^*}{\|f'(x)\|^2}$. Generate $j(x) = \xi(x)$. 2. Define $[\text{Next}(x)]^{(j(x))} = (x^{(j(x))} h(x)a_{i(x)}^{(j(x))})_+$.
- 3. For other indexes $j \neq j(x)$, define $[\operatorname{Next}(x)]^{(j)} = x^{(j)}$.

Algorithmic scheme

- **0**. Choose $x_0 \ge 0$. Compute $u_0 = Ax_0 b$ and $f(x_0)$.
- 1. kth iteration ($k \ge 0$).
 - a) Generate $j_k = \xi(x_k)$ and update $x_{k+1} = \text{Next}(x_k)$.
 - b) Update $u_{k+1} = u_k + Ae_{j_k} \cdot \left(x_{k+1}^{(j_k)} x_k^{(j_k)}\right)$, re-computing in parallel the value of $f(x_{k+1})$.

This method defines a sequence of discrete random variables $\{x_k\}$. Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$.

Theorem: Let $p(a_i) \le r$, i = 1, ..., m. Then, for any $k \ge 0$ we have:

$$\mathcal{E}\left([f_k^* - f^*]^2\right) \leq \frac{rL^2(f)\|x_0 - \pi_{X_*}(x_0)\|^2}{k+1},
\mathcal{E}(\|x_k - x_*\|^2) \leq \|x_0 - x_*\|^2, \quad \forall x_* \in X_*.$$

NB: One iteration needs at most $\max_{1 \le j \le N} p(Ae_j) \cdot \log_2 M$ operations.

Application examples

Observations:

- Very often, Large- and Huge- scale problems have repetitive sparsity patterns and/or limited connectivity.
 - Social networks.
 - Mobile phone networks.
 - Truss topology design (local bars).
 - Finite elements models (2D: four neighbors, 3D: six neighbors).
- **2** For *p*-diagonal matrices $\kappa(A) \leq p^2$.

Google problem

Goal: Rank the agents in the society by their social weights.

- Unknown: $x_i \ge 0$ social influence of agent i = 1, ..., N.
- Known: σ_i set of friends of agent i.

Hypothesis

- Agent *i* shares his support among all friends by equal parts.
- The influence of agent *i* is equal to the total support obtained from his friends.

Mathematical formulation: quadratic problem

Let $E \in R^{N \times N}$ be an incidence matrix of the connections graph. Denote $e = (1, \dots, 1)^T \in R^N$ and $\bar{E} = E \cdot \mathrm{diag}\,(E^T e)^{-1}$. Since, $\bar{E}^T e = e$, this matrix is stochastic.

Problem: Find $x^* \ge 0$: $\bar{E}x^* = x^*$, $x^* \ne 0$. The size is very big!

Known technique:

- Regularization + Fixed Point (Google Founders, B.Polyak & coauthors, etc.)
- **N09:** Solve it by random CD-method as applied to $\frac{1}{2}\|\bar{E}x x\|^2 + \frac{\gamma}{2}[\langle e, x \rangle 1]^2, \quad \gamma > 0.$

Main drawback: No interpretation for the objective function!

Nonsmooth formulation of Google Problem

Main property of spectral radius $(A \ge 0)$

If
$$A \in R_+^{n \times n}$$
, then $\rho(A) = \min_{x > 0} \max_{1 \le i \le n} \frac{1}{x^{(i)}} \langle e_i, Ax \rangle$.

The minimum is attained at the corresponding eigenvector.

Since $\rho(\bar{E}) = 1$, our problem is as follows:

$$f(x) \stackrel{\text{def}}{=} \max_{1 \leq i \leq N} [\langle e_i, \bar{E}x \rangle - x^{(i)}] \rightarrow \min_{x \geq 0}.$$

Interpretation: Increase self-confidence!

Since $f^* = 0$, we can apply Polyak's method with sparse updates.

Additional features; the optimal set X^* is a *convex cone*.

If $x_0 = e$, then the whole sequence is separated from zero:

$$\langle x^*, e \rangle \le \langle x^*, x_k \rangle \le \|x^*\|_1 \cdot \|x_k\|_{\infty} = \langle x^*, e \rangle \cdot \|x_k\|_{\infty}.$$

Find $\bar{x} \geq 0$ such that $\|\bar{x}\|_{\infty} \geq 1$ and $f(\bar{x}) \leq \epsilon$. (First condition is satisfied automatically.)

Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Setup: Each agent has exactly p random friends.

Thus,
$$\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) \approx \rho^2$$
.

Iteration Cost:
$$GM_s \le \kappa(A) \log_2 N \approx p^2 \log_2 N$$
, $GM \approx pN$. $(\log_2 10^3 = 10, \log_2 10^6 = 20, \log_2 10^9 = 30)$

ľ	1 11110 101 10 100100110 (p 02					
	N	$\kappa(A)$	GM_s	GM		
	1024	1632	3.00	2.98		
	2048	1792	3.36	6.41		
	4096	1888	3.75	15.11		
	8192	1920	4.20	139.92		
	16384	1824	4.69	408.38		

Time for 10^4 iterations (p = 32) Time for 10^3 iterations (p = 16)

	(, ,			
	N	$\kappa(A)$	GM_s	GM
ĺ	131072	576	0.19	213.9
	262144	592	0.25	477.8
	524288	592	0.32	1095.5
	1048576	608	0.40	2590.8

 $1~{
m sec} pprox 100~{
m min!}$

Convergence of *GM_s*: Medium Size

Let
$$N = 131072$$
, $p = 16$, $\kappa(A) = 576$, and $L(f) = 0.21$.

Iterations	$f - f^*$	Time (sec)		
$1.0 \cdot 10^{5}$	0.1100	16.44		
$3.0 \cdot 10^{5}$	0.0429	49.32		
$6.0 \cdot 10^{5}$	0.0221	98.65		
$1.1\cdot 10^6$	0.0119	180.85		
$2.2\cdot 10^6$	0.0057	361.71		
$4.1\cdot 10^6$	0.0028	674.09		
$7.6 \cdot 10^{6}$	0.0014	1249.54		
$1.0 \cdot 10^7$	0.0010	1644.13		

Dimension and accuracy are sufficiently high, but the time is still reasonable.

Convergence of GM_s: Large Scale

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0\cdot 10^5$	0.546662	7.69
$4.0\cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^{6}$	0.063099	192.14
$5.1 \cdot 10^{6}$	0.032092	391.97
$9.9 \cdot 10^{6}$	0.016162	760.88
$1.5\cdot 10^7$	0.010009	1183.59

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$.

Theoretical bound: $\frac{L^2(f)R_0^2}{\epsilon^2} = 5.3 \cdot 10^7$. Time for GM: ≈ 1 year!

Conclusion

- Sparse GM is an efficient and reliable method for solving Large- and Huge- Scale problems with uniform sparsity.
- 2 We can treat also dense rows. Assume that inequality $\langle a,x\rangle \leq b$ is dense. It is equivalent to the following system:

$$y^{(1)} = a^{(1)} x^{(1)}, \quad y^{(j)} = y^{(j-1)} + a^{(j)} x^{(j)}, \quad j = 2, \dots, n,$$

 $y^{(n)} \leq b.$

We need *new variables* $y^{(j)}$ for all nonzero coefficients of a.

- Introduce p(a) additional variables and p(A) additional equality constraints. (No problem!)
- Hidden drawback: the above equalities are satisfied with *errors*.
- May be it is not too bad?
- 3 Similar technique can be applied to dense columns.

Theoretical consequences

Assume that $\kappa(A) \approx \gamma^2(A)n^2$. Compare three methods:

- Sparse updates (SU). Complexity $\gamma^2(A)n^2\frac{L^2R^2}{\epsilon^2}\log n$ operations.
- Smoothing technique (ST). Complexity $\gamma(A)n^2\frac{LR}{\epsilon}$ operations.
- Polynomial-time methods (PT). Complexity $(\gamma(A)n + n^3)n \ln \frac{LR}{\epsilon}$ operations.

There are three possibilities.

- Low accuracy: $\gamma(A)\frac{LR}{\epsilon} < 1$. Then we choose SU.
- Moderate accuracy: $1 < \gamma(A) \frac{LR}{\epsilon} < n^2$. We choose ST.
- High accuracy: $\gamma(A)\frac{LR}{\epsilon} > n^2$. We choose PT.

NB: For Huge-Scale problems usually $\gamma(A) \approx \frac{1}{n}$.

