LENDING CLUB CASE CTINY

By Varun Shenoy

PROBLEM STATEMENT

LOAN DATASET

AIM

To identify patterns which indicate if a person is likely to default, which may be used for taking meaningful actions.

APPROACH

- Importing Libraries
- Making a data frame
- Understand the rows and columns
- Strategizing an approach
- Deriving stats and info of the data
- Removing unwanted rows columns
- Imputing data, converting data types
- Removal of outliers

- Univariate analysis
- Segmented analysis
- Bivariate analysis
- Visualising analysis outputs
- Observations and conclusions
- recommendations

THE DATA- EDA 1

- Data has 39717 rows and 111 columns
- Preliminary data analysis and observations was indicative that not all data are meaningful and many columns are blanks (NAN) or single entry columns (0,f, Individual) etc.
- Data quality checks: 54 blank columns were observed of 111 columns
 - Functions used for cleaning: df.dropna() and df.drop() used
 - Blank columns removed
 - 2. Single entry columns were identified and removed
 - 3. Loan logging columns like id url zip etc were removed these colums add little insights to solving the aim

THE DATA- EDA 2

- Issue date column was split to month and year
- Many columns were stripped of % symbols and string entries to get data in proper data types
- Additional columns were dropped by checking its correlation with each other and neutral correlated columns and similar columns were further removed
- Correlation plot screenshot attached
- Strong and weak correlated data are studied using fully paid loan status
- Data types are converted into numerical and object data wherever applicable by using pd.to_numeric()

THE DATA- EDA 3

• The final data frame consisted of 39717 and 25 columns

#	Column	Non-Null Count	Dtype
0	loan_amnt	39717 non-null	int64
1	funded_amnt_inv	39717 non-null	float64
2	installment	39717 non-null	float64
3	grade	39717 non-null	object
4	sub_grade	39717 non-null	object
5	emp_title	37258 non-null	object
6	emp_length	38642 non-null	object
7	home_ownership	39717 non-null	object
8	annual_inc	39717 non-null	float64
9	verification_status	39717 non-null	object
10	loan_status	39717 non-null	object
11	purpose	39717 non-null	object
12	title	39706 non-null	object
13	addr_state	39717 non-null	object
14	dti	39717 non-null	float64
15	delinq_2yrs	39717 non-null	int64
16	open_acc	39717 non-null	int64
17	pub_rec	39717 non-null	int64
18	revol_bal	39717 non-null	int64
19	total_acc	39717 non-null	int64
20	pub_rec_bankruptcies	39020 non-null	float64
21	int_rate_perc	39717 non-null	float64
22	term_months	39717 non-null	int64
23	issue_month	39717 non-null	int64
24	issue_year	39717 non-null	int64

STATISTICAL ANALYSIS OF CATEGORICAL DATA

For all loans

```
## understanding behaviour of different categorical valriables for all loans

categorical_cols=["grade", 'sub_grade', 'emp_title", "emp_length", "home_ownership", "verification_status", "loan_status", "purpose for val in categorical_cols:

#print(filtered_loan_df[val].value_counts(dropna=False))

print("Maximum people have a loan of ",val,filtered_loan_df[val].value_counts().index[0],filtered_loan_df[val].value_counts()

**Naximum people have a loan of grade B 12020 i.e 30.26 % of all loans

Maximum people have a loan of sub_grade B3 2917 i.e 7.34 % of all loans

Maximum people have a loan of emp_title US Army 134 i.e 0.34 % of all loans

Maximum people have a loan of home_ownership RENT 18899 i.e 47.58 % of all loans

Maximum people have a loan of verification_status Not Verified 16921 i.e 42.6 % of all loans

Maximum people have a loan of loan_status Fully paid 32950 i.e 82.96 % of all loans

Maximum people have a loan of purpose debt_consolidation 18641 i.e 46.93 % of all loans

Maximum people have a loan of title Debt Consolidation 2184 i.e 5.5 % of all loans

Maximum people have a loan of fadf_state CA 7099 i.e 17.87 % of all loans

Maximum people have a loan of fadf_state CA 7099 i.e 17.87 % of all loans

Maximum people have a loan of fadf_state CA 7099 i.e 17.87 % of all loans
```

