DNA160609 spike only contamination

Wes Horton July 14, 2016

Overview

In the control batch DNA160609LC, samples 1-20 contain only spike-ins and primers (no DNA). During our pipeline, we run a spike removal tool that searches for a 9-bp barcode within fastq reads and removes those reads. After running this program on the spike-only samples, we still have reads in these samples.

We need to find out what proportion of total reads are not spikes, as well as what the source of these reads are. One likely cause is from the p14 DNA that contaminated the batch. They could also be spikes that were not removed in the spike removal step.

Set up

We need the PEAR'ed fastq files for samples 1-20. These will act as the baseline counts for each sample. The despiked fastq files produced by the spike removal tool will be our comparison counts. Lastly, we'll need the exported alignment files in order to determine p14 contamination.

Analysis

Using these files, we'll determine

- 1. The proportion of reads that aren't spikes
- 2. The proportion of non-spiked reads that are from p14
- 3. The proportion of reads that aren't spikes, but also are not p14 (unaccounted reads)

```
[1] 0.8684770 0.7461521 0.6332091 0.5951745 0.5924477 0.6092125 0.5999344
   [8] 0.4702209 0.5948057 0.5691646 0.5466388 0.5635463 0.6388492 0.7837993
## [15] 0.6802170 0.7016472 0.7637548 0.6541527 0.6115455 0.5104863
     Min. 1st Qu.
                   Median
                              Mean 3rd Qu.
                                              Max.
   0.4702 0.5866
                   0.6104 0.6367
##
                                  0.6856
                                           0.8685
    [1] 3.7745345 3.4677598 0.4198613 0.4754601 0.4088307 0.7607399 1.0926421
##
   [8] 0.7529090 2.1007340 1.9390582 1.6510785 1.1407511 1.3444693 1.0539523
## [15] 0.9531374 0.4573474 0.4344194 0.8137432 1.1053425
      Min. 1st Qu.
##
                   Median
                              Mean 3rd Qu.
                                              Max.
   0.4088 0.6142
                   1.0540
                           1.2710 1.4980
```

Only a small percentage of the total reads are not the spike-ins (less than 1%). Of these non-spike reads, a small amount are accounted for by the p14 contamination, with the rest of unknown origin.

3.7750

```
[1] 0.8356960 0.7202773 0.6305505 0.5923447 0.5900256 0.6045780 0.5933793
  [8] 0.4666806 0.5823104 0.5581281 0.5376134 0.5571177 0.6302600 0.7755384
## [15] 0.6737336 0.6984382 0.6513109 0.6065691 0.5048437
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4667 0.5702 0.6046 0.6215 0.6625 0.8357
```

Removing p14 contamination doesn't significantly change the proportion of contaminated reads. Are there any primer combinations that stand out as being overrepresented?

##		sample	total.count	Best V hit	Best	J hit	N	proportion
##	1:	1	5531	V13-3		J2-4	246	4.447659
##	2:	1	5531	V20		J2-1	231	4.176460
##	3:	1	5531	V13-1		J1-6	93	1.681432
##	4:	1	5531	V24		J1-6	84	1.518713
##	5:	1	5531	V13-2		J2-1	83	1.500633
##	6:	2	8311	V13-3		J2-4	321	3.862351
##	7:	2	8311	V20		J2-1	256	3.080255
##	8:	2	8311	V12-1		J1-2	136	1.636386
##	9:	2	8311	V13-1		J2-4	122	1.467934
##	10:	2	8311	V13-3		J2-5		1.455902
##	11:	3	4968	V13-1		J2-1	76	1.529791
##	12:	3	4968	V13-1		J2-5	75	1.509662
##	13:	3	4968	V20		J2-1	75	1.509662
##	14:	3	4968	V13-1		J2-4	75	1.509662
##	15:	3	4968	V1		J1-2	68	1.368760
##	16:	4	5702	V1		J1-2		1.929148
##	17:	4	5702	V13-3		J2-4		1.858997
##	18:	4	5702	V12-1		J1-2	98	1.718695
##	19:	4	5702	V13-1		J2-1	91	1.595931
	20:	4	5702	V13-1		J2-5	85	1.490705
	21:	5	7844	V20		J2-1		1.619072
	22:	5	7844	V12-1		J1-2		1.529832
	23:	5	7844	V1		J1-2		1.415094
	24:	5	7844	V13-1		J2-1	103	1.313106
	25:	5	7844	V13-2		J2-2	99	1.262111
	26:	6	6250	V12-1		J1-2		1.616000
	27:	6	6250	V20		J2-1	94	1.504000
	28:	6	6250	V13-1		J2-3	92	1.472000
	29:	6	6250	V13-1		J1-6	92	1.472000
	30:	6	6250	V13-3		J2-4	89	1.424000
	31:	7	7837	V13-3		J2-4		2.169197
	32:	7	7837	V12-1		J1-2		1.646038
	33: 34:	7 7	7837	V13-1		J2-4		1.531198
##	35:	7	7837 7837	V1 V20		J1-2 J2-1	114	1.480158 1.454638
	36:	8	7887	V20 V12-1		J2-1 J1-2		1.434636
	37:	8	7887	V12-1 V1		J1-2		1.559528
	38:	8	7887	V13-3		J2-4		1.539328
	39:	8	7887	V13 3		J2-3		1.458096
	40:	8	7887	V13 1 V13-1		J2-4		1.432737
	41:	9	6939	V13 1		J2-4		3.112840
	42:	9	6939	V13-3 V1		J1-2		1.974348
	43:	9	6939	V13-1		J2-4		1.830235
	44:	9	6939	V13-1		J2-3		1.642888
	45:	9	6939	V13 1		J2-1		1.642888
	46:	10	5617	V13-3		J2-4		3.257967
	47:	10	5617	V13-1		J2-1	84	1.495460
		10	0017	V 10 1		J_ 1	J 1	1.100100

