CS 4510: Automata and Complexity Spring 2015

Home work 2 // Due: Friday, January 30, 2015

1. (10 points) (Problem 1.38, page 89 of third edition Sipser text.)

An all-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts a string $x \in \Sigma^*$ if *every* possible state that M could be in after reading input x is a state from F. Note, in contrast, that an ordinary NFA accepts a string if *some* state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.

Solution: A DFA is clearly an all-NFA.

In the other direction, given an **all**-NFA construct a DFA as in the case of an ordinary NFA except for the following modification: the final states of the DFA is now $\mathcal{P}(F)$, where F is the set of final states of the **all**-NFA. (This is because the **all**-NFA accepts an input x iff the set of states that it is in after reading input x is a subset of F.)

2. (10 points) Let L be a regular language. Is the language L_1 defined below regular? Why?

$$L_1 = \{w \in \{0,1\}^* \mid w \text{ is either in } L^R \text{ or in } \bar{L} \text{ but not in both}\}.$$

Solution: Yes. L_1 is the exclusive OR of the languages \overline{L} and L^R . Since L is regular, because of closure properties, there is a DFA M_1 for \overline{L} , a DFA M_2 for L^R , and a DFA for the exclusive OR of L(M1) and $L(M_2)$.

(Note: If A and B are sets, their exclusive OR is the set of strings w such that w is either in A or in B but not in both A and B.)

3. (10 points) Consider the DFA $M=(\{q_1,q_2\},\{0,1\},\delta,q_1,\{q_2\}),$ where δ is as defined below:

$$\begin{array}{rcl} \delta(q_1,0) & = & q_1 \\ \delta(q_1,1) & = & q_2 \\ \delta(q_2,0) & = & q_2 \\ \delta(q_2,1) & = & q_2 \end{array}$$

Convert this into a regular expression using the algorithm covered in class. In particular, show the following regular expressions: $R_{ij}^{(k)}$ for $1 \le i, j \le 2$ for k = 0, 1 and $R_{12}^{(2)}$. (Simplify the regular expressions using the rules they obey.)

- 4. (15 points) Let L be a regular language. Suppose there exists a set of pairs of strings $\{(x_i, y_i) \mid 1 \leq i \leq n\}$ such that the following two conditions hold:
 - (a) $x_i y_i \in L$ for all $1 \leq i \leq n$, and
 - (b) $x_i y_i \notin L$ for all $1 \leq i \neq j \leq n$.

Show that any NFA for L must have n states.

Solution: Consider any NFA N for L. For each $1 \leq i \leq n$, let S_i denote the set of states reachable from the start state on string x_i . For x_iy_i , for some i, there must be some state $s \in S_i$ from which a final state f can be reached since $x_iy_i \in L$. Suppose $s \in S_j$ for some $j \neq i$. Then, we have an accepting path for x_jy_i (from start state to the state s in S_j and from s to the state f on y_i). This contradicts the second condition. So, for each $1 \leq i \leq n$, the set S_i has a state that is not contained in the set S_j for $i \neq j$.

- 5. (15 points) Identify the regular set and the non-regular set from the following two subsets of $\{0,1\}^*$. Prove your answer.
 - (a) $B = \{1^k y \mid y \text{ contains at least } k \text{ 1s, for } k \geq 1\}.$
 - (b) $C = \{1^k y \mid y \text{ contains at most } k \text{ 1s, for } k \geq 1\}.$

Solution: B is the same as the language $A = 1(0 \cup 1)^*1(0 \cup 1)^*$ which is regular. This is because any string in B starts with a 1 and has at least one 1 appearing in it later.

C is not a regular Language. Let p be the pumping lemma constant. Choose the string 1^p01^p in C. Choose i=0.

6. Let L be a language defined over a finite alphabet Σ . Two strings $x, y \in \Sigma^*$ are said to be distinguishable by L iff there exists some string z such that exactly one of xz or yz is in L.

(15 points) Consider the language $L=\{x\in \Sigma^*\mid x=x^R\}$. (Here x^R is the reverse of the string x.) Show that any two distinct strings $x,y\in \Sigma^*$ are distinguishable by L.

Solution: Let x and y be two distinct strings.

Case 1: |x| = |y|. Then, the string $z = x^r$ serves to distinguish the two strings.

Case 2: $|x| \neq |y|$. Assume, without loss of generality, that |x| < |y|.

Then, y can be written as y_1y_2 where $|y_1| = |x|$ and y_2 is not empty. Let w be a string such that $|w| = |y_2|$ and $w \neq y_2$. Then, the string $z = ww^rx^r$ serves to distinguish the strings x and y.