

Tidy Time Series & Forecasting in R

2. Time series graphics

robjhyndman.com/workshop2020

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Quarterly Australian Beer Production

```
beer <- aus_production %>%
   select(Quarter, Beer) %>%
   filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
```


Quarterly Australian Beer Production

beer %>% gg_season(Beer, labels="right")

vic_elec

```
# A tsibble: 52,608 x 5 [30m]
##
      Time
                                                           Holiday
                           Demand Temperature Date
##
      <dttm>
                            <dbl>
                                         <dbl> <date>
                                                           <lgl>
##
    1 2012-01-01 00:00:00
                            4263.
                                          21.0 2012-01-01 TRUF
##
    2 2012-01-01 00:30:00
                            4049.
                                          20.7 2012-01-01 TRUE
##
    3 2012-01-01 01:00:00
                            3878.
                                          20.6 2012-01-01 TRUE
    4 2012-01-01 01:30:00
                                          20.4 2012-01-01 TRUE
##
                            4036.
    5 2012-01-01 02:00:00
                            3866.
                                          20.2 2012-01-01 TRUE
##
##
    6 2012-01-01 02:30:00
                            3694.
                                          20.1 2012-01-01 TRUF
                            3562.
                                          19.6 2012-01-01 TRUF
##
    7 2012-01-01 03:00:00
##
    8 2012-01-01 03:30:00
                            3433.
                                          19.1 2012-01-01 TRUE
    9 2012-01-01 04:00:00
                                          19.0 2012-01-01 TRUE
##
                            3359.
   10 2012-01-01 04:30:00
                                          18.8 2012-01-01 TRUE
##
                            3331.
   # ... with 52,598 more rows
```

vic_elec %>% gg_season(Demand)

vic_elec %>% gg_season(Demand, period="week")

vic_elec %>% gg_season(Demand, period="day")

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

beer %>% gg_subseries(Beer)

Australian holidays

```
holidays <- tourism %>%
  filter(Purpose=="Holiday") %>%
  group_by(State) %>%
  summarise(Trips = sum(Trips))
```

```
## # A tsibble: 640 x 3 [10]
## # Key: State [8]
## State Quarter Trips
##
     <chr> <qtr> <dbl>
##
   1 ACT 1998 Q1 196.
##
   2 ACT 1998 Q2 127.
##
   3 ACT 1998 Q3 111.
   4 ACT 1998 Q4 170.
##
##
   5 ACT 1999 01 108.
##
   6 ACT 1999 Q2 125.
   7 ACT
          1999 Q3 178.
##
##
  8 ACT
          1999 04 218.
##
   9 ACT
           2000 01 158.
## 10 ACT
           2000 02 155.
```

Australian holidays

```
holidays %>% autoplot(Trips) +
ylab("thousands of trips") + xlab("Year") +
ggtitle("Australian domestic holiday nights")
```


Seasonal plots

```
holidays %>% gg_season(Trips) +
  ylab("thousands of trips") +
  ggtitle("Australian domestic holiday nights")
```


Seasonal subseries plots

```
holidays %>%
   gg_subseries(Trips) + ylab("thousands of trips") +
   ggtitle("Australian domestic holiday nights")
```


Calendar plots

```
library(sugrrants)
vic elec %>%
  filter(year(Date) == 2014) %>%
  mutate(Hour = hour(Time)) %>%
  frame_calendar(x = Hour, y = Demand, date = Date,
    nrow = 4) \%>\%
  ggplot(aes(x = .Hour, y = .Demand, group = Date)) +
  geom_line() -> p1
prettify(p1, size = 3,
 label.padding = unit(0.15, "lines"))
```

Calendar plots

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 3

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- filter(tourism, Region == "Snowy</pre>
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?
- Produce a calendar plot for the pedestrian data from one location and one year.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
as_tsibble(fma::elec) %>%
filter(index >= 1980) %>%
autoplot(value) + xlab("Year") + ylab("GWh") +
ggtitle("Australian electricity production")
```



```
aus_production %>%
  autoplot(Bricks) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```



```
as_tsibble(fma::hsales) %>%
autoplot(value) +
ggtitle("Sales of new one-family houses, USA") +
xlab("Year") + ylab("Total sales")
```



```
as_tsibble(fma::ustreas) %>%
autoplot(value) +
ggtitle("US Treasury Bill Contracts") +
xlab("Day") + ylab("price")
```



```
pelt %>%
  autoplot(Lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Example: Beer production

