Adopted Levels, Gammas 1993Ti07

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, D. R. Tilley, H. R. Weller and C. M. Cheves	NP 564 1 (1993)	31-Dec-1992

 $Q(\beta^{-})=-2760.47\ 25;\ S(n)=4143;\ S(p)=13781.6\ 23;\ Q(\alpha)=-6359$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-2760.70 \ 32; \ S(n)=4143.33 \ 21; \ S(p)=13781.4 \ 26; \ Q(\alpha)=-6358.92 \ 21$ 1997Au04

See other reaction references in 1993Ti07.

¹⁷O Levels

Cross Reference (XREF) Flags

Α	17 N β^- decay	I	$^{14}C(^{6}Li,t)$	Q	¹⁶ O(⁷ Li, ⁶ Li)
В	17 F β^+ decay	J	$^{14}N(t,\gamma)$	R	$^{17}O(e,e)$
C	¹² C(⁶ Li,p)	K	$^{14}N(^{6}Li,^{3}He)$	S	$^{17}O(\pi,\pi)$
D	$^{12}\mathrm{C}(^{9}\mathrm{Be},\alpha)$	L	$^{15}N(^{3}He,p)$	T	$^{18}O(d,t)$
E	13 C(α ,n), 13 C(α , α)	M	$^{15}N(\alpha,d)$	U	$^{18}\mathrm{O}(^{3}\mathrm{He},\alpha)$
F	13 C(6 Li,d)	N	$^{16}O(n,n), ^{16}O(n,\alpha)$	٧	18 F(d, α)
G	$^{13}\text{C}(^{13}\text{C},^{9}\text{Be})$	0	$^{16}{\rm O}({\rm p,}\pi^+)$		
н	$^{14}C(^{3}He.X)$	Р	$^{16}O(d.p)$		

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	5/2+	stable	ABCD F IJKLM OPQRSTUV	$T=1/2$; $\mu=-1.89379 9 (1989Ra17)$
870.73 10	1/2+	179.2 ps 18	A CD F IJKLM OPQR TUV	
3055.36 16	$1/2^{-}$	0.08 ps +6-4	A CD F I KL OPQR T V	
3842.8 <i>4</i>	5/2-	≤18 fs	CD FG I KLM PQRST V	
4553.8 <i>16</i>	$3/2^{-}$	40 keV 5	A CD F I KLMN PQRST V	%IT=?; %n=100
5084.8 9	$3/2^{+}$	96 keV 5	A D F KL N P R T	%IT=?; %n=100
5215.8 <i>5</i>	$9/2^{-}$	<0.1 keV	D FG KLMN P RS V	%IT=?; %n=?
5379.2 <i>14</i>	$3/2^{-}$	28 keV 7	A D KL N PQR T V	%IT=?; %n=100
5697.3 <i>4</i>	$7/2^{-}$	3.4 keV 3	F I KLMN P RST	%IT=?; %n=100
5732.8 <i>5</i>	$(5/2^{-})$	<1 keV	C F I K N P V	%n=100
5869.1 <i>6</i>	$3/2^{+}$	6.6 keV 7	D F KL N P V	%n=100
5939 4	$1/2^{-}$	32 keV 3	ACF KLNPRTV	%IT=?; %n=100
6356 8	$1/2^{+}$	124 keV <i>12</i>	CD I L N R	%IT=?; %n=100
6862 2	$(5/2^+)$	<1 keV	CD F KL N P R T V	%IT=?; %n=?
6972 2	$(7/2^{-})$	<1 keV	DF KLNR V	%IT=?; %n=?
7165.7 8	5/2-	1.38 keV 5	CDEF L N	$%n=?; %\alpha=?$
7202 10	$3/2^{+}$	280 keV 30	F N	$%n=?; %\alpha=?$
7379.2 10	$5/2^{+}$	0.64 keV 23	CD LMN R T V	$%IT=?; %n=?; %\alpha=?$
7382.2 10	5/2-	0.96 keV 20	DEF MN R T V	$%IT=?$; $%n=?$; $%\alpha=?$
7559 20	$3/2^{-}$	500 keV 50	N P	$%n=?; %\alpha=?$
7576 2	$(7/2^+)$	<0.1 keV	C EF L N R	$%IT=?; %n=?; %\alpha=?$
7688.2 9	$7/2^{-}$	14.4 keV 3	C EF L N	$%IT=?; %n=?; %\alpha=?$
7757 9	$11/2^{-}$		I LM RS	
7956 <i>6</i>	$1/2^{+}$	90 keV 9	E L N	$%n=?; %\alpha=?$
7990 <i>50</i>	1/2	270 keV 30	N	$%n=?; %\alpha=?$
8070 <i>10</i>	$3/2^{+}$	85 keV 9	E L N	$%n=?; %\alpha=?$
8200 7	3/2-	60 keV	E I L N T	$%IT=?; %n=?; %\alpha=?$
8342.4 9	1/2+	11.4 keV 5	E LN R	%IT=?; %n=?; % α =?
8402.3 8	5/2+	6.17 keV <i>13</i>	EF L N R	$%IT=?; %n=?; %\alpha=?$

