$$B^*$$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

B* MASS

From mass difference below and the average of our B masses $(m_{B^\pm} + m_{B^0})/2.$

VALUE (MeV)

DOCUMENT ID

5324.65 ± 0.25 OUR FIT

$m_{B^*}-m_B$							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
45.18±0.23 OUR							
45.42 ± 0.26 OUR AVERAGE Includes data from the datablock that follows this one.							
$46.2 \pm 0.3 \pm 0.8$		¹ ACKERSTAFF	97M	OPAL	$e^+e^- o Z$		
$45.3 \pm 0.35 \pm 0.87$	4227	¹ BUSKULIC	96 D	ALEP	E ^{ee} _{cm} = 88–94 GeV		
$45.5 \pm 0.3 \pm 0.8$		$^{ m 1}$ ABREU		DLPH	E ^{ee} _{cm} = 88–94 GeV		
46.3 ± 1.9	1378	¹ ACCIARRI			E ^{ee} _{cm} = 88–94 GeV		
$46.4 \pm 0.3 \pm 0.8$		² AKERIB					
45.6 ± 0.8					$e^+e^- ightarrow \ \gamma$ X, $\gamma \ell$ X		
45.4 ± 1.0					$e^+e^- \rightarrow \Upsilon(5S)$		
 ◆ We do not use the following data for averages, fits, limits, etc. 							
52 ± 2 ± 4	1400	⁴ HAN	85	CUSB	$e^+e^- ightarrow \gamma e X$		
^{1}u , d , s flavor averaged.							
² These papers report E_{γ} in the B^* center of mass. The $m_{B^*} - m_B$ is 0.2 MeV higher.							
$E_{\rm cm}=10.61$ –10.7 GeV. Admixture of B^0 and B^+ mesons, but not B_s .							
3 LEE-FRANZINI 90 value is for an admixture of B^0 and B^+ . They measure 46.7 \pm 0.4 \pm							
0.2 MeV for an admixture of B^0 , B^+ , and B_s , and use the shape of the photon line to							
separate the above value.							
4 HAN 85 is for $E_{\sf cm}=$ 10.6–11.2 GeV, giving an admixture of B^0 , B^+ , and B_s .							

 $m_{B^{*+}} - m_{B^+}$

VALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

45.34±0.23 OUR FIT

 $45.01 \pm 0.30 \pm 0.23$

⁵ AAIJ

130 LHCB pp at 7 TeV

Created: 5/30/2017 17:23

 5 Obtained the mass difference between $B^{*+}\, K^-$ and $B^+\, K^-$ from $B_{s2}^* (5840)^0$ decay.

$$\left| (m_{B^{*+}} - m_{B^+}) - (m_{B^{*0}} - m_{B^0}) \right|$$

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
<6	95	ABREU	95R	DLPH	Eee = 88–94 GeV

B* DECAY MODES

Мос	de	Fraction (Γ_i/Γ)					
$\Gamma_1 = B \gamma$		dominant					
B* REFERENCES							
AAIJ ACKERSTAFF BUSKULIC ABREU ACCIARRI AKERIB WU LEE-FRANZIN HAN	96D 95R 95B 91 91	PRL 110 151803 ZPHY C74 413 ZPHY C69 393 ZPHY C68 353 PL B345 589 PRL 67 1692 PL B273 177 PRL 65 2947 PRL 55 36	R. Aaij et al. K. Ackerstaff et al. D. Buskulic et al. P. Abreu et al. M. Acciarri et al. D.S. Akerib et al. Q.W. Wu et al. J. Lee-Franzini et al. K. Han et al.	(LHCb Collab.) (OPAL Collab.) (ALEPH Collab.) (DELPHI Collab.) (L3 Collab.) (CLEO Collab.) (CUSB II Collab.) (CUSB II Collab.) (CUSB II COllab.) (COLU, LSU, MPIM, STON)			

Created: 5/30/2017 17:23