```
new_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
new_production
```

```
# A tsibble: 74 x 7 [10]
##
##
      Quarter
                Beer Tobacco Bricks Cement Electricity
                                                              Gas
        <qtr>
              <dbl>
                        <dbl>
                                <dbl>
                                        <fdb>>
                                                     <fdb> <fdb>
##
##
    1 1992 01
                         5777
                                  383
                                         1289
                                                     38332
                                                              117
                 443
##
    2 1992 02
                 410
                         5853
                                  404
                                         1501
                                                     39774
                                                              151
##
    3 1992 Q3
                 420
                         6416
                                  446
                                         1539
                                                     42246
                                                              175
```

4 1992 04 ## 5 1993 01 6 1993 02 ## ## Q3

1993 04 127 ## 1994 01

Example: Beer production

new_production %>% gg_lag(Beer)

Example: Beer production

new_production %>% gg_lag(Beer, geom='point')

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $ightharpoonup r_2 = Correlation(y_t, y_{t-2})$
 - $ightharpoonup r_3 = Correlation(y_t, y_{t-3})$
 - etc.
- If there is seasonality, the ACF at the seasonal lag (e.g., 12 for monthly data) will be large and positive.

Autocorrelation

Results for first 9 lags for beer data:

```
new_production %>% ACF(Beer, lag_max = 9)
## # A tsibble: 9 x 2 [10]
     lag acf
##
## <lag> <dbl>
## 1 1Q -0.102
## 2 2Q -0.657
## 3 3Q -0.0603
## 4
       40 0.869
## 5
       50 -0.0892
## 6
       60 -0.635
## 7
       70 -0.0542
## 8
       80 0.832
```

Autocorrelation

Results for first 9 lags for beer data:

ACF

new_production %>% ACF(Beer) %>% autoplot()

Australian holidays

holidays %>% ACF(Trips)

```
# A tsibble: 152 x 3 [10]
## # Key: State [8]
##
  State lag acf
## <chr> <lag> <dbl>
##
  1 ACT 10 0.0877
##
   2 ACT 2Q 0.252
##
   3 ACT
           30 -0.0496
##
   4 ACT
           40 0.300
##
   5 ACT 50 -0.0741
##
   6 ACT 60 0.269
   7 ACT 70 -0.00504
##
##
   8 ACT 80 0.236
##
   9 ACT 90 -0.0953
## 10 ACT 100 0.0750
## # ... with 142 more rows
```

Australian holidays

holidays %>% ACF(Trips) %>% autoplot()

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Aus monthly electricity production

```
elec2 <- as_tsibble(fma::elec) %>%
  filter(year(index) >= 1980)
elec2 %>% autoplot(value)
```


Aus monthly electricity production

```
elec2 %>% ACF(value, lag_max=48) %>%
autoplot()
```



```
google_2015 <- gafa_stock %>%
  filter(Symbol == "G00G", year(Date) == 2015) %>%
  select(Date, Close)
google_2015
```

```
## # A tsibble: 252 x 2 [!]
##
     Date
            Close
##
     <date> <dbl>
##
   1 2015-01-02 522.
##
   2 2015-01-05 511.
##
   3 2015-01-06
                 499.
##
   4 2015-01-07 498.
##
   5 2015-01-08
                 500.
##
   6 2015-01-09
                 493.
```

google_2015 %>% autoplot(Close)


```
google_2015 %>%
   ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
```

```
google_2015 %>%
 ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
google_2015
## # A tsibble: 252 x 2 [!]
     Date Close
##
     <date> <dbl>
##
## 1 2015-01-02 522.
##
   2 2015-01-05 511.
##
   3 2015-01-06 499.
```

```
google_2015 <- google_2015 %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE)
google_2015
```

```
## # A tsibble: 252 x 3 [1]
##
     Date
            Close trading_day
##
     <date> <dbl>
                            <int>
##
   1 2015-01-02 522.
##
   2 2015-01-05 511.
                                3
##
   3 2015-01-06
                 499.
##
   4 2015-01-07
                 498.
                                4
                 500.
                                5
##
   5 2015-01-08
##
   6 2015-01-09
                 493.
                                6
```

```
google_2015 %>%

ACF(Close, lag_max=100) %>%
autoplot()
```


Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 4

We have introduced the following functions: gg_lag and ACF. Use these functions to explore the four time series: Beer from aus_production, Lynx from pelt, Close from gafa_stock, Demand from vic_elec. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

Which is which?

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

```
wn <- tsibble(t=seq(36), y=rnorm(36), index=t)
wn %>% autoplot(y)
```



```
wn <- tsibble(t=seq(36), y=rnorm(36), index=t)
wn %>% autoplot(y)
```


White noise data is uncorrelated across time with zero mean and constant variance.

(Technically, we require independence as well.)

wn **%>% ACF**(y)

r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀
-0.001	-0.070	-0.140	0.098	-0.125	-0.014	0.087	0.041	-0.173	-0.195

wn **%>% ACF**(y)

r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀
-0.001	-0.070	-0.140	0.098	-0.125	-0.014	0.087	0.041	-0.173	-0.195

- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

pigs %>% ACF(Count) %>% autoplot()

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not a white noise series**.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 5

You can compute the daily changes in the Google stock price in 2018 using

```
dgoog <- gafa_stock %>%
  filter(Symbol == "GOOG", year(Date) >= 2018) %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE) %>%
  mutate(diff = difference(Close))
```

Does diff look like white noise?