##	48:	10	5617	V	13-1		J2-4	82	1.459854
##	49:	10	5617	V	13-1		J1-6	80	1.424248
##	50:	10	5617		V24		J1-6	77	1.370839
##	51:	11	9475	V	13-3		J2-4	248	2.617414
##	52:	11	9475	V	12-1		J1-2	163	1.720317
##	53:	11	9475	V	13-1		J2-5	150	1.583113
##	54:	11	9475		V1		J1-2	139	1.467018
##	55:	11	9475	V	13-1		J2-1	134	1.414248
##	56:	12	5095	V	13-3		J2-4	144	2.826300
##	57:	12	5095	V	12-1		J1-2	88	1.727184
##	58:	12	5095	V	13-1		J2-4	80	1.570167
##	59:	12	5095	V	13-1		J2-1	76	1.491658
##	60:	12	5095	V	13-2		J1-6	74	1.452404
##	61:	13	4434		V20		J2-1	169	3.811457
##	62:	13	4434	V	13-3		J2-4	82	1.849346
	63:	13	4434		13-1		J2-5	74	1.668922
	64:	13	4434		V1		J1-2	72	1.623816
##	65:	13	4434	V	13-1		J2-4	69	1.556157
	66:	14	3520		13-3		J2-4	93	2.642045
	67:	14	3520		V20		J2-1	77	2.187500
	68:	14	3520	V	12-1		J1-2	67	1.903409
	69:	14	3520		13-1		J2-1	58	1.647727
	70:	14	3520		13-1		J2-5	49	1.392045
	71:	15	5723		13-3		J2-4		2.149222
	72:	15	5723		12-1		J1-2	97	1.694915
	73:	15	5723	•	V20		J2-1	96	1.677442
	74:	15	5723	V.	13-1		J2-1	82	1.432815
	75:	15	5723		13-1		J2-3	81	1.415342
	76:	16	4628	•	V1		J1-2	82	1.771824
	77:	16	4628		V20		J2-1	79	1.707001
	78:	16	4628	V.	13-1		J2-4	77	1.663786
	79:	16	4628		12-1		J1-2	63	1.361279
	80:	16	4628		13-3		J2-4	63	1.361279
	81:	18	5479		13-3		J2-4	84	1.533126
	82:	18	5479		12-1		J1-2	84	1.533126
##	83:	18	5479	۷.	V20		J2-1	80	1.460120
	84:	18	5479	V.	13-1		J2-4	79	1.441869
	85:	18	5479	۷.	V1		J1-2	77	1.405366
	86:	19	3968	W.	13-3		J2-4	73	1.839718
	87:	19	3968		13-1		J2-1	69	1.738911
	88:	19	3968	۷.	V1		J1-2	69	1.738911
	89:	19	3968		V1 V20		J2-1	54	1.360887
	90:	19	3968	W	13-1		J1-6	53	1.335685
	91:	20	5307		13-1 13-3		J2-4		2.430752
	92:	20	5307				J2-4	96	1.808932
	93:	20	5307	V .	13-1 V1			96 87	1.639344
				W.	۷1 13-1		J1-2		
	94:	20	5307				J2-1	85 70	1.601658
	95:	20	5307		12-1	Do-+	J1-2	79 M	1.488600
##		sample	total.count	rest V	nıt	Best	J nit	N	proportion

None of the primer combinations have particularly high proportions. One thing of note, however, is that V13-1, V13-2, and V13-3 seem to appear often. We can group by V's instead of V/J and see if any particular V's are messing things up.

