

# Department of Computer Science and Engineering Lesson Plan

Course Code: CSE 301

Section: Fall(September), 2019

Contact Hours: 3 Hour x 13 Weeks

Type: Inter-Disciplinary Engineering Courses

Course Title: Computational Methods for

**Engineering Problems** Level/Term: 3/1 Credit Hour: 3.00

Prerequisite: EM-III

Instructor: Tania Noor

Counseling Time: Wednesday (2.30-3.00), Monday (4.30-5.30), Sunday (2.30-3.30)

Semester: 5th

Contact No.: 01724422413 E-mail: taniatima@gmail.com

### Rationale:

This course is designed to make the understanding about computational concepts.

## Objective of the Course:

- This course is intended to solve various scientific and engineering problems.
- Analyze and evaluate the accuracy of common numerical methods in its applications.
- The course will further develop mathematical modeling skills for experiments and research.

## Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

- CO 1. Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to other intractable mathematical problems.
- CO 2. Analyze and evaluate the accuracy of common numerical methods.
- CO 3. Apply numerical methods to obtain approximate solutions of mathematical problems.

## Course Description:

# **Numerical Methods:**

The calculus of finite Differences: The operation E,  $\delta$ ,  $\zeta$  and their algebraic properties, Difference tables, Forward, Backward and General Differences fundamental theorem of Difference Calculus. Solution of Algebraic and Transcendental Equation: Bisection algorithm, Method of false position. Fixed point iteration, Newton-Raphson method, Error analysis for iterative method, Accelerating limit of convergence. Interpolation and polynomial approximation: Taylor polynomials, Interpolation and Lagrange polynomial, Iterated Interpolation, Extrapolation. Differentiation and Integration: Numerical Differentiation, Numerical Differential Equation: ODE & PDE, Curve Fitting. Solutions of linear systems: Gaussian elimination and backward substitution, pivoting strategies, LU decomposition method.

# Text and Reference books:

# Text Books:

- (1) Numerical Analysis by Vasistha, (2) Numerical Analysis by Richard L. Burden,
- (3) Numerical methods for scientific and engineering computation by Mahinder Kumar Jain, S. R. K. Iyengar, Rajendra K, Jain. (4) Advanced Engineering Mathematics by H.K. Dass

# References:

(1) Numerical Analysis by Vasistha, (2) Numerical Analysis by Richard L. Burden

# CO delivery and assessment:

| COs | Corresponding<br>POs | Bloom's taxonomy<br>domain/level<br>(C: Cognitive, P: Psychomotor<br>A: Affective) | Delivery methods and activities     | Assessment tools       |
|-----|----------------------|------------------------------------------------------------------------------------|-------------------------------------|------------------------|
| CO1 | PO 1                 | A1,A2                                                                              | Lecture, Notes,<br>Problem solution | Class Test             |
| CO2 | PO 2                 | C2,C3                                                                              |                                     | Mid term, Assignments. |
| CO3 | PO 3                 | C4                                                                                 |                                     | Final Exam, Assignment |

- 2. Domains and Levels of Bloom's Texanomy

- Lomains and Levess of thooms: 1 axinomy
  "Cognitive" Domain (C): C1 Recall data, C2 Understand, C3 Apply, C4 Analysis, C5 Synthesize, and C6 Evaluate.
  "Affective" Domain (A): A1 Receive, A2 Respond, A3 Value, A4 Organize personal value system, and A5 Internalize value system.
  "Psychomotor" Domain (P): P1 Immation, P2 Manipulation, P3 Develop precision, P4 Articulation, and P5 Naturalization,)

# CO-PO Mapping (Theory course):

|     |                        |     |               |     |                                       | CO/PO | O Mappi | ng |     |      |      |      |
|-----|------------------------|-----|---------------|-----|---------------------------------------|-------|---------|----|-----|------|------|------|
| COs | Program Outcomes (POs) |     |               |     |                                       |       |         |    |     |      |      |      |
|     | PO1                    | PO2 | PO3           | PO4 | PO5                                   | PO6   | PO7     |    | PO9 | PO10 | POII | DOIS |
| COL | 1                      |     | in the second |     | -                                     |       |         | 1  | .0, | 1010 | TOIL | PO12 |
| 002 |                        | V   |               |     | P P P P P P P P P P P P P P P P P P P | i i   | Y .     |    |     |      | -    |      |
| 003 |                        | 1   | V             |     |                                       |       | 1       | -  |     |      |      |      |

| Lesson | Topic                                                                                      | Teaching strategy | Course<br>Outcome (CO) | Assessment<br>Strategy |  |
|--------|--------------------------------------------------------------------------------------------|-------------------|------------------------|------------------------|--|
| L-1    | Introduction to the syllabus; Discuss Geometrical method to find real root of the equation | Lecture           | COI                    |                        |  |
| L -2   | Discuss Geometrical representation of                                                      | Lecture           | CO1+CO3                |                        |  |

CO3,CO4, CO5 \*\* Another Class Test may be taken if necessary. Any one of three class test can be pop test or instant test. Not more three class test can be happened.