Цель и задачи практических работ

Цель - овладение студентами современной методологии проектирования Internet-ориентированной обучающейся интеллектуальной системы.

В результате выполнения практических работ студент должен знать:

- основные принципы и методы проектирования Internetориентированной обучающейся интеллектуальной системы;
- •алгоритмы функционирования современных обучающихся интеллектуальных систем;

В результате выполнения практических работ студент должен уметь:

- составлять входное математическое описание распределенных обучающихся интеллектуальных систем;
- составлять математические модели функционирования обучающихся интеллектуальных систем;
- оптимизировать параметры функционирования обучающихся интеллектуальных систем;
- разработать специальное программное обеспечение обучающихся интеллектуальных систем.

Установка PHP, Apache 1.3.х под Windows

На сайте разработчиков: http://http.apache.org/ выбрать оригинальный установочный пакет Apache 1.3.х. Для пользователей Win98 нужно обновить Winsock в Winsock2. Для начала лучше взять бинарный дистрибутив Apache 1.3.х без файлов разработчиков (MSI инсталлятор).

После скачивания запустить файл с расширением .msi, который выводит информацию: «Запускать сервер как сервис, или как самостоятельную программу?»

Если выбираем "как сервис", Apache 1.3.х будет стартовать каждый раз после запуска компьютера, его не будет видно в панели задач и он будет работать даже после изменения пользователей операционной системы. Работает это только под WinNT и Win2000.

Если выбрать запуск Apache 1.3.х как "самостоятельной программы", тогда каждый раз Apache 1.3.х придется запускать вручную, при этом будет видно консоль Apache 1.3.х и соответствующий ярлык в панели задач.

Если Вы ставите Apache 1.3.х в директорию, где уже находятся файлы предыдущего Apache 1.3.х, конфигурационные файлы не будут перезаписаны. Новые конфигурационные файлы будут созданы с двойным расширением .default.conf.

Например, если уже существует файл *conf* \ *httpd.conf* будет создан файл *conf* \ *httpd.default.conf*, а предыдущий файл будет оставлено без изменений.

Запуск в консоли. Откройте стартовое меню и выберите "Запустить апач в консоли".

Запуск сервиса Apache 1.3.х. Если Apache 1.3.х инсталювався как сервис для всех пользователей, то его можно запустить, используя панель управления сервисами в Win2000. Также Вы можете в консоли набрать "NET START APACHE". Таким образом запустится сервер с конфигурацией по умолчанию. Можно запустить несколько сервисов Apache под разными именами и с разными конфигурациями.

Проверка работоспособности Apache 1.3.х. Наберите в браузере: http://localhost. Если все работает хорошо, то вы должны увидеть страницу файла помощи Apache 1.3.х. Иначе нужно посмотреть файл статистики logs \ error.log. Одной из основных причин отказа Apache 1.3.х работать нормально то, что

80 - й порт, который по умолчанию слушает Apache 1.3.х, может быть занят другим сервисом, необходимо проверить в первую очередь.

Инсталляционный пакет PHP. Скачайте установочный пакет: *http://www.PHP.net/downloads.PHP*. Есть два варианта установки пакетов: пакет с файлом для автоматической установки и архив файлов.

В первом случае, для установки требуется запустить соответствующий файл, который установит php, создаст все необходимые файлы и настроит веб-сервер. Вся необходимая информация будет востребована у пользователя в режиме Но диалога. не все расширения устанавливаются конфигурация, автоматическом режиме, И которая будет создана, не является оптимальной с точки зрения безопасности.

Поскольку все расширения в наличии в архивном файле, то второй вариант установки не намного сложнее. А именно: распаковываем архив на диск и копируем *PHP4ts.dll* в директорию, указанную в *PATH Windows (c: \ winnt \ system32*). Это необходимо делать в случае, если вы планируете использовать *PHP* как *CGI*, так и в случае использования *PHP* как модуля веб-сервера.

Если планируется использовать *PHP* в форме модуля вебсервера, скопируйте dll соответствующих *SAPI*, а если это будет апач, то файл PHP4apache.dll копируем в $c: \$ winnt $\$ system32.

Далее скопируйте файл *PHP.ini-dist* или *PHP.ini-optimized* в директорию $c: \setminus winnt$, переименовав его предварительно в *PHP.ini* и соответствующим образом отредактировав.

Измените значение переменной *extension_dir* таким образом, чтобы она указывала на директорию, куда вы установили *PHP* (то есть на директорию, где лежат * .dll файлы). Например, $c: \PHP \ extensions$.

Сделайте соответствующие изменения в настройках Apache 1.3.х. Эти шаги являются общими для *Unix* и *Windows*. После установки *PHP* надо перезапустить Apache 1.3.х.

Практическое занятие 1. **Формирование входной обучающей матрицы**

Цель: разработать и программно реализовать алгоритм формирования входной обучающей матрицы.

Рисунок 1. – Структурна схема базового алгоритма обучения

Назначением базового алгоритма обучения является оптимизация геометрических параметров контейнеров. Входной информацией для обучения по базовым алгоритмом является действительный, в общем случае, массив реализаций образа $\left\{y_m^{(j)} \lor m = \overline{1,M}; j = \overline{1,n}\right\}$; система полей контрольных допусков $\left\{\delta_{K,i}\right\}$ и уровень селекции $\left\{\rho_m\right\}$, которые по умолчанию равны 0,5 для всех классов распознавания.

Рассмотрим этапы реализации алгоритма:

1.Формирование бинарной обучающей матрицы $||\mathbf{x}_{m,i}^{(j)}||$, элементы которой равны

$$x_{m,i}^{(j)} = \begin{cases} 1, & \text{if } y_{m,i}^{(j)} \in \delta_{K,i}, \\ 0, & \text{if } y_{m,i}^{(j)} \notin \delta_{K,i}. \end{cases}$$

2. Формирование массива эталонных двоичных векторов $\{x_{m,i} \lor m = \overline{1,M}, i = \overline{1,N}\}$, элементы которого определяются по правилу :

$$x_{m,i} = \begin{cases} 1, & \text{if } \frac{1}{n} \sum_{j=1}^{n} x_{m,i}^{(j)} > \rho_m, \\ 0, & \text{if } else, \end{cases}$$

где ho_{m} – уровень селекции координат вектора $x_{\mathrm{m}} \in X_{\mathrm{m}}^{\mathrm{o}}$.

- 3. Разбиение множества эталонных векторов на пары ближайших "сосудов": $\mathfrak{R}_m^{|2|}$ =< x_m , x_l >,где x_l эталонный вектор соседнего класса X_l^o , по такому алгоритму:
- а) структурируется множество эталонных векторов, начиная с вектора x_1 базового класса X_1^o , характеризующий наибольшую функциональную эффективность СППР;
- б) строится матрица кодовых расстояний между эталонными векторами размерности $M \times M$;

- в) для каждой строки матрицы кодовых расстояний находится минимальный элемент, который принадлежит столбцу вектора ближайшего к вектору, который определяет строку. При наличии нескольких одинаковых минимальных элементов выбирается из них любой, поскольку они являются равноправными;
- г) формируется структурированное множество элементов парного разбиения $\{\Re_m^{[2]} \mid m=\overline{1,M}\}$, задающее план обучения.
- 4. Оптимизация кодового расстояния d_m происходит рекуррентной процедурой. При этом принимается $E_m(0) = 0$.
- 5. Процедура заканчивается при нахождении максимума КФЭ в рабочей области его определения $E_m^* = \max_{\{d\}} E_m$, где

 $\{d\}$ = $\{0,1,...,d$ < $d(x_m \oplus x_l)\}$ - множество радиусов гиперсфер, центр которых определяется вершиной $x_{_m} \in X_{_m}^{^o}$.

Таким образом, базовый алгоритм обучения является итерационной процедурой поиска глобального максимума информационного КФЭ в рабочей области определения его функции

$$d_m^* = \arg\max_{\{d\}} E_m^*.$$

Задание 1 Провести описание основных констант и переменных согласно табл.1.

