Academia Sabatina de Jóvenes Talento

Polinomios Examen final

Nombre: ______ Código ASJT: _____

Problemas

Estimado estudiante, resolver los siguientes problemas de manera clara y ordenada. Recordar justificar la respuesta.

Problema 1. Con la ayuda del teorema de la raíz racional, encontrar todas las raíces de los siguiente polinomio

$$2x^3 - 21x^2 + 52x - 21.$$

Problema 2. Si $P\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}+227$, ¿cuál es el valor de $\sqrt{P(20)}$?

Problema 3. Si a y b son raíces distintas del polinomio $x^2 + 1012x + 1011$, entonces

$$\frac{1}{a^2+1011a+1011}+\frac{1}{b^2+1011b+1011}=\frac{m}{n},$$

donde m y n son primos relativos. Calcular m+n.

Problema 4. Sea $R(c) = a^2 + b^2 + 65c^2 + 2ab - 18bc - 18ca$, factorize R y responda. ¿Cuáles son las raíces de R?

Problema 5. Dado el polinomio $S(x) = (11 - 15x^3)(17x^6 - 37) + 2^8x^6(16 - x + x^2)(16 + x)$, responda lo siguiente:

- a. $\xi S(x)$ es mónico? R: _____
- b. $\xi S(x)$ es completo? R: _____
- c. $\xi S(x)$ es simétrico? R: _____

- d. Escriba el coeficiente de x^6 . R: _____
- e. Escriba el término independiente. R: _____
- f. ¿Es $S(\sqrt[3]{x})$ un polimonio? R: _____

Academia Sabatina de Jóvenes Talento

Soluciones

Problema 1.

Los divisores del término principal son : $\{\pm 1, \pm 2\}$.

Los divisores del término independiente son: $\{\pm 1, \pm 3, \pm 7, \pm 21\}$

Por lo tanto, el conjunto de todas las posibles raíces racionales del polinomio en cuestión es $\{\pm 1, \pm 3, \pm 7, \pm 21, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{7}{2}, \pm \frac{21}{2}\}$. Al ir probando los valores, de preferencia primero los enteros, vemos que 3 es raíz del polinomio. Luego, al dividir el polinomio entre x-3 obtenemos

$$2x^3 - 21x^2 + 52x - 21 = (x - 3)(2x^2 - 15x + 7)$$

El polinomio $2x^2 - 15x + 7$ es sencillo de factorizar, por factorización clásica, por lo tanto

$$2x^3 - 21x^2 + 52x - 21 = (x - 3)(x - 7)(2x - 1)$$

Luego, las raíces del polinomios son $\left\{\frac{1}{2}, 3, 7\right\}$.

Problema 2.

Es fácil ver que $\left(x+\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}$, de aquí que

$$P\left(x + \frac{1}{x}\right) = x^2 + 2 + \frac{1}{x^2} + 225$$
$$P\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)^2 + 225$$
$$P(y) = y^2 + 225$$

Por lo tanto, si y=20, entonces $P(20)=20^2+225=400+225=625=25^2$. Luego, $\sqrt{P(20)}=\sqrt{25^2}=\boxed{\pm 25}$

Problema 3.

Como a es raíz del polinomio, entonces $a^2 + 1012a + 1011 = 0$, de esta ecuación podemos ver que $a^2 + 1011a + 1011 = -a$. Análogamente con $a^2 + 1011a + 1011 = -a$. Entonces

$$\frac{1}{a^2 + 1011a + 1011} + \frac{1}{b^2 + 1011b + 1011} = \frac{m}{n}$$
$$\frac{1}{-a} + \frac{1}{-b} = \frac{m}{n}$$
$$-\frac{a+b}{ab} = \frac{m}{n}$$

Tipo: B Fecha: 24 de junio de 2023

Academia Sabatina de Jóvenes Talento

Que por Vieta sabemos que a + b = -1012 y ab = 1011, entonces

$$-\frac{a+b}{ab} = \frac{m}{n}$$
$$-\frac{-1012}{1011} = \frac{m}{n}$$
$$\frac{1012}{1011} = \frac{m}{n}$$

Como 1012 y 1011 son consecutivos, entonces son coprimos. Por lo tanto, m=1012 y n=1011. Luego $m+n=\boxed{2023}$.

Problema 4.

Veamos que

$$R(c) = a^{2} + b^{2} + 65c^{2} + 2ab - 18bc - 18ca$$

$$R(c) = 65c^{2} - 18bc - 18ca + a^{2} + 2ab + b^{2}$$

$$R(c) = 65c^{2} - 18c(a+b) + (a+b)^{2}$$

$$R(c) = [13c - (a+b)][5c - (a+b)]$$

Luego, las raíces de R son $\left\lceil \frac{a+b}{13} \right\rceil$ y $\left\lceil \frac{a+b}{5} \right\rceil$.

Problema 5.

$$S(x) = (11 - 15x^{3})(17x^{6} - 43) + 2^{8}x^{6}(16 - x + x^{2})(16 + x)$$

$$S(x) = (187x^{6} - 473 - 255x^{9} + 645x^{3}) + 256x^{6}(x^{3} - 15x^{2} + 256)$$

$$S(x) = (187x^{6} - 473 - 255x^{9} + 645x^{3}) + (256x^{9} - 3840x^{8} + 256^{2}x^{6})$$

$$S(x) = (256x^{9} - 255x^{9}) - 3840x^{8} + (187x^{6} + 256^{2}x^{6}) + 645x^{3} - 473$$

$$S(x) = x^{9} - 3840x^{8} + 65536x^{6} + 645x^{3} - 473$$

- a. Sí, ya que el su coeficiente principal es 1.
- b. No, ya que faltan los términos de x^7 , x^5 , x^4 , x^2 , y x.
- c. No, ya que con sólo ver que el coeficiente principal y el término independiente no son iguales el polinomio no es simétrico.
- d. El coeficiente es 65723.
- e. El término independiente es -473.
- f. No, ya que al evaluar el polinomio obtenemos $S(\sqrt[3]{x}) = x^3 3840x^2\sqrt[3]{x^2} + 65536x^2 + 645x 473$. Expresión que tiene radicales y por lo tanto no es un polinomio.

Tipo: B Fecha: 24 de junio de 2023