Uniwersytet Warszawski

Wydział Fizyki
ZAKŁAD OPTYKI INFORMACYJNEJ

PRACA DOKTORSKA

MARCIN STOLAREK

FOTNONIKA, PLAZMONIKA MEEP

PROMOTOR: dr hab. Rafał Kotyński

OŚWIADCZENIE AUTORA PRACY
OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY.
PODPIS

University of Warsaw

Faculty of Physics Information Optics Department

PHD IN PHISICS

MARCIN STOLAREK

FOTONICS, PLASMONICS MEEP

SUPERVISOR:

Rafał Kotyński Ph.D

Spis treści

1.	Wstę	ep	6		
	1.1.	State of the art	7		
	1.2. Cele i tezy pracy				
	1.3.	Podział pracy	7		
2.	Mod	elowanie własności podfalowych struktur fotonicznych	8		
	2.1.	Metody numeryczne	9		
		2.1.1. Metody macierzowe	9		
		2.1.2. FDTD	9		
	2.2.	Modele materiałowe	9		
	2.3.	Model efektywny	9		
3.	Siatk	ki metalowe do kształtowania fali elektromagnetycznej w THz	10		
	3.1.	Wprowadzenie	11		
	3.2.	2. Antena THz - siatka dyfrakcyjna + podkład			
	3.3.	Transmisja jedno kierunkowa			
	3.4.	Soczewka dyfrakcyjna z transmisją jedno kierunkową	13		
4.	PMI	,	14		
	4.1.	Wprowadzenie	15		
	4.2.	PML ze struktury warstwowej	15		
	4.3.	core shell pml?	15		
5.	Bezd	yfrakcyjna propagacja światła w wielowarstwach metaliczno-dielektrycznych	16		
	5.1.	Własności materiałowe w zakresie widzialnym	17		
	5.2.	wielowarstwy z bezdyfrkacycyjną propagacja swiatla	17		
	5.3.	nadrozdzielczy pryzmat	17		
	5.4.	analiza chropowatosci	17		
	5.5.	bardziei zlozone struktury skladane wielowarstw	17		

1. Wstęp

1.1. State of the art

- 1.1. State of the art
- 1.2. Cele i tezy pracy
- 1.3. Podział pracy

2. Modelowanie własności	i podfalowych struktur fotonicznych

2.1. Metody numeryczne

2.1.1. Metody macierzowe

2.1.2. FDTD

Przykladowe rozwiązania: fala zanikajaca, plazmon, fala propagujaca?

2.2. Modele materiałowe

2.3. Model efektywny

3.	Siatki	metalowe	do	kształtowania	fali	elektromagnetycznej
w	THz					

3.1. Wprowadzenie

3.1. Wprowadzenie

Własności materiałowe w zakresie THz Projekt "Detektor promieniowanie THz" Nadzwyaczja transmisja przez szczeliny

3.2. Antena THz - siatka dyfrakcyjna + podkład

Bazujac na pracach numerycznych na jednowymiarowych siatkach dyfrakcyjnych pozwalajachych na wzbudzenie modow falowodowych w podkladach z GaAs przeanalizowane zostalo dzialanie analogicznych falowodow zbudowanych z siatek koncentrycznych.

Bazujac na analitycznym rozwiazaniu problemu wzbudzania modow falowodowych w podkladzie dielektrycznym (przy zalozeniu nieskonczonych wymiarow w kierunku propagacji wewnatrz falowodu) sporzadzono wykres przedstawiajacy zaleznosc okresu siatki pozwalajacej na wzbudzenie modu falowodowego od dlugosci fali w prozni promieniowania padajacego na uklad.

Wielosc galezi wynika z faktu, ze dla krotszych dlugosci fali rozpatrywany podklad ma charakter wielomodowy. Pojedyncze rozwiazanie powyzej dlugosci fali rownej 3mm, wskazuje nam poczatek zakresu jednomodowego.

Dla weryfikacji mozliwosci dzialania zaprojektowanych falowodow, przeprowadzono symulacje FDTD we wspolrzednych cylindryczncych. Symulacje potwierdzily mozliwosc wykorzystanie powyzszych siatek zarowno przy oswietleniu ukladu polaryzacja radialna jak i liniowa. Ponizej przedstawiony rysunek opisuje sytuacje w ktorej struktura z GaAs o rozmiarach 10x10mm pokryta siatka dyfrakcyjna o okresie 538 um i otworach 250um (wspolczynnik wypelnienia ok. 0.53) zostala oswietlona promieniowaniem o dlugosci fali 2.52 mm. W przypadku prezentowanej symulacji siatka miala grubosc 10um, w kolejnych symulacjach potwierdzono jednak, ze grubosc siatki nie ma kluczowego zanczenia pod warunkiem zapewnienia nie przezroczystosci siatki. Efekt koncentracji pola przy zblizaniu sie do srodka struktury wynika ze zmniejszania sie elementu objetosciowego wraz ze zblizaniem do osi symetrii.

3.3. Transmisja jedno kierunkowa

3.4. Soczewka dyfrakcyjna z transmisją jedno kierunkową

4. PML

4.1. Wprowadzenie

4.1. Wprowadzenie

Koncepcje PML

Zastosowania numeryczne i fizyczne

4.2. PML ze struktury warstwowej

4.3. core shell pml?

5. Bezdyfrakcyjna propagacja światła w wielowarstwach metaliczno-dielektrycznych

- 5.1. Własności materiałowe w zakresie widzialnym
- 5.2. wielowarstwy z bezdyfrkacycyjną propagacja swiatla
- 5.3. nadrozdzielczy pryzmat
- 5.4. analiza chropowatosci
- 5.5. bardziej zlozone struktury skladane wielowarstw

[1]

Bibliografia

[1] L. Lamport. LaTeX system przygotowywania dokumentów. Wydawnictwo Ariel, Krakow, 1992.