Таблица 1– Основные константы и переменные

 $m{m}$ — количество классов (k=2) $m{N}$ — количество признаков pacпознавания (N=100) $m{n}$ — количество реализаций (n=100) $m{k}$ — текущий класс

I, J – текущие признак и реализация в соответствии

Y[1..m, 1..N, 1..n] – входная обучающая матрица

продолжение табл.1

X[1..m, 1..N, 1..n] — бинарная учебная матрица

VD[1..N], **ND**[1..N] –система допусков

VDK[1..N], NDK[1..N] —система контрольных допусков

EV[1..*m*,1..*N*] – центры классов

РАКА[1..*m*] –массив соседних классов

SK[1...2, 1..n] — массив кодовых расстояний до реализаций

E[1..m], A[1..m], B[1..m], D1[1..m], D2[1..m] — оптимальное значение информационного критерия и точностные характеристики соответственно

 ${\it DO}[1..m]$ — оптимальное значение радиуса контейнера класса

step_DK – шаг изменения системы контрольных допусков

Задание 2. Сформировать согласно приведенному примеру входную учебную матрицу Y[1..m, 1..N, 1..n] для распознавания стационарных по яркости изображений (текстур).

Задание 3. Разработать предварительный интерфейс системы. Основное внимание при этом уделить созданию диалогового режима с пользователями.

Порядок выполнения работы

- 1. Записать тему и цель работы.
- 2. Ознакомиться с базовым алгоритмом обучения интеллектуальной системы, структурная схема которого показана на рис.1.
- 3. Описать основные константы и переменные согласно табл. 1.
- 4. В соответствии с вариантом задания скопировать два изображения из библиотеки изображений типа текстуры [1].
- 5. Сформировать согласно приведенному примеру входную обучающую матрицу X[1, ..., m, 1, ..., N, 1, ..., n] для распознавания изображений (текстур).
- 6. Разработать интерактивный интерфейс программной системы.

Пример формирования обучающей матрицы

```
<?php
function s4it($id,$delta,$radius)
       $image1=imageCreateFromJpeg("image/".$id.".jpg");
       $file1=fopen("matr/".$id.".txt",w);
       $file3=fopen("matr/sr etal".$id.".txt",w);
      $file5=fopen("matr/vdk ".$id.".txt",w);
      $file7=fopen("matr/ndk ".$id.".txt",w);
      $file9=fopen("matr/bin matr ".$id.".txt",w);
      $file11=fopen("matr/etalon ".$id.".txt",w);
      for ($i=0; $i<100; $i++)
             for ($i=0; $i<100; $i++){
//---формирование обучающей матрицы и ее запись в файл--
              $rgb1=imageColorAt($image1, $i, $i);
             list($r1, $g1, $b1) = array values(imageColorsForIndex($image1,
$rgb1));
              1=round((1/3)*(r1+g1+g1+g1));
              $ SESSION['obuch matr'][$id][$i][$i]=$l1;
             fwrite($file1,"$I1");
              if ($j<99)
             fwrite($file1," ");
```

Графическое отображение изображений и обучающей матрицы для двух классов распознавания

Present 1	Project 3
Начина мирки 1	Начана кориз 1
E.S.M.R.R.S.C.N.N.N.	B. U. E. H. B. E. IZ III B. H
#L 6.206.100.120.121.00.126.73.	建戊压取免减至戊戌
数据的第三层据证据 证	以北京田田田田田田 田田
12. T. 10. 19. 4. 14. T. 15. 31	20. 以 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
選用0.2 按 第 說 选 陳.11	11. 14. 14. 14. 14. 14. 14. 14. 14. 14.
1.18.2.4.9.12.03.3.03.04	2.
IS CLEAR DE DE DE DE DE DE LE MER.	医意见埃斯氏区名目 含
15.20.10.45.03.18.19.3.	工具股份担约股票
印度正规主从设置施工	按照证据,现在证明,就
张机械艺旗系统版设置	如果是四名头上把几头

Контрольные вопросы

- 1. Что такое стационарное изображение? В чем заключается его отличие от нестационарного?
- 2. Какие различия имеют алгоритмы создания обучающей матрицы со стационарными и нестационарными изображениями?
- 4. Какой из компонентов PHP применяется для обработки изображений? Какие методы и свойства этих компонентов были использованы?
- 5. Какие компоненты РНР были использованы при создании интерфейса системы?

Практическое занятие 2. **Формирование бинарной обучающей матрицы**

Цель — разработать и программно реализовать алгоритм формирования бинарной обучающей матрицы.

Теоретические сведения

Рассмотрим обучающую матрицу типа «объект-свойство», которая характеризует m-ое функциональное состояние СПР - класс распознавания X^{o}_{m} :

$$||y_{m,i}^{(j)}|| = \begin{vmatrix} y_{m,1}^{(1)} & y_{m,2}^{(1)} & \cdots & y_{m,1}^{(1)} & \cdots & y_{m,N}^{(1)} \\ y_{m,1}^{(2)} & y_{m,2}^{(2)} & \cdots & y_{m,1}^{(2)} & \cdots & y_{m,N}^{(2)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ y_{m,1}^{(j)} & y_{m,2}^{(j)} & \cdots & y_{m,1}^{(j)} & \cdots & y_{m,N}^{(j)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ y_{m,1}^{(n)} & y_{m,2}^{(n)} & \cdots & y_{m,1}^{(n)} & \cdots & y_{m,N}^{(n)} \end{vmatrix}$$

(1)

Элементами этой матрицы являются экспериментальные данные, отражающие основные свойства объекта и, в общем случае являются значениями случайной величины - признаки распознавания. В матрице (1) строка является реализацией образа $\left\{y_{m,i}^{(j)}\lor i=\overline{1,N}\right\}$, где N - количество признаков распознавания, а столбец матрицы - случайная обучающая выборка $\left\{y_{m,i}^{(j)}\lor j=\overline{1,n}\right\}$, где n - объем выборки, которая формируется в процессе испытаний.

Для изображения обучающаяся матрица формируется путем сканирования рецепторного поля и получения в каждом пикселе значения яркости, которое для черно-белого графического редактора изменяется от 0 до 255 градаций яркости. Таким образом, матрица яркости является целой и рассматривается как входная матрица для системы распознавания.

Задание1. Сформировать бинарную обучающуюся матрицу X[1..m, 1..N, 1..n] путем преобразования обучающейся матрицы Y[1..m, 1..N, 1..n] в бинарное пространство Хемминга.

Задание2. Разработать модуль для графического отображения бинарной обучающейся матрицы.

Порядок выполнения работы

- 1. Записать тему и цель работы.
- 2. Задать значение поля контрольных допусков ($delta = \pm 50$).
- 3. Перевести обучающуюся матрицу Y[1..m, 1..N, 1..n] в бинарное пространство Хемминга по правилу:

$$X \begin{bmatrix} k, i, j \end{bmatrix} = \begin{cases} 1, & \textit{ecnu} & \textit{NDK}[i] \leq Y \begin{bmatrix} k, i, j \end{bmatrix} \leq \textit{VDK}[i], \\ 0, & \textit{sku} o & \textit{NDK}[i] \geq Y \begin{bmatrix} k, i, j \end{bmatrix} & \textit{unu} & Y \begin{bmatrix} k, i, j \end{bmatrix} \geq \textit{VDK}[i], \end{cases}$$

где $\mathrm{NDK}[i]$, $\mathrm{VDK}[i]$ — нижний и верхний контрольные допуски $i{-}zo$ признака соответственно.

4. Разработать интерактивный интерфейс программной системы.