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁷O Levels (continued)

E(level)	${ m J}^{\pi}$	$T_{1/2}$	XREF		Comments
8466.0 8	7/2+	2.13 keV 11	C EF L N	R T	%IT=?; %n=?; %α=?
	- /				The IT decay mode is tentative.
					J^{π} : from tables 17.12 and 17.17. $J^{\pi} = (9/2^{+})$ is
					adopted by 1993Ti07 based on table 17.10.
8500.7 8	5/2-	6.89 keV 22	EF L N	R	%IT=?; %n=?; % α =?
8687.0 <i>10</i>	3/2-	55.3 keV 6	E L N	T	%IT=?; $\%$ n=?; $\%\alpha$ =?
8885 <i>14</i>	7/2-,9/2-	6 keV	2 2 1	R	/oii ., /oii ., /ou .
8897 8	3/2+	101 keV 3	EF LMN	R	%n=?; %α=?
8967.2 <i>17</i>	7/2-	26 keV 2	EF L N	R	%IT=?; %n=?; %α=?
9147 <i>4</i>	1/2-	4 keV 3	EF E N	T	%IT=?; %n=?; % α =?
9150 20	9/2-	1 RC V S	LMN	•	/oii, /oii, /ou
9180	7/2-	3 keV	EF		$\%\alpha=100$
9193.9 8	5/2 ⁺	3.53 keV <i>13</i>	EF N		$\%$ n=?; $\%\alpha$ =?
9420	3/2-	120 keV	N N		%n=1,00
9492 <i>4</i>	5/2-	15 keV <i>I</i>	C L N	Т	$\%$ n=?; $\%\alpha$ =?
9711.9 9	7/2 ⁺	23.1 keV 3	EILN	•	$\%$ n=?; $\%\alpha$ =?
9783.3 9	3/2+	11.7 keV 3	E I L N		$\%$ n=?; $\%\alpha$ =?
9858.9 9	$(5/2^{-})$	4.01 keV 23	E L N		$\%$ n=?; $\%\alpha$ =?
9876.5 <i>13</i>	$(3/2^{-})$ $(1/2^{-})$	16.7 keV <i>17</i>	E L N		$\%$ n=?; $\%\alpha$ =?
9976 20	5/2+	≈80 keV	E		$\%$ n=?; $\%\alpha$ =?
10045 20	3/2	≈100 keV	E		$\%$ n=?; $\%\alpha$ =?
10167.8 10	7/2-	49.1 keV 8	E N		$\%$ n=?; $\%\alpha$ =?
10336 15	5/2 ⁺ ,7/2 ⁻	150 keV			$\%$ n=?; $\%\alpha$ =?
10330 13	3/2 ,1/2	14 keV 3			$\%$ n=?; $\%\alpha$ =?
10423 3	5/2+,7/2-	75 keV 30			$\%$ n=?; $\%\alpha$ =?
