### COP5612 - Fall 2015

# **Project 3 - Chord**

### **Group Members:**

1. Dinesh Kumar Sundararajan (UFID: 61314525)

2. Amitabh Suman (UFID: 25834884)

#### What is working? (Status of the Project):

The Chord protocol has been implemented successfully as per the description given in the paper.

#### **Largest Network:**

The largest network that we were able to work with, was 10000 nodes and 10 requests. The average number of hops was found to be 7.3865 and it took around 10 minutes to complete execution.

## **Results and Analysis:**

The code was tested under different conditions.

## 1. Changing Number of Nodes (Keeping no. of requests constant):

First, the no. of requests were kept constant at 10 and the no. of nodes were varied from 10 to 10000. The following tabular column clearly shows the execution times and the average number of hops for different network sizes:

| No. of Nodes | No. of Requests | <b>Execution Time (s)</b> | Avg. No of Hops |
|--------------|-----------------|---------------------------|-----------------|
| 10           | 10              | 14                        | 2.7             |
| 20           | 10              | 15                        | 3.07            |
| 30           | 10              | 17                        | 3.346           |
| 40           | 10              | 18                        | 3.305           |
| 50           | 10              | 20                        | 3.62            |
| 100          | 10              | 28                        | 4.136           |

| 200   | 10 | 44  | 4.645  |
|-------|----|-----|--------|
| 300   | 10 | 61  | 4.986  |
| 1000  | 10 | 193 | 5.7242 |
| 2000  | 10 | 334 | 6.2055 |
| 3000  | 10 | 495 | 6.515  |
| 10000 | 10 | 650 | 7.3865 |

The observed readings were plotted in the form of the following two graphs:



Graph 1: Variation in average number of hops when the number of nodes are changed (No. of Requests is kept constant at 10)



Graph 2: Variation in execution time when the number of nodes are changed (No. of Requests is kept constant at 10)

## 2. Changing Number of Requests (Keeping no. of nodes constant)

Next, the no. of nodes were kept constant at 100 and the no. of requests were varied from 5 to 100. The following tabular column clearly shows the execution times and the average number of hops for this condition:

| No. of Nodes | No. of Requests | <b>Execution Time (s)</b> | Avg. No of Hops |
|--------------|-----------------|---------------------------|-----------------|
| 100          | 5               | 28                        | 4.124           |
| 100          | 10              | 29                        | 4.147           |
| 100          | 15              | 29                        | 4.261           |
| 100          | 20              | 33                        | 4.082           |
| 100          | 25              | 45                        | 4.225           |
| 100          | 30              | 40                        | 4.067           |
| 100          | 35              | 44                        | 4.079           |
| 100          | 40              | 49                        | 4.135           |
| 100          | 45              | 51                        | 4.218           |
| 100          | 50              | 57                        | 4.158           |
| 100          | 100             | 90                        | 4.245           |

These observed readings were plotted in the form of graphs shown below:



Graph 3: Variation in average number of hops when number of requests is changed (Node Size is kept constant at 100)



Graph 4: Variation in execution time when number of requests is changed (Node Size is kept constant at 100)

The following interesting observations have been made from these plots:

- The execution time increases with an increase in the network size. This is due to the fact that it takes more to build the topology for a large network.
- Similarly, there is an increase in execution time as the number of requests increase. This behavior is due to the fact that the chord algorithm takes a longer time to converge.
- When the no. of requests are changed, keeping the network size constant, the average number of hops does not change much. Only the execution time increases a little
- The largest network size that we were able to work with, is 10000. And the maximum no. of requests that it supports is 10.