Пример функции формирования бинарной матрицы

```
fwrite($file1, "\r\n");
//---расчет средних значений---
      for ($j=0; $j<100; $j++){
              $s1 elem=0;
              for ($i=0; $i<100; $i++){
              $s1 elem=$s1_elem+$_SESSION['obuch_matr'][$id][$i][$j];
              sr etal1[si]=round((1/100)*s1 elem);
              fwrite($file3, "$sr_etal1[$j] ");
//---расчет контрольных допусков---
              $vdk 1[$i]=$sr etal1[$i]+$delta;
              $ndk_1[$j]=$sr_etal1[$j]-$delta;
              $ SESSION['vdk'][$id][$j]=$vdk 1[$j];
              $ SESSION['ndk'][$id][$j]=$ndk 1[$j];
              fwrite($file5, "$vdk_1[$j] ");
              fwrite($file7, "$ndk 1[$j] ");
//---расчет бинарной матрицы и эталонного вектора---
       for ($j=0; $j<100; $j++){}
              $kol1 1=0;
              $kol1 0=0;
              for ($i=0; $i<100; $i++){
                     $zom=$ SESSION['obuch_matr'][$id][$i][$j];
                     if (($zom>=$ndk 1[$j]) && ($zom<=$vdk 1[$j])){
                            $ SESSION['bin matr'][$id][$i][$j]=1;
                            $kol1 1=$kol1 1+1;
                     } else {
                            $ SESSION['bin matr'][$id][$i][$i]=0;
                            $kol1 0=$kol1 0+1;
                     }
              if (($kol1 1/100)>$radius){
                     $ SESSION['etalon'][$id][$i]=1;
              } else {
                     $ SESSION['etalon'][$id][$j]=0;
              $str=$ SESSION['etalon'][$id][$i];
              fwrite($file11,"$str");
```

```
if ($j<99) fwrite($file11," ");
       for ($i=0; $i<100; $i++){
              for (\$j=0; \$j<100; \$j++){
              $znac=$ SESSION['bin matr'][$id][$i][$j];
              fwrite($file9,"$znac");
              if ($i<99) fwrite($file9," ");
              fwrite($file9,"\r\n");
fclose($file1);
fclose($file3);
fclose($file5);
fclose($file7);
fclose($file9);
fclose($file11);
}
//---вывод VDK---
function dopusk VDK vivod($id){
for ($i=0; $i<100; $i=$i+10){
       $temp=$ SESSION['vdk'][$id][$i];
       echo "<font size=\"2\">$temp..</font>";
echo "<br>";
//---вывод NDK---
function dopusk NDK vivod($id){
for ($i=0; $i<100; $i=$i+10){
       $temp=$ SESSION['ndk'][$id][$i];
       echo "<font size=\"2\">$temp..</font>";
echo "<br>";
//---вывод бинарной матрицы--
function bin_vivod($id){
for ($i=0; $i<100; $i=$i+10){
       for (\$j=0; \$j<100; \$j=\$j+10){
              $temp=$ SESSION['bin_matr'][$id][$i][$j];
              echo "<font size=\"2\">$temp..</font>";
              }
```

```
echo "<br>";
}
//---изображение бинарной матрицы---
function bin izobr($id){
$im1=imagecreate(100,100);
$black1 = imagecolorallocate ($im1, 0, 0, 0);
$white1 = imagecolorallocate ($im1, 255, 255, 255);
for ($i=0; $i<100; $i++){
      for (\$j=0; \$j<100; \$j++){}
              if ($_SESSION['bin_matr'][$id][$i][$j]==1){
              imageSetPixel($im1,$i,$j,$black1);
              } else {
              imageSetPixel($im1,$i,$j,$white1);
       }
}
imagejpeg ($im1,"image/bin_".$id.".jpg");
```

для двух классов распознавания

Parcyhog 21	Рисунок ₂₂
	RAPPALS.
Навчальна матриця 1	Навчальна матриця 2
207 -50 . 198 . 164 . 89 . 69 . 42 . 211 . 24 . 211 .	139_127_85_140_134_185_152_110_164_106_
40. 6. 206. 110, 126. 121, 105. 65. 136. 75.	160.170.163.194.36.146.83.151.154.65.
85.13.15.59.38.139.14.22.190.3L	141.31.119.166.138.132.140.117.113.23.
162, 70, 5, 112, 159, 41, 114, 70, 187, 20,	153_145_138_102_165_177_102_131_98_100_
199.39.0.32.143.76.182.156.166.21.	106.93.171.110.136.146.33.168.148.172.
51, 138, 33, 46, 9, 152, 123, 73, 128, 211,	52.90.72.008.145.131.31.138.189.70.
145.178.39.39.182.138.124.28.199.61	100 128 120 104 208 156 135 95 110 151
£ 5 221.111.47.56.178.135.133.3.	194.96.84.85.134.116.133.161.84.72.
173 86 16 196 6 44 150 118 196 111	130.178.38.149.109.42.74.61.118.51.
19.45.146.27.138.69.145.136.154.27.	001.187.68.173.68.54.71.187.172.36.
Допуски VDK першого класу	Допуски VDK другого квасу
VMM2 = 20 20 20 20 20 20 20 20 20 20 20 20 20	2004/7 2007 SE
Допуски NDK першого класу	Допуски NDK другого класу
допусы гове порые о масу	дилучи тых други выку
Бегарна магриця 1	Бенарна матрица 2
010010000	1111100111
0001010111	0.001.011.111
1000010000	1010110110
0101001100	1101101101
010000010	1101110010
0000001110	111111111
0000011001	1111010110
0801000010	0111110101
010.000.101	10.011.010.10
0.1.0.0.0.1.0.1.0.	10.10.0.10.00
Графічне відображення бінарної матриці першого класу	Графічне відображення бінарної матриці другого класу
13052' 1C	:300 stoc)
57.5547	W. TEX
Part of the second	363
	200
	4477

Контрольные вопросы

- 1. Какой тип переменных используется для описания системы контрольных допусков?
- 2. С какой целью проводится перевод обучающейся матрицы в бинарное пространство Хемминга?

- 3. Какой компонент РНР использован для графического отображения бинарной матрицы?
- 4. Что называется контрольным полем допусков на признаки распознавания?
- 5. Что называется нормированным полем допусков на признаки распознавания?

Практическое занятие 3. Определение эталонных геометрических векторов классов распознавания

Цель — научиться формировать геометрические центры классов распознавания.

Задание 1. Сформировать массив EV [1..m, 1..N] геометрических центров классов распознавания, где m - количество классов, N - количество признаков распознавания.

Теоретические сведения

Эталонный вектор x_m - это математическое ожидание реализаций класса X_m^0 . Он представлен в виде детерминированного структурированного бинарного вектора $x_m = < x_m, 1, ..., x_m, i, ..., x_m, N>, ... m=\overline{1,M}$, где M - количество классов распознавания, N - количество признаков, x_m, i - итая координата вектора, которая принимает единичное значение, если значение i-го признака распознавания находится в нормированном поле допусков $\delta_{H,i}$, и нулевое значение, если не находится.

Элементы $\mathrm{EV}[I,K]$ — двоичного эталонного вектора K -го класса X_1^K вычисляются по правилу:

$$EV[I,1] = \begin{cases} 1 \text{ if } \frac{1}{IMAX} \sum_{I=1}^{IMAX} X[J,I,1] > 0.5; \\ 0 \text{ if else.} \end{cases}$$

При обосновании гипотезы компактности (четкой, или нечеткой) реализаций образа геометрическим центром класса $X_{\it m}^{\it 0}$ является бинарный эталонный вектор $x_{\it m}$.

Порядок выполнения работы

- 1. Записать тему и цель работы.
- 2. Сформировать массив EV [1..m, 1..N] геометрических центров классов распознавания. При этом значение каждого элемента массива EV [k, i] рассчитывается по правилу:

$$EV[k,i] = \begin{cases} 1, & ecnu & \frac{1}{n} \sum_{j=1}^{n} X[k,i,j] > 0,5, \\ 0, & ecnu & \frac{1}{n} \sum_{j=1}^{n} X[k,i,j] \leq 0,5. \end{cases}$$

3. Разработать интерактивный интерфейс программной системы.

Пример формирования эталонных векторов классов распознавания

```
}
              if (($kol1_1/100)>$radius)
                     $ SESSION['etalon'][$id][$j]=1;
              } else {
                     $_SESSION['etalon'][$id][$j]=0;
              $str=$ SESSION['etalon'][$id][$j];
              fwrite($file11,"$str");
              if ($j<99)
                     fwrite($file11," ");
      for ($i=0; $i<100; $i++)
              for ($j=0; $j<100; $j++)
              $znac=$ SESSION['bin matr'][$id][$i][$j];
              fwrite($file9,"$znac");
              if ($j<99)
              fwrite($file9," ");
              fwrite($file9,"\r\n");
//----вывод эталонного вектора--
function etal_vivod($id)
for ($i=0; $i<100; $i=$i+10)
      $temp=$ SESSION['etalon'][$id][$i];
      echo "<font size=\"2\">$temp..</font>";
echo "<br>";
//---изображение эталонного вектора ---
function et izobr ($id)
$im1=imagecreate(100,10);
```

Графическое отображение эталонных векторов классов распознавания

Контрольные вопросы

1. Что называется эталонным вектором класса распознавания и как он формируется?

