VE281

Data Structures and Algorithms

Average-Case Time Complexity of BST;
BST Operations

Announcement

- Written assignment 4 is released
 - On binary search tree
 - Due time: 3:40 pm, Nov. 3 (make-up lecture)
 - If you have difficulty in attending the lecture, please submit your homework to TA Yichen in advance

Outline

Analysis of BST Average-Case Time Complexity

• Efficient Binary Search Tree Operations

Complexity Analysis

- If the **depth** of the tree is h, what is the time complexity for a **successful** search in the
 - worst case? O(h)
 - average case? O(h)
- If the **number of nodes** is *n*, what is the time complexity for a **successful** search in the
 - worst case? O(n)
 - average case? ??

Average Case Analysis

- If the successful search reaches a node at level d, the number of nodes visited is d + 1.
 - The complexity is $\Theta(d)$.
- Assume that it is equally likely for the object of the search to appear in any node of the search tree. The average complexity is $\Theta(\bar{d})$
 - ullet d is the average depth of the nodes in a given tree

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

Internal Path Length

- $\sum_{i=1}^{n} d_i$ is called internal path length.
- To get the average case complexity, we need to get the average of $\sum_{i=1}^{n} d_i$ for all trees of n nodes.
- Define the average internal path length of a tree containing n nodes as I(n).
 - I(1) = 0.
- For a tree of n nodes, suppose it has l nodes in its left subtree.
 - The number of nodes in its right subtree is n-1-l.
 - The average internal path length for such a tree is T(n; l) = I(l) + I(n-1-l) + n 1
- I(n) is average of T(n; l) over l = 0, 1, ..., n 1.

Internal Path Length

- Assume all insertion sequences of n keys $k_1 < \cdots < k_n$ are equally likely.
 - The first key inserted being any k_l are equally likely.
- Note: If first key inserted is k_{l+1} , the left subtree has l nodes.
- <u>Claim</u>: All left subtree sizes are equally likely.
- Therefore, we have

$$I(n) = \frac{1}{n} \sum_{l=0}^{n-1} T(n; l)$$

$$= \frac{1}{n} \sum_{l=0}^{n-1} [I(l) + I(n-1-l) + n - 1]$$

$$= \frac{2}{n} \sum_{l=0}^{n-1} I(l) + (n-1)$$

Solving the Recursion

$$I(n) = \frac{2}{n} \sum_{l=0}^{n-1} I(l) + (n-1)$$

replace n with n-1

$$I(n-1) = \frac{2}{n-1} \sum_{l=0}^{n-2} I(l) + (n-2)$$

$$\sum_{l=0}^{n-2} I(l) = \frac{(n-1)[I(n-1) - (n-2)]}{2}$$

Solving the Recursion

$$I(n) = \frac{2}{n} \sum_{l=0}^{n-1} I(l) + (n-1) \qquad \sum_{l=0}^{n-2} I(l) = \frac{(n-1)[I(n-1) - (n-2)]}{2}$$

$$I(n) = \frac{n+1}{n}I(n-1) + \frac{2(n-1)}{n}$$

$$\frac{I(n)}{n+1} = \frac{I(n-1)}{n} + \frac{2(n-1)}{n(n+1)} \le \frac{I(n-1)}{n} + \frac{2}{n}$$

Solving the Recursion

$$\frac{I(n)}{n+1} \le \frac{I(n-1)}{n} + \frac{2}{n}$$

$$\frac{I(n)}{n+1} \le \frac{2}{n} + \frac{2}{n-1} + \frac{2}{n-2} + \dots + \frac{2}{2} + \frac{I(1)}{2}$$

$$I(1)=0$$

$$\frac{I(n)}{n+1} \le 2\sum_{k=2}^{n} \frac{1}{k}$$

Note:
$$\sum_{k=2}^{n} \frac{1}{k} < \ln n$$

Proof of the Claim

• Claim: $\sum_{k=2}^{n} \frac{1}{k} < \ln n$

Average Case Analysis Conclusion

• What we get so far:

$$\frac{I(n)}{n+1} \le 2\sum_{k=2}^{n} \frac{1}{k} < 2\ln n$$

• Thus, we have

$$I(n) = O(n \log n)$$

• Thus, the average complexity for a successful search is

$$\Theta\left(\frac{1}{n}I(n)\right) = O(\log n)$$

Average Case Time Complexity

- It can also be shown that given n nodes, the average-case time complexity for an **unsuccessful search** is $O(\log n)$.
- Given n nodes, the average-case time complexities for search, insertion, and removal are all $O(\log n)$.
 - Insertion and removal include "search".

	Search	Insert	Remove
Linked List	O(n)	O(n)	O(n)
Sorted Array	$O(\log n)$	O(n)	O(n)
Hash Table	0(1)	0(1)	0(1)
BST	$O(\log n)$	$O(\log n)$	$O(\log n)$

So, why we use BST, not hash table?

Why BST?

Other Operations Supported by BST

Output in Sorted Order

Get Min/Max

• Get Predecessor/Successor

Rank Search

Range Search

Average-Case Time Complexity

O(n)

 $O(\log n)$

 $O(\log n)$

 $O(\log n)$

O(n)

Note: Hash table does not support efficient implementation of the above methods.

Outline

• Analysis of BST Average-Case Time Complexity

• Efficient Binary Search Tree Operations

Output in Sorted Order

- Output: 1, 3, 4, 5, 7, 9
- How?
 - In-order depth-first traversal.
- Time complexity: O(n).

