

DeepFake Detection

Presented by:

Neha Kantheti CS22B1081 Sri Manaswini Velide CS22B2O3O Bhargavi Antham ME22B2O35 Under the guidance of Dr. Umarani Jayaraman Dept. of CSE, IIITDM Kancheepuram

Overview

01
Dataset Introduction

02Data Imbalance

O3
Preprocessing and
Data Handling

04
Model Architectures

05
Training and Testing

06 Results

07Conclusion

Objectives

 To develop deep learning models that accurately detect deepfake videos by noticing the subtle inconsistencies between frames.

Challenges

- Deepfake datasets consist of thousands of video frames with subtle manipulations, requiring high-quality preprocessing and frame selection.
- Training ViT, ResNet+LSTM, and Xception models on video data requires significant GPU resources and memory.

Dataset Introduction

Dataset Used – Celeb-DF v2

Data Handling:

- Celeb-DF v2 (Celeb-Deepfake Dataset)
- Contains real and deepfake videos of celebrities
- Real: ~590 videos + Youtube Real ~ 300 | Deepfake: ~5639 videos
- Format: .mp4 videos with variable lengths
- Purpose: Real-world challenging deepfake detection

Dataset Imbalance

Observations:

Real: ~890 videos (590 + 300)

Fake: ~5639 videos

Imbalance ratio: 1:~6.33

Challenges: Biased learning, high false positives/negatives

Handling the Dataset

We've tried different data handling techniques

- Class Weights (1:6.33)
- UnderSampling

Data Preprocessing

- Loads sampled frames from videos.
- Applies transform (resize, center crop, normalization).
- Converts to tensor for fitting into the model.

Models Used

- Resnet + LSTM
- Vision Transformers
- XceptionNet

Model Architecture - Model 1

1. CNN (ResNet) for Feature Extraction

- A pre-trained ResNet18 model is used.
- It extracts spatial features from individual video frames.
- The final fully connected (fc) layer is removed to obtain only feature vectors.

2. LSTM for Temporal Modeling

- An LSTM (Long Short-Term Memory) layer takes in the sequence of frame features.
- Captures temporal dependencies across video frames.
- The final output of LSTM is passed through a fully connected layer to classify the video.

Training and Testing (Resnet + LSTM)

Results(ResNet + LSTM)

Accuracy: 0.4	867 precision	recall	f1-score	support
Real	0.49	0.56	0.52	75
Fake	0.48	0.41	0.45	75
accuracy macro avg	0.49	0.49	0.49 0.48	150 150
weighted avg	0.49	0.49	0.48	150
Confusion Mat [[42 33] [44 31]]	rix:			

Model Architecture - Model 2

1. Vision Transformer (ViT) Backbone

- Uses a pretrained ViT model (like vit_base_patch16_224 from the timm library).
- The model takes in images (video frames) and treats them as a sequence of patches.
- Unlike CNNs, ViT models learn global dependencies across the image using selfattention mechanisms.

2. Classification Head

- The transformer outputs are pooled (usually from the [CLS] token).
- A linear classification head maps it to binary classes: Real or Fake.

Training and Testing (ViT)

Results(Vision Transformer)

Evaluating Model...

Metrics:

Precision: 0.8333

Recall: 0.8500

F1: 0.8416

Auc: 0.8313

Accuracy: 0.7788

Model Architecture - Model 3

- Loads pretrained Xception on ImageNet.
- num_classes=2 modifies the final layer to binary classification (Real vs Fake).
- Input size is 299x299, which matches transforms. Resize() in the dataset.

Training and Testing (XceptionNet)

Results(XceptionNet)

382/382 47s 117ms/step			Confusion Matrix					
	precision	recall -	f1-score	support		Comusic	JII Matrix	
D1	0.00	0.40	0.50	4477				- 10000
Real	0.96	0.40	0.56	1173				
Fake	0.94	1.00	0.97	11035				0000
					0 -	- 76	1098	- 8000
accuracy			0.94	12208				
macro avg	0.95	0.70	0.76	12208				6000
weighted avg	0.94	0.94	0.93	12208	a			- 6000
					Actual			
AUC-ROC: 0.85	675887502023	13			AC			4000
F1 Score: 0.9	680112487916	337						- 4000
						722	10202	
					1	732	10302	2000
								- 2000
eer = comp	oute_eer(y_tr	ue, y pred)					
	R Score : ",							
	-					Ó	, 1	
						_		
EER Score :	0.3026964888	514457			Predicted			

Comparision

Metric	ResNet-18	Vision Transformer	XceptionNet	
Accuracy	48.67%	77.88%	94.00%	
Precision	48.44%	83.33%	94.00%	
Recall	41.33%	85%	100.00%	
F1 Score	44.60%	84.16%	97.00%	
AUC	0.4933	0.8312	0.857	
EER	N/A	N/A	0.3027	

Conclusion

- This project evaluated three deep learning-based approaches for deepfake detection.
- The Xception model provided the most consistent results, followed by the Vision Transformer. ResNet18 with LSTM showed the challenges of temporal modeling with limited data.
- Future improvements could leverage advanced temporal networks and multimodal inputs to enhance performance further.

Thank you