PBLE02 Board Bring-Up e Validação de Protótipos Eletrônicos Manual Grupo 8b

Sumário

1 Introdução	4
2 Requisitos	5
3 Ambiente de desenvolvimento	6
4 Esquema elétrico	7
4.1 Circuito de alimentação	7
4.2 Circuito de Interação com o Usuário	8
4.3 Circuito de Operação	10
4.4 Demais periféricos do projeto	10
4.5 Cristais	12
4.6 Relatório de verificação de erros de projeto elétrico	12
5 Placa de circuito impresso	13
5.1 Requisitos técnicos da PCI	13
5.2 Identificação dos componentes	
5.3 Desenho da placa de circuito impresso	
5.4 Relatório de verificação de erros de projeto	18
6 Características gerais	
6.1 Mapas de pinos	
6.1.1 Microcontrolador	19
6.1.2 Interface	21
6.2 Alimentação e consumo	21
7 Custos	22
7.1 Materiais	22
7.2 Confecção	22
8 Software	22
8.1 Diagrama de classes	22
8.2 Máquina de estados	23
8.2.1 Smloop	24
8.2.2 Protocolo Serial	25
9 Apêndice	26
9.1 Memorial de cálculos	26
9.1.1 Alimentação dos LED's	26
9.1.2 Entradas do AmpOp	
9.2 Lista de compras	
10 Bibliografia	
11 Anexo	

Identificação

Matrícula	Nome	Responsabilidade
2023005772	Maria Clara Rodrigues Ribeiro	Documentação
2023001076	Paulo Emilio Maia Cauwilla	Software
2022006926	Pedro Andrade Gomes	Hardware

Data:

09/07/24

1 Introdução

O projeto final da disciplina de Co-design de Produtos Eletrônicos teve como objetivo projetar e montar uma placa de circuito impresso, passando por todas as etapas, desde a análise de requisitos técnicos, desenvolvimento de esquemático, até chegar enfim na montagem da placa. Este manual descreverá e explicará todas as etapas, bem como as ferramentas utilizadas.

O projeto final da disciplina de Board Bring-Up e validação de protótipos eletrônicos utilizou a placa projetada na matéria PBLE01 para configurá-la como um controlador de alarme. Este processo envolveu a solda e programação dos componentes na placa original. O manual atualizado conta com as correções necessárias para o projeto anterior, juntamente com a descrição do software utilizado.

2 Requisitos

A tabela 1 lista todos os requisitos de projeto relacionados ao esquema elétrico.

Tabela 1: Requisitos técnicos

Requisito	Descrição
R1	 1 - Tensão de entrada na faixa de 7 a 12V CC; 2 - Conector de alimentação do tipo jack J4; 3 - Proteção contra tensão reversa; 4 - Regulador de tensão com saída de 5V; 6 - Diodo emissor de luz para presença de alimentação.
R2	1 – Microcontrolador PIC18F4550; 2 – Barra de pinos de gravação ICSP; 3 – Chave táctil de reinício (microcontrolador).
R3	1 – Teclado numérico de cinco (5) teclas (chaves tácteis); 2 – Visor de 16x2 (família JHD162A) com luminosidade controlada por trimmer; 3 – Quatro (4) diodos emissores de luz (LED).
R4	1 – Relógio em tempo real MCP7940; 2 – Conversor digital para analógico MCP4725 com conector de 2 terminais para saída na placa; 3 – Barra de expansão com dois sinais analógicos (forma entrada diferencial de 0V a 3V); 4 – Barra de expansão para pinos não utilizados (microcontrolador). Deve contemplar os sinais de 0V e 5V e pinos de comunicação no padrão I2C.
R5	1 – Conversor USB – serial MCP2200 (comunicação serial)

3 Ambiente de desenvolvimento

Na tabela 2 foram elencados todos os recursos lógicos e físicos dos ambientes de desenvolvimento utilizados na realização do trabalho.

