Perancangan Database Point of Sales Apotek Dengan Menerapkan Model Data Relasional

Rusydi Umar¹, Abdul Hadi², Panggah Widiandana³, Fahmi Anwar⁴ Muhammad Jundullah⁵, Ahmad Ikrom⁶

Program Studi Teknik Informatika, Universitas Ahmad Dahlan
Program Studi Magister Teknik Informatika, Universitas Ahmad Dahlan
Jl. Prof Jl. Prof. Dr. Soepomo, S.H, Warungboto, Yogyakarta 55164

1rusydi_umar@rocketmail.com, 2abdul1808048032@webmail.uad.ac.id
3panggah1808048029@webmail.uad.ac.id

Abstract

Database design is a process of designing data needed to support various system designs. The benefit of a database in Point of Sales drug sales in the Jogja Pharmacy enables storing, changing and returning all data quickly and easily. Problems in database design are different viewpoints from the designer, programmer and end-user. Because of that, the design is needed a methodology the process of designing a good database starting from procedures, techniques, tools and documentation. The database planning method used in Research and Development (R & D) and the database design method uses the Database Life Cycle (DBLC) variable research is POS pharmacy. Research aspects include requirement analysis, conceptual design, logical design and physical design. The final result of this research is to create 8 types of conceptual consists of drugs, drugs, customers, stores, users, detailed details, and temporary details.

Keywords: database, apotek, POS, DBLC, relational data

1. PENDAHULUAN

Teknologi sangat memberikan manfaat dan membantu kegiatan manusia sehari-hari. Saat ini teknologi dapat membantu manusia dari permasalahan banyaknya data yang tersimpan pada sistem, database pada teknologi informasi dapat menata dengan rapi data di dalam penyimpanan. *Database* merupakan penggabungan beberapa tabel ter-*manage* sehingga dapat dipakai kebeberapa pemakai atau program lain untuk diakses dan dimanipulasi sesuai kebutuhan. Metadata pada *database* memberikan info yang tertata dan dapat dikelola dengan uraian kepemilikan data yang lengkap[1]. Proses pembuatan desain untuk mendukung operasional dan tujuan organisasi disebut perancangan *database*[2]. *Database* dapat dimanfaatkan untuk menyimpan dan merubah sehingga data tersebut dapat dipanggil kembali dengan mudah.

Perkembangan sistem *database* beriring dengan kemajuan sistem informasi. Siklus perkembangan *database* tidak harus berurutan tetapi juga melibatkan tahapan evaluasi dari sisi pengguna sistem informasi. Permasalahan dalam perancangan *database* adalah sudut pandang dari sisi perancang, *programmer* dan *enduser* cenderung berbeda pemahaman. Metodologi perancangan merupakan struktur yang menggunakan prosedur, teknik, peralatan dan dokumentasi. Fase perancangan mengarahkan desainer untuk menggunakan teknik sesuai dan efektif dalam proyek perancangan, sehingga membantu desainer dalam perencanaan, pengelolaan, pengaturan dan evaluasi pengembangan *database* [3].

Perancangan *database* terdiri dari 4 proses yaitu analisis kebutuhan, desain konseptual, desain logikal dan fisikal. Analisis kebutuhan adalah memahami kebutuhan dari sistem informasi yang mau dibuat seperti *system requirement*, *rule business*, kebutuhan fungsional dan kebutuhan nonfungsional. Desain konseptual adalah proses perancangan model data terbebas dari semua pertimbangan fisik. Desain logikal adalah perancangan model data berdasarkan data spesifik terbebas dari DBMS sedangkan fisikal hasil dari uraian implementasi *database* yang disimpan dan saling berhubungan. Relasi adalah representasi semua *database* dibuat dalam bentuk tabel dan kolom secara dua dimensi[4].