2. Какой компонент РНР был использован для корректного отображения геометрических центров классов обучения?

Практическое занятие 4. **Формирование массива** кодовых расстояний между центрами классов распознавания

Цель - разработать и программно реализовать алгоритм формирования массива кодовых расстояний между центрами классов распознавания.

Теоретические сведения

Матрица кодовых расстояний используется для разбиения множества эталонных векторов на пары ближайших соседей: $\mathfrak{R}_{\mathrm{m}}^{|2|} = \langle \mathrm{xm}, \mathrm{xl} \rangle$, где xl -эталонный вектор соседнего класса X_{l}^{o} . Данное разбиение осуществляется по следующему алгоритму:

- а) структурируется множество эталонных векторов, начиная с вектора x1 базового класса X_1^o , характеризующий наибольшую функциональную эффективность СПР;
- б) строится матрица кодовых расстояний между эталонными векторами размерности MxN;
- в) для каждой строки матрицы кодовых расстояний находится минимальный элемент, который принадлежит столбцу вектора, ближайшего к вектору, который определяет строку. При наличии нескольких одинаковых минимальных элементов выбирается из них любой, поскольку они являются равноправными;
- г) формируется структурированное множество элементов парного разбиения $\{\Re_m^{|2|} \mid m=\overline{1,M}\}$, задающее план обучения.

Задание1. Сформировать массив SK[1..2,1..N] (N –количество признаков распознавания) кодовых расстояний от геометрических центров контейнеров классов до их реализаций.

Задание2. Сформировать массив $SK_PARA[1..2,1..N]$ аналогичный предыдущему массиву $SK_PARA[1..2,1..N]$ аналогичный соседний класс.

Задание3. Разработать модуль для отображения распределения реализаций между текущим классом и его ближайшим соседом.

Порядок выполнения работы

- 1. Сформировать массив SK [1..2,1..N] (N количество признаков распознавания) кодовых расстояний от геометрических центров контейнеров классов до их реализаций. Причем массив SK[1,1..N] должен содержать кодовые расстояния между геометрическим центром текущего класса и реализациями этого класса; массив SK[2,1..N] должен содержать кодовые расстояния между геометрическим центром текущего класса и реализациями ближайшего соседнего класса.
- 2. Сформировать массив $SK_PARA[1..2,1..N]$ аналогичный предыдущему массиву SK, но за текущий класс взять ближайший соседний класс.
- 3. Разработать модуль для отображения распределения реализаций между текущим классом и его ближайшим соседом. Для определения положения каждой реализации использовать значение массивов SK и SK_PARA. Центры классов разместить на горизонтальной прямой.

Пример функции для отображения распределения реализаций между текущим классом и его ближайшим соседом

```
//---таблица"соседей"
function sosedtabl($nom1, $nom2)
{
$d=0;
```

```
if ($nom1!=$nom2)
                    for($i=0; $i<100;$i++)
                           if
(($ SESSION['etalon'][$nom1][$i])!=($ SESSION['etalon'][$nom2][$i]))
                                  $d++;
                    }
             else
                    $d=-1;
      $ SESSION['ssd'][$nom1][$nom2]=$d;
}
//---определение расстояния между «соседями»---
function sosed ($kol)
      for ($i=0; $i<$kol; $i++)
             if ($_SESSION['ssd'][$i][0]>0)
                    $mins=$_SESSION['ssd'][$i][0];
                    $inds=0;
             else
                    $mins=$ SESSION['ssd'][$i][1];
                    $inds=1;
             for ($j=0; $j<$kol; $j++)
(($ SESSION['ssd'][$i][$j]>0)&&($ SESSION['ssd'][$i][$j]<$mins))
                           $mins=$_SESSION['ssd'][$i][$j];
                           $inds=$i;
             $_SESSION['sfinal'][$i]=$inds;
}
//---рассчет массива SK_PARA---
function skr($nom)
```

```
$nom sosed=$ SESSION['sfinal'][$nom];
              for ($i=0; $i<100; $i++)
              $d1=0;
                     for($j=0; $j<100;$j++)
                            if
 ((\$ SESSION['etalon'][\$nom][\$j])! = (\$\_SESSION['bin\_matr'][\$nom][\$j]][\$i])) 
                                   $d1++;
              $ SESSION['kr'][$nom][0][$i]=$d1;
              for ($i=0; $i<100; $i++)
              $d2=0;
                     for($j=0; $j<100;$j++)
(($ SESSION['etalon'][$nom][$i])!=($ SESSION['bin matr'][$nom sosed][$i][$i]))
                                   $d2++;
              $ SESSION['kr'][$nom][1][$i]=$d2;
$file1=fopen("matr/kr".$nom.".txt",w);
       for($i=0;$i<100;$i++)
              $kr1=$ SESSION['kr'][$nom][0][$i];
              $kr2=$ SESSION['kr'][$nom][1][$i];
              fwrite(file1,"fr1 \ kr2 \ r\n");
fclose($file1);
```

Графическое отображение распределения реализаций между текущим классом и его ближайшим соседом

відстань між ev1 і ev2--> (перша пара) 72 відстань між ev1 і ev3--> (друга пара) 71

відстань між ev2 і ev3--> (третя пара) 43

пара з найментою відстанню між центрами реалізацій 3

SK & SK PARA 2008 3 magest

масии SK-->

49 51 49 43 37 34 44 42 46 46 43 33 31 29 32 32 28 23 32 39 41 45 45 41 36 32 40 49 45 34 32 32 33 37 35 35 39 42 43 48 ... 51 53 48 51 47 50 40 40 46 46 51 45 41 49 57 54 48 52 53 52 51 45 46 39 41 48 48 46 42 43 48 48 43 41 40 38 36 34 28 40 ...

Macum SK PARA-->

41 59 54 53 53 42 34 38 42 40 45 43 45 61 65 62 60 60 59 60 55 51 48 45 47 46 50 50 42 41 34 36 43 39 40 46 48 42 32 30 ... 53 55 51 55 45 44 46 48 50 54 47 53 49 47 48 44 46 47 50 55 53 59 63 53 52 56 56 57 53 42 36 38 33 35 33 39 45 56 57 56 ...

SK 1 & SK PARA 1 для першої пари

масии SK 1-->

29 36 36 45 38 37 29 30 29 32 31 23 22 22 38 40 31 27 27 33 42 41 45 41 38 33 34 34 32 32 38 35 36 32 29 30 30 25 24 28 ... 46 48 50 54 64 71 67 67 67 63 66 62 58 60 61 59 59 62 55 50 52 46 54 62 65 63 63 56 56 65 73 71 72 66 70 68 58 51 48 45 ...

MACHIE SK_PARA_1-->

49 51 49 43 37 34 44 42 46 46 43 33 31 29 32 32 28 23 32 39 41 45 45 41 36 32 40 49 45 34 32 32 33 37 35 35 39 42 43 48 ...
29 36 36 45 38 37 29 30 29 32 31 23 22 22 38 40 31 27 27 33 42 41 45 41 38 33 34 34 32 32 38 35 36 32 29 30 30 25 24 28 ...

Контрольные вопросы

- 1. Что такое кодовое расстояние? Как строится матрица кодовых расстояний?
- 2. По какому алгоритму определяется ближайший «соседний» класс распознавания?

3. Какой компонент РНР был использован для отображения распределения реализаций?

Практическое занятие 5. **Вычисление** информационного критерия функциональной эффективности обучения интеллектуальной системы

Цель - разработать и программно реализовать алгоритм вычисления информационного критерия функциональной эффективности обучения системы распознавания.

Теоретические сведения

Информационный подход базируется на использовании для оценки функциональной эффективности информационного критерия, который, например, по Шеннону имеет такой нормированный вид:

$$E = \frac{H_0 - H(\gamma)}{H_0},\tag{2}$$

где H_0 – априорное (безусловное) энтропия:

$$H_0 = -\sum_{l=1}^{M} p(\gamma_l) \log_2 p(\gamma_l), \tag{3}$$

 $H(\gamma)$ — апостериорная условная энтропия, характеризующая остаточную неопределенность после принятия решений:

$$H(\gamma) = -\sum_{l=1}^{M} p(\gamma_l) \sum_{l=1}^{M} p(\mu_m / \gamma_l) \log_2 p(\mu_m / \gamma_l), \qquad (4)$$

где $p(\gamma_l)$ — априорная вероятность принятия гипотезы γ_l ; $p(\mu_m/\gamma_l)$ — апостериорная вероятность появления события μ_m при условии принятия гипотезы γ_l ; M— число альтернативных гипотез.

