CHE 332 F | Applied Reaction Kinetics Tutorial 2 | September 18th, 2020

Learning Objective: Be able to understand the meaning and differentiate the various rates (species dependent, species independent, extensive vs. intensive rates); understand Arrhenius rate law and its applications; stoichiometric table; be an expert in uploading files on Quercus and Crowdmark.

Problem T2.1 | Species Dependent and Species Independent Rates

The stomach of a hippopotamus digests compounds A and B and converts them into C and D in the following reaction:

$$2A + 0.5 B \rightarrow C + D$$

The rate of reaction is given by:

$$r = kC_A^2$$

Where k is the rate constant (L mol⁻¹ s⁻¹) and C_A is the concentration of A inside the stomach. The volume of the stomach is V_R (L) and A and B are fed at rates of $F_{A_{in}}$ and $F_{B_{in}}$ (mol s⁻¹). There is no accumulation in the stomach, and it is well-mixed.

Following are the parameters for this problem:

- V_R=1000 L
- Inlet concentration $C_{A,in} = 5 \text{ mol } L^{-1}$
- Inlet volumetric flowrate $\dot{v}_{in} = 4 L s^{-1}$
- $k = 0.01 L s^{-1} mol^{-1}$

- **1.A.** Write the molar balance of A. Express the equation in terms of C_A .
- **1.B.** Equation in 1.A. could be solved by 1) analytically and 2) numerically. Submit the analytical form of the equation and the time dependent profile of C_A on Crowdmark. Use the initial condition of at time t = 0 seconds, $C_A = C_{A,in}$. Plot the graph for t between 0 and 1000 seconds using MATLAB.
- 1.C. Write the molar balance of B.

Quercus Quiz T2.1. From the time dependent profile of C_A in 1.B., what is the time needed for C_A to be reduced by 50%?

Problem T2.2| The Arrhenius Equation

You were just given the following aldol condensation reaction which follows elementary rate law:

2.A. Given the provided reaction, determine the rate constant (k) at each temperature shown in the Table below.

Temperature	Species A	Species B	Rate
°C	mol/L	mol/L	(mol C /(L min) ⁻¹)
40	2	0.2	59
65	1.5	0.6	2683
72	3	1	108947
90	1.8	3	878876
105	0.2	1	1777222

2.B. Using the Table provided, determine the reaction rate at 130°C given that A and B were supplied in equimolar amounts at 2.5 mol/L.

Quercus Quiz T2.2 What is the activation energy for the aldol condensation reaction in kJ?

<u>Upload your Figure from 2.B. onto Crowdmark and the Excel file from 3.B. through "Upload your Tutorial 2 File Here" under the "Assignments" tab in Quercus</u>

Problem (Quercus Quiz) T2.3. What is the rate constant at 250°C provided that the first order reaction is $A \rightarrow B$ has a rate constant of 0.02s⁻¹ at 200°C and has an activation barrier of 80 kJ mol⁻¹?

Problem T2.4 | (Quercus Quiz)

T2.4a. Species independent vs species dependent rate.

C is produced in the reaction A+3B \rightarrow 2C at a rate of 120 molC L⁻¹ h⁻¹. What is the reaction rate of B?

- A 120 mol L⁻¹ h⁻¹
- B -120 mol L⁻¹ h⁻¹
- C -60 mol L⁻¹ h⁻¹
- D -180 mol L⁻¹ h⁻¹

T2.4b. Unit of intensive vs. extensive rate. Which of these describes the unit of intensive rate of reaction?

- A mol h-1
- B mol L-1 h-1

C h-1

D mol⁻¹ L h⁻¹

T2.4c. By conducting reactions in a batch reactor of volume 1 L, the reaction rate equation was found to be $r_A = -kC_A$. The rate expression for a batch reactor of volume 5 L would be:

A $r_A = -0.2kC_A$

B $r_A = -kC_A$

 $C r_A = -5kC_A$

Elementary rate law.

T2.4d. Write the rate equation for the production of B in the elementary reaction of $2A \rightarrow B$ given rate constant k and concentrations of A and B of C_A , and C_B , respectively. (2 min)

A $r_B = kC_A^2$

B $r_B = 2kC_A^2$

C $r_B = -2kC_A^2$

D $r_B = -kC_A^2$

Limiting vs. excess reactant.

T2.4e. 50 mol h⁻¹ of A, 100 mol h⁻¹ of B, and 10 mol h⁻¹ of C enter an ideal CSTR and react according to $2A+3B \rightarrow C + D$. Which species is the excess reactant? (1 min)

A A

В В

C C

D D

Words mass balance.

T2. 4f. F_{j0} and F_{j} are the inlet and outlet molar flow rate of species j in a <u>well-mixed</u> reactor of volume V. If r_{j} is the rate of generation of species j, which of the following is the correct mole balance on the reactor?

A $r_iV = d(VC_i)/dt$

B $F_{i0} + F_i + r_i V = d(VC_i)/dt$

C $F_{j0} - F_j + r_j V = d(VC_j)/dt$

D $F_{j0} - F_j - r_j V = d(VCj)/dt$

Note: Complete the Quercus quiz and Crowdmark upload by next Thursday at 4:30 PM EDT September 24th, 2020, and upload your Excel/Matlab file through the "file upload" under the "Assignments" tab. You will be required to upload your MATLAB and Excel files to receive credit on these tutorial problems.