Ⅲ. 빅데이터 모델링

02. 분석기법 적용

2.1 분석기법

-	KeyWord
회 귀 분 석	회귀분석, 선형성, 독립성, 등분산성, 비상관성, 정상성, 최소제곱법, 회귀계수, 결정계수, F-통계량
로 지 스 틱 회 귀 분 석	로지스틱회귀분석, 다중공선성
의 사 결 정 나 무	의사결정나무, 분류함수(분류규칙), 분리기준, 성장, 가지치기, 교차타당성, 카이제곱 통계량, 지니 지수, 엔트로피 지수, 순수도, CART, C4.5 & C5.0, CHAID, QUEST
인 공 신 명 망	인공신경망, 퍼셉트론, 활성함수, XOR문제, 다층퍼셉트론, 역전파알고리즘, 기울기소실, 활성화함수, 계단함수, 부호함수, 시그모이드, tanh함수, ReLU, Leaky ReLU, Softmax 함수
서 포 트 벡 터 머 신	SVM, 서포트벡터머신, 서포트벡터, 초평면, 슬랙변수, 커널트릭

KeyWord

연 관

성

분 석 연관성분석, 지지도, 신뢰도, 향상도

군 집 분

석

군집분석, 계층적군집, k-평균군집, 혼합평균군집, EM알고리즘, 자기조직화지도(SOM), 최단연결법, 최장연결법, 중심연결법, 평균연결법, 와드연결법, 유클리드, 맨하튼, 민코프스키, 표준화, 마할라노비스 거리, 단순일치계수, 자카드계수, 순위상관계수

1) 회귀분석

(1) 회귀 분석(Regression Analysis)

- 1개 이상의 독립변수가 종속변수에 미치는 영향을 추정
- 변수들 사이의 인과관계를 밝히고 모형을 적합하여 관심있는 변수를 예측/추론
- 변수: 수식에 따라서 변하는 값
 - 영향을 주는 변수(x)/영향을 받는 변수(y)
 - ㅇ 영향을 주는 변수 = 독립변수 = 설명변수 = 예측변수
 - ㅇ 영향을 받는 변수 = 종속변수 = 반응변수 = 결과변수
- 가정: 선형성 / 독립성 / 등분산성 / 비상관성 / 정상성
 - 단순모형: 선형성 검증 / 다중모형: 5개 가정 모두 검증
 - 선형성: 독립변수와 종속변수의 선형관계
 - 독립성: 잔차와 독립변수 상관X
 - 등분산성: 오차들의 분산 일정
 - 비상관성: 오차들 간 상관X
 - 정상성: 오차항(잔차항)이 정규분포
- 모형 검증 체크리스트
 - 통계적 유의미 / 회귀계수 / 설명력 / 데이터 적합 / 가정 만족
 - 통계적 유의미: F-통계량, p-value 확인
 - o 회귀계수: 계수의 T-통계량, p-value, 신뢰구간 확인
 - 계수(Coefficient): '인자'의 뜻으로 쓰이며 식 앞에 곱해지는 상수를 의미
 - ㅇ 설명력: 결정계수 확인
 - ㅇ 데이터 적합: 잔차 그래프 -> 회귀 진단
 - 가정 만족: 5개 가정 모두 만족하는지
- 편차 vs. 오차 vs. 잔차
 - 편차(Deviation): 평균과의 차이 = 관측값이 평균값에서 떨어져 있는 정도
 - 오차(Error): 모집단에서 실젯값과 회귀선의 차이 즉, 정확치와 관측값의 차이
 - 예측하기 위한 추정치와 실젯값의 차이 = 예측값이 정확하지 못한 정도
 - 잔차(Residual): 표본에서 나온 관측값과 회귀선의 차이
 - 평균이 아닌, 회귀식 등으로 추정된 추정치와의 차이
 - 추정된 값을 설명할 수 없어서 아직도 남아있는 편차 = 편차 일부분

(2) 회귀 분석 유형

- 단순선형 / 다중선형
- 단순선형 회귀 분석(Simple Linear Regression Analysis)
 - ㅇ 독립변수 1개 / 종속변수 1개 / 오차항 있는 선형관계
 - ο 회귀식: yi = β₀ + β₁xi + ei
 - 오차항 ei는 독립적, N(0, σ^2)의 분포
 - 회귀계수 추정: 최소제곱법 사용하여 추정
 - 최소제곱법(Least Square Method): 오차 제곱의 합이 가장 최소가 되는 회귀계수를 찾음
 - ㅇ 회귀분석 검정: 결정계수를 계산하여 결과가 적합한지 검증
 - 회귀계수 검정: β₀ = 0 이면, 추정식은 의미없음
 - 회귀직선 적합도/정확도 평가: 결정계수(R²) (0 ≤ R² ≤ 1)
 - ㅇ 선형회귀의 문제점
 - 0 이하의 값 or 1 이상의 값을 예측값으로 줄 수 있음 -> 확률값으로 직접 해석할 수 없음
 - ㅇ 선형회귀와 제곱합

- 결정계수(R²) = (회귀제곱합) / (전체제곱합)

= SSR / SST = SST / (SSR+SSE)

- 회귀모형이 전체데이터를 얼마나 잘 <u>설명</u>하는지 보여줌
- 추정된 회귀식/회귀직선이 얼마나 타당/적합한지 검토
- 독립변수가 종속변수 <u>변동</u>의 몇 %를 설명하는지 나타냄
- 총 변동 중, 회귀모형에 의해 설명되는 변동이 차지하는 비율

※ 수정된 결정계수 (Adjusted R-squared)

독립변수 개수가 <u>많아지면</u>, 독립변수가 유의하지 않아도 결정계수가 높아진다는 단점 \rightarrow 이럴 때 수정된 R^2 사용함

SSE Error Sum of Squares	SST Total Sum of Squares	SSR Regression Sum of Squares
오차 제곱합	전체 제곱합	회귀 제곱합
$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$	$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$

- 다중선형 회귀 분석(Multi Linear Regression Analysis)
 - ㅇ 독립변수 여러 개/ 종속변수 1개
 - 모형의 통계적 유의성: F-통계량으로 확인
 - F-통계량↑ p-value↓ -> p-value < 0.05 이면 귀무가설 기각 -> 모형이 통계적으로 유의
 - F = MSR/MSE = (SSR/k) / {SSE/(n-k-1)}

■ F-통계량: 분산이 동일하다고 가정되는 두 모집단으로부터, 독립적인 두 표본을 추출했을 때, 두 표본분산의 비율

- ㅇ 회귀분석 검정
 - 회귀계수: t-통계량
 - 회귀선: 결정계수
 - 모형적합성: 잔차와 종속변수의 산점도
 - 다중공선성: VIF, 상태지수
- 다중공선성(Multicolinearity)
 - 다중회귀분석에서 독립변수들 간 선형관계가 존재한다면 정확한 회귀계수 추정 어려움
 - 분산팽창요인(VIF): 4 < VIF 다중공선성 존재 / 10 < VIF 심각한 문제
 - 상태지수: 10 < 상태지수 이면 문제있음 / 30 < 상태지수 이면 심각
 - 다중공선성 문제 발생 -> 변수 제거/주성분 회귀/능형 회귀 적용
 - 주성분회귀(PCR): 독립변수들의 주성분들을 추출하여 회귀모델을 만드는 기법
 - 능형회귀(Ridge Regression): 최소제곱합에 패널티 항을 추가하여 추정하여, 분산을 줄여주는 효과
- 주성분 분석: 서로 상관성이 높은 변수들을 선형결합으로 요약, 축소하는 기법
 - 변수들의 분산 방식의 패턴을 간결하게 표현하는 주성분 변수를 원래 변수의 선형결합으로 추출하는 통계기법
 - 분석을 통해 나타나는 주성분으로 변수들 사이의 구조를 쉽게 이해하는 건 어려움-> 요약하는 게 주 목적

2) 로지스틱 회귀분석

(1) 로지스틱 회귀 분석(Logistic Regression Analysis)

- 반응변수(종속변수)가 범주형, 분류 목적으로 사용
- 새로운 설명변수(독립변수) 값이 주어질 때 반응변수(종속변수)의 각 범주에 속할 확률이 어느정도인지 추정하여 추정 확률을 기준치에 따라 분류
- 클래스가 알려진 데이터에서 각 클래스내의 관측치들에 대한 유사성을 찾는 데 사용
- 승산(오즈; Odds) = 실패에 비해 성공할 확률의 비 = p / (1-p)
 - ㅇ 회귀식
 - $\log(\pi(x) / (1-\pi(x))) = \alpha + \beta_1 x$
 - $\pi(x) = P(Y=1 | x)$
 - 회귀계수 β₁ 부호에 따라 로지스틱 함수 그래프 모양이 달라짐
 - -> β₁ > 0 S자
 - -> β₁ < 0 역 S자
 - ㅇ R 함수
 - glm(): 모형 적합 함수
 - cdplot(): 연속형변수의 변화에 따른 범주형변수의 조건부분포 조회 (탐색적 분석)
 - step(): 변수 선택 함수

3) 의사결정나무

(1) 의사결정나무(Decision Tree)

- 분류함수를 활용하여, 의사결정규칙으로 이루어진 나무 모양을 그리는 기법
- 데이터가 가진 속성들로부터 분할기준 속성을 판별하고 이에 따라 트리형태로 모델링하는 분류예측모 델
- 분류함수: 분류 기준으로 사용되는 함수
 - 새로운 표본이 관측되었을 때 이 표본을 여러 모집단 중 어떤 하나의 모집단으로 분류하기 위한 함수
- 시각화: 연속적인 의사결정문제 시각화 -> 의사결정 이루어지는 시점/성과파악을 쉽게 해줌
- 해석용이: 계산결과가 직접적으로 나타남

(2) 의사결정나무의 구성요소

• 부모마디 / 자식마디 / 뿌리마디 / 끝마디 / 중간마디 / 가지 / 깊이

- 부모마디: 상위에 있는 마디
- 자식마디: 분리되어 나간 2개 이상의 마디
- 뿌리마디: <u>시작</u> 마디/ 전체 자료 포함
- 끝마디: 자식 마디 없음/ 잎 노드(Leaf Node)
- 중간마디: 부모, 자식마디 모두 있음
- 가지(Branch): 뿌리~끝마디까지 연결된 마디들
- 깊이(Depth): 뿌리~끝마디끼자 중간마디 개수

(3) 해석력과 예측력

- 해석력: 예를 들어, 은행에서 신용평가 결과 부적격판정인 경우, 이유를 해석할 수 있어야 함
- 예측력: 예를 들어, 반응이 좋을 고객 모집방안을 알고자 하는 경우, 예측력에 집중해야 함

