²²Na+α/p 共振散射的实验研究

王 友 宝 中国原子能科学研究院

创新群体年度进展汇报 2012年12月 北京

内容

- 科学意义
- 厚靶实验方法简介
- CRIB 实验
- 初步结果
- 讨论

Orgueuil meteorites and Ne-E problem

In 1972, Black found that in Orgueuil meteorites the abundance ratio of ²⁰Ne/²²Ne is less than 1.5, much lower than that of 9.8 on earth, this is the so-called **Ne-Extraordinary problem**. Geoch. Cosmochim. Acta V36, 347(1972)

²²Na production somewhere

The relatively short half-life and the 1.275 MeV γ -ray make the ²²Na a possibly sensitive probe for the diagnosis of nearby Nova outbursts from the Sun.

Gamma-ray production in Novae

- Clayton & Hoyle Ap. J. 494 (1974)
 - direct observation of γ -rays in novae ejecta

Nucleus	τ	Emission	Nova type
13 N	862 s	511 keV	CO ONe
¹⁸ F	158 m	511 keV	CO ONe
⁷ Be	77 d	478 keV	СО
²² Na	3.75 yr	1275 keV	QNe
²⁶ Al	1.0x10 ⁶ yr	1809 keV	ONe

 Intensity of an observed γ-ray flux would provide a strong constraint on novae modelling.

INTEGRAL: launched Oct '02

International Gamma-Ray Astrophysics Laboratory

European Space Agency http://www.esa.int/science/integral

Milky Way seen by ²⁶Al γ-ray at satellite observatory

total of about 3 solar masses of ²⁶Al in our galaxy

²²Na γ-ray observation

COMPTEL aboard CGRO observed five nearby Ne-type novae

 22 Na: only an upper limit of 3.7×10⁻⁸ M_☉ of ejected 22 Na by any nova in the Galactic disk.

CGRO (NASA), since 1991

What happened to the ²²Na?

Classic Nova

Thermonuclear outburst takes place on the surface of a white dwarf component in a close binary system

银河系每年粗略估计有20至60颗新星 出现的经验,估计出现率为每年40颗

Main nuclear paths in the synthesis of ²²Na

Synthesis of ²²Na in ONe novae

- 20 Ne(p, γ) 21 Na(p, γ) 22 Mg(β +) 22 Na or
- ${}^{20}\text{Ne}(p,\gamma){}^{21}\text{Na}(\beta+){}^{21}\text{Ne}(p,\gamma){}^{22}\text{Na}$

Four reactions that control the synthesis of ²²Na:

²⁰Ne(p,γ)²¹Na ²¹Ne(p,γ)²²Na ²¹Na(p,γ)²²Mg ²²Na(p,γ)²³Mg

José et al., APJ, 520:347-360(1999)

NP1012-AVF11 Dec., 2010 RIKEN 8th NP-PAC meeting

Spokesperson: Youbao Wang

Study of resonant elastic/inelastic scattering of 22 Na+p relevant to the astrophysical 22 Na(p, γ) 23 Mg reaction

- S. J. Jin¹*, Y. B. Wang¹, J. Su¹, S. Q. Yan¹, Y. J. Li¹, Z. H. Li¹, B. Guo¹, G. Lian¹,
- S. Zeng¹, X. X. Bai¹, W. P. Liu¹, S. Kubono², H. Yamaguchi², D. Kahl², J. Hu²,
- H. S. Jung³, J. Y. Moon³, T. Terenishi⁴, H. W. Wang⁵, H. Ishiyama⁶, H. Iwasa⁷, H. Komatsubara⁸

¹China Institute of Atomic Energy, Beijing 102413, China

²Center for Nuclear Studay(CNS), University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0918, Japan

³Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea

⁴Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan

⁵Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

⁶High Energy Accelerator Research Organization(KEK), 1-1 Oho, Tsukuba, Ibaraki 319-1195, Japan

