AACR GENIE Variant Summary Report

Overview

This document contains analysis summarizing variant, sample, and patient information from the AACR Project GENIE data set. This is among the largest public cancer data sets with data from over 160,000 patients.

Data have been are aggregated from multiple institutions and multiple NGS panels were used to collect mutation data.

Loading data

```
bDir <- "../../data/processed/balderResultsDb"
figDir <- "../../output/actionability_db_curration_20231220"
mydb <- DBI::dbConnect(RSQLite::SQLite(), paste0(bDir,"/actionable-biomarker-db.sqlite"))

genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GeniePatientVarients')
sample.genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GenieClinicalSampleData')
patient.genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GeniePatientData')

genie.full <- genie %>%
    dplyr::left_join(sample.genie,by=c("Tumor_Sample_Barcode"="SAMPLE_ID")) %>%
    dplyr::left_join(patient.genie,by="PATIENT_ID")
dim(genie.full)
```

[1] 1712997 81

to do: print out column names. What is there in terms of variant info and annotations

Results summary

what proportion of all patients are in the variant table?

FALSE TRUE 15746 145219

Variant counts

Variants per sample for all available data:

Variants per sample for three top panels: "MSK-IMPACT468", "DFCI-ONCOPANEL-3.1", "MSK-IMPACT505".

Panels

Patients per panel type

SEQ_ASSAY_ID	number.patients.per.panælumbe	r.genes.per.pan e lumbe	r.distinct.AA.chang
MSK-IMPACT468	30713	478	182817
DFCI-	13976	498	116329
ONCOPANEL-3.1			
MSK-IMPACT505	13413	510	97813
PROV-TSO500HT-	9076	535	100986
V2			
MSK-IMPACT410	8759	414	52770
DFCI-	8154	383	50080
ONCOPANEL-2			
DFCI-	6647	489	61895
ONCOPANEL-3			
MSK-IMPACT-	5547	396	17981
HEME-400			
JHU-50GP	4984	51	3709
UCSF-IDTV5-TO	4406	574	71184

SEQ_ASSAY_ID	number.patients.per.pan@umbe	er.genes.per.pan e lumber	r.distinct.AA.changes
DFCI-	2976	284	17842
ONCOPANEL-1			
MSK-IMPACT341	2463	344	13229
CRUK-TS	2345	174	9676
UCSF-NIMV4-TO	2163	500	34204
DUKE-F1-DX1	1942	319	16347
COLU-CSTP-V1	1709	47	3732
MSK-IMPACT-	1635	431	4982
HEME-468			
UCSF-NIMV4-TN	1635	500	27257
VICC-01-T7	1590	325	16114
NKI-CHPV2-	1316	41	763
SOCV2-NGS			
VICC-01-MYELOID	1271	35	1720
MDA-50-V1	1266	47	953
JHU-500STP	1216	49	640
UHN-48-V1	1181	48	1179
DUKE-F1-T7	1047	324	9793
UHN-54-V1	1014	53	1586
YALE-OCP-V3	998	144	2838
MDA-46-V1	944	45	532
UCSF-IDTV5-TN	928	555	15215
VICC-01-	844	31	605
SOLIDTUMOR			
COLU-CCCP-V1	758	469	9577
GRCC-MOSC3	739	66	1038
SCI-PMP68-V1	723	66	1435
NKI-TSACP-	678	41	560
MISEQ-NGS			
COLU-CSTP-V2	630	29	1661
PROV-FOCUS-V1	554	34	212
COLU-TSACP-V1	531	52	2619
UHN-555-V1	490	561	16752
VICC-02-XTV4	428	707	7477
CHOP-STNGS	407	226	1777
VICC-01-T5A	396	242	3226
MDA-409-V1	395	348	2038
WAKE-CLINICAL-	395	80	214
T7			
PROV-TRISEQ-V2	387	310	2750
UHN-OCA-V3	379	45	241

