Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3 по Администрированию систем и сетей «Основы Ethernet и конфигурирование VLAN»

Работу выполнили студенты группы Р34112: Кульбако Артемий, Неманков Илья Преподаватель: Афанасьев Дмитрий Борисович Желаемая оценка: 3

Часть 1	3
Топология	3
Шаг 1. Настройте имена для S1 и S2 и отключите ненужные порты	3
Шаг 2. Настройте IP-адреса устройств	3
Шаг 3. Создайте VLAN	4
Шаг 4. Настройте сети VLAN на основе портов	4
Шаг 5. Сконфигурируйте сети VLAN на основе MAC-адресов	5
Шаг 6. Выведите на экран информацию о конфигурации	6
Шаг 7. Проверка	8
Вывод	10

Часть 1

Топология

Шаг 1. Настройте имена для S1 и S2 и отключите ненужные порты

Команды отключения портов GE0/0/11 и GE0/0/12 на S1 и на S2:

[S1]interface GigabitEthernet 0/0/11

[S1-GigabitEthernet0/0/11]shutdown

[S1-GigabitEthernet0/0/11]quit

[S1]interface GigabitEthernet 0/0/12

[S1-GigabitEthernet0/0/12]shutdown

[S1-GigabitEthernet0/0/12]quit

[S2]interface GigabitEthernet 0/0/11

[S2-GigabitEthernet0/0/11]shutdown

[S2-GigabitEthernet0/0/11]quit

[S2]interface GigabitEthernet 0/0/12

[S2-GigabitEthernet0/0/12]shutdown

[S2-GigabitEthernet0/0/12]quit

Шаг 2. Настройте IP-адреса устройств

Команды установки IP-адресов для R1 и R3:

[R1]interface GigabitEthernet0/0/1

[R1-GigabitEthernet0/0/1]ip address 10.1.2.1 24

[R3]interface GigabitEthernet0/0/2

[R3-GigabitEthernet0/0/2]ip address 10.1.10.1 24

Команды установки IP-адресов для VLANIF 3 на S3 и S4:

```
[S3]vlan 3
[S3-vlan3]quit
[S3]interface GigabitEthernet0/0/1
[S3-GigabitEthernet0/0/1]port link-type access
[S3-GigabitEthernet0/0/1]port default vlan 3
[S3-GigabitEthernet0/0/1]quit
[S3]interface Vlanif 3
[S3]ip address 10.1.3.1 24
[S4]vlan 3
[S4-vlan3]quit
[S4]interface GigabitEthernet0/0/2
[S4-GigabitEthernet0/0/2]port link-type access
[S4-GigabitEthernet0/0/2]port default vlan 3
[S4-GigabitEthernet0/0/2]quit
[S4]interface Vlanif 3
[S4]ip address 10.1.3.2 24
```

Шаг 3. Создайте VLAN

Команды создания VLAN 2, 3 и 10 на S1 и S2:

```
[S1]vlan batch 2 to 3 10
[S2]vlan batch 2 to 3 10
```

Шаг 4. Настройте сети VLAN на основе портов

Команды настройки пользовательских портов на S3 и S4 в качестве портов доступа:

```
[S1]interface GigabitEthernet 0/0/1
[S1-GigabitEthernet0/0/1]port link-type access
[S1-GigabitEthernet0/0/1]port default vlan 2
[S1-GigabitEthernet0/0/1]quit
[S1]interface GigabitEthernet 0/0/13
[S1-GigabitEthernet0/0/13]port link-type access
[S1-GigabitEthernet0/0/13]port default vlan 3
[S1-GigabitEthernet0/0/13]quit

[S2]interface GigabitEthernet 0/0/14
[S2-GigabitEthernet0/0/14]port link-type access
[S2-GigabitEthernet0/0/14]port default vlan 3
[S2-GigabitEthernet0/0/14]quit
```

Команды настройки портов, соединяющих S1 и S2, в качестве магистральных портов:

```
[S1]interface GigabitEthernet 0/0/10
[S1-GigabitEthernet0/0/10]port link-type trunk
[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3
```

```
[S1-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1
[S2]interface GigabitEthernet 0/0/10
[S2-GigabitEthernet0/0/10]port link-type trunk
[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3
[S2-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1
```