Tabela 2: Recursos de desenvolvimento

Recurso	Descrição	Versão
Kicad	O Kicad é um editor de esquema elétrico gratuito que permite criar placas de circuitos impressos profissionais sem limitações de tamanho. Para o desenvolvimento do projeto foi utilizado a ferramenta de criação de esquemas elétricos e PCI's. Também utilizamos a ferramenta de detecção de erros para identificar os possíveis problemas do projeto.	6.0

4 Esquema elétrico

Nesta seção, será documentado todo o esquema elétrico desenvolvido. O projeto é composto por: circuito de alimentação; circuito de interação com o usuário, que contempla um visor LCD, teclado e LED's; circuito de operação, no qual foi utilizado um microcontrolador PIC18F4550; e os demais periféricos, como conversor D/A, relógio de tempo real, conversor USB-serial, amplificador operacional, e barramentos de pinos.

4.1 Circuito de alimentação

O circuito de alimentação é composto por um conector de alimentação do tipo Jack, um diodo para a proteção contra a tensão reversa, um regulador de tensão com saída de 5V e um diodo emissor de luz que indica a presença de alimentação na placa.

BarreLack_Switch_PinSRing DIOBE LDii17S50TR_S01223 +5V LDii17S50TR_S01223 | +5V LDII17S50TR_S012

Figura 1: Circuito de alimentação, retirado do esquema elétrico

Correção realizada: O conector de alimentação estava conectado de maneira incorreta, o que impedia o fornecimento de energia necessário para a operação da placa. Para resolver o problema, soluciona-se conectando o pino "2" (o qual seria o terra do conector), ao terra. O esquemático e o projeto original da PCB foram alterados para refletir essa modificação.

Figura 2: Circuito de alimentação corrigido

Figura 3: Correção realizada na PCB referente ao conector:

4.2 Circuito de Interação com o Usuário

Os circuitos abaixo estão relacionados com a interação do usuário com a placa, portando contemplam dispositivos programáveis, sendo estes: um visor LCD 16x2, da família JHD1612A (figura 2); Chaves Tácteis (figura 3) e LED's (figura 4).

O LCD possui 8 portas digitais, que são D0-D7, diretamente ligadas ao microcontrolador PIC18F4550 assim como os pinos RS e E. Além disso, para que se possa controlar a luminosidade do visor, foi adicionado um Trimmer ligado ao pino VEE do LCD, que desempenha essa função.

Figura 4: Circuito do LCD, retirado do esquema elétrico

As chaves referentes ao teclado são SW1 a SW5. A chave SW6 é o MCLR, o qual está ligado ao circuito de operação, que será descrito adiante. Os botões estão na configuração de Pull Down, sendo então acionados a partir de um nível lógico baixo.

Figura 5: Circuito dos Botões, retirado do esquema elétrico

O circuito dos LED's é formado por 4 diodos emissores de luz, ligados em série com um resistor de proteção de 150 Ohm. Todos eles estão diretamente conectados ao circuito de operação.

Figura 6: Circuito dos LED's, retirado do esquema elétrico

4.3 Circuito de Operação

O circuito de operação utiliza o microcontrolador PIC18F4550 para fazer a comunicação com os demais circuitos da placa, de acordo com um código embarcado programado. O circuito contempla o microcontrolador, como dito, ligado a um cristal externo de 20M por meio dos pinos OSC1 e OSC2, e um botão de reset, ligado ao pino MCLR. Além disso, o circuito possui um barramento de pinos de gravação, como mostrado abaixo.

Figura 7: Circuito de Operação, retirado do esquema elétrico

4.4 Demais periféricos do projeto

O circuito abaixo se trata de um conversor D/A e é o responsável por transformar as entradas digitais em saídas analógicas, sendo composto por um conversor D/A MCP2200, que está conectado ao PIC17F4550 por meio dos pinos SDL e SDA.

Figura 8: Circuito do conversor D/A, retirado do esquema elétrico

No circuito do relógio, foi usado o modelo MCP7940. Os pinos SCL, SDA, e MFP estão conectados ao microcontrolador. Já X1 e X2 estão conectados aos pinos do cristal de 32KHz, como será mostrado no próximo tópico.

