CORRELATION

Correlation

key concepts:

Types of correlation

Methods of studying correlation

- a) Scatter diagram
- b) Karl pearson's coefficient of correlation
- c) Spearman's Rank correlation coefficient
- d) Method of least squares

Correlation

- Correlation: The degree of relationship between the variables under consideration is measure through the correlation analysis.
- The measure of correlation called the correlation coefficient
- The degree of relationship is expressed by coefficient which range from correlation $(-1 \le r \ge +1)$
- The direction of change is indicated by a sign.
- The correlation analysis enable us to have an idea about the degree & direction of the relationship between the two variables under study.

Correlation

- Correlation is a statistical tool that helps to measure and analyze the degree of relationship between two variables.
- Correlation analysis deals with the association between two or more variables.

Correlation & Causation

- Causation means cause & effect relation.
- Correlation denotes the interdependency among the variables for correlating two phenomenon, it is essential that the two phenomenon should have cause-effect relationship,& if such relationship does not exist then the two phenomenon can not be correlated.
- If two variables vary in such a way that movement in one are accompanied by movement in other, these variables are called cause and effect relationship.
- Causation always implies correlation but correlation does not necessarily implies causation.

Types of Correlation Type I

Correlation

Positive Correlation

Negative Correlation

Types of Correlation Type I

Positive Correlation: The correlation is said to be positive correlation if the values of two variables changing with same direction.

Ex. Pub. Exp. & sales, Height & weight.

Negative Correlation: The correlation is said to be negative correlation when the values of variables change with opposite direction.

Ex. Price & qty. demanded.

Direction of the Correlation

- Positive relationship Variables change in the same direction.
 - As X is increasing, Y is increasing
 - As X is decreasing, Y is decreasing
 - E.g., As height increases, so does weight.
- Negative relationship Variables change in opposite directions.
 - As X is increasing, Y is decreasing
 - As X is decreasing, Y is increasing
 - E.g., As TV time increases, grades decrease

More examples

- Positive relationships
- water consumption and temperature.
- study time and grades.

- Negative relationships:
- alcohol consumption and driving ability.
- Price & quantity demanded

Types of Correlation Type II

Types of Correlation Type II

- Simple correlation: Under simple correlation problem there are only two variables are studied.
- Multiple Correlation: Under Multiple Correlation three or more than three variables are studied. Ex. $Q_d = f(P,P_C, P_S, t, y)$
- Partial correlation: analysis recognizes more than two variables but considers only two variables keeping the other constant.
- Total correlation: is based on all the relevant variables, which is normally not feasible.

Types of Correlation Type III

Correlation

LINEAR

NON LINEAR

Types of Correlation Type III

when the amount of change in one variable tends to bear a constant ratio to the amount of change in the other. The graph of the variables having a linear relationship will form a straight line.

Ex
$$X = 1$$
, 2, 3, 4, 5, 6, 7, 8,
 $Y = 5$, 7, 9, 11, 13, 15, 17, 19,
 $Y = 3 + 2x$

Non Linear correlation: The correlation would be non linear if the amount of change in one variable does not bear a constant ratio to the amount of change in the other variable.

Methods of Studying Correlation

- Scatter Diagram Method
- Graphic Method
- Karl Pearson's Coefficient of Correlation
- Method of Least Squares

Scatter Diagram Method

Scatter Diagram is a graph of observed plotted points where each points represents the values of X & Y as a coordinate. It portrays the relationship between these two variables graphically.

A perfect positive correlation

High Degree of positive correlation

Positive relationship

r = +.80

Moderate Positive Correlation

Sh<mark>oe</mark> Size

Weight

Perfect Negative Correlation

TV watching per week

Exam score

Moderate Negative Correlation

TV watching per week

Exam score

r = -.80

Weak negative Correlation

Shoe Size

r = -0.2

Weight

No Correlation (horizontal line)

Height

2) Direction of the Relationship

- Positive relationship Variables change in the same direction.
 - As X is increasing, Y is increasing
 - As X is decreasing, Y is decreasing
 - E.g., As height increases, so does weight.
- Negative relationship Variables change in opposite directions.
 - As X is increasing, Y is decreasing
 - As X is decreasing, Y is increasing
 - E.g., As TV time increases, grades decrease

Advantages of Scatter Diagram

- Simple & Non Mathematical method
- Not influenced by the size of extreme item
- First step in investing the relationship between two variables

Disadvantage of scatter diagram

Can not adopt the an exact degree of correlation