Chapter 5: Inner Product Spaces

Cheng Chang, Ph.D.
Department of Math & CS
Mercy College

Contents

1.	Length and Dot Product in \mathbb{R}^n	2
2.	Inner Product Spaces	5
3.	Orthonormal Bases: Gram-Schmidt Process	8

1. Length and Dot Product in \mathbb{R}^n

Definition 1.1. The length, or norm, of a vector $\vec{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

The length of a vector is also called its **magnitude**. If $\|\vec{v}\| = 1$, then the vector \vec{v} is a **unit vector**.

Example 1.1. In \mathbb{R}^5 , find the length of the vector $\vec{v} = (0, -2, 1, 4, -2)$. In \mathbb{R}^3 , find the length of $\vec{v} = (2/\sqrt{17}, -2\sqrt{17}, 3\sqrt{17})$.

Two vectors are parallel if they are constant multiples of each other. Moreover, if $\vec{u} = c\vec{v}$ where c > 0, we say \vec{u} and \vec{v} have the same direction. If c < 0 then they have opposite direction.

Theorem 1.1. Let \vec{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

$$||c\vec{v}|| = |c|||\vec{v}||$$

where |c| is the absolute value of c.

Sometimes we need to find the unit vector of a given vector in the same direction, the following theorem deals with that.

Theorem 1.2. If \vec{v} is a nonzero vector in \mathbb{R}^n , then the vector

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$$

has length 1 and has the same direction as \vec{v} . This vector \vec{u} is the unit vector in the direction of \vec{v} .

Example 1.2. Find the unit vector in the direction of $\vec{v} = (3, -1, 2)$.

In \mathbb{R}^2 (or the plane), we know the distance formula between two points (x_1, y_1) and (x_2, y_2) is

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Now we generalize this idea, and define the distance formula in \mathbb{R}^n .

Definition 1.2. The distance between two vectors \vec{u} and \vec{v} in \mathbb{R}^n is

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

In \mathbb{R}^2 , suppose there are two vectors $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$, the angle between these two vectors, denoted θ , is given by

$$\cos \theta = \frac{u_1 v_1 + u_2 v_2}{\|\vec{u}\| \|\vec{v}\|}$$

Inspired by this angle formula, we define a new operation in \mathbb{R}^n .

Definition 1.3 (Dot Product in \mathbb{R}^n). The **dot product** of $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ is the scalar quantity

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Example 1.3. Given $\vec{u} = (1, 2, 0, -3)$ and $\vec{v} = (3, -2, 4, 2)$, find $\vec{u} \cdot \vec{v}$.

Theorem 1.3. If \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^n and c is a scalar, then the properties listed below are true.

- (1) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\vec{(2)} \ \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- (3) $c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v})$
- (4) $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$
- (5) $\vec{v} \cdot \vec{v} \ge 0$, and $\vec{v} \cdot \vec{v} = 0$ if and only if $\vec{v} = \vec{0}$.

Example 1.4. Let $\vec{u} = (2, -2), \vec{v} = (5, 8), \text{ and } \vec{w} = (-4, 3).$ Find each quantity.

- (1) $\vec{u} \cdot \vec{v}$
- (2) $(\vec{u} \cdot \vec{v})\vec{w}$
- $(3) \|\vec{w}\|^2$
- (4) $\vec{u} \cdot (\vec{v} 2\vec{w})$

Example 1.5. Consider two vectors \vec{u} and \vec{v} in \mathbb{R}^n such that $\vec{u} \cdot \vec{u} = 39$, $\vec{u} \cdot \vec{v} = -3$, and $\vec{v} \cdot \vec{v} = 79$. Evaluate $(\vec{u} + 2\vec{v}) \cdot (3\vec{u} + \vec{v})$.

Next, we try to get a generalized angle formula in \mathbb{R}^n . The idea is to use the following formula

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

However, there is a minor detail needed to be taken care of, saying that the absolute value of $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ should be bounded by 1. The next theorem will address that.

Theorem 1.4 (The Cauchy-Schwarz Inequality). If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$$

where $|\vec{u} \cdot \vec{v}|$ denote the absolute value of $\vec{u} \cdot \vec{v}$.

A direct application of the Cauchy-Schwarz Inequality shows that

$$\left| \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \right| \le 1$$

So we can officially define the angle formula next.