(4) 의사결정나무의 분석

- 분석 과정: 성장 -> 가지치기 -> 타당성평가 -> 해석및예측
 - 성장(Growing): 분리규칙으로 나무성장 -> 정지규칙 만족 시 중단
 - 가지치기(Pruning): 가지 제거(오류 위험/부적절한 추론규칙/불필요)
 - 타당성 평가: 교차 타당성 등으로 평가(이익 도표/위험 도표/시험 자료 등을 이용)
 - ㅇ 해석 및 예측: 모형 해석 -> 데이터 분류 및 예측에 활용
- 각 마디에서의 최적 분리규칙: 분리 변수 선택 & 분리 기준에 의해 결정됨
- 분리변수의 P차원 공간에 대한 현재 분할은 이전 분할에 영향 받음
- 성장(Growing): x 들로 이루어진 입력공간을 재귀적으로 분할하는 과정
 - 분류 규칙(Splitting Rule): 최적 분할은 불순도 감소량을 가장 크게 하는 분할
 - 연속형 분리변수: A = xi <= s
 - 범주형 분리변수: A = 1.2.4/ Ac = 3

- 분리 기준(Splitting Criterion)
 - 한 부모마디에서 자식마디들이 형성될 때, 입력변수의 선택과 범주의 병합이 이루어질 기준
 - 순수도: 목표변수의 특정 범주에 개체들이 포함되어 있는 정도
 - 순수도/불순도 측정 -> 목표변수의 분포를 가장 잘 구별해주는 자식마디 형성
 - 부모보다 자식마디에서 순수도 증가
- ㅇ 이산형 목표변수에 사용되는 분리기준
 - 카이제곱 통계량의 p-value↓ / 지니 지수↓ / 엔트로피 지수↓
 - p-value가 가장 작은 예측변수&분리
 - 지니 지수를 가장 감소시켜주는 예측변수&분리
 - 엔트로피 지수가 가장 작은 예측변수&분리
- ㅇ 연속형 목표변수에 사용되는 분리기준
 - 분산분석의 F-통계량 / 분산의 감소량
 - F-통계량↑ p-value p-value가 가장 작은 예측변수&분리
 - 분산의 감소량을 최대화하는 기준&분리
- ㅇ 정지 규칙(Stopping Rule)
 - 현재 마디가 끝마디가 되도록 하는 규칙
 - 나무 깊이 지정 / 끝마디 레코드 최소 개수 지정

카이제곱 통계량 (χ²)	지니 지수 (Gini Index)	엔트로피 지수 (Entropy Index)
관측된 실젯값과 기댓값의 차이 실젯값과 가정된 분포 사이의 차이	노드 불순도를 나타냄 지니지수 높을수록, 순수도 낮음	열역학에서 무질서한 정도, 규칙적이지 않은 정도를 의미함 엔트로피 지수 높을수록, 순수도 낮음
$\chi^2 = \Sigma (관측값 - 기댓값)^2 / 기댓값$	Gini(T) = $1 - (\frac{5}{6})^2 - (\frac{1}{6})^2$	Entropy(T) $= -\left(\frac{4}{6} \times log_2 \frac{4}{6}\right) - \left(\frac{1}{6} \times log_2 \frac{1}{6}\right) \times 2$

• 가지치기(Pruning)

- ㅇ 과대/과소 적합을 방지하기 위해 의사결정나무의 가지를 제거함
- ㅇ 의사결정나무의 크기 = 복잡도
 - -> 크기가 너무 크면 과대적합 / 너무 작으면 과소적합 위험
- 최적의 크기(복잡도)는 대상자료로부터 추정
- 분류 오류를 크게할 위험 or 부적절한 규칙을 가진 가지를 제거함
- ㅇ 나무의 끝마디가 너무 나오면, 모형이 과대적합되어 규칙을 현실 문제에 적용할 수 없음
 - -> 분류된 관측치의 비율 or MSE 등을 고려하여 과적합 문제를 해결하기 위해 가지치기를 함

(5) 의사결정나무 알고리즘

CART / C4.5 & C5.0 / CHAID / QUEST

구분	설명	특징	분리 기준 (불순도 측도)	분리 방법 (이진 or 다지)
CART	- 각 독립변수 이분화 반복 - 이진 트리형태로 분류 수행	- 가장 널리 사용	이산 - 지니지수 연속 - 분산감소량	이진 분리
C4.5 & C5.0	- 가지치기 시, 학습자료 사용 - 목표변수 반드시 범주형!	- 범주 수만큼 분리 (범주형 입력변수)	엔트로피 지수	다지 분리
CHAID	- 가지치기X - 적당한 크기에서 성장 중지 - 입력변수 반드시 범주형!	- AID를 발전시킴	카이제곱 통계량 F-통계량	다지분리
QUEST	- 변수선택 편향 거의 없음 - 분리규칙을 2단계로 나눔 분리변수 선택 & 분리점 선택	- 편향 문제가 있는 CART의 개선	카이제곱 통계량 F-통계량	이진 분리

• 편향(Bias): 학습 알고리즘에서 잘못된 가정을 했을 때 발생하는 오차

(6) 의사결정나무 종류

- 분류나무 / 회귀나무 모형
- 의사결정나무는 주어진 입력값에 대해 출력값을 예측하는 모형

(7) 의사결정나무 활용 및 장단점

- 활용: 세분화 / 분류 / 예측 / 차원축소 및 변수선택 / 교호작용 효과 파악
 - ㅇ 차원축소 및 변수선택: 목표변수에 큰 영향을 미치는 예측변수들을 구분하고자 할 때
 - ㅇ 교호작용 효과 파악: 여러 예측변수 결합
 - -> 범주의 병합 or 연속형 변수의 이산화
 - 교호작용(Interaction): 독립변수간 상호작용이 종속변수에 영향을 주는 현상
- 장점: 해석 용이 / 상호작용 효과 해석 가능 / 비모수적 모형 / 유연성 및 정확도 높음
 - 비모수적 모형: 가정 필요X, 이상값에 민감X
 - 유연성 및 정확도 높음: 대용량 데이터에서도 빠르게 생성 가능
- 단점: 비연속성 / 선형성 or 주효과 결여 / 비안정성
 - 비연속성: 연속형변수를 비연속적 값으로 취급 -> 경계점 근방에서 예측오류 가능성 큼
 - 선형성 or 주효과 결여: 선형모형에서는 각 변수의 영향력을 해석할 수 있는데, 의사결정나무는 불가능
 - 비안정성: Training Data에만 의존하면 과대적합 가능성 -> 검증용데이터로 교차타당성 평가 or 가지기 필요
- 평가: 이익 도표 or 검정용 데이터에 의한 교차 타당성 등을 이용하여, 의사결정나무를 평가함

4) 인공신경망

(1) 인공신경망

- 뉴런의 전기신호 전달을 모방한 기계학습 모델
- 인공신경망(ANN; Artificial Neural Network)
 - 입력값 받아서 출력값 만들기 위해 활성화 함수 사용함
- 활성화 함수/활성 함수(Activation Function)
 - 입력신호의 총합을 출력신호로 변환하는 함수
 - 입력받은 신호를 얼마나 출력할지 결정
 - ㅇ 출력된 신호의 활성화 여부 결정
- 신경망 모형의 특징
 - ㅇ 변수가 많은 경우나 입출력 변수간 복잡한 비선형 관계일 때 유용함
 - ㅇ 잡음에 민감하지 않음
 - ㅇ 은닉층 너무 많으면, 과대적합 위험
 - 은닉층 너무 적으면, 충분한 데이터 표현X

(2) 인공신경망의 역사

• 퍼셉트론과 XOR 선형 분리 불가 문제 -> 다층 퍼셉트론과 기울기 소실 문제 -> 인공지능과 딥러닝

1세대 1943 ~ 1986	2세대 1986 ~ 2006	3세대 2006 ~ now		
퍼셉트론	다층 퍼셉트론	인공지능 부각		
- 구성: 입력층/ 출력층 - 최초의 인공신경망	- 구성: 입력층/ 하나 이상의 은닉층/ 출력층 - 비선형적 분리 데이터에 대한 학습 가능 - 은닉층을 통해, XOR 문제를 해결함~!	- 알파고 등에 의해 인공지능이 부각됨 - 빅데이터 수집, 분석이 가능해지면서 발전 - CNN, RNN 등의 딥러닝 기술 발전		
순방향 신경망	역전파 알고리즘	tanh, ReLU, Leaky ReLU, Softmax,		
- 데이터 전파: 입력 → 은닉 → 출력 - 입력데이터가 판별함수값으로 변환 - 선형 분류 가능한 신경망	 역방향 가중치 갱신 (출력 → 은닉 → 입력) 오차를 최소화시키도록 학습 Backpropagation Algorithm 	- tanh, ReLU 를 활성함수로 사용하여 기울기 소실 문제를 해결함 - Leaky ReLU, Softmax 등으로 발전		
XOR 선형 분리 불가 문제	기울기 소실/ 사라지는 경사	딥러닝 기술 발전		
0.5	0.5	CNN: 합성곱 신경망 (Convolutional Neural Networks)		
0.0 0.5 1.0 선형분류만 가능한 퍼셉트론으로는 XOR 연산을 할 수 없다는 문제가 있음!	Vanishing Gradient Problem 역전파에서 활성함수인 시그모이드 함수에 대해 편미분하는데, 1보다 작으므로 계속 곱하다 보면	V = V = V = V = V = V = V = V = V = V =		
	0에 가까워지면서 기울기가 사라진다!	RNN: 군된 선정당 (Recurrent Neural Networks)		

(3) 인공신경망의 구조

- 퍼셉트론 / 다층 퍼셉트론
- 퍼셉트론(Perceptron) 구성
 - 입력값 / 가중치 / 순 입력함수 / 활성함수/ 출력값(예측값)
 - 입력값: 훈련 데이터(Training Data)
 - 순 입력함수: 함수에서 모든 입력값과 가중치를 곱하고 Sum
 - ㅇ 활성 함수
 - 순 입력함수에서 나온 값과 임계값 비교 -> 출력값(예측값)으로 1 or -1
 - 예측값!= 실젯값 -> 가중치 업데이트 -> 이 과정을 반복하면서 학습
- 퍼셉트론 문제점: XOR 선형 분리 불가 문제 -> 해결 위해 다층 퍼셉트론 등장

- o AND 연산: 입력값 (X, Y) 이 모두 1이면 1 출력 / 나머지는 0 → 선형분리 가능
- o OR 연산: 입력값 (X, Y) 이 모두 0이면 0 출력/ 나머지는 1 → 선형분리 가능
- o XOR 연산: 입력값 (X, Y) 이 같으면 0 출력/ 다르면 1 출력 → 선형분리 불가능