На практике при оценке функциональной эффективности обучающейся системы управления, могут иметь место такие предположения:

- решение двухальтернативное (M = 2);
- поскольку, обучающаяся система управления слабо формализованным процессом функционирует в условиях неопределенности, то по принципу Бернулли-Лапласа оправдано принятие равновероятных гипотез: $p(y_1) = p(y_2) = 0.5$

Тогда критерий (2) с учетом выражений (3) и (4) принимает частный вид:

$$E = 1 + \frac{1}{2} \sum_{l=1}^{2} \sum_{m=1}^{2} p(\mu_{m}/\gamma_{l}) \log_{2} p(\mu_{m}/\gamma_{l}).$$
 (5)

При двухальтернативном решении (M=2) основной считаем гипотезу γ_1 о нахождении значения признака распознавания в поле допусков δ и как альтернативную ей гипотезу γ_2 . При этом имеют место четыре возможных результата оценки измерения признаков:

ошибка первого рода - $\alpha = \rho(x \notin \delta/z \in \delta)$;

ошибка второго рода $-\beta = \rho(x \in \delta / z \notin \delta)$;

первая достоверность — $D_1 = \rho(x \in \delta/z \in \delta)$;

вторая достоверность – $\ D_2 = \rho(x \not\in \delta/z \not\in \delta)$,

где x, z — измеренное и действительное значение признака распознавания соответственно.

Разобьем множество значений признаков на области $\ \mu_1$ и $\ \mu_2$. Область $\ \mu_1$ включает значения, находящиеся в допуске $\ \delta$, а $\ \mu_2$ — не в допуске.

Тогда можно записать $\alpha=pig(\gamma_2\,/\,\mu_1ig)$, $\beta=pig(\gamma_1\,/\,\mu_2ig)$, $D_1=p\,(\gamma_1/\mu_1)$, $D_2=p\,(\gamma_2/\,\mu_2)$.

Выразим апостериорные вероятности $p\left(\mu_{m}/\gamma_{l}\right)$ через априорные по формуле Байеса :

$$p(\mu_{m}/\gamma_{l}) = \frac{p(\mu_{m}) p(\gamma_{l}/\mu_{m})}{p(\mu_{1}) p(\gamma_{l}/\mu_{1}) + p(\mu_{2}) p(\gamma_{l}/\mu_{2})}$$
(6)

и, взяв $p(\mu_1)=p(\mu_2)=0.5$, получаем:

$$p(\mu_{1}/\gamma_{1}) = \frac{D_{1}}{D_{1} + \beta}, \quad p(\mu_{2}/\gamma_{1}) = \frac{\beta}{D_{1} + \beta},$$

$$p(\mu_{1}/\gamma_{2}) = \frac{\alpha}{\alpha + D_{2}}, \quad p(\mu_{2}/\gamma_{2}) = \frac{p_{2}D_{2}}{p_{1}\alpha + p_{2}D_{2}}.$$
(7)

После подстановки (7) в (6) получим формулу для вычисления КФЭ по Шеннону :

$$E = 1 + \frac{1}{2} \left(\frac{\alpha}{\alpha + D_2} \log_2 \frac{\alpha}{\alpha + D_2} + \frac{D_1}{D_1 + \beta} \log_2 \frac{D_1}{D_1 + \beta} + \frac{\beta}{D_1 + \beta} \log_2 \frac{\beta}{D_1 + \beta} + \frac{D_2}{\alpha + D_2} \log_2 \frac{D_2}{\alpha + D_2} \right).$$
(8)

Структурная схема алгоритма вычисления информационного критерия функциональной эффективности обучения по параллельному способу обработки обучающей матрицы в процессе построения оптимального контейнера класса показано на рис. 5.1.

Рисунок 2. — Структурная схема вычисления информационного критерия функциональной эффективности обучения системы распознавания

На рис. 2 приведены следующие входные данные: X_1 , X_2 – эталонные двоичные векторы классов X_1^o и X_2^o соответственно;

 $\{X(N)\}$ — обучающаяся матрица, состоящая из реализаций этих классов; $N=1,\overline{\mathrm{NM}}$, где NM — объем репрезентативной обучающейся выборки, D - радиус контейнера класса X_1^o . Выходные данные: E - значение КФЭ; α , β , D_1 , D_2 — значения точностных характеристик процесса обучения: ошибки первого и второго рода, первая и вторая достоверности соответственно.

Блок 5 вычисляет при каждом испытании кодовое расстояние D(J) путем сложения по модулю два вектора X_1 с текущим вектором-реализацией X(J) и подсчета количества единиц в полученной сумме. При каждом нечетном испытании определяется расстояние D(J) между вектором X_1 и реализацией своего класса, а на каждом четном - между вектором X_1 и реализацией другого класса. Вычисление коэффициентов K_1, K_2, K_3 и K_4 осуществляется по следующему алгоритму (блоки 6-12):

- а) сравнения (блок 6): если $D(J) \leq D$ (реализация принадлежит области класса X_1^o), то при нечетном испытании вычисляется K_1 := K_1 +1 ("своя" реализация), а при парном K_3 := K_3 +1 ("чужая" реализация). Определение четности или нечетности реализаций осуществляют блоки 7 и 8, которые проверяют выполнение условия J/2 = F, где F целое число. Если условие выполняется, то испытание четное, иначе нечетное. Если D(J) > D (реализация не принадлежит области класса X_1^o), то при нечетном испытании вычисляется коэффициент K_2 := K_2 +1 ("своя" реалтзация), а при четном K_4 := K_4 +1 ("чужая" реализация);
- б) сравнение (блок 13): J>JM (обработано все реализации обучающей матрицы), тогда вычисляются оценки точностных характеристик по (14), иначе обрабатывается следующая реализация (блок 4);
- в) при выполнении условия блока 15 : $(D_1>0,5\ u\ D_2>0,5)$ вычисляется информационный критерий, иначе выдается сообщение «КФЕ не определен».

- **Задание 1**. Вычислить значение точностных характеристик. **Задание 2**. Программно реализовать функцию вычисления значения критерия функциональной эффективности по Кульбаку при указанных геометрических параметрах классов обучения.
- **Задание 3**. Программно реализовать функцию вычисления значения критерия функциональной эффективности по Шеннону при указанных геометрических параметрах классов обучения.
- **Задание 4**. Выделить рабочую область определения критерия функциональной эффективности на графике и в таблице.

Порядок выполнения работы

1. Вычислить значения точностных характеристик при указанных геометрических параметрах классов обучения:

$$D_1^{(k)} = \frac{K_1^{(k)}}{n}, \quad \alpha^{(k)} = \frac{K_2^{(k)}}{n}, \quad \beta^{(k)} = \frac{K_3^{(k)}}{n}, \quad D_2^{(k)} = \frac{K_4^{(k)}}{n}.$$

2. Программно реализовать функцию вычисления значения критерия функциональной эффективности при указанных геометрических параметрах классов обучения. В качестве критерия использовать критерий Кульбака:

$$J_{m}^{(k)} = \frac{1}{n} \log_{2} \left\{ \frac{2n + 10^{-r} - \left[K_{2}^{(k)} + K_{3}^{(k)}\right]}{\left[K_{2}^{(k)} + K_{3}^{(k)}\right] + 10^{-r}} \right\} * \left[n - \left(K_{2}^{(k)} + K_{3}^{(k)}\right)\right],$$
(9)

 $K_1^{(k)}$, $K_2^{(k)}$ — количество событий, которые означают соответственно принадлежность и непринадлежность реализаций образа контейнеру $K_{1,k}^o$, если действительно $\{x_1^{(j)}\}\in X_1^o$;

 $K_{3}^{(k)}$, $K_{4}^{(k)}$ - количество событий, которые означают

соответственно принадлежность и непринадлежность реализаций контейнеру $K_{1,k}^o$, если они на самом деле принадлежат классу X_2^o ;

