Prévoir la consommation électrique pour favoriser une distribution énergétique optimale.

Eloi Kling - Téodore Autuly

Problématiques

Comment prévoir efficacement la consommation électrique à venir ?

Quels modèles de Machine Learning sont judicieux pour cette étude ?

Comment fonctionnent-ils?

Quels sont les paramètres prédominants affectant les données ?

Contexte

- Besoin d'optimiser la production et la distribution d'électricité.
- Toute électricité produite en excès est soit stockée, soit perdue.
- Stockage de l'énergie inefficace et source de nombreuses pertes.
- Il faut produire en fonction de la demande.

Contexte

Figure 1.b – Production solaire horaire en France métropolitaine la semaine du 24 au 31 octobre 2021

 ${\bf Source:} \ La \ fabrique \ de \ l'industrie: couvrir \ nos \ besoins \ \'energ\'etiques$

Consommation électrique aux Etats-Unis

- 12 ans de données: 31 décembre 2004 au 2 janvier 2018
- Fréquence: heure par heure
- 2 colonnes
- 121 273 lignes

Affichage des données

Affichage des données

Partage des données : Train / Test

- 80% = Entraînement du modèle
- 20% Test du modèle

Erreur / évaluation des modèles

https://kobia.fr/regression-metrics-quelle-metrique-choisir/

RMSE: Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

Modèle statistique

Consommation par jour

RMSE: 45 819 MW

En moyenne aux Etats Unis, consommation d'un ménage: 10,8 MWh

❖ 36 655 200 ménages sont privés d'électricité

Modèle statistique

Consommation par jour

Modèle de Machine Learning Modèle Polynomial

Modèle de Machine Learning

Modèle Polynomial de degré 5

RMSE: 43 975 MW On passe à 35 180 000 ménages

Modèle de Machine Learning

Modèle Polynomial de degré 6

RMSE: 44 714 MW Sur-apprentissage: à un degré supplémentaire l'algorithme apprend par cœur les données sur lesquelles il s'est entraîné

Paramètres supplémentaires

Création de <u>nouveaux paramètres corrélés à la consommation</u> électrique:

- L'heure
- Le jour
- · La semaine
- Le mois
- L'année

Point Théorique : Apprentissage d'ensemble

Point Théorique : Boosting

Point Théorique : Boosting de Gradient

Exemple

Valeur Réelle à prédire : 7000

Conditions d'arrêt de l'algorithme

- L'algorithme fait diminuer la RMSE sur le set d'entraînement.
- · Parallèlement, le modèle devient de plus en plus précis sur le set de test.
- · Arrêt de l'algorithme quand la RMSE sur le set de test augmente.
- · Prévient le phénomène d'overfitting.

Paramètres dominants

Affichage des prédictions sur le set de test uniquement

Affichage de 100 données prédites

Commentaires

Meilleur modèle prédictif:

- Meilleur rapport Vitesse d'exécution / Précision des prédictions
- Meilleure RMSE: 1616.5 MW

Limite du modèle prédictif:

- Précision des prédictions point par point
- Précision des pics de consommation

Nouveau choix de base de données

- 13 ans de données : 1 janvier 2005 au 31 juillet 2018
- Fréquence: heure par heure
- 3 colonnes
- 119 020 lignes

Comparaison de l'importance des paramètres

Modèle XGBoost avec température Comparaison des prédictions sur le set de test

uniquement

Comparaison sur 100 données prédites

Commentaires

Avantages de l'ajout de la température :

- Erreur <u>divisée par 3</u> passant de 5040 MW à 1695 MW
- On passe donc de 4 032 000 à 1 356 000 ménages
- Plus l'erreur est faible, plus il est difficile de la diminuer
- Prédiction précise des pics

Prochaine étape

- Prévoir les événements particuliers
 - Evènements sportifs
 - Jour particulier en ville (fête de la musique)

- Ajouter de nouveaux paramètres
 - Moyenne des notations DPE des bâtiments dans la ville