• 퍼셉트론의 구조

- 다층 퍼셉트론(MLP; Multi-Layer Perceptrons)
 - 비선형적으로 분리되는 데이터에 대한 학습이 가능한 퍼셉트론
 - ㅇ 구성: 입력층과 출력층 사이에 1개 이상의 은닉층
 - 활성화 함수: 시그모이드 함수(Sigmoid Function)
 - 시그모이드: 유한한 영역 가짐/미분가능/모든 점에서 음이 아닌 미분값/하나의 변곡점
 - 역전파 알고리즘을 통해 다층에서 학습 가능
 - 예측값과 실젯값의 차이인 에러(Error)를 통해 가중치 조정 -> 연결 강도 갱신 -> 목적함수 최적화
- 다층 퍼셉트론의 문제점: 과대 적합 / 기울기 소실
 - 과대 적합: 학습 데이터가 부족하면 실제 데이터에서 성능 떨어짐 -> 빅데이터 확보 가능해지면서 해결
 - 기울기 소실: 시그모이드 함수의 편미분을 진행하면 기울기가 0에 근사 -> ReLU, tanh 함수 사용하여 해결

• 다층 퍼셉트론의 구조

(4) 뉴런의 활성화 함수

- 순 입력함수에서 전달받은 값을 출력값으로 변환하는 함수
- 계단 / 부호 / 시그모이드 / tanh / ReLU / Leaky ReLU / Softmax 함수
- Dying ReLU: ReLU 함수에서 마이너스(-) 값 -> 전부 0을 출력 -> 일부 가중치들이 업데이트 되지 않음

계단함수 Step Function	부호함수 Sign Function	시그모이드 함수 Sigmoid Function	하이퍼볼릭 탄젠트 함수 tanh Function	ReLU 함수	Leaky ReLU	Softmax 함수
임계값 기준 활성화 or 비활성화 (Y=1 or 0)	임계값 기준 양 or 음 출력 (Y = +1 or -1)	- 하나의 변곡점 - 로지스틱 함수 - 기울기 소실의 원인 (0 ≤ y ≤ +1)	시그모이드의 기울기 소실을 해결함	$X>0 \rightarrow Y=X$ 기울기소실해결 $X \le 0 \rightarrow Y=0$ 뉴런이 죽음	ReLU의 Dying ReLU 현상을 해결!	출력값 여러개, 목표치 다범주 각 범주에 속할 사후확률 제공
	y †	-6 -1 -2 8 3 4 6		$\operatorname{Ref} \operatorname{H}(x) \triangleq \operatorname{max}(0,x)$	James Mada, and the second seco	$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$

5) 서포트 벡터 머신

(1) 서포트 벡터 머신(SVM; Support Vector Machine)

- 지도학습 / 이진선형분류
- 서포트 벡터 머신
 - ㅇ 데이터들과의 거리가 가장 먼 초평면을 선택하여 분리하는 지도학습 기반의 이진 선형 분류 모델
- 기준: 초평면(Hyperplane)을 기준으로 데이터를 분리함
- 활용: 사물 / 패턴 / 손글씨 숫자 인식 등
- 서포트 벡터 머신 특징
 - ㅇ 공간상 최적의 분리 초평면을 찾음 -> 분류 및 회귀
 - 변수 속성 간 의존성 고려X
 - ㅇ 모든 속성 활용
 - 훈련시간 느린 편 / 그러나 정확성↑
 - 다른 방법보다 과대적합 가능성↓
 - o R package: e1071, kernlab, klaR 등

• 서포트 벡터 머신

(2) 서포트 벡터 머신 종류

- 하드 마진 SVM / 소프트 마진 SVM
- 하드 마진(Hard Margin): 오분류 허용X -> 노이즈로 최적의 결정경계 잘못 찾음 or 못 찾음
- 소프트 마진(Soft Margin): 오분류 허용O -> 어느정도 오류를 허용하는 소프트 마진을 주로 이용함

(3) 서포트 벡터 머신의 구성요소

- 결정경계 / 초평면 / 마진 / 서포트벡터 / 슬랙변수(여유변수)
- 결정 경계(Decision Boundary): 데이터 분류 기준
- 초평면(Hyperplane): N차원 공간의 (N-1)차원 평면(데이터 분리)

• 마진(Margin, 여유공간): 결정 경계 ~ 서포트 벡터 간 거리 -> 이 마진을 최대화하는 것이 최적의 결정 경계

- 서포트 벡터(Support Vector): 결정 경계와 가장 가까운 데이터들의 집합(학습 데이터 중에서)
- 슬랙 변수(Slack Variable, 여유변수): 완벽한 분리 불가능할 경우 -> 허용된 오차를 위한 변수(소프트 마진 SVM에서)

(4) 서포트 벡터 머신 적용 기준

- 선형으로 분리 가능/불가능 여부
- 선형 분리 가능 SVM: 최적 결정 경계(초평면) 기준으로 +1 과 -1 로 구분 -> 분류 모델
- 선형 분리 불가능 SVM: 커널 트릭 활용
 - ㅇ 커널 함수: 저차원에서 함수의 계산만으로 원하는 풀이가 가능한 함수
 - 커널 트릭: 커널 함수를 이용하여, 고차원 공간으로 매핑하면서 증가하는 연산량의 문제를 해결하는 기법
 - -> 따라서, 저차원 공간을 고차원 공간으로 매핑할 때 발생하는 연산의 복잡성을 커널 트릭으로 해결가능
 - 이 (예) 2차원에서 분류할 수 없는 문제를 3차원 공간에 매핑하여 선형 분류
 - 대표적인 커널 함수: 가우시안 RBF 커널/다항식 커널/시그모이드 커널 등
 - 커널 함수 선택에 명확한 규칙X, 정확도 차이 별로X

6) 연관성 분석

(1) 연관성 분석(Association Analysis)

- 데이터 간 관계에서 조건과 반응을 연결하는 분석
- 연관성 분석 = 장바구니 분석 = 서열 분석
 - 데이터 내부에 존재하는 항목간 상호관계 or 종속관계를 찾아내는 분석방법
- 연관성 분석 특징
 - 목적변수X -> 분석 방향 or 목적 없어도 적용 가능
 - 조건-반응(IF-THEN)으로 표현-> 결과 이해 쉬움
 - ㅇ 계산 매우 간단
 - ㅇ 세분화 특징
 - 장점: 적절한 세분화로 인한 품목 결정
 - 단점: 너무 세분화되면 의미 없는 결과

(2) 연관성 분석의 주요 용어

• 지지도 / 신뢰도 / 향상도

지지도	신뢰도	향상도
Support	Confidence	Lift
P(A∩B)	P(A∩B) / P(A)	P(B A) / P(B) = 신뢰도 / P(B) P(A∩B) / P(A)P(B) = 지지도 / P(A)P(B)
전체 거래 중	조건부 확률	규칙이 우연히 발생한 것인지 판단
A, B 동시에 포함하는 거래 비율	A 구매 → B 구매	거래간 연관성 정도를 측정

• 향상도 (Lift): 1을 기준으로 A, B 사이의 상관관계 측정

○ 향상도 = 1 : A, B가 서로 독립적

○ 향상도 < 1 : A, B가 음의 상관관계(-)

○ 향상도 > 1: A, B가 양의 상관관계(+)

7) 군집 분석

(1) 군집 분석(Cluster Analysis)

- 데이터를 집단화 / 다변량 분석기법
- 여러 개의 변숫값들로부터 유사성(Similarity)만 기초로 n개의 군집으로 집단화하여 집단의 특성을 분석 하는 다변량 분석기법
- 군집 분석 종류: 계층적 군집/k-평균 군집/혼합 분포 군집/자기 조직화 지도(SOM)
- 계층적 군집: 군집 개수 미리 정하지 않음 -> 병합적 방법/분할적 방법/덴드로그램
- 비계층적 군집: 군집 개수 k 미리 정함 -> k-평균 군집/혼합 분포 군집/자기 조직화 지도

(2) 계층적 군집(Hierarchical Clustering)

- 유사한 개체들의 군집화 과정 반복 군집 형성 방법: 병합적 방법 / 분할적 방법
 - 병합적 방법(Agglomerative): 작은 군집 -> 병합
 - 거리 가까우면 유사성 높음
 - R: {stats} hclust(), {cluster} agnes(), mclust()
 - 분할적 방법(Divisive): 큰 군집 -> 분리
 - R: {cluster} diana(), mona()
- 군집 결과 표현: 계통도 / 덴드로그램
 - 덴드로그램(Dendrogram): 군집의 개체들이 결합되는 순서를 나타내는 트리 구조
 - 항목간 거리/군집간 거리/군집내 항목간 유사도/군집의 견고성 파악 가능
 - ㅇ 각 개체는 한 군집에만 속함
- 군집간 거리 측정 방법/연결법: 최단연결법/최장연결법/중심연결법/평균연결법/와드연결법
 - 최단연결법 = 단일연결법: 두 군집간 거리 = 최솟값 으로 측정
 - 각 군집에서 한 개체씩 뽑았을 때 나타날 수 있는 최솟값을 군집간 거리로 측정함
 - 최장연결법 = 완전연결법: 두 군집간 거리 = 최댓값 으로 측정
 - 각 군집에서 한 개체씩 뽑았을 때 나타날 수 있는 최댓값을 군집간 거리로 측정함
 - ㅇ 중심연결법: 두 군집 중심 사이 거리 측정

- 두 군집 결합 -> 가중평균으로 새로운 군집의 평균 구함
- 군집 내 편차 제곱합 고려 -> 군집간 정보 손실을 최소화
- ㅇ 평균연결법: 모든 개체에 대한 거리 평균 구하면서 군집화
 - 계산량이 불필요하게 많아질 가능성 존재
- ㅇ 와드연결법: 군집내 오차 제곱합 기반으로 군집화
 - 다른 연결법들은 군집간 거리에 기반하는데, 와드연결법은 군집내 거리를 기반으로 함
- 군집간 거리 계산: 연속형/명목형/순서형 변수마다 거리 계산 방법 다름
 - 연속형 변수 거리: 유클리드/맨하튼/민코프스키/표준화/마할라노비스 거리
 - 유클리드 거리: 두 점을 잇는 가장 짧은 직선 거리
 - 맨하튼 거리(시가 거리): 각 방향 직각의 이동 거리 합
 - 민코프스키 거리: 1차원일 때 맨하튼 거리, 2차원일 때 유클리드 거리와 같음
 - 표준화 거리: 각 변수를 표준편차로 변환한 후, 유클리드 거리를 계산
 - 마할라노비스 거리: 변수들의 산포를 고려하여 표준화한 거리 변수의 표준편차 고려 / 변수간 상관성이 있으면 표준화 거리 사용 검토해야 함
 - ㅇ 명목형 변수 거리: 단순 일치 계수 / 자카드 계수
 - 모든 변수가 명목형인 경우, (두 개체간 다른 값을 가지는 변수의 수)를 (총 변수의 수)로 나 눈 것이 거리임
 - 자카드 계수는 두 집합이 같으면 1, 공통 원소가 없으면 0
 - ㅇ 순서형 변수 거리: 순위상관계수