SEQ_ASSAY_ID	number.patients.per.panælumbe	r.genes.per.pan el umber	distinct.AA.change
VHIO-300	341	413	4028
GRCC-MOSC4	302	71	510
WAKE-CLINICAL-	296	127	521
DX1			
WAKE-CA-NGSQ3	281	283	759
UCHI-	269	56	737
ONCOHEME55-V1			
VICC-02-XTV3	267	694	5223
UHN-TSO500-V1	261	225	836
UHN-555-GYNE-V1	259	563	20390
VHIO-	241	30	283
COLORECTAL-V01			
YALE-HSM-V1	234	35	288
UHN-555-V2	209	564	7780
UCHI-	194	42	257
ONCOSCREEN50-			
V1			
VICC-01-DX1	188	297	1942
CHOP-COMPT	179	188	653
NKI-CHP-V2-PLUS	174	34	154
WAKE-CA-01	172	19	136
VHIO-PANCREAS-	167	23	140
V01			
VICC-01-D2	159	359	1795
UHN-555-PAN-GI-	117	550	6499
V1	,		0 -0 0
CHOP-HEMEP	113	98	379
GRCC-CHP2	99	25	130
DUKE-F1-T5A	84	202	778
NKI-CHPV2-NGS	74	19	96
VHIO-OVARY-V01	74	14	89
VHIO-BREAST-V02	69	22	76
WAKE-CLINICAL-	69	$\frac{1}{122}$	216
R2D2			
VHIO-GENERAL-	63	19	64
V01			~ -
VHIO-HEAD-	58	14	73
NECK-V01			
VHIO-LUNG-V01	58	20	81
UHN-555-BREAST-	54	514	3006
V1	v -		

SEQ_ASSAY_ID	number.patients.per.pan@umbe	r.genes.per.pan e lumber	distinct.AA.change
VHIO-BREAST-V01	54	22	74
VHIO-GASTRIC-	51	18	74
V01			
YALE-OCP-V2	44	33	105
VHIO-BRAIN-V01	36	10	48
UHN-555-HEAD-	34	490	2378
NECK-V1			
VHIO-BILIARY-V01	31	13	43
NKI-PATH-NGS	28	9	36
VHIO-	27	17	56
ENDOMETRIUM-			
V01			
GRCC-CP1	26	13	40
UHN-555-LUNG-V1	26	473	2163
VICC-02-XTV2	24	340	671
VHIO-URINARY-	21	14	38
BLADDER-V01			
VHIO-KIDNEY-V01	16	7	21
VHIO-SKIN-V01	16	10	17
VICC-01-T4B	14	116	261
UHN-555-	13	352	923
PROSTATE-V1			
WAKE-CLINICAL-	13	69	105
T5A			
UHN-555-	10	345	806
MELANOMA-V1			
UHN-555-GLIOMA-	9	345	805
V1			
UHN-555-RENAL-	8	287	574
V1			
UHN-50-V2	7	5	5
UHN-555-	4	219	363
BLADDER-V1			
VHIO-PAROTIDE-	4	4	7
V01			
VICC-01-T6B	4	30	34
COLU-CCCP-V2	2	46	54
WAKE-CLINICAL-	1	4	4
AB2			
WAKE-CLINICAL-	1	3	3
AB3			

SEQ_ASSAY_ID	number.patients.per.pan@umber.	genes.per.pan e lumber.d	istinct.AA.changes
WAKE-CLINICAL- CF3	1	4	4
WAKE-CLINICAL- R2	1	4	4

The following plot shows the number of genes tested in each panel

How many samples (or patients) have been tested with more than one panel? To-do: Is the coverage across panels? 10X-30X? Tumor and normal coverage?