Definition 1.4. The angle θ between two nonzero vectors in \mathbb{R}^n can be found using

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad 0 \le \theta \le \pi.$$

Example 1.6. Find the angle between $\vec{u} = (-4, 0, 2, -2)$ and $\vec{v} = (2, 0, -1, 1)$.

Definition 1.5. Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are **orthogonal** when

$$\vec{u} \cdot \vec{v} = 0$$
.

Example 1.7. Show that the vectors are orthogonal to each other.

$$\vec{u} = (3, 2, -1, 4), \quad \vec{v} = (1, -1, 1, 0)$$

Example 1.8. Determine all vectors in \mathbb{R}^2 that are orthogonal to $\vec{u} = (4, 2)$.

In \mathbb{R}^2 , we have a well known property called the Triangle Inequality, which says that the sum of the two adjacent sides is greater than the opposite side. Now in \mathbb{R}^n , we want to generalize this, by using the Cauchy-Schwarz Inequality.

Theorem 1.5 (The Triangle Inequality). If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|.$$

From the proof of the Triangle Inequality, we have

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2(\vec{u} \cdot \vec{v}) + \|\vec{v}\|^2$$

So when \vec{u} and \vec{v} are orthogonal, we have the following generalized Pythagorean Theorem.

Theorem 1.6. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then \vec{u} and \vec{v} are orthogonal if and only if

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Finally, we look at the relationship between two operations, one is the dot product and the other is the matrix multiplication.

It is often useful to represent vectors in \mathbb{R}^n as column vectors. For example,

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

In this notation, the dot product of two vectors $\vec{u} \cdot \vec{v}$ can be represented as the matrix product of the transpose of \vec{u} multiplied by \vec{v} .

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$
.

2. Inner Product Spaces

In last section, the concepts of length, distance, and angle were extended from \mathbb{R}^2 to \mathbb{R}^n . This section extends these concepts one step further—to general vector spaces —by using the idea of an inner product of two vectors.

We've seen an example of an inner product: the dot product in \mathbb{R}^n . The dot product, called the **Euclidean inner product**, is only one of several inner products that can be defined on \mathbb{R}^n . To distinguish between the standard inner product and other possible inner products, use the notation below.

 $\vec{u} \cdot \vec{v} = \text{dot product (Euclidean inner product for } \mathbb{R}^n$)

$$\langle \vec{u}, \vec{v} \rangle$$
 = general inner product for a vector space V

A general inner product is defined in much the same way that a general vector space is defined —that is, in order for a function to qualify as an inner product, it must satisfy a set of axioms.

Definition 2.1. Let \vec{u}, \vec{v} , and \vec{w} be vectors in a vector space V, and let c be any scalar. An **inner product** on V is a function that associates a real number $\langle \vec{u}, \vec{v} \rangle$ with each pair of vectors \vec{u} and \vec{v} and satisfies the axioms listed below.

- (1) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
- (2) $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$
- (3) $c\langle \vec{u}, \vec{v} \rangle = \langle c\vec{u}, \vec{v} \rangle$
- (4) $\langle \vec{v}, \vec{v} \rangle \ge 0$, and $\langle \vec{v}, \vec{v} \rangle = 0$ if and only if $\vec{v} = \vec{0}$.

A vector space V, with an inner product on V, is called an inner product space. So inner product spaces are "special" vector spaces.

Example 2.1. Show that the function below defines an inner product on \mathbb{R}^2 , where $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$.

$$\langle \vec{u}, \vec{v} \rangle = u_1 v_1 + 2u_2 v_2$$

Example 2.2. Show that the function below is not an inner product on \mathbb{R}^3 , where $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$.

$$\langle \vec{u}, \vec{v} \rangle = u_1 v_1 - 2u_2 v_2 + u_3 v_3$$

Example 2.3. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{12} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ be matrices in the vector space $M_{2,2}$. The function

$$\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$$

is an inner product on $M_{2,2}$.

Example 2.4. Let f and g be real-valued continuous functions in the vector space C[a,b]. Show that

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$

defines an inner product on C[a,b].

The next theorem lists some properties of inner products.

Theorem 2.1. Let \vec{u}, \vec{v} , and \vec{w} be vectors in an inner product space V, and let c be any real number.