Figura 9: Circuito do relógio, retirado do esquema elétrico

O circuito do conversor USB - serial é composto por um conversor do tipo MCP2200, e um conector USB, como mostrado abaixo. Os pinos RX e TX se conectam ao microcontrolador PIC, já OSC1.2 e OSC2.2 são conectados ao cristal, como será mostrado adiante.

Figura 10: Circuito do USB, retirado do esquema elétrico

O circuito do amplificador operacional do projeto é composto com um Amp. Op. LM35, onde sua saída (OUT_LM) se conecta ao microcontrolador PIC, o circuito possui uma configuração do tipo diferencial.

Figura 11: Circuito do Amp. Op., retirado do esquema elétrico

4.5 Cristais

Os circuitos abaixo são os circuitos dos cristais externos do projeto. X1 e X2 estão conectados ao relógio de tempo real; OSC1 e OSC2 se conectam ao microcontrolador; já OSC2.2 e OCS1.2 fazem parte do circuito do conversor USB – serial.

Figura 12: Circuito dos Cristais, retirado do esquema elétrico

4.6 Relatório de verificação de erros de projeto elétrico

Para a verificação de erros do esquema elétrico foi utilizado a ferramenta Verificador de Regras Elétricas, disponível no Kicad. Além disso, o erro que é apresentado é a alteração do *footprint* e símbolo do componente do LCD, para ter as entradas e saídas de acordo com JHD162A.

Figura 13: Captura de tela do ERC-Kicad

5 Placa de circuito impresso

Após o desenvolvimento e a aprovação do esquema elétrico, iniciou-se o desenvolvimento da placa de circuito impresso, utilizando também a ferramenta do Kicad, com o recurso destinado para essa função. Cada componente foi associado a um Footprint correspondente, para que fosse possível posicionar os componentes na placa. Além disso, para melhor desenvolvimento, foi criado um plano de terra em sua face inferior.

5.1 Requisitos técnicos da PCI

A placa de circuito impresso foi desenvolvida com base em alguns requisitos pré-determinados relacionados às características físicas da placa, e podem ser visualizados na tabela 2.

Tabela 2: Requisitos técnicos da PCI

Requisito	Descrição
R1	 1 – Dimensão de até 8x8 cm2; 2 – Dupla face; 3 – Plano de terra na face inferior; 4 – Capacitores de supressão de tensão (todos os circuitos integrados); 5 – Camada de texto na face (silk) com identificação de cada componente eletroeletrônico do grupo; 6 – Quatro furos de fixação dispostos em seus cantos; 7 – Identificação de todas as conexões de entradas e saídas.
R2	1 – Arquivos de fabricação em formato Gerber RS274X; 2 – Mínima largura para trilhas de sinais: 8 mils; 3 – Mínima largura para trilhas de alimentação: 12 mils; 4 – Mínimo espaçamento entre trilhas, furos e ilhas: 8 mils; 5 – Mínimo diâmetro de furo de vias: 12 mils; 6 – Mínimo diâmetro de ilhas de vias: 25 mils; 7 – Não utilizar microvias.

5.2 Identificação dos componentes

Neste tópico será listado todos os componentes do projeto com sua respectiva identificação na placa de circuito impresso. Para melhor organização, cada tabela abaixo se relaciona a um determinado sub-circuito.

Tabela 3: identificação dos componentes relacionados ao circuito de alimentação

Componente	Identificação
Conector de alimentação de tipo Jack	J1

Diodo para proteção de tensão reversa	D1
Capacitor de supressão de tensão	C1
Capacitor de supressão de tensão	C3
Resistor de proteção do LED	R13
Diodo emissor de luz (LED)	D6

Tabela 4: identificação dos componentes relacionados ao circuito de operação

Componente	Identificação
Microcontrolador PIC18F4550	U2
Capacitor de supressão de tensão do PIC	C11
Cristal de 20M	Y1
Capacitor ligado ao cristal	C6
Capacitor ligado ao cristal	C5
Botão de Reset	SW6
Resistor do botão Reset	R26
Resistor do botão Reset	R27
Resistor do botão Reset	R30
Capacitor do botão Reset	C2
Barra de pinos de gravação	J2

