

regenerative { b : it is called as regenerative comparator. > Rom is called as offset minimizing resistor & is equal to parallel combination of R, & R2. In schmitt trigger reference vlg is V, which is cléveloped across R2, Vi= R2 Vo > There are two different triggering v/gs are de ined, is opper threshold vig is the value of this which forces transition from +Vsat to-Vsat in olp vlg. in lower threshold up is the value of Vin which force the olf vig from - Vsat to + Vseit. VUT = R2 (+Vsat)
RITR2 $V_{LT} = \frac{R_2}{D_1 + D_2} \left(V_{Sat} \right)$ Initially assume that of vigo tract. Sife of opamp, then ilpis applient

ref. vlg V, is given by, $V_1 = \frac{R2}{R_1 + R_2}$ (+Vsat) $R_1 + R_2$ $R_1 + R_2$ > Vo = + Vsat upto point D', ilp vlg Vin = Vor, As soon as Vin becomes slightly higher than VUT, the old vig switches from +Vsat to -Vsat.
Now v, becomes, V, = P2 (-Vsat) of pyly remains -vsat between point A &B. At point B', the ipvg crosses Vit & becomes more-ve than ver a olp switches to + Vsat.

Climbon & Jatura 2 V, be comes, V, = P2 (+Vsaf) Ri+P2 Again it remain equal to Noat till points. Transfer characteristics Vin (Vit Vin Vo= +Vsat

Vo = +Vsat

Vo = +Vsat Vit o. itur >Ven Vin>VIT Vin>VUT: VU=-Ve & Vo=-Vsat Vin>VLT Vin < VUT But Vin>VLT: Vo=-Vsat It is the graph of Vin Versus Vo! Hysteresis vig equal to différence between Vur & Vir & it is called the hysteresis width. The interval Vit (Vin (Vut incalled as dead zone or dead band because the variation of Vin in this bound closs not change the olp vig at alt. Hysteresis vlg VHV = VUT-VLT = R2 (+Vsat - (-Vsat)) VHV = R2 x2 Vsat. Application

To convert sinewave into square wave.

To overvig & overcin protection ckt.

To on/off type temperature controller.

Sch

FIGURE 9.20 Inverting Schmitt trigger, VTC, and sample waveforms.

to snap from V_{OH} to V_{OL} as fast as the amplifier can swing. This, in turn, causes v_P to snap from V_{TH} to V_{TL} , or from +5 V to -5 V. If we wish to change the output state again, we must now lower v_I all the way down to $v_P = V_{TL} = -5$ V, at which juncture v_O will snap back to V_{OH} . In summary, as soon as $v_N = v_I$ approaches $v_P = V_T$, v_O and, hence, v_P , snap away from v_N . This behavior is opposite to that of negative feedback, where v_N tracks v_P !

Looking at the VTC of Fig. 9.20b, we observe that when coming from the left, the threshold is V_{TH} , and when coming from the right it is V_{TL} . This can also be appreciated from the waveforms of Fig. 9.20c, where it is seen that during the times of increasing v_I the output snaps when v_I crosses V_{TH} , but during the times of decreasing v_I it snaps when v_I crosses V_{TL} . Note also that the horizontal portions of the VTC can be traveled in either direction, under external control, but the vertical portions can be traveled only clockwise, under the regenerative effect of positive feedback.

A VTC with two separate tripping points is said to exhibit hysteresis. The hysteresis width is defined as

$$\Delta V_T = V_{TH} - V_{TL} \tag{9.9}$$

and in the present case can be expressed as

$$\Delta V_T = \frac{R_1}{R_1 + R_2} (V_{OH} - V_{OL}) \tag{9.10}$$

With the component values shown, $\Delta V_T = 10$ V. If desired, ΔV_T can be varied by changing the ratio R_1/R_2 . Decreasing this ratio will bring V_{TH} and V_{TL} closer together until, in the limit $R_1/R_2 \rightarrow 0$, the two vertical segments coalesce at the origin. The circuit is then an inverting zero-crossing detector.

Noninverting Schmitt Trigger

The circuit of Fig. 9.21a is similar to that of Fig. 9.20a, except that v_I is now applied at the position. If we want v_O at the noninverting side. For $v_I \ll 0$, the output will saturate at V_{OL} . If we want v_O

FIGURE 9.21
Noninverting Schmitt trigger, VTC, and sample waveforms.

to switch state, we must raise v_I to a high enough value to bring v_P to cross $v_N = 0$, since this is when the comparator trips. This value of v_I , aptly denoted as V_{TH} , must be such that $(V_{TH} - 0)/R_1 = (0 - V_{OL})/R_2$, or

$$V_{TH} = -\frac{R_1}{R_2} V_{OL} (9.11a)$$

Once v_O has snapped to V_{OH} , v_I must be lowered if we want v_O to snap back to V_{OL} . The tripping voltage V_{TL} is such that $(V_{OH} - 0)/R_2 = (0 - V_{TL})/R_1$, or

$$V_{TL} = -\frac{R_1}{R_2} V_{OH} (9.11b)$$

The resulting VTC, shown in Fig. 9.21b, differs from that of Fig. 9.20b in that the vertical segments are traveled in the *counterclockwise* direction. The output waveform is similar to that of the inverting Schmitt trigger, except for a reversal in polarity. The hysteresis width is now

$$\Delta V_T = \frac{R_1}{R_2} (V_{OH} - V_{OL}) \tag{9.12}$$

and it can be varied by changing the ratio R_1/R_2 . In the limit $R_1/R_2 \to 0$ we obtain a noninverting zero-crossing detector.