Шаг 5. Сконфигурируйте сети VLAN на основе MAC-адресов

Найстройка на S2 привязки MAC-адреса ПК к VLAN 10:

```
[S2]vlan 10
[S2-vlan10]mac-vlan mac-address a008-6fe1-0c46
```

Найстройка гибридных портов с разрешением прохождения пакетов из VLAN на основе MAC-адресов:

```
[S2]interface GigabitEthernet0/0/1
[S2-GigabitEthernet0/0/1]port link-type hybrid
[S2-GigabitEthernet0/0/1]port hybrid untagged vlan 10
[S2-GigabitEthernet0/0/1]quit
[S2]interface GigabitEthernet0/0/2
[S2-GigabitEthernet0/0/2]port link-type hybrid
[S2-GigabitEthernet0/0/2]port hybrid untagged vlan 10
[S2-GigabitEthernet0/0/2]quit
[S2]interface GigabitEthernet0/0/3
[S2-GigabitEthernet0/0/3]port link-type hybrid
[S2-GigabitEthernet0/0/3]port hybrid untagged vlan 10
[S2-GigabitEthernet0/0/3]quit
```

Найстройка на портах, соединяющих S1 и S2, разрешения на прохождение пакетов из VLAN 10:

```
[S1]interface GigabitEthernet0/0/10
[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 10
[S1-GigabitEthernet0/0/10]quit

[S2]interface GigabitEthernet0/0/10
[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 10
[S2-GigabitEthernet0/0/10]quit
```

Настройте S2 и включите назначение VLAN на основе MAC-адресов на GE0/0/1, GE0/0/2, GE0/0/3:

```
[S2]interface GigabitEthernet0/0/1
[S2-GigabitEthernet0/0/1]mac-vlan enable
[S2-GigabitEthernet0/0/1]quit
[S2]interface GigabitEthernet0/0/2
[S2-GigabitEthernet0/0/2]mac-vlan enable
[S2-GigabitEthernet0/0/2]quit
```

[S2]interface GigabitEthernet0/0/3
[S2-GigabitEthernet0/0/3]mac-vlan enable
[S2-GigabitEthernet0/0/3]quit

Шаг 6. Выведите на экран информацию о конфигурации

Команда:

[S1]display vlan

Вывод информации о конфигурации VLAN на коммутаторе S1:

Вывод информации о конфигурации VLAN на коммутаторе S1: The total number of vlans is: 4									
<pre>MP: Vlan-mapping; #: ProtocolTransparent-vlan;</pre>		an;							
VID	VID Type Ports								
	common 0/5(D)	UT:GE0/0/2(D)) (GE0/0/3(D)	GE0/0/4(D)				
CFO/	0/9(D)	GE0/0/6(D)	(GE0/0/7(D)	GE0/0/8(D)				
		GE0/0/11(D)) (GE0/0/12(D)	GE0/0/14(D)				
GEU/	0/15(D)	GE0/0/16(D)) (GE0/0/17(D)	GE0/0/18(D)				
GE0/	0/19(D)	GE0/0/20(D	D) (GE0/0/21(D)	GE0/0/22(D)				
GE0/	0/23(D)	GE0/0/24(D							
2	common	UT:GE0/0/1(U							
3	common		(U)						
10	common								
VID	Status	Property	MAC-LR	N Statistics	Description				
1	enable	default	enable	disable VLA	N 0001				
2		default			N 0002				
3	enable	default	enable	disable VLA	N 0003				
10	enable	default	enable	disable VLA	N 0010				

Команда:

[S2]display vlan

Вывод информации о конфигурации VLAN на коммутаторе S2:

The total number of vlans is : 4

U: Up; D: Down; TG: Tagged; UT: Untagged;

MP: Vlan-mapping; ST: Vlan-stacking;
#: ProtocolTransparent-vlan; *: Management-vlan;

VID	Type	Ports
-----	------	-------

1 common UT:GE0/0/1(D) GE0/0/2(D) GE0/0/3(D)