Penelitian terdahulu merupakan bentuk manifestasi dari kemajuan teknologi dengan menghasilkan manfaat besar bagi masyarakat. Penelitian yang telah dibuat oleh Mohammad

Jamiluddin (2019) dari Fakultas Teknologi Informasi, Universitas KH. A. Wahab Hasbullah dengan judul perancangan POS yang terintegrasi dengan pergudangan. Metode perancangan sistem menggunakan metode SWOT (Strengths, Weaknesses, Opportunities, Threats). Pengembangan aplikasi menggunakan Bahasa pemodelan UML, implementasi menggunakan PHP untuk server dan basic4android untuk client. Hasil penelitian berupa sistem informasi Point of sales (POS) untuk memberikan laporan yang valid, baik laporan transaksi maupun laporan barang[5]. Penelitian selanjutnya oleh Arif Cahyo Baskoro (2018) dari Program Studi Informatika, Universitas Muhammadiyah Surakarta dengan judul pembuatan aplikasi penjualan alat teknik pada CV Arba menggunakan platform WEB. Metode yang digunakan adalah Waterfall, pemrograman menggunakan PHP dan MYSQL. Hasil penelitian 82,5% layak untuk digunakan untuk mempermudah pengelolaan transaksi penjualan secara efektif dan efisien[6]. Penelitian yang telah dibuat Hendy Thomas Herman (2016) dari Program Studi Informatika, Universitas Kristen Petra, Surabaya, penelitian berjudul sistem informasi POS pada rumah makan Rinjani. Aplikasi yang dibuat berbasis web yang dapat diakses secara mobile menggunakan jaringan lokal, menggungkan framework PHP, Javascript, HTML dan mySQL. Penelitian menghasilkan system informasi yang menampilkan menu pemesanan, pengaturan user, member dan reservasi, menambah promosi dan menampilkan laporan penjualan dan stock[7]. Penelitian yang telah dibuat oleh Nicko Happy Atmaja (2015) judul perancangan aplikasi apotek, studi kasus: Apotek Ashara Husada Sidoarjo. Metode menggunakan model waterfall berbasis desktop, hasil penelitian aplikasi yang dibuat mampu mengurangi jumlah penolakan penjualan obat, mampu memberikan informasi pembelian obat, penjualan obat dan stock obat, aplikasi mampu menampilkan grafik transaksi penjualan, pembelian, stok, dan penolakan obat[8].

2. METODE PENELITIAN

Metode yang dipakai untuk membangun database menggunakan R&D. Menurut Sugiyono (2009) R&D merupakan sistematika alur *reseach* untuk menghasilkan *output* dan pengujian untuk membuktikan efektifnya sebuah produk[9]. Produk tidak sebatas benda fisik seperti hardware melainkan berbentuk perangkat lunak (*software*). Perancangan *database* menggunakan *Database Life Cycle* (DBLC) dengan subjek penelitian adalah POS Apotek dengan model data relasional. Aspek penelitian meliputi analisis kebutuhan, rancangan konseptual, rancangan logikal, dan rangcangan fisikal sesuai dengan Gambar 1.

Gambar 1. Rancangan database

3. HASIL DAN PEMBAHASAN

Perancangan *database* sangat penting dalam pembuatan sistem informasi karena dengan adanya perancangan dapat memenuhi kebutuhan saat ini dan masa yang akan datang. Perancangan konseptual akan menunjukkan *entity* dan *relasi* berdasarkan proses yang diinginkan oleh user. Penentuan *entity* dan relasi dengan mengambil data dan *role business* untuk dijadikan bahan analisis menyesuaikan kebutuhan sistem informasi yang dibuat. Tahapan yang digunakan untuk perancangan *database* dibagi dalam 4 tahap yaitu analisis kebutuhan, perancangan *database* konseptual, perancangan *database* logikal dan perancangan *database* fisikal.

3.1. Analisis Kebutuhan

Analisis kebutuhan *user point of sale* di salah satu apotek diantaranya:

- a. Sistem dapat menampilkan halaman login untuk kasir.
- b. Sistem dapat menampilkan halaman dashboard ketika berhasil login.
- c. Sistem dapat menginput obat yang diminta oleh pelanggan atau konsumen.