⁷Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan

⁸Department of Physics, University of Tsukuba, Tsukuba 305-8571, Japan

Nearly 30 energy levels are missing up to 9.7MeV comparing with ²³Na

Introduction of TTIK method

- General introduction
- Our previous TTIK works
- CRIB experiment

Thick-target method for A+p in inverse kinematics

Thick proton target

Energy loss of the beam

Scanning $d\sigma/d\Omega(E)$ automatically

Without changing the beam energy before the target

Proton yield $\rightarrow d\sigma/d\Omega$

$$\frac{dN}{dE} \propto \frac{d\sigma}{d\Omega} \cdot \frac{dx}{dE} \cdot d\Omega$$
Counts per energy-bin Target-thickness per energy-bin

Excitation function $d\sigma/d\Omega(E)$

Interference pattern of potential & resonance scattering

Beam-time allocation Wang AVF former Wa Mat **RARF** N/A (RIBF operation) RRC facility part RILAC+ Kubov (up to RRC) Koshimizu RILAC Kuboki Morita Asai Abe + Izumi (7h+6h) Wada (1.5d) Abe +Izumi (3h+6h) Sekiguchi (5.5d) Matsuo (1.5d) Kuboki (3d) Koshimizu (4d) Morita [RILAC-GARIS_e4] **IAVF-RRC-E5B1** [AVF-RRC-RIPS] [AVF-RRC-RIPS] [AVF-RRC-E5B] MS - [RILAC] [IRC room] **IRILAC-GARIS** e31 12C @135 A MeV 22Ne@ 110A MeV 87Rb @ 66 A MeV 40Ar@ 95A MeV Xe @ 2A MeV Pol.-d @ 300A MeV 70Zn @ 5.5A MeV 86Kr @ ?A MeV (1 pnA) (1 pnA) (1 pnA) (360pnA) (1 pnA) (~1 pnA) (10pnA) (max pnA) Kuboyama (2d) Wang (11d) =conditional= Asai (9d) [RILAC-RRC-E3A] [CRIB] [RILAC-GARIS_e3] 50Ti @ 4.68A MeV 86Kr @ 36A MeV 22Ne @8.2 A MeV (1 pnA) (300 pnA) (> 1,000 pnA) 月 March / 28 29 2 5 9 12 13 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 6 8 11 14 24 25 4 Tue Wed Fri Wed Mon Tue Wed Thu Mon Thu Wed Thu Fri Mon Tue Wed Thu 180 acc. (5d) 180 acc. (5d) s [MS] SAMURAI AVF inj. Sekiguch @294A MeV @230A MeV **RIBF** RILAC2 inj. N/A (construction) stoppa new facility N/A (power restriction) (with SRC) RILAC inj. Wang AVF former **RARF** N/A (RIBF operation) RRC ge N/A (construction) facility part RILAC+ (up to RRC) RILAC Morita

Beam time: Feb. 28 – Mar.10, 2012

CRIB in RIBF of RIKEN

- CRIB is in the "old" building, connected to the AVF cyclotron

- E7 experimental hall at Nishina center

CRIB facility at **CNS**

²²Na beam production conditions

Primary beam	22 Ne ⁷⁺
Energy	6.1 MeV/A
Intensity	500 enA
Production reaction	22 Ne(p, n) 22 Na
Production target	¹ H gas, 1.15 mg/cm ² (LN ₂ -cooled, 400 Torr, 90K, 80 mm in length

 22 Na: 37.1 MeV (in gas) 2.5 \times 10⁵ pps (on target) **Gas target**

Length: 300 mm

Windows: 2.5 μm Havar (front),

26.5 μ m Mylar (back).

Silicon Telescopes

DSSSD+SSD

50×50 mm²

²²Na RIB production

At F3, with ±50 kV of Wien Filter

Beam size on target position by extrapolation

Light recoils from ²²Na+p

Proton spectrum from ²²Na(p,p) and background

Data Analysis

Kinematics reconstruction on an event by event basis.

