1 Problem Setup

As input, we are given a graph $G = (V_G, E_G)$, where each vertex is a geographic position $s_i \in S^2$, and each edge (i, j) has an associated (Olivier-Ricci) curvature $R_{i,j} \in (-2,1)$ and an associated latency $t_{i,j} \in \mathbb{R}_{\geq 0}$.

Intuitively, we want to return a surface in \mathbb{R}^3 that is the graph of a function $\rho: \overline{S}^2 \to \mathbb{R}_{>0}$ whose geodesics $g_{i,j}$ between s_i and s_j (and their missing ρ -coordinates) have length $\phi_{i,j}$ that is in a linear relationship with the latency.

The strategy to realize this intuition is to create a mesh $M = (V_M, E_M)$ supported on a subset of S^2 that contains our input positions. Let P be the support. Then for each $s_i \in P$, we want to assign a $\rho_i \in \mathbb{R}_{>0}$, which in turn gives a point $v_i = (s_i, \rho_i) \in V$. This setup is made explicit in mesh/sphere.py. A similar setup is found in mesh/rectangle.py, where we use $[0, 1]^2$ instead of S^2 .

2 Objective/Loss Functions

To enforce that the mesh approximates our desired surface, we define the objective functions

$$\mathcal{L}_{\text{geodesic}}(M) \triangleq \sum_{e \in E_G} (\text{least squares residual of edge } e)^2,$$

$$\mathcal{L}_{\text{smooth}}(M) \triangleq -\rho^{\mathsf{T}} L_C \rho,$$

$$\mathcal{L}_{\text{curvature}}(M) \triangleq \sum_{\substack{v \in V_M \\ v \text{ close to } (i,j)}} (\kappa(v) - R_{i,j})^2,$$

$$\mathcal{L}(M) \triangleq \lambda_{\text{geodesic}} \mathcal{L}_{\text{geodesic}}(M) + \lambda_{\text{curvature}} \mathcal{L}_{\text{curvature}}(M) + \lambda_{\text{smooth}} \mathcal{L}_{\text{smooth}}(M),$$

where the λ 's are tunable hyperparameters. The other variables will be defined in the upcoming subsections. Our goal is then to minimize $\mathcal{L}(M)$.

Note that the loss functions (particularly the geodesic and total ones) also have a dependence on the measured latencies. We omit that as a written parameter because they are treated as fixed (we are really optimizing over the manifold, not over the measured latencies).

2.1 Laplacian

Some mesh notation first. If i and j are two indices vertices for which (v_i, v_j) is an edge, let c(i, j) be the index such that $v_i \to v_j \to v_{c(i,j)}$ traces a triangle counterclockwise. Note that this index exists and is unique assuming we have a mesh without boundary.

We define the following variables:

$N_{i,j}$	Outward normal of triangle $v_i \to v_j \to v_{c(i,j)}$
$A_{i,j}$	Area of triangle $v_i \to v_j \to v_{c(i,j)}$
$D_{i,j}$	Vertex triangle areas; diagonal
$\theta_{i,j}$	Measure of $\angle v_i v_{c(i,j)} v_j$
L_C	Cotangent operator; sparse
$L_C^{ m Neumann}$	Cotangent operator with zero-Neumann boundary condition
$L_C^{ m Dirichlet}$	Cotangent operator with zero-Dirichlet boundary condition

2.1.1 Forward Computation

We have the following (standard) definition of the Laplace-Beltrami operator on a mesh:

$$N_{i,j} = \left(v_i - v_{c(i,j)}\right) \times \left(v_j - v_{c(i,j)}\right)$$

$$A_{i,j} = \frac{1}{2} ||N_{i,j}||_2$$

$$D_{i,j} = \begin{cases} \frac{1}{3} \sum_{\substack{k \\ (v_i, v_k) \text{ is an edge}}} A_{i,k} & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}$$

$$\cot(\theta_{i,j}) = \frac{\left(v_i - v_{c(i,j)}\right) \cdot \left(v_j - v_{c(i,j)}\right)}{2A_{i,j}}$$

$$\left(L_C^{\text{Neumann}}\right)_{i,j} = \begin{cases} \frac{1}{2} \left(\cot(\theta_{i,j}) + \cot(\theta_{j,i})\right) & \text{if } (v_i, v_j) \text{ or } (v_j, v_i) \text{ is a half-edge,} \\ -\frac{1}{2} \sum_{\substack{k \\ (v_i, v_k) \text{ or } (v_k, v_i) \\ \text{is a half-edge}}} \left(\cot(\theta_{i,k}) + \cot(\theta_{k,i})\right) & \text{if } i = j, \end{cases}$$