- k шаг обучения системы распознавания;
- r число цифр в мантиссе значения критерия;
- n -количество реализаций.
- 3. Программно реализовать функцию вычисления значения критерия функциональной эффективности при указанных геометрических параметрах классов обучения. Использовать информационный критерий Шеннона для двохальтернативного решение:

$$\begin{split} E_{1}^{(k)} = & 1 + \frac{1}{2} \Biggl(\frac{K_{1}^{(k)}}{K_{1}^{(k)} + K_{3}^{(k)}} \log_{2} \frac{K_{1}^{(k)}}{K_{1}^{(k)} + K_{3}^{(k)}} + \frac{K_{2}^{(k)}}{K_{2}^{(k)} + K_{4}^{(k)}} \log_{2} \frac{K_{2}^{(k)}}{K_{2}^{(k)} + K_{4}^{(k)}} + \\ & + \frac{K_{3}^{(k)}}{K_{1}^{(k)} + K_{3}^{(k)}} \log_{2} \frac{K_{3}^{(k)}}{K_{1}^{(k)} + K_{3}^{(k)}} + \frac{K_{4}^{(k)}}{K_{2}^{(k)} + K_{4}^{(k)}} \log_{2} \frac{K_{4}^{(k)}}{K_{2} + K_{4}^{(k)}} \Biggr) . \end{split}$$

- 4. Построить графики зависимости информационного критерия от параметров оптимизации.
- 5. Провести проверку и анализ полученных результатов.

Пример функции вычисления точностных характеристик и значение критерия функциональной эффективности

```
// ---расчет точностных характеристик---
function to4nist($nom)
{
    for($i=0; $i<100;$i++)
    {
        $k1[$i]=0;
        $k2[$i]=0;
        $k3[$i]=0;
        $k4[$i]=0;
    }
```

```
for($i=0; $i<100; $i++)
              for($j=0; $j<100; $j++)
                     if ($ SESSION['kr'][$nom][0][$j]<=$i)
                            $k1[$i]=$k1[$i]+1;
                     else
                            $k3[$i]=$k3[$i]+1;
                     if ($ SESSION['kr'][$nom][1][$j]<=$i)
                            $k2[$i]=$k2[$i]+1;
                     else
                            $k4[$i]=$k4[$i]+1;
              $ SESSION['D1'][$nom][$i]=$k1[$i]/100;
              $ SESSION['a'][$nom][$i]=$k3[$i]/100;
              $ SESSION['b'][$nom][$i]=$k2[$i]/100;
              $ SESSION['D2'][$nom][$i]=$k4[$i]/100;
      for ($i=0; $i<100; $i++)
       {{
                     if
(($ SESSION['D1'][$nom][$i]>=0.5)&&($_SESSION['D2'][$nom][$i]>=0.5))
                     {
                            $a=$ SESSION['a'][$nom][$i];
                            $b=$ SESSION['b'][$nom][$i];
                            \frac{(2-(\hat{a}+\hat{b}))}{(\hat{a}+\hat{b})}/(a+\hat{b})}/(a+\hat{b})
критерий Кульбака
      //$temp=1+0.5*(($a/($a+$D2))*(log($a/($a+$D2)))/log(2)+($D1/($D1+$b))*(
log(\$D1/(\$D1+\$b)))/log(2)+(\$b/(\$D1+\$b))*(log(\$b/(\$D1+\$b)))/log(2)+(\$D2/(\$a+\$D2))
))*(log($D2/($a+$D2)))/log(2)); //критерій Шеннона
                            $ SESSION['J'][$nom][$i]=$temp;
                     else
                            $ SESSION['J'][$nom][$i]=0;
              }
       }
       $max J=0;
       for ($i=0; $i<100; $i++)
```

```
{
              if ($max_J<$_SESSION['J'][$nom][$i])</pre>
              $max J=$ SESSION['J'][$nom][$i];
       }
       // ---запись точностных характеристик в файл---
$file1=fopen("matr/har".$nom.".txt",w);
fwrite($file1,"D1 \t D2 \t a \t b \r\n");
      for($i=0;$i<100;$i++){
              $d1=$ SESSION['D1'][$nom][$i];
              $d2=$_SESSION['D2'][$nom][$i];
              $a=$ SESSION['a'][$nom][$i];
              $b=$ SESSION['b'][$nom][$i];
              fwrite(file1,"$d1 \ t $d2 \ t $a \ r\n");
       fclose($file1);
       $file1=fopen("matr/kfe".$nom.".txt",w);
      for ($i=0; $i<100;$i++)
              $temp=$ SESSION['J'][$nom][$i];
              fwrite($file1,"$i \t\t $temp");
      fclose($file1);
return $max J;
}
```

Графическое отображение значения критерия функциональной эффективности

Межцентровое кодовое расстояние =72

d	D1	D2	Alfa	Beta	KFE 0 0
32	0.3	1	0.7	0	
33	0.31	1	0.69	o	
34	0.34	1	0.66	o	o
35	0.37	113	0.63	ō	o
36 37	0.42	1	0.58	ò	o o
38	0.53	i	0.47	ő	0.9025
		llî.			
39	0.57	11.	0.43	O	1.065
40	0.6	11	0.4	0	1.2
41	0.64	1	0.36	0	1.4001
42	0.67	1	0.33	0	1.5673
43	0.7	1	0.3	0	1.7518
44	0.76	1	0.24	0	2.1846
45	0.79	0.98	0.21	0.02	2.2669
46	0.82	0.97	0.18	0.03	2.4423
47	0.83	0.96	0.17	0.04	2.4423
48	0.84	0.94	0.16	0.06	2.3527
49	0.89	0.93	0.11	0.07	2.7371
50	0.9	0.92	0.1	0.08	2.7371
51	0.9	0.9	0.1	0.1	2.5359
52	0.92	0.83	0.08	0.17	2.1055
53	0.94	0.8	0.06	0.2	2.0295
54	0.95	0.77	0.05	0.23	1.8856
55	0.96	0.72	0.04	0.28	1.6268
56	0.98	0.71	0.02	0.29	1.6882
57	0.99	0.66	0.01	0.34	1.4541
58	0.99	0.59	0.01	0.41	1.1086
59	0.99	0.54	0.01	0.46	0.9025
60	0.99	0.52	0.01	0.48	0.8281
61	1	0.45	0	0.55	o
62	i	0.44	O	0.56	o
63	1	0.4	0	0.6	0
64	1	0.34	0	0.66	0
65	1	0.3	0	0.7	О

d	Di	D2	Alfia	Beta	KFE
32	0.28	1	0.72	0	О
33 34	0.33	1	0.67	0	0
34	0.38	1	0.62	0	0
36	0.42	1	0.54	0	0
37	0.40	1	0.34	o.	ő
38	0.52	1	0.48	O	0.8647
39	0.55	1	0.45	0	0.9813
40	0.63	1	0.37	O	1.3477
41	0.65	1	0.35	O	1.4541
42	0.68	0.99	0.32	0.01	1.5673
43	0.74	0.99	0.26	0.01	1.9562
44	0.78	0.98	0.22	0.02	2.1846
45	0.81	0.97	0.19	0.03	2.3527
46	0.85	0.97	0.15	0.03	2.7371
47	0.9	0.96	0.1	0.04	3.2094
48	0.91	0.95	0.09	0.05	3.2094
49	0.92	0.93	0.08	0.07	
50	0.93	0.92	0.07	0.08	3.0808
51	0.94	0.91	0.06	0.09	3.0808
52	0.97	0.87	0.03	0.13	2.9598
53	0.99	0.87	0.01	0.13	3.2094
54	0.99	0.83	0.01	0.17	2.7371
55	0.99	0.81	0.01	0.19	2.5359
56	1	0.79	O	0.21	2.4423
57	1	0.75	0	0.25	2.1055
58	1	0.73	O	0.27	1.9562
59	1	0.68	O	0.32	
60	1	0.65	O	0.35	1.4541
61	1	0.6	0	0.4	1.2
62	1	0.6	0	0.4	1.2
63	1	0.54	O	0.46	0.9413
64	1	0.5	o	0.5	0.7925
65	1	0.46	o	0.54	o

Контрольные вопросы

- 1. Что называется первой достоверностью?
- 2. Что называется второй достоверностью?
- 3. Что называется ошибкой первого рода?
- 4. Что называется ошибкой второго рода?
- 5. Обоснуйте целесообразность использования информационного КФЭ для оценки функциональной эффективности обущающей интеллектуальной системы.