연속형 변수 거리				
수학적 거리			통계작	^백 거리
유클리드 거리 맨하튼 거리 민코프스키 거리		표준화 거리	마할라노비스 거리	
제곱합의 <mark>제곱근</mark>	절댓값의 합	m차원 민코프스키 공간에서의 거리	측정단위 표준화	표준화+상관성 동시에 고려함
$\ a-b\ _2=\sqrt{\sum_i(a_i-b_i)^2}$	$\ a-b\ _1=\sum_i a_i-b_i $	$\left(\sum_{i=1}^n x_i-y_i ^p ight)^{rac{1}{p}}$	$[(X-Y)^T D^{-1} (X-Y)]^{1/2}$	$\sqrt{(a-b)^\top S^{-1}(a-b)}$
		,	D: 표본 분산(대각)행렬	S: 표본 공분산 행렬

명목형 변수 거리	순서형 변수 거리		
단순 일치 계수	자카드 계수	순위상관계수	
전체 중 <mark>일치</mark> 하는 속성의 비율	두 집합간 유사도 측정 (0~1)	값에 순위 매김 → 상관계수 계산	
(매칭된 속성 개수) / (전체 속성 개수)	$\frac{ A \cap B }{ A \cup B } = \frac{ A \cap B }{ A + B - A \cap B }$	$r_s=1-rac{6\sum d_i^2}{n(n^2-1)}$	

(3) k-평균 군집(k-means clustering)

- k 개의 군집 묶음 -> 군집 평균 재계산 -> 반복
- 주어진 데이터를 k개의 군집으로 묶는 알고리즘
 - 초기 군집을 k개 지정하고 각 개체를 가까운 군집에 할당하여 군집을 형성한 다음 각 군집 평균을 재계산하고 군집 갱신을 반복하여 k개의 최종 군집을 형성
- 절차: k개 객체 선택 -> 할당 -> 중심 갱신 -> 반복
 - k개 객체 선택: 초기 군집의 중심으로 삼을 객체 k개를 랜덤 선택
 - 할당(Assignment): 각 객체들을 가장 가까운 군집의 중심에 할당
 - 중심 갱신(New Centroids): 각 군집별로 평균 계산 -> 군집 중심 갱신
 - 반복: 군집 중심의 변화가 거의 없을 때까지/최대 반복수에 도달할 때까지 할당과 중심 갱신을 반복
- 단점: 이상값에 민감 -> k-중앙값 군집 or 이상값 미리 제거

(4) 혼합 분포 군집(Mixture Distribution Clustering)

- 모수적 모형 기반 군집화 방법
- 혼합 분포 군집
 - 데이터가 k개의 모수적 모형의 가중합으로 표현되는 모집단 모형에서 나왔다는 가정 하에 데이터 로부터 모수&가중치를 추정하는 방법
- k개의 모형 = k개의 군집 을 의미함
- 군집화 방법
 - 추정된 k개의 모형(군집)들 중에서 어느 모형에서 나왔을 확률이 높은지에 따라서 각각의 데이터를 군집으로 분류
- 혼합모형 = M개 분포(성분)의 가중합
 - ㅇ 단일모형과 비교하면, 혼합모형은 표현식이 복잡함 -> 미분을 통한 이론적 전개가 어려움
 - 최대가능도 추정을 위해 EM알고리즘을 활용함
- EM 알고리즘(Expectation-Maximization Algorithm, 기댓값 최대화 알고리즘)
 - 관찰/측정되지 않은 잠재변수에 의존하는 확률모델에서 최대 가능도나 최대 사후 확률을 가지는모수의 추정값을 찾는 반복적인 알고리즘
 - 최대 가능도(Maximum Likelihood): 어떤 모수가 주어졌을 때, 원하는 값들이 나올 가능도를
 최대로 만드는 모수를 선택하는 방법
- 진행과정: E-step -> M-step
 - E-step: 잠재변수 Z의 기대치 계산
 - M-step: 기대치 이용하여 파라미터 추정
 - 반복: M-step에서 계산된 값은 다음 E-step에서 추정값으로 쓰임
- 특징
 - ㅇ 확률분포 도입하여 군집화
 - ㅇ 군집을 모수로 표현
 - 이 서로 다른 크기의 군집 찾을 수 있음
 - 데이터 커지면 수렴 시간 걸림
 - ㅇ 군집 크기 너무 작으면 추정 정도 떨어짐
 - 이 이상값 민감 -> 사전 조치 필요

(5) 자기 조직화 지도(SOM; Self-Organizing Maps): 비지도 신경망 클러스터링

- 자기 조직화 지도
 - ㅇ 대뇌피질, 시각피질의 학습과정을 기반으로 모델화한 인공신경망

- ㅇ 자율학습방법에 의한 클러스터링 방법을 적용한 알고리즘
- ㅇ 고차원 데이터를 이해하기 쉬운 저차원 뉴런으로 정렬 -> 지도로 형상화한 비지도 신경망
- 구성: 입력층 / 경쟁층

자기 조직화 지도 = SOM = 코호넨 맵(네트워크)		
입력층 (Input Layer) 경쟁층 (Competitive Layer)		
- 입력벡터 받는 층	- 입력벡터 특성에 따라, 벡터 한 점으로 클러스터링되는 층	
- 입력변수 개수 = 입력층 뉴런 개수	- 2차원 m × m 그리드(격자)로 구성된 층	
- 입력층 각 뉴런과 경쟁층 각 뉴런은 완전연결되어 있음	- 지도(Map): 입력층 → 학습 → 경쟁층에 정렬됨	

- 특징: 입력변수의 위치관계를 그대로 보존하여 형상화 -> 실제 공간에 가까이 있으면 지도상에도 가까운 위치
- 학습과정: 경쟁학습 / 승자독식구조
 - ㅇ 경쟁학습: 경쟁층의 각 뉴런이 입력벡터와 얼마나 가까운지 계산
 - -> 연결강도를 반복적으로 재조정하여 학습
 - -> 입력패턴과 가장 유사한 경쟁층 뉴런이 승자
 - ㅇ 승자독식구조: 경쟁층에 승자 뉴런만 나타남
 - -> 승자와 유사한 연결강도를 가지는 입력패턴이 동일한 경쟁 뉴런으로 배열됨
 - 연결강도 초기화 -> 입력벡터 제시 -> 유사도 계산 -> 프로토타입 벡터 탐색 -> 연결강도 재조정 -> 반복
 - 프로토타입 벡터 탐색: 입력벡터와 가장 가까운 뉴런인 BMU(Best Matching Unit)을 탐색하는 단계

2.2 고급 분석기법

<u>-</u>	KeyWord
범주형 자료 분석	분할표분석, 상대위험도, 승산비, 카이제곱분석, 교차분석, 적합도검정, 독립성검정, 동질성검 정, 피셔정확검정
다변량 분 석	다변량분석, 피어슨상관계수, 스피어만상관계수, 다차원척도법, 주성분분석
시계열 분 석	시계열분석, 정상성, 자기회귀모형(AR모형), 이동평균모형(MA모형), 자기회귀 누적 이동평균 모형(ARIMA모형), 백색잡음과정, 분해시계열, 추세요인, 계절요인, 순환요인, 불규칙 요인
베이지안 기법	확률, 교사건, 표본 평균, 표본 분산, 표본 표준편차, 표본 공분산, 상관계수, 상관계수 행렬, 조 건부확률, 전확률의정리, 베이즈정리, 베이즈확률
딥러닝 분 석	딥러닝, DNN, 은닉층, 역전파, CNN, 컨볼루션, 피처맵, 서브샘플링, RNN
비정형 데 이터 분석	사회연결망분석(SNA), 연결정도, 포괄성, 밀도, 연결정도 중심성, 근접 중심성, 매개 중심성, 감성분석, 오피니언마이닝, 텍스트마이닝, 웹마이닝

_	KeyWord
앙상블 분	앙상블분석, 배깅, 부트스트랩, 부스팅, AdaBoost, 랜덤포레스트, 배깅을 이용한 포레스트 구성,
석	임의노드 최적화, 중요 매개변수, 포레스트 크기, 최대 허용 깊이, 임의성 정도
비모수 통	비모수통계, 부호 검정, 윌콕슨 부호 순위 검정, 윌콕슨 순위 합 검정, 대응 표본 검정, 크루스
계	칼-왈리스 검정, 런 검정

1) 범주형 자료 분석

(1) 범주형 자료 분석

- 분할표 분석 / 카이제곱 분석 / 피셔 정확 검정 / 로지스틱 회귀분석
- 범주형 자료 분석
 - ㅇ 종속변수: 1개 / 범주형
 - 종속변수가 1개이고 범주형인 데이터를 분석하여, 모형과 독립변수의 유의성을 알아봄
- 독립변수(X)의 척도에 따른 분석방법
 - 독립변수가 범주형: 분할표 분석/카이제곱 검정(교차 분석)/피셔 정확 검정
 - 독립변수가 연속형: 로지스틱 회귀분석

(2) 분할표 분석(Contingency Table)

• 상대위험도(RR) / 승산비(Odds Ratio)

2원 분할표 예시 (Two-way Contingency Table)					
		[열] 종속변수			
	A후보 B후보		[주변 합] Margin Sum		
	여성		20	48	
[행] 독립변수	남성	39	13	52	
	[주변 합] Margin Sum	67	33	100	

• 분할표

- ㅇ 범주형 변수 개수에 따라 1원/2원/다원 분할표
- 이 행: 독립변수 / 열: 종속변수
- 주변합(Margin Sum): 마지막 행열에 총계 데이터
- 상대위험도(RR; Relative Risk) = {a/(a+b)}/{c/(c+d)}: 비교 집단의 위험률 대비 관심있는 집단의 위험률
 - (관심 집단 위험률)/(비교 집단 위험률)= {a/(a+b)}/{c/(c+d)}
 - ㅇ 위험률: 특정 사건이 발생할 비율

- 1을 기준으로 평가함
 - RR < 1: 관심 집단의 특정 사건 발생확률 낮음
 - RR = 1: 관심 집단과 특정 사건의 발생에 연관성 없음
 - RR > 1: 관심 집단의 특정 사건 발생확률 높음
- 승산비(Odds Ratio) = 교차비 = 대응위험도
 - 승산 = p / (1 p): 특정 사건이 발생하지 않을 확률 대비, 발생할 확률
 - = (특정 사건 발생 확률) / (발생하지 않을 확률)
 - = (이길 확률) / (1 이길확률) = p / (1 p)
 - o 승산비 = ad / bc: 비교 집단의 승산 대비, 관심 있는 집단의 승산
 - = (관심 집단의 승산) / (비교 집단의 승산)
 - = (특정 조건이 있을 때의 오즈) / (다른 조건이 있을 때의 오즈)
 - = (a / b) / (c / d) = ad / bc (교차비)

(3) 카이제곱 분석(Chi-Squared Test) = 교차 분석

- 적합도 검정 / 독립성 검정 / 동질성 검정 분석 방법: χ²(카이제곱 값) 계산 -> p-value가 유의수준보다 작으면 귀무가설 기각
 - 카이제곱 값= Σ (관측빈도-기대빈도)²/(기대빈도)
 - 관측빈도와 기대빈도의 차이인 편차의 제곱 값을 기대빈도로 나눈 값들의 합