- Visit the left subtree
- Visit the node
- Visit the right subtree

Get Min/Max

- To get **min** (**max**) key of the tree:
 - Start at root.
 - Follow **left** child pointer (**right for max**) until you cannot go anymore.
 - Return the last key found.
- Time complexity? O(height). On average: $O(\log n)$.

Get Predecessor/Successor

- Given a node in the BST, get its predecessor/successor.
 - **Predecessor**: the node with the **largest** key that is **smaller** than the current key.
 - Successor: the node with the smallest key that is larger than the current key.
 - **Predecessor**/**Successor** is in the sense of in-order depth-first traversal.

What's predecessor of key 5?

What's successor of key 5?

Get Predecessor of a Node

What's predecessor of key 5?

What's predecessor of key 7?

- Easy case: left subtree of the node is nonempty...
 - ... return **max** key in left subtree.
- Otherwise: left subtree is emtpy ...
 - ... follow **parent pointers** until you get to a key less than the current key.
 - Equivalent: its first <u>left</u> ancestor.
- Time complexity? O(height). On average: $O(\log n)$.

- Rank: the index of the key in the ascending order.
 - We assume that the smallest key has rank 0.
- Rank search: get the key with rank k (i.e., the k-th smallest key).
 - Hash table does not support efficient rank search.
 - How to do rank search with a BST?

• <u>Simple solution</u>: keep counting during an in-order depth-first traversal.

What's the averagecase time complexity?

Can we do better?

BST with leftSize

• Each node has an additional field **leftSize**, indicating the number of nodes in its left subtree.

```
struct node {
  Item item;
  int leftSize;
  node *left;
  node *right;
};
```

Should change insertion and removal methods.

• Can we increase the efficiency of rank search with a BST with leftSize?

- Observation: **x.leftSize** = the rank of **x** in the **tree** rooted at **x**.
 - The rank of node 9 is 2 in the tree rooted at node 9.

```
node *rankSearch(node *root, int rank) {
  if(root == NULL) return NULL;
  if(rank == root->leftSize) return root;
  if(rank < root->leftSize)
    return rankSearch(root->left, rank);
  else
    return rankSearch(root->right,
      rank - 1 - root->leftSize);
        The number of nodes including
        the current root and its subtree.
What will rankSearch (root, 5)
return?
```

Example

```
node *rankSearch(node *root, int rank) {
       if(root == NULL) return NULL;
       if(rank == root->leftSize) return root;
       if(rank < root->leftSize)
         return rankSearch(root->left, rank);
       else
         return rankSearch(root->right,
           rank - 1 - root->leftSize);
                                     rankSearch('5',5)
What will
rankSearch(root,5)
                                         rankSearch('9',1)
                       3
return?
                                    0 rankSearch('7',1)
                                         rankSearch('8',0)
```

```
node *rankSearch(node *root, int rank) {
  if(root == NULL) return NULL;
  if(rank == root->leftSize) return root;
  if(rank < root->leftSize)
    return rankSearch(root->left, rank);
  else
    return rankSearch(root->right,
      rank - 1 - root->leftSize);
                                Time complexity?
                           O(\text{height}). On average: O(\log n).
```

- Instead of finding an exact match, find all items whose keys fall between a range of values, inclusive in sorted order
 - E.g., between 4 and 8, inclusive.

How could you implement range search?

- Example applications:
 - Buy ticket for travel between certain dates.

Algorithm

- 1. Compute range of left subtree.
 - If search range covers all or part of left subtree, search left. (recursive call)
- 2. If node is in search range add node to results.
- 3. Compute range of right subtree.
 - If search range covers all or part of right subtree, search right. (recursive call)
- 4. Return results.

void rangeSearch(node *root, Key searchRange[],
 Key treeRange[], List results)

Example

```
rangeSearch('5', [4,8], (-\infty, +\infty), results)
              searchRange treeRange
                                      Call rangeSearch('3',
                                 Yes
Does (-\infty,5) overlap [4,8]?
                                       [4,8], (-\infty,5), results)
  Does (-\infty,3) overlap [4,8] No
  Is 3 in [4,8]? No
  Does (3,5) overlap [4,8]? Yes
    Is 4 in [4,8]? results \leftarrow 4
Is 5 in [4,8]? results \leftarrow 5
                                       Call rangeSearch('9',
Does (5,+\infty) overlap [4,8]?
                                 Yes
                                        [4,8], (5,+\infty), results)
  Does (5,9) overlap [4,8]?
                                 Yes
    Is 7 in [4,8]? results \leftarrow 7
                                            results:
  Is 9 in [4,8]? No
                                            4,5,7
  Does (9,+\infty) overlap [4,8]?
                                     No
                                           Note: results
                                           are in order
```

Supporting Functions

- If node is in the search range, add node to the **results** list.
- Compute subtree's range:
 - Replace upper bound of left subtree by node's key
 - If possible, node's key "minus one".
 - Replace lower bound of right subtree by node's key
 - If possible, node's key "plus one".
- If search range covers all or part of subtree, search subtree.
 - Recursive calls

- 1. Compute range of left subtree.
 - If search range covers all or part of left subtree, search left. (recursive call)
- 2. If node is in search range add node to results.
- 3. Compute range of right subtree.
 - If search range covers all or part of right subtree, search right. (recursive call)
- 4. Return results.

