Insulation Materials

R-value comparison

material	R-value
fiberglass	3.1
cellulose	3.7
polyurethane foam	6.3

Window Assemblies

R-value comparison

window type	R-value
single pane: 1/4"	0.91
double-glazing with 1/4" air space	1.69
triple-glazing with 1/4" air space	2.56

Price comparison

material	price
fiberglass	6-8 \$/sq.ft
cellulose	15-18\$/sq.ft
polyurethane foam	23-25\$/sq.ft

Price comparison

window type	price	
single pane: 1/4"	90-130	
double-glazing with 1/4" air space	300-350	
triple-glazing with 1/4" air space	480-500	

Sctterplot chart

price of fiberglass batt insulation

As R-value is going higher, the price of insulation goes higher. The ratio of price/R-value is around 1.5-1.7.

As R-value is going higher, the price of window assembly goes higher. The values of ratio of price/R-value are relevant.

Assembly U-factor is the "are weighted" average thermal transmittance of all components. Center-of-glass U-value is the best-performing component of a window assembly. Assembly U-factor includes calculation of other factors, edge of glass U-value and Frame U-value. Assembly U-value is higher than center-of-glass U-value.