	적합도 검정	독립성 검정	동질성 검정
	Goodness of Fit	Independence	Homogeneity
	"특정 분포"	"두 요인/변수가 서로 독립인가"	"각 부모집단의 동질성"
귀무가설	- 표본 집단의 분포가 가정한 이론 (기대되는 빈도)과 동일한가 - 표본 집단의 분포가 주어진 특정 분포를 따르는가	- 여러 범주를 가지는 요인 2개가 서로 독립적인가 - 혹은 요인 간에 연관성이 있는가	- 각각의 독립적인 부모집단에서 표본을 추출하는 경우 - 관측값들이 정해진 범주 내에서 서로 동질한지 여부 - "모집단이 동질한가"
자유도	범주 개수 - 1	{(범주1 수) - 1} × {(범주2 수) - 1}	{(범주1 수) - 1} × {(범주2 수) - 1}
	k - 1	(k ₁ - 1) × (k ₂ - 1)	(k ₁ - 1) × (k ₂ - 1)
특징	- 자료를 구분하는 범주가 상호배타적이어야 함 - 관찰빈도와 기대빈도의 차이↑ H₀ 기각 확률↑ (ex) 학년별로 수강생의 분포가 균일한가 (기대 비율 0.25)	(ex) 학년(1, 2, 3학년)이라는 범주형 자료(요인1)와 선호과목(국, 영, 수)이라는 범주형 자료(요인2) 간에 서로 연관성이 있는지 판	- 독립성검정과 동질성검정은 개념상의 차이만 있고, 계산방식은 같음 (ex) 학생그룹 1과 학생그룹 2가 선호하는 과목은 동일한가

(4) 피셔의 정확 검정(Fisher's Exact Test)

- 분할표 문제로 카이제곱검정의 정확도가 떨어지는 경우 사용하는 방법
- 피셔 정확 검정을 사용하는 경우
 - ㅇ 표본 수가 적은 경우
 - ㅇ 분할표에서 셀에 치우치게 분포된 경우
 - 기대빈도가 5 미만인 셀이 20% 넘는 경우
 - 기대빈도: 두 변수가 독립일 경우에 이론적으로 기대할 수 있는 빈도 분포 / 예상되는 빈도

2) 다변량 분석

(1) 상관분석

- 피어슨 상관계수 / 스피어만 순위 상관계수
- 피어슨 상관계수: 두 변수간 선형관계의 크기를 측정(비선형관계는 측정X)
 - 등간 척도 or 비례 척도를 사용하는 연속형 데이터에서 사용
 - 계산방법: 두 변수의 공분산을 표준편차의 곱으로 나눈 값
 = Corr (X, Y) = Cov (X, Y) / √Var(X)Var(Y)
 - ο 모집단 모 상관계수 (ρ) / 표본집단 표본 상관계수 (r)
 - ㅇ -1 에서 +1 사이의 값
- 스피어만 순위 상관계수: 두 변수간 비선형적인 관계도 나타낼 수 있음
 - ㅇ 계산방법: 두 변수를 모두 순위로 변환 -> 두 순위간 피어슨 상관계수 계산
 - ㅇ -1 에서 +1 사이의 값

(2) 다차원 척도법

- 개체들 사이의 유사성(비유사성)을 측정하여 시각적으로 표현
- 다차원 척도법(MDS; MultiDimensionality Scaling)
 - 개체들 사이의 유사성, 비유사성을 측정하여 2차원 or 3차원 공간상에 점으로 표현하여 개체들 사이의 집단화를 시각적으로 표현하는 분석 방법
- 여러 대상간의 거리가 주어져 있을 때, 대상들을 동일한 상대적 거리를 가진 실수 공간의 점들로 배치시 키는 방법
- 주어진 거리는 추상적인 대상들 간 거리 & 실수 공간에서의 거리 둘 다 될 수 있음
- 주로 자료들의 상대적 관계를 이해하는 시각화 방법의 근간으로 사용됨

(3) 주성분 분석

- 고차원 자료의 차원을 축소(축약)시킴 / 상관성 높은 변수들을 요약함 주성분 분석(PCA; Principal Component Analysis)
 - 상관관계가 있는 고차원 자료의 원래 변동을 최대한 보존하여 저차원 자료로 변환하는 차원축소 방법
- 차원축소: 많은 변수들로 구성된 고차원 자료를 축소하여, 새로운 차원의 자료를 생성하는 기법
 - 고윳값(Eigenvalue)이 높은 순서로 정렬 -> 높은 고윳값을 가진 고유벡터(Eigenvector)만으로 데이터 복원
- 주성분 분석의 특징
 - o p개의 변수들을 중요한 m(P)개의 주성분으로 표현 -> 전체 변동을 설명
 - p차원 변수 X = (X1, X2, ..., Xp)^T
 - ㅇ 주성분은 원래 변수들의 선형결합으로 표현됨
 - 기존의 상관성이 높은 변수들을 요약, 축소시킴
 - ㅇ 차원 감소폭 결정: 스크린 산점도/전체 변이의 공헌도/평균 고윳값 등을 활용
 - ㅇ 누적 기여율 85% 이상 -> 주성분 수로 결정 가능
 - 누적 기여율: 제 1 ~ k 주성분까지의 주성분을 이용하여 설명할 수 있는 데이터 전체 정보량의 비율
 - ㅇ 주성분으로 변수들 사이의 구조를 쉽게 이해하기는 어려움
 - ㅇ 차원의 저주 해결
 - 데이터 차원이 증가할 때, 데이터 구조를 변환하여 정보를 최대한 축적하는 차원 감소방법으로 해결

3) 시계열 분석

(1) 시계열 분석

- 연도별/분기별/월별 등 시계열로 관측되는 자료를 분석 -> 미래 예측
- 시계열로 관측 -> x축 시간 & v축 관측값
- 추세를 분석 -> 미래를 예측
- 시계열 데이터: 규칙적 / 불규칙적인 특징 가짐

(2) 정상성(Stationary)

- 시점에 상관없이 시계열의 특성이 일정함
- 정상성을 만족해야. 시계열 분석이 가능함
- 정상성 조건: 평균 일정/분산&공분산이 시점에 의존하지 않음/공분산은 시차에만 의존함
- 기댓값과 분포가 시점에 따라서 달라지지 않는다면, 정상성을 만족한다고 할 수 있음

(3) 시계열 모형

- 자기회귀모형(AR모형)/이동평균모형(MA모형)/자기회귀 누적 이동평균모형(ARIMA모형)
- 자기 회귀 모형(AR모형)(Auto-Regressive Model)
 - 현시점의 자료가 p시점 전의 유한 개의 과거 자료로 설명될 수 있음
 - 과거 p번째까지의 데이터가 현재 데이터에 영향을 준다면 AR(p) 모형
 - ㅇ 관심있는 변수의 과거 값들의 선형결합을 이용하여, 자기 자신에 대한 미래 값을 예측

- ㅇ 과거 관측값의 오차항이 미래 관측값에 영향을 줌
- 이동평균 모형(MA모형)(Moving Average Model)
 - 시간이 지날수록 관측치의 평균값이 지속적으로 증가or감소하는 시계열 모형
 - 현시점의 자료가 p시점 전의 유한 개의 과거 백색잡음의 선형결합으로 표현됨
 - 자신의 과거 값을 사용하여 설명하는 시계열 모형 -> 정상 확률 모형/항상 정상성 만족 -> 정상성 가정 필요없음
 - 과거의 연속적인 오차항이 현재/미래 관측값에 영향을 줌
 - [백색잡음(오차항)의 현재값] & [자기자신의 과거값]의 선형 가중합
- 자기 회귀 누적 이동평균 모형(ARIMA모형)(Auto Regressive Integrated Moving Average Model)
 - 분기/반기/연간 단위로 다음 지표를 예측하거나, 주간/월간 단위로 지표를 리뷰하여 트렌드를 분석
 - 시계열의 비정상성을 설명하기 위해, 관측치간의 차분을 사용
 - 비정상 시계열 모형 -> 차분 or 변환 -> AR or MA or ARMA 모형으로 정상화
 - o Integrated는 누적을 의미하는데, 차분을 이용하는 시계열 모형에서 이 표현을 사용
- 백색잡음(White Noise): 모든 개별 확률변수들이 서로 독립이고 동일한 확률분포를 따르는 확률과정을 말함(I.I.D.) -백색잡음과정(White Noise Process): 백색잡음과정 a(t)는 독립이고 같은 분포를 따르며 확률 변수임(평균 = 0)

자기 회귀 모형 AR(p)	이동평균모형 MA(q)	자기회귀 누적 이동평균 모형 ARIMA(p, d, q)
$Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \cdots + \phi_p Z_{t-p} + a_t$	$Z_t = a_t - \theta_1 a_{t-1} - \theta_2 Z_{t-2} - \cdots - \theta_q Z_{t-q}$	
자기 자신의 과거 관측값이 영향 줌	자기 자신의 과거 오차항들이 영향 줌	비정상 모형 → 차분으로 정상화 ○ p = AR모형과 관련있는 차수 ○ q = MA모형과 관련있는 차수
 Z(t-1) = 1시점 이전 시계열자료 Z(t-p) = p시점 이전 시계열자료 Ф(p) = p시점이 현재 시점에 영향을 주는 정도를 나타내는 모수 a(t) = 백색잡음과정 = 오차항 	 Z(t-1) = 1시점 이전 시계열자료 Z(t-q) = q시점 이전 시계열자료 θ(q) = q시점이 현재 시점에 영향 주는 정도를 나타내는 모수/가중치 a(t) = 백색잡음과정 = 오차항 	 d = 차분 횟수 (difference) ARIMA에서 ARMA로 정상화할때 차분을 몇 번 했는가! 차수 p, d, q의 값에 따라서
$AR(1): Z_t = \phi Z_{t-1} + a_t$	$MA(1): Z_t = a_t - \theta_1 a_{t-1}$	모형의 이름이 달라진다~ <차수 p, q >
AR(1): 1차 자기 회귀 모형 바로 이전 시점의 자료만 영향	MA(1): 1차 이동평균모형 같은 시점과 바로 이전 시점의 백색잡음의 결합	 p = 0 이면, IMA(d, q) 모형 → d 번 차분하면, MA(q) 모형 q = 0 이면, ARI(p, d) 모형 → d 번 차분하면, AR(p) 모형
$AR(2)$: $Z_t = \phi Z_{t-1} + \phi Z_{t-2} + a_t$	$MA(2)$: $Z_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2}$	<차수 d >
AR(2): 2차 자기 회귀 모형 과거 2 시점까지의 자료만 영향	MA(2): 2차 이동평균모형 같은 시점과 과거 2 시점까지의 백색잡음의 결합	d = 0 이면, ARMA(p, q) 모형 정상성 만족!