Tabela 5: identificação dos componentes relacionados ao circuito de interação do usuário

Componente	Identificação
Visor LCD	U5
Capacitor de supressão de tensão do LCD	C18
Resistor do pino E do LCD	R15

Resistor do pino RS do LCD	R16
Resistor do pino L+ do LCD	R21
Capacitor do LCD	C13
Trimmer	RV1
Botão 1	SW1
Resistores do botão 1	R1 e R9
Botão 2	SW2
Resistores do botão 2	R2 e R10
Botão 3	SW3
Resistores do botão 3	R3 e R11
Botão 4	SW4
Resistores do botão 4	R12 e R28
Botão 5	SW5
Resistores do botão 5	R14 e R29
Diodo emissor de luz 1	D2
Resistor do LED 1	R19
Diodo emissor de luz 2	D3
Resistor do LED 2	R20
Diodo emissor de luz 3	D4
Resistor do LED 3	R17
Diodo emissor de luz 4	D5
Resistor do LED 4	R18

Tabela 6: identificação dos componentes relacionados aos periféricos

	onentes relacionados aos periféricos
Componente	Identificação
Relógio de Tempo Real	U3
Capacitor de supressão de tensão do relógio	C12
Resistor do pino SCL do relógio	R24
Resistor do pino SDA do relógio	R23
Resistor do pino MFP do relógio	R25
Capacitor do relógio	C19
Conversor USB-serial	U6
Capacitor de supressão de tensão do conversor USB	C14
Capacitor do pino RST do conversor USB	C20
Resistor do pino RST do conversor USB	R31
Capacitor do pino V_USB do conversor USB	C15
Conector USB	19
Capacitor do conector USB	C17
Amplificador operacional LM35	IC1
Capacitor de supressão de tensão do Amp. Op.	C4
Resistor do Amp. Op	R4
Resistor do Amp. Op	R8
Resistor do Amp. Op	R6
Resistor do Amp. Op	R5
Resistor do Amp. Op	R7
Conector de entrada do Amp. Op	J3

Conversor D/A	U4
Capacitor de supressão de tensão do conversor D/A	C16
Resistor de saída do conversor D/A	R22
Barra de expansão dos pinos SDA e SCL	J4
Barra de expansão dos pinos SDA e SCL, e das entradas analógicas	J5
Cristal de 12M ligado ao conversor USB-Serial	Y2
Capacitor do cristal Y2	C10
Capacitor do cristal Y2	С9
Cristal de 32.768K ligado ao relógio	Y3
Capacitor do cristal Y3	C8
Capacitor do cristal Y3	С7

5.3 Desenho da placa de circuito impresso

A seguir, está uma representação em três dimensões da placa desenvolvida no projeto.

Figura 14: Face superior e inferior da placa de circuito impresso

5.4 Relatório de verificação de erros de projeto

Para a verificação de erros da PCI foi utilizado a ferramenta Verificador de Regras de Desenho, disponível no Kicad. Ademais, os erros apresentados são apenas de serigrafías de alguns componentes, como os *footprints* são pegados da internet, há sempre problemas com isso, mas nada que irá interromper o funcionamento do projeto.

Figura 15: Captura de tela do DRC-Kicad

6 Características gerais

6.1 Mapas de pinos

6.1.1 Microcontrolador

A seguir, é apresentado a relação entre os pinos do microcontrolador e os respectivos periféricos conectados a eles.