Variant Effect and Protein annotation

Variant type

Variant_Type	variant_count	Percentage
DEL	141736	8.2741534
DNP	18308	1.0687701
INS	61449	3.5872217
ONP	2403	0.1402805

Variant_Type	variant_count	Percentage
SNP	1487530	86.8378637
TNP	1571	0.0917106

Variant Classifications

Variant_Classification	variant_count	Percentage
3'Flank	6314	0.3685938
3'UTR	3626	0.2116758
5'Flank	23870	1.3934642
5'UTR	3491	0.2037949
Frame_Shift_Del	96194	5.6155381
Frame_Shift_Ins	43753	2.5541784
In_Frame_Del	23505	1.3721565
In_Frame_Ins	9187	0.5363115
Intron	51690	3.0175184
Missense_Mutation	1123523	65.5881476
Nonsense_Mutation	118828	6.9368481
Nonstop_Mutation	908	0.0530065
RNA	1846	0.1077643
Silent	115459	6.7401753
Splice_Region	47540	2.7752530
Splice_Site	41399	2.4167585
${\bf Translation_Start_Site}$	1864	0.1088151

Concordance between Polyphen and SIFT predictions

table(genie.full\$Polyphen_Prediction,genie.full\$SIFT_Prediction)

		deleterious	deleterious_	_low_confidence	tolerated
	594406	0		0	0
benign	3297	107757		29706	301244
possibly_damaging	1039	113485		12978	54096
probably_damaging	1304	381393		17896	39106
unknown	69	27		202	15

tolerated_low_confidence

0

benign	47420
possibly_damaging	4178
probably_damaging	3299
unknown	80

MAF by Polyphen "probably damaging" or "possibly damaging"

MAF of variants by Polyphen Damaging assignment

MAF by SIFT "deleterious" or "deleterious low confidence"

To do: Look at SIFT/polyphen scores for TSG genes only but leave out ONC

• read in Vogelstein list of genes

To do: read recent GENIE manuscripts. Have they looked at prevalence of common cancer biomarkers already? can we reproduce their findings?

To do: apply cancer type ontology scheme

To do: perform actionability matching (with and without cancer type matching)

Variant signatures by assay type

Perform demintionality reduction on base pair transition signatures

Background: Different assays can show different profiles of background variants based. If background signals vary substantially, this could represent an important confounding factor in interpreting mutaitonal signatures

Goal: The goal of this work is to identify different clusters of assay signature types by performing clustering on base pair transition signatures.

Assumptions: This works assumes that a large proportion of listed signatures are assay artifacts and that these background mutations drive clustering patterns. Other contributors could also

influence the signature results include the diversity of cancer types tested and the segments of the genome tested by each panel.

Procedure

- 1. Filter to the GENIE variant set to SNV events only
- 2. Filter out any variants coming from assays that contribute fewer than 1,000 variants across all patients
- 3. Create a table that has a profile of variant counts for every combination of ref—>alt for each assay
- 4. Calculate what percentage of variants for a given assay type fit into any given combination of [ref base, tumor alt 2 base, strand].
- 5. Pivot these data into a matrix where rows are the different base pair combinations and columns are the different assay types. Each entry contains the percentage of variants that match a given base pair transition (e.g. A->T) for that assay type.
- 6. Normalize the matrix
- 7. Perfrom tsNE clustering
- 8. Visualize clusters

The following table shows the results of step (3):

$\overline{\mathrm{SEQ}}$	ASSAY <u>Re</u> Ference_	_Allel&umor_Seq	_AlleSe2and	nVariants	assayVariantsTot	apercVariants
CHOP	P- A	С	+	51	2064	2.470930
STNG	\mathbf{S}					
CHOP	P- A	G	+	161	2064	7.800388
STNG	\mathbf{S}					
CHOP	P- A	${ m T}$	+	126	2064	6.104651
STNG	\mathbf{S}					
CHOP		A	+	116	2064	5.620155
STNG						
CHOP		${ m G}$	+	117	2064	5.668605
STNG						
CHOP		${ m T}$	+	508	2064	24.612403
STNG						
CHOP		A	+	480	2064	23.255814
STNG						
CHOP		$^{\mathrm{C}}$	+	123	2064	5.959302
STNG		_				
CHOP		Τ	+	103	2064	4.990310
STNG						
CHOP		A	+	60	2064	2.906977
STNG	S					

```
#Convert data to matrix form
assaySigTbl$ID <- paste0(assaySigTbl$Reference_Allele,"-",assaySigTbl$Tumor_Seq_Allele2,"-
sigMtrx <- assaySigTbl[,c("ID","SEQ_ASSAY_ID","percVariants")] %>%
   tidyr::pivot_wider(names_from = SEQ_ASSAY_ID,values_from=percVariants)
sigMtrx2 <- sigMtrx[,!colnames(sigMtrx) %in% c("ID")]</pre>
```

