

ETC3550: Applied forecasting for business and economics

Ch3. The forecasters' toolbox OTexts.org/fpp2/

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

- Mean: meanf(y, h=20)
- Naïve: naive(y, h=20)
- Seasonal naïve: snaive(y, h=20)
- Drift: rwf(y, drift=TRUE, h=20)

- Mean: meanf(y, h=20)
- Naïve: naive(y, h=20)
- Seasonal naïve: snaive(y, h=20)
- Drift: rwf(y, drift=TRUE, h=20)

Your turn

- Use these four functions to produce forecasts for goog and auscafe.
- Plot the results using autoplot().

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

If the data show different variation at different levels of the series, then a transformation can be useful.

If the data show different variation at different levels of the series, then a transformation can be useful. Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$

Cube root
$$w_t = \sqrt[3]{y_t}$$
 Increasing

Logarithm
$$w_t = \log(y_t)$$
 strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow
Cube root $w_t = \sqrt[3]{y_t}$ Increasing
Logarithm $w_t = \log(y_t)$ strength

Logarithms, in particular, are useful because they are more interpretable: changes in a log value are **relative** (percent) changes on the original scale.

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- λ = 0: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

- \mathbf{y}_t^{λ} for λ close to zero behaves like logs.
- If some $y_t = 0$, then must have $\lambda > 0$
- if some $y_t < 0$, no power transformation is possible unless all y_t adjusted by adding a constant to all values.
- Simple values of λ are easier to explain.
- Results are relatively insensitive to λ .
- Often no transformation (λ = 1) needed.
- Transformation can have very large effect on PI.
- Choosing λ = 0 is a simple way to force forecasts to be positive

Automated Box-Cox transformations

```
(BoxCox.lambda(elec))
```

```
## [1] 0.2654076
```

Automated Box-Cox transformations

(BoxCox.lambda(elec))

```
## [1] 0.2654076
```

- This attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

Back-transformation

We must reverse the transformation (or back-transform) to obtain forecasts on the original scale. The reverse Box-Cox transformations are given by

$$y_t = \begin{cases} \exp(w_t), & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda}, & \lambda \neq 0. \end{cases}$$

Back-transformation

```
fit <- snaive(elec, lambda=1/3)
autoplot(fit)</pre>
```


Back-transformation

Your turn

Find a Box-Cox transformation that works for the gas data.

Bias adjustment

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Bias adjustment

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

Bias adjustment

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

$$E[Y] = E[f(X)] = f(\mu) + \frac{1}{2}\sigma^2[f''(\mu)]^2.$$

Bias adjustment

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

Bias adjustment

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

$$\mathsf{E}[Y] = \begin{cases} e^{\mu} \left[1 + \frac{\sigma^2}{2} \right] & \lambda = 0; \\ (\lambda \mu + 1)^{1/\lambda} \left[1 + \frac{\sigma^2 (1 - \lambda)}{2(\lambda \mu + 1)^2} \right] & \lambda \neq 0. \end{cases}$$

Bias adjustment

```
fc <- rwf(eggs, drift=TRUE, lambda=0, h=50, level=80)
fc2 <- rwf(eggs, drift=TRUE, lambda=0, h=50, level=80,
  biasadj=TRUE)
autoplot(eggs) +
  autolayer(fc, series="Simple back transformation") +
  autolayer(fc2$mean, series="Bias adjusted") +
  guides(colour=guide_legend(title="Forecast"))</pre>
```


Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_t .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

(for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

```
autoplot(goog200) +
   xlab("Day") + ylab("Closing Price (US$)") +
   ggtitle("Google Stock (daily ending 6 December 2013)")
```


Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

```
fits <- fitted(naive(goog200))
autoplot(goog200, series="Data") +
  autolayer(fits, series="Fitted") +
  xlab("Day") + ylab("Closing Price (US$)") +
  ggtitle("Google Stock (daily ending 6 December 2013)")</pre>
```



```
res <- residuals(naive(goog200))
autoplot(res) + xlab("Day") + ylab("") +
   ggtitle("Residuals from naïve method")</pre>
```



```
gghistogram(res, add.normal=TRUE) +
ggtitle("Histogram of residuals")
```


ACF of residuals

- We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they aren't, then there is information left in the residuals that should be used in computing forecasts.
- So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.
- We *expect* these to look like white noise.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- If each r_k close to zero, Q will be **small**.
- If some r_k values large (positive or negative), Q will be large.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Ljung-Box test

$$Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- My preferences: h = 10 for non-seasonal data,
 h = 2m for seasonal data.
- Better performance, especially in small samples.