10490 10559.1 <i>10</i>		42.5 keV 11	E EG LN		$\%$ n=?; $\%\alpha$ =?
	$(7/2^{-})$ $1/2^{+},7/2^{-}$				
10777 <i>3</i> 10913 <i>3</i>		74 keV <i>3</i> 41.7 keV <i>14</i>	E KLN E LN		$%$ n=?; $%\alpha$ =?
	$(5/2^+)$				$%$ n=?; $%\alpha$ =?
11036 <i>3</i>		31 keV 3	E L		$%$ n=?; $%\alpha$ =? T=1/2
11079 7 0	1/2-	2.4 koV. 2	E L N	R TU	· ·
11078.7 9	1/2	2.4 keV 3	E L N	K IU	$\%IT = 0.42 \ 14; \ \%n = ?; \ \%\alpha = ?$
					T=3/2; Γ_{γ} =10 eV 3
11220		00 leaV 2	СЕТ		E(level): uncertainty is 0.8 keV in table 17.16.
11238	> 2/2	80 keV 3	CEI		$%$ n=?; $%$ α =?
11510	≥3/2	190 keV	N		%n=100
11622		65 keV 2	E	D.	$%$ n=?; $%\alpha$ =?
11750 10		40 keV 25	E	R	$%IT=?; %n=?; %\alpha=?$
11815 15	> 2/2	12 keV 3	E I	ъ	%n=?; %α=?
12005 15	≥3/2	270 keV	E IKN	R	%IT=?; %n=?; %α=?
12110 20		150 keV 50	E G N	D.	$%$ n=?; $%\alpha$ =?
12220 20		≤20 keV	г т	R	of 9. of - 9
12274 15		100 keV <i>30</i>	E I		$%$ n=?; $%\alpha$ =?
12380 20			E N		$%$ n=?; $%\alpha$ =?
12420 15	2/2-	(01 37 11	E	D 7711	$%$ n=?; $%\alpha$ =?
12466.0 <i>10</i>	3/2-	6.9 keV <i>11</i>	E N	R TU	%IT=?; %n=?; % α =?
12505 15		75 1 37 20			T=3/2
12595 15		75 keV <i>30</i>	E	_	$%$ n=?; $%\alpha$ =?
12669 15		≈5 keV	E N	R	$\%IT=?; \%n=?; \%\alpha=?$
12810 25		> 150 lV	E		$%$ n=?; $%\alpha$ =?
12930 20	1/2+	≥150 keV	E	TOTAL T	$%$ n=?; $%\alpha$ =?
12944 5	1/2+	6 keV 2	E N	TU	$%$ n=?; $%\alpha$ =? T=3/2
12998.2 <i>10</i>	5/2-	2.5 keV 10	E N	R U	$\%IT = ?; \%n = ?; \%\alpha = ?$ T=3/2
13076 <i>15</i>		16 keV 4	E		$% = ?; % \alpha = ?$