- d. Sistem dapat menginput harga obat yang telah dibeli oleh kasir.
- e. Sistem dapat menambah inputan obat sebanyak obat yang diperlukan oleh konsumen atau pelanggan.
- f. Sistem dapat menjumlah total harga dari beberapa item obat yang telah dibeli oleh pelanggan atau konsumen.
- g. Sistem dapat mencetak nota sebagai bukti transaksi penjualan obat pada apotek tersebut.
- h. Sistem dapat memberikan potongan harga bagi pelanggan yang sudah mendaftarkan sebagai member.

3.2 Desain Konseptual

Desain konseptual *database*, yaitu proses pembentukan model yang berasal dari informasi yang didapatkan dalam proses analisis kebutuhan dari keseluruhan aspek data yang diperlukan untuk perancangan sistem *database* dan digunakan sebagai sumber informasi untuk tahapan desain logikal sesuai dengan Tabel 1. Identifikasi tipe entitas.

Tabel 1. Identifikasi Tipe Entitas

No.	Nama Entitas	Deskripsi	Kejadian
1	Jenis Obat	Mendeskripsikan nama satuan pada obat yang telah diinputkan	Setiap konsumen dapat membeli obat sesuai dengan jenis obat yang tersedia pada apotek
2	Nama Obat	Mendeskripsikan nama obat yang ada dalam aplikasi POS apotek	Setiap konsumen dapat membeli obat sesuai dengan nama obat yang tersedia pada apotek
3	Nama Toko	Mendeskripsikan data toko yang menggunakan aplikasi POS apotek	Setiap apotek dapat menggunakan POS apotek
4	Pelanggan	Mendeskripsikan pelanggan atau member pada apotek tersebut	Setiap pelanggan atau member akan diberikan potongan harga
5	Nama User	Mendeskripsikan data karyawan pada sistem setiap tindakan	Setiap karyawan login untuk sistem keamanan dan kerahasiaan POS apotek
6	Penjualan	Mendeskripsikan penjualan obat ke konsumen	Setiap penjualan dibuat penyimpanan agar dapat dilaporkan
7	Penjualan Detail	Mendeskripsikan laporan pembelian obat kepada pemasok secara detail	Setiap penjualan akan diberikan laporan berupa faktur pembelian
8	Penjualan Temporary	Mendeskripsikan tempat sementara untuk menampung transaksi	Setiap transaksi disimpan pada sebuah <i>temporary</i> yang akan menyimpan sementara transaksi

3.3 Desain Logikal

Desain logikal yaitu proses pembuatan model dari informasi yang digunakan perusahaan berdasarkan model dan data spesifik. Deskripsi implementasi *database* berdasarkan hasil desain logikal dengan *Entity Relationship Diagram* (ERD) pada *Database Management System* (DBMS) sesuai pada Gambar 2.

Gambar 2. Diagram relasi entitas

Perancangan database relasional yang baik adalah menghapus yang tidak sesuai sebagian dari model data konseptual. Berikut pembuatan *mapping table* sesuai Gambar 3.

Gambar 3. Mapping table

3.4 Desain Fisikal

Desain fisikal merupakan tahapan implementasi dari pembuatan database logis yang tersimpan secara fisik pada harddisk sesuai dengan DBMS yang digunakan. Salah satu dari DBMS adalah *My Structured Query Language* (MySQL), berikut Tabel 2 sampai Tabel 9, hasil pembuatan 8 entitas apotek.

