Concours d'Entrée

Concours a Entree

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Durée: 4 heures

Calculatrice interdite

PROBLEME I

Soit $C_0(R^+)$ l'ensemble des fonctions définies sur R^+ , continues, à valeurs réelles. Pour $f \in C_0(R^+)$ on note F la primitive de f qui s'annule en 0.

Soit E le sous-ensemble des fonctions f de $C_0(R^+)$ telles que l'intégrale $\int_0^{+\infty} \frac{F(t)}{(1+t)^2} dt$ soit convergente.

Pour $f \in E$ on note I(f) l'intégrale $\int_0^{+\infty} \frac{F(t)}{(1+t)^2} dt$.

- A- Etude de quelques propriétés de l'application $f \rightarrow I(f)$:
 - 1°- Déterminer les fonctions f de E <u>positives</u> et telles que I(f)=0.
 - 2°- Soit f une fonction de $C_0(R^+)$ <u>positive</u>. Montrer que l'intégrale $\int_0^{+\infty} \frac{f(t)}{l+t} dt$ est convergente si et seulement si $f \in E$

Indication: On pourra montrer et utiliser la relation:

Pour
$$A > 0$$
 $\int_{0}^{A} \frac{F(t)}{(1+t)^{2}} dt = -\frac{F(A)}{1+A} + \int_{0}^{A} \frac{f(t)}{1+t} dt$.

- 3°- Donner un exemple de fonction f (nécessairement de signe non constant) appartenant à E et telle que l'intégrale $\int_0^{+\infty} \frac{f(t)}{l+t} dt$ diverge.
- 4°- Pour $f \in E$ montrer, en justifiant l'existence de l'intégrale, la relation :

$$I(f) = \frac{1}{2} \int_{0}^{+\infty} \frac{F(t) + F(1/t)}{(1+t)^2} dt$$
.

B- L'objet de cette partie est le calcul de l'intégrale I(f) pour une fonction f particulière

Préliminaire:

On note J et K les intégrales $\int_0^1 \frac{ln(t)}{l+t} dt$ et $\int_0^1 \frac{-ln(l+t)}{t} dt$.

- a $^{\circ}$ Montrer que les intégrales J et K convergent.
- b°- Montrer l'égalité des intégrales J et K.
- c°- Montrer que la valeur commune à J et à K est égale à $-\pi^2/12$.

Indication: On pourra utiliser la relation: $1-u+...+(-u)^n=\frac{1-(-u)^{n+1}}{1+u}$. On rappelle également que la série de terme général $v_n=\frac{1}{n^2}$; $n\geq 1$ a pour somme $\pi^2/6$.

Soit f la fonction de R⁺ dans R définie par : $\begin{cases} f(x) = \frac{\ln(1+x)}{x} \text{ pour } x > 0 \\ f(0) = 1 \end{cases}$

- 1°- (i) Montrer que $f \in E$.
 - (ii) Montrer que F(x) tend vers $+\infty$ quand x tend vers $+\infty$?
- 2°- Montrer que $I(f) = (1/4) \int_0^{+\infty} \left[\frac{\ln(t)}{1+t} \right]^2 dt K$.

Indication: On pourra calculer $f(x) - \frac{1}{x^2} f(\frac{1}{x})$ et en déduire F(x) + F(1/x).

3°- Exprimer J en fonction de l'intégrale $\int_0^1 \left[\frac{\ln(t)}{l+t} \right]^2 dt$. En déduire I(f).

PROBLEME II

Soit $(u_1, u_2, ..., u_n)$ un n-uplet de Rⁿ.

Ce problème a pour objet la recherche des n-uplets $(y_1, y_2, ..., y_n)$ tels que à la fois le n-uplet $(u_1, u_2, ..., u_n)$ ne soit pas « très différent » des n-uplets $(y_1, y_2, ..., y_n)$ mais aussi que les suites finies $i \to y_i$; i = 1, ..., n soient suffisamment « lisses ».