Beam profile by PPACs (Energy and trajectory)

Proton energy and scattering angle from ∆E-E telescope

$$E_{p,\alpha} = \frac{m_{22_{Na}} \times m_{p,\alpha}}{m_{1_{H}}(m_{22_{Na}} + m_{1_{H}})} \left(\cos \theta_{lab} + \sqrt{\gamma^{-2} - \sin^{2} \theta_{lab}}\right)^{2} E_{cm}$$

where

$$\gamma = \sqrt{\frac{m_{^{22}Na} \times m_{p,\alpha}}{m_{^{1}H} \times m_{^{22}Na,^{^{19}Ne}}} \times \frac{E_{cm}}{E_{cm} + Q_{p,\alpha}}}$$

Proton spectrum from ²²Na(p,p) , before(A) and after(B) kinematic reconstruction, respectively

Alpha spectrum from 22 Na(α , α) , before(A) and after(B) kinematic reconstruction, respectively

Differential Cross Section

$$\frac{d\sigma}{d\Omega}(E_{cm}, \Delta\Omega) = \frac{N(E_{cm}, \Delta\Omega)}{N_{beam} \times n_{eff}(E_{cm}) \times \Delta\Omega}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{c.m.} = \frac{1}{4\cos\theta_0} \left(\frac{d\sigma}{d\Omega}\right)_{lab}$$

Excitation function of ²²Na(p,p) from ST1

Multi-level R- matrix analysis

$$R_{cc} = \sum_{\lambda} \frac{\gamma_{\lambda c}^2}{E_{\lambda} - E}, \quad \Gamma_{\lambda c} = 2P_c(E)\gamma_{\lambda c}^2$$

3 narrow resonances observed with deduced E_R , J^π , and Γ_p

- Status of other experimental measurements
- Level Systematics

²¹Na(p, γ)²²Mg reaction measurement at **DRAGON**

$$Y = \frac{\lambda^2}{2} \frac{M+m}{m} \omega \gamma \left(\frac{dE}{dx}\right)^{-1}$$

Decay scheme of ²³Mg

$$\frac{7580}{^{22}Na+p}$$

Direct measurement:

Needs precise branching ratios

Needs precise detection efficiency

Needs detailed knowledge of stopping power

Faces huge amounts of background

Measurement done usually around the known resonances

Decisive but not exclusive!

Direct measurements of 22 Na(p, γ) 23 Mg reaction

E _R (keV)	ωγ _{previous} (meV)	ωγ _{present} (meV)	Ratio present : previous
198	≤ 4*	≤ 0.50	0.1
211	$1.8 \pm 0.7_{1}$	$5.5^{+1.6}_{-0.9}$	(3.1)
232	2.2±1.0*	≤ 0.65	0.3
287	$15.8 \pm 3.4_{1}$	38 ± 8	2.4
453	68 ± 202	161±21	2.4
608	235 ± 332	573 ⁺¹⁰⁰ ₋₇₂	2.4

²²Na consumption increases by factors of 2 to 3 A.L.Sallaska *et al.*, PRL105,152501(2010)

Earlier similar studies:

210

220

F. Stegmüller *et al.*, NPA**601**, 168(1996)

230

240

S. Seuthe et al., NPA**514**, 471(1990).

8360(3 ⁺ -7 ⁺) 8329(5,7) 8302(5,7) 8261	8341(1 ⁺ -9 ⁺). 8287(5 ⁺ -13 ⁺).
8178	8193.—
8106 8061 7991 7980 (1-7 ⁺)	8074 8061 < 7 [†] 8017————————————————————————————————————
7891	7857(5-11) ⁺ , N
7750 (5,7 ⁺) 7724 (1,3,5)	7783 (3 ⁺ -9 ⁺)
(5.7 ⁺)	7643(3,5) ⁺ / (3) ⁺ (7622(1-9) ⁺ / (9) ⁺ 7583
²³ Na(exp.)	²³ Mg(exp.)

Known ²³Mg states above S_p=7578 keV

Note: spins are multiplied by 2 just for clarity!