Tabela 7: identificação dos componentes relacionados aos periféricos

Número do pino	Nome do pino	Periférico conectado		
1	SD0/RX/DT/RC7	MCP2200		
2	SPP4/RD4	LCD-016N002L		
3	P1B/SPP5/RD5	LCD-016N002L		
4	P1C/SPP6/RD6	LCD-016N002L		
5	P1D/SPP7/RD7	LCD-016N002L		
8	RB0/AN12/INTO/FLTO/SDI/ SD A	LCD-016N002L		
9	RB1/AN10/INT1/SCK/SCL	LCD-016N002L		
10	RB2/AN8/INT2/VWO	LED 1		
11	RB3/AN9/CCP2/VPO	LED 2		
14	RB4/AN11/KBIO/CSSPP	LED 3		
15	RB5/KBI1/PGM	LED 4		
16	RB6/KBI2/PGC	Barra de expansão		
17	RB7/KBI3/PGD	Barra de expansão		
18	VPP/MCLR/RE3	Botão MCLR		
19	RA0/AN0	Barra de expansão		
20	RA1/AN1	Barra de expansão		

21	RA2/AN2/Vref-/CVref	MCP7940		
22	RA3/AN3/Vref+	Barra de expansão		
23	RA4/T0CKI/C1OUT/RCV	Barra de expansão		
24	RA5/AN4/SS/HLVDIN/C2OUT	Barra de expansão		
25	CK1SPP/AN5/RE0	Amplificador Operacional		
26	CK2SPP/AN6/RE1	Barra de expansão		
27	OESPP/AN7/RE2	Barra de expansão		
30	OSC21/CLKI	Cristal de 20M		
31	RA6/OSC2/CLKO	Cristal de 20M		
32	T1OSO/T13CKI/RC0	Botão 1		
35	UOE/CCP2/T1OSI/RC1	Botão 2		
36	P1A/CCP1/RC2	Botão 3		
38	SPP0/RD0	LCD-016N002L		
39	SPP1/RD1	LCD-016N002L		
40	SPP2/RD2	LCD-016N002L		
41	SPP3/RD3	LCD-016N002L		
42	VM/D-/RC4	Botão 4		
43	VP/D+/RC5	Botão 5		
44	TX/CK/RC6	MCP2200		

6.1.2 Interface

Nesta seção será apresentada uma relação de pinos para os conectores de interface.

Tabela 8: relação de pinos para o conector de interface J5

Número do pino	Conexão
1	SCL
2	SDA
3	RE2
4	RE1
5	RA5
6	RA4
7	RA3
8	GND
9	+5V

Tabela 9: relação de pinos para o conector de interface J4

Número do pino	Conexão
1	SCL
2	SDA
3	GND
4	+5V

6.2 Alimentação e consumo

O Projeto tem em margem de entrada de tensão entre 7 a 12V CC, após passar pelo regulador de tensão, a voltagem de entrada passa a ter 5V para todo o sistema.

7 Custos

7.1 Materiais

O valor dos materiais tem como ponto de amostragem do dia 23/07/2022, com uma cotação do dólar de aproximadamente \$5,50 dólares.

7.2 Confecção

Figura 16: Captura do preço da PCB

PCB Cost: \$5.00

Shipping: \$25.00

Total: \$30.00

De acordo com o site *ZXHPCB*, o preço de uma PCB é em torno de \$5 dólares, porém o pedido mínimo é de 5 placas, por isso o preço aumenta.

8 Software

8.1 Diagrama de classes

O diagrama UML abaixo representa, de maneira superficial, a relação entre as "classes" do projeto. Devido ao C não ser uma linguagem com suporte à orientação À objetos, foram tomados as bibliotecas projetadas como sendo classes, cada uma com seus respectivos métodos, funções em C, e atributos, variáveis.

A unificação das classes apresentadas se da pelo objeto central Main, que, de maneira semântica, depende de da criação e inclusão de uma série de objetos para a sua correta criação. Os objetos inclusos podem se prover de três pacotes distintos, separados semanticamente, dados por:

Microcontroller Peripherals: Pacote que contempla todas as classes que têm ligação direta com periféricos internos ao microcontrolador;

Software Packs: Pacote que contempla todas as classes que têm em sua construção elementos meramente abstratos, digitais, softwares puros;

Extern Microcontroller Peripherals: Pacote que contempla todas as classes que têm ligação com periféricos externos conectados ao microcontrolador;

O objeto Main contém uma instância de cada um de todos os objetos contemplados em todos os três pacotes declarados. Cada objeto contém seus respectivos métodos e atributos. Métodos getters e setters foram dispensados de declarações. Adaptações foram feitas devido ao uso de uma linguagem não nativa da orientação a

Figura 17: Diagrama de classes

8.2 Máquina de estados

O fluxograma abaixo é uma representação simplificada da sequência de operações realizadas pelo programa, de forma cíclica.