For defaulted loans

```
Top 2 categories of defaults for home_ownership are
Top 2 categories of defaults for grade are
                                                                                         2839
B 1425
                                                                               MORTGAGE
                                                                                       2327
C 1347
                                                                               Name: home_ownership, dtype: int64
Name: grade, dtype: int64
                                                                               i.e 91.81% which accounts to total defaults under home ownership
i.e 49.26% which accounts to total defaults under grade
                                                                               Top 2 categories of defaults for verification_status are
                                                                               Not Verified 2142
Top 2 categories of defaults for sub_grade are
                                                                               Verified
                                                                                             2051
                                                                               Name: verification status, dtype: int64
                                                                               i.e 74.52% which accounts to total defaults under verification status
      341
Name: sub_grade, dtype: int64
                                                                               Top 2 categories of defaults for purpose are
i.e 12.39% which accounts to total defaults under sub grade
                                                                               debt_consolidation 2767
                                                                               Name: purpose, dtype: int64
Top 2 categories of defaults for emp_title are
                                                                               i.e 60.42% which accounts to total defaults under purpose
Bank of America 20
                                                                               Top 2 categories of defaults for title are
Name: emp_title, dtype: int64
                                                                               Debt Consolidation
                                                                               Debt Consolidation Loan 274
i.e 0.68% which accounts to total defaults under emp title
                                                                               Name: title, dtype: int64
                                                                               i.e 10.29% which accounts to total defaults under title
Top 2 categories of defaults for emp_length are
10+ years 1331
                                                                               Top 2 categories of defaults for addr state are
                                                                               CA 1125
Name: emp length, dtype: int64
                                                                               Name: addr_state, dtype: int64
i.e 35.01% which accounts to total defaults under emp_length
                                                                               i.e 28.95% which accounts to total defaults under addr_state
```

Observations

- Source of income of around 42.6% of borrowers are not verified by LC.This is a huge number of people and hence chances of default can be reduced with proper verification.
- 2. Professionals with 10+ years work experience make 22.3% of the borrowers
- Maximum loans are availed from or in State of CA will be studied with other select categorical variables for defaultSurprisingly Grade B and C observes maximum number of defaults ~50%
- 4. Better income source verification can reduce the default strongly
- 5. Majority of defaults 90% are by borrowers who have a home mortgage or are on Rent

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

• Loan amount with loan status histogram plot- univaraite analysis

15000 20000

loan amnt

25000

30000

10000

#to understand percentage of defaulters
sns.histplot(data=filtered_loan_df,bins=30,x="loan_amnt",hue="loan_status",multiple='fill')
<Axes: xlabel='loan_amnt', ylabel='Count'>

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

Grade segmented analysis

Observations

- After Grade D the % of defaults increase in almost all bands
- 2. The histogram shows that defaults are comparatively higher above 15000. This may not be representative as 75% of data lies below 15000 for loan amount
- 3. In current scenario high amount borrowers are more and hence caution advised

ANALYZING OUTLIERS

Observations

1. High fluctuations are observed for Annual income the data is described using .describe() and studied for all loans v/s defaults to understand the behavior of annual income

				All loans]		
count mean std min 25%	loan_amnt 39717.000000 11219.443815 7456.670694 500.000000 5500.000000 10000.000000	funded_amnt_inv 39717.000000 10397.448868 7128.450439 0.000000 5000.000000 8975.000000	installment 39717.000000 324.561922 208.874874 15.690000 167.020000 280.220000	annual_inc 3.971700e+04 6.896893e+04 6.379377e+04 4.000000e+03 4.040400e+04 5.900000e+04	count mean std min 25% 50%	10an_amnt 5627.000000 12104.385108 8085.732038 900.000000 5600.000000	funded_amnt_inv 5627.000000 10864.521324 7661.750540 0.000000 5000.000000 9401.209477
75% max	15000.000000 35000.000000	14400.000000 35000.000000	430.780000 1305.190000	8.230000e+04 6.0000000e+06	75% max	16500.000000 35000.000000	15000.000000 35000.000000