Perform dimentionality reduction on mutational signature vector space

```
sigMtrxScale <- t(scale(sigMtrx2))</pre>
# Run t-SNE
set.seed(144) # For reproducibility
tsne_results <- Rtsne(sigMtrxScale, perplexity = 5, theta = 0.5, max_iter = 1000)
# Create a data frame for plotting
tsne_data <- data.frame(X = tsne_results$Y[,1], Y = tsne_results$Y[,2], assay = colnames(s</pre>
# Plot using ggplot2
ggplot(tsne_data, aes(x = X, y = Y, color = assay)) +
 geom_point() +
 theme_minimal() +
  ggtitle("t-SNE Plot of Assay signatures")
         OLU-CCCF-VI
                            t-SNE Plot of Assay signatures K-IMPACT341
                                                 UHN-555-HEAD-NE

    COLU-CSTP-V2

    MSK-IMPACT410

    UHN-555-LUNG-V1

       COLU-TSACP-V1

    MSK-IMPACT468

                                                 UHN-555-PAN-GI-V
      CRUK-TS

    MSK-IMPACT505

    UHN-555-PROSTATE

       DFCI-ONCOPANEL-1 • NKI-CHPV2-SOCV2-NGS • UHN-555-V1

    DFCI–ONCOPANEL–2

    NKI-TSACP-MISEQ-NGS
    UHN-555-V2

    DFCI–ONCOPANEL–3

    PROV–TRISEQ–V2

                                                 VHIO–300
       DFCI-ONCOPANEL-3.1 • PROV-TSO500HT-V2 • VICC-01-D2
      DUKE-F1-DX1
                           SCI-PMP68-V1
                                                  VICC-01-DX1

    UCHI-ONCOHEME55-V1
    VICC-01-MYELOID

      DUKE-F1-T7

    GRCC-MOSC3

    UCSF-IDTV5-TN

    VICC-01-SOLIDTUM

      JHU-500STP

    UCSF-IDTV5-TO

    VICC-01-T5A

      JHU–50GP

    UCSF-NIMV4-TN

                                                  VICC-01-T7
 TOD)
      MDA-409-V1

    UCSF-NIMV4-TO

                                                  VICC-02-XTV3
```

```
### Why do the ref/alt calls not always match the bases listed in HGVSc?
  head(genie.full[,c("Reference_Allele","Tumor_Seq_Allele1","Tumor_Seq_Allele2","HGVSc")])
  Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2
1
2
                                                      Т
                 Α
                 С
                                                      Т
3
4
                 С
                                                      Τ
                 Т
                                                      С
5
                                                      G
6
                 Α
                        HGVSc
    ENST00000256078.4:c.34G>T
2 ENST00000288602.6:c.1799T>A
3 ENST00000275493.2:c.2369C>T
4 ENST00000269305.4:c.818G>A
5 ENST00000369535.4:c.182A>G
6 ENST00000263967.3:c.3140A>G
```

Review of patient data


```
r=1
print(r)

1

#patient_py = reticulate::r_to_py(patient.genie)
#patient_py.head()
```

Review of survival data

Additional modeling ideas

- Does having an actionable mutation correlate with better or worse survival outcomes?
- Supervised
 - Tissue of origin prediction based on various biomarkers

- Identifying mutational signatures that correlate with outcomes and/or cancer types
- Mutational signatures that correlate with a given assay type
- Unsupervised modeling
 - Clustering of mutation patterns for each assay by tsne or PCA