O programa tem sua raiz na Main onde são chamados todos os inicializadores necessários, isto é feito apenas uma vez após o reset, e não faz parte da parte cíclica do programa.

Após as inicializações, o programa segue uma rotina concatenada de um timer em conjunto com uma sub-rotina smLoop, que é o loop da máquina de estados.

Figura 18: Máquina de estados

8.2.1 Smloop

O fluxograma a seguir é uma visão simplificada do modo de operação da sub-rotina smLoop, chamada por programa em estado cíclico.

O ciclo se inicia em uma chamada por smLoop, em seguida smLoop chama por eventRead. Dentro de eventRead há uma estrutura switch/case na variável de estados da máquina de estado, cada case resulta em uma operação específica. Após as operações, outputPrint é chamado, fazendo verificações sucessivas a respeito do estado da máquina. A depender deste estado, algumas sequências de operações gráficas e/ou sensoriais, que utilizam os periféricos externos da placa, podem ser chamados e executados. Independentemente de qual seja este resultado, o final é marcado pelo retorno da sub-rotina smLoop pela sua unidade de chamada.

Figura 19: Fluxograma do Smloop

8.2.2 Protocolo Serial

O protocolo serial funciona como uma máquina de estados. Inicialmente, está configurado para o estado "MSG_START", no qual aguarda o início do protocolo e executa comandos simples baseados nos botões da placa física.

Nesse estado, ao identificar o caractere '{', que representa o início do protocolo, o estado é trocado para "WHILE_MSG". Nesse novo estado, a configuração padrão é receber e armazenar as informações enviadas no buffer.

Ainda no estado "WHILE_MSG", quando ocorre a identificação do caractere '}', que representa o fim do protocolo, o buffer é comparado com certas palavras-chave para realizar o comando desejado.

Dentre os comandos cadastrados, têm-se:

GAMXXXXXX - Get Alarm Mid GAUXXXXXX - Get Alarm Upper GALXXXXXX - Get Alarm Lower CAUXX0000 - Change Alarm Upper CALXX0000 - Change Alarm Lower STM000000 - Set Time GTMXXXXXXX - Get Time

Na descrição do protocolo, o 'X' representa qualquer caractere; durante o tratamento do buffer, eles não serão utilizados. Já o caractere '0' representa os valores inseridos pelo usuário, ou seja, serão utilizados no tratamento do buffer.

9 Apêndice

9.1 Memorial de cálculos

9.1.1 Alimentação dos LED's

Como cada LED necessita de uma quantidade de tensão corrente para funcionar, foi necessário realizar cálculos para colocar uma resistência em série, pois se entrar 5V de tensão, dependendo do componente, é capaz de queimar e trazer um mal funcionamento. Avaliando o datasheet, o aparelho luminoso consome 2,1V e aproximadamente 30mA;

$$R > \frac{(V_{entrada}^{-2,1})}{30.10^{-3}} = \frac{2.9}{30.10^{-3}} \approx 100\Omega$$

 $Valor\ escolhido = 150\Omega$

9.1.2 Entradas do AmpOp

Como o projeto trabalha nas tensões de 0 a 5V, é necessário manter esse padrão para não ocorrer nenhum problema de sobrecarga, para isso o sistema de AmpOp Diferencial terá que ter um ganho proporcional que chegue a próximos de 5V. Na fórmula deste esquema, temos que a divisão de resistores nos dará o ganho, com isso é efetuado os cálculos;

Observação: R6 = R5 e R8 = R7

$$V_o = \frac{R8}{R6} (V_2 - V_1)$$

$$5 = \frac{R8}{r6} * 3 => R6 = \frac{R8*3}{5}$$

*Para um R*8 = $10k\Omega : R6 = 6k2\Omega$ (*Comercial*)

9.2 Lista de compras

A tabela 10 contém a lista de compras dos componentes do projeto. Os preços estão representados em Dólar Americano.