- 분해 시계열: 시계열에 영향 주는 일반적인 요인을 시계열에서 분리하여 분석하는 방법 -> 분해식 사용
 - ㅇ 회귀 분석적인 방법을 주로 사용
 - -> 관찰된 연속형 변수들에 대해, 두 변수 사이의 모형을 구한 뒤 적합도를 측정하는 분석 방법
 - 시계열 구성요소: 추세 / 계절 / 순환 / 불규칙 요인

	구성요소	특징	예시
<분해식 >	추세요인 (T)	어떤 특정한 형태 취함	선형적/ 이차식/ 지수적 형태
$Z_t = f(T_t, S_t, C_t, I_t)$	계절요인 (S)	고정된 주기에 따라 변화함	요일마다/ 월마다/ 분기마다
	순환요인 (C)	알려지지 않은 주기에 따라 변화함	경제적/ 자연적 이유 없이
	불규칙요인 (I)	설명할 수 없음, 오차에 해당함	추세/ 계절/ 순환요인으로 설명X

4) 베이지안 기법

(1) 확률 및 기본 통계이론

- 확률 (Probability)
 - ㅇ 비슷한 현상이 반복해서 일어날 경우 어떤 사건이 발생할 가능성을 숫자로 표현하는 방법
 - ㅇ 같은 원인에서 특정한 결과가 나타나는 비율
- 교사건(Intersection of Events)
 - ㅇ P(A∩B) = 사건 A, B에 동시에 속하는 기본 결과들의 모임

S:표본공간	표본 공간/ 전체 개수
A : 사건(Event)	관심 있는 부분의 개수
P(A) = A / S P(B) = B / S	(관심사건 / 전체) %
P(A∩B) : 교사건	관심사건 두 개가 동시에 속하는 확률

• 통계 파라미터

- ㅇ 표본 평균/표본 분산/표본 표준편차/표본 공분산/상관계수/상관계수 행렬
- 표본 공분산(Sample Covariance)
 - 2개 이상의 변량 데이터가 주어질 경우, 각 변량간의 변화하는 양상을 나타내는 통계적 척 도
 - 2가지 변수(x, y)가 변하는 정도를 수로 나타냄
 - 한 변수가 변할 때 다른 변수가 변하는 정도/두 변수가 동시에 변하는 정도

○ 변량(Variance): 조사내용으로서의 특성을 수량으로 나타낸 값(연속 변량, 이산 변량)

표본 평균	표본 분산	표본 표준편차	표본 공분산	상관계수	상관계수 행렬
(총합) / (개수) 무게중심	평균값의 차이에 대한 제곱의 평균 흩어진 정도	분산의 제곱근 (단위 일치시킴)	각 변량간의 변화하는 양상	두 변량간의 상관관계 (0 ≤ ρ ≤ 1)	각 변량간의 상관계수를 행렬로 나타낸 값
$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$	$cov(x,y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$	$\rho = \frac{cov(x, y)}{\sqrt{cov(x, x)}\sqrt{cov(y, y)}}$	$(ex)\begin{bmatrix}1 & 0.35\\0.35 & 1\end{bmatrix}$

(2) 조건부 확률(Conditional Probability)

- 어떤 사건이 일어난다는 조건에서 다른 사건이 일어날 확률
- 2개의 사건 A, B에 대하여, 사건 A가 일어난다는 선행조건 하에 사건 B가 일어날 확률
- A -> B 조건부 확률 P(B|A) = P(A∩B) / P(A), P(A) ≠ 0
- B -> A 조건부 확률 P(A|B) = P(A∩B) / P(B), P(B) ≠ 0

(3) 전 확률의 정리(Law of Total Probability)

- 사건의 원인을 나눔 -> 원인이 되는 확률의 가중합으로 사건의 확률을 구함
- 나중에 주어지는 사건 A의 확률을 구할 때, 사건 A의 원인을 여러가지로 나누어서 각 원인에 대한 조건부 확률P(A|Bi)과 그 원인이 되는 확률P(Bi)의 곱에 의한 가중합으로 구할 수 있음
- 전 확률의 정리 공식
 - P(A)
 - $= P(B1 \cap A) + P(B2 \cap A) + ... + P(Bn \cap A)$
 - = P(B1) P(A|B1) + P(B2) P(A|B2) + ... + P(Bn) P(A|Bn)
 - $= \sum P(Bi) P(A|Bi)$

(4) 베이즈 정리(Bayes' Theorem)

- 어떤 사건에 대해 관측 전 원인에 대한 가능성과 관측 후 원인 가능성 사이의 관계를 설명
- 두 확률변수의 사전확률과 사후확률 사이의 관계를 설명하는 확률이론
- 베이즈 확률
 - 어떤 사건 B가 서로 배반인 A1, A2, ..., An 중에서 어느 한 가지 경우로 발생하는 경우, 실제 B가 발생할 때, 이것이 Ai일 확률
- P(Ai|B)
 - B를 표본공간S 내 임의의 사상(집합)이라고 하고 서로 배반인 사상 A1, A2, ... , An 의 합 사상 = 표 본공간S라고 하면 B사건을 근거로 Ai사건이 발생할 확률

A_1	A_2	A_3	A _n
4.00	4 o B	4 o B	<i>B</i> 사건
$A_1 \cap B$	$A_2 \cap B$	$A_3 \cap B$	$ A_n \cap B$

베이즈 정리

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$
이고,
 $P(A \cap B) = P(A)P(B|A)$ 이므로,

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i \cap B)}{\sum_{i=1}^n P(A_i \cap B)}$$

$$= \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \cdots + P(A_n)P(B|A_n)}$$

베이즈 정리 표현식

5) 딥러닝 분석

(1) 딥러닝(Deep Learning)

- 딥러닝 ⊂ 머신러닝 ⊂ 인공지능
- 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화를 시도하는 기계학습 알고리즘의 집합
 - 추상화(Abstraction): 많고 복잡한 데이터를 핵심 요약
- 딥러닝 부각이유
 - 기울기 소실 해결: 기존 인공신경망 모델의 문제점이었음
 - 분석 시간의 단축: 강력한 GPU를 연산에 활용함 -> 하드웨어 연산속도↑
 - 데이터 확보 가능: 빅데이터 등장 & SNS 활용↑

(2) 딥러닝 알고리즘

- DNN / CNN / RNN / GAN ...
- DNN(Deep Neural Network): 은닉층을 심층 구성한 신경망
 - 입력층, 여러 개의 은닉층(Hidden Layer), 출력층으로 이루어진 인공신경망(ANN)
 - 입력층: 가중치를 곱하고, 은닉층으로 이동
 - 은닉층: 가중치를 곱하면서 다음 계층으로 이동
 - ㅇ 역전파 알고리즘
 - 출력층, 은닉층, 입력층 순서로 역방향 수행 반복 -> 최적화된 결과 도출
 - 일반적인 인공신경망과 마찬가지로, 복잡한 비선형 관계들을 모델링할 수 있음
 - 여러 은닉층을 통해, 더 적은 수의 유닛으로도 복잡한 데이터를 모델링할 수 있게 해줌
- CNN(Convolutional Neural Network)(합성곱 신경망)
 - ㅇ 필터 기능과 신경망을 결합
 - 필터 기능(Convolution): 기존 영상처리의 필터 기능을 의미함
 - ㅇ 필터 기능을 통해 입력이미지에서 특징 추출 -> 다층 신경망을 통해 분류 수행
 - ㅇ 여러 개의 컨볼루션 층(합성곱 층) & 서브샘플링 층(풀링 층)으로 이루어진 인공신경망
 - o 입력층 합성곱 연산
 - 필터로 입력이미지에서 특징(피처) 추출 -> 피처맵 구성
 - 피처맵(Feature Map): 이미지 추출 시, 환경변화에 잘 적응하는 강인한 특징을 유도한 2차원 맵
 - 환경변화: 왜곡, 변형 등을 의미함
 - ㅇ 피처맵에서 서브샘플링 연산
 - 피처맵에서 서브샘플링 연산 -> 화면 크기 축소
 - 서브샘플링 층(Subsampling): 만들어진 피처맵에 대해 공간적 해상도를 줄인 뉴런층
 - 서브샘플링을 통해, 차원 축소 -> 문제 복잡도 축소
 - 연산자: 최대 풀링(Max Pooling)/최소 풀링(Min Pooling)/평균 풀링(Average Pooling) 등
 - 최대 풀링은 최댓값, 최소 풀링은 최솟값, 평균 풀링은 평균값을 취함
 - 풀링을 통해서 차원 축소 뿐만 아니라, 피처맵이 이동이나 왜곡에 대해 강인해지도록 할 수 있음
 - 피처맵에서 합성곱&서브샘플링 반복연산: 반복하여 최적화된 피처맵 구성
 - 완전연결계층에서 다층신경망으로 분류수행
 - 완전연결계층 -> 1차원 행렬 매핑 -> 확률로 분류
 - 완전연결계층(Fully Connected Layers)의 다층 신경망에 피처맵을 입력
 - 2차원 이미지를 1차원 행렬로 변환 -> 신경망 입력에 하나씩 매핑(Mapping)
 - 분류: Softmax 함수를 이용하여, 결과를 확률로 분류(Classification)
- RNN(Recurrent Neural Network)(순환 신경망)
 - 은닉층에서 재귀적인 신경망을 가짐
 - 입력층, 은닉층, 출력층으로 구성 / 은닉층에서 재귀적인 신경망을 가지는 알고리즘
 - 유닛간 연결이 순환적인 구조를 가짐
 - 입력받는 신호의 길이가 한정되지 않는, 동적인 데이터를 처리함
 - 음성 신호, 연속적 시계열 데이터 등의 순차적인 데이터 분석에 적합
 - 시퀀스 형태의 입력을 처리할 수 있음
 - 필기체 인식 분야에서도 활용됨
 - 문제점: 장기 의존성 문제 / 기울기 소실 문제
 - 장기 의존성 문제(Long-Term Dependency): 현재 노드와 거리가 먼 과거 상태를 사용한 문 맥처리가 어려운 문제
 - 확률적 경사 하강법 / 시간 기반 오차 역전파를 사용 -> 가중치 업데이트

- 확률적 경사 하강법(SGD): 손실함수의 기울기 계산 -> 조금씩 아래로 -> 손실함수 최소 지점에 도달하도록 하는 알고리즘
- 시간 기반 오차 역전파: 역전파 알고리즘(Back Propagation)을 통해 비용의 기울기를 찾음