- (1) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$
- (2) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$
- (3) $\langle \vec{u}, c\vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$

The definition of length, distance, and angle for general inner product spaces closely parallel those for Euclidean \mathbb{R}^n -space.

Definition 2.2. Let \vec{u} and \vec{v} be vectors in an inner product space V.

- (1) The **length** (or norm) of \vec{u} is $||\vec{u}|| = \sqrt{\langle \vec{u}, \vec{u} \rangle}$.
- (2) The **distance** between \vec{u} and \vec{v} is $d(\vec{u}, \vec{v}) = ||\vec{u} \vec{v}||$.
- (3) The **angle** between two nonzero vectors \vec{u} and \vec{v} can be found using

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}, \quad 0 \le \theta \le \pi.$$

(4) \vec{u} and \vec{v} are **orthogonal** when $\langle \vec{u}, \vec{v} \rangle = 0$.

If $\|\vec{u}\| = 1$, then \vec{u} is a **unit vector**. Moreover, if \vec{v} is any nonzero vector in an inner product space V, then the vector $\vec{u} = \vec{v}/\|\vec{v}\|$ is the unit vector in the direction of \vec{v} .

Example 2.5. For polynomials $p = a_0 + a_1x + \cdots + a_nx^n$ and $q = b_0 + b_1x + \cdots + b_nx^n$ in the vector space P_n , the function $\langle p, q \rangle = a_0b_0 + a_1b_1 + \cdots + a_nb_n$ is an inner product. Let $p(x) = 1 - 2x^2$, $q(x) = 4 - 2x + x^2$, and $r(x) = x + 2x^2$ be polynomials in P_2 , and find each quantity.

(1)
$$\langle p, q \rangle$$
 (2) $\langle q, r \rangle$ (3) $||q||$ (4) $d(p, q)$

The next theorem lists the general inner product space versions of the Cauchy-Schwarz Inequality, the triangle inequality, and the Pythagorean Theorem.

Theorem 2.2. Let \vec{u} and \vec{v} be vectors in an inner product space V.

- (1) Cauchy-Schwarz Inequality: $|\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}|| ||\vec{v}||$
- (2) Triangle inequality: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$
- (3) Pythagorean Theorem: \vec{u} and \vec{v} are orthogonal if and only if

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Let \vec{u} and \vec{v} be vectors in \mathbb{R}^2 . If \vec{v} is nonzero, then \vec{u} can be orthogonally projected onto \vec{v} . This projection is denoted by $\operatorname{proj}_{\vec{v}}\vec{u}$ and is a scalar multiple of \vec{v} .

Definition 2.3. Let \vec{u} and \vec{v} be vectors in an inner product space V, such that $\vec{v} \neq \vec{0}$. Then the **orthogonal projection** of \vec{u} onto \vec{v} is

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\langle \vec{u}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v}.$$

Example 2.6. Use the Euclidean inner product in \mathbb{R}^3 to find the orthogonal projection of $\vec{u} = (6, 2, 4)$ onto $\vec{v} = (1, 2, 0)$.

Example 2.7. Let f(x) = 1 and g(x) = x be functions in C[0,1]. Use the inner product on C[a,b] defined as

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$

to find the orthogonal projection of f onto g.

Theorem 2.3. Let \vec{u} and \vec{v} be two vectors in an inner product space V, such that $\vec{v} \neq \vec{0}$. Then

$$d(\vec{u}, \operatorname{proj}_{\vec{v}} \vec{u}) < d(\vec{u}, c\vec{v}), \quad c \neq \frac{\langle \vec{u}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle}.$$

3. Orthonormal Bases: Gram-Schmidt Process

Recall the standard basis for \mathbb{R}^3 , $\{(1,0,0),(0,1,0),(0,0,1)\}$. It has important characteristics that are particularly useful. One important characteristic is that the three vectors are mutually orthogonal. A second important characteristic is that each vector in the basis is a unit vector.

This section identifies some advantages of using bases consisting of mutually orthogonal unit vectors and develops a procedure for constructing such bases, know as the Gram-Schmidt orthonormalization process.

Definition 3.1. A set S of vectors in an inner product space V is **orthogonal** when every pair of vectors in S is orthogonal. If, in addition, each vector in the set is a unit vector, then S is **orthonormal**.