Tabela 10: lista de compras

	Item	Modelo	Fabricante	PCI	Valor	Quantidade	Preço	Preço total
1	Processador	PIC18F45 50- I/PT	Microchip	U2	-	1	\$3,66	\$3,66
2	Relógio de Tempo Real	MCP7940 N I/SN	Microchip	U3	-	1	\$0,68	\$0,68
3	Transceptor USB-Serial	MCP2200-I/S O	Microchip	U6	-	1	\$2,62	\$2,62
4	Conversor D/A	MCP4725A 0T E/CH	Microchip	U4	-	1	\$4,95	\$4,95
5	Resistor SMD 0805	CRGP0805 F10 K	TE Connecti vity	R1,R2,R3,R7, R8, R12,R14,R26, R2 7	10kΩ	9	\$0,28	\$2,52
6	Resistor SMD 0805	CRGP0805 F10 0R	TE Connecti vity	R4,R9,R10,R1 1, R15,R16,R21, R22,R23,R24, R2 5,R28,R29,R3 0,R 31	100Ω	15	\$0,28	\$4,20
7	Resistor SMD 0805	CRCW0805 6K 20JNEA	Vishay	R5,R6	6K2 Ω	2	\$0,10	\$0,20
8	Resistor SMD 0805	CRGP0805 F15 0R	TE Connecti vity	R17,R18,R19, R2 0	150Ω	4	\$0,28	\$1,12
9	Resistor SMD 0805	CRGP0805 F1 K0	TE Connecti vity	R13	1kΩ	1	\$0,28	\$0,28
10	Capacitor SMD 0805	C0805C104 K5 RAC7411	KEMET	C2,C4,C11,C 13, C14,C15,C1 6, C18,C19,C2	100n F	10	\$0,89	\$8,89

				0				
11	Capacitor SMD 0805	C0805C106 K8 RACTU	KEMET	C12,C13,C14, C1 5,C16,C17,C1 8,C 19	10uF	8	\$0,34	\$2,72
12	Capacitor SMD 0805	C0805C103J A RACAUTO	KEMET	C17	10nF	1	\$0,75	\$0,75
13	Capacitor SMD 0805	C0805C100 JD GACAUTO	KEMET	C5,C6,C7,C8, C9, C10	22pF	6	\$0,51	\$3,05
14	Capacitor Eletrolítico	F931C106 KA A	AVX	СЗ	10uF	1	\$0,60	\$0,60
15	Capacitor Eletrolítico	TAJS104M0 20 RNJ	AVX	C1	100n F	1	\$0,99	\$0,99
16	Trimpot de 10k	P160KN- 0QC15B100 K	TT Electro- nics	RV1	10kΩ	1	\$1,48	\$1,48
17	Barra de Pinos	PPTC091L FB N-RC	Sullins Con nector Soluti ons	J4	-	1	\$0,71	\$0,71
18	Barra de Pinos	PPTC041L FB N-RC	Sullins Con nector Soluti ons	J5	-	1	\$0,45	\$0,45
19	Conector de Energia	PJ-002A	CUI Devices	J1	-	1	\$0,77	\$0,77
20	Diodos Emissores de Luz	LTST– C150GKT	Lite On	D2,D3,D4,D5, D6	-	5	\$0,43	\$2,15
21	Amplificador Operacional	LM358DR	On Semi	IC1	-	1	\$0,26	\$0,26
22	Conector USB	897–43–0 04– 90–00000 0	Mill–Max	Ј9	-	1	\$1,68	\$1,68
23	Chaves Tácteis	1825910–6	TE Connecti vity	SW1,SW2,S W3, SW4,SW5,S W6	-	6	\$0,10	\$0,60
24	Regulador de Tensão	LD1117DT5 0T R	STMicroel ec tronics	U1	-	1	\$0,94	\$0,94
25	Cristal de 32.768 kHz	AB38T- 32.768KHZ	ABRACON	Y3	32,7 68	1	\$0,22	\$0,22