- If data are WN, Q^* has χ^2 distribution with (h K) degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.
- For the Google example:

```
# lag=h and fitdf=K
Box.test(res, lag=10, fitdf=0, type="Lj")
##
## Box-Ljung test
##
## data: res
## X-squared = 11.031, df = 10, p-value =
## 0.3551
```

checkresiduals function

checkresiduals(naive(goog200))

checkresiduals function

```
##
## Ljung-Box test
##
## data: Residuals from Naive method
## Q* = 11.031, df = 10, p-value = 0.3551
## Model df: 0. Total lags used: 10
```

Your turn

Compute seasonal naïve forecasts for quarterly Australian beer production from 1992.

```
beer <- window(ausbeer, start=1992)
fc <- snaive(beer)
autoplot(fc)</pre>
```

Test if the residuals are white noise.

```
checkresiduals(fc)
```

What do you conclude?

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters.
- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
- The test set must not be used for any aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Forecast errors

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are *true* forecast errors as the test data is not used in computing $\hat{y}_{T+h|T}$.

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t = 1, \dots, T$. Then the following measures are useful.

$$\begin{aligned} \text{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \text{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \text{RMSE} \quad = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \text{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t = 1, \dots, T$. Then the following measures are useful.

$$\begin{aligned} \text{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \text{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \text{RMSE} \quad = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \text{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if y_t ≫ 0 for all t, and y has a natural zero.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.


```
beer2 <- window(ausbeer, start=1992, end=c(2007,4))
beer3 <- window(ausbeer, start=2008)
beerfit1 <- meanf(beer2, h=10)
beerfit2 <- rwf(beer2, h=10)
beerfit3 <- snaive(beer2, h=10)
accuracy(beerfit1, beer3)
accuracy(beerfit2, beer3)
accuracy(beerfit3, beer3)</pre>
```

	RMSE	MAE	MAPE	MASE
Mean method	38.45	34.83	8.28	2.44
Naïve method	62.69	57.40	14.18	4.01
Seasonal naïve method	14.31	13.40	3.17	0.94

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Time series cross-validation

Time series cross-validation

Time series cross-validation

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

tsCV function:

[1] 6.168928

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.

Pipe function

Ugly code:

Better with a pipe:

```
goog200 %>%
  tsCV(forecastfunction=rwf, drift=TRUE, h=1) -> e
e^2 %>% mean(na.rm=TRUE) %>% sqrt
goog200 %>% rwf(drift=TRUE) %>% residuals -> res
res^2 %>% mean(na.rm=TRUE) %>% sqrt
```

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.
- A prediction interval gives a region within which we expect y_{T+h} to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a 95% PI is

$$\hat{\mathbf{y}}_{T+h|T} \pm 1.96\hat{\sigma}_h$$

where $\hat{\sigma}_h$ is the st dev of the *h*-step distribution.

■ When h = 1, $\hat{\sigma}_h$ can be estimated from the residuals.

Naive forecast with prediction interval:

```
res_sd <- sqrt(mean(res^2, na.rm=TRUE))
c(tail(goog200,1)) + 1.96 * res_sd * c(-1,1)

## [1] 519.3103 543.6462
```

naive(goog200, level=95)

```
## Point Forecast Lo 95 Hi 95
## 201 531.4783 519.3104 543.6461
## 202 531.4783 514.2703 548.6862
## 203 531.4783 510.4029 552.5536
## 204 531.4783 507.1425 555.8140
## 205 531.4783 504.2701 558.6865
```

- Point forecasts are often useless without prediction intervals.
- Prediction intervals require a stochastic model (with random errors, etc).
- Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).

Assume residuals are normal, uncorrelated, sd = $\hat{\sigma}$:

Mean forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{1 + 1/T}$$

Naïve forecasts:
$$\hat{\sigma}_h = \hat{\sigma}\sqrt{h}$$

Seasonal naïve forecasts
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{\lfloor (h-1)/m \rfloor} + 1$$

Drift forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{h(1+h/T)}$$
.

Note that when h = 1 and T is large, these all give the same approximate value $\hat{\sigma}$.

- Computed automatically using: naive(), snaive(), rwf(), meanf(), etc.
- Use level argument to control coverage.
- Check residual assumptions before believing them.
- Usually too narrow due to unaccounted uncertainty.