Annexe

Consommation électrique aux Etats-Unis

```
dataset.info()
   dataset.shape
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 121273 entries, 2004-12-31 01:00:00 to 2018-01-02 00:00:00
Data columns (total 1 columns):
  Column Non-Null Count Dtype
   AEP MW 121273 non-null float64
dtypes: float64(1)
memory usage: 1.9 MB
(121273, 1)
```

Affichage des données

```
# plot des données
dataset.plot(figsize=(15,5),title='Consommation électrique en MW')
```


Affichage des données

```
fig, ax = plt.subplots(figsize=(10, 8))
sns.boxplot(data=ds, x='Heure', y='AEP_MW')
ax.set_title('MW par heure')
plt.show()
```


Partage des données : Train / Test

```
train = daily_data.iloc[:int(nb_lines*0.8)]
test = daily_data.iloc[int(nb_lines*0.8)+1:]
```


Erreur / évaluation des modèles

Utilisation de la bibliothèque Sklearn: from sklearn.metrics import mean_squared_error

Modèle statistique

Regroupement par jour

```
daily_groups = dataset.resample('D')
daily_data = daily_groups.sum()

#numérote les jours de 1 à 7 et de 1 à 365
daily_data["day_of_week"] = daily_data.index.isocalendar().day
daily_data["day_of_year"] = daily_data.index.strftime("%j")
```

Modèle statistique

Consommation par jour

```
#moyenne de la consommation des années précédentes
train_model = train.groupby(by=["day_of_year"]).mean()
train_model = train_model.rename(columns={"AEP_MW":"prediction"})

#renvoie les prédictions dans une colonne
def predict(df, model):
    return df.merge(model, on ="day_of_year", how="left")
test_predictions_day = predict(test, train_model)
```

Modèle de Machine Learning

Modèle Polynomial de degré 5

Modèle de Machine Learning

Modèle Polynomial de degré 6

Paramètres supplémentaires

```
def creation_index_temps(ds):
    ds['Heure']=ds.index.hour
    ds['Jour(Semaine)']=ds.index.dayofweek
    ds['Semaine']=ds.index.week
    ds['Mois']=ds.index.month
    ds['Année']=ds.index.year
    ds['Jour(Année)']=ds.index.day
    return ds

ds = creation_index_temps(dataset)
```

On liste toutes les entrées sur lesquelles nous allons appliquer l'algorithme d'entraînement, ainsi que la sortie souhaitée (la valeur que nous souhaitons prédire avec le modèle).

```
1 ENTREES = ['Heure', 'Jour(Semaine)', 'Semaine', 'Mois', 'Année', 'Jour(Année)']
2 SORTIE = ['AEP_MW']

1    X_train = train[ENTREES]
2    Y_train = train[SORTIE]
3    4    X_test = test[ENTREES]
5    Y_test = test[SORTIE]
```

On entraîne le modèle de machine learning sur le set de données "Train" en utilisant la méthode de boosting de gradient extrême (XGBoost).

Nouveau choix de base de données


```
1 # plot des données
2 dataset.plot(figsize=(15,5),title='Energy use in MW')

✓ 0.7s
Python
```

Jointure des bases de données


```
1 # plot des données
2 dataset1.plot(figsize=(15,5),title='Energy use in MW')

✓ 0.7s
Python
```

Jointure des bases de données

1 dataset_final=dataset_daily.join(dataset1,on='Datetime')

Modèles XGBoost

Traçage des données présentes dans le set de données "Test" ainsi que les prédictions estimées par le modèle.

```
1 test['prediction'] = reg.predict(X_test)
2 dataset_final = dataset_final.merge(test[['prediction']], how='left', left_index=True, right_index=True)

1 ax = dataset_final[['DAYTON_MW']].plot(figsize=(20,5))
2 dataset_final['prediction'].plot(ax=ax)
3 ax.set_title('Prédictions et données brutes')
```