Задачи

для подготовки к рубежному контролю по модулю 3.

Дискретная математика, ИУ5 — 2 курс, 4 семестр, 2015 г. Лектор Ткачев С.Б.

Элементы общей алгебры

- 1. На множестве M определена операция \circ по правилу $x \circ y = x$. Установите, является ли алгебра (M, \circ) полугруппой. Существуют ли в ней правые (левые) нейтральные элементы?
- 2. Пусть на множестве M^2 , где M некоторое множество, определена бинарная операция \circ по правилу (x,y) \circ (z,t) = (x;t). Является ли (M^2, \circ) полугруппой? Существует ли в ней нейтральный элемент?
- 3. На множестве целых чисел Z определена операция \circ по правилу $a \circ b = a + b + ab$. Покажите, что алгебра (Z, \circ) является коммутативным моноидом.
- 4. Является ли моноидом алгебра $(2^A, \cap)$, где A некоторое множество.
- 5. В аддитивной группе вычетов по модулю 7 решить уравнение $4 \; \oplus_{_{7}} \; x = 2$.
- 7. В мультипликативной группе вычетов по модулю 7 решить уравнение $3^{^{2011}}\odot_{_{7}}x=2$.
- 8. В группе подстановок S4 решите уравнение

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \circ X \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

9. В группе подстановок S₇ решите уравнение

$$(1\ 3\ 6)\circ(5\ 6)\circ X\circ(1\ 4\ 2\ 7) = (1\ 3\ 5).$$

- 10. В мультипликативной группе вычетов $Z_{\scriptscriptstyle 31}^{\scriptscriptstyle \odot}$ решите уравнение $2\odot x\odot 8=5$.
- 11. Покажите, что алгебра $(\mathbb{R}\setminus\{0\},\odot)$, где $x\odot y=3xy$, является группой. Решите в этой группе уравнение $2\odot x=5$.
- 12. Установите, является ли кольцом алгебра $(2^{A}, \cap, \cup)$? Основные теоретикомножественные тождества считать известными.
- 13. Установите, является ли кольцом алгебра $(\mathbb{Z},+,\cdot)$?
- 14. Установите, является ли кольцом алгебра $(2^{\scriptscriptstyle A},\Delta,\cap)$, где ${\sf A}$ некоторое множество?
- 15. Установите, являются ли полями следующие кольца вычетов: \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_6 , \mathbb{Z}_{31} . Ответ обоснуйте.
- 16. В поле \mathbb{Z}_{τ} решите систему уравнений

$$3x_1 + 5x_2 + 2x_3 = 4$$
,
 $2x_1 + 3x_2 - x_3 = 1$,
 $4x_1 - 6x_3 = 2$.

17. Существуют ли делители нуля в кольце $\mathbb{Z}_{_4}$ вычетов по модулю 4? В кольце $Z_{_5}$? $Z_{_{2015}}$?

- 18. Какие из множеств матриц, элементы которых действительные числа, образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?
- (а) множество матриц вида $egin{pmatrix} a & b \ 0 & c \end{pmatrix}$, $a,b,c\in\mathbb{R}$?
- (б) множество матриц вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \ a,b \in \mathbb{R}$.
- 19. Установить, разрешима ли в кольце $\mathbb{Z}_{\scriptscriptstyle 21}$ система уравнений

$$\begin{cases} 5x + 2y = 1, \\ y - 11x = 13? \end{cases}$$

Теория графов

1. Выполнить **поиск в глубину** в неориентированном графе из вершины V_1 . Записать списки смежности. Вершины в списке смежности расположить в порядке возрастания номеров. Привести протокол работы алгоритма, указать D-номера вершин. Построить глубинное остовное дерево.

2. Выполнить **поиск в глубину** в ориентированном графе из вершины V_5 . Записать списки смежности. Вершины в списке смежности расположить в порядке возрастания номеров. Привести протокол работы алгоритма, указать D-номера вершин. Построить глубинное остовное дерево.

3. Выполнить **поиск в ширину** в ориентированном графе из вершины V_5 . Записать списки смежности. Привести протокол работы алгоритма (работу с очередью, изменения массива меток на каждом шаге). На графе указать номера вершин, присваиваемых им в соответствии с порядком посещения при работе алгоритма. Отметить на графе кратчайшие пути из стартовой вершины во все остальные, используя массив «предков», сформированный при работе алгоритма.

4. Решив систему уравнений в полукольце B, найти матрицу достижимости ориентированного графа. Матрица A смежности вершин графа задана таблицей. Решение подробно описать. При нахождении решения пользоваться только формулой для решения линейного уравнения в замкнутом полукольце.

0	1	0	1	1	0	1
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	0	0	1	1	0
0	0	1	0	0	0	1
0	1	1	0	0	0	0
0	1	0	0	0	1	0

5. Решив систему уравнений в полукольце \mathfrak{R}^+ , найти матрицу стоимости ориентированного графа. Матрица А меток дуг графа задана таблицей. Решение подробно описать. При нахождении решения пользоваться только формулой для решения линейного уравнения в замкнутом полукольце и методом исключения переменных.

∞	2	8	8	6
∞	5	8	8	2
2	8	8	6	4
∞	∞	∞	3	3
3	8	8	8	1