Tabel 2. Entitas Jenis Obat

Atribut	Deskripsi	Tipe Data dan Panjang
kd_satuan	ID Jenis Obat	Varchar [6]
nm_satuan	Nama Jenis Obat	Varchar [25]
active	Status Jenis Obat	Char [1]

Tabel 3. Entitas Obat

Atribut	Deskripsi	Tipe Data dan
		Panjang
kd_barang	ID Obat	Varchar [5]
nm_barang	Nama Obat	Varchar [50]
kd_satuan	ID Jenis Obat	Varchar [10]
kd_kategori	Kategori Obat	Varchar [10]
hrg_jual	Harga Jual Obat	Int [11]
hrg_beli	Harga Beli Obat	Int [11]
active	Status Nama Obat	Char [1]

Tabel 4. Entitas Pelanggan

Atribut	Deskripsi	Tipe Data dan
		Panjang
id	ID Pelanggan	Double
nama	Nama Pelanggan	Varchar [35]
ile	Jenis Kelamin Pelanggan	Enum [Laki-laki,
jk		Perempuan]
nohp	Nomor Handphone Pelanggan	Varchar [15]
email	Email Pelanggan	Varchar [35]
alamat	Alamat Pelanggan	Text
tal defter	Tanggal Pendaftaran	
tgl_daftar	Pelanggan	Date
tipe	Tipe Pelanggan	Char [2]

Tabel 5. Entitas Toko

Atribut	Deskripsi	Tipe Data dan
		Panjang
kd_toko	ID Toko	Varchar [15]
nm_toko	Nama Toko	Varchar [30]
almt_toko	Alamat Toko	Varchar [150]
kota	Kota Toko	Varchar [30]
tlp_toko	Nomor Telepon Toko	Varchar [15]
fax_toko	Fax Toko	Varchar [15]
logo	Logo Toko	Varchar [50]

Tabel 6. Entitas User

Atribut	Deskripsi	Tipe Data dan Panjang
id_user	ID User	Varchar [6]
nm_lengkap	Nama User	Varchar [30]
nm_user	Nama Username	Varchar [25]
password	Password User	Varchar [35]
akses	Hak akses User	Varchar [15]
active	Status User	Char [1]

Tabel 7. Entitas Jual

Atribut	Deskripsi	Tipe Data dan Panjang
id	ID Pelanggan	Double
no_transaksi	Nomor Penjualan	Double
no_faktur	Nomor Faktur Penjualan	Varchar [15]
tgl_penjualan	Tanggal Penjualan	Date
total_penjualan	Total Penjualan	Int [11]
user	Penginput	Varchar [15]

Tabel 8. Entitas Jual Detail

Atribut	Deskripsi	Tipe Data dan Panjang
id	ID Pelanggan	Double
no_transaksi	Nomor Penjualan	Double
kd_barang	Kode Barang	Varchar [15]
jumlah	Jumlah Penjualan	Int [11]
harga	Harga Penjualan	Int [11]
sub_total	Sub Penjualan	Int [11]
hrg_pokok	Harga Pokok Penjualan	Int [11]

Tabel 9. Entitas Jual Temporary

Atribut	Deskripsi	Tipe Data dan Panjang
id	ID Pelanggan	Double
no_faktur	Nomor Faktur	Double
kd_barang	Kode Barang	Varchar [15]
jumlah	Jumlah Penjualan	Int [11]
harga	Harga Penjualan	Int [11]
sub_total	Sub Penjualan	Int [11]
hrg_pokok	Harga Pokok Penjualan	Int [11]
user	User yang menginput	Varchar [15]

