4 Flows and Cuts

4.1 Basic notions and relations

$$G = (V,A)$$
 $u: A \rightarrow \mathbb{Z}_{\geq 0}$
 $s,t \in V, s \neq t$

Definition 4.1: s-t flow / flow

Let $s,t\in V, s\neq t$. An s-t flow in G is a function $f\colon A\to\mathbb{R}_{\geq 0}$ satisfying the following conditions.

- (i) Capacity constraints: $f(a) \le u(a) \ \forall a \in A$.
- (ii) Balance constraints: for $v \in V$,

The value of a flow f is $\nu(f) := f(\delta^+(s)) - f(\delta^-(s))$.

Maximum flow problem, or maximum s-t flow problem

Input: A directed graph G=(V,A), arc capacities $u\colon A\to\mathbb{Z}_{\geq 0}$, and $s,t\in V,\,s\neq t.$

Task: Find a maximum s-t flow in G, i.e., an s-t flow f that maximizes $\nu(f)$.

Definition 4.2: s-t cut

An s-t cut is a set $C \subseteq V$ such that $s \in C$ and $t \notin C$. Furthermore, in the context of a maximum flow problem with capacities $u \colon A \to \mathbb{Z}_{\geq 0}$, the *value* of an s-t cut C is defined as $u(\delta^+(C))$. An s-t cut C is called *minimum* if it has minimum value among all s-t cuts.

Lemma 4.3: Value of a flow expressed via an s-t cut

Let f be an s-t flow and $C \subseteq V$ an s-t cut. Then

$$\nu(f) = f(\delta^+(C)) - f(\delta^-(C)) \ .$$

$$v(f) = \underbrace{f(\delta^{+}(s)) - f(\delta^{-}(s))}_{2 + \frac{1}{3} + \frac{5}{2}} = 0$$

$$4 + \frac{5}{6}$$

$$v(f) = f(\delta^{+}(S)) - f(\delta^{-}(S)) = 4 + \frac{5}{6}$$

$$2 + \frac{5}{3} + \frac{5}{2}$$

$$6 + \frac{1}{6}$$

$$v(f) = f(\delta^{+}(s)) - f(\delta^{-}(s)) + \sum_{v \in (V,ls)} (f(\delta^{+}(u)) - f(\delta^{-}(v)))$$

$$= \sum_{v \in C} (f(\delta^{+}(s)) - f(\delta^{-}(s)))$$

$$= \sum_{v \in C} (f(\delta^{+}(s)) - f(\delta^{-}(s)))$$

Theorem 4.5: Weak max-flow min-cut theorem

Let f be an s-t flow and let $C \subseteq V$ be an s-t cut. Then

$$\nu(f) \le u(\delta^+(C)) .$$

In other words, the value of a maximum s-t flow is upper bounded by the value of a minimum s-t cut.

$$y(f) = f(s'(c)) - f(s'(c)) \leq u(s'(c))$$

$$\leq u(s'(c))$$

#

Remark: use of infinite (00) capacities

Even though the capacities $u: A \rightarrow \mathbb{Z}_{\geq 0}$ in a flow problem are are assumed to be non-negative integers, it is common to also allow the use of infinite capacities, i.e., $u(a) = \infty$.

This can be reduced to case of finite capacities because

- · Either there is an s-t path consisting only of arcs with infinite capacity, in which case the max flow value is ∞. (Can be checked via BFS.)
- · Or the infinite capacities can be replaced by large finite capacities (e.g. the sum of all finite capacities).

4.2 Algorithm of Ford-Fulkerson and strong max-flow min-cut theorem

"leftouer capacities"

Definition 4.7: f-residual graph & f-residual capacities

Let f be an s-t flow in G. The f-residual graph $G_f = (V, B)$ with f-residual capacities $u_f \colon B \to \mathbb{Z}_{\geq 0}$ is defined as follows. The set of arcs $B \coloneqq A \cup A^R$ contains all original arcs A together with reverse arcs A^R , where for $a \in A$, the set A^R contains an arc a^R that is antiparallel to a, i.e., the head of a^R is the tail of a and vice versa. Furthermore,

$$u_f(b) := \begin{cases} u(b) - f(b) & \text{if } b \in A, \\ f(a) & \text{if } b = a^R \in A^R. \end{cases}$$

Definition 4.8: f-augmenting path/augmenting path

Let f be an s-t flow in G. An f-augmenting path $P \subseteq B$ is an s-t path in $G_f = (V, B)$ with $u_f(b) > 0 \ \forall b \in P$.

Definition 4.9: Augmentation

The augmentation of an s-t flow f in G along an f-augmenting path $P \subseteq B$, where $G_f = (V, B)$ is the f-residual graph, is the flow f' in G defined as

$$f'(a) = \begin{cases} f(a) + \gamma & \text{if } a \in P, \\ f(a) - \gamma & \text{if } a^R \in P, \\ f(a) & \text{if } a, a^R \notin P, \end{cases}$$

where $\gamma := \min\{u_f(b) : b \in P\} > 0$. We call the value γ the augmentation volume of the augmenting path P.

Lemma 4.10: Running time for finding f-augmenting paths

Let f be an s-t flow in G and denote the number of arcs and vertices in G by m and n, respectively. If there is an f-augmenting path, then such a path can be found in O(m+n)time via breadth-first search.

Proof See script.

Algorithm 3: Ford and Fulkerson's algorithm to find a maximum s-t flow

Input: Directed graph G=(V,A) with arc capacities $u\colon A\to\mathbb{Z}_{\geq 0}$ and $s,t\in V, s\neq t$. **Output:** A maximum s-t flow f.

1. Initialization:

$$f(a) = 0 \ \forall a \in A.$$

- **2.** while $(\exists f$ -augmenting path P in $G_f)$ do: Augment f along P and set f to be the augmented flow.
- 3. return f.

Example run of Ford and Fulkersons algorithm

