

Introdução Entendendo o Aprendizado de Máquina

Projeto

Resolvendo um problema na prática!

Estão preparadas?

Computadores estão com Jupyter Notebook instalado? Todo mundo com o arquivo enviado por email?

Requerimentos

- Linux ou bash para windows
- Python3
- pip
- jupyter notebook
- scikit-learn
- numpy
- pandas

O quê e pra quê

"Hi, I'm calling to book a women's haircut for a client."

O que é Aprendizado de Máquina?

É a ciência de fazer computadores tomarem decisões sem terem sido explicitamente programados para isso

exemplo

Queremos descobrir se amanhã chove, sabendo a temperatura e a umidade

Explicitamente programado

Tarefa: Decidir se amanhã vai chover

Input: temperatura e umidade de hoje

Processo: Após longo estudo científico dos meteorologistas sobre a relação entre a umidade, a temperatura e a probabilidade de chover, você coloca isso na forma de código

```
func probabilidade_de_chover ( temperatura, umidade )

if.....

[faça isso]

else

[faça isso]

retorna se chove ou não
```

Aprendizado de Máquina

Programa: Decidir se amanhã vai chover

Input: Dataset com **várias** temperaturas e umidades, bem como a **resposta** de se choveu ou não no dia seguinte

Processo: O algoritmo vai modelar uma função que relaciona cada dupla (umidade, temperatura) à resposta certa

Explicitamente programado

Precisamos de: a regra que mapeia umidade e temperatura à resposta certa

O programa entrega: a resposta certa

Aprendizado de máquina

Precisamos de: a resposta certa

O programa entrega: a regra que mapeia umidade e temperatura à resposta certa

Explicitamente programado

Precisamos de: a regra que mapeia umidade e temperatura à resposta certa DETERMINÍSTICO

O programa entrega: a resposta certa

Aprendizado de máquina

Precisamos de: a resposta certa

O programa entrega: a regra que mapeia umidade e temperatura à resposta certa

PROBABILÍSTICO

WHO NEEDS COPERNICUS IF YOU HAVE MACHINE LEARNING?

It took humanity centuries to decide that Earth orbits the sun. Now a neural network has come to the same conclusion, using the same data, in just a few hours.

Aprendizado de máquina:

- Automatiza a descoberta de padrões matemáticos
- Reduz a dependência do conhecimento de domínio

Como?

$f(u, t) = \{chove, não chove\}$

Cria Hipótese: Atribui pesos para as variáveis umidade e temperatura

hipótese = P1, P2, como em P1*umidade + P2*temperatura

Para cada linha do dataset:

Calcula a saída da função hipótese

Função de ativação: Transforma a saída da hipótese no palpite de chover ou não

Verifica a resposta

Função erro: Avalia o quanto ele errou

Função de otimização: Altera os pesos da hipótese

$f(u, t) = \{chove, não chove\}$

Cria Hipótese: Atribui pesos para as variáveis umidade e temperatura hipótese = P1, P2, como em P1*umidade + P2*temperatura 3 Para cada linha do dataset: 5 Calcula a saída da função hipótese 6 Função de ativação: Transforma a saída da hipótese no palpite de chover ou não Verifica a resposta Função erro: Avalia o quanto ele errou 9 Função de otimização: Altera os pesos da hipótese

Ao final do treino, o algoritmo terá tido 'x' oportunidades de melhorar os pesos

Por último, devemos avaliar o desempenho do modelo por meio de uma **Métrica de avaliação**

Resumão

Features

Cada tipo de variável que vai ser analisada

Hot

f1 Outlook	Tempe rature	f3 Humid ity	f4 Windy
Kamy	ΠΟι	riigii	raise
Rainy	Hot	High	True

High

False

Parâmetros

Overcast

Pesos atribuídos a cada feature

P1 * f1; P2 * f2; P3 * f3

Hiperparâmetro

Decisões que a programadora toma Quanto tempo o algoritmo deve rodar Qual função erro utilizar

- - -

Função Hipótese

Função que o modelo dá como saída. A hipótese muda cada vez que a função de otimização é acionada

Função erro ou função custo

Métrica que avalia o quanto a função hipótese está longe do correto. É essa função que queremos matematicamente minimizar.

Função de Otimização

Estratégia utilizada para corrigir os pesos. O objetivo dessa função é achar um mínimo da função erro.

Atenção

O processo de ajustes sucessivos dos pesos (parâmetros) para achar uma função que modela os dados é chamado de "fitting"

Do inglês: ajustar, modelar

underfitting overfitting

Tipos de Machine Learning

Regressão

A partir das respostas fornecidas, modela uma função que aproxima como as features se relacionam com a variável dependente. Objetivo: Fazer predição de valores futuros.

A partir das respostas fornecidas, modela uma função que aproxima como as features se relacionam com cada categoria possível. Objetivo: Classificar itens

Classificação

Clustering

Identifica sozinho padrões nos dados gerando suas próprias categorias. Reage à presença das características em novos dados. Objetivo: descobrir padrões naturais ou identificar anomalias nos dados

Dimensionality Reduction

Identifica sozinho quais features melhor representam os dados, reduzindo a complexidade dos dados, mas mantendo representatividade. Objetivo: processamento mais rápido sem perda de qualidade; visualização de dados acima de 3D

Qual é a diferença?

Aprendizagem por Reforço

A partir de um **Objetivo** dado ao programa, bem como regras de punição e recompensa, o agente decide sozinho as **Ações** a serem executadas.

Jogar videogames Investir em ações Carros autônomos [Todo tipo de ação ao vivo]

Pipeline

Entender o problema

Obter e Tratar dados

Decidir modelo de ML a ser usado

Treinar, testar e avaliar

2

3

4

Entender o problema

Obter e Tratar dados

Decidir modelo de ML a ser usado Treinar, testar e avaliar

Obter e Tratar Dados

- Valores nulos, incoerentes
- Transformar dados categóricos
- Seleção e extração de features
- Redução de dimensionalidade

2

3

4

Entender o problema

Obter e Tratar dados

Decidir modelo de ML

Treinar, testar e avaliar

Decidir modelo de ML

- Qual tipo de Machine Learning?
- Quais técnicas testar?
- Decidir funções de ativação, função erro e função de otimização
- Decidir hiperparâmetros específicos do seu modelo

2

3

4

Entender o problema

Obter e Tratar dados

Decidir modelo de ML a ser usado

Treinar, testar e avaliar

Treinar, testar e avaliar

- Técnicas de medir e reduzir overfitting
- Decidir métricas de avaliação
- Rodar o modelo

Vamos ver na prática?