GE0/0/4(D)		01.000,071(D)	010/0/2(2)	010/0/3(2)
		GE0/0/5(D)	GE0/0/6(D)	GE0/0/7(D)
GE0/	0/8(D)			
- (- /	GE0/0/9(D)	GE0/0/11(D)	GE0/0/12(D)
GE0/	0/13(D)			
0 /	0 /1 0 /- >	GE0/0/15(D)	GE0/0/16(D)	GE0/0/17(D)
GE0/	0/18(D)			
G=0 /	0 /00 /5)	GE0/0/19(D)	GE0/0/20(D)	GE0/0/21(D)
GEU/	0/22(D)		GEO / O / O / A / D \	
		GE0/0/23(D)	GE0/0/24(D)	
2	common	TG:GE0/0/10(U)		
_				
3	common	UT:GE0/0/14(U)		
		TG:GE0/0/10(U)		
10	common	UT:GE0/0/1(D)	GE0/0/2(D)	GE0/0/3(D)

TG:GE0/0/10(U)

VID	Status	Property	MAC-LRN	Statistics Description	
					-
1	enable	default	enable	disable VLAN 0001	
2	enable	default	enable	disable VLAN 0002	
3	enable	default	enable	disable VLAN 0003	
10	enable	default	enable	disable VLAN 0010	

Команда:

[S2]display mac-vlan vlan 10

Вывод информации о конфигурацию назначения VLAN на основе MAC-адресов, имеющуюся на коммутаторе S2:

Шаг 7. Проверка

Выполните команду Ping на S4 для проверки связи с S3 и убедитесь, что операция ping успешно выполняется:

```
[S4]ping 10.1.3.1
PING 10.1.3.1: 56  data bytes, press CTRL_C to break
    Reply from 10.1.3.1: bytes=56 Sequence=1 ttl=255 time=140 ms
    Reply from 10.1.3.1: bytes=56 Sequence=2 ttl=255 time=90 ms
    Reply from 10.1.3.1: bytes=56 Sequence=3 ttl=255 time=80 ms
    Reply from 10.1.3.1: bytes=56 Sequence=4 ttl=255 time=70 ms
    Reply from 10.1.3.1: bytes=56 Sequence=5 ttl=255 time=100 ms

--- 10.1.3.1 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 70/96/140 ms
```

Выполните команду Ping на R1 для проверки связи с другими устройствами и убедитесь, что операция ping не выполняется:

```
[R1]ping 10.1.3.1
 PING 10.1.3.1: 56 data bytes, press CTRL C to break
     Request time out
     Request time out
     Request time out
     Request time out
     Request time out
 --- 10.1.3.1 ping statistics ---
     5 packet(s) transmitted
     0 packet(s) received
     100.00% packet loss
[R1]ping 10.1.3.2
 PING 10.1.3.2: 56 data bytes, press CTRL C to break
     Request time out
     Request time out
     Request time out
     Request time out
     Request time out
 --- 10.1.3.2 ping statistics ---
```

```
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss

[R1]ping 10.1.10.1

PING 10.1.10.1: 56 data bytes, press CTRL_C to break
Request time out
Out
Request time out
100.10.1 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

Выполните команду display mac-address verbose на S1 и S2, чтобы проверить таблицы MAC-адресов на коммутаторах:

[S1]display mac-address verbose
MAC address table of slot 0:

MAC Address	VLAN/ VSI/SI	PEVLAN	CEVLAN Port	Type	LSP/LSR- MAC-Tun	
4c1f-cc63-0b1a 4c1f-ccba-251d		 	GE0/0/10 GE0/0/13		dynamic dynamic	0/-

Total matching items on slot 0 displayed = 2

```
[S2]display mac-address verbose
MAC address table of slot 0:
```

MAC Address	VLAN/ VSI/SI	PEVLA	N CEV	'LAN Port	Туре	LSP/LSR- MAC-Tun	
4c1f-cc63-0b1a 4c1f-ccba-251d	_	_ _	-	GE0/0/14 GE0/0/10		dynamic dynamic	0/-

Total matching items on slot 0 displayed = 2

Вывод

В процессе выпроленения лабораторной работы мы получили базовые навыки конфигурации виртуальных локальных компьютерных сетей. В имитационном ПО Huawei eNSP была построена сеть, в которой успешно получилось разграничить узлы на 3 VLAN, как было сформулировано по условиям лабораторной работы.