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁷O Levels (continued)

E(level)	$_J^\pi$	T _{1/2}		XRI	EF		Comments
13484 15		≈120 keV	E				%n=?; %α=?
13580 20	$(11/2^-, 13/2^-)$	68 keV 19	F			R	γ decay tentative. No other decay indicated.
13609 15		250 keV 100	E				$%$ n=?; $%\alpha$ =?
13635.3 25	$(5/2)^+$	9 keV 5			N	TU	$%$ n=?; $%\alpha$ =? T=3/2
13670?		400 keV			N		%n=100
1415×10 ¹ † <i>10</i>	$(9/2^+,11/2^+)$	≈100 keV	F				
14230.3 17	7/2-	20.5 keV 16			N	R U	%IT=?; %n=?; %α=? T=3/2
14286 3		7.5 keV 4			N	U	$\%$ n=?; $\%\alpha$ =? T=1/2
14451 3		40 keV 6			N		%IT=?; %n=?; % α =?
14720 [†]	9/2-	35 keV 11					T=3/2
1476×10 ¹ 10	(≥3/2)	340 keV			N	R	%IT=?; %n=?
14791 3	$(1/2^{-})$	36 keV <i>13</i>			N		%IT=?; %n=?; % α =?
11,710	(1/2)	00 10 . 10			-		T=(3/2) %IT: tentative decay mode.
15000		180 keV			N		%11. tentative decay mode. %n=?; %d=?; % α =?
1510×10 ¹ † 10	$(9/2^+,11/2^+)$	≈500 keV	F		•		7011 ., 7042 ., 7042 .
15199 3	(9/2 ,11/2)	52 keV 14		I	N	R	%IT=?; %n=?; %d=?; %α=? T=1/2
15368 <i>3</i>	(5/2+)	40 keV 6			N		%n=?; %d=?; %α=?
15600?		≈300 keV					T=(3/2) %p=?; %d=?; % α =?
15780 20	$(13/2^{-})$	≤30 keV				R	T=1/2 T=(3/2)
$15780\ 20$ 1595×10^{1} † 15						K	1 - (3/2)
16243 <i>4</i>	$(9/2^+,11/2^+)$ $(9/2^+)$	≈700 keV 21 keV <i>10</i>	F		N		%n=?; %p=?; %d=?; %α=?
16580 <i>10</i>	$(1/2,3/2)^-$	≈300 keV				R T	T=(3/2) T=3/2
1660×10 ^{1†} 15		~300 Ke v				K I	1-3/2
17060 20	(11/2 ⁻ ,13/2 ⁻) 11/2 ⁻	≤20 keV	F F			RS	T=1/2
17436 <i>11</i>	11/2	520 keV 66 keV 20	r		N	KS	$\%$ n=?; $\%\alpha$ =?
17430 11		00 KEV 20			IN		T=(3/2)
17920 20		98 keV 16				R	1-(3/2)
18110 4	3/2-	46 keV <i>12</i>			N	T	%n=?; % α =? T=3/2
18720 [†] 20		87 keV <i>33</i>				R	1-5/2
1960×10^{1} † 15	(12/2+ 15/2+)					K	
	$(13/2^+,15/2^+)$	≈250 keV	F				dir o di 311 o
19820 <i>40</i> 20140 <i>20</i>	3/2	550 keV 50		J		R	$\%IT=?; \%^3H=?$
	11/2-	31 keV 5	_			R	T=1/2
2020×10^{1} † 15	$(13/2^+, 15/2^+)$	≈250 keV	F	_			are a agree
20390 50	5/2,7/2-	660 keV 70		J			%IT=?; % ³ H=?
20580 50	1/2	570 keV 80		J		D	$\%IT=?; \%^3H=?$
20700 20	(9/2 ⁻)	≤20 keV				R	T=(3/2) %IT=?; % ³ H=?
21050 <i>50</i>	3/2	470 keV 60	_	J			%11=!; % n=!
21200 [†]	$(13/2^+, 15/2^+)$	7501.37	F				am o a 311 o a c
$2170 \times 10^{1} 10$	5/2 ⁺	≈750 keV	H				%IT=?; $\%$ 3He=?; $\%\alpha$ =?
$2210 \times 10^{1} 10$	7/2-	≈750 keV	F H	1			%IT=?; %n=?; % 3 He=?; % α =?
$2250 \times 10^{1} \ 20$	$3/2^{(-)}$	≈1000 keV					%IT=?; %³He=?
23×10^3	1./2+	≈6000 keV				R	%IT=?; %n=?
23.0×10^3	1/2+	≈400 keV	H	i			$%IT=?; %^{3}He=?$

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁷O Levels (continued)

E(level)	XREF	Co	omments
22500		CIT 2 C 311 2	

^{23500 %}IT=?; %³He=? 24400 %IT=?; %³He=?

γ (17O)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	Comments
870.73	1/2+	870.71 <i>12</i>	100	$0.0 5/2^+$	[E2]	B(E2)(W.u.)=2.39 3
3055.36	$1/2^{-}$	2184.48 20	100	870.73 1/2+	[E1]	B(E1)(W.u.)=0.0012 +8-6
3842.8	5/2-	3842.3 <i>4</i>	100	$0.0 5/2^+$	[E1]	B(E1)(W.u.)>0.001
4553.8	$3/2^{-}$	3682.7 <i>16</i>		870.73 1/2+		
		4553.1 <i>16</i>		$0.0 5/2^+$		
11078.7	$1/2^{-}$	10204.6 9	100	870.73 1/2+	[E1]	B(E1)(W.u.)=0.021 6

Adopted Levels, Gammas 1993Ti07

Level Scheme

Intensities: Relative photon branching from each level

 $^{^{\}dagger}$ Decay mode not specified.