					kHz			
26	Cristal de 20 MHz	ATS20A	CTS Electro nic Compo nents	Y1	20M Hz	1	\$0,36	\$0,36
27	Cristal de 12 MHz	ABLS7M2- 12.000M HZ D2Y-T	ABRACON	Y2	12M Hz	1	\$0,34	\$0,34
28	Conector para AmOp	OSTTA0241 63	On Shore Technolo gy Inc	J3,J6	1	2	\$0,77	\$1,54
29	Conector para Barra de Expansão	3-644456-5	TE Connecti vity	J2	-	1	\$0,50	\$0,50
30	Diodo Retificador	1N5819HW- 7	On Semi	D1	-	1	\$0,46	\$0,46
31	Visor de 16x2 pontos	JHD162A	Electrobot	U5	-	1	\$13,04	\$13,04

Resultado: \$62,72

10 Bibliografia

- [1] <u>Distribuidor de Componentes Eletrônicos Mouser Electronics Brasil</u>
- [2] ZXHPCB PCB Instant Quote, PCB Online Quote!
- [3] Datasheets, Electronic Parts, Components, Search Octopart
- [4] Findchips: Electronic Part Search
- [5] Electronic Components Online | Find Electronic Parts | Arrow.com
- [6] <u>DigiKey Electronics Brasil Distribuidor de componentes eletrônicos</u>
- [7] Explore SnapEDA's Symbol & Footprint Libraries | SnapEDA
- [8] Worldway Electronics World's largest source of shortage and hard to find parts

11 Anexo

Apresentar a folha de rosto de todos os componentes eletro-eletrônicos e mecânicos utilizados no projeto.

PIC18F2455/2550/4455/4550 Data Sheet

28/40/44-Pin, High-Performance, Enhanced Flash, USB Microcontrollers with nanoWatt Technology

69 Microchip Technology Inc. DS396

Figura 17: Folha de rosto do PIC

MCP7940N

Battery-Backed I²C Real-Time Clock/Calendar with SRAM

Timekeeping Features Real-Time Clock/Calender (RTCC) - Hours, Mexides, Seconds, Day of Week, Day, Mexide, Year - Leap year congenerated to 2209 1024 Nour modes - Oscillator for 32.798 kHz Crystella: - Operations for 0.978 kHz Crystella: - Operations output the selection of the operation of t

Figura 18: Folha de rosto do MCP7940

Figura 19: Folha de rosto do MCP2200

MCP4725

12-Bit Digital-to-Analog Converter with EEPROM Memory in SOT-23-6

Figura 20: Folha de rosto do MCP4725

Figura 21: Folha de rosto do Resistor 10k

Figura 22: Folha de rosto do Capacitor de 100nF

Figura 23: Folha de rosto do Capacitor Eletrolítico de 10uF

Figura 24: Folha de rosto do Capacitor Eletrolítico de 100nF

Figura 25: Folha de rosto do Trimpot 10k

Figura 26: Folha de rosto da Barra de Pinos com 9 pinos

Figura 27: Folha de rosto do Conector de Energia

ELITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Features * Meet ROHS, Green Product. * Package in 8mm Tape On 7* Diameter Reels. * Compatible With Infrared And Vapor Phase Reflow Solder Process. * ELA STD package. * LC. compatible. Package Dimensions Package Dimensions PDLARITY | Compatible | Package | Pa

Figura 28: Folha de rosto LED

Page: I of 10

Part No.: LTST-C150GKT

BNS-OD-C131/A4

Figura 29: Folha de rosto do LM358

Figura 30: Folha de rosto do Conector USB-B

Figura 31: Folha de rosto do Botões

Figura 32: Folha de rosto do Regulador de Tensão

Figura 33: Folha de rosto do Cristal de 32,768kHz

Figura 34: Folha de rosto do Cristal de 20MHz

Figura 35: Folha de rosto do Cristal de 12MHz

Figura 36: Folha de rosto dos Terminal Blocks

Figura 37: Folha de rosto da Barra de Pinos

Figura 38: Folha de rosto da Diodo Retificado

Figura 39: Folha de rosto do LCD