$$\left(L_C^{\text{Dirichlet}}\right)_{i,j} = \begin{cases} \frac{1}{2} \left(\cot(\theta_{i,j}) + \cot(\theta_{j,i})\right) & \text{if } (v_i, v_j) \text{ and } (v_j, v_i) \text{ are half-edges,} \\ -\frac{1}{2} \sum_{\substack{k \\ (v_i, v_k) \text{ and } (v_k, v_i) \\ \text{are half-edges}}} \left(\cot(\theta_{i,k}) + \cot(\theta_{k,i})\right) & \text{if } i = j, \end{cases}$$

$$0 & \text{otherwise.}$$

Flipping our attention back to meshes without boundary, the two definitions above coincide, so we can write

$$L_C = L_C^{\text{Neumann}} = L_C^{\text{Dirichlet}}$$
.

2.1.2 Reverse Computation

For the ease of notation, assume that we are using the spherical setup, so $v_{\ell} = \rho_{\ell} s_{\ell}$. We compute

$$\begin{split} \frac{\partial v_i}{\partial \rho_\ell} &= \begin{cases} s_i & \text{if } \ell = i, \\ 0 & \text{otherwise}, \end{cases} \\ \frac{\partial N_{i,j}}{\partial \rho_\ell} &= \begin{cases} \left(v_{c(i,j)} - v_j\right) \times \frac{\partial v_\ell}{\partial \rho_\ell} & \text{if } \ell = i, \\ \left(v_i - v_{c(i,j)}\right) \times \frac{\partial v_\ell}{\partial \rho_\ell} & \text{if } \ell = j, \\ \left(v_j - v_i\right) \times \frac{\partial v_\ell}{\partial \rho_\ell} & \text{if } \ell = c(i,j), \\ 0 & \text{otherwise}, \end{cases} \\ \frac{\partial A_{i,j}}{\partial \rho_\ell} &= \frac{1}{4A_{i,j}} N_{i,j} \cdot \frac{\partial N_{i,j}}{\partial \rho_\ell}, \\ \left(\frac{\partial D}{\partial \rho_\ell}\right)_{i,j} &= \begin{cases} \frac{1}{3} \sum_{\substack{k \\ (v_i, v_k) \text{ is an edge}}} \frac{\partial A_{i,k}}{\partial \rho_\ell} & \text{if } i = j, \\ \left(v_i - v_{c(i,j)}\right) \cdot \frac{\partial v_\ell}{\partial \rho_\ell} - 2\cot(\theta_{i,j}) \frac{\partial A_{i,j}}{\partial \rho_\ell} \\ \frac{2A_{i,j}}{\partial \rho_\ell} & \text{if } \ell = i, \end{cases} \\ \frac{\left(v_i - v_{c(i,j)}\right) \cdot \frac{\partial v_\ell}{\partial \rho_\ell} - 2\cot(\theta_{i,j}) \frac{\partial A_{i,j}}{\partial \rho_\ell}}{2A_{i,j}} & \text{if } \ell = j, \\ \frac{\left(2v_{c(i,j)} - v_i - v_j\right) \cdot \frac{\partial v_\ell}{\partial \rho_\ell} - 2\cot(\theta_{i,j}) \frac{\partial A_{i,j}}{\partial \rho_\ell}}{2A_{i,j}} & \text{if } \ell = c(i,j), \\ 0 & \text{otherwise}, \end{cases} \end{split}$$

$$\left(\frac{\partial L_C^{\text{Neumann}}}{\partial \rho_\ell} \right)_{i,j} = \begin{cases} \frac{1}{2} \left(\frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{i,j}\right) + \frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{j,i}\right) \right) & \text{if } \left(v_i, v_j\right) \text{ or } \left(v_j, v_i\right) \text{ is a half-edge,} \\ -\frac{1}{2} \sum_{\substack{k \\ \left(v_i, v_k\right) \text{ or } \left(v_k, v_i\right) \\ \text{is a half-edge}}} \left(\frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{i,k}\right) + \frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{k,i}\right) \right) & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}$$

$$\left(\frac{\partial L_C^{\text{Neumann}}}{\partial \rho_\ell} \right)_{i,j} = \begin{cases} \frac{1}{2} \left(\frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{i,j}\right) + \frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{j,i}\right) \right) & \text{if } \left(v_i, v_j\right) \text{ and } \left(v_j, v_i\right) \text{ are half-edges,} \\ -\frac{1}{2} \sum_{\substack{k \\ \left(v_i, v_k\right) \text{ and } \left(v_k, v_i\right) \\ \text{are half-edges}}} \left(\frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{i,k}\right) + \frac{\partial}{\partial \rho_\ell} \cot \left(\theta_{k,i}\right) \right) & \text{if } i = j, \end{cases}$$

$$\text{otherwise.}$$