##		sample	total.count	Best	V hit	N	proportion
##	1:	1	5531		V13-3	591	10.685229
##	2:	1	5531		V13-1	533	9.636594
##	3:	1	5531		V24	482	8.714518
##	4:	1	5531		V13-2	438	7.919002
##	5:	1	5531		V1	375	6.779967
##	6:	2	8311		V13-1	871	10.480087
##	7:	2	8311		V13-3	831	9.998797
##	8:	2	8311		V24	725	8.723379
##	9:	2	8311		V13-2	652	7.845025
##	10:	2	8311		V1	610	7.339670
##	11:	3	4968		V13-1	543	10.929952
##	12:	3	4968		V24	443	8.917069
##	13:	3	4968		V13-2	432	8.695652
##	14:	3	4968		V1	408	8.212560
##	15:	3	4968		V13-3	351	7.065217
##	16:	4	5702		V13-1	640	11.224132
##	17:	4	5702		V24	508	8.909155
##	18:	4	5702		V1	499	8.751315
##	19:	4	5702		V13-2	470	8.242722
##	20:	4	5702		V13-3	427	7.488600
##	21:	5	7844		V13-1	788	10.045895
##	22:	5	7844		V24	673	8.579806
##	23:	5	7844		V13-2	641	8.171851
##	24:	5	7844		V1	635	8.095360
##	25:	5	7844		V12-1	534	6.807751
##	26:	6	6250		V13-1	672	10.752000
##	27:	6	6250		V24	590	9.440000
##	28:	6	6250		V1	516	8.256000
##	29:	6	6250		V13-2	497	7.952000
##	30:	6	6250		V13-3	409	6.544000
##	31:	7	7837		V13-1	836	10.667347
##	32:	7	7837		V1	664	8.472630
##	33:	7	7837		V24	638	8.140870
##	34:	7	7837		V13-3	621	7.923950
##	35:	7	7837		V13-2	608	7.758071
##	36:	8	7887		V13-1	877	11.119564
##	37:	8	7887		V13-2	661	8.380880
##	38:	8	7887		V24	659	8.355522
##	39:	8	7887		V1	643	8.152656
##	40:	8	7887		V13-3	537	6.808672
##	41:	9	6939		V13-1	887	12.782822
	42:	9	6939		V1	682	9.828506
##	43:	9	6939		V13-3	674	9.713215
	44:	9	6939		V13-2	595	8.574723
##	45:	9	6939		V24	557	8.027093
##	46:	10	5617		V13-1	629	11.198148
##	47:	10	5617		V13-3	529	9.417839
##	48:	10	5617		V24	496	8.830336
	49:	10	5617		V13-2	479	8.527684
##	50:	10	5617		V1	458	8.153819
##	51:	11	9475		V13-1	1061	11.197889
##	52:	11	9475		V13-3	823	8.686016
##	53:	11	9475		V13-2	812	8.569921

```
## 54:
                                                8.284960
            11
                       9475
                                     V1
                                         785
## 55:
            11
                       9475
                                    V24
                                         773
                                                8.158311
## 56:
                                                11.717370
            12
                       5095
                                  V13-1
                                          597
## 57:
                                  V13-3
                                                9.362120
            12
                       5095
                                          477
## 58:
            12
                       5095
                                    V24
                                          439
                                                8.616290
## 59:
            12
                                  V13-2
                                          424
                                                8.321884
                       5095
## 60:
                       5095
                                          415
                                                8.145240
            12
                                     ۷1
## 61:
                                  V13-1
                                               11.524583
            13
                       4434
                                          511
## 62:
            13
                       4434
                                     ۷1
                                          412
                                                9.291836
## 63:
            13
                                  V13-2
                                          361
                                                8.141633
                       4434
## 64:
            13
                       4434
                                  V13-3
                                          354
                                                7.983762
## 65:
                                    V24
            13
                       4434
                                          345
                                                7.780785
## 66:
                                               11.448864
            14
                       3520
                                  V13-1
                                          403
## 67:
            14
                       3520
                                    V24
                                          308
                                                8.750000
## 68:
            14
                       3520
                                  V13-2
                                          307
                                                8.721591
                                  V13-3
## 69:
            14
                       3520
                                          305
                                                8.664773
## 70:
            14
                                     ۷1
                                          287
                                                8.153409
                       3520
## 71:
            15
                       5723
                                  V13-1
                                          636
                                               11.113053