Практическое занятие 6. Оптимизация системы контрольных допусков на признаки распознавания

Цель - разработать и программно реализовать алгоритм оптимизации геометрических параметров контейнеров классов распознавания.

Теоретические сведения

Рассмотрим алгоритм параллельной оптимизации системы контрольных допусков на признаки распознавания в рамках МФСИ, На рис. З показано симметричное (двустороннее) поле допусков на значение признака $y_{mi}^{(j)}, i = \overline{1,N}$.

Рисунок 3. – Симметричное поле допусков на значение признаки распознавания

Здесь A_0 — номинальное значение признака y_i ;

 A_{H} , A_{B} — нижний и верхний нормированные допуски соответственно;

 A_{HK} , A_{BK} — нижний и верхний контрольные допуски соответственно;

 $\delta_{H,i}$ - нормированное поле допусков;

 $\delta_{\textit{K,\Gamma}}$ контрольное поле допусков.

Существует несколько возможных стратегий изменения поля допусков $\delta_{\mathit{K},i}$, среди которых выделим две основные:

- симетричная стратегия $S_1(\stackrel{\longleftarrow}{\mathrm{var}} A_{\mathrm{HK}}, \stackrel{\longrightarrow}{\mathrm{var}} A_{\mathrm{BK}})$, которая оправдана, например, при условии подтверждения разведывательным анализом совпадения номинального значения A_0 з с теоретическим центром рассеивания значений обучающей выборки $\left\{y_{mi}^{(j)} \lor j = \overline{1,n}\right\}$;
- асимметричная стратегия $S_2(\stackrel{\leftarrow}{\operatorname{var}}\stackrel{\leftarrow}{\operatorname{A}_{\operatorname{HK}}},\stackrel{\leftarrow}{\operatorname{var}}\operatorname{A}_{\operatorname{BK}})$, которая имеет место при отклонении значения A_0 от центра рассеивания значений выборки $\left\{y_{m,i}^{(j)}\vee j=\overline{1,n}\right\}$.

Задача оптимизации контрольных допусков на признаки распознавания является частичной задачей информационного синтеза, в которой необходимо определить экстремальные значения параметра поля контрольных допусков $\delta = A_0 - A_{HK}$ |:

$$\delta^* = \arg \max_{G_{\delta}} \{ \max_{G_{\Omega}} \{ \max_{G_d} \overline{E} \} \},$$

где $G_{\delta}, G_{\Omega}, G_{d}$ – допустимые области значений параметра поля контрольных допусков δ , пространства признаков распознавания и радиусов контейнеров классов распознавания соответственно.

Алгоритм оптимизации контрольных допусков, как и других параметров обучения в рамках МФСИ, заключается в

приближении глобального максимума информационного критерия оптимизации к предельному его значению в рабочей области значений функции критерия.

Задание 1. Разработать алгоритм последовательной оптимизации системы контрольных допусков на признаки распознавания. На каждом шаге оптимизации вычислить оптимальные значения геометрических параметров плана обучения.

Задание 2. Разработать систему визуализации процесса оптимизации системы контрольных допусков и геометрических параметров плана обучения.

Порядок выполнения работы

- 1.В качестве входных данных использовать бинарную обучающуюся матрицу яркости $\{X[J,I,K]\}$ и эталонные векторыреализации изображений.
- 2. Определить область значений параметра оптимизации $\delta \in [0; \, \delta_H \, / \, 2]$, где δ_H нормированное (эксплуатационное) поле допусков. Для черно-белых изображений рекомендуется выбирать $\delta_{\max} \geq 20$ градаций яркости.
- 3. Программно реализовать итерационную процедуру параллельной оптимизации системы контрольных допусков по информационному критерию Шеннона.
- **4.** Построить графики зависимости информационного критерия от параметров оптимизации. Провести проверку и анализ полученных результатов .

Пример функции оптимизации системы контрольных допусков и радиусов контейнеров классов распознавания

```
//--оптимизация контрольных допусков---
$radius=0.5;
             s4it (0,$delta,$radius);
             s4it (1,$delta,$radius);
for ($delta=30;$delta<=50;$delta++)
             optimize (0,$delta,$radius);
             optimize (1,$delta,$radius);
             for ($i=0; $i<2; $i++)
                    for ($j=0; $j<2;$j++)
                           sosedtabl($i,$j);
             sosed(2);
             for($i=0; $i<2; $i++)
                    {
                           skr($i);
                           $max J[$i][$delta]=to4nist($i);
                           $klass=$i+1;
                    }
$t max J=0;
$opt_delta=0;
      for ($delta=30;$delta<=50;$delta++)
{
           $summ=$max J[0][$delta]+$max J[1][$delta];
                    if ($t max J<=$summ)
                                  $t max J=$summ;
                                  $opt delta=$delta;
                           }
}
s4it (0,$opt delta,$radius);
s4it (1,$opt_delta,$radius);
// ---поиск оптимального радиуса---
```

```
function dop($kol)
{
    for($k=0; $k<$kol; $k++)
    {
        for($i=0; $i<100;$i++)
        if
        (($_SESSION['D1'][$k][$i]>0.5)&&($_SESSION['D2'][$k][$i]>0.5))
        {
        $zn=$_SESSION['J'][$k][$i];
        $_SESSION['DOPT'][$k]=$i+1;
        }
        for($i=0; $i<100;$i++)
        for($i=0; $i<100;$i++)
        {
        if
        (($_SESSION['J'][$k][$i]>$zn)&&($_SESSION['D1'][$k][$i]>0.5)&&($_SESSION['D2'][$k][$i]>0.5))
        {
        $zn=$_SESSION['J'][$k][$i];
        $_SESSION['DOPT'][$k]=$i+1;
        }
        }
    }
}
```

Графическое отображение процесса оптимизации системы контрольных допусков и геометрических параметров контейнеров классов обучения

Значение КФЭ = 2.737053 для 1-го класса максимально при дельта=40 Значение КФЭ = 3.209351 для 2-го класса максимально при дельта=40 Межцентровое кодовое расстояние =89

d	D1	D2	Alfa	Beta	KFE
32	0.3	1	0.7	0	0
33	0.31	1	0.69	0	0
34	0.34	1	0.66	0	0
35	0.37	1	0.63	0	0
36 37	0.42	1	0.58	0 0 0	0
38	0.53	4	0.47	o	0.9025
39	0.57	li i	0.43	o	1.065
	11	-		II -	
40	0.6	11	0.4	0	1.2
41	0.64	1	0.36	0	1.4001
42	0.67	1	0.33	0	1.5673
43	0.7	1	0.3	0	1.7518
44	0.76	1	0.24	0	2.1846
45	0.79	0.98	0.21	0.02	2.2669
46	0.82	0.97	0.18	0.03	2.4423
47	0.83	0.96	0.17	0.04	2.4423
48	0.84	0.94	0.16	0.06	2.3527
49	0.89	0.93	0.11	0.07	2.7371
50	0.9	0.92	0.1	0.08	2.7371
51	0.9	0.9	0.1	0.1	2.5359
52	0.92	0.83	0.08	0.17	2.1055
53	0.94	0.8	0.06	0.2	2.0295
54	0.95	0.77	0.05	0.23	1.8856
55	0.96	0.72	0.04	0.28	1.6268
56	0.98	0.71	0.02	0.29	1.6882
57	0.99	0.66	0.01	0.34	1.4541
58	0.99	0.59	0.01	0.41	1.1086
59	0.99	0.54	0.01	0.46	0.9025
60	0.99	0.52	0.01	0.48	0.8281
61	1	0.45	0.01	0.55	0.0201
62	1	0.44	0	0.56	0
63	1	0.4	0	0.6	0
64	1	0.34	0	0.66	0
65	1	0.3	0	0.7	0