1°- Soit Δ_n la matrice de terme général $\delta_{i,j}$ défini par :

$$\begin{cases} \delta_{i,i} = 1 & ; i \in [1,...,n-1] \\ \delta_{i,i+1} = -1 & ; i \in [1,...,n-1] \\ \delta_{i,j} = 0 & ; i \in [1,...,n-1] & ; j \in [1,...,n] & j \neq i \ j \neq i+1 \end{cases}$$

On note Γ_n la matrice $\Delta_{n-1} \times \Delta_n$.

Déterminer le noyau de l'application linéaire de R^n dans R^{n-1} (respectivement de R^n dans R^{n-2}) associée à la matrice Δ_n (respectivement Γ_n).

2°- A tout n-uplet $(x_1, x_2, ..., x_n)$ de R^n on associe la matrice colonne à n lignes de ième ligne x_i . On note X cette matrice. $\|X\|_n^2 = \sum_{i=1}^n x_i^2$ désigne la norme euclidienne du n-uplet $(x_1, x_2, ..., x_n)$.

Pour j égal à 1 ou 2 on note φ_i l'application de Rⁿ dans R définie par :

$$\varphi_j(y_1,...,y_n) = h(y_1,...,y_n) + k_j(y_1,...,y_n)$$

avec :

$$\begin{cases} h(y_1, ..., y_n) = \|Y - U\|_n^2 \\ k_1(y_1, ..., y_n) = \|\Delta_n \times Y\|_{n-1}^2 \\ k_2(y_1, ..., y_n) = \|\Gamma_n \times Y\|_{n-2}^2 \end{cases}$$

Déterminer le n-uplet de Rⁿ $(y_1,...,y_n)$ qui minimise la fonction h. Par rapport à l'objectif défini la fonction h est dite fonction de fidélité. Justifier cette terminologie. Donner également l'ensemble des n-uplets qui minimisent la fonction k_1 (respectivement k_2). Les fonctions k_1 et k_2 sont dites fonctions de régularité. Justifier aussi cette terminologie.

- 3°- Montrer que la fonction φ_1 (respectivement φ_2) admet au moins un minimum et qu'en ce(s) minimum(s) la différentielle est nulle.
- 4°- Montrer que pour les matrices colonnes Y associées aux n-uplets minimisant φ_I sont solutions de l'équation : $Y U + {}^t \Delta_n \times \Delta_n \times Y = 0$.
 - Déduire en fonction de Δ_n (respectivement Γ_n) les solutions (matrices colonnes) qui minimisent φ_I (respectivement φ_2).
- 5°- Pour *n* égal à 3 et $u_1=1$ $u_2=2$ $u_3=5$ donner les solutions.

PROBLEME III

- 1°- On définit la suite réelle $\{z_n, n \in N\}$ par son premier terme z_0 et par la relation de récurrence $z_{n+1} = z_n^2 / 2$; $n \ge 0$.
 - Etudier, en fonction du premier terme z_0 la variation de la suite $\{z_n, n \in N\}$ et en déduire ses propriétés de convergence.
- 2°- On définit la suite $\{U_n = (x_n, y_n), n \in N\}$ à valeurs dans R^2 par son premier terme $U_0 = (x_0, y_0)$ et par la relation de récurrence :

$$\begin{cases} x_{n+1} = \frac{x_n^2 + y_n^2}{2} \\ y_{n+1} = x_n y_n \end{cases}$$

- (i) Donner les points limites possibles pour la suite $\{U_n, n \in N\}$ (On rappelle que la suite $\{U_n = (x_n, y_n), n \in N\}$ est dite convergente si les suites réelles $\{x_n, n \in N\}$ et $\{y_n, n \in N\}$ convergent).
- (ii) Si L = (l, l') désigne un point limite possible on note E_L l'ensemble des couples (x_o, y_o) tels que la suite $\{U_n, n \in N\}$ converge vers L. Déterminer pour chaque point L limite possible l'ensemble E_L .

Indication: On pourra introduire les suites s_n et d_n égales respectivement à x_n+y_n et x_n-y_n et utiliser les résultats de la première question.

3°- On suppose que le point (x_0, y_0) n'appartient à aucun des ensembles E_L . Etudier le comportement asymptotique des suites $\{x_n, n \in N\}$ et $\{y_n, n \in N\}$.