6) 비정형 데이터 분석

(1) 비정형 데이터 분석

• 비정형 데이터 안에서 통계적 규칙/패턴을 탐색하고 의미있는 정보로 변환하여 기업의 의사결정에 적용 하는 분석기법

(2) 비정형 데이터 분석기법

• 사회 연결망 분석/감성 분석/오피니언 마이닝/텍스트 마이닝/웹 마이닝

사회 연결망 분석	감성 분석	오피니언 마이닝	텍스트 마이닝	웹 마이닝
SNA	Sentiment Analysis	Opinion Mining	Text Mining	Web Mining
그룹에 속한 사람들 간 네트워크 특성/구조를 파악/분석/시각화	텍스트로부터 어떤 주제에 대한 주관적 인상/감정/태도 를 뽑아내는 분석	주관적 의견 포함 데이터 사용자가 게시한 의견/감정을 나타내는 패턴 분석	텍스트 데이터에서 자연어 처리 <mark>방식으로</mark> 정보 추출	웹에서 발생하는 고객 행위/특성 데이터 분석/추출/정제하여 의사결정에 활용
- 개인과 집단간 관계	- 제품 평판 분석 - 측정 주체에 따라	- 선호도 판별	- 문서에서 정보 습득 - 단어/구/절로 전처리 - 정보추출/문서요약 문서분류/문서군집화	- 노드: 정보단위
- <mark>노드/링크</mark> 로 분석	달라질 수 있음 - 문장에서 긍정/부정	- 긍정/부정/중립		- 링크: 연결점
- 연결정도/포괄성/밀도	단어 발생 빈도 파악	- 특징추출/문장인식		- 유형: 내용/사용/구조

(3) 텍스트 마이닝(Text Analysis)

- 텍스트 형태의 비정형 데이터들을 자연어처리 방식을 이용하여 정보를 추출하는 분석기법
- 자연어처리(NLP): 인간이 이해할 수 있는 언어를 기계가 이해할 수 있게 하는 기술
- 절차: 텍스트 수집 -> 의미 추출 -> 패턴 분석 -> 정보 생성
 - 텍스트 수집: DB, 문서 등에서 수집 -> 단어/구/절을 가공할 수 있도록 전처리
 - ㅇ 의미 추출: 복잡한 표현을 단순화 -> 의미 데이터로 저장
 - ㅇ 패턴 분석: 의미 데이터 기반으로 문서 자동 군집화/분류
 - ㅇ 정보 생성: 시각화 도구로 정보 표현
- 기능: 정보 추출/문서 요약/문서 분류/문서 군집화
 - 정보 추출(Extraction): 문장 or 질의 포맷에 맞추어 원하는 정보를 추출
 - 문서 요약(Summarization): 문서의 중요 내용을 글로 요약
 - 문서 분류(Classification): 주어진 키워드 집합에 따라 문서를 카테고리로 분류
 - 문서 군집화(Clustering): 동일한 내용의 문서들을 묶음

(4) 오피니언 마이닝(Opinion Mining)

- 주관적 의견이 포함된 데이터에서 사용자가 게재한 의견/감정을 나타내는 패턴을 분석하는 기법
- 특정 제품/서비스를 좋아하는/싫어하는 이유 분석 -> 실시간 여론 변화 확인
- 절차: 특징 추출 -> 문장 인식 -> 요약 및 전달
 - 특징 추출: 긍정/부정 단어 정보 추출
 - 문장 인식: 규칙기반/통계기반 방법 -> 세부 평가요소&오피니언으로 구성된 문장 인식
 - ㅇ 요약 및 전달
 - 긍정/부정 표현 통계
 - 주요 문장 추출/요약

(5) 웹 마이닝(Web Mining)

- 웹상의 문서/서비스들로부터 정보를 자동으로 추출/발견하는 기법
- 유형: 웹 내용/사용/구조 마이닝

(6) 사회 연결망 분석(SNA; Social Network Analysis)

- 개인과 집단간 관계를 노드와 링크로 그룹에 속한 사람들간의 네트워크 특성&구조를 분석&시각화
- 절차: 데이터 수집 -> 분석 -> 시각화
 - 데이터 수집: SNS에서 데이터 수집- 웹 크롤러, NodeXL 등 활용
 - o 데이터 분석: R, Python, NodeXL 등 활용
 - 이 데이터 시각화: 분석 방향, 필요한 정보에 따라 시각화

• 주요 속성: 응집력/ 구조적등위성/ 명성/ 범위/ 중계

응집력	구조적 등위성	명성	범위	중계
Cohension	Equivalence	Prominence	Range	Brokerage
사람들 간의 강한 사회화 관계의 존재	네트워크의 <mark>구조적 지위,</mark> 그 지위가 주는 역할이 동일한 사람들 간 관계	네트워크에서 권력을 갖고 있는 사람이 누군가를 확인	네트워크 규모	다른 네트워크와 연결해주는 정도

• 측정지표: 연결정도/ 포괄성/ 밀도/ 연결정도 중심성/ 근접 중심성/ 매개 중심성

연결정도	포괄성	밀도	연결정도 중심성	근접 중심성	매개 중심성
한 노드가 몇개의 노드와 연결되어 있는가 (연결 관계 개수)	네트워크 내 서로 연결된 노드의 개수	네트워크 내 노드 간 전반적인 연결정도 수준 (전체구성원 관계)	한 노드가 연결하고 있는 다른 노드들의 합	각 노드간 거리를 바탕으로 중심성 측정 (모든 노드간 거리)	네트워크 내 한 노드가 다른 노드들 사이에 위치하는 정도 (한 노드의 영향력)

7) 앙상블 분석

(1) 앙상블(Ensemble)

- 여러 개의 동일 or 상이한 모형들의 예측 or 분류 결과를 종합하여 최종적인 의사결정에 활용하는 기법
- 앙상블 특징: 신뢰성↑ 정확도↑ 원인분석 X
 - ㅇ 높은 신뢰성: 다양한 모형의 결과를 결합 -> 단일 모형보다 높은 신뢰성 확보
 - 높은 정확도: 이상값 대응력 상승/전체 분산 감소 -> 높은 모델 정확도(Accuracy)
 - ㅇ 원인분석에 부적합: 모형 투명성 감소 -> 현상에 대한 정확한 원인분석에는 부적합

(2) 앙상블 알고리즘

- 여러 개의 예측 모형 생성 -> 조합 -> 하나의 최종 예측 모형
 - ㅇ 조합: 다중 모델 조합, 분류기 조합
- 여러 개의 학습 모델 훈련 -> 투표 -> 최적화된 예측 수행 및 결정
 - ㅇ 투표: 다수결로 최종 결과를 선정
- 학습 데이터의 작은 변화 때문에, 예측 모형이 크게 변한다면 -> 불안정한 학습방법
- 가장 안정적인 학습방법: 1-nearest neighbor, linear regression, ...
 - 1-nearest neighbor: 가장 가까운 자료만 변하지 않으면, 예측 모형이 변하지 않음
 - ㅇ 선형 회귀 모형: 최소제곱법으로 추정하여 모형을 결정함

(3) 앙상블 학습절차

- 도출 및 생성 -> 집합별 모델학습 -> 결과 조합 -> 최적 의견 도출
 - ㅇ 도출 밎 생성: 학습 데이터에서 학습집합을 여러 개 도출
 - 집합별 모델학습: 각각의 집합마다 모델학습

(4) 앙상블 기법 종류

• 배깅 / 부스팅 / 랜덤포레스트

앙상블 기법					
Sam	Sampling				
배김 Bagging					
학습 데이터에서 다수의 부트스트랩 자료 생성	학습 데이터에 동일한 가중치 적용하여	학습 데이터에서 N개의 부트스트랩 자료 생성			
· · · · ↓ ↓ 각 자료마다	분류기 생성	↓ ↓ 분류기 훈련 후			
모델 생성	가중치 변경하여 분류기 다시 생성	대표 변수 샘플 도출			
↓ 각 모델마다 도출된 결과 결합	반복 및 결합	↓ 의사결정나무의 Leaf Node로 분류			
↓	↓	↓			
최종 예측 모형	최종 분류 모형	Leaf Node들의 선형결합			

(5) 배깅(Bagging; Bootstrap Aggregating)

- 부트스트랩 데이터 여러 개 -> 데이터마다 모델링 -> 다수결로 최종 결정
- 학습 데이터에서 다수의 부트스트랩 자료를 생성하고, 각 자료에 대해 모델을 생성한 후 결합하여 최종 예측모델을 만드는 알고리즘
- 부트스트랩(Bootstrap): 단순 랜덤 복원추출 -> 동일 크기 표본을 여러 개 생성하는 샘플링 방법
- 절차: 부트스트랩 데이터 추출 -> 단일 분류자 생성 -> 최종 모델결정
 - 부트스트랩 데이터 추출: 동일 크기 부트스트랩 데이터 n개 추출
 - 단일 분류자 생성(모델링): 각 데이터마다 단일 분류자 모델 n개 생성
 - 최종 모델 결정: 다수결(Majority Voting) or 평균으로 n개의 모델 결과를 결합
 - 보팅: 여러 모델을 학습시켜서 나온 결과 → 다수결 투표로 최종 결과 선정
- 특징

- 배깅에선 가지치기 하지 않음 -> 최대한 성장한 의사결정나무들을 활용
- ㅇ 훈련자료를 모집단으로 간주 -> 평균 예측 모형을 구함 -> 분산을 줄이고, 예측력을 향상시킴

(6) 부스팅(Boosting)

- 예측력 약한 모델들을 결합 -> 강한 예측 모형 생성
- 잘못 분류된 개체들에 가중치 적용 후 새로운 분류기 모델을 생성하는 과정을 반복하고, 약한 모델(Weak Learner)들을 결합하여 최종 모델을 만드는 알고리즘
- 순차적으로 진행: 분류기 1 생성 -> 이 정보를 바탕으로 분류기 2 생성 -> 이 정보를 바탕으로 분류기 3 생성 -> 반복... -> 생성된 분류기들을 결합 -> 최종 분류기 모델
- 절차: 동일 가중치 분류기 생성 -> 가중치 변경하여 분류기 생성 -> 최종 분류기 생성
 - 가중치 변경: 이전 분류기의 결과에 따라서 가중치를 변경
 - 최종 분류기: 목표 정확도가 나올 때까지 n회 반복 후, 최종 분류기 결정
- AdaBoost(Adaptive Boost Algorithm): 배깅보다 성능 높은 경우 많음 (예측 오차 향상)
 - ㅇ 이진 분류 문제
 - 랜덤 분류기보다 좀 더 좋은 분류기 n개 생성
 - n개 분류기마다 가중치 설정 (가중치 합 = 1)
 - o n개 분류기를 결합하여 최종 분류기 생성

(7) 랜덤 포레스트(Random Forest)