²¹Na(p, γ) and ²¹Na(α ,p) (b,c,d) $\lambda_{\alpha p} = \lambda_{\beta}$ using different (α ,p) rates 10⁸ (b) (d) ²³Mg ²⁴Mg ²²Mg 10⁶ X-ray bursts Density [g/cm³] optoble ²¹Na ²³Na ²²Na ²¹Na(α,p) Novae ²¹Ne ²⁰Ne ²²Ne 10² $^{21}\text{Na}(\beta^+)$ 21 Na(p, γ) (a,p) (p,γ) 10⁰ (p,α) 0.2 0.1 0.5 0.05 1 2 Temperature [GK]

 $X_{4He} = 0.28$, $X_{1H} = 0.7$ and 0.02 of heavier isotopes

- ◆ The excitation functions of ²²Na+p and ²²Na+α resonant scattering were measured with a highquality ²²Na radioactive beam.
- Resonant structures were observed from the ex. func. of 22 Na+p/ α resonant scattering.
- Detailed analysis is in progress.

Thank you!

$$\cos \theta = \frac{\vec{V_b} \cdot \vec{V_p}}{|\vec{V_b}||\vec{V_p}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

x

 $ec{V}_{p_{-}0}$: proton vector, according to the origin

 $ec{V}_b$: beam vector, according to the origin

 $ec{V}_p$: proton vector, according to $ec{V}_b$

$$\vec{V}_{p_0} = (x_0, y_0, z_0)$$

$$\vec{V}_b = (x_1, y_1, z_1) \qquad \qquad Z$$

Continue the calculation until the calculated proton energy E_{p_cal} and the detected proton energy E_{p_det} agree with the relation $|\mathsf{E}_{p_cal}\text{-}\mathsf{E}_{p_det}|{<}0.001$, the reaction point, the center-of-mass energy $\mathsf{E}_{c.m.}$ are found for the event being analyzed .

X-RAY BURSTERS & X-RAY PULSARS

semi-detached binary system:

H(1)

n (0)

Neutron star + less evolved star

$$T \sim 10^9 \text{ K}$$

 $\rho \sim 10^6 \text{ g cm}^{-3}$

 (α,p) and (p,γ) reactions on proton-rich nuclei

nucleosynthesis up to A ~ 80-100 mass region

burst ignition

Relevant Publication of local TTIK works

- 1. Angular distribution of ⁶He+p elastic scattering
 LIU Xin, Wang You-Bao et al., Chin. Phys. C36, 716-720(2012)
- 2. Excited states in ¹⁸Ne studied via ¹⁷F+p
 JIN Sun-Jun, WANG You-Bao et al.,
 Chin. Phys. Lett. Vol. 27, 032102(2010)1-4
- 3. Elastic resonance scattering of ¹³N+p and ¹⁷F+p Y.B. Wang, B.X. Wang et al., Nucl. Phys. A834, 100c-102c(2010)
- **4. Simulation and analysis of** ¹³N+p elastic resonance scattering WANG You-Bao, QIN Xing et al., Chin. Phys. C33, 181-186(2009)
- 5. ¹³N+p elastic resonance scattering via a thick-target method Y.B. Wang, B.X. Wang et al., Phys. Rev. C77, 044304(2008)
- 6. Levels in ¹³N examined by ¹²C+p elastic resonance scattering with thick target QIN Xing, WANG You-Bao et al., Chin. Phys. C32, 957-961(2008)
- 7. A Setup for resonance scattering reactions with thick target WANG Youbao, WANG Baoxiang et al., HEP&NP, Vol.30(S2), 202 (2006). (In Chinese)

²²Na abundance v.s. ²²Na(p,γ)²³Mg reaction

Significant nuclear uncertainties affect this rate (a factor ranging from 3 to 6 for T8>1), which turns out to be crucial in deriving ranges of ²²Na production during nova outbursts.

Hix et al. Nucl. Phys. A718 (2003) 620c-622c

Narrow resonances

$$\langle \sigma v \rangle_{12} = \left(\frac{2\pi}{\mu_{12}kT}\right)^{3/2} \hbar^2 (\omega \gamma)_R \exp\left(-\frac{E_R}{kT}\right)$$

rate entirely determined by "resonance strength" ωγ and energy of the resonance E_R

resonance strength

(= integrated cross section over resonant region)

$$\omega \gamma = \frac{2J+1}{(2J_1+1)(2J_T+1)} \frac{\Gamma_1 \Gamma_2}{\Gamma} \qquad (\Gamma_i \text{ values at resonant energies})$$

experimental info needed

- \triangleright partial widths Γ_i
- > spin J
- ➤ energy E_R