## 72:
            15
                       5723
                                  V13-2
                                          493
                                                8.614363
## 73:
                                    V24
            15
                       5723
                                          443
                                                7.740695
## 74:
            15
                       5723
                                  V13-3
                                          441
                                                7.705749
## 75:
            15
                       5723
                                     ۷1
                                          412
                                                7.199021
## 76:
                                               10.436474
                       4628
                                  V13-1
                                          483
            16
## 77:
            16
                       4628
                                    V24
                                          403
                                                8.707865
## 78:
                                                8.146067
            16
                       4628
                                     ۷1
                                          377
## 79:
            16
                       4628
                                  V13-2
                                          369
                                                7.973207
## 80:
            16
                       4628
                                  V12-1
                                          311
                                                6.719965
## 81:
            18
                       5479
                                  V13-1
                                          596
                                               10.877897
## 82:
            18
                       5479
                                     V1
                                          474
                                                8.651214
## 83:
                                    V24
                                                8.559956
            18
                       5479
                                          469
## 84:
            18
                       5479
                                  V13-2
                                          451
                                                8.231429
## 85:
            18
                       5479
                                  V13-3
                                          368
                                                6.716554
## 86:
                                  V13-1
            19
                       3968
                                          428
                                               10.786290
## 87:
            19
                       3968
                                     ۷1
                                          363
                                                9.148185
## 88:
            19
                       3968
                                  V13-2
                                          337
                                                8.492944
## 89:
            19
                       3968
                                    V24
                                          313
                                                7.888105
## 90:
            19
                       3968
                                  V13-3
                                          293
                                                7.384073
## 91:
            20
                       5307
                                  V13-1
                                          627
                                               11.814585
## 92:
                                  V13-3
            20
                       5307
                                          450
                                                8.479367
## 93:
            20
                                     ۷1
                                          447
                                                8.422838
                       5307
## 94:
            20
                       5307
                                    V24
                                          435
                                                8.196721
## 95:
            20
                       5307
                                  V13-2
                                          432
                                                8.140192
##
       sample total.count Best V hit
                                            N proportion
##
      Min. 1st Qu.
                     Median
                                 Mean 3rd Qu.
                                                   Max.
     41.70
##
            42.95
                       43.82
                                44.20
                                         44.98
                                                  48.93
##
      Best V hit N
## 1:
            V13-3 17
## 2:
            V13-1 19
## 3:
              V24 19
            V13-2 19
## 4:
## 5:
               V1 19
## 6:
            V12-1 2
```