d	D1	D2	Alfa	Beta	KFE
32	0.28	1	0.72	0	0
33	0.33	1	0.67	0	0
34	0.38	1	0.62	0	0
35 36	0.42	1	0.58 0	0	0 0 0 0 0 0 0.8647
37	0.46	1	0.54	o	
38	0.52	i	0.48	o	
39	0.55	1	0.45	O	0.9813
40	0.63	1	0.37	0	1.3477
41	0.65	1	0.35	O	1.4541
42	0.68	0.99	0.32	0.01	1.5673
43	0.74	0.99	0.26	0.01	1.9562
44	0.78	0.98	0.22	0.02	2.1846
45	0.81	0.97	0.19	0.03	2.3527
46	0.85	0.97	0.15	0.03	2.7371
47	0.9	0.96	0.1	0.04	3.2094
48	0.91	0.95	0.09	0.05	3.2094
49	0.92	0.93	0.08	0.07	3.0808
50	0.93	0.92	0.07	0.08	3.0808
51	0.94	0.91	0.06	0.09	3.0808
52	0.97	0.87	0.03	0.13	2.9598
53	0.99	0.87	0.01	0.13	3.2094
54	0.99	0.83	0.01	0.17	2.7371
55	0.99	0.81	0.01	0.19	2.5359
56	1	0.79	O	0.21	2.4423
57	1	0.75	0	0.25	2.1055
58	1	0.73	o	0.27	1.9562
59	1	0.68	0	0.32	1.6268
60	1	0.65	O	0.35	1.4541
61	1	0.6	O	0.4	1.2
62	1	0.6	O	0.4	1.2
63	1	0.54	O	0.46	0.9413
64	1	0.5	0	0.5	0.7925
65	1	0.46	0	0.54	0

Контрольные вопросы

- 1. Что такое «рабочая область» при оптимизации геометрических параметров классов распознавания? Какова ее роль в этом процессе?
- 2. На сколько отличаются значение оптимальных геометрических параметров классов обучения, полученные с использованием различных информационных критериев?
- 3. Какие компоненты РНР были использованы при создании системы визуализации процесса оптимизации геометрических параметров плана обучения?

Практическое занятие 7. Реализация алгоритма обучения интеллектуальной системы

Цель - разработать и программно реализовать алгоритм обучения с оптимизацией контрольных допусков системы распознавания.

Задача 1. Провести обучение с оптимизацией системы контрольных допусков и геометрических параметров классов распознавания. Обучающую матрицу сформировать, используя текстуры.

	,				
Номер варианта	1-й класс	2-й класс	Номер варианта	1-й класс	2-й класс
1			6		
2			10		
3			11		

Порядок выполнения работы

- 1. Записать тему и цель работы.
- 2. Провести обучение с оптимизацией системы контрольных допусков и геометрических параметров классов распознавания.
- 3. Провести проверку и анализ полученных результатов.

Контрольные вопросы

- 1. Как вычислить оптимальные значения геометрических параметров классов и системы контрольных допусков на признаки распознавания?
- 2. Как получить графические изображения бинарных обучающих матриц при начальных и оптимальных параметрах обучения?
- 3. Как происходит изменение критерия функциональной эффективности в процессе оптимизации системы контрольных допусков и геометрических параметров классов распознавания?

Практическое занятие 8. Реализация алгоритма экзамена

Цель - разработать и программно реализовать алгоритм экзамена системы распознавания.

Теоретические сведения

Алгоритмы экзамена по МФСИ могут иметь разную структуру в зависимости от распределения реализаций образа. Обязательным условием их реализации является обеспечение равных условий структурированности и параметров формирования как для обучающей, так и для экзаменационной матриц.

Реализации алгоритма экзамена:

- 1. Формирование счетчика m := m+1 классов распознавания.
- 2. Формирование счетчика числа реализаций, которые распознаются j := j+1.
- 3. Вычисления кодового расстояния $d(x_m^* \oplus x^{(j)})$.
- 4. Вычисления функции принадлежности:

$$\mu_{\rm m} = 1 - \frac{d(x_{\rm m}^* \oplus x^{(j)})}{d_{\rm m}^*}.$$

- 5. Сравнения: если $j \le n$, то выполняется шаг 2, иначе шаг 6.
- 6. Сравнения: если m ≤ M, то выполняется шаг 1, иначе- шаг 7.
- 7.Определение класса X_m^o , к которому принадлежит экзаменационная реализация, например,при условии

$$\mu_{m}^{-*} = \max_{\{m\}} \mu_{m},$$

где $\stackrel{-}{\mu}_{m} = \frac{1}{n} \sum_{i=1}^{n} \mu_{m,j}$ - усредненное значение функции

принадлежности для реализаций класса $X_{\rm m}^{\rm o}$, или выдача уведомления : «Класс не определен», если $\mu_{\rm m} \le c$, где c- пороговое значение.

Задание 1. Сформировать экзаменационную матрицу. **Задача 2**. Программно реализовать алгоритм экзамена интеллектуальной системы.

Порядок выполнения работы

- 1. Сформировать экзаменационную матрицу. Для формирования можно использовать обучающиеся матрицы, которые были определенным образом деформированы.
- 2. Программно реализовать алгоритм экзамена интеллектуальной системы.

Пример функции этапа экзамена

//---функция экзамена---

```
function ekzamen($kol)
      note in the standard strain (0,99);
      $nom matr=rand(0,$kol-1);
      for($j=0; $j<100; $j++)
      $XP[$i]=$ SESSION['obuch matr'][$nom matr][$nom str][$i];
      for($j=0; $j<100; $j++)
             {
(($XP[$i]>=$ndk 1[$nom matr][$i])&&($XP[$i]<=$vdk 1[$nom matr][$i]))
                           $XP_bin[$j]=1;
                           $ SESSION['xp'][$j]=1;
                    }
                    else
                           $XP bin[$j]=0;
                           $_SESSION['xp'][$j]=0;
                    }
      for ($k=0; $k<$kol; $k++)
             $DD[$k]=0;
             for($j=0; $j<100; $j++)
                    if($XP_bin[$j]!=$_SESSION['etalon'][$k][$j])
                           $DD[$k]++;
             if ($ SESSION['DOPT'][$k]!=0)
                    $F[$k]=1-($DD[$k]/$ SESSION['DOPT'][$k]);
             else
                    $F[$k]=1;
      $max f=$F[0];
      $ind f=0;
      for($k=0; $k<$kol; $k++)
             if(F[k]>max f)
```

```
{
    $max_f=$F[$k];
    $ind_f=$k;
}

}

$str=$nom_str+1;
$mtr=$nom_matr+1;
echo "Выбрана реализация ".$str." з класу ".$mtr."<br>";
if ($max_f>=0)
{
    $temp=$ind_f+1;
echo "Выбранная реализация принадлежит классу
".$temp."<br>";
}
else
echo "Не удалось прочитать к какому классу относится реализация<br>";
```

Графическое отображение этапа экзамена

```
Функція належності [1] = 0.410256410256
Функція належності [2] = -0.0851063829787
Вибрана реалізація 99 із класа 1

ХР належить класу 1
Реалізація
```

Контрольные вопросы

- 1. Какое изображение называется стационарным по яркости?
- 2. Какое изображение называется нестационарным по яркости?
- 3. Как формируется эталонный вектор-реализация для входящей обучающей матрицы?

- 4. Как формируется бинарная обучающая матрица для изображения классов?
- 5. Объясните преимущество обработки изображений в дискретном пространстве признаков распознавания.
- 6. Что определяет В дискретном пространстве распознавания координата признаков вершины двоичного эталонного вектора реализации класса распознавания?
- 7. Как найти межцентровое кодовое расстояние для классов, контейнеры которых построены в радиальном базисе?
- 8. Обоснуйте целесообразность построения контейнеров классов распознавания для изображенийтекстур.
- 9. Какую структуру имеет входное математическое описание системы распознавания изображений?

Список рекомендованной литературы

- 1. Довбиш А. С. Основи проектування інтелектуальних систем : навчальний посібник / А. С. Довбиш. Суми : СумДУ, 2009. $171 \, \mathrm{c}$.
- 2. Проектирование систем управления на ЭВМ //А. Ю. Соколов, Ю. Н. Соколов, В. М. Ильюшко, М. М. Митрахович, Д. Н. Гайсёнок // под ред. Ю. Н. Соколова. Харьков : «ХАИ», 2005. 590 с.
- 3. Учебник PHP.-URL: http://www.phpbook.org.ua/