Question 5

Zeal Liang

Z5325156

Solution:

Since it is closely related to the all pairs shortest path problem, except that we are multiplying edge weights rather than adding them. Therefore, we can use the Floyd-Warshall algorithm and simply change plus sign for key comparison steps to multiplication sign to solve this problem.

Subproblems:

Let MaxSafe(G) be the problem of determining safety(i,j), count if the safety of a path from vertex i to j is greater than from i to k times from k to j.

Recurrence:

For $0 \le k < n$, $0 \le i < n$ and $0 \le j < n$:

$$safety(i,j) = max(safety(i,j), safety(i,k) * safety(k,j)).$$

Base cases:

For every edge in graph G, if there exists an edge from vertex i to j, set the weights into the corresponding safety(i,j), if not let safety(i,j) = 0.

Because the algorithm uses three nested loops to traverse our directed graph G, the time complexity of the algorithm is $O(n^3)$.