- 랜덤 입력에 따른 여러 트리의 집합인 포레스트를 이용한 분류 방법
- 배깅, 부스팅보다 더 많은 무작위성을 주어서 약한 학습기들을 생성한 후, 이것들을 선형결합하여 최종 학습기를 만드는 알고리즘
- 의사결정트리의 분산이 크다는 단점 개선 -> 약한 학습기들을 선형결합
- 무작위성(랜덤성)
 - 사건에 패턴/예측가능성/인위적요소/규칙성이 없음
 - 트리들이 서로 조금씩 다른 특징을 가짐 -> 예측 결과들의 비상관화&일반화
 - ㅇ 노이즈에 강인하게 해줌
- 데이터로부터 임의복원추출을 통해 여러 개의 학습데이터를 추출하고, 학습데이터마다 개별 학습을 시켜서 트리를 생성하여, 투표 or 확률 등을 이용하여 최종목표변수를 예측
- 절차: 데이터 추출 -> 대표변수 샘플 도출 -> Leaf Node 분류 -> 최종모델 결정
 - 부트스트랩 데이터 추출: 부트스트랩 데이터 n개 추출
 - 대표변수 샘플 도출: n개의 분류기를 훈련시켜 대표변수 샘플을 도출
 - Leaf Node 분류: 대표변수 샘플들을 트리의 Leaf Node로 분류
 - 최종모델 결정: Leaf Node들을 선형결합

• 특징

- 변수 제거 없이 진행 -> 입력변수가 많은 경우 정확도/예측력 높음
- ㅇ 이론적 설명과 결과 해석이 어려움
- 배깅/부스팅과 비슷 or 더 좋은 예측력
- ㅇ 배깅과의 가장 큰 차이점: 전체 변수 집합에서 부분 변수 집합을 선택한다는 점

(8) 랜덤 포레스트 주요기법

- 배깅을 이용한 포레스트 구성/임의노드 최적화/중요 매개변수(크기/깊이/임의성)
- 배깅을 이용한 포레스트 구성(Bagging = Bootstrap Aggregating)
 - ㅇ 부트스트랩 -> 조금씩 다른 훈련 데이터 생성 -> 훈련시킨 기초 분류기들을 결합시킴
- 임의노드 최적화: 노드 분할 함수/훈련목적함수/임의성 정도
 - ο 훈련목적함수를 최대화시키는 노드 분할 함수의 매개변수θ 최적값을 구하는 과정

노드 분할 함수	훈련목적함수	임의성 정도
- 각 트리노드마다 <mark>좌우 자식노드로</mark> 분할하기 위한 함수 h(v, θj) ∈ {0, 1}	- τ = 노드 분할 함수의 매개변수 θ의 가능한 모든 경우를 포함하는 집합	- 비상관화 수준의 결정요소 - 임의성 정도는 τj / τ 로 결정됨
- 노드에 도달한 데이터는 함수결과에 따라서 자식노드로 보내짐 $- m개변수 \theta = \phi, \Psi, \tau \text{에 따라서}$ 분할 함수 결정됨	- rj = j번째 노드의 훈련단계에서 r의 부분집합 rj을 만듦 - 매개변수의 최적값 θj*는 임곗값들 rj안에서, 목적함수 = 정보 획득량을 최대로 만드는 값으로 계산됨	- ρ = τj 가 임의성 정도 결정 ρ 값은 모든 트리 노드에서 같은 값 - ρ = τ] → 모든 트리 서로 동일 - ρ = 1 → 최대 임의성 비상관화된 트리

• 노드 분할 함수의 매개변수

- Φ = 필터함수/특징 몇개만 선택(특징 배깅)
- Ψ = 분할함수의 기하학적 특성을 이용하여 데이터를 분리할지 나타냄
- ο τ = 이진 테스트의 부등식에서 임곗값들을 가지고 있음
- 중요 매개변수: 포레스트 크기 / 최대 허용 깊이 / 임의성 정도

포레스트 크기 T	최대 허용 깊이 D	임의성 정도
- 포레스트의 <mark>트리 개수</mark> - 포레스트를 몇개의 트리로 구성할지 결정하는 매개변수 - 크기 작으면 → 시간 ↓ 일반화능력 ↓	- 한 트리의 최대 깊이 - 한 트리에서 루트~종단 노드까지 최대 몇 개의 노드(테스트)를 거칠지 결정하는 매개변수	임의성 정도에 따라서 비상관화 수준 <mark>이 결정됨</mark>
- 크기 크면 → 시간↑정확성↑ 일반화능력↑	- 깊이 작으면 → 과소 적합 - 깊이 크면 → 과대 적합	

8) 비모수 통계

(1) 비모수 통계(Non-parametric statistics)

- 평균, 분산과 같은 모집단의 분포에 대한(분포 무관) 모수성을 가정하지 않고(모수에 대한 가정을 전제하지 않고) 분석하는 통계적 방법
- 모수: 모집단의 분포 특성을 규정짓는 척도 & 모집단의 특성치
- 모수에 대한 통계적 추론: 모집단에서 추출한 표본 특성을 분석 -> 모수에 대한 추론
- 비모수 통계의 특징
 - 통계량: 빈도 / 부호 / 순위
 - 데이터가 모수적 분석방법이 가정한 특성을 불만족하는 경우에 사용
- 비모수 통계의 장점
 - 모수성 가정 불만족으로 인한 오류 가능성 작음
 - 모수적 방법보다 통계량 계산 & 직관적 이해 쉬움
 - ㅇ 모집단 분포와 무관하게 사용 가능
 - 샘플 개수 작아도 사용 가능(10개 미만)
 - 이 이상값 영향 적음

• 비모수 통계 검정방법 종류

구분	비모수 통계	모수 통계
단일 표본 (1)	<u>부호 검정</u> <u>윌콕슨 부호 순위 검정</u>	단일표본 T-검정
두 표본 (2)	윌콕슨 부호 합 검정	독립표본 T-검정
	<u>부호 검정</u> <u>윌콕슨 부호 순위 검정</u>	대응표본 T-검정
분산 분석	크루스칼-윌리스 검정	ANOVA
무작위성 (임의성)	런 검정	-
상관 분석 (연관성)	스피어만 순위 상관계수	피어슨 상관계수

(2) 단일 표본 부호 검정

• 부호 검정, 윌콕슨 부호 순위 검정

	부호 검정 Sign Test	윌콕슨 부호 순위 검정 Wilcoxon Signed Rank Test
설명	- 차이의 부호 O / 차이의 크기 X - 중위수와 자료의 차이를 부호로 전환 (-), (+)	- 차이의 부호 O / 차이의 크기 O - 단일 표본 & 대응 표본에서 중위수에 대한 검정
가정	- 기본 가정: 연속적 & 독립적인 분포 - 분포의 대칭성 가정: 없어도 된다~	- 기본 가정: 연속적 & 독립적인 분포 - 분포의 대칭성 가정: 반드시 필요 O
가설	- H0: θ = θ₀ (ex. 중위수는 20이다.) - H1: θ ≠,>,< θ₀	- H0: θ = θ₀ (ex. 중위수는 20이다.) - H1: θ ≠,>,< θ₀
검정 절차 & 특징	 - 가정한 중위수 θ₀와 같은 데이터를 제외하고 남은 표본 개수를 n으로 둔다! - 차이가 양수이면 Ψi = 1 - 차이가 음수이면 Ψi = 0 - 검정통계량 B = ΣΨi 	 - 위치 모수 θ₀와 같은 데이터는 표본에서 제외 - Yi = Xi - θ₀ = 표본 데이터와 중위수의 차이값 - Ri+ = Yi 들의 순위 (가장 높은 값 = n) Yi 가 동점(tie)인 경우 평균순위 사용! - 차이가 양수이면 Ψi = 1 - 차이가 음수이면 Ψi = 0 - 검정통계량 W+ = ΣΨiRi+

(3) 두 표본 검정

• 윌콕슨 순위 합 검정, 대응 표본 검정

	윌콕슨 순위 합 검정 Wilcoxon Rank Sum Test	대응 표본 검정 Paired Sample Test
설명	- 윌콕슨 순위합 = 만-휘트니 U검정 - 두 표본의 혼합표본(=표본1+표본2) 순위 합을 이용	- 모집단 1개에 2가지 처리 - 각 쌍의 차이값을 통해, 두 중위수의 차이 검정 - 각 쌍의 차이값 = Di = Yi - Xi
가정	- 기본: 연속적 & 동일한 분포의 독립적인 모집단 2개 - 분포의 대칭성 가정: 반드시 필요 O	Di = 연속적 분포 & 중위수 δ D 에 대해서 단일표본에서와 같은 부호 검정 & 윌콕슨 부호 순위 검정을 사용한다!
가설	- Δ = 두 모집단의 중위수의 차이값 - H0: Δ = 0 (두 모집단의 중위수가 같다.) - H1: Δ \neq , >, < 0	- δ = Di들의 중위수 - H0: δ = 0 (두 쌍의 중위수가 같다.) - H1: δ \neq , > , < 0
검정 절차 & 특징	- 두 표본의 표본 개수 m≥n, N=m+n - 개수 많은 표본 Xi / 개수 더 적은 표본 Yj - 혼합표본에서 Yj의 순위 Rj 계산 - 동점 있으면 → 평균 순위 사용! - 검정통계량 W = Σ Rj - {n(n+1)}/2	부호 검정 - 검정통계량 B = ΣΨi 월콕슨 부호 순위 검정 - 검정통계량 W+ = ΣΨiRi+

(4) 크루스칼-왈리스 검정(Kruskal-Wallis Test)

- 분산분석
- 3개 이상의 집단의 분포 비교
- 3개 이상의 그룹별 중위수 비교
- 각 그룹의 표본 개수는 다를 수 있음
- 모수적 방법의 One-way ANOVA와 같은 목적
- 가설 설정
 - H0: 각 그룹간 중위수는 같다. (ex. A, B, C 3개 그룹의 식이요법은 모두 차이가 없음)
 - H1: 적어도 1개 그룹의 중위수는 다르다.
- 순위 부여: 혼합표본(N) 크기순 나열 -> 가장 높은 값은 N, 가장 낮은 값은 1로 순위를 부여함
- 값 계산: 각 그룹 순위 합 / 평균 순위 / 총 평균 순위를 계산함

(5) 런 검정(Run Test)(Wald-Wolfowitz Runs Test)

• 연속적인 값들의 임의성(무작위성)

• 변수값 2개를 가지는 연속적인 측정값들이 어떤 패턴/경향 없이 임의적(무작위적)으로 나타나는 것이 맞는가?

- 런: 동일한 측정값들의 시작~끝까지의 덩어리
- 런 검정의 가정
 - 변수값을 2개 가져야 함 (ex. 동전 앞면, 뒷면)
 - ㅇ 이분화된 자료가 아니면 -> 기준값을 이용하여 이분화 해야 함
 - 기준값은 평균값/ 중위수/ 최빈값/ 또는 다른 지정값으로 사용 가능
- 가설 설정
 - H0: 연속적인 측정값들이 임의적이다.
 - H1: 연속적인 측정값들이 임의적이지 않다.(어떤 패턴/경향이 있다.)
- 런 검정의 검정 통계량

$$\mathrm{mean:}\ \mu = \frac{2\ N_+\ N_-}{N} + 1,$$

$$ext{variance: } \sigma^2 = rac{2 \; N_+ \; N_- \; (2 \; N_+ \; N_- \; -N)}{N^2 \; (N-1)} = rac{(\mu-1)(\mu-2)}{N-1}.$$