2. 95th percentile is used to remove outliers from annual income and new filtered data set is formed

defaulted

annual_inc

1.250000e+06

loans

installmen

336.17500 217.05184

22.79000 168.55500 293.87000 457.84000

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

Univariate analysis on month and year

```
plt.figure(figsize=(10,8))
plt.subplot(221)
sns.countplot(x='issue_month', data=filtered_loan_df[filtered_loan_df['loan_status']=='Charged Off'])
plt.subplot(222)
sns.countplot(x='issue_year', data=filtered_loan_df[filtered_loan_df['loan_status']=='Charged Off'])
```

<Axes: xlabel='issue_year', ylabel='count'>

Observations

- 1. Highest loan availed was in 2011 and highest loan availing quarter was Q4 (in all years)
- 2. Loan applicants are increasing YoY almost in exponential manner

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

Understanding purpose and defaults with loan amount

- Understanding employee tenure and default
- Groupby() used for employee length and loan status

Ioan_status Charged Off Current Fully Paid emp_length

150	31	1004
194	40	1151
252	58	1392
295	57	1781
441	81	2607
443	90	2759
449	66	2598
537	76	3293
548	91	3557
617	69	3714
1270	354	6623
	194 252 295 441 443 449 537 548 617	194 40 252 58 295 57 441 81 443 90 449 68 537 76 548 91 617 69

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

- Pivot table of median value of all entries to gain better insights
- used with aggfunc of np.median

loan_status	annual_inc	delinq_ 2yrs	dti	funded_amnt _inv	installment	int_rate _perc	issue_ month	issue_ year	loan_ amnt	open_ acc	pub_ rec	pub_rec _bankr uptcies	revol _bal	term_ months	total_ acc
Charged Off	51996.0	0	14.40	9000.0	286.99	13.49	8	2011	10000	8	0	0.0	8926	36	19
Fully Paid	57000.0	0	13.43	8200.0	267.74	11.49	7	2011	9000	8	0	0.0	8418	36	20

- Pivot table for understanding sub-grades wrt defaults
- used with aggfunc of stats. mode

grade	Α	В	С	D	E	F	G
loan_status							
Charged Off	([A5], [213])	([B5], [349])	([C1], [328])	([D2], [264])	([E1], [185])	([F1], [80])	([G1], [30])
Current	([A5], [26])	([B3], [89])	([C1], [78])	([D4], [61])	([E2], [39])	([F1], [18])	([G1], [9])
Fully Paid	([A4], [2579])	([B3], [2332])	([C1], [1637])	([D2], [959])	([E1], [490])	([F1], [196])	([G1], [58])

ON NUMERICAL DATA (SEGMENTED UNIVARIATE AND BIVARIATE)

Defaulters for term and interest

Pivot table used with agg func as np.median()

term_months	36	60	
loan_status			
Charged Off	12.53	15.99	
Current	NaN	14.27	
Fully Paid	10.75	14.17	

- Highest defaulters for Grouped interest rates and installment
- Pd.cut and Pivot table used with agg func as np.median()

int_rate_perc	5-10%	10-15%	15-20%	20-25%	
loan_status					
Charged Off	210.325	268.52	347.98	534.235	
Fully Paid	224.630	274.48	347.79	539.840	

OBSERVATIONS FROM SLIDE 12-15

- 1. People are likely to avail loans and default when purpose of loan is small business, credit card hence these claims need to verified and evaluated thoroughly
- 2. Those who are less than a year of work experience are likely to default. this is as expected
- 3. people with more that 10 years of experience are likely to default this needs to be investigated by LC
- 4. if interest rate and term of loan is more the default percentage is more
- 5. if interest rate and installment time is more the default percentage is more

CONCLUSIONS

Categories which can increase risk of default by borrowers are

- 1. median annual income less than ~52000
- 2. Home ownership-Rented or Mortgaged
- 3. Employment tenure is less than a year or more than 10 years
- 4. Loan application for amount more than 15000
- 5. Purpose of loan being for Debt consolidation, small business, credit card
- 6. Higher loan tenure borrowers i.e 60 months and higher installments have a higher default percentage
- 7. Most defaulting states are CA and FL can attract marginally higher intrest rates
- 8. Grade of D E F have a very high default count
- 9. Dti ratio of above ~14
- 10. Source not verified is the biggest cause in 74% of all defaults