Data definition Language (DDL) adalah kumpulan beberapa perintah SQL untuk memvisualkan desain database secara menyeluruh. Beberapa fungsi perintah SQL yaitu create (membuat), alter (merubah) dan drop (menghapus), berikut script DDL yang diimplementasikan pada apotek.

```
SOL Create Table Jenis Obat
     CREATE TABLE 'jenis_obat' (
  'kd_satuan' varchar(6) NOT NULL,
  'nm_satuan' varchar(25) NOT NULL,
                          char(1) NOT NULL
      ) ENGINE = InnoDB DEFAULT CARSET=latin1;
b. SQL Create Table Obat
     CREATE TABLE 'obat' (
  'kd_barang' varchar(5) NOT NULL,
  'nm_barang' varchar(50) NOT NULL,
  'kd_satuan' varchar(10) NOT NULL,
  'kd_kategori' varchar(10) NOT NULL,
          'hrg_jual' int(11) NOT NULL,
'hrg_beli' int(11) NOT NULL,
'active' char(1) NOT NULL
     ) ENGINE = InnoDB DEFAULT CARSET=latin1;
c. SQL Create Table Pelanggan
     CREATE TABLE 'pelanggan' 
'tgl_daftar' date NOT
                               date NOT NULL,
         `tipe`
                    char (2) NOT NULL,
         'ID' double NOT NULL,
         'Nama' varchar (35) NOT NULL,
                 enum ('Laki-Laki', 'Perempuan') NOT NULL,
         `Jk`
         NoHp' varchar(15) NOT NULL,
'Email' varchar(35) NOT NULL,
'Alamat' text NOT NULL
     ) ENGINE=InnoDB DEFAULT CHARSET=latin1;
    SQL Create Table Toko
CREATE TABLE `nama_toko`
          `kd_toko` varchar(15) NOT NULL,
`nm_toko` varchar(30) NOT NULL,
          `almt_toko` varchar(150) NOT NULL,
`kota` varchar(30) NOT NULT,
          `tlp_toko` varchar(15) NOT NULL,

`fax_toko` varchar(15) NOT NULL,

`logo` varchar(50) NOT NULL
       ) ENGINE=InnoDB DEFAULT CHARSET=latin1;
           SQL Create Table User
      CREATE TABLE `nama_user` (
           id_user` varchar(6) NOT NULL,
inm_lengkap` varchar(30) NOT NULL,
           nm_user` varchar(25) NOT NULL,
password` varchar(35) NOT NULL,
           akses` varchar(15) NOT NULL, active` char(1) NOT NULL
       ) ENGINE=InnoDB DEFAULT CHARSET=latin1;
      f. SQL Create Table JualCREATE TABLE `penjualan` (`id` double NOT NULL,`no_transaksi` double NOT NULL,
          `no_faktur` varchar(15) NOT NULL,
`tgl_penjualan` date NOT NULL,
          tgl_penjualan date Not Note,

`total_penjualan` int(11) NOT NULL,

`user` varchar(15) NOT NULL,

`tipe` char(2) NOT NULL,

`jenis` enum('debit','kredit','','') NOT NULL,

`id_pelanggan` varchar(10) NOT NULL

TYCTUE-INCORD DEFAULT CHARSET=latin1;
       ) ENGINE=InnoDB DEFAULT CHARSET=latin1;
            SQL Create Table Jual Detail
      CREATE TABLE `penjualan_detail` (
  `id` double NOT NULL,
          `no_transaksi` double NOT NULL,
           `kode_obat` varchar(15) NOT NULL,
          'jumlah' int(11) NOT NULL,
'harga' int(11) NOT NULL,
          `sub_total` int(11) NOT NULL,
`hrg_pokok` int(11) NOT NULL,
          `tipe` char(2) NOT NULL
       ) ENGINE=InnoDB DEFAULT CHARSET=latin1;
            SQL Create Table Jual Temporary
      CREATE TABLE `penjualan_tmp` (
   `id` double NOT NULL,
   `no_faktur` double NOT NULL,
   `kode_obat` varchar(15) NOT NULL,
          'jumlah' int(11) NOT NULL,
'harga' int(11) NOT NULL,
'sub_total' int(11) NOT NULL,
'hrg_pokok' int(11) NOT NULL,
                     varchar(15) NOT NULL
```

3.5 Implementasi Input dan Output Database dalam Aplikasi

a. Halaman Login

Halaman login diperlukan untuk keamanan aplikasi, login ini akan tampil pertama kali pada sebuah aplikasi, sehingga orang yang akan melalukan transaksi tidak dapat sembarangan orang melakukan transaksi, POS ini ada beberapa level yaitu admin, kasir dan kepala keuangan. Hasil halaman *login* seperti pada Gambar 4.