Example 3.1. Show that the set is an orthonormal basis for \mathbb{R}^3 .

$$S = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3} \right), \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right) \right\}$$

Example 3.2. Show that in P_3 , with the inner product

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$$

the standard basis $B = \{1, x, x^2, x^3\}$ is orthonormal.

Example 3.3. In $C[0, 2\pi]$, with the inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$$

show that the set $S = \{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\}$ is orthogonal.

Each set in the previous examples is linearly independent. This is a characteristic of any orthogonal set of nonzero vectors, as stated in the next theorem.

Theorem 3.1. If $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

Theorem 3.2. If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis for V.

Example 3.4. Show that the set S below is a basis for \mathbb{R}^4 .

$$S = \{(2, 3, 2, -2), (1, 0, 0, 1), (-1, 0, 2, 1), (-1, 2, -1, 1)\}$$

In the last chapter, we discussed a procedure for finding a coordinate representation relative to a nonstandard basis. When the basis is orthonormal, this procedure can be streamlined.

Theorem 3.3. If $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthonormal basis for an inner product space V, then the coordinate representation of a vector \vec{w} relative to B is

$$\vec{w} = \langle \vec{w}, \vec{v}_1 \rangle \vec{v}_1 + \dots + \langle \vec{w}, \vec{v}_n \rangle \vec{v}_n.$$

Example 3.5. Find the coordinate matrix of $\vec{w} = (5, -5, 2)$ relative to the orthonormal basis B for \mathbb{R}^3 below.

$$B = \left\{ \left(\frac{3}{5}, \frac{4}{5}, 0 \right), \left(-\frac{4}{5}, \frac{3}{5}, 0 \right), (0, 0, 1) \right\}$$

Having seen one of the advantages of orthonormal bases, we will now look at a procedure for finding such a basis.

Theorem 3.4 (Gram-Schmidt Orthonormalization Process).

- (1) Let $B = {\vec{v}_1, \dots, \vec{v}_n}$ be a basis for an inner product space V.
- (2) Let $B' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$, where

$$\begin{split} \vec{w}_1 &= \vec{v}_1 \\ \vec{w}_2 &= \vec{v}_2 - \frac{\langle \vec{v}_2, \vec{w}_1 \rangle}{\langle \vec{w}_1, \vec{w}_1 \rangle} \vec{w}_1 \\ \vec{w}_3 &= \vec{v}_3 - \frac{\langle \vec{v}_3, \vec{w}_1 \rangle}{\langle \vec{w}_1, \vec{w}_1 \rangle} \vec{w}_1 - \frac{\langle \vec{v}_3, \vec{w}_2 \rangle}{\langle \vec{w}_2, \vec{w}_2 \rangle} \vec{w}_2 \\ &\vdots \end{split}$$

$$\vec{w}_n = \vec{v}_n - \frac{\langle \vec{v}_n, \vec{w}_1 \rangle}{\langle \vec{w}_1, \vec{w}_1 \rangle} \vec{w}_1 - \dots - \frac{\langle \vec{v}_n, \vec{w}_{n-1} \rangle}{\langle \vec{w}_{n-1}, \vec{w}_{n-1} \rangle} \vec{w}_{n-1}.$$

Then B' is an orthogonal basis for V.

(3) Let $\vec{u}_i = \frac{\vec{w}_i}{\|\vec{w}_i\|}$. Then $B'' = \{\vec{u}_1, \dots, \vec{u}_n\}$ is an orthonormal basis for V.

Also, $\mathrm{Span}\{\vec{v}_1, \dots, \vec{v}_n\} = \mathrm{Span}\{\vec{u}_1, \dots, \vec{u}_n\}$ for $k = 1, 2, \dots, n$.

Example 3.6. Apply the Gram-Schmidt orthonormalization process to the basis B for \mathbb{R}^2 below.

$$B = \{(1,1), (0,1)\}$$

Example 3.7. The vectors

$$\vec{v}_1 = (0, 1, 0)$$
 and $\vec{v}_2 = (1, 1, 1)$

span a plane in \mathbb{R}^3 . Find an orthonormal basis for this subspace.

Example 3.8. Apply the Gram-Schmidt orthonormalization process to the basis $B = \{1, x, x^2\}$ in P_2 , using the inner product

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$