Отчёт по лабораторной работе №1

Установка и конфигурация операционной системы на виртуальную машину

Тимур Дмитриевич Калинин

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	18
5	Ответы на контрольные вопросы	19
6	Библиография	21

List of Figures

5.1	Создание виртуальной машины	1
3.2	Выбор объема памяти	8
3.3	Создание нового виртуального жесткого диска	8
3.4	Выбор типа диска	9
3.5	Размер диска	9
3.6		10
3.7		10
3.8	1	11
3.9	, i	11
3.10	Отключение KDUMP	12
3.11	Имя узла	13
3.12	Процесс установки	13
3.13	Создание пользователя	14
3.14	Задание пароля	15
3.15	Дополнения гостевой ОС	15
3.16	Версия ядра Linux	15
3.17	Частота процессора	16
		16
3.19	Объем доступной оперативной памяти	16
3.20	1 / 1	16
3.21	Тип файловой системы корневого раздела	17
		17

List of Tables

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/)).

3 Выполнение лабораторной работы

Создадим в VirtualBox новую виртуальную машину (Рис. 3.1).

Figure 3.1: Создание виртуальной машины

Укажем объем памяти (Рис. 3.2).

Figure 3.2: Выбор объема памяти

Создадим новый виртуальный жесткий диск (Рис. 3.3).

Figure 3.3: Создание нового виртуального жесткого диска

Укажем его тип (Рис. 3.4).

Figure 3.4: Выбор типа диска

Укажем его размер (Рис. 3.5).

Figure 3.5: Размер диска

Добавим дистрибутив как оптический диск, с которого будет устанавливаться

ОС (Рис. 3.6).

Figure 3.6: Добавление оптического диска

Запустим установку (Рис. 3.7).

Figure 3.7: Запуск установки

Выберем язык (Рис. 3.8).

Figure 3.8: Выбор языка

Добавим дополнительное ПО (Рис. 3.9).

Figure 3.9: Добавление доп. ПО

Отключим КDUMP (Рис. 3.10).

Figure 3.10: Отключение KDUMP

Зададим имя сетевого узла (Рис. 3.11).

Figure 3.11: Имя узла

Зададим также пароль для root-пользователя и начнем установку (Рис. 3.12).

Figure 3.12: Процесс установки

Перезапустим машину после установки и создадим пользователя (Рис. 3.13).

Figure 3.13: Создание пользователя

Зададим для него пароль (Рис. 3.14).

Figure 3.14: Задание пароля

Скачаем дополнения для гостевой ОС (Рис. 3.15).

Figure 3.15: Дополнения гостевой ОС

Используем команду dmesg в терминале для получения следующей информации:

1. Версия ядра Linux (Рис. 3.16).

```
[tdkalinin@tdkalinin ~]$ dmesg | grep -i "Linux version"
[ 0.0000000] <mark>Linux version</mark> 5.14.0-70.22.1.el9_0.x86_64 (mockbuild@dal1-prod
9), GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Tue Aug 9 19:45:51 UTC 2022
[tdkalinin@tdkalinin ~]$
```

Figure 3.16: Версия ядра Linux

2. Частота процессора (Рис. 3.17).

```
[tdkalinin@tdkalinin ~]$ dmesg | grep -i "Mhz"
[ 0.000006] tsc: Detected 2904.000 MHz processor
[ 4.432384] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:2f:f1:1c
[tdkalinin@tdkalinin ~]$
```

Figure 3.17: Частота процессора

3. Модель процессора (Рис. 3.18).

```
[tdkalinin@tdkalinin ~]$ dmesg | grep -i "cpu0"
[ 0.242972] smpboot: CPU0: Intel(R) Core(TM) i5-10400F CPU
[tdkalinin@tdkalinin ~]$
```

Figure 3.18: Модель процессора

4. Объем доступной оперативной памяти (Рис. 3.19).

```
[tdkalinin@tdkalinin ~]$ dmesg | grep -i "Memory"

0.004939] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff0le3]

0.004941] ACPI: Reserving DSDT table memory at [mem 0xdfff02f0-0xdfff023f]

0.004941] ACPI: Reserving FACS table memory at [mem 0xdfff02f0-0xdfff023f]

0.004942] ACPI: Reserving FACS table memory at [mem 0xdfff02f0-0xdfff023f]

0.004943] ACPI: Reserving APIC table memory at [mem 0xdfff02f0-0xdfff023f]

0.004943] ACPI: Reserving SSDT table memory at [mem 0xdfff02af0-0xdfff046b]

0.007256] Early memory node ranges

0.020704] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]

0.020706] PM: hibernation: Registered nosave memory: [mem 0x0000000-0x00000fff]

0.020707] PM: hibernation: Registered nosave memory: [mem 0x0000000-0x0000ffff]

0.020709] PM: hibernation: Registered nosave memory: [mem 0x0000000-0x0000ffff]

0.020709] PM: hibernation: Registered nosave memory: [mem 0x0000000-0xf6ffffff]

0.020709] PM: hibernation: Registered nosave memory: [mem 0xfff0000-0xfffffff]

0.020710] PM: hibernation: Registered nosave memory: [mem 0xfec000000-0xfec00fff]

0.020710] PM: hibernation: Registered nosave memory: [mem 0xfec000000-0xfec00fff]

0.020711] PM: hibernation: Registered nosave memory: [mem 0xfec000000-0xfec00fff]

0.020711] PM: hibernation: Registered nosave memory: [mem 0xfec000000-0xfec00fff]

0.020711] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfedffffff]

0.020711] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfedffffff]
```

Figure 3.19: Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Рис. 3.20).

```
[tdkalinin@tdkalinin ~]$ dmesg | grep -i "Hypervisor"
[   0.000000] Hypervisor detected: KVM
[   3.570828] [drm] Max dedicated hypervisor surface memory is 507904 kiB
```

Figure 3.20: Тип обнаруженного гипервизора

6. Тип файловой системы корневого раздела (Рис. 3.21).

Figure 3.21: Тип файловой системы корневого раздела

7. Последовательность монтирования файловых систем (Рис. 3.22).

Figure 3.22: Последовательность монтирования файловых систем

4 Выводы

В результате лабораторной работы мы успешно установили операционную систему Rocky Linux на виртуальную машину.

5 Ответы на контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Информацию, необходимую для его идентификации, то есть логин и пароль.

2. Укажите команды терминала и приведите примеры:

```
- для получения справки по команде;

тап имя_команды (man ls)

- для перемещения по файловой системе;

сd путь_к_каталогу (cd ~/my_dir)

- для просмотра содержимого каталога;

ls путь_к_каталогу (ls ~/my_dir)

- для определения объёма каталога;

du путь_к_каталогу (du ~/my_dir)

- для создания / удаления каталогов / файлов;

touch имя_файла (touch ~/new_file.txt)

mkdir имя_каталога (mkdir ~/new_dir)

- для задания определённых прав на файл / каталог;

chmod права имя_файла (chmod +x ~/my_file.txt)

- для просмотра истории команд.

history
```

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система - это способ организации, хранения и именования данных на носителях информации в компьютерах. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов.

FAT32 - файловая система, созданная компанией Microsoft. Использует 32-разрядную адресацию кластеров.

ext2 - файловая система, используемая в ядре Linux. Является нежурналируемой файловой системы.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Через команду mount

5. Как удалить зависший процесс?

С помощью команды kill id процесса

6 Библиография

1. Лабораторная работа №1. - 14 c. URL: https://esystem.rudn.ru/pluginfile.php /1651880/mod_folder/content/0/001-lab_virtualbox.pdf?forcedownload=1