Gambar 4. Halaman Login POS ApJog

Gambar 4 memiliki dua inputan dan dua *button* yaitu input *username*, *password* dan tombol *reset* jika ingin membatalkan pengisian username dan password serta tombol *submit* untuk login ke dalam sebuah sistem POS ApJog.

b. Halaman Penjualan

Halaman penjualan digunakan sebagai tempat proses transaksi penjualan obat dalam halaman ini akan menampilkan nama barang yang ingin dibeli dan harga. Tampilan halaman penjualan dapat dilihat pada Gambar 5.

Gambar 5. Halaman penjualan

Gambar 5 merupakan halaman penjualan yang terdapat *form* input yang digunakan untuk memasukkan obat yang akan dibeli dan jumlah uang yang telah dibayar oleh pasien. Tombol print juga digunakan apabila kasir akan mencetak nota.

4. KESIMPULAN

Berdasarkan penelitian rancangan *database* dengan menggunakan metode DBLC didapatkan hasil sebagai berikut:

- 1. Analisis Kebutuhan *Rule business* dan kebutuhan user.
- Desain Konseptual
 Entitas yang yang diperlukan sebanyak 8 entitas, berisikan keterangan dan kegiatan entitas.
- 3. Desain Logikal Menghasilkan relasi model dan logikal untuk mempresentasikan entitas, relasi dan *attribute* yang telah diidentifikasi sebelumnya.
- 4. Desain Fisikal Perancangan *database* menggunakan MySQL, jumlah tabel dalam *database* APJOG ada 8 yaitu jenis obat, obat, pelanggan, toko, user, jual, jual detail dan jual *temporary*.
- 5. Database dengan model relasional dalam bentuk dua dimensi yang saling berkaitan.
- 6. Perancangan basis data dapat diterapkan pada aplikasi ApJog seperti Login yang terintegrasi dengan tabel user pada *database*.

UCAPAN TERIMA KASIH

Peneliti mengucapkan terima kasih kepada Direktur dan Kaprodi Program Pascasarjana Teknik Informatika Universitas Ahmad Dahlan yang (UAD) yang telah memberikan dukungan pada penelitian ini. Terimakasih kepada dosen dan staff di MTI UAD dan *reviewer* semoga penelitian ini dapat disajikan melalui publikasi jurnal sesuai harapan publik.

BAHAN REFERENSI

- [1] Fathansyah, 1999, Basis Data. Informatika, Bandung.
- [2] Whitehorn, M. Dan Marklyn, B., 2003, *Seluk Beluk Database Relasional*, Edisi ke-2. Erlangga, Jakarta.
- [3] Mannino, M. V., 2001, *Database Application Development and Design*. McGraw-Hill, New York.
- [4] Laudon, K. C., Laudon, J. P., 2005, Management Information Systems: Managing the Digital Firm, 8th Edition, Prentice Hall, New Jersey
- [5] Kasus, S., Maan, P. T., & Shiddiq, G., 2019. Rancang Bangun Point of sales Terintegrasi Dengan Sistem Gudang. (1), 57–67.
- [6] Baskoro, A. C., Informatika, P. S., Komunikasi, F., Informatika, D. A. N., & Surakarta, U. M. (2018). Sistem informasi penjualan alat teknik berbasis web pada cv arba kurnia teknik.
- [7] Herman, H. T., Rostianingsih, S., & Setiawan, A, 2016. *Pembuatan Aplikasi Point of sales untuk Rumah Makan Dapur Rinjani*. Infra, 4, 6.
- [8] Happy, N., Dewiyani, A., & Ayuningtyas, S., 2015. *RANCANG BANGUN APLIKASI APOTEK* (Studi Kasus: Apotek Ashara Husada Sidoarjo). Jsika, 4(2), 1–9.
- [9] Sugiyono., 2009, Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R & D, Alfabeta, Jakarta
- [10] Nasution, Muhammad Irwan Padli, 2014, Keunggulan Kompetitif dengan Teknologi Informasi. Jurnal Elektronik