The same 5 V's are almost always the top 5, and they generally make up about 43.8204509 percent of all of the reads. Is this the same in the spike count files?

```
## V4 N
## 1: V13-1 19
## 2: V1 19
## 3: V29 19
## 4: V24 19
## 5: V23 16
## 6: V13-2 3
```

The unique V's that are in the top 5 in at least one sample are not the same between the left-over reads and the spiked reads, although 3 of them are the same. In fact, V13-1, V1, and V24 are in the top 5 in all samples. Let's try and see if they're primer-dimers or some chimeric read caused by mis-amplification. Process:

- 1. For each entry in an alignment file, extract the V and J hits
- 2. Use V and J to extract appropriate 34-bp synthetic template from spike file
- 3. Divide synthetic template into 6 9-bp strings ([1:9], [5:14], [10:19], [15:24], [20:29], [25:34])
- 4. Search the fastq read of the alignment entry for these strings
- 5. Observe distribution of hits

```
\# Each entry in the align file has a V and J as well as a sequence.
# Can take the V and J identities and search for them in the spike file.
# Then take the spike sequence from the spike file.
# Split into a few substrings (first try strings of length 9, every 5)
# Use vcountPattern to check if they're there.
spikes <- read.table("~/Desktop/OHSU/tcr_spike/text_barcodesvj.txt", header = T, sep = ' ',</pre>
                       stringsAsFactors = F)
spikes.v122 \leftarrow spikes[spikes$V == "V12-1-2-",]
spikes.v122$V <- gsub("V12-1-2-", "V12-2", spikes.v122$V)
spikes$V <- gsub("V12-1-2-", "V12-1", spikes$V)
spikes$V <- gsub("-$", "", spikes$V)</pre>
test <- list()</pre>
for (i in 1:length(align.files)){
  curr.align <- suppressWarnings(fread(paste(align.dir, align.files[i], sep = ''), na.strings = c('', '</pre>
                       showProgress = F))
  curr.align$`Best V hit` <- gsub("TRB|\\*00", '', curr.align$`Best V hit`)</pre>
  curr.align$`Best J hit` <- gsub("TRB|\\*00", '', curr.align$`Best J hit`)</pre>
  index <- gsub(".*_S|_align.*", '', align.files[i])</pre>
  align.query.results <- NULL
  for (j in 1:length(curr.align$`Read(s) sequence`)){
    V <- curr.align$`Best V hit`[j]</pre>
    J <- curr.align$`Best J hit`[j]</pre>
    if (V %in% spikes$V && J %in% spikes$J){
      fastq.read <- curr.align$`Read(s) sequence`[j]</pre>
      query <- spikes[spikes$V == V & spikes$J == J, "SPIKE"]
      query <- unlist(strsplit(query, split = ''))</pre>
      sub.query <- c(paste(query[1:9], collapse = ''), paste(query[5:14], collapse = ''),</pre>
                      paste(query[10:19], collapse = ''), paste(query[15:24], collapse = ''),
                      paste(query[20:29], collapse = ''), paste(query[25:34], collapse = ''))
      query.results <- vector(mode = "numeric", length = 6)
      for (k in 1:length(sub.query)){
```

```
query.results[k] <- vcountPattern(sub.query[k], fastq.read)</pre>
      } # for k
      align.query.results <- rbind(align.query.results, query.results)
    } # if
  } # for j
  test[[i]] <- align.query.results</pre>
} # for i
# Now we have a list containing 19 data frames with nrow = number of alignments and ncol = 6 (one for e
# For each list, take the row sum and add it as a column
for (i in 1:length(test)){
  test[[i]] <- data.table(test[[i]])</pre>
  test[[i]]$sum <- apply(test[[i]], 1, sum)</pre>
}
results <- matrix(nrow = length(test), ncol = 9)
for (i in 1:length(test)){
  pass.4 <- length(test[[i]][test[[i]]$sum >= 4, `sum`])
  pass.3 <- length(test[[i]][test[[i]]$sum >= 3, `sum`])
  pass.2 <- length(test[[i]][test[[i]]$sum >= 2, `sum`])
  pass.1 <- length(test[[i]][test[[i]]$sum >= 1, `sum`])
  total <- length(test[[i]][,`sum`])</pre>
  proportion.4 <- round(pass.4 / total * 100, digits = 2)</pre>
  proportion.3 <- round(pass.3 / total * 100, digits = 2)</pre>
  proportion.2 <- round(pass.2 / total * 100, digits = 2)</pre>
  proportion.1 <- round(pass.1 / total * 100, digits = 2)</pre>
  new.row <- c(total, pass.4, proportion.4, pass.3, proportion.3, pass.2, proportion.2, pass.1, proport</pre>
  results[i,] <- new.row
colnames(results) <- c("total.reads", "Reads.4.hits", "Proportion.4", "Reads.3.hits",</pre>
                         "Proportion.3", "Reads.2.hits", "Proportion.2", "Reads.1.hit", "Proportion.1")
rownames(results) <- c(1:16, 18:20)
results
##
      total.reads Reads.4.hits Proportion.4 Reads.3.hits Proportion.3
## 1
              5507
                            1154
                                         20.96
                                                                    30.29
                                                        1668
## 2
              8278
                            1974
                                         23.85
                                                       2782
                                                                    33.61
## 3
              4955
                            1452
                                         29.30
                                                       2033
                                                                    41.03
## 4
              5680
                                         28.56
                                                                    41.07
                            1622
                                                        2333
## 5
              7831
                            2227
                                         28.44
                                                       3222
                                                                    41.14
## 6
              6235
                            1674
                                         26.85
                                                       2441
                                                                    39.15
## 7
              7809
                            2189
                                         28.03
                                                       3064
                                                                    39.24
## 8
              7867
                            2509
                                         31.89
                                                       3494
                                                                    44.41
## 9
              6908
                            1880
                                         27.21
                                                       2634
                                                                    38.13
## 10
              5604
                            1606
                                         28.66
                                                       2254
                                                                    40.22
## 11
                            2838
                                         30.03
                                                                    41.78
              9451
                                                       3949
## 12
              5080
                            1505
                                         29.63
                                                       2101
                                                                    41.36
## 13
              4412
                            1131
                                         25.63
                                                       1618
                                                                    36.67
                                         24.84
                                                       1227
                                                                    35.03
## 14
              3503
                            870
## 15
              5715
                            1609
                                         28.15
                                                       2261
                                                                    39.56
## 16
              4623
                            1278
                                         27.64
                                                                    39.33
                                                       1818
## 18
              5465
                                         28.18
                                                                    40.93
                            1540
                                                       2237
## 19
                                         30.64
                                                                    42.29
              3956
                            1212
                                                       1673
```

