3
1
1
2
1
1
2
٠ G
Ų!
¥.
H
. # 5
-
F-12.
€2
₽2 □
. 53
=3
-
4
ī

. 3.	The system of claim 1 wherein the additive is supplied to one of (a) a
The Bar	selected location in the wellbore or (b) a hydrocarbon processing unit
/	processing the formation fluid at the wellsite.

2

4. The system of claim 1, wherein the flow measuring device is a positive displacement flow meter.

5. The system of claim 1 further comprising a program associated with said first onsite controller that enables the onsite controller to perform a plurality of on-board functions.

6.

The system of claim 5, wherein said plurality of functions includes at least one of (i) determining the difference between the amount of additive introduced and a predetermined desired amount, (ii) calibration of the flow

control device, and (iii) periodic polling of said flow measuring device.

2

7. The system of claim 1, wherein said first onsite controller is programmable (i) at the wellsite or, (ii) by said second remote controller.

1

1 '

8. The system of claim 1 further comprising a data base management system associated with said second remote controller.

1

2

1,	9.	The system of claim 8, wherein said second remote controller is adapted to
2		communicate with a plurality of computers over a network.
1		
1	<i>∠</i> 10.	The system of claim 1, wherein the flow control device is one of (i) an
2	•	electric pump, or (ii) a pneumatic pump.

- 11. The system of claim 1 further including at least one sensor providing a measure of a characteristic of said formation fluid.
- 12. The system of claim 11, wherein said system alters the supply of said selected additive in response to said measured characteristic.
- 13. The system of Claim 6 wherein the system includes redundant flow control devices which are controlled by the onsite controller.
- 14. A system for monitoring and controlling supply of additives to a plurality of wells, said system further comprising:

3

4

3

4

5

6

16.

a supply line and a flow control device associated with each of said plurality of wells;

- a flow measuring device in each said supply line measuring a (b) parameter indicative of the flow rate of an additive supplied to a corresponding well, each said flow measuring device generating signals indicative of a Now rate of the additive supplied to its corresponding well; and
- (c) a first onsite controller receives signals from each of the flow measuring devices and transmits signals representative of the flow rate for each well to a second temote controller which in response to the signals transmitted by said first onsite controller transmits to said first onsite controller command\signals representative of a desired change in the flow rate of the additives supplied to each said well.
- 15. The system of claim 14, wherein the additive is injected into each said well at predetermined depths.
 - A method of monitoring at a wellsite supply of additives to formation fluid recovered through a wellboke and controlling said supply from a remote location, said method comprising:
 - (a) controlling the flow rate of the supply of a selected additive from a source thereof at the wellsite into said formation fluid via a supply line;

measuring a parameter indicative of the flow rate of the additive supplied to said formation fluid and generating a signal indicative of said flow rate;

- (c) receiving at the wellsite the signal indicative of the flow rate and transmitting a signal representative of the flow rate to the remote location; and
- (d) receiving at said remote location signals transmitted from the wellsite and in response thereto transmitting command signals to the wellsite representative of a desired change in the flow rate of the additive supplied; and
- (e) controlling the flow rate of the supply of the additive in response to the command signals
- 17. The method of claim 16 further comprising displaying at the well site the flow rate of the additive supplied to the formation fluid.
- 18. The method of claim 17 further comprising a manual override of controlling the flow rate of the supply of the additive by performing a function selected from (i) setting a flow rate of the additive, (ii) setting a range of allowable values for the flow rate of the additive, and (iii) combinations thereof.