##	20	5296	1607	30.34	2254	42.56
##		${\tt Reads.2.hits}$	Proportion.2	Reads.1.hit	Proportion.1	
##	1	2239	40.66	2688	48.81	
##	2	3700	44.70	4442	53.66	
##	3	2644	53.36	3108	62.72	
##	4	3100	54.58	3707	65.26	
##	5	4201	53.65	4968	63.44	
##	6	3188	51.13	3779	60.61	
##	7	3999	51.21	4753	60.87	
##	8	4516	57.40	5307	67.46	
##	9	3466	50.17	4129	59.77	
##	10	2929	52.27	3445	61.47	
##	11	5075	53.70	6010	63.59	
##	12	2671	52.58	3109	61.20	
##	13	2113	47.89	2549	57.77	
##	14	1569	44.79	1885	53.81	
##	15	2967	51.92	3507	61.36	
##	16	2417	52.28	2892	62.56	
##	18	2860	52.33	3439	62.93	
##	19	2176	55.01	2554	64.56	
##	20	2959	55.87	3488	65.86	

Using this method, it looks like 50-60 percent of the reads are some version of spikes. One suggestion from this is to incorporate the secondary barcode from the spike file during our spike removal step. A spike sequence is is 34-bp long, the first 9 are a universal spike barcode, the last 9 are a different universal barcode, and the remaining 16 are unique identifiers for each individual spike.

Currently, we identify spikes for removal using the first 9-bp sequence only. We could potentially use both the first and the second 9-bp sequences to remove spikes. After implementing the new spike finding, we can compare the identified spikes between the two techniques.

```
[1] 3038 4248 2103 2582 3325 2654 3558 3307 3484 2487 4168 2400 2154 1906
  [15] 2552 1930 1894 2292 1709 2275
    [1] 50.96 47.06 38.39 39.60 38.84 39.59 41.36 37.73 44.09 40.52 39.78
  [12] 42.12 43.88 47.83 40.54 38.38 38.30 38.63 38.10
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
    0.1774 0.2332
                    0.2431
                            0.2631 0.2725
                                             0.4426
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
            0.5702
                    0.6046
                            0.6215
                                    0.6625
                                             0.8357
##
      Sample Proportion.Not.Spikes Proportion.Unaccounted
## 1
           1
                            0.4426%
                                                    0.4098%
           2
## 2
                            0.3512%
                                                    0.3253%
## 3
           3
                                                    0.2404%
                            0.2431%
## 4
           4
                            0.2357%
                                                    0.2329%
           5
## 5
                            0.2301%
                                                    0.2277%
## 6
           6
                            0.2412%
                                                    0.2365%
           7
## 7
                            0.2481%
                                                    0.2416%
## 8
           8
                            0.1774%
                                                    0.1739%
```

0.2623%

9

9

0.2498%

##	10	10	0.2307%	0.2196%
##	11	11	0.2174%	0.2084%
##	12	12	0.2374%	0.2309%
##	13	13	0.2803%	0.2717%
##	14	14	0.3749%	0.3666%
##	15	15	0.2758%	0.2693%
##	16	16	0.2693%	0.2661%
##	17	1	0.2505%	0.2477%
##	18	2	0.2362%	0.2313%
##	19	3	0.1945%	0.1889%

Now a very small amount of the data are not spikes or p14 (i.e. unaccounted for), but we still don't know where it comes from. I suggest that we BLAST these reads and try and see if they match to anything known.